

Introduction to GPUs

Hans Henrik Brandenborg Sørensen

DTU Computing Center

DTU Compute

<hhbs@dtu.dk>

Outline

- Why are GPUs important for you?
- Why are GPUs different from CPUs?
- GPUs as accelerators
- Tensor Cores
- Performance / scratching the surface

Why are GPUs important in HPC?

Why are GPUs important in HPC?

Why are GPUs important for you?

Why are GPUs different from CPUs?

The good news

Transistor size over the years; still decreases

September 21, 2022 Introduction to GPUs 7

The bad news

Clock speed over the years; stagnated since 2005

Why not increase clock speed?

- Power = Frequency x Voltage²
- Heat produced depends on power

Why not increase clock speed?

- Power = Frequency x Voltage²
- Heat produced depends on power
- "Nard scaling"

Why not increase clock speed?

- Power = Frequency x Voltage²
- Heat produced depends on power
- "Nard scaling"
 - Reduce transistor voltage to counter higher clock speed
 - □ Broke down in 2005 because of weakened current in the wires (need to distinguish 0 and 1)
- What matters today: # operations per Watt!
- Trade-off favors slower simpler cores
 - More operations per watt
 - Frequency kept low

CPUs (traditionally)

- Usual task of traditional CPUs
 - □ Desktop applications / OS
 - Lightly threaded
 - Lots of (indirect) memory accesses
 - Lots of branches

Windows 10

CPUs try to minimize the time to complete a particular task – often to support user interaction!

CPUs (traditionally)

- Usual task of traditional CPUs
 - □ Desktop applications / OS
 - Lightly threaded
 - Lots of branches
 - Lots of (indirect) memory accesses

Windows 10

- CPUs try to minimize the time to complete a particular task – often to support user interaction!
- Complex control hardware
 - + Flexibility in performance
 - + Lightly parallel
 - Expensive in terms of power

GPUs (traditionally)

- GPUs are designed to compute pixels fast!
 - □ Rendering video games in real-time
 - Play HD movies on smart phones
 - Render visual effects for movies...

More concerned about the number of pixels per second than the latency of any particular pixel!

GPUs (traditionally)

- GPUs are designed to compute pixels fast!
 - □ Rendering video games in real-time
 - Play HD movies on smart phones
 - Render visual effects for movies...

- More concerned about the number of pixels per second than the latency of any particular pixel!
- Simpler control hardware
 - + More transistors for computation
 - + Power efficient
 - Highly parallel
 - More restrictive in performance

GPUs as accelerators

GPUs as accelerators

- Problem: Still require OS, I/O, and scheduling
- Solution: "Hybrid system"
 - CPU provides management
 - Accelerators such as GPUs provide compute power

Types of accelerators

- GPUs
 - □ HPC high-end versions Tesla branch
 - DP downgraded versions Titan branch
 - Gamer versions RTX branch

- Custom many-core processors
 - Japan / China

- TPUs (Tensor Processing Units)
 - Google Al accelerator application-specific integrated circuit (ASIC)

Accelerators in Top500

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)	THE LIST.
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100 Cale	AMD Instinct (MI250X)
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899	
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	1,110,144	151.90	214.35	2,942	AMD Instinct (MI250X)
4	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096	Nvidia Tesla (Volta)
5	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438	Nvidia Tesla (Volta)

September 21, 2022

Introduction to GPUs

Accelerators in Top500

Accelerators/Co-processors

Nvidia GPU architectures

Five generations of high-performance GPUs:

												129	#Coroo
	# GPUs	Name	Year	Architecture	CUDA cap.	CUDA cores	Clock MHz	Mem GiB	SP peak GFlops	DP peak GFlops	Peak GB/s	id=21	#Cores, Mem, and
Kepler	5	Tesla K40c	2013	GK110B (Kepler)	3.5	2880	745 / 875	11.17	4291 / 5040	1430 / 1680	288	- 1	GB/s keep
Ropici	8	Tesla K80c (dual)	2014	GK210 (Kepler)	3.7	2496	562 / 875	11.17	2796 / 4368	932 / 1456	240	dtu.dk/?page_	going up!
Pascal	8	*TITAN X	2016	GP102 (Pascal)	6.1	3584	1417 / 1531	11.90	10157 / 10974	317.4 / 342.9	480	dtu.	Clock freq.
Volta	22	Tesla V100	2017	GV100 (Volta)	7.0	5120	1380	15.75	14131	7065	898	.hpc	level off!
	12	Tesla V100- SXM2	2018	GV100 (Volta)	7.0	5120	1530	31.72	15667	7833	898	http://www.hpc	Peak
Ampere	6	Tesla A100- PCIE	2020	GA100 (Ampere)	8.0	6912	1410	39.59	19492	9746	1555		increases 2x every ~3
Hopper	-	Tesla H100- SXM5	2022	GH100 (Hopper)	9.0	8448	1650	79.18	38984	19492	3110	Source	years!

September 21, 2022 Introduction to GPUs 21

What is CUDA?

- [Compute Unified Device Architecture]
- A parallel computing standard and API proposed by Nvidia for general-purpose computations on CUDA-enabled GPUs
 - Priority #1: Make things easy (Sell GPUs)
 - □ Priority #2: Get performance
- Result: Simple to get started, but..
 - □ Requires expert knowledge to get best performance
- Scalable
- Well documented and free to use (!)

CUDA toolkit

- The CUDA toolkit comprises a full framework of compiler, profiler, low- and high-level APIs, and highly tuned GPU libraries, e.g.
 - cuBLAS CUDA Basic Linear Algebra Subroutines library
 - cuFFT CUDA Fast Fourier Transform library
 - cuRAND CUDA Random Number Generation library
 - cuSOLVER CUDA based collection of dense and sparse direct solvers
 - cuSPARSE CUDA Sparse Matrix library
 - cuDNN CUDA Deep Neural Network library

. . . .

Tensor Cores

Floating-point formats

- Standard way to represent real numbers
 - □ Double (FP64), single (FP32), half (FP16), quarter (FP8)
- How floating-point numbers work
 - Exponent; determines range of values
 - Mantissa; determines the relative precision

FP8 Formats for Deep Learning (2022) https://arxiv.org/abs/2209.05433

Tensor cores – what are they?

- Specialized math hardware units
 - □ Performs one mixed precision GEMM per cycle
 - V100 (FP16): 4 x 4 x 4
 - A100 (FP16): 8 x 4 x 8
 - H100 (FP8): 8 x 4 x 32
 - □ 8-16x higher math throughput (32x with sparsity) and saves 30% in power!
 - Same memory bandwidth pressure

A _{0,0}	A _{0,1}	A _{0,2}	A _{0,3}
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
A _{2,0}	A _{2,1}	A _{2,2}	A _{2,3}
A _{3,0}	A _{3,1}	A _{3,2}	A _{3,3}

B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}
B _{1,0}	B _{1,1}	B _{1,2}	B _{1,3}
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}
B _{3,0}	B _{3,1}	B _{3,2}	B _{3,3}

C _{0,0}	C _{0,1}	C _{0,2}	C _{0,3}
C _{1,0}	C _{1,1}	C _{1,2}	C _{1,3}
C _{2,0}	C _{2,1}	C _{2,2}	C _{2,3}
C _{3,0}	C _{3,1}	C _{3,2}	C _{3,3}

Flavors of Tensor cores

A100 TF32 mode (default) TENSOR FLOAT 32 (TF32)

8 BITS

10 BITS

V100 / A100 FP16 / BF16 mode

H100 FP8 mode (Automatic)

Mixed precision training

- Combines single-precision (FP32) with lower precision (FP16 / FP8) when training a network
 - □ Use lower precision where applicable (e.g. convolutions, matrix multiplies,...)
 - □ Keep certain operations in FP32
- Achieves the same accuracy as FP32 training using all the same hyper-parameters

