Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

A) non assume nessuno dei valori indicati nelle altre risposte

B) tende a zero

C) vale
$$2T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

D) diverge

E) vale
$$2\frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

F) vale
$$2\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

Esercizio 2. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

A) è gaussiano con la stessa media e la stessa varianza

B) ha media diversa da zero

C) i dati non sono sufficienti per calcolare la varianza di y(t)

D) è gaussiano con la stessa media, ma con varianza diversa

Esercizio 3. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

A)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$$

C)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

1

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t)
- **B)** y(t) = x(t 3T) * h(t 2T)
- **C)** y(t) = x(t 2T) * h(t 2T)

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- C) $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 8. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- **A)** $x(t) = e^{-|t|}$
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t)
- **B)** y(t) = x(t 6T) * h(t 4T)
- C) y(t) = x(t 4T) * h(t 4T)

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-2z}$

E)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

Esercizio 4. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) tende a zero
- C) diverge
- **D)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- E) non assume nessuno dei valori indicati nelle altre risposte.
- **F)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- **C)** $x(t) = e^{-|t|}$
- **D)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$

Esercizio 7. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano a varianza infinita per t > 0.
- B) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- C) y(t) è un processo gaussiano WSS.

Esercizio 8. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- B) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- **B)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) vale $\frac{2}{1 e^{-2\alpha}}$
- $\mathbf{D)} \text{ vale } \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- E) non assume nessuno dei valori indicati nelle altre risposte
- F) tende a zero

Esercizio 3. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

1

- **A)** y(t) = x(t 2T) * h(t 2T)
- **B)** y(t) = x(t 3T) * h(t 2T)
- **C)** y(t) = x(t 3T) * h(t)

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-2z^{-2}}$

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = e^{-2t}u(t)$
- C) $x(t) = -2e^{-2t}u(t) + \delta(t)$
- **D)** $x(t) = -2e^{-2t}u(t)$

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 7. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media e la stessa varianza
- B) ha media diversa da zero
- C) i dati non sono sufficienti per calcolare la varianza di y(t)
- D) è gaussiano con la stessa media, ma con varianza diversa

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$
- **B)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega} [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega} [1 + 2\cos(\omega) + \cos^2(\omega)]$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

A) vale
$$2T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

B) vale
$$2\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

C) vale
$$2\frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

- D) tende a zero
- E) diverge
- F) non assume nessuno dei valori indicati nelle altre risposte

Esercizio 2. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa varianza
- B) ha media nulla
- C) è gaussiano con la stessa media
- D) ha varianza unitaria

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- C) $Y(z) = \frac{1}{1-2z^{-4}}$

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t 4T)
- **B)** y(t) = x(t 4T) * h(t 4T)
- **C)** y(t) = x(t 6T) * h(t)

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- **B)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

Esercizio 8. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- **D)** $x(t) = e^{-|t|}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = te^{-t}u(t)$
- **B)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = e^{-t}(1-t)u(t)$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 5\cos(8\pi t)$
- **D)** $x(t) = 20\cos(8\pi t)$

Esercizio 3. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

1

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- **B)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) non assume nessuno dei valori indicati nelle altre risposte

- **D)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **E)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- F) tende a zero

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 6. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 3T)
- **B)** y(t) = x(t 5T) * h(t)
- **C)** y(t) = x(t 5T) * h(t 3T)

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 8. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media, ma con varianza diversa
- B) i dati non sono sufficienti per calcolare la varianza di y(t)
- C) ha media diversa da zero
- D) è gaussiano con la stessa media e la stessa varianza

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

E) Nessuna delle altre risposte

Esercizio 2. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

1

Che espressione ha x(t)?

A)
$$x(t) = 5\cos(4\pi t)$$

B)
$$x(t) = 10\cos(6\pi t)$$

C)
$$x(t) = 20\cos(6\pi t)$$

D)
$$x(t) = 20\sin(2\pi t)$$

Esercizio 4. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media, ma con varianza diversa
- B) ha media diversa da zero
- C) è gaussiano con la stessa media e la stessa varianza
- **D)** i dati non sono sufficienti per calcolare la varianza di y(t)

Esercizio 5. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) non assume nessuno dei valori indicati nelle altre risposte
- C) diverge
- D) tende a zero
- **E)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **F)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- B) nessuna delle altre risposte
- **C)** $x(t) = e^{-2t}u(t)$
- **D)** $x(t) = -2e^{-2t}u(t)$

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 5T) * h(t 3T)
- **B)** y(t) = x(t 5T) * h(t)
- **C)** y(t) = x(t 3T) * h(t 3T)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano WSS.
- B) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- C) y(t) è un processo gaussiano a varianza infinita per t > 0.

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

1

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- C) $x(t) = 5\cos(4\pi t)$

D) $x(t) = 10\cos(6\pi t)$

Esercizio 4. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 3T)
- **B)** y(t) = x(t 5T) * h(t 3T)
- **C)** y(t) = x(t 5T) * h(t)

Esercizio 5. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 7. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- **D)** $x(t) = e^{-|t|}$

Esercizio 8. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- $\mathbf{A)} \text{ vale } \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **B)** vale $\frac{2}{1 e^{-2\alpha}}$
- C) vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- D) diverge
- E) tende a zero
- F) non assume nessuno dei valori indicati nelle altre risposte

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t)
- **B)** y(t) = x(t 4T) * h(t 4T)
- **C)** y(t) = x(t 6T) * h(t 4T)

Esercizio 2. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 4. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

1

A) nessuna delle altre risposte

B)
$$x(t) = e^{-2t}u(t)$$

C)
$$x(t) = -2e^{-2t}u(t) + \delta(t)$$

D)
$$x(t) = -2e^{-2t}u(t)$$

Esercizio 5. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

$$\mathbf{A)} \text{ vale } T \frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

B) diverge

C) vale
$$\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

D) non assume nessuno dei valori indicati nelle altre risposte.

E) vale
$$T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

F) tende a zero

Esercizio 6. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano a varianza infinita per t > 0.

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z}$$

B)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

D)
$$Y(z) = \frac{1}{1 - 4z^{-4}}$$

E) Nessuna delle altre risposte

Esercizio 8. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-2z}$$

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

A) vale
$$T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

B) tende a zero

C) vale
$$\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

D) vale
$$T \frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

E) non assume nessuno dei valori indicati nelle altre risposte.

F) diverge

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \left\{ \begin{matrix} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{matrix} \right.$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = te^{-t}u(t)$
- **B)** $x(t) = e^{-t}(1-t)u(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$

Esercizio 6. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 7. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- A) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano a varianza infinita per t > 0.

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t-4T) * h(t-3T)
- **B)** y(t) = x(t 4T) * h(t)
- **C)** y(t) = x(t 3T) * h(t 3T)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

A) nessuna delle altre risposte

B)
$$x(t) = e^{-|t|}$$

C)
$$x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$$

D)
$$x(t) = -e^{-t}u(t) + e^{t}u(-t)$$

Esercizio 2. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

A)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$$

Esercizio 3. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) i dati non sono sufficienti per calcolare la varianza di y(t)
- B) è gaussiano con la stessa media e la stessa varianza
- C) ha media diversa da zero
- D) è gaussiano con la stessa media, ma con varianza diversa

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

1

A) si annulla in
$$f = f_0$$
 se $a > 2$ e $f_0 = (1/2\pi) \arctan \sqrt{1 - (4/a^2)}$.

- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.
- C) non si annulla mai

Esercizio 5. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- A) tende a zero
- B) diverge
- C) non assume nessuno dei valori indicati nelle altre risposte
- **D)** vale $\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- $\mathbf{E)} \text{ vale } \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- $\mathbf{F)} \text{ vale } \frac{2}{1 e^{-2\alpha}}$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \left\{ \begin{array}{ll} x[k/4] & \text{se} \quad k = 4n \\ 0 & \text{altrove} \end{array} \right.$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z^{-4}}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **E)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t)
- **B)** y(t) = x(t 6T) * h(t 4T)
- C) y(t) = x(t 4T) * h(t 4T)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t)
- **B)** y(t) = x(t 4T) * h(t 4T)
- **C)** y(t) = x(t 6T) * h(t 4T)

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) non assume nessuno dei valori indicati nelle altre risposte
- C) tende a zero
- **D)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- E) diverge
- **F)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$

Esercizio 3. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

1

- A) è gaussiano con la stessa varianza
- B) è gaussiano con la stessa media
- C) ha varianza unitaria
- D) ha media nulla

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$
- **B)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega/2} [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega} [1 + \cos(\omega) + \cos(2\omega)]$

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = e^{-t}(1-t)u(t)$
- **B)** $x(t) = te^{-t}u(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 7. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 10\sin(6\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

E)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 2T) * h(t - 2T)$$

B)
$$y(t) = x(t - 3T) * h(t - 2T)$$

C)
$$y(t) = x(t - 3T) * h(t)$$

Esercizio 3. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

A)
$$x(t) = -2e^{-2t}u(t)$$

B)
$$x(t) = -2e^{-2t}u(t) + \delta(t)$$

C) nessuna delle altre risposte

D)
$$x(t) = e^{-2t}u(t)$$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

1

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.

Esercizio 5. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 6. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano WSS.
- B) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- C) y(t) è un processo gaussiano a varianza infinita per t > 0.

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}, n = 0, 1, 2, \dots, 127$, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 8. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

2

dove α è una costante positiva. La varianza di Y(t)

- A) tende a zero
- B) non assume nessuno dei valori indicati nelle altre risposte
- C) vale $\frac{1+e^{-\alpha}}{1-e^{-\alpha}}$
- **D**) diverge
- **E)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- $\mathbf{F)} \text{ vale } \frac{2}{1 e^{-2\alpha}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}, n = 0, 1, 2, \dots, 127$, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- **B)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- C) non assume nessuno dei valori indicati nelle altre risposte.
- D) tende a zero
- **E)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **F)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 3. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

1

- **A)** y(t) = x(t 3T) * h(t 2T)
- **B)** y(t) = x(t 3T) * h(t)

C)
$$y(t) = x(t - 2T) * h(t - 2T)$$

Esercizio 4. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media, ma con varianza diversa
- **B)** i dati non sono sufficienti per calcolare la varianza di y(t)
- C) ha media diversa da zero
- D) è gaussiano con la stessa media e la stessa varianza

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- **C)** $x(t) = te^{-t}u(t)$
- **D)** $x(t) = e^{-t}(1-t)u(t)$

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **D)** Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z^{-4}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = e^{-t}(1-t)u(t)$
- B) nessuna delle altre risposte
- C) $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- **D)** $x(t) = te^{-t}u(t)$

Esercizio 2. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano a varianza infinita per t > 0.

Esercizio 3. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

1

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- **B)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) tende a zero
- D) non assume nessuno dei valori indicati nelle altre risposte
- **E)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **F)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- C) non si annulla mai

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 6. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 4T) * h(t 3T)
- **B)** y(t) = x(t 4T) * h(t)
- **C)** y(t) = x(t 3T) * h(t 3T)

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) ha media nulla
- B) ha varianza unitaria
- C) è gaussiano con la stessa media
- D) è gaussiano con la stessa varianza

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 4T) * h(t 3T)
- **B)** y(t) = x(t 3T) * h(t 3T)
- **C)** y(t) = x(t 4T) * h(t)

Esercizio 3. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

1

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **B)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- C) tende a zero
- D) non assume nessuno dei valori indicati nelle altre risposte
- E) diverge
- **F)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 5. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- **C)** $x(t) = 5\cos(8\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

Esercizio 7. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- **A)** $x(t) = e^{-|t|}$
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- D) nessuna delle altre risposte

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

A)
$$x(t) = e^{-t}(1-t)u(t) + \delta(t)$$

B)
$$x(t) = te^{-t}u(t)$$

C)
$$x(t) = e^{-t}(1-t)u(t)$$

D) nessuna delle altre risposte

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- B) non assume nessuno dei valori indicati nelle altre risposte.
- C) tende a zero

$$\mathbf{D)} \text{ vale } T \frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

E) vale
$$\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

F) vale
$$T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

Esercizio 3. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

1

A) non si annulla mai

B) si annulla in
$$f = f_0$$
 se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 - (a^2/4)}$.

C) si annulla in
$$f = f_0$$
 se $a > 2$ e $f_0 = (1/2\pi) \arctan \sqrt{1 - (4/a^2)}$.

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- C) $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$
- **B)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$

Esercizio 7. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 2T)
- **B)** y(t) = x(t-2T) * h(t-2T)
- **C)** y(t) = x(t 3T) * h(t)

Esercizio 8. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media, ma con varianza diversa
- B) è gaussiano con la stessa media e la stessa varianza
- C) ha media diversa da zero
- **D)** i dati non sono sufficienti per calcolare la varianza di y(t)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

A)
$$X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$$

B)
$$X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$$

C)
$$X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$$

D)
$$X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$$

Esercizio 2. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano WSS.
- **B)** y(t) è un processo gaussiano a varianza infinita per t > 0.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \left\{ \begin{matrix} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{matrix} \right.$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- **B)** $x(t) = te^{-t}u(t)$
- C) $x(t) = e^{-t}(1-t)u(t)$
- D) nessuna delle altre risposte

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) diverge
- C) tende a zero
- **D)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- E) non assume nessuno dei valori indicati nelle altre risposte
- **F)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 7. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 5T) * h(t)
- **B)** y(t) = x(t 5T) * h(t 3T)
- C) y(t) = x(t 3T) * h(t 3T)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f)=A$ per $|f| \leq B$ e $S_x(f)=0$ per |f|>B. Il processo $y(t)=\frac{d}{dt}x(t)$

- A) i dati non sono sufficienti per calcolare la varianza di y(t)
- B) è gaussiano con la stessa media, ma con varianza diversa
- C) è gaussiano con la stessa media e la stessa varianza
- D) ha media diversa da zero

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) tende a zero
- **B)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **D**) diverge
- **E)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- F) non assume nessuno dei valori indicati nelle altre risposte

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

1

Che espressione ha x(t)?

A)
$$x(t) = 5\cos(4\pi t)$$

- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$
- **B)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = e^{-2t}u(t)$
- C) $x(t) = -2e^{-2t}u(t) + \delta(t)$
- **D)** $x(t) = -2e^{-2t}u(t)$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1 4z^{-4}}$
- E) Nessuna delle altre risposte

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 3T)
- **B)** y(t) = x(t 4T) * h(t)
- C) y(t) = x(t 4T) * h(t 3T)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t 4T)
- **B)** y(t) = x(t 4T) * h(t 4T)
- **C)** y(t) = x(t 6T) * h(t)

Esercizio 2. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media
- B) ha varianza unitaria
- C) è gaussiano con la stessa varianza
- **D)** ha media nulla

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z^{-4}}$

Esercizio 5. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- B) non assume nessuno dei valori indicati nelle altre risposte
- C) vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- D) tende a zero
- **E)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- F) diverge

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 8. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = e^{-2t}u(t)$
- C) $x(t) = -2e^{-2t}u(t) + \delta(t)$
- **D)** $x(t) = -2e^{-2t}u(t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t)$
- B) nessuna delle altre risposte
- **C)** $x(t) = e^{-2t}u(t)$
- **D)** $x(t) = -2e^{-2t}u(t) + \delta(t)$

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 2T)
- **B)** y(t) = x(t 3T) * h(t)
- **C)** y(t) = x(t 2T) * h(t 2T)

Esercizio 3. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

1

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- **B)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) tende a zero
- **D)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **E)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- F) non assume nessuno dei valori indicati nelle altre risposte

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-2z}$$

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.

Esercizio 6. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media
- B) è gaussiano con la stessa varianza
- C) ha varianza unitaria
- D) ha media nulla

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

A)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$$

C)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 20\cos(8\pi t)$$

B)
$$x(t) = 10\sin(6\pi t)$$

C)
$$x(t) = 20\sin(2\pi t)$$

D)
$$x(t) = 5\cos(8\pi t)$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

A) nessuna delle altre risposte

B)
$$x(t) = e^{-2t}u(t)$$

C)
$$x(t) = -2e^{-2t}u(t)$$

D)
$$x(t) = -2e^{-2t}u(t) + \delta(t)$$

Esercizio 2. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

A)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$$

C)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

D)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

Esercizio 4. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

1

- A) ha media nulla
- B) è gaussiano con la stessa varianza
- C) ha varianza unitaria
- D) è gaussiano con la stessa media

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t 4T)
- **B)** y(t) = x(t 4T) * h(t 4T)
- **C)** y(t) = x(t 6T) * h(t)

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- C) non si annulla mai

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) tende a zero
- B) non assume nessuno dei valori indicati nelle altre risposte
- C) vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **D)** diverge
- **E)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **F)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) non assume nessuno dei valori indicati nelle altre risposte
- B) tende a zero

C) vale
$$2\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

D) vale
$$2\frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

E) diverge

F) vale
$$2T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

Esercizio 3. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

1

A) ha varianza unitaria

- B) ha media nulla
- C) è gaussiano con la stessa varianza
- D) è gaussiano con la stessa media

Esercizio 4. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

A)
$$X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$$

D)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$$

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 7. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t)$
- **B)** $x(t) = e^{-2t}u(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = -2e^{-2t}u(t) + \delta(t)$

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 4T) * h(t - 4T)$$

B)
$$y(t) = x(t - 6T) * h(t - 4T)$$

C)
$$y(t) = x(t - 6T) * h(t)$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{2}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) diverge
- C) tende a zero
- D) non assume nessuno dei valori indicati nelle altre risposte.
- $\mathbf{E)} \text{ vale } T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **F)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 5. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media e la stessa varianza
- **B)** i dati non sono sufficienti per calcolare la varianza di y(t)
- C) ha media diversa da zero
- D) è gaussiano con la stessa media, ma con varianza diversa

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- **A)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- **C)** $x(t) = e^{-|t|}$
- D) nessuna delle altre risposte

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t)
- **B)** y(t) = x(t 3T) * h(t 2T)
- C) y(t) = x(t 2T) * h(t 2T)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 5T) * h(t)$$

B)
$$y(t) = x(t - 5T) * h(t - 3T)$$

C)
$$y(t) = x(t - 3T) * h(t - 3T)$$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

C)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

D)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

E)
$$Y(z) = \frac{1}{1-2z}$$

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 20\cos(6\pi t)$$

B)
$$x(t) = 5\cos(4\pi t)$$

C)
$$x(t) = 20\sin(2\pi t)$$

D) $x(t) = 10\cos(6\pi t)$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 5. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- **D)** $x(t) = e^{-|t|}$

Esercizio 7. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano WSS.
- B) y(t) è un processo gaussiano a varianza infinita per t > 0.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 8. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

2

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- B) tende a zero
- **C)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **D)** non assume nessuno dei valori indicati nelle altre risposte.
- **E)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- $\mathbf{F)} \text{ vale } \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}, n = 0, 1, 2, \dots, 127$, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 2. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t)$
- B) nessuna delle altre risposte
- **C)** $x(t) = e^{-2t}u(t)$
- **D)** $x(t) = -2e^{-2t}u(t) + \delta(t)$

Esercizio 3. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 4. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

1

- **A)** y(t) = x(t 4T) * h(t)
- **B)** y(t) = x(t 4T) * h(t 3T)
- C) y(t) = x(t 3T) * h(t 3T)

Esercizio 5. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) non assume nessuno dei valori indicati nelle altre risposte
- C) vale $\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- D) diverge
- **E)** vale $\frac{2}{1 e^{-2\alpha}}$
- F) tende a zero

Esercizio 6. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) i dati non sono sufficienti per calcolare la varianza di y(t)
- B) ha media diversa da zero
- C) è gaussiano con la stessa media, ma con varianza diversa
- D) è gaussiano con la stessa media e la stessa varianza

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \left\{ \begin{array}{ll} x[k/4] & \text{se} \quad k = 4n \\ 0 & \text{altrove} \end{array} \right.$$

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- C) $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-4z^{-4}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa varianza
- B) ha media nulla
- C) ha varianza unitaria
- D) è gaussiano con la stessa media

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- $\mathbf{A)} \text{ vale } \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- B) non assume nessuno dei valori indicati nelle altre risposte
- C) diverge
- D) tende a zero
- **E)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- $\mathbf{F)} \text{ vale } \frac{2}{1 e^{-2\alpha}}$

Esercizio 3. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

1

A)
$$X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$$

B)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 5T) * h(t)
- **B)** y(t) = x(t 5T) * h(t 3T)
- C) y(t) = x(t 3T) * h(t 3T)

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- **D)** $x(t) = e^{-|t|}$

Esercizio 7. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- C) $Y(z) = \frac{1}{1-4z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) ha varianza unitaria
- B) è gaussiano con la stessa media
- C) è gaussiano con la stessa varianza
- D) ha media nulla

Esercizio 2. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1 + j2\pi f)^2}$$

- **A)** $x(t) = te^{-t}u(t)$
- **B)** $x(t) = e^{-t}(1-t)u(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$

Esercizio 3. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- C) non si annulla mai

Esercizio 4. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

1

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 5T) * h(t)$$

B)
$$y(t) = x(t - 3T) * h(t - 3T)$$

C)
$$y(t) = x(t - 5T) * h(t - 3T)$$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

B)
$$Y(z) = \frac{1}{1-2z}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

E) Nessuna delle altre risposte

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

A) vale
$$\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

- B) tende a zero
- **C)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- D) non assume nessuno dei valori indicati nelle altre risposte.
- **E)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- F) diverge

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 10\sin(6\pi t)$$

B)
$$x(t) = 20\sin(2\pi t)$$

C)
$$x(t) = 20\cos(8\pi t)$$

D)
$$x(t) = 5\cos(8\pi t)$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = e^{-t}(1-t)u(t)$
- **B)** $x(t) = te^{-t}u(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- C) $Y(z) = \frac{1}{1-2z^{-4}}$

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

Esercizio 4. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media e la stessa varianza
- B) è gaussiano con la stessa media, ma con varianza diversa
- C) ha media diversa da zero
- **D)** i dati non sono sufficienti per calcolare la varianza di y(t)

Esercizio 5. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

A)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$$

D)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

Esercizio 6. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 5T) * h(t - 3T)$$

B)
$$y(t) = x(t - 5T) * h(t)$$

C)
$$y(t) = x(t - 3T) * h(t - 3T)$$

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

A) vale
$$\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

B) diverge

C) vale
$$\frac{2}{1 - e^{-2\alpha}}$$

- D) tende a zero
- E) non assume nessuno dei valori indicati nelle altre risposte

$$\mathbf{F)} \text{ vale } \frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

Esercizio 8. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

A) si annulla in
$$f = f_0$$
 se $a > 2$ e $f_0 = (1/2\pi) \arctan \sqrt{1 - (4/a^2)}$.

B) si annulla in
$$f = f_0$$
 se $a \le 2$ e $f_0 = 1/2 - (1/2\pi)\arccos(a/2)$.

C) non si annulla mai

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- C) non si annulla mai

Esercizio 2. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- A) y(t) è un processo gaussiano a varianza infinita per t > 0.
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 3. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t)
- **B)** y(t) = x(t 3T) * h(t 2T)
- **C)** y(t) = x(t 2T) * h(t 2T)

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

1

A)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^2}$$

B)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z^{-2}}$

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- **A)** $x(t) = e^{-|t|}$
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- D) nessuna delle altre risposte

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- $\mathbf{A)} \text{ vale } \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) diverge
- **C)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **D)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- E) non assume nessuno dei valori indicati nelle altre risposte.
- F) tende a zero

Esercizio 8. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- B) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1 + j2\pi f)^2}$$

- **A)** $x(t) = e^{-t}(1-t)u(t)$
- **B)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = te^{-t}u(t)$

Esercizio 2. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- C) $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]$; $W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$

Esercizio 3. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- **A)** i dati non sono sufficienti per calcolare la varianza di y(t)
- B) ha media diversa da zero
- C) è gaussiano con la stessa media e la stessa varianza
- D) è gaussiano con la stessa media, ma con varianza diversa

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

1

- **A)** $Y(z) = \frac{1}{1-2z}$
- B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

D)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

A) vale
$$\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

$$\mathbf{B)} \text{ vale } \frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

- C) diverge
- **D)** vale $\frac{2}{1 e^{-2\alpha}}$
- E) non assume nessuno dei valori indicati nelle altre risposte
- F) tende a zero

Esercizio 7. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

A) si annulla in
$$f = f_0$$
 se $a > 2$ e $f_0 = (1/2\pi) \arctan \sqrt{1 - (4/a^2)}$.

- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- C) non si annulla mai

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 3T) * h(t - 3T)$$

B)
$$y(t) = x(t - 5T) * h(t)$$

C)
$$y(t) = x(t - 5T) * h(t - 3T)$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

Esercizio 2. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

A) non si annulla mai

B) si annulla in
$$f = f_0$$
 se $a > 2$ e $f_0 = (1/2\pi) \arctan \sqrt{1 - (4/a^2)}$.

C) si annulla in
$$f = f_0$$
 se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 - (a^2/4)}$.

Esercizio 3. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

1

dove α è una costante positiva. La varianza di Y(t)

A) vale
$$\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

B) tende a zero

C) vale
$$\frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

D) vale
$$\frac{2}{1 - e^{-2\alpha}}$$

- E) diverge
- F) non assume nessuno dei valori indicati nelle altre risposte

Esercizio 4. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) ha media nulla
- B) ha varianza unitaria
- C) è gaussiano con la stessa varianza
- D) è gaussiano con la stessa media

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t)$
- **B)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = e^{-2t}u(t)$

Esercizio 6. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- **C)** $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 5T) * h(t 3T)
- **B)** y(t) = x(t 3T) * h(t 3T)
- **C)** y(t) = x(t 5T) * h(t)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 3T)
- **B)** y(t) = x(t 4T) * h(t 3T)
- **C)** y(t) = x(t 4T) * h(t)

Esercizio 3. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1 + j2\pi f)^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = e^{-t}(1-t)u(t)$
- **C)** $x(t) = te^{-t}u(t)$
- **D)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

- **A)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- B) Nessuna delle altre risposte

- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{1-4z^{-4}}$

Esercizio 5. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) ha media diversa da zero
- B) è gaussiano con la stessa media, ma con varianza diversa
- C) è gaussiano con la stessa media e la stessa varianza
- **D)** i dati non sono sufficienti per calcolare la varianza di y(t)

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$
- **B)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) non assume nessuno dei valori indicati nelle altre risposte.
- B) tende a zero
- **C)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **D)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **E)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- F) diverge

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 5\cos(8\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t)
- **B)** y(t) = x(t 6T) * h(t 4T)
- **C)** y(t) = x(t 4T) * h(t 4T)

Esercizio 3. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1 + j2\pi f)^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = te^{-t}u(t)$
- C) $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- **D)** $x(t) = e^{-t}(1-t)u(t)$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **E)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$

Esercizio 5. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media
- B) ha media nulla
- C) è gaussiano con la stessa varianza
- **D)** ha varianza unitaria

