Computer Graphics

- BRDFs & Texturing -

Hendrik Lensch

Overview

Last time

- Radiance
- Light sources
- Rendering Equation & Formal Solutions

Today

- Bidirectional Reflectance Distribution Function (BRDF)
- Reflection models
- Projection onto spherical basis functions
- Shading

Next lecture

Varying (reflection) properties over object surface: texturing

Reflection Equation - Reflectance

Reflection equation

$$L_o(\underline{x},\underline{\omega}_o) = \int_{\Omega_+} f_r(\underline{\omega}_i,\underline{x},\underline{\omega}_o) L_i(\underline{x},\underline{\omega}_i) \cos \theta_i \ d\underline{\omega}_i$$

- BRDF
 - Ratio of reflected radiance to incident irradiance

$$f_r(\omega_o, x, \omega_i) = \frac{dL_o(x, \omega_o)}{dE_i(x, \omega_i)}$$
 $\forall L(x, WO) \text{ MRYO}$

用x,入射Wi 出射Wo 求 Fr

Fr为入射反射比

Bidirectional Reflectance Distribution Function

- BRDF describes surface reflection for light incident from direction (θ_v, φ_i) observed from direction (θ_o, φ_o)
- Bidirectional
 - Depends on two directions and position (6-D function)
- Distribution function
 - Can be infinite
- Unit [1/sr]

$$\begin{split} f_r(\underline{\omega}_o, \underline{x}, \underline{\omega}_i) &= \frac{dL_o(\underline{x}, \underline{\omega}_o)}{dE_i(\underline{x}, \underline{\omega}_i)} \\ &= \frac{dL_o(\underline{x}, \underline{\omega}_o)}{dL_i(\underline{x}, \underline{\omega}_i) \cos \theta_i \ d\underline{\omega}_i} \end{split}$$

BRDF Properties

Helmholtz reciprocity principle

BRDF remains unchanged if incident and reflected directions are

interchanged

$$f_r(\omega_o, \omega_i) = f_r(\omega_i, \omega_o)$$

能量守恒,入射等于出射

Smooth surface: isotropic BRDF

- reflectivity independent of rotation around surface normal
- BRDF has only 3 instead of 4 directional degrees of freedom

$$f_r(\underline{x}, \theta_i, \theta_o, \varphi_o - \varphi_i)$$

BRDF Properties

Characteristics

- BRDF units [sr⁻⁻¹]
 - Not intuitive
- Range of values:
 - From 0 (absorption) to ∞ (reflection, δ -function)
- Energy conservation law
 - No self-emission
 - Possible absorption

可能出射小于入射

$$\int_{\Omega} f_r(\underline{\omega}_o, \underline{x}, \underline{\omega}_i) \cos \theta_o d\omega_o \le 1 \quad \forall \theta, \varphi$$

- Reflection only at the point of entry $(x_i = x_o)$
 - No subsurface scattering

BRDF Measurement

- Gonio-Reflectometer
- BRDF measurement
 - point light source position (θ, φ)
 - light detector position (θ_o, φ_o)
- 4 directional degrees of freedom
- BRDF representation
 - m incident direction samples (θ, φ)
 - n outgoing direction samples (θ_o, φ_o)
 - m*n reflectance values (large!!!)

Stanford light gantry

Reflectance

Reflectance may vary with

- Illumination angle
- Viewing angle
- Wavelength
- (Polarization, ...)

Variations due to

- Absorption
- Surface micro-geometry
- Index of refraction / dielectric constant

光照可能受很多因素影响

- Scattering 散射

BRDF Modeling

- Phenomenological approach
 - Description of visual surface appearance
- Ideal specular reflection
 - Reflection law
 - Mirror
- Glossy reflection
 - Directional diffuse
 - Shiny surfaces
- Ideal diffuse reflection
 - Lambert's law
 - Matte surfaces

Reflection Geometry

Direction vectors (normalize):

N: surface normal

– <u>I</u>: vector to the light source

- \underline{V} : viewpoint direction vector

H: halfway vector

 $\underline{H} = (\underline{I} + \underline{V}) / |\underline{I} + \underline{V}|$

