```
In [1]:
             import numpy as np
             import pandas as pd
          2
          3
             pd.pandas.set option('display.max columns', None)
          5
             import seaborn as sns
             sns.set(font scale=1.2)
          7
             import matplotlib.pyplot as plt
          9
             plt.rcParams['figure.figsize'] = (12,8)
         10
             %matplotlib inline
         11
             import warnings
         12
         13
             warnings.filterwarnings("ignore", category=FutureWarning)
```

Load dataset

Out[2]:

	observation	date	month	year	tempC_7to8	tempC_1to2	tempC_6to7	tempC_avg(0C)	humidit
0	2010-01-01	1	1	2010	20	30	20	23	
1	2010-01-02	2	1	2010	23	29	23	25	
2	2010-01-03	3	1	2010	24	27	21	24	
3	2010-01-04	4	1	2010	23	29	20	24	
4	2010-01-05	5	1	2010	22	30	21	24	
4									•

```
In [3]: 1 # columns name
2 print(list(df.columns))
```

['observation', 'date', 'month', 'year', 'tempC_7to8', 'tempC_1to2', 'tempC_6to 7', 'tempC_avg(0C)', 'Relative humidity_7to8', 'Relative humidity_1to2', 'Relative humidity_6to7', 'Relative humidity_avg(%)', 'windspeedKmph_7to8', 'windspeedKmph_1to2', 'windspeedKmph_avg(Km/h)', 'pressureMB_7to 8', 'pressureMB_1to2', 'pressureMB_6to7', 'pressureMB_avg', 'precipMM_7to8', 'precipMM_1to2', 'precipMM_6to7', 'precipMM_avg(mm)', 'weatherDesc_7to8', 'weatherDesc_1to2', 'weatherDesc_6to7', 'weatherDesc', 'Sunshine Hours', '%_soil_moisure', 'soil_pH', 'water_pH', 'water_TDS_mgpl', 'Label (Disease Yes/No)', 'Type of Disease (Bacterial Blight/Telya)', 'Anthracnose', 'Fruit Spot/ Rot', 'Fusarium Wilt', 'Fruit Borer / Blight Blora']

```
In [4]:
          1 df.info()
         zı bı ccipiii_icoz
                                                        766/ HOH HULL
                                                                        1 100 007
         22 precipMM 6to7
                                                        4227 non-null
                                                                        float64
         23 precipMM avg(mm)
                                                        4227 non-null
                                                                        float64
         24 weatherDesc_7to8
                                                        4227 non-null
                                                                        int64
         25 weatherDesc 1to2
                                                        4227 non-null
                                                                        int64
         26 weatherDesc 6to7
                                                        4227 non-null
                                                                        int64
         27 weatherDesc
                                                        4227 non-null
                                                                        int64
         28 Sunshine Hours
                                                        4227 non-null
                                                                        float64
         29 % soil moisure
                                                        4227 non-null
                                                                        int64
         30 soil_pH
                                                        4227 non-null
                                                                        float64
         31 water pH
                                                        4227 non-null
                                                                        float64
         32 water_TDS_mgpl
                                                                        float64
                                                        4227 non-null
         33 Label (Disease Yes/No)
                                                        4227 non-null
                                                                        int64
         34 Type of Disease (Bacterial Blight/Telya)
                                                       4227 non-null
                                                                        int64
         35 Anthracnose
                                                        4227 non-null
                                                                        int64
         36 Fruit Spot/ Rot
                                                        4227 non-null
                                                                        int64
         37 Fusarium Wilt
                                                        4227 non-null
                                                                        int64
         38 Fruit Borer / Blight Blora
                                                        4227 non-null
                                                                        int64
        dtypes: float64(8), int64(30), object(1)
        memory usage: 1.3+ MB
```

Feature Selection

Filter features by variance

Observation:

 precipMM_7to8, precipMM_1to2, precipMM_6to7, precipMM_avg(mm), weatherDesc_7to8, soil pH, water pH show's less than 1 variance, So we can eliminate its.

