Tour & Travels

Tour & Travels

Minimal FD Set and BCNF Proof

Accommodation

```
Accommodation_ID -> Accommodation_Name
Accommodation_ID -> Accommodation_Type
Accommodation_ID -> Street
Accommodation_ID -> Landmark
Accommodation_ID -> City
```

Accommodation_ID -> State

Accommodation_ID -> Pincode

Accommodation_ID -> Check_In_Time

Accommodation_ID -> Check_Out_Time

Accommodation_ID -> User_Rating

Accommodation_ID -> Star_Category

Accommodation_ID -> Starting_Price

Here we can infer from the given FDs that Accommodation_ID is the key. It matches the key from the relation. Hence' Accommodation' is in BCNF.

Room_Type

```
{Accommodation_ID,Room_Type_ID} -> Room_Type_Name {Accommodation_ID,Room_Type_ID} -> Capacity {Accommodation_ID,Room_Type_ID} -> Bed_Type {Accommodation_ID,Room_Type_ID} -> Area {Accommodation_ID,Room_Type_ID} -> View {Accommodation_ID,Room_Type_ID} -> Extra_Capacity {Accommodation_ID,Room_Type_ID} -> Total_Rooms
```

Here we can infer from the given FDs that {Accommodation_ID, Room_Type_ID} is the key. It matches the key from the relation. Hence 'Room_Type' is in BCNF.

Available_Rooms

```
{Accommodation_ID,Room_Type_ID} -> Check_In_Date 
{Accommodation_ID,Room_Type_ID} -> Check_Out_Date 
{Accommodation_ID,Room_Type_ID} -> Available_Rooms
```

Here we can infer from the given FDs that {Accommodation_ID, Room_Type_ID} is the key. It matches the key from the relation. Hence 'Available_Rooms' is in BCNF.

Accommodation_Fares

```
{Accomodation_ID,Room_Type_ID} -> Base_Price

{Accommodation_ID,Room_Type_ID} -> Mattresses

{Accommodation_ID,Room_Type_ID} -> Breakfast

{Accommodation_ID,Room_Type_ID} -> Lunch_Or_Dinner

{Accommodation_ID,Room_Type_ID} -> Lunch_And_Dinner

{Accommodation_ID,Room_Type_ID} -> Zero_Cancellation

{Accommodation_ID,Room_Type_ID} -> Taxes

{Accommodation_ID,Room_Type_ID} -> Grand_Total
```

Here we can infer from the given FDs that {Accommodation_ID, Room_Type_ID} is the key. It matches the key from the relation. Hence 'Accommodation_Fares' is in BCNF.

Accommodation_Refund_Rules

```
{Accommodation_ID,Room_Type_ID} -> Grace_Period {Accommodation_ID,Room_Type_ID} -> Cancellation_Penalty
```

Here we can infer from the given FDs that {Accommodation_ID, Room_Type_ID} is the key. It matches the key from the relation. Hence 'Accommodation_Refund_Rules' is in BCNF.

Transportation_Owner

{Transportation_Owner_ID, Transportation_Type} -> Transportation_Owner_Name

Here we can infer from the given FDs that{Transportation_Owner_ID, Transportation_Type} is the key. It matches the key from the relation. Hence 'Transportation_Facilities_Owner' is in BCNF.

Station

```
Station_Code -> Station_Name
Station_Code -> City
Station_Code -> Transportation_Type
```

Here we can infer from the given FDs that Station_Code is the key. It matches the key from the relation. Hence 'Station' is in BCNF.

Classes

```
Class_ID -> Class_Name
Class_ID -> Transportation_Type
```

Here we can infer from the given FDs that Class_ID is the key. It matches the key from the relation. Hence 'Classes' is in BCNF.

Transportation

Transportation_ID -> Source_Code
Transportation_ID -> Destination_Code
Transportation_ID -> Departure
Transportation_ID -> Arrival
Transportation_ID -> Transportation_Name
Transportation_ID -> Transportation_Type
Transportation_ID -> Transportation_Owner_ID
Transportation_ID -> User_Rating

Here we can infer from the given FDs that Transportation_ID is the key. It matches the key from the relation. Hence 'Transportation' is in BCNF.

