Introduction to Informatics

Piroska Biró

Revision

- Which numbers were represented with the IEEE 754 floating point standard?
- Represent the following decimal numbers in 32 bits using the IEEE 754 floating point standard.
 - -4232.37₍₁₀
- ▶ Represent 455.6₍₁₀₎ number in octal system.
 - starting with sign bit
 - the exponent will be 1 digit (in 3 bits), excess-4
 - the fraction part 4 digits
- ▶ Represent –53214₍₁₀ number in hexadecimal system.
 - starting with sign bit
 - the exponent will be 1 nibble (4 bits), excess-8
 - the fraction part 4 digits

Unicode UTF-8

```
0xxxxxxx

110xxxxx
10xxxxxx

1110xxx
10xxxxxx

11110xx
10xxxxxx

111110x
10xxxxxx

10xxxxxx
10xxxxxx

10xxxxxx
10xxxxxx

10xxxxxx
10xxxxxx
```

1. Give the Unicode value of the BMP plane's given character and the encoding of UTF-8 in the hexadecimal form.

	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F
0x3040	30	あ	あ	Ų.	W	う	う	え	え	\$	な	かゝ	カミ	き	ぎ	<
0x3050	*	け	げ	IJ	î. J	さ	铷	し	じ	す	ず	世	ぜ	そ	ぞ	た
0x3060	だ	ち	ぢ	S	٩	ぐ	7	で	と	7	な	と	ぬ	ね	0	は
0x3070	せ	ぱ	ひ	び	ľ	Ş	級	ર્ફ	>	%	%	ほ	ぼ	ぽ	妝	み
0x3080	む	め	P	Þ	\$	ゆ	ゆ	ょ	よ	Š	り	る	れ	ろ	わ	わ
0x3090	あ	急	を	h	ゔ	30 95	30 96	30 91	30 98	11	۰	۰	0	7	Š	30

- ▶ U+3086
- 11 0000 1000 0110
- ▶ 1110xxxx 10xxxxxx 10xxxxxx
- 111100011 10000010 10000110
- ► E38286

2. Give the Unicode value of the BMP plane's given character and the encoding of UTF-8 in the hexadecimal form.

	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0×0B	0x0C	0x0D	0x0E	0x0F
0x3040	30	あ	あ	Ų.	W	う	う	え	え	\$	お	かゝ	カミ	き	ぎ	<
0x3050	<*	け	げ	Ŋ	ĵ.)	さ	7,	し	じ	す	ず	世	ぜ	そ	ぞ	た
0x3060	だ	ち	ぢ	9	S	づ	て	で	と	찬	な	と	ぬ	ね	の	は
0x3070	ば	ぱ	ひ	び	ぴ	Š	స్ట	ર્ફ	^	~	~	ほ	ぼ	ぽ	ま	み
0x3080	む	め	f	Þ	\$	ゆ	ゆ	ょ	よ	Š	り	る	れ	ろ	わ	わ
0x3090	ゐ	急	を	ん	ゔ゙	30	30	30	90	**	•	٠	D	>	Ž,	30

- ▶ U+307F
- 11 0000 0111 1111
- ▶ 1110xxxx 10xxxxxx 10xxxxxx
- 111100011 10000001 10111111
- ▶ E381BF

3. Give the Unicode value of the BMP plane's given character and the encoding of UTF-8 in the hexadecimal form.

	0×00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0×08	0x09	0×0A	0×0B	0×0C	0x0D	0×0E	0x0F
0x2d30	0	θ	0	X	Χ	X	T	٨	٧	Е	Э	010	Н	K	· :-	K
0x2d40	Φ	Ø	1	λ	Н	Ж	::	Z		Σ	I	\mathfrak{X}	#	N	Г	-
0x2d50	#	ļ	2	00	0	Q	Y	:	\mathbb{R}	0	Ø	C	+	Χ	€	E
0×2d60	Δ	Ц	Σ	Ж	ľ	*										1
0×2d70																2D

- ▶ U+2D5E
- ▶ 10 1101 0101 1110
- ▶ 1110xxxx 10xxxxxx 10xxxxxx
- 111100010 10110101 10011110
- ▶ E2B59E

4. Give the Unicode value of the BMP plane's given character and the encoding of UTF-8 in the hexadecimal form.

	0x00	0×01	0x02	0x03	0x04	0x05	0 x 0 6	0x07	0x08	0×09	0 x 0 A	0×0B	0x0C	0×0D	0x0E	0x0F
0x30a0		ア	ア	1	1	ゥ	ウ	エ	エ	オ	オ	カ	ガ	+	ギ	ク
0х30ь0	グ	ケ	ゲ	П	ĬŢ	サ	ザ	シ	ジ	ス	ズ	セ	ゼ	ソ	ゾ	タ
0x30c0	ダ	チ	ヂ	ッ	ツ	ヅ	テ	デ	٢	K	ナ	_	ヌ	ネ	ノ	/ \
0×30d0	77	/١	L	ビ	ピ	フ	ブ	プ	^	ベ	~	ホ	ボ	ポ	マ	H
0x30e0	ム	X	Ŧ	ヤ	ヤ	ュ	ユ	3	∃	ラ	IJ	ル	レ		ヮ	ワ
0×30f0	‡	ユ	J	ン	ヴ	カ	ケ	ヷ	ヸ	ヹ	ヺ	•		\	1,	

- ▶ U+30CD
- 11 0000 1100 1101
- ▶ 1110xxxx 10xxxxxx 10xxxxxx
- 111100011 10000011 10001011
- ▶ E3838D

Backwards calculation

- Which characters were encoded in this hexadecimal UTF-8 form?
- ▶ CE B1
- ▶ C5 9E
- ▶ E2 91 B1
- ▶ EF BC A0
- F0 98 86 88

Backwards - Solution

Which characters were encoded in this hexadecimal UTF-8 form?

- ► CE B1->U+03B1-> α
- ► C5 9E ->U+015E->Ş
- \triangleright E2 91 B1->U+2471->(18)
- ▶ EF BC A0->U+FF20->@
- FO 98 86 88->U+18188

Unicode table and converter

- Unicode table:
 - http://www.tamasoft.co.jp/en/generalinfo/unicode.html
- Unicode converter
 - http://rishida.net/tools/conversion/

Logical NOT operation NOT gate

Α	Q
0	1
1	0

NOT
$$A = \overline{A}$$

Logical AND operation AND gate

 $A \text{ AND } B = A \cdot B$

Α	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

Logical NAND operation NAND gate

A NAND B = $\overline{A \cdot B}$

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

Logical OR operation OR gate

$$A OR B = A + B$$

Α	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

Logical NOR operation NOR gate

A NOR
$$B = \overline{A + B}$$

Α	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Logical XOR operation XOR gate

 $A XOR B = A \oplus B$

$$A \cdot \overline{B} + \overline{A} \cdot B$$

A	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

Logical XNOR operation

A XNOR B = $\overline{A \oplus B}$

$$A \cdot B + \overline{A} \cdot \overline{B}$$

A	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

Truth Table

Α	В	NOT A	A AND B	A NAND B	A OR B	A NOR B	A XOR B	A XNOR B
0	0	1	0	1	0	1	0	1
0	1	1	0	1	1	0	1	0
1	0	0	0	1	1	0	1	0
1	1	0	1	0	1	0	0	1

Calculate the following logical operations.

- 1. **NOT** (01110101 **AND** 10010011)=
- 2. 10110011 **XOR** (11001010 **AND** 10110111)=
- 3. NOT(11001011 OR 10111011)=
- 4. 01011010 NXOR 10000011=
- 5. NOT(01001010) OR (10110011 NOR 10110111)=
- 6. 111110101 **AND** (11010011 **XOR** 101111101)=
- 7. (01001010 OR 10110011) AND (11000001) =
- 8. 01001010 **XOR** (10110011 **NAND** 111110111)=

1. Describe the following circuit with logic expression. According to this give the mathematical equivalents. What is the value of expression, if A=0, B=1, D=0?

(A AND NOT(B OR D)) OR ((B OR D) AND NOT(A))

$$\left[A \cdot \left(\overline{B+D}\right)\right] + \left[\left(B+D\right) \cdot \overline{A}\right]$$

1

2. Describe the following circuit with logic expression. According to this give the mathematical equivalents. What is the value of expression, if A=0, B=1, D=0?

(NOT(A AND B) AND (B OR D)) OR (NOT(B) AND A)

$$[\overline{(A\cdot B)}\cdot (B+D)]+(\overline{B}\cdot A)$$

1

3. Describe the following circuit with logic expression. According to this give the mathematical equivalents. What is the value of expression, if A=1, B=1, C=1?

((A AND (NOT C)) OR (B OR C)) AND (B OR C) = D

$$(A \cdot \overline{C} + B + C) \cdot (B + C) = D$$

1

4. Describe the following circuit with logic expression. According to this give the mathematical equivalents. What is the value of expression, if A=0, B=0, C=0?

(A AND (NOT C)) AND (NOT (B OR C))=D

$$(A \cdot \overline{C}) \cdot (\overline{B + C}) = A \cdot \overline{C} \cdot \overline{B} \cdot \overline{C}$$

0

Logic gate simulator

http://www.electrosight.com/ logic-gate-simulator