

#### Universidade do Minho

Escola de Engenharia Mestrado em Engenharia Informática

# SISTEMAS INTELIGENTES Agentes & Sistemas Multiagente

Ano Letivo de 2023/2024

# Implementação de um sistema multiagente de Gestão Hospitalar

# Grupo 3

PG53895 Joana Isabel Freitas Pereira PG53645 Ana Rita Santos Poças PG52686 João Delfim Da Cruz Pereira

17 de maio de 2024

# Índice

| 1 | Intr                            | odução                     |                            | 3         |  |
|---|---------------------------------|----------------------------|----------------------------|-----------|--|
|   | 1.1                             | Caso c                     | le Estudo                  | 3         |  |
|   | 1.2                             | Objeti                     | vos                        | 3         |  |
|   | 1.3                             | Estrut                     | ura do Relatório           | 4         |  |
| 2 | Arquitetura Sistema MultiAgente |                            |                            |           |  |
|   | 2.1                             | Arquit                     | etura                      | 5         |  |
|   | 2.2                             | Agente                     | es                         | 5         |  |
|   | 2.3                             | _                          | namento                    | 6         |  |
| 3 | Protocolo de Comunicação        |                            |                            |           |  |
|   | 3.1                             | Compo                      | ortamentos                 | 8         |  |
|   | 3.2                             | Perfori                    | mativas                    | 9         |  |
|   | 3.3                             | Mecan                      | ismos de Negociação        | 9         |  |
|   | 3.4                             | Diagra                     | ma de Classes              | 10        |  |
| 4 | Fluxo de Atividades             |                            |                            |           |  |
|   | 4.1                             | 4.1 Diagrama de Atividades |                            |           |  |
|   | 4.2                             | Diagramas de Sequência     |                            |           |  |
|   |                                 | 4.2.1                      | ·                          | 12        |  |
|   |                                 | 4.2.2                      | Encaminhamento do Paciente | 12        |  |
| 5 | Res                             | Resultados obtidos         |                            |           |  |
| 6 | Mel                             | horias                     |                            | 16        |  |
| • |                                 | 6.0.1                      |                            | - o<br>16 |  |
|   |                                 | 6.0.2                      | , , [ . 6                  | 16        |  |
|   |                                 | 6.0.3                      | ,                          | 16        |  |
|   |                                 | 5.0.5                      | •                          |           |  |
| 7 | Con                             | clusão                     |                            | 17        |  |

# 1 Introdução

O presente relatório surge no contexto do trabalho prático da unidade curricular "Agentes e Sistemas Multi-Agente", do perfil de Sistemas Inteligentes do Mestrado em Engenharia Informática da Universidade do Minho.

#### 1.1 Caso de Estudo

O caso de estudo deste projeto consiste na modelação e implementação de um sistema multiagente para a gestão de 2 hospitais da zona norte de Portugal. O sistema foi projetado para lidar com diferentes aspetos desta gestão, incluindo a receção de pacientes, encaminhamento de pacientes para outra gestão hospitalar (no caso de a especialidade que necessitam não se encontrar disponível no hospital), providenciamento de tratamento aos pacientes e respetiva alta.

O sistema implementado é composto por 3 diferentes tipos de agentes: **Gestor Hospitalar**, **Médico**, **Paciente**. Cada um destes agentes possui a sua função própria e responsabilidade dentro do sistema, sendo que cada um dos agentes possui comportamentos, performativas e capacidades de comunicação especificas. O nosso sistema está desenvolvido de forma distribuída e, assim, cada agente é capaz de operar independentementee consegue comunicar-se com os outros agentes em tempo real. A comunicação entre os agentes do nosso sistema é feita através da troca de mensagens no protocolo padrão de agentes, que se tornam desta forma escaláveis e facilmente implementados.

O caso de estudo do projeto é bastante pertinente porque a gestão hospitalar é um procedimento complexo e que necessita de uma aborsagem distribuída e escalável, de forma a torná-la segura e eficaz.

## 1.2 Objetivos

O principal objetivo deste trabalho foi implementar um sistema multiagente para simular a gestão de dois hospitais. Utilizamos a biblioteca *SPADE* de forma a implementar a comunicação e troca de mensagens entre os agentes.

Para a concretização deste objetivo foi necessário definirmos uma arquitetura capaz de suportar o processo de planeameto e tomada de decisão, estratégias de comunicação e sincronização de agentes.

### 1.3 Estrutura do Relatório

Este relatório tem como objetivo de demonstrar a análise da arquitetura e a descrição do sistema multiagente. Para atingir este objetivo, dividimos o relatório nos seguintes capítulos: Introdução (onde apresentamos o caso de estudo e os objetivos do trabalho), Arquitetura do Sistema MultiAgente (onde explicamos a arquitetura do nosso sistema, descrevemos os agentes presentes no sistema e o funcionamento do sistema multiagente), Protocolo de Comunicação (onde explicamos os comportamentos, performativas e mecanismos de negociação do sistema e apresentamos o diagrama de classes para se compreender melhor a arquitetura do sistema), Fluxo de Atividades (onde apresentamos o Diagrama de Atividades do sistema, bem como dois diagramas de Sequência que explicam o funcionamento do nosso sistema), Resultados Obtidos (onde demonstramos o programa a funcionar), Melhorias (onde apresentamos melhorias que poderíamos aplicar no futuro ao nosso programa) e por último a Conclusão.

# 2 Arquitetura Sistema MultiAgente

## 2.1 Arquitetura

A arquitetura que desenvolvemos consiste numa arquitetura distribuída, visto que os diferentes agentes trabalham em conjunto para comunicarem e trocarem informações entre si. O Gestor Hospitalar armazena toda a informação relevante do sistema (especialidades disponíveis, médicos disponíveis, número máximo de pacientes, número de pacientes atual) pelo que podemos considerar que ele atua como agente principal, visto que é o principal responsável pela maior parte das tomadas de decisão do sistema e a colaboração entre os vários agentes.

## 2.2 Agentes

No sistema de gestão hospitalar os agentes devem trabalhar em conjunto para alcançar o objetivo de obter o tratamento de cada paciente que der entrada numa unidade hospitalar. O sistema possui vários tipos de agentes inteligentes, cada um com caraterísticas específicas para o bom funcionamento do sistema.

#### • Agente: Gestor Hospitalar

Descrição: Agente deliberativo, que gere os recursos médicos do hospital. Ele facilita a admissão de pacientes quando há vaga na especialidade necessária e permite que o paciente escolha entre dois médicos. Quando a especialidade não está disponível, encaminha o paciente para outro hospital. Além disso, autoriza a alta de pacientes e possui acesso a informações críticas do hospital, como especialidades, vagas, médicos disponíveis e número de pacientes em cada especialidade.

#### • Agente: Médico

 Descrição: Agente reativo que providencia tratamento ao paciente que escolheu ser atendido por ele. Tem simplesmente a função de providenciar tratamento ao paciente.

#### • Agente: Paciente

 Descrição: Agente deliberativo que é capaz de escolher o médico com o qual quer ser tratado entre duas escolhas providenciadas pelo Gestor Hospitalar. Este agente pede que o gestor hospitalar lhe providencie um médico e quando elege o médico pede ao médico o respetivo tratamento. Quando o tratamento é providenciado pede ainda ao gestor hospitalar que lhe seja dada alta.

Cada agente desempenha um papel fundamental no êxito do sistema de gestão hospitalar, colaborando de forma cooperativa para garantir a eficiência das operações hospitalares. Nesse ambiente colaborativo, os agentes podem compartilhar informações e trabalhar em conjunto para alcançar o objetivo de tratar o paciente.