 $- \underline{R}(\underline{I})$: reflection vector

$$\underline{\mathsf{R}}(\underline{\mathsf{I}}) = \underline{\mathsf{I}} - 2(\underline{\mathsf{I}} \cdot \underline{\mathsf{N}})\underline{\mathsf{N}}$$

Tangential surface: local plane

Ideal Specular Reflection

- Angle of reflectance equal to angle of incidence
- Reflected vector in a plane with incident ray and surface normal vector

$$\underline{\mathbf{R}} + (-\underline{\mathbf{I}}) = 2 \cos \theta \ \underline{\mathbf{N}} = -2(\underline{\mathbf{I}} \cdot \underline{\mathbf{N}}) \ \underline{\mathbf{N}}$$
$$\underline{\mathbf{R}}(\underline{\mathbf{I}}) = \underline{\mathbf{I}} - 2(\underline{\mathbf{I}} \cdot \underline{\mathbf{N}}) \ \underline{\mathbf{N}}$$

Mirror BRDF

• Dirac Delta function $\delta(x)$

- $\delta(x)$: zero everywhere except at x=0
- Unit integral iff integration domain contains zero (zero otherwise)

$$f_{r,m}(\omega_o, x, \omega_i) = \rho_s(\theta_i) \cdot \frac{\delta(\cos\theta_i - \cos\theta_o)}{\cos\theta_i} \cdot \delta(\varphi_i - \varphi_o \pm \pi)$$

$$L_o(x, \omega_o) = \int_{\Omega_+} f_{r,m}(\omega_o, x, \omega_i) L_i(\theta_i, \varphi_i) \cos \theta_i \ d\underline{\omega}_i = \rho_s(\theta_i) L_i(\theta_o, \varphi_o \pm \pi)$$

• Specular reflectance ρ_{s}

- Ratio of reflected radiance in specular direction and incoming radiance
- Dimensionless quantity between 0 and 1

$$\rho_s(\theta_i) = \frac{\Phi_o(\theta_o)}{\Phi_i(\theta_i)}$$

Diffuse Reflection

- Light equally likely to be reflected in any output direction (independent of input direction)
- Constant BRDF

$$\begin{split} f_{r,d}(\underline{\omega}_o,\underline{x},\underline{\omega}_i) &= k_d = \text{const} \\ L_o(\underline{x},\underline{\omega}_o) &= \int k_d L_i(\underline{x},\underline{\omega}_i) \cos\theta_i \ d\underline{\omega}_i = k_d \int L_i(\underline{x},\underline{\omega}_i) \cos\theta_i \ d\underline{\omega}_i = k_d E \\ &- \text{ k}_d\text{: diffuse coefficient, material property [1/sr]} \end{split}$$

Kd是一个定值,是材质的扩散系数

Lambertian Diffuse Reflection

- Radiosity $B = \int_{\Omega} L_o(\underline{x}, \underline{\omega}_o) \cos \theta_o \ d\underline{\omega}_o = L_o \int_{\Omega} \cos \theta_o \ d\underline{\omega}_o = \pi \ L_o$
- Diffuse Reflectance

$$\rho_d = \frac{B}{E} = \pi k_d$$

Lambert's Cosine Law

$$B = \rho_d E = \rho_d E_i \cos \theta_i$$

For each light source

$$- L_{r,d} = k_d L_i \cos \theta_i = k_d L_i (\underline{I \bullet N})$$

Lambertian Objects

Self-Luminous spherical Lambertian Light Source

$$\Phi_0 \propto L_0 \cdot d\Omega$$

Eye-light illuminated Spherical Lambertian Reflector

$$\Phi_1 \propto L_0 \cdot \cos \varphi \cdot d\Omega$$

Lambertian Objects II

The Sun

- Absorption in photosphere
- Path length through photosphere longer from the Sun's rim

The Moon

- Surface covered with fine dust
- Dust on TV visible best from slanted viewing angle

⇒ Neither the Sun nor the Moon are Lambertian

"Diffuse" Reflection

- Theoretical explanation
 - Multiple scattering
- Experimental realization
 - Pressed magnesium oxide powder
 - Almost never valid at high angles of incidence

