

Corso di Visione Artificiale

Laurea Magistrale in Informatica (F94)

Docente: Raffaella Lanzarotti

Dipartimento di Informatica Università degli Studi di Milano

Where are we?

First part: Image formation and Early vision

- Image formation
 - Geometric Camera Models
 - Color spaces
- Image Processing
 - Punctual and spatial processing
 - Feature Extraction
- Reconstruction
 - Camera calibration
 - Stereo Vision
 - Structure from Motion and RGB-d Cameras
 - Optical flow and Tracking

<u>Second part:</u> Machine learning for CV

- Linear Neural Network
- Multi Layer Perceptron
- Convolutional Neural Networks
- Recurrent Neural Networks
- Transformers
- Generative Adversarial Networks
- Graph Neural Networks

1. IMAGE FORMATION

Camera Calibration

Chapter 1 – Forsyth Ponce

credits, F. Pedersini, S. Nayar

Camera calibration – definition

Camera Calibration:

Process to determine the geometric model of a camera

Calibration: determine M (or the camera parameters ξ)

REMARK:

 \tilde{x} used to indicate homogeneous coords

RECALL: Complete perspective projection camera model

$$\tilde{\mathbf{p}}_{lM} = \begin{bmatrix} f & 0 & x_C & 0 \\ 0 & f & y_C & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0} & 1 \end{bmatrix} \cdot \tilde{\mathbf{P}}_{\mathbf{W}} = \mathbf{M}(\xi) \cdot \tilde{\mathbf{P}}_{\mathbf{W}}$$

- Linear model in 11 parameters (M_{3x4}, up to scale)
 - only 9 params are independent:

$$\xi = [\mathbf{R}, \mathbf{T}, f, \mathbf{C}] = [\varphi, \vartheta, \rho, t_X, t_Y, t_Z, f, x_C, y_C]$$

- Extrinsic Parameters: depend on the relative position camera-scene
 - **Rotation**: Euler angles: $R = [\varphi, \theta, \rho]$
 - Translation: translation vector: $\mathbf{T} = [t_X, t_Y, t_Z]$
- Intrinsic Parameters: depend on the camera characteristics
 - Focal length: f
 - Optical Centre position: $C = \langle x_{C_I} y_C \rangle$

Camera calibration – Setup

- Calibration pattern: set of fiducial points (easy to be accurately located)
- P_i: World coordinates of the f.p.
 - > Expressed wrt a reference <u>system integral with the calibration pattern</u>
 - > P; a priori known
- **p**_i: Image coordinates of the f.p.
 - > p; determined by analyzing the image

Calibration: exploits the association $P_i \rightarrow p_i$ to determine M

Camera calibration – Setup

- Calibration pattern: set of fiducial points (easy to be accurately located)
- P_i: World coordinates of the f.p.
 - > Expressed wrt a reference <u>system integral with the calibration pattern</u>
 - > P; a priori known
- p_i: Image coordinates of the f.p.
 - > p_i determined by analyzing the image

Calibration: exploits the association $P_i \rightarrow p_i$ to determine M

Camera calibration - Calibration pattern

Set of fiducial points: easy to locate, with high precision

PATTERN:

Fiducial Point:

- *> spheres → sphere centre*
- > circles → circle centre
- *> chessboard → square vertices*
- Fiducial points <u>over a non-degenerate 3D-space</u>
 - If I use planar patterns, I need at least 2 images, on different planes

Camera calibration - Problem Definition

Problem definition:

- Given a set of N fiducial points P_i , of known 3D world position
- and given the corresponding image-coordinates p;
- → determine the camera model M (function of E) such that:

$$\widetilde{p}_i = \mathbf{M} \cdot \widetilde{P}_i, \quad i = 1..N$$

Determine the matrix M [3 x 4] of the <u>linear model</u> $\tilde{p}_i = \mathbf{M} \cdot \tilde{\mathbf{P}}_i$ given:

• the coords-World : P_i , i = 1..N

• the coords-image: p_i , i = 1..N

For a pair $\langle P_i, p_i \rangle$:

$$\tilde{\mathbf{p}}_{i} = \begin{bmatrix} \tilde{x}_{i} \\ \tilde{y}_{i} \\ \tilde{z}_{i} \end{bmatrix} = \mathbf{M} \cdot \tilde{\mathbf{P}}_{\mathbf{W}} = \begin{bmatrix} \mathbf{m}_{1} \\ \mathbf{m}_{2} \\ \mathbf{m}_{3} \end{bmatrix} \cdot \tilde{\mathbf{P}}_{i} = \begin{bmatrix} \mathbf{m}_{1} \cdot \tilde{\mathbf{P}}_{i} \\ \mathbf{m}_{2} \cdot \tilde{\mathbf{P}}_{i} \\ \mathbf{m}_{3} \cdot \tilde{\mathbf{P}}_{i} \end{bmatrix}$$
 (eq. 1)

 Remember Euclidean vs Homogeneous coords:

$$\mathbf{p}_{i} = \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix} = \begin{bmatrix} \frac{\tilde{x}_{i}}{\tilde{z}_{i}} \\ \frac{\tilde{y}_{i}}{\tilde{z}_{i}} \end{bmatrix}$$
 (eq. 2)

• Considering \mathbf{p}_i (in Euclidean coords) and combining (eq. 1) and (eq. 2) we obtain:

$$\mathbf{p}_{i} = \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix} = \begin{bmatrix} \frac{\widetilde{x}_{i}}{\widetilde{z}_{i}} \\ \frac{\widetilde{y}_{i}}{\widetilde{z}_{i}} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{m}_{1}\widetilde{\mathbf{P}}_{i}}{\mathbf{m}_{3}\widetilde{\mathbf{P}}_{i}} \\ \frac{\mathbf{m}_{2}\widetilde{\mathbf{P}}_{i}}{\mathbf{m}_{3}\widetilde{\mathbf{P}}_{i}} \end{bmatrix} \implies \begin{bmatrix} \mathbf{m}_{1}\widetilde{\mathbf{P}}_{i} - x_{i} \mathbf{m}_{3}\widetilde{\mathbf{P}}_{i} = 0 \\ \mathbf{m}_{2}\widetilde{\mathbf{P}}_{i} - y_{i} \mathbf{m}_{3}\widetilde{\mathbf{P}}_{i} = 0 \end{bmatrix},$$

For a pair $\langle P_i, p_i \rangle$:

$$p_{i} = \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix} = \begin{bmatrix} \frac{\widetilde{x}_{i}}{\widetilde{z}_{i}} \\ \frac{\widetilde{y}_{i}}{\widetilde{z}_{i}} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{m}_{1}\widetilde{\mathbf{P}}_{i}}{\mathbf{m}_{3}\widetilde{\mathbf{P}}_{i}} \\ \frac{\mathbf{m}_{2}\widetilde{\mathbf{P}}_{i}}{\mathbf{m}_{3}\widetilde{\mathbf{P}}_{i}} \end{bmatrix} \implies \begin{cases} \mathbf{m}_{1}\widetilde{\mathbf{P}}_{i} - x_{i} \mathbf{m}_{3}\widetilde{\mathbf{P}}_{i} = 0 \\ \mathbf{m}_{2}\widetilde{\mathbf{P}}_{i} - y_{i} \mathbf{m}_{3}\widetilde{\mathbf{P}}_{i} = 0 \\ \mathbf{m}_{2}\widetilde{\mathbf{P}}_{i} - y_{i} \mathbf{m}_{3}\widetilde{\mathbf{P}}_{i} = 0 \end{cases}, i = 1...N$$
2 equations, 12 unknown m_{ij}

In matricial form:

$$\begin{bmatrix} P_{1x} & P_{1y} & P_{1z} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & P_{1x} & P_{1y} & P_{1z} & 1 & -y_1 P_{1x} & -y_1 P_{1y} & -y_1 P_{1z} & -y_1 \end{bmatrix}$$

$$\begin{array}{c}
 m_{11} \\
 m_{12} \\
 m_{13} \\
 m_{14} \\
 m_{21} \\
 m_{22} \\
 m_{23} \\
 m_{24} \\
 m_{31} \\
 m_{32} \\
 m_{33} \\
 m_{34}
 \end{array}$$

For N pair
$$< P_i, p_i > (i = 1..N)$$
:

• write the 2N eq as a linear system in the 12 unknowns m_{ij}

$$\rightarrow P \cdot m = 0$$
 Homogeneous linear system, in 11 unknowns (12, up to a scale factor) and 2N equations resolvable for N = 6 (at least 6 fiducial points)

Scale of Projection Matrix

- REMEMBER:
 - Projection Matrix M acts on <u>homogeneous coords</u>, i.e.:

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} \equiv k \cdot \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$
 ($k \neq 0$ is any constant)

That is:

$$\tilde{P} \cdot m = \tilde{P} \cdot (k \cdot m)$$

• so that: the projection matrices M and $(k \cdot M)$ produce the same homogeneous pixel coordinates

Projection matrix M is defined up to a scale factor

Scale Projection Matrix

Scale k_2

Scaling projection matrix, implies simultaneously scaling the world and camera, which does not change the image

we can set projection matrix to some arbitrary scale

Least squares solution for m

- Option 1: set scale so that $m_{34} = 1$
- Option 2: set scale so that $||m||^2 = 1$
- We want: $\tilde{P} \cdot m = 0$, and $||m||^2 = 1$
- Formulated with the constrained least squares problem:

$$\min_{m} \|\tilde{P}m\|^{2}, \quad s.t. \quad \|m\|^{2} = 1,$$

$$\min_{m} \|m^{T}\tilde{P}^{T}\tilde{P}m\|, \quad s.t. \quad \|m^{T}m\| = 1$$

• Let's define the Loss function $L(m, \lambda)$:

$$L(m,\lambda) = m^T \tilde{P}^T \tilde{P} m - \lambda (m^T m - 1)$$

We want to minimize L wrt m

Constrained Least squares solution

• Let's take the derivatives of $L(m, \lambda)$ wrt m and set it to 0:

$$2\tilde{P}^T\tilde{P}m - 2\lambda m = 0$$

equivalent to solve the eigenvalue problem:

$$\tilde{P}^T \tilde{P} m = \lambda m$$

- **Eigenvector** m corresponding to the smallest eigenvalue λ of the matrix $\tilde{P}^T\tilde{P}$ minimizes the loss function $L(m,\lambda)$
- ightharpoonup or equivalently, m is the **singular vector** corresponding to the minimum singular value (not null) using the Singular Value Decomposition (SVD) of \tilde{P}

Given the vector m we have to:

- rearrange it to form the projection matrix M (4 × 4)
- it remains to determine the intrinsic and extrinsic matrices:

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ m_{41} & m_{42} & m_{43} \end{bmatrix} = \begin{bmatrix} f & 0 & c_x & 0 \\ 0 & f & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 • it holds that:

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} f & 0 & c_x \\ 0 & f & c_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = KR$$

 Given K: upper triangular matrix, R is an orthonormal matrix, it is possible to decouple K and R from their product using the QR factorization method from linear algebra

- It remains to determine the translation vector t of the extrinsic matrix
- Given:

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} = \begin{bmatrix} f & 0 & c_x & 0 \\ 0 & f & c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M_{int} \qquad M_{ext}$$

• it holds that:

$$\begin{bmatrix} m_{14} \\ m_{24} \\ m_{34} \end{bmatrix} = \begin{bmatrix} f & 0 & c_x \\ 0 & f & c_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} = K\mathbf{t} \qquad \mathbf{t} = K^{-1} \cdot \begin{bmatrix} m_{14} \\ m_{24} \\ m_{34} \end{bmatrix}$$

and inverting we have:

Camera Calibration: Whang algorithm (2000)

"A_flexible_new_technique_for_camera_calibration" in *IEEE Transaction on Pattern Analysis and Machine Intelligence*, vol. 22, no. 11, pp. 1330-1334, 2000.

- Planar pattern in at least 2 views (chessboard)

- Hypothesis:
 - The pattern dimensions are known
 - Trick: the scene reference system is joint to the chessboard (different extrinsic parameters for each photo, while shared intrinsic parameters)

To be used in presence of radial distortion

$$\tilde{\mathbf{p}}_{i} = \begin{bmatrix} \tilde{x}_{i} \\ \tilde{y}_{i} \\ \tilde{z}_{i} \end{bmatrix} = \mathbf{M}(\xi) \cdot \tilde{\mathbf{P}}_{i}$$
 \Rightarrow
$$\tilde{\mathbf{p}}_{i} = \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix} = f(\xi, \mathbf{P}_{i})$$
linear
non linear

Algorithm:

- 1. Solve the linear model
- \rightarrow first estimate of the linear parameters: ξ_0
- 2. Non linear optimization starting from ξ_0 to minimize the reprojection error E
- \rightarrow Final model: $\frac{2}{\xi}$

$$E = \sum_{i} \left\| \mathbf{p}_{i}^{MEAS} - \mathbf{p}_{i}^{EST} \right\|^{2} = \sum_{i} \left\| \mathbf{p}_{i}^{MEAS} - f\left(\xi, \mathbf{P}_{i}\right) \right\|^{2} \rightarrow \hat{\xi} \quad t.c. \quad \hat{\xi} = \operatorname{argmin}(E)$$

More specifically:

$$E = \sum_{i} \left\| \mathbf{p}_{i}^{MEAS} - \mathbf{p}_{i}^{EST} \right\|^{2} = \sum_{i} \left\| \mathbf{p}_{i}^{MEAS} - f(\xi, \mathbf{P}_{i}) \right\|^{2} \rightarrow \hat{\xi} \quad t.c. \quad \hat{\xi} = \operatorname{argmin}(E)$$

Given the initial model: $\xi_0 = \{\mathbf{R}, \mathbf{t}, f, x_C, y_C, k_D\}$ and N fiducial points P_i : $\xi = \xi_0$

$$p_{i}^{EST} = f(\xi, P_{i}):$$

$$P_{i} \longmapsto P_{cam,i} = \mathbf{R} \cdot P_{i} + \mathbf{t}, \quad i = 1..N$$

$$P_{cam,i} \longmapsto p_{im,i} = \begin{bmatrix} x_{C} \\ y_{C} \end{bmatrix} + \frac{f}{z_{cam,i}} \begin{bmatrix} x_{cam,i} \\ y_{cam,i} \end{bmatrix}, \quad i = 1..N$$

$$p_{im,i} \longmapsto p_{i}^{EST} = p_{im,i} \left(1 + k_{D1}r^{2} + k_{D2}r^{4}\right), \quad i = 1..N$$

$$error: \quad E(\xi) = \sum_{i=1}^{N} \left\| p_{i}^{MEAS} - p_{i}^{EST} \right\|^{2} \longrightarrow \text{new estimate} \quad \xi$$

Lab time

- syntLinearCalibration
- RealCalibration