Transportation_Class

```
{Transportation_ID ,Class_ID } -> Total_Seats 
{Transportation_ID ,Class_ID } -> Hand_Luggage
```

```
{Transportation_ID ,Class_ID } -> Check-In_Luggage
```

Here we can infer from the given FDs that {Transportation_ID ,Class_ID} is the key. It matches the key from the relation. Hence 'Transportation_Class' is in BCNF

Routes

```
{Transportation_ID,Station_Code } -> Stop_Number
{Transportation_ID,Station_Code } -> Arrival_Time
{Transportation_ID,Station_Code } -> Halt
{Transportation_ID,Station_Code } -> Km_From_Origin
```

Here we can infer from the given FDs that {Transportation_ID,Station_Code } is the key. It matches the key from the relation. Hence 'Routes' is in BCNF.

Avialable_Seats

```
{Transportation_ID ,Class_ID } -> Departure_Timestamp 
{Transportation_ID ,Class_ID } -> Arrival_Timestamp 
{Transportation_ID ,Class_ID } -> Available_Seats
```

Here we can infer from the given FDs that {Transportation_ID ,Class_ID} is the key. It matches the key from the relation. Hence 'Available_Seats' is in BCNF.

Transportation_Fares

```
{Transportation_ID ,Class_ID } -> Base_Price
{Transportation_ID ,Class_ID } -> Child_Discount
{Transportation_ID ,Class_ID } -> Breakfast
{Transportation_ID ,Class_ID } -> Lunch
{Transportation_ID ,Class_ID } -> Dinner
{Transportation_ID ,Class_ID } -> Zero_Cancellation
{Transportation_ID ,Class_ID } -> Taxes
```

Here we can infer from the given FDs that {Transportation_ID ,Class_ID } is the key. It matches the key from the relation. Hence 'Transportation_Fares' is in BCNF.

Transportation_Refund_Rules

```
{Transportation_ID ,Class_ID } -> Grace_Period 
{Transportation_ID ,Class_ID } -> Cancellation_Penalty
```

Here we can infer from the given FDs that {Transportation_ID ,Class_ID } is the key. It matches the key from the relation. Hence 'Transportation Refund Rules' is in BCNF.

Package

```
Package_ID -> Package_Name
Package_ID -> Starting_Price
```

Here we can infer from the given FDs that Package_ID is the key. It matches the key from the relation. Hence 'Package' is in BCNF.

Offers

```
{Offer_ID, Package_ID} -> Offer_Name {Offer_ID, Package_ID} -> No_Of_Days
```

```
{Offer_ID, Package_ID} -> No_Of_Nights

{Offer_ID, Package_ID} -> Capacity

{Offer_ID, Package_ID} -> No_Of_Accommodations

{Offer_ID, Package_ID} -> No_Of_Transportations

{Offer_ID, Package_ID} -> Price
```

Here we can infer from the given FDs that {Offer_ID, Package_ID} is the key. It matches the key from the relation. Hence 'Offers' is in BCNF.

Offer_Dates

Here we have no FDs, meaning all the attributes are keys. It matches the key from the relation. Hence 'Offer_Dates' is in BCNF.

Offer_Accommodation

{Offer_ID, Check-In_Date, Check-Out_Date, Accommodation_ID} -> Room_Type_ID

Here we can infer from the given FDs that {Offer_ID, Check-In_Date, Check-Out_Date, Accommodation_ID} is the key. It matches the key from the relation. Hence 'Offer_Accommodation' is in BCNF.

Offer_Transportation

{Offer_ID, Departure_Timestamp, Arrival_Timestamp, Transportation_ID} -> Class_ID

Here we can infer from the given FDs that {Offer_ID, Journey_Start_Date, Journey_End_Date, Transportation_ID} is the key. It matches the key from the relation. Hence 'Offer_Transportation' is in BCNF.

Consumer

Consumer_ID -> UserName Consumer_ID -> Password Consumer_ID -> Prev_Password

Here we can infer from the given FDs that Consumer_ID is the key. It matches the key from the relation. Hence 'Consumer' is in BCNF.

Consumer_Profile

Consumer ID -> First Name

Consumer_ID -> Last_Name

Consumer_ID -> Email_ID

Consumer_ID -> Mobile_No

Consumer_ID -> DoB

Consumer ID -> Age

Consumer_ID -> Gender

Consumer_ID -> City

Consumer_ID -> Rating

Here we can infer from the given FDs that Consumer_ID is the key. It matches the key from the relation. Hence 'Consumer_Profile' is in BCNF.

Bank_Details

{Consumer_ID,Account_No} -> Account_Holder_Name

```
{Consumer_ID,Account_No} -> IFSC_Code
{Consumer_ID,Account_No} -> UPI_ID
{Consumer_ID,Account_No} -> Credit_Card_No
{Consumer_ID,Account_No} -> Debit_Card_No
```

Here we can infer from the given FDs that {Consumer_ID,Account_No} is the key. It matches the key from the relation. Hence 'Bank_Details' is in BCNF.

Invoice_Details

Invoice ID -> Total Amount

Invoice_ID -> Taxes

Invoice_ID -> Category_Discount

Invoice_ID -> Grand_Total

Invoice_ID -> Total_Amount_Paid

Invoice ID -> Amount left

Invoice_ID -> Next_Installment

Here we can infer from the given FDs that Invoice_ID is the key. It matches the key from the relation. Hence 'Invoice Details' is in BCNF.

Booking

Booking_ID -> Facility_Type

Booking_ID -> Consumer_ID

Booking_ID -> Invoice_ID

Booking_ID -> Booking_Date

Booking_ID -> No_Of_Travellers

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Booking' is in BCNF.

Transactions

Transaction_ID -> Invoice_ID

Transaction_ID -> Transaction_Mode

Transaction_ID -> Amount

Transaction_ID -> Transaction_TimeStamp

Here we can infer from the given FDs that Transaction_ID is the key. It matches the key from the relation. Hence 'Transactions' is in BCNF.

Accommodation_Booking

Booking_ID -> Accomodation_ID

Booking ID -> Room Type ID

Booking_ID -> Check_In_Date

Booking_ID -> Check_Out_Date

Booking_ID -> No_Of_Rooms

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Accommodation_Booking' is in BCNF.

Accommodation_Add_On

Booking_ID -> Breakfast

```
Booking_ID -> Lunch_Or_Dinner
Booking_ID -> Lunch_And_Dinner
Booking_ID -> No_Of_Mattresses
Booking_ID -> Zero_Cancellation
```

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Accommodation_Add_On' is in BCNF.

Transportation Booking

Booking_ID -> Transportation_ID

Booking_ID -> Class_ID

Booking_ID -> Departure_Timestamp

Booking_ID -> Arrival_Timestamp

Booking_ID -> PNR

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Transportation_Booking' is in BCNF.

Transportation_Add_On

Booking_ID -> Breakfast

Booking_ID -> Lunch

Booking_ID -> Dinner

Booking_ID -> Zero_Cancellation

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Transportation_Add_On' is in BCNF.

Seats

Here we have no FDs, meaning all the attributes are keys. It matches the key from the relation. Hence 'Seats' is in BCNF.

Package_Booking

Booking_ID -> Package_ID

Booking_ID -> Offer_ID

Booking_ID -> Date_From

Booking_ID -> Date_To

Here we can infer from the given FDs that Booking_ID is the key. It matches the key from the relation. Hence 'Package_Booking' is in BCNF.

Package_Booking_Details

Here we have no FDs which means that all the attributes are keys. It matches the key from the relation. Hence 'Package_Booking_Details' is in BCNF.

Travellers

Traveller_ID -> First_Name

Traveller_ID -> Last_Name

Traveller_ID -> Age

Traveller_ID -> Gender

Traveller_ID -> Category

Traveller_ID -> Booking_ID

Here we can infer from the given FDs that Traveller_ID is the key. It matches the key from the relation. Hence 'Travellers' is in BCNF.

Cancellation

Cancellation_ID -> Booking_ID

Cancellation_ID -> Cancellation_Date

Cancellation_ID -> Cancellation_Penalty

Cancellation_ID -> Total_Refundable_Amount

Cancellation_ID -> Refund_Status

Here we can infer from the given FDs that Cancellation_ID is the key. It matches the key from the relation. Hence 'Cancellation' is in BCNF.