DISCRETE MATHEMATICS

Chapter 4: Main families of numbers

4.1 Fibonacci numbers

Leonardo de Pisa (1175-1250): Suppose that we have a pair of rabbits. Every month, except for the first one, each pair gives birth to a new pair. Rabbits never die. We call the number of pairs of rabbits alive at month n, F_n . Thus,

$$\begin{split} F_1 &= 1 & R_1 \\ F_2 &= 1 & R_1 \\ F_3 &= 2 & R_1, R_{11} \\ F_4 &= 3 & R_1, R_{11}, R_{12} \\ F_5 &= 5 & R_1, R_{11}, R_{12}, R_{13}, R_{111} \\ F_6 &= 8 & R_1, R_{11}, R_{12}, R_{13}, R_{111}, R_{14}, R_{112}, R_{121} \end{split}$$

 F_n is formed by starting with the F_{n-1} pairs alive last month and adding the baby pairs that can only come from the F_{n-2} pairs alive two months ago. Hence,

$$F_0 = 0, \quad F_1 = 1, \quad F_n = F_{n-1} + F_{n-2}, \quad n \ge 2.$$

The generating function is

$$F(x) = \frac{x}{1 - x - x^2}.$$

The explicit expression for F_n is

$$F_n = rac{1}{\sqrt{5}} \left[\left(rac{1+\sqrt{5}}{2}
ight)^n - \left(rac{1-\sqrt{5}}{2}
ight)^n
ight].$$

4.1 Fibonacci numbers

Some properties about partial sums:

1

$$F_0 + F_1 + \cdots + F_n = F_{n+2} - 1, \quad n \ge 0$$

2

$$(n+1)F_0 + nF_1 + \cdots + 2F_{n-1} + F_n = F_{n+4} - (n+3)$$

3

$$F_0 + F_2 + \cdots + F_{2n} = F_{2n+1} - 1$$

4

$$F_1 + F_3 + \cdots + F_{2n-1} = F_{2n}$$

5

$$\sum_{k=0}^{n} (n+1-k)F_{2k} = F_{2n+2} - (n+1)$$

Silvia Marcaida UPV/EHU 4

4.1 Fibonacci numbers

Some properties about products, divisibility,...:

1

$$F_{n+m} = F_m \cdot F_{n+1} + F_{m-1} \cdot F_n, \quad n \ge 0, m \ge 1$$

2

$$F_{kn}$$
 is a multiple of F_n , $k \ge 1$

3

$$F_{2n+1} = F_{n+1}^2 + F_n^2$$

4.2 Catalan numbers

Eugène Charles Catalan (1814-1894) defined the Catalan numbers.

Definition

The Catalan numbers are

$$C_n = \frac{1}{n+1} {2n \choose n}, \quad n = 0, 1, 2, 3, \dots$$

Thus,

$$C_0 = \frac{1}{1} \binom{0}{0} = 1$$
,

$$C_1 = \frac{1}{2} \binom{2}{1} = \frac{2}{2} = 1$$
,

$$C_2 = \frac{1}{3} \binom{4}{2} = \frac{6}{3} = 2$$
,

$$C_3 = \frac{1}{4} \binom{6}{3} = \frac{6 \cdot 5 \cdot 4}{3! \cdot 4} = 5$$

:

It turns out that $C_n = \binom{2n}{n} - \binom{2n}{n+1}$.

Thus, C_n is a natural number.

Cilia Manasila HDV//EHH 6

4.2 Catalan numbers

Recall $\Theta_{(0,0)}^{(p,q)}$ = set of U-D trajectories from (0,0) to (p,q), with $p,q \in \mathbb{N}$.

If $p \ge q \ge 0$ and p and q have the same parity then an U-D trajectory from (0,0) to (p,q) can be seen as a sequence formed by $\frac{p+q}{2}$ zeros and $\frac{p-q}{2}$ ones.

Therefore, $|\Theta_{(0,0)}^{(p,q)}| = \binom{p}{\frac{p+q}{2}}$.

In particular, if q=0 and p=2n, $|\Theta_{(0,0)}^{(2n,0)}|=\binom{2n}{n}$.

Put $\Theta_n = \Theta_{(0,0)}^{(2n,0)}$,

 $\Theta_n^* = \text{set of "super" U-D trajectories, that is, set of U-D trajectories from } (0,0) \text{ to } (2n,0) \text{ with } y \geq 0, \text{ and }$

 Θ_n^{**} = set of "extra-super" U-D trajectories, that is, set of U-D trajectories from (0,0) to (2n,0) with y>0 except for the initial and final points.

It turns out that $|\Theta_n^*| = C_n$ and $|\Theta_n^{**}| = C_{n-1}$.

How many "super" U-D trajectories from (0,0) to (2n,0) are there such that they touch OX for the first time at (2k,0), $k=1,2,\ldots,n$? $|\Theta_k^{**}|\cdot |\Theta_{n-k}^*|=C_{k-1}C_{n-k}$. Thus,

$$C_n = \sum_{k=1}^n C_{k-1} C_{n-k}.$$

That is,

$$C_0 = 1$$
, $C_n = C_0 C_{n-1} + C_1 C_{n-2} + \cdots + C_{n-1} C_0$, $n > 1$.

4.2 Catalan numbers

The generating function is

$$c(x) = \sum_{n=0}^{\infty} C_n x^n, \quad |x| < \frac{1}{4}, x \neq 0.$$

$$c(x) \cdot c(x) = \left(\sum_{n=0}^{\infty} C_n x^n\right) \left(\sum_{n=0}^{\infty} C_n x^n\right) = \\ \left(C_0 + C_1 x + C_2 x^2 + \cdots\right) \left(C_0 + C_1 x + C_2 x^2 + \cdots\right) = C_0 C_0 + \left(C_0 C_1 + C_1 C_0\right) x + \\ \left(C_0 C_2 + C_1 C_1 + C_2 C_0\right) x^2 + \cdots + \left(C_0 C_n + C_1 C_{n-1} + \cdots + C_n C_0\right) x^n + \cdots = \\ C_1 + C_2 x + C_3 x^2 + \cdots + C_{n+1} x^n + \cdots = \frac{c(x) - C_0}{x}.$$

Thus,
$$c(x)^2 = \frac{c(x) - C_0}{x}$$
 and $xc(x)^2 - c(x) + 1 = 0$.

Therefore, $c(x) = \frac{1 \pm \sqrt{1-4x}}{2x}$.

Since
$$\lim_{x\to 0} \frac{1+\sqrt{1-4x}}{2x}=\pm\infty$$
 and $\lim_{x\to 0} \frac{1-\sqrt{1-4x}}{2x}=1$

$$c(x) = \begin{cases} \frac{1 - \sqrt{1 - 4x}}{2x} & |x| < \frac{1}{4}, x \neq 0 \\ 1 & x = 0 \end{cases}$$

Silvia Marcaida UPV/EHU 8

4.2 Catalan numbers

Combinatorial problem related to the Catalan numbers: triangulation of convex polygons with numbered vertices.

Triangulation is a decomposition of a convex polygon in triangles with disjoint interiors and whose vertices are the vertices of the polygon.

Let T_n be the number of possible triangulations of a polygon with n+2 sides and numbered vertices $v_1, v_2, \ldots, v_{n+2}$.

Notice that two consecutive vertices are related in a triangle.

We can classify in terms of the third vertex: If v_1, v_2 are the two fixed vertices then we can get $v_1v_2v_{k+2}$, $k=1,\ldots,n$.

For each k = 1, ..., n we would get the number of triangulations that can be made with vertices $v_2, v_3, \ldots, v_{k+2}$ times the number of triangulations that can be made with vertices $v_{k+2}, \ldots, v_{n+2}, v_1$.

Therefore,

$$T_n = \sum_{k=1}^n T_{k-1} T_{n-k}.$$

If we set $T_0 = 1$ then $T_n = C_n$.

4.2 Catalan numbers

Another combinatorial problem related to the Catalan numbers: parenthesize a product.

To parenthesize a product means to insert enough parentheses so that every subproduct is the multiplication of exactly two factors.

For example, the product $x_1x_2x_3x_4$ can be parenthesized as:

$$(x_1((x_2x_3)x_4))$$

or

 $(x_1(x_2(x_3x_4)))$

or

 $((x_1x_2)(x_3x_4))$

or

 $(((x_1x_2)x_3)x_4)$

or

$$((x_1(x_2x_3))x_4)$$

Let a_n be the number of ways in which $x_1x_2\cdots x_n$ can be parenthesized. It turns out that $a_n = C_{n-1}$.

Silvia Marcaida UPV/EHU 10

4.3 Partitions of natural numbers

4.3.1 Definition

Definition

Let $n \in \mathbb{N} = \{1, 2, \ldots\}$. A **partition of** n is an expression of n as sum of natural numbers, which are called parts.

Two partitions are considered identical if they only differ in the order of the parts.

For example, $2+1 \equiv 1+2$.

If two partitions that only differ in the order are considered different then they are ordered partitions.

4.3.2 Ordered partitions

Let π_n be the number of ordered partitions of n.

 $\pi_1 = 1$ (1),

 $\pi_2 = 2 \quad (2, 1+1),$

 $\pi_3 = 4$ (3, 2 + 1, 1 + 2, 1 + 1 + 1),

 $\pi_4 = 8$ (4,3+1,2+2,2+1+1,1+3,1+2+1,1+1+2,1+1+1+1).

Conjecture: Is $\pi_n = 2^{n-1}$ for every $n \ge 1$?

We classify according to the number of parts:

● 1 part: 1 (n)

• 2 parts: n-1 $(1+(n-1), 2+(n-2), \dots, (n-1)+1)$

• k parts: number of solutions of $x_1 + x_2 + \cdots + x_k = n$ with $x_1, x_2, \dots, x_k \in \mathbb{N}$

• *n* parts: 1 $(1+1+\cdots+1)$

How many are there?

For each k, the number of solutions of $x_1+x_2+\cdots+x_k=n$ with $x_i\in\mathbb{N}\equiv$ the number of solutions of $(1+y_1)+(1+y_2)+\cdots+(1+y_k)=n$ with $y_i\in\mathbb{N}\cup\{0\}\equiv$ the number of solutions of $y_1+y_2+\cdots+y_k=n-k$ with $y_i\in\mathbb{N}\cup\{0\}\equiv CR_{k,n-k}=\binom{k+n-k-1}{n-k}=\binom{n-1}{k-1}$. Thus,

$$\pi_n = \sum_{k=1}^n \binom{n-1}{k-1} = 2^{n-1}, \quad n \ge 1.$$

Silvia Marcaida IIPV/EHII 10

4.3 Partitions of natural numbers

4.3.3 Partitions and restricted partitions

Let p_n be the number of partitions of n.

Let $p_n^{(k)}$ be the number of partitions of n with parts $\leq k$.

We set $p_0 = 1$ and $p_0^{(k)} = 1$.

It is clear that $p_n \le \pi_n = 2^{n-1}$. Moreover, if $k \ge n$, $p_n^{(k)} = p_n$.

Theorem

The generating function of $(p_n^{(k)})_{n>0}$ is

$$p^{(k)}(x) = \frac{1}{1-x} \frac{1}{1-x^2} \cdots \frac{1}{1-x^k} = \prod_{r=1}^k \frac{1}{1-x^r}, \quad |x| < 1.$$

Theorem

For $|x| < \frac{1}{2}$, $\lim_{k \to \infty} |p(x) - p^{(k)}(x)| = 0$ with p(x) the generating function of $(p_n)_{n \ge 0}$. That is,

$$p(x) = \lim_{k \to \infty} p^{(k)}(x) = \lim_{k \to \infty} \prod_{r=1}^{k} \frac{1}{1 - x^r} = \prod_{r=1}^{\infty} \frac{1}{1 - x^r}.$$

4.3.4 Partitions into distinct parts

Let d_n be the number of partitions of n into distinct parts and $d_n^{(k)}$ be the number of partitions of n into distinct parts $\leq k$.

