Química orgánica

CUESTIONES

Formulación/Nomenclatura

Escribe las fórmulas semidesarrolladas de los siguientes compuestos:

a.1) etanol

a.2) *cis*–3-hexeno

a.3) 4,4-dimetil-1-hexino

a.4) 3-pentanona

(P.A.U. sep. 16)

Solución:

a.1) Etanol:

H C = C' $CH_3 - CH_2$ $CH_2 - CH_3$ CH_3 $CH_3 - CH_2 - C = CH$ a.2) cis-3-Hexeno (cis-hex-3-eno):

a.3) 4,4-Dimetil-1-hexino (4,4-dimetilhex-1-ino):

CH₃-CH₂-CO-CH₂-CH₃ a.4) 3-Pentanona (pentan-3-ona):

a) Formula o nombra, según corresponda, los siguientes compuestos: 2.

a.1) CH₃-O-CH₃

a.2) ácido 2-cloropropanoico

CH₃-CH₂OH

a.3) cloruro de estaño(IV)

a.4) propanona a.5) $Cu(BrO_3)_2$

b) Escribe las fórmulas semidesarrolladas de los siguientes compuestos:

b.1) butanona

b.2) trietilamina

b.3) ácido pentanoico

b.4) 1-butino

b.5) metanoato de propilo

(P.A.U. jun. 16)

Solución:

a.1) CH₃-O-CH₃: dimetiléter

 CH_3 -CH-Ca.2) Ácido 2-cloropropanoico:

a.3) Cloruro de estaño (IV):

 $SnCl_4$ CH_3 -C- CH_3 a.4) Propanona:

a.5) $Cu(BrO_3)_2$: bromato de cobre(II)

Solución:

b.1) Butanona:

b.2) Trietilamina:

 $\begin{array}{c} O \\ CH_3-CH_2-\overset{\circ}{C}-CH_3 \\ CH_2-CH_3 \\ CH_2-CH_3 \\ \end{array}$ $\begin{array}{c} CH_2-CH_3 \\ CH_2-CH_3 \\ \end{array}$ $\begin{array}{c} O \\ CH_3-CH_2-CH_2-\overset{\circ}{C} \end{array}$ b.3) Ácido pentanoico:

b.4) 1-Butino (but-1-ino): CH₃-CH₂-C≡CH

b.5) Metanoato de propilo:
$$H - C$$
 $O - CH_2 - CH_2 - CH_3$

a) Formula los siguientes compuestos: 3.

> a.1) hidruro de litio a.2) dietilamina a.3) metilbutanona a.4) permanganato de potasio

b) Nombra los siguientes compuestos

b.4) K₂CO₃ b.1) CH₃-CH₂-CH₂-CHO b.2) $CH_2=CH-CH(CH_3)-CH_3$ b.3) C₆H₅OH (P.A.U. sep. 15)

Solución:

a.1) Hidruro de litio: LiH

CH₃-NH-CH₃ a.2) Dietilamina: $CH_3 - \underset{\parallel}{C} - \underset{\mid}{C} - CH_3$ a.3) Metilbutanona:

a.4) Permanganato de potasio: KMnO₄ b.1) CH₃-CH₂-CH₂-CHO: butanal

b.2) $CH_2=CH-CH(CH_3)-CH_3$: 3-metilbut-1-eno

b.3) C₆H₅OH: fenol

b.4) K₂CO₃: carbonato de potasio

4. b) Escribe la fórmula desarrollada de:

> b.1) dimetiléter b.2) propanoato de isopropilo b.3) 2-metil-2-penteno b.4) propanona

(P.A.U. jun. 15)

Solución:

b.1) Dimetiléter:
$$H - \overset{\longleftarrow}{C} - O - \overset{\longleftarrow}{C} - \overset{\longleftarrow}{H}$$

b.2) Propanoato de isopropilo: H - C - C - C - O - C - H H H O H - C - H

b.4) Propanona:
$$\begin{array}{ccc}
H & H \\
H - \overset{\mid}{C} - \overset{\mid}{C} - \overset{\mid}{C} - H
\end{array}$$

- Formula:
 - a) 2,4-Pentanodiona.
 - b) 4-Cloro-3-metil-5-hexenal.
 - c) Ácido 2-propenoico.
 - d) 4-Amino-2-butanona.
 - e) 3-Metil-1-butino.

Solución:

a) 2,4-Pentanodiona (pentano-2,4-diona):

b) 4-Cloro-3-metil-5-hexenal (4-cloro-3-metilhex-5-enal):

c) Ácido 2-propenoico (ácido prop-2-enoico):

d) 4-Amino-2-butanona (4-aminobutan-2-ona):

e) 3-Metil-1-butino (3-metilbut-1-ino):

CH₃-CO-CH₂-CO-CH₃

 $CH_2 = CH - CCIH - CH - CH_2 - CHO$

ĊH₃

CH₂=CH-COOH

NH₂-CH₂-CH₂-CO-CH₃

 $CH_3-CH-C\equiv CH$

ĊН₃

6. Nombra:

b)
$$CH_3 - CO - C = CH_2$$

- c) CH₃-CHOH-CH₂OH
- d) CH₂=CH-CH₂-CH₂-COOH

(P.A.U. sep. 04)

Solución:

a)
$$CH_3$$
 – CH_3 – $CHOH$ – CH_3 : 3,3-dimetilbutan-2-ol CH_3 CH_3

b) CH₃-CO-C=CH₂: 3-metilbut-3-en-2-ona c) CH₃-CHOH-CH₂OH: propano-1,2-diol

d) CH₂=CH-CH₂-CH₂-COOH: ácido pent-4-enoico

Isomería

1. b) Escribe la fórmula del 3-hexeno y analiza la posibilidad de que presente isomería geométrica. Razona la respuesta.

(P.A.U. jun. 15, jun. 11)

Solución:

Un compuesto tendrá isomería geométrica (*cis-trans*), si tiene al menos un doble enlace en el que los grupos unidos a cada carbono del doble enlace sean distintos.

El 3-hexeno (hex-3-eno), CH₃-CH₂-CH=CH-CH₂-CH₃, tiene un doble enlace entre los carbonos 3 y 4, y cada uno de ellos está unido a dos grupos distintos: hidrógeno (-H) y etilo (-CH₂-CH₃). Existen dos isómeros geométricos, que se pueden llamar *cis* y *trans* o Z y E.

$$CH_3-CH_2$$
 H H H $C=C$ CH_2-CH_3 CH_3-CH_2 CH_2-CH_3 (E) -Hex-3-eno (Z) - Hex-3-eno (Z) - (E) -Hex-3-eno (Z) - (E) -Hex-3-eno (E) -Hex-3-eno

2. a) Formula:

a.1) benceno a.2) etanoato de metilo.

a.3) 2-butanol

Nombra:

a.4) CH₃-CH₂-CH₂-CHO

a.5) CH₃-O-CH₃

b) Razona el tipo de isomería que presenta el compuesto 2-hidroxipropanoico, de fórmula química: CH₃-CH(OH)-COOH. Señala e indica el nombre de los grupos funcionales que presenta.

(P.A.U. jun. 14)

Solución:

a.1) Benceno: (C₆H₆)

a.2) Etanoato de metilo: CH₃-COO-CH₃

a.3) 2-Butanol (butan-2-ol): CH₃-CHOH-CH₂-CH₃

a.4) CH₃-CH₂-CH₂-CHO: butanal

a.5) CH₃-O-CH₃: dimetiléter (o metoximetano).

b) El ácido 2-hidroxipropanoico, CH₃-C-COOH, tiene isomería óptica porque tiene un carbono asimétri-

co.

El carbono 2 está unido a cuatro grupos distintos: hidrógeno (-H), carboxilo (-COOH), hidroxilo (-OH) y metilo (-CH₃).

3. a) Formula los siguientes compuestos:

a.1) 1-cloro-2-buteno a.2) ácido 2-pentenodioico a.3) butanoato de etilo a.4) etanamida

b) ¿Cuáles de ellos presentan isomería cis-trans? Razona la respuesta.

(P.A.U. sep. 13)

Solución:

a.1) 1-cloro-2-buteno (1-clorobut-2-eno): $CH_2CI-CH=CH-CH_3$ a.2) Ácido 2-pentenodioico (ácido pent-2-enodioico): $HOOC-CH_2-CH=CH-COOH$ a.3) Butanoato de etilo: $CH_3-CH_2-CH_2-COO-CH_2-CH_3$ a.4) Etanamida: CH_3-CONH_2

b) Un compuesto tendrá isomería geométrica (*cis-trans*), si tiene al menos un doble enlace en el que los grupos unidos a cada carbono del doble enlace sean distintos.

Solo los dos primeros tienen doble enlace y cada carbono está unido a dos grupos distintos.

En el 1-cloro-2-buteno: el primer carbono está unido a un hidrógeno (-H) y un grupo clorometilo (-CH₂Cl) el segundo carbono está unido a un hidrógeno (-H) y un grupo metilo (-CH₃)

Existen dos isómeros geométricos, que se pueden llamar *cis* y *trans* o *Z* y *E*.

En el ácido pent-2-enodioico: el primer carbono está unido a un hidrógeno (-H) y un grupo (-CH₂COOH) el segundo carbono está unido a un hidrógeno (-H) y un grupo carboxilo (-COOH)

Existen dos isómeros geométricos, que se pueden llamar *cis* y *trans* o *Z* y *E*.

C = C C =

4. Dados los compuestos:

a.1) CH₃CH₂COOCH₃ a.2) CH₃OCH₃ a.3) CHBr=CHBr

a) Nómbralos e identifique la función que presenta cada uno.

b) Razona si presentan isomería cis-trans.

(P.A.U. jun. 13)

Solución:

		Nombre	Función	Isomería <i>cis-trans</i> .
a.1)	CH ₃ -CH ₂ -COO-CH ₃	propanoato de metilo	éster	no
a.2)	CH ₃ -O-CH ₃	dimetiléter	éter	no
a.3	CHBr=CHBr	1,2-dibromoeteno	derivado halogenado de un alqueno	sí

b) Un compuesto tendrá isomería geométrica (*cis-trans*), si tiene al menos un doble enlace en el que los grupos unidos a cada carbono del doble enlace sean distintos.

Solo el 1,2-dibromoeteno tiene doble enlace y cada carbono está unido a dos grupos distintos: hidrógeno (-H) y bromo (-Br). Existen dos isómeros geométricos, que se pueden llamar *cis* y *trans* o *Z* y *E*.

- a) Escribe las fórmulas desarrolladas e indica el tipo de isomería que presentan entre sí el a.1) etilmetiléter
 a.2) 1-propanol
 - b) Indica si el siguiente compuesto halogenado CH₃-CHBr-CH₂-CHOH-CH₂-CH₃ tiene isomería óptica. Razona la respuesta en función de los carbonos asimétricos que pueda presentar.

(P.A.U. sep. 11)

Solución:

Presentan isomería de función: misma fórmula molecular (C₃H₈O) y funciones diferentes.

b) La isomería óptica la presentan los compuestos que tienen algún carbono asimétrico. El 5-bromohexan-3-ol tiene dos carbonos asimétricos, señalados con un asterisco, unidos a cuatro grupos distintos cada uno de ellos.

Carbono 3 unido a: hidrógeno (-H), etilo (-C H_2 -C H_3), hidroxilo (-OH) y 2-bromopropilo (-C H_2 -CHBr-C H_3). Carbono 5, unido a: hidrógeno (-H), 2-hidroxibutilo (-C H_2 -CHOH-C H_2 -C H_3), bromo (-Br) y metilo (-C H_3) Por tanto, este compuesto tendrá $2^2 = 4$ isómeros ópticos.

- 6. a) Formula y nombra, según corresponda, los siguientes compuestos:
 - a.1) 2-metilpropanal
- a.2) dimetiléter
- a.3) CH₃-NH-CH₂-CH₃ a.4) CH₃-CHOH-CH₂OH
- b) Justifica si alguno de ellos presenta isomería óptica, señalando el carbono asimétrico.

(P.A.U. sep. 10)

a.1) 2-Metilpropanal: CH_3-CH-C'

a.2) Dimetiléter: CH_3 -O- CH_3 a.3) CH_3 -NH- CH_2 - CH_3 : etilmetilamina a.4) CH_3 -CHOH- CH_2 OH: 1,2-propanodiol

ÒН

b) El propano-1,2-diol, CH₂OH – C – CH₃, tiene isomería óptica porque el carbono 2 es asimétrico. Está uni-

do a cuatro grupos distintos: hidrógeno (-H), hidroximetilo (-CH₂OH), hidroxilo (-OH) y metilo (-CH₃).

7. a) Formula los siguientes compuestos: a.1) 4-Penten-2-ol. a.2) 3-Pentanona.

b) Razona si presentan algún tipo de isomería entre ellos y de qué tipo.

