

EL-2207 ELEMENTOS ACTIVOS

ITCR - Elementos Activos

Efecto de Temperatura en Semiconductores Extrínsecos

Energías de ionización en Silicio

Fósforo 0.045eV Arsénico 0.05eV Boron 0.045eV Aluminio 0.06eV

- Semiconductor extrínseco se comporta como intrínseco a altas temperaturas
 - $E_F \rightarrow E_{Fi}$, n_i aumenta con T, σ aumenta con T

Mecanismos de conducción

- Arrastre
 - Campo eléctrico
- Difusión
 - Diferencia de densidades

Arrastre

- Movimiento aleatorio de electrones
 - Velocidad: vth=10e7 cm/s
 - Colisiones cada: 0.1ps
 - Distancia entre colisiones: $\lambda=10$ nm (camino libre promedio)
 - Movimiento neto **NULO**

Arrastre

- Aplicación de E
 - Desplazamiento neto
- Velocidades resultantes

$$v_n^a = -\mu_n E$$

$$v_h^a = +\mu_p E$$

Movilidad

ITCR - Elementos Activos

Saturación por velocidad

Cálculo corriente de arrastre

$$\Delta N_p = p\Delta V$$

$$\Delta Q = q\Delta N_p = qp\Delta V$$

$$j_p^a = \frac{\Delta Q}{A\Delta t} = \frac{qpAv_p^a \Delta t}{A\Delta t} = qpv_p^a$$

$$j_p^a = qp\mu_p E$$

Cálculo corriente de arrastre

$$\Delta Q = -qn\Delta V$$

$$j_n^a = \frac{\Delta Q}{A\Delta t} = \frac{-qnAv_n^a \Delta t}{A\Delta t} = -qnv_n^a$$

$$j_n^a = qn\mu_n E$$

Difusión

 Provocado por diferentes densidades de concentración

Análogo a la difusión de tinta en agua

Difusión

- Dos volúmenes con densidades Pi, Pd
- Longitud λ
- Tiempo τ_c

 Mitad de los portadores cruzan al otro lado