

SEMINARIO SU APPLICAZIONI DI RETI CONVOLUZIONALI IN CAMPO MEDICO-FARMACEUTICO

Ing. Isabella Mendolia, PhD Dott. Salvatore Contino, PhD Ing. Luca Cruciata

SOMMARIO

- Breve presentazione di pytorch ed installazione
- CLASSIFICAZIONE DI MOLECOLE CON L'UTILIZZO DI FINGERPRINT
- CLASSIFICAZIONE DI MOLECOLE CON L'UTILIZZO DI SPETTRI NMR
- IMAGE SEGMENTATION
- ESERCITAZIONE GUIDATA SU UN TASK

PYTORCH 2.X: FASTER, MORE PYTHONIC AND AS DYNAMIC AS EVER

START LOCALLY

Select your preferences and run the install command. Stable represents the most currently tested and supported version of PyTorch. This should be suitable for many users. Preview is available if you want the latest, not fully tested and supported, builds that are generated nightly. Please ensure that you have **met the prerequisites below (e.g., numpy)**, depending on your package manager. Anaconda is our recommended package manager since it installs all dependencies. You can also install previous versions of PyTorch. Note that LibTorch is only available for C++.

PyTorch Build	Stable (1.13.0)		Preview (Nightly)		
Your OS	Linux	Mac	Wine	dows	
Package	Conda	Pip	LibTorch	Source	
Language	Python		C++/Java		
Compute Platform	CUDA 11.6	CUDA 11.7	ROCm 5.2	CPU	
Run this Command:	conda install pyto: idia	rch torchvision torcha	audio pytorch-cuda=11	6 -c pytorch -c nv	

NEL FRATTEMPO CHE PYTORCH SI INSTALLA......

APPLICAZIONI DI RETI CONVOLUZIONALI IN AMBITO FARMACEUTICO

Drug Discovery Process

ARCHITETTURE DEEP PER DRUG DESIGN

DRUG DESIGN GLOSSARIO DEL PROCESSO

IDENTIFICAZIONE DEL TARGET

LIGAND-BASED STRUCTURE-BASED

SELEZIONE DEL TARGET

CICLIN-DIPENDENT KINASE 1 (CDK1)

È IL PRINCIPALE REGOLATORE DELLA FASE M DEL CICLO CELLULARE.

QUESTA FASE SE NON CORRETTAMENTE REGOLATA INDUCE L'INSORGENZA DI FENOTIPI CANCEROSI.

IMPLEMENTAZIONE DEL DATASET

Row ID	S Molecule	sau Smiles	D Class	Smiles (RD	[iii] RDKit	[m] Morgan	
0	CHEMBL 1089082	0-00	0	1000	1111111111101111001001111111111111101111	000000000000000000000000000000000000000	ИBL
File Reader CHK1	CHEMBL438485	ويمغون	0	Sabaa	1111111111100101101110111010111111111010	000010000000000000000000000000000000000	
2	CHEMBL383541	000,000	0	orano	1111011100101101101001100010000011001111	000000000000000000000000000000000000000	
3	CHEMBL383264	00-00 00-00	1	8,08	1111001101101000100001110110110110001111	000000000000000000000000000000000000000	
4	CHEMBL207544	diaco	0	800	111100110110101110101111101101111111001111	000000000000000000000000000000000000000	····
5	CHEMBL397332	79Q	1	Food	1011111111101001101111110011110011011111	0000 1000000000000000000000000000000000	0 0 1
6	CHEMBL255465	of .	1	26	1111010010101101111111010111111110111111	000000000000000000000000000000000000000	

ESPERIMENTI CON CNN 2D

Fingerprints	Accuracy	Loss	F1-score	AUC
M,L	0.92	0.56	0.88	0.9563
R,M,A	0.900	0.6800	0.8600	0.9527
M,A,L,F	0.9200	0.6000	0.8877	0.9444
R,M,A,L,F	0.9163	0.6082	0.8820	0.9513
R,M,A,T,L,F	0.8945	0.6280	0.8557	0.9494

LENGHT 1024 BIT

Fingerprints	Accuracy	Loss	F1-score	AUC
M,F	0.8981	0.4463	0.8679	0.9555
M,T,L	0.9345	0.3900	0.9117	0.9685
R,M,T,F	0.9418	0.4268	0.9001	0.94
R,A,T,L,F	0.9127	0.4052	0.8867	0.963
R,M,A,T,L,F	0.9236	0.3950	0.9004	0.9774

1 F	N	G	нт	51	2	R	ľ

Fingerprints	Accuracy	Loss	F1-score	AUC
L,F	0.909	0.4087	0.8792	0.9655
R,L,F	0.9127	0.4734	0.8846	0.9606
R,A,L,F	0.9054	0.4914	0.8749	0.9572
R,M,T,L,F	0.8909	0.538	0.8623	0.9624
R,M,A,T,L,F	0.8981	0.5982	0.8679	0.9537

LENGHT 256 BIT

DEFINIZIONE DELL'ARCHITETTURA TUNED-MLP-OUT

RISULTATI OTTENUTI

Table 1 Results for the active/inactive discrimination task, and Training scheme 1

