BULK RNA-SEQ: UPSTREAM ANALYSIS

Presenter: Duy Dao

TABLE OF CONTENTS

RNA SEQ: UPSTREAM ANALYSIS

- 01 INTRODUCTION
- 02 RAW DATA PROCESSING
- 03 ALIGNMENT
- 04 MAPPED READS POST-PROCESSING
- 05 ALIGNMENT DATA: QUALITY CONTROL

INTRODUCTION

RAW DATA PROCESSING

SEQUENCE QUALITY CONTROL (FASTQC)

> FASTQC Summary

"FASTQC is a useful tool to check sequences quality."

Measure	Value			
Filename	NIST7035_TAAGGCGA_L001_R1_001.fastq.gz			
File type	Conventional base calls			
Encoding	Sanger / Illumina 1.9			
Total Sequences	20203002			
Total Bases	2 Gbp			
Sequences flagged as poor quality	0			
Sequence length	101			
%GC	49			

RAW DATA PROCESSING

READ TRIMMING & FILTERING

This program does adaptive quality trimming, head and tail crop, and adaptor removal.

Check QC → Trim → Check QC again.

Trimming:

- Quality trimming
- Adapter trimming.

RAW DATA PROCESSING

Quality problems

- Quality problems typically originate either in the sequencing itself or in the preceding library preparation.
- They include low-confidence bases, sequence-specific bias, 3'/5' positional bias, polymerase chain reaction (PCR) artifacts, untrimmed adapters, and sequence contamination.
- These problems can seriously affect mapping to reference, assembly, and expression estimates, but luckily many of them can be corrected for by filtering, trimming, error correction, or bias correction.
- Some problems cannot be corrected for, but you should at least be aware of them when interpreting results.

ALIGNMENT

ALIGNMENT

Workflow for a RNA-seq analysis.

Basic alignment (Contiguous Alignment / Non-spliced Alignment)

In contiguous alignment, sequences are aligned continuously without any gaps or interruptions.

Problem when using basic alignment to map RNA-seq data

- Unmapped reads due to intron splicing.

Contiguos Alignment vs Splice-Aware Alignment

- Contiguous Aligners: BWA, Bowtie2,...
- Spliced Aligners: HiSAT2, TopHat, STAR,...

Compare the Alignment of DNA-seq and RNA-seq

Compare the Alignment of DNA-seq and RNA-seq

Spliced-aware alignment algorithms employ various strategies to handle splice junctions, such as:

- Split reads: Allows for precise alignment across the splice junctions.
- Novel splice junction detection: Detect previously unknown splicing events, providing insights into alternative splicing patterns and transcriptome complexity.
- **Splice junction annotation:** Aligners may utilize existing splice junction annotations, such as those obtained from databases or previous studies, to guide the alignment process.

alexdobin/STAR

RNA-seq aligner

৪২ 36

Contributors

637

₩ 44

앟 442

Forks

Issues

Discussions

Stars

☆ 2k

STAR (Spliced Transcripts Alignment to a Reference)

STAR alignment strategy

Seed searching...

Clustering, stitching, and scoring

Alignment statistics & Utilities for manipulating alignment files.

			•
	Started job on	Jun 18 14:12:08	
	Started mapping on	Jun 18 14:12:13	
	Finished on	Jun 18 14:12:43	
	Mapping speed, Million of reads per hour	666.81	
	Number of input reads	5556750	
	Average input read length	124	
	UNIQUE READS:		
	Uniquely mapped reads number	4987609	
	Uniquely mapped reads %	89.76%	
	Average mapped length	124.32	
	Number of splices: Total	244266	
	Number of splices: Annotated (sjdb)	236101	
	Number of splices: GT/AG	243487	
	Number of splices: GC/AG	63	
	Number of splices: AT/AC	11	
	Number of splices: Non-canonical	705	
	Mismatch rate per base, %	0.08%	
	Deletion rate per base	0.01%	
	Deletion average length	1.35	
	Insertion rate per base	0.00%	
	Insertion average length	1.07	
	MULTI-MAPPING READS:		
	Number of reads mapped to multiple loci	270940	
	% of reads mapped to multiple loci	4.88%	
	Number of reads mapped to too many loci	30963	
	% of reads mapped to too many loci	0.56%	
	UNMAPPED READS:		
	Number of reads unmapped: too many mismatches	0	
	% of reads unmapped: too many mismatches	0.00%	
	Number of reads unmapped: too short	266450	
	% of reads unmapped: too short	4.80%	
	Number of reads unmapped: other	788	
	% of reads unmapped: other	0.01%	
1	CHIMERIC READS:		

