

### **Notice**

이 교육과정은 교육부 '성인학습자 역량 강화 교육콘텐츠 개발 ' 사업의 일환으로써 교육부로부터 예산을 지원 받아 고려사이버대학교가 개발하여 운영하고 있습니다. 제공하는 강좌 및 학습에 따르는 모든 산출물의 적작권은 교육부, 한국교육학술정보원, 한국원격대학협의외와 고려사이버대학교가 공동 소유하고 있습니다.

THINKING

## 생각해보기

✓ 피쳐 엔지니어링이란 무엇일까요?



## 학습목표

**GOALS** 

and the second s

- O + Backspace
  O P [ ] \
  L ;; Enter
  Shift
- 기 확률 변수와 확률 분포에 대해 설명할 수 있다.
- $2\,\,$  기<mark>댓값</mark>에 대해 이해하고 설명할 수 있다.
- 3 통계적 언어 모델(SLM)에 대해 설명할 수 있다.
- 4 N-gram 언어 모델에 대해 설명할 수 있다.
- 5 문서의 유사도 개념에 대해 설명할 수 있다.
- 6 유사도를 계산하는 다양한 방법들에 대해 설명할 수 있다.



# 기초 확률과 통계



01 확률 변수

Artifusia: proviligance (All refer

## 확률 변수(random variable)

#### 여러 값을 무작위하게 가지는 변수

○ 일반적으로 확률 변수 자체는 보통 글꼴의 영문 소문자로, 확률 변수의 값은 이탤릭 영문 소문자로 표기함

## 확률 변수(random variable)

여러 값을 무작위하게 가지는 변수



확률변수 x가 값 x 가 나올 확률값 p

 $P(x=x)=P(x)=p \text{ where } 0 \le p \le 1$ 

**02**확률 분포

Anthony intelligence (All refers

## 확률 분포(probability distribution)

하나의 확률 변수 또는 확률 변수들의 집합이 각자의 상태를 가질 가능도를 정의



## 확률 분포(probability distribution)

- ° 확률변수 X를 입력으로 받고 X의 각 값에 해당될 때의 확률을 출력하는 일종의 함수
  - 확률변수가이산이냐연속이냐에따라서술하는방식이나뉨

### 03이산 확률 분포

Artifusia: proviligance (All refer

## 이산 확률 분포(discrete probability distribution)

학률 변수가 이산적인(상태들의 개수가 유한 하여 그 개수를 셀 수 있는)경우의 확률 분포



확률값의총합은 1이다.

 $\Sigma P(x=x) = 1$ , where  $0 \le P(x=x) \le 1$ 

## 확률 질량 함수(probability mass function, PMF)

이산 확률 변수에서 특정 값에 대한 확률을 나타내는 함수

예시

주사위의 확률 질량 함수



**05**연속 확률 분포

Artifusia: proviligance (All refer

## 연속 확률 분포(continuous probability distribution)

- 확률 변수가 연속적인 경우의 확률 분포
- 셀수없기때문에구간을 정해 놓고 해당 구간에 속한 표본의 수로 나타냄
- 연속적인확률분포에서확률값은보통어떤구간의 넓이를의미함

### 확률 밀도 함수(probability density function, PDF)

학률 변수가 연속적인 경우의 확률 분포



### 06확률 밀도 함수

Artifucial Intelligence (All rates)

## 확률 밀도 함수(probability density function, PDF)

- ° 확률 변수가 연속적인 경우의 확률 분포
  - 연속적이므로 특정 점보다 영역에 대한 확률값을 구함

"

어떤 값에 대한 확률 밀도 함수의 면적의 합은 항상 1임

## 결합 확률

◦두개이상의 사건이 동시에 일어날 확률

"

두 개 이상의 확률 변수를 가짐

5

예시

주사위 2개(A, B)를 던질 때의 확률 P(A,B)

