A utilização da linguagem natural na especificação de requisitos: um estudo por meio das equações estruturais

Roberto Avila Paldês¹, Angelica Toffano Seidel Calazans¹, Ari Melo Mariano¹, Eduardo José Ribeiro de Castro¹, Bruno de Souza da Silva¹,

¹Centro Universitário de Brasília, Distrito Federal, Brazil {roberto.paldes, angelica.calazans, ari.mariano, eduardo.castro}@uniceub.br, bruno7317@qmail.com

Resumo. O objetivo deste estudo é analisar fatores de influência para a escolha da linguagem natural (LN) na especificação de requisitos. A metodologia adotada é de estudo descritivo, de abordagem quantitativa por meio de equações estruturais. O modelo teórico proposto baseia-se na Teoria Unificada de Aceitação e Uso da Tecnologia (UTAUT). Foi elaborado um questionário (α=0,817) com 17 perguntas para 50 analistas de requisitos. O instrumento de pesquisa foi validado e pode continuar a ser usado. Identificou-se que o motivo que leva os analistas a usar a LN na especificação é a expectativa de um rendimento elevado. A expectativa de esforço não pode ser confirmada com um fator de influência. Há um forte reconhecimento que o uso da LN leva a uma maior adesão às necessidades do cliente. Não se identificaram condições facilitadoras nas organizações que influenciem o comportamento de uso, o que pode indicar uma direção de aprimoramento efetiva.

Palavras chave. Requisitos de software. Especificação de requisitos. Linguagem natural. Equações estruturais.

1 Introdução

A Engenharia de Requisitos é parte fundamental do processo de desenvolvimento de *software*. Ela organiza a base para a construção de qualquer sistema pois oferece suporte às fases iniciais do seu ciclo de vida. A Engenharia de Requisitos compreende os processos de obtenção, refinamento e verificação das necessidades do usuário, por meio do uso de técnicas sistemáticas e repetíveis a serem usadas para assegurar que os requisitos do software sejam completos, consistentes, relevantes e que atendam às necessidades do cliente [1].

O processo de obtenção das necessidades é um dos fatores chave de sucesso para um projeto de um sistema. Sua função principal é identificar todas as características e funções que o *software* a ser desenvolvido deve possuir, atuando como um contrato entre o cliente e o desenvolvedor. Esse processo gera a especificação de requisitos que é um dos primeiros artefatos tangíveis a serem produzidos. Este artefato serve de base para

todas as etapas subsequentes do desenvolvimento, sendo utilizado pelos diversos participantes do processo, como patrocinadores, usuários, projetistas, programadores e testadores de software.

A especificação de requisitos é a etapa que engloba os conceitos definidos pelos especialistas de domínio e os relacionamentos entre eles [2]. Estes conceitos e seus relacionamentos devem ser escritos em uma linguagem entendida por todos participantes do processo de desenvolvimento de um software. A abordagem mais comum para redigir requisitos de um software é por meio de Linguagem Natural (LN). A LN pode assumir o papel de vetor pelo qual são transmitidos os requisitos. Usando frases bem estruturadas para descrevê-los – em oposição ao uso exclusivo de modelos amplamente usado atualmente – ela tem sido a forma mais utilizada para descrever requisitos [3] sendo complementada, às vezes, por outros tipos de notações, tais como diagramas, equações e modelos formais.

A utilização da LN facilita o entendimento dos requisitos, por ser simples e de fácil compreensão [4]. Uma vantagem da LN é sua capacidade de ser uma abordagem intuitiva na comunicação entre os *stakeholders* e adequada ao contexto de diversos clientes. Nesse contexto, a LN se reveste de importância ao se oferecer como uma linguagem de compreensão comum tanto pelo especialista do domínio da aplicação quanto pelo especialista em requisitos.

A LN também apresenta alguns aspectos negativos [5] [6]. Sua utilização pode resultar em especificações confusas requisitos funcionais e não-funcionais podem ser misturados em uma mesma especificação [2]. Algumas vezes há a necessidade de se descrever um requisito muito especificadamente e o documento acaba se tornando muito detalhado e, com isso, difícil de ler. Problemas como a imprecisão, dificuldade de compreensão e incoerência são comuns quando a LN é utilizada. Ela também possibilita múltiplas interpretações gerando ambiguidade e os modelos produzidos a partir dessa linguagem podem não contemplar as todas as características que o software deve possuir [7].

Os desafios não são novos. Já em 1995 a Conferência Internacional de Aplicações de Linguagem Natural para Sistemas de Informações consolidou as pesquisas da época sobre esse assunto. O assunto continua mantido um interesse persistente e crescente e muitas pesquisas têm sido realizadas englobando a LN e o processo de desenvolvimento de software. A tarefa de extrair informações uteis de dados não estruturados ainda apresenta desafios nos dias atuais [8].

