

2000-221202

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開2000-221202

(P2000-221202A)

(43) 公開日 平成12年8月11日 (2000.8.11)

(51) Int.Cl.⁷
 G 0 1 P 3/487
 B 6 0 T 8/00
 F 1 6 C 19/00
 19/52
 33/78

識別記号

F I
 G 0 1 P 3/487
 B 6 0 T 8/00
 F 1 6 C 19/00
 19/52
 33/78

F 3 D 0 4 6
 A 3 J 0 0 6
 3 J 0 1 6
 3 J 1 0 1

Z

テ-マコ-ト(参考)

審査請求 未請求 請求項の数 5 O L (全 10 頁) 最終頁に続く

(21) 出願番号 特願平11-24766

(22) 出願日 平成11年2月2日 (1999.2.2)

(71) 出願人 000001247

光洋精工株式会社
大阪府大阪市中央区南船場3丁目5番8号

(72) 発明者 春海 藤夫

大阪市中央区南船場3丁目5番8号 光洋
精工株式会社内

(72) 発明者 濱尾 信之

大阪市中央区南船場3丁目5番8号 光洋
精工株式会社内

(74) 代理人 100086737

弁理士 岡田 和秀

最終頁に続く

(54) 【発明の名称】 回転速度検出装置

(57) 【要約】

【課題】回転速度検出装置において、センサ単独を単純な作業で簡単に取り外せるようにすること。

【解決手段】支持環体40に対するセンサ20の取り付けを、センサ20の係止片22を支持環体40に係止させる形態で取り付けることにより、センサ20の安易な脱落を阻止しながら、センサ20の係止片22を従来例のような弾性係止片とするのではなく外力により塑性変形あるいは破断しうるものとすることにより、支持環体40からセンサ20を取り外すにあたって、センサ20に外力を加えて係止片22を塑性変形させるかあるいは破断させてセンサ20を抵抗なく抜み出せるようにしている。

(2)

特開2000-221202

2

1

【特許請求の範囲】

【請求項1】相対回転可能に同心配置される筒体と軸体とのうち、回転する側の部材の回転速度を検出する回転速度検出装置であって、回転側部材に対して取り付けられるパルサリングと、非回転側部材に対してパルサリングの周方向所要位置と非接触対向する状態で取り付けられかつ前記パルサリングの回転に伴う相対位置の変化を検出するセンサとを含み、

前記非回転側部材に対するセンサの取り付けが、前記非回転側部材に対して前記パルサリングと非接触対向する状態で取り付けられる支持環体を介して行われており、前記センサが、前記支持環体の一部に係止される係止片を有し、この係止片が外力付与により塑性変形あるいは破断可能に形成されている、ことを特徴とする回転速度検出装置。

【請求項2】請求項1の回転速度検出装置において、前記パルサリングが、周方向交互に異なる極性の磁極を設けたものとされ、

前記センサが、前記パルサリングの回転に伴う相対位置の変化に応じた磁界変化を検出するものとされる、ことを特徴とする回転速度検出装置。

【請求項3】請求項1または2の回転速度検出装置において、前記支持環体が、径方向に沿う環状板部分を有し、この支持環体に対するセンサの取り付けが、支持環体の環状板部分を前記センサの本体部分と係止片とで挟む状態とされる、ことを特徴とする回転速度検出装置。

【請求項4】請求項1または2の回転速度検出装置において、前記支持環体が、その周方向所要位置に径方向に開口するセンサボケットを有し、この支持環体に対するセンサの取り付けが、支持環体のセンサボケットにセンサの本体部分を収納するとともに当該センサの係止片を前記センサボケット壁面に係止する状態とされる、ことを特徴とする回転速度検出装置。

【請求項5】請求項1ないし4のいずれかの回転速度検出装置において、前記センサの本体部分あるいは係止片と前記支持環体とには、凹凸が振り分けて設けられ、この凹凸の係合により支持環体にセンサが位置決めされる、ことを特徴とする回転速度検出装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、回転部材の回転速度を検出する回転速度検出装置に関する。この回転速度検出装置は、例えば、自動車のアンチロックブレーキングシステム(ABS)での情報入力手段として用いられる。