### 2.3 Funcionamento

O programa que desenvolvemos tem como objetivo gerir e simular as operações de um hospital. De forma a conseguirmos obter um maior realismo, decidimos implementar dois hospitais que estão em funcionamento para receber os pacientes. Assim, temos o Hospital "UMINHO" que possui as especialidades "cardiologia", "pediatria" e "neurologia" e o hospital "UPORTO" que possui as especialidades "dermatologia", "psiquiatria" e "hematologia". Assim, um paciente quando é criado no programa pode dar entrada em qualquer um dos hospitais, com qualquer uma das especialidades referidas anteriormente. Caso a especialidade não exista, ele deve ser reencaminhado para o hospital onde essa especialidade está disponível.

Primeiramente, criamos e inicializamos os agentes referentes ao hospital UMINHO:

- 5 médicos (medicoAgent) para cada uma das especialidades disponíveis, sendo que o seu jid será o nome da especialidade, seguido de um número entre 100 e 999, por exemplo "neurologia618". Os médicos também possuem um rating (valor de 1 a 5) e um level ("principiante" ou "avançado"), porém esta informação é só conhecida pelo Gestor do Hospital
- O Gestor do hospital que é inicializado com toda a informação necessária: as especialidades disponíveis no hospital, o nome dos médicos existentes em cada especialidade (com o seu rating e level), o nome do Hospital parceiro (neste caso o "UPORTO"), para que possa encaminhar pacientes.

Em seguida, criamos e inicializamos os agentes referentes ao hospital UPORTO:

- 5 médicos (medicoAgent) para cada uma das especialidades disponíveis, sendo que o seu jid será o nome da especialidade, seguido de um número entre 100 e 999, por exemplo "dermatologia618". Os médicos também possuem um rating (valor de 1 a 5) e um level ("principiante" ou "avançado"), porém esta informação é só conhecida pelo Gestor do Hospital
- O Gestor do hospital que é inicializado com toda a informação necessária: as especialidades disponíveis no hospital, o nome dos médicos existentes em cada especialidade (com o seu rating e level), o nome do Hospital parceiro (neste caso o "UMINHO"), para que possa encaminhar pacientes.

Por fim, criamos e inicializamos os pacientes do sistema. Quando um paciente é criado, é

efetuada uma "triagem", isto é, é lhe atribuida uma especialidade de forma aleatória dentro das especialidades da lista = ["cardiologia", "pediatria", "neurologia", "dermatologia", "psiquiatria", "hematologia"]. O hospital onde ele vai dar entrada de forma aleatória entre os disponíveis ("UPORTO" ou "UMINHO").

Quando o paciente é inicializado, ele requer ao gestor do hospital onde entrou que lhe seja atribuído um médico para a especialidade da sua triagem. Neste cenário podem ocorrer dois casos:

- Caso 1: A especialidade existe no hospital que lhe foi atribuído e, o paciente é admitido no hospital.
- Caso 2: A especialidade não existe no hospital que lhe foi atribuído e o Gestor Hospitalar informa o paciente do hospital para onde será encaminhado.

No caso 2, o paciente dará entrada no novo hospital e pede que lhe seja atribuído um médico e o processo é repetido.

No caso 1, após ser admitido, o Gestor Hospitalar verifica se existem vagas para o paciente e, caso se verifique, o gestor possibilita que o paciente escolha o médico que prefere entre dois médicos que lhe são apresentados para a sua especialidade. A escolha será efetuada com base nos pesos atribuídos ao *rating* e *level* de cada um dos médicos apresentados.

Após selecionar o médico que pretende, o paciente entra em contacto com ele e informa-o que necessita de tratamento e o médico providencia o tratamento necessário e indica que pode ter alta.

Quando o paciente recebe a informação de que o médico indicou que podia ter alta, ele pede ao gestor hospitalar que autorize a sua saída do hospital.

Quando o gestor recebe esta informação, remove do sistema e autoriza a sua saída.

Por fim, o agente paciente "morre" no sistema.

# 3 Protocolo de Comunicação

## 3.1 Comportamentos

Abaixo apresentamos os comportamentos do nosso sistema multiagente, enfatizando as suas principais características e funcionalidades. Em cada subsecção vamos destacar os comportamentos associados a cada agente, especificando o seu tipo e descrevendo as ações realizadas quando esses comportamentos são executados.

#### Comportamentos Associados ao Agente Paciente

- RequireDoctor (OneShot Behaviour): Comportamento em que o paciente manda mensagem ao gestor do hospital onde se encontra (ou UMINHO ou UPORTO) para que lhe seja atribuído um médico.
- ReceiveFromGestor (Cyclic Behaviour): Comportamento que recebe todas as mensagens enviadas do gestor do hospital para o paciente, que podem ser: opção de dois médicos para a especialidade que requer, a notificação que deve ser reencaminhado para outro hospital e a autorização de alta. Está também incluída uma performative de quando o médico indica que o paciente pode ter alta.
- RequireTreatment(OneShot Behaviour): Comportamento em que o paciente manda mensagem ao médico eleito entre os dois que o gestor hospitalar sugeriu e requer que seja tratado.

#### • Comportamentos Associados ao Agente Gestor Hospitalar

ReceiveFromPatient(CyclicBehaviour):Comportamento que recebe todas as mensagens enviadas do paciente para o gestor do hospital, que podem ser: pedido de atribuição de um médico ou pedido de autorização para sair do hospital.

#### • Comportamentos Associados ao Agente Médico

 ProvideTreatment(OneShot Behaviour): Comportamento em que o médico eleito pelo paciente responde ao paciente que lhe pediu tratamento com a mensagem "Tramento providenciado".

### 3.2 Performativas

As performativas desempenham um papel fundamental na comunicação em sistemas multiagentes. Elas representam ações ou intenções que um agente pode transmitir a outro através da troca de mensagens. Em baixo apresentamos as performativas existentes no nosso sistema:

#### • Performativas relativas à comunicação Gestor Hospitalar - Paciente

- request: Indica que o paciente requer a atribuição de um médico.
- inform : Indica que o médico permite que o paciente escolha 2 médicos entre os disponíveis.
- encaminhamento: Indica que a especialidade que o paciente necessita não existe no hospital atual (UMINHO ou UPORTO) e deve ser encaminhado para outro hospital (UMINHO ou UPORTO).
- sair: Indica que o paciente gestor hospitalar para autorizar a alta após o médico indicar que é possível ter alta.
- **out**: Indica que o gestor hospitalar autoriza a alta do paciente.

#### • Performativas relativas à comunicação Médico - Paciente

- tratamento: Indica que o paciente pede ao médico que lhe providencie tratamento.
- daalta: Indica que o médico providenciou o tratamento e indica que o paciente pode ter alta.

## 3.3 Mecanismos de Negociação

No nosso sistema, permitimos que cada paciente, perante duas opções de médicos para a sua especialidade, possa escolher o médico que prefere consoante uma função probabilística. O paciente recebe do gestor Hospitalar os dois médicos com a seguinte informação:

(nome do médico1, rating do médico1, level do médico1)

(nome do médico2, rating do médico2, level do médico2)

Sendo que o *rating* é um valor entre 1 e 5 e o *level* pode ser uma de duas hipóteses: "principante" ou "avançado".

Desta forma, é possível que haja uma negociação entre o paciente e o gestor hospitalar relativamente ao médico que atende o paciente.

# 3.4 Diagrama de Classes

Na figura abaixo, é possível observar as classes que permitem o correto funcionamento do programa, assim como os seus atributos e métodos.



Figura 3.1: Diagrama de classes do Sistema MultiAgente

# 4 Fluxo de Atividades

# 4.1 Diagrama de Atividades

De forma a melhor se compreender como funciona o programa, desenvolvemos o seguinte diagrama de atividades:



Figura 4.1: Diagrama de Atividades

## 4.2 Diagramas de Sequência

Para explicarmos melhor os casos de admissão e encaminhamento dos pacientes no sistema, desenvolvemos os seguintes diagramas de sequência:

#### 4.2.1 Admissão do Paciente



Figura 4.2: Diagrama de Sequência - Quando a especialidade do paciente existe no hospital

Como é possível observar na figura 4.2, caso a especialidade requerida pelo paciente exista no sistema, o paciente é admitido, e o Gestor Hospitalar providencia-lhe dois médicos para que o paciente escolha o que pretende, com base na sua função probabilística.

