Cloud Networking with Microsoft Azure

Lecture 12

SoftUni Team
Technical Trainers

https://softuni.bg

Table of Contents

- 1. Introduction to Azure networking
- 2. DNS hosting in Azure
- 3. Inter-site connectivity options
- 4. Virtual network traffic routing
- 5. Demonstration

Have a Question?

Introduction to Azure Networking

Azure Networking Components

- ∀irtual networks
- Front Door and CDN profiles
- Network interfaces
- Route tables
- Service endpoint policies
- Private Link
- DNS zones
- NAT gateways
- Firewall Policies
- & Local network gateways
- Network security groups (classic)

- Azure Synapse Analytics (private link hubs)
 - Network Watcher
 - Public IP addresses
 - Application security groups
 - Private DNS zones
 - Virtual WANs
 - Traffic Manager profiles
 - IP Groups
 - Firewalls

 - Virtual networks (classic)

- Load balancers
- Network security groups
- Public IP Prefixes
- DDoS protection plans
- Web Application Firewall policies (WAF)
- Mastions
- Application gateways
- Firewall Manager
- Connections
- Route Servers
- Reserved IP addresses (classic)

Virtual Networks in Azure (VNets)

- VNets are logical representation of your own network, they let you create your own private space in Azure
- The traffic between virtual machines in a VNet uses the Microsoft backbone infrastructure

Creating a Virtual Network

Setting	Value
Name	Enter myVirtualNetwork.
Address space	Enter 10.1.0.0/16.
Subscription	Select your subscription.
Resource group	Select Create new , enter <i>myResourceGroup</i> , then select OK .
Location	Select East US .
Subnet - Name	Enter myVirtualSubnet.
Subnet - Address range	Enter 10.1.0.0/24.

Subnets

- A virtual network can be segmented into one or more subnets
- Subnets provide logical divisions within your network
- Benefits of subnetting a virtual network include security and performance
- Each subnet must have a unique address range cannot overlap with other subnets in the virtual network in the subscription

IP Addressing

- There are two types of IP addresses you can use in Azure:
 - Public IP addresses: Used for communication with the Internet, including Azure public-facing services
 - Private IP addresses: Used for communication within an Azure virtual network (VNet), and your on-premises network (if you use VPN gateway or ExpressRoute)
- Remember the private IP address ranges?

IP Addressing

- For the private addresses, Azure reserves the first four in each subnet address range
- Allocation methods (for both public and private IP addresses)
 - Dynamic
 - Static
- Even the selected allocation method is "static", you should avoid assigning IP addresses within the virtual machine's operating system

Network Security Groups (NSG)

- You can limit network traffic to resources in a virtual network
- An NSG contains a list of security rules that allow or deny inbound or outbound network traffic
- An NSG can be associated to a subnet or a network interface
- Similar to Access Control Lists discussed before

NSG Rules

- Security groups have default inbound and outbound rules and you can add custom ones
- Rules are processed in priority order. The lower the number, the higher the priority
- To match a traffic, specify port, protocol, source and destination
- After the traffic is matched, an action is applied (allow or deny) and then processing stops

Priority	Name	Port	Protocol	Source	Destination	Action	
300	▲ RDP	3389	ТСР	Any	Any	Allow	• •
65000	AllowVnetInBound	Any	Any	VirtualNetwork	VirtualNetwork	Allow	• •
65001	AllowAzureLoadBalancerInBound	Any	Any	AzureLoadBalancer	Any	Allow	• •
65500	DenyAllInBound	Any	Any	Any	Any	⊗ Deny	• •
Dutbound security rules							
outbound sec	curity rules						
utbound sec	curity rules	Port	Protocol	Source	Destination	Action	
Priority	•	Port Any	Protocol Any	Source VirtualNetwork	Destination VirtualNetwork	Action • Allow	• •
	Name						• •

NSG Effective Rules

- NSGs are evaluated independently for the subnet and NIC
- Use the Effective Rules link if you are not sure which security rules are being applied

DNS Hosting in Azure

Remembering How DNS Works

Azure DNS Zones

- Azure offers a DNS service where you can host your DNS zones
- You do not have to own the domain to create a DNS zone with that domain name in Azure
- But...if you want the records in your domain to be resolved by everyone in Internet, then:
 - You must own the domain
 - You must change the name servers in your domain register to point to your Azure DNS zone

DNS Delegation

 For DNS queries to a domain to reach Azure DNS, the domain must be delegated to Azure DNS from the parent (point the name servers to the "child", hosting the zone)

DNS Record Sets

- Inside a DNS zone, you create DNS records
- Some examples of common DNS records:

A: a name which points to an IPv4 address	SRV: used for service discovery
CNAME (alias): a name which points to another name	NS: shows which are the name servers for the zone
MX: shows who is the mail server for that domain	SOA: contains administrative information about the zone

