```
In [1]: import pandas as pd
        import numpy as np
        from scipy import stats
        import matplotlib.pyplot as plt
        import seaborn as sns
        import statsmodels.api as sm
        from matplotlib import pyplot
        import pylab as py
        import warnings
        warnings.filterwarnings("ignore")
```

```
In [2]: # Converting the txt file to csv file
        df = pd.read_csv(r'bike_sharing.txt')
        df.to_csv (r'bike_sharing.csv', index=None)
```

In [3]: |df

Out[3]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	Cŧ	_
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000		
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000		
2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000		
3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000		
4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000		
10881	2012-12- 19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027		
10882	2012-12- 19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013		
10883	2012-12- 19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013		
10884	2012-12- 19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032		
10885	2012-12- 19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981		
10886	rows × 12	columns									
100001											*

1. Define Problem Statement and perform Exploratory Data Analysis.

1.a. Definition of problem (as per given problem statement with additional views)

- => Which variables are significant in predicting the demand for shared electric cycles in the Indian
- => How well those variables describe the electric cycle demands.
- => To know when do people use our bikes the max and what we should do to increase our business.
- => Who are our target customers? => Which all variables are dependent on each other?

1.b. Observations on shape of data, data types of all the attributes, conversion of categorical attributes to 'category' (If required), missing value detection, statistical summary.

```
In [4]: df.shape
Out[4]: (10886, 12)
In [5]: |df.columns
Out[5]: Index(['datetime', 'season', 'holiday', 'workingday', 'weather', 'temp',
               'atemp', 'humidity', 'windspeed', 'casual', 'registered', 'count'],
              dtype='object')
In [6]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 10886 entries, 0 to 10885
        Data columns (total 12 columns):
             Column
                        Non-Null Count Dtype
             ----
                        -----
        - - -
         0
             datetime
                        10886 non-null object
         1
             season
                        10886 non-null int64
         2
             holiday
                        10886 non-null int64
         3
             workingday
                        10886 non-null int64
                        10886 non-null int64
         4
             weather
         5
                        10886 non-null float64
             temp
         6
                        10886 non-null float64
             atemp
         7
             humidity
                        10886 non-null int64
         8
             windspeed
                        10886 non-null float64
         9
                        10886 non-null int64
             casual
         10 registered 10886 non-null int64
         11 count
                        10886 non-null int64
        dtypes: float64(3), int64(8), object(1)
        memory usage: 1020.7+ KB
```

```
In [7]: # conversion of categorical attributes to 'category' and datetime attribute to 'd
        df['season'] = df.season.astype('category')
        df['holiday'] = df.holiday.astype('category')
        df['workingday'] = df.workingday.astype('category')
        df['weather'] = df.weather.astype('category')
        df['datetime'] = pd.to datetime(df['datetime'])
        df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885
Data columns (total 12 columns):
```

```
#
    Column
                Non-Null Count Dtype
 0
    datetime
                10886 non-null datetime64[ns]
 1
                10886 non-null category
    season
 2
    holiday
                10886 non-null category
                10886 non-null category
 3
    workingday
 4
    weather
                10886 non-null category
 5
                10886 non-null float64
    temp
 6
    atemp
                10886 non-null float64
 7
    humidity
                10886 non-null int64
 8
    windspeed
                10886 non-null float64
 9
    casual
                10886 non-null int64
 10 registered 10886 non-null int64
 11 count
                10886 non-null int64
dtypes: category(4), datetime64[ns](1), float64(3), int64(4)
memory usage: 723.7 KB
```

```
In [8]: numerical_cols = ['temp', 'atemp', 'humidity', 'windspeed', 'casual', 'registered
        categorical cols = ['season', 'holiday', 'workingday', 'weather']
```

In [9]: df[numerical cols].describe()

Out[9]:

	temp	atemp	humidity	windspeed	casual	registered	
count	10886.00000	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000	10886.0
mean	20.23086	23.655084	61.886460	12.799395	36.021955	155.552177	191.5
std	7.79159	8.474601	19.245033	8.164537	49.960477	151.039033	181.1
min	0.82000	0.760000	0.000000	0.000000	0.000000	0.000000	1.0
25%	13.94000	16.665000	47.000000	7.001500	4.000000	36.000000	42.0
50%	20.50000	24.240000	62.000000	12.998000	17.000000	118.000000	145.0
75%	26.24000	31.060000	77.000000	16.997900	49.000000	222.000000	284.0
max	41.00000	45.455000	100.000000	56.996900	367.000000	886.000000	977.0

In [10]: df[categorical_cols].describe()

Out[10]:

	season	holiday	workingday	weather
count	10886	10886	10886	10886
unique	4	2	2	4
top	4	0	1	1
freq	2734	10575	7412	7192

```
In [11]: # Count the number of null values in each columns
         df.isna().sum()
Out[11]: datetime
                        0
         season
                        0
                        0
         holiday
         workingday
         weather
         temp
         atemp
         humidity
         windspeed
         casual
         registered
         count
         dtype: int64
```

Inference: There are no missing values in the dataset.

Handling Outliers

```
In [12]: df[numerical_cols].boxplot(rot=25, figsize=(25,8))
```

Out[12]: <AxesSubplot:>


```
In [13]: Q1 = df[numerical_cols].quantile(0.25)
                                                              Q3 = df[numerical_cols].quantile(0.75)
                                                              IQR = Q3 - Q1
                                                              print(IQR)
                                                              temp
                                                                                                                                                                 12.3000
                                                                                                                                                                 14.3950
                                                              atemp
                                                              humidity
                                                                                                                                                                 30.0000
                                                                                                                                                                        9.9964
                                                              windspeed
                                                               casual
                                                                                                                                                                 45.0000
                                                               registered
                                                                                                                                                            186.0000
                                                                                                                                                            242.0000
                                                               count
                                                              dtype: float64
In [14]: df = df[\sim((df[numerical\_cols] < (Q1 - 1.5 * IQR)) | (df[numerical\_cols] > (Q3 + 1.5 * IQR)) | (Q3 + 1.5 * IQR)) | (Q3 + 1.5 * IQR) | (Q3 + 1.5 * IQR)) | (Q3 + 1.5 * IQR) | (Q3 + 1.5 * I
                                                              df = df.reset_index(drop=True)
```

In [15]: df

Out[15]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000	3
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000	8
2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000	5
3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000	3
4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000	0
9513	2012-12- 19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	7
9514	2012-12- 19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	10
9515	2012-12- 19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	4
9516	2012-12- 19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	12
9517	2012-12- 19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	4

9518 rows × 12 columns

In [16]: df[numerical_cols].boxplot(rot=25, figsize=(25,8))

Out[16]: <AxesSubplot:>

1.c. Univariate Analysis (distribution plots of all the continuous variable(s) barplots/countplots of all the categorical variables)

In [17]: df

Out[17]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000	3
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000	8
2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000	5
3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000	3
4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000	0
9513	2012-12- 19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	7
9514	2012-12- 19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	10
9515	2012-12- 19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	4
9516	2012-12- 19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	12
9517	2012-12- 19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	4

9518 rows × 12 columns

Numerical columns

```
In [18]: df["temp"].hist(bins=50)
```

Out[18]: <AxesSubplot:>

Inference: temp is almost following Normal Distribution

In [20]: df["atemp"].hist(bins=50)

Out[20]: <AxesSubplot:>

Inference: atemp is almost following Normal distribution

df["humidity"].hist(bins=50) In [22]:

Out[22]: <AxesSubplot:>

Inference: humidity is almost following Normal distribution

In [24]: df["windspeed"].hist(bins=50)

Out[24]: <AxesSubplot:>

Inference: windspeed is almost following Normal distribution

In [26]: df["casual"].hist(bins=50)