07 결합 확률

rtifucial intelligence (All refers

#### 예시

주사위 2개(A, B)를 던졌을 때 A는 5, B는 3가 나올 확률 P(A=5,B=3)

 ◆ 위의 경우처럼 각각의 사건이 서로에게 영향을 끼치지 않는 경우 확률에서는 이를 "독립"이라고 부르고 아래의 조건을 만족한다.

$$P(A,B)=P(A)P(B)$$

66

### 어떤 확률이 발생했을 때, 다른 어떤 한 사건이 발생할 확률

"

$$P(A|B) = \frac{P(A,B)}{P(B)}, P(A,B) = P(A|B)P(B)$$

예시

주사위 B가 3이 나온 상황에서 주사위 A에서 얻을 수 있는 값의 확률 분포

$$P(A|B=3)$$

08조건부 확률

Artificial Intelligence (All refer

### 조건부 확률의 연쇄법칙

다수의 확률변수에 관한 임의의 결합 확률 분포를 조건부 확률의 정의를 사용해 아래와 같이 조건부 분포들로 분해 할 수 있음

$$P(x^{(1)}, \dots, x^{(n)}) = P(x^{(1)}) \prod_{i=2}^{n} P(x^{(i)} | x^{(1)}, \dots, x^{(i-1)})$$

"

위와 같은 관계를 확률의 연쇄 법칙, 또는 곱의 법칙이라고 부름

"

## 베이즈 정리(Bayes theorem)

•  $P(y \mid x)$ 를 아는 상태에서  $P(x \mid y)$ 를 구해야 하는 상태에서 쓰임

P(a,b,c) = P(a|b,c)P(b,c)

P(b,c) = P(b|c)P(c)

P(a,b,c) = P(a|b,c)P(b,c) = P(a|b,c)P(b|c)P(c)

$$P(x|y) = \frac{P(x)P(y|x)}{P(y)}$$

• 조건부확률의 정의를 통해 유도가 가능함

## 주변확률분포(Marginal probability distribution)

○ 두 개 이상의 확률 변수의 결합 확률 분포가 있을 때, 하나의 확률 변수에 대해서 적분을 수행한 결과 ○즉, 부분 집합에 대한 확률분포를 의미



출처: https://en.wikipedia.org/wiki/Marginal\_distribution

12기댓값

rtiturer jistelligenne (All refere

## 기댓값(Expectaion)

확률 변수의 기댓값은 각 사건이 벌어졌을 때의 이득과 그 사건이 벌어질 확률을 곱한 것을 전체 사건에 대해 합한 값
 이산 변수의 경우 합산으로, 연속 변수의 경우에는 적분으로 계산

$$\mathbb{E}_{x \sim P}[f(x)] = \sum_{x} P(x)f(x) , \int p(x)f(x)dx$$

예시

## 실제 주사위 결과의 기댓값

$$\mathbb{E}_{x \sim P}[result(x)] = \sum_{x} P(x)f(x)$$

$$= \sum_{x=1}^{6} P(x = x) \times result(x)$$

$$= \frac{1}{6} \times (1 + 2 + 3 + 4 + 5 + 6) = 3.5$$



02

언어 모델



01 언어 모델

Artifucial Intelligence (All rates)

## 언어 모델(language model)

- 단어 시퀀스에 확률을 할당하는 일을 하는 모델
- 언어 모델을 통해 문장 자체의 출현 확률을 예측하거나,○ 이전 단어들이 주어졌을 때 다음 단어를 예측하는 등의 작업이 가능함
- ◎ 통계를 이용하거나 인공신경망을 이용해 언어 모델을 만들 수 있음

| 오늘 저녁은 치킨을 먹기로 |       |  |  |  |  |
|----------------|-------|--|--|--|--|
| 1              | 결정했다  |  |  |  |  |
| 2              | 엘레베이터 |  |  |  |  |
| 3              | 먹었다   |  |  |  |  |
| 4              | 딥러닝   |  |  |  |  |

| 문 장 |                            |  |  |  |  |
|-----|----------------------------|--|--|--|--|
| 1   | 저는 커서 개발자가 되는게 꿈이에요        |  |  |  |  |
| 2   | 저는 2040년 3월에 개발자가 되는게 꿈이에요 |  |  |  |  |