Filter features by correlation

Pairwise correlation

In [7]: 1 # sns.pairplot(df.iloc[:, :-6])

Pairwise correlation in temp

```
In [8]:
          1
             from scipy.stats import pearsonr
          2
             df_temp = df[['tempC_7to8', 'tempC_1to2', 'tempC_6to7', 'tempC_avg(0C)', 'La
          3
             display(df temp.corr())
          4
             sns.pairplot(df_temp, hue = 'Label (Disease Yes/No)')
          5
          7
             for col in df_temp.columns[:-1]:
                 print(f"Pearson correlation between {col} & Label (Disease Yes/No) is :
          8
             {round(pearsonr(df_temp[col], df_temp['Label (Disease Yes/No)'])[0]*100,2)}
          9
         10
```

	tempC_7to8	tempC_1to2	tempC_6to7	tempC_avg(0C)	Label (Disease Yes/No)
tempC_7to8	1.000000	0.794591	0.609636	0.891016	-0.071696
tempC_1to2	0.794591	1.000000	0.684452	0.930440	-0.393744
tempC_6to7	0.609636	0.684452	1.000000	0.849070	-0.012142
tempC_avg(0C)	0.891016	0.930440	0.849070	1.000000	-0.188397
Label (Disease Yes/No)	-0.071696	-0.393744	-0.012142	-0.188397	1.000000

Pearson correlation between tempC_7to8 & Label (Disease Yes/No) is : -7.17 % Pearson correlation between tempC_1to2 & Label (Disease Yes/No) is : -39.37 % Pearson correlation between tempC_6to7 & Label (Disease Yes/No) is : -1.21 % Pearson correlation between tempC_avg(0C) & Label (Disease Yes/No) is : -18.84 %

- The all temp columns are highly correlated with each other (> 50%)
- The correlation between tempC 1to2 & Label (Disease Yes/No) is -39.37% (-ve correlation)
- The correlation between tempC_avg(0C) & Label (Disease Yes/No) is -18.84% (-ve correlation)
- So, we can keep tempC_1to2 or tempC_avg(0C)

Pairwise correlation in humidity

	Relative humidity_7to8	Relative humidity_1to2	Relative humidity_6to7	Relative humidity_avg(%)	Label (Disease Yes/No)
Relative humidity_7to8	1.000000	0.947885	0.921824	0.974510	0.698479
Relative humidity_1to2	0.947885	1.000000	0.952480	0.986800	0.707830
Relative humidity_6to7	0.921824	0.952480	1.000000	0.978579	0.695503
Relative humidity_avg(%)	0.974510	0.986800	0.978579	1.000000	0.714930
Label (Disease Yes/No)	0.698479	0.707830	0.695503	0.714930	1.000000

Pearson correlation between Relative humidity_7to8 & Label (Disease Yes/No) is : 69.85%

Pearson correlation between Relative humidity_1to2 & Label (Disease Yes/No) is : 70.78%

Pearson correlation between Relative humidity_6to7 & Label (Disease Yes/No) is : 69.55%

Pearson correlation between Relative humidity_avg(%) & Label (Disease Yes/No) i s : 71.49%

- The all humidity columns are highly correlated with each other (> 50%)
- The correlation between Relative humidity_avg(%) & Label (Disease Yes/No) is 71.49% (+ve correlation)
- So, we can keep Relative humidity_avg(%)

Pairwise correlation in windspeed

windspeedKmph_7to8 windspeedKmph_1to2 windspeedKmph_6to7 win

windspeedKmph_7to8	1.000000	0.839478	0.740329
windspeedKmph_1to2	0.839478	1.000000	0.844685
windspeedKmph_6to7	0.740329	0.844685	1.000000
windspeedKmph_avg(Km/h)	0.913386	0.961066	0.923829
Label (Disease Yes/No)	0.327046	0.332969	0.286785

Pearson correlation between windspeedKmph_7to8 & Label (Disease Yes/No) is : 3 2.7%

Pearson correlation between windspeedKmph_1to2 & Label (Disease Yes/No) is : 3 3.3%

Pearson correlation between windspeedKmph_6to7 & Label (Disease Yes/No) is : 2 8.68%