Out[26]: <AxesSubplot:>

Inference: count of casuals are not following Normal distribution

In [28]: df["registered"].hist(bins=50)

Out[28]: <AxesSubplot:>

Inference: count of registered are not following Normal distribution

```
In [30]: df["count"].hist(bins=50)
```

Out[30]: <AxesSubplot:>

Inference: count(both casual and registered) are not following Normal distribution

Categorical columns

season: season (1: spring, 2: summer, 3: fall, 4: winter)

holiday: weather day is a holiday or not

workingday: if day is neither weekend nor holiday is 1, otherwise is 0.

weather:

- 1: Clear, Few clouds, partly cloudy, partly cloudy
- 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
- 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
- 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

```
In [32]: sns.countplot(x="season", data=df)
```

Out[32]: <AxesSubplot:xlabel='season', ylabel='count'>

Inference: in all the seasons, number of rides taken used are the same.

```
In [33]: sns.countplot(x="holiday", data=df)
```

Out[33]: <AxesSubplot:xlabel='holiday', ylabel='count'>

Inference: number of rides in the non-holidays(weekdays and weekends) are more than holidays(weekends not included).

Recommendation: That means during holidays, not much rental bikes are used, so you can use this time to service and maintenace of the bikes.

```
In [34]: sns.countplot(x="workingday", data=df)
```

Out[34]: <AxesSubplot:xlabel='workingday', ylabel='count'>

Inference: In weekends also, people use rental bikes but its lesser than that during workingdays. Recommendation: You can leave less bikes during non-working days or more bikes in working hours.

Out[35]: <AxesSubplot:xlabel='weather', ylabel='count'>

Inference: During heavy rains(category 4), none of the bikes are used. Most of the bikes are used during category 1 time. And the count reduces as the influence of sun reduces. Recommendation: During category 4, you can introduce few electric cars.

1.d. Bivariate Analysis (Relationships between important variables such as workday and count, season and count, weather and count.

In [36]: df

Out[36]:

datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual
2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000	3
2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000	8
2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000	5
2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000	3
2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000	0
2012-12- 19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	7
2012-12- 19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	10
2012-12- 19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	4
2012-12- 19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	12
2012-12- 19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	4
	2011-01- 01 00:00:00 2011-01- 01 01:00:00 2011-01- 01 02:00:00 2011-01- 01 04:00:00 2012-12- 19 19:00:00 2012-12- 19 20:00:00 2012-12- 19 21:00:00 2012-12- 19 22:00:00	2011-01- 01 00:00:00 2011-01- 01 01:00:00 2011-01- 01 02:00:00 2011-01- 01 03:00:00 2011-01- 01 04:00:00 2012-12- 19 20:00:00 2012-12- 19 21:00:00 2012-12- 19 22:00:00 2012-12- 19 22:00:00 2012-12- 19 24	2011-01- 01 00:00:00 2011-01- 01 1 0 0 2011-01- 01 0 0 0 2011-01- 01 0 0 0 2011-01- 01 0 0 0 2012-12- 19 4 0	2011-01- 01	2011-01- 01	2011-01- 01	2011-01- 01	2011-01- 01	01 00:00:00 1 0 0 0 1 9.84 14.395 81 0.0000 2011-01- 01 01 01:00:00 1 0 0 0 1 9.02 13.635 80 0.0000 2011-01- 01 01 01 01 01 01 02:00:00 1 0 0 0 1 9.02 13.635 80 0.0000 2011-01- 01 01 01 01 02:00:00 1 0 0 0 1 9.84 14.395 75 0.0000 2011-01- 01 01 01 02:00:00 1 0 0 0 1 9.84 14.395 75 0.0000 2012-12- 19 4 0 1 1 15.58 19.695 50 26.0027 19 2012-12- 19 4 0 1 1 1 13.94 15.910 61 15.0013 2012-12- 19 4 0 1 1 1 13.94 17.425 61 6.0032 2012-12- 19 4 0 1 1 1 13.94 17.425 61 6.0032 2012-12- 19 4 0 1 1 1 13.94 17.425 61 6.0032 2012-12- 19 4 0 1 1 1 13.94 17.425 61 6.0032 2012-12- 19 4 0 0 1 1 1 13.94 17.425 61 6.0032

