МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Параллельные алгоритмы»

Тема: Знакомство с программированием гетерогенных систем в стандарте **Open CL**

Студентка гр. 9303	 Москаленко Е.М
Преподаватель	 Сергеева Е.И.

Санкт-Петербург

2022

Цель работы.

Ознакомиться со стандартом для кроссплатформенного параллельного программирования на графических и центральных процессорах OpenCL на примере реализации расчета фрактала Мандельброта.

Задание.

Реализовать расчёт фрактала Мандельброта на OpenCL. Произвести оценку производительности. Визуализировать результат.

Выполнение работы.

Множество Мандельбро́та — это «множество таких точек C на комплексной плоскости, для которых рекуррентное соотношение $Z_{n+1} = Z_n^2 + C$ при $Z_0 = 0$ задаёт ограниченную последовательность.

Иными словами, на каждом шаге число возводится в квадрат и к нему добавляется константа. Все множество расположено на плоскости внутри круга радиуса 2. Если за определенное число шагов N (итераций) последовательность осталась в заданных пределах, то значение константы принадлежит множеству и точка окрашивается в черный цвет. Соответственно, если на каком-то этапе, меньшем N - общего количества итераций, элемент последовательности по модулю стал больше 2, то точка множеству не принадлежит и окрашивается в другой цвет, который вычисляется в функции $get\ color()$.

Было написано 2 алгоритма - последовательный однопоточный и параллельный с помощью OpenCL.

Для параллельного вычисления была написана Kernel функция mandelbrot, на вход которой подается количество итераций алгоритма и объект класса $image2d_t$ - изображение для записи результата. Индекс обрабатываемого пикселя берется с помощью вызова get global id(0), get global id(1).

Программа-хост контролирует запуск и выполнение кернела на вычислительном девайсе. Запуск команд OpenCL происходит с помощью вызова функции CL_RUN_COMMAND, которая проверяет код и в случае неудачи выводит сообщение об ошибке.

Рисунок 1 - Результат последовательного алгоритма

Рисунок 2 - Результат алгоритма OpenCL

Оценка производительности

Размер изображения	Количество итераций алгоритма	Время OpenCL, мс	Время однопоточный, мс
600*1200	128	70	806
600*1200	1024	405	1392
800*1600	1024	690	2465
800*1600	2048	1328	4958
800*1600	256	165	906

Таблица 1 - Оценка производительности

Как видно из таблицы, параллельный алгоритм работает намного быстрее.

Выводы.

Были изучены основы работы со стандартом для кроссплатформенного параллельного программирования на графических и центральных процессорах OpenCL на примере реализации расчета фрактала Мандельброта. Оценка производительности показали, что программы, написанные с помощью OpenCL работают быстрее, чем однопоточные реализации, вне зависимости от размера изображения и количества итераций алгоритма.