Assim, para avaliar o impacto da escrita em LN nos dias atuais é necessário obter a percepção das pessoas que fazem uso desse recurso, os engenheiros ou analistas de requisitos e analistas de sistemas com essa atribuição. Modelos de percepção que envolvem tecnologia tem sido estudados para diferentes áreas [10][11][12] através da escala de medida UTAUT (*Unified Theory of Acceptance and Use of Technology*/Teoria Unificada de Aceitação e Uso da Tecnologia). Porém os estudos sobre UTAUT estão aplicados a Tecnologia de uma maneira geral, sendo necessário adaptar este estudo ao da LN. Entender os motivos da sua adoção ou não na engenharia de requisitos é necessário para contribuir na melhoria da técnica, assim como da relação das soluções trazidas pelos engenheiros e os usuários envolvidos nas diferentes etapas do processo.

Considerando o exposto, a presente pesquisa objetiva responder a seguinte questão de pesquisa: qual são as percepções dos profissionais de requisitos acerca da LN na especificação das necessidades de um cliente de um produto de software?

Para responder a essa questão, esse trabalho foi elaborado com o objetivo geral de analisar a influência das expectativas de desempenho e esforço, bem como as condições facilitadoras, com relação a utilização da LN na especificação de requisitos. Para isso, na seção 2 descreve-se sucintamente os processos da engenharia de requisitos para que suporte a sua contextualização dos conceitos da LN no ambiente de requisitos de software. Na seção 3 explica-se a metodologia utilizada na pesquisa, enquanto que na seção 4 disponibiliza-se os dados coletados e sua análise. Na seção 5 sintetizam-se as conclusões da pesquisa.

2 A Linguagem Natural na Engenharia de Requisitos

2.1 A especificação dos requisitos

Os requisitos podem ser definidos como as descrições do que o software deve fazer, os serviços que ele deve oferecer e as restrições ao seu funcionamento [2]. Segundo *The Guide to the Software Engineering Body of Knowledge* [13], o processo de Engenharia de Requisitos é composto de várias etapas, entre elas descobrir, analisar, documentar os requisitos e verificar as funções e restrições definidas. Para Sommerville [2] existem quatro atividades principais do processo de produção de requisitos: o estudo de viabilidade, a elicitação e análise, a especificação e a validação dos requisitos.

Na visão de Losada e Jaramillo [14], a elicitação de requisitos engloba a identificação, captura e integração requisitos decorrentes da comunicação entre um grupo de analistas e as partes interessadas, gerando descrições textuais e/ou gráficas que refletem os conceitos mais relevantes do domínio para o desenvolvimento de uma aplicação.

A fase de análise contribui para o sucesso do processo de desenvolvimento dos requisitos valendo-se de um processo de descoberta, refinamento, modelagem e especificação, onde se validam as informações obtidas e se identificam eventuais inconsistências [15]. É uma fase muito dependente de opiniões pessoais e de natureza subjetiva, considerando o nível de abstração do processo. Algumas partes interessadas podem apresentar dúvidas com relação a compreensão dos requisitos. Os *stakeholders* devem ser capazes de compreender os requisitos apresentados e entender o impacto desses requisitos de maneira eficiente e uniforme [16]. Para facilitar esse entendimento, os requisitos são geralmente escritos e mantidos em LN, que é uma forma de comunicação compartilhada por todos os atores do processo, ainda que a flexibilidade da LN traga também riscos de ambiguidade e desentendimento.

É indispensável a documentação organizada dos processos de requisitos para que uma organização possa defini-los e gerenciá-los, podendo utilizar a descrição de processos em linguagem com base em um léxico ampliado da linguagem [17].

Um resultado importante do fluxo dos requisitos é, portanto, a especificação de requisitos do software, um documento que descreve detalhadamente o conjunto de requisitos especificados para um produto de software [18]. Este documento pode recorrer à escrita, a modelos gráficos ou matemáticos, a cenários ou a protótipos. Admite, também a combinação de descrições em LN e modelos gráficos, buscando demonstrar de forma clara e flexível os requisitos do sistema [19].

2.2 A utilização da Linguagem Natural

No contexto da presente pesquisa, considera-se a Linguagem Natural o uso de frases bem estruturadas para descrever os requisitos de um sistema. Uma LN é elaborada naturalmente pelo ser humano, sem rigores de preparação [20]. É o idioma normalmente utilizado na comunicação em uma comunidade. O conceito se contrapõe ao emprego exclusivo de modelos na Engenharia de Requisitos, devido à necessidade de uma comunicação mais simples com os usuários.

A LN é caracterizada por sua enorme riqueza e capacidade de comunicação, sua flexibilidade e capacidade de utilizar com palavras e expressões, produzindo metáforas e ambiguidades [14]. A ambiguidade é um fenômeno intrínseco da LN [7], consistindo na capacidade de entender algo de mais de uma maneira ou sentido diferente. Assim, sugerem que a identificação de frases e palavras ambíguas é um aspecto crucial na comunicação humana.

As ferramentas linguísticas no apoio ao desenvolvimento de sistemas de software em geral e análise de requisitos, em particular, podem ajudar o analista a [21]: concentrar no problema e não na modelagem; interagir com outros atores; levar em conta os vários tipos de requisitos (organizacionais, funcionais, etc.); garantir a rastreabilidade desde os primeiros documentos produzidos; gerenciar com mais eficiência o problema das necessidades dos utilizadores em mudança.

Da mesma forma, o padrão IEEE 830 [1] aponta diversas propriedades para que a especificação de requisitos de software obtenha um bom nível de qualidade entre elas a isenção de ambiguidade e o uso da LN para a descrição de requisitos. Existem vários motivos para que os requisitos sejam escritos em LN [22] e permaneçam nessa linguagem: é uma forma de comunicação primária compartilhada por todos os atores do processo de desenvolvimento de software; os requisitos são especificados considerando diferentes níveis de abstração; a relação custo benefício, a necessidade de reação às mudanças de mercado, a rapidez necessária ao desenvolvimento do produto de software, são favoráveis à LN; oferece melhor apoio para a gestão de requisitos errados, incompletos ou parcialmente definidos; pode capturar propriedades externas dos requisitos, como as reais intenções dos usuários.

Requisitos em linguagens formais são úteis para verificar a coerência e verificar propriedades, mas são difíceis de especificar [23]. Como resultado, as partes interessadas (por exemplo, clientes, designers, engenheiros) muitas vezes preferem escrever requisitos em LN considerando a flexibilidade dessa linguagem. Os requisitos em LN podem ser escritos facilmente sem ônus de rigor formal.

Os requisitos são geralmente escritos e mantidos em LN, mas esses requisitos devem ser revistos e validados para melhorar a qualidade e minimizar a ambiguidade, imprecisão, imperfeição, conflito, inconsistência etc [22] e [24].

Por outro lado, os requisitos escritos em LN podem ser imprecisos, incompletos e ambíguos. A informalidade pode ajudar na discussão entre as partes interessadas no início do projeto, mas pode levar a confusão, inconsistência, a falta de automação, ambiguidade e a erros [23] [25],

Para evitar a ambiguidade, uma das soluções foi o desenvolvimento de um Léxico Estendido da Linguagem [26] tornando mais preciso o vocabulário utilizado na especificação de requisitos. Essa linguagem continua sendo utilizada por várias pesquisas para apoiar a modelagem de requisitos na linguagem corrente do contexto [27].

Segundo Bustos [5], alguns pesquisadores citam que a LN não é suficiente madura para ser aplicada na engenharia de requisitos. No entanto, várias propostas têm mostrado resultados promissores. Por exemplo, a mescla de especificações escritas em LN com as especificações escritas em linguagens formais, a utilização de Técnicas de processamento em LN para melhorar a qualidade das especificações de um modo semiautomático, indicando ao engenheiro de requisitos possíveis ambiguidades nas especificações, a Linguagem Natural para Serviços de Informações-intensivos da Web, a Linguagem Natural em Modelagem Conceitual focada em técnicas de modelagem baseadas em PNL para apoiar a aquisição de conhecimento do domínio de aplicação através de documentos e textos de análise [8] [5].

Outro desafio na especificação dos requisitos de software, utilizando da LN, é o grande volume de documentos gerados, notadamente em grandes projetos. A medida que cresce a documentação da especificação, aumentam as dificuldades com a interpretação, a consistência e a manutenção[6].

3 METODOLOGIA

O método adotado neste estudo foi descritivo, de abordagem quantitativa por meio de equações estruturais [28]. A modelagem por equações estruturais é uma técnica estatística multivariada que valora as relações e predição entre variáveis identificadas na literatura como participantes de um constructo experimental. A medida que este constructo vai sendo validado, vai ganhando estabilidade na literatura [29].

O modelo teórico proposto baseia-se na Teoria Unificada de Aceitação e Uso da Tecnologia – Unified Theory of Acceptance and Use of Technology, UTAUT, apresentado na fig. 1. Esse modelo foi elaborado para explicar a aceitação de uma tecnologia por um indivíduo ou grupo [30].

Por meio da base teórica [28][29] e segundo o modelo [30], existem quatro fatores que poderão influenciar a aceitação de uma tecnologia que nesta etapa estão direcionados a aceitação da técnica:

- Expectativa de Desempenho: definida como o grau de ganho do usuário no desempenho de seu trabalho e ou atividade;
- Expectativa de Esforço: explicado pelo grau de energia aplicado para o uso do sistema;

- Influência Social: a influência dos diversos grupos aos quais pertence o usuário sobre o uso de determinada tecnologia; e
- Condições Facilitadoras: relacionada a infraestrutura operacional e técnica para suportar o uso desde sistema.

