SC223 - Linear Algebra

Aditya Tatu

Lecture 12

August 23, 2023

Structure

• What is *structure*?

Structure

• What is *structure*? Structure is the arrangement and relation between parts of an object, without getting into the particulars of an example or an instance.

Example of Structure in Math

• Consider the following rectangle.

• What transformations leave the rectangle (not the vertices) unchanged?

$$S = \{I, Rigo, Fh, Fv\}$$
 with o (S,o) , o: SXS \rightarrow ?

Example of Structure in Math

• Consider the following rectangle.

- What transformations leave the rectangle (not the vertices) unchanged?
- $\bullet \ S_r = \{I, F_h, F_v, R\}.$

Example of Structure in Math

• Consider the following rectangle.

• What transformations leave the rectangle (not the vertices) unchanged?

• $S_r = \{I, F_h, F_v, R\}$. With Composition of we have (S_r, \circ) :

Cayley Table-

v v i ci i	Comp	,05161	المحتال	//vvc '
	A	\rightarrow	10	len
0	$\ (l)\ $	F_h	F_{ν}	R
1	1	F_h	F_{ν}	R
F_h	$ F_h $	1	R	F_{v}
F_{v}	$ F_v $	R	1	F_h
R	R	F_{v}	F_h	1

• Consider the set $S = \{00, 01, 10, 11\}$

ullet Consider the set $S=\{00,01,10,11\}$ with bitwise addition modulo-2, $+_2$.

ullet Consider the set $S=\{00,01,10,11\}$ with bitwise addition modulo-2, $+_2$.

	+2	00	01	10	11
	00	00	01	10	11
Identity	01	01	00	11	10
	10	10	11	00	01
	11	11	10	01	00

a ES, b ES, a · b = Identity.

- (o is closed
- 2. Identity
 - 3. Inverse.

• Compare the two:

0	1	F_h	F_{ν}	R
1	1	F_h	F_{v}	R
F_h	F_h	1	R	F_{ν}
F_{v}	F_{ν}	R	1	F_h
R	R	F_{ν}	F_h	1

+2	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

Compare the two:

0	1	F_h	F_{ν}	R
1	1	F_h	F_{ν}	R
F_h	F_h	1	R	F_{ν}
F_{v}	F_{ν}	R	1	F_h
R	R	F_{ν}	F_h	1

+2	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

• Consider the set of integers {1, 3, 5, 7} with multiplication modulo-8.

Compare the two:

0	1	F_h	F_{ν}	R
1	1	F_h	F_{ν}	R
F_h	F_h	1	R	F_{ν}
F_{v}	F_{ν}	R	1	F_h
R	R	F_{ν}	F_h	1

+2	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

- Consider the set of integers {1, 3, 5, 7} with multiplication modulo-8.
- Consider the set of matrices

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}, \text{ with matrix}$$

• Consider the set $\{e, a, b, a \cdot b\}$ with an operation \cdot

•	е	а	Ь	a · b
e	e	а	Ь	a · b
а	а	е	a · b	Ь
Ь	Ь	a · b	е	а
a · b	a · b	Ь	а	е

• Consider the set $\{e, a, b, a \cdot b\}$ with an operation \cdot

	e	а	Ь	a · b
e	е	a	b	a · b
а	а	e	a · b	b
Ь	Ь	a · b	e	а
a · b	a · b	b	а	е

• Note that in these examples: $a^2 = b^2 = (ab)^2 = e$.

- Consider the set \mathbb{Z}_4 of integers equivalent modulo-4,
- $\mathbb{Z}_4 = \{[0], [1], [2], [3]\}$

- Consider the set \mathbb{Z}_4 of integers equivalent modulo-4,
- $\mathbb{Z}_4=\{[0],[1],[2],[3]\}$ with addition modulo-4.

lacktriangle Consider the set \mathbb{Z}_4 of integers equivalent modulo-4, $\mathbb{Z}_4=\{[0],[1],[2],[3]\}$ with addition modulo-4.

	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

• Consider the set \mathbb{Z}_4 of integers equivalent modulo-4, $\mathbb{Z}_4 = \{[0], [1], [2], [3]\}$ with addition modulo-4.

	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

lacktriangle Consider the set of complex numbers $C=\{1,i,-1,i\}$ with the usual complex number multiplication \times .

 $lackbox{ }$ Consider the set \mathbb{Z}_4 of integers equivalent modulo-4, $\mathbb{Z}_4=\{[0],[1],[2],[3]\}$ with addition modulo-4.

	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

lacktriangle Consider the set of complex numbers $C = \{1, i, -1, i\}$ with the usual complex number multiplication \times .

×	1	i	-1	-i
1	1	i	-1	-i
i	i	-1	-i	1
-1	-1	-i	1	i
-i	-i	1	i	-1

 $lackbox{ }$ Consider the set \mathbb{Z}_4 of integers equivalent modulo-4, $\mathbb{Z}_4=\{[0],[1],[2],[3]\}$ with addition modulo-4.

	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

lacktriangle Consider the set of complex numbers $C = \{1, i, -1, i\}$ with the usual complex number multiplication \times .

×	1	i	-1	-i
1	1	i	-1	-i
i	i	-1	-i	1
-1	-1	-i	1	i
-i	-i	1	i	-1

 \bullet These examples can be written using the set $S = \{e, a, b, a \cdot b\}$ and operation \cdot as

•	e	а	Ь	a · b
e	e	a	b	a · b
а	а	Ь	a · b	е
Ь	Ь	a · b	е	а
a · b	a · b	e	а	Ь

lacktriangle These examples can be written using the set $S = \{e, a, b, a \cdot b\}$ and operation \cdot as

•	е	а	Ь	a · b
e	е	a	b	a · b
а	а	Ь	a · b	е
Ь	Ь	a · b	е	а
a · b	a · b	e	а	b

lacktriangle The first few examples can be abstracted as $S = \{e, a, b, a \cdot b\}$ with the operation \cdot and

	e	a	b	a · b
e	е	a	Ь	a · b
а	а	е	a · b	b
Ь	Ь	a · b	e	а
a · b	a · b	Ь	а	е

• All the above examples are examples of an *algebraic* structure called **Group**.

- All the above examples are examples of an algebraic structure called Group.
- $lackbox{ A Group}$ is a non-empty set G with a binary operation, denoted by \cdot , that satisfy the following axioms:
 - Closure: $\forall a, b \in G, a \cdot b \in G$.

- All the above examples are examples of an algebraic structure called Group.
- $lackbox{ A Group}$ is a non-empty set G with a binary operation, denoted by \cdot , that satisfy the following axioms:
 - Closure: $\forall a, b \in G, a \cdot b \in G$.
 - **Identity:** There exists an element $e \in G$ such that $\forall a \in G$, $a \cdot e = e \cdot a = e$.

- All the above examples are examples of an algebraic structure called Group.
- lacktriangle A **Group** is a non-empty set G with a *binary operation*, denoted by \cdot , that satisfy the following axioms:
 - Closure: $\forall a, b \in G, a \cdot b \in G$.
 - **Identity:** There exists an element $e \in G$ such that $\forall a \in G$, $a \cdot e = e \cdot a = e$.
 - **Inverse**: For each $a \in G$, there exists an element $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$. The element a^{-1} is called the *inverse* of a.

- All the above examples are examples of an algebraic structure called Group.
- ullet A **Group** is a non-empty set G with a *binary operation*, denoted by \cdot , that satisfy the following axioms:
 - Closure: $\forall a, b \in G, a \cdot b \in G$.
 - **Identity:** There exists an element $e \in G$ such that $\forall a \in G$, $a \cdot e = e \cdot a = e$.
 - **Inverse:** For each $a \in G$, there exists an element $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$. The element a^{-1} is called the *inverse* of a.
 - Associativity: $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$

- All the above examples are examples of an algebraic structure called Group.
- $lackbox{ A Group}$ is a non-empty set G with a *binary operation*, denoted by \cdot , that satisfy the following axioms:
 - Closure: $\forall a, b \in G, a \cdot b \in G$.
 - **Identity:** There exists an element $e \in G$ such that $\forall a \in G$, $a \cdot e = e \cdot a = e$.
 - **Inverse:** For each $a \in G$, there exists an element $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$. The element a^{-1} is called the *inverse* of a.
 - Associativity: $\forall a, b, c \in G, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- We denote the group by the tuple (G, \cdot) .

