4 Energetske pretvorbe i procesi u nuklearnim elektranama

- 125. Što je to fisija i za kakve elemente daje energiju?
 - Fisija je raspad teških jezgri na lakše, daje energiju za teške elemente s nestabilnom jezgrom
- 126. Što je to fuzija i za kakve elemente daje energiju?
 - Fuzija je spajanje manjih jezgri u veću, daje energiju za lake elemente
- 127. Što je to energija veze?
 - Energija koju je potrebno uložiti da se jezgra rastavi na sastavne dijelove
- 128. Što je to defekt mase?
 - Defekt mase je razlika mase jezgre i ukupne mase pojedinačnih nuleona
- 129. Što je to ostatna toplina?
 - Toplina koja nastaje kao posljedica radioaktivnog raspada fisijskih produkata
- 130. Što je to obogaćenje nuklearnog goriva?
 - Proces povećanja izotopskog udjela
- 131. Napišite zakon radioaktivnog raspada.
 - $N = N_0 \cdot e^{-\lambda t}$
- 132. Navedite tipove energetskih reaktora.
 - mogu se podijeliti prema tipu goriva, kurištenom rashladnom sredstvu, potrebi za usporavanje neutrona (brzi reaktori, termički reaktori) i namjeni koriptenja (istraživački rektori, proizvodnja električne energije i/ili topline, proizvodnja nuklearnog materijala, proizvodnja vodika, desalinizacija)
- 133. Navedite dvije osnovne kemijske forme goriva u nuklearnom reaktoru.
 - · metal i kreamika
- 134. Navedite osnovne materijale moderatora neutrona.
 - obična voda, teška voda, grafit i berilij
- 135. Navedite osnovna rashladna sredstva u reaktoru.
 - obična voda, teška voda, plin, tekući metali i rastopljene soli
- 136. Definirajte faktor multiplikacije neutrona.
 - omjer srednjeg broja neutrona u dvije susjedne generacije neutrona (prije i nakon fisije)
- 137. Koliko rashladnih krugova ima BWR reaktor?
 - jedan rashladni krug
- 138. Koliko odvojenih rashladnih krugova ima nuklearna elektrana PWR tipa (lakovodnipod tlakom) od reaktora do konačnog ponora topline?

- a) 1
- b) 2
- c) 3
- d) 4

139. Moderator se koristi za:

- a) ubrzavanjeneutrona
- b) usporavanjeneutrona
- c) apsorpcijuneutrona
- d) multiplikacijuneutrona

140. Vrijeme poluraspada je vrijeme:

- a) za koje seraspadne polapočetno prisutnihjezgara radioaktivnogizotopa
- b) za koje sepočetni brojjezgarasmanji eputa
- c) pola vremenapotrebnog da seraspadnu početnoprisutni radioaktivniizotopi
- d) vrijeme za kojeradioaktivni izotopprestane bitiradioaktivan
- 141. Koju kombinaciju gorivo/moderator/rashladno sredstvo nije moguće realizirati?
 - a) prirodni uran/obična voda/teška voda
 - b) obogaćeni uran/obična voda/obična voda
 - c) obogaćeni uran/teška voda/teška voda
 - d) prirodni uran/grafit/plin
- 142. Kao moderator kod brzog oplodnog reaktora koristi se:
 - a) obična voda
 - b) teška voda
 - c) grafit
 - d) ništa od navedenog
- 143. Koji se kružni proces koristi u sekundarnom krugu nuklerane elektrane s tlakovodnimreaktorom (PWR):
 - a) Jouleov
 - b) Rankineov
 - c) Carnotov
 - d) Stirlingov
- 144. Nukleonom nazivamo:
 - a) nuklearnujezgru
 - b) proton
 - c) neutron
 - d) proton ilineutron u jezgri
- 145. Energija veze po nukleonu s porastom broja nukleona:
 - a) Raste
 - b) Pada
 - c) Raste pa pada
 - d) Pada pa raste

