MC-202 Grafos

lago A. Carvalho iagoac@ic.unicamp.br

Universidade Estadual de Campinas

 1° semestre/2020

Redes Sociais

Como representar amizades em uma rede social?

Redes Sociais

Como representar amizades em uma rede social?

Temos um conjunto de pessoas (Ana, Beto, Carlos, etc...)

Redes Sociais

Como representar amizades em uma rede social?

Temos um conjunto de pessoas (Ana, Beto, Carlos, etc...)

• Ligamos duas pessoas se elas se conhecem

Um Grafo é um conjunto de objetos ligados entre si

Um Grafo é um conjunto de objetos ligados entre si

• Chamamos esses objetos de vértices

Um Grafo é um conjunto de objetos ligados entre si

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social

Um Grafo é um conjunto de objetos ligados entre si

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas

Um Grafo é um conjunto de objetos ligados entre si

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - Ex: relação de amizade na rede social

Um Grafo é um conjunto de objetos ligados entre si

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - Ex: relação de amizade na rede social

Um Grafo é um conjunto de objetos ligados entre si

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - Ex: relação de amizade na rede social

Representamos um grafo visualmente

Um Grafo é um conjunto de objetos ligados entre si

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - Ex: relação de amizade na rede social

Representamos um grafo visualmente

• com os vértices representados por pontos e

Um Grafo é um conjunto de objetos ligados entre si

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - Ex: relação de amizade na rede social

Representamos um grafo visualmente

- com os vértices representados por pontos e
- as arestas representadas por curvas ligando dois vértices

Um Grafo é um conjunto de objetos ligados entre si

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - Ex: relação de amizade na rede social

Representamos um grafo visualmente

- com os vértices representados por pontos e
- as arestas representadas por curvas ligando dois vértices

Matematicamente, um grafo G é um par ordenado (V,E)

Matematicamente, um grafo G é um par ordenado (V,E)

ullet V é o conjunto de vértices do grafo

Matematicamente, um grafo G é um par ordenado (V,E)

- ullet V é o conjunto de vértices do grafo
 - Ex: $V = \{0, 1, 2, 3, 4, 5\}$

Matematicamente, um grafo G é um par ordenado (V, E)

- ullet V é o conjunto de vértices do grafo
 - Ex: $V = \{0, 1, 2, 3, 4, 5\}$
- ullet É é o conjunto de arestas do grafo

Matematicamente, um grafo G é um par ordenado (V, E)

- ullet V é o conjunto de vértices do grafo
 - Ex: $V = \{0, 1, 2, 3, 4, 5\}$
- *E* é o conjunto de arestas do grafo
 - Representamos uma aresta ligando $u,v\in V$ como $\{u,v\}$

Matematicamente, um grafo G é um par ordenado (V, E)

- ullet V é o conjunto de vértices do grafo
 - Ex: $V = \{0, 1, 2, 3, 4, 5\}$
- ullet É é o conjunto de arestas do grafo
 - Representamos uma aresta ligando $u,v\in V$ como $\{u,v\}$
 - Para toda aresta $\{u,v\}$ em E, temos que $u \neq v$

Matematicamente, um grafo G é um par ordenado (V,E)

- ullet V é o conjunto de vértices do grafo
 - Ex: $V = \{0, 1, 2, 3, 4, 5\}$
 - *E* é o conjunto de arestas do grafo
 - Representamos uma aresta ligando $u,v\in V$ como $\{u,v\}$
 - Para toda aresta $\{u,v\}$ em E, temos que $u \neq v$
 - Existe no máximo uma aresta $\{u,v\}$ em E

Matematicamente, um grafo G é um par ordenado (V,E)

- V é o conjunto de vértices do grafo
 - Ex: $V = \{0, 1, 2, 3, 4, 5\}$
 - ullet é o conjunto de arestas do grafo
 - Representamos uma aresta ligando $u,v\in V$ como $\{u,v\}$
 - Para toda aresta $\{u,v\}$ em E, temos que $u \neq v$
 - Existe no máximo uma aresta $\{u,v\}$ em E
 - Ex:

$$\overline{E} = \left\{ \{0, 1\}, \{0, 4\}, \{5, 3\}, \{1, 2\}, \{2, 5\}, \{4, 5\}, \{3, 2\}, \{1, 4\} \right\}$$

O vértice 0 é vizinho do vértice 4

O vértice 0 é vizinho do vértice 4

• Dizemos que 0 e 4 são adjacentes

O vértice 0 é vizinho do vértice 4

- Dizemos que 0 e 4 são adjacentes
- Os vértices 0, 1 e 5 formam a vizinhança do vértice 4

Vamos representar um grafo por uma matriz de adjacências

• Se o grafo tem n vértices

- Se o grafo tem n vértices
- Os vértices serão numerado de 0 a n-1

- Se o grafo tem n vértices
- Os vértices serão numerado de 0 a n-1
- ullet A matriz de adjacências é $n \times n$

- Se o grafo tem n vértices
- Os vértices serão numerado de 0 a n-1
- A matriz de adjacências é $n \times n$
- adjacencia[u][v] = 1 $u \in v$ são vizinhos

