REACCIÓN DE OZONÓLISIS

Maria Fernanda Gaviria, Juan Barbosa †

Departamento de Química. † Departamento de Física. Universidad de los Andes, Bogotá, Colombia.

ABSTRACT:

La preparación de adipaldehído fue realizada a partir de ciclohexeno, en presencia de ozono y trifenilfosfina. El tiempo de reacción fue inferior a los 10 minutos, el producto fue purificado en columna obteniendose un porcentaje de recuperación de ___% y un rendimiento de ___%. El producto fue caracterizado usando técnicas espectroscópicas como ¹HRMN y ¹³CRMN.

■ Introducción

La ozonólisis represanta una importante reacción oxidativa en la química orgánica. Como todas las reacciones de oxidación tienen una especial importancia en la química, ya que permiten convertir grupos funcionales y preparar compuestos complejos a partir de reactivos simples. Si bien la definición química de oxidación involucra una transferencia de electrones en la cual la molécula o átomo oxidado pierde electrones, en la química orgánica la oxidación muchas veces implica el aumento de enlaces carbono-oxígeno en una molécula, aunque no es la única forma de oxidación ¹.

La mayoría de las reacciones de los alquenos, transforman el enlace π en un enlace σ aprovechando la riqueza electrónica de los enlaces dobles. Los alquenos al igual que otros grupos funcionales presentan principalmente tres tipos de reacciones: adición, eliminación y sustitución, sin embargo también existe la posibilidad de reacciones de ruptura: una reacción donde el enlace π se rompe y el alqueno se transforma en dos moléulas más pequeñas. La reacción de ozonólisis además de generar dos nuevos enlaces carbono-oxígeno, da lugar a la degradación de la molécula inicial, esto implíca que se clasifica como una reacción de oxidación y ruptura 2 3 .

Esquema 1. Reacción de ozonolisis².

La reacción de ozonólisis recibe su nombre debido a que la oxidación se lleva a cabo con ozono, el cual se adiciona sobre el doble enlace para formar un ozónido, seguido de la ruptura del alqueno³. El ozono es una molécula altamente reactiva, presenta 142 kJ/mol más de energía comparada con el oxígeno molecular, parte de su reactividad obdece a la densidad de carga positiva sobre el oxígeno central².

Figura 1. Densidades de carga en el ozono. De izquierda a derecha: -0.80*e*, 1.10*e*, -0.30*e*. Valores basados en el modelo de Hückel⁴.

■ RESULTADOS Y DISCUSIÓN

CONCLUSIONES

■ SECCIÓN EXPERIMENTAL

■ REFERENCIAS

- [1] Gilbert, J. C.; Martin, S. F. Experimental Organic Chemistry: A Miniscale and Microscale Approach; 2010; pp 537–540.
- [2] Wade, L. *Organic Chemistry*, eight ed.; Pearson: New York, 2015; pp 328–390.
- [3] Morrison, R.; Boyd, R. *Organic Chemistry*; Prentice-Hall: New York, 2002; pp 218–219.

[4] Perkin Elmer, PerkinElmer Informatics Databases. http://www.cambridgesoft.com/databases/login/?serviceid=128.

■ INFORMACIÓN SUPLEMENTARIA

Figura 2. ¹HRMN del producto purificado.

Figura 3. ¹³CRMN del producto purificado.