(MATNA1902) Lineáris algebra 1. zárthelyi dolgozat

1. Adottak a következő mátrixok:

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 3 \\ -3 & 2 & 1 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 3 & 1 & 2 \\ 0 & 2 & 0 \end{pmatrix} \mathbf{C} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ -1 & 1 \end{pmatrix} \mathbf{D} = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 0 \end{pmatrix}$$

Végezze el az alábbiak közül az elvégezhető műveleteket! (a) $|\mathbf{A}|$; $|\mathbf{C}|$; $|\mathbf{D}|$ (b) $\mathbf{A} + \mathbf{B}$; $\mathbf{B} + \mathbf{C}$; $\mathbf{C} + \mathbf{D}$; $4\mathbf{A} - \mathbf{B}$ (c) $\mathbf{A} \cdot \mathbf{B}$; $\mathbf{B} \cdot \mathbf{C}$; $\mathbf{B} \cdot \mathbf{D}$ (d) \mathbf{A}^T ; \mathbf{D}^T ; $\mathbf{A}^T \cdot \mathbf{B}$; (e) $\rho(\mathbf{B})$; $\rho(\mathbf{D})$; (f) \mathbf{A}^{-1} ; \mathbf{D}^{-1} (10 pont)

2. Oldja meg az $\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$ mátrixegyenletet, ha

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 7 \\ -3 & 2 & 2 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 10 & 1 \\ 29 & 5 \\ 8 & 5 \end{pmatrix}$$

(10 pont)

3. Oldja meg az alábbi lineáris egyenletrendszert!

$$x_1 - 2x_2 - 3x_3 = 6$$

$$2x_1 - 3x_2 + x_3 = -1$$

$$3x_1 + x_2 + x_3 = 5$$

(10 pont)

- 4. Lineárisan függetlenek-e az $\mathbf{a} = (6, 4, -1)$, a $\mathbf{b} = (2, 1, 6)$ és a $\mathbf{c} = (1, 0, 4)$ vektorok? (10 pont)
- 5. Lineáris altér-e az \mathbb{R}^4 -on az $L = \{(x_1, x_2, 2x_1, 3x_2) | x_1, x_2 \in \mathbb{R}\}$? (10 pont)

A zárthelyi osztályzása: 0-20 pont: elégtelen (1), 21-27 pont: elégséges (2), 28-35 pont: közepes (3), 36-42 pont: jó (4) és 43-50 pont: jeles (5).

 $\label{eq:Facskog} \textbf{Facskó} \; \textbf{Gábor} \\ \textit{facskog@gamma.ttk.pte.hu} \\$

Pécs, 2025. március 13.