

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Lectures 6 & 7 - Practical Sources & Source Transformation; Numerical Examples

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Practical Voltage Source

- Its terminal voltage falls as load current increases.
- It is modelled as an ideal voltage source in series with internal resistance.

- Internal resistance is small, usually few $m\Omega$.
- Internal resistance of an ideal voltage source is Zero

Practical Voltage Source

PES

Practical Current Source

- Its terminal current falls as load voltage increases.
- It is modelled as an ideal current source in parallel with internal resistance.

- Internal resistance is very high, usually few Mega Ohms
- Internal resistance of an ideal current source is Infinite

Practical Current Source

Numerical Example on Practical Sources

Question:

A battery of EMF 12V and internal resistance of 0.05Ω supplies power to a load resistance R_L . Determine the % change in load voltage as load resistance varies from 10Ω to 100Ω .

Solution:

Case 1:
$$R_1 = 10\Omega$$

$$V = \frac{V_{S*}R_L}{(R_S + R_L)} = 11.94V$$

(By Voltage Division)

Numerical Example on Practical Sources

Solution (Continued..):

Case 2:
$$R_{L} = 100\Omega$$

$$V = \frac{V_{S*}R_L}{(R_S + R_L)} = 11.99V$$

% Change in the load voltage =

$$\frac{(11.99-11.94)}{11.94}*100 = 0.42\%$$

Numerical Example on Practical Sources

Q2. Two batteries A and B are connected in parallel and a load of 10Ω is connected across them. Battery A has an emf of 9V and internal resistance of 0.5Ω and B has an emf of 12V and internal resistance of 1Ω . Determine i) the magnitude and the direction of current flowing through load resistance, ii) current supplied by each battery and iii) potential difference across the load resistance.

Source Transformation

A Practical Voltage Source can be transformed to a Practical Current Source & Vice versa.

Two Sources are equivalent if they supply same terminal voltage and current when loaded with same load resistance.

Source Transformation

Case 1: Open Circuit Condition

$$V = V_S$$

$$V = I_S * R_S$$

Hence,
$$V_S = I_S * R_S$$

Source Transformation

Case 2: Short Circuit Condition

$$I = \frac{V_S}{R_S}$$

$$I = I_S$$

Hence,
$$V_S = I_S * R_S$$

Numerical Example on Source Transformation

Question:

Find the current through 5Ω resistor in the network shown:

Solution:

Replace 3A current source & 2Ω resistance with equivalent practical voltage source.

Repeat the same for 2A current source & 1Ω resistance.

Numerical Example on Practical Sources

Solution (Continued..):

By applying KVL

$$+6-2I-5I-I+2=0$$

$$I = 1A$$

Source Transformation

Q3. A current of 20A flows through two ammeters A and B joined in series. Across A the potential difference is 0.2V and across B it is 0.3V. Find how the same current will divide between A and B when they are joined in parallel.

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 2. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 3. "Engineering Circuit Analysis", William Hayt Jr., Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu