- m(x) = 5x + 15
- n(x) = -3(2x 6)(x + 2)

04

Donner le tableau de signes des fonctions suivantes :

- f(x) = (3x 6)(-2x 8)
- g(x) = (4x 8)(-2x + 12)(3x 9)
- h(x) = x(2x 3)
- k(x) = -x(2x+6)(7x-21)
- m(x) = (-2x + 8)(-5x + 20)
- n(x) = (x-6)(-x+9)(-5x+10)

TAUX DE VARIATION

05

Soit f la fonction définie sur \mathbb{R} par $f(x) = -3x^2 + 4$. Calculer le taux de variation de f sur l'intervalle [2; 4].

06

Soit g la fonction définie sur \mathbb{R} par $g(x)=x^3+4x$. Calculer le taux de variation de g entre 1 et 5.

07

Soit h la fonction définie sur]1; $+\infty[$ par $h(x)=\frac{3x-2}{x+1}.$ Calculer le taux de variation de h entre 2 et 8.

08

Soit f la fonction définie sur $\mathbb R$ par f(x)=6x+1. Calculer le taux de variation de f sur l'intervalle $[12\ ;\ 143]$.

09

Soit g la fonction définie sur]0 ; $+\infty[$ par $g(x)=\frac{2}{3x}$. Calculer le taux de variation de g entre 2 et 6.

10

Soit h la fonction définie sur $[0 ; +\infty[$ par $h(x)=3\sqrt{x}+1$. Calculer le taux de variation de h entre 1 et 81.

11

On considère une fonction f définie sur l'intervalle $[-4,5 \; ; \; 4,5]$ dont la courbe représentative est donnée ci-dessous.

- 1. À l'aide des informations données sur le graphique, calculer le taux de variation de la fonction f entre -4 et -1.
- 2. Que représente ce nombre pour la droite (AB)?
- 3. Calculer le taux de variation de la fonction f entre 2 et 4. Quelle est la pente de la droite correspondante?

12

On considère une fonction g définie sur l'intervalle $[-3\ ;\ 3]$ dont la courbe représentative est donnée ci-dessous.

- 1. À l'aide des informations données sur le graphique, calculer le taux de variation de la fonction g entre -3 et 1.
- 2. Que représente ce nombre pour la droite (AC)?
- 3. Calculer le taux de variation de la fonction g entre -1 et 1. Quelle est la pente de la droite correspondante?

13

14

Soit la fonction $f(x) = 4x^2 - 5x + 3$.

- 1. Calculer le taux d'accroissement de la fonction f entre 1 et 2.
- 2. Tracer-le sur la figure ci-dessous représentant C_f .

Soit la fonction $f(x) = x^2 + 2x - 3$.

Télécharger le graphique 🔻

- 1. Calculer le taux d'accroissement de la fonction f entre -1 et 2.
- 2. Tracer-le sur la figure ci-dessous représentant C_f .

15

Soit la fonction $f(x) = x^3 - x^2 + x$.

- 1. Calculer son taux d'accroissement entre 0 et 2
- 2. Tracer-le sur la figure ci-dessous représentant C_f .

16

On donne un tableau de valeurs d'une fonction q:

x	-5	-3	-1	0	2	4
g(x)	6	4	2	1	-1	-3

Calculer le taux de variation de g entre -5 et 0 puis sur l'intervalle [-1;2].

17

On donne un tableau de valeurs d'une fonction h:

x	-6	-3	-1	1	3	5
h(x)	8	5	3	0	-2	-4

Calculer le taux de variation de h entre -6 et 1 puis sur l'intervalle [-1;3].