Escola Básica e Secundária Prof. Reynaldo dos Santos

Vila Franca de Xira

Biologia e Geologia 10º ano

Teste de Avaliação ● Tema 2 de Biologia

Leia com atenção as perguntas que se seguem, e utilize a folha de respostas anexa para indicar a resposta ou a letra da opção de resposta correta.

- 1. A figura ao lado representa de forma simples um esquema da membrana celular e a concentração de um soluto X no interior e no exterior da célula.
 - **1.1.** O esquema representa o modelo estrutural de membrana celular...
 - a) Trilaminar
 - b) Proposto por Davson e Danielli
 - c) Proposto por Singer e Nicholson
 - d) Bilaminar

- a) Uma proteína e a parte hidrofóbica de um fosfolípido
- b) Uma proteína e a parte hidrofílica de um fosfolípido
- c) Um fosfato e a parte hidrofóbica de um fosfolípido
- d) Um fosfato e a parte hidrofílica de um fosfolípido
- 1.3. A substância X....
 - a) Entra na célula por transporte ativo
 - b) Sai da célula por transporte ativo
 - c) Entra na célula por osmose
 - d) Sai da célula por difusão simples

- 1.4. Na figura a letra C representa...
 - a) Uma proteína transportadora
 - b) Uma proteína de superfície
 - c) Uma proteína globular periférica
 - d) Uma glicoproteína
- **2.** As amibas são protozoários capazes de colonizar grande variedade de ambientes e alimentam-se por fagocitose de outros protozoários, de fungos, de algas e de bactérias. As bactérias captadas pelas amibas
 - a) passam para o meio intracelular envolvidas pela membrana plasmática.
 - b) atravessam a membrana plasmática pela bicamada fosfolipídica.
 - c) são transportadas através de proteínas da membrana plasmática.
 - d) ligam-se a glicolípidos, passando para o meio interno por difusão facilitada
- **3.** Numa atividade experimental realizada num laboratório escolar, colocaram-se 3 pedaços de batata mergulhados durante 24 horas em copos contendo 3 diferentes concentrações de sacarose. Os pedaços de batata foram pesados no início e no final da atividade. A tabela abaixo mostra alguns dos resultados obtidos, enquanto o gráfico tenta ilustrar o que aconteceu a um dos pedaços de batata.

ВАТАТА	PESO INICIAL (gramas)	PESO FINAL (gramas)
Α	16,1	16,1
В	15,7	10,2
С	16,2	21,4

- **3.1.** Classifica de verdadeiras (V) ou falsas (F) as afirmações que se seguem relativas a esta atividade.
 - **3.1.1.** A batata B estava colocada numa solução hipotónica.
 - **3.1.2.** O gráfico representa o que pode ter acontecido com as células da batata A.
 - **3.1.3.** As células da batata B ficaram túrgidas após a atividade.
 - **3.1.4.** A batata C estava em meio hipertónico.
 - **3.1.5.** O líquido onde foi colocada a batata B continha uma concentração de sacarose superior àquele em que foi colocada a batata A
 - **3.1.6.** No final da atividade a solução em que foi colocada a batata B tinha uma menor concentração de sacarose.
- **3.2.** A acumulação de sais nos vacúolos de células vegetais provoca ______ da pressão osmótica nos vacúolos e, consequentemente, a _____.
 - a) o aumento ... saída de água da célula
 - b) o aumento ... entrada de água na célula
 - c) a diminuição ... entrada de água na célula
 - d) a diminuição ... saída de água da célula
- 4. Transporte ativo e transporte facilitado são duas formas de transportes mediados.
 - **4.1.** O transporte ativo distingue-se do transporte facilitado porque é feito...
 - a) Através de proteínas específicas da membrana
 - b) A favor do gradiente do soluto
 - c) Apenas no interior das células
 - d) Com utilização de ATP

- **4.2.** Um exemplo de transporte facilitado é...
 - a) A entrada de glicose nas células
 - **b)** A entrada de potássio nas células
 - c) A saída de sódio das células
 - d) A pinocitose
- 5. As anémonas são animais de vida fixa que se alimentam com auxílio de tentáculos que rodeiam a abertura única da cavidade digestiva (gastrovascular), para onde conduzem o alimento. Nessa cavidade o alimento é digerido por ação de enzimas lançadas pelas células glandulares que a revestem. Adicionalmente as células epiteliais de revestimento da cavidade digestiva, fagocitam partículas orgânicas posteriormente digeridas em vesiculas que resultam da fusão com lisossomas.
- Cavidade gastro-vascular
- **5.1.** Pode considerar-se que a digestão feita pela anémona é...
 - a) Extracelular e também intracelular
 - **b)** Apenas extracelular intracorporal
 - c) Apenas extracelular extracorporal
 - **d)** Apenas intracelular
- **5.2.** Utilizando as letras respetivas, coloque por ordem os seguintes acontecimentos relacionados com o processo de obtenção de matéria orgânica pelas células das anémonas.
 - A. Exocitose de enzimas digestivas para a cavidade gastrovascular
 - **B.** Fagocitose de partículas orgânicas
 - C. Difusão de matéria orgânica nos espaços intercelulares da anémona
 - D. Digestão do alimento na cavidade gastrovascular
 - E. Ingestão para a cavidade gastrovascular
 - F. Formação de vacúolo digestivo

- 6. A figura ao lado representa uma das fases da fotossíntese realizada em células de plantas.
 - **6.1.** A fase representada denomina-se______ realiza-se .
 - a) ...fase fotoquímica....no estroma
 - b) ...ciclo de Calvin...nos tilacoides
 - c) ...fase química...nos grana
 - d) ...ciclo de Calvin...no estroma
 - **6.2.** Na imagem a letra X representa...
 - a) O oxigénio
 - b) A água
 - c) A glicose
 - d) O Dióxido de Carbono

- **7.** Existem nos autotróficos mais evoluídos, dois fotossistemas diferentes (P680 e P700) que intervêm em dois tipos de fotofosforilação (cíclica e acíclica) numa das fases da fotossíntese.
 - **7.1.** Durante esta fase da fotossíntese ocorre...
 - a) fixação de CO2.
 - b) fosforilação de ADP.
 - c) oxidação de NADP+.
 - d) redução de O2.
 - **7.2.** Classifique de Verdadeira (V) ou Falsa (F) cada uma das afirmações que se seguem:
 - 7.2.1. Apenas a fotofosforilação cíclica necessita da entrada de água para se realizar
 - 7.2.2. Na fotofosforilação cíclica intervém apenas o fotossistema II (P680).
 - **7.2.3.** Os fotões são responsáveis pelo aumento da energia dos eletrões da clorofila.
 - **7.2.4.** Ambos os fotossistemas estão incluídos na fase química da fotossíntese.
 - **7.2.5.** Os dois fotossistemas realizam-se ambos nas membranas dos tilacoides e grana.

8. Em 1883, um cientista alemão chamado Thomas Engelmann, fez uma experiência que se tornou muito famosa e

importante no que respeita à definição do mecanismo da fotossíntese. Engelmann fez uma preparação microscópica com uma alga verde filamentosa, chamada Espirogira. Esta microalga é fotossintética e no meio de montagem escolhido (a água), foram adicionadas bactérias aeróbias (que necessitam de oxigénio para a respiração). Observou a preparação ao microscópio, iluminada pela luz branca (não decomposta) e verificou que as bactérias se dispunham uniformemente ao longo de toda a alga. Depois, acoplou ao sistema de iluminação do microscópio um prisma ótico que lhe permitia decompor a luz branca que atravessava a preparação. Assim, cada zona recebia um determinado comprimento de onda, correspondente à cor que a estava a iluminar. Finalmente, colocou a preparação no microscópio e observou o que aconteceu. A imagem ao lado ilustra o resultado.

- **8.1.** A linha X da figura representa...
 - a) A absorção pela clorofila, que é superior nos comprimentos de onda do vermelho e violeta
 - b) A absorção pela clorofila, que é inferior nos comprimentos de onda do vermelho e violeta
 - c) A absorção da luz pelas bactérias, que é superior nos comprimentos de onda do vermelho e violeta
 - d) A absorção da luz pelas bactérias, que é inferior nos comprimentos de onda do vermelho e violeta
- **8.2.** De acordo com os resultados a produção de______ pela alga é _____ na região do amarelo/verde.
 - a) ...bactérias...maior
 - b) ...bactérias...menor
 - c) ...oxigénio...maior
 - d) ...oxigénio...menor
- **9.** Alguns microrganismos que habitam junto a fontes hidrotermais do oceano, utilizando o sulfureto de hidrogénio por elas libertado, conseguem fabricar hidratos de carbono, transformando-se em produtores dum ecossistema singular.
 - **9.1.** Esses microrganismos podem considerar-se ______ e nas reações com que obtêm a matéria orgânica dispensam .
 - a) ...fotossintéticos...CO2
 - **b)** ...autotróficos...luz
 - c) ...heterotróficos...luz
 - d) ...quimiossintéticos...CO2
 - **9.2.** As reações de utilização do sulfureto de hidrogénio necessárias para a obtenção de matéria descrita no texto **não incluem**...
 - a) A oxidação do Sulfureto de Hidrogénio
 - b) A redução do NADP+
 - c) A fosforilação do ADP
 - d) A fixação do CO2

Escola Básica e Secundária Prof. Reynaldo dos Santos

Vila Franca de Xira

Biologia e Geologia 10º ano

Teste de Avaliação ● Tema 2 de Biologia ● 14 de março de 2016

No	me:_						Nº	_ Classificação:				Val
0,9	1.1.	С										
0,9	1.2.	С										
0,9	1.3.	В										
0,9	1.4.	Α										
0,9	2.	Α										
2,4	3.1.	3.1.1. F	3	.1.2. F	3.1.	3. F	3.1.4.	F	3.1.5. V		3.1.6.	V
0,9	3.2.	В										
0,9	4.1.	D										
0,9	4.2.	Α										
0,9	5.1.	Α										
0,7	5.2.	E-A-D-B	-F-C									
0,9	6.1.	D							_			
0,9	6.2.	D										
0,9	7.1.	В										
2,5	7.2.	7.2.1. F		7.2.2. F		7.2.3.	V	7.2.	4. F	7.	2.5. V	
0,9	8.1.	Α								-		
0,9	8.2.	D										
0,9	9.1.	В										
0,9	9.2.	D										