www.wireless-road.com

Building Armbian image for GW-01 from sources.

Compiling image from sources.

Clone Armbian OS project:

```
git clone --depth 1 https://github.com/armbian/build cd build
```

Run following command to compile image.

```
./compile.sh
```

But before compilation process following window will appears:

Select «Full OS image for flashing» and press «0k». In following choose «Do not change the kernel configuration»:

Then select «orangepizero» configuration:

```
Choose a board

Select the target board. Displaying:
- Officially supported boards

T(-)

orangepipc
orangepipcus
orangepiplus2e
orangepiplus
orangepiptus
H3 quad core 1GB RAM WiFi eMMC
orangepiptus
H3 quad core 2GB RAM WiFi eMMC
orangepiptus
H3 quad core 1GB/2GB RAM WiFi eMMC
orangepiptus
H5 quad core 2GB RAM WiFi eMMC
orangepiprime
Orangepivtn
Orangepivtn
A64 quad core 256MB Wi-Fi + dual Ethernet
Orangepizero
Orangepizeroplus2-h3
Orangepizeroplus2-h5
H2+ quad core 512MB SoC Wi-Fi/Ethernet
Orangepizeroplus2-h5
H5 quad core 512MB SoC Wi-Fi/BT

V(+)

S7%

C OK

Show CSC/WIP/EOS>
C Cancel

Author: Igor Pecovnik

Au
```

«Mainline» kernel branch:

```
Armbian building script, http://www.armbian.com | Author: Igor Pecovnik

Choose a kernel

Select the target kernel branch
Exact kernel versions depend on selected board

default Vendor provided / legacy (3.4.x - 4.4.x)

Mainline (@kernel.org) (4.x)

dev Development version (4.x)

Cok > <Cancel>
```

«stretch» release:

Then compilation process will be started. You need to wait while it will be finished. At the end of this process you should see following:

```
o.k. ] Free space: [ SD card ]
                     Used Avail Use% Mounted on
Filesystem
               Size
ludev
                16G
                        0
                            16G
                                  0% /dev
tmpfs
               3.2G
                     9,5M
                           3,2G
                                  1% /run
/dev/sda2
               409G
                     295G
                            93G
                                 77% /
                                  2% /dev/shm
tmpfs
                16G
                     194M
                            16G
               5,0M
                     4,0K
                           5,0M
tmpfs
                                  1% /run/lock
                                  0% /sys/fs/cgroup
tmpfs
                16G
                            16G
                        0
                                  2% /boot/efi
/dev/sda1
                     5,9M
               511M
                           506M
                                  1% /run/user/1000
                           3,2G
tmpfs
               3,2G
                      88K
                                  /dev/sdc1
               1,9G
                        0
                           1,9G
                                                    /linux/orangePi/armbian/bu
tmpfs
                21G
                     830M
                            21G
                                  4% /home/
ild/.tmp/rootfs-next-orangepizero-stretch-no
               1,1G 845M 196M 82% /home/
/dev/loop0p1
                                                 /linux/orangePi/armbian/bu
ild/.tmp/mount-next-orangepizero-stretch-no
 o.k. ] Writing U-boot bootloader [ /dev/loop0 ]
 o.k. ] Done building [ /home/ // // /linux/orangePi/armbian/build/output/im
 ges/Armbian 5.41 Orangepizero Debian stretch next 4.14.40.img ]
      1 Runtime [ 72 min ]
```

There is image to write on microSD card.

Flashing image in microSD card.

```
sudo dd if=output/images/Armbian_5.41_Orangepizero_Debian_stretch_next_4.14.40.img
of=/dev/sdx
```

Where /dev/sdx is your microSD card. Make sure that you flash in SD card. After that plug microSD card to GW-01 and power up the device.

Remote access via SSH.

Look for orangepizero device on your DHCP server:

Now connect to it via SSH:

ssh root@192.168.100.7

User/pass to login: root/1234.

You will be asked to change password and add new user.

After that we ready to configure spi interface and install required lorawan packets.

