Tutorial Sheet 2 – Modelling Dynamical Systems

Q1 Determine a mathematical model for the following radio tuning circuit (effectively a series RLC circuit), relating the input voltage v_i to the voltage across the capacitor v_C .

Q2 Determine the transfer function model relating the input and output voltages in each of the following circuit:

Circuit A

Circuit B

Q3 Determine a mathematical model for the bicycle suspension (spring-mass-damper) system, whose physical model is as follows:

In this bicycle suspension model, K_1 and B_1 represent the spring and damping coefficients for the back wheel while K_2 and B_2 represent the spring and damping coefficients for the front wheel.

Q4 Consider the mechanical system shown below:

Determine the transfer function model relating the input force F(t) to the position of mass M_1 .

Q5 The data in the table below are samples of the input and output of an unknown dynamical system.

Sample instant (k)	1	2	3	4	5	6
input $u(k)$	0.065	0.065	-0.15	-0.15	-0.1	0.11
output y(k)	0.098	0.109	0.117	-0.019	-0.128	-0.1

Experimental data from an unknown process

- (i) Determine the 1st order and 2nd order difference equation models that best fit the data. *Use Matlab to perform the required matrix calculations*.
- (ii) Express each model as a transfer function.
- Q6 (i) Derive a mathematical model for the following single tank system, relating input flow rate, F_{in} , to the height of the liquid, h, given that the cross sectional area of the tank is A. Assume that water flow is laminar and hence $F_{out} = \frac{h}{R}$, where parameter R, in this case, is the resistance to flow.

Single tank system

(ii) How would a turbulent flow have affect F_{out} and hence your model?

Using your answer from Q6, derive a mathematical model relating input flow rate, F_{in} , to the height of the liquid in tank 2, h_2 , for the dual **non-interacting** tank system given below. Assume that the cross sectional area of tanks 1 and 2 is A_1 and A_2 respectively. Also assume laminar flow with flow resistances R_1 and R_2 as shown.

Q8 Derive a model for the dual **interacting** tank system given below, relating the input flow rate, F_{in} , to the height of the liquid in tank 2, h_2 . Assume that the cross sectional area of tanks 1 and 2 is A_1 and A_2 respectively. Also assume laminar flow with flow resistances R_1 and R_2 as shown.

Note for Q6-Q8, we state that the output flowrate is inversely proportional to the height of water in the tank, given as $F_{out} = \frac{h}{R}$.

In the lecture notes, we expressed this equation as $F_{\rm out}=kh$, where k is a constant of proportionality.

In essence, therefore, $k \equiv \frac{1}{R}$