In [1]:

```
#Import the required Liberary
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
```

In [16]:

car =	pd.re	ead_excel	('E:\Ai	shwarya	official\Aishw	arya Dat	ta Scince\Course	4\DS1_C4_	_S5_Car_Data_Challen	ge.xlsx')	
1271	1271	Honda	City	Vx Mt Diesel	1498.0	4.0	4.0	FWD (Front Wheel Drive)	In-line F	ront, Transverse	 Y
1272	1272	Honda	City	Zx Mt Diesel	1498.0	4.0	4.0	FWD (Front Wheel Drive)	In-line F	ront, Transverse	 Y
1273	1273	Honda	City	Zx Cvt Petrol	1497.0	4.0	4.0	FWD (Front Wheel Drive)	In-line F	ront, Transverse	 Y
1274	1274	Honda	City	V Cvt Petrol	1497.0	4.0	4.0	FWD (Front Wheel Drive)	In-line F	ront, Transverse	 Na
1275	1275	Mitsubishi	Montero	3.2 At	3200.0	4.0	4.0	AWD (All Wheel	In-line	Front, Longitudinal	 Y *

Task 1

In [19]:

```
for item in car.columns:
    print(item," ",car[item].isna().sum())

Front_Track 667
Rear_Track 676
Front_Tyre_& Rim 49
Rear_Tyre_& Rim 48
Power_Steering 57
Power_Steering 57
Power_Windows 97
Power_Seats 893
Keyless_Entry 274
Power 0
Torque 2
Odometer 43
Speedometer 43
Speedometer 45
Tachometer 13
Tripmeter 60
Seating_Capacity 6
Seats_Material 12
Type 1
Wheelbase 20
Wheels_Size 56
Start_/Stop_Button 678
```

```
In [23]:
```

```
pvt = pd.pivot_table(car,index=['Make'],values=['City_Mileage_km_litre'] , aggfunc ='mean').sort_values(['City_Mileage_km_litre'],ascendidata = pvt[:10]
data
```

Out[23]:

City_Mileage_km_litre

Make	
Maruti Suzuki	21.062826
Datsun	20.946667
Renault	20.554286
Mahindra	20.003763
Tata	19.233542
Lexus	18.150000
Honda	16.805714
Hyundai	16.679853
Volkswagen	16.225000
Fiat	16.090909

In [34]:

```
data.plot.bar()
plt.bar(data.index, data['City_Mileage_km_litre'])
```


Task 2

```
In [9]:
```

```
data1 = pvt[10:20]
data1
```

Out[9]:

City_Mileage_km_litre

Make	
Nissan	15.324375
Toyota	14.293065
Force	14.000000
Jeep	13.975000
Skoda	13.953333
Bmw	13.686875
Premier	13.666667
Volvo	12.953077
Audi	12.081250
Mini	11.300000

In [33]:

```
data1.plot.bar()
plt.bar(data1.index, data1['City_Mileage_km_litre'])
plt.show()
```


Task 3

In [44]:

```
grp = car.groupby(['Body_Type'])['Body_Type'].count().sort_values(ascending=False)[:7]
grp
```

Out[44]:

Body_Type SUV 447 Sedan 333 Hatchback 316 Coupe 41 MPV 39 MUV 39 Convertible 20

Name: Body_Type, dtype: int64

In [62]:

```
plt.pie(grp, labels = grp, autopct = '%.2f%%')
plt.title("pie plot")
plt.show()
#plt.pie(grp.index, labels = grp['Body_Type']);
#fig = plt.figure(figsize = (10,7))
#plt.pie(grp, labels = grp)
#plt.show()
```

pie plot

Task 4

```
In [84]:
```

```
CR = car[(car.Make == 'Hyundai')|(car.Make == 'Mahindra')|(car.Make == 'Renault')|(car.Make == 'Skoda')]
```

In [92]:

#pvt2 = pd.pivot_table(CR,index=['Make'],values=['City_Mileage_km_litre'] , aggfunc =['mean','max','min'])#.sort_values(,ascending=False)
#data3 = pvt2[:10]
#pvt2

Out[92]:

	mean	max	min	
	City_Mileage_km_litre	City_Mileage_km_litre	City_Mileage_km_litre	
Make				
Hyundai	16.679853	24.00	13.1	
Mahindra	20.003763	110.00	8.1	
Renault	20.554286	25.17	10.0	
Skoda	13.953333	18.00	10.1	

```
In [97]:
```

```
#data.boxplot(by='Department', column =['Annual Salary ($)'], grid = False);
CR.boxplot(by='Make', column =['City_Mileage_km_litre'], grid = False);
```


Task 5

```
In [98]:

CR1 = car[(car.Make == 'Toyota')|(car.Make == 'Mahindra')|(car.Make == 'Volkswagen')|(car.Make == 'Hyundai')]
```

In [99]:

```
CR1.boxplot(by='Make', column =['City_Mileage_km_litre'], grid = False);
```


In []: