Introduction à R

Laurent Rouvière

Septembre 2020

Présentation du cours

Présentation

• Prérequis : bases en programmation, probabilités et statistique.

Présentation

- Prérequis : bases en programmation, probabilités et statistique.
- Objectifs : comprendre et utiliser les outils R classiques en datascience :
 - importer et assembler des tables, manipuler des individus et des variables.
 - visualiser des données.
 - outils classiques et tidyverse.

Présentation

- Prérequis : bases en programmation, probabilités et statistique.
- Objectifs : comprendre et utiliser les outils R classiques en datascience :
 - importer et assembler des tables, manipuler des individus et des variables.
 - visualiser des données.
 - outils classiques et tidyverse.
- Enseignant : Laurent Rouvière, laurent.rouviere@univ-rennes2.fr
 - Recherche : statistique non paramétrique, apprentissage statistique.
 - Enseignement : statistique et probabilités (Université, école d'ingénieur, formation continue).
 - Consulting: énergie (ERDF), finance, marketing.

Documents de cours

Slides disponibles à l'url https://lrouviere.github.io/intro_R/

Documents de cours

- Slides disponibles à l'url https://lrouviere.github.io/intro_R/
- Tutoriel : compléments de cours et exercises disponible à https://lrouviere.github.io/TUTO_R/

Ressources

- Le net : de nombreux tutoriels
- Livre : R pour la statistique et la science des données, PUR

Pourquoi R?

- De plus en plus de données, dans de plus en plus de domaines (énergie, santé, sport, économie....)
- La science des données contient tous les outils qui permettent d'extraitre de l'information à partir de données. Elle comprend :

Pourquoi R?

- De plus en plus de données, dans de plus en plus de domaines (énergie, santé, sport, économie...)
- La science des données contient tous les outils qui permettent d'extraitre de l'information à partir de données. Elle comprend :
 - l'importation de données
 - la manipulation
 - la visualisation
 - le choix et l'entrainement de modèles
 - la visualisation de modèles (ils sont de plus en plus complexes...)
 - la restitution et la visualisation des résultats (applications web)

Pourquoi R?

- De plus en plus de données, dans de plus en plus de domaines (énergie, santé, sport, économie....)
- La science des données contient tous les outils qui permettent d'extraitre de l'information à partir de données. Elle comprend :
 - l'importation de données
 - la manipulation
 - la visualisation
 - le choix et l'entrainement de modèles
 - la visualisation de modèles (ils sont de plus en plus complexes...)
 - la restitution et la visualisation des résultats (applications web)

Remarque importante

- Toutes ces notions peuvent être réalisées avec R.
- R (data scientits) et Python (informaticiens) font partie des outils les plus utilisés en sciences des données.

• R est un logiciel libre et gratuit.

- R est un logiciel libre et gratuit.
- Il est distribué par le CRAN (Comprehensive R Archive Network) à l'url suivante : https://www.r-project.org.

- R est un logiciel libre et gratuit.
- Il est distribué par le CRAN (Comprehensive R Archive Network) à l'url suivante : https://www.r-project.org.
- Tous les statisticiens (notamment) peuvent contributer en créant des fonctions et en les distribuant à la communauté (packages).

- R est un logiciel libre et gratuit.
- Il est distribué par le CRAN (Comprehensive R Archive Network) à l'url suivante : https://www.r-project.org.
- Tous les statisticiens (notamment) peuvent contributer en créant des fonctions et en les distribuant à la communauté (packages).

Conséquence

- Le logiciel est toujours à jour.
- Une des principales raisons de son succés.

Exemple : Les Iris de Fisher

```
> data(iris)
> summary(iris)
##
   Sepal.Length Sepal.Width Petal.Length Petal.Width
         :4.300 Min. :2.000
                               Min. :1.000 Min. :0.100
##
   Min.
## 1st Qu.:5.100 1st Qu.:2.800
                               1st Qu.:1.600 1st Qu.:0.300
## Median :5.800
                Median :3.000
                               Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057
                               Mean :3.758 Mean :1.199
##
   3rd Qu.:6.400
                3rd Qu.:3.300
                               3rd Qu.:5.100
                                             3rd Qu.:1.800
##
   Max. : 7.900
                Max. :4.400
                               Max. :6.900 Max. :2.500
##
        Species
##
   setosa :50
##
   versicolor:50
##
   virginica:50
##
##
##
```

Objectifs

La problématique

Expliquer species par les autres variables.

Objectifs |

La problématique

Expliquer species par les autres variables.

- Species est variable qualitative.
- Confronté à un problème de classification supervisée.

Manipulation des données

```
> apply(iris[,1:4],2,mean)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.843333 3.057333 3.758000 1.199333
> apply(iris[,1:4],2,var)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 0.6856935 0.1899794 3.1162779 0.5810063
```

Manipulation des données

```
> apply(iris[,1:4],2,mean)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.843333 3.057333 3.758000 1.199333
> apply(iris[,1:4],2,var)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 0.6856935 0.1899794 3.1162779 0.5810063
```

Remarque

Non informatif pour le problème (expliquer Species).

Manipulation avec dplyr

 dplyr est un package de tidyverse qui permet de faciliter la manipulation des données, notamment en terme de syntaxe.

```
> library(dplyr)
> iris %>% group_by(Species) %>% summarise_all(mean)
## # A tibble: 3 x 5
##
    Species Sepal.Length Sepal.Width Petal.Length Petal.Width
## <fct>
                   <dbl>
                              <dbl>
                                         \langle db l \rangle
                                                   \langle db l \rangle
## 1 setosa
                  5.01
                              3.43
                                         1.46
                                                   0.246
## 2 versicolor 5.94 2.77
                                         4.26
                                                   1.33
              6.59
                              2.97
## 3 virginica
                                          5.55
                                                   2.03
```

Plus intéressant : nous obtenons les moyennes pour chaque espèce.

Visualisation

> boxplot(Sepal.Length~Species,data=iris)

Visualisation avec ggplot2

- > library(ggplot2)
- > ggplot(iris)+aes(x=Species,y=Sepal.Length)+geom_boxplot()

Un modèle d'arbre

```
> library(rpart)
> tree <- rpart(Species~.,data=iris)</pre>
> library(rpart.plot)
> rpart.plot(tree)
                                                                           setosa
                                                                           versicolor
                                          setosa
                                                                           virginica
                                        .33 .33 .33
                                          100%
                               yes -Petal.Length < 2.5 - no
                                                            versicolor
                                                            .00 .50 .50
                                                              67%
                                                         Petal.Width < 1.8
                      setosa
                                               versicolor
                                                                          virginica
                    1.00 .00 .00
                                              .00 .91 .09
                                                                         .00 .02 .98
                       33%
                                                 36%
                                                                           31%
```

Carte avec ggmap

• Objectif : visualiser les températures en france pour une date donnée.

Chargement des données + fond de carte

 Données téléchargées sur le site de meteofrance (temperatures d'à peu près 60 stations).

Une première carte

Modèle de prévision

 Algorithme de plus proche voisins pour estimer la température sur toutes les longitudes et latitudes du territoires.

```
> library(FNN)
> mod <- knn.reg(train=D[,.(Latitude,Longitude)],y=D[,t],
+ test=Test1[,.(Latitude,Longitude)],k=1)$pred</pre>
```

• Visualisation avec ggmap.

```
> library(ggmap)
> ggmap(fond)+geom_polygon(data=Test5,
+ aes(y=Latitude,x=Longitude,
+ fill=temp1,color=temp1,group=dept),size=1)+
+ scale_fill_continuous(low="yellow",high="red")+
+ scale_color_continuous(low="yellow",high="red")
```

La carte finale

Application web avec shiny

- Shiny est un package R qui permet la création de pages web interactives.
- Exemple : graphiques standards pour un jeu de données.
 - Graphiques descriptifs pour un jeu de données : https://Irouviere.shinyapps.io/DESC APP/
 - Visualisation des stations velib à Rennes : https://lrouviere.shinyapps.io/velib/

Dans cette partie

- 10 heures pour 4 thèmes :
 - Rstudio et Rmarkdown
 - Objets R
 - Importation et manipulation de données avec dplyr
 - Visualisation de données avec ggplot

Dans cette partie

- 10 heures pour 4 thèmes :
 - Rstudio et Rmarkdown
 - Objets R
 - Importation et manipulation de données avec dplyr
 - Visualisation de données avec ggplot
- 1 thème = slides + Tutoriel (complément de cours + exercices)

Rstudio, Rmarkdown et packages R

Rstudio

- RStudio est une interface facilitant l'utilisation de R.
- Également libre et gratuit : https://www.rstudio.com.

Rstudio

- **RStudio** est une interface facilitant l'utilisation de R.
- Également libre et gratuit : https://www.rstudio.com.

L'écran est divisé en 4 parties :

- Console : pour entrer les commandes et visualiser les sorties.
- Workspace and History : visualiser l'historique des objets créés.
- Files Plots...: voir les répertoires et fichiers dans l'environnement de travail, les graphes de sortie, installer les packages...
- Script : éditeur pour entrer les commandes R et les commentaires.
 Penser à régulièrement sauvegarder ce fichier !

Rmarkdown

Fichier Rmarkdown

- Un fichier Rmarkdown (.Rmd) permet de produire un document de travail.
- Il contient le code, les sorties et des commentaires sur le travail réalisé.
- Il produit des rapports de grande qualité sous différentes formes (documents, diaporama, etc...).
- Ce diaporama est du Rmarkdwon.

Rmarkdown

Fichier Rmarkdown

- Un fichier Rmarkdown (.Rmd) permet de produire un document de travail.
- Il contient le code, les sorties et des commentaires sur le travail réalisé.
- Il produit des rapports de grande qualité sous différentes formes (documents, diaporama, etc...).
- Ce diaporama est du Rmarkdwon.
- Recherche Reproductible : en cliquant sur un bouton, on peut ré-executer tout le code du fichier et exporter les résultats sous un format rapport.
- Documents dynamiques: possibilité d'exporter le rapport final dans différents formats: html, pdf, rtf, slides, notebook...

- Ensemble de programmes R qui complètent et améliorent les fonctions de R.
- Un package est généralement dédié à des méthodes ou domaines d'application spécifiques.
- Plus de 16 000 packages actuellement.
- Contribue au succès de R (toujours à jour).

- Ensemble de programmes R qui complètent et améliorent les fonctions de R.
- Un package est généralement dédié à des méthodes ou domaines d'application spécifiques.
- Plus de 16 000 packages actuellement.
- Contribue au succès de R (toujours à jour).

2 phases

- Installation: install.packages(package.name) (une seule fois).
- Chargement: library(package.name) (chaque fois).

- Ensemble de programmes R qui complètent et améliorent les fonctions de R.
- Un package est généralement dédié à des méthodes ou domaines d'application spécifiques.
- Plus de 16 000 packages actuellement.
- Contribue au succès de R (toujours à jour).

2 phases

- Installation: install.packages(package.name) (une seule fois).
- Chargement: library(package.name) (chaque fois).
- On peut aussi utiliser le bouton package dans Rstudio.

- Ensemble de programmes R qui complètent et améliorent les fonctions de R.
- Un package est généralement dédié à des méthodes ou domaines d'application spécifiques.
- Plus de 16 000 packages actuellement.
- Contribue au succès de R (toujours à jour).

2 phases

- Installation: install.packages(package.name) (une seule fois).
- Chargement: library(package.name) (chaque fois).
- On peut aussi utiliser le bouton package dans Rstudio.

 \implies Chapitre 1 du tuto.

Objets R

Numérique et caractères

Numérique (facile)

```
> x <- pi
> x
## [1] 3.141593
> is.numeric(x)
## [1] TRUE
```

Caractères

```
> b <- "X"
> paste(b,1:5,sep="")
## [1] "X1" "X2" "X3" "X4" "X5"
```

Vecteurs

Création: c, seq, rep

```
> x1 <- c(1,3,4)
> x2 <- 1:5
> x3 <- seq(0,10,by=2)
> x4 <- rep(x1,3)
> x5 <- rep(x1,3,each=3)</pre>
```

Extraction: []

```
> x3[c(1,3,4)] # pareil que x3[x1]
## [1] 0 4 6
```

Logique

Vrai ou Faux

```
> 1<2

## [1] TRUE

> 1==2

## [1] FALSE

> 1!=2

## [1] TRUE
```

Logique

Vrai ou Faux

```
> 1<2
## [1] TRUE
> 1==2
## [1] FALSE
> 1!=2
## [1] TRUE
```

Souvent utile pour sélectionner des composantes d'un vecteur

```
> x <- 1:3
> test <- c(TRUE, FALSE, TRUE)
> x[test]
## [1] 1 3
```

Problème

Sélectionner les tailles plus grandes que 174.

Problème

Sélectionner les tailles plus grandes que 174.

```
> size>174

## [1] TRUE TRUE TRUE TRUE FALSE

> size[size>174]

## [1] 178.8362 185.0309 180.4393 185.4450
```

Facteurs

• Pour représenter les variables qualitatives :

```
> x1 <- factor(c("a","b","b","a","a"))
> x1
## [1] a b b a a
## Levels: a b
> levels(x1)
## [1] "a" "b"
```

Variable mal définie

• On suppose que les données sont codées : 0=homme, 1=femme

```
> X <- c(1,1,0,0,1)

> summary(X)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0 0.0 1.0 0.6 1.0 1.0
```

Variable mal définie

On suppose que les données sont codées : 0=homme, 1=femme

```
> X <- c(1,1,0,0,1)

> summary(X)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0 0.0 1.0 0.6 1.0 1.0
```

• Problème : \mathbf{R} interprète X comme un vecteur continu \Longrightarrow cela peut générer des problèmes dans l'étude statistique.

