

# LA32精简版开源开发平台 chiplab

汪文祥 陈泽帅





- 01 LA32精简版及百芯计划
- 02 chiplab组成及功能概述
- 03 chiplab使用流程介绍
- 04 chiplab后续研发计划



### 目录

- 01 LA32精简版及百芯计划
- 02 chiplab组成及功能概述
- 03 chiplab使用流程介绍
- 04 chiplab后续研发计划



#### ■ 龙芯自主指令系统架构 LoongArch



- "充分考虑兼容需求的自主指令系统"
- 采用基础部分加扩展部分的整体架构
  - 基础部分(指令337条)
  - 虚拟机扩展(LVZ, 指令~10条)
  - 二进制翻译扩展(LBT,指令~170条)
  - 128位SIMD扩展(LSX,指令~700条)
  - 256位SIMD扩展(LASX,指令~700条)
- 32位定长指令编码风格
  - 3种无立即数指令格式
  - 7种有立即数指令格式
- 32个通用寄存器
- 32个浮点/向量寄存器



| 3 | 3 : | 2 | 2 | 2 7 | 2 | 2 5 | 2 | 2 | 2 2 | 2 | 2 | 1  | 1 8 | 1 7 | 1 | 1 5 | 1 4 | 1 | 1 2 | 1  | 1 | 0 | 0 8 | 0 7 | 0           | 0 5 | 0 | 0 | 0 2 | 0          | 0 |
|---|-----|---|---|-----|---|-----|---|---|-----|---|---|----|-----|-----|---|-----|-----|---|-----|----|---|---|-----|-----|-------------|-----|---|---|-----|------------|---|
|   |     |   |   |     |   |     |   |   |     |   |   |    |     |     |   |     |     |   |     |    |   | A | 47  | rj  | J-,         | 1   | 1 | _ | rd  | $\nearrow$ |   |
|   |     |   |   |     |   |     |   |   |     |   |   |    |     |     |   |     |     |   | rk  |    | A | 1 |     | rj  | 1           | /   |   |   | rd  |            |   |
|   |     |   |   |     |   |     |   |   |     |   |   | fa |     |     |   |     | fk  |   |     | fj |   |   |     | fd  |             |     |   |   |     |            |   |
|   |     |   |   |     |   |     |   |   |     |   |   |    |     |     |   |     |     |   |     |    | Œ | V | 1   | / / | $^{\prime}$ | _   | 1 |   |     | $ \angle $ |   |

| 3 3 2 2 2 2 2 2 2<br>1 0 9 8 7 6 5 4 | 2 2 2 2 1 1<br>3 2 1 0 9 8 | 1 1 1 1 1 1<br>7 6 5 4 3 2 | 1 1<br>1 0 | 0 0 0 0 0<br>9 8 7 6 5 | 0 0 0 0 0 0 4 3 2 1 0 |
|--------------------------------------|----------------------------|----------------------------|------------|------------------------|-----------------------|
|                                      |                            | IMM                        | 5//        | /rj/\                  | rd                    |
|                                      |                            | IMM8                       | MY         |                        | rd                    |
|                                      | /                          | rd                         |            |                        |                       |
|                                      | (rj                        | rd                         |            |                        |                       |
|                                      | rj                         | rd                         |            |                        |                       |
|                                      | /rj/ \_                    | IMM[20:16]                 |            |                        |                       |
|                                      | IMM[                       | [15:0]                     | IMM        | [24:16]                |                       |



#### ■ 面向高校教学科研的LoongArch32 Reduced



- 基于LoongArch 32位版本的精简子集——LoongArch32 Reduced
- 用户态:保留典型应用中最常用的指令
  - 整数指令~50条,访存指令仅"基址+偏移"寻址方式且要求地址对齐
  - 浮点数指令可以不实现,也可以只实现单精度部分
  - 原子同步指令仅LL/SC,软件维护指令与数据Cache的数据一致性
- 核心态:支持主流类Unix操作系统
  - 仅包含PLV0和PLV3两个特权等级
  - 支持例外与中断,但入口为同一个
  - 支持TLB MMU, 软件负责TLB重填
- 软件生态:维护一个独立的小系统
  - QEMU、GCC、······
  - U-boot, Linux kernel, busybox





- 龙芯"百芯计划"旨在让高校学生参与完成处理器芯片全流程设计。参与项目的高校学生将:
  - 基于LA32精简版指令集的进行IP核开发;
  - 并将其与总线、外设接口等IP(如AMBA总线、SDRAM、SDIO、MAC、SPI、I2C、UART、GPIO等)一起集成为一款SoC;
  - 完成裸机执行环境、U-boot、Linux-kernel等基础软件的迁移适配;
  - 经验证通过的SoC设计将进一步完成后端物理设计并最终流片。



#### 面向处理器芯片全流程设计实践

龙芯中科

设计与验证处理器核结构

设计与验证构

与系统级验证 与系统级验证

IP核物理设计

计 全芯片物理设 证系统调试与验片各功能进行 医牙发板对芯

决方案 具体问题的解 基于芯片研制

IP核结构设 计 → SoC芯片结 构设计 芯片后端物 理设计

LS1C0300B
DP425704 FJ001
CHN F J 431
LOONGSON

提供物理设计 参考设计flow; 提供核外部分 的GDS。 芯片流片 封装 硅后系统 验证 应用系统 开发



提供处理器核 的验证环境与 测试用例; 提供参考处理 器核设计 提供成套外围 IP的代码; *提供各接口的 驱动程序*; 提供专用 FPGA实验平

PWM IZC



提供开发板参 考设计







- 01 LA精简版及百芯计划
- 02 chiplab组成及功能概述
- 03 chiplab使用流程介绍
- 04 chiplab后续研发计划





chiplab项目致力于构建基于 Loongarch primary的SoC敏捷开发 平台是基于LoongArch32 Reduced 指令集的处理器核开源开发平台

六大组件

- chip
  - 目前有四套顶层SoC代码,可用于纯仿真、FPGA实现或ASIC实现。
- IP
  - · 搭建SoC所需的IP,包括处理器核、设备控制器以及互联模块的代码
- software
  - 基本功能测试集(func)
  - 裸金属环境下的性能测试程序(dhrystone、coremark、.....)
  - 随机指令序列
  - linux内核
- toolchains
  - gcc工具链
  - NEMU-LA32R
  - newlib-LA32R
- sims
  - 仿真工作目录以及存放 testbench 源码(基于 verilator仿真工具)
- fpga
  - 用于FPGA综合实现及下板(目前仅支持 vivado)





#### • 用于仿真的SoC



- AXI rand delay 为创造更为真实的仿真环境,在AXI中引入随机延迟
- AXI2sram 将AXI转换为sram接口,能够直接与 testbench中由C++模拟的内存进行交互
- 该环境仅支持添加了AXI总线的处 理器核





• 用于"龙芯CPU设计与体系结构教学实验系统"的SoC



- 处理器核对外有一个AXI接口,连接到AXI互联网络上与外设相连。对外连接的设备共有6个: SPI Flash、GPIO(数码管、LED灯、开关灯)、网口、DDR3颗粒和串口
- 目前支持其它FPGA开发板包括: 百芯开发板、Nexys4ddr





- 搭建SoC所需的开源IP, 其中myCPU目录存放处理器核代码
- 目前已有一款单发射五级流水的公版处理器核,能够通过仿真及FPGA上板测试
- 单发射五级流水简介
  - TLB大小为32项,全相连结构,随机替换策略
  - 指令和数据Cache为两路组相连,每路大小为4KB,Cache行大小为16 bytes
  - 分支预测器, 32项BTB及8项RAS
  - 可运行频率50MHz
  - 对外接口为32位AXI接口





#### • 目录结构







• 作为存放测试用例的目录,提供的程序包括:

• func

分为9个实验阶段,共79个测试点

• dhrystone

裸金属环境下的性能测试程序

coremark

• my\_program

可编写C程序,运行于裸机环境下,支持的库函数包括malloc、times、printf(通过模拟SoC中的假串口打印)等,支持软浮点

random\_boot

进行随机指令测试时所用的启动代码

rtthread

RT-Thread操作系统的内核。目前仅适配了仿真SoC

• linux

Linux内核,目前可启动busybox,与testbench配合能够与终端进行交互。busybox上存有SPEC2000、unixbench、embench等性能测试程序





• 目录结构



- 仿真流程相当简易,configure对编译参数及运行参数进行配置后,make即可开始整个仿真流程
- 拥有KHz级别的仿真速度,使得内核的启动运行成为可能。具体的频率由机器的性能决定
- 设置了充足的可配置化内容,使得环境更为灵活,适配尽可能多的使用场景,便于用户进行开发、验证、调试





• 该目录下内容由用户根据README中的指示单独自行下载

- gcc工具链 最新版配有glibc,可直接编译运行于内核的程序,可编译内核
- NEMU 基于NEMU开发的LA32R版本,配合difftest功能。最新版可用于内核的开发
- newlib 轻量C库,用于编译C程序运行于裸机环境下,实现的底层系统函数包括sbrk、times、print,支持软浮点,能够满足大部分需求





• 进入FPGA开发板对应目录,打开vivado项目,添加处理器核设计,即可进行综合下板的流程

目录结构





### 目录

- 01 LA精简版及百芯计划
- 02 chiplab组成及功能概述
- 03 chiplab使用流程介绍
- 04 chiplab后续研发计划





https://chiplab.readthedocs.io/zh/latest/



### 目录

- 01 LA精简版及百芯计划
- 02 chiplab组成及功能概述
- 03 chiplab使用流程介绍
- 04 chiplab后续研发计划

### ■ 后续研发计划



• chip组件: 依据百芯计划参考SoC的流片版本完善代码

• ip组件: 开源参考处理器核持续完善(浮点、多核);

依据百芯计划参考SoC的流片版本完善外设IP

• software组件: 继续丰富测试用例;内核集成各外设驱动;提供buildroot类似的环境

• fpga组件: 完善百芯计划FPGA实验平台的综合实现参考流程

• 择机加入后端设计流程





## 谢谢!

