

Royal Institute of Technology

BETA & BETA-BINOMAL

BINOMIAL - IID BERNOULLI

- * Likelihood
 - ⋆ N₁ heads and N₀ tails
 - * $p(head) = \theta$
 - * sequence

$$p(D) = \theta^{N_1} (1 - \theta)^{N_0}$$

* counts

$$p(D) = \binom{N_1 + N_0}{N_1} \theta^{N_1} (1 - \theta)^{N_0}$$

SUFFICIENT STATISTICS

- Maximum Likelihood (ML) estimates maximize the probability of the data
 - * here $\max_{\theta} p(N_1, N_0 | \theta)$
- ★ The pair N₁,N₀ is a sufficient statistic for our coin model
 - * i.e., given those ML estimate or any other follows

PRIOR FOR CATEGORICAL AND BERNOULLI - FIRST BETA-BINOMIAI

- Assumption: we don't know θ
- ★ We need a prior over the outcome probabilities
 - ⋆ N₁ heads and N₀ tails
 - * p(head) denoted θ

BETA DISTRIBUTION

• PDF Beta
$$(\theta | a, b) = \frac{1}{B(a, b)} \theta^{a-1} (1 - \theta)^{b-1}$$

- where $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$
- and $\Gamma(a) = (a-1)\Gamma(a-1)$
- In particular, for integer n

$$\Gamma(n) = (n-1)!$$

· Expectation, mode, and variance

$$\frac{a}{a+b} \qquad \frac{a-1}{a+b-2} \text{ for a,b>1} \qquad \frac{ab}{(a+b)^2(a+b+1)}$$

HYPER-PARAMETERS

- Parameters a and b for prior called
 - hyperparameters
 - * pseudocounts
- ★ Prior's effective sample size is a + b
- Prior that gives posterior of the same sort is called conjugate

BETA DISTRIBUTION

BETA FOR SOME PARAMETER CHOICES

BETA FOR SOME PARAMETER CHOICES

BETA-BINOMAL

- * Beta distribution up to a constant means there is a constant c s/t
- $p(\theta|a,b) \propto \theta^{a-1} (1-\theta)^{b-1}$ $p(\theta|a,b) = c\theta^{a-1} (1-\theta)^{b-1}$
- * Posterior $p(\theta|D) \propto \text{Beta}(\theta|N_1 + a, N_0 + b)$
- Beta is a <u>conjugate</u> prior for Binomial
- ★ Maximum posterior (MAP), posterior mean, posterior variance

IDENTIFYING A DISTRIBUTION

OUR PDF

ANOTHER PDF

Another PDF

PDF

Our function

BOTH INTEGRALS CANNOT BE 1

BETA-BINOMIAL: PRIOR, LIKELIHOOD, POSTERIOR

 $N_1=3$, $N_0=17$

 $N_1=11$, $N_0=13$

As before: N₁ heads and N₀ tails

Uniform prior, i.e., a=b=1, gives

$$p(x = 1 \mid D) = \frac{N_1 + 1}{N_0 + N_1 + 2}$$

Black Swan "paradox"

LAPLACE'S RULE OF SUCCESSION