CS3203: Software Engineering Project

Design Decisions

By: Dr. Bimlesh Wadhwa

SPA Requirements to Functional SPA

The Design Process

- Design is an iterative problem-solving process to find and describe a way:
 - To implement the functional requirements
 - To fulfil the non-functional requirements
- The result:
 - Design Specification(aka Design Models)
 - » Architecture Design, Interface Design, Component Design, Data Design, Algorithmic design
 - A set of design decisions

Design Specification

- Architectural design
 - overall structure of the system, the principal components (sometimes called sub-systems or modules), their relationships, and how they are distributed.
- Interface design
 - unambiguous interfaces between system components.
- Component design
 - Specification of component's behaviour
- Data design
 - data structures and their representations

Design Decisions

- A designer is faced with a series of design issues
 - These are sub-problems of the overall design problem
 - Each issue normally has several possible solutions (design options)
 - The designer makes a design decision to resolve each issue
- Choosing the best option among the possible options

Making Design Decisions

There are many solutions to each design problem

- how do we make right design decisions?

Making Design Decisions

- Questions
 - What are the key design issues?
- Options
 - What are the possible answers?
- Criteria
 - How to assess and compare the options?

Example – sub-componentization

Architectural Design decision

- Performance
 - » the architecture should be designed to localize critical operations within a small number of components
 - » relatively large components rather than small, fine-grain components, which reduces the number of component communications.

Maintainability

- » architecture should be designed using small, self-contained components that may readily be changed.
- » Producers of data should be separated from consumers and shared data structures should be avoided.

Conflicting options:

- large components VS small components
- → If both performance and maintainability are important system requirements, then some compromise must be found.
- → using different architectural patterns or styles for different parts of the system.

Example - AST or no AST

Should we implement an AST?

AST usage: Follows, Parent

 Is there any alternative for these design abstractions?

- Table structure
- Criteria to analyse the options
 - Complexity of implementation
 - Performance at retrieval
 - Extendibility to Iterations 2 and 3

S1	S2
1	2
2	3

S1	S2
5	6,7,10
7	8,9

Example – Data structure for Uses

- What data structure should be used to store Uses?
- Options
 - Linked List
 - Byte Array
 - Bit Vector
- Criteria to analyse the options
 - Simplicity of Implementation
 - Performance
 - Memory Utilization
 - Impact on other decisions

Inter-dependent Design Decisions

Making Design Decisions

- current knowledge
 - the requirements
 - the design as created so far
- past knowledge
 - the technology available
 - what has worked well in the past
 - software design principles and "best practices"

Communicating Design Decisions

- Oral Presentations
 - Architectural design decision sub-componentization and component interactions
 - Component design decisions- Choice of Data Structure and Algorithm
 - » e.g. Which parsing algorithm? How is Syntactic and semantic validation handled? Data structure choices?
 - SPA quality decisions Test case and Test Suite design
- Documenting Design Decisions in SPA iteration Reports

For each significant Design Problem you handle

- Alternative solutions
 - » Enumerate the possible solutions
- Compare and contrast solutions based on different criteria
 - » Choose a set of criteria essential in the context
- For each alternative solution, explain the positive and negative aspects
- Decision and justification
 - » State the "winning" alternative and explain how to mitigate its cons

Design Principles and their benefits

Benefits:

Manage complexity, Reduce component dependencies, easier to understand, maintain, and extend, shared vocabulary for early feedback

Summary

- The design process and design decisions
 - knowledge of best practices
 - requirements and design at hand
- Examples of design decisions for SPA
- Communicate your design decisions
 - Problem, options, criteria, decision