

PERTEMUAN 3

UKURAN PEMUSATAN & PENYEBARAN DATA

DR. TUKIYAT, M.SI

081398222862

Program Studi Magister Teknik Informatika Program Pascasarjana Universitas Pamulang 2023

CAPAIAN PEMBELAJARAN

- Mahasiswa memahami teori, aplikasi pemusatan data dan penyebaran data dengan metode dan teori statistika
- Mahasiswa memahami tentang pemusatan Data dan penyebaran data serta manfaatnya

PEMUSATAN DATA

- Nilai tunggal yang mewakili suatu kumpulan data dan menunjukkan karakteristik dari data.
- Ukuran pemusatan menunjukkan pusat dari nilai data.

UKURAN-UKURAN DATA DALAM STATISTIK

- 1. Ukuran Tendensi Sentral /Pemusatan Data:
 - Rata-rata (mean)
 - Nilai tengah (median)
 - Modus

- Ukuran Lokasi :
 - Kuartil (Quartiles)
 - Desil (Deciles)
 - Persentil (Percentiles)

UKURAN PENYEBARAN DATA DALAM STATISTIK

3. Ukuran Dispersi/Keragaman:

- Jarak (Range)
- Rata-rata deviasi (Mean deviation)
- Ragam/Varian (Variance)
- Simpangan Baku (Standard deviation)

- 1. Rata-rata (mean)
 - Jika data berasal dari suatu sampel, maka ratarata (mean) dirumuskan
 - Data Tidak Berkelompok

$$\bar{x} = \frac{\sum x_i}{n}$$

Data Berkelompok

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$$

Dimana x_i = nilai tengah kelas ke-i f_i = frekuensi kelas ke-l n = jumlah data

1. Rata-rata (*mean*) – (Lanjutan)

- Jika data merupakan data populasi, maka rata-rata dirumuskan
 - Data Tidak Berkelompok $\mu = \frac{\sum x_i}{N}$
 - Data Berkelompok

$$\mu = \frac{\sum f_i x_i}{\sum f_i}$$

Dimana x_i = nilai tengah kelas ke-i f_i = frekuensi kelas ke-l

N = jumlah data untuk populasi

2. Median

- Merupakan suatu nilai yang terletak di tengah-tengah sekelompok data setelah data tersebut diurutkan dari yang terkecil sampai terbesar.
- Suatu nilai yang membagi sekelompok data dengan jumlah yang sama besar.
- Untuk data ganjil, median merupakan nilai yang terletak di tengah sekumpulan data, yaitu di urutan ke- $\frac{n+1}{2}$
- Untuk data genap, median merupakan rata-rata nilai yang terletak pada urutan ke- $\frac{n}{2}$ dan $\frac{n}{2}$ + 1

2. Median – (Lanjutan)

 Jika datanya berkelompok, maka median dapat dicari dengan rumus berikut:

$$Median = LB + \frac{\frac{n}{2} - f_{kum}}{f_{median}}.I$$

Dimana

LB = Lower Boundary (tepi bawah kelas median)

n = banyaknya observasi

f_{kum}< = frekuensi kumulatif kurang dari kelas median

f_{median} = frekuensi kelas median

I = interval kelas

3. Modus

- Merupakan suatu nilai yang paling sering muncul (nilai dengan frekuensi muncul terbesar)
- Jika data memiliki dua modus, disebut bimodal
- Jika data memiliki modus lebih dari 2, disebut multimodal

3. Modus – (Lanjutan)

 Jika data berkelompok, modus dapat dicari dengan rumus berikut:

$$Modus = LB + \frac{f_a}{f_a + f_b}.I$$

Dimana

LB = Lower Boundary (tepi bawah kelas dengan frekuensi terbesar/kelas modus)

f_a = frekuensi sebelum kelas modus

f_b = frekuensi sesudah kelas modus

I = interval kelas

UKURAN PEMUSATAN DATA (Contoh Penghitungan)

DATA TIDAK BERKELOMPOK

 Berikut adalah data sampel tentang nilai sewa bulanan untuk satu kamar apartemen (\$). Jumlah sampel yang disurvai sebanyak 70 apartemen di suatu kota.

