Aufgabe 1 (Mengensysteme)

- 1. Ist der Schnitt zweier Semialgebren wieder eine Semialgebra?
- 2. Ist die Vereinigung zweier σ -Algebren wieder eine σ -Algebra?
- 3. Sei \mathcal{A} eine Semialgebra. Geben Sie $\alpha(\mathcal{A})$ an.
- 4. Sei $\mathcal{E} \subseteq \mathcal{P}(\Omega)$ beliebig. Geben Sie $\alpha(\mathcal{E})$ an.
- 5. Geben Sie ein monotones System an, dass keine σ -Algebra ist.
- 6. Erläutern Sie die Beweistechnik des Good-Set-Principles anhand eines selbstgewählten Beispiels.
- 7. Skizzieren Sie kurz den Zusammenhang zwischen den folgenden Begriffen: Semialgebra, Algebra, σ -Algebra, Dynkin-System, monotones System.
- 8. Wieso benötigen wir so viele verschiedene Arten von Mengesystemen?
- 9. Was ist eine Borel- σ -Algebra?
- 10. Geben Sie einen nicht-trivialen Erzeuger der Borelschen σ -Algebra im \mathbb{R}^k an und skizzieren Sie den Beweis der beiden Inklusionen.

Aufgabe 2 (Messbare Funktionen)

- 1. Wann ist eine Abbildung messbar?
- 2. Unter welcher Voraussetzung kann man diese Bedingung ggf. abschwächen?
- 3. Sind stetige Abbildungen im Allgemeinen messbar?
- 4. Für $n \in \mathbb{N}$ sei $X_n \in \mathcal{F}(\Omega, \mathcal{A})$. Beurteilen Sie ob es sich bei den Folgenden Mengen um messbare Mengen handelt:

$$A_1 := \{ \omega \in \Omega : \{ X_n(\omega) : n \in \mathbb{N} \} \text{ liegt dicht in } \mathbb{R} \},$$

$$A_2 := \{ \omega \in \Omega : (X_n(\omega))_{n \in \mathbb{N}} \text{ konvergiert in } \mathbb{R} \},$$

$$A_3 := \{ \omega \in \Omega : \sup_{n \in \mathbb{N}} |X_n| \le C \}, C > 0.$$

- 5. Was ist eine initiale σ -Algebra?
- 6. Was besagt das Faktorisierungslemma?
- 7. Skizzieren Sie das allgemeine Vorgehen bei einem Beweis per algebraischer Induktion.

Aufgabe 3 (Produkträume)

- 1. Definieren Sie das kartesische Produkt von Mengen Ω_i , $i \in I \neq \emptyset$.
- 2. Wie ist das Produkt von σ -Algebren definiert?
- 3. Nennen Sie einen durchschnittstabilen Erzeuger der Produkt- σ -Algebra.
- 4. Betrachte die Mengen

$$\begin{split} A_1 &:= \{ f : [0,1] \to \mathbb{R} \mid \sup_{x \in [0,1]} |f(x)| < C \ \}, C \in (0,\infty) \\ A_2 &:= \{ f : [0,1] \to \mathbb{R} \mid \text{f besitzt keine Nullstelle } \} \\ A_3 &:= \{ f : [0,1] \to \mathbb{R} \mid \text{f ist stetig } \}. \end{split}$$

Sind diese Mengen in $\bigotimes_{t \in [0,1]} \mathcal{B}$ enthalten? Begründen Sie Ihre Entscheidung.

Aufgabe 4 (Konstruktion von Maßen)

- 1. Was ist der Unterschied zwischen einem Inhalt und einem Prämaß? Was unterscheidet ein Maß von einem Prämaß?
- 2. Geben Sie ein Beispiel für einen Inhalt, der kein Maß ist.
- 3. Sei μ ein endlicher Inhalt. Geben sie vier zur folgenden Aussage äquivalente Aussagen an: μ ist σ -sub-additiv.
- 4. Wie lässt sich ein auf einer Algebra \mathcal{A} definiertes Prämaß μ zu einem Maß auf $\sigma(\mathcal{A})$ fortsetzen?
- 5. Welche Rolle spielt die σ -Endlichkeit bei der Fortsetzung von Prämaßen?
- 6. Sei das Maß ν absolutstetig bzgl. dem Maß μ . Besitzt ν dann eine μ -Dichte? (Gegenbeispiel + zusätzliche Bedingung)
- 7. Was ist die Vervollständigung eines Maßraums?
- 8. In welchem Kontext benötigt man den Begriff der kompakten Approximierbarkeit?
- 9. Skizzieren Sie die Konstruktion des k-dimensionalen Lebesgue-Maßes.

Aufgabe 5 (Maßintegral & fast-überall Eigenschaften)

- 1. Definieren Sie das Maßintegral für eine messbare Funktion. Welche elementaren Eigenschaften des Maßintegrals kennen Sie?
- 2. Skizzieren sie die Beweisidee des Satzes von Beppo Levi.

- 3. Seien $X, X_1, X_2, ...$ Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) . Lässt sich der Satz von der dominierten Konvergenz auch anwenden, wenn die punktweise Konvergenz durch stochastische Konvergenz ersetzt wird?
- 4. Lässt sich durch jede nicht negative messbare Funktion ein Maß definieren? Lässt sich jedes Maß bezüglich eines anderen Maßes so darstellen?
- 5. Was versteht man unter einer fast überall Eigenschaft?
- 6. Seien $f, g \in \mathcal{F}(\Omega, \mathcal{A})$. Geben Sie eine möglichst schwache Bedingung dafür an, dass $f \leq g$ fast überall.
- 7. Was besagt der Satz von Radon-Nikodym? Wie sieht es bei nicht σ endlichen Maßen aus? Gegenbeispiel?
- 8. Was ist eine σ -additive-Mengenfunktion und was versteht man unter einer Jordan-Zerlegung? Ist diese eindeutig? Begründen Sie Ihre Antwort.
- 9. Was versteht man unter einer Hahn-Zerlegung?
- 10. Wann ist ein Maß singulär bzgl. einem anderen Maß?
- 11. Was ist die Lebesgue-Zerlegung eines Maßes?
- 12. Sei (Ω, \mathcal{A}) messbarer Raum und seien μ_1, μ_2 Wahrscheinlichkeitsmaße auf \mathcal{A} . Begründen Sie, dass dann auch $\mu := \frac{1}{2}(\mu_1 + \mu_2)$ ein Wahrscheinlichkeitsmaß auf \mathcal{A} ist und zeigen Sie, dass μ_i absolutstetig bzgl. μ ist.
- 13. Sei μ das Zählmaß auf $\mathcal{P}(\mathbb{N})$. Zeigen Sie, dass die Abbildung

$$f: \mathbb{N} \to \mathbb{R}, n \mapsto \frac{(-1)^n}{n}$$

nicht μ -integrierbar ist.

- 14. Sei μ das Zählmaß auf \mathcal{B} und ν ein Wahrscheinlichkeitsmaß, dass eine μ -Dichte f besitzt. Kann f stetig sein?
- 15. Betrachte für $a, b \in \mathbb{R}$ mit a < b den Maßraum $(\Omega, \mathcal{A}, \mu) = ([a, b], \mathcal{B} \cap [a, b], \lambda_{\mathcal{B} \cap [a, b]})$ und sei $f \in \mathcal{L}(\Omega, \mathcal{A}, \mu)$. Zeigen Sie, dass dann die Abbildung

$$g:(a,b)\to\mathbb{R}, x\mapsto\int_{[a,x]}f(y)\lambda(dy)$$

stetig ist.

Aufgabe 6 (Maßkerne & Produktmaße)

- 1. Was ist ein Maßkern? Welche Eigenschaften von Maßkernen haben wir in der Vorlesung kennengelernt?
- 2. Wie ist das Produktmaß eines σ -endlichen Maßes μ mit einem σ endlichen Maßkern K definiert. Welche charakterisierende Eigenschaft
 besitzt es? Wie zeigt man die Eindeutigkeit ?
- 3. Was versteht man unter einer Standardfortsetzung? Wofür wird sie gebraucht?
- 4. Formulieren sie den Satz von Fubini für Maßkerne. Lassen sich die iterierten Integrale vertauschen?
- 5. Skizzieren Sie die Beweisidee des Satzes von Ionescu-Tulcea.
- 6. Erläutern Sie ein Anwendungsbeispiel des Satzes von Ionescu-Tulcea.
- 7. Inwiefern kann der Satz von Cavalieri bei der Berechnung von Erwartungswerten behilflich sein?

