פתרון ממ"ן 12

שאלה 1

 $A,B\in\mathcal{P}(\{1,2,3,4\})$ לכל ($\{1,2,3,4\}$) אם ורק אם $\mathcal{P}(\{1,2,3,4\})$ נתונים שני יחסים ASB -ו $A\cap\{1,2\}\subset B\cap\{1,2\}$ אם ורק אם ARB

- א. קבעו אם אחד מהיחסים הוא יחס שקילות ואם התשובה חיובית, מיצאו את מחלקות השקילות שלו.
- ב. קבעו אם אחד היחסים הוא יחס סדר חלקי או מלא ואם התשובה חיובית, מיצאו את האיברים המינימליים והמקסימליים בקבוצה הסדורה שגיליתם.

תשובה

: א. נראה ש- R הוא יחס שקילות

R ולכן ARA ולכן , $A\cap\{1,2\}=A\cap\{1,2\}$ מתקיים $A\in\mathcal{P}(\{1,2,3,4\})$ כלומר ARA ולכן יחס רפלקסיבי.

לכן $A\cap\{1,2\}=B\cap\{1,2\}$ אז ARB אם $ARB\in\mathcal{P}(\{1,2,3,4\})$ לכל

יחס סימטרי. BRA כלומר $B \cap \{1,2\} = A \cap \{1,2\}$

 $A \cap \{1,2\} = B \cap \{1,2\}$ אז BRC ור ARB אם $A,B,C \in \mathcal{P}(\{1,2,3,4\})$ אז $AC \cap \{1,2\} = C \cap \{1,2\}$ טרנזיטיבי. $AC \cap \{1,2\} = C \cap \{1,2\}$ מכאן ש- $AC \cap \{1,2\} = C \cap \{1,2\}$ ולכן $AC \cap \{1,2\} = C \cap \{1,2\}$ לפיכך $AC \cap \{1,2\}$ הוא יחס שקילות.

לפי ההגדרה, שתי קבוצות $A,B\in\mathcal{P}(\{1,2,3,4\})$ נמצאות ביחס R אם ורק אם החיתוכים שלהן עם הקבוצה $\{1,2\}$ שווים זה לזה. מכאן שבכל מחלקת שקילות אנו אמורים למצוא קבוצות אשר החיתוכים שלהן עם $\{1,2\}$ זהים. מאחר שחיתוך בין קבוצה כלשהי ל- $\{1,2\}$ יכול להיות רק אחת מארבע הקבוצות שחלקיות ל- $\{1,2\}$ (כלומר \emptyset , $\{1\}$, $\{2\}$, $\{1\}$) נובע שיש לכל היותר P מחלקות שקילות. וכפי שנראה יש אכן P מחלקות:

(\varnothing הוא עם (1,2) הוא שבה ממצאת שבה כל הקבוצות אשר החיתוך שלהן עם $S_\varnothing = \{\varnothing, \{3\}, \{4\}, \{3,4\}\}$

({1} הוא (1,2) החיתוך שלהן אשר החיתוך (שבה כל הקבוצות שבה נמצאת ($S_{\{1\}} = \{\{1\},\{1,3\},\{1,4\},\{1,3,4\}\}$

({1}) הוא (1,2) המחלקה שבה נמצאת (2) שבה כל הקבוצות אשר החיתוך שלהן עם $S_{\{2\}} = \{\{2\}, \{2,3\}, \{2,4\}, \{2,3,4\}\}$

 $\{1,2\}$ הוא המחלקה שבה נמצאת (1,2) שבה כל הקבוצות אשר החיתוך שלהן עם $\{1,2\}$ הוא המחלקה שבה נמצאת $S_{\{1,2\}} = \{\{1,2\},\{1,2,3\},\{1,2,4\},\{1,2,3,4\}\}$

 $\mathcal{P}(\{1,2,3,4\})$ היא חלוקה של $\{S_{\varnothing},S_{\{1\}},S_{\{2\}},S_{\{1,2\}}\}$,2.16 הערה: כפי שמובטח במשפט $\mathcal{P}(\{1,2,3,4\})$ הן לא ריקות, זרות זו לזו והאיחוד שלהן הוא $S_{\varnothing},S_{\{1\}},S_{\{2\}},S_{\{1,2\}}$ (שכן $S_{\varnothing},S_{\{1\}},S_{\{2\}},S_{\{1,2\}}$

ב. נראה ש-S הוא יחס סדר.

 $A\cap\{1,2\}=A\cap\{1,2\}$ כי $\langle A,A\rangle \not\in S$ או מתקיים $A,A \not\in \mathcal{P}(\{1,2,3,4\})$ כי $A,A \not\in S$ או $A,B,C \in \mathcal{P}(\{1,2,3,4\})$ או $A\cap\{1,2\}\subset B\cap\{1,2\}$ או $A,B,C \in \mathcal{P}(\{1,2,3,4\})$ או $A,B,C \in \mathcal{P}(\{1,2,3,4\})$ או $A,B,C \in \mathcal{P}(\{1,2,3,4\})$ או $A,B \cap \{1,2\}\subset C\cap\{1,2\}$ ווגם $A,A \cap \{1,2\}\subset B\cap\{1,2\}$ מכאן שלכל $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ מתקיים $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ שיים $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ שיים $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ שיונה משט $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ או $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ שיונה מארבע הקבוצה $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ ווא יחס סדר. $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ או $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ או $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ או $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ כך $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ ווא $A,A \cap \{1,2\}\subset C\cap\{1,2\}$ או $A,A \cap \{1,2\}$ או $A,A \cap$

שאלה 2

על הקבוצה xRy , $x,y\in A$ כך: לכל R,S כך: אם ורק אם $A=\mathbf{N}\setminus\{0\}$ אם ורק אם $\frac{y}{x}=2^j$ כך שלם i>0 כך שלם קיים מספר שלם i>0 כך שלם i>0 קיים מספר שלם לבעי i>0 כך שלם לבעים מספר שלם מספר של

- א. הוכיחו שאחד משני היחסים הוא יחס שקילות.
- ב. מיצאו את מחלקות השקילות של יחס השקילות שגיליתם בסעיף אי.
 - ג. הוכיחו שאחד משני היחסים הוא סדר חלקי.
- ד. מיצאו את האיברים המינימליים ואת האיברים המקסימליים (אם יש) לגבי היחס האחרון.

תשובה

א. נוכיח ש- S הוא יחס שקילות.

. רפלקסיביו אולכן אולכן xSx ולכן המקיים $x,x \in A$ מתקיים אולכן לכל הפלקסיבי. רפלקסיבי

 $\frac{x}{y}=2^{-j}$ אז $\frac{y}{x}=2^{j}$ -שימטריה: לכל xSy אז קיים מספר שלם ySx אז קיים אז לכל ySx -שלם, נקבל ש- אלם, נקבל ש- עריה ולכן אינה שלם, נקבל ש- עריה אלם אלם, נקבל ש- אלם, נקב

. שלם.
$$j+k$$
 אלם. כאשר כמובן, $\frac{z}{x}=\frac{z}{y}\cdot\frac{y}{x}=2^{j}\cdot2^{k}=2^{j+k}$ ואז $\frac{z}{y}=2^{k}$ רי $\frac{y}{x}=2^{j}$

. טרנזיטיבי. לפיכך הוא יחס שקילות S ומכאן xSz ומכאו

- ב. שלפי הגדרת S, לכל S, $x,y \in A$ אם ורק אם המנה שלהם היא חזקה של S (חיובית שלילית או S). מכאן ששני מספרים אי- זוגיים שונים לא יכולים להימצא ביחס S ולכן מספרים אי-זוגיים שונים יימצאו תמיד במחקות שקילות שונות. מצד שני, לכל מספר טבעי מספרים אי-זוגיים שונים יימצאו תמיד במחקות שקילות שונות. מצד שני, לכל מספר טבעי S(2k+1) -שייך למחלקה של S במילים אחרות, כל מספר S שייך למחלקה של S שייך למחלקות של המספרים האי-זוגים הן כל מחלקות השקילות של S היחס הזה. לסיכום, כל מחלקת שקילות של S היא מהצורה S (לכל S ש מחלקה שכזו והמספר הקטן ביותר בה הוא S ש מחלקה שכזו והמספר הקטן ביותר בה הוא S (לכל S ש מחלקה שכזו והמספר הקטן ביותר בה הוא S שורבי S (לכל S ש מחלקה שכזו והמספר הקטן ביותר בה הוא S ביחס הזה.
 - ג. נראה ש- R הוא סדר חלקי.

