Machine Learning: Bayesian Approach

KMA Solaiman
UMBC CMSC 478

Today:

- Bayes Rule
- Estimating parameters
 - MLE
 - MAP

some of these slides are derived

from William Cohen, Andrew Moore, Aarti Singh, Eric Xing, Carlos Guestrin, Tom M. Mitchell. - Thanks!

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Other Forms of Bayes Rule $P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$

$$P(A|B \land X) = \frac{P(B|A \land X)P(A \land X)}{P(B \land X)}$$

Applying Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \sim A)P(\sim A)}$$

A = you have the flu, B = you just coughed = 0.17

Assume:
$$P(A|B) = \frac{9.05}{.9.05}$$
 $P(A) = 0.05$
 $P(B|A) = 0.80$
 $P(B|A) = 0.20$
 $P(A) = 0.20$

what is $P(flu \mid cough) = P(A|B)$?

What does all this have to do with function approximation?

instead of h: $X \rightarrow Y$, learn $P(Y \mid X)$

Goal is same

Calculate posterior distribution

Probability of Data, P(y|X)

Discriminative Models	Generative Models
Find the decision boundary that separates the classes	Say, you have two classes – y_1 and y_2 , with features X_1 and X_2
Only knows the differences between classes	First, looking at examples of y_1 , build a model of what y_1 looks like/ distribution of y_1 's features
To classify a new example, see which side of the decision boundary it falls	Then, looking at examples of y_2 , build a model of what y_2 looks like/ distribution of y_2 's features
	To classify a new example, match the new example with model of each class, to see whether the new example looks more like y_1 or more like y_2 we had seen in the training set

Goal is same

Calculate P(y|X)

$$\widehat{y} = \underset{y}{\operatorname{argmax}} P(y|X)$$

Discriminative Models	Generative Models
Find the decision boundary that separates the classes	Say, you have two classes – y_1 and y_2 , with features X_1 and X_2
Only knows the differences between classes	First, looking at examples of y_1 , build a model of what y_1 looks like/ distribution of y_1 's features
To classify a new example, see which side of the decision boundary it falls	Then, looking at examples of y_2 , build a model of what y_2 looks like/ distribution of y_2 's features
	To classify a new example, match the new example with model of each class, to see whether the new example looks more like y_1 or more like y_2 we had seen in the training set

Discriminative Models	Generative Models
Directly learn the function	Calculate
mapping	P(y X)
$h: X \rightarrow y$	
or, Calculate likelihood	HOW?
P(y X)	
1. Assume some functional	
form for $P(y X)$	
2. Estimate parameters	
of $P(y X)$ directly from	
training data	

Discriminative Models	Generative Models
Directly learn the function mapping	Calculate $P(y X)$
$h: X \rightarrow y$ or, Calculate likelihood	from $P(X y)$ and $P(y)$
P(y X)	But Joint Distribution $P(X, y) = P(X y) P(y)$
1. Assume some functional form for $P(y X)$	1. Assume some functional form for $P(y)$, $P(X y)$
2. Estimate parameters of $P(y X)$ directly from	2. Estimate parameters of $P(X y)$, $P(y)$ directly from training data
training data	3. Use Bayes rule to calculate $P(y X)$

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

[A. Moore]

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

Make a truth table listing all combinations of values (M Boolean variables → 2^M rows).

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values (M Boolean variables → 2^M rows).
- 2. For each combination of values, say how probable it is.

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values (M Boolean variables → 2^M rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those probabilities must sum to 1.

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint Distribution

One you have the JD you can ask for the probability of **any** logical expression involving these variables

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using the Joint

P(Poor Male) = 0.4654
$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using the Joint

$$P(Poor) = 0.7604$$

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Inference with the Joint

$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(\text{row})$$

 $P(Male \mid Poor) = 0.4654 / 0.7604 = 0.612$

Learning and the Joint Distribution

Suppose we want to learn the function f: <G, H> → W

Equivalently, P(W | G, H)

Solution: learn joint distribution from data, calculate P(W | G, H)

Are we done?

sounds like the solution to learning h: $X \rightarrow Y$, or $P(Y \mid X)$. $2^{lo} = 10.24$

Main problem: learning P(Y|X) can require more data than we have

consider learning Joint Dist. with 100 attributes
of rows in this table? 2'** ≥ 10'* = 10'*
of people on earth?
fraction of rows with 0 training examples? ○.7199

What to do?

- 1. Be smart about how we estimate probabilities from sparse data
 - maximum likelihood estimates
 - maximum a posteriori estimates
- 2. Be smart about how to represent joint distributions
 - Bayes networks, graphical models

1. Be smart about how we estimate probabilities

Estimating Probability of Heads

- I show you the above coin X, and hire you to estimate the probability that it will turn up heads (X = 1) or tails (X = 0)
- You flip it repeatedly, observing
 - it turns up heads α_1 times
 - it turns up tails α_0 times
- Your estimate for P(X = 1) is....?

Estimating $\theta = P(X=1)$

100 flips: 51 Heads (X=1), 49 Tails (X=0)

$$\frac{\chi_1}{\chi_1 + \chi_0} = \frac{51}{100} \rightarrow P(\chi_{<1}) = 0.51$$

Test B:

3 flips: 2 Heads (X=1), 1 Tails (X=0)

$$=\frac{2}{2+1}=0.666$$

Estimating $\theta = P(X=1)$

Case C: (online learning)

 keep flipping, want single learning algorithm that gives reasonable estimate after each flip

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

choose parameters θ that maximize P(data | θ)

• e.g.,
$$\hat{\theta}^{MLE} = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Principle 2 (maximum a posteriori prob.):

- choose parameters θ that maximize P(θ | data)
- e.g.

$$\hat{\theta}^{MAP} = \frac{\alpha_1 + \#\text{hallucinated_1s}}{(\alpha_1 + \#\text{hallucinated_1s}) + (\alpha_0 + \#\text{hallucinated_0s})}$$

Maximum Likelihood Estimation

$$P(X=1) = \theta$$

$$P(X=0) = (1-\theta)$$

$$X=1 \quad X=0$$

$$P(D|\theta) = \theta \cdot (1-\theta) \cdot (1-\theta) \cdot \theta \cdot \theta = \theta \cdot (1-\theta)^{d}$$

Flips produce data D with $lpha_1$ heads, $lpha_0$ tails

- flips are independent, identically distributed 1's and 0's (Bernoulli)
- α_1 and α_0 are counts that sum these outcomes (Binomial)

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

Maximum Likelihood Estimate for Θ

$$\widehat{\theta} = \arg\max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg\max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Set derivative to zero:

$$rac{d}{d heta}$$
 In $P(\mathcal{D} \mid heta) = 0$

$$\hat{\theta} = \arg\max_{\theta} \; \ln P(D|\theta)$$

Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

$$= \arg \max_{\theta} \ln \left[\theta^{\alpha_1} (1 - \theta)^{\alpha_0} \right]$$

hint:
$$\frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

$$\frac{\partial}{\partial \theta} \propto |\ln \theta| + \propto |\ln (\theta)|$$

$$\sqrt{1 + \sqrt{2 \ln (\theta)}}$$

$$0 = \sqrt{\frac{1}{1-0}} - \frac{\sqrt{0}}{1-0}$$

$$\frac{\partial \left(1 - \Theta \right)}{\partial \left(1 - \Theta \right)} \cdot \frac{\partial \left(1 - \Theta \right)}{\partial \Theta}$$

$$\phi = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Summary: Maximum Likelihood Estimate

$$X=1$$
 $X=0$

$$P(X=1) = \theta$$

$$P(X=0) = 1-\theta$$

(Bernoulli)

$$\bullet$$
 Each flip yields boolean value for X

$$X \sim \text{Bernoulli: } P(X) = \theta^X (1 - \theta)^{(1 - X)}$$

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros (Binomial)