Aufgabe 7 (Verteilungen & Verteilungsfunktionen)

- 1. Nennen Sie die charakterisierenden Eigenschaften einer Verteilungsfunktion.
- 2. Jede Zufallsgröße definiert eine Verteilungsfunktion. Lässt sich dann auch für eine gegebene Verteilungsfunktion eine Zufallsgröße mit dieser dadurch definierten Verteilung konstruieren?
- 3. Formulieren sie den Transformationssatz für Bildmaße.
- 4. Was ist überhaupt ein Bildmaß?
- 5. Wann besitzen zwei messbare Abbildungen das gleiche Bildmaß? Gilt auch die Umkehrung?

Aufgabe 8 (Fast sicher, stochastische & Verteilungskonvergenz)

- 1. Definieren Sie fast sichere Konvergenz und geben Sie hinreichende und notwendige Bedingungen an.
- 2. Formulieren Sie die Cauchy-Kriterien für fast-sichere und für stochastische Konvergenz.
- 3. Was besagt das Lemma von Pratt?
- 4. Welche Konvergenzform ist die stärkste? Welche Implikationen gelten?

- 5. Geben Sie ein Beispiel dafür an, dass aus stochastischer Konvergenz im Allgemeinen nicht auch fast sichere Konvergenz folgt.
- 6. Was können Sie über die Eindeutigkeit fast-sicherer/stochastischer Grenzwerte sagen? Wie schaut es bei Verteilungskonvergenz aus?
- 7. Charakterisieren Sie die Konvergenz in Verteilung.
- 8. Was besagt der Satz von Skorohod? Geben Sie die im Beweis verwendete Konstruktion explizit an.
- 9. Was ist stochastische Äquivalenz? Zeigen Sie, dass dadurch eine Äquivalenzrelation definiert ist.
- 10. Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsgrößen und gelte $\sum_{n=1}^{\infty} E(|X_n|^p) < \infty$ für ein p>0. Zeigen Sie: $P[\lim_{n\to\infty} X_n=0]=1$.
- 11. Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und betrachte die Abbildung:

$$d: \mathcal{F}(\Omega, \mathcal{A}) \times \mathcal{F}(\Omega, \mathcal{A}) \to [0, \infty], (X, Y) \mapsto E(\frac{|X - Y|}{1 + |X - Y|})$$

Zeigen Sie, dass eine Folge von Zufallsgrößen $(X_n)_{n\in\mathbb{N}}$ auf (Ω, \mathcal{A}, P) genau dann stochastisch gegen eine Zufallsgröße X konvergiert, wenn $\lim_{n\to\infty} d(X,X_n)=0$.

12. Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und setze

$$F(\Omega, \mathcal{A}) := \{ [X]_{\sim} : X \in \mathcal{F}(\Omega, \mathcal{A}) \}$$
 wobei $X \sim Y \iff X = Y$ P-fast-sicher.

Zeigen oder widerlegen Sie: Es gibt eine Metrik d auf F, sodass gilt: $X_n \to XP$ -f.s. $\iff d(X, X_n) \to 0$.

Aufgabe 9 (Konvergenz im p-ten Mittel & gleichgradige Integrierbarkeit)

- 1. Was ist die Minkowski-Ungleichung? Wozu wird Sie verwendet?
- 2. Worin unterscheiden sich die Vektorräume L_p und \mathcal{L}_p ?
- 3. Wieso betrachten wir ausschließlich $p \ge 1$?
- 4. Zeigen Sie, dass durch die Abbildung

$$p: L_p(\Omega, \mathcal{A}, P) \to [0, \infty), X \mapsto (E(|X|^p))^{\frac{1}{p}}$$

eine Norm definiert wird. Ist der resultierende normierte Vektorraum vollständig?

- 5. Unter welcher zusätzlichen Voraussetzung impliziert fast sichere Konvergenz die Konvergenz im (ersten) Mittel (L_1 -Konvergenz)?
- 6. Definieren Sie gleichgradige Integrierbarkeit und geben Sie eine Charakterisierung an.
- 7. Geben Sie ein Beispiel für eine nicht gleichgradig integrierbare Folge von Zufallsgrößen.
- 8. Unter welcher zusätzlichen Bedingung folgt aus stochastischer Konvergenz auch die Konvergenz im p-ten Mittel?

Aufgabe 10 (Unabhängigkeit & 0-1-Gesetze)

- 1. Definieren Sie die Unabhängigkeit von Zufallsvariablen.
- 2. Geben Sie eine möglichst schwache Bedingung für die Unabhängigkeit zweier Zufallsvariablen an.
- 3. Zeigen oder widerlegen Sie: Sind X, Y Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit $P^{(X,Y)} = P^X \times P^Y$, dann sind X, Y unabhängig.
- 4. Zeigen oder widerlegen Sie: Sind X, Y Zufallsgrößen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit $P^{X+Y} = P^X * P^Y$, dann sind X, Y unabhängig.
- 5. Wann sind zwei Zufallsvariablen X, Y unkorreliert? Sind X, Y dann auch unabhängig?
- 6. Ist eine Familie paarweise unabhängiger Zufallsvariablen unabhängig?
- 7. Welche Modellierung bietet sich meist an, um eine Folge unabhängiger Zufallsgrößen mit gegebener Verteilung zu modellieren?
- 8. Modellieren sie einen Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) und eine iid Folge $(X_n)_{n\in\mathbb{N}}$ von Zufallsgrößen mit $X_1 \sim B(1, \frac{1}{2})$. Zeigen Sie insbesondere die Unabhängigkeit ausführlich.
- 9. Definieren Sie die Faltung zweier Wahrscheinlichkeitsmaße.
- 10. Seien μ_1 und μ_2 zwei Wahrscheinlichkeitsmaße auf \mathcal{B} . Sei ferner μ_1 absolutstetig bezüglich λ . Besitzt das Faltungsprodukt $\mu_1 * \mu_2$ dann ebenfalls eine λ -Dichte? Geben Sie diese an oder konstruieren Sie ein Gegenbeispiel.
- 11. Formulieren Sie das Lemma von Borel-Cantelli. Gelten auch die Umkehrungen?

- 12. Was ist die terminale σ -Algebra bzgl. einer Folge von Zufallsgrößen $(X_n)_{n\in\mathbb{N}}$? Kennen Sie Mengen, die in \mathcal{A}_{∞} enthalten sind?
- 13. Skizzieren Sie die Beweisidee des 0-1-Gesetzes.
- 14. Sei $(A_n)_{n\in\mathbb{N}}$ eine Folge unabhängiger σ -Algebren und A_∞ die zugehörige terminale- σ -Algebra. Ferner sei $f:\Omega\to\bar{\mathbb{R}}$ eine $A_\infty/\bar{\mathcal{B}}$ messbare Abbildung. Was gilt dann fast sicher?
- 15. Geben Sie eine Folge von Zufallsvariablen $(X_n)_{n \in \mathbb{N}}$ auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) an, sodass die assoziierte terminale σ -Algebra Ereignisse A mit 0 < P(A) < 1 enthält.

Aufgabe 11 (Gesetze der großen Zahlen)

- 1. Nennen Sie hinreichende und notwendige Kriterien für die Konvergenz zufälliger Reihen.
- 2. Formulieren sie den Kolmogorovschen Drei-Reihen-Satz. Gilt die Rückrichtung auch, falls die Bedingung nur für ein $c \in (0, \infty)$ erfüllt ist?
- 3. Sei $(X_n)_{n\in\mathbb{N}}$ eine iid Folge von Zufallsgrößen und $(c_i)_{i\in\mathbb{N}}$ eine Folge in \mathbb{R} . Nennen Sie eine notwendige und hinreichende Bedingung für die Konvergenz der zufälligen Reihe $\sum_{n=1}^{\infty} c_n X_n$.
- 4. Formulieren sie beide Versionen des Starken Gesetz der Großen Zahlen (SLLN).
- 5. Ist die in der ersten Version des SLLN gegebene Bedingung nicht nur hinreichend sondern auch notwendig?
- Geben Sie ein Beispiel für eine Folge unabhängiger Zufallsgrößen, die nicht dem Starken Gesetz der Großen Zahlen genügt.
 (D.h. P({lim_{n→∞} ¹⁄_n ∑ⁿ_{i=1}(X_i − E(X_i)) = 0}) < 1).