

U.S. ARMY CHEMICAL AND BIOLOGICAL DEFENSE COMMAND

ERDEC-TR-461

USING SEQUENCE ANALYSIS TO IDENTIFY CULTURES DERIVED FROM AIRBORNE SPORES

Charles H. Wick Homer R. Yeh

RESEARCH AND TECHNOLOGY DIRECTORATE

Erica Cline Robert L. Edmonds

UNIVERSITY OF WASHINGTON Seattle, WA 98195

January 1998

Approved for public release; distribution is unlimited.

19980319 062

DTIC QUALITY INSPECTED 3

Disclaimer The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204, Arlington, VA 22202-4302, and to the Office of	Management and Budget, Paperwork Re				
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED		
	1998 January	Final; 96 Jul - 97	Jul		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS		
Using Sequence Analysis to Identify	Cultures Derived from Air	borne Spores			
			PR-10262384A553		
6. AUTHOR(S)					
Wick, Charles H.; Yeh, Homer R.	(ERDEC); Cline, Erica; and	Edmonds, Robert L.			
(University of Washington)					
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION		
			REPORT NUMBER		
DIR, ERDEC, ATTN: SCBRD-RT	E, APG, MD 21010-5423				
			ERDEC-TR-461		
University of Washington, Seattle,	37 A 02 105				
Oniversity of washington, Seattle,	WA 90193				
9. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
			AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION/AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE		
Approved for public release; distrib	ution is unlimited.				
13. ABSTRACT (Maximum 200 words)					
	DWA	· 11 416-1 11 6	1 II-in-real formed amolt		
The purpose of this project was to e					
subunit (SSU) ribosomal RNA prim					
			ase project to identify the most closely		
			re obtained from three cultures to be		
used to detect each culture in mixed					
genus with some confidence (Mucon					
related genera (Penicillium, Aureob	asidium, Spongipellis), but t	he phylogenetic tree lack	ed the resolution for genus		
identification, whereas sequence res					
presence of some cultures in mixed	DNA isolates, with varying	degrees of sensitivity. A	lthough there are not yet enough		
published sequences to identify less	common airborne fungi usir	ng sequencing of the SSU	rDNA gene, our results indicate that		
the molecular methods evaluated in this study could have the potential to identify fungal spores from common genera and detect					
them in mixed environmental samples.					
1					
14. SUBJECT TERMS			15. NUMBER OF PAGES		
Mucor PCR			31		
Penicillium Airborne samples			16. PRICE CODE		
Spongipellis DNA fingerprinting					
	chain reaction				
	SECURITY CLASSIFICATION	19. SECURITY CLASSIFICA	ATION 20. LIMITATION OF ABSTRACT		
OF REPORT	OF THIS PAGE	OF ABSTRACT			
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL		

Blank

PREFACE

The work described in this report was authorized under Project No. 10262384A553, Non-Medical CB Defense. This work was started in July 1996 and completed in July 1997.

The use of either trade or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

This report has been approved for public release. Registered users should request additional copies from the Defense Technical Information Center; unregistered users should direct such requests to the National Technical Information Service.

Blank

CONTENTS

INTRODUCTION	7
METHODS	9
Stock Cultures DNA Extraction PCR Amplification of the SSU rRNA Gene and Sequencing Analysis of Sequence Data Molecular Markers (Restriction Fragment Length Polymorphisms, RFLPs)	9 9 10
RESULTS	11
Sequences and Direct Observations of Stock Cultures	
DISCUSSION	16
Sequence Analysis	
LITERATURE CITED	19
APPENDIXES	
A. SEQUENCE OF CULTURES DATA	21
B. PICTURES OF STOCK CULTURES	27
C. BUFFERS	31

Blank

USING SEQUENCE ANALYSIS TO IDENTIFY CULTURES DERIVED FROM AIRBORNE SPORES

INTRODUCTION

Many medically or ecologically significant microbes are spread predominantly through the air. These airborne microbes are of interest for a variety of reasons, including human, animal and plant health and forest ecology. The purpose of this study is to investigate methods of characterizing airborne biological particles, with the ultimate goal of developing real-time, culture free means of detecting and identifying unique particles. Flow cytometry, gas chromatography and molecular techniques were deemed to be the most promising techniques (Edmonds, 1994; Wick, et al., 1994, 1995, 1997).

It was proposed that the detection of airborne biological particles could be based on their physical characteristics as detected by flow cytometer analysis and identification of biochemical profiles by gas chromatography. Initial research involving flow cytometry and gas chromatography were discussed in a previous report (Wick, et al., 1997). A combination of gas chromatography and mass spectometry has been used successfully to determine sugar composition in the walls of cysts of *Pneumocystis carinii* (DeStefano et al. 1990) and prespore specific antigens of a cellular slime mold Dictyostelium discoideum (Zachara et al. 1996).

Recently, our focus has been upon investigating molecular methods of identifying fungal airborne spores, to be used in combination with physical and biochemical techniques of characterizing field samples of airborne particles. The chief advantage of using a molecular approach is that it is possible to achieve a highly reliable and detailed identification of individual isolates. There are some significant challenges and limitations associated with molecular techniques. Published sequence databases are still quite limited, making it difficult to find a match, especially when studying fungi that are not medically significant; also, molecular techniques generally require a minimum of several days, although turn-around times are becoming increasingly rapid as the technology becomes more refined.

