Notes on Probability Theory

Gyubeom Edward ${\rm Im}^*$

February 24, 2024

Contents

1	Sample space and event	2
2	Probability function	2
3	Random variables and distribution	2
4	Probability axioms	2
5	Continuous r.v. vs discrete r.v. 5.1 Continuous r.v	2 2 2
6	Expected value 6.1 Properties of expected value	3
7	Variance and standard deviation	3
8	Gaussian distribution	4
9	Multivariate gaussian distribution	4
10	Joint gaussian distribution	4
11	Linear transformation of gaussian random variable	4
12	Conditional probability	5
13	Marginal probability	5
14	Bayesian rule	6
15	Conditional gaussian distribution	6
16	Exponential family 16.1 Exponential Family 1 - Bernoulli distribution	6 7 7 8
17	Various distributions 17.1 Discrete r.v.'s distribution	8 8 9 9

^{*}blog: a lida.tistory.com, email: criterion.im@gmail.com

18 References 9

19 Revision log 9

1 Sample space and event

어떤 시행에서 일어날 수 있는 모든 결과들의 모임을 표본공간 Ω 라고 한다. 예를 들어 주사위를 한번 던지는 시행의 경우 표본공간은 $\{1,2,3,4,5,6\}$ 과 같은 집합이 된다. 표본공간 Ω 의 부분집합을 사건(event) $\mathcal F$ 라고 한다.

2 Probability function

확률함수 p는 표본공간의 원소를 0과 1사이의 숫자에 대응시키는 함수를 의미한다. 사건 $\mathcal F$ 에 대한 확률은 다음과 같이 정의할 수 있다.

$$\forall \mathcal{F} \in \Omega, \quad p(\mathcal{F}) = \sum_{w \in \mathcal{F}} p(w)$$
 (1)

3 Random variables and distribution

확률변수(random variable)는 표본공간 Ω 에 정의된 함수를 의미한다. 이 때 확률변수의 결과값은 항상 실수이다. 분포(distribution)은 확률변수가 가질 수 있는 값들에 대해서 확률들을 나열해 놓은 것을 의미한다. 중요한 점은 어떤 확률변수 x,y가 확률함수 y에 대해 같은 분포를 가져도 둘은 다른 확률변수일 수 있다.

4 Probability axioms

표본공간 Ω 에 사건 \mathcal{F} 가 있을 때, 사건 \mathcal{F} 의 확률변수 x가 일어날 확률 p(x)는 항상 0 이상 1 이하이다.

$$0 \le p(x) \le 1 \quad \forall x \in \mathcal{F} \tag{2}$$

표본공간 Ω 전체가 일어날 확률은 1이다.

$$p(\Omega) = 1 \tag{3}$$

5 Continuous r.v. vs discrete r.v.

연속확률변수(continuous random variable)와 이산확률변수(discrete random variable)는 확률론과 통계학에서 확률 분포의 특성을 기반으로 한 두 가지 주요 범주이다.

5.1 Continuous r.v.

온도 측정이나 물체의 길이 측정, 주식 가격 등 연속적인 범위의 값을 가지는 확률변수를 연속확률변수라고 한다. 확률밀도함수(probability density function, pdf) $p(\cdot)$ 을 사용하여 값의 범위에 대한 확률을 나타내며 개별 값에 대한 확률을 표현할 수 없으나 범위에 대한 확률을 표현할 수 있는 특징이 있다.

5.2 Discrete r.v.

주사위 굴리기나 동전 던지기 같이 값이 유한하거나 셀 수 있는 무한의 값들을 가지는 확률변수를 이산 확률변수라고 한다. 확률질량함수(probability mass function, pmf) $P(\cdot)$ 를 사용하여 각 값에 대한 확률을 나타내며 각각의 개별 값에 대해 명확한 확률을 할당할 수 있다.

본 문서에서는 이산확률변수 x에 대한 pmf는 P(x), 연속확률변수에 x대한 pdf는 p(x)로 나타낸다.

