

SCC-0223 - Capítulo 2 **Análise de Algoritmos**

João Rosa¹

¹Departamento de Ciências de Computação Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo - São Carlos joaoluis@icmc.usp.br

Sumário

- 📵 Análise Assintótica
 - Algoritmo
 - Conceitos
 - Cálculo do tempo de execução
- Recorrência
 - Funções recursivas
 - Resolução de recorrências
 - Exemplos
- 🗿 Divisão-e-conquista
 - Método geral
 - Indução matemática
 - Big-Oh

Sumário

- Análise Assintótica
 - Algoritmo
 - Conceitos
 - Cálculo do tempo de execução
- Recorrência
 - Funções recursivas
 - Resolução de recorrências
 - Exemplos
- Divisão-e-conquista
 - Método geral
 - Indução matemática
 - Big-Oh

Algoritmo: noção geral

- Algoritmo¹ é um conjunto de instruções que devem ser seguidas para solucionar um determinado problema.
- Cormen et al. [2]:
 - Qualquer procedimento computacional bem definido que toma algum valor ou conjunto de valores de entrada e produz algum valor ou conjunto de valores de saída;
 - Ferramenta para resolver um problema computacional bem especificado;
 - Assim como o hardware de um computador, constitui uma tecnologia, pois o desempenho total do sistema depende da escolha de um algoritmo eficiente tanto quanto da escolha de um hardware rápido.

 $^{^{1}}$ A palavra "algoritmo" vem do nome de um matemático persa (825 d.C.), Abu Ja'far Mohammed ibn Musa al Khōwarizmi. 🔻 🖹 🖹 🦘 🔍

Algoritmo: noção geral

- Cormen *et al.* [2]:
 - Deseja-se que um algoritmo termine e seja correto.
- Perguntas:
 - Mas um algoritmo correto vai terminar, não vai?
 - A afirmação está redundante?

Eficiência e Problemas Difíceis

- Além de um algoritmo correto, busca-se também um algoritmo eficiente para resolver um determinado problema
- Pergunta: como 'medir' eficiência de um algoritmo?

• Obs. Existem problemas para os quais não se conhece nenhum algoritmo eficiente para obter a solução: \mathcal{NP} -completos.

Recursos de um algoritmo

- Uma vez que um algoritmo está pronto/disponível, é importante determinar os recursos necessários para sua execução:
 - Tempo
 - Memória
- Qual o principal quesito? Por que?

- Um algoritmo que soluciona um determinado problema, mas requer o processamento de um ano, não deve ser usado.
- O que dizer de uma afirmação como a abaixo?
 "Desenvolvi um novo algoritmo chamado TripleX que leva 14,2 segundos para processar 1.000 números, enquanto o método SimpleX leva 42,1 segundos."
- Você trocaria o SimpleX que roda em sua empresa pelo TripleX?

- A afirmação tem que ser examinada, pois há diversos fatores envolvidos:
 - Características da máquina em que o algoritmo foi testado:
 - Quantidade de memória.
 - Linguagem de programação:
 - Compilada vs. interpretada,
 - Alto vs. baixo nível.
 - Implementação pouco cuidadosa do algoritmo *SimpleX* vs. "super" implementação do algoritmo *TripleX*.
 - Quantidade de dados processados:
 - Se o TripleX é mais rápido para processar 1.000 números, ele também é mais rápido para processar quantidades maiores de números, certo?

- A comunidade de computação começou a pesquisar formas de comparar algoritmos de forma independente de
 - Hardware,
 - Linguagem de programação,
 - Habilidade do programador.
- Portanto, quer-se comparar algoritmos e não programas:
 - Área conhecida como "análise/complexidade de algoritmos".

Eficiência de algoritmos

- Sabe-se que:
 - Processar 10.000 números leva mais tempo do que 1.000 números,
 - Cadastrar 10 pessoas em um sistema leva mais tempo do que cadastrar 5,
 - Etc.
- Então, pode ser uma boa idéia estimar a eficiência de um algoritmo em função do tamanho do problema:
 - Em geral, assume-se que *n* é o tamanho do problema, ou número de elementos que serão processados,
 - \bullet E calcula-se o número de operações que serão realizadas sobre os n elementos.

Eficiência de algoritmos

- O melhor algoritmo é aquele que requer menos operações sobre a entrada, pois é o mais rápido:
 - O tempo de execução do algoritmo pode variar em diferentes máquinas, mas o número de operações é uma boa medida de desempenho de um algoritmo.
- De que operações estamos falando?
- Toda operação leva o mesmo tempo?

Exemplo: TripleX vs. SimpleX

- TripleX: para uma entrada de tamanho n, o algoritmo realiza $n^2 + n$ operações:
 - Pensando em termos de função: $f(n) = n^2 + n$.
- Simple X: para uma entrada de tamanho n, o algoritmo realiza 1.000n operações:
 - g(n) = 1.000n.

Exemplo: TripleX vs. SimpleX

• Faça os cálculos do desempenho de cada algoritmo para cada tamanho de entrada:

tamanho da					
entrada <i>n</i>	1	10	100	1.000	10.000
$f(n)=n^2+n$					
g(n)=1.000n					

Exemplo: TripleX vs. SimpleX

• Faça os cálculos do desempenho de cada algoritmo para cada tamanho de entrada:

tamanho da					
entrada <i>n</i>	1	10	100	1.000	10.000
$f(n)=n^2+n$	2	110	10.100	1.001.000	100.010.000
g(n) = 1.000n	1.000	10.000	100.000	1.000.000	10.000.000

- A partir de n = 1.000, f(n) mantém-se maior e cada vez mais distante de g(n):
 - Diz-se que f(n) cresce mais rápido do que g(n).

Análise assintótica

- Devemos nos preocupar com a eficiência de algoritmos quando o tamanho de *n* for **grande**.
- Definição: a eficiência assintótica de um algoritmo descreve a sua eficiência relativa quando n torna-se grande.
- Portanto, para comparar 2 algoritmos, determinam-se as taxas de crescimento de cada um: o algoritmo com menor taxa de crescimento rodará mais rápido quando o tamanho do problema for grande.

Análise assintótica

Atenção:

- Algumas funções podem não crescer com o valor de n:
 - Quais?
- Também se pode aplicar os conceitos de análise assintótica para a quantidade de memória usada por um algoritmo:
 - Mas não é tão útil, pois é difícil estimar os detalhes exatos do uso de memória e o impacto disso.

Sumário

- Análise Assintótica
 - Algoritmo
 - Conceitos
 - Cálculo do tempo de execução
- 2 Recorrência
 - Funções recursivas
 - Resolução de recorrências
 - Exemplos
- Divisão-e-conquista
 - Método geral
 - Indução matemática
 - Big-Oh

Relembrando um pouco de matemática...

Expoentes:

- $x^a x^b = x^{a+b}$
- $x^{a}/x^{b} = x^{a-b}$
- $(x^a)^b = x^{ab}$
- $x^n + x^n = 2x^n$ (differente de x^{2n})
- $2^n + 2^n = 2^{n+1}$
- Logaritmos (usaremos a base 2, a menos que seja dito o contrário):
 - $x^a = b \Rightarrow log_x b = a$
 - $log_a b = log_c b/log_c a$, se c > 0
 - log ab = log a + log b
 - $log \ a/b = log \ a log \ b$
 - $log(a^b) = b log a$
 - E o mais importante:
 - log x < x para todo x > 0.

Função exponencial vs. logarítmica

Figure 1: Exemplos de logaritmos para várias bases.

Figure 2: Na palma da mão direita.

Relembrando um pouco de matemática...

