Name:	File	
Teacher/Class:		

SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12

HSC ASSESSMENT TASK 2 MARCH 2006

EXTENSION 1 MATHEMATICS

Time Allowed:

70 minutes

Instructions:

- Write your name and class at the top of each page.
- All necessary working must be shown. Marks may be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- Start each question on a new page.
- Standard integrals can be found on the last page.

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Total
/10	/10	/10	/10	/10	/10	/60

Question 1

(10 marks)

- a) Find the exact value of
- i. $\tan(\frac{2\pi}{3})$

1

ii. $\sin(-\frac{\pi}{3})$

1

b) Find

$$\lim_{x \to 0} \frac{\sin 2x}{x}$$

1

c) Given that $\int_{1}^{5} f(x)dx = 4$ find the value of k

3

for which $\int_{1}^{5} [f(x) + kx] dx = 28$.

d) A river 60m wide is surveyed for its depth every 10m across its width.

The depth at each point surveyed is shown on the diagram.

i. Find the cross-sectional area of the river using Simpsons Rule

3

ii. Hence find the volume of water passing this point per second if the water flows at 5m/s.

١

Question 2 (10 marks) Start a new page

Marks

l

a) The point of intersection of $y = x^3$ and y = 2 - x is the point A (1, 1)

Find the shaded area.

- b) If $y = \sin 2x^{\circ}$
 - i. Express $2x^{\circ}$ in radian measure
 - ii. Find $\int \sin 2x^{\circ} dx$ 2

c)

- i. Find x 1
- ii. Calculate the volume generated when the shaded region (shown above) 3 between the line y = x, the circle $x^2 + y^2 = 2$ and the x axis is rotated around the x axis.

Question 3 (10 marks) Start a new page

a) If $y = a \cos nx + b \sin nx$

show that
$$\frac{d^2y}{dx^2} + n^2y = 0$$

b) i. Differentiate $x\sqrt{x+3}$ and simplify your answer as far as possible, 2

ii. Hence find
$$\int \frac{x+2}{\sqrt{x+3}} dx$$

The sector below has area of $25cm^2$. It is contained in a circle of radius τ cm and the arc AB subtends an angle at the centre of the circle of θ radians.

- i. Show the perimeter of the sector is given by $P = 2r + \frac{50}{r}$
- ii. Find r for which the perimeter is a minimum.

Question 4 (10 marks) Start a new page

a) i. Sketch
$$y = 3\cos 2x$$
 for $0 \le x \le \pi$

ii. Find the area enclosed by $y = 3\cos 2x$, the x axis, x = 0

and
$$x = \frac{\pi}{2}$$

b) i. Express
$$\sin x + \sqrt{3} \cos x$$
 in the form $A \sin(x + \theta)$ for $0 < \theta < \frac{\pi}{2}$

ii. Hence solve
$$\sin x + \sqrt{3}\cos x = \sqrt{2}$$
 for $0 \le x \le 2\pi$.

Question 5 (10 marks) Start a new page

a) Find
$$\int \frac{\cos \sqrt{x}}{\sqrt{x}} dx$$
 using the substitution $u = \sqrt{x}$

b) Find
$$\int \frac{x}{\sqrt{1-x}} dx$$
 using the substitution $u = 1-x$.

c) Find
$$\int \cos^2 3x \ dx$$
 3

Question 6 (10 marks) Start a new page

a) Evaluate
$$\int_{0}^{1} \frac{x}{(x^2 + 2)^2} dx$$
 using the substitution $u = x^2 + 2$

b) i. Prove
$$\sin(A+B) + \sin(A-B) = 2\sin A\cos B$$

ii. Hence or otherwise evaluate
$$\int_{0}^{\frac{\pi}{6}} \sin 4x \cdot \cos 2x \ dx$$
 3

