

UNIVERSITÄT BERN

Universität Bern Institut für Psychologie Lehrstuhl Kognition, Wahrnehmung und Methodenlehre

#### Forschungsatelier

Frühlingssemester 2018

## Decrypting imagination

Was Augenbewegungen über wahrgenommene und vorgestellte Inhalte verraten

Mirko Bristle Betreut von L. Gurtner



b Universität Bern

### Überblick

- 1. Theoretischer Hintergrund
- 2. Fragestellung
- 3. Forschungsdesign
- 4. Analyse
- 5. Ausblick

## $u^{b}$

BERN

#### b Universität

### Vorstellung

#### Theoretischer Hintergrund

- The Scanpath Theory
  - Komplex
  - Nicht-Zufällig
  - Sequenzen von weiderholten Fixationen
- Spatial Model
- Augenbewegungen haben eine funktionale Rolle bei der Encodierung und beim Retrieval
- > Bildliche Abruf-Aufgaben
  - Es wird nicht nur kurzzeitig, sondern auch nach einer Woche an die Stelle des Stimulus zurück geblickt.
  - ScanPath Analysen zeigen, dass das Muster des vorgestellten Bildes dessen Inhalt folgt.











# $u^{t}$

#### Fragestellung



- 1. Kann auf Grund der in der Augenbewegung liegenden Information ein Bild vorher gesagt werden?
  - Kann das Bild für betrachtete Bilder und für vorgestellte Bilder gleich gut vorhergesagt werden?
- 2. Kann auf Grund der Information der betrachteten Bilder ein vorgestelltes Bild vorhergesagt werden?
- 3. Welche Feature tragen am meisten zur korrekten Klassifikation bei?

# $u^{t}$

#### b UNIVERSITÄT BERN

### Forschungsdesign

- > 5 Probanden
- > 15 Bilder geordnet in 3 Kategorien (Kunst, Landschaft, Gesichter)



Für alle 15 Bilder



#### Auswertung

UNIVERSITÄT BERN Aufbereitung Datenerhebung Modellierung Statistik Summary - Data Feature extraction X SVM CrossValidation Face nxm Art n x m Preprocessing nxm Landscape Feature extraction Fixation - Map Data X SVM CrossValidation Face nxm Art nxm n x m Landscape

Kontrollexperiment

Bayesian multilevel model

#### Auswertung

UNIVERSITÄT BERN

Interpretation

Modellierung

Statistik

Post-Hoc Analyse

Summary - Data

SVM







Feature Selection Feature Ranking

Fixation - Map Data

SVM

der

Vergleich





Feature Selection Feature Ranking



Bayesian multilevel model

#### Feature extraction

- Summary Data
- > Raw Daten: [X, Y, Pupillen Dilatation] mit 2000 Hz 1 15 Sec x 30 Zyklen
- > Requirent Quantification Analysis: Metrik für zeitlich zusammenhängende Fixationen



UNIVERSITÄT

ekomme ich Iformatia

Welche Methode ermöglicht eine möglichst gute Vorhersage der Bilder?

# $u^{t}$

#### Methoden Wahl: Ist unser Dataset Big Data?





#### Support Vector Machine (SVM)

- SVMs maximieren den Abstand zu der trennenden Hyperebene.
  - A.k.a. large margin classifiers
- > The decision function ist vollkommen spezifiziert durch ein Subset von training Samples, den Support Vektoren.
- > Bis ca. 2012 die beste Methode für Text Klassifikation\*



b UNIVERSITÄT BERN



margin

<sup>\*</sup>aber ander Methoden sind ähnlich gut!

