

8. KL-Transform and Linear Discriminant Analysis (LDA)

Linear discriminant analysis

From Wikipedia, the free encyclopedia.

Linear discriminant analysis (LDA), is sometimes known as Fisher's linear discriminant, after its inventor, Ronald A. Fisher, who published it in *The Use of Multiple Measures in Taxonomic Problems* (1936). It is typically used as a feature extraction step before classification

Dimensionality Reduction

- Curse of dimensionality:
 - higher the dimension of the feature vectors
 - \mapsto data sparsity
 - →undertrained classifier

Try to reduce dimension of feature vectors without loss of information

Established methods

- Two methods are established
 - Karhunen-Loeve transformation (KL transformation):
 - tries to describe the data as good as possible in a lower dimensional space
 - Based on principle component analysis (PCA)
 - Linear discriminant analysis (LDA):
 - try to optimize class separability
 - Also known as Fisher's discriminant analysis

Idea of KL transform

Let $\vec{\phi}_i$ with i = 1...D be an orthonormal basis

Approximate the feature vector $\tilde{\vec{x}} = \sum_{i=1}^{a} y_i \vec{\phi}_i$

Expand the original feature vector $\vec{x} = \sum_{i=1}^{D} y_i \vec{\phi}_i$

with d < D

How do you determine the optimal basis?

Idea of KL transform

Minimize approximation error $\varepsilon_{\rm d} = \sum_{j=1}^{N} (\vec{x}_j - \tilde{\vec{x}}_j)^2$

j labels all the feature vectors \vec{x}_j available in the training data

Effect of KL-transform

Original data

Center your data

KL-Transform

Let's start simple

- d=1
- Decompose into mean and best direction

$$\tilde{\vec{x}}_j = \vec{\mu} + a_j \vec{e}$$

What does the KL transform to this data

Distribution of data for three classes:

What will the KL-transform do?

Difference KL transform/LDA

Idea of LDA: try to maximize class separability

Definition: between-class-scattermatrix

Between - class - scatter - matrix

$$S_b = \sum_{k=1}^{K} p_k (\vec{\mu}_k - \vec{\mu}) (\vec{\mu}_k - \vec{\mu})^t$$

with:

K: number of classes

$$p_k = \frac{N_k}{\sum_{l=1}^K N_l}$$
 (fraction of data belonging to class k)

$$\vec{\mu}_k = \frac{1}{N_k} \sum_{i=1}^{N_k} \vec{x}_{i,k}$$
 (mean vector of class k)

 $\vec{\mu}$: mean of all vectors

Definition: within-class-scattermatrix

Within - class - scatter - matrix

$$S_w = \sum_{k=1}^K p_k \Sigma_k$$

with

$$\Sigma_k = \frac{1}{N_k} \sum_{i=1}^{N_k} (\vec{\mathbf{x}}_{i,k} - \vec{\boldsymbol{\mu}}_k) (\vec{\mathbf{x}}_{i,k} - \vec{\boldsymbol{\mu}}_k)^{\mathsf{t}} \quad \text{(covariance matrix of class k)}$$

LDA

- Maximize class separability
- Keep variance of all classes roughly constant
- → optimization problem with constraint

Solution

$$S_b \vec{\phi}_i = \lambda_i S_w \vec{\phi}_i$$

Limitations of LDA

LDA implicitly assumes
Gaussian distribution of data

LDA implicitly assumes that the mean is the discriminating factor, not variance

Limitations of LDA

LDA may overfit the data

Example:

-three multivariate Gaussian distributions with zero mean-50 samples drawn from each Gaussian

Summary

- To increase performance of classifier
 - Use KL transform (PCA)
 - LDA
- LDA has limitations but improved versions exist