Транспортна задача

Задана транспортна задача. Знайти початковий розв'язок транспортної задачі методами: північно-західного кута, мінімального елемента, Фогеля. Порівняти значення цільової функції для кожного початкового розв'язка. Розв'язати задачу методом потенціалів. За початковий розв'язок узяти розв'язок, який знайдено методом мінімального елемента.

$$\begin{bmatrix} 16 & 30 & 17 & 10 & 16 \\ 30 & 27 & 26 & 9 & 23 \\ 13 & 4 & 22 & 3 & 1 \\ 3 & 1 & 5 & 4 & 24 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \\ 7 & 7 & 7 & 7 & 2 \end{bmatrix}$$

Розв'язання. Маємо m=4 виробника та n=5 споживачів. Перевіримо умову: $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j \ . \quad \text{Маємо} \quad 4+6+10+10=7+7+7+2=30 \ . \quad \text{Тобто} \quad \text{задана} \quad \text{закрита}$ транспортна задача.

1. Знайдемо початковий розв'язок транспортної задачі методом північно-західного кута.

Запишемо таблицю, в яку вносимо тільки об'єми виробництва та споживання.

					$a_1 = 4$
					$a_2 = 6$
					$a_3 = 10$
					$a_4 = 10$
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	

Заповнювати таблицю починаємо з верхньої лівої клітинки (північно-західного кута).

Знаходимо $x_{11} = min(a_1, b_1) = min(4,7) = 4$. Так як мінімум досягається у рядку, то $x_{12} = x_{13} = x_{14} = x_{15} = 0$ і перший рядок виключається з подальшого розглядання (викреслюється). Об'єм споживання $b_1 = 7 - 4 = 3$.

4	0	0	0		$a_1 = 4$
					$a_2 = 6$
					$a_3 = 10$
					$a_4 = 10$
$\frac{b_1 - 7}{}$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	
$b_1 = 3$					

Продовжуємо заповнювати таблицю з північно-західного кута. Знаходимо $x_{21} = min(a_2, b_1) = min(6,3) = 3$. Так як мінімум досягається у стовпці, то $x_{31} = x_{41} = 0$

і перший стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_2 = 6 - 3 = 3$.

	4	0	0	0	0	$a_1 = 4$
	3					$a_2 = 6$, $a_2 = 3$
	0					$a_3 = 10$
	0					$a_4 = 10$
$-b_1 - 7$		$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	
$b_1 = 3$						

Продовжуємо заповнювати таблицю з північно-західного кута. Знаходимо $x_{22} = min(a_2,b_2) = min(3,7) = 3$. Так як мінімум досягається у рядку, то $x_{23} = x_{24} = x_{25} = 0$ і другий рядок виключається з подальшого розгляду (викреслюється). Об'єм споживання $b_2 = 7 - 3 = 4$.

4	0	0	0	0	$a_1 = 4$
3	3	0	0	0	$a_2 = 6, a_2 = 3$
0					$a_3 = 10$
0					$a_4 = 10$
$\frac{b_1 - 7}{}$	$b_2 = 7$ $b_2 = 4$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	
$b_1 = 3$	$b_2 = 4$				

Продовжуємо заповнювати таблицю з північно-західного кута. Знаходимо $x_{32} = min(a_3,b_2) = min(10,4) = 4$. Так як мінімум досягається у стовпці, то $x_{42} = 0$ і другий стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_3 = 10 - 4 = 6$.

4	0	0	0	0	$a_1 = 4$
3	3	0	0	0	$a_2 = 6$, $a_2 = 3$
0	4				$a_3 = 10$, $a_3 = 6$
0	0				$a_4 = 10$
$-b_1 - 7$	$b_2 = 7$ $b_2 = 4$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	
$b_1 = 3$	$b_2 = 4$				

Продовжуємо заповнювати таблицю з північно-західного кута. Знаходимо $x_{33} = min(a_3,b_3) = min(6,7) = 6$. Так як мінімум досягається у рядку, то $x_{34} = x_{35} = 0$ і третій рядок виключається з подальшого розглядання (викреслюється). Об'єм споживання $b_3 = 7 - 6 = 1$.

4	0	0	0	0	$a_1 = 4$
					1

3	3	0	0	0	$a_2 = 6, a_2 = 3$
0	4	<mark>6</mark>	0	0	$a_3 = 10$, $a_3 = 6$
0	0				$a_4 = 10$
$\frac{b_1 - 7}{}$	$b_2 = 7$	$\frac{b_3-7}{}$	$b_4 = 7$	$b_5 = 2$	
$b_1 = 3$	$b_2 = 4$	$b_3 = 1$			

Продовжуємо заповнювати таблицю з північно-західного кута. Знаходимо $x_{43} = min(a_4,b_3) = min(10,1) = 1$. Третій стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_4 = 10 - 1 = 9$.

4	0	0	0	0	$a_1 = 4$
3	3	0	0	0	$a_2 = 6$, $a_2 = 3$
0	4	<mark>6</mark>	0	0	$a_3 = 10, a_3 = 6$
0	0	1			$-a_4 = 10$, $a_4 = 9$
$\frac{b_1 - 7}{}$	$b_2 = 7$	$\frac{b_3-7}{}$	$b_4 = 7$	$b_5 = 2$	
$b_1 = 3$	$b_2 = 4$	$b_3 = 1$			

Продовжуємо заповнювати таблицю з північно-західного кута. Знаходимо $x_{44} = min(a_4,b_4) = min(9,7) = 7$. Четвертий стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_4 = 9 - 7 = 2$.

4	0	0	0	0	$a_1 = 4$
3	3	0	0	0	$a_2 = 6$, $a_2 = 3$
0	4	<u>6</u>	0	0	$a_3 = 10$, $a_3 = 6$
0	0	1	7		$a_4 = 10$, $a_4 = 9$, $a_4 = 2$
$\frac{b_1 - 7}{}$	$b_2 = 7$	$\frac{b_3-7}{}$	$b_4 = 7$	$b_5 = 2$	
$b_1 = 3$	$b_2 = 4$	$b_3 = 1$			

Залишилась одна клітинка. Заповнюємо: $x_{45} = min(a_4, b_5) = min(2, 2) = 2$.