9518 rows × 12 columns

```
In [37]: | sns.set(rc = {'figure.figsize':(10,10)})
         sns.heatmap(df[numerical_cols].corr(), cmap="YlGnBu", annot=True)
```

Out[37]: <AxesSubplot:>

In [38]: df.describe()

Out[38]:

	temp	atemp	humidity	windspeed	casual	registered	count
count	9518.000000	9518.000000	9518.000000	9518.000000	9518.000000	9518.000000	9518.000000
mean	19.589971	22.987399	63.737025	12.133336	23.955033	126.181025	150.136058
std	7.686871	8.361526	18.693175	7.437481	26.956046	114.116911	131.586548
min	0.820000	0.760000	8.000000	0.000000	0.000000	0.000000	1.000000
25%	13.120000	15.910000	49.000000	7.001500	3.000000	28.250000	34.000000
50%	18.860000	22.725000	64.500000	11.001400	13.000000	101.000000	122.000000
75%	26.240000	30.305000	79.000000	16.997900	37.000000	187.000000	231.000000
max	41.000000	45.455000	100.000000	31.000900	116.000000	501.000000	590.000000
4							•

workday v/s count

In [39]: df.groupby("workingday")["count"].mean()

Out[39]: workingday

120.681085 161.970103

Name: count, dtype: float64

In [40]: df.groupby("workingday")["count"].mean().plot.bar()

Out[40]: <AxesSubplot:xlabel='workingday'>


```
In [41]: | sns.boxplot(data = df, x = "workingday", y = "count")
```

Out[41]: <AxesSubplot:xlabel='workingday', ylabel='count'>

Inference: On average, bikes are used workingdays is ~1.5times more than non-workingdays per hour.

```
In [42]: df.groupby("workingday")["count", 'datetime', 'casual', 'registered'].max()
Out[42]:
                                       datetime casual registered
                       count
           workingday
                         551 2012-12-16 23:00:00
                                                            490
                    0
                                                  116
                    1
                         590 2012-12-19 23:00:00
                                                  116
                                                            501
```

Inference: Especially after 9pm, metro & other modes of public transports will stopped, and most of the taxis and autos will be demanding for high amounts, so especially people working at constructions and IT will prefer for electric solo and shared bikes which will reduce the cost of the customer's ride drastically.

Recommendation: In the morning time due to availability of public transport, lot of middle class and one-day wage workers use public transport to reach to their work place. So our main business hours is from 9pm to 12am, we can keep more vehicles in those places where our customers work.

season v/s count

```
In [43]: | df.groupby("season")["count"].mean()
Out[43]: season
         1
               103.164028
         2
               160.360820
         3
               177.151661
         4
               162.437172
         Name: count, dtype: float64
```

In [44]: | df.groupby("season")["count"].mean().plot.bar()

Out[44]: <AxesSubplot:xlabel='season'>


```
In [45]: sns.boxplot(data = df, x = "season", y = "count")
```

Out[45]: <AxesSubplot:xlabel='season', ylabel='count'>

In [46]: |df.groupby("season")["count", 'datetime', 'casual', 'registered'].max()

[].	u. 18. u.	P-7 (-	, , ,		
Out[46]:		count	datetime	casual	registered
	season				
	1	566	2012-03-19 23:00:00	115	498
	2	590	2012-06-19 23:00:00	116	500
	3	587	2012-09-19 23:00:00	116	500
	4	566	2012-12-19 23:00:00	116	501

Inference: In all the seasons, the peak hours is between 9pm to 12am.

