Homework: Query Optimization (w9)

- Rahul Kumar Nalubandhu

For the four relations in the following table, find the best join order according to the dynamic programming algorithm used in System-R. You should give the dynamic programming table entries for evaluate the join orders. The cost of each join is the number of I/O accesses the database system performs to execute the join. Assume that the database system uses two-pass sort-merge join algorithm to perform the join operation. Each block contains 4 tuples and tuples of all relations have the same size. We are interested only in left-deep join trees. Note that you should use the System-R optimizer formula to compute the size of each join output (2 points).

R(A,B,C)	S(B,C)	W(B,D)	U(A,D)
T(R)=4000	T(S)=3000	T(W)=2000	T(U)=1000
V(R,A) = 100			V(U,A) = 100
V(R,B) = 200	V(S,B) = 100	V(W,B) = 100	
V(R,C) = 100	V(S,C) = 300		
		V(W,D) = 50	V(U,D) = 100

Solution:

So as per the question we have each block contains 4 tuples and tuples of all relations have the same size. So, the number of blocks for each relation can be calculated as:

$$B(R) = \frac{T(R)}{4} = \frac{4000}{4} = 1000,$$

$$B(S) = \frac{T(S)}{4} = \frac{3000}{4} = 750,$$

$$B(W) = \frac{T(W)}{4} = \frac{2000}{4} = 500,$$

$$B(U) = \frac{T(U)}{4} = \frac{1000}{4} = 250.$$

For Size:

now for calculating the size for relation R & S

$$T(R \bowtie B, CS) = T(R) * T(S) / \max(V(R, B), V(S, B)) \max(V(R, C), V(S, C))$$

Therefore, size of join R,S =
$$\frac{4000*3000}{200*300}$$
 = 200.(200/4 = 50 blocks)

For Cost:

The cost for the join of relations R and S can be calculated as

$$5(B(R) + B(S)) = 5(1000 + 750) = 8750$$

The overall expense of merging three related entities can be determined by adding the cost of a binary join and the expense of merging the result of the binary join with a third entity. If the intermediate entity isn't arranged according to the attribute used for merging, a two-pass mergesort is employed to sort it.

For relations R, S, W the cost is:

Join S and R based on B and C, so the result will be already sorted on B. So, there is no need to sort to join with W.

Now For relations R, S, U we can see there is no common attribute to these relations hence in relation U we have A, but relation S and R are not sorted on A. So, it should sort result of the join SR based on A to join it with relation U using the sort-merge algorithm.

The cheapest plan to join all relations is $((S \bowtie R) \bowtie U) \bowtie W$. The results of $(S \bowtie R) \bowtie U)$ is not. sorted based on B or D.

hence the cost is
$$5B(W) + 5B((S \bowtie R) \bowtie U) + c((S \bowtie R) \bowtie U)) = 15,250$$
 and the size is

$$T(W) * T((S \bowtie R) \bowtie U))/\max(V(W,B),V((S\bowtie R)\bowtie U),B))\max(V(W,D),V((S\bowtie R)\bowtie U),D))$$

$$= \frac{2000*2000}{100*100} = 400 (400/4 = 100 \text{ blocks})$$

So, by doing this we have lot of plans, but we must consider with the minimum cost so for computing the join of R, S, W, U we select the plan $((S \bowtie R) \bowtie U) \bowtie W)$.

Possible Queries	Size(blocks)	Cost	Plan
R, S	50	8750	S⋈R
R, U	10,000	6250	U⋈R
R, W	10,000	7500	W⋈R
S, U	750,000	5000	U⋈S
S, W	15,000	6250	W⋈S
W, U	5000	3750	U⋈W
R, S, U	500	10,250	$(S \bowtie R) \bowtie U$
R, S, W	1,000	11,350	$(S \bowtie R) \bowtie W$
R, W, U	1,000	33,750	$(U \bowtie W) \bowtie R$
S, W, U	15,000	32,500	$(U \bowtie W) \bowtie S$
R, S, W, U	100	15,250	$((S\bowtie R)\bowtie U)\bowtie W$