EAE1223: ECONOMETRIA III AULA 4 - RAÍZES UNITÁRIAS

Luis A. F. Alvarez

18 de março de 2024

OPERADOR DIFERENÇA

- Vamos definir o operador diferença Δ como a função que, para uma série de tempo $\{X_t:t\in\mathcal{T}\}$, nos devolve uma série de tempo ΔX_t da seguinte forma:

$$\Delta X_t \stackrel{\text{def}}{=} (1-L)X_t = X_t - X_{t-1}, \quad t \in \mathcal{T}.$$

- Usaremos a notação Δ^d para a aplicação d vezes do operador diferença, i.e.

$$\Delta^d X_t = (1-L)^d X_t, \quad t \in \mathcal{T}$$

- **Exemplo:** $\Delta^2 X_t = (1-L)(1-L)X_t = (X_t X_{t-1}) (X_{t-1} X_{t-2})$
- Definimos $\Delta^0 = (1 L)^0 = 1$.

PROCESSO I(D)

- Em nosso contexto, vamos definir um processo $\{Y_t : t \in \mathcal{T}\}$ como integrado de ordem d, ou I(d), se ele se escreve (em forma simplificada) como:

$$\Phi(L)(1-L)^d Y_t = \alpha + \Theta(L)\epsilon_t,$$

para polinômios $\Phi(x)$ e $\Theta(x)$, onde todas as raízes de $\Phi(x)$ estão fora do círculo unitário.

- Processo requer *d* diferenciações consecutivas para tornar-se estacionário.
- Dizemos que o processo tem d raízes unitárias, visto que o polinômio $\Phi(x)(1-x)^d$ possui d raízes x^* com $|x^*|=1$.
- Note que um processo I(0) é estacionário, pois $(1-L)^0=1$.

Regressão espúria

- Processos I(d), d > 0, geram problemas de inferência **sérios**.
 - Variabilidade crescente do processo gera distorções.
- Como exemplo, gere dois passeios aleatórios independentes no R, e considere ajustar um modelo linear de um no outro.
- Como os dados foram gerados de maneira independente, esperamos que o coeficiente associado à série seja 0 (um processo não explica o outro).
- O que acontece na prática?

REGRESSÃO ESPÚRIA (CONT.)


```
Call:

In(formula = rw2 ~ rw)

Residuals:

Min 10 Median 30 Max
-17.925 -6.407 -1.983 4.125 21.098

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.3861 8.3877 22.79 <2e-16 ***

rw 1.0075 0.0902 11.17 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.545 on 499 degrees of freedom
Multiple R-squared: 0.2, Adjusted R-squared: 0.1984
F-statistic: 12.48 on 1 and 499 DF. p. r-value: < 2.2e-16
```

Testes indicam que ambas as séries têm relação quando sabemos que isso não é verdade!

Testando a presença de raiz unitária

- Dadas as relações espúrias que são estimadas quando há tendência estocástica, é importante ser capaz de detectá-la nos dados.
 - Também é importante diferenciar tendência estocástica de determinística, visto que a melhor transformação a se fazer em cada caso é diferente.
- Considere o seguinte modelo para uma série de tempo Y_t :

$$Y_t = \rho Y_{t-1} + \epsilon_t \tag{1}$$

onde $\{\epsilon_t\}_t$ é ruído branco.

- Observe que:
 - 1. Se $|\rho|$ < 1, processo é I(0)
 - 2. Se $\rho = 1$, processo é I(1).

Teste de raiz unitária

- Subtraindo Y_{t-1} de ambos os lados de (14), obtemos:

$$\Delta Y_t = \gamma Y_{t-1} + \epsilon_t \tag{2}$$

onde $\gamma = (\rho - 1)$.

