Probability

- Sets
 - Intersection of two sets(AND): $A \cap B$
 - \circ Union of two sets(OR): $A \cup B$
- Defining Probability as a math function
 - o p(x) has some domain and some range [0,1]
 - Domain represents random outcomes p assigns number to random outcomes
 - o Random outcomes are explained via sets
 - Ex: In a sample of 10 people, what are the odds that average height > 6 feet?
- Frequency Theory of Probability
 - Ex: If a coin is tossed, what chance coin lands heads?
 - P(Head) Probability of Heads
 - \circ To find the probability toss coin n = 100 times(sample size), find number of times heads appears, then divide by n
 - Sample proportion of heads in n = 100 tosses
 - Number of heads is random random outcome
 - \circ If number of heads is 60, proportion = 0.60
 - \circ p = approximate probability used for experiment of coin tosses, depends on tosses gained
 - Random Variable depends on random outcomes of experiment
- Generalization of relative frequency theory:
 - Let E be some random event
 - Can estimate P(E) as $\hat{p} = \hat{p}(E) = \frac{\#\{E\}}{n}$
 - where we repeat the experiment n times under identical conditions
 - Theory only applies to events that can be repeated in the same conditions in the same way
 - o $\lim_{n\to\infty} \frac{\#\{E\}}{n} = P(E)$, as n increases, we get closer to the true probability
- Defining Probability(P) as a math function
 - Random Experiment experiment with random outcomes
 - Sample Space(S) set of all possible outcomes in an experiment
 - e.g. one coin toss: $S = \{H, T\}$
 - Cardinality Number of elements in the set
 - \blacksquare if A is the set, notated by |A|
 - An event from a random experiment is a subset of the sample space
 - \blacksquare E \subseteq S, an event(E) can be a subset of the set of S
 - \circ Two Sets, A and B are mutually exclusive when A \wedge B is empty
 - No common elements

- O Three Sets(A_1, A_2, A_3) are pairwise mutually exclusive when A_1 and A_2 are mutually exclusive, A_1 and A_3 are mutually exclusive, and A_2 and A_3 are mutually exclusive
 - Can extend to K sets and a countably infinite number of sets
- o Probability of a subset of sample space computed within a Range:
 - \blacksquare $E \subseteq S \rightarrow R$
 - \blacksquare $E \subseteq S \rightarrow [0,1]$
- Axioms of Probability
 - A probability function, P, must satisfy:
 - Probability of any event must be greater than or equal to 0
 - Probability of the entire sample space must be 1
 - Probability that some event in sample space happens is 1
 - Additivity(Finite)
 - Let E₁, E₂, and E₃ be 3 mutually exclusive events
 - $P(E_1 \text{ or } E_2 \text{ or } E_3) = P(E_1) + P(E_2) + P(E_3)$
 - Extends to countably infinite number of sets
- Probability Rules derived from Axioms
 - Complement Rule:
 - Let E be a set, the complement of E is $\overline{E} \equiv E' \equiv E^C$ is all elements outside of E but in S
 - Therefore $P(\overline{E}) = 1 P(E)$
 - o Probability of any event is bounded between 0 and 1
 - o Inclusion Exclusion Probability:
 - $P(E_1 \cup E_2) = P(E_1) + P(E_2) P(E_1 \text{ and } E_2)$
 - Does not have to be mutually exclusive
 - Extends to k events subtract all combinations to overlap

Counting Methods

- Multiplication:
 - o 3 shirts, 4 pants how many combinations?
 - Total number of ways: 3 shirts * 4 pants = 12 combinations
 - \circ Two objects with n_1 and n_2 elements respectively, $n_1 * n_2$ ways to combine
 - Extends to k objects:
 - k objects with $n_1, n_2, n_3, ..., n_k$ elements respectively have $n_1 * n_2 * n_3 * ... * n_k$ composites of k
- Permutations:
 - o Interest in ordered items
 - 4 seats in a row with 4 persons
 - How many ways to arrange the 4 persons in the 4 seats:
 - s₁: 4 possibilities, s₂: 3 possibilities,...
 - So total ways: 4 * 3 * 2 * 1 = 24

