ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Вопрос по выбору:

Закон Мозли.

Выполнили студенты:

Сериков Василий Романович

Группа: Б03-102

Сериков Алексей Романович

Группа: Б03-102

Аннотация

В работе измеряются спектры характеристического излучения атомов некоторых химических элементов. Определяются рентгеновские термы измеренных спектральных пиков излучения. Проверяется закон Мозли.

Теоретические сведения:

Энергетический спектр состояний электрона в атоме водорода имеет вид (СГС):

$$E_n = -\frac{me^4}{2\hbar^2} \frac{1}{n^2} = -R \frac{1}{n^2} \tag{1}$$

где R – постоянная Ридберга, выраженная в энергетических единицах, m – масса электрона, е – элементарный заряд, \hbar – постоянная Планка, n – положительное целое число, означающее номер стационарного уровня энергии

Заданное состояние, относящееся к одному энергетическому уровню, помимо номера n определяется значениями момента импульса (орбитальный момент) и его проекции на выбранное направление.

Номер уровня п называют главным квантовым числом, а целые числа, определяющие в единицах \hbar величину орбитального момента и его проекцию на выделенное направление, обозначают l и m соответственно. Полный набор из 4 квантовых чисел: n, l, m_l, m_s , где m_l – определяет проекцию орбитального момента на некоторое выделенное направление (ось z), а m_s – проекцию спинового момента на ту же ось z.

Такое описание сложно обобщить на случай многоэлектронных атомов, поэтому применяется другой, более подходящий, набор квантовых чисел. Вместо отдельного рассмотрения орбитального и спинового моментов вводится полный момент импульса j, а также проекция полного момента m_j на выделенную ось. Полный момент импульса – это векторная сумма орбитального и спинового моментов, поэтому его величина может принимать значения в диапазоне от |l-s| до l+s.

Строгий учёт спина у электрона возможен при решении задачи об атоме водорода с помощью релятивистского уравнения Дирака. Наличие спина у электрона приводит к возникновению спин-орбитального взаимодействия, которое, тем не менее, можно учитывать, оставаясь в рамках нерелятивистской теории. Важным результатом такого взаимодействия является то, что электрон в состоянии, соответствующем заданному уровню энергии, также обладает определённым полным моментом импульса j. То есть энергия состояния оказывается зависящей не только от главного квантового числа n, но и от величины полного момента j, что приводит к тонкому расщеплению уровней энергии, определяемых формулой (1).

Атомы химических элементов, отличных от водорода, включают в себя более чем один электрон, и их описание возможно только приближёнными методами, поскольку электроны взаимодействуют не только с ядром атома, но и друг с другом. При этом, помимо электрического взаимодействия как такового, следует учитывать важнейший фактор квантовой статистики электронов – запрет Паули, который тесно связан с требованием антисимметричности волновой функции системы фермионов (частиц с полуцелым спином) по отношению к парным перестановкам этих частиц. Так, если описывать некоторый многоэлектронный атом, пренебрегая взаимодействием между электронами и не учитывая спин электронов, то для каждого электрона в отдельности получится система энергетических уровней, описываемых формулой, аналогичной формуле (1), но с учётом заряда ядра Z:

$$E_n = -\frac{mZ^2e^4}{2\hbar^2} \frac{1}{n^2} = -R\frac{Z^2}{n^2} \tag{2}$$

Такой спектр энергетических уровней называют водородоподобным. Полученный таким способом результат для многоэлектронного атома не даст количественного согласия с экспериментальными данными, поскольку межэлектронное взаимодействие вносит существенный вклад.

Для уточнения этой модели необходимо учесть межэлектронное, спин-орбитальное. Межэлектронное электростатическое взаимодействие оказывает наиболее существенное влияние на величину энергетических уровней. Приближённо учёт электростатического межэлектронного взаимодействия можно провести следующим образом. Для заданного электрона, находящегося в некотором состоянии (n, l, m), суммарное действие всех других электронов, в основном сводится к частичному экранированию заряда ядра. Величина этого экранирования зависит от количества электронов, средние радиусы оболочек которых меньше либо равны радиусу оболочки (nl). Можно ввести константу экранирования $\sigma_{n,l}$, так что формула (2) примет вид:

$$E_n = -\frac{m(Z - \sigma_{n,l})^2 e^4}{2\hbar^2 n^2} = -R \frac{(Z - \sigma_{n,l})^2}{n^2}$$
(3)

Излучательные переходы и рентгеновские термы

Нас будут интересовать переходы между возбуждёнными состояниями атома, обусловленные переходами электронов между различными состояниями с малыми значениями главного квантового числа п. Для возможности таких переходов необходимо наличие свободного электронного состояния на глубоком уровне, то есть необходимо предварительно освободить это состояние. Это можно сделать за счёт поглощения фотона с достаточно большой энергией. Образовавшееся свободное электронное состояние приводит к тому, что соответствующая электронная оболочка (nl) становится частично заполнена, и она приобретает момент импульса $\mathbf{j} = \mathbf{l} \pm 1/2$ освободившегося электронного состояния. При этом энергия атома повышается на величину, равную энергии связи удалённого электрона, которая может быть приблизительно расчитана по формуле (3). Уровни энергии атома, у которого удалён один из электронов с глубокого уровня, называют рентгеновскими термами

При переходе электрона с оболочки одного слоя на другой слой атом излучает рентгеновский квант, такое излучение называют характеристическим излучением. Энергия кванта такого излучения приближённо может быть записана в виде:

$$\hbar\omega_{12} = E_{n_2} - E_{n_1} = -Ry\left(\frac{(Z - \sigma_{n_2, l_2})^2}{n_2^2} - \frac{(Z - \sigma_{n_1, l_1})^2}{n_1^2}\right),\tag{4}$$

формула (4), является приближённой, но она отражает основное свойство спектральных линий характеристического излучения: квадратичную зависимость частоты излучения от заряда ядра Z – аналогично тому как это имеет место в водородоподобном спектре. Основным подтверждением формулы (5) является хорошее совпадение с экспериментом. Именно такая зависимость была впервые экспериментально обнаружена Мозли в 1913 году.

Экспериментальная установка:

Для регистрации рентгеновских спектров характеристического излучения в работе используется серийно выпускаемый рентгенофлуоресцентный спектрометр «Спектроскан Макс-G». В состав прибора входят следующие основные элементы: рентгеновская трубка, держатель образцов, вогнутая пластина кристалла LiF (Фторид лития), гониометр, а также пропорциональный детектор. Схема прибора показана на рис. 1.

Рис. 1: Схема рентгеновского спектрометра

Рентгеновская трубка 1 установлена так, что её носик 2 с выходным окном располагается непосредственно над поверхностью анализируемого образца 4. Образец подаётся ниже основного днища прибора 3 с помощью специального механизма. Рентгеновское излучение образуется за счёт торможения разогнанных электронов в тонком слое меди, которая нанесена на бериллиевую пластинку, прозрачную для рентгеновских лучей. Непрерывное тормозное излучение трубки «освещает» на поверхности образца область размером около 10 мм. Под воздействием этого излучения происходит возбуждение атомных элементов, которые при релаксации испускают характеристическое излучение. Часть этого излучения через щель 5 попадает на изогнутую поверхность кристалла LiF — дифракционное зеркало 6. Кристал представляет собой тонкую, пластинку приклеенную к изогнутой металлической поверхности. Отражение от зеркала может претерпевать только излучение с определённой длиной волны, которая определяется условием дифракции Брэгга-Вульфа $2d \cdot \sin(\theta) = m\lambda$, и зависит от угла θ падения рентгеновских лучей на пластину. Отразившееся излучение попадает через щель 7 в пропорциональный детектор 8, с помощью которого производиться регистрация рентгеновских квантов и оценочное определение их энергии.

Ход работы:

1. Измерим спектры характеристического излучения следующих элементов: $^{21}\mathrm{Sc}, ^{22}\mathrm{Ti}, ^{23}\mathrm{V}, ^{24}\mathrm{Cr}, ^{25}\mathrm{Mn}, ^{26}\mathrm{Fe}, ^{28}\mathrm{Ni}, ^{29}\mathrm{Cu}, ^{30}\mathrm{Zn}, ^{37}\mathrm{Ga}, ^{32}\mathrm{Ge}, ^{35}\mathrm{Br}, ^{39}\mathrm{Y}, ^{41}\mathrm{Nb}, ^{42}\mathrm{Mo}, ^{47}\mathrm{Ag}, ^{48}\mathrm{Cd}, ^{49}\mathrm{In}, ^{50}\mathrm{Sn}, ^{57}\mathrm{La}, ^{58}\mathrm{Ce}, ^{59}\mathrm{Pr}, ^{60}\mathrm{Nd}, ^{62}\mathrm{Sm}, ^{63}\mathrm{Eu}, ^{64}\mathrm{Gd}, ^{65}\mathrm{Tb}, ^{66}\mathrm{Dy}, ^{67}\mathrm{Go}, ^{68}\mathrm{Er}, ^{69}\mathrm{Tm}, ^{70}\mathrm{Yb}, ^{71}\mathrm{Lu}, ^{73}\mathrm{Ta}, ^{74}\mathrm{W}, ^{79}\mathrm{Au}, ^{82}\mathrm{Pb}, ^{83}\mathrm{Bi}$.

Будем работать с наиболее яркими спектральными линиями, а именно: $K_{\alpha_1}, K_{\beta_1}, L_{\alpha_1}, L_{\alpha_1}$. При этом указанные линии K-серии определяются для первой части перечисленных элементов: от скандия до индия включительно, а линии L-серии – для второй части: от лантана до висмута. Полученные результаты занесем в таблицу 1.

	$^{21}\mathrm{Sc}$	²² Ti	^{23}V	$^{24}\mathrm{Cr}$	$^{25}\mathrm{Mn}$	²⁶ Fe	²⁸ Ni	²⁹ Cu	$^{30}\mathrm{Zn}$	³¹ Ga
K_{α_1} , (MÅ)	3031	2749	2503	2289	2105	1935	1660	1540	1435	1339
K_{β_1} , (MÅ)	2780	2514	2283	2084	1910	1755	1500	1390	1294	1207
	$^{32}\mathrm{Ge}$	$^{35}\mathrm{Br}$	^{39}Y	⁴¹ Nb	$^{42}\mathrm{Mo}$	^{47}Ar	$^{48}\mathrm{Cd}$	49 In	$^{50}\mathrm{Sn}$	
K_{α_1} , (MÅ)	1255	1040	829	747	710	558	530	515	489	
K_{β_1} , (MÅ)	1130	932	741	664	630	496	475	453	427	
	57 La	⁵⁸ Ce	$^{59}\mathrm{Pr}$	$^{60}\mathrm{Nd}$	$^{62}\mathrm{Sm}$	⁶³ Eu	$^{64}\mathrm{Gd}$	$^{65}\mathrm{Tb}$	⁶⁶ Dy	⁶⁷ Go
L_{α_1} , (MÅ)	2664	2559	2461	2367	2198	2120	2044	1974	1912	1844
L_{β_1} , (MÅ)	2454	2359	2254	2164	1998	1918	1844	1775	1713	1647
	$^{68}\mathrm{Er}$	$^{69}\mathrm{Tm}$	$^{70}\mathrm{Yb}$	$^{71}\mathrm{Lu}$	⁷³ Ta	^{74}W	$^{79}\mathrm{Au}$	⁸² Pb	⁸³ Bi	
L_{α_1} , (MÅ)	1782	1722	1670	1618	1519	1474	1275	1173	1144	
L_{β_1} , (MÅ)	1584	1528	1475	1422	1324	1279	1080	982	949	

Таблица 1: Полученные спектры для K-серий и L-серий элементов указанных в пункте 1.

2. По полученным длинам волн рассчитаем энергии $E_{K_{\alpha}},\,E_{K_{\beta}},\,E_{L_{\alpha}},\,E_{L_{\beta}}$ по формуле: $E_i=\frac{h\cdot c}{e\cdot \lambda_i}$

	$^{21}\mathrm{Sc}$	²² Ti	²³ V	$^{24}\mathrm{Cr}$	$^{25}\mathrm{Mn}$	²⁶ Fe	²⁸ Ni	²⁹ Cu	$^{30}\mathrm{Zn}$	³¹ Ga
$E_{K_{\alpha_1}}$, эВ	4095	4515	4959	5422	5896	6414	7477	8060	8649	9269
$E_{K_{\beta_1}}$, эВ	4464	4937	5436	5956	6498	7072	8275	8929	9592	10283
	32 Ge	$^{35}\mathrm{Br}$	^{39}Y	⁴¹ Nb	$^{42}\mathrm{Mo}$	$^{47}\mathrm{Ar}$	$^{48}\mathrm{Cd}$	49 In	$^{50}\mathrm{Sn}$	
$E_{K_{\alpha_1}}$, эВ	9890	11935	14972	16616	17482	22244	23419	24101	25383	
$E_{K_{\beta_1}}$, эВ		10984	13318	16751	18693	19702	25025	26131	27400	29069
	57 La	⁵⁸ Ce	$^{59}\mathrm{Pr}$	$^{60}\mathrm{Nd}$	$^{62}\mathrm{Sm}$	⁶³ Eu	$^{64}\mathrm{Gd}$	$^{65}\mathrm{Tb}$	⁶⁶ Dy	⁶⁷ Go
$E_{L_{\alpha_1}}$, эВ	10850	10581	9735	8420	8171	7671	7432	7208	6965	6731
$E_{L_{\beta_1}}$, эВ	13079	12640	11493	9704	9375	8728	8415	8123	7836	7536
	$^{68}{ m Er}$	⁶⁹ Tm	$^{70}\mathrm{Yb}$	$^{71}\mathrm{Lu}$	$^{73}\mathrm{Ta}$	$^{74}\mathrm{W}$	⁷⁹ Au	⁸² Pb	$^{83}\mathrm{Bi}$	
$E_{L_{\alpha_1}}$, эВ	6491	6287	6072	5854	5647	5243	5043	4850	4659	
$E_{L_{\beta_1}}$, эВ	7246	6992	6731	6471	6212	5735	5506	5277	5058	

Таблица 2: Рассчитанные энергии по длинам волн Ксерий и L-серий элементов указанных в пункте 1.

3. По рассчитанным значениям энергий построим график зависимости величины $\sqrt{\frac{E}{Ry}}$ от атомного номера Z.

Рис. 2: Схема рентгеновского спектрометра