1ª Avaliação de Grafos **Professor: Glauber Cintra**

Nome: Alyson Noronha Bezerra Silva Matrícula: 20181015020136

1-

Lista de Adjacência:

 $1 \rightarrow 2$

 $2 \rightarrow 1$

 $3 \rightarrow 4, 6$ $4 \rightarrow 3, 5, 6, 7$

 $5 \rightarrow 4, 6$

 $6 \rightarrow 3, 4, 5$ $7 \rightarrow 4$

Matriz de Adjacência:

	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇
V ₁		1					
V ₂	1						
V ₃				1		1	
V 4			1		1	1	1
V ₅				1		1	
V ₆			1	1	1		
V ₇				1			

Matriz de Incidências

	Α	В	С	D	Е	F	G
V ₁	1						
V ₂	1						
V ₃		1	1				
V 4		1		1	1	1	
V ₅					1		1
V ₆			1	1			1
V ₇						1	

 $ordem(G) = 7; \quad tamanho(G) = 7; \quad \Delta (G) = 4; \quad \delta (G) = 1; \quad d(v_6) = 3; \quad G(G) = 4$

G não é uma Floresta. G não é conexo.

Trilha de comprimento 6: (F, B, C, G, E, D)

Não exite circuito de comprimento 5 em G.

2-

Entrada: um vetor, adj, de listas de inteiros e a ordem de G, n Saída: um inteiro correspondente a Δ (G)

Saida, um intelio correspondente a \(\Delta\)

algoritmo encontra Δ G:

int delta = 0

para i de 0 até n-1:

int grau_atual = 0 apontador v_atual = adj[i].head

enquanto v_atual != NULL: grau_atual += 1 v_atual = v_atual.next

se grau_atual > delta: delta = grau_atual

retorne delta

Perceba que ao remover as arestas $3 \leftrightarrow 2$ e $3 \leftrightarrow 6$, o grafo se torna desconexo e que não existe uma única aresta que possa ser removida para tornar o grafo desconexo, logo, temos que esse grafo é 2-aresta-conexo. Perceba também que, removendo o vertice 3, o grafo se torna desconexo, logo, o grafo é 1-vertice-conexo. Portanto, temos que x = 2 e y = 1.

4-

```
Entrada: um grafo G e um vértice v
Saída: quantidade de vértices da componente conexa que contém v.
algoritmo ordem_componente:
       visitados = vetor com ordem(G) posicoes incializadas com false
        pilha = uma pilha inicialmente vazia
       ordem = 0
       pilha.empilhe(v)
        enquato pilha não estiver vazia:
               u = pilha.topo()
               pilha.pop()
               se visitados[u] = false:
                       visitados[u] = true
                       ordem += 1
                       para w em cada vizinho de u:
                               pilha.empilhe(w)
        retorne ordem
```


O custo da árvore é igual a soma dos custos de suas arestas, ou seja, o custo da árvore é 33.

6-

O caminho mínimo de v_1 até v_{10} é $v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_8 \rightarrow v_6 \rightarrow v_4 \rightarrow v_7 \rightarrow v_9 \rightarrow v_{10}$

7-

Se $\delta(G) > 1 <=> \delta(G) \ge 2$, logo, todo vértice possui pelo menos 2 vizinhos. Isso é suficiente para garantir que qualquer caminho máximo $(v_1, v_2, ..., v_k)$ onde $v_i = v_j$ se, e somente se, i = j possui uma aresta ligada a v_1 ou v_k que ao ser acrescentada a esse caminho incide sobre um vértice já existente nesse caminho, logo, tendo um circuito.

8-

Este é um subgráfo do grafo G, este é um $K_{3,3}$ que não é planar. Logo, o grafo G não possui uma representação planar.