#### 4.2.2 Encaminhamento do Paciente

Na figura 4.3, verificamos que caso a especialidade não exista, o paciente é informado do novo hospital para onde se deve dirigir e o tratamento é providenciado lá.



Figura 4.3: Diagrama de Sequência - Quando a especialidade do paciente não existe no hospital

# 5 Resultados obtidos

De modo a se compreender melhor o funcionamento do programa, adicionamos os seguintes prints do terminal que demonstram o output do programa. Na figura abaixo podemos verificar que o paciente 6726 deu entrada no hospital UMINHO e requisitou a especialidade de "neurologia" que existe neste hospital e foi atendido normalmente: Por sua vez, o paciente 6684 deu

```
O paciente 6726ganaritaasp.nitro-ansis.55 deu entrada no nospital gestorHospitalUminhog.
O paciente 6726 requer um médico da especialidade neurologia ao gestor do haspital gestorHospitalUminhog.
O paciente 6726 requer um médico da especialidade neurologia ao gestor do haspital gestorHospitalUminhog.
O paciente 6726 deu entrada na especialidade neurologia e pode escolher o médico ('neurologia597', '4', 'avançado') ou ('neurologia821', '3', 'avançado').
O paciente 6726 deu entrada na especialidade neurologia e pode escolher o médico ('neurologia597', '4', 'avançado') ou ('neurologia821', '3', 'avançado').
O paciente 6684 foi encaminhado para o hospital gestorHospitalUminhog ...
O paciente 6684 foi encaminhado para o hospital gestorHospitalUminhog ...
O paciente 6726 foi atribuido ao médico: neurologia597
O paciente 6726 foi atribuido ao médico: neurologia597
O paciente 6726 foi atribuido ao médico: neurologia597
O paciente 6684 requer um médico da especialidade neurologia597
O paciente 6684 eu entrada na especialidade neurologia697
O paciente 6884 eu entrada na especialidade neurologia697
O paciente 3800@anaritaasp-nitro-an515-55 deu entrada no hospital gestorHospitalPortog ...
O paciente 3800@anaritaasp-nitro-an515-55 foi inicializado ...
O paciente 6884 foi atribuido ao mádico: neurologia499
O paciente 6886 foi atribuido ao mádico: neurologia499
O paciente 3800 deu entrada na especialidade dermatologia ao gestor do hospital gestorHospitalPortog.
O paciente 3800 deu entrada na especialidade dermatologia e pode escolher o médico ('dermatologia189', '2', 'avançado') ou ('dermatologia618', '4', 'principiante').
O paciente 3800 deu entrad
```

Figura 5.1: Demonstração do sistema

entrada no hospital UPORTO e requisitou a especialidade de "neurologia" que apenas existe no hospital UMINHO, pelo que foi reencaminhado para o hospital UMINHO e tratado lá:

```
ig paciente 6884@maritassp-nitro-ansi5-55 deu entrada no hospital gestorHospitalPorto@ ...

d pagnete paciente 6728@maritassp-nitro-ansi5-55 deu entrada no hospital gestorHospitalDenimo@ ...

d paciente 6728@maritassp-nitro-ansi5-55 deu entrada no hospital gestorHospitalDenimo@ ...

d paciente 6728@maritassp-nitro-ansi5-55 deu entrada no hospital gestorHospitalDenimo@ ...

d paciente 6728@maritassp-nitro-ansi5-55 deu entrada no hospital gestorHospitalDenimo@ ...

d paciente 6728 requer um medico da especialidade neurologia ao gestor de l'neurologia897', '4', 'avançado') ou ('neurologia821', '3', 'avançado').

d paciente 6726 deu entrada me especialidade neurologia ao gestor de l'neurologia897', '4', 'avançado') ou ('neurologia821', '3', 'avançado').

d paciente 6726 dei entradio de paciente 6726.

de del contrologia97 foi atribuido ao gestoriospital gestorHospitalDenimo@ ...

d paciente 6726 foi atribuido ao gestoriospital gestorHospitalDenimo@ ...

d paciente 6726 foi atribuido ao gestoriospitalDenimo ...

d paciente 6726 foi
```