4	0	0	0	0	$a_1 = 4$
3	3	0	0	0	$a_2 = 6, a_2 = 3$
0	4	<u>6</u>	0	0	$a_3 = 10, a_3 = 6$
0	0	1	7	2	$a_4 = 10$, $a_4 = 9$, $a_4 = 2$
$b_1 - 7$	$b_2 = 7$	$\frac{b_3-7}{}$	$b_4 = 7$	$b_5 = 2$	
$b_1 = 3$	$b_2 = 4$	$b_3 = 1$			

Отже початковий розв'язок, знайдений методом північно-західного кута такий:

$$X_{\text{півн.-західн. кута}}^{(0)} = \begin{pmatrix} 4 & 0 & 0 & 0 & 0 \\ 3 & 3 & 0 & 0 & 0 \\ 0 & 4 & 6 & 0 & 0 \\ 0 & 0 & 1 & 7 & 2 \end{pmatrix},$$

$$f\left(X_{\text{півн.-західн. кута}}^{(0)}\right) = 4 \cdot 16 + 3 \cdot 30 + 3 \cdot 27 + 4 \cdot 4 + 6 \cdot 22 + 1 \cdot 5 + 7 \cdot 4 + 2 \cdot 24 = 464 \,.$$

2. Знайдемо початковий розв'язок транспортної задачі методом мінімального елемента.

Запишемо таблицю, в яку вносимо об'єми виробництва та споживання та вартості перевезень. Вартості перевезень c_{ij} будемо записувати у верхньому лівому куточку клітинки, а об'єми перевезень x_{ij} у нижньому правому куточку клітинки.

16	30	17	10	16	$a_1 = 4$
30	27	26	9	23	$a_2 = 6$
13	4	22	3	1	$a_3 = 10$
3	1	5	4	24	$a_4 = 10$
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	

В таблиці знаходимо мінімальні вартості перевезень. Якщо таких значень декілька, то вибираємо будь-яке з них.

В нашому випадку $c_{42}=c_{35}=1$. Виберемо $c_{42}=1$. Знаходимо $x_{42}=min(a_4,b_2)=min(10,7)=7$. Так як мінімум досягається у стовпці, то $x_{12}=x_{22}=x_{32}=0$ і другий стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_4=10-7=3$.

16	30	17	10	16	a - 1
	0				$a_1 = 4$
30	27	26	9	23	a = 6
	0				$a_2 = 6$
13	4	22	3	1	a = 10
	0				$a_3 = 10$
3	1	5	4	24	$a_4 - 10$,
	7				$a_4 = 10,$ $a_4 = 3$
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	

В таблиці знаходимо мінімальну вартість перевезення. Це $c_{35} = 1$. Знаходимо $x_{35} = min(a_3, b_5) = min(10, 2) = 2$. Так як мінімум досягається у стовпці, то

 $x_{15} = x_{25} = x_{35} = 0$ і п'ятий стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_3 = 10 - 2 = 8$.

16	30	17	10	16	$a_1 = 4$
	0			0	1
30	27	26	9	23	$a_2 = 6$
	0			0	α_2
13	4	22	3	1	$a_3 = 10$
	0			2	$a_3 = 10$ $a_3 = 8$
3	1	5	4	24	$a_4 - 10$,
	7			0	$a_4 = 10,$ $a_4 = 3$
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	

В таблиці знаходимо мінімальну вартість перевезення. Маємо $c_{34} = c_{41} = 3$. Виберемо $c_{34} = 3$. Знаходимо $x_{34} = min(a_3, b_4) = min(8,7) = 7$. Так як мінімум досягається у стовпці, то $x_{14} = x_{24} = x_{44} = 0$ і четвертий стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_3 = 8 - 7 = 1$.

		P	/	1	
16	30	17	10	16	$a_1 = 4$
	0		0	0	$a_1 - 4$
30	27	26	9	23	a -6
	0		0	0	$a_2 = 6$
13	4	22	3	1	$a_{3} = 10$
	0		7	2	$\frac{a_3=8}{a_3}$, $a_3=1$
3	1	5	4	24	$-a_4 = 10$,
	7		0	0	$\frac{a_4 = 10}{a_4 = 3}$
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	

В таблиці знаходимо мінімальну вартість перевезення. Маємо $c_{41} = 3$. Знаходимо $x_{41} = min(a_4, b_1) = min(3,7) = 3$. Так як мінімум досягається у рядку, то $x_{43} = 0$ і четвертий рядок виключається з подальшого розглядання (викреслюється). Об'єм споживання $b_1 = 7 - 3 = 4$.

16	30	17	10	16	a - 1
	0		0	0	$a_1 = 4$
30	27	26	9	23	$a_2 = 6$
	0		0	0	$a_2 = 0$
13	4	22	3	1	$a_3 - 10$
	0		<mark>7</mark>	2	$-a_3 = 8$, $a_3 = 1$
3	1	5	4	24	$-a_4 = 10$,
3	7	0	0	0	$a_4 = 3$
$\frac{b_1 - 7}{}$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	
$b_1 = 4$					

В таблиці знаходимо мінімальну вартість перевезення. Маємо $c_{31} = 13$. Знаходимо $x_{31} = min(a_3,b_1) = min(1,4) = 1$. Так як мінімум досягається у рядку, то $x_{33} = 0$ і третій рядок виключається з подальшого розглядання (викреслюється). Об'єм споживання $b_1 = 4 - 1 = 3$.

16	30	17	10	16	$a_1 = 4$
30	27	26	9	23	
30	0	20	0	0	$a_2 = 6$
13	4	22	3	1	$a_3 - 10$
1	0	0	7	2	$-a_3 = 8$, $a_3 = 1$
3	1	5	4	24	$-a_4 = 10$,
3	7	0	0	0	$a_4 = 3$
$\frac{b_1 - 7}{}$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	
$\frac{b_1 - 4}{}$					
$b_1 = 3$					

В таблиці знаходимо мінімальну вартість перевезення. Маємо $c_{11} = 16$. Знаходимо $x_{11} = min(a_1,b_1) = min(4,3) = 3$. Так як мінімум досягається у стовпці, то $x_{21} = 0$ і перший стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_1 = 4 - 3 = 1$.

16		30	17	10	16	$-a_1 - 4$, $a_1 = 1$
	3	0		0	0	
30		27	26	9	23	a -6
	0	0		0	0	$a_2 = 6$
13		4	22	3	1	$a_3 - 10$
	1	0	0	7	2	$-a_3 = 8$, $a_3 = 1$
3		1	5	4	24	$-a_4 = 10$,
	3	7	0	0	0	$a_4 = 3$
b_1 -	- 7	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	
b_1	4					
$b_1 =$	3					

В таблиці знаходимо мінімальну вартість перевезення. Маємо $c_{13}=17$. Знаходимо $x_{13}=min(a_1,b_3)=min(1,7)=1$. Перший рядок виключається з подальшого розглядання (викреслюється). Об'єм споживання $b_3=7-1=6$.

16		30	17	10	16	$-a_1 = 4, a_1 = 1$
	3	0	1	0	0	
30		27	26	9	23	a -6
	0	0		0	0	$a_2 = 6$
13		4	22	3	1	$a_3 - 10$
	1	0	0	7	2	$-a_3 = 8$, $a_3 = 1$
3		1	5	4	24	$-a_4 = 10$,
	3	7	0	0	0	$a_4 = 3$
b_1	-7	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$	
$\frac{b_{1}}{b_{1}} = \frac{b_{1}}{b_{1}}$	4		$b_3 = 6$			
$b_1 =$	= 3					

Залишилась одна клітинка. Заповнюємо: $x_{23} = 6$.

16		30	17	10	16	$-a_1 - 4$, $a_1 = 1$
	3	0	1	0	0	
30		27	26	9	23	a -6
	0	0	<u>6</u>	0	0	$a_2 = 6$
13		4	22	3	1	$a_3 - 10$
	1	0	0	7	2	$-a_3 = 8$, $a_3 = 1$
3		1	5	4	24	$\frac{a_4-10}{a_4}$
	3	7	0	0	0	$a_4 = 3$
b	7	$b_2 = 7$	$\frac{b_3 - 7}{}$	$b_4 = 7$	$b_5 = 2$	
b_1	4	_	$b_3 = 6$			
$b_1 =$	3					

Отже початковий розв'язок, знайдений методом мінімального елемента такий:

$$X^{(0)}_{_{\mathit{Mih.enem.}}} = \begin{pmatrix} 3 & 0 & 1 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 \\ 1 & 0 & 0 & 7 & 2 \\ 3 & 7 & 0 & 0 & 0 \end{pmatrix},$$

$$f\left(X^{(0)}_{_{\mathit{Mih.enem.}}}\right) = 3 \cdot 16 + 1 \cdot 17 + 6 \cdot 26 + 1 \cdot 13 + 7 \cdot 3 + 2 \cdot 1 + 3 \cdot 3 + 7 \cdot 1 = 273.$$

3. Знайдемо початковий розв'язок транспортної задачі методом Фогеля.

Запишемо таблицю, в яку вносимо об'єми виробництва та споживання та вартості перевезень. Вартості перевезень c_{ij} будемо записувати у верхньому лівому куточку клітинки, а об'єми перевезень x_{ij} у нижньому правому куточку клітинки.

Для кожного рядка та кожного стовпця знайдемо модуль різниці між мінімальною вартістю та найближчою до неї за значенням. Запишемо отримані числа у додатковий стовпчик справа та додатковий рядок знизу.

16	30	17	10	16	$a_1 = 4$	6
30	27	26	9	23	$a_2 = 6$	14
13	4	22	3	1	$a_3 = 10$	2
3	1	5	4	24	$a_4 = 10$	2
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$		
10	3	12	1	15		

Серед знайдених чисел виберемо максимальне: $max\{6,14,2,2,10,3,12,1,15\}=15$. Це число у п'ятому стовпчику. Серед вартостей перевезень п'ятого стовпчика виберемо мінімальну вартість: $min\{c_{15},c_{25},c_{35},c_{45}\}=min\{16,23,1,24\}=c_{35}=1$. Знаходимо $x_{35}=min(a_3,b_5)=min(10,2)=2$. Так як мінімум досягається у стовпці, то $x_{15}=x_{25}=x_{45}=0$ і п'ятий стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_3=10-2=8$.

16	30	17	10	16 0	$a_1 = 4$	6
30	27	26	9	23 0	$a_2 = 6$	14
13	4	22	3	1	$a_3 = 10, a_3 = 8$	2
3	1	5	4	24 0	$a_4 = 10$	2
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$		
10	3	12	1	15		

Для кожного рядка та кожного стовпця знайдемо модуль різниці між мінімальною вартістю та найближчою до неї за значенням.

16	30	17	10	16 0	$a_1 = 4$	6
30	27	26	9	23 0	$a_2 = 6$	17
13	4	22	3	1 2	$a_3 = 10, a_3 = 8$	1
3	1	5	4	24 0	$a_4 = 10$	2
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$		
10	3	12	1	15		

Серед знайдених чисел виберемо максимальне: $max\{6,17,1,2,10,3,12,1\}=17$. Це число у другому рядку. Серед вартостей перевезень другого рядка виберемо мінімальну вартість: $min\{c_{21},c_{22},c_{23},c_{24}\}=min\{30,27,26,9\}=c_{24}=9$. Знаходимо $x_{24}=min(a_2,b_4)=min(6,7)=6$. Так як мінімум досягається у рядку, то $x_{21}=x_{22}=x_{23}=0$ і другий рядок виключається з подальшого розглядання (викреслюється). Об'єм споживання $b_4=7-6=1$.

16	30	17	10	16 0	$a_1 = 4$	6
30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4	22	3	1 2	$a_3 = 10$, $a_3 = 8$	1
3	1	5	4	24 0	$a_4 = 10$	2
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$ $b_4 = 1$	$b_5 = 2$		
10	3	12	1	15		

Продовжуємо. Для кожного рядка та кожного стовпця знайдемо модуль різниці між мінімальною вартістю та найближчою до неї за значенням.

16	30	17	10	16 0	$a_1 = 4$	6
30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4	22	3	1 2	$a_3 = 10, a_3 = 8$	1
3	1	5	4	24 0	$a_4 = 10$	2
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$ $b_4 = 1$	$b_5 = 2$		
10	3	12	1	15		

Серед знайдених чисел виберемо максимальне: $max\{6,1,2,10,3,12,1\}=12$. Це число у третьому стовпчику. Серед вартостей перевезень третього стовпчика виберемо мінімальну вартість: $min\{c_{13},c_{33},c_{43}\}=min\{17,22,5\}=c_{43}=5$. Знаходимо $x_{43}=min(a_4,b_3)=min(10,7)=7$. Так як мінімум досягається у стовпчику, то $x_{13}=x_{33}=0$ і третій стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_4=10-7=3$.

