Université Paul Sabatier M1 IAFA-SECIL

TD 1 - Calcul matriciel

Exercice 1: drones

On compte les ordres de déplacements d'un drone par 3 utilisateurs On obtient les données suivantes.

	Saute	Tourne	Avance
Utilisateur 1	4	3	6
Utilisateur 2	2	5	8
Utilisateur 3	0	1	7

- 1. Calculer la matrice de variance-covariance Σ .
- 2. En déduire les variances et les covariances et la corrélation entre les différents ordres.

Exercice 2: cerveaux!!

On compte le nombre de cerveaux endormis en séances de TP à deux moments différents de la journée : 7h45-9h45 et 10h-12h.

	7h45-9h45	10h-12h
TP 1	6	2
TP 2	5	3
TP 3	6	1
TP 4	4	3
TP 5	4	1

- 1. Calculer la matrice de variance-covariance Σ . Y a-t-il une dépendance sur le taux de cerveaux endormis entre 7h45-9h45 et 10h-12h? Expliquer la réponse.
- 2. Calculer les axes principaux de ce jeu de données.
- 3. Représenter sur un même graphe les données et les axes principaux.

Exercice 3 : un peu de cardio...

La Fréquence Cardiaque Maximum, notée FCM, est un paramètre essentiel pour permettre au coureur de fond d'élaborer des plans d'entraînement efficaces. Une première étude a été faite auprès de 5 individus s'entraînant régulièrement (2 à 4 fois par semaine), et participant à de petites compétitions. On souhaite étudier, tout d'abord, une relation éventuelle entre l'âge d'un individu et sa fréquence puis détecter des profils de FCM de coureurs.

	Age	FCM
Ind. 1	26	178
Ind. 2	28	176
Ind. 3	30	182
Ind. 4	32	180
Ind. 5	34	184

On fixe le seuil empirique de corrélation à 0.7.

Université Paul Sabatier M1 IAFA-SECIL

1. Calculer la matrice de variance-covariance Σ . Y a-t-il une dépendance entre l'âge et la fréquence cardiaque maximum ? Expliquer la réponse.

- 2. Calculer le premier axe principal de ce jeu de données.
- 3. Représenter sur un même graphe les données et l'axe principal.
- 4. En déduire la fréquence cardiaque maximale d'une personne de 38 ans.

Exercice 4:

On considère le jeu de données suivant :

- 1. Caculer la matrice de variance-covariance Σ .
- 2. A l'aide de l'ACP, déterminer l'équation de la droite passant par l'origine sur laquelle la projection des points maximise la variance.