Análisis de métodos de interpolación

Método de Lagrange Baricéntrico y Método de Diferencias Divididas

Sergio Andrés Mejía Tovar sergio.mejia@javeriana.edu.co Julián David Parada Galvis julian_parada@javeriana.edu.co

22 de marzo de 2019

Objetivo: Realizar una comparación entre la eficacia, efectividad, convergencia y precisión del resultado dado entre dos métodos de interpolación, utilizando diversos ejemplos y un manejo de manipulación del subconjunto de datos a utilizar.

Este documento recopila diferentes puntos de interpolación, los cuales han pasado por dos algoritmos de interpolación: Método baricéntro de Lagrange y Método de Diferencias Divididas de Newton.

El procedimiento general en cada punto consistirá en un set de puntos X_n y un valor X_a que desea ser hallado por medio de una interpolación. Así, se generarán pruebas con un subconjunto de los puntos tal que $X_a \in [X_i, X_{i+k}]$. La primera prueba consistirá en hallarlo con el intervalo de puntos $[X_i, X_{i+k}]$. La segunda prueba consistirá en generar la interpolación con el intervalo de puntos $[X_{i-1}, X_{i+k}]$. La tercera prueba será con el intervalo $[X_i, X_{i+k+1}]$. La cuarta prueba será con el intervalo $[X_i, X_{i+k}] + [X_s]$ donde $i \le s \le k$. Finalmente, la última prueba será con todos los puntos $[X_0, X_n]$

2. Hallar el coeficiente virial B en una temperatura T_0 dados los siguientes puntos:

Temperaturas	100	200	300	400	500	600
В	-160	-35	-4.2	9.0	16.9	21.3

Parejas ordenadas de puntos para el punto 2

Los valores del coeficiente B en T=450 usando los diferentes intervalos de puntos con i=1 y i+k=4 son los siguientes:

Subconjunto	L Baricéntrico	Dif. Divididas	Resultado Real	Error L. Baricéntrico	Error Dif. Divididas
Estándar	16,6875	16,5	13,88437	20,2%	18,8 %
Valor antes	-7,695312	-3,375	13,88437	155,4%	124,3%
Valor después	14,48437	16,5	13,88437	4.3%	18,8 %
Valor en medio	12,84375	9,0	13,88437	7.5%	35,2%
Todos los valores	13,88437	-3,375	13,88437	0.0%	124,3%

Tabla 1: Tabla de resultados del punto 2

Al observar la anterior tabla, se puede notar que en ciertos subconjuntos de datos, los valores difieren en gran medida al valor real (tomado en este caso como la interpolación baricéntrica usando todos los puntos), alcanzando errores mayores al $100\,\%$. Sin embargo, en la mayoría de casos se encontraron errores leves, aunque no lo suficientemente bajos como para ser muy confiables.

A su vez, se calculó el número de multiplicaciones realizadas en cada método, ilustrado en la siguiente tabla:

Subconjunto	L. Baricéntrico	Dif. Divididas
Estándar	16	3
Valor antes	25	6
Valor después	25	6
Valor en medio	25	6
Todos los valores	49	15

Tabla 2: Tabla número de multiplicaciones del punto 2

3. Sea $f(x) = e^x$ en el intervalo [0, 1]. Se halló la interpolación por medio de una partición en el intervalo dado en 8 puntos equidistantes y con el fin de probar las diferencias entre los dos métodos se buscó interpolar el punto x = 0.5.

Subconjunto	L. Baricéntrico	Dif. Divididas	Resultado Real	Error L. Baricéntrico	Error Dif. Divididas
Estándar	1,648737	1,64874	1,648721271	0,00095403%	0,00113599%
Valor antes	1,648722	1,648723	1,648721271	$0,\!00004423\%$	0,00010489%
Valor después	1,64872	1,648723	1,648721271	$0,\!00007707\%$	0,00010489%
Valor en medio	1,648722	1,648725	1,648721271	$0,\!00004423\%$	0,00022619%
Todos los valores	1,648721	1,648722	1,648721271	$0,\!00001642\%$	0,00004423%

Tabla 3: Tabla del punto 3

Contrario al anterior punto, en este ejercicio todos los subconjuntos tomados tienen un error menor a 10^{-3} , lo cual muestra una amplia confiabilidad. Esto es debido a que los puntos tomados para la interpolación diferían muy poco de la ecuación original, teniendo solo leves errores de truncamiento y de redondeo en las operaciones.

A su vez, se calcularon el número de operaciones para cada caso:

Subconjunto	L. Baricéntrico	Dif. Divididas
Estándar	36	10
Valor antes	49	15
Valor después	49	15
Valor en medio	49	15
Todos los valores	81	28

Tabla 4: Tabla número de multiplicaciones del punto 3

4. Dada una tabla de estadísticas de un curso con la cantidad de estudiantes en cada rango de notas, hallar por medio de interpolación el número de estudiantes que obtuvieron una nota menor o igual a 55.

Rango de Notas	30-40	40-50	50-60	60-70	70-80
N. de estudiantes	35	48	70	40	22

Valores del punto 4

Para realizar este ejercicio, se realizó una función acumulativa basada en las frecuencias por el grupo, realizándolo de esta manera:

P(X=x)[a,b]	30-40	40-50	50-60	60-70	70-80
$X \leq k$	k=40	k=50	k=60	k=70	k=80
$F(X \le k)$	35	83	153	193	215

Construcción de la función acumulativa

Así, se tienen los puntos $(X, F(X \le k))$ para poder realizar el mismo tratamiento dado a los puntos anteriores.

Subconjunto	L. Baricéntrico	Dif. Divididas	Resultado Real	Error L. Baricéntrico	Error Dif. Divididas
Estándar	110,50	110,50	120	7,9167%	7,9167%
Valor antes	108,75	108,75	120	$9,\!3750\%$	$9,\!3750\%$
Valor después	118,75	118,75	120	1,0417%	1,0417%
Valor en medio	121,75	121,75	120	$1,\!4583\%$	1,4583%
Todos los valores	120,00	120,00	120	0,0000%	0,0000 %

Tabla 5: Tabla del punto 4

En el caso de este punto se tomó el valor real al de la interpolación baricéntrica de Lagrange, hallando que todos los valores son menores al 10%, mostrando una confiabilidad de los datos, los cuales se mantienen todos en el intervalo [108, 122].

A su vez, se realizó la tabla con las multiplicaciones de cada método para cada subconjunto.

Subconjunto	L. Baricéntrico	Dif. Divididas
Estándar	9	1
Valor antes	16	3
Valor después	16	3
Valor en medio	16	3
Todos los valores	36	10

Tabla 6: Tabla número de multiplicaciones del punto 4

6. Utilizando el polinomio de Taylor para la función $f(x) = e^x$, interpolar el valor $x_0 = 0$. A su vez, se usaron los métodos de Lagrange Baricéntrico y de Diferencias Divididas conforme al objetivo de este documento. Para el Polinomio de Taylor se utilizó el polinomio de Taylor grado de 2: $T_2(x) = 1 + x + \frac{x^2}{2}$

Subconjunto	L. Baricéntrico	Dif. Divididas	Taylor	Resultado Real	E. Baricéntrico	E. Dif. Divididas
Estándar	0,04759	0,04760	1,00	1,00	$95,\!240\%$	95,2400 %
Valor antes	0,55927	0,55928	1,00	1,00	$44,\!072\%$	44,0720%
Valor después	2,40072	2,40072	1,00	1,00	$140,\!072\%$	140,0720 %
Valor en medio	0,80337	0,80338	1,00	1,00	$19,\!662\%$	19,6620%
T. los valores	1,06407	1,06406	1,00	1,00	6,407%	6,4060 %

Tabla 7: Tabla del punto 6.1

Después de realizar el tratamiento de los datos, se pudo notar que al ser el polinomio de Taylor centrado en 0, interpolar con este polinomio para $x_0=0$ dará el mismo valor según la forma de construcción del polinomio. Sin embargo, es interesante observar que Lagrange Baricéntrico y Diferencias Divididas presentar un alto grado de error en la mayoría de sus interpolaciones, debido a los punto tomados para este cálculo.

Luego de esto, se halló el número de multiplicaciones para cada método por subconjunto.

