

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER POR PATENTS PO Box 1430 Alexandria, Virginia 22313-1450 www.wepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/705,205	11/12/2003	Hyong-uk Choi	Q78412	2939
23373 SUGHRUE MION, PLLC 2100 PENNSYLVANIA AVENUE, N.W. SUITE 800 WASHINGTON, DC 20037			EXAMINER	
			SAMUEL, DEWANDA A	
			ART UNIT	PAPER NUMBER
	111111111111111111111111111111111111111			
			NOTIFICATION DATE	DELIVERY MODE
			10/18/2010	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

sughrue@sughrue.com PPROCESSING@SUGHRUE.COM USPTO@SUGHRUE.COM

Application No. Applicant(s) 10/705,205 CHOI ET AL. Office Action Summary Examiner Art Unit DEWANDA SAMUEL 2464 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 29 July 2010. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-60 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-6,16.2, 30-34, 38-40 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on 12 November 2003 is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)
2) Notice of Draftsperson's Patient Drawing Review (PTO-948)
3) Hinterview Summary (PTO-413)
Paper No(s) Mail Date
5) Notice of Informati Patient #pp Ilication
Paper No(s) Mail Date
6) Other:

Application/Control Number: 10/705,205 Page 2

Art Unit: 2464

DETAILED ACTION

This communication is responsive to the communication filed on 07/29/2010.
 Claims 1-5,16,28, 30-34,38-40 are pending.

Response to Arguments

Applicant's arguments with respect to claims 1-5,16,28, 30-34,38-40 have been considered but are moot in view of the new ground(s) of rejection.

Claim Rejections - 35 USC § 103

- 3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 4. Claims 1,2, 28-30, 38 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wu et al. (US Patent 6,332,077) and in view of Kostic et al. (PG PUB 2003/0134642).

With regard to claims 1, 28,38, Wu et al. teach a handoff method performed by a mobile station in a wireless local area network, the method comprising the steps of:

Outputting a handoff alert message to a present access point of the mobile station:

Art Unit: 2464

receiving channel information on access points in an extended service set from a present access point of the mobile station in response to the handoff alert message. Wu et al. disclose having a mobile station receiving information on neighboring APs (access Point) interpreted as a "present access point" within neighboring Basic Service Sets (i.e. a plurality of BSS is defined as extended service sets) from the current associated AP, (see Abstract and fig 6.); and scanning, by the mobile station, channels on the access points by using the channel information to select a new access point of the mobile station. Wu et al. disclose STA continuously monitors the signal strength of APs in its neighborhood and choose the best AP to associate with, (see Abstract),

However, Wu et al. do not explicitly disclose wherein the scanning channels comprised transmitting a probe request message to the access point using the channel information and receiving a response message in response to the probe request message. Kostic et al. disclose having a WLAN having load balancing by access point admission/termination (see title). Kostic et al. further disclose mobile station performs active scanning by generating a probe request and transmitting the request to an access point whereby considering the strongest signal strength for handover and receiving a probe response from a access point (see page 2 para[0025]-[0026]), and selecting an access point with a strongest signal as the new access point according to a scanning result. Kostic et al. disclose the mobile station selects probe Response (active) coming from the access point with the best

Art Unit: 2464

signal strength. An Association/Reassociation Request is then issued by the mobile station as it attempts to associate with the selected access point (see page 3 para[0027]).

Therefore it would have been obvious to one having ordinary skill in the art at the time of the invention was made to have incorporate active scanning within a mobile station which taught by Kostic et al. into Wu roaming wireless network efficiently providing a distributed loading among access points. One will have the motivation scan for least loaded access point within a WLAN network in order to reduce network congestion.

With regard to claim 2, Wu et al. further teach the channel information corresponding to each access point of the access points in the extended service set comprises an address of the access point information on a channel used by the access point. Wu et al. disclose the STA receives hopping information interpreted as a "channel information" of its neighboring APs, (see col.5 lines 14-33). Wu et al. further disclose the AP use a ETHE-BEACON to convey hopping information which comprise destination address interpreted a "address of the access point", (see col.6 lines 45-67), and information on one or more access points adjacent to the access point. Wu et al. disclose the STA receives hopping information interpreted as a "channel information" of its neighboring APs, (see col.5 lines 14-33).

