UNIT: 4 (N Beta Functions (x) Gamma Functions

BETA & GAMMA FUNCTIONS

The Beta Function or first Eulerian Integral denoted by B(m,n).

 $B(m,n) = \int_{\mathcal{H}} m^{-1} (1-n)^{n-1} dx$

The Gamma Function or second Eulerian integral denoted by $\Gamma(p)$.

 $\Gamma(p) = \int e^{-n} n^{p-1} dn \qquad (p>0)$

> Properties

(i)
$$B(m,n) = B(n,m)$$

 $We \ know, \int_{-\pi}^{\pi} n^{m-1} (1-x)^{n-1} dx$ $B(m,n) = \int_{-\pi}^{\pi} n^{m-1} (1-x)^{n-1} dx$

Let 1-1=t. then, dn = -dt. 80,

 $B(m,n) = \int (1-t)^{m-1} t^{n-1} dx = B(n,m)$

But lim by = 0. Since 1>03

Therefore, $\Gamma(n+1) = n\Gamma(n)$.

 $\Gamma(n+1) = \int_{e^{-n}}^{\infty} n^{n} dn$

 $=\lim_{\alpha\to\infty} \left| x^{\alpha} \int_{0}^{q} e^{-x} dx - \left| \left(dx^{\alpha} \right) \int_{0}^{q} e^{-x} dx \right| dx$

 $: \Gamma(n+1) = n\Gamma(n).$

 $V): \Gamma(n+1) = \Omega$ (If $n \in Z^{trd}$) $80!^{2}$

We know,

Pipolica

FT(n+1) = nT(n) = n [(n-1)+1] $or_{1} \Gamma(n+1) = n(n-1)\Gamma(n-1)$ $= n(n-1)\Gamma(n-2)+1$ $= n(n-1)(n-2) - \Gamma(n-2)$ $= n(n-1)(n-2) - \Gamma(1)$ = n!

! [(n+1) = n!

(*) Prove that $\Gamma(1)=1$ $801^{2}:$ $\Gamma(1)=\int_{0}^{\infty}e^{-2\pi}x^{n-1}dx$

 $T(1) = \begin{cases} e^{-x} x^{1-1} dx \end{cases}$

 $= \int_{0}^{\infty} e^{-x} dx = \lim_{\alpha \to \infty} \left(\frac{e^{-x}}{-1} \right)_{\alpha}$

 $= e^{\circ} - e^{-\alpha}$

·\. \(\(\(1\) = 1\)

(vi): \(\text{(m)} \(\text{(1-m)} \) = \(\text{T} \) \(\text{sinm} \text{m} \text{.}

翻

when m = 112,

 $\Gamma(1|2) \Gamma(1-1|2) = \Gamma \Gamma \sin 1/2 \Gamma \Gamma$

or \(\(\frac{1}{2} \) \(\Gamma \(\frac{1}{2} \) = \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) \(\frac{1}{2} \) = \(\frac{1}{2} \) \(\frac{1}{2} \)

or, $\left(\Gamma \left(\frac{1}{2} \right) \right)^2 = TL$

· · · · (1/2) = VIL

Now

a): $\Gamma\left(\frac{3}{2}\right) = \Gamma\left(\frac{1}{2}+1\right) = \frac{1}{2}\Gamma\left(\frac{1}{2}\right) = \sqrt{11}$

b) $\lceil \left(\frac{7}{2}\right) : \lceil \left(\frac{5}{2}+1\right) : \frac{5}{2} \lceil \left(\frac{5}{2}\right) \right|$ $\vdots \quad 5 \quad \lceil \left(\frac{3}{2}+1\right) : \frac{5}{2} \times \frac{3}{2} \quad \lceil \left(\frac{3}{2}\right) \right|$ $\vdots \quad \frac{5}{2} \times \frac{3}{2} \times \sqrt{\pi} \quad \frac{5}{2} \times \frac{15}{2} \times \frac{3}{2} \quad \frac{5}{2} \times \frac{15}{2} \times \frac{15$ $\begin{array}{c}
(c) : r\left(\frac{1}{3}\right) r\left(\frac{2}{3}\right) \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$

 $= \left(\begin{array}{c} 1\\ \overline{3} \end{array}\right) \left(\begin{array}{c} 1-1\\ \overline{3} \end{array}\right)$

We know,

 $I(m)I(1-m) = \pi$ gin $m\pi$

Son m= 1/3.

 $\frac{7}{3} \cdot \left(\frac{1}{3} \right) \cdot \left(\frac{1-1}{3} \right) = 12$ $\frac{7}{3} \cdot \left(\frac{1}{3} \right) \cdot \left(\frac{1}{3} \right) \cdot \frac{1}{3} \cdot \frac{1$

 $a \Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right) = \frac{2n}{3}$

(a): $\Gamma\left(\frac{1}{9}\right)$ $\Gamma\left(\frac{3}{9}\right)$

 $= \Gamma\left(\frac{1}{9}\right) \Gamma\left(\frac{1-1}{9}\right)$

We know, T(m) T(1-m) = Tt ginm Tt

80, T(1/4) T(1-1/4) = Tt sin T/4 on a r(1/4) r(3/4) = rc

 $\frac{1}{7}\left(\frac{1}{9}\right)\Gamma\left(\frac{3}{9}\right)=\sqrt{2}\pi$

Spine.

