В	Bloom's Continous Learning Assessment(50% Weightage)										Final Examination (50%			
Level	of Thinking	inking CLA – 1 (10%)		CLA - 2 (10%)		CLA - 3 (20%)		CLA - 4	l# (10%)	weightage)				
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%			
	Understand			6				0						
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%			
	Analyze		101			100	1.5	1).					
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%			
	Create				all to Self-	TABLE 1								
	Total	10	0 %	10	0 %	10	0 %	10	0 %	100	%			

CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc

.,Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
Mr. S. Karthik, IT Analyst, Tata	Dr. Neelanarayanan,, Professor, School of Computer Science and Engineering, VIT	1.Mrs. S. Usha, SRMIST							
Consultancy Services	Chennai	2.Dr. P.J.Arul Leena Rose							
constitutioy del vides		3. Dr.J.Padmavathi							

Courrse Code	USA20102J	Course Name	DIGITAL L	OGIC FUI	NDAMENTALS	Course Category	С		Professional Core	4	T 0	P 2	C 5
Pre- requisite Courses	Nil		Co- requisite Courses	Nil		Progre		Nil					
Course Offe Departmen	_	Computer	Science		Data Book / Codes/Standards	Nil							

Course Learning Rationale (CLR): The purpose of learning this course is to:			Learning Program Learning Outcomes (PLO)																	
CLR-1: To learn the concept	ts of basics of Digital Logics	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: To impart in-depth k	nowledge of Logic Gates	1-4	3	M	1	8 - 7			_								- 3		- 0	0
CLR-3: Understand the prin	ciples of Boolean algebra	om)	8	(%)	$^{\prime}$	е		+	arch					ork		a				
CLR-4: Basic knowledge of 0	Combinational circuits and it applications	(Bloc	779.00		1	adge		ent	se	(1)				Wo		ance				
CLR-5: Basic knowledge of s	sequential circuits and it applications	g (B	(D)	Attainment		Knowle	S	ppm	, Re	age	e				13077	Fina	ing			
CLR-6: Design principles of	counters	king	rofici	ain		Kno	lysi	/elc	sign,	ol Us	It	Ø,	8	Team	ion	S F	Ē			
2.		of Thinkin	cted Pro	cted Att		Engineering	em Analysis	າ & Developme	sis, Des	2	y & Cu	nahilit	Accept	Ø	Communication	t Mgt.	ong Lea	+	2	3
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Level	Expec	Expec		Engin	Problem	Design	Analy	Modern	Societ	Enviro Sustai	Ethics	Individual	Comr	Project	Life Lo	PS0 -	PSO -	PS0 -
CLO-1: Have a thorough Un	derstanding of Fundamentals of Digital Logic and IT Fundamentals	3	80	70	N-1	Н	Н	М		-	-	-	81	Н	Н	-	<u>-</u>	М	Н	Н
CLO-2: Understand the concepts of logic gates and its uses				75	176	Н	Н	Н	Н	Н	-	М	-	Н	Н	-	-	М	Н	Н
CLO-3: Real time application	ns of Boolean algebra	3	75	70	18	Н	Н	М	Н	Н	-	М	-	Н	Н	-	-	М	Н	Н
CLO-4: Design and impleme	CLO-4: Design and implementation knowledge of Combinational circuits			80	1-0-2	Н	Н	Н	-	-	-	-	ा	Н	М	-	-	М	Н	Н
CLO-5 : Design and implementation knowledge of sequential circuits			85	75	-	Н	М	М	М	М	М	М	-	Н	Н	-	М	М	Н	Н
CLO-6 : Real time application of Counters			80	70		Н	Н	М	-	1-	-	-	-	Н	Н	-	-	М	Н	Н

Duration	n (Hour)	18	18	18	18	18
S-1	SLO-1	Number System and its types	Minterms and Maxterms	Combinational Logic - Introduction	Sequential Circuit - Introduction	Counters - Introduction
	SLO-2	Base conversions	Sum of Products	Designing of a Logic Circuit Diagram	Latches	A Basic Design Counter
S-2	SLO-1	Binary codes and its types	Product of Sums methods	Adders : Quarter, Half and Full Adders	Flip Flops - Introduction	Classification of Counters
	SLO-2	Code conversions	Conversions of SOP to POS	Subtractors:Half, Full Subtractors	RS Flip Flop	Asynchronous Counters
S-3	SLO-1 SLO-2	Basics of Logic Gates and Derived Gates	Simplifying Boolean Expressions using theorems	Design of Adder Circuits	JK Flip Flop	Synchronous Counters
S-4	SLO-1 SLO-2	Truth Tables	Derivation of a Boolean Functions	Design of Subtractor Circuits	D Flip Flop	SynVsAsyn Counters
S 5-6	SLO-1 SLO-2	Laboratory1 : Verification of Basic Gates and Derived	Laboratory 4: Verifications of Distributive Law	Laboratory 7: Half Adder and Full Adder	Laboratory 10: Implementation of DeMultiplexer	Laboratory 13: Ring Counters

