Masking SIDH: where do we stand?

Tako Boris Fouotsa, Tomoki Moriya and Christophe Petit

Isogeny days 2022

September 22, KU Leuven

Research goal

The higher genus torsion point attacks by CD-MM-R 2022 require:

- 1. the torsion points information;
- 2. the degree of the secret isogeny.

In this work (ongoing), we investigate whether masking the torsion points information or the degree of the secret isogeny in SIDH prevents the CD-MM-R attack. More precisely,

- we suggest two countermeasure candidates: Masked-degree SIDH (MD-SIDH) and Masked torsion points SIDH (M-SIDH);
- we propose a security analysis of both schemes and mention further analysis which is being done.

Table of contents

CD-MM-R attack

Masked-degree SIDH

Masked torsion points SIDH

Analysis of Masked-degree

Analysis of M-SIDH

Conclusion

CD-MM-R attack

CD-MM-R attack (1/2)

CD-MM-R 2022: SIDH is broken in polynomial time.

CD-MM-R attack (1/2)

CD-MM-R 2022: SIDH is broken in polynomial time.

Important algorithm (CD attack):

Input: $\kappa: E_0 \to E_1$ of degree 3^b

Output: $\exists \phi_B'$ s.t. $\phi_B = \phi_B' \circ \kappa \Rightarrow \mathsf{TRUE}$

- 1. Set $c = 2^{e_A a} 3^{e_B b}$
- 2. Compute $\gamma: E_1 \to C$ of degree c
- 3. Compute $P_c = \gamma(\kappa(2^a P_A))$ and $Q_c = \gamma(\kappa(2^a Q_A))$
- 4. Compute $D := (C \times E_B)/\langle (P_c, 2^a \phi_B(P_A)), (Q_c, 2^a \phi_B(Q_A)) \rangle$
- 5. D: product \Rightarrow output TRUE

CD-MM-R attack (2/2)

Important information for attacking SIDH:

- Degree of the secret isogenies
- Image points of P, Q

CD-MM-R attack (2/2)

Important information for attacking SIDH:

- Degree of the secret isogenies
- Image points of *P*, *Q*
- → Hide the degree of secret isogenies (Masked-degree SIDH)

CD-MM-R attack (2/2)

Important information for attacking SIDH:

- Degree of the secret isogenies
- Image points of *P*, *Q*
- → Hide the degree of secret isogenies (Masked-degree SIDH)
- → Hide image points (Masked torsion points SIDH)

Masked-degree SIDH

Main idea for Masked-degree SIDH

• Set
$$p = \ell_1^{a_1} \cdots \ell_t^{a_t} q_1^{b_1} \cdots q_t^{b_t} f - 1$$

 $\ell_1, \dots, \ell_t, q_1 \dots, q_t$ are distinct small primes
 $A := \prod_{i=1}^t \ell_i^{a_i}$ and $B := \prod_{i=1}^t q_i^{b_i}$
Alice computes $\prod_{i=1}^t \ell_i^{a_i'}$ -isogenies $(a_i' \in \{0, \dots, a_i\})$
 $\#\{\text{degree for Alice}\} = \prod_{i=1}^t (a_i + 1)$

• The Weil pairing leaks $\prod_{i=1}^{t} \ell_i^{a_i'} \pmod{B}$

$$e_B(\phi_A(P_B),\phi_A(Q_B)) = e_B(P_B,Q_B)^{\deg\phi_A}$$

 \longrightarrow Randomize the image points by $\alpha \in (\mathbb{Z}/B\mathbb{Z})^{\times}$.

Masked-degree SIDH (public key generation)

 E_0 : a supersingular elliptic curve $/\mathbb{F}_{p^2}$

 P_A , Q_A : generators of $E_0[A]$ P_B , Q_B : generators of $E_0[B]$

Public key (Alice):

1. Take

$$(a'_1,\ldots,a'_t) \in \{0,1,\ldots,a_1\}^t, \quad \alpha \in (\mathbb{Z}/B\mathbb{Z})^\times, \quad k_A \in \mathbb{Z}/A\mathbb{Z}.$$

Set
$$A' = \prod_{i=1}^t \ell_i^{a_i'}$$
.

- 2. Let $R_A = \left[\frac{A}{A'}\right] (P_A + k_A Q_A)$
- 3. Compute $\operatorname{pk}_A = (E_A := E_0/\langle R_A \rangle, [\alpha] \phi_A(P_B), [\alpha] \phi_A(Q_B))$. Set $\operatorname{sk}_A = (A', k_A)$

MD-SIDH: key exchange and key recovery problem

Bob proceeds similarly to generate his secret/public key pair, and the key exchange continues like in a normal SIDH.

