கணிதவியல்

மேனிலை – முதலாம் ஆண்டு *தொகுதி –* II

பாடநூல் மேம்பாட்டுக் குழுவின் பரிந்துரையின் அடிப்படையில் திருத்தப்பட்டது

தீண்டாமை ஒரு பாவச்செயல் தீண்டாமை ஒரு பெருங்குற்றம் தீண்டாமை மனிதத்தன்மையற்ற செயல்

நூல் முகம்

தமிழ்நாடு அரசின் புதிய கல்விப் பாடத்திட்டம் -2003 வழிகாட்டுதலின்படி மேனிலை முதலாம் ஆண்டிற்காக இக்கணிதப்பாட நூல் இயற்றப்பட்டுள்ளது. இளைஞர்களின் வருங்காலத்தை நிர்ணயிக்கக் கூடியதோடல்லாமல். தங்களுடைய பகுப்பாய்வு மற்றும் சிந்தனைத் திறனையும் வளர்த்து அறிவியல் தொழில்நுட்பத்தின் அடித்தளமாக கணிதம் நிகழ்வதால் இன்றைய அதிவேக அறிவு வளர்ச்சி யுகத்தில் கணிதப் பாடநூல் இயற்றுதல் என்பது சவாலாகவும் சாதனையாகவும் உள்ளது.

அதிகப் பயிற்சி தேவைப்படுகின்ற மாணவர்களுக்கு இந்நூல் பயன்படுவதைப் போன்றே அறிவினை அடுத்த படிநிலைக்கும் கொண்டு செல்ல விரும்பும் மாணவர்களுக்கும் இந்நூல் துணை செய்யும்.

இந்நூலின் ஒவ்வொரு பாடப்பகுதியும் அறிமுகம், விளக்கம், கருத்துருக்கள், கணிதச் செயல்பாடுகள், விடைகள் ஆகியவற்றைக் கொண்டுள்ளது. இவற்றைத் தொடர்ந்து பல்வேறு விதமான கணிதத் தீர்வுச் அளிக்கப்பட்டுள்ளன. இந்நூலில் புதிதாக சான்றுகளும் இணைக்கப்பட்டுள்ள 'சார்புகளும் வரைபடங்களும்' என்னும் பகுதி இப்பாடநூலின் குறிப்பிடத்தக்க அம்சமாகும். இப்பகுதியில் நுண்கருத்துக்கள் பல பருப்பொருள் நிலையிலான கருத்துக்களாலும் வரைபடங்களாலும் விளக்கப்பட்டுள்ளன.

இந்நூல் கணிதம் பயிற்றுவிக்கும் *ஆ*சிரியர்களுக்கும் பயிலும் மாணவர்களுக்கும் பெருந்துணைபுரியும் என்பதில் எள்ளளவும் ஐயமில்லை. ஏனெனில் இப்பாடப் புத்தகத்தில் ஐந்நூற்றுக்கும் மேற்பட்ட எடுத்துக்காட்டுகளும். ஆயிரத்திற்கும் மேற்பட்ட பயிற்சி வினாக்களும் இவை இடம்பெற்றுள்ளன. அனைத்தையும் ஆசிரியர்களே கற்பிக்க வேண்டும் என்று எதிர்பார்ப்பது முற்றிலும் இயலாத ஒன்று, எனவே. ஆசிரியர் கற்பித்த கணித அடிப்படைகளைக் கொண்டு, மாணவர்கள் தாங்களாகவே விடை காண முயல வேண்டும். பயிற்சி வினாக்கள் என்பது பயிலும் மாணவர்களுக்கு என்பதை நினைவில் கொள்ளுதல் வேண்டும். உயர்கல்விக்கு நுழைவாயிலாக '+1 வகுப்பு' நிகழ்வதால் இப்பாடப் புத்தகத்தில் காணும் ஒவ்வொரு கருத்தாக்கத்தையும் கவனமாகப் புரிந்து கொள்ளுதல் வேண்டும்.

இப்பாடப்புத்தகத்தின் சிறப்புகள் :

- மாணவர்கள் தாங்களாகவே விடைகாணும் வழிகளைப் புரிந்து கொள்ளக்கூடிய நிலையில் எளிமையானதாகவும். ஆழமாகவும் கணக்குகள் விளக்கப்பட்டுள்ளது,
- (ii) கணிதக் கொள்கைகளை விளக்குவதில் மிகுந்த கவனம் மேற்கொள்ளப்பட்டுள்ளது.
- (iii) வழிகாட்டுதல் கூறப்பட்டுள்ளதால் மாணவர்கள் தாங்களாகவே பயிற்சி வினாக்களுக்கு விடைகாண முயல வழி ஏற்படுகிறது.
- (iv) விளக்கத்திற்குத் தேவையான வரைபடங்கள் ஆங்காங்கே தரப்பட்டுள்ளன, இதனால் கருத்தாக்கங்களின் புரிதிறன் எளிமையாக்கப்பட்டுள்ளது.
- (v) கணக்குகள் தக்க கவனத்துடன் தேர்ந்தெடுக்கப்பட்டு நன்றாக தரப்படுத்தப்பட்டுள்ளது.

இப்புத்தகத்தை மேலும் சீராக்கும் பொருட்டு ஆசிரிய பெருமக்களிடமிருந்தும் மாணவ மணிகளிடமிருந்தும் ஆலோசனைகள் மற்றும் விமர்சனங்களையும் வரவேற்கிறோம்.

> **கோ. ஸ்ரீனிவாசன்** தலைவர் ஆசிரியர் குழு

பாடத்திட்டம்

- (1) அணிகளும் அணிக்கோவைகளும் : <u>அணி இயற்கணிதம்</u> வரையறைகள், வகைகள், அணிகளின் மீதான செயல்முறைகள், இயற்கணிதப் பண்புகள், **அணிக்கோவைகள்** வரையறைகள், பண்புகள், மதிப்பிடல், காரணி முறை, அணிக்கோவைகளின் பெருக்கல், இணைக்காரணிக் கோவைகள். (18 periods)
- (2) **வெக்டர் இயற்கணிதம்** : வரையறைகள், **வெக்டர் வகைகள்,** வெக்டர் கூட்டர், கழித்தல், திசையிலி பெருக்கல், பெருக்கற் பண்புகள், <u>கிலை</u> <u>வெக்டர்</u>, வெக்டரை கூறுகளாகப் பிரித்தல், திசைக் கொசைன்கள், திசை விகிதங்கள். (15 periods)
- (3) இயற்கணிதம் : பகுதிப் பின்னங்கள் வரையறைகள், ஒரு படிக் காரணிகள் (ஒரே காரணி மீண்டும் வராமை), ஒருபடிக் காரணிகள் (காரணிகள் மீண்டும் வருதல்), இருபடிக் காரணிகள் மீண்டும் வருதல்), இருபடிக் காரணிகள் மீண்டும் வராமை), வரிசை மாற்றங்கள் எண்ணுதலின் அடிப்படைக் கொள்கைகள், வரிசை மாற்றங்களின் கருத்தியல், பலமுறை வரும் பொருட்களின் வரிசை மாற்றங்கள், பொருட்கள் மீண்டும் ஒரே இடத்தில் இடம்பெறுவதை ஏற்றுக் கொள்ளும் வரிசை மாற்றங்கள், வட்ட வரிசை மாற்றங்கள், சேர்வுகள், கணிதத் தொகுத்தறிதல், ஈருறுப்புத் தேற்றம் (இயல் எண் அடுக்கு) மைய உறுப்பு, குறிப்பிட்ட உறுப்புக் காணல் (25 periods)
- (4) தொடர் முறையும் தொடரும்: வரையறைகள், சில சிறப்பான தொடர் முறைகளும் அவற்றின் தொடர்களும், இசைத் தொடர்முறை, தொடர்முறைகளின் சராசரிகள், விகிதமுறு அடுக்குக்குரிய ஈருறுப்புத் தேற்றம், ஈருறுப்புத் தொடர், தோராய மதிப்பு, கூடுதல் காணல், படிக்குறித் தொடர், மடக்கைத் தொடர் (எளிய கணக்குகள்) (15 periods)
- (**5**) **பகுமுறை வடிவியல் :** நியமப் பாதை, நேர்க்கோடுகள், செங்குத்து வடிவம், துணையலகு வடிவம், பொது வடிவம், புள்ளியிலிருந்து வரையப்படும் செங்கோட்டின் நீளம், நேர்க்கோடுகளின் தொகுப்பு, கோடுகளுக்கு இடையே உள்ள கோணம், நேர்க்கோடுகள், வட்டம் – பொதுச் சமன்பாடு, துணையலகு வடிவம், தொடுகோட்டின் தொடுகோடு, நீளம், தொடுகோட்டிற்கான நிபந்தனை, தொடுகோடுகளின் தொடு நாணின் சமன்பாடு, வட்டங்களின் தொகுப்பு – பொது மைய வட்டங்கள், செங்குத்து வட்டங்கள் (23 periods)

- (6) **திரிகோணமிதி** : அறிமுகம், திரிகோணமிதி விகிதங்களும் முற்றொருமைகளும் T-விகிதங்களின் குறியீடுகள், கூட்டுக் கோணங்கள் A ± B, மடங்கு கோணங்கள் 2A, 3A, A/2. பெருக்கலை கூட்டல் அல்லது கழித்தல் வடிவில் எழுதுதல், நிபந்தனைக்குட்பட்ட முற்றொருமைகள், திரிகோணமிதி சமன்பாடுகள், முக்கோணத்தின் பண்புகள், முக்கோணங்களின் தீர்வுகள் (SSS, SAA, SAS மட்டும்), நேர்மாறு திரிகோணமிதி சார்புகள் (25 periods)
- (7) சார்புகளும் வரைபடங்களும்: மாறிலிகள், மாறிகள், இடைவெளிகள், அண்மைப்பகுதி, கார்டீசியன் பெருக்கல், தொடர்பு, சார்பு, சார்பின் வரைபடம், நிலைக்குத்துக்கோடு சோதனை, சார்புகளின் வகைகள் மேற்கோர்த்தல், ஒன்றுக்கு ஒன்று, சமனி, நேர்மாறு சார்பு, இரு சார்புகளின்-இணைப்பு, கூடுதல், வித்தியாசம், பெருக்கல் மற்றும் வகுத்தல், மாறிலிச் சார்பு, விகிதமுறு சார்பு, படிக்குறிச் சார்பு, தலைகீழி, எண்ணளவைச் சார்பு, மீப்பெரு முழு எண் மற்றும் மீச்சிறு முழு எண் சார்புகள், குறிச்சார்பு, ஒற்றைப்படை மற்றும் இரட்டைப்படைச் சார்பு, திரிகோணமிதிச் சார்புகள், இருபடிச் சார்புகள், இருபடி அசமன்பாடு சார்பகம் மற்றும் வீச்சகம். (15 periods)
- (8) வகை நுண்கணிதம் : சார்பு எல்லை கருத்தாக்கம், அடிப்படைத் தேற்றங்கள், முக்கிய எல்லைகள், சார்பின் தொடர்ச்சி ஒரு புள்ளியில், இடைவெளியில், தொடர்ச்சியற்ற சார்பு, வகையீடு-கருத்தாக்கம் வகைக்கெழு, சாய்வு, வகையிடலுக்கும் தொடர்ச்சிக்கும் இடையேயான தொடர்பு, வகையிடல் முறைகள் அடிப்படைக் கொள்கைகள், தேர்ந்த சார்புகளின் வகைக்கெழுக்கள், பிரதியிடல் முறை, துணையலகுச் சார்பு முறை, உட்படு சார்பு முறை உயர் வரிசை வகைக்கெழு, (3-ம் வரிசை வரை) (30 periods)
- (9) **தொகையிடல்** : கருத்தாக்கம், தொகையிடல் வகையிடலின் எதிர்மறை, ஒருபடிச் சார்புகள், பண்புகள், தொகையீடு முறைகள் பிரித்தெழுதும் முறை, பிரதியிடல் முறை, பகுதித் தொகையிடல், வரையறுத்தத் தொகைகள் கூட்டுத் தொகையாகக் காணல் (எளிய கணக்குகள்) (32 periods)
- (10) **கிகழ் தகவு :** வரையறை, கோட்பாடுகள், அடிப்படைத் தேற்றங்கள், சார்புநிலை நிகழ் தகவு, கூட்டு நிகழ் தகவு, பேய்ஸ்-ன் தேற்றம் (நிரூபணமின்றி) எளிய கணக்குகள். (12 periods)

பொருளடக்கம்

		பக்க	எண்		
7. சார்புகள	ரும் வகை	ரபடங்களும்	1		
7.1	அறிமுகம்				
7.2	சார்பு		5		
	7.2.1	சார்பின் வரைபடம்	10		
	7.2.2	சார்புகளின் வகைகள்	11		
7.3	இருப	டி அசமன்பாடுகள்	30		
8. வகை நுண்கணிதம்					
8.1	சார்பு	எல்லை	39		
	8.1.1	சில அடிப்படைத் தேற்றங்கள்	42		
	8.1.2	சில முக்கிய எல்லைகள்	45		
8.2	சார்பின் தொடர்ச்சி		56		
8.3	வகைய	ீடு-கருத்தாக்கம <u>்</u>	62		
	8.3.1	வகைக்கெழு-கருத்தாக்கம்	64		
	8.3.2	வளைவரையின் சாய்வு	66		
8.4	வகைய	பிடல் முறைகள்	72		
	8.4.1	அடிப்படைச் சார்புகளின் வகைக்கெழுக் காணல்	73		
	8.4.2	நேர்மாறு சார்பின் வகைக்கெழு	86		
	8.4.3	மடக்கை மூலம் வகைக்கெழுக் காணல்	90		
	8.4.4	பிரதியிடல் முறை மூலம் வகைக்கெழுக் காணல்	92		
	8.4.5	துணையலகுச் சார்புகளின் வகைக்கெழுக் காணல்	94		
	8.4.6	உட்படு சார்புகளின் வகைக்கெழுக் காணல்	95		
	8.4.7	உயர்வரிசை வகைக்கெழுக்கள்	97		

9. தொகையிடல்				
9.1	அறிமுகம்	104		
9.2	ஒருபடிச் சார்புகள் - தொகையிடல்	108		
9.3	தொகையீடு காணும் முறைகள்	113		
	9.3.1 பிரித்தெழுதி தொகைக் காணல்	114		
	9.3.2 பிரதியிடல் முறையில் தொகைக் காணல்	120		
	9.3.3 பகுதித் தொகையிடல்	136		
9.4	வரையறுத்தத் தொகை	173		
10. நிகழ்தகவு				
10.1	10.1 அறிமுகம்			
10.2	10.2 நிகழ்தகவின் வரையறை			
10.3	10.3 நிகழ்தகவின் சில அடிப்படைத் தேற்றங்கள்			
10.4	சார்புநிலை நிகழ்தகவு			
10.5	ஒரு நிகழ்ச்சியின் கூட்டு நிகழ்தகவு	209		
குறிக்கோள் வினாக்கள்				
விடைகள்				

7. சார்புகளும் வரைபடங்களும் (FUNCTIONS AND GRAPHS)

7.1 அறிமுகம்

தற்போது நாம் கணிதத்தில் பயன்படுத்தி வரும் சார்புகளைப் பற்றிய கருத்துப் படிவங்களை ஆயிலர் (Leonhard Euler) (1707–1783) என்ற தேர்ந்த கணித வல்லுநர் தன்னுடைய மேன்மையான ஆராய்ச்சிகளில் முதன் முதலாக பயன்படுத்தினார். நுண் கணிதத்தில் சார்பு பற்றிய கருத்தியல், ஒரு முக்கியமான கருவியாக பயன்படுகிறது,

சார்பு பற்றிய கோட்பாட்டினை தெளிவாக்க, அதற்கு தேவையானவற்றை முதலில் காண்போம்.

மாறிலி மற்றும் மாறி (Constant and variable) :

ஒரு கணிதச் செயல் முழுமைக்கும் ஒரே மதிப்பினை பெறும் உரு அல்லது கணியம் (quantity), மாறிலி எனப்படும். குறிப்பிட்ட கணிதச் செயலில் வெவ்வேறு மதிப்புகளை பெற இயலுமாறு உள்ள உருவினை மாறி என்போம். பொதுவாக மாறிலிகளை a, b, c, \ldots என்றும் மாறிகளை x, y, z. என்றும் குறிப்பிடுவது வழக்கம்.

இடைவெளிகள் (Intervals) :

மெய்யெண்களை வடிவக் கணிதத்தில் ஒரு எண்கோட்டின் மீது உள்ள புள்ளிகளாகக் குறிக்கப்படும். இது மெய்க்கோடு (real line) என்றழைக்கப்படும்.

R என்ற குறியீடு மெய்யெண்களின் தொகுதி அல்லது மெய்க்கோட்டினைக் குறிக்கும். மெய்க்கோட்டின் உட்கணமானது குறைந்தது இரண்டு எண்களையும் அதன் இரு உறுப்புகளுக்கு இடையேயுள்ள அனைத்து மெய்யெண்களையும் பெற்றிருந்தால், அதனை ஒரு இடைவெளி எனலாம். எடுத்துக்காட்டாக,

- (a) x > 6 எனுமாறு உள்ள அனைத்து மெய்யெண்கள் x-ன் கணம்.
- (b) $-2 \le x \le 5$ எனுமாறு உள்ள அனைத்து மெய்யெண்கள் x-ன் கணம்.
- (c) x < 5 எனுமாறு உள்ள அனைத்து மெய்யெண்கள் x-ன் கணம் போன்றவை சில இடைவெளிகள் ஆகும்.

ஆனால், அனைத்து இயல் எண்களின் கணம் ஒரு இடைவெளியல்ல. காரணம், இரு விகிதமுறு எண்களுக்கு இடையே கொடுக்கப்பட்ட கணத்தில் சேர்க்கப்படாத எண்ணற்ற மெய்யெண்கள் உள்ளன. இதேப் போன்று பூச்சியமற்ற மெய்யெண்களின் கணமும் ஒரு இடைவெளியல்ல, இங்கு '0' இல்லாமையால், இது – 1, 1க்கு இடையே உள்ள ஒவ்வொரு மெய்யெண்ணையும் பெற தவறுகிறது.

வடிவக் கணிதப்படி ஒரு மெய்க்கோட்டின் மீதுள்ள கதிர்கள் மற்றும் இடைவெளிகளாகக் கொள்ளலாம். கோட்டுத் கோட்டுத்துண்டுகளை துண்டுகளால் குறிக்கப்படும் இடைவெளிகள் முடிவுறு (finite intervals). கதிர் மற்றும் மெய்க்கோடால் இடைவெளிகளாகும் குறிக்கப்படும் இடைவெளிகள் முடிவற்ற இடைவெளிகளாகும் (infinite இங்கு இடைவெளி என்பது முடிவுறு முடிவுள்ள எண்ணிக்கையில் மெய்யெண்களைக் கொண்ட இடைவெளி எனப் பொருளாகாது.