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- **B)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$

Esercizio 7. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 8. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) tende a zero
- C) diverge
- D) non assume nessuno dei valori indicati nelle altre risposte.
- **E)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- $\mathbf{F)} \text{ vale } T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- **B)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$

Esercizio 2. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- **C)** $x(t) = 5\cos(8\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

Esercizio 4. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

1

- A) è gaussiano con la stessa varianza
- B) è gaussiano con la stessa media

- C) ha media nulla
- **D)** ha varianza unitaria

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **B)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) diverge
- D) non assume nessuno dei valori indicati nelle altre risposte
- E) tende a zero
- F) vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 7. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = e^{-2t}u(t)$
- **B)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = -2e^{-2t}u(t)$

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t)
- **B)** y(t) = x(t 4T) * h(t 4T)
- C) y(t) = x(t 6T) * h(t 4T)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- B) nessuna delle altre risposte
- C) $x(t) = -2e^{-2t}u(t)$
- **D)** $x(t) = e^{-2t}u(t)$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- C) $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 3. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

1

- A) y(t) è un processo gaussiano a varianza infinita per t > 0.
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-2z}$$

E)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 4T) * h(t)$$

B)
$$y(t) = x(t - 4T) * h(t - 3T)$$

C)
$$y(t) = x(t - 3T) * h(t - 3T)$$

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.
- C) non si annulla mai

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) tende a zero
- C) vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- D) non assume nessuno dei valori indicati nelle altre risposte.
- **E)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- F) diverge

Esercizio 8. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

A)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$$

B)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- B) tende a zero
- C) vale $\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **D)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- E) non assume nessuno dei valori indicati nelle altre risposte
- $\mathbf{F)} \text{ vale } \frac{2}{1 e^{-2\alpha}}$

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 3T)
- **B)** y(t) = x(t 4T) * h(t)
- **C)** y(t) = x(t 4T) * h(t 3T)

Esercizio 3. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

1

- **A)** y(t) è un processo gaussiano WSS.
- B) y(t) è un processo gaussiano a varianza infinita per t>0.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t)$
- **B)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = e^{-2t}u(t)$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- A) $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$
- **B)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$
- **D)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- A) non assume nessuno dei valori indicati nelle altre risposte
- B) tende a zero
- C) vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **D**) diverge
- E) vale $\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **F)** vale $\frac{2}{1 e^{-2\alpha}}$

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}, n = 0, 1, 2, \dots, 127$, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 4. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) i dati non sono sufficienti per calcolare la varianza di y(t)
- B) ha media diversa da zero
- C) è gaussiano con la stessa media, ma con varianza diversa
- D) è gaussiano con la stessa media e la stessa varianza

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1 + j2\pi f)^2}$$

- **A)** $x(t) = te^{-t}u(t)$
- **B)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = e^{-t}(1-t)u(t)$

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t)
- **B)** y(t) = x(t 6T) * h(t 4T)
- C) y(t) = x(t 4T) * h(t 4T)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t)
- **B)** y(t) = x(t 3T) * h(t 2T)
- **C)** y(t) = x(t 2T) * h(t 2T)

Esercizio 2. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- C) $x(t) = -2e^{-2t}u(t)$
- **D)** $x(t) = e^{-2t}u(t)$

Esercizio 3. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano WSS.
- B) y(t) è un processo gaussiano a varianza infinita per t > 0.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-2z^{-4}}$
- **D)** $Y(z) = \frac{1}{1-2z}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$

Esercizio 5. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- B) non assume nessuno dei valori indicati nelle altre risposte
- C) tende a zero
- $\mathbf{D)} \text{ vale } \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- $\mathbf{E)} \text{ vale } \frac{2}{1 e^{-2\alpha}}$
- **F)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n]=0.5\delta[n]+\delta[n-1]+0.5\delta[n-2]$ e $x_2[n]=\delta[n]+0.5\delta[n-1]+\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n]=x_1[n]*x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 2. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$

Esercizio 3. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media, ma con varianza diversa
- B) ha media diversa da zero
- C) i dati non sono sufficienti per calcolare la varianza di y(t)
- D) è gaussiano con la stessa media e la stessa varianza

Esercizio 4. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

1

- **A)** y(t) = x(t 5T) * h(t 3T)
- **B)** y(t) = x(t 5T) * h(t)
- C) y(t) = x(t 3T) * h(t 3T)

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **B)** $Y(z) = \frac{1}{1-4z^{-4}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **B)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **C)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **D**) diverge
- E) tende a zero
- F) non assume nessuno dei valori indicati nelle altre risposte

Esercizio 7. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.

Esercizio 8. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1 + j2\pi f)^2}$$

- **A)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- **B)** $x(t) = e^{-t}(1-t)u(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = te^{-t}u(t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 3T) * h(t)$$

B)
$$y(t) = x(t - 3T) * h(t - 2T)$$

C)
$$y(t) = x(t - 2T) * h(t - 2T)$$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

E) Nessuna delle altre risposte

Esercizio 3. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

A)
$$x(t) = e^{-|t|}$$

B)
$$x(t) = -e^{-t}u(t) + e^{t}u(-t)$$

C)
$$x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$$

D) nessuna delle altre risposte

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

1

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- C) $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 6. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) ha media diversa da zero
- B) è gaussiano con la stessa media, ma con varianza diversa
- C) i dati non sono sufficienti per calcolare la varianza di y(t)
- D) è gaussiano con la stessa media e la stessa varianza

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 8. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

2

dove α è una costante positiva. La varianza di Y(t)

- A) tende a zero
- B) diverge
- **C)** vale $\frac{2}{1 e^{-2\alpha}}$
- D) non assume nessuno dei valori indicati nelle altre risposte
- **E)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **F)** vale $\frac{1+e^{-\alpha}}{1-e^{-\alpha}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

A)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 10\cos(6\pi t)$$

B)
$$x(t) = 20\sin(2\pi t)$$

C)
$$x(t) = 20\cos(6\pi t)$$

D)
$$x(t) = 5\cos(4\pi t)$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-4z}$$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t 4T)
- **B)** y(t) = x(t 6T) * h(t)
- **C)** y(t) = x(t 4T) * h(t 4T)

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) diverge
- **C)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- $\mathbf{D)} \text{ vale } \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- E) non assume nessuno dei valori indicati nelle altre risposte.
- F) tende a zero

Esercizio 7. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- **B)** $x(t) = e^{-2t}u(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = -2e^{-2t}u(t)$

Esercizio 8. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media
- B) ha varianza unitaria
- C) ha media nulla
- D) è gaussiano con la stessa varianza

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = e^{-t}(1-t)u(t)$
- B) nessuna delle altre risposte
- C) $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- **D)** $x(t) = te^{-t}u(t)$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

A)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 3T)
- **B)** y(t) = x(t 4T) * h(t 3T)
- **C)** y(t) = x(t 4T) * h(t)

Esercizio 6. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **B**) diverge
- C) tende a zero
- D) non assume nessuno dei valori indicati nelle altre risposte.
- **E)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **F)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 8. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media
- B) ha media nulla
- C) ha varianza unitaria
- D) è gaussiano con la stessa varianza

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) non assume nessuno dei valori indicati nelle altre risposte
- B) tende a zero
- C) vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **D**) diverge
- **E)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **F)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 2T)
- **B)** y(t) = x(t 3T) * h(t)
- **C)** y(t) = x(t 2T) * h(t 2T)

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

1

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 4. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- **A)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- **C)** $x(t) = e^{-|t|}$
- D) nessuna delle altre risposte

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.

Esercizio 6. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- **D)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1 4z^{-2}}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$

Esercizio 8. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media
- B) è gaussiano con la stessa varianza
- C) ha media nulla
- **D)** ha varianza unitaria

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) tende a zero
- **C)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **D)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- E) non assume nessuno dei valori indicati nelle altre risposte
- **F)** diverge

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- B) $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

1

Che espressione ha x(t)?

A)
$$x(t) = 10\cos(6\pi t)$$

- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- **B)** $x(t) = -2e^{-2t}u(t)$
- **C)** $x(t) = e^{-2t}u(t)$
- D) nessuna delle altre risposte

Esercizio 6. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 5T) * h(t 3T)
- **B)** y(t) = x(t 3T) * h(t 3T)
- C) y(t) = x(t 5T) * h(t)

Esercizio 7. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano a varianza infinita per t > 0.

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{1-4z^{-4}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

E) Nessuna delle altre risposte

Esercizio 2. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 3. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

A)
$$x(t) = -e^{-t}u(t) + e^{t}u(-t)$$

B)
$$x(t) = e^{-|t|}$$

C)
$$x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$$

D) nessuna delle altre risposte

Esercizio 4. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

1

A)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$$

- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t)
- **B)** y(t) = x(t 6T) * h(t 4T)
- **C)** y(t) = x(t 4T) * h(t 4T)

Esercizio 6. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media, ma con varianza diversa
- **B)** i dati non sono sufficienti per calcolare la varianza di y(t)
- C) è gaussiano con la stessa media e la stessa varianza
- D) ha media diversa da zero

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 8. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) non assume nessuno dei valori indicati nelle altre risposte.
- **B)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) tende a zero
- **D)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- E) diverge
- **F)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) tende a zero
- **B)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) non assume nessuno dei valori indicati nelle altre risposte
- **D**) diverge
- **E)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- F) vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 2. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- **A)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- **B)** $x(t) = e^{-|t|}$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- D) nessuna delle altre risposte

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

D)
$$Y(z) = \frac{1}{1-4z}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

Esercizio 4. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano WSS.
- B) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- C) y(t) è un processo gaussiano a varianza infinita per t > 0.

