MINISTÈRE DE L'EDUCATION NATIONALE ET DE L'ALPHABETISATION

REPUBLIQUE DE COTE D'IVOIRE

MON ECOLE A LA MAISON

SECONDAIRE

 $\begin{array}{c} 1^{\rm \grave{e}re}C\\ MATHEMATIQUES \end{array}$

CÔTE D'IVOIRE – ÉCOLE NUMÉRIQUE

Durée : 12 heures Code :

Compétence 3 Traiter des situations relatives à la géométrie du

plan, à la géométrie de l'espace et aux

transformations du plan

Thème 2 Géométrie de l'espace

Leçon 16: VECTEURS DE L'ESPACE

A. SITUATION D'APPRENTISSAGE

Un professeur des arts plastiques demande à ses élèves de faire le dessin d'un bâtiment qui les a le plus marqués.

Un de ces élèves va voir son frère en classe de première C pour lui demander de l'aider à reproduire la pyramide du plateau dont la photo est ci-contre.

Désireux d'avoir le plus beau dessin, les deux élèves décident d'utiliser des vecteurs de l'espace pour mieux reproduire cette image.

B. CONTENU DE LA LEÇON

I- VECTEURS, DROITES ET PLANS

L'ensemble des vecteurs du plan P est noté V. L'ensemble des vecteurs de l'espace ξ sera noté \mathscr{W} .

1- Vecteurs colinéaires

Propriété 1

- Deux vecteurs sont colinéaires si l'un des deux est nul ou s'ils ont la même direction.
- Deux vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement s'il existe un nombre réel k tel que : $\vec{u} = k \vec{v}$ ou $\vec{v} = k u$.

Exercice de fixation

ABCD est un parallélogramme et I est le milieu de [AB].

- 1) Justifie que \overrightarrow{AI} et \overrightarrow{DC} sont colinéaires.
- 2) Exprime \overrightarrow{AI} en fonction de \overrightarrow{DC}

Solution

- 1) ABCD est un parallélogramme donc (AB)//(DC). On a I $\in (AB)$. D'où (AI)//(DC). Alors \overrightarrow{AI} et \overrightarrow{DC} sont colinéaires.
- 2) I est le milieu de [AB] alors $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$ or $\overrightarrow{AB} = \overrightarrow{DC}$ par conséquent $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{DC}$

Propriété 2

Soit A un point de ξ et \vec{u} un vecteur non nul de \mathscr{W} .

L'ensemble des points M de ξ tels que $\overrightarrow{AM} = k\overrightarrow{u}$, $(k \in \mathbb{R})$ est la droite (D) passant par A et de vecteur directeur \overrightarrow{u} (ou droite de repère (A, \overrightarrow{u})).

On la note : $D(A, \vec{u})$.

Exercice de fixation

Soit B un point de ξ et \vec{v} un vecteur non nul de \mathscr{W} .

Détermine l'ensemble des points M de ξ tels que $\overrightarrow{BM} = k\vec{v}$ avec k un réel.

Solution

 \vec{v} est un vecteur non nul et B est un point de ξ . L'ensemble des points M tels que $\overrightarrow{BM} = k\vec{v}$ avec k un réel est donc la droite D(B, \vec{v}).

Remarques

Soit A et B deux points distincts de ξ .

- L'ensemble des points M de ξ tels que $\overrightarrow{AM} = k\overrightarrow{AB}$, $(k \in \mathbb{R})$ est la droite (AB).

- L'ensemble des points M de ξ tels que $\overrightarrow{AM} = k\overrightarrow{AB}$, $(k \in [0; +\infty[)$ est la demi-droite [AB).
- L'ensemble des points M de ξ tels que $\overrightarrow{AM} = k\overrightarrow{AB}$, $(k \in [0; 1])$ est le segment [AB].

2- Vecteurs orthogonaux

Définition et propriété

- Deux vecteurs \vec{u} et \vec{v} sont orthogonaux si l'un des deux est nul ou si leurs directions sont orthogonales. On écrit : $\vec{u} \perp \vec{v}$.
- Deux vecteurs non nuls \vec{u} et \vec{v} sont orthogonaux lorsqu'ils sont vecteurs directeurs respectifs de deux droites orthogonales.

Exercice de fixation

est un vecteur

Justifie que $\vec{u} \perp \vec{v}$.

Solution

ABCDEFGH est un pavé droit, donc (HD) est orthogonale à (ABC).

Alors (HD) est orthogonale à (BC). Or \vec{u} et \vec{v} sont vecteurs directeurs respectifs de (HD) et (BC). Donc $\vec{u} \perp \vec{v}$.