Variable mal définie

On suppose que les données sont codées : 0=homme, 1=femme

```
> X <- c(1,1,0,0,1)

> summary(X)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0 0.0 1.0 0.6 1.0 1.0
```

- Problème : \mathbf{R} interprète X comme un vecteur continu \Longrightarrow cela peut générer des problèmes dans l'étude statistique.
- Solution :

```
> X <- as.factor(X)
> levels(X) <- c("man","woman")
> X
## [1] woman woman man man woman
## Levels: man woman
> summary(X)
## man woman
## 2 3
```

Matrice

Création

```
> m <- matrix(1:4,nrow=2,byrow=TRUE)
> m
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
```

Extraction

```
> m[1,2]
> m[1,] #Première ligne
> m[,2] #Seconde colonne
```

Liste

 Permet de regrouper plusieurs objets de différents types dans un même objet :

```
> mylist <- list(vector=1:5,mat=matrix(1:8,nrow=2))
> mylist
## $vector
## [1] 1 2 3 4 5
##
## $mat
##  [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
```

Extraction:

```
> mylist[[1]]
> mylist$vector
> mylist[["vector"]]
```

Dataframe

Objets pour représenter des données dans R.

```
> name <- c("Paul", "Mary", "Steven", "Charlotte", "Peter")</pre>
> sex <- c(0,1,0,1,0)
> size <- c(180,165,168,170,175)
> data <- data.frame(name,sex,size)</pre>
> data
## name sex size
## 1 Paul 0 180
## 2 Mary 1 165
## 3 Steven 0 168
## 4 Charlotte 1 170
        Peter 0 175
## 5
```

```
> summary(data)

## name sex size

## Length:5 Min. :0.0 Min. :165.0

## Class :character 1st Qu.:0.0 1st Qu.:168.0

## Mode :character Median :0.0 Median :170.0

## Mean :0.4 Mean :171.6

## 3rd Qu.:1.0 3rd Qu.:175.0

## Max. :1.0 Max. :180.0
```

Problème 1

sex est interprété comme une variable continue. C'est une variable qualitative.

Solution

Il faut la convertir en facteur.

```
> data$sex <- as.factor(data$sex)</pre>
> levels(data$sex) <- c("man", "woman")</pre>
> summary(data)
##
       name
                        sex
                                    size
## Length:5 man :3 Min. :165.0
## Class:character woman:2 1st Qu.:168.0
## Mode :character
                               Median :170.0
##
                               Mean :171.6
##
                               3rd Qu.:175.0
                               Max. :180.0
##
```

Solution

Il faut la convertir en facteur.

```
> data$sex <- as.factor(data$sex)</pre>
> levels(data$sex) <- c("man", "woman")</pre>
> summary(data)
##
       name
                       sex
                                  size
## Length:5 man :3 Min. :165.0
## Class:character woman:2 1st Qu.:168.0
                   Median :170.0
## Mode :character
##
                              Mean :171.6
##
                              3rd Qu.:175.0
                              Max. :180.0
##
```

Problème 2

name est interprété comme une variable. C'est plutôt un identifiant.

```
> row.names(data) <- data$name
> data <- data[,-1] #suppression de la colonne name
> data
## sex size
## Paul man 180
## Mary woman 165
## Steven man 168
## Charlotte woman 170
## Peter man 175
```

Conclusion

Il est crucial de toujours vérifier que les données sont correctement interprétées par R (avec summary ou mode par exemple).

Tibbles

- Un tibble est une version moderne du dataframe, qui conserve les avantages et supprime les inconvénients (selon les créateurs du tibble).
- C'est la version dataframe du tidyverse (nécessité de charger ce package).
- Deux différences notables :
 - les variables qualitatives sont par défaut des caractères (et non des facteurs);
 - pas de rownames.

Exemple: data frame

```
> name <- c("Paul", "Mary", "Steven", "Charlotte", "Peter")</pre>
> sex <- c(0,1,0,1,0)
> size <- c(180,165,168,170,175)
> age <- c("old", "young", "young", "old", "old")</pre>
> data <- data.frame(sex,size,age)</pre>
> rownames(data) <- name</pre>
> summary(data)
##
        sex
            size
                                   age
## Min. :0.0 Min. :165.0 Length:5
## 1st Qu.:0.0 1st Qu.:168.0 Class :character
## Median :0.0 Median :170.0 Mode :character
## Mean :0.4 Mean :171.6
## 3rd Qu.:1.0 3rd Qu.:175.0
##
   Max. :1.0 Max. :180.0
```

Example: tibble

```
> library(tidyverse)
> data1 <- tibble(name,sex,size,age)</pre>
> #data1 <- column to rownames(data1, var="name")
> summary(data1)
##
      name
                        sex size
                                                 age
## Length:5 Min. :0.0 Min. :165.0 Length:5
## Class: character 1st Qu.:0.0 1st Qu.:168.0 Class: character
## Mode :character Median :0.0 Median :170.0 Mode :character
##
                   Mean :0.4 Mean :171.6
##
                    3rd Qu.:1.0 3rd Qu.:175.0
##
                    Max. :1.0 Max. :180.0
```

dataframe vs tibbles

Principale différence : pas de facteur dans les tibbles (par défaut).

⇒ Chapitre 2 du tuto.

Gérer des données

Gérer des données

Importer des données

 Les données sont généralement contenues dans des fichiers avec les individus en ligne et les variables en colonnes.

- Les données sont généralement contenues dans des fichiers avec les individus en ligne et les variables en colonnes.
- Les fonctions read.table et read.csv permettent d'importer des données à partir de fichiers .txt et .csv.

- Les données sont généralement contenues dans des fichiers avec les individus en ligne et les variables en colonnes.
- Les fonctions read.table et read.csv permettent d'importer des données à partir de fichiers .txt et .csv.

```
> data <- read.table("file",...)
> data <- read.csv("file",...)</pre>
```

- Les données sont généralement contenues dans des fichiers avec les individus en ligne et les variables en colonnes.
- Les fonctions read.table et read.csv permettent d'importer des données à partir de fichiers .txt et .csv.

```
> data <- read.table("file",...)
> data <- read.csv("file",...)</pre>
```

 correspondent à un tas d'options souvent très importantes car les fichiers de données contiennent toujours des spécificités (données manquantes, noms de variables...)

- Les données sont généralement contenues dans des fichiers avec les individus en ligne et les variables en colonnes.
- Les fonctions read.table et read.csv permettent d'importer des données à partir de fichiers .txt et .csv.

```
> data <- read.table("file",...)
> data <- read.csv("file",...)</pre>
```

- correspondent à un tas d'options souvent très importantes car les fichiers de données contiennent toujours des spécificités (données manquantes, noms de variables...)
- Fichiers .xls : on pourra les convertir en .csv ou utiliser des packages spécifiques.

Indiquer le chemin

- Le fichier des données doit être placé dans le répertoire de travail.
 Sinon, il faut indiquer le chemin à read.table.
- Exemple: importer le fichier data.csv enregistré dans /lectureR/Part1 :
 - Changement du répertoire de travail

```
> setwd("~/lectureR/Part1")
> df <- read.csv("data.csv",...)</pre>
```

Indiquer le chemin

- Le fichier des données doit être placé dans le répertoire de travail.
 Sinon, il faut indiquer le chemin à read.table.
- Exemple: importer le fichier data.csv enregistré dans /lectureR/Part1 :
 - Changement du répertoire de travail

```
> setwd("~/lectureR/Part1")
> df <- read.csv("data.csv",...)</pre>
```

Spécification du chemin dans read.csv

```
> df <- read.csv("~/lecture_R/Part1/data.csv",...)</pre>
```

Indiquer le chemin

- Le fichier des données doit être placé dans le répertoire de travail.
 Sinon, il faut indiquer le chemin à read.table.
- Exemple: importer le fichier data.csv enregistré dans /lectureR/Part1 :
 - Changement du répertoire de travail

```
> setwd("~/lectureR/Part1")
> df <- read.csv("data.csv",...)</pre>
```

Spécification du chemin dans read.csv

```
> df <- read.csv("~/lecture_R/Part1/data.csv",...)</pre>
```

Utilisation de la fonction file.path

```
> path <- file.path("~/lecture_R/Part1/", "data.csv")
> df <- read.csv(path,...)</pre>
```

Il y a plusieurs options importantes dans read.table et read.csv :

• **sep** : le caractère de **séparation** (espace, virgule...)

- sep : le caractère de séparation (espace, virgule...)
- **dec** : le caractère pour le séparateur décimal (virgule, point...)

- sep : le caractère de séparation (espace, virgule...)
- dec : le caractère pour le séparateur décimal (virgule, point...)
- header : logique pour indiquer si le nom des variables est spécifié à la première ligne du fichier

- sep : le caractère de séparation (espace, virgule...)
- dec : le caractère pour le séparateur décimal (virgule, point...)
- header : logique pour indiquer si le nom des variables est spécifié à la première ligne du fichier
- row.names : vecteurs des identifiants (si besoin)

- sep : le caractère de séparation (espace, virgule...)
- dec : le caractère pour le séparateur décimal (virgule, point...)
- header : logique pour indiquer si le nom des variables est spécifié à la première ligne du fichier
- row.names : vecteurs des identifiants (si besoin)
- na.strings : vecteur de caractères pour identifier les données manquantes.
- ...

Exemple

Fichier data_imp.txt

```
name;size;age
John;174;32
Peter;?;28
Mary;165.5;NA
```

Exemple

Fichier data_imp.txt

```
name;size;age
John;174;32
Peter;?;28
Mary;165.5;NA
```

Caractéristiques

- 3 variables (ou plutôt 2...)
- Première ligne = nom des variables
- Données manquantes = NA, ?

Un premier essai

```
> path <- file.path("~COURS/EDHEC/R/SLIDES/", "data_imp.txt")
> df <- read.table(path)
> summary(df)
## V1
## Length:4
## Class :character
## Mode :character
```

Un premier essai

```
> path <- file.path("~COURS/EDHEC/R/SLIDES/", "data_imp.txt")
> df <- read.table(path)
> summary(df)
## V1
## Length:4
## Class :character
## Mode :character
```

Problème

R lit quatre lignes et une colonne!

Solution

```
> df <- read.table(path,header=TRUE,sep=";",dec=".",</pre>
                na.strings = c("NA","?"),row.names = 1)
> df
## size age
## John 174.0 32
## Peter NA 28
## Mary 165.5 NA
> summary(df)
## size age
## Min. :165.5 Min. :28
## 1st Qu.:167.6 1st Qu.:29
## Median :169.8 Median :30
## Mean :169.8 Mean :30
## 3rd Qu.:171.9 3rd Qu.:31
   Max. :174.0 Max. :32
##
## NA's :1 NA's :1
```

Package readr

- Version tidyverse pour l'importation.
- Il contient read_table et read_csv à la place de read.table et read.csv (underscores à la place des points).
- Dans Rstudio, on peut lire des données avec readr en cliquant sur Import Dataset (pas toujours efficace pour des données complexes).

Autres outils importations

- readxl : fichier au format Excel.
- sas7bdat : importation depuis SAS.
- foreign : formats SPSS ou STATA
- jsonlite : format JSON
- rvest : webscrapping

Concaténer des données

 L'information utile pour une analyse provient (souvent) de plusieurs tableaux de données.

Concaténer des données

- L'information utile pour une analyse provient (souvent) de plusieurs tableaux de données.
- Besoin de correctement assembler ces tables avant l'étude statistique.

Concaténer des données

- L'information utile pour une analyse provient (souvent) de plusieurs tableaux de données.
- Besoin de correctement assembler ces tables avant l'étude statistique.
- Fonctions R standard : rbind, cbind, cbind.data.frame, merge. . .
- Fonctions R tidyverse: bind_rows, bind_cols, left_join, inner_join.

Un exemple avec 2 tables

```
> df1
## # A tibble: 4 x 2
## name nation
## <chr> <chr>
## 1 Peter USA
## 2 Mary GB
## 3 John Aus
## 4 Linda USA
> df2
## # A tibble: 3 x 2
## name age
## <chr> <dbl>
## 1 John 35
## 2 Mary 41
## 3 Fred 28
```

Un exemple avec 2 tables

```
> df1
## # A tibble: 4 x 2
## name nation
## <chr> <chr>
## 1 Peter USA
## 2 Mary GB
## 3 John Aus
## 4 Linda USA
> df2
## # A tibble: 3 x 2
## name age
## <chr> <dbl>
## 1 John 35
## 2 Mary 41
## 3 Fred 28
```

Objectif

Un tableau de données avec 3 colonnes : name, nation et age.

bind_rows

```
> bind_rows(df1,df2)
## # A tibble: 7 x 3
## name nation age
## <chr> <chr> <dbl>
## 1 Peter USA NA
## 2 Mary GB NA
## 3 John Aus NA
## 4 Linda USA NA
## 5 John <NA> 35
## 6 Mary <NA>
                 41
## 7 Fred <NA>
                 28
```

bind_rows

```
> bind_rows(df1,df2)
## # A tibble: 7 x 3
## name nation age
## <chr> <chr> <dbl>
## 1 Peter USA NA
## 2 Mary GB NA
## 3 John Aus NA
## 4 Linda USA NA
## 5 John <NA> 35
             41
## 6 Mary <NA>
## 7 Fred <NA>
                 28
```

⇒ Mauvais choix ici (2 lignes pour certains individus).

full_join

full_join

 \implies tous les individus sont conservés (NA sont ajoutés pour les quantités non mesurées.)

left_join

⇒ seuls les individus du premier tableau (gauche) sont conservés.

inner_join

⇒ on garde les individus pour lesquels nation et age sont mesurés.

inner_join

⇒ on garde les individus pour lesquels nation et age sont mesurés.