SJ.out.tab											
chrI	12728	12823	1	1	0	0	1	13			
chrI	87388	87500	1	1	1	70	0	32			
chrI	128525	129021	2	2	0	1	0	26			
chrI	142254	142619	1	1	1	1820	0	32			
chrI	142254	143349	1	1	0	1	0	22			
chrI	151007	151096	2	2	1	4	0	32			
chrI	206383	206517	1	1	0	2	1	25			
chrII	5120	5335	2	2	0	0	1	30			
chrII	45645	45977	1	1	0	1087	2	31			
chrII	47059	47146	2	2	1	11	0	23			
chrII	60194	60697	2	2	1	2960	0	32			
chrII	89133	89440	2	2	0	81	0	31			
chrII	110421	110505	2	2	1	88	0	32			
chrII	110880	110948	1	1	1	23	0	32			
chrII	125155	125270	1	1	1	67	0	32			
chrII	142750	142846	2	2	1	181	0	32			
chrII	142754	142846	2	2	0	1	0	26			
chrII	167650	230011	2	2	0	0	17	12			
chrII	168425	168808	1	1	1	308	0	31			
chrII	170621	170804	1	1	0	6	0	27			
chrII	170677	170804	1	1	1	82	0	32			

The SJ.out.tab contains filtered splice junctions detected in the mapping

Alignment statistics & Utilities for manipulating alignment files.

Alignment statistics & Utilities for manipulating alignment files.

SAM format

Alignment statistics & Utilities for manipulating alignment files.

CIGAR string with "N"

The "N" in the CIGAR string represents a stretch of skipped reference bases (also known as introns or gaps) in a sequence alignment.

It indicates that the read aligns to the reference genome, but there is a region of the reference sequence that is not covered by the read.

Splicing:

Alignment statistics & Utilities for manipulating alignment files.

ALIGNMENT QUALITY CONTROL

Alignment quality metrics:

- coverage uniformity along transcripts
- saturation of sequencing depth
- ribosomal RNA content
- read distribution between exons, introns & intergenic regions.
- ..

RSeQC: Genebody Coverage

- \rightarrow Used to assess the sequencing depth and coverage across the entire length of genes
 - Gene expression quantification
 - Transcript isoform analysis
 - Detection of gene expression biases
 - Assessing RNA integrity and sample quality

RSeQC: Junction Annotation

The junction-annotation command:

- Search an RNA-Seq bam file for splice junctions.
- 2. Compare them to a gene model.
- 3. Output whether the found junctions are novel, partially novel, or already annotated in a gene model.

RSeQC: Junction Annotation

RSeQC: Junction Saturation

A sample that reaches a plateau before getting to 100% data indicates that all junctions in the library have been detected, and that further sequencing will not yield more observations.

Junction Saturation Analysis

- Evaluates the depth of sequencing coverage at splice junctions.
- It helps determine if sufficient sequencing depth has been achieved to capture the full diversity of splice junctions.
- → Guides decisions on whether additional sequencing is needed to achieve more comprehensive coverage.
- → Ensures confidence in downstream analyses (alternative splicing analysis, isoform discovery).

RSeQC: Read Distribution

Calculate how mapped reads were distributed over genome feature (like CDS exon, 5'UTR exon, 3' UTR exon, Intron, Intergenic regions).

Biotypes Count

featureCounts Biotypes

- A good RNAseq sample should have a large portion of the reads coming from protein coding genes.
- This plot can help you spot problems with your library such as incomplete rRNA depletion.

EXAMPLE DATA

"Effect of the lysphosphatidylcholine analogue edelfosine on gene expression in Saccharomyces cerevisiae"

https://www.ncbi.nlm.nih.gov/geo/query/acc.c qi?acc=GSE227381

EXAMPLE DATA

Comparative gene expression profiling analysis of RNA-seq data for S. cerevisiae cells treated with edelfosine for 60 minutes.

Treated with edelfosine for 60 minutes (X3)

Bulk RNA-seq Analysis

THANK YOU