Análise de redes de comunicação através de $packet\ sniffing$

Alexandre Lucchesi Alencar 09/0104471 alexandre@loopec.com.br Pedro Salum Franco09/0139232 pedro@loopec.com.br

Daniel A. M. Sandoval 09/0109899 daniel@loopec.com.br

1 de março de $2013\,$

Sumário

1	Introdução								•				
	1.1	Funda	mentação Teóric	a									4
	1.2	Equip	amentos Utilizad	os		•							,
2 Parte I									4				
	2.1	Hands	haking TCP .										
		2.1.1	Procedimento E	Experime	ental								
		2.1.2	Resultados e Ar	nálise .									
3	Cor	nclusão											,

Capítulo 1

Introdução

A transmissão de informação em redes como a Internet ou LANs se dá através da divisão da informação em pacotes, que são transmitidos nos mais diversos meios - Wi-Fi, Bluetooth, rádio, cabos de pares trançados, par metálico, fibra ótica - para chegar da origem ao seu destino. Os protocolos de rede nas camadas física, enlace, rede, transporte e aplicação são responsáveis por tornar essa comunicação transparente e viável por todo o globo terrestre.

O presente projeto tem como objetivo a análise de redes de comunicação através da técnica conhecida como *packet sniffing*, ou seja, examinar os pacotes que são enviados e recebidos para análise da eficiência da rede de comunicação sendo utilizada.

1.1 Fundamentação Teórica

Packet sniffing Técnica que consiste na análise dos pacotes que trafegam na rede, sejam eles endereçados à estação que está monitorando ou não. Através dessa técnica é possível medir a eficiência e taxa de ocupação de uma rede, além de interceptar toda o conteúdo de comunicação não criptografada.

Roteador Dispositivo capaz de interligar duas redes realizando tradução de endereços, permitindo a criação de redes cada vez maiores.

Hops Os pacotes transmitidos podem trafegar entre diversas redes para chegar ao seu destino. Quando o pacote passa de uma rede para outra através de um roteador, chamamos isso de hop.

Handshaking Processo onde ocorre troca de pacotes entre duas estações com o objetivo de se estabelecer uma conexão.

Ping Ferramenta que testa a conexão entre duas estações. Muito utilizada para medir performance, através do tempo que leva para a estação que "pinga" outra estação receber uma resposta, ou "pong".

1.2 Equipamentos Utilizados

Para atingir os objetivos desse projeto, utilizamos os seguintes equipamentos e ferramentas:

- MacBook Air Como estação de *packet sniffing*, utilizamos um MacBook Air de 13" com 4GB de memória RAM e processador Intel Core i7 1.8GHz;
- Wireshark Para poder capturar os pacotes, utilizamos o software Wireshark, que é *open-source* e funciona monitorando atividade na interface de rede e capturando todos os pacotes que chegam a ela;
- **AirPort Express** Para a criação da rede à qual foi conectado o MacBook, foi utilizado um AirPort Express configurado para criar uma rede WiFi no padrão 802.11g, a uma taxa de 54Mbps;
- **D-Link DI-634M** Roteador utilizado para criação de uma subrede para compartilhamento do IP único de saída;
- www.ip-address.com Ferramenta utilizada para estimativa da distância física em quilômetros entre a estação de teste e os sites escolhidos para teste.

A fim de realizar os testes necessários, foram utilizadas as seguintes conexões com a Internet:

- CDT/UnB Conexão direta ao backbone das Universidades brasileiras, através de um endereço IP fixo fornecido pelo Centro de Apoio ao Desenvolvimento Tecnológico da Universidade de Brasília (CDT/UnB);
- Oi Conexão ADSL à Internet com taxa de transferência contratada de 2Mbps fornecida pela empresa OI S.A.

Capítulo 2

Parte I

Objetivo A Parte I tem como objetivo a medição e análise de aspectos do tráfego de rede. Através da análise dos tempos de resposta a *ping* e de *handshaking* da conexão TCP, pretendemos traçar relação entre a distância física e número de *hops* entre os pontos da rede e os tempos medidos.

2.1 Handshaking TCP

2.1.1 Procedimento Experimental

Definição dos casos de teste Foram escolhidos quatro sites da Internet de acordo com a distância física com a estação de teste, com o objetivo de observar as variações de acordo com a distância até o destino. A relação de sites escolhidos para o teste está representada na Tabela 2.1, bem como o número de *hops* e distância física em quilômetros até o servidor.

