Homework #7

Sam Fleischer

March 14, 2016

unter and Nachtergaele 9.1	2
unter and Nachtergaele 9.3	2
unter and Nachtergaele 9.4	2
unter and Nachtergaele 9.5	3
unter and Nachtergaele 9.6	3
unter and Nachtergaele 9.7	3
unter and Nachtergaele 9.8	4
unter and Nachtergaele 9.18	5

Hunter and Nachtergaele 9.1

Prove that $\rho(A^*) = \overline{\rho(A)}$, where $\overline{\rho(A)}$ is the set $\{\lambda \in \mathbb{C} \mid \overline{\lambda} \in \rho(A)\}$.

Proof. First note

$$(A^* - \lambda I) = (A^* - (\overline{\lambda}I)^*) = (A - \overline{\lambda}I)^*,$$

and since $(A - \overline{\lambda}I) \in \mathcal{B}(\mathcal{H})$, then $(A - \overline{\lambda}I)$ is invertible if and only if $(A - \overline{\lambda}I)^*$ is invertible. Thus

$$\lambda \in \rho(A^*) \iff (A^* - \lambda I) \text{ invertible}$$

$$\iff (A - \overline{\lambda}I)^* \text{ invertible}$$

$$\iff (A - \overline{\lambda}I) \text{ invertible}$$

$$\iff \overline{\lambda} \in \rho(A)$$

$$\iff \lambda \in \overline{\rho(A)}$$

Thus, $\rho(A^*) = \overline{\rho(A)}$.

Hunter and Nachtergaele 9.3

Suppose that A is a bounded linear operator on a Hilbert space and $\lambda, \mu \in \rho(A)$. Prove that the resolvent R_{λ} of A satisfies the resolvent equation

$$R_{\lambda} - R_{\mu} = (\mu - \lambda) R_{\lambda} R_{\mu}$$
.

Proof.

$$(\mu I - A) - (\lambda I - A) = (\mu - \lambda)I$$

$$\Rightarrow (\lambda I - A)^{-1} [(\mu I - A) - (\lambda I - A)] (\mu I - A)^{-1} = (\lambda I - A)^{-1} [(\mu - \lambda)I] (\mu I - A)^{-1}$$

$$\Rightarrow (\lambda I - A)^{-1} - (\mu I - A)^{-1} = (\mu - \lambda)(\lambda I - A)^{-1} (\mu I - A)^{-1}$$

$$\Rightarrow R_{\lambda} - R_{\mu} = (\mu - \lambda)R_{\lambda}R_{\mu}$$

Hunter and Nachtergaele 9.4

Prove that the spectrum of an orthogonal projection P is either $\{0\}$, in which case P = 0, or $\{1\}$, in which case P = I, or else $\{0, 1\}$.

Proof. Let λ be an eigenvalue. Then $Px = \lambda x$ for some nonzero vector x. Clearly if $P \equiv 0$, then $0 = Px = \lambda x$ for some $x \neq 0$, which implies $\lambda = 0$. Also, if $P \equiv I$, then $x = Px = \lambda x \implies (1 - \lambda)x = 0$ for some $x \neq 0$. Thus $\lambda = 1$. In general, suppose $P \not\equiv 0$ and $P \not\equiv 1$, then for $x \in \operatorname{ran} P$, $x = Px = \lambda x \implies \lambda = 1$. For $x \not\in \operatorname{ran} P$, then since P is an orthogonal projection, x = y + z for some $y \in \operatorname{ran} P$ (i.e. Py = y) and $z \in \ker P$ (i.e. Pz = 0). Thus $Py + Pz = y = \lambda x$. Since $x \not\in \operatorname{ran} P$, $\lambda x \in \operatorname{ran} P$ only if $\lambda = 0$. Thus the only eigenvalues of P are 0 and 1 (i.e. the point spectrum of P is contained in $\{0,1\}$).

Since orthogonal projections are bounded and self adjoint, then the residual specturm of P is empty. talk about the continuous spectrum and prove its empty.

