Macroéconomie 1 (4/6)

Le modèle de croissance avec variété des biens (Romer, 1990)

Olivier Loisel

ENSAE

Septembre – Décembre 2022

Caractéristiques clefs du modèle

- Le modèle de Romer (1990) explique la croissance de long terme par un progrès technique volontaire et rémunéré, la rémunération prenant la forme d'une rente de monopole protégée par secret ou par brevet.
- Il modélise ce progrès technique comme l'augmentation de la variété des biens (d'où l'appellation "modèle de croissance avec variété des biens" ou "modèle d'élargissement de la gamme des produits").
- La constance des rendements de la variété des biens va
 - générer de la croissance à long terme,
 - entraîner l'absence de convergence conditionnelle.
- L'absence de concurrence pure et parfaite, source de la rémunération du progrès technique, va donner un rôle à la politique économique.

Littérature

- Dans les modèles de croissance avec variété des biens, les biens dont la variété augmente peuvent être des biens
 - de production, comme dans Romer (1990),
 - de consommation, comme dans Grossman et Helpman (1991, ch. 3).
- Dans ce chapitre, on se limite à une version simplifiée du modèle de Romer (1990), dans laquelle le coût de la recherche et développement (

 R&D, nécessaire à l'invention de nouveaux types de bien) est spécifié en termes de biens, comme dans Rivera-Batiz et Romer (1991).
- La partie 5 des TDs étudie la version originale du modèle de Romer (1990), dans laquelle le coût de la R&D est spécifié en termes de *travail*.

Dépenses de R&D aux États-Unis, 1929-2013

Source : Jones (2015). "Software and entertainment" : logiciels et divertissement. "Government/private R&D" : R&D publique/privée.

Part des chercheurs dans la population...

...dans différents pays ou groupes de pays, 1950-2011

Source : Jones (2015). Noms des pays et groupes de pays en anglais.

Nombre de nouveaux brevets dans le monde, 1985-2013

Source : Organisation Mondiale de la Propriété Intellectuelle.

Aperçu général du modèle

- Les **producteurs de bien final** utilisent des biens intermédiaires et du travail pour produire des biens finaux.
- Les inventeurs-producteurs de bien intermédiaire
 - empruntent auprès des ménages pour inventer des types de bien int.,
 - utilisent des biens finaux pour produire des biens intermédiaires,
 - utilisent leurs profits pour rembourser les ménages.

• Les ménages

- fournissent le travail,
- utilisent les biens finaux pour consommer et pour prêter aux inv.-prod.
- Le **taux d'épargne** (quantité de biens finaux prêtés / quantité de biens finaux consommés ou prêtés) est **endogène**, choisi optim. par les ménages.

Biens finaux et biens intermédiaires

- Un seul type de bien final, utilisé pour
 - la consommation,
 - la production de biens intermédiaires,
 - l'invention de types de bien intermédiaire.
- Un continuum de types de bien intermédiaire, utilisés pour la production de biens finaux.
- L'hypothèse que
 - les biens finaux servent à produire des biens intermédiaires,
 - les biens intermédiaires servent à produire des biens finaux, est faite par souci de simplicité, pas par souci de réalisme.
- Le remplacement de cette hypothèse par une hypothèse plus réaliste
 - compliquerait singulièrement l'exposition du modèle,
 - n'affecterait pas qualitativement les résultats.

Agents privés, marchés

- Trois sortes d'agents privés :
 - des ménages,
 - des producteurs de bien final,
 - des inventeurs-producteurs de bien intermédiaire.
- On obtient que, pour chaque type de bien intermédiaire, il n'y a qu'un seul inventeur-producteur de bien intermédiaire de ce type (d'où absence de concurrence pure et parfaite).
- Marchés en concurrence pure et parfaite :
 - marché des prêts,
 - marché du travail,
 - marché des biens finaux.
- Marchés en concurrence monopolistique : pour chaque type de bien intermédiaire, le marché des biens intermédiaires de ce type.

Origine de l'offre et de la demande sur chaque marché

• Marché des prêts :

- offre des ménages,
- demande des inventeurs-producteurs de bien interm. (pour inventer).

Marché du travail :

- offre des ménages,
- demande des producteurs de bien final.

Marché des biens finaux :

- offre des producteurs de bien final,
- *demande* des ménages (pour consommer) et des inventeurs-producteurs de bien intermédiaire (pour inventer et pour produire).

• Marché des biens intermédiaires de type j :

- offre de l'inventeur-producteur du bien intermédiaire de type j,
- *demande* des producteurs de bien final.

Variables exogènes

Ni flux ni stocks :

- temps continu, indicé par t,
- prix des biens finaux = numéraire $\equiv 1$,
- (grand) nombre I de producteurs de bien final.

Flux:

offre de travail = 1 par tête.

Stocks :

- population L > 0 (constante dans le temps),
- taille initiale $N_0 > 0$ du continuum de types de bien intermédiaire.

- Prix à la date t :
 - salaire réel w_t ,
 - taux d'intérêt réel r_t,
 - prix réel $P_{j,t}$ des biens intermédiaires de type j.
- Quantités flux liés au producteur i de bien final à la date t:
 - offre de biens finaux $Y_{i,t}$,
 - demande de travail $L_{i,t}$,
 - demande $X_{i,j,t}$ de biens intermédiaires de type j.
- Quantités flux liés au producteur de bien intermédiaire de type j à la date t :
 - offre $X_{j,t}$ de biens intermédiaires de type j,
 - demande de biens finaux $Y_{i,t}$ (à ne pas confondre avec $Y_{i,t}$).

Variables endogènes II

- Quantités flux agrégés à la date t :
 - production de biens finaux agrégée $Y_t \equiv \sum_{i=1}^{l} Y_{i,t}$,
 - demande de travail agrégée $L_t \equiv \sum_{i=1}^{l} L_{i,t}$,
 - ullet consommation agrégée C_t .
- Quantités stocks à la date t :
 - taille N_t du continuum de types de bien intermédiaire (sauf en t=0),
 - montant réel agrégé des prêts B_t .

Plan du chapitre

- Introduction
- Conditions d'équilibre
- 3 Détermination de l'équilibre
- Sous-optimalité de l'équilibre
- Mise en œuvre de l'équilibre optimal
- Conclusion
- Annexe

Conditions d'équilibre

- Introduction
- Conditions d'équilibre
 - Comportement des ménages
 - Comportement des producteurs de bien final
 - Comportement des inventeurs-producteurs de bien intermédiaire et équilibre des marchés
- Oétermination de l'équilibre
- Sous-optimalité de l'équilibre
- Mise en œuvre de l'équilibre optimal
- Conclusion
- Annexe

Comportement des ménages

- Les ménages sont modélisés exactement comme au chapitre 2, avec
 - une élasticité de substitution intertemporelle constante, égale à $\frac{1}{a}$,
 - un taux de croissance démographique nul (n = 0).
- Leur comportement est donc caractérisé par les conditions d'équilibre

•
$$b_t = w_t + r_t b_t - c_t$$
 (contrainte budgétaire instantanée),

•
$$\frac{c_t}{c_t} = \frac{r_t - \rho}{\theta}$$
 (équation d'Euler),

•
$$\lim_{t\to +\infty}\left\{b_t e^{-\int_0^t r_{\tau} d\tau}\right\} = 0$$
 (condition de transversalité),

οù

- $c_t \equiv \frac{C_t}{L}$ est la consommation par tête,
- ρ le taux de préférence pour le présent $(\rho > 0)$,
- $b_t \equiv \frac{B_t}{I}$ le montant total des prêts en unités de bien final par tête.

