Math 635 Lecture 29

Thomas Cohn

3/29/21

Today's goal is to prove Cartan-Hadamard: If M is a complete, connected Riemannian manifold with $K \leq 0$, then $\forall p \in M$, $\exp_p : T_pM \to M$ is a smooth covering map.

Defn: A C^{∞} map $F: \tilde{M} \to M$ is a smooth covering map iff $\forall p \in M$, there's a neighborhood V of p such that $F^{-1}(V) = \bigcup_{\alpha} U_{\alpha}$, where $\alpha \neq \beta \Rightarrow U_{\alpha} \cap U_{\beta} = \emptyset$, and $\forall \alpha, F|_{U_{\alpha}}^{V}$ is a diffeomorphism. We say that V is evenly covered.

Observe: A smooth covering map $F: \tilde{M} \to M$ is always a local diffeomorphism, as the definition of local diffeomorphism is $\forall \tilde{p} \in \tilde{M}$, there's a neighborhood U of \tilde{p} and V of $F(\tilde{p})$ such that $F|_{U}^{V}$ is a diffeomorphism.

Defn: A smooth map $F: \tilde{M} \to M$ between Riemannian manifolds is a <u>local isometry</u> iff $\forall \tilde{p} \in M$, there's a neighborhood U of \tilde{p} and V of $F(\tilde{p})$, $F|_{U}^{V}$ is an isometry.

Some properties of a local isometry $F: \tilde{M} \to M$:

- \bullet F is a local diffeomorphism.
- If $\tilde{\gamma}: I \to \tilde{M}$ is a geodesic on \tilde{M} , then $\gamma = F \circ \tilde{\gamma}$ is a geodesic on M.
- If $c: [a,b] \to \tilde{M}$ is any path, $\ell(F \circ c) = \ell(c)$.

Lemma: Let $F: \tilde{M} \to M$ be a local isometry, where \tilde{M} and M are connected, complete Riemannian manifolds. Then F is a surjective covering map.

Proof: The main property of F is $\forall p \in M$, $\tilde{p} \in F^{-1}(p)$, $\forall v \in T_pM$, $\exists!\tilde{v} \in T_{\tilde{p}}\tilde{M}$ such that $F_{*,\tilde{p}}(\tilde{v}) = v$, and also $F \circ (\exp_{\tilde{p}}(t\tilde{v})) = \exp_p(tv)$. We obtain the existence and uniqueness of \tilde{v} because $dF_{\tilde{p}}$ is a bijection. And the equality with the exponential map is true because both sides are geodesics on M with the same initial conditions. We'll say that we can "lift" geodesics from M to \tilde{M} : choose $\tilde{p} \in F^{-1}(p)$. Then $\exists!\tilde{\gamma}$ geodesic on \tilde{M} such that $(F \circ \gamma)(t) = \exp_p(tv)$ and $\tilde{\gamma}(0) = \tilde{p}$.

To show the map is surjective, let $\tilde{p} \in \tilde{M}$, and define $p = F(\tilde{p})$. Let $q \in M$. Then by completeness, there is a geodesic γ on M joining p to $q - \gamma(0) = p$ and $\gamma(T) = q$. Let $\tilde{\gamma}$ be the lift of γ to \tilde{M} such that $\tilde{\gamma}(0) = \tilde{p}$. $\forall t$, $(F \circ \tilde{\gamma})(t) = \gamma(t)$. So $F(\tilde{\gamma}(T)) = \gamma(T) = q$, so $q \in \text{im} F$.

Next, we show the map is a covering map. Let $p \in M$. Since F is a local isometry, F_* is always bijective, so p is a regular value. Thus, $F^{-1}(p) = \bigsqcup_{\alpha} \{\tilde{p}_{\alpha}\}$ is the disjoint union of (at most) countably many points. Let $\varepsilon > 0$ such that there's an open geodesic all $B_{\varepsilon}(p) \subset M$, centered at p with radius ε . $\forall \alpha$, define the open metric ball $U_{\alpha} = \left\{\tilde{q} \in \tilde{M} \mid \tilde{d}(\tilde{p}_{\alpha}, \tilde{q}) < \varepsilon\right\}$. We claim that $F^{-1}(B_{\varepsilon}(p)) = \bigcup_{\alpha} U_{\alpha}$, and the conditions of being a covering map are satisfied by the U_{α} .

Claim 1: $\forall \alpha, F$ maps U_{α} into $B_{\varepsilon}(p)$, and $F|_{U_{\alpha}}$ is a bijection (so as a result, the restriction of F is a diffeomorphism). Proof: Pick $\tilde{q} \in U_{\alpha}$. Let $\tilde{\gamma}$ be a geodesic segment in \tilde{M} joining \tilde{p}_{α} to \tilde{q} . Then $\ell(\tilde{\gamma}) < \varepsilon$. Consider $\gamma = F \circ \tilde{\gamma}$, a geodesic of the same length, $\ell(\gamma) = \ell(\tilde{\gamma}) < \varepsilon$. Then $\operatorname{im}_{\gamma} \subseteq B_{\varepsilon}(p)$, so $F(\tilde{q}) \in B_{\varepsilon}(p)$. Now, we construct the inverse of $F|_{U_{\alpha}}^{B_{\varepsilon}(p)}$. Start with some $q \in B_{\varepsilon}(p)$. Lift the radial geodesic from p to q u to $\tilde{\gamma}$, starting at \tilde{p}_{α} . Then its endpoint is the inverse of $q \in U_{\alpha}$.

Claim 2: $\alpha \neq \beta \Rightarrow U_{\alpha} \cap U_{\beta} = \emptyset$. Proof: We will show $\tilde{d}(\tilde{p}_{\alpha}, \tilde{b}_{\beta}) > 2\varepsilon$. By the triangle inequality, this suffices. Let $\tilde{\gamma}$ be he minimizing geodesic from \tilde{p}_{α} to \tilde{p}_{β} . Consider $\gamma = F \circ \tilde{\gamma}$. We claim that γ must exit $B_{\varepsilon}(p)$, because any geodesic contained in $B_{\varepsilon}(p)$ and passing through p is a radial geodesic, so it must be minimizing. It's not, so thus, $\ell(\gamma) > 2\varepsilon$.

Claim 3: $F^{-1}(B_{\varepsilon}) = \bigcup_{\alpha} U_{\alpha}$. Proof: \supseteq is part of claim 1. For \subseteq , let $\tilde{q} \in F^{-1}(B_{\varepsilon}(p))$, so $F(q) \in B_{\varepsilon}(p)$. Then let γ be the radial geodesic from $F(\tilde{q})$ back to p. Let $\tilde{\gamma}$ be the lift of γ , starting at \tilde{q} . $\tilde{\gamma}$ ends at $\tilde{\gamma}$ such that $F(\tilde{p}) = 0$, so $\tilde{p} \in F^{-1}(p)$. Thus, $\exists \alpha$ s.t. $\tilde{p} = \tilde{p}_{\alpha}$, and $\ell(\tilde{\gamma}) = \ell(\gamma) < \varepsilon$. \square

Lemma: If M is such that $K \leq 0$ everywhere, then there are no conjugate points.

Proof: HW

Thm: (Cartan-Hadamard) Let M be a complete Riemannian manifold, with $K \leq 0$ everywhere, then $\forall p \in M$, $\exp_p : T_pM \to M$ is a smooth covering map.

Note that the second lemma implies \exp_p has no critical points. The idea of the proof is we put a metric on T_pM that makes \exp_p a local isometry. Then we have to check that this metric is complete. It is, because rays $t\mapsto tv$ are geodesics in this (crazy) metric, and they exist $\forall t$.