1. Comfort with roll motion

Fig. 1-(a) vehicle on a test track, (b) model front view, (c) right side

An urban vehicle is traveling on a test track. At x_0 , the car encounters a series of triangular bumps. At x_1 , the track becomes flat again. The multiple bumps can be assumed to be a periodic triangular pulse function of the horizontal variable x, with a phase shift between the forcing acting on A_1 and A_2 .

Consider the following test procedure:

• Test 1. Constant acceleration staring from $v(0) = v_0$.

The vehicle must be modeled as a 7 degrees-of-freedom system with the following parameters: sprung mass m_s , roll moment of inertia J_x , pitch moment of inertia J_y , center of gravity G_s , unsprung mass m_n , suspension stiffness k_0 , viscous damping coefficient c, tire stiffness p, front anti-roll bar stiffness k_1 . Tires are always in contact with the ground.

- i) Derive the equation of motion of the system, find the natural frequencies and the mode shapes.
- ii) Plot the full transient response of the masses.
- iii) Remove the anti-roll bar and repeat (i) and (ii).
- iv) Compare and discuss the results obtained with and without the front anti-roll bar.