NLP Reading Group

NeST: A Neural Network Synthesis Tool Based on a Grow-and-Prune Paradigm

by Xiaoliang Dai, Hongxu Yin and Niraj K. Jha

Introduction

- Major problems for finding an appropriate architecture :
- BP algorithm assumes a fixed DNN architecture and only trains weights
- trial-and-error methodology inefficient when DNNs get deeper
- lead to large, accurate, but over-parameterized DNNs
- Methodology to address these problems :

Figure 1: An illustration of the architecture synthesis flow in NeST.

1. Connection Growth:

Policy 1 : Add a connection $w \iff$ it can quickly reduce the value of loss function L.

• evaluate $\partial L/\partial w \ \forall w$.

activation \iff w most efficient reducing L.

- neuroscience perspective: Hebbian theory: "Neurons that fire together wire together."
 - Let $\frac{\partial L}{\partial u^{l+1}}$ be the stimulation magnitude of the m^{th} presynaptic neuron in the $(l+1)^{th}$ layer
 - Let x_n^l be the n^{th} postsynaptic neuron in the l^{th} layer.
 - Based on Hebbian theory, the connections activated would have a strong correlation between presynaptic and postsynaptic cells \iff large value of : $|(\frac{\partial L}{\partial u_n^{l+1}})x_n^l|$.
- Also the magnitude of the gradient of L with respect to w, so:

$$|\partial \mathbf{L}/\partial \mathbf{w}| = |(\frac{\partial L}{\partial u_m^{l+1}}) x_n^l|$$

2. Neuron Growth:

Policy 2 : In the l^{th} layer, add a new neuron as a shared intermediate node between existing neuron pairs that have high postsynaptic (x) and presynaptic ($\partial L/\partial u$) neuron correlations (each pair contains one neuron from the $(l-1)^{th}$ layer and the other from the $(l+1)^{th}$ layer). Initialize weights based on batch gradients to reduce the value of L.

Algorithm 1 Neuron growth in the l^{th} layer

```
Input: \alpha - birth strength, \beta - growth ratio Denote: M - number of neurons in the (l+1)^{th} layer, N - number of neurons in the (l-1)^{th} layer, \mathbf{G} \in R^{M \times N} - bridging gradient matrix, avg - extracts mean value of non-zero elements Add a neuron in the l^{th} layer, initialize \mathbf{w}^{out} = \vec{\mathbf{0}} \in R^M, \mathbf{w}^{in} = \vec{\mathbf{0}} \in R^N for 1 \leq m \leq M, 1 \leq n \leq N do G_{m,n} = \frac{\partial L}{\partial u_m^{l+1}} \times x_n^{l-1} end for thres = (\beta M N)^{th} largest element in abs(\mathbf{G}) for 1 \leq m \leq M, 1 \leq n \leq N do if |G_{m,n}| > thres then \delta w = \sqrt{|G_{m,n}|} \times rand\{1, -1\} w_m^{out} \leftarrow w_m^{out} + \delta w, w_n^{in} \leftarrow w_n^{in} + \delta w \times sgn(G_{m,n}) end if \mathbf{w}^{out} \leftarrow \mathbf{w}^{out} \times \alpha \frac{avg(abs(\mathbf{W}^{l+1}))}{avg(abs(\mathbf{w}^{out}))}, \mathbf{w}^{in} \leftarrow \mathbf{w}^{in} \times \alpha \frac{avg(abs(\mathbf{W}^{l}))}{avg(abs(\mathbf{w}^{in}))} end for Concatenate network weights \mathbf{W} with \mathbf{w}^{in}, \mathbf{w}^{out}
```

2.bis Neuron Growth: Study of the Weight Initialization

- Bridging connection w_b between x_n^{l-1} and u_m^{l+1} .
- Initialized with a square root rule to imitate a BP update on w_b :
 - \circ Leads to a change in u_m^{l+1} :

$$|\Delta u_m^{l+1}|_{b.p.} = |x_n^{l-1} \times \delta w_b| = \eta |x_n^{l-1} \times G_{m,n}|$$
, where η is the learning rate.

