FELLER EVOLUTION FAMILIES AND PARABOLIC EQUATIONS WITH FORM-BOUNDED VECTOR FIELDS

DAMIR KINZEBULATOV

ABSTRACT. We show that the weak solutions of parabolic equation $\partial_t u - \Delta u + b(t,x) \cdot \nabla u = 0$, $(t,x) \in (0,\infty) \times \mathbb{R}^d$, $d \ge 3$, for b(t,x) in a wide class of time-dependent vector fields capturing critical order singularities, constitute a Feller evolution family and, thus, determine a Feller process. Our proof uses an a priori estimate on the L^p -norm of the gradient of solution in terms of the L^q -norm of the gradient of initial function, and an iterative procedure that moves the problem of convergence in L^∞ to L^p .

1. Introduction and results

1.1. Consider Cauchy problem

$$(\partial_t - \Delta + b(t, x) \cdot \nabla)u = 0, \qquad (t, x) \in (0, \infty) \times \mathbb{R}^d, \tag{1}$$

$$u(+0,x) = f(x), \tag{2}$$

where $d \geq 3$, $b \in L^1_{loc}([0,\infty) \times \mathbb{R}^d, \mathbb{R}^d)$, $f \in L^2_{loc}(\mathbb{R}^d)$.

We prove that for b in a wide class of time-dependent vector fields capturing critical order singularities the unique weak solution of (1), (2) for the initial function f in space $C_{\infty}(\mathbb{R}^d) := \{f \in C(\mathbb{R}^d) : \lim_{x \to \infty} f(x) = 0\}$ (endowed with sup-norm $\|\cdot\|_{\infty}$) is given by a Feller evolution family, i.e. a family of bounded linear operators $(U(t,s))_{0 \leqslant s \leqslant t < \infty} \subset \mathcal{L}(C_{\infty}(\mathbb{R}^d))$ such that:

- (E1) $U(s,s) = \operatorname{Id}, U(t,s) = U(t,r)U(r,s)$ for all $0 \le s \le r \le t$,
- (**E2**) mapping $(t,s) \mapsto U(t,s)$ is strongly continuous in $C_{\infty}(\mathbb{R}^d)$,
- (E3) operators U(t,s) are positivity-preserving and L^{∞} -contractive:

$$U(t,s)f \geqslant 0$$
 if $f \geqslant 0$, and $||U(t,s)f||_{\infty} \leqslant ||f||_{\infty}$, $0 \leqslant s \leqslant t$,

(E4) function u(t) := U(t, s) f (t > s) is a weak solution of equation (1).

It is well known that the operators $(U(t,s))_{0 \le s \le t < \infty}$ determine the (sub-Markov) transition probability function of a Feller process X_t (in particular, a Hunt process), see e.g. [1, Theorem 2.22]. X_t is related to the differential operator in (1) via (**E4**). The problem of constructing a Brownian motion perturbed by a locally unbounded drift b has been thoroughly studied in the literature, motivated by applications as well as by the search for the maximal general class of drifts b such that the associated diffusion exists (see [5] and references therein).

In the present paper, we consider the following class of drifts:

²⁰¹⁰ Mathematics Subject Classification. 35K10, 60G12.

Key words and phrases. Parabolic equations, Kolmogorov backward equation, Feller processes, a priori estimates.

DEFINITION 1. The parabolic class of form-bounded vector fields $\mathbf{F}_{\beta,\mathcal{P}} = \mathbf{F}_{\beta,\mathcal{P}}(-\Delta)$ consists of vector fields $b \in L^2_{loc}([0,\infty) \times \mathbb{R}^d, \mathbb{R}^d)$ such that

$$\int_0^\infty \|b(t,\cdot)\varphi(t,\cdot)\|_2^2 dt \leqslant \beta \int_0^\infty \|\nabla\varphi(t,\cdot)\|_2^2 dt + \int_0^\infty g(t)\|\varphi(t,\cdot)\|_2^2 dt$$
 (BC)

for some $\beta < \infty$ and $g = g_{\beta} \in L^1_{loc}([0, \infty)), g \geqslant 0$, for all $\varphi \in C^{\infty}_c([0, \infty) \times \mathbb{R}^d)$. $\|\cdot\|_2$ is the norm in $L^2(\mathbb{R}^d)$.

It is clear that $b \in \mathbf{F}_{\beta, \mathcal{P}} \iff cb \in \mathbf{F}_{c^2\beta, \mathcal{P}}, c \neq 0$.

Example 1. 1. If $b : \mathbb{R}^d \to \mathbb{R}^d$, $b = b_1 + b_2$, $|b_1| \in L^{d,\infty}(\mathbb{R}^d)$ (weak L^d space), $|b_2| \in L^{\infty}(\mathbb{R}^d)$, then $b \in \mathbf{F}_{\beta,\mathcal{P}}$ with

$$\sqrt{\beta} = \|b_1\|_{d,\infty} \Omega_d^{-\frac{1}{d}} \frac{2}{d-2}, \qquad \Omega_d := \pi^{\frac{d}{2}} \Gamma\left(\frac{d}{2} + 1\right)$$

(using Strichartz inequality with sharp constants [3, Prop 2.5, 2.6, Cor. 2.9]). In particular, $b(x) = x|x|^{-2}$ belongs to $\mathbf{F}_{\beta,\mathcal{P}}$ with $\beta = (2/(d-2))^2$ (and $g \equiv 0$) (Hardy inequality). More generally, any vector field b(t,x) such that for some $c_1, c_2 > 0$

$$|b(t,x)|^2 \leqslant c_1|x-x_0|^{-2} + c_2|t-t_0|^{-1} \left(\log(e+|t-t_0|^{-1})\right)^{-1-\varepsilon}, \quad \varepsilon > 0, \quad (t,x) \in [0,\infty) \times \mathbb{R}^d,$$

belongs to the class $\mathbf{F}_{\beta,\mathcal{P}}$ with $\beta = c_1 (2/(d-2))^2$. The above examples show that the Gaussian bounds on the fundamental solution of $\partial_t - \Delta + b(t,x) \cdot \nabla$, $b \in \mathbf{F}_{\beta,\mathcal{P}}$, are, in general, not valid.

- 2. If $h \in L^2(\mathbb{R})$, $T : \mathbb{R}^d \to \mathbb{R}$ is a linear map, then the vector field b(x) = h(Tx)a, where $a \in \mathbb{R}^d$, is in $\mathbf{F}_{\beta,\mathcal{P}}$ with appropriate β , but |b| may not be in $L^{d,\infty}_{\mathrm{loc}}(\mathbb{R}^d)$.
 - 3. Let $b: \mathbb{R}^d \to \mathbb{R}^d$. If b^2 is in the Campanato-Morrey class

$$M_p := \left\{ v \in L^p : \|v\|_{M_p} := \sup_{x \in \mathbb{R}^d, r > 0} r^{2 - \frac{d}{p}} \|\mathbf{1}_{B(x,r)} v\|_p < \infty \right\}$$

for some p > 1, then $b \in \mathbf{F}_{\beta,\mathcal{P}}$ with $\beta = \beta(\|b^2\|_{M_p})$. Here $\mathbf{1}_{B(x,r)}$ is the characteristic function of the open ball of radius r centered at x.

4. Set $L^q L^p := L^q([0,\infty), L^p(\mathbb{R}^d) + L^\infty(\mathbb{R}^d))$. We have:

$$|b| \in L^q L^p \text{ with } \frac{d}{p} + \frac{2}{q} \leqslant 1 \qquad \Rightarrow \qquad b \in \mathbf{F}_{0,\mathcal{P}} := \bigcap_{\beta > 0} \mathbf{F}_{\beta,\mathcal{P}}$$

(using the Hölder inequality and the Sobolev embedding theorem).

The class $\mathbf{F}_{\beta,\mathcal{P}}$ contains vector fields having critical order singularities: replacing a $b \in \mathbf{F}_{\beta,\mathcal{P}}$ in (1) with cb, c > 1, in general destroys e.g. the uniqueness of weak solution of Cauchy problem (1), (2) (see [4, Example 5]). The class $\mathbf{F}_{0,\mathcal{P}}$ doesn't contain vector fields having critical order singularities. The explicit dependence on the value of the relative bound β is a crucial feature of our results.

We consider only real Banach spaces. Throughout this paper we use the following notation:

$$\langle g \rangle = \langle g(\cdot) \rangle := \int_{\mathbb{R}^d} g(x) dx.$$

Let $\langle g, h \rangle$ denote the $(L^p, L^{p'})$ pairing, so that

$$\langle g, h \rangle := \int_{\mathbb{R}^d} g(x)h(x)dx \qquad (g \in L^p(\mathbb{R}^d), h \in L^{p'}(\mathbb{R}^d)).$$

Before formulating the main result, let us remind the reader the definition of a weak solution to Cauchy problem (1), (2).

DEFINITION 2. A real-valued function $u \in L^{\infty}_{loc}((0,\infty), L^{2}_{loc}(\mathbb{R}^{d}))$ is said to be a weak solution of equation (1) if ∇u (understood in the sense of distributions) is in $L^{1}_{loc}((0,\infty) \times \mathbb{R}^{d}, \mathbb{R}^{d})$, $b \cdot \nabla u \in L^{1}_{loc}((0,\infty) \times \mathbb{R}^{d})$, and

$$\int_0^\infty \langle u, \partial_t \psi \rangle dt - \int_0^\infty \langle u, \Delta \psi \rangle dt + \int_0^\infty \langle b \cdot \nabla u, \psi \rangle dt = 0$$
 (3)

for all $\psi \in C_c^{\infty}((0,\infty) \times \mathbb{R})$.

DEFINITION 3. A weak solution of (1) is said to be a weak solution to Cauchy problem (1), (2) if $\lim_{t\to+0}\langle u(t),\xi\rangle=\langle f,\xi\rangle$ for all $\xi\in L^2(\mathbb{R}^d)$ having compact support.

Theorem 1 (Main result). Let $d \ge 3$. Suppose a vector field $b(\cdot,\cdot)$ belongs to the class $\mathbf{F}_{\beta,\mathcal{P}}$. If $\beta < d^{-2}$, then there exists a Feller evolution family $(U(t,s))_{0 \le s \le t} \subset \mathcal{L}(C_{\infty}(\mathbb{R}^d))$ that produces the weak solution to Cauchy problem (1), (2), i.e. (E1)–(E4) hold true.

