Some uses of Graphs in Machine Learning

Mike PEREIRA

Machine Learning Group - MINES ParisTech

April 26th, 2017

Outline

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervised learning with Graphs

Learning Inductive Learning

- 1 Graph Theory Refreshers
- 2 Spectral Clustering
- 3 Semi-supervised learning
 - Self Training
 - SVM
- 4 Semi-supervised learning with Graphs
 - Transductive Learning
 - Inductive Learning

Graph: a mathematical definition

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training SVM

Semi-supervised
learning with
Graphs
Transductive
Learning
Inductive Learning

A graph $\mathcal G$ is a triplet $(\mathcal V,\mathcal E,\mathcal W)$ where

- \mathbf{v} is the set of vertices of the graph. It is supposed finite with cardinal N. The vertices are numbered : $\mathcal{V} = \{1, 2, ..., N\}$.
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges of the graph, defined as couples of vertices $(i,j) \in \mathcal{V} \times \mathcal{V}$. The vertices i and j are then called **neighbors**, and are denoted $i \sim j$.
- \mathcal{W} is the weights of the graph : it is an application that associate to each edge $(i,j) \in \mathcal{E}$ a weight $w_{ii} \in \mathbb{R}$.

Similarity graph

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning

Idea

Given a data set containing N examples $X_1, ..., X_N$, build a graph with N vertices for which the more similar X_i and X_j are, the stronger the edge between i and j will be (if it exists).

Similarity Graph $\mathcal{G}=(\mathcal{V},\mathcal{E},\mathcal{W})$ is build in two steps :

- 1. Define a similarity function s that associates to each pair (i,j) a real value s_{ij} measuring the similarity between \boldsymbol{X}_i and \boldsymbol{X}_j
- 2. For each pair (i,j) decide whether or not $i \sim j$ based on s_{ii} . If defined, weight of edge (i,j) is s_{ii} .

Similarity Graph: Similarity Function

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning Inductive Learning

Functions include:

■ The default choice for the similarity function is the Gaussian function :

$$s_{ij} = \exp\left(-\frac{||\boldsymbol{X}_i - \boldsymbol{X}_j||^2}{2\sigma^2}\right)$$

Where examples X are considered as vectors of \mathbb{R}^d , with d the number of features.

Choice of σ

- lacksquare Rule of thumb : $\sigma \approx 0.1 \mathrm{std}(\mathsf{data})$
- Metric Learning is possible...
- Cosine similarity function :

$$s_{ij} = \frac{\boldsymbol{X}_{j}^{T} \boldsymbol{X}_{j}}{||\boldsymbol{X}_{i}|| ||\boldsymbol{X}_{i}||} = \cos(\theta)$$

■ Typical kernels

Similarity graph: Edge Construction I

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training SVM

Jeani-supervised learning with Graphs Transductive Learning Inductive Learning 3 main ways to decide whether 2 vertices of the graph will be neighbors (given the similarity function).

- **■** ε -neighborhood graphs : $i \sim j$ if $|s_{ij}| \geq \varepsilon$.
- k-NN (nearest neighbors) graphs: Each vertex i is neighbor to the k vertices that have the largest values of similarity $s_{i\bullet}$. 2 options:
 - option AND : $i \sim j$ if j is one of the k vertices most similar to j AND vice versa ("mutual k-NN graph").
 - option OR : ignore "direction".
- **Fully connected graph** : All pairs (i, j) are neighbors.

Similarity graph: Edge Construction II

Graph Theory Refreshers

Spectral Clustering

Semi-supervise earning Self Training

Semi-supervised learning with Graphs Transductive Learning Inductive Learnin

Figure: Comparison of the 3 methods of edge construction on the same data set.

http://researchers.lille.inria.fr/ valko/projects/courses/graphsML/20162017/mlgraphs2.pdf

Graph matrices : Degree and Weight

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ a graph with N vertices, whose weights \mathcal{W} are defined by the similarity function s.

