Consider infinitely many two states switches S_i and infinitely many bulbs B_i , where i ranges over the positive integers. The switches control the bulbs in an unknown manner; however for every integer n there exists a combination of the switches S_i which turns on the n first bulbs (and possibly others). Show that there exists a combination of the switches S_i which turns on simultaneously all the bulbs .

- ♣ Please **Submit** your solution to
 - o <u>Dr. Tirtha Timsina</u>, <u>ttimsina@gsu.edu</u> or
 - o <u>Dr. Christian Avart</u>, <u>cavart@gsu.edu</u>

before the deadline: Friday, January 28th, 7:00PM.

♣ The WINNER will be awarded with a \$15 gift certificate and will be announced in the NEXT issue.

Solution to the November Problem of the Mont parabola at two points A and B. Let C be furthest from the line . Find the ratio of the area of the region bounded by triangle ABC.	e the point on the parabolic arc	
Let the line and the parabola intersect at	and respectively. Then	the area of the
bounded region between the line and the parabola	is	. After rigorous
algebra and simplification the integral simply becomes—.	omes	
Now, let the vertices of the triangle ABC be are the intersection points and C is any point on the		(here, A and B gle ABC is then
given by A=		
We want to maximize the area by setting — a	and solving for x . This gives us	 .
Using this x value in the formula for area of the tr	iangle ABC, we get -	
Therefore, —		
Winner: Joseph Moravitz		