【0002】

【従来の技術】一般的に、上記ABSでは、車輪の回転

速度を検出するために、車両のハブユニットに回転速度検出装置を取り付けるようにしている。

【0003】この回転速度検出装置は、検出形態によつていわゆるパッシブタイプとアクティブライングと称する2種類があるが、いずれもパルサリングとセンサとを組み合わせた構成になっている。

【0004】この回転速度検出装置の装着対象となるハブユニットについても、駆動車軸用のものと従動車軸用のものとの2種類があるが、いずれも、ハブユニットの非回転側部材にパルサリングが、また、ハブユニットの非回転側部材にセンサが取り付けられるようになってい

る。

【0005】ところで、回転速度検出装置のパッシブタイプとアクティブライングとで、下記するように構成や機能が相違するパルサリングとセンサが用いられる。

【0006】パッシブタイプの場合、パルサリングは、円筒形あるいは環状板形状の磁性材の周方向等間隔に複数の窓を設ける構成であり、センサは、磁石と磁束密度の変化を検出する検出コイルとを備える構成である。この場合、パルサリングの回転に伴いセンサとの相対位置が逐一変化すると、この変化によってセンサの磁石の磁束密度が周期的に変化することになり、この磁束密度の周期的な変化を検出コイルで検出する。

【0007】アクティブライングの場合、パルサリングは、周方向交互に異なる極性の磁極を設ける構成であり、センサは、磁界(磁力線)の向きを検出するホール素子などで構成される。この場合、パルサリングの回転に伴いセンサとの相対位置が逐一変化すると、この変化によってセンサを通過する磁界の向きが周期的に反転することになる。そして、センサは、前述の磁界の向きの周期的な反転を検出し、パルサリングの回転速度に応じた周波数のパルス信号を出力する。このパルス信号は、図示しないABSの信号処理回路に入力され、この信号処理回路で、センサ40から入力されるパルス信号および予め入力されている車輪の径寸法などの情報に基づいて、車輪の回転速度を認識するようになっている。

【0008】ところで、上述したいずれのセンサも、非回転側部材に対して支持環体を介して間接的に取り付けられるようになっている。しかも、センサを支持環体に対して固定するようになっている。

【0009】

【発明が解決しようとする課題】上記従来例では、センサを支持環体に対して固定しているために、センサが突然あるいは寿命などで故障することがあると、それを交換するため取り外す必要があるが、その場合、センサだけを取り外すことができず、支持環体と共に取り外す必要があり、面倒である。

【0010】これに対して、センサ単独の取り外しを可能とするために、例えば特開平6-308145号公報や特開平9-263221号公報などに示すように、セ

50

特開2000-221202

(3)

4

3

ンサを支持環体に対して着脱可能に取り付けるようにする考えられている。

【0011】これらの例では、非回転側部材に取り付けられる支持環体の一部に係合部を、またセンサの本体部に弹性係止片を設け、この弹性係止片を係合部に対してスナップフィット状態に引っ掛けるようにしている。これにより、支持環体からのセンサの安易な抜け出しを阻止でき、センサ単独の取り外しが可能になる。なお、センサを取り外すときは、センサの弹性係止片を業者 10 が指でつまんで挟ませることにより、当該弹性係止片の係合部に対する引っ掛かりを解除したままで、引っ張り出すようにすればよい。

【0012】ところで、上記従来例では、センサを支持環体から取り外すとき、人がセンサの弹性係止片を挟ませる作業を行わなければならないので、その作業が煩わしいだけでなく、狭い場所などでは作業しにくいことが指摘される。

