Возможные решения задач. 7 класс

Вариант 1

Задача 1. Камеры

Можно посчитать, за какое минимальное время может проехать автомобиль от первой до второй камеры, не нарушая правил дорожного движения. Для этого автомобиль должен двигаться с максимально разрешенной скоростью, то есть $60~{\rm km/v}$ на отрезке AB на протяжении $60~{\rm km}$ и со скоростью $90~{\rm km/v}$ на половине отрезка на протяжении еще $30~{\rm km}$. Сумма времен на прохождение расстояния между первой и второй камерами будет равна T_1 :

$$T_1 = \frac{60 \text{ км}}{60 \text{ км/ч}} + \frac{30 \text{ км}}{90 \text{ км/ч}} = 1 \text{ час } 20 \text{ минут.}$$
 (1)

Так как автомобиль проехал этот отрезок за 1 час 10 минут, можно сказать, что он наверняка нарушил правила на отрезке между первой и второй камерой.

Теперь рассчитаем минимальное время движения между второй и третьей камерами. Автомобиль может оставшиеся $30\,$ км до точки C проехать со скоростью $90\,$ км/ч, а затем $60\,$ км до точки D проехать со скоростью $120\,$ км/ч. Тогда затраченное на это время будет равно T_2 :

$$T_2 = \frac{30 \text{ км}}{90 \text{ км/ч}} + \frac{60 \text{ км}}{120 \text{ км/ч}} = 50 \text{ минут.}$$
 (2)

Так как автомобиль проехал отрезок между второй и третьей камерой за 60 минут, нельзя сказать, что он наверняка превышал скорость на этом отрезке.

Ответ: Автомобиль наверняка превышал скорость на отрезке между первой и второй камерами.

- 3 балла Проведены расчеты величины, позволяющей определить, превышал ли автомобиль скорость на первом участке.
- 2 балла Вывод, что автомобиль наверняка нарушал скорость на первом участке.
- 3 балла Проведены расчеты величины, позволяющей определить, превышал ли автомобиль скорость на втором участке.
- **2 балла** Вывод, что нельзя сказать, что автомобиль **наверняка** нарушал скорость на втором участке.

Задача 2. Мыло

2.1. Первое возможное решение

Изначально в бутылке было только мыло. Тогда каждый посетитель, выдавливая объем V, тратил ровно такой же объем мыла. После первого разбавления в бутылке оказалась смесь мыла и воды, в которой однут треть занимает мыло и две трети — вода. Тогда каждый посетитель, выдавливая тот же объем V, тратил бы лишь V/3 мыла. Однако, каждый посетитель после разбавления стал выдавливать объем 3V жидкости, и поэтому тратить тот же самый объем мыла V, что и до разбавления. Поэтому расход мыла не изменился после первого разбавления.

Сразу после второго разбавления в бутылке находится только 1/9 часть мыла и 8/9 частей воды. Тогда выдавливаемое количество мылы составляет 1/9 часть от объема выдавленной жидкости. Однако теперь посетители выдавливают еще в три раза больше жидкости, то есть в 9 раз больше, чем изначально. Это значит, что они снова каждый раз выдавливают такое же количество мыла. Значит расход мыла не меняется и после второго разбавления.

Можно понять, что расход мыла не изменяется при любом количестве разбавлений. А тогда мыло в банке кончится за то же время, что и в случае, когда его не разбавляли водой, то есть за неделю.

Ответ: через 7 дней.

- 4 балла После первого разбавления расход мыла не меняется.
- 6 баллов Утверждение, что расход мыла одинаков после любого количества разбавлений.

2.2. Второе возможное решение

Введем числовую ось и обозначим на ней начальный момент, и момент T, когда мыло кончилось в первой бутылке. Найдем на ней время t_1 , в которое произошло первое разбавление. Это произошло, когда израсходовалось 2/3 бутылки, то есть прошло 2T/3.