(P.A.U. jun. 10)

Solución:

a.1) 4-Penten-2-ol (pent-4-en-2-ol): CH₂=CH-CH₂-CHOH-CH₃ (función alcohol insaturado).

a.2) 3-Pentanona (pentan-3-ona) CH₃-CH₂-CO-CH₂-CH₃ (función cetona).

b) Presentan isomería de función: misma fórmula molecular (C5H10O) y funciones diferentes.

8. Dadas las siguientes moléculas orgánicas: a.1) 2-butanol, a.2) etanoato de metilo y a.3) 2-buteno.

- a) Escribe sus fórmulas desarrolladas e indica un isómero de función para el 2-butanol.
- b) Justifica si alguna de ellas puede presentar isomería geométrica y/o isomería óptica.
- c) Razona las respuestas.

(P.A.U. jun. 09)

Solución:

cohol) del butan-2-ol.

b) El butan-2-ol, CH_3 – C – CH_2 – CH_3 , tiene isomería óptica porque el carbono 2, señalado con un asterisco, H

es asimétrico. Está unido a cuatro grupos distintos: hidrógeno (-H), metilo (- CH_3), hidroxilo (-OH) y etilo (- CH_2 - CH_3). Tiene dos isómeros ópticos que son imágenes especulares, llamados enantiómeros.

El 2-buteno tiene isomería geométrica porque cada uno de los carbonos del doble enlace están unidos a grupos diferentes (hidrógeno y metilo). Sus isómeros pueden llamarse *cis* y *trans* o *Z* y *E*.

$$H$$
 H CH_3 $C=C$ $C=C$ CH_3 CH_3 H Cis -But-2-eno (Z) -But-2-eno (E) -But-2-eno

- 9. a) De las siguientes fórmulas moleculares, indica la que puede corresponder a un éster, a una amida, a una cetona y a un éter: C_3H_8O $C_3H_6O_2$ C_2H_5ON C_4H_8O .
 - b) Indica los átomos de carbono asimétricos que tiene el 2-aminobutano. Razona las respuestas.

(P.A.U. sep. 08)

Solución:

a) Un éster es una función que contiene el grupo acilo (-COO-), y tiene, por tanto, dos oxígenos. Solo podría ser el $C_3H_6O_2$. Un ejemplo sería: CH_3 -COO- CH_3 etanoato de metilo

Una amida contiene el grupo carboxamido (-CONH₂), contiene un oxígeno y un nitrógeno. Solo podría ser el C₂H₅ON. Un ejemplo sería: CH₃-CONH₂ etanamida.

Una cetona contiene un grupo carbonilo (-CO-), en el que el oxígeno está unido al carbono por un doble enlace, por lo que tiene dos hidrógenos menos que un compuesto saturado. Para un compuesto con n C y solo O como heteroátomo, el número de hidrógenos que corresponde a un compuesto lineal saturado sería 2 n + 2. Por cada enlace extra (doble o parte de un triple) habría dos hidrógenos menos. El C_3H_8O tiene el número de hidrógenos de un compuesto saturado, por lo que no puede ser una cetona, pero sí el C_4H_8O , que sería:

 $CH_3-CO-CH_2-CH_3$: butanona.

Un éter contiene dos cadenas unidas a un oxígeno y es saturado. El C₃H₃O puede ser el:

CH₃-O-CH₂-CH₃; etilmetiléter.

b) La fórmula del 2-aminobutano (1-metilpropilamina) es: $CH_3 - \overset{\circ}{C} - CH_2 - CH_3$.

Tiene isomería óptica porque el carbono 2 es asimétrico.

Está unido a cuatro grupos distintos: hidrógeno (-H), etilo (-CH₂-CH₃), amino (-NH₂) y metilo (-CH₃).

- 10. Nombra los siguientes compuestos orgánicos, indica los grupos funcionales y señala cuáles son los carbonos asimétricos si los hubiese.
 - a) CH₃-CH₂-CONH₂
 - b) CH₃-CHOH-CH₂-CH₃

(P.A.U. jun. 08)

Solución:

		Nombre	Función	Grupo funcional	Carbono asimétrico
a)	CH ₃ -CH ₂ -CONH ₂	propanamida	amida	carboxamido (-CONH ₂)	ninguno
b)	CH ₃ -CHOH-CH ₂ -CH ₃	butan-2-ol	alcohol	hidroxilo (-OH)	2

El butan-2-ol tiene el carbono (2) asimétrico: CH₃-C-CH₂-CH₃

Está unido a cuatro grupos distintos: hidrógeno (-H), etilo (-C H_2 -C H_3), hidroxilo (-OH), y metilo (-C H_3). Tiene dos isómeros ópticos.

