Uppsala Universitet Matematiska Institutionen T. Erlandsson

TENTAMEN LINJÄR ALGEBRA II LINJÄR ALGEBRA 2008-06-09

Tentamen består av 10 UPPGIFTER (max 3 poäng per uppgift), 2 PROBLEM (max 5 poäng per problem) samt en EXTRA UPPGIFT (max 2 poäng). Denna är en tillämpning som kan lösas med bifogad information oberoende av kurs. Till både uppgifterna och problemen fordras fullständiga lösningar.

 $18\mbox{-}24$ poäng ger betyg $3,\,25\mbox{-}31$ poäng ger betyg4 och $32\mbox{-}40$ poäng ger betyg5.

Skrivtid: 9-14 Tillåtna hjälpmedel: Skrivdon.

UPPGIFTER

- 1. $A = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$. Bestäm en bas för nollrummet och en bas för värderummet av A.
- 2. Låt $A = \begin{bmatrix} 1 & a \\ a & 1 \end{bmatrix}$ och definiera $T: \mathbf{R}^2 \to \mathbf{R}^2$ genom $T(\mathbf{x}) = A\mathbf{x}$. Bestäm de värden på a för vilka värderummet av T innehåller vektorn $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- 3. Låt $T: \mathbf{R}^2 \to \mathbf{R}^2$ vara den linjära avbildning som definieras av en moturs rotation omkring origo vinkeln $\pi/4 = 45^{\circ}$ följt av en spegling med avseende på linjen $x_1 = x_2$. Bestäm standardmatrisen av T.
- 4. Finn en bas för mängden av alla vektorer i \mathbb{R}^3 som tillhör planet x y z = 0.
- 5. $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. Bestäm samtliga egenvärden till A samt deras multiplicitet. Avgör också om A är diagonaliserbar.
- 6. $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ har egenvärdet 0 av multipliciteten två. Bestäm en bas av egenvektorer för egenrummet hörande till egenvärdet 0. Avgör också om A är diagonaliserbar.
- 7. Låt $T: \mathbf{R}^2 \to \mathbf{R}^2$ vara den linjära avbildning som definieras som ortogonal projektion på linjen $x_1 + x_2 = 0$. Bestäm avbildningens egenvärden och tillhörande egenvektorer.

V.G.V!

8. \mathbf{P}_2 är rummet av polynom av grad högst två inklusive nollpolynomet. För p och q i \mathbf{P}_2 kan man t ex definiera den inre produkten

$$\langle p, q \rangle = \int_{-1}^{1} p(t)q(t) dt$$
 (1)

Låt W vara det delrum av \mathbf{P}_2 som genereras av $p(t) = t^2$, dvs låt $W = \operatorname{Span}\{t^2\}$. Bestäm den ortogonala projektionen av polynomet $p_0(t) = 1$ på W med avseende på den inre produkten (1).

9. Bestäm det minsta avståndet till origo från en punkt på hyperbeln

$$x_1^2 + 4x_1x_2 + x_2^2 = 1.$$

10. \mathbf{P}_n , $n = 0, 1, 2, \ldots$ är rummet av polynom av grad högst n inklusive nollpolynomet. $\mathcal{B} = \{1 + 2t + t^2, 1 - 2t + t^2\}$ är bas för ett delrum av \mathbf{P}_2 . Bestäm koordinaterna för $1 - t + t^2$ med avseende på denna bas.

PROBLEM

- 1. $A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$ definierar en avbildning (transformation) $T : \mathbf{R}^n \to \mathbf{R}^m$ genom $T(\mathbf{x}) = A\mathbf{x}$. Bestäm n och m, rangen av matrisen A, en bas för kolonnrummet Col A samt en bas för nollrummet Nul A.
- 2. Grafen av ekvationen $5x_1^2 4x_1x_2 + 5x_2^2 = 1$ är en ellips. Bestäm riktningarna i x_1x_2 -systemet för ellipsens principalaxlar.

EXTRA UPPGIFT

Lös systemet av differentialekvationer $\begin{cases} y_1' = y_2 \\ y_2' = 6y_1 + y_2 \end{cases}$ med hjälp av följande information.

y' = ay har lösningen $y = ce^{ax}$. Systemet $\mathbf{y}' = A\mathbf{y}$ löses genom att utföra substitutionerna $\mathbf{y} = P\mathbf{u}$ och $\mathbf{y}' = P\mathbf{u}'$ i det ursprungliga systemet $\mathbf{y}' = A\mathbf{y}$. Vi får då $P\mathbf{u}' = A(P\mathbf{u})$ dvs $\mathbf{u}' = (P^{-1}AP)\mathbf{u}$ eller $\mathbf{u}' = D\mathbf{u}$. Om matrisen P diagonaliserar A får vi ett diagonalt system $\mathbf{u}' = D\mathbf{u}$ som vi kan lösa. De sökta lösningarna fås slutligen som $\mathbf{y} = P\mathbf{u}$.

$$\text{I vårt fall \"{a}r } A = \left[\begin{array}{cc} 0 & 1 \\ 6 & 1 \end{array} \right], \ P = \left[\begin{array}{cc} -1 & 1 \\ 2 & 3 \end{array} \right] \ D = P^{-1}AP = \left[\begin{array}{cc} -2 & 0 \\ 0 & 3 \end{array} \right].$$