i>0 **טבעי מ**ספר אם קיים מחפר אנטי-רפלקסיביות: לפי ההגדרה, לכל אר אנטי-רפלקסיביות: לפי ההגדרה, לכל אר או או איז בהכרח איי או או איז בהכרח y>x ולכן לא בהכרח y>x ומאחר שבמצב $z^i>2^0=1$ נקבל או בהכרח xRx ייתכן ש-xRx.

j,k טרנזיטיביות טבעיים חיוביים yRz ו- xRy אם $x,y,z\in A$ טבעיים חיוביים j+k טבעי j+k טבעי x באשר x בy בy ואז y בy באשר y בy באשר y בy באשר y בינו y בעי חיובי. y בעי חיובי. y במכאן ש- y טרנזיטיבי. לפיכך הוא יחס סדר.

 $\frac{2k+1}{x}
eq 2^i$, $x \in A$ מפני שלכל R מפני ביחס R הוא איבר מינימלי ביחס 2k+1 הוא איבר אי- זוגי 2k+1 המנה בין מספר אי זוגי ומספר טבעי אחר לא יכולה להיות חזקה חיובית של i>0 לכל 0 אין עוד איברים מינימליים, שכן שכל מספר טבעי זוגי הוא מהצורה $y=(2k+1)2^i$ כאשר $y=(2k+1)2^i$ ולכן $y=(2k+1)2^i$ לכן $y=(2k+1)2^i$ ולכן $y=(2k+1)2^i$ ולכן $y=(2k+1)2^i$ לכן $y=(2k+1)2^i$ ולכן $y=(2k+1)2^i$ איי

R מכאן שהמספרים האי-זוגיים הם כל האיברים המינימליים ביחס

. xR(2x) מתקיים $x \in \mathbb{N}$ מפני שלכל R מפני ביחס

שאלה 3

. פונקציה $f: \mathbf{N} \to \mathbf{N}$ תהי תהי . $A_{-1} = \varnothing$ ובנוסף נסמן $A_n = \{0,1,2,...,n\}$ פונקציה.

- $f(A_n) \neq f(A_m)$ אם ורק אם ורק אם לכל $f(A_n) \neq f(A_m)$ א. הוכיחו ש- f היא חד-חד-ערכית אם ורק אם . $m \neq n$
- $m \neq n$, $m,n \in \mathbb{N} \cup \{-1\}$ לכל $f^{-1}[A_n] \neq f^{-1}[A_m]$ ב. הוכיחו ש- f היא על אם ורק אם

תשובה

א. כיוון ראשון

 $m \neq n$, $m,n \in \mathbb{N} \cup \{-1\}$ לכל $f[A_n] \neq f[A_m]$ היא חד-חד-ערכית ונראה וניח f לכל $f[A_n] \neq f[A_m]$ או אפשר להניח למשל ש- m > n במקרה זה, $m \neq n$ אבל $m \neq n$ נבחר אז לפי הגדרה 3.3 $f(m) \in f[A_m]$ מצד שני, m שונה מכל אחד מהמספרים ומפני ש- $f(m) \in f[A_m]$ היא חד-חד-ערכית נקבל מכאן ש- $f(m) \neq f[A_m]$ שונה מכל אחד מהמספרים $f[A_n] \neq f[A_m]$ לכן $f[A_n] \neq f[A_m]$ לכן $f(m) \neq f[A_n]$ כלומר $f[A_n] \neq f[A_m]$ לכן $f(m) \neq f[A_n]$

נניח בדרך השלילה ש- $f[A_n] = f^{-1}[f[A_m]]$ אז אז $f[A_n] = f[A_m] = f[A_m]$ אז, מפני ש- $f[A_n] = f[A_m]$ אז, מפני ש-

כיוון שני

נניח ש- $f[A_n] \neq f[A_m]$ לכל $f[A_n] \neq n$ (ניח ש- $f[A_n] \neq n$ (ניח ש- $f[A_n] \neq f[A_m]$ לכל $f[A_n] \neq f[A_n] \neq f[A_n]$ מתקיים $f[A_n] \neq f[A_n] \neq f[A_n]$ אבל מפני ש- $f[A_n] \subset f[A_{n+1}]$ לכן $f[A_n] \subset f[A_{n+1}]$ לכן $f[A_n] \subseteq f[A_{n+1}] \subseteq f[A_{n+1}]$ לכן $f[A_n] \subseteq f[A_{n+1}] \subseteq f[A_n]$ כלומר $f[A_n] \subseteq f[A_n]$ שונה מ- $f[A_n] \subseteq f[A_n]$ שונה ממנו. מכאן שלכל $f[A_n] \subseteq f[A_n]$ אם $f[A_n] \subseteq f[A_n]$ אם $f[A_n] \subseteq f[A_n]$ מהתמונות של האיברים הקטנים ממנו. מכאן שלכל $f[A_n] \neq f[A_n]$ אם $f[A_n] \neq f[A_n]$ היא חד-חד-ערכית.

ב. כיוון ראשון

 $m \neq n$, $m,n \in \mathbf{N} \cup \{-1\}$ לכל $f^{-1}[A_n] \neq f^{-1}[A_m]$ -ש היא על ונראה שf -ש לכל f היא על, קיים f בך שf מאחר שf מאחר שf היא על, קיים f בך שf מאחר שf היא על, קיים f בך שf נקבל f(x)=m>n ולכן לפי הגדרה f f מצד שני, מפניה שf ולכן לפי הגדרה f ב $f^{-1}[A_m]$ מכאן שf בf לכן ולכן f לכן ולכן f בf בf בתרון אחר:

 $f[f^{-1}[A_n]]=f[f^{-1}[A_m]]$ אז $f^{-1}[A_n]=f^{-1}[A_m]$ עבור $f^{-1}[A_n]=f^{-1}[A_m]$ היא על , משאלה 16 די נקבל ש- $f^{-1}[A_m]$ וזו סתירה.

כיוון שני

. נניח ש- $f^{-1}[A_n] \neq f^{-1}[A_n]$ לכל $f^{-1}[A_n] \neq f^{-1}[A_m]$ ונראה ש- $f^{-1}[A_n] \neq f^{-1}[A_n] \neq f^{-1}[A_n]$ לשם כך נבחר מספר כלשהו $n \in \mathbb{N}$ ונראה שיש לו מקור. לפי הנתון, $n \in \mathbb{N}$ מוגדרת בנתוני השאלה).

 $f^{-1}[A_n]
eq f^{-1}[A_{n-1}]
eq f^{-1}[A_{n-1}]
eq f^{-1}[A_n]$ מאחר ש- $A_{n-1}
eq A_n$ הרי שגם $A_{n-1}
eq A_n$ ומפני ש- $A_{n-1}
eq A_n$ הרי שגם $A_{n-1}
eq A_n$ ולכן קיים $A_{n-1}
eq A_n$ כך ש- $A_n
eq A_n$ מכאן (לפי $A_n
eq A_n$ ומכאן שבהכרח $A_n
eq A_n$ (כי $A_n
eq A_n$ היחיד השיים ל- $A_n
eq A_n$ ואינו שייך ל- $A_n
eq A_n$ מכאן ש- $A_n
eq A_n$ היא על.

שאלה 4

 $f(m,n)=\langle 2m+3n,3m+2n\rangle$, $m,n\in {f Z}$ לכל המוגדרת כך: לכל $f:{f Z}\times{f Z}\to{f Z}\times{f Z}\to{f Z}\times{f Z}$ נתונה פונקציה $\pi_1(m,n)=m$ לכל $\pi_1(m,n)=m$ לכל $\pi_1(m,n)=m$ לכל את ההטלה על הרכיב הראשון לפל את היא חד-חד-ערכית ולא על.