weather v/s count

```
In [47]: |df.groupby("weather")["count"].mean()
Out[47]: weather
         1
              157.522021
         2
              146.805685
              102.170763
         3
         4
              164.000000
         Name: count, dtype: float64
In [48]: df.groupby("weather")["count"].mean().plot.bar()
Out[48]: <AxesSubplot:xlabel='weather'>
```



```
In [49]: sns.boxplot(data = df, x = "weather", y = "count")
```

Out[49]: <AxesSubplot:xlabel='weather', ylabel='count'>

[50]:	df.grou	pby("s	eason")["count",	'date	cime', 'cas	sual', 'registered'].max()
ut[50]:		count	datetime	casual	registered	
	season					
	1	566	2012-03-19 23:00:00	115	498	
	2	590	2012-06-19 23:00:00	116	500	
	3	587	2012-09-19 23:00:00	116	500	
	4	566	2012-12-19 23:00:00	116	501	

Inference: There are few rides per hour during rainy weather but in the peak hours you can see the same number of rides happening as usual. So during rainy weather, we can only keep the bikes during the peak hours.

2. Hypothesis Testing

2.a. 2- Sample T-Test to check if Working Day has an effect on the number of electric cycles rented (10 points)

ho: count on working day < count on non-working day ha: count on working day >= count on non-working day

```
In [51]: |workingday_sample = df["workingday"].sample(n=1000)
         count_sample = df["count"].sample(n=1000)
         stats.ttest ind(workingday sample, count sample, alternative="less")
```

Out[51]: Ttest_indResult(statistic=-36.54376351521165, pvalue=1.183422965693989e-224)

Inference: pvalue << 0.05, we reject our Null hypothesis and accept ha.

Therefore, count on working day >= count on non-working day

2.b. ANNOVA to check if No. of cycles rented is similar or different in different 1. weather 2. season (10 points)

2.b.1. weather

3

164

ho: count is same in different weathers

h1: count is not same in different weathers

```
In [52]: df.weather.value counts()
Out[52]: 1
               6176
               2568
                773
         3
         Name: weather, dtype: int64
In [53]: | df.groupby('weather').agg({'count':'sum'}).reset_index(drop=True)
Out[53]:
              count
          0 972856
            376997
          2
              78978
```

```
In [54]: weather 1 = df[df["weather"]==1]["count"].sample(n=500)
         weather_2 = df[df["weather"]==2]["count"].sample(n=500)
         weather_3 = df[df["weather"]==3]["count"].sample(n=500)
         weather 1 = weather 1.reset index(drop=True)
         weather_2 = weather_2.reset_index(drop=True)
         weather_3 = weather_3.reset_index(drop=True)
         dataset = pd.DataFrame({"1":weather_1, "2":weather_2, "3":weather_3})
         dataset
                         3
```

```
Out[54]:
                  1
                       2
                308
                     112 312
```

1 339 20

103 106 194

3 69 52 132

138 180 19

...

495 99 418 1

496 70 237 2

497 29 258 71

498 67 382 407

499 334 497 96

500 rows × 3 columns

```
In [55]: | f, pval = stats.f_oneway(dataset["1"], dataset["2"], dataset["3"])
         print(f, pval)
```

32.08987980588854 2.2595026108213704e-14

Inference: Since pvalue<0.05, we reject ho and go with ha.

```
In [56]:
         mean_1 = dataset['1'].mean()
         mean 2 = dataset['2'].mean()
         mean_3 = dataset['3'].mean()
         print(mean 1, mean 2, mean 3)
```

160.26 139.146 99.026

In [57]: sns.distplot(dataset['1'], bins = 10)

Out[57]: <AxesSubplot:xlabel='1', ylabel='Density'>

Inference: weather_1 is not following Normal distribution.

