Homework 3

1. (book #3.1)

Let $X \sim \text{Unif}(\{1, \dots, n\})$. Find Var(X).

Hint: Recall the identies that we used when discussing #2.1 in class.

Evaluate your answer for n = 17, to find Var(X) for $X \sim Unif(\{1, ..., 17\})$.

$$Var(X) =$$

2. (book # 3.2)

Let $Y \sim \text{Unif}(\{-k, \dots, k\})$. Find Var(Y).

Compare with 3.1, when n = 2k + 1.

Evaluate your answer for k = 8, to find Var(Y) for $Y \sim Unif(\{-8, ..., 8\})$,

$$Var(Y) =$$

3. (book #3.3)

Suppose that we roll a standard fair die n = 100 times. Let X be the sum of the numbers that appear over the 100 rolls. Use Chebyshev's inequality to bound $\Pr(|X - 350| \ge 50)$.

$$\Pr(|X - 350| \ge 50) \le$$

4. (book #3.4)

Prove that, for any real number c and any discrete random variable X, $Var[cX] = c^2Var(X)$.

Which of the following arguments proves the claim?

- (a) $\operatorname{Var}(cX) = E\{(cX E(cX))^2\} = E\{(cX)^2\} \{E(cX)\}^2 = c^2 E(X^2) \{cE(X)\}^2 = c^2 \operatorname{E}(X^2) c^2 (EX)^2 = c^2 \operatorname{Var}(X)$
- (b) Variance is an expectation $\implies Var(cX) = c^2Var(X)$.
- (c) Use $Var(cX) = E(cX^2) (E(cX))^2 = cE(X^2) \{cE(X)\}^2 = c^2Var(X)$.
- (d) $Var(cX) = Var(c)Var(X) = c^2Var(X)$.
- (e) none of these
- **5**. (book # 3.5)

Given any two random variables X and Y, by the linearity of expectations we have E[X - Y] = E[X] - E[Y]. Prove that, when X and Y are independent, Var[X - Y] = Var[X] + Var[Y].

Which of the following arguments proves the claim?

- (a) $\operatorname{Var}(aX + bY) = a^2\operatorname{Var}(X) + b^2\operatorname{Var}(Y)$ for any two r.v.'s $X, Y \implies \operatorname{Var}(X + (-1)Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$.
- (b) $Var(X Y) = E(X^2) E(Y^2) = E(X^2) + E(-Y^2) = Var(X) + Var(-Y) = Var(X) + Var(Y)$
- (c) $\operatorname{Var}(X Y) = \operatorname{Var}(X + Y) 2\operatorname{Var}(Y) = \operatorname{Var}(X) + \operatorname{Var}(-Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$.
- (d) By Corollary 3.4 Var(X + (-Y)) = Var(X) + Var(-Y) = Var(X) + Var(Y). The last by #3.4.
- (e) none of these

6. (book # 3.6)

For a coin that comes up heads independently with probability p on each flip, what is the variance in the number of flips X until the kth head appears? (counting all flips, including the k-th head).

Hint: Recall problems #2.14 and 2.15 from the last homework. You may use the variance of geometric r.v. $Y \sim \text{Geom}(p)$ as $\text{Var}(Y) = \frac{1-p}{p^2}$.

Evaluate your answer Var(X) for p = 0.4 and k = 5,

$$Var(X) =$$

(book # 3.7)

A simple model of the stock market suggests that, each day, a stock with price x will increase by a factor r > 1 to xr with probability p and will fall to x/r with probability q = 1 - p. Assuming we start with a stock with price $X_0 = 1$, find a formula for the expected value $E(X_d)$ and the variance $Var(X_d)$ of the price X_d of the stock after d days. That is, X_d is the stock price after d changes (increase or decrease).

