Notations de Mécanique des Milieux Continus

1 Packages requis

- **ifthen**: Package permettant une compilation à choix multiple,
- **mathbbol** : Permet de d'avoir des notations mathématiques particulières avec des doubles traits (comme

2 Appel du package

Le package est appelé en début de document par la commande :

\usepackage{Raf_Notations_Maths}

Par défaut, ce package utilise un certain nombre de notations raccourcies, susceptibles de rentrer en conflit avec d'autre package (mais tellement plus rapide à taper!). De plus, certaines commandes ont été rebaptisée. Ces raccourcis et renommages seront cités ((Raccourci) ou (Renommé)) dans les tableaux suivants. Pour ne pas créer ces raccourcis/renommage, il faut rentre l'option noRaccourci à l'appel du package.

usepackage[noRaccourci]{Raf_Notations_MMC}

3 Transformation

Commandes	Rendus	Commentaires
\fTransfo{X}	$\Phi(X)$	
\dep{X}	$\overrightarrow{u(X)}$	

4 Opérateur

Commandes	Rendus	Commentaires
\grad{f} ou \grad[][nabla]{f}	$\operatorname{grad}(f)$ ou $\nabla(f)$	
\grad[1]{f} ou \grad[1][nabla]{f}	$\overrightarrow{\operatorname{grad}(f)}$ ou $\overrightarrow{\nabla(f)}$	
\grad[2]{f} ou \grad[2][nabla]{f}	$\overline{\operatorname{grad}(f)}$ ou $\overline{\nabla(f)}$	
\grad[3]{f} ou \grad[3][nabla]{f}	$\overline{\overline{\operatorname{grad}(f)}}$ ou $\overline{\overline{\nabla}(f)}$	
\grad[4]{f} ou \grad[4][nabla]{f}	$\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{$	
\grad[25]{f} ou \grad[25][nabla]{f}		
\dfij{i}{j}	$\frac{\mathrm{d}\Phi_i}{\mathrm{d}X_j}$	
\dfij[f]{i}{j}	$\frac{\mathrm{d}f_i'}{\mathrm{d}X_j}$	
\div	div	Divergence (Re- nommé)sans arguement
\div[A]	div(A)	Divergence (Re- nommé)avec un seul argument
\div[0][A] \div[1][A]	$\frac{\operatorname{div}(A)}{\equiv} \qquad \qquad \overrightarrow{\operatorname{div}}(A)$	Divergence (Re-
\div[2][A] \div[3][A]	$\overline{\operatorname{div}}(A) \qquad \operatorname{div}^{(3)}(A)$	nommé)avec deux argument (dimension + argument)
\rot	rot	Rotationnel
\rot[A]	rot(A)	Rotationnel
\laplacien{\vecteur{A}}}	$\Delta(\vec{A})$	

5 Tenseurs

Commandes	Rendus	Commentaires
\dbarre{A}	$\overline{\overline{A}}$	Double barre
\symbolTenseurF	F	Gradient de transfor- mation
\tenseurF	F	Gradient de transfor- mation
\symbolTenseurE	E	Tenseur de Green- Lagrange
\tenseurE	Ē	Tenseur de Green- Lagrange
\symbolTenseurEps	€	Tenseur de Green- Lagrange en HPP
\tenseurEps	€	Tenseur de Green- Lagrange en HPP
\symbolTenseure	е	Tenseur de Euler- Almansi
\tenseure	Ē	Tenseur de Euler- Almansi
\symbolTenseurI	1	Tenseur Identité
\tenseurI	1	Tenseur Identité
\symbolTenseurC	С	Tenseur de dilatation de Cauchy Green
\tenseurC	$\overline{\overline{\mathbb{C}}}$	Tenseur de dilatation de Cauchy Green
\symbolTenseurb	Ь	Tenseur de dilatation de Cauchy Green gauche
\tenseurb	b	Tenseur de dilatation de Cauchy Green gauche
\tenseurSigma	 	Tenseur des contraintes de Cauchy
\tenseurNul	$\overline{0}$	Tenseur nul
\begin{tenseur}1&2&3\\ 4&5&6\\7&8&9 \end{tenseur}	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}_{\mathscr{B}}$	
Commandes	Rendus	Commentaires
\sig{i}{j}, \sig12	σ_{ij},σ_{12}	Composantes du tenseur de contrainte
\eps{i}{j}, \eps12	$\varepsilon_{ij}, \varepsilon_{12}$	Composantes du tenseur de déformation