Lets try to do Bootstrapping and see if Sampling distribution follow Normal distribution or not. Irrespective of how your distribution is, if your smapling distribution follows a Normal distribution, we can approximate from CLT.

```
In [59]: weather_1_samp = []
         for i in range(500):
             w1 = df[df["weather"]==1]["count"].sample(n=200)
             av = w1.mean()
             weather_1_samp.append(av)
```

```
In [60]: sns.distplot(weather_1_samp, bins = 20)
```

Out[60]: <AxesSubplot:ylabel='Density'>

Inference: This is following Normal Distribution.

```
In [61]: np.mean(weather_1_samp)
```

Out[61]: 158.044

```
In [62]: | mu = (mean_1*500 + mean_2*500 + mean_3*500)/1500
Out[62]: 132.8106666666666
In [63]: | ssw = sum((weather_1-mean_1)**2 + (weather_2-mean_2)**2 + (weather_3-mean_3)**2)
         SSW
Out[63]: 22567115.20399998
In [64]: ssg = ((mean_1 - mu)^{**2})^{*500} + ((mean_2 - mu)^{**2})^{*500} + ((mean_3 - mu)^{**2})^{*500}
Out[64]: 967503.0253333332
In [65]: msg = ssg/2
         msg
Out[65]: 483751.5126666666
In [66]: msw = ssw/(1500-3)
         msw
Out[66]: 15074.89325584501
In [67]: |fstat = msg/msw
         fstat
Out[67]: 32.08987980588857
```

Then to get Fcritical values look at the F-distribution table.

F - Distribution (α = 0.01 in the Right Tail)

		٦٢		N	umerator [Degrees of	Freedom			
l	df_2	df _{1 1}	2	3	4	5	6	7	8	9
l	1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
ı	2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388
ı	3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
ı	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
ı	5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158
ı	6	13.745	10.925	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.9761
ı	7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.7188
ı	8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.9106
ء ا	9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.3511
ō	10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424
1 B	11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.6315
<u>و</u>	12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.3875
<u></u>	13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.1911
9	14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.0297
Denominator Degrees of Freedom	15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.8948
9	16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.7804
ြင္မ	17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.6822
Δ	18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.5971
ا ا	19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.5225
ŧ	20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3.4567
I⊹≣	21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.3981
5	22	7.9454	5.7190	4.8166	4.3134	3.9880	3.7583	3.5867	3.4530	3.3458
ΙĔ	23	7.8811	5.6637	4.7649	4.2636	3.9392	3.7102	3.5390	3.4057	3.2986
ے ا	24	7.8229	5.6136	4.7181	4.2184	3.8951	3.6667	3.4959	3.3629	3.2560
ı	25	7.7698	5.5680	4.6755	4.1774	3.8550	3.6272	3.4568	3.3239	3.2172
ı	26	7.7213	5.5263	4.6366	4.1400	3.8183	3.5911	3.4210	3.2884	3.1818
ı	27	7.6767	5.4881	4.6009	4.1056	3.7848	3.5580	3.3882	3.2558	3.1494
ı	28	7.6356	5.4529	4.5681	4.0740	3.7539	3.5276	3.3581	3.2259	3.1195
l	29	7.5977	5.4204	4.5378	4.0449	3.7254	3.4995	3.3303	3.1982	3.0920
ı	30	7.5625	5.3903	4.5097	4.0179	3.6990	3.4735	3.3045	3.1726	3.0665
ı	40	7.3141	5.1785	4.3126	3.8283	3.5138	3.2910	3.1238	2.9930	2.8876
l	60	7.0771	4.9774	4.1259	3.6490	3.3389	3.1187	2.9530	2.8233	2.7185
I	120	6.8509	4.7865	3.9491	3.4795	3.1735	2.9559	2.7918	2.6629	2.5586
I	œ	6.6349	4.6052	3.7816	3.3192	3.0173	2.8020	2.6393	2.5113	2.4073
							2.0020	2.0070	2.0110	2

fcrit~=3.0

Since fcrit<<45.198, we reject ho and accept ha.