Pearson correlation between windspeedKmph_avg(Km/h) & Label (Disease Yes/No) is : 33.78%

- The all windspeed columns are highly correlated with each other (> 50%)
- The correlation between windspeedKmph_avg(Km/h) & Label (Disease Yes/No) is 33.78% (+ve correlation)
- So, we can keep windspeedKmph_avg(Km/h)

Pairwise correlation in pressure

```
In [12]: 1 cols = ['pressureMB_7to8', 'pressureMB_1to2', 'pressureMB_6to7', 'pressureMB
2 hue_col = cols[-1]
3 get_Pairwise_Correlation(cols, hue_col)
```

	pressureMB_7to8	pressureMB_1to2	pressureMB_6to7	pressureMB_avg	Labe (Disease Yes/No)
pressureMB_7to8	1.000000	0.968658	0.963754	0.987808	-0.595491
pressureMB_1to2	0.968658	1.000000	0.958491	0.985832	-0.544604
pressureMB_6to7	0.963754	0.958491	1.000000	0.982979	-0.534666
pressureMB_avg	0.987808	0.985832	0.982979	1.000000	-0.562562
Label (Disease Yes/No)	-0.595491	-0.544604	-0.534666	-0.562562	1.000000

Pearson correlation between pressureMB_7to8 & Label (Disease Yes/No) is : -59.5 5%

Pearson correlation between pressureMB_1to2 & Label (Disease Yes/No) is : -54.4 6%

Pearson correlation between pressureMB_6to7 & Label (Disease Yes/No) is : -53.4 7%

Pearson correlation between pressureMB_avg & Label (Disease Yes/No) is : -56.2 6%

- The all windspeed columns are highly correlated with each other (> 50%)
- The correlation between pressureMB_7to8 & Label (Disease Yes/No) is -59.55% (-ve correlation)
- The correlation between pressureMB_avg & Label (Disease Yes/No) is -56.26% (-ve correlation)
- So, we can keep pressureMB_7to8 & pressureMB_avg

Pairwise correlation in precip

```
In [13]: 1 cols = ['precipMM_7to8', 'precipMM_1to2', 'precipMM_6to7', 'precipMM_avg(mm)
2 hue_col = cols[-1]
3 get_Pairwise_Correlation(cols, hue_col)
```

	precipMM_7to8	precipMM_1to2	precipMM_6to7	precipMM_avg(mm)	Label (Disease Yes/No)
precipMM_7to8	1.000000	0.353533	0.233664	0.527324	0.158429
precipMM_1to2	0.353533	1.000000	0.510297	0.750550	0.379157
precipMM_6to7	0.233664	0.510297	1.000000	0.912554	0.269750
precipMM_avg(mm)	0.527324	0.750550	0.912554	1.000000	0.344038
Label (Disease Yes/No)	0.158429	0.379157	0.269750	0.344038	1.000000

Pearson correlation between precipMM_7to8 & Label (Disease Yes/No) is : 15.84% Pearson correlation between precipMM_1to2 & Label (Disease Yes/No) is : 37.92% Pearson correlation between precipMM_6to7 & Label (Disease Yes/No) is : 26.97% Pearson correlation between precipMM_avg(mm) & Label (Disease Yes/No) is : 34.4%

- · The all precip columns are correlated with each other
- The correlation between precipMM_1to2 & Label (Disease Yes/No) is 37.92% (+ve correlation)
- The correlation between precipMM_avg(mm) & Label (Disease Yes/No) is 34.4% (+ve correlation)
- So, we can keep precipMM_1to2 & precipMM_avg(mm)

Pairwise correlation in weather

	weatherDesc_7to8	weatherDesc_1to2	weatherDesc_6to7	weatherDesc	Label (Disease Yes/No)
weatherDesc_7to8	1.000000	0.706125	0.684671	0.734098	-0.605411
weatherDesc_1to2	0.706125	1.000000	0.763651	0.919745	-0.726626
weatherDesc_6to7	0.684671	0.763651	1.000000	0.875130	-0.701374
weatherDesc	0.734098	0.919745	0.875130	1.000000	-0.760430
Label (Disease Yes/No)	-0.605411	-0.726626	-0.701374	-0.760430	1.000000

