3DICT: A Reliable and QoS Capable Mobile Process-In-Memory Architecture for Lookup-based CNNs in 3D XPoint ReRAMs

¹Qian Lou, ²Wujie Wen, and ¹Lei Jiang

¹Indiana University Bloomington

²Florida International University

CNN is accurate

ImageNet Top 5 Classification Error (%)

Hand-crafted SVMs Deep CNN-based designs

Deep learning is extremely relevant to mobile systems!

目 eye 面 face 体 body 人 people 文 culture 以 recognize 市 city 记 remember 资 capital 学 learn 国 country 世 world 年 year 月 month 周 week 日 day

空 air 地 ground 水 water

开 open 合 close

们 they 她 she 他 he

理 reason 说 say

The price!

Metrics	LeNet-5	AlexNet	VGG-16	GoogleNet	ResNet-50
Total Weights #	60k	61M	138M	7M	25.5M
Total MACs #	341k	724M	15.5G	1.43G	3.9G

Bottlenecked due to limited hardware resource!

Limited battery lifetime

Low Battery

10% of battery remaining

Dismiss

Low-precision CNN?

- Prior works improve inference throughput using low-precision CNN but with accuracy loss
 - YodaNN [Renzo+, ISVLSI'16]
 - XNOR-POP [Lei+, ISLPED'17]
 - **SOT-MRAM** [Deliang+, ICCD'17]
 - XNOR-RRAM [Xiaoyu+, DATE'17]

However, accuracy!

Sometimes accuracy matters! Unlocking phone

Non-critical task

QoS in mobile systems is a must!

Critical task

VR object tracking

Executive summary

Motivation:

- CNN is **accurate** (> human) in mobile systems for object recognition, machine intelligence and so on.
- Intelligent applications in mobile systems include critical tasks (accuracy) and non-critical tasks (real-time). QoS is essential.
- **PIM** is an **energy-efficient** method for mobile systems.
- **Problem**: Current CNN in mobile system 1) is very slow, 2) no QoS support, 3) costs too much power
- <u>Goal</u>: To develop a **QoS** capable **PIM** architecture for mobile devices to support intelligent applications using **3D XPoint ReRAMs**.
- <u>3DICT</u>: 1) Lookup-based CNN (MAC#↓ weights#↓) 2) 2D ReRAM MLC endurance↓ ->2D ReRAM SLC throughput↓ ->3D ReRAM SLC)

• Evaluation:

- 1. 3DICT can support QoS with 10-year life time.
- 2. CNN test **performance per Watt** by **13%~61x** over prior architectures.

Outline

1. CNN and Lookup-based CNN

2. 3DICT

3. Evaluation

4. Conclusion

Lookup-based CNN?

AlexNet	# MACs	QoS?
CNN	724M	No
LCNN	43M	Yes

MACs: QoS:

LCNN MACs normolized to CNN

[Hessam et al., CVPR 2017]

From CNN to LCNN

From CNN to LCNN

Small Convolution:

About LCNN

Small Convolution:

Lookup-scale-discard:

Outline

1. CNN and Lookup-based CNN

2. 3DICT

3. Evaluation

4. Conclusion

ReRAM array

ReRAM array can compute convolution!

[M. Prezioso et al., nature 2015] [Ali Shafiee et al., ISCA 2016]

Mobile system budget:

450mWatt, **1024** 128x128 arrays +128ADCs

[M. Prezioso et al., nature 2015] [Ali Shafiee et al., ISCA 2016]

Lookup-scale-discard:

Lookup-scale-discard:

Challenge: endurance of system[↑]

Solution: 3DICT

• 2 bit MLC cell, endurance bad (10⁷ writes), throughput good (6 bits for 3-cell bitline)

Solution: 3DICT

- 2 bit MLC cell, endurance bad (10⁷ writes), throughput good (6 bits for 3-cell bitline)
- 1 bit SLC cell, endurance good (10¹¹ writes), throughput bad (3 bits for 3-cell bitline) [M. Prezioso et al., nature 2015] [Ali Shafiee et al., ISCA 2016]

3D ReRAM dot-product engine

SLC cell--> endurance 2X long bitline --> throughput

Solution: 3DICT

1-bit SLC cell + 2x long bitline(3D): throughput good + endurance good

- 2 bit MLC cell, endurance bad (10⁷ writes), throughput good (6 bits for 3-cell bitline)
- 1 bit SLC cell, endurance good (10¹¹ writes), throughput bad (3 bits for 3-cell bitline) [M. Prezioso et al., nature 2015] [Ali Shafiee et al., ISCA 2016]

