Chapter 1.1

4.) The slope field for y' = 1 + 2y:

If $y=-\frac{1}{2}$, then as $t\to\infty$, y will remain $-\frac{1}{2}$. If $y>-\frac{1}{2}$, then y will approach ∞ , and if $y<-\frac{1}{2}$, y will approach $-\infty$.

- 11.) j
- 12.) c
- 13.) g
- 14.) b
- 15.) h
- 16.) e

Chapter 1.3

- 1.) 2nd order, linear
- 2.) 2nd order, nonlinear
- 3.) 4th order, linear
- 4.) 2nd order, nonlinear
- 5.) $\frac{d^2}{dt^2} [e^t] = e^t, e^t e^t = 0,$ $\frac{d^2}{dt^2} [\cosh t] = \cosh t, \cosh t \cosh t = 0,$ Thus e^t and $\cosh t$ are valid solutions.

- 6.) $\frac{d}{dt} [e^{-3t}] = -3e^{-3t}, \frac{d^2}{dt^2} [e^{-3t}] = 9e^{-3t}, 9e^{-3t} 6e^{-3t} 3e^{-3t} = 9e^{-3t} 9e^{-3t} = 0,$ $e^t + 2e^t 3e^t = 3e^t 3e^t = 0,$ Thus e^{-3t} and e^t are valid solutions.
- 11.) Since $\frac{d}{dt}[e^{rt}] = re^{rt}$, we can substitute and find that $re^{rt} + 2e^{rt} = 0$, thus r + 2 = 0, thus r = -2.