6 Expected value

기대값(expected value) \mathbb{E} 란 확률적 사건에 대한 평균을 의미하며 사건이 벌어졌을 때 이득과 그 사건이 벌어질 확률을 곱한 것을 합한 값을 말한다. 표본공간 Ω 에서 정의된 확률변수 x가 있을 때 확률함수 p에 대한 x의 기대값은 $\mathbb{E}[x]$ 라고 하고 다음과 같은 식으로 나타낸다.

$$\mathbb{E}[x] = \sum_{x \in \Omega} x \cdot P(x) \tag{4}$$

위 식은 이산확률변수에 대한 기대값을 의미한다. 연속확률변수에 대한 기대값은 다음과 같다.

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} x \cdot p(x) dx \tag{5}$$

6.1 Properties of expected value

기대값은 선형성(Linearity)라는 성질을 가지고 있다. 수학에서 선형성에 대한 정의는 다음과 같다. 임의의 함수 f에 대해 임의의 수 x,y에 대해 f(x+y)=f(x)+f(y)가 항상 성립하고 임의의 수 x와 a에 대해 f(ax)=af(x)가 항상 성립하면 함수 f는 선형이라고 한다. 따라서 임의의 확률변수 x,y와 임의의 실수 a,b에 대해서 다음 식이 성립하게 된다.

$$\mathbb{E}[ax + by] = a\mathbb{E}[x] + b\mathbb{E}[y] \tag{6}$$

그리고 선형인 함수 L(x)에 대해서 기대값과 함수의 계산순서를 바꿀 수 있다.

$$\mathbb{E}[L(x)] = L(\mathbb{E}[x]) \tag{7}$$

6.2 Law of total expectation

확률 변수 x, y가 주어졌을 때 총 기대값의 법칙(law of total expectation)은 다음과 같이 정의한다.

$$\mathbb{E}[x] = \mathbb{E}[\mathbb{E}[x|y]] \tag{8}$$

자세히 표현하면 아래와 같다.

$$\mathbb{E}_x[x] = \mathbb{E}_y[\mathbb{E}_x[x|y]] \tag{9}$$

- \mathbb{E}_x : 확률 변수 x에 대한 기대값

- \mathbb{E}_{y} : 확률 변수 y에 대한 기대값

증명은 다음과 같이 할 수 있다.

$$\mathbb{E}_{y}[\mathbb{E}_{x}[x|y]] = \sum_{y_{j} \in y} p(y_{j}) \mathbb{E}_{x}[x|y]$$

$$= \sum_{y_{j} \in y} p(y_{j}) \sum_{x_{i} \in x} p(x_{i}|y_{j})x_{i}$$

$$= \sum_{y_{j} \in y} \sum_{x_{i} \in x} p(y_{j})p(x_{i}|y_{j})x_{i}$$

$$= \sum_{y_{j} \in y} \sum_{x_{i} \in x} p(x_{i}, y_{j})x_{i}$$

$$= \sum_{x_{i} \in x} p(x_{i})x_{i}$$

$$= \mathbb{E}_{x}[x]$$

$$(10)$$

7 Variance and standard deviation

가우시안 분포를 따르는 확률변수 x의 분산은 σ^2 또는 var[x]라고 표기하고 다음과 같이 정의한다

$$var[x] = \mathbb{E}[(x - \mathbb{E}(x))^2]$$
(11)

또한 아래와 같이 표현할 수도 있다.

$$var[x] = \mathbb{E}[x^2] - (\mathbb{E}[x])^2 \tag{12}$$

분산의 제곱근을 표준편차(standard deviation)이라고 하며 σ 로 표기한다.

Gaussian distribution 8

스칼라 확률변수 x가 가우시안 분포를 따른다고 하면 일반적으로 다음과 같이 표기한다.

$$x \sim \mathcal{N}(\mu, \sigma^2) \tag{13}$$

- $\sim \mathcal{N}(\cdot, \cdot)$: 확률변수가 가우시안 분포(또는 정규 분포)를 따른다는 의미
- μ: x의 평균
- σ²: x의 분산

가 성립한다. 이 때, 확률분포함수 p(x)는 다음과 같이 정의된다.

