Tutorial III

Indian Institute of Technology Roorkee Department of Electronics and Communication Engineering EC-101: Fundamentals of Electronics, Autumn 2024

1. Question: In the figure shown, the n-p-n transistor acts as a switch

For the input V_{in} as shown in the figure, the transistor switches between the cutoff and saturation regions of operation, when T is large. Assume collector-to-emitter voltage at saturation $V_{CE(sat)} = 0.2$ V and base-to-emitter voltage $V_{BE} = 0.7$ V. What is the minimum value of the common-base current gain (α) of the transistor for the switching should be?

- 2. Question: For the fixed-bias configuration, determine:
 - (a) I_{B_Q}
 - (b) I_{C_Q}
 - (c) V_{CE_Q}
 - (d) V_C
 - (e) V_B
 - (f) V_E

3. Question: Given the BJT transistor characteristics of Fig:

- a. Draw a load line on the characteristics determined by $E=21\,\mathrm{V}$ and $R_C=3\,\mathrm{k}\Omega$ for a fixed-bias configuration.
- b. Choose an operating point midway between cutoff and saturation. Determine the value of R_B to establish the resulting operating point.
- c. What are the resulting values of I_{CQ} and V_{CEQ} ?
- d. What is the value of β at the operating point?
- e. What is the value of α defined by the operating point?
- f. What is the saturation current $(I_{C_{\text{sat}}})$ for the design?
- g. What is the DC power dissipated by the device at the operating point?
- h. What is the power supplied by V_{CC} ?
- i. Determine the power dissipated by the resistive elements by taking the difference between the results of parts (g) and (h).

4. Question:

- (a) Determine the dc bias voltage V_{CE} and the current I_C for the voltage divider configuration of Fig:
- (b) Repeat the exact analysis if β is reduced to 50, and compare solutions for I_{CQ} and V_{CEQ}

- 5. Question: Given the information provided in Figure, Determine the following:
 - a. R_C
 - b. R_E
 - c. R_B
 - d. V_{CE}
 - e. V_B

