Instituto Politécnico Nacional

Escuela Superior de Cómputo (ESCOM)

Reporte del programa de Serie Trigonométrica de Fourier

Profesor: César Mújica Ascencio

Integrantes del equipo:

• Aranda Martínez Fernando

Erick García Picazo

• Jimenez Velazquez Jose Bryan Omar

${\bf \acute{I}ndice}$

1.	Introducción	2
2.	Metodología	2
	2.1. Implementación	2
	2.2. Funciones principales	2
	2.3. Validaciones	3
3.	Resultados	3
	3.1. Onda Cuadrada	3
	3.2. Onda Triangular	3
	3.3. Onda Diente de Sierra	4
	3.4. Coeficientes personalizados	4
4.	Análisis	4
5.	Conclusiones	4
6	Anevos	5

1. Introducción

El objetivo de esta práctica es implementar un programa que calcule y visualice la **Serie Trigonométrica de Fourier** de distintas señales periódicas. La serie de Fourier permite aproximar cualquier señal periódica mediante la suma de senos y cosenos ponderados por sus coeficientes.

El programa permite al usuario:

- 1. Seleccionar una señal predefinida (onda cuadrada, triangular, diente de sierra) o introducir coeficientes personalizados.
- 2. Definir el número de términos n para la aproximación.
- 3. Visualizar simultáneamente la señal original y su aproximación mediante Fourier.

2. Metodología

2.1. Implementación

El programa se desarrolló en HTML, CSS y JavaScript, utilizando la biblioteca Chart.js para las gráficas.

Interfaz de usuario:

- Menú de selección de señal.
- Entrada de coeficientes personalizados (opcional).
- \blacksquare Número de términos de la serie n.
- ullet Período de la señal T.
- Botón para calcular y graficar.

2.2. Funciones principales

1. Señales originales:

```
squareWave(t,T), sawtoothWave(t,T), triangleWave(t,T)
```

- 2. Cálculo de coeficientes de Fourier: getCoefficients(signalType, nTerms)
 - \rightarrow Devuelve a_0 , a_n y b_n según la señal o coeficientes personalizados.

3. Aproximación de Fourier:

$$f(t) \approx \frac{a_0}{2} + \sum_{n=1}^{N} (a_n \cos(n\omega t) + b_n \sin(n\omega t)), \quad \omega = \frac{2\pi}{T}$$

4. **Generación de gráficas:** Se utiliza Chart. js para mostrar simultáneamente la señal original y la aproximación de Fourier.

2.3. Validaciones

- Número de términos n entre 1 y 50.
- Período T > 0.
- Coeficientes personalizados válidos.

3. Resultados

3.1. Onda Cuadrada

- Número de términos: n=5
- Período: $T=2\pi$

Coeficientes calculados:

$$a_0 = 0$$
, $a_n = [0, 0, 0, 0, 0]$, $b_n \approx [1,273, 0, 0,424, 0, 0,255]$

Gráficas:

Figura 1: Señal original y aproximación de Fourier de onda cuadrada

3.2. Onda Triangular

- Número de términos: n=5
- Período: $T=2\pi$

Coeficientes calculados:

$$a_0 = 0$$
, $a_n = [0, 0, 0, 0, 0]$, $b_n \approx [0.811, 0, -0.090, 0, 0.032]$

Gráficas:

Figura 2: Señal original y aproximación de Fourier de onda triangular

3.3. Onda Diente de Sierra

• Número de términos: n=5

• Período: $T=2\pi$

Coeficientes calculados:

$$a_0 = 0$$
, $a_n = [0, 0, 0, 0, 0]$, $b_n \approx [0.637, -0.318, 0.212, -0.159, 0.127]$

Gráficas:

Figura 3: Señal original y aproximación de Fourier de onda diente de sierra

3.4. Coeficientes personalizados

El usuario puede introducir valores para a_0 , a_n y b_n . La aproximación se calcula usando la misma metodología de Fourier.

4. Análisis

- La aproximación mejora al aumentar n.
- Las señales impares (onda cuadrada, triangular) presentan solo coeficientes b_n .
- Las señales con discontinuidades muestran el fenómeno de Gibbs cerca de los saltos.
- La visualización simultánea permite comparar la señal original con la aproximación.

5. Conclusiones

- La serie de Fourier es útil para representar señales periódicas mediante senos y cosenos.
- 2. El programa permite explorar distintos tipos de señales y ver cómo cambia la aproximación al variar n.
- 3. La implementación en JavaScript con Chart.js proporciona visualización interactiva y clara.

4. Es importante seleccionar correctamente n y T para obtener aproximaciones precisas.

6. Anexos

- Capturas de pantalla de la interfaz y gráficas.
- Consola mostrando los coeficientes calculados.
- Código fuente HTML, CSS y JavaScript.