Assignment-4 Text and Sequence Data

AKHILA CHINTA-811308674

AIM

The goal of the binary classification problem for the IMDB dataset is to divide movie reviews into positive and negative categories. The dataset comprises 50,000 reviews; 10,000 words out of the top 10,000 are evaluated; training samples are restricted to 100, 5000, 1000, and 100,000 samples; validation is carried out on 10,000 samples. The data has been prepared. After that, the data is fed into a pretrained embedding model and the embedding layer, and various strategies are tried to gauge performance.

PREPARING THE DATA

- The dataset preparation process transforms each review into a set of word embeddings, where each word is represented by a fixed-size vector.
- This limits the number of samples to 10,000. Also, rather than using a string of words, a set of numbers representing individual words was generated from the reviews. Despite my having the list of numbers, the neural network's input is unsuitable for it.
- Tensors need to be constructed using numbers. One possible use for the integer list would be to create a tensor with samples and word indices of integer data type and form.
- For me to do that, I must ensure that every sample is the same length, which means I must use dummy words or numbers to ensure every review is the same length.

METHOD

For this IMDB dataset, I found two distinct methods for creating word embeddings.

- 1. Custom-trained embedding layer
- 2. pre-trained word embedding layer using the GloVe model.

In this work, we used the popular pretrained word embedding model GloVe, which is trained on a lot of textual data.

evaluated accuracy across sample sizes: 100, 5000, 1000, and 10,000 by comparing custom-trained and pretrained embedding layers on the IMDB dataset.

tested models using pretrained and custom-trained embeddings on IMDB reviews with different sample sizes, evaluating accuracy on test sets.

CUSTOM-TRAINED EMBEDDING LAYER

1. Custom-trained embedding layer with training sample size = 100

2. Custom-trained embedding layer with training sample size = 5000

3. Custom-trained embedding layer with training sample size = 1000

4. Custom-trained embedding layer with training sample size = 10000

The precision of the specially trained embedding layer varied based on the size of the training sample, from 96.29-96.50. Training with a 1000-person sample size produced the highest accuracy.

PRETRAINED WORD EMBEDDING LAYER

1. Pretrained word embedding layer with training sample size = 100

2. Pretrained word embedding layer with training sample size = 5000

3. Pretrained word embedding layer with training sample size = 1000

4. Pretrained word embedding layer with training sample size = 10000

GloVe, a word embedding technique that has been trained, has an accuracy range of 78.19-81.47. It peaks at 100 samples, but as sample sizes increase, it becomes overfit and loses accuracy. Task constraints influence which strategy is best, which leads to uncertainty.

schinta7@kent.edu

RESULTS

Model	Embedding Technique	Training Sample Size	Training Accuracy (%)	Test loss
1	Custom-trained embedding layer	100	96.35	0.34
2	Custom-trained embedding layer	5000	96.29	0.34
3	Custom-trained embedding layer	1000	96.50	0.35
4	Custom-trained embedding layer	10000	96.37	0.34
5	Pretrained word embedding (GloVe)	100	81.47	1.21
6	Pretrained word embedding (GloVe)	5000	79.68	0.83
7	Pretrained word embedding (GloVe)	1000	78.19	1.11
8	Pretrained word embedding (GloVe)	10000	78.79	1.08

CONCLUSION

However, in this experiment, comparing the custom-trained embedding layer and pretrained word embedding layer, the first one performs better than the second, when training with more training sample numbers.