Molecular techniques can be quite powerful when used in combination with physical or chemical separation criteria. For example, real-time flow cytometry and gas chromatography could be used to produce biochemical profiles which would indicate the presence of an unusual biological particle. Molecular methods could then be used to determine the phylogenetic identity of the biological particle e.g., the most-closely related known species. The power of this approach is that it can be used to study a completely unknown organism, without prior knowledge of its identity, and without the necessity of culturing it.

Molecular techniques have recently become common in the study of fungal systematics, resulting in the development of reliable protocols for DNA isolation from fungal cultures and analysis of molecular markers or sequence data. In particular, the ribosomal RNA genes have received considerable attention, resulting in development of an increasingly detailed phylogenetic tree based on sequence-level variation in the rRNA genes. As rRNA genes from more and more fungal species are sequenced, the expanding database becomes increasingly attractive as a tool for characterizing unknown cultures. Briefly, the typical approach is to isolate genomic DNA from the unknown culture (or single spore), amplify (copy) the rRNA gene using short DNA strands (18-20 nucleotides long) known as primers with the polymerase chain reaction (PCR), and then sequence the amplified rRNA gene. The sequence is aligned with rRNA sequences from known organisms, and the organism whose gene is most similar to the unknown's is identified.

In selecting a strategy, we needed to choose a gene for which reliable universal primers and an extensive database of fungal sequences had already been determined. Also, the sequence of the gene had to be variable enough to distinguish to the genus level. The small-subunit (SSU, or 18S) rDNA gene evolves relatively slowly, and is therefore useful for studying distantly related organisms (White *et al.*, 1990), and has been used by many researchers to study fungal phylogenetics (e.g. White *et al.*, 1990; Spatafora *et al.*, 1995). Therefore, we chose to evaluate sequencing of the SSU rDNA gene as a means of identifying fungal isolates from airborne spores.

To assess the feasability of this approach, we began by working with stock cultures of fungi obtained from common airborne spores. Our objectives were: 1) to determine whether sequencing of the SSU rDNA gene could identify common airborne fungi at the genus level, and 2) to evaluate the use of molecular markers in detecting unique fungi after they had been identified by sequencing.

METHODS

Stock Cultures

The stock cultures discussed in this report were obtained in October 1993 from airborne spores collected on open agar plates from various locations on the University of Washington campus, and maintained in pure culture on agar slants. Cultures were inoculated onto thin films of agar under glass coverslips on microscope slides, grown at 22° C for 5-10 days, observed at 100x and 400x under a light microscope, and photographed. In addition, stock cultures were grown on agar plates, agar blocks were dissected out and placed on mounts for use in an environmental scanning electron microscope (SEM), and prints were made of characteristic features from each culture.

DNA Extraction

Genomic DNA was isolated according to a protocol provided by George Mueller (University of Washington, personal communication, 1996). Randomly selected cultures were inoculated in 0.5 ml of liquid medium in 1.5 ml epindorf tubes, and incubated at 22° C for 2 days. Hyphae were pelleted in a microcentrifuge at 12,000 rpm for 60 seconds, culture medium was decanted, and hyphae were rinsed once with sterile water. For samples in which the volume of the pellet exceeded approx. 25 µL, the excess volume was removed, and the pellet was washed again in sterile water. The sample was then immersed in liquid nitrogen to freeze, and ground to a fine powder with a sterile micropestle. Freezing and grinding was repeated once, 30 µL of 2x CTAB (Appendix C) was added, and the sample was mixed using the micropestle. Samples were frozen and thawed repeatedly (3x) in liquid nitrogen and a 65° C waterbath. Samples were incubated in a 65° C water bath for one hour. Proteins and other cell components were removed via chloroform extraction, and DNA was precipitated in isopropanol and washed in Wash Buffer (Appendix C) and 95% ethanol.

PCR Amplification of the SSU rRNA Gene and Sequencing

A 1150 bp fragment of the SSU rRNA gene was amplified using the universal primers NS1 and NS4 (Figure 1), which have been tested with a wide range of fungal species (White *et al.*, 1990). The reaction conditions were those used by Spatafora *et al.* (1995) with some modifications: 40 cycles of 94° C for 1 min., 53° C for 1 min., and 72° C for 1 min. Genomic DNA extracts were diluted in water at three serial dilutions: 1:100, 1:1000, and 1:10000. Successful amplification was detected on agarose gels. The DNA was purified using QiaQuick PCR purification columns (Qiagen), with a guanidine HCl

modification of the normal protocol to exclude primer dimers. The purified PCR product was submitted to the Biochemistry DNA sequencing facility at the University of Washington for sequence determination.

Figure 1: The Ribosomal DNA Gene Cluster and NS1 and NS4 Primers (White et al., 1990)

Analysis of Sequence Data

Sequences were determined in both directions using the NS1 and the NS4 primers, resulting in a region of overlap in the center of the approximately 1050 bp fragment of the SSU gene. Sequence results were confirmed by visual inspection of the sequencing gel readout, and ambiguous bases were designated as N. The sequence of the SSU rRNA gene from each of the selected cultures was compared with known SSU rRNA sequences in the Ribosomal Database Project database (Maidak et al., 1996), resulting in a list of the most closely related sequences in the database and their similarity rank.

Molecular Markers (Restriction Fragment Length Polymorphisms, RFLP s)

For selected cultures, SSU rRNA genes were amplified by the PCR and the resulting amplified sequence was digested with one of two restriction enzymes: Cfo I and Hpa II in React 8 reaction buffer (Gibco BRL). In addition, genomic DNA extracts from each culture were mixed at 1:1 or 1:100 ratios with each of the other cultures to simulate the effect of isolating DNA from a mixed fungal sample. PCR was performed and the amplified product was digested with Cfo I and Hpa II, as previously described. Digested DNA was separated on an agarose gel, stained with ethidium bromide, and digitized by a video analyzer. Migration of each band was measured using NIH-Image software and gel measurement macros, and migration was quantified in reference to the 100 bp band of the 100 bp DNA ladder (Gibco BRL).

RESULTS

Sequences and Direct Observations of Stock Cultures

Sequences were obtained for five stock cultures (Appendix A). Photographs of light microscopy and environmental SEM results are presented in Appendix B. Culture 1 resembled *Penicillium*, but had long chains of conidia not typical of *Penicillium*. The sequence's closest match was *Penicillium notatum*, with a fairly low similarity rank of 0.749 (see Table 1 and Figure 2). The culture appeared to be in the *Penicillium/Aspergillis* cluster, but it could not be identified to genus. Culture 2 had sporangia characteristic of *Mucor*, and the closest matching sequence was *Mucor racemosus*, with a

Table 1. Sequence Analysis of Cultures Derived from Airborne Spores

Culture # Closest Matches		Similarity Rank (RDP)	GCG-GAP Quality	Morphol. <u>ID</u>	
1	Penicillium notatum Aspergillus fumagatus	.749 .713		Penicillium?	
2	Mucor racemosus Endogone pisiformis	.881 .408		Mucor	
3	Aureobasidium pullulans Pleospora rudis	.884 .750		Aureobasidium?	
4	Spongipellis unicolor Heterobasidion annosum * Thanatephorus praticola	.807 .765	1010.7 1008.7 966.9	Heterobasidion?	
5	Aureobasidium pullulans Blastomyces dermatitidis	.831 .755		Cladosporium?	

^{*}The *H. annosum* sequence was added to Genbank 10/96. It was not available on RDP at the time of this study, therefore sequences were compared using the GAP program of the Genetics Computing Group (GCG) package.

Figure 2. Phylogenetic Tree of Fungal SSU rDNA Sequences (provided by the Ribosomal Database Project, Maidak et al., 1996). Branches without closest matching sequences have been omitted from the figure, but were included in the tree analysis. Closest matching sequences are underlined, next closest matches are italicized, and the stock cultures' number is listed next to each.

similarity rank of 0.881. Culture 3 had a characteristic yeast form, with some pseudomycelium also present. Conidia appeared to resemble *Torula* more than *Aureobasidium* in form. A sequence for the *Torula* SSU rDNA gene was not available on the RDP, but *Aureobasidium* was a close match with a Similarity Rank of 0.884. Culture 4 had previously been tentatively identified as *Heterobasidion annosum*, but no diagnostic morphological features were observed for the stock culture at the time of this study. The SSU rDNA sequence was highly related to *Spongipellis unicolor* (Similarity rank 0.807; GCG-GAP quality index 1010.7) and *Heterobasidion annosum*, a common airborne forest pathogen, was a close second, based on a GCG-GAP quality index of 1008.7. For culture 5, sequence comparisons were indeterminate, as the two closest matches were separated on the phylogenetic tree, and had a relatively low similarity rank (0.831 for *Aureobasidium pullulans* and 0.755 for *Blastomyces dermatitidis*). The culture resembled a *Cladosporium* sp., but directly observed characters were not sufficient to identify the culture with any confidence.

The fungal SSU rDNA sequences available through the ribosomal database project are displayed in Figure 2, arranged according to phylogenetic relationship. Some branches have been omitted due to lack of space, without influencing the arrangement of species. Closest matching sequences are underlined, while next closest sequences are italicized.

Molecular Markers of Cultures 1, 2, and 3

Restriction fragment length polymorphisms (RFLP's) of the SSU rRNA gene for three of the cultures were analyzed. In Figure 3, a gel of RFLP's with the restriction enzyme Cfo I shows a pattern of three bands (750 bp. 260 bp. 170 bp) for Culture 1 and 3, and a pattern of two bands (750 bp and 400 bp) for Culture 2. When the restriction enzyme Hpa II was used (figure 4), the RFLP pattern had three bands for Culture 1 and 3 (410 bp. 210 bp. and 90 bp) and Culture 2 had two bands (750 bp and 400 bp). While Cultures 1 and 3 are indistinguishable with these two enzymes, Culture 2 can be distinguished with either enzyme.

When genomic DNA extracts from different cultures were mixed before PCR amplification of the SSU gene, the effect of mixing varied. Lanes 2-4 and 6 of the gels in Figures 3 and 4 show the results of mixing gDNA extracts 1:1. The mixture of Culture 2 and 3 (lane 6) has bands from both cultures, while the mixture of Culture 1 and 3 (lane 3) reflects the presence of Culture 1 only. When gDNA extracts were mixed 1:100, the minor component could still be detected with some cultures (lane 11--Culture 1), while with other cultures the minor component was swamped out by the major component (lanes 10 and 12--Culture 2; lane 13--Culture 3).

Lane 1: Culture 1
Lane 2: Culture 1 & 3 (1:1)
Lane 3: Culture 1 & 2 (1:1)
Lane 4: 1 & 2 & 3 (1:1:1)
Lane 5: Culture 3
Lane 6: 2 & 3 (1:1)
Lane 7: Culture 2
Lane 8: Culture 1 & (3) (1:100)
Lane 9: Culture 1 & (2) (1:100)
Lane 10: Culture 1 & (2) (1:100)
Lane 11: Culture 2 & (1) (1:100)
Lane 12: Culture 3 & (2) (1:100)
Lane 13: Culture 2 & (3) (1:100)
Lane 14: 100 bp DNA ladder

Figure 3. Gel of RFLP's of the SSU rDNA Gene Digested with Cfo I. Genomic DNA samples from stock cultures were diluted 1:1000 in water, then used for PCR directly, or mixed 1:1 or 1:100 with other stock cultures' gDNA.

Figure 4. Gel of RFLP's of the SSU rDNA Gene Digested with Hpa II. Genomic DNA samples from stock cultures were diluted 1:1000 in water, then used for PCR directly, or mixed 1:1 or 1:100 with other stock cultures' gDNA.

Lane 1: Culture 1
Lane 2: Culture 1 & 3 (1:1)
Lane 3: Culture 1 & 2 (1:1)
Lane 4: 1 & 2 & 3 (1:1:1)
Lane 5: Culture 3
Lane 6: 2 & 3 (1:1)
Lane 7: Culture 2
Lane 8: Culture 1 & (3) (1:100)
Lane 9: Culture 3 & (1) (1:100)
Lane 10: Culture 1 & (2) (1:100)
Lane 11: Culture 2 & (1) (1:100)
Lane 12: Culture 3 & (2) (1:100)
Lane 13: Culture 2 & (3) (1:100)
Lane 14: 100 bp DNA ladder

DISCUSSION

Sequence Analysis

Of the five stock cultures that were selected for study, only one (*Mucor*) could be identified to genus with some degree of confidence. The similarity rank of 0.881 when comparing *Mucor racemosus* and the unknown sequence was high enough to indicate highly related sequences, consistent with both organisms being in the same genus. Direct observation of sporangia in light and scanning electron microscopy confirmed that the isolate was *Mucor*. It is important to note that relatively few sequences are available for zygomycetes (Figure 2), and therefore it was lucky that the *Mucor racemosus* sequence was available. The low resolution on the phylogenetic tree for this branch was reflected also in the low similarity rank of 0.408 for the second most similar organism, *Endogone pisiformis*.

Culture 3 had a high similarity rank of 0.884 to *Aureobasidium pullulans*. Unfortunately, this isolate could not be identified by direct observation in our stock cultures (possibly due to the long period in culture), and therefore it is impossible to evaluate whether or not the culture actually was in the genus *Aureobasidium*. It was an interesting coincidence that culture 5 was also most highly related to *Aureobasidium pullulans*, but with a lower similarity rank of only 0.831. This result emphasizes the importance of paying attention to the degree of similarity instead of merely identifying the most highly related organism. It was also interesting to note that culture 5 had as its next closest match *Blastomyces dermatitidis*, an organism which was on a distant branch from *Aureobasidium pullulans*. This was probably due to the relatively low similarity rank, and can be explained by the rapid decrease in reliability of the alignment as the similarity between the two compared sequences decreases.

Culture 4 was found to be most similar to *Spongipellis unicolor* (0.807), with *Heterobasidion annosum* a close second. The SSU rDNA sequence for *H. annosum* was not yet available on the RDP database, but was submitted to the Genbank database in October of 1996, therefore comparisons were performed using the GAP program of the Genetics Computing Group (GCG) software package (Table 1). Again, visual inspection of the stock culture at the time of DNA isolation did not yield a reliable identification, however this culture had originally been identified as *H. annosum*. It is curious that the similarity rank was quite low (probably just under 0.807), if the stock culture was indeed the same species as the one reported in Genbank. It is possible that the species *H. annosum*, as currently defined, could encompass a wide range of genetic types, or that our stock culture was either misidentified or replaced by a contaminant. To address this

question, further research could look at SSU rDNA sequences from well-identified *H. annosum* cultures.

Culture 1 had been identified as *Penicillium* sp., and had some characteristics of *Penicillium* such as the prodigious production of blue-green spores, however the conidiophore structure was not typical of *Penicillium*. This observation was reinforced by the relatively low similarity rank (0.749) between the stock culture and *Penicillium* notatum, the most closely related sequence in the RDP database.

The SSU rDNA gene appeared to be effective in some cases in identifying unknown stock cultures to the genus level, but the power of the approach was severely limited by lack of resolution in the phylogenetic tree of available known sequences for comparison. Until more sequences become available, it will be difficult to use this approach for any but the most common genera of fungi. However, the recent advent of easily accessible and complete databases like the ribosomal database project should encourage other researchers to contribute new SSU sequences. The addition of a *H. annosum* sequence to the database during the course of this study provides an example of the rapid rate of expansion of the database.