16	30	17 0	10	16 0	$a_1 = 4$	7
30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4	22 0	3	1 2	$a_3 = 10, a_3 = 8$	1
3	1	5 7	4	24 0	$a_4 = 10, a_4 = 3$	2
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$ $b_4 = 1$	$b_5 = 2$		
10	3	12	1	15		

Продовжуємо. Для кожного рядка та кожного стовпця знайдемо модуль різниці між мінімальною вартістю та найближчою до неї за значенням.

				, , , , , , , , , , , , , , , , , , ,	men sa sma reminimi.	
16	30	17 0	10	16 0	$a_1 = 4$	6
30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4	22 0	3	1 2	$a_3 = 10, a_3 = 8$	1
3	1	5 7	4	24 0	$a_4 = 10, a_4 = 3$	2
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$ $b_4 = 1$	$b_5 = 2$		
10	3	12	1	15		

Серед знайдених чисел виберемо максимальне: $max\{6,1,2,10,3,1\}=10$. Це число у першому стовпчику. Серед вартостей перевезень першого стовпчика виберемо мінімальну вартість: $min\{c_{11},c_{31},c_{43}\}=min\{16,13,3\}=c_{41}=3$. Знаходимо $x_{41}=min(a_4,b_1)=min(3,7)=3$. Так як мінімум досягається у рядку, то $x_{42}=x_{44}=0$ і четвертий рядок виключається з подальшого розглядання (викреслюється). Об'єм споживання $b_1=7-3=4$.

16	30	17 0	10	16 0	$a_1 = 4$	6
30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4	22 0	3	1 2	$a_3 = 10$, $a_3 = 8$	1
3 3	1 0	5 7	4 0	24 0	$a_4 = 10, a_4 = 3$	2
$b_1 = 7$ $b_1 = 4$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$ $b_4 = 1$	$b_5 = 2$		
10	3	12	1	15		

Продовжуємо. Для кожного рядка та кожного стовпця знайдемо модуль різниці між мінімальною вартістю та найближчою до неї за значенням.

16	30	17 0	10	16 0	$a_1 = 4$	6
30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4	22 0	3	1 2	$a_3 = 10, a_3 = 8$	1
3 3	1 0	5 7	4 0	24 0	$a_4 = 10, a_4 = 3$	2
$b_1 = 7$ $b_1 = 4$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$ $b_4 = 1$	$b_5 = 2$		
3	26	12	7	15		

Серед знайдених чисел виберемо максимальне: $max\{6,1,3,26,7\}=26$. Це число у другому стовпчику. Серед вартостей перевезень другого стовпчика виберемо мінімальну вартість: $min\{c_{12},c_{32}\}=min\{30,4\}=c_{32}=4$. Знаходимо $x_{32}=min(a_3,b_2)=min(8,7)=7$. Так як мінімум досягається у стовпчику, то $x_{12}=0$ і другий стовпчик виключається з подальшого розглядання (викреслюється). Об'єм виробництва $a_3=8-7=1$.

16	30 0	17 0	10	16 0	$a_1 = 4$	6
30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4 7	22 0	3	1 2	$a_3 = 10, a_3 = 8,$ $a_3 = 1$	1
3 3	1 0	5 7	4 0	24 0	$a_4 = 10, a_4 = 3$	2
$b_1 = 7$ $b_1 = 4$	$b_2 = 7$	$b_3 = 7$	$\frac{b_4 = 7}{b_4 = 1}$	$b_5 = 2$		
3	26	12	7	15		

Продовжуємо. Для кожного рядка та кожного стовпця знайдемо модуль різниці між мінімальною вартістю та найближчою до неї за значенням.

16	30 0	17 0	10	16 0	$a_1 = 4$	6
30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4 7	22 0	3	1 2	$a_3 = 10, a_3 = 8,$ $a_3 = 1$	10
3 3	1 0	5 7	4 0	24 0	$a_4 = 10, a_4 = 3$	2
$b_1 = 7$ $b_1 = 4$	<i>b</i> ₂ = 7	$b_3 = 7$	$b_4 = 7$ $b_4 = 1$	$b_5 = 2$		
3	26	12	7	15		

Серед знайдених чисел виберемо максимальне: $max\{6,10,3,7\}=10$. Це число у третьому рядку. Серед вартостей перевезень третього рядка виберемо мінімальну вартість: $min\{c_{31},c_{34}\}=min\{13,3\}=c_{34}=3$. Знаходимо $x_{34}=min(a_3,b_4)=min(1,1)=1$.

Маємо випадок рівних об'ємів виробництва та споживання. У методі Фогеля, на відміну від методів північно-західного кути та мінімального елементу, з таблиці викреслюється або рядок або стовпчик, а не рядок та стовпчик одночасно.

Виключимо з подальшого розглядання (викреслимо) третій рядок. Об'єм споживання $b_4 = 1 - 1 = 0$.

16	30 0	17 0	10	16 0	$a_1 = 4$	6
30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4 7	22 0	3 1	1 2	$a_3 = 10, a_3 = 8,$ $a_3 = 1$	10
3 3	1 0	5 7	4 0	24 0	$a_4 = 10, a_4 = 3$	2
$b_1 = 7$ $b_1 = 4$	<i>b</i> ₂ = 7	$b_3 = 7$	$b_4 = 7$ $b_4 = 1$ $b_4 = 0$	$b_5 = 2$		
3	26	12	7	15		

Продовжуємо. Для кожного рядка та кожного стовпця знайдемо модуль різниці між мінімальною вартістю та найближчою до неї за значенням.

$\begin{vmatrix} 10 & 30 & 1/ & 10 & 10 & a_1 = 4 & 0 \end{vmatrix}$	16	30	17	10	16	$a_1 = 4$	6
--	----	----	----	----	----	-----------	---

	0	0		0		
30	27	26	9	23	$a_2 = 6$	17
0	0	0	<mark>6</mark>	0	$a_2 - 0$	1 /
13	4	22	3	1	$a_3 = 10, a_3 = 8,$	10
	<mark>7</mark>	0	1	<mark>2</mark>	$a_3 = 1$	10
3	1	5	4	24	$a_4 = 10, a_4 = 3$	2
3	0	<mark>7</mark>	0	0		2
$b_1 = 7$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$	$b_5 = 2$		
$b_1 = 4$			$b_{4} = 1$			
			$b_4 = 0$			
16	26	12	10	15		

Серед знайдених чисел виберемо максимальне: $max\{6,16,10\}=16$. Це число у першому стовпчику. Так як маємо тільки один невикреслений рядок, то $x_{11} = min(a_1,b_1) = min(4,4) = 4$. Маємо випадок рівних об'ємів виробництва та споживання. Виключимо з подальшого розглядання (викреслимо) перший стовпчик Об'єм виробництва $a_1 = 4 - 4 = 0$.

