05/02/2017

Distribuzione dell'energia elettrica

Progetto impianto MT/BT

Michy Alice

POLITECNICO DI MILANO

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE CORSO DI LAUREA TRIENNALE IN INGEGNERIA ELETTRICA

Relazione dimensionamento impianto BT e linea MT

La presente relazione contiene la descrizione della procedura seguita e le ipotesi di progetto per il dimensionamento dei seguenti elementi:

- 1. Linee BT (di proprietà dell'utente BT).
- 2. Impianto di rifasamento (di proprietà dell'utente BT).
- 3. Trasformatore MT/BT.
- 4. Cavo di collegamento e coordinamento CP-DG, DG-BT.
- 5. Linea MT di proprietà del DSO.

Laddove necessario sono stati riportati grafici e tabelle provenienti dalle schede tecniche dei fornitori, dalla guida BT Schneider e dalle Norme. Le schede tecniche e le Norme citate sono state aggiunte in allegato.

1. Dimensionamento linee BT:

Le operazioni da eseguire sono il dimensionamento delle sezioni dei cavi, il coordinamento cavo interruttore in sovraccarico ed in corto circuito. A valle della procedura seguita si è mostrato, a titolo di esempio, il dimensionamento della linea BT #5.

Si è deciso di utilizzare cavi multipolari isolati in EPR per tutte le linee allo scopo di contenere la sezione dei conduttori e il numero di linee posate in parallelo nel rispetto dei limiti termici dei materiali e dei limiti imposti dalle Norme. La procedura seguita è indicata di seguito:

- 1. Applicazione coefficienti Ku e Kc alla potenza nominale. Kc è stato assunto pari a 1 (in assenza di ulteriori informazioni) mentre Ku è fissato a 0.8 siccome le utenze verranno utilizzate all'80% in fascia F1 come da indicazioni.
- 2. Calcolo corrente di impiego $I_b=\frac{K_uK_cS_n}{\sqrt{3}V_n}$ nel caso trifase e $I_b=\frac{K_uK_cS_n}{V_n}$ nel caso monofase.
- 3. Scelta interruttore automatico tale per cui la corrente nominale dell'interruttore sia maggiore della corrente di impiego $I_n \ge I_b$.
- 4. Ricerca coefficienti K_1 e K_2 nelle tabelle appropriate (T1A e T2, rispettivamente) della guida BT Schneider e calcolo coefficiente complessivo $K_{tot} = K_1 K_2$.
- 5. Calcolo corrente fittizia $I_n' = \frac{I_n}{K_{tot}}$ come indicato nella guida. Scelta sezione del cavo multipolare con sezione I_z' in modo che valga $I_n' \leq I_z'$. La portata effettiva del cavo sarà data da $I_z = K_{tot}I_z'$.
- 6. Verifica che sia rispettata la condizione $I_b \leq I_n \leq I_z$.
- 7. Calcolo corrente di cortocircuito alla sbarra BT (unica per tutte le 5 utenze, quindi la corrente di cortocircuito trifase da calcolare è unica per tutte le utenze BT avendo ricevuto indicazione di considerare la corrente di cortocircuito trifase anche per le utenze monofase).
 Assumendo rete di potenza infinita subito dopo il trasformatore MT/BT e rete a vuoto, il circuito equivalente da risolvere diventa il seguente

Da cui risulta evidente che (in valore assoluto e per unità, avendo assunto come potenza di riferimento la potenza nominale del trasformatore e come tensioni di riferimento la tensione lato MT e la tensione lato BT) $I_{cc_pu}=1/Z_{cc_trafo_pu}$. Moltiplicando per la corrente di riferimento lato

BT ($I_{rif_bt} = \frac{Srif}{\sqrt{3}V_{rif_bt}}$), si ottiene la corrente di cortocircuito in valore fisico che risulta circa pari a 22.7 kA a seguito della scelta di un trasformatore caratterizzato da una tensione di corto circuito del 4%. (Per la procedura seguita per il dimensionamento del trasformatore vedere sotto).