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-1}{2\sigma^2} (\mathbf{x} - \mu)^2\right)$$
(14)

9 Multivariate gaussian distribution

벡터 확률변수 $\mathbf{x} \in \mathbb{R}^n$ 가 가우시안 분포를 따른다고 하면

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 (15)

가 성립한다. 평균 $m{\mu} \in \mathbb{R}^n$ 은 벡터이고 공분산 $m{\Sigma} \in \mathbb{R}^{n imes n}$ 은 행렬이다. 이 때, 확률분포함수 $p(\mathbf{x})$ 는 다음과 같이 정의된다.

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$
(16)

- $|\Sigma|$: Σ 의 행렬식(determinant) Σ^{-1} : information matrix Ω 라고도 표현한다.

10 Joint gaussian distribution

확률변수가 두 개 이상일 때는 다변수 확률분포(multivariate probability distribution)를 사용해야한다. 예를 들어 두 개의 확률변수 x,y가 있을 때 다변수 확률분포 $p(x,y) \sim \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$ 는 다음과 같이 나타낼 수 있다.

$$p(x,y) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left(-\frac{1}{2} \left(\begin{bmatrix} x - \mathbb{E}(x) \\ y - \mathbb{E}(y) \end{bmatrix}\right)^T \Sigma^{-1} \left(\begin{bmatrix} x - \mathbb{E}(x) \\ y - \mathbb{E}(y) \end{bmatrix}\right)\right)$$
(17)

이 때 평균은 $\boldsymbol{\mu} = \begin{bmatrix} \mathbb{E}(x) \\ \mathbb{E}(y) \end{bmatrix}$ 이고 분산은 $\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy} \end{bmatrix}$ 이다. 이 때, 분산은 여러 변수에 대한 분산을 의미하고 대각성분들은 하나의 변수에 대한 분산을 의미하며 대각성분이 아닌 성분들은 두 변수 간 상관관계를 의미한다. 이러한 다변수 확률분포에서 분산 Σ 을 일반적으로 공분산(covariance)라고 부른다

Linear transformation of gaussian random variable 11

스칼라 랜덤 변수 $(random\ variable)\ x$ 가 주어졌을 때 만약 가우시안 분포를 따른다고 가정하면 다음과 같이 표기할 수 있다.

$$x \sim \mathcal{N}(\mu, \sigma^2) \tag{18}$$

벡터 랜덤 변수 $\mathbf{x} \in \mathbb{R}^n$ 가 가우시안 분포를 따를 때는 다음과 같이 표기할 수 있다.

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 (19)

만약 x를 선형 변환(linear transformation)한 새로운 랜덤변수 y = Ax + b가 주어졌다고 하면 y는 아래와 같은 확률 분포를 따른다.

$$\begin{vmatrix} \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b} \\ \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathsf{T}}) \end{vmatrix}$$
 (20)

공분산 $cov(\mathbf{A}\mathbf{x} + \mathbf{b})$ 는 다음과 같이 유도할 수 있다.

$$cov(\mathbf{A}\mathbf{x} + \mathbf{b}) = \mathbb{E}((\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}})(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}})^{\mathsf{T}})$$

$$= \mathbb{E}((\mathbf{y} - (\mathbf{A}\boldsymbol{\mu} + \mathbf{b}))(\mathbf{y} - (\mathbf{A}\boldsymbol{\mu} + \mathbf{b}))^{\mathsf{T}})$$

$$= \mathbb{E}(((\mathbf{A}\mathbf{x} + \mathbf{b}) - (\mathbf{A}\boldsymbol{\mu} + \mathbf{b}))((\mathbf{A}\mathbf{x} + \mathbf{b}) - (\mathbf{A}\boldsymbol{\mu} + \mathbf{b}))^{\mathsf{T}})$$

$$= \mathbb{E}([\mathbf{A}(\mathbf{x} - \boldsymbol{\mu})][\mathbf{A}(\mathbf{x} - \boldsymbol{\mu})]^{\mathsf{T}})$$

$$= \mathbb{E}(\mathbf{A}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}}\mathbf{A}^{\mathsf{T}})$$

$$= \mathbf{A}\mathbb{E}((\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}})\mathbf{A}^{\mathsf{T}}$$

$$= \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathsf{T}}$$
(21)