Fonction de production du bien final

• Fonction de production du producteur *i* de bien final :

$$Y_{i,t} = F[L_{i,t}, (X_{i,j,t})_{0 \le j \le N_t}, N_t] \equiv AL_{i,t}^{1-\alpha} \int_0^{N_t} X_{i,j,t}^{\alpha} dj$$

où A > 0 et $0 < \alpha < 1$.

- Donc, à N_t donné, F satisfait les mêmes propriétés qu'aux chapitres 1, 2 et 3.
- La forme "additivement séparable" de F implique que le produit marginal de $X_{i,j,t}$ est indépendant de $X_{i,j',t}$ pour $j' \neq j$.
- Donc, un nouveau type de bien n'est ni un substitut direct, ni un complément direct aux types de bien existants.

Rendements des biens intermédiaires

- $\frac{\partial^2 Y_{i,t}}{\partial X_{i,j,t}^2} < 0$: les rendements de chaque type de bien intermédiaire sont strictement décroissants.
- Si $\forall (j,j') \in [0;N_t]^2$, $X_{i,j,t} = X_{i,j',t} \equiv X_{i,t}$ (ce qui sera le cas à l'équilibre), alors $Y_{i,t} = AL_{i,t}^{1-\alpha}N_tX_{i,t}^{\alpha}$, donc $\frac{\partial^2 Y_{i,t}}{\partial N_t^2} = 0$: les rendements de la variété des biens intermédiaires sont constants.
- Les rendements des biens intermédiaires sont donc
 - strictement décroissants dans la marge intensive,
 - constants dans la marge extensive.
- Le progrès technique, défini comme la hausse de N_t , va générer de la croissance à long terme grâce à la constance des rendements de N_t .
- Une fois inventé, un type de bien intermédiaire n'est jamais oublié ni caduque : comme au chapitre 3, le savoir est cumulatif, et les agents privés sont "des nains sur les épaules de géants".

Problème d'optimisation des producteurs de bien final

- Il n'y a pas de capital, et les biens intermédiaires sont non durables, donc le problème des producteurs de bien final est **instantané**.
- Il y a concurrence pure et parfaite sur le marché des biens finaux, donc chaque producteur de bien final considère les prix de ses facteurs de production comme donnés.
- Par conséquent, à chaque date t, le producteur i de bien final choisit $L_{i,t}$ et les $X_{i,j,t}$ de façon à maximiser son profit **instantané**

$$AL_{i,t}^{1-\alpha} \int_{0}^{N_{t}} X_{i,j,t}^{\alpha} dj - w_{t}L_{i,t} - \int_{0}^{N_{t}} P_{j,t}X_{i,j,t} dj$$

en considérant w_t , les $P_{i,t}$ et N_t comme **donnés**.

Conditions du premier ordre

• Les conditions du premier ordre de ce problème d'optimisation sont

$$w_t = (1 - \alpha) \frac{Y_{i,t}}{L_{i,t}},$$

$$X_{i,j,t} = \left(\frac{\alpha A}{P_{j,t}}\right)^{\frac{1}{1-\alpha}} L_{i,t} \text{ pour tout } j \in [0; N_t].$$

 En utilisant ces conditions pour remplacer w_t et P_{j,t} dans l'expression du profit instantané, on obtient que ce dernier est nul quels que soient L_{i,t} et les X_{i,j,t}.

Coût d'une invention

- On suppose que l'invention de dj nouveaux types de bien intermédiaire (de N_t à $N_t + dj$) est un **processus déterministe** nécessitant l'utilisation de ηdj unités de bien final, où $\eta > 0$.
- Ce coût de R&D ne dépend pas de N_t : on suppose donc en particulier qu'il n'y a pas tendance à la raréfaction des nouvelles idées.
- Ce coût est emprunté auprès des ménages et remboursé par la suite au taux d'intérêt réel r_t.

Bénéfice d'une invention I

- S'il y avait concurrence pure et parfaite sur le marché des biens intermédiaires d'un certain type, alors personne ne souhaiterait inventer ce type car l'invention, coûteuse, ne rapporterait rien.
- On suppose donc que l'inventeur d'un nouveau type de bien intermédiaire est récompensé par une situation de monopole sur le marché des biens intermédiaires de ce type (par secret ou par brevet).
- Les inventions sont donc de nature non-rivale mais exclusive.
- Par souci de simplicité, on suppose qu'un inventeur-producteur conserve sa situation de monopole **perpétuellement**.
- La partie 5 des TDs considère l'hypothèse alternative de situation **tempo- raire** de monopole et en étudie les implications positives et normatives.

Bénéfice d'une invention II

- Fonction de production de l'inventeur-producteur de bien intermédiaire de type j (une fois ce type inventé) : $X_{j,t} = Y_{j,t}$.
- La valeur actualisée du bénéfice de l'invention du type *j*, à toute date *t* postérieure ou égale à la date de cette invention, est donc

$$V_{j,t} = \int_t^{+\infty} (P_{j,\nu} - 1) X_{j,\nu} e^{-\int_t^{\nu} r_{\tau} d\tau} d\nu.$$

• A l'équilibre des marchés des biens interm. de type *j* et du travail,

$$X_{j,\nu} = \sum_{i=1}^{I} X_{i,j,\nu} = \sum_{i=1}^{I} \left(\frac{\alpha A}{P_{j,\nu}}\right)^{\frac{1}{1-\alpha}} L_{i,\nu}$$
$$= \left(\frac{\alpha A}{P_{j,\nu}}\right)^{\frac{1}{1-\alpha}} L_{\nu} = \left(\frac{\alpha A}{P_{j,\nu}}\right)^{\frac{1}{1-\alpha}} L.$$

Bénéfice d'une invention III

• En remplaçant $X_{j,\nu}$ par $\left(\frac{\alpha A}{P_{j,\nu}}\right)^{\frac{1}{1-\alpha}}L$ dans l'expression de $V_{j,t}$, on obtient

$$V_{j,t} = \int_t^{+\infty} (P_{j,\nu} - 1) \left(\frac{\alpha A}{P_{j,\nu}}\right)^{\frac{1}{1-\alpha}} L e^{-\int_t^{\nu} r_{\tau} d\tau} d\nu.$$

- A la date, notée t_j , de l'invention du type j, l'inventeur-producteur du type j choisit $(P_{j,\nu})_{\nu\geq t_j}$, car il est en situation de monopole perpétuel sur le marché des biens intermédiaires de type j, en tenant compte de la fonction de demande $X_{j,\nu}=(\alpha A)^{\frac{1}{1-\alpha}}(P_{j,\nu})^{\frac{-1}{1-\alpha}}L$.
- Il choisit donc $(P_{i,\nu})_{\nu \geq t_i}$ à la date t_i de façon à maximiser

$$V_{t_j} \equiv V_{j,t_j} = \int_{t_i}^{+\infty} (P_{j,\nu} - 1) \left(\frac{\alpha A}{P_{j,\nu}}\right)^{\frac{1}{1-\alpha}} L e^{-\int_{t_j}^{\nu} r_{\tau} d\tau} d\nu$$

en considérant $(r_{\tau})_{\tau \geq t_i}$ comme donné.

