MATH 327 Homework 2

Jaiden Atterbury

2024-04-09

Note: When I say something like Theorem/Definition 1.1.1, I mean, lecture 1 page 1 part 1 of the given definition or theorem. Furthermore, Homework 1.1.1 means homework 1, exercise 1, problem 1.

Exercise 1. Let y be a non-negative real number $(0 \le y)$. Prove that if $y \le \frac{1}{n}$ for every $n \in \mathbb{N}$, then y = 0.

Proof: (Proof by contradiction) Let $y \in \mathbb{R}$ such that $0 \le y$. Assume for the sake of contradiction that $y \ne 0$. This implies that 0 < y. Since y is a positive real number, by the Archimedian law of real numbers, there exists a positive integer $N \in \mathbb{N}$, such that 1 < Ny. Since $N \in \mathbb{N}$ implies that N > 0, by Theorem 2.5.8, $N^{-1} = \frac{1}{N} > 0$. Furthermore, letting a = 1, b = Ny, and $c = N^{-1}$, by Definition 2.3.5, it follows that $y > \frac{1}{N}$. Since $y \le \frac{1}{n}$ for every $n \in \mathbb{N}$, it must also be true for n = N. This means that for n = N, it follows that $y \le \frac{1}{N}$. However, we just said that $y > \frac{1}{N}$. Thus we have reached a contradiction, and our assumption that $y \ne 0$ was wrong. Therefore we have shown that if $y \le \frac{1}{n}$ for every $n \in \mathbb{N}$, then y = 0. \square

Exercise 2. Let A and B be two subsets of real numbers. Assume that the sets are both non-empty and both bounded above. Let Sup(A) be the least upper bound of A and Sup(B) be the least upper bound of B.

1. Prove that max(Sup(a), Sup(b)) is the least upper bound of $A \cup B$.

Proof: Since A and B are two non-empty subsets of real numbers that are also bounded above, using the first proof in the appendix, it follows that $A \cup B$ is also non-empty and bounded above. Since $A \cup B$ is bounded above, by the continuity axiom, it follows that $A \cup B$ has a least upper bound. We will denote the least upper bound of $A \cup B$ as $Sup(A \cup B)$. In order to show that $Sup(A \cup B) = max(Sup(a), Sup(b))$, we will split the proof into two parts. These two parts consist of showing that $Sup(A \cup B) \leq max(Sup(a), Sup(b))$, and showing that $Sup(A \cup B) \geq max(Sup(a), Sup(b))$.

Step 1: $Sup(A \cup B) \le max(Sup(a), Sup(b))$:

Let $x \in A \cup B$. In order to show that $Sup(A \cup B) \leq max(Sup(a), Sup(b))$, we will use the definition of the union of two sets and notice that $x \in A$ or $x \in B$. Thus there are two cases we must check, those being: $x \in A$ and $x \notin B$, as well as $x \notin A$ and $x \in B$. We do not need to check the case where $x \in A$ and $x \in B$ because in this case the validation of the previous two cases implies this case holds as well.

Case 1: $x \in A$

If $x \in A$ and $x \notin B$, then it follows by the definition of an upper bound that $x \leq Sup(A)$. Furthermore, we know from the definition of a maximum value that $Sup(A) \leq max(Sup(A), Sup(B))$. Therefore we can write $x \leq Sup(A) \leq max(Sup(A), Sup(B))$, which implies that $x \leq max(Sup(A), Sup(B))$. In this case since we started with the assumption that $x \in A \cup B$, it follows that max(Sup(A), Sup(B)) is an upper bound for $A \cup B$ in this case.

Case 2: $x \in B$

If $x \in B$ and $x \notin A$, then it follows by the definition of an upper bound that $x \leq Sup(B)$. Furthermore, we know from the definition of a maximum value that $Sup(B) \leq max(Sup(A), Sup(B))$. Therefore we can write $x \leq Sup(B) \leq max(Sup(A), Sup(B))$, which implies that $x \leq max(Sup(A), Sup(B))$. In this case since we started with the assumption that $x \in A \cup B$, it follows that max(Sup(A), Sup(B)) is an upper bound for $A \cup B$ in this case.

Therefore, for all elements $x \in A \cup B$, regardless of if x is an element of A, B, or both, max(Sup(A), Sup(B)) is greater than x. Thus max(Sup(A), Sup(B)) is an upper for $A \cup B$. However, we already know that $Sup(A \cup B)$ is the least upper bound, therefore it follows that $Sup(A \cup B) \leq max(Sup(A), Sup(B))$.

