

## planetmath.org

Math for the people, by the people.

## order statistics

Canonical name OrderStatistics

Date of creation 2013-03-22 14:33:30 Last modified on 2013-03-22 14:33:30

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771) Entry type Definition Classification msc 62G30 Let  $X_1, \ldots, X_n$  be random variables with realizations in  $\mathbb{R}$ . Given an outcome  $\omega$ , order  $x_i = X_i(\omega)$  in non-decreasing order so that

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}.$$

Note that  $x_{(1)} = \min(x_1, \ldots, x_n)$  and  $x_{(n)} = \max(x_1, \ldots, x_n)$ . Then each  $X_{(i)}$ , such that  $X_{(i)}(\omega) = x_{(i)}$ , is a random variable. Statistics defined by  $X_{(1)}, \ldots, X_{(n)}$  are called *order statistics* of  $X_1, \ldots, X_n$ . If all the orderings are strict, then  $X_{(1)}, \ldots, X_{(n)}$  are the order statistics of  $X_1, \ldots, X_n$ . Furthermore, each  $X_{(i)}$  is called the *i*th order statistic of  $X_1, \ldots, X_n$ .

**Remark.** If  $X_1, \ldots, X_n$  are iid as X with probability density function  $f_X$  (assuming X is a continuous random variable), Let  $\mathbf{Z}$  be the vector of the order statistics  $(X_{(1)}, \ldots, X_{(n)})$  (with strict orderings), then one can show that the joint probability density function  $f_{\mathbf{Z}}$  of the order statistics is:

$$f_{\mathbf{Z}}(\boldsymbol{z}) = n! \prod_{i=1}^{n} f_{X}(z_i),$$

where  $z = (z_1, ..., z_n)$  and  $z_1 < \cdots < z_n$ .