- Se o grafo tem n vértices
- Os vértices serão numerado de 0 a n-1
- A matriz de adjacências é $n \times n$
- adjacencia[u][v] = 1 u e v são vizinhos
- adjacencia[u][v] = 0 u e v não são vizinhos

- Se o grafo tem n vértices
- Os vértices serão numerado de 0 a n-1
- A matriz de adjacências é $n \times n$
- adjacencia[u][v] = 1 u e v são vizinhos
- adjacencia[u][v] = 0 u e v não são vizinhos

- Se o grafo tem n vértices
- Os vértices serão numerado de 0 a n-1
- A matriz de adjacências é $n \times n$
- adjacencia[u][v] = 1 u e v são vizinhos
- adjacencia[u][v] = 0 u e v não são vizinhos

- Se o grafo tem n vértices
- Os vértices serão numerado de 0 a n-1
- A matriz de adjacências é $n \times n$
- adjacencia[u][v] = 1 u e v são vizinhos
- adjacencia[u][v] = 0 u e v não são vizinhos

	0 1 0 0 0 1	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	0	1	0
2	0	1	0	1	0	1
3	0	0	1	0	0	1
4	1	1	0	0	0	1
5	0	0	1	1	1	0

TAD Grafo

```
1 typedef struct {
    int **adj;
2
3 int n;
4 } Grafo:
5
6 typedef Grafo * p_grafo;
7
8 p_grafo criar_grafo(int n);
9
10 void destroi_grafo(p_grafo g);
11
12 void insere_aresta(p_grafo g, int u, int v);
13
14 void remove_aresta(p_grafo g, int u, int v);
15
16 int tem_aresta(p_grafo g, int u, int v);
17
18 void imprime_arestas(p_grafo g);
19
20 ...
```

```
1 p_grafo criar_grafo(int n) {
```

```
1 p_grafo criar_grafo(int n) {
2   int i, j;
3   p_grafo g = malloc(sizeof(Grafo));
```

```
1 p_grafo criar_grafo(int n) {
2   int i, j;
3   p_grafo g = malloc(sizeof(Grafo));
4   g->n = n;
```

```
1 p_grafo criar_grafo(int n) {
2    int i, j;
3    p_grafo g = malloc(sizeof(Grafo));
4    g->n = n;
5    g->adj = malloc(n * sizeof(int *));
```

- - •

```
1 p_grafo criar_grafo(int n) {
2    int i, j;
3    p_grafo g = malloc(sizeof(Grafo));
4    g->n = n;
5    g->adj = malloc(n * sizeof(int *));
6    for (i = 0; i < n; i++)
7    g->adj[i] = malloc(n * sizeof(int));
```



```
1 p_grafo criar_grafo(int n) {
2    int i, j;
3    p_grafo g = malloc(sizeof(Grafo));
4    g->n = n;
5    g->adj = malloc(n * sizeof(int *));
6    for (i = 0; i < n; i++)
7     g->adj[i] = malloc(n * sizeof(int));
8    for (i = 0; i < n; i++)
9    for (j = 0; j < n; j++)
10    g->adj[i][j] = 0;
```



```
1 p_grafo criar_grafo(int n) {
2 int i, j;
3 p_grafo g = malloc(sizeof(Grafo));
4 	 g->n = n;
5 g->adj = malloc(n * sizeof(int *));
6 for (i = 0; i < n; i++)</pre>
7
       g->adj[i] = malloc(n * sizeof(int));
    for (i = 0; i < n; i++)
8
      for (j = 0; j < n; j++)
9
          g \rightarrow adj[i][j] = 0;
10
    return g;
11
12 }
```



```
1 p_grafo criar_grafo(int n) {
2 int i, j;
p_grafo g = malloc(sizeof(Grafo));
4 	 g->n = n;
5 g->adj = malloc(n * sizeof(int *));
6 for (i = 0; i < n; i++)
       g->adj[i] = malloc(n * sizeof(int));
8
   for (i = 0; i < n; i++)</pre>
9
      for (j = 0; j < n; j++)
10
          g \rightarrow adj[i][j] = 0;
    return g;
11
12 }
```

1 void destroi_grafo(p_grafo g) {

```
1 p_grafo criar_grafo(int n) {
2 int i, j;
p_grafo g = malloc(sizeof(Grafo));
    g \rightarrow n = n;
    g->adj = malloc(n * sizeof(int *));
6 for (i = 0; i < n; i++)
7
       g->adj[i] = malloc(n * sizeof(int));
8
   for (i = 0; i < n; i++)</pre>
9
      for (j = 0; j < n; j++)
10
          g \rightarrow adj[i][j] = 0;
    return g;
11
12 }
1 void destroi_grafo(p_grafo g) {
2 int i;
3 for (i = 0; i < g->n; i++)
     free(g->adj[i]);
```

```
1 p_grafo criar_grafo(int n) {
2 int i, j;
  p_grafo g = malloc(sizeof(Grafo));
    g \rightarrow n = n;
    g->adj = malloc(n * sizeof(int *));
6 for (i = 0; i < n; i++)
7
       g->adj[i] = malloc(n * sizeof(int));
8
   for (i = 0; i < n; i++)</pre>
9
      for (j = 0; j < n; j++)
10
          g \rightarrow adj[i][j] = 0;
    return g;
11
12 }
1 void destroi_grafo(p_grafo g) {
2 int i;
3
  for (i = 0; i < g->n; i++)
     free(g->adj[i]);
4
5
   free(g->adj);
```

```
1 p_grafo criar_grafo(int n) {
2 int i, j;
   p_grafo g = malloc(sizeof(Grafo));
    g \rightarrow n = n;
    g->adj = malloc(n * sizeof(int *));
6 for (i = 0; i < n; i++)
7
       g->adj[i] = malloc(n * sizeof(int));
8
   for (i = 0; i < n; i++)</pre>
9
      for (j = 0; j < n; j++)
10
           g \rightarrow adj[i][j] = 0;
    return g;
11
12 }
1 void destroi_grafo(p_grafo g) {
2 int i;
3
  for (i = 0; i < g->n; i++)
    free(g->adj[i]);
4
5 free(g->adj);
    free(g);
7 }
```

