00 Introduction au cours

NOUS ÉCLAIRONS. VOUS BRILLEZ.

FORMATION CONTINUE
ET SERVICES AUX ENTREPRISES

420-A58-SF — Algorithmes d'apprentissage non supervisé — Hiver 2023 Spécialisation technique en intelligence artificielle — M. Swawola, M.Sc.

- Introduction à l'apprentissage non supervisé et ses principaux défis
- 2. Organisation du cours
- 3. Ajustement de la pédagogie
- 4. Environnements logiciels du cours
- Littérature recommandée

- Introduction à l'apprentissage non supervisé et ses principaux défis
- 2. Organisation du cours
- 3. Ajustement de la pédagogie
- 4. Environnements logiciels du cours
- Littérature recommandée

Extrait du cours "Introduction à l'apprentissage automatique" de François Laviolette, CRDM

Exemples d'applications (1/3)

Optimisation de portfolio

Réseaux sociaux

Centres de données

Marketing

Astrophysique

Génétique

Exemples d'applications (2/3)

Cybersécurité

Recommandation

Détection d'anomalies

Vision numérique

Commerce de détail

Visualisation

Exemples d'applications (3/3)

Télédétection

IA Générative

Ingénierie de données

Recherche de documents

Et bien d'autres ...

Le "gâteau" de Yann LeCun

Yann LeCun

Apprentissage non supervisé

"Pure" Reinforcement Learning (cherry)

- The machine predicts a scalar reward given once in a while.
- A few bits for some samples
- Supervised Learning (icing)
 - The machine predicts a category or a few numbers for each input
 - Predicting human-supplied data
 - ▶ 10→10,000 bits per sample
- Unsupervised/Predictive Learning (cake)
 - The machine predicts any part of its input for any observed part.
 - Predicts future frames in videos
 - ▶ Millions of bits per sample
 - (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

L'apprentissage non supervisé attend toujours sa révolution, son "deep learning" ...

Deep learning "non supervisé"

The structure of proposed Convolutional AutoEncoders (CAE) for MNIST

Apprentissage non supervisé vs fouille de données

Pourquoi l'apprentissage non supervisé est difficile?

- Comme son nom l'indique, le caractère non-supervisé signifie l'absence de variable dépendante (y)
- Les données sont donc non étiquetées (X)
- Il n'y a pas de bonne réponse à un problème et la subjectivité est souvent de mise
- Étant donné l'absence d'étiquettes, il est difficile, voir parfois impossible, d'évaluer la performance des algorithmes
- Les résultats doivent être interprétés en se basant sur des connaissances reliées au domaine d'application
- Mais tout ceci ne fait que rendre l'apprentissage non supervisé encore plus passionnant!

Sujets non couverts par le cours

- Réduction de dimension (ACP, t-SNE, ...)
 - → En partie couvert par Pierre-Marc Juneau (420-A55-SF)
- Détection d'anomalie
 - → En partie couvert par Amor Amami (420-A56-SF)
- Les compétences correspondant à ces sujets (exemple: ACP) sont considérées acquises par l'étudiant et pourront être requises lors des examens à venir

- 1. Introduction à l'apprentissage non supervisé et ses principaux défis
- 2. Organisation du cours
- 3. Ajustement de la pédagogie
- 4. Environnements logiciels du cours
- 5. Littérature recommandée

Organisation du cours

- Il s'agit d'un cours de 60 heures
- Sauf mention contraire, les séances ont lieu sur Microsoft Teams
- Entre 30 minutes et 40 minutes de **pause** sont réparties sur la durée de chaque séance
- En dehors des cours, entre-aidez vous sur le salon de clavardage Teams. Restez polis et courtois ;-)
- Vos commentaires (positifs, constructifs) sur le cours sont les bienvenus!

Pondération

Évaluations

- Examen #1 (3.5 heures) **30**%
- Examen #2 (3.5 heures) **30**%
- Examen #3 (3.5 heures) **30**%
- Évaluations formatives (4) 10%

Plan de cours

Le plan de cours détaillé comprenant le calendrier est disponible sur Lea

Structure du cours

- Le cours est divisé en 4 parties
 - 1. Partitionnement de données
 - 2. Fouille de données
 - 3. Systèmes de recommandation
 - 4. Séries temporelles

- Introduction à l'apprentissage non supervisé et ses principaux défis
- 2. Organisation du cours
- 3. Ajustement de la pédagogie
- 4. Environnements logiciels du cours
- Littérature recommandée

Ajustement de la pédagogie

- La classe inversée (vidéos des cours postées en ligne avant la séance) ne sera pas renouvelée cette session
- Les ateliers seront <u>réalisés et corrigés</u> en classe.
- Les séances seront toujours enregistrées et disponibles sur Microsoft Stream
- Les supports de cours seront postés sur le dépôt GitHub du cours au début de chaque séance

Ajustement de la pédagogie

- Le mode d'enseignement reste **synchrone**, c'est-à-dire:
 - Sauf exception, la présence aux séances est obligatoire
 - Les séances sont enregistrées, mais ne devrait servir qu'à s'y référer pour consolider les connaissances acquises après avoir assisté aux différentes séances
 - Il est important de ne pas raisonner dans l'autres sens, à savoir remettre à plus tard l'écoute d'un cours sachant que celui-ci est enregistré. Ce n'est pas un MOOC! De plus, rattraper un cours de 4h nécessite généralement beaucoup plus que 4 heures!

- 1. Introduction à l'apprentissage non supervisé et ses principaux défis
- 2. Organisation du cours
- 3. Ajustement de la pédagogie
- 4. Environnements logiciels du cours
- 5. Littérature recommandée

Langages et IDEs

- Voici ci-dessous les langages de programmation et IDEs qui seront utilisés lors du cours
 - Partitionnement de données (Python / Jupyter)
 - 2. Fouille de données (Python / Jupyter)
 - 3. Systèmes de recommandation (Python / Jupyter)
 - 4. Séries temporelles (R / RStudio)
- À ce stade de la formation, il est important que vous soyez en mesure d'installer et configurer ces environnements de manière autonome. Aucun temps de cours ne sera consacré à ces aspects.

Dépôt du cours

- Tous les exercices et jeux de données seront accessibles sur le **dépôt GitHub du cours** https://github.com/mswawola-cegep/420-a58-sf-gr-12060.git
- Utilisez l'image Docker pour assurer votre environnement d'une complète compatibilité avec les ateliers du cours

- 1. Introduction à l'apprentissage non supervisé et ses principaux défis
- 2. Organisation du cours
- 3. Ajustement de la pédagogie
- 4. Environnements logiciels du cours
- 5. Littérature recommandée

Machine Learning, Tom Mitchell McGraw-Hill Higher Education

An Introduction to Statistical Learning with Applications in R, G. James, D. Witten, T. Hastie, R. Tibshirani

Mining of Massive Datasets, J. Leskovec,
 A. Rajaraman, J.D. Ullman

■ Elements of Statistical Learning Second Edition, T. Hastie, R. Tibshirani, J. Friedman

 Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Aurélien Géron

Advances in Financial Machine Learning,
 Marcos Lopez De Prado

■ Séries temporelles avec R, Yves Aragon

■ Time Series: Theory and Methods, Peter
J. Brockwell et Richard A. Davis

