Trival Proofs of Inclusion-exclusion Principle

Fu Lingyue

March 20, 2020

Theorem 1.

Here I will give the second way to proof it. Another proof has been given by Chen Tong.

Proof. Choose an arbitrary point $x \in \bigcup_{k=1}^n A_k$, and let $A_{l_1}, A_{l_2}, \ldots, A_{l_t}$ (t < n) be the subsets that $x \in A_{l_k}$ $(1 \le k \le t)$.

x is counted for one time on the left hand side of the equation. And the number that x be counted on the right hand side is

Num_right =
$$\sum_{k=1}^{n} (-1)^{k+1} | \{ \bigcap_{p=1}^{k} A_{m_p} : 1 \le m_1 \le m_2 \dots m_k \le t \}$$

= $\sum_{k=1}^{n} (-1)^{k+1} C(t, k)$
= 1. (by Binomial Theorem)

Thus x is counted for equal times on left and right. Therefore, lhs=rhs.

Theorem 2. Let (X, μ) be a finite measure space. For any finite numbers of measurable sets $A_1, A_2, \ldots, A_n \subseteq X$, we have

$$\mu(\bigcup_{k=1}^{n} A_k) = \sum_{\varnothing \neq S \subseteq 1, 2, \dots, n}^{n} (-1)^{|S|-1} \mu(\bigcap_{k \in S} A_k)$$

Proof. Let A denote the union $\bigcup_{k=1}^n A_k$. We have to verify the identity

$$1_A = \sum_{k=1}^n (-1)^{k-1} \sum_{I \subseteq \{1,2,\dots,n\}, |I|=k} 1_{A_I}.$$
 (1)

Here we denote $A_I = \bigcap_{k \in I} A_k$.

We can write an equation

$$(1_A - 1_{A_1})(1_A - 1_{A_2})\dots(1_A - 1_{A_n}) = 0. (2)$$

If $x \notin A$, then all the factors are 0 - 0 = 0; If $x \in A$, then x must in some subset A_j , thus the factor $1_A - 1_{A_j} = 0$. Thus the equation (2) holds. Expand the left hand side of the equation (2), we get the equation (1).

Using equation (1), we have proved the theorem.

A question Why the Inclusion-exclusion Principle need the measure space finite?