

MiNi SY-04 立式注射泵使用说明书

南京润泽流体控制设备有限公司

『流体 NANJING RUNZE FLUID CONTROL EQUIPMENT CO.LTD

目录

第1	章	概述	0 3
1	. 1	公司介绍	03
1	. 2	执行标准	03
第 2	章	主要技术及功能	04
2	2. 1	产品概述	04
		2.1.1 命名规则	05
		2.1.2 注射泵结构及尺寸	05
		2.1.3 注射泵基本外形	06
		2.1.4 接口典型应用举例说明	10
2	2. 2	注射泵的基本参数	11
2	2. 3	端口定义	13
第3	章	注射泵控制代码说明	14
3	3. 1	概述	14
3	3. 2	代码说明	14
		3. 2. 1 命令列表	14
		3. 2. 2 控制命令格式	13
		3. 2. 3 命令格式说明	16
3	3. 3	操作步骤举例说明	17
第4	章	调试工具使用说明	25
4	1. 1	调试工具	25
		4.1.1 RS232 调试工具说明	25
		4.1.2 RS485 调试工具说明	27
		4.1.3 CAN 总线调试工具说明	31
Δ	1 2	简易故障排杏	33

非常感谢您选择了我们的产品,使用之前请仔细 阅读并妥善保管本说明书

第 1 章 概述

1.1 公司介绍

南京润泽流体控制设备有限公司是一家集研发、生产和销售为一体的高科技企业。专业从事蠕动泵、实验室注射泵、实验室陶瓷泵、实验室切换阀、全自动工业切换阀、工业注射泵、气密性进样器、高压二通/三通阀、灌装系统等标准产品的研发,还可以根据客户的多元化需求设计、开发 0EM 配套产品。

我们高度关注产品及服务的质量,持之以恒的为生物制药、医疗器械、工业自动化、环境 监测和实验室等领域提供产品和服务。在流体技术的精度、品质、易用性等方向持续投入, 致力于提供更精密可靠的产品和解决方案。

1.2 执行标准

装置中的所有电器元件均符合相应的国家标准或行业标准,并严格执行下 列标准:

GB/T 4942. 2-1993 低压电器外壳防护等级

GB 6162-1985 静态继电保护装置的电气抗干扰试验

GB 11463-1989 电子测量仪器可靠性试验

......

第 2 章 主要技术及功能

2.1 产品概述

产品的外形如上图 1 所示,称为立式注射泵,有 5m1、10m1、20m1 三种规格,根据有 无驱动器分为含驱动系列和不含驱动系列。

主要用途:主要在生物实验室使用,控制器、执行单元为分体结构,执行单元有夹持机构。立式注射泵精密、小巧、结构紧凑、易于安装、操作便捷,并且立式安装结构可方便地与显微操作仪、脑立体定位仪等生物仪器配套使用,因此广泛应用于各种生物实验领域。

2.1.1 命名规则

型号参数如下:

举例: 5ml 0.9 度步进电机单孔内螺纹含驱动注射泵,命名为: ZSB-LS-0.9-1-5-1-Q

2.1.2 注射泵结构及尺寸如下图

2.1.3 注射泵基本外形

a. 无驱动立式注射泵外形如图 2

图 2

无驱动控制器的立式注射泵,专用 2 只日本原装进口的 OMRON 光电传感器 (型号: EE-SX95-R),安装 2 只光电传感器分别控制上限位和下限位,可以防止注射泵活塞上下运动时撞坏玻璃管或注射泵泵头;光电传感器调节方法:转动电机,使活塞到达上止点位置,移动上面的光耦,在光耦检测到信号时,锁紧固定螺丝。下面的光耦安装保持在最低端位置锁紧。

注意:调节过程中应使用低转速,防止活塞挤压到上端。

b. 光电传感器

图 4

C. 42 步进电机说明书如下图

6. 信頼性 Reliability

下記条件で試験後、2項の電気的特性、3項の機械的特性を満足するものとする。

The product to be examined in the following condition and satisfy 2.Electrical characteristics and 3.Mechanical characteristics.

No.	試験項目 Item	試験条件 Test condition	参考規格 Reference standard
1	低温放置 Cold (耐寒性)	温度 Temperature: -40 ℃ ±3 ℃ 試験時間 Test time:96 h	JIS C 60068-2-1
2	高温放置 Dry heat (耐熱性)	温度 Temperature: 85 °C ±2 °C 試験時間 Test time:96 h	JIS C 60068-2-2
3	高温高湿放置 Damp heat (耐湿性)	温 度 Temperature: 60 °C ±2 °C (40 °C ±2 °C) 湿 度 Humidity: 93 % +2 /−3 % 試験時間 Test time: 96 h	JIS C 60068-2-3
4	冷熱衝擊 Thermal shock (温度変化)	温度 Temperature:低温側 Cold −40 °C ±3 °C 1 h ↑ ↓ (温度移行時間:5 min 以内)	JIS C 60068-2-14
5	振動 Vibration	振動数範囲 Frequency range:10 Hz ~ 55 Hz ~ 10 Hz 振 幅 Amplitude:1.5 mm 掃引時間 Time coefficient:1 min 加振方向 Direction of excitation:X, Y, Z 時 間 Time:各方向 Each direction 2 h	JIS C 60068-2-6
6	衝撃 Shock	加速度 Acceleration: 981 m/s2 [100 G] 正弦半波 Half-sine作用時間 Interaction time: 6 ms 落下方向 Drop direction: ±X, ±Y, ±Z 落下回数 Number of drop: 各3回 Each 3 times	JIS C 60068-2-27