Theorem 1 in the stationary case $b: \mathbb{R}^d \to \mathbb{R}^d$ and under the extra assumption $|b| \in L^2(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$ is due to [4]. The extra assumption is used there in the verification that the constructed limit of approximating semigroups is strongly continuous in $C_{\infty}(\mathbb{R}^d)$ (i.e. in the verification of the assumptions of the Trotter approximation theorem in $C_{\infty}(\mathbb{R}^d)$). We run their iterative procedure differently, so that it automatically yields strong continuity. (Generally speaking, unless b is sufficiently regular in t, the non-stationary case presents the next level of difficulty compared to the stationary case. It is the inherent flexibility of the method of [4] (which, we believe, goes beyond $\partial_t - \Delta + b(t,x) \cdot \nabla$) that allows us to carry out the construction of the process for a non-stationary $b(\cdot,\cdot) \in \mathbf{F}_{\beta,\mathcal{P}}$.)

Let us also note that, in the assumptions of Theorem 1, given $p > (1 - \sqrt{\beta/4})^{-1}$, the formula

$$U_p(t,s) := \left(U(t,s)|_{L^p(\mathbb{R}^d) \cap C_{\infty}(\mathbb{R}^d)} \right)_{L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)}^{\text{clos}},$$

determines a (strongly continuous) evolution family in $\mathcal{L}(L^p(\mathbb{R}^d))$, cf. [6]. The proof is obtained from Theorem 1, estimate (8) below and the Dominated Convergence Theorem.

We now briefly comment on the relationship between this work and the existing results.

- 1. First, for $|b| \in L^q L^p$ (cf. Example 1.3), $\frac{d}{p} + \frac{2}{q} < 1$, the associated diffusion has been constructed in [5] as the strong solution of the SDE $dX_t = b(t, X_t)dt + \frac{1}{2}dW_t$, $X_0 = x_0 \in \mathbb{R}^d$.
 - 2. Recall the definition of the parabolic Kato class $\mathbf{K}_{\beta,\mathcal{P}}^{d+1}$.

$$\mathbf{K}_{\beta,\mathcal{P}}^{d+1} := \left\{ b \in L^1_{\mathrm{loc}}([0,\infty) \times \mathbb{R}^d, \mathbb{R}^d) : \inf_{r>0} k^{1,1}(b,r) \leqslant \beta, \ \inf_{r>0} k^{\infty}(b,r) \leqslant \beta \right\},$$

where

$$k^{1,1}(b,r) := \sup_{u \geqslant 0, x \in \mathbb{R}^d} \int_u^{u+r} \int_{\mathbb{R}^d} \Gamma_{t-u}(x-y) \frac{|b(t,y)|}{\sqrt{t-u}} dy dt,$$

$$k^{\infty}(b,r) := \sup_{u \geqslant r, x \in \mathbb{R}^d} \int_u^{u+r} \int_{\mathbb{R}^d} \Gamma_{u+r-t}(x-y) \frac{|b(t-r,y)|}{\sqrt{u+r-t}} dy dt,$$

and $\Gamma_t(z) := (4\pi t)^{-\frac{d}{2}} e^{-\frac{|z|^2}{4t}}$. If $b \in \mathbf{K}_{\beta,\mathcal{P}}^{d+1}$ with $\beta > 0$ sufficiently small, then the fundamental solution of (1) admits local in time Gaussian upper and lower bounds, see [7], which, in turn, yield the corresponding Feller evolution family (in $C_b(\mathbb{R}^d) := \{f \in C(\mathbb{R}^d) : \sup_x |f(x)| < \infty\}$ endowed with the sup-norm). Note that $\mathbf{K}_{0,\mathcal{P}}^{d+1} - \mathbf{F}_{\beta,\mathcal{P}} \neq \varnothing$, where $\mathbf{K}_{0,\mathcal{P}}^{d+1} := \cap_{\beta>0} \mathbf{K}_{\beta,\mathcal{P}}^{d+1}$ (on the other hand, $L^d(\mathbb{R}^d,\mathbb{R}^d) - \mathbf{K}_{\beta,\mathcal{P}}^{d+1} \cap \{f : \mathbb{R}^d \to \mathbb{R}^d\} \neq \varnothing$).

3. In the stationary case $b: \mathbb{R}^d \to \mathbb{R}^d$, it has been shown in [2] that the associated Feller process exists for vector fields b in the class

$$\mathbf{F}_{\beta}^{\frac{1}{2}} := \left\{ b \in L^{1}_{\text{loc}}(\mathbb{R}^{d}, \mathbb{R}^{d}) : \left\| |b|^{\frac{1}{2}} (\lambda - \Delta)^{-\frac{1}{4}} \right\|_{L_{2} \to L_{2}}^{2} \leqslant \sqrt{\beta} \text{ for some } \lambda = \lambda_{\beta} > 0 \right\}.$$

In particular, the class $\mathbf{F}_{\beta}^{\frac{1}{2}}$ contains vector fields of the form $b := b_1 + b_2$, where $b_1 \in \mathbf{F}_{\beta} := \mathbf{F}_{\beta,\mathcal{P}} \cap \{f : \mathbb{R}^d \to \mathbb{R}^d\}$, $b_2 \in \mathbf{K}_{\beta}^{d+1} := \mathbf{K}_{\beta,\mathcal{P}}^{d+1} \cap \{f : \mathbb{R}^d \to \mathbb{R}^d\}$.

REMARK 1. We leave out the L^p -theory of $\partial_t - \Delta + b(t,x) \cdot \nabla$ with $b \in \mathbf{F}_{\beta,\mathcal{P}}$, $1 < \beta < 4$, or with $b \in \mathbf{F}_{\beta,\mathcal{P}}$, $1 < \beta < 4$, or with $b \in \mathbf{F}_{\beta,\mathcal{P}}$.

Acknowledgements. I am deeply grateful to Yu.A. Semenov for many important comments, and constant attention throughout this work.

2. Proof of Theorem 1

We will need a regular approximation of b: vector fields $\{b_m\}_{m=1}^{\infty} \subset C_c^{\infty}([0,\infty) \times \mathbb{R}^d, \mathbb{R}^d)$ that satisfy $b_m \to b$ in $L^2_{\text{loc}}([0,\infty) \times \mathbb{R}^d, \mathbb{R}^d)$, and

$$\int_0^\infty \|b_m(t,\cdot)\varphi(t,\cdot)\|_2^2 dt \leqslant \left(\beta + \frac{1}{m}\right) \int_0^\infty \|\nabla\varphi(t,\cdot)\|_2^2 dt + \int_0^\infty g(t)\|\varphi(t,\cdot)\|_2^2 dt \tag{BC}_m$$

for all $\varphi \in C_c^{\infty}([0,\infty) \times \mathbb{R}^d)$. (Such b_m 's can be constructed by the formula $b_m := \eta_m * \mathbf{1}_m b$, where $\mathbf{1}_m$ is the characteristic function of set $\{(t,x) \in \mathbb{R} \times \mathbb{R}^d : |b(t,x)| \leq m, |x| \leq m, 0 \leq |t| \leq m\}$, * is the convolution on $\mathbb{R} \times \mathbb{R}^d$, and $\{\eta_m\} \subset C_c^{\infty}(\mathbb{R} \times \mathbb{R}^d)$ is an appropriate family of mollifiers.)

Due to the strict inequality $\beta < d^{-2}$, we may assume without loss of generality that b_m 's satisfy (\mathbf{BC}_m) with β in place of $\beta + \frac{1}{m}$.

The construction of the Feller evolution family goes as follows. Fix some T > 0. Denote

$$D_T := \{ (s, t) \in \mathbb{R}^2 : 0 \leqslant s \leqslant t \leqslant T \}.$$

Let $(U_m(t,s))_{0 \le s \le t} \subset \mathcal{L}(C_\infty(\mathbb{R}^d))$ be the Feller evolution family for the equation

$$(\partial_t - \Delta + b_m(t, x) \cdot \nabla)u = 0. \tag{4}$$

Given a $f \in C_c^{\infty}(\mathbb{R}^d)$, we define

$$Uf := \lim_{m \to \infty} U_m f \quad \text{in} \quad L^{\infty} (D_T, C_{\infty}(\mathbb{R}^d))$$
 (5)

Assuming that the convergence in (5) has been established, we note that U_m is L^{∞} -contractive and $C_c^{\infty}(\mathbb{R}^d)$ is dense in $C_{\infty}(\mathbb{R}^d)$, so $U = (U(t,s))_{0 \leq s \leq t}$ extends to a strongly continuous family of bounded linear operators in $\mathcal{L}(C_{\infty}(\mathbb{R}^d))$, which we denote again by $(U(t,s))_{0 \leq s \leq t}$.

Proposition 1. In the assumptions of Theorem 1 $(U(t,s))_{0 \le s \le t}$ defined by (5) satisfies (E1)-(E4).

The main difficulty is in establishing the convergence in (5). The proof of the convergence uses a parabolic variant of the iterative procedure of [4].

2.1. Proof of the convergence in (5): a parabolic variant of the iterative procedure of Kovalenko-Semenov. Fix $f \in C_c^{\infty}(\mathbb{R}^d)$. Set

$$u_m(t) = U_m(t,s)f, \quad t \geqslant s.$$

Lemma 1 (a priori estimate). Let $d \ge 3$. Suppose b is in $\mathbf{F}_{\beta,\mathcal{P}}$ with $\beta < d^{-2}$, $q \in \left(d, \beta^{-\frac{1}{2}}\right)$. Then

$$\|\nabla u_m\|_{L^{\infty}([s,\tau],L^q(\mathbb{R}^d))} + C_1\|\nabla u_m\|_{L^q([s,\tau],L^{\frac{qd}{d-2}}(\mathbb{R}^d))} \leqslant C\|\nabla f\|_q, \quad s \leqslant \tau \leqslant T,$$

where constants $C_1 = C_1(q, \beta) > 0$, $C = C(q, T) < \infty$, do not depend on m or (s, τ) .

REMARK 2. The a priori estimate of Lemma 1 is one of the main results of the paper. It is the basis for the approach as a whole (for the corresponding result in the elliptic case see [4, Lemma 5]).

