Pure Exploration of Combinatorial Bandits

Shouyuan Chen

April 14, 2014

1 Preliminaries

1.1 Problems

Let n be the number of base arms. Let $\mathcal{M} \subseteq 2^{[n]}$ be the set of super arms. In this note, we consider the following cases of \mathcal{M} .

Example 1 (Explore-m). $\mathcal{M}_{\mathsf{TOP}m}(n) = \{M \subseteq [n] \mid |M| = m\}$. This corresponds to finding the top m arms from [n].

Example 2 (Explore-m-bandits). Suppose n = mk. Then $\mathcal{M}_{\mathsf{BANDIT}m}(n)$ contains all subsets $M \subseteq [n]$ with size m, such that

$$M \cap \{ik+1,\ldots,(i+1)k\} = 1$$
, for all $i \in \{0,\ldots,m-1\}$.

This corresponds to finding the top arms from m bandits, where each bandit has k arms.

Example 3 (Perfect Matching). Let G = (V, E) be a bipartite graph and |E| = n. For simplicity, let each edge $e \in E$ corresponds to a unique integer $i \in [n]$, and vice versa. Then $\mathcal{M}_{\mathsf{MATCH}}(n, G)$ contains all subsets $M \subseteq [n]$ such that M corresponds to a perfect matching in G.

1.2 Diff-Sets

Definition 1 (Diff-set). An *n*-diff-set (or diff-set in short) is a pair of sets $c = (c_+, c_-)$, where $c_+ \subseteq [n]$, $c_- \subseteq [n]$ and $c_+ \cap c_- = \emptyset$.

Definition 2 (Difference of sets). Given any $M_1 \subseteq [n]$, $M_2 \subseteq [n]$. We define $M_1 \ominus M_2 \triangleq C$, where $C = (C_+, C_-)$ is a diff-set and $C_+ = M_1 \backslash M_2$ and $C_- = M_2 \backslash M_1$.

Definition 3. Denote diff[n] be the set of all possible n-diff-sets.

Definition 4 (Set operations of diff-sets). Let $C = (C_+, C_-), D = (D_+, D_-)$ be two diff-sets. We define $C \cap D \triangleq (C_+ \cap D_+, C_- \cap D_-)$ and $C \setminus D \triangleq (C_+ \setminus D_+, C_- \setminus D_-)$.

Further, for all $e \in [n]$, $e \in C \Leftrightarrow (e \in C_+) \lor (e \in C_-)$. And $|C| \triangleq |C_+| + |C_-|$.

Definition 5 (Valid diff-set). Given a set $M \subseteq [n]$ and a diff-set $C = (C_+, C_-)$, we call C a valid diff-set for M, iff $C_+ \cap M = \emptyset$ and $C_- \subseteq M$. In this case, we denote $C \prec M$.

Definition 6 (Negative diff-set). Given a diff-set $A = (A_+, A_-)$, we define $\neg A = (A_-, A_+)$.

1.2.1 diff-set operations

Definition 7 (Operators \oplus and \ominus). Given any $M \subseteq [n]$ and $C \in \text{diff}[n]$. If $C \prec M$, we define operator \oplus such that $M \oplus C \triangleq M \backslash C_- \cup C_+$. On the other hand if $\neg C \prec M$, we define operator \ominus such that $M \ominus C \triangleq M \oplus (\neg C) = M \backslash C_+ \cup C_-$.

1.2 Diff-Sets 1 PRELIMINARIES

Definition 8. Given two diff-sets $A = (A_+, A_-)$ and $B = (B_+, B_-)$. We denote $B \prec A$, if and only if $B_+ \cap A_+ = \emptyset$ and $A_+ \cap A_- = \emptyset$.

Definition 9. Given two diff-sets $A = (A_+, A_-)$ and $B = (B_+, B_-)$. If $B \prec A$, we define $A \oplus B = ((A_+ \cup B_+) \setminus (A_- \cup B_-), (A_- \cup B_-) \setminus (A_+ \cup B_+))$.

Lemma 1. Given two diff-sets $A = (A_+, A_-)$ and $B = (B_+, B_-)$. If $B \prec A$, then $A \oplus B$ is a diff-set.

Proof. Let $C = A \oplus B$. By definition, we have $C_+ = (A_+ \cup B_+) \setminus (A_- \cup B_-)$ and $C_- = (A_- \cup B_-) \setminus (A_+ \cup B_+)$. We only need to show that $C_+ \cap C_- = \emptyset$.

$$C_{+} \cap C_{-} = ((A_{+} \cup B_{+}) \setminus (A_{-} \cup B_{-})) \cap ((A_{-} \cup B_{-}) \setminus (A_{+} \cup B_{+}))$$
$$= (A_{+} \cup B_{+}) \cap ((A_{-} \cup B_{-}) \setminus (A_{+} \cup B_{+}) \setminus (A_{-} \cup B_{-}))$$
$$= \emptyset.$$

Lemma 2. Given two diff-sets $A = (A_+, A_-)$ and $B = (B_+, B_-)$. If there exists $M \subseteq [n]$ such that $A \prec M$, and $B \prec (M \oplus A)$, then $B \prec A$ and $(M \oplus A \oplus B) \ominus M = A \oplus B$.

Proof. We first show that $B \prec A$. Since $B \prec (M \oplus A)$, we know that $B_+ \cap (M \setminus A_- \cup A_+) = \emptyset$. Therefore, we have

$$\emptyset = B_{+} \cap (M \backslash A_{-} \cup A_{+})$$
$$= (B_{+} \cap (M \backslash A_{-})) \cup (B_{+} \cap A_{+})$$

We see that $B_+ \cap A_+ = \emptyset$.

On the other hand, we have $B_{-} \subseteq (M \setminus A_{-} \cup A_{+})$, therefore

$$B_{-} \cap A_{-} \subseteq (M \backslash A_{-} \cup A_{+}) \cap A_{-}$$
$$= (M \backslash A_{-} \cap A_{-}) \cup (A_{+} \cap A_{-})$$
$$= \emptyset.$$

Hence we proved that $B \prec A$.

Define $D = (M \oplus A \oplus B) \ominus M$ and write $D = (D_+, D_-)$. Then,

$$D_{+} = (M \oplus A \oplus B) \backslash M$$
$$= (M \backslash A_{-} \cup A_{+} \backslash B_{-} \cup B_{+}) \backslash M$$
$$= (A_{+} \cup B_{+}) \backslash (A_{-} \cup B_{-}).$$

Similarly, we have

$$D_{-} = M \setminus (M \oplus A \oplus B)$$

= $M \setminus (M \setminus A_{-} \cup A_{+} \setminus B_{-} \cup B_{+})$
= $(A_{-} \cup B_{-}) \setminus (A_{+} \cup B_{+}).$

1.2.2 Diff-set class

Definition 10 (Decomposition of diff-set). Given $\mathcal{B} \subseteq \mathsf{diff}[n]$ and $D \in \mathsf{diff}[n]$, a decomposition of D on \mathcal{B} is a set $\{b_1, \ldots, b_k\} \subseteq \mathcal{B}$ satisfying the following

2

Page 2 of 17

1.2 Diff-Sets 1 PRELIMINARIES

1. For all $i \in [k]$ and $j \in [k]$, we write $b_i = (b_i^+, b_i^-)$ and $b_j = (b_j^+, b_j^-)$. Then, the following holds $b_i^+ \cap b_i^+ = \emptyset$, $b_i^+ \cap b_j^- = \emptyset$, $b_i^- \cap b_j^+ = \emptyset$ and $b_i^- \cap b_j^- = \emptyset$.

2. $D = b_1 \oplus b_2 \oplus \dots b_k$.

Lemma 3. Given $\mathcal{B} \subseteq \mathsf{diff}[n]$ and $D \in \mathsf{diff}[n]$. Let $\{b_1, \ldots, b_k\} \subseteq \mathcal{B}$ be a decomposition of D on \mathcal{B} . Then,

- 1. Let $D = (D_+, D_-)$ and for all $i \in [k]$, we write $b_i = (b_i^+, b_i^-)$. Then $D_+ = b_1^+ \cup \ldots \cup b_k^+$ and $D_- = b_1^- \cup \ldots \cup b_k^-$.
- 2. For all $M \subseteq [n]$, if $D \prec M$, then, for all $i \in [k]$, we have $b_i \prec M$.

Proof. We prove (1) by induction. Let $D_i = b_1 \oplus \ldots \oplus b_i$ and write $D_i = (D_i^+, D_i^-)$. We show that $D_i^+ = \bigcup_{j=1}^i b_i^+$ and $D_{i-} = \bigcup_{j=1}^i b_i^-$ for all $i \in [k]$. For i = 1, this is trivially true. Then, assume that this is true for some i > 1. By definition $D_{i+1} = D_i \oplus b_{i+1}$, hence $D_{i+1}^+ = (D_i^+ \cup b_{i+1}^+) \setminus (D_i^- \cup b_{i+1}^-)$. Note that

$$\begin{split} (D_i^- \cup b_{i+1}^-) \cap (D_i^+ \cup b_{i+1}^+) &= (D_i^- \cap D_i^+) \cup (D_i^- \cap b_{i+1}^+) \cup (b_{i+1}^- \cap D_i^+) \cup (b_{i+1}^- \cap b_{i+1}^+) \\ &= (D_i^- \cap b_{i+1}^+) \cup (b_{i+1}^- \cap D_i^+) \\ &= \left(\left(\bigcup_{j=1}^i b_j^-\right) \cap b_{i+1}^+\right) \cup \left(\left(\bigcup_{j=1}^i b_j^+\right) \cap b_{i+1}^-\right) \\ &= \emptyset. \end{split}$$

Hence $D_{i+1}^+ = D_i^+ \cup b_{i+1}^+$. We can use the same method to show that $D_{i+1}^- = D_i^- \cup b_{i+1}^-$.

Next, we prove (2) using (1). To show that $b_i \prec M$, we only need to show that $b_i^+ \cap M = \emptyset$ and $b_i^- \subseteq M$. Since $D \prec M$, we know that $D_+ \cap M = \emptyset$ and $D_- \subseteq M$. By (1), we see that $b_i^+ \subseteq D_+$ and $b_i^- \subseteq D_-$. Therefore, we have $(b_i^+ \cap M) \subseteq (D_+ \cap M) = \emptyset$ and $b_i^- \subseteq D_- \subseteq M$.

Definition 11 (diff-set class). Given $\mathcal{M} \subseteq 2^{[n]}$. $\mathcal{B} \subseteq \text{diff}[n]$ is a diff-set class for \mathcal{M} , if the following hold.

- 1. $(\emptyset, \emptyset) \notin \mathcal{B}$.
- 2. For all $M \in \mathcal{M}$ and for all $b \in \mathcal{B}$, if $b \prec M$, then $M \oplus b \in \mathcal{M}$.
- 3. For all $M_1 \in \mathcal{M}$ and $M_2 \in \mathcal{M}$, where $M_1 \neq M_2$. Let $D = M_1 \ominus M_2$. Then, there exists a decomposition of D on \mathcal{B} .

Definition 12 (Rank of diff-set class). Let $\mathcal{B} \subseteq [n]$ be a diff-set class for some \mathcal{M} . We define

$$rank(\mathcal{B}) \triangleq \max_{b \in \mathcal{B}} |b|.$$

Example 4 (diff-set class for Explore-m). One diff-set class \mathcal{B} for $\mathcal{M}_{\mathsf{TOP}m}(n)$ is given by

$$\mathcal{B} = \{(\{b_1\}, \{b_2\}) \mid b_1 \neq b_2, b_1 \in [n], b_2 \in [n]\}.$$

Proof omitted. Further, we see that $rank(\mathcal{B}) = 2$.

Example 5 (diff-set class for Explore-*m*-badit). Let n = mk. One diff-set class \mathcal{B} for $\mathcal{M}_{\mathsf{BANDIT}m}(n)$ is given by

$$\mathcal{B} = \{(\{b_1\}, \{b_2\}) \mid b_1 \neq b_2, \exists i \in \{0, \dots, k-1\}, b_1 \in \{ik+1, \dots, (i+1)k\}, b_2 \in \{ik+1, \dots, (i+1)k\}\}.$$

Proof omitted. Further, we see that $rank(\mathcal{B}) = 2$.

Example 6 (diff-set class for Perfect Matching). One diff-set class \mathcal{B} for $\mathcal{M}_{MATCH}(n,G)$ is the set of all augmenting cycles of G. More specifically,

$$\mathcal{B} = \{(b_+, b_-) | b_+ \cup b_- \text{ is a cycle of } G\}.$$

Note $\operatorname{rank}(\mathcal{B}) \leq n$.

1.3 Weights and confidence bounds

Definition 13 (Weight functions). Define function $w : [n] \to \mathbb{R}^+$ which represents the weight of each base arm. Further, we slight abuse the notations, and extend the definition of w to diff-sets and sets as follows.

- 1. For all $M \subseteq [n]$, we denote $w(M) = \sum_{e \in M} w(e)$.
- 2. For all $b = (b_+, b_-) \in \text{diff}[n]$, we denote $w(b) = \sum_{e \in b_+} w(e) \sum_{e \in b_-} w(e)$.

Lemma 4. Let $c \in \text{diff}[n]$, $d \in \text{diff}[n]$. Let w be a weight function. Then,

$$w(c \cup d) = w(c) + w(d) - w(c \cap d). \tag{1}$$

Proof. Let $c = (c_+, c_-)$ and $d = (d_+, d_-)$. We have

$$w(c \cup d) = w(c_{+} \cup d_{+}) - w(c_{-} \cup d_{-})$$
(2)

$$= w(c_{+}) + w(d_{+}) - w(c_{+} \cap d_{+}) - w(c_{-}) - w(d_{-}) + w(c_{-} \cap d_{-})$$

$$\tag{3}$$

$$= w(c) + w(d) - (w(c_{+} \cap d_{+}) - w(c_{-} \cap d_{-}))$$

$$\tag{4}$$

$$= w(c) + w(d) - w(c \cap d). \tag{5}$$

Definition 14 (Mean weight \bar{w}_t , sample size n_t). Given t > 0. Define \bar{w}_t be a weight function such that, for all $e \in [n]$, $\bar{w}_t(e)$ equals to the empirical mean of e up to round t. Let $n_t : [n] \to \mathbb{N}$, such that $n_t(e)$ equals to number of plays of base arm e up to round t.

Definition 15 (Confidence radius rad_t). Given n and t > 0. Define rad_t: $[n] \to \mathbb{R}^+$ satisfying, for all $e \in [n]$,

$$\operatorname{rad}_{t}(e) = c_{\operatorname{rad}} \log \left(\frac{c_{\delta} n t^{2}}{\delta} \right) \frac{1}{\sqrt{n_{t}(e)}},$$

where $c_{\rm rad} > 0$ and $c_{\delta} > 0$ are some universal constants (specify later) and $\delta > 0$ is a parameter.

We extend the notation of rad_t to diff-sets and sets as follows.

- 1. For all $M \subseteq [n]$, $\operatorname{rad}_t(M) \triangleq \sum_{e \in M} \operatorname{rad}_t(e)$.
- 2. For all $b = (b_+, b_-) \in \text{diff}[n]$, $\operatorname{rad}_t(b) \triangleq \operatorname{rad}_t(b_+) + \operatorname{rad}_t(b_-)$.

Definition 16 (UCB w_t^+). Define $w_t^+:[n]\to\mathbb{R}^+$, s.t., for all $e\in[n]$,

$$w_t^+(e) = \bar{w}_t(e) + \operatorname{rad}_t(e).$$

We extend the notation of w_t^+ to diff-sets and sets as follows.

- 1. For all $M \subseteq [n]$, $w_t^+(M) \triangleq \bar{w}_t(M) + \operatorname{rad}_t(M)$.
- 2. For all $b = (b_+, b_-) \in \text{diff}[n], \ w_t^+(b) \triangleq \bar{w}_t(b) + \text{rad}_t(b)$.

Lemma 5. Define random event

$$\xi = \{ \forall e \in [n] \ \forall t > 0, |\bar{w}_t(e) - w(e)| \le \operatorname{rad}_t(e) \}.$$

Then, there exist constants $c_{\rm rad}$ and c_{δ} ,

$$\Pr[\xi] \ge 1 - \delta$$
.

Proof. Hoeffding inequality and union bound.

Corollary 1.

$$\xi \implies \forall t, \forall e \in [n] \ w_t^+(e) \ge w(e).$$

$$\xi \implies \forall t, \forall M \subseteq [n], \ w_t^+(M) \ge w(M).$$

$$\xi \implies \forall t, \forall b \in \mathsf{diff}[n] \ w_t^+(b) \ge w(b).$$

1.4 Properties of rad_t

Lemma 6. Let $c \in diff[n], d \in diff[n]$. Then

$$\operatorname{rad}_{t}(c\backslash d) = \operatorname{rad}_{t}(c) - \operatorname{rad}_{t}(c\cap d). \tag{6}$$

Proof. Let $c = (c_+, c_-)$ and $d = (d_+, d_-)$. We have

$$\operatorname{rad}_{t}(c \backslash d) = \operatorname{rad}_{t}(c_{+} \backslash d_{+}) + \operatorname{rad}_{t}(c_{-} \backslash d_{-})$$
$$= \operatorname{rad}_{t}(c_{+}) - \operatorname{rad}_{t}(c_{+} \cap d_{+}) + \operatorname{rad}_{t}(c_{-}) - \operatorname{rad}_{t}(c_{-} \cap d_{-})$$
$$= \operatorname{rad}_{t}(c) - \operatorname{rad}_{t}(c \cap d).$$

Lemma 7. Let $C = (C_+, C_-)$ and $D = (D_+, D_-)$ be two diff-sets. If $D \prec C$, then

$$\operatorname{rad}_t(C \oplus D) = \operatorname{rad}_t(C) + \operatorname{rad}_t(D) - 2\operatorname{rad}_t(C_+ \cap D_-) - 2\operatorname{rad}_t(C_- \cap D_+).$$

In addition, if $\neg D \prec C$, then

$$\operatorname{rad}_t(C \ominus D) = \operatorname{rad}_t(C) + \operatorname{rad}_t(D) - 2\operatorname{rad}_t(C_+ \cap D_+) - 2\operatorname{rad}_t(C_- \cap D_-).$$

Proof. We prove the first part of the lemma. The second part follows from the first part and the definition of $\neg D$.

By definition, we have $C \oplus D = ((C_+ \cup D_+) \setminus (C_- \cup D_-), (C_- \cup D_-) \setminus (C_+ \cup D_+))$. Hence, we have

$$rad_{t}((C_{+} \cup D_{+}) \setminus (C_{-} \cup D_{-})) = rad_{t}(C_{+} \cup D_{+}) - rad_{t}((C_{+} \cup D_{+}) \cap (C_{-} \cup D_{-}))$$
(7)

$$= \operatorname{rad}_{t}(C_{+}) + \operatorname{rad}_{t}(D_{+}) - \operatorname{rad}_{t}((C_{+} \cup D_{+}) \cap (C_{-} \cup D_{-})), \tag{8}$$

where the second equality holds due to $C_+ \cap D_+ = \emptyset$ by the definition of $D \prec C$.

Similarly, we have

$$\operatorname{rad}_t((C_- \cup D_-) \setminus (C_+ \cup D_+)) = \operatorname{rad}_t(C_-) + \operatorname{rad}_t(D_-) - \operatorname{rad}_t((C_+ \cup D_+) \cap (C_- \cup D_-)).$$

Combine both equalities, we have

$$\operatorname{rad}_{t}(C \oplus D) = \operatorname{rad}_{t}((C_{+} \cup D_{+}) \setminus (C_{-} \cup D_{1}) + \operatorname{rad}_{t}((C_{-} \cup D_{-}) \setminus (C_{-} \cap D_{+}))$$

$$\tag{9}$$

$$= \operatorname{rad}_t(C_+) + \operatorname{rad}_t(D_+) + \operatorname{rad}_t(C_-) + \operatorname{rad}_t(D_-) - 2\operatorname{rad}_t((C_+ \cup D_+) \cap (C_- \cup D_-))$$
 (10)

$$= \operatorname{rad}_{t}(C) + \operatorname{rad}_{t}(D) - 2\operatorname{rad}_{t}((C_{+} \cup D_{+}) \cap (C_{-} \cup D_{-})). \tag{11}$$

2 Algorithm and Main Results

2.1 Algorithm

- 1. Input Parameter: $\delta \in (0,1)$.
- 2. For t = 1, ...,
- 3. Maintain \bar{w}_t and rad_t.
- 4. Let $M_t = \arg \max_{M \in \mathcal{M}} \bar{w}_t(M)$.
- 5. Let $D = \arg\max_{C \in \mathsf{diff}[n], C \prec M_t} w_t^+(C)$.
- 6. If $w_t^+(D) \leq 0$. Then stop and return M_t .
- 7. Otherwise, find $p_t = \arg\min_{e \in D} \operatorname{rad}_t(e)$.
- 8. Play p_t and observe outcome x_t .
- 9. Go back to step 2.

The step 5 of above procedure can be implemented by:

- 1. Let $M_t^+ = \arg\max_{M \in \mathcal{M}} \tilde{w}_t(M)$, where \tilde{w}_t is a weight function defined by:
 - (a) $\forall e \in M_t, \ \tilde{w}_t(e) = \bar{w}_t(e) \operatorname{rad}_t(e)$.
 - (b) $\forall e \notin M_t$, $\tilde{w}_t(e) = \bar{w}_t(e) + \operatorname{rad}_t(e)$.
- 2. $D = M_t^+ \ominus M_t$

2.2 Main result

Definition 17 (Optimal diff-sets). Given a diff-set class \mathcal{B} and the optimal set M_* . We define $\mathcal{B}_{\mathsf{opt}}$ as a subset of \mathcal{B} , and for all $b \in \mathcal{B}$, $b \in \mathcal{B}_{\mathsf{opt}}$ if and only if, there exists $M \neq M_*$ and $M_* \ominus M$ can be decomposed as b, b_1, \ldots, b_k on \mathcal{B} .

Definition 18 (Hardness Δ_e of base arm e). For each $e \in [n]$, we define its hardness Δ_e as follows

$$\Delta_e = \min_{b \in \mathcal{B}_{\mathsf{opt}}, e \in b} \frac{1}{\mathrm{rank}(\mathcal{B})} w(b).$$

Definition 19 (Sufficient exploration). For all t > 0, we define $E_t^3 \subseteq [n]$, such that, for all $e \in [n]$ $e \in E_t^3$ if and only if $\operatorname{rad}_t(e) < \frac{1}{3}\Delta_e$.

Corollary 2. For all t > 0 and $e \in [n]$

$$n_t(e) \ge O(\frac{1}{\Delta_e^2} \log(\Delta_e n/\delta)) \implies e \in E_t^3.$$

Theorem 1. With probability at least $1 - \delta$, the algorithm returns M_* , and the number of samples used by the algorithm are at most

$$\sum_{e \in [n]} \Delta_e^{-2} \log(\Delta_e n/\delta).$$

3 Proof of Main Results

Unless specified, we shall assume the random event ξ (defined in Lemma 5) holds in all the following proofs.

Lemma 8. For any t > 0, if the algorithm terminates on round t, then $M_t = M_*$.

Proof. Suppose $M_t \neq M_*$. Then $w(M_*) > w(M_t)$. Then, there exists $b \in \mathcal{B}$ such that $b \prec M_t$ and w(b) > 0. On the other hand, by Corollary 1, we have $w_t^+(b) > w(b)$. Hence $w_t^+(b) > 0$. This contradicts to the stopping condition of our algorithm.

Lemma 9. For any t > 0. If $e \in E_t^3$, then $p_t \neq e$.

Proof. Suppose that $p_t = e$. Let $D = M_t^+ \ominus M_t$. Let c, c_1, \ldots, c_k be decomposition of D on \mathcal{B} . And since \mathcal{B} is a diff-set class, such decomposition exists. Assume, without loss of generality, that $e \in c$.

By Lemma Y, we know that

$$D_{+} = c_{+} \cup c_{1}^{+} \cup \ldots \cup c_{k}^{+} \quad \text{and} \quad D_{-} = c_{-} \cup c_{1}^{-} \cup \ldots c_{k}^{-}.$$
 (12)

We also denote $K = \text{rank}(\mathcal{B})$.