3-Vecteurs coplanaires

Définition 1

Soit A un point de ξ , \vec{u} et \vec{v} deux vecteurs non colinéaires de W.

L'ensemble des points M de ξ tels que $\overrightarrow{AM} = \lambda \overrightarrow{u} + \mu \overrightarrow{v}$ où $(\lambda; \mu) \in \mathbb{R}^2$, est un plan de l'espace appelé plan de repère $(A, \overrightarrow{u}, \overrightarrow{v})$.

C'est le plan passant par A et de vecteurs directeurs \vec{u} et \vec{v} .

On le note : $P(A, \vec{u}, \vec{v})$.

Exemple

ABCDEFGH est un cube et I est le milieu de [BC].

On a
$$\overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{BI} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$$
 .Or $\overrightarrow{AB} = \overrightarrow{EF}$ et $\overrightarrow{BC} = \overrightarrow{AD}$ donc $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AD} + \overrightarrow{EF}$
Alors $I \in P(A; \overrightarrow{AD}; \overrightarrow{EF})$.

Remarque

$$\overrightarrow{AM} = \lambda \overrightarrow{u} + \mu \overrightarrow{v} \text{ où } (\lambda; \mu) \in \mathbb{R}^2.$$

On dit que le vecteur \overrightarrow{AM} est une combinaison linéaire des vecteurs \overrightarrow{u} et \overrightarrow{v} .

Définition 2

Les vecteurs \vec{u} , \vec{v} et \vec{w} de l'espace sont dits coplanaires si, étant donnés un point O de l'espace et les points A, B et C définis par : $\overrightarrow{OA} = \vec{u}$, $\overrightarrow{OB} = \vec{v}$ et $\overrightarrow{OC} = \vec{w}$, les points O, A, B et C sont coplanaires (ou appartiennent à un même plan).

Autrement dit:

Des vecteurs (au moins au nombre de trois) sont dits coplanaires s'il est possible de construire un représentant de chacun d'eux dans un même plan.

Exemple:

ABCDEFGH est un cube.

Les vecteurs \overrightarrow{AB} ; \overrightarrow{AE} et \overrightarrow{AF} sont coplanaires car ils sont situés dans le même plan (ABF).

Remarques

- Cette définition est indépendante du choix du point O.
- Deux vecteurs \vec{u} et \vec{v} de l'espace sont toujours coplanaires.
- Si deux des trois vecteurs de l'espace sont colinéaires, alors les trois vecteurs sont nécessairement coplanaires.
- Les vecteurs \overrightarrow{OA} , \overrightarrow{OB} et \overrightarrow{OC} sont non coplanaires si et seulement si les points O, A, B et C ne sont pas coplanaires.

Propriétés

• Soit \vec{u} , \vec{v} et \vec{w} trois vecteurs de \mathscr{W} tels que \vec{u} et \vec{v} sont non colinéaires.

 \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si \vec{w} est une combinaison linéaire de \vec{u} et \vec{v} (il existe des réels λ et μ tels que : $\vec{w} = \lambda \vec{u} + \mu \vec{v}$).

• Soit \vec{u} , \vec{v} et \vec{w} des vecteurs de \mathscr{W} .

 \vec{u} , \vec{v} et \vec{w} sont coplanaires si et seulement si il existe une combinaison linéaire de ces vecteurs égale au vecteur nul sans que ses coefficients soient tous nuls.

Ou

 \vec{u}, \vec{v} et \vec{w} sont coplanaires $\iff \exists (\lambda, \mu, \nu) \in \mathbb{R}^3, (\lambda, \mu, \nu) \neq (0,0,0)$ et $\lambda \vec{u} + \mu \vec{v} + \nu \vec{w} = \vec{0}$.

• Soit \vec{u} , \vec{v} et \vec{w} des vecteurs de \mathcal{W} .

 \vec{u} , \vec{v} et \vec{w} sont non coplanaires si et seulement si le seul triplet (λ, μ, ν) de nombres réels tels que $\lambda \vec{u} + \mu \vec{v} + \nu \vec{w} = \vec{0}$ est le triplet (0, 0, 0).

Ou

 \vec{u} , \vec{v} et \vec{w} sont non coplanaires $\iff \lambda \vec{u} + \mu \vec{v} + \nu \vec{w} = \vec{0} \implies \lambda = \mu = \nu = 0$.

Exercice de fixation

ABCDEFGH est un cube ; on pose :

$$\overrightarrow{AB} = \overrightarrow{i} ; \overrightarrow{AD} = \overrightarrow{j} ; \overrightarrow{AE} = \overrightarrow{k}$$

Montre que les vecteurs \vec{i} ; $\vec{i} + \vec{j}$ et $\vec{i} + \vec{j} + \vec{k}$ sont non coplanaires.

Solution

Soit 3 nombres réels α , β et γ tels que $\alpha \vec{i} + \beta(\vec{i} + \vec{j}) + \gamma(\vec{i} + \vec{j} + \vec{k}) = \vec{0}$.

On obtient
$$(\alpha + \beta + \gamma) \vec{i} + (\beta + \gamma) \vec{j} + \gamma \vec{k} = \vec{0}$$
.

Or \vec{i}, \vec{j} et \vec{k} sont non coplanaires par conséquent

$$\begin{cases} \alpha + \beta + \gamma = 0 \\ \beta + \gamma = 0 \\ \gamma = 0 \end{cases}$$

On obtient $\alpha = \beta = \gamma = 0$. Par suite les vecteurs \vec{i} ; $\vec{i} + \vec{j}$ et $\vec{i} + \vec{j} + \vec{k}$ sont non coplanaires.

II- BASES ET REPÈRES

- 1- Bases de \mathcal{W}
 - a) Coordonnées d'un vecteur

Propriété fondamentale

Soit \vec{i} , \vec{j} et \vec{k} trois vecteurs non coplanaires.

Pour tout vecteur \vec{u} de \mathcal{W} , il existe un et un seul triplet (x, y, z) de nombres réels tels que :

$$\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}.$$

Exercice de fixation :

ABCDEFGH est un cube.

Justifie que pour tout vecteur \vec{v} de \hat{W} ; il existe un et un seul triplet (x, y, z) de nombres réels tels que $\vec{v} = x\overrightarrow{AB} + y\overrightarrow{AD} + z\overrightarrow{AE}$.

Solution

 \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} sont non coplanaires car les points A, B, D et E sont non coplanaires.

Donc il existe un et un seul triplet (x, y, z) de nombres réels tels que pour tout vecteur \vec{v} de \mathscr{W} : $\vec{v} = x\overrightarrow{AB} + y\overrightarrow{AD} + z\overrightarrow{AE}$.

Définitions

- Tout triplet $(\vec{i}, \vec{j}, \vec{k})$ de vecteurs non coplanaires est appelé base de \mathcal{W} .
- Soit $(\vec{i}, \vec{j}, \vec{k})$ une base de \mathscr{W} et \vec{u} un vecteur.

L'unique triplet (x, y, z) de nombres réels tels que $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ est appelé triplet de coordonnées de \vec{u} dans la base $(\vec{i}, \vec{j}, \vec{k})$.

On note :
$$\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 dans la base $(\vec{i}, \vec{j}, \vec{k})$.

Exemple

ABCDEFGH est un cube.

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{DH})$$
 est une base de \mathscr{W} .

Soit le vecteur $\vec{u} = 3\overrightarrow{AB} - 2\overrightarrow{AC} + 4\overrightarrow{DH}$.

On a
$$\vec{u} \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$$
 dans la base $(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{DH})$

Propriété

Soit $(\vec{i}, \vec{j}, \vec{k})$ une base de \mathcal{W}° , λ un nombre réel, \vec{u} et $\vec{u'}$ deux vecteurs.

Si
$$\vec{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 et $\vec{u'} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, alors : $(\vec{u} + \vec{u'}) \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$ et $(\lambda \vec{u}) \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$.

Exercice de fixation

Soit
$$(\vec{i}, \vec{j}, \vec{k})$$
 une base de \mathscr{W} . On donne $\vec{u} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

Pour chaque affirmation dans le tableau, une seule réponse est juste. Écris le numéro de l'affirmation et associe la lettre correspondant à la réponse juste.

Vecteur		Coordonnées		
		а	b	c
1	$\vec{u} + \vec{v}$	$\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$
2	$ec{u}-2ec{v}$	$\begin{pmatrix} 2\\3\\5 \end{pmatrix}$	$\begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -5 \\ 5 \end{pmatrix}$
3	$\vec{v} + 3\vec{u}$	$\begin{pmatrix} 7 \\ -1 \\ 8 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$

Solution

1-b 2-c 3-a

b) Base orthogonale, base orthonormée

Définitions

- Une base est orthogonale lorsqu'elle est constituée de trois vecteurs deux à deux orthogonaux.
 - $(\vec{i}, \vec{j}, \vec{k})$ est une base orthogonale si et seulement si $\vec{i} \perp \vec{j}$, $\vec{i} \perp \vec{k}$ et $\vec{j} \perp \vec{k}$.
- Une base est orthonormée lorsqu'elle est orthogonale et constituée de trois vecteurs unitaires.