• Proof: In Algorithm 1, connection of the newly added neuron with x_n^{l-1} and u_m^{l+1} :

$$|\delta w_n^{in}| = |\delta w_m^{out}| = \sqrt{|G_{m,n}|}$$

- \circ $|\Delta u_m^{l+1}| = |f(x_n^{l-1} \times \delta w_n^{in}) \times \delta w_m^{out}|$, where f is the activation function.
- If f = tanh (or ReLU, Leaky ReLU...): $f(x) = tanh(x) \approx x$, if $x \ll 1$

$$|\Delta u_m^{l+1}| \approx |x_n^{l-1} \times \delta w_n^{in} \times \delta w_m^{out}| = \frac{1}{\eta} \times |\Delta u_m^{l+1}|_{b.p.}$$

• After the square root rule based weight initialization : scaling up of the newly added weights :

$$\mathbf{w}^{out} \leftarrow \alpha \mathbf{w}^{out} \times \frac{avg(abs(\mathbf{W}^{l+1}))}{avg(abs(\mathbf{w}^{out}))}, \ \mathbf{w}^{in} \leftarrow \alpha \mathbf{w}^{in} \times \frac{avg(abs(\mathbf{W}^{l}))}{avg(abs(\mathbf{w}^{in}))}$$

3. Growth in Convolutionnal Layers

- Same methodology as Policy 1
- **Policy 3 :** To add a new feature map to the convolutional layers, randomly generate sets of kernels, and pick the set of kernels that reduces L the most.

Magnitude Pruning:

• **Policy 4 :** Remove a connection (neuron) \iff the magnitude of the weight (neuron output) is smaller than a pre-defined threshold.

Pruning insignificant weights : Consider the l^{th} batch normalization layer:

$$\mathbf{u}^l = [(\mathbf{W}^l \mathbf{x}^{l-1} + \mathbf{b}^l) - \mathbf{E}] \oslash \mathbf{V} = \mathbf{W}^l_* \mathbf{x} + \mathbf{b}^l_*$$

where ${\bf E}$ and ${\bf V}$ are batch normalization terms, and \oslash depicts the Hadamard (element-wise) division operator

Effective Weights and biases are defined as:

$$\mathbf{W}_{*}^{l} = \mathbf{W}^{l} \oslash \mathbf{V}, \mathbf{b}_{*}^{l} = (\mathbf{b}^{l} - \mathbf{E}) \oslash \mathbf{V}$$

Magnitude Pruning: Partial Area Convolution:

Figure: Pruned connections (dashed red lines) and remaining connections (solid green lines) in partial-area convolution.

Algorithm 2 Partial-area convolution

```
Input: I - M input images, K - kernel matrix, Msk - feature map mask, \gamma - pruning ratio Output: Msk, F - N feature maps Denote: \mathbf{C} \in R^{M \times N \times P \times Q} - Depthwise feature map, \otimes - Hadamard (element-wise) multiplication for 1 \leq m \leq M, 1 \leq n \leq N do \mathbf{C}_{m,n} = convolve(\mathbf{I}_m, \mathbf{K}_{m,n}) end for thres = (\gamma MNPQ)^{th} \text{ largest element in } abs(\mathbf{C}) for 1 \leq m \leq M, 1 \leq n \leq N, 1 \leq p \leq P, 1 \leq q \leq Q do if |C_{m,n,p,q}| < thres then <math display="block">Msk_{m,n,p,q} = 0 end if end for \mathbf{C} \leftarrow \mathbf{C} \otimes \mathbf{Msk}, \ \mathbf{F} \leftarrow \Sigma_{m=1}^M \mathbf{C}_m
```

Experimental Results

- **Wide seed range :** high-performance DNNs with a wide range of seed architectures.
- **Drastic redundancy removal :** NeST-generated DNNs are very compact.

Table 2: Different inference models for MNIST

Model	Method	Error	#Param	FLOPs
RBF network [7]	- 3.60%		794K	1588K
Polynomial classifier [7]	-	3.30%	40K	78K
K-nearest neighbors [7]	-	3.09%	47M	94M
SVMs (reduced set) [35]	-	1.10%	650K	1300K
Caffe model (LeNet-300-100) [36]	-	1.60%	266K	532K
LWS (LeNet-300-100) [22]	Prune	1.96%	4K	8K
Net pruning (LeNet-300-100) [5]	Prune	1.59%	22K	43K
Our LeNet-300-100: compact	Grow+Prune	1.58%	3.8K	6.7K
Our LeNet-300-100: accurate	Grow+Prune	1.29%	7.8K	14.9K
Caffe model (LeNet-5) [36]	-	0.80%	431K	4586K
LWS (LeNet-5) [22]	Prune	1.66%	4K	199K
Net pruning (LeNet-5) [5]	Prune	0.77%	35K	734K
Our LeNet-5	Grow+Prune	0.77%	5.8K	105K

Table 3: Different AlexNet and VGG-16 based inference models for ImageNet

Model	Method	Δ Top-1 err.	Δ Top-5 err.	#Param (M)	FLOPs (B)
Baseline AlexNet [37]	-	0.0%	0.0%	61 (1.0×)	1.5 (1.0×)
Data-free pruning [38]	Prune	+1.62%	-	$39.6 (1.5 \times)$	$1.0(1.5\times)$
Fastfood-16-AD [39]	-	+0.12%	-	$16.4(3.7\times)$	$1.4(1.1\times)$
Memory-bounded [40]	-	+1.62%	_	$15.2 (4.0 \times)$	-
SVD [41]	-	+1.24%	+0.83%	$11.9 (5.1 \times)$	-
LWS (AlexNet) [22]	Prune	+0.33%	+0.28%	$6.7 (9.1 \times)$	$0.5(3.0\times)$
Net pruning (AlexNet) [5]	Prune	-0.01%	-0.06%	$6.7 (9.1 \times)$	$0.5(3.0\times)$
Our AlexNet	Grow+Prune	-0.02%	-0.06%	3.9 (15.7×)	0.33 (4.6×)
Baseline VGG-16 [42]	-	0.0%	0.0%	138 (1.0×)	30.9 (1.0×)
LWS (VGG-16) [22]	Prune	+3.61%	+1.35%	$10.3 (13.3 \times)$	$6.5 (4.8 \times)$
Net pruning (VGG-16) [5]	Prune	+2.93%	+1.26%	$10.3\ (13.3\times)$	$6.5 (4.8 \times)$
Our VGG-16: accurate	Grow+Prune	-0.35%	-0.31%	9.9 (13.9×)	6.3 (4.9×)*
Our VGG-16: compact	Grow+Prune	+2.31%	+0.98%	4.6 (30.2×)	3.6 (8.6×)*

^{*} Currently without partial-area convolution due to GPU memory limits.

Summary and Discussions

NeST methodology incorporates three Inspirations from the human brain:

Variation of the number of synaptic connections :

- Rewiring of synapses between Neurons
- Small fraction of neurons active at a given time.

Some unusual ways to talk about/find papers

Recreative ways: podcasts: NLP Highlights on SoundCloud, Lex Fridman's podcast... 0 r/LanguageTechnology 0 Machine Learning Subreddit: r/MachineLearning: Discussions and Research reviews: WAYR: Weekly "What Are You Reading" Post: Most Upvoted papers Topics about papers 0 [R] Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment Research [R] Turing-NLG: A 17-billion-parameter language model by Microsoft Research One of the team members of Project Turing here (who built this model). Happy to answer any Reply Give Award Share Report Save

Thank you for your attention Any questions?