VECTOR FIELDS

- Vector Fields
- Gradient Fields
- Potential Functions

VECTOR FIELDS

VECTOR FIELDS

DEFINITION

A vector field is a function

$$F=(F_1,\ldots,F_n):\mathbb{R}^n o\mathbb{R}^n$$

VECTOR FIELDS EXAMPLES

- ullet Position Vector: r=F(x,y,z)=(x,y,z)
- lacksquare Rotation Field: F(x,y)=(-y,x)
- ullet Inverse Square Law: $F(r)=rac{C}{r^2}rac{r}{|r|}$

GRADIENT FIELDS

GRADIENT FIELDS

DEFINITION

A vector field of the form $F(r) = \nabla f(r)$ is called a gradient vector field.

Here
$$r=(x_1,\ldots,x_n)$$
.

GRADIENT FIELDS EXAMPLES

$$ullet f(r) = rac{|r|^2}{2} \ ullet f(r) = x^2 y^2$$

$$ullet f(r)=x^2y^2$$

UNIQUENESS OF GRADIENT FIELDS

LEMMA

$$abla f =
abla g$$
 if and only if $g(r) = f(r) + C$.

LEVEL SETS

THEOREM

Let f be a function with $\nabla f \neq 0$. Then ∇f is perpendicular to the level sets of f.