Полиноми на няколко променливи. Симетрични полиноми.

Нека A е комутативен пръстен с единичен елемнт 1. При построяването на пръстена от полиноми B=A[x] над A се оказа, че B също е комутативен пръстен с единица, който съдържа A като подпръстен. За всеки елемент $f\in B, f\neq 0$ съществува единствено представяне $f=\sum_{i\geq 0}a_ix^i$, където $a_i\in A$ и само краен брой от тях са различни от нула. Елементът, означен с x наричаме x наричаме

Използвайки абсолютно същата процедура, този път от B получаваме пръстен C=B[y], който също е комутативен и притежава единичен елемент. В допълнение C съдържа B като подпръстен, а y е нова независима променлива. Отново е сила, че всеки ненулев елемент $g \in C$ се записва еднозначно с $g=\sum_{j\geq 0} f_j y^j$ за елементи $f_j \in B$. От представянето на елементите f_j достигаме до $g=\sum_{j\geq 0} \left(\sum_{i\geq 0} a_{ij} x^i\right) y^j = \sum_{i\geq 0, j\geq 0} a_{ij} x^i y^j$ за елементи $a_{ij} \in A$ само краен брой от които са различни от нула. От представянето на всеки елемент $g \in C$ се вижда, че C=B[y]=A[x][y]=A[x,y]

Ако положим $x_1=x, x_2=y$ и продължим по същата процедура, след общо n на брой стъпки получааме комутативният пръстен с единица $A[x_1,x_2,\ldots,x_n]$, който съдържа A като подпръстен. Всеки елемент $f\in A[x_1,x_2,\ldots,x_n]$ има вида

$$f(x_1, x_2, \dots, x_n) = \sum_{i_1 \ge 0, i_2 \ge 0, \dots, i_n \ge 0} a_{i_1 i_2 \dots i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n},$$

само с краен брой ненулеви елементи $a_{i_1i_2...i_n} \in A$, като този запис може да се опрости значително, ако се въведе мултииндекса $i = (i_1, i_2, ..., i_n) \in$

 \mathbb{N}^n и се запише

$$f = \sum_{|i| > 0} a_i \mathbf{x}^i,$$

където $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Полученият пръстен $A[x_1, x_2, \dots, x_n]$ се нарича пръстен на полиномите на п променливи с коефициенти от A.

Елемент $f(x_1, x_2, \ldots, x_n) \in A[x_1, x_2, \ldots, x_n]$ се нарича полином на променливите x_1, x_2, \ldots, x_n с коефициентиют A и ако $f \neq 0$, то той се записва като сума на краен брой едночлени от вида $ax_1^{i_1}x_2^{i_2}\ldots x_n^{i_n}$, където $a \in A$ и $a \neq 0$, а i_1, i_2, \ldots, i_n са цели неотрицателни числа. Нека друг едночлен на f има вида $bx_1^{j_1}x_2^{j_2}\ldots x_n^{j_n}$ за елемент $b \in A, b \neq 0$ и цели неотрицателни числа j_1, j_2, \ldots, j_n . Тези два едночлена се наричат подобни, ако $i_1 = j_1, i_2 = j_2, \ldots, i_n = j_n$. Щесчитаме че в f, евентуално след извършване на приведение, няма подобни едночлени. Тогава f се представя еднозначно като сума на едночлени, които не са подобни.

Ако имаме едночлена $ax_1^{i_1}x_2^{i_2}\dots x_n^{i_n}$, то неговата *степен* е числото $i_1+i_2+\dots+i_n\geq 0$. Степента deg f на самият полином f е най-високата степен на едночлен от f. Отново, ако f=0, дефинираме deg $f=-\infty$.

Пример:

Да разгледаме полиномът на четири променливи

$$f = \underbrace{x_1^5 x_3}_{\text{степен 6}} + \underbrace{x_1^2 x_3 x_4}_{\text{степен 4}} + \underbrace{x_1^5 x_2}_{\text{степен 6}} + \underbrace{x_2 x_4}_{\text{степен 2}} + \underbrace{x_2 x_4^2}_{\text{степен 3}} + \underbrace{x_1^5}_{\text{степен 5}}.$$

Очевидно най-голямата степен на едночлен е 6 и следователно $\deg f = 6$.

Разглеждайки горния пример, който съдържа два едночлена от найвисока степен, възниква въпросът кой е старшият член на f. Отговор е възможно да се даде след въвеждането на $nekcukorpa\phi cka$ наредба. Нека $K=ax_1^{k_1}x_2^{k_2}\dots x_n^{k_n}, a\neq 0$ и $L=bx_1^{l_1}x_2^{l_2}\dots x_n^{l_n}, b\neq 0$ са два едночлена на полином $f\neq 0$. Ако съществува число $i(1\leq i\leq n)$, такова че $k_1=l_1,\dots,k_{i-1}=l_{i-1}$, но $k_i>l_i$, казваме, че K е по-висок от L и записваме K>L (ясно е, че ако $l_i>k_i$, то L>K). Това е добра наредба в множеството на всички едночлени, защото за всеки два едночлена K и L е изпълнено или K>L, или L>K и също за всеки три едночлена K,L,M от K>L и L>M следва K>M. Това означава, че всички едночлени на даден полином f могат да се наредят в низходящ ред относно релацията > на едночлени (т.е. във верига). В такъв случай най-високият едночлен ще наричаме старши едночлен на f.

В примера от по-горе едночлените подреждаме в низходящ ред едночлените

$$f = x_1^5 x_2 + x_1^5 x_3 + x_1^5 + x_1^2 x_3 x_4 + x_2 x_4^2 + x_2 x_4$$

и виждаме, че старшият едночлен е $x_1^5x_2$.

Ако A е област и $f,g \in A[x_1,x_2,\ldots,x_n]$ са ненулеви полиноми, то $\deg(fg) = \deg f + \deg g$. Така в частност от $f \neq 0, g \neq 0$ следва, че $fg \neq 0$ и $A[x_1,x_2,\ldots,x_n]$ също е област.

Лема (за старшия едночлен). Нека A е област u $f, g \in A[x_1, x_2, \dots, x_n]$. Тогава старшият едночлен на fg е равен на произведението на старшите едночлени на f u g.

Доказатеслтво. Нека имаме

$$f = \underbrace{ax_1^{k_1} \dots x_n^{k_n}}_{\text{старши едночлен } = K} + \dots + \underbrace{cx_1^{r_1} \dots x_n^{r_n}}_{\text{произволен едночлен } = R} + \dots$$

И

$$g = \underbrace{bx_1^{l_1} \dots x_n^{l_n}}_{\text{старши едночлен } = L} + \dots + \underbrace{dx_1^{s_1} \dots x_n^{s_n}}_{\text{произволен едночлен } = S} + \dots$$

Произволен едночлен на полинома fg е $RS = cdx_1^{r_1+s_1} \dots x_n^{r_n+s_n}$, а за едночлена KL имаме $KL = abx_1k_1 + l_1 \dots x_n^{k_n+l_n}$. Тъй като A е област, при предположение, че $a,b,c,d\neq 0$ получаваме, че $ab\neq 0$ и $cd\neq 0$. Твърдим, че ако $R\neq K$ или $S\neq L$, то KL>RS.

1 случай: $R \neq K$ и $S \neq L$. Тогава $\exists i (1 \leq i \leq n) : k_1 = r_1, \ldots, k_{i-1} = r_{i-1}$, но $k_1 > r_i$ и $\exists j (1 \leq j \leq n) : l_1 = s_1, \ldots, l_{j-1} = s_{j-1}$, но $l_j > s_j$. Нека без ограничение на общността считаме, че $i \leq j$. Тогава $l_1 = s_1, \ldots, l_{i-1} = s_{i-1}$ и или $l_i = s_i$ при i < j, или $l_i > s_i$ при i = j. Така $l_i \geq s_i$. Тогава за едночлените KL и RS имаме $k_1 + l_1 = r_1 + s_1, \ldots, k_{i-1} + l_{i-1} = r_{i-1} + s_{i-1}$, но $k_i + l_i > r_i + s_i$. Следователно KL > RS.

2 случай: без ограничение считаме, че R=K, но $S\neq L$. Тогава $k_1=r_1,\ldots,k_n=r_n;\ l_1=s_1,\ldots,l_{j-1}=s_{j-1},$ но $l_j>s_j$. Тогава за KL и RS=KS имаме, че $k_1+l_1=r_1+s_1,\ldots,k_{j-1}+l_j-1=r_{j-1}+s_{j-1},$ но $k_j+l_j>r_j+s_j$, което означава, че отново KL>RS.

Казваме, че полиномът $f(x_1,x_2,\ldots,x_n)\in A[x_1,x_2,\ldots,x_n]$ е симетричен, ако $f(x_{i_1},x_{i_2},\ldots,x_{i_n})=f(x_1,x_2,\ldots,x_n)$ за всяка пермутация i_1,i_2,\ldots,i_n на числата от 1 до n.

За $n \in \mathbb{N}$ полиномите на n променливи

$$\sigma_1 = x_1 + x_2 + \dots + x_n,$$

$$\sigma_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n,$$

$$\dots$$

$$\sigma_n = x_1 x_2 \dots x_n$$

се наричат елементарни симетрични полиноми.

Забележка 1: Ако $f(x_1, x_2, \ldots, x_n)$ е симетричен полином и $K = ax_1^{k_1}x_2^{k_2} \ldots x_n^{k_n}$ е едночлен на f, то за всяка пермутация i_1, i_2, \ldots, i_n на $1, 2, \ldots, n$ $K' = ax_{i_1}^{k_1}x_{i_2}^{k_2} \ldots x_{i_n}^{k_n}$ също е едночлен на f. Наистина, K' е едночлен на $f(x_{i_1}, x_{i_2}, \ldots, x_{i_n})$, но f е симетричен и $f(x_{i_1}, x_{i_2}, \ldots, x_{i_n}) = f(x_1, x_2, \ldots, x_n)$. Следователно K' е едночлен и на $f(x_1, x_2, \ldots, x_n)$.

Забележка 2: Ако $f(x_1,x_2,\ldots,x_n)$ е симетричен и $K=ax_1^{k_1}x_2^{k_2}\ldots x_n^{k_n}$ е старшият едночлен на f, то $k_1\geq k_2\geq \cdots \geq k_n$. Да допуснем противното, т.е. че съществува $i(1\leq i\leq n-1)$, такова че $k_{i+1}>k_i$. Извършваме пермутацията, състояща се в транспозицията $i\leftrightarrow i+1$ и получаваме едночлена $K'=ax_1^{k_1}\ldots x_{i-1}^{k_{i-1}}x_i^{k_i}x_{i+1}^{k_{i+1}}\ldots x_n^{k_n}$. Според Забележка 1 едночленът $K''=ax_1^{k_1}\ldots x_{i-1}^{k_{i-1}}x_i^{k_{i+1}}x_{i+1}^{k_i}\ldots x_n^{k_n}$ също е едночлен на полинома f, но $k_{i+1}>k_i$ и следователно K''>K, което противоречи на факта, че K е старшият едночлен. Следователно остава да е вярно, че $k_1\geq k_2\geq \cdots \geq k_n$.

Лесно се съобразява, че ако g е полином на n променливи с коефициенти от A, то $g(\sigma_1,\sigma_2,\ldots,\sigma_n)$ е симетричен полином на x_1,x_2,\ldots,x_n с коефициенти пак от A. Обратното твърдение се доказва в

Основна теорема за симетричните полиноми. Нека A е област u $f(x_1, x_2, \ldots, x_n) \in A[x_1, x_2, \ldots, x_n]$ е симетричен полином. Тогава съществува, при това единствен полином $g \in A[x_1, x_2, \ldots, x_n]$, такъв че $f(x_1, x_2, \ldots, x_n) = g(\sigma_1, \sigma_2, \ldots, \sigma_n)$.

Доказателство. Ще докажем само съществуването, което едновременно дава и алгоритъм за намирането на полинома g. Нека $K = ax_1^{k_1}x_2^{k_2}\dots x_{n-1}^{k_{n-1}}x_n^{k_n}$ е старши едночлен на $f = f(x_1, x_2, \dots, x_n)$ с (както видяхме) $k_1 \geq k_2 \geq \dots \geq k_{n-1} \geq k_n (\geq 0)$. Разглеждаме $\varphi_1 = a\sigma_1^{k_1-k_2}\sigma_2^{k_2-k_3}\dots\sigma_{n-1}^{k_{n-1}-k_n}\sigma_n^{k_n}$

- едночлен на елементарните симетрични полиноми $\sigma_1, \sigma_2, \dots, \sigma_n$. Ясно е че в качестото си на такъв едночлен, самият φ_1 е симетричен полином на x_1, x_2, \ldots, x_n . Съгласно лемата и лексикографската наредба съобразяваме, че старшият едночлен на $\varphi(x_1, x_2, ..., x_n)$ е едночленът $a(x_1)^{k_1-k_2}(x_1x_2)^{k_2-k_3}(x_1x_2x_3)^{k_3-k_4}\dots(x_1x_2\dots x_n)^{k_n}$ и в него за кое да е $1 \leq i \leq n$ степенният показател на x_i е равен на $(k_i - k_{i+1}) + (k_{i+1} - k_{i+1})$ $ki + 1) + \cdots + (k_{n-1} - k_n) + k_n = k_i$. С други думи видяхме, че старшият едночлен на φ_1 е $K = ax_1^{k_1}x_2^{k_2}\dots x_n^{k_n}$. Нека означим $f_1 = f - \varphi_1$. f_1 също е симетричен полином на x_1, x_2, \ldots, x_n с коефициенти от A и старшият едночлен на f_1 е по-нисък от K. По аналогичен начин (ако $f_1 \neq 0$), ако $L = bx_1^{l_1}x_2^{l_2}\dots x_n^{l_n}$ е старшият едночлен на f_1 , образуваме полинома $\varphi_2 = b\sigma_1^{l_1-l_2}\sigma_2^{l_2-l_3}\dots\sigma_n^{l_n}$. Тогава $f_2 = f_1 - \varphi_2$ е симетричен полином на x_1, x_2, \dots, x_n с коефициенти от A и старши едночлен по-нисък от L. И така нататък, след общо s на брой стъпки получаваме поредицата от полиноми $f_1 = f - \varphi_1, f_2 = f_1 - \varphi_2, \dots, f_{s-1} = f_{s-2} - \varphi_{s-1}, f_s = f_{s-1} - \varphi_s, \dots$ Ако за кой да е f_i старшият му едночлен е $M = cx_1^{m_1}x_2^{m_2}\dots x_n^{m_n}$, то > и следователно $k_1 \geq m_1 \geq m_2 \geq \cdots \geq m_n$. По този начин за n-торката m_1, m_2, \dots, m_n има краен брой възможности, а именно $(k_1 + 1)^n$, защото всеки показател m_i може да бъде равен на кое да е от числата от 0 до k_1 за $i=1,\ldots,n$. И така, старшите членове на полиномите f_i стават все пониски и има краен брой възможности за тях, т.е. редицата от тях е ограничена и $\exists s \in \mathbb{N} : f_s = 0$. Сега получаваме, че $f = \varphi_1 + \varphi_2 + \cdots + \varphi_{s-1} + \varphi_s$, което е сума на едночлени на $\sigma_1, \ldots, \sigma_n$ с коефициенти от A, което означава, че $f = g(\sigma_1, \sigma_2, \dots, \sigma_n)$ за някакъв полином $g \in A[x_1, x_2, \dots, x_n]$. \square

Следствие 1. Нека F е поле, $f(x) \in F[x_1, x_2, ..., x_n]$ и $\alpha_1, \alpha_2, ..., \alpha_n$ са корените на f, лежащи в някакво разширение $K \geq F$. Ако $h(x_1, x_2, ..., x_n) \in F[x_1, x_2, ..., x_n]$ е симетричен полином, то $h(\alpha_1, \alpha_2, ..., \alpha_n) \in F$.

Доказателство. Нека $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$ за $a_i \in F, n \geq 1, a_0 \neq 0$. От теоремата следва, че съществува полином $g(x_1, x_2, \dots, x_n) \in F[x_1, x_2, \dots, x_n]$, такъв че $g(\sigma_1, \sigma_2, \dots, \sigma_n)$. При $x_1 = \alpha_1, x_2 = \alpha_2, \dots, x_n = \alpha_n$ формулите на Виет дават, че $\sigma_1 = -\frac{a_1}{a_0}, \sigma_2 = \frac{a_2}{a_0}, \dots, \sigma_n = (-1)^n \frac{a_n}{a_0}$. По този начин се оказва, че $h(\alpha_1, \alpha_2, \dots, \alpha_n) = g\left(-\frac{a_1}{a_0}, \frac{a_2}{a_0}, \dots, \frac{(-1)^n a_n}{a_0}\right) \in F$, понеже g е с коефициенти от F и $\frac{(-1)^i a_i}{a_0} \in F$ за $\forall i = 1, 2, \dots, n$.