《集成触发器》练习题及答案

[5.1] 画出图 P5-1 所示由与非门组成的基本 RS 触发器输出端 Q 、 \overline{Q} 的电压波形,输入端 \overline{S} 、 \overline{R} 的电压波形如图中所示。

图 P5-1

[解] 见图 A5-1

图 A5-1

[5.2] 画出图 P5-2 由或非门组成的基本 R-S 触发器输出端 Q、 \overline{Q} 的电压波形,输出入端 $S_{\rm D}$, $R_{\rm D}$ 的电压波形如图中所示。

[5.3] 在图 P5-3 电路中,若 CP、S、R 的电压波形如图中所示,试画出 Q 和 \overline{Q} 端与之对应的电压波形。假定触发器的初始状态为 Q=0。

[解] 见图 A5-3

[5.4] 己知维持阻塞结构 D 触发器输入端的电压波形如图 P5-4 所示,试画出 Q、 \overline{Q} 端对应的电压波形。

[5.5] 已知主从结构的边沿 JK 触发器逻辑图和各输入端的电压波形如图 5-5 所示,试画出 Q、 \bar{Q} 端对应的电压波形。

[5.6] 设图 P5-6 中各触发器的初始状态皆为 Q=0,试画出在 CP 信号连续作用下各触发器输出端的电压波形。

[解] 见图 A5-6

图 A5-6

[5.7] 试写出图 P5-7(a)中各电路的次态函数(即 Q_1^{n+1} 、 Q_2^{n+1} 、 Q_3^{n+1} 、 Q_4^{n+1})与 现态和输入变量之间的函数式,并画出在图 P5-7(b)给定信号的作用下 Q_1 、 Q_2 、、 Q_3 、 Q_4 的电压波形。假定各触发器的初始状态均为 Q=0 。

[解]

电路驱动方程为:

$$J = \overline{AQ_1^n + A\overline{Q}_1^n} = \overline{A}$$
 , $K = \overline{BQ_1^n + B\overline{Q}_1^n} = \overline{B}$; $S = AB$, $R = \overline{A + B}$; $T = A \odot B$; $D = A \oplus B$ 代入特性方程,得状态方程: $Q_1^{n+1} = J\overline{Q}_1^n + \overline{K}Q_1^n = \overline{A}\,\overline{Q}_1^n + BQ_1^n$ $Q_2^{n+1} = S + \overline{R}Q_2^n = AB + (A + B)Q_2^n$ $Q_3^{n+1} = T \oplus Q_3^n = \overline{A \oplus B} \oplus Q_3^n$ $Q_4^{n+1} = D = A \oplus B$ 根据状态方程画波形,见图 A5-7。

图 A5-7

[5.8] 用上升沿触发器的边沿 D 触发器分别构成 T 触发器和 T 触发器。

[5.9] 图 P5-8 所示是用 CMOS 边沿触发器电路。试画出在一系列 CP 脉冲作用下, Q_1 、 Q_2 对应的输出电压波形。设触发器的初始状态皆为 Q=0。

图 A5-9

[5.10] 试画出图 P5-9 电路输出 Y、Z 的电压波形,输入信号 A 和时钟 CP 的电压波形 如图中所示,设触发器的初始状态均为 Q=0。

$$Y = \overline{\overline{Q_1}Q_2} = Q_1 + \overline{Q}_2$$
 $Z = \overline{Q_1}\overline{Q}_2 = \overline{Q}_1 + Q_2$
 $Q_1^{n+1} = A$; $Q_2^{n+1} = \overline{Q}_1^n$
波形见图 A5-10。

[5.11] 试画出图 P5-10 电路在一系列 CP 信号作用下 Q_1 、 Q_2 、 Q_3 端输出电压的波形,触发器为边沿触发结构,初始状态为 Q=0。

[解]

$$Q_1^{n+1} = \overline{Q_1}^n (CP_1 = CP)$$
 $Q_2^{n+1} = \overline{Q_2}^n (CP_2 = \overline{Q_1})$
 $Q_3^{n+1} = Q_2^n \oplus Q_3^n (CP_3 = Q_1)$
波形见图 A5-11。

[5.12] 试画出图 P5-12 电路在图中所示 CP、 \overline{R}_D 信号作用下 Q_1 、 Q_2 、 Q_3 的输出电压波形,并说明 Q_1 、 Q_2 、 Q_3 输出信号的频率与 CP 信号频率之间的关系。

[解]

图 A5-12

若 CP 的频率为 f_0 ,则 Q_1 、 Q_2 、 Q_3 的频率分别为 $\frac{1}{2}f_0$ 、 $\frac{1}{4}f_0$ 、 $\frac{1}{8}f_0$ 。

[5.13] 在图 P5-13 电路中,已知输入信号 $^{\nu}$ _I 的电压波形如图所示,试画出与之对应的输出电压 $^{\nu}$ _O 的波形。触发器为维持阻塞结构,初始状态为 Q=0。(提示:应考虑触发器和异或门的传输延迟时间。)

[5.14] 若将同步 RS 触发器的 Q 与 R、 \overline{Q} 与 S 相连如图 P5-14 所示,试画出在 CP 信号作用下 Q 和 \overline{Q} 端的电压波形。己知 CP 信号的宽度 $t_{\rm w}$ = 4 $t_{\rm Pd}$ 。 $t_{\rm Pd}$ 为门电路的平均传输延迟时间,假定 $t_{\rm Pd}$ \approx $t_{\rm PHL}$ \approx $t_{\rm PLH}$,设触发器的初始状态为 Q=0。

