# LING530F: Deep Learning for Natural Language Processing (DL-NLP)

## Muhammad Abdul-Mageed

muhammad.mageed@ubc.ca
Natural Language Processing Lab

The University of British Columbia

#### Table of Contents

- More on Recurrent Neural Networks
  - RNN Without Hidden Unit Recurrence
  - Teacher Forcing
  - Drawing Samples from RNNs
  - Bidirectional RNN
  - Seq2Seq

# RNN With a Single Output in the End



Figure: An RNN with a single output in the end. This network can be used, for example, for speaker, dialect, gender, or sentiment identification when cast as text classification

## RNN With Output Recurrence



Figure: This network is less powerful than one with full recurrence, yet can be parallelized, with the gradient for each step t computed in isolation. There is no need to compute the output for the previous time step first, because the **training set provides the ideal value of that output**  $\rightarrow$  teacher forcing. [From Goodfellow et al., 2016]

## Teacher Forcing

#### Teacher Forcing

- Models with recurrent connections from their output back to the model hidden state can be trained with teacher forcing
- Gold labels are fed from the training data
- Consider example of POS tagging where gold labels at each time step are used, rather than using model predictions of previous words
- Although teacher forcing can help us avoid full recurrence as with BPTT, teacher forcing can also be combined with BPTT (where the hidden states are a function of previous time steps)

## Closed Loop

#### Network in Closed Loop

- In **closed loop** mode, the network outputs are fed back as inputs.
- This could be problematic if the labels/fed-back inputs at this test time are quite different freom those during training.
- Solution I: Mix teacher forcing with free-running inputs, by starting with predicting the gold target a number of steps in the future then using the network's own predictions after a few steps
- Solution II: Use a mixture of generated and actual values as inputs
- This exploits a curriculum learning strategy to gradually use more of the generated values as input

# Drawing Samples from RNN

### Deciding End of Sequence

- The network needs a mechanism to know where to stop (i.e., determine the length of the sequence.
- Approach 1: Add an extra < end > symbol to the vocabulary, where generation stops after the symbol is produced.
- Approach 2: Add an extra Bernoulli output, usually a sigmoid unit trained with the cross-entropy loss to maximize the log-probability of the correct prediction as to whether the sequence ends or continues at each time step.
- Approach 2 is more general than approach 1, as it can be added to any RNN (rather than an RNN that generates a sequence).
- See Goodfellow et al., 2016 (p. 384) for a third approach based on simply augmenting the network with a counter at each time step.

# From Fixed-Length x to Sequences of Y



Figure 10.9: An RNN that maps a fixed-length vector  $\boldsymbol{x}$  into a distribution over sequences  $\mathbf{Y}$ . This RNN is appropriate for tasks such as image captioning, where a single image is used as input to a model that then produces a sequence of words describing the image. Each element  $\boldsymbol{y}^{(t)}$  of the observed output sequence serves both as input (for the current time step) and, during training, as target (for the previous time step).

Figure: A weight matrix  $\mathbf{R}$  that was absent from the model with only a sequence of y values is introduced. The product  $\mathbf{x}^T \mathbf{R}$  is added as an additional input to hidden units at each time step.

#### Bidirectional RNN



Figure: A BiRNN can be used for tasks like speech recognition, POS tagging, and handwriting recognition. Additionally, can be used for many sequence-to-sequence tasks (see next slide ...)

## Encoder-Decoder Sequence-to-Sequence Architectures



Figure: An seq2seq RNN. The final hidden state of the encoder RNN is used to compute a generally fixed-size a semantic summary C of the input sequence and is given as input to the encoder RNN. [From Goodfellow et al., 2016)

# Encoder-Decoder Design

#### Design Details

- C might be a vector or sequence of vectors that summarize the input sequence.
- The encoder processes the input sequence  $(x^{(1)}, x^{(1)}, \dots, x^{(n_x)})$ , emitting a fixed-length context C as a simple function of its last hidden state.
- A decoder network is conditioned on C to generate the output sequence  $(y^{(1)}, y^{(1)}, \dots, y^{(n_y)})$ .
- The two RNNs are trained jointly to maximize the average of log  $(\mathbf{y}^{(1)}, \mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n_y)}) \mid (\mathbf{x}^{(1)}, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n_x)}).$
- Length of the encoder and decoder can vary from each other, unlike work done before Cho et al. (2014) and Sutskever et al. (2014) introduced these architectures.

# Connecting Encoder to Decoder

#### How Writer & Reader Are Connected

- If the context C is a vector, then the decoder RNN is a vector-to-sequence RNN.
- At least 2 ways for a vector-to-sequence RNN to receive input:
  - Input can be provided as the initial state of the RNN
  - Input can be connected to the hidden units at each time step

#### Limitation

- The context C output by encoder can have too small dimension to summarize a long sequence
- Bahdanau et al. (2015) proposed to make a variable length sequence (in MT work), and introduced an attention mechanism.