Geometric Complexes and Applied Topology

Fabian Roll (TUM)

Research Seminar - Geometry and Topology December 13, 2022

Outline

Neuroscience and the Nerve Theorem

Covid-19 and Vietoris-Rips complexes

Shape Reconstruction and Persistent Homology

Neuroscience

The neural code - place cells

Discovery of *place cells* by O'Keefe and Dostrovsky "The hippocampus as a spatial map..." in 1971.

Neuroscience

The neural code - place cells

What can topology tell us about the neural code?

Bull. Amer. Math. Soc., DOI:10.1090/bull/1554, 2016.

The Alexandroff nerve (1928)

Definition. Let X be a topological space, and let $\mathcal{U} = (U_i)_{i \in I}$ be a cover of X. The *nerve* of \mathcal{U} is the simplicial complex

$$\operatorname{Nrv}(\mathfrak{U}) = \{ J \subseteq I \mid |J| < \infty \text{ and } U_J := \bigcap_{i \in J} U_i \neq \emptyset \}$$

The Alexandroff nerve (1928)

Čech complex of a point cloud

Definition. The Čech complex of a subset $X\subseteq\mathbb{R}^d$ is the nerve of the cover by closed balls of radius r centered at points in X

$$\operatorname{\check{C}ech}_r(X) = \operatorname{Nrv}((D_r(x))_{x \in X})$$

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Here nice can mean different things:

open, numerable cover, contractible intersections

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

- open, numerable cover, contractible intersections
 - \rightarrow many references

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

- open, numerable cover, contractible intersections
 - \rightarrow many references
- finite, closed, convex cover

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

- open, numerable cover, contractible intersections
 - → many references
- finite, closed, convex cover
 - ightarrow few references, mostly using outdated language and tools

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Here nice can mean different things:

- open, numerable cover, contractible intersections
 - \rightarrow many references
- finite, closed, convex cover
 - ightarrow few references, mostly using outdated language and tools

Prior results?

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Here nice can mean different things:

- open, numerable cover, contractible intersections
 - \rightarrow many references
- finite, closed, convex cover
 - ightarrow few references, mostly using outdated language and tools

Prior results?

 Alexandroff 1928: Every compact metric space is the inverse limit of a sequence of nerves of "arbitrarily fine" closed covers.

Theorem (Borsuk 1948, and many more). Let $\mathcal U$ be a nice cover of X. Then $\mathrm{Nrv}(\mathcal U)$ is homotopy equivalent to X.

Here nice can mean different things:

- open, numerable cover, contractible intersections
 - \rightarrow many references
- finite, closed, convex cover
 - ightarrow few references, mostly using outdated language and tools

Prior results?

- Alexandroff 1928: Every compact metric space is the inverse limit of a sequence of nerves of "arbitrarily fine" closed covers.
- Čech 1932: Extends Alexandroff's ideas \rightarrow Čech (co)homology

Persistent homology

Persistent homology

Let $X \subseteq \mathbb{R}^d$, $\mathcal{U}_r = \{D_r(x)\}_{x \in X}$, and $X_r = \bigcup \mathcal{U}_r$. The nerve theorem guarantees for $r \leq l$ the homotopy equivalences

$$\operatorname{Nrv}(\mathcal{U}_r)$$
 $\operatorname{Nrv}(\mathcal{U}_l)$
 $\cong \uparrow$ $\uparrow \cong$
 X_r X_l

Let $X\subseteq \mathbb{R}^d$, $\mathcal{U}_r=\{D_r(x)\}_{x\in X}$, and $X_r=\bigcup \mathcal{U}_r$. The nerve theorem guarantees for $r\leq l$ the homotopy equivalences

$$\operatorname{Nrv}(\mathcal{U}_r) \longrightarrow \operatorname{Nrv}(\mathcal{U}_l)$$
 $\cong \uparrow \qquad \circlearrowright ? \qquad \uparrow \cong$
 $X_r \longrightarrow X_l$

Let $X \subseteq \mathbb{R}^d$, $\mathcal{U}_r = \{D_r(x)\}_{x \in X}$, and $X_r = \bigcup \mathcal{U}_r$. The nerve theorem guarantees for r < l the homotopy equivalences

$$\operatorname{Nrv}(\mathcal{U}_r) \longrightarrow \operatorname{Nrv}(\mathcal{U}_l)$$
 $\simeq \uparrow \qquad \circlearrowright ? \qquad \uparrow \simeq$
 $X_r \longrightarrow X_l$

For an extensive treatment of functorial nerve theorems dealing with open and closed covers see

U. Bauer, M. Kerber, F. Roll, and A. Rolle

A Unified View on the Functorial Nerve Theorem and its Variations Preprint. arXiv:2203.03571. 2022.

