Part One:

Automata and Languages

Regular Languages

Recall

- An alphabet Σ is a finite, non-empty set of abstract symbols.
 - **Example**: $\Sigma = \{0,1\}$
- A string over an alphabet is a finite sequence of symbols from that alphabet
 - **Example**: If $\Sigma = \{0,1\} \rightarrow 01001$ is a string over Σ .
- Let Σ be an alphabet. A language over Σ is a subset, L, of Σ^* .
 - **Example**: $L = \{a, bb, aba\}$ is a language over $\{a, b\}^*$.

Introduction

- The goal of the computation theory is to determine the power and limits of computation.
- It is necessary to define precisely
 - what constitutes a model of computation - - - -
 - as well as what constitutes a computational problem. _ \frac{1}{4}
- This is the purpose of automata theory.

Introduction (cont.)

The Church-Turing Thesis (an open conjecture)

- conjectures that no model of computation that is physically realizable is more powerful than the Turing Machine.
- In other words, the Church-Turing thesis conjectures that any problem that can be solved via computational means, can be solved by a Turing Machine.

Chapter 1 - Outline

1.1Finite Automata

Formal definition of a finite automaton

Examples of finite automata

Formal definition of computation

Designing finite automata

The regular operations

1.2 Nondeterminism

Formal definition of a nondeterministic finite automaton

Equivalence of NFAs and DFAs

Closure under the regular operations

1.3 Regular Expressions

Formal definition of a regular expression

Equivalence with finite automata

1.4 Nonregular Languages

The pumping lemma for regular languages

Finite Automata (Finite State Machin – F.S.M)

- The **simplest** model of computation.
- with an extremely limited amount of memory.
 - Finite and usually quite small
 - but enough for many applications.
- The word automata (the plural of automaton) comes from the Greek word αὐτόματα, which means "self-acting". (Wikipedia)
- Examples: small computers or controller for
 - an automatic door
 - a vending machine
 - an elevator
 - various household appliances such as dishwashers and electronic thermostats
 - parts of digital watches and calculators
 - Various digital controllers in industrial machines

Finite Automata (Finite State Machin – F.S.M)

• Example: Finite state machine of ECU controller in the ABS system

Questions

How to describe a finite state automaton?

- Elements:
 - States (nodes)
 - Transitions (edges)
 - input alphabet

- Elements:
 - States (nodes):
 - set of states
 - starting state (initial state)
 - unique
 - indicated by the arrow pointing at it from nowhere
 - accepting (final) states
 - indicated by a double circle
 - may be more than one
 - Transitions (edges)
 - input alphabet

- Elements:
 - States (nodes):
 - Transitions (edges):
 - the **directed arrows** going from one state to another state
 - the rules for moving
 - Transition $\delta(A,1) = B$ means if the current state is A and input is 1, then the state will be changed to state B.
 - $\delta: (Q \times \Sigma) \to Q$
 - If $\delta(E,0) = F$ and $\delta(E,1) = F$, then the directed arrow from E to F can labeled as "0,1".
 - input alphabet

- Elements:
 - States (nodes):
 - Transitions (edges):
 - input alphabet
 - The symbols used for labeling the transitions
 - $\Sigma = \{0, 1\}$

- Elements:
 - States (nodes):
 - Transitions (edges):
 - input alphabet

$$M = (\{q_1, q_2, q_3\}, \{0,1\}, \delta, q_1, \{q_2\})$$

language of machine

- Describing a finite automaton by state diagram is not possible in some cases.
 occur when
 - the diagram would be too big to draw or
 - the description depends on some unspecified parameter.

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

1. Q is a finite set called the *states*, $\rightarrow \{q_0, q_F\}$

- 1. Q is a finite set called the *states*, $\rightarrow \{q_0, q_F\}$
- 2. Σ is a finite set called the *alphabet*, \rightarrow {0, 1}

- **1.** Q is a finite set called the *states*, $\rightarrow \{q_0, q_F\}$
- 2. Σ is a finite set called the *alphabet*, \rightarrow {0, 1}
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,

- 1. Q is a finite set called the *states*, $\rightarrow \{q_0, q_F\}$
- 2. Σ is a finite set called the *alphabet*, \rightarrow {0, 1}
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and \rightarrow Unique (q_0)

- 1. Q is a finite set called the *states*, $\rightarrow \{q_0, q_F\}$
- 2. Σ is a finite set called the *alphabet*, \rightarrow {0, 1}
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and \rightarrow Unique (q_0)
- 5. $F \subseteq Q$ is the set of accept states. $\rightarrow \geq 0$ state $\rightarrow \{q_F\}$

Example 2:

State diagram of the finite automaton M1

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the set of accept rtates.²

We can describe M_1 formally by writing $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

We can describe M_1 formally by writing $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

We can describe M_1 formally by writing $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

We can describe M_1 formally by writing $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2 ,

We can describe M_1 formally by writing $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2 ,

4. q_1 is the start state, and

We can describe M_1 formally by writing $M_1 = (Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is described as

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2 ,

4. q_1 is the start state, and

5.
$$F = \{q_2\}.$$

Input	1	1	0	1	
State	q_1				

Input	1	1	0	1	
State	q_1	q_2			

Input	1	1	0	1	
State	q_1	q_2	q_2		

Input	1	1	0	1	
State	q_1	q_2	q_2	q_3	

Input	1	1	0	1	
State	q_1	q_2	q_2	q_3	q_2
					Accept

- M_1 Accepts w= 1101,
 - because M_1 is in an accept state, q_2 , at the end of the input.

- By experimenting a variety of input strings reveals that it accepts
 - the strings1,01,11,and0101010101. (any string that **ends with a 1**)
 - The strings100,0100,110000,and0101000000. (any string that **ends** with an even number of 0s following the last 1.
 - It rejects other strings, such as 0,10,101000.

- **Conclusion 1**: Finite state machine can **recognize** (accept) strings.
- Conclusion 2: Finite state machine can generate a strings.
- Question: What is the set of the strings that a particular FSM can generate?