Spring 2012 Jim Fowler

Problem 1. The **Euler characteristic** of a space X with finite dimensional homology is

$$\chi(X) = \sum_{n} (-1)^n \dim H_n(X; \mathbb{Q}).$$

If X is a finite simplicial complex, show that this is the same as

$$\chi(X) = \sum_{n} (-1)^n \dim C_n(X; \mathbb{Q}),$$

where $C_n(M; \mathbb{Q})$ is the *n*-dimensional simplicial chain groups with rational coefficients.

Problem 2. Let M^3 be a closed oriented 3-manifold with a given PL triangulation (so the **link** of each vertex is a sphere); show, by using the formula for χ in terms of chains, that $\chi(M) = 0$.

Problem 3. If M is an odd-dimensional closed oriented manifold, show that $\chi(M) = 0$.

Problem 4. Let M^n be an oriented closed n-manifold. Show that the pairing

$$\smile: H^k(M; \mathbb{Q}) \times H^{n-k}(M; \mathbb{Q}) \to H^n(M; \mathbb{Q}) = \mathbb{Q}$$

is nonsingular form by considering the adjoint map

$$H^k(M; \mathbb{Q}) \to \operatorname{Hom}(H^{n-k}(M; \mathbb{Q}), H^n(M; \mathbb{Q})).$$

Problem 5. Suppose M^6 is an oriented closed 6-manifold. Show that the pairing

$$\smile: H^3(M; \mathbb{Q}) \to H^3(M; \mathbb{Q}) \to H^6(M; \mathbb{Q})$$

is a nonsingular skew-symmetric bilinear form over \mathbb{Q} . What does this imply about dim $H^3(M;\mathbb{Q})$?

Problem 6. Use Poincaré duality to compute the cup product structure on

$$H^{\star}(\mathbb{R}P^m;\mathbb{Z}/2).$$

Problem 7. Let X and Y be simplicial complexes with disjoint sets of vertices; in what follows, we regard a simplicial complex as simply a set of subsets of a vertex set, closed under taking of subsets.

The **join** of X and Y is denoted by $X \star Y$, and is defined as follows

$$X \star Y = \{ \sigma \cup \tau : \sigma \in X \text{ and } \tau \in Y \},$$

If X is homeomorphic to the n-sphere S^n and Y is homeomorphic to the m-sphere S^m , describe the homeomorphism type of $X \star Y$.

Problem 8. Consider a $\mathbb{Z}/5$ action on S^1 ; by taking the join of S^1 with itself, produce a $\mathbb{Z}/5$ action on S^{2n+1} . The quotient of this sphere by the $\mathbb{Z}/5$ action is a **lens space** L^{2n+1} .

Pick a generator $\alpha \in H^1(L^{2n+1}; \mathbb{Z}/5)$ and a generator $\beta \in H^2(L^{2n+1}; \mathbb{Z}/5)$. Show that α and β generate $H^*(L^{2n+1}; \mathbb{Z}/5)$ as a ring.

Problem 9. Exhibit two noncompact surfaces which are not homeomorphic.