Some new combinatorial identities related to representations of affine Lie algebras

Mirko Primc University of Zagreb

joint work with Tomislav Šikić

Discretaly: A Workshop in Discrete Mathematics Rome, Italy, February 1–2, 2018

Funding

This work was supported by the QuantiXLie Centre of Excellence, a project Co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).

Partially supported by the *Croatian Science Foundation* under the project 2634.

Notation for affine Kac-Moody Lie algebras

- ► The classification of complex simple Lie algebras: A_{ℓ} , B_{ℓ} , C_{ℓ} , D_{ℓ} , E_{6} , E_{7} , E_{8} , F_{4} , G_{2} .
- ▶ The classification of irreducible finite dimensional representations: $L(k_1, ..., k_\ell)$, $k_1, ..., k_\ell \in \mathbb{N}_0$.
- ► The classification of affine Kac-Moody Lie algebras: $A_1^{(1)}, A_\ell^{(1)}, B_\ell^{(1)}, C_\ell^{(1)}, D_\ell^{(1)}, \dots; A_2^{(2)}, A_{2\ell}^{(2)}, A_{2\ell-1}^{(2)}, D_{\ell+1}^{(2)}, E_6^{(2)}; D_4^{(3)}.$
- ▶ The standard representations of affine Lie algebras: $L(k_0, k_1, ..., k_\ell)$, $k_0, k_1, ..., k_\ell \in \mathbb{N}_0$, level k.
- rank ℓ is the "size" of Lie algebra, the "smallest" are $A_1^{(1)}, A_2^{(2)}$ level k s the "size" of standard module $L(k_0, k_1, \ldots, k_\ell)$, the "smallest" are level one $L(1, 0, \ldots, 0)$.

Rogers-Ramanujan type combinatorial identities

► [Rogers-Ramanujan 1894, Schur 1917]

$$\prod_{m\geq 0} \frac{1}{(1-q^{5m+1})(1-q^{5m+4})} = \sum_{m\geq 0} \frac{q^{m^2}}{(1-q)(1-q^2)\cdots(1-q^m)}$$

- A partition of positive integer n $n = \sum_{j \ge 1} f_j \cdot j = 1 + \dots + 1 + 2 + \dots + 2 + \dots$ $f_1 \text{ times}$
- ▶ **Combinatorially:** The number of partitions of *n* such that

$$f_j + f_{j+1} \le 1$$

equals the number of partitions of n into parts $\not\equiv 0, \pm 2$ mod 5.

▶ [Gordon 1961] The number of partitions of *n* such that

$$f_j + f_{j+1} \le k$$

equals the number of partitions of n into parts $\not\equiv 0, \pm (k+1)$ mod (2k+3).

Lepowsky-Wilson's approach

- [Andrews 1967, Bressoud 1979, 1980] generalizations of Rogers-Ramanujan identities for all moduli.
- ► [Lepowsky-Milne 1978] The product side in Gordon, Andrews and Bressoud identities is given by Weyl-Kac character formula for standard $A_1^{(1)}$ -modules.
- ▶ [Lepowsky-Wilson 1981] a Lie-theoretic interpretation of difference conditions in Gordon, Andrews and Bressoud identities is given by the vertex operator construction of combinatorial bases of standard $A_1^{(1)}$ -modules.
- ▶ [Mandia 1987] $B_{\ell}^{(1)}$, $F_4^{(1)}$, $G_2^{(1)}$ level 1.
- [Misra 1991] $A_{\ell}^{(1)}$ level 2.
- ► [Capparelli, Andrews, 1992] Two new combinatorial identities for $A_2^{(2)}$ at level 3.

Lepowsky-Wilson's approach

- ▶ [**Tamba 1994**] $D_{\ell+1}^{(2)}$ level 2.
- ▶ [Bos-Misra 1994] $A_7^{(2)}$ level 2.
- ▶ [Meurman-P 1999] $A_1^{(1)}$ all levels.
- ► [Meurman-P 2001] $A_2^{(1)}$ level 1.
- ▶ **[Siladić 2002]** $A_2^{(2)}$ and $B_2^{(1)}$ level 1.
- ► [Kanade-Russell 2014] $D_4^{(3)}$ level 3.
- ▶ [Nandi 2014] $A_2^{(2)}$ level 4.
- ▶ [Šikić-P 2016] $C_{\ell}^{(1)}$ level 1; conjecture for all levels.
- [Kanade 2017] $A_5^{(2)}$ level 2.
- ► [Kanade-Russell 2017] $A_9^{(2)}$ level 2.