We subtract the approximating equations (4) for b_m , b_n , and integrate to obtain:

Lemma 2. Suppose $b \in \mathbf{F}_{\beta,\mathcal{P}}$ with $\beta < 4$. Let $0 < \alpha < 1$. There exist h > 0, $k = k(\beta) > 1$ and a m_0 such that for all $m, n \ge m_0$, for all $p \ge p_0 > \frac{2}{2 - \sqrt{\beta}}$ we have

$$\|u_m - u_n\|_{L^{\frac{p}{1-\alpha}}([s,s+h],L^{\frac{pd}{d-2+2\alpha}}(\mathbb{R}^d))}$$

$$\leqslant \left(C_0 \beta \| \nabla u_m \|_{L^{2\lambda'}([s,s+h],L^{2\sigma'}(\mathbb{R}^d))}^2 \right)^{\frac{1}{p}} (p^{2k})^{\frac{1}{p}} \| u_m - u_n \|_{L^{(p-2)\lambda}([s,s+h],L^{(p-2)\sigma}(\mathbb{R}^d))}^{1 - \frac{2}{p}},$$
(6)

for any σ such that $1 < \sigma < \frac{d}{d-2+2\alpha}$, $\frac{1}{\sigma} + \frac{1}{\sigma'} = 1$, and $\frac{1/(1-\alpha)}{\lambda} = \frac{d/(d-2+2\alpha)}{\sigma}$, $\frac{1}{\lambda} + \frac{1}{\lambda'} = 1$, for a constant $C_0 = C_0(h) < \infty$ that doesn't depend on m or $s \leqslant T$.

The a priori estimate of Lemma 1 allows to iterate the inequality (6) (with a proper choice of α , λ and σ) in order to obtain an L^{∞} -norm in the left-hand side, and an L^{p} -norm $(p < \infty)$ (of $u_{m} - u_{n}$) in the right-hand side. Set

$$D_{T,h} := D_T \cap \{(s,t) : 0 \le t - s \le h\}, \quad h < T.$$

Lemma 3. In the assumptions of Theorem 1, for any $p_0 > \frac{2}{2-\sqrt{\beta}}$ there exist h > 0, constants $B < \infty$ and $\gamma := \left(1 - \frac{\sigma d}{d+2}\right)\left(1 - \frac{\sigma d}{d+2} + \frac{2\sigma}{p_0}\right)^{-1} > 0$ $(1 < \sigma < \frac{d+2}{d})$ independent of m, n such that

$$||U_m f - U_n f||_{L^{\infty}(D_{T,h} \times \mathbb{R}^d)} \leqslant B \sup_{0 \leqslant s \leqslant T - h} ||U_m f - U_n f||_{L^{p_0}([s,s+h],L^{p_0}(\mathbb{R}^d))}^{\gamma} \quad \text{for all } n, m.$$
 (7)

REMARK 3. Lemma 3 is the key result. It moves the problem of convergence of $\{U_m f\}$ in L^{∞} to a space having much weaker topology (locally).

That $\{U_m f\}$ does indeed converge in the weaker topology of the right-hand side of (7) will follow from the following

Lemma 4. Suppose $b \in \mathbf{F}_{\beta,\mathcal{P}}$ with $\beta < 1$. The sequence $\{U_m f\}$ from Lemma 3 is fundamental in $L^{\infty}(D_T, L^r(\mathbb{R}^d)), \ 2 \leqslant r < \infty$.

Let us prove the convergence in (5). Fix $f \in C_c^{\infty}(\mathbb{R}^d)$, and choose r=2 in Lemma 4. Then $r > \frac{2}{2-\sqrt{\beta}}$ since β is less than 1, and we can take $p_0 := r$ in Lemma 3. Now, Lemma 3 and Lemma 4 imply that there exists h > 0 such that the sequence $\{U_m f\}$ is fundamental in $L^{\infty}(D_{T,h}, C_{\infty}(\mathbb{R}^d))$. By the reproduction property, $\{U_m f\}$ is fundamental in $L^{\infty}(D_T, C_{\infty}(\mathbb{R}^d))$. The convergence in (5) follows.

The proof of Theorem 1 is completed.

REMARK 4. Note that the constraint on β in Theorem 1 (in addition to $\beta < 1$) comes solely from Lemma 1.

3. Proofs of Lemmas 1-4 and Proposition 1

Preliminaries. 1. We will use the following well known fact (which we use below for u_m). Suppose that b belongs to $\mathbf{F}_{\beta,\mathcal{P}}$ with $\beta < 1$. If $p > (1 - \sqrt{\beta/4})^{-1}$, $f \in L^p(\mathbb{R}^d)$, then the (unique) weak solution u of the equation (1) such that

$$\lim_{t \to +0} \langle u(t), \xi \rangle = \langle f, \xi \rangle$$

for all $\xi \in L^{p'}(\mathbb{R}^d)$ having compact support, $\frac{1}{p} + \frac{1}{p'} = 1$, satisfies

$$\sup_{t \in [0,\tau]} \|u(t)\|_p^p + C_1 \int_0^\tau \langle (\nabla (u|u|^{\frac{p}{2}-1}))^2 \rangle dt \leqslant C_2 \|f\|_p^p, \tag{8}$$

where $0 < C_i = C_i(\beta, g, p) < \infty$, i = 1, 2 (see Appendix A for the proof for u_m which, in turn, is sufficient to conclude (8) for u as above).

2. Let q be the function from the condition (**BC**). Set

$$G(h) := \sup_{0 \le s \le T - h} \int_{s}^{s+h} g(t)dt.$$

Clearly, G(h) = o(h) (i.e. $G(h) \to 0$ as $h \to 0$).

Proof of Lemma 1. It suffices to prove Lemma 1 for $s \leq \tau \leq s + h$, for a small h, uniformly in s. We consider smooth approximating vector fields $b_m := \eta_m * \mathbf{1}_m b$, not just truncations $\mathbf{1}_m b$ of b (cf. the beginning of Section 2), because the intermediate calculations below involve third order derivatives of u.

In what follows, we omit index m where possible: $u(t) := u_m(t) \ (= U_m(t, s)f, t \ge s)$. Denote $w = \nabla u, w_r = \frac{\partial}{\partial x_r} u, 1 \le r \le d$. Define

$$\varphi_r := -\frac{\partial}{\partial x_r} \left(w_r |w|^{q-2} \right), \quad 1 \leqslant r \leqslant d,$$

$$I_q = \int_s^\tau \left\langle |w|^{q-2} \sum_{r=1}^d |\nabla w_r|^2 \right\rangle dt \geqslant 0, \quad J_q = \int_s^\tau \langle |w|^{q-2} |\nabla w|^2 \rangle dt \geqslant 0.$$

Now, we are going to 'differentiate the equation without differentiating its coefficients'. That is, we multiply the equation in (1) by the 'test function' φ_r , integrate in t and x, and then sum over r to get

$$S := \sum_{r=1}^{d} \int_{s}^{\tau} \left\langle \varphi_r, \frac{\partial u}{\partial t} \right\rangle dt = \sum_{r=1}^{d} \int_{s}^{\tau} \left\langle \varphi_r, \Delta u \right\rangle dt - \sum_{r=1}^{d} \int_{s}^{\tau} \left\langle \varphi_r, b_m \cdot w \right\rangle dt =: S_1 + S_2.$$

We can re-write

$$S = \frac{1}{q} \int_{s}^{\tau} \frac{\partial}{\partial t} \langle |w|^{q} \rangle dt = \frac{1}{q} \langle |w(\tau)|^{q} \rangle - \frac{1}{q} \langle |\nabla f|^{q} \rangle$$

(the fact that $w(s) = \nabla f$ follows by differentiating in x_i , for each $1 \le i \le d$, the equation in (1) and the initial function f, solving the resulting Cauchy problem, and then integrating its solution in x_i to see that it is indeed the derivative of v in x_i). Further,

$$S_1 = -\sum_{r=1}^d \int_s^\tau \left\langle \frac{\partial}{\partial x_r} \left(w_r |w|^{q-2} \right), \Delta u \right\rangle dt = -\sum_{r=1}^d \int_s^\tau \left\langle \nabla \left(w_r |w|^{q-2} \right), \nabla w_r \right\rangle dt$$
$$= -\int_s^\tau \left\langle |w|^{q-2} \sum_{r=1}^d |\nabla w_r|^2 \right\rangle dt - \frac{1}{2} \int_s^\tau \left\langle \nabla |w|^{q-2}, \nabla |w|^2 \right\rangle dt = -I_q - (q-2)J_q.$$

Next,

$$S_2 = \int_s^\tau \langle |w|^{q-2} \Delta u, b_m \cdot w \rangle dt + \int_s^\tau \langle w \cdot \nabla |w|^{q-2}, b_m \cdot w \rangle dt =: W_1 + W_2.$$

Let us estimate W_1 and W_2 as follows. By the inequality $ac \leq \frac{\gamma}{4}a^2 + \frac{1}{\gamma}c^2$ $(\gamma > 0)$, we have

$$|W_{1}| \leqslant \int_{s}^{\tau} \langle |w|^{\frac{q-2}{2}} |\Delta u| |w|^{\frac{q-2}{2}} |b_{m}| |w| \rangle dt$$

$$\leqslant \frac{\gamma}{4} \int_{s}^{\tau} \langle |w|^{q-2} |\Delta u|^{2} \rangle dt + \frac{1}{\gamma} \int_{s}^{\tau} \left\langle \left(|b_{m}| |w|^{\frac{q}{2}} \right)^{2} \right\rangle dt$$
(we use (**BC**_m), where we omit $1/m$ in $\beta + 1/m$)
$$\leqslant \frac{\gamma}{4} \int_{s}^{\tau} \langle |w|^{q-2} |\Delta u|^{2} \rangle dt + \frac{1}{\gamma} \left[\beta \frac{q^{2}}{4} J_{q} + \int_{s}^{\tau} g(t) \langle |w|^{q} \rangle \right]$$

In turn, representing $|\Delta u|^2 = (\nabla \cdot w)^2$ and integrating by parts twice we obtain:

$$\begin{split} \int_{s}^{\tau} \langle |w|^{q-2} |\Delta u|^{2} \rangle dt &= -\int_{s}^{\tau} \langle w \cdot \nabla |w|^{q-2}, \Delta u \rangle dt + \sum_{r=1}^{d} \int_{s}^{\tau} \left\langle w \cdot \nabla w_{r}, \nabla_{r} |w|^{q-2} \right\rangle dt + I_{q} \\ &= : -F + H + I_{q}, \end{split}$$

where we estimate, using quadratic estimates of the form $ac \le \varkappa a^2 + \frac{1}{4\varkappa}c^2 \ (\varkappa > 0)$,

$$|F| \leqslant (q-2) \left(\frac{1}{4\varkappa} \int_s^\tau \langle |w|^{q-2} |\Delta u|^2 \rangle dt + \varkappa J_q \right), \quad |H| \leqslant (q-2) \left(\frac{1}{2} I_q + \frac{1}{2} J_q \right).$$

