5.1 Introduction

5.1.1 A sample decision tree

5.1.2 Properties of Decision Tree Learning

- Decision Tree Learning is a method for approximating discrete-valued functions that is
 - Robust to noisy data and
 - · can learn disjunctive expressions
- The learned function is represented by a decision tree.
 - · which can be also represented by a set of if-then rules
- In General
 - Decision Trees represent a disjoint of conjunctions of constraints on the attribute value of instance.
 - disjoint = a set of ∨
 - Each path from the tree from root to a leaf is a conjunction of attribute sets.
 - conjunction = a set of ∧
 - $egin{aligned} \bullet \ e.\ g.\ , ext{The path } Outlook
 ightarrow Humidity
 ightarrow No ext{ stands for } \ Outlook = Sunny \wedge Humidity = High
 ightarrow No \end{aligned}$

5.1.3 Appropriate Problems for DT

- 1. Instances describable by attribute-value pairs.
 - 1. e.g., Temperature=Hot, Humidity=High, etc.

- 2. Target function has discrete output values.
 - 1. e.g., Yes/No, Is Owner/Not owner, etc.
- 3. Disjunctive hypothesis may be required.
 - 1. That is, the hypothesis is in the format of "xxx or xxx or xxx...."
- 4. Possibly noisy training data.
- 5. Missing attribute values in training data.

5.2 Symbolized Decision Tree

5.2.1 Attributes & Purity of Decision

- We want to know which attribute is the best classifier.
- Each attribute can be represented as a node, splitting test sample into 2 classes (in the binary case)
- The *purer* the splitting, the better the decision.

5.2.2 Entropy 熵

[DEF] Entropy 熵

- Given a split from collection S with **portions** of both positive and negative p_+, p_- , the entropy of the collection would be:
 - $ullet \ Entropy(S) = -p_+ \log_2 p_+ p_- \log_2 p_-$
- The higher the entropy, the fewer the information the sample contains.
 - High Entropy = More Messy, Lower Entropy = Less Messy

• $f(p) = -p \log_2 p - (1-p) \log_2 (1-p)$

[Prop] Entropy 熵的性质

- Domain is [0, 1];
 - Monotonically, Increase in $p_+\in[0,\frac12]$, Decrease in $p_+\in[\frac12,1]$ (symmetric in p_-);
- Range is [0,1];
 - Reaches the peak at $p=rac{1}{2}$, reaches the lowest point at $p_+=0$ and $p_+=1$.

5.2.3 Information Gain

By calculating the difference between

- The entropy BEFORE splitting, and
- The entropy AFTER splitting,
 we can calculate the *Information Gained* from the splitting.
- When calculating, we should also consider the weights, i.e., the significance of each branch.

Basics

• Suppose that a collection S has x = |S| samples, separated into n branches S_1, S_2, \dots, S_n . For a specific branch S_i , it contains $x_i = |S_i|$ samples.

•
$$x = x_1 + x_2 + \cdots + x_n$$

• Among the x samples, there are x_+ positive samples and x_- negative samples.

•
$$x = x^+ + x^-$$

• For each branch x_i , there are x_+^i positive samples and x_-^i negative samples.

$$ullet x_i = x_i^+ + x_i^-$$

• Obviously,
$$x^+ = \sum_{i=1}^n x_i^+$$
 , and $x^- = \sum_{i=1}^n x_i^-$

Entropy Before Split

$$ullet p^+ = rac{x^+}{x^+ + x^-}, \, p^- = rac{x^-}{x^+ + x^-}$$

$$\bullet \ \ Entropy(S) = -p^+\log_2 p^+ - p^-\log_2 p^-$$

Weighted Entropy After Split

• For each branch S_i :

$$ullet \;\; p_i^+ = rac{x_i^+}{x_i^+ + x_i^-}$$
 , $p_i^- = rac{x_i^-}{x_i^+ + x_i^-}$

• Weight of this branch
$$w_i = \frac{x_i}{x} = \frac{|S_i|}{|S|}$$

ullet Entropy of this branch $Entropy(S_i) = -p_i^+ \log_2 p_i^+ - p_i^- \log_2 p_i^-$

• Total weighted entropy after split:

$$ullet \ \sum_{i=1}^n rac{x_i}{x} (-p_i^+ \log_2 p_i^+ - p_i^- \log_2 p_i^-)$$

•
$$=\sum_{i=1}^{n} \frac{|S_i|}{|S|} Entropy(S_i)$$

Information Gain

• $Gain(S) = Entropy\ Before\ Split\ -\ Entropy\ After\ Split$

$$ullet = Entropy(S) - \sum_{i=1}^n rac{|S_i|}{|S|} Entropy(S_i)$$

5.2.4 From Entropy to Information Gain

Given:

• A decision node, with the amounts in each class:

• Collection 1 (S₁):

• Positive: n_1^+

Negative: n₁⁻

• Collection 2 (S₂):

• Positive : n_2^+

• Negative: n_2^-

Example:

$$ullet n_1^+ = 3, n_1^- = 4$$

•
$$n_2^+ = 6, n_2^- = 1$$

Do:

Get the proportion of positive & negative samples in both collections.

 \bullet S_1 :

$$egin{align} ullet & p_1^+ = rac{n_1^+}{n_1^+ + n_1^-} = rac{3}{3+4} = rac{3}{7} \ ullet & p_1^- = rac{n_-^1}{n_+^1 + n_-^1} = rac{4}{3+4} = rac{4}{7} \ \end{pmatrix}$$

$$\bullet$$
 S_2 :

$$egin{align} ullet p_2^+ &= rac{n_2^+}{n_2^+ + n_2^-} = rac{5}{5+1} = rac{5}{6} \ ullet p_2^- &= rac{n_2^-}{n_2^+ + n_2^-} = rac{1}{5+1} = rac{1}{6} \ ullet \end{array}$$

- Calculate Entropies:
 - Calculate entropy AFTER splitting:

$$egin{aligned} & Entropy(S_1) = -p_1^+ \log_2 p_1^+ - p_1^- \log_2 p_1^- = -rac{3}{7} \log_2 rac{3}{7} - rac{4}{7} log_2 rac{4}{7} = 0.9852 \ & Entropy(S_2) = -p_2^+ \log_2 p_2^+ - p_2^- \log_2 p_2^- = -rac{5}{6} \log_2 rac{5}{6} - rac{1}{6} log_2 rac{1}{6} = 0.6500 \end{aligned}$$

Calculate overall BEFORE splitting:

•
$$p^{+} = \frac{n^{+}}{n^{+} + n^{-}} = \frac{9}{9+4} = \frac{9}{13}$$

• $p^{-} = \frac{n^{-}}{n^{+} + n^{-}} = \frac{4}{9+4} = \frac{4}{13}$
• $Entropy(S) = -p_{+}log_{2}p_{+} - p_{-}log_{2}p_{-} = -\frac{9}{13}log_{2}\frac{9}{13} - \frac{4}{13}log_{2}\frac{4}{13} = 0.8905$

Calculate Information Gain:

$$egin{aligned} \bullet & Gain(S) = Entropy(S) - \sum_{i \in \{1,2\}} rac{|S_i|}{|S|} Entropy(S_i) \ & = 0.8905 - (rac{7}{13} imes 0.9852 + rac{6}{13} imes 0.6500) \ & = 0.0600 \end{aligned}$$

5.3 CART

5.3.0 What is CART?

- Classification and Regression Tree
- A binary tree that can handle numeric inputs and outputs.

5.3.1 Gini Index 基尼指数

For a split S_i from collection S that has results with m labels:

•
$$|S_i| = x_{i1} + x_{i2} + \cdots + x_{im}$$

The Gini Index of this split is:

$$egin{aligned} \bullet & Gini(S) = 1 - \sum_{j=1}^m {(p_{ij})^2} \ & \bullet &= 1 - \sum_{j=1}^m (rac{x_{ij}}{x_{i1} + x_{i2} + \cdots + x_{im}})^2 \ & \bullet &= 1 - rac{\sum_{j=1}^m x_{ij}^2}{|S_i|^2} \end{aligned}$$

Reaches maximum when $p_{ij}=rac{1}{m}$

•
$$Gini(S)_{max} = 1 - m \times (\frac{1}{m})^2 = 1 - \frac{1}{m}$$

• For a binary case, $Gini(S)_{max} = \frac{1}{2}$

5.3.2 Classification Tree (CT)

How to split continuous variable?

- Sort the continuous variable.
- Find all separation points that separates the continuous variable into lower and higher parts.
- Select the separation point α that gives the best purity.

How to split categorical variable?

