Complementarity of graph neural networks and community detection

Paul GAY

LumenAI, pgay@lumenai.fr

Jeudi 14 Février

Nous voulons apprendre sur des graphes

- Nombreuses applications: Réseaux sociaux, molécules, nuage de points 3D.
- une manière naturelle de modéliser¹

¹Daphne Koller. Probabilistic graphical models: principles and techniques. MIT press 2009.

Nous voulons apprendre sur des graphes

- Nombreuses applications: Réseaux sociaux, molécules, nuage de points 3D.
- Intérêt de la modélisation

Nous voulons apprendre sur des graphes

- Nombreuses applications: Réseaux sociaux, molécules, nuage de points 3D.
- Intérêt de la modélisation

Différents apprentissages

non supervisé / Supervisé

 Regroupement des noeuds² versus prédire un label pour un noeud, un arc, ou le graphe entier.

²Blondel et al. Fast unfolding of communities in large networks. Journal of Statistical Mechanics. 2008

Quel modèle utiliser?

- Adaptation des methodes de deep learning au cas des graphes
 Beaucoup d'opérateurs à redéfinir (translation, convolution, pooling)
- Graph neural networks, Geometric deep learning ³
- Méthodes à base d'envoi de messages (GraphSage⁴)

³Bronstein et al. Geometric deep learning: going beyond euclidean data. IEEE Signal Proc. 2017

⁴Hamilton et al. Inductive representation learning on large graphs. NIPS 2017

Notre ligne de recherche

Est-ce que ces méthodes marchent?

- Qui: État de l'art sur de nombreux benchmarks
- Et non:
 - Difficulté d'exploiter la topologie du graphe⁵⁶.
 - Propagation de l'information: LSTM, Attention, ...

Notre proposition:

Utiliser l'apprentissage non-supervisé pour encoder la topologie.

- Signal d'auto-supervision
- Évaluation complémentaire du modèle.
- Sélection des messages, meilleure construction des graphes

⁵Morris et al. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. AAI 2019.

⁶Dwivedi et al. Benchmarking Graph Neural Networks. CoRR 2020.

Par exemple

Utiliser l'apprentissage non supervisé pour définir l'envoi des messages.

Par exemple

Utiliser l'apprentissage non supervisé pour définir l'envoi des messages.

Par exemple

Utiliser l'apprentissage non supervisé pour définir l'envoi des messages.

Graph of communities Second level of message passing Inter level message

Références

- Des librairies puissantes et facile d'accés: Pytroch geometric, DGL.
- Retrouvez les algorithmes de LumenAl sur notre plateforme:

The Lady of the Lake https://lakelady.lumenai.fr/