Cinematiche Dirette Robot

Alfano Emanuele Badalamenti Filippo Vitti Gabriele

4 novembre 2019

Metodo di Denavit Hartenberg

Il metodo di D-H standardizza un metodo per ottenere la cinematica diretta di un qualunque robot 3D.

Conoscendo uno schema dei giunti di un robot, tutti presi a 1 DOF (Degree of Freedom) è possibile ricostruire qualsiasi struttura.

Posizionando i vari sistemi di riferimento con la procedura di D-H è possibile automatizzare il processo di ottenimento della cinematica diretta. Considerando due [[giunto (meccanica)|giunti]] consecutivi:

- L'asse Z_{i-1} si sceglie coincidente con l'asse del giunto i, l'asse Z_i coincidente con l'asse del giunto
- L'asse X_i deve essere scelto in base a come si posizionano tra di loro gli assi $i \in i-1$:
 - ightharpoonup Se $Z_i \cong Z_{i-1}$ allora \longrightarrow $X_i = Z_{i-1} \perp Z_i$ e orientamento a piacere.
 - \rightarrow Se $Z_i \parallel Z_{i-1}$ ma non sovrapposto $\longrightarrow X_i = Z_{i-1} \perp Z_i$ dove in questo caso è la prosecuzione di uno dei segmenti di minima distanza.
 - \rightarrow Se Z_i coincide in un punto soltanto con Z_{i-1} , quello sarà $O_i \longrightarrow$ $X_i = Z_{i-1} \perp Z_i$
 - \rightarrow Se Z_i è sghemba con Z_{i-1} , O_i è preso lungo il segmento di minima distanza che li unisce e X_i si trova lungo questo asse

 \bullet I restanti assi Y_{n-1} e Y_n sono scelti in modo da completare le rispettive terne affinché diventino destre.

Una volta fatto ciò bisogna risalire i sistemi di riferimento portando a far coincidere il sistema R_{i-1} con il sistema R_i muovendo nell'ordine le variabili: θ , d, α , a e salvando nella tabella i valori:

 $A_z(\theta,d)$ $A_x(\alpha,a)$ R_1

A questo punto basterà montare tra di loro le varie matrici di avvitamento

ottenendo la matrice della cinematica diretta: $Q_{0,n} = A_z(\theta, d)_{R_1} \cdot A_x(\alpha, a)_{R_1} \cdot A_z(\theta, d)_{R_2} \cdot A_z(\alpha, a)_{R_2} \cdot \dots \cdot A_z(\theta, d)_{R_n} \cdot A_z(\alpha, a)_{R_n}$

Cartesiano

	$A_z(\theta,d)$		$A_x(\alpha,a)$	
R_1	0	q_1	$-\frac{\pi}{2}$	0
R_2	$-\frac{\pi}{2}$	q_2	$-\frac{\pi}{2}$	0
R_3	0	q_3	0	0

$$\begin{pmatrix} 0 & 0 & 1 & q_3 \\ 0 & -1 & 0 & q_2 \\ 1 & 0 & 0 & q_1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Cilindrico

	A_z	(θ, d)	$A_x(\alpha,a)$		
R_1	q_1	0	0	D_1	
R_2	q_2	0	0	D_2	
R_3	q_3	0	0	D_3	

$$\begin{pmatrix}
\cos q_1 & 0 & -\sin q_1 & -\sin q_1 q_3 \\
\sin q_1 & 0 & \cos q_1 & \cos q_1 q_3 \\
0 & -1 & 0 & q_2 + L_1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

RRR Planare

 $\begin{pmatrix} -\cos q_1 \sin q_2 \sin q_3 + \sin q_1 \cos q_2 \sin q_3 + \sin q_1 \sin q_2 \cos q_3 - \cos q_1 \cos q_2 \cos q_3 & \sin q_1 \sin q_2 \sin q_3 - \cos q_1 \sin q_2 \cos q_3 - \sin q_1 \cos q_2 \cos q_3 \\ -(\sin q_1 \sin q_2 \sin q_3 - \cos q_1 \cos q_2 \sin q_3 - \cos q_1 \sin q_2 \cos q_3 - \sin q_1 \cos q_2 \cos q_3) & -(\cos q_1 \sin q_2 \sin q_3 + \sin q_1 \cos q_2 \sin q_3 + \sin q_1 \sin q_2 \cos q_3 - \cos q_1 \cos q_2 \cos q_3) \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Sferico di Stanford

Antropomorfo

Cilindrico con Polso

	$A_z(\theta, d)$		$A_x(\alpha, a)$	
R_1	q_1	0	0	D_1
R_2	q_2	0	0	D_2
R_3	q_3	0	0	D_3

RRR Planare con Polso

Sferico 1 con Polso

Sferico di Stanford con Polso

	$A_z(\theta, d)$		$A_x(\alpha, a)$	
R_1	q_1	0	0	D_1
R_2	q_2	0	0	D_2
R_3	q_3	0	0	D_3

Antropomorfo con Polso

