Arrange Tables

Keys and values

The distinction between key and value attributes is very relevant to visually encoding table data.

- A key an independent attribute
 - o used as a unique index to look up items in a table
 - categorical or ordinal
- a value is a dependent attribute: the value of a cell in a table
 - o values can be categorical, ordinal, or quantitative

How to Arrange?

- Arrange
 - → Express
 - \longrightarrow
 - → Order
 - ____
 - → Use

→ Separate

→ Align

How ???

Manipulate

Facet

Reduce

Change

Juxtapose

→ Filter

→ Select

Partition

→ Aggregate

→ Navigate

→ Superimpose

Embed

Arrange Tables

→ Express Values

- → Separate, Order, Align Regions
 - → Separate

→ Order

→ Align

Axis Orientation

→ Rectilinear

→ Parallel

→ Radial

- → Layout Density
 - → Dense

→ Space-Filling

- → 1 Key List
 - -----
- → 2 Keys Matrix

- → 3 Keys Volume
- → Many Keys

Recursive Subdivision

Keys and Values

- key
 - -independent attribute
 - -used as unique index to look up items
 - -simple tables: I key
 - -multidimensional tables: multiple keys
- value
 - -dependent attribute, value of cell
- classify arrangements by key count
 -0, I, 2, many...

→ 3 Keys

Volume

→ Tables

→ Multidimensional Table

→ Many Keys Recursive Subdivision

Scatterplot

- · express values
 - -quantitative attributes
- ____

Express Values

- no keys, only values
 - -data
 - · 2 quant attribs
 - -mark: points
 - -channels
 - horiz + vert position
 - -tasks

- · find trends, outliers, distribution, correlation, clusters
- -scalability
 - · hundreds of items

Some Keys – Categorical Regions

- regions: contiguous bounded areas distinct from each other
 - -using space to **separate** (proximity)
 - -following expressiveness principle for categorical attributes
- use ordered attribute to order and align regions

Bar chart

- one key, one value
 - -data
- ne key, one value

 data

 I categ attrib, I quant attrib
 - -mark: lines
 - -channels
 - · length to express quant value
 - · spatial regions: one per mark
 - separated horizontally, aligned vertically
 - ordered by quant attrib
 - by label (alphabetical), by length attrib (data-driven)
 - -task
 - compare, lookup values
 - -scalability
 - · dozens to hundreds of levels for key attrib

Separated and aligned but not ordered

LIMITATION: Hard to know rank. What's the 4th most? The 7th?

Separated aligned and ordered

Line chart / dot plot

- one key, one value
 - -data
 - 2 quant attribs
 - -mark: points
 - line connection marks between them
 - -channels
 - · aligned lengths to express quant value
 - separated and ordered by key attrib into horizontal regions

- find trend
 - connection marks emphasize ordering of items along key axis by explicitly showing relationship between one item and the next

-scalability

hundreds of key levels, hundreds of value levels

Choosing Bar vs Line charts

- depends on type of key attrib
 - -bar charts if categorical
 - -line charts if ordered
- do not use line charts for categorical key attribs
 - -violates expressiveness principle
 - implication of trend so strong that it overrides semantics!
 - "The more male a person is, the taller he/she is"

after [Bars and Lines: A Study of Graphic Communication. Zacks and Tversky. Memory and Cognition 27:6 (1999), 1073–1079.]

Heatmaps

- two keys, one value
 - -data
 - 2 categ attribs (gene, experimental condition)
 - I quant attrib (expression levels)
 - -marks: area
 - separate and align in 2D matrix
 - indexed by 2 categorical attributes
 - -channels
 - color by quant attrib
 - (ordered diverging colormap)
 - -task
 - find clusters, outliers
 - -scalability
 - 1M items, 100s of categ levels, ~10 quant attrib levels

→ Many Keys

Recursive Subdivision

Axis Orientation

→ Rectilinear

→ Parallel

→ Radial

Scatterplot matrix, Parallel coordinates

- scatterplot matrix (SPLOM)
 - -rectilinear axes, point mark
 - -all possible pairs of axes
 - -scalability
 - one dozen attribs
 - dozens to hundreds of items
- parallel coordinates
 - -parallel axes, jagged line representing item
 - -rectilinear axes, item as point
 - axis ordering is major challenge
 - –scalability
 - dozens of attribs
 - hundreds of items

Parallel Coordinates					
Math	Physics	Dance	Drama		
100	†	1	1		
90-					
80-	1				
70-					
60-	\//				
50-	24/				
40-	7				
30-					
20-					
10-					
0-					

Parallel Coordinates

-	-		
- 1	m,	ы	ı
- 1	1	E 11	ш
	u		٠.

Math	Physics	Dance	Drama
85	95	70	65
90	80	60	50
65	50	90	90
50	40	95	80
40	60	80	90

Correlation

- scatterplot matrix
 - -positive correlation
 - · diagonal low-to-high
 - -negative correlation
 - diagonal high-to-low
 - -uncorrelated
- parallel coordinates
 - positive correlation
 - parallel line segments
 - -negative correlation
 - · all segments cross at halfway point
 - -uncorrelated
 - scattered crossings

[A layered grammar of graphics.Wickham. Journ. Computational and Graphical Statistics 19:1 (2010), 3–28.]

[Hyperdimensional Data Analysis Using Parallel Coordinates.

Wegman. Journ. American Statistical Association 85:411

(1990), 664-675.]

Radial bar chart, star plot

- radial bar chart
 - -radial axes meet at central ring, line mark
- star plot
 - -radial axes, meet at central point, line mark
- bar chart
 - -rectilinear axes, aligned vertically
- accuracy
 - -length unaligned with radial
 - · less accurate than aligned with rectilinear