- 146. Ako je ukupna masa čestica prije nuklearne reakcije veća nego masa nakon reakcije:
 - a) oslobođenaje energija
 - b) morali smouložitienergiju
 - c) ovisi o tipunuklearnereakcije
 - d) ovisi o česticama kojeučestvuju u nuklearnojreakciji
- 147. Čime je jednoznačno određena gustoća reakcija fisije?
 - a) Obogaćenjemi masomgoriva
 - b) Mikroskopskim udarnimpresjekom i vrstomfisibilnog materijala
 - c) Temperaturomitlakom
 - d) Tokom neutrona i makroskopskim fisijskimudarnim presjekom
- 148. Što je od navedenoga različito između PWR i BWR reaktora?
 - a) gorivo
 - b) moderator
 - c) pogonski tlak
 - d) rashladno sredstvo
- 149. Reaktor BWR tipa ima sljedeće materijale kao gorivo/moderator/rashladno sredstvo
 - a) metalniuran/teškuvodu/običnuvodu
 - b) urandioksid/običnu vodukoja ne ključa/običnuvodu koja ne ključa
 - c) urandioksid/običnu vodukoja ključa/običnuvodu koja ključa
 - d) metalniuran/grafit/plin
- 150. Koja kombinacija gorivo/ moderator/ rashladno sredstvo odgovara PWR (lakovodnipod tlakom) reaktoru?
 - a) obogaćeniuran/običnavoda/obična voda
 - b) obogaćeniuran/teška voda/teška voda
 - c) prirodniuran/obična voda/teška voda
 - d) prirodniuran/grafit/plin
- 151. Nuklearna elektrana u mreži pokriva
 - a) samo baznoopterećenje
 - b) najčešće baznoopterećenje
 - c) vršno opterećenje
 - d) nema pravila
- 152. Iznos ostatne topline ovisi o
 - a) samo o snazi nakojoj je reaktor radio
 - b) samo ovremenu obustave
 - c) samo o trajanjurada reaktora
 - d) sve navedeno
- 153. Ostatna toplina u nuklearnom gorivu je posljedica:
 - a) preostalogneiskorištenogfisijskog goriva
 - b) radioaktivnograspada fisijskihprodukata
 - c) reakcijaneiskorištenihneutrona
 - d) kombinacijekemijskih inuklearnihreakcija

- 154. Ostatna toplina u nuklearnom gorivu predstavlja problem jer:
 - a) nije iskorištenasva fisijskaenergija iz goriva
 - b) može doći doeksplozije
 - c) razvijena toplinamože istopitinuklearno gorivo
 - d) složenost procesaradioaktivnih raspadanije lako proračunati
- 155. Ostatna toplina u nuklearnom gorivu predstavlja najveći problem:
 - a) neposrednonakon obustaverada reaktora
 - b) neposredno prijepočetka rada reaktora
 - c) neposredno prijeprestanka radareaktora
 - d) za vrijemerada reaktora
- 156. Što je aktivnost izvora?
 - a) Broj raspadau jedinicivremena
 - b) Energija potrebnaza fisiju
 - c) Energijadeponirana ujedinici mase
 - d) Mjeraodstupanjareaktora odkritičnosti
- 157. Kada je reaktor kritičan?
 - a) Kada imamultiplikacijskifaktor jednak 1.
 - b) Kad mu snagakontinuirano raste.
 - c) Kad mu snagaubrzano raste.
 - d) Kad možeeksplodirati.
- 158. Koji od navedenih moderatorskih materijala nije našao primjenu u energetskim reaktorima:
 - a) obična voda
 - b) teška voda
 - c) grafit
 - d) berilij
- 159. Što je od navedenog indikacija da nuklearna reakcija može proizvesti energiju?
 - a) Razlika maseprije i poslijereakcije je većaod nule
 - b) Razlika mase prijei poslije reakcije jemanja od nule
 - c) Reakcija imaenergiju aktivacijemanju od nule
 - d) Reakcija imaenergijuaktivacije većuod nule
- 160. Za snagu kritičnog reaktora vrijedi da:
 - a) raste
 - b) pada
 - c) je konstantna
 - d) je nazivnog iznosa