- Observe que:
 - 1. Se $\gamma = 0$, processo é I(1).
 - 2. Se $\gamma \in (-2,0)$, processo é I(0).
- Podemos usar um teste t da nula de que $\gamma=0$ contra a alternativa unicaudal $\gamma<0$ como uma teste da nula de uma raiz unitária (contra a alternativa de que o processo é estacionário).
 - Estatística de teste é $\hat{t} = \hat{\gamma}/\text{se}(\hat{\gamma})$, onde $\text{se}(\hat{\gamma})$ é o erro padrão homocedástico de Econometria I.
- Como, sob a nula, o processo apresenta tendência estocástica, a distribuição de referência de t não é normal. → Detalhes
 - Valores críticos tabulados (Dickey e Fuller, 1979).

Teste de raiz unitária: modelo com intercepto

- Às vezes, não temos certeza sobre os termos determinísticos de um processo.
- Nesse caso, é interessante considerar modelos como:

$$\Delta Y_t = \alpha + \gamma Y_{t-1} + \epsilon_t \tag{3}$$

- Nesse modelo, se $\gamma=0$, processo é um passeio aleatório com drift; se $\gamma<0$, é um AR(1) estacionário com intercepto.
- Estatística t associada a γ tem distribuição não normal sob $(\alpha, \gamma) = (0, 0)$. Valores críticos tabulados (Dickey e Fuller, 1981).
- Também é possível testar a nula de que $(\alpha, \gamma) = (0, 0)$ usando um teste F. Nesse caso, a estatística também tem valores críticos não convencionais tabulados (Dickey e Fuller, 1981).

TESTE DE RAIZ UNITÁRIA: MODELO COM INTERCEPTO E TENDÊNCIA LINEAR.

- Podemos considerar, também:

$$\Delta Y_t = \alpha + \beta \cdot t + \gamma Y_{t-1} + \epsilon_t \tag{4}$$

- Nesse modelo, se $\gamma=0$, processo é um passeio aleatório com tendência quadrática; se $\gamma<0$, é um AR(1) com tendência linear.
- Estatística t associada a γ tem distribuição não normal sob $(\beta, \gamma) = (0, 0)$. Valores críticos tabulados (Dickey e Fuller, 1981).
- Também é possível testar a nula de que $(\beta, \gamma) = (0, 0)$ usando um teste F. Nesse caso, a estatística também tem valores críticos não convencionais tabulados (Dickey e Fuller, 1981).

Teste de raiz unitária: valores críticos da estatística \hat{t}

TABLE B.6 Critical Values for the Phillips-Perron Z, Test and for the Dickey-Fuller Test Based on Estimated OLS t Statistic

Sample	Probability that $(\hat{p}-1)/\hat{\sigma}_{\hat{p}}$ is less than entry									
size T	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99		
				Case 1						
25	-2.66	-2.26	-1.95	-1.60	0.92	1.33	1.70	2.16		
50	-2.62	-2.25	-1.95	-1.61	0.91	1.31	1.66	2.08		
100	-2.60	-2.24	-1.95	-1.61	0.90	1.29	1.64	2.03		
250	-2.58	-2.23	-1.95	-1.62	0.89	1.29	1.63	2.01		
500	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00		
œ	-2.58	-2.23	-1.95	-1.62	0.89	1.28	1.62	2.00		
				Case 2						
25	-3.75	-3.33	-3.00	-2.63	-0.37	0.00	0.34	0.72		
50	-3.58	-3.22	-2.93	-2.60	-0.40	-0.03	0.29	0.66		
100	-3.51	-3.17	-2.89	-2.58	-0.42	-0.05	0.26	0.63		
250	-3.46	-3.14	-2.88	-2.57	-0.42	-0.06	0.24	0.62		
500	-3.44	-3.13	-2.87	-2.57	-0.43	0.07	0.24	0.61		
œ	-3.43	-3.12	-2.86	-2.57	-0.44	-0.07	0.23	0.60		
				Case 4						
25	-4.38	-3.95	-3.60	-3.24	-1.14	-0.80	-0.50	-0.15		
50	-4.15	-3.80	-3.50	-3.18	-1.19	-0.87	-0.58	-0.24		
100	-4.04	-3.73	-3.45	-3.15	-1.22	-0.90	-0.62	-0.28		
250	-3.99	-3.69	-3.43	-3.13	-1.23	-0.92	-0.64	-0.31		
500	-3.98	-3.68	-3.42	-3.13	-1.24	-0.93	-0.65	-0.32		
œ	-3.96	-3.66	-3.41	-3.12	-1.25	-0.94	-0.66	-0.33		

The probability shown at the head of the column is the area in the left-hand tail.

