FUNKCIJE VIŠE REALNIH PROMENLJIVIH

5. maj 2022.

Funkcije *n* realnih promenljivih

Posmatramo realne funkcije *n* realnih promenljivih, tj.

$$f: D \to \mathbb{R}, \quad D \subset \mathbb{R}^n, \quad n \in \mathbb{N}, \quad n > 1$$

Vrednost funkcije $f:D\to\mathbb{R}$ u tački $X=(x_1,x_2,\ldots,x_n)\in D$ zapisuje se kao

•
$$n > 3$$
 $z = f(X) = f(x_1, x_2, \dots, x_n)$

•
$$n = 3$$
, $u = f(X) = f(x, y, z)$,

•
$$n = 2$$
, $z = f(X) = f(x, y)$

Parcijalni izvodi

Neka $M(x,y) \in D \subset \mathbb{R}^2, \ f:D \to \mathbb{R}, \ z=f(x,y)$

ullet ako $M\in D$ nije izolovana tačka oblasti definisanosti D tada je

$$\Delta z = f(N) - f(M) = f(x + \Delta x, y + \Delta y) - f(x, y),$$

$$N(x + \Delta x, y + \Delta y) \in D$$
, $(\Delta x, \Delta y) \neq (0, 0)$ totalni priraštaj funkcije $z = f(x, y)$

ullet ako $D_1=D\cap\{(
u,y):
u\in\mathbb{R}\}$ nije jednočlan skup tada

$$\Delta_{x}z = f(M_{x+\Delta x}) - f(M) = f(x + \Delta x, y) - f(x, y),$$

 $M_{x+\Delta x}(x+\Delta x,y)\in D_1,\quad \Delta x\neq 0$ je parcijalni priraštaj po promenljivoj x u tački M,

ullet ako $D_2=D\cap\{(x,
u):
u\in\mathbb{R}\}$ nije jednočlan skup tada

$$\Delta_{y}z = f(M_{y+\Delta y}) - f(M) = f(x, y + \Delta y) - f(x, y),$$

 $M_{y+\Delta y}(x,y+\Delta y)\in D_2,\quad \Delta y\neq 0$ je parcijalni priraštaj po promenljivoj y u tački M.

Neka
$$M(x_1,\ldots,x_n)\in D\subset\mathbb{R}^n,\ n\geq 2,\ f:D\to\mathbb{R},\ z=f(x_1,\ldots,x_n)$$

• ako $M \in D$ nije izolovana tačka oblasti definisanosti D funkcije $z = f(x_1, x_2, \dots, x_n)$ tada je

$$\Delta z = f(N) - f(M)$$

= $f(x_1 + \Delta x_1, x_2 + \Delta x_2, ..., x_n + \Delta x_n) - f(x_1, x_2, ..., x_n),$

$$N(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n) \in D, \quad (\Delta x_1, \dots, \Delta x_n) \neq (0, 0, \dots, 0)$$
 totalni priraštaj funkcije $z = f(x_1, x_2, \dots, x_n)$

• ako $D_i = D \cap \{(x_1, \dots, x_{i-1}, \nu, x_{i+1}, \dots, x_n) : \nu \in \mathbb{R}, i = 1, \dots, n\}$ nije jednočlan skup tada

$$\Delta_{x_i} z = f(M_{x_i + \Delta x_i}) - f(M)$$

= $f(x_1, \dots, x_{i-1}, x_i + \Delta x_i, x_{i+1}, \dots, x_n) - f(x_1, x_2, \dots, x_n),$

$$M_{x_i+\Delta x_i}(x_1,\ldots,x_{i-1},x_i+\Delta x_i,x_{i+1},\ldots,x_n)\in D_i,\quad \Delta x_i\neq 0$$
 je parcijalni priraštaj po promenljivoj x_i u tački M .

Za svako $x_i \in \mathbb{R}, i = 1, ..., n$, posmatrajmo restrikciju $f_i : D_i \to \mathbb{R}$ funkcije f nad skupom D_i .

Definicija

Ako funkcija $f_i(x_i)$, $x_i \in D_i$, $i \in \{1, 2, ..., n\}$ ima izvod u tački $M(x_1, x_2, ..., x_n) \in D^\circ$ onda taj izvod funkcije $f_i(x_i)$ zovemo parcijalni izvod funkcije $f(x_1, ..., x_n)$ u tački M po promenljivoj x_i . Označavamo ga sa

$$\frac{\partial z}{\partial x_i}(M)$$
 ili $z_{x_i}(M)$

i važi

$$\frac{\partial z}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{\Delta_{x_i} z}{\Delta x_i}$$

$$= \lim_{\Delta x_i \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i + \Delta x_i, x_{i+1}, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{\Delta x_i}$$

Ako funkcija $f_i(x_i), x_i \in D_i, i \in \{1, 2, ..., n\}$ ima desni (levi) izvod u tački $M(x_1, x_2, ..., x_n)$, onda taj izvod funkcije $f_i(x_i)$ zovemo desni (levi) parcijalni izvod funkcije $f(x_1, x_2, ..., x_n)$ u tački M po promenljivoj x_i i obeležavamo ga sa

$$\frac{\partial^+ z}{\partial x_i}(M)$$
 ili $z_{x_i}^+(M) = \left(\frac{\partial^- z}{\partial x_i}(M) \text{ ili } z_{x_i}^-(M)\right)$.

U tom slučaju je

• desni parcijalni izvod funkcije $f(x_1, x_2, ..., x_n)$ po promenljivoj x_i

$$\frac{\partial^{+} z}{\partial x_{i}} = \lim_{\Delta x_{i} \to 0^{+}} \frac{\Delta_{x_{i}} z}{\Delta x_{i}}$$

• levi parcijalni izvod funkcije $f(x_1, x_2, ..., x_n)$ po promenljivoj x_i je

$$\frac{\partial^+ z}{\partial x_i} = \lim_{\Delta x_i \to 0^-} \frac{\Delta_{x_i} z}{\Delta x_i}$$

Funkcija ima parcijalni izvod po promenljivoj x_i , $i \in \{1, 2, ..., n\}$ u tački M (unutrašnja!) **ako i samo ako** ima i levi i desni parcijalni izvod po promenljivoj x_i i ako su oni jednaki.

Funkcija $z=f(x_1,x_2,\ldots,x_n),\ f:D\to\mathbb{R}$ ima parcijalni izvod po $x_i,\ i\in\{1,2,\ldots,n\}$ nad $E\subset D$, pri čemu je skup E unija neke otvorene oblasti E_1 i dela njenog ruba ako

- 1. postoji $\frac{\partial z}{\partial x_i}(x_1, x_2, \dots, x_n)$ po prethodnoj definiciji;
- 2. za rubnu tačku $M(x_1, x_2, \dots, x_n) \in E$ ako ne postoji $\frac{\partial z}{\partial x_i}(M)$, tada:

a) ako postoji $\varepsilon_i > 0$ sa osobinom da je

$$L_{\varepsilon_i} = \{(x_1, x_2, \dots, x_{i-1}, x_i - \varepsilon_i, x_{i+1}, \dots, x_n)\} \subset E$$

postoji

$$\frac{\partial^- z}{\partial x_i}(M).$$

Ako je za svako $\varepsilon_i > 0$

$$D_{\varepsilon_i} = \{(x_1, x_2, \dots, x_{i-1}, x_i + \varepsilon_i, x_{i+1}, \dots, x_n)\} \not\subset E,$$

tada je

$$\frac{\partial z}{\partial x_i}(M) = \frac{\partial^- z}{\partial x_i}(M).$$

b) ako postoji $\varepsilon_i > 0$ sa osobinom da je

$$D_{\varepsilon_i} = \{(x_1, x_2, \dots, x_{i-1}, x_i + \varepsilon_i, x_{i+1}, \dots, x_n)\} \subset E$$

postoji

$$\frac{\partial^+ z}{\partial x_i}(M).$$

Ako je za svako $\varepsilon_i > 0$

$$L_{\varepsilon_i} = \{(x_1, x_2, \dots, x_{i-1}, x_i - \varepsilon_i, x_{i+1}, \dots, x_n)\} \not\subset E,$$

tada je

$$\frac{\partial z}{\partial x_i}(M) = \frac{\partial^+ z}{\partial x_i}(M).$$

c) ako za svako $\varepsilon_i > 0$

$$L_{\varepsilon_i} = \{(x_1, x_2, \dots, x_{i-1}, x_i - \varepsilon_i, x_{i+1}, \dots, x_n)\} \not\subset E$$

$$D_{\varepsilon_i} = \{(x_1, x_2, \dots, x_{i-1}, x_i + \varepsilon_i, x_{i+1}, \dots, x_n)\} \not\subset E,$$
...

tada ako postoji

$$\frac{\partial z}{\partial x_i}(N)$$
, za svako $N \in L(M,\varepsilon) \cap E_1 = E_2 \neq \emptyset$, za neko $\varepsilon > 0$,

uzimamo po definiciji da je

$$\frac{\partial z}{\partial x_i}(M) = \lim_{\substack{N \to M \\ N \in E_2}} \frac{\partial z}{\partial x_i}(N), i = 1, 2, \dots, n.$$

Napomena

Za funkciju
$$z = f(x, y) = \begin{cases} x^2 \sin \frac{1}{x} + y &, x > 0, y \ge 0 \\ y &, x = 0, y \ge 0 \end{cases}$$
postoji

$$\frac{\partial z}{\partial x}(0,1) = \frac{\partial^+ z}{\partial x}(0,1) = \lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta x \to 0 \end{subarray}} \frac{f(\Delta x,1) - f(0,1)}{\Delta x} \\ = \lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta x \to 0 \end{subarray}} \frac{(\Delta x)^2 \sin \frac{1}{\Delta x} + 1 - 1}{\Delta x} = 0,$$

a kako je
$$\frac{\partial z}{\partial x}(x,y) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}, \quad x > 0, y > 0,$$
ne postoji $\lim_{(x,y) \to (0,1)} \frac{\partial z}{\partial x}(x,y).$
 $x > 0, y > 0$

Primer

Naći parcijalne izvode funkcije $z = \sqrt{(1-x^2-y^2)^3}$.

Funkcija $z = \sqrt{(1 - x^2 - y^2)^3}$ je definisana za $x^2 + y^2 \le 1$.

Za svaku tačku M(x,y) za koju je $x^2+y^2<1$ (M je unutrašnja tačka oblasti definisanosti) je

$$\frac{\partial z}{\partial x} = -3x\sqrt{1 - x^2 - y^2},$$

$$\frac{\partial z}{\partial v} = -3y\sqrt{1 - x^2 - y^2}.$$

U rubnoj tački M(x,y) za koju je $x^2+y^2=1, x\neq 0, y\neq \pm 1$

$$\frac{\partial z}{\partial x}(M) = \frac{\partial^{-}z}{\partial x}(M)$$

$$= \lim_{\Delta x \to 0^{-}} \frac{\sqrt{(1 - (x + \Delta x)^{2} - (1 - x^{2}))^{3}} - 0}{\Delta x} = 0, \text{ za } x > 0,$$

$$\frac{\partial z}{\partial x}(M) = \frac{\partial^+ z}{\partial x}(M)$$

$$= \lim_{\Delta x \to 0^+} \frac{\sqrt{(1 - (x + \Delta x)^2 - (1 - x^2))^3} - 0}{\Delta x} = 0, \text{ za } x < 0.$$

U tačkama M(0,1) i N(0,-1) je

$$\frac{\partial z}{\partial x}(M) = \lim_{\substack{(x,y) \to (0,1) \\ x^2 + y^2 < 1}} -3x\sqrt{1 - x^2 - y^2} = 0,$$

$$\frac{\partial z}{\partial x}(N) = \lim_{\substack{(x,y) \to (0,-1) \\ x^2 + y^2 < 1}} -3x\sqrt{1 - x^2 - y^2} = 0.$$

Slično se računaju parcijalni izvodi po y u rubnim tačkama.

Geometrijska interpretacija parcijalnih izvoda

Geometrijska interpretacija parcijalnih izvoda

- Površ S zadata jednačinom z = f(x, y)
- nad skupom D funkcija je neprekidna i ima parcijalne izvode
- $M_0(x_0,y_0)\in D$, odgovara tački $N_0(x_0,y_0,f(x_0,y_0))\in \mathcal{S}$

Pri traženju parcijalnog izvoda $\frac{\partial z}{\partial x}$ u tački M_0 posmatra se funkcija z=f(x,y) kao funkcija jedne promenljive x, a y se tretira kao konstanta $y=y_0$, to jest $z=f(x,y_0)=f_1(x)$. Funkcijom $z=f_1(x)$ definisana je kriva L dobijena presekom površi S i ravni $y=y_0$.

$$f_1'(x_0) = \operatorname{tg} \alpha = \frac{\partial z}{\partial x}(M_0),$$

je koeficijent pravca tangente u tački N_0 krive L dobijene presekom ravni $y=y_0$ i površi z=f(x,y).

Slično, funkcijom $z=f_2(y)=f(x_0,y)$ definisana je kriva L_1 dobijena presekom površi S i ravni $x=x_0$, pa je

$$f_2'(y_0) = \operatorname{tg} \beta = \frac{\partial z}{\partial y}(M_0)$$

koeficijent pravca tangente u tački N_0 krive L_1 dobijene presekom ravni $x = x_0$ i površi z = f(x, y).

Diferencijabilnost

Definicija

Neka je $M(x_1, ..., x_n)$ unutrašnja tačka oblasti $D \subset \mathbb{R}^n$, $n \ge 2$ na kojoj je definisana funkcija $z = f(x_1, ..., x_n) = f(X)$, $X \in D$. Funkcija $f(x_1, ..., x_n)$ je diferencijabilna u tački M ako se njen totalni priraštaj $\Delta z = f(x_1 + \Delta x_1, ..., x_n + \Delta x_n) - f(x_1, ..., x_n)$,

gde
$$N(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) \in D, (\Delta x_1, \dots, \Delta x_n) \neq (0, \dots, 0)$$

koji odgovara priraštajima $\Delta x_1, \ldots, \Delta x_n$ promenljivih x_1, \ldots, x_n može napisati u obliku

$$\Delta z = D_1 \Delta x_1 + \dots + D_n \Delta x_n + \alpha_1 \Delta x_1 + \dots + \alpha_n \Delta x_n,$$

pri čemu D_i ne zavise od Δx_i i $\lim_{(\Delta x_1,...,\Delta x_n)\to(0,...,0)} \alpha_i = 0$.

Linearni deo priraštaja je totalni diferencijal funkcije z u tački M, u oznaci $dz(M) = df(M) = D_1 \Delta x_1 + \cdots + D_n \Delta x_n$.

Na primer, za funkciju $z = x^2 + y^2$ imamo da je

$$\Delta z = (x + \Delta x)^{2} + (y + \Delta y)^{2} - (x^{2} + y^{2})$$

$$= x^{2} + 2x\Delta x + (\Delta x)^{2} + y^{2} + 2y\Delta y + (\Delta y)^{2} - x^{2} - y^{2}$$

$$= \underbrace{2x}_{D_{1}} \Delta x + \underbrace{2y}_{D_{2}} \Delta y + \underbrace{\Delta x}_{\alpha_{1}} \Delta x + \underbrace{\Delta y}_{\alpha_{2}} \Delta y.$$

Teorema

Neka je funkcija $z=f(x_1,\ldots,x_n)$ diferencijabilna u tački M. Tada

- a) funkcija f je neprekidna u tački M,
- b) postoje parcijalni izvodi $\frac{\partial z}{\partial x_1}, \frac{\partial z}{\partial x_2}, \dots, \frac{\partial z}{\partial x_n}$ i važi jednakost $D_1 = \frac{\partial z}{\partial x_1}(M), \dots, D_n = \frac{\partial z}{\partial x_n}(M).$

Dokaz.

- a) $\lim_{(\Delta x_1,...\Delta x_n)\to(0,...,0)} \Delta z = \lim_{(\Delta x_1,...\Delta x_n)\to(0,...,0)} \sum_{i=1}^n (D_i + \alpha_i) \Delta x_i = 0$, pa je funkcija $z = f(x_1,...,x_n)$ neprekidna u tački M.
- b) Pokažimo npr. da je $D_1=\frac{\partial z}{\partial x_1}(M)$ (ostalo analogno). Iz diferencijabilnosti funkcije z u tački M je za $\Delta x_1\neq 0$, $\Delta x_2=\Delta x_3=\cdots=\Delta x_n=0$,

$$\Delta_{x_1}z=D_1\Delta x_1+\alpha_1\Delta x_1.$$

Sledi da je

$$\lim_{\Delta x_1 \to 0} \frac{\Delta_{x_1} z}{\Delta x_1} = \lim_{\Delta x_1 \to 0} \frac{(D_1 + \alpha_1) \Delta x_1}{\Delta x_1} = \lim_{\Delta x_1 \to 0} (D_1 + \alpha_1) = D_1.$$

Odavde sledi da $\frac{\partial z}{\partial x_1}$ postoji u tački M i da je $\frac{\partial z}{\partial x_1}(M) = D_1$.

Kako je $dz = dx_i = \Delta x_i$ za funkciju $z = x_i, i = 1, ..., n$, to totalni diferencijal možemo zapisati u obliku

$$dz = \frac{\partial z}{\partial x_1} dx_1 + \frac{\partial z}{\partial x_2} dx_2 + \dots + \frac{\partial z}{\partial x_n} dx_n.$$

Ako sa

$$\rho = \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2 + \dots + (\Delta x_n)^2} \neq 0$$

označimo rastojanje tačaka

$$M(x_1, x_2, \dots, x_n)$$
 i $N(x_1 + \Delta x_1, x_2 + \Delta x_2, \dots, x_n + \Delta x_n)$

tada izraz

$$\alpha_1 \Delta x_1 + \alpha_2 \Delta x_2 + \cdots + \alpha_n \Delta x_n$$

možemo zapisati u obliku

$$\omega \rho$$
, gde je $\omega = \alpha_1 \frac{\Delta x_1}{\rho} + \alpha_2 \frac{\Delta x_2}{\rho} + \dots + \alpha_n \frac{\Delta x_n}{\rho}$.

Kako je

$$\left| \frac{\Delta x_i}{\rho} \right| \le 1$$
 za svako $i = 1, 2, \dots, n$

i kako je

$$\lim_{(\Delta x_1,\dots\Delta x_n)\to(0,\dots,0)}\alpha_i=0,$$

sledi da je

$$\lim_{\rho \to 0} \omega = 0.$$

Iz tog razloga, da je funkcija $z=f(x_1,x_2,\ldots,x_n)$ diferencijabilna možemo zapisati i u obliku

$$\Delta z = D_1 \Delta x_1 + D_2 \Delta x_2 + \dots + D_n \Delta x_n + \omega \rho,$$

gde D_1, D_2, \ldots, D_n ne zavise od $\Delta x_1, \Delta x_2, \ldots, \Delta x_n$, a $\lim_{\rho \to 0} \omega = 0$.

Suprotan smer prethodne teoreme ne važi uvek - neprekidnost funkcije u tački M i postojanje njenih parcijalnih izvoda u ovoj tački ne garantuje diferencijabilnost funkcije u toj tački.

Primer

Funkcija

$$z = f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} &, & (x,y) \neq (0,0) \\ 0 &, & (x,y) = (0,0) \end{cases}$$

je neprekidna u tački O(0,0), ima parcijalne izvode u u tački O(0,0), a nije diferencijabilna u tački O(0,0).

