Máster Universitario en Sistemas Espaciales

PROPULSIÓN ESPACIAL Y LANZADORES

Examen parcial (Temas 1-4)

4 noviembre 2019

NOMBRE Y APELLIDOS:

(Tiempo 60 minutos)

- 1. El motor cohete de la figura está en posición horizontal sujeto en un banco de pruebas y en funcionamiento estacionario. Considerando el volumen de control de la figura, que está delimitado por las paredes del vehículo y por la sección de salida, se pide:
 - a) La expresión del empuje a partir de las ecuaciones de las ecuaciones de continuidad y de cantidad de movimiento considerando las hipótesis aplicadas a los motores cohete. (2 puntos)
 - b) La lista de todas las hipótesis aplicadas. (0.5 puntos)

Superficie: $A = A_{ext} + A_{g}$

/olumen: $\Omega = \Omega_{\rm f} + \Omega_{\rm p}$

Masa: $M = M_f + M_p$

Ecuación de continuidad:

$$\frac{d}{dt} \int_{\Omega} \rho d\Omega + \int_{A} \rho \left(\overrightarrow{V_S} \cdot \overrightarrow{n} \right) dA = 0$$

Ecuación de cantidad de movimiento:

$$\frac{d}{dt} \int_{\Omega} \rho \vec{V} d\Omega + \int_{A} \rho \left(\vec{V}_{0} + \vec{V}_{r} \right) \left(\vec{V}_{r} \cdot \vec{n} \right) dA = \int_{A} \left[-\left(p - p_{amb} \right) \vec{I} + \vec{\tau}' \right] \vec{n} dA + \vec{F}_{g} + \vec{F}_{ext}$$

	(2.5 puntos)
	las diferencias con la configuración del campo fluido para el caso de toberas convergentes-divergentes "reales".
	configuración del campo fluido en cada uno de los regímenes de funcionamiento ideales. Comentar brevemente
	presiones P/P_c frente a la longitud recorrida a lo largo del eje de la tobera, y dibujar esquemáticamente la
2.	Regímenes de funcionamiento de la tobera convergente-divergente ideal. Incluir el diagrama de la relación de

3. Considerando el diseño de una primera etapa de lanzador (vuelo atmosférico) que opera según un ciclo *generador de gas* como el esquematizado en la figura (considérese, por simplicidad, el caso de un motor *mono-propulsante*, como idealización del caso real), describir detalladamente el proceso de selección de la presión de cámara, explicando la existencia o no de un óptimo y planteando el desarrollo teórico de las ecuaciones (indique claramente las hipótesis realizadas para simplificar dichas expresiones) que permitirían calcularlo. (2.5 puntos)

4.	Tipos de propulsantes sólidos según el tipo de mezcla: Describe cada uno de los tipos de propulsantes sólidos de motores cohete, indicando las características de cada categoría y el tipo y la función de las sustancias. Indica además en cada tipo algunos ejemplos de sustancias y su función. (2.5 puntos)