Problem

$$A = \ell_1^{a_1} \cdots \ell_t^{a_t} \text{ and let } B = q_1^{b_1} \cdots q_t^{b_t}, \ p = ABf - 1, \ A \approx B. \ \text{Set}$$

$$E_0[B] = \langle P, Q \rangle. \ \text{Let } A' = \ell_1^{a_1'} \cdots \ell_t^{a_t'} \text{ be a uniformly random divisor of } A \text{ and let } \alpha \text{ be a uniformly random element of } \mathbb{Z}/B\mathbb{Z}^\times. \ \text{Let}$$

$$\phi: E_0 \to E \text{ be a uniformly random isogeny of degree } A'.$$

$$\text{Given } E_0, P, Q, E_A, P' = [\alpha]\phi(P), Q' = [\alpha]\phi(Q), \text{ compute } \phi.$$

7

Masked torsion points SIDH

Main idea for Masked torsion points SIDH

- Set p = ABf −1, A = ℓ₁···ℓ_t and B = q₁···q_t are smooth square free coprimes integers
 Alice computes A-isogeny φ_A (fixed degree)
- Alice samples $\alpha \in (\mathbb{Z}/B\mathbb{Z})^{\times}$ computes $[\alpha]\phi_A(P_B), [\alpha]\phi_A(Q_B)$ The Weil pairing leaks $\alpha^2 \pmod{B}$
 - \longrightarrow Number of solutions of $x^2 \equiv \alpha^2$ in $\mathbb{Z}/B\mathbb{Z}$ is 2^t

Set $t = \lambda$.

Masked torsion points SIDH (public key generation)

 E_0 : a supersingular elliptic curve $/\mathbb{F}_{p^2}$

 P_A , Q_A : generators of $E_0[A]$ P_B , Q_B : generators of $E_0[B]$

Public key (Alice):

1. Take

$$\alpha \in (\mathbb{Z}/B\mathbb{Z})^{\times}, \quad k_{A} \in \mathbb{Z}/A\mathbb{Z}.$$

- 2. Let $R_A = P_A + k_A Q_A$
- 3. Compute $\operatorname{pk}_A = (E_A := E_0/\langle R_A \rangle, [\alpha] \phi_A(P_B), [\alpha] \phi_A(Q_B))$, set $\operatorname{sk}_A = k_A$.

M-SIDH: key exchange and key recovery problem

Bob proceeds similarly to generate his secret/public key pair, and the key exchange continues like in a normal SIDH.

Problem

 $A = \ell_1 \cdots \ell_t$ and let $B = q_1 \cdots q_t$, p = ABf - 1, $A \approx B$. Set $E_0[B] = \langle P, Q \rangle$. Let α be a uniformly random element of $\mathbb{Z}/B\mathbb{Z}^\times$. Let $\phi : E_0 \to E$ be a uniformly random isogeny of degree A. Given $E_0, P, Q, E_A, P' = [\alpha]\phi(P), Q' = [\alpha]\phi(Q)$, compute ϕ .

Analysis of Masked-degree

Overview

```
Recall: A = \ell_1^{a_1} \cdots \ell_t^{a_t}, B = q_1^{b_1} \cdots q_t^{b_t}, E_0[B] = \langle P, Q \rangle, A' = \ell_1^{a'_1} \cdots \ell_t^{a'_t}, \alpha \in \mathbb{Z}/B\mathbb{Z}^{\times} \phi : E_0 \to E of degree A'. We are given E_0, P, Q, E_A, P' = [\alpha]\phi(P), Q' = [\alpha]\phi(Q) and we want to compute \phi.
```

Overview¹

Recall:
$$A = \ell_1^{a_1} \cdots \ell_t^{a_t}$$
, $B = q_1^{b_1} \cdots q_t^{b_t}$, $E_0[B] = \langle P, Q \rangle$, $A' = \ell_1^{a'_1} \cdots \ell_t^{a'_t}$, $\alpha \in \mathbb{Z}/B\mathbb{Z}^{\times}$ $\phi : E_0 \to E$ of degree A' . We are given $E_0, P, Q, E_A, P' = [\alpha]\phi(P), Q' = [\alpha]\phi(Q)$ and we want to compute ϕ .

We show that :

- one can efficiently recover the square free part A'₁ of the secret degree A'.
- When the square free part of the secret degree is known, one can reduce an MD-SIDH instance to an M-SIDH instance.

Recovering the square free part of the degree

$$\begin{split} A' &= \ell_1^{a_1'} \cdots \ell_t^{a_t'} \text{ is determined by } \underline{a}' = (a_1', \cdots, a_t'). \text{ Define} \\ a(\ell_1^{a_1'} \cdots \ell_t^{a_t'}) &= (a_1', \cdots, a_t') \text{ and } A(\underline{a}') = \ell_1^{a_1'} \cdots \ell_t^{a_t'}. \text{ Set} \\ \chi_i \colon & (\mathbb{Z}/q_i^{b_i}\mathbb{Z})^\times \longrightarrow \mathbb{Z}/2\mathbb{Z} \\ & \times \longmapsto \begin{cases} 1 & \text{if x is a quad. residue modulo } q_i^{b_i}; \\ 0 & \text{if not.} \end{cases} \end{split}$$

Recovering the square free part of the degree

$$\begin{split} A' &= \ell_1^{a_1'} \cdots \ell_t^{a_t'} \text{ is determined by } \underline{a}' = (a_1', \cdots, a_t'). \text{ Define} \\ a(\ell_1^{a_1'} \cdots \ell_t^{a_t'}) &= (a_1', \cdots, a_t') \text{ and } A(\underline{a}') = \ell_1^{a_1'} \cdots \ell_t^{a_t'}. \text{ Set} \\ \chi_i \colon & (\mathbb{Z}/q_i^{b_i}\mathbb{Z})^\times \longrightarrow \mathbb{Z}/2\mathbb{Z} \\ & \qquad \qquad \chi &\longmapsto \begin{cases} 1 & \text{if x is a quad. residue modulo } q_i^{b_i}; \\ 0 & \text{if not.} \end{cases} \\ \Phi \colon & (\mathbb{Z}/2\mathbb{Z})^t \longrightarrow (\chi_1(A(\underline{a}')), \dots, \chi_t(A(\underline{a}'))) \end{split}$$

We can evaluate Φ on $a(A') \mod 2$: in fact, the Weil pairing leaks $\alpha^2 A' \mod B$ and $a(\alpha^2 A') = a(A') \mod 2$.

Recovering the square free part of the degree

$$\begin{split} A' &= \ell_1^{a_1'} \cdots \ell_t^{a_t'} \text{ is determined by } \underline{a}' = (a_1', \cdots, a_t'). \text{ Define} \\ a(\ell_1^{a_1'} \cdots \ell_t^{a_t'}) &= (a_1', \cdots, a_t') \text{ and } A(\underline{a}') = \ell_1^{a_1'} \cdots \ell_t^{a_t'}. \text{ Set} \\ \chi_i \colon & (\mathbb{Z}/q_i^{b_i}\mathbb{Z})^\times \longrightarrow \mathbb{Z}/2\mathbb{Z} \\ & \times \longmapsto \begin{cases} 1 & \text{if x is a quad. residue modulo } q_i^{b_i}; \\ 0 & \text{if not.} \end{cases} \\ \Phi \colon & (\mathbb{Z}/2\mathbb{Z})^t \longrightarrow (\chi_1(A(\underline{a}')), \dots, \chi_t(A(\underline{a}'))) \end{split}$$

We can evaluate Φ on $a(A') \mod 2$: in fact, the Weil pairing leaks $\alpha^2 A' \mod B$ and $a(\alpha^2 A') = a(A') \mod 2$.

 \longrightarrow After evaluating Φ on a(A') mod 2, we only have $\# \ker(\Phi)$ candidates for the square free part A'_1 of A'.

On the size of $\ker \Phi$

Kovalenko, Levitskaya, Savchuk (1986): T random $t \times t$ -matrix T over $\mathbb{Z}/2\mathbb{Z}$; then $\Pr [\operatorname{rank}(T) \geq t - 3] \rightarrow 99.4\%$ as $t \rightarrow \infty$

On the size of $\ker \Phi$

Kovalenko, Levitskaya, Savchuk (1986): T random $t \times t$ -matrix T over $\mathbb{Z}/2\mathbb{Z}$; then $\Pr\left[\operatorname{rank}(T) \geq t - 3\right] \to 99.4\%$ as $t \to \infty$ In practice t is small $\lambda/2 \leq t \leq \lambda$; and we are the ones choosing the primes q_i , so the matrix of Φ is not truly random. But, we still expect its rank to be at least t-3 for practical parameters: choosing the ℓ_i 's and the q_i 's in a biased way would make these primes be very large and the size of p becomes impractical.