12 Conditional probability

조건부 확률은 두 사건 X,Y가 주어졌을 때, Y가 발생했을 때 X가 발생할 확률을 의미한다. 이는 다음과 같이 나타낼 수 있다.

$$P(X|Y) = \frac{P(X \cap Y)}{P(Y)} \tag{22}$$

이를 통해 두 사건이 동시에 발생한 확률은 $P(X\cap Y)=P(X)P(Y|X)$ 와 같이 나타낼 수 있다. 이 때, $P(X\cap Y)=P(Y\cap X)$ 이므로 X,Y 순서를 바꿔도 공식이 성립한다. 이는 X가 발생했을 때 Y가 발생할 확률을 의미한다.

$$P(Y|X) = \frac{P(Y \cap X)}{P(X)} \tag{23}$$

만약 두 사건 X,Y가 독립사건이면 조건부 확률은 다음과 같다.

$$P(X|Y) = P(X)P(Y) \tag{24}$$

위 식들은 이산확률변수에 대한 조건부 확률을 의미한다. 연속확률분포에 대한 조건부 확률은 다음과 같다. 연속확률변수 x,y가 주어졌을 때, y가 발생했을 때 x가 발생할 확률은 다음과 같다.

$$p(x|y) = \frac{p(x,y)}{p(y)} \tag{25}$$

- p(x,y): 사건 x와 y가 동시에 발생하는 결합 확률밀도함수(joint pdf)

반대로 x가 발생했을 때 y가 발생할 확률은 다음과 같다.

$$p(y|x) = \frac{p(y,x)}{p(x)} \tag{26}$$

이 때, p(x,y)와 p(y,x)는 동일하다.

13 Marginal probability

주변 확률분포(marginal probability distribution)는 다변수 확률분포에서 한 확률변수의 행동을 단독으로 이해하고자 할 때 주로 사용된다. 예를 들어, 두 이산확률변수 X와 Y가 있고, 이들의 결합 확률분포 (joint probability distribution)가 주어졌을 때, X의 주변 확률분포는 Y가 취할 수 있는 모든 값에 대해 X의 확률을 합하여 얻어진다.

$$P(X) = \sum_{Y} P(X, Y) \tag{27}$$

연속확률변수 x, y로 나타내면 다음과 같다.

$$p(x) = \int p(x,y)dy = \int p(x|y)p(y)dy$$
 (28)

14 Bayesian rule

Bayesian rule은 다음과 같은 조건부확률 간 관계를 의미한다.

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

$$= \frac{p(y|x)p(x)}{p(y)}$$
(29)

- p(x|y): posterior - p(y|x): likelihood

- p(x): prior

예를 들어, 로봇의 위치를 \mathbf{x} , 로봇의 센서를 통해 관측한 값을 \mathbf{z} 이라고 했을 때 주어진 관측 데이터를 바탕으로 현재 로봇이 \mathbf{x} 에 위치할 확률 $p(\mathbf{x}|\mathbf{z})$ 는 다음과 같이 나타낼 수 있다.

$$p(\mathbf{x}|\mathbf{z}) = \frac{p(\mathbf{z}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{z})} = \eta \cdot p(\mathbf{z}|\mathbf{x})p(\mathbf{x})$$
(30)

- $p(\mathbf{x}|\mathbf{z})$: 관측값 \mathbf{z} 이 주어졌을 때 로봇이 \mathbf{x} 에 위치할 확률 (posterior)
- $p(\mathbf{z}|\mathbf{x}): \mathbf{x}$ 위치에서 관측값 \mathbf{z} 가 나올 확률 (likelihood)
- $p(\mathbf{x})$: 로봇이 \mathbf{x} 위치에 존재할 확률 (prior)
- $\eta=1/p(\mathbf{z})$: 전체 확률분포의 넓이가 1이 되어 확률분포의 정의를 유지시켜주는 normalization factor 이다. 주로 η 로 치환하여 표현한다.

