Groomed heavy hemisphere mass in $e^+e^- o { m jets}$ events

Kees Benkendorfer

Reed College

8 December 2020 Thesis Mini-Orals Background

Outline

- Events of interest
- Observables
- 2 Work so far
 - First-order calculation
 - Zooming in on intermediate mass
- 3 Looking forward

Outline

Electron-positron annihilation

- Electron-positron annihilation experiments enable precision probes of the Standard Model
 - Theoretically simpler than proton-proton collisions (as at the LHC)
 - Some results carry over to pp collisions
- In events of interest, e⁺ and e⁻ produce a photon, which splits into a quark-antiquark pair
- One or more gluons are produced off of q or \bar{q}

Figure: Feynman diagram for $e^+e^- \rightarrow q\bar{q}g$

Jets

Outline

- In quantum chromodynamics (QCD), the gluon carries color charge just like quarks
- Interesting nonlinear dynamics:
 - Self-coupling: gluons beget gluons
 - Scale-invariance: QCD events have approximately no intrinsic scale
 - Confinement: particles with color charge don't like to live alone
- Result: producing a quark or gluon yields a collimated spray of hadronic radiation called a jet

Figure: QCD self-coupling as gluon propagates

Heavy hemisphere mass

- We are interested in properties of these jets
- Key observable: heavy hemisphere mass
 - Split the e^+e^- → jets events into two hemispheres
 - Look at the normalized mass of the heaviest hemisphere
- For a heavy hemisphere with four-momentum P^{μ} , hemisphere mass is given by

$$\rho = \frac{m_h^2}{E_h^2}$$

with
$$m_h^2 = P \cdot P$$
 and $E_h^2 = (P^0)^2$.

Grooming

- We almost have a good quantity to measure in experiments
- Problem: in high-luminosity colliders, significant background radiation can contaminate jets
- This contamination is almost exclusively low-energy (soft)
- **Jet grooming**: removes soft emissions in the jet in order to focus on features of interest
- We use **mMDT** (modified Mass Drop Tagger) grooming [1, 2]
 - Set a cutoff energy fraction z_{cut}
 - For two emissions i and j, only keep them if their energies satisfy

$$\frac{\min[E_i, E_j]}{E_i + E_i} > z_{\text{cut}}.$$

6/16

Outline

Reproduction of first-order calculation

■ To leading order, ρ is generated by $e^+e^- \to q\bar{q}g$ events. For momenta p_i and total momentum Q, introduce phase space variables

$$x_i = \frac{2p_i \cdot Q}{Q^2}$$

■ With α_s the strong coupling, $C_F = 4/3$ the fundamental Casimir of color, and σ_0 the cross section for $e^+e^- \rightarrow q\bar{q}$ events, the cross section is given by [3]:

$$\frac{1}{\sigma_0} \frac{d\sigma}{d\rho} = \frac{\alpha_s C_F}{2\pi} \int_0^1 dx_1 \int_0^1 dx_2 \underbrace{\frac{\text{kinematic requirement}}{\Theta(x_1 + x_2 - 1)}}_{\text{Minematic requirement}} \underbrace{\frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}}_{\text{The properties of the properties}} \times \underbrace{\delta\left(\rho - \frac{4(1 - \max\{x_i\})}{(2 - \max\{x_i\})^2}\right)}_{\text{measurement}} \underbrace{\Theta\left(\frac{\min\{x_i\}}{2 - \max\{x_i\}} - z_{\text{cut}}\right)}_{\text{jet grooming}}$$

First-order calculation

Outline

Reproduction of first-order calculation

Figure: Groomed heavy hemisphere mass to first order. Note the cusp around $\rho \sim z_{\rm cut}$

Cusp physics

Goal

Outline

Understand the cusp by performing an all-orders calculation of the distribution in that regime

- Suppose there are many labeled emissions with energy fractions z_i and angles θ_{ii}
- Emissions relevant for the cusp have $z_i \sim \rho$ and $z_i \sim z_{\rm cut}$. Assuming $z_{\rm cut} \ll 1$, this means $z_i \ll 1$ (so the emission is soft)
- Since $\rho \simeq \sum_{i,j} z_i z_j \theta_{ii}^2$, the leading contribution from emission *i* will be its interaction with the **hard** (high-energy) quark j, so that $\rho \sim z_i \theta_{ii}^2$
- Therefore, $\rho \sim z_{\rm cut} \theta_{ii}^2 \sim z_{\rm cut}$, so $\theta_{ij} \sim 1$
- Thus, we are looking for soft emissions at a wide angle to the quark

