Linear Algebra Done Right Solutions to Exercises 1.C

Set or subspace?

Problem statement

For each of the following subset of \mathbf{F}^3 , determine whether it is a subspace of \mathbf{F}^3 :

- (a) $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\};$
- (b) $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 4\};$
- (c) $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 x_2 x_3 = 0\};$
- (d) $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 = 5x_3\}.$

Solution

To determine if the subset $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}$ is a subspace of \mathbf{F}^3 , we can assess if the subset satisfies the properties of a subspace: additive identity, closed under addition, and closed under scalar multiplication.

additive identity: Given that $0 + 2 \cdot 0 + 3 \cdot 0 = 0$, we have

$$(0,0,0) \in \{(x_1,x_2,x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}.$$
 closed under scalar multiplication: Suppose

 $(y_1, y_2, y_3) \in \{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}$ and $\lambda \in \mathbf{F}$. It follows that

$$y_1 + 2y_2 + 3y_3 = 0 = \frac{1}{\lambda} \cdot 0$$
$$\lambda(y_1 + 2y_2 + 3y_3) = 0$$
$$\lambda y_1 + 2(\lambda y_2) + 3(\lambda y_3) = 0.$$

Hence, we have $\lambda(y_1, y_2, y_3) \in \{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}.$

closed under addition: Suppose

 $(x_1, x_2, x_3), (y_1, y_2, y_3) \in \{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}.$ It follows

$$x_1 + 2x_2 + 3x_3 = 0$$
 and $y_1 + 2y_2 + 3y_3 = 0$.

Adding the two equations above, we have

$$x_1 + 2x_2 + 3x_3 + y_1 + 2y_2 + 3y_3 = 0$$
$$(x_1 + y_1) + 2(x_2 + y_2) + 3(x_3 + y_3) = 0.$$

Hence, we have

$$(x_1, x_2, x_3) + (y_1, y_2, y_3) \in \{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}.$$

Since the subset $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}$ satisfies all the conditions of a subspace, via Theorem 1.34 ('Conditions of a subspace'), it is a subspace of \mathbf{F}^3 .

b

No, the subset $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 4\}$ is not a subspace of \mathbf{F}^3 because it does not contain the **additive identity**. This follows from the observation that

$$0 + 2 \cdot 0 + 3 \cdot 0 \neq 4$$
.

 \mathbf{c}

No, the subset $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1x_2x_3 = 0\}$ is not a subspace of \mathbf{F}^3 because it is not **closed under addition**. We can show this by noting that the vectors (0,1,1) and (1,0,1) are members of the subset, but (0,1,1)+(1,0,1) is not a member since

$$(0,1,1) + (1,0,1) = (1,1,2)$$
 and $1 \cdot 1 \cdot 2 \neq 0$.

 \mathbf{d}

Yes, the subset $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 = 5x_3\}$ is a subspace of \mathbf{F}^3 . This follows from the observation that the following set

$$\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 0x_2 - 5x_3 = 0\}$$

is an equivalent formulation of $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 = 5x_3\}$ is a subspace of \mathbf{F}^3 and is of a similar form to the subspace $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 2x_2 + 3x_3 = 0\}$, which we showed was a subspace of \mathbf{F}^3 . A verification that the subset $\{(x_1, x_2, x_3) \in \mathbf{F}^3 : x_1 + 0x_2 - 5x_3 = 0\}$ satisfies all the conditions of a subspace is near identical to the reasoning in part \mathbf{a} .

8 Set closed under multiplication not subspace

Problem statement

Give an example of a nonempty subset U of \mathbb{R}^2 such that U is closed under scalar multiplication, but U is not a subspace of \mathbb{R}^2 .

Solution

The subset

$$U = \{(x_1, x_2) \in \mathbf{R}^2 : x_1 x_2 = 0\}$$

is closed under scalar multiplication but is not closed under addition; thus, it is not a subspace.

To verify that U is **closed under scalar multiplication**, for $\lambda \in \mathbf{R}$ and $(x_1, x_2) \in U$, it follows that for $\lambda(x_1, x_2) = (\lambda x_1, \lambda x_2)$ and we can write

$$(\lambda x_1)(\lambda x_2) = \lambda^2(x_1 x_2) = \lambda^2(0) = 0$$

since $x_1x_2 = 0$.

