Lab9

May 7, 2024

1 Uczenie nadzorowane - predykcja

Import bibliotek

```
[1]: import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.model_selection import train_test_split
    from sklearn.model_selection import GridSearchCV
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean squared error, mean absolute error, r2_score, u
     ⊶max error
    import xgboost as xgb
    import math
    import numpy as np
[2]: url = "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
     ⇔housing.data"
    names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', |
     dataset = pd.read_csv(url, delim_whitespace=True, names=names)
    display(dataset.head())
         CRIM
                 ZN INDUS CHAS
                                   NOX
                                               AGE
                                                                  TAX \
                                           RM
                                                       DIS RAD
    0 0.00632 18.0
                      2.31
                              0 0.538 6.575 65.2 4.0900
                                                                296.0
                                                              1
    1 0.02731
                0.0
                      7.07
                              0 0.469 6.421
                                              78.9 4.9671
                                                              2 242.0
                      7.07
                                                             2 242.0
    2 0.02729
                0.0
                              0 0.469 7.185
                                              61.1 4.9671
    3 0.03237
                              0 0.458 6.998
                0.0
                      2.18
                                              45.8 6.0622
                                                              3 222.0
    4 0.06905
                      2.18
                              0 0.458 7.147 54.2 6.0622
                                                              3 222.0
                0.0
      PTRATIO
                    B LSTAT MEDV
    0
         15.3 396.90
                        4.98 24.0
    1
         17.8 396.90
                       9.14 21.6
    2
         17.8 392.83
                        4.03 34.7
    3
         18.7 394.63
                        2.94 33.4
    4
         18.7 396.90
                        5.33 36.2
```

1.1 EDA

[3]: dataset.info() dataset.describe()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	int64
4	NOX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	int64
9	TAX	506 non-null	float64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	MEDV	506 non-null	float64

dtypes: float64(12), int64(2)

LSTAT

memory usage: 55.5 KB

[3]:		CRIM	ZN	INDUS	CHAS	NOX	RM	\
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	
		AGE	DIS	RAD	TAX	PTRATIO	В	\
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
	mean	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	
	std	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	
	min	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	
	25%	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	
	50%	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	
	75%	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	
	max	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	

MEDV

```
506.000000 506.000000
     count
                         22.532806
     mean
             12.653063
     std
              7.141062
                           9.197104
    min
              1.730000
                           5.000000
     25%
              6.950000
                         17.025000
     50%
             11.360000
                         21.200000
     75%
             16.955000
                         25.000000
             37.970000
                         50.000000
     max
[4]: print(dataset.isna().sum())
               0
    CRIM
    ZN
               0
    INDUS
               0
    CHAS
               0
    NOX
               0
    RM
               0
    AGE
               0
    DIS
               0
    RAD
               0
    TAX
               0
    PTRATIO
               0
               0
    LSTAT
               0
    MEDV
               0
    dtype: int64
[5]: plt.figure(figsize=(8, 8))
     sns.heatmap(dataset.corr(), annot=True, annot_kws={"fontsize":8}, fmt=".2f",__
      ⇔cmap='viridis', vmin=-1, vmax=1, cbar_kws={'label': "Pearson's linear_
      ⇔correlation coefficient (R)"})
     plt.title('Correlation matrix between variables')
```

[5]: Text(0.5, 1.0, 'Correlation matrix between variables')


```
[6]: plt.figure(figsize=(8,6))
  plt.scatter(dataset['LSTAT'], dataset['MEDV'], color="#250F61", alpha=0.5)
  plt.title("Example scatter plot between LSTAT and MEDV")
  plt.xlabel("LSTAT")
  plt.ylabel("MEDV")
```

[6]: Text(0, 0.5, 'MEDV')

Example scatter plot between LSTAT and MEDV


```
[7]: plt.figure(figsize=(8, 6))
plt.scatter( dataset['AGE'], dataset['NOX'], color='#78FF00', alpha=0.5)
plt.title('Example scatter plot between AGE and NOX')
plt.xlabel('AGE')
plt.ylabel('NOX')
```

[7]: Text(0, 0.5, 'NOX')

Example scatter plot between AGE and NOX


```
[8]: plt.figure(figsize=(8, 6))
  plt.scatter( dataset['RM'], dataset['MEDV'], color='#12B3FF', alpha=0.5)
  plt.title('Example scatter plot between NOX and MEDV')
  plt.xlabel('RM')
  plt.ylabel('MEDV')
```

[8]: Text(0, 0.5, 'MEDV')

Do wykresów punktowych wybrane zostały takie połączenia kolumn, dla których współczynnik korelacji Pearsona był jednym z większych. Oprócz tych zestawień widać wysoką współliniowość na przykład pomiędzy zmiennymi NOX i INDUS, DIS i INDUS, AGE czy AGE i DIS.

