Timotheus Jochum - 304222

Übungsblatt 3

November 10, 2016

3. Übung

Aufgabe 3.1

Beschreiben Sie eine 1-Band-TM, die die Sprache $L = \{0^n1^n \mid n \in \mathbb{N}\}$ mit einem Zeitbedarf in $O(m \log m)$ akzeptiert, wobei m die Länge der Eingabe bezeichnet.

Es ist **nicht** notwendig die Turingmaschine explizit anzugeben. Eine Beschreibung ihrer Arbeitsweise und Laufzeit in den einzelnen Arbeitschritten genügt.

Eine TM die L erkennt, müsste die Anzahl der Einsen und Nullen zählen und am ende vergleichen. Wir verwenden hierzu eine 1-Band TM mit 3 Spuren. Unsere TM M_L arbeitet wie folgt:

- 1. Prüfe zunächst ob die Einagbe der Form 0*1* ist. O(m)
- 2. Laufe nun von links nach rechts über das Band und zähle die Anzahl der Nullen mit einem Zähler auf der zweiten Spur. $O(m \log m)$
- 3. Zähle ab dem Erreichen der ersten Eins alle Einsen auf der dritten Spur $O(m \log m)$
- 4. Zum Vergleichen der Zähler müssen diese untereinander stehen. Verschiebe also nun den Zähler der zweiten Spur soweit nach rechts, bis er über dem Zähler der dritten Spur steht. $O(m \log m)$
- 5. Vergleiche nun die beiden Zähler und akzeptiere wenn diese gleich sind. Ansonsten reject. $O(\log m)$

Der Zeitbedarf beträgt also $O(m \log m)$

Aufgabe 3.2

Geben Sie das Programm einer Registermaschine zur Berechnung des Zweierlogarithmus $\lfloor \log_2 n \rfloor$ für eine Eingabe $n \in \mathbb{N}$ an. Erläutern Sie kurz seine Funktionsweise.

Wir speichern die Eingabe in c(1), in c(2) wird später die Ausgabe sein. c(0) und c(2) sind zunächst mit 0 initialisiert.

- 1. LOAD 2
- 2. CADD 1
- 3. STORE 2
- 4. LOAD 1
- 5. CDIV 2
- 6. STORE 1
- 7. IF c(0) > 0 GOTO 1
- 8. LOAD 2
- 9. CSUB 1
- 10. END

Die Registermaschine berechnet wie viele mal man die Eingabe durch 2 teilen muss um auf 1 zu kommen.

Aufgabe 3.3

Zeigen Sie, dass die Menge $\mathbb{N}^* = \bigcup_{n \in \mathbb{N}} \mathbb{N}^n$ der endlichen Wörter über den natürlichen Zahlen abzählbar ist.

Wir haben ein Wort der Länge n $W_n = \{w_1 w_2 w_3 \dots w_n \mid w_i \in Alphabet \}$. und ein Alphabet A. Für ein endliches Alphabet ist \mathbb{N}^* offensichtlich auch endlich $(1 + \sum_{i=1}^n |A|^i)$ und somit durch aufstellen in kanonischer Reihenfolge einfach abzählbar.

Für ein unendliches Alphabet gilt:

Worte der Länge 1 sind offensichtlich in kanonischer Reihenfolge unendlich abzählbar.

Die Länge der Worte der Länge n sind unendlich abzählbar, da wir sie auch in kanonischer Reihenfolge aufschreiben können: $w_1w_1 \cdots w_1, \ w_2 \cdots w_2, \ \cdots, \ w_2w_1 \cdots w_1, \ \cdots$

Da die Länge der Worte endlich ist, ist \mathbb{N}^* somit eine endliche Vereinigung von abzählbar unendlichen Mengen und somit ebenfalls abzählbar unendlich.

Aufgabe 3.4

Welche der folgenden Sprachen sind entscheidbar? Beweisen Sie die Korrektheit ihrer Antwort. a) $H_{\leq 42} = \{\langle M \rangle w \mid M \text{ hält auf Eingabe } w \text{ und zwar nach höchstens 42 Schritten}\}$

Die Sprache $H_{\leq 42}$ ist entscheidbar. Wir kreiern eine TM $M_{H\leq 42}$ die wie folgt arbeitet. $M_{H\leq 42}$ simuliert $\langle M \rangle$ mit der Eingabe w und speichert zusätzlich einen Zähler welche die Anzahl der bereits ausgeführten Schritte zählt. Terminiert M bevor der Zähler 42 erreicht, so akzeptiert $M_{H\leq 42}$, andernfalls verwirft $M_{H\leq 42}$ nach 42 Schritten.

Korrektheit:

```
\begin{split} &\langle M \rangle w \in H_{\leq 42} \\ \Longrightarrow &\ M_{H \leq 42} \text{ simuliert } \langle M \rangle \\ \Longrightarrow &\ \langle M \rangle \text{ terminiert bevor Z\"{a}hler 42 Schritte z\"{a}hlt} \\ \Longrightarrow &\ M_{H \leq 42} \text{ akzeptiert } \langle M \rangle \end{split} &\ &\langle M \rangle w \not\in H_{\leq 42} \\ \Longrightarrow &\ M_{H \leq 42} \text{ simuliert } \langle M \rangle \\ \Longrightarrow &\ \langle M \rangle \text{ terminiert nicht in 42 Schritten} \\ \Longrightarrow &\ M_{H \leq 42} \text{ verwirft die Eingabe} \end{split}
```

b) $H_{\geq 42} = \{ \langle M \rangle w \mid M \text{ hält auf Eingabe } w \text{ und zwar nach mindestens 42 Schritten} \}$

Die Sprache $H_{\geq 42}$ ist nicht entscheidbar. Angenommen eine TM $M_{H\geq 42}$ würde existieren, welche $H_{\geq 42}$ entscheidet. Wir könnten dann eine TM $M_{H_{\epsilon}}$ konstruieren welche das Halteproblem H_{ϵ} entscheidet. Hierzu würde $M_{H_{\epsilon}}$ aus der gegebenen TM $\langle M \rangle$ eine TM M' berechnen, welche 42 Schritte nach rechts läuft und anschliessend die TM M mit Eingabe w simuliert. $M_{H_{\epsilon}}$ ruft also $M_{H\geq 42}$ mit M' als Unterprogramm auf und übernimmt das Akzeptanzverhalten.