

National Aeronautics and Space Administration

Modeling for Integrated Science Management and Resilient Systems Development

HRP Investigators' Workshop
15 January 2015

Mark Shelhamer, Sc.D.
Jennifer Mindock, Ph.D.
Sarah Lumpkins, Ph.D.

The Big Picture

Human Research Program

- Need to better understand human adaptation to space
 - ✓ Provide better countermeasures
 - Integrated approaches to minimize mission resources (mass, power, crew time, etc.)
 - ✓ Provide tools for autonomy
 - Assess and maintain resilience - individual and team

Destination - MARS

Human Research Program

HUMAN EXPLORATION
NASA's Path to Mars

EARTH RELIANT
MISSION: 6 TO 12 MONTHS
RETURN TO EARTH: HOURS

Mastering fundamentals aboard the International Space Station

U.S. companies provide access to low-Earth orbit

PROVING GROUND
MISSION: 1 TO 12 MONTHS
RETURN TO EARTH: DAYS

Expanding capabilities by visiting an asteroid redirected to a lunar distant retrograde orbit

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft

MARS READY
MISSION: 2 TO 3 YEARS
RETURN TO EARTH: MONTHS

Developing planetary independence by exploring Mars, its moons and other deep space destinations

www.nasa.gov

Space Flight Affects Humans

- Affects most systems of the body
 - Sensorimotor, Cardiovascular, Muscle, Bone, Immune
- Different time courses and magnitudes
- Consequences for health *and* performance (physical *and* behavioral)
- Responses commonly explored individually
- Systems interact in ways we do not yet understand
- Adaptation to “space normal” occurs

Image from: <http://zerog2002.de/bodyreactions.html>

Need *integrated* understanding of how organism as
a whole responds to spaceflight

Overview

Human Research Program

- System-of-Systems Approach
- Complex Systems
- Networks to Model Systems
- Initial Applications Relevant to HRP Science Management
- Future Efforts

System-of-Systems Framework

Human Research Program

- Common goals of safe, reliable, and productive human space flight
- Whether focus is on Operations, Vehicle Design or the Human System
- All interact as a system of systems

Outcomes within Human System

Human Research Program

- In the Human System, HRP supports the protection of additional outcomes

Contributing Factor Map Factors Influencing Human Health and Performance in Space

Adapted from Mindock, J., *Development and Application of Spaceflight Performance Shaping Factors for Human Reliability Analysis*. University of Colorado, Boulder, CO, 2012.

Adapted from Mindock, J., *Development and Application of Spaceflight Performance Shaping Factors for Human Reliability Analysis*. University of Colorado, Boulder, CO, 2012.

Complex Systems

Human Research Program

What makes a system complex (not just complicated)?

- Many interacting objects or parts (e.g., factors from CFM)
- Whole > sum of its parts
 - Reductionist view not sufficient to capture system's behavior (e.g., weather systems, financial markets, Mars mission human/vehicle/ops system)
- Emergent behavior
 - Behavior or properties individual parts do not have
 - Fractals are an example of emergent output
- Resilience/adaptation capabilities
 - Certain aspects of the system can be altered without global effects
- Self-organizing
 - Parts not controlled by master controller
 - Parts compete for limited resources
- Behavior of parts affected by feedback – temporal and/or spatial
 - Feedback in time due to memory
 - Feedback in space due to **network** connections

Networks to Model Systems

Human Research Program

- Why use networks to study Complex Systems?
 - Capture relationships between parts of system
 - Look at properties (e.g., structure) of networks for assessment, prediction, and possible prevention of unwanted outcomes
- Example network structure: Small World Networks
 - Shown to have increased speed of signal propagation

Fig. 1 from: Watts and Strogatz, "Collective dynamics of 'small-world' networks," *Nature*, vol. 393, p. 440-442, 4 June 1998.

Our Network Applications

Human Research Program

- We can model our complex system (with human, vehicle design, and operations aspects) as a network
- Use CFM as the system-of-systems framework of variables or parts
- Look at properties of networks modeling our complex system to determine if there are ***characteristics to enhance, such as connections to create or strengthen***
- Ties back to goal of providing better countermeasures based on ***integrated perspectives***

Initial Efforts

Human Research Program

- Developing visualizations of linkages between topics covered by existing NASA Human Research Program work based on publication records

Small World Network conceptual example

Proof-of-concept network based on a subset of HRP publications

Future: Identify Influential Parts in Networks

Human Research Program

- *In this way, fundamental research on cellular function can be shown to support multiple Risks.*
- *Additional collaborative research may be needed to address important factors and relationships.*

Future: Promote Resilience, Prevent Unwanted Outcomes

Human Research Program

- Analyze behavior (resilience of system) when various nodes are removed or altered
- Potentially map time-series data to network representations
 - Compare “healthy” vs. “unhealthy” systems
 - Could enable monitoring to assess, predict, and prevent

Figure 7 from: Campanharo, ASLO; Sirer, MI; Malmgren, RD; Ramos, FM; Amaral, LAN. *Duality between Time Series and Networks*, PLoS ONE, Aug. 2011.

Application of the proposed forward map to the heart rate time series using different number of quantiles.
doi:10.1371/journal.pone.0023378.g007

The Big Picture

Human Research Program

- Need to better understand human adaptation to space
 - ✓ Provide better countermeasures
 - Integrated approaches to minimize mission resources (mass, power, crew time, etc.)
 - ✓ Provide tools for autonomy
 - Assess and maintain resilience - individual and team

Human Research Program

BACKUP

Conceptual Approaches - Networks

Human Research Program

Sensitivity analysis on a Bayesian Network model such as this can be performed to identify areas of high influence.

Not real data!

Diagram created with NETICA™ by Norsys.