SEQUENCE LISTING

- (1) GENERAL INFORMATION:
- (i) APPLICANT: Gatanaga, T. Granger, G.A.
- (ii) TITLE OF INVENTION: Factors Altering Tumor Necrosis Factor Receptor Releasing Enzyme Activity
- (iii) NUMBER OF SEQUENCES: 154
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: MORRISON & FOERSTER
 - (B) STREET: 755 PAGE MILL ROAD
 - (C) CITY: Palo Alto
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 94304-1018
- (V) COMPUTER READABLE FORM:
- (A) MEDIUM TYPE: Diskette
- (B) COMPUTER: IBM Compatible
- (C) OPERATING SYSTEM: Windows
- (D) SOFTWARE: FastSEQ for Windows Version 2.0b
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: USSN 09/081,385
 - (B) FILING DATE: 014-NOV-1998
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME:
 - (B) REGISTRATION NUMBER:
 - (C) REFERENCE/DOCKET NUMBER: 22000-20577.21
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 650-813-5600
 - (B) TELEFAX: 650-494-0792
 - (C) TELEX: 706141
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4047 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AAGCTTTTTG CTTTCCTTCC CCGGGAAAGG CCGGGGCCAG AGACCCGCAC TCGGACCAGG 60 CGGGGGCTGC GGGCCCAGAG TGGGCTGGGA AGGGCTGGGA GGGCCGCTCC 120 TCCAGGCTGG GGGCCGCCAG CTCCGGGAAG GCAGTCCTGG CCTGCGGATG GGGCCGCGCG 180 TGGGGCCCGG CGGGGCGCC TCGGGAGGCG TCCAGGCTGC GGGAGCGGCA GCAGCGCCG 240 TGCGGGCGCC AGCGCCGTGG GTGGAGGTCG CCGTCCCTCC TGAGGGGCAG CCACTGCGTT 300 TGGGACCCGG GAGCAGAGCC CGCGCCTCCC CAGCGGCCT CCCCGGGGGT TCACCGGGTC 360 ACCCGAGAGC GGAGGCCCCG GCTCCCCAGA AACCCGGGGC GGCCGCGGGG AAGCCAGCGC 420 ACCCGAGAGC GGAGGCCCCG GCTCCGCAGA AACCCGGGGC ACCCGCGC ACCCACGCC 480
TCCAGGCTGG GGGCCGCCAG CTCCGGGAAG GCAGTCCTGG CCTGCGGAGG GGAGCGGCCG CGGGGCCGCC TCGGGAGGCTG CGGAGCGGCG GAGCAGGCC TCCAGGCTCC TGAGGGGCAG CCACTGCGTT TGCGGACCCG GAGCAGAGCC CGCGCCTCC CAGCGGCTC TCACCGGGTC TCACCGGTC TCACCGGGTC TCACCGGGTC TCACCGGTC TCACCGGTC TCACCGGGTC TCACCGGTC TCACCGGTC TCACCGGGTC TCACCGGGTC TCACCGGGTC TCACCGG
TGGGGCCCGG CGGGGCGGCC TCGGGAGGCG TCCAGGCTGC GGGAGCGGGA GGACCGGGTT TGCGGGCCCC AGCGCCCTCC CAGCGGCCC CCGCCCTCC CAGCGGCTC TCACCGGGTC TCACCGGGTC TCACCGGGTC TCACCGGGTC AGCAGCCCC CAGCGCCCC CAGCGGCCC CAGCGGCCC AAGCAGCCC 420
TGGGGCCCGG CGGGGCGGCC TCGGGAGGCG TCCAGGCTGC GGGGGGGGGG
TGCGGGCGCC AGCGCCGTGG GTGGAGGTCG CCGTCCCTCC TGAGGGGCAG CCAGTGCGTT TGGGACCCGG GAGCAGAGCC CGCGCCTCCC CAGCGGCCTC CCCGGGGGTC TCACCGGGTC TGGGACCCGG GAGCAGAGCC CGCGCCTCCC CAGCGGCCTC CCCGGGGG AAGCAGCGCC 420
TGGGACCCGG GAGCAGAGCC CGCGCCTCCC CAGCGGCCTC CCCGGGGGTC TCACCGGGTC 420
ACCCACACE CCACCECTC CTTCCCAGA AACCCGGGGC GGCCGCGGG AAGCAGCGCC TEO
CTCACCCTC CCACGACCCC CCAGAAGGAC CTCGCGCCTT CCCGCCGGGC 1CCGACCGCC 400
TGGGTTCGGT GCGGGACGGC CCAGGCCGCC AGGACCCCCA AGCGCAGCTC AGTCTGCGGG 540
GCACGACCCA GAGGCCAGCA GCAGAGGACG GGGCCGGGGC CGGGAGAGGG CGGGGAGGGC 660
GCACGACCCA GAGGCCAGCA GCAGAGGACG GGCCAGCCA
GCTCCTGGGA GGTCAAGGCC AGGGCTAGAC TTTCAGGGTC ATGGCCTGGC CCCTCATCCC 660
CAGGGAGGTG AGGGGGCTCT GTGAGCAGAG GGGGCCCCGG TGGAGAAGGC GCTGCTAGCC 720

AGGGGCGGGG CAGGAGCCCA GGTGGGGACT TAAGGGTGGC TGAAGGGACC CTCAGGCTGC 780 AGGGATAGGG AGGGAAGCTA GGGGTGTGGC TTGGGGAGGT GCTGGGGGAC CGCGGGCGCC 840 CTITATTCTG AAGCCGAATG TGCTGCCGGA GTCCCCAGTG ACCTAGAAAT CCATTTCAAG 900 ATTITCAGGA GTTTCAGGTG GAGACAAAGG CCAGGCCCAG GTGAAAATGT GGCAGTGACA 960 GAGTATGGGG TGAGAACCAC GGAGAGAGGA AGTCCCCGAG GCGGATGATG GGACAGAGAG 1020 CGGGGACCAG AATTITITAA AACGCATCTG AGATGCGTTT GGCAGACTCA TAGTTGTTTT 1080 CCTTTCACGG AGAAAGTGTG GGCAGAAGCC AGCTCTAAAG CCCAGGCTGC CCAGCCTGCA 1140 CTGGCAGAGC TGACGGAAGG CCAGGGCAGA GCCTTCCCTC CCTGTCACAG ACATGAGCCC 1200 TGGAGATCTG GAATGAGGCA GATGTGCCCA GGGAAAGCTG ATCCGCCCCG ACCCAGGGCC 1260 CCCCGGGTGC CCCTTTGAGC GTGGAATCGT TGCCAGGTCA TGGCTCCCTG CTATCGAACA CCGGACACGG GTCGTGTGCT GCACCTGGCA GTTGCAGGAC CGACACCCAC AATGCCTTAA 1380 GAGGTGATGA CTGCCTTCCA GGGGCCTGGC TGGCTGACAC TTTGCATGGC TCCTGGAGAA 1440 GAGGGATTGA GTGGAGTCCA CGGGTCATGG CCACGTCCTG GGTGCTGCCT CTGAGGCAGG 1500 GCCCGGCTGG GGTGAGAAGG GGCTGGAGAC AGGTTCCTGC CAGTTCAGCC TCTAACCGGT 1560 GGTCTTCATG CCTAGGAACC CACTGGGGGC TTATGAAACT GCAGGTGGCT GAGTCCTTGC 1620 CATGGGGTCT CTCCTTCAGG AGGTCTGGGT GGGGCCGGAG ACTGTACCCC ACAAAGGGTC 1680 CCAGGTGAGG CGGATGTGGC CTGGCGCTGT GTGGCTCTGG ACCTAGTCCT TGGGCTTGGG 1740 CTGGCGCCCA GGGCCTGGGC TTGAGACAGC TGTGACGCAG GCAAGCCATT TACCCCGTTT 1800 GTGGGGACAT TACATCTTCC TAGCTTGGAA CACACAGGCA GCCAGGGTTG TTATCCACAT TCCTCCTCCA TGTTCTTCTC TTGAGAACTT TTACCAGGTA TGTCAGGAGC TGGGCTCCAC 1860 1920 CAGGGAGACT CAAGTGGAAA GCCCTCATCC TTGTCCTCCA GGAGACAGGA AAACCTATGG 1980 TTACAATTCC AGGGACAAGA GCGATGCATG TGAGGTGTGG CAAATCTCAC TGTTCAACTG 2040 GAGAAATCAG AGACAGCTTC CTGGAGGCAG TGACACCTGG ACAGGCTTCT CCACAGGAGG 2100 AAGCGAGTGA GAGAAGCCAA CTGGGATGGA CCCATCATGT AGGGGGAACA GTGCGCGCAG 2160 AACCAACAAC CACCCCCACC CTAGGCCCAG AGCTCACGGA GAGAGCTGGG CCTCTCGGGG 2220 TGACTACATA GTTCCCTGCT GGATCTTAGG TCTTGTCCTT GGGCAGCTCT GCTGAGACCT 2280 CTATGCCTGT TCCAGGCTGC ACCAAGGTTT TGTGACTATT GGTCTGGGGT TGTTTTGCAG 2340 CAACTGAAGT GTTCTGTTGT AAAACAGGCA CTTGATTTGC TGGAAGGAAT GCTGTTTGTT 2400 CTTGCTGCGA CAAACATTGA GCAGCATTTA GTGGGCGGTT TATATCTTGT GGAGTAATGG 2460 GTGITTTTGA AGTCTGTCCT GGGTACTGCA CATTAAAAGG AATATCATTT TCTGAAACAT 2520 TGCTATTTTC CACACCAGAA ATCATATCCT CTTGCTGGTC CATGTCTGAA GACCTTACAC 2580 GAGAAAGTCT TAATGTAAGT TTAGTAGAGT CCTTGGATGG AGAACTAATT ATATCATACA 2640 TTGCCGCTTT CTCACTCTGC TCTTTTTCAT CCTTGCCTAA TTTCATTTTC TTCTGCTTCT 2700 TITGTTITCT TTCTGGAGAA TCTAGCAAGA TATCTGGTGG AACATCTCGA GGTGATGAAC 2760 AAGGTAGAGA CTGAGATTGT AGGATTAAAG GTGGTCTTGA GCCTTTAGGA GTTCCTTCAC 2820 TTCCAGCAGG GGAGCATACT GGCTGTGGAG ATCTCAAGGG AAAAGATGCA GCATTCCTCA 2880 TIGITGAAGA ATCTCCATCG TCACTACTTA GCCTGTGCAC CATGTGTAGG TAGTCCTCAC 2940 TTGAACCATG TCTAGGATTA TCAGCATGAT GATTAGCTGA ATTGCCAGAC AACGGACCAG 3000 AAACTITATT ATCATGTATG TITCTCAAAC CACCTGCAAC AATGGGACTT GATACCGATG 3060 CTTGTTGCAT CTGTGGATGT GTTGTGTAAC TTGAAGGATG GGAATATGGC ATGTATCCTG 3120 CAGGGCTTTG TGGGGCGTAT GGACTAGGCA CTGGGCTATT TTGCTGTGGC ATAAATCTGT 3180 TCCCAGAGCT TGTCTGTGGT GGCACAAACC GGCTGGAGGG GCTATGTGAG ATAGTGGTTT 3240 GTTGATAATT GGAAGATGCA GGACTACTGT GCATGGAATT CTGAGAAAGT TTATACTGAG 3300 ACATCATCAT TCCACTTTGT ACATATCTGT TCTGCATGCT TTTCTCCCTG AAAACATTAG 3360 GACTCCTTGC CAGGACGGCC TGCAACAAGA CTGGTATGTC ACCTTCTGGG TCATCACTGC 3420 CAAGGTTATC TITCAACTCT ATGTGATCTG TIGATACCTG GTTGAGGCTA TGGACAAGCT 3480 GTGAAACCAA ATTGTCATCC CTACAAGCCA AAAGGCAGTT CACCTCTTCT GCTATTCGTG 3540 CATTAAAGAG AAGGCTCTTT GTAGTTGTAG CAGGTAAAGG AGATGGAAGA GGCAGCTGGT 3600 TCAGGAGGTC TGTGAGACTA GCAATCCCCG CAAGAGTAGT AATGGGGACA TGGGGCATAT 3660 CCCCATTCAT CCTGAATTTC TGGAATGGTG TTGCCTATAA AAGTACTTAG TTCAGGTGCC 3720 AGCTGTCATT ACTTCCCATT TCCCAAACAC TGGGCGAATC GGCGTCTGAA TCCAAGGGGA 3780 GGCCGAGGCC GCTGTGGCGA GAGACTATAA TCCGGGCCGG GAGGGGGGGC GGCTACGGCT 3840 CCTCTTCCGT CTCCTCAGTG CGGGGAACAT GTAGAGCCGG GGGGAGACCA GCCGAGAAGA 3900 CAAATCGTTG CTTCTTCTTC CTCCTCCTCC TCCTTCTCCC ACATAGAAAC ACTCACAAAC 3960 ACCCGACCAC GGGCCCGAGC TACCGGGGGG GCATCGCCGC GGGCCCGGGA ACCAATTCTC 4020 4047 CTGTCGGCGG GGGCGTCCTT TGGATCC

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 739 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GGATCCAAAG GTCAAACTCC CCCGCGCGGCCG GGCGCTTGGC GACCGGTCAG TGAAAAAACG A	CCAGAAGCG AGAGCCCCTC	CCGGCGGCCC	GCAGGGCCGG	180
CGGACCCCGC CCCGGGCCCC T	CGCGGGGAC ACCGGGGGGG	CGCCGGGGGC	CICCACITA	240

TTCTACACCT CTCATGTCTC TTCACCGTGC CAGACTAGAG TCAAGCTCAA CAGGGTTTCCCCGCT GATTCCGCCA AGCCCGTTCC CTTGGCTGTG GTTTCGCTGG ATAGTI GGGACAGTGG GAATCTCGTT CATCCATTCA TGCGCGTCAC TAATTAGATG ACGAGI TGGCTACCTT AAGAGAGTCA TAGTTACTCC CGCCGTTTAC CCGCGCTTCA TTGAA TCACTTTGAC ATTCAGAGCA CTGGGCAGAA ATCACATCGC GTCAACACCC GCCGC TTCGCGATGC TTTGTTTTAA TTAAACAGTC GGATTCCCCT GGTCCGCACC AGTTC CGGCTGCTAG GCGCCGCCG AAGCGAGGCG CCGCGCGGAA CCGCGGCCCC CGGGG CCGCGGGGGG GACCGGGCCG CGGCCCCTCC GCCGCCGCCG CCGCCCCCCC CCGAAGAAGA AGGGGGAAA	GCATT 420 TTTCT 480 GGGCC 540 TAAGT 600 CGGAC 660
--	---

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 233 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

DAACACTCCC	CCCCCCAGCA	connected	GTGCCCGGGC	CCCCCTCGAG	GGGGACAGTG	60
CAAGAGIGGC	CCCCCCCCCC	CCCCCCCCC	CCGCCGGCCC	CTGCCGCCCC	GACCCTTCTC	120
CCCCCCCCCC	CCCCCCCCC	CCCCCTCCC	CCGGGGAGGG	GGGAGGACGG	GGAGCGGGGG	180
	ACACACAGG	CGCGGGGTGG	CTCGTGCCGA	ATTCAAAAAG	CTT	233
AIIAIIAIIAU	AGAGAGAGGG	COCOGGGGGGG	0,00,000			

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2998 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

						40
GGATCCAAAG	AATTCGGCAC	GAGGTAGTCA	CGGCTCTTGT	CATTGTTGTA	CTTGACGTTG	60
AGGCTGGTGA	GCTTGGAAAA	GTCGATGCGC	AGCGTGCAGC	AGGCGIIGIA	GAIGIICIGC	120
CCGTCCAGCG	ACAGCTTGGC	GTGCTGGGCG	CTCACGGGGT	CCGCATACTG	CAGCAGGGCC	180
TGGAACTGGT	TGTTCTTGGT	GAAGGTGATG	ATCTTCAACA	CTGTGCCGAA		240
ATCTGGTGCA	GCACATCCAG	GGTCACAGGG	TAGAAGAGGT	101000.00	GATCCTGAGC	300
ACGGGGCTCT			GCATCCACGG	CCGCCGCCGA		360
GCCAGGTTCC	CCGACTGGAC	CGAGTTCACC	GCCTGCAGGG	CCGCCTGGGC		420
TTGGGAGAGC	TGTCGGTCTT	CAGCTCCTTG	TGGTTGGAGA	ACTGGATGTA		480
CCGCGCAGCA	CAGGGGTCAC	CGAGGTGTAG	TAGTTCACCA	TGGTATTGGC		540
GIGITCATCI	CGATGAAGGC	CTGGTTTTTC	CCCTTCAGCA	TCAGGAGGTT		600
CCAAAGGGCA	GCCCCAGGGA	GATGACTTCC	CCCTCCGTGA	CGTCGATGGG		660
ATGTGGATCA	CTCTAGAGGG	GACGCCTGCA	CTTCGGCTGT	CACCTTTGAA		720
TCATTTCCGT	TTGCTGCAGA	AGCCGAGTTG	CTGCTCATGA	TAAACGGTCC		780
CAAGTAGAGA	AAAGCTCGTC	AGATCCCCGC	TTTGTACCAA	CGGCTATATC		840
CCGTCCATGG	CACACAGAGC	AGACCCGCGG	GGGACGGAGT	GGAGGCGCCG		900.
GCTAGAGCTG	CAGATTGAGT	TGCTGCGTGA	GACGAAGCGC	AAGTATGAGA		960
GCTGGGCCGG	GCACTGACAG	CCCACCTCTA	CAGCCTGCTG		ATGCACTGGG	1020
TGATGCCTTT	GCTGACCTCA	GCCAGAAGTC	CCCAGAGCTT		TTGGCTACAA	1080
TGCAGAGACA	CAGAAACTAC	TATGCAAGAA	TGGGGAAACG		CCGTGAACTT	1140
CITTGICICI	AGCATCAACA	CATTGGTCAC	CAAGACCATG	GAAGALACGU	TCATGACTGT	1200
GAAACAGTAT	CACCCTCCCA	GGCTGGAATA	TGATGCCTAC	CGAACAGACI	TAGAGGAGCT	1260
GAGTCTAGGC	CCCCGGGATG	CAGGGACACG	TGGTCGACTT	GAGAGTGCCC	AGGCCACTTT	1320
TALCOCCEAT	CCCCACAACT	ATGAGAAGGT	GCGGGGAGAT	GTGGCCAICA	AGCICAAGII	1380
CCTGGAAGAA	AACAACATCA	ACCTGATGCA	CAAGCAGCTG	CTGCTCTTCC	ACAATGCTGT	1440 1500
OTDOOCCTAC	TTTCCTCCCA	*********************	GCTGGAGUAG	ACCUIGNAC	AGIICANONI	,
CAAGCTGCGG	CCTCCAGGAG	CTGAGAAACC	CTCCTGGCTA	GAGGAGCAGI	GAGCIGCICC	1560
	TOCOTATOAA	CAAAGACATT	GGGAAGGGCA	GULLUAGGG	GIGGGAGAII	1620
GGACATGGTA	CATCCTTTCT	CACTIGCCCI	CTGGCTTGGG		TGGCTGGGGC	1680
CTGACACCAG		ATTECTATES	: TGGGAAGAGG	GUL GUNGUL	CCAGAAATTA	1740
STOCOCTOTO	TATCTTCCTC	CCCACAGGGG	: TTCATTCCCA	GATELLITIES	TICCACTICA	1800
0100011000	CTATCACAAA	ACCACTCCC1	r GGCCAATGGC	: ATCACICIIC	AGGC GGGG	1860
CTACTCCCTC	ACCAATGACA	L GAGCCTGAAA	A ATGCCCIGIC	; AGCLAAIGGC	AGCICITOTO	1920
COACTCCCCT	CCCCCAATG	L TETTGEGTET	T AATACCCTII	GILILILLIL	INIGCOIGCE	1980
CATTGCAGAG	AAGGGGACT	GGACCAAAGG	GGTGGGGATA	ATGGGGAGCC	CCATTGCTGG	2040
CALIGORAN	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-0		

CCTTGCATCT GAATAGGCCT ACCCTCACCA ITTATTCACT AATACATTIT ATTTGTGTTC TCTAATTTAA AATTACCTIT TCATCTIGCT TGATTITCCT TCAGCTAAAT TAGAAATTTG 2160 TAGTITITCC CCTAAAAAAT TCAATGGCAT TCTTTCTTAT AAATTACATT CTCTGATTTT 2220 CTTGTCAGCC TGCTTCAAGG AAATCCATGT GTTCAAAATG CTTGCTCGCA GTTTGCTCCA 2280 TACCAAATGG TIGCTTAACC CAAATATCTG AGCAGCAAAT TGAGCTGATC CTTCTGGAGA 2340 AAGTACGGTT GAACAGCCAA GACCACTGGG TAGTCGAAGA GAAGACCACA CATCCTGAAC 2400 TCCCCAGTCT GGTGTGAGGG GAGGACAGCT GATAACTGGA TATGCAGTGT TCCCAGACAT 2460 CACTGGTCCC AAACCATTAC TTCTGCCTGC CACTGCCACA AATACAGTAG GAATGCCATC 2520 CCCTTCATAC TCAGCTTTAA TCCTCAGAGT TTCATCTGGT CCTTTATGCG CAGATGTTAC 2580 TCGAAGTTCA CATGGAATGC CAAAATTTCC ACAGGCCTTC TTGATTTTTT CACAGTGACC 2640 AAGATCAGAA GTAGAGCCCA TCAACACTAC AACCCTGCAC TGACTTTCTG ATTTCAAAAG 2700 CAACTCTACT CTCTCTGCAA CCCACTCAAA GTTTTTCTTT ACCATTTGGA GCCCTTCAGG 2760 AGTTACTTCT TTGAGGTCCC GATAAGACTG TTTGTCTTTC TGTTGGCTTC GATCTCCTGA 2820 TGGCCAGAGT CTCCAGGAAT CATTGTCAAT AACATCAGCA AGAACAATTT CTTTGGTGGT 2880 TACATCAACA CCAAATTCAA TCTTCATATC AACCAGTGTA CAATTCTGGG GCAACCAGGA 2940 TITCTCCAGT ATTTCAAATA TAGCCTGTGT AGCATCTCGT GCCGAATTCA AAAAGCTT 2998

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4152 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AAGCTTTTTG TGAAAACCCT AGGATATGTC CCCTCCCTCA CCACACCCAA CCCCCCGCCC	60
	120
	180
	240
	300
THE PART OF A COLACTION AND CARDINAGE ARRIVED COLLAND CONTROL OF THE	360
	420
	480
A TOTAL DESCRIPTION OF THE PROPERTY OF THE PRO	540
	600
	660
CTTTCCAACC CAGCLAGGLC CAGTGCAAGG CGGACTCCAG AGGGCCCGCT GGGGTTTTGA GAGGGATGGG GGGCCGGGG AGGGGCAGGG CGGACTCCAG AGGGCCCGCT GGGGTTTTGA GAGGGATGGG GGGCCGGGG AGGGGCAGGG CGGACTCCAG AGGGCCCGCT GGGGTTTTGA	720
GAGGGATGGG GGGCCGGGG AGGGGCAGGG CCCCCCTCTTG GTCTCTGTGT TCCCAGAAAG AATGAAAGGA GGACTGGTTC TGAAGCCTCT CTCCCTCTTG GTCTCTGTGT TCCCAGAAAG	780
AATGAAAGGA GGACTGGTTC TGAAGCCTCT CACCAGGCAG AATTCCCCCT CTGCGTGGGG TCCTTCTCCC ATGTCTGGAG TGTCTGTTTC ACCAGGGCAG AATTCCCCCT CTGCGTGGGG	840
AGAGGTGTAG GCCTTAGTAG CGGTGTGGGG GGGTCTCGAT GATGCGTCTC TCGTCGCTGC	900
AGAGGTGTAG GCCTTAGTAG CGGTGTGGGG GGGTCTCATC CTCCTGCTGG CCCCCAACAG TGGGGGAATC GGCCACCTCC GAGTCACTGC TGTCCTCATC CTCCTGCTGG CCCCCAACAG	960
TGGGGGAATC GGCCACCTCC GAGTCACTGC TGTCCTCATA GGGGTTCACA ATGATGGTGA CCCCCGTCAC ACAGGACTGC CGATTCTGGT AGGACTCCAT AGGGGTTCACA ATGATGGTGA	1020
CCCCCGTCAC ACAGGACTGC CGATICTGGT AGGATCACT ACTGGAGGCC CCTGGAGGCC GAGCTGAGTC ATCCCAGAAG AGGTCTGGGT CCTTGGGGTC ACTGGAGGCC AGGATCACAC	1080
GAGCTGAGTC ATCCCAGAAG AGGTCTGGGT CCTTGGGTGCG CACCAGGCCC AGGACGACCA CGCCGGCCCC TGAGACGCGG CGGTGAAGGG AATGGATGCG CACCAGGCCC AGGACGACCA CGCCGGCCCC TGAGACGCGG CGGTGAAGGG AATGATGAGGT TCCCGCGCTG GGTATCATGG	1140
CGCCGGCCCC TGAGACGCGG CGGTGAAGGG AATGGATGCG CACACCACAA TGATGAGGGT TGCGGGCGCTG GGTATCATGG TGAGCACCAG GAAGCCCACG CACACCACAA TGATGAGGGT TGCGGGGCC TGGTGACCAC	1200
TGAGCACCAG GAAGCCCACG CACACCACAA TGATGAGGGT AGGCGGGGGC TGGTGACCAC AGTTTCTGTG GGAGCTGGCT AGGCTGTGTC CAGCCATCTC AGGCGGGGGC TGGTGACCAC AGTTTCTGTG GGAGCTGGCT AGGCTGTGTC CAGCCATCTC CAGCGGGGGC TGATGCTGT	1260
AGTITCIGIG GGAGCIGGCI AGGCIGIGIC CAGCCATCIC AGGCGGGG TICATGCIGT	1320
GGTGCAGGAA CTGCTGGGAG CTGAGCACGT GGCTGGGGTG GGCAACCCGG TTCATGCTGT	1380
GCAGGACATT GACCTCCACG ATGAATICAT TGCTGGAGTA ACGGCCATTC ATTTCCGAGC GCAGGACATT GACCTCCACG ATGAATICAT TGCTGGAGTA ACGGCCATTC ATTTCCGAGCCT	1440
AGGAAAGCCG GAACTTCCTG GTGTAGAGGG CAGCTCCGTG TCGCAGCCGA TAACGAGCCT	1500-
AGGARAGECE GRACITECTE GIGTAGAGGE TETECACCE AGCARTAGTG AGGTAGGCAG GCCTCAGGAT CTCTTCATAC ACAGGGGTG TCTCCACCE AGCARTAGTG AGCAGGCTTT	1560
ATGTGTTGGT GAGCTCCAGC CCCCGCTGCT GCAGAGAGGT TGTGTCCAGG AGCAGGCTTT	1620
ATGTGTTGGT GAGCTCCAGC COCCCCACCA GAGAAATTTC ACAGCCATCC AGGTTGTGCA CCCGCTCGGG ATCCAGGTCA TCCCCCACCA GAGAAATTTC ACAGCCATCC AGGTTGTGCA	1680
CANTOTATE CGACATGCGT GTGTCTGTCA CTGTGCCCTG CCAACTCTCA TCCTTTTTGG	1740
CANTOTORIO CHARACTER GIGGAGAAATG GAGCAGGGAA TITGAAGATC AGGGAACAAA GGGACGCCGT	1800
TIGGTTCCCTC AAAGTCCACA GCTGGCCGGG CAAAATGAGC AGTGCCACTC AGCAGGATCT	1860
TGGTTCCCTC AAAGTCCACA GCTGGACCACGT AGCCCTCCAC TTCAGGGATG GAGACGCAGG GGGGGGCGTC AGGCTGAAGG ACGACCACGT AGCCCTCCAC TTCAGGGATG GAGACGCAGG	1920
ACTUTICATE GAAGCACTTE ACAGCAGTEG TGAGGCGCAG GGGCCTGACG CCGGGCGTGG	1980
ACTOTTOGCT GAAGCACTTG ACAGCACTTG TOTTGCAGGGC ATGGTTGAAG GTCTCCACAT CAAAGCGCAG AGTGTTCATG TAAGCCACAT GCTGCAGGGC ATGGTTGAAG GTCTCCACAT CAAAGCGCACAT ATGCCTTTGC	2040
	2100
CATCCCCCTC CAGGGTGAGC AGGGACTATA AGGGACA TGCATAGAGG CACTCGATGA CCAGGCTCTC GAAATCCCTA TAGTCCAGCC CCTCCCGACA TGCATAGAGG CACTCGATGA	2160
CCAGGCTCTC GAAATCCCTA TAGTCCAGCGCA CGCTGAAACC AGCCAGGTAG CCATGGAAGT	2220
AGTGGTGGAT CGACAAAGGG TCTCCTTGGG TGGTGTCTGT ACTGTTGTCT CCCTTTTCCT	2280
AGTGGTGGAT CGACAAAGGG TCTCCTTGGG CCCCAATCAT GAGAGCAGGC TCCCTTCGGG TCTCTTTGTT CTTCTCCTCA GTCCAGCAGG CCCCAATCAT GAGGAGCAGG TCCCTTCGGTAT	2340
	2400
TOTAL TATALOGO AND TOTALOGITA GALLINIAGIO GIOCONO TONI	2460
THE PERSON OF TH	2520
TOTAL TOTAL CAPACIACCO TOCACACTED GEGALIANTE AUAUMOUS TOTAL	2580
	2640
GCTTCATCCA GAAGGACAGG GTGAAGTGGT CACTGAGGCT GTCCTGGGGC GGACACCCC	_0.0
E4	

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3117 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGATCCAAAG AT	TERRETARE A	AGTGGCCACA	TCATGAACCT	CCAGGCCCAG	CCCAAGGCTC	60
ACAACAAGCG G8	AGCGTTGC I	CTCTTTGGGG	GCCAGGAACC	AGCICCCAAG	GAGCAGCCCC	120
CTCCCCTGCA GC	CCCCCCAG (CAGTCCATCA	GAGTGAAGGA	GGAGCAGTAC	CTCGGGCACG	180
AGGGTCCAGG AG	CCCCAGTC	TCCACCTCTC	AGCCTGTGGA	ACTGCCCCCT	CCTAGCAGCC	240
TGGCCCTGCT GA	ACTETETE (CTCTATGGGC	CTGAGCGGAC	CTCAGCAGCC	ATGCTGTCCC	300
AGCAGGTGGC CI	CACTAAAG	TECCCCAACT	CTGTGATGGC	TCCAGGGCGG	GGCCCGGAGC	360
GTGGAGGAGG TO	CCCCCTCTC	AGTGACAGCA	GCTGGCAGCA	GCAGCCAGGC	CAGCCTCCAC	420
CCCATTCAAC AT	TOCANCIC.	CACAGTCTGT	CCCTCTACAG	TGCAACCAAG	GGGAGCCCGC	480
ATCCTGGAGT GO	CONCIDE	ACTTACTATA	ACCACCCTGA	GGCACTGAAG	CGGGAGAAAG	540
CGGGGGGCCC AC	CACCTCCAC	CCCTATGTGC	GACCAATGAT	GCCACAGAAG	GTGCAGCTGG	600
AGGTAGGGCG GG	CCCCACCCA	CCCCTGAATT	CTTTCCACGC	AGCCAAGAAA	CCCCCAAACC	660
AGTCACTGCC C	CTCCAACCC	TTCCAGCTGG	CATTCGGCCA	CCAGGTGAAC	CGGCAGGTCT	720
TCCGGCAGGG C	CLVCCCCC	CCAAACCCGG	TEGETECETT	CCCTCCACAG	AAGCAGCAGC	780
AGCAGCAGGG C	CCACACCAC	CAGCAGCAGC	AGCAGCAGGC	AGCCCTACCC	CAGATGCCGC	840
TCTTTGAGAA C	TTCTATTCC	ATGCCACAGG	AACCCTCGCA	GCAACCCCAG	GACTTTGGCC	900.
TGCAGCCAGC TO	CCCCCACTG	CCACAGTCCC	ACCTGGCTCA	CCACAGCATG	GCACCCTACC	960
CCTTCCCCCC C	AACCCACAT	ATGAACCGG	AACTGCGCAA	GGCCCTTCTG	CAGGACTCAG	1020
CCCCGCAGCC A	CCCCTACCT	CACCTCCAGA	TOCCOTTOCC	CCGCCGCTCC	CGCCGCCTCT	1080
CTAAGGAGGG T	ATCCTCCCT	CAGGICCAGA	TEGATEGEE	TGGCACCCAG	CCTGGGCAGG	1140
AGGCCACTGG C	AACOTCTTC	CTACATCACT	GCCCCCTGCA	GCAGCCGCCA	CCTGGCTCCC	1200
TGGGGCAGCC C	AACCIGIIC	COTCTCCCAT	TOCCGOTGGA	GCTGAGGGAG	TCGCAGCTAC	1260
TGGGGCAGCC C	CATCUIGAA	CCACCCAATC	CCCCCCTCC	AGAGGCTCCT	GCCATGGGCA	1320
GCGAGGAGGG C	GAGAGACIA	CTCACCACAC	GCCACTGTGG	GCAGGTGCTA	CGGGGCGGAG	1380
GCGAGGAGGG C TGATCCAGAG C	ATGAGGGCA	ACCCCCCCC	CATCCCAGGA	GCCAATTTG	CTGACCCTGG	1440
CCCAGAAGGC T	ACGCGACGG	CCCTCACTGC	ACASTGCAAA	GGATGGCAGT	GGTTCTGAAG	1500
CCCAGAAGGC I AGAAGCGGAA A	GIGGAGLIG	CCCTCAACTA	CCAACTGTGG	GGTGGAGTTT	TCTGAGCCTT	1560
AGAAGCGGAA A CCTTAGCCAC C	AGIGIATIG	CCACAACACA	CTOCTATOOT	ACCCCTCATC	ATCCCAGTGT	1620
CCTTAGCCAC C	AAGCGAGCA	CACCCAACTG	AGGCAGCCCA	GGCTGGAGGT	CTTGATGAGG	1680
CTGTGCCTGT G ACGGGAAGGG T	CGAACIGIG	AACCCTCCTC	ACCACAAGCC	ATCAGTCATC	GTCACCCGCA	1740
ACGGGAAGGG T GGCGGTCCAC C	CTIGAACAG	CCCACACATA	CICAACCICA	GGCGGAGGAC	ATGAATGTCA	1800
AGTTGGAGGG G	CGAATCCCC	CTCCCCAAAC	CARACCACC	CCCAGGCCC	GAGCCCCTCA	1860
AGTTGGAGGG G	GAGCCTTCC		CONTROL	CTACTCCAAC	ATCACCCCAT	1920
TCATCCCCAC C	CAAGGCGGGC	ACTITICATES	TACCTCACCA	CCCCCCCCC	CGGAGCTTTG	1980
ACCAGAGCCA C	CTGCGCTCT	000000000000000000000000000000000000000	TOACCCCTC	CCCCTCTGAC	TOTOGCCTOT	2040
AGCTACCTCC C	CTAÇACGCCG	CUCUCUATO	, ICAGCCCIGI	gradawada	, ,5,0000.01	

```
ACTICAATGC CATCATATCA ACCAGCACCA TCCCTGCCCC TCCTCCCATC ACGCCTAAGA
                                                                    2100
GTGCCCATCG CACGCTGCTC CGGACTAACA GTGCTGAAGT AACCCCGCCT GTCCTCTG
                                                                    2160
TGATGGGGGA GGCCACCCCA GTGAGCATCG AGCCACGGAT CAACGTGGGC TCCCGGTTCC
                                                                    2220
AGGCAGAAAT CCCCTTGATG AGGGACCGTG CCCTGGCAGC TGCAGATCCC CACAAGGCTG
                                                                    2280
ACTTGGTGTG GCAGCCATGG GAGGACCTAG AGAGCAGCCG GGAGAAGCAG AGGCAAGTGG
                                                                    2340
AAGACCTGCT GACAGCCGCC TGCTCCAGCA TTTTCCCTGG TGCTGGCACC AACCAGGAGC
                                                                    2400
TGGCCCTGCA CTGTCTGCAC GAATCCAGAG GAGACATCCT GGAAACGCTG AATAAGCTGC
                                                                    2460
TGCTGAAGAA GCCCCTGCGG CCCCACAACC ATCCGCTGGC AACTTATCAC TACACAGGCT
                                                                    2520
CTGACCAGTG GAAGATGGCC GAGAGGAAGC TGTTCAACAA AGGCATTGCC ATCTACAAGA
                                                                    2580
AGGATTICTT CCTGGTGCAG AAGCTGATCC AGACCAAGAC CGTGGCCCAG TGCGTGGAGT
                                                                     2640
TCTACTACAC CTACAAGAAG CAGGTGAAAA TCGGCCGCAA TGGGACTCTA ACCTTTGGGG
                                                                     2700
ATGTGGATAC GAGCGATGAG AAGTCGGCCC AGGAAGAGGT TGAAGTGGAT ATTAAGACTT
                                                                     2760
CCCAAAAGTT CCCAAGGGTG CCTCTTCCCA GAAGAGAGTC CCCAAGTGAA GAGAGGCTGG
                                                                     2820
AGCCCAAGAG GGAGGTGAAG GAGCCCAGGA AGGAGGGGG GGAGGAGGTG CCAGAGATCC
                                                                     2880
AAGAGAAGGA GGAGCAGGAA GAGGGGCGAG AGCGCAGCAG GCGGGCAGCG GCAGTCAAAG
                                                                     2940
CCACGCAGAC ACTACAGGCC AATGAGTCGG CCAGTGACAT CCTCATCCTC CGGAGCCACG
                                                                     3000
AGTCCAACGC CCCTGGGTCT GCCGGTGGCC AGGCCTCGGA GAAGCCAAGG GAAGGGACAG
                                                                     3060
GGAAGTCACG AAGGGCACTA CCTTTTTCAG AAAAAAAAA AAAAAAACAA AAAGCTT
                                                                     3117
```

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3306 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

	CGAGGTCAGT	TTCCTCTCCA	ACACAGAGGC	TGCCTGTCCC	ATTCAGACAA	60
GAATTCGGCA	AGACCAGGCT	TOCTOTATAA	CCCATCCCAA	CAGTGGATTT	GTGTTTAATC	120
CGACGGATAC	AGACCAGGCI	CARCCATATA	ACCTUTUTES	CATTGGGAAG	ATTTTTATGT	180
TTAATCCGCT	CGGCACAATG	CARGUATATA	CCACCATCCT	GGGAAAACCT	GCTTCTGGCT	240
TTAATGTCTG	CGGCACAATG	CCIGICIGIG	ACAATTCCAA	GCCAGCAAGG	CCAGTCGGAA	300
GTGAGGCAGA	AACCCAAACT	GAAGAGUTUA	CCTTCATCAC	TOTGACCTAC	AAAGGGCCTC	360
TTGAGAAAAG	CCTCCAGCTG	TCCACAGAGG	TOOTCOCCTT	TOTATECAAT	GATGATGTTT	420
TCTCTGCCAA	AGGTACCGCT	GATGCTITIA	1 CG CCGC I	TCCCCAAGGG	ATCCGAAACA	480
ACTCAGGGCC	CCTCAAATTC	CTGCATCAAG	ATATCGACTC	TCCACTCCAC	TOCCAAGTCA	540
CTTACTTTGA	GTTTGAAACC	GCGTTGGCCI	GIGITULITU	CACACTCACC	AAACCTTGGA	600
CCGACCTGGC	TGGAAATGAG	TACGACCTGA	CTGGCCTAAG	CALAGICAGG	CTTTCCAATC	660
	CAPCTCTCTC	CATCCCAGAG	AISAISUALIII	CINIIIGAGE	91110014	720
ATOTOCCTT&	CATTCCTCCA	TCCCAGGGCA	GLUCAU I GUU	GIGIIGGIIA	digionalia.	780
	CAATCTCCCT	CTCCTCCAGA	I GAGILLLLA	Marra	Milderiai	840
	ATATATA AA	CCTCACAAGT	GTGGGAALLA	6666116166	ACCARDA I ON	900
	TAMPAGATA	TOGGGGTTCAC	CAGCALILA	GLIICAGGAI	agilalanai	960
	CTCCACAACT	CTCCAAGCCT	GTECCGLIGI	CAGAGIGGAA	GGGGWCWGG	1020
	ACACCERACE	CATGGCAACT	TGTATGALLI	GANGLLCCIA	agec I control	1080
		CAATACACTT	ATTACTICUG	6616161444	MAGGITTOG.	1140
ALAL COTOTO	CCCCACAAGT	CACAAGTEEA	AGGIGGICIL	LICKIGICAG	GWWW00000	1200
	- ATTTCSCAAA	CTCCCAGGTU	: ICCIGACICA	GARGCIANCI	IVIORACIA	1260
		- ACCCCCCCCCCC	. ACAUTIGULA	INAGGIIIA	CAGCGGIGGI	1320
		CACCCCCCCC	CCCAGCGGCL	. AGIALITUT	MAGGARGE	1380
		CACTCCCGA	CGCAGIALGU		1 LCGV LC 1 GV	1440
	.	CCCCCTGGG	ALILLIALUM		, 41410.0.4	1500
		ATCACTGGG	CGGGGGGALLL	. GUAGUACIA	, CIUNIUMIA	1560
		CACCCTCCC	I CTGAGCEGIU		, acuacaaa.	
	* TOOCTOCAAC	CCCCTCAACI	TEGGEAGGG	AAGGGACGG	COLONGIAM	1620
	- *******	AAATACGTTI	. Alticicoacii	MIGIC CAGA	000111000	1680 1740
		TYCACCTCC	a refriación illus	A AGIOONGIC	. Varananii a.	
		TOTORCIAN	8 CELLINGELIU	, GCCCACAGO	o Monagora.	1800
		CATCACIGU	" Miliali Alla		1 0001001001	1860
	· ····································	CCCACCCCC	: IIA IILALAU	. 100117079	C (1)(4) 01	1920
	- ~~~~***	CCCCACABI	E BARRITHLU		9 94444	1980
		· etccccasc	C CLAALAAGA	a uliumumim	0 010010-1	2040
		· CATCCCTCC	r	LUMMICCO	C 0100100111111	2100
		TECAGEER	i. Abblickbilde		G 000111	2160
		Y TOUNDIOUS	3 11:1111111111	0 0000000	0 0,000.	2220
		• <i>етелселат</i>	C CADISTILIA	I IGIIGACII	G 1010000	2280
		P	C AIGAGABLE	A GUALUAIGO	C 100011111	2340
	- ATLACTORS	T ATTTCTCAG	T TALIAAALU	C CKIGCACGG	V 010001-1-	2400
		~ AAACTICLI	A IIIiAIIIII	L LLLLAINUM	1 1110000000	2460
CTGCCGGAG	C ACCAATACT	C AATCCAATA	G CAAATGAGA	T TTACTTGAA	T TTTGAAAGCA	2520
TACCACGAC	T ACCADIALI		a marian			

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4218 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

			•	•		
GAATTCGGCA	CGAGAATGGA	TCAACCTCAA	CAACACGTTA	AAGCTAGACG	AAAGAAGTAA	60
TACACAGTGT	ATGAGTCTCA	CATGAAATAC	CCGGATGTAA	ATCCAAAGAA	ACAGGAAGCA	120
GATTGGTGGT	TGCCAGGGAC	AAGGGCGGTG	GGAGGAGAAA	ATGGAGAGTA	ACGGGACTTT	180
ACTITIGGAG	TGATGAGAAT	GTTTTGGAGC	TAGATAGAAG	TGGTGGTTGT	ACACCATTGT	240
GGATGTACTA	CCACTTAATT	GTTCACTTAA	AAAGTTAATT	TATGTGAATT	GCATCTTAAT	300
TAAAAACAAG	GATAACATTC	CAACTCCTGG	ACATTATCCT	TCCTTTCCAT	TTGATGTCAG	360
GCCCGTGTTA	GAATTCTCAT	CCGGTTTGGT	CACTGCACTT	AAGATGTGGA	GAAATTAGGA	420
CCCACACTTA	AGAGGAAGGA	TAACACTGAT	TAAGGTAGTG	CTTTTCTAGG	TTTCCCCTAA	480
ACAATTTAAC	AGATGGATAG	TGGCACCACT	TACGAGATGG	AAAAACCAGC	GGAAGGAAGA	540
TTTGGGGGAG	AAGTTAAGTT	TGTCTTGGGC	CTGTGTTTTG	CAACCTGAGT	GTAAAAGACA	600
TATGTTAAGT	CTTCAGTGGC	GAAACACTAA	AACTAGAAAT	GGATCAGAAT	TTTATCTTTG	660
GATGTGACTT	CTCAAGGATG	GTCTTGTCAC	TTCAGTGCCT	GGTCAAATGA	CAAGATGGGC	720
AATCTTTTCC	TGAAGGTCCA	AGCACCTGAA	CGTGGCAGGG	TGACCCGATT	CCGATTTGCT	780
TAGAACAATC	CTAGTTCATG	CCTATTGTCC	CTCATGTAAT	TAATATCACT	CTCAAAATGT	840
CTCATTTTGT	GCAATAAATT	CTGCAACGTG	ATGGCGCGAC	TCTCGCGGCC	CGAGCGGCCG	900
GACCTTGTCT	TCGAGGAAGA	GGACCTCCCC	TATGAGGAGG	AAATCATGCG	GAACCAATIC	960
TCTGTCAAAT	GCTGGCTTCA	CTACATCGAG	TTCAAACAGG	GCGCCCCGAA	GCCCAGGCTC	1020 1080
AATCAGCTAT	ACGAGCGGGC	ACTCAAGCTG	CTGCCCTGCA	GCTACAAACI	CIGGIACCGA	1140
TACCTGAAGG	CGCGTCGGGC	ACAGGTGAAG	CATCGCTGTG	TGACCGACCC	TOCTOTOTO	1200
GATGTCAACA	ACTGTCATGA	GAGGGCCTTT	GTGTTCATGC	ACAAGATGCC	CCCCACCTTC	1260
CTAGATTACT	GCCAGTTCCT	CATGGACCAG	GGGCGCGTCA	CACACACCCG	CCTCTATCTC	1320
GACCGTGCCC	TCCGGGCACT	GCCCATCACG	CAGCACICIC	CACCCTATCC	CCCCTTCCTC	1380
CGCTTCCTGC	GCTCACACCC	ACTGCCTGAG	ACAGCIGIGC	CAGGCTATCG	TCACCGCTG	1440
AAGCTGAGTC	CTGAGAGTGC	AGAGGAGTAC	ATTGAGTACC	ACCCTTTCCT	CTCTAACCCC	1500
GATGAGGCCG	CCCAGCGCCT	GGCCACCGIG	GIGAACGACG	TOATCTCCCA	CAATCCGGAC	1560
GGCAAGTCCA	ACTACCAGCT	GIGGLALGAG	ATCCCCCCCC	CCCTCACCCG	CTTCACCGAC	1620.
AAGGTACAGT	CCCTCAATGT AGCTCTGGTG	GUALGULATU	CACTACTACA	TOUCCACOCC	CCATTTCGAG	1680
CAGCIGGGCA	ACGTGTACGA	CCACCCCATC	CCCACACTCA	TCACCGTGCG	GGACTTCACA	1740
AAGGCTCGGG	ACAGCTACGA	CCACTTCCAC	CACACRATGA	TECETICAAA	GATGGAGACC	1800
CAGGIGILIG	TGGGGCGCGA	CCAGIICGAG	CATCTCCATCA	TEGAGETECE	CCTGGCCCGC	1860
TECCACCACC	TCATCAGCCG	CCCCCCCCC	CTCCTCAACA	CCTCTTGCT	GCGCCAAAAC	1920
CCACACCACC	TGCACGAGTG	GCGGCCCCTG	GTCGCCCTGC	ACCAGGGCCG	CCCCCGGGAG	1980
ATCATCAACA	CCTACACAGA	GCCTGTGCAG	ACGGTGGACC	CCTTCAAGGC	CACAGGCAAG	2040
CCCCACACTC	TGTGGGTGGC	GTTTGCCAAG	TTTTATGAGG	ACAACGGACA	GCTGGACGAT	2100
CCCCACACTC	TCCTGGAGAA	GGCCACCAAG	GTGAACTTCA	AGCAGGTGGA	TGACCTGGCA	2160
ACCCURATEGE	GTCAGTGCGG	AGAGCTGGAG	CTCCGACACG	AGAACTACGA	TGAGGCCTTG	2220
COCCTOCTOC	GAAAGGCCAC	GGCGCTGCCT	GCCCGCCGGG	: CCGAGTACTT	TGATGGTTCA	2280
GAGCCCGTGC	AGAACCGCGT	GTACAAGTCA	CTGAAGGTCT	GGTCCATGCT	CGCCGACCTG	2340
GAGGAGAGCC	: TOGGCACCTT	CCAGTCCACC	: AAGGCCGTGT	' ACGACCGCAT	CCTGGACCTG	2400
CGTATCGCAA	CACCCCAGAT	CGTCATCAAC	: TATGCCATGT	' TCCTGGAGGA	GCACAAGTAC	2460
TTCCAGGAGA	GCTTCAAGGC	GTACGAGCGC	: GGCATCTCGC	: TGTTCAAGTG	GCCCAACGIG	2520
TOCGACATO	GGAGCACCTA	CCTGACCAAA	L TTCATTGCCC	: GCTATGGGGG	CCGCAAGCIG	2580
GAGCGGGGCAC	GGGACCTGTT	TGAACAGGCT	CTGGACGGC1	GCCCCCCAAA	ATATECCAAG	2640
ACCTTGTACE	TECTETACEC	: ACAGCTGGAG	GAGGAGTGG	GCCTGGCCCG	GCATGCCATG	2700
GCCGTGTAC	AGCGTGCCAC	CAGGGCCGTG	GAGCCCGCCC	CAGCAGTATGA	CATGTTCAAC	2760

