# INTELIGÊNCIA ARTIFICIAL INTRODUÇÃO

Luís Morgado

# INTELIGÊNCIA ARTIFICIAL

Inteligência artificial é uma área científica que estuda o desenvolvimento de sistemas computacionais capazes de comportamento inteligente

Adopta duas perspectivas principais:

- Analítica: por via empírica (baseada na prática, com experiências e observações) desenvolver modelos e teorias para explicar os fenómenos observados e reproduzir esses fenómenos em sistemas artificiais (dispositivos criados para o efeito)
- **Sintética**: com base nesses modelos e teorias, desenvolver sistemas capazes de apresentar características e comportamentos associados ao conceito de inteligência



# PRINCIPAIS PARADIGMAS DE IA

Paradigma, refere-se a um conjunto de ideias, conceitos ou modelos que que servem de base e orientam a forma de abordar questões e problemas numa determinada área e de conceber as respectivas soluções

### **SIMBÓLICO**

A inteligência é resultante da acção de processos computacionais sobre estruturas simbólicas

No paradigma simbólico os símbolos (elementos discretos de representação de informação) são centrais no processamento de informação e na representação de conceitos relacionados com o domínio de um problema (no caso geral, o mundo real) sob a forma de estruturas simbólicas

#### **CONEXIONISTA**

A inteligência é uma propriedade emergente das interacções de um número elevado de unidades elementares de processamento interligadas entre si

No paradigma conexionista o processamento de informação é baseado em redes de unidades de processamento elementares (designadas neurónios) interligadas entre si, sendo a informação mantida e processada nessas redes de forma distribuída, em particular nas ligações entre neurónios, em vez de símbolos

#### **COMPORTAMENTAL**

A inteligência resulta do comportamento individual e conjunto de múltiplos sistemas a diferentes escalas de organização tendo por base relações entre estímulos e respostas

No paradigma comportamental o processamento de informação é baseado em relações entre estímulos e respostas, modeladas sob a forma de reações e de comportamentos (conjuntos estruturados de reações)

# PARADIGMA SIMBÓLICO

### HIPÓTESE DO SISTEMA DE SÍMBOLOS FÍSICO

(Alan Newell e Herbert Simon, 1976)

Um sistema de símbolos físico tem os meios necessários e suficientes para a actividade inteligente em geral

Independentemente desta conjectura ser ou não verdade a computação simbólica tornou-se um dos suportes principais da inteligência artificial

### INTELIGÊNCIA = PROCESSOS + ESTRUTURAS SIMBÓLICAS



REPRESENTAÇÃO SIMBÓLICA

# REPRESENTAÇÕES SIMBÓLICAS

#### **ESTRUTURAS DE SÍMBOLOS**



SÍMBOLOS
SIGNIFICADO?

# REPRESENTAÇÕES SIMBÓLICAS

#### **ESTRUTURAS DE SÍMBOLOS**



SÍMBOLOS
SIGNIFICADO?

# REPRESENTAÇÕES SIMBÓLICAS

SÍMBOLOS COMO REPRESENTAÇÃO DA REALIDADE



As representações simbólicas não têm significado intrínseco, o significado resulta das relações entre estruturas de símbolos, bem como das relações dessas estruturas com as entradas e saídas do sistema (o domínio a que se referem), essa relação é designada ancoragem simbólica, pois o significado é referenciado (ancorado) nas observações e conceitos referenciados

# **ANCORAGEM SIMBÓLICA** (Symbolic Grounding)

# REPRESENTAÇÃO DE CONHECIMENTO

### CONSTRUÇÃO DE SIGNIFICADO ATRAVÉS DE RELACIONAMENTO



### **REDE SEMÂNTICA**

Modelo de conhecimento, organizado num grafo de conceitos inter-relacionados

#### **ONTOLOGIA**

Representação do conhecimento referente a um determinado domínio com base nos conceitos e relações entre conceitos desse domínio



Num sistema artificial o significado é construído através de relacionamentos, os quais podem ser representados através de redes semânticas, formando ontologias de representação do conhecimento relativo a um determinado domínio

