Package 'temStaR'

September 7, 2020
Title Tempered Stable Distribution
Version 0.814
Author Aaron Y.S. Kim [aut, cre], Stoyan Stoyanov [aut, cre], Minseob Kim [ctb]
Maintainer Aaron Y.S. Kim <aaron.kim@stonybrook.edu></aaron.kim@stonybrook.edu>
Description This package provides useful tools to use the multivariate normal tempered stable distribution and process
License `use_mit_license()`
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
Imports functional,
chf_NTS 2 chf_stdNTS 3 copulaStdNTS 4 cvarGauss 4 cvarnts 5 dBeta 6
dcopulaStdNTS 6 dCVaR_numint 6

chf_NTS

chf_l	NTS	chf_NTS				
Index					3	32
	setPortfolioParam		 	 	2	29
	rnts		 	 	2	28
	rmnts		 	 	2	27
	qnts					26
	portfolioVaRmnts					26
	portfolioCVaRmnts .					
	•				2	
	pmnts					
	moments_stdNTS					
	moments_NTS					
	mctVaRnts					-
	mctVaRmnts					
					1	
	mctCVaRnts					
	mctCVaRmnts					
	importantSamplining ipnts					
	getPortNTSParam					14
	gensamplepathnts					
	fitstdnts					
	fitnts					1 1
	fitmnts					9
	dnts		 	 		8
	dmnts		 	 		7
	dinvCdf_stdNTS		 	 		7

Description

chf_NTS calculates Ch.F of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If a time parameter value is given, it calculates Ch.F of the NTS profess $\phi(u) = E[\exp(iu(X(t+s)-X(s)))] = \exp(t\log(E[\exp(iuX(1))]))$, where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

chf_NTS(u, param)

Arguments

u An array of u
ntsparam A vector of the NTS parameters

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For NTS process case it is a

vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$.

Value

Characteristic function of the NTS distribution

chf_stdNTS 3

Examples

```
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_NTS(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_NTS(u, ntsparam)</pre>
```

chf_stdNTS

chf_stdNTS

Description

chf_stdNTS calculates Ch.F of the standard NTS distribution with parameters (α, θ, β) . If a time parameter value is given, it calculates Ch.F of the standard NTS profess $\phi(u) = E[\exp(iu(X(t+s)-X(s)))] = \exp(t\log(E[\exp(iuX(1))]))$, where X is the standard NTS process generated by the standard NTS distribution with parameters (α, θ, β) .

Usage

```
chf_stdNTS(u, param)
```

Arguments

An array of u

ntsparam A vector of the standard NTS parameters (α, θ, β) . For the standard NTS pro-

cess case it is a vector of parameters $(\alpha, \theta, \beta, t)$.

Value

Characteristic function of the standard NTS distribution

4 cvarGauss

Examples

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
u <- seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_stdNTS(u, ntsparam)

#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)
u <- seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_stdNTS(u, ntsparam)</pre>
```

copulaStdNTS

copulaStdNTS

Description

copulaStdNTS calculates the stdNTS copula values

Usage

```
copulaStdNTS(u, st, subTS = NULL)
```

cvarGauss

cvarGauss

Description

Calculate the CVaR for the normal distributed market model. Developer's version.

Usage

```
cvarGauss(eta, mu = 0, sigma = 1)
```

cvarnts 5

cvarnts

cvarnts

Description

cvarnts calculates Conditional Value at Risk (CVaR, or expected shortfall ES) of the NTS market model with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates CVaR of the standard NTS distribution with parameter (α, θ, β)

Usage

```
cvarnts(eps, ntsparam)
```

Arguments

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. A vector of the standard NTS parameters (α, θ, β) .

u Real value between 0 and 1

Value

CVaR of the NTS distribution.

References

- Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2010), Computing VaR and AVaR in infinitely divisible distributions, Probability and Mathematical Statistics, 30 (2), 223-245.
- S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011), Financial Models with Levy Processes and Volatility Clustering, John Wiley & Sons

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow c(0.01, 0.05)
q <- cvarnts(u, ntsparam)</pre>
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow c(0.01, 0.05)
q \leftarrow cvarnts(u, ntsparam)
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
```

6 dCVaR_numint

```
gamma <- 0.3 mu <- 0.1 #scaling annual parameters to one day dt <- 1/250 #one day ntsparam <- c(alpha, theta, beta, gamma, mu, dt) u <- c(0.01,0.05) q <- cvarnts(u, ntsparam)
```

dBeta

dBeta

Description

The first derivative of the beta. Developer's version.

Usage

```
dBeta(n, w, betaArray, covMtx)
```

dcopulaStdNTS

dcopulaStdNTS

Description

dcopulaStdNTS calculates density of the stdNTS copula.

Usage

```
dcopulaStdNTS(u, st, subTS = NULL)
```

dCVaR_numint

dCVaR_numint

Description

The first derivative of CVaR for the beta parameter of the stdNTS. Developer's version.

Usage

```
dCVaR_numint(eta, alpha, theta, beta, N = 200, rho = 0.1)
```

dinvCdf_stdNTS 7

dinvCdf_stdNTS

dinvCdf_stdNTS

Description

The first derivative of inverse CDF for the beta parameter of the stdNTS. Developer's version.

Usage

```
dinvCdf_stdNTS(eta, alpha, theta, beta)
```

dmnts

dmnts

Description

```
dmnts calculates the density of the multivariate NTS distribution: f(x_1,\cdots,x_n)=\frac{d^n}{dx_1\cdots dx_n}P(x_n< R_1,\cdots,x_n< R_n). The multivariate NTS random vector R=(R_1,\cdots,R_n) is defined R=\mu+diag(\sigma)X, where X follows stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
dmnts(x, st, subTS = NULL)
```

Arguments

x array of the (x_1, \dots, x_n)

st Structure of parameters for the n-dimensional NTS distribution.

 ${\tt st\$ndim}: dimension$

 ${\tt st\$mu}$: μ mean vector (column vector) of the input data.

 ${\tt st\$sigma}: \sigma$ standard deviation vector (column vector) of the input data.

st\$alpha : α of the std NTS distribution (X). st\$theta : θ of the std NTS distribution (X).

 $\mathtt{st\$beta}:\beta$ vector (column vector) of the std NTS distribution (X).

st\$Rho : ρ matrix of the std NTS distribution (X).

numofsample number of samples.

Value

Simulated NTS random vectors

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

8 dnts

Examples

```
library(mvtnorm)
strPMNTS <- list(ndim = 2,</pre>
              mu = c(0.5, -1.5),
              sigma = c(2, 3),
              alpha = 0.1,
              theta = 3,
              beta = c(0.1, -0.3),
              Rho = matrix( data = c(1.0, 0.75, 0.75, 1.0),
                            nrow = 2, ncol = 2)
dmnts(c(0.6, -1.0), st = strPMNTS)
strPMNTS <- list(ndim = 2,</pre>
                 mu = c(0, 0, 0),
                 sigma = c(1, 1, 1),
                 alpha = 0.1,
                 theta = 3,
                 beta = c(0.1, -0.3, 0),
                 Rho = matrix(
                     data = c(1.0, 0.75, 0.1, 0.75, 1.0, 0.2, 0.1, 0.2, 1.0),
                     nrow = 3, ncol = 3)
)
pmnts(c(0,0,0), st = strPMNTS)
dmnts(c(0,0,0), st = strPMNTS)
```

dnts

dnts

Description

dnts calculates pdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates pdf of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates pdf of the NTS profess f(x)dx = d(P((X(t+s) - X(s)) < x)), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
dnts(xdata, ntsparam)
```

Arguments

xdata

An array of x

ntsparam

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is a vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of the standard NTS parameters (α, θ, β) .

Value

Density of NTS distribution

fitmnts 9

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
x \leftarrow seq(from = -6, to = 6, length.out = 101)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
x \leftarrow seq(from = -2, to = 2, by = 0.01)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
x < - seq(from = -0.02, to = 0.02, length.out = 101)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
```

fitmnts

fitmnts

Description

```
fitmnts fit parameters of the n-dimensional NTS distribution.
```

```
r=\mu+diag(\sigma)X where X \mbox{ follows } stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
\code{res <- fitmnts(returndata, n)}
\code{res <- fitmnts(returndata, n, alphaNtheta = c(alpha, theta))}
\code{res <- fitmnts(returndata, n, stdflag = TRUE ) }
\code{res <- fitmnts(returndata, n, alphaNtheta = c(alpha, theta), stdflag = TRUE)}</pre>
```

