CS412 office hour

Apr 26, 2019

Today's Office Hour

QA

Plate Notation

- Handy for repetitions
 - E.g. you have a set of documents, each has a few R.V.
- Not great for complex models. Cannot handle interdependent repetitions.
 - o E.g. dependencies between time steps

Observed vs hidden variables

- Observed: What you see in your input
- Hidden: What you don't see in your input
 - o E.g. POS tagging
 - Observed: words
 - Hidden: POS tag for each word

Imbalanced Classes in Binary Classification

- Rare positive examples but numerous negative ones.
 - Cancer Diagnosis
 - Credit Card Fraud Detection
 - Fire alarm
- Objectives:
 - Maximize true positive.
 - False positive > False Negative.
 - Creating a fraud alert at a correct transaction is preferred than missing fraudulent transactions.

Training paradigms on Imbalanced Data

- OverSampling Re-sampling of data from positive class
 - Total Observations = 1000 , Fraudulent Observations = 20, Non Fraudulent
 Observations = 980
 - Event Rate= 2 %
 - In this case we are replicating 20 fraud observations 20 times.
 - Fraudulent Observations after replicating the minority class observations = 400
 - Total Observations in the new data set after oversampling=1380
 - Event Rate for the new data set after over sampling= 400/1380 = 29 %

Sampling Paradigms

- UnderSampling Randomly eliminate tuples from negative class
 - Total Observations = 1000, Fraudulent Observations = 20, Non Fraudulent
 Observations = 980
 - Event Rate= 2 %
 - Take 10% samples without replacement from Non Fraud instances. And combining them with Fraud instances.
 - Non Fraudulent Observations after random under sampling = 10% of 980 = 98
 - Total Observations after combining them with Fraudulent observations = 20+98=118
 - Event Rate for the new dataset after under sampling = 20/118 = 17%

Comparison between Sampling Techniques

	OverSampling	UnderSampling
Advantages	no information loss	Improve run timeReduce storage if training data is huge.
Disadvantages	Increases the likelihood of overfitting as replicate positive class.	 Can discard potentially useful information Chosen random sample maybe biased. Not accurate representation of training data.

Other Techniques

- Threshold-moving
 - Move the decision threshold so that the positive class samples are easier to classify.
 - Less chance of costly false negative errors, can increase false positive error.
- Ensemble techniques
 - Ensemble multiple classifiers to take majority decision.
 - Each classifier has all positive class samples and sample of negative class samples.