Теперь в момент t_1 у нас снова имеется полная бутылка жидкости, но расход жидкости увеличился втрое. Тогда до следующего разбавления пройдет втрое меньший промежуток времени. Но можно заметить, что оставшееся время до момента T тоже втрое меньше изначального. Тогда можно сказать, что до следующего разбавления пройдет 2/3 оставшегося времени. По этому правилу можно найти момент t_2 второго разбавления и моменты t_n всех последующих.

Тогда можно заметить, что каждое разбавление будет происходить все ближе к моменту T, но не позже. Кроме того, с каждым разбавлением мыла в бутылке становится все меньше, а значит в момент T его не останется вовсе.

Ответ: через 7 дней.

- 4 балла Построение первого момета времени.
- 6 баллов Правило построения последующих моментов времени.

Задача 3. Дорожная

Мальчик наблюдает за движущимися относительно него фонарями и деревьями, имея ограниченный угол зрения. На рисунке представлено, что он видит из окна на примере фонарей. При движении каждый фонарь перемещается от левого края угла зрения к правому. Разумно считать фонарь тогда, когда его столб пересекает правый край. В таком случае один и тот же фонарь не будет учтен несколько раз.

Мальчик всегда видит ровно три фонаря. Тогда в тот момент, когда один из фонарей (фонарь 0) исчезает из поля зрения, в нем должен появляться следующий (фонарь 3). Иначе существовал бы такой промежуток времени, в котором в угле зрения находилось бы всего два фонаря, а это противоречит условию.

Фонарь 3 ровно через секунду пересечет край щели и займет положение фонаря 0. Кроме него за это время край щели пересекут еще фонари (1 и 2). Тогда мальчик насчитает 3 фонаря, кроме фонаря 0, который уже посчитан ранее. Значит можно сказать, что мальчик насчитывает 3 фонаря в секунду.

Аналогично будет выглядеть картина подсчета деревьев, только описанный процесс будет происходить не за 1 секунду, а за 3, и вместо 3 фонарей мальчик будет видеть 4 дерева в поле зрения. Тогда можно найти, что мальчик насчитывает 4 дерева в 3 секунды. А значит, насчитав 180 фонарей, он потратил 60 секунд и насчитал 80 деревьев.

Ответ: 80 деревьев.

- 5 баллов Предложен правильный механизм подсчета фонарей или деревьев.
- 2 балла Найдено, что мальчик насчитывает 3 фонаря в секунду.
- 2 балла Найдено, что мальчик насчитывает 4 дерева за 3 секунды.
- 1 балл Правильный ответ.

Задача 4. Пулемет и поезд

Из того, что расстояние между всеми дырками одинаковое, можно сделать вывод о том, что за промежуток времени между выстрелами точка попадания сдвигается на постоянную величину x. То есть, при стрельбе по неподвижному поезду расстояние между любыми соседними дырками было бы равно x.

В случае, когда поезд движется налево, расстояние между дырками складывается из x и расстояния y, которое проходит поезд

$$x + y = 100 \text{ cm}.$$
 (3)

Если же поезд движется направо, то возможны два варианта. Поезд может проходить расстояние y>x, либо y< x. В обоих случаях расстояние между дырками будет равно 30 см, и будет равно разности x и y.

В первом сучае

$$x - y = 30 \text{ cm}, \tag{4}$$

во втором

$$y - x = 30 \text{ cm}. \tag{5}$$

В обоих случаях можно найти интересующий нас y. В первом случае y=35 см, во втором — 65 см. Такое перемещение совершает поезд за время между выстрелами t, которое равно 1/5 секунды. Тогда скорость поезда равна

$$v = \frac{y}{t},\tag{6}$$

и составляет 1,75 м/с для первого случая и 3,25 м/с для второго.

Ответ: 1,75 м/с и 3,25 м/с.

- 4 балла Правильно рассмотрено относительное движение.
- 2 балла Связь расстояния между дырками со скоростью.
- 2 балла Обнаружено наличие двух случаев.
- 1 балл Правильный ответ для первого случая.
- 1 балл Правильный ответ для второго случая.

Задача 5. Эскалатор

Эскалатор можно рассмотреть как два параллельных пути, по которым люди спускаются либо стоя, либо идя пешком. Понятно, что спускаться пешком быстрее. Пусть стоя спускается N человек в минуту, а пешком — M человек в минуту. Тогда максимум может спускаться 2M, минимум 2N, а в стационарном режиме спускается N+M человек в минуту.

Скорость роста очереди на каждом участкие можно определить по графику, поделив изменение ее длины на время, за которое оно произошло. Так, скорость роста очереди на первом участке равна 10 человек в минуту, на втором — 40 человек в минуту.

Эту скорость можно связать с количеством спускающихся людей и числом входящих на станцию. Если за минуту на станцию входит K человек, а спускается изначально N+M, то скорость роста очереди на первом участке будет равна K-(N+M).

На втором участке люди стоят на обеих сторонах, а значит всего спускается 2N человек в минуту. Скорость роста очереди на втором участке равна K-2N и на 30 человек в минуту больше, чем на первом. Значит M-N=30 человек в минуту.

После двух минут люди стали идти пешком по двум сторонам, и всего спускется 2M человек в минуту. Скорость роста очереди на этом участке равна K-2M. Это на 30 человек в минуту меньше, чем на первом участке, а значит равна -20 человек в минуту.

По графику заметим, что через 2 минуты у эскалатора образовалась очередь из 50 человек. Тогда со скоростью 20 человек в минуту эта очередь сократится до нуля за

$$t = \frac{50 \text{ чел}}{20 \text{ чел/мин}} = 2.5 \text{ мин.}$$
 (7)

Ответ: за 2,5 минуты.

- 3 балла Умение находить скорость по графику.
- 5 баллов Нахождение скорости сокращения очереди в третьем режиме.
- 2 балла Правильный ответ.

Возможные решения задач. 7 класс

Вариант 2

Задача 1. Камеры

Можно посчитать, за какое минимальное время может проехать автомобиль от первой до второй камеры, не нарушая правил дорожного движения. Для этого автомобиль должен двигаться с максимально разрешенной скоростью, то есть 50 км/ч на отрезке AB на протяжении 100 км и со скоростью 75 км/ч на половине отрезка на протяжении еще 50 км. Сумма времен на прохождение расстояния между первой и второй камерами будет равна T_1 :

$$T_1 = \frac{100 \text{ км}}{50 \text{ км/ч}} + \frac{50 \text{ км}}{75 \text{ км/ч}} = 2 \text{ часа } 40 \text{ минут.}$$
 (8)

Так как автомобиль проехал этот отрезок за 3 часа, нельзя сказать, что он наверняка нарушил правила на отрезке между первой и второй камерой.

Теперь рассчитаем минимальное время движения между второй и третьей камерами. Автомобиль может оставшиеся 50 км до точки C проехать со скоростью 75 км/ч, а затем 100 км до точки D проехать со скоростью 100 км/ч. Тогда затраченное на это время будет равно T_2 :

$$T_2 = \frac{50 \text{ км}}{75 \text{ км/ч}} + \frac{100 \text{ км}}{100 \text{ км/ч}} = 1 \text{ час } 40 \text{ минут.}$$
 (9)

Так как автомобиль проехал отрезок между второй и третьей камерой за 1 час 30 минут, можно сказать, что он наверняка превышал скорость на этом отрезке.

Ответ: Автомобиль наверняка превышал скорость на отрезке между второй и третьей камерами.

- 3 балла Проведены расчеты величины, позволяющей определить, превышал ли автомобиль скорость на первом участке.
- 2 балла Вывод, что нельзя сказать, что автомобиль наверняка нарушал скорость на первом участке.
- 3 балла Проведены расчеты величины, позволяющей определить, превышал ли автомобиль скорость на втором участке.
- 2 балла Вывод, что автомобиль наверняка нарушал скорость на втором участке.

