Homework 1

Problem 1: (Asymptotic Growth) All the unstated logs are in base 2.

 $n2^{n}$, nlog(n), n!, n, n^{100} , 2^{n} , log(n), log(n!), (log(n))!, $2^{2^{n}}$.

```
• g_1 = log(n)
```

- $g_2=n$
- $g_3 = \log(n!)$
- $g_4=n\log(n)$
- $g_5=n^{100}$
- $g_6 = (\log(n))!$
- g₇=2ⁿ
- $g_8 = n2^n$
- $g_9 = n!$
- $g_{10}=2^{2^n}$

$$g_1 = O(g_2), g_2 = O(g_3), ..., g_9 = O(g_{10})$$

Problem 2: (Recurrences) All the unstated logs are in base 2.

- (a) $T(n) = 2T(n/2) + n^3$ solution by master theorem,
 - \circ a=2, b=2;
 - $n^{\log_b a} = n$, $f(n) = n^3$
 - If; $f(n) = \Omega(n^{\epsilon})$ then $\epsilon = 3$ and $2(n/2)^3 \le cn^3$ for $c = \frac{1}{4}$;
 - $T(n) = \Theta(n^3)$ (case 3)
- **(b)** $T(n) = 7T(n/2) + n^2$ solution by master theorem,
 - \circ a=7, b=2;
 - $n^{\log_b a} = n^{\log_7}$, $f(n) = n^2$
 - If; $f(n) = O(n^{2 + \log 3 \varepsilon})$ then $\varepsilon = \log 3$;
 - $T(n) = \Theta(n^{\log 7})$ (case 1)
- (c) T(n) = 2T(n/4) + n solution by master theorem,
 - \circ a=2, b=4;
 - $n^{\log_b a} = n^{\log_4 2}, f(n) = n^{1/2}$
 - If; $f(n) = \Theta(n^{1/2} \log^{k+1} n)$ then k=0;
 - $T(n) = \Theta(n^{1/2} \log n)$ (case 2)
- (d) T(n)=T(n-1) + n solution by substitution,
 - With an educated guess, T(n-1) is iterates n times and in each iteration it's computational complexity is n;
 - Guess = $O(n^2)$, assume that $T(k) \le ck^2$ for k<n;
 - Prove; $T(n) \le cn^2$ solution by induction;
 - T(n)=T(n-1)+n
 - $\leq c(n-1)^2 + n = c(n^2 2n + 1) + n = cn^2 (c(2n-1) n);$
 - $\circ \le cn^2$ when, $(2n-1)c-n \ge 0$ or $(2c-1)n-c \ge 0$; $c \ge 1$ and $n \ge 1$
 - $T(n) = O(n^2)$

Problem 3: (Binary- Search Python) All the unstated logs are in base 2.

```
def binarySearch(alist,item):
    first = 0
                                    def binarySearch(alist,item):
    last = len(alist)-1
                                       if len(alist) == 0:
    found = False
                                           return False
                                       else:
    while first<=last and not found:
      midpoint = (first + last)/2
                                         midpoint = len(alist)/2
if alist[midpoint] == item:
      if alist[midpoint] == item:
       found = True
                                             return True
      else:
                                           else:
        if item < alist[midpoint]:</pre>
                                             if item<alist[midpoint]:
          last = midpoint-1
                                                return binarySearch(alist[:midpoint],item)
        else:
                                             else:
          first = midpoint+1
                                                 return binarySearch(alist[midpoint+1:],item)
    return found
```

Figure 1: Iterative binary search

Figure 2: Recursive binary search

- (a)
 - o (i)
- By "midpoint = (first + last)/2" statement, function reduces length of the list to half in each iteration, because of that situation upper bound of the function is **O(logn)**.
- In the worst case (item doesn't exist inside the list), asymptotic running time of the algorithm is **O(logn)**.
- o (ii)
 - Recurrence is T(n/2) + n because,

```
else:
   if item<alist[midpoint]:
      return binarySearch(alist[:midpoint],item)
   else:
      return binarySearch(alist[midpoint+1:],item)</pre>
```

If and else part cause "T(n/2)" and copy operation by "alist[:midpoint]" cause to "n". Solution by master theorem,

- a=1, b=2;
- $n \log_b a = n \log_1 2$, f(n) = n dominates. o T(n) = O(n) (case 3)