Curriculum Vitae

Alex Rutar

Last updated: January 13, 2023

Personal Information

Institution University of St Andrews

Email alex@rutar.org
Website https://rutar.org

Citizenship Canadian

Languages English (native), French (reading)

Research Interests —

I am generally interested in fractal geometry, dynamical systems, and the fine geometry of sets and measures in Euclidean space. Here are some areas that I am actively working in:

- geometry of overlapping self-similar sets, associated invariant measures, and their multifractal analysis
- general dimension theory, dimension interpolation, and classification
- symbolic dynamics, matrix products, and random substitutions
- thermodynamic formalism and multifractal analysis of self-affine measures
- fine scaling of self-affine sets and Assouad-type dimensions

Education -

PhD in Mathematics, University of St Andrews, St Andrews, UK
Advisors: Jonathan Fraser and Kenneth Falconer
Bachelor of Mathematics, University of Waterloo, Waterloo, ON
Major: Pure Mathematics, Minor: Combinatorics and Optimization
GPA: 95.7/100
Exchange, Budapest Semesters in Mathematics, Budapest
Magna Cum Laude
GPA: 4.0/4.0
Secondary School, Tempo School, Edmonton, AB
Advanced Placement National Scholar
GPA: 99/100

Funding

2021	£15,609	EPSRC Doctoral Funding
2020	£15,285	EPSRC Doctoral Funding
2019	\$4,500	NSERC Undergraduate Research Award
2018	\$4,500	NSERC Undergraduate Research Award

Scholarships and Awards

2022	\$105,000	NSERC CGS-D (declined for PGS-D), Government of Canada
2020	£73,000	Hansel Scholarship, University of St Andrews
2020	\$1,000	Pure Math Undergraduate Research Prize, University of Waterloo
2016	\$20,000	W. T. Tutte National Scholarship, University of Waterloo
2016	\$5,000	President's Scholarship, University of Waterloo
2016	\$2,500	Rutherford Scholarship, Government of Alberta
2016	\$0	Governor General Bronze, Tempo School
		·

Publications

- 1. A. Mitchell, A. Rutar. Multifractal analysis of measures arising from random substitutions. *arXiv*:2301.04958 (submitted).
- 2. J. M. Fraser, A. Rutar. Assouad-type dimensions of overlapping self-affine sets. *arXiv*:2209.13952 (submitted).
- 3. A. Rutar. Attainable forms of Assouad spectra. arXiv:2111.14678. (submitted).
- 4. A. Banaji, A. Rutar. Attainable forms of intermediate dimensions. *Ann. Fenn. Math.* 47 (2022), 939-960.
- 5. A. Rutar. A Multifractal Decomposition for Self-similar Measures with Exact Overlaps. *arXiv*:2104.06997 (submitted).
- 6. K. E. Hare, A. Rutar. Local Dimensions of Self-similar Measures Satisfying the Finite Neighbour Condition. *Nonlinearity* 35 (2022), 4876-4904
- 7. A. Rutar. Geometric and Combinatorial Properties of Self-similar Multifractal Measures. *Ergodic Theory Dynam. Systems* (accepted).
- 8. K. E. Hare, K. G. Hare, A. Rutar. When the Weak Separation Condition implies the Generalized Finite Type Condition. *Proc. Amer. Math. Soc.* 149 (2021), 1555-1568.

Conferences and Presentations —

Oct. 2022	Assouad dimension and slices of self-affine sets : Manchester Dynamics Seminar
Sep. 2022	Fractals and Related Fields IV: Geometric and Combinatorial Properties of Self-similar Measures
Aug. 2022	BME Dynamical Systems Seminar : Geometric and Combinatorial Properties of Self-similar Measures
Jul. 2022	BECMC 2022: Attainable forms of intermediate dimensions
Jul. 2022	University of Vienna Ergodic Theory Seminar: Dimension theory and classification of Assouad spectra through homogeneous Moran sets
Jun. 2022	Geometry of Deterministic and Random Fractals: Classifying Dimension Spectra
May. 2022	Workshop on Self-affine and Overlapping IFS (Bristol): Geometric and Combinatorial Properties of Self-similar measures
Apr. 2022	Probability, Analysis, and Dynamics (Bristol) : Geometric and Combinatorial Properties of Self-similar measures
Apr. 2022	St Andrews Burn Meet: Pisot Numbers and Bernoulli Convolutions
Feb. 2022	St Andrews Analysis Seminar : <i>Attainable forms of intermediate dimensions</i>
Apr. 2021	Junior Ergodic Theory Seminar : Self-similar measures with non-concave spectra and multifractal analysis
Jan. 2021	St Andrews Online Burn Meet: Analysis Group Intro Talk
Oct. 2020	St Andrews Analysis Seminar : Multifractal Analysis for Self-Similar Measures with Exact Overlaps
Feb. 2020	Waterloo Analysis Seminar : Geometric and Combinatorial Separation Conditions for Iterated Function Systems
Jul. 2019	CUMC 2019: An Algebraic Proof of Quadratic Reciprocity
Jul. 2018	CUMC 2018: Pisot–Vijayaraghavan numbers

Other Skills —

IAT _E X	typesetting and package development
git	version control software
Python	software development, numerical computation, symbolic computa-
•	tion, graphical tools
Mathematica	functional programming, algorithm implementation for research
	papers
HTML and CSS	fundamentals of web development