

Today's Lecture

Approximate Nearest Neighbor

- ▶ **Given**: a set of *n* points in \mathbb{R}^d and query point *p*.
- Compute: (approximate) nearest neighbor of p.
- Last time: k-d trees do not scale well with d.

Today

- Slightly different problem: given a distance r and query p.
- Return (approximately) all of the points within distance r of p.
- Can use to compute ANN.

Today

- We'll introduce locality sensitive hashing.
- An important idea.
- ▶ We'll see similar themes in remainder of course.

Implementing a NN Grid

Grids

- Given input point p, want quick way to find nearby points.
- Idea: divide space into cells using grid.
- Find cell containing *p*, search it.
- How would we implement this?

Grid Cells

- Each point (x, y) given cell id: ([x],[y])
 - Example: (1.2, 6.7) given cell id (1, 6).
- Store (x, y) in dictionary with cell id as key.
 - Discretization allows multiple points in same cell.
 - Store collisions in list.

ightharpoonup Generalizes naturally to d-dimensions.

```
class NNGrid:
    def init (self, width):
        self.width = width
        self.cells = {}
    def cell id(self, p):
        p = np.asarrav(p)
        cell id = np.floor(p / self.width).astvpe(int)
        return tuple(cell id)
    def insert(self. p):
        """Insert p into the grid."""
        cell id = self.cell id(p)
        if cell id not in self.cells:
            self.cells[cell id] = []
        self.cells[cell id].append(p)
```

•

9 / 72

. . . def points in cell(self, p): cell id = self.cell id(p) if cell id not in self.cells: return [] points in cell = self.cells[cell id] # turn into an array return np.vstack(points in cell) def querv(self. p): return brute force nn(self.points in cell(p), p)

Note

► This may **fail** – NN could be in different cell.

Problems

▶ In *d* dimensions, cell id has *d* entries.

$$cell-id(p) = ([x_1/w], [x_2/w], ..., [x_d/w])$$

- All entries must be **exactly** the same for two points to have same cell id.
- This is very unlikely. Most cells are empty or contain one point.

High-Dimensional Cuboids

- One "fix": increase cell width parameter.
- Suppose we want to ensure any points within distance r are in same cell.
- ► Then cell width must be 2*r*.

High-Dimensional Cuboids

But a d-dimensional cuboid of width 2r can contain points at distance $2\sqrt{dr}$ from one another!

For even modest *r*, the whole data set is in one cell.

Main Idea

Dividing into a grid of cuboids fails in high dimensions. Either the cells are empty, or contain everything, depending on the width!

A Randomized "Grid"

A Randomized "Grid"

Idea: Instead of axis-aligned grid, divide into cells using $k \ll d$ random directions.

Cell Shape

- Cells are no longer d-dimensional cuboids.
- ► They are random *k*-dimensional polytopes.

Question

▶ Why is this better? We'll see in the next sections.

Projection

How do we determine which cell a point lies in?

Cell IDs

- Pick k random unit vectors, $\vec{u}^{(1)}, ..., \vec{u}^{(k)} \in \mathbb{R}^d$.
- Pick a width parameter, w.
- ► Given any point \vec{p} , its cell id is¹:

$$cell-id(\vec{p}) = \left(\left| \frac{\vec{u}^{(1)} \cdot \vec{p}}{w} \right|, \left| \frac{\vec{u}^{(2)} \cdot \vec{p}}{w} \right|, \dots, \left| \frac{\vec{u}^{(k)} \cdot \vec{p}}{w} \right|, \right)$$

¹use same width and unit vectors for all points

Example

Quick Cell-ID Calculation

▶ Place $\vec{u}^{(1)}, ..., \vec{u}^{(k)}$ into a matrix:

$$U = \begin{pmatrix} \leftarrow & (\vec{u}^{(1)})^T & \rightarrow \\ \leftarrow & (\vec{u}^{(2)})^T & \rightarrow \\ \vdots & \vdots & \vdots \\ \leftarrow & (\vec{u}^{(k)})^T & \rightarrow \end{pmatrix}$$

► Then cell-id(\vec{p}) = entrywise-floor($U\vec{p}/w$)

Generating Random Unit Vectors

```
def gaussian_projection_matrix(k, d):
    X = np.random.normal(size=(k, d))
    U = X / np.linalg.norm(X, axis=1)[:,None]
    return U
```

class NNProjectionGrid

```
def init (self, projection matrix, width):
    self.width = width
    self.projection matrix = projection matrix
    self.cells = {}
def cell id(self. p):
    projection = self.projection matrix @ p
    cell id = np.floor(projection / self.width)
    return tuple(cell id.astvpe(int))
```

insert, query, points in cell same as for NNGrid

But wait...

