Relative std.							
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$			
	- J						
	1	UNIVERSAL					
	,	ONIVERSAL					
speed of light in vacuum	c, c_0	299 792 458	${ m m~s^{-1}}$	(exact)			
magnetic constant	μ_0	$4\pi \times 10^{-7}$	${ m N~A^{-2}}$				
		$= 12.566370614 \times 10^{-7}$	$N A^{-2}$	(exact)			
electric constant $1/\mu_0 c^2$	$arepsilon_0$	$8.854187817\times10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$	(exact)			
characteristic impedance	_		_				
of vacuum $\sqrt{\mu_0/\epsilon_0} = \mu_0 c$	Z_0	376.730313461	Ω	(exact)			
Newtonian constant							
of gravitation	G	$6.673(10) \times 10^{-11}$	$m^3 kg^{-1} s^{-2}$	1.5×10^{-3}			
of gravitation	G/ħc	$6.707(10) \times 10^{-39}$	$(\text{GeV}/c^2)^{-2}$	1.5×10^{-3} 1.5×10^{-3}			
Planck constant	h	$6.62606876(52) \times 10^{-34}$	J s	7.8×10^{-8}			
in eV s	Ti.	$4.13566727(16) \times 10^{-15}$	eV s	3.9×10^{-8}			
$h/2\pi$	ħ	$1.054571596(82) \times 10^{-34}$	Js	7.8×10^{-8}			
in eV s	rı	$6.58211889(26) \times 10^{-16}$	eV s	3.9×10^{-8}			
mev s		0.382 118 89(20) × 10	evs	3.9 × 10			
Planck mass $(\hbar c/G)^{1/2}$	$m_{ m P}$	$2.1767(16) \times 10^{-8}$	kg	7.5×10^{-4}			
Planck length $\hbar/m_P c = (\hbar G/c^3)^{1/2}$	$l_{ m P}$	$1.6160(12) \times 10^{-35}$	m	7.5×10^{-4}			
Planck time $l_P/c = (\hbar G/c^5)^{1/2}$	t _P	$5.3906(40) \times 10^{-44}$	S	7.5×10^{-4}			
	=	CTROMAGNETIC	_				
	ELEC	TROMAGNETIC					
elementary charge	e	$1.602176462(63) \times 10^{-19}$	C	3.9×10^{-8}			
	e/h	$2.417989491(95) \times 10^{14}$	$\mathrm{A}\ \mathrm{J}^{-1}$	3.9×10^{-8}			
	,	,					
magnetic flux quantum $h/2e$	Φ_0	$2.067833636(81)\times 10^{-15}$	Wb	3.9×10^{-8}			
conductance quantum $2e^2/h$	G_0	$7.748091696(28) \times 10^{-5}$	S	3.7×10^{-9}			
inverse of conductance quantum	G_0^{-1}	12 906.403 786(47)	Ω	3.7×10^{-9}			
Josephson constant ^a 2e/h	$K_{\rm J}^{\rm U}$	$483597.898(19) \times 10^9$	$\mathrm{Hz}\mathrm{V}^{-1}$	3.9×10^{-8}			
von Klitzing constant ^b	3	,					
$h/e^2 = \mu_0 c/2\alpha$	$R_{ m K}$	25 812.807 572(95)	Ω	3.7×10^{-9}			
, , , ,		, ,					
Bohr magneton $e\hbar/2m_e$	$\mu_{ m B}$	$927.400899(37) \times 10^{-26}$	$ m J~T^{-1}$	4.0×10^{-8}			
in eV T^{-1}		$5.788381749(43) \times 10^{-5}$	${ m eV}~{ m T}^{-1}$	7.3×10^{-9}			
	$\mu_{ m B}/h$	$13.99624624(56) \times 10^9$	$\mathrm{Hz}\mathrm{T}^{-1}$	4.0×10^{-8}			
	$\mu_{ m B}/hc$	46.6864521(19)	${ m m}^{-1}~{ m T}^{-1}$	4.0×10^{-8}			
	$\mu_{ m B}/k$	0.6717131(12)	${ m K}~{ m T}^{-1}$	1.7×10^{-6}			
· -							
nuclear magneton $e\hbar/2m_{\rm p}$	$\mu_{ m N}$	$5.05078317(20) \times 10^{-27}$	$ m J~T^{-1}$	4.0×10^{-8}			
in eV T^{-1}		$3.152451238(24) \times 10^{-8}$	${ m eV}~{ m T}^{-1}$	7.6×10^{-9}			
	$\mu_{ m N}/h$	7.622 593 96(31)	$ m MHz~T^{-1}$	4.0×10^{-8}			
	$\mu_{ m N}/hc$	$2.54262366(10) \times 10^{-2}$	${ m m}^{-1} { m T}^{-1}$	4.0×10^{-8}			
	$\mu_{ m N}/k$	$3.6582638(64) \times 10^{-4}$	${ m K}~{ m T}^{-1}$	1.7×10^{-6}			
	ATOMIC AND NUCLEAR General						
		= 					
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.297352533(27) \times 10^{-3}$		3.7×10^{-9}			
inverse fine-structure constant	α^{-1}	137.035 999 76(50)		3.7×10^{-9}			

r unuamentai r nysicai Constants — Complete Listing				
Quantity	Symbol	Value	Unit	Relative std.
Qualitity	Symbol	value	Omi	uncert. $u_{\rm r}$
Rydberg constant $\alpha^2 m_e c/2h$	R_{∞}	10 973 731.568 549(83)	m^{-1}	7.6×10^{-12}
Rydoerg constant $\alpha m_e c/2n$	$R_{\infty}c$	$3.289841960368(25)\times 10^{15}$	Hz	7.6×10^{-12} 7.6×10^{-12}
	$R_{\infty}hc$	$2.17987190(17) \times 10^{-18}$	J	7.8×10^{-8}
$R_{\infty}hc$ in eV	$\kappa_{\infty}nc$	13.605 691 72(53)	eV	3.9×10^{-8}
$\kappa_{\infty}n$ c in ev		13.003 091 72(33)	CV	3.9 × 10
Bohr radius $\alpha/4\pi R_{\infty} = 4\pi \epsilon_0 \hbar^2/m_e e^2$	a_0	$0.5291772083(19) \times 10^{-10}$	m	3.7×10^{-9}
Hartree energy $e^2/4\pi \varepsilon_0 a_0 = 2R_{\infty}hc$		0.025 177 2003(15) X 10	***	3.7 × 10
$= \alpha^2 m_e c^2$	$E_{ m h}$	$4.35974381(34) \times 10^{-18}$	J	7.8×10^{-8}
in eV	211	27.211 3834(11)	eV	3.9×10^{-8}
quantum of circulation	$h/2m_{\rm e}$	$3.636947516(27) \times 10^{-4}$	$m^2 s^{-1}$	7.3×10^{-9}
quantum of encountries	$h/m_{\rm e}$	$7.273895032(53) \times 10^{-4}$	$m^2 s^{-1}$	7.3×10^{-9}
		etroweak		710 77 10
	Liec	tiloweak		
Fermi coupling constant ^c	$G_{\rm F}/(\hbar c)^3$	$1.16639(1) \times 10^{-5}$	${ m GeV^{-2}}$	8.6×10^{-6}
weak mixing angle ^d $\theta_{\rm W}$ (on-shell scheme)	O [// (110)	111000) (1) // 10		0.0 / 10
$\sin^2 \theta_{\rm W} = s_{\rm W}^2 \equiv 1 - (m_{\rm W}/m_{\rm Z})^2$	$\sin^2 \theta_{ m W}$	0.2224(19)		8.7×10^{-3}
$SM \circ W = I (MW/MZ)$		etron, e		017 / 10
	Elec	erron, e		
electron mass	$m_{ m e}$	$9.10938188(72) \times 10^{-31}$	kg	7.9×10^{-8}
in u, $m_e = A_r(e)$ u (electron	me	7.107 301 00(72) × 10	Kβ	7.5 × 10
relative atomic mass times u)		$5.485799110(12) \times 10^{-4}$	u	2.1×10^{-9}
energy equivalent	$m_{\rm e}c^2$	$8.18710414(64)\times 10^{-14}$	J	7.9×10^{-8}
in MeV	mec	0.510 998 902(21)	MeV	4.0×10^{-8}
m Me v		0.010) / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0	1/10 /	1.0 % 10
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$	$4.83633210(15) \times 10^{-3}$		3.0×10^{-8}
electron-tau mass ratio	$m_{\rm e}/m_{ m \tau}$	$2.87555(47)\times10^{-4}$		1.6×10^{-4}
electron-proton mass ratio	$m_{\rm e}/m_{\rm p}$	$5.446170232(12) \times 10^{-4}$		2.1×10^{-9}
electron-neutron mass ratio	$m_{\rm e}/m_{\rm n}$	$5.438673462(12) \times 10^{-4}$		2.2×10^{-9}
electron-deuteron mass ratio	$m_{\rm e}/m_{\rm d}$	$2.7244371170(58) \times 10^{-4}$		2.1×10^{-9}
electron to alpha particle mass ratio	$m_{\rm e}/m_{lpha}$	$1.3709335611(29)\times10^{-4}$		2.1×10^{-9}
	,			
electron charge to mass quotient	$-e/m_{\mathrm{e}}$	$-1.758820174(71) \times 10^{11}$	$\rm C~kg^{-1}$	4.0×10^{-8}
electron molar mass $N_{\rm A}m_{\rm e}$	$M(e), M_e$	$5.485799110(12) \times 10^{-7}$	$kg mol^{-1}$	2.1×10^{-9}
Compton wavelength $h/m_{\rm e}c$	$\lambda_{ m C}$	$2.426310215(18) \times 10^{-12}$	m	7.3×10^{-9}