- Examine all possible ways in which the categories can be split.
- For example, for each possible category A, B\$ and C\$, it could be split 3 ways:
 - \bullet A and BC
 - ullet B and AC
 - \bullet C and AB
- Find the split that gives the best purity.

E(5.3.2) **Example**

Classify if an email is spam or not.

Word Count (Numeric)	Sender's Email	Contain word "Free"	Spam
100	Edu	Yes	Yes
200	Com	Yes	No
800	Edu	Yes	No
60	Org	No	Yes
40	Edu	No	Yes
300	Org	No	Yes
300	Edu	Yes	No
300	Com	Yes	No

E(5.3.2)-1 Word Count (Numerical)

1. Sort the word count.

2. Find α

Entropy Before Split:

$$E = -\frac{4}{8}\log_2\frac{4}{8} - \frac{4}{8}\log_2\frac{4}{8} = 1$$

Entropy After Split for each separation points:

$$\begin{array}{l} \bullet \quad 40 \, |\, 60 \, ,\, \alpha = \frac{40+60}{2} = 50. \\ \bullet \quad < 50 : + : 1, - : 0,\, E_{x < 50} = -1 \log_2 1 - 0 \log_2 0 = 0 \\ \bullet \quad > 50 : + : 3, - : 4,\, E_{x > 50} = -\frac{3}{7} \log_2 \frac{3}{7} - \frac{4}{7} \log_2 \frac{4}{7} = 0.9852 \\ \bullet \quad IG_{\alpha = 50} = 1 - (\frac{1}{8} \times 0 + \frac{7}{8} \times 0.9852) = 0.13795 \\ \bullet \quad 60 \, |\, 100 \, ,\, \alpha = \frac{60+100}{2} = 80. \\ \bullet \quad < 80 : + : 2, - : 0\,\, E_{x < 80} = -1 \log_2 1 - 0 \log_2 0 = 0 \\ \bullet \quad > 80 : + : 2, - : 4\,\, E_{x > 80} = -\frac{2}{6} \log_2 \frac{2}{6} - \frac{4}{6} \log_2 \frac{4}{6} = 0.9183 \\ \bullet \quad IG_{\alpha = 80} = 1 - (\frac{2}{8} \times 0 + \frac{6}{8} \times 0.9183) = 0.311275 \\ \bullet \quad 100 \, |\, 200 \, ,\, \alpha = \frac{100+200}{2} = 150. \\ \bullet \quad < 150 : + : 3, - : 0\,\, E_{x < 150} = -1 \log_2 1 - 0 \log_2 0 = 0 \\ \bullet \quad > 150 : + : 1, - : 4\,\, E_{x > 150} = -\frac{1}{5} \log_2 \frac{1}{5} - \frac{4}{5} \log_2 \frac{4}{5} = 0.7219 \\ \bullet \quad IG_{\alpha = 150} = 1 - (\frac{3}{8} \times 0 + \frac{5}{8} \times 0.7219) = 0.5488125 \\ \bullet \quad 200 \, |\, 300 \, ,\, \alpha = \frac{200+300}{2} = 250. \\ \bullet \quad < 250 : + : 3, - : 1\,\, E_{x < 250} = -\frac{3}{4} \log_2 -\frac{3}{4} - \frac{1}{4} \log_2 \frac{1}{4} = 0.8113 \\ \bullet \quad > 250 : + : 1, - : 3\,\, E_{x > 250} = -\frac{1}{4} \log_2 \frac{1}{4} - \frac{3}{4} \log_2 -\frac{3}{4} = 0.8113 \\ \bullet \quad IG_{\alpha = 250} = 1 - (\frac{4}{8} \times 0.8113 + \frac{4}{8} \times 0.8113) = 0.1887 \\ \bullet \quad 300 \, |\, 800 \, ,\, \alpha = \frac{300+800}{2} = 550. \\ \bullet \quad < 550 : + : 4, - : 3\,\, E_{x < 550} = -\frac{4}{7} \log_2 -\frac{4}{7} - \frac{3}{7} \log_2 \frac{3}{7} = 0.9852 \\ \bullet \quad > 550 : + : 0, - : 1\,\, E_{x > 550} = -0 \log_2 0 - 1 \log_2 1 = 0 \\ \bullet \quad IG_{\alpha = 550} = 1 - (\frac{7}{9} \times 0.9852 + \frac{1}{9} \times 0) = 0.13795 \\ \end{array}$$

We can see that $\alpha=80$ that separates 60 and 100 gives the best split. Therefore, for the node $Word\ Count$, we choose $\alpha=80$, and IG=0.5488125 as the Information Gain of the root node.

