计算方法 Lab5

王嵘晟 PB1711614

1 实验结果:

对于 $I(f) = \int_0^8 \sin(x) dx$, 分别使用复化梯形公式和复化 Simpson 公式求数值积分,按照提议要求取 $N = 2^k$, $k = \{1, 2, ..., 10\}$ 个等距结点运算,结果如下:

复化梯形:

程序运行结果截图:

```
PS D:\计算方法\labs\lab5> gcc .\Trapezoid.c -o Trapezoid.exe
PS D:\计算方法\labs\lab5> .\Trapezoid.exe
k=0 e0=2.811932952685E+000
k=1 e1=2.193993521794E+000 d1=0.358003
k=2 e2=4.099829205476E-001 d2=2.419924
k=3 e3=9.708816025468E-002 d3=2.078197
k=4 e4=2.396461540682E-002 d4=2.018390
k=5 e5=5.972370007437E-003 d5=2.004530
k=6 e6=1.491925067877E-003 d6=2.001128
k=7 e7=3.729084041566E-004 d7=2.000282
k=8 e8=9.322254870159E-005 d8=2.000070
k=9 e9=2.330535267947E-005 d9=2.000018
k=10 e10=5.826320388591E-006 d10=2.0000004
```

整理成表格后,结果如下:

表 1: 复化梯形公式运行结果

k	误差 e_k	误差阶 d_k
0	2.811932952685E + 000	
1	2.193993521794E + 000	0.358003
2	4.099829205476E - 001	2.419924
3	9.708816025468E - 002	2.078197
4	2.396461540682E - 002	2.018390
5	5.972370007437E - 003	2.004530
6	1.491925067877E - 003	2.001128
7	3.729084041566E - 004	2.000282
8	9.322254870159E - 005	2.000070
9	2.330535267947E - 005	2.000018
10	5.826320388591E - 006	2.000004

复化 Simpson 公式:

程序运行结果截图:

```
PS D:\计算方法\labs\labs> gcc .\Simpson.c -o Simpson.exe
PS D:\计算方法\labs\labs> .\Simpson.exe
k=0 e0=1.492788623854E+000
k=1 e1=3.862635679953E+000 d1=-1.371576
k=2 e2=1.846872798678E-001 d2=4.386429
k=3 e3=7.210093176285E-003 d3=4.678923
k=4 e4=4.098995424702E-004 d4=4.136676
k=5 e5=2.504512568891E-005 d5=4.032669
k=6 e6=1.556578642647E-006 d6=4.008079
k=7 e7=9.715041660030E-008 d7=4.002014
k=8 e8=6.069782898521E-009 d8=4.000503
k=9 e9=3.793254599316E-010 d9=4.000137
k=10 e10=2.370836860166E-011 d10=3.999968
```

整理成表格后,结果如下:

表 2: 复化 Simpson 公式运行结果

k	误差 e_k	误差阶 d_k
0	1.492788623854E + 000	
1	3.862635679953E + 000	-1.371576
2	1.846872798678E - 001	4.386429
3	7.210093176285E - 003	4.678923
4	4.098995424702E - 004	4.136676
5	2.504512568891E - 005	4.032669
6	1.556578642647E - 006	4.008079
7	9.715041660030E - 008	4.002014
8	6.069782898521E - 009	4.000503
9	3.793254599316E - 010	4.000137
10	2.370836860166E - 011	3.999968

算法分析:

使用 C 语言编程,分别用复化梯形公式

$$I_n = h(\frac{1}{2}f(a) + \sum_{i=1}^{n-1} f(x_i) + \frac{1}{2}f(b))$$

和复化 Simpson 公式

$$I_n = \frac{h}{3}(f(a) + 4\sum_{i=0}^{m-1} f(x_{2i+1}) + 2\sum_{i=1}^{m-1} f(x_{2i}) + f(b))$$

来计算 $I(f) = \int_0^8 \sin(x) dx$,并由此得到计算误差。时间复杂度为 O(n),其中 n 为 节点数量

结果分析:

通过比较两种方法计算积分得到的误差 e_k 与误差阶 d_k ,可以发现:在节点数相同的情况下,使用复化 Simpson 公式计算积分的误差更小,但误差阶更大。这是因

为随着节点数增加,复化 Simpson 公式计算的误差减小地更快。

实验小结:

本次实验使用 C 语言编写了复化梯形公式和复化 Simpson 公式求积分的程序,通过比较结果的误差,可以发现当取相同数量的节点时,复化 Simpson 公式的误差更小,计算更精确。