Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. M. Maurer

Prof. Dr.-Ing. W. Schumacher

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3836

Klausuraufgaben		Grundlagen der Elektrotechnik - 3h		h 26.07.2013
Name:		Vorname:		
MatrNr.:		Studiengang:		
E-Mail (optional):				
1:	2:	3:	4:	5:
ID:_		Summe:		Note:

Alle Lösungen müssen nachvollziehbar bzw. begründet sein.

Für jede Aufgabe ein neues Blatt verwenden.

Keine Rückseiten beschreiben.

Keine Blei- oder Rotstifte verwenden.

Lösungen auf Aufgabenblättern werden nicht gewertet.

Zugelassene Hilfsmittel:

- Geodreieck
- Zirkel

Einverständniserklärung

Ich erkläre mich einverstanden, dass meine Note mit Matrikelnummer im Institut für Regelungstechnik ausgehängt wird.

Datum, Unterschrift

1

Punkte: 20

1 Elektrisches Feld

Gegeben sei ein Plattenkondensator mit zwei Dielektrika der Permittivität ε_1 und ε_2 und den Dicken d_1 bzw. d_2 (siehe Bild 1). Die Oberfläche der Kondensatorplatten A_0 sowie die Spannung U_0 zwischen den Platten seien ebenfalls bekannt.

- a) Bestimmen Sie die Gesamtkapazität C_G des Kondensators. (4 Punkte)
- b) Bestimmen Sie die im Kondensator gespeicherte Ladung Q_0 . (2 Punkte)
- c) Bestimmen Sie die elektrische Flussdichte *D* zwischen den Kondensatorplatten. Gehen Sie vom Gaußschen Gesetz der Elektrostatik aus. Begründen Sie vorgenommene Vereinfachungen und fertigen Sie eine Skizze an, die die Anwendung des Gesetzes veranschaulicht. (6 Punkte)

==

Auf der positiv geladenen Kondensatorplatte befindet sich die positive Ladung q_a der Masse m (siehe Bild 2). Sie wird durch das elektrische Feld im Kondensator in Richtung der negativen Platte beschleunigt. Die Schwerkraft kann dabei vernachlässigt werden.

- d) Bestimmen Sie die jeweils im Dielektrikum der Permittivität ε_1 bzw. ε_2 auf die Ladung wirkende elektrische Kraft. (4 Punkte)
- e) Bestimmen Sie die Geschwindigkeit v_1 der Ladung beim Übergang zwischen den Dielektrika und die Geschwindigkeit v_2 bei erreichen der negativen Platte. (4 Punkte)

Hinweis: Die Geschwindigkeit am Ende einer gleichmäßig beschleunigten Bewegung lautet:

$$v^2 = v_0^2 + 2a\Delta x$$

 v_0 – Anfangsgeschwindigkeit

a – Beschleunigung

 Δx – zurückgelegte Strecke

2 Gleichstromnetzwerk

Das gegebene Netzwerk besteht aus einer idealen Gleichspannungsquelle U_{12} , einer idealen Gleichstromquelle I_0 , sowie vier Widerständen R_1 bis R_4 mit bekannten Werten. Die Klemmen A und B sind unbeschaltet (Leerlauf).

a) Bestimmen Sie mit Hilfe des Superpositionsverfahrens den Strom durch den Widerstand R_1 (5 Punkte).

Hinweis: Nutzen Sie wenn möglich den Strom- oder Spannungsteiler.

- b) Bestimmen Sie die Spannung U_4 am Widerstand R_4 (2 Punkte).
- c) Bilden Sie die Ersatzspannungsquelle bezüglich der Klemmen A und B und skizzieren Sie diese (2 Punkte).
- d) An die Klemmen A und B wird nun ein Lastwiderstand R_L mit einem bekannten Wert angeschlossen. Bestimmen Sie in Abhängigkeit der für die Schaltung bekannten Werte die Leistung P_L , die im Widerstand R_L umgesetzt wird (1 Punkt).

3 Magnetischer Kreis

Das Joch eines Hufeisenmagnetes trägt eine Wicklung mit der Windungszahl N_1 , durch die der Gleichstrom I_1 fließt. Der Anker im Abstand x_0 trägt eine Wicklung mit der Windungszahl N_2 , die stromlos ist $(I_2 = 0)$. Joch und Anker bestehen aus dem gleichen Material mit der relativen Permeabilität μ_r . Alle Querschnittsflächen sind quadratisch mit der Kantenlänge a. Streuung im Eisenkreis sind zu vernachlässigen.

- a) Zeichnen Sie das Ersatzschaltbild des magnetischen Kreises inklusiver aller Komponenten. Berechnen Sie allgemein die magnetischen Widerstände des Ersatzschaltbilds auf der mittleren Weglänge. Nennen Sie den Zusammenhang zwischen Θ und I. (4 Punkte)
- b) Bestimmen Sie allgemein den vom Strom I_1 erzeugten magnetischen Fluss Φ im Joch. (5 Punkte)
- c) Berechnen Sie allgemein die magnetische Flussdichte B_L in den Luftspalten. (2 Punkte)
- d) Ermitteln Sie allgemein die Kraft F, die auf den Anker wirkt. (2 Punkte) Hinweis: Die Kraft im Luftspalt ist $F_L = \frac{B_L^2}{2\mu_0}a^2$

 \Longrightarrow

Der Anker wird in x-Richtung gegen das Joch gezogen. Die Bewegung soll zur Vereinfachung der Berechnung mit konstanter Geschwindigkeit v erfolgen. Joch und Anker haben zum Zeitpunkt t=0 den Abstand $x=x_0$. Zum Zeitpunkt $t=t_1$ schlägt das Joch gegen den Anker (x=0).

- e) Bestimmen Sie allgemein die durch die Bewegung des Jochs in der Wicklung N_2 induzierte Spannung $u_2(t)$. (4 Punkte)
- f) Bestimmen Sie die in der Wicklung N_2 induzierte Spannung für den Fall, dass die Luftspaltgröße x=const ist. (1 Punkt)
- g) Skizzieren Sie eine mögliche Form der Streuung des magnetischen Flusses, die bei dieser Anordnung für x>0 auftreten kann, sowie ihre Modellierung im Ersatzschaltbild. (2 Punkte)

4 Komplexe Wechselstromrechnung

Gegeben sei ein Gerät, das mit einer variablen Wechselspannung gespeist werden kann. Das Gerät hat folgendes Ersatzschaltbild:

Ihre Aufgabe ist es nun, den Betrag des Widerstandes R zu ermitteln. Dafür steht Ihnen ein Wechselspannungsgenerator zur Verfügung. Dieser Generator kann eine Wechselspannung \underline{U}_0 mit $|\underline{U}_0|=15V$ in einem Frequenzbereich von 0 Hz $< f_{Generator} < 200$ kHz erzeugen.

- a) Welche Frequenz aus dem genannten Frequenzbereich wählen Sie zur Bestimmung von R? Begründen Sie Ihre Wahl kurz. Geben Sie zusätzlich ein vereinfachtes Schaltbild an, das sich bei der von Ihnen gewählten Frequenz ergibt. (3 Punkte)
- b) Bei der von Ihnen gewählten Frequenz stellt sich ein Strom $|\underline{I}_0|=5A$ ein. Berechnen Sie den Wert des Widerstandes R. (1 Punkt)

==

7

Das Gerät soll im Normalbetrieb mit den folgenden Parametern betrieben werden:

$$R=3\Omega,\,L=0,2\mathrm{mH},\,C=4\mu\mathrm{F},\,f=\frac{10}{\pi}\mathrm{kHz},\,\underline{U}_0=100\mathrm{V}e^{j0^\circ}$$

c) Berechnen Sie zur Bestimmung des Betriebsverhaltens die Größen \underline{I}_1 , \underline{I}_2 , \underline{I}_0 , \underline{U}_C , \underline{U}_R und \underline{U}_L in komplexer Schreibweise. (6 Punkte)

Hinweis: Verwenden Sie ab Aufgabenteil d) die folgenden Werte:

$$\underline{U}_0 = 50Ve^{j0^{\circ}} \qquad \underline{I}_0 = 6A - j6A$$

$$\underline{U}_R = 18V - j24V \qquad \underline{I}_1 = 6A - j8A$$

$$\underline{U}_L = 32V + j24V \qquad \underline{I}_2 = j2A$$

- d) Visualisieren Sie dazu das Verhalten mit einem Zeigerdiagramm ($Ma\beta stab$: 1cm = 5V, 1cm = 1A), in dem (bis auf \underline{I}_0^* und \underline{I}_X) sämtliche Spannungen und Ströme der Schaltung integriert sind. (6 Punkte)
- e) Bestimmen Sie den Phasenwinkel φ zwischen der Spannung U_0 und dem Strom I_0 . Zeigt die Schaltung induktives oder kapazitives Verhalten? (2 Punkte)
- f) Analysieren Sie den elektrischen Schwingkreis in dem gegebenen Ersatzschaltbild unter Vernachlässigung des Widerstandes R: Um welche Art Schwingkreis handelt es sich hierbei? Geben sie die Formel für die Resonanzfrequenz f_R an und berechnen Sie diese mit den vorgegebenen Werten aus Aufgabenteil c). Begründen Sie, ob die Schaltung sperrendes oder durchlassendes Verhalten zeigt. (4 Punkte)

