Решить смешанную задачу для неоднородного уравнения теплопроводности с нулевыми граничными условиями $u(0,t)=u(\pi,t)=0$ (1 балл)

1. $u_t = \frac{1}{4}u_{xx} + 5\cos 2t\sin 2x$,	$u(x, 0) = \sin 4x, 0 < t < \infty, 0 < x < \pi$
2. $u_t = \frac{1}{9}u_{xx} + 5\sin 2t\sin 3x$,	$u(x,0) = 2\sin 9x$, $0 < t < \infty$, $0 < x < \pi$
3. $u_t = \frac{1}{16}u_{xx} + 10\cos 3t\sin 4x$,	$u(x,0) = 3\sin 16x, 0 < t < \infty, 0 < x < \pi$
4. $u_t = \frac{1}{25}u_{xx} + 10\sin 3t\sin 5x$,	$u(x,0) = 4\sin 10x, 0 < t < \infty, 0 < x < \pi$
5. $u_t = \frac{1}{36}u_{xx} + 17\sin 4t\sin 2x$,	$u(x,0) = 5\sin 18x, 0 < t < \infty, 0 < x < \pi$
6. $u_t = \frac{1}{4}u_{xx} + 17\sin 4t\sin 2x$,	$u(x,0) = 6\sin 8x, 0 < t < \infty, 0 < x < \pi$
7. $u_t = \frac{1}{9}u_{xx} + 26\cos 5t\sin 3x$,	$u(x,0) = 7\sin 6x, 0 < t < \infty, 0 < x < \pi$
8. $u_t = \frac{1}{16}u_{xx} + 26\sin 5t\sin 4x$,	$u(x,0) = 8\sin 12x, 0 < t < \infty, 0 < x < \pi$
9. $u_t = \frac{1}{25}u_{xx} + 37\cos 6t\sin 5x$,	$u(x,0) = 9\sin 20x, 0 < t < \infty, 0 < x < \pi$
10. $u_t = \frac{1}{36}u_{xx} + 37\sin 6t\sin 6x$,	$u(x,0) = 10\sin 12x, 0 < t < \infty, 0 < x < \pi$
11. $u_t = \frac{1}{4}u_{xx} + 26\cos 5t\sin 2x$,	$u(x,0) = 11\sin 6x, 0 < t < \infty, 0 < x < \pi$
12. $u_t = \frac{1}{9}u_{xx} + 26\sin 5t\sin 3x$,	$u(x,0) = 12\sin 12x, 0 < t < \infty, 0 < x < \pi$
13. $u_t = \frac{1}{16}u_{xx} + 17\cos 4t\sin 4x$,	$u(x,0) = 13\sin 8x, 0 < t < \infty, 0 < x < \pi$
14. $u_t = \frac{1}{25}u_{xx} + 17\sin 4t\sin 5x$,	$u(x,0) = 14\sin 15x, 0 < t < \infty, 0 < x < \pi$
15. $u_t = \frac{1}{36}u_{xx} + 10\cos 3t\sin 6x$,	$u(x,0) = 15\sin 18x, 0 < t < \infty, 0 < x < \pi$
16. $u_t = \frac{1}{4}u_{xx} + 10\sin 3t\sin 2x$,	$u(x,0) = 16\sin 4x, 0 < t < \infty, 0 < x < \pi$
17. $u_t = \frac{1}{9}u_{xx} + 5\cos 2t\sin 3x$,	$u(x,0) = 17\sin 9x, 0 < t < \infty, 0 < x < \pi$
18. $u_t = \frac{1}{16}u_{xx} + 5\sin 2t\sin 4x$,	$u(x,0) = 18\sin 16x, 0 < t < \infty, 0 < x < \pi$
19. $u_t = \frac{1}{25}u_{xx} + 10\cos 3t\sin 5x$,	$u(x,0) = 19\sin 10x, 0 < t < \infty, 0 < x < \pi$
$20. \ u_t = \frac{1}{36}u_{xx} + 10\sin 3t\sin 6x,$	$u(x,0) = 20\sin 18x, 0 < t < \infty, 0 < x < \pi$
21. $u_t = \frac{1}{4}u_{xx} + 17\cos 4t\sin 2x$,	$u(x, 0) = 21 \sin 8x, 0 < t < \infty, 0 < x < \pi$
22. $u_t = \frac{1}{9}u_{xx} + 17\sin 4t\sin 3x$,	$u(x,0) = 22\sin 6x, 0 < t < \infty, 0 < x < \pi$
23. $u_t = \frac{1}{16}u_{xx} + 26\cos 5t\sin 4x$,	$u(x,0) = 23\sin 12x$, $0 < t < \infty$, $0 < x < \pi$
24. $u_t = \frac{1}{25}u_{xx} + 26\cos 5t\sin 5x$,	$u(x,0) = 24\sin 20x$, $0 < t < \infty$, $0 < x < \pi$
25. $u_t = \frac{1}{36}u_{xx} + 37\cos 6t\sin 6x$,	$u(x,0) = 25\sin 12x$, $0 < t < \infty$, $0 < x < \pi$
$26. \ u_t = \frac{1}{4}u_{xx} + 37\sin 6t\sin 2x,$	$u(x,0) = 26\sin 12x$, $0 < t < \infty$, $0 < x < \pi$
$27. \ u_t = \frac{1}{16}u_{xx} + 26\sin 5t\sin 3x,$	$u(x,0) = 27\sin 12x, 0 < t < \infty, 0 < x < \pi$
$28. \ u_t = \frac{1}{9}u_{xx} + 26\cos 5t\sin 4x,$	$u(x,0) = 28\sin 8x, 0 < t < \infty, 0 < x < \pi$
20 . 1	
29. $u_t = \frac{1}{25}u_{xx} + 17 \sin 4t \sin 6x$,	$u(x,0) = 29\sin 18x, 0 < t < \infty, 0 < x < \pi$