01 언어 모델

단어 시퀀스에 확률을 할당하는 이유



#### 주어진 이전 단어들로부터 다음 단어 예측하기

"

이전 단어들이 주어졌을 때, 다음 단어를 예측하는 방식을 단어 시퀀스에 확률을 할당하기 위해 가장 보편적으로 사용한다.

"

01 언어 모델

Anthony intelligence (All refers

주어진 이전 단어들로부터 다음 단어 예측하기



하나의 단어를 w, 단어 시퀀스를 W 라고 할 때, n 개의 단어가 등장하는 단어시퀀스 W의 확률

$$P(W) = P(w_1, w_2, \dots, w_n)$$

#### 주어진 이전 단어들로부터 다음 단어 예측하기



n-1개의 단어가 나열된 상태에서 n 번째 단어의 확률

$$P(w_n|w_1, w_2, ..., w_{n-1})$$



Anstone stallgame (All rates

#### 주어진 이전 단어들로부터 다음 단어 예측하기



#### 전체 단어 시퀀스의 확률

$$P(W) = P(w_1, w_2, \dots, w_n) = \prod_{i=1}^n P(w_n | w_1, w_2, \dots, w_{n-1})$$

### 통계적 언어 모델(Statistical Language Model)

#### 예시문장

"My dream is having cute baby"

- $P(W) = P(w_1, w_2, \dots, w_n) = \prod_{i=1}^n P(w_i | w_1, w_2, \dots, w_{n-1})$
- P(My dream is having cute baby) = P(My) ×
   P(dream|My) × P(is|My dream) ×
   P(having|My dream is) × P(cute|My dream is having) ×
   P(baby|My dream is having cute) ×

### 02통계적 언어 모델

Anthony intelligence (All refers

#### 카운트 기반의 확률 계산

#### 예시

My dream is 가 나왔을 때 having이 나올 확률

- $P(\text{having}|\text{My dream is}) = \frac{count(My dream is having)}{count(My dream is)}$
- ✓ 코퍼스 데이터에서 My dream is가 100번 나왔는데 그 중 뒤에 having이 나온 경우가 10번이라면 위의 결과는 10%임

#### 카운트 기반 접근의 한계

 $P(\text{having}|\text{My dream is}) = \frac{count(\textit{My dream is having})}{count(\textit{My dream is})}$ 

언어 모델이 학습한 코퍼스에 My dream is having이라는 시퀀스가 없으면 확률은 0이 되고, My dream is 라는 시퀀스가 없으면 확률 자체를 정의할 수 없음 그러나 실제 세계에서의 자연어의 경우 My dream is having이라는 시퀀스는 정답일 가능성이 높음

충분한 데이터를 관측하지 못하여 모델링에 문제가 생기는 경우, 이를 희소 문제라고 함

### **04**N-gram\_1) 언어 모델

Artificial Intelligence (All refere

훈련 코퍼스에 확률을 계산하고 싶은 문장이나 단어가 없을 수 있다는 통계적 언어 모델의 단점을 해결하고자 함

 $P(\text{having}|\text{My dream is}) \approx P(\text{having}|\text{dream is})$ 

단어의 확률을 구하고자 기준 단어의 앞 단어를 전부 포함해서 카운트 하는 것이 아니라, 앞 단어 중 임의의 개수의 단어만 참고하여 카운트함

### N-gram

- N개의 연속적인 단어의 나열을 의미함
- 갖고 있는 코퍼스에서 n개의 단어 뭉치로 끊어서 이를 하나의 토큰으로 간주함



- N=1→유니그램 N=2 → 바이그램
- N=3 → 트라이그램 N=4이상
- - - → 앞에 그대로 숫자를 붙여서 부름

**04**N-gram\_3) 例人

|         | My dream is having cute baby                                   |  |  |  |
|---------|----------------------------------------------------------------|--|--|--|
| unigram | My, dream, is, having, cute, baby                              |  |  |  |
| bigram  | My dream, dream is, is having, having cute, cute baby          |  |  |  |
| trigram | My dream is, dream is having, is having cute, having cute baby |  |  |  |
| 4-gram  | My dream is having, dream is having cute, is having cute baby  |  |  |  |

