MATH 239 Tutorial 7 Problems

- 1. Let G be a graph with p vertices and every vertex of G has degree at least (p-1)/2. Prove that G is connected.
- 2. Let G_n be the graph where the vertices are all binary strings of length n, and two vertices are adjacent if the two strings differ in exactly 2 positions.
 - (a) Draw G_2 and G_3 .
 - (b) How many edges are in G_n ?
 - (c) For what values of n is G_n connected?
 - (d) For what values of n is G_n bipartite?
- 3. Prove that if every vertex of a graph *G* has degree at least 3, then *G* contains a cycle of even length.
- 4. How many Hamilton cycles are there in K_n where the vertices are labelled with $1, 2, \ldots, n$? We consider two Hamilton cycles to be the same if they use the same set of edges.

Additional exercises

- 1. Let $k \ge 1$. If G is a k-regular bipartite graph with a bipartition (A, B) of the vertices, then |A| = |B|.
- 2. Determine (with proof) a bipartite graph with the fewest number of edges such that it is NOT the subgraph of any *n*-cube.
- 3. Prove that for $n \ge 2$, the n-cube has a Hamilton cycle.
- 4. Suppose that P and Q are two paths of maximum length in a connected graph G. Prove that there is at least one vertex that is in both P and Q.
- 5. Let G_n be the graph whose vertices are all permutations of [n], and two vertices are adjacent if and only if one permutation can be obtained from another by swapping two entries. For example, in G_4 , (1234) is adjacent to (1324) and (1432), but not (3142).
 - (a) Draw G_2 and G_3 .
 - (b) How many vertices and edges are in G_n ?
 - (c) Prove that G_n is bipartite.
 - (d) Prove that G_n is connected.