 $(\vec{i}, \vec{j}, \vec{k})$ est une base orthonormée si et seulement si $\vec{i} \perp \vec{j}$, $\vec{i} \perp \vec{k}$, $\vec{j} \perp \vec{k}$ et $\|\vec{i}\| = \|\vec{j}\| = \|\vec{k}\| = 1$.

Exemple

ABCDEFGH est un cube de coté 1 et I est le milieu de [AB]

- $(\overrightarrow{AI}, \overrightarrow{AE}, \overrightarrow{AD})$ est une base orthogonale car $\overrightarrow{AI} \perp \overrightarrow{AE}$; $\overrightarrow{AI} \perp \overrightarrow{AD}$ et $\overrightarrow{AE} \perp \overrightarrow{AD}$.
- $(\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ est une base orthonormée car $\overrightarrow{AB} \perp \overrightarrow{AD}$; $\overrightarrow{AB} \perp \overrightarrow{AE}$ et $\overrightarrow{AD} \perp \overrightarrow{AE}$ et $\|\overrightarrow{AB}\| = \|\overrightarrow{AD}\| = \|\overrightarrow{AE}\| = 1$

2- Repères de ξ

a) Définitions et vocabulaire

• On appelle repère de l'espace ξ , un quadruplet (O, I, J, K) de points non coplanaires ou bien un quadruplet (O, \vec{i} , \vec{j} , \vec{k}) où O est un point et (\vec{i} , \vec{j} , \vec{k}) une base de \mathcal{W} .

• Soit $(O, \vec{i}, \vec{j}, \vec{k})$ un repère et M un point de l'espace ξ .

L'unique triplet (x, y, z) de nombres réels tels que : $\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$ est appelé triplet de coordonnées du point M dans le repère $(0, \vec{i}, \vec{j}, \vec{k})$.

On a :
$$M \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 dans $(O, \vec{i}, \vec{j}, \vec{k}) \iff \overrightarrow{OM} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ dans $(\vec{i}, \vec{j}, \vec{k})$.

- Le point O est appelé origine du repère. Les nombres x, y et z sont appelés respectivement abscisse, ordonnée et cote du point M.
- Les droites de repère $(O, \vec{\iota})$, (O, \vec{j}) et (O, \vec{k}) sont appelées les axes de coordonnées du repère.
- Le repère $(0, \vec{i}, \vec{j}, \vec{k})$ est dit orthogonal lorsque la base $(\vec{i}, \vec{j}, \vec{k})$ est orthogonale.
- Le repère $(0, \vec{i}, \vec{j}, \vec{k})$ est dit orthonormé lorsque la base $(\vec{i}, \vec{j}, \vec{k})$ est orthonormée.

Exemple

ABCDEFGH est un cube de coté 1 , I est le milieu de [AB] et K est le symétrique de G par rapport F

- $(A, \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AE})$ est un repère car A est un point et $(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AE})$ est une base de \mathscr{W} .
- $(A, \overrightarrow{AI}, \overrightarrow{AE}, \overrightarrow{AD})$ est un repère orthogonal car A est un point et $(\overrightarrow{AI}, \overrightarrow{AE}, \overrightarrow{AD})$ est une base orthogonale de \mathscr{W} .
- $(A, \overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{AD})$ est un repère orthonormé car A est un point et $(\overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{AD})$ est une base orthonormée de \mathscr{W} .

- On a $\overrightarrow{AK} = \overrightarrow{AB} + \overrightarrow{BF} + \overrightarrow{FK} = \overrightarrow{AB} + \overrightarrow{AE} \overrightarrow{AD}$ alors $K \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AE}, \overrightarrow{AD})$.
- b) Représentation d'un point dans un repère

Sur la figure, le point $M \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$.

c) Calculs dans un repère

Les règles de calcul sur les vecteurs de l'espace sont analogues à celles établies dans le plan.

Exemple

Soit
$$A\begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix}$$
, $B\begin{pmatrix} x_B \\ y_B \\ z_B \end{pmatrix}$ dans $(O, \vec{t}, \vec{j}, \vec{k})$. On $a : \overrightarrow{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$ dans $(\vec{t}, \vec{j}, \vec{k})$.

III-PRODUIT SCALAIRE DANS L'ESPACE

1-Définition et propriété

Soit \vec{u} , \vec{v} deux vecteurs et A, B, C des points tels que : $\overrightarrow{AB} = \vec{u}$ et $\overrightarrow{AC} = \vec{v}$.