Relação: associação entre elementos de um ou mais domínios de representação

# REPRESENTAÇÃO DE CONHECIMENTO

### DADOS, INFORMAÇÃO, CONHECIMENTO



## PARADIGMA CONEXIONISTA

### NEURÓNIO REDE NEURONAL



O processamento de informação é baseado em redes de unidades de processamento elementares (designadas neurónios) interligadas entre si, sendo a informação mantida e processada nessas redes de forma distribuída, em particular nas ligações entre neurónios

Inspirado na biologia do sistema nervoso





# PARADIGMA COMPORTAMENTAL



O processamento de informação é baseado em relações entre estímulos e respostas, modeladas sob a forma de reações e de comportamentos em diferentes escalas de organização

### INTELIGÊNCIA ARTIFICIAL PARA SISTEMAS AUTÓNOMOS

Exemplos de algumas aplicações de inteligência artificial para sistemas autónomos (estacionamento automático, logística, distribuição de energia, jogos de computador, robótica, veículos autónomos)





















# **AUTÓNOMO**

Do grego *autónomos*, que se governa por leis próprias; independente; autossuficiente; sistema que funciona sem depender de ligação a outro sistema

[Dicionário Porto Editora de Língua Portuguesa]

### **AUTONOMIA**

CAPACIDADE DE UM SISTEMA OPERAR POR SI PRÓPRIO, DE MODO INDEPENDENTE DE OUTROS SISTEMAS

Autónomo ≠ Inteligente

Inteligente ⇒ Autónomo

**AUTONOMIA É UMA CARACTERÍSTICA DA INTELIGÊNCIA** 

# SISTEMA AUTÓNOMO INTELIGENTE



### AGENTE INTELIGENTE

Representação computacional de um sistema autónomo inteligente



# REPRESENTAÇÃO DO AMBIENTE

A representação do ambiente é um elemento de suporte do processamento interno em alguns modelos de agente inteligente

Essas representações podem ter diferentes níveis de complexidade (por exemplo, representações com base em grafos)

No caso de um ambiente físico contínuo, requer a discretização das percepções







## PROPRIEDADES DE UM AMBIENTE

- Discreto vs. Contínuo
- Determinístico vs. Estocástico 

  Com um carácter não completamente determinado ou aleatório
- Estático vs. Dinâmico
- Totalmente vs. Parcialmente observável → Apenas parte da informação está disponível ao agente, por exemplo, informação local
- Agente único vs. Múltiplos agentes

| Task Environment                  | Observable | Agents | Deterministic | Episodic   | Static  | Discrete   |
|-----------------------------------|------------|--------|---------------|------------|---------|------------|
| Crossword puzzle                  | Fully      | Single | Deterministic | Sequential | Static  | Discrete   |
| Chess with a clock                | Fully      | Multi  | Deterministic | Sequential | Semi    | Discrete   |
| Poker                             | Partially  | Multi  | Stochastic    | Sequential | Static  | Discrete   |
| Backgammon                        | Fully      | Multi  | Stochastic    | Sequential | Static  | Discrete   |
| Taxi driving                      | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Continuous |
| Medical diagnosis                 | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| Image analysis Part-picking robot | Fully      | Single | Deterministic | Episodic   | Semi    | Continuous |
|                                   | Partially  | Single | Stochastic    | Episodic   | Dynamic | Continuous |
| Refinery controller               | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| English tutor                     | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Discrete   |

[Russel & Norvig, 2010]

# **AGENTE INTELIGENTE**







#### Exemplo

Personagem virtual de um jogo de computador modelada como um agente autónomo



# **AGENTE INTELIGENTE**



Características principais, dependentes do tipo de arquitectura de agente

### **AUTONOMIA**

Capacidade de um sistema operar por si próprio, de modo independente de outros sistemas

### REACTIVIDADE

Capacidade de um sistema reagir aos estímulos do ambiente

### **PRÓ-ACTIVIDADE**

Capacidade de um sistema tomar a iniciativa de acção em função dos seus objectivos

### SOCIABILIDADE

Capacidade de um sistema interactuar e agir em conjunto com outros agentes para concretizar objectivos individuais ou comuns a outros agentes

### **FINALIDADE**

Todas as características de um agente estão associadas à concretização da finalidade do agente, ou seja, do seu propósito, expresso na função que realiza

## **AGENTES INTELIGENTES**

# **INTELIGÊNCIA**

- Propriedade geral da mente
- Capacidade de raciocinar, aprender, conhecer, ...