From: Convolutional architectures for virtual screening

	Architecture	Bal. accuracy	Sensitivity	Loss	AUC	F1-score	мсс
	Tuned-MLP-Out	0.9880	0.9855	0.0405	0.9979	0.9510	0.9462
П	Voting	0.9768	0.9710	0.2093	0.9920	0.8965	0.9033
	CNN 1D (F)	0.9687	0.9710	0.0688	0.9904	0.8979	0.8813
	CNN 2D (R-M-F)	0.9679	0.9565	0.0770	0.9912	0.8918	0.8817
	Random Forest (F)	0.9510	0.8985	0.6405	0.9837	0.6065	0.8962
	SVM (F)	0.9421	0.8985	0.7883	0.9868	0.8857	0.8731

Fingerprint types: (R)DKIT,(M) organ, (F) eatMorgan, (L)ayered

EMBER-EMBEDDING MULTIPLE MOLECULAR FINGERPRINT

ARCHITETTURA PROPOSTA

Fully connected Depth Separable Convolution Multi-layer Perceptron 20 32 32 sigmoidal neurons neurons neurons Input layer Matrix fingerprints x 5 Hidden DSC layer Depth spatial Pointwise Depth spatial Pointwise Depth spatial Pointwise Depth spatial Pointwise convolution convolution convolution convolution convolution convolution convolution convolution Dropout 0.5 Depth Separable Depth Separable Depth Separable Depth Separable Average Average Convolution 2D Convolution 2D Convolution 2D Convolution 2D **Pooling Pooling** layer layer layer layer Sigmoid Activation function: ReLU Activation function: PReLU Activation function: PReLU Activation function: PReLU Activation function: PReLU

Target	Acc.	Loss	Sensitivity	MCC	AUC	F1-score
ACK	0.9957	0.0226	0.5000	0.6742	0.9834	0.6463
ALK	0.9930	0.0402	0.6575	0.7913	0.9904	0.7804
CDK1	K1 0.9910 0		0.4537	0.6397	0.9850	0.6059
CDK2	0.9859	0.0431	0.5281	0.6338	0.9845	0.6287
CDK6	0.9966	0.0210	0.5865	0.7523	0.9895	0.7305
INSR	0.9893	0.0329	0.3779	0.5830	0.9858	0.5342
ITK	0.9945	0.0232	0.5886	0.7302	0.9905	0.7154
JAK2	0.9898	0.0472	0.8474	0.9090	0.9950	0.9114
JNK3	0.9967	0.0154	0.5905	0.7610	0.9901	0.7381
MELK	0.9957	0.0229	0.7081	0.8270	0.9897	0.8188
CHK1	0.9895	0.0512	0.6385	0.7650	0.9846	0.7565
CK2A1	0.9942	0.0253	0.5166	0.6944	0.9857	0.6667
CLK2	0.9936	0.0259	0.2255	0.4137	0.9771	0.3485
DYRK1A	0.9916	0.0321	0.4080	0.5987	0.9776	0.5591
EGFR	0.9845	0.0604	0.7536	0.8331	0.9874	0.8357
ERK2	0.9881	0.0563	0.7295	0.8292	0.9886	0.8272
GSK3	0.9843	0.0554	0.5827	0.6892	0.9762	0.6856
IRAK4	0.9936	0.0287	0.7611	0.8611	0.9938	0.8571
MAP2K1	0.9931	0.0319	0.5497	0.7184	0.9795	0.6954
PDK1	0.9945	0.0271	0.6310	0.7757	0.9875	0.7613

						スフ				
Target	TP/P/1%*	TP/P 2%*	TP/P 5%*	TP/P 10%	6 *	EF 1%	EF	2%	EF 5%	EF 10%
ACK	72/106	84/106	95/106	101/106		68		40	18	10
ALK	131/254	202/254	229/254	247/254		52		40	18	10
CDK1	111/205	150/205	189/205	196/205		54		37	18	10
CDK2	118/303	194/303	264/303	289/303		39		32	17	10
CDK6	79/104	90/104	98/104	101/104		76		43	19	10
INSR	110/217	145/217	195/217	206/217		51		33	18	9
ITK	107/158	125/158	148/158	155/158		68		40	19	10
JAK2	134/832	268/832	669/832	804/832		16		16	16	10
JNK3	81/105	88/105	95/105	102/105		77		42	18	10
MELK	130/185	157/185	178/185	181/185		70		42	19	10
CHK1	134/343	233/343	300/343	324/343		39		34	17	9
CK2A1	100/151	117/151	141/151	146/151		66		39	19	10
CLK2	59/102	73/102	87/102	96/102		58		36	17	9
DYRK1A	97/174	126/174	152/174	162/174		56		36	17	9
EGFR	134/702	268/702	586/702	664/702		19		19	17	9
ERK2	133/525	267/525	471/525	505/525		25		25	18	10
GSK3	132/393	226/393	327/393	353/393		34		29	17	9
IRAK4	134/339	263/339	320/339	333/339		40		39	19	10
MAP2K1	118/191	142/191	167/191	178/191		62		37	17	9
PDK1	123/187	149/187	170/187	181/187		66		40	18	10

$$EF = \frac{N_{\text{experimental}} x\%}{N_{\text{expected}} x\%} = \frac{N_{\text{experimental}} x\%}{N_{\text{active}} \cdot x\%}$$

