

Term End Examination - November 2011

Course: MAT101 - Multivariable Calculus and Differential Equations Slot: C1+TC1

Time : Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer <u>ALL</u> the Questions

1. Verify Euler's theorem for the function $f(x, y, z) = 3x^2yz + 5xy^2z + 4z^4$.

2. If
$$u = x^2 - y^2$$
, $v = 2xy$ find $\frac{\partial(u, v)}{\partial(x, y)}$.

- 3. Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} xy(x+y)dxdy.$
- 4. Evaluate $\int_{0}^{\infty} \sqrt{x} e^{-4\sqrt{x}} dx$ using beta-gamma functions.
- 5. Find the angle between the normals to the surface $xy = z^2$ at the point (-2, -2, 2) and (1, 9, -3).
- 6. Evaluate $\iint_{S} (xdydz + 2ydzdx + 3zdxdy)$ where S is the closed surface of the sphere $x^2 + y^2 + z^2 = a^2$.
- 7. Find the solution of y'' 4y' + 4y = 0 which satisfies y(0) = 3, y'(0) = 1.
- 8. Solve $\frac{d^4y}{dx^4} 2\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = 0$.
- 9. Find the Laplace transforms of $[t^2 \sin^2 t]$.
- 10. Find $L^{-1}\left(\frac{s+2}{s^2-4s+13}\right)$

PART - B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

11. (a) Expand the Taylor's series expansion of $e^x \log(1+y)$ at the point (0, 0) to third approximation.

- (b) Find the volume of greatest rectangle parallelepiped that can be insecribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 12. (a) Change the order of integration in $\int_{0}^{4} \int_{\frac{x^2}{4}}^{2\sqrt{x}} dy dx$ and then evaluate it. [7]
 - (b) Find the value of $\iint x^{m-1} y^{n-1} dx dy$, over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, in terms of Gamma functions.
- 13. (a) Verify Green's theorem in a plane with respect to $\int_C [(x^2 y^2)dx + 2xydy]$, where [7] C is the boundary of the rectangle in the xoy plane bounded by the lines x = 0, x = a, y = 0 and y = b
 - (b) If $\overline{F} = 4xz \ \hat{i} y^2 \ \hat{j} + yz \ \hat{k}$, evaluate $\iint_S \overline{F} \cdot \hat{n} \ ds$ where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 14. (a) Solve the equation $\frac{d^2y}{dx^2} + y = x\cos x$, by the method of variation of parameters. [7]
 - (b) Solve the differential equation $(2x+1)^2 \frac{d^2 y}{dx^2} 2(2x+1) \frac{dy}{dx} 12y = 96x$. [7]
- 15. (a) Solve $y'' 3y' + 2y = 4t + e^{3t}$ using Laplace transform given that y(0) = 1, and y'(0) = -1.
 - (b) Use convolution theorem to evaluate $L^{-1}\left(\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right)$ [7]
- 16. (a) Use convolution theorem to evaluate $L^{-1}\left(\frac{1}{(s-2)(s^2+1)}\right)$. [7]
 - (b) Find the maxima and minima of the function $x^3 + y^3 3x 12y + 20$. Find also the saddle points. [7]
- 17. (a) Evaluate $\iint_S \vec{F} \cdot \hat{n} \, ds$, where $\vec{F} = yz \, \hat{i} + zx \, \hat{j} + xy \, \hat{k}$ and S is the part of the sphere [7] $x^2 + y^2 + z^2 = 1$ that lies in the first octant.

(b) Solve
$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$$
 [7]

 $\Leftrightarrow\Leftrightarrow\Leftrightarrow$