Step 2: $Sup(A \cup B) > max(Sup(a), Sup(b))$:

In order to show that, $Sup(A \cup B) \ge max(Sup(a), Sup(b))$, we will use the fact that $A \subseteq A \cup B$ and $B \subseteq A \cup B$. Since $A \subseteq A \cup B$, it follows that $A \cup B$ could have more elements than A alone. If it doesn't, then $A = A \cup B$, and hence it follows that $Sup(A) = Sup(A \cup B)$. However in the case that $A \ne A \cup B$, then the extra terms in $A \cup B$ could either be smaller than or equal to or greater than max(A). In the former case, it would follow that $Sup(A) = Sup(A \cup B)$. However, in the latter case, it would follow that $Sup(A) < Sup(A \cup B)$. Putting these cases together we can see that $Sup(A) \le Sup(A \cup B)$. The same reasoning leads us to the fact that $Sup(B) \le Sup(A \cup B)$. Since $Sup(A) \le Sup(A \cup B)$ and $Sup(B) \le Sup(A \cup B)$, by the definition of a maximum, it follows that $max(Sup(A), Sup(B)) \le Sup(A \cup B)$.

Therefore, since $Sup(A \cup B) \leq max(Sup(a), Sup(b))$ and $Sup(A \cup B) \geq max(Sup(a), Sup(b))$, by Definition 2.3.2, it follows that $Sup(A \cup B) = max(Sup(a), Sup(b))$. Therefore, we have shown that max(Sup(a), Sup(b)) is the least upper bound of $A \cup B$. \square

2. Is it true that the least upper bound of $A \cap B$ is min(Sup(A), Sup(b))? Either prove the result or find a counterexample.

This statement is false, and to disprove it we will find a counterexample. This is done below.

Proof: Before we get into a concrete counterexample, note that for any case where $A \cap B$ is the empty set, it follows that this theorem doesn't hold since $Sup(A \cap B)$ does not exist in that case. We will now show that, even if $A \cap B$ is non-empty, if Sup(A) and Sup(B) aren't in both sets, then the theorem will not hold.

Let $A = \{1, 2, 9\}$ and $B = \{1, 2, 8\}$. This implies that Sup(A) = 9 and Sup(B) = 8, respectively. Thus, min(Sup(A), Sup(B)) = min(8, 9) = 8. Furthermore, since $A = \{1, 2, 9\}$ and $B = \{1, 2, 8\}$, it follows that $A \cap B = \{1, 2\}$. This implies that $Sup(A \cap B) = max(1, 2) = 2$. Since min(Sup(A), Sup(B)) = 8 and $Sup(A \cap B) = 2$, it follows that the least upper bound of $A \cap B$ is not min(Sup(A), Sup(b)). Thus we have shown, even if $A \cap B$ is not empty, the above theorem does not hold for all sets A and B. \square

Exercise 3. Prove using the definition of the limit that $\lim_{n\to\infty} \frac{n^2+1}{2n-1} = \infty$.

Discussion: Consider any $A \in \mathbb{R}$. We need to determine how large n must be to guarantee that $\frac{n^2+1}{2n-1} > A$. The idea is to bound the fraction $\frac{n^2+1}{2n-1}$ below by some multiple of $\frac{n^2}{n} = n$. Since $n^2+1 > n^2$ and 2n-1 < 2n for all $n \in \mathbb{N}$, we have $\frac{n^2+1}{2n-1} > \frac{n^2}{2n} = \frac{n}{2}$. Thus it suffices to arrange for $\frac{1}{2}n > A \implies n > 2A$.

Proof: Let $A \in \mathbb{R}$ and let N=2A. Then n>N implies n>2A, and hence $\frac{n}{2}>A$. Notice that $\frac{n^2}{2n}=\frac{n}{2}>A$. Furthermore, since $n^2+1>n^2$ and 2n-1<2n, we have $\frac{n^2+1}{2n-1}>\frac{n^2}{2n}$, for all $n\in\mathbb{N}$. Therefore, for all $A\in\mathbb{R}$, it follows that $\exists N=2A$, such that n>N=2A implies $\frac{n^2+1}{2n-1}>\frac{n^2}{2n}=\frac{n}{2}>A$. Therefore $\lim_{n\to\infty}\frac{n^2+1}{2n-1}=\infty$.

Exercise 4. Prove using the definition of the limit that $\lim_{n\to\infty}\frac{1+n}{1-2n}=\frac{-1}{2}$.