Fig. 1. O modelo UTAUT (Fonte: [30])

Estas variáveis aparecem como variáveis independentes que predizem a intenção de uso e o comportamento de uso formando relações traduzidas na teoria como hipóteses. Aparecem no modelo variáveis moderadoras como: gênero, idade, experiência e voluntariedade. Para este estudo, se realizou uma adaptação, conforme os objetivos do trabalho, como se observa na fig. 2. Por se tratar de um estudo inicial resolveu-se eliminar as variáveis moderadoras.

Fig. 2. - Modelo Adaptado do original UTAUT (Fonte: própria)

Assim, o modelo geral deste estudo apresenta algumas hipóteses adaptadas (e posteriormente validadas) para o escopo do presente estudo:

- H1: A expectativa de um rendimento elevado leva os analistas a usar a LN na Especificação de Requisitos.
- H2: A expectativa de um baixo esforço leva os analistas a usar a LN na Especificação de Requisitos.

- H3: O uso de LN na Especificação de Requisitos leva a uma maior adesão às necessidades do cliente.
- H4: A organização onde o analista trabalha estimula o uso da LN na Especificação de Requisitos.

Como instrumento de coleta de dados foi utilizado o questionário (Apêndice A) adaptado da escala de UTAUT, validado com (α =0,817). O instrumento possui 17 questões abrangendo as questões relacionadas a expectativa de desempenho, expectativa de esforço, condições facilitadoras objetivando identificar a intenção de uso dos utilizadores da tecnologia.

O questionário foi disponibilizado via Google Docs e enviado a analistas de requisitos de diferentes empresas do ramo de tecnologia em Brasília, entre os meses de maio e outubro de 2015. Foram consideradas as respostas de analistas de empresas de tecnologia localizadas em Brasília, Distrito Federal. A amostra foi de conveniência e foram respondidos 50 questionários. Identificou-se que 66% dos analistas respondentes eram homens e 34% mulheres, todos com idade média de 37 anos e 3 meses. A amostra apresentava uma média de experiência com requisitos de 7 anos e 3 meses.

Os participantes acessaram uma URL indicada e responderam a questões relacionadas indicando o grau de concordância com as afirmações expostas: 1 para discordo inteiramente, 2 para discordo em grande parte, 3 para discordo parcialmente, 4 para neutro, 5 para concordo parcialmente, 6 para concordo em grande parte e 7 para concordo inteiramente.

4 RESULTADOS E DISCUSSÃO

Trabalhar com a mensuração de modelos requer uma série de cálculos específicos que são aplicados em diferentes níveis. O software SmartPLS (*Smart Partial Least Square*) 3.2.3 auxilia na mensuração de modelos através de equações estruturais. O software [31] é uma ferramenta para modelagem de equações estruturais [28] e para a análise de experimentos que exijam múltiplas variáveis ou mesmo relacionar influência direta e indireta de diversos fatores.

Os resultados são agrupados em dois grupos: Confiabilidade e Validade do modelo que demonstram em que grau o modelo é valido e confiável, ou seja, se o modelo for aplicado em mais ocasiões tende a medir com precisão novamente (confiabilidade) e se ele mede o que se propõe medir (validade) e Valoração do modelo de medida que explica o poder de predição das variáveis independentes sobre a dependente (R2) e o grau de influência de cada variável nesta predição (Beta).

4.1 Confiabilidade e Validade do Modelo

A confiabilidade de Item está relacionada a maneira que os indicadores de correlacionam individualmente com suas variáveis. Espera-se que os itens sejam superiores a 0,707 [28].

Esta depuração é realizada uma a uma. Inicialmente, os indicadores EE1, EE2, FC3 e FC4 estavam abaixo de 0,707, porém ao realizar a depuração item a item o indicador FC3 aumentou seu índice para 0,705. Ao se tratar de uma pesquisa inicial resolveu-se manter o item. Uma vez depurado o modelo através da confiabilidade de item o resultado final do modelo (tabela 1).

