Organización y Arquitectura de Computadoras 2019-2

Desempeño

Edgar Quiroz Castañeda

25 de febrero del 2019

1 Ecuación de desempeño del CPU

Calcula el tiempo de ejecución de cada programa en diferentes computadoras. En general, con f la frecuencia, c la cantidad de ciclos, y t el tiempo, se tiene que

$$f_K = \frac{c_K}{t_K}$$

$$\implies t_K = \frac{c_K}{f_K}$$
(1)

Y con λ la longitud de un ciclo (inversa de la frecuencia), tenemos que

$$\lambda_K = \frac{t_K}{c_K}$$

$$\implies t_K = t_K \cdot \lambda_K \tag{2}$$

En el caso de A (2.7 MGHz) y C (48 MGHz), se conoce la frecuencia, por lo que se va a utilizar (1).

$$\vec{t}_{A,C} = \begin{bmatrix} 24 \times 10^6 & 24 \times 10^6 \\ 28 \times 10^6 & 28 \times 10^6 \\ 15 \times 10^6 & 15 \times 10^6 \\ 300 \times 10^3 & 300 \times 10^3 \\ 100 \times 10^6 & 100 \times 10^6 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2.7 \times 10^9} & 0 \\ 0 & \frac{1}{48 \times 10^6} \end{bmatrix} \approx \begin{bmatrix} 0.00888 & 0.5 \\ 0.01778 & 1 \\ 0.00556 & 0.3125 \\ 0.000112 & 0.00625 \\ 0.03704 & 2.083 \end{bmatrix}$$

Para B (3ns/ciclo) y D (4ms/ciclo), se usará (2), pues se conoce su longitud de ciclo.

$$\vec{t}_{B,D} = \begin{bmatrix} 24 \times 10^6 & 24 \times 10^6 \\ 28 \times 10^6 & 28 \times 10^6 \\ 15 \times 10^6 & 15 \times 10^6 \\ 300 \times 10^3 & 300 \times 10^3 \\ 100 \times 10^6 & 100 \times 10^6 \end{bmatrix} \begin{bmatrix} 3 \times 10^{-9} & 0 \\ 0 & 4 \times 10^{-3} \end{bmatrix} \approx \begin{bmatrix} 0.072 & 96000 \\ 0.144 & 192000 \\ 0.045 & 60000 \\ 0.0009 & 1200 \\ 0.3 & 400000 \end{bmatrix}$$

Por lo que la tabla de tiempos completa es

Ciclos	A	B	C	D
24 M	0.00888 seg	0.072 seg	0.5 seg	96000 seg
28 M	0.01778 seg	0.144 seg	1 seg	192000 seg
15 M	0.00556 seg	0.045 seg	0.3125 seg	60000 seg
300 K	0.000112	0.0009 seg	0.00625 seg	1200 seg
100 M	0.03704 seg	0.3 seg	2.083 seg	400000 seg

2 Medidas de tendencia central

Considera los siguientes tiempos de ejecución

Table 1: Datos				
	A	B	C	D
Prog 1	83ns	20ns	$56 \mathrm{ns}$	121ns
Prog 2	1938 ns	949ns	$1453 \mathrm{ns}$	2342 ns
Prog 3	844ns	939ns	932 ns	638ns
Prog 4	994 ns	593 ns	$734 \mathrm{ns}$	1029 ns
Prog 5	95 ns	19ns	$24\mathrm{ns}$	68ns

Encuentre las medias aritmética, armónica y geométrica.