Discussion: For each $\epsilon > 0$, we need to decide how big n must be to guarantee $|\frac{1+n}{1-2n} - \frac{-1}{2}| = |\frac{1+n}{1-2n} + \frac{1}{2}| < \epsilon$. Thus we want $|\frac{2+2n+1-2n}{2(1-2n)}| < \epsilon$, which is equivalent to saying $|\frac{3}{2(1-2n)}| < \epsilon$. Since 2(1-2n) < 0 for all positive integers n, we must multiply by -1 to remove the absolute value symbol and obtain $\frac{-3}{2(1-2n)} = \frac{3}{2(2n-1)} < \epsilon$. We will now manipulate the inequality further to "solve" for n:

$$\frac{3}{2(2n-1)} < \epsilon \implies \frac{3}{2\epsilon} < 2n-1 \implies \frac{3}{2\epsilon} + 1 < 2n \implies \frac{3}{4\epsilon} + \frac{1}{2} < n$$

Since our steps are reversible, we will make $N = \frac{3}{4\epsilon} + \frac{1}{2}$.

Proof: Let $\epsilon>0$ and let $N=\frac{3}{4\epsilon}+\frac{1}{2}$. Then n>N implies that $n>\frac{3}{4\epsilon}+\frac{1}{2}$, hence $2n>\frac{3}{2\epsilon}+1$, and thus $2n-1>\frac{3}{2\epsilon}$, which implies that $\frac{3}{2(2n-1)}<\epsilon$. Also, notice that $\frac{3}{2(2n-1)}=\frac{-3}{2(1-2n)}$ Furthermore, since $\frac{-3}{2(1-2n)}>0$ for all $n\in\mathbb{N}$, it follows from Definition 2.6 that $\frac{-3}{2(1-2n)}=|\frac{-3}{2(1-2n)}|$ Using the fact that |-1|=1 and Definition 2.7.2, we can say that

$$\left|\frac{-3}{2(1-2n)}\right| = \left|-1\right| * \left|\frac{3}{2(1-2n)}\right| = \left|\frac{3}{2(1-2n)}\right|$$

Consequently, if we notice that

$$|\frac{3}{2(1-2n)}| = |\frac{2+2n+1-2n}{2(1-2n)}| = |\frac{2+2n}{2(1-2n)} + \frac{1-2n}{2(1-2n)}| = |\frac{1+n}{1-2n} + \frac{1}{2}| = |\frac{1+n}{1-2n} - \frac{-1}{2}|$$

we can see that $\left|\frac{1+n}{1-2n}-\frac{-1}{2}\right|<\epsilon$. Therefore, for all $\epsilon>0,\ \exists N=\frac{3}{4\epsilon}+\frac{1}{2},$ such that n>N implies $\left|\frac{1+n}{1-2n}-\frac{-1}{2}\right|<\epsilon$. Therefore, $\lim_{n\to\infty}\frac{1+n}{1-2n}=\frac{-1}{2}$. \square

Exercise 5.

1. Prove that for any sequence u_n , if u_n is convergent, then $|u_n|$ is convergent.

Proof: Let u_n be any convergent sequence. Since u_n is convergent this means that $\exists L$ such that, $\forall \epsilon > 0$, $\exists N$ such that, if n > N, then $|u_n - L| < \epsilon$. Since $u_n, L \in \mathbb{R}$ and the real numbers are totally ordered, it follows by Theorem 3.7.4 (the second theorem proved in the appendix), that $||u_n| - |L|| \le |u_n - L|$. Since $|u_n - L| < \epsilon$, it follows that $||u_n| - |L|| \le |u_n - L| < \epsilon$. Thus, $\forall \epsilon > 0$, $\exists N$ such that, if n > N, then $||u_n| - |L|| < \epsilon$, which means that $|u_n|$ converges to |L|. Therefore for any sequence u_n , if u_n is convergent, then $|u_n|$ is convergent. \square

2. Consider the converse: for any sequence u_n , if $|u_n|$ is convergent, then u_n is convergent. Is the converse true? Prove your claim.

After considering the converse, I believe that the converse is false. To see this, we will look at the inverse (also known as the contrapositive of the converse). The inverse states: "for any sequence u_n , if u_n is divergent, then $|u_n|$ is divergent." To prove this statement wrong (and thus prove the converse wrong), we will provide a proof by counterexample.

