Balanced K-Means Clustering on an Adiabatic Quantum Computer

Applied Quantum Machine Learning Project

Politecnico di Milano

July 1, 2021

Authors:
Pierriccardo Olivieri
Francesco Piro
Matteo Sacco

Professors:
Cremonesi Paolo
Alessandro Luongo
Maurizio Ferrari Dacrema

Outline

- QUBO formulation and theoretical analysis
- Empirical Analysis
- Authors' Conclusions
- Our Conclusions, opinions and considerations

Advantages over classical approaches

- Better targets the global solution of the training problem
- Better theoretic scalability on large datasets

Lloyd's algorithm

- Complexity O(Nkdi) [13]
 - \circ N number of data points
 - \circ k number of clusters
 - \circ d number of features
 - \circ i number of iterations before the algorithm converges

Scikit-learn implementation

• Complexity O(Nkd) [18]

[13] J. A. Hartigan and M. A. Wong, "A K-Means clustering algorithm" Applied Statistics [18] "Scikit-learn: Machine learning in python," J. Mach. Learn. Res.

Malinen et al.

Output partitioning.

• Complexity $O(N^3)$ [13]

```
Algorithm 1. Balanced k-means
Input: dataset X, number of clusters k
Output: partitioning of dataset.

Initialize centroid locations C^0.
t \leftarrow 0
repeat

Assignment step:
Calculate edge weights.
Solve an Assignment problem.
Update step:
Calculate new centroid locations C^{t+1}
t \leftarrow t+1
until centroid locations do not change.
```


^[21] Malinen, Mikko. (2014). Balanced K-Means for Clustering.

$$\min_{z \in \mathbb{B}^M} z^T A z$$

$$\min_{z \in \mathbb{B}^M} z^T A z$$

$$X = \{x_1, x_2, \dots, x_N\}$$

$$\Phi = \{\phi_1, \phi_2, \dots, \phi_k\}$$

$$\min_{z \in \mathbb{B}^M} z^T A z$$

$$X = \{x_1, x_2, \dots, x_N\}$$

$$\Phi = \{\phi_1, \phi_2, \dots, \phi_k\}$$

$$\min_{\Phi} \sum_{j=1}^k \sum_{x \in \phi_j} \|x - \mu_j\|^2$$

$$\min_{z \in \mathbb{B}^M} z^T A z$$

$$X = \{x_1, x_2, \dots, x_N\}$$

$$\Phi = \{\phi_1, \phi_2, \dots, \phi_k\}$$

$$\min_{\Phi} \sum_{j=1}^k \sum_{x \in \phi_j} \|x - \mu_j\|^2$$

$$\min_{\Phi} \sum_{j=1}^{k} \frac{1}{2|\phi_j|} \sum_{x,y \in \phi_j} ||x - y||^2$$

$$\min_{z \in \mathbb{B}^M} z^T A z$$

$$X = \{x_1, x_2, \dots, x_N\}$$

$$\Phi = \{\phi_1, \phi_2, \dots, \phi_k\}$$

$$\min_{\Phi} \sum_{j=1}^{k} \sum_{x \in \phi_j} \|x - \mu_j\|^2$$

$$\min_{\Phi} \sum_{j=1}^{k} \frac{1}{2|\phi_j|} \sum_{x,y \in \phi_j} ||x - y||^2$$

$$\min_{\Phi} \sum_{j=1}^{k} \sum_{x,y \in \phi_j} ||x - y||^2$$

$$\min_{z \in \mathbb{B}^M} z^T A z$$

$$X = \{x_1, x_2, \dots, x_N\}$$

$$\Phi = \{\phi_1, \phi_2, \dots, \phi_k\}$$

$$\min_{\Phi} \sum_{j=1}^{k} \sum_{x \in \phi_j} \|x - \mu_j\|^2$$

$$\min_{\Phi} \sum_{j=1}^{k} \frac{1}{2|\phi_j|} \sum_{x,y \in \phi_j} ||x - y||^2$$

$$\min_{\Phi} \sum_{j=1}^k \sum_{x,y \in \phi_j} \|x - y\|^2$$

Distance matrix: DAssignment matrix: \hat{W}

$$\min_{z \in \mathbb{B}^M} z^T A z$$

$$X = \{x_1, x_2, \dots, x_N\}$$

$$\Phi = \{\phi_1, \phi_2, \dots, \phi_k\}$$

$$\min_{\Phi} \sum_{j=1}^{k} \sum_{x \in \phi_j} \|x - \mu_j\|^2$$

$$\min_{\Phi} \sum_{j=1}^{k} \frac{1}{2 |\phi_j|} \sum_{x, y \in \phi_j} ||x - y||^2$$

$$\min_{\Phi} \sum_{i=1}^{k} \sum_{x, y \in \Phi} \|x - y\|^2$$

Distance matrix: DAssignment matrix: \hat{W}

$$\sum_{x,y \in \phi_j} \|x - y\|^2 = \hat{w}_j'^T D \hat{w}_j'$$

$$\min_{z \in \mathbb{B}^M} z^T A z$$

$$X = \{x_1, x_2, \dots, x_N\}$$

$$\Phi = \{\phi_1, \phi_2, \dots, \phi_k\}$$

$$\min_{\Phi} \sum_{j=1}^{k} \sum_{x \in \phi_j} \|x - \mu_j\|^2$$

$$\min_{\Phi} \sum_{j=1}^{k} \frac{1}{2 |\phi_j|} \sum_{x, y \in \phi_j} ||x - y||^2$$

$$\min_{\Phi} \sum_{i=1}^{k} \sum_{x, y \in \Phi} ||x - y||^2$$

Distance matrix: DAssignment matrix: \hat{W}

$$\sum_{x,y \in \phi_j} \|x - y\|^2 = \hat{w}_j'^T D \hat{w}_j'$$

$$\min_{\hat{w}} \hat{w}^T \left(I_k \otimes D \right) \hat{w}$$

$$\alpha \left(\hat{w}_j^{\prime T} \hat{w}_j^{\prime} - N/k \right)^2$$

$$\alpha \left(\hat{w}_{j}^{\prime T} \hat{w}_{j}^{\prime} - N/k\right)^{2}$$
$$\hat{w}_{j}^{\prime T} \alpha F \hat{w}_{j}^{\prime}$$
$$F = 1_{N} - \frac{2N}{k} I_{N}$$

$$\alpha \left(\hat{w}_{j}^{\prime T} \hat{w}_{j}^{\prime} - N/k\right)^{2}$$
$$\hat{w}_{j}^{\prime T} \alpha F \hat{w}_{j}^{\prime}$$
$$F = 1_{N} - \frac{2N}{k} I_{N}$$

$$\min_{\hat{w}} \hat{w}^T \left(I_k \otimes (D + \alpha F) \right) \hat{w}$$

$$\alpha \left(\hat{w}_j^{\prime T} \hat{w}_j^{\prime} - N/k \right)^2$$

$$\hat{w}_{i}^{\prime T} \alpha F \hat{w}_{i}^{\prime}$$

$$F = 1_N - \frac{2N}{k}I_N$$

$$\min_{\hat{w}} \hat{w}^T \left(I_k \otimes (D + \alpha F) \right) \hat{w}$$

 $\beta \left(\hat{w}_i^T \hat{w}_i - 1\right)^2$

$$\alpha \left(\hat{w}_{j}^{\prime T} \hat{w}_{j}^{\prime} - N/k\right)^{2}$$
$$\hat{w}_{j}^{\prime T} \alpha F \hat{w}_{j}^{\prime}$$
$$F = 1_{N} - \frac{2N}{k} I_{N}$$

 $\min_{\hat{w}} \hat{w}^T \left(I_k \otimes (D + \alpha F) \right) \hat{w}$

$$\beta \left(\hat{w}_i^T \hat{w}_i - 1\right)^2$$
$$\hat{w}_i^T \beta G \hat{w}_i$$
$$G = 1_k - 2I_k$$

$$F = 1_N - \frac{2N}{k}I_N$$

$$\min_{\hat{w}} \hat{w}^T \left(I_k \otimes (D + \alpha F)\right) \hat{w}$$

 $\alpha \left(\hat{w}_{i}^{\prime T} \hat{w}_{i}^{\prime} - N/k \right)^{2}$

 $\hat{w}_{i}^{\prime T} \alpha F \hat{w}_{i}^{\prime}$

$$\beta \left(\hat{w}_i^T \hat{w}_i - 1\right)^2$$
$$\hat{w}_i^T \beta G \hat{w}_i$$
$$G = 1_k - 2I_k$$

$$\min_{\hat{w}} \hat{w}^T Q^T \left(I_N \otimes \beta G \right) Q \hat{w}$$

$$\alpha \left(\hat{w}_{j}^{\prime T} \hat{w}_{j}^{\prime} - N/k\right)^{2} \qquad \beta \left(\hat{w}_{i}^{T} \hat{w}_{i} - 1\right)^{2}$$

$$\hat{w}_{j}^{\prime T} \alpha F \hat{w}_{j}^{\prime} \qquad \hat{w}_{i}^{T} \beta G \hat{w}_{i}$$

$$F = 1_{N} - \frac{2N}{k} I_{N} \qquad G = 1_{k} - 2I_{k}$$

$$\min_{\hat{w}} \hat{w}^{T} \left(I_{k} \otimes (D + \alpha F)\right) \hat{w} \qquad \min_{\hat{w}} \hat{w}^{T} Q^{T} \left(I_{N} \otimes \beta G\right) Q \hat{w}$$

$$\min_{\hat{w}} \hat{w}^T \left(I_k \otimes \left(D + \alpha F \right) + Q^T \left(I_N \otimes \beta G \right) Q \right) \hat{w}$$

$$\min_{\hat{w}} \hat{w}^T \left(I_k \otimes (D + \alpha F) + Q^T \left(I_N \otimes \beta G \right) Q \right) \hat{w}$$

$$\alpha = \frac{\max(D)}{2(N/k) - 1} \qquad \beta = \max(D)$$

$$\min_{\hat{w}} \hat{w}^T \left(I_k \otimes \left(D + \alpha F \right) + Q^T \left(I_N \otimes \beta G \right) Q \right) \hat{w}$$

$$\min_{W} \sum_{l=1}^{k} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{m=1}^{d} w_{il} (x_{im} - x_{jm})^{2} w_{jl}$$
$$+\alpha \sum_{l=1}^{k} \sum_{i=1}^{N} \sum_{i=1}^{N} w_{il} f_{ij} w_{jl} + \beta \sum_{l=1}^{N} \sum_{i=1}^{k} \sum_{i=1}^{k} w_{li} g_{ij} w_{lj}$$

• Complexity $O(N^2kd)$

Malinen et al.

• Complexity $O(N^3)$

Scikit-learn implementation

• Complexity O(Nkd)

Baselines

Algorithms used for comparisons

- balanced quantum k-means $O(N^2kd)$ (case study)
- balanced classical k-means $O(N^3)$ (authors implementation of Malinen et al.)
- classical k-means O(Nkd) (scikit-learn implementation Lloyd's algorithm)

classical k-means valid comparison (thanks to dataset structure)

Adjusted Rand Index (ARI)

- compare the similarity of two partitions of a dataset
- used to compare ground truth labels vs clustering algorithm partition
- range from -1 to 1
- ARI = 0 represent a random assignment

Total Computing time in quantum approach

$$t = t_{QUBO_{convertion}} + t_e + t_a + t_{postprocessing} \tag{1}$$

Synthetic datasets created with make_classification (Scikit-learn)

Datasets structure

- N points
- k classes
- d features
- each clusters centered on one of the vertices of a d-dimensional hypercube
- points generated from a **normal dist.** about their cluster center
- $\frac{N}{k}$ exactly points per class

Classical Machine

- 2.7 GHz Dual-Core Intel i5
- 8 GB 1.867 MHz DDR3 memory

Quantum Machine

- D-Wave 2000Q quantum computer
- 2048 qubits, 5600 inter-qubit connections

Technical Aspects

- quantum pre/post-processing done via classical machine
- quantum anealing operation performed 100 times for each experiment

Quality of Clustering Experiment (ARI)

- clustering quality of the 3 algorithms is compared
- each algorithm evaluated on different **problem types**
 - o total of 9 problem types
 - o defined by (num. of points, num. of clusters)
 - o e.g. (16 points, 2 clusters)
- for each problem type:
 - all the 3 algorithm evaluated on 50 synthetic datasets
 - Averaged ARI is reported

Commenting Results for Quantum Approach

observation	possible cause/motivation			
drop in performance for $k=2$ classical vs quantum	less way to cluster, local solution is more likely to be the correct one			
quantum performances drop as the problem size increase	reflection of the quantum hardware			
best quantum performances obtained for problem types (8,4) (12, 3) (12, 4)	as quantum computer improves author's approach may outperform classical			

Limitations faced

- Variable limitation D-Wave 2000Q qubit limitation for problems Nk > 64 var.
- Qubit connectivity "limitation" => higher embedding time

Approximations

- Quantum run time for larger problems (Nk > 64)
 - $\circ\,$ used to evaluate scalability of the Quantum Approach
 - \circ measure $t_{QUBO_{convertion}}$ and $t_{postprocessing}$ (measurable)
 - \circ estimate embedding time t_e (extrapolated from smaller problems)
 - \circ estimate annealing time t_a (constant, averaging smaller problems)

 t_e scale quadratically in the number of binary variables of the QUBO

$$t_e = 1.887 \times 10^{-6} (Nk)^2 + 4.632 \times 10^{-6} (Nk) + 4.022 \times 10^{-4}$$
 (2)

$$t_a = 0.03481 \pm 0.00008 \tag{3}$$

Experiments to assess scalability

- evaluation metric used is **average total computing** time (**estimated** for quantum)
- baselines evaluated on the three variables:
 - \circ N data points
 - \circ k clusters
 - \circ d features
- baselines runned on 50 synthetic datasets

Details

- baselines evaluated on increasing data points
- fixed cluster k=4 and features d=2

Considerations

observation	motivation/improvement			
quantum approach slower than both classical	dominated by embedding time, in future can improve for N>1024			
classical k-means scale the best	$O(Nkd)$ vs $O(N^3)$ and $O(N^2kd)$			

Details

- baselines evaluated on increasing cluster size
- fixed data points N = 256 and features d = 8

Considerations

observation	motivation/improvement			
quantum longer time on k scale worse as k increase	Third term in the QUBO formulation time complexity $O(Nk^2)$			

Details

- baselines evaluated on increasing **features number**
- fixed data points N = 1024 and cluster k = 4

Considerations

observation	motivations/improvements		
quantum had longest time	$\label{eq:matter} \textbf{improvements} \text{ in hardware and embeddings could outperform} \\ \text{classical k-means } d > 128 \\ \text{classical balanced k-means } d < 256 \\$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	QUBO formulation only requires one comput. of the distance matrix classical re-compute distance from centroids at each iteration		
classical balanced k-means scales better in d w.r.t. to quantum approach	$O(N^2kd)$ vs $O(N^3)$		

The Iris Dataset

- Reduced due to qubit limitations on modern hardware
- Pick N/k points from $2 \le k \le 3$ of the data set's classes

Experiments Run

- All the 3 clustering algorithms were tested
- Experiments are run on 50 subsets of the dataset

Results

- k = 2
 - Trivial case, points are linearly separable
 - Classical algorithms perform better than quantum
 - Evident as the number of binary variables (Nk) increases

- *k* = 3
 - Similar performance to **classical balanced** k-means
 - Outperforms **Scikit-Learn** implementation
 - Performance of the QA degrades as the problem size increases

- Enhancements provided by adiabatic computers for solving **NP**-Hard or **NP**-Complete problems
- Promising result for Quantum Machine Learning
- The approach targets the global solution of the training problem **better** than the classic alternatives
- The **D-Wave 2000Q** machine
- Quantum approach partitions data with similar accuracy to the classical approaches
- The approach assumes viability as the quantum hardware improves

- Bring the QUBO formulation to the generic k-means training problem
 - o Balanced Problem

$$\min_{\Phi} \sum_{j=1}^{k} \frac{1}{2 |\phi_{j}|} \sum_{x,y \in \phi_{j}} ||x - y||^{2} \implies \min_{\Phi} \sum_{j=1}^{k} \sum_{x,y \in \phi_{j}} ||x - y||^{2}$$

• Generic Problem

$$\min_{\Phi} \sum_{j=1}^{k} \frac{1}{2|\phi_j|} \sum_{x,y \in \phi_j} ||x - y||^2$$

- Use elements of the approach to formulate quantum algorithms for similar clustering models
 - o k-medoids clustering
 - o fuzzy C-means clustering
- Cluster larger datasets

How complex is to construct the QUBO?

$$\min_{\Phi} \sum_{j=1}^{k} \sum_{x,y \in \phi_j} \|x - y\|^2$$

$$\downarrow \downarrow$$

$$\min_{\hat{x}} \hat{w}^T \left(I_k \otimes (D + \alpha F) + Q^T \left(I_N \otimes \beta G \right) Q \right) \hat{w}$$

Complexity: $O(N^2kd)$

Since kd < N:

- Better than classical balanced k-means: $O(N^3)$
- Worse than Scikit Learn implementation: O(Nkd)

Hyperparameter α allows to make considerations in the data preparation phase of the clustering algorithm:

- Completely unbalanced ⇒ use Scikit-Learn implementation
- Fairly Balanced \implies tuning on α and use Quantum Balanced implementation
- Balanced \implies use Quantum Balanced implementation with $\alpha < \beta$

Tuning α

- Modifies the curvature of the quadratic function to optimize
- By making α looser we change the position of the optimum allowing to cluster datasets that are not completely balanced
- Tuning α allows to prepare the algorithm on how much balanced the dataset will be

Variables and Density of the QUBO

• In the QUBO formulation we introduce k binary variables for each variable in the original problem

O(Nk) variables

• Efficient embedding algorithms [30] allow for a density of

$$O(N^2k^2)$$
 qubits

 $\label{table I} \textbf{TABLE I}$ Number of binary variables and average number of qubits used in the quantum approach.

(N, k)	(16, 2)	(24, 2)	(32, 2)	(12, 3)	(15, 3)	(21, 3)	(8, 4)	(12, 4)	(16, 4)
Variables Qubits				36 244	45 381	63 743	32 209	48 456	64 806

[30] P. Date, R. Patton, C. Schuman, and T. Potok, "Efficiently embedding qubo problems on adiabatic quantum computers," Quantum Information Processing, vol. 18, no. 4, pp. 117, 2019

Can we cluster larger datasets on Advantage?

D-Wave 2000Q

- 2048 qubits
- 6,016 couplers
- 128,472 JJs

Advantage

- 5640 qubits
- 40,484 couplers
- 1,030,000 JJs

Thanks for your Attention