$\lambda_{\rm C}/2\pi = \alpha a_0 = \alpha^2/4\pi R_{\infty}$	$\lambda_{ m C}$	$386.1592642(28) \times 10^{-15}$	m	7.3×10^{-9}
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.817940285(31) \times 10^{-15}$	m	1.1×10^{-8}
Thomson cross section $(8\pi/3)r_e^2$	$\sigma_{ m e}$	$0.665245854(15) \times 10^{-28}$	m^2	2.2×10^{-8}
electron magnetic moment	$\mu_{ m e}$	$-928.476362(37) \times 10^{-26}$	$\rm J~T^{-1}$	4.0×10^{-8}
to Bohr magneton ratio	$\mu_{ m e}/\mu_{ m B}$	-1.0011596521869(41)		4.1×10^{-12}
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m N}$	-1838.2819660(39)		2.1×10^{-9}
electron magnetic moment				
anomaly $ \mu_{\rm e} /\mu_{\rm B}-1$	$a_{\rm e}$	$1.1596521869(41)\times10^{-3}$		3.5×10^{-9}
electron g -factor $-2(1 + a_e)$	g_{e}	-2.0023193043737(82)		4.1×10^{-12}
1				
electron-muon	1	206.766.0720/62		2.0 10-8
magnetic moment ratio	$\mu_{ m e}/\mu_{ m \mu}$	206.766 9720(63)		3.0×10^{-8}

	_	_		Relative std.	
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$	
electron-proton					
magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.2106875(66)		1.0×10^{-8}	
electron to shielded proton					
magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}'$	-658.2275954(71)		1.1×10^{-8}	
(H ₂ O, sphere, 25 $^{\circ}$ C)	r				
electron-neutron				-	
magnetic moment ratio	$\mu_{ m e}/\mu_{ m n}$	960.92050(23)		2.4×10^{-7}	
electron-deuteron	_				
magnetic moment ratio	$\mu_{ m e}/\mu_{ m d}$	-2143.923498(23)		1.1×10^{-8}	
electron to shielded helion ^e		0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0			
magnetic moment ratio	$\mu_{ m e}/\mu_{ m h}'$	864.058 255(10)		1.2×10^{-8}	
(gas, sphere, 25 °C)		4 5 6 0 5 0 5 0 4 (5 4) 4 0 1 1	_1 m_1	4.0 4.0 - 8	
electron gyromagnetic ratio $2 \mu_e /\hbar$	γe	$1.760859794(71) \times 10^{11}$	$s^{-1} T^{-1}$	4.0×10^{-8}	
	$\gamma_{ m e}/2\pi$	28 024.9540(11)	$ m MHz~T^{-1}$	4.0×10^{-8}	
	N	Iuon, μ^-			
		20		0	
muon mass	m_{μ}	$1.88353109(16) \times 10^{-28}$	kg	8.4×10^{-8}	
in $u, m_{\mu} = A_{r}(\mu) u$ (muon					
relative atomic mass times u)	2	0.113 428 9168(34)	u	3.0×10^{-8}	
energy equivalent	$m_{\mu}c^2$	$1.69283332(14)\times10^{-11}$	J	8.4×10^{-8}	
in MeV		105.658 3568(52)	MeV	4.9×10^{-8}	
	/	206.769.2657(62)		2.0 10=8	
muon-electron mass ratio	$m_{\mu}/m_{\rm e}$	206.768 2657(63)		3.0×10^{-8}	
muon-tau mass ratio	m_{μ}/m_{τ}	$5.94572(97) \times 10^{-2}$		1.6×10^{-4}	
muon-proton mass ratio	$m_{\mu}/m_{\rm p}$	0.112 609 5173 (34)		3.0×10^{-8} 3.0×10^{-8}	
muon-neutron mass ratio	$m_{\mu}/m_{\rm n}$	0.1124545079(34)	kg mol ⁻¹	3.0×10^{-8} 3.0×10^{-8}	
muon molar mass $N_{\rm A} m_{\mu}$	$M(\mu), M_{\mu}$	$0.1134289168(34) \times 10^{-3}$	kg moi	3.0 × 10	
muon Compton wavelength $h/m_{\mu}c$) a	$11.73444197(35) \times 10^{-15}$	m	2.9×10^{-8}	
