12.1 Computing alignments in only linear space

about local alignment

20160405

Chanyoung Song

Basic Idea for Computing Similarity in O(m) space

•
$$S_1 = cacd$$

•
$$S_2 = cadb$$

S	a	b	С	d	1
a	1	ကု	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

V(i,j)	-	С	а	С	d
_	0	-2	-3	-5	-6
С (-2	0	-1	-3	-4
а					i-th rov
d	0	NLY NE	ED i-1-	th ROV	N OW
b	FOF	(COM	DUTING		

 $V(i,j) = \max[V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$

1) For V(n/2, k), $0 \le k \le m$

- Time : O(nm/2)

- Space : O(m)

- Pointer set at row n/2

Let k* be a position k
 that maximizes [V(n/2, k) + V^r(n/2, m-k)]

1) For V(n/2, k), $0 \le k \le m$

- Time : O(nm/2)

- Space : O(m)

- Pointer set at row n/2

Let k* be a position k
 that maximizes [V(n/2, k) + V^r(n/2, m-k)]

1) For V(n/2, k), $0 \le k \le m$

- Time : O(nm/2)

- Space : O(m)

- Pointer set at row n/2

2) For $V^{r}(n/2, m-k)$, $0 \le k \le m$

- Time : O(nm/2)

- Space : O(m)

- Pointer set at row n/2

Let k* be a position k
 that maximizes [V(n/2, k) + V^r(n/2, m-k)]

- 1) For V(n/2, k), $0 \le k \le m$
 - Time : O(nm/2)
 - Space : O(m)
 - Pointer set at row n/2
- 2) For $V^{r}(n/2, m-k)$, $0 \le k \le m$
 - Time : O(nm/2)
 - Space : O(m)
 - Pointer set at row n/2

A position k* in row n/2 can be found in O(nm) time and O(m) space.

 k_1 : Col. Idx of 1st cell in n/2 - 1 row from cell (n/2, k^*)

 k_2 : Col. Idx of 1st cell in n/2 + 1 row from cell (n/2, k^*)

Full Idea: Use Recursion

- L_{n/4} (subpath)
 k*, k₁, k₂

Full Idea: Use Recursion

Full Idea: Use Recursion

Theorem 12.1.1

• Using the procedure OPTA, an optimal alignment of two strings of length n and m can be found in $\sum_{i=1}^{logn} cnm/2^{i-1} \leq 2cnm$ time and O(m) space.

Extension to Local Alignment

$$\begin{split} &V(i,0) = V(0,j) = 0 \\ &V(i,j) = max[\ 0,\ V(i-1,\ j-1)\ + s(S_1(i),\ S_2(j)),\ V(i-1,j)\ + \ s(S_1(i),\ -),\ V(i,j-1)_s(-,S_2(j))\] \\ &\qquad \qquad (i>0,\ j>0) \end{split}$$

Extension to Local Alignment

- 1) Find substrings α , β from S_1 , S_2
- 2) Do O(m) space alignment for α , β

V(I,j)	-	С	а	С	d	b	а	а
1	0	0	0	0	0	0	0	0
С	0	0	0	0	0	0	0	0
а								
b								
d						. 1	NDF	X
С			-0	of N	IAX V	(l,l)	MD	
а			510					
а								

S	а	b	С	d	-
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

V(I,j)	1	С	а	С	d	b	а	а
-								
С	0	0	0	0	0	0	0	0
а								
b								
d								
С								
а								
а								

S	а	b	С	d	ı
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

V(I,j)	-	С	а	С	d	b	а	а
-								
С	0	0	0	0	0	0	0	0
а	0	0						
b								
d								
С								
а								
а								

S	а	b	С	d	ı
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

V(I,j)	-	С	а	С	d	b	а	а
-								
С	0	0	0	0	0	0	0	0
а	0	0	1					
b								
d								
С								
а								
a								

S	а	b	С	d	-
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

V(I,j)	-	С	а	С	d	b	а	а
-								
С	0	0	0	0	0	0	0	0
а	0	0	1	0				
b								
d								
С								
а								
а								

S	а	b	С	d	-
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

V(I,j)	-	С	а	С	d	b	а	а
-								
С								
а	0	0	1	0	0	0	1	1
b	0	0	1	0	0	3 ←	- 2 ←	- 1
d								
С								
а								
а								

S	а	b	С	d	-
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

V(I,j)	-	С	а	С	d	b	а	а
-								
С								
а								
b								
d								
С								
а	0	0	1	0	1 ←	- 1	2	2
а	0	0	1	0	0	0	2	3

S	а	b	С	d	ı
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

1) Find End Cell: MAX V(i*, j*)

 $V(i,0) = V(0,j) = 0 \\ V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))] \\ (i > 0, j > 0)$

V(I,j)	-	С	а	С	d	b	а	а
-								
С	0	0	0	0	0	0	0	0
а	0	0	1					
b								
d								nex
С				- 01	CTAP	T CE	TT IM	טביי
а			ST	OKE	BY EA	CH (ELL	DEX
а								_

S	а	b	С	d	ı
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

- 1) Find End Cell : MAX V(i*, j*)
- 2) Find Start Cell: V(i', j') = 0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

V(I,j)	-	С	а	С	d	b	а	а
-								
С	0	0	0	0	0	0	0	0
а	0	0	1					
b								
d							1	nex
С				- 01	CTAP	T CE	LT IIA	DEA
а			ST	OKE	OF M	AXV	(1,1)	DEX
а								

S	а	b	С	d	ı
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

- 1) Find End Cell : MAX V(i*, j*)
- 2) Find Start Cell: V(i', j') = 0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

V(I,j)	-	С	а	С	d	b	а	а
-								
С	0	0	0	0	0	0	0	0
а	0	0	1	0	0	0	1	1
b								
d								
С								
а								
а								

S	а	b	C	d	ı
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

- 1) Find End Cell : MAX V(i*, j*)
- 2) Find Start Cell: V(i', j') = 0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

V(I,j)	-	С	а	С	d	b	а	а
-								
С								
а	0	0	1	0	0	0	1	1
b	0	0						
d								
С								
а								
а								

S	а	b	U	đ	ı
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

- 1) Find End Cell : MAX V(i*, j*)
- 2) Find Start Cell: V(i', j') = 0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

V(I,j)	-	С	а	С	d	b	а	а
-								
С						*		
а	0	0	1	0	0	0	1	1
b	0	9	1					
d								
С								
а								
а								

S	a	b	С	d	-
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

- 1) Find End Cell : MAX V(i*, j*)
- 2) Find Start Cell: V(i', j') = 0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

S	а	b	С	d	ı
а	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

- 1) Find End Cell: MAX V(i*, j*)
- 2) Find Start Cell: V(i', j') = 0

$$V(i,0) = V(0,j) = 0$$

$$V(i,j) = max[0, V(i-1, j-1) + s(S_1(i), S_2(j)), V(i-1,j) + s(S_1(i), -), V(i,j-1)_s(-,S_2(j))]$$

$$(i > 0, j > 0)$$

Extension to Local Alignment

O(m) space

O(nm) time

- 1) Find substrings α , β from S_1 , S_2
- 2) Do O(m) space alignment for α , β