

#### Overview

- Description of an important geometric data structure
- Combinatorial properties
- Overview of applications
- Construction
- Local transformations



#### A Natural Data Structure

- Triangles are the simplest piece of a surface
- First uses of triangular networks in cartography

#### A Natural Data Structure



#### A Natural Data Structure

- Triangles are the simplest piece of a surface
- First uses of triangular networks in cartography
- Allows modelling surfaces
- Important and widely used in Computer Graphics
- Most straightforward way to partition the plane
- Computational Geometry addresses triangulations
  - of point sets
  - of polygons
  - and many other related structures.



Triangulation of a point set S in the plane:

- Partition of the convex hull of S into interior-disjoint triangles whose edges are segments spanned by S.
- ullet No point of S lies inside a segment or a triangle.



Triangulation of a point set S in the plane:

- Partition of the convex hull of S into interior-disjoint triangles whose edges are segments spanned by S.
- ullet No point of S lies inside a segment or a triangle.



A triangulation of S.

Triangulation of a point set S in the plane:

- Partition of the convex hull of S into interior-disjoint triangles whose edges are segments spanned by S.
- ullet No point of S lies inside a segment or a triangle.



Not a triangulation of S. Why?

Triangulation of a point set S in the plane:

- Partition of the convex hull of S into interior-disjoint triangles whose edges are segments spanned by S.
- ullet No point of S lies inside a segment or a triangle.



Not a triangulation of S. Why?

Triangulation of a point set S in the plane:

- Partition of the convex hull of S into interior-disjoint triangles whose edges are segments spanned by S.
- ullet No point of S lies inside a segment or a triangle.



Not a triangulation of S. Why?

Triangulation of a point set S in the plane:

- Partition of the convex hull of S into interior-disjoint triangles whose edges are segments spanned by S.
- ullet No point of S lies inside a segment or a triangle.



Not a triangulation of S. Why?

Triangulation of a point set S in the plane:

- Partition of the convex hull of S into interior-disjoint triangles whose edges are segments spanned by S.
- ullet No point of S lies inside a segment or a triangle.



Not a triangulation of S. Why?

Triangulation of a point set S in the plane:

- Partition of the convex hull of S into interior-disjoint triangles whose edges are segments spanned by S.
- ullet No point of S lies inside a segment or a triangle.



Not a triangulation of S. Why?

Triangulation of a point set S in the plane:

- Partition of the convex hull of S into interior-disjoint triangles whose edges are segments spanned by S.
- ullet No point of S lies inside a segment or a triangle.



Alternative definition:

Maximal plane straight-line graph on S.

Triangulation of a polygon P with vertex set S:

- Partition of P into interior-disjoint triangles whose edges are segments spanned S.
- No point of S lies inside a segment (or a triangle).





Triangulation of a polygon P with vertex set S:

- Partition of P into interior-disjoint triangles whose edges are segments spanned S.
- No point of S lies inside a segment (or a triangle).





Triangulation of a polygon P with vertex set S:

- Partition of P into interior-disjoint triangles whose edges are segments spanned S.
- No point of S lies inside a segment (or a triangle).



Not a triangulation of P. Why?

Triangulation of a polygon P with vertex set S:

- Partition of P into interior-disjoint triangles whose edges are segments spanned S.
- No point of S lies inside a segment (or a triangle).





Not a triangulation of P. Why?

Triangulation of a polygon P with vertex set S:

- Partition of P into interior-disjoint triangles whose edges are segments spanned S.
- No point of S lies inside a segment (or a triangle).





Alternative definition:

Maximal plane straight-line graph on S inside P.

- Given a plane straight-line graph
- We add edges as long as we can.



- Given a plane straight-line graph
- We add edges as long as we can.



- Given a plane straight-line graph
- We add edges as long as we can.



- Given a plane straight-line graph
- We add edges as long as we can.
- The result is a triangulation.Why?



- Given a plane straight-line graph
- We add edges as long as we can.
- The result is a triangulation.
- The same can be done for polygons / polygonal regions.



A triangulation consists of vertices, edges, and triangles.

Question: How many edges, and triangles can a triangulation of a pointset S with n points have?

Different numbers possible for the same point set?



n=12, 25 edges, 14 triangles

A triangulation consists of vertices, edges, and triangles.

Question: How many edges, and triangles can a triangulation of a pointset S with n points have?

 $\Rightarrow$  If S has h extreme points:

- e = 3n 3 h edges
- t = 2n 2 h triangles



n=12, 25 edges, 14 triangles

A triangulation consists of vertices, edges, and triangles.

Question: How many edges, and triangles can a triangulation of a pointset S with n points have?

- Every triangulation of S has the **same** number of edges and triangles
- The number of edges and triangles depends on the number of extreme points of S (vertices of the convex hull of S)



n=12, 25 edges, 14 triangles

A triangulation consists of vertices, edges, and triangles.

Question: How many edges, and triangles can a triangulation of a pointset S with n points have?

- $\Rightarrow$  If S has h extreme points:
  - e = 3n 3 h edges
  - t = 2n 2 h triangles

Question: What about polygons with n vertices?

- e = 2n 3 edges
- t = n 2 triangles

**Note:** The number of edges and triangles is **linear** in the number of vertices.



# Some Applications

What can triangulations be used for?

# Triangulations in Graphics/GIS

- The height of a terrain is measured at certain points.
- The points in a triangulation are elevated.
- An approximation of the terrain is obtained.
- Surfaces in 3D are modeled using meshes.
- Every element is a triangle
  - allows fast processing by graphics hardware
  - no checks necessary

### Triangulations in FEM

- Technique to numerically solve partial differential equations or integral equations.
- Approximated by a triangular mesh.
- Finite number of elements (usually triangles) give piecewise linear function.
- Numerically stable approximations need good meshes.

Used, e.g., to analyze heat flow or forces in materials,

or simulating fluid flows.

10



# Triangulations in Algorithms

- Example: Shortest Path inside a polygon.
- Also used in proving time bounds.
- Example: Guarding

11



# Triangulations in Combinatorics

Example: Guarding

12



## Construction of a Triangulation

How efficiently can we construct a triangulation?

# A Canonical Triangulation



Birgit Vogtenhuber

14

# A Canonical Triangulation





Birgit Vogtenhuber Triangulations



#### **Questions:**

14

Details? Correctness? Time & Space? Other possible constructions?

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

- Create hull by "Successive Local Repair"
- sequence sorted around extreme point: remove points not making a left turn



Birgit Vogtenhuber Triangulations

Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



Extend to also build a triangulation:

- add edges to anchor point and to last convex hull vertex
- don't remove edges

15



#### Input:

• Array p[1..N] of points  $(N \ge 3)$ 

#### Output:

16

- Array q with convex hull vertices (in order)
- Stack t with triangulation edges

#### Preparation:

- Place the point with smallest y-coordinate into p[1]
- Sort all other points counterclockwise around p[1]:
   p[i] is larger than p[j] if p[i] is left of the directed
   line from p[1] to p[j]
- p[1] and p[2] are the first two convex hull vertices:
   Add them in this order to q, add (p[1],p[2]) to t.

Process the remaining points from p[3] to p[N].

#### Processing point p[i]:

- Add (p[1],p[i]) and (p[i-1],p[i]) to t
- While from the last edge of the convex hull there is no left turn to p[i]:
  - remove the last point from q.
  - add an edge from p[i], to the last vertex in q to t.
- Add p[i] to q.

#### End:

16

 After p[N] has been processed, the convex hull vertices are stored in order in q and the triangulation edges are stored in t.

```
for (i = 2 \text{ to } N)
  if (p[i].y < p[1].y) swap(p[1], p[i])
sort p[2..N] counterclockwise around p[1]
q[1] = p[1], q[2] = p[2], h = 2
t.push((p[1],p[2]))
for (i = 3 \text{ to } N)
  t.push((p[1],p[i]))
  t.push((p[i-1],p[i])) /* p[i-1] == q[h] */
  while (h>1 and not leftturn(q[h-1],q[h],p[i]))
     h = h - 1
     t.push((p[i],q[h]))
  h = h + 1
  q[h] = p[i]
```

Birgit Vogtenhuber

#### Running time:

17

- Preparation in  $O(n \log n)$  time due to sorting.
- Buliding the triangulation:  $\Theta(n)$  time. Why?
- $\rightarrow$  in total  $O(n \log n)$  time.

#### Memory requirement:

• O(n) in addition to input. Why?

#### **Correctness:**

17

- After processing p[3], we have a triangle.
- Assume that before the round for p[i],  $i \ge 4$ , t contains all edges of a triangulation for p[1..i-1]
- In the round for p[i], we add edges between p[i] and all points of the convex hull of p[1..i-1] that p[i] "sees" ⇒ "fan" of triangles from p[i] to extreme points, no edge crosses the convex hull of p[1..i-1].
- → After the round for p[i], t contains all edges of a triangulation for p[1..i].
- $\Rightarrow$  After the round for p[N], t contains all edges of a triangulation for p[1..N].

### Local Transformation

Can we locally change a triangulation to get a different one?

Birgit Vogtenhuber Triangulations



Birgit Vogtenhuber Triangulations

## The Flip Distance Problem

• **Given:** two triangulations T, T' of a point set.

- Goal: transform T into T' by subsequently *flipping* one edge at a time.
- Any triangulation can be transformed into any other by  $O(n^2)$  flips (tight).
- **Question:** what is the minimum number of flips needed, the *flip distance*?
- Determining flip distance is NP-complete.



- Triangulations are a paramount data structure in Computational Geometry.
- A triangulation for an n-point set can be constructed in  $O(n \log n)$  time and  $\Theta(n)$  space.
- Every triangulation can be obtained from any other triangulation of the same point set by flips.
- Useful in practice and theory: Delaunay triangulation

Birgit Vogtenhuber Triangulations

Two copies of the same point set ...



Birgit Vogtenhuber Triangulations

Two copies of the same point set ...



Canonical triangulation



Delaunay triangulation

- Triangulations are a paramount data structure in Computational Geometry.
- A triangulation for an n-point set can be constructed in  $O(n \log n)$  time and  $\Theta(n)$  space.
- Every triangulation can be obtained from any other triangulation of the same point set by flips.
- Useful in practice and theory: Delaunay triangulation
  - obtainable by simple flip rules
  - optimizes several criteria
  - dual to the Voronoi diagram
- Flips also used in heuristics for optimization.

# Sources / Further Reading



De Loera, Rambau, Santos: Triangulations (2010)



Hjelle, Dæhlen: Triangulations and Applications (2006)