Contrôle Intermédiaire

Durée 2 heures Tout document interdit

Exercice I. (8 Pts)

Soit A l'automate d'états finis suivant :

1. Donnez la grammaire régulière droite du complément de L(A). (Donnez toutes les étapes)

L'automate Réduit

L'automate Partiellement généralisé :

L'automate Simple:

Elimination de la transition spontanée S2-S3

S3 est non accessible:

Elimination de la transition spontanée S1-

Elimination de la transition spontanée S1-S2

S2

L'automate Déterministe:

		a	b	c
S	S_0	S_{01}, S_1	S_{20}, S_2	S_0
A	S_{01}, S_1	S_0,S_1	S_{20}, S_2	S_0
В	$\mathrm{S}_{20},\!\mathrm{S}_2$	S_{21}, S_1	S_{20}, S_2	-
C	S_0,S_1	S_{01}, S_1	S_{20}, S_2	S_0
D	S_{21} , S_1	S_2,S_1	S_{20}, S_2	S_0
Е	S_2,S_1	S_1	S_{20}, S_2	S_0
F	S_1	S_1	S_{20}, S_2	S_0

L'automate Complet:

L'automate Complément:

La grammaire régulière droite du complément:

$S \rightarrow aA / bB/ cS$	$A \rightarrow aC/bB/cS/\epsilon$
$B \rightarrow aD/bB/cP/\epsilon$	$C \rightarrow aA/bB/cS$
$D\rightarrow aE/bB/cS/\epsilon$	$E \rightarrow aF/bB/cS/\epsilon$
$F \rightarrow aF/bB/cS/\epsilon$	$P \rightarrow aP/bP/cP/\epsilon$

2. Donnez la grammaire régulière gauche du complément de L(A). L'automate miroir du complément:

La grammaire régulière droite du miroir du complément:

 $SG \rightarrow A/B//D/E/F/P$

 $S \rightarrow cS/cA/cC/cD/cE/cF/\epsilon$

 $A \rightarrow aC/aS$

 $B \rightarrow bA/bB/bC/bS/bD/bE/bF$

 $C \rightarrow aA$

 $D \rightarrow aB$

 $E \rightarrow aD$

 $F \rightarrow aF/aE$

 $P \rightarrow cB/bP/cP/aP$

La grammaire régulière gauche du complément:

 $SG \rightarrow A/B//D/E/F/P$

 $S \rightarrow Sc/Ac/Cc/Dc/Ec/Fc/\epsilon$

 $A \rightarrow Ca / Sa$

 $B \rightarrow Ab/Bb/Cb/Sb/Db/Eb/Fb$

 $C \rightarrow Aa$

 $D \rightarrow Ba$

 $E \rightarrow Da$

 $F \rightarrow Fa/Ea$

 $P \rightarrow Bc/Pa/Pb/Pc$

3. Donnez la grammaire régulière droite du miroir de L(A).

L'automate Réduit

L'automate miroir

La grammaire régulière droite du miroir de L(A)

 $S \rightarrow aaS /cA /\epsilon$

 $A \rightarrow S/aB$

 $B \rightarrow aabB/bB/A$

Exercice II.

Donnez les grammaires des langages suivants :