2.b.2. season

ho: count is not same in different seasons

h1: count is same in different seasons

In [68]: df.season.value_counts()

Out[68]: 4 2475

2463

2292

2288

Name: season, dtype: int64

```
In [69]: df.groupby('season').agg({'count':'sum'}).reset index(drop=True)
Out[69]:
              count
             254093
          0
             367547
             405323
            402032
In [70]:
         season_1 = df[df["season"]==1]["count"].sample(n=500)
          season_2 = df[df["season"]==2]["count"].sample(n=500)
          season_3 = df[df["season"]==3]["count"].sample(n=500)
          season_4 = df[df["season"]==3]["count"].sample(n=500)
          season 1 = season 1.reset index(drop=True)
          season_2 = season_2.reset_index(drop=True)
          season_3 = season_3.reset_index(drop=True)
          season_4 = season_4.reset_index(drop=True)
          dataset = pd.DataFrame({"1":season_1, "2":season_2, "3":season_3, "4":season_4})
          dataset
Out[70]:
                 1
                     2
                          3
                              4
            0
                83
                    92 236
                            223
            1
                78
                     13 441
                            343
            2
                71
                     5 284
                              7
            3
                40
                    486
                        129
                             268
                    388
                        152
            4
                82
                              14
           495
                17
                    59
                        140
                            207
                         22
                              7
           496
               161
                    52
           497
                57
                    135
                            161
           498
                   286
                        266
                18
                            176
           499
               202 274 318
                             52
          500 rows × 4 columns
In [71]: f, pval = stats.f_oneway(dataset["1"], dataset["2"], dataset["3"], dataset["4"])
          print(f, pval)
          38.25960961101622 4.8977501313665634e-24
```

Inference: pvalue<0.05, that means we reject ho and accept ha

```
In [72]: | mean_1 = dataset['1'].mean()
         mean_2 = dataset['2'].mean()
         mean_3 = dataset['3'].mean()
         mean_4 = dataset['4'].mean()
         print(mean_1, mean_2, mean_3, mean_4)
```

101.176 161.15 180.278 173.446

```
In [73]: sns.distplot(dataset['1'], bins = 10)
```

Out[73]: <AxesSubplot:xlabel='1', ylabel='Density'>

In [74]: sm.qqplot(dataset['1'], line = "s") py.show()

Inference: season_1 is not following Normal distribution.

Lets try to do Bootstrapping and see if Sampling distribution follow Normal distribution or not. Irrespective of how your distribution is, if your smapling distribution follows a Normal distribution, we can approximate from CLT.

```
In [75]: season_1_samp = []
         for i in range(500):
             s1 = df[df["season"]==1]["count"].sample(n=200)
             av = s1.mean()
             season_1_samp.append(av)
```

```
In [76]: | sns.distplot(weather_1_samp, bins = 20)
```

Out[76]: <AxesSubplot:ylabel='Density'>

Inference: This is following Normal distribution

```
In [77]: np.mean(weather_1_samp)
```

Out[77]: 158.044

```
In [78]: |mu| = (mean_1*500 + mean_2*500 + mean_3*500 + mean_4*500)/2000
Out[78]: 154.0125
In [79]: ssw = sum((season_1-mean_1)**2 + (season_2-mean_2)**2 + (season_3-mean_3)**2 + (season_3-mean_3-mean_3)**2 + (season_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean_3-mean
                                              SSW
Out[79]: 33998924.162000015
In [80]: ssg = ((mean_1 - mu)^{**2})^{*500} + ((mean_2 - mu)^{**2})^{*500} + ((mean_3 - mu)^{**2})^{*500} +
Out[80]: 1955088.5254999998
In [81]: msg = ssg/3
                                              msg
Out[81]: 651696.1751666666
In [82]: msw = ssw/(2000-4)
                                              msw
Out[82]: 17033.529139278566
In [83]: |fstat = msg/msw
                                               fstat
Out[83]: 38.259609611016195
```

Then to get Fcritical values look at the F-distribution table.

