基础物理实验报告

介质中声速的测量

姓 名: 仇是

学 号: 2200011630

指导教师姓名: 张焱

序号: 7组1号

二〇二三年 12月

一、不测定度分析

0、参量设置

选取信号发生器频率 f=40.22kHz,极限误差 $e_f=0.05kHz$

声速测量器用于测距的允差 $e_x = 0.005mm$

示波器显示的线条有一定的宽度,故取极限误差 $e_x = 0.01mm$ 理想气体状态参量法中,极限误差分别取最小分度,即

$$e_{\theta} = 1^{\circ}\text{C}, \ e_{H} = 0.02, \ e_{p} = 0.05mmHg$$

1、极值法

实验数据如下表所示,其中相邻 x_i 和 x_i 间距离理论值为 $\frac{\lambda}{2}$

x_i/mm	48. 762	53. 160	57. 758	61.804	66. 350
U_{pp}/V	7. 60	7. 20	6.40	6.00	5. 60
x_i/mm	70. 698	75. 419	79. 570	84. 080	88. 218
U_{pp}/V	5. 40	5. 20	4.80	4.40	3.76

表 1.1 极值法实验数据 $(x_i \mathbb{K})$

主1つ	极值法实验数据	(14)
1.Z	似用石头迎剱加	$(X_i \Pi X_i)$

$x_i^{'}/mm$	48.614	53. 079	57. 468	61. 823	66. 271
U_{pp}/V	7. 60	7. 20	6. 40	6.00	5. 60
$x_i^{'}/mm$	70. 582	75. 158	79. 540	84. 132	88. 293
U_{pp}/V	5. 40	5. 20	4.80	4.40	3. 76

下面使用逐差法测量声速。

计算公式如下:

$$ext{记} y_i = \frac{2}{5}(x_{i+5} - x_i), \quad \text{则} \lambda = \overline{y_i}$$

带入信号发生器频率 f = 40.22kHz

分别计算得到 $\lambda_1 = 8.8121mm$, $v_1 = 354.4227m/s$

以及 $\lambda_2 = 8.8104mm$, $v_2 = 354.3552m/s$

下计算波长和声速的不确定度。

波长不确定度计算如下

A 类不确定度

$$\sigma_{\lambda A} = \sigma_{\bar{y}_i} = \sqrt{\frac{\sum\limits_{i=1}^{n} (y_i - \bar{y})^2}{n(n-1)}}$$

B 类不确定度

$$\sigma_{\lambda B} = \frac{2}{5} \sqrt{\left(\frac{e_x}{\sqrt{3}}\right)^2 + \left(\frac{e_x}{\sqrt{3}}\right)^2} = \frac{2\sqrt{2}}{5} \frac{e_x}{\sqrt{3}}$$

以此,λ的不确定度为

$$\sigma_{\lambda} = \sqrt{\sigma_{\lambda A}^2 + \sigma_{\lambda B}^2}$$

于是,声速v的不确定度为

$$\sigma_v = v \sqrt{\left(\frac{\sigma_\lambda}{\lambda}\right)^2 + \left(\frac{\sigma_f}{f}\right)^2}$$

分别计算得到

$$\sigma_{\lambda_1 A}=0.018mm$$
 $\sigma_{\lambda_2 A}=0.024mm$ $\sigma_{\lambda_1 B}=\sigma_{\lambda_2 B}=0.003mm$

最终得到

以及

$$\lambda_1 = (8.8121 \pm 0.018) mm$$
 , $v_1 = (354.4227 \pm 0.9) m/s$

$$\lambda_2 = (8.8104 \pm 0.024) mm$$
 , $v_1 = (354.3552 \pm 1.0) m/s$

2、相位法测量声速

实验数据如下表所示,其中相邻 x_i 和 x_i 间距离理论值为 λ

表 2.1 相位法实验数据 $(x_i \%)$

x_i/mm	50. 508	59. 144	67. 458	76. 080	84. 580
x_i/mm	93. 278	101.832	110. 314	118. 923	127. 531

表 2.2 相位法实验数据 (x_i) 版)

x_i/mm	50. 314	58. 964	67. 217	75. 818	84. 450
x_i/mm	93. 964	101. 532	110. 167	118. 569	127. 529

本部分将会通过比较逐差法和线性拟合(最小二乘法)测量声速,对比二者的精确度。

首先使用逐差法测量声速。

计算公式如下:

$$ext{记} y_i = \frac{1}{5}(x_{i+5} - x_i), \quad \text{则} \lambda = \overline{y}_i$$

带入信号发生器频率 f = 40.22kHz

分别计算得到 $\lambda_1 = 8.5643mm$, $v_1 = 344.4578m/s$

以及 $\lambda_2 = 8.5899mm$, $v_2 = 345.4874m/s$

波长不确定度计算如下

A 类不确定度

$$\sigma_{\lambda A} = \sigma_{\bar{y}_i} = \sqrt{\frac{\sum\limits_{i=1}^{n} (y_i - \bar{y})^2}{n(n-1)}}$$

B 类不确定度

$$\sigma_{\lambda B} = \frac{1}{5} \sqrt{\left(\frac{e_x}{\sqrt{3}}\right)^2 + \left(\frac{e_x}{\sqrt{3}}\right)^2} = \frac{\sqrt{2}}{5} \frac{e_x}{\sqrt{3}}$$

以此,λ的不确定度为

$$\sigma_{\lambda} = \sqrt{\sigma_{\lambda A}^2 + \sigma_{\lambda B}^2}$$

于是, 声速 v 的不确定度为

$$\sigma_v = v \sqrt{\left(\frac{\sigma_\lambda}{\lambda}\right)^2 + \left(\frac{\sigma_f}{f}\right)^2}$$

分别计算得到

$$\sigma_{\lambda_1 A}=0.019mm$$
 $\sigma_{\lambda_2 A}=0.023mm$ $\sigma_{\lambda_1 B}=\sigma_{\lambda_2 B}=0.00163mm$

最终得到

$$\lambda_1 = (8.5643 \pm 0.019) mm$$
 , $v_1 = (344.4578 \pm 0.9) m/s$ 以及

$$\lambda_2 = (8.5899 \pm 0.023) mm$$
, $v_1 = (345.4874 \pm 1.0) m/s$

其次使用最小二乘原理进行线性拟合。

将数据导入 Origin 软件, 进行线性拟合, 得到如下结果:

图 $1.x_i$ 的线性拟合结果

图 2.xi的线性拟合结果

下计算斜率 k 的不确定度。这里具体展现 x_i 数据的计算过程,对 x_i 同理,便不重复展示。

斜率 k为

$$k = \frac{\sum_{i=1}^{10} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{10} (x_i - \bar{x})^2} = 8.5629$$

相关系数为

$$r = \frac{\sum_{i=1}^{10} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{10} (x_i - \bar{x})^2 \cdot \sum_{i=1}^{10} (y_i - \bar{y})^2}} = 0.9999$$

k 的随机误差部分为

$$\sigma_a = k \sqrt{\frac{1/r^2 - 1}{n - 2}}$$

$$\sigma_b = \frac{e_x}{\sqrt{3} \times \sqrt{\sum_{i=1}^n (i - \bar{i})^2}}$$

$$\sigma_k = \sqrt{\sigma_a^2 + \sigma_b^2}$$

这里 $\lambda = k$,于是 $\sigma_{\lambda} = \sigma_{k}$ 于是,声速 ν 的不确定度为

$$\sigma_v = v \sqrt{\left(\frac{\sigma_\lambda}{\lambda}\right)^2 + \left(\frac{\sigma_f}{f}\right)^2}$$

分别计算得到

$$\sigma_{\lambda_1 A} = 0.01mm$$
 $\sigma_{\lambda_2 A} = 0.02mm$ $\sigma_{\lambda_1 B} = \sigma_{\lambda_2 B} = 0.0006mm$

最终得到

以及

$$\lambda_1 = (8.5569 \pm 0.01) mm$$
 , $v_1 = (344.1593 \pm 0.6) m/s$

$$\lambda_2 = (8.5629 \pm 0.02) mm$$
, $v_1 = (344.3998 \pm 0.8) m/s$

3、理想气体状态法测量声速

实验数据如下:

表 3.理想气体状态参量法实验数据

	θ/°C	p _s /Pa	Н/%	p/mmHg
最小分度	1	0.1	2	0.05
数据	16.0	1817. 9	42	776. 35

下计算声速及其不确定度:

$$v = 331.45\sqrt{\left(1 + \frac{\theta}{T_0}\right)\left(1 + \frac{0.3192p_w}{p}\right)}$$
$$= 331.45\sqrt{\left(1 + \frac{\theta}{T_0}\right)\left(1 + \frac{0.3192Hp_s}{p}\right)}$$

取微分, 代换标准差公式, 得到

$$\begin{split} \sigma_v &= 331.45 \frac{\sigma_\theta}{T_0} \frac{1}{2\sqrt{\frac{\theta}{T_0} + 1}} \sqrt{\frac{0.3192 H p_s}{p} + 1 + 331.45 \sqrt{\frac{\theta}{T_0} + 1} (-\frac{0.3192 H p_s \sigma_p}{p^2}) \\ &+ \frac{0.3192 p_s \sigma_H}{p} + \frac{0.3192 H \sigma_{p_s}}{p}) \frac{1}{2\sqrt{\frac{0.3192 H p_s}{p} + 1}} \end{split}$$

同时计算得 p_s 的极限误差 $e_{p_s} = 24.47Pa$

其余物理量的极限误差都使用最小分度代替,带入得

$$v = (344.9 \pm 0.4)m/s$$

- 4、不确定度比较分析
 - 1.对于极值法、相位法,波长的 A 类不确定度比 B 类不确定度大一个量级左右,说明本实验中偶然误差起主导作用,而系统误差相对较小。
 - 2.理想气体状态参量法的不确定度最小,较为可靠,故将参量法测得的数据作为真实值是合理的。
 - 3.极值法、相位法不确定度比参数法高,随机误差较大,可能原因有:
 - (1) 两换能器间的空气未能与外界隔离,易受到外界的扰动;
 - (2) 信号发生器相位不稳,示波器上波形可见明显的漂移。
 - 4. 对比线性拟合与逐差法的不确定度。不难发现,线性拟合法得到的数据不确定度比逐差法略低,可能有以下原因:
 - (1) 线性拟合对"较好"的数据拟合结果更精确。对比发现,皮尔逊相 关系数叫接近1的数据拟合效果更好,不确定度更低。
 - (2)逐差法将数据分块隔项计算差值,忽略了数据之间的关联。而线性 拟合综合了每组数据间的相互关联,故不确定度更低。

二、超声波水光栅衍射法

实验条件如表 4。

表 4. 超声波水光栅衍射法实验数据

	f/MHz	λ/nm	θ/°C	L/cm
最小分度	9. 941	633	16.0	444.0

衍射斑平均距离 $\overline{\Delta x} = 18.9mm$

则有:

$$\lambda = d = \frac{L \cdot \lambda_{\mathcal{H}}}{\Delta x} = 1.487 \times 10^{-4} m$$
$$v = \lambda f = 1478.27 m/s$$

三、思考题

3.1 能用人耳听到的声波作为发射波吗?

不能。因为正常人耳所听到音波得波长下限约 17cm, 而声速测定仪上两换能器的工作距离在 40cm- 150cm 左右, 只能包含最多 6 个波长, 数据样本量过少, 随机误差较大。

3.2 如何手动调整示波器方便极值和图象读取?

- (1)调极值:可以使用数字示波器中"显示"—"连续"—"无限长"模式, 先粗调一遍换能器的距离,画出波形在极值附近的包络线,再倒转回原处细调, 使波形的最高点与包络线的最高点重合,这样就能精确地读取极值。
- (2) 图象读取注意事项:适当调节纵向偏转电压,使波形占屏幕约³4左右的上下限,这样能更精确地分辨波振幅的变化。

3.3 如何估算和测量回程差大小?

先单向调节两换能器距离至振幅极值,记下极值点的位置。然后以原来的方向稍微越过极值点,而 后反向调节两换能器距离直至再次到达极值点。两次极值点位置之差即为仪器的回程差大小。

3.4 驻波和行波两个原理为什么可以共用? 会不会互相干扰?

不会互相干扰。行波在各点振幅相同,相位不同;驻波在各点相位相同,振幅不同。

在使用极值法 (驻波法)时,波极值点的位置由驻波决定;在使用相位法(行波法)时,行波决定波相位随空间的变化。因此两者互不干扰。

3.5 极值法中多极值出现的原因是什么?

声波会在两个换能器之间多次反射。

当换能器之间的空气腔长度不是波长整数倍时,反射波之间发生干涉使腔内波的能量降低。

当空气腔长度为波长的整数倍时,声波在空气腔内形成共振,振幅最大。满足长度等于波长整数倍的空气腔的长度不止一个,所以会出现多极值。

3.6 极值法中测量距离的远近对结果有什么影响?

距离过短,换能器接收到的声波振幅过大,换能器不能工作在线性区,会影响极值点的判断;

距离过长,换能器接收到的声波振幅过小,此时声波信号难以与空气中的扰动区分开,判断极值点变得困难,具体表现为极值点难以循迹,波形包络线几乎为平行直线。

四、收获与感想

课堂操作时遇到波形曲线不稳定的状况,后发现是由于电路连接不稳定所致。 进行含电路仪器连接相关实验时,首先需要检查电路是否完好连接。

本次实验让我深刻理解了不同方式误差分析的应用背景及计算方式,也显著 提升了我对于 LaTeX 相关物理公式的熟练掌握度。