$\lambda_{\rm C,\mu}/2\pi$	$\lambda_{ ext{C},\mu} \ \lambda_{ ext{C},\mu}$	$1.867594444(55) \times 10^{-15}$	m	2.9×10^{-8} 2.9×10^{-8}	
muon magnetic moment		$-4.49044813(22) \times 10^{-26}$	$^{\mathrm{III}}$ J T $^{-1}$	4.9×10^{-8}	
to Bohr magneton ratio	μ_{μ}	$-4.84197085(15) \times 10^{-3}$	J 1	3.0×10^{-8}	
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m B} \ \mu_{ m \mu}/\mu_{ m N}$	-8.89059770(27)		3.0×10^{-8} 3.0×10^{-8}	
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m N}$	0.000001110(21)		3.0 × 10	
muon magnetic moment anomaly					
$ \mu_{\rm u} /(e\hbar/2m_{\rm u})-1$	a_{μ}	$1.16591602(64) \times 10^{-3}$		5.5×10^{-7}	
muon g-factor $-2(1+a_{\mu})$	g_{μ}	-2.0023318320(13)		6.4×10^{-10}	
muon-proton	σμ				
magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.18334539(10)		3.2×10^{-8}	
	_	Tau, τ^-			
and v					
tau mass ^f	$m_{ au}$	$3.16788(52)\times10^{-27}$	kg	1.6×10^{-4}	
in $u, m_{\tau} = A_{r}(\tau) u$ (tau	(0		
relative atomic mass times u)		1.907 74(31)	u	1.6×10^{-4}	
energy equivalent	$m_{\tau}c^2$	$2.84715(46) \times 10^{-10}$	J	1.6×10^{-4}	
in MeV	•	1777.05(29)	MeV	1.6×10^{-4}	

	•	_		Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
tau-electron mass ratio	$m_{ au}/m_{ m e}$	3 477.60(57)		1.6×10^{-4}
tau-muon mass ratio	m_{τ}/m_{μ}	16.8188(27)		1.6×10^{-4}
tau-proton mass ratio	$m_{\tau}/m_{\rm p}$	1.893 96(31)		1.6×10^{-4}
tau-neutron mass ratio	$m_{\tau}/m_{\rm p}$	1.891 35(31)		1.6×10^{-4}
tau molar mass $N_{\rm A}m_{ au}$	$M(\tau), M_{\tau}$	$1.90774(31) \times 10^{-3}$	kg mol ^{−1}	1.6×10^{-4} 1.6×10^{-4}
tau morar mass $n_{\text{A}}m_{\text{T}}$	$M(t), M_{\tau}$	1.507 74(31) × 10	kg mor	1.0 × 10
tau Compton wavelength $h/m_{\tau}c$	$\lambda_{C,\tau}$	$0.69770(11) \times 10^{-15}$	m	1.6×10^{-4}
$\lambda_{\mathrm{C},\tau}/2\pi$	$\lambda_{\mathrm{C}, au}$	$0.05776(11) \times 10^{-15}$ $0.111042(18) \times 10^{-15}$	m	1.6×10^{-4} 1.6×10^{-4}
λ(,τ/2)ι			111	1.0 × 10
		Proton, p		
		1 (50 (21 50 (12) 10 - 27		7 0 10-8
proton mass	$m_{ m p}$	$1.67262158(13) \times 10^{-27}$	kg	7.9×10^{-8}
in $u, m_p = A_r(p) u$ (proton				10
relative atomic mass times u)	2	1.007 276 466 88(13)	u	1.3×10^{-10}
energy equivalent	$m_{\rm p}c^2$	$1.50327731(12) \times 10^{-10}$	J	7.9×10^{-8}
in MeV		938.271 998(38)	MeV	4.0×10^{-8}
				0
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1 836.152 6675(39)		2.1×10^{-9}
proton-muon mass ratio	$m_{ m p}/m_{ m \mu}$	8.880 244 08(27)		3.0×10^{-8}
proton-tau mass ratio	$m_{ m p}/m_{ m au}$	0.527 994(86)		1.6×10^{-4}
proton-neutron mass ratio	$m_{ m p}/m_{ m n}$	0.998 623 478 55(58)		5.8×10^{-10}
proton charge to mass quotient	$e/m_{ m p}$	$9.57883408(38)\times10^7$	$C kg^{-1}$	4.0×10^{-8}
proton molar mass $N_{\rm A}m_{\rm p}$	$M(p), M_p$	$1.00727646688(13) \times 10^{-3}$	kg mol ⁻¹	1.3×10^{-10}