Art Unit: 2464

With regard to claim 30, Wu et al. further teach a distributed service unit which stores the channel information on the access points. Wu et al. disclose storing in RSSI value within a database, (see col.5 lines 20-33). Wu et al. further disclose having hopping information interpreted as a "channel information" of its neighboring APs, (see col.5 lines 14-33).

5. Claims 3,4,5,16,31-34, 39,40 and 50 are rejected under 35 U.S.C. 103(a) as being unpatentable over Wu et al. (US Patent 6,332,077) as applied to claim 1 above, and further in view of Ala-Laurila et al. (US patent 6,587,680).

With regard to claim 3 and 39, However, Wu et al. do not explicitly disclose wherein the receiving of the channel information comprises receiving a response message corresponding to the handoff alert message, the response message including the channel information. Ala-Laurila et al. disclose having a handover (HO) process 30 where handover signaling (i.e. a HO_Request) interpreted as a "handoff alert message" is sent between a mobile terminal 12 and a old access point (AP) 14,(see fig. 3 and col. 8 lines 49-67). Ala-Laurila et al. disclose the old AP 14 respond by sending a MAC_DISASSOCIATE message which contains a "ap challenge" and other information interpreted as "channel information", (see col. 10 lines 58-67).

Art Unit: 2464

Therefore it would have been obvious to one having ordinary skill in the art at the time of the invention was made to have incorporate a handoff request which is taught by Ala-Laurila et al. into Wu roaming mechanism providing notification to the old access point in a uniform and efficient manner. One will have the motivation for a mobile station to transmit a handoff request to an old access point to ensure a complete seamless hand over is done whereby reducing delay during the handover process.

With regard to claim 4, However, Wu et al. do not explicitly disclose n the outputting of the handoff alert message comprises outputting the handoff alert message in response to receiving a weak signal from the present access point. Ala-Laurila et al. disclose prior to the execution of a handover, the mobile terminal must gather relevant measurements on the frequency that is used by the current access point interpreted as "present access point" before moving to another access point, (see col. 2 lines 15-67 and col. 9 lines 22-39). Ala-Laurila et al. further disclose a handover (HO) process 30 where handover signaling (i.e. a HO_Request) is sent between a mobile terminal 12 and a old access point (AP) 14,(see fig. 3 and col. 8 lines 49-67).

Therefore it would have been obvious to one having ordinary skill in the art at the time of the invention was made to have incorporate a handoff request which is taught by Ala-Laurila et al. into Wu roaming mechanism providing notification to the old access

Art Unit: 2464

point in a uniform and efficient manner. One will have the motivation for a mobile station to transmit a handoff request to an old access point to ensure a complete seamless hand over is done whereby reducing delay during the handover process.

With regard to claims 5,16, 40 , Ala-Laurila et al. teach; outputting a reassociation message to the new access point. Ala-Laurila et al. disclose a mobile terminal 12 selecting a new AP 114, (see col. 9 lines 40 -67). Ala-Laurila et al. further disclose a mobile terminal 12 sending a MAC_REASSOCIATE_REQ message to a new AP 114 (see col. 9 lines 53-67 and fig. 3); and receiving, by the mobile station, a reassociation response message from the new access point after a temporary connection is established between the new access point and a previous access point of the mobile station. Ala-Laurila et al. disclose the mobile terminal 12 receives a MAC_REASSOCIATE_RESP_ENH from the new AP 114 after a connection between old AP 14 and the new AP 114 is establish, (see fig. 3).

Therefore it would have been obvious to one having ordinary skill in the art at the time of the invention was made to have incorporate a handoff request which is taught by Ala-Laurila et al. into Wu roaming mechanism providing notification to the old access point in a uniform and efficient manner. One will have the motivation for a mobile station to transmit a handoff request to an old access point to ensure a complete seamless hand over is done whereby reducing delay during the handover process.