Proof: (Proof by counterexample) Let $u_n = (-1)^n$. As proven in Lecture 6, $u_n = (-1)^n$ is divergent. In particular, $\lim_{n\to\infty} (-1)^n$ does not exist (it bounces from 1 to -1 infinitely). However, if we consider $|u_n| = |(-1)^n|$, then considering an even natural number, we can see that $|u_{2n}| = |(-1)^{2n}| = |1| = 1$. Furthermore, considering an odd natural number, we can see that $|u_{2n+1}| = |(-1)^{2n+1}| = |-1| = 1$. Therefore, it follows that for all $n \in \mathbb{N}$, $|u_n| = |(-1)^n| = 1$. Lastly, as proven in Lecture 7 (and further emphasized in Lecture 8), $\lim_{n\to\infty} 1 = 1$. Therefore, $|u_n|$ converges to 1. Thus we have shown that the statement, "for any sequence u_n , if u_n is divergent, then $|u_n|$ is divergent," is false. Thus, since the inverse is false, the converse must also be false since the two are logically equivalent. Therefore, we have shown that, "for any sequence u_n , if $|u_n|$ is convergent, then u_n is convergent," is not a true statement. \square

Appendix.

In this section, theorems that we didn't prove in class will be proven so that they can be used in the exercises.

1. Let A and B be two subsets of real numbers. Assume that the sets are both non-empty and both bounded above. Let Sup(A) be the least upper bound of A and Sup(B) be the least upper bound of B. Prove that $A \cup B$ is non-empty and bounded above.

Proof: We will start by showing that $A \cup B$ is non-empty. Since A is non-empty, let $x \in A$. Since $x \in A$, it follows that $x \in A$ or $x \in B$. Therefore, from the definition of the union $x \in A \cup B$. This logic works for any element in B as well. Thus we have shown that $A \cup B$ is non-empty when A and B are non-empty (this result also holds if only one of the sets were non-empty).

We will now show that $A \cup B$ is bounded above. Since A and B are both bounded above, by the continuity axiom, they both have a least upper bound which we have called Sup(A) and Sup(B), respectively. We will focus on two cases. These two cases are: $Sup(A) \leq Sup(B)$, and Sup(A) > Sup(B).

Case 1: Sup(A) \leq Sup(B): For every element $a \in A$, by the definition of an upper bound, $a \leq Sup(A)$. However, we have assumed that $Sup(A) \leq Sup(B)$, therefore we can see that $a \leq Sup(A) \leq Sup(B)$, which implies $a \leq Sup(B)$. Also, $\forall b \in B$, by the definition of an upper bound, $b \leq Sup(B)$. Therefore Sup(B) is an upper bound for both the sets A and B.

Case 2: Sup(A) > Sup(B): For every element $b \in B$, by the definition of an upper bound, $b \leq Sup(B)$. However, we have assumed that Sup(A) > Sup(B), therefore we can see that $b \leq Sup(B) < Sup(A)$, which implies b < Sup(A). Also, $\forall a \in A$, by the definition of an upper bound, $a \leq Sup(A)$. Therefore Sup(A) is an upper bound for both the sets A and B.

Now, let $x \in A \cup B$. By the definition of the union, $x \in A$ or $x \in B$. Thus, from the above derivations, either $x \leq Sup(A)$ or x < Sup(B). Thus, either Sup(A) or Sup(B) is an upper bound for $A \cup B$. Therefore, by the definition of an upper bound, $A \cup B$ is bounded above by either Sup(A) or Sup(B). Thus we have shown that $A \cup B$ is non-empty and bounded above. \square

Appendix.

In this section, theorems that we didn't prove in class will be proven so that they can be used in the exercises.

2. For any $x, y \in \mathbb{R}$, it follows that $||a| - |b|| \le |a - b|$.

Proof: Let $x, y \in \mathbb{R}$. By the triangle identity we have the following inequalities

$$|y| = |x + y - x| \le |x| + |y - x|$$

 $|x| = |y + x - y| \le |y| + |x - y|$

By Theorem 2.7.2, we have that |y-x| = |(-1)(x-y)| = |-1||x-y| = |x-y|. This implies that |x|+|y-x| = |x|+|x-y|. Furthermore, subtracting |x| and |y| to the other side of the inequality and using Definition 2.3.4 we obtain the following inequalities

$$|y| - |x| \le |x - y|$$
$$|x| - |y| \le |x - y|$$

Noticing that |y| - |x| is equivalent to -(|x| - |y|), we can again rewrite the inequalities as

$$-(|x| - |y|) \le |x - y|$$

 $|x| - |y| \le |x - y|$

Since $-(|x|-|y|) \le |x-y| \implies |x|-|y| \ge -|x-y|$ and $|x|-|y| \le |x-y|$, it follows that $-|x-y| \le |x|-|y| \le |x-y|$. Therefore, by Homework 1.3.2, it follows that $||x|-|y|| \le |x-y|$. \square