МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Лекция №8

Предел функции (часть 3)

Определение 4. Бесконечно малые величины α и β называют эквивалентными $(\alpha \sim \beta)$, если их разность $\delta = \alpha - \beta$ является бесконечно малой величиной более высокого порядка, чем каждая из бесконечно малых α и β :

$$\delta = o(\alpha), \qquad \delta = o(\beta).$$

На самом деле, достаточно, чтобы δ была бесконечно малой более высокого порядка, чем любая из этих величин.

Действительно, пусть $\delta = o(\beta)$. Тогда

$$\lim_{x \to a} \frac{\delta}{\alpha} = \lim_{x \to a} \frac{\delta}{\delta + \beta} = \lim_{x \to a} \frac{\frac{\delta}{\beta}}{1 + \frac{\delta}{\beta}} = 0,$$

то есть, $\delta = o(\alpha)$.

Теорема 4 (Критерий эквивалентности). Для того, чтобы две бесконечно малые величины α и β были эквивалентными, необходимо и достаточно, чтобы

$$\lim_{x \to a} \frac{\alpha}{\beta} = 1.$$

Доказательство. По условию

$$\gamma = \frac{\alpha}{\beta} - 1 \to 0.$$

Тогда

$$\delta = \alpha - \beta = \gamma \beta$$

будет величиной более высокого порядка, чем eta, так как

$$\lim_{x \to a} \frac{\delta}{\beta} = \lim_{x \to a} \gamma = 0.$$

Обратно, пусть α и β эквивалентны, т.е. $\delta = \alpha - \beta$ является величиной бесконечно малой более высокого порядка, чем β . Тогда имеем

$$\frac{\alpha}{\beta} - 1 = \frac{\delta}{\beta} + 1 - 1 = \frac{\delta}{\beta} \to 0 \implies \frac{\alpha}{\beta} \to 1.$$

Теорема доказана.

Используя этот критерий, можно сразу сказать, что при $x \to 0$

$$\sin x \sim x$$
, $\tan x \sim x$, $\arctan x \sim x$, $n \sim x$, n

Также эти эквивалентности можно представить в виде следующих равенств:

$$\sin x = x + o(x), \qquad \tan x = x + o(x), \qquad \arcsin x = x + o(x),$$

$$\arctan x = x + o(x), \qquad e^x - 1 = x + o(x),$$

$$1 - \cos x = \frac{x^2}{2} + o(x), \qquad \ln(1+x) = x + o(x), \qquad \sqrt[n]{1+x} = 1 + \frac{x}{n} + o(x).$$

Полученное свойство эквивалентных бесконечно малых величин облегчает нахождение пределов отношений этих величин. Каждая из них при этом может быть заменена на любую эквивалентную ей величину без изменения предела.

Примеры. Вычислить

$$\lim_{x\to 0} \frac{\sin 3x}{\ln(1+x)}$$

Часто бывают ситуации, что в качестве аргумента одной функции выступает другая функция.

Например, пусть $y=1+x^2$ и $z=\sqrt{y}$. Подставим во второе равенство вместо y выражение $1+x^2$ и получим новую функцию

$$z=\sqrt{1+x^2},$$

где z уже посредством y зависит от x.

Полученная функция z = z(y(x)) и называется композицией функций z(y) и y(x).

Определение 1. Пусть функция z = g(y) определена на множестве Y, а функция y = f(x) определена на множестве X, причем <u>все значения функции f содержатся в</u> Y. Тогда их композицией или сложной функцией называется функция $(g \circ f)(x) = g(f(x))$.

Обратим внимание на один существенный момент в определении сложной функции. А именно на то, что все значения функции f обязательно должны содержаться в области определения функции g, иначе, в противном случае, функция g может быть просто не определена. Рассмотрим пример.

Пусть $z = \ln y$ и $y = \cos x$. Сложная функция $z(y(x)) = \ln \cos x$ будет определена только для тех x, для которых выполнено неравенство $\cos x > 0$, поскольку область определения функции $z = \ln y$, как мы знаем, есть промежуток $(0, +\infty)$.

