LECTURER: Nghia Duong-Trung

DATA SCIENCE

WHOIAM

- Name: Nghia Duong-Trung
- 09.2022 present: The German Research Center for Artificial Intelligence (DFKI GmbH)
- 06.2022 present: IU International University of Applied Sciences
- PostDoc in Machine Learning at Technische Universität Berlin
- PhD in Machine Learning at The Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
- MSc in Software Engineering at Heilbronn University, Germany
- Profile: https://sites.google.com/ismll.de/duongtrungnghia/

INTRODUCTION TO DATA SCIENCE - DLMBDSA01

- Course book: Data Science DLMBDSA01, provided by IU, myStudies
- Reading list DLMBDSA01, provided by IU, myStudies
- Additional teaching materials:

https://github.com/duongtrung/IU-DataScienceCourse

SELF-LEARNING AND SELF-IMPROVING

- https://www.dataquest.io/blog/learn-data-science/
- https://blog.edx.org/7-learning-tips-for-data-science-self-study
- https://www.coursera.org/search?query=data%20science&
 - 2680 results for "data science"
 - https://www.coursera.org/specializations/introduction-data-science
 - https://www.coursera.org/specializations/data-science-python
 - https://www.coursera.org/specializations/data-science-fundamentals-python-sql

SELF-LEARNING AND SELF-IMPROVING

- Should read the course book before class
- *Optional*: reading list

TOPIC OUTLINE

Introduction to Data Science	1
Use Cases and Performance Evaluation	2
Data Preprocessing	3
Processing of Data	4
Selected Mathematical Techniques	5
Selected Artificial Intelligence Techniques	6

UNIT 1

INTRODUCTION TO DATA SCIENCE

On completion of this unit, you will have learned...

- the meaning of data science.
- common terms and definitions in data science.
- the different applications of data science.
- the typical sources of data.
- the types and shapes of data.
- probability distributions and Bayesian statistics.

- 1. Define the term data science in your own words.
- 2. Explain the difference between structured, unstructured and semi-structured data.
- 3. Identify two types of machine learning and give an application example for each type.

Data science

- analyze and explore the information contained in data
- incorporate domain knowledge
- create predictions to advise
 the decision-making process
- create value from data

Navigating the Job Market for Data Science Professionals: Roles and Requirements.

DATA SCIENCE ACTIVITIES

- Data collection from different sources
- Data storage
- Data accessing

- Data cleaningData presentation
- Data evaluation

Example of customer churn: Combine data from historical marketing interactions and purchases with demographic data

- Treat outliers and missing values
- Inspect visual patterns

- Descriptive statistics & statistical analysis
- Modeling
- Visual techniques
- Build ML model to predict probability of customers leaving
- Create value from data insights
- Drive business decisions

KEY TERMS

- Data, Database, Information, Data Science
- Data mining, Data Visualization and Statistics, Knowledge Discovery (KDD), Pattern Recognition
- Artificial Intelligence, Machine Learning
- Business Intelligence
- Two broad directions:
 - data engineer/scientist
 - or machine learning engineer/scientist
- https://blog.edx.org/data-science-analytics-career-guide

- sounds sexy
- gets us money from VCs
- what we all hope is the future

Machine Learning

- the only real "AI"
- traditionally an academic discipline
- not concerned with real-world software

Data Science

- applies machine learning to create actual products
- deals with real-world complexity

Male

70% of Data Scientists in our research were male

2 Languages

Data scientists speak at least 1 foreign language on average

2 years

This is a new profession. The median experience as data scientists of professionals in our research was 2 years

4.5 years

People who work as data scientists currently have a median work experience of 4.5 years (including previous positions)

R and/or Python

More than 50% of the data scientists in our research work in R and/or Python

Master or PhD

75% of data scientists have a PhD (27%) or a Master (48%) degree

DATA TYPES

Structured Data

- Pre-defined data models
- Can be displayed in rows and columns
- Example: customer database (address, name, age etc.)

