اللوغاريتم النبيري التمرين 2

مسألة:

 $f(x) = \ln(x^2 - 2x + 2)$: نعتبر الدالة العددية f للمتغير الحقيقي x المعرفة بما يلي

الجزء الأول

$$x^2 - 2x + 2 > 0$$
: \mathbb{R} من x 1) بين أن لكل x من

$$f$$
 لكل f لكل أدرس تغيرات \mathcal{R} ثم أدرس تغيرات (2

$$\lim_{x\to -\infty} f\left(x\right)$$
 و $\lim_{x\to +\infty} f\left(x\right)$ (3) ادرس الفروع اللانهائية ل (C_f) ادرس الفروع اللانهائية ل

$$\left(C_{f}^{}
ight)$$
 أدرس الفروع اللانهائية ل

$$\left(C_{f}\right)$$
 بين أن $x=1$ هو محور تماثل ل (5) بين أن

$$\left(\Delta\right)\colon y=x$$
 و $\left(C_{f}\right)$ مثل مبيانيا (6

الجزء الثاني

$$\varphi(x) = f(x) - x$$
 نضع

$${\mathbb R}$$
 من ${\mathbb R}$ ، ثم استنتج أن ${oldsymbol arphi}$ تكل ${oldsymbol arphi}'(x)$ الحسب ${oldsymbol (x)}$ لكل ${oldsymbol v}$ من

$$\lim_{x\to\infty} \varphi(x)$$
 أ- أحسب (2

$$\lim_{x \to +\infty} \varphi(x)$$
 بـ بين أن لكل $\varphi(x) = x \left[\frac{2\ln x}{x} + \frac{\ln\left(1 - \frac{2}{x} + \frac{2}{x^2}\right)}{x} - 1 \right] : x > 0$ بين أن لكل $x > 0$

0,3<lpha<0,4 بين أن $\alpha<0,4$ بين أن $\alpha<0$ بقطع وحيدة أفصولها عن أن يقطع ($\alpha<0$) بين أن بين أن

1/6 Math.ma - 3/2017

التصحيح :

الجزء الأول

$x \in \mathbb{R}$ ليكن (1

$$x^{2}-2x+2$$
 لندرس إشارة

$$\Delta = (-2)^2 - 4(1)(2) = -4 < 0$$
 لدينا

$$\begin{array}{c|cc} x & -\infty & +\infty \\ \hline x2-2x+2 & + \end{array}$$

$$(\forall x \in \mathbb{R})$$
 $x^2 - 2x + 2 > 0$: إذن

$$x^2-2x+2>0:\mathbb{R}$$
 الدالة $x^2-2x+2>0:\mathbb{R}$ قابلة للإشتقاق على x قابلة للإشتقاق على $x^2-2x+2>0:\mathbb{R}$ و لكل $x^2-2x+2>0$ إذن الدالة $x^2-2x+2>0:\mathbb{R}$ قابلة للإشتقاق على $x^2-2x+2>0:\mathbb{R}$

$$f'(x) = \left(\ln\left(x^2 - 2x + 2\right)\right)' = \frac{\left(x^2 - 2x + 2\right)'}{x^2 - 2x + 2} = \frac{2x - 2}{x^2 - 2x + 2} = \frac{2(x - 1)}{x^2 - 2x + 2} : x \in \mathbb{R}$$
 ليكن
$$f'(x) = 0 \Leftrightarrow x = 1$$

$$(x-1)$$
 الدينا لكل $x^2-2x+2>0$: $\mathbb R$ من x الدينا لكل من x الدينا لكل الدينا لكل

x	$-\infty$	1	$+\infty$
x -1	_	þ	

f جدول تغیرات

x	$-\infty$	1	$+\infty$
f'(x)	_	þ	+
f(x)	$+\infty$ $+\infty$		

(3

$$\lim_{x \to +\infty} \ln\left(x^2 - 2x + 2\right) = +\infty \quad \text{فإن} \quad \lim_{x \to +\infty} x^2 - 2x + 2 = +\infty$$

$$\lim_{x \to +\infty} f\left(x\right) = +\infty$$
و منه $f\left(x\right) = +\infty$

$$\lim_{x \to -\infty} \ln\left(x^2 - 2x + 2\right) = +\infty \quad \text{if} \quad \lim_{x \to -\infty} x^2 - 2x + 2 = +\infty$$

$$\lim_{x \to -\infty} f\left(x\right) = +\infty$$
و منه $\exp\left(\frac{1}{x}\right)$

(4

$$\lim_{x \to +\infty} \frac{f\left(x\right)}{x} \cdot \lim_{x \to +\infty} f\left(x\right) = +\infty \quad \text{i.i.} \quad \lim_{x \to +\infty} \frac{f\left(x\right)}{x} \cdot \lim_{x \to +\infty} \frac{f\left(x\right)}{x} = \lim_{x \to +\infty} \frac{\ln\left(x^2\left(1 - \frac{2}{x} + \frac{2}{x^2}\right)\right)}{x} = \lim_{x \to +\infty} \frac{\ln\left(x^2\right) + \ln\left(1 - \frac{2}{x} + \frac{2}{x^2}\right)}{x} = \lim_{x \to +\infty} 2\frac{\ln x}{x} + \frac{1}{x}\ln\left(1 - \frac{2}{x} + \frac{2}{x^2}\right) = 0$$

$$\lim_{x o +\infty} \frac{\ln x}{x} = 0$$
 ا $\lim_{x o +\infty} \frac{\ln x}{x} = 0$ الذن $\lim_{x o +\infty} \frac{1}{x} = 0$ الذن $\lim_{x o +\infty} \ln \left(1 - \frac{2}{x} + \frac{2}{x^2}\right) = 0$

$$\lim_{x \to -\infty} \frac{f(x)}{x}$$
 انحسب ، $\lim_{x \to -\infty} f(x) = +\infty$ لاينا •

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\ln(x^2 - 2x + 2)}{x} = \lim_{x \to \infty} \frac{\ln\left(x^2\left(1 - \frac{2}{x} + \frac{2}{x^2}\right)\right)}{x} = \lim_{x \to \infty} \frac{\ln(x^2) + \ln\left(1 - \frac{2}{x} + \frac{2}{x^2}\right)}{x} = \lim_{x \to \infty} -2\frac{\ln(-x)}{-x} + \frac{1}{x}\ln\left(1 - \frac{2}{x} + \frac{2}{x^2}\right) = 0$$

$$-\infty$$
 الله المحمد المعاول المحمد الم

$$\left(C_{f}\right)$$
 بين أن $x=1$ هو محور تماثل ل (5

$$x \in \mathbb{R}$$
 يكن

$$2(1) - x = 2 - x \in \mathbb{R}$$

$$f\left(2(1)-x\right) = f\left(2-x\right) = \ln\left(\left(2-x\right)^2 - 2\left(2-x\right) + 2\right) = \ln\left(4-4x + x^2 - 4 + 2x + 2\right) = \ln\left(x^2 - 2x + 2\right) = f\left(x\right) \quad \checkmark$$

$$\left(C_{f}
ight.$$
 إذن $(D_{f}):x=1$ هو محور تماثل ل

(6

التمثيل المبياني:

ممثل باللون الأخضر $\left(C_{f}
ight)$

ممثل باللون الأحمر (Δ) : y = x

محور تماثل ل $\left(C_{f}
ight)$ ممثل باللون البنفسجي $\left(D
ight)$: x=1

الجزء الثاني:

$$\varphi(x) = f(x) - x$$
: لدينا

$$\mathbb R$$
 ليكن $x\in\mathbb R$ الدالة ϕ قابلة للإشتقاق على (1

$$\varphi'(x) = f'(x) - 1 = \frac{2x - 2}{x^2 - 2x + 2} - 1 = \frac{2x - 2 - x^2 + 2x - 2}{x^2 - 2x + 2} = \frac{-x^2 + 4x - 4}{x^2 - 2x + 2} = \frac{-(x - 2)^2}{x^2 - 2x + 2}$$

$$\mathbb{R} \text{ if } \varphi'(x) \leq 0 : \mathbb{R} \text{ if } \varphi'(x) \leq 0 \Rightarrow x = 2$$

$$\varphi'(x) = 0 \Leftrightarrow x = 2$$

$$\varphi'(x) = 0 \Leftrightarrow x = 2$$

$$\begin{cases} \lim_{x \to -\infty} f(x) = +\infty \\ \lim_{x \to -\infty} -x = +\infty \end{cases}$$
 : $\lim_{x \to -\infty} \varphi(x) = \lim_{x \to -\infty} f(x) - x = +\infty$

x > 0 ب.

$$\varphi(x) = f(x) - x = 2\ln x + \ln\left(1 - \frac{2}{x} + \frac{2}{x^2}\right) - x = x \left[\frac{2\ln x}{x} + \frac{\ln\left(1 - \frac{2}{x} + \frac{2}{x^2}\right)}{x} - 1\right]$$

$$\begin{cases} \lim_{x \to +\infty} x = +\infty \\ \lim_{x \to +\infty} \frac{\ln x}{x} = 0 \\ \lim_{x \to +\infty} \frac{1}{x} \ln \left(1 - \frac{2}{x} + \frac{2}{x^2} \right) = 0 \end{cases} \quad \forall x = +\infty$$

$$0.3 < \alpha < 0.4$$
 بحيث α بحيث α بغضة وحيدة أفصولها α بحيث α بنين أن α يقطة وحيدة أفصولها α أولا: سنبين أن α أولا: α يقطع α (α) يقطع α) عي نقطة وحيدة أفصولها α) هي نقطة على α متصلة على α متصلة على α متصلة على α متصلة على α أذن α تناقصية قطعا على α النيا: لنتحقق أن α تناقصية قطعا على α تنايا: لنتحقق أن α تنايا: لنتحقق أن α متصلة على α متصلة على أفيم الوسيطية α متصلة القيم الوسيطية α متصلية القيم الوسيطية المعاطية α متصلة القيم الوسيطية المعاطية المع

0.3 < lpha < 0.4 يقطع (C_f) في نقطة وحيدة أفصولها lpha بحيث يأدي يقطع $(\Delta): y = x$ المستقيم