CLAIMS

1. A compound represented by the formula

5 wherein

ring A is a ring optionally having 1 to 3 substituents;

ring B is a 1,2-azole ring optionally further having 1 to 3 substituents;

Xa, Xb and Xc

are the same or different and each is a bond, -O-,
-S-, -SO-, -SO₂-, -CO-, -CS-, -CR¹(OR²)-, -NR³-, -CONR³or -NR³CO- (R¹ is a hydrogen atom or an optionally
substituted hydrocarbon group, R² is a hydrogen atom or
a hydroxy-protecting group, and R³ is a hydrogen atom,
an optionally substituted hydrocarbon group or an
amino-protecting group);

Ya is a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

Yb and Yc

are the same or different and each is a bond or a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

ring C is a monocyclic aromatic ring optionally further having 1 to 3 substituents; and

represents -OR⁴ (R⁴ is a hydrogen atom or an optionally substituted hydrocarbon group) or -NR⁵R⁶ (R⁵ and R⁶ are the same or different and each is a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, or R⁵ and R⁶ form, together with the adjacent nitrogen atom, an optionally substituted heterocyclic ring), provided that,

(1) when the 1,2-azole ring represented by ring B is

pyrazole, ring C is not thiadiazole or oxadiazole;
(2) when the 1,2-azole ring represented by ring B is isoxazole, ring C is not an optionally substituted pyridone; and

(3) when the 1,2-azole ring represented by ring B is pyrazole and Xa and Xb are each a bond, ring C is not a benzene ring,

or a salt thereof.

- 10 2. The compound of claim 1, wherein the ring represented by ring A is an aromatic ring.
 - 3. The compound of claim 2, wherein the aromatic ring is a benzene ring, a pyridine ring or a pyridazine ring.

15

- 4. The compound of claim 1, wherein the 1,2-azole ring represented by ring B is pyrazole.
- 5. The compound of claim 1, wherein the substituent that ring B is optionally further having is a hydrocarbon group.
 - 6. The compound of claim 1, wherein the substituent that ring B is optionally further having is an alkoxy group.
- 25 7. The compound of claim 1, wherein Ya is C_{1-6} alkylene or C_{2-6} alkenylene.
 - 8. The compound of claim 1, wherein Xb is -O-, -S-, -SO-, -SO₂-, -CO-, -CS-, -CR¹(OR²)-, -NR³-, -CONR³- or -NR³CO- (R¹ is a
- hydrogen atom or an optionally substituted hydrocarbon group, R^2 is a hydrogen atom or a hydroxy-protecting group, and R^3 is a hydrogen atom, an optionally substituted hydrocarbon group or an amino-protecting group).
- 35 9. The compound of claim 1, wherein the monocyclic aromatic

ring represented by ring C is a benzene ring.

10. The compound of claim 1, wherein the monocyclic aromatic ring represented by ring C is pyrazole.

5

- 11. The compound of claim 1, wherein R represents $-\mathrm{OR}^4$ (R^4 is a hydrogen atom or an optionally substituted hydrocarbon group).
- 12. The compound of claim 1, wherein Xa is a bond.