Molecular Markers for Detecting Previously Identified Organisms

Culture 1 and Culture 3 had identical RFLP patterns with both restriction enzymes that were used (Figures 3 and 4). This is not unexpected, since the SSU rDNA gene is quite highly conserved, resulting in similar RFLP patterns among genera that are not closely related. In future research, we plan to use a less highly conserved region of the ribosomal gene cluster, which should result in unique RFLP patterns for most genera of fungi. Specifically, the internal transcribed spacers (ITS-I and ITS-2, see Figure 1) have been used by researchers for molecular markers at the genus, species, or strain level (Gardes and Bruns, 1993).

It was possible to distinguish between Culture 2 and Cultures 1 and 3 using SSU rDNA RFLP's (Figures 3 and 4). This made it possible to examine the effect of mixing gDNA from different stock cultures, to mimic the effect of isolating gDNA from mixed samples of airborne fungal spores. In 1:1 mixtures, Culture 2 could be detected from mixtures with gDNA from Culture 3 (lane 6), but not from Culture 1 (lane 3). In 1:100 mixtures, Culture 2 could be not be detected as a minor component (lanes 10 and 12). In contrast, Culture 1 could be detected both as a major component (100:1, lane 10) and as a minor component (1:100, lane 11) with Culture 2. These differences probably reflect variation in the efficiency of gDNA extraction from each stock culture. Culture 1 appeared to have either a more efficient gDNA extraction from the starting biomass, or more copies

of the rDNA gene in its genome; consequently it was more likely to "swamp out" the other organisms' gDNA in mixtures. Despite the limitation of not knowing the starting concentration of gDNA, these results indicate that PCR amplification could be able to detect SSU rDNA genes even from organisms which represent a minor component in the original fungal spore mixture.

In future research, we would like to attempt to amplify SSU rDNA genes from gDNA isolated from single airborne spores. Lee and Taylor (1990) reported successful amplification from single ascospores of *Neurospora tetrasperma*. It remains to be determined whether single spore amplification will work from conidia and yeast cells dispersed as airborne particles. We propose the following strategy for identifying airborne spores of interest. First, physical or biochemical methods would be used to detect the presence of unusual or interesting fungal spores. Second, gDNA could be obtained from a single spore, and the SSU rDNA gene could be sequenced, providing phylogenetic information about the most closely related known organism. Finally, RFLP's or other molecular markers could be used to detect the presence of that unique spore in gDNA isolated from samples of mixed fungal airborne spores from the environment.

LITERATURE CITED

- Edmonds, R. L. 1994. Rapid deteoction and identification of background levels of airborne biological particles, pages 13-18. In Wick, C. H., Paterno, D., Lowrey, A., Stout, C. R., and Kierzewski, M. O., January 1994, Integrating Aerobiology into Biological Defense. Proceedings of a Workshop on the Dynamic Characterization of Ambient Biological Aerosols, August 2-4, 1993, . Edgewood Research, Development and Engineering Center, U.S. Army Chemical and Biological Defense Agency, Aberdeen Proving Ground, MD. ERDEC-SP-016. 73 pp.
- Gardes, M., and Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts.

 Molecular Ecology 2:113-118.
- Lee, S. B., and Taylor, J. W. (1990). Isolation of DNA from fungal mycelia and single spores. <u>PCR Protocols:</u> A Guide to Methods and Applications. Academic Press, Inc.
- Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J., and Woese, C. R. (1996). The Ribosomal Database project (RDP). <u>Nucleic Acids</u> Res. 24(1):82-85.
- Spatafora, J. W., Mitchell, T. G., and Vilgalys, R. (1995). Analysis of genes coding for small-subunit rRNA sequences in studying hylogenetics of dematiaceous fungal pathogens. J. Clin. Micro. 3(5):1322-1326.
- Stefan, J. A., Cushion, M. T., Puvanesarajah, V., and Walzer, P. D. 1990. <u>Analysis of Pneumocystis carinii cyst wall</u>. <u>II. Sugar composition</u>. J. Protozool 37(5):436-441.
- White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). <u>Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics</u>. <u>PCR Protocols:</u> <u>A Guide to Methods and Applications</u>. Academic Press, Inc.
- Wick, Charles H., Paterno, D., Lowrey, A., Stout, C.R., Kierzewski, M.O., (January 1994), Integrating Aerobiology into Biological Defense (Proceedings of the Workshop on the Dynamics and Characterization of Ambient Biological Aerosols, 2-4 August 1993. Edgewood Research, Development and Engineering Center, U.S. Army Chemical and Biological Defense Agency, Aberdeen Proving Ground, MD. ERDEC-SP-016, 73 pp.

- Wick, Charles H., Robert L. Edmonds, and Judy Blew, (January 1995). Rapid

 Detection and Identification of Background levels of Airborne Biological

 Particles, Edgewood Research, Development and Engineering Center, ERDEC-TR-155, Aberdeen Proving Ground, MD.
- Wick, Charles H., Hugh R. Carlon, Robert L. Edmonds and Judy Blew, (September 1997), Rapid Identification of Airborne Biological Particles by Flow Cytometry.

