SERIE D'EXERCICES N° 19 : CHOC DE DEUX POINTS MATERIELS

On appelle *choc direct* ou de *plein fouet*, un choc au cours duquel les diverses vitesses restent colinéaires.

Le choc est *mou* si les deux points matériels ne forment plus qu'un après le choc. Il n'y a pas conservation de l'énergie cinétique lors d'un choc mou.

Exercice 1 : optimisation de l'énergie transférée par un choc de plein fouet.

- 1. Décrire des possibilités de réalisation matérielle d'un tel cas.
- 2. Dans le repère (R) du laboratoire, la particule de masse m_1 est lancée à la vitesse v_1 sur une cible initialement immobile de masse $m_2 = \alpha m_1$. En supposant le choc élastique, calculer les vitesses v_1 et v_2 après le choc en fonction de α et de v_1 . Commentez les

cas limites $\alpha \to 0$ (on pourra faire intervenir le référentiel (R') de vitesse v_1 par rapport à (R)) et $\alpha \to \infty$.

3. Exprimer en fonction de α le coefficient de transfert $\eta = K_2 / K_1$, quotient de l'énergie cinétique transférée à la cible par l'énergie cinétique initiale totale. Quelle est la valeur de α qui optimise le transfert ? Déterminer la situation correspondante.

Exercice 2 : choc élastique de deux particules de même masse.

Une particule 1 de vitesses initiale v_1 heurte une particule 2 de même masse initialement immobile. Ecrire deux équations qui relient aux données les vitesses $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ après le choc supposé élastique. En déduire que, à part deux cas particuliers dont on analysera le sens physique, les vitesses $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ sont orthogonales. En se référant à l'exemple du billard, expliquer qualitativement pourquoi le problème n'a pas de solution unique.

Exercice 3.

Un neutron (masse $\,m$) entre en collision élastique avec un noyau de masse $\,Am$, au repos dans le référentiel du laboratoire ($\,R$). Soit $\,\theta_B$ l'angle de diffusion du neutron dans le référentiel barycentrique ($\,B$). On désigne par $\,K$ l'énergie cinétique dans le référentiel du laboratoire du neutron incident et par $\,K$ ' son énergie cinétique dans ce référentiel après le choc. Calculer $\,K$ '/ $\,K$ en fonction de $\,A$ et de $\,\theta_B$.

Exercice 4: collision de deux pendules simples.

Deux pendules simples de même longueur 1, sont suspendus au même point O. Les billes A_1 et A_2 qui les constituent possèdent les masses m_1 et m_2 , et seront supposées ponctuelles. Au départ, A_1 et A_2 sont en équilibre. On écarte A_1 d'un angle α , puis on l'abandonne sans vitesse initiale.

- 1. Déterminer les angles d'écart maximum α_1 et α_2 de A_1 et A_2 après le choc, en fonction de α et du rapport des masses $x = m_2 / m_1$:
- a) en supposant la collision parfaitement élastique (que se passe-t-il pour x > 1; x = 1; x < 1?);
- b) si on enduit A₁ et A₂ de glu, de manière à rester collés après la collision (choc mou).
- 2. Application numérique : $\alpha = 60^{\circ}$.
- a) On se place dans le cas 1.a).

Pour quelle valeur de x les pendules remontent-ils en sens contraire, du même angle que l'on déterminera ?

b) Pour x = 2, déterminer les angles d'écart dans les cas 1.a) et 1.b).

Réponses (les vecteurs sont ici notés en caractères gras).

Exercice 1.

1) Deux chariots sur un banc à coussin d'air.

2)
$$v'_{2x} = \frac{2}{1+\alpha} v_{1x}$$
 et $v'_{1x} = \frac{1-\alpha}{1+\alpha} v_{1x}$.

Pour $\alpha \to 0$: $v'_{1x} = v_{1x}$ et $v'_{2x} = 2 v_{1x}$: la particule 1 continue sa course sans être influencée par la particule 2 trop légère, et, dans (R') la particule 1 joue le rôle de mur sur lequel la particule 2 se réfléchit.

Pour $\alpha \to \infty$: $v'_{1x} = -v_{1x}$ et $v'_{2x} = 0$: dans (R) la particule 2 joue le rôle de mur sur lequel la particule 1 se réfléchit.

3)
$$\eta = \frac{4 \alpha}{(1+\alpha)^2}$$
 et pour $\alpha = 1$: transfert total.

Exercice 2

$$\mathbf{v_1} = \mathbf{v_1}^2 + \mathbf{v_2}^2$$
 et $\mathbf{v_1}^2 = \mathbf{v_1}^2 + \mathbf{v_2}^2$ donc $\mathbf{v_1}^2 \mathbf{v_2} = 0$: choc de plein fouet ($\mathbf{v_1} = \mathbf{0}$) ou tir raté ($\mathbf{v_2} = \mathbf{0}$) ou vitesses orthogonales.

Exercice 3.

$$\frac{K'}{K} = \frac{1 + 2 A \cos \theta_B + A^2}{(1 + A)^2}.$$

Exercice 4.

1.a)
$$\cos \alpha_1 = 1 - \left(\frac{1-x}{1+x}\right)^2 (1-\cos \alpha)$$
 et $\cos \alpha_2 = 1 - \frac{4}{(1+x)^2} (1-\cos \alpha)$. 1.b) $\cos \alpha' = 1 - \frac{1}{(1+x)^2} (1-\cos \alpha)$.
2.a) $x = 3$ et $|\alpha| = 29^\circ$. 2.b) $\cos 1.a$ $\alpha_1 = -19^\circ$ et $\alpha_2 = 39^\circ$; $\cos 1.b$ $\alpha' = 19^\circ$.