• We have seen linear combinations of elements from

- We have seen linear combinations of elements from

• We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

$$\forall x, y \in \mathbb{R}^{m \times n}$$
,

• We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

•

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

$$\forall x, y \in \mathbb{R}^{m \times n}, \forall a, b \in \mathbb{R}, [a \cdot x + b \cdot y]_{ij} := a[x]_{ij} + b[y]_{ij}, 1 \le i \le m, 1 \le j \le n$$

We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

ightharpoons

$$\forall x, y \in \mathbb{R}^{m \times n}, \forall a, b \in \mathbb{R}, [a \cdot x + b \cdot y]_{ij} := a[x]_{ij} + b[y]_{ij}, 1 \le i \le m, 1 \le j \le n$$

$$\blacktriangleright \forall x, y \in \mathbb{R}^{\infty},$$

We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

•

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^{m \times n}, \forall a, b \in \mathbb{R}, [a \cdot x + b \cdot y]_{ij} := a[x]_{ij} + b[y]_{ij}, 1 \le i \le m, 1 \le j \le n$$

$$\forall x,y \in \mathbb{R}^{\infty}, \forall a,b \in \mathbb{R}, a \cdot x + b \cdot y := (\dots, ax_{-1} + by_{-1}, ax_0 + by_0, ax_1 + by_1, \dots)$$

• We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

Þ

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

•

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

▶

$$\forall x, y \in \mathbb{R}^{m \times n}, \forall a, b \in \mathbb{R}, [a \cdot x + b \cdot y]_{ij} := a[x]_{ij} + b[y]_{ij}, 1 \le i \le m, 1 \le j \le n$$

▶

$$\forall x, y \in \mathbb{R}^{\infty}, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := (\dots, ax_{-1} + by_{-1}, ax_0 + by_0, ax_1 + by_1, \dots)$$

 $\blacktriangleright \ \forall f,g \in \{h : \mathbb{R} \to \mathbb{R}\},\$

We have seen linear combinations of elements from

$$\forall x, y \in \mathbb{R}^2, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \end{bmatrix}$$

$$\forall x, y \in \mathbb{R}^3, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ ax_3 + by_3 \end{bmatrix}$$

$$\forall x, y \in \mathbb{R}^n, \forall a, b \in \mathbb{R}, a \cdot x + b \cdot y := a \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + b \cdot \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 \\ \vdots \\ ax_n + by_n \end{bmatrix}$$

$$\forall x, y \in \mathbb{R}^{m \times n}, \forall a, b \in \mathbb{R}, [a \cdot x + b \cdot y]_{ij} := a[x]_{ij} + b[y]_{ij}, 1 \le i \le m, 1 \le j \le n$$

$$\forall x,y \in \mathbb{R}^{\infty}, \forall a,b \in \mathbb{R}, a \cdot x + b \cdot y := (\ldots, ax_{-1} + by_{-1}, ax_0 + by_0, ax_1 + by_1, \ldots)$$

 $\forall f, g \in \{h : \mathbb{R} \to \mathbb{R}\}, \forall a, b \in \mathbb{R}, a \cdot f + b \cdot g, (a \cdot f + b \cdot g)(t) =$ $a \cdot f(t) + b \cdot g(t), \forall t \in \mathbb{R}.$

• Definition: A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x,y \in V, x+y \in V$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x,y \in V, x+y \in V$
 - $\blacktriangleright \ \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x,y \in V, x+y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta.$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - ▶ $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - $\forall x, y, z \in V, (x+y) + z = x + (y+z).$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V, +) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - ▶ $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
 - $\forall x, y \in V, x + y = y + x.$

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V, +) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
 - $\blacktriangleright \forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - ▶ $\forall x, y, z \in V, (x + y) + z = x + (y + z).$
 - $\blacktriangleright \forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that $1 \cdot v = v, \forall v \in V$.

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - ▶ $\forall x, y, z \in V, (x + y) + z = x + (y + z).$
 - $\blacktriangleright \ \forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that $1 \cdot v = v, \forall v \in V$.
- ▶ **Distributivity:** $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u + v) = a \cdot u + a \cdot v$, and $\forall a, b \in \mathbb{F}, \forall u \in V, (a +_F b) \cdot u = a \cdot u + b \cdot u$.

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - ▶ $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by -x.
 - $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
 - $\forall x, y \in V, x + y = y + x.$
- ▶ Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that $1 \cdot v = v, \forall v \in V$.
- ▶ **Distributivity:** $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u + v) = a \cdot u + a \cdot v$, and $\forall a, b \in \mathbb{F}, \forall u \in V, (a +_F b) \cdot u = a \cdot u + b \cdot u$.
- ► Compatibility of field and scalar multiplication:

 $\forall a, b \in \mathbb{F}, \forall u \in V, (a \times b) \cdot u = a \cdot (b \cdot u).$

Definition:(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ightharpoonup ($\mathbb{F}, +_F$) is an **Abelian group**. The additive identity will be denoted by 0.

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ▶ $(\mathbb{F}, +_F)$ is an **Abelian group**. The additive identity will be denoted by 0.
- ▶ $(\mathbb{F} \{0\}, \times)$ is an **Abelian group**. The mutiplicative identity will be denoted by 1.

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ▶ $(\mathbb{F}, +_F)$ is an **Abelian group**. The additive identity will be denoted by 0.
- ▶ $(\mathbb{F} \{0\}, \times)$ is an **Abelian group**. The mutiplicative identity will be denoted by 1.
- **▶** Distributivity:

$$\forall a, b, c \in \mathbb{F}, (a+_{F}b) \times c = a \times c +_{F}b \times c, a \times (b+_{F}c) = a \times b +_{F}a \times c$$

 \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$
- ightharpoonup ($\mathbb{C}, +, \times$)

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$
- \blacktriangleright ($\mathbb{C}, +, \times$)
- ightharpoonup ($\mathbb{Q}, +, \times$)

- $ightharpoonup (\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+, imes)$
- ightharpoonup ($\mathbb{C}, +, \times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.

- \blacktriangleright ($\mathbb{Z}_2, +_2, \times$)
- $ightharpoonup (\mathbb{R}, +, \times)$
- \blacktriangleright ($\mathbb{C}, +, \times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.
- ▶ If the 3-tuple $(V, +, \cdot)$ with field $(\mathbb{F}, +_F, \times)$ satisfies all vector space axioms, we say that $(V, +, \cdot)$ forms a vector space over \mathbb{F} .

- $ightharpoonup (\mathbb{Z}_2, +_2, \times)$
- \blacktriangleright ($\mathbb{R}, +, \times$)
- \blacktriangleright ($\mathbb{C}, +, \times$)
- ightharpoonup ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.
- ▶ If the 3-tuple $(V, +, \cdot)$ with field $(\mathbb{F}, +_{\mathcal{F}}, \times)$ satisfies all vector space axioms, we say that $(V, +, \cdot)$ forms a vector space over \mathbb{F} .
- Any element of the vector space $(V, +, \cdot)$ will be referred to as a **vector**, and any element $a \in \mathbb{F}$ will be referred to as a **scalar**.

 \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .

- \bullet $(\mathbb{R},+,\cdot)$ over \mathbb{R} .
- ullet $(\mathbb{R}^n,+,\cdot)$ over \mathbb{R} .

- \bullet $(\mathbb{R},+,\cdot)$ over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- $(\mathbb{C}^n, +, \cdot)$ over \mathbb{C} .

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- \bullet ($\mathbb{C}^n, +, \cdot$) over \mathbb{C} .
- ullet $(\mathbb{R}^{\mathbb{Z}},+,\cdot)$ over \mathbb{R} , where $\mathbb{R}^{\mathbb{Z}}$ is the set of all doubly-infinite sequences.

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{R}^n, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{C}^n, +, \cdot$) over \mathbb{C} .
- ullet ($\mathbb{R}^{\mathbb{Z}},+,\cdot$) over \mathbb{R} , where $\mathbb{R}^{\mathbb{Z}}$ is the set of all doubly-infinite sequences.
- ullet $(\mathcal{P}(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathcal{P}(\mathbb{R})$ is the set of all polynomials of one variable with real coefficients.

- $(\mathbb{R}, +, \cdot)$ over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- $(\mathbb{C}^n, +, \cdot)$ over \mathbb{C} .
- \bullet $(\mathbb{R}^{\mathbb{Z}}, +, \cdot)$ over \mathbb{R} , where $\mathbb{R}^{\mathbb{Z}}$ is the set of all doubly-infinite sequences.
- ullet $(\mathcal{P}(\mathbb{R}),+,\cdot)$ over \mathbb{R} , where $\mathcal{P}(\mathbb{R})$ is the set of all polynomials of one variable with real coefficients.
- $(\mathbb{L}_2(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathbb{L}_2(\mathbb{R})$ denotes the set of all square-integrable functions $f : \mathbb{R} \to \mathbb{R}$.