```
ATCTACATCA AGCGGGCGGC CGAGATCTAT GGGGTCACCC ACACCCGCGG CATCTACCAG
AAGGCCATTG AGGTGCTGTC GGACGAGCAC GCGCGTGAGA TGTGCCTGCG GTTTGCAGAC
                                                                              2880
ATGGAGTGCA AGCTCGGGGA GATTGACCGC GCCCGGGCCA TCTACAGCTT CTGCTCCCAG
                                                                              2940
ATCTGTGACC CCCGGACGAC CGGCGCGTTC TGGCAGACGT GGAAGGACTT TGAGGTCCGG
                                                                              3000
CATGGCAATG AGGACACCAT CAAGGAAATG CTGCGTATCC GGCGCAGCGT GCAGGCCACG
                                                                              3060
TACAACACGC AGGTCAACTT CATGGCCTCG CAGATGCTCA AGGTCTCGGG CAGTGCCACG
                                                                              3120
GGCACCGTGT CTGACCTGGC CCCTGGGCAG AGTGGCATGG ACGACATGAA GCTGCTGGAA
                                                                              3180
CAGCGGGCAG AGCAGCTGGC GGCTGAGGCG GAGCGTGACC AGCCCTTGCG CGCCCAGAGC
                                                                              3240
AAGATCCTGT TCGTGAGGAG TGACGCCTCC CGGGAGGAGC TGGCAGAGCT GGCACAGCAG
                                                                              3300
GTCAACCCCG AGGAGATCCA GCTGGGCGAG GACGAGGACG AGGACGAGAT GGACCTGGAG
                                                                              3360
CCCAACGAGG TTCGGCTGGA GCAGCAGAGC GTGCCAGCCG CAGTGTTTGG GAGCCTGAAG
                                                                              3420
GAAGACTGAC CCGTCCCCTC GTGCCGAATT CGGCACGAGC AAGACCAGCC CCCAGATCAT
                                                                              3480
TTGCCTCAAA GGTTTTCCCT CGAAGTCACA AATGTTTCAA GGAATCTCAA ATTTTACAAA
                                                                              3540
GTTTGAAGTG TGGGCATTGG TGGCCTGTGG CTGTGTCCTC TCTCTGTAGC TGTTTTCTCC
                                                                              3600
CTACATCCCT GAAAGGAAGT TGAGCCTGCT CCTCCATCCG CAGACCTCCC TTTCCAGCGC
                                                                              3660
CCAGGGCATG GGGTGCTGTG AGGGCAGCAT GCTAGGTGTG ACCGTGCTCC TGGCCTCCAG
                                                                              3720
GCCCGTGTCC CTCTGTCCTC TAGCCCACTA AGGCCCTGGC CCATTTGTGC TAAACAGGCA
                                                                              3780
GTCGGACCTA GAAAGAGCAG ACAATCTCTC TGGGTCACCA GTCTGGCTAG GAGCTGGTCT
CCTGACTGGG ATCCAGGCCT TCTCCCCTGC CCATGTGAAT TCCCCAGGGGC AGAGCCTGAA
                                                                              3840
                                                                              3900
ATGTTGAACA CAGCACTGGC CAAAGAGATG TCACCGTGGG AACCGAGGCT CTCTTCTCCT
                                                                              3960
CCTGCCTGCT TTCGTGGGTT CAGAGTAGCT GAGGCTTGTC TGAGAGGAGT TGGAGTGCTG
GTTTTCACCC TGGTTGGTGT GCTTTGCTTT GAGGGCACTI AGAAAGCCCA GCCCAGCCCT
                                                                              4020
                                                                              4080
TGCTCCTGCC CTGCACACAG CGGAGCGACT TTTCTAGGTA TGCTCTTGAT TTCTGCAGAA
GCAGCAGGTG GCATGGAGCC AAGAGGAAGT GTGACTGAAA CTGTCCACTC ATAGCCCGGC
                                                                              4140
                                                                              4200
                                                                              4218
TGCCGTATTG AGAGGGCT
```

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1187 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAGCTCGCGC GCCTGCAGGT C	GACACTAGT	GGATCCAAAG	AATTCGGCAC	GAGGGAAACT	60
CAACGGTGTA CGAGTGGAGG A	CAGGGACAG	AGCCCTCTGT	GGTGGAACGA	CCCCACCTCG	120
CHACGGIOTH CONTINUES IN			GGGCGACTTT	GGGGTAGAGG	180
Address !		CTGCCGAGGC	TGCTGGAATC	GACTGGGGCA	240
TCTTCCCGGA ATCAGATTCA A			GATAGACTGG	GGAGACGATG	300
CTGTTGCTTT GCAGATCACA G	TGCTGGAAG	CAGGAACCCA	GGCTCCAGAA	GGTGTTGCCA	360
GGGGCCCAGA TGCCCTGACA C	TGCTTGAAT	ACACTGAGAC	CCGGAATCAG	TTCCTTGATG	420
AGCTCATGGA GCTTGAGATC T			GGAGTTGAGT	GAGGAGGCAG	480
ATGTCCTGTC TGTGAGCCAG T	TCCAGCTGG	CTCCAGCCAT	CCTGCAGGGC	CAGACCAAAG	540
AGAAGATGGT TACCATGGTG T			TGGCAAGCTT	ACCAGTCTTC	600
AGCTGCAACA CCTGTTTATG A		CACCAAGGTA	TGTGGACCGA	GTGACTGAAT	660
TCCTCCAGCA AAAGCTGAAG C	AGTCCCAGC	TGCTGGCTTT	GAAGAAAGAG	CTGATGGTGC	720
AGAAGCAGCA GGAGGCACTT G	AGGAGCAGG	CGGCTCTGGA	GCCTAAGCTG	GACCTGCTAC	780
TGGAGAAGAC CAAGGAGCTG C			CATCTCCAAG	AGGTACAGCG	840
GGCGCCCTGT GAACCTGATG G	GAACCTCTC	TGTGACACCC	TCCGTGTTCT	TGCCTGCCCA	900
TCTTCTCCGC TTTTGGGATG A			TGTTTTGGGG	CCCTTCAAGG	960.
	AGATGGAAA		GGAAGCGGCA	CCTGATGGTG	1020
ATCTTGGCAC TCTCCATGTT C	CTCTACAAGA	AGCTGTGGTG			1080
GGCGAAAACC ACAGATTCTC C	CTTCTAGTTA	GTATAGCGCA	AAAAGCTTCT	CGAGAGTACT	1140
TCTAGAGCGG CCGCGGGCCC A					1187
, 0, , ,					

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3306 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCCTCACTAA AGGGAACAAA AGCTGGAGCT CGCGCGCCTG CAGGTCGACA CTAGTGGATC GAAAGTTCGT TACGCCAAGC TCGAAATTAA CTCTGGGCTG ACCCATAAAC ATITGTCTGA

