Example 2: Recall past example. The data were daily rates of returns of $n_A = 20$ randomly chosen days for a certain stock, which will call Stock A:

$$1.8, +1.4, -3.4, +4.8, +3.3, -0.1, +2.9, -1.1, +3.1, -1.4, +2.1, -0.7, +0.8, -2.7, +0.6, -0.6, -1.8, +1.2, -0.5, -1.1, +1.2, -0.5, -1.2,$$

A random sample of $n_B = 20$ daily rates of returns were taken on a different stock, Stock B. The data is given below:

$$-1.3, +10.0, -2.0, -7.3, +2.8, +6.8, -0.3, +1.5, -4.7, +22.6, +1.1, +4.3, +3.5, +6.7, +5.0, +11.2, -5.5, -2.3, -0.4, 0.00, -2.0, -$$

Find a 95% confidence interval for the $\frac{\sigma_B}{\sigma_A}$. What can you infer from this interval?

try ratio
$$\frac{\sigma_A}{\sigma_B}$$
... $\Rightarrow 0.1990902 \times \frac{\sigma_A}{\sigma_B} \times 0.5029915$