- 1. Equivalência entre portas
- 2. Derivação de expressões booleanas
- 3. Simplificação de expressões

booleanas

4. Circuitos combinacionais

Outras equivalências

Expressão ou porta	Expressões equivalentes
a'	(a.a)'
	a NAND a
	(a + a)'
	a NOR a
	a XOR 1
	a XNOR 0
a.b	(a' + b')'
	a' NOR b'
a + b	(a' . b')'
	a' NAND b'
a XOR b	a.b' + a'.b
a XNOR b	a.b + a'.b'

Derivação de expressões booleanas a partir de tabelas de entradas e saídas

• soma de produtos

$$s = a.b + c.d$$

• produto de somas

$$s = (a+b).(c+d)$$

Redes equivalentes

Derivação de soma de produtos

1. Construir a tabela-verdade com as entradas e saídas do circuito.

a	b	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Derivação de soma de produtos

2. Acrescentar uma coluna que contenha, para cada uma das linhas das possíveis combinações de entrada, um termo-produto formado pelo 'e' lógico de todas as variáveis de entrada. Se o valor da variável de entrada for igual a zero (naquela linha da tabela), ela aparece complementada no termo-produto. Se o valor da variável de entrada for igual a um, ela aparece na forma normal (sem ser complementada) no termo-produto.

а	b	С	S	termos-produto		
0	0	0	1	a'.b'.c'		
0	0	1	0	a'.b'.c		
0	1	0	1	a'.b.c'		
0	1	1	0	a'.b.c		
1	0	0	1	a.b'.c'		
1	0	1	0	a.b'.c		
1	1	0	1	a.b.c'		
1	1	1	0	a.b.c		

Derivação de soma de produtos

3. Construir uma soma de produtos, na qual aparecem todos os termos-produto correspondentes a valores de saída iguais a 1.

а	b	С	S	termos-produto		
0	0	0	1	(a'.b'.c')		
0	0	1	0	a'.b'.c		
0	1	0	1	a'.b.c'		
0	1	1	0	a'.b.c		
1	0	0	1	a.b'.c'		
1	0	1	0	a.b'.c		
1	1	0		a.b.c'		
1	1	1	0	a.b.c		

$$s = a' \cdot b' \cdot c' + a' \cdot b \cdot c' + a \cdot b' \cdot c' + a \cdot b \cdot c'$$

4. Simplificar a expressão obtida, aplicando as propriedades da álgebra booleana.

$$s = c'$$

Derivação de produto de somas

1. Construir a tabela-verdade com as entradas e saídas do circuito.

a	b	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Derivação de produto de somas

2. Acrescentar uma coluna que contenha, para cada uma das linhas das possíveis combinações de entrada, um termo-soma formado pelo 'ou' lógico de todas as variáveis de entrada. Se o valor da variável de entrada for igual a um (naquela linha da tabela), ela aparece complementada no termo-soma. Se o valor da variável de entrada for igual a zero, ela aparece na forma normal (sem ser complementada) no termo-soma.

а	b	С	S	termos-soma		
0	0	0	1	a+b+c		
0	0	1	0	a+b+c'		
0	1	0	1	a+b'+c		
0	1	1	0	a+b'+c'		
1	0	0	1	a'+b+c		
1	0	1	0	a'+b+c'		
1	1	0	1	a'+b'+c		
1	1	1	0	a'+b'+c'		

Derivação de produto de somas

3. Construir um produto de somas, no qual aparecem todos os termos-soma correspondentes a valores de saída iguais a 0.

а	b	С	S	termos-soma		
0	0	0	1	a+b+c		
0	0	1	0	a+b+c'		
0	1	0	1	a+b'+c		
0	1	1	0	a+b'+c'		
1	0	0	1	a'+b+c		
1	0	1	0	a'+b+c'		
1	1	0	1	a'+b'+c		
1	1	1	0	(a'+b'+c')		

$$s = (a + b + c') \cdot (a + b' + c') \cdot (a' + b + c') \cdot (a' + b' + c')$$

4. Simplificar a expressão obtida, aplicando as propriedades da álgebra booleana.

$$s = c'$$

Exercício

Derivar as expressões booleanas que representem o funcionamento das duas saídas (soma e vai um) de um somador binário completo (*full adder*) através de somas de produtos.

Não é necessário simplificar as expressões.

