

TL081, TL081A, TL081B, TL082, TL082A TL082B, TL084, TL084A, TL084B

SLOS081I-FEBRUARY 1977-REVISED MAY 2015

TL08xx JFET-Input Operational Amplifiers

Features

- Low Power Consumption: 1.4 mA/ch Typical
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias Current: 30 pA Typical
- Low Input Offset Current: 5 pA Typical
- **Output Short-Circuit Protection**
- Low Total Harmonic Distortion: 0.003% Typical
- High Input Impedance: JFET Input Stage
- Latch-Up-Free Operation
- High Slew Rate: 13 V/µs Typical
- Common-Mode Input Voltage Range Includes V_{CC+}

Applications

- **Tablets**
- White goods
- Personal electronics
- Computers

3 Description

The TL08xx JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias offset currents, and low offset-voltage temperature coefficient.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TL084xD	SOIC (14)	8.65 mm × 3.91 mm
TL08xxFK	LCCC (20)	8.89 mm × 8.89 mm
TL084xJ	CDIP (14)	19.56 mm × 6.92 mm
TL084xN	PDIP (14)	19.3 mm × 6.35 mm
TL084xNS	SO (14)	10.3 mm × 5.3 mm
TL084xPW	TSSOP (14)	5.0 mm × 4.4 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Schematic Symbol

5 Pin Configuration and Functions

TL081 and TL081x D, P, and PS Package 8-Pin SOIC, PDIP, and SO Top View

TL082 and TL082x D, JG, P, PS and PW Package 8-Pin SOIC, CDIP, PDIP, SO, and TSSOP Top View

TL084 and TL084x D, J, N, NS and PW Package 14-Pin SOIC, CDIP, PDIP, SO, and TSSOP Top View

Pin Functions

					Helions				
		PII	N						
	TL081	TLO)82	TL	.084				
NAME	SOIC, PDIP, SO	SOIC, CDIP, PDIP, SO, TSSOP	LCCC	SOIC, CDIP, PDIP, SO, TSSOP	LCCC	I/O	DESCRIPTION		
1IN-		2	5	2	3	Ţ	Negative input		
1IN+	_	3	7	3	4	I	Positive input		
1OUT	_	1	2	1	2	0	Output		
2IN-	_	6	15	6	9	I	Negative input		
2IN+	_	5	12	5	8	I	Positive input		
2OUT	_	7	17	7	10	0	Output		
3IN-	_	_	_	9	13	I	Negative input		
3IN+	_	_	_	10	14	I	Positive input		
3OUT	_	_	_	8	12	0	Output		
4IN-	_	_	_	13	19	I	Negative input		
4IN+	_	_	_	12	18	I	Positive input		
4OUT	_	_	_	14	20	0	Output		

Copyright © 1977–2015, Texas Instruments Incorporated

Submit Documentation Feedback

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

				MI	N MAX	UNIT
V _{CC+}	Quantum (2)				18	V
V _{CC} -	Supply voltage ⁽²⁾				-18	V
V _{ID}	Differential input voltage (3)			±30	V	
VI	Input voltage(2)(4)			±15	V	
	Duration of output short circuit (5)				Unlimited	
	Continuous total power dissipation			See Di	ssipation Rating Table	
			TL08_C TL08_AC TL08_BC	0	70	
T _A	Operating free-air temperature		TL08_I	-4	0 85	°C
			TL084Q	-4	0 125	Ī
			TL08_M	-5	5 125	
	Operating virtual junction temperat	ure			150	°C
T _C	Case temperature for 60 seconds	FK package	TL08_M		260	°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	J or JG package	TL08_M		300	°C
T _{stg}	Storage temperature			-6	5 150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.
- 3) Differential voltages are at IN+, with respect to IN-.
- (4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- (5) The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	1000	
V _{(ESE}	D) Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	1500	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC+}	Supply voltage		5	15	V
V_{CC-}	Supply voltage		- 5	-15	V
V_{CM}	Common-mode voltage		V _{CC-} + 4	V _{CC+} – 4	V
		TL08xM	-55	125	
_	Amphicant tompopulative	TL08xQ	-40	125	°C
T _A	Ambient temperature	TL08xI	-40	85	.0
		TL08xC	0	70	

