W10D1

Recommender Engines I

Instructor: Eric Elmoznino

Outline for today

- Overview
- Content-based vs. collaborative
- Content-based recommender
 - Step 1: Define item features
 - Step 2: Define a distance metric
 - Step 3: Recommend similar items
- Activity: movie feature engineering
- Case study: co-occurrence feature engineering
- Demo

Overview

Examples

Capacity

1 Seater

Highlights

- Material: Leatherette
- 3 Reclining Positions
 - Knock Down
 - Filling Material: Foam

Similar Products

Leatherette Manual Recliner

Recommender engines

- Users: purchaser of Amazon products, Netflix binge-watcher, social media subscriber, etc.
- Items: Amazon products, Netflix shows, social media posts, etc.
- Goal: optimize some business (e.g. clicks, longer screen time, revenue, conversion rate)
 - Algorithms will often be compared to baselines and alternatives using A/B experiments

Content-based vs. collaborative

Content-based vs. collaborative

- Content-based recommender: use knowledge of each item to recommend a similar one (item-based recommendation)
 - Example: customer looking at a computer with 8GB RAM, 125 GB HDD, 6 hour battery life
- Collaborative filtering: use knowledge of a user's past purchases/selections to recommend what similar users did (user-based recommendation).
 - Example: Netflix recommending me shows based on what others who have watched similar shows to me have also watched

Content-based vs. collaborative

Content-based recommender

Advantages:

- Works without user data

Disadvantages:

- Requires descriptive data of products
- Doesn't expand user interests

Collaborative filtering

Advantages:

 Works without descriptive product data

Disadvantages:

- Requires user data
- Difficult to make recommendations to new users ("cold start" problem)

Content-based recommender

Step 1: define item features

Movie	Action	Comedy	Romance	Drama	Runtime	Actor 1	Actor 2	Actor 3	
Movie 1	1	0	0	0	123	1	0	1	
Movie 2	0	0	1	0	96	0	0	1	
Movie 3	0	1	0	0	89	0	0	0	

Step 1: define item features — feature engineering

Movie	Action	Runtime	Description word soup	
Movie 1	1	123	jealousy toy boy tomhanks timallen donrickles	
Movie 2	0	96	boardgame disappearance basedonchildren'sbook	

Step 2: define a distance metric

Euclidean distance

- Geometric distance between two points
- Considers magnitude and direction of vectors
- Range: (0, ∞)
- Interpretation: lower is more similar

```
def euclidean_distance(x, y):
    return np.sqrt(np.sum((x - y) ** 2))
```

Cosine similarity

- Angular distance between two points
- Considers direction of vectors
- Range: (-1, 1)
- Interpretation: higher is more similar

```
A(x1,y1)

d

B(x2,y2)
```

```
def cosine_similarity(x, y):
    return np.dot(x, y) / (np.sqrt(np.dot(x, x)) * np.sqrt(np.dot(y, y)))
```

Step 2: *learn* a distance metric?

- Instead of picking a distance metric that may not work well for our feature space, we can also *learn* a distance metric. Called "distance metric learning"
- Function that takes 2 sets of features and outputs a positive number
- Has the potential to:
 - Learn relative feature importance
 - Account for feature interactions
 - Reduce the load on feature engineering
- Challenges: how to train?
- Comprehensive overview and technical tutorial

Step 3: recommend items

- Based on the user's items, (e.g. currently viewing, cart, history), recommend items with the *highest similarity* (i.e. *lowest distance*)

Activity: movie feature engineering

Activity: movie feature engineering

- Imagine you are a data scientist at Netflix trying to come up with movie features for a content-based recommender
- Assume access to video, audio, dialogue, genre, description, twitter, etc.
- In groups, come up with 1 or more features that you could use
 - What is the feature?
 - Why would this feature be useful? What relevant information would it carry?
 - How would you engineer (or learn) the feature from the raw data? (i.e. numeric representation)
 - What would be the challenges, if any?
- 15 minutes in groups, then verbally tell us your ideas

Example: colour palette

Case study:

co-occurrence feature engineering

Word2Vec

Word2Vec for arbitrary data

Word2Vec for content recommendation features

Demo