 Gas Chromatography, and Genetic Probes, Edgewood Research, Development and Engineering Center, ERDEC-TR-443, Aberdeen Proving Ground, MD.
- Zacchara, N. E., Packer. N. H., Temple, M. D., Slade, M. B., Jardine, D., Karuso, P., Moss, C. J., Mabbutt, B. C., Curmi, P. M. G., Williams, K. L., and Gooley, A. A. 1996. Recombinant prespore-specific antigen from Dictyostelium discoideum is a -sheet glycoprotein with a spacer eptide modified by O-loinked N-acewtylglucossamine. Eur. J. Biochem. 238:511-518.

APPENDIX A

SEQUENCE OF CULTURES DATA

A.1: Sequence of Culture 1 (Penicillium?)

1	ATNACCANAC	ANATCTAAGT	ATAAGCAACT	TGTACTGTGA	AACTGCGAAT
51	GGCTCATTAA	ATCAGTTATC	GTTTATTTGA	TAGTACCTTA	CTACATGGAT
101	ACCTGTGGTA	ATTCTAGAGC	TAATACATGC	TAAAAACCCC	GACTTCAGGA
151	AGGGGTGTAT	TTATTAGATA	AAAAACCAAC	GCCCTTCGGG	GCTCCTTGGT
201	GAATCATAAT	AACTTAACGA	ATCGCNTGGC	CTTGCNCCGG	CGATGGTTCA
251	TTCAAATTTC	TGCCCTATCA	ACTTTCGATG	GTAGGATAGT	GGCCTACCAT
301	GGTGGCANCG	GGNNNCGGGG	AATTANGGTT	CGATCCCGGA	GAGGGAGCCT
351	GAGAAACGGC	TACNACATCC	AATGAAGGCA	NCTGGCCNCA	AATTTCCANT
401	CCCTATTCNG	GGATGTAGTN	ACAATAAATA	CTGANNCTGG	GCTCTTTTGG
451	GTCTCNTNNN	TTGGANTTNA	AANCTATTNT	ATCCCTTA ACC	GAGGAACA
501	ATTGGAGGGC	AANTTTTGGN	CCACCNACCC	GGGGTAAATT	CCCAGCTCCA
551	TANNGNAANA	TAAAAGTTGT	GCCATTTAAA	AGGTTCGTAA	GTGGACCTTG
601	GGTTNTGGCT	GCCCGTCCCC	CTCACCGCGA	GNANTGGTCC	GGCTGGACCT
651	TTCCTTNTGG	GGAACCTCAT	GGCCTTCACT	GGCTGTGGGG	GGAACCAGGA
701	CTTTTACTGT	GAAAAAATTA	GAGTGTTCAA	AGCAGGCCTT	TGCTCGAATA
751	CATTAGCATG	GAATAATAGA	ATAGGACGTG	TGGTTCTATT	TTGTTGGTTT
801	CTAGGACCGC	CGTAATGATT	AATAGGGATA	GTCGGGGGCG	TCAGTATTCA
851	GCTGTCAGAG	GTGAAATTCT	TGGATTTGCT	GAAGACTAAC	TACTGCGAAA
901	GCATTCGCCA	AGGATGTTTT	CATTAATCAG	GGAACGAAAG	TTAGGGGATC
951	GAAGACGATC	AGATACCGTC	GTAGTCTTAA	CCATAAACTA	TGCCGACTAG
1001	GGATCGGACG	GGTTCTATGA	TGACCCGTTC	GGCACCTTAC	GAGAAATCAA
1051	ATTTTTGGTT	CTGGGGGATG	ATGTCGCANG	GTNA	

A.2: Sequence of Culture 2 (Mucor?)

1	TTNANGANTG ACGATGNAAG TATAAATAAA TTTATATTGT GAAACTGCGA
51	ATGGCTCATT AAATCAGTTA TGATCTACGT GACATATTTC TTTACTACTT
101	GGATAACCGT GGTAATTCTA GAGCTAATAC NTGCAAAAAA ACCCTGACTT
151	ACGAAAGGGT GCACTTATTA GATAAAGCCA ACGCTGGGTA AAACCAGTTT
201	CCCTTGGTGA TTCATAATAA TTTAGCGGAT CGCNTGGCCT TGTGCTAGCG
251	ACAGTCCACT CGATTTTCTG CCCTATCATG GTTGAGATTG TAAGATAGAG
301	GCTTACAANG CCTACAACGG GTANCGGGGA ATTAGGGTTC GATTCCGGAG
351	AGGGAGCCTG AGAAACGGCT ACCACNTCCA ANGAAGGCAG CTTGCGCGCA
401	AATTACCCAA TCCCGACTCG GGGAGGTAGT GACAATAAAT AACAATGCAG
451	GGCCTTTAAG GTCTTGCAAT TGGAATGAGT ACAATTTAAA TCCCTTAACG
501	AGGATCAATT GGAGGGCAAG TCTGGTGCCC AGCAGCCGCG GTAATTCCAG
551	CTCCCATAGC GTATATTAAA GTTGTTGCAG TTAAAACGTC CGTAGTCAAA
601	TTTTAGTCTT TAGATGAGGT GGCCTGGTCT TCATTGATCA AGCTCGCTTT
651	TATCGAGACT TTTTTCTGG TTATGCTATG AATAGCTTCG GTTGTTTATA
701	GTCTCTAGCC AGATGATTAC CATGAGCAAA TCAGAGTGTT TAAAGCAGGC
751	TTTTAAGCTT GAATGTGTTA GCATGGAATA ATGAAATATG ACTTTAGTCC
801	CTATTTCGTT GGTTCAGGAA CTTAAGTAAT GATGAATAGA AACGGTTGGG
851	GACATTTGTA TTTGGTCGCT AGAGGTGAAA TTCTTGGATT GACCGAAGAC
901	AAACTACTGC GAAAGCATTT GATCCAGGAC GTTTTCATTG ATCAAGGTCT
951	AAAGTTAAGG GATCGAAGAC GATTAGATAC CGTCGTAGTC TTAACCACAA
1001	ACTATGCCGA CTAGAGATTG GGCTTGTTTA TTATGACTAG CTCAGCATCT
1051	TAGCGAAAGT AAATTTTTGG TTCTGGGGGG TGTNTAACAG GGTGNNNNNN
1101	NMN