1. Para la media aritmética, tenemos que

$$\vec{M}_{arit} = \frac{1}{5} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 83 & 20 & 56 & 121 \\ 1938 & 949 & 1453 & 2342 \\ 844 & 939 & 932 & 638 \\ 994 & 593 & 734 & 1029 \\ 95 & 19 & 24 & 68 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 3954 & 2520 & 3199 & 4198 \end{bmatrix} = \begin{bmatrix} 790.8 & 504. & 639.8 & 839.6 \end{bmatrix}$$

2. Para la media armónica tenemos que

$$\vec{M}_{arm}^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{83} & \frac{1}{20} & \frac{1}{56} & \frac{1}{121} \\ \frac{938}{938} & \frac{949}{932} & \frac{1}{453} & \frac{2342}{2342} \\ \frac{1}{844} & \frac{939}{932} & \frac{1}{638} & \frac{1}{1029} \\ \frac{1}{95} & \frac{1}{10} & \frac{1}{24} & \frac{1}{68} \end{bmatrix} \approx \frac{1}{5} \begin{bmatrix} 0.02528 & 0.10644 & 0.06265 & 0.02594 \end{bmatrix}$$

Por lo que

$$\vec{M}_{arm} \approx 5 \begin{bmatrix} 39.554811 & 9.39526 & 15.96235 & 38.55563 \end{bmatrix} \approx \begin{bmatrix} 192.77405 & 46.9763 & 79.81177 & 192.77817 \end{bmatrix}$$

3. Y para la media geométrica

$$\vec{M}_{geo}^{5} = \begin{bmatrix} 83 \cdot 1938 \cdot 844 \cdot 994 \cdot 95 & 20 \cdot 949 \cdot 939 \cdot 593 \cdot 19 & 56 \cdot 1453 \cdot 932 \cdot 734 \cdot 24 & 121 \cdot 2342 \cdot 638 \cdot 1029 \cdot 68 \end{bmatrix} \\ = \begin{bmatrix} 12819890077680 & 200802952740 & 1335908937216 & 12650777783952 \end{bmatrix}$$

Por lo que

$$\vec{M}_{geo} \approx \begin{bmatrix} 418.38572 & 182.20236 & 266.16771 & 417.27603 \end{bmatrix}$$

Entonces, la tabla completa de medias es

Table 2: Medias				
Medias	A	B	C	D
Aritmética	790.8	504	639.8	839.6
Armónica	197.77405481	46.97631186	79.81177196	192.77817439
Geométrica	418.38572689	182.20236881	266.1677118	417.27603733

Normaliza A y D respecto a B.

$$\hat{AD}_B = \begin{bmatrix} 83/20 & 121/20 \\ 1938/949 & 2342/949 \\ 844/939 & 638/939 \\ 994/593 & 102/5939 \\ 95/19 & 68/19 \end{bmatrix} \approx \begin{bmatrix} 4.15 & 6.05 \\ 2.04214963 & 2.46786091 \\ 0.89882854 & 0.67944622 \\ 1.6762226 & 1.73524452 \\ 5 & 3.57894737 \end{bmatrix}$$

Por lo que la tabla de datos normalizados es

Table 3: Datos normalizados respecto a B

	A	D
Prog 1	4.15	6.05
Prog 2	2.04214963	2.46786091
Prog 3	0.89882854	0.67944622
Prog 4	1.6762226	1.73524452
Prog 5	5	3.57894737

Encuetra las medias de los datos normalizados

1. Para la media aritmética, tenemos que

$$\vec{M}_{arit} = \frac{1}{5} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4.15 & 6.05 \\ 2.04214963 & 2.46786091 \\ 0.89882854 & 0.67944622 \\ 1.6762226 & 1.73524452 \\ 5 & 3.57894737 \end{bmatrix} \approx \frac{1}{5} \begin{bmatrix} 13.76720 & 14.511499 \end{bmatrix} = \begin{bmatrix} 2.75344 & 2.90229 \end{bmatrix}$$

2. Para la media armónica tenemos que

$$\vec{M}_{arm}^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{4.15} & \frac{1}{6.05} \\ \frac{1}{2.04214963} & \frac{1}{2.46786091} \\ \frac{1}{0.89882854} & \frac{1}{0.67944622} \\ \frac{1}{5} & \frac{1}{3.57894737} \end{bmatrix} \approx \frac{1}{5} \begin{bmatrix} 2.63978 & 2.89798 \end{bmatrix}$$

Por lo que

$$\vec{M}_{arm} \approx 5 \begin{bmatrix} 0.378819 & 0.345067 \end{bmatrix} \approx \begin{bmatrix} 1.8940953 & 1.7253369 \end{bmatrix}$$

3. Y para la media geométrica

$$\vec{M}_{geo}^5 = \begin{bmatrix} 4.15 \cdot 2.04214963 \cdot 0.89882854 \cdot 1.6762226 \cdot 5 & 6.05 \cdot 2.46786091 \cdot 0.67944622 \cdot 1.73524452 \cdot 3.57894737 \end{bmatrix} \\ = \begin{bmatrix} 63.84313528635815 & 63.00095497267039 \end{bmatrix}$$

Por lo que

$$\vec{M}_{geo} \approx \begin{bmatrix} 2.296269 & 2.29017899 \end{bmatrix}$$

Por lo que la tabla completa de medidas es

Table 4: Medias con datos normalizados

Medias	A	D
Aritmética	2.75344015	2.9022998
Armónica	1.89409533	1.7253369
Geométrica	2.29626942	2.29017899

Y compara el desempeño usando la media geométrica no normalizada. Las computadoras, de mejor a peor desempeño, son B, C, D y A.

3 Ley de Amdahl

- 1. Una transformación común requerida en los procesadores es la raíz cuadrada. Supongoamos que esta es responsable del 25% del tiempo total de ejecución. Se tienen dos propuestas para mejorar.
 - (a) Modificar el hardware de forma que la operación sea 8 veces más rápida.
 - (b) Tratar que las operaciones que ocupan el 55% del tiempo restante se ejecuten 1.8 veces más rápido.

¿Cómo mejora el desempeño en ambos casos?¿Cuál es mejor? En el primer caso hay una ganancia de

$$G = \frac{1}{(1 - 0.25) + \frac{0.25}{8}} = \frac{1}{0.75 + 0.03125} = \frac{1}{0.78125} = 1.28$$

En el segundo caso, la ganancia es de

$$G = \frac{1}{(1 - 0.55) + \frac{0.55}{1.8}} \approx \frac{1}{0.45 + 0.305} = \frac{1}{0.755} \approx 1.324$$

Por lo que es más conveninte tratar de mejorar el resto de las operaciones.

2. Tenemos un programa que consiste de 3 procesos A, B y C. El tiempo que tarda en ejecutarse es de 17 segundos. Los procesos toman 32%, 7% y 25% del tiempo respectivamente. Si se mejor el proceso B 20 veces, ¿cuál es el nuevo tiempo de ejecución?. ¿Y si se mejora el proceso A 1.4 veces? ¿Qué mejora es mejor? En el primer caso, se tiene un tiempo mejorado de

$$T_m = 17 \cdot ((1 - 0.07) + \frac{0.07}{20}) = 17 \cdot (0.93 + 0.0035) = 17 \cdot 0.9335 = 15.8695$$

En el segundo caso, el nuevo tiempo es de

$$T_m = 17 \cdot ((1 - 0.32) + \frac{0.32}{1.4}) \approx 17 \cdot (0.68 + 0.22857) = 17 \cdot 0.90867 = 15.4457$$

Por lo que es más conveninte mejorar lel proceso A 1.4 veces.

3. Se mejora un proceso que tomaba 70% de tiempo de ejecución. Se obtubo una ganancia neta de 2.64. ¿Cuál es la ganancia bruta?

La ganancia neta está dada por

$$G = \frac{1}{1 - F + \frac{F}{q}}$$

Con F el porcentaje de tiempo y g la ganancia bruta. Despejando g,

$$G = \frac{1}{1 - F + \frac{F}{g}}$$

$$\implies 1 - F + \frac{F}{g} = \frac{1}{G}$$

$$\implies \frac{F}{g} = \frac{1}{G} + F - 1$$

$$\implies g = \frac{F}{\frac{1}{G} + F - 1}$$

Por lo que, es este caso, la ganancia bruta es de

$$g = \frac{0.7}{\frac{1}{2.64} + 0.7 - 1} \approx \frac{0.7}{0.078788} = 8.885$$