Esercizio 5. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

A)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$$

C)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 20\cos(8\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 3T) * h(t)$$

B)
$$y(t) = x(t - 3T) * h(t - 2T)$$

C)
$$y(t) = x(t - 2T) * h(t - 2T)$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 4T) * h(t 4T)
- **B)** y(t) = x(t 6T) * h(t 4T)
- **C)** y(t) = x(t 6T) * h(t)

Esercizio 2. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media
- B) ha media nulla
- C) è gaussiano con la stessa varianza
- D) ha varianza unitaria

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}, n = 0, 1, 2, \dots, 127$, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 4. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

1

dove α è una costante positiva. La varianza di Y(t)

- A) tende a zero
- **B)** vale $\frac{2}{1 e^{-2\alpha}}$
- C) vale $\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- D) non assume nessuno dei valori indicati nelle altre risposte
- **E)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- F) diverge

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- **D)** $x(t) = e^{-|t|}$

Esercizio 6. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 7. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{1-2z^{-2}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

A)
$$X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$$

B)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

A)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

- B) Nessuna delle altre risposte
- **C)** $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$

E)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

Esercizio 4. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) i dati non sono sufficienti per calcolare la varianza di y(t)
- B) è gaussiano con la stessa media e la stessa varianza
- C) ha media diversa da zero
- D) è gaussiano con la stessa media, ma con varianza diversa

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 4T) * h(t 4T)
- **B)** y(t) = x(t 6T) * h(t)
- **C)** y(t) = x(t 6T) * h(t 4T)

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- **D)** $x(t) = e^{-|t|}$

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- B) tende a zero
- C) non assume nessuno dei valori indicati nelle altre risposte
- **D)** vale $\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **E)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- $\mathbf{F)} \text{ vale } \frac{2}{1 e^{-2\alpha}}$

Esercizio 8. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- C) non si annulla mai

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 10\sin(6\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t)
- **B)** y(t) = x(t 3T) * h(t 2T)
- **C)** y(t) = x(t 2T) * h(t 2T)

Esercizio 3. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 4. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **B)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- D) tende a zero
- E) non assume nessuno dei valori indicati nelle altre risposte.
- F) diverge

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- **A)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- B) nessuna delle altre risposte
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- **D)** $x(t) = e^{-|t|}$

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$
- **B)** $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- C) $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$

Esercizio 7. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano WSS.
- **B)** y(t) è un processo gaussiano a varianza infinita per t > 0.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **C)** $Y(z) = \frac{1}{1-4z}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z^{-2}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- **B)** $x(t) = e^{-2t}u(t)$
- C) $x(t) = -2e^{-2t}u(t)$
- D) nessuna delle altre risposte

Esercizio 2. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.

Esercizio 3. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- **B)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

1

Che espressione ha x(t)?

A)
$$x(t) = 20\sin(2\pi t)$$

- **B)** $x(t) = 20\cos(8\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t)
- **B)** y(t) = x(t 4T) * h(t 4T)
- **C)** y(t) = x(t 6T) * h(t 4T)

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- C) $Y(z) = \frac{1}{1-2z^{-4}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- E) Nessuna delle altre risposte

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) non assume nessuno dei valori indicati nelle altre risposte
- B) diverge
- C) tende a zero
- **D)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **E)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **F)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 8. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano a varianza infinita per t > 0.
- B) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- C) y(t) è un processo gaussiano WSS.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) diverge
- C) tende a zero
- $\mathbf{D)} \text{ vale } \frac{2}{1 e^{-2\alpha}}$
- **E)** vale $\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- F) non assume nessuno dei valori indicati nelle altre risposte

Esercizio 3. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

1

A)
$$x(t) = -2e^{-2t}u(t)$$

B)
$$x(t) = -2e^{-2t}u(t) + \delta(t)$$

C) nessuna delle altre risposte

D)
$$x(t) = e^{-2t}u(t)$$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

D)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

E)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 3T) * h(t)$$

B)
$$y(t) = x(t - 3T) * h(t - 2T)$$

C)
$$y(t) = x(t - 2T) * h(t - 2T)$$

Esercizio 6. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media, ma con varianza diversa
- B) ha media diversa da zero
- C) i dati non sono sufficienti per calcolare la varianza di y(t)
- D) è gaussiano con la stessa media e la stessa varianza

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

A)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$$

B)
$$X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \left\{ \begin{matrix} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{matrix} \right.$$

Che espressione ha x(t)?

A)
$$x(t) = 20\sin(2\pi t)$$

B)
$$x(t) = 10\cos(6\pi t)$$

C)
$$x(t) = 20\cos(6\pi t)$$

D)
$$x(t) = 5\cos(4\pi t)$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

A) vale
$$2\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

B) tende a zero

C) vale
$$2T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

D) diverge

E) vale
$$2\frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

F) non assume nessuno dei valori indicati nelle altre risposte

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 3T) * h(t - 3T)$$

B)
$$y(t) = x(t - 5T) * h(t)$$

C)
$$y(t) = x(t - 5T) * h(t - 3T)$$

Esercizio 3. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

1

A) non si annulla mai

B) si annulla in
$$f = f_0$$
 se $a > 2$ e $f_0 = (1/2\pi) \arctan \sqrt{1 - (4/a^2)}$.

C) si annulla in
$$f = f_0$$
 se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 - (a^2/4)}$.

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 6. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$

Esercizio 7. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t)$
- B) nessuna delle altre risposte
- **C)** $x(t) = e^{-2t}u(t)$
- **D)** $x(t) = -2e^{-2t}u(t) + \delta(t)$

Esercizio 8. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- A) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- B) y(t) è un processo gaussiano a varianza infinita per t > 0.
- C) y(t) è un processo gaussiano WSS.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 3T) * h(t - 2T)$$

B)
$$y(t) = x(t - 2T) * h(t - 2T)$$

C)
$$y(t) = x(t - 3T) * h(t)$$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 10\cos(6\pi t)$$

B)
$$x(t) = 20\sin(2\pi t)$$

C)
$$x(t) = 20\cos(6\pi t)$$

D)
$$x(t) = 5\cos(4\pi t)$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

B) Nessuna delle altre risposte

C)
$$Y(z) = \frac{1}{1-4z}$$

D)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

E)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

Esercizio 4. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- C) non si annulla mai

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- **B)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) tende a zero
- **D)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **E)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- F) non assume nessuno dei valori indicati nelle altre risposte

Esercizio 7. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- **A)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- **B)** $x(t) = e^{-|t|}$
- C) nessuna delle altre risposte
- **D)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$

Esercizio 8. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- **A)** i dati non sono sufficienti per calcolare la varianza di y(t)
- B) è gaussiano con la stessa media, ma con varianza diversa
- C) ha media diversa da zero
- D) è gaussiano con la stessa media e la stessa varianza

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = e^{-|t|}$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- **D)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$

Esercizio 2. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 3. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media e la stessa varianza
- B) è gaussiano con la stessa media, ma con varianza diversa
- C) ha media diversa da zero
- **D)** i dati non sono sufficienti per calcolare la varianza di y(t)

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

1

A)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

- C) $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z^{-4}}$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 6. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 5T) * h(t)
- **B)** y(t) = x(t 3T) * h(t 3T)
- **C)** y(t) = x(t 5T) * h(t 3T)

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- A) non assume nessuno dei valori indicati nelle altre risposte
- **B)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) diverge
- $\mathbf{D)} \text{ vale } \frac{2}{1 e^{-2\alpha}}$
- E) tende a zero
- $\mathbf{F)} \text{ vale } \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$

Esercizio 8. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

2

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa varianza
- B) ha media nulla
- C) ha varianza unitaria
- D) è gaussiano con la stessa media

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se} \quad k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- B) Nessuna delle altre risposte
- **C)** $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$

Esercizio 3. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

1

dove α è una costante positiva. La varianza di Y(t)

- $\mathbf{A)} \text{ vale } T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **B)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) non assume nessuno dei valori indicati nelle altre risposte.
- D) tende a zero

- **E)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- F) diverge

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(8\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 10\sin(6\pi t)$

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

- **A)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$
- B) $X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$
- C) $X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$
- **D)** $X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = te^{-t}u(t)$
- **B)** $x(t) = e^{-t}(1-t)u(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$

Esercizio 7. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t 4T)
- **B)** y(t) = x(t 4T) * h(t 4T)
- **C)** y(t) = x(t 6T) * h(t)

Esercizio 8. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- C) non si annulla mai

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

A)
$$X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$$

B)
$$X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$$

C)
$$X(e^{j\omega}) = e^{-j\omega/2} [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega} [1 + \cos(\omega) + \cos(2\omega)]$$

D)
$$X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$$

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 5\cos(4\pi t)$$

B)
$$x(t) = 20\sin(2\pi t)$$

C)
$$x(t) = 20\cos(6\pi t)$$

D)
$$x(t) = 10\cos(6\pi t)$$

Esercizio 3. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

1

A)
$$x(t) = e^{-t}(1-t)u(t)$$

B)
$$x(t) = e^{-t}(1-t)u(t) + \delta(t)$$

C)
$$x(t) = te^{-t}u(t)$$

D) nessuna delle altre risposte

Esercizio 4. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- B) tende a zero
- C) vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- D) non assume nessuno dei valori indicati nelle altre risposte.
- $\mathbf{E)} \text{ vale } T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **F)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 5. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- A) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- **B)** y(t) è un processo gaussiano a varianza infinita per t > 0.
- C) y(t) è un processo gaussiano WSS.

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 7. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 4T) * h(t 3T)
- **B)** y(t) = x(t 3T) * h(t 3T)
- **C)** y(t) = x(t 4T) * h(t)

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se} \quad k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z^{-2}}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{1-4z}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

A)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$$

Esercizio 2. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) i dati non sono sufficienti per calcolare la varianza di y(t)
- B) è gaussiano con la stessa media e la stessa varianza
- C) è gaussiano con la stessa media, ma con varianza diversa
- **D)** ha media diversa da zero

Esercizio 3. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 3T) * h(t - 3T)$$

B)
$$y(t) = x(t - 5T) * h(t - 3T)$$

C)
$$y(t) = x(t - 5T) * h(t)$$

Esercizio 4. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1 + j2\pi f)^2}$$

1

A) nessuna delle altre risposte

B)
$$x(t) = e^{-t}(1-t)u(t)$$

C)
$$x(t) = e^{-t}(1-t)u(t) + \delta(t)$$

D)
$$x(t) = te^{-t}u(t)$$

Esercizio 5. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **B)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) non assume nessuno dei valori indicati nelle altre risposte
- D) tende a zero
- **E)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- F) diverge

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{1-4z^{-4}}$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 8. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	57

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

A) tende a zero

B) vale
$$\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

C) vale
$$T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

D) diverge

E) non assume nessuno dei valori indicati nelle altre risposte.

$$\mathbf{F)} \text{ vale } T \frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

Esercizio 2. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

A)
$$x(t) = -e^{-t}u(t) + e^{t}u(-t)$$

B)
$$x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$$

C) nessuna delle altre risposte

D)
$$x(t) = e^{-|t|}$$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

1

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-2z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 4. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa varianza
- B) è gaussiano con la stessa media
- C) ha media nulla
- **D)** ha varianza unitaria

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 2T)
- **B)** y(t) = x(t 2T) * h(t 2T)
- **C)** y(t) = x(t 3T) * h(t)

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- C) $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	58

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \left\{ \begin{array}{ll} x[k/4] & \text{se} \quad k = 4n \\ 0 & \text{altrove} \end{array} \right.$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$$

B)
$$Y(z) = \frac{1}{1-2z}$$

C) Nessuna delle altre risposte

D)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-4}}$$

E)
$$Y(z) = \frac{1}{1-2z^{-4}}$$

Esercizio 2. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 3. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

A)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$$

C)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

Esercizio 4. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \left\{ \begin{matrix} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{matrix} \right.$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Esercizio 5. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media, ma con varianza diversa
- B) è gaussiano con la stessa media e la stessa varianza
- C) ha media diversa da zero
- **D)** i dati non sono sufficienti per calcolare la varianza di y(t)

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- B) tende a zero
- **C)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- D) non assume nessuno dei valori indicati nelle altre risposte
- E) diverge
- **F)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 7. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1 + j2\pi f)^2}$$

- **A)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- **B)** $x(t) = e^{-t}(1-t)u(t)$
- **C)** $x(t) = te^{-t}u(t)$
- D) nessuna delle altre risposte

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 5T) * h(t - 3T)$$

B)
$$y(t) = x(t - 3T) * h(t - 3T)$$

C)
$$y(t) = x(t - 5T) * h(t)$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$

Esercizio 2. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- B) nessuna delle altre risposte
- C) $x(t) = -2e^{-2t}u(t)$
- **D)** $x(t) = e^{-2t}u(t)$

Esercizio 3. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 4. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media e la stessa varianza
- B) è gaussiano con la stessa media, ma con varianza diversa
- C) ha media diversa da zero
- **D)** i dati non sono sufficienti per calcolare la varianza di y(t)

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.

Esercizio 6. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 10\sin(6\pi t)$
- C) $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **B)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **C)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **D)** tende a zero
- E) non assume nessuno dei valori indicati nelle altre risposte
- F) diverge

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 5T) * h(t)
- **B)** y(t) = x(t 5T) * h(t 3T)
- **C)** y(t) = x(t 3T) * h(t 3T)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- A) y(t) è un processo gaussiano a varianza infinita per t > 0.
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t)
- **B)** y(t) = x(t-2T) * h(t-2T)
- **C)** y(t) = x(t 3T) * h(t 2T)

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-4z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-4z}$

Esercizio 4. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

A)
$$X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$$

- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) non assume nessuno dei valori indicati nelle altre risposte
- B) diverge
- C) tende a zero
- **D)** vale $2\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **E)** vale $2\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **F)** vale $2T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(8\pi t)$
- **C)** $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 20\cos(8\pi t)$

Esercizio 8. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = e^{-2t}u(t)$
- C) $x(t) = -2e^{-2t}u(t) + \delta(t)$
- **D)** $x(t) = -2e^{-2t}u(t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A) Nessuna delle altre risposte

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

D)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

E)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

Esercizio 2. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$, stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = 2(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

A) vale
$$2\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

B) diverge

C) vale
$$2T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

D) vale
$$2\frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

E) tende a zero

F) non assume nessuno dei valori indicati nelle altre risposte

Esercizio 3. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \leq B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

1

A) è gaussiano con la stessa media, ma con varianza diversa

- **B)** i dati non sono sufficienti per calcolare la varianza di y(t)
- C) è gaussiano con la stessa media e la stessa varianza
- D) ha media diversa da zero

Esercizio 4. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 5T) * h(t)$$

B)
$$y(t) = x(t - 5T) * h(t - 3T)$$

C)
$$y(t) = x(t - 3T) * h(t - 3T)$$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 20\cos(6\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = e^{-2t}u(t)$
- B) nessuna delle altre risposte
- C) $x(t) = -2e^{-2t}u(t)$
- **D)** $x(t) = -2e^{-2t}u(t) + \delta(t)$

Esercizio 7. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.

Esercizio 8. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

A)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$$

B)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

D)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) ha varianza unitaria
- B) ha media nulla
- C) è gaussiano con la stessa varianza
- D) è gaussiano con la stessa media

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 3. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = e^{-2t}u(t)$
- **B)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = -2e^{-2t}u(t)$

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

1

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.

Esercizio 5. (1.5 punti) Sia data la sequenza $x[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza w[n] = x[n] * x[n]. Si ha:

A)
$$X(e^{j\omega}) = e^{-j\omega/2}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + \cos(2\omega)]$$

B)
$$X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(\omega) + \cos^2(\omega)]$$

C)
$$X(e^{j\omega}) = 1 + \cos(\omega); W(e^{j\omega}) = [1 + \cos(\omega) + \cos^2(\omega)]$$

D)
$$X(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + \cos^2(\omega)]$$

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

A) vale
$$T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

$$\mathbf{B)} \text{ vale } \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

- C) non assume nessuno dei valori indicati nelle altre risposte.
- **D**) diverge
- E) tende a zero

F) vale
$$T \frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

Esercizio 7. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 6T) * h(t)$$

B)
$$y(t) = x(t - 4T) * h(t - 4T)$$

C)
$$y(t) = x(t - 6T) * h(t - 4T)$$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-2}}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1-4z^{-2}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	63

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = te^{-t}u(t)$
- **B)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- C) nessuna delle altre risposte
- **D)** $x(t) = e^{-t}(1-t)u(t)$

Esercizio 2. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 3. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.

Esercizio 4. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

1

- **A)** y(t) = x(t 4T) * h(t)
- **B)** y(t) = x(t 3T) * h(t 3T)
- **C)** y(t) = x(t 4T) * h(t 3T)

Esercizio 5. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- A) y(t) è un processo gaussiano a varianza infinita per t > 0
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) non assume nessuno dei valori indicati nelle altre risposte.
- **B)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- C) diverge
- **D)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **E)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- F) tende a zero

Esercizio 7. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(8\pi t)$
- **D)** $x(t) = 5\cos(8\pi t)$

Esercizio 8. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **B)** $Y(z) = \frac{1}{1-2z}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1-2z^{-4}}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 3. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) ha varianza unitaria
- B) è gaussiano con la stessa media
- C) ha media nulla
- D) è gaussiano con la stessa varianza

Esercizio 4. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) tende a zero
- **B)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- C) diverge
- D) non assume nessuno dei valori indicati nelle altre risposte.
- **E)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **F)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 3T)
- **B)** y(t) = x(t 5T) * h(t)
- **C)** y(t) = x(t 5T) * h(t 3T)

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$
- **B)** $Y(z) = \frac{1}{1-4z}$
- C) Nessuna delle altre risposte
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **E)** $Y(z) = \frac{1}{1-4z^{-2}}$

Esercizio 7. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = te^{-t}u(t)$
- **B)** $x(t) = e^{-t}(1-t)u(t)$
- C) $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- D) nessuna delle altre risposte

Esercizio 8. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- **B)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	65

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{4}z^{-4}}$$

B)
$$Y(z) = \frac{1}{1-4z}$$

C)
$$Y(z) = \frac{1}{1-4z^{-4}}$$

D) Nessuna delle altre risposte

E)
$$Y(z) = \frac{1}{(1 - \frac{1}{4}z^{-1})^4}$$

Esercizio 2. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) è gaussiano con la stessa media
- B) è gaussiano con la stessa varianza
- C) ha media nulla
- **D)** ha varianza unitaria

Esercizio 3. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

1

dove α è una costante positiva. La varianza di Y(t)

A) vale
$$T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

B) non assume nessuno dei valori indicati nelle altre risposte.

C) vale
$$T \frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

D) diverge

E) tende a zero

$$\mathbf{F)} \text{ vale } \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

Esercizio 4. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

A)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

B)
$$X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$$

C)
$$X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$$

D)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 10\cos(6\pi t)$
- C) $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 6. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 4T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 6T) * h(t 4T)
- **B)** y(t) = x(t 4T) * h(t 4T)
- **C)** y(t) = x(t 6T) * h(t)

Esercizio 7. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- B) non si annulla mai
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.

Esercizio 8. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1+j2\pi f)^2}$$

- **A)** $x(t) = e^{-t}(1-t)u(t)$
- B) nessuna delle altre risposte
- C) $x(t) = e^{-t}(1-t)u(t) + \delta(t)$
- **D)** $x(t) = te^{-t}u(t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	66

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

A)
$$Y(z) = \frac{1}{1 - \frac{1}{2}z^{-2}}$$

B)
$$Y(z) = \frac{1}{1-2z}$$

C)
$$Y(z) = \frac{1}{1-2z^{-2}}$$

D)
$$Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$$

E) Nessuna delle altre risposte

Esercizio 2. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

A)
$$x(t) = 20\sin(2\pi t)$$

B)
$$x(t) = 20\cos(6\pi t)$$

C)
$$x(t) = 10\cos(6\pi t)$$

D)
$$x(t) = 5\cos(4\pi t)$$

Esercizio 3. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1 + j2\pi f)^2}$$

1

A)
$$x(t) = te^{-t}u(t)$$

B) nessuna delle altre risposte

- C) $x(t) = e^{-t}(1-t)u(t)$
- **D)** $x(t) = e^{-t}(1-t)u(t) + \delta(t)$

Esercizio 4. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 4T) * h(t 3T)
- **B)** y(t) = x(t 4T) * h(t)
- **C)** y(t) = x(t 3T) * h(t 3T)

Esercizio 5. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano WSS.
- **B)** y(t) è un processo gaussiano a varianza infinita per t > 0.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 6. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$
- C) $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 7. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- C) non si annulla mai

Esercizio 8. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) tende a zero
- **B)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- C) non assume nessuno dei valori indicati nelle altre risposte.
- **D)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **E)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- F) diverge

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 2. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = -2e^{-2t}u(t)$
- B) nessuna delle altre risposte
- C) $x(t) = -2e^{-2t}u(t) + \delta(t)$
- **D)** $x(t) = e^{-2t}u(t)$

Esercizio 3. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-2z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-4}}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 4. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

1

A)
$$X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$$

- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 5. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\sin(2\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 6. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1-|\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- B) non assume nessuno dei valori indicati nelle altre risposte.
- **C)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **D)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- E) vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- F) tende a zero

Esercizio 7. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- A) y(t) è un processo gaussiano a varianza infinita per t>0
- B) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- C) y(t) è un processo gaussiano WSS.

Esercizio 8. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t-2T) * h(t-2T)
- **B)** y(t) = x(t 3T) * h(t 2T)
- **C)** y(t) = x(t 3T) * h(t)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 2. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- A) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano a varianza infinita per t > 0.

Esercizio 3. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

1

- **A)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- B) nessuna delle altre risposte
- **C)** $x(t) = e^{-|t|}$
- **D)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$

Esercizio 4. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/4] & \text{se } k = 4n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-4}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^4}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- **E)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-4}}$

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 2T)
- **B)** y(t) = x(t 3T) * h(t)
- C) y(t) = x(t-2T) * h(t-2T)

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- B) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 8. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- B) non assume nessuno dei valori indicati nelle altre risposte.
- C) vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- D) tende a zero
- **E)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- **F)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	69

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- B) Nessuna delle altre risposte
- C) $Y(z) = \frac{1}{1-2z^{-2}}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-2z}$

Esercizio 2. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi)\arccos(a/2)$.

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 5\cos(4\pi t)$
- **D)** $x(t) = 20\cos(6\pi t)$

Esercizio 4. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- A) y(t) è un processo gaussiano a varianza infinita per t>0.
- B) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- C) y(t) è un processo gaussiano WSS.

Esercizio 5. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

- **A)** $x(t) = e^{-2t}u(t)$
- **B)** $x(t) = -2e^{-2t}u(t) + \delta(t)$
- C) $x(t) = -2e^{-2t}u(t)$
- D) nessuna delle altre risposte

Esercizio 6. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 2T)
- **B)** y(t) = x(t 2T) * h(t 2T)
- **C)** y(t) = x(t 3T) * h(t)

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $\frac{2}{1 e^{-2\alpha}}$
- B) diverge
- C) tende a zero
- **D)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- $\mathbf{E)} \text{ vale } \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- F) non assume nessuno dei valori indicati nelle altre risposte

Esercizio 8. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- B) $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{(1 + j2\pi f)^2}$$

A) nessuna delle altre risposte

B)
$$x(t) = e^{-t}(1-t)u(t)$$

C)
$$x(t) = te^{-t}u(t)$$

D)
$$x(t) = e^{-t}(1-t)u(t) + \delta(t)$$

Esercizio 2. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di 2T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

A)
$$y(t) = x(t - 5T) * h(t - 3T)$$

B)
$$y(t) = x(t - 5T) * h(t)$$

C)
$$y(t) = x(t - 3T) * h(t - 3T)$$

Esercizio 3. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

1

dove α è una costante positiva. La varianza di Y(t)

A) non assume nessuno dei valori indicati nelle altre risposte.

B) vale
$$T \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

C) vale
$$T \frac{1 + e^{-\alpha}}{1 - e^{-\alpha}}$$

D) diverge

E) vale
$$\frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}}$$

F) tende a zero

Esercizio 4. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 + az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = 1/2 (1/2\pi) \arccos(a/2)$.
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) non si annulla mai

Esercizio 5. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 6. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano a varianza infinita per t > 0.
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t>0.

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **B)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$
- C) $Y(z) = \frac{1}{1-4z^{-2}}$
- **D)** $Y(z) = \frac{1}{1-4z}$
- E) Nessuna delle altre risposte

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 5\cos(4\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 20\cos(6\pi t)$
- **D)** $x(t) = 10\cos(6\pi t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = e^{-|t|}$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- **D)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$

Esercizio 2. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.

Esercizio 3. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{64}$, n = 0, 1, 2, ..., 63, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/64$. La sequenza T_cx_n viene trasformata con una DFT a 64 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{63} x_n e^{-j2\pi kn/64}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 61 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 5\cos(4\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 4. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

1

dove α è una costante positiva. La varianza di Y(t)

- A) diverge
- **B)** vale $\frac{2}{1 e^{-2\alpha}}$
- C) non assume nessuno dei valori indicati nelle altre risposte
- **D)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- $\mathbf{E)} \text{ vale } \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- F) tende a zero

Esercizio 5. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- **A)** y(t) è un processo gaussiano WSS.
- B) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.
- C) y(t) è un processo gaussiano a varianza infinita per t > 0.

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- **C)** $Y(z) = \frac{1}{1-4z}$
- **D)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **E)** $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$

Esercizio 7. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 3T)
- **B)** y(t) = x(t 4T) * h(t 3T)
- **C)** y(t) = x(t 4T) * h(t)

Esercizio 8. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- C) $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	72

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 3 \text{ e } k = 125\\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(6\pi t)$
- **B)** $x(t) = 20\sin(2\pi t)$
- **C)** $x(t) = 10\cos(6\pi t)$
- **D)** $x(t) = 5\cos(4\pi t)$

Esercizio 2. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.5. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- A) Nessuna delle altre risposte
- **B)** $Y(z) = \frac{1}{1 \frac{1}{2}z^{-2}}$
- C) $Y(z) = \frac{1}{1-2z}$
- **D)** $Y(z) = \frac{1}{(1-\frac{1}{2}z^{-1})^2}$
- **E)** $Y(z) = \frac{1}{1-2z^{-2}}$

Esercizio 3. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, statisticamente indipendenti, a media nulla, e con autocorrelazione $R_{X_i}(\tau) = T(1 - |\tau|/T)$, per $|\tau| < T$ e nulla altrove. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT)$$

1

dove α è una costante positiva. La varianza di Y(t)

- **A)** vale $T \frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- B) tende a zero
- C) non assume nessuno dei valori indicati nelle altre risposte.
- **D)** vale $T \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- E) diverge
- $\mathbf{F)} \text{ vale } \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$

Esercizio 4. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 3T)
- **B)** y(t) = x(t 4T) * h(t 3T)
- **C)** y(t) = x(t 4T) * h(t)

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- A) non si annulla mai
- **B)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- C) si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.