### Receiver Operating Curve









Spezifität

 $P(\text{negatives Testergebnis}|\text{tats\"{a}chlich krank}) = \frac{f_n}{r_p + f_n}$ 



#### Sensitivität

 $P( ext{positives Testergebnis}| ext{tats\"{a}chlich krank}) = rac{r_p}{r_p + f_n}$ 



### Receiver Operating Curve







#### Spezifität

 $P(\text{negatives Testergebnis}|\text{tats\"{a}chlich krank}) = \frac{f_n}{r_p + f_n}$ 



#### Sensitivität

 $P( ext{positives Testergebnis}| ext{tats\"{a}chlich krank}) = rac{r_p}{r_p + f_n}$ 



### Receiver Operating Curve







0.5 < AUC < 1

## SUMMARY: DATA



b UNIVERSITÄT BERN



Sample = Perception / Imagination von <u>einem</u> Bild

#### Problem: Anzahl Fixationen stimmt nicht überein

X = 5 (Vpn) \* 5 (Session) \* 5 (Blöcke) \* 15(Bilder) - 38(Missing) = 1837 features



UNIVERSITÄT BERN

## SUMMARY: PERFORMANCE BY CATEGORY

#### Perception —> Perception



AUC = .87 [.78; .90]

#### Imagination —> Imagination



AUC = .77 [.68; .80]

#### Perception —> Imagination



AUC = .77 [.69; .81]



AUC = .84 [.76; .90]



## SUMMARY: RECURSIVE FEATURE ELIMINATION

b UNIVERSITÄT BERN





Optimal number of Features:

Perception: 2/8 Imagination: 7/8

## SUMMARY: FEATURE RANKING

#### Besonders wichtig:

- Anzahl der Fixationen
- Räumliche Koordinate
- Linkes Auge > Rechtes

#### weniger wichtig:

- Pupille
- Dauer
- Number of Blinks



## FIXATION MAP: DATA

Fixation summary = <X\_r, X\_l, Y\_r, Y\_l, Dauer, Pupille, Blink>





UNIVERSITÄT BERN

- Diskreditieren der Variablen X,Y in gleich grosse "Bins"basierend auf Sample Quantilen
- Summary Statistik für jeden Bin

#### Beispiel:

Wenn Bin Grösse = 10

Sample = 
$$10*10*7$$
  
=  $700$  Features

Range = ca. 3'000 px

## FIXATION MAP: BIN GRÖSSE





b UNIVERSITÄT BERN

Klassifikationsgüte nach Bin Grösse:

- Perception optimal bei etwa 8 (32) Bins
- Imagination optimal bei etwa **4** Bins





UNIVERSITÄT BERN

#### Perception —> Perception



AUC = .99 [.99; 1.00]

#### Imagination —> Imagination



AUC = .80 [.77; .90]

#### Perception —> Imagination



AUC = .89 [.79; .93]

#### Imagination —> Perception



AUC = .98 [.98; .1.0]



## FIXATION MAP: RECURSIVE FEATURE ELIMINATION

UNIVERSITÄT BERN

#### Optimal number of Features:

Perception: **155/392** 







### FIXATION MAP: FEATURE RANKING



b Universität Bern

Perception

Guess what... and the best feature-set is?

Bezieht sich jeweils auf jeden Bin während der Vorstellung oder Wahrnehmung eines Bildes

- Relative Hit Rate eines Bins
- Absolute Hit Rate eins Bins
- Relative rechtes Auge
- Relative linkes Auge
- Durchschnittliche Dauer
- Durchschnittliche Pupille
- Durchschnittliche Zwinkern
- Anzahl Zwinkern

## FIXATION MAP: FEATURE RANKING

Perception



Interpretation: Hell gut, dunkel schlecht







0 1 2 3 4 5



Median: 72 [31, 107]







Median: 172 [120, 180]

23



### FIXATION MAP: FEATURE RANKING

Perception

#### Durchschnittlich beste Feature





(Mean [SD])

Durchschnittliche Pupille (89.55 [77.36])

Relative Hit Rate rechtes Auge (88.80 [50.98])

Relative Hit Rate eines Bins (109.34 [67.65])

Absolute Hit Rate eins Bins (148.69 [70.73])

Anzahl Zwinkern (148.19 [66.43])

Durchschnittliche Zwinkern (173.58 [69.76])

Durchschnittliche Dauer (190.52 [62.16])

Relative Hit Rate linkes Auge (240.5 [100.63])

