	CHECK	くしらて				٠		۰		0	۰	۰									٠					•	۰	
• •	fisz			Â	m I	telg	to			ţ	m	١.	٠ س	סגר	lua	Ž	Э.		J.	•	nõe		W	190	w c	li]
PA	RTE 1			٠	۰			٠	٠								۰	۰			٠		٠					
	. 7			٠		•				•					•	•				•								
	٤.			٠	٠	•				•					•	•	•			•	٠		•					
	.3 .			٠						0						0				0	۰							
PA	RTE 2		•		•	•				•	•				•	•	•	•		•	•		•			•		
	4.			٠		•				0		•				0				0	•				•	•		
	· S .	• •			•	0		•		•					•	•	•	•		•	•		•					
	. 6		• •		•	•				•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•
	· 7.					•															•				•	•		
	8,	• •			•	•		•		•	•				•	•	•	•		•	•	•	•		•	•		•
	9.		• •			•		•		0	•	•								0	•	•		•	•	•	•	
	. 70 ·				•	•		•		•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	
. Pe	RTE	3		٠	•	•				•	•	•		•	•	•	•			•	•	•	•	•	•	•		•
	77.			٠				•		0						0				0	•				•	•		
] . 22 .	• •	• •		•	•																						•
] 13.	• •		٠				•	٠	0	•	•									•				•	•		
	. 44.			•																•								
				•		•		•	•	•	•		-															

$$e^{z} = \sum_{i} \frac{x_i}{z_i} = 1 + \infty + \frac{x_i}{z_i} + \frac{x_i}{z_i} + \dots$$

$$l_{M}(1+z) = x - x^{2} + x^{3} - x^{4} + ...$$

$$2 \qquad 3 \qquad 4$$

arctey = =
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} = \frac{x^2 - x^3 + x^5 - x^7 + \dots}{3 + x^5 - x^7 + \dots}$$

$$\lambda em = \sum \frac{(-1)^n}{(2n+1)!} = \frac{3!}{3!} + \frac{5!}{5!} + \frac{7!}{7!}$$

$$nawy = \sum \frac{(\pi u + 7)!}{7} \leq_{\pi} 3u + 7$$

$$\cos z = \sum_{(-1)^{N} \ge 2n} = 1 - \frac{x^{2}}{a!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots$$

$$\cosh s = \sum_{n=1}^{\infty} \frac{(3^n)!}{7} 5^{3n}$$

2.	Encontre	o raio	de	convergência,	e o	disco	de	convergência,	das	seguintes
	séries de p	otênc	ias							

$$(a) \sum_{n=0}^{+\infty} n^3 z^n$$

| am | = n3 z n

: expar ab eixètix. eleq.

$$\lim_{N\to\infty} \frac{|a_N+1|}{|a_N+1|} = \lim_{N\to\infty} \frac{(N+1)^3 \cdot z \cdot (N+1)}{N^3 \cdot z \cdot (N+1)^3 \cdot z \cdot$$

$$\frac{n \to \infty}{n \to \infty} \frac{n_3}{(n+1)_3} = \frac{1}{2} \lim_{n \to \infty} \frac{\left(n\left(2+\frac{n}{4}\right)\right)_3}{\left(n\left(2+\frac{n}{4}\right)\right)_3} = 2 \lim_{n \to \infty} \frac{n_3}{n_3} \frac{n_3}{(2+\frac{n}{4})_3} = 2 \lim_{n \to \infty} \left(2+\frac{n}{4}\right)_3$$

Lentās -1 < Z < 1

partante, o vais de convergência é.

. O disco de convergência é uma bola aberta B(0,1)

$$(b) \sum_{n=0}^{+\infty} \frac{2^n}{n!} z^n.$$

 $|\alpha_n| = \frac{2^n}{2^n} \cdot z^n$

pelo vitério da vazão; para an > 0

$$\lim_{n\to\infty} \frac{|am+3|}{|am|^{n}} = \frac{2^{n+2} z^{n+4}}{2^{n+4} z^{n+4}} = \frac{2^{n} z^{n}}{2^{n} z^{n}} = \frac{2^{n} z^{n}}{2^{n}} = \frac{2^{n} z^{n}}$$

 $2z \cdot \lim_{n \to \infty} \frac{1}{n} \cdot \frac{1}{n} \cdot$

postanto, a vierie à abiditamente anvergente

$$\sum_{n=0}^{\infty} \frac{3^n}{n!} \cdot z_{\cdot n}$$
 converge para $+\infty$ $\in \mathbb{R}$

o rais de convergência é infinito e o disco de convergência é uma bola aberta $B(0,\infty)$.

$$(c) \sum_{n=0}^{+\infty} \frac{2^n}{n^2} z^n$$

$$|an| = \frac{a^n}{n^2} z^n$$

o < ma araq. agasi. ab ouretiro. al que

$$= \lim_{N \to \infty} \frac{|\omega_1 + \gamma_1|}{|\omega_1 + \gamma_2|} = \lim_{N \to \infty} \frac{|\omega_1 + \gamma_2|}{|\omega_1 + \gamma_2|} = \frac{|\omega_1 + \gamma_2|}{|\omega_2|} = \frac{|\omega_1 + \gamma_2|}{|\omega_2|} = \frac{|\omega_1 + \gamma_2|}{|\omega_1 + \gamma_2|} = \frac{|\omega_1 + \gamma_2|}{|\omega_2|} = \frac{|\omega_1 + \gamma_2|}{|\omega_2|} = \frac{|\omega_1 + \gamma_2|}{|\omega_2|} = \frac{|\omega_1 + \gamma_2|}{|\omega_2|} = \frac{|\omega_2 + \gamma_2|}{|\omega_2|} = \frac{|\omega_1 + \gamma_2|}{|\omega_2|} = \frac{|\omega_2 + \gamma_$$

$$\frac{1}{2} \lim_{n \to \infty} \left(\frac{n}{(n+1)} \right)^2 = 2 \lim_{n \to \infty} \left(\frac{n}{n} + \frac{1}{2} \right)^2 = 2 \lim_{n \to \infty} \left(\frac{1}{1 + \frac{1}{2}} \right)^2 = 2 \lim_{n \to \infty} \left(\frac{1}{1 + \frac{1}{2}} \right)^2$$

$$= 22 \left(\frac{7}{7}\right)^2 = 327 \left(\frac{7}{7}\right)^2$$

pelo critério da vagão, ve L < 1 a vérie converge

ausim. 1. para $\sum_{n=0}^{\infty} \frac{2^n}{n^2} \cdot z^n$ convergio 1.2.21 tem. que voez memos que 1

então temos

e, curim, o raio de convergência $x \in \frac{1}{2}$. e. o disco de convergência $x \in \frac{1}{2}$. de de la convergência de la conver

(d)
$$\sum_{n=0}^{+\infty} \frac{n^3}{3^n} z^n$$
.

ternes $|am| = \frac{n^3}{3^n} z^n$

: ograve ab cirètis aleq.

 $\lim_{n \to \infty} \frac{\lfloor an + 4 \rfloor}{\lfloor an \rfloor} = \lfloor$

 $ve \cdot l \cdot 41, a vérie \sum_{n=0}^{\infty} an converge$

use L > 1, a voérie 2 an diverge

ve. L=1., vada ve pode afirmos

assim, varnes calcular

$$\lim_{N \to \infty} \frac{|ou|}{|ou+7|} = \lim_{N \to \infty} \frac{3^{n+7}}{(n+7)_3^{\frac{3}{2}}(n+7)} \frac{3^{n}}{3^{n}} = \frac{3 \cdot 3^{n} \cdot N_{\cdot 3}^{\frac{3}{2}} \times N_{\cdot 3}^{\frac{3}{2}} \times$$

$$= \frac{2}{3} \lim_{N \to \infty} \frac{(n+1)^3}{N^3} = \frac{2}{3} \lim_{N \to \infty} \left(\frac{(n+1)}{N} \right)^3 = \frac{2}{3} \lim_{N \to \infty} \left(\frac{\frac{n}{N} + \frac{1}{N}}{N} \right)^3$$

$$=\frac{3}{5}\left(\lim_{n\to\infty}\left(1+\frac{1}{2}\right)\right)^3=\frac{3}{5}\left(1+0\right)^3=\left\lfloor\frac{3}{5}\right\rfloor$$

. Para convergir: $\frac{2}{3}$ < $\frac{1}{3}$

assim, temps -3 < = < 3

o ració de contexaguicia à 3 e à gisto de contra dévisir à nuvor para aporta B(0'3)

-3, (b) Escreva as séries de potências para as funções $\cosh z$ e $\sinh z$.

$$cosh \ z = \sum_{n=0}^{\infty} \frac{1}{2^n} z^n$$

$$|x| = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} = 2n+1$$

6. Ache os primeiros cinco termos não nulos da série de potências para a divisão

$$\frac{x + 2x^2 + 3x^3 + 4x^4 + 5x^5 + 6x^6 + \cdots}{1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + \cdots}$$

$$\frac{x + 3x^{2} + 3x^{3} + 4x^{4} + 5x^{6} + 6x^{6} \dots}{x^{2} + x^{3} + 3x^{4} + 4x^{6} + 5x^{6} \dots}$$

$$\frac{x^{2} + 3x^{3} + 3x^{4} + 4x^{5} + 5x^{6} \dots}{x^{2} + x^{3} + x^{4} + x^{6} + 5x^{6} \dots}$$

x4 + 2x5 + 3x6

 $x^{4} + x^{5} + 2x^{6}$

26 + 26

χ⁶

7. Ache os primeiros três termos não nulos da série de potências para a divisão $\,$

$$\frac{z + \frac{z^3}{3!} + \frac{z^5}{5!} + \frac{z^7}{7!} + \frac{z^9}{9!} + \cdots}{1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \frac{z^6}{6!} + \frac{z^8}{8!} + \cdots}.$$

$$\frac{2}{3!}$$
 + $\frac{2}{5!}$ + $\frac{2}{7!}$ + $\frac{2}{9!}$ + ...

$$\frac{2^{9}}{9!} + \dots \qquad \frac{1}{2!} + \frac{2^{4}}{2!} + \frac{2^{6}}{6!} + \frac{2^{8}}{8!} + \dots$$

$$\frac{2}{2} + \frac{2^{3}}{2!} + \frac{2^{5}}{4!} + \frac{2^{7}}{6!} + \frac{2^{9}}{8!} + \dots$$

polinômio $p(x)$ pelo polinômio $q(x)$.	
escemplo de divisos polinomial euclidiana.	. 7. binioiro giriginos o farmo
$(x^3) + 4x^2 + x - 6$ $x + 2$ divisor	grau mais alte de diviser p
	ebnebivib ab atla riom.
dividendo x² queciente	
2. agea multiplicames e relac de que cient	(x²) par todo a divisor e
obnebisib. et exercações o riestlus	
$x^3 + 4x^2 + x - 6$ $x + d$	
$3c^3 + 23c^2$ $3c^2$	
2x2+5c-6	
3. agora e maior terme de dividende .é.	2x2 a repetimen o processo.
$x^{3} + 4x^{2} + x - 6$ $x + d$ $x^{2} + dx$ $x^{2} + dx$	
1 dx + x - 6	
4. multiplicamos 200 pelo divisor.	
$x^3 + 4x^2 + x - 6 \qquad x + d$	
$\frac{x^3 + 2x^2}{}$ $x^2 + 2x$	
9x - 6	
2 x 2 x 4.4.x	
.5. væpe timos	terminamos a divisão, no case
$x^3 + 4x^2 + x - 6$ $x + d$	obtivemes alser comeritdo.
$x^{2} + 2x^{2} \qquad x^{2} + 2x - 3$. não acontecesse, terramos.
2x2 + xc - 6	$Q(\infty) = A(\infty) - R(\infty) \cdot B(\infty)$
2x2 + 4x	ciente quito
	1 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

11. Efetue a tradicional divisão polinomial (divisão polinomial euclideana) do

(a)
$$p(x) = x^4 + 10x^3 + 35x^2 + 50x + 24$$
 e $q(x) = x + 1$.

$$x^{4} + 10x^{3} + 35x^{2} + 50x + 24$$
 $x + 10x^{3} + 35x^{2} + 26x + 2$

$$9x^3 + 36x^2 + 50x + 24$$

 $9x^3 + 9x^2$

(b)
$$p(x) = x^3 + 2x^2 - x - 2$$

e
$$q(x) = x - 1$$
.

$$x^3 + 2x^2 - x - 2$$
 $x - 1$

$$2c^{3} - 3c^{2}$$

$$2c^{2} + 33c + 2$$

$$3x^2$$
. -. $3x$.

