

ECUACIONES DIFERENCIALES Y EN DIFERENCIAS TALLER 7

Tema: Ecuaciones Lineales Homogéneas de orden superior Objetivos:

- Identificar ecuaciones diferenciales Homogéneas de orden superior.
- Determinar soluciones generales de ecuaciones diferenciales homogéneas de orden superior.
- Obtener a partir de una solución general otra solución a la ecuación diferencial.

Una ecuación diferencial lineal de orden n de la forma

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

Se llama homogénea, mientras que una ecuación

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Donde g(x) no es idénticamente cero, recibe el nombre de ecuación diferencial lineal no homogénea, por ejemplo 2y'' + 3y' - 5y = 0 es una ecuación diferencial homogénea lineal de segundo orden, mientras que

 $x^3y^{(3)} + 6y' + 10y = e^x$ es una ecuación diferencial y de tercer orden.

Sean y_{1+} $y_{2+\ldots+y_n}$ un conjunto fundamental de soluciones de la ecuación diferencial lineal homogénea de orden n de la forma $a_n(x)\frac{d^ny}{dx^n}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdots+a_1(x)\frac{dy}{dx}+a_0(x)y=0$, en un intervalo I. Entonces la solución general de la ecuación de la ecuación en el intervalo es $y=c_1y_1(x)+c_2y_2(x)+\ldots+c_ny_n(x)$ donde $c_{i,}$ $i:1,2,\ldots,n$ son constantes arbitrarias.

- 1. Si $y=c_1+c_2x^2$ es una familia de soluciones de la ecuación diferencial xy''-y'=0 en el intervalo $(-\infty,\infty)$ muestre que las constantes c_1 y c_2 no se pueden determinar, de tal manera que un miembro de la familia satisfaga las condiciones y(0)=0,y'(0)=1.
- 2. Determine a dos miembros de la familia de soluciones en el problema anterior que satisfaga las condiciones iniciales y(0) = 0, y'(0) = 0.
- 3. Sea n = 1,2,..., explique cómo las ecuaciones $D^n x^{n-1} = 0$ y $D^n x^n = n!$ se pueden usar para determinar las soluciones generales de las diferenciales.
 - a. y'' = 0
 - b. $v^{(n)} = 0$
 - c. $v^{(3)} = 6$
 - d. $y^{(4)} = 24$
 - e. v'' = 2
- 4. Suponga que $y_1 = e^x$; $y_2 = e^{-x}$ son dos soluciones de una ecuación diferencial lineal homogénea. Explique por qué $y_3 = coshx$; $y_4 = senhx$ también son soluciones de la ecuación.