NOI2017 山东省队选拔第一轮 **Day 2**

2017年4月9日

题目名称	新生舞会	硬币游戏	相关分析
程序名	ball	game	relative
输入输出文件名	ball.in/out	game.in/out	relative.in/out
时间限制	1s	1s	1s
空间限制	128MB	128MB	128MB

最终测试时,所有编译命令均不打开任何优化开关。

提醒选手注意windows栈空间大小,避免栈溢出。程序栈溢出将不能正常运行,无论是在选手用机上还是在评测用机上。

新生舞会

【题目描述】

学校组织了一次新生舞会,Cathy作为经验丰富的老学姐,负责为同学们安排舞伴。

有n个男生和n个女生参加舞会,一个男生和一个女生一起跳舞,互为舞伴。

Cathy收集了这些同学之间的关系,比如两个人之前是否认识,计算得出 $a_{i,j}$,表示第i个男生和第j个女生一起跳舞时他们的喜悦程度。

Cathy还需要考虑两个人一起跳舞是否方便,比如身高体重差别会不会太大,计算得出 $b_{i,j}$,表示第i个男生和第j个女生一起跳舞时的不协调程度。

当然,还需要考虑很多其他问题。

Cathy想先用一个程序通过 $a_{i,i}$ 和 $b_{i,i}$ 求出一种方案,再手动对方案进行微调。

Cathy找到你,希望你帮她写那个程序。

一个方案中有n对舞伴,假设每对舞伴的喜悦程度分别是 a'_1 , a'_2 ,…, a'_n ,假设每对舞伴的不协调程度分别是 b'_1 , b'_2 ,…, b'_n 。令

$$C = \frac{a'_1 + a'_2 + \dots + a'_n}{b'_1 + b'_2 + \dots + b'_n}$$

Cathy希望C值最大。

【输入格式】

第一行一个整数n。

接下来n行,每行n个正整数,第i行第j个数表示 $a_{i,j}$ 。

接下来n行,每行n个正整数,第i行第j个数表示 $b_{i,j}$ 。

【输出格式】

一行一个数,表示C的最大值。四舍五入保留6位小数,选手输出的小数需要与标准输出相等。

【样例输入】

3

19 17 16

 $25\ 24\ 23$

 $35\ 36\ 31$

9 5 6

3 4 2

789

【样例输出】

5.357143

【数据规模和约定】

对10%的数据, $1 \le n \le 5$ 对40%的数据, $1 \le n \le 18$ 另外存在20%的数据, $b_{ij} = 1$ 对100%的数据, $1 \le n \le 100$, $1 \le a_{ij} \le 10^4$, $1 \le b_{ij} \le 10^4$

硬币游戏

【题目描述】

周末同学们非常无聊,有人提议,咱们扔硬币玩吧,谁扔的硬币正面次数多谁胜利。 大家纷纷觉得这个游戏非常符合同学们的特色,但只是扔硬币实在是太单调了。

同学们觉得要加强趣味性,所以要找一个同学扔很多很多次硬币,其他同学记录下正 反面情况。

用H表示正面朝上,用T表示反面朝上,扔很多次硬币后,会得到一个硬币序列。比如HTT表示第一次正面朝上,后两次反面朝上。

但扔到什么时候停止呢?大家提议,选出n个同学,每个同学猜一个长度为m的序列,当某一个同学猜的序列在硬币序列中出现时,就不再扔硬币了,并且这个同学胜利。为了保证只有一个同学胜利,同学们猜的n个序列两两不同。

很快,n个同学猜好序列,然后进入了紧张而又刺激的扔硬币环节。你想知道,如果硬币正反面朝上的概率相同,每个同学胜利的概率是多少。

【输入格式】

第一行两个数n, m。

接下来n行,每行一个长度为m的字符串,表示第i个同学猜的序列。

【输出格式】

输出n行,第i行表示第i个同学胜利的概率。选手输出与标准输出的绝对误差不超过 10^{-6} 即为正确。

【样例输入】

3 3

THT

TTH

HTT

【样例输出】

0.33333333333

0.2500000000

0.4166666667

【数据规模和约定】

对10%的数据, $1 \le n, m \le 3$

对40%的数据, $1 \le n, m \le 18$

另外20%的数据, n=2

对100%的数据, 1 < n, m < 300

相关分析

【题目描述】

Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度、颜色等等,进而估算出星星的距离、半径等等。

Frank不仅喜欢观测,还喜欢分析观测到的数据。他经常分析两个参数之间(比如亮度和半径)是否存在某种关系。

现在Frank要分析参数X与Y之间的关系。他有n组观测数据,第i组观测数据记录了 x_i 和 y_i 。他需要进行以下几种操作:

• 1 *L R* :

用直线拟合第L组到第R组观测数据。用 \bar{x} 表示这些观测数据中x的平均数,用 \bar{y} 表示这些观测数据中y的平均数,即

$$\bar{x} = \frac{1}{R - L + 1} \sum_{i=L}^{R} x_i$$

$$\bar{y} = \frac{1}{R - L + 1} \sum_{i=L}^{R} y_i$$

如果直线方程是y = ax + b,那么a、b应当这样计算:

$$a = \frac{\sum_{i=L}^{R} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=L}^{R} (x_i - \bar{x})^2}$$

$$b = \bar{y} - a\bar{x}$$

你需要帮助Frank计算a。

\bullet 2 L R S T :

Frank发现测量第L组到第R组数据时有误差,对于每个i满足 $L \leq i \leq R$, x_i 需要加上S, y_i 需要加上T.

• 3 *L R S T* :

Frank发现第L组到第R组数据需要修改,对于每个i满足 $L \leq i \leq R$, x_i 需要修改为(S+i), y_i 需要修改为(T+i)。

【输入格式】

第一行两个数n, m, 表示观测数据组数和操作次数。

接下来一行n个数,第i个数是 x_i 。

接下来一行n个数,第i个数是 y_i 。

接下来m行,表示操作,格式见题目描述。

【输出格式】

对于每个1操作,输出一行,表示直线斜率a。选手输出与标准输出的绝对误差或相对误差不超过 10^{-5} 即为正确。

【样例输入】

- 3 5
- 1 2 3
- $1\ 2\ 3$
- 1 1 3
- 2 2 3 -3 2
- 1 1 2
- $3\ 1\ 2\ 2\ 1$
- 1 1 3

【样例输出】

- 1.0000000000
- -1.5000000000
- -0.6153846154

【数据规模和约定】

对20%的数据, $1 \le n, m \le 1000$

另有20%的数据,没有3操作,且2操作中S=0

另有30%的数据,没有3操作

对100%的数据, $1 \le n, m \le 10^5$

对于所有数据, $1 \le L \le R \le n$, $0 \le |S|, |T| \le 10^5$, $0 \le |x_i|, |y_i| \le 10^5$

对于所有数据,1操作中不会出现分母为0这类特殊情况。