Subconjunto	L. Baricéntrico	Dif. Divididas	Taylor
Estándar	16	3	3
Valor antes	25	6	3
Valor después	25	6	3
Valor en medio	25	6	3
Todos los valores	49	15	3

Tabla 8: Tabla número de multiplicaciones del punto 6.1

En el mismo punto, se pedía un tratamiento similar al realizado para el punto 3. Sin embargo, la función a interpolar en este caso corresponde a $f(x) = \frac{1}{x}$. En este caso, interpolar $x_0 = 0$ no es posible utilizando un polinomio de Taylor centrado en cero debido a la indeterminación de la función en el valor de x_0 . Se tomó una partición del espacio en el intervalo $\left[-\frac{1}{2}, \frac{1}{2}\right]$ en intervalos no regulares correspondientes a $\left(-\frac{1}{2}, -\frac{1}{4}, -\frac{1}{8}, -\frac{1}{16}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}\right)$.

Subconjunto	L. Baricéntrico	Dif. Divididas
Estándar	16,00	16,00
Valor antes	18,00	18,00
Valor después	18,00	18,00
Valor en medio	-7.285839e-16	0,00
Todos los valores	16,00	16,00

Tabla 9: Tabla del punto 6.2

En este caso, no se puede calcular el error debido a la indeterminación de la función en el punto a interpolar. Sin embargo, puesto que $\lim_{x\to 0^+} f(x) = \infty$, se sabe que cuanto mayor (o menor, ya que $\lim_{x\to 0^-} f(x) = -\infty$) es el valor interpolado, más exacto será a la función. Basados en esto, se puede observar por los resultados que este tipo de funciones no son fácilmente interpolables con un polinomio, debido a su naturaleza de crecimiento rápido y asintótico.

Así, se calcularon de todos modos las multiplicaciones necesarias en cada método:

Subconjunto	L. Baricéntrico	Dif. Divididas
Estándar	36	10
Valor antes	49	15
Valor después	49	15
Valor en medio	49	15
Todos los valores	64	21

Tabla 10: Tabla número de multiplicaciones del punto 6.2

7. Se desea aproximar la funcion f(x) = tan(x) en el intervalo $[-\pi/2, \pi/2]$, se definen 10 puntos diferentes dentro de este intervalo, se evalúa cada uno de los puntos en la función, luego de obtener estos valores se procede a encontrar el polinomio interpolador.

Polinomio interpolador:

$$F(x) = -0.005859375 + 1.110497*10^{13}x + 0.125x^2 - 4.270828*10^{14}x^3 + x^4 + 2.12774*10^{15}x^5 - 2.993325*10^{15}x^7 - 0.625x^8 + 1.169822*10^{15}x^9 \quad (1)^{15}x^7 - 0.0088820*10^{15}x^7 - 0.008820*10^{15}x^7 -$$

Se vuelven a evaluar los 10 valores del intervalo y se procede a comparar los diferentes resultados:

Punto	Función	Polinomio Interpolador	Error
-1,570796	-1,633124E+22	$-1,633124\mathrm{E}{+22}$	1,469576E-07 %
-1,221730	-2,747477	-3,611396	$31{,}444060\%$
0,872665	-1,191754	0,418330	$64,\!897960\%$
0,523599	0,577350	0,456850	20,871310%
0,174533	$0,\!176327$	0,179711	1,918907%
0,174533	$0,\!176327$	$0,\!177537$	$0,\!685981\%$
0,523599	0,577350	0,627163	$8,\!627881\%$
0,872665	1,191754	1,596298	33,945330%
1,221730	2,747477	3,745235	$36,\!315410\%$
1,570796	$1{,}633124\mathrm{E}{+22}$	$1{,}633124\mathrm{E}{+22}$	2,449294E-08%

Tabla 11: Tabla de resultados del punto 7

Gráficamente los resultados (azul-punto en la función y rojos-puntos en el polinomio):

Gráfico de tan(x). La línea continua corresponde a la función real de tan(x) junto con los puntos azules. La línea punteada representa la interpolación los puntos dados. Los dos puntos (el primero y el último) fueron ignorados para poder observar el error en los puntos interiores. Esto a su vez causa que el polinomio interpolado parezca múltiples líneas asintóticas, pero en realidad no lo es.

Conclusión: Se logro realizar un análisis la eficacia, efectividad, convergencia y precisión de algunos métodos interpoladores dando cuenta la importancia sobre los puntos seleccionados, pues al momento de interpolar por algún método el resultado podría verse muy afectado por ello, y también se logro apreciar que en algunas iteraciones del método de Newton de Diferencias Divididas tendía a ser errático. Por ultimo se observo que con un mayor numero de puntos en la interpolación por el método de Lagrange Baricéntrico esta tendía a ser mas precisa.