Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2021-2022 Professeur : Zakaria Haouzan

Établissement : Lycée SKHOR qualifiant

Devoir surveillé N°3 1BAC Sciences Mathématiques Durée 2h00

Les deux parties sont indépendantes

Partie 1 : Conductance et conductivité molaire ionique . (3pts)

La conductance d'une solution de chlorure de sodium, de concentration $C_1 = 0, 15 mol. L^{-1}$, est $G_1 = 2, 188.10^{-2} S$. On mesure la conductance G_2 d'une deuxième solution de chlorure de sodium avec le même conductimètre. On obtient $G_2 = 2,947.10^{-2} S$.

- 2. La constante de la cellule du conductimètre est k=86,7m . La distance entre les électrodes de la cellule est L=12,0mm. Calculer l'aire S de chaque électrode.
- 3. Calculer la conductivité σ de la première solution.....(1pt)

Aux bornes d'une cellule plongée dans une solution de chlorure de potassium et branchée sur un générateur alternatif, on a mesuré une tension efficace de 13,7 V et une intensité efficace de 89,3mA.

- 1. Calculer la résistance R de la portion d'électrolyte comprise entre les électrodes.....(1pt)
- 3. La conductivité de cette solution est de 0,512 mS/cm à 20°C. Calculer la valeur de la constante k de cellule définie par : $G = K\sigma$(1pt)

Physique 14pts _____

Les deux parties sont indépendantes

Partie 1 :Travail et énergie interne(6pts)
Choisir la proposition vraie : On fournit 50J à un système, par travail et le système cède au milieu extérieur 100J sous forme d'énergie thermique.
1. L'énergie reçue par le système est : (a) $W = -50J$ (b) $W = 50J$ (1pt)
2. l'énergie cédée par le système au milieu extérieur est : (a) $Q = -100J$ (b) $Q = 100J \dots (1pt)$
3. la variation de l'énergie interne est : (a) $\Delta U = -150 J$ (b) $\Delta U = -50 J$ (c) $\Delta U = 50 J (1pt)$
4. On considère un système énergétiquement isolé et siège des frottements(1pt)
 (a) l'énergie mécanique de ce système est constante (b) l'énergie interne de ce système ne varie pas (c) le système s'échauffe.
5. Répondre vrai ou faux en justifiant votre réponse :
 (a) Le travail d'une force ne peut que faire varier l'énergie cinétique d'un système. (b) Il est possible d'élever la température d'un corps sans chauffage. (c) Les particules constituant un solide cristallin sont immobiles dans un réseau cristallin. (d) Vaporiser un liquide augmente le désordre des molécules qui le constituant.
Partie 2: Energie thermique et Transfert thermique(8pts)
Un calorimètre contient $100g$ d'eau à $18^{\circ}C$. On y verse $80g$ d'eau à $60^{\circ}C$.
Un calorimètre contient $100g$ d'eau à $18^{\circ}C$. On y verse $80g$ d'eau à $60^{\circ}C$. 1. Quelle serait la température d'équilibre si la capacité thermique du calorimètre et de ces accessoires était négligeable ?
1. Quelle serait la température d'équilibre si la capacité thermique du calorimètre et de ces accessoires
 Quelle serait la température d'équilibre si la capacité thermique du calorimètre et de ces accessoires était négligeable?
 Quelle serait la température d'équilibre si la capacité thermique du calorimètre et de ces accessoires était négligeable?
 Quelle serait la température d'équilibre si la capacité thermique du calorimètre et de ces accessoires était négligeable?
 Quelle serait la température d'équilibre si la capacité thermique du calorimètre et de ces accessoires était négligeable?