We set $d_0 = 1$ and $d_0^{(k)} = 1$.

Notice that $d_n^{(k)} \leq d_n \leq p_n \leq \pi_n = 2^{n-1}$ and if $n \leq k$ then $d_n^{(k)} = d_n$.

Theorem

The generating function of $(d_n^{(k)})_{n>0}$ is

$$d^{(k)}(x) = (1+x)(1+x^2)\cdots(1+x^k) = \prod_{r=1}^k (1+x^r)$$

and $d_n^{(k)}$ is the coefficient of x^n in $d^{(k)}(x)$.

Theorem

For $|x|<\frac{1}{2}$, $\lim_{k\to\infty}|d(x)-d^{(k)}(x)|=0$ with d(x) the generating function of $(d_n)_{n\geq 0}$. That is,

$$d(x) = \lim_{k \to \infty} d^{(k)}(x) = \lim_{k \to \infty} \prod_{r=1}^{k} (1 + x^r) = \prod_{r=1}^{\infty} (1 + x^r).$$

4.3 Partitions of natural numbers

4.3.5 Partitions into odd parts

Let o_n be the number of partitions of n into odd parts and let $o_n^{(k)}$ be the number of partitions of n into odd parts $\leq k$. We set $o_0 = 1$ and $o_0^{(k)} = 1$.

It is clear that $o_n^{(k)} \leq o_n \leq p_n \leq \pi_n = 2^{n-1}$. Moreover, $o_n^{(2l-1)} = o_n^{(2l)}$ and if $k \geq n$, $o_n^{(k)} = o_n$.

Theorem

The generating function of $(o_n^{(2l-1)})_{n>0}$, $l \ge 1$, is

$$o^{(2l-1)}(x) = \frac{1}{1-x} \frac{1}{1-x^3} \cdots \frac{1}{1-x^{2l-1}} = \prod_{r=1}^{l} \frac{1}{1-x^{2r-1}}, \quad |x| < 1$$

and $o_n^{(2l-1)}$ is the coefficient of x^n in $o^{(2l-1)}(x)$. Moreover, the generating function of $(o_n^{(2l)})_{n>0}, l \geq 1$, is $o^{(2l)}(x) = o^{(2l-1)}(x)$.

4.3.5 Partitions into odd parts

Theorem

For $|x| < \frac{1}{2}$, $\lim_{k \to \infty} |o(x) - o^{(2l-1)}(x)| = 0$ with o(x) the generating function of $(o_n)_{n>0}$. That is,

$$o(x) = \lim_{l \to \infty} o^{(2l-1)}(x) = \lim_{l \to \infty} \prod_{r=1}^{l} \frac{1}{1 - x^{2r-1}} = \prod_{r=1}^{\infty} \frac{1}{1 - x^{2r-1}}.$$

Corollary

For $|x| < \frac{1}{2}$, d(x) = o(x) and $d_n = o_n$ for all n.

Remark

We could generalize the above taking $A = \{a_1 < a_2 < a_3 < \cdots\} \subseteq \mathbb{N}$, α_n as the number of partitions of n with parts in A and $\alpha_n^{(k)}$ as the number of partitions of n with parts $\leq k$ in A.

Silvia Marcaida UPV/EHU 16

4.3 Partitions of natural numbers

4.3.6 Ferrers diagrams

Example

Ferrers diagram of the partition 13 = 5 + 3 + 2 + 2 + 1:

In general,

4.3.6 Ferrers diagrams

Characteristics of a Ferrers diagram of a partition of n:

- The total number of circles is *n*.
- The number of rows is the number of parts.
- The number of columns is the greatest part.

Definition

Let π be a partition of n. The **conjugate of** π , π^t , is a partition whose Ferrers diagram is the transpose of the Ferrers diagram of π .

Example

```
\pi = 5 + 3 + 2 + 2 + 1:
```

Theorem

The number of partitions of n into (at most) k parts is equal to the number of partitions of n in which the greatest part is (at most) k.

Silvia Marcaida UPV/FHU 18

4.3 Partitions of natural numbers

4.3.6 Ferrers diagrams

Definition

A partition π of n is **self-conjugate** if $\pi^t = \pi$, that is, if the Ferrers diagram is symmetric with respect to the main diagonal.

How many self-conjugate partitions of *n* are there?

```
{Partitions of n into odd distinct parts}
 f: \{ Self-conjugate partitions of n \} \rightarrow
              x_1 + x_2 + \cdots + x_{x_1} \rightarrow (2x_1 - 1) + (2(x_2 - 1) - 1) + \cdots + (2(x_l - (l - 1)) - 1)
where l = x_1 or (l \le x_l \text{ and } l + 1 > x_{l+1}), is a bijection.
```

Example

There are as many self-conjugate partitions of n as the number of partitions of n into odd distinct parts.

4.4 Bell numbers

Definition

Let Ω be a finite set. A **partition of** Ω is a collection of subsets of Ω , $\{A_1, A_2, \ldots, A_k\}$,

- \bigcirc $A_i \neq \emptyset$ for all i.
- 2 They are pairwise disjoint, i.e., $A_i \cap A_i = \emptyset$ if $i \neq j$.
- **3** Their union is Ω , i.e., $\Omega = \bigcup_{i=1}^k A_i$.

Definition (Eric Temple Bell (1883-1960))

Let $B_0 = 1$ and B_n be the number of partitions of a set of n elements, $n \ge 1$. B_0, B_1, B_2, \ldots are called the **Bell numbers**.

Example

- n = 1 $\Omega = \{1\}, B_1 = 1, (\{\{1\}\})$
- n=2 $\Omega = \{1,2\}, B_2 = 2, (\{\{1,2\}\}, \{\{1\}, \{2\}\})$
- n = 3 $\Omega = \{1, 2, 3\}, B_3 = 5,$ $(\{\{1,2,3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\{\{2,3\},\{1\}\},\{\{1\},\{2\},\{3\}\}))$

Silvia Marcaida UPV/EHU 20

4.4 Bell numbers

Recurrence relation for the Bell numbers:

Let
$$\Omega = \{1, 2, ..., n\}$$
.

Let A_1 be any subset of Ω that contains the element 1.

There are $\binom{n-1}{k-1}$ sets A_1 that have k elements, with $k=1,\ldots,n$.

Once A_1 is fixed there are B_{n-k} partitions of $\Omega \setminus A_1$.

Therefore.

$$B_n = \sum_{k=1}^n \binom{n-1}{k-1} B_{n-k} = \sum_{k=1}^n \binom{n-1}{n-k} B_{n-k} = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k.$$

Thus,

$$B_n = \binom{n-1}{0}B_0 + \binom{n-1}{1}B_1 + \cdots + \binom{n-1}{n-1}B_{n-1}.$$

4.4 Bell numbers

We can make use of the Pascal's triangle to calculate the Bell numbers:

$$B_0 = 1,$$

 $B_1 = 1B_0 = 1,$
 $B_2 = 1B_0 + 1B_1 = 2,$
 $B_3 = 1B_0 + 2B_1 + 1B_2 = 5,$
 $B_4 = 1B_0 + 3B_1 + 3B_2 + 1B_3 = 15,$
 $B_5 = 1B_0 + 4B_1 + 6B_2 + 4B_3 + 1B_4 = 52, ...$

Silvia Marcaida UPV/EHU 22

4.4 Bell numbers

Theorem

$$\left(\frac{B_{n+1}}{n!}\right)_{n\geq 0} = \left(\frac{B_n}{n!}\right)_{n\geq 0} * \left(\frac{1}{n!}\right)_{n\geq 0}$$

The exponential generating function of $(B_n)_{n\geq 0}$ is the generating function of $(\frac{B_n}{n!})_{n>0}$:

$$B(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n.$$

Hence, $B'(x) = \sum_{n=1}^{\infty} \frac{B_n}{n!} n x^{n-1} = \sum_{n=1}^{\infty} \frac{B_n}{(n-1)!} x^{n-1} = \sum_{n=0}^{\infty} \frac{B_{n+1}}{n!} x^n$.

