Sayısal İşaret İşleme Laboratuarı

- 1- 1kHz "**köşe**" frekanslı 2.derece bir alçak geçiren filtre 5kHz örnekleme frekansı ile çalışan bir analog/dijital dönüştürücü çıkışına bağlı sayısal işaret işleyici ile gerçekleştirilecektir.
 - a) Programlamada ayrıklaştırılmış blok diyagramdan yararlanılacaktır. Bu amaçla çıkışı y(k), girişi x(k) olarak isimlendirilen, birim gecikme elemanları (z^{-1}) ve katsayı çarpımlarından oluşan blok diyagramı çiziniz.
 - b) T örnekleme periyodu ile çağrıldığında x(t)=x(kT) girişinin okunması ve iç değişkenlerin değerlerine göre y(t)=y(kT) çıkışının atamasını sağlayan bir işlem listesi veriniz. (Ara değişkenler A,B,C... şeklinde keyfi olarak atanabilir).
 - c) 5kHz frekansla kesme üreterek yukarıdaki işlemleri gerçekleyen bir programı ADSP BF533 işlemcisi çalıştırılan deney düzeneği için yazınız.
 - d) Tasarlanan filtrenin kesim frekansını hesaplayınız
 - 2- 5kHz'lik bir sinüsoidal işaret üretilmek istenmektedir. Çıkışa maksimum genlikte 8 Bitlik (0..255 arası değerlerde referans kaynak gerilimine göre oransal çıkış alınmaktadır) atama yapılacak ve T=1ms periyotla işaret değeri güncellenecektir.
 - a) İstenilen işlemi sonsuzda darbe cevaplı (IIR) filtrenin kararsızlığından yararlanılarak sağlayan transfer fonksiyonunu z tanım bölgesinde yazınız.
 - b) İstenilen işaret üretimine karşılık düşen fark denklemi (kT'ye bağlı) vererek T periyodunda çağrılacak işlem listesini çıkartınız.
 - c) ADSP BF533 sayısal işaret işlemcili devrenin (deney düzeneği) bir analog çıkışında işareti analog çıkışa aktaran programı yazınız.

Başarılar

Puanlama: 1-a)15p b)20p c) 15 d) 5p 2-a)15p b)15p c)15p Süre: 90 dakika

		$x(t), t \ge 0$	X(s)
		$\delta(t)$	1
$x(n), n \ge 0, c$ is constant	X(z)	u(t)	$\frac{1}{s}$
c	$\frac{cz}{z-1}$	c	$\frac{c}{s}$
cn	cz	ct	$\frac{c}{s^2}$
. 11	$\overline{(z-1)^2}$	ct^{n-1}	$\frac{c(n-1)!}{s^n}$
c^n	$\frac{z}{z-c}$	e^{-at}	$\frac{1}{s+a}$
nc^n	$\frac{cz}{(z-c)^2}$	$\sin\Omega_0 t$	$\frac{\Omega_0}{s^2 + \Omega_0^2}$
ce^{-an}	$\frac{cz}{z - e^{-a}}$	$\cos\Omega_0 t$	$\frac{s}{s^2 + \Omega_0^2}$
$\sin(\omega_0 n)$	$\frac{z\sin(\omega_0)}{z^2 - 2z\cos(\omega_0) + 1}$	$x(t)\cos\Omega_0 t$	$\frac{1}{2}[X(s+j\Omega_0)+X(s-j\Omega_0)]$
$\cos(\omega_0 n)$	$z[z-\cos(\omega_0)]$	$x(t)\sin\Omega_0 t$	$\frac{j}{2}[X(s+j\Omega_0)-X(s-j\Omega_0)]$
	$\overline{z^2 - 2z\cos(\omega_0) + 1}$	$e^{\pm at}x(t)$	$X(s \mp a)$
		x(at)	$\frac{1}{a}X\left(\frac{s}{a}\right)$