```
TCTAGGATAT AGTTGCGTTT CTTGCGGGCA GCAATCTGGA TGAGGCGGTT GAGGCACTGG
GTGGCCTGCT GGATCAGGAC ATCCCAGCGG CCAGCATAGT TCCGCTGCCG GCGTAGGCCC
                                                                      240
ATCACCCGCA TCTTATCCAT GATGGCATTG GTACCCAGGA TGTTGTACTT CTTGGAAGGG
                                                                      300
TTGGAGGCTG CATGTTTGAT GGCCCATGTG GTCTTGCCAG CAGCAGGCAG GCCCACCATC
                                                                      360
ATCAGAATCT CACATTCTGC CTTGCTCTTT GGTCCAACGG TGCCCCGGAT ACGCTCACTA
                                                                      420
AGGGGAAGGT GCTGGATGAA GGTAAACCCC GGGAGGACAG AACAGTAGGG CTCTGCTCTC
                                                                      480
TGTCCGAAGT TGAACTCCAC TGCGCAATTC TTCACCAGGA CATGAGGATA GAGGGCCTGA
                                                                      540
CCCCCCAAGG CTTCCTTCTG GATTCGGAAA GCAATGCCCA TCCACTTTCC ATTCTTGGTA
                                                                      600
AAAGACAGTT CCACGTCATT TCCACATTCA AAATCCGCAA AGCAGCCAAT CACCGGAGAG
                                                                      660
CTCTGCGGTG CTAGGAGAGC GGCTGGGCCC GCAGACTGGG GGGAAAGCTC CGCAGCCGCA
                                                                      720
GTGGGCCCCA GGATCAGGCC CCGCGTGGCC TGGAGAAGCC CAGTCTGGGC TGGAGCGGGA
                                                                      780
GCTGGACAGT GTGGCCTTGC GTTCGCCCCC GGGAGCGCTG CGAGTGTCGC GGCCTCGGGT
                                                                      840
GGATTTGCTG AGCACCAATA CCTCACGGTT GCCAACCTGG GGTTTTAGCT CCCTTGGTTT
                                                                      900
TAATCCCCTA GGGGCGGGTG GGGGCACGGG AGGAAGGATG GGCCAGCTGG GTGCAATCCT
                                                                      960
GCTGTAAGCC AGCCATTCCT TGATTTCTTA GAATTAACTA AACGGTCGCG CCGGAGGCCG
                                                                     1020
CGGGGGCCGG AGCGGAGCAG CCGCGGCTGA GGTTCCCGAG TCGGCCGCTC GGGGCTGCGC
                                                                     1080
TCCGCCGCCG GGACCCCGGC CTCTGGCCGC GCCGGCTCCG GCCTCCGGGG GGGCCGGGGC
                                                                     1140
CGCCGGGACA TGGTGCCAGT CGCACCCCTT CCCCGCCGCC GCTGAGCTCG CCGGCCGCGC
                                                                     1200
CCGGGCTGGG ACGTCCGAGC GGGAAGATGT TTTCCGCCCT GAAGAAGCTG GTGGGGTCGG
                                                                     1260
ACCAGGCCCC GGGCCGGGAC AAGAACATCC CCGCCGGGCT GCAGTCCATG AACCAGGCGT
                                                                     1320
TGCAGAGGCG CTTCGCCAAG GGGGTGCAGT ACAACATGAA GATAGTGATC CGGGGAGACA
                                                                     1380
GGAACACGGG CAAGACAGCG CTGTGGCACC GCCTGCAGGG CCGGCCGTTC GTGGAGGAGT
                                                                      1440
ACATCCCCAC ACAGGAGATC CAGGTCACCA GCATCCACTG GAGCTACAAG ACCACGGATG
                                                                      1500
ACATCGTGAA GGTTGAAGTC TGGGATGTAG TAGACAAAGG AAAATGCAAA AAGCGAGGCG
                                                                      1560
ACGGCTTAAA GATGGAGAAC GACCCCCAGG AGNCGGAGTC TGAAATGGCC CTGGATGCTG
                                                                      1620
AGTTCCTGGA CGTGTACAAG AACTGCAACG GGGTGGTCAT GATGTTCGAC ATTACCAAGC
                                                                      1680
AGTGGACCTT CAATTACATT CTCCGGGAGC TTCCAAAAGT GCCCACCCAC GTGCCAGTGT
                                                                      1740
GCGTGCTGGG GAACTACCGG GACATGGGCG AGCACCGAGT CATCCTGCCG GACGACGTGC
                                                                      1800
 GTGACTTCAT CGACAACCTG GACAGACCTC CAGGTTCCTC CTACTTCCGC TATGCTGAGT
                                                                      1860
CTTCCATGAA GAACAGCTTC GGCCTAAAGT ACCTTCATAA GTTCTTCAAT ATCCCATTTT
                                                                      1920
TGCAGCTTCA GAGGGAGACG CTGTTGCGGC AGCTGGAGAC GAACCAGCTG GACATGGACG
                                                                      1980
CCACGCTGGA GGAGCTGTCG GTGCAGCAGG AGACGGAGGA CCAGAACTAC GGCATCTTCC
                                                                      2040
 TGGAGATGAT GGAGGCTCGC AGCCGTGGCC ATGCGTCCCC ACTGGCGGCC AACGGGCAGA
                                                                      2100
GCCCATCCCC GGGCTCCCAG TCACCAGTCC TGCCTGCACC CGCTGTGTCC ACGGGGAGCT
                                                                      2160
 CCAGCCCCGG CACACCCCAG CCCGCCCCAC AGCTGCCCCT CAATGCTGCC CCACCATCCT
                                                                      2220
 CTGTGCCCCC TGTACCACCC TCAGAGGCCC TGCCCCCACC TGCGTGCCCC TCAGCCCCCG
                                                                      2280
 CCCCACGGCG CAGCATCATC TCTAGGCTGT TTGGGACGTC ACCTGCCACC GAGGCAGCCC
 CTCCACCTCC AGAGCCAGTC CCGGCCGCAC AGGGCCCAGC AACGGTCCAG AGTGTGGAGG
                                                                      2400
 ACTITGITCC TGACGACCGC CTGGACCGCA GCTTCCTGGA AGACACAACC CCCGCCAGGG
                                                                      2460
 ACGAGAAGAA GGTGGGGGCC AAGGCTGCCC AGCAGGACAG TGACAGTGAT GGGGAGGCCC
                                                                      2520
 TGGGCGGCAA CCCGATGGTG GCAGGGTTCC AGGACGATGT GGACCTCGAA GACCAGCCAC
                                                                      2580
 GTGGGAGTCC CCCGCTGCCT GCAGGCCCCG TCCCCAGTCA AGACATCACT CTTTCGAGTG
                                                                      2640
 AGGAGGAAGC AGAAGTGGCA GCTCCCACAA AAGGCCCTGC CCCAGCTCCC CAGCAGTGCT
                                                                      2700
 CAGAGCCAGA GACCAAGTGG TCCTCCATAC CAGCTICGAA GCCACGGAGG GGGACAGCTC
                                                                      2760
 CCACGAGGAC CGCAGCACCC CCCTGGCCAG GCGGTGTCTC TGTTCGCACA GGTCCGGAGA
                                                                      2820
 AGCGCAGCAG CACCAGGCCC CCTGCTGAGA TGGAGCCGGG GAAGGGTGAG CAGGCCTCCT
                                                                      2880
 CGTCGGAGAG TGACCCCGAG GGACCCATTG CTGCACAAAT GCTGTCCTTC GTCATGGATG
                                                                      2940
 ACCCCGACTT TGAGAGCGAG GGATCAGACA CACAGCGCAG GGCGGATGAC TTTCCCGTGC
                                                                      3000
 GAGATGACCC CTCCGATGTG ACTGACGAGG ATGAGGGCCC TGCCGAGCCG CCCCCACCCC
                                                                      3060
 CCAAGCTCCC TCTCCCCGCC TTCAGACTGA AGAATGACTC GGACCTCTTC GGGCTGGGGC
                                                                      3120
  TGGAGGAGGC CGGACCCAAG GAGAGCAGTG AGGAAGGTAA GGAGGGCAAA ACCCCCTCTA
                                                                      3180
  AGGAGAAGAA AAAAAAAACA AAAAGCTTCT CGAGAGTACT TCTAGAGCGG CCGCGGGCCC
                                                                      3240
 ATCGATITIC CACCCGGGTG GGGTACCAGG TAAGTGTACC CAATTCGCCC TATAGTGAGT
                                                                       3300
                                                                       3306
  CGTATT
```

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

TGCGGGGCCA GAGTGGGCTG

- (2) INFORMATION FOR SEQ ID NO:12:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid

20

(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
GCAGTCCTGG CCTGCGGATG	20
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	4
GTCGACAGGA GAATTGGTTC	20
(2) INFORMATION FOR SEQ ID NO:14:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	,
GCCTGGGTTC GGTGCGGGAC	20
(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
TGGTCGGGTG TTTGTGAGTG	20
(2) INFORMATION FOR SEQ ID NO:16:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
CCTCTTCCGT CTCCTCAGTG	20
(2) INFORMATION FOR SEQ ID NO:17:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
COLTROPIC TOTOACACAC	20 .

GGATTGCTAG TCTCACAGAC

(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
TTAAGGGTGG CTGAAGGGAC	20
(2) INFORMATION FOR SEQ ID NO:19:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
ACCTTCCCTC CCTGTCACAG	20
(2) INFORMATION FOR SEQ ID NO:20:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
TGGTCGGGTG TTTGTGAGTG	. 20
(2) INFORMATION FOR SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
ACACCATTCC AGAAATTCAG	20
(2) INFORMATION FOR SEQ ID NO:22:	,
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
AAACTGCAGG TGGCTGAGTC	20
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	u

	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GTCCTAATGT TTTCAGGGAG	20
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
AAAACCTATG GTTACAATTC	20
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
TCCTAGACAT GGTTCAAGTG	20
(2) INFORMATION FOR SEQ ID NO:26:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	•
GATATAATTA GTTCTCCATC	20
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	•
ATGCCTGTTC CAGGCTGCAC	20
(2) INFORMATION FOR SEQ ID NO:28:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GGACGGCGAC CTCCACCCAC	20
(2) INFORMATION FOR SEQ ID NO:29:	•
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(C) STRANDEDNESS: STRIGTE (D) TOPOLOGY: linear	
(D) TOPOLOGI: Cinear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	20
GGGCTCCTCC GACGCCTGAG	20
(2) INFORMATION FOR SEQ ID NO:30:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	•
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
TATTAGOR TOCCUTTORS	20
AGTCTAGCCC TGGCCTTGAC	
(2) INFORMATION FOR SEQ ID NO:31:	
(2) 111 011111111111111111111111111111111	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	•
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
, ,	. 20
GTCACTGGGG ACTCCGGCAG	20
·	
(2) INFORMATION FOR SEQ ID NO:32:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	•
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
(X1) SEQUENCE DESCRIPTION. SER IS NOTED	
CAGCTTTCCC TGGGCACATG	20
(2) INFORMATION FOR SEQ ID NO:33:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	,
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
CACAGCTGTC TCAAGCCCAG	20
CACAGCIGIC ICAAGCCCAG	
(2) INFORMATION FOR SEQ 1D NO:34:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(C) STRANDEDNESS: SINGLE	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

ACTGTTCCCC CTACATGATG	20
(2) INFORMATION FOR SEQ ID NO:35:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
ATCATATCCT CTTGCTGGTC	20
(2) INFORMATION FOR SEQ ID NO:36:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
GTTCCCAGAG CTTGTCTGTG	20
(2) INFORMATION FOR SEQ ID NO:37:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ 1D NO:37:	
GTTTGGCAGA CTCATAGTTG	20
(2) INFORMATION FOR SEQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
TAGCAGGGAG CCATGACCTG	20
(2) INFORMATION FOR SEQ ID NO:39:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
CTTGGCGCCA GAAGCGAGAG	20
(2) INFORMATION FOR SEQ ID NO:40:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(D) TOPOLOGY: tinear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
сстстстст тстстстст	20
(2) INFORMATION FOR SEQ ID NO:41:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	,
TCCCCGCTGA TTCCGCCAAG	20
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
CTTTTTGAAT TCGGCACGAG	20
(2) INFORMATION FOR SEQ ID NO:43:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
CCCCTGGTCC GCACCAGTTC	20
(2) INFORMATION FOR SEQ ID NO:44:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	,
GAGAAGGGTC GGGGCGCAG	20
(2) INFORMATION FOR SEQ ID NO:45:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
AAATCACATC GCGTCAACAC	20

(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	v
(D) TOPOLOGY: linear	
(D) TOPOLOGI: (Thear	•
	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
	20
TAAGAGAGTC ATAGTTACTC	
(2) INFORMATION FOR SEQ ID NO:47:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
GCTCTAGAAG TACTCTCGAG	20
TO THE PARTY OF TH	
(2) INFORMATION FOR SEQ ID NO:48:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
10, 14, 12, 14, 1	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
ACTCTGGCCA TCAGGAGATC	20
ACTUTUGGGA TCAGGAGATC	
(2) INFORMATION FOR SEQ ID NO:49:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	•
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
	34
CAGGCGTTGT AGATGTTCTG	20
(2) INFORMATION FOR SEQ ID NO:50:	,
(2) INFORMATION FOR SEQ 10 NO.30.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
(XI) SEQUENCE DESCRIPTION: SEQ ID NO.30.	
AGTGGCAGGC AGAAGTAATG	2
(2) INFORMATION FOR SEQ ID NO:51:	
ALL APAUTHOT CHARACTEDICTICS	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	
(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
foliation and a series.	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
GGTTGGAGAA CTGGATGTAG	20
(2) INFORMATION FOR SEQ ID NO:52:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
CTATTCAGAT GCAACGCCAG	20
(2) INFORMATION FOR SEQ ID NO:53:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
CCATGGCACA CAGAGCAGAC	20
(2) INFORMATION FOR SEQ ID NO:54:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
GCTACCATGC AGAGACACAG	20
(2) INFORMATION FOR SEQ ID NO:55:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
CAGGCTGACA AGAAAATCAG	20
(2) INFORMATION FOR SEQ ID NO:56:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ 10 NO:56:	
GGCACGCATA GAGGAGAGAC	20
(2) INFORMATION FOR SEQ ID NO:57:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
TGGGTGATGC CTTTGCTGAC	20
