휴머노이드 로봇

HUMANOID ROBOT

최 종 보 고 서 << 송전 전기원 로봇의 설계>>

기계설계로봇공학과 19510053 김지용

2019. 12. 23.

순 서

Ι.	개념 설계	39	-	01
	가. 연구 배경 및 필요성	39	-	01
	나. 개발 목표	39	-	01
	다. 로봇이 갖추어야 할 기증	39	-	02
ΙΙ.	구체화 설계	39	_	04
	가. 로봇의 사양	39	-	04
	나. 각 관절의 토크 해석	39	-	06
	다. 모터/감속기 및 타이밍 풀리비 선정	39	-	16
	라. 배터리 사양 및 용량 결정	39	-	21
	마. 모터/감속기 및 배터리의 총 중량 계산	39	-	21
Ш.	주요 부위 상세 설계	39	_	22
	가. 2D 개념 조립도	39	-	22
	나. 3D 조립도	39	-	28
	다. 2D 전체 조립도	39	-	33
	라. 3D 전체 조립도	39	-	34
	마. 운동 가능 범위 및 간섭 체크	39	-	34
	바. 중량 계산			
	사. 목표 자세 구현	39	-	38
IV.	설계 시 문제점 분석 및 고찰	39	-	38
	가. 설계 시 문제점	39	-	38
	나. 고찰	39	-	39

I. 개념 설계

가. 연구 배경 및 필요성

매년 전기직 종사자(송전 전기원)의 전기공사 및 보수 작업에서 사망 및 부상의 사고가 빈번히 발생하고 있다. 그뿐 아니라 높은 전주에서 일하기 때문에 낙상으로 인한 사상자도 빈번히 발생한다. 특히 22,900V의 특고압이 흐르는 환경에서 작업하기 때문에 심한 전자기파로 인한 백혈병, 각종 암, 당뇨 등의 질병 유발율이 높다. 또 다른 필요성으로, 두껍고 답답한 절연보호구를 착용하고 작업하기 때문에 세밀한 작업을 하는 경우에 어려움이 많이 있다.

나. 개발 목표

송전 전기원을 대신하여 높은 전주에 올라가 대신 작업을 할 수 있고, 송전 전기원이 하는 여러가지 작업 중 전주 교체 작업을 할 수 있는 로봇 개발을 목표로 한다. 그러기 위해서 작업에 필요한 도구들을 사용하고, 자신의 위치와 작업 대상의 위치를 인지할 수 있어야 한다.

다. 로봇이 갖추어야 할 기능

1. 송전 작업차 버킷 탑승 기능

2. 승강구동장치에 독립형 이선장치 구동부를 끼우고 위치를 조정할 수 있는 기능

3. 구동부에 전선지지부를 삽입하는 기능

4. 드릴을 사용하여 전선지지부, 독립형 이선장치를 상하로 구동시킬 수 있는 기능

5. LP애자에 전선을 고정시키는 바인드를 제거하는 기능.

6. LP애자와 완철을 제거할 수 있는 기능.

Ⅱ. 구체화 설계

가. 로봇의 사양

1. 로봇의 대략적인 사양

- 송전 차량 버킷에 탑승하여 움직이므로 큰 키가 필요 없을 것으로 판단되기 때문에 150cm로 선정한다.
- 팔의 길이는 작업하는 도중 전선에 걸리지 않도록 Upper arm과 Fore arm을 인체 비례적 사양보다 10% 짧게 선정한다.
- 보행보다는 버킷을 타고 높은 곳에 올라가 균형을 잡는 것이 중요하므로 Pelvis를 인체 비례적 사양보다 15% 길게 선정한다.
- 기타 치수는 인체 비례 데이터를 이용하여 선정한다.
- 무게는 휴보 2(키 125cm, 무게 45kg)와 비례적으로 설계하여 77.76kg으로 선정한다.

2. 로봇의 구체적 사양

- 각 관절의 길이

* 전체 키 : 150 cm

링크	길이(cm)
l_{ss}	34.47
l_{ne}	7.06
l_{se}	27.91 -> 25.12 (10% 감소)
lew	22.79 -> 20.51 (10% 감소)
l_{hd}	16.14
l_{sh}	43.38
l_{hh}	14.71 -> 16.92 (15% 증가)
l_{hk}	37.50
l_{ka}	36.07
l_{af}	5.97
l_{fl}	22.87
l_{fw}	8.24

- 각 관절의 무게

	* () 안은 양 팔(다리)의 무기
링크	질량(kg)
m_h	5.06
m_{ua}	1.94(3.88) -> 1.41(2.82)
m_{la}	1.32(2.64) -> 0.96(1.92)
m_t	26.14
m_{hd}	0.47(0.94)
m_{pelvis}	11.28 -> 17.17
m_{ul}	9.33(18.66)
m_{ll}	3.65(7.30)
m_f	0.93(1.86)
m_{total}	77.76 -> 81.87

팔과 골반 길이의 변화로 전체 무게 증가

- 자유도 선정

Joi	int	DOF	Degree
Neck	Pitch	1	-70 ~ 10
Neck	Yaw	1	-90 ~ 90
	Pitch	2	-180 ~ 60
Shoulder	Roll	2	-30 ~ 90
	Yaw	2	-90 ~ 90
Elbow	Pitch	2	-100 ~ 10
Wrist	Yaw	2	-90 ~ 90
VVIISL	Pitch	2	-90 ~ 90
Torso	Yaw	1	-90 ~ 90
	Yaw	2	-10 ~ 90
Hip	Pitch	2	-90 ~ 90
	Roll	2	-30 ~ 30
Knee	Pitch	2	-10 ~ 150
Ankle	Pitch	2	-90 ~ 90
Ankle	Roll	2	-25 ~ 25
To	tal	27	

나. 각 관절의 토크 해석

1. 정적 해석

2. Yaw 관절의 토크 해석 - 동적 해석

3. 설정 운동에 따른 관절의 동적 해석

- 버킷 탑승 동작 1(Sagittal Plane View) : 10cm 정도 높이의 버킷에 한쪽 다리를 올리고, 나머지 한쪽 다리를 올리는 동작

- 버킷 탑승 동작 2(Coronal Plane View) : Side Swing

- 구동부 들어올리는 동작 1(Sagittal Plane View) : 구동부를 들어올리기 위해 상체를 숙이는 동작

- 구동부 들어올리는 동작 2(Sagittal Plane View) : 구동부를 잡기 위해 상체를 숙이며 팔을 내리는 동작

- 구동부 들어올리는 동작 3(Coronal Plane View) : 구동부를 잡기 위해 팔을 안으로 움직이는 동작

- 드릴을 구멍에 끼우는 동작 1(Sagittal Plane View) : 드릴을 끼우기 위해 팔을 들어 올리는 동작

- 드릴을 구멍에 끼우는 동작 2(Sagittal Plane View) : 드릴을 구멍에 밀어 넣는 동작

- 드릴을 구멍에 끼우는 동작 3(Sagittal Plane View) : 승강 구동 장치가 위로 올라가는 것을 보기 위한 Neck Pitch 동작

4. 계산으로 도출된 각 관절의 사양

100		Degree Max. Vel (RPM)		Max. Torque(Nm)		May Dawar/MA	
Joint		Degree	iviax. vei (KPIVI)	동적해석	정적해석	Max. Power(W)	
N. T	Pitch	-70 ~ 10	7.83	0.06	2.97	0.05	
Neck	Yaw	-90 ~ 90	15.66	0.13	-	0.21	
	Pitch	-180 ~ 60	10.50	74.58	20.25	52.10	
Shoulder	Roll	-30 ~ 90	2.58	1.00	20.25	0.19	
	Yaw	-90 ~ 90	47.08	1.26	10.79	6.21	
Elbow	Pitch	-100 ~ 10	20.91	2.23	10.79	4.89	
100	Yaw	-90 ~ 90	47.08	1.59	-	7.84	
Wrist	Pitch	-90 ~ 90	13.08	0.38	3.74	0.39	
Torso	Yaw	-90 ~ 90	31.42	0.87	-	2.86	
	Yaw	-10 ~ 90	23.59	7.66	-	18.92	
Hip	Pitch	-90 ~ 90	20.91	135.68	187.27	111.33	
	Roll	-30 ~ 30	5.25	75.79	98.57	18.70	
Knee	Pitch	-10 ~ 150	15.66	125.38	109.78	61.57	
A 11	Pitch	-90 ~ 90	10.50	135.50	150.69	52.73	
Ankle	Roll	-25 ~ 25	2.57	68.52	40.71	18.79	

다. 모터/감속기 및 타이밍 풀리비 선정

1. 선정 방법 : 정적 해석 및 동적 해석 결과를 토대로 감속기를 선정하고, 적절한 풀리비를 설정하여 감속비에 따른 모터 요구 정격 일률을 만족하는 모터를 1차 선정한다. 이 모터의 최대토크가 관절에 요구되는 토크보다 큰지 확인하고, 만족한다면 모터의 일률과 속도가 요구되는 일률과 속도에 만족하는지 확인한다. 선정된 모터들 중에 가장 가벼운 모터로 최종 선정한다.

2. 각 관절의 모터/감속기 및 타이밍 풀리비

- Neck Pitch

관절 최대 토크	2.97 Nn	n	관절 최대 속도	7.83 RPM	관절 최	대 일률	0.05 W
감속기 선정(효율	(8.0 =	CSG-14	-50-2UH-LW				WII
감속비		50		풀리비		1	
전체 감속비		50					
감속기 요구 최다	속도	391.5 RI	PM	감속기 허용 최다	속도	8500 RF	PM
모터 선정(효율 =	0.85)	RE 25 Ø)25 mm, 그래파0	l트 브러시, 20 W	att(130g))	
모터 요구 토크		0.0742 Nm		모터 요구 정격 전류		0.4125 ~ 0.6188 A	
모터 요구 정격 일	일률	16.83 ~ 25.245 W		공칭 전압		48 V	
모터 실제 토크 성	상수	0.0438 Nm/A		모터 실제 정격 전류		0.653 A	
모터 실제 최대 토크		0.0858	Vm	모터 실제 정격 일률		27.27 W	
모터 요구 최대 속도		391.5 RI	PM	모터 정격 속도		9160 RPM	

- Neck Yaw

관절 최대 토크 0.13	Nm	관절 최대 속도	15.66 RPM	관절 최대	내 일률	0.21 W
감속기 선정(효율 = 0.	8) -		v			
감속비	1		풀리비		1	
전체 감속비	1					
감속기 요구 최대 속도	-		감속기 허용 최대	속도	(=)	
모터 선정(효율 = 0.85) DCX 26	DCX 26 L Ø 26mm, 그래파이트 브러시, 슬리브 베어링(170g)				g)
모터 요구 토크	0.1300	Nm	모터 요구 정격 7	<u></u> 덕류	0.7222	~ 1.0833 A
모터 요구 정격 일률	29.4667	~ 44.2 W	공칭 전압		48 V	
모터 실제 토크 상수	0.0429	Nm/A	모터 실제 정격 전류		1.2 A	
모터 실제 최대 토크	0.154 N	m	모터 실제 정격 일률		51.26 W	
모터 요구 최대 속도	15.66RF	'M	모터 정격 속도		6140 RPM	

- Shoulder Pitch

관절 최대 토크 74.58 N	lm 콘	·절 최대 속도	10.50 RPM	관절 최	대 일률	52.10 W
감속기 선정(효율 = 0.8)	CSG-17-10	00-2UH-LW				
감속비	100		풀리비		1	
전체 감속비	200					
감속기 요구 최대 속도	1050 RPM		감속기 허용 최다	속도	₹ 7300 RPM	
모터 선정(효율 = 0.85)	EC-max 4	0 Ø40 mm, 브i	러시리스, 120 Wa	tt, 홀센시	H 버전(7:	20g)
모터 요구 토크	0.9323 Nm		모터 요구 정격 전류		7.7688 ~ 5.1792 A	
모터 요구 정격 일률	211.31 ~ 316.965 W		공칭 전압		48 V	
모터 실제 토크 상수	0.0448 Nm/A		모터 실제 정격 전류		4.06 A	
모터 실제 최대 토크	0.5457 Nm		모터 실제 정격 일률		165.648 W	
모터 요구 최대 속도	1050 RPM		모터 정격 속도		9250 RPM	

- Shoulder Yaw

관절 최대 토크	10.79 N	lm	관절 최대 속도	47.08 RPM	관절 최대	대 일률	6.21 W
감속기 선정(효율	(8.0 =	FB-20-5	0-2-GR				
감속비	4	50		풀리비		1	
전체 감속비		50					
감속기 요구 최대	속도	2354 RF	PM	감속기 허용 최대	배 속도	3600 RF	PM
모터 선정(효율 =	0.85)	RE 30 Ø	30 mm, 그래파0	l트 브러시, 60 W	att(260g))	
모터 요구 토크		0.2697 Nm		모터 요구 정격 전류		1.4986 ~ 2.2479 A	
모터 요구 정격 일	일 <u>률</u>	61.1433 ~ 91.7150 W		공칭 전압		48 V	
모터 실제 토크 성	상수	0.0538 Nm/A		모터 실제 정격 전류		1.72 A	
모터 실제 최대 토크		0.278 Nm		모터 실제 정격 일률		72.65 W	
모터 요구 최대 속도		2354 RPM		모터 정격 속도		7760 RPM	

- Elbow Pitch

관절 최대 토크	10.17 N	lm	관절 최대 속도	20.91 RPM	관절 최	대 일률	4.89 W
감속기 선정(효율	(8.0 =	FB-14-8	88-2-R				AUI
감속비		88		풀리비		1	
전체 감속비		88				i.	
감속기 요구 최대	속도	1840 RF	RPM 감속기 허용 최대 속도 3600		3600 RF	PM	
모터 선정(효율 =	0.85)	EC-max	30 Ø30 mm, 브	러시리스, 40 Wate	t, 홀센서	버전(17	0g)
모터 요구 토크		0.1445 Nm		모터 요구 정격 전	전류	0.8026	~ 1.2038 A
모터 요구 정격 일	일률	32.7443	~ 49.1165 W	공칭 전압		48 V	
모터 실제 토크 성	상수	0.0429 Nm/A		모터 실제 정격 전류		1.41 A	
모터 실제 최대 토크		0.1815	Nm	모터 실제 정격 일률		61.58 W	
모터 요구 최대 속도		1840 RF	PM	모터 정격 속도		9730 RPM	

- Wrist Yaw

관절 최대 토크 1.59 N	lm	관절 최대 속도	47.08 RPM	관절 최	내 일률	7.84 W	
감속기 선정(효율 = 0.8	FB-14-5	50-2-R					
감속비	50		풀리비		1		
전체 감속비	50				2		
감속기 요구 최대 속도	2354 RF	PM	감속기 허용 최다	속도	속도 3600 RPM		
모터 선정(효율 = 0.85)	RE 25 @	E 25 Ø25 mm, 메탈 브러시 CLL, 10 Watt(130g)					
모터 요구 토크	0.0398	Nm	모터 요구 정격 전류		0.2208 ~ 0.3313 A		
모터 요구 정격 일률	9.01 ~	13.515 W	공칭 전압		48 V		
모터 실제 토크 상수	0.0899	Nm/A	모터 실제 정격 전류		0.317 A		
모터 실제 최대 토크	0.0854	Nm	모터 실제 정격 일률		13.24 W		
모터 요구 최대 속도	2354 RF	PM	모터 정격 속도		4000 RPM		

- Wrist Pitch

관절 최대 토크 3.74 Nr		n	관절 최대 속도	13.08 RPM	관절 최	대 일률	0.39 W
감속기 선정(효율	(8.0 =	CSF-8-5	0-1U-CC-F				
감속비	4	50		풀리비		1	
전체 감속비		50					
감속기 요구 최대	속도	654 RPN	Л	감속기 허용 최대	속도	3500 RPM	
모터 선정(효율 =	0.85)	EC-i 30	Ø30mm, 브러시i	리스, 30W, 홀센서	버전(15	0g)	
모터 요구 토크		0.0935 Nm		모터 요구 정격 건	덕류	0.5194	~ 0.7792 A
모터 요구 정격 일	일률	21.1933 ~ 31.79 W		공칭 전압		48 V	
모터 실제 토크 성	상수	0.0503 Nm/A		모터 실제 정격 전류		0.748 A	
모터 실제 최대 토크		0.1128 Nm		모터 실제 정격 일률		30.16 W	
모터 요구 최대 속도		654 RPM		모터 정격 속도		7600 RPM	

- Torso Yaw

관절 최대 토크	Y절 최대 토크 0.87 Nm		관절 최대 속도	31.42 RPM	관절 최	대 일률	2.86 W	
감속기 선정(효율 = 0.8) CSG-14-50-2UH-L			-50-2UH-LW				W	
감속비		50		풀리비		1		
전체 감속비		50				i.		
감속기 요구 최대	감속기 요구 최대 속도 1		PM	감속기 허용 최대 속도			8500 RPM	
모터 선정(효율 =	모터 선정(효율 = 0.85) DCX 22 S Ø22mm, 귀금			속 브러시, 볼 베어	링(66g)			
모터 요구 토크		0.0217 Nm		모터 요구 정격 전	전류	0.1208 ~ 0.1812 A		
모터 요구 정격 일	일률	4.93 ~ 7	7.395 W	공칭 전압		48 V		
모터 실제 토크 성	모터 실제 토크 상수 0.0772 Nm/A		Nm/A	모터 실제 정격 전	년 류	0.18 A		
모터 실제 최대 5	모터 실제 최대 토크 0.0417 Nm		모터 실제 정격 일률		7.258 W			
모터 요구 최대 속도 1571 RPM		PM	모터 정격 속도		4240 RF	PM		

- Hip Yaw

관절 최대 토크 7.66 Nr	m 관절 최대	속도 23.59 RPM	1 관절 최대	배 일률 18.92 W	
감속기 선정(효율 = 0.8)	N				
감속비	50	풀리비		1	
전체 감속비	50				
감속기 요구 최대 속도	1179 RPM	감속기 허용	용 최대 속도	8500 RPM	
모터 선정(효율 = 0.85)	래파이트 브러시,	60 Watt(260g)			
모터 요구 토크	0.1915 Nm	모터 요구	정격 전류	1.5958 ~ 1.0639 A	
모터 요구 정격 일률	43.4097 ~ 65.11 W	공칭 전압	3	48 V	
모터 실제 토크 상수 0.0538 Nm/A		모터 실제	정격 전류	1.72 A	
모터 실제 최대 토크	0.2776 Nm	모터 실제	정격 일률	72.65 W	
모터 요구 최대 속도 1179 RPM		모터 정격	속도	7760 RPM	

- Hip Pitch

관절 최대 토크 187.27	Nm	관절 최대 속도	20.91 RPM	관절 최	대 일률	111.33 W
감속기 선정(효율 = 0.8)	CSG-20	-120-2UH-LW				
감속비	120		풀리비		2	
전체 감속비	240					
감속기 요구 최대 속도	2509 RPM 감속기 허용 최대 속도 6500 RP		PM			
모터 선정(효율 = 0.85) EC 45 Ø45 mm, 브러시리스, 250 Watt, 홀센서 버전(<u>d</u> (1100g)):	
모터 요구 토크	0.9754	Nm	모터 요구 정격 전류		4.064 ~	6.096 A
모터 요구 정격 일률	221.082	6 ~ 331.6240 W	공칭 전압		48 V	
모터 실제 토크 상수 0.0427 Nm/A		모터 실제 정격 전류		7.94 A		
모터 실제 최대 토크	최대 토크 1.0171 Nm		모터 실제 정격 일	일률	331.57	W
모터 요구 최대 속도 5018 RPM		모터 정격 속도		10000 F	RPM	

- Hip Roll

관절 최대 토크	관절 최대 토크 98.57 Nn		관절 최대 속도	5.25 RPM	관절 최	대 일률	18.70 W
감속기 선정(효율 = 0.8) CSG-17-80-2UH-LW				,			
감속비		80		풀리비		2	
전체 감속비		160					
감속기 요구 최대	속기 요구 최대 속도 420 RPM		Л	감속기 허용 최대	속도	7300 RF	PM
모터 선정(효율 =	모터 선정(효율 = 0.85) EC 60 flat Ø60mm, 브라			시리스 200W, 홀	센서 버전	(360g)	
모터 요구 토크		0.7701	٧m	모터 요구 정격 전류		4.2782 ~ 6.4173 A	
모터 요구 정격 일	불률	174.551	~ 261.8266 W	공칭 전압		48 V	
모터 실제 토크 상수 0.113 Nm/A		m/A	모터 실제 정격 전류		4.6 A		
모터 실제 최대 토	모터 실제 최대 토크 1.5594 Nm		모터 실제 정격 일률		189.89 W		
모터 요구 최대 속도 840 RPM		모터 정격 속도		3020 RF	PM		

- Knee Pitch

관절 최대 토크 109.78	Nm 관절 최대	속도 15.66 R	PM 관절 최	대 일률 61.57 \	W
감속기 선정(효율 = 0.8)	CSG-20-50-2UH-L	W			
감속비	80	풀리비		2	
전체 감속비	160				
감속기 요구 최대 속도	·기 요구 최대 속도 1252 RPM 감속		저용 최대 속도	6500 RPM	
모터 선정(효율 = 0.85) EC-4pole 32 Ø32 mm, 브러시리스, 220 Watt(730g)				1)	
모터 요구 토크	0.8577 Nm	모터 요-	구 정격 전류	4.7648 ~ 7.1471	ΙΑ
모터 요구 정격 일률	194.4021 ~ 291.60	31 W 공칭 전압	탈	48 V	
모터 실제 토크 상수 0.0705 Nm/A		모터 실기	제 정격 전류	4.8 A	
모터 실제 최대 토크	1.0152 Nm	모터 실기	제 정격 일률	205.056 W	
모터 요구 최대 속도 2505 RPM		모터 정	격 속도	5720 RPM	

- Ankle Pitch

관절 최대 토크 150.69) Nm	관절 최대 속도	10.50 RPM	관절 최대	대 일률	52.73 W
감속기 선정(효율 = 0.8)	-120-2UH-LW					
감속비	120		풀리비		2	
전체 감속비	240				2	
감속기 요구 최대 속도	│ 요구 최대 속도 │ 1260 RPM │ 감속기 허용 최대 속도		속도	6500 RF	PM	
모터 선정(효율 = 0.85) EC 60 flat Ø60mm, 브라			시리스 200W, 홀션	센서 버전	(360g)	
모터 요구 토크	0.7848	Nm	모터 요구 정격 전류		4.3602	~ 6.5404 A
모터 요구 정격 일률	177.897	9 ~ 266.8469 W	공칭 전압		48 V	
모터 실제 토크 상수 0.113 Nm/A		m/A	모터 실제 정격 전류		4.6 A	
모터 실제 최대 토크	모터 실제 최대 토크 1.5594 Nm		모터 실제 정격 일률		189.89	W
모터 요구 최대 속도 2520 RPM		모터 정격 속도		3020 RF	PM	

- Ankle Roll

관절 최대 토크	관절 최대 토크 68.52 Nn		관절 최대 속도	2.57 RPM	관절 최	대 일률	18.79 W
감속기 선정(효율	-120-2UH-LW						
감속비		100		풀리비		1	
전체 감속비		100					
감속기 요구 최대	감속기 요구 최대 속도 257 R		Л	감속기 허용 최다	속도	7300 RPM	
모터 선정(효율 =	모터 선정(효율 = 0.85) EC-4pole 32 Ø32 mm, 트				/att(730g)	
모터 요구 토크		0.8565	٧m	모터 요구 정격 전류		4.7583	~ 7.1375 A
모터 요구 정격 일	불률	194.14	~ 291.21 W	공칭 전압		48 V	
모터 실제 토크 상수 0.0705 Nm/A		Nm/A	모터 실제 정격 전류		4.8 A		
모터 실제 최대 토	고터 실제 최대 토크 1.0152 Nm		모터 실제 정격 일률		205.056	W	
모터 요구 최대 속도 257 RPM		모터 정격 속도		5720 RF	PM		

3. 최종 선정된 모터/감속기 및 타이밍 풀리비

	nt	하모닉 감속기	풀리비	모터	개수	총 무게(kg)
	Pitch	CSG-14-50-2UH-LW	1:1	RE 25 Ø25 mm, 그래파이트 브러시, 20 Watt(130g)	1	0.45
Neck	Yaw	- 1:1 DCX 26 L Ø 26mm, 그래파이트 브러시, 슬리브 베어링(170g)		1	0.17	
	Pitch	CSG-17-100-2UH-LW	2:1	EC-max 40 Ø40 mm, 브러시리스, 120 Watt, 홀센서 버전(720g)	2	2.36
Shoulder	Roll	FB-20-100-2-GR	1:1	RE 30 Ø30 mm, 그래파이트 브러시, 60 Watt(260g)	2	0.72
	Yaw	FB-20-50-2-GR	1:1	RE 30 Ø30 mm, 그래파이트 브러시, 60 Watt(260g)	2	1.12
Elbow	Pitch	FB-14-88-2-G	1:1	EC-max 30 Ø30 mm, 브러시리스, 40 Watt, 홀센서 버전(170g)	2	0.54
	Yaw	FB-14-50-2-G	1:1	RE 25 Ø25 mm, 메탈 브러시 CLL, 10 Watt(130g)	2	0.46
Wrist	Pitch	CSF-8-50-1U-CC-F	1:1	EC-i 30 Ø30mm, 브러시리스, 30W, 홀센서 버전(150g)	2	0.50
Torso	Yaw	CSG-14-50-2UH-LW	1:1	DCX 22 S Ø22mm, 귀금속 브러시, 볼 베어링(66g)	1	0.39
	Yaw	CSG-14-50-2UH-LW	1:1	RE 30 Ø30 mm, 그래파이트 브러시, 60 Watt(260g)	2	1.16
Hip	Pitch	CSG-20-120-2UH-LW	2:1	EC 45 Ø45 mm, 브러시리스, 250 Watt, 홀센서 버전(1100g)	2	3.48
	Roll	CSG-17-80-2UH-LW	2:1	EC 60 flat Ø60mm, 브러시리스 200W, 홀센서 버전(360g)	2	1.64
Knee	Pitch	CSG-20-50-2UH-LW	2:1	EC-4pole 32 Ø32 mm, 브러시리스, 220 Watt(730g)	2	2.74
A 111	Pitch	CSG-20-120-2UH-LW	2:1	EC 60 flat Ø60mm, 브러시리스 200W, 홀센서 버전(360g)	2	2.00
Ankle	Roll	CSG-17-120-2UH-LW	G-17-120-2UH-LW 1:1 EC-4pole 32 Ø32 mm, 브러시리스, 220 Watt(730g)		2	2.38