Definition

■ The weight matrix W is the $N \times N$ matrix defined by :

$$W_{ij} = egin{cases} s_{ij} & ext{if } i \sim j \ 0 & ext{otherwise} \end{cases}$$

■ The degree matrix D is the $N \times N$ diagonal matrix defined by :

$$D_{ii} = \sum_{j=1}^{N} s_{ij}$$

Graph matrices: Laplacian

Graph Theory Refreshers

Spectral Clustering

Semi-supervised learning Self Training

Semi-supervise learning with Graphs

Transductive
Learning
Inductive Learnin

Definition

The Laplacian matrix \boldsymbol{L} is the $N \times N$ matrix defined by :

$$L = D - W$$

The normalized Laplacian matrix ${\cal L}$ is the $N \times N$ matrix defined by :

$$\mathcal{L} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$$

Proposition

A **graph function** on \mathcal{G} is a vector of $\mathbf{f} \in \mathbb{R}^N$ assigning to each vertex a value.

The Laplacian verifies for any graph function f:

$$f^T L f = \frac{1}{2} \sum_{i,j=1}^{N} s_{ij} (f_i - f_j)^2$$

Eigendecomposition

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training

Semi-supervised learning with Graphs Transductive Learning Inductive Learning

$$M v = \lambda v$$

■ A $N \times N$ matrix M is diagonalizable over \mathbb{R} (resp. \mathbb{C}) if there exists $\lambda_1 \leq ... \leq \lambda_N \in \mathbb{R}$ (resp. \mathbb{C}) and Q an invertible matrix of \mathbb{R} (resp. \mathbb{C}) s.t. :

$$m{\mathcal{M}} = m{Q} egin{pmatrix} \lambda_1 & & & \ & \ddots & \ & & \lambda_N \end{pmatrix} m{Q}^{-1}$$

The *i*-th column of Q is an eigenvector of M with eigenvalue λ_i .

If M is a symmetric real matrix, M is diagonalizable over \mathbb{R} and can be decomposed :

$$\pmb{M} = \pmb{Q} \pmb{\Lambda} \pmb{Q}^T, \quad \pmb{Q}^{-1} = \pmb{Q}^T, \pmb{\Lambda}$$
 Diagonal matrix

Spectral properties of the Laplacian I

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning Inductive Learning

From now on...

Consider that the similarity function is symmetric, i.e., \forall pairs of vertices (i,j), $s_{ij}=s_{ji}$.

The weight matrix, and the Laplacian, are therefore real symmetric matrices.

Denote $\lambda_1 \leq ... \leq \lambda_N$ the eigenvalues of \boldsymbol{L} and $\boldsymbol{L} = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T$ its eigendecomposition.

Proposition

All eigenvalues of \boldsymbol{L} are real and its smallest eigenvalue is 0 with eigenvector $\mathbf{1}_N$.

Outline

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervised learning with Graphs Transductive

Learning Inductive Learning

- 1 Graph Theory Refreshers
- 2 Spectral Clustering
- 3 Semi-supervised learning
 - Self Training
 - SVM
- 4 Semi-supervised learning with Graphs
 - Transductive Learning
 - Inductive Learning

Connected components |

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training SVM

Semi-supervised learning with Graphs Transductive

Transductive Learning Inductive Learning The connected components of a graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ are subgraphs $\mathcal{G}'=(\mathcal{V}'\subset\mathcal{V},\mathcal{E}\subset\mathcal{E})$ for which :

- lacksquare Any two vertices $(i,j)\in\mathcal{V}'$ can be "joined" by a path
- For any vertex $i \in \mathcal{V}'$, all its neighbors are in \mathcal{V}'

Figure: A graph with 3 connected components

Connected components II

Graph Theory Refreshers

Spectral Clustering

Semi-supervi earning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning Inductive Learnin

Proposition

The Laplacian matrix \boldsymbol{L} of a graph with K connected components is block-diagonal with K blocks :

$$m{L} = egin{pmatrix} m{L}_1 & & & & \ & \ddots & & \ & & m{L}_K \end{pmatrix}$$

Where L_k corresponds to the Laplacian of the k-th connected component.

It is easy to show that for a block-diagonal matrix

- Eigenvectors are given by considering eigenvectors of one of its blocks and "completing" it with zeros.
- Eigenvalues are the set of all the eigenvalues of each one of its block.

Intuition about the algorithm

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning Inductive Learning The **multiplicity** of an eigenvalue λ of matrix \boldsymbol{L} is the number of linearly independent vectors that are eigenvectors of \boldsymbol{L} with eigenvalue λ .

Proposition

The multiplicity of eigenvalue 0 is equal to the number K of connected components of the graph.

The corresponding eigenvectors $x_1, ..., x_K$ are constructed as follows:

$$[x_k]_i =$$

$$\begin{cases} 1 & \text{if } i \in k\text{-th connected component} \\ 0 & \text{otherwise} \end{cases}$$

Consider clusters as the connected components of a graph...!

Spectral clustering Algorithm 1

Graph Theory

Spectral Clustering

Semi-supervised learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning

Algorithm

Require : A set $\mathcal{V} = \{s_1, ..., s_N\} \in \mathbb{R}^d$ of data points. A number of clusters k.

- 1. Form the Weight matrix W defined by $W_{ij} = \exp(-||s_i s_j||^2/2\sigma^2)$ if $i \neq j$, 0 otherwise.
- 2. Form the diagonal Degree matrix D defined by $D_{ii} = \sum_{i} W_{ij}$.
- 3. Form the normalized Laplacian matrix defined by $\mathcal{L} = I D^{-1/2}WD^{-1/2}$.
- 4. Compute $x_1, ..., x_k$ the eigenvectors associated with the k smallest eigenvalues of \mathcal{L} and stack them into the $N \times k$ matrix $\mathbf{X} = (x_1 | ... | x_k)$.

Spectral clustering Algorithm II

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning Inductive Learning

Algorithm

- 5. Form the $N \times k$ matrix Y from X by normalizing each row of X: $Y_{ij} = X_{ij} / \sqrt{\sum_{l} X_{lj}^2}$
- 6. Treating each row of Y as a point in \mathbb{R}^k , cluster them into k clusters using K-means.
- 7. Assign data point s_i to cluster j iif row i of Y was assigned to cluster j at the previous step.

Note

The number of clusters can be chosen by considering the number of eigenvalues that are close to 0!

Spectral clustering Algorithm III

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training

Semi-supervised learning with Graphs Transductive Learning Inductive Learnin

Figure: Comparison between K-Means and Spectral Clustering

Spectral clustering Algorithm IV

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training

Semi-supervised learning with Graphs Transductive Learning Inductive Learning

Figure: Different datasets and the eigenvalues of their corresponding Laplacians

Outline

Graph Theory Refreshers

Spectral Clustering

Semi-supervised learning

Self Trainir SVM

Semi-supervise learning with Graphs Transductive

Learning Inductive Learning

- 1 Graph Theory Refreshers
- 2 Spectral Clustering
- 3 Semi-supervised learning
 - Self Training
 - SVM
- 4 Semi-supervised learning with Graphs
 - Transductive Learning
 - Inductive Learning

Semi-supervised learning problem

Graph Theory Refreshers

Spectral Clustering

Semi-supervised learning

Self Training SVM

Semi-supervise learning with Graphs

Transductive Learning Inductive Learning

Problem

Take a set of data points $\{x_i\}_{i=1}^N$ from \mathbb{R}^d . Suppose that only points $1, ..., n_I$ with $n_I \ll N$ are labeled and denote $\{y_i\}_{i=1}^{n_I}$ those labels.

We aim at:

- labeling the rest of the dataset (i.e., find $\{y_i\}_{i=n_i+1}^N$).
- Predict the label of new data points through a function $f: \mathbb{R}^d \mapsto \{ \text{labels} \}.$

Outline

Graph Theory Refreshers

Spectral Clustering

Semi-supervised learning

Self Training SVM

Semi-supervise learning with Graphs Transductive

- 1 Graph Theory Refreshers
- 2 Spectral Clustering
- 3 Semi-supervised learning
 - Self Training
 - SVM
- 4 Semi-supervised learning with Graphs
 - Transductive Learning
 - Inductive Learning

SSL by Self Training I

Graph Theory Refreshers

Spectral Clustering

Semi-supervised learning

Self Training SVM

Semi-supervis learning with Graphs

Transductive Learning Inductive Learnin

Self training algorithm

Input: labeled data $\mathfrak{L} = \{x_i, y_i\}_{i=1}^{n_l}$ and unlabeled data

$$\mathfrak{U} = \{x_i\}_{i=n_I+1}^N$$

Repeat:

- 1. Train f using $\mathfrak{L} = \{x_i, y_i\}_{i=1}^{n_l}$
- 2. Apply f to (some) $\mathfrak U$ and add them to $\mathfrak L$

Problems of this method:

- Heavily depends on the internal classifier
- Errors propagate (works well for well separated cluster, reacts badly to outliers)

Nobody uses it anymore apparently...

