Mechatronics Lab: (CB-1034)

No tutorial this week.

- Matlab used for assignments (15%)
- Co 5 assignments total
- 3 lab sessions C+ 1 lab report
- wang using course website on Flash, not D2L

Chapter 1 - Introduction

- (1.1) overview
 - Signal Process: to extract representative Features for advanced analysis
 - Pattern classification (diagnostics)
 - modeling (Forecasting)
 - control
- (1.2) maintenance strategies
 - run to break
 - Preventative maintenance (2 25%)
 - Co periodically shut down machine For maintenance Co unnecessary downtimes
 - predictive maintenance (research state)
 - Condition monitoring recognize defects
 - Co predict the remaining useful life of the faulty component
 - Co Schedule maintenance operations

- literature review, discuss the maintenance strategies

Condition monitoring

- recognize the defects at its earliest stage
- Prevent machinery performance degredation, malfunction, failure.

- (1.3) approaches to fault detection
- O classical approaches a biological sense
 - looking
 - listening
 - touching
 - Smelling
- 2 Automatic diagnosis
 - · Analytical model

- · Signal Processing based
- 3 Monitoring
 - · limit checking
 - · index

Limit 1

Chapter 2 - Introduction to Signals & Systems

(2.1) - Signal Classification

Leterministic (inputs, outputs)

Fandom (statistical quantities, mean, std.)

e.g. y(k) = 2832(k)

Signals Continuous

transient

(2.1) - Signals & Systems

Signals & Systems

Systems

(2.1) - Signals & Systems

(

Signals ___ Stationary (Statistical quantities don't change w/time)

Non-stationary (change w.r.t. time)

Energy = $\int x^2(t) dt$ I²

V²

Sensor $\rightarrow x(t)$

Sep. 5 /19

1) Causality

e any time t, y(t.) ~ x(t.)

 $x(t) \longleftrightarrow y(t)$

 $k \leq k$

$$x(t)$$
 System $\rightarrow y(t)$

Output $y(t_i)$ depends on x(t) \text.

Not depending on its future input $x(t)|_{t>t}$

System - Causal
Real Systems are causal

- Assume no initial energy

y(t) = x2(t) + 15 initial energy

when x(t) = 0, y(t) = 0

EX1
$$y(t) = 3x(t+1)$$

 $t = 1$
 $y(t)|_{t=1} = 3x(t+1)$
non-causal

offline processing diagnostics

```
2) Linearity
        · Additive
                           System
          Input
                       Ontbut
          x_{i}(t)
                       らんわ
          xz(t)
                      52(K)
Additive:
         X_1 + X_2
                      9.+ 9,
                                    1F the output is a sum, the
                                    System can be considered additive
       · Homogeneous
          Input
                        Output
                        5,(4)
         ズ(ギ)
                                       output is . scaled by
homogeneous: a x, (f)
                       a 4,(x)
                                      some amount as input
                      additive + homogeneous
          Input
                               Output
linear: ax,(t) + bx2(t)
                               09.+692
       EXZ
                 5(4) = tx(4)
            Input
                          Output
          X.(K) = U
                          5, = LU
           X2 = 34
                          34. = 3 LU
          X3 = X,+X2
                        43 = 4th
             = 44
     98 = 4th = 4, + 42
      Ex3
                  5(t) = x2(t)
           Input
                        Output
         x, = u
                        5, > 42
```

41 + 42 = 10 U2 = 48 non-linear

42 = 942

43 = 16Uz

x2 = 34

X3 = 44

Linear System,
Lo Superposition depends on this

3) Time Invariance
Input Output

x(f)

5(£)

x(4) 5(4)

Shifted input X(t-t.), y(t-t.)t. = number

time invariant

- System properties don't change with time

impuise

S(t) < 0 there is

 $\frac{\delta(t+2)}{\delta(t+2)} \xrightarrow{\delta(t)} \frac{\delta(t-1)}{\delta(t-1)} \times$

basically, input has shift, output has corresponding shift.

 $k_1 = 1 > 0$ then $S(k-k_1) = \delta(k-1)$ $k_1 = -2 < 0$ then $S(k-k_1) = \delta(k+2)$

EX4 90

Input

Output

I(t)= I(t)

y = x2(x)

 $X_2(k) = x(k-k.)$

92 = x(t-k.)

Time Invariant

y(t) = t x(t)

lubot

Output

$$X_i(k) = X(k)$$

5. = tx(t) 52 = tx(t-t.)

$$Iz = x(k-k.)$$

 $9_{s}(t)|_{t} = t - t$ = 9(t - k) = (t - k) x(t - k)

In Signal Processing,

e: cosual, linear, time invariant

(2.3) - Review of Statistical Quantities

1 Probability In

Random variable X

Probability
Distribution In

Allina

Probability of Px = Prob (x & x.)

Px = Jr. px(x)dx

 $P_{x}(x) \geq 0$ $S_{-\infty} P_{x}(x) dx = 1$

Temp +

Gaussian probability density function (PAF)

$$p_{x} = \frac{1}{26^{2}} e^{\left(\frac{(x-\mu)^{2}}{26^{2}}\right)}$$

2750

M = Mean

0 = st. d

F = variance