A.3: Sequence of Culture 3 (Aureobasidium?)

1	CTTCAGGATT	GACGGANGAA	GGTGTGGCGC	TNTTCGGTGA	AACTGCGAAT
51	GGCTCATTAA	ATCAGTTATC	GTTTATTTGA	TAGTACCTTA	CTACTTGGAT
101	AACCGTGGTA	ATTCTAGAGC	TAATACATGC	TAAAAACCCC	AACTTCGGAA
151	GGGGTGTATT	TATTAGATAA	AAAACCAACG	CCCTTCGGGG	CTCCTTGGTG
201	ATTCATAATA	ACTAAACGAA	TCGCATGGCC	TTGCGCCGGC	GATGGTTCAT
251	TCAAATTTCT	GCCCTATCAA	CTTTCGATGG	TAGGATAGTG	GCCTACCATG
301	GTATCAACNG	GTAACGGGGA	ATTAGGGTTC	TATTCCGGAG	AGGGAGCCTG
351	AGAAACGGCT	ACCACATCCA	AGGAAGGCAG	CAGGCGCGCA	AATTACCAAT
401	CCCGACACGG	GGAGGTAGTG	ACAATAAATA	CTGATACAGG	GCTCTTTTGG
451	GTCTTGTAAT	TGGAATGAGT	ACAATTTAAT	CCTTAAACGA	GGAACAATTG
501	GAGGCAAGTC	TGGTGCCAGC	AGCCGCGGNA	ATTCCAGCTC	CCATTAGCGT
551	ATATTAAAGT	TGTTGCAGTT	AAAAAGCTNC	GTAGTTGAAC	CTTGGGCCTG
601	GCTGGCCGGT	CCGCCTCACC	GCGTGTANTG	GTCCGGCCGG	GCCTTTCCTT
651	CTGGGGAGCC	GCATGCCCTT	CACTGGGCGT	GTCGGGGAAC	CAGGACTTTT
701	ACTTTGAAAA	AATTAGAGTG	TTCAAAGCAG	GCCTTTGCTC	GAATACATTA
751	GCATGGAATA	ATAGAATAGG	ACGTGCGGTT	CTATTTNGTT	GGTTTCTAGG
801	ACCGCCGTAA	TGATTAATAG	GGATAGTCGG	GGGCATCAGT	ATTCAATTGT
851	CAGAGGTGAA	ATTCTTGGAT	TTATTGAAGA	CTAACTACTG	CGAAAGCATT
901	TGCCAAGGAT	GTTTTCATTA	ATCAGTGAAC	GAAAGTTAGG	GGATCGAAGA
951	CGATCAGATA	CCGTCGTAGT	CTTAACCATA	AACTATGCCG	ACTAGGGATC
1001	GGGCGATGTT	ATCATTNTGA	TCGTTCGNCA	CCNTACGAGA	AATCAAATCT
1051	ACGGATCNGG	TGATGNATCA	CAGTTTCNNN	NGN	

A.4: Sequence of Culture 4 (Heterobasidion annosum?)

1	TNTTGGACCG	ACANATCTAA	GTATAAACAA	GTTTGTACTG	TGAAACTGCG
51	AATGGCTCAT	TAAATCAGTT	ATAGTTTATT	TGATGGTGCT	TTGCTACATG
101	GATAACTGTG	GTAATTCTAG	AGCTAATACA	TGCAATCAAG	CCCCGACTTC
151	TGGAAGGGGT	GTATTTATTA	GATAAAAAAC	CAACGCGGTT	CGCCGCTCCA
201	TTGGTGATTC	ATAATAACTT	CTCNAATCGC	ATGGCCTTGT	GCCGGCGATG
251	CTTCATTCAA	ATATCTGCCC	TATCaACTTT	CGATGGTAGG	ATAGAGGCCT
301	ACCATGGTTT	CAACGGGTAA	CGGGGAATNA	GGGTTCGATT	CCGGAcAGGG
351	AGCCTGAAAA	ACGGCTACCA	CNTCCAAGGA	AGGCNGCAGG	CGCGCAAATT
401	NCCCANTCCC	GACCGGGGAG	GTAGTGACAA	TAAATAACAA	TATAGGGCTC
451	TTTCGGGTCT	NATAATTGGA	ATNAGTACAA	TTTAAATCTC	GAGGA
501	ACAATTGGAG	GGCAAGTCTG	GTGCCAGCAG	CCGCGGTAAT	TCCAGCTCCA
551	ATAGCGTATA	TTAAAGTTGT	TGCAGTTAAA	AAGCTCGTAG	TTGAACTTCA
601	GGCCTGGCTG	GGCGGTCTGC	CTAACGGTAT	GTACTGTCTG	GCTGGGTCTT
651	ACCTCTTGGT	GAGCCGGCAT	GCCCTTCACT	GGGTGTGTCG	GGGAACCAGG
701	ACTTTTACCT '	TGAGAAAATT	AGAGTGTTCA	AAGCAGGCTT	ATGCCCGAAT
751	ACATTAGCAT (GGAATAATAA	AATAGGACGT	GCGGTTCTAT	TTTGTTGGTT
801	TCTAGAGTCG (CCGTAATGAT	TAATAGGGAT	AGTTGGGGGC	ATTAGTATTC
851	CGTTGCTAGA (GGTGAAATTC	TTGGATTTAC	GGAAGACTAA	CTACTGCGAA
901	AGCATTTGCC 2	AAGGATGTTT	TCATTAATCA	AGAACGAAGG	TTAGGGGATC
951	GAAAACGATC A	AGATACCGTT	GTAGTCTTAA	CAGTAAACTA	TGCCGACTAG
1001	GGATCGGGCG A	AANTCAATTN	GATGTGTCGC	TCGGCACCNN	ACGAGAAATC
1051	AAATCNCNGG N	NTCCCGTGNT	NNNNATTCAT	ATGCTNTTCC	

A.5: Sequence of Culture 5 (Cladosporium?)

1	AAAGATGANC	GNCNNTCTAA	GTATAAGCAA	CTATACGGTG	AAACTGCGAA
51	TGGCTCATTA	AATCAGTTAT	CGTTTATTTG	ATAGTACCTT	ACTACTTGGA
101	TAACCGTGGT	AATTCTAGAG	CTAATACATG	СТАААААССТ	CGACTTCGGA
151	AGGGGTGTNT	TTATTANATA	AAAAACCAAT	GCCCTTCGGG	GCTCCTTGGT
201	GATTCATAAT	AACTTAACGA	ATCNCATGGC	CTTGTGCCGG	CGATGGTTCA
251	TTCAAATTTC	TGCCCTATCA	ACTTTCGATG	GTAGGATAGT	GGCCTACCAT
301	GGTTTCCAAC	GGGTNACGGG	GAATTAGGGT	TCTATTCCGG	ANANGGACCT
351	GAGAAACGGC	TGCCACATCC	AAGGAAGGCA	GCAGGCGCGC	AAATTACCCA
401	ATCCCGACAC	GGGGAgGTag	TGACAATAAA	TACTGATACA	GGGCTCTTTT
451	GGGTCTTGTA	ATTGGAATGA	NTACAATTTA	AATCCCTTAA	CGAgGAACAA
501	TTGGAgGGCA	AGTCTGGTGC	CAgCAGCCGC	GGTAATTCCA	GCTCCAATAg
551	CGTATATTAA	AgTTGTTGCA	GTTAAAAAGC	TCgTAgTTGA	ACCTTGAGCC
601	TGGCTGGCCG	GTCCGCCTCA	CCGCGTGCAc	TGGTCCGGCC	GGGTTTTTCC
651	TTcTGGGGAG	CCGCATGCCC	TTCAcTGGGT	GTGTCGGGGA	ACCAGGACTT
701	TTACTTTGAA	AAAATTAGAG	TGTTCAAAGC	AGGCCTATGC	TCGAATACAT
751	TAGCATGGAA	TAATAGAATA	GGACGTGTGG	TTCTATTTTG	TTGGTTTTCT
801	AGGACCGCCG	TAATGATTAA	TAGGGATAGT	CGGGGGCATC	AGTATTCAAT
851	TGTCAGAGGT	GAAATTTCTT	GGATTTATTG	AAGACTAACT	ACTGCGAAAG
901	CATTTGCCAA	GGATGTTTTC	ATTAATCAGT	GAACGAAAGT	TAGGGGATCG
951	AAGACGATCA	GATACCGTCG	TAGTCTTAAC	CATAAACTAT	GCCGANTAGG
1001	GATCGGGCGA	TGNTATTTTT	TTGACTCGCT	CGGCACCTTA	CGAGAAATCA
1051	AATCTTTGGT	TCTGGGGGGT	ATGTCGCAAG	GTGAA	

Blank

APPENDIX B

PICTURES OF STOCK CULTURES

Culture 1: *Penicillium* (?), conidiophore and conidia in long chains, 400x.

Culture 3: Aureobasidium (?), pseudomycelium and yeast growth form, dark conidia?, 400x.

Culture 2: *Mucor*, branched sporangiophore and sporangia, environmental SEM image.

Culture 2: *Mucor*, single sporangiophore and sporangium, 400x light micrograph.

Culture 4: Heterobasidion annosum (?), 100x.

Culture 5: *Cladosporium* (?), conidiophore and dark-celled conidia?, 400x light micrograph.

Blank

APPENDIX C

BUFFERS

2X CTAB Lysis Buffer:

100 mM Tris-Cl (pH 8.0)
1.4 M NaCl
20 mM EDTA
2.0% w/v CTAB (Hexadecyltrimethyl-ammonium bromide)

Wash Buffer:

76 % ethanol 10 mM NH4OAc