- In high dimensions, still **very unlikely** for cell to contain >1 point.
- ► Idea: **banding**. Try, try again.
- Build multiple NNProjectionGrids with different random projections.
- Find points_in_cell for each, pool them together.

Multiple Random Projections

Locality Sensitive Hashing

- This idea (multiple random projections) is an example of Locality Sensitive Hashing (LSH).
- We'll explore it more in the next section.

class LocalitySensitiveHashing:

. . .

```
def init (self, l, k, d, w):
    self.randomized grids = []
    for i in range(l):
        U = gaussian projection matrix(k, d)
        randomized grid = NNProjectionGrid(U, w)
        self.randomized grids.append(randomized grid)
def insert(self. p):
    for randomized grid in self.randomized grids:
        randomized grid.insert(p)
```

. . . def guerv close(self, p): nearby = [] for randomized grid in self.randomized grids: points in cell = randomized grid.points in cell(p) nearby.append(points in cell) return np.vstack(nearbv) def query nn(self, point): results = self.query close(point) pool = np.vstack([r for r in results]) if len(pool) == 0: raise ValueError('No points nearby.')

return brute force nn(pool. point)

Parameters

► 1: number of randomized "grids"

k: number of random directions in each "grid"

▶ w: bin width

Tuning Parameters

- Choose so that .query_close returns a small # of points.
- ► If # is very small (or zero), either:
 - ▶ increase w or ℓ
 - decrease k

Note

- ► This is an approximate NN technique!
- May not find the NN.
- May not return anything!

Theory of Locality Sensitive Hashing

Why does LSH work?

- Two approaches to understanding LSH.
- ▶ 1) Hashing view.
- 2) Dimensionality reduction view.

Standard Hashing

▶ A hash function $h: \mathcal{X} \to \mathbb{Z}$ takes in an object from \mathcal{X} and returns a bucket number.

Standard Hashing

- Collision: two different objects have same hash.
- Usually, collisions are bad.
- Want similar things to have very different hashes.

Locality Sensitive Hashing

- But in NN search, we want "close" items to be in the same bucket (have same hash).
- "Far" items should be in different buckets (have different hash).

Locality Sensitive Hashing

- Let *r* be a distance we consider "close".
- Let *cr* (with *c* > 1) be a distance we consider "far".
- Suppose H is a family of hash functions.

LSH Family

H is an LSH family if when h is randomly drawn from H:

$$\mathbb{P}(h(x) = h(y)) \ge p_1 \quad \text{when } d(x,y) \le r$$

$$\mathbb{P}(h(x) = h(y)) \le p_2 \quad \text{when } d(x,y) \ge cr$$
 where $p_1 > p_2$.

Main Idea

If x and y are close, the probability that they hash to the **same** bin is not too small. If they are far, the probability is not too large.

Example: Random Projections

- We have seen one LSH family: random projections followed by binning.
- ► H has infinitely-many hash functions, one for each direction \vec{u} :

$$h_{\vec{u}}(\vec{p}) = \left\lfloor \frac{\vec{u} \cdot \vec{p}}{w} \right\rfloor,$$

Example: Random Projections

- Suppose a random hash function h is chosen.
- Claim:

$$\mathbb{P}(h(x) = h(y)) \ge \frac{1}{2} \quad \text{when } d(x, y) \le w/2$$

$$\mathbb{P}(h(x) = h(y)) \le \frac{1}{3}$$
 when $d(x, y) \ge 2w$

Intuition

Proof: Close

In worst case, grid is orthogonal to line between points.

Proof: Far

Only possible if grid is close to parallel.

Proof: Far

► Angle must be below 30°.

Amplification

- Lots of points have same hash.
- ► To be more selective, randomly select *k* hash functions for cell id.

$$cell-id(x) = (h_1(x), h_2(x), ..., h_k(x))$$

Example: Random Projections

► In case of random projections.

$$cell-id(\vec{p}) = \left(\underbrace{\left\lfloor \frac{\vec{u}^{(1)} \cdot \vec{p}}{w} \right\rfloor}_{h_1}, \underbrace{\left\lfloor \frac{\vec{u}^{(2)} \cdot \vec{p}}{w} \right\rfloor}_{h_2}, \dots, \underbrace{\left\lfloor \frac{\vec{u}^{(k)} \cdot \vec{p}}{w} \right\rfloor}_{h_k} \right)$$

Collision Probability

► Remember:

$$P(h(x) = h(y)) \ge p_1$$
 if close.
 $P(h(x) = h(y)) \le p_2$ if far.

- ► Collision occurs if $h_i(x) = h_i(y) \forall i \in \{1, ..., k\}$.
- Probability of collision...
 - ▶ if close: $\geq p_1^k$
 - ▶ if far: $\leq p_2^k$

Choosing *k*

- Want prob. of far points colliding to be small.
- ► Say, 1/*n*.
- ► Set $p_2^k = 1/n$. Then

$$k = \log_{p_2} \frac{1}{n} = \frac{\log n}{\log 1/p_2}$$

Main Idea

We can use $k = \Theta(\log n)$ hash functions.

Main Idea

When using random projections as hash functions, we can use $k = \Theta(\log n)$ directions. This is usually much less than d.

But wait...

- Probability of close points colliding is p_1^k .
- Let $p_1 = p_2^{\rho}$. We'll have $\rho < 1$, since $p_2 < p_1$.
- Since $p_2^k = \frac{1}{n}$, we have $p_1^k = \frac{1}{n^p}$.
- This is very small.

Banding

▶ Before: one set of *k* hash functions.

With **banding**: keep ℓ sets (**bands**) of k hash functions.

To query NN of *p*, find points that are in the same cell as *p* in *any* of the bands.

Banding

Probability of at least one match:

$$\frac{1}{n^{\rho}} + \frac{1}{n^{\rho}} + ... + \frac{1}{n^{\rho}} = \frac{\ell}{n^{\rho}}$$
collision in band 1 collision in band 2 collision in band ℓ

Want this to be ≈ 1, so:

$$\ell = n^{\rho}$$

Main Idea

We should set the number of bands to be n^{ρ} . ρ depends on c, and is usually not small. For random projections, $\rho \approx .63$.

Analysis

How efficient is LSH?

- \triangleright Worst case, everything hashes to same bin: O(n).
- In practice, much better.
- Requires **a lot** of memory. $\Theta(ln)$.

Other Distances

- LSH works for many different similarity measures.
- Random projections are for Euclidean distances.
- But other hashing approaches work for cosine distance, Jaccard distance, etc.

The Johnson-Lindenstrauss Lemma

Why does LSH work?

- Two approaches to understanding LSH.
- ▶ 1) Hashing view.
- 2) Dimensionality reduction view.

Main Idea

The **Johnson-Lindenstrauss Lemma** says that, given n points in \mathbb{R}^d , you can reduce the dimensionality to $k \approx \log n$ while still preserving relative distances by randomly projecting onto a set of k unit vectors.

Claim

The **Johnson-Lindenstrauss Lemma** (Informal). Let X be a set of n points in \mathbb{R}^d . Let U be a matrix whose $k = O(\log(n)/\epsilon^2)$ rows are Gaussian random vectors in \mathbb{R}^d . Then for every $\vec{x}, \vec{y} \in X$,

$$\|\vec{x}-\vec{y}\| \leq (1\pm\epsilon)\|U\vec{x}-U\vec{y}\|$$

LSH and J-L

- In LSH, we use $k = O(\log n)$ hash functions.
- If these hash functions are random projections, the J-L lemma tells that distances are largely preserved.

A Different View of LSH

- ▶ Given $p \in \mathbb{R}^d$, randomly project to \mathbb{R}^k with $k \approx \log n$.
- Let new coordinates be $(y_1, y_2, ..., y_k)$.
- Use standard grid to assign cell id.

Main Idea

LSH (for Euclidean distances) (without banding) can be viewed as dimensionality reduction by random projections, followed by binning into a standard grid.

NN in Practice

In Practice

- LSH is an important idea.
- Good performance in practice.
- But heuristic approaches are often faster.
- faiss and annoy, among others.

Hierarchical k-Means

Product Quantization

Navigable Small Worlds