Software Information

- Please check, whether your inputs, the equations applied and the charactersitics are displayed correctly.
- You are welcome to send your feedback via https://github.com/oemof/tespy/issues.
- LATEXpackages required are:
 - graphicx
 - float
 - hyperref
 - booktabs
 - amsmath
 - units
 - cleveref
 - longtable

Additionally, you will need to make the following definitions:

- $\mbox{ } \{ \mbox{ } \} \} \} \}$
- $\mbox{ } \mbox{ }$
- To suppress these messages, call the model documentation with the keyword draft=False in the formatting dict.

General information

TESPy Version: 0.6.0 - Colored Chemicals

Commit: d0739fcd@main

CoolProp version: 6.4.1

Python version: 3.8.10 (default, Mar 15 2022, 12:22:08) [GCC 9.4.0]

Documentation generated: May 15, 2022

Parameter highlighting

Variable component parameters: italic
Specified input parameter: bold
Results of simulation: normalfont

Equations are displayed for input parameters only.

1 Connections in design mode

1.1 Connection specifications and results

Table 1: Connection specifications and results

Table 1. Connection specimeations and results							
	m in kg/s	p in bar (1)	h in J/kg	T in $^{\circ}$ C (2)	s in J/kgK		
label							
fuel:out1_combustion chamber:in2	0.042	1.500	893,389.228	25.0	6,357.09		
$ambient:out1_combustion\ chamber:in1$	2.068	1.200	$293,\!531.654$	20.0	6,793.55		
combustion chamber: out1_flue gas outlet:in1	2.109	1.176	$1,\!303,\!161.329$	821.6	$8,\!153.98$		

1.2 Equations applied

$$0 = p - p_{\text{spec}} \tag{1}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{2}$$

1.3 Specified fluids

Table 2: Specified fluids

label	Ar (3)	CH4 (4)	CO2 (5)	H2O (6)	N2 (7)	O2 (8)
fuel:out1_combustion chamber:in2	0.000	0.960	0.040	0.000	0.000	0.000
ambient:out1_combustion chamber:in1 combustion chamber:out1_flue gas outlet:in1	0.013 0.013	0.000 0.000	0.000 0.053	0.000 0.043	0.755 0.740	0.231 0.151

1.4 Equations applied

$$0 = x_{\rm Ar} - x_{\rm Ar,spec} \tag{3}$$

$$0 = x_{\text{CH4}} - x_{\text{CH4,spec}} \tag{4}$$

$$0 = x_{\rm CO2} - x_{\rm CO2,spec} \tag{5}$$

$$0 = x_{\text{H2O}} - x_{\text{H2O,spec}} \tag{6}$$

$$0 = x_{\rm N2} - x_{\rm N2,spec} \tag{7}$$

$$0 = x_{\rm O2} - x_{\rm O2,spec} \tag{8}$$

2 Components in design mode

2.1 Components of type DiabaticCombustionChamber

2.1.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},1} + \dot{m}_{\text{in},2} - \dot{m}_{\text{out},1} \tag{9}$$

$$\Delta \dot{m}_{\text{fluid}} = \dot{m}_{\text{in},1} \cdot x_{\text{fluid},\text{in},1} + \dot{m}_{\text{in},2} \cdot x_{\text{fluid},\text{in},2} - \dot{m}_{\text{out},1} \cdot x_{\text{fluid},\text{out},1}$$

$$\dot{m}_{\text{fluid},\text{m}} = \frac{\dot{m}_{\text{in},1} \cdot x_{\text{fluid},\text{in},1} + \dot{m}_{\text{in},2} \cdot x_{\text{fluid},\text{in},2}}{M_{\text{fluid}}}$$

$$\dot{m}_{\text{fluid}} = \dot{m}_{\text{out},\text{m}} \cdot 4$$

$$\dot{m}_{\mathrm{H,m}} = \dot{m}_{\mathrm{CH4,m}} \cdot 4 \tag{10}$$

 $\dot{m}_{\rm C,m} = \dot{m}_{\rm CH4,m} \cdot 1$

$$\dot{m}_{\rm O2,m,stoich} = \frac{\dot{m}_{\rm H,m}}{4} + \dot{m}_{\rm C,m}$$

$$0 = \Delta \dot{m}_{\rm Ar} \tag{11}$$

$$0 = \Delta \dot{m}_{\text{CH4}} - \dot{m}_{\text{CH4,m}} \cdot M_{\text{CH4}} \tag{12}$$

$$0 = \Delta \dot{m}_{\rm CO2} + \dot{m}_{\rm C,m} \cdot M_{\rm CO2} \tag{13}$$

$$0 = \Delta \dot{m}_{\rm H2O} + \frac{\dot{m}_{\rm H,m}}{2} \cdot M_{\rm H2O} \tag{14}$$

$$0 = \Delta \dot{m}_{\rm N2} \tag{15}$$

$$0 = \Delta \dot{m}_{\rm O2} - \dot{m}_{\rm O2,m,stoich} \cdot M_{\rm O2} \tag{16}$$

Specifications and results

Table 3: Parameters of components of type DiabaticCombustionChamber

	lamb (17)	ti (18)	pr (19)	eta (20)
label				
combustion chamber	3.00	2,000,000.00	0.98	0.95

2.1.3 Equations applied

$$0 = \frac{\dot{m}_{\text{fuel,m}}}{\dot{m}_{\text{O}_{2,m}} \cdot (n_{\text{C,fuel}} + 0.25 \cdot n_{\text{H,fuel}})} - \lambda$$
$$\dot{m}_{\text{fluid,m}} = \frac{x_{\text{fluid}} \cdot \dot{m}}{M_{\text{fluid}}}$$
(17)

$$0 = ti - LHV_{\text{fuel}} \cdot \left[\sum_{i} \left(\dot{m}_{\text{in},i} \cdot x_{\text{fuel,in},i} \right) - \dot{m}_{\text{out},1} \cdot x_{\text{fuel,out},1} \right]$$
(18)

 $\forall i \in \text{combustion inlets}$

$$0 = p_{\text{in},1} \cdot pr - p_{\text{out},1} \tag{19}$$

$$0 = \sum_{i} \dot{m}_{\text{in},i} \cdot (h_{\text{in},i} - h_{\text{in},i,\text{ref}}) - \dot{m}_{\text{out},1} \cdot (h_{\text{out},1} - h_{\text{out},1,\text{ref}})$$

$$+ LHV_{fuel} \cdot \left(\sum_{i} \dot{m}_{\text{in},i} \cdot x_{fuel,\text{in},i} - \dot{m}_{\text{out},1} \cdot x_{fuel,\text{out},1}\right) \cdot \eta$$
(20)

 $\forall i \in \text{inlets}$

$$T_{\rm ref} = 298.15\,{\rm K}\; p_{\rm ref} = 10^5\,{\rm Pa}$$