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

Catatan: Data Telah Diurutkan

DATA TIDAK BERKELOMPOK

---->apabila data tidak berkelompok

Rata-rata Hitung (Mean)

$$\bar{x} = \frac{\sum x_i}{n} = \frac{34.356}{70} = 490,80$$

Median

Karena banyaknya data genap (70), maka median merupakan rata-rata nilai ke-35 dan ke-36, yaitu

$$(475 + 475)/2 = 475$$

Modus = 450 (muncul sebanyak 7 kali)

UKURAN LOKASI (LOCATION MEASUREMENT)

1. Persentil (Percentiles)

- Persentil merupakan suatu ukuran yang membagi sekumpulan data menjadi 100 bagian sama besar.
- Persentil ke-p dari sekumpulan data merupakan nilai data sehingga paling tidak p persen obyek berada pada nilai tersebut atau lebih kecil dan paling tidak (100 - p) percent obyek berada pada nilai tersebut atau lebih besar.

UKURAN LOKASI (LOCATION MEASUREMENT)

1. Persentil (*Percentiles*) (Lanjutan)

- Cara pencarian persentil
 - Urutkan dari dari yang terkecil ke terbesar.
 - Cari nilai i yang menunjukkan posisi persentil ke-p dengan rumus:
 i = (p/100)n
 - Jika i bukan bilangan bulat, maka bulatkan ke atas. Persentil ke-p merupakan nilai data pada posisi ke-i.
 - Jika i merupakan bilangan bulat, maka persentil ke-p merupakan ratarata nilai pada posisi ke-i dan ke-(i+1).

UKURAN LOKASI (Contoh Penghitungan)

Berdasarkan kasus sewa kamar apartemen

- Persentil ke-90
 - Yaitu posisi data ke-(p/100)n = (90/100)70 = 63
 - Karena i=63 merupakan bilangan bulat, maka persentil ke-90 merupakan rata-rata nilai data ke 63 dan 64
 - Persentil ke-90 = (580 + 590)/2 = 585

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

UKURAN LOKASI (LOCATION MEASUREMENT)

2. Kuartil (Quartiles)

- Kuartil merupakan suatu ukuran yang membagi data menjadi 4 (empat) bagian sama besar
- Kuartil merupakan bentuk khusus dari persentil, dimana
 - Kuartil pertama = Percentile ke-25
 - Kuartil kedua = Percentile ke-50 = Median
 - Kuartil ketiga = Percentile ke-75

UKURAN LOKASI (Contoh Penghitungan)

Berdasarkan kasus sewa kamar apartemen

- Kuartil ke-3
 - Kuartil ke-3 = Percentile ke-75
 - Yaitu data ke-(p/100)n = (75/100)70 = 52.5 = 53
 - Jadi kuartil ke-3 = 525

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

UKURAN LOKASI (LOCATION MEASUREMENT)

3. Desil (Deciles)

- Merupakan suatu ukuran yang membagi sekumpulan data menjadi 10 bagian sama besar
- Merupakan bentuk khusus dari persentil, dimana:
 - Desil ke-1 = persentil ke-10
 - Desil ke-2 = persentil ke-20
 - Desil ke-3 = persentil ke-30

...

. . .

Desil ke-9 = persentil ke-90

UKURAN LOKASI (Contoh Penghitungan)

Berdasarkan kasus sewa kamar apartemen

- Desil ke-9
- Berarti- \rightarrow (90/100)*70 = 63

Maka desil ke 9 adalah data ke 63 + ke 64 dibagi2

Desil ke-9 = Percentile ke-90 = 585

425	430	430	435	435	435	435	435	440	440
440	440	440	445	445	445	445	445	450	450
450	450	450	450	450	460	460	460	465	465
465	470	470	472	475	475	475	480	480	480
480	485	490	490	490	500	500	500	500	510
510	515	525	525	525	535	549	550	570	570
575	575	580	590	600	600	600	600	615	615

DR. Tukiyat, M.Si

RINGKASAN

Statistics

Sewa Hotel (\$)

N	Valid	70
	Missing	0
Mean		490.80
Median		475.00
Mode		450
Std. Deviation	n	54.737
Variance		2996.162
Range		190
Sum		34356
Percentiles	25	445.00
	50	475.00
	75	525.00

PEMUSATAN DATA DATA BERKELOMPOK

DATA BERKELOMPOK

Misalnya dari hasil pengumpulan data dari 50 perusahaan diperoleh data sebagai berikut:

Nilai biaya promosi perusahaan Manufacturing

Biaya (\$)	Frekuensi (f _i)	X _i	Frekuensi kumulatif	Lower Boundary	f _i x _i
50 – 59	2	54,5	2	49,5	109,0
60 – 69	13	64,5	15	59,5	838,5
70 – 79	16	74,5	31	69,5	1192,0
80 – 89	7	84,5	38	79,5	591,5
90 – 99	7	94,5	45	89,5	661,5
100 – 109	5	104,5	50	99,5	522,5
Total	50				3915,0

Rata-rata Hitung (Mean)

$$\mu = \frac{\sum f_i x_i}{\sum f_i}$$

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{3915,0}{50} = 78,3$$

$$Median = LB + \frac{\frac{n}{2} - f_{\text{kum}}}{f_{\text{madian}}} J$$

Dimana

LB = Lower Boundary (tepi bawah kelas median)

n = banyaknya observasi

f_{kum} = frekuensi kumulatif kurang dari kelas median

f_{median} = frekuensi kelas median

I = interval kelas

$$Median = 69,5 + \frac{\frac{50}{2} - 15}{16}.10 = 75,75$$

MODUS

$$Modus = LB + \frac{f_a}{f_a + f_b}.I$$

Dimana

LB = Lower Boundary (tepi bawah kelas dengan frekuensi terbesar/kelas modus)

f_a = frekuensi sebelum kelas modus
f_b = frekuensi sesudah kelas modus
I = interval kelas

$$Modus = 69,5 + \frac{13}{13+7}.10 = 76$$

UKURAN PENYEBARAN/DISPERSI/DEVIASI

KONSEP PENYEBARAN DATA

- Ukuran penyebaran suatu kelompok data terhadap pusat data.
- Suatu ukuran baik parameter atau statistik untuk mengetahui seberapa besar penyimpangan data dengan nilai rata-rata hitungnya.
- Ukuran penyebaran membantu mengetahui sejauh mana suatu nilai menyebar dari nilai tengahnya, semakin kecil semakin baik.

UKURAN PENYEBARAN DATA

- Jangkauan (Range)
- Simpangan/deviasi Rata-rata (Mean Deviation)
- Variansi (Variance)
- Standar Deviasi (Standar Deviation)

UKURAN YANG MENYATAKAN HOMOGENITAS / HETEROGENITAS :

- I. RENTANG (Range)
- 2. DEVIASI RATA-RATA (Average Deviation)
- 3. VARIANS (Variance)
- 4. DEVIASI STANDAR (Standard Deviation)

Rentang (range): selisih bilangan terbesar dengan bilangan terkecil. Sebaran merupakan ukuran penyebaran yang sangat kasar, sebab hanya bersangkutan dengan bilangan terbesar dan terkecil.

A:100 90 80 70 60 50 40 30 20 10 B:100 100 100 100 100 10 10 10 10 10

C:100 100 100 90 80 30 20 10 10 10

rataan =
$$55$$

r = $100 - 10 = 90$

Kelompok A

Nilai X	x - x	X-X
100	45	45
90	35	35
80	25	25
70	15	15
60	5	5
50	-5	5
40	-15	15
30	-25	25
20	-35	35
10	-45	45
Jumlah	0	250

$$DR = \frac{250}{10} = 25$$

Deviasi Rata-rata: penyebaran berdasarkan harga mutlak simpangan bilangan-bilangan terhadap rata-ratanya.

RUMUS UMUM

$$MD = \frac{\Sigma |X - \overline{X}|}{N}$$

MD = mean Deviation

X = data

Xbar= rata-rata

N = jumlah data

Kelompok B

Nilai X	X - X	X-X
100	45	45
100	45	45
100	45	45
90	35	35
80	25	25
30	-25	25
20	-35	35
10	-45	45
10	-45	45
10	-45	45
Jumlah	0	390

$$DR = \frac{390}{10} = 39$$

Varians & Deviasi Standar

Varians: penyebaran berdasarkan jumlah kuadrat simpangan bilanganbilangan terhadap rata-ratanya; melihat ketidaksamaan sekelompok data

Kelompok A

Nilai X	X -X	(X-X) ²
100	45	2025
90	35	1225
80	25	625
70	15	225
60	5	25
50	-5	25
40	-15	225
30	-25	625
20	-35	1225
10	-45	2025
Jumlah		8250

Nilai X	X -X	(X -X) ²
100	45	2025
100	45	2025
100	45	2025
90	35	1225
80	25	625
30	-25	625
20	-35	1225
10	-45	2025
10	-45	2025
10	-45	2025
Jumlah		15850

$$s^{2} = \sum_{i=1}^{n} \frac{(Xi - \overline{X})^{2}}{n-1}$$

Deviasi Standar: penyebaran berdasarkan akar dari varians; menunjukkan keragaman kelompok data

$$s = \sqrt{\frac{n}{\sum_{i=1}^{n} \frac{(Xi - X)^2}{n-1}}}$$

$$s = \sqrt{\frac{8250}{9}} = 30.28$$
 $s = \sqrt{\frac{15850}{9}} = 41.97$

Kesimpulan:

Kelompok A : rata-rata = 55 ; DR = 25 ; s = 30.28

Kelompok B: rata-rata = 55; DR = 39; s = 41.97

Maka data kelompok B lebih tersebar daripada kelompok A

2. DEVIASI/SIMPANGAN RATA-RATA UNTUK DATA BERKELOMPOK

Deviasi Rata-Rata merupakan Jumlah nilai mutlak dari selisih semua nilai dengan nilai rata-rata dibagi dibagi dengan banyaknya data.

Data tidak berkelompok :
$$SR = \frac{\Sigma |X - \overline{X}|}{n}$$

Data berkelompok :
$$SR = \frac{\Sigma f|X - X|}{\Sigma f}$$

SIMPANGAN RATA-RATA (LANJUTAN)

Interval Kelas	X	f	Fx	$ X - \overline{X} $	$f X-\overline{X} $
9-21	15	3	45	50,92	152,76
22-34	28	4	112	37,92	151,68
35-47	41	4	164	24,92	99,68
48-60	54	8	432	11,92	95,36
61-73	67	12	804	1,08	12,96
74-86	80	23	1840	14,08	323,84
87-99	93	6	558	27,08	162,48
		Σf = 60	3955		998,76

$$\overline{X} = \frac{\Sigma fX}{\Sigma f} = \frac{3955}{60} = 65,92$$

$$SR = \frac{998,76}{60} = 16,646$$

3. VARIANSI

Rata-rata kuadrat selisih dari semua nilai data terhadap nilai rata-rata hitung.

Data tidak berkelompok:

$$S^{2} = \frac{\Sigma(X - \overline{X})^{2}}{n-1} \operatorname{atau} S^{2} = \frac{n\Sigma X^{2} - (\Sigma X)^{2}}{n(n-1)}$$

Data berkelompok:

$$S^{2} = \frac{\Sigma f(X - \overline{X})^{2}}{\Sigma f - 1} \text{ atau } S^{2} = \frac{n\Sigma fX^{2} - (\Sigma fX)^{2}}{n(n-1)}$$

$$n = \Sigma f$$

4. STANDAR DEVIASI

Akar pangkat dua dari Variansi.

Disebut juga Simpangan Baku.

Data tidak berkelompok:

$$S = \sqrt{\frac{\Sigma(X - \overline{X})^2}{n - 1}} \text{ atau } S = \sqrt{\frac{n\Sigma X^2 - (\Sigma X)^2}{n(n - 1)}}$$

Data berkelompok :
$$\sum_{\Sigma f(X - X)} f(X - X) = \sum_{\Sigma f(X - X)} f(X - X)$$

Data berkelompok :
$$S = \sqrt{\frac{\Sigma f(X - \overline{X})^2}{\Sigma f - 1}} \text{ atau } S = \sqrt{\frac{n\Sigma fX2 - (\Sigma fX)2}{n(n-1)}}$$
$$n = \Sigma f$$

