

NT OF COMMERCE of Standards

NBS Special Publication 708, Suppl. 1

Standard Reference Data Publications 1985-1986

Joan C. Sauerwein

QC 100 U57 No.708 SUPPL.1 he National Bureau of Standards¹ was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research to assure international competitiveness and leadership of U.S. industry, science and technology. NBS work involves development and transfer of measurements, standards and related science and technology, in support of continually improving U.S. productivity, product quality and reliability, innovation and underlying science and engineering. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials Science and Engineering.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; provides advisory and research services to other Government agencies; conducts physical and chemical research; develops, produces, and distributes Standard Reference Materials; provides calibration services; and manages the National Standard Reference Data System. The Laboratory consists of the following centers:

- Basic Standards²
- Radiation Research
- Chemical Physics
- Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors to address national needs and to solve national problems; conducts research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers:

- Applied Mathematics
- Electronics and Electrical Engineering²
- Manufacturing Engineering
- Building Technology
- Fire Research
- Chemical Engineering³

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following divisions:

- Information Systems Engineering
- Systems and Software Technology
- Computer Security
- Systems and Network Architecture
- Advanced Computer Systems

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference materials, quantitative understanding and other technical information fundamental to the processing, structure, properties and performance of materials; addresses the scientific basis for new advanced materials technologies; plans research around cross-cutting scientific themes such as nondestructive evaluation and phase diagram development; oversees Bureau-wide technical programs in nuclear reactor radiation research and nondestructive evaluation; and broadly disseminates generic technical information resulting from its programs. The Institute consists of the following Divisions:

- Ceramics
- Fracture and Deformation³
- Polymers
- Metallurgy
- Reactor Radiation

¹Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address Gaithersburg, MD 20899.

²Some divisions within the center are located at Boulder, CO 80303.

³Located at Boulder, CO, with some elements at Gaithersburg, MD

NBS Special Publication 708, Suppl. 1

Standard Reference Data Publications 1985–1986

Joan C. Sauerwein

Office of Standard Reference Data National Bureau of Standards Gaithersburg, MD 20899

June 1987

U.S. Department of Commerce Malcolm Baldrige, Secretary

National Bureau of Standards Ernest Ambler, Director National Bureau of Standards Special Publication 708, Suppl. 1 Natl. Bur. Stand. (U.S.), Spec. Publ. 708, Suppl. 1 40 pages (June 1987) CODEN: XNBSAV U.S. Government Printing Office Washington: 1987

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402

Foreword

The National Standard Reference Data System was established in 1963 for the purpose of promoting the critical evaluation and dissemination of numerical data of the physical sciences. The program is coordinated by the Office of Standard Reference Data of the National Bureau of Standards but involves the efforts of many groups in universities, government laboratories, and private industry. The primary aim of the program is to provide compilations of critically evaluated physical and chemical property data. These tables are published in the Journal of Physical and Chemical Reference Data, in the NSRDS-NBS series of the National Bureau of Standards, and through other appropriate channels. Other outputs of the program include bibliographies, computer programs for handling data, and databases in magnetic tape and disk formats.

This listing includes all publications which have appeared in the period 1985–86. It supplements "Standard Reference Data Publications 1964–1984", NBS SP 708. Indexes to authors, properties, and material classes are given, as well as information

on ordering publications.

David R. Lide, Director Office of Standard Reference Data

Contents

Introduction
Journal of Physical and Chemical Reference Data
Reprints
Supplements
Reprint Packages
Standard Reference Databases
Other NSRDS Data Publications
Critical Bibliographies and Indexes from Other Publishers
Author Index
Materials Index
Properties Index
Ordering Information
Price Lists

Standard Reference Data Publications 1985–1986

Joan C. Sauerwein

Office of Standard Reference Data, National Bureau of Standards, Gaithersburg, MD 20899

The National Bureau of Standards' Office of Standard Reference Data manages a network of data centers that prepare evaluated databases of physical and chemical properties of substances. Databases are available in printed form, on magnetic tapes, diskettes, and through on-line computer networks. This document provides a comprehensive list of the products available from the National Standard Reference Data System (NSRDS) for the years 1985–1986, including indexes qualified by author, material, and property terms. Ordering information and current prices can be found at the end of this document.

Key words: bibliographies; chemical properties; evaluated data; indexes; materials properties; physical properties; publication list.

Introduction

The National Standard Reference Data System (NSRDS), established in 1963, coordinates on a national scale the compilation and dissemination of reference data in the physical sciences. Under the Standard Reference Data Act (Public Law 90–396) the National Bureau of Standards (NBS) of the U.S. Department of Commerce has the primary responsibility in the Federal Government for providing reliable scientific and technical data. The Office of Standard Reference Data at NBS coordinates a complex of data evaluation centers, located in university, industrial, and other Government laboratories as well as within NBS. These centers compile and

critically evaluate numerical physical and chemical property data retrieved from the world's scientific literature.

This publications list includes NSRDS data compilations, critical reviews, and other publications which are available from various sources. Indexes by author, property, and materials class are included. Prices and ordering instructions for publications listed are given in this document and further information may be obtained from:

> Office of Standard Reference Data National Bureau of Standards Gaithersburg, MD 20899

Reprints

265

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 1. Properties of Condensed Phases—Randolph C. Wilhoit, Jing Chao, and Kenneth R. Hall. J. Phys. Chem. Ref. Data 14, 1 (1985).

A survey of the published values of heat capacity and enthalpy obtained from calorimetric measurements on the crystal, glass and liquid phases of the first few members of homologous series of organic oxygen compounds is presented. Equations for the heat capacities expressed as polynomial functions of temperature were fit to selected data by a least squares procedure. Tables of smoothed values of thermodynamic properties, derived from these functions, are presented for 38 compounds.

266

Standard Chemical Thermodynamic Properties of Alkylbenzene Isomer Groups—Robert A. Alberty. J. Phys. Chem. Ref. Data 14, 177 (1985).

The chemical thermodynamic properties of alkylbenzene isomer groups from C_8H_{10} to C_9H_{12} in the ideal gas phase have been calculated from 298.15 to 1000 K from tables of Stull, Westrum, and Sinke. In the absence of literature data on all isomers of higher isomer groups, the properties of isomers of $C_{10}H_{14}$ to $C_{12}H_{18}$ have been calculated using Benson group values. For isomer group properties, increments per carbon atom have been calculated to show the extent to which thermodynamic properties of higher isomer groups may be obtained by linear extrapolation.

267

Assessment of Critical Parameter Values for H_2O and D_2O-J . M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill. J. Phys. Chem. Ref. Data 14, 193 (1985).

Recommendations for the most likely values of the critical parameters of light and heavy water as accepted by the International Association for the Properties of Steam are presented, together with an assessment of their reliability. Supporting material for these choices of values and the assessment of their reliability is provided. Temperature values are on the International Practical Temperature Scale of 1968 (IPTS 1968) unless otherwise indicated,

268

The Viscosity of Nitrogen, Oxygen, and Their Binary Mixtures in the Limit of Zero Density—Wendy A. Cole and William A. Wakeham. J. Phys. Chem. Ref. Data 14, 209 (1985).

The paper presents a concise and accurate representation of the viscosity of nitrogen, oxygen, and their binary mixtures at the limit of zero density and in the temperature range 110–2100 K, which can be programmed easily on a computer. The correlation is founded upon the semiclassical kinetic theory of polyatomic gases and a body of critically evaluated experimental data. Use is also made of the principle of corresponding states to extend the correlation outside of the temperature range for which experimental results exist.

269

The Thermal Conductivity of Fluid Air-K. Stephan and A. Laesecke. J. Phys. Chem. Ref. Data 14, 227 (1985).

Based on available experimental data, the thermal conductivity of fluid air has been critically evaluated. A new set of recommended values is presented covering a pressure range from 1 to 1000 bar and a temperature range from 70 to 1000 K. Using the concept of residual thermal conductivity, the recommended values are described by a 13-parameter equation of state in terms of temperature and density which

may be applied to a density of 900 kg/m^3 . From comparisons of all data sources, the uncertainty of the recommended values was estimated to be below $\pm 4\%$ Additional experiments are needed, especially in the subcritical region of liquid air.

270

The Electronic Spectrum and Energy Levels of the Deuterium Molecule—Robert S. Freund, James A. Schiavone, and H. M. Crosswhite. J. Phys. Chem. Ref. Data 14, 235 (1985).

This paper gives the 27,488 lines of molecular deuterium, measured by G. H. Dieke, arranges the 8243 assigned lines into band systems, and derives rotational-vibrational energy levels for over 50 electronic states. It also derives energy levels from the published vacuum ultraviolet spectra of D₂.

271

Microwave Spectra of Molecules of Astrophysical Interest. XXII. Sulfur Dioxide (SO₂)-F. J. Lovas. J. Phys. Chem. Ref. Data 14, 395 (1985).

The microwave spectrum of sulfur dioxide (SO₂) is critically reviewed and supplemented with spectral frequency calculations derived from rotational and centrifugal distortion terms in the molecular Hamiltonian. Microwave transition frequencies applicable to molecular radio astronomy for the ground vibrational state of the most abundant isotopic forms are provided.

272

Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C-E. Colin W. Clarke and David N. Glew. J. Phys. Chem. Ref. Data 14, 489 (1985).

A new weighted least-squares method is described which is generally applicable for the nonsubjective evaluation of the best set of thermodynamic functions from a given data set of equilibrium (ΔG) and calorimetric ($\Delta H, C_p$) measurements. The method, applied to model a wide range of 2428 measurements of the water-sodium chloride system between -21 and $154\,^{\circ}\mathrm{C}$, accurately represents all measurements within experimental error. The resulting model is used to predict the thermodynamic functions and their standard errors for aqueous sodium chloride up to $110\,^{\circ}\mathrm{C}$.

273

The Mark-Houwink-Sakurada Equation for the Viscosity of Linear Polyethylene—Herman L. Wagner. J. Phys. Chem. Ref. Data 14, 611 (1985).

In this review, the parameters K and α found in the literature for the Mark-Houwink-Sakurada equation relating viscosity to molecular weight have been critically evaluated for linear polyethylene, and values have been recommended for six commonly used solvents. These are decalin, 1,2,4- tricholorobenzene, 1-chloronaphthalene, tetralin, o-dichlorobenzene, and p-xylene.

274

The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions—H. Lawrence Clever, Susan A. Johnson, and M. Elizabeth Derrick. J. Phys. Chem. Ref. Data 14, 631 (1985).

The literature on the solubility of mercury and of the sparingly soluble salts of mercury (I) and mercury (II) in water and in aqueous electrolyte solutions has been reviewed. The solubility data have been compiled and evaluated. Recommended and tentative values of the solubilities are presented when warranted. Auxiliary thermodynamic data and crystallographic data useful in the interpretation of solubility of some of the less common inorganic mercury compounds, with emphasis on the solution.

275

A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane—A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza. J. Phys. Chem. Ref. Data 14, 681 (1985).

The available experimental data for vapor-liquid equilibria, heat of mixing, change in volume on mixing for liquid mixtures, and gas-phase PVT measurements for nitrogen + methane have been reviewed and where possible evaluated for consistency. The derived properties chosen for analysis and correlation were liquid mixture excess Gibbs free energies, and Henry's constants.

276

The Homogeneous Nucleation Limits of Liquids – C. T. Avedisian. J. Phys. Chem. Ref. Data 14, 695 (1985).

This work provides a critical compilation of the homogeneous nucleation limits of liquids. Data for 90 pure substances and 28 mixtures have been compiled over a range of pressures, nucleation rates, and compositions. Detailed descriptions of the experimental methods used to obtain the included data are given to assess the accuracy of measured values. Criteria used to select the measurements included in the final listing are discussed.

277

Binding Energies in Atomic Negative Ions. II – H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985).

This article updates a ten-year review of this subject [J. Phys. Chem. Ref. Data 4, 539(1975)]. A survey of the electron affinity determinations for the elements Z=85 is presented, and based upon these data, a set of recommended electron affinities is established. Recent calculations of atomic electron affinities and the major semiempirical methods are discussed and compared with experiment. The experimental methods which yield electron binding energy data are described and intercompared. Fine structure splittings of these ions and excited state term energies are given.

278

Energy Levels of Phosphorous, P I through P xv-W. C. Martin, Romuald Zalubas, and Arlene Musgrove. J. Phys. Chem. Ref. Data 14, 751 (1985).

Energy level data are given for the atom and all positive ions of phosphorous (Z=15). These data have been critically compiled, mainly from published and unpublished material on measurements and analyses of the optical spectra. The levels for a number of the ions have been derived or recalculated. In addition to the level values in cm⁻¹ and the parity, the J value and the configuration and term assignments are listed if known. Leading percentages from the calculated eigenvectors are tabulated or quoted wherever available. Ionization energies are given for all spectra.

279

Standard Chemical Thermodynamic Properties of Alkene Isomer Groups—Robert A. Alberty and Catherine A. Gehrig. J. Phys. Chem. Ref. Data 14, 803 (1985).

The chemical thermodynamic properties of alkene isomer groups from C_4H_8 to C_6H_{12} in the ideal gas phase have been calculated from 298.15 to 1000 K from the tables of Stull, Westrum, and Sinke. In the absence of literature data on all isomers of higher isomer groups, the properties of isomers C_7H_{14} to C_8H_{16} have been estimated using the Benson group values. Equilibrium mole fractions within isomer groups have been calculated for the ideal state from 298.15 to 1000 K.

280

Standard Chemical Thermodynamic Properties of Alkylnaphthalene Isomer Groups—Robert A. Alberty and Theodore M. Bloomstein. J. Phys. Chem. Ref. Data 14, 821 (1985).

The chemical thermodynamic properties of alkInaphthalene isomer groups for $C_{10}H_8$ and $C_{11}H_{10}$ in the ideal gas phase have been calculated from 298.15 to 1000 K from tables of Stull, Westrum, and Sinke. In the absence of literature data on all isomers of higher isomer groups, the properties of isomers of $C_{12}H_{12}$ to $C_{14}H_{16}$ have been calculated using Benson group values.

281

Carbon Monoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100 MPa—Robert D. Goodwin. J. Phys. Chem. Ref. Data 14, 849 (1985).

An improved form of the nonanalytical equation of state is used to compute thermodynamic properties of carbon monoxide along isobars up to 100 MPa, at integral temperatures from coexistence to 1000 K.

282

Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density—I. Thormählen, J. Straub, and U. Grigull. J. Phys. Chem. Ref. Data 14, 933 (1985).

A survey of the available experimental data and the existing equations for the refractive index of water is given. The dependence of the molar refraction on wavelength, temperature, and density is shown over an extended range. Based on the electromagnetic theory of light an equation for the refractive index of water with wavelength, temperature, and density as independent variables is constructed. Its coefficients are directly deduced from all available experimental data by least-squares fit.

283

Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase – K. Kadoya, N. Matsunaga, and A. Nagashima. J. Phys. Chem Ref. Data 14, 947 (1985).

In view of the importance of air in science and technology and the abundance of experimental data, a consistent set of critically evaluated data and an up-to-date correlation of the viscosity and the thermal conductivity of air in the gaseous phase over a wide range of temperature and pressure is presented. This is especially important for the viscosity, since the recent data show systematic differences compared with the old standard value used for many years. The present paper was written in order to document the critical evaluation of the latest data sets and to present a new set of correlations of the viscosity and the thermal conductivity of air.

284

Charge Transfer of Hydrogen Ions and Atoms in Metal Vapors – T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher. J. Phys. Chem. Ref. Data 14, 971 (1985).

Cross sections and equilibrium fractions for energetic H⁺, H⁻, and H⁰ in collisions with metal-vapor targets have been compiled and evaluated. Both experimental and theoretical results are reported. Sources of errors are discussed, and recommended values for the data are presented.

285

Reactivity of HO₂/O₂ Radicals in Aqueous Solution—Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi and Alberta B. Ross. J. Phys. Chem. Ref. Data 14, 1041 (1985).

Kinetic data for the superoxide radical ($HO_2 \rightleftharpoons O_2^- + H^+, pK = 4.8$) in aqueous solution have been critically assessed. Rate constants for reactions of O_2^- and HO_2^- with more than 300 organic and inorganic ions, molecules and other transient species have been tabulated.

286

The Mark-Houwink-Sakurada Equation for the Viscosity of Atactic Polystyrene—Herman L. Wagner. J. Phys. Chem. Ref. Data 14, 1101 (1985).

In this review, the viscosity-molecular weight (Mark-Houwink-Sakurada) relationships have been critically evaluated for atactic polystyrene for a variety of solvents often used for viscosity measurements. These are benzene, toluene, 1,2,4-trichlorobenzene, tetrahydrofuran, o-dichlorobenzene, 2-butanone, and two theta solvents, cyclohexane and decalin. In addition, the Mark-Houwink-Sakurada parameters for several other solvents, not used as frequently, are provided.

287

Standard Chemical Thermodynamic Properties of Alkylcyclopentane Isomer Groups, Alkylcyclohexane Isomer Groups, and Combined Isomer Groups—Robert A. Alberty and Young S. Ha. J. Phys. Chem. Ref. Data 14, 1107 (1985).

The standard chemical thermodynamic properties of the alkylcy-clopentane isomer groups have been calculated through C_9H_{18} in the ideal gas phase from 298.15 to 1000 K, and the properties of the alkylcyclohexane isomer groups which have been calculated through $C_{10}H_{20}$. The properties of individual species for which literature data are not available have been estimated using the Benson method.

288

Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases—Ian Carmichael and Gordon L. Hug. J. Phys. Chem. Ref. Data 15, 1 (1986).

A compilation of spectral parameters associated with triplet-triplet absorption of organic molecules in condensed media is presented. The wavelengths of maximum absorbance and the corresponding extinction coefficients, where known, have been critically evaluated. An introduction to triplet state processes in solution and solids, developing the conceptual background and offering a historical perspective on the detection and measurement of triplet state absorption is provided.

289

Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions - 1985 Revision - F. J. Lovas. J. Phys. Chem. Ref. Data 15, 251 (1986).

Accurate transition frequencies for the transitions of the molecular species detected in interstellar clouds are presented. These are recommended for reference in future astronomical observations in the radio and microwave regions. The transition frequencies have been selected through critical examination and analysis of the spectroscopic data in the literature. The species identity, quantum number labels, and probable error limits are presented for each transition. Representative line antenna temperatures are also given for a typical source as a convenience to users. References are cited to both the astronomical and laboratory literature.

290

New International Formulations for the Thermodynamic Properties of Light and Heavy Water-J. Kestin and J. V. Sengers. J. Phys. Chem. Ref. Data 15, 305 (1986).