Conclusion

- Plusieurs possibilités pour assembler des données.
- Important de faire le bon choix en fonction du contexte.
- \implies Partie 3.1 du tuto.

Gérer des données

Manipuler les données avec Dplyr

- dplyr est un package efficace pour transformer et résumer des tableaux de données.
- Il propose une syntaxe claire (basée sur une grammaire) permettant de manipuler les données.

- dplyr est un package efficace pour transformer et résumer des tableaux de données.
- Il propose une syntaxe claire (basée sur une grammaire) permettant de manipuler les données.
- Par exemple, pour calculer le moyenne de Sepal.Length de l'espèce setosa, on utilise généralement

- dplyr est un package efficace pour transformer et résumer des tableaux de données.
- Il propose une syntaxe claire (basée sur une grammaire) permettant de manipuler les données.
- Par exemple, pour calculer le moyenne de Sepal.Length de l'espèce setosa, on utilise généralement

```
> mean(iris[iris$Species=="setosa",]$Sepal.Length)
## [1] 5.006
```

- dplyr est un package efficace pour transformer et résumer des tableaux de données.
- Il propose une syntaxe claire (basée sur une grammaire) permettant de manipuler les données.
- Par exemple, pour calculer le moyenne de Sepal.Length de l'espèce setosa, on utilise généralement

```
> mean(iris[iris$Species=="setosa",]$Sepal.Length)
## [1] 5.006
```

La même chose en dplyr s'obtient avec

```
> library(dplyr)
> iris %>% filter(Species=="setosa") %>%
+ summarise(mean(Sepal.Length))
## mean(Sepal.Length)
## 1 5.006
```

Grammaire dplyr

dplyr propose une grammaire dont les principaux verbes sont :

- select(): sélectionner des colonnes (variables)
- filter(): filtrer des lignes (individus)
- arrange(): ordonner des lignes
- mutate() : créer des nouvelles colonnes (nouvelles variables)
- summarise() : calculer des résumés numériques (ou résumés statistiques)
- group_by(): effectuer des opérations pour des groupes d'individus

Penser à consulter la cheat sheet.

Select

But

Sélectionner des variables.

```
> df <- select(iris,Sepal.Length,Petal.Length)</pre>
> head(df)
    Sepal.Length Petal.Length
##
           5.1
## 1
                      1.4
## 2
           4.9 1.4
               1.3
## 3
           4.7
        4.6
## 4
                    1.5
     5.0 1.4
## 5
## 6
           5.4
                     1.7
```

Filter

But

Filtrer des individus.

```
> df <- filter(iris,Species=="versicolor")</pre>
> head(df)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
             7.0
## 1
                        3.2
                                    4.7
                                                1.4 versicolor
## 2
             6.4
                        3.2
                                    4.5
                                              1.5 versicolor
            6.9
                        3.1
                                    4.9
                                              1.5 versicolor
## 3
## 4
            5.5
                        2.3
                                    4.0
                                               1.3 versicolor
## 5
           6.5
                       2.8
                                    4.6
                                              1.5 versicolor
## 6
            5.7
                        2.8
                                            1.3 versicolor
                                    4.5
```

Arrange

But

Ordonner des individus en fonction d'une variable.

```
> df <- arrange(iris,Sepal.Length)</pre>
> head(df)
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
## 1
            4.3
                      3.0
                                 1.1
                                            0.1 setosa
## 2
           4.4
                      2.9
                                 1.4
                                            0.2 setosa
           4.4
                      3.0
                                 1.3
                                            0.2 setosa
## 3
## 4
           4.4
                   3.2
                                1.3
                                            0.2 setosa
## 5
           4.5
                   2.3
                               1.3
                                            0.3 setosa
           4.6
                      3.1
                                 1.5
                                            0.2 setosa
## 6
```

Mutate

But

Définir des nouvelles variables dans le jeu de données.

```
> df <- mutate(iris,diff_petal=Petal.Length-Petal.Width)</pre>
> head(select(df,Petal.Length,Petal.Width,diff_petal))
   Petal.Length Petal.Width diff_petal
##
## 1
         1.4
                  0.2 1.2
## 2
        1.4 0.2 1.2
       1.3 0.2 1.1
## 3
## 4 1.5 0.2 1.3
    1.4 0.2 1.2
## 5
## 6
       1.7
                 0.4
                     1.3
```

Summarise

But

Calculer des résumés statistiques.

```
> summarise(iris,mean=mean(Petal.Length),var=var(Petal.Length))
## mean var
## 1 3.758 3.116278
```

Summarise_all et summarise_at

On peut également calculer des résumés pour des groupes de variables :

summarize_all : toutes les variables du tibble

```
> iris1 <- select(iris,-Species)
> summarise_all(iris1,mean)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.843333 3.057333 3.758 1.199333
```

Summarise_all et summarise_at

On peut également calculer des résumés pour des groupes de variables :

summarize_all : toutes les variables du tibble

```
> iris1 <- select(iris,-Species)
> summarise_all(iris1,mean)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1 5.843333 3.057333 3.758 1.199333
```

summarize_at : choisir les variables du tibble

```
> summarise_at(iris,1:3,mean)
## Sepal.Length Sepal.Width Petal.Length
## 1 5.843333 3.057333 3.758
```

group_by

But

Faire des opérations pour des groupes de données.

L'opérateur pipe %>%

- L'opérateur pipe %>% permet d'enchaîner les commandes pour une syntaxe plus claire.
- Par exemple,

```
> mean(iris[iris$Species=="setosa", "Sepal.Length"])
## [1] 5.006

ou (un peu plus lisible)
> df1 <- iris[iris$Species=="setosa",]
> df2 <- df1$Sepal.Length
> mean(df2)
## [1] 5.006
```

ou (un peu plus lisible avec dplyr)

```
> df1 <- filter(iris,Species=="setosa")
> df2 <- select(df1,Sepal.Length)
> summarize(df2,mean(Sepal.Length))
## mean(Sepal.Length)
## 1 5.006
```

ou (un peu plus lisible avec dplyr)

```
> df1 <- filter(iris,Species=="setosa")
> df2 <- select(df1,Sepal.Length)
> summarize(df2,mean(Sepal.Length))
## mean(Sepal.Length)
## 1 5.006
```

Pas satisfaisant

Création de deux objets dataframe (inutiles) pour un calcul "simple".