 $\mathit{Hinweis}\colon \text{Verwenden Sie in Aufgabenteil f)}$ die Näherungen $\sqrt{2}\approx\frac{4}{3}$ und $\pi\approx3$

Das Gerät weist eine zu hohe Blindleistungsaufnahme auf. Die Phase zwischen der Spannung U_0 und dem Strom I_0 soll deshalb auf $\varphi = 0^{\circ}$ kompensiert werden. Mit dem Schalter S und der noch zu bestimmenden Impedanz X soll das realisiert werden.

- g) Welches Bauteil setzen Sie für die Impedanz X ein, um den Phasenwinkel zu reduzieren? Erläutern Sie Ihre Wahl kurz. (1 Punkt)
- h) Zeichnen Sie den Zeiger von \underline{I}_X in das Zeigerdiagramm ein, so dass der Phasenwinkel zwischen der Spannung \underline{U}_0 und dem sich ergebenden Strom \underline{I}_0^* Null wird. (1 Punkt)

i) Bestimmen Sie die Größe des benötigten Bauteils analytisch. (3 Punkte)

 $\mathit{Hinweis}$: Die Betrachtung der Knotenbilanz mit den Strömen \underline{I}_0 , \underline{I}_0^* und \underline{I}_X sowie die Verwendung der Definition des Tangens $\left(\tan\varphi_I = \frac{Im\{\underline{I}\}}{Re\{\underline{I}\}}\right)$ ist ein möglicher Ansatz.

Das Gerät ist auch für den Betrieb bei anderen Versorgungsspannungen $|\underline{U}_0|$ geeignet. Es wird nun mit einer Betriebsspannung von $|\underline{U}_{Neu}|$ =200 V anstelle von $|\underline{U}_0|$ =100V gespeist.

- j) Welche Auswirkung hat diese Änderung auf die Phasenlage zwischen \underline{U}_V und \underline{I}_0^* ? Begründen Sie dies kurz. (1 Punkt)
- k) Um wie viel Prozent ändern sich in diesem Fall die Scheinleistung S, die Wirkleistung P und die Blindleistung Q des Geräts? (2 Punkte)

5 Kondensatornetzwerk

Vor dem Anschluss der Spannungsquelle U_0 an das Netzwerk seien alle Kondensatoren ladungsfrei und alle Schalter geöffnet. Der Schalter S_1 wird nun geschlossen, der Schalter S_2 bleibt zunächst geöffnet. Wenn der Spannungsabfall am Widerstand R_1 5V beträgt, wird der Schalter S_1 wieder geöffnet.

Gegeben: $U_0 = 15V$, $C_1 = 1F$, $C_2 = 6F$, $C_3 = 6F$.

- a) Zeichnen Sie zunächst das Netzwerk bei geschlossenem Schalter S_1 . (1 Punkt)
- b) Berechnen Sie formelmäßig und zahlenmäßig die Spannung U_{C_1} am Kondensator C_1 . (2 Punkte)
- c) Berechnen Sie formelmäßig und zahlenmäßig die Gesamtkapazität C_{GES_1} , die Gesamtladung Q_{GES_1} und die Gesamtenergie W_{GES_1} im Netzwerk. (6 Punkte)

Der Schalter S_1 bleibt geöffnet, aber der Schalter S_2 wird nun geschlossen. Das Abklingen der Einschwingvorgänge wird abgewartet.

- d) Zeichnen Sie zunächst das Netzwerk bei geschlossenem Schalter S_2 und geöffnetem Schaltern S_1 . (1 Punkt)
- e) Berechnen Sie formelmäßig und zahlenmäßig die Gesamtkapazität des Netzwerks C_{GES_2} . (3 Punkte)
- f) Was geschieht mit der Gesamtladung? (1 Punkt)
- g) Berechnen Sie formelmäßig und zahlenmäßig die Spannungen U_{C_1} , U_{C_2} und U_{C_3} an den entsprechenden Kondensatoren. (6 Punkte)