F - Distribution (α = 0.01 in the Right Tail)

	Numerator Degrees of Freedom									
	df_2	df _{1 1}	2	3	4	5	6	7	8	9
l	1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
ı	2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388
ı	3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
ı	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
ı	5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158
ı	6	13.745	10.925	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.9761
ı	7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.7188
ı	8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.9106
ے ا	9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.3511
6	10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424
8	11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.6315
l ĕ	12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.3875
<u></u>	13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.1911
9	14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.0297
Denominator Degrees of Freedom	15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.8948
9	16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.7804
ြင္မ	17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.6822
Δ	18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.5971
5	19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.5225
ŧ	20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3,4567
I⊹⊑	21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.3981
5	22	7.9454	5.7190	4.8166	4.3134	3.9880	3.7583	3.5867	3.4530	3.3458
Ĕ	23	7.8811	5.6637	4.7649	4.2636	3.9392	3.7102	3.5390	3.4057	3.2986
ے ا	24	7.8229	5.6136	4.7181	4.2184	3.8951	3.6667	3.4959	3.3629	3.2560
ı	25	7.7698	5.5680	4.6755	4.1774	3.8550	3.6272	3.4568	3.3239	3.2172
ı	26	7.7213	5.5263	4.6366	4.1400	3.8183	3.5911	3.4210	3.2884	3.1818
ı	27	7.6767	5.4881	4.6009	4.1056	3.7848	3.5580	3.3882	3.2558	3.1494
ı	28	7.6356	5.4529	4.5681	4.0740	3.7539	3.5276	3.3581	3.2259	3.1195
l	29	7.5977	5.4204	4.5378	4.0449	3.7254	3.4995	3.3303	3.1982	3.0920
l	30	7.5625	5.3903	4.5097	4.0179	3.6990	3.4735	3.3045	3.1726	3.0665
I	40	7.3141	5.1785	4.3126	3.8283	3.5138	3.2910	3.1238	2.9930	2.8876
l	60	7.0771	4.9774	4.1259	3.6490	3.3389	3.1187	2.9530	2.8233	2.7185
I	120	6.8509	4.7865	3.9491	3.4795	3.1735	2.9559	2.7918	2.6629	2.5586
I	00	6.6349	4.6052	3.7816	3.3192	3.0173	2.8020	2.6393	2.5113	2.4073
							2.0020	2.0070	2.0110	2.1075

fcrit~=2.609

Since fcrit<<33.58, we reject ho and accept ha.

Inference:

- 1. count is different in different weather.
- 2. count is same in different seasons.

2.c. Chi-square test to check if Weather is dependent on the season (10 points)

Hypothesis Testing:

ho: There is no relationship btw weather and season.

ha: There is relationship btw weather and season.

```
In [84]: ctab = pd.crosstab(df['weather'], df['season'])
          ctab
Out[84]:
           season
                      1
                            2
                                 3
                                       4
           weather
                 1
                   1595 1473 1598 1510
                 2
                    683
                          614
                               517
                                     754
                 3
                    184
                          205
                               173
                                     211
                                 0
                      1
                            0
                                       0
In [85]: from scipy.stats import chi2_contingency
In [86]: stat, p, dof, expected = chi2_contingency(ctab)
In [87]: print("Chi-square stat:",stat)
          print("pvalue :",p)
          Chi-square stat: 49.956607077688595
          pvalue: 1.0976664201931212e-07
          dof = (r-1)*(c-1) = 9
          alpha = 0.05
          chi-stats = 49.95
          See the Chi-square distribution table to know the chi-crit.
          chi-crit = 16.919
```

Therefore, there is relationship btw weather and season ie weather and season are dependent on

chi-crit < chi-stats, so we reject ho and accepts ha.

each other.

In [88]: sns.histplot(binwidth=0.5, x="weather", hue="season", data=df, stat="count", mult

Out[88]: <AxesSubplot:xlabel='weather', ylabel='Count'>

5/24/22	9:36	ΡМ

In []: