mail: ibotca52@gmail.com

COLLE 2 = FONCTIONS USUELLES, SOMMES, PRODUITS ET ÉQUATIONS DIFFÉRENTIELLES

Fonctions usuelles:

Exercice 1. Résoudre l'équation cosh(x) = 2.

Exercice 2. Montrer que pour tout $x \neq 0$,

$$\sum_{k=0}^{n} \cosh(kx) = \frac{\cosh\left(\frac{nx}{2}\right) \sinh\left(\frac{(n+1)x}{2}\right)}{\sinh\left(\frac{x}{2}\right)}$$

Exercice 3. Montrer que la fonction $x \mapsto \frac{1}{\cosh(x)}$ possède un unique point fixe.

Exercice 4. Montrer que pour tout $n \geq 2$:

$$\left(1+\frac{1}{n}\right)^n \ \leq \ e \ \leq \ \left(1-\frac{1}{n}\right)^n$$

Exercice 5. Démontrer que, pour tout $x \in \mathbb{R}$ et tout $n \ge 1$, on a

$$\left(\frac{1+\tanh(x)}{1-\tanh(x)}\right)^n = \frac{1+\tanh(nx)}{1-\tanh(nx)}$$

Exercice 6. Résoudre l'équation :

$$2x \ln(x) + 3(x-1) = 0$$

Sommes et Produits:

Exercice 7.

Pour $n \in \mathbb{N}$ montrer que :

$$\sum_{k=0}^{n} \sum_{l=0}^{n} \min(k, l) = \frac{n}{6} (2n^{2} + 3n + 1)$$

Exercice 8.

Calculer $\sum_{k=1}^{n} k \ln \left(1 + \frac{1}{k}\right)$ pour tout $n \in \mathbb{N}^*$ en faisant apparaître un téléscopage.

Exercice 9.

On pose pour tout $n \in \mathbb{N}^*$

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

Montrer que:

$$\forall n \in \mathbb{N}^*, \ \sum_{i=1}^n H_i = (n+1)H_n - n$$

Exercice 10.

- 1. Factoriser (k^3-1) par (k-1) et (k^3+1) par (k+1) pour tout $k\geq 2$
- 2. En déduire une simplification du produit

$$\prod_{k=2}^{n} \frac{k^3 - 1}{k^3 + 1}$$

3. En déduire l'existence et la valeur de

$$\lim_{n \to +\infty} \prod_{k=2}^{n} \frac{k^3 - 1}{k^3 + 1}$$

que l'on notera aussi $\prod_{k=2}^{+\infty} \frac{k^3-1}{k^3+1}$

Exercice 11.

Montrer que pour tout $n \geq 2, n \in \mathbb{N}$ on a :

$$\prod_{k=1}^{n} \prod_{l=1}^{n} \min(k, l) = n! \prod_{k=1}^{n-1} k! (n-k)^{k}$$

Équations différentielles :

Exercice 12. Résoudre les équations différentielles suivantes :

1.
$$y' + 2y = x^2 - 2x + 3 \text{ sur } \mathbb{R};$$

2.
$$y' + y = \frac{1}{1 + e^x} \text{ sur } \mathbb{R};$$

3.
$$y' - 2xy = -(2x - 1)e^x \text{ sur } \mathbb{R};$$

Exercice 13. Donner une équation différentielle dont les solutions sont les fonctions de la forme

$$x \longmapsto \frac{C+x}{1+x^2}, \ C \in \mathbb{R}$$

Exercice 14.

Donner l'ensemble solution des équations différentielles suivantes :

1.
$$y'' - 2y' + y = 0$$
, $y(0) = y'(0) = 1$;

2.
$$y'' + 9y = 0$$
, $y(0) = 0$;

3.
$$y'' + y' - y = 0$$

Exercice 15.

Déterminer une équation différentielle vérifiée par la famille de fonctions

$$y(x) = C_1 e^{2x} + C_2 e^{-x} + x \cosh(x), C_1, C_2 \in \mathbb{R}$$

Exercice supplémentaire :

Soient $n \in \mathbb{N}^*$ et $a_1, ..., a_n, b_1, ..., b_n$ des nombres réels. On définit la fonction f par :

$$\forall x \in \mathbb{R}, f(x) = \sum_{i=1}^{n} (a_i x + b_i)^2$$

Montrer l'inégalité de Cauchy-Schwarz :

$$\left| \sum_{i=1}^n a_i b_i \right| \, \leq \, \sqrt{\sum_{i=1}^n a_i^2} \times \sqrt{\sum_{i=1}^n b_i^2}$$

(Indication: remarquer que la fonction f est à valeur dans \mathbb{R}^+)