

Data Design

Total slides: 44

ATA/SA-DIP/OOAD/OM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN

Data Analysis and Design

- Data Analysis
 - Entity Relationship diagram (data model)
 - Attribute Analysis
- Data Design
 - Normalization
 - Logical Data Model

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

Why Normalization?

- Minimize data redundancy and inconsistency
- Prevent data update problems

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

Slide 3

Normalization Process

Apply a set of normalization rules to all the attributes of the entity types identified previously.

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

ONF -> 1NF

- Action required
 - If there are multivalue attributes and/or repeating groups
 - → place the each attribute/group into a separate new table
 - copy the the primary key from the original table to the new tables
 - Examine the new table and determine which additional attribute(s) are needed to uniquely identify a single row of the new table
 - The primary key from the original table usually is insufficient to be the primary key in the new table
 - Give a names to the new table

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

Slide 9

Data Illustration Orders Order Customer Customer Order **Products** ID ID Name Date Total [PK] **OrderDetails** S009 21/7/2 3 A1091 Lynn Wang 011 Order **Product** Product Qty A1092 S010 Suzan Tan 12/1/2 2 ID Name [PK] 011 [PK] A1093 S010 Suzan Tan 21/8/2 2 S1001 A1091 Pencil 100 011 A1091 S1003 **Eraser** 200 A1091 S1005 Ruler 250 A1092 S1001 Pencil 10 A1092 S1004 Pen 50 A1093 | S1001 Pencil 80 S1005 A1093 | Ruler 90 ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3 DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved. NUS S Slide 10

1NF **Orders Products** OrderID ProductID CustomerID **ProductName** CustomerName UnitPrice OrderDate **ProductsTotal OrderDetails** OrderID ProductID ProductName Qty 0NF -> 1NF We have split table(s) with multi-value attributes or repeating group ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3 DATA ANALYSIS AND DESIGN NUS ZS Slide 11 © 2014 NUS. All rights reserved.

Problems

- 1. Duplication of data
 - ProductName is associated with ProductID
- 2. INSERT Problem
 - Adding a new product to the order
 - > Need to have full product information
- 3. DELETE Problem
 - □ Deleting an order
 - Other product information will be deleted
- 4. UPDATE Problem
 - ☐ Update the product description (PRODUCTNAME) for S1005
 - > Involves multiple rows

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN © 2014 NUS. All rights reserved.

Slide 15

1NF->2NF

- **Action Required**
 - Table with a single key is 2NF
 - Table with a concatenated key
 - Check each attribute against the whole key, remove attribute(s) and the part of the key on which it depends to form a new table
 - Name the new tables(s)
 - Decide on the primary key of the new table

Normalization · Multivalue Attributes/Repeating Groups? ONF-> 1NF Move multivalue/repeating group to a new entity -determine the key of the new relation · Are there attributes dependent on a partial key 1NF ->2NF (of composite key)? ·Move attribute(s) to a new entity -determine the key of the new entity · Any non-key attribute dependent on any other non-key attribute? 2NF ->3NF · Move attribute(s) to a new entity -determine the key of the new entity Optimization - combining entities with same primary key / remove derivable attribute DATA ANALYSIS AND DESIGN © 2014 NUS. All rights reserved ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3 **NUS**

Normalization · Multivalue Attributes/Repeating Groups? ONF-> 1NF · Move multivalue/repeating group to a new entity -determine the key of the new relation · Are there attributes dependent on a partial key 1NF ->2NF (of composite key)? ·Move attribute(s) to a new entity -determine the key of the new entity · Any non-key attribute dependent on any other non-key attribute? 2NF ->3NF · Move attribute(s) to a new entity -determine the key of the new entity Optimization - combining entities with same primary key / remove derivable attribute DATA ANALYSIS AND DESIGN © 2014 NUS. All rights reserved ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3 **NUS**

Data Illustration

Orders

OrderID [PK]	CustomerID	CustomerName	OrderDate	ProductsTotal
A1091	S009	Lynn Wang	21/7/2011	3
A1092	S010	Suzan Tan	12/1/2011	2
A1093	S010	Suzan Tan	21/8/2011	2

CustomerName depends on CustomerID (non-key attribute)

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

Slide 23

2NF-> 3NF

- **Action Required**
 - Examine each attribute
 - If an attribute(s) does not depend on the whole key, or it depends on another non-key attribute, remove the attribute(s) and use attribute on which it depends on to form a new relation. i.e. create new table comprising the attribute(s) and
 - the non-key attribute upon which it depends
 - Determine the key(s) for the new table(s)
 - Name the new table(s)

Data Illustration Orders OrderID[PK] CustomerID CustomerName **ProductsTotal OrderDate** A1091 S009 3 Lynn Wang 21/7/2011 A1092 S010 Suzan Tan 12/1/2011 2 S010 Suzan Tan A1093 21/8/2011 2 split table **Orders Customers** Order Customer Order **Products** CustomerID Customer ID [PK] ID **Date** Total Name 21/7/20 3 A1091 S009 S009 Lynn Wang 11 S010 12/1/20 2 A1092 S010 Suzan Tan 11 S010 21/8/20 2 A1093 11 DATA ANALYSIS AND DESIGN © 2014 NUS. All rights reserved. ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3 NUS National University Slide 25

Normalization

ONF-> 1NF

- Multivalue Attributes/Repeating Groups?
 - Move multivalue/repeating group to a new entity
 -determine the key of the new relation

1NF ->2NF

- Are there attributes dependent on a partial key (of <u>composite key</u>)?
 - Move attribute(s) to a new entity-determine the key of the new entity

2NF ->3NF

- Any non-key attribute dependent on any other non-key attribute?
 - Move attribute(s) to a new entity
 determine the key of the new entity

Optimization - combining entities with same primary key / remove derivable attribute

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

Slide 27

Orders

Data Illustration

OrderID [PK]	CustomerID	OrderDate	Products Total	
A1091	S009	21/7/2011	3	
A1092	S010	12/1/2011	2	
A1093	S010	21/8/2011	2	

derivable

OrderDetails

Order ID	Product ID	Qty
[PK]	[PK]	
A1091	S1001	100
A1091	S1003	200
A1091	S1005	250
A1092	S1001	10
A1092	S1004	50
A1093	S1001	80
A1093	S1005	90

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

More on Optimization

 Optimization is combining tables that have identical primary keys

```
Table-1
          (K1, K2, K3, DE1, DE2, DE3)
     AND
```

Table-2 (K1, K3, K2, DE2, DE4, DE5)

ARE COMBINED TO GIVE

Table-3 (K1, K2, K3, DE1, DE2, DE3, DE4, DE5)

- * where K is a Key-element and DE is a Data-element
- Key sequence is not important
- Don't lose data elements

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

Slide 31

More on Optimization

If we have:

(K1, K2, DE1, DE2, DE3) Table-1

AND

Table-2 (<u>K1</u>, <u>K2</u>, <u>K3</u>, DE2, DE4, DE5)

CAN WE COMBINE?

More on Optimization

- Two approaches
 - Optimize at the end of each normalization step
 - Optimize after 3NF
- Recommend a combination of both

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

Slide 33

Benefits of Normalization

- Prevent data updates problem
- Reduce data redundancies
- Foundation for an optimum physical data base design using any DBMS

Data Analysis and Design

- Data Analysis
 - Entity Relationship diagram (data model)
 - Attribute Analysis
- Data Design
 - Normalization
- Logical Data Model

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

Logical Data Model

- The LDM is a more detailed representation of data which will be stored by the system. We can therefore, expect:
 - ■Additional Entities (as a result) of normalization
 - □ Additional Relationships (linking new and existing entities)

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

Developing Logical Data Model

- Establish the relations on 3NF tables
- Refer to:
 - Normalization Process
 - ❖If table B split from table A, establish the relationships between
 - □ Original ERD

ATA/SA-DIP/OOADOM/Data2Design.ppt/v1.3

DATA ANALYSIS AND DESIGN
© 2014 NUS. All rights reserved.

Relational Database

- Relational Database in the market:
 - Oracle
 - MySQL
 - SQLServer
 - ... and many more

Summary

- Data Design
 - Normalization
 - **7**0NF
 - **71NF**
 - **72NF**
 - **⊿3NF**
 - Optimisation
 - Logical Data Model