Решить смешанную задачу для однородного волнового уравнения с неоднородными начальными и граничными условиями (1 балл)

1.
$$u_{tt} = 9u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = -8$, $u(2,t) = 2$, $u(x,0) = \sin 6\pi x - 8 + 5x$, $u_t(x,0) = 0$.

2.
$$u_{tt} = 9u_{xx}$$
, $0 < t < \infty$, $0 < x < 1$
 $u(0,t) = 7$, $u(1,t) = 2$, $u(x,0) = 7 - 5x$, $u_t(x,0) = 12\pi \sin 4\pi x$.

3.
$$u_{tt} = 9u_{xx}$$
, $0 < t < \infty$, $0 < x < 3$
 $u(0,t) = -6$, $u(3,t) = 6$, $u(x,0) = 3\sin 3\pi x - 6 + 4x$, $u_t(x,0) = 0$.

4.
$$u_{tt} = 9u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = 5t$, $u(2,t) = -3t$, $u(x,0) = 0$, $u_t(x,0) = 3\pi \sin 4\pi x + 5 - 4x$.

5.
$$u_{tt} = 16u_{xx}$$
, $0 < t < \infty$, $0 < x < 1$
 $u(0,t) = -4$, $u(1,t) = -1$, $u(x,0) = 5\sin 2\pi x - 4 + 3x$, $u_t(x,0) = 0$.

6.
$$u_{tt} = 16u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = 3$, $u(2,t) = 7$, $u(x,0) = 3 + 2x$, $u_t(x,0) = 12\pi \sin 3\pi x$.

7.
$$u_{tt} = 16u_{xx}$$
, $0 < t < \infty$, $0 < x < 3$
 $u(0,t) = -2$, $u(3,t) = 1$, $u(x,0) = 7\sin 4\pi x - 2 + x$, $u_t(x,0) = 0$.

8.
$$u_{tt} = 16u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = t$, $u(2,t) = -t$, $u(x,0) = 0$, $u_t(x,0) = 28\pi \sin 7\pi x + 1 - x$.