On the size of $\ker \Phi$

Kovalenko, Levitskaya, Savchuk (1986): T random $t \times t$ -matrix T over $\mathbb{Z}/2\mathbb{Z}$; then $\Pr\left[\operatorname{rank}(T) \geq t - 3\right] \to 99.4\%$ as $t \to \infty$ In practice t is small $\lambda/2 \leq t \leq \lambda$; and we are the ones choosing the primes q_i , so the matrix of Φ is not truly random. But, we still expect its rank to be at least t-3 for practical parameters: choosing the ℓ_i 's and the q_i 's in a biased way would make these primes be very large and the size of p becomes impractical. \longrightarrow Heuristically, we expect to have $\ker \Phi \leq 2^3 = 8$ with high probability.

This is the case for the parameters suggested by Moriya 2022.

Reducing MD-SIDH to M-SIDH

Assume that we know A_1' . Set $A_0 = \max\{n \mid n | A, n^2 A_1' \leq A\}$. Then $\exists \alpha_0$, divisor of A, $N_A := A_0^2 A_1' = \alpha_0^2 A_1' \leq A$.

Reducing MD-SIDH to M-SIDH

Assume that we know A_1' . Set $A_0 = \max\{n \mid n | A, n^2 A_1' \le A\}$. Then $\exists \alpha_0$, divisor of A, $N_A := A_0^2 A_1' = \alpha_0^2 A_1' \le A$.

Set $\phi_0 = [\alpha_0] \circ \phi$, then $\deg(\phi_0) = N_A$ is known.

$$P' = [\alpha]\phi(P) = [(\alpha\alpha_0^{-1}) \cdot \alpha_0]\phi(P) = [\alpha\alpha_0^{-1}]\phi_0(P)$$
$$Q' = [\alpha]\phi(Q) = [(\alpha\alpha_0^{-1}) \cdot \alpha_0]\phi(Q) = [\alpha\alpha_0^{-1}]\phi_0(Q)$$

Reducing MD-SIDH to M-SIDH

Assume that we know A_1' . Set $A_0 = \max\{n \mid n | A, n^2 A_1' \le A\}$. Then $\exists \alpha_0$, divisor of A, $N_A := A_0^2 A_1' = \alpha_0^2 A_1' \le A$.

Set $\phi_0 = [\alpha_0] \circ \phi$, then $\deg(\phi_0) = N_A$ is known.

$$P' = [\alpha]\phi(P) = [(\alpha\alpha_0^{-1}) \cdot \alpha_0]\phi(P) = [\alpha\alpha_0^{-1}]\phi_0(P)$$
$$Q' = [\alpha]\phi(Q) = [(\alpha\alpha_0^{-1}) \cdot \alpha_0]\phi(Q) = [\alpha\alpha_0^{-1}]\phi_0(Q)$$

Compute $\alpha_1^2 = \alpha_0^2 A' \cdot (\alpha^2 A')^{-1} \mod B = (\alpha_0 \cdot \alpha^{-1})^2 \mod B$. Sampling a random square root α_1' of $\alpha_1^2 \mod B$, then $\alpha_1' = \mu \alpha_1$ where μ is some square root of unity. We compute

$$[\alpha'_{1}]P' = [\mu \cdot \alpha_{1}]P' = [\mu]\phi_{0}(P)$$
$$[\alpha'_{1}]Q' = [\mu \cdot \alpha_{1}]P' = [\mu]\phi_{0}(Q)$$

Consequence on MD-SIDH

- Recovering μ enables the CD-MM-R attack: one can try all the 2^t possible values of μ .
- The parameters suggested by Moriya 2022 ($t = \lambda/2$) are not secure.
- In general, one needs $t = \lambda$; and any attack on M-SIDH is likely to apply to MD-SIDH as well.

Analysis of M-SIDH

Overview

Recall: $A = \ell_1 \cdots \ell_t$, $B = q_1 \cdots q_t$, $A \approx B$, $E_0[B] = \langle P, Q \rangle$, $\alpha \in \mathbb{Z}/B\mathbb{Z}^{\times}$, $\phi : E_0 \to E$ of degree A. We are given $E_0, P, Q, E_A, P' = [\alpha]\phi(P), Q' = [\alpha]\phi(Q)$ and we want to compute ϕ .

We show that if E_0 is M-small with M of polynomial size in $\log p$, then the CD-MM-R can be used to recover the secret isogeny.

Lollipoping M-SIDH (1/2)

Main input: the latest version of Damien's attack only requires $B^2 > A$ i,e, with B torsion point information, one can attack isogenies of degree up to $A \approx B^2$.

 $^{^{1}}$ which can be efficiently evaluated.

Lollipoping M-SIDH (1/2)

<u>Main input</u>: the latest version of Damien's attack only requires $B^2 > A$ i,e, with B torsion point information, one can attack isogenies of degree up to $A \approx B^2$.

<u>Main idea</u>: Attack $\phi_A \circ \theta \circ \widehat{\phi}_A$ instead of ϕ_A , with θ being a non-trivial small endomorphism¹ of E_0 .

Eliminating the scalar α in M-SIDH: one can always assume $\alpha^2 = 1$ mod B (Weil pairing ...)

$$([\alpha]\phi)\circ\theta\circ(\widehat{[\alpha]\phi})=[\alpha^2]\circ\phi\circ\theta\circ\widehat{\phi}=\phi\circ\theta\circ\widehat{\phi}=:\tau.$$

 $^{^{1}}$ which can be efficiently evaluated.

Lollipoping M-SIDH (1/2)

Main input: the latest version of Damien's attack only requires $B^2 > A$ i,e, with B torsion point information, one can attack isogenies of degree up to $A \approx B^2$.

<u>Main idea</u>: Attack $\phi_A \circ \theta \circ \widehat{\phi}_A$ instead of ϕ_A , with θ being a non-trivial small endomorphism¹ of E_0 .

Eliminating the scalar α in M-SIDH: one can always assume $\alpha^2 = 1$ mod B (Weil pairing ...)

$$\left(\left[{\color{red}\alpha}\right]\phi\right)\circ\theta\circ\left(\widehat{\left[{\color{red}\alpha}\right]}\phi\right)=\left[\alpha^2\right]\circ\phi\circ\theta\circ\widehat{\phi}=\phi\circ\theta\circ\widehat{\phi}=:\tau.$$

Magic: No secret scalar appears in τ and $\deg \tau = A^2 \deg \theta$.

¹which can be efficiently evaluated.

Lollipoping M-SIDH (2/2)

• If $A^2 \deg \theta < B^2$, then just run the CD-MM-R attack.

Lollipoping M-SIDH (2/2)

- If $A^2 \deg \theta < B^2$, then just run the CD-MM-R attack.
- If $A^2 \deg \theta > B^2$, then one can
 - guess part ($\approx \sqrt{\deg \theta}$) of the secret isogeny from the end curve, $O(\sqrt{\deg \theta})$ guesses; or
 - guess supplementary ($\approx \sqrt{\deg \theta}$) torsion point information, $O(\sqrt{\deg \theta}^3)$ guesses.

Run the CD-MM-R attack with each guess.

Lollipoping M-SIDH (2/2)

- If $A^2 \deg \theta < B^2$, then just run the CD-MM-R attack.
- If $A^2 \deg \theta > B^2$, then one can
 - guess part ($\approx \sqrt{\deg \theta}$) of the secret isogeny from the end curve, $O(\sqrt{\deg \theta})$ guesses; or
 - guess supplementary ($\approx \sqrt{\deg \theta}$) torsion point information, $O(\sqrt{\deg \theta}^3)$ guesses.

Run the CD-MM-R attack with each guess.

- In general, for an M-small curve with known endomorphism ring, one can recover the secret isogeny in time $O(\sqrt{M})$.
- With the MD-SIDH to M-SIDH reduction, this Lollipop attack extends to MD-SIDH as well.

• We presented two countermeasure ideas for the higher genus torsion point attacks: MD-SIDH and M-SIDH.

- We presented two countermeasure ideas for the higher genus torsion point attacks: MD-SIDH and M-SIDH.
- We provided an advance analysis of both schemes.

- We presented two countermeasure ideas for the higher genus torsion point attacks: MD-SIDH and M-SIDH.
- We provided an advance analysis of both schemes.
 - MD-SIDH was reduced to M-SIDH and suggested parameters (Moriya 2022) are not secure.
 - A Lollipop attack breaks both schemes when the starting curve has small non trivial endomorphisms that can be efficiently evaluated.

- We presented two countermeasure ideas for the higher genus torsion point attacks: MD-SIDH and M-SIDH.
- We provided an advance analysis of both schemes.
 - MD-SIDH was reduced to M-SIDH and suggested parameters (Moriya 2022) are not secure.
 - A Lollipop attack breaks both schemes when the starting curve has small non trivial endomorphisms that can be efficiently evaluated.
- As a consequence, any instantiation would require a starting curve with unknown endomorphism ring.

Ongoing: can one run the lollipop attack when the starting curve has unknown endomorphism ring?

Thanks