Tabela 1. – Confiabilidade de Item Depurado

Indicador	Condições Facilitadoras (FC)	Expectativa de Esforço (EE)	Expectativa de Desempe- nho (PE)	Uso de Lingua- gem Natural (BI)	Utilidade na Es- pecificação de Requisitos (IC)
BI1	0,000	0,000	0,000	0,870	0,000
BI2	0,000	0,000	0,000	0,944	0,000
BI3	0,000	0,000	0,000	0,927	0,000
EE2	0,000	0,705	0,000	0,000	0,000
EE3	0,000	0,932	0,000	0,000	0,000
EE4	0,000	0,909	0,000	0,000	0,000
FC1	0,910	0,000	0,000	0,000	0,000
FC2	0,928	0,000	0,000	0,000	0,000
IC1	0,000	0,000	0,000	0,000	0,903
IC2	0,000	0,000	0,000	0,000	0,916
PE1	0,000	0,000	0,737	0,000	0,000
PE2	0,000	0,000	0,731	0,000	0,000
PE3	0,000	0,000	0,809	0,000	0,000
PE4	0,000	0,000	0,709	0,000	0,000

Fonte: Própria

Quanto à confiabilidade de item (Tabela 2), a confiabilidade do modelo depende de outras três variáveis que são: Inflação da Variância (VIF) que explica a gravidade da multicolinearidade, pois em análises que envolvem regressão existe um risco de aproximação alta, gerando uma alta correlação entre variáveis o que poderia alterar resultados no modelo, aceitam-se índices menores que 10 [29]. Os outros dois índices de Confiabilidade dizem respeito a confiança composta e são expressas por dois índices que são Alpha de Cronbach e Confiabilidade Composta. Apesar de ambos os índice medirem o mesmo aspecto, normalmente a confiabilidade composta é menos rígido e muito utilizado em pesquisas iniciais. Neste caso se utilizará ambos os índices que devem ser maiores que 0,7. Para assegurar a Validade do modelo deve-se apresentar sua consistência interna. Deve-se esperar ao menos uma diferença de 50% da Variância Média Extraída (AVE), assegurando independência dos indicadores em relação as demais variáveis [29].

Tabela 2. - Resultados de Confiabilidade e Validade

Variável	VIF	CR	CA	AVE
Condições facilitadoras	1,088	0,916	0,816	0,916
Expectativa de desempenho	1,367	0,835	0,742	0,835
Expectativa de esforço	1,367	0,889	0,834	0.923
Uso da Linguagem Natural	1,088	0,938	0,901	0.938
Utilidade na especificação de requisitos	0,000	0,906	0,792	0,906

VIF(Inflação da Variância Interna), CR(Confiabilidade Composta), CA(Alpha de Cronbach), AVE (Variância Média Extraída). Fonte: Própria

Finalmente o último teste de validade é a Validade Discriminante (Tabela 3). Um modelo possui Validade Discriminante quando a raiz quadrada de AVE de cada variável latente é maior que as correlações das outras Variáveis Latentes.

Tabela 3. - Variância Discriminante

Variáveis	Condições Fa- cilitadoras (FC)	Expectativa de Desempenho (EE)	Expectativa de Esforço (PE)	Uso de Lingua- gem Natural (BI)	Utilidade na Especificação de Requisitos (IC)
FC	0,919				
EE	-0,091	0,747			
PE	0,155	0,518	0,855		
BI	0,285	0,370	0,280	0,914	
IC	0,283	0,155	0,154	0,794	0,910

Fonte: Própria

Pode-se observar que o modelo cumpre com todos os índices de confiabilidade e validade, assegurando que o modelo é válido e confiável.

4.2 Valoração do Modelo Estrutural

Uma vez atestada a confiabilidade e validade do modelo, segue-se para a mensuração e resultados na análise. A valoração do modelo é realizada através da Análise do R^2 e do Beta. O R^2 explica em que grau a variável dependente é predita pela dependente (fig. 3).

Fig. 3. - Modelo Mensurado (Fonte: própria)

Pode-se observar na fig. 3 que a LN é explicada pela Expectativa de Esforço e pela Expectativa de Desempenho em 14,7%, enquanto a Utilidade na Especificação de Requisitos que é o problema central deste estudo foi de predita em 63,4% pelas Variáveis

Uso da Linguagem Natural e Condições Facilitadoras. Para que seja aceitável a predição deve ser de ao menos 10%, sendo reveladora acima de 30% [29]. Neste caso podese se dizer que o estudo tem uma predição reveladora. Os percentuais são derivados dos números que aparecem no nomograma da fig. 3.

Uma vez apresentada o nível das predições é necessário apresentar o grau de influência de cada variável independente em sua dependente. Esta análise é desvelada através dos valores de Beta. A literatura [29] explica que para que as relações que se apresentam como hipóteses devem ter valor igual ou superior a 0,2 para serem significativas. Nesta ocasião apenas o Uso da Linguagem foi significativa para a Utilidade na Especificação de Requisitos, sendo que no Uso da Linguagem apenas a Expectativa de Desempenho é significante, podendo-se afirmar que apenas as relações significantes asseguram hipóteses verdadeiras.

Pode-se também mensurar o percentual de influência destas variáveis multiplicando a o Beta da Variável Latente por suas Correlações. Nesta ocasião (tabela 4). Expectativa do Desempenho colaborou 11,4% na predição do Uso da LN e o Uso da LN e a Utilidade na Especificação dos Requisitos foi de 61,6%.