To verify that U is not **closed under addition**, it follows that $(1,0), (0,1) \in U$ but (1,0)+(0,1)=(1,1) and $(1,1) \notin U$.

10 Intersection of subspaces is a subspace

Problem statement

Suppose U_1 and U_2 are subspaces of V. Prove that the intersection $U_1 \cap U_2$ is a subspace of V.

Solution

Via Theorem 1.34 ('Conditions of a subspace'), we need to show that $U_1 \cap U_2$ satisfies the conditions of additive identity, closed under scalar multiplication, and closed under addition.

additive identity: Given U_1 and U_2 are subspaces, it follows that $0 \in U_1$ and $0 \in U_2$. Hence, we have $0 \in U_1 \cap U_2$.

closed under scalar multiplication: Suppose $v \in U_1 \cap U_2$ and $\lambda \in \mathbf{F}$. Since U_1 and U_2 are closed under scalar multiplication, it follows that $\lambda v \in U_1$ and $\lambda v \in U_2$. Hence, we have $\lambda v \in U_1 \cap U_2$.

closed under addition: Suppose $v, u \in U_1 \cap U_2$. Since U_1 and U_2 are **closed under addition**, it follows that $v + u \in U_1$ and $v + u \in U_2$. Hence, we have $v + u \in U_1 \cap U_2$.

Therefore, since $U_1 \cap U_2$ satisfies all the conditions of a subspace, it follows that $U_1 \cap U_2$ is a subspace V.

11 Intersection of every collection of subspaces

Problem statement

Prove that the intersection of every collection of subspaces of V is a subspace of V.

Solution

Suppose U_1, U_2, \dots, U_n is a collection of subspaces of V. By arranging the intersection of the collection as

$$(\ldots(U_1\cap U_2)\cap\ldots)\cap U_n$$

we can iteratively apply our result from Exercise 1.C(10) to show that the intersection is a subspace of V.

21 Find W such that $F^5 = U \oplus W$

Problem statement

Suppose

$$U = \{(x, y, x + y, x - y, 2x) \in \mathbf{F}^5 : x, y \in \mathbf{F}\}.$$

Find a subspace W of \mathbf{F}^5 such that $\mathbf{F}^5 = U \oplus W$.

Solution

Define the subset W of \mathbf{F}^5 as

$$W = \{(0, 0, z, u, v) \in \mathbf{F}^5 : z, u, v \in \mathbf{F}\}.$$

To prove that $\mathbf{F}^5 = U \oplus W$, we need to show that W is a subspace of \mathbf{F}^5 , $\mathbf{F}^5 = U + W$, and U + W is a direct sum.

It obviously follows from the construction of W that W is a subspace of \mathbf{F}^5 . To prove $\mathbf{F}^5 = U + W$, we need to show $U + W \subset \mathbf{F}^5$ and $\mathbf{F}^5 \subset U + W$. Suppose $(x, y, x + y, x - y, 2x) \in U$ and $(0, 0, z, u, v) \in W$. It follows that

$$(x, y, x + y, x - y, 2x) + (0, 0, z, u, v)$$

= $(x, y, x + y + z, x - y + u, 2x + v) \in \mathbf{F}^5$,

showing $U+W \subset \mathbf{F}^5$. Suppose $(x,y,z,u,v) \in \mathbf{F}^5$. We can construct (x,y,z,u,v) from U+W by choosing vectors $(x,y,x+y,x-y,2x) \in U$ and $(0,0,z-x-y,u-x+y,v-2x) \in W$ and writing

$$(x, y, x + y, x - y, 2x) + (0, 0, z - x - y, u - x + y, v - 2x) = (x, y, z, u, v).$$

Hence, we've shown $U+W\subset \mathbf{F}^5$,[] and it follows that $\mathbf{F}^5=U+W$.

To prove U+W is a direct sum, it follows from Theorem 1.45 ('Direct sum of two subspaces') that we need only show $U\cap W=\{0\}$. This result follows from the observation that all vectors in W have a 0 in the 1st and 2nd coordinates. Hence, only vectors with a 0 in the 1st and 2nd coordinates in U can be members of $U\cap W$. Only one vector in U has a 0 in the 1st and 2nd coordinates, namely the 0 vector. Thus, it follows that $U\cap W=\{0\}$.