Теорема 1. Пусть функция f(x) определена на множестве $X \subseteq \mathbb{R}$, a – предельная точка множества X. Пусть функция g(y) определена на множестве $Y \subseteq \mathbb{R}$, b – предельная точка множества Y, при этом все значения функции f(x) образуют множество Y. Предположим, что существуют пределы

$$\lim_{x \to a} f(x) = b, \qquad \lim_{y \to b} g(y) = c.$$

Пусть, кроме того, существует такая окрестность точки a, что для любого $x \in X$, попавшего в эту окрестность, справедливо $f(x) \neq b$.

Тогда в точке lpha существует и равен c предел композиции функций f и g :

$$\lim_{x \to a} g(f(x)) = c.$$

Доказательство. Возьмём произвольную последовательность $x_n \to a$ при $n \to \infty$, $x_n \ne a$. По условию теоремы и определению Гейне, получаем, что соответствующая последовательность значений функции $f(x_n) \to b$ при $n \to \infty$. Поскольку, по условию, существует такая окрестность точки a, что для любого $x \in X$, попавшего в окрестность, справедливо $f(x) \ne b$, то существует номер $N \in \mathbb{N}$ такой, что как только n > N, будет выполнено $f(x_n) \ne b$. Тогда последовательность

$$f(x_{N+1}), f(x_{N+2}), ..., ...$$

также сходится к числу b, а значит, сходится и последовательность

$$f(x_1), f(x_2), f(x_3), \dots, \dots$$

(отбрасывание конечного числа элементов последовательности не влияет на её сходимость). Далее, поскольку $f(x) \in Y$ для любого $x \in X$, то, по условию и определению Гейне, $g(f(x_n)) \to b$ при $n \to \infty$. Таким образом, получено, что для любой последовательности $x_n \to a$ при $n \to \infty$, $x_n \ne a$ справедливо $g(f(x_n)) \to b$ при $n \to \infty$. В соответствие с определением Гейне предела функции, получаем требуемое. Теорема доказана.

Условие, выделенное красным в условии теоремы, существенно. Без него утверждение теоремы в общем случае становится неверным, как видно из нижеследующего примера.

Рассмотрим пример:

$$g(y) = \begin{cases} 1, & y \neq 0, \\ 0, & y = 0, \end{cases}$$
 $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$

В данном случае:

$$\lim_{y \to 0} g(y) = 1,$$
 $\lim_{x \to 0} f(x) = 0.$

Однако у композиции g(f(x)) при x o 0 предела не существует.

Учитывая доказанную теорему о пределе композиции функций, мы можем переписать приведённые ранее эквивалентности в следующем (более общем) виде:

- $1. \sin u = u + o(u);$
- 2. $\cos u = 1 \frac{u^2}{2} + o(u^2)$;
- 3. tg u = u + o(u);
- 4. a crtg u = u + o(u);
- 5. $\arcsin u = u + o(u)$;
- 6. $(1+u)^{\alpha} = 1 + \alpha u + o(u), \alpha \in \mathbb{R}$ любое число;
- 7. $\ln(1+u) = u + o(u)$;
- 8. $b^u 1 = u \ln b + o(u)$;
- 9. $e^u 1 = u + o(u)$.

Во всех данных равенствах под u бесконечно малая функция в точке a:

$$\lim_{x \to a} u(x) = 0,$$

и для которой существует такая окрестность точки a, что в ней функция u(x) не обращается в нуль.

РАЗЛИЧНЫЕ ПРИМЕРЫ НА ВЫЧИСЛЕНИЕ ПРЕДЕЛОВ

Пример. Вычислить следующие пределы:

$$\lim_{x \to 0} (1 + \sin x) \frac{1}{\cos x},$$

$$\lim_{x \to \infty} \left(\frac{x+3}{x-2}\right)^{2x+1},$$

$$\lim_{x \to 0} (1 + x^2 e^x) \frac{1}{1-\cos x}.$$