ஒரு முடிவுற்ற இடைவெளியானது, அதன் இறுதிப் புள்ளிகளையும் பெற்றிருந்தால் அதனை மூடிய இடைவெளி என்றும் (closed interval) இறுதிப் புள்ளிகளை பெறாவிடில் அதனை திறந்த இடைவெளி (open interval) என்றும் கூறப்படும். திறந்த இடைவெளியைக் குறிக்க சாதாரண அடைப்புக் குறியான "()"-ஐ பயன்படுத்தப்படுகிறது. மூடிய இடைவெளியினை குறிக்க சதுர அடைப்புக் குறியான "[]"-ஐ பயன்படுத்தப்படுகிறது. எடுத்துக்காட்டாக, 3 ∉ (3, 4), 3 ∈ [3, 4]

இடைவெளிகளின் வகைகள்:

	குறியீடு	கணம்	வரைபடம்
முடிவுற்றவை	(a, b)	$\{x \mid a < x < b\}$	\longrightarrow
	[a, b)	$\{x \mid a \le x < b\}$	$\xrightarrow{a} \xrightarrow{b}$
	(<i>a</i> , <i>b</i>]	$\{x \mid a < x \le b\}$	$\xrightarrow{a} \xrightarrow{b}$
	[<i>a</i> , <i>b</i>]	$\{x \mid a \le x \le b\}$	$\stackrel{a}{\longrightarrow}$
முடிவற்றவை	(a, ∞)	$\{x \mid x > a\}$	\xrightarrow{a} \xrightarrow{b}
	$[a,\infty)$	$\{x \mid x \ge a\}$	- a
	$(-\infty, b)$	$\{x \mid x < b\}$	$\leftarrow a \longrightarrow b$
	$(-\infty, b]$	$\{x \mid x \le b\}$	←
	$(-\infty, \infty)$	$\{x / - \infty < x < \infty\}$	<i>→</i>
		அல்லது	
		மெய்யெண்களின்	
		கணம்	

குறிப்பு :

∞ அல்லது – ∞-ஐ பயன்படுத்தி ஒரு மூடிய இடைவெளியை எழுத இயலாது. இவை இரண்டும் மெய்யெண்களை குறிப்பவையல்ல.

அண்மைப் பகுதி [அ] சுற்றுப்புறம் (Neighbourhood) :

கொடுக்கப் புள்ளி நடுப்புள்ளியாகக் கொண்டு வரையப்படும். மிகச்சிறிய நீளமுள்ள ஒரு திறந்த இடைவெளியாகும்.

ஒரு தளத்தில், ஒரு புள்ளியின் அண்மைப் பகுதி அப்புள்ளியை மையாகக் கொண்டு வரையப்படும் மிகச்றிய ஆரமுடைய ஒரு திறந்த வட்டத் தட்டாகும்.

ஒரு வெளியில், ஒரு புள்ளியின் அண்மைப்பகுதி அப்புள்ளியை மையமாகக் கொண்ட மிகச்சிறிய ஆரமுடைய ஒரு திறந்த கோளமாகும்.

படம் 7. 2

சாரா மற்றும் சார்ந்த மாறிகள் (Independent / dependent variables) :

முந்தைய வகுப்புகளில், நாம் பல சூத்திரங்களை பார்த்திருக்கிறோம். இவற்றில் பின்வரும் சில சூத்திரங்களை எடுத்துக் கொள்க.

(a)
$$V=rac{4}{3}$$
 πr^3 (கோளத்தின் கன அளவு) (b) $A=\pi r^2$ (வட்டத்தின் பரப்பு)

$$(c)~S=4\pi r^2~(கோளத்தின் புறப்பரப்பு)~~(d)~V=rac{1}{3}~\pi r^2 h~(கூம்பின் கன அளவு)$$

இங்கு (a), (b), (c)-ல் r-ன் பல்வேறு மதிப்புகளுக்கு V, A, S என்ற மாறிகள் பல்வேறு மதிப்புகளை பெறுவதை கவனிக்கவும். எனவே V, A, S ஆகியவற்றை சார்ந்த மாறிகள் என்றும், r தனித்து செயல்படுவதால் அதனை சாரா மாறி எனவும் கூறுகிறோம். சூத்திரம் (d)-ல் r, h என்பன சாரா மாறிகளாகவும் V சார்ந்த மாறியாகவும் உள்ளது.

ஒரு மாறி எந்தவொரு (தன்னிச்சையாக) மதிப்பையும் பெறுமானால் அது சாரா மாறி எனப்படும்.

ஒரு மாறியின் மதிப்பு மற்ற மாறிகளை சார்ந்திருக்குமெனில் அது சார்ந்த மாறி எனப்படும்.

"பெற்றோர்களின் **இன்பம்** தங்களின் குழந்தைகள் தேர்வில் பெறும் **மதிப்பெண்களைச்** சார்ந்திருக்கிறது."

கார்டீசியன் பெருக்கல் (Cartesian product) :

 $A=\{a_1,\ a_2,\ a_3\},\ B=\{b_1,\ b_2\}$ என்க. கணங்கள் $A,\ B$ யின் கார்டீசியன் பெருக்கல் $A\times B$ எனக் குறிக்கப்பட்டு

 $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2), (a_3, b_1), (a_3, b_2)\}$ என வரையறுக்கப்படுகிறது.

இவ்வாறாக (a, b), $a \in A$, $b \in B$ என்ற வகையில் அமைந்த வரிசைச் சோடிகளின் கணம், A மற்றும் B என்ற கணங்களின் கார்டீசியன் பெருக்கல் என்று அழைக்கப்படுகிறது.

வரிசைப்படுத்தப்பட்ட சோடிகளான (a,b)யும் (b,a)யும் மாறுபாடானவை. எனவே பொதுவாக $\mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A}$

 $(a,\ b)$ மற்றும் $(b,\ a)$ என்ற வரிசைச் சோடிகள் சமமாக இருக்க வேண்டுமாயின் a=b என்றிருக்க வேண்டும்.

ஏ.கா. 7.1: $A = \{1, 2\}, B = \{a, b\}$ எனில் $A \times B, B \times A$ ஆகியவற்றைக் காண்க.

§iia :
$$A \times B = \{(1, a), (1, b), (2, a), (2, b)\}$$

 $B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$

தொடர்பு (Relation):

நமது அன்றாட வாழ்க்கையில், இரண்டு நபர்களின் உறவுகளான 'மகன் உறவு', 'தந்தை உறவு', 'சகோதரி உறவு' மேலும் இரண்டு பொருட்களை தொடர்புபடுத்த '...விடக் குறைவானது', '...விடப் பெரியது'போன்ற வார்த்தைகளை பயன்படுத்துகிறோம். இரு பொருட்களை இணைக்க வேண்டுமாயின் 'தொடர்பு' மூலம் இணைக்கலாம்.

 $A,\ B$ என்பன இரு கணங்கள் என்க. A யிலிருந்து Bக்கு உள்ள தொடர்பினை $A \to B$ என்று குறிக்கப்பட்டு "A to B" என்று படிக்கப்படும். இத்தொடர்பு $A \times B$ என்ற கார்டீசியன் பெருக்கலின் உட்கணமாகும்.

எ.கா. 7.2: $A=\{1,2\}, B=\{a,b\}$ எனில் $A\to B$ மற்றும் $B\to A$ க்கான சில தொடர்புகளைக் காண்க.

தீர்வு :

A-யிலிருந்து B-க்கு உள்ள தொடர்பு A × Bஎன்ற கார்டீசியன் பெருக்கலின் உட்கணமாகும்.

$$A \times B = \{(1, a), (1, b), (2, a), (2, b)\}$$

∴எனவே A × B-ன் உட்கணங்களான

 $\{(1,a),(1,b),(2,a),(2,b)\},\{(1,a),(1,b)\},\{(1,b,(2,b)\},\{(1,a)\}$ என்பவை Aயிலிருந்து Bக்கான சில தொடர்புகள் ஆகும்.

இதே போன்று $\mathbf{B} \times \mathbf{A} = \big\{(a\ ,\ 1), (a\ ,\ 2), (b\ ,\ 1), (b\ ,\ 2)\big\}$ என்ற கணத்தின் உட்கணங்களான

 $\{(a,1),(a,2),(b,1),(b,2)\},\ \{(a,1),(b,1)\},\{(a,2),(b,1)\}$ என்பவை B-யிலிருந்து A-க்கான சில தொடர்புகள் ஆகும்.

7.2 **சா**ர்பு (Function) :

தொடர்பின் ஒரு சிறப்பான வகை சார்பு ஆகும். கொடுக்கப்பட்ட தொடர்பில் உள்ள வரிசைச் சோடிகளில், எந்த இரு வரிசைச் சோடிகளுக்கும் ஒரே முதல் உறுப்பும், வேறுபட்ட இரண்டாம் உறுப்பும் இல்லாமலிருப்பின் அந்த தொடர்பினை சார்பு எனலாம். அதாவது சார்பில் உள்ள வரிசைச் சோடிகளில் ஒரே முதல் உறுப்புக்கு இரண்டு வித்தியாசமான இரண்டாம் உறுப்பு இருக்க முடியாது,

அதாவது ஒரு சார்பில் $a_1=a_2,\,b_1\neq b_2$ எனுமாறு $(a_1,\,b_1),\,(a_2,\,b_2)$ என்ற வரிசைச் சோடிகள் இடம்பெற இயலாது.

{(3, 2), (5, 7), (1, 0), (10, 3)} என்ற தொடர்பினை எடுத்துக் கொள்வோம். இங்கு எந்தவித இரண்டு சோடிகளிலும் முதல் உறுப்பு சமமாக இருந்து இரண்டாம் உறுப்பு வேறுபட்டதாக இல்லை. இதனை அதற்குரிய படத்தின் (படம் 7.3) மூலம் புரிந்து கொள்ளுதல் எளிது.

