HW1

Kevin Chang

September 15, 2025

Terminology

- ullet System state Y: an unknown random variable.
- \bullet Measurement X: an observed random variable statistically related to Y.
- Estimator $\hat{Y}(X)$: a random variable defined as a function of X.
- Probability:

- Prior: P[Y]

- Posterior: $P[Y \mid X]$

- Likelihood: $P[X \mid Y]$

• Objective (Risk):

$$R[\hat{Y}] = \mathbb{E}[loss(\hat{Y}(X), Y)]$$

• Optimal Estimator (Posterior form):

$$\hat{Y}(x) = \mathbb{1} \bigg\{ P[Y = 1 \mid X = x] \ \geq \ \frac{loss(1,0) - loss(0,0)}{loss(0,1) - loss(1,1)} \, P[Y = 0 \mid X = x] \bigg\}$$

- Proof:

$$\mathbb{E}[loss(\hat{Y}(X),Y)] = \int_{-\infty}^{\infty} \mathbb{E}[loss(\hat{Y}(X),Y) \mid X=x] f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \left(\mathbb{E}[loss(\hat{Y}(X),1) \mid X=x] P[Y=1 \mid X=x] + \mathbb{E}[loss(\hat{Y}(X),0) \mid X=x] P[Y=0 \mid X=x] \right) f_X(x) dx$$

- Thus, $\hat{Y}(x)$ is chosen according to the label (0 or 1) that minimizes the conditional expected loss.
- Optimal Estimator (Likelihood ratio form):

$$\hat{Y}(x) = \mathbb{I}\left\{\frac{p(x \mid Y = 1)}{p(x \mid Y = 0)} \ge \frac{p_0\left(loss(1, 0) - loss(0, 0)\right)}{p_1\left(loss(0, 1) - loss(1, 1)\right)}\right\}$$

- Proof by rearrangement of the posterior condition.
- This corresponds to a likelihood ratio test.

Types of errors and successes

• True Positive Rate: $P[\hat{Y} = 1|Y = 1]$

• False Negative Rate: $P[\hat{Y} = 0|Y = 1]$

• False Positive Rate: $P[\hat{Y} = 1|Y = 0]$

• True Negative Rate: $P[\hat{Y} = 0|Y = 0]$

• Precision: $P[Y=1|\hat{Y}=1]$

Receiver Operating Characteristic(ROC) curve

 \bullet Example

Figure 1: The ROC curve is plotted in the FPR-TPR plane.

• Lemma 2 (Neyman–Pearson Lemma) Suppose the likelihood functions $p(x \mid y)$ are continuous. Then the optimal probabilistic predictor that maximizes TPR subject to an upper bound on FPR is a deterministic likelihood ratio test.