Case (1). Suppose that $c \in \mathcal{B}_{\mathsf{opt}}$. Then w(c) > 0. Since $e \in E_t^3$, we have $\mathrm{rad}_t(e) \leq \frac{1}{3}\Delta_e \leq \frac{1}{3K}w(c)$. In addition, $\forall g \in c_t, g \neq e$, $\mathrm{rad}_t(g) \leq \mathrm{rad}_t(e) \leq \frac{1}{3K}w(c)$. Hence, $\mathrm{rad}_t(c) = \sum_{g \in c_t} \mathrm{rad}_t(g) \leq \frac{|c_t|}{3K}w(c) \leq \frac{1}{3}w(c)$.

Hence, $\bar{w}_t(c) \ge w(c) - \operatorname{rad}_t(c) \ge \frac{2}{3}w(c) > 0$. This means that $\bar{w}_t(M_t \oplus c) = \bar{w}_t(M_t) + \bar{w}_t(c) > \bar{w}_t(M_t)$. Therefore, $M_t \ne \max_{M \in \mathcal{M}} \bar{w}_t(M)$. This contradicts to the definition of M_t .

Case (2). Suppose that $c_t \notin \mathcal{B}_{opt}$. Then, one of the following mutually exclusive cases must hold.

Case (2.1). $(e \in M_* \land e \in c_+)$ or $(e \notin M_* \land e \in c_-)$.

Let the decomposition of $M_* \ominus (M_t \oplus D \ominus c)$ on \mathcal{B} be b, b_1, \ldots, b_l , which exists due to \mathcal{B} is a diff-set class. Assume wlog that $e \in b$. We write $b = (b_+, b_-)$. It is easy to see that $b \in \mathcal{B}_{\mathsf{opt}}$.

Define $\tilde{D} = (M_t \oplus D \ominus c) \ominus M_t$ and $D' = (M_t \oplus \tilde{D} \oplus b) \ominus M_t$. By Lemma 2, we know that $\tilde{D} = D \ominus c$ and $D' = \tilde{D} \oplus b$. We also write $\tilde{D} = (\tilde{D}_+, \tilde{D}_-)$ and $D' = (D'_+, D'_-)$. By definition, we have

$$\begin{split} \tilde{D}_{+} &= (D_{+} \cup c_{-}) \backslash (D_{-} \cup c_{+}) \\ &= (D_{+} \cup c_{-} \backslash D_{-}) \cap (D_{+} \cup c_{-} \backslash c_{+}) \\ &= D_{+} \cap (D_{+} \backslash c_{-}) \\ &= D_{+} \backslash c_{+}. \end{split}$$

By the same method, we are able to show that $\tilde{D}_{-} = D_{-} \backslash c_{-}$. Therefore we have

$$\tilde{D}_{+} \subseteq D_{+} \quad \text{and} \quad \tilde{D}_{-} \subseteq D_{-}.$$
 (13)

First, we show that $\operatorname{rad}_t(c) \leq \frac{1}{3}w(b)$. Since $e \in E_t^3$, $e \in b$ and $b \in \mathcal{B}_{\mathsf{opt}}$, we have $\operatorname{rad}_t(e) \leq \frac{1}{3}\Delta_e \leq \frac{1}{3K}w(b)$. In addition, $\forall g \in c, g \neq e$, $\operatorname{rad}_t(g) \leq \operatorname{rad}_t(e) \leq \frac{1}{3K}w(b)$. Hence,

$$\operatorname{rad}_{t}(c) = \sum_{g \in c} \operatorname{rad}_{t}(g)$$

$$\leq \frac{|c|}{3K} w(b)$$

$$\leq \frac{1}{3} w(b). \tag{14}$$

Now, we show that $\operatorname{rad}_t(\tilde{D}_+ \cap b_-) + \operatorname{rad}_t(\tilde{D}_- \cap b_+) + \leq \frac{1}{3}w(b)$. Since Eq. (13), we have $\forall g \in (\tilde{D}_+ \cap b_-) \cup (\tilde{D}_+ \cap b_-) = 0$

 $(\tilde{D}_{-} \cap b_{+}), g \neq e, \operatorname{rad}_{t}(g) \leq \operatorname{rad}_{t}(e) \leq \frac{1}{3K}w(b).$ Note that $|\tilde{D}_{+} \cap b_{-}| + |\tilde{D}_{-} \cap b_{+}| \leq |b_{+}| + |b_{-}| \leq K.$ Hence,

$$\operatorname{rad}_{t}(\tilde{D}_{+} \cap b_{-}) + \operatorname{rad}_{t}(\tilde{D}_{-} \cap b_{+}) = \sum_{g \in (\tilde{D}_{+} \cap b_{-}) \cup (\tilde{D}_{-} \cap b_{+})} \operatorname{rad}_{t}(g)$$

$$\leq \frac{K}{3K} w(b)$$

$$\leq \frac{1}{3} w(b). \tag{15}$$

Then, we have

$$\operatorname{rad}_{t}(D') - \operatorname{rad}_{t}(D) = \operatorname{rad}_{t}(\tilde{D} \oplus b) - \operatorname{rad}_{t}(D) \tag{16}$$

$$= \operatorname{rad}_{t}(\tilde{D}) + \operatorname{rad}_{t}(b) - 2\operatorname{rad}_{t}(\tilde{D}_{+} \cap b_{-}) - 2\operatorname{rad}_{t}(\tilde{D}_{-} \cap b_{+}) - \operatorname{rad}_{t}(D)$$

$$(17)$$

$$= \operatorname{rad}_{t}(D \ominus c) + \operatorname{rad}_{t}(b) - 2\operatorname{rad}_{t}(\tilde{D}_{+} \cap b_{-}) - 2\operatorname{rad}_{t}(\tilde{D}_{-} \cap b_{+}) - \operatorname{rad}_{t}(D)$$
(18)

$$= \operatorname{rad}_t(D) + \operatorname{rad}_t(c) + \operatorname{rad}_t(b) - 2\operatorname{rad}_t(D_+ \cap c_+) - 2\operatorname{rad}_t(D_- \cap c_-)$$

$$-2\operatorname{rad}_{t}(\tilde{D}_{+}\cap b_{-}) - 2\operatorname{rad}_{t}(\tilde{D}_{-}\cap b_{+}) - \operatorname{rad}_{t}(D)$$

$$\tag{19}$$

$$= \operatorname{rad}_t(D) + \operatorname{rad}_t(c) + \operatorname{rad}_t(b) - 2\operatorname{rad}_t(c_+) - 2\operatorname{rad}_t(c_-)$$

$$-2\operatorname{rad}_{t}(\tilde{D}_{+}\cap b_{-}) - 2\operatorname{rad}_{t}(\tilde{D}_{-}\cap b_{+}) - \operatorname{rad}_{t}(D)$$
(20)

$$= \operatorname{rad}_{t}(b) - \operatorname{rad}_{t}(c) - 2\operatorname{rad}_{t}(\tilde{D}_{+} \cap b_{-}) - 2\operatorname{rad}_{t}(\tilde{D}_{-} \cap b_{+}), \tag{21}$$

where Eq. (17) and Eq. (19) follow from Lemma 7, and Eq. (20) follows from Eq. (12).

By the definition of D, we have that $w_t^+(D) \ge w_t^+(D')$. This means that

$$\bar{w}_t(D) + \operatorname{rad}_t(D) \ge \bar{w}_t(D') + \operatorname{rad}_t(D') \tag{22}$$

$$= \bar{w}_t(D) - \bar{w}_t(c) + \bar{w}_t(b) + \text{rad}_t(D'). \tag{23}$$

By regrouping the above inequality, we have

$$\bar{w}_t(c) \ge \bar{w}_t(b) + \operatorname{rad}_t(D') - \operatorname{rad}_t(D) \tag{24}$$

$$= \bar{w}_t(b) + \operatorname{rad}_t(b) - \operatorname{rad}_t(c) - 2\operatorname{rad}_t(\tilde{D}_+ \cap b_-) - 2\operatorname{rad}_t(\tilde{D}_- \cap b_+)$$
(25)

$$\geq w(b) - \operatorname{rad}_t(c) - 2\operatorname{rad}_t(\tilde{D}_+ \cap b_-) - 2\operatorname{rad}_t(\tilde{D}_- \cap b_+) \tag{26}$$

$$> w(b) - \frac{1}{3}w(b) - \frac{2}{3}w(b)$$
 (27)

$$=0,$$

where Eq. (27) follows from Eq. (14) and Eq. (15).

