For each attribute,

For each value of that attribute, make a rule as follows:

count how often each class appears

find the most frequent class

make the rule assign that class to this attribute-value.

Calculate the error rate of the rules.

Choose the rules with the smallest error rate.

1R algorithm

raw dataset

Outlook	Temperature	Humidity	Windy	Play	
Sunny	Hot	High	False	No	
Sunny	Hot	High	True	No	
Overcast	Hot	High	False	Yes	
Rainy	Mild	High	False	Yes	
Rainy	Cool	Normal	False	Yes	
Rainy	Cool	Normal	True	No	
Overcast	Cool	Normal	True	Yes	
Sunny	Mild	High	False	No	
Sunny	Cool	Normal	False	Yes	
Rainy	Mild	Normal	False	Yes	
Sunny	Mild	Normal	True	Yes	
Overcast	Mild	High	True	Yes	
Overcast	Hot	Normal	False	Yes	
Rainy	Mild	High	True	No	

	1R Table					
Attribute		Rules	Errors	Total Errors		
1	Outlook	Sunny → no	2/5	4/14		
		Overcast → yes	0/4			
		Rainy → yes	2/5			
2	Temperature	Hot → no*	2/4	5/14		
		Mild → yes	2/6			
		$Cool \rightarrow yes$	1/4			
3	Humidity	High → no	3/7	4/14		
		Normal \rightarrow yes	1/7			
4	Windy	$False \to yes$	2/8	5/14		
		True → no*	3/6			

$$P(yes|E) = \frac{P(E_1|yes) \times P(E_2|yes) \times P(E_3|yes) \times P(E_4|yes) \times P(yes)}{P(E)}$$
 Naive Bayes Table

Outlook	look Temperature		Humidity		Windy			Play					
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

sum rule
$$p(X) = \sum_{Y} p(X, Y)$$

$$Gini = 1 - \sum_{i} P_{i}^{2}$$

product rule

$$p(X,Y) = p(Y|X)p(X)$$

Bayes'Theorem
$$p(Y|X) = rac{p(X|Y)p(Y)}{p(X)}$$

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

pearson correlation
$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$