

OpenCV 기본연산2

- 기하변환, 연산함수, 수학 및 통계함수

미디어기술콘텐츠학과 강호철

영상 크기 변환과 회전

- 변환 함수
 - cv2.resize
 - 영상의 크기 변환 확대/축소
 - parameter: src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst
 - interpolation: cv2.INTER_NEAREST, cv2.INTER_LINEAR,cv2.INTER_CUBIC 등
 - cv2.rotate
 - 영상을 90도 간격으로 회전 시킴
 - parameter: src, rotateCode[, dst]) → dst
 - rotateCode: cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_180, cv2.ROTATE_90_COUNTERCLOCKWISE 등

영상 크기 변환과 회전

- 변환 함수
 - cv2.getRotationMatrix2D
 - Affine transformation matrix 반환
 - parameter: center, angle, scale) \rightarrow M
 - angle > 0 이면 반 시계방향 회전

```
\begin{bmatrix} \alpha & \beta & (1-\alpha) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ -\beta & \alpha & \beta \cdot \texttt{center.x} + (1-\alpha) \cdot \texttt{center.y} \end{bmatrix} \alpha = \texttt{scale} \cdot \texttt{cos} \, \texttt{angle}, \beta = \texttt{scale} \cdot \texttt{sin} \, \texttt{angle}
```

- cv2.warpAffine
 - 변환을 영상에 적용
 - parameter: src, M, dsize[,dst[,flags[, borderMode[, borderValue]]]]) → dst
 - borderMode: cv2.BORDER CONSTANT

영상 크기 변환과 회전

imutils

- imutils.translate(image, tx, ty)
- imutils.rotate(image, angle=deg, center=(cx, cy))
- imutils.resize(image, width=w, height=h, inter = interpolation)

산술, 비트, 비교범위, 수치 연산 함수

■ 사칙연산

- cv2.add (src1, src2,) \rightarrow dst
- cv2.addWeighted (src1, alpha, src2, beta, gamma,) \rightarrow dst
- cv2.subtract(src1, src2,) \rightarrow dst
- cv2.scaleAdd(src1, alpha, src2) → dst
- cv2.multiply(src1, src2,) \rightarrow dst
- cv2.divide(src1, src2,) \rightarrow dst

■ 비트연산

- cv2.bitwise_not (src,) \rightarrow dst
- cv2.bitwise_and (src1, src2,) \rightarrow dst
- cv2.bitwise_or (src1, src2,) \rightarrow dst
- cv2.bitwise_xor (src1, src2,) → dst

산술, 비트, 비교범위, 수치 연산 함수

- 비교범위연산
 - cv2.compare (src1, src2,) \rightarrow dst
 - cv2.inRange(src, lowerb, upperb) \rightarrow dst
- 수치연산
 - cv2.absdiff (src1, src2,) \rightarrow dst
 - cv2.converScaleAbs (src,) \rightarrow dst
 - $cv2.exp(src) \rightarrow dst, cv2.log(src) \rightarrow dst$
 - cv2.pow(src, power,) \rightarrow dst, cv2.sqrt(src) \rightarrow dst
 - cv2.magnitude(x, y,) \rightarrow magnitude, cv2.phase(x, y,) \rightarrow angle
 - $cv2.cartToPolar(x, y,) \rightarrow magnitude, angle$
 - cv2.polarToCart(magnitude, angle,) \rightarrow x, y

수학 및 통계 함수

- 정규화
 - cv2.norm (src1, src2,) \rightarrow retval
 - cv2.normalize (src, dst,) \rightarrow dst
- 최대 최소
 - cv2.min (src1, src2,) \rightarrow dst
 - cv2.max (src1, src2,) \rightarrow dst
 - cv2.minMaxLoc (src,) → minVal, maxVal, minLoc, maxLoc

수학 및 통계 함수

■ 통계

- cv2.countNonzero (src) → retval
- cv2.reduce(src, dim,) \rightarrow dst
- cv2.mean(src,) \rightarrow retval
- cv2.meanStdDev(src,) → mean, stddev
- cv2.calcCovarMatrix(samples,) → covar, mean

■ 난수

- cv2.randu (dst, low, high) \rightarrow dst
- cv2.randn (dst, mean, stddev) → dst
- cv2.randShuffle (dst) \rightarrow dst

수학 및 통계 함수

- 선형대수
 - cv2.eigen (src,) \rightarrow retval, eigenvalues, eigenvectors
 - cv2.PCACompute (data, mean,) → mean, eigenvectors
 - cv2.PCAProject (data, mean,) → result
 - cv2.PCABackProject (data, mean,) → result
- 정렬
 - cv2.sort (src,) \rightarrow dst

화이트 보드

영상처리 프로그래밍 기초

- Python으로 배우는 OpenCV 프로그래밍
 - 김동근 지음
 - 가메출판사, 2018

