超限帰納法抜きで選択公理から Zorn の補題を証明してみた

縫田 光司

2011年11月13日(初版)、2023年3月30日(第3版)

概要

このノートでは、超限帰納法を使わずに選択公理から Zorn の補題を導く証明を与える(ただし、悲しいことにノートの初版を書いてから気が付いたのだが、証明の本質的なアイデアは H. Rubin, J. E. Rubin, "Equivalents of the Axiom of Choice, II", Second Edition, Studies in Logic and the Foundations of Mathematics vol.116, North-Holland, 1985の定理 4.19 の証明と同じであった)。

このノートを通して、 (X, \leq) は空でない半順序集合で、どの鎖 $^{*1}C$ も X における上界 *2 をもつものとする。 **Zorn の補題**とは、このような X が常に極大元 *3 をもつという主張である。選択公理から Zorn の補題を(集合論の Zermelo-Fraenkel 公理系の下で)証明する際、「自然な」方針を採ろうとすると通常は超限帰納法のお世話になるのだが、このノートでは超限帰納法を使わない証明を紹介する。

背理法の仮定として、X は冒頭に述べた条件を満たす半順序集合であるが、極大元をもたないとする。この仮定から出発して矛盾を導く。

まず定義や用語をいくつか準備しておく。X の鎖 C について、 $X\setminus C$ に属する C の上界全体の集合を U_C で表す。また、X の鎖 C と $x\in X$ について、 $s_C(x):=\{y\in C\mid y< x\}$ と定める。X の空でない、かつ整列されている*4鎖全体の集合を C で表す。 $C\in C$ のとき、C の空でない部分集合はどれも C に属することを注意しておく。また以下の性質が成り立つ。

補題 1. $C \in \mathcal{C}$ のとき常に $U_C \neq \emptyset$ が成り立つ。

証明. Zorn の補題の仮定より、C は上界 $x \in X$ をもつ。また、X は極大元をもたないと仮定したので、x < y を満たす $y \in X$ が存在する。この y について、 $y \not\leq x$ となるので、x の選び方より $y \not\in C$ である。また、x と同様に y も C の上界である。よって $y \in U_C$ 、したがって $U_C \neq \emptyset$ である。

 $\mathcal{U}:=\{S\subseteq X\mid$ ある $C\in\mathcal{C}$ について $S=U_C\}$ と定める。補題 1 より \mathcal{U} は非空集合からなる集合族であり、 選択公理により その選択関数 f が得られる。すなわち、 $C\in\mathcal{C}$ のとき $f(U_C)\in U_C$ が成り立つ。この $f(U_C)$ のことを単に f(C) で表す。

Zorn の補題の仮定より $X \neq \emptyset$ である。 $x_0 \in X$ を一つ固定する。ここで以下の定義を導入する。

• 鎖 $C \in \mathcal{C}$ が f-継続的であるとは、 $x_0 = \min C$ であり、さらに $c \in C \setminus \{x_0\}$ のとき常に $f(s_C(c)) = c$ が成り立つことと定める(このとき $x_0 < c$ より $s_C(c) \neq \emptyset$ 、したがって $s_C(c) \in \mathcal{C}$ であることを注意しておく)。f-継続的な C の元全体の集合を C_f で表す。

^{*1} 全順序(もしくは線形順序)部分集合のこと。

 $^{*^2}$ つまり、 $x \in X$ であって、どの $c \in C$ についても c < x を満たすもの。

 $^{^{*3}}$ つまり、 $x \in X$ であって、x < y となる $y \in X$ が存在しないもの。

^{*4} 空でない部分集合が常に最小元をもつ、ということ。

なお、上の定義において、 $c=x_0$ のときは $s_C(c)=\emptyset$ である。すると、 $f(\emptyset):=x_0$ と定めることで、 $C\in\mathcal{C}_f$ のとき、どの $c\in C$ についても $f(s_C(c))=c$ が成り立つようになる。

 $C^*:=igcup_{C\in\mathcal{C}_f}C$ と定める。 $\{x_0\}\in\mathcal{C}_f$ より C^* は空でなく、 $x_0=\min C^*$ である。

補題 2. $C_1, C_2 \in \mathcal{C}_f, x \in C_1, y = \min(C_2 \setminus s_{C_1}(x))$ のとき、 $y \in C_1$ が成り立つ。

証明. yの最小性より

$$s_{C_2}(y) \subseteq s_{C_1}(x) \tag{1}$$

であり、 $x \in C_1 \setminus s_{C_2}(y)$ となる。 C_1 は整列されているので、 $z := \min(C_1 \setminus s_{C_2}(y))$ が存在し、また $z \leq x$ である。y の定義より $y \notin s_{C_1}(x)$ であるので、 $y \in C_2 \setminus s_{C_1}(z)$ となる。 C_2 は整列されているので、 $w := \min(C_2 \setminus s_{C_1}(z))$ が存在し、また

$$w \le y \tag{2}$$

である。w の最小性より $s_{C_2}(w)\subseteq s_{C_1}(z)$ である。逆に $u\in s_{C_1}(z)$ のとき、z の最小性より

$$u \in s_{C_2}(y) \tag{3}$$

である。ここで、もし $u
ot\in s_{C_2}(w)$ であるとすると、 C_2 は鎖であるので

$$w \le u \tag{4}$$

となり、式 (3) より $w \in s_{C_2}(y)$ となる。これと式 (1) より $w \in C_1$ であり、また w の定義より $w \not\in s_{C_1}(z)$ である。 C_1 は鎖であるので、 $z \leq w$ となり、式 (4) より $z \leq u$ となるが、一方で u の選び方より $u \in s_{C_1}(z)$ であり、これは矛盾である。よって $u \in s_{C_2}(w)$ となる。以上より $s_{C_2}(w) = s_{C_1}(z)$ である。 C_1 と C_2 はともに f-継続的であるので、

$$w = f(s_{C_2}(w)) = f(s_{C_1}(z)) = z \in C_1 \cap C_2$$

となる。z の定義より $z \not\in s_{C_2}(y)$ であり、 C_2 は鎖であるので、 $y \le z = w$ となる。これと式 (2) より $y = w \in C_1$ となる。以上より主張が成り立つ。

補題 3. $C_1, C_2 \in \mathcal{C}_f$ のとき、 $C_2 \setminus C_1 \subseteq U_{C_1}$ である。特に C_1 の元と C_2 の元は常に比較可能である。

証明. $x_2 \in C_2 \setminus C_1$, $x_1 \in C_1$ のとき、 $x_2 \in C_2 \setminus s_{C_1}(x_1)$ である。 C_2 は整列されているので、 $y := \min(C_2 \setminus s_{C_1}(x_1))$ が存在し、また $y \leq x_2$ である。すると補題 2 より $y \in C_1$ である。y の定義より $y \notin s_{C_1}(x_1)$ であり、 C_1 は鎖であるから、 $x_1 \leq y \leq x_2$ となる。よって主張が成り立つ。

補題3より C^* は鎖である。

補題 4. $C \in \mathcal{C}_f$, $x \in C$ のとき、 $s_{C^*}(x) = s_C(x)$ が成り立つ。

証明. C^* の定義より $C \subseteq C^*$ であるから、 $s_{C^*}(x) \subseteq C$ を示せばよい。それには、 $y \in s_{C^*}(x) \setminus C$ と仮定して矛盾を導けばよい。 C^* の定義より、 $y \in C'$ を満たす $C' \in \mathcal{C}_f$ が存在する。すると補題 3 より $y \in U_C$ 、したがって $x \leq y$ となるが、これは $y \in s_{C^*}(x)$ と矛盾する。以上より主張が成り立つ。

 C^* が整列されていることを示すために、S を C^* の空でない部分集合とし、S の最小元が存在することを示す。 $x \in S$ を一つ固定する。これが S の最小元であれば目的が達成できているので、そうでない場合を考える。すると、 C^* は鎖であるから、y < x を満たす $y \in S$ が存在する。つまり $s_{C^*}(x) \cap S \neq \emptyset$ である。補題 S

より、 $s_{C^*}(x)\cap S$ はある $C\in\mathcal{C}_f$ の空でない部分集合であり、C が整列されていることから、 $s_{C^*}(x)\cap S$ は 最小元 y をもつ。ここで $z\in S$ とすると、z< x であれば $z\in s_{C^*}(x)\cap S$ であり、y の選び方より $y\leq z$ となる。一方、 $x\leq z$ であれば、y の選び方より y< x であるため、y< z となる。いずれにしても $y\leq z$ となるので、y は S の最小元である。よって C^* は整列されており、 $C^*\in C$ となる。さらに、 $x\in C^*\setminus \{x_0\}$ のとき、 $x\in C$ を満たす $C\in\mathcal{C}_f$ をとると、補題 A より $s_{C^*}(x)=s_C(x)$ である。C は f-継続的であるので、 $f(s_{C^*}(x))=f(s_C(x))=x$ である。よって C^* も f-継続的である。以上より $C^*\in\mathcal{C}_f$ である。すると $f(C^*)\in U_{C^*}$ より $C^{**}:=C^*\cup \{f(C^*)\}$ も C_f の元であり、 $f(C^*)\not\in C^*$ より $C^{**}\not\subseteq C^*$ であるが、これは C^* の定義と矛盾する。以上で Zorn の補題が証明された。

おまけ:超限帰納法を用いた証明

このおまけでは、比較のために、超限帰納法を用いて選択公理から Zorn の補題を導く証明を与える。最初に、超限再帰的定義に関する原理を述べておく(例えばケネス・キューネン著、藤田博司訳『集合論 独立性証明への案内』(日本評論社、2008 年、原題:SET THEORY, An Introduction to Independence Proofs)第 I 章定理 9.3 を参照)。

定理 1. $\varphi(x,y)$ を(Zermelo–Fraenkel 集合論における)式で自由変数 x と y をもち、 $\forall x \exists ! y \varphi(x,y)$ を満たすものとする。このとき、自由変数 x と y をもつ式 $\Phi(x,y)$ で以下の二つの条件を満たすものが存在する。

- 1. $\forall x ((x \in \mathbf{ON} \to \exists! y \Phi(x, y)) \land (\neg x \in \mathbf{ON} \to \neg \exists y \varphi(x, y)))$
- 2. $\forall x (x \in \mathbf{ON} \to \forall y, z (y = \Phi \upharpoonright_x \land \varphi(y, z) \to \Phi(x, z)))$

ただし、「 $x \in \mathbf{ON}$ 」は「x は順序数」の略記とし、「 $\Phi \upharpoonright_x$ 」は集合 $\{\langle a,b \rangle \mid a \in x \land \Phi(a,b)\}$ ($\langle a,b \rangle$ は a と b の順序対)の略記とする。

この定理の直感的な意味は以下の通りである:順序数全体(これは集合をなさないのであるが)で定義される「関数」 Φ を得たいとき、順序数 α における値を α より小さな順序数における値から定める方法を指定すれば、その条件を満たす「関数」 Φ が確かに存在する。この定理は ZF 集合論における定理であり、選択公理は用いていないことを注意しておく。

定理 1(と超限帰納法)を用いて、選択公理から 2 Zorn の補題を証明する。 $X \neq 0$ ($= \emptyset$)を、2 Zorn の補題の主張に現れる半順序集合とする。背理法の仮定として、2 は極大元をもたないと仮定する。すると、2 の空でない部分集合 2 のうち、ある順序数と同型な(特に全順序集合である)ものの各々について、選択公理を用いて 2 の上界 2 の上界 2 を一つずつ選ぶことができる。

定理 1 を適用すべく、まず X の元 a を一つ固定しておき、式 $\varphi(x,y)$ を以下の要領で定義する。

- x = 0 のとき、 $\varphi(x, y)$ は y = a を意味するように定める。
- x がある順序数 $\alpha>0$ から X への関数であって像 $\mathrm{Im}(x)$ への(半順序集合としての)同型写像であるとき、 $\varphi(x,y)$ は $y=b_{\mathrm{Im}(x)}$ を意味するように定める($\mathrm{Im}(x)$ は空でない順序数 α と同型なので、 $b_{\mathrm{Im}(x)}$ が確かに定義されることを注意しておく)。
- それ以外のとき、 $\varphi(x,y)$ は y=0 を意味するように定める。

この式 $\varphi(x,y)$ は定理 1 の前提を満たすので、定理の主張にあるような式 $\Phi(x,y)$ が存在する。ここで以下の補題が成り立つ。

補題 5. x を順序数とし、x' を $\Phi(x,x')$ が成り立つ唯一の元とする。このとき、

- 1. $x' \in X$ である。
- 2. y < x かつ $\Phi(y, y')$ が成り立つならば、X において y' < x' である。

証明. x に関する超限帰納法を用いて証明する。まず、x=0 のときは、 φ の定義より x'=a となるので、件の条件が成り立つ。次に x>0 のときを考える。超限帰納法の仮定より、定理 1 の主張に現れる集合 $\Phi \upharpoonright_x$ は x から X のある部分集合 C への同型写像となる(x は全順序集合であることを注意しておく)。このとき Φ と φ の定義より $x'=b_C$ となり、したがって件の条件は x に関しても成り立つ(二つ目の条件については、 $b_C \in X \setminus C$ が C の上界であることから導かれる)。以上より主張が成り立つ。

補題 5 の二つ目の性質より、各 $v\in X$ について、 $\Phi(x,v)$ を満たす順序数 x は高々一つしか存在しない。 X の部分集合 X' を、ある(一意に定まる)順序数 x について $\Phi(x,v)$ が成り立つような $v\in X$ 全体の集合として定める。置換公理を集合 X' と式 $\Phi'(x,y):=\Phi(y,x)$ に適用すると、順序数 y のうち、 $\Phi(y,y')$ を満たす唯一の y' が X' に属するような y をすべて要素にもつ集合 Y の存在が示される。ここで補題 5 の一つ目の性質より、この集合 Y はすべての順序数を要素にもつことになる。しかし、これは Burali—Forti の逆理(すなわち、すべての順序数を要素にもつ集合は存在しない、という定理)に矛盾する。したがって背理法により、X は極大元をもつ。以上で X0 の補題が証明された。