		Gates					
S-7	SLO-1	Universality of NAND Gate	Karnaugh Map - Introduction and its uses	Multiplexer	T - Flip Flop	Ripple Counters	
	SLO-2	Universality of NOR Gate	Types of K-Map	Implementation of a Boolean expression using a Multiplexer	Edge Triggered	MOD Counters	
S-8	SLO-1 SLO-2	Duality of Logic Gate Representation	Rules for constructing K-Map	De Multiplexer	Master Slave Flip Flop	UP DOWN Counters	
S-9	SLO-1 SLO-2	Boolean Algebra - Introduction	Two and Three Variable K- Map	Encoder	Registers Architecture	Ring Counter	
S-10	SLO-1 SLO-2	Logical Operations AND OR NOT	Four Variable K-Map	Decoder	Shift Registers	Shift Counters	
S 11-12	SLO-1 SLO-2	Laboratory2:NAND as Universal Gate NOR as Universal Gate	Laboratory 5-Simplifying Boolean Expressions using theorems	Laboratory 8:Half Subtractor and Full Subtractor	Laboratory 11: Implementation of Shift Registers and Serial Transfer	Laboratory 14: Implementation of DOWN Counter	
S-13	.3 SLO-1 Evaluating Logic Circuits		Don't Care conditions	Parity Generator	Four-bit Serial in Serial Out Shift register	Memory - Introduction	
	SLO-2	Implementing Circuits from Boolean Expressions	Determination Prime Implicant Method	Parity Checker	Shift Registers Operations	Basic terms and ideas	
S-14	SLO-1	Boolean Functions	Boolean Arithmetic - Introduction	Checksum	Serial-to-Parallel Shift Register	Magnetic Memories	
	SLO-2	Duality Principle, Complements	Binary Addition	Code Conversions	Design of Serial to Parallel	Memory Addressing	
S-15	SLO-1 SLO-2	Laws and Theorems	Binary Subtractions	Programmable Array Logic	Parallel-to-Serial Shift Register	Types of ROM	
S-16	SLO-1 SLO-2	Laws of Intersection, Union, Absorption, Involution, Demargan's Theorems	Various Representation of Binary Numbers	Programmable Logic Array	Design of Parallel to serial	Types of RAM	
S 17-18	SLO-1 SLO-2	Laboratory 3:Laws of Boolean Expressions	Laboratory 6: Implementation fo Binary Addition and Subtraction	Laboratory 9: Implementation of Multiplexer	Laboratory 12: Four Bit Binary Shift Counters	Laboratory 15: Implementation of DOWN Counter	

1. AnanthiSheshasaayee, J.G. Sheshasaayee, (2005), "Digital Logic Fundamentals", Margham Publications 2. Vijayendran. V, (2003), "Digital Fundamentals", S.V. Publishers	3.Leach.D.P and Malvino.A.P, (2002), "Digital Principles and Applications", 5 th Edition, TM. 4.MorisMano.M,(2001), "Digital Logic and Computer Design", 4 th Edition
--	--

Learning A	ssessment			100								
В	Bloom's		Final Examination (50%									
Level	of Thinking	CLA -	CLA - 1 (10%)		CLA - 2 (10%)		CLA - 3 (20%)		1# (10%)	weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
	Understand			CV		who who						
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
	Analyze		0		5.	S. S					10.00	
Level 3	Evaluate	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Create				100% p. 11		4-25-1	12.			10.00	
	Total	10	0 %	10	0 %	10	0 %	10	0 %	100	%	

CLA – 4 can be from any combination of these: Assignments, Seminars, Short Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper, etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
		1. Mr.M.Ramesh							
Mr. S. Karthik, IT Analyst, Tata Consultancy Services	Dr. Neelanarayanan,, Professor, School of Computer Science and Engineering, VIT Chennai	2.Mrs.P.Yogalakshmi							
		3.Mr.V.Raja							