Multidisciplinary Optimization and Machine Learning for Engineering Design

19 July 2021 – 5 August 2021

https://mdoml2021.ftmd.itb.ac.id/

Jointly organized by

Design for Additive Manufacturing: Topology Optimization Prof. Joseph Morlier

/DO ML 21

Multidisciplinary Optimization and Machine Learning for Engineering Design

19 July 2021 – 5 August 2021

https://mdoml2021.ftmd.itb.ac.id/

Jointly organized by

Part 3

3D printing
(Thanks to MIT's prof. Markus J. Buehler and UW Madison's prof. Krishnan Suresh)

/DO ML 21

A brief history of 3D printing

- •1981: Hideo Kodama of Nagoya Municipal Industrial Research Institute invented fabricating methods of a three-dimensional plastic model with photo-hardening polymer
- •First 3D printer: 1984 by Chuck Hull of 3D Systems Corp (https://en.wikipedia.org/wiki/Chuck_Hull) e.g. STL format, others

http://www.cnn.com/2014/02/13/tech/innovation/the-night-i-invented-3d-printing-chuck-hall/index.html

- •Fab@Home 3D printer: 2005
- •Multi-material printing with ultra-high resolution of tens of micrometers: 2010 and after
- •Processing techniques: Selective laser sintering (SLS) and fused deposition modeling (FDM), cure liquid materials using different sophisticated technologies, such as stereolithography (SLA) or photopolymerization (PP) ceramics, metals, high-precision polymers, biomaterials, living tissues
- •General article: http://www.pcmag.com/article2/0,2817,2394720,00.asp

VDO ML 21

https://gen3d.com

Additive Manufacturing is: Slow Expensive*

But you
 can
 definitely
 ReThink the
 way to
 design part

*compared to traditional manufacturing methods

DO ML 21

3D Printer's process

METAL AM Tech

composites tech

/DO_ML_21

GE factory

Carbon filament

PETG CARBON 3D filament

• Tensile modulus: 4,541 MPa

• Tensile strength: 52.9 MPa

AM Process Flow. (see https://courses.gen3d.com)

3D CAD drawing Generative design (code) Software (ParaMatters, ntopology...) Generate .stl/.gcode file

This is a very important step because .stl is the file that the printer understands!

AM machine

There are several different AM methods

Final product

Finished product could have support material which you remove

Time for 3D printing

https://3space.com/blog/how-long-does-3d-printing-take/

Part size & Geometry

Taller parts will usually take longer to 3D print than shorter parts, even if their volume is the same.

3D printing is faster when parts have simple cross-sectional layers.

MDO ML 21

Print Direction

MDO ML 21

Print Direction

13

Printing Resolution

Printers can be set at different resolution

Finer resolutions take more time & cost more!

DO_ML_21 14

Print Direction

Drips in all direction!

Pick the best orientation for Z axis!

Printer will add support structures

MDO_ML_21 15

Support Structures

/DO ML 21

Cost of 3D Printing

Typical Lego Piece: \$2.00 + Setup cost

What is the cost of printing?

Plastic

Metal \$10.00 ~ \$200.00 per cm^3

Low quality: \$0.30 per cm^3

Medium quality: \$2.00 per cm^3

High quality: \$10.00 per cm^3

DO_ML_21 17

Practical Aspects of 3D Printing

#1 Design part to avoid support structures

#2 Pick print direction with minimal support structures

#3 Reduce material usage

#4 Avoid thin regions

DO_ML_21

Practical Engineering Skills CAD design (engineering drawings) Finite Element Simulations (stress analysis) Gradient descent optimization (TopOpt) Additive Manufacturing

(future of industrial standards of manufacturing)

Mechanical Learning of Additive Manufacturing Parts

• Highlights of MATLS 2H04A (2018) - Structure Materials Design Project

Example of 3D printed parts with different materials

Compression tests of students' designs (video click to play: crushed samples will disappear)

Sessional Instructor: Dr. Bosco (Hiu Ming) Yu, PhD

0_M_21 ZU 10

What to print: Topology optimization

40% volume fraction (=amount of material vs. whole domain)

http://www.topopt.mek.dtu.dk/apps-and-software/topology-optimization-codes-written-in-python

Jupyter notebook

Folder: Topology optimization - example

Software and algorithms for hierarchical design

Conventional CAD programs do not work well **New players are emerging**

Examples:

- ntopology (see case studies): https://ntopology.com/
- additiveflow: https://www.additiveflow.com/
- Hyperganic
- ParaMatters: https://paramatters.com/
- Fusion 360 (Autodesk)

Conventional CAD vs novel tools

- Integrated shape, volume, meshing, simulation and modeling, optimization
- Can write 3D printing files

Multidisciplinary Optimization and Machine Learning for Engineering Design

19 July 2021 – 5 August 2021

https://mdoml2021.ftmd.itb.ac.id/

Jointly organized by

Break before

Part 4

Prof. J. Morlier

VDO ML 21