Enabling SPI on armbian on first booting

Check that spidev not exist in list of devices:

ls /dev/spidev*

Add params to config file to enable SPI interface:

nano /boot/armbianEnv.txt

Change overlays param to: overlays=usbhost2 usbhost3 spi-spidev spi-add-cs1

Add following at the end of file: param_spidev_spi_bus=1 param_spidev_spi_cs=1

Exit with file saving. Configure dts tree:

```
cp /boot/dtb/overlay/sun8i-h3-spi-spidev.dtbo ~
cd ~
dtc -I dtb -0 dts -o sun8i-h3-spi-spidev.dts ./sun8i-h3-spi-spidev.dtbo
nano sun8i-h3-spi-spidev.dts
```

```
Set folowing in fragment@2:
status = «ok»;
reg = <0x1>;
Exit with file saving.
Then compile new dtbo file and replace old one with that:
```

```
rm sun8i-h3-spi-spidev.dtbo
dtc -I dts -0 dtb -o sun8i-h3-spi-spidev.dtbo ./sun8i-h3-spi-spidev.dts
sudo rm /boot/dtb/overlay/sun8i-h3-spi-spidev.dtbo
sudo cp sun8i-h3-spi-spidev.dtbo /boot/dtb/overlay/
```

After that reboot:

reboot

After reboot connect to the gateway via ssh as user you created previously.

ssh al@192.168.100.7

Now you should see spidev1.1 in list of your devices:

ls /dev/spidev*

SX1301 reset script.

Create SX1301 reset script:

```
cd ~
touch iC880-SPI_reset.sh
nano iC880-SPI_reset.sh
```

Enter following to that file and save it:

```
#!/bin/bash
echo "11" > /sys/class/gpio/export
sleep 2
echo "out" > /sys/class/gpio/gpio11/direction
echo "0" > /sys/class/qpio/qpio11/value
sleep 1
echo "1" > /sys/class/gpio/gpio11/value
sleep 1
echo "0" > /sys/class/gpio/gpio11/value
sleep 1
echo "2" > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio1/direction
echo "1" > /sys/class/gpio/gpio1/value
sleep 5
echo "0" > /sys/class/gpio/gpio1/value
sleep 1
echo "0" > /sys/class/gpio/gpio1/value
```

Then set is as executable:

sudo chmod +x iC880-SPI_reset.sh

Installing lora_gateway.

Download and modify the library:

```
cd ~
git clone https://github.com/Lora-net/lora_gateway.git
cd lora_gateway
nano libloragw/src/loragw_spi.native.c
```

Change /dev/spidev0.0 to /dev/spidev1.1 and save file. Complie the library:

make

Installing packet_forwarder.

Download and compile the library:

```
cd ~
git clone https://github.com/Lora-net/packet_forwarder.git
cd packet_forwarder/
./compile.sh
```

Set lora server IP address:

```
cd lora_pkt_fwd/cfg/
cp global_conf.json.PCB_E286.EU868.basic ../global_conf.json
nano global_conf.json
```

Set «server_port_up» and «server_port_down» to port your lora server uses. Set «server_address» to IP address of lora server you use. For example:

```
"gateway_conf": {
    "gateway_ID": "AA555A0000000000",
    /* change with default server address/ports, or overwrite in local_conf$
    "server_address": "192.168.100.5",
    "serv_port_up": 1700,
    "serv_port_down": 1700,
    /* adjust the following parameters for your network */
    "keepalive_interval": 10,
    "stat_interval": 30,
    "push_timeout_ms": 100,
    /* forward only valid packets */
    "forward_crc_valid": true,
    "forward_crc_error": false,
    "forward_crc_disabled": false
}
```

Now all ready to run the gateway.

Running the gateway.

Run this at every power up of gateway:

```
cd ~
sudo ./iC880-SPI_reset.sh
sudo chmod 777 /dev/spidev1.1
cd packet_forwarder/lora_pkt_fwd
./lora_pkt_fwd
```