Thus, we obtain

$$\left(1 - \frac{q-2}{4\varkappa}\right) \int_{s}^{\tau} \langle |w|^{q-2} |\Delta u|^{2} \rangle dt \leqslant I_{q} + (q-2) \left(\varkappa J_{q} + \frac{1}{2} I_{q} + \frac{1}{2} J_{q}\right), \quad \varkappa > \frac{q-2}{4},$$

so

$$|W_1| \leqslant \frac{\gamma}{4} \frac{4\varkappa}{4\varkappa - q + 2} \left(I_q + (q - 2) \left(\varkappa J_q + \frac{1}{2} I_q + \frac{1}{2} J_q \right) \right) + \frac{1}{\gamma} \left[\beta \frac{q^2}{4} J_q + \int_s^\tau g(t) \langle |w|^q \rangle \right].$$

Next, using $ac \le \nu a^2 + \frac{1}{4\nu}c^2$ ($\nu > 0$), we obtain

$$|W_{2}| \leqslant (q-2) \int_{s}^{\tau} \langle |w|^{q-2} |\nabla |w| ||b_{m}||w| \rangle dt = (q-2) \int_{s}^{\tau} \langle |w|^{\frac{q-2}{2}} |\nabla |w| ||b_{m}||w|^{\frac{q}{2}} \rangle dt$$

$$\leqslant (q-2) \left[\nu \int_{s}^{\tau} \langle |w|^{q-2} |\nabla |w||^{2} \rangle dt + \frac{1}{4\nu} \int_{s}^{\tau} \left\langle \left(|b_{m}||w|^{\frac{q}{2}} \right)^{2} \right\rangle dt \right]$$
(we use (\mathbf{BC}_{m}))
$$\leqslant (q-2) \left[\nu J_{q} + \frac{\beta}{4\nu} \frac{q^{2}}{4} J_{q} + \frac{1}{4\nu} \int_{s}^{\tau} g(t) \langle |w|^{q} \rangle dt \right].$$

 $[4\nu \ 4 \ 4\nu \ J_s]$

Thus, identity $S = S_1 + S_2$ transforms into

$$\frac{1}{q}\langle |w(\tau)|^q \rangle - \frac{1}{q}\langle |\nabla f|^q \rangle + I_q + (q-2)J_q = W_1 + W_2,$$

and, in view of the above estimates on $|W_1|$, $|W_2|$, implies

$$\frac{1}{q}\langle |w(\tau)|^q \rangle + N I_q + M J_q \leqslant \frac{1}{q}\langle |\nabla f|^q \rangle + \left(\frac{q-2}{4\nu} + \frac{1}{\gamma}\right) \int_s^{\tau} g(t)\langle |w|^q \rangle dt, \tag{9}$$

where

$$N := 1 - \frac{\gamma \varkappa}{4\varkappa - q + 2} \left(1 + \frac{1}{2} (q - 2) \right),$$

$$M := q - 2 - (q - 2)\left(\nu + \frac{\beta}{16\nu}q^2\right) - \frac{\beta}{\gamma}\frac{q^2}{4} - \frac{\gamma\varkappa}{4\varkappa - q + 2}(q - 2)\left(\varkappa + \frac{1}{2}\right).$$

We fix

$$\nu := q\sqrt{\beta}/4, \quad \varkappa := \frac{q-1}{2}, \quad \gamma := \frac{q\sqrt{\beta}}{q-1}.$$

Since $\sqrt{\beta} < q^{-1}$, we have N > 0. Then, in view of the inequality $I_q \geqslant J_q$, we have

$$NI_q + MJ_q \geqslant \left(q - 1 - \frac{q\sqrt{\beta}}{2}(2q - 3)\right)J_q$$
, where, clearly, $q - 1 - \frac{q\sqrt{\beta}}{2}(2q - 3) > \frac{1}{2}$.

Then, applying the Sobolev embedding theorem to $\frac{q^2}{4}J_q$ (= $\int_s^{\tau} \langle |\nabla |w|^{\frac{q}{2}}|^2 \rangle dt$), and recalling that $w = \nabla u$, we obtain from (9):

$$\frac{1}{q}\langle |\nabla u(\tau)|^q \rangle + \frac{2C_d}{q^2} ||\nabla u||^q_{L^q([s,\tau],L^{\frac{qd}{d-2}}(\mathbb{R}^d))} \leqslant \frac{1}{q}\langle |\nabla f|^q \rangle + \left(\frac{q-2}{4\nu} + \frac{1}{\gamma}\right) \int_s^\tau g(t)\langle |\nabla u(t)|^q \rangle dt,$$

where $C_d > 0$ is the constant in the Sobolev embedding theorem.

Estimating $\int_s^{\tau} g(t) \langle |\nabla u|^q \rangle dt \leqslant G(h) \sup_{t \in [s,\tau]} \langle |\nabla u(t)|^q \rangle$, and selecting $h \geqslant \tau - s$ sufficiently small, so that $\left(\frac{q-2}{4\nu} + \frac{1}{\gamma}\right) G(h) < \frac{1}{2q}$ (recall that G(h) = o(h), cf. the beginning of Section 3), we obtain

$$\frac{1}{2} \sup_{t \in [s,\tau]} \langle |\nabla u(t)|^q \rangle + \frac{2C_d}{q} ||\nabla u||^q_{L^q([s,\tau],L^{\frac{qd}{d-2}}(\mathbb{R}^d))} \leqslant \langle |\nabla f|^q \rangle,$$

which completes the proof.

Proof of Lemma 2. Set $r = r_{m,n} := u_m - u_n$. Then r satisfies

$$\partial_t r = \Delta r - b_m(t, x) \cdot \nabla r - \left(b_m(t, x) - b_n(t, x) \right) \cdot \nabla u_n. \tag{10}$$

Set $\eta := r|r|^{\frac{p-2}{2}}$. We multiply equation (10) by $r|r|^{p-2}$ and integrate to obtain the identity

$$\frac{1}{p} \|\eta(\tau)\|_{2}^{2} + \frac{4(p-1)}{p^{2}} \int_{s}^{\tau} \|\nabla \eta\|_{2}^{2} dt = -\frac{2}{p} \int_{s}^{\tau} \langle \nabla \eta, b_{m} \eta \rangle dt - \int_{s}^{\tau} \langle \eta |\eta|^{1-\frac{2}{p}}, (b_{m} - b_{n}) \cdot \nabla u_{n} \rangle dt \quad (11)$$

(note that by definition $\eta(s) \equiv 0$). We estimate the right-hand side of (11). Using $ac \leqslant \varepsilon a^2 + \frac{1}{4\varepsilon}c^2$ ($\varepsilon > 0$) and (\mathbf{BC}_m), we obtain:

$$\left| \int_{s}^{\tau} \langle \nabla \eta, b_{m} \eta \rangle dt \right| \leqslant \varepsilon \int_{s}^{\tau} \langle (b_{m} \eta)^{2} \rangle dt + \frac{1}{4\varepsilon} \int_{s}^{\tau} \langle |\nabla \eta|^{2} \rangle dt$$
$$\leqslant \varepsilon \beta \int_{s}^{\tau} \langle |\nabla \eta|^{2} \rangle dt + \varepsilon \int_{s}^{\tau} g(t) \langle \eta^{2} \rangle dt + \frac{1}{4\varepsilon} \int_{s}^{\tau} \langle |\nabla \eta|^{2} \rangle dt.$$

Next, using $|b_m - b_n| \leq |b_m| + |b_n|$, $ac \leq \delta a^2 + \frac{1}{4\delta}c^2$ ($\delta > 0$), and (**BC**_m), we find

$$\left| \int_{s}^{\tau} \langle \eta | \eta |^{1-\frac{2}{p}}, (b_{m} - b_{n}) \cdot \nabla u_{n} \rangle dt \right| \leq \int_{s}^{\tau} \langle |b_{m} - b_{n}| |\eta|, |\eta|^{1-\frac{2}{p}} |\nabla u_{n}| \rangle dt$$

$$\leq \delta \int_{s}^{\tau} \langle (b_{m} \eta)^{2} \rangle dt + \delta \int_{s}^{\tau} \langle (b_{n} \eta)^{2} \rangle dt + 2 \frac{1}{4\delta} \int_{s}^{\tau} \langle |\eta|^{2-\frac{4}{p}} |\nabla u_{n}|^{2} \rangle dt$$

$$\leq 2\delta \left(\beta \int_{s}^{\tau} \langle |\nabla \eta|^{2} \rangle dt + \int_{s}^{\tau} g(t) \langle \eta^{2} \rangle dt \right) + 2 \frac{1}{4\delta} \int_{s}^{\tau} \langle |\eta|^{2-\frac{4}{p}} |\nabla u_{n}|^{2} \rangle dt.$$

Thus, applying the last two estimates in the right-hand side of (11), we obtain:

$$\frac{1}{p} \|\eta(\tau)\|_{2}^{2} + \left(\frac{4(p-1)}{p^{2}} - \frac{2}{p}\left(\varepsilon\beta + \frac{1}{4\varepsilon}\right) - 2\beta\delta\right) \int_{s}^{\tau} \langle |\nabla\eta|^{2} \rangle dt \\
\leqslant \frac{1}{2\delta} \int_{s}^{\tau} \langle |\eta|^{2-\frac{4}{p}} |\nabla u_{n}|^{2} \rangle dt + \left(\frac{2}{p}\varepsilon + 2\delta\right) \int_{s}^{\tau} g(t) \langle \eta^{2} \rangle dt.$$

Set

$$P := \frac{4(p-1)}{p^2} - \frac{2}{p} \left(\varepsilon \beta + \frac{1}{4\varepsilon} \right) - 2\beta \delta \qquad \text{with } \varepsilon := \frac{1}{2\sqrt{\beta}}.$$

Estimating $\int_s^\tau g(t)\langle \eta^2 \rangle dt \leqslant G(h) \sup_{t \in [s,\tau]} \|\eta(t)\|_2^2$, we have:

$$\left(\frac{1}{p} - \left(\frac{1}{p\sqrt{\beta}} + 2\delta\right)G(h)\right) \sup_{t \in [s,\tau]} \|\eta(t)\|_2^2 + P \int_s^\tau \langle |\nabla \eta|^2 \rangle dt \leqslant \frac{1}{2\delta} \int_s^\tau \langle |\eta|^{2-\frac{4}{p}} |\nabla u_n|^2 \rangle dt. \tag{12}$$

Since $p_0 > \frac{2}{2-\sqrt{\beta}}$, we can fix k so that $\frac{4(p_0-1)}{p_0^2} - \frac{2}{p_0}\sqrt{\beta} \geqslant \frac{2}{p_0^k}$. The last inequality remains valid if we replace p_0 with any $p > p_0$. Fix δ by

$$\delta := \frac{1}{2\beta} \left(\frac{4(p-1)}{p^2} - \frac{2}{p} \sqrt{\beta} - \frac{1}{p^k} \right) \geqslant \frac{1}{2\beta p^k}.$$

Then

$$P = \frac{4(p-1)}{p^2} - \frac{2}{p}\sqrt{\beta} - 2\beta\delta = \frac{1}{p^k}$$

In the next Steps 1 and 2 we estimate the left-hand side and the right-hand side of (12).

