AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (currently amended) $\frac{\text{Device}}{\text{Device}}$ A device for determining spatial co-ordinates of an object(s) $\frac{\text{(2)}}{\text{with}}$ comprising:
- a projector (3) which projects onto the object (2) a pattern (4) with known projection data; [[,]]
- a camera (6) which creates an object image (8) of the pattern (4) projected onto the object (2);[[,]] and with
- a data processing unit (7) connected downstream from the camera (6), which determines spatial co-ordinates of the object (2) from the object image (8) and the known projection data; [[,]] and

characterized in that,

at least one further camera (6) which creates a further object image (9) and the data processing unit (7) determines additional spatial co-ordinates of the object (2) from the object images (8, 9) by means of a triangulation method, [[and]] the pattern (4) contains redundant encoded projection data, and the data processing unit (7) restricts a search for corresponding image points (S₁, S_r) to problem areas in which an evaluation of the

redundant data of the object images (8, 9) produces an erroneous result.

2. (canceled)

3. (currently amended) Device The device as claimed in claim 1, characterized in that, Epipolar wherein epipolar lines (16, 17) pass through a plurality of marks of the pattern (4).

4. (canceled)

- 5. (currently amended) $\frac{A \text{ method}}{A \text{ method}}$ for determining spatial co-ordinates of an object $\frac{(s)}{(s)}$, $\frac{(2) \text{ with the following}}{(s)}$ steps comprising:
- Projection of projecting a pattern (4) with known projection data onto an object (2);
- Creation of creating an object image (8) with [[the]] aid of a camera (6); [[and]]
- Determination of determining the spatial co-ordinates from the known projection data in a data processing unit (7); [[,]]

characterized in that,

<u>recording</u> with [[the]] aid of a further camera (6) a further object image (9) is recorded and that, if the spatial co-ordinates are determined incorrectly, additional spatial co-ordinates of

the object (2) are determined on [[the]] \underline{a} basis of the projection data and one of the pattern object images (8, 9) by searching for corresponding image points (S_1 , S_r) in the object images (8, 9) and a subsequent triangulation.

- 6. (currently amended) Method The method as claimed in claim 5, characterized in that, wherein corresponding pixels (S_1, S_r) are searched for along [[the]] epipolar lines (16, 17).
 - 7. (canceled)
 - 8. (canceled)
 - 9. (canceled)
- 10. (new) A method for determining spatial co-ordinates of an object(s), comprising:
- projecting a pattern (4) with known projection data onto an object (2);
- creating an object image (8) with aid of a camera (6);
- determining the spatial co-ordinates from the known projection data in a data processing unit (7); and
- recording with aid of a further camera (6) a further object image (9) and that, if the spatial co-ordinates are determined

incorrectly, additional spatial co-ordinates of the object (2) are determined on a basis of the projection data and one of the object images (8, 9) by searching for corresponding image points $(S_1,\ S_r)$ in the object images (8, 9) and a subsequent triangulation,

wherein the pattern (4) contains redundant encoded projection data, and the data processing unit (7) restricts the search for corresponding image points (S_1, S_r) to problem areas in which an evaluation of the redundant data of the object images (8, 9) produces an erroneous result.

- 11. (new) The method as claimed in claim 10, wherein corresponding pixels $(S_1,\ S_r)$ are searched for along epipolar lines (16, 17).
- 12. (new) The method as claimed in claim 10, wherein epipolar lines (16, 17) pass through a plurality of marks of the pattern (4).