Corso di Algebra per Informatica

Lezione 18: Esercizi

- (1) Trovare l'insieme di tutti gli elementi di che coprono 0, 1 o 2 nei seguenti insiemi ordinati: $(\mathbb{N}, \leq), (\mathbb{N}, |), (\mathbb{Q}, \leq).$
- (2) Sia s un insieme. Descrivere l'insieme $Minor_{(P(s),\subset)}(\emptyset)$.
- (3) Se (s, ρ) è un insieme ordinato, dimostrare che $\inf_{(s,\rho)}(\{a\}) = a$ per ogni $a \in s$. Dimostrare inoltre che $(\forall x, y \in s)(x\rho y \to ((x \land y = x) \land (x \lor y = y)))$
- (4) Dimostrare che (\mathbb{Z}, \leq) è un reticolo non completo.
- (5) Trovare il più piccolo esempio di insieme ordinato che non è un reticolo
- (6) Verificare se i seguenti sottoinsiemi di $(\mathbb{N}, |)$ sono reticoli completi (relativamente all'ordine indotto da $(\mathbb{N}, |)$):
 - (a) $\{1, 2, 3, 4, 5, 6, 7\}$;
 - (b) $\{2^n \mid n \in \mathbb{N}\}$
 - (c) $\{n \in \mathbb{N} \mid n \mid 2048\}$
 - (d) $\{n \in \mathbb{N} \mid (\exists k \in \mathbb{N})(n = 2k)\}.$
- (7) Sia ρ una relazione binaria su $\mathbb{N} \times \mathbb{N}$ così definita

$$(\forall a, b, c, d \in \mathbb{N})((a, b)\rho(c, d) \leftrightarrow (a < c \land b|d)).$$

- (a) Verificare che ρ è un ordine largo su $\mathbb{N} \times \mathbb{N}$.
- (b) Trovare massimi, minimi, elementi massimali e minimali di $(\mathbb{N} \times \mathbb{N}, \rho)$
- (c) Detto $s = \{(2, 14), (5, 21)\}$, trovare, se possibile, estremi inferiore e superiore di X in $(\mathbb{N} \times \mathbb{N}, \rho)$;
- (d) Trovare una parte totalmente ordinata di $(\mathbb{N} \times \mathbb{N}, \rho)$;
- (e) Detto $t = \{(1,1), (1,2), (1,3), (1,5), (1,60), (2,0), (2,5)\}$ e detta σ la restrizione di ρ a t, disegnare il diagramma di Hasse di (t,σ) e verificare se si tratta di un reticolo.
- (8) Sia $s = \{1, 3, 4, 12, 30, 31\}$ e sia ρ la relazione duale di |. Trovare, se possibile, massimo, minimo, elementi massimali e minimali di (s, ρ)
- (9) Sia s un insieme e sia t una parte non vuota di P(s). Dimostrare che $\sup(t)_{(P(S),\subseteq)} = \bigcup t$ e che $\inf_{(P(S),\subset)}(t) = \bigcap t$.