1 Метод прогонки

$$\begin{pmatrix} c_0 & -b_0 & 0 & 0 & \dots & \dots & 0 \\ -a_1 & c_1 & -b_1 & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & -a_i & c_i & -b_i & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & -a_{n-1} & c_{n-1} & -b_{n-1} \\ 0 & \dots & \dots & 0 & 0 & -a_n & c_n \end{pmatrix} \cdot \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_i \\ \vdots \\ u_{n-1} \\ u_n \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \\ \vdots \\ f_{n-1} \\ f_n \end{pmatrix}$$

Определим прогоночные коэффициенты α_i , β_i , чтобы выполнялась система:

$$\begin{pmatrix} 1 & -\alpha_1 & 0 & 0 & \dots & \dots & 0 \\ 0 & 1 & -\alpha_2 & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 1 & -\alpha_i & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & 0 & 1 & -\alpha_n \\ 0 & \dots & \dots & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_{i-1} \\ \vdots \\ u_{n-1} \\ u_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_i \\ \vdots \\ \beta_n \\ \beta_{n+1} \end{pmatrix} \Leftrightarrow \boxed{u_{i-1} = \alpha_i u_i + \beta_i}$$

Установим *рекуррентные формулы* для прогоночных коэффициентов. Из нулевого уравнения получаем:

$$c_0 u_0 - b_0 u_1 = f_0 \Rightarrow u_0 = \frac{b_0}{c_0} u_1 + \frac{f_0}{c_0} \Rightarrow \alpha_1 = \frac{b_0}{c_0}, \ \beta_1 = \frac{f_0}{c_0}$$

Далее применим метод математической индукции. Предположим, что установлены формулы для номера i, т. е. определено равенство $u_{i-1} = \alpha_i u_i + \beta_i$. Чтобы определить формулы для α_{i+1} и β_{i+1} рассмотрим вместе с этим равенством i-ое уравнение исходной системы. Умножим первое уравнение на a_i и сложим со вторым:

$$\begin{cases} u_{i-1} = \alpha_i u_i + \beta_i \\ -a_i u_{i-1} + c_i u_i - b_i u_{i+1} = f_i \end{cases} \Rightarrow u_i = \frac{b_i}{c_i - a_i \alpha_i} u_{i+1} + \frac{f_i + a_i \beta_i}{c_i - a_i \alpha_i},$$

откуда получаем

$$\alpha_{i+1} = \frac{b_i}{c_i - a_i \alpha_i}, \quad \beta_{i+1} = \frac{f_i + a_i \beta_i}{c_i - a_i \alpha_i}$$

И наконец, обработаем последнее уравнение системы:

$$\begin{cases} u_{n-1} = \alpha_n u_n + \beta_n \\ -a_n u_{n-1} + c_n u_n = f_n \end{cases} \Rightarrow u_n = \frac{f_n + a_n \beta_n}{c_n - a_n \alpha_n} \Rightarrow \beta_{n+1} = \frac{f_n + a_n \beta_n}{c_n - a_n \alpha_n}$$

Окончательно получаем правило метода левой прогонки:

Правило I.1: метод левой прогонки

- Прямой ход прогонки: $\alpha_1=\frac{b_0}{c_0},\,\alpha_{i+1}=\frac{b_i}{c_i-a_i\alpha_i},\,i=1\dots n-1,\,\beta_1=\frac{f_0}{c_0},\,\beta_{i+1}=\frac{f_0}{c_i-a_i\alpha_i},\,i=1\dots n.$
- Обратный ход прогонки: $u_n = \beta_{n+1}, \ u_{i-1} = \alpha_i u_i + \beta_i, \ i = n, n-1 \dots 1.$
- Число арифметических действий равно O(n) (в общем методе Γ aycca $O(n^3)$).

2 Аппроксимация (интерполирование) сплайнами

Рассмотрим сетку на отрезке $Grid_h[a,b]$ (не обязательно равномерную).

Определение І.1: Сплайн

Сплайном называется функция, которая вместе с несколькими производными непрерывна на всем заданном отрезке [a,b], а на каждом частичном отрезке $[x_{i-1},x_i]$ в отдельности является некоторым алгебраическим многочленом.

Мы в качестве примера рассмотрим интерполирование сеточной функции кубическим сплайном $S_3(x) \in C^2[a,b]$. По определению, $S_3(x) = A_i + B_i(x - x_{i-1}) + C_i(x - x_{i-1})^2 + D_i(x - x_{i-1})^3$, $i = 1, 2 \dots n$. Для однозначного определения коэффициентов A_i , B_i , C_i , D_i требуется 4n уравнений (т. к. число частичных отрезков равно n). Условие совпадения сплайна с сеточной функцией в узлах сетки даёт нам n+1 уравнение вида $S_3(x_i) = u_i$, $i = 0, 1 \dots n$. Далее, из непрерывности сплайна и двух его производных во *внутренних* узлах сетки получаем ещё 3(n-1) уравнений вида $S_3(x_{i-0}) = S_3(x_{i+0})$, $S_3'(x_{i-0}) = S_3'(x_{i+0})$, $S_3''(x_{i-0}) = S_3''(x_{i+0})$, $i = 1, 2 \dots n-1$. Всего у нас 4n-2 уравнения. Для замыкания системы не хватает ещё двух уравнений. Примем дополнительными условиями $S_3''(x_0) = S_3''(x_n) = 0$ (эти условия называются естественными).

Покажем однозначную разрешимость полученной задачи. Из определения кубического сплайна делаем вывод, что $S_3''(x)$ является непрерывной кусочно-линейной функцией и, значит, может быть записана так:

$$S_3''(x) = k_{i-1} \frac{x_i - x}{h_i} + k_i \frac{x - x_{i-1}}{h_i}, \ x \in [x_{i-1}, x_i], \ k_i = S_3''(x_i), \ h_i = x_i - x_{i-1}.$$

В результате интегрирования получаем (p_i, q_i — константы интегрирования):

$$S_3(x) = k_{i-1} \frac{(x_i - x)^3}{6h_i} + k_i \frac{(x - x_{i-1})^3}{6h_i} + p_i \frac{x_i - x}{h_i} + q_i \frac{x - x_{i-1}}{h_i}, \ x \in [x_{i-1}, x_i].$$

Подставим в формулу узлы сетки x_{i-1} и x_i и учтем условие интерполирования:

$$u_{i-1} = k_{i-1} \frac{h_i^2}{6} + p_i, \ u_i = k_i \frac{h_i^2}{6} + q_i \ \Rightarrow p_i = u_{i-1} - k_{i-1} \frac{h_i^2}{6}, \ q_i = u_i - k_i \frac{h_i^2}{6}.$$

$$S_3(x) = \frac{x_i - x}{h_i} u_{i-1} + \frac{x - x_{i-1}}{h_i} u_i + k_{i-1} \frac{(x_i - x)^3 - h_i^2(x_i - x)}{6h_i} + k_i \frac{(x - x_{i-1})^3 - h_i^2(x - x_{i-1})}{6h_i}, \ x \in [x_{i-1}, x_i], \ i = 1, 2 \dots n.$$

Вычислим первую производную на частичных отрезках сетки:

$$S_3'(x) = \frac{u_i - u_{i-1}}{h_i} + k_{i-1} \frac{h_i^2 - 3(x_i - x)^2}{6h_i} + k_i \frac{3(x - x_{i-1})^2 - h_i^2}{6h_i}, \ x \in [x_{i-1}, x_i].$$

$$\hat{S}_3'(x) = \frac{u_{i+1} - u_i}{h_{i+1}} + k_i \frac{h_{i+1}^2 - 3(x_{i+1} - x)^2}{6h_{i+1}} + k_{i+1} \frac{3(x - x_i)^2 - h_{i+1}^2}{6h_{i+1}}, \ x \in [x_i, x_{i+1}].$$

Условие непрерывности первой производной во внутренних узлах $S_3'(x_i) = \hat{S}_3'(x_i)$ даёт нам (n-1) уравнение для определения (n+1) коэффициента k_i :

$$\frac{u_i - u_{i-1}}{h_i} + k_{i-1} \frac{h_i}{6} + k_i \frac{h_i}{3} = \frac{u_{i+1} - u_i}{h_{i+1}} - k_i \frac{h_{i+1}}{3} - k_{i+1} \frac{h_{i+1}}{6}.$$

$$k_{i-1} \frac{h_i}{6} + k_i \frac{h_i + h_{i+1}}{3} + k_{i+1} \frac{h_{i+1}}{6} = \frac{u_{i+1} - u_i}{h_{i+1}} - \frac{u_i - u_{i-1}}{h_i}, \ i = 1, 2 \dots n - 1.$$

Учитывая естественное краевое условие $k_0 = k_n = 0$, получаем

$$\begin{pmatrix} \frac{h_1+h_2}{3} & \frac{h_2}{6} & 0 & 0 & \dots & \dots & 0 \\ \frac{h_2}{6} & \frac{h_2+h_3}{3} & \frac{h_3}{6} & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \frac{h_i}{6} & \frac{h_i+h_{i+1}}{3} & \frac{h_{i+1}}{6} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & \frac{h_{n-2}}{6} & \frac{h_{n-2}+h_{n-1}}{3} & \frac{h_{n-1}}{6} \\ 0 & \dots & \dots & 0 & 0 & \frac{h_{n-1}}{6} & \frac{h_{n-1}+h_n}{3} \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_i \\ k_i \\ k_{n-2} \\ k_{n-2} \\ k_{n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{u_2-u_1}{h_2} - \frac{u_1-u_0}{h_1} \\ \frac{u_3-u_2}{h_3} - \frac{u_2-u_1}{h_2} \\ \vdots \\ \frac{u_{n-1}-u_{i-2}}{h_{n-1}} - \frac{u_{i-2}-u_{i-3}}{h_{n-2}} \\ \frac{u_n-u_{n-1}}{h_n} - \frac{u_{n-1}-u_{n-2}}{h_{n-1}} \end{pmatrix}$$

```
/* Кубический сплайн. Результаты работы программы:
     _____
           norma | kappa |
        5
             0.000447
        10
              2.57e-05
                          0.0574
       20
             1.59e-06
                         0.0619
       40
             9.92e-08
                          0.0624
              6.19e-09
                          0.0625
       80
       160
              3.87e-10
                         0.0625
10
              2.42e-11
       320
                         0.0625
11
             1.55e-12 | 0.0641|
       640
12
      1280
              1.34e-13 | 0.0865|
      2560
               2.87e-13
                         2.14|*/
14
15
    #include <iostream>
16
    #include <math.h>
    #include <iomanip>
18
    #include <fstream>
19
    using namespace std;
2.0
    const int N=2561;
2.1
2.2
    double v(double x){return sin(x);}
23
24
    int main(){
25
    cout.setf(ios::left);
26
    ofstream fout;
27
    fout.open("spline.out");
28
    int i, n;
29
    double x[N], a[N], b[N], c[N], k[N], S3[N], f[N], u[N], alpha[N], beta[N];
30
    double norm0 = 0., norm = 0., A = 0., B = M PI, h, kappa, tmp;
31
    fout<<" =
                                                       ="<<endl:
32
    fout<<" | n | norma
                            | kappa |"<<endl;
33
    fout<<" -----"<<endl:
    for (n=5; n< N; n=2*n){
35
    h = (B - A)/n;
37
38
    for(i=0; i \le n; i++)
39
    x[i] = A + i*h; // Массив узлов
40
    \mathbf{u}[\mathbf{i}] = \mathbf{v}(\mathbf{x}[\mathbf{i}]); // Массив значений сеточной функции
41
42
    for(i=1; i < n; i++){
43
    f[i] = (u[i-1] - 2.*u[i] + u[i+1])/h; // Правый столбец
44
    a[i] = -h/6.; c[i] = h*2./3; b[i] = -h/6.;
45
```

```
alpha[2] = b[1]/c[1]; beta[2] = f[1]/c[1]; // Прогоночные коэффициенты
47
48
    for(i=2; i<n; i++){
49
     tmp = c[i] - a[i]*alpha[i];
50
     alpha[i+1] = b[i]/tmp;
51
     beta[i+1] = (f[i] + a[i]*beta[i])/tmp;
53
    k[0] = 0; k[n] = 0; // Естественные краевые условия
55
    k[n-1] = beta[n]; // Решение линейной системы
    for(i=n-1; i>1; i--)k[i-1] = alpha[i]*k[i] + beta[i];
57
58
    for (i=1; i \le n; i++){// Вычисление сплайна во внутренних точках отрезков
59
     tmp = x[i-1] + h/2.;
     S3[i] = ((x[i]-tmp)*u[i-1]+(tmp-x[i-1])*u[i])/h + k[i-1]*(pow((x[i]-tmp),3.)//
61
     -h*h*(x[i]-tmp))/(6*h) + k[i]*(pow((tmp-x[i-1]),3.) - h*h*(tmp-x[i-1]))/(6*h);
62
63
    norm = fabs(S3[1] - v(x[0]+h/2.)); // Оценка равномерной нормы
    for (i=2; i \le n; i++)
     tmp = x[i] - h/2.;
     if(fabs(S3[i] - v(tmp)) > norm) norm = fabs(S3[i] - v(tmp));
67
68
    if(n==5)fout<<"|"<<setw(6)<<n<<"|"<<setw(13)<<setprecision(3)<<norm<<"|"<<///>
69
    setw(10)<<"-"<<"|"<<endl;
    if(n>5){
     kappa = norm / norm0; // Изменение нормы с измельчением сетки
     fout<<"|"<<setw(6)<<n<<"|"<<setw(13)<<setprecision(3)<<norm<<"|"<<///
     setw(10)<<kappa<<"|"<<endl:
74
75
    norm0 = norm;
76
77
    return 0; }
78
```

Листинг I.1. Аппроксимация функции $\sin(x)$ на отрезке $[0;\pi]$ кубическим сплайном

Упражнение № I.1

Написать программу вычисления кубического сплайна функции $\sin(x)$ на отрезке $[0;\pi]$ с использованием неравномерной сетки. В качестве узлов сетки выбрать нули приведенного полинома Чебышева. Исследовать изменение равномерной нормы ошибки интерполяции с уменьшением нормы сетки.

3 Краевая задача ОДУ второго порядка

Определение I.2: Уравнение $u^{(d)} = f(x, u(x), u'(x)...u^{(d-1)}(x))$: задача Коши и краевая задача на отрезке [a, b]

- Задача Коши заключается в определении решения ОДУ при условии, что в некоторой точке $x_0 \in [a,b]$ заданы значения функции u и её младших производных: $u(x_0) = u_0$, $u'(x_0) = u_1 \dots u^{(d-1)}(x_0) = u_{d-1}$. Эти дополнительные условия также называются начальными значениями.
- Краевая задача это задача определения решения ОДУ при условии, что дополнительные условия заданы в двух и более точках отрезка $x \in [a, b]$.

Теорема Коши утверждает существование и единственность задачи Коши при условии, что функция $f(x,u'\dots u^{(d-1)})$ является достаточно «хорошей» (например, если f удовлетворяет условию Липшица по аргументам $u, u'\dots u^{(d-1)})$ и для довольно широкого диапазона начальных значений $u_0, u_1\dots u_{d-1}$. Для приближенного решения задачи Коши разработаны высокоэффективные вычислительные методы (например, методы Рунге-Кутта, и др.). Эти методы доступны в стандартных вычислительных пакетах, типа Octave, Matlab и др. Теория и практика решения краевых задач являются значительно более сложными, и зачастую уравнения, «хорошие» для задачи Коши, не являются такими для краевых задач. В данном примере, несмотря на то, что уравнение является линейным, однородным, с постоянными коэффициентами, решения нет:

$$\begin{cases} u''(x) = -u(x), & x \in (0, \pi) \\ u(0) = 0 \\ u(\pi) = -1 \end{cases} \Leftrightarrow \begin{cases} u(x) = C_1 \cos(x) + C_2 \sin(x) \\ u(0) = 0 \\ u(\pi) = -1 \end{cases} \Leftrightarrow C_1 = 0 \\ C_1 = 1 \Rightarrow \emptyset.$$

Далее рассмотрим метод сеток в применении к решению краевой задачи для ОДУ:

$$u''(x) + p(x)u'(x) + q(x)u(x) = g(x), x \in (a, b),$$
(I.1)

$$\lambda_a u(x) + \mu_a u'(x)|_{x=a} = \psi_a, \qquad \lambda_b u(x) + \mu_b u'(x)|_{x=b} = \psi_b.$$
 (I.2)

Решение начинаем с построения сетки $\operatorname{Grid}_h[a,b], h=(b-a)/n$ (для простоты — равномерной). Далее вычисляем проекции функций на сетку: $p_i\equiv [p]_i\equiv p(x_i),$ $q_i\equiv [q]_i\equiv q(x_i),$ $g_i\equiv [g]_i\equiv g(x_i),$ $i=0,1\dots n$. Приближенным решением задачи является числовая последовательность u_i , которая во всех внутренних узлах удовлетворяет системе линейных уравнений:

$$\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + p_i \frac{u_{i+1} - u_{i-1}}{2h} + q_i u_i = g_i, \Leftrightarrow i = 1, 2 \dots n - 1 \quad (I.3)$$

$$-\left(\frac{1}{h^2} - \frac{p_i}{2h}\right) u_{i-1} + \left(\frac{2}{h^2} - q_i\right) u_i - \left(\frac{1}{h^2} + \frac{p_i}{2h}\right) u_{i+1} = -g_i.$$

Рассмотрим различные случаи граничных условий.

Случай первый: $\lambda_a \neq 0$, $\lambda_b \neq 0$, $\mu_a = \mu_b = 0$ (задача Дирихле). С помощью граничных условий преобразуем первое и последнее уравнения в системе (I.3):

$$x_0 = a \Rightarrow u_0 = \psi_a/\lambda_a, \qquad x_n = b \Rightarrow u_n = \psi_b/\lambda_b;$$

$$\begin{split} i &= 1: \quad \frac{u_2 - 2u_1 + \psi_a/\lambda_a}{h^2} + p_1 \frac{u_2 - \psi_a/\lambda_a}{2h} + q_1 u_1 = g_1 \\ &\Rightarrow \left(\frac{2}{h^2} - q_1\right) u_1 - \left(\frac{1}{h^2} + \frac{p_1}{2h}\right) u_2 = \left(\frac{1}{h^2} - \frac{p_1}{2h}\right) \frac{\psi_a}{\lambda_a} - g_1; \\ i &\in [2, n-2]: \quad -\left(\frac{1}{h^2} - \frac{p_i}{2h}\right) u_{i-1} + \left(\frac{2}{h^2} - q_i\right) u_i - \left(\frac{1}{h^2} + \frac{p_i}{2h}\right) u_{i+1} = \underbrace{-g_i}; \\ i &= n-1: \quad \frac{\psi_b/\lambda_b - 2u_{n-1} + u_{n-2}}{h^2} + p_{n-1} \frac{\psi_b/\lambda_b - u_{n-2}}{2h} + q_{n-1}u_{n-1} = g_{n-1} \\ &\Rightarrow -\left(\underbrace{\frac{1}{h^2} - \frac{p_{n-1}}{2h}}_{a_{n-1}}\right) u_{n-2} + \left(\underbrace{\frac{2}{h^2} - q_{n-1}}_{c_{n-1}}\right) u_{n-1} = \underbrace{\frac{\psi_b}{\lambda_b}}_{f_{n-1}} \left(\frac{1}{h^2} + \frac{p_{n-1}}{2h}\right) - g_{n-1}. \end{split}$$

Матрица линейной системы является трехдиагональной матрицей pазмерности n-1, так что для ее решения можно применить метод прогонки:

$$\begin{pmatrix} c_1 & -b_1 & 0 & 0 & \dots & \dots & 0 \\ -a_2 & c_2 & -b_2 & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & -a_i & c_i & -b_i & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & -a_{n-2} & c_{n-2} & -b_{n-2} \\ 0 & \dots & \dots & 0 & 0 & -a_{n-1} & c_{n-1} \end{pmatrix} \cdot \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_i \\ \vdots \\ u_{n-2} \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_i \\ \vdots \\ f_{n-2} \\ f_{n-1} \end{pmatrix}$$

Случай второй: $\mu_a \neq 0$, $\mu_b = 0$, $\lambda_b \neq 0$ (смешанная задача). Чтобы вычислить порядок аппроксимации одного уравнения системы (I.3), надо вместо u_i подставить проекцию $[u]_i$ точного решения уравнения (I.1). Затем проекцию функции g_i заменить из уравнения (I.1):

$$\begin{split} \left| \frac{[u]_{i+1} - 2[u]_i + [u]_{i-1}}{h^2} + p_i \frac{[u]_{i+1} - [u]_{i-1}}{2h} + q_i [u]_i - g_i \right| = \\ &= \left| \frac{[u]_{i+1} - 2[u]_i + [u]_{i-1}}{h^2} - [u'']_i + p_i \left(\frac{[u]_{i+1} - [u]_{i-1}}{2h} - [u']_i \right) \right| \leqslant \\ &\leqslant \left| \frac{[u]_{i+1} - 2[u]_i + [u]_{i-1}}{h^2} - [u'']_i \right| + |p_i| \left| \frac{[u]_{i+1} - [u]_{i-1}}{2h} - [u']_i \right| = O(h^2) \end{split}$$

Левое краевое условие (I.2) можно аппроксимировать с помощью правой разностной производной ∂_+ : $\lambda_a u_0 + \mu_a \partial_+ u_0 = \psi_a$. При вычислении порядка аппроксимации заменим ψ_a из (I.2): $|\lambda_a[u]_0 + \mu_a \partial_+ [u]_0 - \psi_a| = |\mu_a| \cdot |\partial_+ [u]_i - [u']_i| = O(h)$. В итоге получаем: $\|(I.3)\|_{\infty} = \max\{O(h^2), O(h)\} = O(h)$. Таким образом, аппроксимация краевого условия с первым порядком *понизила* общий порядок аппроксимации всей расчетной схемы. Для сохранения общего второго порядка аппроксимации используем два различных метода.

Метод несимметричной разностной производной основан на построении формулы первой разностной производной на шаблоне валентности (2,0) (т. е. на шаблоне (i,i+1,i+2)) со вторым порядком аппроксимации.

$$\begin{cases} [u]_i = [u]_i \| \times C_0 \\ [u]_{i+1} = [u]_i + h[u']_i + \frac{h^2}{2}[u'']_i + O(h^3) \| \times C_1 \Rightarrow \begin{cases} [u]_i \| C_0 + C_1 + C_2 = 0 \\ [u]_{i+2} = [u]_i + 2h[u']_i + 2h^2[u'']_i + O(h^3) \| \times C_2 \end{cases} & \begin{cases} [u]_i \| C_0 + C_1 + C_2 = 0 \\ [u']_i \| C_1 h + 2C_2 h = 1 \Rightarrow \end{cases} \\ C_0 = \frac{-3}{2h}, \ C_1 = \frac{2}{h}, \ C_2 = \frac{-1}{2h} \Rightarrow \frac{-3u_i + 4u_{i+1} - u_{i+2}}{2h} & \text{Получили аппроксимацию левого граничного условия:} \\ \lambda_a u_0 + \mu_a \frac{-3u_0 + 4u_1 - u_2}{2h} = \psi_a \Leftrightarrow \left(-\frac{3\mu_a}{2h} + \lambda_a\right) u_0 + \frac{2\mu_a}{h} u_1 - \frac{\mu_a}{2h} u_2 = \psi_a. \end{cases}$$

Полученное уравнение нарушает трехдиагональную структуру матрицы. Для исправления возникшего недостатка рассмотрим это уравнение вместе с уравнением, которое записано для внутреннего узла с номером i=1. Исключим из уравнений u_2 :

$$\begin{cases} \left(-\frac{3\mu_{a}}{2h}+\lambda_{a}\right)u_{0}+\frac{2\mu_{a}}{h}u_{1}-\frac{\mu_{a}}{2h}u_{2}=\psi_{a} & \|\times-\left(\frac{1}{h}+\frac{p_{1}}{2}\right)\neq0 \\ -\left(\frac{1}{h^{2}}-\frac{p_{1}}{2h}\right)u_{0}+\left(\frac{2}{h^{2}}-q_{1}\right)u_{1}-\left(\frac{1}{h^{2}}+\frac{p_{1}}{2h}\right)u_{2}=-g_{1} & \|\times\frac{\mu_{a}}{2}\neq0 \end{cases} \Rightarrow \\ u_{0}\|-\left(-\frac{3\mu_{a}}{2h}+\lambda_{a}\right)\left(\frac{1}{h}+\frac{p_{1}}{2}\right)-\left(\frac{1}{h^{2}}-\frac{p_{1}}{2h}\right)\frac{\mu_{a}}{2}=\frac{\mu_{a}}{h^{2}}+\frac{\mu_{a}p_{1}-\lambda_{a}}{h}-\frac{\lambda_{a}p_{1}}{2}; \\ u_{1}\|-\frac{2\mu_{a}}{h}\left(\frac{1}{h}+\frac{p_{1}}{2}\right)+\left(\frac{2}{h^{2}}-q_{1}\right)\frac{\mu_{a}}{2}=-\frac{\mu_{a}}{h^{2}}-\frac{\mu_{a}p_{1}}{h}-\frac{\mu_{a}q_{1}}{2}. \end{cases}$$

Заметим, что в случае $(\frac{1}{h^2} + \frac{p_1}{2h}) = 0$ для восстановления трехдиагональной структуры матрицы достаточно переставить уравнения местами.

В итоге, получили систему линейных уравнений:

$$\underbrace{\left(\frac{\mu_{a}}{h^{2}} + \frac{\mu_{a}p_{1} - \lambda_{a}}{h} - \frac{\lambda_{a}p_{1}}{2}\right)}_{c_{0}} u_{0} - \underbrace{\left(\frac{\mu_{a}}{h^{2}} + \frac{\mu_{a}p_{1}}{h} + \frac{\mu_{a}q_{1}}{2}\right)}_{b_{0}} u_{1} = \underbrace{-\left(\frac{1}{h} + \frac{p_{1}}{2}\right)\psi_{a} - \frac{\mu_{a}}{2}g_{1}}_{f_{0}};$$

$$i \in [1, n - 2]: -\left(\underbrace{\frac{1}{h^{2}} - \frac{p_{i}}{2h}}_{a_{i}}\right)u_{i-1} + \underbrace{\left(\frac{2}{h^{2}} - q_{i}\right)}_{c_{i}} u_{i} - \underbrace{\left(\frac{1}{h^{2}} + \frac{p_{i}}{2h}\right)}_{b_{i}} u_{i+1} = \underbrace{-g_{i}}_{f_{i}};$$

$$i = n - 1: -\underbrace{\left(\frac{1}{h^{2}} - \frac{p_{n-1}}{2h}\right)}_{a_{n-1}} u_{n-2} + \underbrace{\left(\frac{2}{h^{2}} - q_{n-1}\right)}_{c_{n-1}} u_{n-1} = \underbrace{\frac{\psi_{b}}{\lambda_{b}} \left(\frac{1}{h^{2}} + \frac{p_{n-1}}{2h}\right) - g_{n-1}}_{f_{i}}.$$

Матрица линейной системы является трехдиагональной матрицей *размерности n*, так что для ее решения можно применить метод прогонки:

$$\begin{pmatrix} c_0 & -b_0 & 0 & 0 & \dots & \dots & 0 \\ -a_1 & c_1 & -b_1 & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & -a_i & c_i & -b_i & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & -a_{n-2} & c_{n-2} & -b_{n-2} \\ 0 & \dots & \dots & 0 & 0 & -a_{n-1} & c_{n-1} \end{pmatrix} \cdot \begin{pmatrix} u_0 \\ u_1 \\ \vdots \\ u_i \\ \vdots \\ u_{n-2} \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_i \\ \vdots \\ f_{n-2} \\ f_{n-1} \end{pmatrix}$$