- 8. Verifica che il potere di interruzione dell'interruttore sia adeguato, ossia che valga $I_{cu} \ge I_{cc}$ per ogni interruttore scelto.
- 9. Verifica della condizione $\int_0^{t_i} i^2 dt \le K^2 S^2$ dalle curve di limitazione di ciascun interruttore (gli interruttori scelti sono tutti limitatori), assumendo K = 146 siccome i cavi sono tutti isolati in EPR.
- 10. Infine, si è verificato che la caduta di tensione su ciascuna linea BT fosse inferiore al 4% (norma CEI 64-8) tramite la formula approssimata $cdt_{\%}=\frac{\sqrt{3}(R_LI_b\cos\varphi+X_LI_b\sin\varphi)}{V_n}$ 100 nel caso trifase e $cdt_{\%}=\frac{2(R_LI_b\cos\varphi+X_LI_b\sin)}{V_n}$ 100 nel caso monofase. I valori di resistenza e reattanza dei cavi sono stati ottenuti dalla norma CEI-UNEL 35023 allegata e opportunamente corretti in caso di più linee in parallelo.

Esempio: dimensionamento linea BT #5.

Dati dell'utenza sottesa:

• Potenza apparente: 333333 VA

• Potenza: 300 kW

• Fattore di potenza: 0.9

• Tensione nominale: 400 V (trifase)

• Coefficienti di utilizzo e di contemporaneità: Ku = 0.8, Kc = 1

• Tipo di posa: su passerella -> posa 13 e posa ravvicinata di 4 circuiti.

• Temperatura di posa: 40 °C

• Lunghezza linea: 30 m.

Calcolo corrente di impiego $I_b=\frac{K_uK_cS_n}{\sqrt{3}V_n}=\frac{0.8~(333333)}{\sqrt{3}(400)}=384.90~A$. Si sceglie un interruttore automatico con $I_n=400~A$.

Dalla tabella T1A si ottiene $K_1=1$ considerando 30 °C come temperatura ambiente e isolamento in EPR

temperatura ambiente	tipo di iso	olamento			
	PVC	EPR			
10	1,22	1,15			
15	1,17	1,12			
20	1,12	1,08			
25	1,06	1,04			
35	0,94	0,96			
40	0,87	0,91			
45	0,79	0,87			
50	0,71	0,82			
55	0,61	0,76			
60	0,5	0,71			
65	3	0,65			
70		0,58			
75		0,5			
80		0,41			

Dalla tabella T2 si ottiene $K_2=0.77$ considerata la modalità di posa (posa 13) e il numero complessivo di circuiti in posa ravvicinata (4 = 2 linee parallele per questa utenza + 1 linea per utenza BT#4 + 1 linea per

utenza BT#3)

n° di posa CEI 64-8	disposizione	numero di circuiti o di cavi multipolari														
	nativativativativativati	1	2	3	4	5	6	7	8	9	12	16	20			
tutte le altre pose	raggruppati a fascio, annegati	1	0,8	0,7	0,65	0,6	0,57	0,54	0,52	0,5	0,45	0,41	0,38			
11/12/25	singolo strato su muro, pavimento o passerelle non perforate	1	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,7	nessuna ulteriore riduzione per più di 9 circuiti o cavi multipol					
11A	strato a soffitto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61						
13	strato su passerelle perforate orizzontali o verticali (perforate o non perforate)	1	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72						
14-15-16-17	strato su scala posa cavi o graffato ad un sostegno	1	0,87	0,82	0,8	0,8	0,79	0,79	0,78	0,78						

Si calcola il coefficiente complessivo $K_{tot}=K_1K_2=0.77$ e la corrente fittizia $I_n'=\frac{I_n}{N\ K_{tot}}=\frac{400}{2\ (0.77)}\cong 259.74\ A$ dove N=2 indica il numero di linee parallele che si è deciso di posare.

