PH-107 (2017) Tutorial Sheet 4

* Problems to be done in tutorial.

<u>A.</u> Electron interference, Diffraction, Young's double slit experiment, Davison-Germer experiment:

P32. The thermal kinetic energy of a hydrogen atom is roughly equal to kT , where $k = 1.38 \times 10^{-23}$ J/K, and T is the absolute temperature. The radius of the atom is roughly equal to the radius of the n=1 Bohr orbit, $r_1 = 0.53 \times 10^{-10}$ m. For what temperature will the deBroglie wavelength of the hydrogen atom be equal to its diameter? Take the mass of the atom to be that of the proton, 1.66 10^{-27} kg.

P33*. Consider two plane waves one with wave vector, $\mathbf{k_1} = (2\pi/\lambda)$ ($\mathbf{x} + \mathbf{y} + \mathbf{z}$), and the other with wave vector, $\mathbf{k_2} = (2\pi/\lambda)\mathbf{z}$. Take $\lambda = 500$ nm. Calculate the resultant wave due to the interference of these two waves. Calculate the intensity ? Analyze the interference pattern in the xy-plane i.e. the condition for maxima and minima ?

P34. In a double slit interference experiment (see figure below), the distance between the slits is 0.0005m and the screen is 2 meters from the slits. Yellow light from a sodium lamp is used and it has a wavelength of 5.89×10^{-7} m. Show that the distance between the first and second fringes on the screen is 0.00233 m. (Fringe is another word for bright spot).

P35*. Water waves of wavelength 5.44 meters are incident upon a breakwater with two narrow openings separated by a distance 247 meters (see figure below). To the nearest thousandth of a degree what is angle corresponding to the first wave fringe maximum?

- **P36*.** A Young's double slit experiment is performed (see figure of question P33). Answer the following questions.
- (a) Plot the intensity pattern at the observing plane, Po. Label x and y-axis clearly.
- (b) Light passes through two slits separated by a distance d=0.8mm, and the observing plane is 1.6m away from the two slits. If the distance between the two consecutive maxima is 5mm, what is the wavelength of the light?
- (c) When one of the slits is covered by a film of transparent material, the zeroth order is seen to shift by 2.2 fringes. If the refractive index of the transparent material is 1.4, how thick is the film?
- (d) The two slits are illuminated by light containing two wavelengths, 450nm and 600nm. What is the least order at which a maximum of one wavelength will fall exactly on a minimum of the other?
- **P37*.** In the Davisson-Germer experiment, 54 eV electrons were diffracted from a nickel crystal. Consider the case when the electron beam impinges normal to the nickel crystal surface. See the figure below

A plot of the intensity of the diffracted electrons as a function of the angle from the normal to the surface shows the first peak at θ =50°)

- (a) Calculate the spacing between the atoms on the nickel surface from the peak in the intensity distribution
- **(b)** The electron beam energy is now changed to 100 eV. Find the angle from the surface normal where the maximum intensity is expected. Is there a second angle at which the intensity is again a maximum? If there is, what is this second angle?
- **c)** If a beam of He atoms is used instead of electrons, what is the energy of the He atoms required to yield a maximum at the same angle as for the electrons?

B. Wave packet and Fourier Theory:

P38*. 6. A wave packet is of the form

 $f(x) = e^{-\alpha |x|}$ (for $-\infty \le x \le \infty$) where α is a positive constant.

- (a) Plot f(x) versus x.
- **(b)** At what values of x does f(x) attain half of its maximum value?
- (c) Calculate the Fourier transform of f(x), i.e. $g(k) = \int_{-\infty}^{+\infty} f(x)e^{ikx}dx$?
- **(d)** Plot g(k) versus k.
- (e) Find the values of k at which g(k) attains half of its maximum value
- **(f)** From the values obtained in parts (b) and (e), find the value of the product $\Delta x.\Delta k$

$$\left[Given: \int_{0}^{\infty} e^{-(\alpha - ik)x} dx = \frac{1}{\alpha - ik}\right]$$