Outline

Neuroscience and the Nerve Theorem

Covid-19 and Vietoris-Rips complexes

Shape Reconstruction and Persistent Homology

Definition. Let X be a metric space. The Vietoris-Rips complex at scale r is the simplicial complex

$$\operatorname{Rips}_r(X) = \{S \subseteq X \text{ finite } | \ S \neq \emptyset, \ \operatorname{diam} S \leq r\}.$$

Applications

• In the limit $r \to 0$: Used by Leopold Vietoris to extend homology theory to metric spaces (1927).

Applications

- In the limit $r \to 0$: Used by Leopold Vietoris to extend homology theory to metric spaces (1927).
- In the limit $r \to \infty$: Used by Eliyahu Rips and Mikhael Gromov to study hyperbolic groups (1987).

Applications

- In the limit $r \to 0$: Used by Leopold Vietoris to extend homology theory to metric spaces (1927).
- In the limit $r \to \infty$: Used by Eliyahu Rips and Mikhael Gromov to study hyperbolic groups (1987).
- For all r > 0: Used in topological data analysis (nowadays).

Applications

- In the limit $r \to 0$: Used by Leopold Vietoris to extend homology theory to metric spaces (1927).
- In the limit $r \to \infty$: Used by Eliyahu Rips and Mikhael Gromov to study hyperbolic groups (1987).
- For all r > 0: Used in topological data analysis (nowadays).

Theorem (Latschev, 2001). Let X be a closed Riemannian manifold. For small enough $r, \delta > 0$ and any metric space Y with $d_{GH}(X,Y) < \delta$:

$$\operatorname{Rips}_r(Y) \simeq X$$

The circle S^1

•

•

• •

•

The circle S^1

The circle S^1

For $u \le r < w$:

 $|\operatorname{Rips}_r(X)| \simeq S^2$

The circle S^1

For $u \le r < w$:

 $|\operatorname{Rips}_r(X)| \simeq S^3$

The circle S^1

For $u \le r < w$:

 $|\operatorname{Rips}_r(X)| \simeq S^9$

The circle S^1

For
$$u \leq r < w$$
:

$$|\operatorname{Rips}_r(X)| \simeq S^{49}$$

The circle S^1

For $u \le r < w$:

 $|\operatorname{Rips}_r(X)| \simeq S^{49}$

Theorem (Adamaszek, Adams 2015). For $l=0,1,\ldots$ there are homotopy equivalences

$$\mathrm{Rips}_r(S^1) \simeq \begin{cases} S^{2l+1} & \text{if } \frac{l}{2l+1} < r < \frac{l+1}{2l+3}, \\ \bigvee^{\mathfrak{c}} S^{2l} & \text{if } r = \frac{l}{2l+1}. \end{cases}$$

Application of Vietoris-Rips persistent homology

COVID-19 genetic evolution data

Figure 2. Topological data analysis quantifies convergent evolution. (A) Persistent homology detects reticulate events in viral evolution by means of a persistence barcode. Each bar in the barcode (A2) corresponds to a topological cycle in the reticulate phylogeny (A1). Bars at small genetic distance scales are expected to correspond mainly to homoplasies, while recombination events typically produce topological features at larger scales. (B) SNV cycles are topological cycles in the reticulate phylogeny for which adjacent sequences differ

M. Bleher, L. Hahn, J. A. Patino-Galindo, M. Carriere, U. Bauer, R. Rabadan, and A. Ott

Topological data analysis identifies emerging adaptive mutations in SARS-CoV-2 Preprint, arXiv:2106.07292, 2021