^{*} CSG: 14형번 - 0.32kg, 17형번 - 0.46kg, 20형번 - 0.64kg / FB: 14형번 - 0.1kg, 20형번 - 0.3kg

라. 배터리 사양 및 용량 결정

1. 필요한 배터리팩 용량 계산

각 동작에 필요한 최대 Power		최대 Power	전장기기 소요전력	작업시간	필요 Power
1번 동작	213.726 W				
2번 동작	258.249 W	258.249 W	50 W	1시간 30분	537.3735 W
3번 동작	16.696 W				

2. 배터리 선정 : 가볍고 용량이 더 큰 Kokam Li-Polymer SLPB8043128을 13Serial 6Parallel로 설계하여 사용함.

Battery Type	Voltage/ Cell	Capacity /Cell	Weight /Cell	Circuit Configuration	Total Weight	Total Volume
Sanyo Ni-MH HR-4/3 AA Up	1.2 V	2.0 Ah	36 g	20Serial 17Parallel = 816 Wh	12.24 kg	3234.76 cc
Kokam Li-Polymer SLPB8043128	3.7 V	3.2 Ah	86.5 g	13Serial 6Parallel = 823.52 Wh	6.747 kg	3212.235 cc

마. 모터/감속기 및 배터리의 총 중량 계산 : 총 비율이 전체 로봇의 중량의 40% 미만이므로 구동기와 배터리 선정이 적합함을 알 수 있음.

로봇의 총 중량	81.87 kg
구동기 총 중량	21.40 kg
배터리 총 중량	6.747 kg
구동기 및 배터리 총 중량	28.147 kg
구동기 및 배터리 중량의 비율	약 34.38%

Ⅲ. 주요 부위 상세 설계

가. 2D 개념 조립도

1. Shoulder Pitch

주요 부품 모터 : EC-max 40

감속기 : CSG-17-100-2UH-LW

풀리: 1:2(ATP46MXL019-B-P6 / ATP23MXL019-B-P6) 베어링: B6903ZZ(볼베어링), B674ZZ/B685ZZ(소경 베어링)

2. Shoulder Roll

주요 부품 모터 : RE 30

감속기 : FB-20-100-2-GR 베어링 : B6009ZZ(2)

3. Shoulder Yaw

주요 부품 모터 : RE 30

감속기 : FB-20-50-2-GR

베어링 : B6307ZZ(2)

4. Elbow Pitch

주요 부품 모터 : EC-max 30

감속기 : FB-14-88-2-R

베어링 : B6811ZZ(1), B6907ZZ(2)

5. Wrist Yaw

주요 부품 모터 : RE 25

감속기 : FB-14-50-2-R 베어링 : B6907ZZ(2)

6. Wrist Pitch

주요 부품 모터 : EC_i 30

감속기 : CSF-8-50-1U-CC-F 베어링 : B6808ZZ(1)

나. 3D 조립도

1. 주요 설계 중점: 프레임 간 볼트 체결, 구동기와 프레임 간 볼트 체결, 베어링 양단지지, Separation Ring 사용, 단차 설계 등

2. Shoulder Pitch

단면도

3. Shoulder Roll

단면도

5. Elbow Pitch

6. Wrist Yaw

단면도

7. Wrist Pitch

다. 2D 전체 조립도 : 상박과 하박의 길이가 구체 구체화 설계에서 선정한 길이에 충족하 게 설계를 하였음.