## My dream is having cute ???

 $P(???|\text{is having cute}) = \frac{count(is \ having \ cute ???)}{count(is \ having \ cute)}$ 

○ 현재 코퍼스에서 is having cute가 10번 등장 한 경우,
 그 뒤에 baby가 나온 경우는 5번, bag이 나온 경우는 2번 이라 했을 때,
 확률적으로 bag보다는 baby가 맞는 문장이라고 판단함

**04**N-gram\_4) 힌계

Artifusia: proviligance (All refer

여전히 카운트기반의 SLM모델이다.

→ 여전히 **희소문제가 존재**함



## N을 선택하는 데에 대한 문제

N을 크게 선택하면 희소문제가 심각해지고, N을 작게 선택하면 현실 세계의 자연어 처리에서 적용이 힘들 수 있음



03

유사도 계산하기



01 문서의 유사도

Artifusia: proviligance (All refer

## 문서의 유사도(Document Similarity)

- 문서의 유사도를 계산하는 일은 자연어 처리의 주요 주제 중 하나
- 사람의 경우 주로 문서들간에 동일한 단어 또는 비슷한 단어가 얼마나 공통적으로 많이 사용 되었는지에 의존함
- 기계도이와 유사하게 문서 내 단어들을 어떻게 수치화했는지,단어간의 차이를 다양한 방법으로 계싼하여 유사도를 구함

## 코사인 유사도(Cosine Similarity)라?

66

### 두 벡터 간의 코사인 각도를 이용하여 구할 수 있는 두 벡터의 유사도

99

02코사인 유사도

Artifusia: proviligance (All refer

코사인 유사도 (Cosine Similarity) 두 벡터의 방향이 완전히 동일한 경우에는 1의 값을, 수직을 이루면 0, 180도로 반대의 방향을 가지면 -1의 값을 갖게 됨

-1부터 1사이의 값을 가지며 값이 1에 가까울 수록 유사도가 높다고 판단함

### 문서간 코사인 유사도 계산해보기

#### 예시

#### 문장과 TF-IDF

문서 1: 저는 사과가 좋아요

문서 2: 저는 바나나가 좋아요

문서 3: 저는 바나나가 좋아요

저는 바나나가 좋아요

|     | 바나나 | 사과 | 저는 | 좋아요 |
|-----|-----|----|----|-----|
| 문서1 | 0   | 1  | 1  | 1   |
| 문서2 | 1   | 0  | 1  | 1   |
| 문서3 | 2   | 0  | 2  | 2   |

## 02코사인 유사도

코사인 유사도(Cosine Similarity)



코사인 유사도 수식

 $cosine\ similarity = \ (A \cdot B) / (\parallel A \parallel \parallel B \parallel)$ 

#### 코사인 유사도를 계산하는 함수 만들기

```
In [1]: 1 import numpy as np
2 from numpy import dot
3 from numpy.linalg import norm
4
5 def cos_sim(A, B):
    return dot(A, B)/(norm(A)*norm(B))
```

## 02코사인 유사도

rtiturer jistelligenne (All refere

#### 코사인 유사도 계산하기

- 문서 2와 문서 3은 빈도수가 다르지만 방향은 같은 벡터이므로 문서2와 문서3 간의 코사인 유사도 값은 1을 가짐
- 코사인 유사도는 크기가 아닌 각도를 기준으로 계산되므로문서 1과 문서2, 문서 1과 문서 3간의 유사도는 동일함

