Week 3 Worksheet — Grid Search & Error Surface

Health Mini-Project (Linear Model with 4 Features; Train Focus)

Name:	Date:

Story Setup — If We Were the First Mathematicians to Invent ML...

In Weeks 1-2, we chose rules by hand. Today we let the computer try many combinations and find a rule that makes the **error** as small as possible. This is our first concrete step toward "learning."

Goals of This Week

- Understand and compute an **error function** using **accuracy**.
- Use **for-loops** to perform a **grid search** over weights and a threshold.
- Draw a **2D error surface** (heat/contour plot) for selected parameters.

Dataset (Train: IDs 1–10; Test Preview: 11–12)

We use the same four inputs as Week 1. The hidden ground-truth label is provided as true_label for training.

ID	Height (in)	Weight (lb)	Waist (in)	Favorite Color	${\rm true_label}$
1	70	159	32	Blue	Healthy
2	65	187	37	Red	Unhealthy
3	72	198	39	Green	Unhealthy
4	63	121	28	Yellow	Healthy
5	68	150	31	Black	Healthy
6	67	209	41	Blue	Unhealthy
7	71	172	33	Pink	Healthy
8	62	181	36	Purple	Unhealthy
9	69	146	31	Orange	Healthy
10	73	231	43	White	Unhealthy
11	64	128	28	Green	Healthy
12	70	154	33	Red	Healthy

Note: IDs 11-12 are held out for testing (next week). This week we focus on training only.

Task A — Normalize Inputs (fit on Train only)

- 1. Convert **Favorite Color** to a numeric code (any fixed mapping; document your mapping).
- 2. For the **training set** (IDs 1–10) compute min–max normalization for each feature:

$$x' = \frac{x - \min(x_{\text{train}})}{\max(x_{\text{train}}) - \min(x_{\text{train}})} \in [0, 1].$$

3. Apply the same train-fitted min-max to IDs 11-12 (do *not* use them for training today).

Task B — Linear Model (same as Week 1)

Score =
$$w_1H + w_2W + w_3X + w_4C$$
, $w_i \ge 0$, $w_1 + w_2 + w_3 + w_4 = 1$,

where H, W, X, C are the normalized Height, Weight, Waist, and (encoded) Color. Classification rule with threshold T:

If Score $\langle T \Rightarrow \text{Healthy}, \text{ else Unhealthy}.$

Task C — Error Function (Accuracy)

Accuracy =
$$\frac{\#\{\text{correct on train}\}}{10}$$
, Error = 1 - Accuracy.

We will maximize accuracy (equivalently, minimize error) on IDs 1-10.

Task D — Grid Search with For-Loops (Train Only)

- 1. Search w_1, w_2, w_3, w_4 on a grid (e.g., step 0.1) with $w_1 + w_2 + w_3 + w_4 = 1$.
- 2. Search T on a grid (e.g., 0.30 to 0.70 by 0.05).
- 3. For each (w_1, \ldots, w_4, T) on IDs 1–10:
 - (a) Compute Score (using normalized inputs).
 - (b) Predict labels with the rule above.
 - (c) Compute **Accuracy**; keep the best combination (highest accuracy).

Task E — Draw a 2D Error Surface

- Fix three parameters and vary two (e.g., plot Error as a function of (w_1, T)).
- Draw a heatmap or contour plot. Mark the best point you found.

Reflection

• On your 2D error plot, does there appear to be **one clear minimum** or **several comparable regions**?

- How does the error surface change when you switch which two parameters you visualize (e.g., (w_1, T) vs. (w_2, T))?
- Why do we **fit normalization on train only**? What could go wrong if we used test data to fit normalization?

Deep Questions & Next Week Preview

- 1. If the grid step is 0.01, roughly how many weight combinations exist for (w_1, w_2, w_3, w_4) with $w_1 + \cdots + w_4 = 1$? (Order-of-magnitude: think $\sim 100^4$.)
- 2. Do error surfaces always have a **single global minimum**, or can there be **multiple local minima**?
- 3. Is there a **smarter way** than checking every grid point to move toward low error? (Next week: Gradient Descent "slide downhill" on the error surface.)

Turn-in Checklist

Your normalization procedure and color encoding (brief).

Best (w_1, w_2, w_3, w_4, T) on train (IDs 1–10) and the accuracy value.

A 2D error plot (heatmap/contour) with the best point marked.

Short answers to Reflection & Deep Questions.