1

Assignment 13

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment13

1 **Problem**

(hoffman/page198/9):

Let A be an $n \times n$ matrix with characteristics polynomial

$$f = (x - c_1)^{d_1} (x - c_k)^{d_k}$$

Show that

$$c_1d_1 + \dots + c_kd_k = trace(A)$$

2 Solution

Given	Let A be an $n \times n$
	$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$ and Characteristics polynomial $f = (x - c_1)^{d_1} \dots (x - c_k)^{d_k}$
To proof	$c_1d_1 + \dots + c_kd_k = trace(A)$
Claim	$det(xI - A) = x^2 - trace(A)x^{n-1} + + (-1)^n det(A)$
To prove that the coefficient	Consider the method of induction to proof for n=2

of x^{n-1} is trace(A)

Let, A_2 be 2×2 matrix.

$$\mathbf{A_2} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
$$\det(xI - A) = \begin{vmatrix} (x - a_{11}) & -a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$\implies det(xI - A) = x^2 - (a_{11} + a_{22})x + (a_{11}a_{22} - a_{12}a_{21})$$

 $trace(A_2) = a_{11} + a_{12}$ and the coefficient of $x^{n-1} = x$.

Therefore, claim is true for n = 2.

Assume that it is true for upto n-1.

Then, Coefficient of x^{n-2} will be $s = a_{22} + a_{33} + a_{44} + \dots + a_{nn}$ for the matrix, $A_{n-1 \times n-1}$,

$$\mathbf{A}_{\mathbf{n-1}} = \begin{pmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix}$$

To prove that the claim is true for n

$$\det(xI - A) = \begin{vmatrix} (x - a_{11}) & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & (x - a_{22}) & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & (x - a_{nn}) \end{vmatrix}$$

$$det(xI - A) = (x - a_{11})cofactor(a_{11}) + a_{21}cofactor(-a_{21}) + ... - (-1)^{n+1}cofactor(-a_{n1})$$

$$det(xI - A) = (x - a_{11})(x^{n-1} - sx^{n-2} + ...) + a_{21}$$
(polynomial of degree $n - 2$)
+..- $(-1)^{n+1}a_{n1}$ (polynomial of degree $n - 2$)

$$det(xI - A) = x^n - (a_{11} + s)x^{n-1} +$$
polynomial of degree at most $n - 2$

$$det(xI - A) = x^n - (a_{11} + a_{22} + ... + a_{nn})x^{n-1} + \text{polynomial of degree}$$

at most $n - 2$

$$\implies det(xI - A) = x^n - trace(A)x^{n-1} + polynomial of degree at most $n-2$$$

Given characteristic polynomial of *A* is, $f = (x - c_1)^{d_1}....(x - c_k)^{d_k}$ where,

$$d_1 + d_2 + \dots + d_k = n$$

Since, expansion of $(x - r)^t = x^t - rtx^{t-1} + ... + (-1)^t r^t$

Therefore,

$$f = (x - c_1)^{d_1} (x - c_k)^{d_k}$$

 $f = (x^{d_1} - c_1 d_1 x^{d_1 - 1} + ..) ... (x^{d_k} - c_k d_k x^{d_k - 1} + ..)$
 $\implies f = x^n - (c_1 d_1 + c_2 d_2 + ... + c_k d_k) x^{n-1} + ...$
Since,
 $f = det(xI - A)$
 $\implies x^n - (c_1 d_1 + c_2 d_2 + ... + c_k d_k) x^{n-1} + ... = x^n - trace(A) x^{n-1} + ...$
polynomial of degree at most $n - 2$

By comparing corresponding terms in above equation;

$$c_1d_1 + c_2d_2 + \dots + c_kd_k = trace(A)$$

Hence, Proved.

TABLE 1: Solution Summary