10 fitmnts

Arguments

returndata Raw data to fit the parameters. The data must be given as a matrix form. Each

column of the matrix contains a sequence of asset returns. The number of row

of the matrix is the number of assets.

n Dimension of the data. That is the number of assets.

alphaNtheta If α and θ are given, then put those numbers in this parameter. The func-

tion fixes those parameters and fits other remaining parameters. If you set alphaNtheta = NULL, then the function fits all parameters including α and

 θ .

stdflag If you want only standard NTS parameter fit, set this value be TRUE.

Value

Structure of parameters for the n-dimensional NTS distribution.

res\$mu : μ mean vector (column vector) of the input data.

 ressigma: \sigma$ standard deviation vector (column vector) of the input data.

res\$alpha : α of the std NTS distribution (X).

res\$theta: θ of the std NTS distribution (X).

res\$beta : β vector (column vector) of the std NTS distribution (X).

res\$Rho: ρ matrix of the std NTS distribution (X), which is correlation matrix of epsilon.

resCovMtx: Covariance matrix of return data r.

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
getSymbols("^GSPC", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(GSPC$GSPC.Adjusted)</pre>
getSymbols("^DJI", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(DJI$DJI.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)),diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
res <- fitmnts( returndata = returndata, n=2 )</pre>
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
```

fitnts 11

fitnts

fitnts

Description

fitnts fit parameters $(\alpha, \theta, \beta, \gamma, \mu)$ of the NTS distribution. This function using the curvefit method between the empirical cdf and the NTS cdf.

Usage

```
\code{fitnts(rawdat)}
\code{fitnts(rawdat), ksdensityflag = 1}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu))}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu)), ksdensityflag = 1}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu)), maxeval = 100, ksdensityflag
```

Arguments

rawdat Raw data to fit the parameters.

initialparam A vector of initial NTS parameters. This function uses the nloptr package. If

it has a good initial parameter then estimation performs better. If users do not know a good initial parameters, then just set it as initialparam=NaN, that is default. The function cffitnts() may be helpful to find the initial parameters.

maxeval Maximum evaluation number for nloptr. The iteration stops on this many func-

tion evaluations.

ksdensityflag This function fit the parameters using the curvefit method between the empirical

cdf and the NTS cdf. If ksdensityflag = 1 (default), then the empirical cdf is calculated by the kernel density estimation. If ksdensityflag = \emptyset , then the

empirical cdf is calculated by the empirical cdf.

Value

Estimated parameters

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

12 fitstdnts

Examples

```
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2010-1-1", to = "2020-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)
ret <- diff(log(pr))
ntsparam <- fitnts(ret)

Femp = ecdf(ret)
x = seq(from=min(ret), to = max(ret), length.out = 100)
cemp = Femp(x)
ncdf = pnts(x, c(ntsparam))
plot(x,ncdf,type = 'l', col = "red")
points(x,cemp, type = 'l', col = "blue")
a = density(ret)
p = dnts(x,ntsparam)
plot(x,p,type = 'l', col = "red")
lines(a,type = 'l', col = "blue")</pre>
```

fitstdnts

fitstdnts

Description

fitstdnts fit parameters (α, θ, β) of the standard NTS distribution. This function using the curvefit method between the empirical cdf and the standard NTS cdf.

Usage

```
\code{fitstdnts(rawdat)}
\code{fitstdnts(rawdat), ksdensityflag = 1}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta))}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), ksdensityflag = 1}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), maxeval = 100, ksdensityflag = 1}
```

Arguments

rawdat Raw data to fit the parameters.

initialparam A vector of initial standard NTS parameters. This function uses the nloptr

package. If it has a good initial parameter then estimation performs better. If users do not know a good initial parameters, then just set it as initialparam=NaN,

that is default.

maxeval Maximum evaluation number for nloptr. The iteration stops on this many func-

tion evaluations.

ksdensityflag This function fit the parameters using the curvefit method between the empirical

cdf and the standard NTS cdf. If ksdensityflag = 1 (default), then the empirical cdf is calculated by the kernel density estimation. If ksdensityflag = 0,

then the empirical cdf is calculated by the empirical cdf.

Value

Estimated parameters

gensamplepathnts 13

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2010-1-1", to = "2020-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)</pre>
ret <- diff(log(pr))</pre>
stdret <- (ret-mean(ret))/sd(ret)</pre>
stdntsparam <- fitstdnts(stdret)</pre>
Femp = ecdf(stdret)
x = seq(from=min(stdret), to = max(stdret), length.out = 100)
cemp = Femp(x)
ncdf = pnts(x, c(stdntsparam))
plot(x,ncdf,type = 'l', col = "red")
lines(x,cemp, type = '1', col = "blue")
a = density(stdret)
p = dnts(x,stdntsparam)
plot(x,p,type = 'l', col = "red", ylim = c(0, max(a$y, p)))
lines(a,type = 'l', col = "blue")
```

gensamplepathnts

gensamplepathnts

Description

gensamplepathnts generate sample paths of the NTS process with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it generate sample paths of the standard NTS process with parameters (α, θ, β) .

Usage

```
gensamplepathnts(npath, ntimestep, ntsparam, dt)
```

Arguments

npath	Number of sample paths
ntimestep	number of time step
ntsparam	A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. A vector of the standard NTS parameters (α, θ, β) .
dt	the time length of one time step by the year fraction. "dt=1" means 1-year.

Value

Structure of the sample path. Matrix of sample path. Column index is time.

14 getPortNTSParam

Examples

```
#standard NTS process sample path
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
npath <- 5
ntimestep <- 250
dt <- 1/250
simulation <- gensamplepathnts(npath, ntimestep, ntsparam, dt)</pre>
matplot(colnames(simulation), t(simulation), type = 'l')
#NTS process sample path
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
npath <- 5
ntimestep <- 250
dt <- 1/250
simulation <- gensamplepathnts(npath, ntimestep, ntsparam, dt)</pre>
matplot(colnames(simulation), t(simulation), type = 'l')
```

getPortNTSParam

getPortNTSParam

Description

Portfolio return with capital allocation weight is $R_p = \langle w, r \rangle$, which is a weighted sum of of elements in the N-dimensional NTS random vector. R_p becomes an 1-dimensional NTS random variable. getPortNTSParam find the parameters of R_p .

Usage

```
\code{res <- setPortfolioParam(strPMNTS,w)}
\code{res <- setPortfolioParam(strPMNTS,w, FALSE)}</pre>
```

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution. $strPMNTS\$ndim: dimension \\ strPMNTS\$mu: \mu \ mean \ vector \ (column \ vector) \ of the input \ data. \\ strPMNTS\$sigma: \sigma \ standard \ deviation \ vector \ (column \ vector) \ of the input \ data. \\ strPMNTS\$alpha: \alpha \ of the \ std \ NTS \ distribution \ (X). \\ strPMNTS\$theta: \theta \ of the \ std \ NTS \ distribution \ (X). \\ strPMNTS\$beta: \beta \ vector \ (column \ vector) \ of the \ std \ NTS \ distribution \ (X). \\ res\$Rho: \rho \ matrix \ (Correlation) \ of the \ std \ NTS \ distribution \ (X). \\ res\$Sigma: Covariance \Sigma \ matrix \ of \ return \ data \ r.$

getPortNTSParam 15

Capital allocation weight vector.
If stdform is FALSE, then the return parameter has the following representation $R_p = < w, r >= \mu + diag(\sigma)X,$ where $X \text{ follows } stdNTS_1(\alpha, \theta, \beta, 1).$ If stdform is TRUE, then the return parameter has the following representation $R_p = < w, r > \text{follows } stdNTS_1(\alpha, \theta, \beta, \gamma, \mu)$

Value

The weighted sum follows 1-dimensional NTS.

$$\begin{split} R_p = &< w, r > = \mu + diag(\sigma)X, \\ \text{where} \\ X \text{ follows } stdNTS_1(\alpha, \theta, \beta, 1). \\ \text{Hence we obtain} \\ \text{res$mu} : \mu \text{ mean of } R_p. \\ \text{res$sigma} : \sigma \text{ standard deviation of } R_p. \\ \text{res$alpha} : \alpha \text{ of } X. \\ \text{res$theta} : \theta \text{ of } X. \\ \text{res$beta} : \beta \text{ of } X. \end{split}$$

References

Proposition 2.1 of Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

16 ipnts

importantSamplining importantSamplining

Description

importantSamplining do the important sampling for the TS Subordinator.