c) i. Sketch
$$y = 2^x$$

ii. If n is a positive integer, by considering the graph of
$$y = 2^x$$
 2

show that
$$2^n < \int_{n}^{n+1} 2^x dx < 2.2^n$$

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

a) $A = \frac{2666 \frac{2}{3} \text{ m}^3}{3 \text{ dex} + (1 \times 1) + (2 \times 2)}$ $A = \frac{\left[\frac{x}{4}\right]_0^1}{2 + 2\frac{1}{2}} + 2\frac{1}{2}$ $A = \frac{2\frac{3}{4}}{4} \text{ und}^2$	$\frac{25 t^{2} - \frac{1}{2} = 24}{2 + t^{2} = 48}$ $\frac{t^{2} = 2}{4 + 2}$	b) $\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{x \to 0} \frac{\sin 2x}{2x} \cdot 2$ $= 2$ c) $\frac{5}{1} \left[\left[\frac{1}{3} (x) + 2x \right] dx = \frac{5}{1} \right] \frac{1}{3} (x) dx + \frac{5}{1} ex dx$ $4 + \left[\frac{1}{2} x^{2} \right]_{1}^{5} = 28$	STHS EXT 1 HSC Task 2 a)i) $tan(2\pi) = tan(\pi - \pi)$ $= -tan \pi/3$ $= -43$ ii) $sin(-\pi) = sin(2\pi - \pi)$ $= -63$ $= -63$ iii) $sin(-\pi) = sin(2\pi - \pi)$ iii) $sin(-\pi) = sin(2\pi - \pi)$
Question 3 a) y = account + brianx dy = ansinnx + bricosnx dx alty = -an2cosny -bn2sinnx dalt sub into d2y + n2y = 0 LHS = -an2cosnx -bn2sinnx + n2(accosnx + bsinnx + n2(accosnx + bsinnx + 2 RHS	$= \pi \left[\frac{1}{3} + \left(2i2 - \frac{2i2}{3} \right) - \left(2 - \frac{1}{3} \right) \right]$ $= \pi \left[\frac{1}{3} + \left(2i2 - \frac{2i2}{3} \right) - \left(2 - \frac{1}{3} \right) \right]$ $= \pi \left[\frac{4i2 - 4}{3} \right]$	c) i) sime q $y=x$ $x^{2}+y^{2}=2$ $x^{2}+y^{2}=2$ $2x^{2}=2$ $x_{1}=1$ $x_{1}=1$ ii) $y=\pi \int_{0}^{1} x^{2} dx + \pi \int_{1}^{2} (2-x^{2}) dx$ $(r=1)^{-3} = 3-12$	SK 2 MARCH 2006 b) $\pi^{c} = 180^{\circ}$ i) $\therefore 2x^{\circ} = \frac{2x\pi}{180}x^{\circ}$ $= \frac{\pi x}{90} \text{ radians}$ ii) $\int \sin 2x^{\circ} dx = \int \sin \pi x dx$ $= -\frac{90}{10} \cos \pi x + c$
ii) $\frac{dP}{dr} = 2 - 50 r^{-2}$ $\frac{d^{2}P}{dr} = 100 r^{-3}$ $\frac{d^{2}P}{dr} = 2 - \frac{50}{50} = 0$ $\frac{2r^{2} - 50}{r^{2}} = 0$ $\frac{2r^{2} - 50}{r^{2}} = 50$ $r = \pm 5 r > 0 - 6 = 5$	c) 1) $P = 2r + 6r + 6r + 6r = 6$ since $\frac{1}{2}r^2 = 25$ $\theta = \frac{50}{r^2}$ sub into (1) $\frac{1}{r^2} = \frac{50}{r^2} = \frac{1}{2r + 50r^{-1}}$ $\frac{1}{r^2} = \frac{1}{2r + 50} = \frac{1}{2r + 50r^{-1}}$	2 x + 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12 5 5 F
:. $\sin x + (3\cos x = 2 \le 1)$ ii) $2 \sin (x + \frac{\pi}{3}) = \sqrt{2}$ $\sin (x + \frac{\pi}{3}) = \sqrt{2}$ $x + \frac{\pi}{3} = \frac{\pi}{4}$ $3 = \frac{5\pi}{12}$ $3 = \frac{23\pi}{12}$	$= 3 \left[\sin \frac{\pi}{2} - 9 \right]$ $= 3 \left[\sin \frac{\pi}{2} - 9 \right]$ $= 3 \left[\sin \frac{\pi}{2} + \frac{\pi}{2} \cos \frac{\pi}{2} \right]$ $= 3 \left[\sin \frac{\pi}{2} + \frac{\pi}{2} \cos \frac{\pi}{2} \right]$ $= 3 \left[\sin \frac{\pi}{2} + \frac{\pi}{2} \cos \frac{\pi}{2} \right]$ $= 3 \left[\sin \frac{\pi}{2} - 9 \right]$ $= 3 \left[\sin \frac{\pi}{2} - 9$	$\frac{\pi}{10} = 2 \int 3\cos 2x dx$ $\frac{\pi}{10} = 4 \int \frac{1}{2} \sin 2x dx$	test max/Min If r= S dip >0 Art min Perimeter If Question H A) i) amplitude = 3 peri

Question 5

$$\frac{du}{dx} = \sqrt{12} = \frac{1}{2}x^{-1/2} = \frac{1}{2}x$$

$$\frac{du}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2}x$$

$$du = \frac{dx}{2}$$

$$\int \frac{\cos x}{\sqrt{x}} dx = \int \frac{\cos x}{\sqrt{x}} \cdot 2\sqrt{x} dx$$

$$= 2 \int \cos x dx$$

$$\frac{du}{dn} = -1$$

$$-du = dsc$$

$$\int \frac{x}{\sqrt{1-x}} ds = \int \frac{1-u}{\sqrt{u}} - du$$

$$= -\int (1-u)^{-1/2} du$$

$$= -\int (u^{-1/2} - u^{-1/2}) du$$

$$= -\int \frac{u^{2} - u}{\sqrt{2} - u^{2}} du$$

$$= -\partial \sqrt{1-x} + \frac{2}{3}(1-x)^{3} + C$$

c)
$$\cos 2\theta = 2\cos^2 \theta - 1$$

$$\int \cos^2 3 x \, dx = \frac{1}{2} \int (\cos 6x + 1) \, dx$$

$$= \frac{1}{2} \left[\frac{1}{6} \sin 6x + x \right] + C$$

Overtion 6

a)
$$u = x^2 + 2$$
 $x = 1 \rightarrow u = 3$

$$\frac{du}{dx} = 2x \qquad x = 0 \rightarrow u = 2$$

$$dx = \frac{du}{2x^2}$$

$$\int \frac{x}{(x^2 + 2)^2} dx = 2 \int \frac{x}{u^2} \frac{du}{2x^2}$$

$$= \frac{1}{2} \int \frac{1}{u} \frac{3}{2}$$

$$= \frac{1}{2} \left[-\frac{1}{u} \right]_2^3$$

= sinAcos B + cos Asin B + sin Acos B - costisin

= RHS

ii)
$$\sin 4x \cdot \cos 2x = \frac{1}{2} \left[\sin 6x + \sin 2x \right]$$

 $\frac{1}{2} \int_{0}^{\pi/6} (\sin 6x + \sin 2x) dx$
 $= \frac{1}{2} \left[-\frac{1}{6} \cos 6x - \frac{1}{2} \cos 2x \right]_{0}$
 $= \frac{1}{2} \left[-\frac{1}{6} \cos \pi - \frac{1}{2} \cos \frac{\pi}{3} - \left(-\frac{1}{6} - \frac{1}{2} \right) \right]$
 $= \frac{1}{2} \left[\frac{1}{6} - \frac{1}{4} + \frac{1}{6} + \frac{1}{2} \right] = \frac{7}{24}$

c) i)
$$2^{n}$$

$$1 \text{ lower rectangle}$$

$$n \text{ n+1}$$

lower nectangle
$$<$$
 $\int_{2}^{2} \frac{x}{chx} < \frac{area}{cectangle}$
 $2 \times 1 < \int_{2}^{2} \frac{x}{chx} < \frac{2}{2} \times 1$
 $2 \times 1 < \int_{2}^{2} \frac{x}{chx} < \frac{2}{2} \times 1$

Question 1

a) i)
$$tan(\frac{2\pi}{3}) = tan(\pi - \frac{\pi}{3})$$

= $-tan\pi/3$
= $-\sqrt{3}$
ii) $sin(-\frac{\pi}{3}) = sin(2\pi - \frac{\pi}{3})$
= $-sin\frac{\pi}{3}$
= $-\frac{5}{2}$

b)
$$\lim_{x\to0} \frac{\sin 2x}{x} = \lim_{x\to0} \frac{\sin 2x}{20}$$
. 2

$$= \frac{2}{5}$$

$$= \frac{2}{5}$$

$$= \frac{5}{5}$$

$$= \frac{5}{5}$$

$$= \frac{5}{5}$$

$$= \frac{5}{5}$$

$$= \frac{5}{5}$$

$$= \frac{5}{5}$$

$$= \frac{1}{5}$$

$$= \frac{$$

d) i)
$$A = \frac{10}{3}(0+0+4(5+15+7)+2(12+14))$$

$$A = 533\frac{1}{3} \text{ m}$$
ii) $V = 533\frac{1}{3} \times 5$

$$= 2666\frac{2}{3} \text{ m}^{3}$$

Overtion 2

$$A = \int x^3 dx + (1x1) + (2x2)$$

$$= \left(\frac{x^{+}}{4}\right)^{1}_{0} + 2\frac{1}{2}$$

$$A = 2\frac{3}{4}$$
 unt²

$$\pi^{c} = 180^{\circ}$$

i)
$$\therefore 2x^{\circ} = \frac{2x\pi}{180}$$

$$= \frac{\pi x}{90} \text{ radians}$$

$$\int \sin 2x^{2} dx = \int \sin \frac{\pi}{90} x dx$$

$$= -\frac{90}{\pi} \cos \frac{\pi}{90} x + c$$

c) i) sineq
$$y=x$$
 $x^2+y^2=2$

$$3x^2 + 3t^2 = 2$$

$$2x^2 = 2$$

ii)
$$V = \pi \int_{0}^{1} x^{2} dx + \pi \int_{1}^{2} (2-x^{2}) dx$$

$$= \pi \left[\frac{x^{3}}{3} \right]_{0}^{1} + \left[2x - \frac{x^{3}}{3} \right]_{1}^{1/2}$$

$$= \pi \left[\frac{1}{3} + \left(2\sqrt{2} - \frac{2\sqrt{2}}{3} \right) - \left(2 - \frac{1}{3} \right) \right]$$

$$= \pi \left[-\frac{4}{3} + \frac{612 - 212}{3} \right]$$

$$= \pi \left[\frac{452-4}{3} \right]$$

Ovestion 3

$$\frac{d^2y}{dn^2} = -an^2\cos nx - bn^2\sin nx$$

$$\frac{d^2y}{dn^2} + n^2y = 0$$

$$LHS = -an^2\cos nx - bn^2\sin nx + \frac{d^2y}{dn^2} + \frac{d^2y}{dn^2} + \frac{d^2y}{dn^2} = 0$$

$$h^2(a\cos nx + b\sin nx)$$

b) i)
$$y = \alpha \sqrt{x+3}$$

Let $u=2$ $v=\sqrt{x+3} = (x+3)^{1/2}$
 $u'=1$ $v'=\frac{1}{2}(x+3)^{-1/2}=\frac{1}{2\sqrt{x+3}}$

$$\frac{dy}{dx} = \sqrt{x+3} + \frac{3c}{2\sqrt{x+3}}$$

$$= \frac{2(x+3) + x}{2\sqrt{x+3}}$$

$$= \frac{33c + 6}{2\sqrt{3c+3}}$$

$$\frac{dy}{dx} = \frac{3}{2} \left[\frac{3(+2)}{\sqrt{5(+3)}} \right]$$
 (2)

ii) :
$$\int \frac{3(+2)}{\sqrt{x+3}} dx = \frac{2}{3} \times \sqrt{3(+3)} + C$$

$$P = 2r + r \left[\frac{50}{r^2}\right]$$

$$P = 2r + \frac{50}{r} = 2r + 50r^{-1}$$

ii)
$$\frac{dP}{dr} = 2 - 50 r^{-2}$$

 $\frac{d^2P}{dr^2} = 100r^{-3}$
 $\frac{d^2P}{dr^2} = 2 - \frac{50}{r^2} = 0$

$$2r^2 = 50$$
 $r = \pm 5 \quad r > 0 : r = 5$

test max/min

If r=5 $\frac{d^2P}{dr^2} > 0$...min

- min Perimeter if r=Scm

Question 4

a) i) amplitude = 3 period
$$\frac{2\pi}{2} = \pi$$

$$\frac{1}{3} = 3\cos 2x$$

11/4

ii)
$$A = 2 \int 3\cos 2x \, dx$$

$$= 6 \left[\frac{1}{2} \sin 2x \right]^{\frac{\pi}{4}}$$

$$= 3 \left[\sin \frac{\pi}{2} - \sin 0 \right]$$

= 3 unit2

3

b) i)
$$A = \sqrt{1 + 3}$$
 $\therefore A = 2$

$$2 \left[\frac{1}{2} \sin x + \sqrt{3} \cos x \right] = A \sin (x + \theta)$$

$$\cos \theta = \frac{1}{2}$$
 $\sin \theta = \frac{13}{2}$. $\theta = \frac{\pi}{3}$

$$\therefore \sin x + \sqrt{3}\cos x = 2\sin\left(x + \frac{\pi}{3}\right)^{2}$$

ii)
$$2 \sin \left(3(+\frac{\pi}{3}) = 12 \right)$$

$$\sin \left(3(+\frac{\pi}{3}) = \frac{12}{2} \right) = \frac{12}{7}$$

$$x + \pi = \pi$$

$$\frac{\pi}{3} + \frac{3\pi}{4} + \frac{9\pi}{4}$$

 $\therefore SC = \frac{511}{12}, \frac{2311}{12}$

$$\frac{du}{dx} = \sqrt{x} = x^{1/2}$$

$$\frac{du}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{3}x}$$

$$du = \frac{dx}{2\sqrt{3}x}$$

$$\int \frac{\cos x}{\sqrt{x}} dx = \int \frac{\cos x}{\sqrt{x}} \cdot 2\sqrt{x} dx$$

$$= 2 \int \cos x dx$$

2 sin u + c

= 2 sm (x+c

b)
$$u = 1-x$$

$$\frac{du}{dx} = -1$$

$$-du = dx$$

$$\int \frac{x}{\sqrt{1-x}} dx = \int \frac{1-u}{\sqrt{u}} - du$$

$$= -\int (1-u)u^{-1/2} du$$

$$= -\int (u^{-1/2} - u^{-1/2}) du$$

$$= -\int \frac{u^{2}}{\sqrt{2}} - \frac{3/2}{3/2}$$

$$= -2\sqrt{1-x} + \frac{2}{3}(1-x)^{3} + C$$

c)
$$\cos 2\theta = 2\cos^2 \theta - 1$$

$$\therefore \int \cos^2 3 \times \cot = \frac{1}{2} \int (\cos 6 \times + 1) \operatorname{obc}$$

$$= \frac{1}{2} \left[\frac{1}{6} \sin 6 \times + \infty \right] + C$$

Overtion 6

a)
$$u = x^2 + 2$$

$$\frac{du}{dx} = 2x$$

$$dx = \frac{du}{2x}$$

$$\frac{1}{x^2 + 2} = \frac{3}{x^2} = \frac{3}{x^2}$$

= sinAcos B + cos Asin B + sin Acos B - costisint

$$= RHS$$

ii)
$$\sin 4x \cdot \cos 2x = \frac{1}{2} \left[\sin 6x + \sin 2x \right]$$

$$\frac{1}{2} \int_{0}^{\pi/6} \left(\sin 6x + \sin 2x \right) dx$$

$$=\frac{1}{2}\left[-\frac{1}{6}\cos 6x - \frac{1}{2}\cos 2x\right]_{6}$$

$$= \frac{1}{2} \left[-\frac{1}{6} \cos \pi - \frac{1}{2} \cos \frac{\pi}{3} - \left(-\frac{1}{6} - \frac{1}{2} \right) \right]$$

$$= \frac{1}{2} \left[\frac{1}{6} - \frac{1}{4} + \frac{1}{6} + \frac{1}{2} \right] = \frac{7}{24}$$
 (3)

$$y = 2^{\frac{1}{2}}$$

$$y = 2^{\frac{1$$

ii) area
$$n+1$$
 2 dx < upper rectangle < $2 \times 1 < n+1$ 2 dx < 2×1 < $2 \times 1 < n+1$ 2 dx < 2×1