What is new in HEVC/"H.265"?

Andreas Unterweger

Department of Computer Sciences University of Salzburg

October 17, 2012

What is HEVC?

- HEVC = **H**igh **E**fficiency **V**ideo **C**oding
- New video coding standard (not yet officially)
- Developed by the Joint Collaborative Team on Video Coding (JCT-VC)
- Expected to be ratified by the ITU as H.265 in early 2013
- Expected to be part 2 of MPEG-H (similar to MPEG-4 suite)

What can you expect from HEVC?

- Higher coding efficiency than H.264 (approx. 50%)
- Higher complexity than H.264 to achieve this
- Support for higher resolutions for future video formats
- Encoding and decoding parallelizable in many ways

HEVC architecture

Coming up next: The details

- ullet HEVC is strongly based on H.264 o used for comparison
- Overview of new and modified coding tools
- Focus on most significant changes
- Main sources:
 - Overview paper of Sullivan et al. (to be published in December)
 - The latest HEVC draft
 - The latest reference software (HM)

New block structure I

- H.264: 16x16 macroblocks
 - Intra blocks: 16 4x4 sub-blocks or 1 16x16 block
 - Inter blocks: 16x16, 16x8, 8x16, 8x8 (and subpartitions)
- HEVC: Coding tree blocks (CTBs)
 - 16x16, 32x32 or 64x64 blocks
 - Quadtree-like subpartitioning into coding blocks (CBs)
 - Minimum CB size: 8x8 (or larger if specified)
 - Chroma partitioned accordingly

Source: Sullivan et al. (2012)

New block structure II

- H.264: Prediction and transform "static"
 - Prediction is coupled with block partition size
 - Transform size is always 4x4 (or adaptively 8x8 in High profile)
 - Intra/inter decision on higher (16x16 block) level
- HEVC: Prediction and transform flexible
 - CBs split into (min. 4x4) prediction blocks (PBs)
 - CBs split into (min. 4x4) transform blocks (TBs)
 - TB structure may be further partitioned than the PB structure
 - Intra/inter decision on (min. 8x8) CB level

Intra prediction I

- H.264: Number of total modes depends on block size
 - 16 4x4 sub-blocks or 1 16x16 block
 - 4x4: DC or directional prediction (8 directions)
 - 16x16: DC, plane, horizontal or vertical prediction
 - 8x8 blocks in High profile use 16x16 modes
 - Different modes for chroma blocks (but not for 8x8 luma)
 - Explicit interpolation formulae (containing max. 3 samples)
 - Smoothing filter for reference samples for 8x8 prediction
 - Additional Hadamard transform for 16x16 blocks
- HEVC: 35 modes in total
 - 32x32 downto 4x4 sub-blocks
 - DC, planar or directional prediction (33 directions)
 - Same modes for chroma blocks (but no 2x2 blocks)
 - $\frac{1}{32}^{th}$ sample accuracy (bilinear)
 - Adaptive smoothing filter for most reference samples
 - Additional (permanent) boundary value smoothing

Intra prediction II

Source: Sullivan et al. (2012)

Inter prediction I

- H.264: Symmetric partitioning
 - 16x16, 16x8, 8x16 or 8x8 paritions
 - 8x4, 4x8 or 4x4 sub-partitions for 8x8 partitions
- HEVC: Adaptive (a)symmetric partitioning
 - Symmetric PB partitioning (like intra)
 - Asymmetric PB partitioning

Source: Sullivan et al. (2012)

Inter prediction II

- H.264: Limited reference granularity
 - One motion vector per (sub-)partition (2 for bi-pred.)
 - One reference picture index per partition
 - $\frac{1}{4}^{th}$ sample accuracy
 - 6-tap filter for half samples
 - Averaging for quarter samples
 - Direct mode uses MV prediction to save bits
- HEVC: Full reference granularity
 - One motion vector per PB (2 for bi-pred.)
 - One reference picture index per PB
 - $\frac{1}{4}^{th}$ sample accuracy
 - 8-tap filter for half samples
 - 7-tap filter for quarter samples
 - Merge mode: Choose one derived MV candidate based on temporal and spatial neighbours' MVs to save bits (allows direct-like modes)

Transform

- H.264: 4x4 Integer transform (DCT approximation)
 - Used for all block partitionings and modes
 - Adaptive 8x8 integer transform in High Profile
- HEVC: H.264-like transform for each transform block (TB)
 - More transform sizes: 4x4, 8x8, 16x16, 32x32
 - TBs must be squared
 - Used for all modes except intra 4x4
 - 4x4 intra uses a DST approximation
 - Reason: Residuals tend to increase with distance from boundary
 - 1% intra-only bit rate decrease (hardly any for larger sizes)

Deblocking and additional filtering

- H.264: In-loop deblocking filter
 - Transform block boundary filtering
 - Static 4x4 grid
 - Adaptive strength from 0 to 5
- HEVC: Additional filtering
 - In-loop deblocking filter (similar to H.264)
 - 8x8 grid on PB and TB boundaries only
 - Adaptive strength from 0 to 2
 - Sample-adaptive offset (SAO)
 - Idea: Sharpen edges and remove banding
 - LUT-based addition of offset to each sample
 - Offset depends on local gradient
 - LUT depends on region (changed per CTB)

Parallelism I: Tiles

- H.264 slices: Independently decodable picture areas
- HEVC slices: Same, but can be split into multiple NALUs
- HEVC: Additional concept of tiles
 - Also independently decodable picture areas
 - About the same number of CTBs in each tile
 - A tile can span multiple slices

СТИ	СТИ	8	Slice	CTU	СТИ	
СТИ	сти	СТИ	сти	сти	СТИ	СТИ
СТИ	8	Slice 2 CTU			СТИ	
						СТИ

СТИ	СТИ		СТИ	СТИ
СТИ	СТИ		СТИ	СТИ
Tile 1			Tile	N ţ
СТИ	СТИ		СТИ	СТИ

Source: Sullivan et al. (2012)

Parallelism II: WPP

- WPP = Wavefront Parallel Processing
- Slices are divided into rows of CTBs
- Each thread processes one CTB row
- Thread n can start shortly after thread n-1
- Few dependencies (mainly entropy coder adaption)
- Not allowed in combination with tiles

Parallelism III: CABAC

- H.264: CAVLC (faster, but less efficient) and CABAC
- HEVC: "New" CABAC
 - Same principle: multiple contexts (but fewer than in H.264)
 - Less dependencies, but still more efficient than CABAC (H.264)
 - Coefficients are always scanned on a 4x4 block basis
 - Coefficient scan pattern is mode dependent

Random access

- H.264: IDR, I, P and B pictures
- HEVC: Additionally:
 - Clean random access (CRA) pictures
 - Like IDRs, but without DPB flush
 - Some subsequent pictures may have to be discarded
 - Tagged for discard (TFD) pictures: smaller display order
 - Decodable leading pictures (DLPs) allowed
 - Broken link access (BLA) pictures
 - Originally a CRA picture with type changed to BLA
 - For splice points in concatenated bit streams
 - May also be followed by TFD pictures and DLPs
- Random access pictures (RAPs): IDRs, CRAs, BLAs

Picture type overview

IDR = Instantaneous Decoder Refresh, RAP = Random Access Picture,

CRA = Clean Random Access, BLA = Broken Link Access,

 $\mathsf{TP} = \mathsf{Trailing} \; \mathsf{Picture}, \; \mathsf{LP} = \mathsf{Leading} \; \mathsf{Picture},$

 $\mathsf{DLP} = \mathsf{Decodable} \; \mathsf{Leading} \; \mathsf{Picture}, \; \mathsf{TFD} = \mathsf{Tagged} \; \mathsf{For} \; \mathsf{Discard}$

Miscellaneous

- Byte stream structure remains the same (NAL units)
 - NAL unit header is longer (not compatible to H.264)
 - New NAL unit types and type number changes
 - Modified NALU payload syntax which is not H.264-compliant
- New profiles; currently only Main specified
 - 8 bit with 4:2:0 chroma subsampling
 - CTB sizes only from 16x16 to 64x64
- New levels: 1.0 (176x144@15) to 6.2 (7680x4320@120)
- Multiple tiers (currently Main and High) orthogonal to levels
- Temporal scalability built-in
- No more interlaced handling (optional SEI signalling)

Live demo

- Structure of HEVC pictures
- Prediction mode examples
- Sneak peek on syntax elements
- Web based HEVC analyzer: http://hevcvisa.codecian.com/

What comes next?

- October 2012: Call for proposals for
 - Scalable extensions (like SVC)
 - Multi view extensions (like MVC)
- Evaluation and development of extensions
- HEVC was built with possible extensions in mind
- "H.266"?

Thank you for your attention!

Questions?