DEVICE ENGINEERING INCORPORATED

385 East Alamo Drive Chandler, AZ 85225 Phone: (480) 303-0822 Fax: (480) 303-0824 E-mail: admin@deiaz.com

DEI1041 ARINC 429 LINE RECEIVER

FEATURES

- ARINC 429 to TTL/CMOS logic line receiver
- Operates from single $+5V \pm 10\%$ or $3.3V \pm 10\%$ power supply
- ARINC inputs internally protected to lightning requirements of DO-160D Level A3
- Operates in high noise environment
 - o Input Common Voltage Range: ± 20V
 - o 2V minimum Input hysteresis
- Logic level TEST inputs bypass analog inputs.
- 8 Lead SOIC.
- Replacement for HI-8588 and HI-8588-10

TERMINAL DESCRIPTION

Table 1 Terminal Description

NAME	DESCRIPTION
INA	429 INPUT. ARINC 429 format serial digital data "A" input.
INB	429 INPUT. ARINC 429 format serial digital data "B" input.
TESTA	LOGIC INPUT. Test input A.
TESTB	LOGIC INPUT. Test input B.
OUTA	LOGIC OUTPUT. CMOS/TTL format serial digital data "A" output.
OUTB	LOGIC OUTPUT. CMOS/TTL format serial digital data "B" output.
VDD	POWER INPUT. 5 VDC OR 3.3VDC.
GND	POWER INPUT. Ground.

FUNCTIONAL DESCRIPTION

The DEI1041 is a BICMOS device which contains one ARINC 429 differential line receiver. It translates incoming ARINC 429 data bus signals (tri-level RZ bipolar differential modulation) to a pair of TTL/CMOS logic outputs. It meets the requirements of the ARINC 429 Digital Information Transfer Standard. Refer to Figure 1 "DEI1041 Block Diagram and Truth Table".

The device is designed to operate in a high noise environment. Inputs are accepted over a +/- 20V common mode voltage range and the receivers provide over 2 Volts of hysteresis. Circuit speed is optimized to reject high frequency transients.

All ARINC input pins are designed with internal protection from damage due to transients meeting the lightning induced transient requirements of DO-160D Level A3. The ARINC inputs may optionally be connected to ARINC bus through external 10k ohm series resistors. These resistors may be added in combination with transient voltage suppressors to achieve lighting protection beyond the Level A3 limits due to high input impedance.

The DEI1041 device provides logic level TEST inputs for built in system test. They force the receiver outputs to the specified ZERO, ONE or NULL state. The ARINC inputs are ignored when the device is in test mode.

DEI1041 Truth Table						
INPUTS			C	DUTPUT	ΓS	
_	TEST INPUTS ARINC (TTL/CMOS) INPUTS					
TEST A	TEST B	$A_{IN} - B_{IN} V$	OUT A	OUT B	Logic	
0	0	<u>≥</u> 6.5v	1	0	ONE	
0	0	<u><</u> -6.5V	0	1	ZERO	
0	0	-2.5 to +2.5	0	0	NULL	
0	1	Х	0	1	ZERO	
1	0	Х	1	0	ONE	
1	1	Х	0	0	NULL	

Figure 1 DEI1041 Block Diagram and Truth Table

ELECTRICAL DESCRIPTION

Table 2 Recommended Operating Conditions

PARAMETER	SYMBOL	CONDITIONS
Supply Voltage	Vdd	+5V ± 10% +3.3V ± 10%
Logic Input Levels	VTESTA,B	0 to Vdd
Operating Temperature -SES -SMS	Та	-55 to +85°C -55 to +125°C

Table 3 Absolute Maximum Rating

PARAMETER	MIN	MAX	UNITS
Supply Voltage (with respect to V _{SS})	-0.3	7.0	V
Storage Temperature	-65	+150	°C
Input Voltage, continuous (ARINC Inputs)	-40	+40	V
Input Voltage (Test Inputs)	V _{SS} – 0.3	V _{DD} +0.3	V
Power Dissipation @ 85 °C		500	mW
Junction Temperature: Tjmax, (limited by molding compound Tg)		145	°C
Peak Body Temperature, - G Package		260	°C
Lightning Protection (ARINC 429 Channel Inputs and TESTA/TESTB Inputs) Waveform 3 (2) Waveform 4, 5A, 5B* (2) (3)	-600 -300	+600 +300	V V
ESD per JEDEC A114-A Human Body Model	-1000	1000	V

Notes:

- 1. Stresses above these limits can cause permanent damage.
- 2. Per DO160D, Sect 22 Level 3A. See Figures 4-6.
- 3. Inputs can be protected to withstand higher stress by adding series resistors and shunt TVS on inputs. Inputs withstand 1500V Waveform 5A when clipped ≤ 600V.