Paint manufacturers attempt to create ideal diffuse paints

Glossy Reflection

Glossy Reflection

- Due to surface roughness
- Empirical models
 - Phong
 - Blinn-Phong
- Physical models
 - Blinn
 - Cook & Torrance

Phong Reflection Model

Cosine power lobe

$$\begin{split} f_r(\omega_o, x, \omega_i) &= k_s \big(\underline{R}(\underline{I}) \cdot \underline{V}\big)^{k_e} \\ - \ \mathsf{L}_{\mathsf{r},\mathsf{s}} &= \mathsf{L}_{\mathsf{i}} \ \mathsf{k}_{\mathsf{s}} \ \mathsf{cos}^{\mathsf{ke}} \ \theta_{\mathsf{RV}} \end{split}$$

- Dot product & power
- Not energy conserving/reciprocal
- Plastic-like appearance

Phong Exponent k_e

$$f_r(\omega_o, x, \omega_i) = k_s (\underline{R}(\underline{I}) \cdot \underline{V})^{k_e}$$

Determines size of highlight

Blinn-Phong Reflection Model

Blinn-Phong reflection model

$$f_r(\omega_o, x, \omega_i) = k_s (H \cdot N)^{k_e}$$

- $L_{r,s} = L_i k_s \cos^{ke} \theta_{HN}$
- $-\theta_{RV} \Rightarrow \theta_{HN}$
- Light source, viewer far away
- <u>I</u>, <u>R</u> constant: <u>H</u> constant θ_{HN} less expensive to compute

Phong Illumination Model

• Extended light sources: *l* point light sources

$$L_{r} = k_{a}L_{l,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(R(I_{l}) \cdot V)^{k_{e}}$$
 (Phong)
$$L_{r} = k_{a}L_{l,a} + k_{d}\sum_{l}L_{l}(I_{l} \cdot N) + k_{s}\sum_{l}L_{l}(H_{l} \cdot N)^{k_{e}}$$
 (Blinn)

- Color of specular reflection equal to light source
- Heuristic model
 - Contradicts physics
 - Purely local illumination
 - Only direct light from the light sources
 - No further reflection on other surfaces
 - Constant ambient term
- Often: light sources & viewer assumed to be far away

Microfacet Model

- Isotropic microfacet collection
- Microfacets assumed as perfectly smooth reflectors
- BRDF
 - Distribution of microfacets
 - Often probabilistic distribution of orientation or V-groove assumption
 - Planar reflection properties
 - Self-masking, shadowing

Ward Reflection Model

BRDF

$$f_r = \frac{\rho_d}{\pi} + \rho_s \frac{1}{\sqrt{(I \bullet N)(V \bullet N)}} \bullet \frac{\exp(-\tan^2 \angle (H, N) / \sigma^2)}{4\pi\sigma^2}$$

- \Box σ standard deviation (RMS) of surface slope
- Simple expansion to anisotropic model (σ_x, σ_y)
- Empirical, not physics-based
- Inspired by notion of reflecting microfacets
- Convincing results
- Good match to measured data

Physics-inspired BRDFs

- Notion of reflecting microfacet
- Specular reflectivity of the form

$$f_r = \frac{D \cdot G \cdot F_{\lambda}(\lambda, \theta_i)}{\pi \ N \cdot V}$$

- D : statistical microfacet distribution
- G: geometric attenuation, self-shadowing
- F: Fresnel term, wavelength, angle dependency of reflection along mirror direction
- N•V : flaring effect at low angle of incidence

Cook-Torrance model

- F: wavelength- and angle-dependent reflection
- Metal surfaces

Cook-Torrance Reflection Model

 Cook-Torrance reflectance model is based on the microfacet model. The BRDF is defined as the sum of a diffuse and specular components:

$$f_r = k_d \rho_d + k_s \rho_s; \qquad k_d + k_s \le 1$$

where k_s and k_d are the specular and diffuse coefficients.