d. 含驱动器立式注射泵外形如图 3

图 3

实物外形结构(以10ml 为例)

图 4

如图 4 所示: 出口有两种方式: 单孔、双孔。

2.1.4 接口典型应用举例说明

1. 灌注运行步骤说明

- 1. 切换阀复位在 1 号孔和 10 号孔中间,两通阀打开,注射泵开始抽水(抽水的量大于一点储液环的量)
- 2. 注射泵抽水完成后,两通阀关闭,切换阀切换到2号废液口,注射泵复位排空。
- 3. 切换阀切换到 3 号口,注射泵把试剂从试剂瓶经过切换阀抽到储液环(根据试剂瓶到阀的长度自行计算多少容量)
- 4. 切换阀到 2号废液口,注射泵复位排空。
- 5. 切换阀切换到 10 号空气口,抽 1ml 空气切换到 3 号试剂口,注射泵抽 100 微升空气,切换到 2 号废液口排空(所有试剂口灌注同上)

2. 加样运行步骤说明

- 1. 切换阀复位,两通阀打开,注射泵开始抽水。
- 2. 注射泵抽水完成后,两通阀关闭,切换阀切换到2号废液口,注射泵复位排空。
- 3. 切换阀切换到 3 号试剂口,注射泵抽试剂(所抽的量大于所需的量要多抽少打才能更好控制精准度)
- 4. 切换道 2 号废液口,注射泵排 200 微升,延时 2 秒,切换到 3 号出液口,注射泵打所需的的量,剩余的量切换到废液口排出。
- 5. 切换阀切换到 10 号空气口,抽 1ml 空气切换到 3 号试剂口,注射泵抽 100 微升空气,切换到 2 号废液口排空(所有试剂口加样同上)

图 5

单头注射泵工作流程:

- 1、接管方式如下图 6 所示:
- 2、动作流程:

注射泵抽取液体时,电磁阀的长开端和公共端连通,将 A 箱内的液体抽至 注射泵腔体内;注射泵向外排出液体时,电磁阀通电,此时电磁阀的长开端关闭,长闭端打开并与公

http://www.runzeliuti.com

共端连通,将注射泵腔体内的液体排至B箱,即抽出液体结束。

2.2 注射泵基本参数

注射泵玻璃管容量规格

表 2-1 容量规格

5m1	1/4-28 单孔内螺纹	
10m1	1/4-28 单孔内螺纹	1/4-28 双孔内螺纹
20m1	1/4-28 单孔内螺纹	1/4-28 双孔内螺纹

产品功能介绍

产品功能	说明
设定地址	串口设定地址
设定波特率	可以设置 RS232、RS485、CAN 不同的波特率
设定 CAN 目的地址	如果有多个设备时,设置 CAN 地址可以设置不同设备的优先级
设定速度	串口设定 1rpm/min 到 250rpm/min (气体和液体有所不同)
设定细分	串口设定:速度为 1rpm/min 时,细分必须设为 256
重置内部数据	恢复出厂设置

Runze Fluid	-i-					
查询参数	可查询设备地址、速度、细分、波特率			Z.		
查询版本	查询当前固件版本					
电机控制方向	可控制电机顺时针、逆时针转动					
复位	使注射泵活塞回到原点					
强停		,	停止当前注射	付泵电机运行	:	
查询电机状态			检测当前	电机状态		
断电记忆	当电机运行时突然	断电	停止运行可歪 与原点位		的位置	置,显示电机当前
	技	术参数	数			
液量准确度	误差≤1%(额定行程)					
液量精确度	重复性误差 3%~7%					
耐压	气压: 0-1Mpa 水压: 0-1.2Mpa		ı			
预期寿命	300 <i>T</i> .	万次无	泄漏(测试)	介质纯水)		
初始位置检测	用光电传感	器检	测活塞初始位	立置,以实现	电机的	的精确定位
を写 <i>合った</i> ゴロ (もされ山上 料・)	5m1		10ml			20m1
额定行程(控制步数)	30mm/12000 步	÷	24.08mm,	/9632 步	24	.88mm/9952步
线速度范围	0.017mm/s-5mm/	0.017mm/s-5mm/s 0.017mm/s-5mm/s 0.017m		017mm/s-5mm/s		
额定行程运行时间范围	6s-1765s		4.8s-1416s			5s-1464s
控制分辨率/最小进样精度	0.0025mm/0.4154ul 0.0025mm/1.0381ul 0.0025mm/2.0		025mm/2.0096u1			
传动结构	滚珠丝杆 (导程 1mm)					
活塞最大驱动力	≥100N					
活塞次级驱动力	≥45N					
适用注射器规格及内径	规格		5m1	10m1		20m1

Runze Fluid	玻璃管内径	14.55mm	23mm	32mm
液路材质	高硼硅玻璃管、聚四氟活塞			
液路最大承压参考值	II .	玉: 0-1Mpa (注: 位 压: 0到-0.05Mpa		
管路接口		1/4-28UNF	内螺纹接口	
通信接口		RS232/RS485/	CAN 总线三种	
通信速率	9600dps、	19200dps、38400	dps, 57600dps, 1	15200dps
设备地址设置		串口	设置	
设备参数设置		串口	设置	
外形尺寸(长*宽*高)		42*42*]	191.6mm	
适用电源		DC24V	/1.5A	
工作环境温度		5-5	5℃	
工作相对湿度		< {	80%	
重量		0. 7	2kg	

2.3 端口定义

驱动控制板示意图如图 7

图 7

驱动板端口说明:

表 2-3 端口说明

端口名称	功能	端口名称	功能
+	DC24V 正极	A-	步进电机 A-极
-	DC24V 负极	B+	步进电机 B+极
TX	RS232 数据输出 B- 步进电机 B-板		步进电机 B-极
RX	RS232 数据输入 01 I01 光耦信号:		I01 光耦信号输出
GND	RS232 接地线	RS232 接地线 02 I02 光耦信号	
Н	CAN 通讯 H	03	I03 光耦信号输出
L	CAN 通讯 H	V1	V1 电源正
A	A RS485 通讯 A V2 V2 电源		V2 电源正
В	B RS485 通讯 B V3 V3 电测		V3 电源正
A+	步进电机 A+极	GND	电源地线

第 3 章 注射泵控制代码说明

3.1 概述

注射泵与上位机(电脑、单片机、PLC等)之间数据传输,采用是串行通信(RS232、RS485、CAN总线),下面就通信格式做出相关说明:通信采用异步串行通信方式,命令及数据帧采用和校验,和校验为二个字节(2Byte)。通信中命令、数据均采用十六进制数,参数采用小端模式存储。

其他说明:通信接口: RS-232, RS-485, CAN 总线; 通信方式: 双向异步、主从方式; 波特率: RS232、RS485 对应的波特率有 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, CAN 对应的波特率有 100K, 200K, 500K, 1M; 数据位: 8 位; 奇偶校验: 无校验; 接收命令后响应时间<1 秒。

3.2 代码说明

3.2.1 命令列表

表 3-1 命令列表 **设定指令**

指令代码	说明	工厂指令/普通指令	参数字节数
0x00	设定地址	工厂指令	4

Runze Fluid			
0x01	设定 RS232 波特率	工厂指令	4
0x02	设定 RS485 波特率	工厂指令	4
0x03	设定 CAN 波特率	工厂指令	4
0x07	设定最大转速	工厂指令	4
0x0b	设定复位速度	工厂指令	4
0x0e	设定上电自动复位	工厂指令	4
0x10	设定 CAN 目的地址	工厂指令	4
0xff	重置驱动器内部数据	工厂指令	4

查询指令

指令代码	说明	工厂指令/普通指令	参数字节数
0x20	查询地址	普通指令	2
0x21	查询 RS232 波特率	普通指令	2
0x22	查询 RS485 波特率	普通指令	2
0x23	查询 CAN 波特率	普通指令	2
0x27	查询最大转速	普通指令	2
0x2b	查询复位速度	普通指令	2
0x2e	查询上电自动复位	普通指令	2
0x30	查询 CAN 目的地址	普通指令	2
0x3f	查询版本	普通指令	2

控制指令

指令代码	说明	工厂指令/普通指令	参数字节数
0x41	电机逆时针转动	普通指令	2
0x42	电机顺时针转动,若遇复位光耦则 停	普通指令	2
0x45	复位	普通指令	2
0x49	强停	普通指令	2
0x4a	查询电机状态	普通指令	2
0x4b	动态设定速度(当前的速度,用一次就失效,若不设定此速度,则默 认为最大转速)	普通指令	2
0x65	查询停止事件	普通指令	2
0x66	查询当前位置	普通指令	2

http://www.runzeliuti.com

河 润泽流体
Runze Fluid

Runzeria	u e		
0x67	清除位置	普通指令	2
0x68	查询位置方向	普通指令	2

响应状态

表 3-2 响应参数

代码 B2	参数说明
0x00	状态正常
0x01	帧错误
0x02	参数错误
0x03	光耦错误
0x04	电机忙
0xfe	任务挂起
0xff	未知错误

查询停止事件响应参数				
代码 B2	参数说明			
$0 \mathrm{x} 00$	返回码未知			
0x01	正常走完			
0x02	遇光耦停			
0x03	码盘检测到堵转			
0x04	内置芯片检测到堵转			

