A Complex LASSO-Approach for Localizing Forced Oscillations in Power Systems

A brief reiteration

Aryan Ritwajeet Jha MS in EE (Power Systems)

Department of Electrical Engineering IIT Delhi

Introduction

Forced Oscillations in Power Systems

Natural Oscillations	Forced Oscillations
natural	forced
naturla	forced
natural	forced

Theory

State Space Representation

Express Power System Dynamics in State Space:

$$\dot{\mathbf{x}}(t) = \underset{n \times n}{\mathbf{A}} \mathbf{x}(t) + \underset{n \times m}{\mathbf{B}} \mathbf{u}(t)
\mathbf{y}(t) = \underset{b \times n}{\mathbf{C}} \mathbf{x}(t)
\forall t \ge 0$$
(1)

 $\mathbf{x}(t)$: internal state variables + controller variables vector

 $\mathbf{u}(t)$: forced oscillation vector

Forced Oscillation Vector

Express Forced Oscillations based on locations of origin and signal composition:

$$\mathbf{u}(t) = \begin{bmatrix} u_{1}(t) \\ u_{2}(t) \\ \vdots \\ u_{m}(t) \end{bmatrix} = \begin{bmatrix} \sum_{l=1}^{M_{1}} a_{1,l} \sin(\omega_{1,l}t + \phi_{1,l}) \\ \sum_{l=2}^{M_{2}} a_{2,l} \sin(\omega_{2,l}t + \phi_{2,l}) \\ \vdots \\ \sum_{l=m}^{M_{m}} a_{m,l} \sin(\omega_{m,l}t + \phi_{m,l}) \end{bmatrix}$$
(2)

$$a_{r,l} \geq 0$$

$$\omega_{r,l} = 2\pi f \geq 0$$
 (r,l) refer to the l^{th} sinusoid at the r^{th} location

Introduction to My Work

Transient vs Steady State Stability

Transient Stability	Steady State Stability
A sudden, out-of-trend, high magnitude change in a state variable(s) causes blackouts.	Accumulation of several seemingly minor trends in state variables over time, ultimately leading to a critical
	point where a small change could cause blackouts.
Chief parameters of concern	Autocorrelation and
are ROCOF, frequency nadir,	covariance are some of the
steady-state frequency	commonly used parameters
deviation.	for prognosis.
Inertia is a fundamental	Inertia plays a minor role
parameter here.	here.

Bifurcations and Critical Slowing Down

Bifurcation: A qualitative change in the 'motion' of a dynamical System due to a quantitative change in one of its parameters. Serious bifurcations, called **Critical Bifurcations**, cause the system to become unstable from stable.

Bifurcations and Critical Slowing Down

Critical Slowing Down: Dynamical Systems exhibit early statistical warning signs before collapsing:

- · Increased recovery times from perturbations.
- · Increased signal variance from the mean trajectory.
- · Increased flicker and asymmetry in the signal

The above three properties can be identified by increasing variance and autocorrelation in time-series measurements taken from the system.

Procedure

Procedure

- Accessed a bunch of real-world frequency time-series data and plotted their:
 - bulk distribution (pdf)
 - · auto-correlation curves
- · Obtained explanation for the signature dynamics of each grid.

Figure 1: Continental European Grid frequency PDF: Heavier tails than a Gaussian Distribution.

Figure 2: Mallorcan (an islanded Spanish grid) frequency pdf

Figure 3: French grid frequency pdf including a blackout

Figure 4: Autocorrelation decay of different synchronous regions.

Table 1: Inverse-correlation values for different grids

Grid name	Inverse-correlation value T^{-1} [min ⁻¹]
Mallorca	0.0654
Western Interconnection	0.0498
Nordic	0.0235
Continental Europe	0.0829
Great Britain	0.0879

Figure 5: Inverse correlation time is proportional to the damping constant of the grid.

