

Time for expert rules for AMR genotype interpretation?

Genotyping AMR determinants in bacterial genomes is a fundamental task

Progress has been made on bioinformatics tools and resources

- ✓ Databases of AMR determinants NCBI, CARD, ResFinder
- ✓ Tools for finding these in genomes *AMRfinderplus*, *etc* (hAMRonize to common format)

Missing rules for interpretation

What does **gene X** in **species Y** mean for **drug Z?**

Interpretive standards

K. pneumoniae

Assay (microbroth dilution)

Imipenem concentration

v_14.0_Breakpoint_Tables (EUCAST)

61	Carbapenems ¹	MIC breakpoints (mg/L)					
62		S ≤	R>	ATU			
33	Doripenem	1	2				
64	Ertapenem	0.5	0.5				
35	Imipenem, Enterobacterales except Morganellaceae	2	4				
66	Imipenem ² , Morganellaceae	0.001	4				
67	Imipenem-relebactam, Enterobacterales except Morganellaceae	2 ³	2 ³				
88	Meropenem (indications other than meningitis)	2	8				
69	Meropenem (meningitis)	2	2				
70	Meropenem-vaborbactam	84	84				
71							

Assay Result: MIC=8 mg/L

Interpretation: Resistant

Drug	Category
Amikacin	S
Ampicillin	R
Ceftriaxone	R
Imipenem	R

Gene symbol	Class	Subclass
blaSHV-11	BETA-LACTAM	BETA-LACTAM
fosA	FOSFOMYCIN	FOSFOMYCIN
Axpo	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE
oqxB19	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE
blaCTX-M-15	BETA-LACTAM	CEPHALOSPORIN

Gene symbol	Class	Subclass	Analysis Software Name	Analysis Software Version	Genetic Variation Type
blaSHV-11	BETA-LACTAM	BETA-LACTAM	AMRFinderPlus	3.12.8	Gene presence detected
fosA	FOSFOMYCIN	FOSFOMYCIN	AMRFinderPlus	3.12.8	Gene presence detected
Axpo	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE	AMRFinderPlus	3.12.8	Gene presence detected
oqxB19	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE	AMRFinderPlus	3.12.8	Gene presence detected
blaCTX-M-15	BETA-LACTAM	CEPHALOSPORIN	AMRFinderPlus	3.12.8	Gene presence detected

Gene symbol	Class	Subclass
blaSHV-11	BETA-LACTAM	BETA-LACTAM
fosA	FOSFOMYCIN	FOSFOMYCIN
oqxA	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE
oqxB19	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE
blaCTX-M-15	BETA-LACTAM	CEPHALOSPORIN

Interpreting results

Arjun Prasad edited this page on Sep 1, 2023 · 31 revisions

Note regarding Genotype vs. Phenotype

Users of AMRFinderPlus or its supporting data files are cautioned that presence of a gene encoding an antimicrobial resistance (AMR) protein or resistance causing mutation does not necessarily indicate that the isolate carrying the gene is resistant to the corresponding antibiotic. AMRFinderPlus does not predict phenotypic resistance. AMR genes must be expressed to confer resistance. Many AMR proteins reduce antibiotic susceptibility somewhat, but not sufficiently to cross clinical breakpoints. Meanwhile, an isolate may gain or lose resistance to an antibiotic by mutational processes, such as the loss of a porin required to allow the antibiotic into the cell. For some families of AMR proteins, especially those borne by plasmids, correlations of genotype to phenotype are much more easily deciphered, but users are cautioned against over-interpretation.

