MATEMATYKA DYSKRETNA Wykład 3. Arytmetyka modularna.

Czesław Bagiński c.baginski@pb.edu.pl

Wydział Informatyki Politechnika Białostocka

Plan wykładu

- Relacja przystawania modulo i jej własności
- Działania na klasach kongruencji
- \odot Pierścień \mathbb{Z}_m
- Funkcja Eulera
- Twierdzenie Eulera i Małe Twierdzenie Fermata
- Ohińskie Twierdzenie o Resztach
- System kryptograficzny RSA

1. Relacja przystawania modulo i jej własności

Definicja

Niech m>1 będzie ustaloną liczbą naturalną. Jeżeli a i b są liczbami całkowitymi, to mówimy, że a przystaje do b modulo m (lub według modułu m), jeśli m|(a-b). Symbolicznie ten fakt zapisujemy następująco:

$$a \equiv b \pmod{m}$$
.

1. Relacja przystawania modulo i jej własności

Stwierdzenie

Dla ustalonej liczby naturalnej m relacja przystawania modulo m ma następujące własności:

- (i) Dla dowolnego $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$, (relacja jest zwrotna);
- (ii) Dla dowolnych $a, b \in \mathbb{Z}$, jeśli $a \equiv b \pmod{m}$, to $b \equiv a \pmod{m}$, (relacja jest symetryczna);
- (iii) Dla dowolnych $a, b, c \in \mathbb{Z}$, $jeśli \ a \equiv b \pmod{m} \ i \ b \equiv c \pmod{m}$, to $a \equiv c \pmod{m}$ (relacja jest przechodnia).
- (iv) Dla dowolnych $a, b, c, d \in \mathbb{Z}$, $jeśli \ a \equiv c \pmod{m} \ i \ b \equiv d \pmod{m}$, $to \ a + b \equiv c + d \pmod{n}$ oraz $ab \equiv cd \pmod{m}$ ($zgodność \ relacji \ z \ działaniami \ dodawania \ i \ mnożenia$).

1. Relacja przystawania modulo i jej własności

Klasy kongruencji

Dzięki trzem pierwszym własnościom zbiór wszystkich liczb całkowitych można podzielić na rozłączne zbiory składające się z liczb, których ta relacja nie rozróżnia lub inaczej – zbiorów wszystkich liczb całkowitych, które podzielone przez m dają taką samą resztę. Zbiory te nazywamy klasami kongruencji lub klasami kongruencji k

$$m\mathbb{Z} = \{mk : k \in \mathbb{Z}\},\ 1 + m\mathbb{Z} = \{1 + mk : k \in \mathbb{Z}\},\ 2 + m\mathbb{Z} = \{2 + km : k \in \mathbb{Z}\},\ \dots$$
 $(m-1) + m\mathbb{Z} = \{m-1 + km : k \in \mathbb{Z}\}.$

2. Działania na klasach kongruencji

Definicja

Niech \mathbb{Z}_m będzie zbiorem wszystkich reszt z dzielenia przez m, tzn.

$$\mathbb{Z}_m = \{0, 1, 2, \dots, m-1\}.$$

Definiujemy w nim działania dodawania i mnożenia modulo m.

$$a \oplus_m b \stackrel{\text{def.}}{=} \text{reszta z dzielenia liczby } a + b \text{ przez } m,$$
 $a \odot_m b \stackrel{\text{def.}}{=} \text{reszta z dzielenia liczby } a \cdot b \text{ przez } m,$

