TCS-503: Design and Analysis of Algorithms

Graph Algorithms
All Pairs Shortest Path Problems

Learn DAA: From B K Sharma Unit IV

· Graph Algorithms:

- Elementary Graphs algorithms: BFS and DFS
- Minimum Spanning Trees
- Single-Source Shortest Paths
- All-Pairs Shortest Paths
- Maximum Flow and
- Traveling Salesman Problem

APSP: The Floyd- Warshall Algorithm

Dynamic Programming

Vertices numbered from 1 to n=|V|

Adjacency Matrix of Weight of G

$$W=w_{ij}=\begin{cases} 0 & \text{if } i=j\\ \text{weight of (i, j)} & \text{if } i\neq j \text{, (i, j)}\in E\\ \infty & \text{if } i\neq j \text{, (i, j)}\notin E \end{cases}$$

 $W=w_{ij}$ is an $n \times n$ matrix.

	1	2	3	4	5
1	0	3	8	8	-4
2	8	0	8	1	7
3	8	4	0	8	8
4	2	80	-5	0	8
5	8	8	8	6	0

APSP: The Floyd- Warshall Algorithm

Dynamic Programming

Recursive Solution

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0 \\ \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} & \text{if } k \ge 1 \end{cases}$$

Where, k=0, 1, ..., n

 $d_{ij}^{(k)}$ is the shortest path weight from i to j with intermediate vertices (excluding i, j) $\{1,2,...,k\}$ from the set

Intermediate vertex of a <u>simple path</u> $p = \langle v_1, v_2, ..., v_l \rangle$ is any vertex of p other than v_1 or v_l .

There are two cases:

Case 1: k=0, No Intermediate vertex at all, Base Case

Case 2: $k \ge 1$

APSP: The Floyd-Warshall Algorithm

Dynamic Programming

Recursive Solution

Case 1: k=0, No Intermediate vertex at all, Base Case

$$d_{ij}^{(0)} = w_{ij}$$

	$W=w_{ij}$							
	1	2	3	4	5			
1	0	3	8	00	-4			
2	8	0	%	1	7			
3	8	4	0	8	8			
4	2	80	-5	0	8			
5	8	8	8	6	0			

APSP: The Floyd-Warshall Algorithm

Dynamic Programming

Recursive Solution

Case 2: $k \ge 1$

$$d_{ij}^{(k)} = \min \left\{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right\}$$

$$p_1 \qquad k$$

$$p_2 \qquad p_1 \qquad k$$

$$p: all intermediate vertices in [1,2.3,...k]$$

APSP: The Floyd-Warshall Algorithm

Dynamic Programming

$$d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

$$D^{(0)} = W_{ij}$$

				IJ	
	1	2	3	4	5
1	0	3	8	8	-4
2	8	0	8	1	7
3	8	4	0	8	∞
4	2	8	-5	0	8
5	∞	∞	∞	6	0

For k=1,

$$d_{11}^{(1)} = \min\{d_{11}^{(0)}, d_{11}^{(0)} + d_{11}^{(0)}\} = \min\{0, 0 + 0\} = 0$$

$$d_{42}^{(1)} = \min\{d_{42}^{(0)}, d_{41}^{(0)} + d_{12}^{(0)}\} = \min\{\infty, 2 + 3\} = 5$$

$$d_{45}^{(1)} = \min\{d_{45}^{(0)}, d_{41}^{(0)} + d_{15}^{(0)}\} = \min\{\infty, 2 + (-4)\} = -2$$

APSP: The Floyd-Warshall Algorithm

Dynamic Programming

$$d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

$$D^{(1)} = d_{ij}^{(1)}$$

	1	2	3	4	5
1	0	3	8	8	-4
2	8	0	8	1	7
3	8	4	0	8	8
4	2	5	-5	0	-2
5	8	8	8	6	0

APSP: The Floyd- Warshall Algorithm

Dynamic Programming

$$d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

$$D^{(1)} = d_{ij}^{(1)}$$

For	k=2,
-----	------

	1	2	3	4	5
1	0	3	8	8	-4
2	8	0	8	1	7
3	8	4	0	8	8
4	2	5	-5	0	-2
5	8	8	8	6	0

$$d_{15}^{(2)}=\min[d_{15}^{(1)},d_{12}^{(1)}+d_{25}^{(1)}]=\min[-4,3+7]=\min[-4,10]=-4$$

$$d_{35}^{(2)}=\min[d_{35}^{(1)},d_{32}^{(1)}+d_{25}^{(1)}]=\min[\infty,4+7]=\min[\infty,11]=11$$

APSP: The Floyd-Warshall Algorithm

Dynamic Programming

$$d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

		_		•	
1	0	3	8	4	-4
2	8	0	8	1	7
3	8	4	0	5	11
4	2	5	-5	0	-2
5	8	8	8	6	0

2

APSP: The Floyd-Warshall Algorithm

Dynamic Programming

$$d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

1 2 3 4 5

			_	
0	3	8	4	-4
8	0	80	1	7
8	4	0	5	11
2	5	-5	0	-2
8	8	8	6	0

4

5

For k=3,

$$d_{42}^{(3)}=\min[d_{42}^{(2)},d_{43}^{(2)}+d_{32}^{(2)}]=\min[5,-5+4]=\min[5,-1]=-1$$

$$d_{43}^{(3)}=\min[d_{43}^{(2)},d_{43}^{(2)}+d_{33}^{(2)}]=\min[-5,-5+0]=\min[-5,-5]=-5$$

$$d_{45}^{(3)}=\min[d_{45}^{(3)},d_{43}^{(2)}+d_{35}^{(2)}]=\min[-2,-5+11]=\min[-2,6]=-2$$