【0013】このような事情に鑑み、本発明は、回転速度検出装置において、センサ単独を単純な作業で簡単に取り外せることを目的としている。

【0014】

【課題を解決するための手段】請求項1の発明にかかる回転速度検出装置は、相対回転可能に同心配置される筒体と軸体とのうち、回転する側の部材の回転速度を検出するもので、回転側部材に対して取り付けられるバルサリングと、非回転側部材に対してバルサリングの周方向所要位置と非接触対向する状態で取り付けられかつ前記バルサリングの回転に伴う相対位置の変化を検出するセンサとを含み、前記非回転側部材に対するセンサの取り付けが、前記非回転側部材に対して前記バルサリングと非接触対向する状態で取り付けられる支持環体を介して行われており、前記センサが、前記支持環体の一部に係止される係止片を有し、この係止片が外力付与により塑性変形あるいは破断可能に形成されている。

【0015】請求項2の発明にかかる回転速度検出装置は、上記請求項1のバルサリングを、回転方向交互に異なる極性の磁極を設けたものとし、前記センサを、前記バルサリングの回転に伴う相対位置の変化に応じた磁界変化を検出するものとしている。

【0016】請求項3の発明にかかる回転速度検出装置は、上記請求項1または2の支持環体を、径方向に沿う環状板部分を有するものとし、この支持環体に対するセンサの取り付けを、支持環体の環状板部分を前記センサの本体部分と係止片とで挟む状態としている。

【0017】請求項4の発明にかかる回転速度検出装置は、上記請求項1または2の支持環体を、その周方向所要位置に径方向に開口するセンサボケットを有するものとし、この支持環体に対するセンサの取り付けを、支持環体のセンサボケットにセンサの本体部分を収納するとともに当該センサの係止片を前記センサボケット壁面に

係止する状態としている。

【0018】請求項5の発明にかかる回転速度検出装置は、上記請求項1ないし4のいずれかにおいて、前記センサの本体部分あるいは係止片と前記支持環体とに、凹凸を振り分けて設け、この凹凸の係合により支持環体にセンサを位置決めしている。

【0019】以上、本発明では、要するに、支持環体に対するセンサの取り付けを、センサの係止片を支持環体に係止させる形態とすることにより、センサが簡単に脱落することを阻止しながら、センサの係止片を従来例のような弹性係止片とするのでなく外力により塑性変形あるいは破断しうるものとすることにより、支持環体からセンサを取り外すにあたって、センサに外力を加えて係止片を塑性変形させるかあるいは破断させてセンサを抵抗なく抜み出せるようにしている。

【0020】このように、センサを取り外すときに、センサの係止片に外力を加えるだけの単純な作業を行えば済むので、従来例のように弹性係止片をつまんで挟ませるような作業に比べて簡単になる。しかも、前述したセンサの係止片に外力を加える作業は、回転速度検出装置の使用対象部位が狭くても、従来例のようなつまむ作業に比べて支障なく簡単に行える。

【0021】なお、上述したようにセンサの係止片を破損させても、センサそのものを新しいものと交換するので、問題ない。換言すれば、センサが故障すると修理するようなことはせずに新しいものに交換するのが一般的であって、交換のために取り外すセンサは廃棄処分されるので、破損させても何ら問題ないのである。このようない点に着目して、本発明が提案されたと言える。

【0022】

【発明の実施の形態】本発明の詳細を図面に示す実施形態に基づいて説明する。

【0023】図1および図2は本発明の一実施形態を示している。図1は、回転速度検出装置の分解斜視図、図2は、図1の回転速度検出装置を装備したハブユニットを示す縦断面図である。

【0024】まず、本発明の回転速度検出装置の使用対象として例示するハブユニットの構成を説明する。図2において、1はハブユニット、2は自動車の駆動車軸、3は自動車の車軸ケースである。

【0025】ハブユニット1は、自動車の駆動車軸2に取り付けられるタイプであり、ハブホイール4と、軸受装置5とを備えている。

【0026】ハブホイール4は、図示しない車輪が取り付けられる環状板部4aと、軸心部に駆動車軸2がスブルайн軸合される軸部4bとを備えている。このハブホイール4の軸部4bの外周面には軸受装置5が外装される。