Метод фиктивного узла использует дополнительный узел, не принадлежащий отрезку [a,b]: $x_{-1}=a-h$. Мы предполагаем, что дифференциальная модель также выполнена на интервале (a-h,b). Поэтому в узле a запишем разностный аналог уравнения (I.1) и краевое условие (I.2), используя центральную разностную производную второго порядка аппроксимации на симметричном шаблоне (i-1,i,i+1).

$$i=0 \Rightarrow \lambda_a u_0 + \mu_a \frac{u_1 - u_{-1}}{2h} = \psi_a \Leftrightarrow -\frac{\mu_a}{2h} u_{-1} + \lambda_a u_0 + \frac{\mu_a}{2h} u_1 = \psi_a.$$

Далее исключим из уравнений ϕ иктивное узловое значение u_{-1} .

$$\begin{cases} -\frac{\mu_{a}}{2h}u_{-1} + \lambda_{a}u_{0} + \frac{\mu_{a}}{2h}u_{1} = \psi_{a} & \| \times -\left(\frac{1}{h} - \frac{p_{0}}{2}\right) \neq 0 \\ -\left(\frac{1}{h^{2}} - \frac{p_{0}}{2h}\right)u_{-1} + \left(\frac{2}{h^{2}} - q_{0}\right)u_{0} - \left(\frac{1}{h^{2}} + \frac{p_{0}}{2h}\right)u_{1} = -g_{0} & \| \times \frac{\mu_{a}}{2} \neq 0 \end{cases} \Rightarrow \\ u_{0}\| - \lambda_{a}\left(\frac{1}{h} - \frac{p_{0}}{2}\right) + \left(\frac{2}{h^{2}} - q_{0}\right)\frac{\mu_{a}}{2} = \frac{\mu_{a}}{h^{2}} - \frac{\lambda_{a}}{h} + \frac{\lambda_{a}p_{0} - \mu_{a}q_{0}}{2}; \\ u_{1}\| - \frac{\mu_{a}}{2h}\left(\frac{1}{h} - \frac{p_{0}}{2}\right) - \left(\frac{1}{h^{2}} + \frac{p_{0}}{2h}\right)\frac{\mu_{a}}{2} = -\frac{\mu_{a}}{h^{2}}. \end{cases}$$

Если $(\frac{1}{h^2} - \frac{p_0}{2h}) = 0$, то элемент u_{-1} уже исключен. Итак, получаем систему:

$$\begin{split} i &= 0: \quad \left(\underbrace{\frac{\mu_a}{h^2} - \frac{\lambda_a}{h} + \frac{\lambda_a p_0 - \mu_a q_0}{2}}_{c_0}\right) u_0 - \underbrace{\frac{\mu_a}{h^2}}_{b_0} u_1 = \underbrace{-\left(\frac{1}{h} - \frac{p_0}{2}\right) \psi_a - \frac{\mu_a}{2} g_0}_{f_0}; \\ i &\in [1, n-2]: \quad -\left(\underbrace{\frac{1}{h^2} - \frac{p_i}{2h}}_{a_i}\right) u_{i-1} + \underbrace{\left(\frac{2}{h^2} - q_i\right)}_{c_i} u_i - \underbrace{\left(\frac{1}{h^2} + \frac{p_i}{2h}\right)}_{b_i} u_{i+1} = \underbrace{-g_i}_{f_i}; \\ i &= n-1: \quad -\left(\underbrace{\frac{1}{h^2} - \frac{p_{n-1}}{2h}}_{a_{n-1}}\right) u_{n-2} + \underbrace{\left(\frac{2}{h^2} - q_{n-1}\right)}_{c_{n-1}} u_{n-1} = \underbrace{\frac{\psi_b}{\lambda_b} \left(\frac{1}{h^2} + \frac{p_{n-1}}{2h}\right) - g_{n-1}}_{f_{n-1}}. \end{split}$$

Матрица линейной системы является трехдиагональной матрицей pазмерности n, так что для ее решения можно применить метод прогонки:

$$\begin{pmatrix} c_{0} & -b_{0} & 0 & 0 & \dots & \dots & 0 \\ -a_{1} & c_{1} & -b_{1} & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & -a_{i} & c_{i} & -b_{i} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & -a_{n-2} & c_{n-2} & -b_{n-2} \\ 0 & \dots & \dots & 0 & 0 & -a_{n-1} & c_{n-1} \end{pmatrix} \cdot \begin{pmatrix} u_{0} \\ u_{1} \\ \vdots \\ u_{i} \\ \vdots \\ u_{n-2} \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} f_{0} \\ f_{1} \\ \vdots \\ f_{i} \\ \vdots \\ f_{n-2} \\ f_{n-1} \end{pmatrix}$$

Случай третий: $\mu_a = 0, \, \mu_b \neq 0, \, \lambda_a \neq 0 \, ($ смешанная задача).

Для аппроксимации u'(b) со вторым порядком аппроксимации используем два различных метода. **Метод несимметричной разностной производной** основан на построении формулы первой разностной производной на шаблоне валентности (0,2) (т. е. на шаблоне (i-2,i-1,i)) со вторым порядком аппроксимации.

$$\begin{cases} [u]_{i-2} = [u]_i - 2h[u']_i + 2h^2[u'']_i + o(h^2) \| \times C_{-2} \\ [u]_{i-1} = [u]_i - h[u']_i + \frac{h^2}{2}[u'']_i + o(h^2) \| \times C_{-1} \Rightarrow \begin{cases} [u]_i \| C_{-2} + C_{-1} + C_0 = 0 \\ [u']_i \| - 2C_{-2}h - C_{-1}h = 1 \Rightarrow \\ [u']_i \| - 2C_{-2}h - C_{-1}h = 1 \end{cases} \\ C_{-2} = \frac{1}{2h}, \ C_{-1} = \frac{-2}{h}, \ C_0 = \frac{3}{2h} \Rightarrow \frac{u_{i-2} - 4u_{i-1} + 3u_i}{2h} \quad \text{T. е. правое граничное условие аппроксимируется так:} \\ \lambda_b u_n + \mu_b \frac{u_{n-2} - 4u_{n-1} + 3u_n}{2h} = \psi_b \Leftrightarrow \frac{\mu_b}{2h} u_{n-2} - \frac{2\mu_b}{h} u_{n-1} + \left(\frac{3\mu_b}{2h} + \lambda_b\right) u_n = \psi_b. \end{cases}$$

Рассмотрим это уравнение вместе с уравнением, которое записано для внутреннего узла x_{n-1} (т. е. для i=n-1). Исключим из уравнений u_{n-2} :

$$\begin{cases} \frac{\mu_b}{2h}u_{n-2} - \frac{2\mu_b}{h}u_{n-1} + \left(\frac{3\mu_b}{2h} + \lambda_b\right)u_n = \psi_b & \| \times \left(\frac{1}{h} - \frac{p_{n-1}}{2}\right) \neq 0 \\ -\left(\frac{1}{h^2} - \frac{p_{n-1}}{2h}\right)u_{n-2} + \left(\frac{2}{h^2} - q_{n-1}\right)u_{n-1} - \left(\frac{1}{h^2} + \frac{p_{n-1}}{2h}\right)u_n = -g_{n-1}\| \times \frac{\mu_b}{2} \neq 0 \end{cases} \Rightarrow u_{n-1}\| - \frac{2\mu_b}{h}\left(\frac{1}{h} - \frac{p_{n-1}}{2}\right) + \left(\frac{2}{h^2} - q_{n-1}\right)\frac{\mu_b}{2} = -\frac{\mu_b}{h^2} + \frac{\mu_b p_{n-1}}{h} - \frac{\mu_b q_{n-1}}{2}; \\ u_n\|\left(\frac{3\mu_b}{2h} + \lambda_b\right)\left(\frac{1}{h} - \frac{p_{n-1}}{2}\right) - \left(\frac{1}{h^2} + \frac{p_{n-1}}{2h}\right)\frac{\mu_b}{2} = \frac{\mu_b}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}. \end{cases}$$

Получаем систему линейных уравнений:

$$\begin{split} i &= 1: \quad \left(\underbrace{\frac{2}{h^2} - q_1}\right) u_1 - \left(\underbrace{\frac{1}{h^2} + \frac{p_1}{2h}}\right) u_2 = \underbrace{\left(\frac{1}{h^2} - \frac{p_1}{2h}\right) \frac{\psi_a}{\lambda_a} - g_1}; \\ i &\in [2, n-1]: \quad - \Big(\underbrace{\frac{1}{h^2} - \frac{p_i}{2h}}\right) u_{i-1} + \Big(\underbrace{\frac{2}{h^2} - q_i}\right) u_i - \Big(\underbrace{\frac{1}{h^2} + \frac{p_i}{2h}}\right) u_{i+1} = \underbrace{-g_i}; \\ i &= n: \quad - \Big(\underbrace{\frac{\mu_b}{h^2} - \frac{\mu_b p_{n-1}}{h} + \frac{\mu_b q_{n-1}}{2}}\right) u_{n-1} + \Big(\underbrace{\frac{\mu_b}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}}\right) u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1} - \lambda_b}{h} - \frac{\lambda_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1}}{h} - \frac{\lambda_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1}}{h} - \frac{\mu_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1}}{h} - \frac{\mu_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1}}{h} - \frac{\mu_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1}}{h} - \frac{\mu_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1}}{h} - \frac{\mu_b p_{n-1}}{2}}_{c_n} u_n = \underbrace{\frac{1}{h^2} - \frac{\mu_b p_{n-1}}{h}}_{c_n} u_n = \underbrace{\frac{1}{h^2}$$

$$=\underbrace{\left(\frac{1}{h}-\frac{p_{n-1}}{2}\right)\psi_b-\frac{\mu_b}{2}g_{n-1}}_{f_n}.$$

Матрица линейной системы является трехдиагональной матрицей pазмерности n, так что для ее решения можно применить метод прогонки:

$$\begin{pmatrix} c_{1} & -b_{1} & 0 & 0 & \dots & \dots & 0 \\ -a_{2} & c_{2} & -b_{2} & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & -a_{i} & c_{i} & -b_{i} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & -a_{n-1} & c_{n-1} & -b_{n-1} \\ 0 & \dots & \dots & 0 & 0 & -a_{n} & c_{n} \end{pmatrix} \cdot \begin{pmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{i} \\ \vdots \\ u_{n-1} \\ u_{n} \end{pmatrix} = \begin{pmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{i} \\ \vdots \\ f_{n-1} \\ f_{n} \end{pmatrix}$$

Метод фиктивного узла использует дополнительный узел, не принадлежащий отрезку [a,b]: $x_{n+1} = b + h$. Мы предполагаем, что дифференциальная модель также выполнена на интервале (a,b+h). Поэтому в узле b запишем разностные аналоги уравнения (I.1) и краевого условия (I.2), используя центральную разностную производную второго порядка аппроксимации на симметричном шаблоне (i-1,i,i+1).

$$i = n \Rightarrow \lambda_b u_n + \mu_b \frac{u_{n+1} - u_{n-1}}{2h} = \psi_b \Leftrightarrow -\frac{\mu_b}{2h} u_{n-1} + \lambda_b u_n + \frac{\mu_b}{2h} u_{n+1} = \psi_b.$$

Далее исключим из уравнений узловое значение u_{n+1} .

$$\begin{cases} -\frac{\mu_b}{2h}u_{n-1} + \lambda_b u_n + \frac{\mu_b}{2h}u_{n+1} = \psi_b & \| \times \left(\frac{1}{h} + \frac{p_n}{2}\right) \neq 0 \\ -\left(\frac{1}{h^2} - \frac{p_n}{2h}\right)u_{n-1} + \left(\frac{2}{h^2} - q_n\right)u_n - \left(\frac{1}{h^2} + \frac{p_n}{2h}\right)u_{n+1} = -g_n & \| \times \frac{\mu_b}{2} \neq 0 \end{cases} \Rightarrow \\ u_{n-1}\| - \frac{\mu_b}{2h}\left(\frac{1}{h} + \frac{p_n}{2}\right) - \left(\frac{1}{h^2} - \frac{p_n}{2h}\right)\frac{\mu_b}{2} = -\frac{\mu_b}{h^2}; \\ u_n\| \quad \lambda_b\left(\frac{1}{h} + \frac{p_n}{2}\right) + \left(\frac{2}{h^2} - q_1\right)\frac{\mu_b}{2} = \frac{\mu_b}{h^2} + \frac{\lambda_b}{h} + \frac{\lambda_b p_n - \mu_b q_n}{2}. \end{cases}$$

$$i = 1: \underbrace{\left(\frac{2}{h^{2}} - q_{1}\right)}_{c_{1}} u_{1} - \left(\underbrace{\frac{1}{h^{2}} + \frac{p_{1}}{2h}}_{b_{1}}\right) u_{2} = \underbrace{\left(\frac{1}{h^{2}} - \frac{p_{1}}{2h}\right)}_{f_{1}} \underbrace{\frac{\psi_{a}}{\lambda_{a}} - g_{1}}_{f_{1}};$$

$$i \in [2, n - 1]: -\underbrace{\left(\frac{1}{h^{2}} - \frac{p_{i}}{2h}\right)}_{a_{i}} u_{i-1} + \underbrace{\left(\frac{2}{h^{2}} - q_{i}\right)}_{c_{i}} u_{i} - \underbrace{\left(\frac{1}{h^{2}} + \frac{p_{i}}{2h}\right)}_{b_{i}} u_{i+1} = \underbrace{-g_{i}}_{f_{i}};$$

$$i = n: -\underbrace{\frac{\mu_{b}}{h^{2}}}_{a_{n}} u_{n-1} + \underbrace{\left(\frac{\mu_{b}}{h^{2}} + \frac{\lambda_{b}}{h} + \frac{\lambda_{b}}{2} p_{n} - \mu_{b} q_{n}}_{c_{n}}\right)}_{c_{n}} u_{n} = \underbrace{\left(\frac{1}{h} + \frac{p_{n}}{2}\right)}_{f_{n}} \psi_{b} - \frac{\mu_{b}}{2} g_{n}.$$

Матрица линейной системы является трехдиагональной матрицей pазмерности n, так что для ее решения можно применить метод прогонки:

$$\begin{pmatrix} c_{1} & -b_{1} & 0 & 0 & \dots & \dots & 0 \\ -a_{2} & c_{2} & -b_{2} & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & -a_{i} & c_{i} & -b_{i} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & -a_{n-1} & c_{n-1} & -b_{n-1} \\ 0 & \dots & \dots & 0 & 0 & -a_{n} & c_{n} \end{pmatrix} \cdot \begin{pmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{i} \\ \vdots \\ u_{n-1} \\ u_{n} \end{pmatrix} = \begin{pmatrix} f_{1} \\ f_{2} \\ \vdots \\ f_{i} \\ \vdots \\ f_{n-1} \\ f_{n} \end{pmatrix}$$

Случай четвертый: $\mu_a \neq 0$, $\mu_b \neq 0$ (задача Неймана).

Значение производной u'(x) входит в оба граничных условия. Поэтому получается система n+1 линейных уравнений:

$$\begin{pmatrix} c_{0} & -b_{0} & 0 & 0 & \dots & \dots & 0 \\ -a_{1} & c_{1} & -b_{1} & 0 & \dots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & -a_{i} & c_{i} & -b_{i} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & -a_{n-1} & c_{n-1} & -b_{n-1} \\ 0 & \dots & \dots & 0 & 0 & -a_{n} & c_{n} \end{pmatrix} \cdot \begin{pmatrix} u_{0} \\ u_{1} \\ \vdots \\ u_{i} \\ \vdots \\ u_{n-1} \\ u_{n} \end{pmatrix} = \begin{pmatrix} f_{0} \\ f_{1} \\ \vdots \\ f_{i} \\ \vdots \\ f_{n-1} \\ f_{n} \end{pmatrix}$$

Нулевое и последнее уравнения получаются различными для различных способов аппроксимации.

Метод несимметричной разностной производной в точках a и b:

$$\underbrace{\left(\frac{\mu_{a}}{h^{2}} + \frac{\mu_{a}p_{1} - \lambda_{a}}{h} - \frac{\lambda_{a}p_{1}}{2}\right)}_{c_{0}} u_{0} - \underbrace{\left(\frac{\mu_{a}}{h^{2}} - \frac{\mu_{a}p_{1}}{h} - \frac{\mu_{a}q_{1}}{2}\right)}_{b_{0}} u_{1} = \underbrace{-\left(\frac{1}{h} + \frac{p_{1}}{2}\right)\psi_{a} - \frac{\mu_{a}}{2}g_{1}}_{f_{0}};$$

$$i \in [1, n - 1]: -\left(\frac{1}{h^{2}} - \frac{p_{i}}{2h}\right)u_{i-1} + \underbrace{\left(\frac{2}{h^{2}} - q_{i}\right)}_{c_{i}} u_{i} - \underbrace{\left(\frac{1}{h^{2}} + \frac{p_{i}}{2h}\right)}_{b_{i}} u_{i+1} = \underbrace{-g_{i}}_{f_{i}};$$

$$i = n: -\underbrace{\left(\frac{\mu_{b}}{h^{2}} - \frac{\mu_{b}p_{n-1}}{h} + \frac{\mu_{b}q_{n-1}}{2}\right)}_{a_{n}} u_{n-1} + \underbrace{\left(\frac{\mu_{b}}{h^{2}} - \frac{\mu_{b}p_{n-1} - \lambda_{b}}{h} - \frac{\lambda_{b}p_{n-1}}{2}\right)}_{c_{n}} u_{n} = \underbrace{\left(\frac{1}{h} - \frac{p_{n-1}}{2}\right)\psi_{b} - \frac{\mu_{b}}{2}g_{n-1}}_{f_{n}}.$$

Метод фиктивных узлов в точках a и b:

$$i = 0: \quad \left(\underbrace{\frac{\mu_a}{h^2} - \frac{\lambda_a}{h} + \frac{\lambda_a p_0 - \mu_a q_0}{2}}_{c_0}\right) u_0 - \underbrace{\frac{\mu_a}{h^2}}_{b_0} u_1 = \underbrace{-\left(\frac{1}{h} - \frac{p_0}{2}\right) \psi_a - \frac{\mu_a}{2} g_0}_{f_0};$$

$$i \in [1, n-1]: -\left(\underbrace{\frac{1}{h^2} - \frac{p_i}{2h}}_{a_i}\right) u_{i-1} + \left(\underbrace{\frac{2}{h^2} - q_i}_{c_i}\right) u_i - \left(\underbrace{\frac{1}{h^2} + \frac{p_i}{2h}}_{b_i}\right) u_{i+1} = \underbrace{-g_i};$$

$$i = n: -\underbrace{\frac{\mu_b}{h^2}}_{a_n} u_{n-1} + \underbrace{\left(\underbrace{\frac{\mu_b}{h^2} + \frac{\lambda_b}{h} + \frac{\lambda_b p_n - \mu_b q_n}{2}}_{c_n}\right)}_{c_n} u_n = \underbrace{\left(\frac{1}{h} + \frac{p_n}{2}\right) \psi_b - \frac{\mu_b}{2} g_n}_{f_n}.$$

Метод несимметричной разностной производной в точке a и метод фиктивного узла в точке b:

$$\underbrace{\left(\frac{\mu_{a}}{h^{2}} + \frac{\mu_{a}p_{1} - \lambda_{a}}{h} - \frac{\lambda_{a}p_{1}}{2}\right)}_{c_{0}} u_{0} - \underbrace{\left(\frac{\mu_{a}}{h^{2}} - \frac{\mu_{a}p_{1}}{h} - \frac{\mu_{a}q_{1}}{2}\right)}_{b_{0}} u_{1} = \underbrace{-\left(\frac{1}{h} + \frac{p_{1}}{2}\right)\psi_{a} - \frac{\mu_{a}}{2}g_{1}}_{f_{0}};$$

$$i \in [1, n - 1]: -\left(\underbrace{\frac{1}{h^{2}} - \frac{p_{i}}{2h}}\right)u_{i-1} + \underbrace{\left(\frac{2}{h^{2}} - q_{i}\right)}_{c_{i}} u_{i} - \underbrace{\left(\frac{1}{h^{2}} + \frac{p_{i}}{2h}\right)}_{b_{i}} u_{i+1} = \underbrace{-g_{i}}_{f_{i}};$$

$$i = n: -\underbrace{\frac{\mu_{b}}{h^{2}}}_{a_{n}} u_{n-1} + \underbrace{\left(\frac{\mu_{b}}{h^{2}} + \frac{\lambda_{b}}{h} + \frac{\lambda_{b}p_{n} - \mu_{b}q_{n}}{2}\right)}_{c_{n}} u_{n} = \underbrace{\left(\frac{1}{h} + \frac{p_{n}}{2}\right)\psi_{b} - \frac{\mu_{b}}{2}g_{n}}_{f_{0}}.$$

