Rozgrzewka

Zadanie 1. Udowodnij, że jeśli a + b = c + d oraz ab = cd, to wówczas a = b i c = d lub a = d i b = c.

Zadanie 2. Wykonaj dzielenie wielomianów

1.
$$(x^6 - 2x^4 + 2x^3 - 2x + 1) : (x^3 - 2x + 1)$$

2.
$$(2x^7 - 3x^6 + 4x^4 - x^2 + 2x + 4) : (2x^5 + x^4 - 1)$$

3.
$$(x^4 + x^3 + 10x^2 + 9x + 9) : (x^2 + 2x + 1)$$

4.
$$(38x^3 + 7x^2 - 8x - 1) : (x + \frac{1}{2})$$

Zadanie 3. Rozłóż na czynniki wielomiany

1.
$$x^3 + 3x^2 - 4x - 12$$

2.
$$2x^4 - 6x^3 - 8x^2$$

3.
$$9x^2 - 30x + 25$$

4.
$$x^4 + 3x^3 - 15x^2 - 19x + 30$$

Zadanie 4. Wielomian W(x) przy dzieleniu przez (x-5) daje resztę 1, a przy dzieleniu przez (x+3) daje resztę -7. Wyznacz resztę z dzielenia tego wielomianu przez wielomian $x^2 - 2x - 15$.

Zadanie 5. Reszta z dzielenia wielomianu W(x) przez trójmian kwadratowy $P(x) = x^2 + 2x - 2$ jest równa R(x) = 2x + 5. Wyznacz resztę z dzielenia tego wielomianu przez dwumian (x - 1).

Zadanie 6. Podaj przykład takiego wielomianu W(x) stopnia szóstego, który w wyniku podzielenia przez wielomian $P(x) = 2x^3 + 8$ daje resztę będącą wielomianem stopnia drugiego.

Zadanie 7. Wielomian W(x) o współczynnikach całkowitych daje przy dzieleniu przez wielomian $(x^2-12x+11)$ resztę (990x-889). Wykaż, że wielomian ten nie ma pierwiastków całkowitych.

Zadanie 8. Dla jakich wartości parametrów a, b wielomian W(x) jest podzielny przez wielomian P(x), jeśli:

1.
$$W(x) = x^4 - 2x^3 + ax^2 - 3x + b$$
, $P(x) = x^2 - 3x + 3$

2.
$$W(x) = x^4 - x^3 - 9x^2 + ax + 2$$
, $P(x) = x^2 + 2x + b$

Zadanie 9. Wielomian W(x) jest stopnia drugiego i ma jeden pierwiastek dwukroty równy 3. Czy wielomian $P(x) = [W(x)]^3(x^3 + 5x^2 - 9x - 45)$ ma pierwiastki wielokrotne? Jeśli tak, to jakie? Podaj krotność pierwiastka wielokrotnego.

Zadanie 10. Przedstaw wielomian

1.
$$W(x) = x^4 + 2x^3 + 5x^2 + 4x + 3$$

2.
$$P(x) = x^4 - 3x^3 + 6x^2 - 5x + 3$$

w postaci iloczynu wielomianów o współczynnikach całkowitych (dla W - całkowitych dodatnich).

Czy umiesz rozłożyć te wielomiany na czynniki liniowe?

Czynniki liniowe

Niech P(x) będzie wielomianem stopnia n z pierwiastkami (potencjalnie zespolonymi) $x_1,...,x_n$. Wówczas możemy zapisać

$$P(x) = a(x - x_1)(x - x_2)...(x - x_n).$$

Zadanie 11. Jednym z rozwiązań równania $3x^3 + ax^2 + bx + 12 = 0$, gdzie a, $b \in \mathbb{C}$, jest liczba $1 + \sqrt{3}$. Znajdź liczby a i b.

Zadanie 12. Dla jakich wartości parametru a rozwiązania x_1 , x_2 , x_3 , x_4 równania $x^4 + 5x^3 + ax^2 - 40x + 64 = 0$ spełniają warunki $x_2 = -2x_1$, $x_3 = 4x_1$ i $x_4 = -8x_1$? Wyznacz wszystkie rozwiązania równania.

Zadanie 13. Wiadomo, że x_1 , x_2 , x_3 są rozwiązaniami równania $x^3-2x^2+x+1=0$. Ułóż równanie, którego rozwiązaniami są $y_1=x_1x_2$, $y_2=x_1x_2$ i $y_3=x_2x_3$.

Zadanie 14. Wiadomo, że x_1 , x_2 , x_3 xą rozwiązaniami równania $x^3-x^2-1=0$. Ułóż równanie, którego rozwiązaniami są $y_1=x_1+x_2$, $y_2=x_1+x_3$ i $y_3=x_2+x_3$.

Zadanie 15. Dla każdej liczby dodatniej a wyznaczyć liczbę pierwiastków wielomianiu $x^3 + (a+2)x^2 - x - 3a$.

Zadanie 16. Udowodnić, że jeżeli liczby x_1 i x_2 są pierwiastkami równania $x^2 + px - 1 = 0$, gdzie p jest liczbą nieparzystą, to dla każdego naturalnego n liczby $x_1^n + x_2^n$ i $x_1^{n+1} + x_2^{n+1}$ są całkowite i względnie pierwsze.