Manipulando arestas

```
1 void insere_aresta(p_grafo g, int u, int v) {
2   g->adj[u][v] = 1;
3   g->adj[v][u] = 1;
4 }
```

Manipulando arestas

```
void insere_aresta(p_grafo g, int u, int v) {
    g->adj[u][v] = 1;
    g->adj[v][u] = 1;
}

void remove_aresta(p_grafo g, int u, int v) {
    g->adj[u][v] = 0;
    g->adj[v][u] = 0;
}
```

Manipulando arestas

```
1 void insere_aresta(p_grafo g, int u, int v) {
g->adj[u][v] = 1;
3 g->adj[v][u] = 1;
1 void remove_aresta(p_grafo g, int u, int v) {
g \rightarrow adj[u][v] = 0;
g \rightarrow adj[v][u] = 0;
1 int tem_aresta(p_grafo g, int u, int v) {
   return g->adj[u][v];
3 }
```

```
1 p_grafo le_grafo() {
```

```
1 p_grafo le_grafo() {
2   int n, m, i, u, v;
3   p_grafo g;
```

```
1 p_grafo le_grafo() {
2    int n, m, i, u, v;
3    p_grafo g;
4    scanf("%d %d", &n, &m);
```

```
1 p_grafo le_grafo() {
2    int n, m, i, u, v;
3    p_grafo g;
4    scanf("%d %d", &n, &m);
5    g = criar_grafo(n);
```

```
1 p_grafo le_grafo() {
2    int n, m, i, u, v;
3    p_grafo g;
4    scanf("%d %d", &n, &m);
5    g = criar_grafo(n);
6   for (i = 0; i < m; i++) {</pre>
```

```
1 p_grafo le_grafo() {
2    int n, m, i, u, v;
3    p_grafo g;
4    scanf("%d %d", &n, &m);
5    g = criar_grafo(n);
6   for (i = 0; i < m; i++) {
7    scanf("%d %d", &u, &v);</pre>
```

```
1 p_grafo le_grafo() {
2    int n, m, i, u, v;
3    p_grafo g;
4    scanf("%d %d", &n, &m);
5    g = criar_grafo(n);
6    for (i = 0; i < m; i++) {
7     scanf("%d %d", &u, &v);
8     insere_aresta(g, u, v);
9    }
10    return g;
11 }</pre>
```

```
1 p_grafo le_grafo() {
    int n, m, i, u, v;
  p_grafo g;
4 scanf("%d %d", &n, &m);
 g = criar_grafo(n);
6 for (i = 0; i < m; i++) {
      scanf("%d %d", &u, &v);
7
8 insere_aresta(g, u, v);
9
10
    return g;
11 }
1 void imprime_arestas(p_grafo g) {
    int u, v;
    for (u = 0; u < g->n; u++)
3
      for (v = u+1; v < g->n; v++)
4
     if (g->adj[u][v])
5
        printf("{%d,%d}\n", u, v);
7 }
```

O grau de um vértice é o seu número de vizinhos

O grau de um vértice é o seu número de vizinhos

O grau de um vértice é o seu número de vizinhos


```
1 int grau(p_grafo g, int u) {
2    int v, grau = 0;
3    for (v = 0; v < g->n; v++)
4       if (g->adj[u][v])
5          grau++;
6    return grau;
7 }
```

```
1 int mais_popular(p_grafo g) {
```

```
1 int mais_popular(p_grafo g) {
2  int u, max, grau_max, grau_atual;
```

```
1 int mais_popular(p_grafo g) {
2   int u, max, grau_max, grau_atual;
3   max = 0;
4   grau_max = grau(g, 0);
```

```
1 int mais_popular(p_grafo g) {
2    int u, max, grau_max, grau_atual;
3    max = 0;
4    grau_max = grau(g, 0);
5    for (u = 1; u < g->n; u++) {
```

```
int mais_popular(p_grafo g) {
   int u, max, grau_max, grau_atual;
   max = 0;
   grau_max = grau(g, 0);
   for (u = 1; u < g->n; u++) {
      grau_atual = grau(g, u);
}
```

```
1 int mais_popular(p_grafo g) {
    int u, max, grau_max, grau_atual;
2
    max = 0:
3
   grau_max = grau(g, 0);
4
    for (u = 1; u < g->n; u++) {
5
      grau_atual = grau(g, u);
6
7
      if (grau_atual > grau_max) {
        grau_max = grau_atual;
8
9
       max = u;
10
11
```

```
1 int mais_popular(p_grafo g) {
    int u, max, grau_max, grau_atual;
    max = 0:
3
    grau_max = grau(g, 0);
4
    for (u = 1; u < g->n; u++) {
5
       grau_atual = grau(g, u);
6
7
      if (grau_atual > grau_max) {
         grau_max = grau_atual;
8
9
        max = u;
10
11
12
    return max;
13 }
```

Indicando amigos

Queremos indicar novos amigos para Ana

Indicando amigos

Queremos indicar novos amigos para Ana

Quem são os amigos dos amigos da Ana?

Indicando amigos

Queremos indicar novos amigos para Ana

Quem são os amigos dos amigos da Ana?

Queremos indicar novos amigos para Ana

Quem são os amigos dos amigos da Ana?

• Dentre esses quais não são ela mesma ou amigos dela?

Queremos indicar novos amigos para Ana

Quem são os amigos dos amigos da Ana?

• Dentre esses quais não são ela mesma ou amigos dela?

u

```
1 \mbox{{\tt void}} imprime_recomendacoes(p_grafo g, \mbox{{\tt int}} u) {
```


u `

```
1 void imprime_recomendacoes(p_grafo g, int u) {
2   int v, w;
3   for (v = 0; v < g->n; v++) {
```



```
1 void imprime_recomendacoes(p_grafo g, int u) {
2    int v, w;
3    for (v = 0; v < g->n; v++) {
4       if (g->adj[u][v]) {
```



```
1 void imprime_recomendacoes(p_grafo g, int u) {
2    int v, w;
3    for (v = 0; v < g->n; v++) {
4       if (g->adj[u][v]) {
5         for (w = 0; w < g->n; w++) {
```



```
1 void imprime_recomendacoes(p_grafo g, int u) {
2    int v, w;
3    for (v = 0; v < g->n; v++) {
4       if (g->adj[u][v]) {
5         for (w = 0; w < g->n; w++) {
6         if (g->adj[v][w]
```



```
1 void imprime_recomendacoes(p_grafo g, int u) {
2    int v, w;
3    for (v = 0; v < g->n; v++) {
4       if (g->adj[u][v]) {
5         for (w = 0; w < g->n; w++) {
6         if (g->adj[v][w] && w != u
```



```
1 void imprime_recomendacoes(p_grafo g, int u) {
2    int v, w;
3    for (v = 0; v < g->n; v++) {
4       if (g->adj[u][v]) {
5         for (w = 0; w < g->n; w++) {
6         if (g->adj[v][w] && w != u && !g->adj[u][w])
```


Como representar seguidores em redes sociais?

• A Ana segue o Beto e o Eduardo

- A Ana segue o Beto e o Eduardo
- Ninguém segue a Ana

- A Ana segue o Beto e o Eduardo
- Ninguém segue a Ana
- O Daniel é seguido pelo Carlos e pelo Felipe

- A Ana segue o Beto e o Eduardo
- Ninguém segue a Ana
- O Daniel é seguido pelo Carlos e pelo Felipe
- O Eduardo segue o Beto que o segue de volta

Um Grafo dirigido (ou Digrafo)

• Tem um conjunto de vértices

- Tem um conjunto de vértices
- Conectados através de um conjunto de arcos

- Tem um conjunto de vértices
- Conectados através de um conjunto de arcos
 - arestas dirigidas, indicando início e fim

- Tem um conjunto de vértices
- Conectados através de um conjunto de arcos
 - arestas dirigidas, indicando início e fim

- Tem um conjunto de vértices
- Conectados através de um conjunto de arcos
 - arestas dirigidas, indicando início e fim

Um Grafo dirigido (ou Digrafo)

- Tem um conjunto de vértices
- Conectados através de um conjunto de arcos
 - arestas dirigidas, indicando início e fim

Representamos um digrafo visualmente

Um Grafo dirigido (ou Digrafo)

- Tem um conjunto de vértices
- Conectados através de um conjunto de arcos
 - arestas dirigidas, indicando início e fim

Representamos um digrafo visualmente

com os vértices representados por pontos e

Um Grafo dirigido (ou Digrafo)

- Tem um conjunto de vértices
- Conectados através de um conjunto de arcos
 - arestas dirigidas, indicando início e fim

Representamos um digrafo visualmente

- com os vértices representados por pontos e
- os arcos representadas por curvas com uma seta na ponta ligando dois vértices

Matematicamente, um digrafo G é um par (V, A)

ullet V é o conjunto de vértices do grafo

- ullet V é o conjunto de vértices do grafo
- ullet A é o conjunto de arcos do grafo

- ullet V é o conjunto de vértices do grafo
- A é o conjunto de arcos do grafo
 - Representamos um arco ligando $u,v\in V$ como (u,v)

- ullet V é o conjunto de vértices do grafo
- ullet A é o conjunto de arcos do grafo
 - Representamos um arco ligando $u,v\in V$ como (u,v)
 - u é a cauda ou origem de (u,v)