Source: Wayne A. Fuller, Introduction to Statistical Time Series, Wiley, New York, 1976, p. 373.

Teste de raiz unitária: valores críticos da estatística F

TABLE B.7
Critical Values for the Dickey-Fuller Test Based on the OLS F Statistic

Sample size T	Probability that F test is greater than entry									
	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01		
				Case 2						
	(F test	of $\alpha = 0$,	$\rho = 1$ in	regressi	on $y_t = a$	$\alpha + \rho y_{t-}$	$u_{1} + u_{t}$			
25	0.29	0.38	0.49	0.65	4.12	5.18	6.30	7.8		
50	0.29	0.39	0.50	0.66	3.94	4.86	5.80	7.0		
100	0.29	0.39	0.50	0.67	3.86	4.71	5.57	6.7		
250	0.30	0.39	0.51	0.67	3.81	4.63	5.45	6.5		
500	0.30	0.39	0.51	0.67	3.79	4.61	5.41	6.4		
œ	0.30	0.40	0.51	0.67	3.78	4.59	5.38	6.4		
				Case 4						
	(F test of	$\delta = 0, \rho$	= 1 in re	egression	$y_t = \alpha -$	$+\delta t + \rho y$	$y_{t-1} + u_t$			
25	0.74	0.90	1.08	1.33	5.91	7.24	8.65	10.6		
50	0.76	0.93	1.11	1.37	5.61	6.73	7.81	9.3		
100	0.76	0.94	1.12	1.38	5.47	6.49	7.44	8.7		
250	0.76	0.94	1.13	1.39	5.39	6.34	7.25	8.4		
500	0.76	0.94	1.13	1.39	5.36	6.30	7.20	8.3		
œ	0.77	0.94	1.13	1.39	5.34	6.25	7.16	8.2		

The probability shown at the head of the column is the area in the right-hand tail.

Source: David A. Dickey and Wayne A. Fuller, "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica 49 (1981), p. 1063.

TESTE DICKEY-FULLER AUMENTADO

- A construção das estatísticas de teste nos modelos anteriores supõe que os erros $\{\epsilon_t\}$ comportem-se como ruídos brancos.
 - Em particular, os erros não podem ser autocorrelacionados.
- Said e Dickey (1984) sugerem aumentar os modelos (2)-(4) incluindo defasagens:

$$\Delta Y_t = \gamma Y_{t-1} + \sum_{j=1}^k \kappa_j \Delta Y_{t-j} + u_t$$

$$\Delta Y_t = \alpha + \gamma Y_{t-1} + \sum_{j=1}^k \kappa_j \Delta Y_{t-j} + u_t$$
(5)

$$\Delta Y_t = \alpha + \beta \cdot t + \gamma Y_{t-1} + \sum_{j=1}^k \kappa_j \Delta Y_{t-j} + u_t$$

de modo que $\{u_t\}$ comporte-se *aproximadamente* como ruído branco.

 Ideia é que, se número de defasagens k varia como função lenta do tamanho amostral T, é possível capturar a correlação serial e ainda assim construir testes válidos com T grande.