https://github.com/ncbi/amr/wiki/Interpreting-results

Gene symbol	Class	Subclass	Analysis Software Name	Analysis Software Version	Genetic Variation Type	Species interpretation	Context	Drug	Interpretation
blaSHV-11	BETA-LACTAM	BETA-LACTAM	AMRFinderPlus	3.12.8	Gene presence detected	Klebsiella pneumoniae; v1.1	core	penicillins	wt R
fosA	FOSFOMYCIN	FOSFOMYCIN	AMRFinderPlus	3.12.8	Gene presence detected	Klebsiella pneumoniae; v1.1	core	fosfomycin	wt S
OqxA	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE	AMRFinderPlus	3.12.8	Gene presence detected	Klebsiella pneumoniae; v1.1	core	ciprofloxacin	wt S
oqxB19	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE	AMRFinderPlus	3.12.8	Gene presence detected	Klebsiella pneumoniae; v1.1	core	ciprofloxacin	wt S
blaCTX-M-15	BETA-LACTAM	CEPHALOSPORIN	AMRFinderPlus	3.12.8	Gene presence detected	Klebsiella pneumoniae; v1.1	acquired	ceftriaxone	nwt R

Local reporting rules

- Which drugs to include/suppress
- How much detail to include
- Format e.g. 'R' or 'Resistant' or 'predicted R'

Drug	Predicted Category	Resistance Determinants
Amikacin	S	-
Ampicillin (expected R)	R	blaSHV-11 (core)
Ceftriaxone	R	blaCTX-M-15
Ciprofloxacin	S	-
Fosfomycin	S	-
Gentamicin	S	-
Imipenem	S	-
Trimethoprim	S	-

	NAME	Azithromycin	Ceftriaxone	Cefixime	Ciprofloxacin	Penicillin	Sulfonamides	Spectinomycin	Tetracycline
fa gff	ECDC_NL18_181113008902					•			
.fa .gff	ECDC_ES18_8274					•			
fa gff	ECDC_ES18_8442					•			
.fa .gff	ECDC_ES18_8441					•			
fa gff	ECDC_UK18_18BI179					•			
fa gff	ECDC_ES18_8383			•		•			
fa gff	ECDC_ES18_8304			•		•			

AMR - Antimicrobial resistance PAARSNP AMR - Library 485 version 0.0.17 Inferred resistance Known Determinants Agent Azithromycin None Ceftriaxone None Cefixime Resistant penA_I312M/V316T/G545S Ciprofloxacin None Penicillin mtrR_A39T; penA_I312M/V316T/G545S Intermediate Sulfonamides None Spectinomycin None Tetracycline mtrR_A39T None

Predicted SIR -Observed SIR S->R 259 14 15 45 166 9 143 99 27 26 12 10 Same R->S 0.5 0.25 Number of 0.125 isolates Ceftriaxone log(MIC) • 10 0.06 0.03 100 200 0.015 0.0075 Prediction 0.00375 0.001875 . S 0.0009375 0.00046875 penA.G542S penA.G545S penA.I312M penA.ins346D penA.P551S

