

Description

The SMIRF16N65T2TL can be used in various power swithching circuit for system miniaturization and higher efficiency. The package form is TO-220F, which accords with the RoHS standard.

TO-220F

General Features

PIN1 G PIN3 S

Application

• Power switch circuit of adaptor and charger.

N-Channel MOSFET

Package Marking and Ordering Information

Product ID	Pack	Brand	Units Tube
SMIRF16N65T2TL	TO-220F	HXY MOSFET	50

Absolute Maximum Ratings@T_j =25°C(unless otherwise specified)

Symbol	Parameter	Rating	Units
VDS	Drain-Source Voltage	650	V
VGS	Gate-Source Voltage	<u>+</u> 30	V
I _D @T _C =25°C	Drain Current, V _{GS} @ 4.5V	16	Α
I _D @T _C =100°C	Drain Current, V _{GS} @ 4.5V	10	А
IDM	Pulsed Drain Current ¹	64	Α
Pp@Tc=25°C	Total Power Dissipation	43	W
Eas	Single Pulse Avalanche Energy ⁴	950	mJ
TSTG	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Electrical Characteristics (Tj= 25° C unless otherwise specified):

OFF Characteristics							
Cymah al	Parameter	Took Complitions	Rating			Lleite	
Symbol		Test Conditions	Min.	Тур.	Max.	Units	
V_{DSS}	Drain to Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	650			V	
$\Delta BV_{DSS}/\Delta T_{J}$	Bvdss Temperature Coefficient	ID=250uA,Reference25℃		0.7		V/℃	
	Drain to Source Leakage Current	V _{DS} =650V, V _{GS} = 0V, Tj = 25℃			1	μΑ	
I _{DSS}		V _{DS} =520V, V _{GS} = 0V, Tj = 125℃			100	μΑ	
I _{GSS(F)}	Gate to Source Forward Leakage	V _{GS} =+30V			100	nA	
I _{GSS(R)}	Gate to Source Reverse Leakage	V _{GS} =-30V			-100	nA	

ON Characteristics							
Symbol	Parameter	Test Conditions	Rating			Units	
Symbol			Min.	Тур.	Max.	Ullits	
R _{DS(ON)}	Drain-to-Source On-Resistance	V _{GS} =10V,I _D =8A	1	0.45	0.50	Ω	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	1	4.0	٧	
Pulse width tp≤300μs,δ≤2%							

Dynamic Characteristics						
Symbol	Parameter	Test Conditions	Rating			Units
	r ai ailletei		Min.	Тур.	Max.	Units
g _{fs}	Forward Transconductance	V _{DS} =15V, I _D =8A		15.3		S
R _g	Gate resistance	f = 1.0MHz		2.8		Ω
C _{iss}	Input Capacitance			2437		
C _{oss}	Output Capacitance	$V_{GS} = 0V V_{DS} = 25V$ f = 1.0MHz		200		PF
C _{rss}	Reverse Transfer Capacitance			10.4		

Resistive Switching Characteristics						
Cymphol	Parameter	Test Conditions	Rating			Units
Symbol	raidilletei	Test Conditions	Min.	Тур.	Max.	Ullits
$t_{d(ON)}$	Turn-on Delay Time			26		
tr	Rise Time	I _D =16.0A V _{DD} = 325V		41.4		ne
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 10V R_G = 10\Omega$		65.6		ns
t _f	Fall Time			42.3		
Q_g	Total Gate Charge			50.5		
Q_{gs}	Gate to Source Charge	$I_D = 16.0A$ $V_{DD} = 520V$ $V_{GS} = 10V$		11.2		nC
Q_{gd}	Gate to Drain ("Miller")Charge			20.7		

Silicon N-Channel Power MOSFET

Source-Drain Diode Characteristics							
0	Baramatar	Test Conditions	Rating			1.1	
Symbol	Symbol Parameter		Min.	Тур.	Max.	Units	
Is	Continuous Source Current (Body Diode)				16	Α	
I _{SM}	Maximum Pulsed Current (Body Diode)	T _C = 25 °C			64	Α	
V _{SD}	Diode Forward Voltage	I _S =16.0A,V _{GS} =0V			1.5	V	
T _{rr}	Reverse Recovery Time	I _S =16.0A,T _i = 25°C	-	552	1	ns	
Q_{rr}	Reverse Recovery Charge	$dI_F/dt=100A/us$,	ŀ	5960	I	nC	
I _{rrm}	Reverse Recovery Current	V _{GS} =0V	-	21.6	1	Α	
Pulse width tp≤300μs,δ≤2%							

Symbol	Parameter	Max.	Units
ReJC	Junction-to-Case	2.92	°C/W
R _{0JA}	Junction-to-Ambient	62.5	°C/W

 $^{^{}a1}$: Repetitive rating; pulse width limited by maximum junction temperature a2 : L=10mH, I_D=13.7A, Start T_J=25°C a3 : I_{SD}=16A,di/dt ≤100A/us,V_{DD}≤BV_{DS}, Start T_J=25°C

Characteristics Curve:

Figure 1 Maximum Forward Bias Safe Operating Area

Figure 2 Maximum Power dissipation vs Case Temperature

 $Figure \ 3 \quad Maximum \ Continuous \ Drain \ Current \ vs \ Case \ Temperature$

Figure 4 Typical Output Characteristics

Figure 5 Maximum Effective Thermal Impedance, Junction to Case

Figure 6 Typical Transfer Characteristics

Figure 8 Typical Drain to Source ON Resistance vs Drain Current

Figure 7 Typical Body Diode Transfer Characteristics

Figure 9 Typical Drian to Source on Resistance vs Junction Temperature

Figure 10 Typical Theshold Voltage vs Junction Temperature

Figure 12 Typical Capacitance vs Drain to Source Voltage

Figure 11 Typical Breakdown Voltage vs Junction Temperature

Figure 13 Typical Gate Charge vs Gate to Source Voltage

Test Circuit and Waveform

Figure 14. Gate Charge Test Circuit

Figure 15. Gate Charge Waveforms

Figure 16. Resistive Switching Test Circuit

Figure 17. Resistive Switching Waveforms

Figure 18. Diode Reverse Recovery Test Circuit

Figure 19. Diode Reverse Recovery Waveform

Figure 20. Unclamped Inductive Switching Test Circuit

Figure 21. Unclamped Inductive Switching Waveform

Package Information

TO-220F

Cymbal	Dimensions	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	4.300	4.700	0.169	0.185
A1	1.300	REF.	0.051	REF.
A2	2.800	3.200	0.110	0.126
A3	2.500	2.900	0.098	0.114
b	0.500	0.750	0.020	0.030
b1	1.100	1.350	0.043	0.053
b2	1.500	1.750	0.059	0.069
С	0.500	0.750	0.020	0.030
D	9.960	10.360	0.392	0.408
E	14.800	15.200	0.583	0.598
е	2.540	TYP.	0.100	TYP.
F	2.700	REF.	0.106	REF.
Φ	3.500 REF.		0.138	REF.
h	0.000	0.300	0.000	0.012
h1	0.800 REF.		0.031 REF.	
h2	0.500	REF.	0.020 REF.	
L	28.000	28.400	1.102	1.118
L1	1.700	1.900	0.067	0.075
L2	1.900	2.100	0.075	0.083

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.