CIS501 – Lecture 2

Woon Wei Lee Fall 2013, CIS Program, EECS 10:00pm-11:15pm, Sundays and Wednesdays

For today:

- Administrative stuff
 - Presentation list
 - Software
 - E-mail contacts and details
- Course structure
- Core Data Mining concepts
 - Data
 - types and representation
 - · Problems with data
 - Noise
 - Curse of dimensionality

Course structure

Data Mining

- 1.Supervised
 - a. Probability based
 - b. Discriminant function
- 2.Unsupervised
 - a. Clustering
 - b. Visualization, dimensionality reduction
 - c. Collaborative filtering

(1)Prediction and Classification with k-Nearest Neighbors
(2)Classification and Bayes Rule, Naïve Bayes

(3)Decision Trees

- (4) Decision Trees II
- (5)Discriminant Analysis
- (6)Logistic Regression Case
- (7)Neural Networks
- (8) Neural Networks II
- (9)Regularization and training algorithms.

(10)k-Means clustering, hierarchical clustering

- (11) Visualization, Principal Components
- (12)Association rules, recommendation systems: collaborative filtering

2

Types of Data

Numerical

Continuous data

- Any real numerical number,
- Technically with "infinite precision"
- Possibly bounded

Discrete data

- Integers e.g. population, Number of correct/valid responses, etc
- Fixed number of increments (0, 0.5, 1.0, 1.5, 2.0..).
- e.g. histograms, "Digital" data

Types of Data (Cont'd)

- Categorical data
 - Ordinal
 - e.g. Small, Quite small, Normal, Big, Very big, etc
 - Nominal (unordered)
 - e.g. Tastes Salty, Sweet, Peppery, Spicy, Tangy, Sour, etc..
 - Binary data (special case)
 - Yes/No situations
- However, conversions are often possible:
 - Discretization
 - Thresholding (floor/ceiling)
 - Expansion of nominal data to multiple variables

Data representations: (a) Vector format

- Data structured as a series of vectors, so, for e.g.:
 - ..., ("Wei Lee", "CIS", "Associate Professor"),
 ("Hatem", "EPE", "Associate Professor"),
 ("Andreas", "CIS", "Assistant Professor"), ...
- Each vector contains one record and represents an object, transaction or observation.
- Each element within the vector describes one property or attribute of this object.
- Common situation where some elements are unavailable → "missing data"

(b) Geometrical representation

 For numerical data, common to use a "scatter plot"

Advantages

- Allows structure of data to be intuitively represented
- e.g. for classification easy to determine separability. Visual clustering, etc.

Disadvantages

- Only really viable for 2D or 3D data
- Really only useful for data visualization

(c) Matrix representation

Closely related to spreadsheets

- Basically, concatenation of vector-formatted data
- i.e. $n_{rows} \times n_{columns}$
- · In general, each row represents one record
- Each column contains one "variable", "field", "feature" or "dimension"

Characteristics of data

- Many rows/Few columns over-determined
- Many rows/Many columns
- Few rows/Many columns under-determined

Q: Other data representations?

Noise/Data contamination

Noise: random error or unpredictability in a variable

- Most commonly in the form of an additive component, (as shown on right)
- May also manifest in other forms, e.g. multiplicative noise, and as spoilt or missing data values.
- Distinguish between observation noise, process and modelling noise.

Causes:

- Faulty or damaged instruments
- Artifacts and faulty data collection (human error)
- Physical limits in data collection (finite resolution, for e.g.)

Solutions – two general approaches

- Noise resistant algorithms, based on probabilistic principles
- Pre-processing/filtering (sometimes manual)

Curse of Dimensionality

 Volume of a space increases exponentially with the number of dimensions:

 General consequence, the "complexity" of a problem increases exponentially with the dimensionality of the data

Effects of the Curse (1/3)

- Optimization: find minimum of a function
 - Brute-force solution search all states!
- Explosion in the number of states to search
 - Consider a line in [-5,5]
 - Using a grid search (spacing one), to cover this line we would require 10 points
 - For a square, this would be 100, cube 1000, etc.

Effects of the Curse (2/3)

- Increase in the number of parameters to tune
 - Models have more degrees of freedom → larger parameter spaces.
 - For e.g., 3 dimensional polynomial curve fitting:

$$y(x, w) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \dots$$

...+
$$\sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$$

- Difficulty in estimating the distributions of the data
 - Number of parameters for a gaussian distribution is n+n(n-1)/2
 - Corresponding increase in the number of data points required

Effects (3/3)

Sparseness in the space of data

Insufficient data →large uncertainty in models

Data is singular

- Data dimension exceeds the "intrinsic" dimensionality of the data
- Numerical issues
- Many of the dimensions are redundant → unnecessary wastage of computational power
- Addition of dimensions beyond the "intrinsic dimensionality of the data results in addition of noise

"Distances" in data become less useful

- Almost all points are 'far away" kills non-parametric methods!
- Fundamental property of high dimensional spaces.