Dalla tabella dei cavi unificati si sceglie un cavo con portata $I'_z = 298 \, A$ e sezione pari a 95 mm².

metodologia	altri tipi di	tipo di isolamento	numero	porta	ata [A]															
tipica di	posa della		cond.	sezione [mm²]																
installazione	CEI 64-8		caricati	1	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300
cavo in tubo	2-51-73-74	PVG	2		14,0	18,5	25	32	43	57	75	92	110	139	167	192	219	248	291	334
incassato in			3		13,0	17,5	23	29	39	52	68	83	99	125	150	172	196	223	261	298
parete isolante		EPR	2		18,5	25,0	33	42	57	76	99	121	145	183	220	253	290	329	386	442
			3		16,5	22,0	30	38	51	68	89	109	130	164	197	227	259	295	346	396
in aria	3A-4A-5A-21	PVG	2	13,5	16,5	23,0	30	38	52	69	90	111	133	168	201	232	258	294	344	394
	22A-24A-25		3	12,0	15,0	20,0	27	34	46	62	80	99	118	149	176	206	225	255	297	339
	33A-31-34A	EPR	2	17,0	22,0	30,0	40	51	69	91	119	146	175	221	265	305	334	384	29 386 95 346 94 344 95 297 34 459 40 398 34 514 64 430 42 641	532
	43-32	10000	3	15,0	19,5	26,0	35	44	60	80	105	128	154	194	233	268	300	340	398	455
cavo in aria	13-14-15-16-17	PVG	2	15,0	22,0	30,0	40	51	70	94	119	148	180	232	282	328	379	434	514	593
libera, distanziato			3	13,6	18,5	25,0	34	43	60	80	101	126	153	196	238	276	319	364	430	497
dalla parete/soffitto		EPR	2	19,0	26,0	36,0	49	63	86	115	149	185	225	289	352	410	473	542	641	741
o su passerella			3	17,0	23,0	32,0	42	54	75	100	127	158	192	246	298	346	399	456	538	621
cavo in aria	11-11A-52-53-	PVC	2	15,0	19,5	27,0	36	46	63	85	112	138	168	213	258	299	344	392	461	530
libera, fissato	12		3	13,5	17,5	24,0	32	41	57	76	96	119	144	184	223	259	299	341	403	464
alla parete/ soffitto		EPR	2	19,0	24,0	33,0	45	58	80	107	138	171	209	269	328	382	441	506	599	693
SUIIIIIU		8	3	17.0	22.0	30.0	40	52	71	96	119	147	179	229	278	322	371	424	500	576

(1) PVC: mescola termoplastica a base di polivinilcioruro (temperatura massima del conduttore uguale a 70 °C).
EPR: mescola elastomerica reticolata a base di gomma etilenpropilenica o similari (temperatura massima del conduttore uguale a 90 °C).

La portata effettiva della singola conduttura è pari $I_z=K_{tot}I'_z=0.77(298)=229.46~A$. Il parallelo delle due condutture scelte garantisce una portata pari a $I_{zp}=2I_z=458.92~A$. La condizione $I_b \leq I_n \leq I_z$ è rispettata. L'interruttore automatico scelto presenta le seguenti caratteristiche:

Modello: NSX400F.

Produttore: Schneider Electric.

• Tipologia: 3P + N, interruttore limitatore.

• Corrente nominale: 400 A.

Potere di interruzione Icu = 36 kA.

Tensione nominale: 400 V (massima di esercizio 800 V).

Per il coordinamento in corto circuito, si constata immediatamente che a fronte di una corrente di cortocircuito alla sbarra BT pari a 22.7 kA, il potere di interruzione dell'interruttore è adeguato e permette di rispettare la condizione $I_{cu} \geq I_{cc}$. Inoltre, considerando k = 146 per le condutture isolate in EPR, risulta verificata la condizione $\int_0^{t_i} i^2 dt \leq K^2 S^2$ infatti 2000000 A²s² < 4891169 A²s².

Infine, si calcola la caduta di tensione sulla linea utilizzando i valori di resistenza e reattanza ottenuti dalla norma CEI-UNEL 35023

Tabella 1 - Cavi isolati in gomma

I cavi scelti presentano una resistenza pari a $0.260 \frac{ohm}{km}$ e una reattanza (a 50 Hz) pari a $0.069 \frac{ohm}{km}$. La resistenza e reattanza della linea vengono calcolate come segue:

$$R_L = 0.260 \frac{30}{1000} \frac{1}{2} = 0.0039 \ Ohm$$

$$X_L = 0.069 \frac{30}{1000} \frac{1}{2} = 0.0010 \ Ohm$$

Dove il fattore $\frac{1}{2}$ è dovuto alla scelta di posare due linee parallele. Si calcola la caduta di tensione:

$$cdt_{\%} = \frac{\sqrt{3}(R_L I_b \cos \varphi + X_L I_b \sin \varphi)}{V_n} 100 = \frac{\sqrt{3} (384.90)(0.0039 (0.90) + 0.0010 (0.44))}{400} 100 \approx 0.66\%$$

La caduta di tensione è inferiore al 4% ammesso dalla norma CEI 64-8. La linea risulta dimensionata correttamente.

2. Dimensionamento impianto di rifasamento

Si è deciso di installare un banco di condensatori di rifasamento fisso, collegato a triangolo (la tensione nominale dei condensatori di rifasamento è quindi scelta pari a 400V). Ovviamente l'impianto di rifasamento dovrà essere disinserito quando le utenze sono inattive al fine di non immettere potenza reattiva in rete.

La potenza attiva considerata per il rifasamento è pari all'80% della potenza nominale (coefficiente Ku). La procedura è la seguente:

- 1. Calcolo della potenza reattiva necessaria tramite la relazione $Q_c = K_u P(\tan \varphi \tan \varphi')$ dove φ' è l'arcoseno del fattore di potenza desiderato (pari a 0.95 per tutte le linee BT). La potenza reattiva totale richiesta è pari a 92.37 kVar e la capacità richiesta risulta pari a 1 mF.
- 2. Calcolo fusibile necessario per la protezione ricordando che per impianti di I categoria: la corrente nominale del fusibile del banco di rifasamento deve essere 1.5 volte la corrente nominale del banco di rifasamento ossia $I_{nfus}=1.5\ I_{nc}=I_{bc}$. Si ottiene una corrente nominale minima del fusibile leggermente inferiore a 200 A. La taglia commerciale disponibile più vicina alla specifica è esattamente 200 A.
- 3. Dimensionamento linea banco di rifasamento seguendo i criteri per il dimensionamento di una linea BT come sopra ma modificando il criterio guida come segue per tenere conto dell'utilizzo di un fusibile al posto di un interruttore automatico: $I_b \leq I_n \leq \frac{1.45}{1.6} I_z$. La condizione risulta verificata con $133.32~A \leq 200~A \leq \frac{1.45}{1.6} 233~A = 211.15~A$.
- 4. La conduttura ottenuta ha una sezione di 95 mm². Siccome si tratta di una linea di soli tre metri non conviene mettere più linee in parallelo. Si mantiene la sezione pari a 95 mm².
- 5. Si verificano le condizioni $I_{cu} \ge I_{cc}$ e $\int_0^{t_i} i^2 dt \le K^2 S^2$ utilizzando K = 146 (isolamento linea in EPR), $I_{cu} = 200~kA$ e energia specifica passante ricavata dalle curve di limitazione del fusibile del fornitore Italweber (vedere curva di limitazione sotto e scheda tecnica in allegato).
- 6. La caduta di tensione sulla linea è trascurata essendo molto piccola (abbondantemente inferiore al 4%).

Il fusibile scelto presenta le seguenti caratteristiche:

Modello: fusibile serie FWH W -200B

Produttore: Italweber

• Tensione nominale: 400 V.

Corrente nominale: 200 A.

• Potere di interruzione $I_{cu} = 200 \text{ kA}$.

Curva di limitazione del fusibile:

Caratteristiche di limitazione:

Cut off characteristics:

3. <u>Dimensionamento trasformatore MT/BT</u>

Per il dimensionamento del trasformatore si è deciso di fare le seguenti ipotesi:

- 1. Coefficiente Ku = 0.8 e coefficiente Kc = 1.
- 2. L'impianto di rifasamento non viene considerato in quanto potrebbe guastarsi.
- 3. Si trascurano le perdite sulle linee BT.