- o 3 seats and 5 people
 - \bullet s₁: 5 possibilities, s₂: 4, s₃:3 5 8 4 * 3 = 60
 - $or \frac{5!}{2!} = \frac{5!}{(5-3)!}$
 - Generalized: Permutation of n objects taken k at a time:

•
$$nPk = \frac{n!}{(n-k)!}$$

- Combinations:
 - o Interest in Unordered Objects
 - o 9 people, 4 seats, order does not matter
 - o s₁: 9, s₂: 8, s₃: 7, s₄: 6, with 4! possible ways to shuffle around current combinations
 - Alternate Expression: $\frac{9!}{(9-4)!*4!}$
 - Generally: $nCk = \frac{n!}{(n-k)!k!}$, where $k \le n$

Hypergeometric Distribution

- Given N₁ numbers of class A and N₂ numbers of class B in a population
 - \circ Population = $N = N_1 + N_2$
- Let X be the number of successes in a sample of size n
- $P(X = x) = \frac{(N_1, x)(N_2, n x)}{(N_1, n)}$ Hypergeometric Distribution
- $\bullet \quad E(X) = \frac{N_1}{N_1 + N_2} n$
- $Var(X) = n * \frac{n_1}{N} * \frac{N_2}{N} * \frac{N-N_1}{N-1}$

Conditional Probability

- Given information about outcomes
- Conditioning restricts us to a subset of the sample space
- Conditional Probability of A given that event B has happened is P(A | B)
- Multiplication Rule:
 - $\circ P(A \cap B) = P(A|B) * P(B)$
 - $\circ P(B \cap A) = P(B|A) * P(A)$
 - Extends of k events:
 - $P(A \cap B \cap C) = P(C|A \text{ and } B) * P(B|A) * P(A)$

In dependence

- Two events, A and B are statistically independent when $P(A \cap B) = P(A) * P(B)$
- De Morgan's Law:
 - $\circ \quad (A \cap B)^{c} = A^{c} \cup B^{c}$
 - $\circ \quad (A \cup B)^{c} = A^{c} \cap B^{c}$
- Let A be independent(\perp) of B, therefore
 - \circ A \perp B^C

- $\circ \quad A^C \bot \ B$
- $\circ \quad A^C \perp B^C$

Law of Total Probability

• S:

- E₁, E₂, E₃ and E₄ are Pairwise Mutually Exclusive and
- $\bullet \quad E_1 \cup E_2 \cup E_3 \cup E_4 = S$
 - $\circ\quad$ Since both are true, considered a "partition" of S
- $\bullet \quad P(A) \ = \ P([A \cap E_1] \ \cup \ [A \cap E_2] \ \cup \ [A \cap E_3] \ \cup \ [A \cap E_4]) =$
 - $\circ \ \ P(A \cap E_{1}) \, + \, P(A \cap E_{2}) \, \, + \, \, P(A \cap E_{3}) \, + \, P(A \cap E_{4}) \, \, = \, \\$

$$P(A \mid E_1) * P(E_1) + P(A \mid E_2) * P(E_2) + P(A \mid E_3) * P(E_3) + P(A \mid E_4) * P(E_4)$$

• Extends to any K sets which form partitions of S

Bayes(Baby) Theorem:

• A, B are events in S

•
$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$
, when $P(B) > 0$

Random Variables

• E = random event

• S = sample space

• P: $E \subseteq S \rightarrow [0, 1]$

o Similarly: X, a random variable:

 \blacksquare X: S \rightarrow R

• Ex: Toss a coin 3 times, |S| = 8

• Let X be the random variable defined by the number of tails in the outcome

• Can we find a formula for P(X = x) where $x \in \{0, 1, 2, 3\}$?

• Types of Random Variables:

o Discrete:

■ Finite: Number of tails in 3 tosses

■ Toss coin until first tail is observed – find number of tosses needed

o Continuous:

■ Interval(possibly infinite of real line)

• Ex: Let X be a random number in (0,1)

• Ex: Let X be the lifetime of a certain battery

$$\circ S_X = [0, infinity]$$

Distributions of Discrete Random Variables

• Let X be a **discrete** random variable

• Let f(x) = P(X = x) – probability mass function(PMF)

$$0 < P(X = x) < 1$$

Sum over all probabilities equals 1

• Cumulative distribution function(CDF):

$$\circ$$
 $F(x) = P(X \le x)$

• Discrete Uniform Distribution:

$$\circ \quad \mathbf{S}_{\mathbf{x}} = \{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \dots \mathbf{x}_{k}\}$$

■
$$k \in \aleph = \{1, 2, 3, 4, ...\}$$

o PMF of X:
$$P(X = x) = \frac{1}{k}$$
, $x \in S_x$

$$\circ \quad \text{CDF: } P(X \leq x) = \sum_{S_x}^x P(X = x)$$

$$\circ \quad E(X) = \frac{k+1}{2}$$

$$\circ \quad Var(X) = \frac{k^2 - 1}{12}$$

- Bernoulli Distribution:
 - Probability of achieving a success from a Bernoulli Trial
 - Event with only two possible outcomes

$$\circ$$
 $S_x = \{0,1\}$

$$\circ$$
 $p = P(X = 1), 1 - p = q = P(X = 0)$

$$\circ \quad \text{PMF: } p^x (1-p)^{1-x}$$

$$\circ$$
 $E(X) = p$

$$\circ \quad Var(X) = p(1-p)$$

- Geometric Distribution:
 - Independent Trials
 - Each trial observes a "success" or "failure"
 - Each trial, P = P(Success) and 1 P = P(Failure) are the same, don't depend on each other or the number of trials
 - o Sequence of independent Bernoulli Trials
 - \circ Let X = trial at which we get the first Failure

$$S_x = \{1,2,3,...\}$$

■ PMF =
$$P(X=x) = p^{x-1}(1-p)$$

• Let Y = trial until first success

■ PMF =
$$P(Y = k) = (1-p)^{k-1}p$$

$$\circ$$
 CDF: $F(x) = 1 - (1 - p)^x$

 $\circ \quad \text{Memory-less property of geometric distribution:} \\$

■
$$P(X > j + i | X > i) = P(X > j)$$

$$\circ \quad E(X) = \frac{1}{p}$$

$$\circ Var(X) = \frac{1-p}{p^2}$$

- Binomial Distribution
 - \circ $X \sim Bin(n,p)$
 - o *n* independent trials
 - o On each trial, get either success or failure
 - Same probability of successes on each trial
 - \circ X = Number of success in n trials

$$\circ$$
 $S_x = \{0,1,2,3,...n\}$

$$\circ$$
 P(X = x) = $nCx * p^{x}(1 - p)^{n-x}$

$$n = number of trials$$

$$p = probability of success$$

- \blacksquare x = number of successes
- \circ E(X) = np
- $\circ \quad Var(X) = np(1-p)$
- Negative Binomial Distribution
 - o Sequence of Independent Bernoulli Trials with same probability of success
 - \circ X = trial at which k^{th} success happens

$$P(X = x) = (x - 1)C(k - 1) * p^{k} * (1 - p)^{x-k}$$

$$S_{x} = \{k, k+1, k+2, ...\}$$

$$\circ \quad E(X) = \frac{k}{p}$$

$$\circ Var(X) = \frac{k(1-p)}{p^2}$$

- Poisson Distribution
 - Random counts in space / time
 - Customers arriving at a checkout counter over a given interval
 - Car accidents happening at a given intersection over a certain time period
 - Counts in non-overlapping subintervals are independent
 - \circ Poisson process is characterized by a parameter(λ), represents the average number of counts per unit(interval)
 - \circ $p(1 count in the subinterval of length h) = <math>\lambda * h$
 - \circ $P(\geq 2 counts in a small subinterval) = 0$

$$\circ \quad PMF: P(X = x) = \frac{\lambda^x}{x!} e^{-\lambda}$$

$$S_x = \{0, 1, 2, ..., \infty\}$$

■ For any Poisson:
$$P(X = 0) = e^{-\lambda}$$

 \circ λ can be changed for different intervals:

$$\circ$$
 $E(X) = \lambda$

$$\circ \quad Var(X) = \lambda$$

Mathematical Expectation

- Expectation = Weighted Averaging
- Let X be a discrete random variable:

$$\circ$$
 $\mu = E(X)$

$$\circ \quad E(X) = \sum_{x \in S_x} x P(X = x)$$

$$\circ \quad E[g(x)] = \Sigma g(x) P(X = x)$$

$$\circ \ E(c_{1}g_{1}(X) + c_{2}g_{2}(X)) = c_{1}E[g(x)] + c_{2}E[g(x)]$$

■ Extends to k functions(can add continually)

$$E(X^2) \neq E(X)^2$$

Variance / Standard Deviation

- Tells how far away the x's are from the mean
- $Var(X) = E[(X \mu)^2]$
- Standard Deviation = $\sqrt{Var(X)}$
- $\bullet \quad Var(X) = E(X^2) E(X)^2$

Characteristics of Mathematical Expectation and Variance

- Given Random Variable X, let Y = a+bX, find E(Y) and Var(Y)
 - $\circ \quad \mu_y = a + b\mu_x$
 - $\circ Var(Y) = b^2 Var(X)$
 - $\sigma_{y} = |b|\sigma_{x}$
- Physically moving distribution does not change the Variance

Continuous Random Variables

- If X is continuous
 - \circ S_x is a continuous interval or union of such intervals
 - e.g. [0,1) and $(0, \infty)$
- Definition: Let X be a continuous random variable, the probability distribution function of X such that
 - \circ $f(x) > 0, x \in S_x$

$$\circ \int_{-\infty}^{\infty} f(x) dx = 1$$

• With a cumulative distribution function being

$$\circ \int_{a}^{b} f(x) dx$$

Continuous Uniform Distribution

- PDF = $\frac{1}{b-a}$, when $x \in (a, b)$ and 0 when x not $\in (a, b)$
 - \circ where a and b are parameters
- CDF = $\frac{x-a}{b-a}$, where x is in the support of X

Exponential Distribution

- Similar to Poisson, where X is the arrival time of the 1st occurrence(continuous)
- P(Y < y) = 1 P(Y > y)

$$\circ = 1-P(X = 0 \text{ in } (0, y))$$

$$\circ = 1 - e^{-\lambda y}$$

• PDF =
$$\frac{d}{dy} 1 - e^{-\lambda y} = \lambda e^{-\lambda y}$$

Expectation and Variance

•
$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$
,

 \circ where f(x) is the pdf

$$\bullet \quad Var(X) = E(X^2) - [E(X)]^2$$

Normal / Gaussian Distribution

• $X \sim Normal(a, b^2)$

•
$$PDF = f(x) = \frac{1}{\sqrt{2\pi b^2}} e^{\frac{-1}{2}(x-a)^2} = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-1}{2}*\frac{(x-\mu)^2}{2}}$$

•
$$E(X) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi b^2}} e^{\frac{-1}{2}(x-a)^2} dx = a = \mu$$

- Variance = $b^2 = \sigma^2$
- A standard Normal Distribution occurs when $\mu = 0$ and $\sigma^2 = 1$
- SD Rule of Thumb:
 - Within one standard deviation of the mean 68%
 - Within two standard deviations of the mean 95%
 - Within three standard distributions of the mean 99.6%
- Z-Score $\rightarrow Y = \frac{X-\mu}{\sigma}$, number of standard deviations from mean
 - o Y is distributed as a standard normal

Multiple Random Variables

- Taking *n* observations from a population
- Statistical Inference:

0

- A random sample of size n is defined such that all samples of n are equally likely
- Let $X_1,...X_n$ be a sample
 - The X's are said to be independent and identically distributed(iid) when the X's are independent and also come from the same distribution