- ullet V é o conjunto de vértices do grafo
- ullet A é o conjunto de arcos do grafo
 - Representamos um arco ligando $u, v \in V$ como (u, v)
 - -u é a cauda ou origem de (u,v)
 - v é a cabeça ou destino de (u,v)

- V é o conjunto de vértices do grafo
- A é o conjunto de arcos do grafo
 - Representamos um arco ligando $u,v \in V$ como (u,v)
 - u é a cauda ou origem de (u,v)
 - v é a cabeça ou destino de (u,v)
 - Podemos ter laços: arcos da forma (u,u)

- *V* é o conjunto de vértices do grafo
- A é o conjunto de arcos do grafo
 - Representamos um arco ligando $u,v \in V$ como (u,v)
 - u é a cauda ou origem de (u,v)
 - -v é a cabeça ou destino de (u,v)
 - Podemos ter laços: arcos da forma (u, u)
 - Existe no máximo um arco (u, v) em A

Grafos e digrafos

Podemos ver um grafo como um digrafo

Grafos e digrafos

Podemos ver um grafo como um digrafo

Basta considerar cada aresta como dois arcos

Grafos e digrafos

Podemos ver um grafo como um digrafo

Basta considerar cada aresta como dois arcos

Podemos ver um grafo como um digrafo

Basta considerar cada aresta como dois arcos

• É o que já estamos fazendo na matriz de adjacências

Podemos ver um grafo como um digrafo

Basta considerar cada aresta como dois arcos

- É o que já estamos fazendo na matriz de adjacências
- Ou seja, podemos usar uma matriz de adjacências para representar um digrafo

Podemos ver um grafo como um digrafo

Basta considerar cada aresta como dois arcos

- É o que já estamos fazendo na matriz de adjacências
- Ou seja, podemos usar uma matriz de adjacências para representar um digrafo
 - adjacencia[u][v] == 1: temos um arco de u para v

Podemos ver um grafo como um digrafo

Basta considerar cada aresta como dois arcos

- É o que já estamos fazendo na matriz de adjacências
- Ou seja, podemos usar uma matriz de adjacências para representar um digrafo
 - adjacencia[u][v] == 1: temos um arco de u para v
 - pode ser que adjacencia[u][v] != adjacencia[v][u]

Quantas arestas pode ter um grafo com n vértices?

1

Quantas arestas pode ter um grafo com n vértices?

0

 $\begin{bmatrix} 1 \end{bmatrix}$

2

Quantas arestas pode ter um grafo com n vértices?

(1)

3

2

Quantas arestas pode ter um grafo com n vértices?

2

Até
$$\binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$$
 arestas

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

Facebook tem 2,2 bilhões de usuários ativos/mês

• Uma matriz de adjacências teria $4.84 \cdot 10^{18}$ posições

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

- Uma matriz de adjacências teria $4.84 \cdot 10^{18}$ posições
 - 605 petabytes (usando um bit por posição)

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

- Uma matriz de adjacências teria $4,84 \cdot 10^{18}$ posições
 - 605 petabytes (usando um bit por posição)
- Verificar se duas pessoas são amigas leva O(1)

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

- Uma matriz de adjacências teria $4.84 \cdot 10^{18}$ posições
 - 605 petabytes (usando um bit por posição)
- Verificar se duas pessoas são amigas leva O(1)
 - supondo que tudo isso coubesse na memória...

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

- Uma matriz de adjacências teria $4.84 \cdot 10^{18}$ posições
 - 605 petabytes (usando um bit por posição)
- Verificar se duas pessoas são amigas leva O(1)
 - supondo que tudo isso coubesse na memória...
- Imprimir todos os amigos de uma pessoa leva O(n)

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

- Uma matriz de adjacências teria $4,84 \cdot 10^{18}$ posições
 - 605 petabytes (usando um bit por posição)
- Verificar se duas pessoas são amigas leva O(1)
 - supondo que tudo isso coubesse na memória...
- Imprimir todos os amigos de uma pessoa leva O(n)
 - Teríamos que percorrer 2,2 bilhões de posições

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

- Uma matriz de adjacências teria $4,84 \cdot 10^{18}$ posições
 - 605 petabytes (usando um bit por posição)
- Verificar se duas pessoas são amigas leva O(1)
 - supondo que tudo isso coubesse na memória...
- Imprimir todos os amigos de uma pessoa leva O(n)
 - Teríamos que percorrer 2,2 bilhões de posições
 - Um usuário comum tem bem menos amigos do que isso...

Um grafo tem no máximo n(n-1)/2 arestas, mas pode ter bem menos...

