1ET-DI 09.01.2019

Laboratorium z fizyki

Ćw. nr. 9 Zasady dynamiki Newtona dla ruchu obrotowego brył.

Wymagania do ćwiczenia:

1) Wielkości charakteryzujące kinematykę i dynamikę ruchu postępowego i obrotowego bryły sztywnej.

Bryła sztywna to ciało, w którym odległości między dowolnie obranymi elementami nie ulegają zmianie mimo działających na ciało sił zewnętrznych.

W ruchu postępowym bryły tor każdego jej punktu jest identyczny. W ruchu obrotowym poszczególne punkty poruszają się po okręgach o środkach leżących na jednej linii, zwanej osią obrotu. Poszczególne punkty obracającej się bryły mają różną wartości prędkości liniowej a taką samą wartość prędkości kątowej. Dla każdego punktu bryły można napisać związek: V=ω·r.

Prędkością kątową nazywamy wektor, którego wartość jest równa $\omega = \Delta \alpha/\Delta t$, kierunek pokrywa się z osią obrotu bryły, a zwrot wyznaczamy za pomocą reguły śruby prawoskrętnej. Bryłę sztywną można traktować jak układ sztywno połączonych bardzo małych elementów traktowanych jak punkty materialne. Każdy z tych punktów podczas obrotu bryły porusza się po okręgu. Suma iloczynów mas tych punktów i kwadratu odległości od osi obrotu to moment bezwładności bryły sztywnej.

2)Zasady dynamiki Newtona dla ruchu postępowego i obrotowego bryły sztywnej.

Znamy trzy zasady dynamiki Newtona dla ruchu postępowego i trzy dla ruchu obrotowego. Dla ruchu postępowego brzmią one następująco:

Pierwsza zasada dynamiki. Jeśli wypadkowa sił działających na ciało jest równa zeru, to nie może zmienić się jego prędkość, czyli nie może ono przyśpieszyć. Innymi słowy, jeśli ciało spoczywa, to pozostanie w spoczynku, a jeśli się porusza, to będzie się nadal poruszać z tą samą prędkością (to znaczy z prędkością *o tej samej wartości i kierunku*).

Druga zasada dynamiki. Siła wypadkowa działająca na ciało jest równa iloczynowi masy tego ciała i jego przyśpieszenia .

Trzecia zasada dynamiki. Gdy dwa ciała oddziaływują ze sobą, siły, jakimi działają one na siebie mają taką samą wartość bezwzględną i przeciwne kierunki.

Natomiast dla ruchu obrotowego brzmią one podobnie lecz są lekko przerobione:

Pierwsza zasada dynamiki. Jeśli moment siły działającej na bryłę sztywną wynosi zero, to bryła sztywna pozostaje w spoczynku lub wykonuje ruch obrotowy jednostajny

Druga zasada dynamiki. Moment siły działającej na bryłę sztywną jest równy pochodnej momentu pędu względem czasu.

Trzecia zasada dynamiki. Jeśli na bryłę sztywną A działa bryła sztywna B pewnym momentem siły to bryła B działa na bryłę A momentem BA odwrotnym do momentu AB.

Są to fundamentalne i jedne z najbardziej zdanych zasad w całej fizyce.

Tabelka

M	m	h	r	d	d^2	t	t ²	I_{c}	I±ΔI
[kg]	[kg]	[m]	[m]	[m]	$[m^2]$	[s]	$[s^2]$	[kgm ²]	[kgm ²]
0,193	0,135	0,083	0,4	0,1416	0,0201	1,394	1,9432	0,0028	0,0066
						1,370	1,8769		
						1,402	1,9656		
						1,367	1,8687		
						1,411	1,9909		
						1,360	1,8496		
						1,343	1,8036		
						1,371	1,8796		
						1,341	1,7983		
						1,399	1,9572		
				0,1616	0,0261	1,579	2,4932		0,0078
						1,587	2,5186		
						1,535	2,3562		
						1,572	2,4712		
						1,609	2,5589		
						1,597	2,5504		
						1,602	2,5664		
						1,568	2,4586		
						1,591	2,5313		
						1,610	2,5921		
				0,1816	0,0330	1,759	3,0941		0,0092
						1,752	3,0695		
						1,697	2,8798		
						1,784	3,1827		
						1,702	2,8798		
						1,699	2,8866		

		1,732	2,9998	
		1,702	2,8968	
		1,720	2,9584	
		1,793	3,2148	
0,2016	0,0406	1,822	3,3197	0,0107
		1,789	3,2005	
		1,803	3,2508	
		1,830	3,3489	
		1,837	3,3746	
		1,802	3,2472	
		1,798	3,2328	
		1,852	3,4299	
		1,830	3,3489	
		1,811	3,2797	
0,2216	0,0491	1,898	3,6024	0,0122
		1,934	3,7404	
		1,887	3,5608	
		1,917	3,6749	
		1,987	3,9482	
		1,902	3,6176	
		1,923	3,6979	
		1,941	3,7675	
		1,909	3,6443	
		1,927	3,7133	
0,2416	0,0584	2,029	4,1168	0,0139
		2,039	4,1575	
		2,026	4,1047	
		2,070	4,2849	
		2,122	4,5029	
		2.091	4,3723	
		2,062	4,2518	
		2,079	4,3222	
		2,111	4,4563	
		2,045	4,1820	
		1	1	

Przydatne wzory

$$I = I_c + Md^2$$

$$M = \frac{Amgr^2}{2h}$$

$$I_c = mr^2 \left(\frac{Bg}{2h} - 1\right) \log \cdot m^2$$

$$t^{2} = \frac{2h}{g} \left(1 + \frac{I_{C}}{mr^{2}} \right) + \frac{2Mh}{mgr^{2}} d^{2}$$

Wnioski:

W tym ćwiczeniu badaliśmy zasady dynamiki Newtona dla ruchu obrotowego. Dzięki 10 pomiarom dla każdego podpunktu zniwelowaliśmy bład pomiaru spowodowany niedokładnością maszyny lub innymi czynnikami. Każdy z pomiarów rózni sie od pozostałych kilkoma tysięcznymi sekundy co tym bardziej udowodniło zniwelowanie błędu pomiarowego.