3.2.2 控制命令格式

"下发命令"报文帧为 8 字节,完整格式如下:

表 3-3 下发命令(普通指令)

下发命	包头	地址位	控制命令	命令参 数	包尾	和校验
字节代 码	В0	B1	B2	B3, B4	В5	B6, B7
字节数	1	1	1	2	1	2

注:上述的命令格式指的是普通的下发命令,特别说明一下,在工厂指令中多加了密码位,参数位也改变了,从原来的2个字节变成了4个字节,其指令格式如下:

"工厂指令"报文帧为 14 字节, 完整格式如下:

表 3-4 下发命令(工厂指令)

字节代 码	ВО	B1	B2	B3/B4/B5/B6	B7/B8/B9/B10	B11	B12/B13
字节数	1	1	1	4	4	1	2

"响应命令"报文帧为 8 字节,完整格式如下:

表 3-5 响应命令

响应命令	包头	地址位	响应状态	响应参数	包尾	和校 验
字节代码	В0	B1	B2	B3, B4	В5	B6, B7
字节数	1	1	1	2	1	2

注: 普通指令的下发命令和响应命令格式相同,所有的响应命令报文帧都 是8 个字节。

3.2.3 命令格式说明

包头与包尾定义 B0, B5(B11) 表 3-6 包头包尾定义

名称	代码
包头 B0	0xCC
包尾 B5 (B11)	0xDD

注: 普通指令的下发命令和响应命令相同,包头包尾分别是 B0, B5,特殊的是工厂指令的包尾是 B11。

地址位定义表 3-7 地址位定义

名称	简称	代码 B1	备注
地址位	地址	0xXX	

注: 1、下发命令与响应命令相同

2、"0xXX"中的 XX 表示可设,出厂默认为 0x00,参数取值范围为 $0x00\sim0xFF$ 。

控制代码说明(B2-B10)

3-8 控制代码说明

工厂指令

代码 B2		密码 B3 B4 B5 B6	参数说明 B7 B8 B9 B10
0x00	设定地址	B3=0xFF B4=0xEE B5=0xBB B6=0xAA	B7=0xXX (B8=0x00 B9=0x00 B10=0x00)其中 XX 的取值范围是 00~FF, 默认 00
0x01	设定 RS232 波特率	B3=0xFF B4=0xEE B5=0xBB B6=0xAA B3=0xFF B4=0xEE	共 5 种波特率: 出厂默认是 9600bps (B8=0x00 B9=0x00 B10=0x00) B7=0x00 对应的波特率是 9600bps B7=0x01 对应的波特率是 19200bps B7=0x02 对应的波特率是 38400bps B7=0x03 对应的波特率是 57600bps B7=0x04 对应的波特率是 115200bps
0x02	设定 RS485 波特率	B5=0xBB B6=0xAA	•
0x03	设定 CAN 波 特率	B3=0xFF B4=0xEE B5=0xBB B6=0xAA	共 4 种波特率: 出厂默认是 100K (B8=0x00 B9=0x00 B10=0x00) B7=0x00 对应的波特率是 100K B7=0x01 对应的波特率是 200K B7=0x02 对应的波特率是 500K B7=0x03 对应的波特率是 1M
0x07	设定最大转速	B3=0xFF B4=0xEE B5=0xBB B6=0xAA	B7=0xXX B8=0xXX (B9=0x00 B10=0x00) 其中 B8B7 的取值范围为 0x0005~0x015E 转速设定 5~350 转/分钟(出厂默认转速 200 转/分钟,即 B7=C8)注:此处的转速 设定为 5~350 转/分钟,指的是此注射泵 工作的最佳运行速度是 5~350 转/分钟, 并不是不能设置超过此范围的转速,当设 置的转速低于 5 转/分钟或高于 350 转/分 钟的时候,此注射泵工作可能会出现错 误。
0x0e	设定上电自 动复位	B3=0xFF B4=0xEE B5=0xBB B6=0xAA	(B8=0x00 B9=0x00 B10=0x00) B7=0x00 表示非自动复位 B7=0x01 表 示自动复位

_	Kulize F	lulu		
	0x10	设定 CAN 目 的地址	B3=0xFF B4=0xEE B5=0xBB B6=0xAA	B7=0xXX (B8=0x00 B9=0x00 B10=0x00) 其中 XX 的取值范围是 00~FF, 默认是 00
	0xff	重置驱动器 内部数据	B3=0xFF B4=0xEE B5=0xBB B6=0xAA	B7=0x00 B8=0x00 B9=0x00 B10=0x00