SELECIONANDO DEFASAGENS

- Nos modelos:

$$\Delta Y_{t} = \gamma Y_{t-1} + \sum_{j=1}^{k} \kappa_{j} \Delta Y_{t-j} + u_{t}$$

$$\Delta Y_{t} = \alpha + \gamma Y_{t-1} + \sum_{j=1}^{k} \kappa_{j} \Delta Y_{t-j} + u_{t}$$

$$\Delta Y_{t} = \alpha + \beta \cdot t + \gamma Y_{t-1} + \sum_{j=1}^{k} \kappa_{j} \Delta Y_{t-j} + u_{t}$$
(5)

- Teste de raiz unitária continua sendo de H_0 : $\gamma=0$ contra H_1 : $\gamma<0$.
 - Distribuição assintótica das estatísticas de teste, sob as nulas correspondentes, continua sendo a mesma.
- Ng e Perron (2001) propõem método MAIC para selecionar k.
 - Ideia é encontrar k tal que uma aproximação do erro quadrático médio de se prever ΔY_t com base no modelo correspondente, **sob a nula** de raiz unitária, seja minimizada.

Alternativa de Phillips e Perron (1988)

- Phillips e Perron (1988) propõem uma alternativa ao teste ADF.
- Em vez de aumentar (2)-(4) com defasagens, autores sugerem considerar os modelos (2)-(4), mas ajustar o erro padrão para torná-lo robusto a heterocedasticidade e correlação serial (mais adiante).
- Sob a nula $\gamma=0$, distribuição assintótica dessa \hat{t} coincide com a do teste ADF no modelo correspondente.
- Ao teste baseado nessa estatística damos o nome de Phillips-Perron (PP).
 - Esse teste tende a funcionar bastante mal (alta rejeição da nula mesmo quando é verdadeira) quando a parte MA do processo exibe raiz negativa.
 - Por esse motivo, padrão na literatura se consolidou no teste ADF+MAIC para seleção de k; embora PP possa ser usado como complemento.

Procedimento sequencial para testar a presença de uma tendência estocástica

- Da equação (5) vimos três modelos diferentes em que podemos testar a presença de uma raiz unitária.
- A literatura sugere uma variedade de procedimentos sequenciais para testarmos se a série é I(1), começando do modelo mais geral ao mais simples.
- Nos próximos slides, apresentamos uma versão desses procedimentos, baseada numa simplificação do procedimento descrito no Apêndice à Seção 4.4 de Enders (2014).

PROCEDIMENTO SEQUENCIAL I

1. Comece estimando o modelo mais geral:

$$\Delta Y_t = \alpha + \beta \cdot t + \gamma Y_{t-1} + \sum_{j=1}^k \kappa_j \Delta Y_{t-j} + u_t$$

Teste $H_0: \gamma = 0$ contra alternativa de que $H_1: \gamma < 0$ usando a estatística \hat{t} e os valores críticos não normais para esse caso (*slide* 10, caso 4).

- Se rejeitamos a hipótese nula, concluímos que a série não apresenta raiz unitária.
- 2. Se **não** rejeitamos a hipótese nula, fazemos o teste F da nula $(\beta, \gamma) = 0$, usando os valores críticos do slide 11 (Caso 4).
 - 2.1 Se **não** rejeitamos a hipótese nula do teste F, concluímos que o modelo não apresenta tendência linear. Nesse caso, vamos à etapa 2 (próximo *slide*).
 - 2.2 Se **rejeitamos** a hipótese nula do teste F, há evidências de tendência linear. Nesse caso, o teste \hat{t} da nula $H_0: \gamma = 0$ contra a alternativa $H_1: \gamma < 0$ pode ser feito usando a tabela da normal. Repita o teste com essa tabela. Se rejeitamos a nula, concluímos que a série **não** apresenta raiz unitária. Se não rejeitamos a nula, concluímos que a série **apresenta** raiz unitária.

Procedimento Sequencial II

2. Se chegamos a essa etapa, não temos evidências de que haja uma tendência linear no modelo. Nesse caso, estimamos:

$$\Delta Y_t = \alpha + \gamma Y_{t-1} + \sum_{j=1}^k \kappa_j \Delta Y_{t-j} + u_t$$

Teste $H_0: \gamma = 0$ contra alternativa de que $H_1: \gamma < 0$ usando a estatística \hat{t} e valores críticos não normais para esse caso (slide 10, caso 2).

- 2.1 Se rejeitamos a hipótese nula, concluímos que a série não apresenta raiz unitária.
- 2.2 Se **não** rejeitamos a hipótese nula, fazemos o teste F da nula $(\alpha, \gamma) = 0$, usando os valores críticos do slide 11 (Caso 2).
 - 2.2.1 Se **não** rejeitamos a hipótese nula do teste F, concluímos que o modelo não apresenta intercepto. Nesse caso, vamos à etapa 3 (próximo *slide*).
 - 2.2.2 Se **rejeitamos** a hipótese nula do teste F, há evidências de intercepto no modelo. Nesse caso, o teste \hat{t} da nula $H_0: \gamma = 0$ contra a alternativa $H_1: \gamma < 0$ pode ser feito usando a tabela da normal. Repita o teste com essa tabela. Se rejeitamos a nula, concluímos que a série **não** apresenta raiz unitária. Se não rejeitamos a nula, concluímos que a série **apresenta** raiz unitária.

17 / 26

PROCEDIMENTO SEQUENCIAL III

3. Se chegamos a essa etapa, não temos evidências de que haja uma tendência linear no modelo nem um intercepto. Nesse caso, estimamos:

$$\Delta Y_t = \gamma Y_{t-1} + \sum_{j=1}^k \kappa_j \Delta Y_{t-j} + u_t$$

Teste a nula de $H_0: \gamma=0$ contra a alternativa de que $H_1: \gamma<0$ usando a estatística \hat{t} e os valores críticos não normais para esse caso (slide 10, caso 1). Se rejeitamos a hipótese nula, concluímos que a série **não** apresenta raiz unitária. Se não rejeitamos a nula, concluímos que a série apresenta raiz unitária.

ELLIOTT, ROTHENBERG E STOCK (1996)

- Elliott, Rothenberg e Stock (1996) estudam o poder dos testes de raiz unitária discutidos anteriormente.
- Os autores verificam que o poder do teste ADF nos modelos (3) e (4) pode ser baixo
 - Isso se deve ao comportamento da estatística de teste, cuja distribuição assintótica acaba dependendo da presença ou não dos componentes determinísticos no processo gerador.
- Proposta de ERS: remover os componentes determinísticos numa etapa preliminar, estimando o modelo (3) ou (4) **impondo que** $\gamma = c/T$ para uma constante c < 0, e rodar o teste ADF nos dados detrended.
- Procedimento aumenta poder dos testes.
 - Dificuldade é que não há ferramentas, no caso, para detectar qual modelo usar.
 - Podemos acoplar esse teste ao procedimento sequencial, se paramos na primeira ou segunda etapa.

TESTANDO A PRESENÇA DE COMPONENTES DETERMINÍSTICOS

- A conclusão do procedimento sequencial anterior é uma afirmação: a série apresenta raiz unitária ou não.
- Se a série apresenta raiz unitária, vamos trabalhar como a série $Z_t = \Delta Y_t.$
- Se a série não apresenta unitária, trabalhamos com $Z_t = Y_t$.
- Podemos testar a presença de tendências determinísticas rodando:

$$Z_t = a + b \cdot t + \xi_t \tag{6}$$

e testando a nula de que b=0 contra a alternativa de que $b\neq 0$ fazendo um teste t com valores críticos normais.

- Se não rejeitamos a nula, trabalhamos com Z_t .
- Se rejeitamos a nula, o ideal é trabalhar com os resíduos do modelo, $\hat{\xi}_t$.

Erros padrão HAC

- Se rodamos o modelo (6) no R e usamos a função summary para fazer inferência, os erros padrão apresentados supõem homocedasticidade e não autocorrelação de ξ_t .
- Nesse caso, seria interessante computar erros padrão robustos a violações de ambas as hipóteses.
 - A esse tipo de erro padrão damos o nome de HAC (heteroskedasticity and autocorrelation consistent).
 - Sua introdução na Economia se deve a Newey e West (1987).
- Podemos usar esses erros padrão robustos via função vcovHAC do pacote sandwich.

Testando ordens de integração maiores

- O procedimento sequencial discutido anteriormente considera somente duas possibilidades: ou há uma raiz unitária, ou nenhuma.
- De fato, estes são os casos predominantes nas séries econômicas.
 - Não obstante, há séries de interesse que são I(2). Por exemplo, dados referentes à incidência de Covid (Chernozhukov, Kasahara e Schrimpf, 2021).
- Dickey e Pantula (1987) proveem um procedimento sequencial para determinar se uma série é I(2), I(1) ou I(0).

PROCEDIMENTO DE DICKEY E PANTULA (1987)

- Considere o modelo:

$$\Delta^{2} y_{t} = \gamma_{1,1} \Delta y_{t-1} + \sum_{j=1}^{k} \beta_{1,j} \Delta^{2} y_{t-j} + u_{t}$$

- Nesse ambiente, Dickey e Pantula (1987) sugerem testar $H_0: \gamma_{1,1}=0$ contra $H_1: \gamma_{1,1}<0$, usando estatística t e valores critícos de Dickey-Fuller.
 - Se não rejeitamos a nula, concluímos que a série é I(2).
- Se rejeitarmos a nula na etapa anterior, considerar o modelo

$$\Delta^{2} y_{t} = \gamma_{2,1} \Delta y_{t-1} + \gamma_{2,2} y_{t-1} + \sum_{j=1}^{k} \beta_{2,j} \Delta^{2} y_{t-j} + u_{t}$$

e testar $\gamma_{2,2}=0$ contra $\gamma_{2,2}<0$, usando os valores críticos de Dickey-Fuller.

- Se não rejeitamos a nula, concluímos que a série é I(1).
- Se rejeitamos a nula, série é I(0).
- Procedimento pode incluir componentes determinísticos.
 - Nesse caso, usar a distribuição do teste ADF do caso correspondente.
 - Possível acoplar o procedimento sequencial em cada etapa da metodologia para determinar o componente determinístico apropriado.

Referências I

- Chernozhukov, Victor, Hiroyuki Kasahara e Paul Schrimpf (2021). "Causal impact of masks, policies, behavior on early covid-19 pandemic in the U.S.". Em: Journal of Econometrics 220.1. Pandemic Econometrics, pp. 23-62. ISSN: 0304-4076. DOI: https://doi.org/10.1016/j.jeconom.2020.09.003. URL: https://www.sciencedirect.com/science/article/pii/S0304407620303468.
- Dickey, David A. e Wayne A. Fuller (1979). "Distribution of the Estimators for Autoregressive Time Series With a Unit Root". Em: Journal of the American Statistical Association 74.366, pp. 427–431. ISSN: 01621459. URL: http://www.jstor.org/stable/2286348.
- (1981). "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root". Em: *Econometrica* 49.4, pp. 1057–1072. ISSN: 00129682, 14680262. URL:

http://www.jstor.org/stable/1912517.

Referências II

- Dickey, David A. e Sastry G. Pantula (1987). "Determining the Order of Differencing in Autoregressive Processes". Em: Journal of Business & Economic Statistics 5.4, pp. 455–461. ISSN: 07350015. URL: http://www.jstor.org/stable/1391997 (acesso em 17/03/2024).
- Elliott, Graham, Thomas J. Rothenberg e James H. Stock (1996). "Efficient Tests for an Autoregressive Unit Root". Em: *Econometrica* 64.4, pp. 813–836. ISSN: 00129682, 14680262. URL: http://www.jstor.org/stable/2171846 (acesso em 13/03/2024).
- Enders, Walter (out. de 2014). *Applied Econometric Time Series*. 4^a ed. Wiley Series in Probability and Statistics. Nashville, TN: John Wiley & Sons.
- Newey, Whitney K. e Kenneth D. West (1987). "A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix". Em: *Econometrica* 55.3, pp. 703–708. ISSN: 00129682, 14680262. URL: http://www.jstor.org/stable/1913610 (acesso em 13/03/2024).

Referências III

Ng, Serena e Pierre Perron (2001). "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power". Em:

Econometrica 69.6, pp. 1519–1554. DOI:

https://doi.org/10.1111/1468-0262.00256.eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1111/1468-0262.00256.URL:

https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00256.

- Phillips, Peter C. B. e Pierre Perron (1988). "Testing for a Unit Root in Time Series Regression". Em: *Biometrika* 75.2, pp. 335–346. ISSN: 00063444. URL: http://www.jstor.org/stable/2336182 (acesso em 13/03/2024).
- Said, Said E. e David A. Dickey (1984). "Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order". Em: *Biometrika* 71.3, pp. 599–607. ISSN: 00063444. URL: http://www.jstor.org/stable/2336570.

Derivação da distribuição assintótica de $\hat{\gamma}$ sob a nula $\gamma=0$

- Considere o estimador de MQO $\hat{\gamma}$ de (2).
- Note que

$$\hat{\gamma} = \hat{\rho} - 1$$

onde $\hat{\rho}$ é estimador de MQO de ρ em (1).

- Das propriedades de MQO, sabemos que:

$$\hat{\gamma} - \gamma = \frac{\sum_{t=2}^{T} y_{t-1} \epsilon_t}{\sum_{t=2}^{T} y_{t-1}^2}$$

Defina a função com domínio [0, 1]:

$$X_T(r) = egin{cases} rac{\sum_{j=1}^k \epsilon_j}{T}, & ext{se } k \leq rT < (k+1) \ rac{\sum_{j=1}^T \epsilon_j}{T}, & ext{se } r = 1 \end{cases}$$

- Função em escada.
- Sob a nula $\gamma = 0$, $\sum_{i=1}^k \epsilon_i/T = y_k/T$.

Gráfico de $r \mapsto X_T(r)$ sob a nula

TEOREMA DE DONSKER

Teorema de Donsker

Se os $\{\epsilon_j\}_j$ são iid com $\mathbb{E}[\epsilon_j]=0$ e $\sigma^2<\infty$, então, quando $T\to\infty$

$$\sqrt{T}X_T(\cdot) \Rightarrow \sigma B(\cdot)$$
,

onde B é um movimento Browniano (ou processo de Wiener) em [0,1],

- Teorema diz que a função aleatória $\sqrt{T}X_T(\cdot)$ converge fracamente para um Browniano.
 - Convergência fraca: "distribuição" de $\sqrt{T}X_T(\cdot)$ converge para distribuição do Browniano.
- Possível relaxar hipótese iid para ruído branco fracamente dependente (Phillips e Perron, 1988).
- Processo de Wiener é um processo estocástico (ou função aleatória) $t\mapsto B(t)$, cujas trajetórias são sempre contínuas, B(0)=0, e onde os incrementos B(t')-B(t) tem distribuição normal, com média zero e variância (t'-t).

Processo de Wiener (cinco realizações)

DERIVAÇÃO DA DISTRIBUIÇÃO ASSINTÓTICA SOB A NULA

- Note que, sob a nula:

$$y_{t-1}^2 + 2y_{t-1}\epsilon_t + \epsilon_t^2 = (y_{t-1} + \epsilon_t)^2 = y_t^2$$

- Escrevendo em termos de $X_T(r)$, ficamos com:

$$\hat{\gamma} - \gamma = \frac{\sum_{t=2}^{T} y_{t-1} \epsilon_t}{\sum_{t=2}^{T} y_{t-1}^2} = \frac{1}{2} \frac{T^2 X_T(1)^2 - y_1^2 - \sum_{t=2}^{T} \epsilon_t^2}{T^3 \int_0^1 X_T^2(u) du},$$

- Pela LGN plim $_{T \to \infty} \frac{1}{T-1} \sum_{t=2}^{T} \epsilon_t^2 = \sigma^2$.
- Segue por preservação de convergência fraca em funções contínuas que:

$$T(\hat{\gamma} - \gamma) \Rightarrow \frac{B^2(1) - 1}{2 \int_0^1 B^2(u) du}$$