**C** 21. Given:  $\bigcirc O$  and  $\bigcirc Q$  intersect at R and S;

 $\widehat{mRVS} = 60; \widehat{mRUS} = 120$ 

Prove:  $\overline{OR}$  is tangent to  $\bigcirc Q$ ;  $\overline{OR}$  is tangent to  $\bigcirc O$ .

22. Given:  $\overline{AB}$  is a diameter of  $\odot Z$ ; points J and K lie on  $\odot Z$  with  $\widehat{mAJ} = \widehat{mBK}$ . Discover and prove something about  $\overline{JK}$ . (Hint: There are two possibilities, depending on whether  $\widehat{AJ}$  and  $\widehat{BK}$  lie on the same side of  $\overline{AB}$  or on opposite sides. So your statement will be of the either . . . or type.)



The diagram, not drawn to scale, shows satellite S above the Earth, represented as sphere E. All lines tangent to the Earth from S touch the Earth at points on a circle with center C. Any two points on the Earth's surface on or above that circle can communicate with each other via S. X and Y are as far apart as two communication points can be. The Earth distance between X and Y equals the length of  $\widehat{XTY}$ , which equals  $\frac{n}{360}$  circumference of the Earth. That circumference is approximately 40,200 km and the radius of the Earth is approximately 6400 km.





- 23. The photograph above shows the view from Gemini V looking north over the Gulf of California toward Los Angeles. The orbit of Gemini V ranged from 160 km to 300 km above the Earth. Take S to be 300 km above the Earth. That is, ST = 300 km. Find the Earth distance, rounded to the nearest 100 km, between X and Y. (Hint: Since you can find a value for  $\cos \frac{n^{\circ}}{2}$  you can determine  $n^{\circ}$ .)
- **24.** Repeat Exercise 23, but with S twice as far from the Earth. Note that the distance between X and Y is not twice as great as before.