10

- 13. The compound of claim 1, wherein Xb is -O-.
- 14. The compound of claim 1, wherein Yb is a bond.
- 15 15. The compound of claim 1, wherein Xc is a bond or -O-.
 - 16. The compound of claim 1, wherein Yc is C_{1-6} alkylene or C_{2-6} alkenylene.
- 20 17. The compound of claim 1, which is 3-[1-phenyl-3-(4-{3-[4-(trifluoromethyl)phenyl]-5-isoxazolyl}butoxy)-1H-pyrazol-5yl]propionic acid;
 - 2-[3-(3-(3-ethoxy-1-[5-(trifluoromethyl)-2-pyridyl]-1H-pyrazol-4-yl}propoxy)phenoxy]-2-methylpropionic acid;
- 3-[2-ethoxy-4-(3-{3-ethoxy-1-[5-(trifluoromethyl)-2-pyridyl]1H-pyrazol-4-yl}propoxy)phenyl]propionic acid;
 - 3-[3-(3-(3-ethoxy-1-[5-(trifluoromethyl)-2-pyridyl]-1H-
 - pyrazol-4-yl}propoxy)-1-phenyl-1H-pyrazol-5-yl]propionic acid;
 - [1-phenyl-3-(4-{3-propyl-1-[5-(trifluoromethyl)-2-pyridinyl]-
- 30 1H-pyrazol-4-yl}butoxy)-1H-pyrazol-4-yl]acetic acid;
 - [2-(3-(3-isopropyl-1-[5-(trifluoromethyl)-2-pyridyl]-1H-
 - pyrazol-4-yl}propoxy)-3-methoxyphenyl]acetic acid;
 - [2-(3-(3-(1-ethylpropyl)-1-[5-(trifluoromethyl)-2-pyridyl]-1H-
 - pyrazol-4-yl}propoxy)-3-methoxyphenyl]acetic acid;
- 35 $(2-{3-[1-(5-chloro-2-pyridyl)-3-(1-ethylpropyl)-1H-pyrazol-4-$

yl]propoxy}-3-methoxyphenyl)acetic acid;

[3-ethyl-2-(3-{3-isopropyl-1-[6-(trifluoromethyl)pyridazin-3-yl]-1H-pyrazol-4-yl}propoxy)phenyl]acetic acid;

[2-(3-{3-isopropyl-1-[6-(trifluoromethyl)pyridazin-3-yl]-1H-

- pyrazol-4-yl}propoxy)-3-methoxyphenyl]acetic acid;
 [3-(3-{3-isopropyl-1-[5-(trifluoromethyl)-2-pyridinyl]-1Hpyrazol-4-yl}propoxy)-1-methyl-1H-pyrazol-4-yl]acetic acid;
 [1-ethyl-5-(3-{3-isopropyl-1-[5-(trifluoromethyl)-2pyridinyl]-1H-pyrazol-4-yl}propoxy)-1H-pyrazol-4-yl]acetic
- 10 acid;

[1-ethyl-5-(3-{3-propyl-1-[5-(trifluoromethyl)-2-pyridinyl]1H-pyrazol-4-yl}propoxy)-1H-pyrazol-4-yl]acetic acid;
(2-{3-[1-(5-bromo-2-pyridinyl)-3-(1-ethylpropyl)-1H-pyrazol-4yl]propoxy}-3-methoxyphenyl)acetic acid; or

- 15 [2-(3-{3-tert-butyl-1-[6-(trifluoromethyl)pyridazin-3-yl]-1H-pyrazol-4-yl}propoxy)-3-methylphenyl]acetic acid.
 - 18. A prodrug of the compound of claim 1 or a salt thereof.
- 20 19. A pharmaceutical composition comprising the compound of claim 1 or a salt thereof or a prodrug thereof.
 - 20. An agent for the prophylaxis or treatment of diabetes, which comprises a compound represented by the formula

25

30

wherein

ring A is a ring optionally having 1 to 3 substituents;

ring B is a 1,2-azole ring optionally further having 1 to 3 substituents;

Xa, Xb and Xc

are the same or different and each is a bond, -0-, -S-, -SO-, $-SO_2-$, -CO-, -CS-, $-CR^1$ (OR^2)-, $-NR^3-$, $-CONR^3-$

or -NR³CO- (R¹ is a hydrogen atom or an optionally substituted hydrocarbon group, R² is a hydrogen atom or a hydroxy-protecting group, and R³ is a hydrogen atom, an optionally substituted hydrocarbon group or an amino-protecting group);

Ya is a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

Yb and Yc

5

10

are the same or different and each is a bond or a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

ring C is a monocyclic aromatic ring optionally further having 1 to 3 substituents; and

represents -OR⁴ (R⁴ is a hydrogen atom or an optionally substituted hydrocarbon group) or -NR⁵R⁶ (R⁵ and R⁶ are the same or different and each is a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, or R⁵ and R⁶ form, together with the adjacent nitrogen atom, an optionally substituted heterocyclic ring),

or a salt thereof or a prodrug thereof.