https://github.com/pathogenwatch-oss/amr-libraries

Sánchez-Busó et al, Genome Med 2021

https://pathogen.watch

2		AMR GENE DETECTION MODE	INFERRED ANTIBIOGRAM MODE
8	Genome sequence A: Escherichia coli	Genome sequence B: Klebsiella pneumoniae Genome sequence C: Acinetobacter baumannii	Genome sequence D: Salmonella enterica
AMR FinderPlus Output	blaNDM-1 Subclass B1 metallo-beta-lactamase NDM-1 blaOXA-181 OXA-48 family carbapenem-hydrolyzing class D beta-lactamase OXA-181	blaKPC-2 Carbapenem-hydrolyzing class A beta-lactamase KPC-2 blaOXA-23 Carbapenem-hydrolyzing class D beta-lactamase OXA-23 blaSHV-12 Class A extended-spectrum beta-lactamase SHV-12 blaOXA-66 OXA-51 family carbapenem-hydrolyzing class D beta-lactamase OXA-66 blaTEM-1 Class A broad-spectrum beta-lactamase TEM-1 mcr-1.1 Phosphoethanolamine-lipid A	blaCTX-M-15 Class A extended-spectrum beta-lactamase CTX-M-15 gyrA_A67P DNA gyrase subunit A GyrA mph(A) Mph(A) family macrolide
AMR Find	rmtA RmtA family 16S rRNA (guanine(1405)-N(7))- methyltransferase blaEC-8 Cephalosporin-hydrolyzing class C beta-lactamase EC-8	aac(6')-lb-cr Fluoroquinolone-acetylating aminoglycoside 6'-N-acetyltransferase AAC(6')-lb-cr3 transferase MCR-1.1 transferase MCR-1.1 armA ArmA family 16S rRNA (guanine(1405)-N(7))-methyltransferase	2'-phosphotransferase dfrA12 Trimethoprim-resistant dihydrofolate reductase DfrA12
		CLASSIFICATION DATABASE	
abritAMR Detailed Report Output	blaNDM-1 Carbapenemase (MBL) blaOXA-181 Carbapenemase rmtA Aminoglycosides (ribosomal methyltransferase) blaEC-8 ESBL (AmpC type)	blaKPC-2 Carbapenemase blaSHV-12 ESBL blaTEM-1 Beta-lactam resistance (not ESBL or carbapenemase) aac(6')-lb-cr Amikacin/Quinolone resistance blaOXA-23 Carbapenemase blaOXA-66 Carbapenemase (OXA-51 family) mcr-1.1 Colistin armA Aminoglycoside resistance (ribosomal methyltransferase)	blaCTX-M-15 ESBL gyrA_A67P Quinolone mph(A) Macrolide dfrA12 Trimethoprim
		REPORTING LOGIC	
abritAMR Final AMR Gene Report	blaNDM-1 Carbapenemase (MBL) blaOXA-181 Carbapenemase rmtA Aminoglycoside resistance (ribosomal methyltransferase)	blaKPC-2 Carbapenemase blaSHV-12 ESBL blaOXA-23 Carbapenemase mcr-1.1 Collistin	Ampicillin blaCTX-M-15 R Cefotaxime (ESBL) blaCTX-M-15 R Meropenem None detected S Tetracycline None detected S Gentamicin None detected S Guifathiazole None detected S Ciprofloxacin ayrA ASTP
abritAl	blaEC-8 Not routinely reported (Intrinsic AmpC in E. coli)	blaTEM-1 Not routinely reported (not aac(6')-lb-cr notifiable, low clinical significance) aac(6')-lb-cr notifiable, low clinical significance)	Sulfathiazole None detected S Ciprofloxacin gyrA_A67P I Azithromcyin mph(A) R

Gene symbol	Class	Subclass	Analysis Software Name	Analysis Software Version	Genetic Variation Type	Species interpretation	Context	Drug	Interpretation
blaSHV-11	BETA-LACTAM	BETA-LACTAM	AMRFinderPlus	3.12.8	Gene presence detected	Klebsiella pneumoniae; v1.1	core	penicillins	wt R
fosA	FOSFOMYCIN	FOSFOMYCIN	AMRFinderPlus	3.12.8	Gene presence detected	Klebsiella pneumoniae; v1.1	core	fosfomycin	wt S
OqxA	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE	AMRFinderPlus	3.12.8	Gene presence detected	Klebsiella pneumoniae; v1.1	core	ciprofloxacin	wt S
oqxB19	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE	AMRFinderPlus	3.12.8	Gene presence detected	Klebsiella pneumoniae; v1.1	core	ciprofloxacin	wt S
blaCTX-M-15	BETA-LACTAM	CEPHALOSPORIN	AMRFinderPlus	3.12.8	Gene presence detected	Klebsiella pneumoniae; v1.1	acquired	ceftriaxone	nwt R

Example rule set for *Klebsiella pneumoniae*

Rules for interpreting Klebsiella pneumoniae AMR genotypes

organism	gene	context	drug	category	PMID
sKlebsiella pneumoniae	blaSHV	core	penicillins	wt R	32284385
sKlebsiella pneumoniae	oqxA	core	ciprofloxacin	wt S	30834112
sKlebsiella pneumoniae	oqxB	core	ciprofloxacin	wt S	30834112
sKlebsiella pneumoniae	fosA5_fam	core	fosfomycin	wt S	27261267
sKlebsiella pneumoniae	blaCTX-M-15	acquired	ceftriaxone	nwt R	12865392
				🛉	

expected phenotype category

Laboratory phenotype = minimum inhibitory concentration (MIC)

E. coli, ampicillin distribution

Laboratory phenotype = minimum inhibitory concentration (MIC)

ECOFF = epidemiological cutoff, define wildtype (wt) phenotype

Laboratory phenotype = minimum inhibitory concentration (MIC)

ECOFF = epidemiological cutoff, define wildtype phenotype

Clinical categorization = interpretation of MIC based on breakpoints for S/R

R = high likelihood of therapeutic failure even with increased exposure

Laboratory phenotype = minimum inhibitory concentration (MIC)

ECOFF = epidemiological cutoff, define wildtype phenotype

Clinical categorization = interpretation of MIC based on breakpoints for S/R

R = high likelihood of therapeutic failure even with increased exposure

Acquired beta-lactamase gene shift expected phenotype category from wt S to nwt R

The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee

M.J. Ellington ^{1,†}, O. Ekelund ^{2,†}, F.M. Aarestrup ³, R. Canton ⁴, M. Doumith ¹, C. Giske ⁵, H. Grundman ⁶, H. Hasman ⁷, M.T.G. Holden ⁸, K.L. Hopkins ¹, J. Iredell ⁹, G. Kahlmeter ², C.U. Köser ¹⁰, A. MacGowan ¹¹, D. Mevius ^{12, 13}, M. Mulvey ¹⁴, T. Naas ¹⁵, T. Peto ¹⁶, J.-M. Rolain ¹⁷, Ø. Samuelsen ¹⁸, N. Woodford ^{1,*}

- Primary comparator should be ECOFF i.e. WT/NWT
- Secondary comparator clinical **breakpoints** i.e. S/I/R
- Combining these gives 6 categories: SWT INWT PNWT

Laboratory phenotype = minimum inhibitory concentration (MIC)

ECOFF = epidemiological cutoff, define wildtype phenotype

Clinical categorization = interpretation of MIC based on breakpoints for S/R

EUCAST Expected Resistance Rules

Susceptibility testing is best avoided. A result which goes against the expected phenotype should be viewed with suspicion.

Rule	Organisms	Ampicillin/Amoxicillin	Amoxicilin- clavulanic acid	Ampicillin-sulbactam	Ticarcillin	Cefazolin, Cephalothin Cefalexin, Cefadroxil	Cefoxitin ²	Cefuroxime	Tetracyclines	Tigecycline	Polymyxin B, Colistin	Fosfomycin	Nitrofurantoin
1.1	Citrobacter koseri, Citrobacter amalonaticus ³	R			R								
1.2	Citrobacter freundii ⁴	R	R	R		R	R		(.,
1.3	Enterobacter cloacae complex	R	R	R		R	R	5 5	32		62.		
1.4	Escherichia hermannii	R			R								
1.5	Hafnia alvei	R	R								R		
1.6	Klebsiella aerogenes	R	R	R		R	R	i i	*				
1.7	Klebsiella pneumoniae complex	R			R				3		(i)		
1.8	Klebsiella oxytoca	R			R							,	

www.eucast.org/expert_rules_and_expected_phenotypes/expected_phenotypes

Core genes can make wildtype genotypes look 'resistant'

AMRfinderplus output for wildtype Klebsiella pneumoniae str SGH10

Gene symbol	Class	Subclass
blaSHV-11	BETA-LACTAM	BETA-LACTAM
fosA	FOSFOMYCIN	FOSFOMYCIN
oqxA	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE
oqxB19	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE

AMRfinderplus output for wildtype *Acinetobacter baumannii* str ARLG1933

Gene symbol	Class	Subclass
abaF	FOSFOMYCIN	FOSFOMYCIN
amvA	AMINOGLYCOSIDE	SPECTINOMYCIN/STREPTOMYCIN
blaADC-251	BETA-LACTAM	CEPHALOSPORIN
blaOXA-940	BETA-LACTAM	CARBAPENEM

Core genes can make wildtype genotypes look 'resistant'

AMRfinderplus output for wildtype Klebsiella pneumoniae str SGH10

Core genes can make wildtype genotypes look 'resistant'

AMRfinderplus output for wildtype Klebsiella pneumoniae str SGH10

EUCAST Expected Resistance Rules

Susceptibility testing is best avoided. A result which goes against the expected phenotype should be viewed with suspicion.

Rule	Organisms	Ampicillin/Amoxicillin	Amoxicilin- clavulanic acid	Ampicillin-sulbactam	Ticarcillin	Cefazolin, Cephalothin Cefalexin, Cefadroxil	Cefoxitin ²	Cefuroxime	Tetracyclines	Tigecycline	Polymyxin B, Colistin	Fosfomycin	Nitrofurantoin
1.1	Citrobacter koseri, Citrobacter amalonaticus ³	R			R								
1.2	Citrobacter freundii ⁴	R	R	R		R	R		(.,
1.3	Enterobacter cloacae complex	R	R	R		R	R	5 5	32		62.		
1.4	Escherichia hermannii	R			R								
1.5	Hafnia alvei	R	R								R		
1.6	Klebsiella aerogenes	R	R	R		R	R	i i	*				
1.7	Klebsiella pneumoniae complex	R			R				3		(i)		
1.8	Klebsiella oxytoca	R			R							,	

www.eucast.org/expert_rules_and_expected_phenotypes/expected_phenotypes

Example rule set for Klebsiella pneumoniae core genes

Rules for interpreting Klebsiella pneumoniae AMR genotypes

organism	gene	context	drug	category	PMID
sKlebsiella pneumoniae	blaSHV	core	penicillins	wt R	32284385
sKlebsiella pneumoniae	oqxA	core	ciprofloxacin	wt S	30834112
sKlebsiella pneumoniae	oqxB	core	ciprofloxacin	wt S	30834112
sKlebsiella pneumoniae	fosA5_fam	core	fosfomycin	wt S	27261267

mic.eucast.org

Organism-specific interpretation of genotype report

AMRfinderplus output for wildtype *Klebsiella pneumoniae* str SGH10 + *interpretation*

Gene symbol	Class	Subclass	Context	Drug	Interpretation
blaSHV-11	BETA-LACTAM	BETA-LACTAM	core	penicillins	wt R
fosA	FOSFOMYCIN	FOSFOMYCIN	core	fosfomycin	wt S
oqxA	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE	core	ciprofloxacin	wt S
oqxB19	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE	core	ciprofloxacin	wt S

Organism-specific interpretation of genotype report

AMRfinderplus output for wildtype *Klebsiella pneumoniae* str SGH10 + *interpretation*

Gene symbol	Class	Subclass	Context	Drug	Interpretation
blaSHV-11	BETA-LACTAM	BETA-LACTAM	core	penicillins	wt R
fosA	FOSFOMYCIN	FOSFOMYCIN	core	fosfomycin	wt S
oqxA	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE	core	ciprofloxacin	wt S
oqxB19	PHENICOL/QUINOLONE	PHENICOL/QUINOLONE	core	ciprofloxacin	wt S
blaCTX-M-15	BETA-LACTAM	CEPHALOSPORIN	acquired	ceftriaxone	nwt R
acquired no specia					
assume bv def			AMR rule	es	,

