# Autômatos Finitos Não-Determinísticos

#### Não-Determismo

- Fundamental na teoria da computação e linguagens formais.
- Nem sempre aumenta o poder computacional de uma classe de autômatos.
- Não fácil de simular, pois há muito custo operacional.

#### Ideia básica

- Processamento de uma entrada resulta em um conjunto de novos estados.
- Visto como uma máquina com fita, unidade de controle e função programa.
- Assume um conjunto de estados alternativos, multiplicando a unidade de controle para cada alternativa.

### definição

- Representado por uma 5-upla ( $\Sigma$ , Q,  $\delta$ , q0, F).
  - Σ: Alfabeto (símbolos de entrada).
  - Q: Conjunto de estados finitos.
  - δ: Função programa (uma função parcial que mapeia estados e símbolos de entrada para conjuntos de estados).
  - q0: Estados inicial.
  - F: Conjunto de estados finais.

## Função programa

• Interpretada como um grafo finito direto.



#### **Processamento**

- União dos resultados da função programa aplicado a cada estado alternativo.
- Definição formal do comportamento exige estender a função programa.

# Linguagem Aceita/ Rejeita

- Uma palavra é aceita se pelo menos um caminho alternativo a aceitar.
- Uma palavra é rejeitada se todos os caminhos alternativos a rejeitarem.

## **Exemplos**

- 1.  $L5 = \{w \mid w \text{ possui aa ou bb como sub-palavra}\}$ 
  - $M5 = (\{a, b\}, \{q0, q1, q2, q3\}, [15, q0, \{q3\}))$



| $\delta_5$     | а                 | b                 |
|----------------|-------------------|-------------------|
| $q_0$          | $\{q_0,q_1\}$     | $\{q_0,q_2\}$     |
| $q_1$          | {q <sub>3</sub> } | -                 |
| $q_2$          | -                 | {q <sub>3</sub> } |
| q <sub>3</sub> | {q <sub>3</sub> } | {q <sub>3</sub> } |

- 2.  $L6 = \{w \mid w \text{ possui aaa como sufixo}\}$ 
  - $M6 = (\{a, b\}, \{q0, q1, q2, q3\}, [16, q0, \{q3\}])$



| $\delta_6$     | а             | b         |
|----------------|---------------|-----------|
| $q_0$          | $\{q_0,q_1\}$ | $\{q_0\}$ |
| $q_1$          | ${q_2}$       | -         |
| $q_2$          | {q₃}          | -         |
| q <sub>3</sub> | -             | -         |

# A classe dos AFD é equivalente à classe dos AFN

- A partir de um AFN qualquer é possível construir um AFD que realiza o mesmo processamento.
- Exemplo de contrução → L6 = {w | w possui aaa como sufixo}