Московский физико-технический институт (госудраственный университет)

Лабораторная работа по квантовой физике

Опыты Франка-Герца [2.1]

Талашкевич Даниил Александрович Группа Б01-008

Содержание

1	Аннотация					
	1.1 Теория	1				
	1.2 Описание установки	2				
2	2 Ход работы					
3	Вывод					
4	Литература	9				

1 Аннотация

Цель работы: Измерить энергию первого уровня атома гелия в динамическом и статическом режимах методом электронного возбуждения.

В работе используются: трёхэлектродная лампа ЛМ-2, батарея 4.5 В, микроамперметр, понижающий трансформатор, осциллограф, блок источников питания,вольтметр В7-22А.

1.1 Теория

Рис. 1: Схема опыта Франка-Герца

Опыт Франка-Герца подтверждает существование дискретных уровней энергии атомов. Разреженный одноатомный газ заполняет трёхэлектродную лампу. Электроны, испускаемые разогретым катодом, ускорнются в постоянном электрическом поле, созданном между катодом и сетчатым анодом лампы. Передвигаясь от катода к аноду, электроны сталкиваются с атомами гелия.

Кинетическая энергия электрона 1 уровня равна:

$$E = \overline{e}\Delta V [9B], \qquad (1)$$

где ΔV – разность между двумя пиками (см. рис. 2).

Рис. 2: Схематический вид зависимости тока коллектора от напряжения на аноде

1.2 Описание установки

На рис 3 обозначены: A - амперметр; B7-4 - стабилизированный источник питания (подаёт напряжение накала); K_1 - тумблер для включения в цепь источника B7-4; B5-10 - выпрямитель (подаёт на анод ускоряющее напряжение); Pi_3 - потенциометр, регулирующий величину ускоряющего напряжения; V_1 - вольтметр, измеряющий величину ускоряющего напряжения; $4.5\ B$ - батарея КБСЛ; Pi_2 - потенциометр, регулирующий величину задерживающего потенциала; V_2 - вольтметр, измеряющий величину задерживающего потенциала; V_2 - микроамперметр; V_3 - ключ, переключающий схему из статического режима в динамический; V_3 - понижающий трансформатор - подаёт ускоряющий потенциал при динамическом режиме:

Рис. 3: Схема экспериментальной установки

2 Ход работы

Динамика По расстоянию между соседними максимумами на осциллограммах определим энергию возбуждения первого уровня атома гелия в электрон-вольтах:

Рис. 4: График (динамика) $I_k(V_a)$ при $V_{\mbox{\scriptsize задер.}}=4B$

Рис. 5: График (динамика) $I_k(V_a)$ при $V_{\text{задер.}}=6B$

Рис. 6: График (динамика) $I_k(V_a)$ при $V_{\mbox{\scriptsize задер.}}=8B$

Из графиков получим:

$V_{\text{задер.}}$	$\Delta V_{max\ 0-1}$	$\Delta V_{max\ 1-2}$	$\Delta V_{min\ 0-1}$	$\Delta V_{min\ 1-2}$
4	14	15	17	12
6	15	16	18	13
8	14	15	19	12

Таблица 1: Расстояние между максимумами и минимумами (динамика) Рассчитаем среднее значение:

$$\Delta V = (15, 0 \pm 3, 5) \; \mathrm{B}$$
 (погрешность $\sim 23\%$)

Тогда энергия возбуждения первого уровня для атома гелия:

$$E_1 = (15, 0 \pm 3, 5)$$
 эВ (погрешность $\sim 23\%$)

Статика Построим графики $I_{\rm K}=f\left(V_{\rm a}\right)$ при $V_{\rm задер.}={\rm const.}$ По графикам определим энергию возбуждения первого уровня атома гелия (все значения в файле Data.xlsx):

Рис. 7: График (статика) $I_k(V_a)$ при $V_{\mbox{\scriptsize задер.}}=4B$

Рис. 8: График (статика) $I_k(V_a)$ при $V_{\mbox{\scriptsize задер.}}=6B$

Рис. 9: График (статика) $I_k(V_a)$ при $V_{\mbox{\scriptsize задер.}}=8B$

Рис. 10: График (статика) $I_k(V_a)$ для всех значений $V_{\text{задер.}}$

Таблица 2: Максимумы и минимумы напряжения на осциллограммах

$V_{\text{задер.}}$	V_{max_1}	V_{max_2}	$\mid V_{min_1} \mid$	V_{min_2}	$\triangle V_{max}$	ΔV_{min}
4 B	23.76 B	39.26 B	25.41 B	49.34 B	15.5 B	23.93 B
6 B	23.82 B	36.68 B	24.78 B	48.29 B	12.86 B	23.51 B
8 B	25.33 B	38.75 B	25.62 B	50.40 B	13.42 B	24.78 B

Для
$$V_{\text{задер.}} = 4B$$
:

$$\Delta V = (21, 72 \pm 0, 07)$$
 В (погрешность $\sim 0, 32\%$)

Для $V_{\text{задер.}} = 6B$:

$$\Delta V = (21, 89 \pm 0, 09) \text{ B}$$
 (погрешность $\sim 0, 41\%$)

Для $V_{\text{задер.}} = 8B$:

$$\Delta V = (22, 0 \pm 0, 2) \text{ B}$$
 (погрешность $\sim 0, 91\%$)

Усредним энергию возбуждения первого уровня атома гелия для 3x значений $V_{\text{задер}}$:

$$\Delta V^{\Sigma} = (21, 9 \pm 0, 3) \text{ B}$$

А значит, энергия возбуждения первого уровня атома гелия равна:

$$E_1^{\Sigma} = (21, 9 \pm 0, 3) \text{ эВ}$$
 (погрешность $\sim 1, 40\%$)

3. Сравним результаты измерений, полученные при динамическом и статическом методах измерений:

Значения, полученные при помощи динамического и статического метода сильно различаются, как и погрешности полученных значений.

4. Теперь оценим достоверность полученных результатов (т.е. сравним с табличными данными):

Статический оказался лучше (ближе к теоретическому значению и с меньшей погрешностью), нежели динамический.

3 Вывод

В ходе выполнения опыта Франка-Герца мы проверили утверждение о наличии дискретных уровней возбуждения атомов. Опыт проводился в 2х режимах:

dynamic
$$E = (15, 0 \pm 3, 5)$$
 эВ (погрешность $\sim 23\%$)
static $E = (21, 9 \pm 0, 3)$ эВ (погрешность $\sim 1, 4\%$)

Сравнивая полученные результаты с табличным значением (E=21,6 эВ) получили, что статический метод дал близкое (в пределах σ) значения к теоретическому, в то время как динамический попал в пределы 2σ , да и сама σ большая.

Причины таких ошибок:

dynamic Методика снятия данных имеет большую погрешность, т.к. цена деления осциллографа была 5V.

static Такая маленькая (по сравнению с динамическим) погрешность обусловленна тем, что у вольтметра и амперметра погрешности на пару порядков меньше, чем у осциллографа.

4 Литература

- 1. Лабораторный практикум по общей физике. Квантовая физика.
- $2. \ MHK-http://mathhelpplanet.com/static.php?p=onlayn-mnk-i-regressionniy-analiz\\$