Dinamica relativistica

Quantità di moto newtoniana

$$\vec{p} = m\vec{v}$$

Principio di conservazione della quantità di moto

Se la forza esterna risultante è nulla, la quantità di moto (totale) di un sistema si conserva

Legge di Newton (2^a legge della dinamica)

(*)
$$\boxed{\frac{d\vec{p}}{dt} = \vec{F}}$$
 infatti: $\frac{d(m\vec{v})}{dt} = m\frac{d\vec{v}}{dt} = \boxed{m\vec{a} = \vec{F}}$

Si verifica sperimentalmente che $\frac{d(m\vec{v})}{dt} = \vec{F}$ non è più valido in relatività

Per "salvare" (*) è necessario cambiare la definizione di \vec{p}

Quantità di moto relativistica

2^a legge della dinamica relativistica

$$\boxed{\frac{d\vec{p}}{dt} = \vec{F}} \quad \Rightarrow \quad \frac{d(m\gamma\vec{v})}{dt} = \vec{F}$$

m= massa inerziale newtoniana, INVARIANTE RELATIVISTICO (uguale in ogni S.R.I.)

Attenzione! $\vec{F} = m\vec{a}$ non è generalizzabile a $\vec{F} = m\gamma\vec{a}$. Infatti:

$$\vec{F} = m\gamma \vec{a}$$
 vale se $\vec{F} \perp \vec{v}$ (mentre se $\vec{F} \parallel \vec{v}$, allora $\vec{F} = m\gamma^3 \vec{a}$)