# **COGNIÇÃO**

- Processo de conhecer
  - É o processo pelo qual um sistema inteligente adquire, processa, armazena e utiliza informação
- A cognição também pode ser caracterizada como uma propriedade global de um agente, expressa através da capacidade de realizar a acção adequada dadas as condições do ambiente

Cognição relacionada com a racionalidade

### **RACIONALIDADE**

## **RACIONALIDADE**

- Capacidade de decidir no sentido de conseguir o melhor resultado possível perante os objectivos que se pretende atingir
  - Orientada pelo propósito que motiva o sistema
    - Pode ser implícito, por exemplo, sob a forma de associações estímulo-resposta
    - Pode ser explícito, por exemplo, sob a forma de objectivos representados simbolicamente
- Um sistema é racional se faz a "acção certa" dado o conhecimento que possui [Russell & Norvig, 2003]
- Inteligência como sinónimo de racionalidade
  - Perspectiva simbólica ou cognitiva

## RACIONALIDADE

- O que é um agente racional?
  - Um agente que realiza as acções correctas
- O que é uma acção correcta?
  - Necessário uma medida de desempenho
    - Idealmente objectiva
      - Por exemplo, a quantidade de lixo por limpar...
    - Função do que se pretende (objectivos)
    - Expressa de diferentes formas (valor, utilidade, custo)
- Um agente racional escolhe a acção que maximiza o valor esperado da medida de desempenho dado o conhecimento disponível sobre o ambiente, percepções e acções

# ARQUITECTURAS DE AGENTE

### DEFINIÇÃO DA ORGANIZAÇÃO INTERNA DE UM AGENTE

Qual deve ser a organização interna de um agente inteligente (arquitectura de agente) para realizar as características que deve apresentar?



[Russel & Norvig, 2010]

# ARQUITECTURAS DE AGENTE

#### MODELO REACTIVO

Paradigma Comportamental

### MODELO DELIBERATIVO

Paradigma Simbólico



O comportamento do sistema é gerado de forma reactiva, com base em associações entre estímulos (referentes às percepções) e respostas (referentes às acções)



O comportamento do sistema é gerado com base em mecanismos de deliberação (raciocínio e tomada de decisão), utilizando representações internas que incluem a representação explícita de objectivos

#### MODELO HÍBRIDO



O comportamento do sistema é gerado com base em processamento que integra as vertentes reactiva e deliberativa

#### **FINALIDADE**

Objectivos implícitos

Nas associações estímulo-resposta

Objectivos explícitos

### **BIBLIOGRAFIA**

[Russel & Norvig, 2010]

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice Hall, 2010

[Sloman, 1993]

A. Sloman, *The Mind as a Control System*, In Hookway, C., Peterson, D. (Eds.), Philosophy and the Cognitive Sciences, 69-110. Cambridge University Press.

[Hayes-Roth, 1997]

F. Hayes-Roth, Artificial Intelligence: What Works and What Doesn't?, AI Magazine, Vol 18, No 2, 1997

[Jennings & Wooldridge, 1998]

N. Jennings, M. Wolldridge, *Applications of Intelligent Agents*, In N. Jennings, M. Wooldridge, (Eds.), Agent Technology - Foundations, Applications, and Markets, Springer-Verlag, 1998

[Franklin & Gaesser, 1996]

S. Franklin, A. Gaesser, *Is it an agent, or just a program? A taxonomy for autonomous agents,* in Proc. of 3rd International Workshop on Agent Theories, Architecture and Language, Springer-Verlag, 1996

[Newell, 1990]

A. Newell, *Unified Theories of Cognition*, Harvard University Press, 1990

[Maturana & Varela, 1987]

H. Maturana, F. Varela, *The Tree of Knowledge: The Biological Roots of Human Understanding*, Shambhala Publications, 1987

[Shepherd, 1994]

G. Shepherd, Neurobiology, Oxford University Press, 1994