Exercise # 3. Numerical Solution of the Poisson Problem.

Alexandre Rodrigues (2039952)

January 18, 2022

1 Method

I will describe relevant steps of developing this implementation and respective theory. Based on the homework text I implemented each step in Matlab.

1. Input files from specified mesh:

- 1. The user selects a mesh refinement level (0 to 4);
- 2. All 3 files are loaded: topol, bound and coord.

2. create pattern for the stiffness matrix:

- 1. I created a range vector 1 to Ne, then place it 3 times as a column in a matrix and reshaped the matrix to obtain the column vector $row = [1, 1, 1, 2, 2, 2, 3, \ldots]^T$.
 - 2. The col vector is simply obtained by reshaping the topol as a column vector.
- 3. Then we can compute the adjacency matrix as A = sparse(row,col,1) and the pattern for the stiffness matrix as H = A' * A, finally we clean the matrix as we only want the sparse pattern, H = H * O.
- 3. Stiffness matrix: I created the function [H, delta] = computeStiff(H, topol, coord) to encapsulate all the following computations. It has the topology and coordinates matrices as inputs, as well as the H matrix with its pattern already defined before. Its outputs are the final H matrix and the delta vector with the surface measures of each element. Using a for loop for each element:
 - 1. Get coordinates of the 3 nodes that define the element, compute the surface measure for that element and save it in the delta vector.

$$\Delta = \frac{1}{2} \begin{vmatrix} 1 & x_i & y_i \\ 1 & x_j & y_j \\ 1 & x_m & y_m \end{vmatrix}$$

2. Compute the b and c coefficients of the basis functions (a is not needed):

$$b_i = y_j - y_m \qquad c_i = x_m - x_j,$$

others are obtained using anticlockwise indices permutation.

3. Compute Hloc for an element as

$$H_{loc} = \frac{1}{4\Delta} \{ b^T b + c^T c \}$$

where $b = [b_i, b_j, b_m]$ and $c = [c_i, c_j, c_m]$

4. Assemble the stiffness matrix H from the local matrices using algorithm 3.3.

1

- 4. Right hand size Using a for loop to iterate in the list of nodes:
 - 1. Get the node coordinates;
 - 2. Find elements that have this node as a vertex and get their surface measures from the delta vector;
 - **3.** Compute the right hand size vector as $f_i \approx (-4 + 2x_i^2 + 2y_i^2) \frac{\sum_e \Delta_e}{3}$
- 5. **Boundary Conditions** As explained in the homework text we can simply change the diagonal value H(i,i). So I changed the diagonal value of H at the node i of the boundary, H(i,i)=Rmax.
- 6. Solve the Linear System Following recommendations I used tolerance as 1×10^{-8} and Matlab's PCG method. Jacobi preconditioner as M = sparse(diag(H)). Choled-sky preconditioner as L = ichol(H). Then we can call the PCG method to solve the linear system. I also recorded the solving computational time for comparison. Finally we can show the convergence plots as the semi logarithmic plot of Residual Norm vs Iterations.
- 7. Error computation Using a for loop to visit each node:
 - 1. Get the coordinates of the node;
 - **2.** Compute the analytical solution as $u(x,y) = x^2 + y^2 x^2y^2 1$;
 - 3. Sum surface measures of each element that have this node as a vertex;
 - **4.** Compute local error as $(u_i u(x_i, y_i)^2 \frac{\sum_e \Delta_e}{3};$
 - **5.** Sum all local error and ϵ will be its square root.

2 Results

2.1 Convergence Plots

As required the following images show the convergence plots for all refinement levels, one for each preconditioner.

Figure 1: Convergence plots - Residual norms vs Iterations

There are clear differences in convergence when using the 2 preconditioners. The Choledsky preconditioner significantly improves convergence by reducing the number of iterations needed. There is also a clear slowdown of convergence when increasing the level of refinement.

2.2 Error

Level	$\mathbf{Error}\epsilon$	Error Ratio
0	6.912×10^{-2}	N/A
1	1.631×10^{-2}	0.236
2	3.984×10^{-3}	0.244
3	9.883×10^{-4}	0.248
4	2.465×10^{-4}	0.249

Table 1: FEM Convergence table

Each level of refinment drecreases l by a factor of 2, $l_{i+1} = \frac{1}{2}l_i$. The error is proportional to l^2 so $\epsilon_{i+1} = \frac{1}{4}\epsilon_i$. This corresponds to our experimental values and ratio.