Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN					

Fifth Semester B.E. Degree Examination

Automata Theory and Computability

TIME: 03 Hours Max. Marks: 100

Note: 01. Answer any **FIVE** full questions, choosing at least **ONE** question from each **MODULE**.

		Module – 1	
	(a)	Define the following terms with examples: Alphabet, Power of an alphabet, String, Concatenation and Languages.	10
Q.1	(b)	Define DFSM. Design a DFSM to accept each of the following languages: i) $L = \{w \in \{0,1\}^* : w \text{ has } 001 \text{ as a substring}\}$ ii) $L = \{w \in \{0,1\}^* : w \text{ has even number of a's and even number of b's}\}$ OR	10
		OK	
	(a)		10
Q.2	(b)	Define distinguishable and indistinguishable states. Minimize the following DFSM.	10
		Module – 2	
	(a)	Define Regular expression. Write the regular expression for the following languages: i) Representing for strings of a's and b's having odd length. ii) To accept strings of a's and b's such that third symbol from the right is a and fourth symbol from the right is b.	10
Q.3	(b)	Use the fsmtoregexheuristic algorithm to construct a regular expression that describes $L(M)$. δ a b ->*1 2 {} *2 3 1 3 3 1	10
	1	OR	
	(a)	Show that regular languages are closed under complement and intersection.	8
Q.4	(b)	State and prove pumping lemma theorem for regular languages. And show that the language $L=\{ww^r; w\in\{0,1\}^*\}$ is not regular.	12

		Module – 3	
Q.5	(a)		10
		Define CFG. Design CFG for the languages	
		i) $L=\{0^{2n}1^m \mid n>=0,m>=0\}$	
		ii) $L = \{0^i 1^j 2^k i = j \text{ or } j = k\}$	

VTUPulse.com

	(b)	Define Ambiguity. Consider the grammar E->E+E E*E (E) id. Find the leftmost, rightmost derivations and parse trees for the string id+id*id. And show that this grammar is ambiguous.	
	•	OR	
Q.6	(a)	Define CNF. Convert the following CFG to CNF. S->aACa A->B/a B->C/c C->cC/€	10
	(b)	Define PDA. Design a PDA to accept the following language. L={a ⁿ b ⁿ ; n>=0}. Draw the transition diagram for the constructed PDA. Show the ID's for the string aaabbb.	10
		Module – 4	
	(a)	With a neat diagram, explain variants of Turing Machines	10
	(b)	Explain Language Acceptability and Design of Turing Machines.	8
Q.7			
		OR	
	(a)	Define a Turing machine. Explain the working of a Turing machine.	8
Q.8	(b)	Design a Turing machine to accept $L=\{0^n1^n2^n \ n>=0\}$. Draw the transition diagram. Show the moves made for string aabbcc.	12
	•	Module – 5	
	(a)	Explain post correspondence problem.	7
	(b)	Explain Halting problem in Turing machine.	6
Q.9	(c)	Explain recursively enumerable language.	7
		OR 3 C. CO	
	(a)	Explain Church Turing thesis.	7
0.46	(b)	Explain Quantum computer.	6
Q.10	(c)	Explain Growth rate of function.	7

Ta	ble sl	howing the Bloom's Tax	conomy Level, Course O Outcome	utcome and Programme			
Question		Bloom's Taxonomy I attached	Level Course Outcome	Programme Outcome			
Q.1	(a)	L1	1	1,12			
		L1,L3	2	1,2,12			
	(c)	,					
Q.2		L3	2	1,2,12			
		L1,L3	2	1,2,12			
	(c)	,					
Q.3		L2	3	1,2,3,4,12			
C	(b)		3	1,2,3,4,12			
	(c)						
Q.4		L2	3	1,2,3,4,12			
C · ·		L2,L3	3	1,2,3,4,12			
	(c)						
Q.5		L1,L3	3	1,2,3,4,12			
2.0	` ′	L2	3	1,2,3,4,12			
	(c)						
Q.6		L1,L3	4	1,2,3,4,12			
2.0	` ′	L1,L3	3	1,2,3,4,12			
	(c)	21,23		, , , ,			
Q.7		L2,L3	3	1,2,3,4,12			
ر•، 	` '	L2	3	1,2,3,4,12			
	(c)						
Q.8	(a)	L2		1,2,3,4,12			
2.0	(b)		alpu	1,2,3,4,12			
	(c)						
Q.9		L2	5	1,2,12			
ر.>		L2	5	1,2,12			
	_ ` _	L2	5	1,2,12			
7 10	(a)		5	1,2,12			
Q.10	(b)		5	1,2,12			
	_ ` ′	L2	5	1,2,12			
	(0)	L'2	<u> </u>	1,2,12			
			Lower order thinking sl	kills			
Bloom's Taxonomy Levels		Remembering(Understanding Understanding	Applying (Application)			
		knowledge): L_1	Comprehension): L_2	rehension): L_2 L_3			
		Higher order thinking skills					
		Analyzing (Analysis): L ₄	Valuating (Evaluation): L_5	Creating (Synthesis): <i>L</i> ₀			