Difference conditions in Gordon's identities

The difference condition

$$f_j + f_{j+1} \le k$$
 for all $j \in \mathbb{N}$

in Gordon's identity can be written as

$$\sum_{a\in\mathcal{Z}} f_a \le k \quad \text{for all downward lines} \quad \mathcal{Z}$$

in the array of natural numbers

Arrays $A_{1,2}$ and $A_{1,1}$

 $\mathcal{A}_{1,2}$ is the array¹ of natural numbers

 $\mathcal{A}_{1,1}$ is the array of natural numbers

¹it is "something like" the (1,2)-specialized weighted crystal of negative roots for $A_1^{(1)}$

Capparelli's identity

[Capparelli 1993] The number of partitions of $n = \sum_{a \in A} f_a \cdot a$ such that

$$\label{eq:f2} \textit{f}_2 = 0 \quad \text{and} \quad \sum_{\textit{a} \in \mathcal{Z}} \textit{f}_{\textit{a}} \leq 1 \quad \text{for all downward paths} \quad \mathcal{Z},$$

(i.e. paths ${\mathcal Z}$ going downwards, possibly in zigzag maner) in the array of natural numbers ${\mathcal A}$

equals the number of partitions of n into distinct parts $\not\equiv \pm 2$ mod 6.

A generalization of Capparelli's identities

[Capparelli k = 1 1993, Meurman-P 1999]² Let $k_0, k_1 \in \mathbb{N}_0$, $k = k_0 + k_1$.

The number of partitions of $n = \sum_{a \in A} f_a \cdot a$ such that

$$f_1 \leq k_0, \ f_2 \leq k_1$$
 and $\sum_{a \in \mathcal{Z}} f_a \leq k$ for all downward paths \mathcal{Z}

in the array of natural numbers A

equals the number of partitions of n given by the coefficient of q^n in

$$\prod_{\substack{r \equiv 0, \pm (k_0+1) \mod 2(k+2) \\ s \equiv \pm 2(k_1+1) \mod 4(k+2)}} (1-q^r)(1-q^s) \Big/ \prod_{j=1}^{\infty} (1-q^j).$$

²[Feigin-Kedem-Loktev-Miwa-Mukhin 2001] ←□→←♂→←毫→←毫→ 毫→ ● ◆ ○ ○

Some combinatorial identities for $A_1^{(1)}$

[Meurman-P 1999] Let $k_0, k_1 \in \mathbb{N}_0, k = k_0 + k_1$.

The number of colored partitions of $n = \sum_{a \in A} f_a \cdot a$ such that

$$\sum_{\mathbf{a}\in\mathcal{Z}}f_{\mathbf{a}}\leq k\quad\text{for all downward paths}\quad \mathcal{Z},\quad f_{\mathbf{1}}\leq k_{\mathbf{0}},\ f_{\mathbf{1}}\leq k_{\mathbf{1}},$$

in the array of natural numbers \mathcal{A}

equals the number of partitions of n given by the product

$$\prod_{\substack{r \equiv 0, k_0 + 1 \mod (k+2) \\ s \equiv k_1 + 1 \mod (k+2)}} (1 - q^r)(1 - q^s) \Big/ \prod_{\substack{i \text{ odd, } j \in \mathbb{N} \\ mod (k+2)}} (1 - q^i)(1 - q^j).$$

New combinatorial identities for $C_\ell^{(1)}$ -modules

[Šikić-P 2016] Let $\ell \geq 2$.

The number of colored partitions of $n = \sum_{a \in A_{\ell}} f_a \cdot a$ such that

 $\sum_{a \in \mathcal{Z}} f_a \leq 1$ for all downward paths \mathcal{Z} in the array \mathcal{A}_ℓ

(on the figure $\ell=2$) equals the number of partitions of n into parts $\not\equiv 0, \pm 2 \mod (2\ell+2)$.

About the proof

The proof follows [Meurman-P 1999] for $A_1^{(1)} = C_1^{(1)}$:

Instead of constructing a basis of $L(\Lambda_0) \cong U(\widehat{\mathfrak{g}}_{<0})/J$, we construct a Groebner basis of the maximal submodule J. We need

- generators $\{r\}$ of J,
- relations $x_1r_1 \sim x_2r_2$,
- a tally of generators and a tally of relations needed.