(a)
$$\Gamma\left(\frac{1}{9}\right)\Gamma\left(\frac{2}{9}\right)\Gamma\left(\frac{3}{9}\right).....\Gamma\left(\frac{8}{9}\right)$$

$$801^{2}.$$

$$=\overline{\Gamma\left(1-8\right)}\Gamma\left(1-7\right)\Gamma\left(1-6\right)\Gamma\left(1-5\right)\Gamma\left(\frac{47}{9}\right)$$

$$\Gamma\left(\frac{6}{9}\right)\Gamma\left(\frac{7}{9}\right)\Gamma\left(\frac{9}{9}\right)$$

$$\Gamma\left(\frac{8}{9}\right)\Gamma\left(\frac{1-8}{9}\right)\Gamma\left(\frac{7}{9}\right)\Gamma\left(\frac{1-7}{9}\right)\Gamma\left(\frac{36}{9}\right)\Gamma\left(\frac{1-6}{9}\right)\Gamma\left(\frac{5}{9}\right)\Gamma\left(\frac{1-5}{9}\right)$$

$$=$$
 $\frac{1}{1}$ $\frac{1}{1}$

(*) Important Properties.

(i):
$$\int \sin^{1/2} \theta d\theta = \int \cos^{1/2} d\theta = \sqrt{\pi}$$

(i): $\int \sin^{1/2} \theta d\theta = \int \cos^{1/2} d\theta = \sqrt{\pi}$

(ii): $\int \cos^{1/2} \theta d\theta = \int \cos^{1/2} \theta d\theta = \sqrt{\pi}$

(iii): $\int \cos^{1/2} \theta d\theta = \int \cos^{1/2} \theta d\theta = \sqrt{\pi}$

(iv): $\int \cos^{1/2} \theta d\theta = \int \cos^{1/2} \theta d\theta = \sqrt{\pi}$

(iv): $\int \cos^{1/2} \theta d\theta = \int \cos^{1/2} \theta d\theta = \sqrt{\pi}$

$$\begin{pmatrix}
\alpha & 2 \\
(iii) & e^{-x^2} dx = \sqrt{ex} \\
0 & 2
\end{pmatrix}$$

PROGRAM

$$\sqrt{81^{2}}$$
 $\sin \frac{p}{\theta} \cos \frac{2\theta}{\theta} d\theta = \frac{(p+1/2)}{2\Gamma(p+q+2/2)}$

We know,
$$= \int_{0}^{m/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \int_{0}^{m} B(m,n) = \int_{0}^{m} f(n) f(n)$$
Let $p = 2m-1$ $q = 2n-1$

$$\therefore m = (p+1)/2$$
 $\therefore n = (q+1)/2$

Let
$$p = 2m-1$$
 $q = 2n-1$
: $m = (p+1)/2$.: $n = (q+1)/2$

$$\int_{0}^{\pi/2} \sin^{2}\theta \cos^{2}\theta d\theta = \int_{0}^{\pi/2} \left(\frac{\rho + 1}{2}\right) \left(\frac{q + 1}{2}\right)$$

Date. No. 227: Prove that: B[m,n) = I(m) r(n)
T(m+n) We know, $T(m) = \int_{e^{-t}}^{\infty} t^{m-1} dt \quad (m>0) - (i)$ Let & t= zx then, dt = Z dnwhen t=0, n=0. when $t = \infty$, $n = \infty$ From (i), $T(m) = \int_{-2\pi}^{\infty} (zx)^{m-1} z dx$ $= Z^{m} e^{-2\pi} a^{m-1} d\pi$ a_{1} , $\Gamma(m)$ $\int_{0}^{\infty} e^{-z} z^{n-1} dz = \int_{0}^{\infty} z^{m} z^{m-1} dz = \int_{0}^{\infty} z^{m-1} dz = \int_{0}^{\infty} z^{m-1} dz$ on $\Gamma(m)$ $\Gamma(n) = \int_{-\infty}^{\infty} \int_{$

Date. No. Integrating z from o to so, we have $\frac{\partial \Gamma(m) \Gamma(n)}{\partial \Gamma(m)} = \frac{\partial \Gamma(m+n)}{\partial \Gamma(m,n)} = \frac{\partial \Gamma(m+n)}{\partial \Gamma(m,n)} = \frac{\partial \Gamma(m+n)}{\partial \Gamma(m+n)} = \frac{\partial$ We know, $B(m_1n) = \int_{X}^{\infty} m^{-1} dn = 0$ $(1+n)^{m+n}$ $\Gamma(m)\Gamma(n) = \Gamma(m,n) B(m,n)$: B(m,n) = [[m] [(n) T(m,n) (2): Prove that: (i) B(m,n) B(m+n,1) = B(n,1) B(n+1), m) LHS = B(m,n) B(m+n,1) $= \Gamma(m)\Gamma(n) \times F(m+n)\Gamma(l)$ $= \Gamma(m+n+l)$ $\Gamma(\mathfrak{A})\Gamma(\mathfrak{A})$ × $\Gamma(\mathfrak{n}+\mathfrak{A})\Gamma(\mathfrak{M})$ [(M+n+)