【0027】軸受装置5は、前述のハブホイール4の軸部4bの外周面を一方内輪として利用した複列外向きア

(4)

特開2000-221202

6

5

ンギュラ玉軸受からなり、軸部4 bの外周に圧入外嵌される單列用の内輪5 aと、二列の軌道構を有する單一の外輪5 bと、二列で配設される複数の玉5 cと、二つの冠形保持器5 d、5 dとを備えている。なお、外輪5 bの外周には、径方向外向きのフランジ5 eが設けられており、このフランジ5 eを介して車軸ケース3に固定され、つまり、この軸受装置5は、外輪5 bを非回転として内輪5 aを回転させる形態で利用される。

【0028】このようなハブユニット1の軸受装置5の一方軸端部分に対して、本発明にかかる回転速度検出装置6が取り付けられる。

【0029】回転速度検出装置6は、パルサリング10と、センサ20とを備えており、この実施形態では、いわゆるアクティブタイプと呼ばれるものを採用している。

【0030】つまり、パルサリング10は、周方向交互に異なる極性の磁極が設けられたプラスチックマグネットからなる。このプラスチックマグネットは、周知のものであるが、磁性粉を混入した合成樹脂の射出成形品や焼結フェライトなどの磁性金属材を母材として、その周方向所要角度領域をそれぞれ交互にS極、N極に着磁させることにより製作される。

【0031】また、センサ20は、周知のホールICとされる。このホールICは、詳細に図示しないがICチップを合成樹脂からなる保護カバーでモールドした構造になっている。

【0032】そして、パルサリング10は、上記軸受装置5の内輪5 aの軸端外周面に対して取り付けられ、センサ20は、上記軸受装置5の外輪5 bの軸端に対してパルサリング10の周方向所要位置に軸方向から非接触対向する状態で取り付けられる。これらパルサリング10とセンサ20の取り付けは、下記する第1、第2支持環体30、40を介して間接的に行われる。

【0033】第1支持環体30は、上半分断面がほぼL字形にプレス成形された環状鉄板からなる。この第1支持環体30において、円筒部分31が軸受装置5の内輪5 aの軸端外周面に圧入外嵌され、また、径方向に沿う環状板部分32の外面に前述のパルサリング10が貼着される。

【0034】第2支持環体40は、階段形状にプレス成形された環状鉄板からなる。この第2支持環体40において、外径側から1つ目の第1円筒部分41が軸受装置5の外輪5 bの軸端外周面に対して圧入外嵌され、また、外径側から2つ目の径方向に沿う環状板部分42が軸受装置5の内・外輪5 a、5 b間の環状空間を閉塞する状態となり、さらに、内径側の鈍部43の内周面には、駆動車軸2の外周面に対して接触されるゴムリップ44が接着されている。さらに、図2に示すように、第2支持環体40において外径側から2つ目の第2円筒部分45の円周1カ所には、径方向内外に貫通するセンサ

ポケット46が設けられ、また、前記環状板部分42において前記センサポケット46と同一位相位置には、軸方向内外に貫通する長方形の係合孔47が設けられている。

【0035】次に、上記アクティブタイプの回転速度検出装置6の動作について説明する。

【0036】ハブホイール4の回転に伴いパルサリング10が同期回転すると、パルサリング10の各磁極が、非回転のセンサ20に対して順次対面することになる。ここで、パルサリング10の複数対の磁極間に発生する磁界(磁力線)の向きは、円周方向交互に逆向きになっているから、パルサリング10の回転に伴いセンサ20を通過する磁界の向きは、回転速度に応じた周期で順次反転する。そこで、センサ20は、前述の磁界の向きの周期的な反転を検出し、パルサリング10の回転速度に応じた周波数のパルス信号を出力する。このパルス信号は、図示しないABSの信号処理回路に入力され、この信号処理回路で、センサ20から入力されるパルス信号および予め入力されている車輪の径寸法などの情報に基づいて、ハブホイール4に取り付けられる車輪の回転速度を認識するようになっている。

