Large-Scale Convex Optimization

Silvan Stadelmann silvasta@ethz.ch 20. Juni 2025 We can write $\min_{x \in \mathcal{C}} f(x)$ as $\min_{x \in \mathbb{R}^n} f(x) + \psi_{\mathcal{C}}(x)$

1 Introduction

Large Scale Problem of dimension n but iterations $\ll n$ desired **Convex** One of the only problem classes that are "solvable" **Optimization** with decision variable x, objective function f and feasible set $\mathcal{C} = \{\xi \in \mathbb{R}^n : g(\xi) \leq 0, \ h(\xi) = 0\}$ x^* **local minimum** if $\exists \ \epsilon > 0$ s.t. $f(x^*) \leq f(x)$, $\forall x \in \mathcal{C} \cap B_\epsilon(x^*), B_\epsilon(x^*) := \{\xi \in \mathbb{R}^n : |\xi - x^*| < \epsilon\}$ **Proposition 1.** f (lower-semi-)continuous, $f(x) \to \infty$ for $|x| \to \infty$, \mathcal{C} closed $\Rightarrow \exists$ of OP with: $\min_{x \in \mathcal{C}} f(x)$ and $x^* \in \arg\min_{x \in \mathcal{C}} f(x)$

Definition 1 (Lipschitz continuity). $q:\mathbb{R}^n \to \mathbb{R}^m$ is Lipschitz with constant L if: $|q(x)-q(y)| \le L|x-y| \forall x,y \in \mathbb{R}^m$ Class of OP P with $\mathcal{C}=[0,1]^n$ and f is l^∞ -Lipschitz with L **Proposition 2.** For any algorithm \exists problem in P, s.t. achieving $|f(x_N)-f(x)| < \epsilon$ requires $N \ge (\lfloor \frac{L}{2\epsilon} \rfloor)^n - 1$ **Definition 2.** OP convex if, f and g_i convex functions, h affine. **Definition 3.** $q:\mathbb{R}^n \to \mathbb{R}$ convex (affine) if $\forall x,y \in \mathbb{R}^n$

$$q(\theta x + (1 - \theta)y) \le \theta q(x) + (1 - \theta)q(y) \quad \forall \ \theta \in [0, 1]$$

Proposition 3. If OP convex, local minimum == global minimum

2 Convex Optimization Problem

 $\begin{array}{l} \textbf{Definition 4 (Convex Set).} \quad \text{A set } \mathcal{C} \text{ is convex if and only if} \\ \theta x + (1-\theta)y \in \mathcal{C}, \forall \, x, y \in \mathcal{C}, \forall \, \theta \in [0,1] \\ \text{(hyperplane } \parallel \text{half-space)} \, \{x \in \mathbb{R}^n \mid a^\mathsf{T}x (= \parallel \leq) b\} \\ \text{polyhedra} \, \{x \in \mathbb{R}^n \mid A^{q \times n}x \preceq b^{q \times 1}, C^{r \times n}x = d^{r \times 1}\} \\ \end{array}$

Operations that preserve convexity (sets)

Intersection $\mathcal{C}_1,\mathcal{C}_2$ cv $\Rightarrow \mathcal{C}_1\cap \mathcal{C}_2$ convex (cv) Image under affine map $\mathcal{C}\subseteq \mathbb{R}^n$ cv $\Rightarrow \{Ax+b\mid x\in \mathcal{C}\}$ cv Inverse loaM $\mathcal{C}\subseteq \mathbb{R}^m$ cv $\Rightarrow \{x\in \mathbb{R}^n\mid Ax+b\in \mathcal{C}\}$ cv

Separating Hyperplane Theorem

Theorem 1. $\mathcal{C} \subseteq \mathbb{R}^n$ non-empty closed (cl) convex set, $y \notin \mathcal{C} \to \exists \ a \neq 0, b \in \mathbb{R}$ s.t. $a^\mathsf{T} x + b < a^\mathsf{T} y + b, \forall x \in \mathcal{C}$ **Corollary 1.** $\mathcal{C}_{\mathsf{cl.cv}}$: intersection of cl half-spaces that contain \mathcal{C}

Support function

Idea represent any cl,cv set by its supporting hyperplanes

$$\begin{split} \sigma_{\mathcal{C}}(a) &= \sup_{x \in \mathcal{C}} a^{\mathsf{T}} x \quad \text{if known, one can construct} \\ \mathcal{C} &= \bigcap_{a \in \mathbb{R}^n} \left\{ x \in \mathbb{R}^n \mid a^{\mathsf{T}} x - \sigma_c(a) \leq 0 \right\} \\ &= \left\{ x \in \mathbb{R}^n \mid \sup_{a \in \mathbb{R}^n} a^{\mathsf{T}} x - \sigma_{\mathcal{C}}(a) \leq 0 \right\} \end{split}$$

Definition 5. $f:\mathbb{R}^n \to \mathbb{R}$ cv \Leftrightarrow epigraph of f is cv set $\operatorname{epi}(f):=\{(x,t)\in\mathbb{R}^{n+1}|f(x)\leq t\}$

ightarrow this provides a link between convex sets and functions

Operations that preserve convexity (functions)

- the point wise maximum of convex functions is convex
 the sum of convex functions is convex
- f(Ax + b) is convex if f is convex

Check Convexity f is convex if it is composition of simple convex function with convexity preserving operations or if $f:\mathbb{R}^n \to \mathbb{R}$ twice differentiable, $\partial^2 f/\partial x^2 \succeq 0 \ \forall \ x \in \mathbb{R}^n$ $g:\mathbb{R} \to \mathbb{R}$ with g(t) = f(x+tv) convex in $t \ \forall \ x,v \in \mathbb{R}^n$ Extended real numbers $\bar{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$

Indicator function
$$\psi_{\mathcal{C}}(x) := \begin{cases} +\infty & \text{if } x \notin \mathcal{C} \ge 0 \\ 0 & \text{if } x \in \mathcal{C} \end{cases}$$

ightarrow this provides another link between convex sets and functions We can write $\min_{x\in\mathcal{C}}f(x)$ as $\min_{x\in\mathbb{R}^n}f(x)+\psi_{\mathcal{C}}(x)$ **Definition 6** (3). $f:\mathbb{R}^n \to \bar{\mathbb{R}}$ is called proper if f is bounded below and if $\exists \ x\in\mathbb{R}^n$ s.t. $f(x)<\infty$ **Definition 7** (Legendre Transformation). The conjugate function of $f:\mathbb{R}^n \to \bar{\mathbb{R}}$ is defined as $f^\star(y)=\sup_{x\in\mathbb{R}^n}y^{\mathsf{T}}x-f(x)$

3 KKT and Lagrange Duality

Basic 2d Example for derivation: $\min_{x \in \mathbb{R}^2} f(x)$ s.t. $h(x) = 0 \to \nabla f(x^\star)$, $\nabla h(x^\star)$ co-linear $\Leftrightarrow \exists \ \nu^\star \in \mathbb{R} : \nabla f(x^\star) + \nu^\star \nabla h(x^\star) = 0 \Leftrightarrow f(x) + \nu^\star h(x)$ is stationary at x^\star

Generalization for $n \to \infty$ and with constraints

We consider
$$f^\star = \inf_{x \in \mathbb{R}^n} f(x)$$
 s.t. $h(x) = 0, \ g(x) \leq 0$ (1)

Lagrange f.
$$\mathcal{L}(x, \lambda, \nu) = f(x) + \lambda^{\mathsf{T}} g(x) + \nu^{\mathsf{T}} h(x)$$
 (2)

Proposition 4 (Weak Duality). The dual function $d(\lambda,\nu)=\inf_{x\in\mathbb{R}^n}\mathcal{L}(x,\lambda,\nu)$ satisfies $d(\lambda,\nu)\leq f^\star, \forall \lambda\geq 0, \nu\in\mathbb{R}^{n_h}$ **Definition 8** (Constraint qualification). \mathcal{C} convex, **Slaters Condition** holds if \exists $\hat{x}\in\mathbb{R}^n$ s.t. $h(\hat{x})=0$ and $g(\hat{x})<0$ **Proposition 5** (Strong Duality). If Slater's condition holds and (1) is convex \Rightarrow $\exists \lambda\geq 0, \nu\in\mathbb{R}^{n_h}$ s.t. $d(\lambda,\nu)=f^\star$ **KKT**

Theorem 2 (KKT Conditions). Slater's condition holds and (1) is convex $\to x^\star \in \mathbb{R}^n$ is a minimizer of the primal (1) and $(\lambda^\star \geq 0, \nu^\star) \in \mathbb{R}^{n_g} \times \mathbb{R}^{n_h}$ is a maximizer of the dual \Leftrightarrow

$$\begin{array}{ll} \nabla_x \mathcal{L}(x^\star, \lambda^\star, \nu^\star) = 0 & \text{KKT-1 (Stationary Lagrangian)} \\ g(x^\star) \leq 0, h(x^\star) = 0 & \text{KKT-2 (primal feasibility)} \\ \lambda^\star \leq 0, \nu^\star \in \mathbb{R}^{n_h} & \text{KKT-3 (dual feasibility)} \\ \lambda^{\star \top} g(x^\star) = 0 = \nu^{\star \top} h(x^\star) \text{ KKT-4 (compementary slackness)} \end{array}$$

In addition we have: $\sup_{\lambda\geq 0, \nu\in\mathbb{R}^{n_h}} q(\lambda, \nu) = \inf_{x\in\mathcal{C}} f(x)$ Remark Without Slater, KKT1-4 still implies x^* minimizes (1) and λ, ν maximizes dual, but the converse is no longer true. There can be primal-minimizer/dual-maximizer not satisfy KKT.

Subdifferential

For cv f we have $f(x) \geq f(\bar{x}) + \nabla f(\bar{x})^\mathsf{T}(x - \bar{x}), \ \forall x, \bar{x} \in \mathbb{R}^n$ Definition 9. $f: \mathbb{R}^n \to \bar{\mathbb{R}}$ cv, the subdifferential of f at \bar{x} is: $\partial f(\bar{x}) := \{\lambda \in \mathbb{R}^n \mid f(x) \geq f(\bar{x}) + \lambda^\mathsf{T}(x - \bar{x}, \forall x \in \mathbb{R}^n)\}$ Proposition 6. f (like D9), $x^\star \in \operatorname{argmin}_x f(x) \Leftrightarrow 0 \in \partial f(x^\star)$ Proposition 7 (Relation to conjugate functions). For convex f with $\operatorname{epi}(f)$ closed: $y \in \partial f(x) \leftrightarrow x \in \delta f^\star(y)$

4 Convex Optimization Problems

Optimal value $f^\star=\inf\{f(x)\mid g_i(x)\leq 0, h_j=0\}$ $f^\star=+\infty$ OP is infeasible, $f^\star=-\infty$ OP is unbound below

Feasibility Problem

$$\begin{split} & \text{Special case } f(x) = 0, \forall x \Leftrightarrow \min_{s} \text{ s.t. } g_i(x) \leq s, h_j(x) = 0 \\ & \text{Linear Programming minimize } c^\mathsf{T} x \text{ s.t. } Ax - b \geq 0, \ x \geq 0 \\ & \text{Step 1: } \mathcal{L}(x,\lambda_1,\lambda_2) = c^\mathsf{T} x - \lambda_1^\mathsf{T} (Ax - b) - \lambda_2^\mathsf{T} x, \ \lambda_i \geq 0 \\ & \text{Step 2: } \inf_{x \in \mathbb{R}^n} \mathcal{L}(x,\lambda_1,\lambda_2) = \begin{cases} \lambda_1^\mathsf{T} b & \text{if } c - A^\mathsf{T} \lambda_1 - \lambda_2 = 0 \\ -\infty & \text{if } c - A^\mathsf{T} \lambda_1 - \lambda_2 = 0 \end{cases} \end{split}$$

Step 3: Dual, maximize $b^T\lambda s.t.c - A^T\lambda \geq 0$, $\lambda \geq 0$ (again LP) **Proposition 8.** The optimal solution of a linear program (if it exists) lies always on the boundary of the feasible set and there exists an optimal solution that is a vertex of the feasible set.

