AN EFFICIENT LATTICE-BASED SIGNATURE SCHEME WITH PROVABLY SECURE INSTANTIATION

AfricaCrypt 2016
International Conference on Cryptology
Fez, Morocco
04/13/2016

Sedat Akleylek

Nina Bindel

Johannes Buchmann

Juliane Krämer

Giorgia A. Marson

OUTLINE

- Security Reduction and Provably Secure Instantiation
- Description of the Signature Scheme
- Parameter Selection
- Comparison with State-of-the-Art
- Conclusion

Signature Scheme	Bit Security	Sign. Size [Byte]	Sign Cycles	Verify Cycles	Comp. Assumption
GLP* Güneysu, Lyubashevsky, Pöppelmann	75-80	1 186	570 000	46 000	DCK
BLISS* Ducas, Durmus, Lepoint, Lyubashevsky	128	1 559	351 000	102 000	R-SIS, NTRU

^{*} Sizes of uncompressed elements from the implementation given

LEARNING WITH ERRORS PROBLEM (LWE)

LEARNING WITH ERRORS PROBLEM (LWE)

LWE

RING-LEARNING WITH ERRORS PROBLEM (R-LWE)

R-LWE

$$a \cdot s + e = b \mod q$$

$$\mathbf{q} \overset{\$}{\longleftarrow} \mathbb{Z}_{\mathbf{q}} [\mathbf{x}]/(\mathbf{x}^n + 1)$$

$$s, e \leftarrow D_{\sigma}$$

RING-LEARNING WITH ERRORS PROBLEM (R-LWE)

R-LWE

DCK

$$a \cdot s + e = b \mod q$$

$$\mathbf{q} \overset{\$}{\longleftarrow} \mathbb{Z}_{\mathbf{q}} [\mathbf{x}]/(\mathbf{x}^n + 1)$$

$$s, e \leftarrow D_{\sigma}$$

$$a \cdot s + e = b \mod q$$

$$\mathbf{q} \overset{\$}{\longleftarrow} \mathbb{Z}_{\mathbf{q}} [\mathbf{x}]/(\mathbf{x}^{\mathbf{n}} + 1)$$

RING-LEARNING WITH ERRORS PROBLEM (R-LWE)

R-LWE

 $a \cdot s + e = b \mod q$

$$a \stackrel{\$}{\longleftarrow} \mathbb{Z}_q[x]/(x^n+1)$$

$$s, e \leftarrow D_{\sigma}$$

DCK

$$a \cdot s + e = b \mod q$$

$$\mathbf{q} \overset{\$}{\longleftarrow} \mathbb{Z}_{\mathbf{q}}[\mathbf{x}]/(\mathbf{x}^n+1)$$

$$s_i$$
, e_i $\leftarrow [-1,0,1]$

Signature Scheme	Bit Security	Sign. Size [Byte]	Sign Cycles	Verify Cycles	Comp. Assumption
GLP* Güneysu, Lyubashevsky, Pöppelmann	75-80	1 186	570 000	46 000	DCK
BLISS* Ducas, Durmus, Lepoint, Lyubashevsky	128	1 559	351 000	102 000	R-SIS, NTRU

^{*} Sizes of uncompressed elements from the implementation given

- Good performance
- Provable Secure

- Good performance
- Provable Secure
- Provably Secure Instantiation

- Good performance
- Provable Secure
- Provably Secure Instantiation

Signature Scheme	Bit Security	Sign. Size [Byte]	Sign Cycles	Verify Cycles	Comp. Assumption	Provably Secure Instantiation
GLP* Güneysu, Lyubashevsky, Pöppelmann	75-80	1 186	570 000	46 000	DCK	no
BLISS* Ducas, Durmus, Lepoint, Lyubashevsky	128	1 559	351 000	102 000	R-SIS, NTRU	no

^{*} Sizes of uncompressed elements from the implementation given

SECURITY REDUCTION

Signature Scheme
S

Forgery in time t_A with success prob. ϵ_A

Adversary

A

SECURITY REDUCTION

HARDNESS AND SECURITY

Bit-security:
$$\frac{t_A}{\epsilon_A}$$

Bit-hardness: $\frac{t_R}{\epsilon_R}$

Example:

- $t_R \approx t_A$
- $\varepsilon_R \approx \varepsilon_A$

Bit-security: $\frac{t_A}{\epsilon_A}$

Bit-hardness: $\frac{t_R}{\epsilon_R}$

HARDNESS AND SECURITY - EXAMPLE

Example:

- $t_R \approx t_A$
- $\varepsilon_R \approx \varepsilon_A$
 - → P bit-hardness: 100 bit
 - **S** bit-security: ≈ 100 bit

HARDNESS AND SECURITY - EXAMPLE

Example:

- $t_R \approx t_A$
- $\varepsilon_{\rm R} \approx \varepsilon_{\rm A}$
 - → **P** bit-hardness: 100 bit

S bit-security: ≈ 100 bit

- $t_R \approx t_A$
- $\varepsilon_R \approx \varepsilon_A^2$

HARDNESS AND SECURITY - EXAMPLE

Example:

- $t_R \approx t_A$
- $\varepsilon_R \approx \varepsilon_A$
 - → **P** bit-hardness: 100 bit
 - **S** bit-security: ≈ 100 bit
- $t_R \approx t_A$
- $\varepsilon_{\rm R} \approx \varepsilon_{\rm A}^2$
 - → P bit-hardness: 100 bit
 - **S** bit-security: $? \ge 50$ bit

To choose instantiation of P s. th. security of S gives desired security level, e.g., 100 bit

To choose instantiation of **P** s. th. security of **S** gives desired security level, e.g., 100 bit

Example:

- $t_R = t_A$
- $\varepsilon_R = \varepsilon_A$
- $t_R = t_A$ $\epsilon_R = \epsilon_A^2$

To choose instantiation of **P** s. th. security of **S** gives desired security level, e.g., 100 bit

Example:

- $t_R = t_A$
- $\varepsilon_R = \varepsilon_A$
- t_R = t_A
 ε_R = ε_A²

bit-security of S = bit-hardness of P = 100 bit

To choose instantiation of **P** s. th. security of **S** gives desired security level, e.g., 100 bit

Example:

•
$$t_R = t_A$$

•
$$\varepsilon_R = \varepsilon_A$$

•
$$t_R = t_A$$

•
$$t_R = t_A$$

• $\epsilon_R = \epsilon_A^2$

bit-security of
$$S = bit-hardness$$
 of $P = 100$ bit

bit-security of
$$S \ge \frac{1}{2}$$
 bit-hardness of P

To choose instantiation of **P** s. th. security of **S** gives desired security level, e.g., 100 bit

Example:

•
$$t_R = t_A$$

•
$$\varepsilon_R = \varepsilon_A$$

•
$$t_R = t_A$$

•
$$t_R = t_A$$

• $\epsilon_R = \epsilon_A^2$

bit-security of
$$S = bit-hardness$$
 of $P = 100$ bit

bit-security of $S \geq \frac{1}{2}$ bit-hardness of **P**

- choose bit-hardness of P = 200 bit
- to get bit-security of $S \ge 100$ bit

- Good performance
- Provable Secure
- Provably Secure Instantiation

Signature Scheme	Bit Security	Sign. Size [Byte]	Sign Cycles	Verify Cycles	Comp. Assumption	Provably Secure Instantiation
GLP* Güneysu, Lyubashevsky, Pöppelmann	75-80	1 186	570 000	46 000	DCK	no
BLISS* Ducas, Durmus, Lepoint, Lyubashevsky	128	1 559	351 000	102 000	R-SIS, NTRU	no

^{*} Sizes of uncompressed elements from the implementation given

- Construction by Bai and Galbraith
 - Standard lattices
 - LWE, SIS

- Construction by Bai and Galbraith
 - Standard lattices
 - LWE, SIS
- Improvements by Dagdelen, El Bansarkani, Göpfert, Güneysu, Oder,
 Pöppelmann, Sánchez, Schwabe
 - Parameters for high-speed implementation

- Construction by Bai and Galbraith
 - Standard lattices
 - LWE, SIS
- Improvements by Dagdelen, El Bansarkani, Göpfert, Güneysu, Oder,
 Pöppelmann, Sánchez, Schwabe
 - Parameters for high-speed implementation
- TESLA by Alkim, Bindel, Buchmann, Dagdelen, Schwabe
 - Standard lattices
 - Tight reduction from LWE
 - Provably Secure Instantiation

- Ideal lattices
- R-LWE
- Tight security reduction
 - Provably Secure Instantiation

$$pk = (a_1, b_1, a_2, b_2)$$

 $sk = (s, e_1, e_2)$

 $pk = (a_1, b_1, a_2, b_2)$ $sk = (s, e_1, e_2)$

Sign

Input: sk, μ

Output: $\sigma = (z, c)$

1. $y \leftarrow R_B$

$$pk = (a_1, b_1, a_2, b_2)$$

 $sk = (s, e_1, e_2)$

Sign

Input: sk, μ

Output: $\sigma = (z, c)$

1.
$$y \leftarrow R_B$$

2.
$$c \leftarrow H([a_1y], [a_2y], \mu)$$

3.
$$z = y + sc$$

$$pk = (a_1, b_1, a_2, b_2)$$

 $sk = (s, e_1, e_2)$

Sign

Input: sk, μ

Output: $\sigma = (z, c)$

1. $y \leftarrow R_B$

2. $c \leftarrow H([a_1y], [a_2y], \mu)$

3. z = y + sc

4. if $\|a_i y - e_i c\|_2$ small $\|x\|_{\infty}$ small: return (x, c)

5. else: restart

$$pk = (a_1, b_1, a_2, b_2)$$

 $sk = (s, e_1, e_2)$

Sign

Input: sk, μ

Output: $\sigma = (z, c)$

1. $y \leftarrow R_B$

2. $c \leftarrow H([a_1y], [a_2y], \mu)$

3. z = y + sc

4. if $||a_iy - e_ic||_2$ small $||x||_\infty$ small:

Correctness

Security

DESCRIPTION OF RING-TESLA

$$pk = (a_1, b_1, a_2, b_2)$$

 $sk = (s, e_1, e_2)$

Sign

Input: sk, μ

Output: $\sigma = (z, c)$

1. $y \leftarrow R_B$

2. $c \leftarrow H([a_1y], [a_2y], \mu)$

3. z = y + sc

4. if $\|a_i y - e_i c\|_2$ small $\|x\|_{\infty}$ small: return (x,c)

5. else: restart

Verify

Input: pk, μ , σ

Output: $\{0,1\}$

DESCRIPTION OF RING-TESLA

$$pk = (a_1, b_1, a_2, b_2)$$

 $sk = (s, e_1, e_2)$

Sign

Input: sk, µ

Output: $\sigma = (z, c)$

1. $y \leftarrow R_B$

2. $c \leftarrow H([a_1y], [a_2y], \mu)$

3. z = y + sc

4. if $\|a_i y - e_i c\|_2$ small $\|x\|_{\infty}$ small: return (x, c)

5. else: restart

Verify

Input: pk, μ , σ

Output: $\{0,1\}$

2. return 0

DESCRIPTION OF RING-TESLA

$$pk = (a_1, b_1, a_2, b_2)$$

 $sk = (s, e_1, e_2)$

Sign

Input: sk, μ

Output: $\sigma = (z, c)$

 $y \leftarrow R_B$

2. $c \leftarrow H([a_1y], [a_2y], \mu)$

3. z = y + sc

4. if $\|a_i y - e_i c\|_2$ small $\|x\|_{\infty}$ small: return (x, c)

5. else: restart

Verify

Input: pk, μ , σ

Output: $\{0,1\}$

1. if $c = H([a_1z - b_1c], [a_2z - b_2c], \mu)$ $\wedge ||z||_{\infty}$ small:

return 1

2. return 0

UNIFORM VS. GAUSSIAN SAMPLING

Uniform Sampling

- timing-constant implementation
- large signature size

Gaussian Sampling

- no (efficient) timing-constant implementation
- small signature size

PARAMETER SELECTION (GENERAL)

General case:

1. Choose security level

PARAMETER SELECTION (GENERAL)

General case:

- 1. Choose security level
- 2. Select problem instance with assumption Hardness = Security

$$\frac{t_A}{\epsilon_A} \sim \frac{t_R}{\epsilon_R}$$

PARAMETER SELECTION (GENERAL)

General case:

- 1. Choose security level
- 2. Select problem instance with assumption Hardness = Security
- 3. Select system parameters

$$\frac{t_A}{\epsilon_A} \sim \frac{t_R}{\epsilon_R}$$

PARAMETER SELECTION (OUR CASE)

Our case:

1. Security level: 128 bit

PARAMETER SELECTION (OUR CASE)

Our case:

- 1. Security level: 128 bit
- 2. Tight security reduction
- → Hardness = Security + 2 bit
- \rightarrow Choose 130-bit ring-LWE instance: σ , q, n
 - 3. Compute system parameters

$$\frac{t_{A}}{\varepsilon_{A}} \sim \frac{t_{R}}{\varepsilon_{R}}$$

SYSTEM PARAMETERS RING-TESLA

$$pk = (a_1, b_1, a_2, b_2)$$

 $sk = (s, e_1, e_2)$

Sign

Input: sk, μ

Output: $\sigma = (z, c)$

```
1. y \leftarrow R_B
```

2. $c \leftarrow H([a_1y], [a_2y], \mu)$

3.
$$z = y + sc$$

4. if $\|a_i y - e_i c\|_2$ small $\|z\|_\infty$ small: return (z, c)

5. else: restart

Verify

Input: pk, μ , σ

Output: $\{0,1\}$

2. return 0

COMPARISON (SPACE)

Signature Scheme	Bit Security	Sign. Size [Byte]	pk Size [byte]	sk Size [byte]	Provably Sec. Instantiation
GLP* Güneysu, Lyubashevsky, Pöppelmann	75-80	1 186	1 536	256	no
ring-TESLA* (this work)	80	1 728	3 072	1 728	yes
BLISS* Ducas, Durmus, Lepoint, Lyubashevsky	128	1 559	7 168	2 048	no
ring-TESLA* (this work)	128	1 568	3 328	1 920	yes

^{*} Sizes of uncompressed elements from the implementation given

COMPARISON (RUNTIME)

Signature Scheme	Bit Security	Sign Cycles	Verify Cycles	Provably Sec. Instantiation
GLP Güneysu, Lyubashevsky, Pöppelmann	75-80	570 000	46 000	no
ring-TESLA (this work)	80	371 000	94 000	yes
BLISS Ducas, Durmus, Lepoint, Lyubashevsky	128	351 000	102 000	no
ring-TESLA (this work)	128	511 000	168 000	yes

• ideal-lattice based signature scheme from R-LWE

- ideal-lattice based signature scheme from R-LWE
- provably secure instantiations

- ideal-lattice based signature scheme from R-LWE
- provably secure instantiations
- sizes and runtimes similar to GLP and BLISS

- ideal-lattice based signature scheme from R-LWE
- provably secure instantiations
- sizes and runtimes similar to GLP and BLISS
- no Gaussian sampling during sign algorithm