### ■ 유클리드 거리(Cosine Similarity)

• 다차원 공간에서 두개의 점 p와 q가 각각  $p=(p_1,p_2,\cdots,p_n)$ 과  $q=(q_1,q_2,\cdots,q_n)$  의 좌표를 가질 때, 두 점 사이의 거리를 계산하는 유클리드 거리공식은 아래와 같음

$$\sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

## 03유클리드 거리

#### Artificial proligonou (Albreta

### R클리드 거리(Cosine Similarity)

2차원 공간의 경우 우리에게 익숙한 그림



#### 지카드 유사도(Jaccard Similarity)

A, B 두개의 집합이 있다고 할 때, 합집합에서 교집합의 비율을 구함으로써
 유사도를 계산할 수 있음

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

자카드 유사도는 0과 1 사이의 값을 가지며 두 집합이 동일하면 1의 값을,
 두 집합의 공통 원소가 없다면 0의 값을 가짐

### **04**유사도 계산

Artificial Intelligence (All refere

#### 문서에서의 자카드 유사도(Jaccard Similarity)

$$J(doc1, doc2) = \frac{doc1 \cap doc2}{doc1 \cup doc2}$$

```
In [1]:    1    doc1 = "red blue we like watching rainbow love you"
    2    doc2 = "red blue why he want that car"

In [2]:    1    token1 = doc1.split()
    2    token2 = doc2.split()
    3    print(token1)
    5    print(token2)

['red', 'blue', 'we', 'like', 'watching', 'rainbow', 'love', 'you']
    ['red', 'blue', 'why', 'he', 'want', 'that', 'car']
```

DEET LEAFNING AND NATURAL LANGUAGE PROCESSING

#### 코사인 유사도 계산하기

```
1 union = set(token1) | set(token2)
2 union
In [3]:
Out[3]: {'blue',
            car',
'he',
'like',
'love',
             'rainbow'.
             'red',
'that',
             'want',
'watching',
             'we',
'why',
'you'}
In [4]: 1 intersection 2 intersection
                intersection = set(token1) & set(token2)
Out[4]: {'blue', 'red'}
            1 jaccard_similarity = len(intersection) / len(union)
2 jaccard similarity
Out[5]: 0.15384615384615385
```

#### SUMMARY

# 학습정리

- ◆ 확률 변수와 확률 분포
- ◆ 어떤 확률이 발생했을 때, 다른 어떤 한 사건이 발생할 확률, 조건부 확률
- ♦ 카운트 기반의 언어모델 SLM과 N-gram
- ♦ 문서간의 유사도를 계산하는 다양한 방법

## 확장하기

- 1. 확률 분포는 무엇이고 그 종류에는 어떤 것들이 있을까요?
- 2. 베이즈 정리와 관련된 유명한 문제 중 하나인 <mark>몬티홀 문제</mark>에 대해 살펴보세요.
- 3. 언어 모델에서 확률을 사용하는 이유는 무엇일까요?
- 4. 통계적 언어모델의 한계는 무엇이고 해결하기 위한 모델에는 어떤 것이 있을까요?
- 5. 문서 간 유사도를 계산하는 방법에는 어떤 것들이 있을까요?

## **참고** 문헌

REFERENCE

- ♦ 참고 사이트
  - 용어들에 대한 정의 : https://ko.wikipedia.org/wiki.
  - 점프 투 파이썬: https://wikidocs.net/1669
  - 딥러닝을 이용한 자연어 처리 입문: https://wikidocs.net/book/2155
  - 퍼블릭에이아이(www.public.co.kr)
- ♦ 참고 서적
  - 김기현, 「김기현의 자연어 처리 딥러닝 캠프 파이토치 편」, 한빛미디어, 2019
  - 이안 굿펠로, 요슈아 벤지오, 에런 쿠빌, 『심층 학습』, 제이펍