

Interpretable ML for biodiversity

An introduction using species distribution models

Timothée Poisot

Université de Montréal

September 29, 2024

MAIN GOALS

- 1. How do we produce a model?
- 2. How do we convey that it works?
- 3. How do we talk about how it makes predictions?
- 4. How do we use it to guide actions?

THE STEPS

- 1. Get data about species occurrences
- 2. Build a classifier and make it as good as we can
- 3. Measure its performance
- 4. Explain some predictions
- 5. Generate counterfactual explanations
- 6. Briefly discuss ensemble models

- ... think of SDM as a ML problem? Because they are! We want to learn a predictive algorithm from data
- ... the focus on explainability? We cannot ask people to trust we must convince and explain

Problem statement

We have information about a species

THE PROBLEM IN OTHER WORDS

We have a series of observations $y \in \mathbb{B}$, and predictors variables $\mathbf{X} \in \mathbb{R}$ We want to find an algorithm $f(\mathbf{x}) = \hat{y}$ that results in the distance between \hat{y} and y being small

The predictor data will come from CHELSA2 - we will start with the 19 BioClim variables We will use data on observations of *Turdus torquatus* in Switzerland, downloaded from the copy of the eBird dataset on GBIF

PROBLEM!

We want $\hat{y} \in \mathbb{B}$, and so far we are missing $rac{\mathsf{negative}}{\mathsf{values}}$

pseudo-absences

what are the assumptions we make

§ 2 Training the model

THE NAIVE BAYES CLASSIFIER

$$P(+|x) = rac{P(+)}{P(x)}P(x|+)$$
 $\hat{y} = \operatorname{argmax}_{j}P(\mathbf{c}_{j})\prod_{i}P(\mathbf{x}_{i}|\mathbf{c}_{j})$ $P(x|+) = \operatorname{pdf}(x,\mathcal{N}(\mu_{+},\sigma_{+}))$

Can we train the model assumes parallel universes with slightly less data is the model good?

NULL CLASSIFIERS

coin flip

no skill

constant

EXPECTATIONS

Model	МСС	PPV	NPV	DOR	Accuracy
noskill	0.0	0.338178	0.661822	1.0	0.552373
coinflip	-0.323643	0.338178	0.338178	0.261102	0.338178
constantpositive	0.0	0.338178	NaN	NaN	0.338178
constantnegative	0.0	NaN	0.661822	NaN	0.661822

CROSS-VALIDATION STRATEGY

k-fold

validation / training / testing

O CROSS-VALIDATION RESULTS

Model	МСС	PPV	NPV	DOR	Accuracy
noskill	0.0	0.338178	0.661822	1.0	0.552373
coinflip	-0.323643	0.338178	0.338178	0.261102	0.338178
constantpositive	0.0	0.338178	NaN	NaN	0.338178
constantnegative	0.0	NaN	0.661822	NaN	0.661822
Validation	0.285042	0.573912	0.739042	3.97394	0.698661
Training	0.287722	0.57633	0.73963	3.869	0.699451

WHAT TO DO IF THE MODEL IS TRAINABLE?

train it!

re-use the full dataset

variable selection

data transformation

hyper-parameters tuning

will focus on the later (same process for the two above)

MOVING THESHOLD CLASSIFICATION

p plus > p minus means threshold is 0.5

is it?

how do we check this

§ 3 But why?

Averaging the variables is masking a lot of variability!

Alternative solution:

- 1. Generate a grid for all the variables
- 2. For all combinations in this grid, use it as the stand-in for the variables to replace

In practice: Monte-Carlo on a reasonable number of samples.

LIMITATIONS

- · partial responses can only generate model-level information
- they break the structure of values for all predictors at the scale of a single observation
- · their interpretation is unclear

with shapley

mosaic map

§ 4 What if?

what they are

§ 5 Ensemble models

Conclusions