Hint: Let Y = number of days when the price increases. Then $Y \sim \text{Bin}(d, p)$ and $X_d = r^Y \cdot (1/r)^{d-Y}$. To evaluate the expression for $E(X_d)$, use the binomial theorem (see lecture #3.4). You can state the binomial theorem as

$$\sum_{\ell=0}^{k} \binom{k}{\ell} a^{\ell} b^{n-\ell} = (a+b)^n$$

(why?).

7. Evaluate your solution for $E(X_d)$ for d = 60, r = 1.05 and p = 0.6,

$$E(X_d) =$$

8. Evaluate your solution for $Var(X_d)$ for d=60, r=1.05 and p=0.6,

$$Var(X_d) =$$

(book #3.8)

Suppose that we have an algorithm that takes as input a string of n bits. We are told that the expected running time is $O(n^2)$ if the input bits are chosen independently and uniformly at random. That is, letting X_n denote the running time with an input of size n, $E(X_n) \leq Mn^2$ for $n \geq n_0$ and some M > 0 and $Pr(X_n = x_n) \geq 2^{-n}$ (\geq , since more than one sequence might have a given running time x_n).

What can Markov's inequality tell us about the worst-case running time x_n^{\star} of this algorithm on inputs of size n? Nothing to turn in.

Let $X \sim \text{Bin}(n,p)$ be a binomial r.v. Recall the derivation of Var(X) in the lecture. We used $\text{Var}(X) = E(X^2) - (EX)^2$, and used the binomial theorem to evaluate $E(X^2)$. Alternatively, one could use the representation of $X = \sum_{i=1}^{n} Y_i$ of X as sum of Bernoulli r.v.'s, $Y_i \sim \text{Bern}(p)$, independently. Use this representation and Corollary 3.4 from the lecture to find Var(X).

Which of the following arguments proves the claim? (if multiple choices are correct, mark any of those)

(a)
$$E(X^2) = \sum_{i=1}^n E(Y_i^2) = np^2$$
 and $EX = \sum E(Y_i) = np \implies Var(X) = E(X^2) - (EX)^2 = np^2 - (np)^2 = np^2(1-n)$

(b) By Corollary 3.4
$$E(X^2) = \sum_{i=1}^n E(Y_i^2) = np$$
, and $EX = \sum E(Y_i) = np \implies Var(X) = E(X^2) - (EX)^2 = np - (np)^2 = np^2(1-n)$

- (c) $\operatorname{Var}(X) = \sum_{i=1}^{n} \operatorname{Var}(Y_i)$, by Corollary 3.4, since the Y_i are independent. $\operatorname{Var}(Y_i) = E(Y_i^2) (EY_i)^2 = p p^2 = p(1-p)$, and therefore $\operatorname{Var}(X) = np(1-p)$
- (d) $Var(X) = \sum_{i=1}^{n} Var(Y_i) + 2 \sum_{i < j} Cov(Y_i, Y_j) = np(1-p) + n(n-1)p$.
- (e) none of these

Consider three r.v.'s X_1, X_2, X_3 with finite sample space $X_i \in \{1, \ldots, K\}$. The sequence $X_i, i = 1, 2, 3, \dots$ is called a Markov chain if

$$Pr(X_3 = i \mid X_2 = j, X_1 = k) = Pr(X_3 = i \mid X_2 = j)$$

$$= Pr(X_2 = i \mid X_1 = j).$$
(1)

That is, $Pr(X_3 = i \mid X_2 = j) = P_{ji}$ does not depend on X_1 , and it is the same as $Pr(X_2 = i \mid X_1 = j)$. We call P_{ii} the transition probabilities.

Let $P = [P_{ii}]$ denote the $(K \times K)$ matrix of transition probabilties.

11. Show $Pr(X_3 = i \mid X_1 = j) = [P^2]_{ji}$ (the (j, i) element of P^2).

Hint: Use the law of total probability with $E_k = \{X_2 = k\}$. Recall that any result for probabilities, like the law of total probability, is also true for conditional probabilities, like $\Pr(\bullet \mid X_1 = j)$.