Esercizio 6. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- **A)** $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- B) nessuna delle altre risposte
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$
- **D)** $x(t) = e^{-|t|}$

Esercizio 7. (1.5 punti) Siano date le sequenze $x_1[n]=0.5\delta[n]+\delta[n-1]+0.5\delta[n-2]$ e $x_2[n]=\delta[n]+0.5\delta[n-1]+\delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n]=x_1[n]*x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 8. (1.0 punti) Si consideri il processo casuale gaussiano x(t) con spettro di potenza $S_x(f) = A$ per $|f| \le B$ e $S_x(f) = 0$ per |f| > B. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) ha media diversa da zero
- B) è gaussiano con la stessa media, ma con varianza diversa
- C) è gaussiano con la stessa media e la stessa varianza
- **D)** i dati non sono sufficienti per calcolare la varianza di y(t)

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.0 punti) E' dato un processo casuale x(t) gaussiano bianco e un processo casuale y(t), definito come segue

$$y(t) = \begin{cases} 0 & \text{per } t < 0\\ \int_0^t x(\tau)d\tau & \text{per } t \ge 0 \end{cases}$$

- A) y(t) è un processo gaussiano a varianza infinita per t > 0.
- **B)** y(t) è un processo gaussiano WSS.
- C) y(t) è un processo gaussiano con varianza del tipo $\sigma_y^2 = \alpha t$ per t > 0.

Esercizio 2. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + 0.5\delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Essa vale:

- **A)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 1.5\cos(2\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega/2}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[0.5 + \cos(\omega) + 2\cos(2\omega)]$
- **D)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[0.5 + 2.5\cos(\omega) + 2\cos^2(\omega)]$

Esercizio 3. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 2T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t)
- **B)** y(t) = x(t 2T) * h(t 2T)
- **C)** y(t) = x(t 3T) * h(t 2T)

Esercizio 4. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j2\pi f}{2 + j2\pi f}$$

1

- A) nessuna delle altre risposte
- **B)** $x(t) = e^{-2t}u(t)$
- **C)** $x(t) = -2e^{-2t}u(t)$
- **D)** $x(t) = -2e^{-2t}u(t) + \delta(t)$

Esercizio 5. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arctan \sqrt{(4/a^2) 1}$.
- C) non si annulla mai

Esercizio 6. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z}$
- **B)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- C) $Y(z) = \frac{1}{1-4z^{-2}}$
- D) Nessuna delle altre risposte
- **E)** $Y(z) = \frac{1}{(1 \frac{1}{4}z^{-1})^2}$

Esercizio 7. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- A) non assume nessuno dei valori indicati nelle altre risposte
- B) tende a zero
- C) vale $\frac{1 + e^{-\alpha}}{1 e^{-\alpha}}$
- **D**) diverge
- **E)** vale $\frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- $\mathbf{F)} \text{ vale } \frac{2}{1 e^{-2\alpha}}$

Esercizio 8. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 10\sin(6\pi t)$
- **B)** $x(t) = 5\cos(8\pi t)$
- **C)** $x(t) = 20\sin(2\pi t)$
- **D)** $x(t) = 20\cos(8\pi t)$

Compito accorpato TDS-MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

3.7	
Nome	
Cognome	
Matricola	
Compito	74

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 punti) Un segnale x(t) viene campionato agli istanti di tempo $t_n = \frac{n}{128}$, n = 0, 1, 2, ..., 127, ottenendo una sequenza $x_n = x(nT_c)$, dove $T_c = 1/128$. La sequenza $T_c x_n$ viene trasformata con una DFT a 128 punti, utilizzando la formula

$$X[k] = T_c \sum_{n=0}^{127} x_n e^{-j2\pi kn/128}$$

Il risultato della DFT è

$$X[k] = \begin{cases} 10 & \text{per } k = 4 \text{ e } k = 124 \\ 0 & \text{altrove} \end{cases}$$

Che espressione ha x(t)?

- **A)** $x(t) = 20\cos(8\pi t)$
- **B)** $x(t) = 5\cos(8\pi t)$
- C) $x(t) = 10\sin(6\pi t)$
- **D)** $x(t) = 20\sin(2\pi t)$

Esercizio 2. (1.5 punti) Calcolare l'antitrasformata di Fourier di

$$X(f) = \frac{j4\pi f}{1 + 4\pi^2 f^2}$$

- A) nessuna delle altre risposte
- **B)** $x(t) = e^{-|t|}$
- C) $x(t) = -e^{-t}u(t) + e^{t}u(-t)$
- **D)** $x(t) = -e^{-t}u(t) + e^{t}u(-t) + 2\delta(t)$

Esercizio 3. (1.0 punti) Si consideri il processo casuale $x(t) = \xi$, dove ξ è una variabile casuale gaussiana con valor medio pari a 10 e varianza pari a 5. Il processo $y(t) = \frac{d}{dt}x(t)$

- A) ha media nulla
- B) è gaussiano con la stessa media
- C) ha varianza unitaria
- D) è gaussiano con la stessa varianza

Esercizio 4. (1.5 punti) Siano date le sequenze $x_1[n] = 0.5\delta[n] + \delta[n-1] + 0.5\delta[n-2]$ e $x_2[n] = \delta[n] + \delta[n-1] + \delta[n-2]$. Si calcoli la trasformata di Fourier della sequenza $w[n] = x_1[n] * x_2[n]$. Si ha:

- **A)** $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- **B)** $X_1(e^{j\omega}/2) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = [1 + 3\cos(\omega) + 2\cos^2(\omega)]$
- C) $X_1(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega)]; W(e^{j\omega}) = e^{-2j\omega}[1 + 2\cos(2\omega) + 2\cos^2(\omega)]$
- **D)** $X_1(e^{j\omega}) = [1 + \cos(\omega)]; W(e^{j\omega}) = e^{-j\omega}[1 + \cos(\omega) + 2\cos(2\omega)]$

Esercizio 5. (1.0 punti) Un segnale x(t) è posto in ingresso ad un ritardatore di T secondi. L'uscita del ritardatore viene immessa in un filtro LTI con risposta all'impulso h(t). A sua volta, l'uscita del filtro LTI viene posta in ingresso ad un ritardatore di 3T secondi. Il segnale y(t) in uscita dal secondo ritardatore può essere scritto come:

- **A)** y(t) = x(t 3T) * h(t 3T)
- **B)** y(t) = x(t 4T) * h(t)
- **C)** y(t) = x(t 4T) * h(t 3T)

Esercizio 6. (1.5 punti) Un filtro FIR ha funzione di trasferimento del tipo $H(z) = 1 - az^{-1} + z^{-2}$, con a > 0 e reale. La risposta in frequenza del filtro

- **A)** si annulla in $f = f_0$ se a > 2 e $f_0 = (1/2\pi) \arctan \sqrt{1 (4/a^2)}$.
- **B)** si annulla in $f = f_0$ se $a \le 2$ e $f_0 = (1/2\pi) \arcsin \sqrt{1 (a^2/4)}$.
- C) non si annulla mai

Esercizio 7. (1.5 punti) Sia data la sequenza $x[n] = a^n u[n]$, con u[n] la sequenza gradino unitario e a = 0.25. A partire da x[n], si costruisca la sequenza

$$y[k] = \begin{cases} x[k/2] & \text{se } k = 2n \\ 0 & \text{altrove} \end{cases}$$

La trasformata z di y[n], Y(z), vale:

- **A)** $Y(z) = \frac{1}{1-4z^{-2}}$
- **B)** $Y(z) = \frac{1}{1-4z}$
- C) $Y(z) = \frac{1}{(1-\frac{1}{4}z^{-1})^2}$
- **D)** $Y(z) = \frac{1}{1 \frac{1}{4}z^{-2}}$
- E) Nessuna delle altre risposte

Esercizio 8. (1.5 punti) Si consideri un insieme di processi casuali $X_i(t)$ stazionari, a media nulla, a varianza unitaria e statisticamente indipendenti. Si costruisca il processo

$$Y(t) = \sum_{i=-\infty}^{+\infty} e^{-\alpha|i|} X_i(t - iT),$$

dove α è una costante positiva. La varianza di Y(t)

- A) tende a zero
- B) non assume nessuno dei valori indicati nelle altre risposte
- **C)** vale $\frac{2}{1 e^{-2\alpha}}$
- **D)** diverge
- $\mathbf{E)} \text{ vale } \frac{1 + e^{-2\alpha}}{1 e^{-2\alpha}}$
- F) vale $\frac{1+e^{-\alpha}}{1-e^{-\alpha}}$