Bénéfice d'une invention IV

• Ce problème intertemporel se ramène à un problème instantané : à chaque date $\nu \geq t_j$, l'inventeur-producteur choisit $P_{j,\nu}$ de façon à maximiser

$$(P_{j,\nu}-1)\left(\frac{\alpha A}{P_{j,\nu}}\right)^{\frac{1}{1-\alpha}}L.$$

- La condition du premier ordre donne $P_{i,\nu} = \frac{1}{\alpha}$. Ce prix est
 - supérieur au coût marginal (du fait de la situation de monopole),
 - constant dans le temps (comme la fonction de profit instantané),
 - identique pour tous les types de bien intermédiaire (par symétrie).

Bénéfice d'une invention V

ullet En remplaçant $P_{j,t}$ par sa valeur dans $X_{j,t}=\left(rac{lpha A}{P_{i,t}}
ight)^{rac{1}{1-lpha}}L$, on obtient

$$X_{j,t} = A^{\frac{1}{1-\alpha}} \alpha^{\frac{2}{1-\alpha}} L.$$

- La quantité de biens intermédiaires est donc identique pour tous les types et constante dans le temps.
- En remplaçant $P_{j,\nu}$ et $X_{j,\nu}$ par leurs valeurs dans l'expression de $V_{j,t}$, pour $t \geq t_j$, on obtient

$$V_{j,t} = A^{\frac{1}{1-\alpha}} (1-\alpha) \alpha^{\frac{1+\alpha}{1-\alpha}} L \int_t^{+\infty} e^{-\int_t^{\nu} r_{\tau} d\tau} d\nu.$$

Préliminaire à la comparaison entre coût et bénéfice

• En utilisant $X_{i,j,t}=\left(\frac{\alpha A}{P_{i,t}}\right)^{\frac{1}{1-\alpha}}L_{i,t}$, $P_{j,t}=\frac{1}{\alpha}$ et $L_t=L$, on obtient

$$Y_{t} \equiv \sum_{i=1}^{I} Y_{i,t} = \sum_{i=1}^{I} A L_{i,t}^{1-\alpha} \int_{0}^{N_{t}} X_{i,j,t}^{\alpha} dj$$

$$= \sum_{i=1}^{I} A L_{i,t}^{1-\alpha} \int_{0}^{N_{t}} \left(\frac{\alpha A}{P_{j,t}}\right)^{\frac{\alpha}{1-\alpha}} L_{i,t}^{\alpha} dj$$

$$= \sum_{i=1}^{I} A L_{i,t} \int_{0}^{N_{t}} \left(\alpha^{2} A\right)^{\frac{\alpha}{1-\alpha}} dj$$

$$= A^{\frac{1}{1-\alpha}} \alpha^{\frac{2\alpha}{1-\alpha}} L_{t} N_{t} = A^{\frac{1}{1-\alpha}} \alpha^{\frac{2\alpha}{1-\alpha}} L N_{t}.$$

- On se restreint aux équilibres tels que V_t est constant dans le temps, et on note V sa valeur.
- ullet On montre en annexe qu'en ce cas r_t est constant dans le temps, égal à

$$r(V) \equiv A^{\frac{1}{1-\alpha}} (1-\alpha) \alpha^{\frac{1+\alpha}{1-\alpha}} \frac{L}{V}$$

Comparaison entre coût et bénéfice I

- On considère tout d'abord les deux cas suivants :
 - Cas V > η: alors le marché des prêts n'est pas à l'équilibre (du fait de la libre entrée, une mesure infinie d'inv.-prod. souhaitent emprunter).
 Ce cas est donc impossible.
 - **2** Cas $V < \eta$: alors
 - N_t est constant pour $t \ge 0$ (car il n'y a jamais d'invention),
 - donc $Y_t = A^{\frac{1}{1-\alpha}} \alpha^{\frac{2\alpha}{1-\alpha}} L N_t$ est constant pour $t \ge 0$,
 - donc c_t est borné pour $t \ge 0$ (car $Lc_t \le Y_t$),
 - donc $r(V) \le \rho$ (car l'équation d'Euler s'écrit $\frac{c_t}{c_t} = \frac{r(V) \rho}{\theta}$),
 - donc $V \ge A^{\frac{1}{1-\alpha}} (1-\alpha) \alpha^{\frac{1+\alpha}{1-\alpha}} \frac{L}{\rho}$.
 - \hookrightarrow On écarte ce cas en se restreignant aux valeurs des paramètres telles que $\rho \leq r \equiv (1-\alpha)\alpha^{\frac{1+\alpha}{1-\alpha}}A^{\frac{1}{1-\alpha}}\frac{L}{\eta}$.

Comparaison entre coût et bénéfice II

- On en déduit qu'on est nécessairement dans le cas restant :
 - 3 Cas $V = \eta$: alors $r_t = r$ pour $t \ge 0$.
- Donc le bénéfice actualisé d'une invention, à la date de cette invention, est constamment égal à son coût, et le taux d'intérêt est constant.
- L'inventeur-producteur de bien intermédiaire de type j utilise donc l'intégralité de ses bénéfices jusqu'à la date $+\infty$ pour rembourser sa dette initiale.
- Donc, à toute date $t \ge t_j$, sa dette est égale à la valeur actualisée $V_{j,t}$ de ses bénéfices futurs.
- Or $V_{j,t}$ est constant dans le temps, donc sa dette est aussi constante dans le temps, égale à sa valeur initiale η .

Comparaison entre coût et bénéfice III

• A l'équilibre sur le marché des prêts, on a donc

$$B_t = \int_0^{N_t} V_{j,t} dj = \eta N_t.$$

 Les bénéfices des inventeurs-producteurs étant entièrement reversés aux ménages sous forme de remboursement de dette, la condition d'équilibre sur le marché des biens finaux s'écrit donc

$$Y_t = Lc_t + N_t X_{i,t} + \eta N_t.$$

Détermination de l'équilibre

- Introduction
- Conditions d'équilibre
- Détermination de l'équilibre
 - Conditions d'équilibre sur N_t et c_t
 - Détermination de N_t et c_t
 - Implications
- Sous-optimalité de l'équilibre
- Mise en œuvre de l'équilibre optimal
- Conclusion
- Annexe

Variables endogènes (sauf N_t et c_t) en fonction de N_t

• Quantités :

- on a déjà obtenu $L_t = L$ et $B_t = \eta N_t$,
- on a $Y_t=A^{\frac{1}{1-\alpha}}\alpha^{\frac{2\alpha}{1-\alpha}}LN_t=\frac{\eta rN_t}{\alpha(1-\alpha)}$ et $X_{j,t}=A^{\frac{1}{1-\alpha}}\alpha^{\frac{2}{1-\alpha}}L=\frac{\alpha\eta r}{1-\alpha}$.

Prix :

- on a déjà obtenu $r_t = r$ et $P_{i,t} = \frac{1}{\alpha}$,
- de $w_t = (1 \alpha) \frac{Y_{i,t}}{L_{i,t}}$, on déduit que $\frac{Y_{i,t}}{L_{i,t}}$ ne dépend pas de i et vaut donc $\frac{Y_t}{L}$. Par conséquent, $w_t = (1 \alpha) \frac{Y_t}{L} = \frac{\eta r N_t}{\alpha L}$.

Conditions d'équilibre sur N_t et c_t I

• En utilisant $b_t \equiv \frac{B_t}{L} = \frac{\eta N_t}{L}$, $r_t = r$ et $w_t = \frac{\eta r N_t}{\alpha L}$, on peut réécrire la contrainte budgétaire instantanée des ménages comme

$$\dot{N}_t = \frac{(1+\alpha)r}{\alpha} N_t - \frac{L}{\eta} c_t.$$

• Cette équation différentielle peut aussi s'obtenir en remplaçant Y_t par $\frac{\eta r N_t}{\alpha(1-\alpha)}$ et $X_{j,t}$ par $\frac{\alpha \eta r}{1-\alpha}$ dans la condition d'équilibre du marché des biens finaux (conséquence de la loi de Walras).

Conditions d'équilibre sur N_t et c_t II

• En utilisant $r_t = r$, on peut réécrire l'équation d'Euler comme

$$\frac{\dot{c}_t}{c_t} = \frac{r - \rho}{\theta}.$$

• En utilisant $b_t = \frac{\eta N_t}{L}$ et $r_t = r$, on peut réécrire la condition de transversalité comme

$$\lim_{t\to +\infty} \left\{ N_t e^{-rt} \right\} = 0.$$

Conditions d'équilibre sur N_t et c_t III

• $(N_t)_{t>0}$ et $(c_t)_{t>0}$ sont donc déterminés par deux équations différentielles, une condition initiale et une condition terminale :

$$\dot{N}_t = rac{(1+lpha)r}{lpha} N_t - rac{L}{\eta} c_t,$$
 $rac{\dot{c}_t}{c_t} = rac{r-
ho}{ heta},$ N_0 donné, $\lim_{t o +\infty} \left\{ N_t e^{-rt}
ight\} = 0.$

 Les autres variables endogènes sont déterminées résiduellement, à partir de N_t , par les expressions précédemment obtenues.

Détermination de N_t et c_t I

ullet L'équation différentielle en \dot{c}_t s'intègre pour donner

$$c_t = c_0 e^{\frac{r-\rho}{\theta}t}.$$

- La condition $r \ge \rho$ implique que le taux de croissance de la consommation par tête est positif ou nul.
- On se restreint aux valeurs des paramètres telles que $\rho > \frac{1-\theta}{\theta}(r-\rho)$, de façon à ce que l'utilité intertemporelle prenne une valeur finie.

Détermination de N_t et c_t II

ullet On peut alors réécrire l'équation différentielle en N_t comme

$$\dot{N}_t = \frac{(1+\alpha)r}{\alpha}N_t - \frac{Lc_0}{\eta}e^{\frac{r-\rho}{\theta}t}.$$

• Puis, en réarrangeant les termes et en multipliant par $e^{-\frac{(1+lpha)r}{lpha}t}$,

$$\left\{ \overset{\cdot}{N}_{t} - \frac{(1+\alpha)r}{\alpha}N_{t} \right\} e^{-\frac{(1+\alpha)r}{\alpha}t} = -\frac{Lc_{0}}{\eta}e^{-\varphi t},$$

où
$$\varphi \equiv \frac{(1+\alpha)r}{\alpha} - \frac{r-\rho}{\theta}$$
.

Détermination de N_t et c_t III

• La condition $\rho > \frac{1-\theta}{\theta}(r-\rho)$ implique $r > \frac{r-\rho}{\theta}$ et donc

$$\varphi > \frac{r}{\alpha} > 0.$$

• On peut donc intégrer l'égalité précédente pour obtenir

$$N_t e^{-rac{(1+lpha)r}{lpha}t} - N_0 = rac{Lc_0}{\eta \varphi} e^{-\varphi t} - rac{Lc_0}{\eta \varphi}$$

puis

$$N_t = \left(N_0 - \frac{Lc_0}{n\omega}\right) e^{\frac{(1+\alpha)r}{\alpha}t} + \frac{Lc_0}{n\omega} e^{-\left[\varphi - \frac{(1+\alpha)r}{\alpha}\right]t}.$$

Détermination de N_t et c_t IV

• La condition de transversalité se réécrit alors

$$\lim_{t\to +\infty}\left\{\left(N_0-\frac{Lc_0}{\eta\varphi}\right)e^{\frac{r}{\alpha}t}+\frac{Lc_0}{\eta\varphi}e^{-\left(\varphi-\frac{r}{\alpha}\right)t}\right\}=0$$

et implique $c_0 = \frac{\eta \varphi N_0}{L} > 0$ puisque $\varphi > \frac{r}{\alpha} > 0$ (comme aux chapitres 2 et 3, c_0 s'ajuste pour satisfaire la condition de transversalité).

On obtient donc finalement

$$N_t = N_0 e^{\frac{r-\rho}{\theta}t}$$
 et $c_t = \frac{\eta \varphi N_0}{I} e^{\frac{r-\rho}{\theta}t}$.

Taux de croissance I

- Croissent donc au même taux constant
 - la variété des biens N_t ,
 - la consommation par tête c_t ,
 - la production de biens finaux par tête $y_t = \frac{\eta r N_t}{\alpha (1-\alpha)L}$.
- En définissant le PIB comme la quantité de biens finaux produite moins la quantité de biens finaux utilisée pour produire des biens intermédiaires :

$$PIB_t \equiv Y_t - \int_0^{N_t} Y_{j,t} dj = Y_t - N_t X_{j,t} = rac{(1+lpha)\eta r}{lpha} N_t,$$

on obtient que le PIB et le PIB par tête $pib_t \equiv \frac{PIB_t}{L}$ croissent aussi à ce taux constant.

Taux de croissance II

- Du fait de la constance des rendements de N_t ,
 - le taux de croissance n'est pas nul à long terme,
 - la convergence vers l'état régulier est instantanée,

comme dans le modèle de Romer (1986), dans lequel les rendements sociaux du capital sont constants.

- Ce taux de croissance, égal à $\frac{r-\rho}{\theta}$ où $r\equiv A^{\frac{1}{1-\alpha}}(1-\alpha)\alpha^{\frac{1+\alpha}{1-\alpha}}\frac{L}{\eta}$, dépend
 - positivement de A, L et $\frac{1}{\theta}$,
 - négativement de η et ρ ,
 - positivement ou négativement de α .

Taux de croissance III

- L'interprétation de ces sens de variation peut se faire en deux étapes :
 - **1** \uparrow ou $\rho \downarrow$ ou $A \uparrow$ ou $L \uparrow$ ou $\eta \downarrow \Rightarrow$ offre de prêts \uparrow à N_t donné :
 - $\frac{1}{\theta} \uparrow$ ou $\rho \downarrow \Rightarrow$ offre de prêts \uparrow à N_t et r_t donnés \Rightarrow offre de prêts \uparrow à N_t donné car r_t reste tel que bénéfice actualisé = coût ($r_t = r$ est indépendant de $\frac{1}{\theta}$ et ρ);
 - $A \uparrow$ ou $L \uparrow \Rightarrow$ productivité marginale $\uparrow \Rightarrow$ demande de biens intermédiaires de type $j \uparrow \grave{a} P_{j,t}$ donné \Rightarrow bénéfice actualisé $\uparrow \grave{a} r_t$ donné \Rightarrow demande de prêts $\uparrow \grave{a} N_t$ et r_t donnés $\Rightarrow r_t \uparrow \grave{a} N_t$ donné jusqu'à ce que bénéfice actualisé = coût \Rightarrow offre de prêts $\uparrow \grave{a} N_t$ donné ;
 - $\eta \downarrow \Rightarrow$ coût $\downarrow \Rightarrow$ demande de prêts \uparrow à N_t et r_t donnés $\Rightarrow r_t \uparrow$ à N_t donné jusqu'à ce que bénéfice actualisé = coût \Rightarrow offre de prêts \uparrow à N_t donné :
 - offre de prêts \uparrow à N_t donné \Rightarrow prêts \uparrow à N_t donné \Rightarrow ηN_t \uparrow à N_t donné \Rightarrow N_t \uparrow à N_t donné (car η \rightarrow ou \downarrow) \Rightarrow taux de croissance $\frac{N_t}{N_t}$ \uparrow .

Faits stylisés de Kaldor (1961)

- Contrairement au modèle de Romer (1986), le modèle de Romer (1990) ne rend donc compte que des 1^{er} et 6^{ème} faits stylisés de Kaldor (1961), du fait que le capital en est absent :
 - **1** la production par tête croît : $\frac{y_t}{y_t} = \frac{r-\rho}{\theta} \ge 0$,
 - le stock de capital par tête croît,
 - le taux de rendement du capital est constant,
 - Ie ratio capital / production est constant,
 - les parts de rémunération du travail et du capital dans la production sont constantes,
 - le taux de croissance de la production par tête varie entre les pays : $\frac{\dot{y}_t}{\dot{y}_t} = \frac{r-\rho}{\theta}$ varie entre les pays lorsque les paramètres de préférence (ρ, θ) ou d'échelle (L) varient entre les pays.

Effet d'échelle

- Le modèle prédit l'existence d'un **effet d'échelle** : plus la taille de la population est grande, plus le taux de croissance est élevé.
- Cet effet d'échelle semble ne pas être vérifié empiriquement au niveau des pays. Cependant, la population du modèle pourrait davantage correspondre à la population mondiale qu'à celle d'un pays dans la mesure où
 - les biens peuvent circuler entre les pays,
 - un brevet peut être déposé ou un secret gardé dans plusieurs pays.
- Kremer (1993) met empiriquement en évidence un effet d'échelle sur longue période au niveau mondial.
- Michael Kremer: économiste américain, né en 1964, professeur à l'Université de Harvard à partir de 1999, co-lauréat (avec Abhijit Banerjee et Esther Duflo) du prix de la Banque de Suède en sciences économiques en mémoire d'Alfred Nobel en 2019 "for their experimental approach to alleviating global poverty".

Niveau initial et taux de croissance de c_t

- Le niveau initial de la consommation par tête $c_0=rac{\eta \phi N_0}{L}$ dépend
 - positivement de N_0 , η et ρ ,
 - négativement de L et $\frac{1}{\theta}$,
 - positivement ou négativement de A et α .
- c_0 et $\frac{c_t}{c_t}$ réagissent en sens opposés à une variation de L, η , ρ ou $\frac{1}{\theta}$ pour satisfaire la contrainte budgétaire intertemporelle.

Ni convergence absolue, ni convergence conditionnelle

- On a $\ln(pib_t) = \ln(pib_0) + \frac{r-\rho}{\theta}t$, où $pib_0 = \frac{(1+\alpha)\eta r}{\alpha L}N_0$.
- Il n'y a donc pas de convergence à long terme des $\ln(pib_t)$ entre les pays ayant des pib_0 différents, même s'ils ont les mêmes paramètres
 - technologiques A, α , η ,
 - démographique *L*,
 - de préférence ρ , θ .
- Le modèle ne prédit donc **ni convergence absolue, ni convergence conditionnelle** des $\ln(pib_t)$ entre les pays, comme le modèle de Romer (1986) et contrairement aux modèles de Solow-Swan et Cass-Koop.-Ramsey.
- Le fait que la prédiction d'absence de convergence conditionnelle soit en désaccord avec les données empiriques (comme on l'a vu au chapitre 1) est une raison supplémentaire de considérer ce modèle comme un modèle de l'économie mondiale.

Annexe

Sous-optimalité de l'équilibre

- Introduction
- Conditions d'équilibre
- Détermination de l'équilibre
- Sous-optimalité de l'équilibre
- Mise en œuvre de l'équilibre optimal
- Conclusion
- Annexe

Sous-optimalité sociale de l'équilibre de marché I

- L'équilibre de marché est socialement optimal si et seulement s'il coïncide avec l'allocation du **planificateur omniscient, omnipotent et bienveillant** \mathcal{POOB} .
- Du fait des rendements strictement décroissants de chaque type de bien intermédiaire, le \mathcal{POOB} commande la même quantité, notée X_t , pour tous les types de bien intermédiaire.
- La condition d'équilibre sur le marché des biens finaux, qui correspond à la contrainte de ressources du \mathcal{POOB} , s'écrit donc

$$AL^{1-\alpha}X_t^{\alpha}N_t = Lc_t + X_tN_t + \eta N_t.$$

Sous-optimalité sociale de l'équilibre de marché II

• Le problème d'optimisation du \mathcal{POOB} est donc le suivant : pour $N_0>0$ donné,

$$\max_{(c_t)_{t\geq 0}, (X_t)_{t\geq 0}, (N_t)_{t>0}} \left[L \int_0^{+\infty} e^{-\rho t} \left(\frac{c_t^{1-\theta}-1}{1-\theta} \right) dt \right]$$

sous les contraintes

- $0 \ \forall t \geq 0, \ c_t \geq 0 \ \text{et} \ X_t \geq 0 \ \text{(contrainte de positivité des consommations)},$
- ② $\forall t>0$, $N_t\geq 0$ (cont. de positivité de la taille du continuum de types),
- \bullet $\forall t \geq 0, \ N_t \geq 0$ (contrainte de croissance ou constance de cette taille)
- $\forall t \geq 0$, $\dot{N}_t = \frac{(AL^{1-\alpha}X_t^{\alpha} X_t)N_t Lc_t}{\eta}$ (contrainte de technologie et de ressources).

Sous-optimalité sociale de l'équilibre de marché III

- On résoud ce problème de la façon suivante :
 - 1 on considère le problème obtenu en ignorant la troisième contrainte,
 - ② on résoud ce problème auxiliaire en appliquant la théorie du contrôle optimal, comme dans le chapitre 2,
 - on vérifie que la solution de ce problème auxiliaire satisfait la troisième contrainte du problème initial.
- Hamiltonien associé au problème auxiliaire :

$$H^p(c_t, X_t, N_t, \lambda_t^p, t) \equiv e^{-\rho t} \left(\frac{c_t^{1-\theta} - 1}{1-\theta} \right) + \lambda_t^p \left[\frac{(AL^{1-\alpha}X_t^\alpha - X_t)N_t - Lc_t}{\eta} \right]$$

où λ_t^p représente la valeur, mesurée en unités d'utilité à la date 0, d'une augmentation des ressources à la date t de η unités de bien.

Sous-optimalité sociale de l'équilibre de marché IV

- H^p est une fonction de
 - deux variables de contrôle : c_t et X_t ,
 - une variable d'état : N_t ,
 - une co-variable d'état : λ_t^p .
- On obtient alors les conditions d'optimalité suivantes :
 - $\lambda_t^p = \frac{\eta}{T} e^{-\rho t} c_t^{-\theta}$ (condition du premier ordre sur c_t),
 - $X_t = \alpha^{\frac{1}{1-\alpha}} A^{\frac{1}{1-\alpha}} L$ (condition du premier ordre sur X_t),
 - $\lambda_t^P = \frac{-(AL^{1-\alpha}X_t^{\alpha}-X_t)}{n}\lambda_t^P$ (condition d'évolution de la co-variable d'état),
 - $N_t = \frac{(AL^{1-\alpha}X_t^{\alpha} X_t)N_t Lc_t}{n}$ (contrainte de ressources),
 - $\lim_{t\to +\infty} N_t \lambda_t^p = 0$ (condition de transversalité).

- On en déduit, par des calculs similaires à ceux des chapitres 2 et 3,
 - $N_t = r^p N_t \frac{L}{\eta} c_t$ (équation différentielle en N_t),
 - $\frac{\dot{c}_t}{c_t} = \frac{r^\rho \rho}{\theta}$ (équation différentielle en \dot{c}_t),
 - $\lim_{t\to +\infty} \left(N_t e^{-r^p t}\right) = 0$ (condition de transversalité),

où
$$r^p \equiv (1-\alpha)\alpha^{\frac{\alpha}{1-\alpha}}A^{\frac{1}{1-\alpha}}\frac{L}{n} = \alpha^{\frac{-1}{1-\alpha}}r > r.$$

• Ces trois conditions et N_0 déterminent $(N_t)_{t\geq 0}$ et $(c_t)_{t\geq 0}$.

Sous-optimalité de l'équilibre

Sous-optimalité sociale de l'équilibre de marché VI

• L'équation différentielle en \dot{c}_t s'intègre pour donner

$$c_t = c_0 e^{\frac{r^{\rho} - \rho}{\theta}t}.$$

- Le résultat $r^p > r$ et la condition $r \ge \rho$ impliquent que le taux de croissance de la consommation par tête est positif ou nul.
- On se restreint aux valeurs des paramètres telles que $\rho > \frac{1-\theta}{\theta}(r^p \rho)$, de facon à ce que l'utilité intertemporelle prenne une valeur finie.

Sous-optimalité sociale de l'équilibre de marché VII

ullet On peut alors réécrire l'équation différentielle en N_t comme

$$\dot{N}_t = r^p N_t - \frac{Lc_0}{\eta} e^{\frac{r^p - \rho}{\theta}t}.$$

• Puis, en réarrangeant les termes et en multipliant par e^{-r^pt} ,

$$\left(\stackrel{\cdot}{N}_t - r^p N_t\right) e^{-r^p t} = -\frac{Lc_0}{n} e^{-\varphi^p t},$$

où
$$\varphi^p \equiv r^p - \frac{r^p - \rho}{\theta}$$
.

Sous-optimalité sociale de l'équilibre de marché VIII

• La condition $ho>rac{1- heta}{ heta}\,(r^pho)$ implique $r^p>rac{r^pho}{ heta}$ et donc $\phi^p>0.$

• On peut donc intégrer l'égalité précédente pour obtenir

$$N_t e^{-r^p t} - N_0 = \frac{Lc_0}{\eta \varphi^p} e^{-\varphi^p t} - \frac{Lc_0}{\eta \varphi^p}$$

puis

$$N_t = \left(N_0 - \frac{Lc_0}{\eta \varphi^p}\right) e^{r^p t} + \frac{Lc_0}{\eta \varphi^p} e^{-(\varphi^p - r^p)t}.$$

Sous-optimalité sociale de l'équilibre de marché IX

• La condition de transversalité se réécrit alors

$$\lim_{t \to +\infty} \left[\left(N_0 - \frac{Lc_0}{\eta \varphi^p} \right) + \frac{Lc_0}{\eta \varphi} e^{-\varphi^p t} \right] = 0$$

et implique $c_0 = \frac{\eta \varphi^p N_0}{L} > 0$ puisque $\varphi^p > 0$ (comme aux chap. 2 et 3, c_0 est choisi de façon à satisfaire la condition de transversalité).

On obtient donc finalement

$$N_t = N_0 e^{rac{r^\rho -
ho}{ heta}t}$$
 et $c_t = rac{\eta \phi^\rho N_0}{L} e^{rac{r^\rho -
ho}{ heta}t}$, puis $y_t = rac{\eta r^\rho N_0}{(1-lpha)L} e^{rac{r^\rho -
ho}{ heta}t}$ et $pib_t = rac{\eta r^\rho N_0}{L} e^{rac{r^\rho -
ho}{ heta}t}$.

• On vérifie alors que $\forall t \geq 0$, $N_t \geq 0$ (du fait que $r^p > r \geq \rho$).