Joint Distribution of n random variables

- For Discrete
 - Joint = $P(X_1 = x_1 \text{ and } X_2 = x_2... \text{ and } X_n = x_n)$
 - When independent:

■ Joint =
$$P(X_1=x_1) * P(X_2=x_2) * ... * P(X_n=x_n)$$

- For Continuous
 - \circ Let X_1 , X_2 be continuous random variables

$$P(a < x_1 < b, c < x_2 < d) = \int_a^b \int_c^d f(x_1 x_2) dx_1 dx_2$$

- Properties of Multiple Random Variables(independent or dependent, continuous or discrete)
 - \circ E(aX₁ + bX₂) = aE(X₁) + bE(X₂)
 - \circ Let X_1 and X_2 be independent random variables
 - $Var(aX_1 + bX_2) = a^2Var(X_1) + b^2Var(X_2)$
 - o Generally:
 - $Var(g(X_1) + h(X_2)) = Var(g(X_1)) + Var(h(X_2))$

Sampling

- If X's are taken with replacement sampling from the same population, the X's are iid
- If X's are taken without replacement sampling from the same population, the X's are dependent but identically distributed
 - However, if the population is substantially larger than the sample size, the draws are "effectively" independent

Expectation and Variance for Multiple Random Variables

- $E(a_1X_1 + ... a_nX_n) = a_1E(X_1) + ... + a_nE(X_n)$
- $Var(a_1X_1 + ... a_nX_n) = a_1^2\sigma_1^2 + ... + a_n^2\sigma_n^2$ if independent

$$\circ \quad \mathrm{E}(\mathrm{g}_{1}(\mathrm{X}_{1}) + \mathrm{g}_{2}(\mathrm{X}_{2}) + \ldots \mathrm{g}_{n}(\mathrm{X}_{n})) = \mathrm{E}[\sum_{i=1}^{n} g_{i}(\mathrm{X}_{i})] = \sum_{i=1}^{n} E[g_{i}\mathrm{X}_{i}]$$

$$\circ V[\sum_{i=1}^{n} g_i(X_i)] = \sum_{i=1}^{n} V[g_i X_i], \text{ when independent}$$

$$\circ \quad E[\prod_{i=1}^{n} g_{i}(X_{i})] = \prod_{i=1}^{n} E[g_{i}X_{i}], \text{ when independent}$$

Moment Generating Functions

- Can be used to find distribution of same statistics
- Every distribution has unique MGF
 - The MGF of X is $M_x(t) = E(e^{tx})$

- Used for:
 - Finding Moments of X
 - The kth moment about the number b is $E[(X-b)^k]$,
 - if $b = \mu_x$, k = 2, Variance occurs
 - The kth derivative of of $M(t) = E(X^k)$
 - Finding distributions of multiple random variables
 - Let X_1 and X_2 be independent random variables and $S = X_1 + X_2$
 - $M_x(t) = E[e^{tX} * e^{tX}] = M_x(t) * M_x(t)$, extends to n random variables

Gamma Distribution

• Gamma function, extension of n!

$$\Gamma(t) = \int_{0}^{\infty} y^{t-1} e^{-y} dy, \text{ where } t \ge 0$$

- \circ $\Gamma(n) = (n-1)!$, where n is a positive integer
- Gamma PDF:

$$f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} * x^{\alpha-1} * e^{\frac{-x}{\theta}}, x > 0, \alpha > 0, \theta > 0$$

- $E(X) = \alpha \theta$
- $Var(X) = \alpha \theta^2$
- α = shape parameter
- θ = scale parameter

Chi-Square(χ²) Distribution

- special Gamma with $\alpha = \frac{r}{2}$, $\theta = 2$, where r > 0
- $\chi^2(r) = Gamma(\frac{r}{2}, 2)$
- $f(x) = \frac{1}{\Gamma(\frac{r}{2})2^{\frac{r}{2}}} * x^{\frac{r}{2}-1} * e^{\frac{-x}{2}}, x > 0, r \rightarrow \text{degrees of freedom}$
- \bullet E(X) = r
- Var(X) = 2r
- As $r \to \infty$, $\chi^2(r) \to N(r, 2r)$