SSL by Self Training II

Graph Theory Refreshers

Spectral Clustering

Semi-supervised

Self Training

Semi-supervised learning with Graphs

Transductive Learning Inductive Learning

Figure: Behavior of a self training algorithm in presence of an outlier

Outline

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning Inductive Learnin

- 1 Graph Theory Refreshers
- 2 Spectral Clustering
- 3 Semi-supervised learning
 - Self Training
 - SVM
- 4 Semi-supervised learning with Graphs
 - Transductive Learning
 - Inductive Learning

SSL and SVM

Graph Theory Refreshers

Spectral Clustering

Semi-supervised learning Self Training SVM

Semi-supervised learning with Graphs

Transductive Learning Inductive Learning

Question

How to use Support Vector Machine algorithm with partially labeled data?

Refresher on SVM L

Self Training SVM

Classical SVM: separable case

 $\mathsf{Data}: \mathsf{a} \; \mathsf{labeled} \; \mathsf{dataset} \; \mathfrak{L} = \{x_i, y_i\}_{i=1}^{n_l}, \; \mathsf{with} \; x_i \in \mathbb{R}^d \; \mathsf{and} \;$ $y_i \in \{-1, 1\}$.

Problem: find a linear classifier $f = \mathbf{w}^T \mathbf{x} + \mathbf{b}$ s.t.

 $y = \operatorname{sgn}(f)$

Solution: consider the hyperplane that maximizes the margin w.r.t the data points.

Separable case

Refresher on SVM II

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning

$\mathbf{x} \cdot \mathbf{x} + b = 0$ $\xi_i < 1$

 $\mathbf{w} \cdot \mathbf{x} + b = -1$ Soft margin = $\frac{1}{|\mathbf{w}||}$

Non separable case

Take $(oldsymbol{w},b)$ as solutions of :

$$\min_{\boldsymbol{w},b} ||\boldsymbol{w}||^2 + C \sum_{i=1}^{n_I} \xi_i$$
s.t.
$$y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1 - \xi_i \quad i \in 1...n_I$$

With C regularization parameter

This last problem can be written:

$$\min_{\boldsymbol{w},b} ||\boldsymbol{w}||^2 + C \sum_{i=1}^{m} \underbrace{h(y_i, f(x_i))}_{\text{"cost"}}$$

Where $f(x_i) := \mathbf{w}^T x_i + b$ is the "prediction" at data point x_i And $h(y, f) := \max(1 - y \times f, 0)$ is the hinge loss function.

SVM with unlabeled data

Graph Theory Refreshers

Spectral Clustering

Semi-supervised learning Self Training SVM

Semi-supervised learning with Graphs Transductive

ldea

Assign to unlabeled data their predicted label using the relation : $\hat{y} = \text{sgn}(f(x)) = \text{sgn}(\mathbf{w}^T x + b)$

SVM Minimization problem with unlabeled data

The minimization problem becomes:

$$\min_{\mathbf{w},b} ||\mathbf{w}||^2 + C_1 \sum_{i=1}^{n_l} h(y_i, f(x_i)) + C_2 \sum_{i=n_l+1}^{N} \widehat{h}(\widehat{y}_i, f(x_i))$$

Where $h(y, f) := \max(1 - yf, 0)$ is the **hinge loss** function. And $h(\hat{y}, f) := \max(1 - sgn(f)f, 0) = \max(1 - |f|, 0)$ is the **hat loss** function.

Outline

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training

Semi-supervised learning with Graphs

Transductive Learning Inductive Learning

- 1 Graph Theory Refreshers
- 2 Spectral Clustering
- 3 Semi-supervised learning
 - Self Training
 - SVM
- 4 Semi-supervised learning with Graphs
 - Transductive Learning
 - Inductive Learning

Outline

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervised learning with Graphs

Transductive Learning Inductive Learning

- 1 Graph Theory Refreshers
- 2 Spectral Clustering
- 3 Semi-supervised learning
 - Self Training
 - SVM
- 4 Semi-supervised learning with Graphs
 - Transductive Learning
 - Inductive Learning

Label Completion in a dataset I

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training

Semi-supervise learning with

Transductive Learning Inductive Learning **Data**: A set of data points $\mathcal{V} = \{x_i\}_{i=1}^N$ with labeled data $\mathfrak{L} = \{(x_i, y_i)\}_{i=1}^{n_l}$ and unlabeled data $\mathfrak{U} = \{x_i\}_{i=n_l+1}^{n_l+n_u}$. Labels are in $\{-1, 1\}$.

