1 第14教学周12.5

Applications

引理1.1 (Product lemma). Let $f, g \in \mathcal{S}(\mathbb{R}^d)$, $s \geq 0$. Then we have

$$||fg||_{H^s} \lesssim ||f||_{H^s} ||g||_{L^\infty} + ||f||_{L^\infty} ||g||_{H^s}.$$
 (1.1)

命题1.2 (Hardy's inequality). For $f \in \mathcal{S}(\mathbb{R}^d)$, and $s \in [0, \frac{d}{2})$,

$$\left\| \frac{f}{|x|^s} \right\|_{L^2} \lesssim \||\nabla|^s f\|_{L^2}.$$
 (1.2)

1.6 Method of stationary and non-stationary phase

引理1.3. If $\nabla \phi \neq 0$ on supp a, then the integral

$$\left| \int_{\mathbb{R}^d} e^{i\lambda\phi(\xi)} a(\xi) d\xi \right| \le C(N, a, \phi) \lambda^{-N}, \quad \lambda \to \infty$$
 (1.3)

for arbitrary $N \geq 1$.

引理1.4. If $\nabla \phi(\xi_0) = 0$ for some $\xi_0 \in \text{supp}(a)$, $\nabla \phi \neq 0$ away from ξ_0 , and the Hessian of ϕ at the stationary point ξ_0 is nondegenerate, i.e., $\det \nabla^2 \phi(\xi_0) \neq 0$, then for all $\lambda \geq 1$

$$\left| \int_{\mathbb{R}^d} e^{i\lambda\phi(\xi)} a(\xi) d\xi \right| \le C(d, a, \phi) \lambda^{-d/2}. \tag{1.4}$$

Elementary of distribution theory

1.1 Basic spaces

 Ω : open set. K: compact set.

 $\mathcal{E} \times 1.5$ ($\mathcal{E}(\Omega)$ space). A sequence $\varphi_j \in C^{\infty}(\Omega)$, $j \in \mathbb{N}$, converges in $C^{\infty}(\Omega)$ to a function $\varphi \in C^{\infty}(\Omega)$ as $j \to \infty$, if and only if for any compact set $K \subset \Omega$ and any $m \in \mathbb{N}_0$ one has

$$\lim_{j \to \infty} \sup_{\alpha \in \mathbb{N}_0^n, |\alpha| \le m} \sup_{x \in K} |\partial^{\alpha} (\varphi_j - \varphi) (x)| = 0.$$

 \not **Z** \not **1.6** ($\mathcal{D}(\Omega)$ space). Let $\varphi_j \in C_c^{\infty}(\Omega)$, and $\varphi \in C_c^{\infty}(\Omega)$.

$$\varphi_j \to \varphi \quad in \ \mathcal{D}(\Omega)$$
 (1.5)

if and only if

- 1. $\exists K \subseteq \Omega \ compact \ set \ such \ that \ supp \varphi_j \subset K \ for \ j \geq 1, \ and \ supp \varphi \subset K.$
- 2. $\forall \alpha$, $\lim_{j\to\infty} \sup_{x\in K} |\partial^{\alpha}(\varphi_j \varphi)(x)| = 0$.

命题1.7. 1. $\partial^{\alpha}: \varphi \mapsto \partial^{\alpha} \varphi$ is continuous in $\mathcal{D}(\Omega)$, $\mathcal{S}(\mathbb{R}^d)$, and $\mathcal{E}(\Omega)$.

2. For $g \in C^{\infty}(\Omega)$, $M_g : \varphi \mapsto g\varphi$ is continuous in $\mathcal{D}(\Omega)$ and $\mathcal{E}(\Omega)$.

作业

 P_{300} **27**; P_{308} **30**, **36**;