APSP: The Floyd- Warshall Algorithm

Dynamic Programming

$$d_{ij}^{(k)} = \min \{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}$$

D(3)=	d.	(3)
_		-11	

0	3	8	4	-4
8	0	8	1	7
8	4	0	5	11
2	-1	-5	0	-2
8	8	8	6	0

APSP: The Floyd- Warshall Algorithm D(1)=dij(1)

1	0	3	8	4	-4
2	8	0	∞	1	7
3	8	4	0	5	11
4	2	5	-5	0	-2
5	8	8	80	6	0

0	3	8	4	-4
∞	0	8	1	7
∞	4	0	5	11
2	-1	-5	0	-2
8	8	8	6	0

0	3	-1	4	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

5

-4

7

 ∞

-2

0

APSP: The Floyd- Warshall Algorithm

Dynamic Programming

Alg.: FLOYD-WARSHALL(W)

- 1. $n \leftarrow rows[W]$
- 2. $D^{(0)} \leftarrow W$
- 3. for $k \leftarrow 1$ to n do
- 4. for $i \leftarrow 1$ to n do
- 5. for $j \leftarrow 1$ to n do
- 6. $d_{ij}^{(k)} \leftarrow \min (d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$
- 7. return D⁽ⁿ⁾

APSP:-Johnson's algorithm

Improvement for sparse graphs with reweighting technique:

Definition (Sparse Graph):

A sparse graph is a graph G = (V, E) in which |E| = O(|V|). Definition (Dense Graph):

A dense graph is a graph G = (V, E) in which $|E| = \Theta(|V|^2)$.

APSP:-Johnson's algorithm

Uses both Bellman-Ford and Dijkstra as subroutines.

Algorithm:

Let the given graph be G.

Step 1: Add a new vertex s to the graph, add edges from new vertex to

Let the modified graph be G'.

APSP:-Johnson's algorithm

Step 2: Run Bellman-Ford algorithm on G' with s as source:

Let the distances calculated by Bellman-Ford be h[0], h[1], ... h[V-1].

If we find a negative weight cycle, then return.

The shortest distances from 4 to 0, 1, 2 and 3 calculated by Bellman-Ford Algorithm

h[]={h[0], h[1], .. h[V-1]}. h[] = {0, -5, -1, 0}.

APSP:-Johnson's algorithm

Step 3: Reweight the edges of original graph.

For each edge (u, v), assign the new weight as "original weight +

h[u] - h[v]".

Re-weight the edges:

$$w(u, v) = w(u, v) + h[u] - h[v].$$

APSP:-Johnson's algorithm

Step 4: Remove the added vertex s and run <u>Dijkstra's</u> algorithm for every vertex.

Since all weights are positive now, we can run Dijkstra's shortest path algorithm for every vertex as source.

APSP:-Johnson's algorithm

Step 5: Compute the actual distances by subtracting h[v]-h[u]

$$\delta(u,v)=\delta'(u,v)-h(u)+h(v)$$

$$w(p)=w'(p) -h(u) + h(v)$$

APSP:-Johnson's algorithm

Time complexity of Floyd Warshall Algorithm is $\Theta(V^3)$. Using Johnson's algorithm, we can find all pair shortest paths in $O(V^2\log V + VE)$ time.

13 return D

APSP:-Johnson's algorithm

```
Alg.:
       Johnson(G)
       1. compute G', where V[G']=V[G]\cup \{s\} and E[G']=E[G]\cup \{(s,v):v\in V[G]\}
       2. if Bellman-Ford(G', w, s)=False
                then print "3 a neg-weight cycle"
       4. else for each vertex v \in V(G')
                         set h(v)=\delta(s,v) computed by Bellman-Ford algo.
       5.
       6. for each edge (u,v) \in E[G']
                        w'(u,v)=w(u,v)+h(u)-h(v) "original weight + h[u] - h[v]"
       7.
       8. Let D=(d_{uv}) be a new n x n matrix
       9.
               for each vertex u \in V[G]
     10.
                       run Dijkstra(G,w',u) to compute \delta'(u,v)
     11. for each v \in V[G]
                       d_{uv}=\delta'(u,v)-h(u)+h(v)
     12.
```

Single-Source Shortest Path Problem

Dijkstra's Algorithm

- 1. INITIALIZE-SINGLE-SOURCE(G,s)
- **2**. **5**← Ø
- 3. $Q \leftarrow V[G]$
- 4. While $Q \neq \emptyset$ do
- 5. $u \leftarrow EXTRACT-MIN(Q)$
- 6. $S \leftarrow S \cup \{u\}$
- 7. For each $v \in Adj[u]$ do
- 8. RELAX(u, v, w)

Graph G

APSP:-Johnson's algorithm: Another Example

After reweighting each edge.

Result of Running Dijkstra's Algorithm

APSP:-Johnson's algorithm: Another Example Source

