Reg. No.

B.Tech. DEGREE EXAMINATION, MAY 2024

Fourth Semester

18MAB206T - NUMERICAL METHODS AND ANALYSIS

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.

Part - B & Part - C should be answered in answer booklet. (ii)

Time: 3 hours

Max. Marks: 100

Marks BL CO PO

 $PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

1. Newton's method is not applicable for finding a root of f(x)=0 with the initial approximation $x=x_0$, if

(A) $f(x_0) = 0$

(B) $f'(x_0) = 0$

(C) $f(x_0) \neq 0$

(D) $f'(x_0) \neq 0$

2. A root of the equation $x^4 - x^3 - x^2 - 1 = 0$ lies between

1 2 1

(A) 0 and 1

(B) 1 and 2

(C) 2 and 3

(D) 3 and 4

1 1 2 3. Consider the equation f(x)=0 with f(a)<0 and f(b)>0, then by Regula Falsi method

 $x_1 = \frac{af(b) - bf(a)}{b - a}$

(B) $x_1 = \frac{bf(b) - af(a)}{b - a}$

(C) $x_1 = \frac{bf(b) - af(a)}{f(b) - f(a)}$

(D) $x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)}$

4. The equation x=cosx is (A) A linear equation

(B) A quadratic equation

(C) A transcendental equation

(D) An algebraic equation

5. If $f(x) = x^2$ and h = 2, then the value of Ef(x) is

2

1

1 1 2

(A) $x^2 + 2x + 1$

(B) $x^2 + 2x + 2$

(C) $x^2 + 2x + 4$

(D) $x^2 + 4x + 4$

6. If f(x) is a polynomial of degree n, then $\Delta f(x)$ is a polynomial of degree

1 1 2

(A) n-2

(B) n-1

(C) n

(D) n+1

7. If $y_0 = 0$, $y_1 = 3$ and $y_2 = 5$, then the value of ∇y_1 is

2 2

(A) 3

(B) 2

(C) 1

(D) 0

8. The averaging operator μ is defined as

1 2

(A) $\mu f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$ (B) $\mu f(x) = f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right)$

(C) $\mu f(x) = \frac{1}{2} \left[f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right) \right]$ (D) $\mu f(x) = \frac{1}{2} \left[f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right) \right]$

17. The equation $u_{xx} + u_{yy} = f(x, y)$ is known (A) Poisson equation (C) Heat equation	(B)	Laplace equation Wave equation		1	5	2
18. The equation $a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial y^2} + c\frac{\partial^2 u}{\partial x \partial y} = 0$	is hy	perbolic, if	1	1	5	2
The equation $a \frac{\partial}{\partial x^2} + b \frac{\partial}{\partial y^2} + c \frac{\partial}{\partial x \partial y}$	(R)	b^2 $Aac > 0$				
(A) $b^2 - 4ac < 0$ (C) $c^2 - 4ab > 0$	(D)	$c^2 - 4ab < 0$				
19. By Standard five point formula, the val	hie of	·uııis	1	2	5	1
(A) $\frac{1}{4} \left[u_{0,1} + u_{2,1} + u_{1,0} + u_{1,2} \right]$	(B)	$\frac{1}{2} \left[u_{0,1} + u_{2,1} + u_{1,0} + u_{1,2} \right]$				
(C) $\frac{1}{4} \left[u_{0,1} + u_{1,0} + u_{2,1} + u_{2,2} \right]$	(D)	$\frac{1}{2} \left[u_{0,0} + u_{1,0} + u_{0,1} + u_{2,2} \right]$				
20. If $u_{0,0} = u_{0,2} = u_{2,0} = u_{2,2} = 5$, then by I	Diago	nal five point formula, the value	1	2	5	1
of u _{1,1} is (A) 5/4 (C) 10	(B) (D)					
PART – B (5 > Answer ANY)	× 4 = FIVE	20 Marks) Questions	Marks	BL	CO	PO
21. Solve by Jacobi method up to three its $8x-3y+2z=20$	eratio	ns.	4	3	1	1.2
4x + 11y - z = 33						
6x + 3y + 12z = 35		1 O and 4 by Risection	4	3	1	1.2
22. Find a root of the following equation method, $x^3 - x^2 + x - 1 = 0$.			4	4	2	1.2
23. Express $f(x) = x^3 + x^2 + x$ in terms of	of fact	torial polynomial.		4	2	1,2
24. Find a polynomial satisfying the poir or Largange's formula for interpolati	nts (0, ion.	, 1), (1,2) and (2,5) using Newton's		4		
25. Find the value of $\left(\frac{dy}{dx}\right)_{x=1}$ by New		s forward formula using the table	4	4	3	1.2
below: x 1 2 3 y 1 4 9 26. Compute y at x=0.25 by $\frac{dy}{dx} = 2xy, y(0) = 1 \text{ and } h = 0.25.$	Mo	dified Euler's method giver	1 ⁴	2	4 '	4 1.2
27 Classify the partial differential equa	tion		4		4	5 1.2
$u_{xx} + 4u_{xy} + (x^2 + 4y^2)u_{yy} = \sin(x + 4y^2)u_{yy}$	<i>y</i>					

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

Marks BL CO PO

28. a. Find the real positive root of $3x - \cos x - 1 = 0$ by Newton's method.

12 3 1 1.2

(OR)

b. Solve the system by Gauss Jordan method. 2x+3y-z=5

29. a. Find the missing terms of the sequence 1, 8, ?, 64, ?, 216.

12 3 1 1.2

$$4x + 4y - 3z = 3$$

2x - 3y + 2z = 2

12 4 2 12

(OR)

b. Prove that

2 4 2 1.2

(i)
$$\nabla \Delta = \Delta - \nabla = \delta^2$$

(ii)
$$\left(\frac{\Delta^2}{E}\right)e^x \cdot \left(\frac{Ee^x}{\Delta^2 e^x}\right) = e^x$$

30. a. Find an approximate value of $\tan^{-1} \left(\frac{\sqrt{3}}{2} \right)$ from the integral $\int_{0}^{2} \frac{dx}{1 + x + x^{2}}$ taking

12 4 3 1.

- n=6, using
- (i) Trapezoidal rule
 - (ii) Simpson's $\left(\frac{1}{3}\right)$ rule

(OR)

b. Find the first two derivatives of $x^{1/3}$ at x=56 given the table below.

2 4 3 1.

			OSOIX	at A 50 given the table below.			
X	50	51	52	53	54	55	56
$y = x^{1/3}$	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3 8250

31. a. Solve $\frac{dy}{dx} = x + y$, y(1) = 0 and get y(1.1), y(1.2) by Taylor series method.

12 4 4 1.2

(OR)

b. Solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0) = 1 and get y(0.2) by Runge-Kutta fourth order method.

12 4 4 1.2

32. a. Solve $u_t = u_{xx}$ subject to u(0,t) = (1,t) = 0 and $u(x,0) = \sin \pi x, 0 < x < 1$.

2 4 5 1.2

(OR)

b. Solve $\nabla^2 u = 8x^2y^2$ for square Mesh given u=0 on the four boundaries dividing the square into 16 sub-squares of length 1 unit.

* * * * *