The General Assembly of the International Association for the Properties of Steam (IAPS), meeting at the 10th International Conference on the Properties of Steam in Moscow in September 1984, adopted new formulations for the thermodynamic properties of fluid H_2O and D_2O . The new formulations have been designated as the IAPS Formulation 1984 for the Thermodynamic Properties of Ordinary Water Substance for Scientific and General Use and the IAPS Formulation 1984 for the Thermodynamic Properties of Heavy Water Substance. This paper presents and discusses these new formulations.

291

Forbidden Lines in ns 'np k Ground Configurations and nsnp Excited Configurations of Beryllium through Molybdenum Atoms and Ions – Victor Kaufman and Jack Sugar. J. Phys. Chem. Ref. Data 15, 321 (1986).

Observed and predicted wavelengths of magnetic dipole lines arising within ground configurations of the type $ns^2 np^k (n=2 \text{ and } 3, k=1 \text{ to } 5)$ are compiled. For n=2 the compilation includes the elements B through Kr, and for k=5 it extends to Mo. For n=3 Al through Mo are included. In addition the 2s2p excited configuration of the Be I isoelectric sequence for Be through Kr and 3s3p of the Mg sequence for Mg through Mo are included.

292

Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons – O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish. J. Phys. Chem. Ref. Data 15, 437 (1986).

The available structural parameters, fundamental frequencies, and relative energies of different stable conformers, if any, for cyclopropane, cyclopropene, cyclobutane, cyclobutene, 1-3- cyclobutadiene, cyclopentane, cyclopentene, 1-3-cyclopentadiene, cyclohexane, cyclohexene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, cycloheptane, cycloheptene, 1,3-cycloheptadiene, 1,3-cycloheptatriene, cyclooctane, cyclooctene, 1,3-cyclooctadiene, 1,5-cyclooctadiene, and 1,3,5,7-cyclooctatetraene were critically evaluated and the recommended values selected.

293

Evaluated Kinetic Data for High-Temperature Reactions. Volume 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes—D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman. J. Phys. Chem. Ref. Data 15, 465 (1986).

The available kinetic data for the homogeneous gas phase reactions of the hydroxyl radical with alkanes have been compiled and critically evaluated. For each reaction, relevant thermodynamic data, a table of measured rate constants, a discussion of the data, and a comprehensive bibliography are presented. Wherever possible, the preferred rate parameters are given with their associated error limits and temperature ranges.

294

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa—Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data 15, 593 (1986).

A new fundamental equation explicit in Helmholtz energy for thermodynamic properties of ethylene from the freezing line to 450 K at pressures to 260 MPa is presented. Independent equations for the vapor pressure for the saturated liquid and vapor densities as functions of temperature, and for the ideal gas heat capacity are also included.

295

Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa-Richard T. Jacobsen, Richard B. Stewart, and Majid Jahangiri. J. Phys. Chem. Ref. Data 15, 735 (1986).

A new fundamental equation explicit in Helmholtz energy for thermodynamic properties of nitrogen from the freezing line to 2000 K at pressures to 1000 MPa is presented. New independent equations for the vapor pressure and for the saturated liquid and vapor densities as functions of temperature are also included.

296

A Critical Review of Aqueous Solubilities, Vapor Pressures, Henry's Law Constants, and Octanol-Water Partition Coefficients of the Polychlorinated Biphenyls—Wan Ying Shiu and Donald Mackay. J. Phys. Chem. Ref. Data 15, 911 (1986).

Relationships between the environmentally relevant physical chemical properties of the polychlorinated biphenyls, namely, aqueous solubility, vapor pressure, Henry's law constant, and octanol-water partition coefficient are discussed. Reported experimental data are tabulated and critically reviewed. Recommended values are given for 42 of the 209 congeners; however, procedures are suggested for estimating the properties of the other congeners.

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl₄(g), TiCl₄(l), TiCl₃(cr), and TiCl₂(cr) – S. P. Kirby, E. M. Marshall, and J. B. Pedley. J. Phys. Chem. Ref. Data 15, 943 (1986).

Computer methods are described for the storage, retrieval, and processing of large amounts of thermochemical data and related textual material. The procedures are illustrated by a critical evaluation of data for TiCl₄(g), TiCl₄(l), TiCl₃(cr), and TiCl₂(cr); values for standard enthalpies of formation and entropies at 298.15 K are selected for these species.

298

Thermodynamic Properties of Iron and Silicon—P. D. Desai. J. Phys. Chem. Ref. Data 15, 967 (1986).

This work reviews and discusses the data on the various thermodynamic properties of iron and silicon available through March 1984. These include heat capacity, enthalpy, enthalpies of transition and melting, vapor pressure, and enthalpy of vaporization. The recommended values for heat capacity, enthalpy, entropy, and Gibbs energy function cover the temperature range from 1 to 3200 K for iron and 1 to 3600 K for silicon. The recommended values for vapor pressure cover the temperature range from 298.15 to 3200 K for iron and from 298.15 to 3600 K for silicon.

299

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules—Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi, J. Phys. Chem. Ref. Data 15, 985 (1986).

Data have been compiled on the cross sections for collisions of electrons and photons with nitrogen molecules (N₂). For electron collisions, the processes considered are: total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational and electronic states, dissociation and ionization. Ionization and dissociation processes are discussed for photon impact. Cross section data selected are presented graphically. Spectroscopic and other properties of the nitrogen molecule are summarized.

300

Thermochemical Data on Gas-Phase Ion-Molecule Association and Clustering Reactions – R. G. Keesee and A. W. Castleman, Jr.. J. Phys. Chem. Ref. Data 15, 1011 (1986).

A comprehensive tabulation of the standard enthalpy change, ΔH° entropy change, ΔS° , and free energy change, ΔG° , for the formation of ion clusters from ion-molecule association reactions is given. The experimental methods which are used to derive the data are briefly discussed. For some experiments, dissociation energies of ion clusters are reported and listed under the category of ΔH° . The relationship between ΔH° and dissociation energy is discussed in the text.

301

Standard Reference Data for the Thermal Conductivity of Liquids—C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1073 (1986).

The available experimental liquid-phase thermal conductivity data for water, toluene, and n-heptane have been examined with the intention of establishing standard reference values along the saturation line. The quality of available data is such that for toluene and water new standard reference values can be proposed with confidence limits better than $\pm 1.0\%$ for most of the liquid range. For n-heptane there are insufficient reliable experimental data for the system to be treated as a

primary reference standard, so a lower quality correlation has been developed which yields a set of secondary reference data with confidence limits of \pm 1.5% for most of the normal liquid range.

302

Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds—W. Tsang and R. F. Hampson. J. Phys. Chem. Ref. Data 15, 1087 (1986).

This document contains evaluated data on the kinetics and thermodynamic properties of species that are of importance in methane pyrolysis and combustion. Specifically, the substances considered include H, H₂, O, O₂, OH, HO₂, H₂O₂, H₂O, CH₄, C₂H₆, HCHO, CO₂, CO, HCO, CH₃, C₂H₅, C₂H₄, C₂H₃, C₂H₂, C₂H, CH₃CO, CH₃O₂, CH₃O, singlet CH₂ and triplet CH₂. All possible reactions are considered.

303

Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance – J. V. Sengers and J. T. R. Watson. J. Phys. Chem. Ref. Data 15, 1291 (1986).

This paper describes improved international formulations for the viscosity and thermal conductivity of water substance recently adopted by the International Association for the Properties of Steam.

304

The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density-M. J. Assael, S. Mixafendi, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1315 (1986).

This paper contains a new representation of the viscosity and thermal conductivity coefficients of normal hydrogen in the limit of zero density as a function of temperature. The correlation is based upon the semiclassical kinetic theory of polyatomic gases and a body of critically evaluated experimental data.

305

The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon-B. A. Younglove and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 1323 (1986).

Data for the viscosity and thermal conductivity of gaseous and liquid argon have been evaluated and represented by empirical functions. Tables for the viscosity from 86 to 500 K for pressures to 400 MPa, and for the thermal conductivity from 90 to 500 K for pressures to 200 MPa are presented.

306

Standard Chemical Thermodynamic Properties of Alkyne Isomer Groups—Robert A. Alberty and Ellen Burmenko. J. Phys. Chem. Ref. Data 15, 1339 (1986).

The chemical thermodynamic properties of alkyne isomer groups from C_2H_2 to C_5H_8 in the ideal gas phase have been calculated from 298.15 to 1000 K from tables of Stull, Westrum, and Sinke. In the absence of literature data on all isomers of higher isomer groups, the properties of isomers of C_0H_{10} to C_8H_{14} have been estimated using Benson group values.

307

Recent Progress in Deuterium Triple-Point Measurements - L. A. Schwalbe. J. Phys. Chem. Ref. Data 15, 1351 (1986).

The triple point of deuterium is a proposed reference for defining the temperature scale between 13.81 and 24.562 K. Recent measurements of this fixed point are reviewed; the discussion concentrates on experiments with samples confined in transportable sealed cells. Theoretical estimates of the dependence of the triple-point temperature on the spin composition of the sample are also presented.

Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides—S. Gordon, J. C. Sullivan, and Alberta B. Ross. J. Phys. Chem. Ref. Data 15, 1357 (1986). Rate constants have been critically compiled for reactions of ions of the actinides Am, Cf, Cm, Np, Pu, Th, and U, as well as the element Tc, in different oxidation states with various chemical species in aqueous solution. The reactants include products of the radiolysis of water (hydrated electrons, hydrogen atoms, hydroxyl radicals, hydrogen peroxide) and transient species derived from other solutes (e.g. carbonate radical). The data are useful in the estimation of migration properties of actinides, which are relevant to waste management studies.

309

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 2. Ideal Gas Properties—Jing Chao, Kenneth R. Hall, Kenneth N. Marsh, and Randolph C. Wilhoit. J. Phys. Chem. Ref. Data 15, 1369 (1986).

The ideal gas thermodynamic properties of forty-four key organic oxygen compounds in the carbon range C_1 to C_4 have been calculated by a statistical mechanical technique. The properties determined are the heat capacity, entropy, enthalpy, and Gibbs energy function. The calculations have been performed, in most cases, over the temperature range 0 to 1500 K and at 1 bar. The contributions to the thermodynamic properties of compounds having internal- or pseudo- rotations have been computed by employing a partition function formed by the summation of the internal rotational or pseudorotational energy levels for each rotor in the given molecule.

Supplements

Supplement 1

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. k. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Recommended temperature-dependent values are provided for chemical thermodynamic properties of inorganic substances and for organic substances containing only one or two carbon atoms. These tables cover the thermodynamic properties over a wide range of temperature with single-phase and multiphase tables for the crystal, liquid, and ideal gas state.

Supplement 2

Atomic Energy Levels of the Iron Period Elements: Potassium through Nickel-Jack Sugar and Charles Corliss. J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Experimentally derived energy levels of the elements from potassium to nickel in all stages of ionization are critically compiled. The data for each level include its position in cm⁻¹ (relative to the ground state), configuration, term designation, J-value and, where available, the g-value and two leading percentages of the eigenvector composition in the most appropriate coupling scheme. For the He I and the HI isoelectronic sequences, calculated level positions are given because they are considered more accurate than the measurements presently available. Ionization energies for each ion are derived either from Rydberg series, extrapolation, or calculation. Complete references are given for the compiled data.

Reprint Packages

Package	No.	Title and Contents of Package
C1	5	Molecular Vibrational Frequencies Reprint Nos. 103, 129, 170, 257 and NSRDS 39
C2	22	Atomic Energy Levels Reprint Nos. 26, 54, 64, 68, 94, 100, 109, 125, 126, 131, 132, 149, 150, 154, 156, 160, 179, 180, 192, 200, 222, 278
C3	6	Atomic Spectra Reprint Nos. 33, 56, 77, 78, 110 and 132
C4	5	Atomic Transition Probabilities Reprint Nos. 20, 63, 82, 118 and 182
C5	7	Molecular Spectra Reprint Nos. 4, 8, 53, 79, 93, 130 and 146
C6	9	Thermodynamic Properties of Electrolyte Solutions Reprint Nos. 15, 95, 111, 151, 152, 174, 184, 185 and 186
C7	12	Ideal Gas Thermodynamic Properties Reprint Nos. 30, 42, 43, 62, 65, 66, 70, 80, 83, 113, 115 and 141
C8	7	Resistivity Reprint Nos. 138, 139, 155, 221, 258, 259 and 260
C9	7	Molten Salts Reprint Nos. 10, 41, 71, 96, 135, 167, 168
C10	4	Refractive Index Reprint Nos. 81, 158, 162 and 240

NBS Standard Reference Database 1

NBS/NIH/EPA/MSDC Mass Spectral Database, NBS Standard Reference Database 1, Washington, DC; NBS Office of Standard Reference Data, (updated periodically). Call (301) 975–2208 for specific instructions.

This database contains electron ionization mass spectra of more than 42,000 different compounds. The spectra were formed by the merger of MSDC and NIH/EPA collections and subsequent removal of all duplicate spectra. Every spectrum has a "Quality Index" associated with it; and for every compound the Chemical Abstracts Service (CAS) name, the molecular weight and formula and the CAS Registry Number is supplied.

NBS Standard Reference Database 2

NBS Chemical Thermodynamics Database, NBS Standard Reference Database 2, Washington, DC; NBS, Office of Standard Reference Data, (updated periodically). Call (301) 975-2208 for specific instructions.

This database contains recommended values for selected thermodynamic properties for more than 15,000 inorganic substances. These properties include enthalpy of formation from the elements in their standard states, Gibbs energy of formation from the elements in their standard states, entropy, enthalpy content and heat capacity at constant pressure at 298.15 K and 1 atm or 1 bar. Also enthalpy of formation at 0 K is included.

NBS Standard Reference Database 3

NBS Crystal Data Identification File, NBS Standard Reference Database 3, Washington, DC; NBS, Office of Standard Reference Data, (updated periodically). Lease agreements obtained from JCPDS 1601 Park Lane, Swarthmore, PA (215) 328-9400.

This file contains crystallographic information useful to characterize more than 60,000 different crystalline materials. The data include the reduced cell parameters, reduced cell volume, space group number and symbol, the calculated density, classification by chemical type, chemical formula, and chemical name. Each entry has an associated literature reference.

NBS Standard Reference Database 4

Thermophysical Properties of Hydrocarbon Mixtures (TRAPP), NBS Standard Reference Database 4, Washington, DC; NBS, Office of Standard Reference Data, (updated periodically). Call (301) 975-2208 for specific instructions.

This database consists of computer software which will predict certain thermophysical properties, namely, density, viscosity, and thermal conductivity for hydrocarbon mixtures. The model used is valid over the entire range of pressure and temperature conditions and covers molecular weight ranges up to C₂₀. The method of calculating is applicable to a wide variety of chemical types, to thermodynamic states ranging from the dilute gas to compressed liquid, and to multicomponent systems.

NBS Standard Reference Database 7

Electron and Positron Stopping Powers of Materials, NBS Standard Reference Database 7, Washington, DC; NBS, Office of Standard Reference Data, (updated periodically). Call (301) 975–2208 for specific instructions.

This database, also known as EPSTAR, contains data related to the electron and positron stopping powers of various materials. Included in EPSTAR are collision, radiative, and total stopping powers; ranges; radiation yields; and auxiliary information Data are included for electrons in 285 materials, and for positrons in 29 materials, at energies from 10 keV to 10 GeV.

NBS Standard Reference Database 8

X-Ray and Gamma-Ray Attenuation Coefficients and Cross Sections, NBS Standard Reference Database 8, Washington, DC; NBS, Office of Standard Reference Data, (updated periodically). Call (301) 975–2208 for specific instructions.

This database, also called XGAM, provides photon cross sections (interaction coefficients) and attenuation coefficients for any substance. Interactive software is provided which enables the user to obtain data by entering chemical formulas for a mixture of component materials. The user may also select the energy range over which data are desired. The system operates from a database of cross sections for coherent and incoherent scattering, photoionization and pair production for the elements Z=1 to 100 at energies from 1 keV to 100 GeV.

NBS Standard Reference Database 9

Activity and Osmotic Coefficients of Aqueous Electrolyte Solutions, NBS Standard Reference Database 9, Washington, DC; NBS, Office of Standard Reference Data, (updated periodically). Call (301) 975–2208 for specific instructions.

This database, called GAMPHI, can be used to calculate values of the mean ionic activity coefficients (Y_{\pm}) and the osmotic coefficient of 350 aqueous binary electrolyte solutions at 298.15 K.

NBS Standard Reference Database 10

Thermophysical Properties of Water, NBS Standard Reference Database 10, Washington, DC; NBS, Office of Standard Reference Data, (updated periodically). Call (301) 975–2208 for specific instructions.

This database calculates the thermodynamic and transport properties of fluid $\rm H_2O$ (liquid and vapor) using the formulation as approved by the International Association for the Properties of Steam (IAPS) at its Tenth International Conference in 1984. The range approved by IAPS for this formulation includes temperatures from 0 to 1000 °C and pressures up to 1500 MPa.

NBS Standard Reference Database 11

DIPPR Data Compilation of Pure Compound Properties, NBS Standard Reference Database 11, Washington, DC; NBS, Office of Standard Reference Data, (updated periodically). Call (301) 975–2208 for specific instructions.

The DIPPR database contains data on 39 properties for 346 chemical compounds. These data were released for public distribution by the Design Institute for Physical Property Data (DIPPR). For each chemical compound included, values are given for 26 single-valued property constants and for 13 properties as functions of temperature, calculated from correlation coefficients. The database also includes estimates of the accuracy of each property value and references to the sources of measured or predicted data which were used in selecting the recommended values.

NBS Standard Reference Database 12

Interactive FORTRAN Program to Calculate Thermophysical Properties of Fluids MIPROPS, 1986, NBS Standard Reference Database 12, Washington, DC; NBS, Office of Standard Reference Data, (updated periodically). Call (301) 975–2208 for specific instructions.

This program computes thermophysical properties of twelve fluids: helium, argon, parahydrogen, oxygen, nitrogen, nitrogen trifluoride, ethylene, methane, ethane, propane, isobutane and normal butane. Properties are computed for the single phase region from input of two of the following variables: temperature, pressure, and density. Values on the liquid-vapor boundary are computed for either a given temperature and pressure.

NBS Standard Reference Database 13

JANAF Thermochemical Tables, NBS Standard Reference Database 13, Washington, DC; NBS, Office of Standard Reference Data, (updated periodically). Call (301) 975-2208 for specific instructions.

The JANAF Thermochemical Tables provide a compilation of critically evaluated thermodynamic properties of approximately 1,800 substances over a wide range of temperature. Recommended temperature-dependent values are provided for chemical thermodynamic properties of inorganic substances and for organic substances containing only one or two carbon atoms. These tables cover thermodynamic properties over a wide temperature range with single-phase and multiphase tables for crystal, liquid, and ideal gas state.

NSRDS-NBS Series

3 Sec. 11

Selected Tables of Atomic Spectra: A. Atomic Energy Levels - Second Edition; B. Multiplet Tables; O III—Charlotte E. Moore. NSRDS-NBS 3, 33 p. (1985).

This publication is the eleventh section of a series being prepared in response to the need for a current revision of two sets of the author's tables containing data on atomic spectra as derived from analyses of optical spectra.

NBS Technical Notes

1097

Interactive FORTRAN Program for Micro Computers to Calculate the Thermophysical Properties of Twelve Fluids (MIPROPS) – Robert D. McCarty. NBS Tech. Note 1097, 84 p. (1986).

The thermophysical and transport properties of selected fluids have been programmed in FORTRAN 77 which is available for micro computers. The input variables are any two (pressure, density, and temperature) in the single phase region and either pressure or temperature for the saturated liquid or vapor states. The output is pressure, density, temperature, internal energy, enthalpy, entropy, specific heat capacities, speed of sound, and, in most cases, viscosity, thermal conductivity and dielectric constant. The fluids included are: helium, hydrogen, nitrogen, oxygen, argon, nitrogen trifluoride, methane, ethylene, ethane, propane, iso- and normal butane.

1206

GAMPHI-A Database of Activity and Osmotic Coefficients for Aqueous Electrolyte Solutions – R. N. Goldberg, J. L. Manley, R. L. Nuttall. NBS Tech. Note 1206, 23 p. (1985).

This publication concerns a database of activity and osmotic coefficients for 350 binary aqueous electrolyte solutions at 298.15 K together with a collection of subroutines for utilizing the database. The codes, which are written in FORTRAN 77, can be used either interactively or individual subroutines can be referenced via FORTRAN CALL statements from user-written programs.

1208

PIPE/1000: An Implementation of Piping on an HP-1000 Minicomputer— N. L. Seidenman. NBS Tech. Note 1208, 23 p. (1985).

This paper describes an implementation of piping in on an HP-1000 minicomputer. Piping is a system by which programs can communicate so as to coordinate their respective functions in a synchronized effort aimed at the completion of a given task.

NBS Special Publications

689

Computerizing Materials Data-A Workshop for the Nuclear Power Industry — John Rumble, Jr. and Jack H. Westbrook. NBS Spec. Publ. 689, 37 p. (1985).

This publication details the conclusions and recommendations of a workshop attended by scientists and engineers responsible for the use of materials property data in various sectors of the nuclear power industry. At this workshop, all facets of the use of computers in accessing these data were addressed. The discussions concerned the content of a proposed computerized materials data system, its size and data sources, and the user interfaces and system capabilities.

702

Standards and Metadata Requirements for Computerization of Selected Mechanical Properties of Metallic Materials— Jack H. Westbrook. NBS Spec. Publ. 702, 39 p. (1985).

This publication concerns a computerized information system on the engineering properties of materials, the standards and metadata requirements for a representative group of mechanical property categories. These categories include: tensile behavior, hardness numbers, notch-bar impact test parameters and fatigue properties. For each property group, definition of terms, synonyms (and non-synonyms), standard test methods, standards for reporting data, precision and accuracy, and correlations of properties are addressed.

708

Standard Reference Data Publications 1964–1984, – Joan C. Sauerwein and Geraldine R. Dalton. NBS Spec. Publ. 708, 138 p. (1985).

This document provides a comprehensive list of the products available from the National Standard Reference Data System (NSRDS) for the the years 1964–1984, including indexes qualified by author, material, and property terms.

726

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., John Rumble, Jr. NBS Spec. Publ. 726, 118 p. (1986).

The National Bureau of Standards and the Department of Energy have embarked on a program to build a demonstration computerized materials data system called Materials Information for Science & Technology (MIST). This report documents the first two phases of the project as well as setting forth many general considerations that will shape later phases.

NBS Interim Reports

85-3205

Chemical Thermodynamics in Steam Power Cycles Data Requirements — Otaker Jonas and Howard J. White, Jr. NBSIR 85-3205, 282 p. (1985).

A workshop on the needs for chemical thermodynamic data in steam power cycles was held at the National Bureau of Standards in Gaithersburg, Maryland, February 8–9, 1983. In these proceedings, the purpose of the workshop is presented and the principal conclusions and recommendations are stated. The texts or principal conclusions and recommendations are also given.

NSRDS Data Publications from Other Publishers

Binary Alloy Phase Diagrams - Thaddeus B. Massalski (editor). American Society for Metals, Metals Park, OH, 2224 p. (1986).

Bulletin of Alloy Phase Diagrams — Joanne L. Murray (editor). Bull. Alloy Phase Diag. 5, Metals Park, OH: American Society for Metals, (1985).

Bulletin of Alloy Phase Diagrams — Joanne L. Murray (editor). Bull. Alloy Phase Diag. 6, Metals Park, OH: American Society for Metals, (1985).

Bulletin of Alloy Phase Diagrams — Joanne L. Murray (editor). Bull. Alloy Phase Diag. 7, Metals Park, OH: American Society for Metals, (1986).

Critical Bibliographies and Indexes From Other Publishers

Mossbauer Effect Reference and Data Journal – J. G. Stevens, V. E. Stevens, R. M. White, J. L. Gibson, (editors). Moss. Eff. Ref. Data J. 8, Asheville, NC: Mossbauer Effect Data Center, U. of NC, (1985).

Mossbauer Effect Reference and Data Journal—John G. Stevens, Virginia E. Stevens, Mary Alice Goforth, Janet L. Gibson, Pamela C. Newman, (editors). Moss. Eff. Ref. Data J. 9, Ashville, NC: Mossbauer Effect Data Center, U. of NC, (1986).

Biweekly List of Papers on Radiation Chemistry and Photochemistry Vol. 18. 1985—Rad. Chem. 18, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 35 p. (1985). \$30.00; the Biweekly List, Vol. 17 (1984) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radiation Chemistry and Photochemistry, Annual Cumulation with Keyword and Author Indexes, Vol. 18. 1985—Rad. Chem. 18, Notre Dame, IN: U. of Notre Dame, 490 p. (1985). \$30.00; the Biweekly List, Vol. 18 (1985) plus the Annual Cu-

mulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radiation Chemistry and Photochemistry Vol 19, 1986—Rad. Chem. 19, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 35 p. (1986). \$30.00; the Biweekly List, Vol. 18 (1985) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radation Chemistry and Photochemistry, Annual Cumulation with Keyword and Author Indexes, Vol. 19, 1986—Rad. Chem. 19, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 490 p. (1986). \$30.00; the Biweekly List, Vol. 19 (1986) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Bulletin of Chemical Thermodynamics, Vol. 26, 1983—Robert D. Freeman (editor). Bull. Chem. Thermody. 26, Stillwater, OK: Thermochemistry, Department of Chemistry, Oklahoma State University, (1985).

Alberty, Robert A.

Standard Chemical Thermodynamic Properties of Alkylbenzene Isomer Groups—Robert A. Alberty. J. Phys. Chem. Ref. Data 14, 177 (1985).

Standard Chemical Thermodynamic Properties of Alkene Isomer Groups—Robert A. Alberty and Catherine A. Gehrig. J. Phys. Chem. Ref. Data 14, 803 (1985).

Standard Chemical Thermodynamic Properties of Alkylnaphthalene Isomer Groups—Robert A. Alberty and Theodore M. Bloomstein. J. Phys. Chem. Ref. Data 14, 821 (1985).

Standard Chemical Thermodynamic Properties of Alkylcyclopentane Isomer Groups, Alkylcyclohexane Isomer Groups, and Combined Isomer Groups—Robert A. Alberty and Young S. Ha. J. Phys. Chem. Ref. Data 14, 1107 (1985).

Standard Chemical Thermodynamic Properties of Alkyne Isomer Groups—Robert A. Alberty and Ellen Burmeuko. J. Phys. Chem. Ref. Data 15, 1339 (1986).

Arudi, Ravindra L.

Reactivity of HO₂/O₂ Radicals in Aqueous Solution—Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross. J. Phys. Chem. Ref. Data 14, 1041 (1985).

Assael, M. J.

The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density—M. J. Assael, S. Mixafendi, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1315 (1986).

Avedislan, C. T.

The Homogeneous Nucleation Limits of Liquids—C. T. Avedisian. J. Phys. Chem. Ref. Data 14, 695 (1985).

Baulch, D. L.

Evaluated Kinetic Data for High-Temperature Reactions. Volume 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes—D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman. J. Phys. Chem. Ref. Data 15, 465 (1986).

Bleiski, Benon H. J.

Reactivity of HO₂/O₂ Radicals in Aqueous Solution—Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross. J. Phys. Chem. Ref. Data 14, 1041 (1985).

Bloomstein, Theodore M.

Standard Chemical Thermodynamic Properties of Alkylnaphthalene Isomer Groups—Robert A. Alberty and Theodore M. Bloomstein. J. Phys. Chem. Ref. Data 14, 821 (1985).

Bowers, M.

Evaluated Kinetic Data for High-Temperature Reactions. Volume 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes – D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman. J. Phys. Chem. Ref. Data 15, 465 (1986).

Burmenko, Ellen

Standard Chemical Thermodynamic Properties of Alkyne Isomer Groups—Robert A. Alberty and Ellen Burmenko. J. Phys. Chem. Ref. Data 15, 1339 (1986).

Cabelli, Diane E.

Reactivity of HO₂/O₂ Radicals in Aqueous Solution—Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross. J. Phys. Chem. Ref. Data 14, 1041 (1985).

Carmichael, lan

Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases—Ian Carmichael and Gordon L. Hug. J. Phys. Chem. Ref. Data 15, 1 (1986).

Castleman, A. W., Jr.

Thermochemical Data on Gas-Phase Ion-Molecule Association and Clustering Reactions – R. G. Keesee and A. W. Castleman, Jr. J. Phys. Chem. Ref. Data 15, 1011 (1986).

Chao, Jing

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 1. Properties of Condensed Phases – Randolph C. Wilhoit, Jing Chao, and Kenneth R. Hall. J. Phys. Chem. Ref. Data 14, 1 (1985).

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 2. Ideal Gas Properties—Jing Chao, Kenneth R. Hall, Kenneth N. Marsh, and Randolph C. Wilhoit. J. Phys. Chem. Ref. Data 15, 1369 (1986).

Chase, M. W., Jr.

JANAF Thermochemical Tables, Third Edition – M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Clarke, E. Colin W.

Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C-E. Colin W. Clarke and David N. Glew. J. Phys. Chem. Ref. Data 14, 489 (1985).

Clever, H. Lawrence

The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions—H. Lawrence Clever, Susan A Johnson, and M. Elizabeth Derrick. J. Phys. Chem. Ref. Data 14, 631 (1985).

Cole, Wendy A.

The Viscosity of Nitrogen, Oxygen, and Their Binary Mixtures in the Limit of Zero Density—Wendy A. Cole and William A. Wakeham. J. Phys. Chem. Ref. Data 14, 209 (1985).

Coriiss, Charles

Atomic Energy Levels of the Iron Period Elements: Potassium through Nickel—Jack Sugar and Charles Corliss. J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Crosswhite, H. M.

The Electronic Spectrum and Energy Levels of the Deuterium Molecule—Robert S. Freund, James A. Schiavone, and H. M. Crosswhite. J. Phys. Chem. Ref. Data 14, 235 (1985).

Dalton, Geraldine R.

Standard Reference Data Publications 1964–1984 – Joan C. Sauerwein and Geraldine R. Dalton. NBS Spec. Publ. 708, 138p. (1985).

Davles, C. A.

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Derrick, M. Elizabeth

The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions—H. Lawrence Clever, Susan A. Johnson, and M. Elizabeth Derrick. J. Phys. Chem. Ref. Data 14, 631 (1985).

Desal, P. D.

Thermodynamic Properties of Iron and Silicon-P. D. Desai. J. Phys. Chem. Ref. Data 15, 967 (1986).

Dorofeeva, O. V.

Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons-O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish. J. Phys. Chem. Ref. Data 15, 437 (1986).

Downey, J. R., Jr.

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Eaton, B. E.

Erratum: A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethylene-P. M. Holland, B. E. Eaton, and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 931 (1986).

Freund, Robert S.

The Electronic Spectrum and Energy Levels of the Deuterium Molecule—Robert S. Freund, James A. Schiavone, and H. M. Crosswhite. J. Phys. Chem. Ref. Data 14, 235 (1985).

Frurip, D. J.

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Gallagher, J. W.

Charge Transfer of Hydrogen Ions and Atoms in Metal Vapors – T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher. J. Phys. Chem. Ref. Data 14, 971 (1985).

Gehrlg, Catherine A.

Standard Chemical Thermodynamic Properties of Alkene Isomer Groups—Robert A. Alberty and Catherine A. Gehrig. J. Phys. Chem. Ref. Data 14, 803 (1985).

Glew, David N.

Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C—E. Colin W. Clarke and David N. Glew. J. Phys. Chem. Ref. Data 14, 489 (1985).

Goldberg, R. N.

GAMPHI-A Database of Activity and Osmotic Coefficients for Aqueous Electrolyte Solutions – R. N. Goldberg, J. L. Manley, and R. L. Nuttall NBS Tech. Note 1206, 23p. (1985).

Goodwin, Robert D.

Carbon Monoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100 MPa—Robert D. Goodwin. J. Phys. Chem. Ref. Data 14, 849 (1985).

Gordon, S.

Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides—S. Gordon, J. C. Sullivan, and Alberta B. Ross. J. Phys. Chem. Ref. Data 15, 1357 (1986).

Grattidge, Walter

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., and John Rumble, Jr. NBS Spec. Publ. 726, 118p. (1986).

Griguli, U.

Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density—I. Thormählen, J. Straub, and U. Grigull. J. Phys. Chem. Ref. Data 14, 933 (1985).

Gurvich, L. V.

Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons -O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish. J. Phys. Chem. Ref. Data 15, 437 (1986).

Ha, Young S.

Standard Chemical Thermodynamic Properties of Alkylcyclopentane Isomer Groups, Alkylcyclohexane Isomer Groups, and Combined Isomer Groups—Robert A. Alberty and Young S. Ha. J. Phys. Chem. Ref. Data 14, 1107 (1985).

Hall, Kenneth R.

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 1. Properties of Condensed Phases—Randolph C. Wilhoit, Jing Chao, and Kenneth R. Hall. J. Phys. Chem. Ref. Data 14, 1 (1985).

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 2. Ideal Gas Properties—Jing Chao, Kenneth R. Hall, Kenneth N. Marsh, and Randolph C. Wilhoit. J. Phys. Chem. Ref. Data 15, 1369 (1986).

Hampson, R. F.

Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds—W. Tsang and R. F. Hampson. J. Phys. Chem. Ref. Data 15, 1087 (1986).

Hanley, H. J. M.

Erratum: A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethylene-P. M. Holland, B. E. Eaton, and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 931 (1986).

The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon—B. A. Younglove and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 1323 (1986).

Hayashi, M.

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules—Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi. J. Phys. Chem. Ref. Data 15, 985 (1986).

HIII, P. G.

Assessment of Critical Parameter Values for H_2O and D_2O-J . M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill. J. Phys. Chem. Ref. Data 14, 193 (1985).

Hiza, M. J.

A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane—A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza. J. Phys. Chem. Ref. Data 14, 681 (1985).

Holland, P. M.

Erratum: A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethylene-P. M. Holland, B. E. Eaton, and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 931 (1986).

Hotop, H.

Binding Energies in Atomic Negative Ions: II-H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985).

Hug, Gordon L.

Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases – Ian Carmichael and Gordon L. Hug. J. Phys. Chem. Ref. Data 15, 1 (1986).

ichimura, A.

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules—Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi, J. Phys. Chem. Ref. Data 15, 985 (1986).

Itikawa, Y.

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules — Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi, J. Phys. Chem. Ref. Data 15, 985 (1986).

Jacobsen, Richard T.

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa—Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data 15, 593 (1986).

Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa—Richard T. Jacobsen, Richard B. Stewart, and Majid Jahangiri. J. Phys. Chem. Ref. Data 15, 735 (1986).

Jahangiri, Majid

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa—Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data 15, 593 (1986).

Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa—Richard T. Jacobsen, Richard B. Stewart, and Majid Jahangiri. J. Phys. Chem. Ref. Data 15, 735 (1986).

Johnson, Susan A.

The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions—H. Lawrence Clever, Susan A. Johnson, and M. Elizabeth Derrick. J. Phys. Chem. Ref. Data 14, 631 (1985).

Jonas, Otakar

Chemical Thermodynamics in Steam Power Cycles Data Requirements—Otakar Jonas and Howard J. White, Jr. NBSIR 85-3205, 282p. (1985).

Jorish, V. S.

Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons-O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish. J. Phys. Chem. Ref. Data 15, 437 (1986).

Kadoya, K.

Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase—K. Kadoya, N. Matsunaga, and A. Nagashima. J. Phys. Chem. Ref. Data 14, 947 (1985).

Kaufman, Victor

Forbidden Lines in ns ²np ^k Ground Configurations and nsnp Excited Configurations of Beryllium through Molybdenum Atoms and Ions—Victor Kaufman and Jack Sugar. J. Phys. Chem. Ref. Data 15, 321 (1986).

Keesee, R. G.

Thermochemical Data on Gas-Phase Ion-Molecule Association and Clustering Reactions—R. G. Keesee and A. W. Castleman, Jr. J. Phys. Chem. Ref. Data 15, 1011 (1986).

Kestin, J.

New International Formulations for the Thermodynamic Properties of Light and Heavy Water-J. Kestin and J. V. Sengers. J. Phys. Chem. Ref. Data 15, 305 (1986).

Kidnay, A. J.

A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane—A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza. J. Phys. Chem. Ref. Data 14, 681 (1985).

Kirby, S. P.

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl₄(g), TiCl₄(l), TiCl₅(cr), and TiCl₂(cr) – S. P. Kirby, E. M. Marshall, and J. B. Pedley. J. Phys. Chem. Ref. Data 15, 943 (1986).

Laesecke, A.

The Thermal Conductivity of Fluid Air-K. Stephan and A. Laesecke. J. Phys. Chem. Ref. Data 14, 227 (1985).

LI, S. F. Y.

Standard Reference Data for the Thermal Conductivity of Liquids—C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1073 (1986).

Lineberger, W. C.

Binding Energies in Atomic Negative Ions: II-H. Hotop and W. C. Lineberger. J. Phys. Chem. Ref. Data 14, 731 (1985).

Lovas, F. J.

Microwave Spectra of Molecules of Astrophysical Interest. XXII. Sulfur Dioxide (SO₂)-F. J. Lovas. J. Phys. Chem. Ref. Data 14, 395 (1985).

Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions - 1985 Revision - F. J. Lovas. J. Phys. Chem. Ref. Data 15, 251 (1986).

Mackay, Donald

A Critical Review of Aqueous Solubilities, Vapor Pressures, Henry's Law Constants, and Octanol-Water Partition Coefficients of the Polychlorinated Biphenyls—Wan Ying Shiu and Donald Mackay. J. Phys. Chem. Ref. Data 15, 911 (1986).

Malcolm, D. G.

Evaluated Kinetic Data for High-Temperature Reactions. Volume 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes—D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman. J. Phys. Chem. Ref. Data 15, 465 (1986).

Manley, J. L.

GAMPHI-A Database of Activity and Osmotic Coefficients for Aqueous Electrolyte Solutions – R. N. Goldberg, J. L. Manley, and R. L. Nuttall. NBS Tech. Note 1206, 23p. (1985).

Marsh, Kenneth N.

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 2. Ideal Gas Properties—Jing Chao, Kenneth R. Hall, Kenneth N. Marsh, and Randolph C. Wilhoit. J. Phys. Chem. Ref. Data 15, 1369 (1986).

Marshall, E. M.

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl₄(g), TiCl₄(l), TiCl₃(cr), and TiCl₂(cr) – S. P. Kirby, E. M. Marshall, and J. B. Pedley. J. Phys. Chem. Ref. Data 15, 943 (1986).

Martin, W. C.

Energy Levels of Phosphorous, P I through P xv-W. C. Martin, Romuald Zalubas, and Arlene Musgrove. J. Phys. Chem. Ref. Data 14, 751 (1985).

Matsunaga, N.

Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase – K. Kadoya, N. Matsunaga, and A. Nagashima. J. Phys. Chem. Ref. Data 14, 947 (1985).

McCarthy, John

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., and John Rumble, Jr. NBS Spec. Publ. 726, 118p. (1986).

McCarty, Robert D.

Interactive FORTRAN Programs for Micro Computers to Calculate the Thermophysical Properties of Twelve Fluids (MIPROPS)—Robert D. McCarty. NBS Tech. Note 1097, 84p. (1986).

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa—Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data 15, 593 (1986).

McDonald, R. A.

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Miller, R. C.

A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane—A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza. J. Phys. Chem. Ref. Data 14, 681 (1985).

Mixafendi, S.

The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density—M. J. Assael, S. Mixafendi, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1315 (1986).

Moore, C. E.

Selected Tables of Atomic Spectra: A. Atomic Energy Levels - Second Edition; B. Multiplet Tables; O III – C. E. Moore. NSRDS-NBS 3, 33p. (1985).

Morgan, T. J.

Charge Transfer of Hydrogen Yons and Atoms in Metal Vapors – T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher, J. Phys. Chem. Ref. Data 14, 971 (1985).

Musgrove, Arlene

Energy Levels of Phosphorous, P I through P XV-W. C. Martin, Romuald Zalubas, and Arlene Musgrove. J. Phys. Chem. Ref. Data 14, 751 (1985).

Nagashima, A.

Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase – K. Kadoya, N. Matsunaga, and A. Nagashima. J. Phys. Chem. Ref. Data 14, 947 (1985).

Standard Reference Data for the Thermal Conductivity of Liquids—C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1073 (1986).

Nakamura, M.

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules—Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi. J. Phys. Chem. Ref. Data 15, 985 (1986).

Nieto de Castro, C. A.

Standard Reference Data for the Thermal Conductivity of Liquids – C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1073 (1986).

Nishimura, H.

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules—Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi. J. Phys. Chem. Ref. Data 15, 985 (1986).

Northrup, Clyde, Jr.

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., and John Rumble, Jr. NBS Spec. Publ. 726, 118p. (1986).

Nuttall, R. L.

GAMPHI-A Database of Activity and Osmotic Coefficients for Aqueous Electrolyte Solutions – R. N. Goldberg, J. L. Manley, and R. L. Nuttall. NBS Tech. Note 1206, 23p. (1985).

Olson, R. E.

Charge Transfer of Hydrogen Ions and Atoms in Metal Vapors – T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher. J. Phys. Chem. Ref. Data 14, 971 (1985).

Onda, K.

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules — Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi. J. Phys. Chem. Ref. Data 15, 985 (1986).

Pedley, J. B.

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl₄(g), TiCl₄(l), TiCl₃(cr), and TiCl₂(cr) – S. P. Kirby, E. M. Marshall, and J. B. Pedley. J. Phys. Chem. Ref. Data 15, 943 (1986).

Ross, Alberta B.

Reactivity of HO₂/O₂ Radicals in Aqueous Solution—Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross. J. Phys. Chem. Ref. Data 14, 1041 (1985).

Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides – S. Gordon, J. C. Sullivan, and Alberta B. Ross. J. Phys. Chem. Ref. Data 15, 1357 (1986).

Rumble, John, Jr.

Computerizing Materials Data-A Workshop for the Nuclear Power Industry – John Rumble, Jr. and Jack H. Westbrook. NBS Spec. Publ. 689, 37p. (1985).

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., and John Rumble, Jr. NBS Spec. Publ. 726, 118p. (1986).

Saklmoto, K.

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules—Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi. J. Phys. Chem. Ref. Data 15, 985 (1986).

Sauerwein, Joan C.

Standard Reference Data Publications 1964–1984 – Joan C. Sauerwein and Geraldine R. Dalton. NBS Spec. Publ. 708, 138p. (1985).

Schlavone, James A.

The Electronic Spectrum and Energy Levels of the Deuterium Molecule—Robert S. Freund, James A. Schiavone, and H. M. Crosswhite. J. Phys. Chem. Ref. Data 14, 235 (1985).

Schlachter, A. S.

Charge Transfer of Hydrogen Ions and Atoms in Metal Vapors – T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher. J. Phys. Chem. Ref. Data 14, 971 (1985).

Schwalbe, L. A.

Recent Progress in Deuterium Triple-Point Measurements – L. A. Schwalbe. J. Phys. Chem. Ref. Data 15, 1351 (1986).

Seldenman, N. L.

PIPE/1000: An Implementation of Piping on an HP-1000 Minicomputer—N. L. Seidenman. NBS Tech. Note 1208, 48p. (1985).

Sengers, J. M. H. Levelt

Assessment of Critical Parameter Values for H_2O and D_2O-J . M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill. J. Phys. Chem. Ref. Data 14, 193 (1985).

Sengers, J. V.

Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance—J. V. Sengers and J. T. R. Watson. J. Phys. Chem. Ref. Data 15, 1291 (1986).

New International Formulations for the Thermodynamic Properties of Light and Heavy Water—J. Kestin and J. V. Sengers. J. Phys. Chem. Ref. Data 15, 305 (1986).

Shlu, Wan Ying

A Critical Review of Aqueous Solubilities, Vapor Pressures, Henry's Law Constants, and Octanol-Water Partition Coefficients of the Polychlorinated Biphenyls—Wan Ying Shiu and Donald Mackay. J. Phys. Chem. Ref. Data 15, 911 (1986).

Sloan, E. D.

A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane—A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza. J. Phys. Chem. Ref. Data 14, 681 (1985).

Stephan, K.

The Thermal Conductivity of Fluid Air-K. Stephan and A. Laesecke, J. Phys. Chem. Ref. Data 14, 227 (1985).

Stewart, Richard B.

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa—Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data 15, 593 (1986).

Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa-Richard T. Jacobsen, Richard B. Stewart, and Majid Jahangiri. J. Phys. Chem. Ref. Data 15, 735 (1986).

Straub, J.

Assessment of Critical Parameter Values for H_2O and D_2O-J . M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill. J. Phys. Chem. Ref. Data 14, 193 (1985).

Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density—I. Thormählen, J. Straub, and U. Grigull. J. Phys. Chem. Ref. Data 14, 933 (1985).

Sugar, Jack

Atomic Energy Levels of the Iron Period Elements: Potassium through Nickel-Jack Sugar and Charles Corliss. J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Forbidden Lines in ns^2np^k Ground Configurations and nsnp Excited Configurations of Beryllium through Molybdenum Atoms and Ions—Victor Kaufman and Jack Sugar. J. Phys. Chem. Ref. Data 15, 321 (1986).

Sullivan, J. C.

Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides—S. Gordon, J. C. Sullivan, and Alberta B. Ross. J. Phys. Chem. Ref. Data 15, 1357 (1986).

Syverud, A. N.

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Takayanagi, K.

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules – Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi, J. Phys. Chem. Ref. Data 15, 985 (1986).

Takayanagi, T.

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules – Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi, J. Phys. Chem. Ref. Data 15, 985 (1986).

Thormählen, I.

Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density—I. Thormählen, J. Straub, and U. Grigull. J. Phys. Chem. Ref. Data 14, 933 (1985).

Trengove, R. D.

Standard Reference Data for the Thermal Conductivity of Liquids—C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1073 (1986).

Tsang, W.

Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds—W. Tsang and R. F. Hampson. J. Phys. Chem. Ref. Data 15, 1087 (1986).

Tuckerman, R. T.

Evaluated Kinetic Data for High-Temperature Reactions. Volume 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes-D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman. J. Phys. Chem. Ref. Data 15, 465 (1986).

Wagner, Herman L.

The Mark-Houwink-Sakurada Equation for the Viscosity of Linear Polyethylene—Herman L. Wagner. J. Phys. Chem. Ref. Data 14, 611 (1985).

The Mark-Houwink-Sakurada Equation for the Viscosity of Atactic Polystyrene—Herman L. Wagner. J. Phys. Chem. Ref. Data 14, 1101 (1985).

Wakeham, William A.

The Viscosity of Nitrogen, Oxygen, and Their Binary Mixtures in the Limit of Zero Density—Wendy A. Cole and William A. Wakeham. J. Phys. Chem. Ref. Data 14, 209 (1985).

Standard Reference Data for the Thermal Conductivity of Liquids—C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1073 (1986).

The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density-M. J. Assael, S. Mixafendi, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1315 (1986).

Watanabe, K.

Assessment of Critical Parameter Values for H₂O and D₂O-J. M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill. J. Phys. Chem. Ref. Data 14, 193 (1985).

Watson, J. T. R.

Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance-J. V. Sengers and J. T. R. Watson, J. Phys. Chem. Ref. Data 15, 1291 (1986).

Westbrook, Jack H.

Computerizing Materiais Data-A Workshop for the Nuclear Power Industry—John Rumble, Jr. and Jack H. Westbrook. NBS Spec. Publ. 689, 37p. (1985).

Standards and Metadata Requirements for Computerization of Selected Mechanical Properties of Metallic Materials—Jack H. Westbrook. NBS Spec. Publ. 702, 39p. (1985).

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., and John Rumble, Jr. NBS Spec. Publ. 726, 118p. (1986).

White, Howard J., Jr.

Chemical Thermodynamics in Steam Power Cycles Data Requirements – Otakar Jonas and Howard J. White, Jr. NBSIR 85–3205, 282p. (1985).

Wilholt, Randolph C.

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 1. Properties of Condensed Phases—Randolph C. Wilhoit, Jing Chao, and Kenneth R. Hall. J. Phys. Chem. Ref. Data 14, 1 (1985).

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 2. Ideal Gas Properties—Jing Chao, Kenneth R. Hall, Kenneth N. Marsh, and Randolph C. Wilhoit. J. Phys. Chem. Ref. Data 15, 1369 (1986).

Younglove, B. A.

Erratum: Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen—B. A. Younglove. J. Phys. Chem. Ref. Data 14, 619 (1985).

The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon – B. A. Younglove and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 1323 (1986).

Zalubas, Romuald

Energy Levels of Phosphorous, P I through P xv-W. C. Martin, Romuald Zalubas, and Arlene Musgrove. J. Phys. Chem. Ref. Data 14, 751 (1985).

Actinide elements

Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides—S. Gordon, J. C. Sullivan, and Alberta B. Ross. J. Phys. Chem. Ref. Data 15, 1357 (1986).

Alkall halldes

Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C-E. Colin W. Clarke and David N. Glew. J. Phys. Chem. Ref. Data 14, 489 (1985).

Alkali metals

Charge Transfer of Hydrogen Ions and Atoms in Metal Vapors – T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher. J. Phys. Chem. Ref. Data 14, 971 (1985).

Alkaline earth metals

Charge Transfer of Hydrogen Ions and Atoms in Metal Vapors – T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher. J. Phys. Chem. Ref. Data 14, 971 (1985).

Aqueous solutions

Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C-E. Colin W. Clarke and David N. Glew. J. Phys. Chem. Ref. Data 14, 489 (1985).

Reactivity of HO₂/O₂ Radicals in Aqueous Solution—Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross. J. Phys. Chem. Ref. Data 14, 1041 (1985).

Atmospheric gases

Carbon Monoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100 MPa—Robert D. Goodwin, J. Phys. Chem. Ref. Data 14, 849 (1985).

Erratum: Thermophysical properties of fluids.I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen—B. A. Younglove. J. Phys. Chem. Ref. Data 14, 619 (1985).

The Thermal Conductivity of Fluid Air-K. Stephan and A. Laesecke. J. Phys. Chem. Ref. Data 14, 227 (1985).

The Viscosity of Nitrogen, Oxygen, and Their Binary Mixtures in the Limit of Zero Density – Wendy A. Cole and William A. Wakeham. J. Phys. Chem. Ref. Data 14, 209 (1985).

Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase—K. Kadoya, N. Matsunaga, and A. Nagashima. J. Phys. Chem. Ref. Data 14, 947 (1985).

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules—Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi, J. Phys. Chem. Ref. Data 15, 985 (1986).

Interactive FORTRAN Programs for Micro Computers to Calculate the Thermophysical Properties of Twelve Fluids (MIPROPS)—Robert D. McCarty. NBS Tech. Note 1097, 84p. (1986).

Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa—Richard T. Jacobsen, Richard B. Stewart, and Majid Jahangiri. J. Phys. Chem. Ref. Data 15, 735 (1986).

Ceramics

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., and John Rumble, Jr. NBS Spec. Publ. 726, 118p. (1986).

Diatomic molecules

The Electronic Spectrum and Energy Levels of the Deuterium Molecule—Robert S. Freund, James A. Schiavone, and H. M. Crosswhite, J. Phys. Chem. Ref. Data 14, 235 (1985).

Elements

Atomic Energy Levels of the Iron Period Elements: Potassium through Nickel-Jack Sugar and Charles Corliss. J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Forbidden Lines in ns^2np^k Ground Configurations and nsnp Excited Configurations of Beryllium through Molybdenum Atoms and Ions—Victor Kaufman and Jack Sugar. J. Phys. Chem. Ref. Data 15, 321 (1986).

Free radicals

Reactivity of HO₂/O₂ Radicals in Aqueous Solution—Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross. J. Phys. Chem. Ref. Data 14, 1041 (1985).

Evaluated Kinetic Data for High-Temperature Reactions. Volume 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes – D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman. J. Phys. Chem. Ref. Data 15, 465 (1986).

Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides—S. Gordon, J. C. Sullivan, and Alberta B. Ross. J. Phys. Chem. Ref. Data 15, 1357 (1986).

Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases—Ian Carmichael and Gordon L. Hug. J. Phys. Chem. Ref. Data 15, 1 (1986).

Halogenated hydrocarbons

A Critical Review of Aqueous Solubilities, Vapor Pressures, Henry's Law Constants, and Octanol-Water Partition Coefficients of the Polychlorinated Biphenyls—Wan Ying Shiu and Donald Mackay. J. Phys. Chem. Ref. Data 15, 911 (1986).

Hydrocarbons

A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane—A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza. J. Phys. Chem. Ref. Data 14, 681 (1985).

Standard Chemical Thermodynamic Properties of Alkylbenzene Isomer Groups—Robert A. Alberty, J. Phys. Chem. Ref. Data 14, 177 (1985).

Standard Chemical Thermodynamic Properties of Alkene Isomer Groups—Robert A. Alberty and Catherine A. Gehrig. J. Phys. Chem. Ref. Data 14, 803 (1985).

Standard Chemical Thermodynamic Properties of Alkylnaphthalene Isomer Groups—Robert A. Alberty and Theodore M. Bloomstein. J. Phys. Chem. Ref. Data 14, 821 (1985).

Standard Chemical Thermodynamic Properties of Alkylcyclopentane Isomer Groups, Alkylcyclohexane Isomer Groups, and Combined Isomer Groups—Robert A. Alberty and Young S. Ha. J. Phys. Chem. Ref. Data 14, 1107 (1985).

Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds—W. Tsang and R. F. Hampson. J. Phys. Chem. Ref. Data 15, 1087 (1986).

Erratum: A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethylene-P. M. Holland, B. E. Eaton, and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 931 (1986).

Evaluated Kinetic Data for High-Temperature Reactions. Volume 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes—D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman. J. Phys. Chem. Ref. Data 15, 465 (1986).

Standard Chemical Thermodynamic Properties of Alkyne Isomer Groups—Robert A. Alberty and Ellen Burmenko. J. Phys. Chem. Ref. Data 15, 1339 (1986).

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa—Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data 15, 593 (1986).

Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons – O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish. J. Phys. Chem. Ref. Data 15, 437 (1986).

Hydrogen

Recent Progress in Deuterium Triple-Point Measurements – L. A. Schwalbe. J. Phys. Chem. Ref. Data 15, 1351 (1986).

The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density—M. J. Assael, S. Mixafendi, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1315 (1986).

Inorganic materials

Biweekly List of Papers on Radiation Chemistry and Photochemistry Vol. 18. 1985—Rad. Chem. 18, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 35 p. (1985). \$30.00; the Biweekly List, Vol. 17 (1984) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radiation Chemistry and Photochemistry, Annual Cumulation with Keyword and Author Indexes, Vol. 18. 1985—Rad. Chem. 18, Notre Dame, IN: U. of Notre Dame, 490 p. (1985). \$30.00; the Biweekly List, Vol. 18 (1985) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Bulletin of Chemical Thermodynamics, Vol. 26/1983—Robert D. Freeman and International Union of Pure and Applied Chemistry. Bull. Chem. Thermody 26, Stillwater, OK: Thermochemistry, Department of Chemistry, Oklahoma State University, 584p. (1985). 0149—2268; bona fide personal subscriptions are less; prices of previous Bulletins are available upon request.

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Biweekly List of Papers on Radiation Chemistry and Photochemistry Vol 19, 1986—Rad. Chem. 19, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 35 p. (1986). \$30.00; the Biweekly List, Vol. 18 (1985) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radation Chemistry and Photochemistry, Annual Cumulation with Keyword and Author Indexes, Vol. 19, 1986—Rad. Chem. 19, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 490 p. (1986). \$30.00; the Biweekly List, Vol. 19 (1986) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Interstellar molecules

Microwave Spectra of Molecules of Astrophysical Interest. XXII. Sulfur Dioxide (SO₂)—F. J. Lovas. J. Phys. Chem. Ref. Data 14, 395 (1985).

Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions - 1985 Revision - F. J. Lovas. J. Phys. Chem. Ref. Data 15, 251 (1986).

lons

Binding Energies in Atomic Negative Ions: II-H. Hotop and W. C. Lineberger. J. Phys. Chem. Ref. Data 14, 731 (1985).

Biweekly List of Papers on Radiation Chemistry and Photochemistry Vol. 18. 1985-Rad. Chem. 18, Notre Dame, IN: Radiation

Chem. Data Center, U. of Notre Dame, 35 p. (1985). \$30.00; the Biweekly List, Vol. 17 (1984) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radiation Chemistry and Photochemistry, Annual Cumulation with Keyword and Author Indexes, Vol. 18. 1985—Rad. Chem. 18, Notre Dame, IN: U. of Notre Dame, 490 p. (1985). \$30.00; the Biweekly List, Vol. 18 (1985) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Charge Transfer of Hydrogen Ions and Atoms in Metal Vapors – T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher. J. Phys. Chem. Ref. Data 14, 971 (1985).

Reactivity of HO₂/O₂ Radicals in Aqueous Solution—Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross. J. Phys. Chem. Ref. Data 14, 1041 (1985).

Biweekly List of Papers on Radiation Chemistry and Photochemistry Vol 19, 1986—Rad. Chem. 19, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 35 p. (1986). \$30.00; the Biweekly List, Vol. 18 (1985) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radation Chemistry and Photochemistry, Annual Cumulation with Keyword and Author Indexes, Vol. 19, 1986—Rad. Chem. 19, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 490 p. (1986). \$30.00; the Biweekly List, Vol. 19 (1986) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides—S. Gordon, J. C. Sullivan, and Alberta B. Ross. J. Phys. Chem. Ref. Data 15, 1357 (1986).

Thermochemical Data on Gas-Phase Ion-Molecule Association and Clustering Reactions – R. G. Keesee and A. W. Castleman, Jr. J. Phys. Chem. Ref. Data 15, 1011 (1986).

Metals and alloys

Bulletin of Alloy Phase Diagrams—Joanne L. Murray, editor(s) and American Society for Metals. Bull. Alloy Phase Diag. 5, Metals Park, OH: American Society for Metals, (1985), ISBN: 01970216.

Bulletin of Alloy Phase Diagrams – Joanne L. Murray, editor(s) and American Society for Metals, Bull. Alloy. Phase Diag. 6, Metals Park, OH: American Society for Metals, (1985), ISBN: 01970216.

Computerizing Materials Data-A Workshop for the Nuclear Power Industry—John Rumble, Jr. and Jack H. Westbrook. NBS Spec. Publ. 689, 37p. (1985).

Standards and Metadata Requirements for Computerization of Selected Mechanical Properties of Metallic Materials—Jack H. Westbrook. NBS Spec. Publ. 702, 39p. (1985).

Binary Alloy Phase Diagrams—Thaddeus B. Massalski, editor, American Society for Metals, Metals Park, OH: 2224p. (1986).

Bulletin of Alloy Phase Diagrams—Joanne L. Murray, editor(s). Bull. Alloy Phase Diag. 7, Metals Park, OH: American Society for Metals, (1986), ISBN: 0162-9719.

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., and John Rumble, Jr. NBS Spec. Publ. 726, 118p. (1986).

Noble gases

Erratum: Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen – B. A. Younglove. J. Phys. Chem. Ref. Data 14, 619 (1985).

Interactive FORTRAN Programs for Micro Computers to Calculate the Thermophysical Properties of Twelve Fluids (MIPROPS)—Robert D. McCarty. NBS Tech. Note 1097, 84p. (1986).

The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon – B. A. Younglove and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 1323 (1986).

Organic compounds

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 1. Properties of Condensed Phases—Randolph C. Wilhoit, Jing Chao, and Kenneth R. Hall. J. Phys. Chem. Ref. Data 14, 1 (1985).

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 2. Ideal Gas Properties—Jing Chao, Kenneth R. Hall, Kenneth N. Marsh, and Randolph C. Wilhoit. J. Phys. Chem. Ref. Data 15, 1369 (1986).

Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases—Ian Carmichael and Gordon L. Hug. J. Phys. Chem. Ref. Data 15, 1 (1986).

Polymers

Computerizing Materials Data-A Workshop for the Nuclear Power Industry – John Rumble, Jr. and Jack H. Westbrook. NBS Spec. Publ. 689, 37p. (1985).

The Mark-Houwink-Sakurada Equation for the Viscosity of Linear Polyethylene – Herman L. Wagner. J. Phys. Chem. Ref. Data 14, 611 (1985).

The Mark-Houwink-Sakurada Equation for the Viscosity of Atactic Polystyrene — Herman L. Wagner. J. Phys. Chem. Ref. Data 14, 1101 (1985).

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., and John Rumble, Jr. NBS Spec. Publ. 726, 118p. (1986).

Saits

Chemical Thermodynamics in Steam Power Cycles Data Requirements – Otakar Jonas and Howard J. White, Jr. NBSIR 85-3205, 282p. (1985).

GAMPHI-A Database of Activity and Osmotic Coefficients for Aqueous Electrolyte Solutions – R. N. Goldberg, J. L. Manley, and R. L. Nuttall. NBS Tech. Note 1206, 23p. (1985).

The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions—H. Lawrence

Clever, Susan A. Johnson, and M. Elizabeth Derrick. J. Phys. Chem. Ref. Data 14, 631 (1985).

Semiconductors

Thermodynamic Properties of Iron and Silicon-P. D. Desai. J. Phys. Chem. Ref. Data 15, 967 (1986).

Transition elements

Atomic Energy Levels of the Iron Period Elements: Potassium through Nickel-Jack Sugar and Charles Corliss. J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl₄(g), TiCl₄(l), TiCl₃(cr), and TiCl₂(cr)—S. P. Kirby, E. M. Marshall, and J. B. Pedley. J. Phys. Chem. Ref. Data 15, 943 (1986).

Thermodynamic Properties of Iron and Silicon-P. D. Desai. J. Phys. Chem. Ref. Data 15, 967 (1986).

Water

Assessment of Critical Parameter Values for H_2O and D_2O-J . M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill. J. Phys. Chem. Ref. Data 14, 193 (1985).

Chemical Thermodynamics in Steam Power Cycles Data Requirements - Otakar Jones and Howard J. White, Jr. NBSIR 85-3205, 282p. (1985).

Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density—I. Thormählen, J. Straub, and U. Grigull. J. Phys. Chem. Ref. Data 14, 933 (1985).

Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance—J. V. Sengers and J. T. R. Watson. J. Phys. Chem. Ref. Data 15, 1291 (1986).

New International Formulations for the Thermodynamic Properties of Light and Heavy Water-J. Kestin and J. V. Sengers. J. Phys. Chem. Ref. Data 15, 305 (1986).

Standard Reference Data for the Thermal Conductivity of Liquids—C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1073 (1986).

Properties Index

Absorption coefficient, spectral

See: Transition probabilities for atoms and molecules

Photon cross section

Activation energies of chemical reactions

See: Rate constants of chemical reactions

Activity coefficients

Chemical Thermodynamics in Steam Power Cycles Data Requirements—Otakar Jonas and Howard J. White, Jr. NBSIR 85–3205, 282p. (1985).

Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C—E. Colin W. Clarke and David N. Glew. J. Phys. Chem. Ref. Data 14, 489 (1985).

GAMPHI-A Database of Activity and Osmotic Coefficients for Aqueous Electrolyte Solutions—R. N. Goldberg, J. L. Manley, and R. L. Nuttall, NBS Tech. Note 1206, 23p. (1985).

Atomic energy levels and spectra

Atomic Energy Levels of the Iron Period Elements: Potassium through Nickel-Jack Sugar and Charles Corliss. J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Binding Energies in Atomic Negative Ions: II-H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985).

Energy Levels of Phosphorous, P I through P XV-W. C. Martin, Romuald Zalubas, and Arlene Musgrove. J. Phys. Chem. Ref. Data 14, 751 (1985).

Selected Tables of Atomic Spectra: A. Atomic Energy Levels - Second Edition; B. Multiplet Tables; O III - C. E. Moore. NSRDS-NBS 3, 33p. (1985).

Forbidden Lines in ns ²np ^k Ground Configurations and nsnp Excited Configurations of Beryllium through Molybdenum Atoms and Ions—Victor Kaufman and Jack Sugar. J. Phys. Chem. Ref. Data 15, 321 (1986).

Band gap

See: Energy bands of solids

Band spectra

See: Electronic molecular spectra

Binding energy

See: Atomic energy levels and spectra Bond dissociation energy

Boiling point

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Bond dissociation energy (see also Thermodynamic properties)

Bulk modulus

See: Elastic constants

Cell constants

See: Lattice constants

Charge exchange cross section

Charge Transfer of Hydrogen Ions and Atoms in Metal Vapors—T. J. Morgan, R. E. Olson, A. S. Schlachter, and J. W. Gallagher. J. Phys. Chem. Ref. Data 14, 971 (1985).

Combustion, heat of

See: Thermodynamic properties

Heat of combustion

Compressibility factor

See: Equation of state

Conductance

See: Electrical conductance

Conductivity, thermal

See: Thermal conductivity

Critical temperature

Assessment of Critical Parameter Values for H₂O and D₂O-J. M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill. J. Phys. Chem. Ref. Data 14, 193 (1985).

Critical temperature, pressure (see also Equation of state)

Cross section

See: Charge exchange cross section
Electron collision cross section
Photon cross section
Rayleigh scattering cross section

Density

Carbon Monoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100 MPa—Robert D. Goodwin. J. Phys. Chem. Ref. Data 14, 849 (1985).

Erratum: Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen—B. A. Younglove. J. Phys. Chem. Ref. Data 14, 619 (1985).

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa—Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data 15, 593 (1986).

Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa-Richard T. Jacobsen, Richard B. Stewart, and Majid Jahangiri. J. Phys. Chem. Ref. Data 15, 735 (1986).

Dielectric constant (see also Electric dipole moments of molecules)

Erratum: Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen—B. A. Younglove. J. Phys. Chem. Ref. Data 14, 619 (1985).

Diffusivity

See: Thermal conductivity

Dipole moment

See: Electric dipole moment of molecules

Dissociation energy

See: Bond dissociation energy

Effective mass

See: Semiconductor properties

Electric dipole moments of molecules

Microwave Spectra of Molecules of Astrophysical Interest. XXII. Sulfur Dioxide (SO₂)-F. J. Lovas. J. Phys. Chem. Ref. Data 14, 395 (1985).

Electron affinity

Binding Energies in Atomic Negative Ions: II-H. Hotop and W. C. Lineberger. J. Phys. Chem. Ref. Data 14, 731 (1985).

Electron collision cross section

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules-Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi. J. Phys. Chem. Ref. Data 15, 985 (1986).

Electronic molecular spectra

Biweekly List of Papers on Radiation Chemistry and Photochemistry Vol. 18. 1985-Rad. Chem. 18, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 35 p. (1985). \$30.00; the Biweekly List, Vol. 17 (1984) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radiation Chemistry and Photochemistry, Annual Cumulation with Keyword and Author Indexes, Vol. 18. 1985-Rad. Chem. 18, Notre Dame, IN: U. of Notre Dame, 490 p. (1985). \$30.00; the Biweekly List, Vol. 18 (1985) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon re-

The Electronic Spectrum and Energy Levels of the Deuterium Molecule-Robert S. Freund, James A. Schiavone, and H. M. Crosswhite. J. Phys. Chem. Ref. Data 14, 235 (1985).

Biweekly List of Papers on Radiation Chemistry and Photochemistry Vol 19, 1986 - Rad. Chem. 19, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 35 p. (1986). \$30.00; the Biweekly List, Vol. 18 (1985) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radation Chemistry and Photochemistry, Annual Cumulation with Keyword and Author Indexes, Vol. 19, 1986-Rad. Chem. 19, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 490 p. (1986). \$30.00; the Biweekly List, Vol. 19 (1986) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases-Ian Carmichael and Gordon L. Hug. J. Phys. Chem. Ref. Data 15, 1 (1986).

Energy gap

See: Energy bands of solids Semiconductor properties

Energy levels

See: Atomic energy levels and spectra Molecular energy levels and constants

Energy transfer coefficients

Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases-Ian Carmichael and Gordon L. Hug. J. Phys. Chem. Ref. Data 15, 1 (1986).

Energy, blnding

See: Bond dissociation energy Electron affinity

Energy, dissociation

See: Bond dissociation energy Thermodynamic properties

Enthalpy

See: Thermodynamic properties

Enthalpy of formation

See: Heat of formation

Thermodynamic properties

Entropy

See: Thermodynamic properties

Equation of state

A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane-A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza. J. Phys. Chem. Ref. Data 14, 681 (1985).

Assessment of Critical Parameter Values for H₂O and D₂O-J. M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill. J. Phys. Chem. Ref. Data 14, 193 (1985).

Carbon Monoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100 MPa-Robert D. Goodwin. J. Phys. Chem. Ref. Data

Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C-E. Colin W. Clarke and David N. Glew. J. Phys. Chem. Ref. Data 14, 489 (1985).

New International Formulations for the Thermodynamic Properties of Light and Heavy Water-J. Kestin and J. V. Sengers. J. Phys. Chem. Ref. Data 15, 305 (1986).

Recent Progress in Deuterium Triple-Point Measurements - L. A. Schwalbe. J. Phys. Chem. Ref. Data 15, 1351 (1986).

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa – Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data 15, 593 (1986).

Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa-Richard T. Jacobsen, Richard B. Stewart, and Majid Jahangiri. J. Phys. Chem. Ref. Data 15, 735 (1986).

Equilibrium constant

Bulletin of Chemical Thermodynamics, Volume 26/1983-Robert D. Freeman and International Union of Pure and Applied Chemistry. Bull. Chem. Thermody. 26, Stillwater, OK: Thermochemistry, Department of Chemistry, Oklahoma State University, 584p. (1985). 0149-2268; bona fide personal subscriptions are less; prices of previous Bulletins are available upon request.

Standard Chemical Thermodynamic Properties of Alkylbenzene Isomer Groups-Robert A. Alberty. J. Phys. Chem. Ref. Data 14, 177 (1985).

The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions-H. Lawrence Clever, Susan A. Johnson, and M. Elizabeth Derrick. J. Phys. Chem. Ref. Data 14, 631 (1985).

Equivalent conductance

See: Electrical conductance

Excitation potential

See: Atomic energy levels and spectra

F-values

See: Transition probabilities for atoms and molecules

Formation, heat of

See: Heat of formation Thermodynamic properties

Franck-Condon factor

See: Transition probabilities for atoms and molecules

Free energy

See: Thermodynamic properties

Frequencies, vibrational

See: Vibrational frequencies of molecules

G-Factor

See: Magnetic moments of molecules

Gaseous diffusion coefficient

See: Diffusion coefficient

Gibbs energy

See: Thermodynamic properties

Heat capacity (see also Thermodynamic properties)

Bulletin of Chemical Thermodynamics, Volume 26/1983—Robert D. Freeman and International Union of Pure and Applied Chemistry. Bull. Chem. Thermody. 26, Stillwater, OK: Thermochemistry, Department of Chemistry, Oklahoma State University, 584p. (1985). 0149—2268; bona fide personal subscriptions are less; prices of previous Bulletins are available upon request.

Erratum: Thermophysical properties of fluids.I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen—B. A. Younglove. J. Phys. Chem. Ref. Data 14, 619 (1985).

Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C-E. Colin W. Clarke and David N. Glew. J. Phys. Chem. Ref. Data 14, 489 (1985).

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 1. Properties of Condensed Phases—Randolph C. Wilhoit, Jing Chao, and Kenneth R. Hall. J. Phys. Chem. Ref. Data 14, 1 (1985).

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa—Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data 15, 593 (1986).

Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa-Richard T. Jacobsen, Richard B. Stewart, and Majid Jahangiri. J. Phys. Chem. Ref. Data 15, 735 (1986).

Heat of formation (see also Thermodynamic properties)

Heat of mixing

A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane—A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza. J. Phys. Chem. Ref. Data 14, 681 (1985).

Henry's law constant

See: Solubility

Index of refraction

See: Refractive index

Infrared spectra

See: Vibrational spectra (infrared, Raman)

intensities, spectral

See: Transition probabilities for atoms and molecules

Interatomic distances

See: Molecular structure

Ionization potentials (see also Atomic energy levels and spectra)

Atomic Energy Levels of the Iron Period Elements: Potassium through Nickel—Jack Sugar and Charles Corliss. J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

Energy Levels of Phosphorous, P I through P xv-W. C. Martin, Romuald Zalubas, and Arlene Musgrove. J. Phys. Chem. Ref. Data 14, 751 (1985).

Kinetic rate constants

See: Rate constants of chemical reactions

Lifetimes

See: Transition probabilities for atoms and molecules

Line strengths

See: Transition probabilities for atoms and molecules

Line widths

See: Spectral line widths

Loss tangent

See: Dielectric constant

Mechanical properties

Computerizing Materials Data-A Workshop for the Nuclear Power Industry – John Rumble, Jr. and Jack H. Westbrook. NBS Spec. Publ. 689, 37p. (1985).

Standards and Metadata Requirements for Computerization of Selected Mechanical Properties of Metallic Materials—Jack H. Westbrook. NBS Spec. Publ. 702, 39p. (1985).

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., and John Rumble, Jr. NBS Spec. Publ. 726, 118p. (1986).

Melting point

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Recent Progress in Deuterium Triple-Point Measurements – L. A. Schwalbe. J. Phys. Chem. Ref. Data 15, 1351 (1986).

Microwave spectra

See: Rotational spectra

Mobility of electrons and holes

See: Electron swarm parameters

Molecular energy levels and constants

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Microwave Spectra of Molecules of Astrophysical Interest. XXII. Sulfur Dioxide (SO₂)-F. J. Lovas. J. Phys. Chem. Ref. Data 14, 395 (1985).

The Electronic Spectrum and Energy Levels of the Deuterium Molecule—Robert S. Freund, James A. Schiavone, and H. M. Crosswhite. J. Phys. Chem. Ref. Data 14, 235 (1985).

Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons – O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish. J. Phys. Chem. Ref. Data 15, 437 (1986).

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 2. Ideal Gas Properties—Jing Chao, Kenneth R. Hall, Kenneth N. Marsh, and Randolph C. Wilhoit. J. Phys. Chem. Ref. Data 15, 1369 (1986).