- Uma matriz de adjacências teria $4,84 \cdot 10^{18}$ posições
 - 605 petabytes (usando um bit por posição)
- Verificar se duas pessoas são amigas leva O(1)
 - supondo que tudo isso coubesse na memória...
- Imprimir todos os amigos de uma pessoa leva O(n)
 - Teríamos que percorrer 2,2 bilhões de posições
 - Um usuário comum tem bem menos amigos do que isso...
 - Facebook coloca um limite de 5000 amigos

Dizemos que um grafo é esparso se ele tem "poucas" arestas

Dizemos que um grafo é esparso se ele tem "poucas" arestas

ullet Bem menos do que n(n-1)/2

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

Exemplos:

• Facebook:

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

- Facebook:
 - Cada usuário tem no máximo 5000 amigos

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

- Facebook:
 - Cada usuário tem no máximo 5000 amigos
 - O máximo de arestas é $5.5 \cdot 10^{12}$

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

- Facebook:
 - Cada usuário tem no máximo 5000 amigos
 - O máximo de arestas é $5.5 \cdot 10^{12}$
 - Bem menos do que $2.4 \cdot 10^{18}$

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

- Facebook:
 - Cada usuário tem no máximo 5000 amigos
 - O máximo de arestas é $5.5 \cdot 10^{12}$
 - Bem menos do que $2.4 \cdot 10^{18}$
- Grafos cujos vértices têm o mesmo grau d (constante)

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

- Facebook:
 - Cada usuário tem no máximo 5000 amigos
 - O máximo de arestas é $5.5 \cdot 10^{12}$
 - Bem menos do que $2.4 \cdot 10^{18}$
- Grafos cujos vértices têm o mesmo grau d (constante)
 - O número de arestas é $dn/2 = \mathrm{O}(n)$

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

- Facebook:
 - Cada usuário tem no máximo 5000 amigos
 - O máximo de arestas é $5.5 \cdot 10^{12}$
 - Bem menos do que $2.4 \cdot 10^{18}$
- Grafos cujos vértices têm o mesmo grau d (constante)
 - O número de arestas é $dn/2 = \mathrm{O}(n)$
- Grafos com $O(n \lg n)$ arestas

Grafos esparsos

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

Exemplos:

- Facebook:
 - Cada usuário tem no máximo 5000 amigos
 - O máximo de arestas é $5.5 \cdot 10^{12}$
 - Bem menos do que $2.4 \cdot 10^{18}$
- Grafos cujos vértices têm o mesmo grau d (constante)
 - O número de arestas é dn/2 = O(n)
- Grafos com $O(n \lg n)$ arestas

Não dizemos que um grafo com n(n-1)/20 arestas é esparso

Grafos esparsos

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

Exemplos:

- Facebook:
 - Cada usuário tem no máximo 5000 amigos
 - O máximo de arestas é $5.5 \cdot 10^{12}$
 - Bem menos do que $2.4 \cdot 10^{18}$
- Grafos cujos vértices têm o mesmo grau d (constante)
 - O número de arestas é dn/2 = O(n)
- Grafos com $O(n \lg n)$ arestas

Não dizemos que um grafo com n(n-1)/20 arestas é esparso

• O número de arestas não é assintoticamente menor...

Grafos esparsos

Dizemos que um grafo é esparso se ele tem "poucas" arestas

• Bem menos do que n(n-1)/2

Exemplos:

- Facebook:
 - Cada usuário tem no máximo 5000 amigos
 - O máximo de arestas é $5.5 \cdot 10^{12}$
 - Bem menos do que $2.4 \cdot 10^{18}$
- Grafos cujos vértices têm o mesmo grau d (constante)
 - O número de arestas é dn/2 = O(n)
- Grafos com $O(n \lg n)$ arestas

Não dizemos que um grafo com n(n-1)/20 arestas é esparso

- O número de arestas não é assintoticamente menor...
- É da mesma ordem de grandeza que n^2 ...

Representando um grafo por Listas de Adjacência:

• Temos uma lista ligada para cada vértice

- Temos uma lista ligada para cada vértice
- A lista armazena quais são os vizinhos do vértice

- Temos uma lista ligada para cada vértice
- A lista armazena quais são os vizinhos do vértice

- Temos uma lista ligada para cada vértice
- A lista armazena quais são os vizinhos do vértice

TAD Grafo com Listas de Adjacência

```
1 typedef struct No {
    int v:
    struct No *prox;
4 } No:
6 typedef No * p_no;
7
8 typedef struct {
    p no *adjacencia;
   int n;
10
11 } Grafo;
12
13 typedef Grafo * p_grafo;
14
15 p_grafo criar_grafo(int n);
16
17 void destroi_grafo(p_grafo g);
18
19 void insere_aresta(p_grafo g, int u, int v);
20
21 void remove_aresta(p_grafo g, int u, int v);
22
  int tem_aresta(p_grafo g, int u, int v);
24
25 void imprime_arestas(p_grafo g);
```

```
1 p_grafo criar_grafo(int n) {
```

```
1 p_grafo criar_grafo(int n) {
2    int i;
3    p_grafo g = malloc(sizeof(Grafo));
```

```
1 p_grafo criar_grafo(int n) {
2    int i;
3    p_grafo g = malloc(sizeof(Grafo));
4    g->n = n;
```

```
1 p_grafo criar_grafo(int n) {
2    int i;
3    p_grafo g = malloc(sizeof(Grafo));
4    g->n = n;
5    g->adjacencia = malloc(n * sizeof(p_no));
```

```
1 p_grafo criar_grafo(int n) {
2    int i;
3    p_grafo g = malloc(sizeof(Grafo));
4    g->n = n;
5    g->adjacencia = malloc(n * sizeof(p_no));
6    for (i = 0; i < n; i++)
7    g->adjacencia[i] = NULL;
8    return g;
```

```
1 p_grafo criar_grafo(int n) {
2    int i;
3    p_grafo g = malloc(sizeof(Grafo));
4    g->n = n;
5    g->adjacencia = malloc(n * sizeof(p_no));
6    for (i = 0; i < n; i++)
7     g->adjacencia[i] = NULL;
8    return g;
9 }
```

```
1 p_grafo criar_grafo(int n) {
2 int i;
  p_grafo g = malloc(sizeof(Grafo));
4
   g->n = n;
5 g->adjacencia = malloc(n * sizeof(p_no));
6 for (i = 0; i < n; i++)
     g->adjacencia[i] = NULL;
7
8
   return g;
9 }
1 void libera_lista(p_no lista) {
2 if (lista != NULL) {
     libera_lista(lista->prox);
3
4
     free(lista);
6 }
```

```
1 p_grafo criar_grafo(int n) {
2 int i:
  p_grafo g = malloc(sizeof(Grafo));
4
   g->n = n;
   g->adjacencia = malloc(n * sizeof(p_no));
5
6 for (i = 0; i < n; i++)
     g->adjacencia[i] = NULL;
7
8
   return g;
9 }
1 void libera_lista(p_no lista) {
2 if (lista != NULL) {
     libera_lista(lista->prox);
3
4
     free(lista);
6 }
1 void destroi_grafo(p_grafo g) {
2 int i:
3
 for (i = 0; i < g->n; i++)
     libera_lista(g->adjacencia[i]);
4
5
   free(g->adjacencia);
   free(g);
6
7 }
                                  24
```