VARIANS DAN STANDAR DEVIASI (LANJUTAN)

$$S^2 = \frac{26124,76}{60-1} = 442,79$$

 $S = \sqrt{442,79} = 21,04$

Interval Kelas	Х	f	$\left(X-\overline{X}\right)^2$	$f(X-\overline{X})^2$
9-21	15	3	2592,85	7778,55
22-34	28	4	1437,93	5751,72
35-47	41	4	621	2484
48-60	54	8	142,09	1136,72
61-73	67	12	1,17	14,04
74-86	80	23	198,25	4559,75
87-99	93	6	733,33	4399,98
		Σf = 60		26124,76

KESIMPULAN

KELEBIHAN & KEKURANGAN RATA-RATA, MEDIAN & MODUS

- Rata-rata Hitung (Mean)
 - Kelebihan:
 - Melibatkan seluruh observasi
 - Tidak peka dengan adanya penambahan data
 - Contoh dari data :

```
3 4 5 9 11 Rata-rata = 6,4
3 4 5 9 10 11 Rata-rata = 7
```

- Kekurangan:
 - Sangat peka dengan adanya nilai ekstrim (outlier)
 - Contoh: Dari 2 kelompok data berikut

```
Kel. I : 3 4 5 9 11 Rata-rata = 6,4
Kel. II : 3 4 5 9 30 Rata-rata = 10,2
```

KELEBIHAN & KEKURANGAN RATA-RATA, MEDIAN & MODUS

Median

- Kelebihan:
 - Tidak peka terhadap adanya nilai ekstrim
 - Contoh: Dari 2 kelompok data berikut

 Kel. I
 :
 3
 4
 5
 13
 14

 Kel. II
 :
 3
 4
 5
 13
 30

Median I = Median II = 5

Kekurangan:

- Sangat peka dengan adanya penambahan data (sangat dipengaruhi oleh banyaknya data)
- Contoh: Jika ada satu observasi baru masuk ke dalam kelompok I, maka median = 9

KELEBIHAN & KEKURANGAN RATA-RATA, MEDIAN & MODUS

Modus

- Kelebihan:
 - Tidak peka terhadap adanya nilai ekstrim
 - Contoh: Dari 2 kelompok data berikut

```
Kel. I : 3 3 4 7 8 9
Kel. II : 3 3 4 7 8 35
Modus I = Modus II = 3
```

- Kekurangan:
 - Peka terhadap penambahan jumlah data
 - Cohtoh: Pada data

```
3 3 4 7 8 9 Modus = 3
3 3 4 7 7 8 9 Modus = 7
```

- Ukuran dispersi menunjukkan tingkat penyebaran data.
- ▶ Ukuran dispersi besar → penyebaran data tinggi → variabilitas data tinggi → data heterogen
- ▶ Ukuran dispersi kecil → penyebaran data rendah → variabilitas data kecil → data homogen

PERTEMUAN SELANJUTNYA

DISTRIBUSI TEORETIS / DISTRIBUSI DISKRIT

- Distribusi Binomial
- Distribusi Poisson

TERIMA KASIH

TUGAS TERSTRUKTUR PADA WEEK 4 FILE DIBUAT DALAM BENTUK PDF

- Diketahui nilai hasil ujian mata kuliah Metode Penelitian bagi 40 mahasiswa sebagai berikut:
- 70, 80, 79,68, 90, 92, 80, 70, 83, 63, 76, 76, 61, 49, 99, 84, 82, 71, 88, 72,
 74, 35, 70, 93, 88, 91, 51, 74, 73, 60, 71, 63, 72, 48, 95, 90, 82, 92, 85, 70
- Dari data tersebut hitunglah:
- b) hitung rata-rata, median, dan modus, Varians, Standar Deviasi, Kwartil, percentil 50.

Diolah dengan SPSS atau exel

DATA BERKELOMPOK

Diketahui hasil penilaian ujian statistic bagi Mahasiswa Nusa Perdana sebagai berikut:

Dari keterangan tersebut Hitunglah;

- a) rata-rata
- b) Medaian
- c) Modus
- d) Varians
- e) Standar Deviasi (agar dapat dijelaskan hasilnya diinterpretasikan)

Interval Kelas	Frekuensi
40 – 44	3
45 – 49	4
50 – 54	6
55 – 59	8
60 – 64	10
65 – 69	11
70 – 74	15
75 – 79	6
80 - 84	4
85 – 89	2
90 – 94	2