A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 5EN

Bookmark

Show all steps: ON

ON

Problem

Let *G* be a finite group, and *K* a *p*-Sylow subgroup of *G*. Let *X* be the set of all the conjugates of *K*. See Exercise M2. If C_1 , $C_2 \in X$, let $C_1 \sim C_2$ iff $C_1 = aC_2a^{-l}$ for some $\alpha \in K$

Use part 4 to prove that (G:N) is not a multiple of p.

Step-by-step solution

Step 1 of 4

Assume that G is a finite group and K a p-Sylow subgroup of G. Consider the set X as the set of all the conjugates of K. Define an equivalence relation as:

If $C_1, C_2 \in X$, let $C_1 \approx C_2$ if and only if $C_1 = aC_2a^{-1}$ for some $a \in K$.

Note that the number of elements in X is kp+1, for some integer k. Objective is to prove that (G:N) is not a multiple of p, where N=N(K).

Consider the following result:

If $aKa^{-1} = K$ and the order of a is some power of p. Then $a \in K$.

Comment

Step 2 of 4

First show that |X| = (G:N). For this define the mapping $f: X \to (G:N)$ as:

$$f(gKg^{-1})=gN$$

The mapping f is well defined because if

$$gKg^{-1} = hKh^{-1}$$

 $g^{-1}(gKg^{-1})g = g^{-1}(hKh^{-1})g$
 $K = (g^{-1}h)K(g^{-1}h)^{-1}$

It implies that $g^{-1}h$ is in N . And then
$N = g^{-1}hN$
gN = hN
$f(gKg^{-1}) = f(hKh^{-1})$
Thus, there is a bijection between the conjugates of K and the cosets of N in G . Hence, the number of conjugates is nothing but equal to $(G:N)$.
Comment
Step 3 of 4
Now, by using the equivalence relation, one have partitioned the order of X into some equivalence classes of size p^i , for some integer i , with exactly one class of size 1. This size one class is of identity class as $p^0 = 1$.
Therefore, the number of elements in $(G:N)$ is one more than a multiple of p and thus it cannot be divisible by p .
Comment
Step 4 of 4
Hence, $(G:N)$ is not a multiple of p .
Comment