연구책임자

김 성 환 책임연구원 · hwan@krict.re.kr 한국화학연구원 의약바이오연구본부 희귀질환치료기술연구센터

중간엽 줄기세포 증식 및/또는 이동 촉진용 조성물

● 요소기술별 분류

대분류	중분류	소분류		
의료기반기술	바이오 의약품	세포 치료제		

♪ 기술개요 및 개발배경

- · 중간엽 줄기 세포는 다분화능을 가진 기질세포로 조골세포(뼈 세포), 연골세포, 근육세포, 지방세포를 포함한 다양한 세포로 분화
- · 중간엽 줄기 세포는 골수, 혈액, 제대혈과 지방 등과 같은 다양한 조직들로부터 분리해낼 수 있으며, 시험관내 배양 조건에서 대량 증식 가능

중간엽 줄기세포 # 케모카인 수용체

혈소판 # 세포 호밍 # 바이러스 시스템

♪ 기술내용 및 대표이미지

- · 중간엽 줄기세포는 손상 조직 및 염증 부위로 이동하는 지향 성을 가지고 있으나 핵심 부착인자(adhesion ligands)들이 시험관 내 배양을 하는 동안 점차 사라지는 문제점
- · 대부분의 연구들이 해당 유전자들을 효율적으로 전달하기 위한 벡터로 바이러스 시스템을 사용하여 인간을 대상으로 하는 임상에 적용하기 힘들다는 단점

	대조군	Capecitabine	대조군	Trimetazidine	Nomegestrol acetate
Boyden chamber					
이동한 세포의 갯수	185	238*	178	233*	223**
#조군 대비 이동한 또의 개수에 대한 %	100	128*	100	130°	125**
Transwell chamber				なた。	

[중간엽 줄기세포(MSC)의 이동(igration)에 대한 capecitabine, Trimetazidine 및 Nomegestrol acetate의 효과]

○ 기술 한계점 vs 개선점

[기존기술한계점]

- · 중간엽 줄기세포는 손상 조직 및 염증 부위로 이동하는 지향성을가지고있으나핵심부착인자(adhesionligands) 들이 시험관 내 배양을 하는 동안 점차 사라지는 문제점
- · 대부분의 연구들이 해당 유전자들을 효율적으로 전달 하기 위한 벡터로 바이러스 시스템을 사용하여 인간을 대상으로 하는 임상에 적용하기 힘들다는 단점흡

[개발기술개선점]

- · 중간엽 줄기세포 증식 및 이동 촉진용 조성물에 관한 것으로, 중간엽 줄기세포의 이식을 통한 치료 효율을 증대시킴
- · 신규 화합물들은 줄기세포 (MSC)의 이동(migration) 을 촉진시켰으며,줄기세포의 증식 또한 촉진시키는 것을 확인 완료

● 관련시장동향

- · 글로벌 줄기세포 시장은 꾸준한 성장세를 보이고 있으며, 2023 년 시장 규모는 약 150.7억 달러이고 2032년 예상 시장 규모 는 약 561.5억 달러
- · 국내 줄기세포 시장도 2025년까지 약 11조 6,300억 원 규모 로 확대될 것으로 전망

▶ Business Idea / 응용·적용분야

ㆍ 중간엽 줄기세포 분열특성을 이용한 맞춤형 치료제

ㆍ응용분야 : 줄기세포 치료제

· 적용제품 : 줄기세포 치료제

기술성숙도

Lab-scale 성능 평가 단계: 실험실 규모의 기본성능 검증

IP Portfolio

No	발명의 명칭	국가	출원번호	출원일자	등록번호	등록일자
1	중간엽 줄기세포 기능 강화를 위한 조성물 및 방법	KR	10-2021-0022460	2021-02-19	10-2647353	2024-03-08
2	중간엽 줄기세포 증식 및 이동 촉진용 조성물	KR	10-2023-0161226	2023-11-20	10-2694314	2024-08-07
3	중간엽 줄기세포 증식 및 이동 촉진용 조성물	KR	10-2023-0161208	2023-11-30	10-2613653	2023-12-11
4	중간엽 줄기세포 증식 및 이동 촉진용 조성물	KR	10-2023-0109078	2023-08-21	10-2687675	2024-07-18
5	중간엽 줄기세포 증식 및 이동 촉진용 조성물	KR	10-2023-0109099	2023-08-21	10-2664092	2024-05-02
6	중간엽 줄기세포 증식 및 이동 촉진용 조성물	KR	10-2023-0109113	2023-08-21	10-2669135	2024-05-21

▶ 기술이전 문의처 한국화학연구원 기술사업화센터

이난영 책임연구원 & 042-860-7940 ☑ nylee@krict.re.kr 권민수 선임연구원 & 042-860-7337 ☑ mskwon@krict.re.kr

심형훈 선임연구원 042-860-7078 □ hhsim@krict.re.kr