

Elephant Early Warning Laser Fence System

Department Of computer engineering, **University Of peradeniya**

Subhash Rathnayake

Current related Product & Researches

- Mostly They are using
 - Seismic Sensors
 - Not accurate enough
 - Cameras(Image Processing)
 - Unit cost is expensive
 - **■** Consume more power
 - Data weight is higher

 And most importantly need more number of units to cover an area

Our goals

- Build a system,
 - Make it cheaper to produce a Unit cost
 - consuming low power
 - Give good enough accuracy
 - Easy to install and maintain

 And most importantly decrease the number of units to cover an area

X Fence system solution

Microcontroller Unit

Design around ESP32 SIM800L microcontroller

- 3mW lasers
- Photoresistors as laser beam receiver
- Rain sensor
- Sensor detect light intensity
- Powered with solar panels with the battery pack

To detect the elephant:

- Have 2 lasers in different height levels
 - By processing patterns of interrupted light beams.
 - Fuzzy logic will be used to detect elephants
- Can cover 300m with a unit.
- GPRS will be used to send signals to server
 - Time and unit number(Position)
- Central server is used to warn everyone

Centralized Server

- For the data transmission protocol we planned to use MQTT.
- Simple protocol, Unlike HTTP, this didn't consume much data.
- which is perfect for this scenario.

X Fence system solution

- To detect the elephant:
 - Have 2 lasers in different height levels
 - By processing patterns of interrupted light beams.
 - **■** Fuzzy logic will be used to detect elephants
- Can cover 300m with a unit.
- GPRS will be used to send signals to server
 - Time and unit number(Position)
- Central server is used to warn everyone

Challenges

- When raining Can detect rain by rain sensor and change the elephant detecting mode.
- Day and night Can detect day and night by photorester and change the elephant detecting mode
- Vibrations of and movement of the units can be give error readings
 - Make Mounting structure of the unit stronger
 - Can ignore vibrations with programming
 - Planned mount focus lens in the laser beam detecting photo resisters
 - So small movements can be avoided

IMPLEMENTATION

Idea stage

IMPLEMENTATION

- Design around ESP32 SIM800L microcontroller
 - 3mW lasers
 - Photoresistors as laser beam receiver
 - Rain sensor
 - Sensor detect light intensity

Powered with solar panels with the battery pack

Chip and Server

TTGO T-Call ESP32 SIM800L GSM/GPRS module

- the SIM800L works on 2G networks
- Also we can increase the network availability using good antenna for the module.
- We can easily use the sim module with nano sim card with a data plan.

Centralized Server

- For the data transmission protocol we used MQTT.
- Simple protocol, Unlike HTTP, this didn't consume much data.
- which is perfect for this scenario.

COST

Components	LKR per Unit	No of Units	Total (LKR)
Microcontroller	1200	1	1200
Laser 3 mw	200	2	400
Solar panel with battery pack	2500	1	2500
Rain sensor	200	1	200
Laser receiver	150	2	300
Photoresistor	10	2	20
		Total	4620

Thanks

Do you have any questions?

