Assignment for CH2017/BG2211

(Please put all your computer scripts and results including tables and figures into a pdf file with your name and matric number uploaded into NTULearn by Nov 21st, 23:59)

1. (30 marks)

A culture of bacteria increases at a rate that is proportional to the number of bacteria present at that instant. Assuming that the number doubles every 5 hours, a biomedical engineer can estimate the number of bacteria present at a future time using the differential equation

$$\frac{dy}{dt} = ky$$

where y is the number of bacteria present at time t.

- (a) Determine the value of k
- (b) Assuming at time t = 0, y = 1, use Matlab toolbox to calculate and plot the number of bacteria present y as a function of time t from 0 to 12 hours.

2. (20 marks)

Determine the length of the shortest ladder that reaches from the ground over the fence to touch the building's wall (Figure below) with h = d = 4 m.

3. (30 marks)

Enzymatic reactions are used extensively to characterize biologically mediated reactions in environmental engineering. Proposed rate expressions for an enzymatic reaction are given below where [S] is the substrate concentration and v_0 is the initial rate of reaction. Which formula best fits the experimental data? (Here k and K are fitting parameters.)

$$v_0 = k[S]$$
 $v_0 = \frac{k[S]}{K + [S]}$ $v_0 = \frac{k[S]^2}{K + [S]^2}$ $v_0 = \frac{k[S]^3}{K + [S]^3}$

[S], M	Initial Rate, 10 ⁻⁶ M/s
0.01	6.3636 × 10 ⁻⁵
0.05	7.9520×10^{-3}
0.1	6.3472×10^{-2}
0.5	6.0049
1	17.690
5	24.425
10	24.491
50	24.500
100	24.500

4. (20 marks)

A superellipse is defined by the inequality

$$\left|\frac{x}{a}\right|^n + \left|\frac{y}{b}\right|^n \le 1,$$

 $\left|\frac{x}{a}\right|^n + \left|\frac{y}{b}\right|^n \le 1,$ where x and y are the Cartesian coordinates, and a and b are the length of long and short axes with n > 2 the deformation parameter. An example of a superellipse centered at r_0 with a =2, b = 1 and n = 2.5 is shown in the figure below, where e_x and e_y are the unit vectors pointing to the direction of long and short axes, respectively, and $e_x \perp e_y$. All vectors here are column vectors.

Use Matlab toolbox numerically to calculate the area S of a superellipse for given a and b. For a = 2, b = 1, plot S as a function of $n \in [2,10]$, and compare your result with the analytical formula

$$S = \frac{4^{1-\frac{1}{n}}ab\sqrt{\pi}\Gamma\left(1+\frac{1}{n}\right)}{\Gamma\left(\frac{1}{2}+\frac{1}{n}\right)},$$

where $\Gamma(\cdot)$ is the Gamma function.