La potenza apparente richiesta è circa 521 kVA. La potenza nominale disponibile più vicina al valore richiesto è pari a 630 kVA. Si sceglie quindi, dalla guida BT Schneider, un trasformatore a olio di potenza nominale 630 kVA, tensioni nominali 20 kV e 400 V e tensione di corto circuito pari a 4%.

potenza nominale [l	kVA]	100	160	250	315	400	500	630	800	1000	1250	1600	2000	2500	3000
corrente nominale s	econdaria [A]	145	231	361	455	578	723	910	1156	1445	1806	2312	2890	3613	4335
perdite [kW]	a vuoto	0,32	0,46	0,65	0,77	0,93	1,10	1,30	1,50	1,70	2,10	2,60	3,20	3,80	4,40
	a carico (75°C)	1,75	2,35	3,25	3,90	4,60	5,50	6,50	9,00	10,50	13,10	17,00	22,00	26,50	30,50
tensione di cortociro	uito % (75°C)	4	4	4	4	4	4	4	6	6	6	6	6	6	6
corrente a vuoto %		2,5	2,3	2,1	2	1,9	1,9	1,8	1,7	1,5	1,4	1,3	1,2	1,1	1
resistenza equivalente a 75°C [mΩ]		27,93	14,65	8,30	6,27	4,59	3,51	2,61	2,24	1,68	1,34	1,06	0,88	0,68	0,54
reattanza equivalent	e [mΩ]	57,58	37,22	24,22	19,32	15,33	12,31	9,82	11,79	9,45	7,56	5,91	4,72	3,78	3,15
impedenza equivale	nte a 75°C [mΩ]	64,00	40,00	25,60	20,32	16,00	12,80	10,16	12,00	9,60	7,68	6,00	4,80	3,84	3,20
corrente di cortociro	uito trifase a valle [kA]	3,6	5,7	8,9	11,2	14,2	17,6	22,1	18,8	23,3	28,9	36,6	45,2	55,7	65,8
condotto Canalis	tipo							KTG-10	KTC-13	KTC-16	KTG-20	KTC-25	KTG-32	KTG-40	KTC-50
compatto Cu	In [A]							1000	1250	1600	2000	2500	3200	4000	5000
condotto Canalis	tipo							KTA-10	KTA-13	KTA-16	KTA-20	KTA-25	KTA-32	KTA-40	
compatto Al	In [A]							1000	1250	1600	2000	2500	3200	4000	

Il trasformatore è evidentemente sovradimensionato rispetto al carico: ritengo la cosa accettabile in quanto l'alternativa sarebbe stata scegliere un trasformatore con potenza apparente pari a 500 kVA sotto le ipotesi che tutte le utenze BT non vengano utilizzate contemporaneamente (Kc < 1), l'impianto di

rifasamento non si guasti mai e l'impianto BT non venga mai ampliato. Siccome il trasformatore è una parte vitale dell'impianto, date le informazioni disponibili e anche in previsione di futuri possibili ampliamenti, è accettabile un margine nel dimensionamento della macchina.

4. Dimensionamento cavo di Collegamento

Il cavo di collegamento viene dimensionato seguendo le indicazioni della norma CEI-016. Si fissa una sezione pari a 95 mm² rispettando le condizioni $I_b \leq I_n \leq I_z$ per il coordinamento in sovraccarico, e le condizioni $\int_0^{t_i} i^2 dt \leq K^2 S^2$ e $I_{cu} \geq I_{cc}$ richieste per il coordinamento in corto circuito, scegliendo un opportuno interruttore automatico con le caratteristiche indicate nel foglio di calcolo.

L'interruttore da utilizzare deve presentare le seguenti caratteristiche:

• Tipologia: 3P, interruttore non limitatore, $t_i = 0.1 s$.

• Corrente nominale: 20 A.

• Potere di interruzione Icu > 5.15 kA.

• Tensione nominale: 20 kV.

5. <u>Dimensionamento linea MT</u>

La linea MT da dimensionare presenta le seguenti caratteristiche:

- 1. Linea MT radiale.
- 2. Stato del neutro: neutro isolato.
- 3. Lunghezza: 4 km.
- 4. Modalità di posa: cavi in tubi protettivi interrati, codice posa da determinare in base alla tabella nella norma CEI-UNEL 35027 (vedere sotto nella parte di dimensionamento cavo).
- 5. Tensione nominale 20 kV.
- 6. Temperatura di installazione: 30 °C. (Questa specifica è stata assunta siccome viene indicato nella consegna che dove non è fornita alcuna indicazione la temperatura da considerare è 30 °C, in caso la temperatura fosse inferiore l'ipotesi di 30 °C risulta conservativa e quindi accettabile).