(2) INFORMATION FOR SEQ ID NO:58:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
AAAACAAGAT CAAGGTGATG	. 20
(2) INFORMATION FOR SEQ ID NO:59:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	
TTGCCCACAT TGCTATGGTG	20
(2) INFORMATION FOR SEQ ID NO:60:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	. •
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
GACCAAGATC AGAAGTAGAG	20
(2) INFORMATION FOR SEQ ID NO:61:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	:
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	
CCCCTGGGCC AATGATGTTG	20
(2) INFORMATION FOR SEQ ID NO:62:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
TCTTCCCACC ATAGCAATG	19

<u>65</u>

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
	TGGTCTTGGT GACCAATGTG	20
·	(2) INFORMATION FOR SEQ ID NO:64:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
	ACACCTCGGT GACCCCTGTG	20
	(2) INFORMATION FOR SEQ ID NO:65:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
J.	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
•	TCTCCAAGTT CGGCACAGTG	20
	(2) INFORMATION FOR SEQ ID NO:66:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
	ACATGGGCTG CACTCACGAC	20
	(2) INFORMATION FOR SEQ ID NO:67:	•
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:	
	GATCCTCTGA ACCTGCAGAG	20
	(2) INFORMATION FOR SEQ ID NO:68:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

And the test that the test that the test

And had the trained the

(2) INFORMATION FOR SEQ ID NO:63:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
GGAAATGAGG TGGGGCGATC	20
(2) INFORMATION FOR SEQ ID NO:69:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ 1D NO:69:	-
CTTTGCCTTG GACAAGGATG	20
(2) INFORMATION FOR SEQ ID NO:70:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:	
GCACCTGCCA TTGGGGGTAG	20
(2) INFORMATION FOR SEQ ID NO:71:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:	
GGTGGAAGCC ATTGACGGTG	20
(2) INFORMATION FOR SEQ ID NO:72:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	•
TGCGTCTCTC GTCGCTGCTG	20
(2) INFORMATION FOR SEQ ID NO:73:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
GCGGAAACTC TGTGGTGCTG	20

(2) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:	
AGGATTGCCT TCCTCTACTG	20
(2) INFORMATION FOR SEQ ID NO:75:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:	
TGTCTGTTTC ACCAGGGCAG	20
(2) INFORMATION FOR SEQ ID NO:76:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
CCAGTGCCTC TATGCATGTC	20
(2) INFORMATION FOR SEQ ID NO:77:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:	
AGGAAGCCCA CGCACCACC	20
(2) INFORMATION FOR SEQ ID NO:78:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
CCCTTTGTTC CCTGATCTTC	20
(2) INFORMATION FOR SEQ ID NO:79:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(B) TYPE: nucleic acid

CGCTCGGGAT CCAGGTCATC

(2) INFORMATION FOR SEQ ID NO:80:

20

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:	
TTACTTCAGC ACTGTTAGTC	. 20
(2) INFORMATION FOR SEQ ID NO:86:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:	
AGGGAGGTAG CTCAAAGCTC	20
(2) INFORMATION FOR SEQ ID NO:87:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:	
TGGGTCCACA GTTCGCACAG	20
(2) INFORMATION FOR SEQ ID NO:88:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:	
CAACTCTGTG ATGGCTCCAG	20
(2) INFORMATION FOR SEQ ID NO:89:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:	
AGCAGGGTTC TGTTCAAGAC	20
(2) INFORMATION FOR SEQ ID NO:90:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:	
CCATTGGGTG CTAGTCTCTC	20

CCATTGGGTG CTAGTCTCTC

(2) INFORMATION FOR SEQ ID NO. 91:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:	
CAGCCATGCT GTCCCAGCAG	20
(2) INFORMATION FOR SEQ ID NO:92:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:	
CTGGACCTGA GGTAGCGCTG	20
(2) INFORMATION FOR SEQ ID NO:93:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:	
ATAACCACCC TGAGGCACTG	20
(2) INFORMATION FOR SEQ ID NO:94:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:	
CCTGCAGGTC GACACTAGTG	. 20
(2) INFORMATION FOR SEQ ID NO:95:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:	-
AATTGGAATG AGGAGGACTG	20
(2) INFORMATION FOR SEQ ID NO:96:	-
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:	
GCTCTAGAAG TACTCTCGAG	20
(2) INFORMATION FOR SEQ ID NO:97:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ 1D NO:97:	
ATTGTATGAC AATGCACCAG	20
(2) INFORMATION FOR SEQ ID NO:98:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:	
TCCACAGAGG GCTTCATCAC	20
(2) INFORMATION FOR SEQ ID NO:99:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:	20
CCTGACTGGC CTAAGCACAG	. 20
(2) INFORMATION FOR SEQ ID NO:100:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100): ·
AAGCCTCATA ACCACCAGTG	20
(2) INFORMATION FOR SEQ ID NO:101:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10	1:
TGTCAACGGT GACAAGTGTG	20
(2) INFORMATION FOR SEQ ID NO:102:	
(i) SEQUENCE CHARACTERISTICS:	

(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:	
TTGTACACCA GCTGCAGGTC	20
(2) INFORMATION FOR SEQ ID NO:103:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
GGGTGTGGTG CAGATGAGTC	20
(2) INFORMATION FOR SEQ ID NO:104:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:	
ATCACACTCT TATAGCTCAG	20
(2) INFORMATION FOR SEQ ID NO:105:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	
GTGGGAAGCT TTCCTCAGAC	20
(2) INFORMATION FOR SEQ ID NO:106:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:	
TGATGAACAT GGGCCTGGAG	20
(2) INFORMATION FOR SEQ ID NO: 107:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

- 74 ---

(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:	
GCACGAGTGG CACAAGCGTG	20
(2) INFORMATION FOR SEQ ID NO:114:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:	
GCAAGCGTGT GGTGTCAGTG	20
(2) INFORMATION FOR SEQ ID NO:115:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:	
TGTTTGAACA GGCTCTGGAC	20
(2) INFORMATION FOR SEQ ID NO:116:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:	
CGGCATGGCA ATGAGGACAC	20
(2) INFORMATION FOR SEQ ID NO:117:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:	
AGGACGAGAT GGACCTCCAG	20
(2) INFORMATION FOR SEQ ID NO:118:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:	
CCCICIETC TCTAGCCCAC	20

(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:	
TCTTGAGGGG ACTGACTCTG	20
(2) INFORMATION FOR SEQ ID NO:120:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	·
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
TGAGTGAGGA GGCAGATGTC	20
(2) INFORMATION FOR SEQ ID NO:121:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
TGGCTTTGAA GAAAGAGCTG	20
(2) INFORMATION FOR SEQ ID NO:122:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:	
GCAAAAGACC AGGCTGACTG	20
(2) INFORMATION FOR SEQ ID NO:123:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:	
TGCAGCTCCT TGGTCTTCTC	20
(2) INFORMATION FOR SEQ ID NO:124:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 20 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(n) Interest cusas.	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:	•-
GATTCACAGT CCCAAGGCTC	20
(2) INFORMATION FOR SEQ ID NO:125:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:	20
ATCTGGATGA GGCGGTTGAG	20
(2) INFORMATION FOR SEQ ID NO:126:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:	
GGTCACTCTC CGACGAGGAG	20
(2) INFORMATION FOR SEQ ID NO:127:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:	
GGATCCAAAG TTCGTCTCTG	20
(2) INFORMATION FOR SEQ ID NO:128:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	٠.
CGCTGTGTGT CTGATCCCTC	20
(2) INFORMATION FOR SEQ ID NO:129:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:	
ATGAAGGTAA ACCCCGGGAG	20
(2) INFORMATION FOR SEQ ID NO:130:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	

(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:	
TGGTCTCTGG CTCTGAGCAC	20
(2) INFORMATION FOR SEQ ID NO:131:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:	
GCCTGGAGAA GCCCAGTCTG	· 20
(2) INFORMATION FOR SEQ ID NO:132:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:	
CACACTCTGG ACCGTTGCTG	20
(2) INFORMATION FOR SEQ ID NO:133:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:	
AAAGCTCCGC AGCCGCAGTG	20
(2) INFORMATION FOR SEQ ID NO:134:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:	
TCTTCCAGGA AGCTGCGGTC	20
(2) INFORMATION FOR SEQ ID NO:135:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:	

-- 78 --

GATGGTGGGG CAGCATTGAG

20

(2) INFORMATION FOR SEQ ID NO: 136:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:	
GTCACCAGTG GTGCCTGCAG	20
(2) INFORMATION FOR SEQ ID NO: 137:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:	
ACCTCACGGT TGCCAACCTG	20
(2) INFORMATION FOR SEQ ID NO:138:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:	20
CGCAACAGCG TCTCCCTCTG	20
(2) INFORMATION FOR SEQ ID NO:139:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:	
AGTACCTTCA TAAGTTCTTC	20
(2) INFORMATION FOR SEQ ID NO:140:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:	
TCCCAGACTT CAACCTTCAC	20
(2) INFORMATION FOR SEQ ID NO:141:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:	•
AAACATCTTC CCGGTCGGAC	20
(2) INFORMATION FOR SEQ ID NO:142:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:	
GCTGAGCACC TTTACCTCAC	20
(2) INFORMATION FOR SEQ ID NO:143:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:	
GACGTCCGTC CGGGAAGATG	20
(2) INFORMATION FOR SEQ ID NO:144:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:	
ACACAGGAGA TGCAGGTCAC	20
(2) INFORMATION FOR SEQ ID NO:145:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:	•
GAGTCTTCCA TGAAGAACAG	20
(2) INFORMATION FOR SEQ ID NO:146:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:	
GCAGTGAGGA AGGTAAGGAG	20

(2) INFORMATION FOR SEQ ID NO:147:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4047 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNES: double

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (ix) FEATURE:
 - (A) NAME/KEY: Coding Sequence
 (B) LOCATION: 378...1799
 (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

GGATCCAAAG GACGCCCCCG CCGACAGGAG AATTGGTTCC CGGGCCCCCCCCCC	CCCG GCTCTACATG 180 CCCG GCCCGGATTA 240 CGAT TCGCCCAGTG 300 TTTA TAGGCAACAC 360 CCC ATT ACT 410	0 0 0 0
ACT CTT GCG GGG ATT GCT AGT CTC ACA GAC CTC CTG AA Thr Leu Ala Gly Ile Ala Ser Leu Thr Asp Leu Leu As 15 20	C CAG CTG CCT 458 n Gln Leu Pro 25	
CTT CCA TCT CCT TTA CCT GCT ACA ACT ACA AAG AGC CT Leu Pro Ser Pro Leu Pro Ala Thr Thr Thr Lys Ser Le 30 35 40	d Led Phe Asii	
GCA CGA ATA GCA GAA GAG GTG AAC TGC CTT TTG GCT TG Ala Arg Ile Ala Glu Glu Val Asn Cys Leu Leu Ala Cy 45 50 55	T AGG GAT GAC 554 's Arg Asp Asp	
AAT TTG GTT TCA CAG CTT GTC CAT AGC CTC AAC CAG GT Asn Leu Val Ser Gln Leu Val His Ser Leu Asn Gln Va 60 65 70	A TCA ACA GAT 602 Il Ser Thr Asp 75	!
CAC ATA GAG TTG AAA GAT AAC CTT GGC AGT GAT GAC CC His Ile Glu Leu Lys Asp Asn Leu Gly Ser Asp Asp Pr 80	CA GAA GGT GAC 650 O Glu Gly Asp 90)
ATA CCA GTC TTG TTG CAG GCC GTC CTG GCA AGG AGT CC Ile Pro Val Leu Leu Gln Ala Val Leu Ala Arg Ser Pr 95 100	CT AAT GTT TTC 698 TO ASD Val Phe 105	3
AGG GAG AAA AGC ATG CAG AAC AGA TAT GTA CAA AGT GC Arg Glu Lys Ser Met Gln Asn Arg Tyr Val Gln Ser G 110 115	GA ATG ATG ATG 746 Ly Met Met Met 20	5
TCT CAG TAT AAA CTT TCT CAG AAT TCC ATG CAC AGT AG Ser Gln Tyr Lys Leu Ser Gln Asn Ser Met His Ser So 125 130 135	GT CCT GCA TCT 794 er Pro Ala Ser	4.
TCC AAT TAT CAA CAA ACC ACT ATC TCA CAT AGC CCC TO Ser Asn Tyr Gln Gln Thr Thr Ile Ser His Ser Pro S 140 145 150	CC AGC CGG TTT 84 er Ser Arg Phe 155	2
GTG CCA CCA CAG ACA AGC TCT GGG AAC AGA TTT ATG C Val Pro Pro Gln Thr Ser Ser Gly Asn Arg Phe Met P 160 165	CA CAG CAA AAT 89 ro Gln Gin Asn 170	0
AGC CCA GTG CCT AGT CCA TAC GCC CCA CAA AGC CCT G Ser Pro Val Pro Ser Pro Tyr Ala Pro Gln Ser Pro A 175 180	CA GGA TAC ATG 93 la Gly Tyr Met 185	8
CCA TAT TCC CAT CCT TCA AGT TAC ACA ACA CAT CCA C Pro Tyr Ser His Pro Ser Ser Tyr Thr Thr His Pro G 190 195	AG ATG CAA CAA . 98 Sin Met Gin Gin 200	36

GCA Ala	TCG Ser 205	GTA Val	TCA Ser	AGT Ser	CCC Pro	ATT Ile 210	GTT Val	GCA Ala	GGT Gly	GLY	TTG Leu 215	AGA Arg	AAC Asn	ATA Ile	CAT His	1034
GAT Asp 220	AAT Asn	AAA Lys	GTT Val	TCT Ser	GGT Gly 225	CCG Pro	TTG Leu	TCT Ser	Gly	AAT Asn 230	TCA Ser	GCT Ala	AAT Asn	CAT His	CAT His 235	1082
GCT Ala	GAT Asp	AAT Asn	CCT Pro	AGA Arg 240	CAT His	GGT Gly	TCA Ser	AGT Ser	GAG Glu 245	GAC Asp	TAC Tyr	CTA Leu	CAC His	ATG Met 250	GTG Val	1130
CAC His	AGG Arg	CTA Leu	AGT Ser 255	AGT Ser	GAC Asp	GAT Asp	GGA Gly	GAT Asp 260	TCT Ser	TCA Ser	ACA Thr	ATG Met	AGG Arg 265	AAT Asn	GCT Ala	1178 _. ·
GCA Ala	TCT Ser	TTT Phe 270	CCC Pro	TTG Leu	AGA Arg	TCT Ser	CCA Pro 275	CAG Gln	CCA Pro	GTA Val	TGC Cys	TCC Ser 280	CCT Pro	GCT Ala	GGA Gly	1226
AGT Ser	GAA Glu 285	Gly	ACT Thr	CCT Pro	AAA Lys	GGC Gly 290	TCA Ser	AGA Arg	CCA Pro	CCT Pro	TTA Leu 295	lle	CTA Leu	CAA Gln	TCT Ser	1274
CAG Gln 300	Ser	CTA Leu	CCT Pro	TGT Cys	TCA Ser 305	TCA Ser	CCT Pro	CGA Arg	GAT Asp	GTT Val 310	CCA Pro	CCA Pro	GAT Asp	ATC Ile	TTG Leu 315	1322
CTA Leu	GAT Asp	TCT Ser	CCA	GAA Glu 320	Arg	AAA Lys	CAA Gln	AAG Lys	AAG Lys 325	CAG Gln	AAG Lys	AAA Lys	ATG Met	AAA Lys 330	TTA Leu	1370
GGC	AAG Lys	GAT Asp	GAA Glu 335	ı Lys	GAG Glu	CAG Gln	AGT Ser	GAG Glu 340	ı Lys	GCG Ala	GCA	ATG Met	TAT Tyr 345	Asp	ATA Ile	1418
ATT	AGT Ser	TCT Ser 350	Pro	TCC Ser	AAG Lys	GAC Asp	TCT Ser 355	Thr	AAA Lys	CTT Leu	ACA Thr	Leu 360	IAFG	CTT Leu	TCT Ser	1466
CG1 Arg	GTA Val 365	Arg	TC Sei	T TC# r Ser	GAC Asp	ATG Met 370	Asp	CAC Glr	G CAA	GAG Glu	GA1 Asp 375	Met	ATT Ile	TCT Ser	GGT	1514
Va (38)	l Gli)	ı Ası	n Se	r Ası	7 Vai 38:	Ser 5	GLU	ı Ası	n Asp	390	Pro	o Pne	a Asr	, vai	G CAG Gln 395	1562
TA	C CC/	A GG/	A CA y Gl	G AC n Thi 40	r Se	A AA/	AC/	CCC Pr	C AT1 0 Ile 40	e ini	r CC	A CA/ o Gil	A GAT	ATA 1 I le 410	AAC Asn)	1610
CG Ar	C CC. g Pr	A CT	A AA u As 41	n Al	T GC a Al	T CA	A TG	T TT s Le 42	u Se	G CAI	G CA n Gl	A GA	A CA/ u Gli 42!	1 I I I	A GCA r Ala	1658
TT Ph	C CT e Le	T CC u Pr 43	o Al	A AA a As	T CA n Gl	A ĞT n Va	l Pr	T GT o Va 5	T TT	A CA u Gl	A CA n Gl	G AA n As 44	n in	T TC. r Se	A GTT r Val	1706
GC Al	T GC a Al 44	a Ly	A CA	A CC n Pr	C CA	G AC n Th 45	r As	T AG	T CA er Hi	C AA s Ly	A AC s Th 45	L Le	G GT u Va	G CA į Gl	G CCT n Pro	1754
GG Gl 46	y Th	A GO	C AT	TAGA Le Gl	IG GT LU Va 46	ıl Se	A GC	A GA a Gl	IG CT .u Le	G CC su Pr 47	O L)	G GA	C AA	G AC	C TAAGA	1804
T#	GGGT	GGGG	GT	GGTT(CTCA(TTG CTCG	CTTC	TGCC	CCG C CTG T	CACTO CGAC CACT	AAGC GAGA CCTG1	:C T(TAC/ STCC/ TGCC/	AGGTO	TCA	CTGGGCC TCCATCC CTGCCTC CCATGCAT	1984 2044

GGCTTTCCAC TYGAGTCTCC CTGGTGGAGC CCAGCTCCTG ACATACCTGG TAAAAGTTCT 2164 CAAGAGAAGA ACATGGAGGA GGAATGTGGA TAACAACCCT GGCTGCCTGT GTGTTCCAAG 2224 CTAGGAAGAT GTAATGTCCC CACAAACGGG GTAAATGGCT TGCCTGCGTC ACAGCTGTCT 2284 CAAGCCCAGG CCCTGGGCGC CAGCCCAAGC CCAAGGACTA GGTCCAGAGC CACACAGCGC 2344 CAGGCCACAT CCGCCTCACC TGGGACCCTT TGTGGGGTAC AGTCTCCGGC CCCACCCAGA 2404 CCTCCTGAAG GAGAGACCCC ATGGCAAGGA CTCAGCCACC TGCAGTTTCA TAAGCCCCCA 2464 GTGGGTTCCT AGGCATGAAG ACCACCGGTT AGAGGCTGAA CTGGCAGGAA CCTGTCTCCA 2524 GCCCCTTCTC ACCCCAGCCG GGCCCTGCCT CAGAGGCAGC ACCCAGGACG TGGCCATGAC 2584 CCGTGGACTC CACTCAATCC CTCTTCTCCA GGAGCCATGC AAAGTGTCAG CCAGCCAGGC 2644 CCCTGGAAGG CAGTCATCAC CTCTTAAGGC ATTGTGGGTG TCGGTCCTGC AACTGCCAGG 2704 TGCAGCACAC GACCCGTGTC CGGTGTTCGA TAGCAGGGAG CCATGACCTG GCAACGATTC 2764 CACGCTCAAA GGGGCACCCG GGGGGCCCTG GGTCGGGGCG GATCAGCTTT CCCTGGGCAC 2824 ATCTGCCTCA TTCCAGATCT CCAGGGCTCA TGTCTGTGAC AGGGAGGGAA GGCTCTGCCC 2884 TGGCCTTCCG TCAGCTCTGC CAGTGCAGGC TGGGCAGCCT GGGCTTTAGA GCTGGCTTCT 2944 GCCCACACTT TCTCCGTGAA AGGAAAACAA CTATGAGTCT GCCAAACGCA TCTCAGATGC 3004 GTTTTAAAAA ATTCTGGTCC CCGCTCTCTG TCCCATCATC CGCCTCGGGG ACTTCCTCTC 3064 TCCGTGGTTC TCACCCCATA CTCTGTCACT GCCACATTTT CACCTGGGCC TGGCCTTTGT 3124 CTCCACCTGA AACTCCTGAA AATCTTGAAA TGGATTTCTA GGTCACTGGG GACTCCGGCA 3184 GCACATTCGG CTTCAGAATA AAGGGCGCCC GCGGTCCCCC AGCACCTCCC CAAGCCACAC 3244 CCCTAGCTIC CCTCCCTATC CCTGCAGCCT GAGGGTCCCT TCAGCCACCC TTAAGTCCCC 3304 ACCTGGGCTC CTGCCCCGCC CCTGGCTAGC AGCGCCTTCT CCACCGGGGC CCCCTCTGCT 3364 CACAGAGCCC CCTCACCTCC CTGGGGATGA GGGGCCAGGC CATGACCCTG AAAGTCTAGC 3424 CCTGGCCTTG ACCTCCCAGG AGCGCCCTCC CCGCCCTCTC CCGGCCCCGG CCCCGTCCTC 3484 TGCTGCTGGC CTCTGGGTCG TGCCCCGCAG ACTGAGCTGC GCTTGGGGGT CCTGGCGGCC 3544 TGGGCCGTCC.CGCACCGAAC CCAGGCGGTC GGAGCCCGGC GGGAAGGCGC GAGGTCCTTC 3604 TGGGGGCTCC TCCGACGCCT GAGGGCGCTG CTTCCCCGCG GCCGCCCCGG GTTTCTGCGG 3664 AGCCGGGGCC TCCGCTCTCG GGTGACCCGG TGAGACCCCC GGGGAGGCCG CTGGGGAGGC 3724 GCGGGCTCTG CTCCCGGGTC CCAAACGCAC TGGCTGCCCC TCAGGAGGGA CGGCGACCTC CACCCACGGC GCTGGCGCCC GCACGGCCGC TCCTCCCGCT CCCGCAGCCT GGACGCCTCC 3784 3844 CGAGGCCGCC CCGCCGGGCC CCACGCGCGG CCCCATCCGC AGGCCAGGAC TGCCTTCCCG 3904 GAGCTGGCGG CCCCCAGCCT GGAGGAGCCG GCCCCAGACG CCCTCCCAGC CCTCCCCAGC 3964 CCACTCTGGC CCCGCAGCCC CCGCCTGGTC CGAGTGCGGG TCTCTGGCCC CGGCCTTTCC 4024 4047 CGGGGAAGGA AAGCAAAAAG CTT

(2) INFORMATION FOR SEQ ID NO: 148:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 474 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear.
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

 Met
 Asn
 Gly
 Asp
 Met
 Pro
 His
 Val
 Pro
 Ile
 Thr
 Thr
 Leu
 Ala
 Gln
 Leu
 Pro
 Leu
 Pro
 Ser
 Pro
 Leu
 Pro
 Pro
 Asn
 Ala
 Arg
 Ile
 Ala
 Ala
 Ile
 Ala
 Ala
 Ile
 Ala
 Ala
 Ile
 Ala
 Ala
 Ile
 Ala
 Ile
 Ala
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ile</th

Pro Ile Val Ala Gly Gly Leu Arg Asn Ile His Asp Asn Lys Val Ser 215 Gly Pro Leu Ser Gly Asn Ser Ala Asn His His Ala Asp Asn Pro Arg 210 230 235 His Gly Ser Ser Glu Asp Tyr Leu His Met Val His Arg Leu Ser Ser 245 250 255 Asp Asp Gly Asp Ser Ser Thr Met Arg Asn Ala Ala Ser Phe Pro Leu 260 265 270 Arg Ser Pro Gln Pro Val Cys Ser Pro Ala Gly Ser Glu Gly Thr Pro 275 280 285 Lys Gly Ser Arg Pro Pro Leu Ile Leu Gin Ser Gin Ser Leu Pro Cys 290 295 300 Ser Ser Pro Arg Asp Val Pro Pro Asp Ile Leu Leu Asp Ser Pro Glu 305 310 315 320 Arg Lys Gln Lys Lys Gln Lys Lys Met Lys Leu Gly Lys Asp Glu Lys 325 330 335 Glu Gln Ser Glu Lys Ala Ala Met Tyr Asp 1le Ile Ser Ser Pro Ser 340 345 350 Lys Asp Ser Thr Lys Leu Thr Leu Arg Leu Ser Arg Val Arg Ser Ser 355 360 365 Asp Met Asp Gln Gln Glu Asp Met Ile Ser Gly Val Glu Asn Ser Asn
370 380 375 370 Val Ser Glu Asn Asp Ile Pro Phe Asn Val Gln Tyr Pro Gly Gln Thr 385 390 395 400 Ser Lys Thr Pro Ile Thr Pro Gln Asp Ile Asn Arg Pro Leu Asn Ala 405 410 415 Ala Gin Cys Leu Ser Gin Gin Glu Gin Thr Ala Phe Leu Pro Ala Asn 425 420 Gln Val Pro Val Leu Gln Gln Asn Thr Ser Val Ala Ala Lys Gln Pro
435 440 445 Gln Thr Asn Ser His Lys Thr Leu Val Gln Pro Gly Thr Gly Ile Glu 450 455 460 Val Ser Ala Glu Leu Pro Lys Asp Lys Thr 470 465

(2) INFORMATION FOR SEQ ID NO: 149:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2998 base pairs
 - (8) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (ix) FEATURE:
 - (A) NAME/KEY: Coding Sequence
 - (B) LOCATION: 26...799
 - (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

	(x	i) S	EQUE	NCE	DESC	RIPT	ION:	SEQ	ID	NU: I	47:					
AAGC	1111	TG A	ATTC	GGCA	C GA	GAT.	GCT Ala 1	ACA Thr	CAG Gln	GCT Ala	ATA 1le 5	TTT Phe	GAA Glu	ATA Ile	CTG Leu	52
GAG Glu 10	AAA Lys	TCC Ser	TGG Trp	TTG Leu	CCC Pro 15	CAG Gln	AAT Asn	TGT Cys	ACA Thr	CTG Leu 20	GTT Val	GAT Asp	ATG Met	AAG Lys	ATT Ile 25	100
GAA Glu	TTT Phe	GGT Gly	GTT Val	GAT Asp 30	GTA Val	ACC Thr	ACC Thr	AAA Lys	GAA Glu 35	ATT Ile	GTT Val	CTT Leu	GCŤ Ala	GAT Asp 40	GTT Val	148
ATT Ile	GAC Asp	AAT Asn	GAT Asp 45	TCC Ser	TGG Trp	AGA Arg	CTC Leu	TGG Trp 50	CCA Pro	TCA Ser	GGA Gly	GAT Asp	CGA Arg 55	AGC Ser	CAA Gln	196
CAG Gln	AAA Lys	GAC Asp 60	AAA Lys	CAG Gln	TCT Ser	TAT Tyr	CGG Arg 65	GAC Asp	CTC Leu	AAA Lys	GAA Glu	GTA Val 70	ACT Thr	CCT Pro	GAA Glu	244
GGG	стс	CAA	ATG	GTA	AAG	AAA	AAC	: TTT	GAG	TGG	GTT	GCA	GAC	A GA	GTA	292

— 84 —

Gly Leu Gln Met Val Lys Lys Asn Phe Glu Trp Val Ala Glu Arg Val 75 80 85	
GAG TTG CTT TTG AAA TCA GAA AGT CAG TGC AGG GTT GTA GTG TTG ATG Glu Leu Leu Lys Ser Glu Ser Gln Cys Arg Val Val Leu Met 90 95 100	340
GGC TCT ACT TCT GAT CTT GGT CAC TGT GAA AAA ATC AAG AAG GCC TGT Gly Ser Thr Ser Asp Leu Gly His Cys Glu Lys Ile Lys Lys Ala Cys 110 115 120	388
GGA AAT TIT GGC ATT CCA TGT GAA CTT CGA GTA ACA TCT GCG CAT AAA Gly Asn Phe Gly Ile Pro Cys Glu Leu Arg Val Thr Ser Ala His Lys 125 130 135	436
GGA CCA GAT GAA ACT CTG AGG ATT AAA GCT GAG TAT GAA GGG GAT GGC Gly Pro Asp Glu Thr Leu Arg Ile Lys Ala Glu Tyr Glu Gly Asp Gly 140 145 150	484
ATT CCT ACT GTA TTT GTG GCA GTG GCA GGC AGA AGT AAT GGT TTG GGA Ile Pro Thr Val Phe Val Ala Val Ala Gly Arg Ser Asn Gly Leu Gly 155 160 165	532
CCA GTG ATG TCT GGG AAC ACT GCA TAT CCA GTT ATC AGC TGT CCC Pro Val Met Ser Gly Asn Thr Ala Tyr Pro Val Ile Ser Cys Pro Pro 170 175 180 185	580
CTC ACA CCA GAC TGG GGA GTT CAG GAT GTG TGG TCT TCT CTT CGA CTA Leu Thr Pro Asp Trp Gly Val Gln Asp Val Trp Ser Ser Leu Arg Leu 190 195 200	628
CCC AGT GGT CTT GGC TGT TCA ACC GTA CTT TCT CCA GAA GGA TCA GCT Pro Ser Gly Leu Gly Cys Ser Thr Val Leu Ser Pro Glu Gly Ser Ala 205 210	676
CAA TTT GCT GCT CAG ATA TTT GGG TTA AGC AAC CAT TTG GTA TGG AGC Gln Phe Ala Ala Gln Ile Phe Gly Leu Ser Asn His Leu Val Trp Ser 220 225 230	724
AAA CTG CGA GCA AGC ATT TTG AAC ACA TGG ATT TCC TTG AAG CAG GCT Lys Leu Arg Ala Ser Ile Leu Asn Thr Trp Ile Ser Leu Lys Gln Ala 235 240 245	772
GAC AAG AAA ATC AGA GAA TGT AAT ITA TAAGAAAGAA TGCCATTGAA TTTTTTA Asp Lys Lys Ile Arg Glu Cys Asn Leu 250 255	826
GGGGAAAAAC TACAAATTTC TAATTTAGCT GAAGGAAAAT CAAGCAAGAT GAAAAGGTAA	886 946
TITTAAATTA GAGAACACAA ATAAAATGTA TTAGTGAATA AATGGTAAGG GTAGGCCTCCC	1006
	1066 1126
CCAGGGGAGT CCGAGAAGAG CTGCCATTGG CTGACAGGGC ATTTTCAGGC TCTGTCATTG GTCAGGGAGC ACACCCCAGC CTGAAGAGTG ATGCCATTGG CCAGGGAGTG GTTTTGTCAT	1186
ACCOUNTAGE TOTAL CTCC AACGAAAAGA TEIGGIAAIG AAGGCCIGIG GCCAGGAAAA	1246 <u>.</u> 1306
TAGACAGGGC AGCAACTTCT GGGCCTCCAG GCCCTCTTCC CACCATAGCA ATGTGGGCAA	1366
TOTACCATCE CCAATCECCE ACACCCEGGG GCTGCCCTTC CCAATGICII ICIIGAIAGC	1720
CAAGTTGGGC TGGGAGCAGC TCACTGCTCC TCTAGCCAGG AGGGTTTCTC AGCTCCTGCAGCA	1546
AND A COCCO A CACACCATT CTCCAACAGC AGCAGCTGCT TGTGCATCAC CTIQATCTTQ	,000
TTITCTICCA GGAACTIGAG CTIGATGGCC ACATCICGCC GCAGCITCTC ATACTTGCC	1726
ADDRESS AND TRACETORY TARGETORY CERTIFICAL CALALICAN COLUMN	
TCATACTGTT TCACAGTCAT GAGCGTGTCT TCCATGGTCT TGGTGACCAA TGTGTTGATG	1906
TOTAL CATTOTACCO ANATTOTIC TGAAGCICIG GGGAGIIGIG GCIGAGGICA	.,,
GCAAAGGCAT CACCCAGTGC ATGCTGGGTC TGCAGCAGGC TGTAGAGGTG GGCTGCAATC	2086
TGCCATGGAC GGCATTGTCC CAGATATAGC CGTTGGTACA AAGCGGGGAT CTGACGAGC	2266
AAACGGAAAT GACAGCAAGA AGTTCAAAGG TGACAGCCGA AGTGCAGGCG TCCCCTCTAC AGTGATCCAC ATCCGGAAGC TCCCCATCGA CGTCACGGAG GGGGAAGTCA TCTCCCTGGC	
ABIBATOCAC ATOCOCAMOS TODAMOS OF	

GCTGCCCTTT GGGAAGGTCA CCAACCTCCT GATGCTGAAG GGGAAAAACC AGGCCTTCAT 2446 CGAGATGAAC ACGGAGGAGG CTGCCAATAC CATGGTGAAC TACTACACCT CGGTGACCCC 2506 TGTGCTGCGC GGCCAGCCCA TCTACATCCA GTTCTCCAAC CACAAGGAGC TGAAGACCGA 2566 CAGCTCTCCC AACCAGGCGC GGGCCCAGGC GGCCCTGCAG GCGGTGAACT CGGTCCAGTC 2626 GGGGAACCTG GCCTTGGCTG CCTCGGCGGC GGCCGTGGAT GCAGGGATGG CGATGGCCGG 2686 GCAGAGCCCC GTGCTCAGGA TCATCGTGGA GAACCTCTTC TACCCTGTGA CCCTGGATGT 2746 GCTGCACCAG ATTTTCTCCA AGTTCGGCAC AGTGTTGAAG ATCATCACCT TCACCAAGAA 2806 CAACCAGTIC CAGGCCCTGC TGCAGTATGC GGACCCCGTG AGCGCCCAGC ACGCCAAGCT 2866 GTCGCTGGAC GGGCAGAACA TCTACAACGC CTGCTGCACG CTGCGCATCG ACTITTCCAA 2926 GCTCACCAGC CTCAACGTCA AGTACAACAA TGACAAGAGC CGTGACTACC TCGTGCCGAA 2986 2998 TTCTTTGGAT CC

(2) INFORMATION FOR SEQ ID NO:150:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 258 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

Ala Thr Gln Ala Ile Phe Glu Ile Leu Glu Lys Ser Trp Leu Pro Gln 10 Asn Cys Thr Leu Val Asp Met Lys Ile Glu Phe Gly Val Asp Val Thr 20 25 30 Thr Lys Glu Ile Val Leu Ala Asp Val Ile Asp Asn Asp Ser Trp Arg 35 40 45 Leu Trp Pro Ser Gly Asp Arg Ser Gln Gln Lys Asp Lys Gln Ser Tyr 50 55 60 Arg Asp Leu Lys Glu Val Thr Pro Glu Gly Leu Gln Met Val Lys Lys 65 70 75 80 Asn Phe Glu Trp Val Ala Glu Arg Val Glu Leu Leu Leu Lys Ser Glu 85 90 95 Ser Gln Cys Arg Val Val Leu Met Gly Ser Thr Ser Asp Leu Gly 100 105 110 His Cys Glu Lys Ile Lys Lys Ala Cys Gly Asn Phe Gly Ile Pro Cys 115 120 125 Glu Leu Arg Val Thr Ser Ala His Lys Gly Pro Asp Glu Thr Leu Arg 130 135 140 Ile Lys Ala Glu Tyr Glu Gly Asp Gly Ile Pro Thr Val Phe Val Ala 145 150 155 160 Val Ala Gly Arg Ser Asn Gly Leu Gly Pro Val Met Ser Gly Asn Thr 165 170 175 Ala Tyr Pro Val Ile Ser Cys Pro Pro Leu Thr Pro Asp Trp Gly Val 180 185 190 Gln Asp Val Trp Ser Ser Leu Arg Leu Pro Ser Gly Leu Gly Cys Ser 195 200 205 Thr Val Leu Ser Pro Glu Gly Ser Ala Gln Phe Ala Ala Gln Ile Phe 210 215 220 Gly Leu Ser Asn His Leu Val Trp Ser Lys Leu Arg Ala Ser Ile Leu 225 230 240 Asn Thr Trp Ile Ser Leu Lys Gln Ala Asp Lys Lys Ile Arg Glu Cys Asn Leu

(2) INFORMATION FOR SEQ ID NO:151:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1038 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

Ile Gin Arg Phe Gly Thr Ser Gly His Ile Met Asn Leu Gin Ala Gin
10 15

Pro Lys Ala Gln Asn Lys Arg Lys Arg Cys Leu Phe Gly Gly Gln Glu 20 25 30 Pro Ala Pro Lys Glu Gln Pro Pro Pro Leu Gln Pro Pro Gln Gln Ser 35 40 45 Ile Arg Val Lys Glu Glu Gln Tyr Leu Gly His Glu Gly Pro Gly Gly
50 55 60 Ala Val Ser Thr Ser Gln Pro Val Glu Leu Pro Pro Pro Ser Ser Leu 65 70 75 80 Ala Leu Leu Asn Ser Val Val Tyr Gly Pro Glu Arg Thr Ser Ala Ala 85 90 95 Met Leu Ser Gln Gln Val Ala Ser Val Lys Trp Pro Asn Ser Val Met 100 105 110 Ala Pro Gly Arg Gly Pro Glu Arg Gly Gly Gly Gly Val Ser Asp 115 120 125 Ser Ser Trp Gln Gln Gln Pro Gly Gln Pro Pro Pro His Ser Thr Trp 130 135 140 Asn Cys His Ser Leu Ser Leu Tyr Ser Ala Thr Lys Gly Ser Pro His 145 150 155 160 Pro Gly Val Gly Val Pro Thr Tyr Tyr Asn His Pro Glu Ala Leu Lys 165 170 175 Arg Glu Lys Ala Gly Gly Pro Gln Leu Asp Arg Tyr Val Arg Pro Met 180 185 190 Met Pro Gln Lys Val Gln Leu Glu Val Gly Arg Pro Gln Ala Pro Leu 195 200 205 Asn Ser Phe His Ala Ala Lys Lys Pro Pro Asn Gln Ser Leu Pro Leu 210 215 220 Gln Pro Phe Gln Leu Ala Phe Gly His Gln Val Asn Arg Gln Val Phe 225 230 235 240 Arg Gln Gly Pro Pro Pro Asn Pro Val Ala Ala Phe Pro Pro Gln 245 250 255 Ala Ala Leu Pro Gln Met Pro Leu Phe Glu Asn Phe Tyr Ser Met Pro 275 280 285 Gln Gln Pro Ser Gln Gln Pro Gln Asp Phe Gly Leu Gln Pro Ala Gly 290 295 300 Pro Leu Gly Gln Ser His Leu Ala His His Ser Met Ala Pro Tyr Pro 305 310 320 Phe Pro Pro Asn Pro Asp Met Asn Pro Glu Leu Arg Lys Ala Leu Leu 325 330 335 Gln Asp Ser Ala Pro Gln Pro Ala Leu Pro Gln Val Gln Ile Pro Phe 340 345 350 Pro Arg Arg Ser Arg Arg Leu Ser Lys Glu Gly Ile Leu Pro Pro Ser 355 360 365 Ala Leu Asp Gly Ala Gly Thr Gln Pro Gly Gln Glu Ala Thr Gly Asn 370 375 380 Leu Phe Leu His His Trp Pro Leu Gln Gln Pro Pro Pro Gly Ser Leu 385 390 395 400 Gly Gln Pro His Pro Glu Ala Leu Gly Phe Pro Leu Glu Leu Arg Glu
415 410 405 Ser Gln Leu Leu Pro Asp Gly Glu Arg Leu Ala Pro Asn Gly Arg Glu 420 425 430 Arg Glu Ala Pro Ala Met Gly Ser Glu Glu Gly Met Arg Ala Val Ser 435 440 445 Thr Gly Asp Cys Gly Gln Val Leu Arg Gly Gly Val Ile Gln Ser Thr 450 455 460 Arg Arg Arg Arg Ala Ser Gln Glu Ala Asn Leu Leu Thr Leu Ala 465 470 475 480 Gln Lys Ala Val Glu Leu Ala Ser Leu Gln Asn Ala Lys Asp Gly Ser 485 490 495 Gly Ser Glu Glu Lys Arg Lys Ser Val Leu Ala Ser Thr Thr Lys Cys 500 505 510 Gly Val Glu Phe Ser Glu Pro Ser Leu Ala Thr Lys Arg Ala Arg Glu 515 520 525 Asp Ser Gly Met Val Pro Leu Ile 1le Pro Val Ser Val Pro Val Arg 530 535 Thr Val Asp Pro Thr Glu Ala Ala Gln Ala Gly Gly Leu Asp Glu Asp 545 550 555 560 Gly Lys Gly Leu Glu Gln Asn Pro Ala Glu His Lys Pro Ser Val Ile 565 570 575 Val Thr Arg Arg Arg Ser Thr Arg Ile Pro Gly Thr Asp Ala Gln Ala 585 580 Gln Ala Glu Asp Met Asn Val Lys Leu Glu Gly Glu Pro Ser Val Arg