Application of Vietoris-Rips persistent homology

COVID-19 genetic evolution data

covid data	Ripser's runtime
ordered chronologically	full day
ordered reversed chronologically	2 minutes

Circle Limit III, M. C. Escher

U. Bauer

Ripser: efficient computation of Vietoris—Rips persistence barcodes Journal of Applied and Computational Topology, DOI:10.1007/s41468-021-00071-5, 2021

Rips contractibility lemma

Gromov-hyperbolicity

Definition. A metric space X is (Gromov) δ -hyperbolic if for all four points $w,x,y,z\in X$

$$d(x, w) + d(y, z) \le \max\{d(x, y) + d(z, w), d(x, z) + d(y, w)\} + 2\delta$$

Rips contractibility lemma

Gromov-hyperbolicity

Definition. A metric space X is (Gromov) δ -hyperbolic if for all four points $w,x,y,z\in X$

$$d(x, w) + d(y, z) \le \max\{d(x, y) + d(z, w), d(x, z) + d(y, w)\} + 2\delta$$

Example. finite metric space, trees are 0-hyperbolic, hyperbolic plane, ...

Rips contractibility lemma

Theorem (Rips, Gromov 1987). Let X be a δ -hyperbolic geodesic metric space. Then $\mathrm{Rips}_t(X)$ is contractible for all $t \geq 4\delta$.

Rips contractibility lemma

Theorem (Rips, Gromov 1987). Let X be a δ -hyperbolic geodesic metric space. Then $\mathrm{Rips}_t(X)$ is contractible for all $t \geq 4\delta$.

We address two questions:

- 1. What about non-geodesic spaces? Finite metric spaces?
- 2. Connection to Ripser?

The geodesic defect

Definition (Bonk, Schramm 2000). The metric space X is ν -geodesic if for all $x,y\in X$ and $r,s\geq 0$ with r+s=d(x,y) there exists $z\in X$:

Discrete Morse theory

Discrete Morse theory

Discrete Morse theory

Theorem (Bauer, R 2021). Let X be a finite δ -hyperbolic metric space. Then there exists a discrete gradient encoding the collapses

$$\operatorname{Rips}_u(X) \searrow \operatorname{Rips}_t(X) \searrow \{*\}$$

for all $u > t \ge 4\delta + 2\nu$, where ν is the geodesic defect of X

U. Bauer, F. Roll

Gromov hyperbolicity, geodesic defect, and apparent pairs in Vietoris-Rips filtrations

SoCG 2022, extended version: arXiv:2112.06781

Theorem (Bauer, R 2021). Let X be a finite δ -hyperbolic metric space. Then there exists a discrete gradient encoding the collapses

$$\operatorname{Rips}_u(X) \searrow \operatorname{Rips}_t(X) \searrow \{*\}$$

for all $u > t \ge 4\delta + 2\nu$, where ν is the geodesic defect of X

• Can relate this result to Ripser's outstanding performance on genetic distances by considering the *apparent pairs gradient*.

U. Bauer, F. Roll

Gromov hyperbolicity, geodesic defect, and apparent pairs in Vietoris-Rips filtrations

SoCG 2022, extended version: arXiv:2112.06781

Outline

Neuroscience and the Nerve Theorem

Covid-19 and Vietoris-Rips complexes

 ${\sf Shape} \ {\sf Reconstruction} \ {\sf and} \ {\sf Persistent} \ {\sf Homology}$

Voronoi diagram and Delaunay triangulation

Definition. The *Delaunay complex* of a subset $S \subseteq \mathbb{R}^d$ is the nerve of the cover by closed Voronoi balls of radius r centered at points in S

The Wrap subcomplex

U. Bauer, H. Edelsbrunner,

The Morse theory of Čech and Delaunay complexes

Trans. Amer. Math. Soc. 369, DOI:10.1090/tran/6991, 2017.

Wrap complex and lexicographic optimal cycles

U. Bauer, F. Roll,

Connecting Discrete Morse Theory and Persistence: Wrap Complexes and Lexicographic Optimal Cycles

Preprint, arXiv:2212.02345, 2022.

Outline

Neuroscience and the Nerve Theorem

Covid-19 and Vietoris-Rips complexes

Shape Reconstruction and Persistent Homology