- ב. הוכיחו ש- $\pi_1 \circ f$ היא על ולא חד-חד-ערכית.
- לכל $g\langle x,y\rangle=\langle 2x+3y,3x+2y\rangle$ המוגדרת על-ידי $g\colon \mathbf{Q}\times\mathbf{Q}\to\mathbf{Q}\times\mathbf{Q}$ לכל הוכיחו שהפונקציה $x,y\in\mathbf{Q}$

תשובה

 $(m,n) \in \mathbf{Z} \times \mathbf{Z}$ אבן אם נגיון שיש $(m,n) \in \mathbf{Z} \times \mathbf{Z}$ לכל $(m,n) \in \mathbf{Z} \times \mathbf{Z}$ לכל $(m,n) \in \mathbf{Z} \times \mathbf{Z}$ להנחה ש- $(m,n) \in \mathbf{Z} \times \mathbf{Z}$ לא על. $(m,n) \in \mathbf{Z} \times \mathbf{$

 $(\pi_1\circ f)\langle m,n \rangle=\pi_1\langle 2m+3n,3m+2n \rangle=2m+3n$ ב. לפי ההגדרה,

. לכל $\pi_1\circ f$ שכאן ש- $\pi_1\circ f$ מכאן ש- $(\pi_1\circ f)\langle -k,k\rangle = -2k+3k=k$ מתקיים א מתקיים לכל

 $(\pi_1\circ f)\langle -5,5\rangle=5$ וגם ($\pi_1\circ f)\langle 1,1\rangle=5$ לא חד-חד-ערכית שכן למשל, $\pi_1\circ f$

ג. כדי למצוא פונקציה הפכית ל- g (אם היא בכלל קיימת) נרשום $g\langle x,y\rangle=\langle s,t\rangle$ (שוויון שנותן ... כדי למצוא פונקציה של $g\langle x,y\rangle$ ונמצא את הקשר ההפוך כלומר ונביע את $g\langle x,y\rangle$ כפונקציה של $g\langle x,y\rangle=\langle x,t\rangle$ נובע $g\langle x,y\rangle=\langle x,t\rangle=\langle x,t\rangle$ ונקבל מכאן ש- של $g\langle x,y\rangle=\langle x,t\rangle=\langle x,t\rangle=\langle x,t\rangle$

$$x = \frac{3t}{5} - \frac{2s}{5}$$
, $y = \frac{3s}{5} - \frac{2t}{5}$

 $\langle s,t \rangle \in \mathbf{Q} \times \mathbf{Q}$ לכל $h\langle s,t \rangle = \langle \frac{3t}{5} - \frac{2s}{5}, \frac{3s}{5} - \frac{2t}{5} \rangle$ על-ידי $h: \mathbf{Q} \times \mathbf{Q} \to \mathbf{Q} \times \mathbf{Q}$ לכן נגדיר $h: \mathbf{Q} \times \mathbf{Q} \to \mathbf{Q} \times \mathbf{Q}$

 $\mathbf{Q} imes \mathbf{Q}$ נראה ש- h הפכית ל- g כלומר שההרכבות א ו- $h \circ g$ ו- $g \circ h$ הות של פונקציית הזהות של (וזה גם יראה ש- g הפיכה)

:לכל $\langle x,y \rangle \in \mathbf{Q} \times \mathbf{Q}$ לכל

$$(h \circ g)\langle x, y \rangle = (h(g\langle x, y \rangle) = h\langle 2x + 3y, 3x + 2y \rangle =$$

$$= \langle \frac{3(3x + 2y)}{5} - \frac{2(2x + 3y)}{5}, \frac{3(2x + 3y)}{5} - \frac{2(3x + 2y)}{5} \rangle = \langle x, y \rangle$$

. $h \circ g = I_{\mathbf{Q} \times \mathbf{Q}}$ לכן

:לכל $\langle s,t \rangle \in \mathbf{Q} imes \mathbf{Q}$ לכל

לכן
$$(g \circ h)\langle s,t \rangle = (g(h\langle s,t \rangle) = g\langle h\langle s,t \rangle = g\langle \frac{3t}{5} - \frac{2s}{5}, \frac{3s}{5} - \frac{2t}{5} \rangle =$$

$$= \langle 2\left(\frac{3t}{5} - \frac{2s}{5}\right) + 3\left(\frac{3s}{5} - \frac{2t}{5}\right), 3\left(\frac{3t}{5} - \frac{2s}{5}\right) + 2\left(\frac{3s}{5} - \frac{2t}{5}\right) \rangle = \langle s,t \rangle$$

 $g \circ h = I_{\mathbf{Q} \times \mathbf{Q}}$

g -ופכית ל- h הופכית ל-