Ιz

$$|f(x,y)-f(0,0)| = \left|\frac{x^2y}{x^2+y^2}\right| \le |y| \le \sqrt{x^2+y^2}$$

Ì

$$\sqrt{x^2 + y^2} < \varepsilon = \delta$$

sledi da je

$$|f(x,y)-f(0,0)|<\varepsilon,$$

pa je funkcija f(x, y) neprekidna u tački O(0, 0).

Funkcija ima parcijalne izvode u tački O(0,0):

$$\frac{\partial z}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{\frac{(\Delta x)^2 \cdot 0}{(\Delta x)^2 + 0^2} - 0}{\Delta x} = 0$$

$$\frac{\partial z}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{\frac{(0)^2 \cdot \Delta y}{(0)^2 + (\Delta y)^2} - 0}{\Delta y} = 0$$

Ona nije diferencijabilna u toj tački. Ako bi bila, njen priraštaj bi mogao da se napiše u obliku

$$\Delta z = \frac{(\Delta x)^2 \Delta y}{(\Delta x)^2 + (\Delta y)^2} - 0 = 0 \cdot \Delta x + 0 \cdot \Delta y + \omega \sqrt{(\Delta x)^2 + (\Delta y)^2},$$

pri čemu je $\lim_{(\Delta x, \Delta y) o (0,0)} \omega = 0$, što nije tačno, jer za $\Delta x = \Delta y > 0$ imamo

$$\omega(\Delta x, \Delta x) = \frac{(\Delta x)^3}{(2(\Delta x)^2)\Delta x \sqrt{2}},$$

pa je

$$\lim_{\Delta x \to 0} \omega(\Delta x, \Delta x) = \frac{1}{2\sqrt{2}},$$

što je kontradikcija.

Teorema

Ako funkcija $z = f(x_1, ..., x_n)$ ima parcijalne izvode u nekoj δ -okolini tačke M i ako su ti izvodi neprekidni u samoj tački M, tada je funkcija diferencijabilna u M.

Neprekidnost parcijalnih izvoda nije potreban uslov za diferencijabilnost:

Primer

Funkcija

$$z = f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

je diferencijabilna u tački O(0,0), a oba parcijalna izvoda imaju prekid u tački O(0,0).

$$\frac{\partial z}{\partial x} = 2x \sin \frac{1}{x^2 + y^2} - \frac{2x}{x^2 + y^2} \cos \frac{1}{x^2 + y^2}, \text{ za } (x, y) \neq (0, 0),$$

$$\frac{\partial z}{\partial y} = 2y \sin \frac{1}{x^2 + y^2} - \frac{2y}{x^2 + y^2} \cos \frac{1}{x^2 + y^2}, \text{ za } (x, y) \neq (0, 0),$$

$$\frac{\partial z}{\partial x}(0, 0) = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 \sin \frac{1}{(\Delta x)^2} - 0}{\Delta x} = 0,$$

$$\frac{\partial z}{\partial y}(0, 0) = \lim_{\Delta y \to 0} \frac{(\Delta y)^2 \sin \frac{1}{(\Delta y)^2} - 0}{\Delta y} = 0,$$

$$\Delta z = z(\Delta x, \Delta y) = 0 \cdot \Delta x + 0 \cdot \Delta y + \left(\Delta x \sin \frac{1}{(\Delta x)^2 + (\Delta y)^2}\right) \Delta x + \left(\Delta y \sin \frac{1}{(\Delta x)^2 + (\Delta y)^2}\right) \Delta y,$$

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \alpha = \lim_{(\Delta x, \Delta y) \to (0,0)} \Delta x \sin \frac{1}{(\Delta x)^2 + (\Delta y)^2} = 0,$$

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \beta = \lim_{(\Delta x, \Delta y) \to (0,0)} \Delta y \sin \frac{1}{(\Delta x)^2 + (\Delta y)^2} = 0,$$

pa je funkcija diferencijabilna u O(0,0).

 $\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\partial z}{\partial x} \text{ i} \lim_{(\Delta x, \Delta y) \to (0,0)} \frac{\partial z}{\partial y} \text{ ne postoje, pa su oba parcijalna izvoda}$ prekidna u O(0,0) $\left(a_n = \left(\frac{1}{\sqrt{2n\pi}},0\right) \to (0,0), n \to \infty; \frac{\partial z}{\partial x}(a_n) \to -\infty, n \to \infty\right)$

- funkcija $z = f(x_1, \dots, x_n)$ je diferencijabilna nad skupom $A \subset D^\circ$ ako je diferencijabilna u svakoj tački skupa A
- ako funkcija $z = f(x_1, ..., x_n)$ ima neprekidne parcijalne izvode u tački $M \subset D^{\circ}$ onda kažemo da je ona neprekidno diferencijabilna u tački M
- ako funkcija $z=f(x_1,\ldots,x_n)$ ima neprekidne parcijalne izvode u svim tačkama skupa $A\subset D^\circ$ onda kažemo da je ona neprekidno diferencijabilna nad skupom A
- ullet za dovoljno male priraštaje $\Delta x_1, \Delta x_2, \dots, \Delta x_n$ važi da je $\Delta z pprox dz$

Izvod složene funkcije

Neka je dato *n* funkcija

$$u_1 = \varphi_1(x_1, \dots, x_m),$$

$$u_2 = \varphi_2(x_1, \dots, x_m),$$

$$\vdots$$

$$u_n = \varphi_n(x_1, \dots, x_m),$$

koje preslikavaju skup $D_1 \subset \mathbb{R}^m$ na skup $D \subset \mathbb{R}$.

Neka je $z = f(u_1, \dots, u_n)$ definisana nad D^n . Tada je funkcija

$$z = f(\varphi_1(x_1, \ldots, x_m), \ldots, \varphi_n(x_1, \ldots, x_m))$$

složena funkcija od funkcija

$$\varphi_1,\ldots,\varphi_n$$
 i f ,

pri čemu je oblast definisanosti ove funkcije skup $D_1 \subset R^m$.

Teorema

Neka funkcije $u_i = \varphi_i(x_1, \dots, x_m)$, $i = 1, \dots, n$ imaju parcijalne izvode po svim promenljivama x_1, \dots, x_m u tački $M(x_1, \dots, x_m)$. Ako je funkcija $z = f(u_1, \dots, u_n)$ diferencijabilna u tački

$$N(\varphi_1(x_1,\ldots,x_m),\ldots,\varphi_n(x_1,\ldots,x_m)),$$

tada složena funkcija $z = f(u_1, ..., u_n)$ ima sve parcijalne izvode po promenljivama x_i u tački M pri čemu važe jednakosti

$$\frac{\partial z}{\partial x_1} = \frac{\partial z}{\partial u_1} \frac{\partial u_1}{\partial x_1} + \dots + \frac{\partial z}{\partial u_n} \frac{\partial u_n}{\partial x_1}$$

$$\vdots$$

$$\frac{\partial z}{\partial x_m} = \frac{\partial z}{\partial u_1} \frac{\partial u_1}{\partial x_m} + \dots + \frac{\partial z}{\partial u_n} \frac{\partial u_n}{\partial x_m}.$$

Dokaz. (za slučaj
$$z = f(u, v), u = u(x, y), v = v(x, y)$$
)

Kako je funkcija z diferencijabilna u tački M, to je

$$\Delta z = \frac{\partial z}{\partial u} \Delta u + \frac{\partial z}{\partial v} \Delta v + \alpha \Delta u + \beta \Delta v, \lim_{(\Delta u, \Delta v) \to (0,0)} \alpha = \lim_{(\Delta u, \Delta v) \to (0,0)} \beta = 0.$$

Za $\Delta y = 0$ i $\Delta x \neq 0$, iz diferencijabilnosti funkcije f sledi

$$\frac{\Delta_{x}z}{\Delta x} = \frac{\partial z}{\partial u}\frac{\Delta_{x}u}{\Delta x} + \frac{\partial z}{\partial v}\frac{\Delta_{x}v}{\Delta x} + \alpha\frac{\Delta_{x}u}{\Delta x} + \beta\frac{\Delta_{x}v}{\Delta x}.$$

Za $\Delta x
ightarrow 0$ je i $(\Delta_x u, \Delta_x v)
ightarrow (0,0),$ pa je

$$\lim_{\Delta x \to 0} \alpha = \lim_{\Delta x \to 0} \beta = 0.$$

Dakle,

$$\begin{split} \frac{\partial z}{\partial x} &= \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} \\ &= \lim_{\Delta x \to 0} \left(\frac{\partial z}{\partial u} \frac{\Delta_x u}{\Delta x} + \frac{\partial z}{\partial v} \frac{\Delta_x v}{\Delta x} + \alpha \frac{\Delta_x u}{\Delta x} + \beta \frac{\Delta_x v}{\Delta x} \right) \\ &= \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}. \end{split}$$

Slično se pokazuje da je

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}.$$

Izvod vektorske funkcije skalarne promenljive

Definicija

Ako za vektorsku funkciju

$$\vec{r} = \vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}, \quad t \in D^{\circ}$$

postoji

$$\lim_{\Delta t \rightarrow 0} \frac{\vec{r}(t+\Delta t) - \vec{r}(t)}{\Delta t} = \lim_{\Delta t \rightarrow 0} \frac{\Delta \vec{r}(t)}{\Delta t},$$

onda kažemo da vektorska funkcija $\vec{r}(t)$ ima **izvod u tački** t koji se obeležava sa $\frac{d\vec{r}(t)}{dt}$ ili sa $\dot{\vec{r}}(t)$, tj.

$$\frac{d\vec{r}(t)}{dt} = \dot{\vec{r}}(t) = \lim_{\Delta t \to 0} \frac{\vec{r}(t + \Delta t) - \vec{r}(t)}{\Delta t}.$$

Očigledno je
$$\frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k} = \dot{x}(t)\vec{i} + \dot{y}(t)\vec{j} + \dot{z}(t)\vec{k}$$

pa važe slična pravila kao kod izvoda realne funkcije jedne realne promenljive:

$$\mathrm{a)}\ \frac{d}{dt}\left(\lambda_1\vec{r_1}+\lambda_2\vec{r_2}\right)=\lambda_1\frac{d\vec{r_1}}{dt}+\lambda_2\frac{d\vec{r_2}}{dt},$$

b)
$$\frac{d}{dt}(\vec{r_1}\cdot\vec{r_2}) = \frac{d\vec{r_1}}{dt}\cdot\vec{r_2} + \frac{d\vec{r_2}}{dt}\cdot\vec{r_1}$$
,

c)
$$\frac{d}{dt}(\vec{r_1} \times \vec{r_2}) = \frac{d\vec{r_1}}{dt} \times \vec{r_2} + \vec{r_1} \times \frac{d\vec{r_2}}{dt}$$
,

d)
$$\frac{d}{dt}(\vec{r}(u(t))) = \frac{d\vec{r}}{du}\frac{du}{dt}$$
,

e)
$$\frac{d}{dt}(u\vec{r}) = u\frac{d\vec{r}}{dt} + \frac{du}{dt}\vec{r}$$
.

pri čemu izvodi sa desne strane postoje po pretpostavci.

