Topological Data Analysis

2022-2023

Lecture 3

Simplicial Homology

10 November 2022

Example: Find the homology groups with \mathbb{Z} coefficients of (0123) and those of each of its skeleta $K^{(i)}$.

$$0-skeleton:$$
 (0) (1) (2) (3)

$$C_o(\kappa^{(0)}) = \mathbb{Z}(0) \oplus \mathbb{Z}(1) \oplus \mathbb{Z}(2) \oplus \mathbb{Z}(3)$$

$$0 \xrightarrow{Q_A} C_o \xrightarrow{Q_o} 0$$

$$H_0(K^{(0)}) = \ker \theta_0 = C_0 \cong \mathbb{Z}^4$$
, and $H_n(K^{(0)}) = O \quad \forall n \neq 0$.

$$1-skelebon:$$
 (01) (02) (03) (12) (13) (23)

$$C_{o}(K^{(1)}) = C_{o}(K^{(0)})$$

$$C_1(K^{(1)}) = \mathbb{Z}(01) \oplus \mathbb{Z}(02) \oplus \mathbb{Z}(03) \oplus \mathbb{Z}(12) \oplus \mathbb{Z}(13) \oplus \mathbb{Z}(23)$$

$$0 \xrightarrow{\mathfrak{D}_2} C_{\lambda} \xrightarrow{\mathfrak{D}_{\lambda}} C_{0} \xrightarrow{\mathfrak{D}_{0}} 0$$

$$(0)$$
 -1 -1 0 0 0

$$(1)$$
 1 0 0 -1 -1 0

$$(2)$$
 0 1 0 1 0 -1

Column reduction:

$$\operatorname{Ker} Q_1 = \langle (12) - (02) + (01), (13) - (03) + (01), (23) - (03) + (02) \rangle$$

This basis of Kerly is obtained from the column reduction process

$$H_0(K^{(1)}) = C_0/I_{IM} O_1 = (0), (1), (2), (3)/((1)-(0), (2)-(1), (3)-(2)) \cong \mathbb{Z}$$

generated by the class [0] of (0).

$$H_1(K^{(1)}) = \ker \partial_1 = \ker \partial_1 \cong \mathbb{Z}^3$$

$$[0] = [1] = [2] = [3]$$

it is free abelian since $\ker \partial_1 \subseteq C_1 = \mathbb{Z}^6$

We can visualize the generators of H, (K(1)) as linearly independent

1 - cycles:

Note that the fourth 1-cycle (23)-(13)+(12) is a linear combination of the three chosen 1-cycles.

<u>2-skeleton</u>: (012) (013) (023) (123)

$$C^{\circ}(K_{(5)}) = C^{\circ}(K_{(4)})$$

$$C^{\prime}(K_{(5)}) = C^{\prime}(K_{(4)})$$

 $C_2(K^{(2)}) = \mathbb{Z}(012) \oplus \mathbb{Z}(013) \oplus \mathbb{Z}(023) \oplus \mathbb{Z}(123)$

$$0 \xrightarrow{\mathfrak{I}_3} C_2 \xrightarrow{\mathfrak{I}_2} C_4 \xrightarrow{\mathfrak{I}_4} C_0 \xrightarrow{\mathfrak{I}_0} O$$

Matrix of
$$Q_2$$
: (012) (013) (023) (123)
(01) 1 1 0 0
(02) -1 0 1 0
(03) 0 -1 -1 0
(12) 1 0 0 1
(13) 0 1 0 -1
(23) 0 0 1

Column reduction:

rank Ker 02 = 1

$$H_0(K^{(2)}) \cong \mathbb{Z}$$
 generated by $[0]$ since P_0 and P_n have not changed.

$$H_1(K^{(2)}) = \frac{\text{Ker } \Omega_1}{\text{Im } \Omega_2} = 0 \text{ since Im } \Omega_2 = \text{Ker } \Omega_1.$$

$$H_2(K^{(2)}) = \ker \partial_2 \cong \mathbb{Z},$$
Im $\partial_3 = \ker \partial_2 \cong \mathbb{Z},$

generated by the class of the 2-cycle (123)-(023)+(013)-(012).

We can interpret it as representing the cavity inside $|K^{(2)}| \cong S^2$.

signs correspond to a choice of compatible orientations on the 2-faces. The orientations induced on every edge by the adjacent 2-faces are opposite.

(*) Column reduction provides a basis of Im O_2 : $\begin{cases} V_1 = (01) - (02) + (12) \\ v_2 = (02) - (03) - (12) + (13) \end{cases}$ We need to prove that v_1, v_2, v_3 $v_3 = (12) - (13) + (23).$ span the same subgroup as

$$\begin{array}{l} \omega_{1} = (12) - (02) + (01) \\ \omega_{2} = (13) - (03) + (01) \\ \omega_{3} = (23) - (03) + (02). \end{array} \qquad \begin{array}{l} \omega_{1} = \omega_{1} \\ \omega_{2} = \omega_{2} - \omega_{1} \\ \omega_{3} = \omega_{3} - \omega_{2} + \omega_{1} \end{array} \qquad \begin{array}{l} \omega_{1} = \omega_{1} \\ \omega_{2} = \omega_{2} + \omega_{1} \\ \omega_{3} = \omega_{3} + \omega_{2} \end{array} \qquad \begin{array}{l} \omega_{1} = \omega_{1} \\ \omega_{2} = \omega_{2} + \omega_{1} \\ \omega_{3} = \omega_{3} + \omega_{2} \end{array}$$

3-skelebon:
$$(0123)$$
, $K^{(3)} = K$.

 $C_3(K) = \mathbb{Z}(0123)$ and $C_i(K) = C_i(K^{(2)})$ for $i \neq 3$.

 $0 \xrightarrow{Q_4} C_3 \xrightarrow{Q_3} C_2 \xrightarrow{Q_2} C_4 \xrightarrow{Q_4} C_0 \xrightarrow{Q_0} C$

Matrix of 0_3 : (0123)
 $(012) -1$
 (013) 1 Hence $\ker 0_3 = 0$.

 (123) 1

 $H_0(K) \cong \mathbb{Z}$, generated by $[0]$.

 $H_1(K) = 0$. both generated by $(123) - (012) + (013) - (012)$
 $H_2(K) = \ker 0_2 / \lim 0_3 = 0$ since $\lim 0_3 = \ker 0_2$.

 $H_3(K) = \ker 0_3 / \lim 0_4 = \ker 0_3 = 0$.

This corresponds to the fact that $|K| = \Delta^3$, which is a contractible space (no nonthirial n-cycles for any $n \geq 1$).

For a finite ordered abstract simplicial complex K, the Betti numbers $\beta_n(K)$ are defined for $n \ge 0$ as $\beta_n(K) = rank H_n(K) = dim_Q H_n(K; Q)$.

More generally, for any field \mathbb{F} , one defines $\beta_n(K; \mathbb{F}) = \dim_{\mathbb{F}} H_n(K; \mathbb{F})$.

We next prove that the number

$$\chi(K) = \sum_{n=0}^{\infty} (-1)^n \beta_n(K; F)$$

does not depend on \mathbb{F} . It is called the Euler characteristic of K. Let D_n denote the matrix of the boundary operator $\mathcal{O}_n: C_n(K;\mathbb{F}) \to C_{n-1}(K;\mathbb{F})$ in any chosen bases.

If we denote by for the number of n-faces of K, then

Therefore, if d=dim K,

$$\sum_{N=0}^{\infty} (-1)^{N} \beta_{N}(K; \mathbb{F}) = \sum_{N=0}^{d} (-1)^{N} \beta_{N}(K; \mathbb{F}) =$$

$$= \sum_{n=0}^{d} (-1)^n (f_n - rank D_n - rank D_{n+1}) =$$

=
$$f_0$$
-rank D_0 -rank D_1 - f_1 +rank D_1 +rank D_2 + f_2 -rank D_2 -...
... + $(-1)^d$ (f_d -rank D_d -rank D_{d+1}).

Here rank $D_0 = 0$ since $D_0: C_0 \rightarrow 0$ and rank $D_{d+1} = 0$ since

$$\mathcal{D}_{d+1}: \mathcal{O} \to Cd$$
. Therefore,
$$\sum_{N=0}^{\infty} (-1)^{N} \beta_{N}(K; \mathbb{F}) = \sum_{N=0}^{\infty} (-1)^{N} f_{N}(K; \mathbb{F})$$

which is independent from IF.

Example: For K: (0123) we found
$$X(K^{(0)}) = 4 = f_0$$
$$X(K^{(1)}) = 1 - 3 = -2 = f_0 - f_1 = 4 - 6$$

$$\chi(K^{(2)}) = 1 - 0 + 1 = 2 = f_0 - f_1 + f_2 = 4 - 6 + 4$$

$$X(K^{(3)}) = 1 - 0 + 0 - 0 = 1 = f_0 - f_1 + f_2 - f_3 = 4 - 6 + 4 - 1$$

Ho counts connected components

$$\mathcal{O}_{i} = \begin{cases} \langle v_{i}, v_{j}, v_{j} \rangle = \begin{cases} \langle v_{i}, v_{j}, v_{j}, v_{j} \rangle \\ \langle v_{i}, v_{j}, v_{j},$$

Hence frig-frige Im Q titj.

Therefore
$$[v_i] = [v_j]$$
 in $Ho(K) = Co(K)$
if $\{v_i, v_j\}$ is an edge of K .

Consequently, $[v_i] = [v_j]$ if there is an edge path from v_i to v_j , and $H_o(K) \cong \mathbb{Z}$ if the 1-skeleton

of K is a connected graph, since $H_0(K)$ is the abelian group generated by the classes [v_i] for $v_i \in V$ with the relations [v_i] = [v_i] $\forall i \neq j$.

Moreover, if $K = A \cup B$ where A and B are disjoint subcomplexes, then $H_n(K) \cong H_n(A) \oplus H_n(B)$ for all n, since the boundary operators D_n restrict to A and to B.

As a special case of this fact, if |K| has N connected components K_1, \ldots, K_N , then $H_0(K) \cong H_0(K_1) \oplus \ldots \oplus H_0(K_N) \cong \mathbb{Z}^N$.

More generally, if K = AUB with $AOB \neq \emptyset$, then $H_*(K)$ is determined by $H_*(A)$, $H_*(B)$ and $H_*(ADB)$ through the Mayer-Vietoris long exact sequence. Walther Mayer (1887-1948)