Inserindo uma aresta

Inserindo uma aresta

```
1 p_no insere_na_lista(p_no lista, int v) {
2    p_no novo = malloc(sizeof(No));
3    novo->v = v;
4    novo->prox = lista;
5    return novo;
6 }
```

Inserindo uma aresta

```
p_no insere_na_lista(p_no lista, int v) {
    p_no novo = malloc(sizeof(No));
    novo->v = v;
    novo->prox = lista;
    return novo;
}

void insere_aresta(p_grafo g, int u, int v) {
    g->adjacencia[v] = insere_na_lista(g->adjacencia[v], u);
    g->adjacencia[u] = insere_na_lista(g->adjacencia[u], v);
}
```

Removendo uma aresta

Removendo uma aresta

```
1 p_no remove_da_lista(p_no lista, int v) {
p_no proximo;
3 if (lista == NULL)
    return NULL;
5 else if (lista->v == v) {
    proximo = lista->prox;
6
7
   free(lista);
   return proximo;
8
9
  } else {
      lista->prox = remove_da_lista(lista->prox, v);
10
      return lista;
11
12
13 }
```

Removendo uma aresta

```
1 p_no remove_da_lista(p_no lista, int v) {
p_no proximo;
3 if (lista == NULL)
    return NULL:
4
5 else if (lista->v == v) {
    proximo = lista->prox;
6
7
    free(lista);
    return proximo;
8
9
   } else {
      lista->prox = remove_da_lista(lista->prox, v);
10
      return lista;
11
12
13 }
1 void remove_aresta(p_grafo g, int u, int v) {
    g->adjacencia[u] = remove_da_lista(g->adjacencia[u], v);
    g->adjacencia[v] = remove_da_lista(g->adjacencia[v], u);
```

Verificando se tem uma aresta e imprimindo

```
1 int tem_aresta(p_grafo g, int u, int v) {
2    p_no t;
3    for (t = g->adjacencia[u]; t != NULL; t = t->prox)
4      if (t->v == v)
5      return 1;
6    return 0;
7 }
```

Verificando se tem uma aresta e imprimindo

```
1 int tem_aresta(p_grafo g, int u, int v) {
2 p_no t;
for (t = g->adjacencia[u]; t != NULL; t = t->prox)
4 if (t->v == v)
     return 1;
6 return 0:
7 }
1 void imprime_arestas(p_grafo g) {
2 int u;
3 p no t;
4 for (u = 0; u < g->n; u++)
     for (t = g->adjacencia[u]; t != NULL; t = t->prox)
5
       printf("{%d,%d}\n", u, t->v);
7 }
```

Königsberg (hoje Kaliningrado, Rússia) tinha 7 pontes

Königsberg (hoje Kaliningrado, Rússia) tinha 7 pontes

• Acreditava-se que era possível passear por toda a cidade

Königsberg (hoje Kaliningrado, Rússia) tinha 7 pontes

- Acreditava-se que era possível passear por toda a cidade
- Atravessando cada ponte exatamente uma vez

Königsberg (hoje Kaliningrado, Rússia) tinha 7 pontes

- Acreditava-se que era possível passear por toda a cidade
- Atravessando cada ponte exatamente uma vez

Königsberg (hoje Kaliningrado, Rússia) tinha 7 pontes

- Acreditava-se que era possível passear por toda a cidade
- Atravessando cada ponte exatamente uma vez

Königsberg (hoje Kaliningrado, Rússia) tinha 7 pontes

- Acreditava-se que era possível passear por toda a cidade
- Atravessando cada ponte exatamente uma vez

Königsberg (hoje Kaliningrado, Rússia) tinha 7 pontes

- Acreditava-se que era possível passear por toda a cidade
- Atravessando cada ponte exatamente uma vez

Königsberg (hoje Kaliningrado, Rússia) tinha 7 pontes

- Acreditava-se que era possível passear por toda a cidade
- Atravessando cada ponte exatamente uma vez

Leonhard Euler, em 1736, modelou o problema como um grafo

• Provou que tal passeio não é possível

Königsberg (hoje Kaliningrado, Rússia) tinha 7 pontes

- Acreditava-se que era possível passear por toda a cidade
- Atravessando cada ponte exatamente uma vez

- Provou que tal passeio n\u00e3o \u00e9 poss\u00edvel
- E fundou a Teoria dos Grafos...

Multigrafos

A estrutura usada por Euler é o que chamamos de Multigrafo

Multigrafos

A estrutura usada por Euler é o que chamamos de Multigrafo

Podemos ter arestas paralelas (ou múltiplas)

Multigrafos

A estrutura usada por Euler é o que chamamos de Multigrafo

- Podemos ter arestas paralelas (ou múltiplas)
- Ao invés de um conjunto de arestas, temos um multiconjunto de arestas

Multigrafos

A estrutura usada por Euler é o que chamamos de Multigrafo

- Podemos ter arestas paralelas (ou múltiplas)
- Ao invés de um conjunto de arestas, temos um multiconjunto de arestas
- Pode ser representada por Listas de Adjacência

Multigrafos

A estrutura usada por Euler é o que chamamos de Multigrafo

- Podemos ter arestas paralelas (ou múltiplas)
- Ao invés de um conjunto de arestas, temos um multiconjunto de arestas
- Pode ser representada por Listas de Adjacência
 - Por Matriz de Adjacências é mais difícil

Espaço para o armazenamento:

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Operação	Matriz	Listas
Inserir	O(1)	O(1)
Remover	O(1)	O(d(v))
Aresta existe?	O(1)	O(d(v))
Percorrer vizinhança	O(V)	O(d(v))

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Operação	Matriz	Listas
Inserir	O(1)	O(1)
Remover	O(1)	O(d(v))
Aresta existe?	O(1)	O(d(v))
Percorrer vizinhança	O(V)	O(d(v))

As duas permitem representar grafos, digrafos e multigrafos

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Operação	Matriz	Listas
Inserir	O(1)	O(1)
Remover	O(1)	O(d(v))
Aresta existe?	O(1)	O(d(v))
Percorrer vizinhança	O(V)	O(d(v))

As duas permitem representar grafos, digrafos e multigrafos

• mas multigrafos é mais fácil com Listas de Adjacência

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Operação	Matriz	Listas
Inserir	O(1)	O(1)
Remover	O(1)	O(d(v))
Aresta existe?	O(1)	O(d(v))
Percorrer vizinhança	O(V)	O(d(v))

As duas permitem representar grafos, digrafos e multigrafos

• mas multigrafos é mais fácil com Listas de Adjacência

Qual usar?

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Operação	Matriz	Listas
Inserir	O(1)	O(1)
Remover	O(1)	O(d(v))
Aresta existe?	O(1)	O(d(v))
Percorrer vizinhança	O(V)	O(d(v))

As duas permitem representar grafos, digrafos e multigrafos

• mas multigrafos é mais fácil com Listas de Adjacência

Qual usar?

• Depende das operações usadas e se o grafo é esparso

Grafos são amplamente usados na Computação e na Matemática para a modelagem de problemas:

 Redes Sociais: grafos são a forma de representar uma relação entre duas pessoas

- Redes Sociais: grafos são a forma de representar uma relação entre duas pessoas
- Mapas: podemos ver o mapa de uma cidade como um grafo e achar o menor caminho entre dois pontos

- Redes Sociais: grafos são a forma de representar uma relação entre duas pessoas
- Mapas: podemos ver o mapa de uma cidade como um grafo e achar o menor caminho entre dois pontos
- Páginas na Internet: links são arcos de uma página para a outra - podemos querer ver qual é a página mais popular

- Redes Sociais: grafos são a forma de representar uma relação entre duas pessoas
- Mapas: podemos ver o mapa de uma cidade como um grafo e achar o menor caminho entre dois pontos
- Páginas na Internet: links são arcos de uma página para a outra - podemos querer ver qual é a página mais popular
- Redes de Computadores: a topologia de uma rede de computadores é um grafo

- Redes Sociais: grafos são a forma de representar uma relação entre duas pessoas
- Mapas: podemos ver o mapa de uma cidade como um grafo e achar o menor caminho entre dois pontos
- Páginas na Internet: links são arcos de uma página para a outra - podemos querer ver qual é a página mais popular
- Redes de Computadores: a topologia de uma rede de computadores é um grafo
- Circuitos Eletrônicos: podemos criar algoritmos para ver se há curto-circuito por exemplo

- Redes Sociais: grafos são a forma de representar uma relação entre duas pessoas
- Mapas: podemos ver o mapa de uma cidade como um grafo e achar o menor caminho entre dois pontos
- Páginas na Internet: links são arcos de uma página para a outra - podemos querer ver qual é a página mais popular
- Redes de Computadores: a topologia de uma rede de computadores é um grafo
- Circuitos Eletrônicos: podemos criar algoritmos para ver se há curto-circuito por exemplo
- etc...