• Derivation of the specular component ρ_s is based on a **physically derived** theoretical reflectance model

Cook-Torrance Specular Term

$$\rho_s = \frac{F_{\lambda} DG}{\pi (\underline{N} \cdot \underline{V})(\underline{N} \cdot \underline{I})}$$

 $F_{\lambda} \approx (1 + (V \cdot N))^{\lambda}$

- D: Distribution function of microfacet orientations
- G: Geometrical attenuation factor
 - represents self-masking and shadowing effects of microfacets
- F_{λ} : Fresnel term
 - computed by Fresnel equation
 - relates incident light to reflected light for each planar microfacet
- N-V: Proportional to visible surface area
- N-I: Proportional to illuminated surface area

Microfacet Distribution Functions

- **Isotropic Distributions**
- $D(\omega) \Rightarrow D(\alpha) \quad \alpha = \mathbf{N} \cdot \mathbf{H}$

$$\alpha = \mathbf{N} \cdot \mathbf{H}$$

- \square α : angle to average normal of surface
- Characterized by half-angle β

$$D(\beta) = \frac{1}{2}$$

Blinn

Torrance-Sparrow

 $D(\alpha) = e^{-\left(\frac{\sqrt{2}}{\beta}\alpha\right)^2}$

- **Beckmann**
 - *m* : average slope of the microfacets
 - Used by Cook-Torrance

$$D(\alpha) = \frac{1}{4m^2 \cos^4 \alpha} e^{-[\tan \alpha/m]^2}$$

Beckman Microfacet Distribution Function

m=0.6

Geometric Attenuation Factor

- V-shaped grooves
- Fully illuminated and visible

$$G = 1$$

Partial masking of reflected light

$$G = \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{V})}{(\underline{V} \cdot \underline{H})}$$

Partial shadowing of incident light

$$G = \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{I})}{(\underline{V} \cdot \underline{H})}$$

$$G = \min \left\{ 1, \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{V})}{(\underline{V} \cdot \underline{H})}, \frac{2(\underline{N} \cdot \underline{H})(\underline{N} \cdot \underline{I})}{(\underline{V} \cdot \underline{H})} \right\}$$

Comparison Phong vs. Torrance

Texturing

Simple Illumination

- No illumination
- Constant colors

- Parallel light
- Diffuse reflection

Standard Illumination

- Parallel light
- Specular reflection

- Multiple local light sources
- Different BRDFs

Object properties constant over surface

Texturing

Locally varying object characteristics

- 2D Image Textures
- Shadows
- Bump-Mapping
- Reflection textures

Texture-modulated Quantities

- Modulation of object surface properties
- Reflectance
 - Color (RGB), diffuse reflection coefficient kd
 - Specular reflection coefficient ks
- Opacity (α)
- Normal vector
 - N(P) = N(P + t N) or N = N + dN
 - Bump mapping" or "Normal mapping"
- Geometry
 - -P=P+dP
 - "Displacement mapping"
- Distant illumination
 - "Environment mapping", "Reflection mapping"

Texture Mapping Transformations

The texture is mapped onto a surface in 3-D object space, which is then mapped to the screen by the viewing projection. These two mappings are composed to find the overall 2-D texture space to 2-D image space mapping, and the intermediate 3-D space is often forgotten. This simplification suggests texture mapping's close ties with image warping and geometric distortion.

Texture space (u,v)Object space (x_o,y_o,z_o) Screen space (x,y)

2D Texturing

- 2D texture mapped onto object
- Object projected onto 2D screen
- 2D→2D: warping operation
- Uniform sampling?
- Hole-filling/blending?

Texture Mapping in a Ray

Tracer

approximation:

- ray hits surface
- surface location corresponds to coordinate inside a texture

Texture Mapping in a Ray

approximation:

- ray hits surface
- surface location corresponds to coordinate inside a texture

Interpolation 1D

How to interpolate the color of the pixel?

Interpolation 1D

How to interpolate the color of the pixel?

Interpolation 2D

How to interpolate the color of the pixel?

Interpolation 2D

- How to interpolate the color of the pixel?
- 1D: i0 = (1-t)c0 + tc1
 - i1 = (1-t)c3 + tc2
- 2D: c = (1-s) i0 + s i1