Le Disrupteur Dimensionnel

Le Disrupteur Dimensionnel » Langage de programmation d'Arduino. » analogWrite() – PWM

analogWrite() - PWM

30 septembre 2020

Cette fonction contrôle le cycle de travail d'une sortie PWM de Arduino à travers d'un pin digital configuré préalablement comme *output*. Tous les pins digitaux ne peuvent pas supporter des signaux PWM (dans la plaque Arduino UNO sont, par exemple les pins: 3, 5, 6, 9, 10 et 11). Ces sorties son précédés du symbole ~.

Chaque fois que cette fonction soit exécutée, la plaque produira ce signal. On peut l'utiliser pour contrôler la luminosité variable d'une diode ou entraîner un moteur à différentes vitesses.

Sorties PWM de la plaque Arduino UNO

Qu'est ce qu' une sortie PWM ou modulation de largeur d'impulsion?

Il s'agit d'une technique couramment utilisée pour synthétiser des signaux pseudo analogiques à l'aide de circuits à fonctionnement tout ou rien, ou plus généralement à états discrets. Elle modifie le cycle de travail d'un signal périodique, bien pour transmettre information à travers d'un canal de communications, ou bien por contrôler la quantité d'énergie qu'on envoie a une charge.

Le cycle de travail (D) d'un signal périodique est la largeur relative de sa part positive en relation avec le période.

D = Cycle de travaille (%)

t = temps où la fonction est positive

T = periode de la fonction

Syntaxe

analogWrite(pin, valeur)

On observe deux paramètres:

- *pin* -> c'est le pin défini.
- *valeur* -> represente le cycle de travail, une portée entre 0 (toujours éteint) et 255 (toujours allumé).

Exemple

Nous allons augmenter progressivement le cycle de travail d'une diode, on verra comment elle s'allume graduellement jusqu'à sa valeur maximale:

```
void setup() {
  pinMode(9, OUTPUT);
}
void loop() {
  for (x=0; x<=255; x++){
   analogWrite(9,x);
   delay(100);
}
```

Voir aussi

- <u>analogReference</u>
- <u>analogRead</u>

Rechercher...

Q

DERNIERS ARTICLES

Module KY-001, Capteur digital de température. \bigcirc 31 janvier, 2023 \bigcirc \bigcirc

Module flash automatique 7 couleurs KY-034 pour Arduino. \bigcirc 16 janvier, 2023 \bigcirc \bigcirc

Module KY-011, diode bicolore.

 \bigcirc 6 novembre, 2022 \bigcirc \bigcirc

<u> Module capteur laser KY-008, (pointeur laser)</u>

© 21 octobre, 2022 Ω

ÉTIQUETTES

AFFICHEUR À QUATRE DIGITS AFFICHEUR DE 7 SEGMENTS **BLUETOOTH HC-06** ARDUINO BUZZER **CAPTEUR INCLINAISON** CAPTEUR À ULTRASONS CAPTEUR DIGITAL DE TEMPÉRATURE **CAPTEUR LM35 CATHODE COMMUNE** CLAVIERS MATRICIELS DIODE BICOLORE **DISPLAY 5011AS** DS1302 **ENCODEUR ROTATIF**

JOYSTICK **ESQUIVANT LES OBSTACLES** KY-008 KY-040 LDR LED LED RGB **LEDS** MATRICE LED MODULE CONTRÔLEUR DE MOTEURS MAX7219 **MBOT MODULE DHT 11 MODULE DS3231 MODULE HC-SR04 MODULE L298N** MODULE UNL2003 MOTEUR PAS À PAS POTENTIOMÈTRE MODULE KY-001 **MODULE KY-011 RADIO FM ROBOT ROBOT ARDUINO RÉSISTANCES SERVOMOTEURS SERVO SG90 TEA5767** ÉCRAN LCD **ÉDUCATIF**

COMMENTAIRES RÉCENTS

RICKOU77 Excellent article: je viens...

CHRISTOPHE Rebonjour, Je réponds à mon...

CHRISTOPHE
Bonjour, Jai un soucis
avec...

DERNIERS ARTICLES

Module KY-001, Capteur digital de température.

Module flash automatique 7 couleurs KY-034 pour Arduino.

Module KY-011, diode bicolore.

Tester la charge de nos piles avec Arduino.

Module capteur laser KY-008, (pointeur laser)

Copyright ©2020, Le Disrupteur Dimensionnel

Aviso legal Política de cookies