Find Laplace Transform of the following functions:

1.
$$f(t) = \begin{cases} -1, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases}$$

2.
$$f(t) = \begin{cases} 4, & 0 \le t < 2 \\ 0, & t \ge 2 \end{cases}$$

3.
$$f(t) = \begin{cases} t, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases}$$

3.
$$f(t) = \begin{cases} t, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases}$$

4. $f(t) = \begin{cases} 2t + 1, & 0 \le t < 1 \\ 0, & t \ge 1 \end{cases}$

5.
$$f(t) = \begin{cases} \sin t, & 0 \le t < \\ 0, & t \ge \end{cases}$$

6.
$$f(t) = \begin{cases} 0, & 0 \le t < /2 \\ \cos t, & t \ge /2 \end{cases}$$

Find the inverse Laplace Transform of the following:

1.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^3}\right\}$$

2.
$$\mathcal{L}^{-1} \left\{ \frac{1}{s^4} \right\}$$

3.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2} - \frac{48}{s^5}\right\}$$

3.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2} - \frac{48}{s^5}\right\}$$
 4. $\mathcal{L}^{-1}\left\{\left(\frac{2}{s} - \frac{1}{s^3}\right)^2\right\}$

5.
$$\mathcal{L}^{-1} \left\{ \frac{(s+1)^3}{s^4} \right\}$$

5.
$$\mathcal{L}^{-1}\left\{\frac{(s+1)^3}{s^4}\right\}$$
 6. $\mathcal{L}^{-1}\left\{\frac{(s+2)^2}{s^3}\right\}$

7.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2} - \frac{1}{s} + \frac{1}{s-2}\right\}$$

7.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2} - \frac{1}{s} + \frac{1}{s-2}\right\}$$
 8. $\mathcal{L}^{-1}\left\{\frac{4}{s} + \frac{6}{s^5} - \frac{1}{s+8}\right\}$

9.
$$\mathcal{L}^{-1}\left\{\frac{1}{4s+1}\right\}$$

9.
$$\mathscr{L}^{-1}\left\{\frac{1}{4s+1}\right\}$$
 10. $\mathscr{L}^{-1}\left\{\frac{1}{5s-2}\right\}$

11.
$$\mathcal{L}^{-1}\left\{\frac{5}{s^2+49}\right\}$$

11.
$$\mathcal{L}^{-1}\left\{\frac{5}{s^2+49}\right\}$$
 12. $\mathcal{L}^{-1}\left\{\frac{10s}{s^2+16}\right\}$

13.
$$\mathscr{L}^{-1}\left\{\frac{4s}{4s^2+1}\right\}$$
 14. $\mathscr{L}^{-1}\left\{\frac{1}{4s^2+1}\right\}$

14.
$$\mathcal{L}^{-1}\left\{\frac{1}{4s^2+1}\right\}$$

15.
$$\mathscr{L}^{-1}\left\{\frac{2s-6}{s^2+9}\right\}$$
 16. $\mathscr{L}^{-1}\left\{\frac{s+1}{s^2+2}\right\}$

16.
$$\mathcal{L}^{-1}\left\{\frac{s+1}{s^2+2}\right\}$$

17.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+3s}\right\}$$

17.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+3s}\right\}$$
 18. $\mathcal{L}^{-1}\left\{\frac{s+1}{s^2-4s}\right\}$

19.
$$\mathscr{L}^{-1}\left\{\frac{s}{s^2+2s-3}\right\}$$
 20. $\mathscr{L}^{-1}\left\{\frac{1}{s^2+s-20}\right\}$

20.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+s-20}\right\}$$

21.
$$\mathscr{L}^{-1}\left\{\frac{0.9s}{(s-0.1)(s+0.2)}\right\}$$

22.
$$\mathcal{L}^{-1}\left\{\frac{s-3}{(s-\sqrt{3})(s+\sqrt{3})}\right\}$$

23.
$$\mathcal{L}^{-1}\left\{\frac{s}{(s-2)(s-3)(s-6)}\right\}$$

24.
$$\mathcal{L}^{-1}\left\{\frac{s^2+1}{s(s-1)(s+1)(s-2)}\right\}$$

25.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^3+5s}\right\}$$

25.
$$\mathscr{L}^{-1}\left\{\frac{1}{s^3+5s}\right\}$$
 26. $\mathscr{L}^{-1}\left\{\frac{s}{(s+2)(s^2+4)}\right\}$

27.
$$\mathscr{L}^{-1}\left\{\frac{2s-4}{(s^2+s)(s^2+1)}\right\}$$
 28. $\mathscr{L}^{-1}\left\{\frac{1}{s^4-9}\right\}$

28.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^4-9}\right\}$$

29.
$$\mathcal{L}^{-1}\left\{\frac{1}{(s^2+1)(s^2+4)}\right\}$$
 30. $\mathcal{L}^{-1}\left\{\frac{6s+3}{s^4+5s^2+4}\right\}$

30.
$$\mathcal{L}^{-1}\left\{\frac{6s+3}{s^4+5s^2+4}\right\}$$

Solve the following initial value problems by using Laplace transform:

31.
$$\frac{dy}{dt} - y = 1$$
, $y(0) = 0$

32.
$$2\frac{dy}{dt} + y = 0$$
, $y(0) = -3$

33.
$$y' + 6y = e^{4t}$$
, $y(0) = 2$

34.
$$y' - y = 2 \cos 5t$$
, $y(0) = 0$

35.
$$y'' + 5y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 0$

36.
$$y'' - 4y' = 6e^{3t} - 3e^{-t}$$
, $y(0) = 1$, $y'(0) = -1$

37.
$$y'' + y = \sqrt{2} \sin \sqrt{2}t$$
, $y(0) = 10$, $y'(0) = 0$

38.
$$y'' + 9y = e^t$$
, $y(0) = 0$, $y'(0) = 0$

39.
$$2y''' + 3y'' - 3y' - 2y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$

40.
$$y''' + 2y'' - y' - 2y = \sin 3t$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$

Find Laplace Transform of the following functions:

1.
$$\mathcal{L}\{te^{-10t}\}$$

2.
$$\mathcal{L}\{t^3e^t\}$$

3.
$$\mathcal{L}\{t\cos 2t\}$$

4.
$$\mathcal{L}\{t \sinh 3t\}$$

5.
$$\mathcal{L}\{t^2\sinh t\}$$

6.
$$\mathcal{L}\{t^2\cos t\}$$

7.
$$\mathcal{L}\{te^{2t}\sin 6t\}$$

8.
$$\mathcal{L}\{te^{-3t}\cos 3t\}$$

Find the inverse Laplace Transform of the following:

11.
$$\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^3}\right\}$$

11.
$$\mathcal{L}^{-1}\left\{\frac{1}{(s+2)^3}\right\}$$
 12. $\mathcal{L}^{-1}\left\{\frac{1}{(s-1)^4}\right\}$

13.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2-6s+10}\right\}$$
 14. $\mathcal{L}^{-1}\left\{\frac{1}{s^2+2s+5}\right\}$

14.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+2s+5}\right\}$$

15.
$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+4s+5}\right\}$$

15.
$$\mathscr{L}^{-1}\left\{\frac{s}{s^2+4s+5}\right\}$$
 16. $\mathscr{L}^{-1}\left\{\frac{2s+5}{s^2+6s+34}\right\}$

17.
$$\mathscr{L}^{-1}\left\{\frac{s}{(s+1)^2}\right\}$$
 18. $\mathscr{L}^{-1}\left\{\frac{5s}{(s-2)^2}\right\}$

18.
$$\mathcal{L}^{-1}\left\{\frac{5s}{(s-2)^2}\right\}$$

19.
$$\mathcal{L}^{-1}\left\{\frac{2s-1}{s^2(s+1)^3}\right\}$$
 20. $\mathcal{L}^{-1}\left\{\frac{(s+1)^2}{(s+2)^4}\right\}$

20.
$$\mathcal{L}^{-1}\left\{\frac{(s+1)^2}{(s+2)^4}\right\}$$

Solve the following initial value problems by using Laplace transform:

9.
$$y' + y = t \sin t$$
, $y(0) = 0$

10.
$$y' - y = te^t \sin t$$
, $y(0) = 0$

11.
$$y'' + 9y = \cos 3t$$
, $y(0) = 2$, $y'(0) = 5$

12.
$$y'' + y = \sin t$$
, $y(0) = 1$, $y'(0) = -1$

13.
$$y'' + 16y = f(t)$$
, $y(0) = 0$, $y'(0) = 1$, where

$$f(t) = \begin{cases} \cos 4t, & 0 \le t < \\ 0, & t \ge \end{cases}$$

14.
$$y'' + y = f(t)$$
, $y(0) = 1$, $y'(0) = 0$, where

$$f(t) = \begin{cases} 1, & 0 \le t < /2 \\ \sin t, & t \ge /2 \end{cases}$$

21.
$$y' + 4y = e^{-4t}$$
, $y(0) = 2$

22.
$$y' - y = 1 + te^t$$
, $y(0) = 0$

23.
$$y'' + 2y' + y = 0$$
, $y(0) = 1$, $y'(0) = 1$

24.
$$y'' - 4y' + 4y = t^3 e^{2t}$$
, $y(0) = 0$, $y'(0) = 0$

25.
$$y'' - 6y' + 9y = t$$
, $y(0) = 0$, $y'(0) = 1$

26.
$$y'' - 4y' + 4y = t^3$$
, $y(0) = 1$, $y'(0) = 0$

27.
$$y'' - 6y' + 13y = 0$$
, $y(0) = 0$, $y'(0) = -3$

28.
$$2y'' + 20y' + 51y = 0$$
, $y(0) = 2$, $y'(0) = 0$

29.
$$y'' - y' = e^t \cos t$$
, $y(0) = 0$, $y'(0) = 0$

30.
$$y'' - 2y' + 5y = 1 + t$$
, $y(0) = 0$, $y'(0) = 4$

Find the Laplace Transform of the following functions

19.
$$\mathcal{L}\{1 * t^3\}$$

19.
$$\mathcal{L}\{1 * t^3\}$$
 20. $\mathcal{L}\{t^2 * te^t\}$

21.
$$\mathcal{L}\{e^{-t} * e^t \cos t\}$$
 22. $\mathcal{L}\{e^{2t} * \sin t\}$

22.
$$\mathcal{L}\lbrace e^{2t} * \sin t \rbrace$$

23.
$$\mathcal{L}\left\{\int_{0}^{t} e^{\tau} d\tau\right\}$$

23.
$$\mathcal{L}\left\{\int_0^t e^{\tau} d\tau\right\}$$
 24. $\mathcal{L}\left\{\int_0^t \cos \tau d\tau\right\}$

25.
$$\mathcal{L}\left\{\int_0^t e^{-\tau}\cos\tau\,d\tau\right\}$$
 26. $\mathcal{L}\left\{\int_0^t \tau\sin\tau\,d\tau\right\}$

26.
$$\mathcal{L}\left\{\int_0^t \tau \sin \tau \, d\tau\right\}$$

27.
$$\mathscr{L}\left\{\int_{0}^{t} \tau e^{t-\tau} d\tau\right\}$$

27.
$$\mathcal{L}\left\{\int_{0}^{t} \tau e^{t-\tau} d\tau\right\}$$
 28. $\mathcal{L}\left\{\int_{0}^{t} \sin \tau \cos (t-\tau) d\tau\right\}$

$$29. \ \mathscr{L}\bigg\{t\int_0^t \sin\!\tau\,d\tau\bigg\}$$

29.
$$\mathscr{L}\left\{t\int_0^t \sin\tau d\tau\right\}$$
 30. $\mathscr{L}\left\{t\int_0^t \tau e^{-\tau} d\tau\right\}$

Find the inverse Laplace Transform of the followings:

31.
$$\mathscr{L}^{-1}\left\{\frac{1}{s(s-1)}\right\}$$

31.
$$\mathcal{L}^{-1}\left\{\frac{1}{s(s-1)}\right\}$$
 32. $\mathcal{L}^{-1}\left\{\frac{1}{s^2(s-1)}\right\}$

33.
$$\mathcal{L}^{-1}\left\{\frac{1}{s^3(s-1)}\right\}$$
 34. $\mathcal{L}^{-1}\left\{\frac{1}{s(s-a)^2}\right\}$

34.
$$\mathcal{L}^{-1} \left\{ \frac{1}{s(s-a)^2} \right\}$$