Molecular spectra

See: Rotational spectra

Vibrational spectra (infrared, Raman)

Molecular structure

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C₁ to C₄. Part 2. Ideal Gas Properties—Jing Chao, Kenneth R. Hall, Kenneth N. Marsh, and Randolph C. Wilhoit. J. Phys. Chem. Ref. Data 15, 1369 (1986).

Mossbauer effect

Mossbauer Effect Reference and Data Journal—John G. Stevens, Virginia E. Stevens, Richard M. White, Janet L. Gibson, editor(s). Moss. Eff. Ref. Data J. 8, Ashville, NC: Mossbauer Effect Data Center, U. of N. C., 221 (1985).

Mossbauer Effect Reference and Data Journal—John G. Stevens, Virginia E. Stevens, Mary Alice Goforth, Janet L. Gibson, Pamela C. Newman, editor(s). Moss. Eff. Ref. Data J. 9, Ashville, NC: Mossbauer Effect Data Center, U. of N.C., 230 (1986).

Nucleation rate

The Homogeneous Nucleation Limits of Liquids – C. T. Avedisian. J. Phys. Chem. Ref. Data 14, 695 (1985).

Optical spectra

See: Electronic molecular spectra

Oscillator strengths

See: Transition probabilities for atoms and molecules

Osmotic coefficients

Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C-E. Colin W. Clarke and David N. Glew. J. Phys. Chem. Ref. Data 14, 489 (1985).

GAMPHI-A Database of Activity and Osmotic Coefficients for Aqueous Electrolyte Solutions – R. N. Goldberg, J. L. Manley, and R. L. Nuttall. NBS Tech. Note 1206, 23p. (1985).

PVT surface

See: Equation of state

Phase dlagrams

Bulletin of Alloy Phase Diagrams—Joanne L. Murray, editor(s) and American Society for Metals. Bull. Alloy Phase Diag. 5, Metals Park, OH: American Society for Metals, (1985), ISBN: 01970216.

Bulletin of Alloy Phase Diagrams – Joanne L. Murray, editor(s) and American Society for Metals. Bull. Alloy. Phase Diag. 6, Metals Park, OH: American Society for Metals, (1985), ISBN: 01970216.

Bulletin of Alloy Phase Diagrams—Joanne L. Murray, editor(s) Bull. Alloy Phase Diag. 7, Metals Park, OH: American Society for Metals, (1986), ISBN: 0162-9719.

Binary Alloy Phase Diagrams—Thaddeus B. Massalski, editor. American Society for Metals, Metals Park, OH: 2224p. (1986).

Materials Information for Science and Technology (MIST): Project Overview Phase I and II and General Considerations—Walter Grattidge, Jack Westbrook, John McCarthy, Clyde Northrup, Jr., and John Rumble, Jr. NBS Spec. Publ. 726, 118p. (1986).

Phase transition data

A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane—A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza. J. Phys. Chem. Ref. Data 14, 681 (1985).

JANAF Thermochemical Tables, Third Edition—M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Photon cross section

Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules—Y. Itikawa, M. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, K. Takayanagi, M. Nakamura, H. Nishimura, and T. Takayanagi, J. Phys. Chem. Ref. Data 15, 985 (1986).

Pressure

Assessment of Critical Parameter Values for H_2O and D_2O-J . M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill. J. Phys. Chem. Ref. Data 14, 193 (1985).

Quadrupole moments

See: Nuclear moments

Raman spectra

See: Vibrational spectra (infrared, Raman)

Rate constants of chemical reactions

Biweekly List of Papers on Radiation Chemistry and Photochemistry Vol. 18. 1985—Rad. Chem. 18, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 35 p. (1985). \$30.00; the Biweekly List, Vol. 17 (1984) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radiation Chemistry and Photochemistry, Annual Cumulation with Keyword and Author Indexes, Vol. 18. 1985—Rad. Chem. 18, Notre Dame, IN: U. of Notre Dame, 490 p. (1985). \$30.00; the Biweekly List, Vol. 18 (1985) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Reactivity of HO₂/O₂ Radicals in Aqueous Solution—Benon H. J. Bielski, Diane E. Cabelli, Ravindra L. Arudi, and Alberta B. Ross. J. Phys. Chem. Ref. Data 14, 1041 (1985).

Biweekly List of Papers on Radiation Chemistry and Photochemistry Vol 19, 1986—Rad. Chem. 19, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 35 p. (1986). \$30.00; the Biweekly List, Vol. 18 (1985) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Biweekly List of Papers on Radation Chemistry and Photochemistry, Annual Cumulation with Keyword and Author Indexes, Vol. 19, 1986—Rad. Chem. 19, Notre Dame, IN: Radiation Chem. Data Center, U. of Notre Dame, 490 p. (1986). \$30.00; the Biweekly List, Vol. 19 (1986) plus the Annual Cumulation, \$45.00, foreign and airmail postage rates available upon request.

Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds—W. Tsang and R. F. Hampson. J. Phys. Chem. Ref. Data 15, 1087 (1986).

Evaluated Kinetic Data for High-Temperature Reactions. Volume 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes—D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman. J. Phys. Chem. Ref. Data 15, 465 (1986).

Rate Constants for Reactions of Radiation-Produced Transients in Aqueous Solutions of Actinides—S. Gordon, J. C. Sullivan, and Alberta B. Ross. J. Phys. Chem. Ref. Data 15, 1357 (1986).

Refractive index

Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density—I. Thormählen, J. Straub, and U. Grigull. J. Phys. Chem. Ref. Data 14, 933 (1985).

Resistivity

See: Electrical resistivity

Rotational constants

See: Molecular energy levels and constants

Rotational spectra

Microwave Spectra of Molecules of Astrophysical Interest. XXII. Sulfur Dioxide (SO₂)-F. J. Lovas. J. Phys. Chem. Ref. Data 14, 395 (1985).

Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions - 1985 Revision—F. J. Lovas. J. Phys. Chem. Ref. Data 15, 251 (1986).

Solubility

Chemical Thermodynamics in Steam Power Cycles Data Requirements—Otakar Jonas and Howard J. White, Jr. NBSIR 85–3205, 282p. (1985).

The Solubility of Mercury and Some Sparingly Soluble Mercury Salts in Water and Aqueous Electrolyte Solutions—H. Lawrence Clever, Susan A. Johnson, and M. Elizabeth Derrick. J. Phys. Chem. Ref. Data 14, 631 (1985).

A Critical Review of Aqueous Solubilities, Vapor Pressures, Henry's Law Constants, and Octanol-Water Partition Coefficients of the Polychlorinated Biphenyls—Wan Ying Shiu and Donald Mackay. J. Phys. Chem. Ref. Data 15, 911 (1986).

Specific conductance

See: Electrical conductance

Specific gravity

See: Density

Specific heat

See: Heat capacity

Thermodynamic properties

Spectra

See: Atomic energy levels and spectra

Rotational spectra

Vibrational spectra (infrared, Raman)

Structure, crystal

See: Crystal structure

Structure, molecular

See: Molecular structure

Thermal conductivity

Erratum: Thermophysical properties of fluids.I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen—B. A. Younglove. J. Phys. Chem. Ref. Data 14, 619 (1985).

The Thermal Conductivity of Fluid Air-K. Stephan and A. Laesecke. J. Phys. Chem. Ref. Data 14, 227 (1985).

Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase – K. Kadoya, N. Matsunaga, and A. Nagashima. J. Phys. Chem. Ref. Data 14, 947 (1985).

Erratum: A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethylene-P. M. Holland, B. E. Eaton, and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 931 (1986).

Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance—J. V. Sengers and J. T. R. Watson. J. Phys. Chem. Ref. Data 15, 1291 (1986).

Standard Reference Data for the Thermal Conductivity of Liquids—C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1073 (1986).

The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density—M. J. Assael, S. Mixafendi, and W. A. Wakeham. J. Phys. Chem. Ref. Data 15, 1315 (1986).

The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon-B. A. Younglove and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 1323 (1986).

Thermal diffusivity

See: Thermal conductivity

Thermodynamic properties

See: enthalpy, entropy, Gibbs energy, heat capacity (see also Heat of formation, and other individual properties)

A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane—A. J. Kidnay, R. C. Miller, E. D. Sloan, and M. J. Hiza. J. Phys. Chem. Ref. Data 14, 681 (1985).

Bulletin of Chemical Thermodynamics, Vol. 26/1983—Robert D. Freeman and International Union of Pure and Applied Chemistry. Bull. Chem. Thermody. 26, Stillwater, OK: Thermochemistry, Department of Chemistry, Oklahoma State University, 584p. (1985). 0149—2268; bona fide personal subscriptions are less; prices of previous Bulletins are available upon request.

Carbon Monoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100 MPa—Robert D. Goodwin, J. Phys. Chem. Ref. Data 14, 849 (1985).

Chemical Thermodynamics in Steam Power Cycles Data Requirements—Otakar Jonas and Howard J. White, Jr. NBSIR 85-3205, 282p. (1985).

Erratum: Thermophysical properties of fluids.I. Argon, ethyler., parahydrogen, nitrogen, nitrogen trifluoride, and oxygen—B. A. Younglove. J. Phys. Chem. Ref. Data 14, 619 (1985).

Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C-E. Colin W. Clarke and David N. Glew. J. Phys. Chem. Ref. Data 14, 489 (1985).

JANAF Thermochemical Tables, Third Edition – M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Standard Chemical Thermodynamic Properties of Alkylbenzene Isomer Groups—Robert A. Alberty. J. Phys. Chem. Ref. Data 14, 177 (1985).

Standard Chemical Thermodynamic Properties of Alkene Isomer Groups—Robert A. Alberty and Catherine A. Gehrig. J. Phys. Chem. Ref. Data 14, 803 (1985).

Standard Chemical Thermodynamic Properties of Alkylnaphthalene Isomer Groups—Robert A. Alberty and Theodore M. Bloomstein. J. Phys. Chem. Ref. Data 14, 821 (1985).

Standard Chemical Thermodynamic Properties of Alkylcyclopentane Isomer Groups, Alkylcyclohexane Isomer Groups, and Combined Isomer Groups—Robert A. Alberty and Young S. Ha. J. Phys. Chem. Ref. Data 14, 1107 (1985).

The Homogeneous Nucleation Limits of Liquids – C. T. Avedisian. J. Phys. Chem. Ref. Data 14, 695 (1985).

Computer Methods Applied to the Assessment of Thermochemical Data. Part I. The Establishment of a Computerized Thermochemical Data Base Illustrated by Data for TiCl4(g), TiCl4(l), TiCl3(cr), and TiCl₂(cr)-S. P. Kirby, E. M. Marshall, and J. B. Pedley. J. Phys. Chem. Ref. Data 15, 943 (1986).

Evaluated Kinetic Data for High-Temperature Reactions. Vol. 5. Part 1. Homogeneous Gas Phase Reactions of the Hydroxyl Radical with Alkanes - D. L. Baulch, M. Bowers, D. G. Malcolm, and R. T. Tuckerman. J. Phys. Chem. Ref. Data 15, 465 (1986).

New International Formulations for the Thermodynamic Properties of Light and Heavy Water-J. Kestin and J. V. Sengers. J. Phys. Chem. Ref. Data 15, 305 (1986).

Standard Chemical Thermodynamic Properties of Alkyne Isomer Groups-Robert A. Alberty and Ellen Burmenko. J. Phys. Chem. Ref. Data 15, 1339 (1986).

Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons-O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish. J. Phys. Chem. Ref. Data 15, 437 (1986).

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa - Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data

Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa-Richard T. Jacobsen, Richard B. Stewart, and Majid Jahangiri. J. Phys. Chem. Ref. Data 15, 735 (1986).

Thermodynamic Properties of Iron and Silicon-P. D. Desai. J. Phys. Chem. Ref. Data 15, 967 (1986).

Thermochemical Data on Gas-Phase Ion-Molecule Association and Clustering Reactions - R. G. Keesee and A. W. Castleman, Jr. J. Phys. Chem. Ref. Data 15, 1011 (1986).

Thermodynamic Properties of Key Organic Oxygen Compounds in the Carbon Range C1 to C4. Part 2. Ideal Gas Properties - Jing Chao, Kenneth R. Hall, Kenneth N. Marsh, and Randolph C. Wilhoit. J. Phys. Chem. Ref. Data 15, 1369 (1986).

Transition probabilities for atoms and molecules

Forbidden Lines in ns 2np & Ground Configurations and nsnp Excited Configurations of Beryllium through Molybdenum Atoms and Ions-Victor Kaufman and Jack Sugar. J. Phys. Chem. Ref. Data 15, 321 (1986).

Triplet-Triplet Absorption Spectra of Organic Molecules in Condensed Phases - Ian Carmichael and Gordon L. Hug. J. Phys. Chem. Ref. Data 15, 1 (1986).

Transport properties

See: Diffusion coefficient Thermal conductivity Viscosity

Vapor pressure (see also Equation of state)

Erratum: Thermophysical properties of fluids.I. Argon, ethylene, parahydrogen, nitrogen trifluoride, and oxygen-B. A. Younglove. J. Phys. Chem. Ref. Data 14, 619 (1985).

A Critical Review of Aqueous Solubilities, Vapor Pressures, Henry's Law Constants, and Octanol-Water Partition Coefficients of the Polychlorinated Biphenyls - Wan Ying Shiu and Donald Mackay. J. Phys. Chem. Ref. Data 15, 911 (1986).

Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa - Majid Jahangiri, Richard T. Jacobsen, Richard B. Stewart, and Robert D. McCarty. J. Phys. Chem. Ref. Data 15, 593 (1986).

Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000 MPa-Richard T. Jacobsen, Richard B. Stewart, and Majid Jahangiri. J. Phys. Chem. Ref. Data 15, 735 (1986).

Thermodynamic Properties of Iron and Silicon - P. D. Desai, J. Phys. Chem. Ref. Data 15, 967 (1986).

Vibrational frequencies of molecules (see also Molecular energy levels and constants)

JANAF Thermochemical Tables, Third Edition - M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud. J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

Thermodynamic Properties of Twenty-One Monocyclic Hydrocarbons-O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish. J. Phys. Chem. Ref. Data 15, 437 (1986).

Vibrational spectra (Infrared, Raman)

Viscosity

Erratum: Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen-B. A. Younglove. J. Phys. Chem. Ref. Data 14, 619 (1985).

The Viscosity of Nitrogen, Oxygen, and Their Binary Mixtures in the Limit of Zero Density - Wendy A. Cole and William A. Wakeham. J. Phys. Chem. Ref. Data 14, 209 (1985).

The Mark-Houwink-Sakurada Equation for the Viscosity of Linear Polyethylene - Herman L. Wagner. J. Phys. Chem. Ref. Data 14, 611

The Mark-Houwink-Sakurada Equation for the Viscosity of Atactic Polystyrene - Herman L. Wagner. J. Phys. Chem. Ref. Data 14, 1101 (1985).

Viscosity and Thermal Conductivity of Dry Air in the Gaseous Phase – K. Kadoya, N. Matsunaga, and A. Nagashima. J. Phys. Chem. Ref. Data 14, 947 (1985).

Erratum: A Correlation of the Viscosity and Thermal Conductivity Data of Gaseous and Liquid Ethylene-P. M. Holland, B. E. Eaton, and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 931 (1986).

Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance - J. V. Sengers and J. T. R. Watson. J. Phys. Chem. Ref. Data 15, 1291 (1986).

The Viscosity and Thermal Conductivity of Normal Hydrogen in the Limit of Zero Density-M. J. Assael, S. Mixafendi, and W. A. Wakeham, J. Phys. Chem. Ref. Data 15, 1315 (1986).

The Viscosity and Thermal Conductivity Coefficients of Gaseous and Liquid Argon-B. A. Younglove and H. J. M. Hanley. J. Phys. Chem. Ref. Data 15, 1323 (1986).

Wavelengths of spectral lines

See: Atomic energy levels and spectra Electronic molecular spectra Rotational spectra Vibrational spectra (infrared, Raman)

Young's modulus

See: Elastic constants

The National Standard Reference Data System publications are available from a variety of sources, including the American Chemical Society (ACS); the American Institute of Physics (AIP); the Superintendent of Documents, U.S. Government Printing Office (GPO); the National Technical Information Service (NTIS); and the Office of Standard Reference Data (OSRD), as well as private publishers and other societies. Ordering information for all publications is included in the Price List chapter. It provides the following information for each publication: the publication number; number of pages; date of publication; hard copy price and order number; and microfiche copy order as appropriate. Microfiche copies of many U.S. Government documents are availiable from NTIS for \$6.50. The source codes used in the price list are explained below.

SOURCE ORDERING INSTRUCTIONS CODE

ACS American Chemical Society
Distribution Office
Room 210
1155 Sixteenth Street, N.W.
Washington, DC 20036

Telephone: (202)872-4539 Mr. Leon Viloria

Payment must accompany the order. Charge acounts acceptable include MasterCard, VISA, BarclayCard, and Access. Include the full account number, the Interbank number (MasterCard and Access only), card expiration date, and signature. Checks must be made payable to the American Chemical Society. Bulk rates: subtract 20 percent from the listed price for orders of 50 or more copies of any one item of the same title. No book dealer discount other than the bulk rate.

AIP American Institute of Physics
Department S/F
500 Sunnyside Blvd.
Woodbury, NY 11797

Telephone: (212)661-9409

Write for price quotes and further information on the availability of the journal on microfilm.

GPO Superintendent of Documents
U.S. Government Printing Office
Washington, DC 20402

Telephone: (202)783-3238

Payment must accompany the order. Make money order or check payable to the Superintendent of Documents. Foreign remittances should be made either by international money order or draft on an American bank. Postage stamps will not be accepted. No charge is made for postage on documents sent to points in the United States and its possessions. In computing foreign postage, the charge for surface mail is approximately one-fourth of the current selling price of the publication.

JILA Joint Institute for Laboratory Astrophysics Information Center University of Colorado Box 440 Boulder, CO 80309

Most items are free from the Information Center.

NTIS National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Telex: 89-9405 Telephone:

Ordering Desk: (703)487–4650 Rush Handling: (703)487–4700 Customer Service: (703)487–4660

Orders may be placed with NTIS by one of the following methods:

- 1. Rush handling within house turnaround time = 24 hours
- must be placed by telephone or telex
- adds \$10.00 for each mailed document
- adds \$7.50 for each document picked up locally
- must be charged to an NTIS deposit account or your American Express, VISA, or Master-Card account.
- 2. Regular service orders completed in 9 to 30 working days
- optional priority mail service available, \$3.00 extra in North America, \$4.00 extra elsewhere ship and bill service available \$7.50 used only by businesses (an individual cannot order this way). A purchase order, accounting office telephone number, and a 9 digit federal tax ID number is necessary.