Nel dimensionamento della linea MT si è scelto di trascurare le perdite del trasformatore MT/BT.

Dimensionamento cavo MT

Il dimensionamento viene effettuato seguendo la norma CEI-UNEL 35027 allegata.

In assenza di informazioni più specifiche, si è deciso di considerare le condizioni nominali per il dimensionamento laddove nessuna specifica è stata indicata:

- 1. Temperatura di posa: 30 °C. Ktt = 0.88.
- 2. Distanza di posa: 70 mm. Nessuna ulteriore correzione. Utilizzando 2 cavi tripolari in parallelo in tubi protettivi interrati, il codice identificativo della posa è E2 (CEI-UNEL 35027).
- 3. Profondità di posa: 0.8 m. Kp = 1.
- 4. Resistività termica del terreno pari a 1.5 Km/W. Kr = 1.
- 5. Si assume che i tubi siano in materiale plastico. Nessuna ulteriore correzione.

I coefficienti e la posa sono stati ottenuti seguendo le indicazioni della norma CEI-UNEL 35027. Si riporta la tabella contenente la codifica della posa scelta

E. Cavi entro tubo (interrato)

RIF.	NUMERO E DISPOSIZIONE DEI CAVI	TRIPOLARI	UNIPOLARI .
E 1	Un solo cavo entro tubo	1,5 De	<u>.</u>
E 2	Due cavi, ciascuno entro un tubo; tubi adiacenti, in orizzontale	1,5 De	-
E 3	Tre cavi, ciascuno entro un tubo; tubi adiacenti, in orizzontale	1,5 De	1,5 De

La corrente di impiego calcolata è pari a circa 246A.

Si sceglie un interruttore MT Schneider con corrente nominale pari a 400 A. Si calcola la corrente nominale fittizia $I_n' = \frac{I_n}{K_{tot}}$ dove $K_{tot} = K_{tt}K_pK_r$ ottenendo circa 455 A.

Si sceglie di posare 2 cavi tripolari RG7H1OR con U0/U=12/20 kV e portata nominale $I_z'=252$ A con sezione pari a 150 mm². La portata effettiva della conduttura risulta pari a circa 444 A soddisfando pertanto il criterio $I_b \leq I_n \leq I_z$. Di seguito la portata dei cavi MT U0/U=12/20 kV in condizioni nominali secondo la norma CEI-UNEL 35027:

Tabella 15 – Cavi tripolari – Posa interrata Tensione di isolamento *U*₀/*U* = 12/20 kV

Tipo di cavo	Sezione		Modali	tà di posa e p	ortate di corre	ente (A)	
Tensione nominale	mm ²	D1	D2	D3	E1	E2	E3
	10	155		13	5 55	55	55
	16	18	7 13	13	5 78	5 53	10
	25	18	*	10	±13	±8	10
	35	152	128	113	134	115	101
	50	180	151	133	159	135	119
RG7H1OR U ₀ /U=12/20 kV	70	220	184	162	195	165	145
	95	263	220	193	234	198	173
	120	299	249	218	266	225	197
	150	334	278	243	298	252	220
	185	377	128 113 1 151 133 1 184 162 1 220 193 2 249 218 2 278 243 2 314 274 3	338	285	249	
150 334 185 377	437	362	316	392	331	288	
	493	408	356	444	374	325	
emperatura massii emperatura ambie rofondità di posa (esistività temper	nte al centro del cir nedia radiale	cuito)	20 0,8 1,5	°C m K · m/W	mità		

Si calcola la caduta di tensione sulla linea MT verificando che sia inferiore al 4%. I valori di resistenza e reattanza sono quelli indicati dal costruttore La Triveneta cavi (in allegato e riportati di seguito per comodità).