				0
proton Compton wavelength h/m_pc	$\lambda_{\mathrm{C,p}}$	$1.321409847(10) \times 10^{-15}$	m	7.6×10^{-9}
$\lambda_{\mathrm{C,p}}/2\pi$	$\chi_{C,p}$	$0.2103089089(16) \times 10^{-15}$	m	7.6×10^{-9}
proton magnetic moment	$\mu_{ m p}$	$1.410606633(58) \times 10^{-26}$	$ m J~T^{-1}$	4.1×10^{-8}
to Bohr magneton ratio	$\mu_{ m p}/\mu_{ m B}$	$1.521032203(15) \times 10^{-3}$		1.0×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m N}$	2.792 847 337(29)		1.0×10^{-8}
proton g-factor $2\mu_p/\mu_N$	g_{p}	5.585 694 675 (57)		1.0×10^{-8}
proton-neutron	,	1 450 000 05 (24)		2.4.10-7
magnetic moment ratio	$\mu_{\rm p}/\mu_{\rm n}$	-1.45989805(34)	$ m J~T^{-1}$	2.4×10^{-7}
shielded proton magnetic moment	$\mu_{ m p}'$	$1.410570399(59)\times 10^{-26}$	JI '	4.2×10^{-8}
(H ₂ O, sphere, 25 $^{\circ}$ C)	, ,	1.500.000.100(1.6) 1.0-3		4.4.40-8
to Bohr magneton ratio	$\mu_{ m p}'/\mu_{ m B}$	$1.520993132(16) \times 10^{-3}$		1.1×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}'/\mu_{ m N}$	2.792775597(31)		1.1×10^{-8}
proton magnetic shielding				4
correction $1 - \mu_{\rm p}'/\mu_{\rm p}$	$\sigma_{ m p}'$	$25.687(15) \times 10^{-6}$		5.7×10^{-4}
$(H_2O, sphere, 25 ^{\circ}C)$				
			1 — 1	9
proton gyromagnetic ratio $2\mu_p/\hbar$	$\gamma_{ m p}$	$2.67522212(11)\times10^8$	$s^{-1} T^{-1}$	4.1×10^{-8}
	$\gamma_{ m p}/2\pi$	42.577 4825(18)	$ m MHz~T^{-1}$	4.1×10^{-8}
shielded proton gyromagnetic		0	1 1	9
ratio $2\mu_{ m p}'/\hbar$	$\gamma_{ m p}'$	$2.67515341(11)\times10^8$	$s^{-1} T^{-1}$	4.2×10^{-8}
$(H_2O, sphere, 25 ^{\circ}C)$				0
	$\gamma_{ m p}'/2\pi$	42.576 3888(18)	$MHz T^{-1}$	4.2×10^{-8}
]	Neutron, n		

Fundamental Physical Constants — Complete Listing					
Quantity	Symbol	Value	Unit	Relative std. uncert. u_r	
neutron mass	$m_{ m n}$	$1.67492716(13) \times 10^{-27}$	kg	7.9×10^{-8}	
in u, $m_n = A_r(n)$ u (neutron relative atomic mass times u) energy equivalent	$m_{\rm n}c^2$	1.00866491578(55) $1.50534946(12) \times 10^{-10}$	u J	5.4×10^{-10} 7.9×10^{-8}	
in MeV	$m_{ m HC}$	939.565 330(38)	MeV	4.0×10^{-8}	
neutron-electron mass ratio	$m_{\rm n}/m_{\rm e}$	1 838.683 6550(40)		2.2×10^{-9}	
neutron-muon mass ratio	$m_{ m n}/m_{ m \mu}$	8.89248478(27)		3.0×10^{-8}	
neutron-tau mass ratio	$m_{ m n}/m_{ m au}$	0.528 722(86)		1.6×10^{-4}	
neutron-proton mass ratio	$m_{\rm n}/m_{\rm p}$	1.001 378 418 87(58)	1	5.8×10^{-10}	
neutron molar mass $N_{\rm A}m_{\rm n}$	$M(n), M_n$	$1.00866491578(55)\times10^{-3}$	kg mol ^{−1}	5.4×10^{-10}	
neutron Compton wavelength $h/m_{ m n}c$	$\lambda_{C,n}$	$1.319590898(10) \times 10^{-15}$	m	7.6×10^{-9}	
$\lambda_{\mathrm{C,n}}/2\pi$	$\lambda_{\mathrm{C,n}}$	$0.2100194142(16) \times 10^{-15}$	m	7.6×10^{-9}	
neutron magnetic moment	$\mu_{ m n}$	$-0.96623640(23) \times 10^{-26}$	$ m J~T^{-1}$	2.4×10^{-7}	