6.4 Thermal Information

		TL08xx								
	(1)	D (S	OIC)	N (PDIP)	NS (SO)	P (PDIP)	PS (SO)	PW (TS	SOP)	
	THERMAL METRIC ⁽¹⁾	8 PINS	14 PINS	14 PINS	14 PINS	{PIN COUNT} PINS	{PIN COUNT} PINS	8 PINS	14 PINS	UNIT
R_{\thetaJA}	Junction-to-ambient thermal resistance (2)(3)	97	86	76	80	85	95	149	113	°C/W

- (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
- Maximum power dissipation is a function of $T_{J(max)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} T_A) / R_{\theta JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

6.5 Electrical Characteristics for TL08xC, TL08xxC, and TL08xI

 $V_{CC\pm} = \pm 15 \text{ V} \text{ (unless otherwise noted)}$

PAF	RAMETER	TEST CONDITIONS	T _A ⁽¹⁾		1C, TL08 TL084C	32C,		AC, TL08 L084AC			BC, TL08 L084BC			31I, TL08 TL084I	B2I,	UNIT
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
	Input offset	V _O = 0,	25°C		3	15		3	6		2	3		3	6	
V _{IO}	voltage	$R_S = 50 \Omega$	Full range			20			7.5			5			9	mV
α_{VIO}	Temperature coefficient of input offset voltage	$V_O = 0$, $R_S = 50 \Omega$	Full range		18			18			18			18		μV/°C
	Input offset		25°C		5	200		5	100		5	100		5	100	pА
I _{IO}	current (2)	V _O = 0	Full range			2			2			2			10	nA
	Input bias		25°C		30	400		30	200		30	200		30	200	pА
I _{IB}	current ⁽²⁾	V _O = 0	Full range			10			7			7			20	nA
V _{ICR}	Common- mode input voltage range		25°C	±11	–12 to 15		±11	–12 to 15		±11	–12 to 15		±11	-12 to 15		٧
	Maximum	$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		±12	±13.5		±12	±13.5		±12	±13.5		
V _{OM}	peak output	R _L ≥ 10 kΩ	Full	±12			±12			±12			±12			V
OW	voltage swing	R _L ≥ 2 kΩ	range	±10	±12		±10	±12		±10	±12		±10	±12		•
	Large-signal		25°C	25	200		50	200		50	200		50	200		
A _{VD}	differential voltage amplification	$V_O = \pm 10 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$	Full range	15			15			25			25			V/mV
B ₁	Unity-gain bandwidth		25°C		3			3			3			3		MHz
r _i	Input resistance		25°C		10 ¹²			10 ¹²			10 ¹²			10 ¹²		Ω
CMRR	Common- mode rejection ratio	$\begin{aligned} &V_{IC} = V_{ICR}min, \\ &V_O = 0, \\ &R_S = 50~\Omega \end{aligned}$	25°C	70	86		75	86		75	86		75	86		dB
k _{SVR}	Supply- voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 15 \text{ V to}$ $\pm 9 \text{ V},$ $V_{O} = 0,$ $R_{S} = 50 \Omega$	25°C	70	86		80	86		80	86		80	86		dB

All characteristics are measured under open-loop conditions with zero common-mode voltage, unless otherwise specified. Full range for T_A is 0°C to 70°C for TL08_C, TL08_BC and -40°C to 85°C for TL08_I.
 Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as

Submit Documentation Feedback

Copyright © 1977-2015, Texas Instruments Incorporated

shown in Figure 13. Pulse techniques must be used that maintain the junction temperature as close to the ambient temperature as possible.

Electrical Characteristics for TL08xC, TL08xxC, and TL08xI (continued)

 $V_{CC+} = \pm 15 \text{ V}$ (unless otherwise noted)

• CC±	•																
PAF	PARAMETER TEST CONDITIONS		PARAMETER	T _A ⁽¹⁾		IC, TL08 TL084C	82C,		AC, TLO L084AC			BC, TL08 L084BC			31I, TL08 TL084I	321,	UNIT
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
I _{CC}	Supply current (each amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8		1.4	2.8		1.4	2.8	mA	
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	25°C		120			120			120			120		dB	

6.6 Electrical Characteristics for TL08xM and TL084x

 $V_{CC+} = \pm 15 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEGT COMPLETIONS(1)	-	TL081M, TL082M		TL0	84Q, TL08	4M		
	PARAMETER	TEST CONDITIONS ⁽¹⁾	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V	land offer at well-	V 0 D 50 0	25°C		3	6		3	9	
V_{IO}	Input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	Full range			9			15	mV
α_{VIO}	Temperature coefficient of input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	Full range		18			18		μV/°C
-	Input offset current ⁽²⁾	V _O = 0	25°C		5	100		5	100	pА
I _{IO}	input onset current	v _O = 0	125°C			20			20	nA
-	Input bias current ⁽²⁾	V 0	25°C		30	200		30	200	pА
I _{IB}	input bias current	V _O = 0	125°C			50			50	nA
V _{ICR}	Common-mode input voltage range		25°C	±11	-12 to 15		±11	-12 to 15		٧
		$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		±12	±13.5		
V_{OM}	Maximum peak output voltage swing	R _L ≥ 10 kΩ	F. II	±12			±12			V
	output voltago ownig	R _L ≥ 2 kΩ	Full range	±10	±12		±10	±12		
۸	Large-signal differential	V .10 V D > 0 k0	25°C	25	200		25	200		V/mV
A_{VD}	voltage amplification	$V_O = \pm 10 \text{ V}, R_L \ge 2 \text{ k}\Omega$	Full range	15			15			V/IIIV
B ₁	Unity-gain bandwidth		25°C		3			3		MHz
ri	Input resistance		25°C		10 ¹²			10 ¹²		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$ $V_{O} = 0, R_{S} = 50 \Omega$	25°C	80	86		80	86		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V},$ $V_{O} = 0, R_{S} = 50 \Omega$	25°C	80	86		80	86	_	dB
I _{CC}	Supply current (each amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8	mA
$V_{\rm O1}/V_{\rm O2}$	Crosstalk attenuation	A _{VD} = 100	25°C		120			120		dB

6.7 Operating Characteristics

 $V_{CC+} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V_I = 10 V, R_L = 2 k Ω , C_L = 100 pF, See Figure 19	8 ⁽¹⁾	13		
SR	Slew rate at unity gain	V_{l} = 10 V, R_{L} = 2 k Ω , C_{L} = 100 pF, T_{A} = -55°C to 125°C, See Figure 19	5 ⁽¹⁾			V/µs

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

 ⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
 (2) Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 13. Pulse techniques must be used that maintain the junction temperatures as close to the ambient temperature as possible.

6.9 Typical Characteristics

Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. The Figure numbers referenced in the following graphs are located in *Parameter Measurement Information*.

Table 1. Table of Graphs

			Figure
V _{OM}	Maximum peak output voltage	versus Frequency versus Free-air temperature versus Load resistance versus Supply voltage	Figure 1, Figure 2, Figure 3 Figure 4 Figure 5 Figure 6
Δ.	Large-signal differential voltage amplification	versus Free-air temperature versus Load resistance	Figure 7 Figure 8
A _{VD}	Differential voltage amplification	versus Frequency with feed-forward compensation	Figure 9
P _D	Total power dissipation	versus Free-air temperature	Figure 10
I _{CC}	Supply current	versus Free-air temperature versus Supply voltage	Figure 11 Figure 12
I _{IB}	Input bias current	versus Free-air temperature	Figure 13
	Large-signal pulse response	versus Time	Figure 14
Vo	Output voltage	versus Elapsed time	Figure 15
CMRR	Common-mode rejection ratio	versus Free-air temperature	Figure 16
V _n	Equivalent input noise voltage	versus Frequency	Figure 17
THD	Total harmonic distortion	versus Frequency	Figure 18

INSTRUMENTS

7 Parameter Measurement Information

Figure 19. Test Figure 1

Figure 21. Test Figure 3

Figure 20. Test Figure 2

Figure 22. Test Figure 4