Pearson correlation between weatherDesc_7to8 & Label (Disease Yes/No) is : -60. 54%

Pearson correlation between weatherDesc_1to2 & Label (Disease Yes/No) is : -72. 66%

Pearson correlation between weatherDesc_6to7 & Label (Disease Yes/No) is : -70. 14%

Pearson correlation between weatherDesc & Label (Disease Yes/No) is : -76.04%

- The all weather columns are highly correlated with each other (> 50%)
- The correlation between weatherDesc & Label (Disease Yes/No) is -76.04% (-ve correlation)
- So, we can keep weatherDesc

Pairwise correlation with other

	Sunshine Hours	%_soil_moisure	soil_pH	water_pH	water_TDS_mgpl	Label (Disease Yes/No)
Sunshine Hours	1.000000	-0.769105	0.047175	0.053492	0.010106	-0.662051
%_soil_moisure	-0.769105	1.000000	-0.073358	-0.035720	0.001171	0.606175
soil_pH	0.047175	-0.073358	1.000000	-0.013978	-0.033262	-0.032147
water_pH	0.053492	-0.035720	-0.013978	1.000000	0.003156	-0.041087
water_TDS_mgpl	0.010106	0.001171	-0.033262	0.003156	1.000000	-0.006777
Label (Disease Yes/No)	-0.662051	0.606175	-0.032147	-0.041087	-0.006777	1.000000

Pearson correlation between Sunshine Hours & Label (Disease Yes/No) is : -66.2 1%

Pearson correlation between %_soil_moisure & Label (Disease Yes/No) is : 60.62% Pearson correlation between soil_pH & Label (Disease Yes/No) is : -3.21% Pearson correlation between water_pH & Label (Disease Yes/No) is : -4.11% Pearson correlation between water_TDS_mgpl & Label (Disease Yes/No) is : -0.68%

- The Sunshine Hours & %_soil_moisure shows the high correlation with Label (Disease Yes/No), -66.21% (-ve correlation) & 60.62% (+ve correlation) respectively
- The other show the correlation but very less
- So, we can keep Sunshine Hours & %_soil_moisure shows

Pairwise correlation with dates

	date	month	year	Label (Disease Yes/No)
date	1.000000	0.009698	-0.001954	-0.000855
month	0.009698	1.000000	-0.017837	0.256182
year	-0.001954	-0.017837	1.000000	0.009722
Label (Disease Yes/No)	-0.000855	0.256182	0.009722	1.000000

Pearson correlation between date & Label (Disease Yes/No) is : -0.09% Pearson correlation between month & Label (Disease Yes/No) is : 25.62% Pearson correlation between year & Label (Disease Yes/No) is : 0.97%

- The month shows the correlation but < 50%
- · So, we can think to keep it or not

```
In [17]:
                                                       'Label (Disease Yes/No)']]
               3
                  df with correlation.shape
Out[17]: (4227, 9)
In [18]:
                  fig_dims = (12, 8)
               2 fig, ax = plt.subplots(figsize=fig_dims)
               3 sns.heatmap(df_with_correlation.corr(), ax=ax, annot=True)
                   plt.show()
                                                                                                                     - 1.00
                        tempC_avg(0C)
                                                                                                -0.61
                                                                                                                     - 0.75
                Relative humidity_avg(%)
                                                                                                                    - 0.50
              windspeedKmph_avg(Km/h)
                                                         1
                      pressureMB_avg
                                                -0.59
                                                        -0.54
                                                                                                       -0.56
                                                                                                                    - 0.25
                    precipMM_avg(mm)
                                                                                                                    - 0.00
                          weatherDesc
                                                -0.79
                                                                0.58
                                                                                                                    - -0.25
                       Sunshine Hours
                                                -0.86
                                                                0.63
                                                                                                                    - -0.50
                       %_soil_moisure
                                        -0.61
                                                0.83
                                                                                                       0.61
                 Label (Disease Yes/No)
                                                0.71
                                                                                                0.61
                                                                                                                      -0.75
                                                                pressureMB_avg
                                                                                weatherDesc
                                                                                        Sunshine Hours
                                                                                                        Label (Disease Yes/No)
                                                Relative humidity_avg(%)
                                                        windspeedKmph_avg(Km/h)
                                                                        precipMM_avg(mm)
                                                                                                "_soil_moisure
```

```
In [34]:
             from sklearn.model selection import train test split
             from sklearn.metrics import accuracy_score
           3 from sklearn.metrics import log loss
           4 from sklearn.metrics import cohen kappa score
             from sklearn.metrics import confusion matrix
           6 from sklearn import metrics
              import pickle
In [26]:
             X, Y = df_with_correlation.iloc[:,:-1], df_with_correlation.iloc[:,-1]
             X train, X test, y train, y test = train test split(X,Y, test size = 0.3, ra
In [27]:
              #Fitting Logistic Regression to the training set
           2
              from sklearn.linear model import LogisticRegression
           3
              lr_Classifier= LogisticRegression(C=1.0, class_weight=None, dual=False, fit_
           5
                                 intercept_scaling=1, l1_ratio=None, max_iter=1000,
           6
                                 multi class='auto', n jobs=None, penalty='12',
           7
                                 random_state=3757, solver='lbfgs', tol=0.0001, verbose=0,
           8
                                 warm start=False)
              lr_Classifier.fit(X_train, y_train)
Out[27]: LogisticRegression(max iter=1000, random state=3757)
In [28]:
              y pred = lr Classifier.predict(X test)
           2 y_pred
Out[28]: array([1, 0, 1, ..., 0, 0, 1], dtype=int64)
```

```
In [32]:
           1
              print("Accuracy_score:", round((accuracy_score(y_test, y_pred))*100,2),'%')
           2
           3
           4
              print("Loss:", round((1-accuracy score(y test, y pred))*100,2),'%')
           5
           6
              print("Cohen_kappa_score:", round((cohen_kappa_score(y_test, y_pred))*100,2)
           7
              print("Classification report:\n", metrics.classification report(y test, y pre
           8
           9
              # print("confusion_matrix:\n", confusion_matrix(y_test, y_pred))
          10
          11
              print("confusion_matrix:\n", confusion_matrix(y_test, y_pred))
          12
          13
          14
              fig, ax = plt.subplots()
          15
              fig.set size inches(6,4) # WH
          16
              sns.heatmap(confusion_matrix(y_test, y_pred),
          17
                         annot=True,
          18
                                linewidths = 2,
          19
                               linecolor = "blue",
          20
                               center=0)
```

Accuracy_score: 89.52 %

Loss: 10.48 %

Cohen_kappa_score: 78.27 %
Classification report:

	precision	recall	f1-score	support
0	0.90	0.93	0.91	742
1	0.89	0.85	0.87	527
accuracy			0.90	1269
macro avg	0.89	0.89	0.89	1269
weighted avg	0.90	0.90	0.89	1269

confusion_matrix:

[[688 54] [79 448]]

Out[32]: <AxesSubplot:>


```
In [36]:
             # save the model to disk
           2 filename = 'lr Classifier.pkl'
           3 pickle.dump(lr_Classifier, open(filename, 'wb'))
In [ ]:
In [37]:
              #Fitting K-NN classifier to the training set
              from sklearn.neighbors import KNeighborsClassifier
           3
           4
             knn_Classifier= KNeighborsClassifier(algorithm='auto', leaf_size=30, metric=
           5
                                   metric_params=None, n_jobs=-1, n_neighbors=5, p=2,
           6
                                   weights='uniform')
              knn_Classifier.fit(X_train, y_train)
Out[37]: KNeighborsClassifier(n_jobs=-1)
In [38]:
             y_pred = knn_Classifier.predict(X_test)
           2 y_pred
Out[38]: array([0, 0, 1, ..., 0, 0, 1], dtype=int64)
```

```
In [40]:
           1
           2
              print("Accuracy_score:", round((accuracy_score(y_test, y_pred))*100,2),'%')
           3
           4
              print("Loss:", round((1-accuracy score(y test, y pred))*100,2),'%')
           5
           6
              print("Cohen_kappa_score:", round((cohen_kappa_score(y_test, y_pred))*100,2)
           7
              print("Classification report:\n", metrics.classification report(y test, y pre
           8
           9
              # print("confusion_matrix:\n", confusion_matrix(y_test, y_pred))
          10
          11
              print("confusion_matrix:\n", confusion_matrix(y_test, y_pred))
          12
          13
          14
              fig, ax = plt.subplots()
          15
              fig.set size inches(6,4) # WH
          16
              sns.heatmap(confusion_matrix(y_test, y_pred),
          17
                         annot=True,
          18
                                linewidths = 2,
          19
                               linecolor = "blue",
          20
                               center=0)
```