$$(1)$$

2. Działania na klasach kongruencji

Własności działań

- 1. Dodawanie jest łączne: dla dowolnych $a, b, c \in \mathbb{Z}_m$, $(a \oplus b) \oplus c = a \oplus (b \oplus c)$.
- 2. Dodawanie jest przemienne: dla dowolnych $a,b\in\mathbb{Z}_m$, $a\oplus b=b\oplus a$.
- 3. Dodawanie ma element neutralny, jest nim 0: dla dowolnego $a \in \mathbb{Z}_n$ $a \oplus 0 = a = 0 \oplus a$.
 - 4. Dla każdego elementu a istnieje do niego przeciwny: jeśli $a \in \mathbb{Z}_m$, to $m-a \in \mathbb{Z}_m$ oraz $a \oplus (m-a) = 0$.
- 5. Mnożenie jest łączne: dla dowolnych $a, b, c \in \mathbb{Z}_m$, $(a \odot b) \odot c = a \odot (b \odot c)$.
- 6. Mnożenie jest przemienne: dla dowolnych $a,b\in\mathbb{Z}_m$, $a\odot b=b\odot a$.
- 7. Mnożenie ma element neutralny, jest nim 1: dla dowolnego $a \in \mathbb{Z}_m$ $a \odot 1 = a = 1 \odot a$.
- 8. Mnożenie jest rozdzielne względem dodawania: dla dowolnych $a, b, c \in \mathbb{Z}_m$, $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$.

Definicja

Zbiór, wraz z dwoma działaniami o powyższych własnościach nazywamy *pierścieniem*. Jeżeli dodatkowo spełniony jest warunek

9. każdy element różny od 0, ma odwrotność: dla każdego *a* istnieje *b* takie, że

$$a \odot b = 1$$
.

to mówimy zbiór z takimi działaniami jest *ciałem*. Pierwowzorem pierścienia jest zbiór liczb całkowitych z naturalnymi operacjami dodawania i mnożenia liczb, natomiast pierwowzorem ciała – zbiór liczb wymiernych z tymi działaniami.

3. Pierścień \mathbb{Z}_m

Definicja

W zbiorze liczb całkowitych tylko 1 i -1 mają odwrotności będące liczbami całkowitymi. Pozostałe liczby nie mają odwrotności w tym zbiorze. Natomiast w \mathbb{Z}_m może istnieć więcej elementów a, dla których istnieje x, taki że $a\odot_m x=1$. Taki element a nazwiemy odwracalnym. Niech

$$\mathbb{Z}_m^* \stackrel{\text{def.}}{=} \{ a \in \mathbb{Z}_m : NWD(a, b) = 1 \}$$
 (2)

Twierdzenie

Niech m>1 będzie ustaloną liczbą naturalną. Wówczas \mathbb{Z}_m^* jest zbiorem wszystkich elementów odwracalnych z \mathbb{Z}_m .

Twierdzenie

Pierścień \mathbb{Z}_m jest ciałem wtedy i tylko wtedy, gdy m jest liczbą pierwszą.

4. Funkcja Eulera

Definicja

Niech $\varphi(n)$ będzie liczbą wszystkich elementów odwracalnych z \mathbb{Z}_n , tzn.:

$$\varphi(n) \stackrel{\mathrm{def}}{=} |\mathbb{Z}_n^*|.$$

Funkcję $\varphi(n)$ nazywamy funkcją Eulera.

Przykład

Wartości funkcji Eulera dla małych argumentów można wyliczyć bezpośrednio z definicji:

n															
$\varphi(n)$	1	2	2	4	2	6	4	6	4	10	4	12	6	8	8

n												
$\varphi(n)$	16	6	18	8	12	10	22	12	20	12	18	12

4. Funkcja Eulera

Stwierdzenie

Funkcja φ spełnia następujące warunki:

- (i) Jeśli p jest liczbą pierwszą, to dla dowolnej liczby naturalnej n $\varphi(p^n)=p^{n-1}(p-1)$
- (ii) Jeśli m i n są liczbami względnie pierwszymi, to

4. Funkcja Eulera

Stwierdzenie

Funkcja φ spełnia następujące warunki:

- (i) Jeśli p jest liczbą pierwszą, to dla dowolnej liczby naturalnej n $\varphi(p^n)=p^{n-1}(p-1)$
- (ii) Jeśli m i n są liczbami względnie pierwszymi, to $\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n).$
- (iii) Jeśli $n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k}$, to $n = p_1^{n_1 1} (p_1 1) p_2^{n_2 1} (p_2 1) \cdots p_k^{n_k 1} (p_k 1) = n(1 \frac{1}{p_1})(1 \frac{1}{p_2}) \cdots (1 \frac{1}{p_k})$