Step 1. Given $0 < \alpha < 1$, we can choose k > 1 so that for all $n \ge m_0$,

$$\frac{c_0}{p^k} \|r\|_{L^{\frac{p}{1-\alpha}}([s,\tau],L^{\frac{pd}{d-2+2\alpha}}(\mathbb{R}^d))}^p \leqslant \text{the LHS of (12)}.$$

$$\tag{13}$$

for some constant $c_0 < \infty$.

Indeed, applying the Sobolev embedding theorem in the spatial variables, we obtain from (12):

$$\left(\frac{1}{p} - \left(\frac{1}{p\sqrt{\beta}} + 2\delta\right)G(h)\right) \sup_{t \in [s,\tau]} \|r(t)\|_p^p + \frac{C_d}{p^k} \|r\|_{L^p([s,\tau],L^{\frac{pd}{d-2}}(\mathbb{R}^d))}^p \leqslant \text{the LHS of (12)}.$$

Since $\delta \leqslant \frac{c}{p}$, $c := \frac{1}{\beta}(2 - \sqrt{\beta})$, we can select h sufficiently small (we use that G(h) = o(h)), so that for all $p \geqslant p_0$

$$\frac{1}{p} - \left(\frac{1}{p\sqrt{\beta}} + 2\delta\right) G(h) \geqslant$$

$$\frac{1}{p} \left(1 - \left(\frac{1}{\sqrt{\beta}} + 2c\right) G(h)\right) \geqslant \frac{1}{2p}$$
(we use that $k > 1$)
$$\geqslant \frac{1}{2p^k}.$$

Thus, we have

$$\frac{1}{2p^k} \sup_{t \in [s,\tau]} \|r(t)\|_p^p + \frac{C_d}{p^k} \|r\|_{L^p([s,\tau],L^{\frac{pd}{d-2}}(\mathbb{R}^d))}^p \leqslant \text{the LHS of (12)}.$$

Using first the Hölder inequality, and then the Young inequality we obtain:

$$\begin{split} \|r\|_{L^{\frac{p}{1-\alpha}}([s,\tau],L^{\frac{pd}{d-2+2\alpha}}(\mathbb{R}^d))}^{p} & \leqslant \|r\|_{L^{\infty}([s,\tau],L^{p}(\mathbb{R}^d))}^{\alpha p} \|r\|_{L^{p}([s,\tau],L^{\frac{pd}{d-2}}(\mathbb{R}^d))}^{(1-\alpha)p} \\ & \leqslant \alpha \|r\|_{L^{\infty}([s,\tau],L^{p}(\mathbb{R}^d))}^{p} + (1-\alpha) \|r\|_{L^{p}([s,\tau],L^{\frac{pd}{d-2}}(\mathbb{R}^d))}^{p}, \end{split}$$

which yields (13).

Step 2: With σ , σ' and λ , λ' as in the formulation of the lemma, we have

the RHS of (12)
$$\leq \beta p^k \|\nabla u_n\|_{L^{2\lambda'}([s,\tau],L^{2\sigma'}(\mathbb{R}^d))}^2 \|r\|_{L^{(p-2)\lambda}([s,\tau],L^{(p-2)\sigma}(\mathbb{R}^d))}^{p-2}$$
 (14)

Indeed, since $\delta \geqslant \frac{1}{2\beta p^k}$, the RHS of (12) $=\frac{1}{2\delta}\int_s^\tau \langle |\eta|^{2-\frac{4}{p}}|\nabla u_n|^2\rangle dt \leqslant \beta p^k \int_s^\tau \langle |\eta|^{2-\frac{4}{p}}|\nabla u_n|^2\rangle dt$. In turn,

$$\begin{split} & \int_{s}^{\tau} \langle |\eta|^{2-\frac{4}{p}} |\nabla u_{n}|^{2} \rangle dt \leqslant \int_{s}^{\tau} \langle |\nabla u_{n}|^{2\sigma'} \rangle^{\frac{1}{\sigma'}} \langle |\eta|^{\left(2-\frac{4}{p}\right)\sigma} \rangle^{\frac{1}{\sigma}} dt \\ & = \int_{s}^{\tau} \|\nabla u_{n}\|_{L^{2\sigma'}(\mathbb{R}^{d})}^{2} \|r\|_{L^{(p-2)\sigma}(\mathbb{R}^{d})}^{p-2} dt \\ & \leqslant \left(\int_{s}^{\tau} \|\nabla u_{n}\|_{L^{2\sigma'}(\mathbb{R}^{d})}^{2\lambda'} dt \right)^{\frac{1}{\lambda'}} \left(\int_{s}^{\tau} \|r\|_{L^{(p-2)\sigma}(\mathbb{R}^{d})}^{(p-2)\lambda} dt \right)^{\frac{1}{\lambda}} \\ & = \|\nabla u_{n}\|_{L^{2\lambda'}([s,\tau],L^{2\sigma'}(\mathbb{R}^{d}))}^{2} \|r\|_{L^{(p-2)\lambda}([s,\tau],L^{(p-2)\sigma}(\mathbb{R}^{d}))}^{p-2}, \end{split}$$

which yields (14).

Substituting the estimates (13) and (14) into (12), and taking $\tau := s + h$, we arrive at the required estimate (6).

Proof of Lemma 3. The proof of Lemma 3 follows closely the proof of [4, Lemma 7]. Consider the inequality of Lemma 2:

$$\|u_{m} - u_{n}\|_{L^{\frac{p}{1-\alpha}}([s,s+h],L^{\frac{pd}{d-2+2\alpha}}(\mathbb{R}^{d}))}$$

$$\leq \left(C_{0}\beta\|\nabla u_{m}\|_{L^{2\lambda'}([s,s+h],L^{2\sigma'}(\mathbb{R}^{d}))}^{2}\right)^{\frac{1}{p}}(p^{2k})^{\frac{1}{p}}\|u_{m} - u_{n}\|_{L^{(p-2)\lambda}([s,s+h],L^{(p-2)\sigma}(\mathbb{R}^{d}))}^{1-\frac{2}{p}}, \quad (15)$$

where λ is defined by $\frac{1/(1-\alpha)}{\lambda} = \frac{d/(d-2+2\alpha)}{\sigma}$, and $\frac{1}{\lambda} + \frac{1}{\lambda'} = 1$ (it is easy to see that $\lambda' = \frac{\sigma'(d-2+2\alpha)}{d(1-\alpha)}$). We fix $\alpha := \frac{2}{d+2}$ (we keep α to make the calculations easier to follow) and $1 < \sigma < \frac{d}{d-2+2\alpha}$ so that $\sigma' > \frac{d}{2(1-\alpha)}$, determined from $\frac{1}{\sigma} + \frac{1}{\sigma'} = 1$, is sufficiently close to $\frac{d}{2(1-\alpha)}$. We apply the a priori estimate of Lemma 1:

$$\begin{split} &\|\nabla u_m\|_{L^{2\lambda'}([s,s+h],L^{2\sigma'}(\mathbb{R}^d))}^2 \\ &(\text{we use the H\"older inequality}) \\ &\leqslant \|\nabla u_m\|_{L^{\infty}([s,s+h],L^q(\mathbb{R}^d))}^{\alpha}\|\nabla u_m\|_{L^q([s,s+h],L^{\frac{qd}{d-2}}(\mathbb{R}^d))}^{1-\alpha} \\ &(\text{we use Young's inequality}) \\ &\leqslant \alpha\|\nabla u_m\|_{L^{\infty}([s,s+h],L^q(\mathbb{R}^d))} + (1-\alpha)\|\nabla u_m\|_{L^q([s,s+h],L^{\frac{qd}{d-2}}(\mathbb{R}^d))}^{1-\alpha} \\ &(\text{we use Lemma 1}) \\ &\leqslant C\|\nabla f\|_q =: D < \infty, \end{split}$$

where q is determined from $\sigma' = \frac{1}{2} \frac{qd}{d-2+2\alpha}$ (such $q \in (d, 1/\sqrt{\beta})$) in Lemma 1 is admissible, in view of the assumptions on β in Theorem 1). Then (15) yields

$$||u_m - u_n||_{L^{\frac{p}{1-\alpha}}([s,s+h],L^{\frac{pd}{d-2+2\alpha}}(\mathbb{R}^d))} \leqslant D^{\frac{1}{p}}(p^{2k})^{\frac{1}{p}}||u_m - u_n||_{L^{(p-2)\lambda}([s,s+h],L^{(p-2)\sigma}(\mathbb{R}^d))}^{1-\frac{2}{p}}.$$
 (16)

In order to iterate the inequality (16), choose any $p_0 > \frac{2}{2-\sqrt{\beta}}$ and construct a sequence $\{p_l\}_{l\geqslant 0}$ by successively assuming $\sigma(p_1-2) = p_0$, $\sigma(p_2-2) = \frac{p_1 d}{d-2+2\alpha}$, $\sigma(p_3-2) = \frac{p_2 d}{d-2+2\alpha}$ etc, so that

$$p_l = (a-1)^{-1} \left(a^l \left(\frac{p_0}{\sigma} + 2 \right) - a^{l-1} \frac{p_0}{\sigma} - 2 \right), \quad a := \frac{1}{\sigma} \frac{d}{d-2+2\alpha} > 1.$$
 (17)

Clearly,

$$c_1 a^l \leqslant p_l \leqslant c_2 a^l$$
, where $c_1 := p_1 a^{-1}$, $c_2 := c_1 (a-1)^{-1}$, (18)

and so $p_l \to \infty$ as $l \to \infty$.