Usage

```
importantSamplining(alpha, theta)
```

ipnts

ipnts

Description

ipnts calculates inverse cdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates inverse cdf of the standard NTS distribution with parameter (α, θ, β)

Usage

```
ipnts(u, ntsparam, maxmin = c(-10, 10), du = 0.01)
```

Arguments

u Real value between 0 and 1 $\text{A vector of the NTS parameters } (\alpha, \theta, \beta, \gamma, \mu). \text{ A vector of the standard NTS parameters } (\alpha, \theta, \beta).$

parameters (α, β)

Value

Inverse cdf of the NTS distribution. It is the same as qnts function.

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
u <- seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)
plot(u,q,type = 'l')
alpha <- 1.2
theta <- 1</pre>
```

mctCVaRmnts 17

```
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(x,q,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(x,q,type = 'l')
```

mctCVaRmnts

mctCVaRmnts

Description

Calculate the marginal contribution to CVaR for the multivariate NTS market model: the random vector \boldsymbol{r} is

```
r = \mu + diag(\sigma)X where X \text{ follows } stdNTS_N(\alpha,\theta,\beta,\Sigma)
```

Usage

```
\code{mctCVaRmnts(eta, n, w, st)}
```

Arguments

eta	Significant level of CVaR.
n	The targer stock to calculate the mctCVaR
W	The capital allocation rate vector for the current portfolio
st	Structure of parameters for the N-dimensional NTS distribution.
	st\$ndim: Dimension of the model. Here st\$ndim=N.
	st mu : μ mean vector (column vector) of the input data.
	${\tt st\$sigma}: \sigma$ standard deviation vector (column vector) of the input data.
	st\$alpha : α of the std NTS distribution (X).
	st\$theta: θ of the std NTS distribution (X).
	st\$beta : β vector (column vector) of the std NTS distribution (X).

18 mctCVaRnts

```
st$Rho : \rho matrix of the std NTS distribution (X), which is correlation matrix of epsilon.
```

stCovMtx: Covariance matrix of return data r.

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
library(mvtnorm)
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)),diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
st <- fitmnts( returndata = returndata,</pre>
                n = 2.
                alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
w \leftarrow c(0.3, 0.7)
eta <- 0.01
mctVaRmnts(eta, 1, w, st) #MCT-VaR for IBM
mctVaRmnts(eta, 2, w, st) #MCT-VaR for INTL
mctCVaRmnts(eta, 1, w, st) #MCT-CVaR for IBM
mctCVaRmnts(eta, 2, w, st) #MCT-CVaR for INTL
```

 $\verb|mctCVaRnts|$

mctCVaRnts

Description

Calculate the marginal contribution to CVaR for the multivariate NTS market model. Developer's version.

mctStdDev 19

Usage

```
mctCVaRnts(
  eta,
  n,
  w,
  covMtx,
  alpha,
  theta,
  betaArray,
  muArray,
  CVaR = NULL,
  dCVaR = NULL
)
```

mctStdDev

mctStdDev

Description

Morginal contribution to Risk for Standard Deviation.

Usage

```
mctStdDev(n, w, covMtx)
```

Arguments

n The targer stock to calculate the mctCVaR

w The capital allocation rate vector for the current portfolio

CovMtx Covariance matrix of return data.

mctVaRmnts mctVaRmnts

Description

Calculate the marginal contribution to VaR for the multivariate NTS market model: the random vector \boldsymbol{r} is

```
r = \mu + diag(\sigma)X where X \text{ follows } stdNTS_N(\alpha,\theta,\beta,\Sigma)
```

Usage

```
\code{mctVaRmnts(eta, n, w, st)}
```

20 mctVaRmnts

Arguments

eta	Significant level of CVaR.
n	The targer stock to calculate the mctCVaR
W	The capital allocation rate vector for the current portfolio
st	Structure of parameters for the N-dimensional NTS distribution.
	st\$ndim: Dimension of the model. Here st\$ndim=N.
	$st\mbox{mu}: \mu$ mean vector (column vector) of the input data.
	${\tt st\$sigma}: \sigma$ standard deviation vector (column vector) of the input data.
	st\$alpha : α of the std NTS distribution (X).
	st\$theta : θ of the std NTS distribution (X).
	st\$beta : β vector (column vector) of the std NTS distribution (X).
	st\$Rho : ρ matrix of the std NTS distribution (X), which is correlation matrix of epsilon.
	st $CovMtx$: Covariance matrix of return data r .