Задача 2. Мыло

2.1. Первое возможное решение

Изначально в бутылке было только мыло. Тогда каждый посетитель, выдавливая объем V, тратил ровно такой же объем мыла. После первого разбавления в бутылке оказалась смесь мыла и воды, в которой однут четверть занимает мыло и три четверти — вода. Тогда каждый посетитель, выдавливая тот же объем V, тратил бы лишь V/4 мыла. Однако, каждый посетитель после разбавления стал выдавливать объем 4V жидкости, и поэтому тратить тот же самый объем мыла V, что и до разбавления. Поэтому расход мыла не изменился после первого разбавления.

Сразу после второго разбавления в бутылке находится только 1/16 часть мыла и 15/16 частей воды. Тогда выдавливаемое количество мылы составляет 1/16 часть от объема выдавленной жидкости. Однако теперь посетители выдавливают еще в четыре раза больше жидкости, то есть в 16 раз больше, чем изначально. Это значит, что они снова каждый раз выдавливают такое же количество мыла. Значит расход мыла не меняется и после второго разбавления.

Можно понять, что расход мыла не изменяется при любом количестве разбавлений. А тогда мыло в банке кончится за то же время, что и в случае, когда его не разбавляли водой, то есть за неделю.

Ответ: через 7 дней.

- 4 балла После первого разбавления расход мыла не меняется.
- 6 баллов Утверждение, что расход мыла одинаков после любого количества разбавлений.

2.2. Второе возможное решение

Введем числовую ось и обозначим на ней начальный момент, и момент T, когда мыло кончилось в первой бутылке. Найдем на ней время t_1 , в которое произошло первое разбавление. Это произошло, когда израсходовалось 3/4 бутылки, то есть прошло 3T/4.

Теперь в момент t_1 у нас снова имеется полная бутылка жидкости, но расход жидкости увеличился втрое. Тогда до следующего разбавления пройдет вчетверо меньший промежуток времени. Но можно заметить, что оставшееся время до момента T тоже вчетверо меньше изначального. Тогда можно сказать, что до следующего разбавления пройдет 3/4 оставшегося времени. По этому правилу можно найти момент t_2 второго разбавления и моменты t_n всех последующих.

Тогда можно заметить, что каждое разбавление будет происходить все ближе к моменту T, но не позже. Кроме того, с каждым разбавлением мыла в бутылке становится все меньше, а значит в момент T его не останется вовсе.

Ответ: через 7 дней.

- 4 балла Построение первого момета времени.
- 6 баллов Правило построения последующих моментов времени.

Задача 3. Дорожная

Мальчик наблюдает за движущимися относительно него фонарями и деревьями, имея ограниченный угол зрения. На рисунке представлено, что он видит из окна на примере фонарей. При движении каждый фонарь перемещается от левого края угла зрения к правому. Разумно считать фонарь тогда, когда его столб пересекает правый край. В таком случае один и тот же фонарь не будет учтен несколько раз.

Мальчик всегда видит ровно три фонаря. Тогда в тот момент, когда один из фонарей (фонарь 0) исчезает из поля зрения, в нем должен появляться следующий (фонарь 3). Иначе существовал бы такой промежуток времени, в котором в угле зрения находилось бы всего два фонаря, а это противоречит условию.

Фонарь 3 ровно через 1,5 пересечет край щели и займет положение фонаря 0. Кроме него за это время край щели пересекут еще фонари (1 и 2). Тогда мальчик насчитает 3 фонаря, кроме фонаря 0, который уже посчитан ранее. Значит можно сказать, что мальчик насчитывает 2 фонаря в секунду.