## KONTROLLEXPERIMENT: RESULTS







#### Bayesian multi level model

Verteilung: Exgauss

Gruppen level:

(variierender Intercept):

- inTraining (Hit/FA)
- Subject
- Img ID

Population level:

- Session
- Kategorie

## KONTROLLEXPERIMENT: RESULTS







#### Bayesian multi level model

Verteilung: Exgauss

Gruppen level:

(variierender Intercept):

- inTraining (Hit/FA)
- Subject
- Img ID

Population level:

- Session
- Kategorie

## KONTROLLEXPERIMENT: RESULTS







#### Bayesian multi level model

Verteilung: Bernoulli

Gruppen level:

(variierender Intercept):

- Session
- Subject
- Img ID

Population level:

- inTraining x Kategorie

# $u^{'}$

#### Résumé & Ausblick



- Summary-Statistik klassifiziert über Zufällig, wird aber von höheren Repräsentation bei Perception als Testset überboten.
- Perception kann am besten Perception vorhersagen, Imagination klassifiziert jedoch ebenfalls Perception am besten.
  - > Dies stimmt mit der Literatur überein, dass Imagination grössere Varianz aufweist. Es zeigt, aber auch, dass ein Grossteil der Information repräsentiert wird. Wäre ein translator zw. Vorstellung und Wahrnehmung möglich?
- > Featureinterpretationen sprechen für ein Kognitiv Abtasten des Bildes,
  - > Summary Statistik führt zu einem Vereinfachten Verständnis, welches das **Abtastverhalten** und die **räumliche Auflösung** verdeutlicht.
  - > Die Hit Rate eines Ortes, die Dauer der Betrachtung und das Blinzeln trägt kaum zu einer korrekten Klassifikation zu.
  - > Es sind weniger einzelne Orte, die über die Klassifikation des Bildes informieren, als die
    - > Häufigkeit wie der Ort betrachtet wird und
    - > die Kombination von diesem spezifischen **Ort** und der **kognitiven Reaktion** zu diesem Ort (Pupille) und wie oft dieser im Vergleich zu anderen Orten **besucht** wurde.
  - Legt Grundlage für Spacial Memory -> Mental Imagery
- > Dies könnte Automatisiert genutzt werden, um in einem natürlichen Umfeld individualisierte Diagnostik zu betreiben.

#### Technical Acknowledgement:













UNIVERSITÄT BERN

# Vielen Dank für Ihre Aufmerksamkeit.

## $u^{t}$

#### D UNIVERSITÄT BERN

#### Literaturverzeichnis

- > Brandt, S. A., & Stark, L. W. (1997). Spontaneous eye movements during visual imagery reflect the content of the visual scene. *Journal of cognitive neuroscience*, 9(1), 27-38.
- ➤ Dewhurst, R., Nyström, M., Jarodzka, H., Foulsham, T., Johansson, R., & Holmqvist, K. (2012). It depends on how you look at it: Scanpath comparison in multiple dimensions with MultiMatch, a vector-based approach. *Behavior research methods*, *44*(4), 1079-1100.
- ➤ Henderson, J. M., Williams, C. C., & Falk, R. J. (2005). Eye movements are functional during face learning. *Memory & cognition*, *33*(1), 98-106.
- ➤ Jarodzka, H., Holmqvist, K., & Nyström, M. (2010, March). A vector-based, multidimensional scanpath similarity measure. In *Proceedings of the 2010 symposium on eye-tracking research & applications*(pp. 211-218). ACM.
- ➤ Johansson, R., & Johansson, M. (2014). Look here, eye movements play a functional role in memory retrieval. *Psychological Science*, *25*(1), 236-242.
- ➤ Le Meur, O., Le Callet, P., Barba, D., & Thoreau, D. (2006). A coherent computational approach to model bottom-up visual attention. *IEEE transactions on pattern analysis and machine intelligence*, *28*(5), 802-817.
- ➤ Martarelli, C. S., & Mast, F. W. (2013). Eye movements during long-term pictorial recall. *Psychological research*, 77(3), 303-309.