

Test report No.: 10636726H-J-R3 Page : 1 of 173 FCC ID : UCE314062A : February 20, 2015 Issued date

Revised date : March 19, 2015

SAR TEST REPORT

Test Report No.: 10636726H-J-R3

Applicant : Panasonic Mobile Communications Development of

Europe Ltd

Type of Equipment Digital Camera

Model No. DMC-CM1

FCC ID UCE314062A

Test regulation FCC47CFR 2.1093

Test Result Complied

Reported SAR(1g) Value The highest reported SAR(1g)

> WLAN 11b/g/n Head : 0.234W/kg

> > : 0.058W/kg Body

WLAN 11a/n/ac Head : 0.152W/kg

> Body : 0.181W/kg

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by 5. NVLAP, NIST, or any agency of the Federal Government.
- 6. This test report covers SAR technical requirements. It does not cover administrative issues such as Manual or non-SAR test related Requirements. (if applicable)
- 7. This report is a revised version of 10636726H-J-R2. 10636726H-J-R2 is replaced with this report.

January 20 to 29, 2015 Date of test:

Representative

test engineer:

Shuichi Ohyama

Engineer

Consumer Technology Division

Approved by:

Takahiro Hatakeda

Leader

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/about/m ark1/index.jsp#nvlap

NVLAP LAB CODE: 200572-0

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 2 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

REVISION HISTORY

Original Test Report No.: 10636726H-J

Revision	Test report No.	Date	Page revised	Contents
-	10636726H-J	February 20, 2015	-	-
(Original)	1003072011-3	1 coluary 20, 2013	-	-
1	10636726H-J-R1	March 5, 2015	P.4	Correction of rating
1	10636726H-J-R1	March 5, 2015	P.6	Correction of KDB procedures
1	10636726H-J-R1	March 5, 2015	P.17	Correction of column "Result" for IEEE802.11n-40 MCS0 (5510MHz) in the table
1	10636726H-J-R1	March 5, 2015	P.26	Addition of below explanatory note for testing "According to KDB 941225 D06 Hotspot SAR procedure, test separation of Bodyworn for WLAN is 10mm since the test separation distance (10mm) for hotspot mode is more conservative than Body-worn test(15mm)."
2	10636726H-J-R2	March 9, 2015	P.9, 20	Correction of explanatory note for software
3	10636726H-J-R3	March 19, 2015	P.6	Correction of KDB941225D06 version
3	10636726H-J-R3	March 19, 2015	P.162, 164-167	Addition of word "Ear Reference Point" in SAR Setup Photo
			104 107	57 IX Setup I note

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

<u>CONTENTS</u> PAGE

SECTION 1:	Customer information	4
SECTION 2:	Equipment under test (E.U.T.)	4
2.1	Identification of E.U.T.	4
2.2	Product description	4
SECTION 3:	Test standard information	6
3.1	Test Specification	6
3.2	Procedure	6
3.3	Exposure limit	7
3.4	Test Location.	7
SECTION 4:	Test result	8
4.1	Stand-alone SAR result	8
SECTION 5:	Description of the operating mode	
5.1	Output power operating modes	
5.2	Output power measurement results	
5.3	SAR testing operating modes	
5.4	Confirmation after SAR testing	
	SAR test exclusion considerations	
6.1	Standalone SAR test exclusion considerations.	
	Description of the Body setup	
7.1	Test position for Head setup	
7.2	Test position for Body setup	
	Test surrounding.	
8.1	Measurement uncertainty	
	Measurement results	
9.1	WLAN Head SAR (2.4G)	
9.1	WLAN Body SAR (2.4G)	
9.3	WLAN Head SAR (5G)	
9.4	WLAN Body SAR (5G)	
SECTION 10	Test instruments	
	SAR Measurement data	
	1. Evaluation procedure	
	2. Measurement data Head 2.4GHz	
	3. Measurement data Body 2.4GHz	
	4. Measurement data Head 5.2GHz	
	5. Measurement data Head 5.3GHz	
	6. Measurement data Head 5.6GHz	
	7. Measurement data Head 5.8GHz	
	8. Measurement data Body 5.2GHz	
	9. Measurement data Body 5.3GHz	
	10. Measurement data Body 5.6GHz	76
	11. Measurement data Body 5.8GHz	
APPENDIX2:	System Check	
	1. System check result Head 2450MHz	
	2. System check result Body 2450MHz	
	3. System Check Dipole (D2450V2,S/N:713)	
	4. System check result Head 5200MHz	
	5. System check result Body 5200MHz	10
	6. System check result Head 5300MHz	11
	7. System check result Body 5300MHz	11:
	8. System check result Head 5600MHz	11
	9. System check result Body 5600MHz	11
	10. System check result Head 5800MHz	12
	11. System check result Body 5800MHz	12
	12. System Check Dipole (D5GHzV2,S/N:1039)	12
	13. System check uncertainty	
APPENDIX 3	System specifications	
	1. Configuration and peripherals	
	2. Specifications	
	3. Dosimetric E-Field Probe Calibration (EX3DV4, S/N: 3922)	
APPENDIX 4:	Photographs of test setup	
	1. Photographs of EUT	
	2. Antenna position	
	3. Photographs of setup	

Test report No. : 10636726H-J-R3
Page : 4 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 1: Customer information

Company Name : Panasonic Mobile Communications Development of Europe Ltd

Address : Willoughby Road, Bracknell Berkshire RG12 8FP, UK

Telephone Number : +44 (0) 1344 706774
Facsimile Number : +44 (0) 1344 706796
Contact Person : Andrew James

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Digital Camera Model No. : DMC-CM1 Serial No. : 004401221416155

Rating : AC120V/60Hz (AC Adaptor)

DC3.8V (Battery)

Option Battery : None

Body-worn Accessary : Typical Earphone Receipt Date of Sample : January 7, 2015

Country of Mass-production : China

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No Modification by the test lab

2.2 Product description

General Specification

Power Supply (radio part input) : Cellular PA: 3.0V-4.2V (Depend on Battery voltage)

Cellular other RF part: 1.3V, 1.8V, 2.05V, 2.7V (Regulated voltage) WLAN 5GHz Front-end module: 3.0V-4.2V (Depend on Battery voltage)

WLAN/BT other RF part: 1.3V, 1.8V, 3.0V (Regulated voltage)

Clock frequency(ies) in the system : 2.26GHz (Max)

See below table for other clock frequencies

Frequency	Device	
32.768kHz	MSM8974AB	
32.768kHz (X'tal)	BUYD2206	
27.0MHz	TC358764AXBG, XO2-256-64UCBGA, BUYD2206	
48.0MHz (X'tal)	WCN3680	
24.0MHz	MSM8974AB, Sub Camera	
19.2MHz	WTR1625L, MSM8974AB	
19.2MHz (X'tal)	PM8941	
9.6MHz	WCD9320	
72MHz	Main Camera	
27.12MHz	NFC IC	

Hardware / Software version : Rev. PR / QRCT Version 3.0.32.0

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 5 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

Radio Specification

	IEEE802.11b	IEEE802.11g/n	IEEE802.11a/n/ac	IEEE802.11n/ac	IEEE802.11ac
		(20 M band)	(20 M band)	(40 M band)	(80 M band)
Frequency	2412-2462MHz	2412-2462MHz	5180-5240MHz	5190-5230MHz	5210MHz
of operation			5260-5320MHz	5270-5310MHz	5290MHz
			5500-5700MHz	5510-5670MHz	5530-5610MHz
			5745-5825MHz	5755-5795MHz	5775MHz
Type of modulation	DSSS	OFDM-CCK	OFDM (64QAM, 16QAM, QPSK, BPSK) OFDM		OFDM
	(CCK, DQPSK,	(64QAM, 16QAM,			(64QAM,
	DBPSK)	QPSK, BPSK)			16QAM, QPSK,
					BPSK, 256QAM)
Channel spacing	5MHz		20MHz	40MHz	80MHz
Antenna type	Monopole				
Antenna Connector	Spring type				
type					
Antenna Gain	2.4GHz: -5.40dBi				
	W52: -3.0dBi, W5	53: -3.5dBi, W56: -1.5dBi,	W58: -1.8dBi		

	Bluetooth Ver.4.0 with EDR function	GSM	W-CDMA	LTE
Frequency of operation	2402-2480MHz	[Up Link] GSM850: 824 – 849MHz PCS: 1850 – 1910MHz [Down Link] GSM850: 869 – 894MHz PCS: 1930 – 1990MHz	[Up Link] Band II: 1850 – 1910MHz Band IV: 1710 – 1755MHz Band V: 824 – 849MHz [Down Link] Band II: 1930 – 1990MHz Band IV: 2110 – 2155MHz Band V: 869 – 894MHz	Band V: 824 – 849MHz Band VII: 2500 – 2570MHz Band X VII: 704 – 716MHz
Type of modulation	BT: FHSS (GFSK, π/4-DQPSK, 8-DPSK) LE: GFSK	GMSK, 8PSK	QPSK	QPSK, 16QAM
Channel spacing	BT: 1MHz, LE: 2MHz	200kHz	200kHz	100kHz
Antenna type	Monopole	Monopole	Main: Monopole Sub: Monopole	
Antenna Connector type	Spring type	Spring type	Main: Spring type Sub: Spring type	
Antenna Gain	-5.40dBi	GSM850: -0.9dBi PCS: 0.5dBi	Band IV: 0.6dBi Band V: -0.9dBi	Band II: 0.5dBi Band IV: 0.6dBi Band V: -0.9dBi Band VII: -0.2dBi Band X VII: -1.5dBi

	NFC	GPS/GLONASS
Frequency	13.56MHz	GPS: 1575.42MHz
of operation		GLONASS: 1597.55-1605.89MHz
Type of modulation	ASK	GPS: BPSK
		GLONASS: BPSK
Channel spacing	=	GLONASS: 0.5625MHz
Antenna type	Loop	Monopole
Antenna Connector	Spring type	Spring type
type		
Antenna Gain	N/A	-2.9dBi

^{*}This test report applies for WLAN (IEEE 802.11b/11g/11a/11n-20/11ac-20/11n-40/11ac-40/11ac-80), Bluetooth, and Bluetooth (Low Energy).

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 6 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 3: Test standard information

3.1 Test Specification

Title : FCC47CFR 2.1093

Radiofrequency radiation exposure evaluation: portable devices.

IEEE Std 1528-2003:

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices.

: Published RF exposure KDB procedures

KDB447498D01(v05r02)	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
KDB447498D02(v02)	SAR Measurement Procedures for USB Dongle Transmitters
KDB648474D04(v01r02) KDB941225D01(v03)	SAR Evaluation Considerations for Wireless Handsets 3G SAR Measurement Procedures
KDB941225D05(v02r03)	SAR for LTE Devices
KDB941225D06(v02r01)	SAR test procedures for devices incorporating SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities (Hot Spot SAR)
KDB941225D07(v01r01)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
KDB616217D04(v01r01)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
KDB865664D01(v01r03)	SAR Measurement Requirements for 100MHz to 6 GHz
KDB248227D01(v01r02)	SAR Measurement Procedures for 802.11a//b/g Transmitters

Reference

[1]SPEAG uncertainty document (AN 15-7/AN19-17) for DASY 5 System from SPEAG (Schmid & Partner Engineering AG).

[2] IEEE Std 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

(The reference for Uncertainty in SAR correction for deviations in permittivity and conductivity, in clause E.3.2.)

3.2 Procedure

Transmitter	WLAN			
Test Procedure	Published RF exposure KDB procedures			
	SAR			
Category	FCC47CFR 2.1093			
Note: UL Japan, Inc. 's SAR Work Procedures 13-EM-W0429 and 13-EM-W0430				

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3 Page : 7 of 173

FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

3.3 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average (averaged over the whole body)	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average (averaged over the whole body	Spatial Peak (averaged over any 1g of tissue)	Spatial Peak (hands/wrists/feet/ankles averaged over 10g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1g of tissue) LIMIT 1.6 W/kg

3.4 Test Location

*Shielded room for SAR testings

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8999 Facsimile: +81 596 24 8124

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 8 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 4: Test result

4.1 Stand-alone SAR result

Reported SAR

Measured SAR is scaled to the maximum tune-up tolerance limit by the following formulas. Reported SAR= Maximum tune-up tolerance limit [mW] / Measured power [mW] · Measured SAR [W/kg] Maximum tune-up tolerance limit is by the specification from a customer.

Head SAR

Mode	Frequency	Measured power [mW]*1	Maximum tune-up tolerance limit [mW]	Measured SAR [W/kg]	Reported SAR [W/kg]
WLAN 11b	2412MHz	17.70	25.12	0.165	0.234
WLAN 11a	5825MHz	16.33	16.98	0.146	0.152
Bluetooth	Exemption *2				

Body-worn and Body (Hotspot) SAR

Mode	Frequency	Measured power [mW]*1	Maximum tune-up tolerance limit [mW]	Measured SAR [W/kg]	Reported SAR [W/kg]
WLAN 11b	2412MHz	17.70	25.12	0.041	0.058
WLAN 11a	5500MHz	16.33	16.98	0.174	0.181
Bluetooth	Exemption *2				

Note

WLAN / Bluetooth Maximum tune-up tolerance limit

Mode	Maximum tune-up tolerance	Maximum tune-up tolerance
	limit	limit [mW]
	[dBm]	
WLAN 11b	14.0	25.12
WLAN 11g	12.8	19.05
WLAN 11n (2.4G)	11.7	14.79
WLAN 11a/n 20BW	12.3	16.98
WLAN 11ac 20BW	12.0	15.85
WLAN 11n 40BW	9.9	9.77
WLAN 11ac 40BW	8.6	7.24
WLAN 11ac 80BW	8.9	7.76
Bluetooth BDR EDR	8.2	6.61
Bluetooth LE	1.8	1.51

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The sample used by the SAR test is within the tune-up tolerance but not more than 2 dB lower than the maximum tune-up tolerance limit. That is, measured power is included the tune-up tolerance range.

^{*2} SAR test is not required according with Section 6.

Test report No. : 10636726H-J-R3
Page : 9 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 5: Description of the operating mode

5.1 Output power operating modes

Mode	Frequency Band	Test Frequency	Modulation
IEEE802.11b	2412-2462MHz	2412MHz (1ch)	DSSS
		2437MHz (6ch)	(DBPSK.DQPSK.CCK)
		2462MHz (11ch)	
IEEE802.11g	2412-2462MHz	2412MHz (1ch)	
		2437MHz (6ch)	
		2462MHz (11ch)	
IEEE802.11n20 (2.4G)	2412-2462MHz	2412MHz (1ch)	
		2437MHz (6ch)	
		2462MHz (11ch)	
	5180-5240MHz	All channels	
IEEE802.11a	5260-5320MHz	All channels	
1LLL002.11a	5500-5700MHz	All channels	
	5745-5825MHz	All channels	
	5180-5240MHz	All channels	
IEEE802.11n20 (5G)	5260-5320MHz	All channels	
1EEE602.111120 (3G)	5500-5700MHz	All channels	
	5745-5825MHz	All channels	OFFILE
	5180-5240MHz	All channels	OFDM OPGY 1/OAM
IEEE802.11ac20	5260-5320MHz	All channels	(BPSK, QPSK, 16QAM,
1EEE802.11ac20	5500-5700MHz	All channels	64QAM, 256QAM)
	5745-5825MHz	All channels	
	5190-5230MHz	All channels	
IEEE000 1140 (5C)	5270-5310MHz	All channels	
IEEE802.11n40 (5G)	5510-5670MHz	All channels	
	5755-5795MHz	All channels	
	5190-5230MHz	All channels	
IEEE000 11 40	5270-5310MHz	All channels	
IEEE802.11ac40	5510-5670MHz	All channels	
	5755-5795MHz	All channels	
	5210MHz	All channels	
IEEE000 11 00 (5C)	5290MHz		
IEEE802.11ac80 (5G)	5530-5610MHz		
	5775MHz		

Setting

WLAN

Power settings: [WLAN] 11b:13dBm, 11g:12dBm, 11n-20(2.4G):11dBm, 11a:12dBm

11n-20(5G):12dBm, 11n-40(5G):11dBm, 11ac-20:12dBm, 11ac-40:10dBm, 11ac-80:10dBm

Software: QRCT Version: 3.0.32.0

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The power value of the EUT was set for testing as follows (setting value might be different from product specification value);

^{*}This setting of software is the worst case.

Test report No. : 10636726H-J-R3
Page : 10 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

5.2 Output power measurement results

1) WLAN (11b/g/n (2.4G))

[IEEE802.11b] Rate Check

[IEEE002110] Take Cheen								
Rate	Freq.	Reading	Cable	Atten.	Res	sult		
		[dBm]	Loss		[dBm]	[mW]		
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG		
1.0	2412	2.05	0.39	10.04	12.48	17.70		
2.0	2412	2.04	0.39	10.04	12.47	17.66		
5.5	2412	2.04	0.39	10.04	12.47	17.66		
11.0	2412	2.03	0.39	10.04	12.46	17.62		

:Worst data rate

IEEE802.11b 1Mbps

Ch	Frequency	P/M	Cable	Atten.	Result		
		Reading	Loss		[dBm]	[mW]	
	[MHz]	AVG	[dB]	[dB]	AVG	AVG	
1	2412	2.05	0.39	10.04	12.48	17.70	
6	2437	1.94	0.39	10.04	12.37	17.26	
11	2462	1.89	0.39	10.04	12.32	17.06	

:SAR test channel

[IEEE802.11g] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	Result	
		[dBm]	Loss		[dBm]	[mW]	
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG	
6.0	2412	1.04	0.39	10.04	11.47	14.03	
9.0	2412	1.02	0.39	10.04	11.45	13.96	
12.0	2412	1.01	0.39	10.04	11.44	13.93	
18.0	2412	1.00	0.39	10.04	11.43	13.90	
24.0	2412	0.99	0.39	10.04	11.42	13.87	
36.0	2412	0.99	0.39	10.04	11.42	13.87	
48.0	2412	1.00	0.39	10.04	11.43	13.90	
54.0	2412	0.99	0.39	10.04	11.42	13.87	

:Worst data rate

IEEE802.11g 6Mbps

	1222002(11g 0):15[0							
	Ch	Frequency	Reading	Cable	Atten.	Result		
			[dBm]	Loss		[dBm]	[mW]	
		[MHz]	AVG	[dB]	[dB]	AVG	AVG	
1	1	2412	1.04	0.39	10.04	11.47	14.03	
	6	2437	0.92	0.39	10.04	11.35	13.65	
	11	2462	0.86	0.39	10.04	11.29	13.46	

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 11 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

[IEEE802.11n-20] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG
MCS0	2412	-0.11	0.39	10.04	10.32	10.76
MCS1	2412	-0.13	0.39	10.04	10.30	10.72
MCS2	2412	-0.12	0.39	10.04	10.31	10.74
MCS3	2412	-0.12	0.39	10.04	10.31	10.74
MCS4	2412	-0.13	0.39	10.04	10.30	10.72
MCS5	2412	-0.12	0.39	10.04	10.31	10.74
MCS6	2412	-0.14	0.39	10.04	10.29	10.69
MCS7	2412	-0.12	0.39	10.04	10.31	10.74

:Worst data rate

IEEE802.11n-20 MCS0

Ch	Frequency	Reading	Cable	Atten.	Res	Result	
		[dBm]	Loss		[dBm]	[mW]	
	[MHz]	AVG	[dB]	[dB]	AVG	AVG	
1	2412	-0.11	0.39	10.04	10.32	10.76	
6	2437	-0.15	0.39	10.04	10.28	10.67	
11	2462	-0.25	0.39	10.04	10.18	10.42	

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 12 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

2) WLAN (11a/n/ac (5G))

5.2GHz

[IEEE802.11a] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG
6.0	5220	1.43	0.57	10.09	12.09	16.18
9.0	5220	1.41	0.57	10.09	12.07	16.11
12.0	5220	1.38	0.57	10.09	12.04	16.00
18.0	5220	1.39	0.57	10.09	12.05	16.03
24.0	5220	1.38	0.57	10.09	12.04	16.00
36.0	5220	1.38	0.57	10.09	12.04	16.00
48.0	5220	1.39	0.57	10.09	12.05	16.03
54.0	5220	1.38	0.57	10.09	12.04	16.00

:Worst data rate

IEEE802.11a 6Mbps

	EEECO21114 0110 po								
I	Ch	Frequency	P/M	Cable	Atten.	Res	sult		
			Reading	Loss		[dBm]	[mW]		
		[MHz]	AVG	[dB]	[dB]	AVG	AVG		
ſ	36	5180	1.50	0.57	10.09	12.16	16.44		
I	40	5200	1.51	0.57	10.09	12.17	16.48		
ſ	44	5220	1.43	0.57	10.09	12.09	16.18		
I	48	5240	1.49	0.57	10.09	12.15	16.41		

:SAR test channel

[IEEE802.11n-20] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
[Mbps]	[MHz]	AVG	[dB]	[dB]	AVG	AVG
MCS0	5220	1.39	0.57	10.09	12.05	16.03
MCS1	5220	1.38	0.57	10.09	12.04	16.00
MCS2	5220	1.38	0.57	10.09	12.04	16.00
MCS3	5220	1.38	0.57	10.09	12.04	16.00
MCS4	5220	1.37	0.57	10.09	12.03	15.96
MCS5	5220	1.37	0.57	10.09	12.03	15.96
MCS6	5220	1.38	0.57	10.09	12.04	16.00
MCS7	5220	1.37	0.57	10.09	12.03	15.96

:Worst data rate

IEEE802.11n-20 MCS0

Ch	Frequency	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
36	5180	1.48	0.57	10.09	12.14	16.37
40	5200	1.49	0.57	10.09	12.15	16.41
44	5220	1.39	0.57	10.09	12.05	16.03
48	5240	1.50	0.57	10.09	12.16	16.44

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 13 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

	ac-20] Rate					
Rate	Freq.	P/M	Cable	Atten.	Res	ult
		Reading [dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
MCS0	5220	1.33	0.57	10.09	11.99	15.81
MCS1	5220	1.32	0.57	10.09	11.98	15.78
MCS2	5220	1.32	0.57	10.09	11.98	15.78
MCS3	5220	1.32	0.57	10.09	11.98	15.78
MCS4	5220	1.32	0.57	10.09	11.98	15.78
MCS5	5220	1.32	0.57	10.09	11.98	15.78
MCS6	5220	1.31	0.57	10.09	11.97	15.74
MCS7	5220	1.31	0.57	10.09	11.97	15.74
MCS8	5220	1.30	0.57	10.09	11.96	15.70
	:Worst data	rate				
EEE802.11a	ac-20 MCS0					
Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading [dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
36	5180	1.34	0.57	10.09	12.00	15.85
40	5200	1.32	0.57	10.09	11.98	15.78
44	5220	1.33	0.57	10.09	11.99	15.81
48	5240	1.28	0.57	10.09	11.94	15.63
IEEE802.11	n-40] Rate (Check				
Rate	Freq.	P/M	Cable	Atten.	Res	sult
		Reading [dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
MCS0	5190	-0.82	0.57	10.09	9.84	9.64
MCS1	5190	-0.84	0.57	10.09	9.82	9.59
MCS2	5190	-0.86	0.57	10.09	9.80	9.55
MCS3	5190	-0.93	0.57	10.09	9.73	9.40
MCS4	5190	-0.95	0.57	10.09	9.71	9.35
MCS5	5190	-0.94	0.57	10.09	9.72	9.38
MCS6	5190	-0.90	0.57	10.09	9.76	9.46
MCS7	5190	-0.92	0.57	10.09	9.74	9.42
WEST			0.57	10.07	7.14	7.42
EEE802.111	:Worst data	rate				
Ch	Frequency	P/M	Cable	Atten.	Res	zult
CII	requericy	Reading [dBm]	Loss	Atten.	[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
38	5190	-0.82	0.57	10.09	9.84	9.64
50	3170	-0.02	0.57	10.09	9.85	7.04

Test report No. : 10636726H-J-R3
Page : 14 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

[IEEE802.11ac-40] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
MCS0	5190	-2.06	0.57	10.09	8.60	7.24
MCS1	5190	-2.09	0.57	10.09	8.57	7.19
MCS2	5190	-2.13	0.57	10.09	8.53	7.13
MCS3	5190	-2.12	0.57	10.09	8.54	7.14
MCS4	5190	-2.12	0.57	10.09	8.54	7.14
MCS5	5190	-2.13	0.57	10.09	8.53	7.13
MCS6	5190	-2.10	0.57	10.09	8.56	7.18
MCS7	5190	-2.11	0.57	10.09	8.55	7.16
MCS8	5190	-2.10	0.57	10.09	8.56	7.18
MCS9	5190	-2.08	0.57	10.09	8.58	7.21

:Worst data rate

IEEE802.11ac-40 MCS0

	122200211	240 10 112 01	, ,				
ı	Ch	Frequency	P/M	Cable	Atten.	Res	sult
ı			Reading	Loss		[dBm]	[mW]
I		[MHz]	AVG	[dB]	[dB]	AVG	AVG
I	38	5190	-2.06	0.57	10.09	8.60	7.24
ı	46	5230	-2.11	0.57	10.09	8.55	7.16

[IEEE802.11ac-80] Rate Check

Rate	Freq.	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
MCS0	5210	-2.06	0.57	10.09	8.60	7.24
MCS1	5210	-2.09	0.57	10.09	8.57	7.19
MCS2	5210	-2.09	0.57	10.09	8.57	7.19
MCS3	5210	-2.08	0.57	10.09	8.58	7.21
MCS4	5210	-2.07	0.57	10.09	8.59	7.23
MCS5	5210	-2.09	0.57	10.09	8.57	7.19
MCS6	5210	-2.10	0.57	10.09	8.56	7.18
MCS7	5210	-2.10	0.57	10.09	8.56	7.18
MCS8	5210	-2.09	0.57	10.09	8.57	7.19
MCS9	5210	-2.09	0.57	10.09	8.57	7.19

:Worst data rate

IEEE802.11ac-80 MCS0

	Ch	Frequency	P/M	Cable	Atten.	Result	
			Reading	Loss		[dBm]	[mW]
		[MHz]	AVG	[dB]	[dB]	AVG	AVG
1	42	5210	-2.06	0.57	10.09	8.60	7.24

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 15 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

5.3GHz

IEEE802.11a 6Mbps

Ch	Frequency	P/M	Cable	Atten.	Res	sult			
		Reading	Loss		[dBm]	[mW]			
	[MHz]	AVG	[dB]	[dB]	AVG	AVG			
52	5260	1.53	0.58	10.09	12.20	16.60			
56	5280	1.49	0.58	10.09	12.16	16.44			
60	5300	1.53	0.58	10.09	12.20	16.60			
64	5320	1.55	0.58	10.09	12.22	16.67			
	:SAR test channel								

IEEE802.11n-20 MCS0

ILLE COUZ.	III 20 111 CD					
Ch	Frequency	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
52	5260	1.52	0.58	10.09	12.19	16.56
56	5280	1.48	0.58	10.09	12.15	16.41
60	5300	1.46	0.58	10.09	12.13	16.33
64	5320	1.46	0.58	10.09	12.13	16.33

IEEE802.11ac-20 MCS0

Ch	Frequency	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
52	5260	1.31	0.58	10.09	11.98	15.78
56	5280	1.30	0.58	10.09	11.97	15.74
60	5300	1.31	0.58	10.09	11.98	15.78
64	5320	1.29	0.58	10.09	11.96	15.70

IEEE802.11n-40 MCS0

Ch	Frequency	P/M	Cable	Atten.	Result	
		Reading	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
54	5270	-0.80	0.58	10.09	9.87	9.71
62	5310	-0.79	0.58	10.09	9.88	9.73

IEEE802.11ac-40 MCS0

	122200211	200 10 112 01					
	Ch	Frequency	Reading	Cable	Atten.	Result	
			[dBm]	Loss		[dBm]	[mW]
		[MHz]	AVG	[dB]	[dB]	AVG	AVG
ĺ	54	5270	-2.07	0.58	10.09	8.60	7.24
	62	5310	-2.09	0.58	10.09	8.58	7.21

IEEE802.11ac-80 MCS0

Ch	Frequency	Reading	Cable	Atten.	Res	sult
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
58	5290	-2.08	0.58	10.09	8.59	7.23

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 16 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

5.6GHz

IEEE802.11a 6Mbps

Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading [dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
100	5500	1.45	0.59	10.09	12.13	16.33
104	5520	1.33	0.59	10.09	12.01	15.89
108	5540	1.41	0.59	10.09	12.09	16.18
112	5560	1.43	0.59	10.09	12.11	16.26
116	5580	1.24	0.59	10.09	11.92	15.56
120	5600	1.26	0.59	10.09	11.94	15.63
124	5620	1.30	0.59	10.09	11.98	15.78
128	5640	1.32	0.59	10.09	12.00	15.85
132	5660	1.31	0.59	10.09	11.99	15.81
136	5680	1.35	0.59	10.09	12.03	15.96
140	5700	1.31	0.59	10.09	11.99	15.81

:SAR test channel

IEEE802.11n-20 MCS0

TEEE002.11II-20 MC90											
Ch	Frequency	P/M	Cable	Atten.	Res	sult					
		Reading [dBm]	Loss		[dBm]	[mW]					
	[MHz]	AVG	[dB]	[dB]	AVG	AVG					
100	5500	1.43	0.59	10.09	12.11	16.26					
104	5520	1.34	0.59	10.09	12.02	15.92					
108	5540	1.40	0.59	10.09	12.08	16.14					
112	5560	1.41	0.59	10.09	12.09	16.18					
116	5580	1.24	0.59	10.09	11.92	15.56					
120	5600	1.23	0.59	10.09	11.91	15.52					
124	5620	1.27	0.59	10.09	11.95	15.67					
128	5640	1.30	0.59	10.09	11.98	15.78					
132	5660	1.32	0.59	10.09	12.00	15.85					
136	5680	1.33	0.59	10.09	12.01	15.89					
140	5700	1.31	0.59	10.09	11.99	15.81					

IEEE802.11ac-20 MCS0

Ch	Frequency	P/M	Cable	Atten.	Res	sult
		Reading [dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
100	5500	1.28	0.59	10.09	11.96	15.70
104	5520	1.19	0.59	10.09	11.87	15.38
108	5540	1.24	0.59	10.09	11.92	15.56
112	5560	1.20	0.59	10.09	11.88	15.42
116	5580	1.14	0.59	10.09	11.82	15.21
120	5600	1.12	0.59	10.09	11.80	15.14
124	5620	1.12	0.59	10.09	11.80	15.14
128	5640	1.14	0.59	10.09	11.82	15.21
132	5660	1.20	0.59	10.09	11.88	15.42
136	5680	1.27	0.59	10.09	11.95	15.67
140	5700	1.29	0.59	10.09	11.97	15.74

Sample Calculation:

 $Result = Reading + Cable \ Loss + Attenuator$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 17 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

IEEE802.11n-40 MCS0

Ch	Frequency	P/M	Cable	Atten.	Result	
		Reading	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
102	5510	-0.83	0.59	10.09	9.85	9.66
110	5550	-0.83	0.59	10.09	9.85	9.66
118	5590	-0.96	0.59	10.09	9.72	9.38
126	5630	-1.04	0.59	10.09	9.64	9.20
134	5670	-1.17	0.59	10.09	9.51	8.93

IEEE802.11ac-40 MCS0

122200211											
Ch	Frequency	P/M	Cable	Atten.	Result						
		Reading	Loss		[dBm]	[mW]					
	[MHz]	AVG	[dB]	[dB]	AVG	AVG					
102	5510	-2.11	0.59	10.09	8.57	7.19					
110	5550	-2.08	0.59	10.09	8.60	7.24					
118	5590	-2.10	0.59	10.09	8.58	7.21					
126	5630	-2.16	0.59	10.09	8.52	7.11					
134	5670	-2.17	0.59	10.09	8.51	7.10					

IEEE802.11ac-80 MCS0

	Ch	Frequency	Reading	Cable	Atten.	Result	
ı			[dBm]	Loss		[dBm]	[mW]
l		[MHz]	AVG	[dB]	[dB]	AVG	AVG
ſ	106	5530	-2.00	0.59	10.09	8.68	7.38
Ī	122	5610	-2.01	0.59	10.09	8.67	7.36

Sample Calculation:

 $Result = Reading + Cable \ Loss + Attenuator$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 18 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

5.8GHz

IEEE802.11a 6Mbps

Ch	Frequency [MHz]	P/M Reading [dBm] AVG	Cable Loss [dB]	Atten.	Res [dBm] AVG	sult [mW] AVG
149	5745	1.20	0.60	10.08	11.88	15.42
153	5765	1.32	0.60	10.08	12.00	15.85
157	5785	1.21	0.60	10.08	11.89	15.45
161	5805	1.35	0.60	10.08	12.03	15.96
165	5825	1.45	0.60	10.08	12.13	16.33

:SAR test channel

IEEE802.11n-20 MCS0

Ch	Frequency	P/M Reading [dBm]	Cable Loss	Atten.	Res [dBm]	sult [mW]					
	[MHz]	AVG	[dB]	[dB]	AVG	AVG					
149	5745	1.21	0.60	10.08	11.89	15.45					
153	5765	1.30	0.60	10.08	11.98	15.78					
157	5785	1.20	0.60	10.08	11.88	15.42					
161	5805	1.33	0.60	10.08	12.01	15.89					
165	5825	1.41	0.60	10.08	12.09	16.18					

IEEE802.11ac-20 MCS0

	IEEE002:11ac-20 MCS0											
	Ch	Frequency	P/M Reading	Cable	Atten.	Res	sult					
ı			[dBm]	Loss		[dBm]	[mW]					
		[MHz]	AVG	[dB]	[dB]	AVG	AVG					
1	149	5745	1.19	0.60	10.08	11.87	15.38					
ı	153	5765	1.28	0.60	10.08	11.96	15.70					
ı	157	5785	1.22	0.60	10.08	11.90	15.49					
ı	161	5805	1.29	0.60	10.08	11.97	15.74					
ı	165	5825	1.32	0.60	10.08	12.00	15.85					

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

IEEE802.11n-40 MCS0

	Ch	Frequency	P/M	Cable	Atten.	Result	
			Reading	Loss		[dBm]	[mW]
		[MHz]	AVG	[dB]	[dB]	AVG	AVG
Г	151	5755	-1.11	0.60	10.08	9.57	9.06
	159	5795	-1.12	0.60	10.08	9.56	9.04

IEEE802.11ac-40 MCS0

Ch	Frequency	P/M	Cable	Atten.	Result	
		Reading	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
151	5755	-2.12	0.60	10.08	8.56	7.18
159	5795	-2.11	0.60	10.08	8.57	7.19

IEEE802.11ac-80 MCS0

Ch	Frequency	Reading	Cable	Atten.	Result	
		[dBm]	Loss		[dBm]	[mW]
	[MHz]	AVG	[dB]	[dB]	AVG	AVG
155	5775	-1.99	0.60	10.08	8.69	7.40

Sample Calculation:

Result = Reading + Cable Loss + Attenuator

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 19 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

5.3 SAR testing operating modes

The operating mode for SAR testing was decided by the output power

1) SAR measurement for WLAN

Decision of SAR test channel

The operating mode for SAR testing was decided by the output power

Mode		GHz	Channel	"Default T	est Channel	11	
				FCC 15.24	7	UNII	
				802.11b	802.11g		
		2.412	1	$\sqrt{}$	Δ		
802.11 b/g/n20		2.437	6	$\sqrt{}$	Δ		
		2.462	11	\checkmark	Δ		
		5.18	36			\checkmark	
		5.20	40				*
		5.22	44				*
		5.24	48			$\sqrt{}$	
		5.26	52			$\sqrt{}$	
		5.28	56				*
		5.30	60				*
	UNII	5.32	64			$\sqrt{}$	
		5.50	100				*
		5.52	104			$\sqrt{}$	
		5.54	108				*
802.11a/n/ac		5.56	112				*
802.11a/n/ac		5.58	116			$\sqrt{}$	
		5.60	120				*
		5.62	124			$\sqrt{}$	
		5.64	128				*
		5.66	132				*
		5.68	136			$\sqrt{}$	
		5.70	140				*
	UNII	5.745	149	$\sqrt{}$		√	
	or	5.765	153		*		*
	FCC 15.247	5.785	157	$\sqrt{}$			*
		5.805	161		*	1	
	FCC 15.247	5.825	165	$\sqrt{}$			

 $[\]sqrt{}$ = "default test channels"

^{* =} Possible 802.11a channels with maximum average output > the "default test channels"

 $[\]Delta$ = Possible 802.11g channels with maximum average output $\frac{1}{4}$ dB \geq the "default test channels"

^{# =} when output power is reduced for channel 1 and/or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested

Test report No. : 10636726H-J-R3
Page : 20 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

Mode	Test Frequency	Modulation	Crest factor	Note
IEEE802.11b	2412MHz(1ch)	DBPSK(1Mbps)	1	*2
IEEE802.11g	Not required			*1
IEEE802.11n20 (2.4G)				. 1
	5200MHz(40ch)	BPSK(6Mbps)	1	*2
IEEE802.11a	5320MHz(64ch)	BPSK(6Mbps)	1	*2
IEEE802.11a	5500MHz(100ch)	BPSK(6Mbps)	1	*3
	5825MHz(165ch)	BPSK(6Mbps)	1	*2
IEEE802.11n20 (5G)	Not required			*4
IEEE802.11n40 (5G)				
IEEE802.11ac20				
IEEE802.11ac40				
IEEE802.11ac80				
Bluetooth	Not required			*5
Bluetooth Low Energy				

WLAN/Bluetooth/Bluetooth Low Energy

*The power value of the EUT was set for testing as follows (setting value might be different from product specification value);

Power settings: [WLAN] 11b:13dBm, 11g:12dBm, 11n-20(2.4G):11dBm, 11a:12dBm

11n-20(5G):12dBm, 11n-40(5G):11dBm, 11ac-20:12dBm, 11ac-40:10dBm,

11ac-80:10dBm

[Bluetooth BDR EDR] 9 [Bluetooth Low Energy] 0dBm

Software: QRCT Version: 3.0.32.0

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

- *2 The other channel was not required since maximum average output power channel SAR value is less than 0.8W/kg.
- *3 The other channel was not required since maximum average output power channel SAR value is less than 0.4W/kg.
- *4 The 11a mode was maximum average power. According to KDB248227D01, the 11n and 11ac SAR is not required for other mode because the maximum average output power for other mode is less than that measured 11a mode.
- *5 Bluetooth / Bluetooth Low Energy test were not required according with Section 6

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The 11b mode was maximum average power. According to KDB248227D01, the 11g/n20 SAR is not required for other mode because the maximum average output power for other mode is less than 1/4dB higher than that measured 11b mode.

Test report No.: 10636726H-J-R3
Page: 21 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

5.4 Confirmation after SAR testing

It was checked that the power drift [W] is within +/-5%. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb)

Before SAR testing : Eb[V/m]

After SAR testing : Ea[V/m]

Limit of power drift[W] =+/-5%

X[dB]=10log[P]=10log(1.05/1)=10log(1.05)-10log(1)=0.212dB

from E-filed relations with power.

 $p=E^2/\eta=E^2/$

Therefore, The correlation of power and the E-filed

 $XdB=10log(P)=10log(E)^2=20log(E)$

Therefore,

The calculated power drift of DASY5 System must be the less than +/-0.212dB.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 22 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 6 SAR test exclusion considerations

6.1 Standalone SAR test exclusion considerations

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Bluetooth BDR EDR

Band	Standalone SAR tested	Positiom	of band *1 tolerance limit *5		•	Min distance *2	Calculation of exclusion *3
Bluetooth		Front	3DH5	2480 [MHz] (79ch)	8.2 [dBm] 6.61 [mW] 7 [mW]*6	5 [mm]	2.2
Bluetooth		Rear	3DH5	2480 [MHz] (79ch)	8.2 [dBm] 6.61 [mW] 7 [mW]*6	5 [mm]	2.2
Bluetooth		Тор	3DH5	2480 [MHz] (79ch)	8.2 [dBm] 6.61 [mW] 7 [mW]*6	5 [mm]	2.2
Bluetooth		Left	3DH5	2480 [MHz] (79ch)	8.2 [dBm] 6.61 [mW] 7 [mW]*6	5 [mm]	2.2
Bluetooth		Right	3DH5	2480 [MHz] (79ch)	8.2 [dBm] 6.61 [mW] 7 [mW]*6	5 [mm]	2.2

Bluetooth Low Energy

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1 Maximum tune-up tolerance limit *5		Min distance *2	Calculation of exclusion *3
Bluetooth		Front	BTLE	2480 [MHz] (39ch)	1.8 [dBm] 1.51 [mW] 2 [mW]*6	5 [mm]	0.6
Bluetooth		Rear	BTLE	2480 [MHz] (39ch)	1.8 [dBm] 1.51 [mW] 2 [mW]*6	5 [mm]	0.6
Bluetooth		Тор	BTLE	2480 [MHz] (39ch)	1.8 [dBm] 1.51 [mW] 2 [mW]*6	5 [mm]	0.6
Bluetooth		Left	BTLE	2480 [MHz] (39ch)	1.8 [dBm] 1.51 [mW] 2 [mW]*6	5 [mm]	0.6
Bluetooth		Right	BTLE	2480 [MHz] (39ch)	1.8 [dBm] 1.51 [mW] 2 [mW]*6	5 [mm]	0.6

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 23 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

2) At 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following.

- a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
- b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) \cdot 10] mW at > 1500 MHz and \leq 6 GHz

Bluetooth BDR EDR

I Rand	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
Bluetooth		Bottom	3DH5	2480 [MHz] (79ch)	8.2 [dBm] 6.61 [mW] 7 [mW]*6	122 [mm]	815 [mW]

Bluetooth Low Energy

Band	Standalone SAR tested	Positiom	Mode	Upper frequency of band *1	Maximum tune-up tolerance limit *5	Min distance *2	Calculation of threshold*4
Bluetooth		Bottom	BTLE	2480 [MHz] (39ch)	1.8 [dBm] 1.51 [mW] 2 [mW]*6	122 [mm]	815 [mW]

- *1 The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- *2 When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. Refer to Appendix 4.
- *3 [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ If it is Calculation of exclusion ≤ 3.0 standalone SAR test is excluded.
- *4 $[(3\cdot50)/(\sqrt{f_{(GHz)}}))$ + (test separation distance 50 mm)·(f(MHz)/150)] mW at > 100 MHz and \leq 1500 MHz $[(3\cdot50)/(\sqrt{f_{(GHz)}}))$ + (test separation distance 50 mm)·10] mW at > 1500 MHz and \leq 6 GHz
- If it is maximum tune-up tolerance limit < Threshold, standalone SAR test is excluded. *5 Maximum tune-up tolerance limit is by the specification from a customer.
- *6 Maximum tune-up tolerance limit(mW) is rounded to one decimal place.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 24 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 7: Description of the setup

7.1 Test position for Head setup

i)Procedure for SAR testing

The EUT was tested in accordance with KDB447498D01 (Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies)

ii)Test mode

WLAN 2.4G	Data transmission mode (11b)
WLAN 5G	Data transmission mode (11a)

iii)Test position

No	Phantom	Position	WLAN	
			Tested	Antenna
1	Left	Cheek	\square	Fixed
2	Left	Tilt	\square	Fixed
3	Right	Cheek	\square	Fixed
4	Right	Tilt	\square	Fixed

Initial ear position

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom.

The device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane".

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 25 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

Cheek position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line.

This test position is established:

- i) When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- ii) (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

Tilt position

If the earpiece of the handset is not in full contact with the phantom's ear spacer and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer. Otherwise the handset should be moved away from the cheek perpendicular to the line passes through both "ear reference points" for approximate 2-3 cm. While it is in this position, the handset is tilted away from the mouth with respect to the "test device reference point" by 15°. After the tilt, it is then moved back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously.

<Antenna position>

The EUT has an antenna which can be extended and retracted. The test was performed with two conditions, Extended Antenna and Retracted Antenna.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 26 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

7.2 Test position for Body-worn and Body (Hotspot) setup

i) Procedure for SAR testing

-The tested procedure was performed according to the KDB447498 D01 (Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies)

According to KDB 941225 D06 Hotspot SAR procedure, test separation of Body-worn for WLAN is 10mm since the test separation distance (10mm) for hotspot mode is more conservative than Body-worn test(15mm).

ii) Test mode

WLAN 2.4G	Data transmission mode (11b)
WLAN 5G	Data transmission mode (11a)

iii) Test position

<u> </u>	cst position			
No.	Position	Test	WLAN	
		Distance *1	Tested	Antenna
1	Front	10mm	\square	Fixed
2	Rear	10mm	abla	Fixed
3	Тор	10mm	\square	Fixed
4	Bottom	10mm	\square	Fixed
5	Right	10mm	\square	Fixed
6	Left	10mm	\square	Fixed

^{*1} Test distance is request from customer.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 27 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 8: Test surrounding

8.1 Measurement uncertainty

This measurement uncertainty budget is suggested by IEEE Std 1528(2013)[2] and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget[1]). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01 Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

<0.3 - 3GHz range>

Error Description		ertainty e ± %	Probability distribution	divisor	(ci) 1g	Standard Uncertainty (1g)	vi or veff
Measurement System							
Probe calibration	±	6.00	Normal	1	1	± 6.00	∞
Axial isotropy of the probe	±	4.7	Rectangular	√3	0.7	± 1.9	∞
Spherical isotropy of the probe	±	9.6	Rectangular	√3	0.7	± 3.9	∞
Boundary effects	±	1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Probe linearity	±	4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	±	1.0	Rectangular	$\sqrt{3}$	1	± 0.6	∞
Modulation response	±	2.4	Rectangular	$\sqrt{3}$	1	± 1.4	∞
Readout electronics	±	0.3	Normal	1	1	± 0.3	∞
Response time	±	0.8	Rectangular	√3	1	± 0.5	∞
Integration time	±	2.6	Rectangular	√3	1	± 1.5	∞
RF ambient Noise	±	3.0	Rectangular	$\sqrt{3}$	1	± 1.7	∞
RF ambient Reflections	±	3.0	Rectangular	√3	1	± 1.7	∞
Probe Positioner	±	0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	±	2.9	Rectangular	√3	1	± 1.7	∞
Max.SAR Eval.	±	2.0	Rectangular	√3	1	± 1.2	∞
Test Sample Related			•	•	•	•	
Device positioning	±	2.9	Normal	1	1	± 2.9	9
Device holder uncertainty	±	3.6	Normal	1	1	± 3.6	9
Power drift	±	5.0	Rectangular	√3	1	± 2.9	∞
Power Scaling	+	0.0	Rectangular	√3	1	± 0.0	∞
Phantom and Setup	•			•	•		
Phantom uncertainty	±	6.1	Rectangular	√3	1	± 3.5	∞
Algorithm for correcting SAR for deviation in permittivity and conductivity	±	1.9	Normal	1	1	± 1.9	∞
Liquid conductivity (target.)	±	5.0	Rectangular	$\sqrt{3}$	0.78	± 2.3	∞
Liquid conductivity (meas.)	+	3.4	Rectangular	1	0.78	+ 2.7	∞
Liquid permittivity (target.)	±	5.0	Rectangular	$\sqrt{3}$	0.23	+ 0.7	
Liquid permittivity (meas.)	-	4.7	Rectangular	1	0.23	- 1.1	∞
Liquid conductivity - temp.unc (below 2deg.C.)	±	5.2	Rectangular	√3	0.78	± 2.3	∞
Liquid permittivity - temp.unc (below 2deg.C.)	±	0.8	Rectangular	$\sqrt{3}$	0.23	± 0.1	∞
Combined Standard Uncertainty						± 11.855	-
Expanded Uncertainty (k=2)						± 23.7	+-

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 28 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

<3 - 6GHz range >

	Uncertai	Probability		(ci)	Standard	vi
Error Description	value ±	distribution	divisor	1g	(1g)	or
						veff
Measurement System						
Probe calibration	± 6.55	Normal	1	1	± 6.55	∞
Axial isotropy of the probe	± 4.7	Rectangular	√3	0.7	± 1.9	∞
Spherical isotropy of the probe	± 9.6	Rectangular	$\sqrt{3}$	0.7	± 3.9	∞
Boundary effects	± 2.0	Rectangular	$\sqrt{3}$	1	± 1.2	∞
Probe linearity	± 4.7	Rectangular	$\sqrt{3}$	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	∞
Modulation response	± 2.4	Rectangular	$\sqrt{3}$	1	± 1.4	∞
Readout electronics	± 0.3	Normal	1	1	± 0.3	∞
Response time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	∞
Integration time	± 2.6	Rectangular	√3	1	± 1.5	∞
RF ambient Noise	± 3.0	Rectangular	√3	1	± 1.7	∞
RF ambient Reflections	± 3.0	Rectangular	√3	1	± 1.7	∞
Probe Positioner	± 0.8	Rectangular	√3	1	± 0.5	∞
Probe positioning	± 6.7	Rectangular	√3	1	± 3.9	∞
Max.SAR Eval.	± 4.0	Rectangular	√3	1	± 2.3	∞
Test Sample Related				•		
Device positioning	± 2.9	Normal	1	1	± 2.9	39
Device holder uncertainty	± 3.6	Normal	1	1	± 3.6	9
Power drift	± 5.0	Rectangular	√3	1	± 2.9	∞
Power Scaling	+ 0.0	Rectangular	√3	1	± 0.0	∞
Phantom and Setup			•	-		
Phantom uncertainty	± 6.6	Rectangular	√3	1	± 3.8	∞
Algorithm for correcting SAR for deviations in permittivity and conductivity	± 1.9	Normal	1	1	± 1.9	∞
Liquid conductivity (target.)	± 5.0	Rectangular	√3	0.78	± 2.3	∞
Liquid conductivity (meas.)	- 3.4	Rectangular	1	0.78	- 2.7	∞
Liquid permittivity (target.)	± 5.0	Rectangular	√3	0.23	+ 0.7	+
Liquid permittivity (meas.)	- 4.2	Rectangular	1	0.23	- 1.0	∞
Liquid conductivity			10	0.50		
- temp.unc (below 2deg.C.)	± 2.4	Rectangular	√3	0.78	± 1.1	∞
Liquid permittivity			1-			
- temp.unc (below 2deg.C.)	± 0.8	Rectangular	$\sqrt{3}$	0.23	± 0.1	∞
Combined Standard Uncertainty					± 12.742	
Expanded Uncertainty (k=2)					± 25.5	

*. Table of uncertainties are listed for ISO/IEC 17025.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 29 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

SECTION 9: Measurement results

9.1 WLAN Head SAR (2.4G)

(1)Method of measurement

Step.1 The searching for the worst position.

The test was performed at the worst conducted power transmit rate and channel.

Note:

- 1)The other channel was not required since maximum average output power channel SAR value is less than 0.8W/kg.
- 2) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.

When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.

Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is ≥ 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2) Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit.

The dielectric parameters measurement is reported in each correspondent section.

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS										
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					2000	er	40.0	-	-	-	*1
_	-	-	-	-	2000	σ [mho/m]	1.40	-	-	-	. 1
29-Jan	24	35	HSL	23.5	2412	er	39.3	39.2	-0.2	+/-5	*2
29-Jan	24	33	2450	23.3	2412	σ [mho/m]	1.77	1.78	0.5	+/-5	٠. ک
29-Jan	24	35	HSL	23.5	2450	εr	39.2	39.2	-0.1	+/-5	*1
29-Jan	∠4	33	2450	23.3	2430	σ [mho/m]	1.80	1.82	1.1	+/-5	. 1

εr: Relative Permittivity / σ : Coductivity

(3)Result of Head SAR

2 4GHz Band

2.7011	z Danu											
					HEA	AD SAR	MEASUR	EMENT RESU	LTS			
Fre	equency	Modulation		sured wer	up tol	um tune- erance mit	Phantom Section	EUT Set-up (Conditions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Position	Separation [mm]			
Step.1 P	osition searc	hing										
1	2412	11b 1Mbps	12.48	17.70	14.00	25.12	Left	Cheek	0	0.165	1.419	0.234
1	2412	11b 1Mbps	12.48	17.70	14.00	25.12	Left	Tilt	0	0.106	1.419	0.150
1	2412	11b 1Mbps	12.48	17.70	14.00	25.12	Right	Cheek	0	0.054	1.419	0.077
1	2412	11b 1Mbps	12.48	17.70	14.00	25.12	Right	Tilt	0	0.055	1.419	0.078

^{*1} Reported SAR= Scaled factor * Measured SAR [W/kg]

Where Scaled factor: Maximum tune-up tolerance limit [mW] / Measured power [mW]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No.: 10636726H-J-R3
Page: 30 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

9.2 WLAN Body SAR (2.4G)

(1)Method of measurement

Step.1 The searching for the worst position.

The test was performed at the worst conducted power transmit rate and channel.

Note:

- 1)The other channel was not required since maximum average output power channel SAR value is less than 0.8W/kg.
- 2) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg.

When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.

Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is ≥ 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

(2)Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit.

The dielectric parameters measurement is reported in each correspondent section.

			DIELE (CTRIC P	ARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					2000	εr	53.3	-	-	-	*1
-	-	-		-	2000	σ [mho/m]	1.52	-	-	-	. 1
20-Jan	24	42	MSL	23.5	2412	er	52.8	50.3	-4.7	+/-5	*2
20 - Jan	24	42	2450	23.3	2412	σ [mho/m]	1.91	1.97	3.4	+/-5	. 2
20-Jan	24	42	MSL	23.5	2450	εr	52.7	50.2	-4.8	+/-5	*1
20-Jan	∠4	42	2450	23.3	2430	σ [mho/m]	1.95	2.02	3.7	+/-5	· 1

εr: Relative Permittivity / σ : Coductivity

(3)Result of Body SAR

2.4GHz Band

					BOI	Y SAR	MEASUR	EMENT RESU	ILTS			
Fre	equency	Modulation		sured wer	up tol	um tune- erance nit	Phantom Section	EUT Set-up (Conditions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Position	Separation [mm]			
Step.1 F	Position searc	hing										
1	2412	11b 1Mbps	12.48	17.70	14.00	25.12	Flat	Front	10	0.022	1.419	0.031
1	2412	11b 1Mbps	12.48	17.70	14.00	25.12	Flat	Rear	10	0.022	1.419	0.031
1	2412	11b 1Mbps	12.48	17.70	14.00	25.12	Flat	Тор	10	0.041	1.419	0.058
1	2412	11b 1Mbps	12.48	17.70	14.00	25.12	Flat	Bottom	10	0.00146	1.419	0.00207
1	2412	11b 1Mbps	12.48	17.70	14.00	25.12	Flat	Right	10	0.00847	1.419	0.0120
1	2412	11b 1Mbps	12.48	17.70	14.00	25.12	Flat	Left	10	0.020	1.419	0.028

^{*1} Reported SAR= Scaled factor * Measured SAR [W/kg]

Where Scaled factor: Maximum tune-up tolerance limit [mW] / Measured power [mW]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No.: 10636726H-J-R3
Page: 31 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

9.3 WLAN Head SAR (5G)

(1)Method of measurement

Step.1 The searching for the worst position.

The test was performed at the worst conducted power transmit rate and channel.

Note:

- 1) For 5500-5700MHz band, the other channel was not required since maximum average output power channel SAR value is less than 0.4W/kg.
- 2) For 5180-5240MHz band, 5260-5320MHz and 5745-5825MHz band, the other channel was not required since maximum average output power channel SAR value is less than 0.8W/kg.
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is \geq 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2)Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	CTRIC P	ARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					3000	er	52.0	-	-	-	*1
-	_	-		-	3000	σ [mho/m]	2.73	-	-	1	- 1
27-Jan	24	36	HBBL	23.5	5200	er	36.0	35.5	-1.4	+/-5	*2
Z/-Jaii	24	30	3.5-5.8	23.3	3200	σ [mho/m]	4.66	4.50	-3.4	+/-5	. 2
27-Jan	24	36	HBBL	23.5	5320	er	35.9	35.6	-0.6	+/-5	*2
2/ - Jan	24	30	3.5-5.8	23.3	3320	σ [mho/m]	4.78	4.81	0.7	+/-5	. 7
28-Jan	24	35	HBBL	23.5	5500	er	35.6	35.2	-1.2	+/-5	*2
28-Jan	24	33	3.5-5.8	23.3	3300	σ [mho/m]	4.96	4.90	-1.3	+/-5	. 2
28-Jan	24	35	HBBL	23.5	5800	er	35.3	34.5	-2.3	+/-5	*1
20-Jan	∠4	33	3.5-5.8	23.3	3800	σ [mho/m]	5.27	5.25	-0.3	+/-5	· 1
28-Jan	24	35	HBBL	23.5	5825	εr	35.3	34.7	-1.6	+/-5	*2
20-Jall	24	33	3.5-5.8	23.3	3623	σ [mho/m]	5.30	5.26	-0.8	+/-5	. 2

 $[\]epsilon r$: Relative Permittivity / σ : Coductivity

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-J-R3
Page : 32 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

(3)Result of Head SAR

5.2GHz Band

	L Duna												
						HEAD S	SAR MEA	SUREME	ENT RESULTS				
			Meas	sured		im tune- erance	Phantom				Measured SAR(1g)	Scaled factor	Reported SAR(1g) *1
Fre	equency	Modulation	pov	wer		nit	Section		JT Set-up Condi	itions	[W/kg]	lactor	[W/kg]
Channel				[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 P	osition searc	hing											
40	5200	11a 6Mbps	12.17	16.48	12.30	16.98	Left	Fixed	Cheek	0	0.066	1.030	0.068
40	5200	11a 6Mbps	12.17	16.48	12.30	16.98	Left	Fixed	Tilt	0	0.014	1.030	0.014
40	5200	11a 6Mbps	12.17	16.48	12.30	16.98	Right	Fixed	Cheek	0	0.018	1.030	0.019
40	5200	11a 6Mbps	12.17	16.48	12.30	16.98	Right	Fixed	Tilt	0	0.013	1.030	0.013

^{*1} Reported SAR= Scaled factor * Measured SAR [W/kg]

Where Scaled factor: Maximum tune-up tolerance limit [mW] / Measured power [mW]

5 3GHz Band

<u> </u>	iz Danu												
						HEAD S	SAR MEA	SUREME	NT RESULTS				
Fre	equency	Modulation		sured wer	up tol	im tune- erance nit	Phantom Section	EU	JT Set-up Condi	itions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 P	osition searc	hing											
64	5320	11a 6Mbps	12.22	16.67	12.30	16.98	Left	Fixed	Cheek	0	0.050	1.019	0.051
64	5320	11a 6Mbps	12.22	16.67	12.30	16.98	Left	Fixed	Tilt	0	0.046	1.019	0.047
64	5320	11a 6Mbps	12.22	16.67	12.30	16.98	Right	Fixed	Cheek	0	0.012	1.019	0.012
64	5320	11a 6Mbps	12.22	16.67	12.30	16.98	Right	Fixed	Tilt	0	0.021	1.019	0.021

^{*1} Reported SAR= Scaled factor * Measured SAR [W/kg]

Where Scaled factor: Maximum tune-up tolerance limit [mW] / Measured power [mW]

5.6GHz Band

0.001	iz Dana													
						HEAD S	SAR MEA	SUREME	ENT RESULTS	3				
Fre	equency	Modulation		sured wer	up tol	um tune- erance nit	Phantom Section		JT Set-up Cond	itions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]	
Channel	nel [MHz] [dBm] [mW] [[mW]		Antenna	Position	Separation [mm]				
Step.1 I	p.1 Position searching													
100	5500	11a 6Mbps	12.13	16.33	12.30	16.98	Left	Fixed	Cheek	0	0.088	1.040	0.092	
100	5500	11a 6Mbps	12.13	16.33	12.30	16.98	Left	Fixed	Tilt	0	0.076	1.040	0.079	
100	5500	11a 6Mbps	12.13	16.33	12.30	16.98	Right	Fixed	Cheek	0	0.055	1.040	0.057	
100	5500	11a 6Mbps	12.13	16.33	12.30	16.98	Right	Fixed	Tilt	0	0.074	1.040	0.077	

^{*1} Reported SAR= Scaled factor * Measured SAR [W/kg]

Where Scaled factor: Maximum tune-up tolerance limit [mW] / Measured power [mW]

5.8GHz Band

5.0011	z Danu												
						HEAD S	SAR MEAS	SUREME	NT RESULTS				
Fre	equency	Modulation	Meas pov	sured wer	up tol	im tune- erance nit	Phantom Section	EU	JT Set-up Condi	itions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	İ			[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 P	osition searc	hing											
165	5825	11a 6Mbps	12.13	16.33	12.30	16.98	Left	Fixed	Cheek	0	0.146	1.040	0.152
165	5825	11a 6Mbps	12.13	16.33	12.30	16.98	Left	Fixed	Tilt	0	0.104	1.040	0.108
165	5825	11a 6Mbps	12.13	16.33	12.30	16.98	Right	Fixed	Cheek	0	0.108	1.040	0.112
165	5825	11a 6Mbps	12.13	16.33	12.30	16.98	Right	Fixed	Tilt	0	0.077	1.040	0.080

^{*1} Reported SAR= Scaled factor * Measured SAR [W/kg]

Where Scaled factor: Maximum tune-up tolerance limit [mW] / Measured power [mW]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 33 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

9.4 WLAN Body SAR (5G)

(1)Method of measurement

Step.1 The searching for the worst position.

The test was performed at the worst conducted power transmit rate and channel.

Note:

- 1) For 5500-5700MHz band, the other channel was not required since maximum average output power channel SAR value is less than 0.4W/kg.
- 2) For 5180-5240MHz band, 5260-5320MHz and 5745-5825MHz band, the other channel was not required since maximum average output power channel SAR value is less than 0.8W/kg.
- 3) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg. When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is \geq 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

(2)Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit.

The dielectric parameters measurement is reported in each correspondent section.

			DIELEC	CTRIC P	ARAMET	TERS MEA	SUREME	ENT RESU	LTS		
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
					3000	er	52.0	-	-	-	*1
-	_	-		-	3000	σ [mho/m]	2.73	-	-	1	- 1
21-Jan	24	40	MBBL	23.5	5200	er	49.0	46.9	-4.2	+/-5	*2
Z1-Jaii	24	40	3.5-5.8	23.3	3200	σ [mho/m]	5.30	5.43	2.5	+/-5	٠. ک
22-Jan	24	42	MBBL	23.5	5320	er	48.9	47.5	-2.9	+/-5	*2
22 - 3a11	24	42	3.5-5.8	23.3	3320	σ [mho/m]	5.44	5.32	-2.2	+/-5	. 2
22-Jan	24	42	MBBL	23.5	5500	εr	48.6	47.2	-2.8	+/-5	*2
ZZ-Jan	24	42	3.5-5.8	23.3	3300	σ [mho/m]	5.65	5.63	-0.3	+/-5	٠. ک
23-Jan	24	38	MBBL	23.5	5800	er	48.2	47.0	-2.4	+/-5	*1
23-Jan	∠4	36	3.5-5.8	23.3	3600	σ [mho/m]	6.00	5.97	-0.5	+/-5	. 1
23-Jan	24	38	MBBL	23.5	5825	εr	48.2	46.9	-2.6	+/-5	*2
23-Jan	24	36	3.5-5.8	23.3	3623	σ [mho/m]	6.03	5.92	-1.9	+/-5	. Z

 $[\]epsilon r$: Relative Permittivity / σ : Coductivity

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

^{*2} The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Test report No. : 10636726H-J-R3
Page : 34 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

(3)Result of Body SAR

5.2GHz Band

						BODY S	SAR MEA	SUREME	ENT RESULTS				
Fre	equency	Modulation		sured wer	up tol	um tune- erance nit	Phantom Section		JT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 P	osition searc	hing											
40	5200	11a 6Mbps	12.17	16.48	12.30	16.98	Flat	Fixed	Front	10	0.054	1.030	0.056
40	5200	11a 6Mbps	12.17	16.48	12.30	16.98	Flat	Fixed	Rear	10	0.00699	1.030	0.00720
40	5200	11a 6Mbps	12.17	16.48	12.30	16.98	Flat	Fixed	Тор	10	0.025	1.030	0.026
40	5200	11a 6Mbps	12.17	16.48	12.30	16.98	Flat	Fixed	Bottom	10	0.000	1.030	0.000
40	5200	11a 6Mbps	12.17	16.48	12.30	16.98	Flat	Fixed	Right	10	0.000	1.030	0.000
40	5200	11a 6Mbps	12.17	16.48	12.30	16.98	Flat	Fixed	Left	10	0.019	1.030	0.020

^{*1} Reported SAR= Scaled factor * Measured SAR [W/kg]

Where Scaled factor: Maximum tune-up tolerance limit [mW] / Measured power [mW]

5 3GHz Band

<u>3.3UN</u>	z Band												
						BODY S	SAR MEA	SUREME	NT RESULTS				
Fre	equency	Modulation		sured wer	up tol	im tune- erance nit	Phantom Section	EU	JT Set-up Condi	itions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 P	osition searc	hing											
64	5320	11a 6Mbps	12.22	16.67	12.30	16.98	Flat	Fixed	Front	10	0.077	1.019	0.078
64	5320	11a 6Mbps	12.22	16.67	12.30	16.98	Flat	Fixed	Rear	10	0.000	1.019	0.000
64	5320	11a 6Mbps	12.22	16.67	12.30	16.98	Flat	Fixed	Тор	10	0.040	1.019	0.041
64	5320	11a 6Mbps	12.22	16.67	12.30	16.98	Flat	Fixed	Bottom	10	0.000	1.019	0.000
64	5320	11a 6Mbps	12.22	16.67	12.30	16.98	Flat	Fixed	Right	10	0.000	1.019	0.000
64	5320	11a 6Mbps	12.22	16.67	12.30	16.98	Flat	Fixed	Left	10	0.024	1.019	0.024

^{*1} Reported SAR= Scaled factor * Measured SAR [W/kg]

Where Scaled factor: Maximum tune-up tolerance limit [mW] / Measured power [mW]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3 Page : 35 of 173 FCC ID : UCE314062A Issued date : February 20, 2015 Revised date : March 19, 2015

5.6GHz Band

						BODY S	SAR MEA	SUREME	NT RESULTS				
Fre	equency	Modulation		sured wer	up tol	um tune- erance nit	Phantom Section		JT Set-up Condi	itions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 P	osition searc	hing					_						
100	5500	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Front	10	0.174	1.040	0.181
100	5500	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Rear	10	0.00773	1.040	0.00804
100	5500	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Тор	10	0.076	1.040	0.079
100	5500	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Bottom	10	0.000	1.040	0.000
100	5500	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Right	10	0.000	1.040	0.000
100	5500	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Left	10	0.076	1.040	0.079

*1 Reported SAR= Scaled factor * Measured SAR [W/kg]
Where Scaled factor: Maximum tune-up tolerance limit [mW] / Measured power [mW]

5 OCUz Dond

5.8GHz Band													
BODY SAR MEASUREMENT RESULTS													
Frequency		Modulation	Measured power		Maximum tune- up tolerance limit		Phantom Section	EU	JT Set-up Condi	tions	Measured SAR(1g) [W/kg]	Scaled factor	Reported SAR(1g) *1 [W/kg]
Channel	[MHz]		[dBm]	[mW]	[dBm]	[mW]		Antenna	Position	Separation [mm]			
Step.1 Position searching													
165	5825	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Front	10	0.117	1.040	0.122
165	5825	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Rear	10	0.00857	1.040	0.00891
165	5825	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Тор	10	0.049	1.040	0.051
165	5825	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Bottom	10	0.000	1.040	0.000
165	5825	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Right	10	0.000	1.040	0.000
165	5825	11a 6Mbps	12.13	16.33	12.30	16.98	Flat	Fixed	Left	10	0.057	1.040	0.059

^{*1} Reported SAR= Scaled factor * Measured SAR [W/kg]

Where Scaled factor: Maximum tune-up tolerance limit [mW] / Measured power [mW]

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 36 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

SECTION 10 Test instruments

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MOS-37	Digital thermometer	LKM electronic	DTM3000	-	SAR	2014/07/06 * 12
MDPK-03	Dielectric assessment kit	Schmid&Partner Engineering AG	DAK-3.5	0008	SAR	2014/03/04 * 12
COTS-MSAR- 04	Dielectric assessment kit	Schmid&Partner Engineering AG	DAK		SAR	-
MPM-15	Power Meter	Agilent	N1914A	MY53060017	SAR	2014/06/20 * 12
MPSE-20	Power sensor	Agilent	N8482H	MY53050001	SAR	2014/06/20 * 12
MPSE-21	Power sensor	Agilent	N8482H	MY52460010	SAR	2014/07/02 * 12
MHDC-22	Directional Coupler	Agilent	87300B	14893A	SAR	Pre Check
MRFA-24	Pre Amplifier	R&K	R&K CGA020M602- 2633R	B30550	SAR	2014/06/19 * 12
MSG-13	Signal Generator	Rohde & Schwarz	SMA 100A	103764	SAR	2014/06/19 * 12
MDA-07	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	713	SAR(D2450)	2013/09/10 * 24
MRENT-113	Dipole Antenna	Schmid&Partner Engineering AG	D5GHzV2	1039	SAR(D5G)	2014/05/13 * 12
MDAE-03	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	1372	SAR	2014/06/18 * 12
MPB-09	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3922	SAR	2014/06/13 * 12
MPSAM-03	SAM Phantom	Schmid&Partner Engineering AG	QD000P40CD	1764	SAR	2014/06/03 * 12
MPF-03	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1203	SAR	2014/06/03 * 12
MDH-03	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	SAR	Pre Check
MOS-31	Thermo-Hygrometer	Custom	CTH-201	3101	SAR	2014/07/06 * 12
COTS-MSAR- 03	Dasy5	Schmid&Partner Engineering AG	DASY5	-	SAR	-
MRBT-04	SAR robot	Schmid&Partner Engineering AG	TX60 Lspeag	F13/5PP1A1/A/ 01	SAR	2014/06/23 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 37 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

APPENDIX 1: SAR Measurement data

1. Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm or 10mm x 10mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30mm x 30mm x 30mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3GHz and a volume of 28 mm x 28mm x 22.5mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for 5GHz band.

And for any secondary peaks found in the Step2 which are within 2dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

- (1). The data at the surface were extrapolated, since the center of the dipoles is 1mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- (2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [4], [5]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- (3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

*1. Ratio step method parameters used;

The first measurement point: 2mm from the phantom surface, the initial grid separation: 2mm, subsequent graded grid ratio: 1.5 These parameters comply with the requirement of the KDB 865664D01.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 38 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

2. Measurement data Head 2.4GHz

WLAN 2.4GHz_11b_1Mbps_2412MHz_Left cheek

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.778$ S/m; $\varepsilon_r = 39.188$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.29, 7.29, 7.29); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.273 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.36 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.447 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.070 W/kg

Maximum value of SAR (measured) = 0.278 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 39 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 2.4GHz_11b_1Mbps_2412MHz_Left tilt

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.778$ S/m; $\varepsilon_r = 39.188$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.29, 7.29, 7.29); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.163 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.588 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.253 W/kg

SAR(1 g) = 0.106 W/kg; SAR(10 g) = 0.051 W/kgMaximum value of SAR (measured) = 0.172 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 40 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 2.4GHz_11b_1Mbps_2412MHz_Right cheek

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.778$ S/m; $\varepsilon_r = 39.188$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.29, 7.29, 7.29); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0769 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.104 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.054 W/kg; SAR(10 g) = 0.027 W/kgMaximum value of SAR (measured) = 0.0860 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 41 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 2.4GHz_11b_1Mbps_2412MHz_Right tilt

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.778$ S/m; $\varepsilon_r = 39.188$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.29, 7.29, 7.29); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0833 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.811 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.113 W/kg

SAR(1 g) = 0.055 W/kg; SAR(10 g) = 0.027 W/kgMaximum value of SAR (measured) = 0.0799 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 42 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

3. Measurement data Body 2.4GHz

WLAN 11b 1Mbps Front 10mm 2412MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.974$ S/m; $\varepsilon_r = 50.289$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0308 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.677 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.0500 W/kg

SAR(1 g) = 0.022 W/kg; SAR(10 g) = 0.010 W/kgMaximum value of SAR (measured) = 0.0362 W/kg

Date: 2015/01/20

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 43 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11b 1Mbps Rear 10mm 2412MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.974$ S/m; $\varepsilon_r = 50.289$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0425 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.144 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.0480 W/kg

SAR(1 g) = 0.022 W/kg; SAR(10 g) = 0.010 W/kgMaximum value of SAR (measured) = 0.0354 W/kg

Date: 2015/01/20

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 44 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11b 1Mbps Top 10mm 2412MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.974$ S/m; $\varepsilon_r = 50.289$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0636 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.650 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.0820 W/kg

SAR(1 g) = 0.041 W/kg

Maximum value of SAR (measured) = 0.0609 W/kg

Date: 2015/01/20

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 45 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11b 1Mbps Bottom 10mm 2412MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.974$ S/m; $\varepsilon_r = 50.289$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.00510 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.4560 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.00667 W/kg

SAR(1 g) = 0.00146 W/kg

Maximum value of SAR (measured) = 0.00315 W/kg

Date: 2015/01/20

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 46 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11b 1Mbps Right 10mm 2412MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.974$ S/m; $\varepsilon_r = 50.289$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0160 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.159 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.0240 W/kg

SAR(1 g) = 0.00847 W/kg

Maximum value of SAR (measured) = 0.0124 W/kg

Date: 2015/01/20

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 47 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11b 1Mbps Left 10mm 2412MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11b/g/n; Frequency: 2412 MHz; Duty Cycle:

1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.974$ S/m; $\varepsilon_r = 50.289$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.36, 7.36, 7.36); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0359 W/kg

Area Scan 2 (81x21x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.0252 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.874 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.0410 W/kg

SAR(1 g) = 0.020 W/kg

Maximum value of SAR (measured) = 0.0319 W/kg

Date: 2015/01/20

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 48 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

4. Measurement data Head 5.2GHz

WLAN 5.2GHz_11a_6Mbps_5200MHz_Left cheek

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.503 \text{ S/m}$; $\varepsilon_r = 35.494$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(5.35, 5.35, 5.35); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.180 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 6.468 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.312 W/kg

SAR(1 g) = 0.066 W/kg; SAR(10 g) = 0.017 W/kg

Maximum value of SAR (measured) = 0.161 W/kg

Date: 2015/01/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 49 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 5.2GHz_11a_6Mbps_5200MHz_Left tilt

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.503$ S/m; $\varepsilon_r = 35.494$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(5.35, 5.35, 5.35); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x181x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.101 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 2.858 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.189 W/kg

SAR(1 g) = 0.014 W/kg; SAR(10 g) = 0.00446 W/kg

Maximum value of SAR (measured) = 0.0325 W/kg

Date: 2015/01/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 50 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 5.2GHz_11a_6Mbps_5200MHz_Right cheek

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.503$ S/m; $\varepsilon_r = 35.494$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(5.35, 5.35, 5.35); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (121x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0377 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 3.369 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.018 W/kg; SAR(10 g) = 0.00238 W/kg

Maximum value of SAR (measured) = 0.0422 W/kg

Date: 2015/01/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 51 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

$WLAN\ 5.2GHz_11a_6Mbps_5200MHz_Right\ tilt$

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 4.503$ S/m; $\varepsilon_r = 35.494$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(5.35, 5.35, 5.35); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (121x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0720 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.003 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.154 W/kg

SAR(1 g) = 0.013 W/kg; SAR(10 g) = 0.00463 W/kg

Maximum value of SAR (measured) = 0.0292 W/kg

Date: 2015/01/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 52 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

5. Measurement data Head 5.3GHz

WLAN 5.3GHz_11a_6Mbps_5320MHz_Left cheek

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 4.813 \text{ S/m}$; $\varepsilon_r = 35.642$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.94, 4.94, 4.94); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.222 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.109 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.271 W/kg

SAR(1 g) = 0.050 W/kg; SAR(10 g) = 0.011 W/kg

Maximum value of SAR (measured) = 0.125 W/kg

Date: 2015/01/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 53 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 5.3GHz_11a_6Mbps_5320MHz_Left tilt

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 4.813$ S/m; $\varepsilon_r = 35.642$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.94, 4.94, 4.94); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.103 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.963 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.260 W/kg

SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.013 W/kg

Maximum value of SAR (measured) = 0.105 W/kg

Date: 2015/01/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 54 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 5.3GHz_11a_6Mbps_5320MHz_Right cheek

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 4.813$ S/m; $\varepsilon_r = 35.642$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.94, 4.94, 4.94); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (111x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0187 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 2.152 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.156 W/kg

SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.00393 W/kg

Maximum value of SAR (measured) = 0.0274 W/kg

Date: 2015/01/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 55 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 5.3GHz_11a_6Mbps_5320MHz_Right tilt

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 4.813$ S/m; $\varepsilon_r = 35.642$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.94, 4.94, 4.94); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (111x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0899 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 2.761 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.021 W/kg; SAR(10 g) = 0.00657 W/kg

Maximum value of SAR (measured) = 0.0524 W/kg

Date: 2015/01/27

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 56 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

6. Measurement data Head 5.6GHz

WLAN 5.6GHz_11a_6Mbps_5500MHz_Left cheek

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 4.895 \text{ S/m}$; $\varepsilon_r = 35.205$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.76, 4.76, 4.76); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.235 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 6.941 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.370 W/kg

SAR(1 g) = 0.088 W/kg; SAR(10 g) = 0.028 W/kg

Maximum value of SAR (measured) = 0.201 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 57 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

$WLAN\ 5.6GHz_11a_6Mbps_5500MHz_Left\ tilt$

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 4.895 \text{ S/m}$; $\varepsilon_r = 35.205$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.76, 4.76, 4.76); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.203 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 6.206 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.359 W/kg

SAR(1 g) = 0.076 W/kg; SAR(10 g) = 0.024 W/kg

Maximum value of SAR (measured) = 0.164 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 58 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 5.6GHz_11a_6Mbps_5500MHz_Right cheek

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 4.895 \text{ S/m}$; $\varepsilon_r = 35.205$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.76, 4.76, 4.76); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (111x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.254 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 5.168 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.055 W/kg; SAR(10 g) = 0.018 W/kg

Maximum value of SAR (measured) = 0.117 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 59 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

$WLAN\ 5.6GHz_11a_6Mbps_5500MHz_Right\ tilt$

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 4.895 \text{ S/m}$; $\varepsilon_r = 35.205$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.76, 4.76, 4.76); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (111x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.167 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 5.846 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.284 W/kg

SAR(1 g) = 0.074 W/kg; SAR(10 g) = 0.023 W/kg

Maximum value of SAR (measured) = 0.154 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 60 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

7. Measurement data Head 5.8GHz

WLAN 5.8GHz_11a_6Mbps_5825MHz_Left cheek

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.258$ S/m; $\varepsilon_r = 34.692$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.56, 4.56, 4.56); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.364 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 8.268 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.639 W/kg

SAR(1 g) = 0.146 W/kg; SAR(10 g) = 0.039 W/kg

Maximum value of SAR (measured) = 0.333 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 61 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 5.8GHz_11a_6Mbps_5825MHz_Left tilt

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.258$ S/m; $\varepsilon_r = 34.692$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.56, 4.56, 4.56); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (101x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.287 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 7.156 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.492 W/kg

SAR(1 g) = 0.104 W/kg; SAR(10 g) = 0.029 W/kg

Maximum value of SAR (measured) = 0.253 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 62 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 5.8GHz_11a_6Mbps_5825MHz_Right cheek

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.258$ S/m; $\varepsilon_r = 34.692$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.56, 4.56, 4.56); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (111x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.343 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 5.282 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.503 W/kg

SAR(1 g) = 0.108 W/kg; SAR(10 g) = 0.028 W/kg

Maximum value of SAR (measured) = 0.268 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 63 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

$WLAN\ 5.8GHz_11a_6Mbps_5825MHz_Right\ tilt$

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.258$ S/m; $\varepsilon_r = 34.692$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.56, 4.56, 4.56); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (111x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.273 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 6.089 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.342 W/kg

SAR(1 g) = 0.077 W/kg; SAR(10 g) = 0.023 W/kg

Maximum value of SAR (measured) = 0.168 W/kg

Date: 2015/01/28

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 64 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

8. Measurement data Body 5.2GHz

WLAN 11a 6Mbps Front 10mm 5200MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.433 \text{ S/m}$; $\varepsilon_r = 46.921$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.42, 4.42, 4.42); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (121x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.125 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.981 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.054 W/kg; SAR(10 g) = 0.016 W/kg

Maximum value of SAR (measured) = 0.122 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 65 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11a 6Mbps Rear 10mm 5200MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.433$ S/m; $\varepsilon_r = 46.921$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.42, 4.42, 4.42); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (121x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.00948 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 1.396 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.123 W/kg

SAR(1 g) = 0.00699 W/kg; SAR(10 g) = 0.00174 W/kg

Maximum value of SAR (measured) = 0.0137 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 66 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11a 6Mbps Top 10mm 5200MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5200 MHz; Duty Cycle:

1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.433 \text{ S/m}$; $\varepsilon_r = 46.921$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.42, 4.42, 4.42); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0971 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 3.079 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.291 W/kg

SAR(1 g) = 0.025 W/kg; SAR(10 g) = 0.00806 W/kg

Maximum value of SAR (measured) = 0.0534 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 67 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11a 6Mbps Bottom 10mm 5200MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.433$ S/m; $\varepsilon_r = 46.921$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.42, 4.42, 4.42); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 68 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11a 6Mbps Right 10mm 5200MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.433$ S/m; $\varepsilon_r = 46.921$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.42, 4.42, 4.42); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 69 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11a 6Mbps Left 10mm 5200MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.433$ S/m; $\varepsilon_r = 46.921$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.42, 4.42, 4.42); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0323 W/kg

Area Scan 2 (91x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0185 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 2.324 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.270 W/kg

SAR(1 g) = 0.019 W/kg; SAR(10 g) = 0.00579 W/kgMaximum value of SAR (measured) = 0.0280 W/kg

Date: 2015/01/21

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 70 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

9. Measurement data Body 5.3GHz

WLAN 11a 6Mbps Front 10mm 5320MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.32$ S/m; $\varepsilon_r = 47.454$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.15, 4.15, 4.15); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (121x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.190 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 6.277 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.317 W/kg

SAR(1 g) = 0.077 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.185 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 71 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11a 6Mbps Rear 10mm 5320MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.32$ S/m; $\varepsilon_r = 47.454$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.15, 4.15, 4.15); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (121x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 72 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11a 6Mbps Top 10mm 5320MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.32$ S/m; $\varepsilon_r = 47.454$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.15, 4.15, 4.15); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.124 W/kg

Zoom Scan (8x8x7)/Cube: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.183 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.444 W/kg

SAR(1 g) = 0.040 W/kg; SAR(10 g) = 0.014 W/kg

Maximum value of SAR (measured) = 0.0828 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 73 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11a 6Mbps Bottom 10mm 5320MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.32$ S/m; $\varepsilon_r = 47.454$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.15, 4.15, 4.15); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 74 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11a 6Mbps Right 10mm 5320MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.32$ S/m; $\varepsilon_r = 47.454$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.15, 4.15, 4.15); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 75 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11a 6Mbps Left 10mm 5320MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5320 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5320 MHz; $\sigma = 5.32$ S/m; $\varepsilon_r = 47.454$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.15, 4.15, 4.15); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0499 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 3.294 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.315 W/kg

SAR(1 g) = 0.024 W/kg

Maximum value of SAR (measured) = 0.0470 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 76 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

10. Measurement data Body 5.6GHz

WLAN 11a 6Mbps Front 10mm 5500MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.632 \text{ S/m}$; $\varepsilon_r = 47.228$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.89, 3.89, 3.89); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (121x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.374 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 9.040 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.674 W/kg

SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.051 W/kg

Maximum value of SAR (measured) = 0.353 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 77 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11a 6Mbps Rear 10mm 5500MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.632$ S/m; $\varepsilon_r = 47.228$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.89, 3.89, 3.89); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (121x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0205 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 1.790 V/m; Power Drift = -0.03

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.00773 W/kg

Maximum value of SAR (measured) = 0.0202 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 78 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11a 6Mbps Top 10mm 5500MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.632$ S/m; $\varepsilon_r = 47.228$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.89, 3.89, 3.89); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.182 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 6.077 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.275 W/kg

SAR(1 g) = 0.076 W/kg; SAR(10 g) = 0.025 W/kg

Maximum value of SAR (measured) = 0.171 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 79 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11a 6Mbps Bottom 10mm 5500MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.632$ S/m; $\varepsilon_r = 47.228$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.89, 3.89, 3.89); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 80 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11a 6Mbps Right 10mm 5500MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.632$ S/m; $\varepsilon_r = 47.228$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.89, 3.89, 3.89); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 81 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

WLAN 11a 6Mbps Left 10mm 5500MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; $\sigma = 5.632$ S/m; $\varepsilon_r = 47.228$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(4.15, 4.15, 4.15); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.188 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 5.820 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.256 W/kg

SAR(1 g) = 0.076 W/kg

Maximum value of SAR (measured) = 0.146 W/kg

Date: 2015/01/22

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 82 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

11. Measurement data Body 5.8GHz

WLAN 11a 6Mbps Front 10mm 5825MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.916$ S/m; $\varepsilon_r = 46.932$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.98, 3.98, 3.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (121x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.240 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 7.080 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.467 W/kg

SAR(1 g) = 0.117 W/kg; SAR(10 g) = 0.038 W/kg

Maximum value of SAR (measured) = 0.243 W/kg

Date: 2015/01/23

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 83 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11a 6Mbps Rear 10mm 5825MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.916$ S/m; $\varepsilon_r = 46.932$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.98, 3.98, 3.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (121x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0589 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 2.096 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.0920 W/kg

SAR(1 g) = 0.00857 W/kg; SAR(10 g) = 0.00336 W/kg

Maximum value of SAR (measured) = 0.0207 W/kg

Date: 2015/01/23

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

Test report No.: 10636726H-J-R3
Page: 84 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11a 6Mbps Top 10mm 5825MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.916$ S/m; $\varepsilon_r = 46.932$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.98, 3.98, 3.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.167 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.561 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.366 W/kg

SAR(1 g) = 0.049 W/kg; SAR(10 g) = 0.017 W/kg

Maximum value of SAR (measured) = 0.108 W/kg

Date: 2015/01/23

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

Test report No.: 10636726H-J-R3
Page: 85 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11a 6Mbps Bottom 10mm 5825MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.916$ S/m; $\varepsilon_r = 46.932$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.98, 3.98, 3.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Date: 2015/01/23

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 86 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11a 6Mbps Right 10mm 5825MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.916$ S/m; $\varepsilon_r = 46.932$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.98, 3.98, 3.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0 W/kg

Date: 2015/01/23

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No.: 10636726H-J-R3
Page: 87 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

WLAN 11a 6Mbps Left 10mm 5825MHz

Communication System: UID 0, WLAN (0); Communication System Band: 11a; Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5825 MHz; $\sigma = 5.916$ S/m; $\varepsilon_r = 46.932$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(3.98, 3.98, 3.98); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:1207 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.239 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.725 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.365 W/kg

SAR(1 g) = 0.057 W/kg

Maximum value of SAR (measured) = 0.127 W/kg

Date: 2015/01/23

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

Test report No. : 10636726H-J-R3
Page : 88 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

APPENDIX2: System Check

1. System check result Head 2450MHz

(1) Simulated Tissue Liquid Parameter confirmation

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark	
29-Jan	24	35	HSL	23.5	2450	εr	39.2	39.2	-0.1	+/-5	*1	
29-Jan	24	24 35	2450	2450	2430	σ [mho/m]	1.80	1.82	1.1	+/-5	1 "1	

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

(2) System check result (for IEEE1528)

	SYSTEM CHECK										
Date	Fraguency		SAR 1g [W/kg]								
	Frequency	Forward Power	Conversion 1W	Target Value(1W)	Deviation	Limit	Remark				
	[MHz]	Measured	Calculation		[%]	[%]					
29-Jan	2450.00	13.60	54.40	52.40	3.8	+/-10	*2				

^{*2} The taget value is the parameter defined in IEEE1528

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1} The Target value is a parameter defined in KDB 865664D01.

Test report No.: 10636726H-J-R3
Page: 89 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

Head 2450MHz System Check DATA / Dipole2450MHz / Forward Conducted Power: 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;

Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.819 \text{ S/m}$; $\varepsilon_r = 39.16$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.29, 7.29, 7.29); Calibrated: 2014/06/13;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Area Scan (91x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 22.2 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.6 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.1 W/kgMaximum value of SAR (measured) = 21.3 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

Test report No.: 10636726H-J-R3
Page: 90 of 173
FCC ID: UCE314062A
Issued date: February 20, 2015
Revised date: March 19, 2015

Head 2450MHz System Check DATA / Dipole2450MHz / Forward Conducted Power: 250mW

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz;

Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.819 \text{ S/m}$; $\varepsilon_r = 39.16$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration

Probe: EX3DV4 - SN3922; ConvF(7.29, 7.29, 7.29); Calibrated: 2014/06/13;

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn1372; Calibrated: 2014/06/18

Phantom: SAM Twin TP1762 (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1762

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 23.5 W/kg

Date: 2015/01/29

Ambient Temp.: 24.0 degree.C. Liquid Temp.; 23.5 degree.C.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 10636726H-J-R3
Page : 91 of 173
FCC ID : UCE314062A
Issued date : February 20, 2015
Revised date : March 19, 2015

2. System check result Body 2450MHz

(1) Simulated Tissue Liquid Parameter confirmation

	DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark	
20-Jan	24	42	MSL	23.5	2450	εr	52.7	50.2	-4.8	+/-5	*1	
20 - Jan	24	42	2450	23.5	2450	σ [mho/m]	1.95	2.02	3.7	+/-5	*1	

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

^{*1} The Target value is a parameter defined in KDB 865664D01.

DIELECTRIC PARAMETERS MEASUREMENT RESULTS											
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Parameters	Target Value	Measured	Deviation [%]	Limit [%]	Remark
20-Jan	24	42	MSL	23.5	2450	εr	52.2	50.2	-3.9	+/-6	*2 *3
20-Jan	∠4	24 42	2450	0 23.3	2430	σ [mho/m]	2.00	2.02	1.2	+/-6	*2 *3

 $[\]epsilon$ r: Relative Permittivity / σ : Coductivity

(2) System check result (for calibration by manufacture)

	SYSTEM CHECK											
Date	Frequency [MHz]		SAR 1g [W/kg]									
		Forward Power	Conversion 1W	Target Value(1W)	Deviation	Limit	Remark					
		Measured	Calculation	, ,	[%]	[%]						
20-Jan	2450.00	12.40	49.60	50.40	-1.6	+/-10	*4					

^{*4} The taget value is the parameter defined in SAR for nominal Body TSL parameters in manufacturer calibrated dipole (D2450V2 SN:713) Please refer to "SAR result with Body TSL of Appendix 2 3. System Check Dipole (D2450V2 SN:713)".

^{*2} The target value is the calibrated dipole Body TSL parameters. (D2450V2 SN:713, Measured Body TSL parameters)

^{*3} The limit is for deviation provided by manufacture.