On appelle produit scalaire des vecteurs \vec{u} et \vec{v} , le nombre réel noté $\vec{u} \cdot \vec{v}$ et défini par :

- $\vec{u} \cdot \vec{v} = 0$ si l'un des vecteurs \vec{u} ou \vec{v} est nul;
- $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos{(\widehat{BAC})}$ si les vecteurs \vec{u} et \vec{v} sont non nuls.

Exercice de fixation

ABCD est un tétraèdre régulier de coté a.

Calcule les produits scalaires suivants en fonction de a

- 1) $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- 2) $\overrightarrow{AB} \cdot \overrightarrow{AD}$
- 3) $\overrightarrow{AB} \cdot \overrightarrow{BC}$
- 4) $\overrightarrow{AB} \cdot \overrightarrow{CD}$

Solution

Les quatre faces du tétraèdre ABCD sont des triangles équilatéraux de coté a :

On a:

1)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{a^2}{2}$$

2)
$$\overrightarrow{AB} \cdot \overrightarrow{AD} = \frac{a^2}{2}$$

3)
$$\overrightarrow{AB} \cdot \overrightarrow{BC} = -\frac{a^2}{2}$$

4)
$$\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$$

2- Propriétés

Soit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs dans une base orthonormée $(\vec{i}, \vec{j}, \vec{k})$. On a :

•
$$\vec{u} \cdot \vec{v} = x \cdot x' + y \cdot y' + z \cdot z'$$

• $||\vec{u}|| = \sqrt{x^2 + y^2 + z^2}$

$$\bullet \quad \|\vec{u}\| = \sqrt{x^2 + y^2 + z^2}$$

Exercice de fixation

Soit les vecteurs $\vec{u} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ dans une base orthonormée $(\vec{i}, \vec{j}, \vec{k})$.

Calcule $\vec{u} \cdot \vec{v}$; $||\vec{v}||$

Solution

•
$$\vec{u} \cdot \vec{v} = 1(2) + 2(-1) - 3(2) = 2 - 2 - 6 = -6$$

• $||\vec{v}|| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{9} = 3$

•
$$\|\vec{v}\| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{9} = 3$$

Conséquence

Soit A (x_A, y_A, z_A) et B (x_B, y_B, z_B) deux points dans un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

On a:
$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$

Exercice de fixation

On donne $A \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$ et $B \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ dans un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

Solution

$$AB = \sqrt{(-1-2)^2 + (2-3)^2 + (1-1)^2} = \sqrt{10}$$

C-SITUATION COMPLEXE

Lors d'une séance de travaux dirigés sur les vecteurs de l'espace, un professeur de mathématiques d'une classe de première C dessine

le cube ABCDEFGH ci-contre au tableau.

Il demande à ses élèves de déterminer les coordonnées

d'un vecteur \vec{t} orthogonal aux vecteurs \overrightarrow{BH} et \overrightarrow{EG} .

Après un temps de recherches de 10 minutes, un

élève de la classe affirme que tout vecteur qui vérifie ces conditions est

de la forme $\vec{t}\begin{pmatrix} \alpha \\ -\alpha \\ 2\alpha \end{pmatrix}$, $(\alpha \in R)$ dans la base orthonormée $(\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$. Son voisin de classe ne partage pas cet avis. Le professeur te sollicite pour les départager.

Dis, en argumentant, lequel des deux élèves a raison.

Solution

Pour départager les deux élèves je vais utiliser la leçon sur les vecteurs de l'espace.

Notamment:

- -la détermination des coordonnées d'un vecteur dans une base.
- -le produit scalaire de deux vecteurs orthogonaux.

ABCDEFGH est un carré donc $(\overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$ est une base orthonormée de W.

Soit
$$\vec{t} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 dans $(\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

On a:

$$\overrightarrow{BH} = -\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE} \text{ soit } \overrightarrow{BH} \begin{pmatrix} -1\\1\\1 \end{pmatrix} \text{ dans } (\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}).$$

$$\overrightarrow{EG} = \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD} \text{ soit } \overrightarrow{EG} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ dans } (\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE}).$$

De plus:

$$\vec{t} \perp \overrightarrow{BH} \iff \vec{t} \cdot \overrightarrow{BH} = 0 \iff -x + y + z = 0$$

$$\vec{t} \perp \overrightarrow{EG} \iff \vec{t}.\overrightarrow{EG} = 0 \iff x + y = 0$$

On a donc:

$$\begin{cases} -x + y + z = 0 \\ y = -x \end{cases}$$

Alors pour $x = \alpha$; $\alpha \in R$ on a $y = -\alpha$ et $z = x - y = 2\alpha$.

Donc $\vec{t} \begin{pmatrix} \alpha \\ -\alpha \\ 2\alpha \end{pmatrix}$ dans $(\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ avec $\alpha \in R$. Alors c'est le premier élève qui a raison.

D-EXERCICES PROPOSES

Exercice 1

Soit ABCDEFGH un pavé. Précise dans chaque cas ci-dessous si les vecteurs sont coplanaires ou non.

- 1) \overrightarrow{DB} , \overrightarrow{EG} et \overrightarrow{AB} 2) \overrightarrow{AG} , \overrightarrow{AE} et \overrightarrow{FE} \overrightarrow{FG} 3) \overrightarrow{DF} , \overrightarrow{FE} \overrightarrow{HE} et \overrightarrow{AC}

Solution

- 1) Les vecteurs sont coplanaires.
- 2) Les vecteurs sont coplanaires.
- 3) Les vecteurs sont non coplanaires.

Exercice 2

Soit \vec{i} , \vec{j} et \vec{k} trois vecteurs non coplanaires.

Justifie que les vecteurs ci-dessous sont non coplanaires.

1)
$$\vec{j} + \vec{k}$$
, $\vec{k} + \vec{i}$ et $\vec{j} + \vec{i}$ 2) $2\vec{j} - \vec{k}$, $2\vec{k} - \vec{i}$ et $2\vec{i} - \vec{j}$

2)
$$2\vec{i} - \vec{k}$$
, $2\vec{k} - \vec{i}$ et $2\vec{i} - \vec{j}$

Solution

1) Soit α , β , γ trois nombres réels tels que : $\alpha(\vec{j} + \vec{k}) + \beta(\vec{k} + \vec{i}) + \gamma(\vec{j} + \vec{i}) = \vec{0}$. On a :

$$\begin{cases} \alpha+\gamma=0\\ \alpha+\beta=0 \text{ donc } \alpha=\beta=\gamma=0 \end{cases} \text{; par conséquent, les vecteurs sont non coplanaires.}$$

$$\beta+\gamma=0$$

2) Soit α , β , γ trois nombres réels tels que : $\alpha(2\vec{j} - \vec{k}) + \beta(2\vec{k} - \vec{i}) + \gamma(-\vec{j} + 2\vec{i}) = \vec{0}$.

On a:

$$\begin{cases} 2\alpha - \gamma = 0 \\ -\alpha + 2\beta = 0 \text{ donc } \alpha = \beta = \gamma = 0 \end{cases}$$
; par conséquent, les vecteurs sont non
$$-\beta + 2\gamma = 0$$

coplanaires.

Exercice 3

 $(\vec{i}, \vec{j}, \vec{k})$ est une base de l'espace. Soit $\vec{u} = 2\vec{i} + \vec{j} - \vec{k}$; $\vec{v} = 3\vec{i} + 2\vec{j} + 4\vec{k}$ et $\vec{w} = \vec{i} - 6\vec{k}$.

Démontre que les vecteurs \vec{u} , \vec{v} et \vec{w} sont coplanaires.

Solution

Soit le triplet (α, β, γ) de nombres réels tels que $\vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$.

On a

$$\alpha(2\vec{i} + \vec{j} - \vec{k}) + \beta(3\vec{i} + 2\vec{j} + 4\vec{k}) + \gamma(\vec{i} - 6\vec{k}) = \vec{0}.$$

Ce qui donne $(2\alpha + 3\beta + \gamma)\vec{i} + (\alpha + 2\beta)\vec{j} + (-\alpha + 4\beta - 6\gamma)\vec{k} = \vec{0}$.

Comme $(\vec{i}, \vec{j}, \vec{k})$ est une base de l'espace, on a :

$$\begin{cases} 2\alpha + 3\beta + \gamma = 0\\ \alpha + 2\beta = 0\\ -\alpha + 4\beta - 6\gamma = 0 \end{cases} \text{donc} \begin{cases} -\beta + \gamma = 0\\ \alpha = -2\beta \end{cases}$$

Par exemple pour $\beta = 1$, ona $\alpha = -2$ et $\gamma = 1$.

Ainsi, il existe une combinaison linéaire nulle de \vec{u} , \vec{v} et \vec{w} sans que les coefficients ne soient tous nuls. Par conséquent \vec{u} , \vec{v} et \vec{w} sont coplanaires.

Exercice 4

Soit EFCD un tétraèdre. On désigne par G le barycentre des points pondérés (E, -1), (F, 2), (C, 1) et (D, 2) et par K le milieu du segment [FD]. Justifie que les points E, C, G et K sont coplanaires .

Solution

On a:

$$-\overrightarrow{GE} + 2\overrightarrow{GF} + \overrightarrow{GC} + 2\overrightarrow{GD} = \overrightarrow{0} \text{ et } \overrightarrow{KF} + \overrightarrow{KD} = \overrightarrow{0}.$$

Dono

$$-\overrightarrow{GE} + 2(\overrightarrow{GK} + \overrightarrow{KF}) + \overrightarrow{GC} + 2(\overrightarrow{GK} + \overrightarrow{KD}) = \overrightarrow{0}$$

Ce qui donne

$$-\overrightarrow{GE} + 4\overrightarrow{GK} + \overrightarrow{GC} + 2(\overrightarrow{KD} + \overrightarrow{KD}) = \overrightarrow{0}$$

Ou encore

$$-\overrightarrow{GE} + 4\overrightarrow{GK} + \overrightarrow{GC} = \overrightarrow{0}$$
 puisque $\overrightarrow{KF} + \overrightarrow{KD} = \overrightarrow{0}$.

Donc les vecteurs \overrightarrow{GE} , \overrightarrow{GK} et \overrightarrow{GC} sont coplanaires. Par conséquent les points E, C, G et K sont coplanaires.

Exercice 5

Soit $(\vec{i}, \vec{j}, \vec{k})$ une base de l'espace. On considère $\vec{u} = \vec{i} + \vec{j} - \vec{k}$; $\vec{v} = -2\vec{i} + \vec{j} - 2\vec{k}$ et $\vec{w} = -\vec{i} - 2\vec{j} + 4\vec{k}$

- 1- Démontre que le triplet de vecteurs $(\vec{u}, \vec{v}, \vec{w})$ ainsi défini est une base de \mathcal{E} .
- 2- Détermine les cordonnées de \vec{i} , \vec{j} , et \vec{k} dans la base $(\vec{u}, \vec{v}, \vec{w})$.

Solution

1) Soit
$$\alpha$$
, β , γ trois nombres réels tels que : $\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$ soit

Solit
$$(\vec{a}, \vec{p}, \vec{\gamma})$$
 trois nombres recisiters que i. $(\vec{a}\vec{u} + \vec{p}\vec{v} + \vec{\gamma}\vec{w} = 0)$ solit $(\vec{a}\vec{v} + \vec{j} - \vec{k}) + \beta(-2\vec{i} + \vec{j} - 2\vec{k}) + \gamma(-\vec{i} - 2\vec{j} + 4\vec{k}) = \vec{0}$. On a :
$$\begin{cases} \alpha - 2\beta - \gamma = 0 \\ \alpha + \beta - 2\gamma = 0 \end{cases}$$
 donc
$$-\alpha - 2\beta + 4\gamma = 0$$

 $\alpha = \beta = \gamma = 0$; par conséquent, les vecteurs sont non coplanaires et dès lors $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une base de l'espace.

2) On a :
$$\vec{i} = \vec{u} - \vec{j} + \vec{k}$$
 on remplace \vec{i} par son expression dans les deux autres égalités, on obtient : $\vec{v} = -2\vec{u} + 3\vec{j} - 4\vec{k}$ et $\vec{w} = -\vec{u} - \vec{j} + 3\vec{k}$

Ce qui donne
$$\vec{k} = \vec{u} + \frac{1}{5}\vec{v} + \frac{3}{5}\vec{w}$$
, $\vec{j} = 2\vec{u} + \frac{3}{5}\vec{v} + \frac{4}{5}\vec{w}$ et $\vec{i} = -\frac{2}{5}\vec{v} - \frac{1}{5}\vec{w}$.

Soit
$$\vec{i} \begin{pmatrix} 0 \\ -\frac{2}{5} \\ -\frac{1}{5} \end{pmatrix}$$
; $\vec{j} \begin{pmatrix} 2 \\ \frac{3}{5} \\ \frac{4}{5} \end{pmatrix}$; $\vec{k} \begin{pmatrix} 1 \\ \frac{1}{5} \\ \frac{3}{5} \end{pmatrix}$ dans $(\vec{u}, \vec{v}, \vec{w})$.

Exercice 6

Soit $(\vec{i}, \vec{j}, \vec{k})$ une base de l'espace.

Soit A(1; 2; 3), B(-1; 0; 4) et C(-2; 1; -3) trois points de l'espace.

