Math H110 Midterm 1 CheatSheet

1A. (n/a)

1B.

- 1. **Vector Space.** A vector space *V* is a set that has scalar multiplication and vector addition defined on it with the following properties:
 - (a) Additive commutativity.
 - (b) Additive associativity of vectors (u + (v + w) = (u + v) + w) and multiplicative associativity for scalars ((ab)v = a(bv)).
 - (c) Additive identity.
 - (d) Additive inverses.
 - (e) Multiplicative identity.
 - (f) BOTH distributive properties.
- 2. **V-space (unique additive identity)** A vector space has a unique additive identity.
- 3. **V-space (unique additive inverses)** Every element in a vector space has a unique additive inverse.

1C.

- 1. **Subspace.** A subset $U \subseteq V$ is a subspace of V if it is a vector space with the same additive identity, scalar multiplication, and vector addition as defined on V.
- 2. Conditions for a Subspace. A subset $U \subseteq V$ is a subspace of V iff U is closed under vector addition, scalar multiplication, and contains the "zero" element as in V.
- 3. **Sums of Subspaces.** Let V_1, \ldots, V_n be subspaces of V. Then, we have the sum of subspaces as $V_1 + \cdots + V_n = \{v_1 + \cdots + v_n \mid v_i \in V_i \text{ for all } i\}$.
- 4. Smallest subspace containing each subspace Suppose V_1, \ldots, V_n are subspaces of V. Then, $V_1 + \cdots + V_n$ is the smallest subspace of V containing V_1, \ldots, V_n .
- 5. **Direct Sum.** Suppose V_1, \ldots, V_m are subspaces of V. Then:

- (a) The sum $V_1 + \cdots + V_m$ is direct if each element of $V_1 + \cdots + V_m$ can be written uniquely as a sum $v_1 + \cdots + v_m$, where $v_i \in V_i$ for all i.
- (b) If $V_1 + \cdots + V_m$ is a direct sum, then we write $V_1 \oplus \cdots \oplus V_m$.
- 6. Conditions for a direct sum. Suppose V_1, \ldots, V_n are subspaces of V. Then, $V_1 + \cdots + V_n$ is direct iff the only way to write 0 from $v_1 + \cdots + v_n$ is by taking $v_i = 0$ for all i.
- 7. **Direct sum of subspaces.** If U, W are subspaces of V, then U + W is direct iff $U \cap W = \{0\}$.

2A.

- 1. **Span is the smallest containing subspace.** The span of a list of vectors in *V* is the smallest subspace containing all of the vectors in the list.
- 2. **Zero polynomial.** The zero polynomial is said to have degree $-\infty$.
- 3. **Linear Independence.** A list of vectors $v_1, \ldots, v_n \in V$ is said to be linearly independent if $a_1v_1 + \cdots + a_nv_n = 0$ implies $a_i = 0$ for all i. Also, the empty list () is said to be linearly independent.
- 4. **Linear Dependence.** A list of vectors $v_1, ..., v_n$ is said to be linearly dependent if $a_1v_1 + \cdots + a_nv_=0$ impies $a_i \neq 0$ for some i.
- 5. **Linear Dependence Lemma.** Suppose v_1, \ldots, v_m is a linearly dependent list in V. Then, there exists $k \in \{1, \ldots, m\}$ such that $v_k \in \text{span}(v_1, \ldots, v_{k-1})$. Furthermore, if k satisfies the condition in the previous sentence and the k^{th} term is removed from v_1, \ldots, v_m , then the span of the remaining list equals $\text{span}(v_1, \ldots, v_m)$.
- 6. **length of linearly independent list**; **length of spanning list.** In a finite-dimensional vector space, the length of every linearly independent list is at most the length of every spanning list of vectors.
- 7. **Finite Dimensional subspaces.** Every subspace of a finite-dimensional vector space is finite dimensional.

2B.

1. **Basis.** A basis of *V* is a list of vectors that is linearly independent and spans *V*.

- 2. **Criterion for basis.** A list of vectors $v_1, \ldots, v_n \in V$ is a basis of V iff every $v \in V$ can be written uniquely in the form $v = a_1v_1 + \cdots + a_nv_n$, where $a_i \in F$ for all i.
- 3. Every spanning list contains a basis. Every spanning list in a vector space can be reduced to a basis of the vector space.
- 4. **Basis of finite-dimensional vector space.** Every finite-dimensional vector space has a basis.
- 5. Every linearly independent list extends to a basis. Every linearly independent list in a finite-dimensional vector space can be extended to a basis of the vector space.
- 6. Every subspace of V is part of a direct sum equal to V. Suppose V is finite-dimensional and U is a subspace of V. Then, there is a subspace W of V such that $V = U \oplus W$.

2C.

- 1. **Basis length does not depend on basis.** Any two bases of a finite-dimensional vector space have the same length.
- 2. **Dimension of a subspace.** If V is finite-dimensional and U is a subspace of V, then $\dim U \leq \dim V$.
- 3. Linearly independent list of the right length is a basis. Suppose V is finite-dimensional. Then, every linearly independent list of vectors in V (with list length equal to $\dim V$) is a basis of V.
- 4. Subspace of full dimension equals the whole space. Suppose V is finite-dimensional and U is a subspace of V such that $\dim U = \dim V$. Then, U = V.
- 5. **Spanning list of the right length is a basis.** Suppose V is finite-dimensional. Then, every spanning list of V of length dim V is a basis of V.
- 6. **Dimension of a sum.** If V_1, V_2 are subspaces of a finite-dimensional vector space, then $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 \dim(V_1 \cap V_2)$.