Now, we iterate inequality (16), starting with $p = p_0$, to obtain

$$||u_m - u_n||_{L^{\frac{p_l}{1-\alpha}}([s,s+h],L^{\frac{p_ld}{d-2+2\alpha}}(\mathbb{R}^d))} \leqslant D^{\alpha_l}\Gamma_l||u_m - u_n||_{L^{p_0\lambda}([s,s+h],L^{p_0\sigma}(\mathbb{R}^d))}^{\gamma_l}, \tag{19}$$

where

$$\gamma_l := \left(1 - \frac{2}{p_1}\right) \dots \left(1 - \frac{2}{p_l}\right),$$

$$\alpha_{l} := \frac{1}{p_{1}} \left(1 - \frac{2}{p_{2}} \right) \left(1 - \frac{2}{p_{3}} \right) \dots \left(1 - \frac{2}{p_{l}} \right) + \frac{1}{p_{2}} \left(1 - \frac{2}{p_{3}} \right) \left(1 - \frac{2}{p_{4}} \right) \dots \left(1 - \frac{2}{p_{l}} \right) + \dots + \frac{1}{p_{l-1}} \left(1 - \frac{2}{p_{l}} \right) + \frac{1}{p_{l}},$$

$$\left(p^{-1} p_{1}^{-1} \left(1 - 2p_{1}^{-1} \right) p_{1}^{-1} \left(1 - 2p_{1}^{-1} \right) \left(1 - 2p_{1}^{-1} \right) p_{2}^{-1} \right) \left(1 - 2p_{1}^{-1} \right) \right)^{2k}$$

$$\Gamma_l := \left(p_l^{p_l^{-1}} p_{l-1}^{p_{l-1}^{-1}(1-2p_l^{-1})} p_{l-2}^{p_{l-2}^{-1}(1-2p_{l-1}^{-1})(1-2p_l^{-1})} \dots p_1^{p_1^{-1}(1-2p_2^{-1})\dots(1-2p_l^{-1})} \right)^{2k}.$$

We wish to take $l \to \infty$ in (19): since $p_l \to \infty$ as $l \to \infty$, this would yield the required inequality (7) provided that sequences $\{\alpha_l\}$, $\{\Gamma_l\}$ are bounded from above, and $\{\gamma_l\}$ is bounded from below by a positive constant. Note that $\alpha_l = a^l - \frac{1}{p_l(a-1)}$, $\gamma_l = p_0 \frac{a^{l-1}}{\sigma p_l}$. In view of (17),

$$\sup_{l} \alpha_{l} \leqslant \left(\frac{p_{0}}{\sigma} + 2 - \frac{p_{0}(d - 2 + 2\alpha)}{d}\right)^{-1} < \infty, \quad \sup_{l} \gamma_{l} < \infty, \tag{20}$$

$$\inf_{l} \gamma_{l} > \left(1 - \frac{\sigma(d - 2 + 2\alpha)}{d}\right) \left(1 - \frac{\sigma(d - 2 + 2\alpha)}{d} + \frac{2\sigma}{p_{0}}\right)^{-1} > 0.$$
 (21)

Further, noticing that (cf. (17)) $\Gamma_l^{1/2k} = p_l^{p_l^{-1}} p_{l-1}^{ap_l^{-1}} p_{l-2}^{a^2p_l^{-1}} \dots p_1^{a^{l-1}p_l^{-1}}$, we have by (18)

$$\Gamma_l^{1/2k} \leqslant (c_1 a^l)^{(c_2 a^l)^{-1}} (c_1 a^{l-1})^{(c_2 a^{l-1})^{-1}} \dots (c_1 a)^{(c_2 a)^{-1}} = \left(c_1^{(a^l - 1)/(a^l (a - 1))} a^{\sum_{j=1}^l j a^{-j}} \right)^{c_2^{-1}} \leqslant \left(c_1^{(a - 1)^{-1}} c_2^{a(a - 1)^{-1}} \right)^{c_2^{-1}} < \infty.$$
(22)

Now, estimates (20), (21) and (22) imply that we can take $l \to \infty$ in (16):

$$||u_m - u_n||_{L^{\infty}([s,s+h],L^{\infty}(\mathbb{R}^d))} \leq B||u_m - u_n||_{L^{p_0}([s,s+h],L^{p_0}(\mathbb{R}^d))}^{\gamma}.$$

Taking sup in $0 \le s \le T - h$ in both sides of the inequality, we obtain (7) in Lemma 3.

REMARK 5. The main concern of the iterative procedure has been to keep $\inf_l \gamma_l > 0$: if $\gamma_l \downarrow 0$, then the result of the iterations $(\|U_m f - U_n f\|_{L^{\infty}(D_T \times \mathbb{R}^d)} \leqslant C)$ would be useless for the purpose of proving Theorem 1.

Proof of Lemma 4. By the reproduction property, and in view of (8), it suffices to show that $\{U_m f\}$ is fundamental in $L^{\infty}(D_{T,h}, L^2(\mathbb{R}^d))$ for some h > 0. We show this in three steps:

Step 1. Define

$$\rho_{\delta}(x) := (1 + \delta |x|^2)^{-\frac{1}{2}}, \quad \delta > 0, \quad x \in \mathbb{R}^d.$$

In Step 1, we are going to show that there is an h = h(g) > 0 (g is from the condition (**BC**_m)) such that for any $\varepsilon > 0$ there is a $0 < \delta < 1$ such that

$$\|(1-\rho_{\delta})^{\frac{1}{2}} U_m f\|_{L^{\infty}(D_{T,h},L^2(\mathbb{R}^d))} < \varepsilon \quad \text{for all } m.$$
 (23)

Indeed, set $u_m(t) = U_m(t,s)f$ $(t \ge s)$. Set

$$J := \int_{\delta}^{\tau} \langle (1 - \rho_{\delta})(\nabla u_m)^2 \rangle dt.$$

We multiply the equation in (1) by $(1 - \rho_{\delta})u_m$ and integrate by parts to get

$$\langle (1 - \rho_{\delta}) u_m^2(\tau) \rangle - \langle (1 - \rho_{\delta}) f^2 \rangle + 2J = \int_s^{\tau} \langle u_m^2, (-\Delta \rho_{\delta}) \rangle dt - 2 \int_s^{\tau} \langle (1 - \rho_{\delta}) u_m b_m, \nabla u_m \rangle dt.$$
 (24)

Estimating the last term by applying the inequality $2ac \leq \gamma a^2 + \frac{1}{\gamma}c^2$ ($\gamma > 0$) and the condition (\mathbf{BC}_m), we get:

$$-2\int_{s}^{\tau} \langle (1-\rho_{\delta})u_{m}b_{m}, \nabla u_{m} \rangle dt$$

$$\leq \gamma J + \frac{1}{\gamma} \int_{s}^{\tau} \langle (1-\rho_{\delta})b_{m}^{2}u_{m}^{2} \rangle dt$$

$$\leq \gamma J + \frac{\beta}{\gamma} \int_{s}^{\tau} \langle (\nabla (u_{m}\sqrt{1-\rho_{\delta}}))^{2} \rangle dt + \frac{1}{\gamma} \int_{s}^{\tau} \langle g(t)(1-\rho_{\delta})u_{m}^{2} \rangle dt.$$

We compute:

$$\int_{s}^{\tau} \langle (\nabla (u_{m}\sqrt{1-\rho_{\delta}}))^{2} \rangle dt$$

$$= J + \int_{s}^{\tau} \langle u^{2}(\nabla \sqrt{1-\rho_{\delta}})^{2} \rangle dt + \frac{1}{2} \int_{s}^{\tau} \langle u^{2}, (-\Delta\rho_{\delta}) \rangle dt$$

$$= J + \int_{s}^{\tau} \left\langle u^{2}, \frac{\delta^{2}x^{2}\rho^{6}}{4(1-\rho)} \right\rangle dt + \int_{s}^{\tau} \left\langle u^{2}, \frac{\rho^{3}\delta}{2}(d-3\rho^{2}\delta x^{2}) \right\rangle dt.$$

Thus, estimating $\int_{s}^{\tau} \langle g(t)(1-\rho_{\delta})u_{m}^{2}\rangle dt \leqslant G(h)\sup_{t\in[s,\tau]}\langle (1-\rho_{\delta})u_{m}^{2}(t)\rangle$, we obtain from (24):

$$\left(1 - \frac{G(h)}{\gamma}\right) \sup_{t \in [s,\tau]} \langle (1 - \rho_{\delta}) u_m^2(t) \rangle + \left(2 - \gamma - \frac{\beta}{\gamma}\right) J
\leqslant \langle (1 - \rho_{\delta}) f^2 \rangle + \frac{\beta}{\gamma} \int_s^{\tau} \left\langle u^2, \frac{\delta^2 x^2 \rho^6}{4(1 - \rho)} \right\rangle dt + \left(1 - \frac{\beta}{\gamma}\right) \int_s^{\tau} \left\langle u^2, \frac{\rho^3 \delta}{2} (d - 3\rho^2 \delta x^2) \right\rangle dt.$$

Now, fix $\gamma > 0$ by the condition $2 - \gamma - \frac{\beta}{\gamma} > 0$, and then fix h by the condition $1 - \frac{1}{\gamma}G(h) > 0$ (recall that G(h) = o(h)). Noting that $\frac{\delta^2 x^2 \rho^6(x)}{4(1-\rho(x))} \leqslant \frac{\delta}{2}\rho(x)$, $\frac{\rho^3(x)\delta}{2}(d-3\rho^2(x)\delta x^2) \leqslant \delta \frac{d-3}{2}\rho(x)$, $\int_{\delta}^{\tau} \langle \rho_{\delta} u^2 \rangle dt \leqslant hC \|f\|_2^2$ (by (8) with p = 2), we obtain:

$$\left(1 - \frac{G(h)}{\gamma}\right) \sup_{t \in [s,\tau]} \langle (1 - \rho_{\delta}) u_m^2(t) \rangle \leqslant \langle (1 - \rho_{\delta}) f^2 \rangle + \delta h C \left(\frac{\beta}{2\gamma} + \left(1 - \frac{\beta}{\gamma}\right) \frac{d-3}{2}\right) \|f\|_2^2.$$

Since $\rho_{\delta} \to 1$ uniformly on the support of $f \in C_c^{\infty}(\mathbb{R}^d)$ as $\delta \to 0$, the right-hand side of the inequality can be made arbitrarily small by taking sufficiently small δ , i.e. we have proved (23).

