MLT Homework set 1

Due 20 September 2017 before 14:00 either via elo.mastermath.nl or on paper

1 Notation and Definitions

Definition 1. Fix a differentiable convex function $\phi : \mathbb{R}^k \to \mathbb{R}$. The Bregman divergence from $x \in \mathbb{R}^k$ to $y \in \mathbb{R}^k$ generated by ϕ is

$$B_{\phi}(x,y) = \phi(x) - \phi(y) - \langle x - y, \nabla \phi(y) \rangle$$

where $\langle x, y \rangle$ denotes the dot product $\sum_{i=1}^k x_i y_i$, and $\nabla \phi(y)$ is the gradient (vector of partial derivatives) of ϕ at y.

Definition 2. Let us write $[k] = \{1, \ldots, k\}$, and let us denote the probability simplex by $\triangle_k = \{x \in \mathbb{R}^k \mid \sum_{i=1}^k x_i = 1 \text{ and } \forall i \, x_i \geq 0\}$. Fix a loss function $\ell : [k] \times \triangle_k \to \mathbb{R}$, and let

$$L(p,q) = \sum_{i=1}^{k} p_i \ell(i,q)$$

be its associated risk. A loss function is called *proper* if for all $p, q \in \triangle_k$

$$L(p,p) \leq L(p,q).$$

2 Exercises

1. [4 pt, one each] In this question we are following the common special-case notation for 2 outcomes, where outcomes are $\{0,1\}$ and distributions on these 2 outcomes are parametrised by the probability $q \in [0,1]$ of observing the outcome 1.

Determine (prove or disprove) whether the following losses are proper.

(a)
$$\ell(0,q) \ = \ q \qquad \ell(1,q) \ = \ 1-q$$

(b)
$$\ell(0,q) = q^2 \qquad \ell(1,q) = (1-q)^2$$

(c)
$$\ell(0,q) \; = \; \sqrt{\frac{q}{1-q}} \qquad \ell(1,q) \; = \; \sqrt{\frac{1-q}{q}}$$

(d)
$$\ell(0,q) = \sqrt{q} \qquad \ell(1,q) = \sqrt{1-q}$$

- 2. [3 pt, one each] Let ϕ be any differentiable convex function.
 - (a) Show that $B_{\phi}(x,x)=0$.
 - (b) Show that $B_{\phi}(x,y) \geq 0$.
 - (c) Show that $B_{\phi}(x,y)$ is convex in x.
- 3. [4 pt] Consider a differentiable convex function $\phi: \triangle_k \to \mathbb{R}$. Let δ^i be the i^{th} standard basis vector (i.e. $\delta^i_i = 1$ and $\delta^i_j = 0$ for $j \neq i$). Define the loss function $\ell_\phi: [k] \times \triangle_k \to \mathbb{R}$ by

$$\ell_{\phi}(i,q) = B_{\phi}(\delta^i,q)$$

Show that ℓ_{ϕ} is proper.

4. [3 pt] Consider a random variable $X \in \mathbb{R}^k$ with mean $\mu = \mathbb{E}[X]$. Show

$$\mu \in \arg\min_{v \in \mathbb{R}^k} \mathbb{E}\left[B_{\phi}(X, v)\right].$$

5. [4 pt, 2 each] A final grade between 1 and 10 is composed of 40% homework and 60% exams. There are 13 homework sets of 5 questions each. For each homework set, one question is selected uniformly at random and is graded. There are 2 exams with 5 questions each, which are all graded. Every graded question receives a binary grade: full points or no points.

Imagine a student that hands in all homeworks and exams, and that answers each question correctly independently at random with probability p = 0.8.

- (a) What is the probability that the student gets at least grade 7.5. Calculate 3 significant digits.
- (b) In an ideal world all questions would be graded. Calculate the probability that the same student gets at least grade 7.5. Calculate 3 significant digits.