Exam 2

Study Guide and Practice Questions

1. For each of the following series state whether it converges absolutely, converges conditionally, or diverges. Justify your answers.

(a)
$$\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$$

(b)
$$\sum_{n=2}^{\infty} \frac{(-1)^n n}{\sqrt{n^2 + 1}}$$

(a)
$$\sum_{n=1}^{\infty} \frac{\cos n}{2^n}$$
 (b) $\sum_{n=2}^{\infty} \frac{(-1)^n n}{\sqrt{n^2 + 1}}$ (c) $\sum_{n=1}^{\infty} \frac{(-2)^n (2n+1)}{n!}$

(d)
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n^5}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(n!)^2 4^n}{(2n)!}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n^5}$$
 (e) $\sum_{n=1}^{\infty} \frac{(n!)^2 4^n}{(2n)!}$ (f) $\sum_{n=1}^{\infty} (-1)^n \frac{(\log n)^2}{n}$

- 2. Prove that if a series converges absolutely, then it is convergent.
- 3. For what values of p do the following series converge? Justify your answer.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n(\log n)^p}$$
 (b)
$$\sum_{n=1}^{\infty} \frac{\log n}{n^p}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\log n}{n^p}$$

4. For which values of x do the following series converge?

(a)
$$\sum_{n=1}^{\infty} \frac{(2x)^n}{2n+1}$$

(a)
$$\sum_{n=1}^{\infty} \frac{(2x)^n}{2n+1}$$
 (b) $\sum_{n=1}^{\infty} \frac{(x-1)^n n}{2^n}$

- 5. (a) Find a closed form for the power series $\sum_{n=0}^{\infty} x^{2n}$ when |x| < 1.
 - (b) Find a sequence $\{a_n\}$ so that $\sum_{n=0}^{\infty} a_n x^n = \frac{1}{4+x}$ for all |x| < 4.
- 6. Provide counterexamples to the following false statements:

 - (a) If $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ converges. (b) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} |b_n|$ converges.
 - (c) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, then $\sum_{n=1}^{\infty} |a_n|$ diverges.
- 7. Prove that if $\{a_n\}$ is summable, then $\lim_{n\to\infty} a_n = 0$.
- 8. State and prove the ratio test.
- 9. Use the ε - δ definition of continuity at a point to prove that

$$f(x) = \frac{3+x}{1+x^2}$$

is continuous at $x_0 = 1$.

10. Prove that if a function $f: \mathbb{R} \to \mathbb{R}$ is *continuous* at x_0 , then $\lim_{n \to \infty} f(x_n) =$ $f(x_0)$ for all sequences $\{x_n\}$ with $\lim_{n\to\infty}x_n=x_0$. Use this to show that

1

$$g(x) = \begin{cases} \cos(x^{-1}) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is not continuous at $x_0 = 0$.