- In Azure, DNS records are created in <u>record sets</u> (inside a zone)
- A record set is collection of DNS records which have the same name and are of the same type: (although most record sets contain a single record)

www.contoso.com.	3600	IN	Α	134.170.185.46	
www.contoso.com.	3600	IN	Α	134.170.188.221	

Private DNS Zones

- Private DNS zones provide name resolution in virtual networks without the need to add a custom DNS solution
- Not accessible over the Internet
- Capabilities and benefits:
 - All common DNS records types are supported
 - Hostname resolution between virtual networks
 - Automatic hostname record management
 - Available in all Azure regions
- When you create a Private DNS zone, you have to link it with one or more virtual networks

Inter-site Connectivity Options

Virtual Network Peering

- VNet peering connects two Azure virtual networks
- Peered networks use the Azure backbone for privacy and isolation
- Easy to setup, seamless data transfer and great performance

VPN Gateway

- Used to send encrypted traffic between Azure and on-premise
- Can also create tunnels between Azure virtual networks
- Can accept multiple connections
- Each VNet can have only one VPN gateway
- Special VNet subnet is required before creating the VPN gateway
- Different connection topology diagrams are supported (next slides)

Site-to-Site (IPsec/IKE VPN Tunnel)

Multi-Site (IPsec/IKE VPN Tunnel)

Point-to-Site (VPN Over IKEv2 or SSTP)

VNet-to-VNet Connections (IPsec/IKE VPN Tunnel)

ExpressRoute

 Let's you extend your on-premises networks into the Microsoft cloud over a private connection

Virtual Network Traffic Routing

System Routes

- System routes direct network traffic between virtual machines, on-premises networks and the Internet:
 - Traffic between VMs in the same subnet
 - Between VMs in different subnets in the same virtual network
 - Data flow from VMs to the Internet
 - Communication between VMs using a VNet-to-VNet Peering
 - Communication between VMs using a VNet-to-VNet VPN
 - Site-to-Site and ExpressRoute communication through the VPN gateway

User-defined Routes (UDR)

- You can create custom (user-defined) routes in Azure to override Azure's default system routes, or to add additional routes to a subnet's route table
- User-defined routes control network traffic by defining routes that specify the next hop of the traffic flow
- A route table contains a set of rules, called routes, that specifies how packets should be routed in a virtual network
- The next hop can be:
 - Virtual appliance
 - Virtual Network Gateway
 - Virtual Network
 - Internet
 - None

Routing Example

- Before the UDR, system routes connects VMs from each subnet directly
- After a UDR is created, the routing table for Subnet 1 is updated so the traffic goes via the Virtual appliance in <u>Subnet 2</u>

Creating a Route Table

- The first thing for a UDR is to create a route table
- Create a name and select subscription, resource group and location
- "Virtual network gateway route propagation" should be enabled if you want your on-premises routes to be propagated to the subnet

Creating a Custom Route

- The second thing is to create a route in your routing table
- The custom route specifies:
 - Where do you want to route your traffic to? (the "Address prefix" section in CIDR format)
 - How to go there? (the "Next hop type")

Associate the Route Table

- Finally, associate the route table with a subnet(s)
- Each route table can be associated with multiple subnets, but one subnet can be associated with a maximum one route table

How Azure Selects a Route

When there are overlapping subnets, Azure uses the rule of the longest match

How Azure Selects a Route (2)

- If multiple routes contain the same address prefix, Azure selects the route type based on the following priority:
 - 1. User-defined route
 - 2. System route
- Example:

Source	Address prefixes	Next hop type
Default	0.0.0.0/0	Internet
User	0.0.0.0/0	Virtual network gateway

Demonstration Topology

Demonstration Topology (no animations)

Demonstration Details

- 1. Create the <u>VNets</u>, <u>subnets</u> and <u>gateways</u> and attach the respective VMs
- 2. Create a <u>private DNS zone</u> and link it with all VNets
- 3. Create a peering between VNet1--Sofia and VNet2--Paris
- 4. Create NSG for VNet2-Paris to deny incoming ICMP (ping). After the test, update it with "allow" statement for incoming ICMP with higher priority
- 5. Create the <u>VNet-to-VNet VPN</u> between **VNet1--Sofia** and **VNet3--Tokyo**
- 6. Allow VNGateway1 to make the connection between VNet2--Paris and VNet3--Tokyo
- 7. Create a point-to-site VPN from a local machine to VNet1--Sofia
- Change the default <u>routing path</u> between **Sofia-Branch** and **Paris**. Now all the traffic should go via **Sofia-HQ**

Summary

- 1. Introduction to Azure networking
- 2. DNS hosting in Azure
- 3. Inter-site connectivity options
- 4. Virtual network traffic routing
- 5. Demonstration

Questions?

SoftUni Diamond Partners

Coca-Cola HBC Bulgaria

Решения за твоето утре

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