Geometrijska interpretacija izvoda:

Pretpostavimo da je $\frac{d\vec{r}}{dt}(t_0) = \dot{\vec{r}}_0 \neq 0$.

Tada je $\Delta \vec{r}(t) = \overrightarrow{AB}$. A je vrh vektora $\vec{r}(t_0)$, B je vrh vektora $\vec{r}(t_0 + \Delta t)$, pa je $\frac{\Delta \vec{r}(t_0)}{\Delta t} = \overrightarrow{AC}$.

Granična vrednost

$$\lim_{\Delta t \to 0} \frac{\Delta \vec{r}(t_0)}{\Delta t} = \dot{\vec{r}_0}$$

je vektor koji leži na pravoj koja prolazi kroz tačku A koju ćemo definisati kao **tangenta krive** L u tački A.

Tangenta krive L u tački A je prava

$$\frac{x-x_0}{\dot{x}_0} = \frac{y-y_0}{\dot{y}_0} = \frac{z-z_0}{\dot{z}_0}, \quad \dot{r}_0 \neq 0,$$

a ravan

$$\dot{x}_0(x-x_0)=\dot{y}_0(y-y_0)=\dot{z}_0(z-z_0),$$

koja je normalna na p zovemo **normalna ravan krive** L.

(stavljeno je da je
$$\dot{x}(t_0) = \dot{x}_0, \dot{y}(t_0) = \dot{y}_0, \dot{z}(t_0) = \dot{z}_0$$
)

Vektor $\dot{\vec{r}}$ ima smer tamo kuda skalar raste.

Lzvod složene funkcije

Lizvod vektorske funkcije skalarne promenljive

Intenzitet vektora $\frac{d\vec{r}}{dt}$ zavisi od izbora parametra t.

Ako uzmemo da je $t=\alpha \tau,\, \alpha \neq 0,\, {\rm prema}\,\, {\rm d})$ je tada

$$\left|\frac{d\vec{r}}{dt}\right| = \left|\frac{d\vec{r}}{d\tau}\frac{d\tau}{dt}\right| = \left|\frac{d\vec{r}}{d\tau}\right| \left|\frac{1}{\alpha}\right|,$$

pa možemo izabrati parametar tako da taj intenzitet bude jednak 1. Obeležićemo tu vrednost parametra sa s.

$$\left| \frac{d\vec{r}}{ds} \right| = \sqrt{\left(\frac{dx}{ds} \right)^2 + \left(\frac{dy}{ds} \right)^2 + \left(\frac{dz}{ds} \right)^2} = 1.$$

Sledi da je
$$ds = \sqrt{(dx)^2 + (dy)^2 + (dz)^2}$$
, tj. $s = \int_a^b \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}$.

Dakle, s je dužina luka krive L od neke fiksne tačke M. Prema geometrijskoj interpretaciji izvoda sledi da je $\dot{\vec{r}}(s) = \frac{d\vec{r}(s)}{ds} = \vec{t}_0$, ort tangente na krivu L u posmatranoj tački sa smerom porasta skalara t.

Za jedinični vektor $\vec{c} = \vec{c}(t)$ je $\vec{c} \cdot \vec{c} = 1$, odakle sledi da je

$$\frac{d\vec{c}}{dt} \cdot \vec{c} + \frac{d\vec{c}}{dt} \cdot \vec{c} = 0.$$

Dakle, izvod jediničnog vektora \vec{c} normalan je na vektor \vec{c} . Za $r=r\vec{r_0}$ ($\vec{r_0}$ je ort) je

$$\frac{d\vec{r}}{dt} = \frac{dr}{dt}\vec{r_0} + r\frac{d\vec{r_0}}{dt}.$$

Ako je $\vec{r_0}$ konstantan vektor, tada vektor

$$\frac{d\vec{r}}{dt} = \frac{dr}{dt}\vec{r_0}$$

ima pravac jediničnog vektora, a ako je \vec{r} konstantnog intenziteta, tada vektor

$$\frac{d\vec{r}}{dt} = r \frac{d\vec{r_0}}{dt}$$

ima pravac koji je normalan na vektor $\vec{r_0}$.

Mehanička interpretacija jednostranih izvoda:

Ako materijalna tačka tokom kretanja udari u prepreku, odbija se i nastavlja kretanje. U trenutku t_0 sudara sa preprekom, funkcija \vec{r} nema izvod, ali postoje **desni i levi izvod u tački** t_0 :

$$\dot{\vec{r}}_+(t_0) = \lim_{\Delta t \to 0^+} \frac{\vec{r}(t+\Delta t) - \vec{r}(t)}{\Delta t}, \quad \dot{\vec{r}}_-(t_0) = \lim_{\Delta t \to 0^-} \frac{\vec{r}(t+\Delta t) - \vec{r}(t)}{\Delta t}.$$

Oni daju brzinu tačke pre i posle udara u prepreku. Odgovaraju im desna i leva tangenta na krivu L u tački udara A:

$$\frac{x-x_0}{\dot{x}_{0^+}} = \frac{y-y_0}{\dot{y}_{0^+}} = \frac{z-z_0}{\dot{z}_{0^+}}, \quad \frac{x-x_0}{\dot{x}_{0^-}} = \frac{y-y_0}{\dot{y}_{0^-}} = \frac{z-z_0}{\dot{z}_{0^-}}.$$

Tangentna ravan i normala površi

Neka je površ S data jednačinom F(x, y, z) = 0.

• M(x,y,z) je regularna(nesingularna) tačka površi S ako postoje sva tri parcijalna izvoda $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}$ u tački M koji su neprekidni u tački M i

$$\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) \neq (0, 0, 0)$$

• Ako tačka M(x, y, z) nije regularna tačka površi S, onda za nju kažemo da je singularna tačka površi S.

Neka je skup L tačaka površi S (u daljem tekstu kriva L u parametarskom obliku) dat sa

$$L: \left\{ \begin{array}{l} x = \varphi(t) \\ y = \psi(t), \quad t \in [\alpha, \beta] \\ z = \omega(t) \end{array} \right.$$

- ullet $arphi, \psi, \omega$ imaju neprekidne izvode za svako $t \in [lpha, eta]$
- $\varphi'^2(t) + \psi'^2(t) + \omega'^2(t) \neq 0$, za svako $t \in [\alpha, \beta]$

Tada vektor

$$\dot{\vec{r_0}} = \dot{\vec{r_0}}(t_0) = \dot{x}(t_0)\vec{i} + \dot{y}(t_0)\vec{j} + \dot{z}(t_0)\vec{k}$$

leži na tangenti krive L u tački $P(x_0, y_0, z_0)$.

Tangenta krive L u tački P je tangenta površi S u tački P.

Jednačina površi je F(x,y,z)=0 tj. $F(\varphi(t),\psi(t),\omega(t))=0$ jer L leži na S. Diferenciranjem po t dobijamo

$$\underbrace{\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt}}_{\vec{n}\cdot\vec{r}} = 0,$$

pri čemu je

- $\vec{n} = \operatorname{grad} F = \frac{\partial F}{\partial x} \vec{i} + \frac{\partial F}{\partial y} \vec{j} + \frac{\partial F}{\partial z} \vec{k}$, ne zavisi od oblika krive, jedino od koordinata tačke P i funkcije F(x, y, z),
- $\vec{r} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$ leži na tangenti krive L u tački P

Kako je P regularna tačka površi S, to je

$$|\operatorname{grad} F| = |\vec{n}| = \sqrt{\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 + \left(\frac{\partial F}{\partial z}\right)^2} \neq 0.$$

└ Tangentna ravan i normala površi

Iz $\vec{n} \cdot \vec{r} = 0$ sledi da su vektori \vec{r} i \vec{n} ortogonalni. Ovo znači da je vektor \vec{r} , koji leži na tangenti krive L u tački P, normalan na vektor \vec{n} u tački P.

Ovo se može primeniti na bilo koju krivu L koja leži na površi S i prolazi kroz tačku P.

Definicija

Ravan formirana od svih tangenti površi S kroz datu regularnu tačku $P \in S$ je tangentna ravan površi S u tački P.

Vektor

$$\vec{n}(P) = \left(\frac{\partial F}{\partial x}(P), \frac{\partial F}{\partial y}(P), \frac{\partial F}{\partial z}(P)\right)$$

je vektor normale tangentne ravni površi F(x, y, z) = 0 u tački P.

Jednačina tangentne ravni u regularnoj tački $P_0(x_0, y_0, z_0)$ je

$$\frac{\partial F}{\partial x}(P_0)(x-x_0) + \frac{\partial F}{\partial y}(P_0)(y-y_0) + \frac{\partial F}{\partial z}(P_0)(z-z_0) = 0.$$

Ako je površ S data jednačinom z=f(x,y), možemo da je napišemo kao F(x,y,z)=f(x,y)-z=0, pa je

$$\frac{\partial F}{\partial x} = \frac{\partial f}{\partial x}, \quad \frac{\partial F}{\partial y} = \frac{\partial f}{\partial y}, \quad \frac{\partial F}{\partial z} = -1,$$

pa je jednačina tangentne ravni u tački $P_0(x_0,y_0,z_0),\,z_0=f(x_0,y_0)$

$$\frac{\partial f}{\partial x}(x_0,y_0)(x-x_0)+\frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)=z-z_0.$$

Geometrijska interpretacija totalnog diferencijala

Zamenom $x-x_0=\Delta x$ i $y-y_0=\Delta y$, prethodna jednačina tangentne ravni se svodi na

$$z - z_0 = \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y$$
$$= \frac{\partial f}{\partial x}(x_0, y_0) dx + \frac{\partial f}{\partial y}(x_0, y_0) dy.$$

Desna strana gornje jednakosti je totalni diferencijal funkcije z=f(x,y), u tački $M_0(x_0,y_0)$ ravni xy, pa je

$$z-z_0=dz$$
.

Sledi da je vrednost totalnog diferencijala funkcije z=f(x,y) u tački $M_0(x_0,y_0)$ koji odgovara priraštajima Δx i Δy jednak priraštaju po aplikati z tangentne ravni u tački $P_0(x_0,y_0,z_0)$ dobijenog pri pomeranju iz tačke $M_0(x_0,y_0)$ u tačku $M(x_0+\Delta x,y_0+\Delta y)$.

Geometrijska interpretacija totalnog diferencijala

Definicija

Prava koja prolazi kroz tačku $P_0(x_0,y_0,z_0)$ površi F(x,y,z)=0 i koja je normalna na tangentnu ravan površi u tački P_0 je normala površi u tački P_0 i data je jednačinom

$$\frac{x-x_0}{\frac{\partial F}{\partial x}(P_0)} = \frac{y-y_0}{\frac{\partial F}{\partial y}(P_0)} = \frac{z-z_0}{\frac{\partial F}{\partial z}(P_0)}.$$

Ako je površ S zadata jednačinom z=f(x,y), jednačina normale površi u tački $P_0(x_0,y_0,z_0)$ postaje

$$\frac{x-x_0}{\frac{\partial f}{\partial x}(x_0,y_0)} = \frac{y-y_0}{\frac{\partial f}{\partial y}(x_0,y_0)} = \frac{z-z_0}{-1}.$$

Parcijalni izvodi višeg reda Neka $f:D\to\mathbb{R},\ D\subset\mathbb{R}^n$, postoji $\frac{\partial f}{\partial x_i}$ za neko $i\in\{1,2,\ldots,n\}$ u svim tačkama nepraznog podskupa $D_1 \subset D$.

 $\frac{\partial f}{\partial x_i}$ je realna funkcija definisana nad skupom D_1 , tj. $\frac{\partial f}{\partial x_i}:D_1\to\mathbb{R}$, pa se može postaviti pitanje postojanja parcijalnog izvoda te funkcije po promenljivoj x_i u nekoj tački $M \in D_1$.

Definicija

Ako postoji parcijalni izvod $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) (M)$ tada je to drugi parcijalni izvod ili parcijalni izvod drugog reda funkcije $f(x_1, x_2, ..., x_n)$ u tački M po promenljivama x_i, x_i (tim redom!) i označavamo ga sa

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(M).$$

• za
$$i = j$$
 je $\frac{\partial^2 f}{\partial x_i \partial x_i}(M) = \frac{\partial^2 f}{\partial x_i^2}(M)$

- za $i \neq j$ je $\frac{\partial^2 f}{\partial x_i \partial x_j}(M)$ mešoviti parcijalni izvod
- u opštem slučaju $\frac{\partial^2 f}{\partial x_i \partial x_j}(M)$ i $\frac{\partial^2 f}{\partial x_j \partial x_i}(M)$ mogu imati različite vrednosti

Primer

Funkcija
$$z = f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} &, & (x,y) \neq (0,0) \\ 0 &, & (x,y) = (0,0) \end{cases}$$
 ima mešovite parcijalne izvode u svim tačkama, pri čemu oni nisu jednaki u koordinatnom početku, tj. $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$.

Teorema

Ako postoje drugi mešoviti parcijalni izvodi $\frac{\partial^2 f}{\partial x_i \partial x_j}$ i $\frac{\partial^2 f}{\partial x_j \partial x_i}$ u nekoj δ -okolini tačke $M(x_1, \ldots, x_n)$ i ako su oni neprekidni u datoj tački M, onda su oni i jednaki u toj tački, tj. važi jednakost

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(M) = \frac{\partial^2 f}{\partial x_j \partial x_i}(M).$$

Parcijalni izvodi višeg reda definišu se induktivno:

• parcijalni izvod reda m ili m-tog reda funkcije $f(x_1, x_2, \ldots, x_n)$ u tački $M(x_1, x_2, \ldots, x_n)$ po promenljivama $x_{i_1}, x_{i_2}, \ldots, x_{i_m}$ (tim redom!) označava se sa

$$\frac{\partial^m f}{\partial x_{i_1} \partial x_{i_2} \dots \partial x_{i_m}}(M),$$

pri čemu neki od indeksa mogu biti jednaki.

Redosled traženja parcijalnih izvoda u opštem slučaju utiče na njegovu vrednost. U slučaju da su izvodi neprekidne funkcije u nekoj tački, na osnovu prethodne teoreme, redosled više nije bitan.

 $C^m(D,\mathbb{R})$ je skup svih funkcija takvih da su svi parcijalni izvodi m-tog reda neprekidni nad skupom D.

Posledica

Za $f \in C^m(D,\mathbb{R})$ se vrednost izraza $\frac{\partial^m f}{\partial x_{i_1}\partial x_{i_2}\dots\partial x_{i_m}}(M)$ ne menja pri proizvoljnoj permutaciji indeksa i_1,i_2,\dots,i_m .

Funkcije klase $C^m(D,\mathbb{R})$, gde je D otvorena oblast su m puta neprekidno diferencijabilne. Za m-ti parcijalni izvod takve funkcije koristićemo oznaku

$$\frac{\partial^m f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_n^{\alpha_n}},$$

gde $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}$, $0 \le \alpha_i \le m$, $\alpha_1 + \alpha_2 + \cdots + \alpha_n = m$.

Totalni diferencijal višeg reda

Za diferencijabilnu funkciju $z = f(x_1, x_2, \ldots, x_n)$ nad skupom D je totalni diferencijal prvog reda (prvi totalni diferencijal) funkcije $z = f(x_1, x_2, \ldots, x_n)$ u tački $M(x_1, x_2, \ldots, x_n) \in D$ koji odgovara priraštajima dx_1, dx_2, \ldots, dx_n promenljivih x_1, x_2, \ldots, x_n dat formulom

$$dz = \frac{\partial z}{\partial x_1} dx_1 + \frac{\partial z}{\partial x_2} dx_2 + \dots + \frac{\partial z}{\partial x_n} dx_n,$$

gde su $dx_i = \Delta x_i$, $i = \{1, 2, ..., n\}$ proizvoljni priraštaji nezavisnih promenljivih, tj. proizvoljni brojevi nezavisni od x_i , $i = \{1, 2, ..., n\}$.

- x_1, x_2, \ldots, x_n možemo da menjamo tako da pri tome dx_1, dx_2, \ldots, dx_n ostanu konstantni
- za date dx_1, dx_2, \ldots, dx_n totalni diferencijal dz je funkcija od x_1, x_2, \ldots, x_n koja takođe može da bude diferencijabilna

Definicija

Totalni diferencijal d(dz) u tački $M(x_1, x_2, ..., x_n)$ koji odgovara priraštajima nezavisnih promenljivih $dx_1, ..., dx_n$ se zove drugi totalni diferencijal (totalni diferencijal drugog reda) funkcije $z = f(x_1, x_2, ..., x_n)$ u tački M, u oznaci d^2z .

Ako funkcija z=f(x,y) ima neprekidne parcijalne izvode prvog i drugog reda u otvorenoj oblasti D, tada je totalni diferencijal dz funkcije z=f(x,y) diferencijabilna funkcija pa u D postoji d^2z . Kako su dx i dy konstantni, sledi

$$d^{2}z = d(dz) = d\left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right)$$

$$= \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right)dx + \frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy\right)dy$$

$$= \frac{\partial^{2}z}{\partial x^{2}}dx^{2} + \frac{\partial^{2}z}{\partial y\partial x}dxdy + \frac{\partial^{2}z}{\partial x\partial y}dxdy + \frac{\partial^{2}z}{\partial y^{2}}dy^{2}$$

Ako sa d označimo $d = \frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy$, tada se može pisati

$$dz = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)z, \quad d^2z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^2z$$

Opštije,

ako funkcija $z=f(x_1,x_2,\ldots,x_n)$ ima neprekidne parcijalne izvode prvog i drugog reda u otvorenoj oblasti D, tada je totalni diferencijal dz funkcije $z=f(x_1,x_2,\ldots,x_n)$ diferencijabilna funkcija pa u D postoji d^2z . Kako su dx_1,dx_2,\ldots,dx_n konstantni, sledi

$$d^{2}z = d(dz) = d\left(\frac{\partial z}{\partial x_{1}}dx_{1} + \frac{\partial z}{\partial x_{2}}dx_{2} + \dots + \frac{\partial z}{\partial x_{n}}dx_{n}\right)$$

$$= \frac{\partial^{2}z}{\partial x_{1}^{2}}dx_{1}^{2} + \frac{\partial^{2}z}{\partial x_{2}^{2}}dx_{2}^{2} + \dots + \frac{\partial^{2}z}{\partial x_{n}^{2}}dx_{n}^{2} +$$

$$+2\left(\frac{\partial^{2}z}{\partial x_{1}\partial x_{2}}dx_{1}dx_{2} + \dots + \frac{\partial^{2}z}{\partial x_{n-1}\partial x_{n}}dx_{n-1}dx_{n}\right)$$

└─ Totalni diferencijal višeg reda

Ako sa *d* označimo

$$d = \frac{\partial}{\partial x_1} dx_1 + \frac{\partial}{\partial x_2} dx_2 + \cdots + \frac{\partial}{\partial x_n} dx_n,$$

prethodna formula se može zapisati kao

$$d^2z = \left(\frac{\partial}{\partial x_1}dx_1 + \frac{\partial}{\partial x_2}dx_2 + \dots + \frac{\partial}{\partial x_n}dx_n\right)^2z,$$

a prvi totalni diferencijal možemo zapisati u obliku

$$dz = \left(\frac{\partial}{\partial x_1}dx_1 + \frac{\partial}{\partial x_2}dx_2 + \dots + \frac{\partial}{\partial x_n}dx_n\right)z.$$

- totalni diferencijal m-tog reda ili m-ti totalni diferencijal, $m \ge 3$, definišu se induktivno
- za m-ti totalni diferencijal, $m \ge 2$, kažemo da je totalni diferencijal višeg reda ili viši totalni diferencijal

Teorema

Ako funkcija $z = f(x_1, x_2, ..., x_n) \in C^m(D, \mathbb{R})$, D je otvorena oblast, tada postoji totalni diferencijal $d^m z$ m-tog reda koji je dat obrascem

$$d^{m}z = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \frac{\partial}{\partial x_{2}}dx_{2} + \cdots + \frac{\partial}{\partial x_{n}}dx_{n}\right)^{m}z.$$

Lokalni ekstremi

Definicija

Neka je $f: D \to \mathbb{R}, \ D \subset \mathbb{R}^n, \ n \geq 2$ definisana na nekoj okolini $L(A, \varepsilon)$ tačke $A \in D$ (sledi da je $A \in D^{\circ}$).

• Ako je za svaku tačku $X \in L(A, \varepsilon) \setminus \{A\}$ ispunjeno

tada funkcija f u tački A ima lokalni maksimum jednak f(A).

• Ako je za svaku tačku $X \in L(A, \varepsilon) \setminus \{A\}$ ispunjeno

tada funkcija f u tački A ima lokalni minimum jednak f(A).

Drugim rečima, funkcija $z = f(x_1, x_2, \dots, x_n)$ u tački

$$A(x_1, x_2, \ldots, x_n) \in D^{\circ}$$

ima lokalni ekstrem ako za svako $i \in \{1, \dots, n\}$ postoje $\delta_i > 0$ takvi da je

za svako
$$|\Delta x_i| < \delta_i, \quad (\Delta x_1, \Delta x_2, \dots, \Delta x_n) \neq (0, 0, \dots, 0),$$

$$B(x_1 + \Delta x_1, \ldots, x_n + \Delta x_n) \in D$$

priraštaj funkcije

$$\Delta z = f(x_1 + \Delta x_1, \dots, x_n + \Delta x_n) - f(x_1, \dots, x_n)$$

u tački A ili pozitivan (lokalni minimum) ili negativan (lokalni maksimum) (o rubnim ekstremima biće reči kasnije).

Funkcija $z = f(x, y) = x^2 + y^2$ u tački O(0, 0) ima lokalni minimum:

Lokalni ekstremi

Funkcija $z = f(x, y) = 1 - x^2 - y^2$ u tački O(0, 0) ima lokalni maksimum:

Funkcija

$$z = f(x, y) = \begin{cases} x^2 + y^2 &, & x^2 + y^2 \neq 0 \\ 1 &, & x = y = 0 \end{cases}$$

u tački O(0,0) ima lokalni maksimum:

Potreban uslov za postojanje lokalnog ekstrema:

Teorema

Neka funkcija $f:D\to\mathbb{R},\ D\subset\mathbb{R}^n,\ n\geq 2$ u tački $A(a_1,a_2,\ldots,a_n)\in D^\circ$ ima sve parcijalne izvode prvog reda i neka u toj tački ima lokalni ekstrem. Tada je

$$\frac{\partial f}{\partial x_1}(A) = \frac{\partial f}{\partial x_2}(A) = \dots = \frac{\partial f}{\partial x_n}(A) = 0.$$

Specijalno, ako je f(X), $X \in D$ diferencijabilna funkcija u nekoj okolini tačke $A \in D^{\circ}$, onda je

$$df(A) = 0, \quad (dx_1, dx_2, \dots, dx_n) \neq (0, 0, \dots, 0).$$

Dokaz. Neka je $L(A, \varepsilon)$ otvorena lopta u kojoj je definisana funkcija $z = f(x_1, x_2, \dots, x_n)$ i u kojoj važi da je

$$f(X) < f(A)$$
 $(f(X) > f(A))$ za sve $x \in L(A, \varepsilon) \setminus \{A\}$.

Za proizvoljno $i \in \{1, 2, \dots, n\}$ posmatrajmo funkciju

$$f_i:(a_i-\varepsilon,a_i+\varepsilon)\to\mathbb{R}$$

definisanu sa

$$f_i(x_i) = f(a_1, a_2, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_n), \text{ za } x_i \in (a_i - \varepsilon, a_i + \varepsilon).$$

Ta funkcija jedne promenljive ima lokalni ekstrem u tački a_i , pa je

$$f_i'(a_i) = \frac{\partial f}{\partial x_i}(A) = 0.$$

Navedeni uslov nije i dovoljan za postojanje ekstrema:

Funkcija $z=x^2-y^2$ ima izvode $\frac{\partial z}{\partial x}=2x, \frac{\partial \bar{z}}{\partial y}=-2y$, koji su jednaki nuli za x=y=0.

Kako je
$$f(0,0)=0$$
,
$$\Delta z(0,0)=f(0+\Delta x,0+\Delta y)-f(0,0)=(\Delta x)^2-(\Delta y)^2 \text{, to je}$$

$$\left\{ \begin{array}{l} \Delta f>0 \quad , \quad \Delta x\neq 0, \Delta y=0 \\ \Delta f<0 \quad , \quad \Delta x=0, \Delta y\neq 0 \end{array} \right.$$

pa ova funkcija nema lokalni ekstrem u tački O(0,0).

• stacionarne tačke - unutrašnje tačke oblasti definisanosti diferencijabilne funkcije $z=f(x_1,x_2,\ldots,x_n)$ u kojima su svi parcijalni izvodi prvog reda jednaki nuli

Dovoljni uslovi za postojanje lokalnog ekstrema (2 teoreme):

Teorema

Neka je $D \subset \mathbb{R}^n$, $n \geq 2$ otvorena oblast i neka $A(a_1, \ldots, a_n) \in D$, $f \in C^2(D, \mathbb{R})$, pri čemu je A stacionarna tačka funkcije $f(x_1, \ldots, x_n)$, tj. df(A) = 0 za $(dx_1, dx_2, \ldots, dx_n) \neq (0, 0, \ldots, 0)$. Tada

- 1. Ako je $d^2f(A) < 0$ za $(dx_1, ..., dx_n) \neq (0, ..., 0)$, funkcija f u tački A ima lokalni maksimum.
- 2. Ako je $d^2f(A) > 0$ za $(dx_1, ..., dx_n) \neq (0, ..., 0)$, funkcija f u tački A ima lokalni minimum.
- 3. Ako $d^2f(A)$ menja znak za $(dx_1, ..., dx_n) \neq (0, ..., 0)$, funkcija f u tački A nema lokalni ekstrem.

Teorema

Neka je $D \subset \mathbb{R}^2$ otvorena oblast i neka $A(a,b) \in D, \, f \in C^2(D,\mathbb{R})$ i

$$p = \frac{\partial f}{\partial x}(a, b) = 0, \quad q = \frac{\partial f}{\partial y}(a, b) = 0.$$

Označimo sa
$$r = \frac{\partial^2 f}{\partial x^2}(a,b), \ s = \frac{\partial^2 f}{\partial x \partial y}(a,b), \ t = \frac{\partial^2 f}{\partial y^2}(a,b).$$
 Tada:

- 1. Ako je r > 0 (t > 0) i $rt s^2 > 0$, funkcija f(x, y) u tački A(a, b) ima lokalni minimum.
- 2. Ako je r < 0 (t < 0) i $rt s^2 > 0$, funkcija f(x, y) u tački A(a, b) ima lokalni maksimum.
- 3. Ako je rt $-s^2 < 0$, f(x,y) u tački A(a,b) nema lokalni ekstrem.
- 4. Ako je rt $-s^2 = 0$, potrebna su dalja ispitivanja (posmatra se znak priraštaja funkcije u tački A(a,b)).

Primer

Odrediti ekstremne vrednosti funkcije $z = f(x, y) = x^2 + 2xy + y^2$

Iz
$$\frac{\partial z}{\partial x} = 2x + 2y = 0$$
 i $\frac{\partial z}{\partial y} = 2x + 2y = 0$ dobijamo stacionarne tačke $A(x, -x)$, tj. sve tačke prave $y = -x$ su stacionarne tačke. Kako je

$$\frac{\partial^2 z}{\partial x^2} = 2$$
, $\frac{\partial^2 z}{\partial x \partial y} = 2$, $\frac{\partial^2 z}{\partial y^2} = 2$,

to je uvek

$$rt - s^2 = 4 - 4 = 0$$

ili

$$d^2f(A)=2(dx+dy)^2\geq 0,$$

pa na osnovu ovih kriterijuma ne možemo zaključiti da li data funkcija u tačkama A(x,-x) ima lokalni ekstrem.