to Bohr magneton ratio	$\mu_{ m n}/\mu_{ m B}$	$-1.04187563(25) \times 10^{-3}$		2.4×10^{-7}	
to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.91304272(45)		2.4×10^{-7}	
neutron g-factor $2\mu_{\rm n}/\mu_{\rm N}$ neutron-electron	$g_{\rm n}$	-3.826 085 45(90)		2.4×10^{-7}	
magnetic moment ratio	$\mu_{ m n}/\mu_{ m e}$	$1.04066882(25)\times 10^{-3}$		2.4×10^{-7}	
neutron-proton magnetic moment ratio	$\mu_{ m n}/\mu_{ m p}$	-0.684 979 34(16)		2.4×10^{-7}	
neutron to shielded proton	_				
magnetic moment ratio (H ₂ O, sphere, 25 °C)	$\mu_{ m n}/\mu_{ m p}'$	-0.684 996 94(16)		2.4×10^{-7}	
neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar$	$\gamma_{\rm n}$	$1.83247188(44) \times 10^8$	$s^{-1} T^{-1}$	2.4×10^{-7}	
	$\gamma_{\rm n}/2\pi$	29.1646958(70)	$ m MHz~T^{-1}$	2.4×10^{-7}	
Deuteron, d					
deuteron mass in u, $m_d = A_r(d)$ u (deuteron	$m_{ m d}$	$3.34358309(26) \times 10^{-27}$	kg	7.9×10^{-8}	
relative atomic mass times u)		2.013 553 21271(35)	u	1.7×10^{-10}	
energy equivalent	$m_{\rm d}c^2$	$3.00506262(24)\times10^{-10}$	J	7.9×10^{-8}	
in MeV		1 875.612762(75)	MeV	4.0×10^{-8}	
deuteron-electron mass ratio	$m_{ m d}/m_{ m e}$	3 670.482 9550(78)		2.1×10^{-9}	
deuteron-proton mass ratio	$m_{\rm d}/m_{\rm p}$	1.999 007 500 83(41)		2.0×10^{-10}	
deuteron molar mass $N_{\rm A}m_{\rm d}$	$M(d), M_d$	$2.01355321271(35)\times 10^{-3}$	$kg mol^{-1}$	1.7×10^{-10}	
	(),u				
deuteron magnetic moment	$\mu_{ m d}$	$0.433073457(18) \times 10^{-26}$	$\rm J~T^{-1}$	4.2×10^{-8}	
to Bohr magneton ratio	$\mu_{ m d}/\mu_{ m B}$	$0.4669754556(50) \times 10^{-3}$		1.1×10^{-8}	
to nuclear magneton ratio	$\mu_{ m d}/\mu_{ m N}$	0.857 438 2284(94)		1.1×10^{-8}	
deuteron-electron					
magnetic moment ratio deuteron-proton	$\mu_{ m d}/\mu_{ m e}$	$-4.664345537(50) \times 10^{-4}$		1.1×10^{-8}	
magnetic moment ratio	$\mu_{ m d}/\mu_{ m p}$	0.307 012 2083(45)		1.5×10^{-8}	

	•	onstants — Complete	Ü	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
deuteron-neutron magnetic moment ratio	$\mu_{ m d}/\mu_{ m n}$	-0.44820652(11)		2.4×10^{-7}
magnetic moment ratio		elion, h		2.4 × 10
	11	enon, n		
helion mass ^e	$m_{ m h}$	$5.00641174(39) \times 10^{-27}$	kg	7.9×10^{-8}
in $u, m_h = A_r(h) u$ (helion				10
relative atomic mass times u)	2	3.014 932 234 69(86)	u	2.8×10^{-10}
energy equivalent	$m_{\rm h}c^2$	$4.49953848(35) \times 10^{-10}$	J M-X	7.9×10^{-8} 4.0×10^{-8}
in MeV		2 808.391 32(11)	MeV	4.0×10^{-9}
helion-electron mass ratio	$m_{\rm h}/m_{\rm e}$	5 495.885 238(12)		2.1×10^{-9}
helion-proton mass ratio	$m_{\rm h}/m_{\rm p}$	2.993 152 658 50(93)		3.1×10^{-10}
helion molar mass $N_{\rm A}m_{\rm h}$	$M(h), M_h$	$3.01493223469(86) \times 10^{-3}$	$kg mol^{-1}$	2.8×10^{-10}