600 Lys Pro Lys Gln Arg Pro Arg Pro Glu Pro Leu Ile Ile Pro Thr Lys 610 615 620 Ala Gly Thr Phe 1le Ala Pro Pro Val Tyr Ser Asn 1le Thr Pro Tyr 625 630 635 Gln Ser His Leu Arg Ser Pro Val Arg Leu Ala Asp His Pro Ser Glu 645 650 655 Arg Ser Phe Glu Leu Pro Pro Tyr Thr Pro Pro Pro Ile Leu Ser Pro 660 665. Val Arg Glu Gly Ser Gly Leu Tyr Phe Asn Ala Ile Ile Ser Thr Ser 675 680 685 660 Thr Ile Pro Ala Pro Pro Pro Ile Thr Pro Lys Ser Ala His Arg Thr 690 695 700 Leu Leu Arg Thr Asn Ser Ala Glu Val Thr Pro Pro Val Leu Ser Val 705 710 715 720 Met Gly Glu Ala Thr Pro Val Ser Ile Glu Pro Arg Ile Asn Val Gly
725 730 735 Ser Arg Phe Gln Ala Glu Ile Pro Leu Met Arg Asp Arg Ala Leu Ala 740 745 750 Ala Ala Asp Pro His Lys Ala Asp Leu Val Trp Gln Pro Trp Glu Asp 755 760 765 Leu Glu Ser Ser Arg Glu Lys Gln Arg Gln Val Glu Asp Leu Leu Thr 770 775 780 Ala Ala Cys Ser Ser Ile Phe Pro Gly Ala Gly Thr Asn Gln Glu Leu 785 790 795 800 Ala Leu His Cys Leu His Glu Ser Arg Gly Asp Ile Leu Glu Thr Leu 805 810 815 Asn Lys Leu Leu Lys Lys Pro Leu Arg Pro His Asn His Pro Leu 820 825 830 Ala Thr Tyr His Tyr Thr Gly Ser Asp Gln Trp Lys Met Ala Glu Arg 835 840 845 Lys Leu Phe Asn Lys Gly Ile Ala Ile Tyr Lys Lys Asp Phe Phe Leu 850 855 860 Val Gln Lys Leu Ite Gln Thr Lys Thr Val Ala Gln Cys Val Glu Phe 875 880 Tyr Tyr Thr Tyr Lys Lys Gln Val Lys Ile Gly Arg Asn Gly Thr Leu 885 890 895 Thr Phe Gly Asp Val Asp Thr Ser Asp Glu Lys Ser Ala Gln Glu Glu 900 905 910 Val Glu Val Asp Ile Lys Thr Ser Gln Lys Phe Pro Arg Val Pro Leu 915 920 925 Pro Arg Arg Glu Ser Pro Ser Glu Glu Arg Leu Glu Pro Lys Arg Glu 930 935 940 Val Lys Glu Pro Arg Lys Glu Gly Glu Glu Glu Val Pro Glu Ile Gln 945 950 950 960 Glu Lys Glu Glu Glu Glu Gly Arg Glu Arg Ser Arg Arg Ala Ala 965 970 975 Ala Val Lys Ata Thr Gln Thr Leu Gln Ala Asn Glu Ser Ata Ser Asp 980 985 990 Ile Leu Ile Leu Arg Ser His Glu Ser Asn Ala Pro Gly Ser Ala Gly 995 1000 1005 Gly Gln Ala Ser Glu Lys Pro Arg Glu Gly Thr Gly Lys Ser Arg Arg 1010 1015 1020 Ala Leu Pro Phe Ser Glu Lys Lys Lys Lys Gln Lys Ala 1030 1025

(2) INFORMATION FOR SEQ ID NO:152:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 849 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

Ile Arg His Glu Val Ser Phe Leu Trp Asn Thr Glu Ala Ala Cys Pro
10 15
Ile Gln Thr Thr Thr Asp Thr Asp Gln Ala Cys Ser Ile Arg Asp Pro
20 25 30
Asn Ser Gly Phe Val Phe Asn Leu Asn Pro Leu Asn Ser Ser Gln Gly
40 45

Tyr Asn Val Ser Gly Ile Gly Lys Ile Phe Met Phe Asn Val Cys Gly 60 Thr Met Pro Val Cys Gly Thr Ile Leu Gly Lys Pro Ala Ser Gly Cys
65 70 75 80 Glu Ala Glu Thr Gln Thr Glu Glu Leu Lys Asn Trp Lys Pro Ala Arg 85 90 95 Pro Val Gly Ile Glu Lys Ser Leu Gln Leu Ser Thr Glu Gly Phe Ile 100 105 110 Thr Leu Thr Tyr Lys Gly Pro Leu Ser Ala Lys Gly Thr Ala Asp Ala 115 120 125 Phe Ile Val Arg Phe Val Cys Asn Asp Asp Val Tyr Ser Gly Pro Leu 130 135 140 Lys Phe Leu His Gln Asp Ile Asp Ser Gly Gln Gly Ile Arg Asn Thr 145 150 155 160 Tyr Phe Glu Phe Glu Thr Ala Leu Ala Cys Val Pro Ser Pro Val Asp 165 170 175 Cys Gln Val Thr Asp Leu Ala Gly Asn Glu Tyr Asp Leu Thr Gly Leu 180 185 190 Ser Thr Val Arg Lys Pro Trp Thr Ala Val Asp Thr Ser Val Asp Gly
195 200 205 Arg Lys Arg Thr Phe Tyr Leu Ser Val Cys Asn Pro Leu Pro Tyr Ile, 210 220 Pro Gly Cys Gin Gly Ser Ala Val Gly Ser Cys Leu Val Ser Glu Gly 225 230 235 240 Asn Ser Trp Asn Leu Gly Val Val Gln Met Ser Pro Gln Ala Ala Ala 245 250 255 245 Asn Gly Ser Leu Ser Ile Met Tyr Val Asn Gly Asp Lys Cys Gly Asn 260 265 Gln Arg Phe Ser Thr Arg Ile Thr Phe Glu Cys Ala Gln Ile Ser Gly 275 280 285 Ser Pro Ala Phe Gln Leu Gln Asp Gly Cys Glu Tyr Val Phe Ile Trp 290 295 300 Arg Thr Val Glu Ala Cys Pro Val Val Arg Val Glu Gly Asp Asn Cys 305 310 315 Glu Val Lys Asp Pro Arg His Gly Asn Leu Tyr Asp Leu Lys Pro Leu 325 330 335 Gly Leu Asn Asp Thr Ile Val Ser Ala Gly Glu Tyr Thr Tyr Tyr Phe 340 345 350 Arg Val Cys Gly Lys Leu Ser Ser Asp Val Cys Pro Thr Ser Asp Lys 355 360 365 Ser Lys Val Val Ser Ser Cys Gln Glu Lys Arg Glu Pro Gln Gly Phe 370 380 His Lys Val Ala Gly Leu Leu Thr Gln Lys Leu Thr Tyr Glu Asn Gly 385 390 395 400 Leu Leu Lys Met Asn Phe Thr Gly Gly Asp Thr Cys His Lys Val Tyr 405 410 415 Gln Arg Ser Thr Ala Ile Phe Phe Tyr Cys Asp Arg Gly Thr Gln Arg 420 425 430 Pro Val Phe Leu Lys Glu Thr Ser Asp Cys Ser Tyr Leu Phe Glu Trp
440
445 440 435 Arg Thr Gln Tyr Ala Cys Pro Pro Phe Asp Leu Thr Glu Cys Ser Phe 450 455 460 Lys Asp Gly Ala Gly Asn Ser Phe Asp Leu Ser Ser Leu Ser Arg Tyr 465 470 475 480 Ser Asp Asn Trp Glu Ala Ile Thr Gly Thr Gly Asp Pro Glu His Tyr 485 490 495 Leu Ile Asn Val Cys Lys Ser Leu Ala Pro Gln Ala Gly Thr Glu Pro 500 505 510 Cys Pro Pro Glu Ala Ala Ala Cys Leu Leu Gly Gly Ser Lys Pro Val 515 520 525 Asn Leu Gly Arg Val Arg Asp Gly Pro Gln Trp Arg Asp Gly Ile Ile 530 535 540 Val Leu Lys Tyr Val Asp Gly Asp Leu Cys Pro Asp Gly Ile Arg Lys 545 550 555 560 Lys Ser Thr Thr Ile Arg Phe Thr Cys Ser Glu Ser Gln Val Asn Ser 575 Arg Pro Met Phe Ile Ser Ala Val Glu Asp Cys Glu Tyr Thr Phe Ala 580 585 590 Trp Pro Thr Ala Thr Ala Cys Pro Met Lys Ser Asn Glu His Asp Asp 595 600 605 Cys Gln Val Thr Asn Pro Ser Thr Gly His Leu Phe Asp Leu Ser Ser 615 Leu Ser Gly Arg Ala Gly Phe Thr Ala Ala Tyr Ser Glu Lys Gly Leu

635 630 Val Tyr Met Ser Ile Cys Gly Glu Asn Glu Asn Cys Pro Pro Gly Val 645 650 655 645 Gly Ala Cys Phe Gly Gln Thr Arg Ile Ser Val Gly Lys Ala Asn Lys 665 660 Arg Leu'Arg Tyr Vai Asp Gin Val Leu Gin Leu Val Tyr Lys Asp Gly 685 680 675 Ser Pro Cys Pro Ser Lys Ser Gly Leu Ser Tyr Lys Ser Val Ile Ser 690 695 700 Phe Val Cys Arg Pro Glu Ala Gly Pro Thr Asn Arg Pro Met Leu Ile 705 710 720 710 Ser Leu Asp Lys Gln Thr Cys Thr Leu Phe Phe Ser Trp His Thr Pro 725 730 735 Leu Ala Cys Glu Gin Ala Thr Glu Cys Ser Val Arg Asn Gly Ser Ser 740 745 750 Ile Val Asp Leu Ser Pro Leu Ile His Arg Thr Gly Gly Tyr Glu Ala 755 760 765 Tyr Asp Glu Ser Glu Asp Asp Ala Ser Asp Thr Asn Pro Asp Phe Tyr 770 780 Ile Asn Ile Cys Gln Pro Leu Asn Pro Met His Gly Val Pro Cys Pro 785 790 795 800 Ala Gly Ala Ala Val Cys Lys Val Pro Ile Asp Gly Pro Pro Ile Asp 805 810 815 Ile Gly Arg Val Ala Gly Pro Pro Ile Leu Asn Pro Ile Ala Asn Glu 820 825 830 Ile Tyr Leu Asn Phe Glu Ser Ser Thr Pro Cys Gln Glu Phe Ser Cys

(2) INFORMATION FOR SEQ ID NO: 153:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 852 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: Linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

Met Ala Arg Leu Ser Arg Pro Glu Arg Pro Asp Leu Val Phe Glu Glu
1 10 15 Glu Asp Leu Pro Tyr Glu Glu Glu Ile Met Arg Asn Gln Phe Ser Val 20 25 30 Lys Cys Trp Leu His Tyr Ile Glu Phe Lys Gln Gly Ala Pro Lys Pro 35 40 45 Arg Leu Asn Gln Leu Tyr Glu Arg Ala Leu Lys Leu Leu Pro Cys Ser 50 55 60 Tyr Lys Leu Trp Tyr Arg Tyr Leu Lys Ala Arg Arg Ala Gln Val Lys 65 70 75 80 His Arg Cys Val Thr Asp Pro Ala Tyr Glu Asp Val Asn Asn Cys His 85 90 95 Glu Arg Ala Phe Val Phe Met His Lys Met Pro Arg Leu Trp Leu Asp 100 105 110 Tyr Cys Gln Phe Leu Met Asp Gln Gly Arg Val Thr His Thr Arg Arg 115 120 125 Thr Phe Asp Arg Ala Leu Arg Ala Leu Pro Ile Thr Gln His Ser Arg 130 135 140 Ile Trp Pro Leu Tyr Leu Arg Phe Leu Arg Ser His Pro Leu Pro Glu 145 150 160 Thr Ala Val Arg Gly Tyr Arg Arg Phe Leu Lys Leu Ser Pro Glu Ser 165 170 175 Ala Glu Glu Tyr 1le Glu Tyr Leu Lys Ser Ser Asp Arg Leu Asp Glu 180 185 190 Ala Ala Gin Arg Leu Ala Thr Val Val Asn Asp Giu Arg Phe Val Ser 195 200 205 Lys Ala Gly Lys Ser Asn Tyr Gln Leu Trp His Glu Leu Cys Asp Leu 210 215 220 Ile Ser Gln Asn Pro Asp Lys Val Gln Ser Leu Asn Val Asp Ala Ile 225 230 235 240 225

Ile Arg Gly Gly Leu Thr Arg Phe Thr Asp Gln Leu Gly Lys Leu Trp
250
255 Cys Ser Leu Ala Asp Tyr Tyr Ile Arg Ser Gly His Phe Glu Lys Ala 265 260 Arg Asp Val Tyr Glu Glu Ala Ite Arg Thr Val Met Thr Val Arg Asp 280 Phe Thr Gln Val Phe Asp Ser Tyr Ala Gln Phe Glu Glu Ser Met Ile 290 295 300 Ala Ala Lys Met Glu Thr Ala Ser Glu Leu Gly Arg Glu Glu Glu Asp 305 310 315 Asp Val Asp Leu Glu Leu Arg Leu Ala Arg Phe Glu Gln Leu Ile Ser 325 330 335 Arg Arg Pro Leu Leu Leu Asn Ser Val Leu Leu Arg Gln Asn Pro His 340 345 350 His Val His Glu Trp His Lys Arg Val Ala Leu His Gln Gly Arg Pro 355 360 365 Arg Glu Ile Ile Asn Thr Tyr Thr Glu Ala Val Gln Thr Val Asp Pro 370 375 380 Phe Lys Ata Thr Gly Lys Pro His Thr Leu Trp Val Ala Phe Ala Lys 385 390 400 Phe Tyr Glu Asp Asn Gly Gln Leu Asp Asp Ala Arg Val Ile Leu Glu 405 410 415 Lys Ala Thr Lys Val Asn Phe Lys Gin Val Asp Asp Leu Ala Ser Val 420 425 430 Trp Cys Gln Cys Gly Glu Leu Glu Leu Arg His Glu Asn Tyr Asp Glu 435 440 445 Ala Leu Arg Leu Leu Arg Lys Ala Thr Ala Leu Pro Ala Arg Arg Ata 450 455 460 Glu Tyr Phe Asp Gly Ser Glu Pro Val Gln Asn Arg Val Tyr Lys Ser 465 470 475 480 Leu Lys Val Trp Ser Met Leu Ala Asp Leu Glu Glu Ser Leu Gly Thr 485 490 495 Phe Gln Ser Thr Lys Ala Val Tyr Asp Arg Ile Leu Asp Leu Arg Ile 500 505 510 Ala Thr Pro Gln Ile Val Ile Asn Tyr Ala Met Phe Leu Glu Glu His 515 520 525 Lys Tyr Phe Glu Glu Ser Phe Lys Ala Tyr Glu Arg Gly Ile Ser Leu 530 540 Phe Lys Trp Pro Asn Val Ser Asp 1le Trp Ser Thr Tyr Leu Thr Lys 545 550 555 560 Phe Ile Ala Arg Tyr Gly Gly Arg Lys Leu Glu Arg Ala Arg Asp Leu 565 570 575 Phe Glu Gln-Ala Leu Asp Gly Cys Pro Pro Lys Tyr Ala Lys Thr Leu 580 585 590 Tyr Leu Leu Tyr Ala Gln Leu Glu Glu Glu Trp Gly Leu Ala Arg His 595 600 605 Ala Met Ala Val Tyr Glu Arg Ala Thr Arg Ala Val Glu Pro Ala Gln 610 620 Gln Tyr Asp Met Phe Asn Ile Tyr Ile Lys Arg Ala Ala Glu Ile Tyr 625 630 635 Gly Val Thr His Thr Arg Gly Ile Tyr Gln Lys Ala Ile Glu Val Leu 645 650 655 Ser Asp Glu His Ala Arg Glu Met Cys Leu Arg Phe Ala Asp Met Glu 660 665 670 Cys Lys Leu Gly Glu Ile Asp Arg Ala Arg Ala Ile Tyr Ser Phe Cys 675 680 685 Ser Gln Ile Cys Asp Pro Arg Thr Thr Gly Ala Phe Trp Gln Thr Trp 690 695 700 Lys Asp Phe Glu Val Arg His Gly Asn Glu Asp Thr Ile Lys Glu Met 705 710 715 720 Leu Arg Ile Arg Arg Ser Val Gln Ala Thr Tyr Asn Thr Gln Val Asn 725 730 735 Phe Met Ala Ser Gln Met Leu Lys Val Ser Gly Ser Ala Thr Gly Thr 740 745 750 Val Ser Asp Leu Ala Pro Gly Gln Ser Gly Met Asp Asp Met Lys Leu 755 760 765 teu Glu Gln Arg Ala Glu Gln Leu Ala Ala Glu Ala Glu Arg Asp Gln 770 780 Pro Leu Arg Ala Gln Ser Lys Ile Leu Phe Val Arg Ser Asp Ala Ser 785 790 705 800 Arg Glu Glu Leu Ala Glu Leu Ala Gln Gln Val Asn Pro Glu Glu Ile 805 Gln Leu Gly Glu Asp Glu Asp Glu Met Asp Leu Glu Pro Asn 820 825 830 Glu Val Arg Leu Glu Gln Gln Ser Val Pro Ala Ala Val Phe Gly Ser

(2) INFORMATION FOR SEQ ID NO:154:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 693 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

Met Phe Ser Ala Leu Lys Lys Leu Val Gly Ser Asp Gln Ala Pro Gly 10 Arg Asp Lys Asn Ile Pro Ala Gly Leu Gln Ser Met Asn Gln Ala Leu 20 25 30 Gln Arg Arg Phe Ala Lys Gly Val Gln Tyr Asn Met Lys Ile Val Ile 35 40 45 Arg Gly Asp Arg Asn Thr Gly Lys Thr Ala Leu Trp His Arg Leu Gln
50 55 60 Gly Arg Pro Phe Val Glu Glu Tyr Ile Pro Thr Gln Glu Ile Gln Val Thr Ser Ile His Trp Ser Tyr Lys Thr Thr Asp Asp Ile Val Lys Val Glu Val Trp Asp Val Val Asp Lys Gly Lys Cys Lys Lys Arg Gly Asp 100 105 110 Gly Leu Lys Met Glu Asn Asp Pro Gln Glu Xaa Glu Ser Glu Met Ala 115 120 125 Leu Asp Ala Glu Phe Leu Asp Val Tyr Lys Asn Cys Asn Gly Val Val 130 135 140 Met Met Phe Asp Ile Thr Lys Gln Trp Thr Phe Asn Tyr Ile Leu Arg 145 150 155 160 Glu Leu Pro Lys Val Pro Thr His Val Pro Val Cys Val Leu Gly Asn 165 170 175 Tyr Arg Asp Met Gly Glu His Arg Val Ile Leu Pro Asp Asp Val Arg 180 185 190 Asp Phe Ile Asp Asn Leu Asp Arg Pro Pro Gly Ser Ser Tyr Phe Arg 195 200 205 Tyr Ala Glu Ser Ser Met Lys Asn Ser Phe Gly Leu Lys Tyr Leu His 210 215 220 Lys Phe Phe Asn Ile Pro Phe Leu Gln Leu Gln Arg Glu Thr Leu Leu 225 230 235 240 Arg Gln Leu Glu Thr Asn Gln Leu Asp Met Asp Ala Thr Leu Glu Glu 245 250 255 Leu Ser Val Gin Gin Glu Thr Glu Asp Gin Asn Tyr Gly Ile Phe Leu 260 265 270 Glu Met Met Glu Ala Arg Ser Arg Gly His Ala Ser Pro Leu Ala Ala 275 280 285 Asn Gly Gln Ser Pro Ser Pro Gly Ser Gln Ser Pro Val Leu Pro Ala 290 295 300 Pro Ala Val Ser Thr Gly Ser Ser Ser Pro Gly Thr Pro Gln Pro Ala 305 310 315 320 Pro Gln Leu Pro Ley Asn Ala Ala Pro Pro Ser Ser Val Pro Pro Val 325 330 335 Pro Pro Ser Glu Ala Leu Pro Pro Pro Ala Cys Pro Ser Ala Pro Ala 340 345 350 Pro Arg Arg Ser Ile Ile Ser Arg Leu Phe Gly Thr Ser Pro Ala Thr 355 360 365 Glu Ala Ala Pro Pro Pro Pro Glu Pro Val Pro Ala Ala Gln Gly Pro 370 375 380 Ala Thr Val Gln Ser Val Glu Asp Phe Val Pro Asp Asp Arg Leu Asp 385 390 395 400 Arg Ser Phe Leu Glu Asp Thr Thr Pro Ala Arg Asp Glu Lys Lys Val
405 410 415 Gly Ala Lys Ala Ala Gln Gln Asp Ser Asp Ser Asp Gly Glu Ala Leu 420 425 430 Gly Gly Asn Pro Met Val Ala Gly Phe Gln Asp Asp Val Asp Leu Glu 435 440 445 Asp Gin Pro Arg Gly Ser Pro Pro Leu Pro Ala Gly Pro Val Pro Ser 460 455

12 (fi : = [4 ľŲ Ę

Gin Asp Ile Thr Leu Ser Ser Glu Glu Glu Ala Glu Val Ala Ala Pro 470 Thr Lys Gly Pro Ala Pro Ala Pro Gln Gln Cys Ser Glu Pro Glu Thr 495 490 485 Lys Trp Ser Ser Ile Pro Ala Ser Lys Pro Arg Arg Gly Thr Ala Pro 500 505 510 Thr Arg Thr Ala Ala Pro Pro Trp Pro Gly Gly Val Ser Val Arg Thr 515 520 525 Gly Pro Glu Lys Arg Ser Ser Thr Arg Pro Pro Ala Glu Met Glu Pro 530 540 Gly Lys Gly Glu Gln Ala Ser Ser Ser Glu Ser Asp Pro Glu Gly Pro 545 550 555 560 Ile Ala Ala Gln Met Leu Ser Phe Val Met Asp Asp Pro Asp Phe Glu 565 570 575 Ser Glu Gly Ser Asp Thr Gln Arg Arg Ala Asp Asp Phe Pro Val Arg 580 585 590 Asp Asp Pro Ser Asp Val Thr Asp Glu Asp Glu Gly Pro Ala Glu Pro 595 600 605 Pro Pro Pro Lys Leu Pro Leu Pro Ala Phe Arg Leu Lys Asn Asp 610 620 Ser Asp Leu Phe Gly Leu Gly Leu Glu Glu Ala Gly Pro Lys Glu Ser 625 630 635 640 Ser Glu Glu Gly Lys Glu Gly Lys Thr Pro Ser Lys Glu Lys Lys
645 650 655 Lys Thr Lys Ser Phe Ser Arg Val Leu Leu Glu Arg Pro Arg Ala His 660 665 670 Arg Phe Ser Thr Arg Val Gly Tyr Gln Val Ser Val Pro Asn Ser Pro 680 675 Tyr Ser Glu Ser Tyr 690