Text Mining - PRACTICE PROBLEM

Assume you have the following term frequency matrix:

	angeles	los	new	post	times	york
D1	0	0	1	0	1	1
D2	0	0	3	1	0	3
D3	2	2	0	0	1	0

- 1. Transform the weights using TF-IDF WEIGHTING. Use the traditional Log in the calculations (Log in base 10)
- 2. Using the transformed matrix, compute the cosine similarity between D1-D2
- 1. TF * IDF = TF * $log(N/n_w)$

Where TF is the Term Frequency

 $Log(N/n_w)$, N is the total number of documents in the dataset; n_w is in how many documents the word under consideration appears

The matrix above already contains TF, since it is a term frequency matrix. SO we already have the first part of TF-IDF.

We need to compute IDF for each word as $\log(N/n_w)$. Let us use the traditional log, that is the log in base 10 for the calculations.

The matrix below shows the calculations for each word. <u>Note that the IDF for each word is</u> going to be the same across documents.

	angeles	los	new	post	post times		
	Log(3/1) =	Log(3/1) =	Log(3/2) =	Log(3/1) =	Log(3/2) =	Log(3/2) =	
D1	0.477	0.477	0.176	0.477	0.176	0.176	
D2	0.477	0.477	0.176	0.477	0.176	0.176	
D3	0.477	0.477	0.176	0.477	0.176	0.176	

Then multiply TF * IDF: this is going to be different for each word-document cell

	angeles	los	new	post	times	york	
	0* 0.477=	0* 0.477=	1* 0.176 =	0* 0.477=	1* 0.176 =	1* 0.176 =	
D1	0.000	0.000	0.176	0.000	0.176	0.176	
	0*0.477 =	0* 0.477=	3* 0.176 =	1* 0.477 =	0* 0.176 =	3* 0.176 =	
D2	0.000	0.000	0.528	0.477	0.000	0.528	
	2* 0.477 =	2* 0.477 =	0* 0.176 =	0* 0.477=	1* 0.176 =	0* 0.176 =	
D3	0.954	0.954	0.000	0.000	0.176	0.000	

2. Calculate the Cosine Similarity between D1 – D2 using the TF-IDF matrix

$$Sim(d_1, d_2) = \frac{\sum_{i=1}^{N} w_{1i} * w_{2i}}{\sqrt{\sum_{i=1}^{N} w_{1i}^2} * \sqrt{\sum_{i=1}^{N} w_{2i}^2}}$$

w1i = weight for the word under consideration in document 1 w2i = weight for the word under consideration in document 2

	angele							
	S	los	new	post	times	york	Sum	Sqrt
w1i *	0 * 0 =	0*0 =	0.176* 0.528 =	0*0.477 =	0.176* 0 =	0.176*0.528=		
w2i	0.000	0.000	0.093	0.000	0.000	0.093	0.186	
					0.176^2 =	0.176^2 =		
w1i^2	0.000	0.000	0.176^2 = 0.031	0.000	0.031	0.031	0.093	0.305
			0.528^2 =	0.477^2 =		0.528^2 =		
w2i^2	0.000	0.000	0.279	0.228	0.000	0.279	0.786	0.886
Final								0.688

Remember that Cosine Similarity is a Similarity Index: as such, the greater the number, the more similar the two documents