Annexe

Sous-optimalité sociale de l'équilibre de marché X

- Ces résultats diffèrent de ceux obtenus précédemment, donc l'équilibre de marché n'est pas socialement optimal.
- Plus précisément, l'équilibre de marché est socialement sous-optimal :
 U₀ prend une valeur strictement plus faible à l'équilibre de marché qu'avec le POOB.
- Ce dernier point, qui se vérifie aisément par calcul, vient du fait que le \mathcal{POOB} ne choisit pas l'allocation de l'équilibre de marché alors qu'elle satisfait les contraintes de son problème d'optimisation.
- Comme on va voir, la sous-optimalité sociale de l'équilibre de marché est due à la présence de concurrence monopolistique (même si cette dernière est la source de la rémunération du progrès technique).

Sous-optimalité sociale de l'équilibre de marché XI

- Le taux de croissance de N_t , c_t , y_t et pib_t est égal à $\frac{r^p \rho}{\theta}$ avec le \mathcal{POOB} et à $\frac{r \rho}{\theta}$ à l'équilibre de marché.
- Comme $r^p > r$, le taux de croissance est plus élevé avec le \mathcal{POOB} qu'à l'équilibre de marché.
- Cette différence de taux de croissance est due à la présence de concurrence monopolistique dans le cadre décentralisé.
- En effet, cette dernière implique que le produit marginal de X_t est supérieur à son coût de production à l'équilibre de marché $(\frac{\partial PIB_t}{\partial X_t} = \frac{1-\alpha}{\alpha}N_t > 0)$, alors qu'il lui est égal avec le \mathcal{POOB} $(\frac{\partial PIB_t}{\partial X_t} = 0)$.

Sous-optimalité sociale de l'équilibre de marché XII

- Donc les rendements sociaux $\frac{\partial PIB_t}{\partial N_t}$ de la variété des biens sont plus élevés avec le \mathcal{POOB} qu'à l'équilibre de marché : $\eta r^p > \frac{(1+\alpha)\eta r}{\alpha}$.
- Donc les rendements sociaux $\frac{1}{\eta} \frac{\partial PlB_t}{\partial N_t}$ de la R&D sont plus élevés avec le \mathcal{POOB} qu'à l'équilibre de marché : $r^p > \frac{(1+\alpha)r}{\alpha}$.
- Donc les rendements sociaux de la R&D avec le \mathcal{POOB} sont plus élevés que ses rendements privés à l'équilibre de marché : $r^p > r$.
- Donc l'investissement ηN_t en R&D, à N_t donné, est plus élevé avec le \mathcal{POOB} qu'à l'équilibre de marché : $\frac{\eta(r^p-\rho)}{\theta}N_t>\frac{\eta(r-\rho)}{\theta}N_t$.
- Donc le taux de croissance $\frac{N_t}{N_t}$ est plus élevé avec le \mathcal{POOB} qu'à l'équilibre de marché : $\frac{r^p \rho}{\rho} > \frac{r \rho}{\rho}$.

Sous-optimalité sociale de l'équilibre de marché XIII

- Avec le \mathcal{POOB} , par rapport à l'équilibre de marché,
 - la consommation par tête initiale c_0 peut être plus basse ou plus élevée : $\frac{\eta \varphi^\rho N_0}{L} \leqslant \frac{\eta \varphi N_0}{L}$ selon les valeurs de α , η , θ , ρ , A et L,
 - elle peut être plus élevée, alors que l'investissement en R&D initial ηN_0 est aussi plus élevé, car $PIB_0 = Lc_0 + \eta \dot{N}_0$ est lui-même plus élevé.
- ullet A titre de comparaison, dans le modèle de Romer (1986), avec le \mathcal{POOB} , par rapport à l'équilibre de marché,
 - elle est nécessairement plus basse car l'investissement en capital initial $K_0 + \delta K_0$ est plus élevé alors que $PIB_0 = Lc_0 + K_0 + \delta K_0$ est le même.

Annexe

Mise en œuvre de l'équilibre optimal

- Introduction
- Conditions d'équilibre
- Oétermination de l'équilibre
- Sous-optimalité de l'équilibre
- Mise en œuvre de l'équilibre optimal
- 6 Conclusion
- Annexe

Mise en œuvre de l'équilibre socialement optimal I

- Le fait que l'équilibre de marché soit socialement sous-optimal donne un rôle à la politique économique.
- En particulier, une autorité fiscale peut mettre en œuvre l'allocation du \mathcal{POOB} dans un cadre décentralisé en
 - subventionnant l'achat de biens intermédiaires à un taux tel que leur prix effectif soit égal à leur coût de production,
 - finançant cette subvention par un impôt forfaitaire sur les ménages, qui ne "distord" pas leurs choix.
- En effet, soit τ le taux de subvention : pour chaque quantité $1-\tau$ de biens intermédiaires achetée, une quantité τ est offerte par l'autorité fiscale.
- Le prix effectif d'une unité de bien intermédiaire de type j, pour les producteurs de bien final, est donc $(1-\tau)P_{i,t}$.

Mise en œuvre de l'équilibre socialement optimal II

• Le profit instantané du producteur i de bien final devient

$$AL_{i,t}^{1-\alpha} \int_{0}^{N_{t}} X_{i,j,t}^{\alpha} dj - w_{t}L_{i,t} - \int_{0}^{N_{t}} (1-\tau)P_{j,t}X_{i,j,t} dj$$

et la seconde condition du premier ordre de sa maximisation devient

$$X_{i,j,t} = \left[\frac{\alpha A}{(1-\tau)P_{j,t}}\right]^{\frac{1}{1-\alpha}} L_{i,t}.$$

• Le profit instantané de l'inv.-prod. de bien intermédiaire de type j devient

$$(P_{j,\nu}-1)X_{j,\nu}=(P_{j,\nu}-1)\left[\frac{\alpha A}{(1-\tau)P_{j,\nu}}\right]^{\frac{1}{1-\alpha}}L$$

et la condition du premier ordre de sa maximisation reste $P_{i,
u} = rac{1}{lpha}$.

Mise en œuvre de l'équilibre socialement optimal III

 Par des calculs et raisonnements similaires aux précédents, on obtient alors tour à tour

(a)
$$X_{j,t} = (1-\tau)^{\frac{1}{1-\alpha}} \frac{\alpha \eta r}{1-\alpha}$$
, (d) $V_{j,t} = \eta$,
(b) $V_{j,t} = (1-\tau)^{\frac{1}{1-\alpha}} \dots$ (e) $r_t = (1-\tau)^{\frac{1}{1-\alpha}} r$,
 $\dots \eta r \int_t^{+\infty} e^{-\int_t^V r_\tau d\tau} d\nu$, (f) $B_t = \eta N_t$,
(c) $Y_t = (1-\tau)^{\frac{-\alpha}{1-\alpha}} \frac{\eta r}{\alpha(1-\alpha)} N_t$, (g) $w_t = (1-\tau)^{\frac{-\alpha}{1-\alpha}} \frac{\eta r}{\alpha L} N_t$.

La contrainte budgétaire instantanée des ménages s'écrit

$$b_t = w_t + r_t b_t - c_t - t_t$$

où t_t est l'impôt forfaitaire par tête.

Mise en œuvre de l'équilibre socialement optimal IV

• En utilisant la contrainte budgétaire de l'autorité fiscale

$$Lt_{t} = \tau P_{j,t} X_{j,t} N_{t} = \tau \left(1 - \tau\right)^{\frac{-1}{1-\alpha}} \frac{\eta r}{1-\alpha} N_{t}$$

et les résultats (e), (f), (g), on peut réécrire la contrainte budgétaire instantanée des ménages comme

$$\dot{N}_t = \frac{(1-\tau)^{\frac{-1}{1-\alpha}} \left(1-\tau-\alpha^2\right) r}{\alpha(1-\alpha)} N_t - \frac{L}{\eta} c_t.$$

Cette équation différentielle peut aussi être obtenue en utilisant les résultats

 (a) et (c) pour remplacer X_{j,t} et Y_t dans la condition d'équilibre du marché des biens finaux (conséquence de la loi de Walras).

Mise en œuvre de l'équilibre socialement optimal V

- L'équation d'Euler et la condition de transversalité s'écrivent toujours $\frac{c_t}{c_t} = \frac{r_t \rho}{\theta}$ et $\lim_{t \to \infty} \left(b_t e^{-\int_0^t r_\tau d\tau} \right) = 0$.
- En utilisant (e) et (f), on peut les réécrire comme $\frac{\dot{c}_t}{c_t} = \frac{(1-\tau)\frac{-1}{1-\alpha}r-\rho}{\theta}$ et $\lim_{t\to +\infty} \left\lceil N_t e^{-(1-\tau)\frac{-1}{1-\alpha}rt} \right\rceil = 0.$
- $(N_t)_{t\geq 0}$ et $(c_t)_{t\geq 0}$ sont donc déterminés par les quatre conditions

Mise en œuvre de l'équilibre socialement optimal VI

- Ces conditions sont identiques à celles déterminant les $(N_t)_{t\geq 0}$ et $(c_t)_{t\geq 0}$ commandés par le \mathcal{POOB} si et seulement si $\tau=1-\alpha$.
- On vérifie aisément que, lorsque $\tau = 1 \alpha$, les autres quantités $(X_t, Y_t, y_t, PIB_t, pib_t)$ prennent les mêmes valeurs qu'avec le \mathcal{POOB} .
- Cette subvention au taux $1-\alpha$, financée par impôt forfaitaire, met donc en œuvre l'équilibre socialement optimal, et ce par deux effets simultanés :
 - elle corrige l'inefficacité due à la concurrence monopolistique en égalisant le prix effectif des biens intermédiaires à leur coût de production : $(1-\tau)P_{i,t}=1$,
 - elle augmente la rémunération du progrès technique, et donc l'incitation à faire de la R&D, en augmentant le profit instantané (avant remboursement de dette) des inventeurs-producteurs.

Mise en œuvre de l'équilibre socialement optimal VII

- ullet Une autorité fiscale *peut aussi* mettre en œuvre l'allocation du \mathcal{POOB} dans un cadre décentralisé en
 - subventionnant la production de biens finaux à un taux tel que la demande de biens intermédiaires soit égale à celle qui prévaudrait si le prix des biens intermédiaires était égal à leur coût de production,
 - finançant cette subvention par un impôt forfaitaire sur les ménages, qui ne "distord" pas leurs choix.
- Une autorité fiscale *ne peut pas* mettre en œuvre l'allocation du \mathcal{POOB} dans un cadre décentralisé en
 - subventionnant la R&D,
 - finançant cette subvention par un impôt forfaitaire,

car une telle politique économique n'a aucun effet sur X_t : elle s'attaque à un symptôme (le trop faible niveau de R&D) mais pas à la cause (la présence de concurrence monopolistique) de la sous-optimalité sociale de l'équilibre de marché.

Macroéconomie 1 (4/6) : le modèle de Romer (1990)

- Introduction
- Conditions d'équilibre
- Oétermination de l'équilibre
- Sous-optimalité de l'équilibre
- Mise en œuvre de l'équilibre optimal
- Conclusion
- Annexe

Conclusion

•00

Principales prédictions du modèle

- La croissance est strictement positive à long terme grâce à la constance des rendements de la variété des biens.
- La croissance à long terme dépend des paramètres de technologie et de préférence, ainsi que de la taille de la population.
- Il y a ni convergence absolue ni convergence conditionnelle des niveaux de production par tête (en logarithme) entre les pays.
- L'équilibre de marché est socialement sous-optimal à cause de la présence de concurrence monopolistique.
- Des politiques économiques de subvention, financées par impôt forfaitaire, peuvent mettre en œuvre l'équilibre socialement optimal.

Principale limite du modèle

- Le progrès technique est modélisé comme l'augmentation de la variété des biens, et non comme l'amélioration des biens existants.
 - → La théorie schumpétérienne le modélise comme une "destruction créatrice", i.e. comme l'invention de nouveaux biens qui sont des substituts directs aux biens existants, qu'ils rendent obsolètes.

Macroéconomie 1 (4/6) : le modèle de Romer (1990)

Conclusion

- Introduction
- 2 Conditions d'équilibre
- 3 Détermination de l'équilibre
- Sous-optimalité de l'équilibre
- Mise en œuvre de l'équilibre optimal
- 6 Conclusion
- Annexe

Preuve que $r_t = r(V)$

On montre que $r_t = r(V)$ en quatre étapes :

- ② En notant $\mathcal{A}_t = g(t,t)$ avec $g(u,v) \equiv \int_u^{+\infty} e^{-\int_v^v r_\tau d\tau} dv$, on obtient $\dot{\mathcal{A}}_t = \frac{\partial g}{\partial u}(t,t) + \frac{\partial g}{\partial v}(t,t) = -e^{-\int_t^t r_\tau d\tau} + r_t \int_t^{+\infty} e^{-\int_t^v r_\tau d\tau} dv = r_t \mathcal{A}_t 1.$
- **③** En utilisant $V_t = V$ pour $t \ge 0$, on déduit de la première étape que $\mathcal{A}_t = \frac{V}{4^{\frac{1}{1-\alpha}}(1-\alpha)^{\frac{1+\alpha}{1-\alpha}}I}$ pour $t \ge 0$, et donc $\mathcal{A}_t = 0$.
- ① On déduit des deuxième et troisième étapes que $r_t \mathcal{A}_t 1 = 0$ et donc $r_t = \frac{1}{\mathcal{A}} = A^{\frac{1}{1-\alpha}} (1-\alpha) \alpha^{\frac{1+\alpha}{1-\alpha}} \frac{L}{U} = r(V)$ pour $t \geq 0$.