Παρουσίαση για χρήση με το σύγγραμμα, Αλγόριθμοι Σχεδίαση και Εφαρμογές, των Μ. Τ. Goodrich and R. Tamassia, Wiley, 2015 (στα ελληνικά από εκδόσεις Μ. Γκιούρδας)

Ένα κατώτερο όριο στην ταξινόμηση

Ταξινόμηση βάση σύγκρισης

- Πολλοί αλγόριθμοι ταξινόμησης βασίζονται στη σύγκριση στοιχείων της ακολουθίας
 - Ταξινομούν κάνοντας συγκρίσεις μεταξύ ζευγών αντικειμένων
 - Παραδείγματα: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...
- Συνεπώς, είναι χρήσιμο να εντοπιστεί ένα κατώτατο όριο για το χρόνο εκτέλεσης οποιουδήποτε αλγορίθμου που χρησιμοποιεί συγκρίσεις για να ταξινομήσει η στοιχεία, x₁, x₂, ..., x_n.

Μέτρηση συγκρίσεων

Ας μετρήσουμε τις συγκρίσεις.

 Κάθε πιθανή εκτέλεση του αλγόριθμου αντιστοιχεί σε ένα μονοπάτι από την ρίζα ως τα φύλλα σε ένα δένδρο

Ύψος δένδρου αποφάσεων

- Το ύψος του δένδρου αποφάσεων είναι ένα κατώτερο όριο στο χρόνο εκτέλεσης
- ♦ Κάθε μετάθεση της εισόδου πρέπει να οδηγεί σε ξεχωριστό φύλλο εξόδου
- Αν όχι, κάποια είσοδος ...4...5... θα έχει την ίδια διάταξη εξόδου όπως ...5...4..., που θα ήταν λάθος
- Καθώς υπάρχουν n!=1⋅2 · ... · n φύλλα, το ύψος είναι τουλάχιστον log (n!)

4

Το κάτω όριο

- Κάθε αλγόριθμος ταξινόμησης που βασίζεται σε συγκρίσεις απαιτεί τουλάχιστον log(n!) χρόνο
- Έτσι, οποιοσδήποτε τέτοιος αλγόριθμος θέλει χρόνο τουλάχιστον

$$\log (n!) \ge \log \left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2)\log(n/2).$$

 Οπότε, ο χρόνος εκτέλεσης οποιοδήποτε αλγορίθμου ταξινόμησης που βασίζεται στην σύγκριση είναι Ω(n log n).