15/02/2008

Geometria 2– Corso di laurea in Matematica

Cognome:	Matricola:
cizi svolti in altri f nome e cognome h	deve essere riportata nello spazio sottostante fogli non verranno presi in considerazione). anno valore nullo. necessario aver risolto agli Esercizi $A,\ B,\ C$ e
egnatura di una fom	ra quadratica.
teorema di Cramer.	
ncetto di prodotto v	vettoriale.
	ni singolo esercizio cizi svolti in altri f nome e cognome ha e alla prova orale è 5 proposti. egnatura di una fom

Esercizio 1

Dire se la matrice $A = \begin{pmatrix} 0 & 4 \\ -3 & 0 \end{pmatrix}$ è invertibile. In caso affermativo calcolarne l'inversa . Scrivere inoltre A come prodotto di matrici elementari.

Risposta:

Esercizio 2

Sia $T:\mathbb{R}^2 \to \mathbb{R}^2$ l'applicazione lineare rappresentata rispetto alle basi canoniche dalla matrice

$$A = \left(\begin{array}{cc} 0 & 2 \\ 1 & 0 \end{array}\right).$$

Trovare la matrice $A^{'}$ che rappresenta T rispetto alle basi $C_1 = \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$. e

$$C_2 = \left\{ \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}.$$

Risposta:

Esercizio 3

Dopo aver verificato che $C = \left\{ \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ è una base di \mathbb{R}^2 , si scriva il prodotto scalare associato a tale base, ossia il prodotto scalare rispetto al quale la base C è ortonormale. **Risposta:**

Esercizio 4

Calcolare la distanza tra le rette r: x-y-1=x+y-z=0 e s: x=t, y=-2+t, z=t. Risposta:

Esercizio 5
Scrivere delle equazioni cartesiane per la circonferenza Σ passante per i punti $(0,0,0),(0,0,1)(1,0,0)$.
Risposta:

Esercizio 6

Trovare un'equazione cartesiana del piano tangente alla sfera $S: x^2+y^2+z^2+2x-2=0$ nel punto $P_0(-\sqrt{3}-1,0,0)$.

Risposta: