HCC4029B HCF4029B

PRESETTABLE UP/DOWN COUNTER BINARY OR BCD DECADE

- MEDIUM SPEED OPERATION 8MHz (typ.) @ C_L = 50pF AND V_{DD}-V_{SS} = 10V
- MULTI-PACKAGE PARALLEL CLOCKING FOR SYNCHRONOUS HIGH SPEED OUTPUT RES-PONSE OR RIPPLE CLOCKING FOR SLOW CLOCK INPUT RISE AND FALL TIMES
- "PRESET ENABLE" AND INDIVIDUAL "JAM" INPUTS PROVIDED
- BINARY OR DECADE UP/DOWN COUNTING
- BCD OUTPUTS IN DECADE MODE
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC TEN-TATIVE STANDARD N°. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The HCC4029B (extended temperature range) and HCF4029B (intermediate temperature range) are monolithic integrated circuit, available in 16-lead dual in-line plastic or ceramic package and plastic micro package. The HCC/HCF4029B consists of a four-stage binary or BCD-decade up/down counter with provisions for look-ahead carry in both counting modes. The inputs consist of a single CLOCK, CARRY-IN (CLOCK ENABLE), BINARY/DECADE, UP/DOWN, PRESET ENABLE, and four individual JAM signals. Q1, Q2, Q3, Q4 and a CARRY OUT signal are provided as outputs. A high PRESET EN-ABLE signal allows information on the JAM INPUTS to preset the counter to any state asynchronously with the clock. A low on each JAM line, when the PRESET-ENABLE signal is high, resets the counter to its zero count. The counter is advanced one count at the positive transition of the clock when the CARRY-IN and PRESET ENABLE signals, are low. Advancement is inhibited when the CARRY-IN or PRESET ENABLE signals are high. The CARRY-OUT signal is normally high and goes low when the

September 1988 1/13

counter reaches its maximum count in the UP mode or the minimum count in the DOWN mode provided the CARRY-IN signal is low. The CARRY-IN signal in the low state can thus be considered a CLOCK ENABLE. The CARRY-IN terminal must be connected to Vss when not in use. Binary counting is accomplished when the BINARY/DECADE input is high; the counter counts in the decade mode when the BINARY/DECADE input is low. The counter

counts Up when to UP/DOWN INPUT is high, and Down when the UP/DOWN INPUT is low. Multiple packages can be connected in either a parallel-clocking or a ripple-clocking arrangement as shown in cascading counter packages. Parallel clocking provides synchronous control and hence faster response from all counting outputs. Ripple-clocking allows for longer clock input rise and fall times.

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage: HCC Types HCF Types	-0.5 to +20 -0.5 to +18	V
Vi	Input Voltage	-0.5 to V _{DD} + 0.5	V
l _l	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor	200	mW
	for Top = Full Package Temperature Range	100	mW
T _{op}	Operating Temperature: HCC Types HCF Types	-55 to +125 -40 to +85	°C °C
T _{stg}	Storage Temperature	-65 to +150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage: HCC Types	3 to 18	V
	HCF Types	3 to 15	V
VI	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature: HCC Types	-55 to +125	°C
	HCF Types	-40 to +85	°C

LOGIC DIAGRAMS

TRUTH TABLES

CLOCK	TE	PE	J	Q	Q
Х	Х	0	0	0	I
L	0	I	Х	Q	Q
Х	Х	0	1	I	0
L	I	1	Х	Q	Q NC
	Х	I	Х	Q	Q NC

X DON'T CARE

Control Input	Logic Level	Action
BIN/DEC	I	Binary Count
(B/D)	0	Decade Count
UP/DOWN	1	Up Count
(U/D)	0	Down Count
Preset Enable	1	Jam In
(PE)	0	No Jam
		No Counter
	I	Advance at Pos.
Carry In (CI)		Clock Transition
(Clock Enable)		
	_	Advance Counter
	0	at Pos. Clock
		Transition

TIMING DIAGRAMS

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

		_		Test Con	ditios		Value							
Symbol	Parameter		V _I V _O I _O		V _{DD}	TLO	w *		25 °C		T _{HIGH} *		Unit	
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/5			5		5		0.04	5		150	
	Current	HCC	0/10			10		10		0.04	10		300	
		Types	0/15			15		20		0.04	20		600	^
			0/20			20		100		0.08	100		3000	μΑ
		HCF	0/5			5		20		0.04	20		150	
		Types	0/10			10		40		0.04	40		300	
		1,7500	0/15			15		80		0.04	80		600	
V _{OH}	Output High	•	0/5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low		5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V _{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
Іон	Output		0/5	2.5		5	-2		-1.6	-3.2		-1.15		
	Drive	HCC	0/5	4.6		5	-0.64		-0.51	-1		-0.36		
	Current	urrent Types	0/10	9.5		10	-1.6		-1.3	-2.6		-0.9		
			0/15	13.5		15	-4.2		-3.4	-6.8		-2.4		mA
			0/5	2.5		5	-1.53		-1.36	-3.2		-1.1		
		HCF	0/5	4.6		5	-0.52		-0.44	-1		-0.36		
		Types	0/10	9.5		10	-1.3		-1.1	-2.6		-0.9		
			0/15	13.5		15	-3.6		-3.0	-6.8		-2.4		
l _{OL}	Output	LICC	0/5	0.4		5	0.64		0.51	1		0.36		
	Sink	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	1,7500	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
		ПОЕ	0/5	0.4		5	0.52		0.44	1		0.36		
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		',,,,,,,	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input Leakage	HCC Types	0/18	Any In	out	18		±0.1		±10 ⁻⁵	±0.1		±1	Λ
Current	HCF Types	0/15	Any in	pul	15		±0.3		±10 ⁻⁵	±0.3		±1	- μΑ	
Cı	Input Capaci	itance		Any In	put					5	7.5			pF

^{*} $T_{LOW} = -55$ °C for **HCC** device: -40 °C for **HCF** device.

