```
%Part I
clear all;
close all;
%define functions
n=100;
m=1000;
xx1=(0:n)/n;
xx2 = (0:m)/m;
f = normpdf(xx1, 0.2, 0.02) + normpdf(xx1, 0.4, 0.02) * 0.6;
g=normpdf(xx2,0.6,0.02)+normpdf(xx2,0.8,0.02);
%Smooth x1 and x2 by splines
smthpara=1;
fs=fit(xx1', f', 'smoothingspline', 'SmoothingParam', smthpara);
gs=fit(xx2', g', 'smoothingspline', 'SmoothingParam', smthpara);
%Generate q1 from f and q2 from g
%x2=0:1/m:1;
for i = 1:length(xx1)
    q1(i) = sign((fs(xx1(i) + 0.0001) - fs(xx1(i) -
(0.0001)) / (2*0.0001)) .*sqrt (abs ((fs (xx1(i)+0.0001)-fs (xx1(i)-
0.0001))/(2*0.0001)));
end
for i=1:length(xx2)
    g2(i) = sign((gs(xx2(i) + 0.0001) - gs(xx2(i) -
(0.0001) / (2*0.0001) .*sqrt (abs ((gs(xx2(i)+0.0001)-gs(xx2(i)-
0.0001))/(2*0.0001));
end
[path, E]=sldpSRSF2(q1,q2);
close all;
fig=figure();
set(fig, 'Position', [200 200 1600 450]);
subplot(131); plot(f); hold on; plot(g((1:n)*m/n)); title('before)
registration');
set(gca,'XTickLabel',[],'YTickLabel',[]);
subplot(132);imagesc(E');colormap(gray);hold
on;plot(path(:,1),path(:,2));axis xy;
axis equal;set(gca,'XTickLabel',[],'YTickLabel',[]);
title('Warping function');
subplot(133);plot(f);hold on;
plot((1:n), g(round(interpl(path(:,1),path(:,2),1:n)*(m+1)/(n+1))));titl
e('after registered');
set(gca,'XTickLabel',[],'YTickLabel',[]);
%%%Part2, Growth data.
close all, clear all;
dat=csvread('bgd.csv',1,0);
age=dat(:,1);
boy=dat(:,2:40);
girl=dat(:,41:length(dat));
%Visualization of data
fig1=figure();
set(fig1, 'Position', [200 200 1100 450]);
```

```
subplot(121);plot(age,boy);title('Heights of
Boys');xlabel('age');ylabel('Heights in cm');
subplot (122); plot (age, girl); title ('Heights of
Girls');xlabel('age');ylabel('Heights in cm');
%Derivatives (Growth rates)
%Smooth function and find growth rates.
%Pick two curve.
c1=qirl(:,29);
c2=girl(:,28);
smthpara=1;
cls=fit(age,cl, 'smoothingspline', 'SmoothingParam', smthpara);
c2s=fit(age,c2, 'smoothingspline', 'SmoothingParam', smthpara);
%Generate new functions gr1 and gr2 for derivative
x=1:0.2:18;
for i = 1:length(x)
    gr1(i) = (c1s(x(i)+0.02)-c1s(x(i)-0.02))/(2*0.02);
for i=1:length(x)
    gr2(i) = (c2s(x(i)+0.02)-c2s(x(i)-0.02))/(2*0.02);
%plot the functions of growth rate to be registered
close all;
plot(x,gr1);hold on;plot(x,gr2);title('Growth
rates');xlabel('age');ylabel('Growth rate');
%Now lets calculate Q
%Smooth x1 and x2 by splines and scale the curve to between 0 and 1
smthpara=1;
fs=fit(((x-1)/max(x-1))', gr1', 'smoothingspline', 'SmoothingParam',
gs=fit(((x-1)/max(x-1))', gr2', 'smoothingspline', 'SmoothingParam',
smthpara);
close all;
fig1=figure();
set(fig1,'Position', [200 200 1100 450]);
subplot(121);plot(fs);hold on; plot(gs, 'b');title('Growth rate');
%Generate q1 from f and q2 from g
%x2=0:1/m:1;
n=100:
m=1000;
xx1=(0:n)/n;
xx2 = (0:m)/m;
for i = 1:length(xx1)
    g1(i) = sign((fs(xx1(i) + 0.0001) - fs(xx1(i) -
(0.0001))/(2*0.0001)).*sqrt(abs((fs(xx1(i)+0.0001)-fs(xx1(i)-0.0001))
0.0001))/(2*0.0001)));
end
for i=1:length(xx2)
    q2(i) = sign((gs(xx2(i)+0.0001)-gs(xx2(i)-
(0.0001)) / (2*0.0001)).*sqrt(abs((gs(xx2(i)+0.0001)-gs(xx2(i)-0.0001))
0.0001))/(2*0.0001)));
subplot(122); plot(xx1,q1); hold on; plot(xx2,q2); title('Functions q1 and
q2');
```

```
% Ready to register
[path, E]=sldpSRSF2(q1,q2);
close all;
f=fs(xx1);
g=gs(xx2);
fig=figure();
set(fig, 'Position', [200 200 1600 450]);
subplot(131); plot(f); hold on; plot(g((1:n)*m/n)); title('before)
registration');
set(gca,'XTickLabel',[],'YTickLabel',[]);
subplot(132);imagesc(E');colormap(gray);hold
on; plot (path (:, 1), path (:, 2)); axis xy;
axis equal; set(gca, 'XTickLabel', [], 'YTickLabel', []);
title('Warping function');
subplot(133);plot(f);hold on;
plot((1:n), g(round(interpl(path(:,1), path(:,2), 1:n) * (m+1) / (n+1)))); titl
e('after registered');
set(gca,'XTickLabel',[],'YTickLabel',[]);
%f,q: 2 functions
%n: points of f
%m: points of g
%This function search neiborghood v
function [path, E] = sldp(f, g)
c=inf;
n=length(f);
m=length(g);
xx1=(0:n-1)/(n-1);
xx2=(0:m-1)/(m-1);
E=zeros(n,n);
E(1,:)=c;
E(:,1)=c;
E(1,1)=0;
v = [1,1;2,1;3,1;4,1;5,1;6,1;1,2;1,3;1,4;1,5;1,6;2,3;3,2;3,4;4,3;2,5;3,5;
4,5;5,2;5,3;5,4;5,6;6,5;
1,7;2,7;3,7;4,7;5,7;6,7;7,1;7,2;7,3;7,4;7,5;7,6;1,8;3,8;5,8;7,8;8,7;8,5
;8,3;8,1];
for i=2:n;
    for j=2:n;
        for r=1:size(v,1);
            k=i-v(r, 1);
            1=j-v(r,2);
            if (k>0 && 1>0)
                 CandE(r) = E(k,l) + energySRSF2(f,g,k,l,i,j);
            else
                 CandE(r)=c;
            end
        end
        [E(i,j),idx] = min(CandE);
        path(i,j,1) = i-v(idx,1);
        path(i,j,2) = j-v(idx,2);
    end
```

```
end
%reconstruct gamma
x(1) = n;
y(1) = n;
cnt = 1;
while x(cnt)>1;
    x(cnt+1) = path(x(cnt), y(cnt), 1);
    y(cnt+1) = path(x(cnt),y(cnt),2);
    cnt = cnt+1;
end
path=[x',y'];
function cost=energy(f,g,k,l,i,j)
%This is the function to calculate 2-norm distence between two fuction
%between path from (k,l) to (i,j) used in dynamic programming
n=length(f);
m=length(g);
slope=(j-1)/(i-k);
gidx=round((l+((k+1:i)-k).*slope)/n*m);
cost=norm(f(k+1:i)-g(gidx)*sqrt(slope))^2;
```