U svakoj okolini tačke A(x,-x) ima i drugih tačaka

$$B(y, -y)$$
, pri čemu je $A \neq B$,

pri čemu važi da je

$$f(B)-f(A)=0.$$

Dalje, za sve tačke

$$X(x,y)$$
, gde je $x \neq y$

je

$$f(x,y) - f(0,0) = (x+y)^2 > 0,$$

pa zaključujemo da je $f(X)-f(A)\geq 0$, za tačke $X\in L(A,\varepsilon)$, pa zaključujemo da funkcija ni u jednoj tački A(x,-x) nema lokalni ekstrem.

Vezani (uslovni) ekstremi

Kod određivanja ekstremnih vrednosti funkcija više promenljivih promenljive mogu biti vezane nekim dodatnim relacijama (ne mogu slobodno da se menjaju u oblasti definisanosti funkcije).

Primer

Odrediti ekstremne vrednosti funkcije $z = f(x, y) = x^2 + y^2$ pod uslovom da je x + y = 1.

Iz date veze sledi da je y=1-x, pa je u odgovarajućim tačkama

$$f(x,y) = f(x,1-x) = 2x^2 - 2x + 1 = 2\left(x - \frac{1}{2}\right)^2 + \frac{1}{2}.$$

Funkcija f(x, 1-x) ima minimum za $x=\frac{1}{2}$ (pa i $y=\frac{1}{2}$).

Minimalna vrednost je $\frac{1}{2}$.

Sama funkcija $z=f(x,y)=x^2+y^2$ u svakoj okolini tačke $\left(\frac{1}{2},\frac{1}{2}\right)$ ima i manjih vrednosti od $\frac{1}{2}$.

Inače, njena najmanja vrednost je 0.

Ograničimo razmatranja na funkciju dve promenljive, z = f(x, y). Neka je $f: D \to \mathbb{R}$, definisana na $D \subset \mathbb{R}^2$ i $\varphi: D \to \mathbb{R}$. Neka je

$$B = \{(x, y) \in D : \varphi(x, y) = 0\}$$

neprazan skup određen uslovom ili vezom $\varphi(x,y) = 0$.

Definicija

Funkcija z=f(x,y) u tački nagomilavanja $A(x,y)\in B$ skupa B ima uslovni (vezani) lokalni maksimum (uslovni (vezani) lokalni minimum) pri uslovu $\varphi(x,y)=0$, ako

$$(\exists \varepsilon > 0)(\forall X \in B \cap (L(A, \varepsilon) \setminus \{A\})) \quad f(X) < f(A) \quad (f(X) > f(A)).$$

Uslovni lokalni minimum odnosno uslovni lokalni maksimum jednim imenom zovemo uslovni ili vezani ekstremi a jednačina $\varphi(x,y)=0$ zove se jednačina veze.

Ako je jednačina krive $L: \varphi(x,y) = 0$, problem određivanja uslovnih ekstrema funkcije z = f(x,y) na krivoj L može se formulisati kao: **odrediti uslovne ekstreme funkcije** $\mathbf{z} = \mathbf{f}(\mathbf{x},\mathbf{y})$ nad skupom \mathbf{D} , pod uslovom $\varphi(\mathbf{x},\mathbf{y}) = \mathbf{0}$.

Lagranžov metod za određivanje uslovnog ekstrema:

Neka je $M_0=(x_0,y_0)$ potencijalna tačka uslovnog ekstrema funkcije z=f(x,y) sa jednačinom veze $\varphi(x,y)=0$.

Pp. da funkcije f(x,y) i $\varphi(x,y)$ imaju neprekidne parcijalne izvode prvog i drugog reda u nekoj okolini tačke $M_0(x_0,y_0)$ i da je bar jedan od parcijalnih izvoda

$$\frac{\partial \varphi}{\partial x}(M_0), \quad \frac{\partial \varphi}{\partial y}(M_0)$$

različit od 0 (neka je npr. $\frac{\partial arphi}{\partial y}(\emph{M}_0)
eq 0.)$

Iz $\varphi(x,y)=0$ sledi da je $y=\psi(x)$, pa je $z=f(x,\psi(x))=h(x)$ funkcija jedne promenljive. Potreban uslov da funkcija

$$z = f(x, \psi(x))$$

u tački $M(x_0,\psi(x_0))$ ima ekstremnu vrednost je da je $\frac{dz}{dx}(M_0)=0$. Sledi da je

$$dz(M_0) = df(M_0) = \frac{\partial f}{\partial x}(M_0)dx + \frac{\partial f}{\partial y}(M_0)dy = 0.$$
 (1)

Iz jednačine veze se dobija

$$d\varphi(M_0) = \varphi_x(M_0)dx + \varphi_y(M_0)dy = 0.$$
 (2)

Množenjem jednakosti (2) sa λ i dodavanjem jednakosti (1) dobijamo

└Vezani (uslovni) ekstremi

$$\left(\frac{\partial f}{\partial x}(x_0, y_0) + \lambda \frac{\partial \varphi}{\partial x}(x_0, y_0)\right) dx + \left(\frac{\partial f}{\partial y}(x_0, y_0) + \lambda \frac{\partial \varphi}{\partial y}(x_0, y_0)\right) dy = 0.$$

Iz
$$\frac{\partial f}{\partial y}(x_0, y_0) + \lambda \frac{\partial \varphi}{\partial y}(x_0, y_0) = 0$$
 izrazimo λ :

$$\lambda = -\frac{\frac{\partial f}{\partial y}(x_0, y_0)}{\frac{\partial \varphi}{\partial y}(x_0, y_0)}, \quad \frac{\partial \varphi}{\partial y}(x_0, y_0) \neq 0.$$

Dakle, jednakosti

$$\frac{\partial f}{\partial x}(x_0, y_0) + \lambda \frac{\partial \varphi}{\partial x}(x_0, y_0) = 0, \quad \frac{\partial f}{\partial y}(x_0, y_0) + \lambda \frac{\partial \varphi}{\partial y}(x_0, y_0) = 0$$

daju potrebne uslove za nevezane ekstreme u tački $M_0(x_0,y_0)$ funkcije

$$F(x,y) = f(x,y) + \lambda \varphi(x,y)$$
 (LAGRANŽOVA FUNKCIJA).

Dakle, uslovni ekstrem funkcije f(x,y), ako je $\varphi(x,y)=0$, je obavezno stacionarna tačka Lagranžove funkcije

$$F(x, y) = f(x, y) + \lambda \varphi(x, y),$$

pa se tačke koje mogu biti uslovni ekstremi funkcije f(x,y), ako je $\varphi(x,y)=0$, dobijaju tako što se formira Lagranžova funkcija i njeni prvi parcijalni izvodi

$$\frac{\partial F}{\partial x}$$
, $\frac{\partial F}{\partial y}$

izjednače sa nulom. Dobijamo sistem od tri jednačine

$$\frac{\partial F}{\partial x} = f_x(x, y) + \lambda \varphi_x(x, y) = 0$$

$$\frac{\partial F}{\partial y} = f_y(x, y) + \lambda \varphi_y(x, y) = 0$$

$$\varphi(x, y) = 0,$$

čijim rešavanjem određujemo $\lambda,\,x$ i y mogućih tačaka ekstrema.

Postojanje i prirodu uslovnih ekstrema određujemo pomoću znaka drugog totalnog diferencijala Lagranžove funkcije

$$d^{2}F(x,y) = \frac{\partial^{2}F}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}F}{\partial x\partial y}dxdy + \frac{\partial^{2}F}{\partial y^{2}}dy^{2},$$

za skup vrednosti x_0, y_0, λ dobijenih iz prikazanog sistema jednačina pod uslovom $\frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy = 0$, za $(dx, dy) \neq (0, 0)$.

- $d^2F(x_0,y_0)<0$ u tački (x_0,y_0) funkcija f(x,y) ima uslovni maksimum
- $d^2F(x_0,y_0)>0$ u tački (x_0,y_0) funkcija f(x,y) ima uslovni minimum
- $d^2F(x_0, y_0)$ u tački (x_0, y_0) menja znak funkcija f(x, y) nema uslovni ekstrem

Primer

Odrediti ekstremne vrednosti funkcije $z = f(x, y) = x^2 + y^2$ pod uslovom da je x + y = 1.

$$F(x, y, \lambda) = x^{2} + y^{2} + \lambda(x + y - 1),$$

$$\frac{\partial F}{\partial x} = 2x + \lambda = 0,$$

$$\frac{\partial F}{\partial y} = 2y + \lambda = 0,$$

$$x + y - 1 = 0$$

$$\Rightarrow x = y = \frac{1}{2}, \lambda = -1.$$

Kako je
$$\frac{\partial^2 F}{\partial x^2} = 2$$
, $\frac{\partial^2 F}{\partial y^2} = 2$, $\frac{\partial^2 F}{\partial x \partial y} = 0$ i $dx + dy = 0$, to je

$$d^{2}F\left(\frac{1}{2},\frac{1}{2}\right) = 2dx^{2} + 2dy^{2}$$

= $2dx^{2} + 2(-dx)^{2} = 4dx^{2} > 0, (dx, dx) \neq (0,0),$

pa funkcija u tački $A\left(\frac{1}{2},\frac{1}{2}\right)$ ima uslovni minimum pod uslovom x+y=1.