21. An agent for the prophylaxis or treatment of hyperlipidemia, which comprises a compound represented by the formula

wherein

ring A is a ring optionally having 1 to 3 substituents;

ring B is a 1,2-azole ring optionally further having 1 to 3 substituents;

Xa, Xb and Xc

are the same or different and each is a bond, -O-,

-S-, -SO-, -SO₂-, -CO-, -CS-, -CR¹(OR²)-, -NR³-, -CONR³- or -NR³CO- (R¹ is a hydrogen atom or an optionally substituted hydrocarbon group, R^2 is a hydrogen atom or a hydroxy-protecting group, and R^3 is a hydrogen atom, an optionally substituted hydrocarbon group or an amino-protecting group);

Ya is a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

Yb and Yc

5

are the same or different and each is a bond or a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

ring C is a monocyclic aromatic ring optionally further having 1 to 3 substituents; and

represents -OR⁴ (R⁴ is a hydrogen atom or an optionally substituted hydrocarbon group) or -NR⁵R⁶ (R⁵ and R⁶ are the same or different and each is a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, or R⁵ and R⁶ form, together with the adjacent nitrogen atom, an optionally substituted heterocyclic ring),

or a salt thereof or a prodrug thereof.

22. An agent for the prophylaxis or treatment of arteriosclerosis, which comprises a compound represented by the formula

wherein

ring A is a ring optionally having 1 to 3 substituents; ring B is a 1,2-azole ring optionally further having 1 to 3 substituents;

Xa, Xb and Xc

are the same or different and each is a bond, -O-, -S-, -SO-, $-SO_2-$, -CO-, -CS-, $-CR^1(OR^2)-$, $-NR^3-$, $-CONR^3-$ or $-NR^3CO-$ (R^1 is a hydrogen atom or an optionally substituted hydrocarbon group, R^2 is a hydrogen atom or a hydroxy-protecting group, and R^3 is a hydrogen atom, an optionally substituted hydrocarbon group or an amino-protecting group);

Ya is a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

10 Yb and Yc

5

20

25

are the same or different and each is a bond or a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

ring C is a monocyclic aromatic ring optionally further having 1 to 3 substituents; and

represents $-OR^4$ (R^4 is a hydrogen atom or an optionally substituted hydrocarbon group) or $-NR^5R^6$ (R^5 and R^6 are the same or different and each is a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, or R^5 and R^6 form, together with the adjacent nitrogen atom, an optionally substituted heterocyclic ring), provided that, when the 1,2-azole ring represented by ring B is isoxazole, ring C is not an optionally substituted pyridone,

or a salt thereof or a prodrug thereof.

23. An agent for the prophylaxis or treatment of impaired glucose tolerance, which comprises a compound represented by
30 the formula

wherein

ring A is a ring optionally having 1 to 3 substituents;

ring B is a 1,2-azole ring optionally further having 1 to 3 substituents;

Xa, Xb and Xc

are the same or different and each is a bond, -O-,
-S-, -SO-, -SO₂-, -CO-, -CS-, -CR¹(OR²)-, -NR³-, -CONR³or -NR³CO- (R¹ is a hydrogen atom or an optionally
substituted hydrocarbon group, R² is a hydrogen atom or
a hydroxy-protecting group, and R³ is a hydrogen atom,
an optionally substituted hydrocarbon group or an
amino-protecting group);

Ya is a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

Yb and Yc

are the same or different and each is a bond or a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

ring C is a monocyclic aromatic ring optionally further having 1 to 3 substituents; and

20 R represents -OR⁴ (R⁴ is a hydrogen atom or an optionally substituted hydrocarbon group) or -NR⁵R⁶ (R⁵ and R⁶ are the same or different and each is a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, or R⁵ and R⁶ form, together with the adjacent nitrogen atom, an optionally substituted heterocyclic ring),

or a salt thereof or a prodrug thereof.