15 Conditional gaussian distribution

두 개의 확률변수 x,y가 주어졌을 때 조건부 확률분포 p(x|y)가 가우시안 분포를 따른다고 하면

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(y|x)p(x)}{p(y)} = \eta \cdot p(y|x)p(x)$$

$$\sim \mathcal{N}(\boldsymbol{\mu}_{x|y}, \boldsymbol{\Sigma}_{x|y})$$
(31)

가 된다 이 때 평균 $oldsymbol{\mu}_{x|y}$ 과 분산 $oldsymbol{\Sigma}_{x|y}$ 은 아래와 같다.

$$\mu_{x|y} = \mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y)$$

$$\Sigma_{x|y} = \Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{xy}^{T}$$
(32)

16 Exponential family

지수족(exponential family)이란 지수항을 가지는 다양한 분포들의 집합을 의미한다. 지수족에는 Gaussian, exponential, gamma, chi-squared, beta, Dirichlet, Bernoulli, binomial, multinomial, geometric 분포 등 다양한 분포들이 포함된다. 언급한 분포들을 일반화하여 표현하면 다음과 같다.

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta})\exp\{\boldsymbol{\eta}^{\mathsf{T}}\mathbf{u}(\mathbf{x})\}$$
(33)

- x: 확률 변수(random variable)
- $-h(\mathbf{x})$: \mathbf{x} 에 대한 임의의 함수
- η: 자연 파라미터(nature parameters)
- $g(\eta)$: 확률의 정의 상 크기를 1로 만들어주는 정규화(normalization) 값
- **u**(**x**): 충분통계량(sufficient statistic)

위 식은 pdf이기 때문에 확률의 정의를 만족한다.

$$\int p(\mathbf{x}|\boldsymbol{\eta}) = 1$$

$$\to \int h(\mathbf{x})g(\boldsymbol{\eta}) \exp{\{\boldsymbol{\eta}^{\mathsf{T}}\mathbf{u}(\mathbf{x})\}} = 1$$

$$\to g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp{\{\boldsymbol{\eta}^{\mathsf{T}}\mathbf{u}(\mathbf{x})\}} d\mathbf{x} = 1$$
(34)

위 식에서 보다시피 지수족은 완비충분통계량(complete sufficient statistic) $\mathbf{u}(\mathbf{x})$ 를 포함하고 있기 때문에 앞서 설명한 분포들을 지수족의 형태로 인수 분해하면 해당 분포에 대한 완비충분통계량을 쉽게 구할 수 있다. 완비충분통계량을 사용하면 최소분산불편추정값(minimum variance unbiased estimator, MVUE)를 쉽게 구할 수 있으므로 이 때 지수족이 유용하게 사용된다.

16.1 Exponential Family 1 - Bernoulli distribution

베르누이 분포가 지수족에 포함되는지 알아보도록 하자. 베르누이 분포는 다음과 같이 표현할 수 있다.

$$p(x|\mu) = \text{Bern}(x|\mu) = \mu^x (1-\mu)^{1-x}$$
 (35)

위 분포를 (33)와 동일한 형태로 표현할 수 있을까? 양 변에 \ln, \exp 를 동시에 취해주고 식을 변환하면 다음과 같다.

$$p(x|\mu) = \exp\{x \ln \mu + (1-x) \ln(1-\mu)\}$$
$$= (1-\mu) \exp\left\{\ln \left(\frac{\mu}{1-\mu}\right)x\right\}$$
(36)

위 식에서 $\eta=\ln\left(\frac{\mu}{1-\mu}\right)$ 이고 η 와 μ 의 관계를 바꿔서 역함수로 나타내면 $\mu=\sigma(\eta)$ 함수 형태가 된다.

$$\sigma(\eta) = \frac{1}{1 + \exp(-\eta)} \tag{37}$$

위 식을 로지스틱 회귀(logistic regression)식이라고 부른다. 따라서 베르누이 분포로부터 식을 적절하게 변형하면 로지스틱 회귀식이 나오는 것을 알 수 있다. (37)는 $1-\sigma(\eta)=\sigma(-\eta)$ 관계를 만족하므로 이를 통해 다음과 같은 지수족 파라미터를 얻을 수 있다.

$$p(x|\mu) = \sigma(-\eta) \exp(\eta x) \quad \cdots \text{Bernoulli}$$
where,
$$u(x) = x$$

$$h(x) = 1$$

$$g(\eta) = \sigma(-\eta)$$
(38)

16.2 Exponential Family 2 - Gaussian distribution

다음으로 가우시안 분포가 지수족에 속하는지 알아보자.

$$p(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$$

$$= \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}x^2 + \frac{\mu}{\sigma^2}x - \frac{1}{2\sigma^2}\mu^2\right\}$$
(39)

가우시안 분포는 베르누이 분포와 달리 자체적으로 exponential 항을 포함하고 있는 것을 알 수 있다. 따라서 별도의 유도 과정 없이 바로 지수족의 파라미터를 구할 수 있다.

$$p(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}x^2 + \frac{\mu}{\sigma^2}x - \frac{1}{2\sigma^2}\mu^2\right\} \quad \cdots \text{Gaussian}$$
where,
$$\boldsymbol{\eta} = \begin{pmatrix} \mu/\sigma^2 \\ -1/2\sigma^2 \end{pmatrix}$$

$$g(\boldsymbol{\eta}) = (-2\eta_2)^{1/2} \exp(\frac{\eta_1^2}{4\eta_2})$$

$$\mathbf{u}(x) = \begin{pmatrix} x \\ x^2 \end{pmatrix}$$

$$h(x) = (2\pi)^{-1/2}$$

$$(40)$$

16.3 Maximum Likelihood Estimator and Sufficient Statistics

지수족에서 자연 파라미터 η 를 추정하는 문제를 살펴보자. 일반적으로 MLE를 사용하여 η 를 추정한다. MLE를 찾기 위해 (34)를 미분하면 다음과 같다.

$$\frac{d}{d\eta} \left(g(\eta) \int h(\mathbf{x}) \exp\{\eta^{\mathsf{T}} \mathbf{u}(\mathbf{x})\} d\mathbf{x} = 1 \right)
\rightarrow \nabla g(\eta) \int h(\mathbf{x}) \exp\{\eta^T \mathbf{u}(\mathbf{x})\} d\mathbf{x} + g(\eta) \int h(\mathbf{x}) \exp\{\eta^T \mathbf{u}(\mathbf{x})\} \mathbf{u}(\mathbf{x}) d\mathbf{x} = 0$$
(41)

 $\int h(\mathbf{x}) \exp\{\eta^T \mathbf{u}(\mathbf{x})\} d\mathbf{x} = \frac{1}{q(\eta)}$ 를 이용하여 위 식을 정리하면 다음과 같다.

$$-\frac{1}{g(\eta)}\nabla g(\eta) = g(\eta)\int h(\mathbf{x})\exp\{\eta^T \mathbf{u}(\mathbf{x})\}\mathbf{u}(\mathbf{x})d\mathbf{x} = \mathbb{E}(\mathbf{u}(\mathbf{x}))$$
(42)

좌항 $-\frac{1}{g(\eta)}\nabla g(\eta)$ 은 $-\nabla \ln g(\eta)$ 의 미분값이므로 이를 정리하면 다음과 같다.

$$-\nabla \ln g(\eta) = g(\eta) \int h(\mathbf{x}) \exp\{\eta^T \mathbf{u}(\mathbf{x})\} \mathbf{u}(\mathbf{x}) d\mathbf{x} = \mathbb{E}(\mathbf{u}(\mathbf{x}))$$
(43)

$$-\nabla \ln g(\eta) = \mathbb{E}(\mathbf{u}(\mathbf{x}))$$
(44)

