(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. März 2002 (21.03.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/22680 A2

(51) Internationale Patentklassifikation7:

C07K 14/47

(21) Internationales Aktenzeichen:

PCT/EP01/10364

(22) Internationales Anmeldedatum:

7. September 2001 (07.09.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 45 591.3 15. September 2000 (15.09.2000) DE

(71) Anmelder und

(72) Erfinder: PFIZENMAIER, Klaus [DE/DE]; See-hausstrasse 7, 75233 Tiefenbronn (DE). WAJANT, Harald [DE/DE]; Sonnenbühl 2, 70771 Leinfelden-Echterdingen (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): MOOSMAYER, Dieter [DE/DE]; Zechliner Strasse 6, 13359 Berlin (DE). WÜEST, Thomas [CH/CH]; Rosenstrasse 46, CH-8953 Dietikon (CH).
- (74) Anwälte: GRAF VON STOSCH, Andreas usw.; Bosch, Graf von Stosch, Jehle, Theatinerstr. 8, 80333 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Fortsetzung auf der nächsten Seite]

(54) Title: SITE-SPECIFIC, ANTIBODY-MEDIATED ACTIVATION OF PROAPOPTOTIC CYTOKINE: AMAICE (ANTIBODY-MEDIATED APOPTOSIS INDUCING CYTOKINE)

(54) Bezeichnung: ORTSSPEZIFISCHE, ANTIKÖRPERVERMITTELTE AKTIVIERUNG PROAPOPTOTISCHER ZYTOKINE: AMAIZe (ANTIBODY-MEDIATED APOPTOSIS INDUCING ZYTOKINE)

(57) Abstract: The invention relates to antibody-cytokine fusion proteins having proapoptotic and immunomodulating properties, however, a priori having a specific bioactivity in the cytokine portion that is very low or limited to certain receptor subtypes. These reagents first deploy the full biological action over the corresponding cytokine receptor(s) after an antibody-mediated binding of the fusion protein to a specific, cell membrane-expressed target molecule. By appropriately selecting the antibody specificity, the cytokine activity is directed at the tissue to be treated, e.g. tumor tissue, and a therapeutic agent can be produced, which is specifically matched to/optimized for the respective indication/tumor entity.

[Fortsetzung auf der nächsten Seite]

/22680 A2

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

⁽⁵⁷⁾ Zusammenfassung: Gegenstand der Erfindung sind Antikörper-Zytokin-Fusionsproteine mit proapoptotischen und immunmodulierenden Eigenschaften, aber a priori sehr niedriger bzw. auf bestimmte Rezeptorsubtypen eingeschränkter spezifischer Bioaktivität im Zytokinanteil. Diese Reagenzien entfalten erst nach Antikörper-vermittelter Bindung des Fusionsproteins an ein spezifisches, zellmembranexprimiertes Zielmolekül die volle biologische Wirkung über den/die entsprechenden Zytokinrezeptoren. Durch geeignete Auswahl der Antikörperspezifität wird die Zytokin-Aktivität auf das zu behandelnde Gewebe, z.B. Tumorgewebe, gerichtet und es kann ein auf die jeweilige Indikation/Tumorentität spezifisch abgestimmtes/optimiertes Therapeutikum hergestellt werden.

5

10

Ortsspezifische, antikörpervermittelte Aktivierung proapoptotischer Zytokine: AMAIZe (Antibody-Mediated Apoptosis Inducing Zytokine)

15

20

25

30

Die vorliegende Erfindung betrifft Polypeptide, welche als solche biologisch inaktiv oder wenig aktiv sind und erst durch ortsspezifische und antikörpervermittelte Bindung entsprechend aktiviert werden, enthaltend eine Region, welche ein Peptidlinker ist, weiter enthaltend eine Antikörper- bzw. eine davon abstammende Region, die ein spezifisches Molekül auf einer Zelloberfläche selektiv erkennt und weiter enthaltend ein Zytokinanteil, der für sich alleine genommen biologisch inaktiv bzw. nur eingeschränkt aktiv ist. Weiterhin betrifft die vorliegende Erfindung, den Polypeptiden zugrundeliegende Nukleinsäureseguenzen. Vektoren, die diese erfindungsgemäßen Nukleinsäuresequenzen enthalten, mit erfindungsgemäßen Nukleinsäuresequenzen oder Vektoren transfizierte Zellen. Verwendungen erfindungsgemäßer Gegenstände zu therapeutischen Zwecken und Zusammensetzungen, enthaltend erfindungsgemäße Gegenstände.

Zytokine, bspw. Mitglieder der TNF-Ligandenfamilie, bspw. TRAIL (TNF Related Apoptosis Inducing Ligand), auch Apo2L genannt (Wiley et al. (1995), Immunity 6: 673-682, Pitti et al. (1996) J Biol Chem 271: 12687-12689), und bspw. FasL zeigen in in vitro Untersuchungen eine starke apoptotische Wirkung auf viele

10

15

20

25

30

Tumorzellen tierischen und menschlichen Ursprungs. Im Falle von TRAIL scheint es so zu sein, dass nicht maligne Zellen nicht beeinträchtigt werden. In den untersuchten präklinischen Tiermodellen (Maus, Affe) wurden darüber hinaus keinerlei Anhaltspunkte für eine akute Toxizität oder andere systemische Nebenwirkungen von TRAIL, die als therapiebegrenzend anzusehen wären, festgestellt (Walczak et al. (1999) Nat Med 5:157-163, Ashkenazi et al. (1999) J Clin Invest 104: 155-162). Neuere in vitro Untersuchungen an primären humanen Hepatozyten zeigten allerdings eine starke zytotoxische Wirkung am Beispiel eines rekombinant hergestellten TRAIL-Produktes bzw. von membranständigem TRAIL der natürlich vorkommenden Form dieses Zytokins (Jo et al. (2000) Nat Med 6: 564-567, Ichikawa et al. (2001) Nat Med 7: 954-960). Damit ist eine direkte klinische Anwendung der bisher vorliegenden Zytokine, bspw. rekombinanter TRAIL-Moleküle, welche die Wirkung des membranständigen TRAIL vollständig mimikrieren, ausgeschlossen. Darüber hinaus wurde auch für das verwandte Molekül FasL (Ligand des Fas-Rezeptors (Fas, CD95)), dem Prototyp apoptotischer Zytokine, eine klinische Anwendung a priori aus Sicherheitsgründen unterlassen, da agonistische Antikörper gegen seinen Rezeptor, Fas, in vivo extrem hepatotoxisch sind (Ogasawara et al.(1993) Nature 364: 806-809). Schließlich wurde auch gezeigt, dass FasL in löslicher Form praktisch im Unterschied zu seiner membranständigen Form keine Bioaktivität besitzt (Schneider et al. (1998) J. Exp. Med. 187: 1205-1213).

Damit sind die nach dem Stand der Technik verfügbaren Mitglieder der TNF-Ligandenfamilie entweder auf Grund mangelnder Bioaktivität oder extremer Toxizität zur therapeutischen Anwendung, bspw. zur Behandlung von Tumoren, nicht oder nur sehr begrenzt (z.B. im Falle von TNF unter sog. "isolated limb perfusion" Bedingungen) einsetzbar.

Der vorliegenden Erfindung liegt nunmehr die Aufgabe zugrunde, die Zytokinwirkung gerichtet und gewebs- bzw. zellspezifisch zu entfalten und damit unerwünschte, u.U. systemische Nebenwirkungen auf nicht zum Zielgewebe

3

gehörigen Geweben/Zellen bei einer klinischen Anwendung zu vermeiden oder zumindest stark einzuschränken.

Diese Aufgabe wird erfindungsgemäß durch die Gegenstände der Ansprüche 1. 11, 12, 13, 14, 15, 16, 17 und 18 gelöst. Hierbei liegt der vorliegenden Erfindung die Tatsache zugrunde, dass natürlicherweise membranständig vorkommende Zytokine, wenn sie vom Organismus in eine lösliche, der extrazellulären Domäne entsprechende Form proteolytisch prozessiert werden, entweder biologisch gänzlich inaktiv oder nur noch eingeschränkt, z.B auf bestimmten Membranrezeptor-Subtypen, wirksam sind. Dies gilt auch für rekombinant hergestellte Derivate, die der extrazellulären Domäne des jeweiligen Liganden entsprechen. Erfindungsgemäße Erkenntnis ist es. dass ein derart inaktives/eingeschränkt aktives Zytokin durch bspw. Antikörper-vermittelte spezifische Bindung an ein zellmembranständiges Antigen wieder (volle) biologische Wirksamkeit erlangt und zwar gegenüber der Zielzellen selbst wie auch gegenüber benachbart liegenden Zellen, sofern diese jeweils die entsprechenden Zytokinrezeptoren für das eingesetzte Antikörper-Zytokin-Fusionsprotein exprimieren.

Damit werden in einer ersten Ausführungsform der vorliegenden Erfindung erfindungsgemäß Polypeptide zur Verfügung gestellt, die (i) einen Abschnitt (1) mit einer biologischen Aktivität für ein spezifisches Zielmolekül, (ii) einen Nterminal von Abschnitt (1) gelegenen Abschnitt (2), welcher ein Peptidlinker ist, und (iii) einen Abschnitt (3), welcher ein weiteres spezifisches Zielmolekül auf einer Zelloberfläche selektiv erkennt, enthalten. Hierbei liegt Abschnitt (3) am Nterminus eines erfindungsgemäßen Polypeptids, mit zunächst C-terminal nachfolgendem Abschnitt (2) und einem weiter C-terminal angesiedelten Abschnitt (3). Derartige erfindungsgemäße Polypeptide (= erfindungsgemäße Fusionsproteine, = erfindungsgemäße Konstrukte) sind ohne ortsspezifische und/oder selektive Bindung des Abschnitts (3) an das Zielmolekül biologisch inaktiv/eingeschränkt aktiv.

5

10

15

20

25

4

In einer bevorzugten Ausführungsform weisen erfindungsgemäße Polypeptide in ihrem Abschnitt (1) eine Aminosäuresequenz eines Zytokins, eine funktionelle Variante einer Zytokin-Sequenz oder ein Fragment hiervon auf. Unter einer funktionellen Variante werden Sequenzen verstanden, die zumindest tw., vorzugsweise mindestens 50%, stärker bevorzugt mindestens 80 % der nativen Sequenz aufweisen und sich durch bspw. Deletion(en). Insertion(en) und/oder mindestens eine Mutation von der nativen Sequenz unterscheiden. In Hinblick auf ihr Wirkspektrum bzw. ihre Funktionalität sind die funktionellen Varianten i.S. dieser Erfindung weitgehend oder nahezu kongruent mit den nativen Ausführungsformen. Hierbei ist eine Sequenzhomologie von mindestens 90. vorzugsweise mindestens 95 und am stärksten bevorzugt mindestens 97 % mit der entsprechenden nativen Sequenz bevorzugt. Bei einem funktionellen Fragment kann es sich um N-Terminal, C-terminal oder intrasequentiell verkürzte native Zytokin-Sequenzen handeln, insbesondere um gewisse Domänen, vorzugsweise mindestens eine, stärker bevorzugt mindestens eine extrazelluläre Domäne der nativen Vollängen-Sequenz. Auch biologisch aktive Varianten dieser Fragmente werden erfindungsgemäß mitoffenbart.

Bevorzugt sind dabei solche Zytokine, deren funktionelle Varianten oder 20 Fragmente, die Mitglieder der TNF-Familie sind.

Weiterhin bevorzugt sind solche erfindungsgemäßen Polypeptide, die als Abschnitt (1) eine extrazelluläre Domäne (bzw. den extrazellulären Sequenzbereich) eine Zytokins, eine funktionelle Variante einer extrazellulären Domäne (bzw. des extrazellulären Sequenzbereichs) oder ein funktionelles Fragment einer extrazellulären Domäne (bzw. des extrazellulären Sequenzbereichs) aufweisen, insbesondere wenn es sich bei dem Zytokin um ein Mitglied der TNF-Ligandenfamilie, ganz besonders um proapoptotische Mitglieder, handelt. Bei den abgeleiteten Varianten i.S. der Erfindung werden vorzugsweise selektive Rezeptorbindungseigenschaften gegeben sein, wobei die Variante z.B. hinsichtlich ihrer spezifischen Bioaktivität oder anderer Eigenschaften (Stabilität) optimiert sein kann.

5

10

15

25

15

20

25

Ganz besonders bevorzugt ist als Abschnitt (1) eine extrazelluläre Domäne, eine funktionelle Variante einer extrazellulären Domäne oder ein funktionelles Fragment einer extrazellulären Domäne von TRAIL (TNF Related Apoptosis Inducing Ligand, AA 95-281, NCBI Accession No AAC50332 U37518) oder von FasL (AA 139-281, NCBI Accession No. AAC50124 U11821).

Das Wirkprinzip ist derartiger erfindungsgemäßer Konstrukte, wie beispielweise erfindungsgemäße Konstrukte mit dem Apoptoseinduktor TRAIL oder FasL als Abschnitt (1), ist insbesondere für all diejenigen Mitglieder der TNF-Ligandenfamilie zutreffend, die für bestimmte Rezeptoren ausschließlich oder in besonders gutem Maße als Membranmolekül wirksam sind. Hierzu gehören neben TRAIL auch TNF (in Analogie zu TRAIL den TNF-R2 betreffend) und beispielsweise auch die Immunmodulatoren CD40L und CD30L. Besonders bevorzugt sind daher solche erfindungsgemäßen Polypeptide, die als spezifisches Zielmolekül einen zellmembranständigen Zytokinrezeptor erkennen. Hierzu gehören bspw. auch in einer nicht abschließenden Aufzählung die folgenden Liganden TNFSF1 (LTalpha), TNFSF2 (TNF), TNFSF3 (LTbeta), TNFSF4 (OX40L), TNFSF5 (CD40L), TNFSF6 (FasL), TNFSF7 (CD27L), TNFSF8 (CD30L), TNFSF9 (4-1BBL), TNFSF10 (TRAIL), TNFSF11 (RANKL), TNFSF12 (TWEAK), TNFSF13 (APRIL). TNFSF13B (BLYS), TNFSF14 (LIGHT), TNFSF15 (VEGI), TNFSF16 (CD30L), TNFSF18 (AITRL) und EDA, die oder deren Fragmente oder entsprechende funktionelle Varianten der nativen Sequenz oder der Fragmente gleichfalls als Abschnitt (1) in einem Konstrukt dienen können. Insbesondere werden erfindungsgemäßen diesbezüglich alle membranständigen Typ2 -- Proteine (C-terminus extracellulär), deren Fragmente oder funktionellen Derivate, die eine trimere Organisation ihrer

Der Linkerabschnitt (2) zwischen den Abschnitten (1) und (3) (Zytokin- bzw. Antikörper-Modul) stellt sich bei erfindungsgemäßen Polypeptidkonstrukten bspw. als eine flexible Verbindung dar, vorzugsweise jedoch ohne die intrinsischen

Untereinheiten als Voraussetzung für biologische Aktivität bedingen, mitoffenbart.

Trimerisierungseigenschaften des betreffenden Zytokins negativ zu beeinflussen, wie in den Beispielskonstrukten (C), (D) und (F) (Linker-Aminosäuresequenz AAAVELE, s. Fig. 4) gezeigt. Vorzugsweise werden Linker mit intrinsischen Dioder Multimerisierungseigenschaften (bspw. Tri- oder Hexamere) gewählt, bspw. um eine erhöhte Stabilität des multimeren Konstruktes zu erreichen, z.B. durch intrinsische Struktureigenschaften des Linkerpeptids wie coiled-coil Strukturen und/oder Ausbildung intermolekularer Disulfidbrücken mit dem Ergebnis kovalenter Verknüpfungen. In diesem Fall stellt sich der Linker (Abschnitt (2)) als Polymerisierungsmodul dar.

10

15

20

25

30

5

Im Falle eines Linkers, der als Dimerisierungsmodul (Linkertyp 2a) wirkt, wird beispielsweise eine Immunoglobulin hinge Region und CH3-Domäne eines humanen Immunglobulingens (AA 363-489, humanes IgG1, NCBI Accession No. AAF21613) bevorzugt (Linker im Beispielskonstrukt (A), s. Fig. 4). Ein Trimerisierungsmodul (Linkertyp 2b) als Linker kann bspw. aus einer Domäne des Tenascin-Moleküls (AA 110-139, Swiss Prot. Accession No. P10039, Huhn; oder Swiss Prot. Accession No. P24821,human) aufgebaut sein. Schließlich kann ein Linker als Hexamerisierungsmodul, also mit Hexamerisierungseigenschaften, beispielsweise eine im Vergleich zu Linkertyp 2b erweiterte Domäne des Tenascinmoleküls (AA 34-139, Swiss Prot. Accession No. P10039, Huhn; oder Swiss Prot. Accession No. P24821, human) aufweisen (Linkertyp 2c). In jedem Fall können die Sequenzen von nativen Polypeptiden oder Fragmenten dieser nativen Polypeptide, die als Linker in Abschnitt (2) eines erfindungsgemäßem Polypeptids zum Einsatz kommen, auch in Form biologisch aktiver Varianten derselben im Sinne dieser Erfindung und nach obiger Definition auftreten.

Alternativ sind in Abschnitt (2) andere, natürlich vorkommende oder synthetisch hergestellte Linker-Peptide denkbar. Grundsätzlich kann ein Linker einer nativen oder variierten (Teil)sequenz aller Organismen, vorzugsweise aus Vertebraten, insbesondere aus Säugetieren, vor allem aus dem Menschen, entsprechen. Ferner sind als Linker bspw. alle Sequenzabschnitte von Proteinen geeignet, die durch Ausbildung von Supersekundärstrukturen Di- oder Multimere generieren,

z.B. "Coiled-Coil-Helices" oder typische Kollagen-artige Tripelhelices (z.B. CMP, COMP, Kollagen, Laminin). Auch Abschnitte von Proteinen aus der C1q-Familie oder von Collectinen sind typischerweise für eine Di- oder Multimerisierung geeignet. So etwa kann bspw. die extrazelluläre Domäne eines Mitglieds der TNF-Ligandenfamilie als Abschnitt (1) eines erfindungsgemäßen Polypeptids in Form eines Pentamers durch Rekombination mit den entsprechenden Pentamerisierungsdomänen von COMP als Linkerabschnitt (2) exprimiert werden. Erfindungsgemäßen Fusionsproteinen handeln.

10

15

20

25

30

5

Bevorzugt im Rahmen der vorliegenden Erfindung sind weiterhin solche Polypeptide, deren Abschnitt (3) einen antigenbindenden Antikörper oder ein Antikörperfragment aufweist. Hierbei wird ein antigenbindendes erfindungsgemäßes Polypeptid dann ganz besonders bevorzugt sein, wenn der Abschnitt (3) ein Antikörper oder ein Antikörperfragment eines Säugetiers, insbesondere murinen, oder humanen Ursprungs, ist oder ein humanisierter Antikörper oder ein humanisiertes Antikörperfragment, bspw. mit Säugetierursprung, ist. Im Falle der Humanisierung besteht der Abschnitt (3) typischerweise aus einem nach dem Stand der Technik hergestellten scFv murinen, durch CDR grafting humanisierten oder vollständig humanen Ursprungs.

Der Abschnitt (3) eines erfindungsgemäßen Polypeptids wird vorzugsweise Spezifität für ein im Tumorgewebe selektiv bzw. dominant exprimiertes Antigen aufweisen. Dieses Tumorantigen kann prinzipiell auf den malignen Zellen selbst exprimiert sein oder auch im nichtmalignen Anteil des Tumors, den Stromazellen oder dem Tumorendothel. Derartige Antigene nichtmaligner Gewebeanteile eines soliden Tumors (Karzinoms) sind einerseits genetisch invariant, andererseits bei unterschiedlichsten Tumorentitäten vorkommend und damit universelle Tumormarker. Beispiele für der derartige Tumorantigene, gegen die ein Antikörper oder Antikörperfragment des Abschnitts (3) eines erfindungsgemäßen Polypeptids gerichtet sein kann, sind der VEGFR bzw. der VEGFR/VEGF Komplex sowie das Integrin avß3 und die Fibronektin Isoform ßFn als weitgehend selektive Zielstrukturen des Tumorendothels und das Fibroblast activation protein (FAP) als selektiver Marker des Tumorstromas. Alle vorgenannten Beispiele können mit spezifischen scFv wirksam erfasst werden, weswegen sich derartige scFv ("single chain Fv") besonders als Abschnitt (3) auf einem erfindungsgemäßen Antikörper eignen.

Als bevorzugt für den Abschnitt (3) eines erfindungsgemäßen Polypeptids erweisen sich damit Antikörperfragmente in verschiedenen Antikörperformaten, z.B. scFv, Fab oder komplettes Immunglobulin.

10

15

20

5

Damit stellt sich ein bevorzugtes erfindungsgemäßes Polypeptid (Beispiele siehe Abb. 2 und 3) als ein rekombinantes, homo-di- oder -trimeres Fusionsprotein prinzipiell enthaltend in einer definierten Abfolge der folgenden Strukturelemente (Monomer): (Abschnitt (3)) N-terminal einem murinen, humanisierten oder humanen Einzelkettenantikörperfragment (scFv) bestehend aus VH-peptid-linker-Abschnitt (2) einer Linkersequenz ohne oder mit Multimerisierungseigenschaften, z.B. Dimerisierungs- (2a), Trimerisierungs-(2b) oder Hexamerisierungs-Domāne (2c); (Abschnitt (1)) der humanen extrazellulären Domăne des TRAIL (AA 95-281, NCBI Accession No. U37518) oder des FasL (AA 139-281, NCBI Accession No U11821) C-terminal. Analog können bspw. CD40L oder andere Zytokinmitglieder der TNF-Familie als Abschnitt (1) entsprechender erfindungsgemäßer Polypeptide dienen.

Offenbart werden im Rahmen der vorliegenden Erfindung auch alle sich aus den erfindungsgemäßen Konstrukten durch spezifische Linkerwahl (2) ergebenden Dioder Multimere, auf die sich die Gesamtoffenbarung zu erfindungsgemäßen Konstrukten inhaltsgleich bezieht. Insoweit fällt ein Dioder Multimer von erfindungsgemäßen Polypeptiden nach Maßgabe der vorliegenden Offenbarung immer unter den weiteren Begriff "erfindungsgemäßes Polypeptid".

30

Ein weiterer Gegenstand der vorliegenden Erfindung sind DNA-Sequenzen, die für Fusionsproteine der vorgenannten erfindungsgemäßen Art kodieren

(Nukleinsäurekonstrukte) oder einen solchen für ein erfindungsgemäßes Polypeptid codierenden bereich enthalten. Derartige DNA-Sequenzen werden in Expressionsvektoren exprimiert. wobei auch die entsprechenden Expressionsvektoren, die eine DNA-Sequenz für die erfindungsgemäßen Fusionsproteine enthalten, Gegenstand der Erfindung sind. Vorzugsweise weisen erfindungsgemäße Vektoren die Fähigkeit zur Expression und/oder Amplifikation in einer prokaryontischen und/oder eukaryontischen Zelle auf, insbesondere betrifft die vorliegende Erfindung Plasmidvektoren, bspw. pBABEpuro, oder auch retrovirale Vektoren, insbesondere auch alle jene Vektorsysteme, die gentherapeutisch zur Anwendung kommen können, z.B. auch adenovirale Vektorsysteme. Im Rahmen der vorliegenden Erfindung werden damit auch gentherapeutische Verfahren mit erfindungsgemäßen Vektoren oder Nukleinsäurekonstrukten als Behandlungsmethode für die erfindungsgemäß offenbarten medizinischen Indikationen offenbart.

15

20

10

5

Weiterhin gehören zur vorliegenden Erfindung solche Wirtszellen, die mit DNA-(Nukleinsäurekonstrukte), erfindungsgemäßen die für die Fusionsproteine kodieren, transfiziert sind. Ganz besonders bevorzugt sind in diesem Zusammenhang Wirtszellen. die mit erfindungsgemäßen Expressionsvektoren oder erfindungsgemäßen Nukleinsäurekonstrukten transfiziert sind, wobei die Expressionsvektoren wiederum DNA-Sequenzen enthalten. die für die erfindungsgemäßen Fusionsproteine Nukleinsäurekonstrukt, dadurch gekennzeichnet, dass sie eine Nukleotidsequenz, codierend für ein Polypeptid nach einem der vorgenannten Ansprüche, enthält.

25

30

Ein weiterer Gegenstand der vorliegenden Erfindung sind Verfahren zur Herstellung (Expression und Isolierung) von erfindungsgemäßen Polypeptiden, wobei ein erfindungsgemäßes Isolierungsverfahren typischerweise gekennzeichnet ist durch (a) Bereitstellen eines erfindungsgemäßen Vektors oder eines Nukleinsäurekonstrukts, (b) Transfektion von Zellen mit einem gemäß Verfahrensschritt (a) erhaltenen Vektor oder Nukleinsäurekonstrukt, (c) Kultivierung der gemäß (b) transfizierten Zellen, und (d) Isolierung von unter

10

15

20

25

30

entsprechenden Bedingungen exprimierten erfindungsgemäßen Polypeptiden aus und/oder dem Kulturüberstand. Die Expression Wirtszellen Fusionsproteins erfolgt hierbei typischerweise nach dem Stand der Technik in geeigneten Expressionssystemen, vorzugsweise als sezerniertes Produkt stabiler Transfektanten, z.B CHO-Zellen oder in anderen tierischen Zellen wie Cos7 oder SF9 (Insektenzellen) bzw. weiteren eukaryontischen Zellsystemen, z.B. Pichia pastoris. Vorzugsweise werden die exprimierten erfindungsgemäßen Polypeptide jeweilige zur Sekretion in dem Zellsystem geeignete Leadersequenzen aufweisen. Daher werden die zur Expression eingesetzten erfindungsgemäßen Vektoren auch codierende Abschnitte enthalten, die für eine funktionelle Leadersequenz codieren, z.B. wie in Brocks et al. (Immunotechnology 3:173-184, 1997) für Säuger und Insektenzellen beschrieben, bzw. pPICZalpha-Vektoren (INVITROGEN) zur Expression und Sekretion in der Hefe Pichia pastoris.

Erfindungsgemäße Polypeptide, ggf. aber auch Nukleinsäurekonstrukte, Vektoren oder Wirtszellen, (hier unter der Kategorie "erfindungsgemäße Substanzen" zusammengefaßt), kommen auch als Arzneimittel oder zur Herstellung eines Arzneimittels in Betracht. Ihre Verwendung ist insbesondere dann gegeben, wenn erfindungsgemäße Substanzen nach antikörpervermittelter Bindung Fusionsproteins an ein spezifisches, zellmembranexprimiertes Zielmolekül die volle biologische Wirkung über den entsprechenden Zytokin-Rezeptor entfalten soll. Durch geeignete Auswahl der Antikörperspezifität wird die Zytokin-Aktivität der erfindungsgemäßen Substanz auf das zu behandelnde Gewebe, z.B. Tumorgewebe, gerichtet und es kann ein auf die jeweilige Indikation/Tumorentität spezifisch abgestimmtes/optimiertes Therapeutikum hergestellt werden. Ein erfindungsgemäßes **Polypeptid** wird z.B. bei Anwendung als Tumortherapeutikum, insbesondere zur Behandlung solider Tumore, aber auch lymphatischer Tumore (benigne oder maligne), nach in vivo Verabreichung durch den Antikörper-Anteil zunächst spezifisch im Tumorareal durch vom Tumor selbst oder das reaktive Tumorstroma/Tumorgefäßsystem gebildete Membranmarker angereichert und dort Zytokin-Rezeptor-positiven Tumorzellen oder

10

15

20

25

30

zytokinsensitiven Zellen des reaktiven tumorversorgenden Normalgewebes präsentiert.

Die Verwendung erfindungsgemäßer Substanzen ist aber grundsätzlich auch immer dann zur Anwendung im therapeutischen Bereich erwünscht, wenn die einer Signaltransduktionskette, bspw. die durch die TNF-Aktivieruna Signalkaskaden, bspw. eine apoptotische Rezeptorfamilie ausgelösten ausgelöst werden soll. Somit kommt die Verwendung Signalkaskade erfindungsgemäßer Substanzen bei der Behandlung bzw. zur Herstellung eines Arzneimittels zur Behandlung aller hyperproliferativer Erkrankungen in Betracht, bspw. auch zur zielgerichteten Ausschaltung von Zellen des Immunsystems bei überschießenden Immunreaktionen, bspw. bei Autoimmunerkrankungen, wie z.B. multiple Sklerose, rheumatoide Arthritis, Diabetes mellitus und TEN, oder bei fehlgeleiteten Immunreaktionen gegen Fremdantigene, wie sie z.B. bei Infektionserkrankungen (bakteriell (bspw. durch Mykobakterien), viral oder protozoologisch) auftreten können. In Betracht kommt ferner die Behandlung von Stoffwechselerkrankungen oder allgemeinen hyperinflammatorischen Zuständen, insbesondere chronischen Entzündungen, bspw. auch bei Allergien, aber auch die Behandlung von Abstoßungsreaktionen des Immunsystems des Patienten gegen Fremdgewebe. In den vorgenannten Fällen muß jeweils der Antigenbindende Abschnitt (3) eines erfindungsgemäßen Polypeptids charakteristische Marker auf der Oberfläche der Zielzellen, bei denen vorzugsweise eine apoptotische Signalkaskade mit dem Ziel des Zelltods ausgelöst werden soll. erkennen. Im Falle der Behandlung nach Transplantation von Fremdgewebe werden also bspw. die körpereigenen für die Abstoßungsreaktion verantwortlichen Zellen des Immunsystems des Transplantionspatienten als Zielzellen dienen.

Erfindungsgemäße Gegenstände, wie Nukleinsäurekonstrukte, Expressionsvektoren oder Wirtszellen kommen – wie zuvor offenbart – gleichfalls als Arzneimittel bspw. zur Behandlung der vorgenannten Erkrankungen in Betracht. In diesem Fall werden vorzugsweise dem zu behandelnden Patienten zu transfizierende Zellen entnommen, diese in vitro mit erfindungsgemäßen

10

15

20

25

Expressionsvektoren transfiziert, kultiviert und dann als Retransplantat in den vorzugsweise durch Transfektion wird überführt. Die Patienten Nukleinsäurekonstrukte oder Expressionsvektoren vorgenommen, die die Expression an einen regulierbaren Promotor koppeln. Das transfizierte Eigentransplantat kann lokal bspw. injiziert werden - abhängig von der spezifischen Erkrankung und den spezifischen Zielzellen. Lokale Verabreichung ist bspw. im Fall einer Tumortherapie bevorzugt. Hierbei werden Tumorzellen dem Patienten entnommen, in vitro transfiziert und dann, sofern möglich, direkt in den Tumor injiziert, bspw. zur Behandlung von Hauttumoren (z.B. Melanomen), Tumoren des Nervensystems (z.B. Glioblastomen).

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Zusammensetzung, erfindungsgemäße Polypeptide, erfindungsgemäße enthaltend und/oder erfindungsgemäße Vektoren Nukleinsäurekonstrukte. erfindungsgemäße Wirtszellen sowie pharmazeutisch unbedenkliche Hilfs-, Zusatz- und/oder Trägersubstanzen (z.B. auch Lösungsvermittler). Damit wird erfindungsgemäß eine Kombination erfindungsgemäßer Substanzen pharmazeutisch akzeptablen Träger-, Hilfs- und/oder Zusatzstoffen offenbart. Herstellungswege sind bei "Remington's Pharmaceutical Entsprechende Sciences" (Mack Pub. Co., Easton, PA, 1980) offenbart, das Bestandteil der Offenbarung der vorliegenden Erfindung ist. Für die parenterale Verabreichung kommen als Trägerstoffe bspw. steriles Wasser, sterile Kochsalzlösungen, Polyalkylenglykole, hydrogenierte Naphthalen und insbesondere biokompatible oder Polyoxyethylen-Lactid/Glycolidcopolymer Lactidpolymere, Derartige erfindungsgemäße Betracht. /Polyoxypropylencopolymere in Zusammensetzungen kommen für alle oben offenbarten medizinischen erfindungsgemäße Darüber hinaus können Betracht. Indikationen in Zusammensetzungen Füllsubstanzen oder Substanzen, wie Lactose, Mannitol, z.B. Anknüpfung wie von Polymeren. kovalenten Substanzen zur erfindungsgemäße Inhibitoren, Komplexierung mit Polyethylenglykol an Metallionen oder Einschluß von Materialien in oder auf besondere Präparationen von Polymerverbindung, wie z.B. Polylaktat, Polyglykolsäure, Hydrogel oder auf

Liposomen, Mikroemulsion, Micellen, unilamelare oder multilamelare Vesikel, jeweiligen Die Sphäroplasten, enthalten. oder Erythrozyten-Fragmente werden abhängig Zusammensetzungen Ausführungsformen der physikalische Verhalten, beispielsweise in Hinblick auf die Löslichkeit, die Stabilität, Bioverfügbarkeit oder Abbaubarkeit gewählt. Konstrollierte oder konstante Freisetzung der erfindungsgemäßen Wirkstoffkomponente in der Zusammensetzung schließt Formulierungen auf der Basis lipophiler Depots ein (z.B. Fettsäuren, Wachse oder Öle). Im Rahmen der vorliegenden Erfindung oder erfindungsgemäßer Substanzen Beschichtungen auch werden Zusammensetzungen, enthaltend solche Substanzen, nämlich Beschichtungen mit Polymeren offenbart (z.B. Poloxamere oder Poloxamine). Weiterhin können Zusammensetzungen protektive bzw. Substanzen erfindungsgemäßen Permeabilitätsverstärker, Proteaseinhibitoren oder z.B. Beschichtungen, aufweisen.

15

20

5

10

Erfindung vorliegenden der Rahmen Grundsätzlich werden im erfindungsgemäße Substanzen oder erfindungsgemäße Zusammensetzungen alle im Stand der Technik bekannten Verabreichungswege offenbart, bevorzugt erfolgt die Herstellung eines Arzneimittels zur Behandlung der vorgenannten parenteralen, d.h. beispielsweise Erkrankungen oder Störungen auf dem subkutanen, intramuskulären oder intravenösen, oder oralen oder intranasalen Verabreichungsweg. Typischerweise werden erfindungsgemäße pharmazeutische Zusammensetzungen fest, flüssig oder aerosolartig (z. B. Spray) sein - je nach Art der Konfektionierung.

25 *F*

30

Zusammenfassend ist festzustellen, dass erfindungsgemäß Antikörper-Zytokin-Fusionsproteine mit proapoptotischen und immunmodulierenden Eigenschaften zur Verfügung gestellt werden, die lösliche Formen a priori membranständiger Zytokine enthalten. Durch die im erfindungsgemäßen Polypeptid vorhandene Antikörper-Funktion kann das im übrigen bioinaktive, respektive eingeschränkt

aktive Zytokin durch Bindung an ein spezifisches, zellmembranständiges Zielmolekül die volle biologische Zytokin-Wirkung über den/die entsprechenden Zytokinrezeptor/en entfalten. Durch geeignete Auswahl der Antikörperspezifität wird die Zytokin-Aktivität auf das zu behandelnde Gewebe, z.B. Tumorgewebe, gerichtet und es kann ein auf die jeweilige Indikation/Tumorentität spezifisch abgestimmtes/optimiertes Therapeutikum hergestellt werden. Insgesamt wird somit Selektivität der Zytokin-Wirkung mit den vorliegenden erfindungsgemäßen Polypeptiden durch zwei Mechanismen erreicht: Einerseits über die Antikörper-vermittelte, bspw. scFv, selektive Anreicherung des im nicht antigengebundenen Zustand inaktiven, respektive eingeschränkt aktiven Zytokins im Tumor und andererseits durch dessen ortsspezifische Aktivierung via Präsentation in ein voll signalfähiges, vor allem auch Apoptose-induzierendes Molekül.

15

20

10

5

Die vorliegende Erfindung wird durch die nachfolgenden Figuren näher erläutert.

Figur 1 zeigt das Ergebnis einer gelelektrophoretischen Auftrennung nach der Expression eines erfindungsgemäßen Fusionsproteins (Struktur des Fusionsproteins s. Ausführungsbeispiel 1, TRAIL-AMAIZe(MBOS4), abgekürzt in Fig.1 als MBOS4-TRAIL). Die Western-Blot-Analyse zeigt, dass das Fusionsprotein unter nicht reduzierenden Bedingungen eine Bande bei ca. 140 kDa ergibt, was mit dem kalkulierten MW des CH3-verknüpften Dimers von 2 x 65 = 130 kDa gut übereinstimmt.

25

30

In Figur 2 sind die Ergebnisse von Untersuchungen in Hinblick auf die präferentielle Apoptoseinduktion durch Beispiele einiger erfindungsgemäßer AMAIZe-Polypeptide auf FAP-positiven Tumorzellen dargestellt. Figur 2 zeigt in allen ihren Bestandteilen (Figuren 2A bis 2F) eine Auftragung der Zellaktivität (in %) gegen die Konzentration der jeweils angegebenen AMAIZe-Proteine. Die in Figur 2A eingezeichneten Kurvenverläufe (Legende in Figur 2) geben die Ergebnisse der Behandlung von FAP-positiven (HT1080-FAP) oder FAP-

negativen (HT 1080) Zellen mit TRAIL-AMAIZe(MBOS4) nach Vorinkubation mit dem FAP-spezifischen Antikörper cF19 bzw. ohne entsprechende Vorinkubation wieder.

In allen weiteren dargestellten Fällen (Fig.2B-F) ist zu erkennen, daß die Zytotoxizität der verschiedenen AMAIZe-Konstrukte immer auf den Antigenexprimierenden Zellen (HT1080-FAP), d.h. den Zellen, auf denen die erfindungsgemäßen AMAIZe-Konstrukte Antikörper-vermittelt binden, größer ist als auf den entsprechenden Antigen-negativen parentalen Zellen (HT1080).

Die Abhängigkeit der gesteigerten Sensitivität FAP-exprimierender Zellen von der Bindung von erfindungsgemäßen AMAIZe-Konstrukten an FAP ist beispielhaft in Fig. 2A gezeigt: Hier wird durch Kompetition eines FAP-spezifische Antikörpers cF19 (cF19, schwarze Quadrate) mit dem AMAIZe Konstrukt TRAIL-AMAIZe(MBOS4) um die Bindung an das zellexprimierte FAP die zytotoxische Wirkung eben dieses AMAIZe-Konstruktes auf den FAP-positiven Zellen auf ein Maß reduziert, wie es auch in FAP-negativen Zellen beobachtet wird. Auf FAP-negative Zellen hat die Zugabe von cF19 hingegen keinen Einfluß. Damit ist die Antikörper-vermittelte Spezifität durch kompetitive Hemmung der verstärkten Apoptose-Induktion über den FAP spezifischen monoklonalen Antikörper cF19 eindeutig belegt.

5

10

In Figur 3 sind Beispiele von erfindungsgemäßen AMAIZe-Konstrukten mit TRAIL und mit FasL als Zytokin-Modul, den unabhängigen FAP-spezifischen Antikörpern Klon OS4 und Klon 40 sowie verschiedenen Linkern zwischen Antikörper- und Konstrukte (A)-(F)). Zytokin-Modul dargestellt (erfindungsgemäße Alle erfindungsgemäßen Konstrukte besitzen die Eigenschaft der antigenabhängigen Induktion/Verstärkung von Apoptose. Die hergestellten Konstrukte sind im folgenden schematisch dargestellt. Ihre spezifische AMA!Ze-Aktivität (präferentielle Apoptoseinduktion auf antigen-positiven Zellen) findet sich in Figur 2 beschrieben. Der für die AS-Sequenzen vorliegendenfalls gewählte Code ist der Ein-Buchstaben-Code). Abschnitt (2) (der Linker) stellt die Verbindung zwischen dem Abschnitt (3) (bspw. scFv) und dem Zytokin-Anteil (1) (bspw. TRAIL oder FasL in den dargestellten Konstrukten) im erfindungsgemäßen Molekül her und gewährleistet, im Falle des Einsatzes von speziellen Linkern bspw. des Typs 2a, 2b oder 2c, gleichzeitig die kovalente Verknüpfung des Fusionsproteins während der Biogenese.

20 Konstrukt (A): TRAIL-AMAIZe(MBOS4)

NH₂-[Leader]-[OS4-VH/VL]-[Linker1]-[CH3]-[Linker2]-[TRAIL(95-281)]-COOH

OS4-VH/VL: FAP-spezifisches humanes "single chain"-Antikörperfragment

CH3: CH3-Domãne (AA 363-489) eines humanen IgG1

25 Linker1: "hinge"-Region eines humanen lgG1 (Fettdruck) mit einem

C-terminalen poly Gly-Linker (kursiv)

(RTVAAPSVFAVFAAAVEPKSCDKTHTCPPCGGGSSGGG

SG)

Linker2: poly Gly-Linker (GGGGTGGGS)

30 TRAIL(95-281): extrazelluläre Domäne des humanen TRAIL (AA 95-281)

5

10

17

Der Linker des Konstrukts (A): TRAIL-AMAIZe(MBOS4) besitzt Dimerisierungseigenschaften.

5 Konstrukt (B): TRAIL-AMAIZe(OS4)

NH₂-[Leader]-[OS4-VH/VL]-[Linker]-[TRAIL(95-281)]-COOH

OS4-VH/VL: FAP-spezifisches humanes "single chain"-Antikörperfragment

Linker: RTVAAPSVFAVFAAAVELE

10 TRAIL(95-281): extrazelluläre Domäne des humanen TRAIL (AA 95-281)

Konstrukt (C): TRAIL-AMAIZe(40)

NH₂-[Leader]-[40-VH/VL]-[Linker]-[TRAIL(95-281)]-COOH

40-VH/VL: FAP-spezifisches humanes "single chain"-Antikörperfragment

Linker: AAAVELE

TRAIL(95-281): extrazelluläre Domäne des humanen TRAIL (AA 95-281)

20
Konstrukt (D): FasL-AMAIZe(40)

NH₂-[Leader]-[40-VH/VL]-[Linker]-[FasL(139-281)]-COOH

40-VH/VL: FAP-spezifisches humanes "single chain"-Antikörperfragment

25 Linker: AAAVELE FasL(139-281): extrazelluläre Domäne des humanen FasL (AA 139-281)

Konstrukt (E): FasL-AMAIZe(OS4)

NH₂-[Leader]-[OS4-VH/VL]-[Linker]-[FasL(139-281)]-COOH

OS4-VH/VL: FAP-spezifisches humanes "single chain"-Antikörperfragment

Linker: RTVAAPSVFAVFAAA

FasL(139-281): extrazelluläre Domäne des humanen FasL (AA 139-281)

30

18

Konstrukt (F): FasL-AMAIZe(40-Flag)

NH₂-[Leader]-[40-VH/VL]-[Flag-tag-][Linker]-[FasL(139-281)]-COOH

5 40-VH/VL:

FAP-spezifisches humanes "single chain"-Antikörperfragment

Flag-tag:

DYKDDDDK

Linker:

AAAVELE

FasL(139-281):

extrazelluläre Domäne des humanen FasL (AA 139-281)

10

20

Die vorliegende Erfindung wird durch die nachfolgenden Ausführungsbeispiele näher erläutert.

15 Beispiel 1

Expression eines erfindungsgemäßen Fusionsproteins

Es wurde ein erfindungsgemäßes Fusionsprotein in CHO-DG44-Zellen exprimiert. Bei diesem Fusionsprotein handelt es sich um TRAIL-AMAIZe(MBOS4), abk. MBOS4-TRAIL in Fig.1, (kovalentes Dimer) mit nachfolgender Struktur (s. auch

Figur 3):

NH₂-[Leader]-[OS4-VH/VL]-[Linker1]-[CH3]-[Linker2]-[TRAIL(95-281)]-COOH

OS4-VH/VL:

FAP-spezifisches humanes "single chain"-Antikörperfragment

25 CH3:

CH3-Domäne (AA 363-489) eines humanen igG1

Linker1:

"hinge"-Region eines humanen IgG1 (Fettdruck) mit einem

C-terminalen poly Gly-Linker (kursiv)

(RTVAAPSVFAVFAAAVEPKSCDKTHTCPPCGGGSSGGSG)

Linker2:

poly Gly-Linker (GGGGTGGGS)

30 TRAIL(95-281):

extrazelluläre Domäne des humanen TRAIL (AA 95-281)

Beispiel 2

Konstruktion der erfindungsgemäßen Polypeptide FasL-AMAIZe(40) und TRAIL-AMAIZe(40)

5

10

Die Fusionsproteine wurden, wie folgt, hergestellt:

- Das single chain Antikörper Fragment (scFv) Nr. 40 (im weiteren als 40 bezeichnet) wurde nach Standardmethoden aufgrund der Bindung an FAP aus einer scFv-Phagen Expressionsbank, die in dem Vektor pSEX (siehe Brocks et al, Molecular Medicine 7:461-469; Mersmann et al, Int.J. Cancer 92:240-248) vorlag, isoliert.
- 2. Der scFv 40 wurde mittels Pvu2 und Not1 aus pSEX ausgeschnitten und in die entsprechenden sites des Minibody-Konstrukts pW6 (Wüest, T., 15 Dissertation Uni Stuttgart, 2001) eingesetzt. Hierzu wurde dem Plasmid pW6 zuvor der zwischen diesen Stellen liegende DNA-Bereich durch entsprechenden Restriktionsverdau und präparativer Agarosegel-Durch Elektrophorese nebst **DNA-Elution** entfernt. diesen Klonierungsschritt wurde der scFv 40 so zwischen eine eukaryotische Ig 20 Leadersequenz (upstream von 40) und der konstanten Region (Fc Region) eines humanen Antikörpers (IgG1, downstream von 40)) kloniert, daß die Expression eines sekretierbaren, divalenten Minibodies, wie bei Hu et al (Cancer Research 56:3055) beschrieben, möglich ist.

25

30

3. Leader + scFv 40 + Fc wurden durch proof-reading PCR mit den Primern 1 und 2 amplifiziert und das scFv Fragment mittels der durch den Primer 1 eingeführten Kpn1-Schnittstelle und der zwischen scFv 40 und Fc-Region liegenden Not1-Schnittstelle in die entsprechenden Schnittstellen des eukaryontischen Expressionsvektors pcDNA3.1 (Invitrogen) eingeführt.

- 4a. Zur Fertigstellung von FasL-AMAIZe(40) wurden die AS 139 bis 281 + Stopcodon von humanem FasL mittels der Primer 3 und 4 und proof-reading PCR amplifiziert und in die Schnittstellen Not1 und Xba1 des in 3. erhaltenen pcDNA3.1-Klonierungsintermediates eingesetzt. In das FasL-Amplikon wurden hierzu durch die verwendeten Primer eine Not1 und eine Nhe1-Schnittstelle, die mit Xba1 kompatibel ist, eingefügt. Das so erhaltene fertige Konstrukt erlaubt die Expression des Fusionsproteins FasL-AMAIZe(40).
- 4b. Zur Fertigstellung von TRAIL-AMAIZe(40) wurden die AS 95 bis 281 + Stopcodon von humanem TRAIL mittels den Primern 5 und 6 und proofreading PCR amplifiziert und in die Schnittstellen Not1 und Xba1 des in 3. erhaltenen pcDNA3.1-Klonierungsintermediates eingesetzt. In das TRAIL-Amplikon wurden hierzu durch die verwendeten Primer eine Not1 und eine Xba1-Schnittstelle eingefügt. Das so erhaltene fertige Konstrukt erlaubt die Expression des Fusionsprotein TRAIL-AMAIZe(40).
 - 5. Zur Gewinnung von TRAIL-AMAIZe(40) bzw. FasL-AMAIZe(40) wurden HEK293 Zellen mit den unter 4. beschriebenen Konstrukten nach Angaben des Herstellers mit Lipofektamin (Gibco-BRL) transfiziert. 48 Stunden nach Transfektion wurden die AMAIZe-Konstrukt-Überstände sterilfiltriert und bei 4°C bis zur weiteren Verwendung gelagert.

Alle Klonierungs- und PCR-Amplifikationsschritte erfolgten nach üblichen Standardprozeduren mit den nachfolgenden Primern. Alle Konstrukte wurden zur Verifikation der cDNA-Sequenz sequenziert.

Primer 1

5

20

25

5'CGG GGT ACC TCG ACC ATG GAC TGG ACC TGG CGC GTG 3'

Primer 2

5'CCG GAA TTC CAC AGC CAG GTG CAA CTA GTT GAG CC 3'

30 Primer 3

5'CTA GGT GCG GCC GCA GTT GAG CTC GAG GAA AAA AAG GAG CTG AGG AAA GTG 3' Primer 4

5'CTA GCT AGC GTG CTT CTC TTA GAG CTT ATA TAA GCC 3'

Primer 5

5'GTC TTC GCG GCC GCA GTT GAG CTC GAG ACC TCT GAG GAA ACC ATT

5 TCT ACA G 3'

Primer 6

5'TGC TCT AGA CCA GGT CAG TTA GCC AAC TAA AAA GGC 3'

10 Beispiel 3

Nachweis der Antigen-abhängigen Aktivierung am Beispiel des FAP-spezifischen TRAIL-AMAIZe(MBOS4) (siehe auch Fig. 2A).

TRAIL-AMAIZe(MBOS4) wurde - wie analog wie in Beispiel 2 beschrieben - bereitgestellt.

Anschließend wurden FAP-positive (HT1080-FAP) und FAP-negative (HT1080) Zellen mit dem FAP-spezifischen Antikörper cF19 vorinkubiert (1h) oder blieben unbehandelt. Die Zellen wurden über Nacht in Gegenwart von CHX (2.5 µg/ml) mit den angegebenen Konzentrationen an TRAIL-AMAIZe(MBOS4) inkubiert. Die Quantifizierung der überlebenden Zellen erfogte mittels Kristallviolett-Färbung. In Figur 2A ist die Wirkung des TRAIL-AMAIZe(MBOS4) auf Zielzellen, die spezifisch vom Antikörper-Anteil des Fusionsproteins erkannt werden (FAP positive HT 1080) dargestellt.

25

20

Beispiel 4

Präferentielle Apoptoseinduktion durch TRAIL-AMAIZe und FasL-AMAIZe auf FAP-positiven Tumorzellen (siehe auch Fig. 2A-F).

15 x 10³ HT1080 oder HT1080-FAP Zellen pro well einer 96-well Platte wurden über Nacht kultiviert. Am nächsten Tag wurden die Zellen mit den angegebenen Mengen der verschiedenen Konstrukte für weitere 14-18 Stunden in der Anwesenheit von 2.5 μg/ml CHX (zur Sensibilisierung der Zellen für die Induktion

22

von Todesrezeptor-vermittelter Apoptose) behandelt. Dann wurde abschließend die Vitalität der Zellen durch Färbung mit Kristall-Violett bestimmt. Die jeweiligen Werte für unbehandelte Gruppen lag in allen Fällen zwischen 700 und 850 mOD. Kontrollgruppen, in denen alle Zellen dem Zelltod anheimfielen, wiesen Werte von 100 bis 150 mOD auf. Zelltod der entsprechenden Positiv-Kontrollgruppen wurde durch sekundäres Quervernetzen eines löslichen, Flag-markierten Fast-Konstruktes (500 ng/ml) mittels des Flag-spezifischen Antikörpers M2 (Sigma) erreicht. Auch in diesem Fall wurden den Kulturen 2.5 µg CHX zugegeben.

10

10

15

20

25

Ansprüche

- 1. Polypeptid, dadurch gekennzeichnet, dass es (i) einen Abschnitt (1) mit einer biologischen Aktivität für ein spezifisches Zielmolekül, (ii) einen Nterminal von Abschnitt (1) einen Abschnitt (2), welcher ein Peptidlinker ist, und (iii) einen Abschnitt (3), welcher ein Antikörper oder davon abgeleitetes Fragment ist und ein spezifisches Zielmolekül auf einer Zelloberfläche selektiv erkennt, enthält, wobei das Polypeptid ohne ortsspezifische und/oder selektive Bindung des Abschnitts (3) an das Zielmolekül biologisch inaktiv bzw. eingeschränkt aktiv ist.
- Polypeptid nach Anspruch 1, dadurch gekennzeichnet, dass der Abschnitt
 (1) eine Aminosäuresequenz eines Zytokins oder ein Fragment hiervon enthält.
 - 3. Polypeptid nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Zytokin eine extrazelluläre Domäne, eine funktionelle Variante einer extrazellulären Domäne oder ein funktionelles Fragment einer extrazellulären Domäne eines Mitglieds der TNF-Familie ist.
 - 4. Polypeptid nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Zytokin eine extrazelluläre Domäne, eine funktionelle Variante einer extrazellulären Domäne oder ein funktionelles Fragment einer extrazellulären Domäne von TRAIL (TNF Related Apoptosis Inducing Ligand, AA 95-281, NCBI Accession No AAC50332) oder von FasL (AA 139-281, NCBI Accession No. AAC50124) ist.
- 5. Polypeptid nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass es als spezifisches Zielmolekül einen zellmembranständigen Zytokinrezeptor erkennt.

- 6. Polypeptid nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Abschnitt (2) die Abschnitte (3) und (1) verbindet und ein intrinsisches, definiertes Polymerisierungsmodul ist.
- 5 7. Polypeptid nach einem der vorgenannten Ansprüche. dadurch gekennzeichnet, dass das Polymerisierungsmodul aus einem natürlich vorkommenden oder synthetisch hergestellten Peptid besteht, welches Dimerisierungseigenschaften, z. B. einer Immunglobulin hinge Region und CH3-Domane eines humanen Immunglobulingens (AA 363-489, humanes 10 .igG1. NCBI Accession No. AAF21613), und/oder intrinsische Trimerisierungseigenschaften, z. B einer Domäne des Tenascin-Moleküls, und/oder Hexamerisierungseigenschaften, z. B. einer erweiterten Domäne des Tenascinmoleküls (AA34-139, Swiss Prot. Accession No. P10039, Huhn, Swiss. Prot. Accession No. P24821, human), besitzt.

- 8. Polypeptid nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Abschnitt (3) ein antigenbindender Antikörper oder ein antigenbindendes Antikörperfragment ist.
- 9. Polypeptid nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Abschnitt (3) ein Antikörper oder ein Antikörperfragment eines Säugetiers, insbesondere murinen, oder humanen Ursprungs, ist oder ein humanisierter Antikörper oder ein humanisiertes Antikörperfragment ist.

25

10. Polypeptid nach einem der vorgenannten Ansprüche. dadurch gekennzeichnet, dass das Antikörperfragment in verschiedenen Antikörperformaten vorliegen kann z.B. als scFv, Fab oder komplettes Immunglobulin.

- 11. Nukleinsäurekonstrukt, dadurch gekennzeichnet, dass sie eine Nukleotidsequenz, codierend für ein Polypeptid nach einem der vorgenannten Ansprüche, enthält.
- 5 12. Vektor, dadurch gekennzeichnet, dass er ein Nukleinsäurekonstrukt gemäß Anspruch 11 enthält.
 - 13. Wirtszelle, dadurch gekennzeichnet, dass sie eine Nukleinsäure gemäß Anspruch 11 und/oder einen Vektor gemäß Anspruch 12 enthält.
 - Verfahren zur Isolierung eines Polypeptids nach einem der Ansprüche 1
 bis 10, dadurch gekennzeichnet, dass
 - (a) ein Vektor gemäß Anspruch 12 oder ein Nukleinsäurekonstrukt gemäß Anspruch 11 hergestellt wird,
 - (b) Zellen mit einem gemäß Verfahrensschritt (a) erhaltenen Vektor oder Nukleinsäurekonstrukt transfiziert werden,
 - (c) die gemäß (b) transfizierten Zellen kultiviert werden, und
 - (d) unter entsprechenden Bedingungen exprimierte Polypeptide aus den Wirtszellen und/oder dem Kulturüberstand isoliert werden.

15. Verwendung eines Polypeptids nach einem der Ansprüche 1-10, eines Nukleinsäurekonstrukts nach Anspruch 11, eines Vektors nach Anspruch 12 oder einer Wirtszelle nach Anspruch 13 zur Herstellung eines Arzneimittels.

16. Verwendung eines Polypeptids nach einem der Ansprüche 1-10, eines Nukleinsäurekonstrukts nach Anspruch 11, eines Vektors nach Anspruch 12 oder einer Wirtszelle nach Anspruch 13 zur Behandlung von Krebserkrankungen, insbesondere soliden oder lymphatischen Tumoren, Infektionskrankheiten, Stoffwechselerkrankungen, Entzündungszuständen, Autoimmunerkrankungen, insbesondere rheumato/arthritische Erkrankungen.

30

20

10

15

WO 02/22680

26

- Zusammensetzung, enthaltend Polypeptide einem der Ansprüche 1-10, Nukleinsäurekonstrukte nach Ansprüch 11, Vektoren nach Ansprüch 12 und/oder Wirtszellen nach Ansprüch 13 sowie pharmazeutisch unbedenkliche Hilfs-, Zusatz- und/oder Trägersubstanzen.
- Verwendung einer Zusammensetzung nach Anspruch 17 zur Herstellung eines Arzneimittels, insbesondere zur Behandlung von Krebserkrankungen, insbesondere soliden oder lymphatischen Tumoren,
 Infektionskrankheiten, Stoffwechselerkrankungen, Entzündungszuständen, Autoimmunerkrankungen, insbesondere rheumato/arthritische Erkrankungen.

15

В

Fig. 2

Fig. 3

SEQUENZPROTOKOLL

ANMELDER

5 NAME: Prof. Dr. Klaus Pfizenmaier

STRASSE:

Seehausstraße 7

ORT:

Tiefenbronn

POSTLEITZAHL:

75233

TELEFON:

07 11/6 85 69 86

10 TELEFAX: 07 11/6 85 74 84

AKTENZEICHEN:

15 BEZEICHNUNG DER ERFINDUNG:

Ortsspezifische, antikörpervermittelte Aktivierung proapoptotischer Zytokine:

AMAIZe (Antibody-Mediated Apoptosis Inducing Zytokine)

20

ANZAHL DER SEQUENZEN: 6 DNA Sequenzen

6 Proteinsequenzen

COMPUTERLESBARE FASSUNG:

DATENTRÄGER:

Diskette

25

COMPUTER:

PC

BETRIEBSSYSTEM:

MS DOS

SOFTWARE:

Windows NT

Sequenzprotokoll zu Patentanmeldung AMAIZe AZ#

Anmeldernummer:

5

10

Sequenzbeschreibung 1: Kodierende DNA Sequenz (unten, nur kodierender DNA Strang, Nukleotid (NT) 1-1845) und translatierte Aminosäuresequenz (oben, Einzelbuchstaben Kodierung der Aminosäuren (AA) 1-614) eines erfindungsgemäßen Antikörper-Zytokin-Fusionsproteins AMAIZe am Beispiel von TRAIL-AMAIZe (MBOS4) (Konstrukt A).

15	1	M ATG	D GAC	W TGG	T ACC	w TGG	R CGC	V GTG	F TTT	C TGC	L CTG	L CTC	A GCC	V GTG	A GCT	P CCT	G GGG	16 48
	17	A	H	S	Q	V	Q	L	V	Q	s	G	A	e	V	K	K	32
	49	GCC	CAC	AGC	CAG	GTG	CAA	CTA	GTG	CAG	TCC	GGC	GCC	gaa	GTG	AAG	AAA	96
20	33 97	P	G GGT	A GCT	S TCC	V GTG	K AAA	V GTC	s AGC	C TGT	K AAA	T ACT	S AGT	R AGA	Y TAC	T ACC	F TTC	48 144
25	49	T	e	Y	T	I	H	w	V	R	Q	A	P	G	Q	R	L	64
	145	ACT	gaa	TAC	ACC	ATA	CAC	TGG	G TT	AGA	CAG	GCC	CCT	GGC	CAA	AGG	CTG	192
23	65	E	W	I	G	g	I	n	P	N	N	g	I	P	n	Y	N	80
	193	GAG	TGG	ATA	GGA	GGT	ATT	Aat	CCT	AAC	AAT	GGT	ATT	CCT	Aac	TAC	AAC	240
30	81	Q	K	F	K	G	R	GTC	T	I	T	V	D	T	s	A	S	96
	241	CAG	AAG	TTC	AAG	GGC	CGG	V	ACC	ATC	ACC	GTA	GAC	ACC	TCT	GCC	AGC	288
	97	T	A	Y	M	e	L	s	S	L	R	S	E	D	T	A	V	112
	289	ACC	GCC	TAC	ATG	gaa	CTG	TCC	AGC	CTG	CGC	TCC	GAG	GAC	ACT	GCA	GTC	336
35	113	Y	Y	C	A	R	R	R	I	A	Y	g	Y	D	E	G	H	128
	337	TAC	TAC	TGC	GCC	AGA	AGA	AGA	ATC	GCC	TAT	GGT	TAC	GAC	GAG	GGC	CAT	384
40	129	a	M	D	Y	W	g	Q	g	T	L	V	T	V	S	S	A	144
	385	GCT	ATG	GAC	TAC	TGG	GGT	CAA	GGA	ACC	CTT	GTC	ACC	GTC	TCC	TCA	GCC	432
40	145	S	T	K	G	P	K	L	E	E	g	E	F	S	E	A	R	160
	433	TCC	ACC	AAG	GGC	CCA	AAG	CTT	GAA	GAA	GGT	GAA	TTT	TCA	GAA	GCA	CGC	480
45	161	V	D	I	v	M	T	Q	S	P	D	S	L	a	V	s	L	176
	481	GTA	GAC	ATT	GTG	ATG	ACC	CAA	TCT	CCA	GAC	TCT	TTG	GCT	GTG	TCT	CTA	528
	177	G	E	R	A	T	I	n	C	K	S	s	Q	S	L	L	Y	192
	529	GGG	GAG	AGG	GCC	ACC	ATC	aac	TGC	AAG	TCC	agt	CAG	AGC	CTT	TTA	TAT	576
50	193	s	R	N	Q	K	n	Y	L	A	w	Y	Q	Q	K	P	G	208
	577	TCT	AGA	AAT	CAA	AAG	Aac	TAC	TTG	GCC	Tgg	TAT	CAG	CAG	AAA	CCA	GGA	624
	209 625	Q CAG	P	P	K AAA	L	L CTC	I ATC	F TTT	W TGG	A GCT	S AGC	T ACT	R AGG	E GAA	S TCT	G GGG	22 4 672
55	225 673	V GTA	P	D GAT	R AGG	F	S AGT	GGC	S AGT	G GGG	F TTT	G GGG	T ACA	D GAC	F TTC	T ACC	L CTC	240 720

	2 4 1 721	T ACC	I ATT	S AGC	S AGC	L CTG	Q CAG	A GC1	E GAA	D GAT	v GTG		V GTI		Y AT 1		Q T CAG	256 768
5	257 769	Q CAA	Y TAT	F TTT	S	Y TAT	P CCG	L	T ACG	F TTC	G GGA	Q CAA	G G	T ACC	K C AAC	V G GT	E G GAA	272 816
	273 817	I ATA	K AAA	R CGT	T	V GTG	A GCT	A GCA	P CCA	S TCT	V GTC	F TTC	A GCI	V GTC	F TT(A GCC	A G GCC	288 864
10	289 865	a GCA	V GTT	e gag	CCC	K AAA	S TCT	C TGT	D GAC	K AAA	T ACT	H CAC	T ACA	C TGC	P CCZ	P CC2	C A TGC	304 912
15	305 913	G GGA	G GGA	G GGA	s agt	S AGC	G GGA	G GGA	G GGA	S TCA	G GGA	G GGG	Q CAG	CCC	R CG#	E GAZ	P A CCA	320 960
	321 961	Q CAG	V GTG	Y TAC	T ACC	L CTG	P	P CCA	s TCC	R CGG	E GAG	e gag	M ATG	T ACC	K AAG	N AAC	Q CAG	336 1008
20	337 1009	v GTC	S AGC	L CTG	T ACC	C TGC	L CTG	V GTC	K AAA	G GGC	F TTC	Y TAT	P	S AGC	D GAC	I ATC	A GCC	352 1056
	353 1057	V GTG	e Gag	w TGG	e gag	S AGC	n aat	G GGG	Q CAG	P CCG	e gag	n aac	n Aac	Y TAC	K AAG	T	T ACG	368 110 4
25	369 1105	CCT	P	gig a	L CTG	D GAC	s TCC	D GAC	G GGC	s TCC	F TTC	F TTC	L CTC	Y TAT	S AGC	K AAG	L CTC	384 1152
30	385 1153	T ACC	V GTG	D GAC	K AAG	S AGC	R AGG	w TGG	Q CAG	Q CAG	G GGG	n aac	V GTC	F TTC	S TCA	TGC	S TCC	400 1200
	401 1201					A GCT	L CTG	H CAC	n Aac	H CAC	Y TAC	T ACG	Q CAG	K AAG	S AGC	L CTC	S TCC	416 1248
35	417 1249			G GGA	G GGT	G GGC	G GGT	T ACC	G GGA	G GGT	G GGG	S TCT	T ACC	S TCT	e Gag	E GAA	ACC	432 1296
40	433 1297					Q CAA	E GAA	K AAG	Q CAA	Q CAA	n AAT	I ATT	S TCT	CCC	L CTA	V GTG	R AGA	448 1344
40	1345								A GCA	A GCT	H CAC	I ATA	T ACT	G GGG	T ACC	R AGA	G GGA	464 1392
45	465 1393																L CTG	480 1440
	481 1441	GGC	CGC	AAA	ATA	AAC	TCC	TGG	GAA	TCA	TCA	AGG	AGT	GGG	CAT	S TCA	F TTC	496 1488
50	497 1489		AGC		TTG	CAC	TTG	AGG	AAT	g GGT	e gaa	L CTG	V GTC	I ATC	H CAT	e gaa	K AAA	512 1536
55	513 1537	G GGG	TTT		TAC	ATC	TAT	TCC	CAA			F TTT	R CGA	F TTT	Q CAG	e Gag	e Gaa	528 1584
55	529 1585	I ATA		GAA .	AAC	ACA	AAG	AAC	GAC		CAA	M ATG	V GTC	Q CAA	Y TAT	I ATT	Y TAC	544 . 1632
60	545 1633	AAA		ACA .	AGT		CCT	GAC	CCT		TTG		M ATG	K AAA	S AGT	A GCT	R AGA	560 1680
	561 1681	N AAT					AAA	GAT	GCA		Y TAT	G GGA	L CTC	Y TAT	S TCC	I ATC	Y TAT	576 1728
65	577 1729	Q CAA	G GGG	G GGA.	I ATA	F TTT	e Gag	L CTT	K AAG	E GAA	N AAT	D GAC	R AGA	I ATT	F TTT	GTT V	S TCT	592 1776

	593	V	T	n	E	H	L	I	D	M	D	H	e	A	s	F	F	608
	1777	GTA	ACA	aat	GAG	CAC	TTG	ATA	GAC	ATG	GAC	CAT	gaa	GCC	agt	TTT	TTC	1824
5	609 1825	_																615 18 45

10

Merkmale Konstrukt A:

Leitpeptidsequenz: NT 1-57, AA 1-19

15 Sequenz des Einzelketten (scFv)-Antikörperfragmentes OS4 (spezifisch für das Tumorstroma-Antigen FAP): NT 58-822, AA 20-274

Sequenz des Linkers 1 (L1) Zwischen scFv und Immunoglobulin-CH3 Domäne: NT 823-942, AA 275-314

20

Sequenz der Immunoglobulin-CH3 Domäne: NT 943-1254, AA 315-418

Sequenz des Linkers 2 zwischen Ig CH3 Domäne und TRAIL: NT 1254-1281, AA 419-427

25

Sequenz des humanen TRAIL Fragmentes (extrazelluläre Domäne, ab AA 95-281 des natürlichen, humanen TRAIL Moleküls): NT 1282-1842, AA 428-614

Stop Kodon: NT 1843-1845.

30

Sequenzprotokoll zu Patentanmeldung AMAIZe AZ#

Anmeldernummer:

5 Sequenzbeschreibung 2: Kodierende DNA Sequenz (unten, nur kodierender DNA Strang, Nukleotid (NT) 1-1443) und translatierte Aminosäuresequenz (oben, Einzelbuchstaben Kodierung der Aminosäuren (AA) 1-480) eines erfindungsgemäßen Antikörper-Zytokin-Fusionsproteins AMAIZe am Beispiel von TRAIL-AMAIZe (OS4) (Konstrukt B).

10	_					4.0													
	1	M ATG	D GAC	W TGG	T ACC	W TGG	R CGC	V GTG	F TTT	TGC	L CTG	L	A GCC	V GTG	A GCT	CCI	GGG		16 48
15	17 49	A GCC	H CAC	S AGC	Q CAG	V GTG	Q CAA	L CTA	grg Grg	Q CAG	S TCC	G GGC	A GCC	E GAA	V GTG	K AAG	K AAA		32 96
	33 97	CCC	g GGT	A GCT	s TCC	V GTG	K AAA	V GTC	S AGC	C TGT	K AAA	T ACT	s Agt	R AGA	Y TAC	T	F	1	48 144
20	49 145	T ACT	e gaa	Y TAC	T ACC	_	H CAC	W TGG	V GTT	R AGA	Q CAG	A GCC	P CCT	G GGC	Q CAA	R AGG	L CTG	1	64 92
25	65 193	e Gag	W TGG	I ATA	G GGA	G GGT	I ATT	N AAT	P CCT	n aac	n aat	G GGT	I ATT	P CCT	N AAC	Y TAC	N AAC		80 240
23	81 241	Q CAG	K AAG	F TTC	K AAG	G GGC	R CGG	V GTC	T ACC	I ATC	T ACC	V GTA	D GAC	T ACC	S TCT	A GCC	S AGC		96 88
30	97 289	T ACC	A GCC	Y TAC	M ATG	e gaa	L CTG	S TCC	S AGC	L CTG	R CGC	S TCC	E GAG	D GAC	T ACT	A GCA	V GTC	_	12 36
	113 337	Y TAC	Y TAC	C TGC	A GCC	R AGA	R AGA	R AGA	I ATC	A GCC	Y TAT	g GGT	Y TAC	D GAC	e gag	G GGC	H CAT	_	28 84
35	129 385	A GCT	M ATG	D GAC	Y TAC	w TGG	g GGT	Q CAA	G GGA	T ACC	L CTT	V GTC	T ACC	V GTC	s TCC	S TCA	A GCC	_	44 32
40	145 433	s TCC	T ACC	K AAG	G GGC	P CCA	K AAG	L CTT	E GAA	E GAA	g GGT	e gaa	F TTT	S TCA	E GAA	A GCA	R CGC	_	60 80
40	161 481	V GTA	D GAC	I ATT	V GTG	M ATG	T ACC	Q CAA	S TCT	P CCA	D GAC	s TCT	L TTG	A GCT	V GTG	S TCT	L CTA	_	76 28
45	177 529	G GGG	E GAG	R AGG	A GCC	T ACC	I ATC	n Aac	C TGC	K AAG	s TCC	s agt	Q CAG	S AGC	L CTT	L TTA	Y TAT		92 76
	193 577	S TCT	R AGA	N AAT	Q CAA	K AAG	n aac	Y TAC	L TTG	A GCC	W TGG	Y TAT	Q CAG	Q CAG	K AAA	P CCA	G GGA	_	08 2 4
50	209 625	Q	P	P	ĸ	L	L	I	F	W	A	s	T	R	E	S TCT	G		2 4 72
56	225 673	V	P	D	R	F	s	G	s	G	F	G	T	D	F	T ACC	L		40 20
55	241 721	T ACC	I ATT	S AGC	S AGC	L CTG	Q CAG	A GCT	E GAA	D GAT	V GTG	A GCA	V GTT	Y TAT	Y TAC	C TGT	Q CAG	-	56 68
60	257 769	Q CAA	Y TAT	F TTT	S AGC	Y TAT	P CCG	L CTC	T ACG	F TTC	G GGA	Q CAA	G GGG	T ACC	K AAG	V GTG	e gaa		72 16

	273	I	K	r	T	V	A	A	P	S	V	F	A	V	F	A	A	288
	817	ATA	AAA	CGT	ACT	GTG	GCT	GCA	CCA	TCT	GTC	TTC	GCT	GTC	TTC	GCG	GCC	864
5	289	A	V	E	L	e	T	S	E	e	T	I	S	T	V	Q	e	304
	865	GCA	GTT	GAG	CTC	gag	ACC	TCT	GAG	gaa	ACC	ATT	TCT	ACA	GTT	CAA	gaa	912
10	305	K	Q	Q	n	I	s	P	L	V	r	E	R	g	P	Q	R	320
	913	AAG	CAA	CAA	aat	ATT	TCT	CCC	CTA	GTG	aga	GAA	AGA	GGT	CCT	CAG	AGA	960
10	321	V	A	A	H	I	T	G	T	R	G	R	S	n	T	L	S	336
	961	GTA	GCA	GCT	CAC	ATA	ACT	GGG	ACC	AGA	GGA	AGA	AGC	aac	ACA	TTG	TCT	1008
15	337	S	P	n	S	K	n	e	K	a	L	G	R	K	I	N	S	352
	1009	TCT	CCA	aac	TCC	AAG	aat	gaa	AAG	gct	CTG	GGC	CGC	AAA	ATA	AAC	TCC	1056
	353	w	e	S	S	R	s	G	H	s	F	L	S	n	L	H	L	368
	1057	TGG	gaa	TCA	TCA	AGG	agt	GGG	CAT	TCA	TTC	CTG	AGC	Aac	TTG	CAC	TTG	1104
20	369	R	n	g	E	L	V	I	H	e	K	G	F	Y	Y	I	Y	384
	1105	AGG	aat	GGT	GAA	CTG	GTC	ATC	CAT	gaa	AAA	GGG	TTT	TAC	TAC	ATC	TAT	1152
25	385	S	CAA	T	Y	F	R	F	Q	e	e	I	K	E	N	T	K	400
	1153	TCC	CAA	ACA	TAC	TTT	CGA	TTT	CAG	gag	gaa	ATA	AAA	GAA	AAC	ACA	AAG	1200
	401 1201	N AAC	D GAC	K AAA	Q CAA	M ATG		Q CAA	Y TAT	_	Y TAC	K AAA	Y TAC	T ACA	s agt	Y TAT	P CCT	416 1248
30	417 1249	D GAC	P	I ATA	L TTG	L TTG	M ATG		s agt	A GCT	R AGA	n aat	s agt		W TGG			432 1296
i	433 1297	D GAT	A GCA	e gaa	Y TAT	G GGA	CTC								I ATA		e gag	448 1344
35	449 1345	L CTT	K AAG	e gaa	n aat	D GAC	R AGA								E GAG			464 1392
40	465 1393	I ATA	D GAC	M ATG	D GAC	H CAT	E GAA	A GCC	s agt	F TTT	F TTC	G GGG	A GCC	F TTT	L TTA	V GTT	GGC	480 1440
	481 1441	* TAA																481 1443

45 Merkmale Konstrukt B:

Leitpeptidsequenz: NT 1-57, AA 1-19

Sequenz des Einzelketten (scFv)-Antikörperfragmentes OS4 spezifisch für das Tumorstroma-Antigen FAP: NT 58-822, AA 20-274

Sequenz des Linkers zwischen scFv und TRAIL-Fragment (AA 95-281): NT 823-879, AA 275-293

55 Sequenz des humanen TRAIL Fragmentes (extrazelluläre Domäne, AA 95-281 des natürlichen, humanen TRAIL Moleküls): NT 880-1440 AA 294-480

Stop Kodon: NT 1441-1443.

Sequenzprotokoll zu Patentanmeldung AMAIZe AZ#

Anmeldernummer:

5 Sequenzbeschreibung 3: Kodierende DNA Sequenz (unten, nur kodierender DNA Strang, Nukleotid (NT) 1-1386) und translatierte Aminosäuresequenz (oben, Einzelbuchstaben Kodierung der Aminosäuren (AA) 1-461)eines erfindungsgemäßen Antikörper-Zytokin-Fusionsproteins AMAIZe am Beispiel von TRAIL-AMAIZe(40)(Konstrukt C).

10																		
	1 M		W GAC	_				f GTG	_		_			_		G CCT		16 48
15	17	A	H	S	Q	V	Q	L	V	Q	s	G	G	G	M	V	E	32
	49	GCC	CAC	AGC	CAG	GTA	CAG	CTG	GTG	CAG	TCT	GGG	GGA	GGC	ATG	GTA	GAG	96
	33	P	G	G	s	L	R	L	S	C	A	A	S	G	F	T	F	48
	97	CCT	GGG	GGG	TCC	CTT	AGA	CTC	TCC	TGT	GCA	GCC	TCT	GGA	TTC	ACT	TTC	144
20	49 145	s	N AAT	A	W	M	s	W	٧	R	Q	A	P	G	ĸ	G	L	64 192
	65	E	W	v	G	R	I	ĸ	s	ĸ	A	G	G	G	T	A	E	80
25	193 81	GAG Y	TGG A	GTT A	GGC P	V	ATA K	AAA G	AGC R	AAA F	GCT T	GGT I	GGT S	GGG R	ACA D	GCA D	S	2 4 0 96
	241		GCT															288
30	97	Q	n	T	L	Y	L	Q	M	n	S	L	K	T	D	D	T	112
	289	CAA	aac	ACG	CTG	TAT	CTG	CAA	ATG	Aac	AGC	CTG	AAA	ACC	GAC	GAC	ACA	336
	113 337	A GCC	V GTG	Y TAT	Y TAC	C TGT	T ACC	T ACA	H CAT	V GTC	Y TAC	G GGT	A GCC	CCC	R CGG	n aac	w TGG	128 384
35	129	G	Q	G	s	L	V	T	V	s	S	A	S	T	K	G	P	144
	385	GGC	CAG	GGA	TCC	CTG	GTC	ACC	GTC	TCC	TCA	GCC	TCC	ACC	AAG	GGC	CCA	432
40	145	K	L	e	E	g	e	F	S	e	A	R	V	Q	s	V	L	160
	433	AAG	CTT	gaa	GAA	GGT	gaa	TTT	TCA	gaa	GCA	CGC	GTA	CAG	TCT	GTG	TTG	480
40	161 481	T ACT	Q CAG	P CCG	P	S TCA	V GTG	s TCT	A GCG	A GCC	P CCA	G GGA	Q CAG	K AAG	V GTC	T ACC	I ATC	176 528
45	177	s	C	S	G	S	S	s	n	I	G	n	N	Y	V	S	W	192
	529	TCC	TGC	TCT	GGA	AGC	AGC	TCC	aac	ATT	GGA	aat	AAT	TAT	GTC	TCC	TGG	576
	193 577	Y TAC	V GTT	Q CAA	L CTC	P CCA	G GGA	T ACA	A GCC	P	K AAA	L CTC	L CTC	I ATT	Y TAT	D GAC	N AAT	208 624
50	209	n	K	R	F	S	G	V	P	D	R	F	S	G	s	K	S	22 4
	625	aat	AAG	CGA	TTC	TCA	GGA	GTT	CCT	GAC	CGA	TTC	TCT	GGC	TCC	AAG	TCT	672
	225	G	T	S	A	T	L	G	I	T	G	L	Q	T	G	D	e	240
	673	GGC	ACG	TCA	GCC	ACC	CTG	GGC	ATC	ACC	GGG	CTC	CAG	ACT	GGG	GAC	Gag	720
55 .	241	A	D	Y	Y	C	G	A	w	D	G	s	L	R	E	A	V	256
	721	GCC	GAT	TAT	TAC	TGC	GGA	GCA	TGG	GAT	GGC	agc	CTG	CGT	GAA	GCG	GTA	768
60	257	F	G	G	G	T	K	V	T	V	L	G	A	A	A	y	e	272
	769	TTC	GGC	GGA	GGG	ACC	Aag	GTC	ACC	GTC	CTA	GGT	GCG	GCC	GCA	G TT	gag	816

PCT/EP01/10364

	273 817		E GAG	T ACC	s TCT	E GAG	_	_	_	S TCT	_	-	Q CAA	_	K AAG	_	Q CAA	288 864
5	289 865	n aat	_	S TCT			V GTG				_	P CCT	Q CAG		V GTA			304 912
10	305 913	H CAC		T ACT	G GGG	T ACC	-	G GGA		S AGC		T ACA	L TTG	S TCT	S TCT	P CCA	n aac	320 960
10	321 961			N AAT														336 1008
15	337 1009	S TCA		s agt	G GGG	H CAT		F TTC	L CTG	S AGC			H CAC	_		n aat	_	352 1056
	353 1057	e gaa	_	V GTC	I ATC	H CAT				_	Y TAC	_	I ATC	Y TAT	S TCC	Q CAA	T ACA	368 1104
20	369 1105		F TTT	R CGA	F TTT			E GAA		K AAA		n Aac	T ACA	K AAG	n aac	D GAC		384 1152
25	385 1153	Q CAA		V GTC	_	_	I ATT						Y TAT	P CCT	D GAC	_	I ATA	400 1200
2,	401 1201	L TTG	L TTG	M ATG	K AAA	s Agt	A GCT		n aat	s agt	C TGT	W TGG	S TCT	K AAA	D GAT	a GCA	e gaa	416 1248
30	417 1249	Y TAT		L CTC		s TCC		Y TAT					F TTT	e gag	L CTT	K AAG	_	432 1296
	433 1297		D GAC	R AGA		F TTT		_		T ACA		E GAG	H CAC	L TTG	_		M ATG	448 1344
35	449 1345	D GAC	H CAT	E GAA	A GCC	s Agt	F TTT	F TTC	G GGG	A GCC		_	V GTT	_	* TAA			462 1386

40 Merkmale Konstrukt C:

Leitpeptidsequenz: NT 1-57, AA 1-19

Sequenz des Einzelketten (scFv)-Antikörperfragmentes 40 spezifisch für das Tumorstroma-Antigen FAP: NT 58-801, AA 20-267

Sequenz des Linkers zwischen scFv und TRAIL-Fragment (AA 95-281): NT 802-822, AA 268-274

50 Sequenz des humanen TRAIL Fragmentes (extrazelluläre Domäne, AA 95-281 des natürlichen, humanen TRAIL Moleküls): NT 823-1383 AA 275-461

Stop Kodon: NT 1384-1386.

Sequenzprotokoll zu Patentanmeldung AMAIZe

Anmeldernummer:

5 Sequenzbeschreibung 4: Kodierende DNA Sequenz (unten, nur kodierender DNA Strang, Nukleotid (NT) 1-1254) und translatierte Aminosäuresequenz (oben, Einzelbuchstaben Kodierung der Aminosäuren (AA) 1-417)eines erfindungsgemäßen Antikörper-Zytokin-Fusionsproteins AMAIZe am Beispiel von FasL-AMAIZe(40)(Konstrukt D).

10																		
	1	m atg	D GAC	w TGG	T ACC	w TGG	R CGC	V GTG	F TTT	C TGC	L CTG	L CTC	A GCC	V GTG	A GCT	P CCT	G GGG	16 48
	17	A	н	s	Q	V	Q	L	٧	Q	s	G	G	G	M	v	E	32
15	49	GCC	CAC	AGC	CAG	GTA	CAG	CTG	GTG	CAG	TCT	GGG	GGA	GGC	ATG	GTA	GAG	96
	33	P	G	G	s	L	R	L	S	C	A	A	s	G	F	T	F	48
	97	CCT	GGG	GGG	TCC	CTT	AGA	CTC	TCC	TGT	GCA	GCC	TCT	GGA	TTC	ACT	TTC	144
20	49	S	n	A	w	M	S	W	V	R	Q	a	P	G	K	G	L	64
	145	AGT	aat	GCC	TGG	ATG	AGC	TGG	GTC	CGC	CAG	GCT	CCA	GGG	AAG	GGG	CTG	192
25	65 193	E GAG	w TGG	g tt	G GGC	r CGT	I ATA	K AAA	S AGC	K AAA	a gct	g ggt	g GGT	G GGG	T ACA	A GCA	E GAG	80 240
	81 241	Y TAC	A GCT	A GCA	P	V GTG	K AAA	G GGC	R AGA	F TTC	T ACC	I ATC	s TCA	R AGA	D GAT	D GAT	s TCA	96 288
30	97	Q	n	T	L	Y	L	Q	M	n	S	L	K	T	D	D	T	112
	28 9	CAA	Aac	ACG	CTG	TAT	CTG	CAA	ATG	aac	AGC	CTG	AAA	ACC	GAC	GAC	ACA	336
	113 337	A GCC	V GTG	Y TAT	Y TAC	C TGT	T ACC	T ACA	H CAT	V GTC	Y TAC	g Get	A GCC	P	R CGG	N AAC	w TGG	128 384
35	129	G	Q	G	S	L	V	T	V	s	S	A	S	T	K	G	P	144
	385	GGC	CAG	GGA	TCC	CTG	GTC	ACC	GTC	TCC	TCA	GCC	TCC	ACC	AAG	GGC	CCA	432
40	145	K	L	e	E	g	e	F	S	e	A	R	V	Q	s	V	L	160
	433	AAG	CTT	gaa	GAA	GGT	gaa	TTT	TCA	gaa	GCA	CGC	GTA	CAG	TCT	GTG	TTG	480
	161 481	T ACT	Q CAG	P CCG	P	S TCA	V GTG	S TCT	A GCG	A GCC	P CCA	G GGA	Q CAG	K AAG	V GTC	T ACC	I ATC	176 528
45	177	S	C	s	G	S	s	s	n	I	g	N	N	Y	V	S	w	192
	529	TCC	TGC	TCT	GGA	AGC	agc	TCC	Aac	ATT	gga	AAT	AAT	TAT	GTC	TCC	TGG	576
	193 577	Y TAC	V GTT ·	Q CAA	L CTC	P CCA	G GGA	T ACA	A GCC	CCC	K AAA	L CTC	L CTC	I ATT	Y TAT	D GAC	n Aat	208 62 4
50	209	n	K	R	F	s	G	V	P	D	R	F	s	G	s	K	s	22 4
	625	aat	AAG	CGA	TTC	TCA	GGA	GTT	CCT	GAC	CGA	TTC	TCT	GGC	TCC	AAG	TCT	672
55	225	G	T	S	A	T	L	G	I	T	G	L	Q	T	G	D	e	240
	673	GGC	ACG	TCA	GCC	ACC	CTG	GGC	ATC	ACC	GGG	CTC	CAG	ACT	GGG	GAC	Gag	720
	241	A	D	Y	Y	C	G	A	w	D	G	s	L	r	e	A	V	256
	721	GCC	GAT	TAT	TAC	TGC	GGA	GCA	TGG	GAT	GGC	Agc	CTG	cgt	gaa	GCG	GTA	768
60	257	F	G	G	G	T	K	V	T	V	L	G	A	A	A	V	E	272
	769	TTC	GGC	GGA	GGG	ACC	AAG	GTC	ACC	GTC	CTA	GGT	GCG	GCC	GCA	GTT	GAG	816

PCT/EP01/10364 WO 02/22680 10

	273 817	_	E GAG	E GAA		K AAG					v GTG	A GCC		L TTA	_	_	K AAG	288 864
5	-																	
)	289 865	S TCC	_	S TCA	R AGG	S TCC		P			w TGG	e gaa	D GAC	T ACC	Y TAT	G GGA	I ATT	304 912
	305		L	_	s	G					K			_	v	_	N	
10	913	GTC	CTG	CTT	TCT	GGA	GTG	AAG	TAT	AAG	AAG	GGT	GGC	CTT	GTG	ATC	AAT	960
10	321 961	_	t act	_	_	_	_		_	-	K AAA	-	_	_		_	Q CAA	
	337	s	С	N	N	L	P	L	s	н	K	v	Y	M	R	N	s	352
15	1009	TCT	TGC	AAC	AAC	CTG	CCC	CTG	AGC	CAC	AAG	GTC	TAC	ATG	AGG	AAC	TCT	1056
	353 1057	K		P	Q	D GAT	L CTG			M ATG	E GAG	G		M ATG	M ATG	S	_	368 1104
	1037	ANG	ımı	-	CAG	GAI	010	010	7110								1110	
20	369 1105	C		T	G	Q	M ATIC		A		S AGC	-	_		G	A GCA	•	384 1152
	1103	160	ACI	ACI	GGG	CAG	AIG	166	GCC	CGC	AGC	AGC	IAC	CIG	666	GCA	010	1132
	385	F		L	T	S	A	D	H	L	_	-	N	V	_		_	
25	1153	TTC	AAT	CTT	ACC	AGT	GCT	GAT	CAT	TTA	TAT	GTC	AAC	GTA	TCT	GAG	CTC	1200
23	401 1201	S TCT	_	V GTC	n Aat	F TTT	e gag	E GAA	S TCT	-			F TTC		_	_	K AAG	
	44.7	_																410
30	417 1249	L CTC																418 1254

Merkmale Konstrukt D:

35 Leitpeptidsequenz: NT 1-57, AA 1-19

> Sequenz des Einzelketten (scFv)-Antikörperfragmentes 40 spezifisch für das Tumorstroma-Antigen FAP: NT 58-801, AA 20-267

40 Sequenz des Linkers zwischen scFv und FasL-Fragment (AA 139-281): NT 802-822, AA 268-274

Sequenz des humanen FasL Fragmentes (extrazelluläre Domäne, AA 139-281 des natürlichen, humanen FasL Moleküls): NT 823-1251, AA 275-417

Stop Kodon: NT 1552-1554.

45

Sequenzprotokoll zu Patentanmeldung AMAIZe AZ#

Anmeldernummer:

5 Sequenzbeschreibung 5: Kodierende DNA Sequenz (unten, nur kodierender DNA Strang, Nukleotid (NT) 1-1299) und translatierte Aminosäuresequenz (oben, Einzelbuchstaben Kodierung der Aminosäuren (AA) 1-432) eines erfindungsgemäßen Antikörper-Zytokin-Fusionsproteins AMAIZe am Beispiel von FasL-AMAIZe (OS4) (Konstrukt E).

• •				-					•									
10	1	M ATG	D GAC	w TGG	T ACC	w TGG	R CGC	V GTG	F TTT	C TGC	L CTG	L CTC	A GCC	V GTG	A GCT	P CCT	G GGG	16 48
15	17	a	H	S	Q	v	Q	L	V	Q	S	G	A	e	v	k	K	32
	49	GCC	CAC	AGC	CAG	GTG	CAA	CTA	GTG	CAG	TCC	GGC	GCC	gaa	GTG	aag	AAA	96
	33 97	CCC	g GGT	a GCT	s TCC	V GTG	K AAA	V GTC	s Agc	c TGT	K AAA	T ACT	s agt	R AGA	Y TAC	T ACC	F TTC	48 144
20	49	T	E	Y	T	I	H	w	V	R	Q	A	P	G	Q	R	L	6 4
	145	ACT	GAA	TAC	ACC	ATA	CAC	TGG	GTT	AGA	CAG	GCC	CCT	GGC	CAA	AGG	CTG	192
25	65	e	w	I	G	g	I	N	P	n	N	g	I	P	n	Y	n	80
	193	gag	TGG	ATA	GGA	GGT	ATT	AAT	CCT	aac	AAT	GGT	ATT	CCT	aac	TAC	aac	240
23	81	Q	K	F	K	G	R	V	T	I	T	V	D	T	s	A	S	96
	2 4 1	CAG	AAG	TTC	AAG	GGC	CGG	GTC	ACC	ATC	ACC	GTA	GAC	ACC	TCT	GCC	AGC	288
30	97	T	A	Y	M	e	L	S	s	L	R	s	e	D	T	A	V	112
	289	ACC	GCC	TAC	ATG	gaa	CTG	TCC	Agc	CTG	CGC	TCC	Gag	GAC	ACT	GCA	GTC	336
	113	Y	Y	C	A	R	R	R	I	A	Y	g	Y	D	e	G	H	128
	337	TAC	TAC	TGC	GCC	AGA	AGA	AGA	ATC	GCC	TAT	GGT	TAC	GAC	gag	GGC	CAT	384
35	129	a	m	D	Y	`W	g	Q	G	T	L	GTC	T	v	s	S	A	144
	385	gct	atg	GAC	TAC	TGG	GGT	CAA	GGA	ACC	CTT	V	ACC	GTC	TCC	TCA	GCC	432
40	145	s	T	K	G	P	K	L	e	e	g	e	F	S	e	A	R	160
	433	TCC	ACC	AAG	GGC	CCA	AAG	CTT	gaa	gaa	ggt	gaa	TTT	TCA	gaa	GCA	CGC	480
	161	V	D	I	V	M	T	Q	s	P	D	s	L	a	V	s	L	176
	481	GTA	GAC	ATT	GTG	ATG	ACC	CAA	TCT	CCA	GAC	TCT	TTG	gct	GTG	TCT	CTA	528
45	177	G	e	R	A	T	I	n	C	k	S	s	Q	s	L	L	Y	192
	529	GGG	gag	AGG	GCC	ACC	ATC	aac	TGC	aag	TCC	agt	CAG	Agc	CTT	TTA	TAT	576
	193	s	R	N	Q	K	n	Y	L	A	w	Y	Q	Q	K	P	G	208
	577	TCT	AGA	AAT	CAA	AAG	aac	TAC	TTG	GCC	TGG	TAT	CAG	CAĢ	AAA	CCA	GGA	624
50	209 625	Q CAG	P CCA	P	K AAA	L CTC	L CTC	I ATC	F TTT	w TGG	A GCT	S AGC	T ACT	R AGG	e gaa	S TCT	G GGG	22 4 672
55	225	V	P	D	R	F	s	G	s	G	F	G	T	D	F	T	L	240
	673	GTA	CCT	GAT	AGG	TTC	agt	GGC	agt	GGG	TTT	GGG	ACA	GAC	TTC	ACC	CTC	720
<i>JJ</i>	241	T	I	S	S	L	Q	A	e	D	V	A	V	Y	Y	C	Q	256
	721	ACC	ATT	AGC	AGC	CTG	CAG	GCT	gaa	GAT	GTG	GCA	GTT	TAT	TAC	TGT	CAG	768
60	257	Q	Y	F	S	Y	P	L	T	F	G	Q	G	T	K	V	e	272
	769	CAA	Tat	TTT	AGC	Tat	CCG	CTC	ACG	TTC	GGA	CAA	GGG	ACC	AAG	GTG	gaa	816

	273 817	I ATA	K AAA	R CGT		V GTG			P CCA			F TTC	A GCT	V GTC	F TTC	A GCG	A GCC	288 864
5	289 865	A GCA		K AAA	K AAG	E GAG	L CTG	R AGG	K AAA	V GTG	A GCC	H CAT	L TTA	T ACA		K AAG	-	304 912
10	305 913	n aac	S TCA	R AGG	S TCC	M ATG	P CCT	L CTG	E GAA	w TGG	E GAA	D GAC	T ACC	Y TAT	G GGA	I ATT	V GTC	320 960
10	321 961	L CTG		S TCT							G GGT			V GTG	_		e gaa	336 1008
15	337 1009	T ACT	G GGG	L CTG	Y TAC	F TTT		Y TAT			V GTA	Y TAC	F TTC	R CGG	g GGT	Q CAA	s TCT	352 1056
	353 1057	C TGC	n Aac	n aac	L CTG	CCC	L CTG	S AGC	H CAC	K AAG	V GTC	Y TAC	M ATG	R AGG	N AAC	_	K AAG	368 1104
20	369 1105	Y TAT	P	Q CAG	D GAT	L CTG	V GTG	M ATG	M ATG	E GAG	G GGG	K AAG	M ATG	M ATG	S AGC	Y TAC	-	384 1152
25	385 1153	T ACT	T ACT	G GGG	Q CAG	M ATG	w TGG	A GCC	R CGC	S AGC	S AGC	Y TAC	L CTG	G GGG	A GCA	V GTG	f TTC	400 1200
25	401 1201	n aat	L CTT	T ACC	s Agt	a GCT	D GAT	H CAT			V GTC			S TCT	E GAG	L CTC	s TCT	416 1248
30	417 1249	L CTG	V GTC	N TAA	F TTT	E GAG	E GAA	S TCT	Q CAG	T ACG	F TTT	F TTC	G GGC	L TTA	Y TAT	K AAG	L CTC	432 1296
	433 1297	* TAA																433 1299

35

Merkmale:

Leitpeptidsequenz: NT 1-57, AA 1-19

40 Sequenz des Einzelketten (scFv)-Antikörperfragmentes OS4 spezifisch für das Tumorstroma-Antigen FAP: NT 58-822, AA 20-274

Sequenz des Linkers zwischen scFv und FasL-Fragment (AA 139-281): NT 823-867, AA 275-289

45

Sequenz des humanen FasL Fragmentes (extrazelluläre Domäne, AA 139-281 des natürlichen, humanen FasL Moleküls): NT 868-1296 AA 290-432

Stop Kodon: NT 1441-1443.

50

Sequenzprotokoll zu Patentanmeldung AMAIZe AZ#

Anmeldernummer:

Sequenzbeschreibung 6: Kodierende DNA Sequenz (unten, nur kodierender DNA Strang, Nukleotid (NT) 1-1278) und translatierte Aminosäuresequenz (oben, Einzelbuchstaben Kodierung der Aminosäuren (AA) 1-425) eines erfindungsgemäßen Antikörper-Zytokin-Fusionsproteins AMAIZe am Beispiel von FasL-AMAIZe (40-Flag) (Konstrukt F).

10																		
	1	M	D	W	T	W	R	v	F	С	L	L	A	v	A	P	G	16
	1	ATG	GAC	TGG	ACC	TGG	CGC	GTG	TTT	TGC	CTG	CTC	GCC	GTG	GCI	CCT	GGG	48
	17	A	H	s	Q	v	Q	L	V	Q	S	G	G	G	M	v	E	32
15	49	GCC	CAC	AGC	CAG	GTA	CAG	CTG	GTG	CAG	TCT	GGG	GGA	GGC	ATG	GTA	GAG	96
	33 97	P CCT	G GGG	G GGG	S TCC	L CTT	R AGA	L CTC	S TCC	C TGT	A GCA	A GCC	S TCT	G GGA	F TTC	T ACT	F	48 144
20	49 145	s Agt	N AAT	A GCC	W TGG	M	S AGC	w TGG	otc V	R CGC	Q CAG	A GCT	P CCA	G GGG	K AAG	G GGG	L CTG	64 192
25	65 193	e Gag	w TGG	V GTT	G GGC	R CGT	I ATA	K AAA	S AGC	K AAA	A GCT	g GGT	g GGT	G GGG	T ACA	A GCA	E GAG	80 240
23	81 241	Y TAC	a GCT	A GCA	P CCC	V GTG	K AAA	G GGC	R AGA	F TTC	T ACC	I ATC	S TCA	R AGA	D GAT	D GAT	S TCA	96 288
30	97 289	Q CAA	N AAC	T ACG	L CTG	Y TAT	L CTG	Q CAA	M ATG	N AAC	S AGC	L CTG	K AAA	T ACC	D GAC	D GAC	T ACA	112 336
	113 337	A GCC	V GTG	Y TAT	Y TAC	C TGT	T ACC	T ACA	H CAT	V GTC	Y TAC	g GGT	A GCC	P	R CGG	n aac	W TGG	128 384
35	129 385	G GGC	Q CAG	G GGA	s TCC	L CTG	V GTC	T ACC	V GTC	S TCC	S TCA	A GCC	s TCC	T ACC	K AAG	G GGC	P CCA	144 432
40	145 433	K AAG	L CTT	e gaa	e gaa	g GGT	E GAA	F TTT	s TCA	e gaa	A GCA	R CGC	V GTA	Q CAG	s TCT	V GTG	L TTG	160 480
	161 481	T ACT	Q CAG	P	P	s TCA	V GTG	s TCT	A GCG	A GCC	P CCA	G GGA	Q CAG	K AAG	V GTC	T ACC	I ATC	176 528
45	177 529	S TCC	C TGC	s TCT	G GGA	s AGC	S AGC	s TCC	n aac	I ATT	G GGA	N AAT	n aat	Y TAT	V GTC	s TCC	w TGG	192 576
	193 577	Y TAC	V GTT	Q CAA	L CTC	P CCA	G GGA	T ACA	A GCC	CCC	K AAA	L CTC	L CTC	I ATT	Y TAT	D GAC	n Aat	208 624
50	209 625	n Aat	k aag	R CGA	F TTC	S TCA	G GGA	V GTT	P	D GAC	R CGA	F TTC	S TCT	G GGC	S TCC	K AAG	S TCT	22 4 672
55	225 673	G G G G G G	T ACG	S TCA	A GCC	T ACC	L CTG	G GGC	I ATC	T ACC	G GGG	L CTC	Q CAG	T ACT	G GGG	D GAC	e Gag	240 720
	241 721	A GCC	D GAT	Y TAT	Y TAC	C TGC	G GGA	A GCA	w TGG	D GAT	G G G G G G	S AGC	L CTG	r CGT	e gaa	A GCG	V GTA	256 768
60	257 769	F TTC	GGC GGC	G GGA	G GGG	T ACC	K AAG	V GTC	T ACC	V GTC	L CTA	G GGT	D GAT	Y TAC	K AAA	D GAC	D GAT	272 816

	273 817	D GAC	D GAT	K AAA	A GCG	A GCC	A GCA	V GTT	e gag		E GAG		K AAA			L CTG	r agg	
5	289 865	K AAA	V GTG	A GCC	H CAT	L TTA		G GGC	K AAG	S TCC		S TCA	R AGG	S TCC	M ATG	P CCT	L CTG	304 912
10	305 913	E GAA		E GAA	D GAC	T ACC		G GGA	I ATT	V GTC	_	L CTT	s TCT	G GGA	V GTG		Y TAT	320 960
10	321 961	K AAG			G GGC		V GTG			E GAA	_	G GGG	L CTG	Y TAC	F TTT	V GTA	Y TAT	
15	337 1009	S TCC		V GTA	Y TAC	F TTC	R CGG	g GGT	Q CAA	S TCT	C TGC	N AAC	N AAC	L CTG	P	L CTG	S AGC	352 1056
	353 1057	H CAC		V GTC	Y TAC	M ATG		n aac		K AAG	Y TAT	CCC	Q CAG	D GAT	L CTG	V GTG	M ATG	368 1104
20	369 1105	M ATG	E GAG	G GGG	K AAG	M ATG		S AGC	Y TAC	C TGC		t act	G GGG	Q CAG	M ATG	w TGG	A GCC	384 1152
25	385 1153	R CGC	s AGC	S AGC	Y TAC	L CTG			V GTG	F TTC		L CTT	T ACC	s agt	A GCT	D GAT	H CAT	400 1200
23	401 1201				n Aac						L CTG		n aat	F TTT	E GAG	e gaa	S TCT	416 1248
30	417 1249	Q CAG	T ACG	F TTT	F TTC	G GGC	L TTA	Y TAT	K AAG	L CTC	* TAA							426 1278

Merkmale Konstrukt F:

35 Leitpeptidsequenz: NT 1-57, AA 1-19

Sequenz des Einzelketten (scFv)-Antikörperfragmentes 40 spezifisch für das Tumorstroma-Antigen FAP: NT 58-801, AA 20-267

40 Sequenz des Flag-tag zwischen scFv und Linker-Sequenz: NT 802-825, AA 268-275

Sequenz von des Linkers zwischen Flag-tag und FasL-Fragment (AA 139-281): NT 826-846, AA 276-282

Sequenz des humanen FasL Fragmentes (extrazelluläre Domäne, AA 139-281 des natürlichen, humanen FasL Moleküls): NT 847-1275, AA 283-425

Stop Kodon: NT 1276-1278.

50

45

THIS PAGE BLANK (USPTO)

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. März 2002 (21.03.2002)

PCT

(10) Internationale Veröffentlichungsnummer WO 02/022680 A3

(51) Internationale Patentklassifikation⁷: C12N 15/62, C07K 14/52, 19/00, 16/28, A61K 39/395, 38/19

Harald [DE/DE]; Sonnenbühl 2, 70771 Leinfelden-Echterdingen (DE).

(21) Internationales Aktenzeichen:

PCT/EP01/10364

(22) Internationales Anmeldedatum:

7. September 2001 (07.09.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 100 45 591.3 15. September 2000 (15.09.2000) DE

- (71) Anmelder und
- (72) Erfinder: PFIZENMAIER, Klaus [DE/DE]; See-hausstrasse 7, 75233 Tiefenbronn (DE). WAJANT,

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): MOOSMAYER, Dieter [DE/DE]; Zechliner Strasse 6, 13359 Berlin (DE). WÜEST, Thomas [CH/CH]; Rosenstrasse 46, CH-8953 Dietikon (CH).
- (74) Anwälte: GRAF VON STOSCH, Andreas usw.; Bosch, Graf von Stosch, Jehle, Theatinerstr. 8, 80333 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN,

[Fortsetzung auf der nächsten Seite]

(54) Title: SITE-SPECIFIC, ANTIBODY-MEDIATED ACTIVATION OF PROAPOPTOTIC CYTOKINE: AMAICE (ANTIBODY-MEDIATED APOPTOSIS INDUCING CYTOKINE)

(54) Bezeichnung: ORTSSPEZIFISCHE, ANTIKÖRPERVERMITTELTE AKTIVIERUNG PROAPOPTOTISCHER ZYTOKINE: AMAIZe (ANTIBODY-MEDIATED APOPTOSIS INDUCING ZYTOKINE)

AA...DESIGNATION LETTERS BB...CONSTRUCT SCHEMA

(57) Abstract: The invention relates to antibody-cytokine fusion proteins having proapoptotic and immunomodulating properties, however, a priori having a specific bioactivity in the cytokine portion that is very low or limited to certain receptor subtypes. These reagents first deploy the full biological action over the corresponding cytokine receptor(s) after an antibody-mediated binding of the fusion protein to a specific, cell membrane-expressed target molecule. By appropriately selecting the antibody specificity, the cytokine activity is directed at the tissue to be treated, e.g. tumor tissue, and a therapeutic agent can be produced, which is specifically matched to/optimized for the respective indication/tumor entity.

[Fortsetzung auf der nächsten Seite]

MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen
- (88) Veröffentlichungsdatum des internationalen
 Recherchenberichts: 12. September 2002

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

⁽⁵⁷⁾ Zusammenfassung: Gegenstand der Erfindung sind Antikörper-Zytokin-Fusionsproteine mit proapoptotischen und immunmodulierenden Eigenschaften, aber a priori sehr niedriger bzw. auf bestimmte Rezeptorsubtypen eingeschränkter spezifischer Bioaktivität im Zytokinanteil. Diese Reagenzien entfalten erst nach Antikörper-vermittelter Bindung des Fusionsproteins an ein spezifisches, zellmembranexprimiertes Zielmolekül die volle biologische Wirkung über den/die entsprechenden Zytokinrezeptoren. Durch geeignete Auswahl der Antikörperspezifität wird die Zytokin-Aktivität auf das zu behandelnde Gewebe, z.B. Tumorgewebe, gerichtet und es kann ein auf die jeweilige Indikation/Tumorentität spezifisch abgestimmtes/optimiertes Therapeutikum hergestellt werden.

IMPERNATIONAL SEARCH REPORT

Interational Application No PCT/EP 01/10364

				01/10304
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C12N15/62 C07K14/52 C07K19/0 A61K38/19	00 C07K16/	28 A	51K39/395
Accordina to	o International Patent Classification (IPC) or to both national classific	ation and IPC		
	SEARCHED			
Minimum do IPC 7	ocumentation searched (classification system followed by classification CO7K C12N	ion symbols)		
Documenta	dion searched other than minimum documentation to the extent that	such documents are incl	uded in the fig	lds searched
Electronic d	tata base consulted during the international search (name of data ba	ase and, where practical	l, search terms	used)
EPO-In	ternal, PAJ, BIOSIS			
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the re-	levant passages		Relevant to claim No.
X	XIANG J: "TARGETING CYTOKINES T TO INDUCE ACTIVE ANTITUMOR IMMUN RESPONSES BY RECOMBINANT FUSION HUMAN ANTIBODIES, AMSTERDAM, NL, vol. 9, 1996, pages 23-36, XP000	E PROTEINS"		1-3,5,6, 8-18
	ISSN: 1093-2607 see whole documenz			1056
X	GILLIES S D ET AL: "Biological and in vivo clearance of antitum antibody/cytokine fusion protein BIOCONJUGATE CHEMISTRY, AMERICAN SOCIETY, WASHINGTON, US, vol. 4, no. 3, May 1993 (1993-05 230-235, XP002107032 ISSN: 1043-1802 see whole document	or s" CHEMICAL		1-3,5,6, 8-18
		-/		
X Fu	rther documents are listed in the continuation of box C.	χ Patent family	y members are	e listed in annex.
"A" documents earlier filing "L" documents documents earlier constitution of the currents earlier earl	categories of cited documents: ment defining the general state of the art which is not sidered to be of particular relevance or document but published on or after the international date ment which may throw doubts on priority claim(s) or the is cited to establish the publication date of another ton or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or or means ment published prior to the international filling date but than the priority date claimed	or priority date as died to understa invention "X" document of partication to consider an invention "Y" document of partication to consider an inventication to consider an invention to consider an invent	nd not in confi and the principl cular relevance dered novel or tive step when cular relevance dered to involve abined with on abination being	the international filing data ct with the application but to or theory underlying the e; the claimed invention cannot be considered to the document is taken alone e; the claimed invention e an inventive step when the e or more other such docugo obvious to a person skilled
	e actual completion of the international search			onal search report
	8 March 2002	02/07/		
Name and	d mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijsvrijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized office		

Form PCT/ISA/210 (second sheet) (July 1992)

International Application No
PCT/EP 01/10364

C (Combine	Mary DOOLHESTE CONSTRUCTION	PCT/EP 01/10364
Category •	ction) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
		Piousvale 10 Claim Ptc.
x	US 5 650 150 A (GILLIES STEPHEN D) 22 July 1997 (1997-07-22) Example 10, claims	1-3,5,6, 8-18
X	XIANG J ET AL: "Genetic engineering of a recombinant fusion possessing anti-tumor F(ab@?)2 and tumor necrosis factor" JOURNAL OF BIOTECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 53, no. 1, 28 February 1997 (1997-02-28), pages 3-12, XP004094618 ISSN: 0168-1656 see whole document	1-3,5,6, 8-18
(WO 99 43713 A (LEXIGEN PHARM CORP) 2 September 1999 (1999-09-02) see claims	1,2,5, 8-18
(WO 99 25834 A (GENENTECH INC) 27 May 1999 (1999-05-27) claim 19	1,2
	WO 00 26244 A (LENARDO MICHAEL J ;US HEALTH (US); JIANG DI (US); WANG JIN (US)) 11 May 2000 (2000-05-11) page 46, line 15 -page 47, line 9	1-6
	WILEY S R ET AL: "IDENTIFICATION AND CHARACTERIZATION OF A NEW MEMBER OF THE TNF FAMILY THAT INDUCES APOPTOSIS" IMMUNITY, CELL PRESS, US, vol. 3, no. 6, 1 December 1995 (1995-12-01), pages 673-682, XP000672297 ISSN: 1074-7613	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No. PCT/EP 01/10364

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. K	Although the Claim No. 16 refers to a method for treatment of the human/animal body, the search was carried out and was based on the cited effects of the compound/composition. Claims Nos.: Claims Nos. 1-18 (all in part) because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically. See supplemental sheet Additional Matter PCT/ISA/210
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
1. [] 2. []	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
	of any additional fee.
3. <u> </u>	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remar	k on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No. PCT/EP 01/10364

Continuation of Field 1.2

Claims Nos. 1-18 (all in part)

The polypeptide of Claim No. 1 contains, in addition to two, albeit broadly but nevertheless technically defined sections, namely a fragment with a biological activity and an antibody fragment, two additional features that either constitute no limitation of the scope of protection (i.e. the undefined peptide linker) or are incomprehensibly or functionally formulated ("whereby the polypeptide is biologically inactive or limited without site-specific and/or selective binding of the section (3) to the target molecule"). If every single expression of the last-mentioned feature is already unclear, then the feature, in its entirety, is insufficiently defined and is unfit to be defined as a "product" to such an extent that a meaningful search with regard to this feature was not possible to conduct, i.e. the search had to be limited to the polypeptides insofar as they are defined by their actual constituents.

The applicant is therefore advised that patent claims or portions of patent claims laid to inventions for which no international search report was drafted cannot normally be the subject of an international preliminary examination (PCT Rule 66.1(e)). In its capacity as the authority entrusted with the task of carrying out the international preliminary examination, the EPO also, as a rule, does not carry out a preliminary examination of subject matter for which no search has been conducted. This is also valid in the event that the patent claims have been amended after receipt of the international search report (PCT Article 19), or in the event that the applicant submits new patent claims pursuant to the procedure in accordance with PCT Chapter II.

Form PCT/ISA/210

MEERNATIONAL SEARCH REPORT

Information on patent family members

PCT/EP 01/10364

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 5650150 /	22-07-1997	AU	660297 B2	22-06-1995
		AU	9059691 A	11-06-1992
		CA	2095836 A1	10-05-1992
		EP	1149913 A1	31-10-2001
		EP	0574395 A1	22-12-1993
		JP	9506761 T	08-07-1997
		JP	2001095566 A	10-04-2001
		WO	9208495 A1	29-05-1992
WO 9943713	02-09-1999	AU	2784299 A	15-09-1999
		BR	9908226 A	24-10-2000
		CN	1291995 T	18-04-2001
		EP	1060194 A1	20-12-2000
		HÜ	0100813 A2	28-06-2001
		NO	20004218 A	24-10-2000
		PL	342497 A1	04-06-2001
		WO	9943713 A1	02-09-1999
WO 9925834	27-05-1999	AU	1418099 A	07-06-1999
		EP	1032672 A1	06-09-2000
		JP	2001523459 T	27-11-2001
		WO	9925834 A1	27-05-1999
WO 0026244	11-05-2000	AU	1467000 A	22-05-2000
		WO	0026244 A2	11-05-2000

Form PCT/ISA/210 (patent tarnity annex) (July 1992)

INTERNATION ER RECHERCHENBERICHT

Internationales Akterizeichen
PCT/EP 01/10364

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES 2K 7 C12N15/62 C07K14/52 C07K19/00 C07K16/28 A61K39/395 A61K38/19 Nach der Internationalen Patentklasstfikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) C07K C12N IPK 7 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsuttierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, PAJ, BIOSIS C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Telle Betr. Anspruch Nr. X XIANG J: "TARGETING CYTOKINES TO TUMORS 1-3,5,6, TO INDUCE ACTIVE ANTITUMOR IMMUNE 8-18 RESPONSES BY RECOMBINANT FUSION PROTEINS" HUMAN ANTIBODIES, AMSTERDAM, NL. Bd. 9, 1996, Seiten 23-36, XP000940526 ISSN: 1093-2607 see whole documenz X 1-3,5,6, GILLIES S D ET AL: "Biological activity and in vivo clearance of antitumor 8-18 antibody/cytokine fusion proteins' BIOCONJUGATE CHEMISTRY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US, Bd. 4, Nr. 3, Mai 1993 (1993-05), Seiten 230-235, XP002107032 ISSN: 1043-1802 see whole document -/--Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu **I** X I Siehe Anhang Patentfamilie entnehmen T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht koltidiert, sondern nur zum Verständnis des der Erfindung zugnundeltegenden Prinzips oder der ihr zugrundeltegenden Theorie angegeben ist Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer T\u00e4ligkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenberricht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachiet werden, wenn die Veröffentlichung mit einer oder mehrenen anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Aussteltung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeidedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

8. März 2002

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Piliswijk. Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 02/07/2002

Bevollmächtigter Bediensteter

Grosskopf, R

INTERNATION ER RECHERCHENBERICHT

Internationales Aldenzeichen
PCT/EP 01/10364

C (Enterty	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	101/21 01/10304
Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Teile Betr. Anspruch Nr.
X	US 5 650 150 A (GILLIES STEPHEN D) 22. Juli 1997 (1997-07-22) Example 10, claims	1-3,5,6, 8-18
X	XIANG J ET AL: "Genetic engineering of a recombinant fusion possessing anti-tumor F(ab@?)2 and tumor necrosis factor" JOURNAL OF BIOTECHNOLOGY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 53, Nr. 1, 28. Februar 1997 (1997-02-28), Seiten 3-12, XP004094618 ISSN: 0168-1656 see whole document	1-3,5,6, 8-18
X	WO 99 43713 A (LEXIGEN PHARM CORP) 2. September 1999 (1999-09-02) see claims	1,2,5, 8-18
X	WO 99 25834 A (GENENTECH INC) 27. Mai 1999 (1999-05-27) Anspruch 19	1,2
X	WO 00 26244 A (LENARDO MICHAEL J ;US HEALTH (US); JIANG DI (US); WANG JIN (US)) 11. Mai 2000 (2000-05-11) Seite 46, Zeile 15 -Seite 47, Zeile 9	1-6
A	WILEY S R ET AL: "IDENTIFICATION AND CHARACTERIZATION OF A NEW MEMBER OF THE TNF FAMILY THAT INDUCES APOPTOSIS" IMMUNITY, CELL PRESS, US, Bd. 3, Nr. 6, 1. Dezember 1995 (1995-12-01), Seiten 673-682, XP000672297 ISSN: 1074-7613	

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Juli 1992)

internationales Aktenzeichen PCT/EP 01/10364

INTERNATIONALER RECHERCHENBERICHT

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
Ansprüche Nr. well sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Obwohl der Anspruch 16 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers bezieht, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2. X Ansprüche Nr. 1-18 (alle teilweise) well sie sich auf Telle der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
3. Ansprüche Nr. well es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Bemerkungen bei mangeinder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchlerbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen kinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 1 (1))(Juli 1998)

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Ansprüche Nr.: 1-18 (alle teilweise)

Das Polypeptid des Anspruchs 1 enthält neben zwei, wenn auch breit aber doch technisch definierten Abschnitten, nämlich einem Fragment mit biologischer Aktivität und einem Antikörperfragment zwei weitere Merkmale, die entweder keine Einschränkung des Schutzumfanges darstellen (d.h. den undefinierten Peptdilinker) oder unverständlich bzw. aufgabenhaft formuliert sind ("wobei das Polypeptid ohne ortsspezifische und/oder selktve Bindung des Abschnitts (3) an das Zielmolekül biologisch inaktiv bzw, eingeschränkt ist"). Ist jeder einzelene Ausddruck des letztgenannten Merkmals für sich schon unklar, so ist das Merkmal in seiner Gesamtheit so unzureichend definiert und ungeignet ein "Produkt" zu definieren, dass eine sinnvolle Recherche in Bezug auf dieses Merkmal nicht möglich war, d.h. die Recherche musste sich auf die Polypeptide beschränken insofern sie durch ihre tatsächlichen Bestandteile definiert sind.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentansprüche vorlegt.

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

PCT/EP 01/10364

im Recherchenbericht Ingeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 5650150	A	22-07-1997	ΑÜ	660297 B2	22-06-1995
			AU	9059691 A	11-06-1992
			CA	2095836 A1	10-05-1992
			EP	1149913 A1	31-10-2001
			ΕP	0574395 A1	22-12-1993
			JP	9506761 T	08-07-1997
			JP	2001095566 A	10-04-2001
			MO	9208495 A1	29-05-1992
WO 9943713	A	02-09-1999	AU	2784299 A	15-09-1999
	•		BR	9908226 A	24-10-2000
			CN	1291995 T	18-04-2001
			EP	1060194 A1	20-12-2000
			HU	0100813 A2	28-06-2001
			NO	20004218 A	24-10-2000
			PL	342497 A1	04-06-2001
			MO	9943713 A1	02-09-1999
WO 9925834	Α	27-05-1999	AU	1418099 A	07-06-1999
			EP	1032672 A1	06-09-2000
			JP	2001523459 T	27-11-2001
			WO	9925834 A1	27-05-1999
WO 0026244	A	11-05-2000	AU	1467000 A	22-05-2000
			WO	0026244 A2	11-05-2000

Formblett PCT/ISA/210 (Anhang Patenthemite)(Juli 1992)