Accuracy_score: 88.26 %

Loss: 11.74 %

Cohen_kappa_score: 75.47 %
Classification report:

	precision	recall	f1-score	support
0	0.87	0.94	0.90	742
1	0.90	0.81	0.85	527
accuracy			0.88	1269
macro avg	0.89	0.87	0.88	1269
weighted avg	0.88	0.88	0.88	1269

confusion_matrix:

[[694 48] [101 426]]

Out[40]: <AxesSubplot:>


```
In [41]:
           1 # save the model to disk
           2 filename = 'knn_Classifier_hc.pkl'
           3 pickle.dump(knn_Classifier, open(filename, 'wb'))
 In [ ]:
           1
In [42]:
             from sklearn.naive_bayes import GaussianNB
           3
             nb_Classifier = GaussianNB(priors=None, var_smoothing=1e-09)
             nb_Classifier.fit(X_train, y_train)
Out[42]: GaussianNB()
In [43]:
           1 y_pred = nb_Classifier.predict(X_test)
           2 y_pred
Out[43]: array([1, 0, 1, ..., 0, 0, 1], dtype=int64)
```

```
In [44]:
           1
              print("Accuracy score:", round((accuracy score(y test, y pred))*100,2),'%')
           2
              print("Loss:", round((1-accuracy_score(y_test, y_pred))*100,2),'%')
           3
           4
           5
              print("Cohen_kappa_score:", round((cohen_kappa_score(y_test, y_pred))*100,2)
           6
           7
              print("Classification report:\n", metrics.classification report(y test, y pre
           8
              # print("confusion_matrix:\n", confusion_matrix(y_test, y_pred))
           9
              print("confusion_matrix:\n", confusion_matrix(y_test, y_pred))
          10
          11
          12
              fig, ax = plt.subplots()
          13
              fig.set size inches(6,4) # WH
          14
          15
              sns.heatmap(confusion_matrix(y_test, y_pred),
          16
                         annot=True,
          17
                                linewidths = 2,
          18
                               linecolor = "blue",
          19
                              center=0)
```

Accuracy_score: 86.84 %

Loss: 13.16 %

Cohen_kappa_score: 72.36 %
Classification_report:

	precision	recall	f1-score	support
0	0.85	0.94	0.89	742
1	0.89	0.77	0.83	527
accuracy			0.87	1269
macro avg	0.87	0.85	0.86	1269
weighted avg	0.87	0.87	0.87	1269

confusion_matrix:
 [[694 48]
 [119 408]]