다음으로 여러 관측 데이터 $\mathbf{x} = [x[0], x[1], \cdots, [N-1]]^\intercal$ 이 주어진 경우를 생각해보자. 각 x[n]들은 서로 독립이며 동일한 확률 분포를 따른다(=i.i.d)고 하자. Likelihood를 보면 다음과 같다.

$$p(\mathbf{x}|\eta) = \left(\prod_{n=1}^{N} h(x[n])\right) g(\eta)^{N} \exp\left\{\eta^{T} \sum_{n=1}^{N} \mathbf{u}(x[n])\right\}$$
(45)

앞선 경우와 동일하게 미분 후 0이 되는 η 값을 찾으면 이는 곧 MLE가 된다.

$$-\nabla \ln g(\eta_{\rm ML}) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}(x[n])$$
(46)

위 식에서 $\sum_{n=1}^N \mathbf{u}(x[n])$ 는 충분통계량이다. 만약 데이터가 충분한 경우 $(N \to \infty)$, 우측 항은 큰 수의 법칙(law of large numbers)에 의해 $\mathbb{E}(\mathbf{u}(\mathbf{x}))$ 가 되고 $\eta_{\mathrm{ML}} \to \eta$ 가 된다.

17 Various distributions

17.1 Discrete r.v.'s distribution

17.1.1 Bernoulli distribution

확률 변수의 값이 성공 혹은 실패로 나타나는 경우의 확률 분포를 베르누이 분포라고 한다. 확률 실험의 결과 값이 성공 혹은 실패로 나타나는 실험을 베르누이 실험(Bernoulli experiment)라고 한다. 성공 확률이 p인 베르누이 실험에서 성공의 횟수를 나타내는 확률 분포이다. 따라서 확률 변수의 영역이 x: {success, fail} \rightarrow {0,1}이다.

$$P(x = 0) = 1 - p$$

$$P(x = 1) = p$$
(47)

확률질량함수(pmf) P(x)는 다음과 같다.

$$x \sim \text{Ber}(p)$$

 $P(x) = p^x (1-p)^{1-x} \quad x = 0, 1$ (48)

17.2Continuous r.v.'s distribution

17.2.1 chi-square distribution

카이스퀘어(chi-square) 분포는 관측 데이터 $[x[1],x[2],\cdots,x[n]]$ 가서로 독립이며 동일한 분포를 갖고 있을 때(=i.i.d), 다음과 같이 나타낼 수 있다.

$$y = \sum_{i=1}^{n} x_i^2 \sim \mathcal{X}_n^2 \tag{49}$$

- $x_i\sim\mathcal{N}(0,1),\ i=1,2,\cdots,n$: 평균이 0이고 분산이 1인 표준정규분포를 따른다 - \mathcal{X}_n^2 : 자유도가 n인 카이스퀘어 분포

즉, 확률 변수 x_i 의 제곱의 합은 카이스퀘어 분포를 따른다. y의 pdf는 다음과 같이 나타낼 수 있다.

$$p(y) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} y^{\frac{n}{2} - 1} \exp(-\frac{1}{2}y) & y \ge 0\\ 0 & y < 0 \end{cases}$$
 (50)

- $\Gamma(u) = \int_0^\infty t^{u-1} e^{-t} dt$: 감마 적분 함수. 자연수 n에 대하여 $\Gamma(n) = (n-1)!$ 이 성립한다.

y의 평균과 분산은 다음과 같다.

$$\mathbb{E}(y) = n$$
$$\operatorname{var}(y) = 2n \tag{51}$$

18 References

[1] (Blog) 평균과 기댓값

[2] (Blog) PRLM - 4. The Exponential Family

[3] (Blog) [수리통계학] 38. 지수족

[4] (Wiki) Law of total expectation

[5] (Blog) 2 장 확률변수와 확률분포

Revision log 19

• 1st: 2024-02-09

• 2nd: 2024-02-24