TRANSFORMATION

RIGID BODY TRANSFORMATION (REVIEW)

Rotation matrix SO(3); det(R) = 1 (for right hand frames) **Composition** post-multiply (intermediate); pre-multiply (fix) Homogeneous transformation

$$\begin{bmatrix} I & d \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} R & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} R & d \\ \mathbf{0} & 1 \end{bmatrix}, H^{-1} = \begin{bmatrix} R^T & -R^T d \\ \mathbf{0} & 1 \end{bmatrix}$$

Rigid displacement transformation g of points induce action g^* on vectors [Length preserved; Cross product preserved] ROTATION (REVIEW)

Euler angles (proper and Tait-Bryan)

$$R = \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$$
(z-y-z)

$$\begin{cases} \phi = Atan2(r_{23}/r_{13}) \\ \theta = Atan2(\sqrt{1 - r_{33}^2}/r_{33}) \text{ or } \\ \psi = Atan2(r_{32}/-r_{31}) \end{cases} \begin{cases} \phi = Atan2(-r_{23}/-r_{13}) \\ \theta = Atan2(-\sqrt{1 - r_{23}^2}/r_{33}) \\ \psi = Atan2(-r_{32}/r_{31}) \end{cases}$$

$$R = \begin{bmatrix} k_x^2 v_\theta + c_\theta & k_x k_y v_\theta - k_z s_\theta \\ k_x k_y v_\theta + k_z s_\theta & k_y^2 v_\theta + c_\theta \\ k_x k_z v_\theta - k_y s_\theta & k_y k_z v_\theta + k_x s_\theta \end{bmatrix} \begin{pmatrix} k_x k_z v_\theta + k_y s_\theta \\ k_y k_z v_\theta - k_x s_\theta \\ k_z^2 v_\theta + c_\theta \end{bmatrix} \begin{pmatrix} v_\theta = 1 - \cos \theta \end{pmatrix}$$

$$\theta = \cos^{-1}(\frac{r_{11} + r_{22} + r_{33} - 1}{2}), \ k = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

Skew Symmetric Matrices $S(\vec{\omega})$

Rodrigues formulas $\exp(\hat{u}\theta) = I + \hat{u}\sin\theta + \hat{u}^2(1 - \cos\theta),$ where $\hat{u}^2 = uu^T - I$

(or $R = I \cos \theta + uu^{T} (1 - \cos \theta) + \hat{u} \sin \theta$)

- Exponential of 3x3 Skew Sym. Mat. are rotation matrices
- Exponential of 4x4 $\hat{\xi}$ are homogeneous transform H

Ouaternions

Multiplying two quaternions $X = (x_0, \vec{x}), Y = (y_0, \vec{y})$

$$XY = x_0 y_0 - \vec{x}^T \vec{y} + x_0 \vec{y} + y_0 \vec{x} + \vec{x} \times \vec{y}$$

 $XY = x_0 y_0 - \vec{x}^T \vec{y} + x_0 \vec{y} + y_0 \vec{x} + \vec{x} \times \vec{y}$ Vector $\vec{v} = (v_x, v_y, v_z)$ in quaternions: $Q_v = (0, v_x, v_y, v_z)$

Rotated $v: Q_{v'} = QQ_vQ^*$

VELOCITIES

 $||u|| = 1 \Leftrightarrow \exp(\hat{u}\theta)$ is a rotation matrix

 $\exp(\widehat{\omega}dt) = I + (\widehat{\omega}/\|\omega\|) \sin \omega dt + (\widehat{\omega}/\|\omega\|^2) (1 - \cos \omega dt)$

VELOCITY: ROTATION ONLY

$$\widehat{\omega} = S(\omega(t)) = R(t) R^{T}(t), \ \widehat{\omega}R(t) = R(t)$$

For fixed point p in frame 1: $\dot{p}_0 = \dot{R}_1^0 p_1$

$$R_1^{0T} \dot{p}_0 = R_1^{0T} \dot{R}_1^0 p_1 \qquad \hat{\omega}^b = R^T \dot{R}_1^T \dot{R}_1^0 p_1$$

velocity in body frame angular velocity in body frame

$$\dot{p}_0 = \dot{R_1^0} R_0^1 p_0 \qquad \widehat{\omega}^s = \dot{R} R^T$$

velocity in inertial frame angular velocity in inertial frame

Angular velocity and Euler angles

$$\omega^b = \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} c_\theta & 0 & -c_\phi s_\theta \\ 0 & 1 & s_\phi \\ s_\theta & 0 & c_\phi c_\theta \end{bmatrix} \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$