Let LHS denote $Pr(X_3 = i \mid X_1 = j)$. Which of the following arguments shows the claim?

(a)
$$LHS = \sum_{k=1}^{K} \Pr(X_2 = k \mid X_1 = j) \Pr(X_3 = i \mid X_2 = k, X_1 = j) = \sum_{k} P_{jk} P_{ki} = [P^2]_{ji}$$

(b) $LHS = \sum_{k=1}^{K} \Pr(X_3 = k \mid X_1 = j) = [P^2]_{ji}$
(c) $LHS = \Pr(X_2 = i \mid X_1 = j) \cdot \Pr(X_3 = i \mid X_2 = j) = [P^2]_{ij}$

- (d) $LHS = \Pr(X_2 = i \mid X_1 = j) \cdot \Pr(X_3 = i \mid X_1 = j) = [P^2]$
- (e) none of these

Let $q_{1i} = \Pr(X_1 = i)$ denote the marginal probabilities for X_1 , $q_1 = (q_{11}, \ldots, q_{1K})$ (a $(1 \times K)$ row vector), and similarly for \mathbf{q}_2 and \mathbf{q}_3 .

12. Show $q_2 = q_1 P$ and $q_3 = q_1 P^2$

Which of the following arguments shows the claim $q_2 = q_1 P$?

(a)
$$q_{2i} = \Pr(X_2 = i) = \Pr(X_1 = j, X_2 = i) / \Pr(X_i = j) = \Pr(X_2 = i \mid X_1 = j) = P_{ji}$$

- (b) $q_{2i} = \sum_{j} p_{X_1}(j) p_{X_2|X_1}(i \mid X_1 = j) = \sum_{j} q_{1j} P_{ji}$ (c) $q_{2i} = \Pr(X_2 = i) = \Pr(X_1 = j \mid X_2 = i) / [\Pr(X_2 = i) \Pr(X_2 = i \mid X_1 = j)]$ (d) $q_{2i} = \Pr(X_2 = i) = \sum_{j} \Pr(X_1 = j, X_2 = i)$
- (e) none of these
- **13.** Let $\pi = (\pi_1, \dots, \pi_K)'$ be a probability vector (i.e., $\pi_k \ge 0$ and $\sum \pi_k = 1$) with

$$\pi_k P_{kj} = \pi_j P_{jk}$$

for any pair of states j and k. If $q_1 = \pi$, show that $q_2 = q_3 = \pi$ as well (π is called an "equilibrium" distribution").

- (a) By the law of total probability $q_{2i} = \sum_{j} \pi_{j} P_{ji} = \sum_{j} \pi_{i} P_{ij} = \pi_{i} \sum_{j} P_{ij} = \pi_{i}$ (b) By Bayes' theorem $q_{2i} = \frac{\pi_{k} P_{ki}}{\sum_{\ell} \pi_{k} P_{k\ell}} = \frac{\pi_{j} P_{kj}}{\sum_{\ell} \pi_{k} P_{k\ell}} \implies q_{2i} = \pi_{i}$ (c) \mathbf{q}_{1} is a probability vector and P is a stochastic matrix $\implies \mathbf{q}_{2} = \mathbf{q}_{3} = \mathbf{q}_{1}$. (d) By definition of conditional probability $P_{kj} = \frac{\Pr(X_{1} = k, X_{2} = j)}{\Pr(X_{1} = k)} = \frac{\pi_{k} P_{kj}}{\pi_{k}} = \frac{\pi_{j} P_{jk}}{\pi_{k}} = \pi_{j}$.
- (e) none of these

Similar definitions are used for a sequence of random variables X_t , $t = 1, 2, 3, \ldots$ See chapter 7 in the book. Definition 7.1 is the general version of (1); equation (7.1) is similar to (b) above; Definition 7.8 defines an equilibrium distribution; and Theorem 7.10 is (c).