Proof-Based Math Readings Session: Topology

2023 Winter

Zeki Akyol*

Department of Economics Istanbul Technical University Click here for the most recent versions of the syllabuses

Version: 11 May 2024, 02:36 PM

Table of contents

0	Motivation	2
1	Prerequisites	2
2	Format	2
3	Resources 3.1 Main Book and Main Book's Playlist	$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$
4	Reading Schedule	3
5	Further Readings (Optional)	3

^{*}zekiakyol.com

0 Motivation

- Proof-Based Math Readings is a free and independent online reading group where we study mathematics required in economics master's/PhD programs using an intuitive approach.
- This session of the reading group is on Topology.

1 Prerequisites

- CGPA: 3.00/4.00.
- Proof and Real Analysis resources below are the prerequisites for this session.
- Please use the Application Form to join our reading group anytime.
- Applicants are informed about their application results within a week via email.

2 Format

- This session takes 12 weeks.
- We discuss the topics/exercises that we struggle with at Proof-Based Math Readings [Discord].
- We do not have face-to-face/online meetings due to the size of the group.
- Members are expected to read the chapters, and watch the chapter videos from the book's playlist.

3 Resources

3.1 Main Book and Main Book's Playlist

Topology (2nd Edition, 2014) by James Munkres is our main book for this session because it is well-written, well-structured, and has plenty of intuitive figures.

Bruno Zimmermann's playlist is our main playlist because his narrative is just great.

- Topology James Munkres (2nd Edition, 2014)
- Topology James Munkres (2nd Edition, 2014, Playlist by Bruno Zimmermann, Video 1-15)
- Topology James Munkres (2nd Edition, 2014, Solutions for Chapter 1-2 by Dan Whitman)
- Topology James Munkres (2nd Edition, 2014, Solutions for Chapter 1-2 by math.solverer)
- Topology James Munkres (2nd Edition, 2014, Solutions for Chapter 2-3 by positron0802)
- Topology James Munkres (2nd Edition, 2014, Solutions for Chapter 1-2-3-4 by dbFin)

3.2 Supplementary

3.2.1 Topology

We use Schaum's Outline of General Topology for exercises because it has solutions for all 391 exercises.

- \blacksquare Schaum's Outline of General Topology Seymour Lipschutz (2011) \to Beginner friendly
- Topology Without Tears Sidney A. Morris (2023) → Beginner friendly and open-access
- General Topology Bernard Badzioch (2020)
- Intuitive Topology Troy Kling (2021)
- ► Topology Marius Furter (2022)

3.2.2 Proof

- Book of Proof Richard Hammack (3.3 Edition, 2022)
- Book of Proof Richard Hammack (3.3 Edition, 2022, Playlist by Jeremy Teitelbaum)
- Book of Proof Richard Hammack (3.3 Edition, 2022, Playlist by Michael Penn)

3.2.3 Real Analysis

- Basic Analysis I: Introduction to Real Analysis Jiri Lebl (Version 6.0, 2023)
- Basic Analysis I: Introduction to Real Analysis Jiri Lebl (Version 6.0, 2023, Playlist by Casey Rodriguez)
- Introduction To Metric Spaces Paige Bright (2023)

Reading Schedule

• TM is the abbreviation of Topology - James Munkres (2nd Edition, 2014).

■ TM, Chapter 1: Set Theory and Logic

Week 01

- 1 Fundamental Concepts
- 2 Functions
- 3 Relations
- 4 The Integers and the Real Numbers
- **5** Cartesian Products
- 6 Finite Sets
- 7 Countable and Uncountable Sets
- 8 The Principle of Recursive Definition
- 9 Infinite Sets and the Axiom of Choice
- 10 Well-Ordered Sets
- 11 The Maximum Principle

■ TM, Chapter 2: Topological Spaces and Continuous Functions

Week 02-03-04-05

- 12 Topological Spaces
- 13 Basis for a Topology
- 14 The Order Topology
- 15 The Product Topology on $X \times Y$
- 16 The Subspace Topology
- 17 Closed Sets and Limit Points
- 18 Continuous Functions
- 19 The Product Topology
- 20 The Metric Topology
- 21 The Metric Topology (continued)

■ TM, Chapter 3: Connectedness and Compactness

Week 06-07-08-09 **=**

- 23 Connected Spaces
- 24 Connected Subspaces of the Real Line
- 25 Components and Local Connectedness
- **26** Compact Spaces
- 27 Compact Subspaces of the Real Line
- 28 Limit Point Compactness
- 29 Local Compactness

■ TM, Chapter 4: Countability and Separation Axioms

Week 10-11-12

- **30** The Countability Axioms
- **31** The Separation Axioms
- 32 Normal Spaces
- 33 The Urysohn Lemma
- 34 The Urysohn Metrization Theorem

Further Readings (Optional) 5

You can check out our Measure Theory and Measure Theoretic Probability syllabuses at 🖸 github.com/zekiakyol/proofbased-math-readings