

## **Pybullet Simulator**

## Info



- Due date: TBD
- Presentation date: TBD, ~10 min
- You must submit the full code and ppt file to PLMS.
- Please demonstrate the simulator during your presentation.

## Task

- Generate circular trajectory
  - > Arbitrary center, radius, position and orientation.
  - $\triangleright$  Tracking time: T (It means you need to tracking path with arbitrary constant velocity)
- Null motion
  - > Joint limit avoidance
  - Manipulability maximization
  - Potential function minimization:  $\sqrt{\dot{q}_1^2 + \cdots + \dot{q}_n^2}$
- Plotting
  - $ightharpoonup q, \dot{q} \in \mathbb{R}^{n \times 1}, p = (x, y, z), \dot{p} = (\dot{x}, \dot{y}, \dot{z})$
  - $\triangleright$  Euler angle  $(\phi, \theta, \psi), (\dot{\phi}, \dot{\theta}, \dot{\psi})$
  - $\triangleright$  Manipulability  $\mu$ , potential, etc...
  - > Tracking error
- You also need to compute the following terms at every time steps
  - > Jacobian, Null space of Jacobian (in both of space/body frame)
  - ightharpoonup Twist( $V_{sb}^s \& V_{sb}^b$ ) and Adjoint matrix( $Ad_{g_{sb}}$ )
  - Forward kinematics  $(T_{sh} = FK(q))$

## Extra Credit! (Except any out of scopes such as dynamics and control)

- Interesting tasks
- Interesting null motions
- Higher dof manipulator
- Etc...