Page 1

\$ 5,4. Enler Equations and Regular Singular Points.

Problem 1. (distinct real roots).

Find the general solution of the Euler equation $\chi^2 y'' - 4xy' + 4y = 0$. $(\chi > 0)$.

Solution. The inducial equation is r(r-1) - 4r + 4 = 0.

 \Rightarrow $r^2 - 5r + 4 = 0$, (r-1)(r-4) = 0.

So V,=4, V2=1.

Then $y_1 = \chi^4$ and $y_2 = \chi$.

The general solution is $y = c_1 x^4 + c_2 x$.

Problem 2. (repeated real roots).

Find the general solution of the Euler equotion: $\chi^2 y'' - 5 \chi y' + 9 y = 0$. $(\chi > 0)$.

Solution. The indicial equation is Y(v-1) - 5v + 9 = 0. $\Rightarrow Y^2 - 6v + 9 = 0$, $(v-3)^2 = 0$.

50 V,=V2=3.

Then $y_1 = \chi^3$ and $y_2 = \chi^3 \ln(\chi)$.

The general solution is $y = C_1 x^3 + C_2 x^3 \ln(x)$.

Problem 3. (complex roots).

Find the general solution of the Euler equation: $2x^2y'' - 4xy' + 6y = 0$. (x>0)

Solution. The indicial equation is 2r(r-1) - 4r + 6 = 0.

 $= > \cdot \quad V^{2} - 3V + 3 = 0.$ $V_{1/2} = \frac{3 \pm \sqrt{3^{2} - 4 \cdot 3}}{2} = \frac{3}{2} \pm \frac{\sqrt{3}}{2} \tilde{\imath}.$

i.e. $\lambda = \frac{3}{2}$ and $\mu = \frac{\sqrt{3}}{2}$.

Then $y_1 = \chi^{\frac{3}{2}} \cos\left(\frac{13}{2} \ln(x)\right), \quad y_2 = \chi^{\frac{3}{2}} \sin\left(\frac{13}{2} \ln(x)\right).$

The general solution is $y = c_1 \chi^{\frac{3}{2}} \log \left(\frac{\sqrt{3}}{2} \ln(x) \right) + c_2 \chi^{\frac{3}{2}} \sin \left(\frac{\sqrt{3}}{2} \ln(x) \right)$.

Problem 4. (singular points).

Find all singular points and determine which one is regular. $(\chi+2)^2(\chi-1)y'+3(\chi-1)y'-2(\chi+2)y=0$.

Solution. $P(x)=(x+2)^2(x-1)$, Q(x)=3(x-1), P(x)=-2(x+2). Polynomials. Only check P(x)=0. $\Rightarrow x=1$, -2. So $x_0=1$, $x_0=-2$ are singular points.

At X= 1:

 $(X-X_0) \frac{(X_0)}{P(X_0)} = (X-1)\frac{3(X+1)}{(X+2)^2(X-1)} = \frac{3(X-1)}{(X+2)^2} \quad \text{analytic at 80=1}$ $(X-X_0)^2 \frac{P(X)}{P(X_0)} = (X-1)^2 \frac{-2(X+2)}{(X+2)^2(X-1)} = \frac{-2(X-1)}{(X+2)} \quad \text{analytic ad 80=1}.$ So $X_0=1$ is a regular singular point.

At $x_0 = -2$: $(x-x_0)\frac{Q(x)}{P(x)} = (x+2) \cdot \frac{3(x-1)}{(x+2)^2(x-1)} = \frac{3}{x+2}$. Not analytic So $x_0 = -2$ is triesular.