A basis of $\ \widehat{\mathfrak{g}}_{<0}={\mathfrak{g}}\otimes t^{-1}+{\mathfrak{g}}\otimes t^{-2}+\dots$ is parametrized by

and the generators r of J are parametrized by frequences $(f_a \mid a \in \mathcal{Z})$ such that $\sum_{a \in \mathcal{Z}} f_a = 2$.

The congruence arrays

The congruence array $\mathcal{C}_{s_0,s_1,s_2}$ for $C_2^{(1)}$ is the array of natural numbers starting on the left with s_0,s_1,s_2

and filled out to the right in such a way that adjacent diagonals change by adding a number s_i for some i=0,1,2. "Red places" ochange by the rule

"along"
$$\circ \xrightarrow{s_1} \circ \xrightarrow{s_2} \circ \xrightarrow{s_2} \circ \xrightarrow{s_1} \circ ,$$
 "across" $\circ \xrightarrow{s_0} \circ \xrightarrow{s_0} \circ ,$

and the other places on diagonals follow the same rule.

Similarly we define the congruence array C_{s_0,s_1,\dots,s_ℓ} for $C_\ell^{(1)}$.

Example: the congruence array $C_{3,1,1}$

Diagonals change by the rule:

$$\circ \xrightarrow{1} \circ \xrightarrow{1} \circ \xrightarrow{1} \circ \xrightarrow{1} \circ \qquad \circ \xrightarrow{3} \circ \xrightarrow{3} \circ$$

 $\mathcal{C}_{3,1,1}$ is periodic (up to flipping upside down every second triangle) mod $2(k+\ell+1) = \mod(3+7) = \mod 10$, so it is sufficient to fill out only the upper-left triangular part and get that all the elements in $\mathcal{C}_{3,1,1}$ are numbers

$$0, 0, \pm 1, \pm 1, \pm 2, \pm 3, 3, 4, 5, 6, 7 \mod 10.$$

Lepowsky's product formula

Lepowsky's product formula for the principally specialized character of a standard $C_\ell^{(1)}$ -module is

$$ch_q L(k_0, k_1, \dots, k_\ell) = \prod_{a \in \mathcal{C}_{k_0+1, k_1+1, \dots, k_\ell+1}} (1-q^a) / \prod_{r \in \mathcal{C}_{1,1,\dots,1}} (1-q^r)$$

Roughly speaking, Lepowsky's product formula is a generating function for number of colored partitions on array $\mathcal{C}_{1,\dots,1}$ satisfying "congruence condition" that no part is in $\mathcal{C}_{k_0+1,\dots,k_\ell+1}$

Our example gives the principally specialized character $ch_qL(2,0,0)$

$$\prod_{a\equiv 0,0,\pm 1,\pm 1,\pm 2,\pm 3,3,4,5,6,7 \mod 10} (1-q^a) \Big/ \prod_{i \text{ odd, } j\in \mathbb{N}} (1-q^i) (1-q^j)^2.$$

Conjectured identities $C_2^{(1)}$ -modules

Conjecture [Šikić-P 2016] Let $k \ge 2$.

The number of colored partitions of $n = \sum_{a \in A_2} f_a \cdot a$ such that

$$\sum_{a \in \mathcal{I}} f_a \leq k \quad \text{for all downward paths } \mathcal{Z} \text{ in the array } \mathcal{A}_2:$$

equals the number of colored partitions of n given by the coefficient of q^n in

$$\prod_{\substack{i \text{ odd} \\ r \not\equiv 0, \pm 1, \pm 2, \pm 3 \mod (2k+6) \\ s \not\equiv 0, \pm 1, \pm (k+1), \pm (k+2), k+3 \mod (2k+6)}} (1-q^i)^{-1} (1-q^r)^{-1} (1-q^s)^{-1}$$

A program for counting colored partitions

We can construct a partition $n = \sum_{a \in \mathcal{A}_2} f_a a$ satisfying difference condition by adding rows of frequences in steps: assume we completed a list of frequences f_a in the first two rows and in the top two places in the third row.

Then choose a frequency f_b so that $m_b = f_b + max\{m_{\bullet}, m_{\bullet}\} \le k$,

$$m_{ullet} = \max\{\sum_{a \in \mathcal{Z}} f_a \mid \mathcal{Z} \text{ ends in } ullet\}, m_{ullet} = \max\{\sum_{a \in \mathcal{Z}} f_a \mid \mathcal{Z} \text{ ends in } ullet\}$$

Thanks to Shashank and Andrej

Tomislav and I thank Shashank Kanade for a program in Maple for counting the number of colored partitions for $C_2^{(1)}$ and we thank Andrej Primc for programs³ in Python for counting colored partitions for $C_\ell^{(1)}$ - see: https://github.com/aprimc/discretaly

It seems that there is no flaw in calculations and that conjectured identities for $C_2^{(1)}$ -modules L(k,0,0) agree for all numbers ≤ 30 for levels $k=2,\ldots,10$.