% de Ex-Variáveis Uso de Lin-Utilidade na Correlação Especificação das Variáveis plicação guagem Natural de Requisitos Latentes Condições Facilitadoras 0,000 0,062 0,283 1,8% Expectativa de Esforço 0,121 0,000 0,280 3,4% 0,000 0,370 Expectativa de Desempenho 0,307 11,4% Uso da Linguagem Natural 0,000 0,776 0,794 61,6%

Tabela 4. - Percentual de Influência das variáveis

Fonte: Própria

Porém, mesmo revelando as hipóteses significantes da pesquisa, em estatística são necessários testes a fim de minimizar a possibilidade de erros nos resultados finais. Em correlações e regressões lineares devem ser avaliadas a possibilidade de Hipóteses nulas. Este teste é realizado através do p-valor. Para rejeitar a nulidade de uma hipótese o p-value deve ser menor ou igual a 0,5, sendo considerados resultados altamente significantes menores ou iguais à 0,01 [29].

Outro teste que também ratifica a significância das hipóteses é o valor T de Student (tabela 5). Para que os valores sejam significativos, exigem-se valores superiores ou iguais a 1,96 [32]. Pode-se perceber que as hipóteses aceitas também foram suportadas nos testes de nulidade (tabela 5).

Uma vez que o modelo foi apresentado como confiável e válido, demonstrando resultados relevantes, pode-se dizer que o estudo agrega valor à literatura sobre o tema. Com a finalidade de medir a bondade do ajuste ou a qualidade do modelo de medida um teste complementar pode ser realizado, uma ratificação dos relevantes resultados aqui obtidos.

A bondade de ajuste é realizada através do GOF (*Goodness of Fit*) e aceita-se valores de GOF maiores ou iguais a 0,5 [33]. Este índice é calculado através da Raiz quadrada

da média de AVE multiplicado pela Raiz quadrada da média de R2. O resultado para esta análise foi 0,54 comprovando a qualidade do modelo aqui apresentado.

Tabela 5. – Teste de hipóteses

Hipóteses	P-value	T_value		Resultado
H1-Expectiva de Desempenho> Uso de Linguagem Natural	0,356	0,598	*	Suportada
H2-Expectativa de Esforço> Uso de Linguagem Natural	0,018	2,383	**	Não suportada
H3-Uso da Linguagem Natural> Utilidade na Especificação de Requisitos	0,000	0,923	***	Suportada
H4-Condições Facilitadoras> Utilidade na Especificação de Requisitos	0,550	9,078	*	Não suportada

*p<.05, **p<.01, ***p<.001

Fonte: Própria

Pode-se observar que as raízes quadradas de AVE foram superiores às cargas fatoriais dos itens, assim pode-se dizer que o modelo é válido e confiável, podendo ser usado em pesquisas futuras que adotem o mesmo instrumento e permitindo avaliar as hipóteses propostas.

Há, portanto, indicativos da visão dos analistas de requisitos com relação ao uso da LN na Especificação de Requisitos. Um dos fatores mais impactantes é a maior adesão às necessidades dos clientes (hipótese 3). Usando LN é provável que a comunicação entre as partes se torne mais transparente, aumentando a qualidade dos requisitos. Isso ratifica os achados citados em outras pesquisas [22].

Outro fator impactante é a expectativa de alto rendimento (hipótese 1). Com a melhor troca de informações entre as partes e, assim, evitando ruídos na comunicação é possível levantar os mesmos requisitos em menos tempo [23] e [25].

Por outro lado, foi encontrada uma baixa correlação entre a expectativa de um baixo esforço no uso da LN para a especificação de requisitos (hipótese 3). O resultado não surpreende, pois é preciso dedicar atenção, métodos e ferramentas para utilizar a LN de forma precisa e sem ambiguidades, sob o risco de produzir uma especificação de difícil leitura [2].

Apesar desses indicadores positivos quando às expectativas de contribuição, os analistas não encontram estímulos nas suas organizações para o uso da LN na especificação de requisitos (hipótese 1). A especificação formal de modelos para os requisitos pode estar sendo preferida pelas organizações para retratar os mesmos conceitos em um nível mais alto de abstração, facilitando a visualização do problema e da sua solução, a rastreabilidade entre os diversos modelos e a aproximação com a fase de desenvolvimento do software [34].

5 CONCLUSÕES

O objetivo geral deste estudo foi analisar a influência dos aspectos de desempenho, esforço, social e condições facilitadoras, com relação a utilização da LN na especificação de requisitos. Foram apresentados breves conceitos sobre Engenharia de Requisitos, requisitos e LN. Após o embasamento teórico foram mensurados os indicadores para saber quais as variáveis incidem mais sobre a opção de utilizar a LN para especificar requisitos. Após a formulação dos indicadores desenvolveu-se questionário com 17 perguntas, com a aplicação deste para engenheiros ou analistas de requisitos.