24. A retinoid-related receptor function regulating agent,
30 which comprises a compound represented by the formula

wherein

ring A is a ring optionally having 1 to 3 substituents;
ring B is a 1,2-azole ring optionally further having 1 to 3
substituents;

Xa, Xb and Xc

are the same or different and each is a bond, -O-,
-S-, -SO-, -SO₂-, -CO-, -CS-, -CR¹(OR²)-, -NR³-, -CONR³or -NR³CO- (R¹ is a hydrogen atom or an optionally
substituted hydrocarbon group, R² is a hydrogen atom or
a hydroxy-protecting group, and R³ is a hydrogen atom,
an optionally substituted hydrocarbon group or an
amino-protecting group);

Ya is a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

Yb and Yc

are the same or different and each is a bond or a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

ring C is a monocyclic aromatic ring optionally further having 1 to 3 substituents; and

represents -OR⁴ (R⁴ is a hydrogen atom or an optionally substituted hydrocarbon group) or -NR⁵R⁶ (R⁵ and R⁶ are the same or different and each is a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, or R⁵ and R⁶ form, together with the adjacent nitrogen atom, an optionally substituted heterocyclic ring),

or a salt thereof or a prodrug thereof.

- 25. The agent of claim 24, which is a peroxisome proliferator— activated receptor ligand.
 - 26. The agent of claim 24, which is a retinoid X receptor ligand.
- 35 27. An insulin resistance improving agent, which comprises a

compound represented by the formula

wherein

⁵ ring A is a ring optionally having 1 to 3 substituents;

ring B is a 1,2-azole ring optionally further having 1 to 3 substituents;

Xa, Xb and Xc

are the same or different and each is a bond, -O-,
-S-, -SO-, -SO₂-, -CO-, -CS-, -CR¹(OR²)-, -NR³-, -CONR³or -NR³CO- (R¹ is a hydrogen atom or an optionally
substituted hydrocarbon group, R² is a hydrogen atom or
a hydroxy-protecting group, and R³ is a hydrogen atom,
an optionally substituted hydrocarbon group or an
amino-protecting group);

Ya is a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

Yb and Yc

are the same or different and each is a bond or a

divalent aliphatic hydrocarbon residue having 1 to 20

carbon atoms;

ring C is a monocyclic aromatic ring optionally further having 1 to 3 substituents; and

represents $-OR^4$ (R^4 is a hydrogen atom or an optionally substituted hydrocarbon group) or $-NR^5R^6$ (R^5 and R^6 are the same or different and each is a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, or R^5 and R^6 form, together with the adjacent nitrogen atom, an optionally substituted heterocyclic ring),

or a salt thereof or a prodrug thereof.

28. A method for the prophylaxis or treatment of diabetes in a

mammal in need thereof, which comprises administering to the mammal a compound represented by the formula

⁵ wherein

ring A is a ring optionally having 1 to 3 substituents;

ring B is a 1,2-azole ring optionally further having 1 to 3 substituents;

Xa, Xb and Xc

are the same or different and each is a bond, -O-,
-S-, -SO-, -SO₂-, -CO-, -CS-, -CR¹(OR²)-, -NR³-, -CONR³or -NR³CO- (R¹ is a hydrogen atom or an optionally
substituted hydrocarbon group, R² is a hydrogen atom or
a hydroxy-protecting group, and R³ is a hydrogen atom,
an optionally substituted hydrocarbon group or an
amino-protecting group);

Ya is a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

Yb and Yc

are the same or different and each is a bond or a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

ring C is a monocyclic aromatic ring optionally further having 1 to 3 substituents; and

represents -OR⁴ (R⁴ is a hydrogen atom or an optionally substituted hydrocarbon group) or -NR⁵R⁶ (R⁵ and R⁶ are the same or different and each is a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, or R⁵ and R⁶ form, together with the adjacent nitrogen atom, an optionally substituted heterocyclic ring),

or a salt thereof or a prodrug thereof.