shielded helion magnetic moment	$\mu_{ m h}'$	$-1.074552967(45) \times 10^{-26}$	$ m J~T^{-1}$	4.2×10^{-8}
(gas, sphere, 25 °C)		2		9
to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.158671474(14) \times 10^{-3}$		1.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m h}'/\mu_{ m N}$	-2.127497718(25)		1.2×10^{-8}
shielded helion to proton magnetic moment ratio	$\mu_{ m h}'/\mu_{ m p}$	-0.761766563(12)		1.5×10^{-8}
(gas, sphere, 25 °C)	$\mu_{\rm h}/\mu_{\rm p}$	0.701700303(12)		1.5 % 10
shielded helion to shielded proton				0
magnetic moment ratio	$\mu_{ m h}'/\mu_{ m p}'$	-0.7617861313(33)		4.3×10^{-9}
(gas/H ₂ O, spheres, 25 °C) shielded helion gyromagnetic				
ratio $2 \mu'_h /\hbar$	$\gamma_{ m h}'$	$2.037894764(85) \times 10^8$	$s^{-1} T^{-1}$	4.2×10^{-8}
(gas, sphere, 25 °C)	γ _h	2.037 074 704(03) × 10	3 1	4.2 × 10
	$\gamma_{ m h}'/2\pi$	32.434 1025(14)	${ m MHz}~{ m T}^{-1}$	4.2×10^{-8}
	Alpha	particle, α		
alaba magalaba masa		C CAA CEE 00 (EQ) 10-27	1.	7.0 10-8
alpha particle mass in u, $m_{\alpha} = A_{\rm r}(\alpha)$ u (alpha particle	m_{α}	$6.64465598(52) \times 10^{-27}$	kg	7.9×10^{-8}
relative atomic mass times u)		4.001 506 1747(10)	u	2.5×10^{-10}
energy equivalent	$m_{\alpha}c^2$	$5.97191897(47) \times 10^{-10}$	J	7.9×10^{-8}
in MeV	u	3 727.379 04(15)	MeV	4.0×10^{-8}
				0
alpha particle to electron mass ratio	$m_{\alpha}/m_{\rm e}$	7 294.299 508(16)		2.1×10^{-9}
alpha particle to proton mass ratio	$m_{\alpha}/m_{\rm p}$	3.972 599 6846(11)	kg mol ⁻¹	$2.8 \times 10^{-10} $ 2.5×10^{-10}
alpha particle molar mass $N_{\rm A} m_{lpha}$	$M(\alpha), M_{\alpha}$	$4.0015061747(10)\times 10^{-3}$	kg moi	2.5 × 10 10
	PHYSICO	O-CHEMICAL		
Avogadro constant	$N_{ m A}, L$	$6.02214199(47) \times 10^{23}$	mol^{-1}	7.9×10^{-8}
atomic mass constant	•	• •		
$m_{\rm u} = \frac{1}{12} m(^{12}{\rm C}) = 1 {\rm u}$	$m_{ m u}$	$1.66053873(13) \times 10^{-27}$	kg	7.9×10^{-8}
$= 10^{-3} \text{ kg mol}^{-1}/N_{\text{A}}$	2	10		6
energy equivalent	$m_{\rm u}c^2$	$1.49241778(12) \times 10^{-10}$	J	7.9×10^{-8}
in MeV	E	931.494013(37)	MeV	4.0×10^{-8}
Faraday constant ^g $N_{\rm A}e$	F	96 485.3415(39)	$C \text{ mol}^{-1}$	4.0×10^{-8}

Symbol	Value	Unit	Relative std. uncert. u_r	
-				
	10	1	0	
	` /		7.6×10^{-9}	
$N_{\rm A}hc$			7.6×10^{-9}	
R			1.7×10^{-6}	
k			1.7×10^{-6}	
			1.7×10^{-6}	
k/h	$2.0836644(36) \times 10^{10}$		1.7×10^{-6}	
k/hc	69.503 56(12)	${\rm m}^{-1}~{\rm K}^{-1}$	1.7×10^{-6}	
17	22 412 006(20) × 10 ⁻³	m ³ mol ⁻¹	1.7×10^{-6}	
			1.7×10^{-6} 1.7×10^{-6}	
o .	* *		1.7×10^{-6} 1.7×10^{-6}	
v _m	22.710961(40) × 10	III IIIOI	1.7 × 10	
S_0/R	-1.1517048(44)		3.8×10^{-6}	
07			3.7×10^{-6}	
	,			
σ	$5.670400(40) \times 10^{-8}$	${ m W} \ { m m}^{-2} \ { m K}^{-4}$	7.0×10^{-6}	
c_1	$3.74177107(29) \times 10^{-16}$	$W m^2$	7.8×10^{-8}	
