

# 3.5 Ion Implanation

TECHNISCHE UNIVERSITÄT

CHEMNITZ

| 3.5.1 | Introduction                                          |
|-------|-------------------------------------------------------|
| 3.5.2 | Applications of Ion Implantation in Microelectronics  |
| 3.5.3 | Ion-Solid Interaction                                 |
| 3.5.4 | Modeling of Dopant Distributions                      |
| 3.5.5 | Healing Up of Radiation Defects and Dopant Activation |
| 356   | Fauinment                                             |



Status: 1.5.2019

#### 3.5.1 Introduction

- Ion implantation comprises ionization of atoms or molecules, separation of the desired kind of ions, acceleration of these ions by an electric field into a solid target, thereby changing the physical, chemical, or electrical properties of the target.
- The distribution of ions in the solid depends on energy, mass, dose, and direction of ions, as well as atomic mass and structure of substrate and cover layers.
- Energy range: keV ... MeV (typical values in Si technology: 5 ... 300 keV)







## **Goals of Ion Implantation**

- doping
- · modification of material properties
  - amorphization
  - ion beam mixing
  - modification of molecular structure and composition of resist layers (ion beam lithography, resist hardening)
  - hillock suppression for Al interconnects
- stoichiometric implantation , e.g. of  $O^+$ ,  $N^+$  und  $Si^+$  for generation of  $SiO_2$ ,  $Si_3N_4$ , and silicide layers both at interfaces and as buried layers in the substrate

## **Characteristics of Doping by Ion Implantation**

- large doping range
- · high precision of dose and energy
- selective implantation using mask layers (resist, oxide, nitride)
- low substrate temperature during implantation
- little lateral variation/straggling
- · dopant concentrations above solubility possible
- good wafer homogeneity (WIWNU< 2 %)</li>
- activation of dopants and healing of radiation damage is necessary
- · possibility of shallow doping
- complex equipment

WIWNU - within wafer nonuniformity





## 3.5.2 Applications of Ion Implantation in Microelectronics

| <u>Application</u>                                | Dose (ions / cm <sup>2</sup> )          |
|---------------------------------------------------|-----------------------------------------|
| Unipolar Technologies (MOS):                      |                                         |
| Source/Drain formation                            | $10^{15}5\cdot 10^{15}$                 |
| Low doped drain (LDD)                             | 10 <sup>13</sup> 10 <sup>14</sup>       |
| Channel formation (p, n)                          | $10^{11}\ 10^{12}$                      |
| Well formation (CMOS, n, p)                       | 10 <sup>13</sup> 10 <sup>14</sup>       |
| Channel stopper                                   | 10 <sup>13</sup> 10 <sup>14</sup>       |
| Salicide (self aligned silicide formation)        | ca. 5 · 10 <sup>15</sup>                |
| Hillock suppression for interconnects (Ar+ in Al) | ca. 10 <sup>16</sup>                    |
| Doping of poly Si                                 | $10^{15} \dots 10^{16}$                 |
|                                                   |                                         |
| Bipolar Technologies:                             |                                         |
| Base formation                                    | $5 \cdot 10^{13} \dots 5 \cdot 10^{14}$ |
| Emitter formation                                 | 10 <sup>15</sup> 10 <sup>16</sup>       |



## **Applications of Ion Implantation in CMOS IC Fabrication**





#### 3.5.3 Ion-Solid Interaction

lons lose energy within the solid mainly by

- (elastic) nuclear collisions
- inelastic interactions with electrons of the target

Energy loss: 
$$-\frac{dE}{dx} = N(s_n(E) + s_e(E))$$



E - ion energy

N - atomic density of the target

s<sub>n</sub> - nuclear stopping power

s<sub>e</sub> - electronic stopping power

Electronic stopping is dominating at high energy.

Nuclear stopping is more effective at lower energy.

Calculation of dopant distribution for amorphous targets:

LSS Theory

(Lindhardt, Scharff und Schiott)





## **Channeling**

lons lose considerably less energy if they travel trough the crystal along low-index directions (i.e. if the angle between trajectory of the ion and a low-index direction is less than a characteristic critical angle  $\Psi_c$ )

#### Prevention:

- Inclination of the ion beam against the surface normal of the wafer (minimum channeling at 7° ...10°)
- Amorphous cover layers (scattering oxide)
- Pre-amorphization (e.g. Si<sup>+</sup> in Si)



| Ion      | Energy | Critical angle |       |              |
|----------|--------|----------------|-------|--------------|
|          | (keV)  | ⟨100⟩          | ⟨110⟩ | <b>〈111〉</b> |
| Bor      | 10     | 4,76           | 6,97  | 5,30         |
|          | 100    | 2,67           | 3,47  | 2,98         |
|          | 300    | 2,03           | 2,98  | 2,26         |
| Phosphor | 10     | 5,79           | 7,51  | 6,45         |
|          | 100    | 3,26           | 4,22  | 3,63         |
|          | 300    | 2,47           | 3,21  | 2,76         |
| Antimon  | 10     | 6,95           | 9,01  | 7,74         |
|          | 100    | 3,91           | 5,07  | 4,35         |
|          | 300    | 2,97           | 3,84  | 3,31         |

View along Si<110>

Various ion trajectories

Critical angle for dopants in Si





## 3.5.4 Modeling of Dopant Distributions

#### Model

#### **Gaussian distribution**

$$N(x) = C \frac{Q}{\Delta R_P \cdot \sqrt{2\pi}} \cdot exp \left( -\frac{(x - R_P)^2}{2 \cdot \Delta R_P^2} \right)$$

 $R_p$  - mean projected range [ $\mu m$ ]

DR<sub>D</sub> - mean projected range straggle [μm]

x - depth [µm]

N(x) - dopant distribution [cm<sup>-3</sup>]

Q - dose [cm<sup>-2</sup>]

$$C = \frac{2}{1 + erf\left(\frac{R_p}{\sqrt{2}\Delta R_p}\right)} \quad \text{-normalization factor,} \\ \quad \text{ensures that } Q = \int\limits_0^{+\infty} N(x) dx \\ \quad C \sim 1 \text{ for } R_p/\Delta R_p > 2$$

#### **Pearson IV distribution**

### **Comments on validity**

- LSS theory yields Gaussian profile with the two moments  $R_P$  and  $\Delta R_P$
- good agreement with experimental data for amorphous targets
- no channeling
- problems with cover layers

- better agreement with experimental data for <u>all</u> amorphous materials
- no channeling
- problems with cover layers



#### **Model**

Pearson IV distribution with exponential tail

**Boltzmann Transport Equation** (BTE)

**Monte Carlo Approach (MC)** 

### **Comments on validity**

- good agreement also for crystalline materials, can account for channeling
- problems with cover layers
- BTE predicts profile in amorphous silicon also if cover layers are present.
- no channeling
- universal approach, predicts dopant profiles in both amorphous and crystalline materials even when surface layers are present



Distribution of B after implantation

- a) in poly crystalline Si
- b) in single crystal Si along the <763 > direction
- c) in single crystal Si along the <111 > direction

/Schumicki/

Chapter 3.5 - 9





#### **Minimum Thickness of Mask Oxide**





## 3.5.5 Healing Up of Radiation Defects and Dopant Activation

#### **Objectives of annealing:**

- High degree of dopant activation (depends on temperature, about 900 °C are necessary for Si)
- Achievement of superior **crystal properties** (mobility  $\mu$ , Minority life time  $\tau$ )

#### **Effects of annealing for Si:**

| T [°C] | Characteristics                                                                            |
|--------|--------------------------------------------------------------------------------------------|
| 450    | partial activation, ca. 20 50 % of bulk values                                             |
| 550    | 50 % activation for boron, less for other dopants                                          |
| 660    | recrystallization of amorphous silicon (a-Si) 50 % activation after high-dose implantation |
| 800    | 20 % activation after high-dose implantation of boron, 50 % for other dopants              |
| 900    | achievement of bulk mobility, 90 100 % activation                                          |

**NOTE: Diffusion is taking place simultaneously** 



## Dependence of the dose of amorphization of silicon on temperature for several ions





# **Methods of Annealing**

| Annealing method |                                                    | Process temperatures in °C | Process time | Broadening of profiles<br>during process time at<br>T = 1100 °C |
|------------------|----------------------------------------------------|----------------------------|--------------|-----------------------------------------------------------------|
| _                | Furnace (e.g. in N <sub>2</sub> , H <sub>2</sub> ) | 900 - 1100                 | min, h       | 1 μm (1000 s)                                                   |
| _                | Rapid thermal processing (RTP)                     | 1000 - 1250                | S            | 0.1 μm (10 s)                                                   |
| _                | Flash lamp                                         | 1000 - 1300                | ms           | 0.01 µm (0.01 s)                                                |
| _                | Laser                                              | 1100 - 1400                | μs           | < 0.01 µm (0.01 s)                                              |



### Doping profiles after implant and after annealing

SIMS depth profiles of as implanted wafer and wafers after annealing in SWF and lampbased RTP systems.



Comparison: single wafer furnace (SWF) system and a lamp-based RTP system under 1 atm N2 atmosphere

Woo Sik Yoo et al., Comparative Study on Implant Anneal using Single Wafer Furnace and Lamp-based Rapid Thermal Processor



# 3.5.6 Equipment

### **Ion Implanter Types**

- Low-energy implanters 0.2 ... 80 keV
- Medium-energy implanters 20 ... 200 keV

- Medium-energy implanters 20 ... 200 ke' - High-energy implanters 0.5 ... 3 MeV

- Medium current implanter (MCI) 0.1 ... 3 mA up to 1E15 ions/cm<sup>2</sup>

- High current implanter (HCI) 3 ... 100 mA up to 1E16 ions/cm<sup>2</sup>

**Implanted Dose:** 

$$Q = I \cdot t / (A \cdot n \cdot q_0)$$

n - charge state (onefold, twofold charged ions)

q<sub>0</sub> - elementary charge

I - beam current

t - implantation time

A - scanned area

Throughput per h:

$$TP = \frac{3600s \cdot Z \cdot K}{t_P + t_H}$$

Z - number of wafers per load station

K - number of load stations

batch implant time [s]

handling time between implants [s]

Typical values: **MCI**: 100 ... 200 wafers/h, **HCI**: 300 ... 400 wafers/h



## **Schematic set-up of an implantation tool**





## **lons before and after mass separation**

| Source material           | lons before mass separation                      | lons after mass separation                     |
|---------------------------|--------------------------------------------------|------------------------------------------------|
| BF <sub>3</sub> (gas)     | B+, BF+, BF <sub>2</sub> +, F+, F <sub>2</sub> + | B <sup>+</sup> or BF <sub>2</sub> <sup>+</sup> |
| PF <sub>5</sub> (gas)     | P+, PF+ F <sub>2</sub> +, P <sub>2</sub> +       | P <sup>+</sup>                                 |
| AsF <sub>3</sub> (liquid) | As+, AsF+ F <sub>2</sub> +                       | As <sup>+</sup>                                |

# **Uniformity of implanted dose:**

Within-Wafer-Nonuniformity (WIWNU): 1 ... 2 %

Wafer-to-Wafer-Nonuniformity (WTWNU): < 5 %



# **Schematic set-up of an implantation tool**