查询指令(B2~B4)

	至"排化"	<u> </u>
代码 B2	简称	参数说明 B3 B4
0x20	查询地址	B3=0x00 B4=0x00
0x21	查询 RS232 波特率	B3=0x00 B4=0x00
0x22	查询 RS485 波特率	B3=0x00 B4=0x00
0x23	查询 CAN 波特率	B3=0x00 B4=0x00
0x27	查询最大转速	B3=0x00 B4=0x00
0x2b	查询复位速度	B3=0x00 B4=0x00
0x2e	查询上电自动复位	B3=0x00 B4=0x00
0x30	查询 CAN 目的地址	B3=0x00 B4=0x00
0x3f	查询当前版本	B3=0x00 B4=0x00

控制指令(B2~B4)

代码 B2	简称	参数说明 B3 B4				
0x41	电机逆时针转动(吸液)	B4B3 的取值范围的最大值是根据注射泵玻璃管的容量而定的,根据表 2-2 可知,例如 5ml 规格的注射泵单步进 样量为 0.4154,他的转动最大步数就是 5ml/0.4154ul =12036,十进制数 12036 转换成十六进制数是 0x2F04,则 B4B3 的取值范围是0x0001~0x2F04,其他的规格根据单步进样量 计算即可得出最大转动步数。				
0x42	电机顺时针转动 并且遇 复位光耦 停(排液)	B4B3 的取值大于零。当设置 B3B4 参数对应的步数大于此时电机到复位 光耦处的步数时,电机到复位光耦处 停止,当设置 B3B4 参数对应的步数小于此时电机到复位光耦处的步数时,则电机按照设定的步数转动。				
0x45	复位	B3=0x00 B4=0x00 注射器运行到光耦处停止				
0x49	强停	B3=0x00 B4=0x00				
0x4a	查询电机状态	B3=0x00 B4=0x00				
0x4b	动态设定速度(当前的速度, 用一次就失效, 若不设定此速 度,则默认为最大转速)	B4B3 的取值范围是 0x0001~ 0x015E 电机转动速度是 1~350 转/分钟,根据最大转速而定,不能大于 最大转速。注意: 当设置转速为 1 转时,细分一定为 256 细分				

Kullze Fl	uiu	
0x65	查询停止事件	B3=0x01 B4=0x00 查询电机停止事件,通过返回码的参数可以确定电 机停止的原因, B3=0x00 B4=0x00 未知 B3=0x01 B4=0x00 正常走完 B3=0x02 B4=0x00 遇光耦停 B3=0x04 B4=0x00 芯片检测到堵转 B3=0x05 B4=0x00 事件请求停止
0x66	查询当前位置	B3=0x00 B4=0x00 当注射泵正在工作时,由于外界原因或突然断电导致注射泵停止工作,可用此命令查询电机当前的位置,显示电机当前与零位置的距离(步数),如用0x66命令查询,接收命令中B3=0x3E B4=0x0A,换算成十进制是2622,则电机当前位置与零位置的距离是2622步,从而计算出吸液或排液的体积量。
0x67	清除位置	B3=0x00 B4=0x00 当注射泵运行过程中突然断电,断电的瞬间注射泵会持续运行一小段时间,此时运行的步数会出错,再次通电运行到复位位置的步数就不是零,此时需要运行位置归零命令 0x67,然后用 0x66 命令查询当前位置,接收命令中 B3=0x00 B4=0x00,则表示当前位置是零位置。
0x68	查询活塞运行方向	B3=0x00 B4=0x00 查询电机运行的状态,接收命令中,当B3=0x00 B4=0x00 表示电机逆时针转动,活塞向下运动,注射泵吸液 当B3=0x01 B4=0x00 表示电机顺时针转动,活塞向上运动,注射泵排液

注: 当电机运行时突然断电,电机仍会运行一小节步数,再次通电时用 45(复位)命令复位时,电机走动步数会存在偏差,此时用 67(清除位置)命令可以消除误差.

和校验(B6, B7)

表 3-9 和校验

名称	简称	代码 B6, B7	备注
和校验	和校验	0xXX 0xXX	XX 表示包头到包尾所有数的和

注: 工厂指令的和校验位是B12,B13

响应参数说明 B2 B3 B4

表 3-10 响应参数

代码 B2	说明	其他参数说明=B3 B4
0x00	状态正常	B3=0x00 B4=0x00
0x01	帧错误	参数=0x00 0x00,

http://www.runzeliuti.com

润泽	流体
Runze	

Runze Fluid		
0x02	参数错误	参数=0x00 0x00
0x03	光耦错误	参数=0x00 0x00
0x04	电机忙	参数=0x00 0x00
0xfe	任务挂起	参数=0x00 0x00
0xff	未知错误	参数=0x00 0x00

说明: (1) 响应命令中代码 B2 表示的是当前电机运行的状态,只有 B2=0x00 时,电机 才正常运行,其他参数如上表所示,分别对用不同的非正常 状态。特别的说明一下,当用 RS485 总线控制设备的时候,发送控制命令(当 B2=0x41 或 0x42、0x45)时,响应命令中状态参数是 FE(任务挂起),它表 示的是电机当前正在根据指令运行,运行还没结束,如果此时再发送其他命令(查询类命令除外),则响应命令中状态参数是 04,表示电机忙,再发送轮询命 令 0x4a,此时响应命令中的状态参数是 00. 表示电机状态正常。如下图:

- ①表示发送控制命令(B2=0x41 或0x42、0x45)
- ②表示发送其他控制命令
- ③发送轮询命令 0x4a
- (2) 响应命令中其他参数 B3、B4 只有在发送查询命令时才有意义,当发送如设置命令或控制命令时,响应参数是没有意义的,全部默认是 00 00。当发送查询命令时,并且响应命令中 B2 对应参数是 00 时,响应的 B3、B4 参数才有意义,返回的值就是查询的结果,例如发送查询命令 0x21 (查询 RS232 波特率)时,响应命令中参数 B3 B4 对应的值是 04 00,则表示 RS232 的波特率是 115200bps。

注意事项:

- 1、上述所有命令的代码参数都采用小端模式设置。小端模式存储,数据低位存储在地址低位,数据高位存储在地址高位。
- 2、当注射泵运行过程中突然断电,断电的瞬间注射泵会持续运行一小段时间,此时运行的步数会出偏差,再次通电运行到复位的位置就不是零,此时需要运行位置归零命令 0x67,此命令有助于减小误差,一般用于复位命令之后。

3、24V 断电时,误差的步数是 0~15 步,220V 断电时,误差的步数是 0~55 步。(误差步数是根据实际测试运行得出的平均值)

3.3 操作步骤举例说明(以 RS232 为例) 设定操作步骤:

- 1、开启设备,使设备通电
- 2、若需要进行恢复出厂直接点击恢复出厂按钮;如不需要,直接设定需要改变的项目
- 3、设定完毕后需对设备进行重启(重启设备时,需断 24V 电源),使设定项目生效 **例 1:** 需要对最大速度进行设定(200 转/min)
- 1、点击勾选工厂指令(如图8)

图 8

- 2、在地址栏输入地址为00(默认为00,若已修改地址,则输入已修改的地址)命令行输入设定速度的代码07,在参数行输入需要的速度C8(这里输入的参数为十六进制)(如图8),点击发送按钮,接收信息(B3为C8)如图8所示即为正确
- 3、当接收信息正确后,取消已勾选的工厂指令(如图9)

图 9

- 4、查询已设定的速度,在命令行输入设定速度的代码 27,在参数行输入参数为 00 (输入其他时,返回信息会显示为 02 参数错误)(如图 9),点击发送按钮,接收信息如图 9 所示即为正确
- 5、查询设定速度无误后,需重启设备(重启设备时,需断 24V 电源),设定速度生效 注:设定速度时有动态设定速度和工厂设定速度,动态设定速度不需要勾选工厂指令, 且设置的速度仅限当前的速度,用一次就失效,若不设定此速度,则默认为最大转速;勾选 工厂指令后设置的速度则能够一直使用

例 2: 查询电机状态 (如图 10)

- 1、在地址栏输入00(若地址改变,则输入改变的地址)
- 2、在命令栏输入 4A (查询电机状态) 命令
- 3、在参数栏输入00(若输入不为00,返回结果为02参数错误)
- 4、输入完成后点击发送按钮,则会返回电机状态数据(返回数据详看表 3–2 或 3–10),接收信息如图 10(B3 为 00)所示即为正确

图 10

例 3: 控制设备完成一次抽液排液过程(以 5m1 为例)

http://www.runzeliuti.com

1、使用 45 复位命令,在地址栏输入 00(若地址改变,则输入改变的地址),在命令栏输入 45(复位)命令,在参数栏输入 00(若输入不为 00,返回结果为 02 参数错误)点击发送按钮,接收信息如图 11 所示即为正确

图 11

2、使用 41(吸液)命令,在地址栏输入 00(若地址改变,则输入改变的地址),在命令栏输入 41(吸液)命令,在参数栏输入 2F04(参数设置可参照控制指令),点击发送按钮,接收信息如图 12 所示即为正确

图 12

- 3、使用 42(排液)命令在地址栏输入 00(若地址改变,则输入改变的地址),在命令栏输入 42(排液)命令,在参数栏输入 2F04(参数设置可参照控制指令),点击发送按钮,接收信息如图 13 所示即为正确
 - 注: 为防止丢步,使用 42 命令时,输入参数可大于使用 41 命令时输入参数