Quadratic Programming convex if $P=P^{\mathsf{T}}$ positiv semi-definite minimize $\frac{1}{2}x^{\mathsf{T}}Px+q^{\mathsf{T}}x$ s.t. $Gx\leq h,\ Ax=b$ Second-Order Cone Program minimize $f^{\mathsf{T}}x$ s.t. $|A_ix+b|\leq c_i^{\mathsf{T}}x+d_i, Fx=g$ Second-order cone $C_{n+1}=\{(x,t)\mid x\in\mathbb{R}^n, t\in\mathbb{R}, |x|\leq t\}$ Semi-Definite Programming with symmetric F_i,X,A_i minimize $c^{\mathsf{T}}x$ s.t. $\sum_{i=1}^n x_iF_i+G\leq 0, Ax=b$

Standard form minimize tr(CX) s.t. $X \ge 0$, $tr(A_iX) = b_i$

 $\operatorname{tr}(CX) = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}, C \in \mathbb{R}^{n \times n}, i = 1, ..., m$

 $LP \subset QP \subset QCQP$ (Quadratically Constrained QP) $\subset SOCP \subset SDP$

5 Gradient methods - Part I

Definition 10 (smoothness). $f:\mathbb{R}^n \to \mathbb{R}$ is L-smooth (L-sm) if $\nabla f(x)$ satisfies $|\nabla f(x) - \nabla f(y)| \leq L|x-y| \ \forall x,y \in \mathbb{R}^n$ Taylor $\to f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2$ **Definition 11** (strong convexity). $f:\mathbb{R}^n \to \mathbb{R}$ is μ -strongly convex (μ -scv) if $f(y) \geq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{\mu}{2}|x-y|^2$ **Gradient Descent**

$x_{k+1} = x_k - T\nabla f(x_k) \text{ for } k = (k_0, \dots, k_N) \text{ given } x_0, T$ Assume $f(x) = c_0 + b^T x + \frac{1}{2} x^T H x, H \succ 0 \Rightarrow H x^* = -b$ $x_{k+1} - x^* = x_k - x^* - T(b + H x_k) = (I - TH)(x_k - x^*)$ Convergence given by eigenvalues of I - TH, use $H = U\Lambda U^T$ $x_N - x^* = U(I - T\Lambda)^N U^T (x_0 - x^*) \rightarrow \text{conv-rate } 1 - T\lambda_i$ $f\colon L\text{-sm}, \mu\text{-sev} \rightarrow \mu \leq \min \lambda_i, \max \lambda_i \leq L, \rightarrow \text{conv-rate } \rho(T)$ $=: \max_{\mu \leq h \leq L} |1 - Th| \rightarrow |x_N - x^*| \leq \rho(T)^N |x_0 - x^*|$ $T^* = \frac{2}{L + \mu}$, with condition number $\kappa := \frac{L}{\mu}$ and $1 - \xi \leq e^{-\xi}$ $\rho(T^*) = \frac{L - \mu}{L + \mu} = \frac{\kappa - 1}{\kappa + 1} = (1 - \frac{2}{\kappa + 1}) \leq e^{-\frac{2}{\kappa + 1}} \rightarrow \text{algebraic complexity } N \geq \frac{\kappa + 1}{2} \ln(\frac{|x_0 - x^*|}{\epsilon}) \text{ to achieve } |x_N - x^*| \leq \epsilon$ Momentum-based methods

$$q_{k+1} = q_k + Tp_{k+1}$$

 $p_{k+1} = (1 - 2dT)p_k - T\nabla f(q_k + \beta p_k)/L$

Nesterov accelerated gradient $T=1, d=\frac{1}{\sqrt{k}+1}$, $\beta=\frac{\sqrt{k}-1}{\sqrt{k}+1}$ **Heavy Ball** tuned on quadratic $T=\frac{2\sqrt{k}}{\sqrt{k}+1}$, $d=\frac{1}{\sqrt{k}+1}$, $\beta=0$

 $C_{\mathsf{Nesterov}}(1-\frac{1}{\sqrt{\kappa}})^N pprox \frac{|q_N-q^\star|}{|q_0-q^\star|} pprox C_{\mathsf{HeavyBall}}(1-\frac{2}{\sqrt{\kappa+1}})^N$ **Theorem 3.** $f\colon L\text{-sm}, \mu\text{-scv} \to \mathsf{Nesterov's}$ method satisfies:

$$|q_N - q^*| \le \sqrt{\kappa + 1} (1 - 1/\sqrt{\kappa})^{N/2} |q_0 - q^*|$$

 $f(q_N) - f^* \le \frac{L + \mu}{2} (1 - 1/\sqrt{\kappa})^N |q_0 - q^*|^2$

Requires $N \geq 2\sqrt{\kappa} \ln(\frac{|q_0-q^\star|}{\epsilon})$ to achieve $|x_N-x^\star| \leq \epsilon$ Theorem 4. For any first-order method $\exists f: \mathbb{R}^\infty \to \mathbb{R}$, μ -scv, L-sm, s.t. $|x_k-x^\star| \geq (1-\frac{2}{\sqrt{\kappa}+1})^k |x_0-x^\star| \forall k \geq 0$

Line search

Adaptive Methods 6 Gradient Methods - Part II

Definition 12. $\operatorname{prox}_{\mathcal{C}}(x) = \operatorname{argmin}_{y \in \mathcal{C}} \frac{1}{2} |x-y|^2$ with $\mathcal{C} \subset \mathbb{R}^n$

 $\begin{array}{l} \textbf{Lemma 1.} \quad \text{cl, cv } \mathcal{C} \subset \mathbb{R}^n \to |\operatorname{prox}_{\mathcal{C}}(x) - \operatorname{prox}_{\mathcal{C}}(y)| \leq |x-y| \\ \leftarrow |\operatorname{prox}_{\mathcal{C}}(x) - \operatorname{prox}_{\mathcal{C}}(y)|^2 \leq (\operatorname{prox}_{\mathcal{C}}(x) - \operatorname{prox}_{\mathcal{C}}(y))^\mathsf{T}(x-y) \\ \textbf{Projected Gradient Descent} \end{array}$

 $\begin{aligned} x_{k+1} &= \operatorname{prox}_{\mathcal{C}}(x_k - T\nabla f(x_k)), \text{ for } x_0, k_{0..N}, T \in (0, 2/L) \\ \textbf{Proposition 9.} \quad f: L\text{-sm, } \mu\text{-scv} \to \operatorname{projected GD with } T &= \frac{2}{L+\mu} \\ \text{satisfies } &|x_N - x^\star| \leq |x_0 - x^\star| (1 - \frac{2}{\kappa+1})^N \; (\kappa \text{ still } \frac{L}{\mu}) \\ \textbf{Lemma 2.} \quad f: \; \mathbb{R}^n \to \; \mathbb{R}, L\text{-sm, } \mathbf{cv} \to \hat{\mathbf{f}} \; \operatorname{strongly-cv} \\ \hat{f}(x) &= f(x) + \frac{\mu}{2}|x - x_0|^2 \; \text{and } |\tilde{x}^\star - x_0| \leq |x^\star - x_0| \\ \text{and } f(x) - f(x^\star) \leq \hat{f}(x) - \hat{f}(\tilde{x}^\star) + \frac{\mu}{2}|x^\star - x_0|^2, \mu > 0 \\ \to \text{ from here one can apply GD or Nesterov, which results in: } f(x_N) - f(x_0) \leq \epsilon \; \text{after } N \sim L|x^\star - x_0|^2/\epsilon \; \text{iterations} \\ \textbf{Proposition 10 } \; \text{(Subgradient Method). cl, cv } \mathcal{C} \; \text{contained in ball of radius } R, x_{0..N-1} \; \text{satisfy } f(\frac{1}{N} \sum_{k=0}^{N-1}) - f(x^\star) \leq \frac{RL_f}{\sqrt{N}} \\ \text{under } x_{k+1} = \operatorname{prox}_{\mathcal{C}}(x_k - Tg_k) \; g_k \in \partial f(x_k), T = \frac{R}{L_f \sqrt{N}} \end{aligned}$

			J
Assumptions on f	Method	$N: f(x_N) - f(x^*) \leq \varepsilon$	Optimal
μ-strongly convex	gradient descent	$N \sim \kappa \ln (1/\epsilon)$	No
L-smooth	Nesterov	$N \sim \sqrt{\kappa} \ln (1/\epsilon)$	Yes
L-smooth	gradient descent	$N \sim 1/\varepsilon$	No
	Nesterov (varying stepsize)	$N \sim 1/\sqrt{\varepsilon}$	Yes
L_f -Lipschitz, compact set	subgradient method	$N \sim 1/\epsilon^2$	Yes