SWS3009 – Part B Robotics / TeleOperation

Section 3: Arduino Mega

Outline

Arduino Basics

- Introduction
- Programming
- External components demonstration

ARDUINO BASICS

Arduino Family says Hi!

Arduino Uno

Arduino Leonardo

Arduino Ethernet

Arduino Pro

Arduino Mega 2560

Arduino LilyPad

Arduino BT

Arduino Nano

Arduino Mega ADK

Arduino Fio

USB/Serial Light Adapter

Arduino Mini

Our Arduino....

- Arduino Mega 2560 (Revision 3)
 - Note that the reset button may be located differently (e.g. corner of the board)

Arduino Mega 2560 - Layout

Arduino Mega: Basic Facts

- Microcontroller Board
 - Based on ATmega2560
- USB connection
 - Alternative Powering Option: Power Jack
- Input / Output Capabilities
 - 54 digital input/output pins
 - 14 can be used for PWM output (more later)
 - 16 analog inputs
 - Digitized to 10 bits (i.e. 1024 levels)
 - 4 UART (Serial Ports)
 - 16MHz Crystal Oscillator (Clock Signal)

Introducing Arduino IDE

 Arguably the main reason for Arduino's popularity

 Minimalistic but beginner friendly and reasonably powerful

Programming on Arduino

- Programming Language:
 - Subset of C/C++
 - Limited set of C/C++ libraries
 - Additional set of Arduino specific calls
 - Online Reference at https://www.arduino.cc/en/Reference/HomePage

- Program structure:
 - Minimally need the setup() and loop() functions
 - Additional functions can be declared

Global Variables

void setup()

void loop()

Blink: An example program

```
void setup() {
   pinMode(13, OUTPUT);
void loop() {
  digitalWrite(13, HIGH);
  delay(1000);
  digitalWrite(13, LOW);
  delay(100);
```

pinMode(pin, mode)

- pin = pin number
- mode = { INPUT, OUTPUT }

digitalWrite(pin, value)

- pin = pin number
- value = 0 / 1 (use LOW / HIGH constant!)

delay(ms)

ms = millisecond

Question: Let's Blink Differently

How do we change the blinking patterns as following:

A: Blink twice in a second

B: Blink short-short-long

- C: Blink randomly
 - (Hint: Look for the correct library call in Arduino)

Communication

- Since we cannot easily debug the code on the Arduino directly
 - we will use basic serial communication as a "debugging" mechanism

Serial Communication: Idea

SerialCommunication is a very old idea

- Still commonly supported:
 - Only need 2 wires for two way communication!

Serial Communication: Arduino Mega

- Arduino Mega support 4 sets of serial communication (two ways each):
 - Serial 0: Through the USB connection or Pin 0 (Receive RX) + Pin 1 (Transmit TX)
 - Serial 1: Pin 19 (RX) + Pin 18 (TX),
 - Serial 2: Pin 17 (RX) + Pin 16 (TX)
 - Serial 3: Pin 15 (RX) + Pin 14 (TX)
- Be careful: Check the operating voltage of the device you want to communicate with:
 - Arduino Mega operates at 5 volt

Serial Communication: Code

Serial Communication: Code 2

```
void setup() {
  Serial.begin( 9600 );
  Serial.println( "Hello World!" );
void loop() {
  if (Serial.available()) {
        int inByte = Serial.read();
        Serial.print("Read: ");
        Serial.print(inByte);
        Serial.print(" 0x");
        Serial.println(inByte, HEX);
```

Serial Communication: Code 2

Interfacing with Components

Arduino can interface with many electronic components

Common steps:

- Connect the electronic components to the correct pin(s)
 - Usually wiring diagram is provided
- 2. Write code to interact with the component:
 - Sometimes, libraries are provided together with the components

Ultrasonic Sensor - Principle

Ultrasonic Sonic - Implementation

Given Echo Time Pulse (i.e. time difference between Chirp and Echo), how do we get the distance, D?

Ultrasonic Sensor: Connection

Ultrasonic Sensor: Operation

Ultrasonic Sensor: Adding Libraries

 In this case, the ultrasonic sensor manufacturer provided sample library to use the sensor in a painless way

 We will demonstrate how to add a library and use sample code

[For exploration] You can take a look in the library code to see the details, e.g. how to trigger a pulse, how to measure echo time pulse, etc

Ultrasonic Sensor: Code Example

Especially on how to define the pins used correctly

DC MOTOR

DC Motor: Speed and Direction

Turning speed is control by PWM

Turning direction is handled by H-Bridge

Controlling the Speed of Motor

Intuitively, we can control the speed of motor by varying the voltage supply

So, if 5v == maximum speed, supplying 2v should give us a slower speed...

The idea is correct, but there is a problem...

Pulse Width Modulation (PWM)

- Sometimes we need to have analog output:
 - e.g. varying amount of power to the motor will modify the speed
- PWM enables us to simulate analog output by switching on/off rapidly on an digital output channel
- Pin 2 to 13, 44 to 46 supports PWM

Exercise: **PWM for LED**

- Let's try to use PWM to control the brightness of the LED
 - Conveniently, Pin 13 supports PWM!
 - See code Blink_PWM.ino
- [Additional Challenge] Write a program to control the brightness of LED using Serial Communication

Controlling the Direction of Motor

- H-Bridge i componer
- Imagine the 2-4 wheel
- Motor Dri seen integ bridge fun
- We use th Shield:
 - Can cont

or etc) to control

commonly rovide H-

ver Arduino

Dual L293D Motor Shield

Motor Shield: Library

 Basic functionality is provided by the "Adafruit Basic Motor Shield"

```
#include <AFMotor.h>
void setup() {
  // put your setup code here, to run once:
 AF DCMotor motor(4); // The motor number, i.e. 1, 2, 3 or 4
 motor.setSpeed(200);
 motor.run ( FORWARD );
 delay(1000);
 motor.run ( BACKWARD );
 delay(1000);
 motor.run ( RELEASE );
 delay(1000);
```

END