Definitions and Theorems from Elliptic Curves

Isaac Martin

Last compiled January 27, 2022

§ 21 - Jan - 2022

Definition 0.1 (Rational Triangle). Let a,b,c be the side lengths of a right triangle Δ .

- 1. Δ is rational if $a, b, c \in \mathbb{Q}$.
- 2. Δ is *primitive* if $a,b,c \in \mathbb{Z}$ and are pairwise coprime.

Lemma 0.2 (Lemma 1.1). Every primitive triangle has side lengths of the form $u^2 + v^2$, 2uv, and $u^2 - v^2$ for some integers u > v > 0.

Definition 0.3. $D \in \mathbb{Q}_{>0}$ is a *congruent number* if there exists a rational triangle Δ with $lcm(\Delta) = 0$.

Corollary 0.4 (1.6 in Lecture). Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. Without loss of generality may assume $K = \overline{K}$. By a change of coordinates we may assume $E : y^2 = x(x-1)(x-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$ Suppose $(x,y) \in E(K(t))$. Write $x = \frac{u}{v}$ for coprime polynomials $u,v \in K[t]$. Then

$$w^2 = uv(u - v)(u - \lambda v)$$

for some $w \in K[t]$. Because K[t] is a UFD, we get that u, v, u - v, and $u - \lambda v$ are all squares in K[t] and then Lemma

Definition 0.5 (Riemann-Roch Space). Let C be a smooth projective curve. The Riemann-Roch space of a $D \in (C)$ is

$$\mathcal{L}(D) = \{ f \in K(C)^* \mid \text{div}(f) + D \ge 0 \} \cup \{ 0 \}$$

i.e. the K-vector space of rational functions on C with "poles no worse than specified by D."