RaDe-GS

RaDe-GS: Rasterizing Depth in Gaussian Splatting

一、核心见解与创新点:

透射变换和仿射变换

在仿射变换中,GOF定义的交点形成一条直线, 以此计算法线、交点定义的深度

损失:同GOF

二、深度渲染:

光栅化表示:

$$d = z_c + \mathbf{p} \begin{pmatrix} \Delta u \\ \Delta v \end{pmatrix},$$

(1) 透视投影下的交点

$$x = o + tv$$
.

视线和高斯椭球的交线上的分布是一维高斯

$$G^{1}(t) = e^{-(\mathbf{o}+t\mathbf{v}-\mathbf{x}_{c})^{\mathsf{T}}\Sigma^{-1}(\mathbf{o}+t\mathbf{v}-\mathbf{x}_{c})}.$$

一维高斯最大值作为交点定义,有闭式解

$$t^* = \frac{\mathbf{v}^{\mathsf{T}} \Sigma^{-1} (\mathbf{x}_c - \mathbf{o})}{\mathbf{v}^{\mathsf{T}} \Sigma^{-1} \mathbf{v}}.$$

GOF中由视线上的分布最大值定义交点

透视投影下 交点形成曲线

二、深度渲染:

(2) 仿射投影下的交点

① 透视投影到放射投影的转换: a->b

$$\mathbf{x} = (x, y, z)^{\mathsf{T}}$$

$$G^1(t) = e^{-(\mathbf{o} + t\mathbf{v} - \mathbf{x}_c)^\top \Sigma^{-1} (\mathbf{o} + t\mathbf{v} - \mathbf{x}_c)} \qquad t^* = \frac{\mathbf{v}^\top \Sigma^{-1} (\mathbf{x}_c - \mathbf{o})}{\mathbf{v}^\top \Sigma^{-1} \mathbf{v}}.$$

② 仿射投影中的交点

$$\begin{split} t &= \sqrt{x^2 + y^2 + z^2}. \\ \mathbf{v}' &= (0, 0, 1)^{\top} \quad \mathbf{u} = \mathbf{u}_o + t\mathbf{v}', \\ \mathbf{u}_o &= (u, v, 0)^{\top} \\ G'^1(t) &= e^{-(\mathbf{u}_o + t\mathbf{v}' - \mathbf{u}_c)^{\top} \Sigma'^{-1} (\mathbf{u}_o + t\mathbf{v}' - \mathbf{u}_c)}. \qquad t^* = \frac{\mathbf{v}'^{\top} \Sigma'^{-1} (\mathbf{u}_c - \mathbf{u}_o)}{\mathbf{v}'^{\top} \Sigma'^{-1} \mathbf{v}'}. \\ \hat{\mathbf{q}} &= \frac{\mathbf{v}'^{\top} \Sigma'^{-1} \mathbf{v}'}{\mathbf{v}'^{\top} \Sigma'^{-1} \mathbf{v}'}. \end{split}$$

RaDe-GS

RaDe-GS: Rasterizing Depth in Gaussian Splatting arxiv6月3日 港理工

三、结果:

- 1、法向量计算高效,定义明确
- ,光栅化效果好
- 2、这个法向量近似在射线方向附近, 合理??

	Precision ↑	Recall ↑	F-score ↑
A. Mip-Splatting w/ TSDF	0.15	0.25	0.16
B. Mip-Splatting w/ GOF	0.40	0.33	0.36
C. Ours w/o GOF	0.37	0.45	0.39
D. Ours w/o normal consistency	0.41	0.35	0.37
E. Ours w/o decoupled appearance	0.49	0.39	0.43
F. Ours	0.54	0.42	0.46

	0	utdoor Sc	ene	Indoor scene						
	PSNR ↑ SSI		LPIPS ↓	PSNR↑	SSIM↑	LIPPS ↓				
NeRF	21.46	0.458	0.515	26.84	0.790	0.370				
Deep Blending	21.54	0.524	0.364	26.40	0.844	0.261				
Instant NGP	22.90	0.566	0.371	29.15	0.880	0.216				
MERF	23.19	0.616	0.343	27.80	0.855	0.271				
MipNeRF360	24.47	0.691	0.283	31.72	0.917	0.180				
Mobile-NeRF	21.95	0.470	0.470	-	-					
BakedSDF	22.47	0.585	0.349	27.06	0.836	0.258				
SuGaR	22.93	0.629	0.356	29.43	0.906	0.225				
BOG	23.94	0.680	0.263	27.71	0873	0.227				
3D GS	24.64	0.731	0.234	30.41	0.920	0.189				
Mip-Splatting	24.65	0.729	0.245	30.90	0.921	0.194				
2D GS	24.21	0.709	0.276	30.10	0.913	0.211				
GOF	24.82	0.750	0.202	30.79	0.924	0.184				
Ours	25.17	0.764	0.199	30.74	0.928	0.165				

		24	37	40	55	63	65	69	83	97	105	106	110	114	118	122	Mean
implicit	NeRF [Mildenhall et al. 2021]	1.90	1.60	1.85	0.58	2.28	1.27	1.47	1.67	2.05	1.07	0.88	2.53	1.06	1.15	0.96	1.49
	VolSDF [Yariv et al. 2021]	1.14	1.26	0.81	0.49	1.25	0.70	0.72	1.29	1.18	0.70	0.66	1.08	0.42	0.61	0.55	0.86
	NeuS [Wang et al. 2021]	1.00	1.37	0.93	0.43	1.10	0.65	0.57	1.48	1.09	0.83	0.52	1.20	0.35	0.49	0.54	0.84
	Neuralangelo [Li et al. 2023]	0.37	0.72	0.35	0.35	0.87	0.54	0.53	1.29	0.97	0.73	0.47	0.74	0.32	0.41	0.43	0.61
explicit	3D GS [Kerbl et al. 2023]	2.14	1.53	2.08	1.68	3.49	2.21	1.43	2.07	2.22	1.75	1.79	2.55	1.53	1.52	1.50	1.96
	SuGaR [Guédon and Lepetit 2023]	1.47	1.33	1.13	0.61	2.25	1.71	1.15	1.63	1.62	1.07	0.79	2.45	0.98	0.88	0.79	1.33
	2D GS [Huang et al. 2024]	0.48	0.91	0.39	0.39	1.01	0.83	0.81	1.36	1.27	0.76	0.70	1.40	0.40	0.76	0.52	0.80
	GOF [Yu et al. 2024c]	0.50	0.82	0.37	0.37	1.12	0.74	0.73	1.18	1.29	0.68	0.77	0.90	0.42	0.66	0.49	0.74
	Our	0.40	0.71	0.33	0.37	0.87	0.79	0.77	1.22	1.26	0.70	0.65	0.85	0.33	0.66	0.44	0.69