LatticeFold & its Applications

Binyi Chen, Dan Boneh
Stanford University

Succinct Non-Interactive Argument of Knowledge

(zk)SNARK ≈ Proof of correct computation

Given circuit C, instance x, I know witness w s.t. C(x, w) = 0

E.g. knowledge of secret key/hash preimage

$$(pk_C, vk_C) \leftarrow \text{Setup}(C)$$

$$\text{Prove}(pk_C, x, w) \rightarrow \pi \qquad \text{Verify}(vk_C, x, \pi) \rightarrow 0/1$$

Succinctness: π is **small** and **cheap** to verify

Scaling Blockchains

<u>Smart-contract Blockchain:</u> (oversimplified)

Redundant execution ⇒ poor throughput/latency

Scaling Blockchains

Based Rollup: (oversimplified)

How to compute π efficiently?

Much cheaper!

Monolithic SNARKs

Huge circuit

Can't support dynamic n Fix n transform to a circuit

Large, can't start proving without it
$$C(x = [z_0, z_n, \text{cm}], w \leftarrow f(\text{exec_trace})) = 0$$

E.g., FFTs, MSMs

Memory/computation intensive Run a SNARK (e.g., Plonk/STARK)

Proof π

Piecemeal SNARKs (IVC/PCD) [Valiant08, BCCT12]

Pros:

- Pipeline proving/witness-gen
- Small memory overhead
- Parallelizable using PCD

E.g., Mangrove [NDCTB24]

Cons:

- Expensive SNARK.V circuit
- SNARK proving still not that cheap

Any better way to construct IVC?

Homomorphic commitment:

Commit: long vector
$$w \longrightarrow \operatorname{short} c_w$$

Homomorphism:
$$w_1 + w_2 \longrightarrow c_{w_1 + w_2} = c_{w_1} + c_{w_2}$$

Why useful? Expensive chk
$$f(w_1, w_2) = 0$$
 Easy chk $f(c_{w_1}, c_{w_2}) = 0$

Folding scheme: ≈ Compress multiple NP statements into one

$$R_{\text{com}} \coloneqq \{(u = (x, c_w), w) : (x, w) \in R_{NP} \land c_w = \text{Comm}(w)\}$$

Cheaper than SNARK.V!

Completeness + Knowledge soundness

[BCLMS20,KST21]: We can construct IVC/PCD from folding schemes!

IVC from folding vs IVC from SNARK:

Proving algorithm:

SNARK.P

Fold. P

Much faster

Extra embedded circuit:

Which homomorphic commitment to use?

Homomorphic Commitment

Option 1: Pedersen $p, q: \approx 256$ -bit primes

$$w \coloneqq (w_1, w_2 \dots, w_n) \in \mathbb{F}_p^n \longrightarrow c_w \coloneqq g_1^{w_1} g_2^{w_2} \cdots g_n^{w_n} \in \mathbb{G} \approx \mathbb{F}_q \times \mathbb{F}_q$$

Cons:

- Expensive group exponentiations over large fields \mathbb{F}_p , \mathbb{F}_q (256-bit)
- Fold.V ≈ 1 G-exp + hash/field ops over \mathbb{F}_p
 - need to support both \mathbb{F}_p , $\mathbb{F}_q \Rightarrow$ field emulation (e.g. \mathbb{F}_p -ops over \mathbb{F}_q)
- Vulnerable to quantum attacks

LatticeFold: Contributions

The first folding scheme from lattice-based commitments

- Fast & small fields arithmetics (e.g., 64-bit or 32-bit prime fields)
- Eliminate non-native field emulation in Fold.V
 - Messages and commitments live in the same space
- Quantum attacks resistant (based on Lattice assumptions)
- Support high-degree constraint systems (e.g., CCS [STW23])

Ajtai Binding Commitments [Ajtai96]

E.g.,
$$q \approx$$
 64-bit prime, $\beta = 2^{16}$, $n \gg \lambda$ long vector $w \in [-\beta, \beta]^n$ $A \leftarrow \mathbb{Z}_q^{\lambda \times n}$ short $c_w = Aw \bmod q \in \mathbb{Z}_q^{\lambda}$ Essential for binding

Homomorphic Property:

$$c_{w_1} + c_{w_2} = (Aw_1 + Aw_2) \bmod q = A(w_1 + w_2) \bmod q = c_{w_1 + w_2}$$
Assumption: $w_1 + w_2 \in [-\beta, \beta]^n$

Cons: committing complexity = $O(\lambda n)$ **F**-ops

Ring/Module-based Ajtai [LMo7,PRo7]

E.g., $R_q = \mathbb{Z}_q[X]/(X^d + 1)$ (Polynomials with deg < d and \mathbb{Z}_q -coefficients)

$$\begin{array}{c} \text{long vector } w \in \{-\beta, \dots, \beta\}^n & \xrightarrow{A \leftarrow \mathbb{Z}_q^{\lambda \times n}} \quad \text{short} \quad c_w = Aw \bmod q \in \mathbb{Z}_q^{\lambda} \\ & \widetilde{w} \in R_q^{n/d} \\ & \widetilde{c}_w = \widetilde{A}\widetilde{w} \in R_q^{\lambda/d} \\ & \widetilde{c}_w = \widetilde{c}_w =$$

Pros:

- E.g., $\lambda = d$, committing complexity: $O(n/d) R_q$ -ops $\approx O(n \log \lambda) \mathbb{F}_q$ -ops
- Many hardware optimizations in the FHE/Lattice-signature literature

Challenges of Folding with Ajtai

Naïve folding:

$$c_{w_1}, w_1 \\ c_{w_2}, w_2$$
 random γ
$$c_{w_1} + \gamma c_{w_2}, \quad \boxed{w_1 + \gamma w_2} \notin [-\beta, \beta]^n \text{ anymore}$$

Challenge: Keep folded witness stay in the **bounded** msg space

Essential for binding/soundness

Re-represent witnesses w/ lower norms

Decomposition: $a \in (-\beta, \beta)$ $\xrightarrow{\text{split algorithm}}$ $a_1, \dots, a_k \in (-b, b)$ $a_1, \dots, a_k \in (-b, b)$ $a = a_1 + b \cdot a_2 + \dots + b^{k-1} \cdot a_k$ $c_{w_k}^1, w_1^1 \in (-b, b)^n$

$$c_{w_1}, w_1 \xrightarrow{\text{split}} \begin{bmatrix} c_{w_1}^1, w_1^1 \in (-\boldsymbol{b}, \boldsymbol{b})^n \\ c_{w_1}^2, w_1^2 \\ \\ c_{w_2}, w_2 \xrightarrow{\text{split}} \begin{bmatrix} c_{w_1}^1, w_1^2 \\ \\ c_{w_2}^2, w_2^2 \end{bmatrix} \xrightarrow{\text{random } \gamma_1, \gamma_2, \gamma_3, \gamma_4 \in R_q \\ \\ c_{w_2}^2, w_2^2 \end{bmatrix} c^* = \text{combine}([\gamma_i], [c_{w_1}^1 \dots c_{w_2}^2])$$

$$with small coefficients! \qquad w^* = \text{combine}([\gamma_i], [w_1^1 \dots w_2^2])$$

$$\in [-\beta, \beta]^n$$

Complication: Fold.P must prove that witnesses are low-norm (i.e. in $(-b,b)^n$) Novel range-proofs from Sumchecks

Performance

 $n \approx \#$ of constraints

17

	LatticeFold	Pedersen Folding [KST21, BC23, KS23]	Hash-based Folding [BMNW24]
Prover time	$O(n \mathrm{log} \lambda) \ \mathbb{Z}_q$ -mul w/ small $q \ igodots$	O(n)-sized MSM over large field	$O(n)$ hash \bigodot
Verifier circuit	$\approx O(b \log n)$ hash	$O(1)$ G-exps + non-native \mathbb{F} -ops	$O(\lambda \log n) \gg O(b \log n)$ hash \bigodot
"Unbounded" folding steps			×
Efficient commit for sparse vector			×

Summary & Future Work

- LatticeFold: the first lattice-based folding scheme
 - Fast & small field; efficient verifier circuit; quantum attacks resistant
 - Hardware optimization-friendly + Support high-deg constraint systems
- Updated version
 - Optimized folding for high-degree constraint systems (CCS)
 - 2 sequential Sumchecks previously, now only 1!
- Future work
 - Integrate with Lasso to support table lookups
 - Remove the need for witness decomposition/range-check

Thank You

https://eprint.iacr.org/2024/257.pdf