Semi-structured

- Contains some
 tags/attributes among
 unstructured data
- Example: Mails, Tweets

Unstructured Data

- Unknown form or structure
- Example: Online Reviews,
 Audio files, Videos, Images

Name	Age	Address	Gender
John	30	City	m
Marie	4	Village	f

From: John Doe johndoe@mail.com

To: Marie Doe <u>mariedoe@mail.com</u>

Subject: Hello

Hi Marie,

How are you?

The book is fabulous! I enjoyed it!

TYPES OF MACHINE LEARNING

Machine Learning (ML)

Unsupervised ML

Discover hidden patterns

Supervised ML

Predict a target variable

Reinforcement Learning

Semi- / Selfsupervised learning Clustering

Regression

(continuous target)

Classification

(categorical target)

Robotics

Customer Segmentation

Spam

TYPES OF MACHINE LEARNING

- https://elitedatascience.com/learn-machine-learning
- https://programmathically.com/how-to-learn-machine-learning-a-guide-for-selfstarters/
- https://machinelearningmastery.com/start-here/
- https://www.coursera.org/search?query=machine%20learning&
 - 1292 results for "machine learning"
 - https://www.coursera.org/specializations/machine-learning-introduction
 - https://www.coursera.org/professional-certificates/ibm-machine-learning

DATA SCIENCE APPLICATIONS

DESCRIPTIVE STATISTICS – BASIC TERMS

Value, Probability
Standard deviation = measure of spread
Mean = average
Median = 50% greater, 50% smaller values

Source of the graphics: Drawing by Antonia Schulze, 2021.

DESCRIPTIVE STATISTICS – PROBABILITY THEORY

P(A)

P (**A** ∪ **B**)

P (**A** ∩ **B**)

P (A | B)

Probability of an event A happening

Probability of event **A or B** happening

Probability of event

A and B happening

Probability of A, given that event B already happened

Conditional Probability

P(A \cap B)

P(B)

DESCRIPTIVE STATISTICS – PROBABILITY DISTRIBUTIONS

Normal Distribution

- Bell curve shape
- Example: weight, height distribution

Binomial Distribution

- Two possible outcomes
- Example: P(# of heads) if tosscoin twice

Poisson Distribution

- Frequency of intervals between independent events
- Example: P(# of calls per day) if average 5 calls per day

BAYES THEOREM

Let us say P(Fire) means how often there is fire, and P(Smoke) means how often we see smoke, then:

- P(Fire|Smoke) means how often there is fire when we can see smoke
- P(Smoke|Fire) means how often we can see smoke when there is fire

Example:

- Dangerous fires are rare (1%)
- but smoke is fairly common (10%) due to barbecues,
- and 90% of dangerous fires make smoke

Probability of dangerous Fire when there is Smoke: P(Fire|Smoke)?

BAYES THEOREM

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)} = \frac{P(A)P(B|A)}{P(B|A)P(A) + P(B|not A)P(not A)}$$

http://allendowney.github.io/ThinkBayes2/chap02.html

You have learned...

- the meaning of data science.
- common terms and definitions in data science.
- the different applications of data science.
- the typical sources of data.
- the types and shapes of data.
- probability distributions and Bayesian statistics.

SESSION 1

TRANSFER TASK

TRANSFER TASK

Prepare a case study to demonstrate the application of data science in an industry sector of your choice. Elaborate on potential data sources, the type and shape of data.

TRANSFER TASK PRESENTATION OF THE RESULTS

Please present your results.

The results will be discussed in plenary.

1. Which of the following is the blind machine learning task of inferring a binary function for unlabeled training data?

- a) Regression
- b) Unsupervised Learning
- c) Supervised learning
- d) Data processing

2. In which process are the data cleared from noise and the missing values are estimated/ignored?

- a) data preservation
- b) data security
- c) data publication
- d) data description

3. The probability p(A|B) measures...

- a) the chance of event A given knowledge that event B has occurred.
- b) the chance of event B given knowledge that event A has occurred.
- c) the chance that events A and B occur at the same time.
- d) the chance of event A given knowledge that event B has not occurred.