【0037】ここで、回転速度検出装置6のセンサ20が突然あるいは寿命などで故障するなどして交換する必要がある場合に、センサ20を第2支持環体40から簡単に取り外せるようになっている。

【0038】そのために、まず、センサ20の保護カバーについて、ICチップが埋設される長方体形状の本体部21と、平行に所要間隙を介して対向する状態で接続されるL字形形状の係止片22とを備える構造とし、側面から見てほぼコ字形となるように形成されている。また、係止片22の内面には、第2支持環体40の係合孔47に合致する凸部23が設けられている。そして、前述の係止片22は、外力付与によって塑性変形あるいは破断しうるよう、全般的に薄肉に設定されている。脆弱にされている。

【0039】このようなセンサ10を第2支持環体40に対して取り付けるには、第2支持環体40のセンサポケット46に対してセンサ20の本体部21を径方向から差し入れて、センサ20の本体部21を第2支持環体40の環状板部分42の内側に、また、センサ20の係止片22を環状板部分42の外側に配置させた状態とし、引き続きセンサ20を押してその係止片22の凸部23を第2支持環体40の係合孔47に係合させればよい。このような状態では、第2支持環体40の環状板部分42をセンサ20の本体部21と係止片22とで挟んでいるので、センサ20の姿勢が安定するようになり、また、センサ20の凸部23を第2支持環体40の係合孔47に係合させているので、センサ20が安易に離脱せずに済むようになる。

【0040】なお、センサ20の本体部21と係止片2

(5)

特開2000-221202

8

7

2との間の間隙寸法を、第2支持環体40の環状板部分42の肉厚寸法とほぼ同一に設定することにより、センサ20を軸方向で不動に位置決めさせるようにするのが好ましい。また、センサ20の係止片22の凸部23の外形形状を第2支持環体40の係合孔47の開口形状とほぼ同一に設定することにより、センサ20を周方向ならびに径方向で不動に位置決めさせるようにするのが好ましい。このようにしてセンサ20を第2支持環体40に対して位置決めしていれば、バルサリング10に対する軸方向ならびに径方向の相対位置を正確に管理できるようになるので、センサ20による検出精度の向上に貢献できるようになる。

【0041】そして、上記センサ20が使用経過に伴い故障した場合には、次のようにして取り外し新しいものに交換することができる。このセンサ20を取り外すには、作業者がセンサ20の係止片22に対して外力を付与することにより、この係止片22を塑性変形あるいは破断させればよい。このようにして係止片22が塑性変形あるいは破断すると、第2支持環体40に対するセンサ20の係止力が解除されることになり、センサ20を取り外す抵抗なく第2支持環体40のセンサポケット46から取り外せるようになる。

【0042】以上説明したように、センサ20を取り外すときには、センサ20の係止片22に外力を付与して塑性変形あるいは破断させるようにしているから、従来例のように弾性係止片をつまんで撓ませる作業に比べてセンサ20の取り外し作業が単純かつ簡単に行えるようになる。しかも、センサ20の係止片22に外力を加える作業は、回転速度検出装置6の使用対象部位が狭くても、従来例のようなつまむ作業に比べて単純であるので、支障なく行えるようになり、有利である。

【0043】なお、本発明は上記実施形態のみに限定されるものではなく、種々な応用や変形が考えられる。

【0044】(1) 上記実施形態では、センサ20を第2支持環体40に対して取り付けた状態でセンサ20の本体部21を第2支持環体40の内側に配置させるようにした例を挙げているが、例えば図3および図4に示す実施形態のように、センサ20を第2支持環体40の外側に配置させるようにしてもよい。但し、その場合、センサ20の本体部21を第2支持環体40の内側に露呈させる必要がある。図示例の実施形態では、第2支持環体40のセンサポケット46について、上記実施形態のように打ち抜いた貫通孔形状とせずに、第2支持環体40の環状板部分42を切り起として膨出させた貫通孔形状とする。そして、センサ20の本体部21を、切り起とし膨出壁部48により得られる貫通孔形状を考慮して平面視ほぼ半円形の筒形状とし、係止片22をピン形状としている。この切り起とし膨出壁部48の内側にセンサ20の本体部21を配置させるようにして、切り起とし膨出壁部48の外側に係止片22を配置させるように

する。この例でも、センサ20の取り外しは、上記実施形態と同様、係止片22を塑性変形あるいは破断させるものとする。

【0045】(2) 上記実施形態ならびに上記(1)の実施形態では、第2支持環体40に対してセンサ20を径方向からワンアクションで取り付けるようにしているが、例えば図5ないし図7に示す実施形態のように、ツーアクションで取り付けるように構成することができ。すなわち、図示例の実施形態では、センサ20の本体部21を横方向に延長するとともに、この延長部分24に凸部23を設けるようにする一方、第2支持環体40については、センサポケット46を周方向に長く設定するとともに、係合孔47をセンサポケット46の片端側に片寄らせていている。センサ20の取り付け手順としては、まず、図6(a)に示すように、センサ20を第2支持環体40に対して径方向から仮止めしてから、図6(b)に示すように、センサ20を周方向一方にスライドさせてセンサ20の凸部23を第2支持環体40の係合孔47に合致係合させてロックする、ツーアクションとなる。この例でも、センサ20の取り外しは、上記実施形態と同様、係止片22を塑性変形あるいは破断させるものとする。

【0046】(3) 上記実施形態では、センサ20をバルサリング10に対して軸方向で対向させるようにした例を挙げているが、図8および図9に示す実施形態のように、径方向で対向させるようにしてもよい。この図示例の実施形態では、第1支持環体30が円筒形に形成されているとともに、その外周面にバルサリング10が貼着されるものとし、センサ20については径方向下向きにセンサ面が位置する構成とされている。その他は、図1に示す実施形態と同じである。

【0047】(4) 上記実施形態では、センサ20を第2支持環体40に対して外径側から着脱させるようにした例を挙げているが、図10および図11に示す実施形態のように、内径側から着脱させるようにしてもよい。すなわち、図示例の実施形態は、図1に示す実施形態を変形した構成になっており、第2支持環体40の環状板部分42の内周側にセンサ40の本体部41と係止片42とで挟むようにしてセンサ40を取り付けている。その他は、図1に示す実施形態と同じである。なお、この実施形態では、第2支持環体40の環状板部分42の内周側に切欠き49を設けて、ここにセンサ40の一部を嵌入することにより、センサ40だけが第2支持環体40の内周縁から径方向下向きに突出するのを回避させている。なお、この実施形態では、第2支持環体40にゴムリップ44を設けずに、センサ20の本体部の内端角部にゴムリップ44を設けるようにし、このゴムリップ44を軸受装置5の内輪5aの端面に対して接触させようとしている。

【0048】(5) 上記各実施形態では、バルサリング

(6)

特開2000-221202

10

9

10を第1支持環体30に貼着して使用対象部位に取り付けるようにしているが、例えば図12に示す実施形態のように、軸受装置5にシール部材51とスリンガー52とを組み合わせた密封装置50を装着する場合であれば、このスリンガー52を第1支持環体30の代用品として流用することができる。この場合、第1支持環体30を不要にできるので、コスト低減に貢献できるようになる。

【0049】(6) 上記各実施形態では、センサ20の係止片22を外力付与により塑性変形あるいは破断可能とするために、全体的に薄肉形状としているが、図示しないが、係止片22の一部のみを薄肉にしたり、係止片22の周方向幅を小さくしたり、あるいは係止片22の所要位置にスリットなどを設けるようにしてもよい。

【0050】(7) 上記各実施形態では、回転速度検出装置6を、自動車の駆動車軸用のハブユニット1に使用した例を挙げているが、図示しないが周知の従動車軸用のハブユニットにも使用することができる。その他、具体的例を挙げないが、要するに、本発明の回転速度検出装置6は、産業機械などの相対回転可能に同心配置される筒体と軸体とのうち、回転する側の部材の回転速度を検出する必要のある場所に使用することができる。

【0051】(8) 上記実施形態では、センサ20としてホール素子を用いているが、磁気抵抗素子とすることができる。

【0052】

【発明の効果】請求項1ないし5の発明にかかる回転速度検出装置では、センサを支持環体に対して係止させる形態として、簡単に脱落することを阻止しながら、センサを取り外すときにセンサの係止片に対して外力を付与して塑性変形あるいは破断されるようにしておらず、センサを単純な作業で簡単に取り外すことができる。

【0053】しかも、センサの係止片に外力を加える作業は、本発明にかかる回転速度検出装置の使用対象部位が狭くても、従来例のようなつまむ作業に比べて単純であるので、支障なく行えるようになり、有利である。

【0054】また、上述したようにセンサの係止片を破損させても、センサそのものを新しいものと交換するので、問題ない。

【0055】特に、請求項3、4の発明では、上記効果に加えて、支持環体に対するセンサの取り付け姿勢を一定にできるようになり、センサによる検出精度の向上に貢献できる。

【0056】また、請求項5の発明では、上記効果に加

えて、支持環体に対するセンサの係止状態を拘束させることができるようになるから、センサが安易に脱落せずに済むようになる。

【図面の簡単な説明】

【図1】本発明の一実施形態の回転速度検出装置を示す分解斜視図

【図2】図1の回転速度検出装置を装備したハブユニットを示す縦断面図

【図3】本発明の他の実施形態の回転速度検出装置の分解斜視図

【図4】図3の回転速度検出装置を装備したハブユニットを示す縦断面図

【図5】本発明の他の実施形態の回転速度検出装置の分解斜視図

【図6】図5の実施形態においてセンサの取り付け手順を示す説明図

【図7】図5の回転速度検出装置を装備したハブユニットを示す縦断面図

【図8】本発明の他の実施形態の回転速度検出装置の分解斜視図

【図9】図8の回転速度検出装置を装備したハブユニットを示す縦断面図

【図10】本発明の他の実施形態の回転速度検出装置の分解斜視図

【図11】図10の回転速度検出装置を装備したハブユニットを示す縦断面図

【図12】本発明の回転速度検出装置のバルサリングを密封装置に取り付けた例を示す部分拡大の断面図

【符号の説明】

30	1	ハブユニット
	2	駆動車軸
	3	車軸ケース
	4	ハブユニットのハブホイール
	5	ハブユニットの軸受装置
	6	回転速度検出装置
	10	回転速度検出装置のバルサリング
	20	回転速度検出装置のセンサ
	21	センサの本体部
	22	センサの係止片
40	23	センサの凸部
	40	第2支持環体
	46	第2支持環体のセンサポケット
	47	第2支持環体の係合孔

2000-221202

特開2000-221202

(7)

【図1】

【図2】

【図3】

【図4】

【図12】

2000-221202

(8)

特開2000-221202

【図5】

(a)

【図6】

(b)

【図7】

【図8】

2000-221202

(9)

特開2000-221202

【図9】

【図10】

【図11】

2000-221202

(10)

特開2000-221202

フロントページの続き

(51)Int.Cl.
F 16 C 41/00
F 16 J 15/32

識別記号

3 1 1

F I
F 16 C 41/00
F 16 J 15/32

テマコード(参考)

3 1 1 Z

F ターム(参考) 3D046 BB11 BB28 HH36
3J006 AE00
3J016 AA01 BB03 CA01
3J101 AA02 AA32 AA43 AA54 AA62
AA72 BA73 BA77 FA60 GA03