CYANMATH: 创美营讲义(数学)

LeyuDame

2024年11月18日

目录

第一章	因式分解技巧	2
1.1	提公因式	2
1.2	应用公式	6
	1.2.1 平方差	6
	1.2.2 立方和与立方差	7
	1.2.3 完全平方	7
	1.2.4 完全立方	8
	1.2.5 2 ¹⁹⁸⁴ + 1 不是质数	10
1.3	分组分解与十字相乘	11
1.4	多项式的因式分解	12

第一章 因式分解技巧

什么是因式分解

在小学里, 我们学过整数的因数分解. 由乘法, 得

$$3 \times 4 = 12$$

反过来, 12 可以分解: $12 = 3 \times 4$.

当然. 4 还可以继续分解为 2×2. 于是得

$$12 = 3 \times 2 \times 2$$

这时 12 已经分解成质因数的乘积了.

同样地, 由整式乘法, 得

$$(1+2x)(1-x^2) = 1 + 2x - x^2 - 2x^3$$

反过来, $1 + 2x - x^2 - 2x^3$ 可以分解为两个因式 1 + 2x 与 $1 - x^2$ 的乘积, 即

$$1 + 2x - x^2 - 2x^3 = (1 + 2x)(1 - x^2)$$

 $1-x^2$ 还可以继续分解为 (1+x)(1-x). 于是

$$1 + 2x - x^2 - 2x^3 = (1 + 2x)(1 + x)(1 - x)$$

这里 x 的一次多项式 1+2x,1+x,1-x 都不能继续分解, 它们是不可约多项式, 也就是既约多项式. 所以, $1+2x-x^2-2x^3$ 已经分解成质因式的乘积了.

把一个整式写成几个整式的乘积, 称为因式分解, 每一个乘式称为积的因式.

在因式分解中,通常要求各个乘式(因式)都是既约多项式,这样的因式称为质因式.

因式分解的方法, 我们将逐一介绍,

1.1 提公因式

学过因式分解的人爱说: "一提、二代、三分组."

"提"是指"提取公因式".在因式分解时,首先应当想到的是有没有公因式可提. 几个整式都含有的因式称为它们的公因式.

例如 ma, mb, -mc 都含有因式 m, m 就是它们的公因式.

由乘法分配律, 我们知道

$$m(a+b-c) = ma + mb - mc,$$

因此

$$ma + mb - mc = m(a + b - c).$$

这表明上式左边三项的公因式 m 可以提取出来, 作为整式 ma + mb - mc 的因式. ma + mb - mc 的另一个因式 a + b - c 仍由三项组成, 每一项等于 ma + mb - mc 中对应的项除以公因式 m:

$$a = ma \div m, b = mb \div m, c = mc \div m$$

例 1.1.1 (一次提净). 分解因式: $12a^2x^3 + 6abx^2y - 15acx^2$

解. $12a^2x^3 + 6abx^2y - 15acx^2$ 由

$$12a^2x^3, 6abx^2y, -15acx^2$$

这三项组成, 它们的数系数 12,6,-15 的最大公约数是 3, 各项都含有因式 a 和 x^2 , 所以 $3ax^2$ 是上述三项的公因式, 可以提取出来作为 $12a^2x^3 + 6abx^2y - 15acx^2$ 的因式, 即有

$$12a^{2}x^{3} + 6abx^{2}y - 15acx^{2}$$
$$=3ax^{2}(4ax + 2by - 5c).$$

注记. 在例 1.1.1中, 如果只将因式 3a 或 3ax 提出, 那么留下的式子仍有公因式可以提取, 这增添了麻烦, 不如一次提净为好. 因此, 应当先检查数系数, 然后再一个个字母逐一检查, 将各项的公因式提出来, 使留下的式子没有公因式可以直接提取.

还需注意原式如果由三项组成,那么提取公因式后留下的式子仍由三项组成.在例 1 中,这三项分别为 $12a^2x^3$, $6abx^2y$, $-15acx^2$ 除以公因式 $3ax^2$ 所得的商. 初学的同学为了防止产生错误,可以采取两点措施:

1. 在提公因式前, 先将原式的三项都写成公因式 $3ax^2$ 与另一个式子的积, 然后再提取公因式, 即

$$12a^{2}x^{3} + 6abx^{2}y - 15acx^{2}$$

$$= 3ax^{2} \cdot 4ax + 3ax^{2} \cdot 2by + 3ax^{2} \cdot (-5c)$$

$$= 3ax^{2} \cdot (4ax + 2by - 5c).$$

在熟练之后应当省去中间过程,直接写出结果.

2. 用乘法分配律进行验算, 由乘法得出

$$3ax^{2}(4ax + 2by - 5c)$$
$$=12a^{2}x^{3} + 6abx^{2}y - 15acx^{2}.$$

例 1.1.2 (视 "多" 为一). 分解因式: $2a^2b(x+y)^2(b+c) - 6a^3b^3(x+y)(b+c)^2$

解. 原式由

$$2a^{2}b(x+y)^{2}(b+c), -6a^{3}b^{3}(x+y)(b+c)^{2}$$

这两项组成. 它们的数系数的最大公约数是 2, 两项都含有因式 a^2 和 b, 而且都含有因式 x+y 与 b+c, 因此 $2a^2b(x+y)(b+c)$ 是它们的公因式. 于是有

$$2a^{2}b(x+y)^{2}(b+c) - 6a^{3}b^{3}(x+y)(b+c)^{2}$$

$$= 2a^{2}b(x+y)(b+c) \cdot (x+y) - 2a^{2}b(x+y)(b+c) \cdot 3ab^{2}(b+c)$$

$$= 2a^{2}b(x+y)(b+c) \left[(x+y) - 3ab^{2}(b+c) \right]$$

$$= 2a^{2}b(x+y)(b+c) \left(x+y - 3ab^{3} - 3ab^{2}c \right).$$

在本例中, 我们把多项式 x + y, b + c 分别整个看成是一个字母, 这种观点在因式分解时是很有用的.

例 1.1.3 (切勿漏 1). 分解因式: $(2x+y)^3 - (2x+y)^2 + (2x+y)$.

 \mathbf{H} . 我们把多项式 2x + y 看成是一个字母, 因此原式由

$$(2x+y)^3$$
, $-(2x+y)^2$, $2x+y$

这三项组成, 2x + y 是这三项的公因式, 于是

$$(2x+y)^3 - (2x+y)^2 + (2x+y)$$

$$= (2x+y) \cdot (2x+y)^2 - (2x+y) \cdot (2x+y) + (2x+y) \cdot 1$$

$$= (2x+y) \left[(2x+y)^2 - (2x+y) + 1 \right].$$

请注意,中括号内的式子仍由三项组成,千万不要忽略最后一项 1. 在省去中间过程时,尤需加倍留心.

例 1.1.4 (注意符号). 分解因式: $-3ab(2x+3y)^4 + ac(2x+3y)^3 - a(2x+3y)$.

解.
$$-3ab(2x+3y)^4 + ac(2x+3y)^3 - a(2x+3y)$$

= $a(2x+3y) \cdot (-3b) \cdot (2x+3y)^3 + a(2x+3y) \cdot c(2x+3y)^2 + a(2x+3y) \cdot (-1)$
= $a(2x+3y) \left[-3b(2x+3y)^3 + c(2x+3y)^2 - 1 \right]$.

注记. 注意中括号内的最后一项是 -1, 千万别漏掉. 本例中, 原式的第一项有个因数 -1, 它也可以作为因数提取出来, 即

$$-3ab(2x+3y)^{4} + ac(2x+3y)^{3} - a(2x+3y)$$

$$= -a(2x+3y) \cdot 3b(2x+3y)^{3} - a(2x+3y) \cdot (-c)(2x+3y)^{2} - a(2x+3y) \cdot 1$$

$$= -a(2x+3y) \left[3b(2x+3y)^{3} - c(2x+3y)^{2} + 1 \right].$$

这样做也是正确的. 但必须注意各项的符号, 提出因数 -1 后各项都应改变符号, 所以上式的中括号内三项的符号恰与原式中相应的三项相反.

例 1.1.5 (仔细观察). 分解因式: (2x-3y)(3x-2y)+(2y-3x)(2x+3y).

解. 初看起来, 原式所含的第一项 (2x-3y)(3x-2y) 与第二项 (2y-3x)(2x+3y) 没有公因式, 但进一步观察便会发现

$$2y - 3x = -(3x - 2y),$$

因此 3x - 2y 是两项的公因式. 于是有

$$(2x - 3y)(3x - 2y) + (2y - 3x)(2x + 3y)$$
$$= (3x - 2y)[(2x - 3y) - (2x + 3y)]$$
$$= -6y(3x - 2y).$$

提出公因式后, 留下的式子如果可以化简, 就应当化简.

例 1.1.6 (化"分"为整). 分解因式: $3a^3b^2 - 6a^2b^3 + \frac{27}{4}ab$.

解. 这里的第三项 $\frac{27}{4}ab$ 的系数是分数,为了避免分数运算,我们把 $\frac{1}{4}$ 先提取出来,这时每项都除以 $\frac{1}{4}$ (也就是乘以 4),即

$$3a^{3}b^{2} - 6a^{2}b^{3} + \frac{27}{4}ab$$

$$= \frac{1}{4} \left(12a^{3}b^{2} - 24a^{2}b^{3} + 27ab \right)$$

$$= \frac{3}{4}ab \left(4a^{2}b - 8ab^{2} + 9 \right).$$

熟练以后可以将以上两步并作一步,"一次提净".

在提出一个分数因数(它的分母是各项系数的公分母)后,我们总可以使各项系数都化为整数(这个过程实质上就是通分).并且,还可以假定第一项系数是正整数,否则可用前面说过的方法,把-1作为公因数提出,使第一项系数成为正整数.

注记. 提公因式是因式分解的基本方法之一. 在因式分解时, 首先应该想到是否有公因式可提. 在与其他方法配合时, 即使开始已经提出公因式, 但是经过分组或应用公式后还有可能再出现公因式. 凡有公因式应立即提净. 提公因式时, 应注意各项的符号, 千万不要漏掉一项.

习题 1

将以下各式分解因式:

- 1. $5x^2y 10xyz + 5xy$.
- 2. 2a(x-a) + b(a-x) (x-a).
- 3. 3 2x(x+1) + a(x+1) + (x+1).
- 4. $\frac{3}{2}b^{3n-1} + \frac{1}{6}b^{2n-1}$ (n 是正整数).
- 5. $2(p-1)^2 4q(p-1)$.

- 6. $mn(m^2+n^2)-n^2(m^2+n^2)$.
- 7. (5a-2b)(2m+3p)-(2a-7b)(2m+3p).
- 8. $2(x+y) + 6(x+y)^2 4(x+y)^3$.
- 9. $(x+y)^2(b+c) (x+y)(b+c)^2$.
- 10. $6p(x-1)^3 8p^2(x-1)^2 2p(1-x)^2$.

1.2 应用公式

将乘法公式反过来写就得到因式分解中所用的公式, 常见的有七个公式:

- 1. $a^2 b^2 = (a+b)(a-b)$.
- 2. $a^3 + b^3 = (a+b)(a^2 ab + b^2)$.
- 3. $a^3 b^3 = (a b) (a^2 + ab + b^2)$.
- 4. $a^2 + 2ab + b^2 = (a+b)^2$.
- 5. $a^2 2ab + b^2 = (a b)^2$.
- 6. $a^3 + 3a^2b + 3ab^2 + b^3 = (a+b)^3$.
- 7. $a^3 3a^2b + 3ab^2 b^3 = (a b)^3$.

以上公式必须熟记, 牢牢掌握各自的特点.

1.2.1 平方差

七个公式中,平方差公式应用得最多.

例 1.2.1. 分解因式: $9(m-n)^2 - 4(m+n)^2$.

解. 原式由两项组成, 这两项符号相反, 并且

$$9(m-n)^2 = [3(m-n)]^2,$$

$$4(m+n)^2 = [2(m+n)]^2,$$

因此可以应用平方差公式,得

$$9(m-n)^{2} - 4(m+n)^{2}$$

$$= [3(m-n)]^{2} - [2(m+n)]^{2}$$

$$= [3(m-n) + 2(m+n)][3(m-n) - 2(m+n)]$$

$$= (5m-n)(m-5n).$$

例 1.2.2. 分解因式: $75x^6y - 12x^2y^5$.

解.

$$75x^{6}y - 12x^{2}y^{5} = 3x^{2}y (25x^{4} - 4y^{4})$$
$$= 3x^{2}y [(5x^{2})^{2} - (2y^{2})^{2}]$$
$$= 3x^{2}y (5x^{2} + 2y^{2}) (5x^{2} - 2y^{2})$$

例 1.2.3. 分解因式: $-(3a^2-5b^2)^2+(5a^2-3b^2)^2$.

解.

$$- (3a^{2} - 5b^{2})^{2} + (5a^{2} - 3b^{2})^{2}$$

$$= (5a^{2} - 3b^{2})^{2} - (3a^{2} - 5b^{2})^{2}$$

$$= [(5a^{2} - 3b^{2}) + (3a^{2} - 5b^{2})] [(5a^{2} - 3b^{2}) - (3a^{2} - 5b^{2})]$$

$$= (8a^{2} - 8b^{2}) (2a^{2} + 2b^{2})$$

$$= 16 (a^{2} - b^{2}) (a^{2} + b^{2})$$

$$= 16(a + b)(a - b) (a^{2} + b^{2})$$

注记. 例 1.2.3表明在因式公解中可能需要多次应用公式或提公因式,直到不能继续分解为止.

1.2.2 立方和与立方差

例 1.2.4. 分解因式: $9x^5 - 72x^2y^3$.

解.

$$9x^{5} - 72x^{2}y^{3} = 9x^{2}(x^{3} - 8y^{3})$$
$$= 9x^{2}[x^{3} - (2y)^{3}]$$
$$= 9x^{2}(x - 2y)(x^{2} + 2xy + 4y^{2})$$

例 1.2.5. 分解因式: $a^6 + b^6$.

解.

$$a^{6} + b^{6} = (a^{2})^{3} + (b^{2})^{3}$$

$$= (a^{2} + b^{2}) \left[(a^{2})^{2} - a^{2}b^{2} + (b^{2})^{2} \right]$$

$$= (a^{2} + b^{2}) (a^{4} - a^{2}b^{2} + b^{4})$$

1.2.3 完全平方

例 1.2.6. 分解因式: $9x^2 - 24xy + 16y^2$.

解. 原式由三项组成, 第一项 $9x^2 = (3x)^2$, 第三项 $16y^2 = (4y)^2$, 而

$$2 \cdot 3x \cdot 4y = 24xy$$

与中间一项只差一个符号, 因此可以利用(完全)平方式, 得

$$9x^2 - 24xy + 16y^2$$
$$= (3x - 4y)^2.$$

不是平方式的二次三项式,通常用十字相乘法分解(后面会讲).

例 1.2.7. 分解因式: $8a-4a^2-4$.

 \mathbf{M} . 首先把原式"理顺", 也就是将它的各项按字母 a 降幂 (或升幂) 排列, 从而有

$$8a - 4a^{2} - 4$$

$$= -4a^{2} + 8a - 4$$

$$= -4(a^{2} - 2a + 1)$$

$$= -4(a - 1)^{2}.$$

注记. 按某个字母降幂排列是一个简单而有用的措施(简单的往往是有用的),值得注意.

例 1.2.8. 分解因式: $4a^2 + 9b^2 + 9c^2 - 18bc - 12ca + 12ab$.

解. 我们需要引入一个公式. 由乘法可得

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca,$$

即若干项的和的平方等于各项的平方与每两项乘积的 2 倍的和. 上面的式子可写成

$$a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca$$

= $(a + b + c)^{2}$.

这也是一个因式分解的公式.

联系到例 1.2.8就有

$$4a^{2} + 9b^{2} + 9c^{2} - 18bc - 12ca + 12ab$$

$$= (2a)^{2} + (3b)^{2} + (-3c)^{2} + 2(3b)(-3c) + 2(2a)(-3c) + 2(2a)(3b)$$

$$= (2a + 3b - 3c)^{2}.$$

1.2.4 完全立方

例 1.2.9. 分解因式: $8x^3 + 27y^3 + 36x^2y + 54xy^2$.

解.

$$8x^{3} + 27y^{3} + 36x^{2}y + 54xy^{2}$$

$$=8x^{3} + 36x^{2}y + 54xy^{2} + 27y^{3}$$

$$=(2x)^{3} + 3(2x)^{2}(3y) + 3(2x)(3y)^{2} + (3y)^{3}x$$

$$=(2x + 3y)^{3}.$$

例 1.2.10. 分解因式: $729a^6 - 243a^4 + 27a^2 - 1$.

解.

$$729a^{6} - 243a^{4} + 27a^{2} - 1$$

$$= (9a^{2})^{3} - 3 \cdot (9a^{2})^{2} \cdot 1 + 3 \cdot (9a^{2}) \cdot 1^{2} - 1^{3}$$

$$= (9a^{2} - 1)^{3}$$

$$= (3a + 1)^{3}(3a - 1)^{3}$$

例 1.2.11. 分解因式: $a^6 - b^6$.

解. a^6 可以看成平方:

$$a^6 = \left(a^3\right)^2,$$

也可以看成立方:

$$a^6 = (a^2)^3$$
,

于是 $a^6 - b^6$ 的分解就有两条路可走.

第一条路是先应用平方差公式:

$$a^{6} - b^{6} = (a^{3})^{2} - (b^{3})^{2}$$

$$= (a^{3} + b^{3}) (a^{3} - b^{3})$$

$$= (a + b) (a^{2} - ab + b^{2}) (a - b) (a^{2} + ab + b^{2})$$

第二条路是从立方差公式入手:

$$a^{6} - b^{6} = (a^{2})^{3} - (b^{2})^{3}$$

$$= (a^{2} - b^{2}) (a^{4} + a^{2}b^{2} + b^{4})$$

$$= (a + b)(a - b) (a^{4} + a^{2}b^{2} + b^{4})$$

注记. 采用两种方法分解, 获得的结果应当相同. 因此比较

$$\left(a+b\right)\left(a^2-ab+b^2\right)\left(a-b\right)\left(a^2+ab+b^2\right)$$

与

$$(a+b)(a-b)(a^4+a^2b^2+b^4)$$
,

我们知道 $a^4 + a^2b^2 + b^4$ 不是既约多项式, 并且有

$$a^{4} + a^{2}b^{2} + b^{4} = (a^{2} + ab + b^{2})(a^{2} - ab + b^{2})$$
(1.1)

及

$$a^{6} - b^{6} = (a+b)(a-b)\left(a^{2} + ab + b^{2}\right)\left(a^{2} - ab + b^{2}\right). \tag{1.2}$$

于是, 从 $a^6 - b^6$ 的分解出发, 不但得到1.2式, 而且知道 $a^4 + a^2b^2 + b^4$ 不是既约多项式, 导出了1.1式, 可谓问一知三.

后面我们还要介绍导出1.1式的另一种方法.

1.2.5 $2^{1984} + 1$ 不是质数

例 1.2.12. 求证 2¹⁹⁸⁴ + 1 不是质数.

 \mathbf{H} . 为了将 $2^{1984} + 1$ 分解因数, 我们需要知道一个新的公式, 即在 n 为正奇数时

$$a^{n} + b^{n} = (a+b) (a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots - ab^{n-2} + b^{n-1}).$$

上式不难用乘法验证,将右边的两个因式相乘便得到 $a^n + b^n$. 现在我们有

$$2^{1984} + 1 = (2^{64})^{31} + 1^{31}$$
$$= (2^{64} + 1) (2^{64 \times 30} - 2^{64 \times 29} + \dots - 2^{64} + 1).$$

 $2^{64}+1$ 是 $2^{1984}+1$ 的真因数,它大于 1,小于 $2^{1984}+1$,所以 $2^{1984}+1$ 不是质数. 用这个方法可以证明: 当 n 有大于 1 的奇数因数时, 2^n+1 不是质数.