- Avec le pipe, on décompose et enchaîne les opérations:
 - 1. Les données

> iris

- Avec le pipe, on décompose et enchaîne les opérations:
 - 1. Les données
 - > iris
 - 2. On filtre les individus setosa
 - > iris %>% filter(Species=="setosa")

3. On garde la variable d'intérêt

```
> iris %>% filter(Species=="setosa") %>% select(Sepal.Length)
```

3. On garde la variable d'intérêt

```
> iris %>% filter(Species=="setosa") %>% select(Sepal.Length)
```

4. On calcule la moyenne

```
> iris %>% filter(Species=="setosa") %>%
+ select(Sepal.Length)%>% summarize_all(mean)
## Sepal.Length
## 1 5.006
```

Plus généralement

 L'opérateur pipe %>% applique l'objet de droite en considérant que le premier argument est l'objet de gauche (non symétrique).

```
> X <- as.numeric(c(1:10,"NA"))
> mean(X,na.rm = TRUE)
## [1] 5.5
```

ou, de façon équivalente,

Plus généralement

 L'opérateur pipe %>% applique l'objet de droite en considérant que le premier argument est l'objet de gauche (non symétrique).

```
> X <- as.numeric(c(1:10,"NA"))
> mean(X,na.rm = TRUE)
## [1] 5.5
```

ou, de façon équivalente,

```
> X %>% mean(na.rm=TRUE)
## [1] 5.5
```

Reformater les données

- Certaines analyses statistiques nécessitent un format particulier pour les données.
- Un exemple jouet

```
> df <- iris %>% group_by(Species) %>%
   summarize_all(mean)
> head(df)
## # A tibble: 3 x 5
##
  Species Sepal.Length Sepal.Width Petal.Length Petal.Width
  <fct>
                   <dbl>
                             <dbl>
                                                  <db1>
##
                                        \langle db l \rangle
## 1 setosa
                    5.01
                              3.43
                                         1.46
                                                  0.246
## 2 versicolor 5.94
                             2.77
                                         4.26
                                                  1.33
                6.59
                             2.97
                                         5.55
                                                  2.03
## 3 virginica
```

pivot_longer

Assembler des colonnes en lignes avec \alert{pivot_longer} (anciennement gather):

```
> df1 <- df %>% pivot_longer(-Species,names_to="variable",values_to="va
> head(df1)
## # A tibble: 6 x 3
## Species variable valeur
## <fct> <chr> <dbl>
## 1 setosa Sepal.Length 5.01
## 2 setosa Sepal.Width 3.43
## 3 setosa Petal.Length 1.46
## 4 setosa Petal.Width 0.246
## 5 versicolor Sepal.Length 5.94
## 6 versicolor Sepal.Width 2.77
```

Remarque

Même information avec un format différent.

pivot_wider

 Décomposer une ligne en plusieurs colonnes avec pivot_wider (anciennement spread).

```
> df1 %>% pivot_wider(names_from=variable, values_from=valeur)
## # A tibble: 3 x 5
## Species Sepal.Length Sepal.Width Petal.Length Petal.Width
## <fct>
                  <dbl>
                            <dbl>
                                       \langle db l \rangle
                                                 \langle db l \rangle
## 1 setosa
                 5.01 3.43 1.46 0.246
## 2 versicolor 5.94 2.77
                                     4.26
                                                1.33
             6.59
                            2.97
                                       5.55
                                                 2.03
## 3 virginica
```

Separate

Séparer une colonne en plusieurs.

```
> df <- tibble(date=as.Date(c("01/03/2015","05/18/2017",
+ "09/14/2018"),"%m/%d/%Y"),temp=c(18,21,15))</pre>
```

Separate

Séparer une colonne en plusieurs.

```
> df1 <- df %>% separate(date,into = c("year","month","day"))
> df1

## # A tibble: 3 x 4

## year month day temp

## <chr> <chr> <chr> <chr> <chr> <dbl>
## 1 2015 01 03 18

## 2 2017 05 18 21

## 3 2018 09 14 15
```

Unite

Assembler des colonnes.

Unite

Assembler des colonnes.

 \implies Partie 3.2 du tuto.

Visualiser des données

Visualiser des données

Graphes conventionnels

- Visualisation : cruciale à toutes les étapes d'une étude statistique.
- R Permet de créer un très grand nombre de type de graphes.
- On propose une (courte) présentation des graphes classiques,
- suivie par les graphes ggplot.

La fonction plot

- Fonction générique pour représenter (presque) tous les types de données.
- Pour un nuage de points, il suffit de renseigner un vecteur pour l'axe des x, et un autre vecteur pour celui des y.

```
> x <- seq(-2*pi,2*pi,by=0.1)
> plot(x,sin(x),type="l",xlab="x",ylab="sin(x)")
> abline(h=c(-1,1))
```


Graphes classiques pour visualiser des variables

- Histogramme pour une variable continue, diagramme en barre pour une variable qualitative.
- Nuage de points pour 2 variables continues.
- Boxplot pour une distribution continue.

Graphes classiques pour visualiser des variables

- Histogramme pour une variable continue, diagramme en barre pour une variable qualitative.
- Nuage de points pour 2 variables continues.
- Boxplot pour une distribution continue.

Constat (positif)

Il existe une fonction R pour toutes les représentations.

Nuage de points sur un jeu de données

> plot(Sepal.Length~Sepal.Width,data=iris)

- > #pareil que
- > plot(iris\$Sepal.Width,iris\$Sepal.Length)

Histogramme (variable continue)

> hist(iris\$Sepal.Length,col="red")

Histogram of iris\$Sepal.Length

Diagramme en barres (variable qualitative)

Boxplot (distribution)

> boxplot(Sepal.Length~Species,data=iris)

Visualiser des données

Visualisation avec ggplot2

- ggplot2 permet de faire des graphes R en s'appuyant sur une grammaire des graphiques (équivalent de dplyr pour manipuler les données).
- Les graphes produits sont de très bonnes qualités (pas toujours le cas avec les graphes conventionnels).
- La grammaire ggplot permet d'obtenir des graphes "complexes" avec une syntaxe claire et lisible.

Assembler des couches

Pour un tableau de données fixé, un graphe est défini comme une succession de couches. Il faut toujours spécifier :

- les données
- les variables à représenter
- le type de représentation (nuage de points, boxplot...).

Assembler des couches

Pour un tableau de données fixé, un graphe est défini comme une succession de couches. Il faut toujours spécifier :

- les données
- les variables à représenter
- le type de représentation (nuage de points, boxplot...).

