Chainage avant avec des règles Datalog

Exercice 1. Chaînage avant

On considère la base de connaissances suivante :

Règles

R1: flat(x1,y1) \rightarrow sg(x1,y1)

R2: $up(x2,y2) \wedge sg(y2,z2) \wedge up(t2,z2) \rightarrow sg(x2,t2)$

• Faits (où a,b,c,d,e,f,g sont des constantes)

flat(a,b) flat(b,c) flat(a,c) up(d,a) up(d,b) up(e,c) up(f,d) up(g,e)

1) **Saturez** la base de faits avec les règles, en procédant **en largeur** (cf. algorithme FC du cours). A chaque étape, on ne considère que les **nouveaux** homomorphismes. On dit qu'une application de règle est **utile** si elle produit un fait qui n'appartient pas à la base de faits courante.

Etape	Règle applicable	Homomorphisme	Fait produit	Application utile?
n° étape	n° règle			oui/non

2)

- a. Comment reconnaît-on qu'un homomorphisme est nouveau?
- b. On dit qu'un prédicat est *intentionnel* s'il apparaît au moins une fois en tête de règle : ici, sg est un prédicat intentionnel, et c'est le seul (ceux qui n'apparaissent pas en tête de règle sont dits *extensionnels*). L'ensemble de règles ci-dessus a une particularité : le corps de chaque règle contient au plus un prédicat intentionnel. Un tel ensemble de règles est appelé *linéaire*. Comment exploiter le fait qu'un ensemble de règles soit linéaire pour ne calculer que les homomorphismes nouveaux à chaque étape de largeur ?
- 3) Soit la requête booléenne q() = {sg(x,y), up(y,z), flat(z,c)} où x, y et z sont des variables. La base de connaissances répond-elle positivement à q? Justifiez votre réponse en vous basant sur le mécanisme de *chaînage avant*.

Chaînage avant Datalog

Exercice 2. Graphe de dépendance des règles (complément au cours)

On dit qu'une règle R2 **dépend** d'une règle R1 si une application de R1 peut déclencher une nouvelle application de R2, c'est-à-dire s'il *existe* une base de faits F telle que l'application de R1 à F produit une base de faits F' sur laquelle R2 est applicable avec un *nouvel* homomorphisme. Cette définition ne nous donne pas un critère concret pour calculer la dépendance car il y a un nombre infini de bases de faits possibles.

Cet exercice a pour but d'aboutir à un critère concret que l'on peut calculer sur une base de règles indépendamment d'une base de faits particulière.

Un **graphe de dépendance des règles** a pour ensemble de sommets l'ensemble des règles. Il y a un arc de R1 à R2 si R2 dépend de R1 (« il est possible que R1 déclenche R2 »).

- 1) Comment peut-on exploiter le graphe de dépendance des règles à chaque étape du chaînage avant ?
- 2) Supposons que les règles ne comportent pas de constantes. Comment déterminer concrètement si une règle dépend d'une autre ? Montrez que votre critère permet de calculer la relation de dépendance.
- 3) En prenant la définition que vous avez donnée à la question 1, construire le graphe de dépendance des règles suivantes. Les quantificateurs universels sont implicites dans les règles. Les termes de la forme xi, yi et zi sont des variables ; UnionE et France sont des constantes. En italique, on donne une traduction "intuitive" des règles.

R1: Ville(x1) \land Pays(y1) \land FaitPartie(x1,y1) \land LieuObtentionPermis(z1,x1) \rightarrow PermisValable(z1,y1) "Si z1 obtient un permis (de conduire) dans une ville qui fait partie d'un certain pays, alors le permis de z1 est valable dans ce pays"

R2 : Pays(x2) \land FaitPartie(x2, UnionE) \land PermisValable (y2,x2) \rightarrow PermisValable (y2,France)

"Les permis valables dans un pays de l'Union Européenne sont valables en France"

R3 : PermisValalable(x3,y3) \rightarrow PeutConduire(x3,y3)

"Si on a un permis valable pour un certain lieu, on peut conduire dans ce lieu"

R4 : FaitPartie(x4,y4) \wedge FaitPartie (y4,z4) \rightarrow FaitPartie(x4,z4)

"La relation FaitPartie est transitive"

Analyser le graphe obtenu et affiner la définition de votre critère de dépendance.

4) Insérer dans le graphe les faits suivants vus comme des règles à corps vide, et illustrer l'intérêt du graphe de dépendance des règles en l'utilisant dans le mécanisme de chaînage avant.

F1 : Ville(Copenhague) F2 : Pays(Danemark)

F3: FaitPartie(Copenhague, Danemark)
F4: FaitPartie(Danemark, UnionE)

F5 : LieuObtentionPermis(Ingrid, Copenhague) F6 : Pays(France)

F7 : FaitPartie(France, UnionE)

Chaînage avant Datalog 2