★ العد (القوائم ، الترتيبات ، التوفيقات) :

. $p \ge 1$: مجموعة جزئية منتهية ذات n عنصر حيث n عدد طبيعي غير معدوم p عند طبيعي حيث E

القائمة:

نسمى قائمة ذات p عنصر من E القائمة التي تتميز بالترتيب و التكر ار

 n^p : عدد القوائم

نسمى ترتيبة ذات p عنصر من E القائمة التى تتميز بالترتيب فقط (بدون التكرار).

$$n \geq p$$
 مع A_n^p عدد الترتيبات : نرمز له A_n^p حيث A_n^p مع A_n^p عدد الترتيبات : نرمز له

- حالة خاصة : في حالة n = p تسمى الترتيبة بالتبديلة
- عدد التبديلات: $A_n^n = n(n-1)(n-2) \times \cdots \times 2 \times 1$ يرمر له التبديلات: $A_n^n = n(n-1)(n-2) \times \cdots \times 2 \times 1$
 - (n+1)! = (n+1)n! $3! = 6 \cdot 2! = 2 \cdot 1! = 1 \cdot 0! = 1$ • نتائج :

 $n \geq p$ مع $A_n^p = rac{n!}{(n-p)!}$: الترتيبات : مكن استعمال تعريف آخر لعدد الترتيبات

التوفيقة:

نسمي توفيقة ذات p عنصرمن E المجموعة الجزئية ذات p عنصرمن E الترقيب ولا تكرار

$$n \ge p$$
 حد $C_n^p = \frac{A_n^p}{p!} = \frac{n!}{p!(n-p)!}$: غيث C_n^p : عدد التوفيقات نرمز له بـ :

• خواص التوفيقة:

من أجل كل عدد طبيعي
$$n$$
 غير معدوم . $C_n^1=n$ ، $C_n^0=1$. $1\leq p\leq n-1$ مع $C_n^p=C_{n-1}^{p-1}+C_{n-1}^p$ ، $C_n^p=C_n^{n-p}$

the second training that the second				
0	1	2	3	4
1		ing Kiy		
1	1			
1	2	1		
1	3	3	1	
	0 1 1 1 1 1	1 1	1 1 1 1 2 1	1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

: Pascal

$$C_n^p + C_n^{p-1}$$

$$C_{n+1}^p$$

ستور ثنائی الحد لنیوتن : aو طبیعی غیر معدوم a

$$(a+b)^n = \sum_{p=0}^n C_n^p a^{n-p} b^p$$

الاحتمال:

لي !n).

التجربة العشوائية :
 ضمى كل تجربة لايمكن التنبؤ بنتائجها تجربة عشوائية

E نعرف E مجوعة مخارج تجربة عشوانية و E حادثة من نعرف الجزئية من

$$P(A) \in [0;1]$$
 : حيث

$$P(A) = \frac{1}{1}$$
عدد الحالات الممكنة

احتمال حادثة A:

P(A) = 0 حادثة مستحيلة : $A = \phi$

P(A)=1 حادثة أكيدة : A=E

 $P(A \cap B) = 0$ و A حادثتان غير متلائمتان $A \cap B = \phi$

 $P(A) + P(\overline{A}) = 1$ حادثة عكسية لا A : حادثة عكسية ا

$$P(A \cup B) = P(A) + p(B) - P(A \cap B)$$

الاحتمال الشرطى:

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}$$

P(A)و B حادثتان من مجموعة مخارج B مع Aا احتمال شرطي (احتمال B علما أن A محققة $P_{A}(B)$

 $P_A(B) = P(B)$

معناه
$$P(A \cap B) = P(A).P(B)$$

ح المتغير العشوائى:

. P متغير عشوائي X هو دالة عددية معرفة على مجموعة مخارج

 P_1,\dots,P_2 ، والقيم X_1 ، X_2 ، X_2 والخد القيم X_2

ح الأمل الرياضي للمتغير العشوائي:

$$E(X) = \sum_{i=1}^{n} X_{i} P(X_{i})$$

ح التباين :

$$Var(X) = \sum_{i=1}^{n} (E(X_i) - X_i)^2 P(X_i)$$

ح الإنحراف المعباري:

$$\sigma(X) = \sqrt{Var(X)}$$

الأعداد المركبة

■ نرمز إلى مجموعة الأعداد المركبة ب. C.

کل عدد مرکب من C یکتب علی الشکل : z=x+iy دیث : x عدد مرکب من

 $i^2 = -1$ عدد تخیلي معرف ب $i^2 = -1$

. Re(z) الجزء الحقيقي نرمز له بx

 $\operatorname{Im}(z)$: الجزء التخيلي نرمز له بالجزء التخيلي الجزء التخيلي الجزء التخيلي الجزء التخيلي الجزء التخيلي الم

. هو الشكل الجبري ل عدد مركب z = x + iy

• حالات خاصة:

- . Im(z) = 0 و Re(z) و عدد مرکب معدوم معناه z
 - . $\operatorname{Im}(z) = 0$ عدد مرکب حقیقی معناه z = z
 - . Re(z) = 0 عدد مركب تخيلي صرف معناه z

مرافق عدد مرکب:

$$\overline{z} = x - iy$$
 مرافقه $z = x + iy$

- ا اذا کان $\overline{z} = z$ فإن z عدد مرکب حقيقي .
- اذا کان $\overline{z}=-z$ فإن z عدد مرکب تخیلي صرف $\overline{z}=-z$

$$z \times \overline{z} = \operatorname{Re}^{2}(z) + \operatorname{Im}^{2}(z)$$
 $z - \overline{z} = 2i\operatorname{Im}(z)$ $z + \overline{z} = 2\operatorname{Re}(z)$