Benefits of mixed precision

- Accelerates math-intensive operations with specialized hardware (GPU Tensor Cores)
 - □ FP16/BF16 have 16x higher throughput than FP32
- Accelerates memory-intensive operations
 - □ 16-bit: half the number of bytes to be read/written
- Reduces memory requirements
 - □ 16-bit: reduce storage of tensors by half
 - Enables training of larger models, larger mini-batches, larger inputs
- Hopper accelerates further using 8-bit formats

Automatic mixed precision (AMP)

- Nvidia AMP automates all the key considerations
 - Layer selection
 - Decides which operations compute in FP32 vs. FP16
 - Weight storage
 - Keeps model weights and updates in FP32
 - Loss scaling
 - Retains small gradient magnitudes for FP16 results
- Supported now in all mayor frameworks

PyTorch

Native support available in PT 1.6+ and NVIDIA Container 20.06+. Documentation can be found here:

https://pytorch.org/docs/stable/amp.html

https://pytorch.org/docs/stable/notes/amp examples.html

Performance

GPU performance basics

Computing is done in parallel on SMs

19.5 TFlops for FP32 / 156 TFlops for TF32

GPU performance basics

- Compute (math) bound
 - □ Limited by # flops * time per flop

GFlops = # floating point operations / 109 / runtime

- Memory bound
 - Limited by # bytes moved / bandwidth

Bandwidth = (Bytes_read + Bytes_written) / 109 / runtime

Arithmetic intensity (GFlops / Bandwidth) vs.

$$R_{FP16} = \frac{peak \ performance}{max \ bandwidth} = \frac{312 \ TFlops/s}{1.555 \ TB/s} = 201 \ Flops/B$$

Speed-up from Tensor Cores

- Compute bound
 - Benifits from Tensor Cores: 8 16x speed-up
- Memory bound
 - Benifits from FP16 format: 2x speed-up

8-16x acceleration from FP16/BF16 Tensor Cores

Matrix Multiplications
linear, matmul, bmm, conv

Loss Functions
cross entropy, 12 loss, weight decay

Reductions batch norm, layer norm, sum, softmax

Pointwise relu, sigmoid, tanh, exp, log

2x acceleration with 16-bit formats (but should not sacrifice accuracy)

Ensure training is on GPUs

- Did your training time improve?
- Check use by hand
 - □ NVIDIA Nsight Compute (profiler for e.g. CUDA)

```
$ nv-nsight-cu-cli python train.py
> ==PROF== Profiling "volta_fp16_s884cudnn" - 1: 0%....50%....100% -
10 passes
> ...
```

□ NVIDIA Deep Learning Profiler dlprof

```
# Wrap training command line with DLPROF
$ dlprof --mode=pytorch python train.py

> Total Wall Clock Time (ns): 25812693595  # Time spent
> Total GPU Time (ns): 19092416468  # Time spent on GPU
> Total Tensor Core Kernel Time (ns): 10001024991 # Time spent on TCs
```

NVIDIA Nsight systems

Ensure use of Tensor Cores / AMP

- Check with profilers
 - □ Kernel names that use Tensor Cores tend to look like

```
> ==PROF== Profiling "volta_fp16_s884cudnn...
> ==PROF== Profiling "ampere_h16816gemm...
> ==PROF== Profiling "cutlass_tensorop_f16_s1688gemm_f16_...
```

□ NVIDIA Deep Learning Profiler dlprof

```
> Total Tensor Core Kernel Time (ns): 10001024991 # Time spent on TCs
```

- Best performance if
 - Compute bound layers (gemms/convs) dominate training
 - □ Good parameter choices (dimensions multiples of 8)
 - □ Linear / conv layers large enough (GEMM dims > 128)

Overall training performance

- Be aware of overall performance bottleneck
 - Tensor cores speed up only part of the (GPU) work
 - □ The remaining parts may become the bottleneck

End of talk