Examen d'électronique analogique

Mardi 28 Janvier 2020

(Durée 1h30, documents non autorisés)

Exercice 1:

Soit le montage amplificateur différentiel de la figure 1-1. Les transistors sont identiques et présentent les paramètres hybrides suivants :

 $h_{11e} = 1 \, k\Omega; \quad h_{12e} = 0; \quad h_{21e} = \beta = 50; \quad h_{22e} = 0.$ On donne : $R_C = 1 \, k\Omega, \; R_E = 2 \, k\Omega, \; V_{CC} = 15 \, V$ et $V_{EE} = 15 \, V$

FIGURE 1 1

I. Etude en régime continu:

- 1. Au repos, pour $V_1 = V_2 = 0$, montrer que les transistors Q_1 et Q_2 ont le même courant de collecteur. (On négligera le courant I_B devant le courant I_C)
- 2. Calculer les coordonnées (I_C, V_{CE}) du point de repos de chaque transistor.

II. Etude du régime dynamique faibles signaux aux fréquences moyennes, :

On se place dans le cas où $V_1 = -V_2$.

- 1. Calculer le gain différentiel $G_d = \frac{V_S}{(V_1 V_2)}$.
- 2. Calculer la résistance d'entrée différentielle R_{ed} vue entre les deux bornes d'entrée V_1 et V_2 .

Exercice 2:

On considère le montage de la figure 2-1 pour lequel les amplificateurs opérationnels A_1 et A_2 sont supposés parfaits.

FIGURE 2 - 1

- 1. Déterminer l'expression des gains en tensions : $G_1 = \frac{V_{S1}}{V_c}$, $G_2 = \frac{V_{S2}}{V_{S1}}$ et $G = \frac{V_{S2}}{V_c}$.
- 2. Déterminer l'expression de la résistance d'entrée R_{ϵ} vu par le générateur V_{ϵ} .
- 3. Déterminer la valeur de R pour obtenir une résistance d'entrée $R_c=100~k\Omega$. On donne $R_1=10~k\Omega$ et $R_2=100~k\Omega$

Exercice 3:

On considère le montage de la figure 3-1 pour lequel les amplificateurs opérationnels A_1 , A_2 et A_3 sont parfaits. On donne : $R_1=10~k\Omega,~R_2=20~k\Omega,~R_3=100~k\Omega,~R_4=20~k\Omega,~R_5=10~k\Omega,~R_6=400~k\Omega,~V_1=25~mV$ et $V_2=-20~mV$

FIGURE 3 - 1

- 1. Calculer les potentiels V_A , V_B et V_C .
- 2. Calculer les courants I_3 , I_5 et I_6 .