Mathématiques Appliquées

TC-ING

EXAMEN FINAL – Durée 2h

4 PAGES DE RESUME fournies par le professeur sont AUTORISEES

0,5 points	Laissez une MARGE de 2 cm à GAUCHE
U,3 points	 Inscrivez votre GROUPE
0 F	Soignez l'écriture
0,5 points	• NUMEROTEZ vos feuilles doubles

Justifiez vos réponses!

Exercice 1:

a) Résoudre sur un intervalle I dans $\mathbb R$ à définir l'EDO suivante : $y'=y^2$

b) Résoudre sur
$$\mathbb{R}: y'' + 4y' + 4y = \frac{e^{-2t}}{1+t^2}$$

Exercice 2:

Les fonctions triangle Λ et porte Π sont définies dans votre formulaire. Calculer la transformée de Fourier des fonctions suivantes : a) $t \mapsto \Lambda(2(t-1))$ b) $t \mapsto t^2 . \Pi(t)$

Exercice 3:

On considère la fonction gaussienne définie sur \mathbb{R} par $f(t)=e^{-\pi t^2}$. Le but de cet exercice est de calculer la transformée de Fourier de cette fonction. Le calcul simple par intégration n'est pas faisable, on procède de la manière suivante :

- a) Calculer la dérivée de f et l'exprimer en fonction de f.
- b) Déterminer de deux manières différentes la transformée de Fourier de f': $\mathcal{F}f'$ (qui peut s'écrire $\mathcal{F}(f')$).
- c) En déduire une relation entre $\mathcal{F}f$ et $\mathcal{F}'f$ (qui peut s'écrire $\mathcal{F}'(f)$).
- d) Montrer que $\mathcal{F}(e^{-\pi t^2})(u) = k. e^{-\pi u^2}$ avec $k \in \mathbb{R}$.
- a) En utilisant la relation de la transformée de la transformée, montrer que k=1.

Exercice 4:

On rappelle que pour une fonction causale f , sa transformée de Laplace est définie pour un $p\in\mathbb{C}$ par :

$$\mathcal{L}f(p) = \int_0^{+\infty} f(t). \, e^{-pt} dt$$

- a) Calculer en détail : $\mathcal{L}(e^{at})(p)$ et $\mathcal{L}(sh(\omega t))(p)$ avec $a \in \mathbb{C}$ et $\omega \in \mathbb{R}$ et trouver les domaines d'appartenance de p pour chacune des deux transformées (justifier).
- b) On considère le système masse ressort. Un ressort linéaire de raideur k est attaché par une de ses extrémités à une fondation fixe et par l'autre à une masselotte de masse m qui subit elle-même l'influence d'une force f(t). La position de la masselotte est représentée par x(t) avec une position au

repos
$$x = 0$$
. L'évolution de $x(t)$ est donnée par :

= 0. L'évolution de
$$x(t)$$
 est donnée par :
$$\begin{cases} m. x''(t) + k. x(t) = f(t) \\ x(0) = x_0, x'(0) = x_1 \end{cases}$$

- b.1) Exprimer $\mathcal{L}x$ en fonction de $\mathcal{L}f$.
- b.2) On suppose pour simplifier que $x_0 = 0 = x_1$, trouver x(t).