Метод фиктивного узла в точке a и метод несимметричной разностной производной в точке b:

$$i = 0: \underbrace{\left(\frac{\mu_{a}}{h^{2}} - \frac{\lambda_{a}}{h} + \frac{\lambda_{a}p_{0} - \mu_{a}q_{0}}{2}\right)}_{c_{0}} u_{0} - \underbrace{\frac{\mu_{a}}{h^{2}}}_{b_{0}} u_{1} = \underbrace{-\left(\frac{1}{h} - \frac{p_{0}}{2}\right)\psi_{a} - \frac{\mu_{a}}{2}g_{0}}_{f_{0}};$$

$$i \in [1, n - 1]: -\left(\underbrace{\frac{1}{h^{2}} - \frac{p_{i}}{2h}}_{a_{i}}\right)u_{i-1} + \underbrace{\left(\frac{2}{h^{2}} - q_{i}\right)}_{c_{i}} u_{i} - \underbrace{\left(\frac{1}{h^{2}} + \frac{p_{i}}{2h}\right)}_{b_{i}} u_{i+1} = \underbrace{-g_{i}}_{f_{i}};$$

$$i = n: -\left(\underbrace{\frac{\mu_{b}}{h^{2}} - \frac{\mu_{b}p_{n-1}}{h} + \frac{\mu_{b}q_{n-1}}{2}}_{a_{n}}\right)u_{n-1} + \underbrace{\left(\frac{\mu_{b}}{h^{2}} - \frac{\mu_{b}p_{n-1} - \lambda_{b}}{h} - \frac{\lambda_{b}p_{n-1}}{2}\right)}_{c_{n}} u_{n} = \underbrace{\left(\frac{1}{h} - \frac{p_{n-1}}{2}\right)\psi_{b} - \frac{\mu_{b}}{2}g_{n-1}}_{f}.$$

4 Лабораторная работа № 4. Решение краевых задач ОДУ

1) Записать сеточно-разностную схему второго порядка аппроксимации для краевой задачи ОДУ, используя *параметрический стиль программирования*. Это значит, что параметры a (левый конец отрезка), b (правый конец отрезка), размер сетки n (или шаг сетки: h = (b-a)/n), константы краевых условий λ_a , μ_a , ψ_a , λ_b , μ_b , ψ_b , задавать как глобальные константы с помощью оператора #define. Функции p(x), q(x) и g(x) оформить как внешние процедуры по отношению к функции main{}.

В программе НЕ использовать двумерные массивы, применять только следующие ОДНОМЕРНЫЕ массивы: узлов сетки; проекций известных функций p(x), q(x) и g(x) на сетку; прогоночных коэффициентов; сеточных функций-решений.

- 2) Для смешанного краевого условия с производной u'(x) использовать две схемы второго порядка аппроксимации: **схема 1** метод несимметричной производной, **схема 2** метод фиктивного узла.
- 3) Методом прогонки для различных значений n найти две сеточные функции: $\mathbf{u}(n) \equiv (u_0, u_1, \dots u_n)$ вектор-решение для схемы 1, $\mathbf{v}(n) \equiv (v_0, v_1, \dots v_n)$ вектор-решение для схемы 2.
- 4) Проверить выполнение оценки $\|\mathbf{u} \mathbf{v}\| = O(h^2)$ для трёх канонических норм. Для этого найти сеточные функции для пары сеток с $n_{\rm II} = 2n_{\rm I}$ и вычислить отношение норм $\|\mathbf{u}(n_{\rm I}) \mathbf{v}(n_{\rm I})\| / \|\mathbf{u}(n_{\rm II}) \mathbf{v}(n_{\rm II})\|$. Результаты внести в таблицу:

$n_{\mathrm{I}}/n_{\mathrm{II}}$	25/50	50/100	100/200	200/400	500/10 ³	$10^3/2\cdot10^3$	$2\cdot 10^3/4\cdot 10^3$	$\boxed{5\cdot 10^3/10^4}$
$\ .\ _{\infty}/\ .\ _{\infty}$								
$\frac{1}{n_{\text{I}}} \ . \ _{1} / \frac{1}{n_{\text{II}}} \ . \ _{1}$								
$\frac{1}{n_{\rm I}} \ {\bf .} \ _2 / \frac{1}{n_{\rm II}} \ {\bf .} \ _2$								

5) Для $\mathbf{n} = 2 \cdot 10^3$ построить график сеточной функции $\{x_i, u_i\}_{i=0...n}$ в любом удобном Вам графопостроителе.

Номер варианта совпадает с номером студента в списке курса (в зачетной ведомости).

1.
$$u''(x) - (\sqrt{x} + 1)u'(x) - u(x) = \frac{2}{(x+1)^3}, \quad 0 < x < 1, \quad u(0) = 1, \quad u'(1) = 0.$$

2.
$$u''(x) + \sqrt{\frac{1}{x}}u'(x) - 2u(x) = x^2$$
, $0.33 < x < 1$, $u'(0.33) = -0.5$, $u(1) = -1$.

3.
$$u''(x) + \frac{2}{x^3 - 2}u'(x) + (x - 2)u(x) = 1$$
, $0 < x < 1$, $u(0) = -0.5$, $u'(1) = -1$.

4.
$$u''(x) + 2u'(x) - \frac{4}{x}u(x) = 1$$
, $0.4 < x < 1$, $u(0.4) = 1.5$, $u(1) + u'(1) = 4$.

5.
$$u''(x) + \frac{4x}{x^2 + 1}u'(x) - \frac{1}{x^2 + 1}u(x) = -\frac{3}{(x^2 + 1)^2}$$
, $0 < x < 1$, $u'(0) = 0$, $u(1) = 0.5$.

6.
$$u''(x) - \frac{2}{x}u'(x) - \frac{4}{x^2+2}u(x) = 8$$
, $0.3 < x < 1$, $u(0.3) = 0.5$, $u(1) + u'(1) = 1$.

7.
$$u''(x) + (x+1)u'(x) - u(x) = \frac{x^2 + 2x + 2}{x+1}$$
, $0 < x < 1$, $u'(0) = 1$, $u(1) = 1.38294$.

8.
$$u''(x) + xu'(x) - \sqrt{x}u(x) = -3e^{-x}$$
, $0 < x < 1$, $u(0) = 0$, $u(1) + 2u'(1) = 0$.

9.
$$u''(x) + u'(x) - \frac{1}{x}u(x) = \frac{x+1}{x}$$
, 0,5 < x < 1, $u(0.5) = -\frac{1}{2 \ln 2}$, $u'(1) = 0$.

10.
$$u''(x) + 2xu'(x) - \sin x \cdot u(x) = 2(x^2 + 1)\cos(\pi x), \ 0 < x < 0.5, \ u'(0) = 0, \ u(0.5) = 0.5\sin 0.5.$$

11.
$$u''(x) + \frac{3}{2(x+1)}u'(x) - x^4 \cdot u(x) = \frac{2}{\sqrt{x+1}}, \ 0 < x < 1, \ 3u(0) - u'(0) = 1, \ u(1) = \sqrt{2}.$$

12.
$$u''(x) - \frac{1}{x}u'(x) + e^xu(x) = -\frac{2}{x^2}$$
, $0.25 < x < 1$, $u'(0.25) = -2$, $u(1) = 0$.