Denote \mathcal{G} an associated similarity graph.

Goal: Find $f: \mathcal{V} \mapsto \mathbb{R}$ such that :

- $\forall l \in \mathfrak{L} : f(l) = y_i$
- lacksquare f can be used to assign labels to data points in ${\mathfrak U}$
- f is "smooth" w.r.t. \mathcal{G} , i.e., vertices close to each other in the graph have similar labels.

Solution: Compute that minimizes an energy function:

$$E(f) := \frac{1}{2} \sum_{i,j} s_{ij} (f(i) - f(j))^2$$

With constraint $\forall l \in \mathfrak{L} : f(l) = y_l$

Label Completion in a dataset II

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training

Semi-supervised learning with Graphs

Transductive Learning Inductive Learning Denote f the vector defined by $f_i=f(i): i\in 1,...,N$. f can be decomposed $f=\begin{pmatrix} f_{\mathfrak{L}} \\ f_{\mathfrak{U}} \end{pmatrix}$

The energy E(f) can be expressed using the Laplacian ${m L}$ of ${\mathcal G}$:

$$E(f) = \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} = \begin{pmatrix} \mathbf{f}_{\mathfrak{L}} \\ \mathbf{f}_{\mathfrak{U}} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} \mathbf{L}_{\mathfrak{LL}} & \mathbf{L}_{\mathfrak{L}\mathfrak{U}} \\ \mathbf{L}_{\mathfrak{L}\mathfrak{U}}^{\mathsf{T}} & \mathbf{L}_{\mathfrak{U}\mathfrak{U}} \end{pmatrix} \begin{pmatrix} \mathbf{f}_{\mathfrak{L}} \\ \mathbf{f}_{\mathfrak{U}} \end{pmatrix}$$

Minimization Problem for label completion

The labeling function f^* is therefore a solution of the minimization problem :

$$\min_{\substack{\mathbf{f}_{\mathfrak{U}} \in \mathbb{R}^{n_{\mathcal{U}}} \\ \mathbf{f}_{\mathfrak{L}} = \mathbf{y}_{\mathfrak{L}}}} {\begin{pmatrix} \mathbf{f}_{\mathfrak{L}} \\ \mathbf{f}_{\mathfrak{U}} \end{pmatrix}}^{\mathsf{T}} \mathbf{L} \begin{pmatrix} \mathbf{f}_{\mathfrak{L}} \\ \mathbf{f}_{\mathfrak{U}} \end{pmatrix}$$

Label Completion in a dataset III

Graph Theory

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervise learning with Graphs

Transductive Learning Inductive Learning Any solution of this problem is **harmonic** over \mathfrak{U} , i.e.,

$$[\textbf{\textit{L}}\textbf{\textit{f}}^*]_{\mathfrak{U}} = \textbf{0}_{\mathfrak{U}}$$

Or equivalently,

$$\forall u \in \mathfrak{U} : f^*(u) = \frac{1}{d_u} \sum_{i \sim u} s_{ui} f^*(i), \quad d_u = \sum_{i \sim u} s_{ui}$$

This property ensures that :

■ The extrema of f^* on a connected component of \mathcal{G} are reached on the labeled vertices $\Rightarrow f^*$ is constant or

$$\forall u \in \mathfrak{U} : \min(\mathbf{f}_{\mathfrak{L}}^*) < f^*(u) < \max(\mathbf{f}_{\mathfrak{L}}^*)$$

 f^* is unique

The solution f^* is explicitly given by the formulas :

$$rac{oldsymbol{f}_{\mathfrak{L}}^{*}=oldsymbol{y}_{\mathfrak{L}}}{oldsymbol{f}_{\mathfrak{U}}^{*}=-(oldsymbol{L}_{\mathfrak{UU}})^{-1}oldsymbol{L}_{\mathfrak{UL}}oldsymbol{f}_{\mathfrak{L}}^{*}}$$

Link with random walk I

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervise learning with Graphs

Transductive Learning Inductive Learning Consider a random walk on $\mathcal G$: we go from vertex i to vertex j with probability:

$$\mathbb{P}(i \to j) = \frac{s_{ij}}{\sum_{k \sim i} s_{ik}}$$

Take $u \in \mathfrak{U}$. To assign a label to u

- Start a random walk from u.
- Stop the random walk as soon as it hits a labeled node.
- Assign to u the label of this node ($\in \{-1, 1\}$).

 f_u^* can be expressed as :

$$oxed{f_{\!\scriptscriptstyle oldsymbol u}^*} = \mathbb{P}(\mathsf{assigned} \; \mathsf{label} = 1) - \mathbb{P}(\mathsf{assigned} \; \mathsf{label} = -1)$$

The larger $|f_u^*|$ the greater the confidence of $sgn(f_u^*)$ being the label of u.

