Diffusion models in Robotics

RRC Summer School - 2025

Topics of discussion

- Issues with prior Behavior Cloning approaches
- Diffusion Policy and effective way of training them
- Diffusion for Motion Planning (Review of classifier Guidance and EDMP)
- Diffusion for World modeling and usefulness in Manipulation.
- Autoregressive models vs Diffusion Models. Can we combine strengths of both?

What's the issue with prior models?

- Struggles during transitions between primitives.
 - Overfit to small actions (idle actions).
 - High multimodality at those transitions.

Reference: https://diffusion-policy.cs.columbia.edu/

Multimodal behaviors

 Not good at capturing multimodal distributions. Multiple behaviors from same state.

Reference: https://diffusion-policy.cs.columbia.edu/

How to adapt diffusion models for learning behaviors?

Denoising actions with attention to past observations and diffusion timestep.

Does classifier free guidance help in control?

$$\hat{\mathbf{z}}_{\tau} = (1+w)\epsilon_{\text{cond.}}(\mathbf{a}_{\tau-1},\mathbf{o},\tau) - w\epsilon_{\text{uncond.}}(\mathbf{a}_{\tau-1},\tau).$$

Figure 3: We vary the CFG 'weight' parameter (w value in Eq. 3) during sampling in the Arcade Claw environment. CFG encourages selection of actions that were specific to an observation (maximising $p(\mathbf{o}|\mathbf{a})$). This can lead to less common trajectories being sampled more often.

Diffusion policy

Predicts the gradient of action distribution (score fn).

Reference: https://diffusion-policy.cs.columbia.edu/

Architecture

Closed loop with receding horizon execution.

What components matter in diffusion policy?

- Observation sequence is crucial when prediction is in absolute mode.
 (absolute end eff pose). Doesn't matter a lot for delta mode.
- Action sequence prediction has a big impact in performance and smoothness. This helps in temporal consistency and also robust to idle actions.

Reference: https://diffusion-policy.cs.columbia.edu/

FiLM conditioning in DP

- Applies affine transformation to various layer outputs. Scale and shift parameters are learned which depends on context.
- Adapts it to various tasks based on context. Better for complex tasks.

Reference: https://diffusion-policy.cs.columbia.edu/

Guidance in diffusion models

Classifier based guidance

Note that classifier works on noisy images/ predicted x_0. Needs to be trained.

Reference: https://sander.ai/2023/08/28/geometry.html

- Cost-guidance guides the prior towards collision-free trajectories
- A single cost does not capture variations in scenes

EDMP: Ensemble-of-costs-guided Diffusion for Motion Planning

EDMP vs MPINETS

Object-In-Hand (OIH)

Diffusion for world modelling (Visual details matter)

DIAMOND's diffusion world model can also be trained to simulate 3D environments, such as CounterStrike: Global Offensive (CS:GO).

Capture the future state distribution

$$p(x_{t+1} \mid x_{\leq t}, a_{\leq t})$$

Uses EDM instead of DDPM.

Reference: https://diamond-wm.github.io/

Training world model

Procedure update_diffusion_model():

```
Sample sequence (\mathbf{x}_{t-L+1}^0, a_{t-L+1}, \dots, \mathbf{x}_t^0, a_t, \mathbf{x}_{t+1}^0) \sim \mathcal{D}

Sample \log(\sigma) \sim \mathcal{N}(P_{mean}, P_{std}^2) // log-normal sigma distribution from EDM Define \tau := \sigma // default identity schedule from EDM Sample \mathbf{x}_{t+1}^{\tau} \sim \mathcal{N}(\mathbf{x}_{t+1}^0, \sigma^2 \mathbf{I}) // Add independent Gaussian noise Compute \hat{\mathbf{x}}_{t+1}^0 = \mathbf{D}_{\theta}(\mathbf{x}_{t+1}^{\tau}, \tau, \mathbf{x}_{t-L+1}^0, a_{t-L+1}, \dots, \mathbf{x}_t^0, a_t) Compute reconstruction loss \mathcal{L}(\theta) = \|\hat{\mathbf{x}}_{t+1}^0 - \mathbf{x}_{t+1}^0\|^2 Update \mathbf{D}_{\theta}
```

$$L(heta) = \mathbb{E} \|D_{ heta}(x_{t+1}^{ au}, au, x_{\leq t}^{0}, a_{\leq t}) - x_{t+1}^{0}\|^{2}$$