16 4	30 0	17 0	10	16 0	$a_1 = 4$, $a_1 = 0$	6
30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4 7	22 0	3 1	1 2	$a_3 = 10, a_3 = 8,$ $a_3 = 1$	10
3 3	1 0	5 7	4 0	24 0	$a_4 = 10, a_4 = 3$	2
$b_1 = 7$ $b_1 = 4$	$b_2 = 7$	$b_3 = 7$	$b_4 = 7$ $b_4 = 1$ $b_4 = 0$	$b_5 = 2$		
16	26	12	10	15		

Випадок $min(a_i,b_j)=a_i=b_j$ для певних i та j свідчить , що початковий розвязок є виродженим (тобто містить **меньше** за m+n-1 додатну компоненту). Метод Фогеля дозволяє отримати початковий розв'язок з рівно m+n-1 компонент, але частина з них може дорівнювати нулеві.

Для даного прикладу $x_{14} = 0$ буде базисною компонентою початкового розв'язку.

16	30	17	10	16	$a_1 = 4$, $a_1 = 0$	6
4	0	0	0	0		O

30 0	27 0	26 0	9 6	23 0	$a_2 = 6$	17
13	4 7	22 0	3 1	1 2	$a_3 = 10, a_3 = 8,$ $a_3 = 1$	10
3 3	1 0	5 7	4 0	24 0	$a_4 = 10, a_4 = 3$	2
$b_1 = 7$ $b_1 = 4$	b ₂ = 7	<i>b</i> ₃ = 7	$b_4 = 7$ $b_4 = 1$ $b_4 = 0$	$b_5 = 2$		
16	26	12	10	15		

Отже початковий розв'язок, знайдений методом Фогеля такий:

$$X_{\phi_{OZERR}}^{(0)} = egin{pmatrix} 4 & 0 & 0 & \underline{0} & 0 \ 0 & 0 & 0 & 6 & 0 \ 0 & 7 & 0 & 1 & 2 \ 3 & 0 & 7 & 0 & 0 \end{pmatrix},$$

$$f\left(X_{\text{мін.елем.}}^{(0)}\right) = 4 \cdot 16 + 0 \cdot 10 + 6 \cdot 9 + 7 \cdot 4 + 1 \cdot 3 + 2 \cdot 1 + 3 \cdot 3 + 7 \cdot 5 = 195.$$

Знайдемо оптимальний розв'язок транспортної задачі методом потенціалів. За початковий розв'язок виберемо розв'язок, який знайдено за методом мінімального елементу.

	v_1	v_2	v_3	v_4	v_5	a_{i}
u_1	16	30	17	10	16	1
	3	0	1	0	0	4
u_2	30	27	26	9	23	6
	0	0	<u>6</u>	0	0	6
u_3	13	4	22	3	1	10
	1	0	0	7	2	10
u_4	3	1	5	4	24	10
	3	7	0	0	0	10
b_{j}	7	7	7	7	2	

Для **базисних компонент** розв'язку записуємо систему рівнянь $v_i - u_i = c_{ij}$.

рівнянь з m + n = 9 невідомими.

$$v_1 - u_1 = 16,$$

 $v_3 - u_1 = 17,$
 $v_3 - u_2 = 26,$
 $v_1 - u_3 = 13,$
 $v_4 - u_3 = 3,$
 $v_5 - u_3 = 1,$

Маємо таку систему m+n-1=8 Нехай одна зі змінних дорівнює нулеві. Наприклад, $u_3 = 0$. Тоді розв'язок

$$u_1 = -3$$
, $u_2 = -12$, $u_3 = 0$, $u_4 = 10$, $v_1 = 13$,

$$v_1 - u_4 = 3$$
,
 $v_2 - u_4 = 1$.
 $v_2 = 11$,
 $v_3 = 14$,
 $v_4 = 3$,
 $v_5 = 1$.

Для **небазисних компонент** розв'язку обчислюємо оцінки за формулами $\Delta_{ij} = v_j - u_i - c_{ij}$.

$$\begin{split} & \Delta_{12} = v_2 - u_1 - c_{12} = 11 - \left(-3\right) - 30 = 11 + 3 - 30 = -16 < 0, \\ & \Delta_{14} = v_4 - u_1 - c_{14} = 3 - \left(-3\right) - 10 = 3 + 3 - 10 = -4 < 0, \\ & \Delta_{15} = v_5 - u_1 - c_{15} = 1 - \left(-3\right) - 16 = 1 + 3 - 16 = -12 < 0, \\ & \Delta_{21} = v_1 - u_2 - c_{21} = 13 - \left(-12\right) - 30 = 13 + 12 - 30 = -5 < 0, \\ & \Delta_{22} = v_2 - u_2 - c_{22} = 11 - \left(-12\right) - 27 = 11 + 12 - 27 = -4 < 0, \\ & \Delta_{24} = v_4 - u_2 - c_{24} = 3 - \left(-12\right) - 9 = 3 + 12 - 9 = 6 > 0, \\ & \Delta_{25} = v_5 - u_2 - c_{25} = 1 - \left(-12\right) - 23 = 1 + 12 - 23 = -10 < 0, \\ & \Delta_{32} = v_2 - u_3 - c_{32} = 11 - 0 - 4 = 7 > 0, \\ & \Delta_{33} = v_3 - u_3 - c_{33} = 14 - 0 - 22 = -8 < 0, \\ & \Delta_{43} = v_3 - u_4 - c_{43} = 14 - 10 - 5 = -1 < 0, \\ & \Delta_{44} = v_4 - u_4 - c_{44} = 3 - 10 - 4 = -11 < 0, \\ & \Delta_{45} = v_5 - u_4 - c_{45} = 1 - 10 - 24 = -33 < 0 \end{split}$$

Маємо дві оцінки, які є додатними. Це означає, що план перевезень можна покращити. Виберемо максимальну додатну оцінку. Це оцінка Δ_{32} . Змінну x_{32} введемо до базису.