Table 4 Electrical Characteristics

Conditions : Temperature: -55°C to +85°C (SES) : -55°C to +125°C (SMS); V_{DD} = +5V \pm 10% or 3.3V \pm 10%						
PARAMETER	TEST CONDITION	SYMBOL	MIN	NOM	MAX	UNITS
	ARINC IN	PUTS		•		
$V_A - V_B = Logic +1$	OUTA = 1	V ₊₁	6.5	10	13	V
V _A – V _B = Logic -1	OUTB = 1	V ₋₁	-6.5	-10	-13	V
V _A – V _B = Logic Null	OUTA = 0 OUTB = 0	V _{NULL}	-2.5	0	2.5	V
Input Hysteresis		V_{HY}	2.0		4.0	V
$V_A - V_B = Null to +1 transition$	OUTA = 0→1	V _{T+1+}	5.5		6.5	V
$V_A - V_B = +1$ to Null transition	OUTA = 1→0	V _{T+1-}	2.5		3.5	V
$V_A - V_B = Null to -1 transition$	OUTB = 0→1	V _{T-1+}	-6.5		-5.5	V
$V_A - V_B = -1$ to Null transition	OUTB = 1→0	V _{T-1-}	-3.5		-2.5	V
Input Common Mode Voltage Range	Logic +1, Null, Logic -1	V _{CM}	-20		+20	V
Input Resistance IN _A to IN _B	V_{DD} open, Shorted to V_{SS} or +5V (1)	R _{IN}	280k	780K		Ω
Input Resistance IN _A or IN _B to V _{SS}	V_{DD} open, Shorted to V_{SS} or +5V	Rs	140k	390K		Ω
Input Capacitance IN _A to IN _B	V_{DD} open, Shorted to V_{SS} or +5V (1)	C _{IN}			10	pF

Conditions : Temperature: -55°C to +85°C (SES) : -55°C to +125°C (SMS); V_{DD} = +5V \pm 10% or 3.3V \pm 10%						
PARAMETER	TEST CONDITION	SYMBOL	MIN	NOM	MAX	UNITS
Input Capacitance IN _A or IN _B to V _{SS}	V _{DD} open, Shorted to V _{SS} or +5V (1)	Cs			10	pF
	TEST IN	PUTS				
Logic 0 Voltage		V_{IL}			0.8	V
Logic 1 Voltage		V _{IH}	2.0			V
Logic 0 Current	V _{IL} = 0.8	I _{IL}			20	μA
Logic 1 Current	V _{IH} = 2.0	I _{IH}			20	μA
	LOGIC OU	ITPUTS		I.	l .	l .
OUT A or OUT B	I _{OH} = 5mA (5V Vdd) I _{OH} = 1.5mA (3.3V Vdd) TTL Compatible	V _{OH}	2.4			V
OUT A or OUT B	I_{OL} = 5mA (5V Vdd) I_{OL} = 1.5mA (3.3V Vdd) TTL Compatible	V _{OL}			0.5 0.4	V
OUT A or OUT B	I _{OH} = 100μA CMOS Compatible	V _{OH}	V _{DD} – 50mV			V
OUT A or OUT B	I _{OL} = 100μA CMOS Compatible	V _{OH}			V _{SS} + 50mV	٧
	SUPPLY CI	JRRENT				
V _{DD} Current	Data Rate = 0MHz, A/BIN =open, A/BOUT=open, Vdd = 5.5V or 3.63V	I _{DD}		2.5	5	mA

Notes:

- 1.
- Guaranteed by design, not production tested.

 Current flowing into device is positive. Current flowing out of device is negative. All voltages are with respect to Ground unless otherwise noted. 2.

