Funções de Probabilidade

Definição

- Funções de probabilidade são funções matemáticas que descrevem a distribuição de probabilidade de uma variável aleatória.
- Elas atribuem uma probabilidade a cada possível resultado dessa variável aleatória.
- Existem diferentes tipos de funções de probabilidade, dependendo do tipo de variável aleatória em questão.
- Função de probabilidade discreta: Usada quando a variável aleatória é discreta, ou seja, pode assumir valores contáveis. Exemplos: Bernoulli, Binomial, Poisson
- Função de densidade de probabilidade (PDF): Usada quando a variável aleatória é contínua, ou seja, pode assumir qualquer valor dentro de um intervalo. Exemplos: Normal (Guassiana), Exponencial e Uniforme
- Essas funções são fundamentais em estatística e teoria das probabilidades para entender e modelar o comportamento de variáveis aleatórias em diferentes contextos.

Em R

- Para cada distribuição de probabilidade existem quatro funções no R. Cada uma delas é chamada adicionando o seguinte prefixo ao nome da distribuição correspondente:
 - - d para a função de massa ou densidade.
 - - p para a função de distribuição (cumulativa).
 - q para quantis, ou seja, para calcular o valor correspondente para a função de distribuição cumulativa dada uma probabilidade.
 - - r-para gerar amostras aleatórias com a distribuição dada.

Discrete Distribution Name	Continuous Distribution Name
Discrete Distribution Name	Continuous Distribution Name
Binomial (binom)	Normal (norm)
Negative binomial (nbinom)	Exponential (exp)
Geometric (geom)	Uniform (unif)
Poisson (pois)	Gama (gamma)

Distribuição Binomial

• A distribuição binomial é usada para modelar o número de sucessos (x) em um número fixo de tentativas (n) independentes, onde cada tentativa tem a mesma probabilidade (p) de sucesso.

$$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x}$$

• Suponha que estamos lançando uma moeda justa 10 vezes e queremos calcular a probabilidade de obter exatamente 4 caras.

```
# Função dbinom() para calcular a probabilidade em uma distribuição binomial probabilidade <- dbinom(x=4, size = 10, prob = 0.5) print(probabilidade)
```

[1] 0.2050781

• Suponha que estamos lançando uma moeda justa 10 vezes e queremos calcular a probabilidade de obter no máximo 4 caras.

```
probabilidade <- pbinom(q=4, size = 10, prob = 0.5)
print(probabilidade)</pre>
```

[1] 0.3769531

• Simulando valores

```
N = 20
n = 1
(x = rbinom(N,n,prob = 0.5))
```

[1] 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1

```
(table(x))
```

x 0

0 1

11 9

Distribuição de Poisson

• A distribuição de Poisson modela a probabilidade de um número de eventos (x) ocorrer em um intervalo fixo de tempo ou espaço, dado um número médio (λ) de eventos que ocorrem nesse intervalo.

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

• Suponha que em média 2 clientes entram em uma loja por minuto. Queremos calcular a probabilidade de exatamente 3 clientes entrarem na loja em um minuto específico.

```
# Função dpois() para calcular a probabilidade em uma distribuição de Poisson
probabilidade <- dpois(3, lambda = 2)
print(probabilidade)</pre>
```

[1] 0.180447

• Suponha que em média 2 clientes entram em uma loja por minuto. Queremos calcular a probabilidade de até 3 clientes entrarem na loja em um minuto específico.

```
probabilidade <- ppois(3, lambda = 2)
print(probabilidade)</pre>
```

[1] 0.8571235

• Simulando valores

```
x <- rpois(n = 10, lambda = 2)
table(x)</pre>
```

x 0 1 2 3 4 6 2 1 3 2 1 1

Distribuição Normal

• A distribuição normal (gaussiana) é usada para modelar uma grande variedade de fenômenos com variáveis contínuas. É caracterizada por sua forma de sino e é completamente determinada por sua média e desvio padrão.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- x é a variável aleatória,
- μ é a média da distribuição,
- σ é o desvio padrão da distribuição.
- Suponha que estamos analisando os resultados de um teste padronizado em que a pontuação média é 100 e o desvio padrão é 15. Queremos calcular a probabilidade de um aluno ter uma pontuação abaixo de 110.

```
# Função pnorm() para calcular a probabilidade em uma distribuição normal
probabilidade <- pnorm(110, mean = 100, sd = 15)
print(probabilidade)</pre>
```

[1] 0.7475075

• Suponha que estamos analisando os resultados de um teste padronizado em que a pontuação média é 100 e o desvio padrão é 15. Queremos calcular a probabilidade de um aluno ter uma pontuação entre 110 e 120.

```
probabilidade <- pnorm(120, mean = 100, sd = 15) - pnorm(110, mean = 100, sd = 15)
print(probabilidade)</pre>
```

[1] 0.1612813

• Suponha que estamos analisando os resultados de um teste padronizado em que a pontuação média é 100 e o desvio padrão é 15. Queremos calcular a probabilidade de um aluno ter uma pontuação maior que 120.

```
probabilidade <- pnorm(120, mean = 100, sd = 15,lower.tail = F)
print(probabilidade) # ou</pre>
```

[1] 0.09121122

```
probabilidade <- 1-pnorm(120, mean = 100, sd = 15,lower.tail = T)
print(probabilidade)</pre>
```

- [1] 0.09121122
 - Quantis

```
qnorm(0.75, mean = 100,15)
```

[1] 110.1173

```
qnorm(0.09,mean = 100,15,lower.tail = F)
```

- [1] 120.1113
 - Simulando valores

```
z = rnorm(1000, mean = 0, sd = 1)
x1 = rnorm(10000, mean = 100, sd = 1)
x2 = rnorm(1000, mean = 100, sd = 10)
x3 = rnorm(1000, mean = 10, sd = 10)
par(mfrow=c(2,2))
hist(z); hist(x1); hist(x2); hist(x3)
```

Histogram of z

-3 -1 0 1 2 3

Histogram of x1

Histogram of x2

Histogram of x3

• f(x)

Curva da Distribuição Normal

Atividade

- 1. Pesquisar sobre as distribuições: exponencial e uniforme:
 - $\bullet\,$ Elabore exemplos de uso dessas distribuições usando as funções em R apresentadas no exemplo da Normal
 - Calcule propbabilidades
 - Gere dessas distribuições para diferentes parâmetros
- 2. Suponha que o tempo (em minutos) que um cliente espera para ser atendido em um banco segue uma distribuição exponencial com taxa média de atendimento $\lambda=0,2$. Calcule a probabilidade de o cliente ser atendido em menos de 3 minutos? Calcule a probabilidade de o cliente ser atendido entre 1 e 3 minutos?
- 3. Uma máquina em uma fábrica corta chapas metálicas de forma aleatória com um comprimento entre 45 cm e 55 cm. Assuma que o compriment X das peças segue uma distribuição uniforme. Qual é a probabilidade de uma peça ter entre 47 cm e 50 cm?
- 4. Um usuário tenta adivinhar a senha correta de 4 dígitos, e só existe uma combinação correta entre 10 possíveis. Considere X o número de tentativas até o primeiro sucesso. Qual é a probabilidade de acertar (sucesso) na quarta tentativa (X=4)? Observação: a função dgeom(k) retorna a probabilidade de o primeiro sucesso ocorrer na tentativa

- k+1, ou seja, k representa o número de fracassos antes do primeiro sucesso. Exemplo: dgeom(0, p) = P(acertar na 1ª tentativa). Qual a probabilidade de sucesso em até 2 tentativas (X=1 ou X=2)?
- 5. A tabela abaixo mostra uma simulação de controle de estoque para 15 dias. Construa uma função para simular o controle de estoque. Considere:
 - 1. Estoque máximo: 200
 - 2. Estoque no dia 1 é o estoque máximo
 - 3. Demanda $\sim Poisson(50)$
 - 4. Sejam Prob = $P(Demanda \ge Estoque Final)$ e EDS = Prob × estoque máximo + estoque final dia anterior o estoque do dia seguinte.
 - 5. O estoque do dia seguinte será preenchido considerando:
 - Se Prob > 0.10 então o estoque do dia seguinte será o mínimo entre estoque máximo e EDS, caso contrário o estoque do dia seguinte é o estoque final do dia anterior.
- Dica: no dia 1, fixe o estoque máximo e simule a demanda usando rpois (n=1,lambda=50). Depois calcule a probabilidade de a demanda ser maior que o estoque final do dia 1 usando 1-ppois (Estoque final,50). Utilize a regra 5 para fazer os incrementos dos estoques diários

Dia	Estoque	Demanda	Demanda não atendida	Estoque Final	P(Demanda>Estoque Final)
1	200	38	0	162	0.0000000
2	162	57	0	105	0.0000000
3	105	51	0	54	0.2576940
4	106	45	0	61	0.0556808
5	61	53	0	8	1.0000000
6	200	54	0	146	0.0000000
7	146	44	0	102	0.0000000
8	102	47	0	55	0.2155296
9	98	47	0	51	0.4072627
10	132	41	0	91	0.0000001
11	91	56	0	35	0.9837861
12	200	48	0	152	0.0000000
13	152	43	0	109	0.0000000
14	109	53	0	56	0.1778829
15	92	50	0	42	0.8564978
16	200	0	0	0	0.0000000

Referências