Step 2. In Step 2, we are going to show that there is an h = h(g) > 0 such that for a given $\varepsilon > 0$ and $\delta := \delta(\varepsilon)$ from Step 1 there is a $n_0 = n_0(\varepsilon)$ such that

$$\left\| \rho_{\delta}^{\frac{1}{2}} (U_m f - U_n f) \right\|_{L^{\infty}(D_{T,h}, L^2(\mathbb{R}^d))} < \varepsilon \quad \text{ for all } m, n \geqslant n_0.$$
 (25)

Indeed, by the equation for $r(t) := u_m(t) - u_n(t) = U_m(t,s)f - U_n(t,s)f$,

$$\int_{s}^{\tau} \left\langle \rho_{\delta} r \frac{\partial r}{\partial t} \right\rangle dt + \int_{s}^{\tau} \left\langle \rho_{\delta} r (-\Delta r) \right\rangle dt = -\int_{s}^{\tau} \left\langle \rho_{\delta} r, b_{m} \cdot \nabla r \right\rangle dt - \int_{s}^{\tau} \left\langle \rho_{\delta} r, (b_{m} - b_{n}) \cdot \nabla u_{n} \right\rangle dt.$$

Integrating by parts in the second term in the left-hand side, and applying the inequality $ac \le \frac{1}{2}a^2 + \frac{1}{2}c^2$ to the first term in the right-hand side, we obtain:

$$\langle \rho_{\delta} r^{2}(\tau) \rangle + \int_{s}^{\tau} \langle \rho_{\delta}(\nabla r)^{2} \rangle dt + 2 \int_{s}^{\tau} \langle r \nabla \rho_{\delta}, \nabla r \rangle dt \leqslant \int_{s}^{\tau} \langle \rho_{\delta} b_{m}^{2} r^{2} \rangle dt - 2 \int_{s}^{\tau} \langle \rho_{\delta} r, (b_{m} - b_{n}) \cdot \nabla u_{n} \rangle dt$$

$$\langle \rho_{\delta} r^2(\tau) \rangle + \int_s^{\tau} \langle \rho_{\delta}(\nabla r)^2 \rangle dt + K \leqslant L + Z.$$

We have

$$K = \int_{s}^{\tau} \langle \nabla \rho_{\delta}, \nabla r^{2} \rangle dt = \int_{s}^{\tau} \langle (-\Delta \rho_{\delta}) r^{2} \rangle dt = \int_{s}^{\tau} \langle \left(\delta d \rho_{\delta}^{3} - 3 \delta^{2} |x|^{2} \rho_{\delta}^{5} \right) r^{2} \rangle dt \geqslant 0.$$

Next, using (\mathbf{BC}_m) we obtain

$$\begin{split} L &= \int_{s}^{\tau} \langle \rho_{\delta} b_{m}^{2} r^{2} \rangle dt \\ &\leqslant \beta \int_{s}^{\tau} \langle (\nabla (\sqrt{\rho_{\delta}} r))^{2} \rangle dt + \int_{s}^{\tau} g(t) \langle \rho_{\delta} r^{2} \rangle dt \\ &\left(\text{here we use } \frac{(\nabla \rho_{\delta}(x))^{2}}{\rho_{\delta}(x)} = \delta^{2} |x|^{2} \rho^{5} \right) \\ &= \frac{\beta}{4} \int_{s}^{\tau} \langle \delta^{2} |x|^{2} \rho_{\delta}^{5} r^{2} \rangle dt + \frac{\beta}{2} K + \beta \int_{s}^{\tau} \langle \rho_{\delta}(\nabla r)^{2} \rangle dt + \int_{s}^{\tau} g(t) \langle \rho_{\delta} r^{2} \rangle dt. \end{split}$$

Now we combine the above bound on L and the estimates

$$\int_{s}^{\tau} g(t) \langle \rho_{\delta} r^{2} \rangle dt \leqslant G(h) \sup_{t \in [s,\tau]} \langle \rho_{\delta} r^{2}(t) \rangle, \quad \int_{s}^{\tau} \langle \delta^{2} |x|^{2} \rho_{\delta}^{5} r^{2} \rangle dt \leqslant h \delta \sup_{t \in [s,\tau]} \langle \rho_{\delta} r^{2}(t) \rangle,$$

obtaining:

$$\left(1 - G(h) - \frac{\beta \delta h}{4}\right) \sup_{t \in [s,\tau]} \langle \rho_{\delta} r^2(t) \rangle + (1 - \beta) \int_s^{\tau} \langle \rho_{\delta} (\nabla r)^2 \rangle dt + \left(1 - \frac{\beta}{2}\right) K \leqslant Z.$$
(26)

Fix h > 0 by the condition $1 - G(h) - \frac{\beta \delta h}{4} \geqslant \frac{1}{2}$ (recall that $G(h) = o(h), \beta, \delta < 1$).

Finally, we estimate the term Z as follows:

$$Z = -2 \int_{s}^{\tau} \langle \rho_{\delta} r(b_{m} - b_{n}), \nabla u_{n} \rangle dt$$

$$\leq \varepsilon \int_{s}^{\tau} (\nabla u_{n})^{2} dt + \frac{1}{\varepsilon} \int_{s}^{\tau} \langle \rho_{\delta}^{2} r^{2} (b_{m} - b_{n})^{2} \rangle dt$$
(here we use $\int_{s}^{\tau} (\nabla u_{n})^{2} dt \leq C \|f\|_{2}^{2}$, see Appendix A with $p = 2$)
$$\leq \varepsilon C \|f\|_{2}^{2} + \frac{1}{\varepsilon} \int_{s}^{\tau} \langle \rho_{\delta}^{2} r^{2} (b_{m} - b_{n})^{2} \rangle dt,$$

$$\leq \varepsilon C \|f\|_{2}^{2} + \frac{1}{\varepsilon} \int_{s}^{\tau} \langle (1 - \mathbf{1}_{B(0,R)}) \rho_{\delta}^{2} r^{2} (b_{m} - b_{n})^{2} \rangle dt + \frac{1}{\varepsilon} \int_{s}^{\tau} \langle \mathbf{1}_{B(0,R)} \rho_{\delta}^{2} r^{2} (b_{m} - b_{n})^{2} \rangle dt$$

$$=: \varepsilon C \|f\|_{2}^{2} + \frac{1}{\varepsilon} Z_{1} + \frac{1}{\varepsilon} Z_{2}.$$

In turn,

$$Z_1 \leqslant 2(1+\delta R^2)^{-\frac{1}{2}} \left(\int_s^\tau \langle \rho_\delta b_m^2 r^2 \rangle dt + \int_s^\tau \langle \rho_\delta b_n^2 r^2 \rangle dt \right).$$

Estimating the terms in the brackets in the last inequality in the same way as L, and substituting the resulting estimate on Z into (26), we obtain:

$$\left(1 - G(h) - \frac{\beta \delta h}{4} - \frac{1}{\varepsilon} (1 + \delta R^2)^{-\frac{1}{2}} C_1\right) \sup_{t \in [s,\tau]} \langle \rho_{\delta} r^2(t) \rangle
+ \left(1 - \beta - \frac{4\beta}{\varepsilon} (1 + \delta R^2)^{-\frac{1}{2}}\right) \int_s^{\tau} \langle \rho_{\delta} (\nabla r)^2 \rangle dt + \left(1 - \frac{\beta}{2} - \frac{2\beta}{\varepsilon} (1 + \delta R^2)^{-\frac{1}{2}}\right) K \leqslant \varepsilon C \|f\|_2^2 + \frac{1}{\varepsilon} Z_2,$$
where $C_1 := 4 \left(G(h) + \frac{\beta \delta h}{4}\right)$.

Choose $R = R(\varepsilon, \delta) > 0$ sufficiently large to ensure that the coefficients of $\int_s^{\tau} \langle \rho_{\delta}(\nabla r)^2 \rangle dt$, K remain positive and, moreover, the coefficient of $\sup_{t \in [s,\tau]} \langle \rho_{\delta} r^2(t) \rangle$ is greater or equal to $\frac{1}{4}$ (since $1 - G(h) - \frac{\beta \delta h}{4} \geqslant \frac{1}{2}$). Then the previous inequality yields

$$\frac{1}{4} \sup_{t \in [s,\tau]} \langle \rho_{\delta} r^2(t) \rangle \leqslant \varepsilon C \|f\|_2^2 + \frac{1}{\varepsilon} Z_2. \tag{27}$$

Since U_m is L^{∞} -contractive, $||r(\tau)||_{\infty} \leq 2||f||_{\infty}$ and so there is a $n_0 = n_0(R, \varepsilon)$ such that

$$Z_2 = \int_s^{\tau} \langle \mathbf{1}_{B(0,R)} \rho_{\delta}^2 r^2 (b_m - b_n)^2 \rangle dt$$

$$\leq 4 \|f\|_{\infty}^2 \int_s^{\tau} \langle \mathbf{1}_{B(0,R)} (b_m - b_n)^2 \rangle dt < \varepsilon^2$$

for all $(s, \tau) \in D_{T,h}$ for all $m, n \ge n_0$ since $b_m \to b$ in $L^2_{loc}([s, s+h] \times \mathbb{R}^d, \mathbb{R}^d)$. Thus, in view of (27)

$$\sup_{t \in [s,\tau]} \langle \rho_{\delta} r^2(t) \rangle < 4(C \|f\|_2^2 + 1) \varepsilon.$$

Therefore, we have proved (25).

Step 3. Set $\|\cdot\| := \|\cdot\|_{L^{\infty}(D_{T,h},L^2(\mathbb{R}^d))}$. The results of Step 1 and Step 2 yield: for any $\varepsilon > 0$ there is a $\delta = \delta(\varepsilon) < 1$, and an $n_0 = n_0(\varepsilon)$ such that

$$||U_m f - U_n f||^2 = ||(1 - \rho_{\delta})^{\frac{1}{2}} (U_m f - U_n f)||^2 + ||\rho_{\delta}^{\frac{1}{2}} (U_m f - U_n f)||^2$$

$$\leq 2||(1 - \rho_{\delta})^{\frac{1}{2}} U_m f||^2 + 2||(1 - \rho_{\delta})^{\frac{1}{2}} U_n f||^2 + ||\rho_{\delta}^{\frac{1}{2}} (U_m f - U_n f)||^2 < 5\varepsilon$$

for all $m, n \ge n_0$.

The latter implies that $\{U_m f\}$ is fundamental in $L^{\infty}(D_{T,h}, L^2(\mathbb{R}^d))$, as required.

Proof of Proposition 1. In Section 2.1 we proved the existence of $Uf := L^{\infty}(D_T \times \mathbb{R}^d)$ - $\lim_{m \to \infty} U_m f$, $f \in C_c^{\infty}(\mathbb{R}^d)$. Since $C_c^{\infty}(\mathbb{R}^d)$ in dense in $C_{\infty}(\mathbb{R}^d)$, and U_m is L^{∞} -contractive, U extends by continuity to $C_{\infty}(\mathbb{R}^d)$. Thus, the property (**E2**) is established.