Table 5 Switching Characteristics

PARAMETER	TEST CONDITION	SYMBOL	MAX	MAX	UNITS
			Vdd 3.3V	Vdd 5V	
INA/B to OUT A/B Prop Delay	TESTA = TESTB = 0 $C_L = 50pF$	t _{LH}	1000	900	ns
INA/B to OUT A/B Prop Delay	TESTA = TESTB = 0 $C_L = 50pF$	t _{HL}	1000	900	ns
Matching of t _{LH} and t _{HL}		Dtp	500	500	ns
OUT A/B rise time	10% to 90%, $C_L = 50pF$	t _r	50	25	ns
OUT A/B fall time	10% to 90%, C _L = 50pF	t _f	50	25	ns
TESTA/B to OUTA/B Prop delay	C _L = 50pF	t _{TOH}	100	60	ns
TESTA/B to OUTA/B Prop delay	C _L = 50pF	t _{TOL}	100	60	ns

Figure 2 ARINC 429 Input to Logic Output Switching Waveform

Figure 4 DO160D Lightning Induced Transient Voltage Waveform #3.

Voc = 600V, Isc = 24A, Frequency =1MHz +-20%

Figure 3 TEST Input to Logic Output Switching Waveform

Figure 5 DO160D Lightning Induced Transient Voltage Waveform #4. Voc = 300V, Isc = 60A

LIGHTNING TRANSIENT NOTES:

- 1. Voc = Peak Open Circuit Voltage available at the calibration point.
- 2. Isc = Peak Short Circuit Current available at the calibration point.
- 3. Amplitude tolerances: +10%, -0%.
- 4. The ratio of Voc to Isc is the generator source impedance to be used for generating the waveforms.

Figure 6 DO160D Lightning Induced Transient Voltage Waveform #5. Voc = 300V, Isc = 300A

PACKAGE DESCRIPTION

8 Lead NB SOIC

Table 6 - 8 Lead NB SOIC Package Characteristics

Table 6: Package Characteristics Table			
PACKAGE TYPE	16 Lead SOIC Narrow Body, Green		
REFERENCE	8L NB SOIC G		
THERMAL RESISTANCE:			
θ_{JA} (4 layer PCB with Power Planes)	55 °C/W		
$\theta_{ m JC}$	24 °C/W		
JEDEC MOISTURE SENSITIVITY LEVEL (MSL)	MSL 1 / 260°C		
LEAD FINISH MATERIAL / JEDEC Pb-free CODE	NiPdAu e4		
Pb-Free DESIGNATION	RoHS Compliant		
JEDEC REFERENCE	MS-012-AC		

Figure 7 Mechanical Outline, 8L NB SOIC G – Green Package

PROCESS FLOW

Table 7 Process Flow

PROCESS	PLASTIC	PLASTIC
STEP	STANDARD	BURN-IN
PRE-BURN-IN Electrical Test	N/A	YES
BURN IN (1)		
	N/A	96hrs @ +125 °C
FINAL ELECTRICAL TEST,		
Room Temperature	100%	100%
FINAL ELECTRICAL TEST,	100% @	100% @
High Temperature	+85 or +125°C	+85 or +125°C
FINAL ELECTRICAL TEST,	0.65% AQL	0.65% AQL
Low Temperature	@ -55°C	@ -55°C
NOTES:		

ORDERING INFORMATION

Table 8 Ordering Information

DEI PN	PART MARKING	TEMPERATURE RANGE	BURN-IN	PACKAGE TYPE
DEI1041-SES - G	DEI1041	-55/+85 °C	NO	8L NB SOIC G
	E4			
DEI1041-SMS-G	DE1041M	-55/+125 °C	NO	8L NB SOIC G
	E4			
DEI1041-SMB-G	DE1041B	-55/+125 °C	YES	8L NB SOIC G
	E4			

NOTES:

DEI reserves the right to make changes to any products or specifications herein. DEI makes no warranty, representation, or guarantee regarding suitability of its products for any particular purpose.

^{1.} Burn-in conditions: 125°C, 96 hrs, Vcc = 5.0V Inputs = 0V, Outputs open.

^{1.} All packages marked with Lot Code and Date Code. "E4" after Date Code denotes Pb Free category.