

2022-II Bimestre ASESORÍA DE MATEMÁTICA Y FÍSICA MAE N.M.

Guía de trabajo N.º 02

Nombre y Apellido: _			
Grado: 5.°	Sección: "	"	Fecha: 23/05/22

"Al que mucho se le dio, mucho se le exigirá; al que mucho se le confió, más se le exigirá" (Lucas 12,48)

COMPETENCIA: Resuelve problemas de regularidad, equivalencia y cambio.

LÍMITES

Al buscar el límite de la razón de dos polinomios enteros respecto a x, cuando $x \to \infty$, es conveniente dividir previamente de la razón por x^n, donde "n" es la mayor potencia de estos polinomios. En muchos casos puede emplearse un procedimiento análogo, cuando se trata de fracciones que contienen expresiones irracionales.

Ejemplo 1. Halle:

$$\lim_{x \to \infty} \frac{24x^3 - 32x^2 - 66x - 90}{3x^3 + x - 1}$$

Resolución: La mayor potencia de los polinomios es 3, entonces es conveniente dividir ambos entre x³

$$\lim_{x \to \infty} \frac{\frac{24x^3}{x^3} - \frac{32x^2}{x^3} - \frac{66x}{x^3} - \frac{90}{x^3}}{\frac{3x^3}{x^3} + \frac{x}{x^3}x - \frac{1}{x^3}}$$

$$\lim_{x \to \infty} \frac{24 - \frac{32}{x} - \frac{66}{x^2} - \frac{90}{x^3}}{3 + \frac{1}{x} - \frac{1}{x^3}}$$

y considerando que: $\lim_{x\to\infty}\frac{1}{x}=0$ entonces:

$$\lim_{x \to \infty} \frac{24 - \frac{32}{x} - \frac{66}{x^2} - \frac{90}{x^3}}{3 + \frac{x}{x^2} - \frac{1}{x^3}} = \frac{24}{3} = 8$$

Ejemplo 2. Halle:
$$\lim_{x\to\infty} \frac{x}{\sqrt[3]{x^3+10}}$$

Resolución: Dividiendo entre x, numerador y

denominador:
$$\lim_{x \to \infty} \frac{\frac{x}{x}}{\frac{\sqrt[3]{x^3 + 10}}{x}} = \lim_{x \to \infty} \frac{\frac{x}{x}}{\frac{\sqrt[3]{x^3 + 10}}{\sqrt[3]{x^3}}} =$$

$$\lim_{x \to \infty} \frac{\frac{x}{x}}{\sqrt[3]{\frac{x^3}{x^3} + \frac{10}{x^3}}} = \lim_{x \to \infty} \frac{1}{\sqrt[3]{1 + \frac{10}{x^3}}} = \frac{1}{1} = 1$$

Ejercicios:

$$a) \lim_{x\to\infty} \frac{(x+1)^2}{x^2+1}$$

$$b)\lim_{x\to\infty}\frac{100x}{x^2+1}$$

$$c)\lim_{x\to\infty}\frac{x^2-5x+1}{3x+7}$$

d)
$$\lim_{x\to\infty} \frac{2x^2 - x + 3}{x^3 - 8x + 5}$$

$$e) \lim_{x \to \infty} \frac{2x + 3^{3} (3x - 2)^{2}}{x^{5} + 5}$$

$$f)\lim_{x\to\infty}\frac{2x+3}{x+\sqrt[3]{x}}$$

$$g)\lim_{x\to\infty}\frac{\sqrt[3]{x^2+1}}{x+1}$$

$$h)\lim_{x\to\infty}\frac{2x^2-3x-4}{\sqrt{x^4+1}}$$

Respuestas:

- a) 1
- b) 0 e) 72
- c) ∞
- d) 0 g) 0
- h) 2
- Si P(x) y Q(x) son polinomios enteros y P(a) ≠0 o Q(a) ≠ 0, el límite de la fracción racional.

 $\lim_{x \to \infty} \frac{P(x)}{Q(x)}$ se halla directamente.

Si P(a) = Q(a) = 0, se recomienda simplificar

 $\frac{P(x)}{Q(x)}$, por el binomio $x \pm a$, una o varias veces.

Ejemplo: Halle $\lim_{x\to 2} \left(\frac{x^2-4}{x^2-3x+2} \right)$

Resolución: Si remplazamos x = 2, observamos que tenemos una expresión de la forma 0/0, por lo tanto habrá que hacer un poco de manipulación algebraica. (Levantar la indeterminación)

$$\lim_{x \to 2} \frac{(x+2)(x-2)}{(x-2)(x-1)} = \lim_{x \to 2} \frac{(x+2)}{(x-1)} = \frac{4}{1} = 4$$

$$\therefore \lim_{x\to 2} \left(\frac{x^2-4}{x^2-3x+2} \right)$$

Ejercicios:

a)
$$\lim_{x\to -1} \frac{x^3+1}{x^2+1}$$

$$b) \lim_{x \to 5} \frac{x^2 + 5x + 10}{x^2 - 25}$$

c)
$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2}$$

$$d) \lim_{x \to 2} \frac{x^2 - 2x}{x^2 - 4x + 4}$$

e)
$$\lim_{x\to 1} \frac{x^3-3x+2}{x^4-4x+3}$$

$$f \lim_{x \to a} \frac{x^2 - (a+1)x + a}{x^3 - a^3}$$

$$g)\lim_{x\to 0}\frac{(x+h)^3-x^3}{h}$$

Respuestas:

- a) 0 b) ∞ c) -2 d) ∞ e) 1/2 f) $\frac{a-1}{3a^2}$
- g) 3x²

Las expresiones irracionales se reducen, en muchos casos, a una forma racional introduciendo una nueva variable.

Ejemplo: $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1}$

Resolución: Suponiendo que: $1 + x = y^6$, tenemos:

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{\sqrt[3]{1+x} - 1} = \lim_{x \to 0} \frac{y^3 - 1}{y^2 - 1}$$

$$= \lim_{x \to 0} \frac{(y-1)(y^2+y+1)}{(y-1)(y+1)} = \frac{1^2+1+1}{1+1} = \frac{3}{2}$$

Note que en: 1 + x = y^6 , cuando $x \rightarrow 0$, entonces $y \rightarrow 1$.

Ejercicios:

$$a) \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

a)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$
 b) $\lim_{x \to 64} \frac{\sqrt{x} - 8}{\sqrt[3]{x} - 4}$

c)
$$\lim_{x \to 1} \frac{\sqrt[3]{x-1}}{\sqrt[4]{x-1}}$$

c)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt[4]{x} - 1}$$
 d) $\lim_{x \to 1} \frac{\sqrt[3]{x^2} - 2\sqrt[3]{x} + 1}{(x - 1)^2}$

Respuestas:

- a) ½ b) 3 c) 4/3 d) 1/9
- Para hallar el límite de una expresión irracional, racionalizamos bien el numerador o denominador o bien ambos.

Ejemplo: Halle

$$\lim_{x\to a} \frac{\sqrt{x} - \sqrt{a}}{x - a}, \quad a > 0$$

Resolución: $\lim_{x\to a} \frac{(\sqrt{x}-\sqrt{a})}{(x-a)} \cdot \frac{(\sqrt{x}+\sqrt{a})}{(\sqrt{x}+\sqrt{a})}$

$$\lim_{x \to a} \frac{(x-a)}{(x-a)(\sqrt{x} + \sqrt{a})} = \lim_{x \to a} \frac{1}{(\sqrt{x} + \sqrt{a})} = \frac{1}{2\sqrt{a}}$$

Ejercicios:

a)
$$\lim_{x \to 7} \frac{2 - \sqrt{x - 3}}{x^2 - 49}$$
 b) $\lim_{x \to 8} \frac{x - 8}{\sqrt[3]{x} - 2}$

b)
$$\lim_{x\to 8} \frac{x-8}{\sqrt[3]{x}-2}$$

$$c)\lim_{x\to 0}\frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$

$$d)\lim_{x\to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}$$

a) -1/56 b) 12 c) 1 d)
$$\frac{1}{2\sqrt{x}}$$

Para hallar el límite cuando f(x) o g(x) son funciones trigonométricas, hacemos uso de las identidades trigonométricas y del siguiente limite notable:

$$\lim_{x\to 0}\frac{sen\ x}{x}=1$$

Ejercicios:

a)
$$\lim_{x\to 0} \frac{\tan x}{x}$$
 b) $\lim_{t\to 0} \frac{sen^2t}{t}$

b)
$$\lim_{t\to 0} \frac{sen^2t}{t}$$

c)
$$\lim_{x\to 0} \frac{\tan x}{2x}$$
 d) $\lim_{t\to 0} \frac{\operatorname{sen} t}{t}$

$$d$$
) $\lim_{t\to 0} \frac{sen\ t}{t}$

$$e) \lim_{x \to \pi} \frac{1 + \cos x}{\sin 2x}$$

$$e) \lim_{x \to \pi} \frac{1 + \cos x}{\sin 2x} \qquad f) \lim_{x \to 0} \left(\frac{1 - \cos x}{x} \right)$$

$$g)\lim_{x\to 0} \left(\frac{1-\cos x}{x^2}\right) \quad h\lim_{x\to 0} \frac{\sin 3x}{x}$$

h)
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$

$$i) \lim_{x\to 0} \frac{sen 5x}{sen 2x}$$

$$i) \lim_{x \to 0} \frac{\operatorname{sen} 5x}{\operatorname{sen} 2x} \qquad j) \lim_{x \to 0} \frac{\operatorname{sen} \pi x}{\operatorname{sen} 3\pi x}$$

ASÍNTOTAS

Asíntota Vertical: Decimos que la recta x = a es una asíntota vertical de la gráfica de la función f, si se cumple uno de los siguientes criterios:

$$a) \lim_{x \to a^+} f(x) = \infty$$

a)
$$\lim_{x \to a^+} f(x) = \infty$$
 b) $\lim_{x \to a^-} f(x) = \infty$

$$c) \lim_{x \to a} f(x) = \infty$$

Asíntota Horizontal: La recta y = b es una asíntota horizontal de la gráfica de la función f, si:

$$\lim_{x\to\infty}f(x)=b$$

Asíntota Oblicua: La recta y = mx + b es una asíntota oblicua de la gráfica de la función f, si m y b existen;

$$m = \lim_{x \to \infty} \frac{f(x)}{x}, \ m \neq 0$$
 $b = \lim_{x \to \infty} f(x) - mx$

Ejercicios:

Calcule las asíntotas (si existen) de cada una de las siguientes funciones:

$$a) f(x) = \frac{x}{16 - x^2}$$

a)
$$f(x) = \frac{x}{16 - x^2}$$
 b) $g(x) = \frac{x^2 + 5x + 6}{x^2 + 4x + 3}$

c)
$$h(x) = \frac{x^3 + 1}{x^2 + 1}$$

FUENTE: Lázaro M. (2001), Cálculo Diferencial (Tercera edición), Lima – Perú: San Marcos.