Soft limit

Outline

- In the limit of soft gluon emissions, the matrix element is known [4]
- For one gluon with momentum k^{μ} , the matrix element is

$$|\mathcal{M}|^2 = 4\pi\alpha_s C_F \frac{2}{k^+ k^-} \tag{1}$$

with light-cone coordinates

$$k^+ = k^0 - k^3$$
 $k^- = k^0 + k^3$. (2)

- Problem: matrix element diverges in soft limit $k^- \to 0$
- Solution: dimensional regularization [5]
 - Basically analytic continuation of the dimension of the problem: work in $d=4-2\epsilon$ dimensions with $\epsilon>0$
 - Introduces $(k^+k^-)^{-\epsilon}$ term which allows integration; also introduces an energy scale $\mu^{2\epsilon}$
 - Divergences are collected in terms which diverge as $\epsilon \to 0$

Outline

Killing divergences

- Dimensional regularization helps us find divergences so what?
 - Divergences remain, only change is they are now explicit
 - Also, what is μ ?
- Degeneracy saves the day: adding the remaining singular contributions (i.e., the collinear limit) cancels divergent terms
- \blacksquare Can then set $\epsilon = 0$
- \blacksquare Adding all degenerate regions of phase space also eliminates terms containing μ
 - Physical result must not depend on an arbitrary energy scale

Outline

Results: $z_{\text{cut}} = 0.04$

Figure: Groomed heavy hemisphere mass to first order, alongside an approximation around the cusp region, with $z_{\rm cut} = 0.04$

Outline

Results: $z_{\text{cut}} = 0.04$

Figure: Groomed heavy hemisphere mass to first order, alongside an approximation around the cusp region, with $z_{\rm cut} = 0.04$

Outline

Results: $z_{\text{cut}} = 0.001$

Figure: Groomed heavy hemisphere mass to first order, alongside an approximation around the cusp region, with $z_{\rm cut} = 0.001$

Outline

Results: $z_{\text{cut}} = 0.001$

Figure: Groomed heavy hemisphere mass to first order, alongside an approximation around the cusp region, with $z_{\rm cut} = 0.001$

Conclusion and next steps

Outline

- I have familiarized myself with previous first-order results
 - Has required learning lots of quantum field theory
- Main forward thrust will be to derive a new factorization formula describing the distribution to all orders, as in [6]
 - This formula was valid for $\rho \ll z_{\rm cut} \ll 1$
 - Factorization formula for $\rho \sim z_{\rm cut} \ll 1$ would enable calculating the cusp to arbitrary accuracy
 - The name of the game: ensuring no dependence on arbitrary energy scales μ
- With factorization formula in hand, will push to next-order accuracy
- Will enable precision understanding of intermediate regions of the distribution

Outline

[1] Mrinal Dasgupta, Alessandro Fregoso, Simone Marzani, and Gavin P. Salam. Towards an understanding of jet substructure. *J. High Energ. Phys.*, 2013(9):29, September 2013.

- [2] Adam Kardos, Andrew J. Larkoski, and Zoltán Trócsányi. Two- and three-loop data for the groomed jet mass. *Phys. Rev. D*, 101(11):114034, June 2020.
- [3] Andrew J. Larkoski. Improving the Understanding of Jet Grooming in Perturbation Theory. arXiv:2006.14680 [hep-ex, physics:hep-ph], August 2020.
- [4] S. Catani and M. Grazzini. Infrared factorization of tree-level QCD amplitudes at the next-to-next-to-leading order and beyond. *Nuclear Physics B*, 570(1-2):287–325, March 2000.
- [5] Matthew Dean Schwartz. Quantum Field Theory and the Standard Model. Cambridge University Press, New York, 2014.
- [6] Christopher Frye, Andrew J. Larkoski, Matthew D. Schwartz, and Kai Yan. Factorization for groomed jet substructure beyond the next-to-leading logarithm. J. High Energ. Phys., 2016(7):64, July 2016.