The properties (E1) and (E3) follow from (5) and the analogous properties of U_m .

We are left to prove (**E4**). Set u(t) = U(t,0)f $(t \ge 0)$, $f \in C_{\infty}(\mathbb{R}^d)$. In order to verify that u is a weak solution of (1), we have to show that $b \cdot \nabla u \in L^1_{loc}((0,\infty) \times \mathbb{R}^d)$. Since $b \in L^2_{loc}([0,\infty) \times \mathbb{R}^d, \mathbb{R}^d)$, it suffices to show that $\nabla u \in L^2_{loc}((0,\infty) \times \mathbb{R}^d, \mathbb{R}^d)$. Fix $k > \frac{d}{2}$. Set

$$\theta_{\delta}(x) := (1 + \delta |x|^2)^{-k}, \quad \delta > 0, \quad x \in \mathbb{R}^d.$$

It is easy to see that $\theta_{\delta} \in L^1(\mathbb{R}^d)$.

Set
$$u_m(t) = U_m(t,0)f$$
 $(t \ge 0)$.

Claim 1. There exist an h > 0 and a $\delta > 0$ such that for all m

$$\int_{0}^{h} \langle \theta_{\delta}(\nabla u_{m})^{2} \rangle dt \leqslant c_{1} \langle \theta_{\delta} f^{2} \rangle + c_{2} \sqrt{\delta} \|f\|_{\infty}^{2}, \quad f \in C_{\infty}(\mathbb{R}^{d}),$$
(28)

where constants $c_1, c_2 < \infty$ don't depend on m.

Proof of Claim 1. For all m,

$$C_0 \int_0^h \langle \theta_{\delta}(\nabla u_m)^2 \rangle dt \leqslant \langle \theta_{\delta} f^2 \rangle + C_1 k \sqrt{\delta} \left(\int_0^h \langle \theta_{\delta} u_m^2 \rangle dt + \int_0^h \langle \theta_{\delta}(\nabla u_m)^2 \rangle dt \right), \tag{29}$$

where $0 < C_0, C_1 < \infty$ do not depend on m or δ . The proof is similar to the proof of Lemma 4 (Step 1) but with $1 - \rho_{\delta}$ replaced by θ_{δ} . By (29),

$$(C_0 - C_1 k \sqrt{\delta}) \int_0^h \langle \theta_\delta(\nabla u_m)^2 \rangle dt \leqslant \langle \theta_\delta f^2 \rangle + C_1 k \sqrt{\delta} \int_0^h \langle \theta_\delta u_m^2 \rangle dt \quad \text{for all } m.$$

We choose $\delta > 0$ by the condition $C_0 - C_1 k \sqrt{\delta} > 0$. Recalling that U_m is L^{∞} -contractive and $\theta_{\delta} \in L^1$, we obtain $\int_0^h \langle \theta_{\delta} u_m^2 \rangle dt \leqslant C_3 ||f||_{\infty}^2$. This yields (28).

We fix h and δ from Claim 1. By (28), the sequence $\{\nabla u_m|_{[0,h]\times \bar{B}(0,R)}\}$ is weakly relatively compact in $L^2([0,h]\times \bar{B}(0,R),\mathbb{R}^d)$, where $\bar{B}(0,R)$ is the closed ball of radius R>0 arbitrarily fixed. Hence, $\nabla u|_{(0,h)\times B(0,R)}$ (understood in the sense of distributions) is in $L^2([0,h]\times \bar{B}(0,R),\mathbb{R}^d)$. It follows that $\nabla u\in L^2_{\rm loc}((0,\infty)\times \mathbb{R}^d,\mathbb{R}^d)$.

(Note that if $f \in C_{\infty}(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$, then $\nabla u \in L^2_{loc}((0,\infty) \times \mathbb{R}^d, \mathbb{R}^d)$ also follows from (8) with p=2.)

It remains to show that u satisfies the integral identity (3). Clearly,

$$\int_0^\infty \langle u_m, \partial_t \psi \rangle dt - \int_0^\infty \langle u_m, \Delta \psi \rangle dt + \int_0^\infty \langle (b_m - b) \cdot \nabla u_m, \psi \rangle dt + \int_0^\infty \langle b \cdot \nabla u_m, \psi \rangle dt = 0.$$
 (30)

Without loss of generality, we consider only the test functions ψ with spt $\psi \subset (0,h) \times B(0,R)$, for some R > 0. Since $u_m \to u$ in $C([0,h], C_{\infty}(\mathbb{R}^d))$ by (5), we can pass to the limit $m \to \infty$ in the first two terms in the left-hand side of (30). By the Hölder inequality,

$$\left| \int_0^\infty \langle (b_m - b) \cdot \nabla u_m, \psi \rangle dt \right| \leqslant S^{\frac{1}{2}} \left(\int_0^\infty \langle (b_m - b)^2 |\psi| \rangle dt \right)^{\frac{1}{2}},$$

where $S := \sup_m \int_s^T \langle |\nabla u_m|^2 |\psi| \rangle dt < \infty$ by (28). Therefore, since $b_m \to b$ in $L^2_{loc}([0,\infty) \times \mathbb{R}^d, \mathbb{R}^d)$ and spt ψ is compact, the third term the left-hand side of (30) tends to 0 as $m \to \infty$. Finally, we can pass to the limit $m \to \infty$ in the fourth term in (30) because $\{\nabla u_m|_{[0,h]\times \bar{B}(0,R)}\}$ is weakly relatively compact in $L^2([0,h]\times \bar{B}(0,R))$, see (28), and $|b\psi| \in L^2([0,h]\times \bar{B}(0,R))$.

APPENDIX A.

Proof of (8). We omit index m: $u = u_m$. Without loss of generality, we may assume that $\tau \leq h$ for a small h, and that $f \geq 0$, so $u \geq 0$. Multiply the equation (1) by u^{p-1} and integrate to get

$$R := \int_0^\tau \langle u^{p-1}, \partial_t u \rangle dt = \int_0^\tau \langle u^{p-1}, \Delta u \rangle dt - \int_0^\tau \langle u^{p-1}, b_m \cdot \nabla u \rangle dt =: R_1 + R_2.$$

We have

$$R = \frac{1}{p} \langle u^p(\tau) \rangle - \frac{1}{p} \langle f^p \rangle, \quad R_1 = -(p-1) \frac{4}{p^2} \int_0^\tau \langle (\nabla u^{\frac{p}{2}})^2 \rangle dt.$$

Using the inequality $ac \leq \nu a^2 + \frac{1}{4\nu}c^2$ ($\nu > 0$) and the condition (\mathbf{BC}_m), we obtain:

$$R_2 = -\frac{2}{p} \int_0^\tau \langle u^{\frac{p}{2}}, b_m \cdot \nabla u^{\frac{p}{2}} \rangle dt \leqslant \frac{2}{p} \nu \int_0^\tau \langle (\nabla u^{\frac{p}{2}})^2 \rangle dt + \frac{1}{2p\nu} \left(\beta \int_0^\tau \langle (\nabla u^{\frac{p}{2}})^2 \rangle dt + \int_0^\tau \langle g(t)u^p \rangle dt \right).$$

Therefore,

$$\frac{1}{p}\langle u^p(\tau)\rangle + \left(\frac{4(p-1)}{p^2} - \frac{2}{p}\nu - \frac{\beta}{2p\nu}\right) \int_0^\tau \langle (\nabla u^{\frac{p}{2}})^2 \rangle dt \leqslant \frac{1}{p}\langle f^p \rangle + \frac{\beta}{2p\nu} \int_0^\tau g(t)\langle u^p \rangle dt$$

The maximum of $\nu \mapsto \frac{4(p-1)}{p^2} - \frac{2}{p}\nu - \frac{\beta}{2p\nu}$, attained at $\sqrt{\beta/4}$, is positive if and only if $p > (1 - \sqrt{\beta/4})^{-1}$. Set $\nu := \sqrt{\beta/4}$. Estimating $\int_0^\tau g(t)\langle u^p\rangle dt \leqslant G(h)\sup_{t\in[0,\tau]}\langle u^p(t)\rangle$, and selecting h sufficiently small, so that $1 - \frac{\beta}{2\nu}G(h) > 0$ (recall that G(h) = o(h)), we obtain

$$\frac{1}{p}\left(1-\frac{\beta}{2\nu}G(h)\right)\sup_{t\in[0,\tau]}\langle u^p(t)\rangle+\left(\frac{4(p-1)}{p^2}-\frac{2}{p}\nu-\frac{\beta}{2p\nu}\right)\int_0^\tau\langle(\nabla u^{\frac{p}{2}})^2\rangle dt\leqslant\frac{1}{p}\langle f^p\rangle.$$

which yields (8).

References

- A. Gulisashvili and J. A. van Casteren. Non-autonomous Kato Classes and Feynman-Kac Propagators. World Scientific, 2006.
- [2] D. Kinzebulatov. A new approach to the L^p -theory of $-\Delta + b \cdot \nabla$, and its applications to Feller processes with general drifts, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), to appear, 21 p.
- [3] V. F. Kovalenko, M. A. Perelmuter, and Yu. A. Semenov. Schrödinger operators with $L_W^{l/2}(\mathbb{R}^l)$ -potentials. J. Math. Phys., 22, 1981, p. 1033-1044.
- [4] V. F. Kovalenko and Yu. A. Semenov. C_0 -semigroups in $L^p(\mathbb{R}^d)$ and $C_{\infty}(\mathbb{R}^d)$ spaces generated by differential expression $\Delta + b \cdot \nabla$. (Russian) *Teor. Veroyatnost. i Primenen.*, 35 (1990), p. 449-458; translation in *Theory Probab. Appl.* 35 (1990), p. 443-453 (1991).
- [5] N. V. Krylov and M. Röckner. Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields, 131 (2005), p. 154-196.
- [6] Yu. A. Semenov. Regularity theorems for parabolic equations. J. Funct. Anal., 231 (2006), p. 375-417.
- [7] Qi S. Zhang. Gaussian bounds for the fundamental solutions of $\nabla(A\nabla u) + B\nabla u u_t = 0$. Manuscripta Math., 93 (1997), p. 381-390.

Université Laval, Département de mathématiques et de statistique, pavillon Alexandre-Vachon, Québec, PQ, G1V 0A6, Canada

Current address: Indiana University, Department of Mathematics, Rawles Hall, Bloomington, IN, 47405, United States

E-mail address: damkinze@indiana.edu