Due (tentatively) Friday, November 8.

Work in groups (of 1 or more). Each group should turn in ONE solution set, preferably by email in LaTeX format. Each group should solve at least $\max(\# \text{ of group members, 2})$ problems.

 $AG=alg.\ geom.,\ CO=comb.,\ AP=applied,\ M2=\ computational,\ B=beginner,\ *=advanced.$

- 1. (B, CO Operations with monomial ideals) Let I and J be monomial ideals of given by monomial generators m_1, \ldots, m_r and n_1, \ldots, n_s , respectively, and let m be a monomial.
 - (a) Show that

$$I \cap J = \langle LCM(m_i, n_j) | 1 \le i \le r, 1 \le j \le s \rangle.$$

(b) Show that I: m is generated by the monomials

$$\frac{LCM(m_i; m)}{m} = \frac{m_i}{GCD(m_i; m)}; 1 \le i \le r.$$

- **2.** (B, CO Associated primes of monomial ideals) Given a subset $S = \{i_1, \ldots, i_s\} \subseteq \{1, 2, \ldots, n\}$, define P_S to be the following (prime) ideal of $k[x_1, \ldots, x_n]$: $P_S = \langle x_{i_1}, \ldots, x_{i_s} \rangle$.
 - (a) Show that, for any simplicial complex Δ , $I_{\Delta} = \bigcap_{\sigma \in \Delta} P_{\overline{\sigma}}$, where $\overline{\sigma}$ denotes the complement of σ with respect to the set $\{1, 2, \dots n\}$.
 - (b) Let G be a graph on n vertices and define the edge ideal of G to be $I(G) = \langle x_i x_j | (i, j) \in E(G) \rangle$. Show that $I(G) = \cap_C P_C$ where the set C varies over the minimal vertex covers of G (a vertex cover is a set of vertices such that every edge in G has at least one end point in this set and the word minimal is meant with respect to containment).
- 3. (B, CO Alexander duality) Recall that for a simplicial complex Δ we defined the Alexander dual simplicial complex to be $\Delta^* = \{\overline{\tau} | \tau \notin \Delta\}$ and for a squarefree monomial ideal $I = \langle x_{\sigma_1}, x_{\sigma_2}, \dots, x_{\sigma_t} \rangle$ we defined the Alexander dual ideal of I to mean $I^* = \bigcap_{i=1}^t P_{\sigma_i}$. Show that
 - (a) $(\Delta^*)^* = \Delta$
 - (b) $I_{\Delta}^* = I_{\Delta^*}$

Hint: You may want to use part (a) of the previous problem here.

- **4.** (Hochster's Theorem) Use Hochster's Theorem to compute all the \mathbb{Z}^n -graded Betti numbers of S/I_{Δ} , where $I_{\Delta} = \langle x_1x_4, x_2x_3x_4, x_1x_5, x_2x_5, x_3x_5, x_4x_5 \rangle$.
- 5. (Stanley's Triangle & Dehn-Sommerville relations)
 - (a) Prove that Stanley's triangle (as defined in class) indeed computes the h-vector of a Stanley-Reisner ring.

- (b) Prove that if the f-vector of a 2-dimensional simplicial complex satisfies Euler's relations $f_0 f_1 + f_2 = 2$ and $3f_2 = 2f_1$ (this is the case, for example for the boundary complex of a 3-dimensional simplicial polytope), then the h-vector of the Stanley-Reisner ring associated to this simplicial complex is symmetric (i.e $h_i = h_{3-i}$ for i = 0, 1).
- **6.** (* Borel-fixed ideals in positive characteristic) Suppose p is a prime number and $a, b \in \mathbb{N}$. Define $a <_p b$ if each digit in the base p expansion of a is \leq the corresponding digit in the base p expansion of b. Let I be a monomial ideal in $k[x_1 \ldots x_n]$ with char(k) = p. Show that I is Borel-fixed iff the following condition is satisfied for all i < j and all monomial minimal generators m of I: if m is divisible by x_j^t but no higher power of x_j , then $(x_i/x_j)^s m \in I$ for all i < j and $s <_p t$.
- 7. (* Distractions) Let I be an arbitrary monomial ideal in $k[x_1, \ldots, x_n]$ (k algebraically closed) and let $B \subset \mathbb{N}^n$ be the set of all vectors k such that k is not in k. The distraction of k is the radical ideal k ideal k of all polynomials in k in k is not in k in
 - (a) Determine a finite generating set of D(I).
 - (b) Show that I is the initial monomial ideal of D(I) with respect to any term order.
 - (c) Determine the prime decomposition of D(I).