Out[44]: <AxesSubplot:>


```
In [45]:
             # save the model to disk
             filename = 'nb_Classifier_hc.pkl'
           2
              pickle.dump(nb_Classifier, open(filename, 'wb'))
 In [ ]:
           1
In [47]:
              from sklearn.tree import DecisionTreeClassifier
           2
              dt_Classifier = DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, cri
           3
           4
                                     max_depth=None, max_features=None, max_leaf_nodes=Non
           5
                                     min impurity decrease=0.0, min impurity split=None,
           6
                                     min_samples_leaf=1, min_samples_split=2,
           7
                                     min_weight_fraction_leaf=0.0,
           8
                                     random state=3757, splitter='best')
           9
              dt_Classifier.fit(X_train, y_train)
Out[47]: DecisionTreeClassifier(random_state=3757)
In [48]:
              y_pred = dt_Classifier.predict(X_test)
             y_pred
Out[48]: array([1, 0, 1, ..., 0, 0, 1], dtype=int64)
```

```
In [49]:
           1
              print("Accuracy score:", round((accuracy score(y test, y pred))*100,2),'%')
           2
              print("Loss:", round((1-accuracy_score(y_test, y_pred))*100,2),'%')
           3
           4
           5
              print("Cohen_kappa_score:", round((cohen_kappa_score(y_test, y_pred))*100,2)
           6
           7
              print("Classification report:\n",metrics.classification report(y test, y pre
           8
              # print("confusion_matrix:\n", confusion_matrix(y_test, y_pred))
           9
              print("confusion_matrix:\n", confusion_matrix(y_test, y_pred))
          10
          11
          12
              fig, ax = plt.subplots()
          13
              fig.set size inches(6,4) # WH
          14
          15
              sns.heatmap(confusion_matrix(y_test, y_pred),
          16
                         annot=True,
          17
                               linewidths = 2,
          18
                              linecolor = "blue",
          19
                              center=0)
```

Accuracy_score: 93.46 %

Loss: 6.54 %

Cohen_kappa_score: 86.43 %

Classification_report:

	precision	recall	f1-score	support
0	0.93	0.96	0.95	742
1	0.94	0.90	0.92	527
accuracy			0.93	1269
macro avg	0.94	0.93	0.93	1269
weighted avg	0.93	0.93	0.93	1269

confusion_matrix:
 [[714 28]
 [55 472]]

Out[49]: <AxesSubplot:>


```
In [51]:
             # save the model to disk
           2 filename = 'dt Classifier hc.pkl'
             pickle.dump(dt_Classifier, open(filename, 'wb'))
 In [ ]:
           1
In [52]:
              from sklearn.ensemble import RandomForestClassifier
           2
           3
              rf Classifier = RandomForestClassifier(bootstrap=True, ccp alpha=0.0, class
           4
                                     criterion='gini', max_depth=None, max_features='auto'
           5
                                     max leaf nodes=None, max samples=None,
           6
                                     min_impurity_decrease=0.0, min_impurity_split=None,
           7
                                     min_samples_leaf=1, min_samples_split=2,
                                     min weight fraction leaf=0.0, n estimators=100,
           8
           9
                                     n jobs=-1, oob score=False, random state=3757, verbos
          10
                                     warm_start=False)
          11
          12
              rf_Classifier.fit(X_train, y_train)
Out[52]: RandomForestClassifier(n_jobs=-1, random_state=3757)
              y_pred = rf_Classifier.predict(X_test)
In [53]:
              y_pred
Out[53]: array([1, 0, 1, ..., 0, 0, 1], dtype=int64)
```

```
In [54]:
           1
              print("Accuracy score:", round((accuracy score(y test, y pred))*100,2),'%')
           2
              print("Loss:", round((1-accuracy_score(y_test, y_pred))*100,2),'%')
           3
           4
           5
              print("Cohen_kappa_score:", round((cohen_kappa_score(y_test, y_pred))*100,2)
           6
           7
              print("Classification report:\n", metrics.classification report(y test, y pre
           8
              # print("confusion_matrix:\n", confusion_matrix(y_test, y_pred))
           9
              print("confusion_matrix:\n", confusion_matrix(y_test, y_pred))
          10
          11
          12
          13
              fig, ax = plt.subplots()
              fig.set size inches(6,4) # WH
          14
              sns.heatmap(confusion_matrix(y_test, y_pred),
          15
          16
                         annot=True,
          17
                               linewidths = 2,
          18
                              linecolor = "blue",
          19
                              center=0)
```

Accuracy_score: 96.53 %

Loss: 3.47 %

Cohen_kappa_score: 92.88 %

Classification_report:

		precision	recall	f1-score	support
	0	0.98	0.96	0.97	742
	1	0.95	0.97	0.96	527
accura	асу			0.97	1269
macro a	avg	0.96	0.97	0.96	1269
weighted a	avg	0.97	0.97	0.97	1269

confusion_matrix:
 [[714 28]

[16 511]]

Out[54]: <AxesSubplot:>