Therefore, B'(x) is the generating function of $\left(\frac{B_{n+1}}{n!}\right)_{n>0}$.

Since e^x is the generating function of $\left(\frac{1}{n!}\right)_{n>0}$,

$$B'(x) = B(x)e^{x}$$
 (linear differential equation)

As
$$\frac{B'(x)}{B(x)} = e^x$$
, $\ln B(x) = e^x + C$ and $B(x) = e^{e^x + C}$.

Moreover $B(0)=\frac{B_0}{0!}=1$. So, $1=e^{1+C}$, 0=1+C and C=-1. Thus,

$$B(x)=e^{e^x-1}.$$

4.5 Stirling numbers of the first kind

Recall

$$x^{\overline{n}} = \left\{ egin{array}{ll} x(x+1)\cdots(x+n-1) & n \geq 1 \ 1 & n = 0 \end{array}
ight.$$

 $x^{\overline{n}}$ is a polynomial of degree n.

Let $\mathbb{R}[x]$ be the vector space of polynomials in the indeterminate x with real coefficients and $\mathbb{R}_n[x]$ the vector subspace of polynomials of degree at most n.

Then $\mathcal{B}=\{1,x,x^2,\ldots\}$, $\overline{\mathcal{B}}=\{1,x^{\overline{1}},x^{\overline{2}},\ldots\}$ and $\underline{\mathcal{B}}=\{1,x^{\underline{1}},x^{\underline{2}},\ldots\}$ are bases of $\mathbb{R}[x]$ and $\mathcal{B}_n = \{1, x, x^2, \dots, x^n\}$, $\overline{\mathcal{B}}_n = \{1, x^{\overline{1}}, x^{\overline{2}}, \dots, x^{\overline{n}}\}$ and $\underline{\mathcal{B}}_n = \{1, x^{\underline{1}}, x^{\underline{2}}, \dots, x^{\underline{n}}\}$ are bases of $\mathbb{R}_n[x]$.

Definition

For n, k = 0, 1, 2, ..., the **Stirling numbers of the first kind**, denoted by $\binom{n}{k}$, are the coordinates of $x^{\overline{n}}$ with respect to the canonical basis \mathcal{B}_n , in other words, $\begin{bmatrix} n \\ \nu \end{bmatrix}$ is the coefficient of x^k in $x^{\overline{n}}$.

Remark

Notice that $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$ and $x^{\overline{n}} = \sum_{k=0}^n \binom{n}{k} x^k$.

Silvia Marcaida UPV/EHU 24

4.5 Stirling numbers of the first kind

Proposition

- **1** If $n \ge 1$ then $\binom{n}{1} = (n-1)!$
- **6** $\binom{n}{n-1} = \binom{n}{2}$.

Recurrence relation:

For $n \ge 2$ and $1 \le k \le n-1$,

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}.$$

4.5 Stirling numbers of the first kind

Pascal's triangle:

$$\begin{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 2 \\ 1 \end{bmatrix} & \begin{bmatrix} 2 \\ 2 \end{bmatrix} & \begin{bmatrix} 3 \\ 3 \end{bmatrix} & \begin{bmatrix}$$

Ex:
$$\begin{bmatrix} 6 \\ 2 \end{bmatrix} = 274 = 24 + 5 \cdot 50 = \begin{bmatrix} 5 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$
.

Silvia Marcaida UPV/EHU 26

4.5 Stirling numbers of the first kind

Combinatorial meaning:

 $\begin{bmatrix} n \\ k \end{bmatrix}$ can be seen as the number of permutations of $1, 2, \ldots, n$ that can be expressed as a product of k cycles with disjoint orbits.