Побудуємо замкнений ланцюжок, який починається в клітинці (3,2), яку позначимо знаком «+», і буде проходити через деякі клітинки, які відповідають базисним змінним. При цьому ланцюжок має тільки вертикальні та горизонтальні ланки і клітинки почергово позначаються знаками «+» та «-».

	v_1		v_2	v_3		v_4		v_5	
u_1	16		30	17		10		16	
		3	0		1		0		0
u_2	30		27	26		9		23	
		0	0		<u>6</u>		0		0
u_3	13		-4- ₁ +	22		3		1	
		1	$\overline{0}$		0		7		2
u_4	3	+	1	5		4		24	
		<mark>3</mark> '	<mark>7</mark>		0		0		0

Щоб визначити, яку змінну потрібно вивести із базису, знайдемо величину

$$heta = \min_{\substack{no \ \kappa$$
літинках, які позначено знаком"—"}} x_{ij} .

Об'єми перевезень в клітинках ланцюжка перераховуються за правилом:

- в клітинках, які позначені знаком «+» до об'ємів перевезень додається θ ,
- в клітинках, які позначені знаком «—» від об'ємів перевезень віднімається θ .

У нашому випадку; $\theta = min(1,7) = 1$. Тому змінна x_{31} виводиться з базису і $x_{31} = 1 - 1 = 0$, $x_{32} = 0 + 1 = 1$, $x_{41} = 3 + 1 = 4$, $x_{42} = 7 - 1 = 6$.

	v_1		v_2		v_3		v_4		v_5	
u_1	16		30		17		10		16	
1		3		0		1		0		0
u_2	30		27		26		9		23	
		0		0		<u>6</u>		0		0
u_3	13		4		22		3		1	
		0		1		0		<mark>7</mark>		2
u_4	3		1		5		4		24	
-		4		<u>6</u>		0		0		0

Отже,

$$X^{(1)} = \begin{pmatrix} 3 & 0 & 1 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 \\ 0 & 1 & 0 & 7 & 2 \\ 4 & 6 & 0 & 0 & 0 \end{pmatrix},$$

$$f(X^{(1)}) = 3 \cdot 16 + 1 \cdot 17 + 6 \cdot 26 + 1 \cdot 4 + 7 \cdot 3 + 2 \cdot 1 + 4 \cdot 3 + 6 \cdot 1 = 266.$$

Продовжуємо розв'язування задачі. Для **базисних компонент** розв'язку записуємо систему рівнянь $v_i - u_i = c_{ii}$.

$$v_1 - u_1 = 16,$$

 $v_3 - u_1 = 17,$
 $v_3 - u_2 = 26,$
 $v_2 - u_3 = 4,$
 $v_4 - u_3 = 3,$
 $v_5 - u_3 = 1,$
 $v_1 - u_4 = 3,$
 $v_2 - u_4 = 1.$

Нехай $u_3 = 0$. Тоді розв'язок системи такий:

$$u_{1} = -10$$

$$u_{2} = -19$$

$$u_{3} = 0,$$

$$u_{4} = 3,$$

$$v_{1} = 6,$$

$$v_{2} = 4,$$

$$v_{3} = 7,$$

$$v_{4} = 3,$$

$$v_{5} = 1.$$

Для **небазисних компонент** розв'язку обчислюємо оцінки за формулами $\Delta_{ij} = v_j - u_i - c_{ij}$.

$$\Delta_{12} = v_2 - u_1 - c_{12} = 4 - (-10) - 30 = 4 + 10 - 30 = -16 < 0,$$

$$\Delta_{14} = v_4 - u_1 - c_{14} = 3 - (-10) - 10 = 3 + 10 - 10 = 3 > 0,$$

$$\Delta_{15} = v_5 - u_1 - c_{15} = 1 - (-10) - 16 = 1 + 10 - 16 = -5 < 0,$$

$$\Delta_{21} = v_1 - u_2 - c_{21} = 6 - (-19) - 30 = 6 + 19 - 30 = -5 < 0,$$

$$\Delta_{22} = v_2 - u_2 - c_{22} = 4 - (-19) - 27 = 4 + 19 - 27 = -4 < 0,$$

$$\Delta_{24} = v_4 - u_2 - c_{24} = 3 - (-19) - 9 = 3 + 19 - 9 = 13 > 0,$$

$$\Delta_{25} = v_5 - u_2 - c_{25} = 1 - (-19) - 23 = 1 + 19 - 23 = -3 < 0,$$

$$\Delta_{31} = v_1 - u_3 - c_{31} = 6 - 0 - 13 = -7 < 0,$$

$$\Delta_{33} = v_3 - u_3 - c_{33} = 7 - 0 - 22 = -15 < 0,$$

$$\Delta_{43} = v_3 - u_4 - c_{43} = 7 - 3 - 5 = -1 < 0,$$

$$\Delta_{44} = v_4 - u_4 - c_{44} = 3 - 3 - 4 = -4 < 0,$$

$$\Delta_{45} = v_5 - u_4 - c_{45} = 1 - 3 - 24 = -26 < 0$$

Виберемо максимальну додатну оцінку. Це оцінка Δ_{24} . Змінну x_{24} введемо до базису. Побудуємо замкнений ланцюжок.

	v_1		v_2		v_3		v_4	v_5	
u_1	16	_	<u>30</u>		<u>17</u>	+	10	16	
	/	3		0	, 1	1	0		0
u_2	30		27		26		9	23	
_		0		0	∀ (5 –	0		0
u_3	13		4	+ _	22		<u>3</u> _\	1	
		0		1	()	7		2
u_4	3	+ ,	1		5		4	24	
		4		6 ^V	()	0		0

Знаходимо $\theta = min(7,6,3,6) = 3$. Тому змінна x_{11} виводиться з базису і $x_{24} = 0 + 3 = 3$, $x_{34} = 7 - 3 = 4$, $x_{32} = 1 + 3 = 4$, $x_{42} = 6 - 3 = 3$, $x_{41} = 4 + 3 = 7$, $x_{11} = 3 - 3 = 0$, $x_{13} = 1 + 3 = 4$, $x_{23} = 6 - 3 = 3$.

	v_1		v_2		v_3		v_4		v_5	
u_1	16		30		17		10		16	
		0		0		4		0		0
u_2	30		27		26		9		23	
		0		0		3		3		0
u_3	13		4		22		3		1	
3		0		4		0		4		2
u_4	3		1		5		4		24	
		<mark>7</mark>		3		0		0		0

Отже,

$$X^{(2)} = \begin{pmatrix} 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 3 & 3 & 0 \\ 0 & 4 & 0 & 4 & 2 \\ 7 & 3 & 0 & 0 & 0 \end{pmatrix},$$

$$f(X^{(2)}) = 4 \cdot 17 + 3 \cdot 26 + 3 \cdot 9 + 4 \cdot 4 + 4 \cdot 3 + 2 \cdot 1 + 7 \cdot 3 + 3 \cdot 1 = 227$$
.

Наступна ітерація. Для **базисних компонент** розв'язку записуємо систему рівнянь $v_i - u_i = c_{ii}$.

$$v_{3} - u_{1} = 17,$$

$$v_{3} - u_{2} = 26,$$

$$v_{4} - u_{2} = 9,$$

$$v_{2} - u_{3} = 4,$$

$$v_{4} - u_{3} = 3,$$

$$v_{5} - u_{3} = 1,$$

$$v_{1} - u_{4} = 3,$$

$$v_{2} - u_{4} = 1.$$

Нехай $u_3 = 0$. Тоді розв'язок системи такий:

такий:
$$u_1 = 3,$$

$$u_2 = -6,$$

$$u_3 = 0,$$

$$u_4 = 3,$$

$$v_1 = 6,$$

$$v_2 = 4,$$

$$v_3 = 20,$$

$$v_4 = 3,$$

$$v_5 = 1.$$

Для **небазисних компонент** розв'язку обчислюємо оцінки за формулами $\Delta_{\!_{ij}} = v_{_j} - u_{_i} - c_{_{ij}}.$

$$\begin{split} & \Delta_{11} = v_1 - u_1 - c_{11} = 6 - 3 - 16 = -13 < 0 \\ & \Delta_{12} = v_2 - u_1 - c_{12} = 4 - 3 - 30 = -29 < 0, \\ & \Delta_{14} = v_4 - u_1 - c_{14} = 3 - 3 - 10 = -10 < 0, \\ & \Delta_{15} = v_5 - u_1 - c_{15} = 1 - 3 - 16 = -18 < 0, \\ & \Delta_{21} = v_1 - u_2 - c_{21} = 6 - (-6) - 30 = 6 + 6 - 30 = -18 < 0, \\ & \Delta_{22} = v_2 - u_2 - c_{22} = 4 - (-6) - 27 = 4 + 6 - 27 = -17 < 0, \\ & \Delta_{25} = v_5 - u_2 - c_{25} = 1 - (-6) - 23 = 1 + 6 - 23 = -16 < 0, \\ & \Delta_{31} = v_1 - u_3 - c_{31} = 6 - 0 - 13 = -7 < 0, \\ & \Delta_{33} = v_3 - u_3 - c_{33} = 20 - 0 - 22 = -2 < 0, \\ & \Delta_{43} = v_3 - u_4 - c_{43} = 20 - 3 - 5 = 12 > 0, \\ & \Delta_{44} = v_4 - u_4 - c_{44} = 3 - 3 - 4 = -4 < 0, \\ & \Delta_{45} = v_5 - u_4 - c_{45} = 1 - 3 - 24 = -26 < 0 \end{split}$$

Додатною є оцінка Δ_{43} . Змінну x_{43} введемо до базису. Побудуємо замкнений ланцюжок.

	v_1	v_2	v_3	v_4	v_5
u_1	16	30	17	10	16
	0	0	4	0	0
u_2	30	27	26	9_1	23
	0	0	3	3	0
u_3	13	4	22	3>	1
	0	1 4	0	4	2
u_4	3	1	5_V+	4	24
	7	3	0	0	0

Знаходимо $\theta = min(3,4,3) = 3$. Обчислюємо нові значення перевезень у ланцюжку: $x_{43} = 0 + 3 = 3$, $x_{42} = 3 - 3 = 0$, $x_{32} = 4 + 3 = 7$, $x_{34} = 4 - 3 = 1$, $x_{24} = 3 + 3 = 7$, $x_{23} = 3 - 3 = 0$.

Отримали, що перевезення $x_{42} = 0$ та $x_{23} = 0$. Виключимо з базису змінну x_{23} .

	v_1	ı	, ₂	v_3	v_4	v_5
u_1	16	3	80	17	10	16
1	(0	0	4	0	0
u_2	30	2	27	26	9	23
		0	0	0	<u>6</u>	0
u_3	13	4	-	22	3	1
		0	<mark>7</mark>	0	1	2
u_4	3	1	-	5	4	24
		7	0	3	0	0

Отже,

$$X^{(3)} = \begin{pmatrix} 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 \\ 0 & 7 & 0 & 1 & 2 \\ 7 & \underline{0} & 3 & 0 & 0 \end{pmatrix},$$

$$f(X^{(3)}) = 4 \cdot 17 + 6 \cdot 9 + 7 \cdot 4 + 1 \cdot 3 + 2 \cdot 1 + 7 \cdot 3 + 3 \cdot 5 = 191.$$

Наступна ітерація. Для **базисних компонент** розв'язку записуємо систему рівнянь $v_i - u_i = c_{ii}$.

$$v_{3} - u_{1} = 17,$$

$$v_{4} - u_{2} = 9,$$

$$v_{2} - u_{3} = 4,$$

$$v_{4} - u_{3} = 3,$$

$$v_{5} - u_{3} = 1,$$

$$v_{1} - u_{4} = 3,$$

$$v_{2} - u_{4} = 1,$$

$$v_{3} - u_{4} = 5.$$

Нехай $u_3 = 0$. Тоді розв'язок системи такий:

такий:
$$u_1 = -9, \ u_2 = -6,$$

$$u_3 = 0, \ u_4 = 3,$$

$$v_1 = 0, \ v_2 = 4,$$

$$v_3 = 8, \ v_4 = 3,$$

$$v_5 = 1.$$

Для **небазисних компонент** розв'язку обчислюємо оцінки за формулами $\Delta_{ii} = v_i - u_i - c_{ii}$.