Α	В	Cin	S	Cout	t. produto
0	0	0	0	0	A'.B'.Cin'
0	0	1	1	0	A'.B'.Cin
0	1	0	(1)	0	A'.B.Cin'
0	1	1	0	1	A'.B.Cin
1	0	0	1	0	A.B'.Cin'
1	0	1	0	1	A.B'.Cin
1	1	0	0	1	A.B.Cin'
1	1	1	1		A.B.Cin

Simplificação de expressões booleanas

Como chegar à conclusão de que este circuito pode ser implementado com menos portas, ou com menos entradas, ou com menos conexões?

custo (área), velocidade, consumo de potência 🧲

Simplificação de expressões booleanas

- aplicando leis, propriedades e teoremas da álgebra booleana
- mapas de Karnaugh
- método de Quine-McCluskey
- outros métodos
- ferramentas (software) exemplo: Karma (http://www.inf.ufrgs.br/lagarto/)

Aplicando as leis, propriedades e teoremas da álgebra booleana

$$a + b.(a' + b') =$$
 (distributiva)
 $= a + b.a' + b.b'$ (x . x' = 0)
 $= a + b.a' + 0$ (x + 0 = x)
 $= a + b.a'$ (distributiva)
 $= (a + b).(a + a')$ (x + x' = 1)
 $= (a + b).1$ (x . 1 = x)
 $= a + b$

Usando mapas de Karnaugh

а	b	a'	b'	a+b	a'+b'	b.(a'+b')	a+b.(a'+b')
0	0	1	1	0	1	0	0
0	1	1	0	1	1	1	1
1	0	0	1	1	1	0	1
1	1	0	0	1	0	0	1

Usando uma ferramenta (software)

Obs: esta ferramenta (Karma) usa o método de Quine-McCluskey para chegar à expressão mais simples, mas também desenha o mapa de Karnaugh correspondente à tabela de entradas e saídas do circuito

Usando uma ferramenta (software)

 $s = a' \cdot b' \cdot c' + a' \cdot b \cdot c' + a \cdot b' \cdot c' + a \cdot b \cdot c' = c'$

Circuitos Combinacionais

- saídas são função apenas das entradas
- são construídos apenas com portas lógicas sem realimentação
- não possuem elementos de armazenamento (memórias)
- exemplos:
 - multiplexador
 - decodificador
 - unidade aritmética e lógica

Multiplexador (ou Seletor)

- duas ou mais entradas (normalmente 2ⁿ)
- somente uma saída
- um sinal de "seleção" define qual das entradas é copiada na saída
- para 2ⁿ entradas são usados n bits de seleção

Símbolos usados para representar multiplexadores 2-para-1

Multiplexador (ou Seletor)

а	b	sel	saída	t-produto
0	0	0	0	a'.b'.sel'
0	0	1	0	a'.b'.sel
0	1	0	0	a'.b.sel'
0	1	1	1	a'.b.sel
1	0	0	1	a.b'.sel'
1	0	1	0	a.b'.sel
1	1	0	1	a.b.sel'
1	1	1	1	a.b.sel

saída

$$= (a'.b + a.b).sel + (a.b' + a.b).sel'$$

$$= (b.(a'+a)).sel + (a.(b'+b)).sel'$$

$$= (b.1).sel + (a.1).sel'$$

Multiplexador 4-para-1 de 8 bits

Decodificador

- entrada com n bits
- 2ⁿ saídas (correspondem a valores de 0 a 2ⁿ⁻¹ da entrada)
- somente a saída de índice igual ao valor binário representado pelas entrada fica "ativa" (igual a 1, por exemplo)
- todas as demais saídas ficam "desativadas" (iguais a zero, por exemplo)

Símbolos usados para representar decodificadores com entrada de 1 bit

Decodificador

e0	e1	s0	s1	s2	s3	t-produto
0	0	1	0	0	0	e0'.e1'
0	1	0	1	0	0	e0'.e1
1	0	0	0	1	0	e0.e1'
1	1	0	0	0	1	e0.e1

$$s0 = e0'.e1'$$

$$s1 = e0'.e1$$

$$s2 = e0.e1'$$

$$s3 = e0.e1$$

Circuitos Sequenciais

- saídas são função tanto das entradas quanto dos valores de saída (estado atual)
- são construídos com portas lógicas com realimentação
- possuem elementos de armazenamento (memórias)
- exemplos:
 - flip-flop
 - registrador
 - contador