Instant Auditing of Cloud Storage Access by Voting of Different Cloud Storages

Advicer: Gwan-Hwan Hwang Student: Wei-Chih Chien

NTNU CSIE CCLAB

2016.05.24

Outline

- Scenario
- Real-time Auditing Schemes
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- Protocol Detail
 - Flowchart
 - Download & Upload
 - Audit
- Experimental Results

Outline

- Scenario
- 2 Real-time Auditing Schemes
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- 3 Protocol Detail
 - Flowchart
 - Download & Upload
 - Audit
- Experimental Results

Scenario Law Office

Scenario (CON'T) What if...

Scenario (CON'T)

No Error!

No Evidence ...

Scenario (CON'T)

Cryptographic Proof

Lawyer Team

Outline

- Scenario
- Real-time Auditing Schemes
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- Protocol Detai
 - Flowchart
 - Download & Upload
 - Audit
- Experimental Results

Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

Merkle Tree

Worst-case

若有個 device 很久沒有使用,在讀寫檔案前需要更新大量未做的動作

使用者將會明顯感受到漫長的等待時間

My Method

Assumption: 同時有 k 個 server 上同一 file 出問題的機率 ≈ 0

Comparison

- Pros
 - Device 不用儲存、也不用修改 Merkle tree, 既省空間又省時間
 - ② 資料有多份備份
- Cons
 - ① 需要傳送多份 Request, 處理多份 Response

Outline

- Scenario
- Real-time Auditing Schemes
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- Protocol Detail
 - Flowchart
 - Download & Upload
 - Audit
- Experimental Results

Flowchart

Download & Upload

Request & Response

$$REQ = (OP, [OP]_{pri(D)})$$

 $OP = (TYPE, PATH, HASH)$

$$ACK = (RESULT, REQ, [RESULT, REQ]_{pri(S)})$$
 $RESULT = (roothash, filehash)$

collect ACKs and voting

if Operation is UPLOAD

Server Update Merkle tree

File Transmit

Audit

- :: ACK 中有 roothash
- :: 新的 request 之前,所有的檔案都經過檢查,沒有問題

device request OP_i ,收到回傳的 ACK_i 發現 $Server_p$ 的 ACK 有錯誤,因此向 $Server_p$ 稽核

device 向 $Server_p$ 索取 MT_{i-1} (MT_{i-1} 為執行 OP_i 之前的 Merkle tree)

①② 兩點有一個出錯就能確定 Server,出錯

- ① device 檢查 MT_{i-1} 的 roothash 應和 ACK_{i-1} 中的 roothash 一樣
- ② device 以 OP_i 中的 hash value 來更新 MT_{i-1} , 更新後的 roothash 應和 $Server_p$ 現在的 roothash 相同

Outline

- Scenario
- 2 Real-time Auditing Schemes
 - Instant Auditing of Cloud Storage Access by Cache Partial Merkle tree
 - My Method
- Protocol Detail
 - Flowchart
 - Download & Upload
 - Audit
- Experimental Results

	Size	File	Directory	Merkle tree Size
Α	777 MB	48	6	5.4 KB
В	145 MB	54198	188	5.08 MB
C	5.95 GB	45089	1459	4.37 MB

Table: GENERATE MERKLE TREE'S TIME (IN SEC.)

		А	В	С
	Generate	14.876	61.176	198.405
PC	Serialize	0.040	0.756	0.670
	Deserialize	0.009	0.299	0.295
	Generate	6.821	144.267	620.151
VM	Serialize	0.011	0.343	0.299
	Deserialize	0.015	1.016	0.860

The client device and SP are in the same network segment

Table: THE EXECUTION TIME OF UPLOAD OPERATIONS (IN SEC.) (Account C)

Test File	Non POV	This Paper	2014 CloudCom
<10 KB	0.010608	0.046139	0.164744
<100 KB	0.014393	0.070739	0.175226
<1 MB	0.090440	0.153822	0.253963
<10 MB	0.367989	0.430937	0.513308

The client device and SP are in the same network segment (UPLOAD)

Table:

Rate
-76.95%
-64.97%
-61.24%
-56.68%

Rate =
$$\frac{(V-N)-(C-N)}{(C-N)}$$

V = Voting, this paper

C = 2014 Cloud Com

N = Non POV

The client device and SP are in the same network segment

Table: THE EXECUTION TIME OF DOWNLOAD OPERATIONS (IN SEC.) (Account C)

Test File	Non POV	This Paper	2014 CloudCom
<10 KB	0.007845	0.042295	0.224947
<100 KB	0.013691	0.053583	0.236347
<1 MB	0.098570	0.146021	0.359045
<10 MB	0.354916	0.392072	0.961740

The client device and SP are in the same network segment (DOWNLOAD)

Table:

Rate
-84.13%
-82.08%
-81.78%
-93.88%

Rate =
$$\frac{(V-N)-(C-N)}{(C-N)}$$

V = Voting, this paper C = 2014 Cloud Com

N = Non POV

The client device and SP are not in the same network segment

Table: THE EXECUTION TIME OF UPLOAD OPERATIONS (IN SEC.) (Account C)

Test File	Non POV	This Paper	2014 CloudCom
<10 KB	0.077653	0.254801	0.407407
<100 KB	0.149493	0.338238	0.492000
<1 MB	0.631626	0.825261	0.983832
<10 MB	4.014217	4.182142	4.359997

The client device and SP are **not** in the same network segment (UPLOAD)

Table:

Test File	Rate
<10 KB	-46.28%
<100 KB	-44.89%
<1 MB	-45.02%
<10 MB	-51.44%

Rate =
$$\frac{(V-N)-(C-N)}{(C-N)}$$

V = Voting, this paper C = 2014 Cloud Com

N = Non POV

The client device and SP are not in the same network segment

Table: THE EXECUTION TIME OF DOWNLOAD OPERATIONS (IN SEC.) (Account C)

Test File	Non POV	This Paper	2014 CloudCom
<10 KB	0.061063	0.275808	0.538531
<100 KB	0.093941	0.312340	0.620296
<1 MB	0.225640	0.457329	0.752591
<10 MB	1.147272	1.296215	1.631534

The client device and SP are **not** in the same network segment (DOWNLOAD)

Table:

Test File	Rate
<10 KB	-55.02%
<100 KB	-58.51%
<1 MB	-56.03%
<10 MB	-69.24%

Rate =
$$\frac{(V-N)-(C-N)}{(C-N)}$$

V = Voting, this paper C = 2014 Cloud Com

N = Non POV

Running time of different numbers' servers

Table: THE EXECUTION TIME OF UPLOAD OPERATIONS (IN SEC.) (Account C)

Test File	3 Server	5 Server	7 Server	9 Server
<10 KB	0.046139	0.067923	0.101676	0.108696
<100 KB	0.070739	0.083563	0.112895	0.145049
<1 MB	0.153822	0.166289	0.200053	0.203870
<10 MB	0.430937	0.513879	0.684666	0.694259

Running time of different numbers' servers

Table: THE EXECUTION TIME OF DOWNLOAD OPERATIONS (IN SEC.) (Account C)

Test File	3 Server	5 Server	7 Server	9 Server
<10 KB	0.042295	0.054263	0.064370	0.078872
<100 KB	0.053583	0.055442	0.083961	0.097507
<1 MB	0.146021	0.159869	0.195817	0.202213
<10 MB	0.392072	0.476251	0.622665	0.625499

Thank You!