Reference: https://diamond-wm.github.io/

Training RL agent within world model

```
Algorithm 1: DIAMOND
Procedure training_loop():
   for epochs do
      collect_experience(steps_collect)
      for steps_diffusion_model do
         update_diffusion_model()
      for steps_reward_end_model do
         update_reward_end_model()
      for steps_actor_critic do
         update_actor_critic()
```


Fig. 3: **Iterative Training of DPA** (π_{θ}) and **DiffDreamer** (\mathcal{M}_{ϕ}) : π_{θ} and \mathcal{M}_{ϕ} are trained alternately, with one fixed while the other updates. \mathcal{M}_{ϕ} learns from π_{θ} rollouts in the simulator, while π_{θ} is optimized using a frozen \mathcal{M}_{ϕ} . This iterative process ensures synchronization and improves training stability.

Inference

Rollout is autoregressive in imagination

Reference: https://diamond-wm.github.io/

What if there are no labeled actions?

Actions needs to be learned in unsupervised way.

Video Tokenizer (VQVAE model with 1024 tokens)

Reference: https://sites.google.com/view/genie-2024/home

Genie

Latent action model (VQVAE model with 8 tokens)

Dynamics model

Reference: https://sites.google.com/view/genie-2024/home

Generating interactive env through Genie

Generate autoregressively from just a single frame

Reference: https://sites.google.com/view/genie-2024/home

Can these video world models help generalization?

 Can be used to generate neural trajectories. But requires LAM/ Inverse dynamics model trained separately.

Reference: https://research.nvidia.com/labs/gear/dreamgen/

DreamGen

• Finally train policy (GROOT is base policy) with real data + neural trajectories

Reference: https://research.nvidia.com/labs/gear/dreamgen/

DreamGen..

Generalization to new settings and tasks

Table 1: Success Rate (%) Across New Behaviors (14 tasks) and Environments (13 tasks).

	Seen Environments, Novel Behaviors														
Model	Open Microwave	Open Macbook	Close Lunchbox	Hit Tambourin	Hit e Keyboard	Grab button		Water flowers	Light Candle	Use Vacuum	Iron shirt	Take Spoo	on Unrol mat	Mou Mou	Average
GR00T N1 w/ DreamGen	0 23	0 45	0 10	5 15	0 90	45 75	40 55	50 95	10 15	0 55	0 20	7 17	0 55	0 35	11.2 43.2
Examples							160			1	4				
	Novel Environments, Seen Behaviors							1	Novel Envi	ironments,					
Model	Pick up Tangerine	Box sandwich	Weigh the Orange	Put cup in trash		t sauce n tray	Water Flowers	Lift Basket	Swirl Arc Spoor			Close soup container	Uncover Pot	Cover Pot	Average
GR00T N1 w/ DreamGen	30	0 10	0 20	0 45	0 35	0 45	0 15	0 55	0 15	0		0 55	0 30	0 35	0.0 28.5
Examples								3							NEAVO

Reference: https://research.nvidia.com/labs/gear/dreamgen/

Autoregressive vs diffusion

- Autoregressive models like causal transformers give consistent frames/predictions into future. But are prone to compounding errors and guidance is hard.
- Full sequence diffusion models lack consistency but leverages strengths of guidance.

Reference: https://boyuan.space/diffusion-forcing/

Diffusion forcing

Noise as masking

Training is done such that model is robust to any sampling scheme during inference.

Reference: https://boyuan.space/diffusion-forcing/