1.2 Podział zbioru danych

```
[9]: X = dataset.drop('MEDV', axis=1)
     y = dataset['MEDV']
     X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2,__
      →random_state=42)
     display(y_train)
     display(y_test)
    477
           12.0
           19.9
    15
    332
           19.4
    423
           13.4
    19
           18.2
```

```
106
       19.5
270
       21.1
       24.5
348
435
       13.4
       18.6
102
Name: MEDV, Length: 404, dtype: float64
173
       23.6
274
       32.4
491
       13.6
72
       22.8
452
       16.1
       17.9
412
436
        9.6
       17.2
411
       22.5
86
75
       21.4
Name: MEDV, Length: 102, dtype: float64
```

1.3 Modele regresji

```
[10]: XGBRegressor(alpha=10, base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=0.3, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=0.1, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=5, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=10, n_jobs=None, num_parallel_tree=None, ...)
```

1.4 Dobór parametrów

```
[11]: params = {'learning_rate' : [0.01, 0.1, 0.3], 'max_depth': [3, 5, 7],

¬'n_estimators': [50, 100, 200]}

      xg reg = xgb.XGBRegressor(objective='reg:squarederror', colsample bytree=0.3)
      grid = GridSearchCV(estimator=xg_reg, param_grid=params, cv=5,_

¬scoring='neg_mean_squared_error')
      grid.fit(X_train, y_train)
      print("Best score: %f using params: %s" % (grid.best_score_, grid.best_params_))
     Best score: -13.743169 using params: {'learning_rate': 0.1, 'max_depth': 3,
     'n_estimators': 200}
[12]: # Tworze model z najlepszymi parametrami
      xg_reg = xgb.XGBRegressor(objective='reg:squarederror', colsample_bytree=0.3, __
       →alpha=10, **grid.best_params_)
      xg_reg.fit(X_train,y_train)
[12]: XGBRegressor(alpha=10, base_score=None, booster=None, callbacks=None,
                   colsample_bylevel=None, colsample_bynode=None,
                   colsample_bytree=0.3, device=None, early_stopping_rounds=None,
                   enable_categorical=False, eval_metric=None, feature_types=None,
                   gamma=None, grow_policy=None, importance_type=None,
                   interaction_constraints=None, learning_rate=0.1, max_bin=None,
                   max_cat_threshold=None, max_cat_to_onehot=None,
                   max_delta_step=None, max_depth=3, max_leaves=None,
                   min_child_weight=None, missing=nan, monotone_constraints=None,
                   multi_strategy=None, n_estimators=200, n_jobs=None,
                   num_parallel_tree=None, ...)
[13]: #Regresja liniowa
      y_pred_lr = lr.predict(X_test)
      print('Linear Regression - MSE: ', mean_squared_error(y_test, y_pred_lr))
      print('Linear Regression - MAE: ', mean_absolute_error(y_test, y_pred_lr))
      print('Linear Regression - R2: ', r2_score(y_test, y_pred_lr))
      print('Linear Regression - MAXError: ', max_error(y_test, y_pred_lr), "\n")
      y_pred_xg = xg_reg.predict(X_test)
      print('XGBoost - MSE: ', mean_squared_error(y_test, y_pred_xg))
      print('XGBoost - MAE: ', mean_absolute_error(y_test, y_pred_xg))
      print('XGBoost - R2: ', r2_score(y_test, y_pred_xg))
      print('XGBoost - MAXError: ', max_error(y_test, y_pred_xg))
```

Linear Regression - MSE: 24.291119474973478

```
Linear Regression - MAE: 3.189091965887837

Linear Regression - R2: 0.6687594935356326

Linear Regression - MAXError: 25.260428393480645

XGBoost - MSE: 8.300848313048355

XGBoost - MAE: 1.885623426063388

XGBoost - R2: 0.8868073082374468

XGBoost - MAXError: 17.506866455078125
```

Na podstawie powyższych wyników można spekulować, że model XGBoost jest lepiej dopasowany do danych

2 Założenia dla regresji liniowej

2.0.1 1. liniowa zależność

```
[14]: fig, ax = plt.subplots(1, 3, figsize=(20, 6))
      fig.suptitle("Assumptions for linear regression", fontsize=20)
      MEDV = pd.DataFrame({"Real":y_test,"Predicted":y_pred_lr})
      sns.regplot(data=MEDV,x="Real",y="Predicted", ax=ax[0], color="#63042c", u
       ⇔line_kws=dict(color="g"))
      ax[0].set_xlabel("Real value")
      ax[0].set_ylabel("Predicted value")
      ax[0].set_title("Linearity", fontsize=15)
      residuals_lr = y_test - y_pred_lr
      sns.histplot(residuals lr, ax=ax[1], color="#63042c")
      ax[1].set_xlabel("Residuals")
      ax[1].set_title("Histogram of Residuals", fontsize=15)
      sns.scatterplot(x=y_pred_lr, y=residuals_lr, color='#a30373', ax=ax[2])
      ax[2].set_title("Homoscedasticity", fontsize=15)
      ax[2].axhline(y=0, c="green")
      ax[2].set_xlabel("Predicted value")
      ax[2].set_ylabel("Residuals")
```

[14]: Text(0, 0.5, 'Residuals')

[14]:

- 1. Wykres liniowy wygląda względnie dobrze, pojawiają się wartości odstające. Pomimo to, na podstawie wcześniej stworzonego wykresu macierzy korelacji trzeba stwierdzić, że dla pewnych cech np. PTRATIO lub CHAS współczynnik korelacji liniowej Pearsona jest niski. To założenie nie jest spełnione.
- 2. Rozkład reszt jest prawostronnie asymetryczny, skośny. Ciężko byłoby go określić jako normalny. To założenie również nie jest spełnione.
- 3. Punkty na wykresie prezentującym homoskedastyczność nie są skupione wokół linii. Można zauważyć sporo wartości odstających.