Lecture 2 (1.2 - 1.4)

Rui Li

September 9, 2018

Contents

1.2 - Sets 1
1.3 - Statements and Negation 2
1.4 - Quantifiers
1.2 - Sets
Definition: a set is a collection of objects, called it's elements. Notation: $a \in S$ (a is an element of S) $a \notin S$ (a is not an element of S)
The Natural Numbers $\mathbb{N} = \{1, 2, 3\}$ Thus $1 \in \mathbb{N}, 2 \in \mathbb{N}$, etc. However $0 \notin \mathbb{N}$. (in MATH135)
The Integers $\overline{\mathbb{Z} = \{2, -1, 0, 1, 2\}}$ Thus $0 \in \mathbb{Z}, \pm 1 \in \mathbb{Z}, \frac{1}{2} \notin \mathbb{Z}$.
The Rational Numbers $\mathbb{Q} = \{ \frac{a}{b} \colon a, b \in \mathbb{Z}, b \neq 0 \}$ Thus $1 = \frac{1}{1} \in \mathbb{Q}; \frac{1}{2} \in \mathbb{Q}; \sqrt{2} \notin \mathbb{Q}$ (Lecture 9).
The Real Numbers $\mathbb{R} \to \sqrt{2} \in \mathbb{R}; \sqrt{-1} \notin \mathbb{R}$ (Lecture 9).
Examples: Odd natural numbers less than 10 is $\{1, 3, 5, 7, 9\}$. The set $S = \{1, 2, \{3\}\}$ has three elements $1 \in S, 2 \in S, \{3\} \in S$ but $3 \notin S$. $\{1, 2, 3\} = \{1, 3, 2\} = \{1, 2, 2, 3\}$

Order is not relevant with sets, neither is multiplicity (the second 2 above is redundant)

The Empty Set

 $\overline{\varnothing = \{\}}$ No elements.

Examples:

Set of integers both even and odd is \varnothing .

The set of elements common to both $\{3\}$, $\{\{3\}\}$ is \varnothing .

 $\{\emptyset\}$ has one element, \emptyset ($\emptyset \in \{\emptyset\}, \emptyset \notin \emptyset$).

 $\{\emptyset, \{\emptyset\}\}\$ has 2 elements.

1.3 - Statements and Negation

Definition: A statement is a sentence that is either true or false.

Examples of statements:

$$1 + 1 = 2$$

$$1 + 1 = 3$$

$$\sqrt{2} \notin \mathbb{Q}$$

 $Not\ statements:$

$$x^2 - x = 0$$

$$\frac{m-7}{2m+4} = 5$$

Negation

Definition: Let p be a statement, the negation of p is denoted $\neg P$, and is the statement with the opposite truth value.

Р	$\neg P$	$\neg(\neg P)$
True	False	True
False	True	False

Double negation has the same truth values as P, so P is logically equivalent to it's double negation.

$$\underline{P \equiv \neg (\neg P)}$$

Negation of 1+1=2 is $\neg(1+1=2)$, or $1+1\neq 2$.

Negation of $\sqrt{2} \in \mathbb{Q}$ is $\sqrt{2} \notin \mathbb{Q}$. $\neg(\sqrt{2} \notin \mathbb{Q})$ is $\sqrt{2} \in \mathbb{Q}$ so $\neg(\neg(\sqrt{2} \in \mathbb{Q}))$ is $\sqrt{2} \in \mathbb{Q}$.

1.4 - Quantifiers