NATIONAL INSTITUTE OF ELECTRONICS AND INFORMATION

TECHNOLOGY, CALICUT

NPTEL Lab Workshop Manual

Lab Workshop on FPGA Architecture and Programming using Verilog HDL

Contact Point for the Lab

Mr. Sreejeesh SG

Senior Technical Officer

Email: sreejeesh@nielit.gov.in

Ph.: 9447769756 (WhatsApp Preferred)

Introduction to Combinational Circuit Simulation Lab: 1 Logic gates

Introduction

The purpose of this experiment is to simulate the behavior of several of the basic logic gates and you will connect several logic gates together to create simple digital model.

Software tools Requirement

Modelsim (Siemens)

Logic Gates and their Properties

Gate	Description	Truth Table			Logic Symbol
OR	The output is active high if any one of the input is in active high state, Mathematically, Q = A+B	A 0 0 1	B 0 1 0	Output Q 0 1 1	A B OR A+B
AND	The output is active high only if both the inputs are in active high state, Mathematically,	A 0 0 1	B 0 1 0	Output Q 0 0	A AB AND
	Q = A.B	1	1	0	

			A	В	Output Q	
	NAND	The output is active high only if any one of the input is in active low state, Mathematically,	0	0	1 1	A AB
		Q = (A.B)	0	1	1	NAND NAND
		Q = (1 112)	1	0	0	į
			1	1		<u>j</u>
	XOR	The output is active high only if any	Α	В	Output Q	
		one of the input is in active high state, Mathematically, $Q = A.B' + B.A'$	0	0	0	A⊕B
					1	EOR
			0	1	1	!
			1	0	0	
			1	1		
	NOT	In this gate the output is opposite to the input state, Mathematically, $Q = A^1$	A 0		Output Q	
					1	A Ā NOT
					0	
ļ		The output is active high only if both	Α	В	Output Q	
	NOR	the inputs are in active low state, Mathematically, Q = (A+B)'	र0.इ.स्.भ्रो		. 1	A ————————————————————————————————————
				. ед. ят. FIT	0	NOR
		Q = (///D)	0	1	0	!
			1	0		
			1	1		

Describe the following basic logic gates in Verilog HDL and capture the Waveforms

Questions to answered after this lab

- 1. What is meant by ports?
- 2. Write the different types of port modes.
- 3. What are different types of operators?
- 4. What is difference $b/w \le and$: = operators?
- 5. What is meant by simulation?

