Math 110B (Algebra) *University of California, Los Angeles*

Aaron Chao

Winter 2022

These are my lecture notes for Math 110B (Algebra), which is the second course in Algebra taught by Nicolle Gonzales. The textbook for this class is *Abstract Algebra: An Introduction*, *3rd edition* by Hungerford.

Contents		
1	Jan 3, 2022 1.1 Groups	2 2
2	Jan 5, 2022	4
	2.1 Groups (Cont'd)	4
	2.2 Symmetries	5
3	Jan 7, 2022	8
	3.1 Symmetries (Cont'd)	8
	3.2 Direct Product of Groups	8
	3.3 Properties of Groups	9

1 Jan 3, 2022

1.1 Groups

- Algebra \rightarrow study of mathematical structure.
- Rings \leftrightarrow "numbers" e.g. $\mathbb{R}, \mathbb{Z}, \mathbb{C}, \mathbb{Z}_p$ 2 operations $(+, \cdot)$

Question 1.1: What happens if we have only 1 operation (either \cdot or + but not both)? What kind of structure is this more basic setup?

Answer: Groups! It turns out groups encode the mathematical structures of the $\underline{\text{symmetries}}$ in nature.

Definition 1.2 (Group)

A group (G,*) is a nonempty set with a binary operation $*: G \times G \to G$ that satisfies

- 1. (Closure): $a * b \in G \quad \forall a, b \in G$
- 2. (Associativity): $(a * b) * c = a * (b * c) \quad \forall a, b, c \in G$
- 3. (Identity): $\exists e \in G$ such that $e * a = a = a * e \quad \forall a \in G$
- 4. (Inverse): $\forall a \in G, \exists d \in G \text{ such that } d * a = e = a * d$

Note:

• If * is addition, we just divide * by the usual + sign. In this case

$$e = 0$$
 and $d = -a$

• If the operation * is multiplication, we just divide * by the usual · sign. In this case

$$e = 1$$
 and $d = a^{-1}$

• Be aware that sometimes * is neither.

Definition 1.3 (Abelian)

If the * operation is commutative, i.e. a*b = b*a, then we say that G is <u>abelian</u> (named after the mathematician N.H. Abel)

Definition 1.4 (Order, Finite Group vs. Infinite Group)

The <u>order</u> of a group G, denoted |G|, is the number of elements it contains (as a set). Thus, G is a <u>finite group</u> if $|G| < \infty$ and G is an infinite group if $|G| = \infty$

Examples 1.5 (Examples of a group)

1. Rings where you "forget" multiplication. $\rightarrow (\mathbb{Z}, +)$ integers with $* = +, (\mathbb{R}[X], +)$, etc. Note: $(\mathbb{Z}, *)$ with $* = \cdot$ is not a group. Why?

Theorem 1.6

Every ring is an abelian group under addition.

Proof. e = 0, inverse = -a for each $a \in R$.

<u>Fact:</u> If $R \neq 0$ then (R, \cdot) is <u>never</u> a group since 0 has no multiplicative inverse.

Examples 1.7 (More examples of a group)

2. Fields without zero.

Theorem 1.8

Let \mathbb{F}^* denote the nonzero elements of a field \mathbb{F} . Then (\mathbb{F}^*,\cdot) is an abelian group.

<u>Recall:</u> A unit in a ring R is an element $a \in R$ with a multiplicative inverse $a^{-1} \in R$ such that $aa^{-1} = 1 = a^{-1}a$.

Theorem 1.9

The set of units \mathcal{U} inside a ring R is a group under multiplication.

Examples 1.10 (More examples of a group cont.)

3. $\mathcal{U}_n = \{m | (m, n) = 1\} \subseteq \mathbb{Z}_n$ is also a group, but under multiplication, $\underline{n = 4} \quad \mathbb{Z}_4 = \{0, 1, 2, 3\}, \quad \mathcal{U}_4 = \{1, 3\}$ $(\mathbb{Z}_4, +)$ and (\mathcal{U}_4, \cdot) are groups with different binary operation!

