Logique, ensembles et raisonnements - Partie 2

Exercice 1.

Remplacer les pointillés par le symbole le plus adapté parmi \in , \notin , \subset , \supset .

1.
$$[3,5]$$
 $\{x \in \mathbb{R} \mid 2 \le x \le 7\}$

2. 2
$$\dots \{x \in \mathbb{R} \mid x^2 \ge 5\}$$

3.
$$\pi = 3.14...$$
 $\mathbb{R} \setminus \mathbb{Q}$

4.
$$[1,9]$$
 $[1,4] \cup [5,9]$

5.
$$\{0\}$$
 \mathbb{R}_+

6. 0
$$\mathbb{Z} \setminus \mathbb{N}$$

7.
$$[-7,5] \cap [-2,8]$$
 $[-1,1]$

Exercice 2.

Déterminer le domaine de définition de la fonction $x \mapsto f(x)$ dans chacun des cas suivants :

1.
$$f(x) = \sqrt{-x+3}$$

2.
$$f(x) = \frac{1}{x} + \frac{1}{x^2 - 1}$$

3.
$$f(x) = \exp(x^2 + 1)$$

4.
$$f(x) = \ln(5x + 8)$$

5.
$$f(x) = \ln((x-1)(x+2))$$

6.
$$f(x) = \sqrt{x^2 + 3x - 2}$$

Exercice 3.

Soient $f, g : \mathbb{R} \to \mathbb{R}$ définies par f(x) = 2x + 1 et $g(x) = x^2 - 3x$.

- 1. Déterminer l'expression de la fonction $f \circ g$.
- 2. Déterminer l'expression de la fonction $g \circ f$.
- 3. Montrer que $(g \circ f)(\frac{-1}{2}) = 0$ et en déduire, pour $x \in \mathbb{R}$, la factorisation de l'expression $(g \circ f)(x)$.

Exercice 4.

On veut déterminer la bijection réciproque de la fonction f définie par :

$$f(x) = \frac{2x-1}{x-3}.$$

- 1. Déterminer le domaine de définition de f.
- 2. Résoudre l'équation y = f(x), c'est-à-dire déterminer x en fonction de y. Indication : exprimer x sous la forme $x = \frac{ay + b}{cy + d}$. Quelle valeur y_0 de y faut-il exclure?
- 3. On définit $g(y) = \frac{ay+b}{cy+d}$ (où a,b,c,d ont été déterminés à la question précédente). Montrer que g est la bijection réciproque de f, c'est-à-dire

$$(g \circ f)(x) = x$$
 pour tout $x \neq 3$

et

$$(f \circ g)(y) = y$$
 pour tout $y \neq y_0$.