MOBILE ROBOTICS follow-up EXPLAINABLE AI - part 1

Serena De Antoni Alberto Righetti Mobile Robotics and Explanaible AI courses Master's degree in Artificial Intelligence

Goal

A solution of the **RockSample** problem:

API to send the initial conditions in ASP format, which calculates a plan of action considering as **good only the rocks** at a distance less than a given threshold. The robot reaches the goal matching each action with a motion primitive and moving with the actions of the plan in sequence, being careful to not collide with the rocks.

Environment

The entire testing process was conducted first in a simulated Unity environment and then in a real environment:

- 10 x 10 arena
- 5 rocks
 - 4 good
 - 1 not good

Code Consideration

Only one ROS node

3 main phases:

lidar phase:

- obtain the objects distances
- calculate the discrete position

clingo phase:

- add additional constraint to the control program of rocksample.lp
- return the action plan

motion phase:

- rotation
- movement
- sample
- collision

Lidar Phase

- 1. Extract from the **lidar signal** the presence of objects within a certain threshold.
 - We return the **distances** and the **angles** between the turtlebot and the rocks.
- 2. Given the distances and the angles:
 - compute relative x and y distance from the agent
 - compute the **position discrete** of each obstacle in the grid arena

Clingo Phase: ASP

Adding to the ASP program:

- position of agent
- positions of rocks
- rocks distances
- threshold in which obstacles have to be sampled

return the action plan

Motion Phase

Given the action plan the turtlebot, using the odometry, has to :

- rotate to align with the action (N, S, E, W)
- move forward for a certain distance(step)
- do the **sample** if the plan action requires it
- avoid collision

Code Consideration: Rotation

Code Consideration: Step

p1 = Start position

np.abs(p2 - p1) < self.step_foreward

Code Consideration: Collision

stop the robot and start with the **new action**

Code Consideration : Sample

self.action == 'sample'

stop the robot and start with the **new action**

Code Consideration : Some assumption

- the robot in the initial position is oriented towards the north
- the robot is located in the center of the cell
- walls:
 - in Unity simulation there are no walls
 - in real simulation there is a threshold for the lidar phase

Results

Thanks for your attention