Problem 6.3 CSP Formalization

Answer:

According to the problem description the constraint graph will be as follows,

 $Dy={1,2}$

1. Pairs (v, w) of variables such that v is arc-consistent relative to w,

		•		
Pair (v, w)	Domain (D_v, D_w)	Constraint (C_{vw})	Arc-consistent	
(x,y)	$D_x = \{0,1,2\}, D_y = \{1,2\}$	$x \neq y$	Yes	
(y,x)	$D_y = \{1,2\}, D_x = \{0,1,2\}$	$y \neq x$	Yes	
(y,z)	$D_y = \{1,2\}, D_z = \{0,1\}$	y > z	Yes	
(z,y)	$D_z = \{0,1\}, D_y = \{1,2\}$	z < y	Yes	
(x,z)	$D_x = \{0,1,2\}, D_z = \{0,1\}$	$x \neq z$	Yes	
(z,x)	$D_z = \{0,1\}, D_x = \{0,1,2\}$	$z \neq x$	Yes	

Therefore, (v, w) of variables such that v is arc-consistent relative to w: (x, y), (y, z), (y, z), (z, y), (x, z), (z, x)

2. Assignment Table:

x	у	Z	$x \neq y$	$x \neq z$	y > z	Partial or Total	Consistent or Inconsistent	Solution
***				Р	С	No		
0	2	1	Т	Т	Т	T	С	Yes
	***				T	IC	No	
1	2	0	Т	Т	Т	T	С	Yes
***				T	IC	No		
2	1	0	Т	Т	Т	Т	С	Yes
	***				T	IC	No	

Therefore, all solutions (x, y, z) are: (0, 2, 1), (1, 2, 0), (2, 1, 0)

3. After assigning y = 1, if we apply forward checking, updated domain will be as follows,

 $D_x = \{0, 2\}, 1 \text{ is excluded as } y = 1$

 $D_y = \{1\}$, since 1 is assigned to y

 $D_z = \{0\}, 1 \text{ is excluded as } y = 1$