Les graphes ggplot sont construits à partir de ces couches. On indique

- les données avec ggplot
- les variables avec aes (aesthetics)
- le type de représentation avec geom_

La grammaire

Les principaux verbes sont

• Data (ggplot) : les données, un dataframe ou un tibble.

La grammaire

Les principaux verbes sont

- Data (ggplot): les données, un dataframe ou un tibble.
- Aesthetics (aes): façon dont les variables doivent être représentées.

La grammaire

Les principaux verbes sont

- Data (ggplot) : les données, un dataframe ou un tibble.
- Aesthetics (aes): façon dont les variables doivent être représentées.
- **Geometrics** (**geom_...**) : type de représentation.

La grammaire

Les principaux verbes sont

- Data (ggplot) : les données, un dataframe ou un tibble.
- Aesthetics (aes): façon dont les variables doivent être représentées.
- Geometrics (geom_...): type de représentation.
- Statistics (stat_...) : spécifier les transformations des données.

La grammaire

Les principaux verbes sont

- Data (ggplot) : les données, un dataframe ou un tibble.
- Aesthetics (aes): façon dont les variables doivent être représentées.
- **Geometrics** (geom_...) : type de représentation.
- Statistics (stat_...) : spécifier les transformations des données.
- Scales (scale_...): modifier certains paramètres du graphe (changer de couleurs, de taille...).

La grammaire

Les principaux verbes sont

- Data (ggplot) : les données, un dataframe ou un tibble.
- Aesthetics (aes): façon dont les variables doivent être représentées.
- **Geometrics** (**geom_...**) : type de représentation.
- Statistics (stat_...) : spécifier les transformations des données.
- Scales (scale_...): modifier certains paramètres du graphe (changer de couleurs, de taille...).

Tous ces éléments sont séparés par un +.

Un premier exemple

> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+geom_point()

Couleur et taille

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+
+ geom_point(color="blue",size=2)
```


Couleur avec une variable qualitative

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Species)+geom_point()
```


Couleur avec une variable continue

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Petal.Width)+geom_point()
```


Changer la couleur

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Petal.Width)+geom_point()+
+ scale_color_continuous(low="yellow",high="red")
```


Histogramme

> ggplot(iris)+aes(x=Sepal.Length)+geom_histogram(fill="red")

Diagramme en barres

> ggplot(iris)+aes(x=Species)+geom_bar(fill="blue")

Facetting (plus compliqué)

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+geom_point()+
+ geom_smooth(method="lm")+facet_wrap(~Species)
```


Combiner ggplot et dplyr

- Souvent important de construire un bon jeu de données pour obtenir un bon graphe.
- Par exemple

```
> head(df)
## # A tibble: 6 x 3
##
  size weight.20 weight.50
## <dbl>
            <db1>
                    <dbl>
## 1
    153
            61.2
                     81.4
## 2 169 67.5
                     81.4
## 3 168
            69.4
                     80.3
## 4 169
            66.1 81.9
## 5 176
            70.4 79.2
## 6
     169
            67.6
                     88.9
```

Objectif

Etape dplyr

Assembler les colonnes weight.M et weight.W en une colonne weight :

```
> df1 <- df %% pivot_longer(-size,names_to="age",values_to="weight")
> df1 %>% head()
## # A tibble: 6 x 3
## size age weight
## \langle dbl \rangle \langle chr \rangle \langle dbl \rangle
## 1 153 weight.20 61.2
## 2 153 weight.50 81.4
## 3 169 weight.20 67.5
## 4 169 weight.50 81.4
## 5 168 weight.20 69.4
## 6 168 weight.50 80.3
> df1 <- df1 %>% mutate(age=recode(age,
     "weight.20"="20", "weight.50"="50"))
```

Etape ggplot

```
> ggplot(df1)+aes(x=size,y=weight,color=age)+
+ geom_point()+geom_smooth(method="lm")+theme_classic()
```


Compléments : quelques démos

```
> demo(image)
> example(contour)
> demo(persp)
> library("lattice");demo(lattice)
> example(wireframe)
> library("rgl");demo(rgl)
> example(persp3d)
> demo(plotmath);demo(Hershey)
```

Compléments : quelques démos

 \Longrightarrow Chapitre 4 du tuto.

```
> demo(image)
> example(contour)
> demo(persp)
> library("lattice");demo(lattice)
> example(wireframe)
> library("rgl");demo(rgl)
> example(persp3d)
> demo(plotmath);demo(Hershey)
```

Cartes leaflet

Introduction

- De nombreuses applications nécessitent des cartes pour visualiser des données ou les résultats d'un modèle.
- De nombreux packages R : ggmap, RgoogleMaps, maps. . .
- Dans cette partie : leaflet.

Fond de carte

- Leaflet est une des librairies open-source JavaScript les plus populaires pour faire des cartes interactives.
- Documentation: here
- > library(leaflet)
- > leaflet() %>% addTiles()

Différents styles de fonds de carte

> Paris <- c(2.35222,48.856614)
> leaflet() %>% addTiles() %>%
+ setView(lng = Paris[1], lat = Paris[2],zoom=12)

> leaflet() %>% addProviderTiles("Stamen.Toner") %>%
+ setView(lng = Paris[1], lat = Paris[2], zoom = 12)

Avec des données

Localiser 1000 séismes près des Fiji

```
> data(quakes)
> head(quakes)
## lat long depth mag stations
## 1 -20.42 181.62 562 4.8 41
## 2 -20.62 181.03 650 4.2 15
## 3 -26.00 184.10 42 5.4 43
## 4 -17.97 181.66 626 4.1 19
## 5 -20.42 181.96 649 4.0 11
## 6 -19.68 184.31 195 4.0 12
```

Séismes avec une magnitude plus grande que 5.5

> quakes1 <- quakes %>% filter(mag>5.5)
> leaflet(data = quakes1) %>% addTiles() %>%
+ addMarkers(~long, ~lat, popup = ~as.character(mag))

Remarque

La magnitude apparaît lorsqu'on cliquer sur un marker.

addCircleMarkers