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
library(mvtnorm)
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
st <- fitmnts( returndata = returndata,</pre>
                n = 2,
                alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
w \leftarrow c(0.3, 0.7)
eta <- 0.01
mctVaRmnts(eta, 1, w, st) #MCT-VaR for IBM
mctVaRmnts(eta, 2, w, st) #MCT-VaR for INTL
mctCVaRmnts(eta, 1, w, st) #MCT-CVaR for IBM
```

mctVaRnts 21

```
mctCVaRmnts(eta, 2, w, st) #MCT-CVaR for INTL
```

mctVaRnts

mctVaRnts

Description

Calculate the marginal contribution to VaR for the multivariate NTS market model. Developer's version.

Usage

```
mctVaRnts(
   eta,
   n,
   w,
   covMtx,
   alpha,
   theta,
   betaArray,
   muArray,
   icdf = NULL,
   dicdf = NULL
)
```

moments_NTS

moments_NTS

Description

moments_NTS calculates mean, variance, skewness, and excess kurtosis of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
moments_NTS(param)
```

Arguments

param

A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Value

First 4 moments (Mean, Variance, Skewness, Excess Kurtosis) of NTS distribution. The mean is always the same as the parameter μ .

References

Kim, Y.S, K-H Roh, R. Douady (2020) Tempered Stable Processes with Time Varying Exponential Tails https://arxiv.org/pdf/2006.07669.pdf

22 moments_stdNTS

Examples

```
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)
moments_NTS(param = ntsparam)</pre>
```

moments_stdNTS

moments_stdNTS

Description

moments_stdNTS calculates mean, variance, skewness, and excess kurtosis of the standard NTS distribution with parameters (α, θ, β) .

Usage

```
moments_stdNTS(param)
```

Arguments

param

A vector of the standard NTS parameters (α, θ, β) .

Value

First 4 moments (Mean, Variance, Skewness, Excess Kurtosis) of NTS distribution. Of course, the mean and variance are always 0 and 1, respectively.

References

Kim, Y.S, K-H Roh, R. Douady (2020) Tempered Stable Processes with Time Varying Exponential Tails https://arxiv.org/pdf/2006.07669.pdf

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
moments_stdNTS(param = ntsparam)</pre>
```

pmnts 23

pmnts pmnts

Description

```
pmnts calculates the cdf values of the multivariate NTS distribution: F(x_1,\cdots,x_n)=P(x_n< R_1,\cdots,x_n< R_n). The multivariate NTS random vector R=(R_1,\cdots,R_n) is defined R=\mu+diag(\sigma)X, where X follows stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

Usage

```
pmnts(x, st, subTS = NULL)
```

Arguments

```
x array of the (x_1,\cdots,x_n) st Structure of parameters for the n-dimensional NTS distribution. st$ndim: dimension st$mu: \mu mean vector (column vector) of the input data. st$sigma: \sigma standard deviation vector (column vector) of the input data. st$alpha: \alpha of the std NTS distribution (X). st$theta: \theta of the std NTS distribution (X). st$beta: \beta vector (column vector) of the std NTS distribution (X). st$Rho: \rho matrix of the std NTS distribution (X). number of samples.
```

Value

Simulated NTS random vectors

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

24 pnts

pnts

pnts

Description

pnts calculates cdf of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates cdf of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates cdf of the profess F(x) = P((X(t+s) - X(s)) < x), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
pnts(xdata, ntsparam, dz = 2^-8, m = 2^12)
```

Arguments

xdata An array of x

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is a

vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of the standard NTS parameters

 (α, θ, β) .

Value

Cumulative probability of the NTS distribution

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
x <- seq(from = -6, to = 6, length.out = 101)</pre>
```

portfolioCVaRmnts 25

```
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
x \leftarrow seq(from = -2, to = 2, by = 0.01)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
x < - seq(from = -0.02, to = 0.02, length.out = 101)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
```

portfolioCVaRmnts

portfolioCVaRmnts

Description

Calculate portfolio conditional value at risk (expected shortfall) on the NTS market model

