Transistor à effet de champ (FET)

1. Symbole.

Transistor canal N

Transistor canal P

2. Caractéristiques électriques.

Le transistor à effet de champ se commande en tension entre grille et source.

Observations:

- Quand le transistor travaille en régime linéaire, Id est fixé par Vgs et Vds a peu d'effet. Le composant peut donc trouver des applications en amplification. Comme le transistor bipolaire le FET a besoin d'une polarisation car il est unidirectionnel.
- Le domaine où Vds < 1volt, autour de Vds = 0 s'appelle la zone ohmique. La résistance rds entre drain et source est alors fonction de Vgs. Cette propriété permet de régler la valeur d'une résistance par une commande électronique.
- L'impédance entre grille et drain est très grande $(10^{10}\Omega)$.
- Le transistor peut opérer en commutation rapide.
- Le transistor à canal P se commande avec Vgs > 0 . Id et Vds sont négatifs.

3. Modèle en petits signaux.

4. Application au contrôle de gain d'un montage amplificateur.

vs/ve = - rds/R où rds dépend de vc