Hunter and Nachtergaele 9.5

Let A be a bounded, nonnegative operator on a complex Hilbert space. Prove that $\sigma(A) \subset [0,\infty)$ *.*

Proof. Since *A* is nonnegative, then $\langle x, Ax \rangle \ge 0$ for all $x \in \mathcal{H}$ and $A = A^*$. Since *A* is self-adjoint, its eigenvalues are real and $\sigma(A) \subset [-\|A\|, \|A\|]$. Let λ be an eigenvalue. Then for some $x \ne 0$,

$$0 \le \langle x, Ax \rangle = \langle x, \lambda x \rangle = \lambda \langle x, x \rangle = \lambda \|x\|^2$$
$$\implies 0 \le \lambda$$

Thus all eigenvalues are positive (i.e. the point spectrum is contained in $[0,\infty)$). Let $\lambda < 0$. Then if $(A - \lambda I)x_1 = (A - \lambda I)x_2$, then $(A - \lambda I)(x_1 - x_2) = 0$. If $x_1 - x_2 \neq 0$, then λ is an eigenvalue, but this is not possible since $\lambda < 0$. Thus $x_1 - x_2 = 0$, or $x_1 = x_2$. This shows $(A - \lambda I)$ is one-to-one. show that $(A - \lambda I)$ is onto for $\lambda < 0$.

Hunter and Nachtergaele 9.6

Let G be a multiplication operator on $L^2(\mathbb{R})$ defined by

$$Gf(x) = g(x)f(x),$$

where g is continuous and bounded. Prove that G is a bounded linear operator on $L^2(\mathbb{R})$ and that its spectrum is given by

$$\sigma(G) = \overline{\{g(x) : x \in \mathbb{R}\}}.$$

Can an operator of this form have eigenvalues?

Proof. \Box

Hunter and Nachtergaele 9.7

Let $K: L^2([0,1]) \to L^2([0,1])$ be the integral operator defined by

$$Kf(x) = \int_0^x f(y) dy.$$

a) Find the adjoint operator K^* .

Proof.

b) Show that nor $mK = \frac{2}{\pi}$.

Proof. □

c) Show that the spectral radius of K is equal to zero.

 \square

d) Show that 0 belongs to the continuous spectrum of K.

Proof. \Box

Hunter and Nachtergaele 9.8

Define the right shift operator S on $\ell^2(\mathbb{Z})$ by

$$S(x)_k = x_{k-1}$$
 for all $k \in \mathbb{Z}$,

where $x = (x_k)_{k=-\infty}^{\infty}$ is in $\ell^2(\mathbb{Z})$. Prove the following facts.

a) The point spectrum of S is empty.

Proof.

b) ran $(\lambda I - S) = \ell^2(\mathbb{Z})$ for every $\lambda \in \mathbb{C}$ with $|\lambda| > 1$.

Proof.

c) ran $(\lambda I - S) = \ell^2(\mathbb{Z})$ for every $\lambda \in \mathbb{C}$ with $|\lambda| < 1$.

Proof.

d) The spectrum of S consists of the unit circle $\{\lambda \in \mathbb{C} : |\lambda| = 1\}$ and is purely continuous.

Proof. \Box

Hunter and Nachtergaele 9.18

Let $P_1, ..., P_N$ be orthogonal projections with orthogonal ranges. Let

$$A = \sum_{n=1}^{N} \lambda_n P_n$$

be a finite linear combination of these projections. Let $\tilde{f}: \sigma(A) \to \mathbb{C}$ be a continuous function and define $f: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ by

$$f(A) = \sum_{n=1}^{\infty} \tilde{f}(\lambda_n) P_n. \tag{9.23}$$

Suppose that A is a compact self-adjoint operator. Let $f \in C(\sigma(A))$ and consider f(A) defined by (9.23). Prove that

$$||f(A)|| = \sup\{|\tilde{f}(\lambda_n)| | n \in \mathbb{N}\}.$$

Let (\tilde{q}_N) be a sequence of polynomials of degree N, converging uniformly to \tilde{f} on $\sigma(A)$. The existence of such a sequence is a consequence of the Weierstrass approximation theorem. Prove that $(q_N(A))$ converges in norm, and that its limit equals f(A) as defined in $\ref{eq:seq}$.

Proof.