 $\underline{n=6}$ $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}, \quad \mathcal{U}_6 = \{1, 5\}$ (\mathcal{U}_6, \cdot) is a group

- $1 \cdot 5 = 5 \pmod{6} \in \mathcal{U}_6$ (closure)
- 1 = e (identity)
- $1 \cdot 1 = 1$, $5 \cdot 5 = 25 \equiv 1 \pmod{6}$ (inverse)
- Associativity is clear

2 Jan 5, 2022

2.1 Groups (Cont'd)

Examples 2.1

4. $(M_{n \times m}(\mathbb{F}), +) = m \times n$ matrices over \mathbb{F} under addition e = zero matrix, inverse of a matrix -M

Definition 2.2 (General linear group)

Denote by $GL_n(\mathbb{F})$ the set of nxn invertible matrices under multiplication. $(\det(A) \neq 0 \quad \forall A \in GL_n)$

- Closed: $det(A \cdot B) = det(A) \cdot det(B) \neq 0 \implies AB \in GL_n \quad \forall A, B \in GL_N$
- Associativity: Obvious.
- Identity: $det(I) = 1 \neq 0 \implies I \in GL_n(\mathbb{F})$
- Inverse: $A \in GL_n$; $\det(A^{-1}) = \frac{1}{\det(A)} \neq 0 \implies A^{-1} \in GL_n(\mathbb{F})$

Fact: $GL_n(\mathbb{F})$ is a group for any field \mathbb{F} .

Comment:

- $\det(A+B) \neq \det(A) + \det(B)$
- $\det(AB) = \det(A) \cdot \det(B)$

Definition 2.3 (Special linear group)

Let $SL_n(\mathbb{F})$ denote the set of invertible matrices over \mathbb{F} with det = 1

Exercise. Show that $SL_n(\mathbb{F})$ is a group.

2.2 Symmetries

Example 2.4 (Symmetries over a square)

Rotations and reflection These operations (maps) form a group under composition. So *=0. For instance, suppose $r_3 \circ t = h$

The group of rotations/reflections of a square is called <u>Dihedral Group of degree 4</u>, denoted D_4 .

$$D_4 = \{r_1, r_2, r_3, r_4, d, t, h, v \mid \text{under } \circ \}$$

These are Professor Gonzales's lovely drawings.

Example 2.5 (Symmetries of a regular polygon with n sides)

Called the dihedral groups of degree n, D_n .

• <u>n=</u>3

• <u>n=4</u>

• $\underline{n=5}$

• <u>n=6</u> etc...

Observe: $|D_n| = 2n$ because you have n-axes of reflection and n-angles of notation.

Example 2.6 (The symmetric group)

Let $n \in \mathbb{N}$, and S_n be the set of all permutations of the numbers $\{1, ..., n\}$.

Note: any permutation of $\{1,...,n\}$ can be thought of as a bijection $\{1,...,n\} \rightarrow \{1,...,n\}$.

- This allows us to compose permutations just like functions.
- $\implies S_n$ is a group!

Definition 2.7 (Symmetric group)

The symmetric group S_n is the group of permutations of the integers of the integers $\{1,...,n\}$.

Given any permutation $\sigma \in S_n$,

$$\sigma: \{1, ..., n\} \to \{1, ..., n\},$$
$$i \mapsto \sigma_i$$

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ \sigma_1 & \sigma_2 & \cdots & \sigma_{n-1} & \sigma_n \end{pmatrix} \rightarrow e = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma_1^{-1} & \sigma_2^{-1} & \cdots & \sigma_n^{-1} \end{pmatrix}$$

Group operation: function composition.

Example 2.8

$$\frac{\mathbf{n}=2:}{e = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}} \tau = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$\tau \circ \tau = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = e$$

$$\tau \circ e = \tau$$

$$e \circ \tau = \tau$$

$$e \circ \tau = e$$

$$\implies S_2 = \{e, \tau\} \text{ is a group}$$

$$e^{-1} = e$$

$$\tau^{-1} = \tau$$

Associativity: obvious because of function composition

3 Jan 7, 2022

3.1 Symmetries (Cont'd)

Example 3.1

Exercise. τ_{212} ?

