

Hyperbolic Kernel Convolution: A Generic Framework

Eric Qu*, Lige Zhang*, Habib Debaya*, Yue Wu*, Dongmian Zou*
*: University of California, Berkeley #: Duke Kunshan University

Motivation

 Most generalizations of graph convolution in the hyperbolic space rely only on the topology of the underlying graph, neglecting the rich geometric structures in the hyperbolic space itself.

Hyperbolic Geometry

- Hyperbolic geometry is a special kind of Riemannian geometry with a constant negative curvature.
- For x, y ∈ Hⁿ, d_H(x, y) is the length of the geodesic between them, also called hyperbolic distance.
- For $x \in \mathbb{H}^n$, the tangent space at x is $T_x \mathbb{H}^n$.
- For x,y ∈ Hⁿ, and v ∈ T_xHⁿ, exp_x(v):T_xHⁿ → Hⁿ is the exponential map of v at x. The logarithmic map is denoted by log_x: Hⁿ → T_xHⁿ, where log_x(exp_x(v)) = v.
- For two points x, y ∈ ℍⁿ, we use PT_{x→y} to denote the parallel transport map which "transports" a vector from T_xℍⁿ to T_yℍⁿ along the geodesic from x to y.

Hyperbolic Kernel Points

- To construct an HKConv layer, the first step is to fix K kernel points {x̄_k}_{k=1}^K in the input space Hⁿ.
- The locations of kernel points are predetermined to ensure stable training.
- The kernel points can be regarded as located in near the hyperbolic origin o.
- Specifically, we minimize the following loss function with Riemannian gradient descent:

$$\mathcal{L}(\{\tilde{x}_k\}_{k=1}^K) = \sum_{k=1}^K \sum_{l \neq k} \frac{1}{d_{\mathcal{H}}(\tilde{x}_l, \tilde{x}_k)} + \sum_{k=1}^K d_{\mathcal{H}}(o, \tilde{x}_k).$$

Illustration of Kernel Points

Hyperbolic Kernel Convolution

Step 1. Transformation of relative input features

• For $x, y, u \in \mathbb{H}^n$, we define:

$$T_{x \to y}(u) := exp_y \left(PT_{x \to y} \left(log_x(u) \right) \right).$$

We denote "translation by x" via:

$$u \ominus x \coloneqq T_{x \to y}(u).$$

- For each x_i ∈ N(x), the translation (x_i ⊕ x) gives the relative input feature.
- The first step of HKConv is to extract features from translated input features via hyperbolic linear layers:

$$x_{ik} = HLinear_k(x_i \ominus x), k = 1, ..., K,$$

Step 2. Kernel Aggregation

 For each transformed feature x_{ik}, we take a "weighted average" with its associated kernel points by either:

$$x'_{i} = MEAN(\{x_{ik}\}_{k=1}^{K}, \{d_{\mathcal{H}}(x_{i} \ominus x, \tilde{x}_{k})\}_{k=1}^{K}),$$
or
$$x'_{i} = MEAN(\{x_{ik}\}_{k=1}^{K}, \{d_{\mathcal{H}}(x_{ik}, \tilde{x}_{k})\}_{k=1}^{K}).$$

Step 3 Neighbor Aggregation

The last step of HKConv is a neighbor aggregation:

$$x' = MEAN(\{x_i'\}_{k=1}^K, \{w_i\}_{k=1}^K).$$

Illustration of HKConv

Properties

· Local Translation Invariance:

$$HKConv\left(T_{x\to y}(x);T_{x\to y}(\mathcal{N}(x))\right) = HKConv(x;\mathcal{N}(x)).$$

· Expressivity:

 $HKConv^{(1)}(x) = HKConv^{(0)}(x).$

Experiments

	Cornell	Texas	Wisconsin	Chameleon	Squirrel	Actor
# of Nodes	183	183	251	2,277	5,201	7,600
# of Edges	280	295	466	31,421	198,493	26,752
# of Features	1,703	1,703	1,703	2,325	2,089	931
# of Classes	5	5	5	5	5	5
Hyperbolicity	$\delta = 1$	$\delta = 1$	$\delta = 1$	$\delta = 1.5$	$\delta = 1.5$	$\delta = 1.5$
MLP	81.89±6.40	80.81±4.75	85.29±3.31	46.21±2.99	28.77±1.56	36.53±0.70
GCN [27]	60.54±5.30	55.14±5.16	51.76±3.06	64.82±2.24	53.43±2.01	27.32±1.10
GAT [39]	61.89±5.05	52.16±6.63	49.41±4.09	60.26±2.50	40.72±1.55	27.44±0.89
GraphSAGE [40]	75.95±5.01	82.43±6.14	81.18±5.56	58.73±1.68	41.61±0.74	34.23±0.99
GCNII [41]	77.86±3.79	77.57±3.83	80.39±3.40	63.86±3.04	38.47±1.58	37.44±1.30
Geom-GCN [42]	60.54±3.67	66.76±2.72	64.51±3.66	60.00±2.81	38.15±0.92	31.59±1.15
WRGAT [43]	81.62±3.90	83.62±5.50	86.98±3.78	65.24±0.87	48.85±0.78	36.53±0.77
LINKX [44]	77.84±5.81	74.60±8.37	75.49±5.72	68.42±1.38	61.81±1.80	36.10±1.55
GloGNN [45]	83.51±4.26	84.32±4.15	87.06±3.53	69.78±2.42	57.54±1.39	37.35±1.30
GloGNN++ [45]	85.95±5.10	84.05±4.90	88.04±3.22	71.21±1.84	57.88±1.76	37.70±1.40
HGCN [6]	79.43±0.47	70.13±0.32	83.26±0.51	NaN	62.31±0.57	36.58±0.79
H2H-GCN [15]	75.52±0.82	71.47±0.63	88.71±0.82	78.71±0.96	66.85±0.72	42.73±0.86
HyboNet [8]	77.27±0.71	72.23±0.94	86.52±0.51	74.91±0.58	69.07±0.64	45.74±0.82
WLHN [46]	77.29±4.66	75.41±5.98	78.62±3.44	-	55.76±0.92	36.42±1.42
Ours (self-correlation (10))						
SKN	87.12±2.62	93.94±6.56	92.59±1.85	82.60±1.14	73.05 ± 1.80	66.42±1.42
LKN	75.76±3.21	92.42±3.47	78.40 ± 1.07	77.53±2.75	57.59±7.41	50.66±4.91
BKN	78.03±3.47	77.27±3.94	82.09±2.83	68.25±3.32	63.25±1.50	65.46±2.54
BKN-isoAgg	93.94±1.31	85.61±6.94	90.74±4.90	72.59 ± 2.49	66.59±0.96	65.12±0.52
Ours (point-correlation (9))						
SKN	86.36±2.62	92.42±7.31	91.36±2.14	83.33±0.73	72.44±1.70	66.12±1.92
LKN	76.52±3.47	93.18±3.93	77.78±3.20	77.66±2.71	64.61±1.65	44.45±3.75
BKN	63.64±2.27	63.64±2.27	61.11±5.55	56.41±10.43	53.02±1.93	45.51±3.67
BKN-isoAgg	76.52±1.31	83.33±4.73	74.07±1.85	64.90±2.21	63.78±0.56	62.21±1.60
Node also iffection possits (shows) Each adding Visualization (below)						

Node electification results (shove) Embedding Visualization (below

