University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering

ECE 120: Introduction to Computing

Caring About Don't Cares and Glue Logic

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 1

Start by Specifying the Inputs and Outputs inputs: three buttons M(ango): 1 when it's pushed B(lend): 1 when it's pushed P(istachio): 1 when it's pushed outputs: two 2-bit unsigned numbers CM[1:0]: number of ½ cups of mango

• C_P[1:0]: number of ½ cups of pistachio

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 3

The User Has Th	ree Cl	noi	ces	s (and	d One	Non-	Choic	ce)
Help fill in the truth	M	В	P	$\mathbf{C}_{\mathbf{M}}$	$\mathbf{C}_{\mathbf{P}}$			
table	0	0	0	00	00			
Push M, get one cup of mango.	0	0	1	00	10			
Push B, get ½ cup of	0	1	0	01	01			
each.	0	1	1					
Push P, get one cup of pistachio.	1	0	0	10	00			
1	1	0	1					
Push nothing, get nothing.	1	1	0					
	1	1	1					
ECE 120: Introduction to Computing	© 2016 Steven	S. Lum	etta. All	rights reserve	l.			slide 4

What about the rest?	M	В	P	$\mathbf{C}_{\mathbf{M}}$	$\mathbf{C}_{\mathbf{P}}$
Who cares?	0	0	0	00	00
Fill with x's.	0	0	1	00	10
riii with x s.	0	1	0	01	01
	0	1	1	хx	xx
	1	0	0	10	00
	1	0	1	xx	xx
	1	1	0	xx	xx
	1	1	1	xx	xx

Don't Cares: Not for Human Behavior! In the best case, the cup overflows (2 cups of ice cream instead of 1 cup). In the worst case, • the engineer of the mechanical system • assumed that we would not send 11, and • something worse happens when we do. So we DO care. Generally, using don't cares when humans are involved is a bad idea.

Let's Clean Up the Inputs

How can we fix the problem?

One approach:

- choose specific outputs for each combination of inputs,
- then solve the K-maps again.

Another approach:

- oclean up the inputs with more logic
- prevent humans from ever producing bad combinations.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved

elida 13

The Inputs Can be Cleaned Up in Many Ways

Forcing invalid input combinations to zero is just one strategy.

We could also choose a priority on the buttons (six possible choices).

For example:

- · Pistachio overrides other buttons, and
- · Mango overrides Blend.

Or use a combination of approaches.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 15

What About Picking Specific K-Maps?

In the case of our ice cream dispenser and the strategy shown, the two approaches are the same (just remove the dashed box!).

In general, however,

- \circ these approaches vary
- oin area, speed, and/or power.

Cleaning up the inputs is perhaps easier to understand.

ECE 120: Introduction to Computing

© 2016 Steven S. Lumetta. All rights reserved.

slide 16