- 1- Calcule les coordonnées de \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} dans la base $(\vec{i}, \vec{j}, \vec{k})$.
- 2- Calcule les coordonnées du milieu du segment [AB].
- 3- Détermine les coordonnées du point K tel que : $\overrightarrow{AK} = \frac{2}{5}\overrightarrow{BC}$
- 4- Déduis-en que les points A, B, C et K sont coplanaires.

Solution

1-On obtient
$$\overrightarrow{AB}\begin{pmatrix} -2\\-2\\1 \end{pmatrix}$$
; $\overrightarrow{AC}\begin{pmatrix} -3\\-1\\-6 \end{pmatrix}$; $\overrightarrow{BC}\begin{pmatrix} -1\\1\\-7 \end{pmatrix}$

2-On a
$$H\begin{pmatrix} 0\\1\\\frac{7}{2} \end{pmatrix}$$

$$3-\overrightarrow{AK} = \frac{2}{5} \overrightarrow{BC} \text{ donc } x_K - x_A = \frac{2}{5} (x_C - x_B) \text{ soit } x_K = \frac{3}{5}.$$

De même on trouve $y_K = \frac{13}{5}$ et $z_K = \frac{1}{5}$.

Donc K
$$\begin{pmatrix} \frac{3}{5} \\ \frac{13}{5} \\ \frac{1}{5} \end{pmatrix}$$

4-On a $\overrightarrow{AK} = \frac{2}{5}\overrightarrow{BC}$ donc a \overrightarrow{AK} et \overrightarrow{BC} sont colinéaires. Alors \overrightarrow{AK} et \overrightarrow{BC} sont coplanaires. Par conséquent les points A, B, C et K sont coplanaires.

Exercice 7

Soit $(\vec{i}, \vec{j}, \vec{k})$ une base orthonormée de l'espace.

On donne les points A(1; -2; 1), B(-2;0;3) et C(4;1;-2).

- 1- Détermine les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} dans la base $(\vec{i}, \vec{j}, \vec{k})$.
- 2- Calcule les produits scalaires : $\overrightarrow{AB} \cdot \overrightarrow{AC}$; $\overrightarrow{BC} \cdot \overrightarrow{AC}$ et $\overrightarrow{AB} \cdot \overrightarrow{BC}$.

Solution

1-On obtient
$$\overrightarrow{AB} \begin{pmatrix} -3 \\ 2 \\ 2 \end{pmatrix}$$
; $\overrightarrow{AC} \begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix}$; $\overrightarrow{BC} \begin{pmatrix} 6 \\ 1 \\ -5 \end{pmatrix}$.

2-
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -9$$
; $\overrightarrow{BC} \cdot \overrightarrow{AC} = 36$; $\overrightarrow{AB} \cdot \overrightarrow{BC} = -26$

Exercice 8

L'espace est muni d'une base orthonormée $(\vec{i}, \vec{j}, \vec{k})$. Soit $\vec{u} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$.

- 1- Calcule: $\|\vec{u}\|$, $\|\vec{v}\|$ et \vec{u} . \vec{v} .
- 2- Les vecteurs \vec{u} et \vec{v} sont-ils orthogonaux? Justifie ta réponse.
- 3- Détermine les coordonnées d'un vecteur \vec{w} non nul, orthogonal à \vec{u} et à \vec{v} .

Solution

1-

•
$$\|\vec{u}\| = \sqrt{2^2 + 1^2 + 0^2} = \sqrt{5}$$
.

- De même $\|\vec{v}\| = \sqrt{21}$
- $\vec{u} \cdot \vec{v} = 2(-1) + 1(2) + 0(4) = 0.$
- 2- $\vec{u} \perp \vec{v} \operatorname{car} \vec{u} \cdot \vec{v} = 0$.

3-Soit
$$\overrightarrow{w} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 tel que $\overrightarrow{w} \perp \overrightarrow{u}$ et $\overrightarrow{w} \perp \overrightarrow{v}$.On a donc \overrightarrow{w} . $\overrightarrow{u} = 0$ et \overrightarrow{w} . $\overrightarrow{v} = 0$.

Ce qui donne
$$\begin{cases} 2x + y = 0 \\ -x + 2y + 4z = 0 \end{cases}$$
 soit
$$\begin{cases} y = -2x \\ -5x + 4z = 0 \end{cases}$$
.

Par exemple pour x = 1 on obtient y = -2 et $z = \frac{5}{4}$.

Alors
$$\vec{w} \begin{pmatrix} 1 \\ -2 \\ \frac{5}{4} \end{pmatrix}$$
.