Primer

Odrediti ekstremne vrednosti funkcije z = f(x, y) = xy pod uslovom da je y - x = 0.

$$F(x, y, \lambda) = xy + \lambda(y - x),$$

$$\frac{\partial F}{\partial x} = y - \lambda = 0,$$

$$\frac{\partial F}{\partial y} = x + \lambda = 0,$$

$$y - x = 0$$

$$\Rightarrow x = y = 0, \lambda = 0.$$

Kako je
$$\frac{\partial^2 F}{\partial x^2} = 0$$
, $\frac{\partial^2 F}{\partial y^2} = 0$, $\frac{\partial^2 F}{\partial x \partial y} = 1$ i $dy - dx = 0$, to je $d^2 F(0,0) = dx^2 > 0$, za $dx \neq 0$. Kako je $d^2 F(0,0) > 0$, to funkcija u tački $O(0,0)$ ima uslovni lokalni minimum. Primetimo da je $rt - s^2(0,0) = -1 < 0$, dakle **funkcija može imati uslovni ekstrem i ako je** $rt - s^2 < 0$.

Neka je data funkcija $f:D\to\mathbb{R}$, definisana na skupu $D\subset\mathbb{R}^n,\ n\geq 2$ i funkcije $\varphi_i:D\to\mathbb{R},\ i=1,2,\ldots,m$, za fiksirano $m\in\mathbb{N},\ m< n$. Neka je

$$B = \{X \in D : \varphi_i(X) = 0, i = 1, 2, \dots, m\}$$

neprazan skup određen sa $\varphi_1(X)=0, \varphi_2(X)=0, \ldots, \varphi_n(X)=0.$

Definicija

Funkcija $z=f(x_1,\ldots,x_n)$ u tački nagomilavanja $A(a_1,a_2,\ldots,a_n)\in B$ skupa B ima uslovni (vezani) lokalni maksimum (uslovni (vezani) lokalni minimum) pri uslovima

$$\varphi_1(x_1,\ldots,x_n) = 0, \varphi_2(x_1,\ldots,x_n) = 0,\ldots,\varphi_m(x_1,\ldots,x_n) = 0$$
 ako

$$(\exists \varepsilon > 0)(\forall X \in B \cap (L(A, \varepsilon) \setminus \{A\})) \quad f(X) < f(A) \quad (f(X) > f(A)).$$

Uslovni lokalni minimum odnosno uslovni lokalni maksimum jednim imenom zovemo uslovni ili vezani ekstremi.

Ako tražimo uslovne ekstreme funkcije $z = f(x_1, \dots, x_n)$, pod uslovima

$$\varphi_1(x_1, x_2, \dots, x_n) = 0,$$

$$\varphi_2(x_1, x_2, \dots, x_n) = 0,$$

$$\vdots$$

$$\varphi_m(x_1, x_2, \dots, x_n) = 0,$$

gde je $1 \le m < n$, formiramo Lagranžovu funkciju:

$$F(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)=f(x_1,\ldots,x_n)+\sum_{i=1}^m\lambda_i\varphi_i(x_1,\ldots,x_n),$$

uz pretpostavku da funkcije $f(x_1, \ldots, x_n)$ i $\varphi_i(x_1, \ldots, x_n)$, $i = 1, \ldots, m$ imaju neprekidne parcijalne izvode prvog i drugog reda u nekoj okolini potencijalne tačke uslovnog ekstrema $M(a_1, \ldots, a_n)$.

Dalje, pretpostavimo da u toj okolini funkcionalna matrica

$$\begin{bmatrix} \frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_1}{\partial x_2} & \cdots & \frac{\partial \varphi_1}{\partial x_n} \\ \frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} & \cdots & \frac{\partial \varphi_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial \varphi_m}{\partial x_1} & \frac{\partial \varphi_m}{\partial x_2} & \cdots & \frac{\partial \varphi_m}{\partial x_n} \end{bmatrix}$$

ima rang m. Izjednačavanjem sa nulom svih parcijalnih izvoda prvog reda funkcije $F(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)$ i uzimajući u obzir jednačine veze, dobijamo sistem od n+m jednačina:

$$\frac{\partial F}{\partial x_i}(x_1,\ldots,x_n)=0, \quad i\in\{1,2,\ldots,n\}$$

$$\varphi_j(x_1,\ldots,x_n)=0,\quad j\in\{1,2,\ldots,m\}$$

čijim rešavanjem nalazimo $\lambda_1, \ldots, \lambda_m$ i koordinate x_1, x_2, \ldots, x_n mogućih ekstrema.

Postojanje i prirodu uslovnih ekstrema određujemo pomoću znaka drugog diferencijala Lagranžove funkcije. Ako je u dobijenim tačkama

- $d^2F < 0$, $(dx_1, dx_2, \dots, dx_n) \neq (0, 0, \dots, 0)$, funkcija f(x, y) ima uslovni maksimum
- $d^2F > 0$ $(dx_1, dx_2, \dots, dx_n) \neq (0, 0, \dots, 0)$, funkcija f(x, y) ima uslovni minimum
- d^2F menja znak funkcija f(x,y) nema uslovni ekstrem

Između dx_1, dx_2, \dots, dx_n postoje veze

$$\frac{\partial \varphi_1}{\partial x_1} dx_1 + \dots + \frac{\partial \varphi_1}{\partial x_n} dx_n = 0,
\vdots
\frac{\partial \varphi_m}{\partial x_1} dx_1 + \dots + \frac{\partial \varphi_m}{\partial x_n} dx_n = 0.$$

Primer

Odrediti ekstremne vrednosti funkcije $u = f(x, y, z) = x^2 + y^2 + z^2$ pod uslovom da je $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, a > b > c > 0.

$$F(x,y,z,\lambda) = x^{2} + y^{2} + z^{2} + \lambda \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} - 1\right)$$

$$\frac{\partial F}{\partial x} = 2x + 2\lambda \frac{x}{a^{2}} = 2x(1 + \frac{\lambda}{a^{2}}) = 0 \Rightarrow x = 0 \lor \lambda = -a^{2},$$

$$\frac{\partial F}{\partial y} = 2y + 2\lambda \frac{y}{b^{2}} = 2y(1 + \frac{\lambda}{b^{2}}) = 0 \Rightarrow y = 0 \lor \lambda = -b^{2},$$

$$\frac{\partial F}{\partial z} = 2z + 2\lambda \frac{z}{c^{2}} = 2z(1 + \frac{\lambda}{c^{2}}) = 0 \Rightarrow z = 0 \lor \lambda = -c^{2}$$

$$A(a, 0, 0), \quad B(-a, 0, 0) \quad (\lambda = -a^{2})$$

$$C(0, b, 0), \quad D(0, -b, 0) \quad (\lambda = -b^{2})$$

$$E(0, 0, c), \quad H(0, 0, -c) \quad (\lambda = -c^{2})$$

Kako je

$$\frac{\partial^2 F}{\partial x^2} = 2 + 2\frac{\lambda}{a^2}, \quad \frac{\partial^2 F}{\partial y^2} = 2 + 2\frac{\lambda}{b^2}, \quad \frac{\partial^2 F}{\partial z^2} = 2 + 2\frac{\lambda}{c^2},$$
$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial x \partial z} = \frac{\partial^2 F}{\partial y \partial z} = 0,$$

to je

$$d^2F = 2\left(\left(1 + \frac{\lambda}{a^2}\right)dx^2 + \left(1 + \frac{\lambda}{b^2}\right)dy^2 + \left(1 + \frac{\lambda}{c^2}\right)dz^2\right).$$

Za tačke A i B je

$$d^2F(A) = d^2F(B) = 2\left(\left(1 - \frac{a^2}{b^2}\right)dy^2 + \left(1 - \frac{a^2}{c^2}\right)dz^2\right).$$

Vezani (uslovni) ekstremi

Diferenciranjem jednačine veze dobijamo

$$\frac{2x}{a^2}dx + \frac{2y}{b^2}dy + \frac{2z}{c^2}dz = 0,$$

odakle uvrštavanjem koordinata tačaka A i B dobijamo $\pm \frac{2a}{a^2}dx = 0$, odakle je dx = 0.

S obzirom da je $(dx, dy, dz) \neq (0, 0, 0)$, bar jedan od diferencijala dy ili dz mora biti različit od nule.

Kako je

$$1 - \frac{a^2}{b^2} < 0$$
 i $1 - \frac{a^2}{c^2} < 0$

sledi da je

$$d^2F(A)=d^2F(B)<0,$$

pa funkcija u tačkama A i B ima uslovni maksimum.

Za tačke *C* i *D* je

$$d^2F(C) = d^2F(D) = 2\left(\left(1 - \frac{b^2}{a^2}\right)dx^2 + \left(1 - \frac{b^2}{c^2}\right)dz^2\right).$$

Iz $\pm \frac{2b}{c^2} dy = 0$ sledi da je je dy = 0. S obzirom da je $(dx, dy, dz) \neq (0, 0, 0)$, bar jedan od diferencijala dx ili dz mora biti različit od nule. Ako je dx = 0 tada je

$$d^2F(C) = d^2F(D) = 2\left(1 - \frac{b^2}{c^2}\right)dz^2 < 0,$$

a ako je dz = 0 tada je

$$d^2F(C) = d^2F(D) = 2\left(1 - \frac{b^2}{a^2}\right)dx^2 > 0,$$

pa kako d^2F menja znak u tačkama C i D, funkcija u tačkama C i D nema uslovni ekstrem.

Vezani (uslovni) ekstremi

Za tačke E i H je

$$d^2F(E) = d^2F(H) = 2\left(\left(1 - \frac{c^2}{a^2}\right)dx^2 + \left(1 - \frac{c^2}{b^2}\right)dy^2\right).$$

Iz $\pm \frac{2c}{c^2} dy = 0$ sledi da je je dz = 0. Kako je

$$1 - \frac{c^2}{a^2} > 0$$
 i $1 - \frac{c^2}{b^2} > 0$

sledi da je

$$d^2F(E)=d^2F(H)>0,$$

pa funkcija u tačkam A i B ima uslovni minimum.