Site	Hops	Distância (km)
www.bangladesh.gov.bd	24	15.465,6
www.thepiratebay.se	15	10.180,8
www.km.gov.al	15	9.363,2
www.cic.unb.br	6	5

Tabela 2.1: Sites escolhidos para teste de handshaking TCP

Escolha da conexão de rede Para a realização dos testes foi escolhida a rede do CDT/UnB, com o objetivo de verificarmos resultados mais interessantes, principalmente pelo site www.cic.unb.br estar hospedado na mesma infraestrutura e pela qualidade da conexão.

Preparo do ambiente de testes Com o objetivo de aproximar os testes de um caso real de uma rede de alto tráfego, durante os testes outras estações estavam utilizando a mesma conexão para *streaming* de vídeo e videoconferência via Skype.

Medição dos tempos de handshaking Através da utilização da ferramenta Wireshark, medimos o tempo decorrido entre o envio do primeiro pacote TCP ao site e o recebimento de sua resposta. Um exemplo da visualização fornecida pela ferramenta para os pacotes enviados e recebidos está representada pela Figura 2.1. Os tempos medidos foram armazenados em arquivos de texto para análise posterior.

27 3.285721000	192.168.0.148 203.112.217.163	TCP	78 55630 > http [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS
32 3.855925000	203.112.217.16192.168.0.148	TCP	60 http > 55630 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 M
35 3.856055000	192.168.0.148 203.112.217.163	TCP	54 55630 > http [ACK] Seq=1 Ack=1 Win=65535 Len=0
36 3.858700000	192.168.0.148 203.112.217.163	HTTP	387 GET / HTTP/1.1
39 4.470863000	203.112.217.16192.168.0.148	TCP	60 http > 55630 [ACK] Seq=1 Ack=334 Win=6432 Len=0
40 4.620955000	203.112.217.16192.168.0.148	TCP	1514 [TCP segment of a reassembled PDU]
41 4.621091000	203.112.217.16192.168.0.148	TCP	1514 [TCP segment of a reassembled PDU]
42 4.621202000	192.168.0.148 203.112.217.163	TCP	54 55630 > http [ACK] Seq=334 Ack=2921 Win=65535 Len=0
43 4.634823000	192.168.0.148 203.112.217.163	TCP	78 55632 > http [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS
44 4.635135000	192.168.0.148 203.112.217.163	TCP	78 55634 > http [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS
45 4.635136000	192.168.0.148 203.112.217.163	TCP	78 55636 > http [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS
49 5.098023000	203.112.217.16192.168.0.148	TCP	1514 [TCP segment of a reassembled PDU]
50 5.098224000	203.112.217.16192.168.0.148	HTTP	1514 Continuation or non-HTTP traffic
51 5.098318000	192.168.0.148 203.112.217.163	TCP	54 55630 > http [ACK] Seq=334 Ack=5841 Win=65535 Len=0
52 5.098420000	203.112.217.16192.168.0.148	HTTP	1514 Continuation or non-HTTP traffic
53 5.100553000	192.168.0.148 203.112.217.163	TCP	78 55638 > http [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS
54 5.125704000	203.112.217.16192.168.0.148	TCP	60 http > 55632 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 N

Figura 2.1: Packet sniffing da conexão com o site www.bangladesh.gov.bd

2.1.2 Resultados e Análise

Os resultados obtidos foram de acordo com o esperado. Quanto maior a distância física e número de *hops* entre a estação de teste e o site sendo testado, maior o tempo para completar o *handshake* (T_{hs}) , conforme mostrado na Tabela 2.2.

Site	Hops	Distância (km)	$T_{hs}(ms)$
www.bangladesh.gov.bd	24	15.465,6	570,204
www.thepiratebay.se	15	10.180,8	314,048
www.km.gov.al	15	9.363,2	306,378
www.cic.unb.br	6	5	7,723

Tabela 2.2: Tabela compilada dos resultados obtidos no teste de handshaking

Análise

Apesar de haver uma relação clara entre a distância física, número de hops e T_{hs} , não é possível generalizar ou sequer traçar uma relação matemática. Percebe-se que T_{hs} depende da qualidade da conexão em geral, que é afetada pela distância, porém não exclusivamente.

Para conexão com o site www.cic.unb.br, percebemos que T_{hs} é muito reduzido, o que atribuímos a estar na mesma infraestrutura de rede que a estação de teste. Em comparação, a conexão com o site localizado em Bangladesh, a mais de 15 mil quilômetros de distância, T_{hs} é 7200% maior.

Capítulo 3

Conclusão