Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

Отчет по лабораторной	і работе №3
"Интервальный анализ"	

Преподаватель: Баженов Александр Николаевич

 ${
m Cahkt-} \Pi$ етербург 2024

Содержание

1	Постановка задачи	2
2	Теория	2
	2.1 Интервальная мода	2
	2.2 Интервальная медиана Крейновича	3
	2.3 Интервальная медиана Пролубникова	3
	2.4 Коэффициент Жаккара	3
3	Реализаця	3
	3.1 Алгоритм	3
4	Анализ и обработка данных	4
5	Нахождение констант	8
6	Результаты	9
7	Выводы	13

1 Постановка задачи

Даны 2 интервальных выборки

$$\mathbf{X} = \{\mathbf{x}_i\},\tag{1}$$

$$\mathbf{Y} = \{\mathbf{y}_i\}. \tag{2}$$

Взять \mathbf{X}, \mathbf{Y} из файлов данных, задав $\mathrm{rad}\mathbf{x} = \mathrm{rad}\mathbf{y} = \frac{1}{2^N} \mathrm{B}, \ N=14.$ Файлы данных:

- $\bullet \ \ \textit{-0.205_lvl_side_a_fast_data.bin}$
- $\bullet \ \ 0.225_lvl_side_a_fast_data.bin$

Связь кодов данных и В:

$$V = N/16384 - 0.5$$

Сделать оценки констант a, t в уравнениях:

$$\mathbf{X} + a = \mathbf{Y},\tag{3}$$

$$t\mathbf{X} = \mathbf{Y},\tag{4}$$

Метод решения:

$$\hat{a} = \operatorname{argmax} F(a, \mathbf{X}, \mathbf{Y}), \tag{5}$$

где F — функционал.

В качестве функционала взять варианты:

$$\operatorname{Ji}(a, \mathbf{X}, \mathbf{Y}),$$
 (6)

$$Ji(a, mode \mathbf{X}, mode \mathbf{Y}),$$
 (7)

$$\operatorname{Ji}(a, \operatorname{med}_K \mathbf{X}, \operatorname{med}_K \mathbf{Y}),$$
 (8)

$$\operatorname{Ji}(a, \operatorname{med}_{P}\mathbf{X}, \operatorname{med}_{P}\mathbf{Y}),$$
 (9)

где ${\rm Ji- Koэ}$ ф
ициент Жаккара, mode — интервальная мода, ${\rm med}_{\cal K}$, ${\rm med}_{\cal P}$ — интервальные медианы Крейновича и Пролубникова.

Сделать точечные и интервальные оценки, задавшись уровнем α .

2 Теория

2.1 Интервальная мода

Пусть имеется интервальная выборка

$$\mathbf{X} = \{\mathbf{x}_i\}.$$

Сформируем массив интервалов ${\bf z}$ из концов интервалов ${\bf X}.$

Для каждого интервала \mathbf{z}_i подсчитываем число μ_i интервалов из выборки \mathbf{X}_i , включающих \mathbf{z}_i . Максимальные $\mu_i = \max \mu$ достигаются для индексного множества K. Тогда можно найти интервальную моду как мультиинтервал.

$$\operatorname{mode} \mathbf{X} = \bigcup_{k \in K} \mathbf{z}_k. \tag{10}$$

2.2 Интервальная медиана Крейновича

Пусть дана выборка $\mathbf{X} = \{\mathbf{x}_i\}.$

Пусть $\underline{c} = \{\underline{\mathbf{x}}_i\}$, $\overline{c} = \{\overline{\mathbf{x}}_i\}$ — конфигурация точек, составленных, соответственно, из левых и правых концов интервалов из \mathbf{X} .

Тогда медианой Крейновича $\mathrm{med}_K \mathbf{X}$ интервальной выборки $\mathbf{X}-$ это интервал

$$\operatorname{med}_{K} = [\operatorname{med}_{\underline{c}}, \operatorname{med}_{\overline{c}}]. \tag{11}$$

2.3 Интервальная медиана Пролубникова

Медиана Пролубникова $\text{med}_{P}\mathbf{X}$ выборки \mathbf{X} — это интервал \mathbf{x}_{m} , для которого половина интервалов из \mathbf{X} лежит слева, а половина — справа.

В ситуации, когда имеются два элемента подинтервала \mathbf{x}_m и \mathbf{x}_{m+1} , расположенных посередине вариационного ряда, $\mathbf{x}_m \neq \mathbf{x}_{m+1}$ медиана может быть определена естественным обобщением взятия полусуммы точечных значений, расположенных посередине ряда из точечных значений, в случае интервальной выборки взятие полусуммы интервалов \mathbf{x}_m и \mathbf{x}_{m+1} :

$$\operatorname{med}_{P} \mathbf{X} = (\mathbf{x}_{m} + \mathbf{x}_{m+1})/2. \tag{12}$$

2.4 Коэффициент Жаккара

Коэффициент Жаккара для двух интервалов $\mathbf{x} \in \mathbb{IR}$ и $\mathbf{y} \in \mathbb{IR}$:

$$\operatorname{Ji}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{wid}(x \wedge y)}{\operatorname{wid}(x \vee y)} = \frac{\min\{\overline{\mathbf{x}}, \overline{\mathbf{y}}\} - \max\{\underline{\mathbf{x}}, \underline{\mathbf{y}}\}}{\max\{\overline{\mathbf{x}}, \overline{\mathbf{y}}\} - \min\{\underline{\mathbf{x}}, \underline{\mathbf{y}}\}}.$$
(13)

Коэффициент Жаккара для множества интервалов $\mathbf{X} \in \mathbb{IR}^n$:

$$Ji(\mathbf{X}) = \frac{\min \overline{\mathbf{x}_i} - \max \underline{\mathbf{x}_i}}{\max \overline{\mathbf{x}_i} - \min \mathbf{x}_i}.$$
(14)

Коэффициент Жаккара для двух множеств интервалов $\mathbf{X} \in \mathbb{IR}^n$ и $\mathbf{Y} \in \mathbb{IR}^n$:

$$\operatorname{Ji}_{k}(\mathbf{X}, \mathbf{Y}) = \frac{\min\{\overline{\mathbf{x}_{k}}, \overline{\mathbf{y}_{k}}\} - \max\{\underline{\mathbf{x}_{k}}, \underline{\mathbf{y}_{k}}\}}{\max\{\overline{\mathbf{x}_{k}}, \overline{\mathbf{y}_{k}}\} - \min\{\mathbf{x}_{k}, \overline{\mathbf{y}_{k}}\}}, \ k \in 1, 2, \dots, |\mathbf{X}|.$$

$$(15)$$

3 Реализаця

Лабораторная работа выполнена на языке программирования Python. В ходе работы были также использованы библиотеки numpy и intvalpy

Ссылка на GitHub репозиторий: https://github.com/Deforc/Interval-Analisys/tree/master/lab3

3.1 Алгоритм

Для поиска параметров, при которых функционал достигал наибольших значений, был использован алгоритм тернарного поиска с заданной точностью $\varepsilon=10^{-3}$ на участках, где функции вели себя как унимодальные.

Его же будем использовать для рассчёта интервальной оценки параметров a,t с уровнем значимости $\alpha=0.05$

4 Анализ и обработка данных

Данные представляют собой 100 фреймов на 8 каналах по 1024 пикселя. Рассмотрим распределение данных фрейма в выборках ${\bf X}$ и ${\bf Y}$ для 1 канала и 1 пикселя

Рис. 1: Гистограмма распределения 1 пикселя и 1 канала в выборке X

Рис. 2: Гистограмма распределения 1 пикселя и 1 канала в выборке Y

Рассмотирм графики рассеяния в выборках ${\bf X}$ и ${\bf Y}$

Рис. 3: График рассеяния данных в выборке X

Рис. 4: График рассеяния данных в выборке Y

Очевидно, для данных требуется усреднение, чтобы уменьшить вариативность данных.

Рис. 5: Усредненные данные в выборке Х

Рис. 6: Усредненные данные в выборке Y

Теперь наблюдается распределение данных по 8 имеющимся каналам. Рассмотрим расположение данных в 1-ом канале:

Рис. 7: Необработанные данные ${\rm Y}({\rm X})$

Удалим выбросы данных, используя правило трёх сигм.

Рис. 8: Обработанные данные Y(X)

5 Нахождение констант

Константы будем находить при помощи тернарного поиска, поскольку (как будет видно далее из графиков) функция зависимости функционала от параметра на рассматриваемом участке ведёт себя как унимодальная, а значит, у неё есть единственный максимум / минимум. Интервалы для поиска возьмём сознательно больше значений крайних левых и правых точек.

6 Результаты

Для функцинала со стнадартными интервальными выборками (6):

Рис. 9: Зависимость функционала от параметра а

Рис. 10: Зависимость функционала от параметра ${\bf t}$

$$\hat{a} = 0.34600 \pm 0.0005, \ F_1(\hat{a}) = -0.94918,$$

 $\hat{t} = -1.05068 \pm 0.0005, \ F_1(\hat{t}) = -0.92734.$

Для функцинала с интервальными модами (7):

$$\hat{a} = 0.34811 \pm 0.0005, \ F_2(\hat{a}) = -0.25437,$$

$$\hat{a} = 0.34811 \pm 0.0005, \ F_2(\hat{a}) = -0.25437,$$

 $\hat{t} = -1.04832 \pm 0.0005, \ F_2(\hat{t}) = -0.92750.$

Для функцинала с интервальными медианами Крейновича (8):

Рис. 11: Зависимость функционала от параметра а

Рис. 12: Зависимость функционала от параметра t

$$\hat{a} = 0.34589 \pm 0.0005, \ F_3(\hat{a}) = -0.00184,$$

 $\hat{t} = -1.04527 \pm 0.0005, \ F_3(\hat{t}) = 0.63020.$

Для функцинала с интервальными медианами Пролубникова (9):

Рис. 13: Зависимость функционала от параметра а

Рис. 14: Зависимость функционала от параметра t

$$\hat{a} = 0.34589 \pm 0.0005, \ F_4(\hat{a}) = -0.12457,$$

 $\hat{t} = -1.04527 \pm 0.0005, \ F_4(\hat{t}) = 0.63021.$

7 Выводы

В процессе выполнения лабораторной работы были рассмотрены подходы к оценке параметров в уравнениях, содержащих интервальные данные. На основе использования различных функционалов, включая коэффициент Жаккара, были определены оптимальные значения параметров \hat{a} и \hat{t} для уравнений вида $\mathbf{X} + a = \mathbf{Y}$ и $t\mathbf{X} = \mathbf{Y}$.

На основании полученных результатов можно сделать следующие выводы:

- 1. Значения параметров \hat{a} и \hat{t} зависят от выбранного функционала. Это подчеркивает необходимость тщательного подхода к выбору критерия оптимальности при решении задач интервального анализа.
- 2. Наиболее устойчивые значения были получены при использовании функционала с интервальными медианами Крейновича (8). Оптимальное значение параметра \hat{t} в этом случае демонстрирует положительное значение коэффициента Жаккара, что свидетельствует о хорошем уровне совпадения интервалов.
- 3. Использование интервальной моды и медиан (в интерпретации Крейновича и Пролубникова) в качестве статистических характеристик позволило повысить точность оценок параметров, что подчеркивает их значимость для анализа данных с интервальной природой.

Таким образом, выполненная работа показала практическую применимость и эффективность методов интервального анализа для задач параметрической оценки, а также акцентировала внимание на важности выбора адекватных инструментов и методов для обработки данных.