1. HyperParameter Tuning

Function	XGBoost	Light GBM
Important parameters which control overfitting	1. learning_rate or eta - optimal values lie between 0.01-0.2 2. max_depth 3. min_child_weight: similar to min_child leaf; default is 1	 learning_rate max_depth: default is 20. Important to note that tree still grows leaf-wise. Hence it is important to tune num_leaves (number of leaves in a tree) which should be smaller than 2^(max_depth). It is a very important parameter for LGBM min_data_in_leaf: default=20, alias= min_data, min_child_samples
Parameters for categorical values	Not Available	categorical_feature: specify the categorical features we want to use for training our model
Parameters for controlling speed	1. colsample_bytree: subsample ratio of columns 2. subsample: subsample ratio of the training instance 3. n_estimators: maximum number of decision trees; high value can lead to overfitting	 feature_fraction: fraction of features to be taken for each iteration bagging_fraction: data to be used for each iteration and is generally used to speed up the training and avoid overfitting num_iterations: number of boosting iterations to be performed; default=100

Learning_rate	Max_depth	N_estimators
0.0001	3	100
0.001	5	300
0.01	10	500
0.1	20	1,000

1. Grid SearchCV

Grid Search는 사전에 탐색할 값들을 미리 지정해주고, 기법 : 그 값들의 모든 조합을 바탕으로 성능의 최고점을 찾아냅니다.

내가 원하는 범위를 정확하게 비교 분석이 가능합니다.

단점: 시간이 오래걸린다.

(4개의 파라미터에 대해서, 4가지 값들을 지정해두고, 한 번 탐색하는데 1분이 걸린다면 -> 4*4*1분 = 16분 소요)

성능의 최고점이 아닐 가능성이 높다.

"최적화 검색" (여러개들을 비교 분석해서 최고를 찾아내는 기법)이지, "최적화 탐색"(성능이 가장 높은 점으로 점차 찾아가는 기법)이 아니다.

2. RandomSearchCV

사전에 탐색할 값들의 범위를 지정해주고, 기법:

그 범위 속에서 가능한 조합을 바탕으로 최고점을 찾아냅니다.

장점: Grid Search에 비해 시간이 짧게 걸린다.

> Grid Search보다, 랜덤하게 점들을 찍으니, 성능이 더 좋은 점으로 갈 가능성이 높다.

단점: 반대로 성능이 Grid Search보다 낮을 수 있다.

하이퍼파라미터의 범위가 너무 넓으면,

일반화된 결과가 나오지 않는다. (할 때 마다 달라진다)

Seed를 고정하지 않으면, 할 때 마다 결과가 달라진다.

마찬가지로, "최적값 검색"의 느낌이지, "최적화 탐색"의 개념이 아니다.

3. Bayesian Optimization

하이퍼파라미터의 범위를 지정한 후, 기법:

Random하게 R 번 탐색한 후, B번 만큼 최적의 값을 찾아간다.

장점: 정말 "최적의 값"을 찾아갈 수 있다.

상대적으로 시간이 덜 걸린다.

엔지니어가 그 결과값을 신뢰할 수 있다.

단점: Random하게 찍은 값이 달라질 경우, 최적화 하는데 오래 걸릴 수 있다.

값이 부족하면, 최적의 값을 탐색하는게 불가능 할 수 있다.

값이 너무 많으면, 최적화 이전에 이미 최적값을 가지고 있을 수도 있다.