CSC236 Worksheet 4 Solution

Hyungmo Gu

May 6, 2020

Question 1

• Let $n \in \mathbb{N}$ and assume that $\exists k \in \mathbb{N}^+$, $n = 3^k$, so $k = \log_3 n$.

Then, since $n = 3^k$ and $3 \mid n$, we have $\lceil n/3 \rceil = n/3$.

Then,

$$T(n) = 2n + T(n/3)$$
 [By def.] (1)

$$= 2(n/3) + (2(n/3) + T(n/3^2))$$
 [By subtituting n/3 for n in def.] (2)

$$= 2^2(n/3) + T(n/3^2)$$
 (3)

$$= 2^3(n/3^2) + T(n/3^3)$$
 [By subtituting n/3 for n in def.] (4)

$$\vdots$$
 (5)

$$= 2^k(n/3^{k-1}) + T(n/3^k)$$
 [After k applications] (6)

$$= 2^{\log_3 n}(n/3^{\log_3 n-1}) + T(n/3^{\log_3 n})$$
 [By replacing $k = \log_3 n$] (7)

$$= 2^{\log_3 n}(n(3)/n) + T(n/n)$$
 (8)

$$= 3 \cdot 2^{\log_3 n} + T(1)$$
 (9)

$$= 3 \cdot 2^{\log_3 n} + 2$$
 (10)

Notes:

- Repeated Subtitution:
 - Is a technique used to find a closed form formula
 - closed form formula is a simple formula that allows evaluation of T(n) without the need to evaluate, say T(n/2)

i.e. from

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(n/2) + dn & \text{if } n > 1 \end{cases}$$
 (11)

to

$$T(n) = cn + dn \log_2 n$$

Example:

Consider the recurrence

$$T(n) = \begin{cases} c & \text{if } n = 1\\ 2T(n/2) + dn & \text{if } n > 1 \end{cases}$$
 (1)

Find closed form formula for T(n), where n is an arbitrary power of 2. That is $\exists k \in \mathbb{N}, n = 2^k$.

Let $n \in \mathbb{N}$ and assume that $\exists k \in \mathbb{N}^+$, $n = 2^k$, so $k = \log_2 n$.

Then,

$$T(n) = 2T(n/2) + dn$$
 [By 1] (2)

$$= 2\left(2T(n/2^2) + dn/2\right) + dn$$
 [By subtituting $n/2$ for n in 1] (3)

$$= 2^2T(n/2^2) + 2dn$$
 [By subtituting $n/2^2$ for n in 1] (5)

$$= 2^3T(n/2^3) + dn/2^2\right) + 2dn$$
 [By subtituting $n/2^2$ for n in 1] (6)

$$\vdots$$
 (7)

$$= 2^kT(n/2^k) + kdn$$
 [After k applications] (8)

$$= 2^{\log_2 n}T(n/2^{\log_2 n}) + (\log_2 n)dn$$
 [By replacing $k = \log_2 n$] (9)

$$= nT(1) + (\log_2 n)dn$$
 (10)

$$= cn + (\log_2 n)dn$$
 (11)

Question 2