9.
$$u_{tt} = 25u_{xx}$$
, $0 < t < \infty$, $0 < x < 1$
 $u(0,t) = -1$, $u(1,t) = -3$, $u(x,0) = 9\sin 3\pi x - 1 - 2x$, $u_t(x,0) = 0$.

10.
$$u_{tt} = 25u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = 3$, $u(2,t) = -5$, $u(x,0) = 3 - 4x$, $u_t(x,0) = 20\pi \sin 4\pi x$.

11.
$$u_{tt} = 25u_{xx}$$
, $0 < t < \infty$, $0 < x < 1$
 $u(0,t) = -5$, $u(1,t) = 1$, $u(x,0) = 11\sin 3\pi x - 5 + 6x$, $u_t(x,0) = 0$.

12.
$$u_{tt} = 25u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = 7t$, $u(2,t) = -3t$, $u(x,0) = 0$, $u_t(x,0) = 10\pi \sin 2\pi x + 7 - 5x$.

13.
$$u_{tt} = 36u_{xx}$$
, $0 < t < \infty$, $0 < x < 3$
 $u(0,t) = -9$, $u(3,t) = 3$, $u(x,0) = 13\sin 3\pi x - 9 + 4x$, $u_t(x,0) = 0$.

14.
$$u_{tt} = 36u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = 8$, $u(2,t) = 2$, $u(x,0) = 8 - 3x$, $u_t(x,0) = 18\pi \sin 3\pi x$.

15.
$$u_{tt} = 36u_{xx}$$
, $0 < t < \infty$, $0 < x < 3$
 $u(0,t) = -6$, $u(3,t) = 0$, $u(x,0) = 15\sin 3\pi x - 6 + 2x$, $u_t(x,0) = 0$.

16.
$$u_{tt} = 36u_{xx}$$
, $0 < t < \infty$, $0 < x < 4$
 $u(0,t) = 4t$, $u(4,t) = 8t$, $u(x,0) = 0$, $u_t(x,0) = 24\pi \sin 4\pi x + 4 + x$.

17.
$$u_{tt} = 49u_{xx}$$
, $0 < t < \infty$, $0 < x < 3$
 $u(0,t) = -2$, $u(3,t) = -5$, $u(x,0) = 17\sin 3\pi x - 2 - x$, $u_t(x,0) = 0$.

18.
$$u_{tt} = 49u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = 3$, $u(2,t) = -1$, $u(x,0) = 3 - 2x$, $u_t(x,0) = 35\pi \sin 5\pi x$.

19.
$$u_{tt} = 49u_{xx}$$
, $0 < t < \infty$, $0 < x < 1$
 $u(0,t) = -1$, $u(1,t) = -4$, $u(x,0) = 19\sin 7\pi x - 1 - 3x$, $u_t(x,0) = 0$.

20.
$$u_{tt} = 49u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = 2t$, $u(2,t) = -6t$, $u(x,0) = 0$, $u_t(x,0) = 28\pi \sin 4\pi x + 2 - 4x$.

21.
$$u_{tt} = 64u_{xx}$$
, $0 < t < \infty$, $0 < x < 1$
 $u(0,t) = -4$, $u(1,t) = -9$, $u(x,0) = 21\sin 3\pi x - 4 - 5x$, $u_t(x,0) = 0$.

22.
$$u_{tt} = 64u_{xx}$$
, $0 < t < \infty$, $0 < x < 3$
 $u(0,t) = 2$, $u(3,t) = -7$, $u(x,0) = 2 - 3x$, $u_t(x,0) = 24\pi \sin 3\pi x$.

23.
$$u_{tt} = 64u_{xx}$$
, $0 < t < \infty$, $0 < x < 1$
 $u(0,t) = -3$, $u(1,t) = 1$, $u(x,0) = 23\sin 2\pi x - 3 + 4x$, $u_t(x,0) = 0$.

24.
$$u_{tt} = 64u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = 4t$, $u(2,t) = -6t$, $u(x,0) = 0$, $u_t(x,0) = 32\pi \sin 4\pi x + 4 - 5x$.