图 13

第 4 章 调试工具使用说明

4.1 调试工具

4.1.1 RS232 调试工具说明

(1) RS232 调试工具: MotorTester VO. 6. exe

由于现在电脑上没有 RS232 通讯接口,需要借助 USB 转接口实现通讯,图 15 中的串口下拉框是选择电脑的 com 口,可从计算机的设备管理器中 查看当前设备连接的是哪一串口(见图 14,可能会显示几个 com 口,需要一一试验确定哪个 com 口能通)。

图 14

图 15 波特率是下位机的波特率,出厂默认是 9600bps, 设置好串口和波特率之后, 点击"打开"按钮,输入地址、命令、参数,命令对应 B2 的各种指 令代码(见表 3-8),参数对应 B3, B4,如果是工厂指令,需要把工厂指令框勾上,若是普通指令则不用 勾选。设置好之后点击发送,在右侧的命令显示框可显示当前发送的代码和接收的响应 代码。

图 15

工具中的"清空"按钮是指清空右侧命令显示框的内容,"恢复出厂"则是 使切换阀的所有设置恢复到出厂时的默认设置,特别注意一点,恢复出厂设置之后一定要先设置码盘计数,根据实际的切换阀通道数设置,否则会出错。

注意: 地址、命令、参数框的输入都是十六进制数。

- (2) RS232 通信举例说明
- ①下发命令:设定RS232 波特率

河泽流体

ВО	B1	B2	B3/B4/B5/B6	B7/B8/B9/B10	B11	B12	B13
0xC C	0x0 0	0x0 0	B3=0xFF B4=0xEE B5=0xBB B6=0xAA	B7=0x04 B8=0x00 B9=0x00 B10=0x00	OxD D	0x0 0	0x0 5

响应命令

В0	B1	B2	В3	B4	B5	В6	В7
0xCC	0x00	0x00	0x00	0x00	0xDD	0xA9	0x01

因为设定 RS232 波特率是工厂指令,要把"工厂指令"选框勾上,实际操作结果如图 16:

图 16

接收的命令中B2=00,说明切换阀运行状态正常,设置成功

②下发命令: 查询复位速度

В0	B1	B2	В3	B4	В5	В6	В7	
0xCC	0x00	0x2b	0x00	0x00	0xDD	0xD4	0x01	
响应命令								

B0 B1 B2 B3 B4 B5 B6	В7
----------------------	----

0xCC 0x00 0x00 0xC8 0x00 0xDD 0x71 0x01

查询命令属于普通指令,实际操作结果如图 17:

图 17

说明:响应命令中参数位是 C8 00,因为是小端模式存储,数据低位存储在地址低位,十六进制的 0x00C8 换算成十进制数为 200,所以复位速度是 200 转/分钟

4.1.2 RS485 调试工具说明

(1) RS485 调试工具: MotorTester VO. 6. exe

RS485 和RS232 通信使用的是同一调试工具,它们的使用方法相同,这里不再赘述,可参考RS232 调试工具使用介绍。下面介绍几个实例。

①下发命令: 查询电机当前状态

В0	B1	B2	В3	B4	B5	В6	В7
0xCC	0x00	0x4a	0x00	0x00	0xDD	0xF3	0x01

响应命令

В0	B1	В2	В3	B4	В5	В6	В7
0xCC	0x00	0x00	0x00	0x00	0xDD	0xA9	0x01

实际操作结果如图 18:

🧸 南京润泽流体	体控制设备有限公司-调	隊表用工具 V0.6		x
串口波特率	COM07 *	关闭 □ 工厂指令	2016-12-07 16:16:33 发送: CC 00 4A 00 00 DD F3 01 2016-12-07 16:16:33 接收: CC 00 00 00 00 DD A9 01	À
地址	00	发送		
参数	00	清空		
				¥
			E 10	

图 18

接收的命令中B2=00,说明切换阀状态正常。

注:用 RS485 总线控制多台设备时,当前 0x4a 就是轮询命令,每发一条控制指令(即 B2=0x41 或 0x42、0x45)后都要再次发送轮询命令查询当前状态,否则发送其他命令(查询类命令除外)后响应的工作状态显示电机忙。

②下发命令: 复位

В0	B1	B2	В3	B4	В5	В6	В7
0xCC	0x00	0x45	0x00	0x00	0xDD	0xEE	0x01

响应命令:

В0	B1	B2	B3	B4	B5	В6	В7
0xCC	0x00	0xFE	0x00	0x00	0xDD	0xA7	0x02

调试结果如图 19:

图 19

说明:响应命令中状态参数 B2=0xFE 是正常的,它表示的是电机当前正在根据指令运行,运行还没结束,如果此时再发送其他命令(查询类命令除外),则响应命令中状态参数是 04,表示电机忙,再发送轮询命令 0x4a,此时响应命令中的状态参数是 00.表示电机状态正常(如图 19)应例①中的说明,用 RS485 总线控制多台设备时,0x4a 是轮询命令,每发一条控制指令(即 B2=0x41 或 0x42、0x45)后都要再次发送轮询命令查询当前状态。

③下发命令: 电机逆时针转动

В0	B1	B2	В3	B4	В5	В6	В7
0xCC	0x00	0x41	OxAA	0x00	0xDD	0x94	0x02

响应命令:

В0	B1	B2	В3	B4	В5	В6	В7
0xCC	0x00	0xFE	0x00	0x00	0xDD	0xA7	0x02

电机逆时针转动的命令用于注射泵抽取液体,B3B4 对用的参数是电机转动的步数,命令调试结果如图 20:

图 20

说明:响应命令中状态参数 B2=0xFE 是正常的,B3 B4 对应的参数是 AA

00, 0x00AA 换算成十进制数是170, 表示抽取液体转动的步数是170 步。

④下发命令: 电机顺时针转动并且遇复位光耦停

В0		B1	B2	В3	B4	B5	В6	В7
0xCC		0x00	0x42	0xFF	0x00	0xDD	0xEA	0x02
	响应命令:							
В0	B1	B2	В3		B4	B5	В6	В7
0xCC	0x00	0xF	FE 0x0	0	0x00	0xDD	0xA7	0x02

电机顺时针转动命令用于注射泵排出液体,此命令调试结果如图 21:

图 21

说明:响应命令中状态参数 B2=0xFE 是正常的,当发送"0x42"命令,当设置 B3B4 参数对应的步数大于此时电机到复位光耦处的步数时,电机到复位光 耦处停止,当设置 B3B4 参数对应的步数小于此时电机到复位光耦处的步数 时,则电机按照设定的步数转动。

4.1.3 CAN 调试工具说明

(1) CAN 通讯使用的调试工具: CANTest, 开始界面如图 22,

本说明书使用的是CANTest Setup V2.23.exe 版本。

图 22

打开 CAN 调试工具之后会有上图 22 的界面,第1 步选择波特率,然后点 击"确认"到下图 23。

图 23

第 3 步,点击"启动"之后就可以输入命令运行,也可以在图 22 中第 2 步点击"确认并启动 CAN",这样就不需要再点击"启动"了,可直接输入命令运行。输入"帧 ID"(地址)和"数据",再点击"发送",例如输入命令0x4a 查询电机状态,图 24 所示,

图 24

图 24 中间显示的就是发送和接收的命令。输入命令时其他的选项如:发送方式、帧类型、帧格式、发送次数等等,一般都使用默认选项,不需要改 动。

- (2) CAN 通信举例说明
- ①下发命令: 复位

В0	B1	B2	В3	B4	B5	В6	В7
0xCC	0x00	0x45	0x00	0x00	0xDD	0xEE	0x01
				响应命令			
В0	B1	B2	В3	В4	В5	В6	В7
0xCC	0x00	0x00	0x00	0x00	0xDD	0xA9	0x01

调试结果如图 25:

图 25

接收的命令中B2=00,说明切换阀运行状态正常,复位成功。

4 2 简易故障排查

1.4 54 1541 1 411 777	
故障	原因
通电不工作	1、工作电压不在合格范围内
迪电小工 作	2、连线有松动或断线
不吸液	1、是否被颗粒物堵住

排除方法

检测实际引脚电压与额定电压是否存在偏差 手动检查是否接触良好,或万用表检查线 路取出泵管,排除异物

产品安全注意事项:

- 请保证电压与仪器标准电压相配合。
- 请使用本产品原装的串口线与电源连接。
- 本产品的三种通信方式(RS232、RS485、CAN 总线)处于非隔离模式。
- 如有空置不需要用的孔位,请使用配套堵头及垫圈塞紧,以免杂质及气流进入阀 体,影响正常使用。
- 不得随意拆卸产品零部件,防拆标签撕毁不保修。
- 软件操作时,请参考软件操作说明以及通讯协议,不得擅自编造数据输入。
- 仪器报废请按照仪器设备废弃物处置规定处理,使用本机后的废弃物,请按国家环 境保护要求进行处理。用户不要随意丢弃。
- 用 RS485、CAN 总线协议连接多台设备的时候,请参照下图 26 的连接方式。

图 26

润泽流体 Runze Fluid

公司官网

手机淘宝扫一扫

南京润泽流体控制设备有限公司

电话: 025-51197362 销售电话: 13851954068

传真: 025-51197362 技术支持: 13401932241

网址: http://www.runzeliuti.com

店铺网址: http://shop152638318.taobao.com

企业邮箱: <u>luxiangyu@runzeliuti.com</u>

地址:南京市江宁区东山街道天行西路9号润景国际3栋4楼