

University of Engineering & Management, Kolkata

2nd Term Examination, January 2021

Semester: 1st Course: B.Tech(All)

Paper Name: Mathematics and Statistics - I

Paper Code: BSC103

Full Marks: 70 Time: 2 hours

Answer all the questions. Each question is of 10 marks.

- i) In the Mean value theorem f(b) f(a) = (b a)f'(c), determine c lying between 1. a and b, if f(x) = x(x-1)(x-2), a = 0 and $b = \frac{1}{2}$.
 - ii) Expand $\log_e x$ in powers of (x-1).

- If $(x) = \log(1+x)$, x > 0, using Maclaurin's theorem, show that for $0 < \theta < 1$, $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3(1+\theta x)^3}$. Deduce that $\log(1+x) < x - \frac{x^2}{2} + \frac{x^3}{3}$ for x > 0
- i) Find the values of a and b such that $\lim_{x\to 0} \frac{x(a+b\cos x)-c\sin x}{x^5} = 1$ 2.
 - ii) A wire of length 20 meters is bent so as to form a circular sector of maximum area. Find the radius of the circular sector.

OR

- Find the maximum value of x^3y^2 subject to the constraint x + y = 1, using the В. method of Lagrange's multiplier.
- **A.** i) Show that $\int_a^b (x-a)^3 (b-x)^2 dx = \frac{(b-a)^6}{60}$. ii) Evaluate $\int_{-\infty}^{\infty} 2021^{-x^2} dx$. 3.

- i) Find the area of the region bounded by the curve y = x(x a)(x b) and the x axis, where a and b are positive numbers with a < b.
 - ii) Find the volume of the solid obtained by revolving the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ about its axis of symmetry.
- **A.** i) Find $\int_0^\infty e^{-x^2} x^2 dx \times \int_0^\infty x^4 e^{-x^4} dx$ (if exists). 4.
 - **ii**) Show that : $\beta(m,n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$

i) Find the area bounded by $y^2 = x$ and its latus rectum. B.

ii) Find the volume of the solid obtained by revolving the cycloid $x = a(\theta + sin\theta)$, $y = a(1 + cos\theta)$ about its base.

5. A. i) If
$$f(x,y) = x^2 tan^{-1} \frac{y}{x} - y^2 tan^{-1} \frac{x}{y}$$
 prove that $f_{xy} = \frac{x^2 - y^2}{x^2 + y^2}$

ii) If $v = f(x^2 + 2yz, y^2 + 2zx)$, then prove that

$$(y^{2}-zx)\frac{\partial v}{\partial x}+(x^{2}-yz)\frac{\partial v}{\partial y}+(z^{2}-xy)\frac{\partial v}{\partial z}=0.$$

OR

B. i) If
$$f(x, y) = x$$
 and $g(x, y) = xy$ then find $\frac{\partial (f, g)}{\partial (x, y)}$.

ii) If
$$\theta = t^n e^{-\frac{r^2}{4t}}$$
, find what value of n will make $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$

6. A. i) Given $\vec{A} = (6xy + z^3)\hat{\imath} + (3x^2 - z)\hat{\jmath} + (3xz^2 - y)\hat{k}$ is irrotational. Find the scalar function ϕ such that $\vec{A} = \mathbf{grad}(\phi)$.

ii) If θ be the angle between the surfaces $xy^2z = 3x + z^2$ and $3x^2 - y^2 + 2z = 1$ at the point (1,-2,1), then find the value of θ .

OR

B. i) An incomplete frequency distribution is given below:

Height (inches)	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90-99	Total
No. of plants	2	12	15	?	18	?	9	4	90

It is known that the median height of the plant is 57.5 inches. Calculate the missing frequency.

ii) Find the standard deviation from the following distribution.

Weight (in gm)	0-5	5-10	10-15	15-20	20-25	25-30
No. of articles	10	7	5	6	3	11

- 7. A. i) Examine the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \cdots$
 - ii) Show that the series is conditionally convergent $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$.

OR

- ${f B.}$ i) Three cards are drawn at random from a pack of 52 cards. Find the probability that
 - (a) They are King, Queen, and Knave (b) All of them are aces.
 - **ii**) The chance that a doctor will diagnose a certain disease correctly is 60%. The chance that a patient will die under his treatment after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. A patient of the doctor who had the disease died. What is the chance that his disease was diagnosed correctly?
