OCP CLB Impedance Analysis

Ricky Lai Hewlett Packard Enterprise

TDR - OCP CLB RX00

TDR - OCP CLB TX00

TDR – PCIe G4 CLB RX00

TDR – PCIe G4 CLB TX00

Why there is BIG impedance drop on OCP CLB?

OCP CLB Stackup

Cross section information from the board file

CLB_Gen4/ftcmkx03.brd

Design Cross Section

Subclass Name	Туре	Material	Thickness (MIL)	Tol +	Tol -	Conductivity (mho/cm)	Dielectric Constant	Loss Tangent
	SURFACE	AIR				0	1	0
TOP	CONDUCTOR	COPPER	1.900000	0	0	595900	4.5	0
	DIELECTRIC	FR-4	2.700000	0	0	. 0	4.5	0.035
GND	PLANE	COPPER	1.300000	0	0	595900	4.5	0.035
	DIELECTRIC	FR-4	21.000000	0	0	0	4.5	0.035
VCC	PLANE	COPPER	1.300000	0	0	595900	4.5	0.035
	DIELECTRIC	FR-4	5.600000	0	0	0	4.5	0.035
GD2	PLANE	COPPER	1.300000	0	0	595900	4.5	0.035
	DIELECTRIC	FR-4	21.000000	0	0	0	4.5	0.035
GD3	PLANE	COPPER	1.300000	0	0	595900	4.5	0.035
	DIELECTRIC	FR-4	2.700000	0	0	0	4.5	0.035
воттом	CONDUCTOR	COPPER	1.900000	0	0	595900	4.5	0
	SURFACE	AIR				0	1	0

Total Thickness: 62 MIL

PCle CLB

6.3.5.1 Test Fixture Requirements

A test fixture for connector S-parameter measurement must be designed and built to the following:

- The test fixture used for measuring S-parameters will comprise a baseboard and mating Add-in Card
 fabricated from the same PCB panel. The total thickness of the boards, measured across the Add-in
 Card edge fingers, must be 1.57 mm (062 mil).
- The PCB test fixture must be an FR-4 based material, or of a lower loss material with a relative permittivity of 3.6 or greater. Dielectric loss factor is not specified.
- The test PCB must have a microstrip structure; the microstrip's dielectric thickness or stackup are recommended to be approximately 0.102 mm (4 mil).
- The interconnect traces on all boards must be routed uncoupled (single ended) where possible. Some
 method of mitigating fiber weave effects must be applied. This can include off-axis routing or board
 rotation on the PCB panel.

OCP vs PCIe CLB stackup

OCP

PCle

PCI-SIG Gen4 CLB X-section

SMP Header

• 30 mil wide metal on the SMP header creates large capacitance from L2 and thus causes significant

impedance drop

How does PCI-SIG CLB get around?

• Create void underneath the header on L2

OCP CLB - L1

OCP CLB - L2 & L3

Impedance Simulation Results

Z0

- 13 impedance if L2 is reference
- impedance if L3 is reference (void on L2)
- impedance if L4 is reference (void on L2 & L3)
- impedance if L5 is reference (void on L2, L3 & L4)

Recommendation

Create void underneath the SMP header on L2, L3
 & L4

