• -----

- 20 -C L A I M S

- A compound which is a crystalline Form X of nateglinide.
- 2. The compound of claim 1, having an X-ray diffraction pattern, expressed in terms of 2 theta angles, that includes five or more peaks selected from the group consisting of 3.95 ± 0.09 , 4.89 ± 0.09 , 5.18 ± 0.09 , 6.78 ± 0.09 , 7.79 ± 0.09 , 10.32 ± 0.09 , 13.51 ± 0.09 , 14.00 ± 0.09 , 16.98 ± 0.09 , 17.94 ± 0.09 , 18.85 ± 0.09 , 19.17 ± 0.09 , 20.32 ± 0.09 , 21.12 ± 0.09 , 22.52 ± 0.09 , 23.76 ± 0.09 , 24.46 ± 0.09 , 27.36 ± 0.09 , 28.17 ± 0.09 , 20.38 ± 0.09 , 31.25 ± 0.09 , 31.25 ± 0.09 , 32.61 ± 0.09 , and 41.65 ± 0.09 degrees.
- 3. The compound of claim 2, wherein said X-ray diffraction pattern includes at least the peaks at 3.95 ± 0.09 , 14.00 ± 0.09 , and 16.98 ± 0.09 degrees.
- The compound of claim 2, wherein said X ray diffraction pattern includes peaks at 3.952, 14.039, 16.98, 20.325, 21.120, 17.942, 6.776, 13.515, and 18.853 degrees.
- 5. The compound of claim 1, having an infrared absorption spectrum with absorption bands at about 3353 cm⁻¹, about 2937 cm⁻¹, about 2868 cm⁻¹, about 1743 cm⁻¹, about 1646 cm⁻¹, about 1597 cm⁻¹, about 1541 cm⁻¹, about 1445 cm⁻¹, about 1208 cm⁻¹, about 1190 cm⁻¹, about 1110 cm⁻¹, about 697 cm⁻¹, and about 607 cm⁻¹.
- The compound of claim 1, having substantially the same X-ray diffraction pattern as that shown in Figure 1.
- The compound of claim 6, having substantially the same infrared spectrum as that shown in Figure 2.
- 8. A composition comprising nateglinide as a solid, wherein at least 80% by weight of said solid nateglinide is its crystalline Form X having an X-ray diffraction pattern, expressed in terms of 2 theta angles, that includes five or more peaks selected from the group consisting of 3.95 ± 0.09 , 4.89 ± 0.09 , 5.18 ± 0.09 , 6.78 ± 0.09 , 7.79 ± 0.09 , 10.32 ± 0.09 , 13.51 ± 0.09 , 14.04 ± 0.09 , 16.98 ± 0.09 , 17.94 ± 0.09 , 18.85 ± 0.09 , 19.17 ± 0.09 , 20.32 ± 0.09 , 21.12 ± 0.09 , 22.52 ± 0.09 , 23.76 ± 0.09 , 24.46 ± 0.09 , 27.36 ± 0.09 , 28.17 ± 0.09 , 30.88 ± 0.09 , 31.25 ± 0.09 , 32.61 ± 0.09 , and 41.65 ± 0.09 .
- 9. The composition of claim 8, wherein said X-ray diffraction pattern includes at least the peaks at 3.95 ± 0.09 , 14.00 ± 0.09 , and 16.98 ± 0.09 degrees.
- The composition of claim 8, wherein at least 90% by weight of said solid nateglinide is its crystalline Form X.
- 11. The composition of claim 8, wherein at least 95% by weight of said solid nateglinide is its crystalline Form X.

- 12. The composition of claim 8, wherein at least 99% by weight of said solid nateglinide is its crystalline Form X.
- The composition of claim 8, wherein said solid nateglinide is substantially free of its crystalline Forms H and B.
- 14. The composition of claim 8, wherein at least 1% of said solid nateglinide is not its crystalline Form X.
- 15. The composition of claim 8, wherein at least 5% of said solid nateglinide is not its crystalline Form X.
- A pharmaceutical composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
- 17. The pharmaceutical composition of claim 16, further comprising one or more pharmaceutically acceptable excipients.
- The pharmaceutical composition of claim 17, which is a solid dosage form for oral administration.
- The pharmaceutical composition of claim 18, wherein said solid dosage form is a tablet.
- A process for preparation a crystalline form X of nateglinide, said process comprising:
 - a. providing a solution of nateglinide in an aromatic hydrocarbon solvent;
 - b. cooling the solution until a precipitate is formed; and
 - c. isolating the precipitate, which is the crystalline form X of nateglinide.
- 21. The process of claim 20, further comprising drying the isolated precipitate.
- 22. The process of claim 20, wherein said aromatic hydrocarbon solvent is selected from the group consisting of benzene, ethyl benzene, toluene, and xylene.
- The process of claim 20, wherein said aromatic hydrocarbon solvent is xylene or ortho-xylene.
- The process of claim 20, wherein the starting nateglinide is crystalline
 Form H, crystalline Form B, or a mixture thereof.
- 25. The process of claim 20, wherein said providing step includes heating a mixture of the starting nateglinide and the aromatic hydrocarbon solvent to a temperature of from about 40°C to about 130°C until the solution is formed.

- 26. The process of claim 25, wherein the mixture is heated to from about 60°C to about 70°C.
- 27. The process of claim 20, further comprising filtering said provided solution of nateglinide prior to said cooling step.
- 28. The process of claim 20, wherein the solution of nateglinide is cooled to from about 25°C to about 35°C.
- 29. A process for making crystalline form X of nateglinide, said process comprising:
- a. forming a solution of nateglinide in xylene or ortho-xylene at from about 50°C to about 70°C ;
- b. cooling the solution from 25°C to about 35°C to form a precipitate; and
 - c. filtering said precipitate.
- 30. The process of claim 9, further comprising drying the precipitate.
- 31. A compound produced by the process of claim 20.
- 32. A compound produced by the process of claim 29.
- 33. A compound produced by the process of claim 30.