Ordering Information

- 3. Online Ordering under development by commercial vendors of the NTIS Bibliographic Data Case. Contact individual vendors.
- 4. Telex 89-9405
- 5. Orders for foreign destinations NTIS has arranged that dealers be the exclusive agents in many countries. Only those orders originating in countries not served by an agent should be placed directly with NTIS. Please write to NTIS for further details.

NTIS price codes are used for items in this list. As an aid to users of the publications list, the price code schedule is given below.

Standard Price Schedule NTIS Code Schedule A Price List

Price Code	U.S. Domestic	Foreign Price				
A01 Microfi	A01 Microfriche \$ 6.50					
A02	9.95	19.90				
A03	11.95	23.90				
A04-A05	13.95	27.90				
A06-A09	18.95	37.90				
A10-A13	24.95	49.90				
A14-A17	30.95	61.90				
A18-A21	36.95	73.90				
A22-A25	42.95	85.90				
A99 Please w	rite for price quote					

OSRD Office of Standard Reference Data National Bureau of Standards Gaithersburg, MD 20899

Payment must accompany the order. Checks should be drawn on an American bank and made payable to the National Bureau of Standards.

RCDC Radiation Chemistry Data Center Radiation Laboratory University of Notre Dame Notre Dame, IN 46556

Write to the Center for price quotes and availability.

Journal of Physical and Chemical Reference Data Reprints					Journal of Physical and Chemical Reference D Reprints				nce Data
Vol(No)	Page	(year)	Reprint No.	Price	Vol (No)	Page	(year)	Reprint No.	Price
	4 440	1050	4	* 7 00	4	051 061	1075		A = 00
1	1–118	1972	1	\$ 7.00	4	251–261	1975	62	\$ 3.00
1	119–134	1972	2	3.00	4	263-352	1975	63	6.00
1	135–146	1972	3	3.00	4	353-440	1975	64	6.00
1	147–188	1972	4	4.50	4	441-456	1975	65	3.00
1	189-216	1972	5	4.00	4	457-470	1975	66	3.00
1	221-278	1972	6	5.00	4	471-538	1975	67	5.50
1	279-422	1972	7	7.50	4	539-576	1975	68	4.50
1	423-534	1972	8	6.50	4	577-856	1975	69	12.00
1	535-574	1972	9	4.50	4	859-870	1975	70	3.00
1	581–746	1972	10	8.50	4	871–1178	1975	71	13.00
1	747–772	1972	11	4.00	·	0,1 11,0	1770	, ,	15.00
1	773–836	1972	12	5.00	<i>r</i>	1 51	1056	70	7 00
1	841–1009	1972	13	8.50	5	1-51	1976	73	5.00
1		1972	14		5	53–77	1976	74	4.00
	1011-1045			4.50	5	79–101	1976	75	4.00
1	1047–1099	1972	15	5.00	5	103-200	1976	76	6.50
1	1101–1113	1972	16	3.00	5	209-257	1976	77	5.00
					5	259-308	1976	78	5.00
2	1-10	1973	17	3.00	5	309-317	1976	79	3.00
2	11-24	1973	18	3.00	5	319328	1976	80	3.00
2	25-84	1973	19	5.00	5	329-528	1976	81	9.50
2	85-120	1973	20	4.50	5	537-570	1976	82	4.50
2	121-162	1973	21	4.50	5	571–580	1976	83	3.00
2	163-200	1973	22	4.50	5	581–821	1976	84	12.50
2	205-214	1973	23	3.00	5	835–1092	1976	85	
2	215–224	1973	24	3.00	5				11.50
2	225–256	1973	25	4.00		1093-1121	1976	86	4.00
2		1973			5	1123–1146	1976	87	4.00
	257–266		26	3.00	5	1147–1156	1976	88	3.00
2	267–312	1973	27	4.50					
2	313-410	1973	28	6.50	6	1-50	1977	90	5.00
2	411–426	1973	29	3.00	6	51-104	1977	91	5.00
2	427-438	1973	30	3.00	6	105-112	1977	92	3.00
2	439-466	1973	31	4.00	6	113-307	1977	93	9.50
2	467–518	1973	32	5.00	6	317–383	1977	94	5.50
2	519-530	1973	33	3.00	6	385–407	1977	95	4.00
2	531-618	1973	34	6.00	6	409-596	1977	96	9.00
2	619-642	1973	35	4.00	6	597–609	1977	97	3.00
2	643-656	1973	36	3.00	6		1977	98	
2	663-734	1973	37	5.50		621–673			5.00
2	735-756	1973	38	4.00	6	675-829	1977	99	8.00
2	757–922	1973	39	8.50	6	831–869	1977	100	4.50
2	923–1042	1973	40	7.00	6	871–917	1977	101	4.50
_)2J-10+2	1775	40	7.00	6	919–991	1977	102	5.50
2	1 115	1074	41	7.00	6	993–1102	1977	103	6.50
3	1–115	1974	41	7.00	6	1109-1132	1977	104	4.00
3	117–140	1974	42	4.00	6	1133–1166	1977	105	4.50
3	141–162	1974	43	4.00	6	1167-1180	1977	106	3.00
3	163-209	1974	44	4.50	6	1181-1204	1977	107	4.00
3	211–219	1974	45	3.00	6	1205-1252	1977	108	4.50
3	221–244	1974	46	4.00	6	1253-1330	1977	109	5.50
3	245-257	1974	47	3.00					
3	259-268	1974	48	3.00	7	1-262	1978	110	11.50
3	269-308	1974	49	4.50	7	263-310	1978	111	4.50
3	311-480	1974	50	8.50	7	311–362	1978	112	5.00
3	481-526	1974	51	4.50	7	363–377	1978	113	3.00
3	527-602	1974	52	5.50	7	383–415		113	
3	609–770	1974	53	8.50	7	417-423	1978		4.50
3	771–780	1974	54	3.00			1978	115	3.00
3	781–824	1974	55	4.50	7	425-439	1978	116	3.00
3	825–895	1974	56	5.50	7	441-493	1978	117	5.00
3	897–935	1974			7	495–629	1978	118	7.50
			57	4.50	7	635–792	1978	119	8.00
3	937–978	1974	58	4.50	7	793–940	1978	120	8.00
3	979–1017	1974	59	4.50	7	941–948	1978	121	3.00
					7	949-957	1978	122	3.00
4	1-175	1975	60	8.50	7	959–1177	1978	123	10.00
4	177-249	1975	61	6.00	7	1179–1190	1978	124	3.00

	Journal of Physical and Chemical Reference Data Reprints				Journal of Physical and Chemical Reference Data Reprints				ence Data
Vol (No)	Page	(year)	Reprint	Price	Vol (No)	Page	(year)	Reprint	Price
			No.					No.	
7	1191-1262	1978	125	\$ 5.50	10	809-999	1981	187	\$ 10.00
7	1267-1284	1978	126	4.00	10	1001-1049	1981	188	5.50
7	1285-1307	1978	127	4.00	10	1051-1064	1981	189	4.00
7	1309-1321	1978	128	3.00	10	1065-1084	1981	190	5.00
7	1323-1443	1978	129	7.00	10	1085-1095	1981	191	4.00
7	1445-1750	1978	130	13.00	10	1097-1174	1981	192	6.50
,	11.5 1750	1770	100		10	1175-1199	1981	193	5.00
8	1-62	1979	131	5.00	10	1205-1240	1981	194	5.00
8	63–67	1979	132	3.00					
8	69–105	1979	133	4.50	11	1-14	1982	195	5.00
8	107–123	1979	134	4.00	11	15-81	1982	196	9.00
8	125-302	1979	135	9.00	11	83–99	1982	197	6.00
8	307–327	1979	136	4.00	11	101-117	1982	198	6.00
8	329–338	1979	137	3.00	11	119–133	1982	199	5.00
8	339-438	1979	138	6.50	11	135–241	1982	200	11.00
8	439-497	1979	139	5.00	11	251-312	1982	201	8.00
8	499–517	1979	140	4.00	11	313–325	1982	202	5.00
8	519-526	1979	141	3.00	11	327–496	1982	203	15.00
8	527-535	1 97 9	142	3.00	11	505-693	1982	204	16.00
8	537-558	1979	143	4.00	11	695–940	1982	205	20.00
8	559-575	1979	144	4.00	11	941–951	1982	206	5.00
8	583-618	1979	145	4.50	11	953–996	1982	207	7.00
8	619–722	1979	146	6.50	11	1005–1064	1982	208	8.00
8	723–798	1979	147	5.50	11	1065-1089	1982	209	6.00
8	799–816	1979	148	4.00	11	1003-1009	1982	210	5.00
8	817–864	1979	149	4.50	11	1099-1126	1982	211	6.00
8	865–916	1979	150	5.00	11	1127–1149	1982	212	6.00
8	923–1004	1979	151	6.00	11			212	
8	1005-1050	1979	152	4.50	11	1151–1169	1982	213	6.00
		1979 19 7 9			10	1 30	1002	214	c 00
8 8	1051–1108 1109–1146	1979	153 154	5.00 4.50	12 12	1–28 29–63	1983 1983	214 215	6.00
8									7.00
0	1147–1298	1979	155	8.00	12	65–89	1983	216	6.00
0	1 50	1000	150	c 00	12	91–108	1983	217	6.00
9	1-58	1980	156	6.00	12	109–152	1983	218	7.00
9	59–160	1980	157	7.50	12	163–178	1983	219	5.00
9	161-289	1980	158	8.50	12	179–182	1983	220	5.00
9	295–471	1980	159	10.00	12	183–322	1983	221	13.00
9	473–511	1980	160	5.50	12	323–380	1983	222	8.00
9	523-560	1980	161	5.50	12	381–387	1983	223	5.00
9	561–658	1980	162	7.50	12	389–393	1983	224	5.00
9	659-720	1980	163	6.00	12	395-401	1983	225	5.00
9	721–734	1980	164	4.00	12	413-465	1983	226	8.00
9	735–750	1980	165	4.00	12	467–512	1983	227	7.00
9	751–790	1980	166	5.50	12	513–529	1983	228	6.00
9	791–830	1980	167	5.50	12	531-590	1983	229	8.00
9	831–1022	1980	168	10.50	12	591–815	1983	230	19.00
9	1023-1148	1980	169	8.00	12	817–820	1983	231	5.00
9	1149–1254	1980	170	7.50	12	829-872	1983	232	7.00
9	1255-1290	1980	171	5.50	12	873-890	1983	233	6.00
9	1291–1306	1980	172	4.00	12	891–916	1983	234	6.00
9	1307–1328	1980	173	5.00	12	917–932	1983	235	5.00
4.0					12	933–966	1983	236	7.00
10	1–55	1981	174	6.00	12	967–1031	1983	237	9.00
10	57–70	1981	175	4.00	12	1033–1063	1983	238	6.00
10	71–87	1981	176	5.00		4 4	4		4
10	89–117	1981	177	5.00	13	1–102	1984	239	11.00
10	119–152	1981	178	5.50	13	103–150	1984	240	7.00
10	153–196	1981	179	5.50	13	151–173	1984	241	6.00
10	197–289	1981	180	7.00	13	175–183	1984	242	5.00
10	295–304	1981	181	4.00	13	185-205	1984	243	6.00
10	305–565	1981	182	12.50	13	207–227	1984	244	6.00
10	575–669	1981	183	7.00	13	229-303	1984	245	9.00
10	671–764	1981	184	7.00	13	315-444	1984	246	13.00
10	765–778	1981	185	4.00	13	445–553	1984	247	11.00
10	7 79–7 98	1981	186	5.00	13	555–562	1984	248	5.00

Reprints

пертино				
Vol (No)	Page	(year)	Reprint No.	Price
10	F.C2 (00)	1004	240	A 7 00
13	563600	1984	249	\$ 7.00
13	601–609	1984	250	5.00
13	619–648	1984	251	6.00
13	649–686	1984	252	7.00
13	687–694	1984	253	5.00
13	695-808	1984	254	12.00
13	809-892	1984	255	10.00
13	893–933	1984	256	7.00
13	945-1068	1984	257	12.00
13	1069-1096	1984	258	6.00
13	1097-1130	1984	259	7.00
13	1131-1172	1984	260	7.00
13	1173-1197	1984	261	6.00
13	1199-1249	1984	262	8.00
13	1251-1257	1984	263	5.00
13	1259-1380	1984	264	12.00
			265	
14	1-175	1985		15.00
14	177–192	1985	266	5.00
14	193–207	1985	267	5.00
14	209–226	1985	268	6.00
14	227–234	1985	269	5.00
14	235–383	1985	270	14.00
14	395–488	1985	271	10.00
14	489-610	1985	272	12.00
14	611–617	1985	273	5.00
14	631-680	1985	274	8.00
14	681-694	1985	275	5.00
14	695-729	1985	276	7.00
14	731-750	1985	277	6.00
14	751-802	1985	278	8.00
14	803-820	1985	279	6.00
14	821–837	1985	280	6.00
14	849–932	1985	281	10.00
14	933–945	1985	282	5.00
14	947–970	1985	283	6.00
14	971–1040	1985	284	9.00
14	1041–1100	1985	285	8.00
14	1101–1106	1985	286	5.00
14	1107-1100	1985		6.00
		1903	287	0.00
15	1-250	1986	288	20.00
15	251–303	1986	289	8.00
15	305-320	1986	290	5.00
15	321-426	1986	291	11.00
15	437-464	1986	292	6.00
15	465-592	1986	293	12.00
15	593-734	1986	294	13.00
15	735-909	1986	295	15.00
15	911-929	1986	296	6.00
15	943-965	1986	297	6.00
15	967-983	1986	298	6.00
15	985-1010	1986	299	6.00
15	1011–1071	1986	300	8.00
15	1073–1086	1986	301	5.00
15	1087–1279	1986	302	17.00
15	1291–1314	1986	303	6.00
15	1315–1322	1986	304	5.00
15	1323–1322	1986	305	5.00
15	1339–1349	1986	306	5.00
15	1351–1356	1986	307	5.00
15	1357–1367			
15	1369–1436	1986	308	5.00
13	1309-1430	1986	309	9.00

Special Reprint Packages

Pac	kage	No.	. Title	Price
	C1	5	Molecular Vibrational Frequencies	\$26.00
	C2	22	Atomic Energy Levels	96.00
	C3	6	Atomic Spectra	27.00
	C4	5	Atomic Transition Probabilities	28.00
	C5	7	Molecular Spectra	41.00
	C6	9	Thermodynamic Properties of Electrolyte Solutions	37.00
	C7	12	Ideal Gas Thermodynamic Properties	31.00
	C8	7	Resistivity	39.00
	C9	7	Molten Salts	44.00
	C10	4	Refractive Index	26.00

Supplements to the Journal

Vol. 2, Supplement 1, 420 p. (1973) hard cover \$33.00 soft cover \$30.00 Vol. 3, Supplement 1, 796 p. (1974) hard cover \$60.00 soft cover \$55.00 Vol. 6, Supplement 1, 783 p. (1977) hard cover \$70.00 soft cover \$65.00 Vol. 10, Supplement 1, 720 p. (1981) hard cover \$80.00 Vol. 11, Supplement 1, 354 p. (1982) hard cover \$40.00 Volume 11, Supplement 2, 394 p. (1982) hard cover \$40.00 Volume 13, Supplement 1, 288 p. (1984) hard cover \$40.00

Vol. 14, Supplement 1, 896 p. 2 vols. (1985)

Vol. 14, Supplement 2, 664 p. (1985)

hard cover \$130.00

hard cover \$50.00

30

Series No.	Pages	Year	Source	Ordering Information
1	12	1965	NTIS	NSRDS-NBS 1
2	68	1965	NTIS	NSRDS-NBS 2, A04
3(1)	35	1965	NTIS	NSRDS-NBS 3, A03
3(2)	22	1967	NTIS	NSRDS-NBS 3-2, A02
3(3)	73	1970	NTIS	COM 72-50056, A04
3(4)	46	1971	NTIS	COM 71-50346, A03
3(5)	80	1975	NTIS	COM 75-10953, A05
3(6)	32	1972	NTIS	COM 72-50994, A03
	33	1976	NTIS	PB 253 231, A03
3(7) 3(8)	31	1979	NTIS	PB 291914, A03
3(9)	21	1980	NTIS	PB 80 197460, A02
3(10)	21	1983	NTIS	PB 83 208942, A02
3(11)	33	1985	GPO	SN003-003-02007-7
4(I)	153	1966	NTIS	AD 634 145, A08
5	87	1966	NTIS	NSRDS-NBS 5, A05
6	56	1967		Out of print, superseded by NSRDS-NBS 39
7	38	1966		NSRDS-NBS 7, microfiche not available
8	68	1966	NTIS	PB 189 698, A04
9	129	1967	NTIS	NSRDS-NBS 9, A07
10	49	1967	NTIS	NSRDS-NBS-10, A03
11	38	1967		Out of print, superseded by NSRDS-NBS 39
12	102	1968	NTIS	NSRDS-NBS 12, A05
13	62	1968	NTIS	NSRDS-NBS-13, A04
14	66	1967	NTIS	NSRDS-NBS 14, A04
15	140	1968	NTIS	NSRDS-NBS 15, A07
16	146	1968	NTIS	NSRDS-NBS 16, A07
17	39	1968		Out of print, superseded by NSRDS-NBS 39
18	49	1968		NSRDS-NBS 18
19	10	1968	NTIS	NSRDS-NBS 19, A02
20	49	1968	NTIS	NSRDS-NBS 20, A03
21	645	1970	NTIS	PB 191 956, A26
22	268	1969	NTIS	AD 696 884, A12
23	65	1968	NTIS	NSRDS-NBS 23, A04
24	271	1968	NTIS	NSRDS-NBS 24, A12
25	120	1968	NTIS	NSRDS-NBS 25, A06
26	289	1969		Out of print, superseded by J. Phys. Chem. Ref. Data Vol. 6, Supplement 1 (1977)
27	153	1969	NTIS	NSRDS-NBS 27, A08
28	116	1968	NTIS	NSRDS-NBS 28, A06
29	85	1969	NTIS	NSRDS-NBS 29, A05, superseded by J. Phys. Chem. Ref. Data 9, 1023 (1980) (Reprint
20	27	1000	NITTE	No. 169)
30	27	1969	NTIS	NSRDS-NBS 30, A03
31 32	48	1970	NTIS	PB 189 028, A03
33	79 37	1970	NTIS NTIS	PB 192873, A05
34	37 22	1970 1970	NTIS	PB 192 183, A03 NSRDS-NBS 34, A02
35(T)	358	1971	NTIS	COM 72-50282, A16; Reprints and updates parts of NBS Circular 467, Volume I
35(II)	263	1971	NTIS	SN003-003-00935-1, COM 72-50216, A12; Reprint of NBS Circular 467, Volume II
35(III)	289	1971	NTIS	COM 72-50283, A13; Reprint of NBS Circular 467, Volume III
36	222	1971	NTIS	COM 71-50203, A10
37	1141	1971	NTIS	COM 7150205, A10 COM 7150363, A26, superseded by J Chem. Ref. Data 14, Supplement 1 (1985)
38	114	1971	NTIS	COM 71-50351, A06; reprinted from Rev. Geophys. Space Phys. 9(2) May 1971
39	167	1972	NTIS	COM 72-50747, A08; supersedes NSRDS-NBS 6, 11, and 17; available as part of JPCRD
		27.2	11110	Reprint Package C1
40	261	1972	NTIS	COM 72-50439, A12; reprint of NBS Technical Note 36
41	57	1972	NTIS	COM 72-50849, A04
42	27	1972	NTIS	COM 72-50886, A03
43	69	1973	NTIS	COM 73-50537, A04
43(Suppl.)	53	1975	NTIS	COM 75-10737/AS
44	41	1974	NTIS	COM 74-50175, A03
45	29	1973	NTIS	COM 74-50060, A03
46	72	1973	NTIS	COM 73-50623, A04
47	161	1974	NTIS	COM 74-50641, A08
48	44	1974	NTIS	COM 74-50310, A03
49	140	1974	NTIS	COM 74-50715, A07
50	120	1973	NTIS	AD 771 200, A06; reprinted from Rev. Mod. Phys. 45(3) 378-486 (July 1973)
51	66	1975	NTIS	COM 75-10617, A04