3A.

- 1. **Set of Linear Maps.** The linear of linear maps from $V \to W$ is written $\mathcal{L}(V,W)$ and the set of linear maps from $V \to V$ is written $\mathcal{L}(V)$.
- 2. **Linear Map lemma.** Suppose v_1, \ldots, v_n is a basis of V and $w_1, \ldots, w_n \in W$. Then, there exists a unique linear map $T: V \to W$ such that $Tv_k = w_k$ for each k.
- 3. Linear maps take 0 to 0. Suppose $T: V \to W$ is a linear map. Then, T(0) = 0.

3B.

- 1. **null space is a subspace.** Suppose $T \in \mathcal{L}(V, W)$. Then, T is a subspace of V.
- 2. **injectivity iff null is 0.** Let $T \in \mathcal{L}(V, W)$. Then, T is 1-1 iff $T = \{0\}$.
- 3. **range is a subspace.** If $T \in \mathcal{L}(V, W)$, then range T is a subspace of W.
- 4. **Fundamental Theorem of Linear Maps.** Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Then, range T is finite dimensional and $\dim V = \dim T + \dim \operatorname{range} T$.
- 5. **linear map to a lower-dim space is not 1-1.** Suppose V,W are finite-dimensional vector spaces such that $\dim V > \dim W$. Then, no linear map from $V \to W$ is 1-1.
- 6. **linear map to a higher-dim space is not onto.** Suppose V, W are finite-dimensional vector spaces such that $\dim V < \dim W$. Then, no linear map from $V \to W$ is onto.

3C. n/a.

3D.

- 1. **Theorem.** Let V, W be finite-dimensional vector spaces such that $\dim V = \dim W$ and let $T \in \mathcal{L}(V, W)$. Then, T is invertible iff T is 1-1 iff T is onto.
- 2. **isomorphism.** An isomorphism is an invertible linear map.
- 3. **dimension and isomorphic.** Two finite-dimensional vector spaces are isomorphic iff they have the same dimension.

4. **Theorem.** Suppose V and W are finite-dimensional. Then, $\mathcal{L}(V,W)$ is finite-dimensional and $\dim \mathcal{L}(V,W) = (\dim V)(\dim W)$.

3E.

- 1. **Product of vector spaces is a vector space.** Suppose V_1, \ldots, V_m are vector spaces over \mathbb{F} . Then, $V_1 \times \cdots \times V_m$ is a vector space over \mathbb{F} .
- 2. **dimension of a product is the sum of the dimensions.** Suppose V_1, \ldots, V_m are finite-dimensional vector spaces. Then, $V_1 \times \cdots \times V_m$ is finite-dimensional and $\dim(V_1 \times \cdots \times V_m) = \dim V_1 + \cdots + \dim V_m$.
- 3. **Products and direct sums.** Suppose V_1, \ldots, V_m are subspaces of V. Define a linear map $\Gamma: (V_1 \times \cdots \times V_m) \to (V_1 + \cdots + V_m)$ by $\Gamma(v_1, \ldots, v_m) = v_1 + \cdots + v_m$. Then, $V_1 + \cdots + V_m$ is direct iff Γ is 1-1.
- 4. **direct sum iff dimensions add up.** Suppose V is finite-dimensional and V_1, \ldots, V_m are subspaces of V. Then, $V_1 + \cdots + V_m$ is direct iff $\dim(V_1 + \cdots + V_m) = \dim V_1 + \cdots + \dim V_m$.
- 5. $\mathbf{v} + \mathbf{U}$. Suppose $v \in V$ and $U \subseteq V$. Then, $v + U = \{v + u \mid u \in U\}$.
- 6. **Translate.** For $v \in V$ and $U \subseteq V$, the set v + U is called a translate of U.
- 7. **Quotient Space.** Let U be a subspace of V. Then, the quotient space V/U is the set of all translates of U, that is, $V/U = \{v + U \mid v \in V\}$.
- 8. **two translates of a subspace are either equal or disjoint.** Suppose U is a subspace of V and $v, w \in V$. Then, $v w \in U$ iff v + U = w + U iff $(v + U) \cap (w + U) \neq \emptyset$.
- 9. Addition and scalar multiplication on Quotient space. Let U be a subspace of V. Then, we have (for all $v, w \in V$, $\lambda \in F$):
 - (a) addition on V/U: (v+U) + (w+U) = (v+w) + U.
 - (b) scalar multiplication on V/U: $\lambda(v+U) = (\lambda v) + U$.
- 10. **quotient space is a vector space.** Let U be a subspace of V. Then, the quotient space V/U is a subspace of V under the defined scalar multiplication and vector addition.

- 11. **quotient map.** Let U be a subspace of V. Then, the quotient map $\pi: V \to V/U$ is the linear map defined by $\pi(v) = v + U$ for each $v \in V$.
- 12. **dimension of quotient space.** Suppose V is finite-dimensional and U is a subspace of V. Then, $\dim(V/U) = \dim V \dim U$.
- 13. **Column rank.** The column rank (rank of the column span of a matrix) is $\operatorname{rank} T_A$.
- 14. **Theorem.** If A is a rectangular matrix of elements in a field F, then row rank A = column rank A.