Discriminative Embeddings of Latent Variable Models for Structured Data

Hanjun Dai, Bo Dai, Le Song

presentation by Breandan Considine McGill University

breandan.considine@mail.mcgill.ca

March 8, 2020

What is a kernel?

A feature map transforms the input space to a feature space:

Input space Feature space
$$\varphi: \widehat{\mathbb{R}^n} \to \widehat{\mathbb{R}^m}$$
 (1)

Kernel functions generalize the notion of inner products to feature maps:

$$k(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x})^{\mathsf{T}} \varphi(\mathbf{y})$$
 (2)

Gives us $\varphi(x)^{\mathsf{T}}\varphi(y)$ without directly computing $\varphi(x)$ or $\varphi(y)$

What is a kernel?

Consider the univariate polynomial regression algorithm:

$$\hat{f}(\mathbf{x};\boldsymbol{\beta}) = \beta \varphi(\mathbf{x}) = \beta_0 + \beta_1 \mathbf{x} + \beta_2 \mathbf{x}^2 + \dots + \beta_m \mathbf{x}^m = \sum_{j=0}^m \beta_j \mathbf{x}^j$$
 (3)

Where $\varphi(\mathbf{x}) = [1, x_1, x_2^2, x_3^3, \dots, x_m^m]$. We seek β minimizing the error:

$$\beta^* = \underset{\beta}{\operatorname{argmin}} ||\mathbf{Y} - \hat{\mathbf{f}}(\mathbf{X}; \beta)||^2$$
 (4)

We can solve for β^* using the normal equation or gradient descent:

$$\boldsymbol{\beta}^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y} \tag{5}$$

$$\beta' \leftarrow \beta - \alpha \nabla_{\beta} ||\mathbf{Y} - \hat{\mathbf{f}}(\mathbf{X}; \beta)||^2$$
 (6)

What happens if we have a multivariate polynomial?

$$z(x,y) = 1 + \beta_x x + \beta_y y + \beta_{xy} xy + \beta_{x^2} x^2 + \beta_{y^2} y^2 + \beta_{xy^2} xy^2 + \dots$$
 (7)

What is a kernel?

Consider the polynomial kernel $k(\mathbf{x}, \mathbf{y}) = (1 + \mathbf{x}^T \mathbf{y})^2$ with $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$.

$$k(\mathbf{x}, \mathbf{y}) = (1 + \mathbf{x}^T \mathbf{y})^2 = (1 + x_1 y_1 + x_2 y_2)^2$$
(8)

$$=1+x_1^2y_1^2+x_2^2y_2^2+2x_1y_1+2x_2y_2+2x_1x_2y_1y_2$$
 (9)

This gives us the same result as computing the 6 dimensional feature map:

$$k(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x})^{\mathsf{T}} \varphi(\mathbf{y}) \tag{10}$$

$$= [1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2]^{\mathsf{T}} \begin{bmatrix} 1\\ y_1^2\\ y_2^2\\ \sqrt{2}y_1\\ \sqrt{2}y_2\\ \sqrt{2}y_1y_2 \end{bmatrix}$$
(11)

But does not require computing $\varphi(x)$ or $\varphi(y)$.

Examples of common kernels

Popular kernels

Polynomial	$k(\mathbf{x},\mathbf{y}) := (\mathbf{x}^T\mathbf{y} + r)^n$	$\mathbf{x}, \mathbf{y} \in \mathbb{R}^d, n \in \mathbb{N}, r \geq 0$
Laplacian	$k(\mathbf{x}, \mathbf{y}) := exp(-\alpha \mathbf{x} - \mathbf{y})$	$\mathbf{x},\mathbf{y}\in\mathbb{R}^d,lpha>0$
Gaussian RBF	$k(\mathbf{x}, \mathbf{y}) := \exp\left(-\frac{\ \mathbf{x} - \mathbf{y}\ ^2}{2\sigma^2}\right)$	$\mathbf{x},\mathbf{y}\in\mathbb{R}^d,\sigma>0$

Popular Graph Kernels

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/genWLpaper.pdf

What is an inner product space?

Let X be a vector space over the reals.

Definition

A function $f: X \to \mathbb{R}$ is **linear** iff $f(\alpha x) = \alpha f(x)$ and f(x+z) = f(x) + f(z) for all $\alpha \in \mathbb{R}, x, z \in X$.

Definition

X is an **inner product space** if there exists a symmetric bilinear map $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ if $\forall \mathbf{x} \in X, \langle \mathbf{x}, \mathbf{x} \rangle > 0$ (i.e. is positive definite).

Scalar Product

Vector Dot Product

Random Variable

$$\langle x, y \rangle := xy$$
 $\left\langle \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\rangle := x^{\mathsf{T}}y$ $\langle X, Y \rangle := \mathsf{E}(XY)$

What is a Hilbert space?

Let $d: X \times X \to \mathbb{R}^{\geq 0}$ be a metric on the space X.

Definition: Cauchy sequence

A sequence $\{x_n\}$ is called a **Cauchy sequence** if

 $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{ such that } \forall n, m \geq N, d(x_n, x_m) \leq \varepsilon.$

Definition: Completeness

X is called **complete** if every Cauchy sequence converges to a point in X.

Definition: Separability

X is called **separable** if there exists a sequence $\{x_n\}_{n=1}^{\infty} \in X$ s.t. every nonempty open subset of X contains at least one element of the sequence.

Definition: Hilbert space

A Hilbert space ${\cal H}$ is an inner product space that is complete and separable.

Properties of Hilbert Spaces

Hilbert space inner products are kernels

The inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is a positive definite kernel:

$$\sum_{i,j=1}^{n} c_{i} c_{j}(x_{i}, x_{j})_{\mathcal{H}} = \left(\sum_{i=1}^{n} c_{i} x_{i}, \sum_{j=1}^{n} c_{j} x_{j}\right)_{\mathcal{H}} = \left\|\sum_{i=1}^{n} c_{i} x_{i}\right\|_{\mathcal{H}}^{2} \geq 0$$

Reproducing Kernel Hilbert Space (RKHS)

Any continuous, symmetric, positive definite kernel $k: X \times X \to \mathbb{R}$ has a corresponding Hilbert space, which induces a feature map $\varphi: X \to \mathcal{H}$ satisfying $k(x,y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}}$.

http://jmlr.csail.mit.edu/papers/volume11/vishwanathan10a/vishwanathan10a.pdf

Gaussian RBF kernel

Belief propagation

Results

Resources

- Properties of kernels
- Survey on Graph Kernels
- Notes Metric Spaces