29. Use of a compound represented by the formula

wherein

⁵ ring A is a ring optionally having 1 to 3 substituents;

ring B is a 1,2-azole ring optionally further having 1 to 3 substituents;

Xa, Xb and Xc

are the same or different and each is a bond, -O-,
-S-, -SO-, -SO₂-, -CO-, -CS-, -CR¹(OR²)-, -NR³-, -CONR³or -NR³CO- (R¹ is a hydrogen atom or an optionally
substituted hydrocarbon group, R² is a hydrogen atom or
a hydroxy-protecting group, and R³ is a hydrogen atom,
an optionally substituted hydrocarbon group or an
amino-protecting group);

Ya is a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

Yb and Yc

are the same or different and each is a bond or a

divalent aliphatic hydrocarbon residue having 1 to 20

carbon atoms;

ring C is a monocyclic aromatic ring optionally further having 1 to 3 substituents; and

represents -OR⁴ (R⁴ is a hydrogen atom or an optionally substituted hydrocarbon group) or -NR⁵R⁶ (R⁵ and R⁶ are the same or different and each is a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, or R⁵ and R⁶ form, together with the adjacent nitrogen atom, an optionally substituted heterocyclic ring),

or a salt thereof or a prodrug thereof, for the production of an agent for the prophylaxis or treatment of diabetes.

30. A GPR40 receptor function modulator comprising a compound represented by the formula

5

15

25

30

wherein

ring A is a ring optionally having 1 to 3 substituents;

ring B is 1,2-azole ring optionally further having 1 to 3 substituents;

10 Xa, Xb and Xc

are the same or different and each is a bond, -O-, -S-, -SO-, $-SO_2-$, -CO-, -CS-, $-CR^1$ (OR^2)-, $-NR^3-$, $-CONR^3-$ or $-NR^3CO-$ (R^1 is a hydrogen atom or an optionally substituted hydrocarbon group, R^2 is a hydrogen atom or hydroxy-protecting group, and R^3 is a hydrogen atom, an optionally substituted hydrocarbon group or an aminoprotecting group);

Ya is a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

20 Yb and Yc

are the same or different and each is a bond or a divalent aliphatic hydrocarbon residue having 1 to 20 carbon atoms;

ring C is a monocyclic aromatic ring optionally further having 1 to 3 substituents; and

represents -OR⁴ (R⁴ is a hydrogen atom or an optionally substituted hydrocarbon group) or -NR⁵R⁶ (R⁵ and R⁶ are the same or different and each is a hydrogen atom, an optionally substituted hydrocarbon group or an optionally substituted heterocyclic group, or R⁵ and R⁶ form, together with the adjacent nitrogen atom, an optionally substituted heterocyclic ring),

or a salt thereof or a prodrug thereof.

31. A production method of a compound represented by the formula

wherein the symbols in the formula are as defined in claim 1, or a salt thereof, which comprises subjecting a compound represented by the formula

wherein R¹² is an optionally substituted hydrocarbon group and other symbols are as defined above, or a salt thereof to a hydrolysis reaction.

15 32. A production method of a compound represented by the formula

wherein n is an integer of 0 to 5 and other symbols are as

20 defined in claim 1, or a salt thereof, which comprises
subjecting a compound represented by the formula

wherein R¹¹ is CHO or COOR¹³ (R¹³ is an alkyl group having 1-6 carbon atoms), and other symbols are as defined above, or a salt thereof to a reduction reaction.

33. A compound represented by the formula

wherein n is an integer of 0 to 5, R^{13a} is CH_2OH , CHO or $COOR^{14}$ 5 (R^{14} is an alkyl group having 1-6 carbon atoms), and other symbols are as defined in claim 1, or a salt thereof.