Lecture 19. Otto cycle.

Heat engines

• (partially) convert heat to work via cyclic process

By Gonfer - Own work, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=10901965

• example:

"Stirling cycle"

Q: Around a full cycle, we can say that the net heat flow Q is

- A. greater than the net work W
- B. equal to the net work W
- C. less than the net work W
- D. Any of the above are possible, depending on the cycle

Q: Around a full cycle, we can say that the net heat flow Q is

$$\Delta U = 0$$
 for full cycle

so
$$Q_{net} = W_{net}$$

- A. greater than the net work W
- B. equal to the net work W extstyle exts
- C. less than the net work W
- D. Any of the above are possible, depending on the cycle

Efficiency of an Engine:

• Efficiency (
$$e$$
) = $\frac{\text{net work we get out}}{\text{heat we need to supply}}$

- $\triangleright Q_H$: Heat absorbed by gas each cycle
- $\triangleright Q_C$: Heat expelled by gas each cycle
- \triangleright W: Net work done each cycle

$$e = \frac{W}{Q_H} = 1 - \frac{|Q_C|}{|Q_H|}$$

Internal combustion engine movie

https://www.youtube.com/watch?app=desktop&v=5tN6eynMMNw&feature=youtu.be&t=26

Step 1: adiabatic compression

Step 2: combustion of gasoline

(≈heating at a constant volume)

Step 3: adiabatic expansion

Otto Cycle

Not a significant amount of net work, so model as constant volume process

Otto cycle: model of internal combustion engine

"Otto cycle"
(expansion & compression are done adiabatically)

- n : use PV = nRT (always)
- The following equations are generally used for constant n:

>
$$T, V$$
, or P : use $\frac{PV}{T} = \text{constant (always)}$

$$\frac{P}{T} = \text{constant (const } V) \quad \frac{V}{T} = \text{constant (const } P) \quad PV = \text{constant (const } T)$$

$$PV^{\gamma} = \text{constant (adiabatic)} \quad TV^{\gamma-1} = \text{constant (adiabatic)}$$

- $\triangleright \Delta U$: have $\Delta U = nC_v \Delta T$ (always)
- > W: have $W = \int_{V_i}^{V_f} P(V) \, dV$ (always) $W = 0 \text{ (const } V) \quad W = P\Delta V \text{ (const } P) \quad W = nRT \ln \left(\frac{V_f}{V_i}\right) \text{ (const } T)$
- ightharpoonup Q : use $Q = \Delta U + W$ (always) $Q = nC_v \Delta T \text{ (const } V) \quad Q = nC_p \Delta T \text{ (const } P) \quad Q = 0 \text{ (adiabatic)}$

Q: Calculate the efficiency of the internal combustion engine operating via the cycle shown.

1) T_A : given.

$$2) \quad T_B V_{min}^{\gamma - 1} = T_A V_{max}^{\gamma - 1}$$

3)
$$\frac{T_C}{P_C} = \frac{T_B}{P_B} \implies T_C P_B = P_C T_B$$

4)
$$T_C V_{min}^{\gamma-1} = T_D V_{max}^{\gamma-1}$$

$$NC_{\mathcal{U}}(T_{\xi}-T_{\xi})=\Delta U=Q-\mu_{\mathcal{U}}=0$$

Q: Calculate the efficiency of the internal combustion engine operating via the cycle shown.

Q: Calculate Q for the process $B \rightarrow C$ in terms of n, C_v , and the various temperatures, pressures, and volumes

A.
$$Q = 0$$

B.
$$Q = nC_v(T_C - T_B)$$

C. $Q = V_B(P_C - P_B)$

$$C. \quad Q = V_B (P_C - P_B)$$

D.
$$Q = nC_v(T_B - T_C)$$

Q: Calculate the efficiency of the internal combustion engine operating via the cycle shown.

• Step 2: Find the heat input with the steps with Q>0

Q: Calculate Q for the process $B \rightarrow C$ in terms of n, C_v , and the various temperatures, pressures, and volumes

A.
$$Q = 0$$

B.
$$Q = nC_v(T_C - T_B)$$

$$C. \quad Q = V_B(P_C - P_B)$$

D.
$$Q = nC_v(T_B - T_C)$$

Constant volume
$$\Rightarrow W = 0$$

 $Q = \Delta U = nC_v(T_C - T_B)$

Otto cycle

- efficiency is $e = 1 \frac{1}{r^{\gamma 1}}$ (in theory)
- Higher efficiency for larger compression ratio $r = \frac{V_{max}}{V_{min}}$
- BUT: gasoline will spontaneously ignite if r is too large: "engine knocking"
- High octane fuel: higher ignition temp, so less knocking
- In real engines: $r \sim 8-10$ and $\gamma \sim 1.22$

$$\Rightarrow e \sim 38\%$$

