CS & IT ENGINEERING Theory of Computation

Mallesham Devasane Sir

Topics to be Covered

Topic

Regular Expression

Topic

Finite Automata

Topic

Regular Grammar

Q29. Suppose
$$L_1 = 0*$$

$$L_2 = 10$$

$$L_3 = \{1^m \ 0^m \ | m \ge 0\}$$

$$L_4 = 1*$$

$$L_2/L_1 = 10/8 = \frac{910/\epsilon}{10}, \frac{100, \frac{100}{10}}{4}$$

If $L_5 = ((L_2/L_1) - L_4) - \overline{L}_3$ Then, the language L_5 will be:

Q30. The number of states in the minimum sized DFA that accepts the language defined by the regular expression (00 + 111)* is_____.

Q31. Which of the following regular expression is equivalent to the finite automaton?

Q32. Consider grammar G:

$$\frac{1}{a} \frac{1}{s} \frac{1}{a} \frac{1}{s} \frac{1}{a}$$

G:

$$S \rightarrow aSa \mid a \mid b \mid \in$$

Let $L = \{w \mid w \in L(G) \text{ and } \mid w \mid = 14\}$

Then how many strings are possible in L? ____.

Q33. Consider two languages L_1 and L_2 on = $\Sigma\{a, b\}$.

 $L_1 = \{aa, ab\}$ and $L_2 = \{aa, ab, abab\}$ then which of the following is true?

$$L_1 \subset L_2$$

$$L_1^* \subset L_2^*$$

$$L_2^* \subset L_1^*$$

$$L_1^* = L_2^*$$

$$(L_1 \cup L_2)^* = (a+b)^*$$

$$L_{1}^{*} = (aa + ab)^{*}$$
 $L_{2}^{*} = (aa + ab)^{*} + abab)^{*} = L_{1}^{*}$

Q33. Consider two languages L_1 and L_2 on = $\Sigma\{a, b\}$.

(b) $L_1 = \{aa, ab\} \text{ and } L_2 = \{aa, ab, abab\} \text{ then which of the following is true?}$

$$L_1^* \subseteq L_2^*$$

$$L_1^* = L_2^*$$

$$L_2^* \subseteq L_1^*$$

$$(L_1 \cup L_2)^* = (a+b)^*$$

Q34. Which of the following is/are correct regular expression for L = {starting and ending whit a}?

Q35. How many minimal states are needed in DFA to design a language over $\Sigma = \{a, b\}$ where 5th symbol from left is b?____

$$(a+b)^{4}b(a+b)^{8}$$

$$5+2=7,$$

$$(a+b)^{4}b(a+b)^{8}$$

$$(a+b)^{4}b($$

Regular Exp & FA: NAT

Q36. The number of minimal states in DFA that accepts all the strings over $\Sigma = \{a, b\}$. Where "2nd symbol from right hand side is a" are____.

Q37. Construct a minimal DFA that accepts all the strings over $\Sigma = \{a, b\}$. where, number of occurrence of substring "ab" is even. If number of trap states are x, number of final states are y and number of non-final states are z then the

 $\#ab(\omega) = ever$

= 0,2,4,6,8,...

- Q38. How many minimal states are needed to design a DFA that accepts language
- (a) over $\Sigma = \{0, 1\}$. Where each string contains "aaa or bbb" as a substring? ____

Q38. How many minimal states are needed to design a DFA that accepts language over $\Sigma = \{0, 1\}$. Where each string contains "aaa or bbb" as a substring? ____

= 7,

Q38. How many minimal states are needed to design a DFA that accepts language

over $\Sigma = \{0, 1\}$. Where each string centains "aaa or bbb" as a substring? ____

-211

Q39. Consider the language (L) over $\Sigma = \{a, b\}$ if number of a's in a string at least 1 and number of b's in a string at least 2 then total number of states in a

minimal DFA is $_{--}$ $\#a's \ge 1$ $\#b's \ge 2$

L={abb,bab,bba,...}

Q40. Consider the following transition table (T) on input alphabet {a, b} for NFA.

T:

δ	a	b
$\rightarrow S$	{S}	{A}
Α	{S}	{A}
*F	{A}	{S,A}

How many states are needed to design equivalent minimal DFA for above NFA?

A

4

2

В

D T

3

> Cons

Q41. Consider the following DFA. All are non finals

Il anguast is empris

How many states are possible in minimal DFA? _

Q42. Which of the following is/are correct?

$$(8\pm5\pm)=\{\epsilon, 85, 885, 855, 8585, -\}$$

Q43. Consider the following ∈-NFA: Which of the following strings are accepted?

A abab

B baab

bbaa

abaa

[MCQ]

Q44. let L be the set of all the languages accepted by all grammars where every production is in the form of V → VT* or V → T*.
Let Q be the set of all languages accepted by all grammars where every

production of grammar is in the form of $V \to T^*V$ or $V \to T^*$

Which of the following is correct?

(Note: T is terminals and V is non-terminals)

Q45. Consider the following grammar G:

G:
$$S \rightarrow aS \mid bS \mid aaS \mid bbS \mid a$$

Which of the following is correct regular expression for above grammar G?

THANK - YOU