

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Course Name:	Digital Design Laboratory	Semester:	III
Date of Performance:	09 / 08 / 24	Batch No:	A1
Faculty Name:		Roll No:	16010123012
Faculty Sign & Date:		Grade/Marks:	/25

Experiment No: 4

Title: 4-bit magnitude comparator

Aim	and	Obj	ective	of	the	Ex	perimen	ıt:

To design and implement 1-bit comparator using logic gates and verify 4-bit magnitude comparator using IC 7485

COs to be achieved:

CO2: Use different minimization techniques and solve combinational circuits.

Tools used:	
Trainer kits	

Theory:

Comparator: The comparison of two numbers is an operator that determines one number is greater than, less than (or) equal to the other number. A magnitude comparator is a combinational circuit that compares two numbers A and B and determines their relative magnitude. The outcome of the comparator is specified by three binary variables that indicate whether A>B, A=B (or) A<B.

Semester: III Academic Year: 2024-25 Digital Design Laboratory

Roll No:16010123012

33

Semester: III

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

1-bit Comparator Implementation Details:

Truth Table -

Inp	uts		Outputs	
В	A	A > B	A = B	A < B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

From the Truth Table -

$$(\mathbf{A} < \mathbf{B}) = \mathbf{A} \mathbf{B}$$

$$(\mathbf{A} = \mathbf{B}) = \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$$

$$(A>B) = AB$$

Logic Diagram of 1-bit Comparator -

Digital Design Laboratory

Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Four Bit Magnitude Comparator Implementation Details:

Pin Diagram of IC 7485

Semester: III

Logic Diagram of IC 7485

Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Comparing Table

INI	PUTS of 4 b	it Compar	ator		OUTPUT	
A3, B3	A2, B2	A3, B3	A2, B2	A3, B3	A2, B2	A3, B3
A3 > B3	X	X	X	Н	L	L
A3 < B3	X	X	X	L	Н	L
A3 = B3	A2 > B2	X	X	н	L	L
A3 = B3	A2 < B2	X	Х	L	Н	L
A3 = B3	A2 = B2	A1 > B1	X	Н	L	L
A3 = B3	A2 = B2	A1 < B1	Х	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 >B0	Н	L	\mathbf{L}_{0}
A3 = B3	A2 = B2	A1 = B1	A0 < B0	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н

Where H = High Output, L = Low Output, X = Don't Care

Semester: III

Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Implementation Details

Procedure:

- 1) Locate the IC 7485 on the trainer kit.
- 2) Connect 1st input no. to A3-A0 input slot and 2nd to B3-B0.
- 3) Connect the output $Y_{A>B}$, $Y_{A<B}$ and $Y_{A=B}$ to the output indicators.
- 4) Switch ON the power supply and monitor the output for various input combinations.

Semester: III

Post Lab Subjective/Objective type Question

1. Design 2-bit magnitude comparator.

Digital Design Laboratory

Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Electronics Coach

- 2. How can we implement 5-bit magnitude comparator using IC 7485. We will need two 7485 chips because each can only compare 4 bits. The first 7485 compares the lower 4 bits of the two 5-bit numbers. The output of this first comparison is then fed into the second 7485, which compares the most significant bit (the 5th bit) along with the results from the first chip. This setup allows us to determine whether one 5-bit number is greater than, less than, or equal to the other. The process involves connecting the appropriate inputs and cascading the outputs to handle all 5 bits.
- 3. Virtual Lab for 8 bit digital comparator using Virtual Lab (Digital Logic Design) Perform simulation.

Semester: III

Virtual Labs (vlabs.ac.in)

Give feedback for the experiments of virtual lab using somaiya email id.

Digital Design Laboratory

Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Semester: III

Academic Year: 2024-25

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

		From	To	Number of		RL =	2 kΩ		
Symbol	Parameter	Input	Output	Gate Levels	CL =	15 pF	CL =	50 pF	Units
1000					Min	Max	Min	Max	
фин	Propagation Delay Time Low-to-High Level Output	Any A or B Data Input	A < B, A > B	3		36		42	ns
			A = B	4		40		40	4
tpHL	Propagation Delay Time High-to-Low Level Output	Any A or B Data Input	A < B, A > B	3		30		40	ns
			A = B	4		30		40	
t _{PLH}	Propagation Delay Time Low-to-High Level Output	A < B or A = B	A > B	1		22		26	ns
t _{PHL}	Propagation Delay Time High-to-Low Level Output	A < B or A = B	A > B	.1		17		26	ns
^t PLH	Propagation Delay Time Low-to-High Level Output	A = B	A = B	2		20		25	ns
[‡] РНL	Propagation Delay Time High-to-Low Level Output	A = B	A = B	2		17		26	ns
^t PLH	Propagation Delay Time Low-to-High Level Output	A > B or A = B	A < B	1		22		26	ns
t _{PHL}	Propagation Delay Time High-to-Low Level Output	A > B or A = B	A < B	1		17		26	ns

Logic Diagram

Semester: III

Academic Year: 2024-25

Semester: III

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

Thank you for your valuable feedback: Aaryan	← → × △ Not se	ure 38.100.110.143/feedback/feedback/php
Thank you for your valuable feedback : Aaryan	id Gmail 🍎 YouTube 🧏	Maps 🔇 Adobe Acrobat
		Thank you for your valuable feedback : Aaryan

7

Conclusion:

We successfully performed and learnt about 1 bit, 2bits and 4bits comparator

Signature of faculty in-charge with Date:

Digital Design Laboratory

Academic Year: 2024-25