எனவே இந்த தொடர்பானது ஒரு சார்பு ஆகும்.

மேலும் {(3, 5), (3, -1), (2, 9)} என்ற தொடர்பினை எடுத்துக் கொள்வோம். இங்கு (3, 5) மற்றும் (3, -1) என்ற வரிசைச் சோடிகளின் முதல் உறுப்பு 3 என சமமாக இருந்து இரண்டாம் உறுப்புகள் 5, -1 என வேறுபாடாக அமைந்துள்ளது. (படம் 7.4).

படம் 7. 4

எனவே கொடுக்கப்பட்ட தொடர்பு, சார்பு இல்லை

எனவே A என்ற கணத்திலிருந்து B என்ற கணத்திற்கு வரையறுக்கப்படும் சார்பு f என்பது, A-ல் உள்ள ஒவ்வொரு உறுப்பு x-க்கும் B-ல் f(x) என்ற ஒரு தனித்த உறுப்பினை கொடுக்கும் ஒரு தொடர்பாகும் அல்லது விதியாகும்.

இதனை குறியீட்டில், $f\colon \mathbf{A} \to \mathbf{B}$

i.e. $x \to f(x)$ எனக் குறிப்பிடலாம்.

சார்புகளைக் குறிக்க f, g, h போன்ற எழுத்துகளை நாம் பயன்படுத்துகிறோம். இவ்வாறாக A-யின் ஒவ்வொரு உறுப்பும் B-யின் ஒரே ஒரு உறுப்புடன் கொண்டுள்ள தொடர்பு சார்பாகிறது. கணம் A-யினை f என்ற சார்பின் சார்பகம் (domain) எனவும் B-யினை

துணைச் சார்பகம் (co-domain) எனவும் அழைக்கப்படுகின்றன. A-யில் உள்ள x என்ற உறுப்புக்கு B-யில் தொடர்புள்ள f(x) என்ற உறுப்பினை 'f-ன் கீழ் x-ன் சாயல்' அல்லது பிம்பம் (image) என்று அழைப்பர். A-யின் அனைத்து உறுப்புகளின் சாயல்களின் கணம், 'சார்பு f-ன் வீச்சகம்' எனப்படுகிறது. வீச்சகமானது துணைச் சார்பகத்தின் உட்கணம் என்பதைக் கவனிக்கவும். f-ன் வீச்சுக் கணம், துணைச் சார்பகத்திற்குச் சமமாக இருக்க வேண்டிய அவசியமில்லை. சார்புக்கு ஆங்கிலத்தில் 'mapping' என்றுமொரு பெயர் உண்டு.

எ.கா. 7.3 : $A = \{1, 2, 3\}, B = \{3, 5, 7, 8\}.$ A-யிலிருந்து B-க்கு f என்ற தொடர்பு $f: x \to 2x + 1$ அதாவது f(x) = 2x + 1 என வரையறுக்கப்படுகிறது, எனில்

- (a) f(1), f(2), f(3) காண்க.
- (b) A-யிலிருந்து B-க்கு உள்ள தொடர்பு, ஒரு சார்பு எனக் காட்டுக.
- (c) சார்பகம், துணைச்சார்பகம், A-யில் உள்ள ஒவ்வொரு உறுப்பின் சாயல்கள், f-ன் வீச்சகம் அகியவற்றைக் கண்டறிக.
- (d) வீச்சகமானது துணைச் சார்பகத்திற்கு சமமானதா என்பதனை சரிபார்க்க.

தீர்வு :

(a)
$$f(x) = 2x + 1$$

 $f(1) = 2 + 1 = 3, f(2) = 4 + 1 = 5, \quad f(3) = 6 + 1 = 7$

(b) இங்கு தொடர்பானது{(1,3), (2, 5), (3, 7)} ஆகும்.

இங்கு A-யில் உள்ள ஒவ்வொரு உறுப்பும் ஒரு தனித்த சாயலை B-யில் பெற்றிருப்பதை தெளிவாக காண முடிகிறது. எனவே ƒ ஒரு சார்பாகும்.

(d) $\{3, 5, 7\} \neq \{3, 5, 7, 8\}$

எனவே f-ன் வீச்சகமும் துணைச் சார்பகமும் சமமல்ல.

எ.கா. 7.4:

`d' என்ற ஒரு தந்தைக்கு $a,\ b,\ c$ என்ற மூன்று மகன்கள் உள்ளனர். மகன்களின் கணத்தை A எனவும் தந்தையை ஒரு ஒற்றையுறுப்பு கணம் B எனவும் கொண்டு

- (i) 'மகன் உறவு' என்ற தொடர் A → Bக்கு ஒரு சார்பு எனவும்
- (ii) 'தந்தை உறவு' என்ற தொடர்பு B o Aக்கு ஒரு சார்பு அல்ல எனவும் நிரூபிக்க.

தீர்வு :

(i) A = {a, b, c}, B = {d}
 a என்பவர் dக்கு மகன்
 b என்பவர் dக்கு மகன்
 c என்பவர் dக்கு மகன்

படம் 7. 7

இந்த உறவு மூலம் (a, d), (b, d), (c, d) என்ற வரிசைச் சோடிகள் கிடைத்துள்ளன. இங்கு A-யில் உள்ள ஒவ்வொரு உறுப்புக்கும் B-ல் ஒரு தனித்த உறுப்பு கிடைக்கப்பெற்றிருப்பதை காண்கிறோம். எனவே 'மகன் உறவானது' A-யிலிருந்து B-க்கு ஒரு சார்பாக அமைகிறது.

இந்த உறவு மூலம் (d, a), (d, b), (d, c) என்ற வரிசைச் சோடிகள் கிடைத்துள்ளன. இங்கு வரிசைச் சோடிகளில் முதல் உறுப்பான

'd' ஒன்றுக்கு மேற்பட்ட 3 உறுப்புகள் a, b, cயுடன் தொடர்பு படுத்தப்பட்டுள்ளமையால், சார்பின் வரையறையின்படி இந்த உறவு சார்பல்ல.

எ.கா. 7.5: ஒரு வகுப்பறையில் 7 பெஞ்சுகள் உள்ளன. அவ்வகுப்பின் மாணவர்களின் எண்ணிக்கை 35 ஆகும். ஒரு பெஞ்சில் 6 பேர் உட்கார இயலும். மாணவர்கள் கணத்திலிருந்து பெஞ்சுகள் கணத்திற்கு வரையப்படும் 'அமர்தல்' என்ற தொடர்பு ஒரு சார்பு எனக் காட்டுக. மேலும் கணங்களை மாற்றியமைத்தால் ஏற்படும் தொடர்பின் நிலை யாது?

தீர்வு :

சார்பகக் கணம் மாணவர்களின் கணமாகும். துணைச் சார்பகக் கணம் பெஞ்சுகளின் கணமாகும். ஒவ்வொரு மாணவனும் ஒரே ஒரு பெஞ்சில் மட்டுமே அமர இயலும். மேலும் அனைத்து மாணவர்களுக்கும் உட்கார இடமுள்ளது. எனவே சார்பின் கொள்கையின்படி ''ஒவ்வொரு மாணவனும் ஒரே ஒரு (unique) பெஞ்சின் மீது அமர்கிறான்'. எனவே 'அமர்தல்' என்ற தொடர்பு மாணவர்களின் கணத்திற்கும் பெஞ்சுகளின் கணத்திற்கும் இடையே ஒரு சார்பு ஆகும்.

நாம் கணங்களை பரிமாற்றினால் பெஞ்சுகளின் கணம், சார்பக கணமாகவும் மாணவர்களின் கணம் துணைச் சார்பகக் கணமாகவும் மாறும். இங்கு ஒரே பெஞ்சில் ஒன்றுக்கு மேலான மாணவர்கள் (பிம்பங்கள்) அமர முடியும். இது சார்பின் கொள்கைக்கு முரணானது. அதாவது சார்பகத்திலுள்ள ஒவ்வொரு உறுப்பும் ஒரே ஒரு பிம்பத்தினை மட்டுமே கொண்டிருக்க வேண்டும். எனவே கணங்களை பரிமாற்றினால் ஏற்படும் 'அமர்தல்' தொடர்பு ஒரு சார்பல்ல.

குறிப்பு :

 $f \colon \mathbf{A} \to \mathbf{B}$ என்ற சார்பினை எடுத்துக் கொள்வோம்.

அதாவது $x \to f(x)$. இங்கு $x \in A$, $f(x) \in B$.

'f(x)'-ஐ 'f of x' எனப் படிக்க வேண்டும். f என்ற சார்பின் x-இடத்து மதிப்பு f(x) ஆகும். (இது f-ன் கீழ் x-ன் சாயலாகும்) y = f(x) என நாம் எழுதும்போது, f என்ற குறியீடு சார்பின் பெயரையும் x என்பது சாரா மாறியினையும் மற்றும் y என்பது சார்ந்த மாறியினையும் குறிக்கின்றது.

தெளிவாக, f(x)- ல் f என்பதே சார்பின் பெயராகும். f(x) என்பதல்ல. ஆயினும் சார்பு f எந்த மாறியினால் உருவாக்கப்பட்டது என்பதை தெரிந்து கொள்ளும் வகையில் நாம் சார்பினை f(x) என்றும் குறிக்கலாம்.

எ.கா. 7.6: $f: R \to R$ என்ற சார்பானது $y = f(x) = x^2$ என வரையறுக்கப்பட்டால், சார்பின் பெயர், சார்பகம், துணைச் சார்பகம், சாராமாறி, சார்ந்த மாறி மற்றும் வீச்சுகம் இவற்றைக் காண்க.

தீர்வு :

சார்பின் பெயர்-வர்க்க சார்பு சார்பகக் கணம் - R துணைச் சார்பகக் கணம் - R சராமாறி - x. சார்ந்த மாறி - y.

x-ஆனது எந்த ஒரு மெய்யெண்ணையும் தன் மதிப்பாகக் கொள்ளும். ஆனால் இது வர்க்க சார்பானதால் y-ஆனது மிகை மெய்யெண் அல்லது பூச்சியத்தை மட்டுமே மதிப்பாகக் கொள்ளும் எனவே f-ன் வீச்சகக் கணம் குறையில்லா மெய்யெண்களின் கணமாகும். **எ.கா. 7.7:** பின்வரும் சார்புகளில் சார்பின் பெயரும் சாரா மாறியின் பெயரும் காண்க.

(i)
$$f(\theta) = \sin \theta$$

(ii)
$$f(x) = \sqrt{x}$$

(iii)
$$f(y) = e^y$$

y

(iv)
$$f(t) = \log_e t$$

தீர்வு :

சார்பின் பெயர் சாரா மாறி
(i) சைன் (sine) θ (ii) வர்க்கமூலம் x

(iii) படிக்குறி (iv) மடக்கை

சார்பகத்தை மாற்றியமைத்தல்

y = f(x) என்ற சார்பின் சார்பகம் வெளிப்படையாக வரையறுக்கப்படவில்லை எனில், கொடுக்கப்பட்ட வரையறை மூலம் y-க்கு மெய் மதிப்புகளைத் தரும், x-ன் மதிப்புகளின் மிகப்பெரிய கணம் சார்பகமாகக் கருதப்படும்.

சார்பகத்தை வகைபடுத்த விரும்பினால், நாம் நிபந்தனையுடன் சார்பகத்தை வரையறுக்கலாம்.

பின்வரும் அட்டவணை, சில சார்புகளின் சார்பகம் மற்றும் வீச்சகத்தினைக் காட்டுகிறது.

சார்பு	சார்பகம் (x)	வீச்சகம்
		(y அல்லது f(x))
$y = x^2$	$(-\infty,\infty)$	$[0,\infty)$
$y = \sqrt{x}$	$[0,\infty)$	$[0,\infty)$
$y = \frac{1}{x}$	R – {0} பூச்சியமில்லா மெய்யெண்கள்	R - {0}
$y = \sqrt{1 - x^2}$	[-1,1]	[0, 1]
$y = \sin x$	$(-\infty,\infty)$	[-1, 1]
	$\left[-rac{\pi}{2},rac{\pi}{2} ight]$ முதன்மை சார்பகம்	
$y = \cos x$	$(-\infty,\infty)$	[-1.1]
	[0, π] முதன்மை சார்பகம்	
$y = \tan x$	$\left(-rac{\pi}{2},rac{\pi}{2} ight)$ முதன்மை சார்பகம்	$(-\infty,\infty)$
$y = e^x$	$(-\infty,\infty)$	$(0,\infty)$
$y = \log_e x$	$(0,\infty)$	$(-\infty,\infty)$

7.2.1 சார்பின் வரைபடம் (Graph of a function):

ஒரு சார்பு f-ன் வரைபடமானது y=f(x) என்ற சமன்பாட்டின் வரைபடமாகும்.

எ.கா. 7.8: $f(x) = x^2$ என்ற சார்பின் வரைபடத்தை வரையவும்.

தீர்வு :

 $y = x^2$ -ஐ நிறைவு செய்யும் சில சோடி (x, y) மதிப்புகளை அட்டவணைப்படுத்தவும். குறிக்கப்பட்ட புள்ளிகள் வழியாகச் செல்லும் ஒரு எளிய வளைவரையை வரையவும்.

х	0	1	2	3	- 1	- 2	- 3
у	0	1	4	9	1	4	9

குறிப்பு :

மேற்கண்ட படத்திற்கு நாம் ஒரு நேர்க்குத்துக்கோடு வரைந்தால், அது வளைவரையை ஒரே ஒரு புள்ளியில் மட்டுமே சந்திக்கிறது என்பதைக் கவனிக்கவும். அதாவது, ஒவ்வொரு x-க்கும் ஒரு தனித்த y உள்ளது.

சார்புகளும் அவற்றின் வரைபடங்களும் (கிலைக் குத்துக்கோடு சோதனை)

நாம் வரையும் ஒவ்வொரு வளைவரையும் ஒரு சார்பின் வரைபடமல்ல. ஒரு சார்பு f-ஆனது அதன் சார்பகத்திலுள்ள ஒவ்வொரு x-க்கும் ஒரே ஒரு தனித்த f(x) (= y)-ஐ மட்டுமே தரும். ஓர் நேர்க்குத்துக் கோடானது வளைவரையை ஒருமுறைக்கு மேல் வெட்டாது. அதாவது 'a' என்ற உறுப்பு f-ன் சார்பகத்தில் இருந்தால் x=a என்ற நிலைக் குத்துக்கோடு f என்ற சார்பின் வரைபடத்தை (a,f(a)) என்ற ஒரு புள்ளியில் மட்டுமே வெட்டும்.

பின்வரும் வரைபடங்களை எடுத்துக் கொள்க :

 $y^2=x$, (அல்லது $y=\pm\sqrt{x}$)-ன் வரைபடத்தைத் தவிர மற்ற அனைத்து வரைபடங்களும் சார்பின் வரைபடங்களாகும். ஆனால் $y^2=x$ -ல் x=2 என

ஒரு நிலைக்குத்துக் கோட்டினை நாம் வரைந்தால், அது வளைவரையை $(2,\sqrt{2})$ மற்றும் $(2,-\sqrt{2})$ ஆகிய இரு புள்ளிகளில் சந்திக்கும். எனவே, $y^2=x$ -ன் வரைபடம் ஒரு சார்பின் வரைபடமல்ல.

எ.கா. 7.9: $x^2 + y^2 = 4$ -ன் வரைபடம் ஒரு சார்பின் வரைபடமல்ல எனக் காட்டுக.

தீர்வு :

 $x^2 + y^2 = 4$ என்ற சமன்பாடு ஆதியை மையமாகவும் ஆரம் 2 அலகினையும் கொண்ட வட்டத்தினைக் குறிக்கிறது.

$$x = 1$$
 என்க.
 $y^2 = 4 - 1 = 3$
 $y = \pm \sqrt{3}$

x = 1 என்ற மதிப்பிற்கு y-ஆனது

 $\sqrt{3}$, $-\sqrt{3}$ என இரு மதிப்புகளைப் பெறுகிறது. இது சார்பின் வரையறையை மீறுகிறது.

படம்
$$7.11$$
-ல் $x=1$ என்ற கோடு

வளைவரையை $(1,\sqrt{3})$, $(1,-\sqrt{3})$ என்ற இரண்டு புள்ளிகளில் சந்திக்கிறது. எனவே, $x^2+y^2=4$ -ன் வரைபடம் ஒரு சார்பின் வரைபடமல்ல.

7.2.2 சார்புகளின் வகைகள் :

1. மேற்கோர்த்தல் சார்பு (Onto function)

ஒரு சார்பின் வீச்சகமும், அதன் துணைச் சார்பகமும் சமம் எனில் சார்பானது 'மேற்கோர்த்தல் சார்பு' எனப்படும். இல்லாவிடில், அது ஒரு 'கோர்த்தல் சார்பு' (into) எனப்படும்.

 $f: A \to B$ -யில் f-ன் வீச்சக அல்லது சாயல் கணம் f(A) ஆனது துணைச் சார்பகம் B-க்கு சமம் எனில் (f(A)=B) சார்பு f, மேற்கோர்த்தல் சார்பாகும்.

எ.கா. 7.10

 $A = \{1, 2, 3, 4\}, B = \{5, 6\}.$ f என்ற சார்பு பின்வருமாறு வரையறுக்கப்பட்டுள்ளது. அதாவது f(1) = 5, f(2) = 5, f(3) = 6, f(4) = 6 எனில் f ஒரு மேற்கோர்த்தல் சார்பு எனக்காட்டுக.

தீர்வு :

$$f = \{(1, 5), (2, 5), (3, 6), (4, 6)\}$$

$$f$$
-ன் வீச்சகம் $f(A) = \{5, 6\}$
துணைச் சார்பகம் $B = \{5, 6\}$
அதாவது $f(A) = B$

எனவே கொடுக்கப்பட்ட சார்பு ஒரு மேற்கோர்த்தல் சார்பு ஆகும்.

எ.கா. 7.11: $X = \{a, b\}, Y = \{c, d, e\}, f = \{(a, c), (b, d)\}$ எனில் f ஒரு மேற்கோர்த்தல் சார்பு அல்ல என நிரூபி,

தீர்வு :

கொடுக்கப்பட்ட புள்ளி விவரங்களின்படி தகுந்த படத்தினை வரையவும்.

$$f$$
-ன் வீச்சு = $\{c, d\}$

துணைச் சார்பகம் = $\{c, d, e\}$

இங்கு வீச்சகமும் துணைச் சார்பகமும் சமமாக இல்லாமையால் இந்தச் சார்பு ஒரு மேற்கோர்த்தல் சார்பு அல்ல.

குறிப்பு :

- (1) ஒரு மேற்கோர்த்தல் சார்பின் துணைச் சார்பகத்திலுள்ள ஒவ்வொரு உறுப்புக்கும் (சாயல்) ஒன்று அல்லது ஒன்றுக்கு மேற்பட்ட பிரதிச் சாயல்கள் (pre-image) சார்பகத்தில் இருக்கும்.
- (2) மேற்கோர்த்தல் (onto) சார்பு ஆங்கிலத்தில் 'surjective' என்றும் அழைக்கப்படும்.

வரையறை: f என்ற சார்பு மேற்கோர்த்தல் சார்பாக இருக்க வேண்டுமெனில் துணைச் சார்பகத்திலுள்ள ஒவ்வொரு உறுப்பு b-க்கும், தொடர்புள்ள a என்ற ஒரு உறுப்பு (அல்லது ஒன்றுக்கு மேற்பட்ட உறுப்புகள்) b = f(a) எனுமாறு சார்பகத்தில் இருக்க வேண்டும்.

2. ஒன்றுக்கு ஒன்றான சார்பு (One-to-one function) :

ஒரு சார்பின் வீச்சகத்திலுள்ள ஒவ்வொரு உறுப்பும் சார்பகத்திலுள்ள தனித்த உறுப்புடன் தொடர்பினை ஏற்படுத்தியிருப்பின் அச்சார்பு, ஒன்றுக்கு ஒன்றான சார்பு எனப்படும்.

அதாவது சார்பகத்திலுள்ள இரண்டு வெவ்வேறு உறுப்புகளின் சாயல்கள் துணைச் சார்பகத்தில் வெவ்வேறாக இருக்கும்.

அதாவது,
$$a_1 \neq a_2 \implies f(a_1) \neq f(a_2) \quad a_1, a_2 \in \mathbf{A},$$

அதாவது, $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$

எ.கா. 7.11-ல் வரையறுக்கப்பட்டுள்ள சார்பு ஒன்றுக்கு ஒன்றான சார்பு ஆகும். ஆனால் எ.கா. 7.10-ல் வரையறுக்கப்பட்டுள்ள சார்பு ஒன்றுக்கு ஒன்று அல்ல.

எ.கா. 7.12: $A = \{1, 2, 3\}, B = \{a, b, c\}$ எனில் $f = \{(1, a), (2, b), (3, c)\}$ என வரையறுக்கப்பட்டுள்ள சார்பு ஒன்றுக்கு ஒன்றானது என நிரூபி.

தீர்வு :

சார்பகத்திலுள்ள உறுப்புகளான 1, 2, 3 ஆகியவை துணைச் சார்பகத்தில் உள்ள உறுப்புகளான முறையே a, b, c-யுடன் தொடர்பை ஏற்படுத்தியுள்ளது.

இங்கு ƒ என்ற சார்பின்கீழ் A-ல் உள்ள வெவ்வேறு உறுப்புகளுக்கு B-ல் வெவ்வேறு

பிம்பங்கள் உள்ளமையால் இது ஒன்றுக்கு ஒன்றான சார்பாகும்.

எ.கா. 7.13: $y = x^2$ என்ற சார்பு, ஒன்றுக்கு ஒன்றானது அல்ல என நிரூபி. **தீர்வ** :

x-ன் வெவ்வேறு மதிப்புகளான 1, — 1-க்கு நாம் y-க்கு பெறுவது ஒரே மதிப்பான 1 ஆகும். அதாவது சார்பகத்தின் வெவ்வேறு உறுப்புகள் துணைச் சார்பகத்தில் ஒரே உறுப்பினைச் சாயலாகப் பெறுகின்றது. ஒன்றுக்கு ஒன்றான சார்பின் வரையறையின்படி, இது ஒன்றுக்கு ஒன்றான சார்பு அல்ல. (அல்லது)

$$y = f(x) = x^{2}$$

$$f(1) = 1^{2} = 1$$

$$f(-1) = (-1)^{2} = 1$$

$$f(1) = f(-1)$$

ஆனால் $1 \neq -1$. எனவே இரு வேறுபட்ட சார்பக உறுப்புகள் துணைச் சார்பகத்தில் ஒரே சாயலைப் பெற்றுள்ளது.

எனவே இச்சார்பு ஒன்றுக்கு ஒன்றானதல்ல.

- **குறிப்பு :** (1) ஒன்றுக்கு ஒன்றான சார்பினை ஆங்கிலத்தில் 'injective' என்றும் அழைப்பர்.
 - (2) ஒரு சார்பு ஒன்றுக்கு ஒன்றாகவும் மேற்கோர்த்தலாகவும் இருப்பின் அதனை ஆங்கிலத்தில் 'bijective' என்றும் அழைப்பர்.

(3) எடுத்துக்காட்டு 7.12-ல் கூறப்பட்ட சார்பு ஒரு ஒன்றுக்கொன்றான மேற்கோர்த்தல் ஆகும். ஆனால் எ.கா. 7.10, 7.11, 7.13-ல் வரையறுத்த சார்புகள் ஒன்றுக்கொன்றான மேற்கோர்த்தல்கள் அல்ல.

எ.கா. 7.14. $f: \mathbf{R} \to \mathbf{R}$ என்ற சார்பு f(x) = x + 1 என வரையறுக்கப்படின் இது ஒன்றுக்கொன்றான மேற்கோர்த்தல் என நிரூபி.

தீர்வு :

f என்பது ஒன்றுக்கொன்றான மேற்கோர்த்தல் என நிருபிக்க

- (i) மேற்கோர்த்தல்
- (ii) ஒன்றுக்கு ஒன்றானது என நிரூபித்தல் போதுமானது.
- (i) தெளிவாக, இங்கு வீச்சுக்கணம் R ஆகும். அதே போன்று துணைச்சார்பகமும் R ஆகும். எனவே கொடுக்கப்பட்ட சார்பு, மேற்கோர்த்தல் சார்பு ஆகும். (அல்லது) b ∈ R என்க.
 நாம் f(b 1) = (b 1) + 1 = b ஆக இருக்கம்படி b 1 என்ற உறுப்பினை R-ல் காண இயலும். ∴ f ஒரு மேற்கோர்த்தல் சார்பு ஆகும்.
- (ii) சார்பகத்தில் உள்ள இரு வெவ்வேறு உறுப்புகள், துணைச் சார்பகத்தில் வெவ்வேறு சாயல்களைக் கொண்டுள்ளது. எனவே f ஒரு ஒன்றுக்கு ஒன்றான சார்பு ஆகும். (அல்லது) $f(a_1) = f(a_2) \Rightarrow a_1 + 1 = a_2 + 1 \Rightarrow a_1 = a_2$. எனவே f ஒரு ஒன்றுக்கு ஒன்றான சார்பு ஆகும்.

3. சமனிச் சார்பு (Identity function) :

ஒரு கணம் A-யிலிருந்து அதே கணம் Aக்கு வரையறுக்கப்படும் சார்பு f, அனைத்து $x \in A$ க்கும் f(x) = x என இருக்குமானால், f ஒரு சமனிச்சார்பு ஆகும்.

அதாவது சமனிச் சார்பு $f: A \to A$, எல்லா $x \in A$ -க்கும் f(x) = x என வரையறுக்கப்படுகிறது. சமனிச் சார்பினை I_A அல்லது I என குறிக்கலாம். எனவே எப்போதும் I(x) = x ஆகும்.

சமனிச் சார்பின் வரைபடம் :

சமனிச் சார்பு f(x)=x-ன் வரைபடமானது y=x என்ற சார்பின் வரைபடமாகும். இந்த வரைபடம் y=x என்ற நேர்க்கோட்டினைக் குறிப்பிடுகிறது.

4. சார்பின் கேர்மாறு சார்பு (Inverse of a function) :

f என்ற சார்பின் நேர்மாறு சார்பு f^{-1} எனக் குறிக்கப்படும். இதனை 'f inverse'எனப் படிக்க வேண்டும். ஒரு சார்புக்கு நேர்மாறிச் சார்பு வரையறுக்கப்பட வேண்டுமாயின் அது மேற்கோர்த்தல் மற்றும் ஒன்றுக்கு ஒன்றான சார்பாக இருத்தல் வேண்டும்.

 $A = \{1, 2, 3\}, B = \{a, b, c, d\}$ என்ற சார்பினை எடுத்துக் கொள்வோம். $f = \{(1,\ a)\ (2,\ b),\ (3,\ c)\}$. இங்கு சாயல்களின் கணம் அல்லது வீச்சகம் $\{a,\ b,\ c\}$ ஆகும். ஆனால் இது சார்பகம் $\{a,\ b,\ c,\ d\}$ க்கு சமமானதல்ல. எனவே இது மேற்கோர்த்தல் சார்பு அல்ல.

அதாவது $f: \mathrm{A} o \mathrm{B}$ எனில் $f^{-1}: \mathrm{B} o \mathrm{A}$ ஒரு சார்பாக வேண்டுமாயின் வரையறையின்படி ஒவ்வொரு உறுப்பும் துணைச்சார்பகத்தில் சாயலைப் பெற்றிருக்க வேண்டும். ஆனால் f^{-1} -ன் சார்பகமாக அமைந்துள்ள B-ல் உள்ள d-க்கு சாயல் Aயில் இல்லை. எனவே f^{-1} ஆனது ஒரு சார்பல்ல. சார்பு f ஆனது மேற்கோர்த்தல் இன்றி அமைந்ததே இதற்கு ஒரு காரணம்.

$$f(1) = a$$

$$f(2) = b$$

$$f(3) = c$$

உள்ள உறுப்புகளுக்கும் சாயல்கள் உள்ளன.

$$f^{-1}(a) = 1$$

 $f^{-1}(b) = 2$

$$f^{-1}(c) - 3$$

மேலும் ஒன்றுக்கு ஒன்று இல்லாத ஒரு சார்பினை எடுத்துக் கொள்வோம்.

அதாவது
$$f = \{(1, a), (2, a), (3, b)\}$$
. இங்கு $A = \{1, 2, 3\}, B = \{a, b\}$

இங்கு '1', '2'ஆகிய வேறுபட்ட உறுப்புகளுக்கு 'a' என்ற ஒரே உறுப்பே பிம்பமாக அமைகிறது. எனவே இது ஒன்றுக்கு ஒன்று இல்லாத சார்பாகும்.

ஆனால் வீச்சகம் = $\{a,b\}$ = B. எனவே மேற்கோர்த்தல் சார்பு ஆகும்.

படம் 7. 18

$$f(1) = a$$

$$f(2) = a$$

$$f(3) = b$$

$$f^{-1}(a) = 1$$
$$f^{-1}(a) = 2$$

 $f^{-1}(b) = 3$

இங்கு உறுப்புகளுக்கும் தனித்த பிம்பங்கள் உள்ளன.

சார்பின்

உறுப்பு 'a'க்கு 1, 2 இரண்டு பிம்பங்கள் அமைகின்றன. இது வரையறைக்கு

முரணானது.

இதன் காரணம், எடுக்கப்பட்ட சார்பு ஒன்றுக்கு ஒன்று அல்ல.

எனவே, ' f^{-1} கிடைக்க வேண்டுமானால் f மேற்கோர்த்தல் மற்றும் ஒன்றுக்கு ஒன்றான சார்பாக இருக்க வேண்டும். இதன் மறுதலையும் உண்மையாகும்.

குறிப்பு :

- (1) எல்லா சார்புகளும் தொடர்புகளாதலால், சார்பின் நேர்மாறு சார்பும் ஒரு தொடர்பாகும். மேற்கோர்த்தல் மற்றும் ஒன்றுக்கு ஒன்றான பண்புகள் இல்லாத சார்புக்கு நேர்மாறு சார்பு கிடையாது.
- (2) ஒரு சார்பின் நேர்மாறு சார்பின் வரைபடத்தை வரைய சார்பின் ஆயத்தொலைப் புள்ளிகளை மாற்றியமைத்துக் காணலாம்.

கணித முறைப்படி ஒரு சார்பின் நேர்மாறு சார்பினை வரையறுக்க 'சார்புகளின் இணைப்பு' பற்றிய கருத்துரு நமக்குத் தேவைப்படுகிறது.

5. சார்புகளின் இணைப்பு (Composition of functions) :

A, B, C என்ற ஏதேனும் 3 கணங்களை எடுத்துக் கொள்க. $f: \mathrm{A} o \mathrm{B}, \, g: \mathrm{B} o \mathrm{C}$ என்பன ஏதேனும் இரு சார்புகள் என்க. இங்கு g-ன் சார்பகம், f-ன் துணைச் சார்பகமாக இருப்பதை கவனத்தில் கொள்க. இப்போது (gof) : $A \to C$ என்ற புதிய சார்பினை அனைத்து $a \in A$ க்கு (gof) (a) = g(f(a)) எனுமாறு வரையறுக்கவும். இங்கு f(a) என்பது B-ன் உறுப்பாகும். எனவே g(f(a)) என்பது ஒரு அர்த்தமுள்ள ஒன்றாகும். இப்புதிய சார்பு gof-ஐ f, g என்ற இரு சார்புகளின் இணைப்பு எனலாம்.

குறிப்பு :

gof-ல் உள்ள சிறிய வட்டமானது 'o' இரு சார்புகளை இணைக்கும் செயலியாகும்.

எ.கா. 7.15: $A = \{1, 2\}, B = \{3, 4\}, C = \{5, 6\}, f : A \rightarrow B, g : B \rightarrow C$ என்ற சார்புகள் $f(1) = 3, \quad f(2) = 4, \ g(3) = 5, \ g(4) = 6$ எனுமாறு வரையறுக்கப்பட்டுள்ளது எனில் gof-ஐக் காண்க.

தீர்வு :

gof என்பது A o C என அமையும் சார்பாகும்.

gof-ன் கீழ் Aயின் உறுப்புகளின் சாயல்களை காண வேண்டும்.

$$(gof)(1) = g(f(1)) = g(3) = 5$$

$$(gof)(2) = g(f(2)) = g(4) = 6$$

அதாவது A-யில் உள்ள உறுப்புகளான 1, 2-க்கு gof-ன் கீழ் சாயல்கள் முறையே 5, 6 ஆகும்.

$$\therefore$$
 gof = {(1, 5), (2, 6)}

குறிப்பு :

மேற்குறிப்பிட்ட f, g-ன் வரையறைகளின்படி fog-ஐ நாம் காண இயலாது. சில குறிப்பிட்ட f, g சார்புகளுக்கு fog, gof ஆகிய இரண்டு இணைப்புச் சார்புகளுக்கும் காண இயலும். பொதுவாக fog \neq gof. அதாவது சார்புகளின் இணைப்பு பரிமாற்றத் தக்கதல்ல (பொதுவாக).

எ.கா. 7.16: $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ என்ற சார்புகள்

 $f(x) = x^2 + 1$, g(x) = x - 1 என வரையறுக்கப்படுகின்றன எனில் fog மற்றும் gof-ஐ வரையறுத்து $fog \neq gof$ என நிரூபி.

தீர்வு :

$$(fog) (x) = f(g(x)) = f(x-1) = (x-1)^{2} + 1 = x^{2} - 2x + 2$$

$$(gof) (x) = g(f(x)) = g(x^{2} + 1) = (x^{2} + 1) - 1 = x^{2}$$

$$(fog) (x) = x^{2} - 2x + 2$$

$$(gof) (x) = x^{2}$$

$$\Rightarrow fog \neq gof$$

எ.கா. 7.17: $f, g: \mathbb{R} \to \mathbb{R}$ என்ற சார்புகள் $f(x) = 2x + 1, \ g(x) = \frac{x-1}{2}$ என வரையறுக்கப்படுகின்றன, எனில் (fog) = (gof) எனக் காட்டுக.

தீர்வு :

$$(fog)(x) = f(g(x)) = f\left(\frac{x-1}{2}\right) = 2\left(\frac{x-1}{2}\right) + 1 = x - 1 + 1 = x$$

$$(gof)(x) = g(f(x)) = g(2x+1) = \frac{(2x+1)-1}{2} = x$$

$$(fog)(x) = (gof)(x)$$

$$fog = gof$$

இந்த உதாரணத்தில் (fog)(x) = x and (gof)(x) = x. எ.கா. 7.17ஐ எடுத்துக் கொள்வோம். இங்கு வரையறுக்கப்பட்டுள்ளf, g என்ற சார்புகளுக்கு (fog)(x) = x மற்றும் (gof)(x) = x. எனவே சமனிச் சார்பின் வரையறையின்படி fog = I, gof = I அதாவது fog = gof = I

தற்போது நாம் ஒரு சார்பின் நேர்மாறு சார்பினை வரையறுக்கலாம்.

வரையறை:

 $f: A \to B$ என்பது ஒரு சார்பு என்க. $g: B \to A$ என்ற சார்பு $(fog) = I_B$ மற்றும் $(gof) = I_A$ எனுமாறு அமையுமெனில், g-யானது f-ன் நேர்மாறு சார்பு எனப்படும். f-ன் நேர்மாறு சார்பு f^{-1} எனக் குறிக்கப்படும்.

குறிப்பு :

- (1) f, gஎன்ற சார்புகளின் சார்பகம் மற்றும் துணைச் சார்பகங்கள் சமம் எனில் மேற்கண்ட நிபந்தனையை fog = gof = I என எழுதலாம்.
- (2) f^{-1} கிடைக்குமானால் f -ஆனது நேர்மாற்றத்தக்கது ஆகும்.
- (3) $f \circ f^{-1} = f^{-1} \circ f = I$

எ.கா. 7.18: $f: \mathbf{R} \to \mathbf{R}$ என்ற சார்பு f(x) = 2x + 1 என வரையறுத்தால் f^{-1} ஐ வரையறுக்க.

தீர்வு :

$$g = f^{-1}$$
 என்க.
$$(gof)(x) = x \qquad \qquad \because gof = I$$
 $g(f(x)) = x \Rightarrow g(2x+1) = x$ $2x+1=y \Rightarrow x=\frac{y-1}{2}$ $\therefore g(y) = \frac{y-1}{2}$ அல்லது $f^{-1}(y) = \frac{y-1}{2}$ ல் பிரதியிட,

y-ஐ xஆல் பிரதியிட,

$$f^{-1}(x) = \frac{x-1}{2}$$

6. இரு சார்புகளின் கூடுதல், கழித்தல், பெருக்கல் மற்றும் வகுத்தல் :

இரு சார்புகளின் சார்பகம் மற்றும் துணைச் சார்பகங்கள் முறையே சமமாக இருப்பின் இரு சார்புகளின் கூடுதல், கழித்தல், பெருக்கல் மற்றும் வகுத்தல் செயல்பாடுகளை வரையறுக்கலாம்.

f, g : A→ B என்ற இரு சார்புகளுக்கு கீழ்க்காண்பவை உண்மைகளாகும்.

$$(f+g)(x) = f(x) + g(x)$$

 $(f-g)(x) = f(x) - g(x)$
 $(fg)(x) = f(x)g(x)$
 $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ இங்கு $g(x) \neq 0$
 $(cf)(x) = c.f(x)$ இங்கு c ஒரு மாறிலி

குறிப்பு : இரு சார்புகளின் பெருக்கல் என்பது இரு சார்புகளின் இணைப்பிலிருந்து மாறுபட்டது.

