PAR - Unidad 6

Conexión de LAMs: protocolos de la capa de enlace de datos:

JEEE 302,3 - ETHERNET

Ethernet - IEEE 802.3

- El estándar LAN más ampliamente usado.
- **DIX Ethernet** por DEC, Intel y Xerox en 1978, en 1983 el IEEE 802.3.
- MAC: Acceso Múltiple con Detección de Portadora y Detección de Colisiones (CSMA/CD):
 - competencia por el acceso al medio de forma aleatoria y equitativa.
- Señalización Manchester a 20 Mhz.
- Media Independent Interface (MII): permite conectar distintos tipos de medios físicos a la misma MAC (se empezó a usar con fast ethernet)
- Herramientas: mii-tool (view, manipulate mediaindependent interface status), ethtool (query or control network driver and hardware settings)[Cisco Troubleshooting]

CSMA/CD - Descripción

- CSMA: las estaciones escuchan el medio compartido antes de transmitir.
- CD: las estaciones siguen escuchando mientras transmiten por si hay colisión.
- Algoritmo CSMA/CD:
 - si el medio está libre, transmite;
 - si no, escucha hasta que lo esté y, entonces, transmite;
 - si se detecta una colisión, detiene la transmisión de la trama y emite una secuencia no válida de 32-48 bits (jam signal) que corromperá la trama que puedan estar recibiendo el resto de estaciones (fuerza la colisión) y cesa la transmisión,
 - entonces espera un tiempo dictado por el retroceso exponencial binario y retransmite.

CSMA/CD - Operación

Detección de Colisión

• En la topología física en bus:

- la colisión produce una señal de mayor tensión,
- la colisión se detecta si la señal del cable es mayor que la señal de una única estación,
- la señal se atenúa con la distancia,
- se utiliza **cable coaxial** con límite de 500m (10Base5) o 200m (10Base2).
- En la topología física en estrella (hub):
 - si hay actividad en más de 1 puerto, colisión.
 - se usa cable UTP cat3 con límite de 100m (10BaseT).

Retroceso Exponencial Binario

- Se emplea tanto en Ethernet como en IEEE 802.3.
- Se basa en el concepto de ranura de tiempo (time slot):
 - es el tiempo máximo que tarda un nodo en detectar una colisión [== doble del tiempo de propagación en la distancia máxima entre nodos (5*500m) =~ 50µs],
 - es 51.2μs (512b) para 10Mbps (y 5.12μs para 100Mbps).
- Una estación, cuando detecta una colisión, intenta retransmitir la trama siguiendo este método:
 - tras la 1^a colisión, se espera aleatoriamente 0 ó 1 ranura,
 - tras i (<=10) colisiones, se espera entre 0 y 2ⁱ-1 ranuras,
 - de la 11^a a la 16^a colisión, entre 0 y 2¹⁰-1 ranuras,
 - después de 16 intentos sin éxito, se aborta la operación.
- Método simple y eficiente para adaptarse a muy diferentes patrones de tráfico en este tipo de red.

Tramas Ethernet y 802.3

Fig. 4-17. Frame formats. (a) DIX Ethernet. (b) IEEE 802.3.

Trama IEEE 802.3 - Formato

SFD = Start of frame delimiter

DA = Destination address

SA = Source address

FCS = Frame check sequence

Trama DIX/802.3 - Cabecera

- Preámbulo (8 bytes)
 - DIX: 8 x (10101010)
 - $-802.3:7 \times (10101010) + 1 \times (10101011)$
- Dirección MAC de **destino** (6 bytes)
- Dirección MAC de origen (6 bytes)
- Tipo de protocolo (DIX) o Longitud de la carga (802.3)
 (2 bytes). Si el valor del campo es
 - menor que 0x0600 (1536 B) es la **longitud** (==> 802.3)
 - y el **tipo** va en la cabecera LLC
 - 0x0800 (protocolo IP) o mayor es el **tipo** (==> DIX)

Trama IEEE 802.3 - Carga

- Sólo en el caso de una trama IEEE 802.3, se incluye una cabecera LLC (802.2)
- **Datos** (0-1500 bytes)
 - MTU (Maximum Transmission Unit) de Ethernet == 1500
- Relleno (0-46 bytes)
 - se añade los bytes necesarios cuando la trama no alcanza la longitud mínima de 64 bytes (sin contar el preámbulo)
 - este tamaño mínimo 512 bits es necesario para que funcione la detección de colisiones
- FCS (Frame Check Sequence) (4 bytes)
 - CRC de 32 bits calculado sobre todos los campos excepto el preámbulo (y el propio FCS)
 - normalmente eliminado por la tarjeta de red, al igual que el preámbulo ==> no se ve en los analizadores de red

Versiones Ethernet - 802.3

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2 000 m	1024	Best between buildings

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps (Cat 5 UTP)
100Base-FX	Fiber optics	2 000 m	Full duplex at 100 Mbps; long runs