25.
$$u_{tt} = 81u_{xx}$$
, $0 < t < \infty$, $0 < x < 3$
 $u(0,t) = -5$, $u(3,t) = 1$, $u(x,0) = 25\sin 3\pi x - 5 + 2x$, $u_t(x,0) = 0$.

26.
$$u_{tt} = 81u_{xx}$$
, $0 < t < \infty$, $0 < x < 4$
 $u(0,t) = 6$, $u(4,t) = -2$, $u(x,0) = 6 - 2x$, $u_t(x,0) = 27\pi \sin 3\pi x$.

27.
$$u_{tt} = 81u_{xx}$$
, $0 < t < \infty$, $0 < x < 3$
 $u(0,t) = -7$, $u(3,t) = 2$, $u(x,0) = 27\sin 2\pi x - 7 + 3x$, $u_t(x,0) = 0$.

28.
$$u_{tt} = 81u_{xx}$$
, $0 < t < \infty$, $0 < x < 4$
 $u(0,t) = 8t$, $u(4,t) = -4t$, $u(x,0) = 0$, $u_t(x,0) = 27\pi \sin 3\pi x + 8 - 3x$.

29.
$$u_{tt} = 4u_{xx}$$
, $0 < t < \infty$, $0 < x < 2$
 $u(0,t) = -9$, $u(2,t) = 1$, $u(x,0) = 29\sin 4\pi x - 9 + 5x$, $u_t(x,0) = 0$.

30.
$$u_{tt} = 4u_{xx}$$
, $0 < t < \infty$, $0 < x < 3$
 $u(0,t) = 9$, $u(3,t) = -3$, $u(x,0) = 9 - 4x$, $u_t(x,0) = 10\pi \sin 5\pi x$.

Решить краевую задачу для уравнения Лапласа в круге. (1 балл)

1.
$$\begin{cases} \Delta u = 0, & 0 \leqslant r < 2, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = 2\cos^3\varphi - \sin^3\varphi + \sin\varphi. \end{cases}$$

3.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 4, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=4} = \cos^3 \varphi + 4\sin^3 \varphi + \sin^2 \varphi. \end{cases}$$

5.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 2, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=2} = 2\cos^3\varphi + \sin\varphi. \end{cases}$$

7.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 3, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=3} = 3\sin^3\varphi - \cos^3\varphi + \sin\varphi. \end{cases}$$

9.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 1, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=1} = -4\cos^3\varphi - \sin^3\varphi + 2\sin\varphi. \end{cases}$$

11.
$$\begin{cases} \Delta u = 0, & 0 \leqslant r < 3, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r|_{r=3} = \sin^3 \varphi - \cos^3 \varphi + 3\sin \varphi. \end{cases}$$

13.
$$\begin{cases} \Delta u = 0, & 0 \le r < 4, & 0 \le \varphi < 2\pi; \\ u'_r|_{r=4} = 2\cos^3\varphi + 2\sin^3\varphi + 2\sin\varphi. \end{cases}$$

15.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 2, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = 4\cos^3\varphi - 2\sin^3\varphi + \cos^2\varphi. \end{cases}$$

17.
$$\begin{cases} \Delta u = 0, & 0 \leqslant r < 4, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=4} = 2\cos^2\varphi - \sin^3\varphi + \cos\varphi. \end{cases}$$

19.
$$\begin{cases} \Delta u = 0, & 0 \leqslant r < 2, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = 2\cos^3\varphi + 4\sin^3\varphi + 2\sin\varphi. \end{cases}$$

21.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 3, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=3} = \cos^3 \varphi + \sin^3 \varphi + \sin^2 \varphi. \end{cases}$$

23.
$$\begin{cases} \Delta u = 0, & 0 \leqslant r < 5, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=5} = -\cos^3 \varphi - \sin^3 \varphi + \cos \varphi. \end{cases}$$

25.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 1, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r|_{r=1} = 2\cos^3\varphi - \sin^3\varphi + 3\sin\varphi. \end{cases}$$

27.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 2, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = \cos^3 \varphi + \sin^3 \varphi + 3\sin^2 \varphi. \end{cases}$$

29.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 3, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=3} = 4\cos^3\varphi + 2\sin^3\varphi + 2\cos\varphi. \end{cases}$$

2.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 1, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=1} = 3\cos^3\varphi + \sin^3\varphi - \sin\varphi. \end{cases}$$

4.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 3, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=3} = 4\sin^3\varphi - \sin^2\varphi + \sin\varphi. \end{cases}$$

6.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 1, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=1} = \cos^3 \varphi - \cos^2 \varphi + \sin \varphi. \end{cases}$$

8.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 4, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=4} = 2\cos^3\varphi + 4\sin^3\varphi - \sin^2\varphi. \end{cases}$$

10.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 2, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = 4\cos^3\varphi - 2\sin^3\varphi - 3\cos\varphi + 2\sin\varphi. \end{cases}$$

12.
$$\begin{cases} \Delta u = 0, & 0 \leqslant r < 6, & 0 \leqslant \varphi < 2\pi; \\ u'_r|_{r=6} = 2\sin^3\varphi - 3\cos^3\varphi + \cos\varphi. \end{cases}$$

14.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 1, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=1} = -\sin^3 \varphi - 2\sin^2 \varphi + 3\sin \varphi. \end{cases}$$

16.
$$\begin{cases} \Delta u = 0, & 0 \leqslant r < 3, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=3} = 2\cos^3\varphi - 4\sin^3\varphi + \cos\varphi. \end{cases}$$

18.
$$\begin{cases} \Delta u = 0, & 0 \leqslant r < 5, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r \big|_{r=5} = 2\sin^3 \varphi - \sin \varphi + 2\cos \varphi. \end{cases}$$

20.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 1, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=1} = 6\sin^3\varphi - \cos^3\varphi + 4\sin\varphi. \end{cases}$$

22.
$$\begin{cases} \Delta u = 0, & 0 \leqslant r < 4, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r|_{r=4} = 4\sin^3\varphi - \sin\varphi - \cos\varphi. \end{cases}$$

24.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 2, \quad 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=2} = 4\cos^3\varphi + 2\sin^3\varphi + \sin\varphi - 3\cos\varphi. \end{cases}$$

26.
$$\begin{cases} \Delta u = 0, & 0 \leqslant r < 1, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=1} = \sin^3 \varphi + 2\sin^2 \varphi - 3\sin \varphi - \cos \varphi. \end{cases}$$

28.
$$\begin{cases} \Delta u = 0, \quad 0 \leqslant r < 5, \quad 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=5} = 4\sin^3\varphi + \sin^2\varphi - \sin\varphi. \end{cases}$$

30.
$$\begin{cases} \Delta u = 0, & 0 \le r < 1, & 0 \le \varphi < 2\pi; \\ u\big|_{r=1} = 4\cos^3\varphi - 4\sin^3\varphi + \cos^2\varphi. \end{cases}$$

Решить краевую задачу для уравнения Гельмгольца в круге. (1 балл)

1.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 2, & 0 \leqslant \varphi < 2\pi; \\ u'_r \big|_{r=2} = 2\cos^3 \varphi - 3\sin \varphi. \end{cases}$$

3.
$$\begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 2, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = 3\cos^3\varphi - \sin\varphi. \end{cases}$$

5.
$$\begin{cases} \Delta u + u = 0, \ 0 \le r < 2, \ 0 \le \varphi < 2\pi; \\ u'_r|_{r=2} = \cos^3 \varphi - 2\sin^3 \varphi. \end{cases}$$

7.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 1, & 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=1} = \cos^2 \varphi - 3\sin \varphi. \end{cases}$$

9.
$$\begin{cases} \Delta u + u = 0, & 0 \le r < 3, & 0 \le \varphi < 2\pi; \\ u\big|_{r=3} = \cos^3 \varphi + \sin^2 \varphi - \cos \varphi. \end{cases}$$

11.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 1, & 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=1} = \cos^2 \varphi - 2\sin \varphi. \end{cases}$$

13.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 2, & 0 \leqslant \varphi < 2\pi; \\ u'_r \big|_{r=2} = \cos^3 \varphi - \sin \varphi. \end{cases}$$

15.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 2, & 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = \cos^3 \varphi - \sin^2 \varphi. \end{cases}$$

17.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 2, & 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=2} = 2\cos^3\varphi - \sin\varphi. \end{cases}$$

$$\textbf{19.} \begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 2, \ 0 \leqslant \varphi < 2\pi; \\ u_r'\big|_{r=2} = 3\cos^3\varphi + 5\cos\varphi. \end{cases}$$

$$\mathbf{21.} \ \begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 1, \ 0 \leqslant \varphi < 2\pi; \\ u_r'\big|_{r=1} = \cos^3 \varphi + \sin^3 \varphi. \end{cases}$$

$$\mathbf{23.} \ \begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 3, \ 0 \leqslant \varphi < 2\pi; \\ \left. u_r' \right|_{r=3} = \cos^3 \varphi - \sin^3 \varphi. \end{cases}$$

25.
$$\begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 2, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = \cos^2 \varphi + 5\sin \varphi. \end{cases}$$

27.
$$\begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 1, \ 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=1} = \cos^2 \varphi + 2\sin \varphi. \end{cases}$$

29.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 2, & 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = \cos^3 \varphi + 2\sin \varphi. \end{cases}$$

2.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 1, & 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=1} = \cos^3 \varphi + \sin \varphi. \end{cases}$$

4.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 3, & 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=3} = \cos^2 \varphi - 3\sin \varphi. \end{cases}$$

6.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 2, & 0 \leqslant \varphi < 2\pi; \\ u'_r|_{r=2} = \sin^3 \varphi + 5\cos \varphi. \end{cases}$$

8.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 2, & 0 \leqslant \varphi < 2\pi; \\ u'_r|_{r=2} = \cos^3 \varphi + \sin \varphi. \end{cases}$$

10.
$$\begin{cases} \Delta u + u = 0, \ 0 \le r < 1, \ 0 \le \varphi < 2\pi; \\ u'_r \big|_{r=1} = \sin^3 \varphi + 3\cos \varphi. \end{cases}$$

12.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 2, & 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = \cos^2 \varphi + 5\sin \varphi. \end{cases}$$

14.
$$\begin{cases} \Delta u + u = 0, \ 0 \le r < 1, \ 0 \le \varphi < 2\pi; \\ u\big|_{r=1} = \cos^2 \varphi - 6\sin^3 \varphi. \end{cases}$$

$$\textbf{16.} \ \begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 3, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=3} = \cos^2 \varphi - 3\sin \varphi. \end{cases}$$

$$\mathbf{18.} \ \begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 2, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = \cos^2\varphi + 5\sin\varphi. \end{cases}$$

20.
$$\begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 2, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = \cos^2 \varphi + 4\sin \varphi. \end{cases}$$

22.
$$\begin{cases} \Delta u + u = 0, & 0 \le r < 2, & 0 \le \varphi < 2\pi; \\ u'_r|_{r=2} = \cos^3 \varphi + 12 \sin^3 \varphi. \end{cases}$$

24.
$$\begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 2, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=2} = \cos^2 \varphi - 3\sin^2 \varphi. \end{cases}$$

$$26. \begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 2, \ 0 \leqslant \varphi < 2\pi; \\ u'_r\big|_{r=2} = \cos^3 \varphi - 2\sin \varphi. \end{cases}$$

28.
$$\begin{cases} \Delta u + u = 0, & 0 \leqslant r < 3, & 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=3} = \sin^2 \varphi - 3\sin \varphi. \end{cases}$$

$$\mathbf{30.} \ \begin{cases} \Delta u + u = 0, \ 0 \leqslant r < 4, \ 0 \leqslant \varphi < 2\pi; \\ u\big|_{r=4} = \sin^2 \varphi + 6\sin^3 \varphi. \end{cases}$$