Figura 5.2: Demonstração do sistema

```
O gestor autoriza a saída do paciente 6684 da especialidade neurologia.

O medico atribuído neurologias97 foi atribuído ao paciente 4426.

Pedición (100 neurologias97 foi atribuído ao paciente 4426.

Pedición (100 neurologias97 foi atribuído ao paciente 7672.

Pedición de tratamento adicionado

O paciente 7672 foi atribuído ao médico: hematologia494

O paciente 7672 foi atribuído ao médico: hematologia494

O paciente 7113 requer um médico da especialidade cardiologia ao gestor do hospital gestorHospitalPorto@.

O agente paciente 1105@anaritasgo-nitro-ans15-55 foi inicializado ...

O paciente 1105@anaritasgo-nitro-ans15-55 foi inicializado ...

O paciente 176@anaritasgo-nitro-ans15-55 foi inicializado ...

O paciente 176@anaritasgo-nitro-ans15-55 foi inicializado ...

O paciente 176@anaritasgo-nitro-ans15-55 foi inicializado ...

O paciente 121@anaritasgo-nitro-ans15-55 foi inicializado ...

O paciente 3806 da especialidade dermatologia deve ter alta.

O paciente 7672 requisita tratamento do médico neurologia597

O paciente 7672 requisita tratamento do médico hematologia594

O paciente 17672 requisita tratamento do médico hematologia694

O paciente 1760 requer um médico da especialidade dermatologia ao gestor do hospital gestorHospitalUminho@.

O paciente 1760 requer um médico da especialidade dermatologia ao gestor do hospital gestorHospitalUminho@.

O paciente 6121 requer um médico da especialidade dermatologia ao gestor do hospital gestorHospitalUminho@.

O paciente 6121 requer um médico da especialidade hematologia ao gestor do hospital gestorHospitalUminho@.

O paciente 6121 requer um médico da especialidade hematologia ao gestor do hospital gestorHospitalUminho@.
```

Figura 5.3: Demonstração do sistema

Desta forma, através das figuras acima é possível comprovar o correto funcionamento do programa.

# 6 Melhorias

Nesta secção, apresentamos algumas melhorias possíveis que poderiamos implementar no futuro no sistema atual.

## 6.0.1 1. Adição de pagamento dos tratamentos

No futuro poderá se adicionar uma rececionista para efetuar o pagamento do tratamento.

## 6.0.2 2. Adição de nível de urgência dos pacientes

A rececionista também poderá fazer uma triagem dos pacientes no hospital, conforme o nível de urgência e atribuir-lhes um grau de prioridade no sistema.

## 6.0.3 3. Adição de enfermeiros no sistema

A introdução de enfermeiros para ajudar os médicos a tratarem do paciente pode também ser uma mais valia.

# 7 Conclusão

Por último, acreditamos que fomos capazes de cumprir com os requisitos propostos pela equipa docente. O sistema desenvolvido está bem concebido, e foi capaz de lidar com a complexidade do caso de estudo.

Este trabalho possibilitou a consolidação dos conhecimentos adquiridos nas aulas da unidade curricular e permitiu aplicar e aprofundar o nosso conhecimento em sistemas multiagentes. Fomos capazes de aplicar os conhecimentos relativos à criação, inicialização e comunicação de agentes, da biblioteca *SPADE* e de UML.

As melhorias que sugerimos, não foram possíveis de implementar na atualidade no entanto acreditamos que num futuro poderiamos adicioná-las ao sistema.

Concluindo, a nosso ver o balanço do trabalho é positivo, visto que o sistema se encontra bem definido e os aspetos a melhorar podem ser facilmente atingidos num trabalho futuro.