$$\Delta_{11} = v_1 - u_1 - c_{11} = 0 - (-9) - 16 = 9 - 16 = -7 < 0$$

$$\Delta_{12} = v_2 - u_1 - c_{12} = 4 - (-9) - 30 = 4 + 9 - 30 = -17 < 0,$$

$$\Delta_{14} = v_4 - u_1 - c_{14} = 3 - (-9) - 10 = 3 + 9 - 10 = 2 > 0,$$

$$\Delta_{15} = v_5 - u_1 - c_{15} = 1 - (-9) - 16 = 1 + 10 - 16 = -5 < 0,$$

$$\Delta_{21} = v_1 - u_2 - c_{21} = 0 - (-6) - 30 = 0 + 6 - 30 = -24 < 0,$$

$$\Delta_{22} = v_2 - u_2 - c_{22} = 4 - (-6) - 27 = 4 + 6 - 27 = -17 < 0,$$

$$\Delta_{23} = v_3 - u_2 - c_{23} = 8 - (-6) - 26 = 8 + 6 - 26 = -12 < 0$$

$$\Delta_{25} = v_5 - u_2 - c_{25} = 1 - (-6) - 23 = 1 + 6 - 23 = -16 < 0,$$

$$\Delta_{31} = v_1 - u_3 - c_{31} = 0 - 0 - 13 = -13 < 0,$$

$$\Delta_{33} = v_3 - u_3 - c_{33} = 8 - 0 - 22 = -14 < 0,$$

$$\Delta_{44} = v_4 - u_4 - c_{44} = 3 - 3 - 4 = -4 < 0,$$

$$\Delta_{45} = v_5 - u_4 - c_{45} = 1 - 3 - 24 = -26 < 0.$$

Додатною є оцінка Δ_{14} . Змінну x_{14} введемо до базису. Побудуємо замкнений ланцюжок.

	v_1	v_2	v_3	v_4	v_5
u_1	16	30	17	10 +	16
	0	0		0	0
u_2	30	27	26	9	23
_	0	0	0	6	0
u_3	13	4 +	22	3 V	1
	0	<mark>7</mark> ! [*]	0	1 1	2
u_4	3	1	5 +	4	24
	7	0	$\rightarrow \frac{1}{3}$	0	0

Знаходимо $\theta = min(1,0,4) = 0$. Об'єми перевезень не змінюються, але змінна x_{42} виводиться з базису. Така ситуація склалась у зв'язку з тим, що базисний розв'язок є виродженим.

джени	1.									
	v_1		v_2		v_3		v_4		v_5	
u_1	16		30		17		10		16	
•		0		0		4		0		0
u_2	30		27		26		9		23	
_		0		0		0		6		0
u_3	13		4		22		3		1	
		0		7		0		1		2
u_4	3		1		5		4		24	
		<mark>7</mark>		0		3		0		0

Отже,

$$X^{(4)} = \begin{pmatrix} 0 & 0 & 4 & \underline{0} & 0 \\ 0 & 0 & 0 & 6 & 0 \\ 0 & 7 & 0 & 1 & 2 \\ 7 & 0 & 3 & 0 & 0 \end{pmatrix},$$

$$f(X^{(3)}) = 4 \cdot 17 + 6 \cdot 9 + 7 \cdot 4 + 1 \cdot 3 + 2 \cdot 1 + 7 \cdot 3 + 3 \cdot 5 = 191.$$

Наступна ітерація. Для **базисних компонент** розв'язку записуємо систему рівнянь $v_i - u_i = c_{ii}$.

$$v_3 - u_1 = 17$$
, $v_4 - u_1 = 10$,
 $v_4 - u_2 = 9$, $v_2 - u_3 = 4$,
 $v_4 - u_3 = 3$, $v_5 - u_3 = 1$,
 $v_1 - u_4 = 3$, $v_3 - u_4 = 5$.

Нехай $u_3 = 0$. Тоді розв'язок системи такий:

такий:
$$u_1 = -7 , u_2 = -6 ,$$

$$u_3 = 0 , u_4 = 5 ,$$

$$v_1 = 8 , v_2 = 4 ,$$

$$v_3 = 10 , v_4 = 3 ,$$

$$v_6 = 1 .$$

Для **небазисних компонент** розв'язку обчислюємо оцінки за формулами $\Delta_{ij} = v_j - u_i - c_{ij}$.

$$\Delta_{11} = v_1 - u_1 - c_{11} = 8 - (-7) - 16 = 8 + 7 - 16 = -1 < 0$$

$$\Delta_{12} = v_2 - u_1 - c_{12} = 4 - (-7) - 30 = 4 + 7 - 30 = -19 < 0,$$

$$\Delta_{15} = v_5 - u_1 - c_{15} = 1 - (-7) - 16 = 1 + 7 - 16 = -8 < 0,$$

$$\Delta_{21} = v_1 - u_2 - c_{21} = 8 - (-6) - 30 = 8 + 6 - 30 = -16 < 0,$$

$$\Delta_{22} = v_2 - u_2 - c_{22} = 4 - (-6) - 27 = 4 + 6 - 27 = -17 < 0,$$

$$\Delta_{23} = v_3 - u_2 - c_{23} = 10 - (-6) - 26 = 10 + 6 - 26 = -10 < 0$$

$$\Delta_{25} = v_5 - u_2 - c_{25} = 1 - (-6) - 23 = 1 + 6 - 23 = -16 < 0,$$

$$\Delta_{31} = v_1 - u_3 - c_{31} = 8 - 0 - 13 = -5 < 0,$$

$$\Delta_{33} = v_3 - u_3 - c_{33} = 10 - 0 - 22 = -12 < 0,$$

$$\Delta_{42} = v_2 - u_4 - c_{44} = 4 - 5 - 4 = -5 < 0$$

$$\Delta_{44} = v_4 - u_4 - c_{44} = 3 - 5 - 4 = -6 < 0,$$

$$\Delta_{45} = v_5 - u_4 - c_{45} = 1 - 5 - 24 = -28 < 0$$

Так як для всіх Δ_{ij} виконано умову $\Delta_{ij} \leq 0$, то базисний розв'язок $X^{(4)}$ є оптимальним. Маємо

$$X_* = \begin{pmatrix} 0 & 0 & 4 & \underline{0} & 0 \\ 0 & 0 & 0 & 6 & 0 \\ 0 & 7 & 0 & 1 & 2 \\ 7 & 0 & 3 & 0 & 0 \end{pmatrix}, \ f(X_*) = 191.$$