Séries:

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \approx \frac{n^{2}}{2}$$

- Dadas duas funções, f(n) e g(n),
 - diz-se que f(n) é da ordem de (big-oh) g(n) ou que f(n) é $\mathcal{O}(g(n))$, se existirem constantes c e n_0 tais que $f(n) \le c * g(n)$ para todo $n \ge n_0$.
 - A taxa de crescimento de f(n) é menor ou igual à taxa de g(n).
 - diz-se que f(n) é **ômega** g(n) ou que $f(n) = \Omega(g(n))$, se existirem constantes c e n_0 tais que $f(n) \ge c * g(n)$ para todo $n \ge n_0$.
 - A taxa de crescimento de f(n) é maior ou igual à taxa de g(n).
 - diz-se que f(n) é **theta** g(n) ou que $f(n) = \Theta(g(n))$, se e somente se $f(n) = \mathcal{O}(g(n))$ e $f(n) = \Omega(g(n))$.
 - A taxa de crescimento de f(n) é igual à taxa de g(n).
 - diz-se que f(n) é **little-oh** g(n) ou que f(n) = o(g(n)), se e somente se $f(n) = \mathcal{O}(g(n))$ e $f(n) \neq \Theta(g(n))$.
 - A taxa de crescimento de f(n) é menor do que a taxa de g(n).
 - diz-se que f(n) é **little ômega** g(n) ou que $f(n) = \omega(g(n))$, se e somente se $f(n) = \Omega(g(n))$ e $f(n) \neq \Theta(g(n))$.
 - A taxa de crescimento de f(n) é maior do que a taxa de g(n).

Algumas considerações

- O uso das notações permite comparar a taxa de crescimento das funções correspondentes aos algoritmos:
 - Não faz sentido comparar pontos isolados das funções, já que podem não corresponder ao comportamento assintótico.
- Ao dizer que $g(n) = \mathcal{O}(f(n))$, garante-se que g(n) cresce numa taxa não maior do que f(n), ou seja, f(n) é seu limite superior.
- Ao dizer que $f(n) = \Omega(g(n))$, tem-se que g(n) é o limite inferior de f(n).

Exemplo

- Para 2 algoritmos quaisquer, considere as funções de eficiência correspondentes $1.000 n = n^2$:
 - A primeira é maior do que a segunda para valores pequenos de n,
 - A segunda cresce mais rapidamente e finalmente será uma função maior, sendo que o ponto de mudança é n=1.000,
 - Segundo as notações anteriores, se existe um ponto n_0 a partir do qual c * f(n) é sempre pelo menos tão grande quanto g(n), então, ignorados os fatores constantes f(n) é pelo menos tão grande quanto g(n):
 - No nosso caso, g(n) = 1.000n, $f(n) = n^2$, $n_0 = 1.000$ e c = 1 (ou, ainda, $n_0 = 10$ e c = 100): Dizemos que $1.000n = \mathcal{O}(n^2)$.

Outros exemplos

- A função n^3 cresce mais rapidamente que n^2 :
 - $n^2 = \mathcal{O}(n^3)$
 - $n^3 = \Omega(n^2)$
- Se $f(n) = n^2$ e $g(n) = 2n^2$, então essas duas funções têm taxas de crescimento iguais:
 - Portanto, $f(n) = \mathcal{O}(g(n))$ e $f(n) = \Omega(g(n))$.

Taxas de crescimento

- Algumas regras:
 - Se $T_1(n) = \mathcal{O}(f(n))$ e $T_2(n) = \mathcal{O}(g(n))$, então:
 - $T_1(n) + T_2(n) = max(\mathcal{O}(f(n)), \mathcal{O}(g(n))).$
 - $T_1(n) * T_2(n) = \mathcal{O}(f(n) * g(n)).$
 - Se T(x) é um polinômio de grau n, então:
 - $T(x) = \Theta(x^n)$.
 - Relembrando: um polinômio de grau n é uma função que possui a forma abaixo:

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + ... + a_1 \cdot x + a_0$$

seguindo a seguinte classificação em função do grau:

- Grau 0: polinômio constante
- Grau 1: função afim (polinômio linear, caso $a_0 = 0$)
- Grau 2: polinômio quadrático
- Grau 3: polinômio cúbico
- $log^k n = \mathcal{O}(n)$ para qualquer constante k, pois logaritmos crescem muito vagarosamente.

Funções e taxas de crescimento

As mais comuns:

С	constante	
log n	logarítmica	
log ² n	logarítmica ao quadrado	
n	linear	
n log n		
n^2	quadrática	
n^3	cúbica	
2 <i>n</i>		
a ⁿ	exponencial	

Funções e taxas de crescimento

Figure 3: Crescimentos de algumas funções.

Taxas de crescimento

- Apesar de às vezes ser importante, não é comum incluir constantes ou termos de menor ordem em taxas de crescimento:
 - Queremos medir a taxa de crescimento da função, o que torna os "termos menores" irrelevantes,
 - As constantes também dependem do tempo exato de cada operação; como ignoramos os custos reais das operações, ignoramos também as constantes.
- Não se diz que $T(n) = \mathcal{O}(2n^2)$ ou que $T(n) = \mathcal{O}(n^2 + n)$:
 - Diz-se apenas $T(n) = \mathcal{O}(n^2)$.

Exercício

- Um algoritmo tradicional e muito utilizado é da ordem de $n^{1,5}$, enquanto um algoritmo novo proposto recentemente é da ordem de $n \log n$:
 - $f(n) = n^{1,5}$
 - $g(n) = n \log n$.
- Qual algoritmo você adotaria na empresa que está fundando?
 - Lembre-se que a eficiência desse algoritmo pode determinar o sucesso ou o fracasso de sua empresa!

Exercício

• Uma possível solução:

$$f(n) = n^{1.5} \qquad \Rightarrow \qquad \frac{n^{1.5}}{n} = n^{0.5} \qquad \Rightarrow \qquad (n^{0.5})^2 = n$$

$$g(n) = n \log n \quad \Rightarrow \quad \frac{(n \log n)}{n} = \log n \quad \Rightarrow \quad (\log n)^2 = \log^2 n$$

 Como n cresce mais rapidamente do que qualquer potência de log, temos que o algoritmo novo é mais eficiente e, portanto, deve ser o adotado pela empresa no momento.

- Para proceder a uma análise de algoritmos e determinar as taxas de crescimento, necessitamos de um modelo de computador e das operações que executa.
- Assume-se o uso de um computador tradicional, em que as instruções de um programa são executadas sequencialmente,
 - com memória infinita, por simplicidade.

- Repertório de instruções simples: soma, multiplicação, comparação, atribuição, etc.
 - Por simplicidade e viabilidade da análise, assume-se que cada instrução demora exatamente uma unidade de tempo para ser executada,
 - Obviamente, em situações reais, isso pode não ser verdade: a leitura de um dado em disco pode demorar mais do que uma soma.
 - Operações complexas, como inversão de matrizes e ordenação de valores, não são realizadas em uma única unidade de tempo, obviamente: devem ser analisadas em partes.

- Considera-se somente o algoritmo e suas entradas (de tamanho n).
- Para uma entrada de tamanho n, pode-se calcular $T_{melhor}(n)$, $T_{media}(n)$ e $T_{pior}(n)$, ou seja, o melhor tempo de execução, o tempo médio e o pior, respectivamente:
 - Obviamente, $T_{melhor}(n) \leq T_{media}(n) \leq T_{pior}(n)$.
- Atenção: para mais de uma entrada, essas funções teriam mais de um argumento.

- Geralmente, utiliza-se somente a análise do pior caso $T_{pior}(n)$, pois ela fornece os limites para todas as entradas, incluindo particularmente as entradas ruins:
 - Logicamente, muitas vezes, o tempo médio pode ser útil, principalmente em sistemas executados rotineiramente:
 - Por exemplo: em um sistema de cadastro de alunos como usuários de uma biblioteca, o trabalho difícil de cadastrar uma quantidade enorme de pessoas é feito somente uma vez; depois, cadastros são feitos de vez em quando apenas.
 - Dá mais trabalho calcular o tempo médio,
 - O melhor tempo não tem muita utilidade.

- Idealmente, para um algoritmo qualquer de ordenação de vetores com n elementos:
 - Qual a configuração do vetor que você imagina que provavelmente resultaria no melhor tempo de execução?
 - E qual resultaria no pior tempo?
- Exemplo:
 - Soma da subsequência máxima:
 - Dada uma sequência de inteiros (possivelmente negativos) a₁, a₂, ..., a_n, encontre o
 valor da máxima soma de quaisquer números de elementos consecutivos; se todos os
 inteiros forem negativos, o algoritmo deve retornar 0 como resultado da maior soma,
 - Por exemplo, para a entrada -2, 11, -4, 13, -5 e -2, a resposta é 20 (soma de a_2 a a_4).

Soma da subsequência máxima

- Há muitos algoritmos propostos para resolver esse problema:
 - Alguns são mostrados abaixo juntamente com seus tempos de execução (n é o tamanho da entrada):

algoritmo	1	2	3	4
tempo	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n \log n)$	$\mathcal{O}(n)$
n = 10	0,00103	0,00045	0,00066	0,00034
n = 100	0,47015	0,01112	0,00486	0,00063
n = 1.000	448,77	1,1233	0,05843	0,00333
n = 10.000	ND^2	111,13	0,68631	0,03042
n = 100.000	ND	ND	8,0113	0,29832

²Não Disponível.

Soma da subsequência máxima

- Deve-se notar que:
 - Para entradas pequenas, todas as implementações rodam num piscar de olhos:
 - Portanto, se somente entradas pequenas são esperadas, não devemos gastar nosso tempo para projetar melhores algoritmos.
 - Para entradas grandes, o melhor algoritmo é o 4.
 - Os tempos não incluem o tempo requerido para leitura dos dados de entrada:
 - Para o algoritmo 4, o tempo de leitura é provavelmente maior do que o tempo para resolver o problema: característica típica de algoritmos eficientes.

Taxas de crescimento

Figure 4: Gráfico (n vs. milisegundos) das taxas de crescimentos dos quatro algoritmos com entradas entre 10 e 100

Taxas de crescimento

Figure 5: Gráfico (n vs. segundos) das taxas de crescimentos dos quatro algoritmos para entradas majores.

Sumário

- Análise Assintótica
 - Algoritmo
 - Conceitos
 - Cálculo do tempo de execução
- Recorrência
 - Funções recursivas
 - Resolução de recorrências
 - Exemplos
- Divisão-e-conquista
 - Método geral
 - Indução matemática
 - Big-Oh

- Existem basicamente 2 formas de estimar o tempo de execução de programas e decidir quais são os melhores:
 - empiricamente,
 - teoricamente.
- É desejável e possível estimar qual o melhor algoritmo sem ter que executá-los:
 - Função da análise de algoritmos.

Calculando o tempo de execução

• Supondo que as operações simples demoram uma unidade de tempo para executar, considere o programa abaixo para calcular o resultado de

$$\sum_{i=1}^{n} i^3$$

- Início
- declare soma_parcial numérico;
- \bigcirc soma_parcial ← 0;
- $lackbox{0}$ para $i \leftarrow 1$ até n faça
- ⑤ soma_parcial ← soma_parcial+i*i*i;
- 6 escreva(soma_parcial);
- Fim

Calculando o tempo de execução

$$\sum_{i=1}^{n} i^3$$

- 1 unidade de tempo
- lack 1 unidade para iniciação de $i,\ n+1$ unidades para testar se i=n e n unidades para incrementar i=2n+2
- 4 unidades (1 da soma, 2 das multiplicações e 1 da atribuição) executada n vezes (pelo comando "para") = 4n unidades
- 🧿 1 unidade para escrita
 - Custo total: somando tudo, tem-se 6n + 4 unidades de tempo, ou seja, a função é $\mathcal{O}(n)$!

Calculando o tempo de execução

- Ter que realizar todos esses passos para cada algoritmo (principalmente algoritmos grandes) pode se tornar uma tarefa cansativa
- Em geral, como se dá a resposta em termos do *big-oh*, costuma-se desconsiderar as constantes e elementos menores dos cálculos:
 - No exemplo anterior:
 - A linha $\bf 3$ soma_parcial $\leftarrow 0$ $\acute{\bf e}$ insignificante em termos de tempo,
 - É desnecessário ficar contando 2, 3 ou 4 unidades de tempo na linha 5 soma_parcial
 ← soma_parcial+i*i*i,
 - O que realmente dá a grandeza de tempo desejada é a repetição na linha ${f 4}$ "para $i\leftarrow 1$ até n faça".

- Repetições:
 - O tempo de execução de uma repetição é pelo menos o tempo dos comandos dentro da repetição (incluindo testes) vezes o número de vezes que é executada.
- Repetições aninhadas:
 - A análise é feita de dentro para fora,
 - O tempo total de comandos dentro de um grupo de repetições aninhadas é o tempo de execução dos comandos multiplicado pelo produto do tamanho de todas as repetições.
 - O exemplo abaixo é O(n²):
 para i ← 0 até n faça
 para j ← 0 até n faça
 faça k ← k + 1:

- Comandos consecutivos:
 - É a soma dos tempos de cada um, o que pode significar o máximo entre eles,
 - O exemplo abaixo é $\mathcal{O}(n^2)$, apesar da primeira repetição ser $\mathcal{O}(n)$: para $i \leftarrow 0$ até n faça $k \leftarrow 0$; para $i \leftarrow 0$ até n faça

```
para j \leftarrow 0 ate n faça para j \leftarrow 0 ate n faça faca k \leftarrow k+1:
```

- Se... então... senão:
 - Para uma cláusula condicional, o tempo de execução nunca é maior do que o tempo do teste mais o tempo do maior entre os comandos relativos ao então e os comandos relativos ao senão,
 - O exemplo abaixo é $\mathcal{O}(n)$:

```
se i < j
então i \leftarrow i+1
senão para k \leftarrow 1 até n faça i \leftarrow i * k;
```

- Chamadas a sub-rotinas:
 - Uma sub-rotina deve ser analisada primeiro e depois ter suas unidades de tempo incorporadas ao programa/sub-rotina que a chamou.

- Exercício: Estime quantas unidades de tempo são necessárias para rodar o algoritmo abaixo:
 - Início
 - declare i e j numéricos;
 - declare A vetor numérico de n posições;
 - $0 i \leftarrow 1;$
 - \odot enquanto $i \leq n$ faça
 - $A[i] \leftarrow 0;$
 - $i \leftarrow i + 1;$
 - $lackbox{0}$ para $i \leftarrow 1$ até n faça
 - $oldsymbol{9}$ para $j \leftarrow 1$ até n faça

 - Fim

Sumário

- Análise Assintótica
 - Algoritmo
 - Conceitos
 - Cálculo do tempo de execução
- Recorrência
 - Funções recursivas
 - Resolução de recorrências
 - Exemplos
- Divisão-e-conquista
 - Método geral
 - Indução matemática
 - Big-Oh

Exercício

Analise a sub-rotina recursiva abaixo:

```
    sub-rotina fatorial (n: numérico)
    início
    declare aux numérico;
    se n = 1
    então aux ← 1
    senão aux ← n * fatorial(n - 1);
    fatorial ← aux;
    fim
```

- Sub-rotinas recursivas:
 - Se a recursão é um "disfarce" da repetição (e, portanto, a recursão está mal empregada, em geral), basta analisá-la como tal,
 - O exemplo anterior é obviamente $\mathcal{O}(n)$.
- Eliminando a recursão:

```
1 sub-rotina fatorial(n: numérico)
2 início
3 declare aux numérico;
aux ← 1
4 enquanto n > 1 faça
5 aux ← aux * n;
n ← n − 1;
fatorial ← aux;
fim
```

- Sub-rotinas recursivas:
 - Em muitos casos (incluindo casos em que a recursividade é bem empregada), é difícil transformá-la em repeticão:
 - Nesses casos, para fazer a análise do algoritmo, pode ser necessário usar a análise de recorrência.
 - Recorrência: equação ou desigualdade que descreve uma função em termos de seu valor em entradas menores.
 - Caso típico: algoritmos de divisão-e-conquista, ou seja, algoritmos que desmembram o problema em vários subproblemas que são semelhantes ao problema original, mas menores em tamanho, resolvem os subproblemas recursivamente e depois combinam essas soluções com o objetivo de criar uma solução para o problema original.

- Exemplo de uso de recorrência:
 - Números de Fibonacci:
 - 0,1,1,2,3,5,8,13...

•
$$fib(0) = 0$$
, $fib(1) = 1$, $fib(i) = fib(i-1) + fib(i-2)$.

- A rotina:
 - sub-rotina fib(n: numérico)
 - ② início
 - declare aux numérico;
 - \bigcirc se n <= 1
 - \mathbf{b} então $\mathbf{a}\mathbf{u}\mathbf{x}\leftarrow\mathbf{n}$
 - senão $aux \leftarrow fib(n-1) + fib(n-2);$
 - fib ← aux;
 - 6 fim

- Seja T(n) o tempo de execução da função:
 - Caso 1: Se n=0 ou n=1, o tempo de execução é constante, que é o tempo de testar o valor de n no comando se, mais atribuir o valor 1 à variável aux, mais atribuir o valor de aux ao nome da função; ou seja, T(0) = T(1) = 3.
 - Caso 2: Se n > 2, o tempo consiste em testar o valor de n no comando se, mais o trabalho a ser executado no senão (que é uma soma, uma atribuição e 2 chamadas recursivas), mais a atribuição de aux ao nome da função; ou seja, a recorrência T(n) = T(n-1) + T(n-2) + 4, para n > 2.

- Muitas vezes, a recorrência pode ser resolvida com base na prática e experiência do analista,
- Alguns métodos para resolver recorrências:
 - Método da substituição,
 - Método mestre,
 - Método da árvore de recursão,
 - Método da iteração.

Sumário

- Análise Assintótica
 - Algoritmo
 - Conceitos
 - Cálculo do tempo de execução
- Recorrência
 - Funções recursivas
 - Resolução de recorrências
 - Exemplos
- Oivisão-e-conquista
 - Método geral
 - Indução matemática
 - Big-Oh

- Método da substituição:
 - Supõe-se (aleatoriamente ou com base na experiência) um limite superior para a função e verifica-se se ela não extrapola este limite:
 - Uso de indução matemática.
 - O nome do método vem da "substituição" da resposta adequada pelo palpite,
 - Pode-se "apertar" o palpite para achar funções mais exatas.

Método mestre:

- Fornece limites para recorrências da forma $T(n) = aT(\frac{n}{b}) + f(n)$, em que $a \ge 1$, b > 1 e f(n) é uma função dada,
- Envolve a memorização de alguns casos básicos que podem ser aplicados para muitas recorrências simples.

- Método da árvore de recursão:
 - Traça-se uma árvore que, nível a nível, representa as recursões sendo chamadas,
 - Em seguida, em cada nível/nó da árvore, são acumulados os tempos necessários para o processamento:
 - No final, tem-se a estimativa de tempo do problema.
 - Este método pode ser utilizado para se fazer uma suposição mais informada no método da substituição.

- Método da iteração:
 - ullet Este método repetidamente faz substituições para cada ocorrência da função ${\cal T}$ do lado direito até que todas as ocorrências desapareçam.

- Método da árvore de recursão:
 - **Exemplo**: algoritmo de ordenação de arranjos por intercalação:
 - Passo 1: divide-se um arranjo não ordenado em dois subarranjos,
 - Passo 2: se os subarranjos não são unitários, cada subarranjo é submetido ao passo 1 anterior; caso contrário, eles são ordenados por intercalação dos elementos e isso é propagado para os subarranjos anteriores.

Ordenação por intercalação

• Exemplo com arranjo de 4 elementos:

• Implemente a(s) sub-rotina(s) e calcule sua complexidade.

- Método da árvore de recursão:
 - Considere o tempo do algoritmo (que envolve recorrência):

$$T(n) = c$$
, se $n = 1$
 $T(n) = 2T(\frac{n}{2}) + cn$, se $n > 1$

- Tem-se que:
 - Na parte (a), há T(n) ainda não expandido,
 - Na parte (b), T(n) foi dividido em árvores equivalentes representando a recorrência com custos divididos ($T(\frac{n}{2})$ cada uma), sendo cn o custo no nível superior da recursão (fora da recursão e, portanto, associado ao nó raiz),
 - ...
 - No fim, nota-se que o tamanho da árvore corresponde a $(\log n) + 1$, o qual multiplica os valores obtidos em cada nível da árvore, os quais, nesse caso, são iguais:
 - Como resultado, tem-se cn log n + cn, ou seja, $\mathcal{O}(n \log n)$.

- Alguns dizem que a expressão correta é "f(n) é $\mathcal{O}(g(n))$ ":
 - Seria considerado redundante e inadequado dizer " $f(n) \leq \mathcal{O}(g(n))$ " ou (ainda pior) " $f(n) = \mathcal{O}(g(n))$ ",
 - Não é incorreto (embora não seja usual) dizer " $f(n) \in \mathcal{O}(g(n))$ ", já que o operador Big-oh representa todo um conjunto de funções.

Sumário

- Análise Assintótica
 - Algoritmo
 - Conceitos
 - Cálculo do tempo de execução
- Recorrência
 - Funções recursivas
 - Resolução de recorrências
 - Exemplos
- Divisão-e-conquista
 - Método geral
 - Indução matemática
 - Big-Oh

- O próximo slide [2] mostra a árvore de recursão para $T(n) = 3T(n/4) + cn^2$:
 - Assume-se que n é uma potência de 4 para que os tamanhos dos sub-problemas sejam inteiros,
 - Parte (a) mostra T(n), que é expandido na parte (b) em uma árvore equivalente representando a recorrência,
 - O termo cn^2 na raiz representa o custo no nível superior da recursão e as três sub-árvores da raiz representam os custos dos sub-problemas de tamanho n/4,
 - A parte (c) mostra esse processo um passo a frente expandindo cada nó com custo T(n/4) a partir da parte (b),
 - O custo de cada um dos três sucessores da raiz é $c(n/4)^2$,
 - Continua-se expandindo cada nó da árvore, quebrando-o em suas partes constituintes, como determinado pela recorrência.

Total: $O(n^2)$

Exemplo 1

 $n^{\log_4 3}$

(d)

- Como os tamanhos dos sub-problemas descrescem por um fator de 4 cada vez que descemos um nível, deve-se alcançar uma condição limite.
- Quão longe da raiz alcançaremos?
- O tamanho do sub-problema para um nó na profundidade $i \in n/4^i$.
- Portanto, o tamanho do sub-problema alcança n=1 quando $n/4^i=1$, ou equivalentemente, quando $i=\log_4 n$.
- Ou seja, a árvore tem $\log_4 n + 1$ níveis (em profundidades 0, 1, 2, ..., $\log_4 n$).

- Depois, determina-se o custo em cada nível da árvore.
- Cada nível tem três vezes mais nós que o nível acima, e portanto o número de nós na profundidade i é 3ⁱ.
- Como os tamanhos dos sub-problemas reduzem por um fator de 4 para cada nível a partir da raiz, cada nó na profundidade i, para $i=0,1,2,...,\log_4 n-1$, tem um custo de $c(n/4^i)^2$.
- Multiplicando, o custo total de todos os nós na profundidade i é $3^i c (n/4^i)^2 = (3/16)^i c n^2$.
- O nível do fundo, na profundidade $\log_4 n$, tem $3^{\log_4 n} = n^{\log_4 3}$ nós, cada um com custo T(1), para um custo total de $n^{\log_4 3} T(1)$, que é $\Theta(n^{\log_4 3})$, assumindo T(1) como uma constante.

pois

Custo da árvore inteira:

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4} n - 1}cn^{2} + \Theta(n^{\log_{4} 3})$$

$$T(n) = \sum_{i=0}^{\log_{4} n - 1} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4} 3})$$

$$T(n) = \frac{(3/16)^{\log_{4} n} - 1}{(3/16) - 1}cn^{2} + \Theta(n^{\log_{4} 3})$$

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

Quando a soma é infinita e |x| < 1

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Logo

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3}) < \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$
$$= \frac{1}{1 - (3/16)} cn^2 + \Theta(n^{\log_4 3}) = \frac{16}{13} cn^2 + \Theta(n^{\log_4 3}) = \mathcal{O}(n^2).$$

pois $\log_4 3 = 0.79$.

- Outro exemplo [2]: árvore de recursão para $T(n) = T(n/3) + T(2n/3) + \mathcal{O}(n)$.
- c representa o fator constante no termo $\mathcal{O}(n)$.
- Quando se adiciona os valores ao longo dos níveis da árvore de recursão, chega-se ao valor de cn para cada nível.
- O caminho mais longo da raiz a uma folha é $n \to (2/3)n \to (2/3)^2 n \to \cdots \to 1$.
- Como $(2/3)^k n = 1$ quando $k = \log_{3/2} n$, a altura da árvore é $\log_{3/2} n$.

- Intuitivamente, espera-se que a solução para a recorrência seja no máximo o número de níveis vezes o custo de cada nível, ou $\mathcal{O}(cn\log_{3/2}n) = \mathcal{O}(n\log n)$.
- A figura mostra apenas os níveis superiores da árvore de recursão e no entanto, nem todo nível contribui com um custo de *cn*.
- Considere o custo das folhas.
- Se a árvore for uma árvore binária completa de altura $\log_{3/2} n$, então haveria $2^{\log_{3/2} n} = n^{\log_{3/2} 2}$ folhas.
- Como o custo de cada folha é uma constante, o custo total de todas as folhas seria $\Theta(n^{\log_{3/2} 2}) = \omega(n \log n)$, já que $\log_{3/2} 2$ é uma constante maior que 1.

- Esta árvore de recursão não é uma árvore binária completa, portanto ela tem menos de $n^{\log_{3/2} 2}$ folhas.
- Consequentemente, níveis próximos do fundo contribuem menos que *cn* para o custo total.
- Como estamos preocupados apenas em adivinhar (método da substituição), não precisamos nos preocupar com o custo exato.
- Portanto, nosso "chute" para o limite superior será $\mathcal{O}(n \log n)$.
- Usaremos então o método da substituição para verificar que $\mathcal{O}(n \log n)$ é um limite superior para a solução da recorrência.
- Mostramos que $T(n) \le d \ n \log n$, onde d é uma constante positiva.

Tem-se

$$T(n) \le T(n/3) + T(2n/3) + cn$$

$$\le d(n/3)\log(n/3) + d(2n/3)\log(2n/3) + cn$$

$$= (d(n/3)\log n - d(n/3)\log 3)$$

$$+ (d(2n/3)\log n - d(2n/3)\log(3/2)) + cn$$

$$= d n \log n - d((n/3)\log 3 + (2n/3)\log(3/2)) + cn$$

$$= d n \log n - d((n/3)\log 3 + (2n/3)\log 3 - (2n/3)\log 2) + cn$$

$$= d n \log n - d n(\log 3 - 2/3) + cn$$

$$\le d n \log n$$

• desde que $d \ge c/(\log 3 - (2/3))$.

Problema das 8 rainhas

Exercício proposto

Resolver, através da recursão, o **problema das 8 rainhas**. Fazer a análise do algoritmo em termos de big-Oh (equação de recorrência). O problema das 8 rainhas consiste em colocar num tabuleiro de xadrez (matriz 8×8), 8 rainhas, uma em cada linha, de tal forma que uma rainha não "coma" outra. Lembre-se de que a rainha é a peça do xadrez que se movimenta qualquer número de casas na vertical, na horizontal e nas diagonais.

Obs.: O problema tem 92 soluções distintas.

Problema das 8 rainhas

Veja uma "quase" solução:

Problema das 8 rainhas

92 Soluções:

```
15863724
               16837425
                              17468253
                                             17582463
                                                            24683175
25713864
               25741863
                              26174835
                                             26831475
                                                            27368514
27581463
               28613574
                              3 1 7 5 8 2 4 6
                                             3 5 2 8 1 7 4 6
                                                            35286471
35714286
               35841726
                              36258174
                                             36271485
                                                            36275184
                              36814752
36418572
               36428571
                                             3 6 8 1 5 7 2 4
                                                            3 6 8 2 4 1 7 5
                              38471625
                                                            4 1 5 8 6 3 7 2
37285146
               37286415
                                             4 1 5 8 2 7 3 6
42861357
                              46827135
                                                            47185263
47382516
               47526138
                              47531682
                                             48136275
                                                            48157263
48531726
               5 1 4 6 8 2 7 3
                              5 1 8 4 2 7 3 6
                                                            52468317
               5 2 6 1 7 4 8 3
                                                            5 3 1 7 2 8 6 4
52473861
                                             5 3 1 6 8 2 4 7
53847162
               57138642
                              57142863
                                             57248136
                                                            57263148
57263184
               57413862
                              58413627
                                             58417263
                                                            6 1 5 2 8 3 7 4
62713584
               62714853
                              6 3 1 7 5 8 2 4
                                             6 3 1 8 4 2 7 5
                                                            6 3 1 8 5 2 4 7
6 3 5 7 1 4 2 8
               6 3 5 8 1 4 2 7
                              6 3 7 2 4 8 1 5
                                             6 3 7 2 8 5 1 4
                                                            6 3 7 4 1 8 2 5
64158273
               64285713
                              6 4 7 1 3 5 2 8
                                             64718253
                                                            68241753
71386425
               72418536
                              7 2 6 3 1 4 8 5
                                             7 3 1 6 8 5 2 4
                                                            73825164
74258136
               74286135
                              75316824
                                             82417536
                                                            82531746
8 3 1 6 2 5 7 4
               8 4 1 3 6 2 7 5
```

Cuidado!

- A análise assintótica é uma ferramenta fundamental ao projeto, análise ou escolha de um algoritmo específico para uma dada aplicação,
- No entanto, deve-se ter sempre em mente que essa análise "esconde" fatores assintoticamente irrelevantes, mas que em alguns casos podem ser relevantes na prática, particularmente se o problema de interesse se limitar a entradas (relativamente) pequenas:
 - Por exemplo, um algoritmo com tempo de execução da ordem de $10^{100}n$ é $\mathcal{O}(n)$, assintoticamente melhor do que outro com tempo 10~n log n, o que nos faria, em princípio, preferir o primeiro,
 - No entanto, 10¹⁰⁰ é o número estimado por alguns astrônomos como um limite superior para a quantidade de átomos existente no universo observável!

Análise de algoritmos recursivos

- Muitas vezes, temos que resolver recorrências:
 - Exemplo: pesquisa binária pelo número 3:

É o elemento procurado?

É o elemento procurado?

É o elemento procurado?

Exercícios propostos

- Implemente o algoritmo da busca binária em um arranjo ordenado, teste e analise o algoritmo,
- Faça um algoritmo para resolver o problema da maior soma de subsequência em um arranjo e analise-o:

- Implemente o algoritmo de Euclides para calcular o máximo divisor comum para 2 números, e faça a análise de recorrência do mesmo,
- **©** Escreva e analise um algoritmo recursivo para calcular x^n .

Sumário

- Análise Assintótica
 - Algoritmo
 - Conceitos
 - Cálculo do tempo de execução
- Recorrência
 - Funções recursivas
 - Resolução de recorrências
 - Exemplos
- Divisão-e-conquista
 - Método geral
 - Indução matemática
 - Big-Oh

Estratégia

- Dada uma função para computar n entradas, a estratégia divisão-e-conquista separa as entradas em k subconjuntos distintos, $1 < k \le n$, levando a k subproblemas,
- Estes subproblemas devem ser resolvidos, e então um método deve ser encontrado para combinar subsoluções em uma solução do todo,
- Se os subproblemas ainda forem muito grandes, então a estratégia divisão-e-conquista pode ser reaplicada,
- Os subproblemas resultantes são do mesmo tipo do problema original.

Estratégia

- A reaplicação do princípio é naturalmente expressa por um algoritmo recursivo,
- Subproblemas do mesmo tipo cada vez menores são gerados até que finalmente subproblemas que são pequenos o suficiente para serem resolvidos sem a separação são produzidos.

Estratégia

- Considere a estratégia divisão-e-conquista com a separação da entrada em dois subproblemas do mesmo tipo,
- Pode-se escrever uma abstração de controle que espelha a forma como um algoritmo baseado na estratégia parecerá,
- Por abstração de controle entende-se um procedimento cujo fluxo de controle é claro mas cujas operações primárias são especificadas por outros procedimentos cujos significados precisos são indefinidos,
- dec é inicialmente chamado como dec(p), onde p é o problema a ser resolvido.

dec(p)

- pequeno(p) é uma função booleana que determina se o tamanho da entrada é pequeno o suficiente para que a resposta possa ser computada sem dividir a entrada,
- Se isso for verdade, a função s é chamada,
- De outra forma, o problema p é dividido em subproblemas menores,
- ullet Estes subproblemas $p_1, p_2, \dots p_k$, são resolvidos por aplicações recursivas de dec,
- combine é uma função que determina a solução para p usando as soluções para os k subproblemas,

dec(p)

```
Algoritmo \operatorname{dec}(p) {
    Se pequeno(p) então retorne \operatorname{s}(p);
    senão
    {
        divida p em instâncias menores p_1, p_2, \ldots p_k, \ k \geq 1;
        aplique \operatorname{dec} a cada um destes subproblemas;
        retorne \operatorname{combine}(\operatorname{dec}(p_1), \operatorname{dec}(p_2), \ldots, \operatorname{dec}(p_k));
    }
}
```

Se o tamanho de p é n e os tamanhos dos k subproblemas são n₁, n₂, ..., n_k, respectivamente, então o tempo de computação de dec(p) é descrito pela relação (equação) de recorrência:

$$T(n) = \left\{ egin{array}{ll} g(n) & n ext{ pequeno} \\ T(n_1) + T(n_2) + \ldots + T(n_k) + f(n) & n ext{ grande} \end{array}
ight.$$

- onde T(n) é o tempo para dec em qualquer entrada de tamanho n e g(n) é o tempo para computar a resposta para entradas pequenas,
- A função f(n) é o tempo para dividir p e combinar as soluções para os subproblemas.

Recorrências

- Para algoritmos baseados em divisão-e-conquista que produzem subproblemas do mesmo tipo do problema original, é muito natural descrever estes algoritmos usando recursão.
- A complexidade de muitos algoritmos divisão-e-conquista é dada por recorrências da forma:

$$T(n) = \begin{cases} T(1) & n = 1 \\ aT(n/b) + f(n) & n > 1 \end{cases}$$

• onde a e b são constantes conhecidas. Assume-se que T(1) é conhecido e n é uma potência de b (isto é, $n = b^k$).

Método da iteração

- Um dos métodos para resolver tal relação de recorrência é chamado de método da iteração,
- Este método repetidamente faz substituições para cada ocorrência da função T do lado direito até que todas as ocorrências desapareçam,
- Exemplo: Considere o caso no qual a=2 e b=2. Seja T(1)=2 e f(n)=n. Tem-se:

. . .

$$T(n) = 2T(n/2) + n$$

$$= 2[2T(n/4) + n/2] + n$$

$$= 4T(n/4) + 2n$$

$$= 4[2T(n/8) + n/4] + 2n$$

$$= 8T(n/8) + 3n$$

Método da iteração

- Em geral, nota-se que $T(n) = 2^i T(n/2^i) + in$, para $i \ge 1$,
- Em particular, então, $T(n) = 2^{\log n} T(n/2^{\log n}) + n \log n$, correspondente a escolha de $i = \log n$. Portanto, $T(n) = nT(1) + n \log n = n \log n + 2n$.

Sumário

- Análise Assintótica
 - Algoritmo
 - Conceitos
 - Cálculo do tempo de execução
- Recorrência
 - Funções recursivas
 - Resolução de recorrências
 - Exemplos
- Divisão-e-conquista
 - Método geral
 - Indução matemática
 - Big-Oh

Princípio da indução matemática (forte) [4]

- Seja P(n) um predicado que é definido para inteiros n, e sejam a e b inteiros fixos, com $a \le b$. Suponha que as duas afirmações seguintes sejam verdadeiras:
 - **1** P(a), P(a+1), ..., P(b) são V (passo base)
 - ② Para qualquer inteiro $k \ge b$, se P(i) é V para $a \le i < k$ então P(k) é V.

Logo, a afirmação "para todos inteiros $n \ge a$, P(n) é V.

• (A suposição que P(i) é V para $a \le i < k$ é chamada de **hipótese indutiva**.)

Princípio da indução matemática (forte): Exemplo [4]

• Seja a sequência a_1, a_2, a_3, \dots definida como

$$a_1 = 0$$

 $a_2 = 2$
 $a_k = 3 \cdot a_{\lfloor k/2 \rfloor} + 2, k \ge 3$

Prove que a_n é par, para $n \geq 1$.

- Prova (por indução matemática):
 - **1** Passo base: Para n = 1 e n = 2 a propriedade é válida já que $a_1 = 0$ e $a_2 = 2$.
 - **2** Passo indutivo: Vamos supor que a_i é par para todos inteiros i, $0 \le i < k$ (**hipótese** indutiva)

Princípio da indução matemática (forte): Exemplo [4]

- Se a propriedade é válida para $0 \le i < k$, então é válida para k, ou seja, a_k é par (o que deve ser mostrado).
- Pela definição de $a_1, a_2, a_3, ...$

$$a_k = 3 \cdot a_{\lfloor k/2 \rfloor} + 2, k \geq 3$$

- O termo $a_{\lfloor k/2 \rfloor}$ é par pela hipótese indutiva já que k>2 e $0 \leq \lfloor k/2 \rfloor < k$.
- Desta forma, $3 \cdot a_{\lfloor k/2 \rfloor}$ é par e $3 \cdot a_{\lfloor k/2 \rfloor} + 2$ também é par, o que mostra que a_k é par.

Indução matemática e algoritmos [4]

- É útil para provar asserções sobre a correção e a eficiência de algoritmos,
- Consiste em inferir uma lei geral a partir de instâncias particulares,
- Seja T um teorema que tenha como parâmetro um número natural n,
- ullet Para provar que ${\mathcal T}$ é válido para todos os valores de n, prova-se que:
 - \bigcirc T é válido para n=1;
 - ② Para todo n > 1, se T é válido para n 1, então T é válido para n.

Indução matemática e algoritmos [4]

- A condição 1 é chamada de passo base,
- Provar a condição 2 é geralmente mais fácil que provar o teorema diretamente (pode-se usar a asserção de que T é válido para n-1,
- Esta afirmativa é chamada de hipótese de indução ou passo indutivo,
- As condições 1 e 2 implicam T válido para n=2, o que junto com a condição 2 implica T também válido para n=3, e assim por diante.

Indução matemática e algoritmos [4]

- $S(n) = 1 + 2 + \cdots + n = n(n+1)/2$:
 - Para n=1 a asserção é verdadeira, pois S(1)=1=1 imes (1+1)/2 (passo base),
 - Assume-se que a soma dos primeiros n números naturais S(n) é n(n+1)/2 (hipótese de indução),
 - Pela definição de S(n) sabe-se que S(n+1) = S(n) + n + 1,
 - Usando a hipótese de indução, S(n+1) = n(n+1)/2 + n + 1 = (n+1)(n+2)/2, que é exatamente o que se quer provar.

Limite superior de equações de recorrência [4, 8]

- A solução de uma equação de recorrência pode ser difícil de ser obtida,
- Nestes casos, pode ser mais fácil tentar advinhar a solução ou obter um limite superior para a ordem de complexidade,
- Advinhar a solução funciona bem quando se está interessado apenas em um limite superior, ao invés da solução exata,
- Mostrar que um certo limite existe é mais fácil do que obter o limite,
- Ex.: $T(2n) \le 2T(n) + 2n 1$, T(2) = 1, definida para valores de n que são potências de 2:
 - O objetivo é encontrar um limite superior na notação O, onde o lado direito da desigualdade representa o pior caso.

Indução matemática para resolver equação de recorrência [8, 4]

- $T(2n) \le 2T(n) + 2n 1$, T(2) = 1, definida para valores de n que são potências de 2:
 - Procura-se f(n) tal que $T(n) = \mathcal{O}(f(n))$, mas fazendo com que f(n) seja o mais próximo possível da solução real para T(n) (limite assintótico firme),
 - Considera-se o palpite $f(n) = n^2$,
 - Quer-se provar que $T(n) \leq f(n) = \mathcal{O}(f(n))$ utilizando indução matemática em n:
 - Passo base: $T(2) = 1 \le f(2) = 4$, portanto verdadeiro.
 - Passo de indução: se a recorrência é verdadeira para n então deve ser verdadeira para 2n, i.e., $T(n) \to T(2n)$ (lembre-se de que n é uma potência de 2; consequentemente o "número seguinte" a n é 2n).

Reescrevendo o passo de indução temos:

$$\begin{array}{lll} \operatorname{Predicado}(n) \to \operatorname{Predicado}(2n) \; (T(n) \leq f(n)) \to (T(2n) \leq f(2n)) \\ T(2n) & \leq & 2T(n) + 2n - 1, & (\text{def. da recorrência}) \\ & \leq & 2n^2 + 2n - 1, & (\text{hipótese de indução,} \\ & & & \text{pode-se substituir } T(n)) \\ & \leq & 2n^2 + 2n - 1 < ^7 (2n)^2 & (\text{a conclusão é verdadeira?}) \\ & \leq & 2n^2 + 2n - 1 < 4n^2 & (\text{sim!}) \end{array}$$

que é exatamente o que se quer provar. Logo, $T(n) = \mathcal{O}(n^2)$.

- Vai-se tentar um palpite menor, f(n) = cn, para alguma constante c,
- Quer-se provar que $T(n) \le f(n) = cn = \mathcal{O}(f(n))$ utilizando indução matemática em n.
 - Passo base: $T(2) = 1 \le f(2) = 2c$, portanto verdadeiro.
 - Passo de indução: se a recorrência é verdadeira para n então deve ser verdadeira para 2n, i.e., $T(n) \to T(2n)$.

Reescrevendo o passo de indução temos:

- Conclusão:
 - cn cresce mais lentamente que T(n),
 - T(n) está entre cn e n^2 e $T(n) \nleq f(n) = cn$.

- Vai-se então tentar $f(n) = n \log n$, uma função entre $n \in n^2$.
- Quer-se provar que $T(n) \le f(n) = n \log n = \mathcal{O}(f(n))$ utilizando indução matemática em n.
 - Passo base: $T(2) = 1 \le f(2) = 2 \log 2$, portanto verdadeiro.
 - **Passo de indução**: se a recorrência é verdadeira para n então deve ser verdadeira para 2n, i.e., $T(n) \to T(2n)$.

Reescrevendo o passo de indução temos:

$$\begin{array}{l} \operatorname{Predicado}(n) \to \operatorname{Predicado}(2n) \; (T(n) \leq f(n)) \to (T(2n) \leq f(2n)) \\ & (T(n) \leq n \; log \; n)) \to (T(2n) \leq 2n \; log \; 2n) \\ \hline T(2n) \; & \leq \; \; 2T(n) + 2n - 1, & \text{(def. da recorrência)} \\ & \leq \; \; 2n \; log \; n + 2n - 1, & \text{(hipótese de indução)} \\ & \leq \; \; 2n \; log \; n + (2n - 1) <^? \; 2n \; log \; 2n & \text{(a conclusão } \\ & \leq \; \; 2n \; log \; n + (2n - 1) < 2n \; log \; n + 2n & \text{(sim!)} \\ \hline \end{array}$$

- Conclusão:
 - A diferença entre as fórmulas agora é de apenas 1,
 - De fato, $T(n) = n \log n n + 1$ é a solução exata de T(n) = 2T(n/2) + n 1, T(1) = 0, que descreve o comportamento do algoritmo de ordenação *mergesort*.

Outro exemplo

- Seja $T(n) = T(n-1) + t_2$.
- Pode-se escrever $T(n-1) = T(n-1-1) + t_2$, desde que n > 1.
- Como T(n-1) aparece no lado direito da primeira equação, pode-se substituir o lado direito inteiro da última equação,
- Repetindo o processo, chega-se a:

$$T(n) = T(n-1) + t_2$$

$$= (T(n-2) + t_2) + t_2$$

$$= T(n-2) + 2t_2$$

$$= (T(n-3) + t_2) + 2t_2$$

$$= T(n-3) + 3t_2$$
...

Indução

- O próximo passo requer certa intuição. Pode-se tentar obter o padrão emergente. Neste caso, é óbvio: $T(n) = T(n-k) + kt_2$, onde $1 \le k \le n$.
- Se houver dúvidas sobre nossa intuição, sempre pode-se provar por indução:
 - Caso Base: Para k=1, a fórmula é correta: $T(n)=T(n-1)+t_2$.
 - **Hipótese Indutiva**: Assuma que $T(n) = T(n-k) + kt_2$ para k = 1, 2, ... Assim, $T(n) = T(n-l) + lt_2$.
- Note que usando a relação de recorrência original pode-se escrever $T(n-l) = T(n-l-1) + t_2$, para $l \le n$.

Indução

Logo:

$$T(n) = T(n-l-1) + t_2 + lt_2$$

= $T(n-(l+1)) + (l+1)t_2$

- Portanto, por indução em I, a fórmula está correta para todo $0 \le k \le n$.
- Portanto, mostrou-se que $T(n) = T(n-k) + kt_2$, para $1 \le k \le n$. Agora, se n é conhecido, pode-se repetir o processo até que se tenha T(0) do lado direito.
- O fato de que n é desconhecido não deve ser impeditivo: consegue-se T(0) do lado direito quando n-k=0. Isto é, k=n. Fazendo k=n tem-se

$$T(n) = T(n-k) + kt_2$$

= $T(0) + nt_2$
= $t_1 + nt_2$

Sumário

- Análise Assintótica
 - Algoritmo
 - Conceitos
 - Cálculo do tempo de execução
- Recorrência
 - Funções recursivas
 - Resolução de recorrências
 - Exemplos
- Oivisão-e-conquista
 - Método geral
 - Indução matemática
 - Big-Oh

- Como as relações de recorrência podem ser usadas para ajudar a determinar o tempo de execução (big-Oh) de funções recursivas,
- Uma função com, características similares: qual é a complexidade assintótica da função FacaCoisa mostrada abaixo? Por que?
- Assuma que a função Combine roda no tempo $\mathcal{O}(n)$ quando |left right| = n, i.e., quando Combine é usada para combinar n elementos no vetor a.

Big-Oh

```
void FacaCoisa(int a[], int left, int right)
// póscondição: a[left] <= ... <= a[right]
 int mid = (left+right)/2;
 if (left < right)
  FacaCoisa(a, left, mid);
  FacaCoisa(a, mid+1, right);
  Combine (a, left, mid, right);
```

- Esta função é uma implementação do algoritmo de ordenação merge sort.
- A complexidade do merge sort é $\mathcal{O}(n \log n)$ para um vetor de n elementos.

A relação de recorrência

- Seja T(n) o tempo para FacaCoisa executar em um vetor de n elementos, i.e., quando |left right| = n.
- Veja que o tempo para executar um vetor de um elemento é $\mathcal{O}(1)$, tempo constante.
- Tem-se então o seguinte relacionamento:

$$\mathcal{T}(n) = \left\{ egin{array}{ll} 2\mathcal{T}(n/2) + \mathcal{O}(n) & \mathrm{o} \ \mathcal{O}(n) \ \mathrm{\acute{e} \ para \ Combine} \ \mathcal{O}(1) \end{array}
ight.$$

- Este relacionamento é chamado de relação de recorrência porque a função T(...) ocorre em ambos os lados de "=".
- Esta relação de recorrência descreve completamente descreve a função FacaCoisa, tal que se se resolver a relação de recorrência pode-se saber a complexidade de FacaCoisa já que T(n) é o tempo para executar FacaCoisa.

Caso base

- Quando se escreve uma relação de recorrência, deve-se escrever duas equações: uma para o caso geral e uma para o caso base.
- As equações referem-se à função recursiva a qual a recorrência se aplica.
- ullet O caso base é normalmente uma operação $\mathcal{O}(1)$, apesar de poder ser diferente.
- Em algumas relações de recorrência o caso base envolve entrada de tamanho um, tal que escreve-se $T(1) = \mathcal{O}(1)$.
- Entretanto há casos em que o caso base tem tamanho zero.
- Em tais casos, a base poderia ser $T(0) = \mathcal{O}(1)$.

Resolvendo relações de recorrência

- Pode-se realmente resolver a relação de recorrência dada no slide anterior:
 - Escreve-se n em vez de $\mathcal{O}(n)$ na primeira linha para simplificar.

$$T(n) = 2T(n/2) + n$$

$$= 2[2T(n/4) + n/2] + n$$

$$= 4T(n/4) + 2n$$

$$= 4[2T(n/8) + n/4] + 2n$$

$$= 8T(n/8) + 3n$$
...
$$= 2^kT(n/2^k) + kn$$

Resolvendo relações de recorrência

- Note que a última linha é derivada observando um padrão esta é a "sacada" generalização de padrões matemáticos como parte do problema.
- Sabe-se que T(1) = 1 e esta é uma forma de terminar a derivação. Na verdade, deseja-se que T(1) apareça do lado direito do sinal de "=".
- Isto significa que se quer $n/2^k = 1$ ou $n = 2^k$ ou $\log n = k$.
- ullet Continuando com a derivação anterior, tem-se o seguinte já que $k=\log\,n$

$$= 2^{k} T(n/2^{k}) + kn$$

$$= 2^{\log n} T(1) + (\log n)n$$

$$= n + n \log n \quad [lembre-se que T(1) = 1]$$

$$= \mathcal{O}(n \log n)$$

Resolvendo relações de recorrência

- Resolveu-se a relação de recorrência e sua solução é o que se esperava.
- Para tornar isto uma prova formal, seria necessário usar indução para mostrar que $\mathcal{O}(n \log n)$ é a solução para a dada relação de recorrência,
- Mas o método "rápido" mostrado acima mostra como derivar a solução,
- A verificação subsequente que esta é a solução é deixado para algoritmos mais avançados.

Resolvendo relações de recorrência: RESUMO

- Vimos quatro métodos para resolução de recorrência:
 - **Método da Substituição**: 1. Adivinhe a solução; 2. Use indução para achar as constantes e mostrar que a solução funciona.
 - Árvore de Recursão: 1. Use para gerar um palpite (chute); 2. Verifique pelo método da substituição.
 - **Método Mestre**: Usado por muitas recorrências divisão-e-conquista da forma T(n) = aT(n/b) + f(n), onde $a \ge 1$, b > 1 e f(n) > 0. Baseado no **Teorema Mestre**.
 - Método da Iteração: Aplica-se linha a linha as substituições para valores posteriores da entrada, até atingir uma forma geral, da qual pode ser obtida uma expressão que contenha o caso base.

Teorema Mestre

• Teorema Mestre [2]: Sejam $a \ge 1$ e b > 1 constantes, seja f(n) uma função e seja T(n) definida no domínio dos números inteiros não negativos pela recorrência

$$T(n) = aT(n/b) + f(n).$$

Então T(n) tem os seguintes limites assintóticos:

- Se $f(n) = \mathcal{O}(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = \Theta(n^{\log_b a})$ (f(n) é polinomialmente menor que $n^{\log_b a}$. Intuitivamente, o custo é dominado pelas folhas);
- ② Se $f(n) = \Theta(n^{\log_b a} \log^k n)$, onde $k \ge 0$, então $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ (f(n) está dentro de um fator polilog de $n^{\log_b a}$ mas não menor. Intuitivamente, o custo é $n^{\log_b a} \log^k n$ em cada nível e há $\Theta(\log n)$ níveis. **Caso simples**: $k = 0 \Rightarrow f(n) = \Theta(n^{\log_b a}) \Rightarrow T(n) = \Theta(n^{\log_b a} \log n)$;
- ③ Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e todos os n suficientemente grandes, então $T(n) = \Theta(f(n))$ (f(n) é polinomialmente maior que $n^{\log_b a}$. Intuitivamente, o custo é dominado pela raiz).

Método Mestre - Exemplo 1

• Seja a seguinte relação de recorrência:

$$T(n) = 9T(\frac{n}{3}) + n$$

- Resolução utilizando o método Mestre:
 - a = 9
 - b = 3
 - f(n) = n
 - $n^{\log_3 9} = n^2$
 - $f(n) = \mathcal{O}(n^{\log_3 9 \epsilon})$, caso **1** quando $\epsilon = 1$
 - Logo, $\Theta(n^{\log_3 9}) = \Theta(n^2)$

Método Mestre - Exemplo 2

Seja a seguinte relação de recorrência:

$$T(n) = 2T(\frac{n}{3}) + 3n + 1$$

- Resolução utilizando o método Mestre:
 - a = 2
 - b = 3
 - f(n) = 3n + 1
 - $n^{\log_3 2}$
 - $f(n) = \Omega(n^{\log_3 2 + \epsilon})$, caso **3** quando $\epsilon = 0.37$, pois $\log_3 2 = 0.63$ e $af(n/b) \le cf(n) \Rightarrow 2f(n/3) \le cf(n) \Rightarrow 2(\frac{3n}{3} + 1) \le c(3n + 1) \Rightarrow 2n + 2 \le c(3n + 1)$, para, no limite, $c = \frac{2n + 2}{3n + 1}$, que será sempre menor que 1 para n grande.
 - Logo, $\Theta(f(n)) = \Theta(n)$

Referências I

- [1] Astrachan, O. L.

 Big-Oh for Recursive Functions: Recurrence Relations.

 http://www.cs.duke.edu/~ola/ap/recurrence.html
- [2] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms. Third edition, The MIT Press, 2009.
- [3] Horowitz, E., Sahni, S. Rajasekaran, S. Computer Algorithms. Computer Science Press, 1998.
- [4] Loureiro, A. A. F. Paradigmas de Projeto de Algoritmos. UFMG/ICEx/DCC: http://www.decom.ufop.br/menotti/paa101/slides/aula-Paradigma.pdf

Referências II

- [5] Pardo, T. A. S. Análise de Algoritmos. SCE-181 Introdução à Ciência da Computação II. Slides. Ciência de Computação. ICMC/USP, 2008.
- [6] Preiss, B. R.

 Data Structures and Algorithms with Object-Oriented Design Patterns in C++.

 1999.

[7] Rosa, J. L. G.

Análise de Algoritmos - parte 2 e Divisão e Conquista. SCC-201 Introdução à Ciência da Computação II (capítulo 3).

Slides. Ciência de Computação. ICMC/USP, 2009.

Referências III

[8] Ziviani, N.

Projeto de Algoritmos - com implementações em Java e C++.

Thomson, 2007.