Lexical Semantic Change: Models, Data and Evaluation

LREC 2022 - Tutorial - 20 June 2022

Pierpaolo Basile¹, Annalina Caputo², Pierluigi Cassotti¹ and Rossella Varvara³ University of Bari¹, Dublin City University², Université de Fribourg³

Outline

- Background concepts
 - PPMI matrix factorization
 - Word2Vec Skip-gram with Negative Sampling (SGNS)
 - BERT-based models
- Lexical Semantic Change Models
 - Alignment models
 - Post-alignment models
 - Orthogonal Procrustes
 - Jointly Alignment Models
 - Explicit Alignment Models
 - Dynamic Word Embedding (DWE)
 - Dynamic Bernoulli Embedding (DBE)
 - Implicit Alignment Models
 - Temporal Referencing (TR)
 - Temporal Random Indexing (TRI)
 - Temporal Word Embedding with a Compass (TWEC)
 - Contextualized Models
 - TempoBERT
 - Temporal Attention
 - Deep Mistake
 - Gloss Reader
 - Other Models
 - Local Neighborhood measure
 - Word Sense Induction
 - Grammatical Features

PPMI Factorization

Mutual Information

SYMMETRIC NON NEGATIVE

$$I(X,Y) = \sum_{x} \sum_{y} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$

Mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables.

It quantifies the "amount of information" obtained about one random variable by observing the other random variable

Pointwise Mutual Information

$$PMI(w,c) = \log_2 \frac{P(w,c)}{P(w)P(c)}$$

- **PMI(w,c) = 0** w and c are statistically independent
- **PMI(w,c)>0** w and c co-occur more frequently than would be expected under an independence assumption
- **PMI(w,c)<0** w and c co-occur less frequently than would be expected

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \ p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \ p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

$$PPMI_{ij} = \max(\log_2 \frac{p_{ij}}{p_{i*}p_{*j}}, 0)$$

PPMI digital, data

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \ p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \ p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

$$PPMI_{ij} = \max(\log_2 \frac{p_{ij}}{p_{i*}p_{*j}}, 0)$$

PPMI digital,data

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$p_{ij} = \underbrace{\frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}}_{p_{i*}}, \quad p_{i*} = \underbrace{\frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}}_{p_{*j}} \quad p_{*j} = \underbrace{\frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}}_{p_{*j}}$$

$$PPMI_{ij} = \max(\log_2 \frac{p_{ij}}{p_{i*}p_{*j}}, 0)$$

PPMI digital, data

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \quad p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \quad p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

$$PPMI_{ij} = \max(\log_2 \frac{p_{ij}}{p_{i*}p_{*j}}, 0)$$

PPMI digital, data

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$p_{ij} = \frac{f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \ p_{i*} = \frac{\sum_{j=1}^{C} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}, \ p_{*j} = \frac{\sum_{i=1}^{W} f_{ij}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{ij}}$$

$$PPMI_{ij} = \max(\log_2 \frac{p_{ij}}{p_{i*}p_{*j}}, 0)$$

	computer	data	result	pie	sugar
cherry	0	0	0	4.38	3.30
strawberry	0	0	0	4.10	5.51
digital	0.18	0.01	0	0	0
information	0.02	0.09	0.28	0	0

PPMI Factorization

	computer	data	result	pie	sugar
cherry	0	0	0	4.38	3.30
strawberry	0	0	0	4.10	5.51
digital	0.18	0.01	0	0	0
information	0.02	0.09	0.28	0	0

m×m

m×n

m×n

V* n×n

Word 2 Vec Skip-gram with Negative sampling

Word2Vec Skip-gram with Negative Sampling (SGNS)

Negative Sampling

Vanilla Skip-Gram

Negative Sampling

BERT-based models

BERT-based models

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. <u>BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding</u>. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

type vs token embeddings

- type-based (static embeddings): Word2Vec, FastText, GloVe, ...
- token-based (contextualized embeddings): BERT, eLMo, roBERTa, ...

LSC Models -Taxonomy

Lexical Semantic Change Models

P. Cassotti, P. Basile, M. de Gemmis, and G. Semeraro, "Analyzing Gaussian distribution of semantic shifts in Lexical Semantic Change Models," IJCoL Ital. J. Comput. Linguist., vol. 6, no. 6–2, pp. 23–36, 2020.

Alignment Models

Alignment approach

Post-alignment

 Post-alignment models first train static word embeddings for each time slice and then align them

Jointly alignment

 Jointly Alignment models train word embeddings and jointly align vectors across all time slices

 Jointly Alignment models can be distinguished in Explicit alignment models and Implicit alignment models.

Alignment approach

Post-alignment

 Post-alignment models first train static word embeddings for each time slice and then align them

Jointly alignment

 Jointly Alignment models train word embeddings and jointly align vectors across all time slices

 Jointly Alignment models can be distinguished in Explicit alignment models and Implicit alignment models.

Orthogonal Procrustes (OP)

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. <u>Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change</u>. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1489–1501, Berlin, Germany. Association for Computational Linguistics.

Jointly Alignment - Alignment constraint

Explicit alignment

 The objective function of explicit alignment models involves constraints on word vectors

 Typically those constraints require that the distance of two-word vectors in two consecutive periods is the smallest possible

Implicit alignment

 In the implicit alignment, the alignment is automatically performed by sharing the same word context vectors across all the time spans

Dynamic Word Embedding (DWE)

Yao, Zijun, et al. "Dynamic word embeddings for evolving semantic discovery." *Proceedings of the eleventh acm international conference on web search and data mining*. 2018.

Dynamic Bernoulli Embedding (DBE)

Rudolph, Maja, and David Blei. "Dynamic embeddings for language evolution." Proceedings of the 2018 World Wide Web Conference. 2018.

Temporal Random Indexing (TRI)

• Produce aligned word embeddings in a single step.

Count-based method.

 TRI is based on Random Indexing: near-orthogonality random index vectors shared across all time slices so that word spaces are comparable.

$$sv_i = \sum_{d \in C} \sum_{-m < i < +m} c_i$$

Temporal Referencing (TR)

- Replace a subset of words in the dictionary (target words) with time-specific tokens
- Temporal Referencing is not performed when the word is considered a context word
- Since TR is a generic framework, it can be applied to both low-dimensional embeddings learned with SGNS and high-dimensional sparse PPMI vectors

Temporal Word Embedding with a Compass (TWEC)

Di Carlo, Valerio, Federico Bianchi, and Matteo Palmonari. "Training temporal word embeddings with a compass." *Proceedings of the AAAI conference on artificial intelligence*. Vol. 33. No. 01. 2019.

Contextualized Models

TempoBERT

- Use time as additional context
- Exploit time masking

(a) TempoBERT is trained on temporal corpora, where each sequence is prepended with temporal context information. Time prediction: "[MASK] Today's weather is awful." → <2020>

Time-dependent MLM: *<1800> He has an awful [MASK]." → presence *<2020> He has an awful [MASK]." → temper

(b) TempoBERT can be used for inference in two modes: (1) time prediction; (2) time-dependent mask filling.

Rosin, Guy D., Ido Guy, and Kira Radinsky. "Time masking for temporal language models." *Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining*. 2022.

Temporal Attention

• Extends self-attention to include time dimension

Time-specific weight matrix

XLM-RoBERTa

Figure 1: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus used for mBERT and XLM-100, and the CC-100 used for XLM-R. CC-100 increases the amount of data by several orders of magnitude, in particular for low-resource languages.

Sebastian Ruder, Anders Søgaard, and Ivan Vulić. 2019. <u>Unsupervised Cross-Lingual Representation Learning</u>. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts*, pages 31–38, Florence, Italy. Association for Computational Linguistics.

Gloss Reader

- Rely on XLM-RoBERTa and trained on a English Word Sense Disambiguation (WSD) dataset (SemCor)
- Zero-shot ability on other languages such as Russian

Rachinskiy, Maxim, and Nikolay Arefyev. "Zeroshot Crosslingual Transfer of a Gloss Language Model for Semantic Change Detection." *Computational linguistics and intellectual technologies: Papers from the annual conference Dialogue*. 2021.

Deep Mistake

- Pretrained XLM-R fintuned on MCL-WiC task
- Not depends on fixed sense inventories

Lang	Target	Context-1	Context-2	Label
EN	Beat	We beat the competition	Agassi <u>beat</u> Becker in the tennis championship.	True
DA	Tro	Jeg <u>tror</u> p° a det, min mor fortalte.	Maria <u>troede</u> ikke sine egne øjne.	True
ET	Ruum	Uhel hetkel olin $\bar{\mathbf{v}}$ aljaspool aega ja $\underline{\mathbf{ruumi}}$.	Umberringi oli l oputu t uhi <u>ruum</u> .	True
FR	Causticité	Sa <u>causticité</u> lui a fait bien des ennemis.	La <u>causticité</u> des acides.	False
КО	틀림	<u>틀림이</u> 있는지 없는지 세어 보시오.	그 아이 하는 짓에 <u>틀림이</u> 있다면 모두 이 어미 죄이지요.	False
ZH	簽	建築師希望發大火燒掉城市的三分之一。	如果南美洲氣壓偏低,則印度可能發乾旱	True
FA	صرف	<u>صرف</u> غذا نیم ساعت طول کشید	معلم <u>صرف</u> افعال ماضی عربی را آموزش داد	False

Arefyev, Nikolay, et al. "DeepMistake: Which Senses are Hard to Distinguish for a WordinContext Model." *Computational linguistics and intellectual technologies:* Papers from the annual conference Dialogue. 2021.

Other models

Local Neighborhood measure

Global measure

$$d^G(w_i^{(t)}, w_i^{(t+1)}) = \operatorname{cos-dist}(\mathbf{w}_i^{(t)}, \mathbf{w}_i^{(t+1)})$$

Local Neighborhood measure

k nearest-neighbors

Local neighborhood measure of change

homosexua

heterosexual

1990s

queer

Word Sense Induction

- Curvature clustering
- lin measure (based on the WordNet synset similarity)

Grammatical Features

 Grammatical features such as PoS tags, dependency labels, number, case, tense

Grammatical features are language-dependent

Figure 1: Changes in the number category distribution for the English noun 'lass' over time, calculated on the English corpora of the SemEval 2020 shared task 1 (Schlechtweg et al., 2020). 'Lass' is annotated as semantically changed in the SemEval dataset.