Neural Language Models

SLP 7.5

https://web.stanford.edu/~jurafsky/slp3/7.pdf

Natural Language Processing in Action Ch. 7, 8, 9

Outline

- Neural networks for language modeling -- assigning probabilities to word sequences and predicting upcoming words
- Sequential models, e.g., Recurrent Neural Network, LSTM

Neural Language Models

Use a neural network as a probabilistic classifier, to compute the probability
of the next word given the previous n words

$$P(W_5|W_1,W_2,W_3,W_4)$$

Feedforward Neural LMs (Bengio et al., 2003)

- Input at time t: a representation of previous words (w_{t-1}, w_{t-2}, etc)
- Output: a probability distribution over possible next words
- Feedforward neural LM approximates the probability of a word given the entire prior context P(w_t | w₁^{t-1}) by approximating based on the N previous words

$$P(w_t|w_1^{t-1}) \approx P(w_t|w_{t-N+1}^{t-1})$$

Use a neural network as a probabilistic classifier, to compute the probability of the next word given the previous *n* words

$$P(w_t = i \mid w_{t-1}, w_{t-2}, w_{t-3}, w_{t-4})$$

Feedforward Neural LMs

Word-based Feedforward LM

Feedforward Neural LMs

Character-based Feedforward LM

Sequence Processing with Recurrent Networks

SLP Ch. 9

https://web.stanford.edu/~jurafsky/slp3/9.pdf

NLP in Action Ch. 8

Limitations of Feedforward Neural LM

- The models accept a small fixed-sized window of tokens as input
- Limit the context from which information can be extracted; anything outside the context window has no impact on the decision being made
- Recurrent neural networks process sequences explicitly as sequences, to handle variable length inputs without the use of fixed-sized windows

Simple Recurrent Networks (SRN)

Simple Recurrent Networks (SRN)

Learn U, V, W

RNN Language Model

At time step 0, input the initial token alongside a 0 vector

RNN at time step t = 0

RNN at time step t = 1

RNN Language Model

Word-based RNN LM

Different RNN sequence types

