Intro. to Step-Indexed Logical Relations: Type Safety for STLC + fix

Jeremy G. Siek Indiana University, Bloomington

> PL Wonks November 2023

Outline

- ► Review of
 - ► STLC + fix
 - ► Type Safety via Progress and Preservation
- ► The Logical Relations Recipe
- ► Strawman Logical Relation for Type Safety
- ► Step-indexed Logical Relation for Type Safety
- ► A Step-indexed Logic
- ► Proof of the Fundamental Lemma
- ► Proof of Type Safety

Review: STLC + fix

```
types A, B ::= \mathbb{N} \mid A \to B
  terms L, M, N ::= zero | suc(M) | case LMN |
                               i \mid \lambda N \mid L M \mid \mu N
 values V, W ::= \text{zero} | \text{suc}(V) | \lambda N | \mu V
 frames F ::= suc(\Box) \mid case \Box MN \mid \Box M \mid V \Box
Substitution: N[M] (Replace o with M in N, decrement free vars.)
Plug:
              F(M) (Replace \square with M in F.)
Reduction
                  (\mu V) \ W \longrightarrow V[\mu V] \ W
                  (\lambda N) \ W \longrightarrow N[W]
          case zero M N \longrightarrow M
       case suc(V) M N \longrightarrow N[V]
                      F(M) \longrightarrow F(N)
                                                       if M \longrightarrow N
```

Review: STLC + fix

$$\frac{1 \vdash L : A \to B \quad 1 \vdash M : A}{\Gamma \vdash L M : B}$$
$$\Gamma \vdash L : \mathbb{N}$$

$$\frac{\Gamma \vdash M : \mathbb{N}}{\Gamma \vdash \mathsf{suc}(M) : \mathbb{N}} \qquad \frac{\Gamma \vdash M : A \qquad \mathbb{N}, \Gamma \vdash N : A}{\Gamma \vdash \mathsf{case}\, LM\, N : A}$$

Review: Type Safety via Progress & Preservation

Lemma (Progress)

If $\Gamma \vdash M : A$ then either M is a value or $M \longrightarrow N$ for some N.

Lemma (Presevation)

If $\Gamma \vdash M : A$ *and* $M \longrightarrow N$ *then* $\Gamma \vdash N : A$.

Theorem (Type Safety)

If $\vdash M : A$ then either $M \longrightarrow^* V$ for some V or M diverges.

Aside: de Bruijn variables and substitutions

A substitution σ is a mapping of variables to terms.

We use de Bruijn variables, so they are numbers: 0, 1, 2, ...

We represent a substitution as a sequence of terms:

$$\sigma = M_0, M_1, M_2, \dots$$

Applying a substitution to a term: $\sigma(M)$

$$\begin{split} \sigma(\texttt{zero}) &= \texttt{zero} \\ \sigma(\texttt{suc}(M)) &= \texttt{suc}(\sigma(M)) \\ \sigma(\texttt{case}\,L\,M\,N) &= \texttt{case}\,\sigma(L)\,\sigma(M)\,\texttt{ext}(\sigma)(N) \\ \text{where } \texttt{ext}(\sigma) &= \texttt{o}, \uparrow \sigma_{\texttt{o}}, \uparrow \sigma_{\texttt{i}}, \dots \\ \sigma(i) &= \sigma_{i} \\ \sigma(\lambda N) &= \lambda\,\texttt{ext}(\sigma)(N) \\ \sigma(L\,M) &= \sigma(L)\,\,\sigma(M) \\ \sigma(\mu N) &= \mu\,\texttt{ext}(\sigma)(N) \end{split}$$

The Logical Relations Recipe

- ▶ Define two functions that generalize the theorem you'd like to prove: one maps types to a predicate on closed values V(A)(V) and the other maps types to a predicate on closed terms $\mathcal{E}(A)(M)$.
- \blacktriangleright Extend the $\mathcal V$ and $\mathcal E$ functions to open terms:

$$\mathcal{G}(\Gamma)(\sigma) = \forall A_i \in \Gamma, \mathcal{V}(A_i)(\sigma_i)$$

$$\Gamma \models^{\mathcal{V}} V : A = \forall \sigma, \mathcal{G}(\Gamma)(\sigma) \text{ implies } \mathcal{V}(A)(\sigma(V))$$

$$\Gamma \models M : A = \forall \sigma, \mathcal{G}(\Gamma)(\sigma) \text{ implies } \mathcal{E}(A)(\sigma(M))$$

- ▶ Prove the Fundamental Lemma, that
 - (1) $\Gamma \vdash^{\mathcal{V}} V : A \text{ implies } \Gamma \models^{\mathcal{V}} V : A \text{ and }$
 - (2) $\Gamma \vdash M : A \text{ implies } \Gamma \models M : A$.
- ▶ Prove that $\mathcal{E}(A)(M)$ implies your theorem.

Strawman Logical Relation for Type Safety

$$\mathcal{E}(A)(M):\mathbb{B}$$

"Progress and Preservation"

$$\mathcal{E}(A)(M) = \begin{array}{c} \mathcal{V}(A)(M) \text{ or } \exists M', M \longrightarrow M' \\ \text{and } \forall M', M \longrightarrow M' \Rightarrow \mathcal{E}(A)(M') \end{array}$$

$$V(A)(V): \mathbb{B}$$

$$\mathcal{V}(\mathbb{N})(\mathtt{zero}) = \mathsf{true}$$
 $\mathcal{V}(\mathbb{N})(\mathtt{suc}(V)) = \mathcal{V}(\mathbb{N})(V)$ $\mathcal{V}(A o B)(\lambda N) = orall W, \mathcal{V}(A)(W) \Rightarrow \mathcal{E}(B)(N[W])$ $\mathcal{V}(A o B)(\mu V) = \mathcal{V}(A o B)(V[\mu V])$ $\mathcal{V}(A)(V) = \mathsf{false}$ otherwise

Argument of recursion is not smaller.

Step-indexed Logical Relation for Type Safety

$$\mathcal{E}(A)(M): \mathbb{N} \to \mathbb{B}$$

$$\mathcal{E}(A)(M) = \begin{array}{c} \mathcal{V}(A)(M) \text{ or}^\circ \ \exists^\circ M', M \longrightarrow M' \\ \text{and}^\circ \ \forall^\circ M', M \longrightarrow M' \Rightarrow^\circ \rhd^\circ \mathcal{E}(A)(M') \end{array}$$

$$V(A)(V): \mathbb{N} \to \mathbb{B}$$

$$\mathcal{V}(\mathbb{N})(\mathtt{zero}) = \mathsf{true}^\circ \ \mathcal{V}(\mathbb{N})(\mathtt{suc}(V)) = \mathcal{V}(\mathbb{N})(V) \ \mathcal{V}(A o B)(\lambda N) = orall^\circ W, \rhd^\circ \mathcal{V}(A)(W) \Rightarrow^\circ \rhd^\circ \mathcal{E}(B)(N[W]) \ \mathcal{V}(A o B)(\mu V) = \rhd^\circ \mathcal{V}(A o B)(V[\mu V]) \ \mathcal{V}(A)(V) = \mathsf{false}^\circ \qquad \mathsf{otherwise}$$

The \mathcal{E} and \mathcal{V} functions terminate because the step-index gets smaller in the recursive calls thanks to \triangleright° .

A Step-indexed Logic (SIL)

$$\phi, \psi: \mathbb{N} \to \mathbb{B}$$

```
\operatorname{true}^{\circ}(k) = \operatorname{true} \operatorname{false}^{\circ}(k) = \operatorname{false} (\phi \operatorname{and}^{\circ} \psi)(k) = \phi(k) \operatorname{and} \psi(k) (\phi \operatorname{or}^{\circ} \psi)(k) = \phi(k) \operatorname{or} \psi(k) (\forall^{\circ} x, P(x))(k) = \forall x, P(x)(k) (\rhd^{\circ} \phi)(k) = \forall j, j < k \Rightarrow \phi(j) \vdots
```

$$\psi_{\scriptscriptstyle \rm I},\ldots,\psi_n\vdash^{\circ}\phi$$

 $\psi_1, \dots, \psi_n \vdash^{\circ} \phi = \forall k, \psi_1(k) \text{ and } \dots \psi_n(k) \Rightarrow \phi(k)$

A Step-indexed Logic (SIL)

Proof rules regarding the "later" operator ⊳°:

$$\frac{\mathcal{P} \vdash^{\circ} \phi}{\mathcal{P} \vdash^{\circ} \rhd^{\circ} \phi} \qquad \frac{\mathcal{P} \vdash^{\circ} \rhd^{\circ} (\phi \Rightarrow^{\circ} \psi)}{\mathcal{P} \vdash^{\circ} \rhd^{\circ} \phi \Rightarrow^{\circ} \rhd^{\circ} \psi} \qquad \cdots$$

$$\frac{\mathcal{P} \vdash^{\circ} \rhd^{\circ} \phi \qquad \phi, \mathcal{P} \vdash^{\circ} \psi}{\mathcal{P} \vdash^{\circ} \rhd^{\circ} \psi}$$

Löb Induction:

$$\frac{ \rhd^{\circ} \phi, \mathcal{P} \vdash^{\circ} \phi}{\mathcal{P} \vdash^{\circ} \phi}$$

Recipe: extend V and E to open terms

$$\mathcal{G}(A_{\scriptscriptstyle \text{I}},\ldots,A_{\scriptscriptstyle n})(\sigma) = \mathcal{V}(A_{\scriptscriptstyle \text{I}})(\sigma_{\scriptscriptstyle \text{O}}),\ldots,\mathcal{V}(A_{\scriptscriptstyle n})(\sigma_{\scriptscriptstyle n})$$

$$\Gamma \models^{\mathcal{V}} V: A = \forall \sigma, \mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \mathcal{V}(A)(\sigma(V))$$

$$\Gamma \models M: A = \forall \sigma, \mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \mathcal{E}(A)(\sigma(M))$$

Recipe: prove the Fundamental Lemma

Lemma (Fundamental)

- (1) $\Gamma \vdash^{\mathcal{V}} V : A \text{ implies } \Gamma \models^{\mathcal{V}} V : A \text{ and }$
- (2) $\Gamma \vdash M : A \text{ implies } \Gamma \models M : A$.

Proceed by mutual induction on $\Gamma \vdash^{\mathcal{V}} V : A$ and $\Gamma \vdash M : A$. By tradition, each case of the proof is proved by a separate lemma. These lemmas are called the "compatibility" lemmas.

Compatibility Lemmas

Lemma (Compatibility for zero)

 $\Gamma \models^{\mathcal{V}} \mathtt{zero} : \mathbb{N}.$

Proof.

Let σ be a substitution. We need to show that

$$\mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \mathcal{V}(\mathbb{N})(\sigma(\mathtt{zero}))$$

which is equivalent to

$$\mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \mathsf{true}^{\circ}$$

which is trivial to prove.

Some compatibility lemmas are easy.

Lemma (Compatibility for suc(V))

If
$$\Gamma \models^{\mathcal{V}} V : \mathbb{N}$$
, then $\Gamma \models^{\mathcal{V}} \operatorname{suc}(V) : \mathbb{N}$.

Proof.

Let σ be a substitution. We need to show that

$$\mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \mathcal{V}(\mathbb{N})(\sigma(\mathrm{suc}(V)))$$

which is equivalent to

$$\mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \mathcal{V}(\mathbb{N})(\sigma(V))$$

which we obtain from the premise.

Lemma (Compatibility for λN)

If $A, \Gamma \models N : B$, then $\Gamma \models^{\mathcal{V}} \lambda N : A \rightarrow B$.

Proof.

Let σ be a substitution. We need to show that

$$\mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \forall^{\circ} W, \rhd^{\circ} \mathcal{V}(A)(W) \Rightarrow^{\circ} \rhd^{\circ} \mathcal{E}(B)(\operatorname{ext}(\sigma)(N)[W])$$

Let W be a value and assume $\rhd^{\circ} \mathcal{V}(A)(W)$. From the premise $A, \Gamma \models N : B$ we have $\mathcal{V}(A)(W), \mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \mathcal{E}(B)((W, \sigma)(N))$.

With the assumption, we have $\rhd^{\circ} \mathcal{E}(B)((W, \sigma)(N))$. We conclude via the following equality

$$ext(\sigma)(N)[W] = (W, \downarrow \uparrow \sigma_{o}, \downarrow \uparrow \sigma_{i}, \dots)(N)$$
$$= (W, \sigma)(N)$$

Lemma (Compatibility for
$$\mu V$$
)

If
$$A \to B$$
, $\Gamma \models^{\mathcal{V}} V : A \to B$, then $\Gamma \models^{\mathcal{V}} \mu V : A \to B$.

Proof.

Let σ be a substitution. We need to show that

$$\mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \mathcal{V}(A \to B)(\mu \ V') \text{ where } V' = \mathsf{ext}(\sigma)(V).$$

We proceed by Löb induction, so we may assume

$$\rhd^{\circ} \mathcal{V}(A \to B)(\mu \ V')$$
 (IH)

From the premise of this lemma we have

$$\mathcal{G}(A \to B, \Gamma)(\sigma') \vdash^{\circ} \mathcal{V}(A \to B, \sigma'(V))$$
 where $\sigma' = (\mu V', \sigma)$,

and therefore

$$\mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \mathcal{V}(A \to B)(\mu \ V') \Rightarrow \mathcal{V}(A \to B)(\sigma'(V)).$$

Together with (IH), we have

$$\mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \rhd^{\circ} \mathcal{V}(A \to B)(\sigma'(V))$$

which is equivalent to our goal.

Bind Lemma

Many of the compatibility lemmas involve terms that have subterms. For example, the term $\operatorname{suc}(M)$ has subterm M. We'll know that $\mathcal{E}(\mathbb{N})(M)$ and want to show $\mathcal{E}(\mathbb{N})(\operatorname{suc}(M))$. From $\mathcal{E}(\mathbb{N})(M)$ we can deduce that either M diverges or $M \longrightarrow^* V$ where $\mathcal{V}(\mathbb{N})(V)$ for some V. If M diverges, so does $\operatorname{suc}(M)$. If M reduces to V, then to prove $\mathcal{E}(\mathbb{N})(\operatorname{suc}(M))$ it suffices to prove $\mathcal{E}(\mathbb{N})(\operatorname{suc}(V))$.

Generalizing this reasoning to any frame F with subterm M gives us the following Bind lemma.

Lemma (Bind)

$$\begin{array}{l} \mathit{If}\, \mathcal{P} \vdash^{\circ} \mathcal{E}(B)(M) \\ \mathit{and}\, \mathcal{P} \vdash^{\circ} \forall^{\circ} V, M \longrightarrow^{*} V \Rightarrow^{\circ} \mathcal{V}(B)(V) \Rightarrow^{\circ} \mathcal{E}(A)(F(V)) \\ \mathit{then}\, \mathcal{P} \vdash^{\circ} \mathcal{E}(A)(F(M)). \end{array}$$

Lemma

If $V(A \rightarrow B)(V)$ and V(A)(W), then $\mathcal{E}(B)(V \mid W)$.

Proof.

We proceed by Löb induction, so we may assume $\forall^{\circ} VW, \rhd^{\circ} \mathcal{V}(A \rightarrow B)(V) \text{ and } ^{\circ} \rhd^{\circ} \mathcal{V}(A)(W) \Rightarrow^{\circ} \rhd^{\circ} \mathcal{E}(B)(V \ W).$ From $V(A \rightarrow B)(V)$ we know that either $V = \lambda N$ or $V = \mu V'$. Suppose $V = \lambda N$. We have progress because $(\lambda N)W \longrightarrow N[W]$. We have preservation because $V(A \rightarrow B)(\lambda N)$ with premise $\mathcal{V}(A)(W)$ tells us that $\rhd^{\circ}\mathcal{E}(B)(N[W])$. Suppose $V = \mu V'$. We have progress: $(\mu V')W \longrightarrow V'[\mu V']W$. For preservation we need to show $\triangleright^{\circ} \mathcal{E}(B)(V'[\mu V'] W)$. From $V(A \rightarrow B)(\mu V')$ we have $\triangleright^{\circ}V(A \rightarrow B)(V'[\mu V'])$ and from $\mathcal{V}(A)(W)$ we have $\rhd^{\circ}\mathcal{V}(A)(W)$. So the induction hypothesis gives us $\rhd^{\circ} \mathcal{E}(B)(V'[\mu V'] W)$.

Lemma (Compatibility for application)

If
$$\Gamma \models L : A \rightarrow B$$
 and $\Gamma \models M : A$, then $\Gamma \models L M : B$.

Proof.

Let σ be a substitution. We need to prove that $\mathcal{G}(\Gamma)(\sigma) \vdash^{\circ} \mathcal{E}(B)(\sigma(L) \ \sigma(M))$.

We apply the Bind Lemma to $\sigma(L)$ and $\sigma(M)$ to obtain $\sigma(L) \longrightarrow^* V$, $\sigma(M) \longrightarrow^* W$, $\mathcal{V}(A \rightarrow B)(V)$, $\mathcal{V}(A)(W)$, and it remains to prove $\mathcal{E}(B)(V \mid W)$, which we obtain by the previous lemma.

Recipe: $\mathcal{E}(A)(M)$ implies Type Safety

Lemma (Multi-step Preservation)

If $M \longrightarrow^* N$ and $\mathcal{E}(A)(M)$, then $\mathcal{E}(A)(N)$.

Proof.

Proceed by induction on the reduction sequence, using the preservation part of ${\cal E}$ at each step.

Theorem (Type Safety)

If $\emptyset \vdash M : A \text{ and } M \longrightarrow^* N$, then N is a value or $N \longrightarrow N'$ for some N'.

Proof.

Apply the Fundamental Lemma to obtain $\mathcal{E}(A)(M)$. Then by Multi-step Preservation, we have $\mathcal{E}(A)(N)$. We conclude using the progress part of $\mathcal{E}(A)(N)$.

Conclusion

- ▶ Logical Relations Recipe: Define V(A)(V) and $\mathcal{E}(A)(M)$. Extend V and \mathcal{E} to open terms. Prove the Fundamental Lemma. Prove that \mathcal{E} implies your theorem.
- A Step-Indexed Logic:
 Enables the definition of recursive predicates (V and E) on full-featured programming languages.
 Hides the bookkeeping of the step indexing.
 Automates the proofs of monotonicity of V and E.