12

Roll No.

1 2 2 B T C 3 5 1 43

Course: B. Tech Computer Science and Engineering (Artificial Intelligence and Machine Learning) Subject: Signal & Systems, Subject Code: ETCS-211 Semester: III

Time: 03 Hours Max Marks: 70

Instructions to the Students:

- 1. This Question paper consists of two Sections. All sections are compulsory.
- 2. Section A comprises 10 questions of short answer type. All questions are compulsory. Each question carries 2 marks.
- 3. Section B comprises 8 long answer type questions out of which students must attempt any 5. Each question carries 10 marks.
- 4. Do not write anything on the question paper.

Q.	No. SECTION -A (SHORT	ANSWER TYPE QUESTIONS)	Marks
1.	a. Define the following functions man	thematically:	(2)
	i. Unit Stem function ii. Ur	nit Ramp function	
	be Distinguish between periodic and a	aperiodic signals with suitable example.	(2)
	. What is half wave symmetry? What	nt is its effect?	(2)
	de Does Fourier transform exist for al	ll aperiodic functions? If not, what are the	(2)
	conditions to be satisfied for the ex-	xistence of Fourier transform?	
	e What is the relation between Fouri	er transform and Laplace transform?	(2)
		ondence between only one -sided Laplace	(2)
	transform and its inverse Laplace t	ransform?	
	g. How discrete-time systems are ana	lysed using Z-transforms?	(2)
	h. What is the condition for Z-transfo		(2)
	i Define Fourier transform of a discr	rete-time signal.	(2)
	j What is the sufficient condition for	r the existence of DTFT?	(2)
	SECTION -B (LONG ANSWER TYPE QUESTIONS)		
2	a. What are the types of representation	of discrete-time signals? Represent a	
2.	· -11 4- wa on		(10)
10	b. Define a system. How are systems of Determine the Fourier series representation.	ation of	
3.	$r(t) = 2\sin(\sin(2\pi t - 3) + \sin 6\pi t)$		(10)

2312ET073

- Find the Fourier transform of the signal $x(t) = \frac{1}{a^2+t^2}$ (10)
- 5. Using the properties of Laplace transform, find the Laplace transform of the following signals:

(10)x(t) = tu(t-2)

- ii. $x(t) = e^{-3t} \sinh 2tu(t)$ 6. State and prove Linearity and time shifting property of Z-Transform. (10)
- 7. Find the Z-transform of (10)i. y(n) = x(n-1) u(n) ii. $n\delta(n-2)$

8. Realize the system with the following transfer function in direct form-I
$$H(s) = \frac{s+5}{s^2 + 2s + 4}$$
(10)

9. State and prove the time shifting and frequency shifting properties of DTFT. (10)

=END OF PAPER===