Example:

4.5 Stirling numbers of the second kind

Recall

$$x^{\underline{n}} = \left\{ egin{array}{ll} x(x-1)\cdots(x-n+1) & & n \geq 1 \ 1 & & n = 0 \end{array}
ight.$$

 $x^{\underline{n}}$ is a polynomial of degree n.

Definition

For $n, k = 0, 1, 2, \ldots$, the **Stirling numbers of the second kind**, denoted by $\binom{n}{k}$, are the coordinates of x^n with respect to $\underline{\mathcal{B}} = \{1, x^{\underline{1}}, x^{\underline{2}}, \ldots\}$, in other words, $\binom{n}{k}$ is the coefficient of $x^{\underline{k}}$ in x^n .

Remark

Notice that $x^n = \sum_{k=0}^n {n \brace k} x^{\underline{k}}$.

Proposition

- **1** If k > n then $\binom{n}{k} = 0$.
- $\{ n \} = 1.$

Silvia Marcaida UPV/EHU 28

4.5 Stirling numbers of the second kind

Recurrence relation:

For $n \ge 2$ and $1 \le k \le n-1$,

$${n \brace k} = {n-1 \brace k-1} + k {n-1 \brack k}.$$

4.5 Stirling numbers of the second kind

Pascal's triangle:

Ex:
$${5 \choose 2} = 15 = 1 + 2 \cdot 7 = {4 \choose 1} + 2{4 \choose 2}$$
.

Silvia Marcaida UPV/EHU 30

4.5 Stirling numbers of the second kind

Combinatorial meaning:

Define b(n, k) as the number of partitions of $\{1, 2, ..., n\}$ in k (nonempty) subsets.

Example: b(4,2) = 7 because if $\{1,2,3,4\}$:

$$\{\{1\}, \{2,3,4\}\}, \{\{2\}, \{1,3,4\}\}, \{\{3\}, \{1,2,4\}\}, \{\{4\}, \{1,2,3\}\}, \{\{1,2\}, \{3,4\}\}, \{\{1,3\}, \{2,4\}\}, \{\{1,4\}, \{2,3\}\}.$$

Notice that b(n,0)=0 for $n\geq 1$ and b(n,n)=1 for $n\geq 1$. We can set b(0,0)=1. We can classify the partitions according to element 1:

- Those in which $\{1\}$ is a subset: there are b(n-1, k-1).
- Those in which $\{1\}$ is not a subset.- we choose a partition of $\{2, \ldots, n\}$ in k (nonempty) subsets and insert element 1: there are kb(n-1,k).

Therefore, b(n, k) = b(n - 1, k - 1) + kb(n - 1, k). Thus,

$${n \brace k} = b(n, k) =$$
 number of partitions of $\{1, 2, ..., n\}$ in k (nonempty) subsets.

4.5 Stirling numbers of the second kind

Relation with the Bell numbers:

 B_n = number of partitions of $\{1, 2, ..., n\}$.

$$B_n = \begin{Bmatrix} n \\ 0 \end{Bmatrix} + \begin{Bmatrix} n \\ 1 \end{Bmatrix} + \cdots + \begin{Bmatrix} n \\ n \end{Bmatrix}.$$

Notice that in the Pascal's triangle the sum of the elements of the nth row is B_n .

Silvia Marcaida UPV/EHU 32

4.5 Stirling numbers of the second kind

Another combinatorial meaning:

Let c(n, k) be the number of ways to put n distinguishable balls in k indistinguishable boxes with no empty boxes.

Idea: Choose a partition of $\{1, 2, ..., n\}$ in k subsets and put the k (nonempty) subsets of balls in the k boxes (one per box):

$$c(n,k) = \begin{Bmatrix} n \\ k \end{Bmatrix}$$

Moreover,

$$k! {n \brace k}$$

- is the number of ways to put *n* distinguishable balls in *k* numbered boxes with no empty boxes.
- is the number of surjective mappings from $\{1, \ldots, n\}$ to $\{1, \ldots, k\}$.