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	2 5 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Ethernet 10Mbps - 802.3					
	10BASE5	10BASE2	10BASE-T	10BASE-FP	
Transmission medium	Coaxial cable (50 ohm)	Coaxial cable (50 ohm)	Unshielded twisted pair	850-nm optical fiber pair	
Signaling technique	Baseband (Manchester)	Baseband (Manchester)	Baseband (Manchester)	Manchester/on-off	

Bus

185

30

Star

100

0.4 to 0.6

Star

500

33

62.5/125 μm

Bus

500

100

10

Topology

length (m)

Maximum segment

Nodes per segment

Cable diameter

(mm)

Fact Ethernet

rast ethernet - rece ouz.su					
	100BASE-TX		100BASE-FX	100BASE-T4	
Transmission medium	2 pair, STP	2 pair, Category 5 UTP	2 optical fibers	4 pair, Category 3, 4, or 5 UTP	
Signaling technique	MLT-3	MLT-3	4B5B, NRZI	8B6T, NRZ	

100 Mbps

100 m

200 m

100 Mbps

100 m

400 m

100 Mbps

100 m

200 m

100 Mbps

100 m

200 m

Data rate

Maximum

segment length

Network span

100BASE-T4

- 100 Mbps sobre UTP Cat 3 y 25 Mhz:
 - ventaja por la gran cantidad ya instalado,
 - desventaja por velocidad máxima de 33,3Mbps/par.
- Se utilizan los cuatro pares de cables trenzados y solo podrá ser quasi-fullduplex:
 - dos pares se configuran para transmisión unidireccional y otros dos para bidireccional (negociables)
 - el flujo de datos se divide para transmitir en uno de los sentidos entre tres pares, cada uno a 33,3 Mbps
 - el cuarto par se utiliza para transmitir en el otro sentido
- Usa un esquema de señalización ternario (8B6T)

100BASE-TX/FX

- Comunicación fulldupleX.
- Con tasa de datos unidireccional de 100 Mbps sobre un único par trenzado (T) o fibra óptica (F)
- 2 especificaciones:
 - 100BASE-TX
 - usa dos pares trenzados para tx y otros dos para rx => full-duplex (siempre que se use un switch),
 - cable STP y UTP Cat. 5,
 - y señalización 4B5B o MTL-3.

100BASE-FX

- usa una fibra óptica para tx y otra para rx,
- y señalización 4B5B-NRZI.

100BASE - Opciones

Operación Full-Duplex

- Ethernet tradicional es half-duplex.
- En modo full-duplex, la estación puede transmitir y recibir simultáneamente:
 - a 100 Mbps da una tasa de transferencia teórica de 200 Mbps.
- Las estaciones deben tener tarjetas full-duplex y conectarse con un switch:
 - cada estación constituye un dominio separado de colisión,
 - el algoritmo CSMA/CD se desactiva,
 - se sigue usando el mismo formato de trama.
- Se admiten mezclas de 10 y 100 Mbps.

Gigabit Ethernet- 802.3z/ab

Gigabit Ethernet - Diferencias

- Mayor tamaño de la trama mínima para equipararla a la velocidad de transmisión:
 - 4096 bits en vez de los 512 bits para 10/100Mbps.
- Permite transmitir a un mismo nodo varias tramas consecutivas (jumbo frames) sin necesidad de dejar el control del acceso al medio (CSMA/CD).
- Estas mejoras no son necesarias si se usa un switch.

Gigabit Ethernet - C. Física

10Gbps Ethernet

- Creciente interés en Ethernet 10Gbps:
 - para uso en troncales de alta velocidad,
 - para conectar granjas de servidores, ...
- Alternativa a ATM y otras tecnologías WAN.
- Tecnología uniforme para LAN, MAN o WAN.
- Ventajas de Ethernet 10Gbps:
 - no es cara y evita el consumo de ancho de banda por la conversión entre tramas Ethernet y células ATM,
 - IP y Ethernet juntos ofrecen QoS y control de tráfico parecido a ATM,
 - hay variedad de interfaces ópticos estándares.
- Y como puente al Terabit Ethernet: 100GbE

10Gbps Ethernet - Esquema

10Gbps Ethernet - Opciones

PoE y Normas de cableado

- Power over Ethernet (PoE, IEEE802.3af) permite suministrar alimentación eléctrica a un dispositivo con el mismo cable que se utiliza para la conexión de red
- Es convencional cablear las redes ethernet (y muchos otros tipos) según el estándar TIA-568B:
 - TIA/EIA-568B comprende tres estándares que tratan el cableado comercial para productos y servicios de telecomunicaciones: ANSI/TIA/EIA-568-B.1-2001, -B.2-2001 y -B.3-2001
 - sustituye al conjunto de estándares TIA/EIA-568-A que han quedado obsoletos.
- Se especifican desde el correcto tendido de cables en un edifico (sistema de cable estructurado) hasta la asignación de los cables UTP a los conectores RJ45: