202C HW1

John Friedman

April 5, 2024

Question 1: In this question, we consider a 4-country version of the Armington model. Consider the following parameter values: $\sigma = 3$, $a_{i,j} = 2$ for all i = j, $a_{i,j} = 1$ for all $i \neq j$, $L_1 = 2$, $L_2 = L_3 = L_4 = 1$, $A_1 = A_2 = A_3 = A_4 = 0.6$, and trade cost $\tau_{i,j}$ corresponds to the element i,j in the following matrix:

$$T = \begin{pmatrix} 1 & 1.1 & 1.2 & 1.3 \\ 1.3 & 1 & 1.3 & 1.4 \\ 1.2 & 1.2 & 1 & 1.1 \\ 1.1 & 1.1 & 1.1 & 1 \end{pmatrix}$$

1. Solve for equilibrium wages in countries 2, 3 and 4 relative to country 1.

Solution:

- 1. We will use the good of country 1 as the numeraire $(p_1 = 1)$ Since $p_i = \frac{w_i}{A_i} \implies 1 =$ $\frac{w_1}{0.6} \implies w_1 = 0.6$
- 2. The excess demand function of the Armington Model is:

$$Z_{i}(w) = \{ \sum_{j \in S} \left(\frac{a_{ij} \tau_{ij}^{1-\sigma} \left(\frac{w_{i}}{A_{i}}\right)^{1-\sigma}}{\sum_{k \in S} a_{kj} \tau_{kj}^{1-\sigma} \left(\frac{w_{k}}{A_{k}}\right)^{1-\sigma}} \right) \frac{w_{j} L_{j}}{w_{i}} \} - L_{i}$$

Note that I have moved $\frac{1}{w_i}$ outside the sum for simplicity.

3. We solve by guessing a vector of wages, and iterating until the excess demand function is

TODO

- 2. Solve for bilateral trade shares, λ_{ij} for i = 1, 2, 3, 4 and j = 1, 2, 3, 4
- 3. Consider (only in this question) that country 2's productivity increases by a factor of 2, from $A_2 = 0.6$ to $A'_2 = 1.2$, while the others remain unchanged.
 - a) What's the change in welfare for country 2 from the productivity shock?
 - b) What's the change in welfare for country 2 from the productivity shock under autarky? (hint: you simply need to use an equation from the lecture and no need to solve the model)

Solution: From Sunny's first section, we know that

$$W_i=\lambda_{ii}^{\frac{1}{1-\sigma}}\alpha_{ii}^{\frac{1}{\sigma-1}}A_i$$
 The change in welfare is:

$$\frac{W_{i}^{new}}{W_{i}^{old}} = \frac{\lambda_{ii}^{\frac{1}{1-\sigma}} \alpha_{ii}^{\frac{1}{\sigma-1}} A_{i}'}{\lambda_{ii}^{\frac{1}{1-\sigma}} \alpha_{ii}^{\frac{1}{\sigma-1}} A_{i}} = \frac{A_{i}'}{A_{i}} = \frac{1.2}{0.6} = 2$$

1

c) Provide intuition for the difference in your answers in (a) and (b)

4.

$$T = \begin{pmatrix} 1 & 1 & 1.2 & 1.2 \\ 1 & 1 & 1.2 & 1.2 \\ 1 & 1.2 & 1 & 1.3 \\ 1 & 1.2 & 1.2 & 1 \end{pmatrix}$$

- 1. Solve for equilibrium wages in countries 2, 3 and 4 relative to country 1.
- 2. Solve for bilateral trade shares, λ_{ij} for i=1,2,3,4 and j=1,2,3,4
- 5. Solve for the change in wage in each country (relative to country 1's wage) using the system in changes discussed in Section 5 in the Lecture Notes. Verify that you get the same result as in 4. What is the advantage of solving the system in changes rather than in levels (two times)?

Sol	nti	on	: