函数

目录

1	定义	.域	2	
2 单调性				
	2.1	单调性的判定方法	3	
3	奇偶	引对称	6	
	3.1	奇偶性的判断	6	
	3.2	奇偶性的运算	6	
	3.3	奇偶性常见类型	6	
	3.4	奇偶性的单调性		
4	周期		9	
	4.1	常用周期性模型	9	
	4.2	对称性和周期性	9	
5	图象		12	
	5.1	性质	12	
6	分段	t函数	13	

定义域 1

1) 分式分母不能为零;

2) 偶次方根的被开方数大于或等于零;

3) 对数的真数大于零;

4) 指数和对数底数大于零且不等于 1;

5) 零次或负次指数次幂的底数不为零;

6) 正切函数 $\tan x$ 的定义域为 $\left\{ x \middle| x \in \mathbf{R}, \ \exists x \neq k\pi + \frac{\pi}{2}, k \in \mathbf{Z} \right\}$

1. 函数 $f(x) = \sqrt{2^x - 1}$ 的定义域是)

 $(A) [0, +\infty)$

(B) $[1, +\infty)$

(C) $(-\infty, 0]$

(D) $(-\infty, 1]$

2. 函数 $f(x) = \frac{1}{\sqrt{(\log_2 x)^2 - 1}}$ 的定义域为)

 $(A)\left(0,\frac{1}{2}\right) \qquad (B)\left(2,+\infty\right)$

(C) $\left(0, \frac{1}{2}\right) \cup (2, +\infty)$ (D) $\left(0, \frac{1}{2}\right] \cup [2, +\infty)$

3. 函数 $y = \lg\left(1 - \frac{1}{x}\right)$ 的定义域为)

(A) $\{x \mid x < 0\}$

(B) $\{x \mid x > 1\}$

(C) $\{x \mid 0 < x < 1\}$ (D) $\{x \mid x < 0 \vec{\boxtimes} x > 1\}$

)

)

)

4. 函数 $y = \frac{1}{\log_2(x-2)}$ 的定义域为

(A) $(-\infty, 2)$

(B) $(2, +\infty)$

(C) $(2,3) \cup (3,+\infty)$

(D) $(2,4) \cup (4,+\infty)$

5. 若 $f(x) = \frac{1}{\sqrt{\log_{\frac{1}{2}}(2x+1)}}$,则 f(x) 的定义域为 ()

 $(A)\left(-\frac{1}{2},0\right) \qquad (B)\left(-\frac{1}{2},+\infty\right) \qquad (C)\left(-\frac{1}{2},+\infty\right)$

(D) $(0, +\infty)$

6. 设函数 $f(x) = \lg \frac{2+x}{2-x}$, 则 $f\left(\frac{x}{2}\right) + f\left(\frac{2}{x}\right)$ 的定义域为 ()

(A) $(-4,0) \cup (0,4)$ (B) $(-4,-1) \cup (1,4)$ (C) $(-2,-1) \cup (1,2)$

(D) $(-4, -2) \cup (2, 4)$

7. 已知函数 f(x) 的定义域为 (-1,0), 则函数 f(2x+1) 的定义域为

(A)(-1,1)

 $(B)\left(-1,-\frac{1}{2}\right)$

 $(D)\left(\frac{1}{2},1\right)$

8. 已知函数 f(2x+1) 的定义域为 $\left(-2,\frac{1}{2}\right)$,则函数 f(x) 的定义域为 ()

 $(A)\left(-\frac{3}{2},\frac{1}{4}\right) \qquad (B)\left(-1,\frac{3}{2}\right)$

(C) (-3, 2)

(D) (-3,3)

9. 下列函数中,其定义域和值域分别与函数 $y = 10^{lgx}$ 的定义域和值域相同的是 (

(A) y = x

(B) $y = \lg x$

(C) $y = 2^x$

(D) $y = \frac{1}{\sqrt{x}}$

2 单调性

2.1 单调性的判定方法

- 1) 定义法: 对于任意的 $x_1, x_2 \in D$,且 $x_1 < x_2$,若 $f(x_1) < f(x_2)$ 成立,则称 f(x) 为增函数; 若 $f(x_1) > f(x_2)$ 成立,则称 f(x) 为减函数.
- 2) 导数法: 设函数 f(x) 在定义域内可导,则:
 - (a) $f'(x) > 0 \Rightarrow f(x)$ 单调递增,f(x) 单调递增 $\Rightarrow f'(x) \ge 0$;
 - (b) $f'(x) < 0 \Rightarrow f(x)$ 单调递减,f(x) 单调递减 $\Rightarrow f'(x) \leq 0$;
- 3) 分段函数单调性:分段函数单调递增(递减)意味着每个分段的区间上函数单调递增(递减)并且在分段点处函数值的大小关系也满足递增(递减)
- 4) 对于定义在 D 上的函数 f(x), 设 $\forall x_1, x_2 \in D, x_1 \neq x_2$, 则有:
 - (a) $\frac{f(x_1) f(x_2)}{x_1 x_2} > 0 \Leftrightarrow f(x)$ 是 *D* 上的单调递增函数;
 - (b) $\frac{f(x_1) f(x_2)}{x_1 x_2} < 0 \Leftrightarrow f(x)$ 是 D 上的单调递减函数;
- 5) 复合函数单调性判定: 同增异减

求单调区间的方法

① 定义法 ②导数法 ③图象法

练习

1. 己知函数 $f(x) = \ln(1+x) - \ln(1-x)$,则 f(x) 是) (A) 奇函数, 且在 (0,1) 上是增函数 (B) 奇函数,且在(0,1)上是减函数 (C) 偶函数, 且在 (0,1) 上是增函数 (D) 偶函数,且在(0,1)上是减函数 2. 设 $f(x) = \begin{cases} a^x, & x < 0 \\ (a-3)x + 4a, & x \ge 0 \end{cases}$ 对任意的 $x_1 \ne x_2$ 都有 $\frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0$ 成立,则 a 的取值范围) (A) $\left(0, \frac{1}{4}\right]$ (B) (0, 1) (C) $\left[\frac{1}{4}, 1\right]$ (D) (0,3)3. 函数 $f(x) = \begin{cases} 2x^2 - 8ax + 3, & x \leq 1, \\ \log_a x, & x > 1. \end{cases}$ 在 **R** 上单调,则 a 的取值范围是) $(C) \left[\frac{1}{2}, \frac{5}{8} \right] \tag{D} \left[\frac{5}{8}, 1 \right)$ $(A)\left(0,\frac{1}{2}\right) \qquad (B)\left[\frac{1}{2},1\right)$ 4. 设 x_1, x_2, x_3 均为实数,且 $\left(\frac{1}{3}\right)^{x_1} = \log_2(x_1 + 1)$, $\left(\frac{1}{3}\right)^{x_2} = \log_3 x_2$, $\left(\frac{1}{3}\right)^{x_3} = \log_2 x_3$,则 ((C) $x_3 < x_1 < x_2$ (D) $x_2 < x_1 < x_3$ (A) $x_1 < x_3 < x_2$ (B) $x_3 < x_2 < x_1$ 5. 若函数 $f(x) = \begin{cases} \log_2 x, & x > 0 \\ \log_{\frac{1}{2}}(-x), & x < 0. \end{cases}$ 若函数 f(a) > f(-a),则实数 a 的取值范围是) (A) $(-1,0) \cup (0,1)$ (B) $(-\infty, -1) \cup (1, +\infty)$ (D) $(-\infty, -1) \cup (0, 1)$ (C) $(-1,0) \cup (1,+\infty)$ 6. 已知函数 $f(x) = \sin x + 3x$ ($x \in (-1,1)$),如果 $f(1-a) < -f(1-a^2)$,则实数 a 的取值范围是 () (A) $(1, \sqrt{2})$ (B) $(-\infty, -2) \cup (1, +\infty)$ (C) $(-\infty, -2)$ (D) $(1, +\infty)$ 7. 若 "x > 1" 是 "不等式 $2^x a - x >$ 成立"的必要而不充分条件,则实数 a 的取值范围是) (A) a > 3(B) a < 3(C) a > 48. 设 a > 0, 且 $a \ne 1$, "函数 $y = log_a x$ 在 $(0, +\infty)$ 上是减函数"是"函数 $y = (2 - a)x^3$ 在 **R** 上是增函数" 的) (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也不必要条件

)

9. 若函数 f(x) 的定义域为 R,则 " $\forall x \in \mathbf{R}, f(x+1) > f(x)$ " 是 "函数 f(x) 是增函数"的

(A) 充分而不必要	条件	(B) 必要而不充分	分条件	
(C) 充分必要条件		(D) 既不充分也	不必要条件	
"倍增函数". 若函	数 $f(x) = \ln(e^x + m)$ 为 "	(C) (-1,0) (b), 使 $f(x)$ 在 $[a, b]$ 上的 (C) $(-1,0)$	/ - \	()
①若 $f(x)$ 单调递增 ②若 $f(x)$ 单调递增 ③若 $f(x)$ 单调递减	单调函数,有如下四个命, $g(x)$ 单调递增,则 $f(x)$, $g(x)$ 单调递减,则 $f(x)$, $g(x)$ 单调递增,则 $f(x)$, $g(x)$ 单调递减,则 $f(x)$	g(x) - g(x) 单调递增; g(x) - g(x) 单调递增; g(x) - g(x) 单调递减;		()
(A) ①③	(B) ①④	(C) 23	(D) ②④	
0 ($-3x$, $x \le a$ 2x, $x > a$. x) 的最大值为; x1, 则实数 x 3 的取值范围为;	문		
13. 已知函数 $f(x)$,对 $a+b$ 的最大值为 B		$b > 0$,满足 $\forall x \in [t - a, t]$	$+b$],使得 $ f(x)-f(t) \le$	2, 则记
$(1) \stackrel{\text{def}}{=} f(x) = 2x \mathbb{B}$ $(2) \stackrel{\text{def}}{=} f(x) = x^2 \mathbb{B}$	$f, \ H(0) =;$	的值域为		
14. 已知函数 $f(x) = m$ ① $\forall x \in \mathbf{R}, f(x) < 0$ ② $\exists x \in (-\infty, -4), f$ 则 m 的取值范围是	或 $g(x) < 0$; $f(x)g(x) < 0$,	·) = 2 ^x - 2. 若同时满足条	件:	

3 奇偶对称

3.1 奇偶性的判断

- 1) 如果函数 f(x) 的定义域不关于原点对称,则 f(x) 是非奇非偶函数;
- 2) 如果函数 f(x) 的定义域关于原点对称且满足 f(x) = f(-x),则 f(x) 是偶函数;
- 3) 如果函数 f(x) 的定义域关于原点对称且满足 f(x) = -f(-x),则 f(x) 是奇函数,如果定义域包含 x = 0,则必有 f(0) = 0;

3.2 奇偶性的运算

奇函数左右对应中会有负号,偶函数没有负号,此处的规律可以参考"负负得正".(以下假设奇偶函数都不恒为0)

- 1) 奇 ± 奇 = 奇; 偶 ± 偶 = 偶; 奇 ± 偶 = 非奇非偶
- 2) 奇×(÷) 奇=偶; 偶×(÷) 偶=偶; 奇×(÷) 偶=奇.
- 3) 当复合函数的内外两层函数都具有奇偶性时,有偶即偶,两奇为奇.

3.3 奇偶性常见类型

- 1) 若对于任意 $x, y \in \mathbb{R}$, 有 f(x + y) = f(x) + f(y), 则函数 f(x) 为奇函数;
- 2) xⁿ (n为奇数) 是奇函数, xⁿ (n为偶数) 是偶函数;
- 3) sin kx 是奇函数, cos kx 是偶函数:
- 4) $a^{x} a^{-x}$ 是奇函数, $a^{x} + a^{-x}$ 是偶函数;
- 5) $\log_a \frac{b+cx}{b-cx}$ $(a \ge 0$ 且 $a \ne 1)$ 是奇函数, $\log_a \left(\sqrt{1+b^2x^2} \pm bx\right)$ 是奇函数;
- 6) |x + a| |x a| 是奇函数; |x + a| + |x a| 是奇函数

3.4 奇偶性的单调性

- 1) 如果 f(x) 是奇函数,则 f(x) 在关于原点对称的区间上单调性一致;
- 2) 如果 f(x) 是偶函数,则 f(x) 在关于原点对称的区间上单调性相反.

练习

1.	如果 $f(x)$ 是定义在 \mathbf{R} 上的奇函数,那么下列函数中一定是偶函数的是				()
	(A) x + f(x)	(B) $xf(x)$	$(C) x^2 + f(x)$	(D) $x^2 f(x)$		
2.	设奇函数 $f(x)$ 在 $(0,+\infty)$	上增函数且 $f(1) = 0$,则	不等式 $\frac{f(x) - f(-x)}{x} < 0$	的解集为	()
	$(A) (-1,0) \cup (1,+\infty)$		(B) $(-\infty, -1) \cup (0, 1)$			
	(C) $(-\infty, -1) \cup (1, +\infty)$		(D) $(-1,0) \cup (0,1)$			
3.	奇函数 $f(x)$ 的定义域为 R	\mathbf{x} , 若 $f(x+2)$ 为偶函数,	且 $f(1) = 1$,则 $f(8) + f$	(9) =	()
	(A) -2	(B) -1	(C) 0	(D) 1		
4.	已知函数 $g(x) = f(x) - x$	是偶函数,且 $f(3) = 4$,	则 $f(-3) =$		()
	(A) -4	(B) -2	(C) 0	(D) 4		
5.	己知 $f(x) = x^5 + ax^3 + bx$	x-8,且 $f(-2)=10$,那	$\not \subseteq f(2) =$		()
	(A) -26	(B) -18	(C) -10	(D) 10		
6.	已知定义在 R 上的偶函数 $f(x)$ 和奇函数 $g(x)$ 满足 $f(x) - g(x) = x^3 + x^2 + 1$,则 $f(1) + g(1) = x^3 + x^2 + 1$,则 $f(x) + g(x) = x^3 + x^3 +$					
	(A) -3	(B) -1	(C) 1	(D) 3		
7.	若定义在 \mathbf{R} 上的偶函数 f	(x) 和奇函数 $g(x)$ 满足 $f($	$f(x) + g(x) = e^x, \text{If } g(x) =$		()
	$(A) e^x - e^{-x}$		(B) $\frac{1}{2} (e^x + e^{-x})$			
	(C) $\frac{1}{2} (e^{-x} - e^x)$		(D) $\frac{1}{2} (e^x - e^{-x})$			
8.	已知定义域为 \mathbf{R} 的函数 f	(x) 在 (8,+∞) 上为减函数	女,且函数 $y = f(x+8)$ 为	偶函数,则	()
	(A) $f(6) > f(7)$	(B) $f(6) > f(9)$	(C) $f(7) > f(9)$	(D) $f(7) > f(10)$)	
9.	设函数 $f(x)$, $g(x)$ 的定义均	成都为 R ,且 $f(x)$ 是奇函	数, $g(x)$ 是偶函数,则下	列结论正确的是	()
	(A) $f(x)g(x)$ 是偶函数		(B) $ f(x) g(x)$ 是奇函数			
	(C) $f(x) g(x) $ 是奇函数		(D) $ f(x)g(x) $ 是奇函数			
10.	设函数 $f(x)$, $g(x)$ 的定义均	成都为 \mathbf{R} ,且 $f(x)$ 是奇函	数, $g(x)$ 是偶函数,则下	列结论正确的是	()
	(A) f(x) + g(x) 是偶函数	数	(B) $f(x) - g(x) $ 是奇函数			
	(C) f(x) + g(x) 是偶函数	数	(D) $ f(x) - g(x)$ 是奇函数	效		
11.	已知函数 $f(x) = \ln(\sqrt{1+x})$	$9x^2 - 3x + 1$, $\mathbb{M} f(\lg 2)$	$+f\left(\lg\frac{1}{2}\right)$ 等于		()
	(A) -1	(B) 0	(C) 1	(D) 2		
12.	已知函数 $f(x)$ 是定义在 $f(\log_{\frac{1}{2}}a) \leq 2f(1)$,则 a 的		引 [0,+∞) 上单调递增,着	吉实数 a 满足 f(+
	(A) [1,2]	$(B)\left(0,\frac{1}{2}\right]$	$(C)\left[\frac{1}{2},2\right]$	(D) $(0,2]$		

13.	已知 $f(x)$ 是定义在 \mathbf{R} 上的集合为	奇函数,当 $x \ge 0$ 时, $f($	$x) = x^2 - 3x, 则函数$			的)
	(A) $\{1, 3\}$		(B) $\{-3, -1, 1, 3\}$			
	(C) $\{2 - \sqrt{7}, 1, 3\}$		(D) $\left\{-2 - \sqrt{7}, 1, 3\right\}$			
14.	已知函数 $f(x)$ 是定义域为的个数是	R 上的偶函数, 当 $x \le 0$	时, $f(x)=(x+1)^{\frac{1}{2}}$	$^{3}e^{x+1}$. 那么函数 $f(x)$	的极值	点)
	(A) 5	(B) 4	(C) 3	(D) 2		
15.	若 $f(x) = x \ln(x + \sqrt{a + x^2})$		<u>_</u> .			
16.	若函数 $f(x) = \ln(e^{3x} + 1)$ -	+ <i>ax</i> 为偶函数,则 <i>a</i> =				
17.	已知函数 $f(x) = x(e^x + ae^x)$	x) 是偶函数,则实数 <i>a</i> =	=			
18.	已知 $y = f(x) + x^2$ 是奇函	数,且 $f(1) = 1$,若 $g(x)$	$= f(x) + 2$, $\emptyset g(-$	1) =		
19.	若 $f(x)$ 是定义在 \mathbf{R} 上的奇	函数, 当 $x \le 0$ 时, $f(x)$	$=2x^2-x$, \emptyset $f(1)$	=		
20.	设函数 $f(x)$ 在 $(-\infty, +\infty)$ 月 ① $y = - f(x) $ ② $y = x$ ③ $y = -f(-x)$ ④ $y = f(-x)$ 中必为奇函数的有	$f(x^2);$ $(x) - f(-x).$	$\left(\frac{1}{2}\right)$			
21.	已知函数 $f(x) = e^{- x } + \cos \theta$ ① $f(x)$ 的最大值为 2; ② $f(x)$ 在 $(-10, 10)$ 内的零 ③ $f(x)$ 的任何一个极大值程 其中,所有正确的命题的原	点之和为 0; 都大于 1.				
22.	已知偶函数 $f(x)$ 在 $[0,+\infty]$) 单调递减, $f(2) = 0$,素		的取值范围是	- •	

4 周期性

4.1 常用周期性模型

- 1) 若 f(x + a) + f(x) = C, 其中 C 为常数,则函数 f(x) 的周期为 T = 2|a|;
- 2) 若 f(x+a)f(x) = C, 其中 C 为常数且 $C \neq 0$, 则函数 f(x) 的周期为 T = 2|a|;
- 3) 若 f(x) 满足 f(x+2a) = f(x+a) f(x), 则 f(x) 的周期为 T = 6|a|;

4.2 对称性和周期性

- 1) f(x) 关于直线 x = a 对称 $\Leftrightarrow f(x) = f(2a x) \Leftrightarrow f(x + a) = f(a x)$.
- 2) f(x) 关于点 (a,0) 对称 $\Leftrightarrow f(x) = -f(2a-x) \Leftrightarrow f(x+a) = -f(a-x)$.
- 3) f(x) 关于点 (a,b) 对称 $\Leftrightarrow f(x) + f(2a x) = 2b$.
- 4) 如果 f(x) 关于 x = a 和 x = b (a > b) 对称,则 T = 2(a b).
- 5) 如果 f(x) 关于 (a,0) 和点 (b,0) (a > b) 对称,则 T = 2(a b).
- 6) 如果 f(x) 关于 (a,0) 和直线 x = b 对称,则 T = 4|a-b|.

学霸总结

若 f(A) = f(B) 且 A - B 为常数,则 f(x) 是以 |A - B| 为周期的函数;若 f(A) = f(B) 且 A + B 为常数,则 f(x) 关于直线 $x = \frac{A + B}{2}$ 对称;若 f(A) = -f(B) 且 A - B 为常数,则 f(x) 是以 2|A - B| 为周期的函数;若 f(A) = -f(B) 且 A + B 为常数,则 f(x) 关于点 $\left(\frac{A + B}{2}, 0\right)$ 中心对称.

练习

2. 定义在 **R** 上的函数 y = f(x) 在区间 $(-\infty, 2)$ 上是增函数,且 y = f(x + 2) 的图象关于 x = 1 对称,则

(A)
$$f(1) < f(5)$$
 (B) $f(1) > f(5)$ (C) $f(1) = f(5)$ (D) $f(0) = f(5)$

3. 设函数 y = f(x) $(x \in \mathbf{R})$ 的图象关于直线 x = 0 及直线 x = 1 对称,且 $x \in [0,1]$ 时, $f(x) = x^2$,则 $f\left(-\frac{3}{2}\right) =$

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{4}$ (C) $\frac{3}{4}$

4.	f(x) 的定义域为 R , 若 $f(x)$	(x+1)与 $f(x-1)$ 都是奇	函数,则		()
	(A) f(x) 是偶函数		(B) f(x) 是奇函数			
	(C) f(x) = f(x+2)		(D) $f(x+3)$ 是奇函数			
5.	$f(x)$ 为定义在 \mathbf{R} 上的函数	f(10+x) = f(10-x),	f(20+x) = -f(20-x),	则 <i>f</i> (x) 是	()
	(A) 周期为 20 的奇函数		(B) 周期为 20 的偶函数			
	(C) 周期为 40 的奇函数		(D) 周期为 40 的偶函数			
6.	下列函数中,对于任意 $x \in \mathbb{R}$,同时满足 $f(x - \pi) = f(x)$ 的函数是)
	$(A) f(x) = \sin x$		(B) $f(x) = \sin x \cos x$			
	$(C) f(x) = \cos x$		(D) $f(x) = \cos^2 x - \sin^2 x$			
7.	已知函数 $y = f(x)$ 的周期的图象的交点的个数为	为 2,当 $x \in [-1,1]$ 时, $f($	$f(x) = x^2$,那么函数 $f(x) = f(x)$	x) 的图象与函数 y	,	x)
	(A) 10 ↑	(B) 9 ↑	(C) 8 ↑	(D) 1 个		
8.	$f(x)$ 是定义在 \mathbf{R} 上的以 3 的最小值是	为周期的偶函数,且 $f(2)$	(x) = 0,则方程 $f(x) = 0$ 在	区间 (0,6) 内的角	解的个数 (数)
	(A) 5	(B) 4	(C) 3	(D) 2		
9.	函数 $y = \frac{1}{1-x}$ 的图象与函	首数 $y = \sin(2\pi x)$ $(-2 \leqslant x)$	≤4) 的图象所有交点的横	坐标之和等于	()
	(A) 2	(B) 4	(C) 6	(D) 8		
10.	已知 $f(x)$ 是 \mathbf{R} 上最小正周 图象在区间 $[0,6]$ 上与 x 轴		当 $0 \leqslant x < 2$ 时, $f(x) = x^3$	- x,则函数 y =	f(x) 怕	勺)
	(A) 6	(B) 7	(C) 8	(D) 9		
11.	已知函数 $f(x)$ $(x \in \mathbf{R})$ 满足	f(-x) = 2-f(x),若函数 y	$y = \frac{x+1}{x}$ 与 $y = f(x)$ 图象	的交点为 (x_1,y_1)	(x_2, y_2)),…
	(x_m,y_m) , $\bigvee_{i=1}^m (x_i+y_i)=$		λ		()
	(A) 0	(B) <i>m</i>	(C) 2m	(D) 4m		
12.	已知函数 $f(x) = \frac{\sin x}{x^2 + 1}$, ① 函数 $f(x)$ 的图象关于原② 函数 $f(x)$ 是周期函数; ③ 当 $x = \frac{\pi}{2}$ 时,函数 $f(x)$	点对称; 取最大值;				
	④ 函数 $f(x)$ 的图象与函数 其中正确的命题的序号是:	N				
	(A) ①③	(B) 23	(C) ①④	(D) 24		

图象变换 5

5.1 性质

平移:
$$\begin{cases} y = f(x) \xrightarrow{\frac{E8a \land \hat{\mu} \oplus b}{Y}} y = f(x+a) \\ y = f(x) \xrightarrow{\frac{A8b \land \hat{\mu} \oplus b}{Y}} y = f(x-b) \end{cases} \qquad \begin{cases} y = f(x) \xrightarrow{\frac{E8c \land \hat{\mu} \oplus b}{Y}} y = f(x) + c \\ y = f(x) \xrightarrow{\frac{E8c \land \hat{\mu} \oplus b}{Y}} y = f(x) - d \end{cases}$$
对称:
$$\begin{cases} y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = -f(x) \\ y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(-x) \end{cases}$$
翻折:
$$\begin{cases} y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(x) \\ y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(x) \end{cases}$$
都抗:
$$\begin{cases} y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(x) \\ y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(x) \end{cases}$$
都抗:
$$\begin{cases} y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(x) \\ y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(x) \end{cases}$$
都抗:
$$\begin{cases} y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(x) \\ y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(x) \end{cases}$$
都抗:
$$\begin{cases} y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(x) \\ y = f(x) \xrightarrow{\frac{EFx + \lambda \oplus h}{Y}} y = f(x) \end{cases}$$

练习

1. 函数 f(x) 的图象向右平移 1 个单位长度,所得图象与 $y = e^x$ 关于 y 轴对称,则 f(x) =

)

(

)

)

(A)
$$e^{x+1}$$

(B)
$$e^{x-1}$$

(C)
$$e^{-x+1}$$

(D)
$$e^{-x-1}$$

2. 设函数 y = f(x) 的图象与 $y = 2^{x+a}$ 的图象关于直线 y = -x 对称,且 f(-2) + f(-4) = 1,则 a = (-2)

$$(A) -1$$

(D) 4

3. 函数 $v = -e^x$ 的图象

(A) 与 $y = e^x$ 的图象关于 y 轴对称

(B) 与 $y = e^x$ 的图象关于坐标原点对称

(C) 与 $y = e^{-x}$ 的图象关于 y 轴对称

(D) 与 $y = e^{-x}$ 的图象关于坐标原点对称

4. 为了得到 $y = \lg \frac{x+3}{10}$ 的图象,只需把函数 $y = \lg x$ 的图象上所有的点)

(A) 向左平移 3 个单位,再向上平移 1 个单位 (B) 向右平移 3 个单位,再向上平移 1 个单位

(C) 向左平移 3 个单位, 再向下平移 1 个单位 (D) 向右平移 3 个单位, 再向下平移 1 个单位

5. 若函数 $f(x) = a^x + b - 1$ (a > 0且a ≠ 1) 的图象经过第二、三、四象限,则一定有)

(A) $0 < a < 1 \perp b > 0$

(B) $a > 1 \perp b > 0$

(C) $0 < a < 1 \perp b < 0$

(D) $a > 1 \perp b < 0$

6. 已知函数 $f(x) = \begin{cases} |\log_2 |x - 1||, & x \neq 1, \\ 0, & x = 1 \end{cases}$

(1) 写出函数 f(x) 的单调区间;

(2) 若关于 x 的方程 $[f(x)]^2 + bf(x) + c = 0$ 有 7 个解, 求 b, c 满足的条件.

6 分段函数

(A) (1,10) (B) (5,6)

(C) (10, 12) (D) (20, 24)

2. 已知函数 $f(x) = \begin{cases} |\log_4 x|, & 0 < x \le 4, \\ x^2 - 10x + 25, & x > 4. \end{cases}$ 若 a, b, c, d 是互不相同的正数,且 f(a) = f(b) = f(c) = f(d),则 abcd 的取值范围是

(A) (24, 25) (B) (18, 24) (C) (21, 24) (D) (18, 25)

3. 设定义在 **R** 上的函数 $f(x) = \begin{cases} |\lg|x-1||, & x \neq 1, \\ 0, & y = 1. \end{cases}$ 则关于 x 的方程 $f^2(x) + bf(x) + c = 0$ 有 7 个不同的 x = 1.

实数解的充要条件是 ()

(A) $b < 0 \pm c > 0$ (B) $b > 0 \pm c > 0$

(C) $b < 0 \pm c = 0$ (D) $b \ge 0 \pm c = 0$

(A) $(-\infty, 0]$ (B) $(-\infty, 1]$ (C) [-2, -1] (D) [-2, 0]

(A) [-1, 2] (B) [-1, 0]

(C) [1, 2] (D) [0, 2]

6. 已知函数 $f(x) = \begin{cases} x-1, & x \leq 2; \\ 2+\log_a x, & x > 2 \end{cases}$ (a > 0且 $a \neq 1)$ 的最大值为 1,则实数 a的取值范围是 ()

(A) $\left[\frac{1}{2}, 1\right)$ (B) (0, 1) (C) $\left(0, \frac{1}{2}\right]$ (D) $(1, +\infty)$

是 ()

 $(A) (-\infty, 1] \tag{B} [1, 4]$

(C) $[4, +\infty)$ (D) $(-\infty, 1] \cup [4, +\infty)$

- 8. 已知函数 $f(x) = \begin{cases} \frac{2}{x} & x \ge 2 \\ x & \text{若关于 } x \text{ 的方程 } f(x) = k \text{ 有两个不同的实根,则实数 } k \text{ 的取值范围} \\ (x-1)^3 & x < 2. \end{cases}$
- 9. 设函数 $f(x) = \begin{cases} 2^x a & x < 1; \\ 4(x a)(x 2a) & x \ge 1. \end{cases}$
 - ① 若 a = 1, 则 f(x) 的最小值为 ;
 - ② 若 f(x) 恰有 2 个零点,则实数 a 的取值范围是_____.
- 10. 设函数 $f(x) = \begin{cases} x^3 3x, & x \leq a, \\ -2x, & x > a. \end{cases}$
 - ① 若 a = 0,则 f(x) 的最大值为
 - ② 若 f(x) 无最大值,则实数 a 的取值范围是 .
- 11. 关于 x 的方程 $g(x) = t(t \in \mathbf{R})$ 的实数根的个数记为 f(t),若 $g(x) = \ln x$,则 $f(t) = _____;$ 若 $g(x) = \begin{cases} x, & x \leq 0; \\ -x^2 + 2ax + a, & x \geq 0. \end{cases}$,存在 t 使得 f(t+2) > f(t) 成立,则 a 的取值范围是_____.
- 12. 己知函数 $f(x) = \begin{cases} (x 2a)(a x), & x \leq 1, \\ \sqrt{x} + a 1, & x > 1. \end{cases}$
 - (1) 若 a = 0, $x \in [0,4]$,则 f(x)的值域为_____;
 - (2) 若 f(x) 恰有三个零点,则实数 a 的取值范围是_____.
- 13. 已知函数 $f(x) = \begin{cases} 1-x^2, & x \ge 0, \\ & \text{ 若关于 } x \text{ 的方程 } f(x+a) = 0 \text{ 在 } (0,+\infty) \text{ 内有唯一实根,则实数 } a \text{ 的} \\ & \text{最小值是}_____. \end{cases}$