Not all angular velocities can be expressed in $\dot{\Phi}_e$

VELOCITY: GENERAL TRANSFORMATION

$$\dot{\mathbf{H}}(t) = \mathbf{S}_h(t)\mathbf{H}(t)$$

$$\mathbf{S}_{\pmb{h}}(t) = \begin{bmatrix} \dot{\mathbf{R}}(t)\mathbf{R}(t)^T & \dot{\boldsymbol{t}}(t) - \dot{\mathbf{R}}(t)\mathbf{R}(t)^T\boldsymbol{t}(t) \\ 0 \end{bmatrix} = \dot{\mathbf{H}}(t)\mathbf{H}(t)^{-1} = \hat{\boldsymbol{\xi}}$$

This is called twist

For any point p: $\dot{p}_0 = \dot{R}_1^0 p_1 + R_1^0 \dot{p}_1 + \dot{o}_1^0$

$H^{-1}\dot{p}_0 = H^{-1}\dot{H}p_1 \qquad \hat{\xi}^b = H^T\dot{H}$		
velocity in body frame	velocities in body frame	
$\dot{p}_0 = H\dot{H}^{-1}p_0$	$\hat{\xi}^s = \dot{H}H^T\left(s_h\right)$	
velocity in inertial frame	velocities in inertial frame	

	Rotation	Pose
Matrix	$\mathbf{R} \in \mathbb{R}^{3 \times 3} \mid \mathbf{R} \mathbf{R}^T = \mathbf{R}^T \mathbf{R} = \mathbf{I}, \det \mathbf{R} = 1$	$\boldsymbol{H} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t}_{3\times 1} \\ \boldsymbol{0}_{1\times 3} & 1 \end{bmatrix}$
3D element	p' = Rp	P' = HP
Velocities body frame	$\widehat{\boldsymbol{\omega}}^b = \boldsymbol{R}^T \dot{\boldsymbol{R}}$	$\hat{\xi}^b = H \dot{H}$
Velocities inertial frame	$\widehat{\boldsymbol{\omega}}^{s} = \dot{\boldsymbol{R}} \boldsymbol{R}^{T}$	$\hat{\mathbf{\xi}}^s = \dot{\mathbf{H}}\mathbf{H}^{-1}$

Moving velocities between different moving frames

$$\begin{bmatrix} \dot{p}_2^2 \\ \omega_2^2 \end{bmatrix} = \begin{bmatrix} R_1^2 & -R_1^2 \mathcal{S}(r_{12}) \\ 0 & R_1^2 \end{bmatrix} \begin{bmatrix} \dot{p}_1^1 \\ \omega_1^1 \end{bmatrix} \text{ This is often called adjoint}$$

NEWTON-WULER QUATIONS OF MOTION

Linear and rotational Newton Dynamics

 $F = m^A dv^c/dt = {}^A dL/dt, \ d^A H_C^B/dt = M_C^B, \ {}^A H_C^B = I_C \cdot {}^A \omega^B$

Principle axes

 $\mathbf{u}^{\mathbf{T}}\mathbf{I}\mathbf{u}$ is called principal moment of inertial

Euler's equations

$$M_{c} = d^{A}H_{C}^{B}/dt = d^{B}H_{C}^{B}/dt + {}^{A}\omega^{B} \times H_{C}^{B}$$
 where $d^{B}H_{C}^{B}/dt = I_{11}\dot{\omega}_{1}\mathbf{b}_{1} + I_{22}\dot{\omega}_{2}\mathbf{b}_{2} + I_{33}\dot{\omega}_{3}\mathbf{b}_{3}$

$$\begin{bmatrix} I_{11} & 0 & 0 \\ 0 & I_{22} & 0 \\ 0 & 0 & I_{33} \end{bmatrix} \begin{bmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \\ -\omega_1 & \omega_2 \end{bmatrix} + \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix} \begin{bmatrix} I_{11} & 0 & 0 \\ 0 & I_{22} & 0 \\ 0 & 0 & I_{33} \end{bmatrix} \begin{bmatrix} \boldsymbol{p} \\ \omega_1 \\ \boldsymbol{q} \\ \boldsymbol{q} \\ \boldsymbol{r} \\ \boldsymbol{\omega}_3 \end{bmatrix} = \begin{bmatrix} \boldsymbol{M}_{C,1} \\ \boldsymbol{M}_{C,2} \\ \boldsymbol{M}_{C,3} \end{bmatrix}$$

QUADROTOR DYNAMICS

$$\mathbf{F}_i = k_F \omega_i^2$$
, $\mathbf{F} = \sum_{i=1}^4 \mathbf{F}_i - mg\mathbf{a}_3$

$$M_{i} = k_{m}\omega_{i}^{2}, M = \sum_{i=1}^{4} r_{i} \times F_{i} + \sum_{i=1}^{4} M_{i}$$

in inertial frame:
$$m\ddot{\mathbf{r}} = \begin{bmatrix} 0\\0\\-mg \end{bmatrix} + R \begin{bmatrix} 0\\0\\F_1 + F_2 + F_3 + F_4 \end{bmatrix}$$

In body frame (where ${}^Aw^B = pb_1 + qb_2 + rb_3$)

$$I \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} 0 & L & 0 & -L \\ -L & 0 & L & 0 \\ \gamma & -\gamma & \gamma & -\gamma \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix} - \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times I \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

STATE-SPACE AND SYSTEM MODELING

$$\mathbf{x} = \begin{bmatrix} \mathbf{q} \\ \dot{\mathbf{q}} \end{bmatrix}, \text{ ODE } \dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})(\text{LTI } \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u})$$

$$\bullet \quad y^{(n)} = g(y, \dot{y}, \dots, y^{(n-1)}, \mathbf{u})$$

- Set $x_i = y^{(i-1)}(t)$, state vector $\mathbf{x} = [x_1, \dots, x_n]^T$
- Rewrite into a system of coupled first-order differential equations $(\dot{x}_i = x_{i+1})$
- Rewrite in matrix form $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u})$

Equilibria q_e configuration where $\dot{\mathbf{x}} = f(\mathbf{x}) \equiv 0$ **Linearization** $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{u}) \Rightarrow \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$ about $(\mathbf{x}_e, \mathbf{u}_e)$ A, B are the Jacobian of f over x and u respectively.

LINEAR CONTROL

STABILITY

Stability in the sense of Lyapunov/Marginally stable

For any $\epsilon > 0$, $\exists \delta(x_0, \epsilon) > 0$, s. t. if $||x(t_0, x_0) - x_e|| < \delta$, then $||x(t;t_0,x_0)-x_e|| < \epsilon$ for all $t > t_0$; It is *uniformly stable* if

 $\delta(x_0 \epsilon) = \delta(\epsilon)$. Elsewise it is not stable!

Asymptotic stability

Marginally stable + convergent $(t \to \infty, x(t; t_0, x_0) \to x_e)$

Convergence along doesn't guarantee AS (e.g. overshoot)

Exponential stability $||x(t; t_0, x_0) - x_e|| < ce^{\lambda(t-t_0)} ||x(t_0, x_0)||$

Linear-Time Invariant (LTI) system $\dot{x} = Ax$

- stable iff. real parts of all eigenvalues of A are negative
- Asymptotic stability = exponential stability
- marginally stable iif. real parts of all eigenvalues are nonpositive; and all the Jordan blocks corresponding to eigenvalues with 0 real parts are 1by1 (critical stable)
- unstable iif. exist eigenvalue of positive real part, or 0 real part but the corresponding Jordan block is larger than 1by1

MODEL-BASED CONTROL

$$e(t) = x^{des}(t) - x(t)_{-}$$

First order system control $\dot{x} = u$

$$\dot{e} + K_p e = 0$$
, $e(t) = \exp(-K_p(t - t_0))e(t_0)$

$$u(t) = \dot{x}^{des}(t) + K_p e(t)$$

Second order system $\ddot{x} = u$

Find u such that $\ddot{e} + K_d \dot{e} + K_p e = 0$

$$u(t) = \ddot{x}^{des}(t) + K_d \dot{e}(t) + K_p e(t)$$
 - **PD** control

Third order system

$$u(t) = \ddot{x}^{des}(t) + K_d \dot{e}(t) + K_p e(t) + K_I \int_0^T e(t) dt$$

- PID control (integral term make steady error goes to 0)

$$f(t) = m\left(\ddot{x}^{des}(t) + K_d \dot{e}(t) + K_p e(t)\right) + b\dot{x}(t) + kx(t)$$

model-based

$$\ddot{e}^{des} + K_d \dot{e} + K_p e = \left(\frac{m}{\hat{m}} - 1\right) \ddot{x} + \frac{b - \hat{b}}{\hat{m}} \dot{x} + \frac{k - \hat{k}}{\hat{m}} x$$

CONTROL OF QUADROTOR

PATH PLANNING

CONFIGURATION SPACE

 $\ddot{r}_3 = \ddot{z} = -g +$

Minkowski Sum

 C^{obs} is the Minkowski difference of two objects $O \oplus (-A)$

complexity (O – m vertices, A – n vertices, translation only) **MOTION PLANNING**

GRAPH SEARCH ALGORITHM

Discretization

What matters: connectivity; resolution; how to deal with partially blocked cells

Dijkstra Algorithm

A* Algorithm

- For each node n in the graph

 - o n.f = inf //sum of g and heuristic o n.g = inf //distance between n and start
- Create an empty list
- start.g= 0, start.f=H(start), add start to list
- While list not empty:
 - o current = node in list with smallest f remove current from list
 - o if current == goal, report success

Heuristic function should be: 1. Admissive 2. Consistent

Jump Point Search

Speed up A* by selectively expanding nodes

PROBABILISTIC PLANNING

Rapidly-exploring Random Trees (RRTs)

function build $RRT(q_0,n)$

- $V = \{q_0\}$
- $E = \{\}$
- For i = 1:n //maximum number of expansion

 $\circ q = \text{collision free random configuration}$

 \circ q_near = closest neighbor in V to q

 $\circ N$ quear = randomly sample actions to get a set of neighbors

oq new = collision free point in N quear that is closest to q

OAdd q new to V

OAdd (q,q new) to E

Return V.E

Probabilistic Roadmap (PRM)

function build $PRM(q_0,n)$

- $V = \{q_0\}$
- $E = \{\}$
- While |V|<n //maximum number of expansion
 - \circ q = collision free random configuration
 - o Add q to V
- For each q in V
- \circ N_q = up to k closest neighbors to q whose distance to q are smaller than center threshold
 - o For each q' in N q

If (q,q') is not in E and is collision free

Add (q,q_new) to E

• Return V,E

TRAJECTORY PLANNING

CALCULUS OF VARIATION & SMOOTH TRAJECTORY

- $x^*(t) = \operatorname{argmin}_{x(t)} \int_0^T L(x^{(n)}, \dots, \dot{x}, x, t) dt,$
- Let $x(t) = x^*(t) + \alpha \eta(t)$
- $\frac{d}{d\alpha}\Big|_{\alpha=0} \int_0^T L(\dot{x^*} + \alpha \dot{\eta}(t), x^*(t) + \alpha \eta(t), t) dt = 0$

$$\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) + \dots + (-1)^n \frac{d^n}{dt^n} \left(\frac{\partial L}{\partial x^{(n)}} \right) = 0$$

N	1	2	3	4	5	6
minimum	vel	acc	jerk	snap	crackle	pop

$$L = (x^{(n)})^2 \Longrightarrow x(t) = c_0 + c_1 t + \dots + c_{2n-1} t^{2n-1}$$

multiple variables - multiple Euler Lagrange equations

MULTI-SEGMENT SMOOTH SPLINE

m segments, nth-order system

2mn coefficients (DoF); 2mn constraints

ends (n-1) order constraint; waypoints 2(n-1) constraints

APPENDIX

CROSS PRODUCT PROPERTIES

Distributive over addition; compatible with scalar multiplication;

Anti-commutative: $a \times b = -b \times a$

Not associative, but:
$$a \times (b \times c) + b \times (c \times a) + c \times (a \times b) = 0$$

 $a \times b + c \times d = (a - c) \times (b - d) + a \times d + c \times b$
 $a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b)$
 $a \times (b \times c) = b(c \cdot a) - c(a \cdot b)$
 $(a \times b) \times (a \times c) = (a \cdot (b \times c))a$
 $(a \times b) \cdot (c \times d) = (a \cdot c)(b \cdot d) - (a \cdot d)(b \cdot c)$

