Exercices

TRIGONOMÉTRIE

1 Cercle trigonométrique

Exercice 1

Les mesures ci-dessous sont exprimées en radians, les convertir en degrés (valeurs exactes).

$$\frac{3\pi}{2}$$

$$\frac{5\pi}{12}$$

$$\frac{\pi}{16}$$

105ř

$$\frac{11\pi}{120}$$

Exercice 2

Les mesures ci-dessous sont exprimées en degrés, les convertir en radians (valeurs exactes).

36ř

15ř

240ř

270ř

720ř

1ř

Exercice 3

Dans chaque cas, exprimer en radians les mesures des trois angles α , β et γ d'un triangle, tel que :

- **1.** $\alpha = 70$ ř et $\beta = 15$ ř;
- 2. le triangle est rectangle isocèle;
- **3.** le triangle est isocèle et $\alpha = 45$ ř;
- 4. le triangle est équilatéral.

Exercice 4

Déterminer la mesure principale des angles dont une mesure est :

$$\frac{8\pi}{11}$$

$$\frac{19\pi}{13}$$

$$\frac{107\pi}{3}$$

$$\frac{125\pi}{11}$$

$$-\frac{137\pi}{3}$$

$$-\frac{28\pi}{13}$$

2 Fonctions trigonométriques cos et sin

Exercice 5

Dresser le tableau des valeurs trigonométriques usuelles.

Exercice 6

Résoudre dans $]-\pi;\pi]$ puis dans **R**:

1.
$$\cos(x) = \frac{\sqrt{2}}{2}$$

4.
$$\cos(x) = -\frac{\sqrt{3}}{2}$$

2.
$$\sin(x) = 0.5$$

5.
$$\sin(x) = 1$$

3.
$$\cos(x) = 0$$

6.
$$\sin(x) = -\frac{\sqrt{2}}{2}$$

Exercice 7

Résoudre dans $[0;2\pi[$ puis dans $\mathbf{R}:$

1.
$$\cos(x) = -\frac{\sqrt{2}}{2}$$

3.
$$\cos(x) = -1$$

2.
$$\sin(x) = 0$$

4.
$$\sin(x) = -\frac{\sqrt{3}}{2}$$

Exercice 8

Résoudre dans R:

1.
$$cos(x) = cos\left(\frac{\pi}{7}\right)$$

$$2. \sin(x) = \sin\left(\frac{3\pi}{5}\right)$$

3 Fonctions $t \mapsto A\cos(\omega t + \phi)$ et $t \mapsto A\sin(\omega t + \phi)$

Exercice 9

Donner l'amplitude, la période et la phase à l'origine des signaux :

$$t \mapsto f(t) = 5\cos\left(2t + \frac{\pi}{3}\right)$$

$$t \mapsto g(t) = 3\sin\left(\frac{1}{5}t - \frac{\pi}{4}\right)$$

Exercice 10

Pour chaque question, donner les réponses exactes en justifiant.

1.
$$t \mapsto f(t) = 3\cos\left(3t + \frac{\pi}{4}\right)$$

a) f est paire.

- **b)** *f* est impaire.
- c) f est périodique de période $\frac{2\pi}{3}$.

$$2. \ t \mapsto g(t) = 2\sin\left(4t + \frac{\pi}{2}\right)$$

a) g est paire.

- **b**) *g* est impaire.
- c) g est périodique de période $\frac{\pi}{2}$.

Exercice 11

Suite à un tremblement de terre, le Japon est touché par un tsunami. On modélise la hauteur de l'eau par la fonction h, définie pour $t \geqslant 0$, avec h en m, t en s, par :

$$h(t) = a\cos(bt)).$$

Déterminer les nombres a et b dans le cas d'un tsunami où les vagues mesurent 12 mètres de haut et présentent une périodicité de 20 minutes.

Exercice 12

On modélise la température dans une ville par la fonction θ définie par : $\theta(t) = 15.7 \sin\left(\frac{\pi}{6}(t-3)\right) + 9$ où t est exprimé en mois.

Le 1er janvier correspond à t = 0.

- 1. Quelle est la température le 1er février? Et le 1er décembre?
- **2.** Quelles sont les températures extrêmes? À quelles dates correspondentelles?
- 3. À quelle périodicité retrouve-t-on des températures analogues?