3.2 Direct Product of Groups

Definition 3.2 (Direct product)

Given $(G, *), (H, \star)$ both groups define the binary operation:

$$(G \times H) \times (G \times H) \to G \times H$$

 $(g,h) \square (g',h') \mapsto (g * g', h \star h')$

 $\frac{\text{Side note:}}{\odot \colon S \times S \to S} \Longrightarrow S \text{ group}$

Example 3.3

$$S_2 \times D_4$$
: $(\tau_1, r_{270^{\circ}}) \square (\tau_1, v) = (\tau_1 \circ \tau_1, r_{270^{\circ}}v) = (e, t)$

Example 3.4

$$(\mathbb{R}, +) \times (\mathbb{R}^*, \cdot)$$
$$(5, 2)\square(-5, \pi) = (0, 2\pi)$$

Example 3.5

$$\mathbb{Z}_n \times \mathbb{Z}_m \quad n, m \in \mathbb{N}.$$

$$(a,b) \square (a',b') = \underbrace{(a+a', b+b')}_{\text{mod } n}$$

$$(5,5)\square(2,2) = (5+2,5+2)$$

$$= (7,1)$$

3.3 Properties of Groups

<u>Notation</u>: Going forward, we omit * in the notation: $(G,*) \to G$. Use multiplicative notation for abstract groups. Instead $a*b \to ab$.

$$\underbrace{a * a * a * a \cdots * a}_{n \text{ times}} \to a^n$$

However, for very explicit groups like

 $(\mathbb{Z},+),(\mathbb{R},+),(\mathbb{Z}_n,+),$ etc, we use <u>additive notation</u>. (*=+)

$$a * b \rightarrow a + b$$

$$\underbrace{a * \cdots * a}_{n \text{ times}} \to n \cdot a$$

(Review notation on page 198 of book)

Theorem 3.6

G group, $a, b, c \in G$. Then

- 1. $e \in G$ is unique
- 2. if ab = ac or $ba = ca \implies b = c$
- 3. $\forall a \in G : a^{-1}$ is unique.

Proof.

1. Suppose $\exists e' \in G$ s.t $e \neq e'$ but $e'a = a = ae' \ \forall a \in G$. \Longrightarrow let $a = e \implies e'e = e = ee'$

On the other hand $e \cdot e' = e' = e'e$

$$\implies e = e'$$

 $2. \ ab = ac, \quad a, b, c \in G.$

Since $a^{-1} \in G$

$$\implies \underbrace{a^{-1}a}_{e}b = \underbrace{a^{-1}a}_{e}c$$

$$\implies e \cdot b = e \cdot c$$

$$\implies b = c$$

3. Suppose $a \in G \exists$ two distinct inverses.

 $d_1, d_2 \in G$.

$$d_1 a = e = a d_1$$

$$d_2 a = e = a d_2$$

$$\implies d_1 = d_1 e = d_1 a d_2 = e \cdot d_2 = d_2$$

Corollary 3.7

G group, $a, b \in G$. Then

- 1. $(ab)^{-1} = b^{-1}a^{-1}$
- 2. $(a^{-1})^{-1} = a$

| Proof. Exercise.

Note: ab = ba (G is abelian)

$$(ab)^{-1} = a^{-1}b^{-1}$$

Generally: $ab \neq ba \implies a^{-1}b^{-1} \neq b^{-1}a^{-1}$

Definition 3.8 (Order (of an element) and Finite vs. Infinite order)

The <u>order</u> of an element $a \in G$ is the smallest $k \in \mathbb{N}$ such that $a^k = e$. We denote this

If k is finite \implies a has finite order. If k is infinite \implies a has infinite order.

Example 3.9

$$S_2; e, \tau_1 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$|e| = 1; e' = e$$

$$|\tau_1| = 2 \quad \tau_1^2 = \tau_1 \circ \tau_1 = e$$

$$\tau_1^4 = \tau_1^2 \circ \tau_1^2 = e \circ e = e$$

$$|e| = 1$$
: $e' = e$

$$|\tau_1| = 2$$
 $\tau_1^2 = \tau_1 \circ \tau_1 = e$

$$\tau_1^4 = \tau_1^2 \circ \tau_1^2 = e \circ e = e$$

Example 3.10

$$\mathbb{Z} \leftarrow e = 0.$$

$$|1| = ?$$

 $1 \cdot n = 0$ for which n?

Answer none!

$$\implies |1| = \infty$$