Series No.	Pages	Year	Source	Ordering Information
52	55	1974	NTIS	COM 74-50696, A04
53	55	1975	NTIS	COM 75-11437, A04,
54	33	1975	NTIS	COM 75-10625, A03
55	21	1975	NTIS	COM 75-10917, A02
56	37	1975	NTIS	PB 248 991, A03
57	38	1976	NTIS	PB 255 004, A03
58	23	1976	NTIS	PB 254 470, A02
59	126	1977	NTIS	PB 263 198, A07
60	422	1978	NTIS	PB 282 067, A18
61(T)	244	1978	NTIS	PB 281 463, A11
61(II)	420	1979	NTIS	PB 295 406, A18
61(III)	19	1979	NTIS	PB 297847, A02
61(IV)	870	1981	NTIS	PB 81-244 121, A26
61(V)	42	1982	NTIS	PB 82-232 919, A03
62	68	1978	NTIS	PB 283487, A04
63(1,2,3,4)	3975	1978	NTIS	PB 290 661 A26
63(Suppl.1)	2040	1980	NTIS	PB 81-189 367, A26
63(Suppl.2)	1110	1983	NTIS	PB 84-156 496, A26
64	27	1980	NTIS	PB 294304, A03
65	62	1979	NTIS	PB 296 734, A04
66	380	1980		out of print, superseded by NSRDS-NBS 71
67	110	1980	NTIS	PB 80-208 887, A06
68	415	1980	NTIS	PB 81-206 120, A18
69	167	1981	NTIS	PB 82-10941
70	96	1982	NTIS	PB 82-109141
71	634	1982	NTIS	PB 83 137364, A26, supersedes NSRDS-NBS 66
72	42	1982	NTIS	PB 82-215 401, A03
NBS Technical No	tes			
270(3)	264	1968	NTIS	NBS TN 270(3), A12. Superseded by J. Phys. Chem. Ref. Data 11, Supplement 2 (1982).
270(4)	152	1969	NTIS	Superseded by J. Phys. Chem. Ref. Data 11, Supplement 2 (1982).
270(5)	49	1971	NTIS	COM 71-50171 A03. Superseded by J. Phys. Chem. Ref. Data 11, Supplement 2 (1982)
270(6)	124	1971	NTIS	COM 71-50608, A06. Superseded by J. Phys. Chem. Ref. Data, 11, Supplement 2 (1982).
270(7)	84	1973	NTIS	COM 73-50435, A05. Superseded by J. Phys. Chem. Ref. Data 11, Supplement 2 (1982)
270(8)	149	1981	NTIS	PB 81 223463, superseded by J. Phys. Chem. Ref. Data 11, Supplement 2 (1982)
291	40	1966	NTIS	NBS-TN-291, A03
361	118	1973	NTIS	COM 74-50760, A06
438	139	1967	NTIS	AD 665 245, A07
444	25	1968	NTIS	NBS-TN-444, A02
446	84	1968	NTIS	NBS-TN-446, A04
464	163	1968	NTIS	NBS-TN-464, A08
470	76	1969	NTIS	NBS-TN-470, A05
474	22	1969	NTIS	AD 681 351, A02
484	62	1969	NTIS	AD 692 231, A04
500	47	1970	NTIS	PB 191 352, A03
554	196	1970	NTIS	PB 194 750, A09
700	72	1972	NTIS	COM 73-50015, A04
738	16	1972	NTIS	COM 72-50810, A02
740	32	1973	NTIS	COM 73-50986, A03
760	32	1973	NTIS	COM 73-50242, A03
820	58	1974	NTIS	COM 74-50140, A04
848	23	1974	NTIS	COM 74-50943, A02
901	47	1976	NTIS	PB 251 269, A03
903	34	1976	NTIS	PB 249 541, A04
928	60	1976	NTIS	PB 262 600, A04
947	88	1977	NTIS	PB 268 513, A05
968	81	1978	NTIS	PB 84-148 717, A05 PB 287-012 A06 avarlaments I Phys. Chem. Reference Data 5(2) 591-921 (1976). Pennint
983	103	1978	NTIS	PB 287 013, A06; supplements J. Phys. Chem. Reference Data 5(3) 581-821 (1976), Reprint No. 84
1039	83	1981	NTIS	PB 81-214 165, A05
1045	164	1981	NTIS	PB 82-107673, A08
1048	56	1982	NTIS	PB 83117523, A04
1051	199	1982	NTIS	PB 82-225 988, A09
1122	29	1980	NTIS	PB 81-11511, A03

Series No.	Pages	Year	Source	Ordering Information
1141	54	1981	NTIS	PB 81 205437, A04
1147	316	1981	NTIS	Supersedes NBS Tech Note 551; PB 82-136474, A14
1176	49	1983	NTIS	PB 83 220467, A03
1206	23	1985	NTIS	PB 85-183390, A03
NBS Special Publ	lications			
281	155	1967	NTIS	NBS-SP-281, A08
306(I)	80	1968	NTIS	NBS SP 306, A05
306(II)	57	1969	NTIS	NBS-SP-306-2, A04
306(III)	37	1969	NTIS	PB 264 245, A03
306(IV)	48	1969	NTIS	COM 73-10870, A02
324	683	1971	NTIS	COM 71-50070, A26
349	43	1972	NTIS	COM 72-50807, A03
362	75	1972	NTIS	COM 72-50466, A04
363	109	1972	NTIS	COM 72-50676, A06
363(Suppl.1)	190	1977	NTIS	PB 263 199, A05
363(Suppl.2)	119	1980	NTIS	PB 81 125833, A06
366	165	1972	NTIS	COM 74-50943, A08
366(Suppl.1)	76 75	1974	NTIS NTIS	COM 74-50063, A05
366(Suppl.2) 366(Suppl.3)	75 87	1975 1978	NTIS	PB 2456714, A04 PB 289 815, A05
369	180	1976	NTIS	COM 74-50302, A09
371	93	1973	NTIS	COM 73-50245, A05; supplements NBS-OSRD B 71-2 (1971)
371(Suppl.1)	93	1975	NTIS	COM 75-10687, A05; supplements NBS-OSRD B 71-2 (1971) COM 75-10687, A05; supplements NBS-OSRD B 71-2 (1972) and NBS Special Pub. 371
380	134	1973	NTIS	COM 73-50244, A07
380(Suppl.1)	106	1978	NTIS	PB 284 499, A06
381	75	1973	NTIS	COM 73-50932, A04
392	84	1974	NTIS	COM 74-50348, A05
396(1)	90	1974	NTIS	COM 74-51060, A05
396(2)	56	1975	NTIS	PB 248 989, A04
396(3)	42	1976	NTIS	PB 250 844, A03
396(4)	96	1976	NTIS	PB 258 557, A05
424	177	1976	NTIS	PB 251 845, A09
426	222	1976	NTIS	PB 252 687, A10
426(Suppl.)	115	1979	NTIS	PB 296 736, A06
428(1,2,3)	2414	1976	NTIS	Sold as a three volume set; microfiche from NTIS in 3 parts as PB 249 160, PB 249 161, and PB 249 162
449	142	1976	NTIS	PB 263 122, A07
454	71	1976	NTIS	PB 257 765, A04
478	54	1977	NTIS	PB 270 972, A04
485	57	1977	NTIS	PB 270 367, A04
496(1,2)	1622	1978	NTIS	Vol. 1: PB 280 244, Vol. 2: PB 280 245
505(Suppl)	283	1978	NTIS	PB 280736, A13
505(Suppl.) 513	126	1980	NTIS	PB 80-213 739, A07
531	111 94	1978 1978	NTIS NTIS	PB 280549, A06 PB 289 918, A05
537	94	1978	NTIS	PB 292 163, A05
578	27	1980	NTIS	PB 81 167025, A03
593	349	1981	NTIS	PB 81-204 760, A15
612	125	1981	NTIS	PB 82-134 362; superseded by SP 708
689	37	1985	NTIS	PB 85-178051, A03
702	39	1985	NTIS	PB 86-129558, A03
708	138	1985	GPO	SN003-003-02705-7, PB 86-15587, A07
NBS Cleanian				
NBS Circulars				
488(1)	78	1950	NTIS	PB 252 093, A09, bound together with section 2
488(2)	115	1952	NTIS	PB 252 093, A09, bound together with section 1
488(3)	94	1962	NTIS	PB 252 094, A09, bound together with sections 4 and 5
488(4)	65	1962	NTIS	PB 252 094, A09, bound together with sections 3 and 5
488(5)	30	1962	NTIS	PB 252 094, A09, bound together with sections 3 and 4

NBS Office of Standard Reference Data Bibliographies (OSRDB)

Series No.	Pages	Year	Source	Ordering Information
70-1(Vol.1)	692	1970	NTIS	PB 191 174, A26
70-1(Vol.2)	748	1970	NTIS	PB 191 175, A26
70-2	413	1970	NTIS	COM 71-00722, A18
70-3	293	1970	NTIS	AD 705 110, A13
70-4	47	1970	NTIS	COM 71-00025, A03
71-1	293	1971	NTIS	COM 71-00248, A13
71-2	140	1971	NTIS	COM 71-00241, A07; supplemented by Spec. Publ. 371 and 371 Suppl. 1
11-2	140	17/1	11110	CON 71-00041, 7107, supplemented by Speet 1 uoi. 371 and 371 Suppl. 1
NBS Handbooks				
101	256	1968	NTIS	NBS-H101, A12, reprinting with corrections of the 1966 edition
125	294	1978	NTIS	Microfiche from NTIS as NBS-H-125
138	127	1982	NTIS	PB 82-217175, A07
NBS Monographs				
7 0(1)	1.771	1064	NITTE	DD 160 072 A00
70(I)	171	1964	NTIS	PB 168 072, A08
70(II)	349	1964	NTIS	PB 189 714, A15
70(III)	275	1969	NTIS	COM 74-10794, A12
70(IV)	419	1968	NTIS	COM 74-10795, A18
70(V)	533	1968	NTIS	COM 74-10796, A23
94	116	1965	NTIS	N65-32001, A06
115	54	1970	NTIS	PB 192 874, A04
134	177	1973	NTIS	COM 73-50582, A09
153	123	1976	NTIS	PB 256 586, A06
167	288	1981	NTIS	PB 81-165607, A13
169	197	1982	NTIS	Microfiche from NTIS as PB 82-249 632
170	249	1982	NTIS	Microfiche from NTIS as PB 82-252 040
Joint Institute for	Laborator	y Astrop	hysics (Ji	LA Reports)
	0.5	40.60		777400 405 404
6	95	1969	NTIS	PB189 127, A06
7	167	1969	NTIS	AD 696 467, A08
13	139	1973	NTIS	COM 74-11661, A07
18	148	1980		no charge, University of Colorado, Box 440, Boulder, CO 80309
20	252	1979		no charge, University of Colorado, Box 440, Boulder, CO 80309
21	127	1981		no charge, University of Colorado, Box 440, Boulder, CO 80309
NDC interim Dans	A- AIDOID			
NBS Interim Repo	MECAN) SIM	1)		
75-770	27	1975	NTIS	COM 75-11370, A03
75-968	35	1976	NTIS	PB 250 845, A03
76-1002	54	1976	NTIS	
76-1034	76	1976	NTIS	PB 257 469, A04 PB 254 460, A05
76-1061 76-1147	52	1976	NTIS	PB 256 328, A04
76-1147	41	1976	NTIS	PB 259 637, A03
77-860	240	1977	NTIS	PB 272 355, A11
77-865	162	1977	NTIS	N-78-16119, A08
77-1300	94	1977	NTIS	PB273 171, A05
78-1432	84	1978	NTIS	PB 293 918, A05
78-1479	69	1981	NTIS	PB 80-284 659, A08
79-1777	563	1979	NTIS	PB 299 289, A24
79-1941	169	1979	NTIS	PB 80-128 531, A08
80-2029	173	1980	NTIS	PB 80-204 605, A08
80-2032	89	1980	NTIS	PB 80-198 799, A05
81-2217	259	1981	For offi	cial distribution only
81-2253	38	1981	NTIS	PB 83-249789, A03
81-2254	302	1981	NTIS	PB 81-205 429, A15
81-2276	26	1981	NTIS	PB 81-229171, A03
81-2341	30	1981	NTIS	PB 83-154 542, A03; also in Chemtech 12 (11) 691-697 (1982)
81-2343	57	1981	NTIS	PB 82-131 525, A04
81-2345	89	1981	NTIS	PB 82-184904, A05
81-2356	17	1982	NTIS	PB 82-171/991, A02
82-2401	164	1982	NTIS	PB 82-259373, A08
81-2426	87	1982	NTIS	PB 83-216358, A05
	0,	1702	1+120	2 00 82000092200

NBS Interim Reports (NBSIR) - Continued

Series No.	Pages	Year	Source	Ordering Information
82-2543	139	1982	NTIS	PB 83-25363, A07; supplements NBS Spec. Publ. 380 and 380-1
82-2550	164	1982	NTIS	PB 82-2550, A08
82-2587	751	1982	NTIS	PB 83-115 311, A26
84-2811	162	1983	NTIS	PB 84-155332, A08
84-2907	55	1984	NITS	Order from NTIS NBSIR 84-2907
85-3205	282	1985	NTIS	PB 86-130937/AS, A13

Translations from the Russian

Russian Tran	366	1971	NTIS	TT 70-50180, A16
Russian Tran	69	1970	NTIS	TT 70-50177, A04
Russian Tran	730	1970	NTIS	TT 71-50040, A26
Russian Tran	329	1972	NTIS	TT 71-50041, A15
Russian Tran	340	1974	NTIS	TT 73-53051, A15
Russian Tran	273	1971	NTIS	TT 70-50094, A12
Russian Tran	215	1974	NTIS	TT 72-52002. A10
Russian Tran	126	1971	NTIS	TT 70-50179, A07
Russian Tran	434	1972	NTIS	COM 72-10014, A19
Russian Tran	364	1971	NTIS	TT 70-50148, A16
Russian Tran	453	1974	NTIS	TT 74-50019, A20
Russian Tran	505	1975	NTIS	TT 74-50032, A22
Russian Tran	648	1975	NTIS	TT 75-50007, A26
Russian Tran	540	1976	NTIS	TT 76-50007, A23
Russian Tran	260	1971	NTIS	TT 70-50096, A12
Russian Tran	206	1972	NTIS	COM 75-11276, A10
Russian Tran	402	1971	NTIS	TT 70-50095, A18
Russian Tran	72	1971	NTIS	TT 70-50178, A04
Russian Tran	214	1970	NTIS	TT 69-55091, A10
Russian Tran	251	1970	NTIS	TT 70-50097, A12
Russian Tran	255	1970	NTIS	TT 69-55092, A12
Russian Tran	395	1974	NTIS	TT 72-52001, A17
Russian Tran	212	1975	NTIS	TT 73-52009, A10
Russian Tran	179	1975	SITK	TT 72 50000

NBS-114A (REV. 2-80)						
U.S. DEPT. OF COMM. 1. PUBLICATION OR 2. Performing Organ. Report No.	. 3. Publication Date					
BIBLIOGRAPHIC DATA SHEET (See instructions) REPORT NO. NBS/SP-708/ Suppl. 1	June 1987					
4. TITLE AND SUBTITLE						
Standard Reference Data Publications 1985-1986						
Standard Reference Data Publications 1965-1960						
5. AUTHOR(S)						
Joan C. Sauerwein						
6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)	7. Contract/Grant No.					
	The Contract Crairs (to					
NATIONAL BUREAU OF STANDARDS						
	8. Type of Report & Period Covered					
GAITHERSBURG, MD 20899	1985-1986					
9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street, City, State, ZIP)						
Same as item 6.						
10. SUPPLEMENTARY NOTES						
Document describes a computer program; SF-185, FIPS Software Summary, is attached.						
11. ABSTRACT (A 200-word or less factual summary of most significant information. If docum						
bibliography or literature survey, mention it here)						
The National Bureau of Standards' Office of Standard	ł Reference Data man-					
ages a network of data centers that prepare evaluate						
physical and chemical properties of substances. Dat						
in printed form, on magnetic tapes, diskettes, and through on-line						
computer networks. This document provides a comprehensive list of						
the products available from the National Standard Reference Data System						
(NSRDS) for the years 1985-1986, including indexes qualified by author,						
material, and property terms. Ordering information and current prices						
can be found at the end of this document.						
12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and s	sangrata kay wards by sanisalans					
bibliographies; chemical properties; evaluated data; indexes; materials						
properties; physical properties; publication list						
12 AVAILABILITY						
13. AVAILABILITY	14. NO. OF PRINTED PAGES					
X Unlimited	FRINTED PAGES					
For Official Distribution. Do Not Release to NTIS	40					
Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.						
20402.						
Order From National Technical Information Service (NTIS), Springfield, VA. 22161						

Periodical

Journal of Research—The Journal of Research of the National Bureau of Standards reports NBS research and development in those disciplines of the physical and engineering sciences in which the Bureau is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Bureau's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-396).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NBS administers this program as a supplement to the activities of the private sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the above NBS publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from the National Technical Information Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final reports on work performed by NBS for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce National Bureau of Standards Gaithersburg, MD 20899

Official Business
Penalty for Private Use \$300