注记. 类似地, 由乘法可以得到在 n 为正整数时

$$a^{n} - b^{n} = (a - b) \left(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1} \right).$$
 (12)

这也是一个有用的公式.

例 1.2.13. 分解因式: x^5-1 .

解.

$$x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$$

习题 2

将以下各式分解因式:

- 1. $16 (3a + 2b)^2$.
- 2. $4y^2 (2z x)^2$.
- $3 a^4 b^4$

- 4. $-81a^4b^4 + 16c^4$.
- 5. $20a^3x^3 45axy^2$.
- 6. $(3a^2 b^2)^2 (a^2 3b^2)^2$.
- 7. $x^8 y^8$.
- 8. $16x^5 x$.
- 9. $(5x^2 + 2x 3)^2 (x^2 2x 3)^2$.
- 10. $32a^3b^3 4b^9$.
- 11. $8a^3b^3c^3 1$.
- 12. $64x^6y^3 + y^{15}$.
- 13. $x^2(a+b)^2 2xy(a^2-b^2) + y^2(a-b)^2$.
- 14. $a^{n+2} + 8a^n + 16a^{n-2}$.
- 15. $9a^2 + x^{2n} + 6a + 2x^n + 6ax^n + 1$.
- 16. $a^2 + b^2 + c^2 + 2ab 2ac 2bc$.
- 17. $x^2 + 9y^2 + 4z^2 6xy + 4xz 12yz$.
- 18. $(p+q)^3 3(p+q)^2(p-q) + 3(p+q)(p-q)^2 (p-q)^3$.
- 19. $4a^2b^2 (a^2 + b^2)^2$.
- 20. $(a+x)^4 (a-x)^4$.

1.3 分组分解与十字相乘

例 1.3.1 (分组分解三部曲). 分解因式: ax - by - bx + ay. 解.

$$ax - by - bx + ay$$

$$= (ax - bx) + (ay - by)$$

$$= x(a - b) + y(a - b)$$

$$= (x + y)(a - b).$$

分组的方法并不是唯一的,对于上面的整式 ax - by - bx + ay,也可以采用下面的做法:

$$ax - by - bx + ay$$

$$= (ax + ay) - (bx + by)$$

$$= a(x + y) - b(x + y)$$

$$= (x + y)(a - b)$$

两种做法的效果是一样的,殊途同归!可以说,一种是按照 x 与 y 来分组(含 x 的项在一组,含 y 的项在另一组);另一种是按 a 与 b 来分组。

- 一般地,分组分解大致分为三步:
- 1. 将原式的项适当分组;
- 2. 对每一组进行处理("提"或"代");
- 3. 将经过处理后的每一组当作一项,再采用"提"或"代"进行分解。

一位高明的棋手,在下棋时,决不会只看一步。同样,在进行分组时,不仅要看到第二步,而且要看到第三步一个整式的项有许多种分组的方法,初学者往往需要经过尝试才能找到适当的分组方法,但是只要努力实践,多加练习,就会成为有经验的"行家".

例 1.3.2 (殊途同归). 分解因式: $x^2 + ax^2 + x + ax - 1 - a$.

解. 解法一: 按字母 x 的幂来分组。

$$x^{2} + ax^{2} + x + ax - 1 - a$$

$$= (x^{2} + ax^{2}) + (x + ax) - (1 + a)$$

$$= x^{2}(1 + a) + x(1 + a) - (1 + a)$$

$$= (1 + a)(x^{2} + x - 1).$$

解法二: 按字母 a 的幂来分组.

$$x^{2} + ax^{2} + x + ax - 1 - a$$

$$= (ax^{2} + ax - a) + (x^{2} + x - 1)$$

$$= a(x^{2} + x - 1) + (x^{2} + x - 1)$$

$$= (a + 1)(x^{2} + x - 1).$$

1.4 多项式的因式分解