The Noise Margin for both "1" and "0" level is: 1V min. with $V_{DD} = 5 \text{ V}$, 2 V min. with $V_{DD} = 10 \text{ V}$, 2.5 V min. with $V_{DD} = 15 \text{ V}$

^{*} T_{HIGH} = +125 °C for **HCC** device: +85 °C for **HCF** device.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, $C_L = 50$ pF, $R_L = 200$ K Ω , typical temperature coefficent for all V_{DD} values is 03 %/°C, all input rise and fall times= 20 ns)

Symbol	Parameter	Test Conditions		Value		Unit
Symbol	Parameter	V _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PLH}	Propagation Delay Time (Q Outputs)	5		250	500	
t _{PHL}	, , , , , , , , , , , , , , , , , , , ,	10		120	240	ns
		15		90	180	1
t _{PLH}	Propagation Delay Time (Carry Output)	5		280	560	
t _{PHL}	· · · · · · · · · · · · · · · · · · ·	10		130	260	ns
		15		95	190	1
t _{TLH}	Transition Time (Q Outputs, Carry Output)	5		100	200	
tTHL	Transmissi Timo (Q Darpato, Darry Darpaty	10		50	100	ns
		15		40	80	
tw	Minimum Clock Pulse Width	5		90	180	
- • • • • • • • • • • • • • • • • • • •	William Glock Falco Widan	10		45	90	ns
		15		30	60	1
t _r , t _f **	Clock Rise and Fall Time	5		"	15	
ч, ч	Clock Price and Fair Finite	10			15	μs
		15			15	"
t _{setup} *	Minimum Setup Time (Carry Input)	5		30	60	
setup	William Getap Time (Garry Input)	10		10	20	
		15		6	12	
t	Minimum Setup Time (B/D or UD)	5		170	340	ns
t _{setup}	William Getap Time (B/D of GD)	10		70	140	
		15		50	100	
f	Maximum Clock Input Frequency	5	2	4	100	
f _{max}	Maximum Clock input Frequency	10		1		MHz
		15	5.5	8 11		171112
DDESET	ENABLE	15	5.5	1 11		
		5		235	470	I
t _{PLH}	Propagation Delay Time (Q Outputs)				470	
t _{PHL}		10		100	200	-
4	Proposition Polov Time (Corr. Output)	15		80	160	ns
t _{PLH}	Propagation Delay Time (Carry Output)	5		320	640	-
t _{PHL}		10		145	290	
	Misisses December (Dules Mister)	15		105	210	
tw	Minimum Preset Enable (Pulse Width)	5		65	130	ns
		10		35	70	113
, +	Misiron Brook Frakla (Brooks Time)	15		25	50	
t _{rem} *	Minimum Preset Enable (Removal Time)	5		100	200	nc
		10	-	55	110	ns
CARRY	INDUT	15		40	80	
CARRY				170	0.40	I
tpHL	Propagation Delay Time (Carry Output)	5		170	340	
t _{PLH}		10		70	140	ns
	Lui Co Ti (Co to	15		50	100	
t _{setup} ***	Minimum Setup Time (Carry In)	5	-	25	50	
		10	-	15	30	
		15		12	25	ns
t _{hold}	Minimum Hold Time (Carry In)	5		100	200	
		10		35	70	
		15		30	60	1

From Up/Down, Binary/Decade, Carry In or Preset Enable Control Inputs to Clock Edge

^{**} If more than one unit is cascated in the parallel clocked application tr should be made less than or equal to the sum of the fixed propagation delay at 15 pF and the transition time of the carry output driving stage for the estimated capacitance load.

^{***} From Carry in to Clock Edge.

Typical Output Low (sink) Current Characteristics.

Typical Output High (source) Current Characteristics.

Minimum Output Low (sink) Current Charac-

Minimum Output High (source) Current Characteristics.

APPLICATIONS

Conversion of Clock up, Clock Down Input Signals to Clock and Up/Down Inputs Signals.

The **HCC/HCF4029B** CLOCK and UP/DOWN inputs are used directly in most applications. In applications where CLOCK UP and CLOCK DOWN inputs are provided, conversion to the **HCC/HCF4029B** CLOCK and UP/DOWN inputs can easily be realized by use of the circuit.

HCC/HCF4029B changes count on positive transitions of CLOCK UP or CLOCK DOWN inputs. For the gate configuration shown below, when counting up the CLOCK DOWN input must be maintained high and conversely when counting down the CLOCK UP input must be maintained high.

Cascading Counter Packages.

* CARRY-OUT lines at the 2nd, 3rd, et., stages may have a negative-going glitch pulse resulting from differential delays of different HCC/HCF4029B IC's. These negative-going glitches do not affect proper HCC/HCF4029B operation. However, if the CARRY-OUT signals are used to trigger other edge-sensitive logic devices, such as FF's or counters, the CARRY-OUT signals should be gated with the clock signal using a 2-input NOR gate such as HCC/HCF4001B.

Ripple Clocking Mode: The Up/Down control can be changed at any count The only restriction on changing the Up/Down control is that the clock input to the first counting stage must be high.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch			
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.77		1.65	0.030		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
E		8.5			0.335		
е		2.54			0.100		
e3		17.78			0.700		
F			7.1			0.280	
I			5.1			0.201	
L		3.3			0.130		
Z			1.27			0.050	

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch			
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			20			0.787	
В			7			0.276	
D		3.3			0.130		
Е	0.38			0.015			
e3		17.78			0.700		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO16 (Narrow) MECHANICAL DATA

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45°	(typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8° (ı	max.)		

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
5.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