Art Unit: 2464

With regard to claim 31, However, Wu et al. do not explicitly disclose receives a response message corresponding to the handoff alert message. Ala-Laurila et al. disclose having a handover (HO) process 30 where handover signaling (i.e. a HO_Request) interpreted as a "handoff alert message" is sent between a mobile terminal 12 and a old access point (AP) 14,(see fig. 3 and col. 8 lines 49-67); Ala-Laurila et al. disclose receiving a MAC_DISASSOCITATE message interpreted as a "response message" from the old AP 14, (see fig.3) , the channel information being included in the response message.

With regard to claim 32, Wu et al. disclose a signal strength detection unit which detects a signal strength of the access points. Wu et al. disclose STA continuously monitors the signal strength of APs in its neighborhood and choose the best AP to associate with, (see Abstract).

However, Wu do not explcilty disclose the handoff alert message send unit outputs the handoff alert message in response to a predetermined signal strength of the present access point. Ala-Laurila et al. disclose prior to the execution of a handover, the mobile terminal must gather relevant measurements on the frequency that is used by the current access point interpreted as "present access point" before moving to another access point, (see col. 2 lines 15-67 and col. 9 lines 22-39).

Art Unit: 2464

Ala-Laurila et al. further disclose a handover (HO) process 30 where handover signaling (i.e. a HO_Request) is sent between a mobile terminal 12 and a old access point (AP) 14.(see fig. 3 and col. 8 lines 49-67).

Therefore it would have been obvious to one having ordinary skill in the art at the time of the invention was made to have incorporate handoff request after a frequency measurement which is taught by Ala-Laurila et al. into Wu roaming wireless network whereby providing a efficient and reliable handoff method when a low frequency is detected at the old access point. One will have the motivation to transmit a handoff request after a low frequency measurement to prevent delay of transmitted data within the system whereby finding a better connection with a another access point.

With regard to claims 33, However, Wu et al. do not explicitly disclose a reassociation message process unit which establishes a reassociation with the new access point. Ala-Laurila et al. disclose having a mobile terminal 12 sending a MAC_REASSOCIATE_REQ message to a new AP 114) (see col. 9 lines 53-67 and fig. 3).

Therefore it would have been obvious to one having ordinary skill in the art at the time of the invention was made to have incorporate an reassociation message which is taught by Ala-Laurila et al. into Wu roaming wireless network whereby maintaining

Art Unit: 2464

connection information during a reassociation with a new access point. One will have the motivation to use a reassociation service so that relevant connection information is maintain during the association with a new access point.

With regard to claim 34, However, Wu et al. do not explicitly disclose a reassociation message process unit which outputs a reassociation message including information on the present access point. Ala-Laurila et al. disclose having a mobile terminal 12 sending a MAC_REASSOCIATE_REQ message to a new AP 114) (see col. 9 lines 53-67 and fig. 3). Ala-Laurila et al. disclose the MAC_REASSOCIATE_REQ contains information old AP 14, (see Abstract), and receives a reassociation response message from the new access point in response to a temporary connection being established between the new access point and the present access point. Ala-Laurila et al. disclose the mobile terminal 12 receives a MAC_

REASSOCIATE_RESP_ENH from the new AP 114 after a connection between old AP 14 and the new AP 114 is establish, (see fig. 3).

Therefore it would have been obvious to one having ordinary skill in the art at the time of the invention was made to have incorporate an reassociation message which is taught by Ala-Laurila et al. into Wu roaming wireless network whereby maintaining connection information during a reassociation with a new access point. One will have the motivation to use a reassociation service so that relevant connection information is maintain during the association with a new access point.

Application/Control Number: 10/705,205 Page 11

Art Unit: 2464

Prior Art

12. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.

Ushiki et al. (PG PUB 2001/0049282)

Balogh (PG PUB 2001/0024953)

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to DEWANDA SAMUEL whose telephone number is (571)270-1213. The examiner can normally be reached on Monday- Thursday 8:30-5:30 EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Ricky Q. Ngo can be reached on (571) 272-3139. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2464

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Ricky Ngo/ Supervisory Patent Examiner, Art Unit 2464

/DeWanda Samuel/ Examiner, Art Unit 2464 10/09/201010/13/2010