

Introduction to Computer Vision Computer Vision Summer Semester 2023

Phone Cameras – Image Stitching

https://en.wikipedia.org/wiki/Image_stitching#/media/File:Rochester_NY.jpg

Google Street View

Picture: El bes

https://de.wikipedia.org/wiki/Datei:Google_Street_View_Vienna_02.JPG

Vision In space

https://en.wikipedia.org/wiki/Computer_vision#/media/File:Mars_Science_Laboratory,_2011-Present.jpg

Vision systems (JPL) used for several tasks

- Panorama stitching
- •3D terrain modeling
- Obstacle detection, position tracking
- •For more, read "Computer Vision on Mars" by Matthies et al.

https://de.wikipedia.org/wiki/Mars_Science_Laboratory#/media/Datei:Pia20168-figa_sol-1176ml05329_scale.jpg

5

Picture: Maxibu https://de.wikipedia.org/wiki/Erweiterte_Realit%C3%A4t#/media/Datei:AR_Virtual_Art.png

MS HoloLens, Oculus, Magic Leap, ARCore / ARKit

Picture: Oleg 2525 https://de.wikipedia.org/wiki/Virtuelle_Realit%C3%A4t#/media/Datei:Cyberith_Virtualizer.JPG

Technische Fakultät 20. April 2023

Sports

Picture: Maxxl²

https://en.wikipedia.org/wiki/Goal-line_technology#/media/File:Goalcontrol.svg

Industrial Robots - Automation

Picture: Siyuwj

https://en.wikipedia.org/wiki/Automotive_industry#/media/File:Geely_assembly_line_in_Beilun,_Ningbo.JPG

Medical Imaging

3D imaging MRI, CT

Image from the Medical Engineering lecture under CC BY 4.0 https://medium.com/codex/how-to-reveal-the-secrets-of-the-human-body-part-2-f1331f559eba

https://vgl.ict.usc.edu/Research/PresidentialPortrait/

https://vgl.ict.usc.edu/Research/PresidentialPortrait/

https://vgl.ict.usc.edu/Research/PresidentialPortrait/

https://vgl.ict.usc.edu/Research/PresidentialPortrait/

Specialised Hardware

Picture: Stefan Kühn
https://de.wikipedia.org/wiki/Laserscanning#/media/Datei:LKW_Maut_Deutschland_Messbruecke_Detail.jpg

Picture: Alexander Lucke
https://de.wikipedia.org/wiki/Industriekamera#/media/Datei:SVCam-ECO%C2%B2_Series_II.jpg

Specialised Hardware in Consumer Products FAU

https://de.wikipedia.org/wiki/Kinect#/media/Datei:Xbox-360-Kinect-Standalone.png

https://en.wikipedia.org/wiki/Computer_vision#/media/File:LiDAR_Scanner_and_Back_Camera_of_iPad_Pro_2020_-_3.jpg

Technische Fakultät 20. April 2023

Scene Understanding

Scene Understanding

Solved Problems in Computer Vision

https://de.wikipedia.org/wiki/Postanschrift#/media/Datei:Envelopes_001_ua0017.jpg

https://www.nist.gov/programs-projects/face-recognition-vendor-test-frvt

Technische Fakultät 20. April 2023 17

Self driving cars

The New Hork Times

In a Retreat, Uber Ends Its Self-Driving Car Experiment in San Francisco

A self-driving Uber car in a garage in San Francisco last week. Eric Risberg/Associated

By Christopher Mele

Dec. 21, 2016

The New Hork Times

The Costly Pursuit of Self-Driving Cars Continues On. And On. And On.

Many in Silicon Valley promised that self-driving cars would be a common sight by 2021. Now the industry is resetting expectations and settling in for years of more work.

Published May 24, 2021 Updated Sept. 15, 2021

Self driving cars

THE WALL STREET JOURNAL.

Subscribe Sign In

d U.S. Politics Economy Business Tech Markets Opinion Books & Arts Real Estate Life & Work WSJ. Magazine Sports Q

Waymo to Send Driverless Cars Through San Francisco

Alphabet's Waymo will begin giving fully autonomous rides to employees

Ad closed by Google

A driver prepared to take out a Jaguar I-Pace from a Waymo operations center in San Francisco last year.

PHOTO: PETER DASILVA/REUTERS

Technische Fakultät 20. April 2023 19

Military use

https://www.rheinmetall-defence.com

Technische Fakultät 20. April 2023 20

Bias in Computer Vision Systems

✓ BROWS

Study finds gender and skin-type bias in commercial artificial-intelligence systems

Examination of facial-analysis software shows error rate of 0.8 percent for light-skinned men, 34.7 percent for dark-skinned women.

Larry Hardesty | MIT News Office February 11, 2018

FACE RECOGNITION VENDOR TEST 2002

Evaluation Report

March 2003

P. Jonathon Phillips^{1,2}, Patrick Grother², Ross J. Micheals², Duane M. Blackburn³, Elham Tabassi², Mike Bone⁴

¹DARPA 3701 North Fairfax Dr. Arlington, VA 22203

Not a new issue!

The results from FRVT 2002 and in the literature provide evidence that automatic recognition tasks are easier for males than for females. The underlying reason that males are easier to recognize is not known. Additional experiments are required to provide an explanation. Possible explanations range from facial hair on men to the general observation that women are more likely to have greater day-to-day variation in their appearance than men. However, follow-up experiments are required to determine the explanation for the bias.

Technische Fakultät 20. April 2023 21

- 6,424 registered (vs. 5,165 in 2019)
- **5,865 valid submissions** (vs. 4,538 in 2019)
- 1,467 accepted (25.0%)
- 335 orals (5.7%)

Accepted last 10 years

https://yassouali.github.io/ml-blog/cvpr2020/

=	Google Scholar							
•	Top pub	Top publications						
	Categori	es ▼		English ▼				
		Publication	<u>h5-index</u>	<u>h5-median</u>				
	1.	Nature	414	607				
	2.	The New England Journal of Medicine	410	704				
	3.	Science	<u>391</u>	564				
	4.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	<u>356</u>	583				
	5.	The Lancet	<u>345</u>	600				
	6.	Advanced Materials	<u>294</u>	406				
	7.	Cell	<u>288</u>	459				
	8.	Nature Communications	<u>287</u>	389				
	9.	Chemical Reviews	<u>270</u>	434				
	10.	International Conference on Learning Representations	<u>253</u>	470				

https://scholar.google.com/citations?view_op=top_venues&hl=en

Technische Fakultät 20. April 2023 24


```
tracking
supervised adaptation
         large scale space
```

https://github.com/hoya012/CVPR-2021-Paper-Statistics/blob/main/2021_cvpr/keyword_cloud.png

What this lecture does (not) cover

- This is not a deep learning lecture
- This is not a machine learning lecture

- The focus on the lecture lies in the basics of Computer Vision
- We will hint to learning based methods
- Practical Excercises are an essential parts of the experience

Technische Fakultät 20. April 2023 26

Organization - Schedule

Might be outdated: up to date schedule on studon!

Week	Date	Lecture Topic	Presenter	Exercise Release
1	20-Apr	Course Organisation and Introduction to Computer Vision	BE/TW	Intro
2	27-Apr	Image and Light	TW	
3	4-May	Thinking in Frequency	TW	
4	11-May	Edges and Corners	AM	Ex 1 Feature Detection
5	18-May	— bank holiday —		
6	25-May	Features / Cameras / Optics / Perspective	AM	
7	1-Jun	Camera Calibration	AM	Ex 2 Panorama
8	8-Jun	— bank holiday —		
9	15-Jun	Epipolar Geometry	AA	Ex 3 Structure from Motion
10	22-Jun	Dense Motion Estimation	BE	
11	29-Jun	Stereo Vision	BE	Ex 4 Optical Flow
12	6-Jul	Structured Light	BE	
13	13-Jul	Surface Reconstruction	TW	Ex 5 Stereo Vision
14	20-Jul	Demo / Guest Lecture	TBD	