Link with random walk II

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervise learning with Graphs

Transductive Learning Inductive Learning Proof...

The matrix P with coefficients $P_{ij} = \mathbb{P}(i \to j)$ (called **transition matrix**) can be expressed using the degree and the weight matrices of the graph: $P = D^{-1}W$

And we have the relation : L := D - W = D(I - P)

Which yields a new expression for $m{f}_{\mathfrak{U}}^*$:

$$oldsymbol{f}_{\mathfrak{U}}^* = (oldsymbol{I}_{\mathfrak{U}\mathfrak{U}} - oldsymbol{P}_{\mathfrak{U}\mathfrak{U}})^{-1} oldsymbol{P}_{\mathfrak{U}\mathfrak{L}} oldsymbol{f}_{\mathfrak{L}}^* = \sum_{n \in \mathbb{N}} (oldsymbol{P}_{\mathfrak{U}\mathfrak{U}})^n oldsymbol{P}_{\mathfrak{U}\mathfrak{L}} oldsymbol{f}_{\mathfrak{L}}^*$$

Therefore, for $u \in \mathfrak{U}$

$$f_u^* = \sum_{n \in \mathbb{N}} \sum_{v \in \mathfrak{U}} [(\mathbf{P}_{\mathfrak{U}\mathfrak{U}})^n]_{uv} [\mathbf{P}_{\mathfrak{U}\mathfrak{L}} \mathbf{f}_{\mathfrak{L}}^*]_v$$

Where $[(P_{\mathfrak{U}\mathfrak{U}})^n]_{uv}=$ proba to hit v from u through only vertices \mathfrak{U} And $[P_{\mathfrak{U}\mathfrak{L}}f_{\mathfrak{L}}^*]_v=$ from v, proba to hit a vertex labeled +1- proba to hit a vertex labeled -1

Regularized Harmonic function I

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervise learning with Graphs

Transductive Learning Inductive Learning

Question

What if we want to control the confidence?

Solution: Allow the random walk to stop before it hits a labeled vertex \Rightarrow Add an artificial vertex to the the graph s.t.

- \blacksquare It is linked to all the other vertices of the graph with a constant weight $\gamma_{\rm g}$
- It has a label 0
- \Rightarrow The proba of transition of the RW will all be divided by a factor $(1 + \gamma_g)$!

Regularized Harmonic function II

Graph Theory

Spectral Clustering

Semi-supervised learning Self Training

Semi-supervised learning with Graphs

Transductive Learning Inductive Learning The new Laplacian L_g can be expressed :

$$\mathbf{L}_{\mathbf{g}} = \begin{pmatrix} \mathbf{L} + \gamma_{\mathbf{g}} \mathbf{I} & -\gamma_{\mathbf{g}} \mathbf{1}_{\mathbf{N}} \\ -\gamma_{\mathbf{g}} \mathbf{1}_{\mathbf{N}}^{\mathsf{T}} & \mathsf{N} \gamma_{\mathbf{g}} \end{pmatrix}$$

And the harmonic solution on this graph will simply be :

$$oldsymbol{f}_{\mathfrak{U}}^* = (oldsymbol{L}_{\mathfrak{UU}} + \gamma_{oldsymbol{g}} oldsymbol{I}_{\mathfrak{UU}})^{-1} oldsymbol{W}_{\mathfrak{UL}} oldsymbol{f}_{\mathfrak{L}}^*$$

Simply add $\gamma_{\it g}$ to the diagonal of $\it L$ in the previous setting!

Soft Harmonic function

Graph Theory Refreshers

Spectral Clustering

Semi-supervi learning Self Training SVM

Semi-supervise learning with Graphs

Transductive Learning Inductive Learni What if we don't trust the labels in the dataset?

 \Rightarrow Add an additional cost to the minimization :

Minimization Problem with soft constraints

The solution f^* of the labeling problem is given by :

$$oxed{f^* = rg\min_{oldsymbol{f} \in \mathbb{R}^N} f^{oxed{T}} Q f + (f - y)^{oxed{T}} oldsymbol{C} (f - y)}$$

Where : ${m Q} = {m L}$ or ${m Q} = {m L} + \gamma_{m g} {m I}$

$$y$$
 is defined by $y_i = \begin{cases} \text{true label} & \text{for labeled points} \\ 0 & \text{otherwise} \end{cases}$

$$C$$
 is diagonal with $C_{ii} = \begin{cases} c_I & \text{for labeled points} \\ c_U & \text{otherwise} \end{cases}$

The solution of this problem is given explicitly by the formula :

$$f^* = (C^{-1}Q + I)^{-1}y$$

Outline

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning Inductive Learning

- 1 Graph Theory Refreshers
- 2 Spectral Clustering
- 3 Semi-supervised learning
 - Self Training
 - SVM
- 4 Semi-supervised learning with Graphs
 - Transductive Learning
 - Inductive Learning

Out of sample extension

Graph Theory Refreshers

Spectral Clustering

Semi-supervise learning Self Training SVM

Graphs
Transductive
Learning
Inductive Learning

Problem

Suppose that a new (unlabeled) data point x_{N+1} arrives. How to predict its label?

2 options:

- 1. Add it to the dataset and start over... Not optimal
- 2. Train the algorithm on the dataset so that it can predict labels for new data points... Better!

Solution: Manifold Regularization

- \Rightarrow Allow f to be defined everywhere : $f: \mathcal{X} \subset \mathbb{R}^d \mapsto \mathbb{R}$
- \Rightarrow Allow $f(x^i) \neq y_i$ at labeled examples (to deal with noise).

Manifold Regularization 1

Graph Theory Refreshers

Spectral Clustering

Semi-supervis learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning Inductive Learning Consider a kernel \mathcal{K} (Mercer). We will look for solutions that can be written:

$$f_{\alpha}(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i \mathcal{K}(\mathbf{x}, \mathbf{x}_i) : \alpha \in \mathbb{R}^N$$

Minimization Problem in manifold regularization

The coefficients $lpha^*$ of the labeling function f^* are :

$$\boldsymbol{\alpha}^* = \arg\min_{\boldsymbol{\alpha} \in \mathbb{R}^N} \sum_{I \in \mathfrak{L}} V(f_{\boldsymbol{\alpha}}(\boldsymbol{x}_I), y_I) + \lambda_1 ||f_{\boldsymbol{\alpha}}||_{\mathcal{K}}^2 + \lambda_2 \boldsymbol{f}_{\boldsymbol{\alpha}}^T \boldsymbol{L} \boldsymbol{f}_{\boldsymbol{\alpha}}$$

Where V(f(x), y) is a function associating a cost to the prediction of label y of x by the value f(x)

- $V(f(x), y) = (y f(x))^2 \Rightarrow$ "Laplacian Regularized Least Squares"
- $V(f(x),y) = max(0,1-yf(x)) \Rightarrow \text{"Laplacian SVM"}$

Manifold Regularization II

Graph Theory Refreshers

Spectral Clustering

Semi-superv learning Self Training

Semi-supervised learning with Graphs Transductive Learning Inductive Learning

$$\boldsymbol{\alpha}^* = \arg\min_{\boldsymbol{\alpha} \in \mathbb{R}^N} \sum_{l \in \mathfrak{L}} V(f_{\boldsymbol{\alpha}}(\boldsymbol{x}_l), y_l) + \lambda_1 ||f_{\boldsymbol{\alpha}}||_{\mathcal{K}}^2 + \lambda_2 \boldsymbol{f}_{\boldsymbol{\alpha}}^T \boldsymbol{L} \boldsymbol{f}_{\boldsymbol{\alpha}}$$

- Denote $K := [\mathcal{K}(x_i, x_j)]_{i,j \in 1...N}$. $||f_{\alpha}||_{\mathcal{K}}^2 := \alpha^T K \alpha$ characterizes the complexity of f_{α} .
- lacksquare λ_1 controls the "overall" complexity of the solution
- λ_2 controls the smoothness of the solution w.r.t the intrinsic structure of the data points

Manifold Regularization III

Graph Theory Refreshers

Spectral Clustering

Semi-supervised learning Self Training SVM

Semi-supervised learning with Graphs Transductive Learning Inductive Learning

Figure: Results of SVMs on a dataset