Caratteristiche elettriche

Formazione	Resistenza elettrica a 20°C	Resistenza apparente a 90°C e 50Hz	Reattanza di fase	Capacità a 50Hz	
n° x mm²	Ω/Km	Ω/km	Ω/Km	μF/km	
3 x 35	0,524	0,669	0,13	0,17	
3 x 50	0,387	0,494	0,12	0,18	
3 x 70	0,268	0,342	0,11	0,21	
3 x 95	0,193	0,247	0,10	0,23	
3 x 120	0,153	0,197	0,10	0,25	
3 x 150	0,124	0,159	0,10	0,27	
3 x 185	0,0991	0,129	0,098	0,29	
3 x 240	0,0754	0,0990	0,094	0,32	
3 x 300	0,0601	0,0807	0,092	0,35	

La caduta di tensione calcolata risulta pari allo 0.66% ed è quindi abbondantemente inferiore al 4%.

La corrente di corto circuito è calcolata ipotizzando rete di potenza infinita subito dopo il trasformatore AT/MT e risulta pari (lato MT) a circa 5.15 kA a fronte di una impedenza di corto circuito del trasformatore pari al 14%.

L'interruttore automatico scelto è il modello SF1 dal catalogo media tensione della Schneider con tensione nominale pari a 24 kV, corrente nominale 400 A e Icu pari a 25 kA.

Il calcolo dell'integrale di Joule è stato approssimato come $\int_0^{t_i} i^2 dt \cong I_{cc}^2 t_i$ è stato effettuato considerando un interruttore non limitatore e $t_i=0.1~s$. Risultano soddisfatte le condizioni per il coordinamento in corto circuito $\int_0^{t_i} i^2 dt \leq K^2 S^2$ e $I_{cu} \geq I_{cc}$, utilizzando un interruttore automatico con le seguenti caratteristiche:

- Modello: SF1.
- Produttore: Schneider Electric.
- Tipologia: 3P, interruttore non limitatore, $t_i = 0.1 s$.
- Corrente nominale: 400 A.
- Potere di interruzione Icu = 25 kA.
- Tensione nominale: 20 kV.

SF2 F400 circuit breakers withdrawable version from 24 kV to 40.5 kV

				SF1	3F96	de F.	SF1	SF90	ISF:	15F 1	SFeet	SF2	BF1	SFee	dSF2	SF1	SFee	ÆF
Rated voltage	Ur	(KV)		12			17.5			24			36			40.5		
Rated insulation level		121111111					A. Freedom									11110	100	
Power frequency withstand	Ud	50Hz, 1 (kV mms		28	28		38			50			70			95		
Lightning impulse withstand	Up	1.2/50 µ (kV pea	k)	75	75					125			170			185		
Rated cursent	In	(A)	400						12			13						
			630			172						100	V		100	0		
			1250	Bar.	11111	-1						-:		35*	V.	-	-	100
			2500										2	(£				
			3150	ji.		ī	1				-				18			
Short-time withstand	lth	(kA/3s)	12.5	0		- 1			-			1-		0.0	-	8		
current			16	J								0		100	-			
			20		W 5	5 Ý	-					i -			-	8		
			25	-		1:00			12			13		1				
			31.5				1						10.20	(VG		-	-127	1
			40	0		-1				1-1	(3. - 0.7			180-		1		Visite.

Available.
 Non available.

<u>Protezioni linea MT neutro isolato</u>

Siccome la rete MT è a neutro isolato, si utilizzano le seguenti protezioni:

1. Protezioni direzionali di terra, codice ANSI 67N (protezioni direzionali varmetriche) per la protezione contro i guasti a terra. Settore di intervento qualitativo per NI:

2. Protezioni di massima corrente di fase, codice ANSI 50-51 per guasti bifase e trifase non riguardanti la terra.

Curve coordinamento CP-DG e DG-BT(In max):

I coordinamenti sono stati effettuati secondo la norma CEI-016. L'interruttore di cabina primaria è di proprietà del DSO mentre il dispositivo generale è di proprietà dell'utente.

Coordinamento protezioni di terra interruttore di cabina primaria (CP) e dispositivo generale (DG):

Coordinamento protezioni di fase interruttore di cabina primaria (CP) e dispositivo generale (DG):

Coordinamento dispositivo generale (DG) e interruttore BT associato alla corrente nominale massima:

