TD 4 - Calcul Vectoriel

IPESUP - PC

2/10/2024

1 Rappels de cours

Définitions:

Soit \vec{f} un champ vectoriel et g un champ scalaire, tous les deux dans \mathbb{R}^3 . On définit les opérateurs suivants :

1. Gradient :
$$\vec{grad}(g) = \vec{\nabla}g = \begin{pmatrix} \frac{\partial g}{\partial x} \\ \frac{\partial g}{\partial y} \\ \frac{\partial g}{\partial z} \end{pmatrix}$$

2. Divergence :
$$\operatorname{div}(\vec{f}) = \vec{\nabla} \cdot \vec{f} = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}$$

3. Rotationnel:
$$\vec{rot}(\vec{f}) = \vec{\nabla} \times \vec{f} = \begin{pmatrix} \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} \\ \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} \\ \frac{\partial f_y}{\partial x} - \frac{\partial f_z}{\partial y} \end{pmatrix}$$

4. Laplacien scalaire :
$$\Delta g=\vec{\nabla}^2 g=\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}+\frac{\partial^2 g}{\partial z^2}$$

5. Laplacien vectoriel :
$$\vec{\Delta} \vec{f} = \vec{\nabla}^2 \vec{f} = \begin{pmatrix} \Delta f_x \\ \Delta f_y \\ \Delta f_z \end{pmatrix}$$

Remarques:

- $\operatorname{div}(\vec{f})$ et $\nabla^2 g$ sont des scalaires.
- $-\vec{rot}(\vec{f}), \nabla^2 \vec{f}$ et $\vec{grad}(\vec{f})$ sont des vecteurs.
- Tous ces opérateurs sont **linéaires**.
- Vous devez connaître les formules ci-dessus. Leurs expressions en coordonnées sphériques et cylindriques ne sont **pas** à connaître et vous seront redonnées à chaque fois.
- L'opérateur nabla permet de retrouver les expressions des opérateurs ci-dessus en coordonnées cartésiennes uniquement.

1

Formules en coordonnées cylindriques :

$$\begin{split} & - g\vec{r}ad(g) = \frac{\partial g}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial g}{\partial \theta}\vec{e}_\theta + \frac{\partial g}{\partial z}\vec{e}_z \\ & - \text{div}(\vec{f}) = \frac{1}{r}\frac{\partial}{\partial r}(rf_r) + \frac{1}{r}\frac{\partial f_\theta}{\partial \theta} + \frac{\partial f_z}{\partial z} \\ & - r\vec{o}t(\vec{f}) = \left(\frac{1}{r}\frac{\partial f_z}{\partial \theta} - \frac{\partial f_\theta}{\partial z}\right)\vec{e}_r + \left(\frac{\partial f_r}{\partial z} - \frac{\partial f_z}{\partial r}\right)\vec{e}_\theta + \frac{1}{r}\left(\frac{\partial}{\partial r}(rf_\theta) - \frac{\partial f_r}{\partial \theta}\right)\vec{e}_z \end{split}$$

Formules en coordonnées sphériques :

$$\begin{split} & - g \vec{r} \vec{a} d(g) = \frac{\partial g}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial g}{\partial \theta} \vec{e}_\theta + \frac{1}{r \sin \theta} \frac{\partial g}{\partial \phi} \vec{e}_\phi \\ & - \text{div}(\vec{f}) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 f_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta f_\theta) + \frac{1}{r \sin \theta} \frac{\partial f_\phi}{\partial \phi} \\ & - \vec{r} \vec{o} t(\vec{f}) = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} (f_\phi \sin \theta) - \frac{\partial f_\theta}{\partial \phi} \right) \vec{e}_r + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial f_r}{\partial \phi} - \frac{\partial}{\partial r} (r f_\phi) \right) \vec{e}_\theta + \frac{1}{r} \left(\frac{\partial}{\partial r} (r f_\theta) - \frac{\partial f_r}{\partial \theta} \right) \vec{e}_\phi \end{split}$$

Quelques identités utiles :

$$\begin{split} &-\operatorname{div}(\overrightarrow{grad}(g)) = \Delta g \\ &-\operatorname{div}(\overrightarrow{rot}(\vec{f})) = 0 \\ &-\operatorname{rot}(\overrightarrow{grad}(g)) = \vec{0} \\ &-\operatorname{rot}(\overrightarrow{rot}(\vec{f})) = \overrightarrow{grad}(\operatorname{div}(\vec{f})) - \vec{\Delta}\vec{f} \\ &-\operatorname{Champ d\'{e}rivant d'un potentiel} : \overrightarrow{rot}(\vec{f}) = \vec{0} \Leftrightarrow \exists g: \vec{f} = \overrightarrow{grad}(g) \end{split}$$

Formule de Stokes:

Soit \vec{f} un champ vectoriel, Γ un contour **fermé** orienté dans le sens direct et S une surface quelconque, **orientée** par le vecteur normal \vec{n} (règle de la main droite) et s'appuyant sur Γ . On a :

$$\left| \oint_{\Gamma} \vec{f} \cdot d\vec{l} = \iint_{S} \vec{rot}(\vec{f}) \cdot d\vec{S} \right|$$

Formule d'Ostrogradski:

Soit S une surface fermée de normale \vec{n}_{ext} orientée vers **l'extérieur**. Soit \vec{f} un champ vectoriel. On a :

$$\iint_{S} \vec{f} \cdot d\vec{S} = \iiint_{V} div(\vec{f}) dV$$

Remarque:

En toute rigueur, pour le théorème de Stokes, il faut que Γ soit de classe \mathcal{C}^1 par morceaux, que \vec{f} ait des dérivées partielles de premier ordre continues et que S soit une surface régulière. Pour le théorème d'Ostrogradski, il faut que S soit une surface différentiable par morceaux, que V soit compact et que \vec{f} soit continûment différentiable. En pratique, on ne vérifiera **JAMAIS** ces conditions.

2 Exercice 1

- Retrouver la formule du gradient en coordonnées sphériques et cylindriques.
- Reprouver les 4 premières identités utiles par calcul vectoriel (avec $\vec{\nabla}$) et en coordonnées cartésiennes.

3 Exercice 2

Soit \vec{E} un champ vectoriel défini sur \mathbb{R}^3 . On ne sait rien sur ce champ, mais on mesure sa divergence. On a :

$$div(\vec{E}(x,y,z)) = \mathbb{1}_{(0,0,0)}$$

- Par des arguments de symétrie, montrer que \vec{E} est parallèle à $\vec{e_r}$.
- Par des arguments d'invariance, montrer que \vec{E} ne dépend pas de θ ni de ϕ .

 En utilisant le théorème de Stokes, calculer \vec{E} en tout point de l'espace.

Mines PC 2013 Physique 1 4

Questions 19 à 25.

When you express an integral over a volume with an integral over its boundary