```
> leaflet(data = quakes1) %>% addTiles() %>%
+ addCircleMarkers(~long, ~lat, popup=~as.character(mag),
+ radius=3,fillOpacity = 0.8,color="red")
```


Modèle de régression avec R

Données

But

Expliquer ou prédire la sortie Y par les entrées X_1, \ldots, X_p .

Exemple: ozone

But

Expliquer ou prédire la concentration maximale quotidienne en O3 (colonne maxO3) par les autres variables.

Modélisation statistique

• Il existe une fonction inconnue $m: \mathbb{R}^p \to \mathbb{R}$ telle que

$$Y = m(X_1, \ldots, X_p) + \varepsilon.$$

• ε : termes d'erreur (petits).

Modélisation statistique

• Il existe une fonction inconnue $m: \mathbb{R}^p \to \mathbb{R}$ telle que

$$Y = m(X_1, \ldots, X_p) + \varepsilon.$$

- ε : termes d'erreur (petits).
- Job du statisticien : trouver un bon estimateur \widehat{m} de m à partir des données $(x_1, y_1), \ldots, (x_n, y_n)$ où $x_i \in \mathbb{R}^p$ et $y_i \in \mathbb{R}$.

Modèle statistique

Permet de construire des estimateurs.

Un exemple : le modèle linéaire

■ Hypothèse : la fonction inconnue *m* est linéaire

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon,$$

 $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ sont les paramètres inconnus.

Un exemple : le modèle linéaire

Hypothèse : la fonction inconnue m est linéaire

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon,$$

 $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ sont les paramètres inconnus.

Moindres carrés :

$$\widehat{\beta} = (X^t X)^{-1} X^t Y.$$

• Estimateur de *m* :

$$\widehat{m}(x) = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \dots \widehat{\beta}_p x_p.$$

Structure

- Les modèles sur R sont souvent entrainés de la même façon :
- > method(formula,data=...,options)

avec

- method : nom de la méthode ;
- formula : sortie Y et les entrées X_i ;
- data : jeu de données ;
- options : options en fonction de la méthode.

La méthode (ou le modèle)

Remarque

Chaque modèle correspond à un fonction R.

fonction R	algorithme	Package	Problème
lm	modèle linéaire		Reg
glm	modèle logistique		Class
lda	analyse discriminante linéaire	MASS	Class
svm	Support Vector Machine	e1071	Class
knn.reg	plus proches voisins	FNN	Reg
knn	plus prohces voisins	class	Class
rpart	arbres	rpart	Reg and Class
glmnet	ridge et lasso	glmnet	Reg and Class

Formules

Remarque

Pour spécifier les entrées et la sortie.

> lm(Y~X1+X3,data=df)

Formules

Remarque

Pour spécifier les entrées et la sortie.

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$$

Remarque

Pour spécifier les entrées et la sortie.

> lm(Y~X1+X3,data=df)

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$$

> lm(Y~X1+I(X3)^2,data=df)

Remarque

Pour spécifier les entrées et la sortie.

> lm(Y~X1+X3,data=df)

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$$

> lm(Y~X1+I(X3)^2,data=df)

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3^2 + \varepsilon$$

Remarque

Pour spécifier les entrées et la sortie.

> lm(Y~X1+X3,data=df)

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$$

> lm(Y~X1+I(X3)^2,data=df)

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3^2 + \varepsilon$$

> lm(Y~.,data=df)

Remarque

Pour spécifier les entrées et la sortie.

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$$

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3^2 + \varepsilon$$

$$\implies Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

Exemple

Exemple

- Modèle : $maxO3 = \beta_0 + \beta_1 T12 + \beta_2 Ne9 + \varepsilon$.
- Estimateurs : $\hat{\beta}_0 = 7.638, \hat{\beta}_1 = 4.457, \hat{\beta}_2 = -2.696.$

Exemple

- Modèle : $maxO3 = \beta_0 + \beta_1 T 12 + \beta_2 Ne9 + \varepsilon$.
- Estimateurs : $\hat{\beta}_0 = 7.638, \hat{\beta}_1 = 4.457, \hat{\beta}_2 = -2.696.$

Estimateur de m

$$\widehat{m}(x) = 7.638 + 4.457 T12 - 2.696 Ne9.$$

Faire des prévisions

• Une fois le modèle ajusté, on peut l'utiliser pour pédire.

Exemple

- Météofrance prédit pour demain: T12=20 et Ne9=4.9.
- Concentration en ozone prédite par le modèle pour demain ?

Faire des prévisions

• Une fois le modèle ajusté, on peut l'utiliser pour pédire.

Exemple

- Météofrance prédit pour demain: T12=20 et Ne9=4.9.
- Concentration en ozone prédite par le modèle pour demain ?
- Réponse :

$$\widehat{m}(T12 = 20, Ne9 = 4.9) = 7.638 + 4.457 * 20 - 2.696 * 4.9 = 83.5676$$

.

Fonction predict

- predict est une fonction générique : on peut l'utiliser pour n'importe quel modèle de régression (linéaire, logistique, arbre...)
- > predict(model.name,newdata=newdataset,...)

Fonction predict

- predict est une fonction générique : on peut l'utiliser pour n'importe quel modèle de régression (linéaire, logistique, arbre...)
- > predict(model.name,newdata=newdataset,...)
 - Exemple

```
> new.df <- data.frame(T12=20,Ne9=4.9)
> predict(mod.lin,newdata=new.df)
## 1
## 83.57509
```

Très important

Utiliser la même structure pour les 2 data-frames.

Estimer l'erreur quadratique de prédiction

■ La performance d'un estimateur \hat{m} est souvent mesurée par son erreur quadratique moyenne:

$$MSE(\widehat{m}) = E[(Y - \widehat{m}(X))^2].$$

Estimer l'erreur quadratique de prédiction

• La performance d'un estimateur \hat{m} est souvent mesurée par son erreur quadratique moyenne:

$$MSE(\widehat{m}) = E[(Y - \widehat{m}(X))^2].$$

- Cette erreur (inconnue) peut être calculée par validation hold out :
 - Séparer les données en un échantillon d'apprentissage et un échantillon test.
 - Entrainer le modèle sur les données d'apprentissage $\Longrightarrow \widehat{m}$.
 - Calculer la MSE

$$\frac{1}{n_{test}} \sum_{i \in test} (y_i - \widehat{m}(x_i))^2.$$

Un exemple

Data splitting

```
> library(caret)
> set.seed(12345)
> index.train <- createDataPartition(1:nrow(ozone),p=2/3)
> train <- ozone %>% slice(index.train$Resample1)
> test <- ozone %>% slice(-index.train$Resample1)
```

Un exemple

Data splitting

```
> library(caret)
> set.seed(12345)
> index.train <- createDataPartition(1:nrow(ozone),p=2/3)
> train <- ozone %>% slice(index.train$Resample1)
> test <- ozone %>% slice(-index.train$Resample1)
```

- Ajustement du modèle
- > mod <- lm(max03~.,data=train)</pre>

Un exemple

Data splitting

- > mod <- lm(max03~.,data=train)</pre>
 - Calcul de la MSE

En pratique

- Très utile pour choisir un modèle.
- Exemple : plusieurs modèles (linéaire, arbre, forêt aléatoire...)

Méthode

- 1. Estimer la MSE pour tous les algorithmes ;
- 2. Choisir celui avec la plus petite MSE.

En pratique

- Très utile pour choisir un modèle.
- Exemple : plusieurs modèles (linéaire, arbre, forêt aléatoire...)

Méthode

- 1. Estimer la MSE pour tous les algorithmes ;
- 2. Choisir celui avec la plus petite MSE.

 \implies fiche 6.

Merci