AMRrules Specification of interpretive rules

organism	gene	context	drug	category	PMID	rule curation note
sKlebsiella pneumoniae	blaSHV	core	penicillins	wt R	32284385	Specific alleles can also be ESBL, these are mostly mobile and are assigned nwt R for cephalosporins
s_Klebsiella pneumoniae	oqxA	core	ciprofloxacin	wt S	30834112	Wildtype core gene, not expected to confer multiple drug resistance unless mobilised under strong promote
s_Klebsiella pneumoniae	oqxB	core	ciprofloxacin	wt S	30834112	Wildtype core gene, not expected to confer multiple drug resistance unless mobilised under strong promote
s_Klebsiella pneumoniae	fosA5_fam	core	fosfomycin	wt S	27261267	Wildtype core gene, not expected to confer multiple drug resistance unless mobilised under strong promote
s_Klebsiella pneumoniae	blaCTX-M	acquired	ceftriaxone	nwt R	12865392	Acquired extended-spectrum beta-lactamase, demonstrated to confer resistance to third-generation cephalosporins in this species and others
				•		
GTDB: Genome Taxonomy DB	NCBI gene hierarchy		WHO ATC Classification?		PubMed ID	n dov
	ww.ncbi.nlm.nih.gc thogens/genehierar		atcddd.fhi.no/ atc_ddd_index	put	omed.nobi.min.im	ı.y∪v

Specification of interpretive rules

gene	breakpoint	breakpoint_standard	drug class	refseq accession	ARO accession	evidence level
blaSHV	-	Expected resistant phenotypes v 1.2 (13 January, 2023)	penicillins	NF000285.3	ARO:3000015	*
Axpo	MIC <=0.25 mg/L	EUCAST v14.0 (2024)	fluoroquinolones	NF000272.1	ARO:3003922	*
oqxB	MIC <=0.25 mg/L	EUCAST v14.0 (2024)	fluoroquinolones	NF000037.1	ARO:3003923	*
fosA5_fam	MIC >128 mg/L	ECOFF (January 2024)	phosphonic acid antibiotic	NF040540.1	-	*
blaCTX-M	MIC >2 mg/L	EUCAST v14.0 (2024)	3rd gen. cephalosporins	NF033089.1	ARO:3000016	*

Source of category definitions e.g. EUCAST, CLSI

> eucast.org clsi.org

AMRrules Specification of interpretive rules

gene	breakpoint	breakpoint_standard		drug class	refseq accession	ARO accession	evidence level
blaSHV	-	Expected resistant phenot v 1.2 (13 January, 2023)	Expected resistant phenotypes / 1.2 (13 January, 2023)		NF000285.3	ARO:3000015	*
Axpo	MIC <=0.25 mg/L	EUCAST v14.0 (2024)		fluoroquinolones	NF000272.1	ARO:3003922	*
oqxB	MIC <=0.25 mg/L	EUCAST v14.0 (2024)		fluoroquinolones	NF000037.1	ARO:3003923	*
fosA5_fam	MIC >128 mg/L	ECOFF (January 2024)		phosphonic acid antibio	tic NF040540.1	-	*
fosA5_fam	MIC >=256 mg/L	CLSI M100-Ed33 (May 202	23)	phosphonic acid antibio	tic NF040540.1	-	*
blaCTX-M	MIC >2 mg/L	EUCAST v14.0 (2024)		3rd gen. cephalosporins	NF033089.1	ARO:3000016	*
	Source of definit	ions		O ATC Classification?	NCBI gene hierarchy	Antibiotic Resistance	:
	e.g. EUCA	ST, CLSI	atcddd.fhi.no/atc_ddd_index			Ontology	
	eucast clsi.c	9	А	ntibiotic Resistance	www.ncbi.nlm.nih.gov/ pathogens/genehierarchy	(ARO)	
				Ontology (ARO)		card.mcmaster	.ca

github.com/interpretAMR/AMRrules

What will the working group do?

- Draft AMRrules rule sets for organism/s according to expertise
 - Complete rule template (using expert knowledge & matched genome/AST data where available)
 - Submit to WG leads for review and testing (WG members may be asked to volunteer to review)
 - Guidance on formats and suggested protocols will be provided
 See: <u>github.com/interpretAMR/AMRrulesCuration</u>
- Attend monthly meetings to review progress and discuss issues arising
- Contribute to initial publication in 2025
- Consider drafting manuscripts describing the rationales and supporting data for individual focus organism/s

Working group model

May/June 2024

- Introductory webinars
- Register interest via online form
- Chairs to select working group members and assign to organism/s
 - Not too many per organism, may need to select based on expertise + data
 - For popular organisms, may need to nominate a leader to organise group
 - Members will be asked to sign an MOU and Code of Ethics to formalise their involvement

July 2024 through March 2025

- Draft AMRrules & attend meetings to discuss
- Priority = rules for core genes & expected resistances
 - If data available to fully interpret acquired resistances ✓
- Contribute to primary manuscript describing the AMRrules project

Principles guiding WG outputs

FAIR principles: Findable, Accessible, Interoperable, Reusable

- All materials freely available in GitHub repository
 - github.com/interpretAMR/AMRrules
 - <u>github.com/interpretAMR/AMRrulesCuration</u>
- Interoperable with NCBI refgene, hAMRonization, CARD tools and databases as far as possible
- Linked with EUCAST Expert Rules, guidance on WGS for AST prediction, and other materials as far as possible (EUCAST are partners)

Working group outputs

- 1. Interpretive standards in the form of **AMRrules** rule sets
- 2. **InterpretAMR** code to annotate genotype reports (hAMRonize compatible)
 - NOTE: code prototype only works with AMRFinderPlus output, need to work on this to be compatible with hAMRonize format, and identifiers from input databases besides refgene
- 3. Publication describing initial expert curation of **AMRrules** rule sets
 - ✓ Validated rules for core genes & expected resistances in key organisms
 - ✓ Discussion of data structure and issues
 - ✓ Requirements for systematic matched genome + AST data for acquired resistance

Working group priority organisms

1

ESKAPEE pathogens

- Enterococcus faecium
- Staphylococcus aureus
- Klebsiella pneumoniae species complex*
- Acinetobacter baumannii
- Pseudomonas aeruginosa
- Enterobacter cloacae complex*
- E. coli

Other organisms of clinical relevance where sufficient expertise and data is available, prioritising those with **EUCAST Expected Resistant** phenotypes

Other organisms on the WHO Priority Pathogens list

- Salmonellae, Shigella spp., other Enterobacteriaceae
- Neisseria gonorrhoeae
- Streptococcus pneumoniae
- Haemophilus influenzae
- Helicobacter pylori
- Campylobacter spp.

Want to join?

Do I have to know a lot about organism-specific resistance?

✓ YES, we are looking for at least one expert in each organism Please explain in the registration form what organism/s you have expertise in

Do I have to have matched genome/AST data?

NO, you do not need to have data to contribute, expertise is enough

IF you able to contribute unpublished matched genome/AST data for the purpose of setting rules that would be very helpful, please note that in the registration form

Register interest:

bit.ly/AMRrules

Many issues to consider

- Which drugs should be included for a given organism?
- Standards of evidence?
- What if there's no breakpoint?
- What if there's multiple breakpoints?
- What if the breakpoint cuts the MIC distribution in half?
- Can/should we define a rule for a drug class rather than individual drugs?
- Can/should we define a rule for a taxonomic group other than species?
 - Species complex? Genus? Family?
- Can we assume some acquired genes have universal effects?
- How to define rules for combined effects of multiple genes/variants?
- How to handle combination drugs?
- How to ensure interoperability with multiple upstream databases & tools?

Some preliminary answers in Technical Guidance doc at: github.com/interpretAMR/AMRrulesCuration

A Novel Data Structure for Prediction of Phenotypic Antimicrobial Resistance McMaster Based on Whole-Genome Sequencing

D. Brody Duncan^{1,2}; Andrew G. McArthur^{1,3}

University

¹Department of Biochemistry and Biomedical Sciences, McMaster University; ²Department of Pathology and Molecular Medicine, McMaster University

³Michael G. DeGroote Institute for Infectious Disease Research, McMaster University

Fig. 3: Analyzed *E. coli* WGS data reported using novel data structure. Phenotypic prediction rules created as proof-of-concept for this data-structure and are not clinically validated. Independent *in vitro* phenotypic testing reported resistance to ampicillin, ceftriaxone, ciprofloxacin, and gentamicin but susceptibility to piperacillin-tazobactam.