

Data Analysis and Visualization

CentraleDigitalLab@Nice

Deborah Dore - PhD - <u>ddore@i3s.unice.fr</u>

MARIANNE, Université Côte d'Azur, CNRS, INRIA, I3S

Why Python?

- Simple and easy to use
- Flexible
- Popular and widely used
- Extensive libraries for data manipulation and visualization
- Large community and resources for support

Python Basics

- Variables and data types
- Conditional statements (if-else)
- Loops (while/for)
- Writing and running scripts

Python Basics

Variables and data types

```
1 # Define variables
 2 \times = 10
                   # Integer
 3 pi = 3.14 # Float
 4 name = "Alice" # String
 5 is_student = True # Boolean
 7 # Print variables
 8 print("x:", x)
 9 print("pi:", pi)
10 print("name:", name)
11 print("is_student:", is_student)
12
13 # Check data types
14 print(type(x))
15 print(type(pi))
16 print(type(name))
17 print(type(is_student))
18
19 # List, Tuple, Dictionary, Set
20 \text{ my\_list} = [1, 2, 3, 4]
21 \text{ my\_tuple} = (5, 6, 7, 8)
22 my_dict = {"key1": "value1", "key2": "value2"}
23 \text{ my\_set} = \{9, 10, 11\}
24
25 print("List:", my_list)
26 print("Tuple:", my_tuple)
27 print("Dictionary:", my_dict)
28 print("Set:", my_set)
```

Python Basics

Conditional statements (if-else)

```
1 # Example of if-else
2 x = 15
3 if x > 10:
4    print("x is greater than 10")
5 elif x == 10:
6    print("x is equal to 10")
7 else:
8    print("x is less than 10")
```

Python Basics

Loops (while/for)

```
1 ## Loops
2
3 # For loop example
4 for i in range(5):
5    print("For loop iteration:", i)
6
7 # While loop example
8 counter = 0
9 while counter < 5:
10    print("While loop iteration:", counter)
11    counter += 1</pre>
```

Python Basics

Functions

```
1 # Define a simple function
2 def greet(name):
3    return f"Hello, {name}!"
4
5 # Test the function
6 print(greet("Alice"))
```

Python Basics

Writing and running scripts

```
1 # Example of writing a script (this part would normally go in a .py file)
2 # Save this content as script.py
3 # Then run it in the terminal with: python script.py
4 if __name__ == "__main__":
5     print("This script is being run directly.")
```

Hands-on activity

- 1. Launch Google Colab
- 2. Define a numerical variable
- 3. Check if the variable is a prime number using if-else
- 4. Write a loop to print all prime numbers between 0 and 100
- 5. coptional> Create a function that when called prints the next prime number
 based on the one that has been passed

Demo with Notebook_introduction_to_python.ipynb

ONLY PART 1

Fundamental python libraries

- Numpy
- Pandas
- Matplotlib

Numpy

NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects, and an assortment of routines for fast operations on arrays and much more.

What is an array?

An Array is a linear data structure where all elements are arranged sequentially.

```
1 # Creating a 1D array
2 array_1d = np.array([1, 2, 3, 4, 5])
3 print("1D Array:", array_1d)

1D Array: [1 2 3 4 5]

1 # Creating a 2D array
2 array_2d = np.array([[1, 2, 3], [4, 5, 6]])
3 print("\n2D Array:\n", array_2d)

2D Array:
[[1 2 3]
[4 5 6]]
```

Pandas

Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.

Pandas

With pandas we can create dataframes that help us collect and analyze our data

```
1 # Creating a DataFrame from a dictionary
 2 data = {
      "Name": ["Alice", "Bob", "Charlie"],
    "Age": [25, 30, 35],
     "City": ["New York", "Los Angeles", "Chicago"]
 6 }
 7 df = pd.DataFrame(data)
 8 print("DataFrame:\n", df)
DataFrame:
       Name Age
                        City
     Alice 25
                   New York
                Los Angeles
       Bob
2 Charlie
             35
                     Chicago
```

Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations.

Hands-on activity

- 1. Create a NumPy array containing odd numbers from 1 to 10 (call it odd).
- 2. Create a NumPy array containing even numbers from 1 to 10 (call it even).
- 3. Print non-prime numbers from odd.
- 4. Create a DataFrame containing two columns: odd and even using the respective arrays
- 5. Add a new column called *total*, which contains the sum of the values at the same index from *odd* and *even*.
- 6. Add a new column called *is_odd* containing **true** if the value of *total* is odd, **false** otherwise

Demo with Notebook_introduction_to_python.ipynb

PART 2

Useful links

- https://numpy.org/devdocs/user/quickstart.html
- https://pandas.pydata.org/docs/getting_started/intro_tutorials/
- https://matplotlib.org/stable/users/explain/quick_start.html#quick-start