3DICT construction

Challenge: Performance is the same

Hybrid convolution

Hybrid convolution

Solution:

Layer 1-5:

Dict ->Voltage Input->Conductance

Layer 6-8:

Input ->Voltage
Dict->Conductance

Hybrid convolution improves performance

Lookup-discard-scale

Lookup-scale-discard:

Lookup-discard-scale

Solution: 1 Lookup 2 Discard

3DICT construction with improvements

Outline

- 1. CNN and Lookup-based CNN
- 2.3DICT
- 3. Evaluation
- 4. Conclusion

Evaluation

On average, CNN test performance/Watt by 13%~61x over prior architectures.

Evaluation

Critical tasks – accurate and slow Non-critical tasks – inaccurate but fast

Conclusion

• Motivation:

- CNN is **accurate** (> human) in mobile systems for object recognition, machine intelligence and so on.
- Intelligent applications in mobile systems include critical tasks (accuracy) and non-critical tasks (real-time). QoS is essential.
- **PIM** is an **energy-efficient** method for mobile systems.
- **Problem**: Current CNN in mobile system 1) is very slow, 2) no QoS support, 3) costs too much power
- <u>Goal</u>: To develop a **QoS** capable **PIM** architecture for mobile devices to support intelligent applications using **3D XPoint ReRAMs**.
- <u>3DICT</u>: 1) Lookup-based CNN (MAC#↓ weights#↓) 2) 2D ReRAM MLC endurance↓ ->2D ReRAM SLC throughput↓ ->3D ReRAM SLC)

• Evaluation:

- 1. 3DICT can support QoS with 10-year life time.
- 2. CNN test **performance per Watt** by **13%~61x** over prior architectures.

Thank you!

3DICT configuration

Name	Component	Spec	Power (mW)	Area (mm^2)
	ADC×1	8-bit 1.28GSps	2	0.0012
Hierarchical	DAC×256	1-bit, inverter	1	0.00025
Array (HA)	S&H×128	sample & hold	0.0125	0.000005
	Array×8	128×128 2-layer	0.3	0.0002
Sub-total			3.3125	0.001655
Multiply	HA×8		26.5	0.01324
Accumulate	S&A×4	shift & add	0.2	0.00024
Unit (MAU)	ReRAM 1KB	I/O buffer	0.15	0.0005
Sub-total			26.85	0.01398
	MAU×16		429.6	0.224
	Sigmoid×2	activation	0.52	0.0006
3DICT	S&A×1	shift & add	0.4	0.00006
	$MaxPool \times 1$	pooling	0.31	0.00024
	Router and bus	connection	3	0.04
	ReRAM 1KB	I/O buffer	0.15	0.0005
dict storage	ReRAM 64MB	power gating	3.6 (0)	0.16
Total			433.98	0.4254

3DICT:

434mWatt, **1024** 128x128 2-layer arrays +128ADCs

Methodology

Workloads:

Name	DataBase Topology Top-5 Accuracy(%) Orig 3DICT-A 3DICT-F 2					
LaNat 5	MNIST	2C 2C 1E			97.2	
LeNet-5		3C,2S,1F	99.1	98.8		97.2
MLP	MNIST	5F	98.5	98.1	97.1	96.9
CNP	MNIST	3C,2S,1F	97.0	96.8	96.2	96.1
SCNN	MNIST	2C,2F	99.0	98.2	97.7	97.8
MCNN	MNIST	3C,3S,3F	96.8	96.1	95.7	95.7
AlexNet	ImageNet	5C,3S,2F	80.2	78.1	68.7	69.2
ResNet-18	ImageNet	18C,2S,1F	89.2	84.6	76.8	73.2

Architectures:

Name	Description	$Power_{acc}$	$Power_{mem}$
Envision [21]	complex CNNs	62mW [21]	1.91W [17]
YodaNN [1]	BinaryConnect	248mW [1]	1.91W [17]
Eyeriss [4]	complex CNNs	278mW [4]	1.91W [17]
TETRIS [11]	HMC PIM	8.42W [11]	0
XNOR-POP [17]		2.15W [17]	0
mISAAC	mobile ReRAM CNN	435.58mW	0
3DICT	ReRAM LCNN	435.58mW	0

[Torch7 & Caffe] [FODLAM by Cornell]

3D ReRAM dot-product engine

