LABORATOR #9

 $\mathbf{EX\#1}$ Fie $f:[a,b]\to\mathbb{R}$. Creați un fișier în Python[®] prin care

- (a) să se afișeze graficul funcției f pe intervalul [a, b];
- (b) să se determine şi să se afişeze aproximarea numerică a integralei $\int_a^b f(x) dx$ folosind metoda Monte Carlo cu eșantionare aleatoare uniformă în intervalul [a, b] (folosind $n \in \mathbb{N}$ eșantioane);
- (c) să se afișeze graficul aproximărilor integralei $\int_a^b f(x) dx$ în funcție de numărul n de eșantioane;
- (d) pentru $n \in \mathbb{N}$ fixat, să se realizeze N simulări pentru (b);
- (e) să se afișeze histrograma corespunzătoare simulărilor realizate la (d);
- (f) să se realizeze (a)-(e) pentru
 - (i) $f(x) = e^{-x^2}$ şi intervalele [0, 1] şi [0, 5];
 - (ii) $f(x) = \frac{\sin x}{x}$ şi intervalul $[0, \pi]$;
 - (iii) $f(x) = \sin x^2$, $f(x) = \cos x^2$ şi intervalul $[0, 2\pi]$;
 - (iv) $f(x) = e^{e^x}$ şi intervalul [0, 1.5];
 - (v) $f(x) = 10 e^{-10x} x^2 \sin x$ şi intervalul [0, 100].

 $\mathbf{EX\#2}$ Fie $f:[a,b]\to\mathbb{R}$. Creați un fișier în Python® prin care

- (a) să se determine şi să se afişeze aproximarea numerică a integralei $\int_a^b f(x) dx$ folosind metoda Monte Carlo cu eșantionare aleatoare după importanță (folosind $n \in \mathbb{N}$ eșantioane), pentru o distribuție de importanță aleasă;
- (b) să se afișeze graficul aproximărilor integralei $\int_a^b f(x) dx$ în funcție de numărul n de eșantioane;
- (c) să se realizeze (a)-(b) pentru $f(x) = 10 e^{-10x} x^2 \sin x$ și intervalul [0, 100], cu distribuția de importanță Exp(10).

EX#3 Fie $f:[a,b]\to\mathbb{R}$. Pentru $\sigma^2<\infty$, considerăm filtrul Gaussian

$$F_{\sigma^2}(x) := \int_{\mathbb{R}} f(x - y) p(y) \, dy, \quad x \in [a, b],$$

unde $p(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-y^2}{2\sigma^2}}$ este funcția de densitate a normalei $N(0, \sigma^2)$.

Creați un fișier în Python® prin care

(a) să se afișeze graficul funcției $f(x) = \sin(2x) + 0.3\cos(10x) + 0.05\sin(100x)$ pe intervalul [0, 5];

- (b) pentru $\sigma^2 < \infty$ fixat și pentru o partiție $a = x_0 < x_1 < \ldots < x_M = b$ a intervalului [a,b] = [0,5], să se aproximeze numeric $F_{\sigma^2}(x_i)$, $i = \overline{1,M}$, folosind metoda Monte Carlo cu eșantionare aleatoare după importanță, folosind distribuția de importanță $N(0,\sigma^2)$;
- (c) pentru $\sigma^2 < \infty$ fixat, să se afișeze graficul aproximării funcției F_{σ^2} obținută la (b) pe intervalul [0, 5];
- (d) să se realizeze (b)-(c) pentru pentru $\sigma \in \{1, 0.5, 0.2, 0.1, 0.05\}$.

Indicaţii Python®: numpy, numpy.random, scipy.stats, matplotlib.pyplot,
matplotlib.pyplot.hist