$L_1 = \{a^{2i} w \ b^j \ avec \ w \in \{d,c\}^* \ et \ |w| \equiv 1[3]\}$

 $S \rightarrow aaS/A$

 $A \rightarrow dB/cB$

 $B \rightarrow dC/cC/D$

 $C \rightarrow dA/cA$

$D \rightarrow bD/\varepsilon$ $L_2 = \{a^n b^P / n \equiv p \mod 3\}$

S→ aaaS /A/aB/aaC

 $A \rightarrow bbbB//\epsilon$

 $B \rightarrow bbbB/b$

 $C \rightarrow bbbC/bb$

$L_3 \!\!=\!\! \{a^ic^kb^j \ k \, \geq \, i\!\!+\!\! j \, \}$

 $S \rightarrow ABC$

 $A \rightarrow aAc/\epsilon$

 $B \rightarrow cB/c$

 $C \rightarrow cCb/\epsilon$

$$L_1 \cap L_3 = = \{a^{i2}c^kb^j \ k \ge i + j \ et \ |w| \equiv 1[3] \ \}$$

$S \rightarrow S_0 / S_1 / S_2$				
$S_0 \rightarrow A_0 B_0$	$S_1 \rightarrow A_1B_1$	$S_3 \rightarrow A_3B_3$		
$A_0 \rightarrow a^6 A_0 c^6 / \varepsilon$	$A_1 \rightarrow a^6 A_1 c^6 / a^4 c^4$	$A_3 \rightarrow a^6 A_3 c^6 / aacc$		
$B_0 \to c^3 B_0 b^3 / C_0 / c C_1 b / cc$	$B_1 \to c^3 B_1 b^3 / C_1 / c C_2 b / cc$	$B_3 \rightarrow c^3 B_3 b^3 / C_2 / c C_0 b / cc$		
$C_2 bb/$	C ₀ bb/	C_1 bb/		
$C_0 \rightarrow cC_1$	$//C_0 \rightarrow cccC_0/c$			
$C_1 \rightarrow cC_2/\epsilon$	$// C_1 \to \csc C_1 / \varepsilon$			
$C2 \rightarrow cC_0$	\rightarrow cC ₀ //C2 \rightarrow cccC ₂ / cc			

$L_5 = \{ww' | w \in X^* \text{ et } w' \text{ est un facteur gauche de } w\}$

$S \rightarrow S'F / \epsilon$		
$S' \rightarrow aS'A / bS'B /aMA /bMB$	// générer ww^r $w \in \{a,b\}^* w^r \in \{a,b\}^*$	{A,B}*
MA→Ma	MB→Mb	
$aA \rightarrow Aa$	$bA \rightarrow Ab$	
$aB \rightarrow Ba$	$bB \rightarrow Bb$	
$aF \rightarrow F / aF'$	$bF \rightarrow F / bF'$	
aF'→ F'a	bF'→ F'b	
$MF' \rightarrow \epsilon$		

<u>Exercice III.</u>
Donnez les automates les plus adéquats reconnaissants les langages suivants :

1.
$$L_1 = \{ (01)^i a^n (10)^j (01)^j b^n (10)^i i, j \ge 0, n \ge 0 \}$$

$\# S_0 0 \rightarrow \# 0 S_0$		
$0 S_0 1 \rightarrow 0 1 S_0$	// empiler (01) ⁱ	
$1 S_0 0 \rightarrow 1 0 S_0$		
$1 S_0 a \rightarrow 1 a S_0$	// ampilar a ⁿ	
$a S_0 a \rightarrow a a S_0$	// empiler a ⁿ	
$a S_0 1 \rightarrow a 1 S_1$		
$1 S_1 0 \rightarrow 1 0 S_1$	// empiler (10) ^j	
$0 S_1 1 \rightarrow 0 1 S_1$		
$0 S_1 0 \rightarrow S_2$		
$0 S_2 0 \rightarrow S_2$	// dépiler (01) ^j	
$1 S_2 1 \rightarrow S_2$		
$a S_2 b \rightarrow S_3$	// dépiler b ⁿ	
$a S_3 b \rightarrow S_3$	// depiler b	
$0 S_3 0 \rightarrow S_3$	// dépiler (10) ⁱ	
$1 S_3 1 \rightarrow S_3$	// depiler (10)	
$\# S_3 \rightarrow \# S_f$		
$\# S_0 a \rightarrow \# a S_0$	I=0	
$a S_0 b \rightarrow S_3$	J=0	

2. $L_1 = \{ (01)^i (10)^j (01)^j (10)^i i, j \ge 0, n \ge 0 \}$

$\# S_0 0 \rightarrow \# 0 S_0$	
$0 S_0 1 \rightarrow 0 1 S_0$	// empiler (01) ⁱ
$1 S_0 0 \rightarrow 1 0 S_0$	
$1 S_0 1 \rightarrow 1 1 S_1$	
$1 S_1 0 \rightarrow 1 0 S_1$	// empiler (10) ^j
$0 S_1 1 \rightarrow 0 1 S_1$	
$0 S_1 0 \rightarrow S_2$	
$0 S_2 0 \rightarrow S_2$	// dépiler (01) ^j (10) ⁱ
$1 S_2 1 \rightarrow S_2$	
$\# S_3 \rightarrow \# S_f$	
$\# S_0 1 \rightarrow \# 1 S_1$	I=0
$1 S_0 1 \rightarrow S_2$	J=0

Exercice V. (3 Pts)

Monter que si L est un langage rationnel alors $h(L) = \{ h(w) \mid w \in L \}$ est également rationnel. h est un homomorphisme

Par exemple pour E=a*b* avec h(a)=0 et h(b)=11, on a h(L(E))=0*(11)*.

Pour la démonstration, n'utilisez pas les automates.