Central Limit Theorem

- $X_1,...,X_N$ independent; $L = a_1X_1 + ... + a_nX_n$, where a_i is a real number
- if X's are normal, L is exactly $N(\mu_L, \sigma_L^2)$
- if X's are not normal, but n is large enough(> 29)
 - $\circ \quad \text{L}\sim \text{N}(\mu_{L'}, \sigma_{L}^2), \text{ approximately}$
 - \circ P(L < a) is approximately P(Normal < a)
- Normal Approximation with a continuity correction(discrete to continuous)

Maximum Likelihood Estimation

- Finding parameters which maximize the likelihood of the data occurring
- 1. $l(p) = L(p \mid data)$
- 2. Let L(p) = ln(l(p))
- 3. Find $\frac{dL}{dp} = 0$, solve for p
- 4. Check if p is a max(don't have to for STAT 315)
- Likelihood Principle: Find $\theta(function \ of \ data) \ s. \ t. \ l(\theta)$ is largest

Terminology

- For observed data $X_1, ..., X_N \rightarrow \mu_{ML} = \overline{X}$
- How good of an estimator is \overline{X} for μ ?
 - \circ For now, estimator \pm SD(estimator)
 - o where the SD of an estimator is the standard error

Confidence Interval

- $X_1, ..., X_n \sim N(\mu, \sigma^2), \mu_{ML} = \overline{X}, SE(\overline{X}) = \frac{\sigma}{\sqrt{n}}$
- $X \pm SE(\overline{X})$, since X is normal, the odds that the value falls in this interval is 0.68
- ullet Probability that random interval captures μ is 68%, not the probability that μ falls in interval
- a% confidence interval \rightarrow If I collect many data sets, computing an interval for each dataset, a% of the intervals will capture the true value of μ
- "Confidence Factor" coefficient which controls confidence look up in chart

What makes a good estimator?

- Bias
 - o $Bias(\hat{p}) = E(\hat{p}) p$, if Bias is 0, unbiased estimator
- Low Variance of $\widehat{\theta}$, $V(\overline{X}) = \frac{\sigma^2}{n} --> 0$ as $n -> \infty$

Confidence Interval for mean

- $\overline{X} \pm Z_{\frac{a}{2}}(\frac{\sigma}{\sqrt{n}})$, for known population standard deviation
- $\overline{X} \pm t_{\frac{a}{2}}(\frac{s}{\sqrt{n}})$, for unknown population standard deviation

Confidence Interval for Difference of Means

- $\overline{X} \overline{Y} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}$, for known population standard deviation
- If unknown variances, homogeneity assumption of $\sigma_x^2 = \sigma_y^2$

$$\circ \quad \overline{X} - \overline{Y} \pm t_{\frac{\alpha}{2}}(n+m-2)(S_p)\sqrt{\frac{1}{n}+\frac{1}{m}},$$

• where
$$S_p^2 = \frac{n}{n+m} S_x + \frac{m}{n+m} S_y$$

Confidence Interval for Proportions

•
$$\hat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
, for large n by CLT

•
$$\widehat{p_1} - \widehat{p_2} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p_1}(1-\widehat{p_1})}{n} + \frac{\widehat{p_2}(1-\widehat{p_2})}{m}}$$

Hypothesis Testing

- Null Hypothesis: H_o → nothing happens
- Alternative Hypothesis: $H_1 \rightarrow$ something happens
- Steps:
 - Specify H₀ and H₁
 - Test statistic, "compare" data to H_o
 - \circ statistics \rightarrow E(stat | H_o)
 - Find p-value placing stat E(stat | H₀) on a probability
 - Make a decision based on alpha level
- If p value < alpha level, reject null hypothesis
- If p value > alpha level, fail to reject null hypothesis
- p-value does not equal probability that null hypothesis is true
- If p-value is very small, does not prove H_o is false
- Any test of hypothesis can be made to reject null hypothesis with a large enough sample size
 - o For Confidence Intervals, just makes the interval smaller, no real issues
- Tests are for parameters, not statistics