Computer Performance and Cache Memory

Muhammad Afzaal m.afzaal@nu.edu.pk

Book Chapter

- "Computer Organization and Architecture"
- Author "William Stallings"
- 8th Edition
- Chapter 2
 - Section 2.2
- Chapter 4
 - Section 4.1
 - Section 4.2
 - Section 4.3

Designing for Performance

- Cost of systems continues to drop whereas performance and capacity continue to rise
- Today application programs are very complex and power hungry
 - Image processing
 - Speech recognition
 - Videoconferencing
 - Multimedia authoring
 - Simulation modeling
- We have to see how can we use the microprocessor in a way to utilize all it's clock cycles

Microprocessor Speed

- Processor is not used at its full throttle always
- How to keep processor busy and get maximum out of it?
 - Branch Prediction
 - Processor predicts which branches or groups of instructions are likely to be executed next
 - Data Flow Analysis
 - Processor analyzes which instructions are dependent on each other
 - Speculative Execution
 - Processors execute instructions ahead of their actual appearance in the program execution

Performance Balance

- Processor power has increased rapidly
 - ... what about the speed of other components of computer?
- Slow data transfer rate between main memory and processor
- If memory fails to keep pace with processor, the processor has to stall in a wait state

Processor and Memory Performance Gap

Some Tips to Increase Speed

- How to tackle this problem of speed between processor and main memory?
 - Increase data bus size
 - Include a cache in DRAM to make it more efficient
 - Reduce frequency of memory access
 - Increase the interconnect bandwidth between processor and memory

I/O Device Data Rate

Improvement in Chip Organization and Architecture

- Increase hardware speed of processor
 - Shrinking the size of logic gates on processor reduces the propagation delay among them
- Increase size and speed of cache that is near to processor
 - A portion of processor can be dedicated to cache
- Changing the processor organization and architecture that can increase the instruction execution
 - Using parallelism

Memory Hierarchy

- Total memory capacity can be visualized as hierarchy of components
- As we go down the hierarchy, the following occurs
 - Decreasing cost per bit
 - Increasing capacity
 - Increasing access time
 - Decreasing frequency of access of the memory by the processor

Memory Hierarchy

- Main Memory (Primary Storage)
 - Only programs and data currently need by the processor are stored here
- Auxiliary Memory (Secondary Storage)
 - Devices that provide backup storage
 - Magnetic disks and tapes
- Cache
 - Increases the speed of processing
 - Rapid rate and smaller size
 - Compensates speed differences between main memory and processor
 - Stores segments of programs and data currently in use

Cache Memory

- Small amount of fast memory
- Sits between main memory and CPU
- May be located on CPU chip
- Faster than main memory by a factor of 5 to 10

Cache Operation

- CPU requests contents of memory location
- Check cache for this data
- If present, get from cache (fast operation)
- If not present, read required block from main memory to cache
- Then deliver from cache to CPU

Cache Memory Operation

Cache Performance

- When CPU refers to memory and finds the word in cache, it is said to produce a hit
- If not found, it is called miss

Hit Ratio = Number of Hits/Total CPU
references to memory

Elements of Cache Design (1/2)

- A few basic design elements to classify and differentiate cache architecture
- Cache Address
 - Logical
 - Physical
- Cache Size
- Mapping Function
 - Direct
 - Associative
 - Set Associative
- Line Size

Elements of Cache Design (2/2)

- Replacement Algorithm
 - Least Recently Used (LRU)
 - First in First out (FIFO)
 - Least Frequently Used (LFU)
 - Random
- Write Policy
 - Write through
 - Write back
 - Write once
- Number of Caches
 - Single or two level
 - Unified or Split