[Llenar con letra mayúscula de imprenta GRANDE]

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Teoría de la Computación

Parcial 3, tema 2 [Martes 23 de Junio de 2011]

Instrucciones: entregar en hojas SEPARADAS POR EJERCICIO, numeradas, cada una con APELLIDO en el margen SUPERIOR DERECHO. La evaluación dura 3 hs (tres horas). NO se asignan puntos a las respuestas aún correctas pero sin justificación o desarrollo. Respuestas incompletas reciben puntajes incompletos.

- a) Sea la relación $S = \{(F_i, F_j) \mid \text{ si area } (F_i) = \text{area } (F_j)\}$ definida en el conjunto de figuras planas \mathcal{F} . En particular, considere los triángulos $F_1 F_5$, y los rectángulos $F_6 F_{10}$. Las bases y alturas de los triángulos están dadas por $B_T = \{2, 4, 6, 8, 10\}$ y $H_T = \{5, 1, 2, 3, 4\}$, respectivamente, mientras que las correspondientes de los rectángulos son $B_R = \{5, 3, 2, 1, 4\}$ y $H_R = \{4, 2, 1, 5, 3\}$, respectivamente. Determine si S es una relación de equivalencia o de orden en el conjunto \mathcal{F} . En el primer caso liste todas las clases de equivalencia, y en el segundo caso indique si es un orden parcial o total.
 - b) Escriba un algoritmo es_relacion_de_equivalencia (A) en el que, dada la matriz (cuadrada) A de una relación R en un conjunto X de n elementos, devuelva True si R es una relación de equivalencia y False en caso contrario.
 - c) Escriba un algoritmo cierre_simetrico (A) en el que, dada la matriz (cuadrada) A de una relac. R en un conj. X de n elementos, devuelva el cierre simétrico de R.
- 2) a) Determine que tipo de grafo representa la matriz de adyacencia A = [A O; O B] donde los cuatro elementos representan bloques rectangulares. Incluya un ejemplo.
 - b) Defina vértice (o punto) de articulación, dé un ejemplo y un contraejemplo.
 - c) Trace un grafo simple de 5 vértices con grados 2,3,3,4,4 o explique por qué no existe.
- 3) a) Trace todos los subgrafos con al menos 3 vértices en K_3 .
 - b) Demuestre que en todo grafo existe un número par de vértices de grado impar.
 - c) Determine si los grafos G_1 y G_2 en la Fig. 1 (izq.) son (o no) isomorfos.
- 4) a) Enuncie la fórmula de Euler para grafos planos. Luego determine si el grafo G_3 en la Fig. 1 (centro-der.) es plano (o no).
 - b) Dé un ciclo de Euler en el grafo G_3 (Fig. 1, centro-der.) o justifique que no es posible.
 - c) Utilice el algoritmo de Dijkstra para trazar un camino de peso mínimo desde el vértice d hacia el a en el grafo G_4 de la Fig. 1 (der.) e indique el peso obtenido.

Figura 1: Grafos G_1, G_2 (izq.), G_3 (centro-der.) y G_4 (der.) para los incisos 3c-4c.

- 5) a) Defina grafo conexo, camino y camino simple en un grafo, dé un ejemplo y un contraejemplo de cada uno. Demuestre que en todo grafo conexo existe un camino simple.
 - b) Sea el grafo G = (V, E) y \mathbf{A} su matriz de adyacencia con respecto al orden natural de los vértices y con posibles aristas múltiples y bucles. Demuestre que el número de caminos distintos de longitud r entre los vértices v_i y v_j , con r > 0 es igual al elemento ubicado en la posición i, j de \mathbf{A}^r .
 - c) Defina coloración e Indice Cromático (IC) de un grafo simple. Justifique el IC de K_n .