11. a) Nombra los siguientes compuestos: a.1) CH₂OH-CH₂-CH₂OH

a.2) BaCO₃

b) Formula las moléculas siguientes señalando los posibles átomos de carbono asimétricos: b.1) ácido 2-propenoico b.2) 2,3-butanodiol

b.1) ácido 2-propenoico Razona las respuestas.

(P.A.U. sep. 06)

Solución:

a.1) CH₂OH-CH₂-CH₂OH: propano-1,3-diol carbonato de bario

b.1) Ácido 2-propenoico (ácido prop-2-enoico): CH₂=CH-COOH

b.2) 2,3-butanodiol (butano-2,3-diol): CH₃-CHOH-CHOH-CH₃

OH OH Cada carbono marcado con un * es asimétrico: $CH_3 - \overset{\circ}{C} * - \overset{\circ}{C} * - CH_3$

Cada uno de ellos está unido a cuatro grupos distintos: hidroxilo (-OH), metilo (-CH₃), hidrógeno (-H) y 1-hidroxietilo (-CHOH-CH₃).

12. Escribe y nombra dos isómeros estructurales del 1-buteno.

(P.A.U. jun. 06)

(P.A.U. jun. 05)

Solución:

1-Buteno (but-1-eno): CH₃-CH₂-CH=CH₂

Isómeros:

CH₃-CH=CH-CH₃: but-2-eno

CH₃ : 2-metilprop-1-eno

 $CH_3-CH=CH_2$

13. a) Formula y nombra un isómero de función de;

a.1) 1-butanol a.2) 2-pentanona

b) ¿Cuál de los siguientes compuestos es ópticamente activo? Razónalo.

CH₃-CH₂-CHCl-CH₂-CH₃ CH₃-CHBr-CHCl-COOH

Solución:

Nombre IUPAC 1993 Fórmula Isómero de función Fórmula Nombre

a.1) 1-butanol butan-1-ol CH₃-CH₂-CH₂-CH₂OH CH₃-CH₂-O-CH₂-CH₃ dietiléter

a.2) 2-pentanona pentan-2-ona $CH_3-CH_2-CH_2-CO-CH_3$ $CH_3-CH_2-CH_2-CH_2-CH_0$ pentanal

Br Cl b) El ácido 3-bromo-2-clorobutanoico: CH_3 – C^* – C^* – COOH es ópticamente activo porque tiene dos carbo- H H

nos (2 y 3) asimétricos unidos, cada uno de ellos, a cuatro grupos distintos.

Carbono 2 unido a: hidrógeno (-H), carboxilo (-COOH), cloro (-Cl) y 1-bromoetilo (-CHBr-CH₃).

Carbono 3 unido a: hidrógeno (-H), carboxiclorometilo (-CHCl-COOH), bromo (-Br) y metilo (-CH₃).

Tiene $2^2 = 4$ isómeros ópticos.

Actualizado: 17/07/24

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una <u>hoja de cálculo</u> de <u>LibreOffice</u> del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión CLC09 de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de <u>traducindote</u>, y del <u>traductor de la CIXUG</u>.

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Sumario

		_			_		
O	ш	IAA	ICA	OR	$C.\Delta$	NI	CA
v	v						

Cl	<u>JESTIONES</u>	1	
	Formulación/Nomenclatura	1	
	Isomería	3	

Índice de pruebas P.A.U.

2004	
2. (sep.)	
2005	
1. (jun.)	
2. (sep.)	
2006	
1. (jun.)	
2. (sep.)	
2008	
1. (jun.)	
2. (sep.)	
2009	
1. (jun.)	
2010	
1. (jun.)	
2. (sep.)	
2011	
1. (jun.)	
2. (sep.)	
2013	
1. (jun.)	
2. (sep.)	
2014	
1. (jun.)	
2015	
1. (jun.)	
2. (sep.)	
2016	
1. (jun.)	
2. (sep.)	1