E(5.3.2)-2 Sender's Email (Categorical)

Find all the possible splits.

$$\{Edu\}: +: 2, -: 2 \ \{Com\}: +: 0, -: 2 \ \{Org\}: +: 2, -: 0$$

1. $\{Edu\} \cup \{Com, Org\}$

1.
$$\{Edu\}$$
: $+: 2, -: 2, Entropy = 1$

2.
$$\{Com, Org\}: +: 2, -: 2, Entropy = 1$$

3.
$$IG = 1 - (\frac{4}{8} \times 1 + \frac{4}{8} \times 1) = 0$$

2. $\{Com\} \cup \{Edu, Org\}$

1.
$$\{Com\}: +: 0, -: 2 \ Entropy = 0$$

2.
$$\{Edu, Org\}: +4, -: 2\ Entropy = -\frac{4}{6}\log_2\frac{4}{6} - \frac{2}{6}\log_2\frac{2}{6} = 0.9183$$

3.
$$IG = 1 - (\frac{2}{8} \times 0 + \frac{6}{8} \times 0.9183) = 0.311275$$

3. $\{Org\} \cup \{Edu, Com\}$

1.
$$\{Org\}: +: 2, -: 0 \; Entropy = 0$$

2.
$$\{Edu, Org\}: +2, -: 4\ Entropy = -\frac{2}{6}\log_2\frac{2}{6} - \frac{4}{6}\log_2\frac{4}{6} = 0.9183$$

3.
$$IG = 1 - (\frac{2}{8} \times 0 + \frac{6}{8} \times 0.9183) = 0.311275$$

Both split $\{Com\} \cup \{Edu, Org\}$ and $\{Org\} \cup \{Edu, Com\}$ gives the highest information gain, which is 0.311275. Therefore, the information gain of $Sender's\ Email$ is 0.311275 for the root node.

E(5.3.2)-3 Contain word "Free" (Binary)

Binary Classification plays the same.

•
$$+: 1, -: 4 \; Entropy = -\frac{1}{5} \log_2 \frac{1}{5} - \frac{4}{5} \log_2 \frac{4}{5} = 0.7219$$

No

$$\bullet \ +: 3, -: 0 \ Entropy = 0$$

•
$$IG = 1 - (\frac{5}{8} \times 0.7219 + \frac{3}{8} \times 0) = 0.5488125$$

E(5.3.2)-4 Generally

• $IG(Word\ Count) = 0.5488125$ with $\alpha = 150$;

- $IG(Sender's\ Email) = 0.311275;$
- $IG(Contain\ Word''Free'') = 0.5488125$

5.3.3 Over Fitting and Pruning 过拟合与剪枝

Overfitting

- Natural end of process is 100% purity in each leaf
- Overfits: Fits to the data too well that it even fits the noise data!
- Result in: Low predictive accuracy of new data
 - The error rate of validation data starts to increase after a certain number of splits.

Pruning

- CART lets the tree grow freely, and prune it back
 - Allow some error.
 - Find the exact point at which the validation error begins to rise.
 - Generate successively smaller trees by pruning leaves
 - At each pruning stage, multiple trees are possible.
 - Use cost complexity to choose the best tree at that stage.
- Choose the best tree at each pruning stage by using Cost Complexity
 - $CC(T) = Err(T) + \alpha L(T)$
 - CC(T) Cost Complexity of a tree.
 - $\bullet \ Err(T)$ Proportion of mis-classified results, i.e., error rate.
 - α a penalty factor attached to tree size

5.3.3 Regression Tree (RT)

- Used with continuous outcome variable
- Procedure similar to classification tree:
 - Attempt many splits, choose the one that minimizes impurity
 - Measure impurity by: $\sum (x \bar{x})^2$

5.4 Pros and Cons

Advantages of Trees

- Easy to use and understand
 - Produces rules that are easy to interpret & implement
- Automatic selection of variables
 - Do not require the assumptions of statistical models
 - · Can work without extensive handling of missing data

Disadvantages

- May not perform well when:
 - There is a structure in the data that can't be well captured by horizontal and vertical splits.
- · Can't capture interactions between variables.