Calcolo del pH di soluzioni di acidi forti e basi forti e di acidi deboli e basi deboli.

1) Il pH di una soluzione acquosa di HNO $_3$ è 0,3. Calcolare la concentrazione iniziale di HNO $_3$.

L'acido nitrico HNO₃ è un acido forte quindi in soluzione acquosa è completamente dissociato:

$$HNO_3 + H_2O \rightarrow NO_3^- + H_3O^+$$

Quindi

$$pH = -log C_a$$
 $C_a = 10^{-pH} = 10^{-0.3} = 0.5 \text{ mol/l}$

2) 0,5 litri di una soluzione acquosa contengono disciolti 0,8 grammi di $Ba(OH)_2$ (p. f. = 171,3). Calcolare il pH della soluzione.

Ba(OH)₂ è una base forte completamente dissociata in acqua

$$Ba(OH)_2 \rightarrow Ba^{+2} + 2OH^{-1}$$

Il numero di moli di Ba(OH)₂ è
$$n = \frac{0.8}{171.3} = 4.7 \cdot 10^{-3}$$
 $C_b = \frac{4.7 \cdot 10^{-3}}{0.5} = 9.34 \cdot 10^{-3}$

$$C_b = \frac{4.7 \cdot 10^{-3}}{0.5} = 9.34 \cdot 10^{-3}$$

$$[OH^{-}] = 2C_b = 1.87 \cdot 10^{-2}$$

$$pOH = -log [OH^{-}] = 1,73$$
 quindi $pH = 14 - pOH = 12,27$

$$pH = 14 - pOH = 12,27$$

3) Calcolare il pH di una soluzione 1,00 • 10⁻⁷ M di NaOH.

NaOH è una base forte completamente dissociata in acqua, ma in questo caso C_b< 10⁻⁶ quindi non si può trascurare la dissociazione dell'acqua è applicare la formula approssimata per il calcolo del pH. E' necessario risolvere la seguente equazione che deriva dalla condizione di elettroneutralità:

$$[OH^-] = \frac{K_w}{[OH^-]} + C_b$$

$$\left[\text{OH}^{-} \right]^{2} - 1,00 \cdot 10^{-7} \left[\text{OH}^{-} \right] - 1,00 \cdot 10^{-14} = 0$$

$$OH^{-} = 1.12 \cdot 10^{-7} \text{ mol/l}$$
 $pOH = 6.95$ $pH = 14-pOH = 7.05$

$$pH = 14-pOH = 7,05$$

4) Calcolare il pH di una soluzione ottenuta mescolando 150 ml di una soluzione di HCl a pH=3 con 200 ml di una soluzione di HCl a pH= 2 (Si considerino i volumi additivi)

Nella prima soluzione che ha pH= 3 la concentrazione di H₃O⁺ è

 $[H_3O^+] = 10^{-pH} = 10^{-3}$ M quindi le moli di HCl sono:

$$n_1 = 10^{-3} \cdot 0.150 = 1.5 \cdot 10^{-4} \text{ moli}$$

analogamente per la seconda soluzione che ha pH= 2 la concentrazione di H₃0+ è

 $[H_3O^+] = 10^{-pH} = 10^{-2} M$ quindi le moli di HCl sono:

$$n_2 = 10^{-2} \cdot 0.200 = 2.0 \cdot 10^{-3}$$
 moli

Si hanno complessivamente $1,5 \cdot 10^{-4} + 2,0 \cdot 10^{-3} = 2,15 \cdot 10^{-3}$ moli di HCl in un volume totale di 350 ml. La concentrazione di HCl nella soluzione finale sarà

$$C_a = \frac{2,15 \cdot 10^{-3}}{0.350} = 6,14 \cdot 10^{-3}$$

Quindi $[H_3O^+] = C_a$ $pH = -log(6,14 \cdot 10^{-3}) = 2,21$

5) Un campione di 625 ml di una soluzione acquosa contenente 0,275 moli di acido propionico CH_3CH_2COOH ha pH = 2,62. Calcolare il K_a dell'acido.

Si calcola la concentrazione analitica molare dell'acido Ca:

$$C_a = \frac{0.275}{0.625} = 0.44 mol/l$$

Dal pH si può ricavare la concentrazione molare di H₃O+:

$$[H_3O^+] = 10^{-pH} = 10^{-2.62} = 0.0024 mol/l$$

applicando la formula approssimata per calcolare la concentrazione degli ioni H_3O^+ in una soluzione di un acido debole $\left[H_3O^+\right] = \sqrt{K_aC_a}$ si ricava il valore della costante K_a

$$K_a = \frac{[H_3O^+]^2}{C_a} = \frac{(0,0024)^2}{0,44} = 1,3 \cdot 10^{-5}$$

6) Qual è il pH di una soluzione 0,55 M di HClO₄? ($K_a = 1,1 \cdot 10^{-2}$)

In questo caso non si può applicare la formula approssimata per calcolare la concentrazione degli ioni H_3O^+ in una soluzione di un acido debole perché la costante di ionizzazione dell'acido K_a non è < di 10^{-3} quindi:

$$HClO_4 + H_2O \Leftrightarrow ClO_4^- + H_3O^+ \qquad K_a = \frac{\left[H_3O^+\right]\left[ClO_4^-\right]}{\left[HClO_4\right]}$$

- a) condizione di elettroneutralità $[H_3O^+] = [ClO_4^-] + [OH^-]$
- b) bilancio delle masse $C_a = [ClO_4^-] + [HClO_4]$

Visto che $C_a > 1 \cdot 10^{-3} \, \text{mol/l}$ [ClO_4^-] $>> [OH^-]$ quindi a) diventa [H_3O^+] \approx [ClO_4^-]

e b) diventa $[HClO_4] = C_a - [H_3O^+]$ sostituendo tali espressioni nella K_a :

$$K_a = \frac{\left[H_3O^+\right]^2}{C_a - \left[H_3O^+\right]} = 1.1 \cdot 10^{-2}$$
 $\left[H_3O^+\right]^2 + K_a\left[H_3O^+\right] - K_aC_a = 0$

$$\left[H_3O^+\right]^2 = \frac{-K_a + \sqrt{K_a^2 + 4K_aC_a}}{2} = 0,072$$

$$pH = -log(0.072) = 1.14$$

7) Calcolare il pH di una soluzione ottenuta mescolando 100 ml di una soluzione acquosa di acido acetico (CH₃COOH) 0,1 M (K_a = 1,8 • 10⁻⁵) con 200 ml di soluzione acquosa di HCl 0,01 M. (Si considerino i volumi additivi)

Prima si calcola la concentrazione di H₃O+ che deriva dalla dissociazione dell'acido forte:

$$[H_3O^+] = [HCl]$$

Da 200 ml di una soluzione acquosa di HCl 0,01 si ottengono le seguenti moli di HCl

$$n_{HCl} = 0.01 \cdot 0.2 = 0.002 \text{ moli}$$

quindi la concentrazione di HCl nella soluzione ottenuta dal mescolamento delle due soluzioni con un volume finale di 300 ml è

$$[H_3O^+] = [HCl] = \frac{0,002}{0.3} = 0,0067 \text{ mol/l}$$

Ora si calcola concentrazione analitica C_a nell'acido acetico considerando che le moli di acido acetico contenute in 100ml di soluzione 0,02 M sono $n_{ac.acetico} = 0,1 \cdot 0,1 = 0,01$ moli

Quindi nella soluzione ottenuta dal mescolamento delle due soluzioni con un volume finale di $300\,\mathrm{ml}$

$$C_a = \frac{0.01}{0.3} = 0.033 \text{mol/l}$$

L'acido acetico dà la seguente dissociazione acida:

a)
$$CH_3COOH + H_2O \Leftrightarrow CH_3COO^- + H_3O^+$$
 $K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}$

Si costruisce la tabella relativa all'equilibrio a) considerando che all'inizio in soluzione oltre alla concentrazione analitica C_a dell'acido acetico si ha una concentrazione di H_3O^+ uguale alla concentrazione di HCl (acido forte, completamente dissociato)

	CH ₃ COOH	CH ₃ COO	H ₃ O+
inizio	0,033	1	0,0067
equilibrio	0,033-x	X	0,0067+x

Si indica con x la concentrazione di ioni CH_3COO^- che si formano e quindi anche di ioni H_3O^+ Sostituendo nell'espressione del K_a si calcola x:

$$K_a = \frac{x(0,0067 + x)}{0.033 - x} = 1.8 \cdot 10^{-5}$$

$$x = 8.7 \cdot 10^{-5} \text{ mol/l}$$

$$[H_3O^+] = 0.0067 + x = 6.8 \cdot 10^{-3} \text{ mol/l}$$

$$pH = -log(6.8 \cdot 10^{-3}) = 2.17$$

8) Calcolare il pH e il grado di dissociazione di una soluzione acquosa di acido benzoico (C_6H_5COOH) 0,1M. $(K_a = 6,3 \cdot 10^{-5})$

L'acido benzoico in acqua subisce la seguente dissociazione:

$$C_6H_5COOH + H_2O \Leftrightarrow C_6H_5COO^- + H_3O^+$$
 $K_a = \frac{[H_3O^+][C_6H_5COO^-]}{[C_6H_5COOH]}$

Si costruisce la tabella relativa all'equilibrio considerando il grado di dissociazione:

	C ₆ H ₅ COOH	C ₆ H ₅ COO	H ₃ O+
inizio	C_{a}	-	1
equilibrio	Ca - αCa	αC_a	αC_a

 $C_a = 0.1M$ quindi:

$$K_a = \frac{\alpha C_a \cdot \alpha C_a}{C_a - \alpha C_a} = 6.3 \cdot 10^{-5}$$
 $K_a = \frac{\alpha^2 C_a}{1 - \alpha} = 6.3 \cdot 10^{-5}$

$$K_a = \frac{0.1\alpha^2}{1-\alpha} = 6.3 \cdot 10^{-5}$$
 risolvendo l'equazione di secondo grado $\alpha = 0.025$

$$[H_3O^+] = \alpha C_a = 0.025 \cdot 0.1 = 0.0025 \text{ mol/l}$$

$$pH = -log(0,0025) = 2,6$$