A pesquisa permitiu validar o instrumento de pesquisa utilizado, recomendando seu uso em pesquisas futuras que tenham o mesmo intuito. Ao mesmo tempo, foi identificada não só a percepção dos analistas de requisitos, mas também o grau que ela se manifesta. Um dos fatores mais impactantes foi a consciência da validade da LN para se obter uma maior adesão às necessidades dos clientes. Isso ratifica os achados citados em outras pesquisas [22]. Outro fator relevante é a expectativa de alto rendimento, pois com a melhor troca de informações entre as partes evitam-se ruídos na comunicação [23] e [25].

Os resultados indicam que os analistas de requisitos reconhecem, portanto, a importância do uso da LN. Por outro lado, os mesmos profissionais não identificam condições facilitadoras para sua utilização mais efetiva. A pesquisa permite mensurar, na realidade considerada, um percentual para essa percepção. Essa constatação permite, portanto, verificar que, a despeito do embasamento técnico e conceitual fornecido pelas pesquisas nos últimos anos, é preciso a realização de investigações científicas voltadas o apoio organizacional sobre a utilização a LN na especificação dos requisitos. Estudos futuros poderiam apontar quais são as razões para esse descompasso entre a visão técnica e a visão gerencial. Uma amostra maior, englobando outras regiões do país, podem complementar o estudo, pois ele é valido para a realidade identifica na capital federal do Brasil.

6 Referências

- IEEE Std. 830: Guide to Software. Institute of Electrical and Eletronics Engineers, IEEE (1998)
- 2. Sommerville, I. Engenharia de Software. 9. ed. São Paulo: Prentice Hall (2011)
- 3. Mich, L., Franch, Franch, M, Pierluigi, N. Market research for requirements analysis using linguistic tools. Requirements Engineering Journal, 40-56 (2004)
- Kroth, E., Dessbesell, G. Emprego de técnicas de representação do conhecimento como forma de apoio à engenharia de requisitos. XVIII Congreso Argentino de Ciencias de la Computación (2012)
- Bustos, R.G. Procesamiento de Lenguaje Natural en Ingeniería de Requisitos: Contribuciones Potenciales y Desafíos de Investigación. CIbSE 2015 : Conferencia Iberoamericana de Software Engineering. Lima, 1-3 (2015)
- Lopes, P.S. Uma taxonomia da pesquisa na área de Engenharia de Requisitos. Dissertação de Mestrado. Universidade de São Paulo (2002)

- Kiyavitskaya, N., Zeni, N., Micha, L., Berry, D.M. Requirements for tools for ambiguity identification and measurement in natural language requirements specifications. Requirements Engineering, v. 13, n. 3, 207-239 (2008)
- 8. Martinez-Barco, P., Metais, E., Liopis, F., Moreda, P. An overview of the Applications of Natural Language to Information Systems. Data & Knowledge Engineering, 109-112 (2013)
- 9. Web of Science. http://login.webofknowledge.com/
- Ramírez-Correa, P. Uso de internet móvil en Chile: explorando los antecedentes de su aceptación a nivel individual. Ingeniare. Revista chilena de ingeniería, v. 22, n. 4, 560-566 (2014)
- 11. Farias, J., Lins, P., Albuquerque, P. A propensão de usuários à adoção de tecnologias: um estudo com usuários e não usuários do Progama Nota Legal no Distrito Federal. XI Simpósio Brasileiro de Sistemas de Informação, Goiânia (2015)
- Visentini, M., Chagas, F., Bobsin, D. Análise Bibliométrica das Pesquisas sobre redes sociais virtuais publicadas em âmbito nacional. Anais do SEPE-Seminário de Ensino, Pesquisa e Extensão da UFFS 5.1 (2015)
- 13. SWEBOK. The Guide to the Software Engineering Body of Knowledge. Los Alamitos, California: IEEE Computer Society (2014)
- Losada, B., Jaramillo, C. Transformación de lenguaje natural a controlado en la educción de requisitos: una síntesis conceptual basada en esquemas preconceptuales. Rev. Fac. Ing. Univ. Antioquia, mar, 132-145 (2014)
- Castro, E.R, Calazans, A.T., Paldês, R.A., Guimarães, F.A. Engenharia de Requisitos: um enfoque prático na construção de software orientado ao negócio. Florianópolis: Bookess, (2014)
- 16. Sagara, V.B., Abiramib, S.. Conceptual modeling of natural language functional requirements. The Journal of Systems and Software, 25-41 (2014)
- 17. Fiorini, S.T., Leite, J.C., De Lucena, C.J. Organizando Processos de Requisitos. In: Workshop em Engenharia de Requisitos, 1-8 (1998)
- Paula Filho, W. Engenharia de Software: fundamentos, métodos e padrões. Rio de Janeiro, LTC (2003)
- 19. Pressman, R. S.; Software Engineering: A Practitioner's Approach, 7 ed., McGraw Hill (2010)
- Lima, Vania Mara Alves. Terminologia, comunicação e representação documentária.
 Dissertação de Mestrado. Universidade de São Paulo (1998)
- 21. Mich, L., Franch, M., Pierluigi, N.I. Market research for requirements analysis using linguistic tools. Requirements Engineering Journal, 40-56 (2004)
- 22. Sayão, M. Verificação e validação de requisitos: Processamento da Linguagem natural e agentes. Tese. Pontificia Universidade Catolica do Rio de Janeiro (2007)
- 23. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W. ARSENAL: Automatic Requirements Specification Extraction from Natural Language. Cornell University Library, Jul., 1-32 (2014)
- Dorigan, J.A. Um modelo de processo de engenharia de requisitos para padronização e aumento da qualidade. Dissertação. Londrina: Universidade Estadual de Londrina (2013)
- Yang, H., Roeck, A., Gervasi, V., Willis, A., Nuseibeh, B. Analysing Anaphoric Ambiguity in Natural Language Requirements. Requirements Eng, maio, 163-189 (2011)
- Leite, J.C.S.P.; Franco, A.P.M. A Strategy for Conceptual Model Acquisition. In: International Symposium on Requirements Engineering, San Diego, Ca. Proceedings... IEEE Computer Society Press, p. 243-246 (1993)

- Engiel, P., Pivatelli, J., Moura, P., Portugal, R., Leite, J.C. Um processo colaborativo para a construção de léxicos: o caso da divulgação de transparência. Anais do 18 WER, Lima, Peru (2015)
- 28. Chin, W. W. The partial least squares approach for structural equation modelling, en Methodology for Business and Management. Modern Methods for Business Research, 295-336, Hillsdale: Lawrence Erlbaum Associates (1998)
- Ramírez, P.E.; Mariano, A.M., Salazar, E.A. Propuesta Metodológica para aplicar modelos de ecuaciones estructurales con PLS: El caso del uso de las bases de datos científicas en estudiantes universitarios. Revista ADMpg Gestão Estratégica, 7(2), artículo 15 (2014)
- 30. Venkatesh, V.; Morris, M. G.; Davis, G. B.; Davis, F.D. User acceptance of information technology: Toward a unified view, MIS Quarterly, 27(3), 425-478 (2003)
- 31. Smart PLS. http://www.smartpls.de/
- 32. Hair Jr, J.F. et al. A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications (2013)
- 33. Tenenahus, M. PLS path modeling. Computational statistics & data analysis, v. 48, n. 1, p. 159-205 (2005)
- 34. Da Silva, L.F., Leite, J.C. Uma Linguagem de Modelagem de Requisitos Orientada a Aspectos. Anais do VIII WER. Porto, Portugal, Junho 13-14, pp 13-25 (2005)

Apêndice A.

Construtos e indicadores do modelo

Expectativa de Desempenho

PE1- A linguagem natural é útil na especificação de requisitos.

PE2 - Utilizar a linguagem natural capacitame a executar a especificação de requisitos mais rapidamente.

PE3 - Utilizar a linguagem natural aumenta minha produtividade na especificação de requisitos.

PE4 - Se eu uso a linguagem natural eu aumento minhas chances de ganhar uma promoção.

Expectativa de Esforço

EE1 - Minha interação com a linguagem natural é clara e compreensiva.

EE2 - É fácil tornar-se experiente em usar linguagem natural para especificar requisitos. EE3 - É fácil usar a linguagem natural para especificar requisitos.

EE4V- É fácil aprender a usar a linguagem natural.

Condições Facilitador as

FC1 - Eu tenho os recursos necessários para usar a linguagem natural na especificação de requisitos.

FC2 - Eu tenho o conhecimento necessário para usar a linguagem natural na especificação de requisitos.

FC3 - A linguagem natural não é compatível com outros métodos que eu uso para especificar requisitos.

FC4 - Uma pessoa específica (ou grupo) está disponível para prover-me assistência nas dificuldades com a linguagem natural.

Uso de Linguagem Natural

BI1 - Eu pretendo continuar usando a linguagem natural para especificar requisitos no futuro.

BI2 - Eu sempre tento usar a linguagem natural na especificação de requisitos.

BI3 - Eu planejo continuar usando a linguagem natural frequentemente na especificação de requisitos.

Utilidade na Especificação de Requisitos

- IC1 Eu já fiz uso da linguagem natural na especificação de requisitos.
- IC2 Eu uso a linguagem natural na especificação de requisitos com muita frequência.

Adaptado do modelo UTAUT