CAMERA MODEL

CAMERA PROJECTION MODEL

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K[R \quad t] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}, \qquad \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = -R^T t + \lambda R^T K^{-1} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

UNDISTORTION (IMAGE SPACE)

$$u^{dist} = u(1 + k_1r^2 + k_2r^4 + \cdots), \quad r^2 = u_x^2 + v_y^2$$
PROJECTIVE GEOMETRY

PROJECTIVE EQUIVALENCE

Projective plane: set of all projective equivalence classes Injection (one-to-one), surjection(onto) and bijection

PROJECTIVE TRANSFORMATION

 $P^2 \rightarrow P^2$, $p' \sim Ap$, A is an invertible 3×3 matrix (det $A \neq 0$) also called collineation or homography

estimation DOF=8, need (at least) four pairs of points properties after projective transformation, any 3 collinear points remains collinear, any 3 concurrent lines remain concurrent; If $p' \sim Ap$, for line $l' \sim A^{-T}l$

e.g.
$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim H \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$
, where $\begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$ is equivalent to real 3D point $\begin{bmatrix} X_w \\ Y_w \\ Z_w \end{bmatrix}$

VANISHING POINT AND VANISHING LINE

 $H = (h_1 \quad h_2 \quad h_3)$, then $h_1 \sim p_{\infty,x}$, $h_2 \sim p_{\infty,y}$ horizon line: $h_1 \times h_2$, the horizon plane is parallel to ground, $h_1 \times h_2$ (as a vector) is normal to the ground Information provided by horizon: camera pitch and roll

POSE ESTIMATION

- Given corresponding points and K, estimate R, t
- Assume all points are in the world Z = 0 plane

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim K[r_1 \quad r_2 \quad t] \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}, \quad H \sim K[r_1 \quad r_2 \quad t]$$

- homography estimation H, $K^{-1}H = \begin{bmatrix} h'_1 & h'_2 & h'_3 \end{bmatrix}$
- $[h'_1 \quad h'_2 \quad h'_1 \times h'_2] = UDV^T, \ R = UD'V^T, \ where \ D' =$ $diag(1,1, det UV^T)$
- $t = h_3' / ||h_1'||$

PERSPECTIVE N-POINT

3D-2D CORRESPONDENCE

SPECIAL SOLUTION FOR P3P

$$\begin{cases} d_1^2 + d_2^2 - 2d_1d_2\cos\theta_{12} = d_{12}^2 \\ d_1^2 + d_3^2 - 2d_1d_3\cos\theta_{13} = d_{13}^2 \\ d_2^2 + d_3^2 - 2d_2d_3\cos\theta_{23} = d_{23}^2 \end{cases}$$

where
$$d_{ij} = d(X_i, X_j)$$
, $\cos \theta_{ij} = \frac{(K^{-1}x_i)^T (K^{-1}x_j)}{\|K^{-1}x_i\|\|K^{-1}x_j\|}$

Solve the equation above: four set of possible (d_1, d_2, d_3) Use another point to verify solution.

[Recover R, t from (d_1, d_2, d_3)]

DIRECT SOLUTION FOR

$$u^{x} = \frac{\rho_{11}X + \rho_{12}Y + \rho_{13}Z + \rho_{14}}{\rho_{31}X + \rho_{32}Y + \rho_{33}Z + \rho_{34}} \qquad u^{y} = \frac{\rho_{21}X + \rho_{22}Y + \rho_{23}Z + \rho_{24}}{\rho_{31}X + \rho_{32}Y + \rho_{33}Z + \rho_{34}}$$

Recover R, tfrom P

3D-3D REGISTRATION

 $A_i = RB_i + t$, i = 1,2,3,4, points are not coplanar 3 non-collinear points make an orthogonal basis: $(A_{21} \quad (A_{21} \times A_{31}) \times A_{21} \quad A_{21} \times A_{31})$ problem: $\min_{R,t} \sum_{i} ||A_i - RB_i - t||_F$, let $A_i = A_i - \bar{A}$, $B_i = B_i - \bar{B}$ problem transformed to $\min_{R} \sum_{i} ||A_{i} - RB_{i}||_{F}$, which is equivalent

to $\max_{D} tr(RBA^{T})$, $BA^{T} = UDV^{T}$, then

 $R = UD'V^T$, where $D' = diag(1,1, \det UV^T)$

3D VELOCITY

All in CAMERA FRAME define (x, y) = (X/Z, Y/Z)

$$p = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \frac{1}{Z} \begin{bmatrix} \dot{X} \\ \dot{Y} \end{bmatrix} - \frac{\dot{Z}}{Z} \begin{bmatrix} x \\ y \end{bmatrix}, \qquad \begin{bmatrix} \dot{X} \\ \dot{Y} \\ \dot{Z} \end{bmatrix} = -\Omega \times \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} - V$$

where V,Ω are the instantaneous linear and angular velocity of the camera (w.r.t the camera itself),

MOTION FLOW GIVEN CAMERA VELOCITIES

$$\dot{p} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \frac{1}{Z} \begin{bmatrix} xV_z - V_x \\ yV_z - V_y \end{bmatrix} + \begin{bmatrix} xy & -(1+x^2) & y \\ 1+y^2 & -xy & -x \end{bmatrix} \Omega$$

for pure rotation, there is no information about depth Zintersection of lines spanned by translation flow (the first term in the equation above) provide the focus of expansion (FOE) / epipole $FOE = (V_x/V_z, V_y/V_z)$

the flow vector length of points at the same radial distance from FOE inversely proportional to depth

CAMERA VELOCITIES GIVEN MOTION FLOW

Unknown V

 $V^{T}(p \times \dot{p}_{trans}) = 0$, image point, flow V are coplanar Unknown V, Ω

$$\begin{bmatrix} -/Z & 0 & x/Z & xy & -(1+x^2) & y \\ 0 & -1/Z & y/Z & 1+y^2 & -xy & -x \end{bmatrix} \begin{bmatrix} V \\ \Omega \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}$$

Feature match: brightness consistency $I_1(x - u, y - v) = I_2(x, y)$ Define optical flow $d = (u, v)^T$, position on image $x = (x, y)^T$, $E(d) = I_1(x-d) - I_2(x)$, find d that minimize $\iint E(d)^2 dx dy$

$$\begin{array}{lll} E(\vec{d}) & = & I_1(\vec{x} - \vec{d}) - I_2(\vec{x}) & \Delta I = I_2(x,y) - I_1(x,y) \\ & = & I_1(\vec{x}) - \nabla I_1(\vec{x})^T \vec{d} - I_2(\vec{x}) \\ & = & -\Delta I(\vec{x}) - \nabla I_1(\vec{x})^T \vec{d} & \nabla I_1 \text{ is the spatial gradient of } I_1 \end{array}$$

GROUPING

LINE FITTING

Single line fitting $x \cos \theta + y \sin \theta = d$

$$\mathop{\arg\min}_{\theta \in [0,2\pi), d \geq 0} \sum_{i=1}^N N(x_i \cos \theta + y_i \sin \theta - d)^2 \mathop{\arg\min}_{\theta \in [0,2\pi)} \sum_{i=1}^N ((x_i - \bar{x}) \cos \theta + (y_i - \bar{y}) \sin \theta)^2$$

$$\underset{\theta \in [0,2\pi)}{\arg\min} \left(\cos \theta \quad \sin \theta\right) \underbrace{\sum_{i=1}^{N} \begin{pmatrix} (x_i - \bar{x})^2 & (x_i - \bar{x})(y_i - \bar{y}) \\ (x_i - \bar{x})(y_i - \bar{y}) & (y_i - \bar{y})^2 \end{pmatrix}}_{C} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

Solution is the eigenvector to the minimal eigenvalue of C.

Multiple line fitting

Each point in (x, y) space correspond to a curve in (d, θ) space Line through two points = intersection of two curves

Hough transform

$$V[\theta_j, d_j] = \sum_i \delta'(d_j - x_i \cos \theta_j + y_i \sin \theta_j)$$

circle & ellipsoid detection

RANSAC

Decide number of iterations N: s - number of feature pairs in a sample; e – probability that a point is an outlier; N – number of iterations; p – desired probability of getting good H

$$1 - (1 - (1 - e)^s)^N = p, \ N = \log(1 - p) / \log(1 - (1 - e)^s)$$

RANSAC VS HOUGH

- RANSAC can deal only with one model (inliers vs outliers) while Hough detects multiple models
- RANSAC is more efficient when fraction of outliers is low
- RANSAC requires the solution of a minimal set problem,
 - For example, solve of a system of 5 polynomial equations for 5 unknowns
- Hough needs a bounded parameter space
- · Hough is intractable for large number of unknowns

TWO VIEW GEOMETRY

P, Q: 3D coordinates

p,q: inhomogeneous representation $p = P/Z_v$, $q = Q/Z_a$ R,t: transformation from frame P to frame Q, Q = RP + T ESSENTIAL MATRIX

$$q^T E p = 0$$
, $p^T E^T q = 0$, $E = \hat{T}R$

E is a singular matrix det E=0. It has two equal non-zero eigenvalues $||T||^2$, actually: *E* is essential iff. $\sigma_1=\sigma_2>0=\sigma_3$

If
$$E = UDV^T = U \begin{pmatrix} \sigma & 0 & 0 \\ 0 & \sigma & 0 \\ 0 & 0 & 0 \end{pmatrix} V^T$$
, there are four groups of T, R

$$\begin{array}{lll} \widehat{(T_1,R_1)} &=& (UR_{z,+\pi/2}\Sigma U^T,UR_{z,+\pi/2}^TV^T) & & \\ \widehat{(T_2,R_2)} &=& (UR_{z,-\pi/2}\Sigma U^T,UR_{z,-\pi/2}^TV^T) & \\ \widehat{(T_1,R_2)} &=& (UR_{z,+\pi/2}\Sigma U^T,UR_{z,-\pi/2}^TV^T) & \\ \widehat{(T_2,R_1)} &=& (UR_{z,-\pi/2}\Sigma U^T,UR_{z,+\pi/2}^TV^T) & \\ \end{array} \qquad \begin{array}{ll} R_{z,\frac{\pi}{2}} &= \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, R_{z,-\frac{\pi}{2}} &= R_{z,\frac{\pi}{2}}^T \\ \widehat{(T_2,R_1)} &=& (UR_{z,-\pi/2}\Sigma U^T,UR_{z,+\pi/2}^TV^T) & \\ \end{array}$$

(if
$$\det R < 0$$
, $R = -R$)

estimation - 8 points algorithm

$$E = (e_1 \quad e_2 \quad e_3)$$

$$\begin{pmatrix} p_{1,x}q_1^T & p_{1,y}q_1^T & p_{1,z}q_1^T \\ \vdots & \vdots & \vdots \\ p_{n,x}q_n^T & p_{n,y}q_n^T & p_{n,z}q_n^T \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix} = 0$$
Solution - $null(A)$
if $\sigma_8(A) = 0$, give up!

Assume $(e_1' \quad e_2' \quad e_3') = Udiag(\sigma_1, \sigma_2, \sigma_3)V^T$, then $(e_1 \quad e_2 \quad e_3) = Udiag(\frac{\sigma_1 + \sigma_2}{2}, \frac{\sigma_1 + \sigma_2}{2}, 0)V^T$

recover R, t from E

check all configurations to make sure points are in front of camera EPIPOLES

$$e_p \sim -R^T t$$
, $e_q \sim T$
 $E e_p = 0$, $E^T e_q = 0$

EPIPOLAR LINES

$$l_q = F^T q - on image p$$

 $l_p = Fp - on image q$

TRIANGULATION

Given R, T, unknown depth (λ, μ)

$$\underbrace{(q_i - Rp_i)}_{3 \times 2} \underbrace{\begin{pmatrix} \mu_i \\ \lambda_i \end{pmatrix}}_{2 \times 1} = \underbrace{T}_{3 \times 1}$$

$$\begin{aligned} AQ_x + BQ_y + CQ_z &= N^TQ = 0 \\ \lambda P &= RQ + T = RQ + TN^TQ = (R + TN^T)Q \end{aligned}$$

VISUAL ODOMETRY CAMERA TRAJECTORY FROM MONOCULAR VIDEO

Given an estimate R_k, T_k of the current camera pose as well as the 3D points $\mathbf{X}_p = (X_p, Y_p, Z_p)$ and correspondences to calibrated point projections in frame (k+1) (x_p^{k+1}, y_p^{k+1})

Update to the pose R_{k+1}, T_{k+1}

DETERMINISTIC APPROACH

- find correspondences from view k to view k+1 (RANSAC)
- solve for epipolar geometry between the two frames
- $\bullet \qquad R_{k+1} = R_k R_{k+1}^k$
- $\bullet T_{k+1} = T_k^{k+1} + R_k^{k+1} T_{k+1}^k$
- use the estimated 3D points and their 2D projection on frame k+1 to update R_{k+1} , T_{k+1}
- update estimates of 3D points
- run bundle adjustment over past K frames to re-adjust points and poses

FILTERING APPROACH

$$\begin{array}{rcl} x_p^k & = & \frac{R_{11}^k X_p + R_{12}^k Y_p + R_{13}^k Z_p + T_x^k}{R_{31}^k X_p + R_{32}^k Y_p + R_{33}^k Z_p + T_z^k} \\ \\ y_p^k & = & \frac{R_{21}^k X_p + R_{22}^k Y_p + R_{23}^k Z_p + T_y^k}{R_{31}^k X_p + R_{32}^k Y_p + R_{33}^k Z_p + T_z^k} \end{array}$$

• update estimate of a state vector X_k the same point is fixed in global frame

$$\begin{array}{rclcrcl} R^{k+1} & = & e^{\hat{\omega}^k} R^k \ T^{k+1} & = & T^k + R^k v^k \\ \omega^{k+1} & = & \omega^k & v^{k+1} & = & v^k \end{array}$$

TWO VIEW METROLOGY

Given two images, necessary point correspondences known R, t between two cameras and world frame are known

$$p \sim H^{-T} l \times l'$$

SUMMARY

Problem	Measured	Unknowns
3D-3D Registration	Two sets of 3D points $\{A_i\}$ and	s, R and T that minimize
	$\{B_i\}$	$\min_{R,T} \sum_{i=1}^{N} A_i - RB_i + T ^2$
PnP	2D-3D correspondences $\{p_j\}$	T and R between the camera
	and $\{P_j\}$	and the world coordinate system
SFM	2D-2D correspondences between	T and R between the two views
	two views $\{p_j\}$ and $\{q_j\}$	
Triangulation	T, R and 2D point correspon-	The depth of the point in each
	dences p_i , q_i	camera frame μ_i , λ_i .

APPENDIX

VELOCITY: GENERAL TRANSFORMATION

Rodrigues formulas $R = I + \hat{u} \sin \theta + (1 - \cos \theta)\hat{u}^2 = I \cos \theta + uu^T (1 - \cos \theta) + \hat{u} \sin \theta$, where $\hat{u}^2 = uu^T - I$

$$\widehat{\omega} = S(\omega(t)) = R(t) R^{T}(t), \ \widehat{\omega}R(t) = R(t)$$

$$\dot{\mathbf{H}}(t) = \mathbf{S}_{h}(t)\mathbf{H}(t)$$

$$\mathbf{S}_{h}(t) = \begin{bmatrix} \dot{\mathbf{R}}(t)\mathbf{R}(t)^{T} & \dot{\mathbf{t}}(t) - \dot{\mathbf{R}}(t)\mathbf{R}(t)^{T}\mathbf{t}(t) \\ 0 \end{bmatrix} = \dot{\mathbf{H}}(t)\mathbf{H}(t)^{-1} = \hat{\mathbf{\xi}}$$

This is called twist

$H^{-1}\dot{p}_0 = H^{-1}\dot{H}p_1 \qquad \hat{\xi}^b = H^T\dot{H}$		
velocity in body frame velocities in body frame		
$\dot{p}_0 = H\dot{H}^{-1}p_0$	$\hat{\xi}^s = \dot{H}H^T\left(s_h\right)$	
velocity in inertial frame velocities in inertial frame		

For any point p: $\dot{p}_0 = \dot{R}_1^0 p_1 + R_1^0 \dot{p}_1 + \dot{o}_1^0$

	Rotation	Pose
Matrix	$\mathbf{R} \in \mathbb{R}^{3\times3} \mid \mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}, \det \mathbf{R} = 1$	$H = \begin{bmatrix} R & t_{3\times 1} \\ 0_{1\times 3} & 1 \end{bmatrix}$
3D element	p' = Rp	P' = HP
Velocities body frame	$\widehat{\boldsymbol{\omega}}^b = \boldsymbol{R}^T \dot{\boldsymbol{R}}$	$\hat{\xi}^b = H \dot{H}$
Velocities inertial frame	$\widehat{\boldsymbol{\omega}}^{s} = \dot{\boldsymbol{R}} \boldsymbol{R}^{T}$	$\hat{\xi}^s = \dot{\mathbf{H}} \mathbf{H}^{-1}$