Wniosek

Jeżeli p i q są różnymi liczbami pierwszymi, to

$$\varphi(p \cdot q) = \varphi(p) \cdot \varphi(q) = (p-1) \cdot (q-1).$$

5. Twierdzenie Eulera i Małe Twierdzenie i Fermata

Twierdzenie Eulera

Niech m>1 będzie ustaloną liczbą naturalną. Jeżeli a jest dowolną liczbą całkowitą, która jest względnie pierwsza z m), to

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

Twierdzenie Eulera – druga wersja

Niech m>1 będzie ustaloną liczbą naturalną. Jeżeli $a\in\mathbb{Z}_m$, to

$$\underbrace{a\odot_m a\odot_m \cdots \odot_m a}_{\varphi(m)}=1.$$

Małe Twierdzenie Fermata

Niech p będzie ustaloną liczbą pierwszą. Jeżeli a jest dowolną liczbą całkowitą niepodzielną przez p, to

$$a^{p-1} \equiv 1 \pmod{p}$$
.

6. Chińskie Twierdzenie o Resztach

Chińskie Twierdzenie o Resztach

Niech m_1, m_2, \ldots, m_k będą ustalonymi liczbami naturalnymi większymi od 1, takimi że $NWD(m_i, m_j) = 1$ dla $i \neq j$. Niech ponadto $N = m_1 m_2 \cdots m_k$. Wówczas dla dla dowolnych liczb całkowitych a_1, a_2, \ldots, a_k istnieje dokładnie jedna liczba całkowita x taka, że $0 \leq x < N$ i

$$x \equiv a_1 \pmod{m_1},$$

 $x \equiv a_2 \pmod{m_2},$
 \dots
 $x \equiv a_k \pmod{m_k}.$
(3)

Ponadto, jeśli x_1, x_2 są dowolnymi liczbami spełniającymi ten układ kongruencji, to

$$x_1 \equiv x_2 \pmod{N}$$
.

7. System kryptograficzny RSA

RSA

Podstawa systemu: para liczb naturalnych N i a.

$$N = p \cdot q$$

gdzie p, q są pierwsze.

a, jest dobrana tak, aby

$$NWD(a, \varphi(N)) = NWD(a, (p-1)(q-1)) = 1.$$

Kluczem publiczny: (N, a).

Tajnymi pozostają liczby pierwsze p i q, jak również wartość $\varphi(N) = (p-1)(q-1)$.

Klucz rozszyfrowujący b wyznaczamy korzystając z rozszerzonego algorytmu Euklidesa na podstawie liczb a i $\varphi(N)$, korzystając z tego, że

$$ab \equiv 1 \pmod{\varphi(N)}.$$

7. System kryptograficzny RSA

RSA - c.d.

Jeśli m jest jednostką informacji zamienioną na liczbę, to szyfrowanie polega na podniesieniu tej liczby do potęgi a.

$$c = m^a \pmod{N}$$
.

Dysponując liczbą b, której wyznaczenie może być obliczeniowo trudne, praktycznie niewykonalne, jeśli nie jest znane $\varphi(N)$, ale przy znajomości $\varphi(N)$ – bardzo łatwe (patrz rozszerzony algorytm Euklidesa), otrzymany szyfrogram c nietrudno zamieniamy na wiadomość m:

$$c^b \equiv (m^a)^b \equiv m^{ab} \equiv m^{1+k\varphi(N)} \equiv m \cdot (m^{\varphi(N)})^k \equiv m \pmod{N}$$

Korzystaliśmy tu z faktu, iż $m^{\varphi(N)} \equiv 1 \pmod{N}$.

7. System kryptograficzny RSA

RSA

Liczby *a* i *b* mogą być bardzo duże, wiec zarówno szyfrowanie, jak i deszyfrowanie mogą zająć wiele czasu. By ten czas możliwie radykalnie skrócić korzystamy z algorytmu szybkiego potęgowania modularnego.

Niech $a=(a_{n-1}\,a_{n-2}\,\ldots\,a_1\,a_0)_2$ będzie zapisem klucza szyfrującego w postaci binarnej. Jeśli teraz chcemy obliczyć m^a (mod N) wyliczamy najpierw ciąg

$$m_0 = m \equiv m^{2^0} \pmod{N}, \ m_1 \equiv m_1^2 \equiv m^2 \pmod{N}, \ \dots, \ m_{n-1} \equiv m_{n-1}^2$$

a następnie wymnażamy liczby m_i dla, których $a_i \neq 0$. Mamy bowiem

$$m^a = m^{a_0 + a_1 \cdot 2 + a_2 \cdot 2^2 + \dots + a_{n-1} \cdot 2^{n-1}} = m^{a_0} m_1^{a_1} m_2^{a_2} \cdots m_{n-1}^{a_{n-1}} \pmod{N}.$$

2.2. Konstrukcja RSA

Autorzy systemu

Ronald Rivest, Adi Shamir, Leonard Adlemann

Definicja

Jednostka tekstu jawnego (blok tekstu podlegający) szyfrowaniu: ciąg bitów ustalonej długości m traktowany jako liczba $<2^m$ Jednostka szyfrogramu: ciąg bitów ustalonej długości k>m traktowany jako liczba $<2^k$

Parametry systemu:

Tajne: różne liczby pierwsze p i q, takie, że $2^m < N = p \cdot q < 2^k$

liczba naturalna d taka, że $NWD(d, \varphi(N)) = 1$

Jawne: para (N, e), gdzie $e \cdot d = 1 \pmod{\varphi(N)}$

Szyfrowanie: $x \to x^e \pmod{N} = y$

Deszyfrowanie:pause

$$y \to y^d \pmod{N} = (x^e)^d = x^{ed} = x^{1+u\varphi N} = x \cdot (x^{\varphi(N)})^u = x^{1+u\varphi N}$$

2.3. Implementacja RSA

Bolek buduje system

- (1) Bolek generuje dwie liczby pierwsze
- (2) Bolek oblicza $N = p \cdot q$ i $\varphi(N) = (p-1)(q-1)$
- (3) Bolek wybiera losowo liczbę e ($1 < e < \varphi(n)$), taki że $NWD(e, \varphi(N)) = 1$.
- (4) Za pomocą rozszerzonego algorytmu Euklidesa Bolek oblicza $d=e^{-1} \pmod{\varphi(N)}$
- (5) Bolek publikuje w informatorze swój klucz publiczny (N, e)

2.3. Szybkie potęgowanie

Algorytm szybkiego potęgowania

Niech $e = (e_{n-1} e_{n-2} \dots e_1 e_0)_2 e_{n-1} = 1 < \varphi(N)$. Liczbę x podnosimy do potęgi e modulo N

- (1) $y \leftarrow x^{e_{n-1}}, i \leftarrow n-2;$
- (2) $y \leftarrow y^2 \pmod{N}$;
- (3) Jeżeli $e_i = 1$, podstaw $y \leftarrow y \cdot x$;
- (4) $i \leftarrow i 1$, jeżeli $i \geqslant 0$ idź do (2);
- (5) Zwróć p.

2.4. Przykład Gardnera

Gardner

W 1977 roku Martin Gardner opublikował w Scientific American artykuł zatytułowany 'Nowy rodzaj szyfru', którego złamanie trwałoby miliony lat. W artykule zamieścił zaszyfrowany tekst z użyciem RSA. Podał klucz jawny N=pq, gdzie

p = 32769132993266709549961988190834461 413177642967992942539798288533

q = 3490529510847650949147849619903898133417764638493387843990820577

Rozkład liczby N na czynniki p i q został odkryty po 17 latach od daty opublikowania.

N =

 $114\,381\,625\,757\,888\,867\,669\,235\,779\,976\,146\,612\,010\,218\,296\,721\,242$ $362\,562\,561\,842\,935\,706\,935\,245\,733\,897\,830\,597\,123\,563\,958\,705\,058$ $989\,075\,147\,599\,290\,026\,879\,543\,541$