This contradicts to the definition of M_t .

Case (2.2). $(e \in M_* \land e \in c_-)$ or $(e \notin M_* \land e \in c_+)$.

Let the decomposition of $M_* \ominus (M_t \oplus D)$ on \mathcal{B} be b, b_1, \ldots, b_l . Assume wlog that $e \in b$. We write that $b = (b_+, b_-)$. Note that $b \in \mathcal{B}_{opt}$ and hence w(b) > 0.

Define $D' = (M_t \oplus D \oplus b) \ominus M_t$. By Lemma 2, we know that $D' = D \oplus b$.

First, we show that $|D\backslash D'| \leq |b|$. Let $C = D\backslash D'$ and write $C = (C_+, C_-)$. We can bound $|C_+|$ as follows.

$$C_{+} = D_{+} \backslash D'_{+}$$

$$= D_{+} \backslash ((D_{+} \cup b_{+}) \backslash (D_{-} \cup b_{-}))$$

$$= (D_{+} \cap (D_{-} \cup b_{-})) \cup (D_{+} \backslash (D_{+} \cup b_{+}))$$

$$= D_{+} \cap b_{-}.$$

Hence, we have $|C_+| \leq |b_-|$. Then, we move to bounding $|C_-|$

$$C_{-} = D_{-} \backslash D'_{-}$$

$$= D_{-} \backslash ((D_{-} \cup b_{-}) \backslash (D_{+} \cup b_{+}))$$

$$= (D_{-} \cap (D_{+} \cup b_{+})) \cup (D_{-} \backslash (D_{-} \cup b_{-}))$$

$$= D_{-} \cap b_{+}.$$

Thus $|C_-| \leq |b_+|$ and we proved that $|D \setminus D'| \leq |b|$.

Next, we show that $\operatorname{rad}_t(D \setminus D') \leq \frac{1}{3}w(b)$. Since $e \in E_t^3$, $e \in b$ and $b \in \mathcal{B}_{\mathsf{opt}}$, we have $\operatorname{rad}_t(e) \leq \frac{1}{3}\Delta_e \leq \frac{1}{3K}w(b)$. In addition, $\forall g \in (D \setminus D'), g \neq e$, $\operatorname{rad}_t(g) \leq \operatorname{rad}_t(e) \leq \frac{1}{3K}w(b)$. Note that $|D \setminus D'| \leq |b| \leq K$. Hence, $\operatorname{rad}_t(D \setminus D') = \sum_{g \in (D \setminus D')} \operatorname{rad}_t(g) \leq \frac{K}{3K}w(b) \leq \frac{1}{3}w(b)$.

We also note that

$$w(D'\backslash D) - w(D\backslash D') = w(D'\backslash D) + w(D'\cap D) - w(D\cap D') - w(D\backslash D')$$
(29)

$$= w(D') - w(D) \tag{30}$$

$$= w(b), (31)$$

where we have repeatedly applied Lemma 4.

Then, we show that $w_t^+(D') > w_t^+(D)$.

$$w_t^+(D') - w_t^+(D) = \bar{w}_t(D') - \bar{w}_t(D) + \operatorname{rad}_t(D') - \operatorname{rad}_t(D)$$
(32)

$$= \bar{w}_t(D'\backslash D) - \bar{w}_t(D\backslash D') + \operatorname{rad}_t(D'\backslash D) - \operatorname{rad}_t(D\backslash D')$$
(33)

$$\geq w(D'\backslash D) - w(D\backslash D') - 2\operatorname{rad}_t(D\backslash D') \tag{34}$$

$$= w(b) - 2\operatorname{rad}_t(D\backslash D') \tag{35}$$

$$> w(b) - \frac{2}{3}w(b) \tag{36}$$

$$= \frac{1}{3}w(b) > 0, (37)$$

where Eq. (33) follows from Lemma 6 and Eq. (34) follows from the fact that $\bar{w}_t(D'\backslash D) + \operatorname{rad}_t(D'\backslash D) \geq w(D'\backslash D)$ and that $\bar{w}_t(D\backslash D') + \operatorname{rad}_t(D\backslash D') \geq w(D\backslash D')$, under the random event ξ .

This contradicts to the fact that D is chosen on round t.

4 Lower Bounds

Definition 20 (Hardness of arm). Given \mathcal{M} , M_* and w. For any $e \in [n]$, we define its hardness Δ_e as follows

$$\Delta_e = \begin{cases} \min_{M: e \in M, M \in \mathcal{M}} w(M_*) - w(M) & \text{if } e \notin M_*, \\ \min_{M: e \notin M, M \in \mathcal{M}} w(M_*) - w(M) & \text{if } e \in M_*. \end{cases}$$

Lemma 10.

$$\Delta_e = \min_{b:e \in b} w(b).$$

Theorem 2. For each arm $i \in [n]$, assume that its reward distribution of arm i is a Gaussian distribution with mean p_i and variance 1. Then, for any $\delta \in (0, e^{-16}/4)$ and any δ -correct algorithm \mathbb{A} . Let T denote the number of total samples used by algorithm \mathbb{A} . We have

$$\mathbb{E}[T] \ge \sum_{e} \frac{1}{16\Delta_e^2} \log(1/4\delta).$$

Proof. Fix $\delta > 0$, p_i for all $i \in [n]$ and a δ -correct policy \mathbb{A} . For each $i \in [n]$, assume that the reward distribution of arm i a Gaussian distribution with mean p_i and variance 1. Then, for any $e \in [n]$, let T_e denote the number of trials of arm e used by algorithm \mathbb{A} . In the rest of the proof, we will prove that for any $e \in [n]$, the number of trials of arm e is lower-bounded by

$$\mathbb{E}[T_e] \ge \frac{1}{16\Delta_e^2} \log(1/4\delta). \tag{38}$$

Notice that the theorem will follow immediately by summing up the above bounds for all $e \in [n]$ and setting c = 16.

Fix an arm $e \in [n]$. We now focus on proving Eq. (38). Consider two hypothesis H_0 and H_1 . Under each hypothesis, the reward distributions of every arm are still Gaussian distributions with unit variance, but the mean rewards of some arms might be altered. Under hypothesis H_0 , the mean reward of each arm is

$$H_0: q_l = p_l$$
, for all $l \in [n]$.

And under hypothesis H_1 , the mean reward of each arm is

$$H_1: q_e = \begin{cases} p_e - 2\Delta_e & \text{if } e \in M_* \\ p_e + 2\Delta_e & \text{if } e \not\in M_* \end{cases} \quad \text{and } q_l = p_l \quad \text{for all } l \neq e.$$

Define M_e be the "next-to-optimal" set as follows

$$M_e = \begin{cases} \arg \max_{M \in \mathcal{M}: e \in M} w(M) & \text{if } e \notin M_*, \\ \arg \max_{M \in \mathcal{M}: e \notin M} w(M) & \text{if } e \in M_*. \end{cases}$$

By definition, we know that $w(M_*) - w(M_e) = \Delta_e$.

Let w_0, w_1 be the weighting functions under H_0, H_1 respectively. Notice that $w_0(M_*) - w_0(M_e) = \Delta_e > 0$. On the other hand, $w_1(M_*) - w_1(M_e) = -\Delta < 0$. This means that under H_1, M_* is not the optimal set. For $l \in \{0, 1\}$, we use \mathbb{E}_l and \Pr_l to denote the expectation and probability, respectively, under the hypothesis H_l .

