```
EX1 . idem TD
```

EX3.
$$1=0\times12+1$$
 aim: $\phi(1)=1$

1) $\forall i,j \in \mathbb{Z}$ pur division envlidient: $j=q_i \times 12+\phi(i)$

done $i+i=(q_i+q_i)\times12+\phi(i)+\phi(j)$

done
$$i+j = (q_i+q_j) \times 12 + \phi(i) + \phi(j)$$

or $\phi(i)+\phi(j) = q_i \times 12 + \phi(i) \oplus \phi(j)$ for division emblishments
ourse $i+j = (q_i+q_j+q_j) \times 12 + \phi(i) \oplus \phi(j)$ avec

$$\phi(i)\oplus\phi(j)\in\{0,...,11\}$$
 done $\phi(i)\oplus\phi(j)=\phi(i+j)$

de mêm
$$ij = (129i9j + 9i9(j) + 9j9(i)) \times 12 + 9(i)9(j)$$

or $4(i)4(j) = 9 \times 12 + 9(i) \otimes 4(j)$ pur dir. encl.

aim:
$$ij = (q + q_x) \times 12 + \phi(i) \otimes \phi(j)$$
 arec $\phi(i) \otimes \phi(j) \in \{0, -11\}$ done $\phi(i) \otimes \phi(j) = \phi(ij)$

aimi de morphism d'anneau (donc de groupe).

For def. de
$$\phi^{-1}(I)$$
 on a $\phi(\phi^{-1}(I)) \subset I$ of relatinguement
si $x \in I$, $x \in \{0, ..., 11\}$ ofors $\phi(x) = x$ done $x \in \phi^{-1}(I)$
et $x = \phi(x) \in \phi(\phi^{-1}(I))$.

6) Si I idial d Z/42, $I = \phi(PZ)$ peut un $p \in IN$ or $\phi(PZ) = \phi(P) \otimes \phi(Z) = \phi(P) Z/42 = 9 Z/42$ avec $q \in Z/42$ auni I = 1 cm idial principal douc $I = Z/422 + \{0,2,4,6,3,10\}, \{0,3,6,9\}, \{0,634,8\}, \{0,6\}, \{0\}$

Ex4: correction en TD (fin de feuille 2)