라. 3D 전체 조립도

마. 운동 가능 범위 및 간섭 체크

1. Shoulder Pitch : -90° ~ 90°

2. Shoulder Roll : -10° ~ 90°(목표 각도 : -30° ~ 90°로 목표 각도 도달 실패)

3. Shoulder Yaw : -90° ~ 90°

4. Elbow Pitch : -100° ~ 10°

5. Wrist Yaw : -90° ~ 90°

바. 중량 계산

- 목표한 중량의 약 2.8배 정도 무겁게 설계되었음.
- 목표로 선정한 로봇의 사양이 키에 비해 조금 가볍게 선정 한 것 같지만, 이를 고려하여도 무게가 조금 무겁게 설계되었음.

Joint	중량	총 중량	목표 중량	
Shoulder Pitch	1750g			
Shoulder Roll	1290g			
Shoulder Yaw	1470g	6210-	2270~	
Elbow Pitch	800g	- 6310g	2370g	
Wrist Yaw	500g			
Wrist Pitch	500g			

사. 목표 자세 구현

1. 구동부 들어올리는 자세

2. 구멍에 드릴을 꽂는 자세

Sagittal Plane View

Ⅳ. 설계 시 문제점 분석 및 고찰

가. 설계 시 문제점

- 1. 목표로 제시했던 무게보다 무게가 많이 나오게 되었음. 모터 및 감속기의 선정은 적절했다고 생각하나, 관절을 설계 시 프레임의 두께가 두껍거나, 살을 효율적으로 빼지 못하였던 것 같음. -> 프레임 설계 시 강한 강성을 가진 구조와 적합한 두께를 선정하여 일괄적으로 프레임을 설계해야 하고, 무게를 더 줄이기 위해 살을 더 효율적으로 빼야 할 것 같음.
- 2. 예상 관절 범위를 충족시키지 못하는 결과가 나옴. Shoulder Roll 각도가 20도 정도 구현이 되지 않았는데, 해당 관절의 프레임 길이를 조절하면 충분히 구현할 수 있음. -> 설계 시 2D를 이용하여 원하는 각도가 나올 수 있는지 사전에 체크를 하고 구현을 해야 할 것 같음.
- 3. 스토퍼의 미부착. 스토퍼를 설계하지 않아, 원하는 관절 범위보다 더 넓은 범위의 각도를 움직이게 됨. 원하지 않는 관절 범위를 없애고, 프레임이나 구동기의 충돌을 방지하기 위하여 스토퍼를 추가적으로 설치해야 함. -> 적절한 스토퍼의 설계를 고려

해야 함.

4. 감속기의 구멍과 모터 축의 직경의 크기가 달라 커플링을 설계하여 연결하고자 하였는데, 커플링이 아닌 링으로 감속기와 모터의 공간을 채우고 Set Screw로 고정을 해주어야 함.

나. 고찰

이번 설계를 하면서 로봇 설계 시 필요한 과정들을 배울 수 있었다. 각 관절의 사양을 결정하는 원리와 이론에 대해서 배우고, 실제적인 방법들을 익힐 수 있었고, 구동기의 선정 방법과 감속비를 선정의 중요성에 대해서 알 수 있었다. 그 이외에도 배터리 선정이나 기타 세부 부품들을 선정하는 방법 등 자세한 부분들을 익힐 수 있었다. 특히 상세 설계를 진행하며 잘 사용하지 않았던 Auto CAD와 NX의 사용 능력이 크게 향상되었던 것 같다. 그리고 상세설계의 과정의 중요성을 익히게 되었고, 단차 설계와 베어링의 위치, 구동기의 위치 등을 정하는 것 등 상세한 부분을 배울 수 있었다. 그리고 설계 시 로봇의 중량을 줄이는 게 정말 어려운 작업임을 알게 되었고, 프레임을 설계하는 것도 두께와 볼트의 위치와 그 크기, 살 빼는 방법과 같은 세세한 디테일도 설계단계에서 정말 중요함을 알게 되었다. 종합적으로 볼 때 정말 많은 것을 배울 수 있었고, 설계하는 것이 정말 복잡하고 오랜 경험이 필요함을 느낄 수 있었다.