Define $\theta = 4\delta$. Define

$$t_e^* = \frac{1}{16\Delta_e^2} \log\left(\frac{1}{\theta}\right). \tag{39}$$

Recall that T_e denotes the total number of samples of arm e. Define the event $\mathcal{A} = \{T_e \leq 4t_e^*\}$. First, we show that $\Pr_0[\mathcal{A}] \geq 3/4$. This can be proved by Markov inequality as follows.

$$\Pr_0[T_e > 4t_e^*] \le \frac{\mathbb{E}_0[T_e]}{4t_e^*}$$

$$= \frac{t_e^*}{4t_e^*} = \frac{1}{4}.$$

Let X_1, \ldots, X_{T_e} denote the sequence of reward outcomes of arm e. We define $K_t(e)$ as the sum of outcomes of arm e up to round t, i.e. $K_t(e) = \sum_{i \in [t]} X_i$. Next, we define the event

$$C = \left\{ \max_{1 \le t \le 4t_e^*} |K_t(e) - p_e t| < \sqrt{t_e^* \log(1/\theta)} \right\}.$$

We now show that $Pr_0[\mathcal{C}] \geq 3/4$. First, notice that $K_t(e) - p_e t$ is a martingale under H_0 . Then, by

Kolmogorov's inequality, we have

$$\Pr_{0} \left[\max_{1 \le t \le 4t_{e}^{*}} |K_{t}(e) - p_{e}t| \ge \sqrt{t_{e}^{*} \log(1/\theta)} \right] \le \frac{\mathbb{E}_{0}[(K_{4t_{e}^{*}}(e) - 4p_{e}t_{e}^{*})^{2}]}{t_{e}^{*} \log(1/\theta)}$$

$$= \frac{4t_{e}^{*}}{t_{e}^{*} \log(1/\theta)}$$

$$< \frac{1}{4},$$

where the second inequality follows from the fact that $\mathbb{E}_0[(K_{4t_e^*}(e)-4p_et_e^*)^2]=4t_e^*$; the last inequality follows since $\theta < e^{-16}$.

Then, we define the event \mathcal{B} as the event that the algorithm eventually returns M_* , i.e.

$$\mathcal{B} = \{ O = M_* \}.$$

Since the probability of error of the algorithm is smaller than $\delta < 1/4$, we have $\Pr_0[\mathcal{B}] \geq 3/4$. Define \mathcal{S} be $\mathcal{S} = \mathcal{A} \cap \mathcal{B} \cap \mathcal{C}$. Then, by union bound, we have $\Pr_0[\mathcal{S}] \geq 1/4$.

Now, we show that if $\mathbb{E}_0[T_e] \leq t_e^*$, then $\Pr_1[\mathcal{B}] \geq \delta$. Let W be the history of the sampling process until the algorithm stops (including the sequence of arms chosen at each time and the sequence of observed outcomes). Define the likelihood function L_l as

$$L_l(w) = p_l[W = w],$$

where p_l is the probability density function under hypothesis H_l . Let K be the shorthand of $K_e(T_e)$.

Assume that the event S occurred. We will bound the likelihood ratio $L_1(W)/L_0(W)$ under this assumption. To do this, we divide our analysis into two different cases.

Case (1): $e \notin M_*$. In this case, the reward distribution of arm e under H_1 is a Gaussian distribution with mean $p_e + 2\Delta_e$ and variance 1. Recall that the probability density function of a Gaussian distribution with mean μ and variance σ^2 is given by $f(x, \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$. Hence, we have

$$\frac{L_1(W)}{L_0(W)} = \prod_{i=1}^{T_e} \exp\left(\frac{-(X_i - p_e - 2\Delta_e)^2 + (X_i - p_e)^2}{2}\right)
= \prod_{i=1}^{T_e} \exp\left(\Delta_e(2X_i - 2p_e) - 2\Delta_e^2\right)
= \exp\left(\Delta_e(2K - 2p_eT_e) - 2\Delta_e^2T_e\right)
= \exp\left(\Delta_e(2K - 2p_eT_e)\right) \exp(-2\Delta_e^2T_e).$$
(40)

Next, we bound each individual term on the right-hand side of Eq. (40). We begin with bounding the second term of Eq. (40).

$$\exp(-2\Delta_e^2 T_e) \ge \exp(-8\Delta_e^2 t_e^*) \tag{41}$$

$$= \exp\left(-\frac{8}{16}\log(1/\theta)\right) \tag{42}$$

$$=\theta^{1/2},\tag{43}$$

where Eq. (41) follows from the assumption that event S occurred, which implies that event A occurred and therefore $T_e \leq 4t_e^*$; Eq. (42) follows from the definition of t_e^* .

Then, we bound the first term on the right-hand side of Eq. (40) as follows

$$\exp\left(\Delta_e(2K - 2p_e T_e)\right) \ge \exp\left(-2\Delta_e \sqrt{t_e^* \log(1/\theta)}\right) \tag{44}$$

$$= \exp\left(-\frac{2}{\sqrt{4}}\log(1/\theta)\right) \tag{45}$$

$$=\theta^{1/2},\tag{46}$$

where Eq. (44) follows from the assumption that event S occurred, which implies that event C and therefore $|2K - 2p_eT_e| \leq \sqrt{t_e^* \log(1/\theta)}$; Eq. (45) follows from the definition of t_e^* .

Combining Eq. (43) and Eq. (46), we can bound $L_1(W)/L_0(W)$ for this case as follows

$$\frac{L_1(W)}{L_0(W)} \ge \theta. \tag{47}$$

(End of Case (1).)

Case (2): $e \in M_*$. In this case, we know that the mean reward of arm e under H_1 is $p_e - 2\Delta$. Therefore, the likelihood ratio $L_1(W)/L_0(W)$ is given by

$$\frac{L_1(W)}{L_0(W)} = \prod_{i=1}^{T_e} \exp\left(\frac{-(X_i - p_e + 2\Delta_e)^2 + (X_i - p_e)^2}{2}\right)$$

$$= \prod_{i=1}^{T_e} \exp\left(\Delta_e(2p_e - 2X_i) - 2\Delta_e^2\right)$$

$$= \exp\left(\Delta_e(2p_e T_e - 2K)\right) \exp(-2\Delta_e^2 T_e).$$
(48)

Notice that the right-hand side of Eq. (48) differs from Eq. (40) only in its first term. Now, we bound the first term as follows

$$\exp\left(\Delta_e(2K - 2p_e T_e)\right) \ge \exp\left(-2\Delta_e \sqrt{t_e^* \log(1/\theta)}\right) \tag{49}$$

$$= \exp\left(-\frac{2}{4}\log(1/\theta)\right) \tag{50}$$

$$=\theta^{1/2},\tag{51}$$

where the inequalities hold due to reasons similar to Case (1): Eq. (49) follows from the assumption that event S occurred, which implies that event C and therefore $|2K - 2p_eT_e| \leq \sqrt{t_e^* \log(1/\theta)}$; Eq. (50) follows from the definition of t_e^* .

Combining Eq. (43) and Eq. (46), we can obtain the same bound of $L_1(W)/L_0(W)$ as in Eq. (47), i.e. $L_1(W)/L_0(W) \ge \theta$.

(End of Case (2).)

At this point, we have proved that, if the event S occurred, then the bound of likelihood ratio Eq. (47) holds, i.e. $\frac{L_1(W)}{L_0(W)} \ge \theta$. Hence, we have

$$\frac{L_1(W)}{L_0(W)} \ge \theta$$

$$= 4\delta.$$
(52)

Define 1_S as the indicator variable of event S, i.e. $1_S = 1$ if and only if S occurs and otherwise $1_S = 0$. Then, we have

$$\frac{L_1(W)}{L_0(W)} 1_S \ge 4\delta 1_S$$

holds regardless the occurrence of event \mathcal{S} . Therefore, we can obtain

$$\begin{aligned} \Pr_{1}[\mathcal{B}] &\geq \Pr_{1}[\mathcal{S}] = \mathbb{E}_{1}[1_{S}] \\ &= \mathbb{E}_{0} \left[\frac{L_{1}(W)}{L_{0}(W)} 1_{S} \right] \\ &\geq 4\delta \mathbb{E}_{0}[1_{S}] \\ &= 4\delta \Pr_{0}[\mathcal{S}] > \delta. \end{aligned}$$

Now we have proved that, if $\mathbb{E}_0[T_e] \leq t_e^*$, then $\Pr_1[\mathcal{B}] > \delta$. This means that, if $\mathbb{E}_0[T_e] \leq t_e^*$, algorithm \mathbb{A} will choose M_* as the output with probability at least δ , under hypothesis H_1 . However, under H_1 , we have shown that M_* is not the optimal set since $w_1(M_e) > w_1(M_*)$. Therefore, algorithm \mathbb{A} has a probability of error larger than δ under H_1 . This contradicts to the assumption that algorithm \mathbb{A} is a δ -correct algorithm. Hence, we must have $\mathbb{E}_0[T_e] > t_e^* = \frac{1}{16\Delta^2} \log(1/4\delta)$.

Theorem 3. Assume that, for each arm $i \in [n]$, its reward distribution is a Gaussian distribution with mean p_i and variance 1. Fix any $\delta \in (0, e^{-16}/4)$ and any δ -correct algorithm \mathbb{A} .

Then, for any $b \in \mathcal{B}_{opt}$, let T_b denote the number of trials of arms belonging to b by algorithm A. Then,

$$\mathbb{E}[T_b] \ge \frac{|b|^2}{32w(b)^2} \log(1/4\delta).$$

Proof. Fix $\delta > 0$, p_i for all $i \in [n]$, diff-set $b = (b_+, b_-)$ and a δ -correct policy \mathbb{A} . Assume that the reward distribution of an arm $i \in [n]$ is a Gaussian distribution with mean p_i and variance 1.

We define three hypotheses H_0 , H_1 and H_2 . Under each of these hypotheses, the reward distribution of each arm is Gaussian with different means. Under hypothesis H_0 , the mean reward of each arm equals to the original problem instance:

$$H_0: q_l = p_l$$
, for all $l \in [n]$.

Under hypothesis H_1 , the mean reward of each arm is given by

$$H_1: q_e = \begin{cases} p_e + 2\frac{w(b)}{|b_-|} & \text{if } e \in b_-, \\ p_e & \text{if } e \notin b_-. \end{cases}$$

And under hypothesis H_2 , the mean reward of each arm is given by

$$H_2: q_e = \begin{cases} p_e - 2\frac{w(b)}{|b_+|} & \text{if } e \in b_+, \\ p_e & \text{if } e \notin b_+. \end{cases}$$

Since $b \in \mathcal{B}_{\mathsf{opt}}$, it is clear that $\neg b \prec M_*$. Hence we define $M = M_* \ominus b$. Let w_0, w_1 and w_2 be the weighting functions under H_0, H_1 and H_2 respectively. It is easy to check that $w_1(M_*) - w_1(M) = -w(b) < 0$ and $w_2(M_*) - w_2(M) = -w(b) < 0$. This means that under H_1 or H_2 , M_* is not the optimal set. Further, for $l \in \{0, 1, 2\}$, we use \mathbb{E}_l and \Pr_l to denote the expectation and probability, respectively, under the hypothesis H_l . In addition, let W be the history of the sampling process until algorithm \mathbb{A} stops. Define the likelihood function L_l as

$$L_l(w) = p_l(W = w),$$

where p_l is the probability density function under H_l .

Define $\theta = 4\delta$. Let T_{b_-} and T_{b_+} denote the number of trials of arms belonging to b_- and b_+ , respectively. In the rest of the proof, we will bound $\mathbb{E}_0[T_{b_-}]$ and $\mathbb{E}_0[T_{b_+}]$ individually.

Part (1): Lower bound of $\mathbb{E}_0[T_{b_-}]$. In this part, we will show that $\mathbb{E}_0[T_{b_-}] \geq t_{b_-}^*$, where we define $t_{b_-}^* = \frac{|b_-|^2}{16w(b)^2} \log(1/\theta)$.

Consider the complete sequence of sampling process by algorithm \mathbb{A} . Formally, let $\tilde{S} = \{(\tilde{I}_1, \tilde{X}_1), \dots, (\tilde{I}_T, \tilde{X}_T)\}$ be the sequence of all trials by algorithm \mathbb{A} , where \tilde{I}_i denotes the arm played in *i*-th trial and \tilde{X}_i be the reward outcome of *i*-th trial. Then, consider the subsequence S_1 of \tilde{S} which consists all the trials of arms in b_- . Specifically, we write $S_1 = \{(I_1, X_1), \dots, (I_{T_{b_-}}, X_{T_{b_-}})\}$ such that S_1 is a subsequence of \tilde{S} and $I_i \in b_-$ for all i

Next, we define several random events in a way similar to the proof of Theorem 2. Define event $A_1 = \{T_{b_-} \leq 4t_b^*\}$. Define event

$$C_1 = \left\{ \max_{1 \le t \le 4t_{b_-}^*} \left| \sum_{i=1}^t X_i - \sum_{i=1}^t p_{I_i} \right| < \sqrt{t_{b_-}^* \log(1/\theta)} \right\}.$$

Define event

$$\mathcal{B} = \{ O = M_* \}. \tag{53}$$

Define event $S_1 = A_1 \cap B \cap C_1$. Then, we bound the probability of events A_1 , B, C_1 and S_1 under H_0 using methods similar to Theorem 2. First, we show that $\Pr_0[A_1] \geq 3/4$. This can be proved by Markov inequality as follows.

$$\Pr_{0}[T_{b_{-}} > 4t_{b_{-}}^{*}] \leq \frac{\mathbb{E}_{0}[T_{b_{-}}]}{4t_{b_{-}}^{*}}$$
$$= \frac{t_{b_{-}}^{*}}{4t_{b_{-}}^{*}} = \frac{1}{4}.$$

Next, we show that $\Pr_0[\mathcal{C}_1] \geq 3/4$. Notice that the sequence $\left\{\sum_{i=1}^t X_i - \sum_{i=1}^t p_{I_i}\right\}_{t \in [4t_{b_-}^*]}$ is a martingale. Hence, by Kolmogorov's inequality, we have

$$\Pr_{0} \left[\max_{1 \leq t \leq 4t_{b_{-}}^{*}} \left| \sum_{i=1}^{t} X_{i} - \sum_{i=1}^{t} p_{I_{i}} \right| \geq \sqrt{t_{e}^{*} \log(1/\theta)} \right] \leq \frac{\mathbb{E}_{0} \left[\left(\sum_{i=1}^{4t_{b_{-}}^{*}} X_{i} - \sum_{i=1}^{4t_{b_{-}}^{*}} p_{I_{i}} \right)^{2} \right]}{t_{e}^{*} \log(1/\theta)}$$

$$= \frac{4t_{b_{-}}^{*}}{t_{b_{-}}^{*} \log(1/\theta)}$$

$$< \frac{1}{4},$$

where the second inequality follows from the fact that all reward distributions have unit variance and hence $\mathbb{E}_0\left[\left(\sum_{i=1}^{4t_{b_-}^*}X_i-\sum_{i=1}^{4t_{b_-}^*}p_{I_i}\right)^2\right]=4t_{b_-}^*; \text{ the last inequality follows since }\theta< e^{-16}. \text{ Last, since algorithm }\mathbb{A} \text{ is a }\delta\text{-correct algorithm with }\delta<1/4. \text{ Therefore, it is easy to see that }\Pr_0[\mathcal{B}]\geq 3/4. \text{ And by union bound, we have}$

$$\Pr_0[\mathcal{S}_1] \geq 1/4.$$

Now, we show that if $\mathbb{E}_0[T_{b_-}] \leq t_{b_-}^*$, then $\Pr_1[\mathcal{B}] \geq \delta$. Assume that the event \mathcal{S}_1 occurred. We bound the likelihood ratio $L_1(W)/L_0(W)$ under this assumption as follows

$$\frac{L_1(W)}{L_0(W)} = \prod_{i=1}^{T_{b_-}} \exp\left(\frac{-\left(X_i - p_{I_i} - \frac{2w(b)}{|b_-|}\right)^2 + (X_i - p_{I_i})^2}{2}\right)$$

$$= \prod_{i=1}^{T_{b_{-}}} \exp\left(\frac{w(b)}{|b_{-}|} (2X_{i} - 2p_{I_{i}}) - \frac{2w(b)^{2}}{|b_{-}|^{2}}\right)
= \exp\left(\frac{w(b)}{|b_{-}|} \left(\sum_{i=1}^{T_{b_{-}}} 2X_{i} - 2p_{I_{i}}\right) - \frac{2w(b)^{2}}{|b_{-}|^{2}} T_{b_{-}}\right)
= \exp\left(\frac{w(b)}{|b_{-}|} \left(\sum_{i=1}^{T_{b_{-}}} 2X_{i} - 2p_{I_{i}}\right)\right) \exp\left(-\frac{2w(b)^{2}}{|b_{-}|^{2}} T_{b_{-}}\right).$$
(54)

Then, we bound each term on the right-hand side of Eq. (54). First, we bound the second term of Eq. (54).

$$\exp\left(-\frac{2w(b)^2}{|b_-|^2}T_{b_-}\right) \ge \exp\left(-\frac{2w(b)^2}{|b_-|^2}4t_b^*\right) \tag{55}$$

$$= \exp\left(-\frac{8}{16}\log(1/\theta)\right) \tag{56}$$

$$=\theta^{1/2},\tag{57}$$

where Eq. (55) follows from the assumption that events S_1 and A_1 occurred and therefore $T_{b_-} \leq 4t_{b_-}^*$; Eq. (56) follows from the definition of $t_{b_-}^*$. Next, we bound the first term of Eq. (54) as follows

$$\exp\left(\frac{w(b)}{|b_{-}|} \left(\sum_{i=1}^{T_{b_{-}}} 2X_{i} - 2p_{I_{i}}\right)\right) \ge \exp\left(-\frac{2w(b)}{|b_{-}|} \sqrt{t_{b}^{*} \log(1/\theta)}\right)$$
(58)

$$= \exp\left(-\frac{2}{4}\log(1/\theta)\right) \tag{59}$$

$$=\theta^{1/2},\tag{60}$$

where Eq. (58) follows since event S_1 and C_1 occurred and therefore $|2K - 2p_eT_e| \le \sqrt{t_e^* \log(1/\theta)}$; Eq. (59) follows from the definition of t_b^* .

Hence, if event S_1 occurred, we can bound the likelihood ratio as follows

$$\frac{L_1(W)}{L_0(W)} \ge \theta = 4\delta. \tag{61}$$

Let 1_{S_1} denote the indicator variable of event S_1 . Then, we have $\frac{L_1(W)}{L_0(W)}1_{S_1} \geq 4\delta 1_{S_1}$. Therefore, we can bound $\Pr_1[\mathcal{B}]$ as follows

$$\Pr_{1}[\mathcal{B}] \ge \Pr_{1}[S_{1}] = \mathbb{E}_{1}[1_{S_{1}}]$$

$$= \mathbb{E}_{0} \left[\frac{L_{1}(W)}{L_{0}(W)} 1_{S_{1}} \right]$$

$$\ge 4\delta \mathbb{E}_{0}[1_{S_{1}}]$$

$$= 4\delta \Pr_{0}[S_{1}] > \delta. \tag{62}$$

This means that, if $\mathbb{E}_0[T_{b_-}] \leq t_{b_-}^*$, then, under H_1 , the probability of algorithm \mathbb{A} returning M_* as output is at least δ . But M_* is not the optimal set under H_1 . Hence this contradicts to the assumption that \mathbb{A} is a δ -correct algorithm. Hence we have proved that

$$\mathbb{E}_0[T_{b_-}] \ge t_{b_-}^* = \frac{|b_-|^2}{16w(b)^2} \log(1/4\delta). \tag{63}$$

(End of Part (1).)

Part (2): Lower bound of $\mathbb{E}_0[T_{b_+}]$. In this part, we will show that $\mathbb{E}_0[T_{b_+}] \geq t_{b_+}^*$, where we define $t_{b_+}^* = \frac{|b_+|^2}{16w(b)^2} \log(1/\theta)$. The arguments used in this part are similar to that of Part (1). Hence, we will omit the redundant parts and highlight the differences.

Recall that \tilde{S} is the sequence of all trials by algorithm \mathbb{A} . We define S_2 be the subsequence of \tilde{S} which contains the trials of arms belonging to b_+ . We write $S_2 = \{(J_1, Y_1), \dots, (J_{T_{b_+}}, Y_{T_{b_+}})\}$, where J_i is i-th played arm in sequence S_2 and Y_i is the associated reward outcome.

We define the random events A_2 and C_2 similar to Part (1). Specifically, we define

$$\mathcal{A}_2 = \{ T_{b_+} \leq 4t_{b_+}^* \} \quad \text{and} \quad \mathcal{C}_2 = \left\{ \max_{1 \leq t \leq 4t_{b_+}^*} \left| \sum_{i=1}^t Y_i - \sum_{i=1}^t p_{J_i} \right| < \sqrt{t_{b_+}^* \log(1/\theta)} \right\}.$$

Using the similar arguments, we can show that $\Pr_0[\mathcal{A}_2] \geq 3/4$ and $\Pr_0[\mathcal{C}_2] \geq 3/4$. Define event $\mathcal{S}_2 = \mathcal{A}_2 \cap \mathcal{B} \cap \mathcal{C}_2$, where \mathcal{B} is defined in Eq. (53). By union bound, we see that

$$\Pr_0[\mathcal{S}_2] \ge 1/4.$$

Then, we show that if $\mathbb{E}_0[T_{b_+}] \leq t_{b_+}^*$, then $\Pr_2[\mathcal{B}] \geq \delta$. We bound likelihood ratio $L_2(W)/L_0(W)$ under the assumption that \mathcal{S}_2 occurred as follows

$$\frac{L_{2}(W)}{L_{0}(W)} = \prod_{i=1}^{T_{b+}} \exp\left(\frac{-\left(X_{i} - p_{I_{i}} + \frac{2w(b)}{|b_{-}|}\right)^{2} + (X_{i} - p_{I_{i}})^{2}}{2}\right)$$

$$= \prod_{i=1}^{T_{b+}} \exp\left(\frac{w(b)}{|b_{+}|} (2p_{I_{i}} - 2X_{i}) - \frac{2w(b)^{2}}{|b_{+}|^{2}}\right)$$

$$= \exp\left(\frac{w(b)}{|b_{+}|} \left(\sum_{i=1}^{T_{b+}} 2p_{I_{i}} - 2X_{i}\right) - \frac{2w(b)^{2}}{|b_{+}|^{2}} T_{b+}\right)$$

$$= \exp\left(\frac{w(b)}{|b_{+}|} \left(\sum_{i=1}^{T_{b+}} 2p_{I_{i}} - 2X_{i}\right)\right) \exp\left(-\frac{2w(b)^{2}}{|b_{+}|^{2}} T_{b+}\right)$$

$$\geq \theta$$

$$\geq \theta$$

$$= 4\delta, \tag{64}$$

where Eq. (64) can be obtained using same method as in Part (1) as well as the assumption that S_2 occurred. Next, similar to the derivation in Eq. (62), we see that

$$\Pr_2[\mathcal{B}] \ge \Pr_2[\mathcal{S}_2] = \mathbb{E}_2[1_{S_2}] = \mathbb{E}_0\left[\frac{L_2(W)}{L_0(W)}1_{S_2}\right] \ge 4\delta\mathbb{E}_0[1_{S_2}] > \delta,$$

where 1_{S_2} is the indicator variable of event S_2 . Therefore, we see that if $\mathbb{E}_0[T_{b_+}] \leq t_{b_+}^*$, then, under H_2 , the probability of algorithm \mathbb{A} returning M_* as output is at least δ , which is not the optimal set under H_2 . This contradicts to the assumption that algorithm \mathbb{A} is a δ -correct algorithm. In sum, we have proved that

$$\mathbb{E}_0[T_{b_+}] \ge t_{b_+}^* = \frac{|b_+|^2}{16w(b)^2} \log(1/4\delta). \tag{65}$$

(End of Part (2))

Finally, we combine the results from both parts, i.e. Eq. (63) and Eq. (65). We obtain

$$\begin{split} \mathbb{E}_0[T_b] &= \mathbb{E}_0[T_{b_-}] + \mathbb{E}_0[T_{b_+}] \\ &\geq \frac{|b_+|^2 + |b_-|^2}{16w(b)^2} \log(1/4\delta) \\ &\geq \frac{|b|^2}{32w(b)^2} \log(1/4\delta). \end{split}$$

5 PAC Learning

References