Аналогично будет выглядеть картина подсчета деревьев, только описанный процесс будет происходить не за 1 секунду, а за 4, и вместо 3 фонарей мальчик будет видеть 2 дерева в поле зрения. Тогда можно найти, что мальчик насчитывает 2 дерева в 4 секунды. А значит, насчитав 30 деревьев, он потратил 60 секунд и насчитал 120 фонарей.

Ответ: 120 фонарей.

- 5 баллов Предложен правильный механизм подсчета фонарей или деревьев.
- 2 балла Найдено, что мальчик насчитывает 2 фонаря в секунду.
- 2 балла Найдено, что мальчик насчитывает 2 дерева за 4 секунды.
- 1 балл Правильный ответ.

Задача 4. Пулемет и поезд

Из того, что расстояние между всеми дырками одинаковое, можно сделать вывод о том, что за промежуток времени между выстрелами точка попадания сдвигается на постоянную величину x. То есть, при стрельбе по неподвижному поезду расстояние между любыми соседними дырками было бы равно x.

В случае, когда поезд движется направо, расстояние между дырками складывается из x и расстояния y, которое проходит поезд

$$x + y = 140 \text{ cm}.$$
 (10)

Если же поезд движется направо, то возможны два варианта. Поезд может проходить расстояние y>x, либо y< x. В обоих случаях расстояние между дырками будет равно 100 см, и будет равно разности x и y.

В первом сучае

$$x - y = 100 \text{ cm},$$
 (11)

во втором

$$y - x = 100 \text{ cm}.$$
 (12)

В обоих случаях можно найти интересующий нас y. В первом случае y=20 см, во втором — 120 см. Такое перемещение совершает поезд за время между выстрелами t, которое равно 1/5 секунды. Тогда скорость поезда равна

$$v = \frac{y}{t},\tag{13}$$

и составляет 1 м/с для первого случая и 6 м/с для второго.

Ответ: 1 м/с и 6 м/с.

- 4 балла Правильно рассмотрено относительное движение.
- 2 балла Связь расстояния между дырками со скоростью.
- 2 балла Обнаружено наличие двух случаев.
- 1 балл Правильный ответ для первого случая.
- 1 балл Правильный ответ для второго случая.

Задача 5. Эскалатор

Эскалатор можно рассмотреть как два параллельных пути, по которым люди спускаются либо стоя, либо идя пешком. Понятно, что спускаться пешком быстрее. Пусть стоя спускается N человек в минуту, а пешком — M человек в минуту. Тогда максимум может спускаться 2M, минимум 2N, а в стационарном режиме спускается N+M человек в минуту.

Скорость роста очереди на каждом участкие можно определить по графику, поделив изменение ее длины на время, за которое оно произошло. Так, скорость роста очереди на первом участке равна 20 человек в минуту, на втором — 50 человек в минуту.

Эту скорость можно связать с количеством спускающихся людей и числом входящих на станцию. Если за минуту на станцию входит K человек, а спускается изначально N+M, то скорость роста очереди на первом участке будет равна K-(N+M).

На втором участке люди стоят на обеих сторонах, а значит всего спускается 2N человек в минуту. Скорость роста очереди на втором участке равна K-2N и на 30 человек в минуту больше, чем на первом. Значит M-N=30 человек в минуту.

После двух минут люди стали идти пешком по двум сторонам, и всего спускется 2M человек в минуту. Скорость роста очереди на этом участке равна K-2M. Это на 30 человек в минуту меньше, чем на первом участке, а значит равна -10 человек в минуту.

По графику заметим, что через 4 минуты у эскалатора образовалась очередь из 140 человек. Тогда со скоростью 10 человек в минуту эта очередь сократится до нуля за

$$t = \frac{140 \text{ чел}}{10 \text{ чел/мин}} = 14 \text{ мин.}$$
 (14)

Ответ: за 14 минут.

- 3 балла Умение находить скорость по графику.
- 5 баллов Нахождение скорости сокращения очереди в третьем режиме.
- 2 балла Правильный ответ.