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

$$\hat{\theta}^{MLE} = \operatorname{argmax}_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Principles for Estimating Probabilities

Principle 1 (maximum likelihood):

choose parameters θ that maximize
 P(data | θ)

Principle 2 (maximum a posteriori prob.):

• choose parameters θ that maximize $P(\theta \mid data) = \frac{P(data \mid \theta) P(\theta)}{P(data)}$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

- Likelihood function: $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \underbrace{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}_{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

- Likelihood function: $P(\mathcal{D} \mid \theta) \neq \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

$$\frac{AMAP}{C} = (\mathcal{L}_{H}^{+}\mathcal{B}_{H}^{-1})$$

$$(\mathcal{L}_{H}^{+}\mathcal{B}_{H}^{-1}) + (\mathcal{L}_{T}^{+}\mathcal{B}_{T}^{-1})$$

Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Eg. 1 Coin flip problem

Likelihood is ~ Binomial

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Then posterior is Beta distribution

$$P(\theta|D) \sim Beta(\alpha_H + \beta_H, \alpha_H + \beta_H)$$

and MAP estimate is therefore

$$\hat{\theta}^{MAP} = \frac{\alpha_H + \beta_H - 1}{(\alpha_H + \beta_H - 1) + (\alpha_T + \beta_T - 1)}$$

Eg. 2 Dice roll problem (6 outcomes instead of 2)

Likelihood is
$$\sim$$
 Multinomial($\theta = \{\theta_1, \theta_2, ..., \theta_k\}$)

$$P(\mathcal{D} \mid \theta) = \theta_1^{\alpha_1} \theta_2^{\alpha_2} \dots \theta_k^{\alpha_k}$$

If prior is Dirichlet distribution,

$$P(\theta) = \frac{\theta_1^{\beta_1 - 1} \ \theta_2^{\beta_2 - 1} \dots \theta_k^{\beta_k - 1}}{B(\beta_1, \dots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \dots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \text{Dirichlet}(\beta_1 + \alpha_1, \dots, \beta_k + \alpha_k)$$

and MAP estimate is therefore

$$\hat{\theta_i}^{MAP} = \frac{\alpha_i + \beta_i - 1}{\sum_{j=1}^k (\alpha_j + \beta_j - 1)}$$

MLE vs MAP

- Goal is same
 - Calculate posterior distribution
 - Probability of Data, P(y|X)
- MLE
 - Does not use prior
 - Starts with an assumption
- MAP
 - Uses Bayes Rule
 - Uses Prior
 - $P(y|X) \propto P(X|y)P(y)$

Some terminology

- Likelihood function: P(data | θ)
- Prior: P(θ)
- Posterior: P(θ | data)

 Conjugate prior: P(θ) is the conjugate prior for likelihood function P(data | θ) if the forms of P(θ) and P(θ | data) are the same.

You should know

- Probability basics
 - random variables, conditional probs, ...
 - Bayes rule
 - Joint probability distributions
 - calculating probabilities from the joint distribution
- Estimating parameters from data
 - maximum likelihood estimates
 - maximum a posteriori estimates
 - distributions binomial, Beta, Dirichlet, …
 - conjugate priors

Extra slides

Independent Events

- Definition: two events A and B are independent if P(A ^ B)=P(A)*P(B)
- Intuition: knowing A tells us nothing about the value of B (and vice versa)

Picture "A independent of B"

Expected values

Given a discrete random variable X, the expected value of X, written E[X] is

$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

Example:

X	P(X)
0	0.3
1	0.2
2	0.5

Expected values

Given discrete random variable X, the expected value of X, written E[X] is

$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

We also can talk about the expected value of functions of X

$$E[f(X)] = \sum_{x \in \mathcal{X}} f(x)P(X = x)$$

Covariance

Given two discrete r.v.'s X and Y, we define the covariance of X and Y as

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

e.g., X=gender, Y=playsFootball

or X=gender, Y=leftHanded

Remember:
$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$