Usage

```
portfolioCVaRmnts(strPMNTS, w, eta)
```

Arguments

```
Structure of parameters for the n-dimensional NTS distribution.  strPMNTS\$ndim: dimension \\ strPMNTS\$mu: \mu \ mean \ vector \ (column \ vector) \ of the input \ data. \\ strPMNTS\$sigma: \sigma \ standard \ deviation \ vector \ (column \ vector) \ of the input \ data. \\ strPMNTS\$alpha: \alpha \ of the \ std \ NTS \ distribution \ (X). \\ strPMNTS\$theta: \theta \ of the \ std \ NTS \ distribution \ (X). \\ strPMNTS\$beta: \beta \ vector \ (column \ vector) \ of the \ std \ NTS \ distribution \ (X). \\ res$Rho: \rho \ matrix \ (Correlation) \ of the \ std \ NTS \ distribution \ (X). \\ res$Sigma: Covariance $\Sigma$ \ matrix \ of \ return \ data \ r. \\ \\ w \ Capital \ allocation \ weight \ vector. \\ eta \ significanlt \ level
```

26 qnts

Value

portfolio value at risk on the NTS market model

portfolioVaRmnts

portfolioVaRmnts

Description

Calculate portfolio value at risk on the NTS market model

Usage

```
portfolioVaRmnts(strPMNTS, w, eta)
```

Arguments

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

 $trPMNTS\$: μ mean vector (column vector) of the input data.

 ${\tt strPMNTS\$sigma}: \sigma {\tt standard} {\tt deviation} {\tt vector} ({\tt column} {\tt vector}) {\tt of} {\tt the} {\tt input}$

data.

strPMNTS\$alpha : α of the std NTS distribution (X). strPMNTS\$theta : θ of the std NTS distribution (X).

strPMNTS\$beta : β vector (column vector) of the std NTS distribution (X).

res\$Rho : ρ matrix (Correlation) of the std NTS distribution (X).

res\$Sigma : Covariance Σ matrix of return data r.

w Capital allocation weight vector.

eta significanlt level

Value

portfolio value at risk on the NTS market model

qnts qnts

Description

qnts calculates quantile of the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it calculates quantile of the standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it calculates quantile of NTS profess. That is it finds x such that u = P((X(t+s) - X(s)) < x), where X is the NTS process generated by the NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$.

Usage

```
qnts(u, ntsparam)
```

rmnts 27

Arguments

ntsparam A vector of the NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For the NTS process case it is

a vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of standard NTS parameters

 (α, θ, β) .

vector of probabilities.

Value

The quantile function of the NTS distribution

Examples

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
\#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
```

rmnts

rmnts

Description

 $\mbox{{\sc rmnts}}$ generates random vector following the n dimensional NTS distribution.

```
r = \mu + diag(\sigma)X,
```

where

X follows $stdNTS_n(\alpha, \theta, \beta, \Sigma)$

28 rnts

Usage

```
rmnts(strPMNTS, numofsample, rW = NaN, rTau = NaN)
```

number of samples.

Arguments

Structure of parameters for the n-dimensional NTS distribution.
$$\begin{split} & \mathsf{strPMNTS\$ndim}: \mathsf{dimension} \\ & \mathsf{strPMNTS\$mdim}: \mathsf{dimension} \\ & \mathsf{strPMNTS\$mu}: \mu \; \mathsf{mean} \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{input} \; \mathsf{data}. \\ & \mathsf{strPMNTS\$sigma}: \; \sigma \; \mathsf{standard} \; \mathsf{deviation} \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{input} \; \mathsf{data}. \\ & \mathsf{strPMNTS\$alpha}: \; \alpha \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (\mathsf{X}). \\ & \mathsf{strPMNTS\$theta}: \; \theta \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (\mathsf{X}). \\ & \mathsf{strPMNTS\$beta}: \; \beta \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (\mathsf{X}). \\ & \mathsf{strPMNTS\$Rho}: \; \rho \; \mathsf{matrix} \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (\mathsf{X}). \\ \end{aligned}$$

Value

Simulated NTS random vectors

References

numofsample

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

rnts

rnts

Description

rnts generates random numbers following NTS distribution with parameters $(\alpha, \theta, \beta, \gamma, \mu)$. If only three parameters are given, it generates random numbers of standard NTS distribution with parameter (α, θ, β) If a time parameter value is given, it generates random numbers of increments of NTS profess for time interval t.

Usage

```
rnts(n, ntsparam)
```

setPortfolioParam 29

Arguments

n number of random numbers to be generated. A vector of NTS parameters $(\alpha, \theta, \beta, \gamma, \mu)$. For NTS process case it is a vector of parameters $(\alpha, \theta, \beta, \gamma, \mu, t)$. A vector of standard NTS parameters (α, θ, β) .

Value

NTS random numbers

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

Examples

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu < - 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu < - 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
```

setPortfolioParam

setPortfolioParam

Description

Please use getPortNTSParam instead of setPortfolioParam.

Portfolio return with capital allocation weight is $R_p = \langle w, r \rangle$, which is a weighted sum of of elements in the N-dimensional NTS random vector. R_p becomes an 1-dimensional NTS random variable. setPortfolioParam find the parameters of R_p .

30 setPortfolioParam

Usage

```
\code{res <- setPortfolioParam(strPMNTS,w)}</pre>
```

Arguments

Structure of parameters for the n-dimensional NTS distribution.
$$\begin{split} & \mathsf{strPMNTS\$ndim}: \mathsf{dimension} \\ & \mathsf{strPMNTS\$mu}: \mu \; \mathsf{mean} \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{input} \; \mathsf{data}. \\ & \mathsf{strPMNTS\$sigma}: \; \sigma \; \mathsf{standard} \; \mathsf{deviation} \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{input} \; \mathsf{data}. \\ & \mathsf{strPMNTS\$sigma}: \; \alpha \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (X). \\ & \mathsf{strPMNTS\$alpha}: \; \alpha \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (X). \\ & \mathsf{strPMNTS\$theta}: \; \beta \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (X). \\ & \mathsf{strPMNTS\$Rho}: \; \Sigma \; \mathsf{matrix} \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (X). \\ & \mathsf{w} \; \; \mathsf{Capital} \; \mathsf{allocation} \; \mathsf{weight} \; \mathsf{vector}. \\ \end{split}$$

Value

```
R_p = \langle w, r \rangle = \mu + diag(\sigma)X, where
```

The weighted sum follows 1-dimensional NTS.

X follows $stdNTS_1(\alpha, \theta, \beta, 1)$.

Hence we obtain

 $\mathsf{res\$mu}: \mu \ \mathsf{mean} \ \mathsf{of} \ R_p.$

res\$sigma : σ standard deviation of R_p .

 $\label{eq:alpha:alpha:alpha:alpha:alpha:alpha} \alpha \mbox{ of } X.$ $\mbox{res\$theta:} \ \beta \ X.$

References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

setPortfolioParam 31

res <- setPortfolioParam(strPMNTS,w)</pre>

Index

```
chf_NTS, 2
chf_stdNTS, 3
copulaStdNTS, 4
cvarGauss, 4
cvarnts, 5
dBeta, 6
dcopulaStdNTS, 6
dCVaR_numint, 6
dinvCdf_stdNTS, 7
dmnts, 7
dnts, 8
fitmnts, 9
fitnts, 11
{\it fitstdnts}, {\color{red} 12}
gensamplepathnts, 13
getPortNTSParam, 14
{\tt importantSamplining}, {\tt 16}
ipnts, 16
mctCVaRmnts, 17
mctCVaRnts, 18
mctStdDev, 19
mctVaRmnts, 19
mctVaRnts, 21
moments_NTS, 21
moments_stdNTS, 22
pmnts, 23
pnts, 24
\verb|portfolioCVaRmnts|, 25|
portfolioVaRmnts, 26
qnts, 26
rmnts, 27
rnts, 28
setPortfolioParam, 29
```