We also checked that for $C_3^{(1)}$ -modules L(2,0,0,0) and L(3,0,0,0) the number of partitions of $n \leq 30$ satisfying difference conditions equals the number of partitions of n satisfying congruence conditions.

³The program part2.py counts for $n \le N$ the number of all colored partitions of n corresponding to $C_l^{(1)}$ -module $L(k,0,\ldots,0)$. partition3.py counts for numbers in range (1, N) partitions in three colours satisfying congruence conditions.

Can we extend the $C_1^{(1)}$ -identities to $C_\ell^{(1)}$?

Is the number of colored partitions⁴ of $n = \sum_{a \in \mathcal{A}} f_a \cdot a$ such that

 $\sum_{a\in\mathcal{Z}}f_a\leq k$ for all downward paths \mathcal{Z} in the array \mathcal{A} and

$$\sum_{a \in \mathcal{Z}} f_a \le k_0 \text{ for all } \mathcal{Z} \subset \Delta, \quad \sum_{a \in \mathcal{Z}} f_a \le k_\ell \text{ for all } \mathcal{Z} \subset \Delta,$$

$$1 \quad 3 \quad 5 \quad 7 \quad 9$$

$$2 \quad 4 \quad 6 \quad 8 \quad 10$$

$$3 \quad 5 \quad 7 \quad 9 \quad \dots$$

$$2 \quad 4 \quad 6 \quad 8 \quad 10$$

$$1 \quad 3 \quad 5 \quad 7 \quad 9$$

equal to the number of colored partitions of n given by the coefficient of q^n in the principally specialized character of $L(k_0, 0, \ldots, 0, k_\ell)$, $k = k_0 + k_\ell$?

⁴part8.py counts the number of this kind of colored partitions of n. = >

For the following $C_{\ell}^{(1)}$ -modules the number of partitions of $n \leq 40$ satisfying difference conditions equals the number of partitions of n satisfying congruence conditions.

- $L(1,0,1) \sim \prod_{r\equiv 1,1,3,4,4,6,6,7,9,9 \mod 10}$
- ▶ $L(2,0,1) \sim \prod_{r \text{ odd}; r \equiv 1,2,4,5,6,7,8,10,11 \mod 12}$
- $L(2,0,2) \sim \prod_{r\equiv 1,1,2,2,3,5,5,5,6,6,8,8,9,9,9,11,12,12,13,13 \mod 14}$
- $L(3,0,1) \sim \prod_{r \text{ odd; } r \equiv 1,2,3,4,6,6,7,8,8,10,11,12,13 \mod 14}$
- $L(3,0,2) \sim \prod_{r \text{ odd; } r \equiv 1,2,2,3,5,6,6,7,8,9,10,10,11,13,14,14,15 \mod 16}$
- ► $L(1,0,0,1) \sim \prod_{r \text{ odd}; r \equiv 1,3,4,5,7,9,11 \mod 12}$
- $L(2,0,0,1) \sim \prod_{r \text{ odd; } r \equiv 1,2,3,4,5,6,6,8,8,9,10,11,12,13 \mod 14}$
- $L(1,0,0,0,1) \sim \prod_{r\equiv 1,1,3,3,4,4,5,6,6,8,8,9,10,10,11,11,13,13 \mod 14}$

▶ Principally specialized $ch_q L(2,0,0,2)$ is the product

$$\prod_{\substack{r \text{ odd; } r \equiv 1,2,2,3,4,5,6,6,6,7,9,10,10,11,12,13,14,14,15 \mod 16}} (1-q^r)^{-1}$$

► The number of the corresponding partitions for $1 \le n \le 10$ is 2, 5, 10, 19, 34, 60, 100, 163, 260, 406, whereas the difference conditions give 2, 5, 10, 19, 34, 61, 102, 168, 270, 426.

1		3		5		7		9		
	2		4		6		8		10	
		3		5		7		9		
			4		6		8		10	
		3		5		7		9		
	2		4		6		8		10	
1		3		5		7		9		

Thank you!