Weakest Preconditions

William Schultz

February 22, 2023

The notion of weakest precondition in program analysis derives from the work of Dijkstra [1]. He introduced the Guarded Command Language as a simple modeling language for program specification e.g.

Dijkstra introduced the Guarded Command Language ($\mathsf{GCL})$ with the grammar

$$\begin{array}{lll} S &::= & \mathrm{skip} \ | & x := E \ | \ S_1; \ S_2 \\ \\ & | & \mathrm{if} \ B_1 \to S_1 \, [\![\ B_2 \to S_2 \, [\!] \cdots [\![\ B_n \to S_n \ \mathrm{fi} \]\!] \\ \\ & | & \mathrm{do} \ B_1 \to S_1 \, [\![\ B_2 \to S_2 \, [\!] \cdots [\![\ B_n \to S_n \ \mathrm{od} \]\!] \end{array}$$

where the B_i are Boolean expressions. The B_i are called *guards* because they guard the corresponding statements S_i . The symbol [] is the *nondeterministic choice operator* and is not to be confused with []. In if and do statements, a clause $B_i \to S_i$ is said to be *enabled* if its guard B_i is true.

So, given a program S and a postcondition φ , we define the weakest precondition as the weakest property of the input state that guarantees that S will terminate with the postcondition φ , denoted $wp(S,\varphi)$. In the definition of GCL, we can provide definitions of how to compute the weakest precondition for various program statements. For example, for an assignment statement x:=E, we have that

$$wp(x := E, \varphi) \equiv \varphi\{E/x\}$$

where $\varphi\{E/x\}$ represents the property φ with appearances of x in φ replaced with E. For example,

$$wp(x := x + 1, x = 3) \equiv (x = 3)\{x + 1/x\}$$

 $\equiv (x + 1) = 3$
 $\equiv x = 2$

References

[1] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. *Commun. ACM*, 18(8):453–457, aug 1975.