DESCRITTORI MOLECOLARI

NMR-LIKE

Risonanza Magnetica Nucleare degli Atomi di Idrogeno H-NMR

DESCRITTORE NMR-LIKE

Canonical SMILES

Cc1nc2nc(c3ccc(CN4CCC(CC4)c5nc6cccnc6[nH]5)cc3)c(cn2n1)c7ccccc7

Molecular Graph

H-NMR Spectrum. (JDX Camp, Vettore da 8192)

DESCRITTORE NMR-LIKE

DESCRITTORE NMR-LIKE

average_pooling1d_4 (Average (None, 10, 1016)

separable_conv1d_5 (Separabl (None, 16, 1014)

Protein	Photeina cy	Tanimoto Loss Sensitivity similarity	AMG Ce	AUC	In ādtisc ore
CDK1	с ък§ ⁴⁶	0.5831 ₁ 0.8795	0.4530	0.9058	62 ⁰ 7 <mark>\$</mark> 916
CLK2	JAK2 ³¹	0.6842 _{0.87} 0.9254	0,4542 5526	0.9223	0.4493 55260
INSR	0.9284 INSR	0.2068 <i>0.7324</i> 0.86	0.6155 1423	0.9268	0.6500 14230
JAK2	0.9447 CLK2	0.1833 0.7848 0.82	0.6933 671	0.9473	0.7209 7040

TP/P 1% TP/P 2% TP/P 5% TP/P 10% EF 1% EF 2% EF 5% EF 10%

SeparableConv1D PReLU Layer (type)	AveragePooling ID Slatter Output Shape	Param #	Dense average_pooling1d_5 (Average	(None, 5, 1014)	0	13/83	27/83	47/83	8	8	7	6
input_1 (InputLayer)	[(None, 1, 1024)]	0	== flatten_1 (Flatten)	(None, 5070)	0	_						
separable_conv1d_1 (Separab	1 (None, 256, 1022)	515	dense_1 (Dense)	(None, 64)	324544	10/67	23/67	41/67	9	7	7	6
average_pooling1d_1 (Average	e (None, 128, 1022)	0	dropout_1 (Dropout)	(None, 64)	0							
separable_conv1d_2 (Separab	l (None, 128, 1020)	16896	dense_2 (Dense)	(None, 128)	8320	30/142	61/142	98/142	11	11	9	7
average_pooling1d_2 (Average	e (None, 64, 1020)	0	dense_3 (Dense)	(None, 128)	16512							
separable_conv1d_3 (Separab	l (None, 64, 1018)	4352	dropout_2 (Dropout)	(None, 128)	0	.20/553	277/553	417/553	11	11	10	8
average_pooling1d_3 (Average	e (None, 32, 1018)	0	dense_4 (Dense)	(None, 64)	8256		2.40/ 0	1 1 2 4 0 /	1.6	1 4 10		
separable conv1d 4 (Separab	1 (None, 32, 1016)	1152	dense_5 (Dense)	(None, 1)	65	_ molecole	, ½1% = 8 m	iolecole, ³ 1%	= 16mole	coie, 4 19	% = 61 mc	olecole

Non-trainable params: 0

Image segmentation is a commonly used technique in digital image processing and analysis to partition an image into multiple parts or regions, often based on the characteristics of the pixels in the image. Image segmentation could involve separating foreground from background, or clustering regions of pixels based on similarities in color or shape.

SEGMENTAZIONE IN IMAGE PROCESSING

THRESHOLDING

CLUSTERING

STRUTTURA DELLE MASCHERE TARGET

Struttura one-hot encoding [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], [0,0,0,0,1]

COME FUNZIONA LA SEGMENTAZIONE?

Modelli usati in segmentazione

Approcci convoluzionali:

- U-Net
- RCNN (Region Based Convolution Neural Networks)

Altri approcci:

- RNN (Recurrent Neural Network)
- GAN (Generative Adversarial Network)
- ViT (Vision Trasformers)

Approcci Convoluzionali

R-CNN

U-NET E ALCUNE VARIANTI

V-Net U-Net++

R-CNN E DIVERSE IMPLEMENTAZIONI

YOLO

classifier

SEMANTIC VS INSTANCE SEGMENTATION

MASK R-CNN

METRICHE

Pixel accuracy

• IOU (Intersection Over Union)
$$J(A,B) = \frac{|A \cap B|}{|A \uplus B|} = \frac{|A \cap B|}{|A| + |B|}.$$

• Dice Coefficient
$$\longrightarrow$$
 $DSC = rac{2|X \cap Y|}{|X| + |Y|}$

ESEMPIO DEL CALCOLO DELLE METRICHE

PREDICTION

• PA = 95%

• IOU = 47,5%

• DICE= 47,5%