Clarifying Clairaut's Theorem

Consider
$$f(x, y, z) = x^2 \cos(y^3 + z^2)$$
.

1. Why do we know that $f_{zyyxxx} = 0$ without doing any computation?

2. Do we also know, without doing any computation, that $f_{xyzzz} = 0$? Why or why not?

- **3.** Suppose that $f_x = 3x + ay^2$, $f_y = bxy + 2y$, $f_y(1, 1) = 3$, and f has continuous mixed second partial derivatives f_{xy} and f_{yx} .
 - (a) Find values for a and b and thus equations for f_x and f_y . HINT What does Clairaut's Theorem say about the mixed partial derivatives of a function? When does the theorem apply?

(b) Can you find a function F(x, y) such that $\frac{\partial F}{\partial x} = f_x$ in part (a)?

(c) Can you find a function G(x, y) = F(x, y) + k(y) such that $\frac{\partial G}{\partial y} = f_y$ in part (a)? What is k(y)?

(d) What is $\frac{\partial G}{\partial x}$? Can you now find f(x, y)?