$c_{1\mathrm{L}}$	$1.191042722(93) \times 10^{-16}$	$\mathrm{W}~\mathrm{m}^2~\mathrm{sr}^{-1}$	7.8×10^{-8}	
c_2	$1.4387752(25) \times 10^{-2}$	m K	1.7×10^{-6}	
-	• •			
b	$2.8977686(51) \times 10^{-3}$	m K	1.7×10^{-6}	
	Symbol $N_{\rm A}h$ $N_{\rm A}hc$ R k k/h k/hc $V_{\rm m}$ n_0 $V_{\rm m}$ σ σ σ σ σ σ σ σ σ	SymbolValue N_Ah $3.990 312 689 (30) \times 10^{-10}$ N_Ahc $0.119 626 564 92 (91)$ R $8.314 472 (15)$ k $1.380 6503 (24) \times 10^{-23}$ $8.617 342 (15) \times 10^{-5}$ k/h $2.083 6644 (36) \times 10^{10}$ k/hc $69.503 56 (12)$ $V_{\rm m}$ $22.413 996 (39) \times 10^{-3}$ n_0 $2.686 7775 (47) \times 10^{25}$ $V_{\rm m}$ $22.710 981 (40) \times 10^{-3}$ S_0/R $-1.151 7048 (44)$ $-1.164 8678 (44)$ σ $5.670 400 (40) \times 10^{-8}$ c_1 $3.741 771 07 (29) \times 10^{-16}$ c_{1L} $1.191 042 722 (93) \times 10^{-16}$ c_2 $1.438 7752 (25) \times 10^{-2}$	Symbol Value Unit $N_A h$ $3.990312689(30)\times 10^{-10}$ J s mol ⁻¹ $N_A hc$ $0.11962656492(91)$ J m mol ⁻¹ R $8.314472(15)$ J mol ⁻¹ K ⁻¹ k $1.3806503(24)\times 10^{-23}$ J K ⁻¹ $8.617342(15)\times 10^{-5}$ eV K ⁻¹ k/h $2.0836644(36)\times 10^{10}$ Hz K ⁻¹ k/hc $69.50356(12)$ m ⁻¹ K ⁻¹ V_m $22.413996(39)\times 10^{-3}$ m ³ mol ⁻¹ n_0 $2.6867775(47)\times 10^{25}$ m ⁻³ V_m $22.710981(40)\times 10^{-3}$ m ³ mol ⁻¹ S_0/R $-1.1517048(44)$ $-1.1648678(44)$ σ $5.670400(40)\times 10^{-8}$ W m ⁻² K ⁻⁴ c_1 $3.74177107(29)\times 10^{-16}$ W m ² c_{1L} $1.191042722(93)\times 10^{-16}$ W m ² c_{1L} $1.4387752(25)\times 10^{-2}$ m K	

^a See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.

^b See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

^c Value recommended by the Particle Data Group, Caso et al., Eur. Phys. J. C 3(1-4), 1-794 (1998).

^d Based on the ratio of the masses of the W and Z bosons $m_{\rm W}/m_{\rm Z}$ recommended by the Particle Data Group (Caso et al., 1998). The value for $\sin^2\theta_{\rm W}$ they recommend, which is based on a particular variant of the modified minimal subtraction ($\overline{\rm MS}$) scheme, is $\sin^2\hat{\theta}_{\rm W}(M_{\rm Z})=0.231\ 24(24)$.

^e The helion, symbol h, is the nucleus of the ³He atom.

f This and all other values involving m_{τ} are based on the value of $m_{\tau}c^2$ in MeV recommended by the Particle Data Group, Caso et al., Eur. Phys. J. C 3(1-4), 1-794 (1998), but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of -0.26 MeV, +0.29 MeV.

^g The numerical value of F to be used in coulometric chemical measurements is 96 485.3432(76) $[7.9 \times 10^{-8}]$ when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants $K_{J=90}$ and $R_{K=90}$ given in the "Adopted values" table.

^h The entropy of an ideal monoatomic gas of relative atomic mass A_r is given by $S = S_0 + \frac{3}{2}R \ln A_r - R \ln(p/p_0) + \frac{5}{2}R \ln(T/K)$.