ஏ.கா. 7.19: f, g : $R \rightarrow R$ என்ற சார்புகள் f(x) = x + 1, $g(x) = x^2$ என வரையறுத்தால், f+g, f-g, fg , $\frac{f}{g}$, 2f, 3g ஆகியவற்றைக் காண்க.

தீர்வு :

சார்பு வரையறை
$$f(x) = x + 1$$

$$g(x) = x^2$$

$$f + g(x) = f(x) + g(x) = x + 1 + x^2$$

$$f - g(x) = f(x) - g(x) = x + 1 - x^2$$

$$fg(x) = f(x) g(x) = (x + 1)x^2$$

$$\frac{f}{g}$$
 $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x+1}{x^2},$ $(x \neq 0$ -க்கு மட்டுமே வரையறுக்கப்படும்.) $2f$ $(2f)(x) = 2f(x) = 2(x+1)$

$$3g (2j)(x) - 2j(x) - 2(x + 2)$$

$$3g(x) = 3g(x) = 3x^2$$

7. மாறிலிச் சார்பு (Constant function) :

ஒரு சார்பின் வீச்சகம் ஒரு ஒற்றை உறுப்புக் கணம் எனில், அச்சார்பு ஒரு மாறிலிச் சார்பு என்றழைக்கப்படும். அதாவது,

 $f: \mathbf{A} \to \mathbf{B}$ ஆனது அனைத்து $a \in \mathbf{A}$ க்கும் f(a) = b என அமைந்தால் f ஒரு மாறிலிச் சார்பு ஆகும்.

 $A = \{1, 2, 3\}, B = \{a, b\}$ என்க. f என்ற சார்பு f(1) = a, f(2) = a, f(3) = a என வரையறுக்கப்பட்டால், f ஒரு மாறிலிச் சார்பு ஆகும்.

எளிமையாக, $f: \mathbf{R} \to \mathbf{R}$ என்ற சார்பு f(x) = k என வரையறுக்கப்படுமெனில் அது ஒரு மாறிலிச் சார்பாகும். அதன் வரைபடம் (7.22)-ல் கொடுக்கப்பட்டுள்ளது.

மகன்களின் கணத்திற்கும் அவர்களின் தந்தையைக் கொண்ட ஒற்றையுறுப்பு

கணத்திற்கும் இடையே உருவாக்கும் 'மகன் உறவு' என்ற சார்பு ஒரு மாறிலிச் சார்பு என்பதைக் கவனிக்கவும்.

8. ஒருபடிச் சார்பு (Linear function) அல்லது நேர்க்கோட்டுச் சார்பு :

 $f: \mathbf{R} \to \mathbf{R}$ என்ற சார்பு f(x) = ax + b என வரையறுக்கப்பட்டால் அச்சார்பு ஒருபடிச் சார்பு எனப்படும். இங்கு a,b என்பவை மாறிலிகளாகும். **ஏ.கா. 7.20:** $f: \mathbf{R} \to \mathbf{R}$ என்ற சார்பு f(x) = 2x + 1 என வரையறுக்கப்படின் அதன் வரைபடம் வரைக.

தீர்வு :

f(x) = 2x + 1-ஐ நிறைவு செய்யும் சில சோடி (x, f(x))களை அட்டவணைப்படுத்தி எழுதவும்.

x	0	1	- 1	2
f(x)	1	3	- 1	5

புள்ளிகளைக் குறித்து, இப்புள்ளிகள் வழிச் செல்லும் வளைவரையானது ஒரு நேர்க்கோடாக அமைவதைக் காணலாம்.

குறிப்பு :

- (1) ஒருபடிச் சார்பின் வரைபடம் ஒரு நேர்க்கோடாகும்.
- (2) ஒருபடிச் சார்பின் நேர்மாறுச் சார்பும் ஒரு ஒருபடிச் சார்பாகும்.

9. பல்லுறுப்புச் சார்பு (Polynomial function) :

 $f: \mathbf{R} \rightarrow \mathbf{R}$ என்ற சார்பு $f(x) = a_n \ x^n + a_{n-1} \ x^{n-1} + \ldots + a_1 x + a_0$ என வரையறுப்பின் f ஒரு n-படியுள்ள பல்லுறுப்புச் சார்பு எனலாம். இங்கு a_0, a_1, \ldots, a_n மெய்யெண்கள். மேலும் $a_n \neq 0$.

 $f: \mathbf{R} \to \mathbf{R}$ என்ற சார்பு $f(x) = x^3 + 5x^2 + 3$ என வரையறுப்பின் இதனை 3 படியுள்ள பல்லுறுப்புச் சார்பு எனலாம்.

10. விகிதமுறுச் சார்பு (Rational function) :

p(x), q(x) என்பவை இரு பல்லுறுப்புக் கோவைச் சார்புகள் என்க. q(x)=0ஆகக்கூடிய x-ன் எல்லா மதிப்புகளையும் R-லிருந்து நீக்கிய பின்னர் கிடைக்கும் கணத்தினை S என்க.

 $f: \mathbf{S} \to \mathbf{R}$ என்ற சார்பு $f(x) = \frac{p(x)}{q(x)}, \ q(x) \neq 0$ என வரையறுக்கப்பட்டால், அதனை ஒரு விகிதமுறுச் சார்பு எனலாம்.

எ.கா. 7.21: $f(x) = \frac{x^2 + x + 2}{x^2 - x}$ என்ற விகிதமுறு சார்பின் சார்பகத்தைக் காண்க.

தீர்வு :

சார்பகம் S ஆனது R-லிருந்து g(x)=0 என்ற நிபந்தனைக்குட்பட்ட எல்லா x-மதிப்புகளையும் நீக்கிய பின்னர் கிடைப்பதாகும்.

இங்கு
$$q(x) = x^2 - x = 0 \Rightarrow x(x-1) = 0 \Rightarrow x = 0, 1$$

$$\therefore$$
 S = R - {0, 1}

எனவே கொடுக்கப்பட்ட விகிதமுறு சார்பானது 0, 1-ஐ தவிர்த்த அனைத்து மெய்யெண்களுக்கும் வரையறுக்கப்படுகிறது.

11. படிக்குறிச் சார்புகள் (Exponential functions) :

எந்தவொரு எண் a>0-க்கும் $f: \mathbf{R} \to \mathbf{R}$ என்ற சார்பு $\mathbf{f}(\mathbf{x})=a^{\chi}$ என வரையறுக்கப்படுமாயின் இதனை படிக்குறிச் சார்பு எனலாம்.

குறிப்பு : ஒரு படிக்குறிச் சார்பின் வீச்சகம் எப்பொழுதும் R⁺ (மிகையெண்களின் கணம்) ஆகவே இருக்கும்.

எ.கா. 7.22: $f: \mathbb{R} \to \mathbb{R}^+$ என்ற சார்பு

(1) $f(x) = 2^x$ (2) $f(x) = 3^x$ (3) $f(x) = 10^x$ என வரையறுக்கப்பட்டால் அதன் வரைபடங்களை வரையவும்.

தீர்வு :

x=0 எனும் போது அனைத்துச் சார்புகளுக்கும் f(x)=1 ஆகும். எனவே y=1 என்ற இடத்தில் அனைத்தும் y-அச்சினை வெட்டுகிறது. மேலும் x-ன் எந்த மெய்மதிப்பிற்கும் f(x), பூச்சியமாவதில்லை. எனவே மேற்கண்ட சார்புகளுக்கான ஒத்த வளைவரைகள், x-ன் மெய் மதிப்பிற்கு x-அச்சினை

சந்திப்பதில்லை (அல்லது x-அச்சினை – ∞இல் சந்திக்கிறது எனலாம்)

குறிப்பாக 2 < e < 3 என்பதால் $f(x) = e^x$ என்ற வளைவரை $f(x) = 2^x$, $f(x) = 3^x$ இடையே இருப்பதைக் காணலாம்.

எ.கா. 7.23:

 $f(x)=e^{x}$ என்ற படிக்குறிச் சார்பின் வரைபடம் வரைக.

தீர்வு :

x=0 என்ற மதிப்பிற்கு f(x)=1 ஆகும். அதாவது வளை வரையானது y-அச்சினை y=1 என்ற புள்ளியில் வெட்டும். மேலும் x-ன் மெய்யெண் மதிப்பிற்கு f(x) பூச்சியமாகாது. அதாவது மெய்யெண் x-க்கு, x அச்சினை வளைவரை சந்திக்காது.

எ.கா. 7.24:

கீழ்க்காணும் மடக்கைச் சார்புகளின் (Logarithmic function) வரைபடங்களை வரையவும்.

$$(1) \ f(x) = \log_2 x$$

(2)
$$f(x) = \log_e x$$

$$(3) \ f(x) = \log_3 x$$

தீர்வு :

மடக்கைச் சார்புகள், மிகை மெய்யெண்களுக்கு மட்டுமே வரையறுக்கப்படும்.

சார்பகம் : $(0,\infty)$

வீச்சகம் : $(-\infty,\infty)$

படம் 7. 26

குறிப்பு :

படிக்குறிச் சார்பின் நேர்மாறு சார்பு, மடக்கைச் சார்பாகும். மடக்கைச் சார்பின் பொது வடிவம். $f(x) = \log_a x$, $a \neq 1$, a என்பது மிகை எண்ணாகும். மடக்கைச் சார்பின் சார்பகமான $(0, \infty)$, படிக்குறிச் சார்பின் துணைச் சார்பகமாகவும், மடக்கைச் சார்பின் துணைச் சார்பகமான $(-\infty, \infty)$ படிக்குறிச் சார்பின் சார்பகமாக அமையும். இது நேர்மாறு பண்பின் காரணமாக அமைகிறது.

11. ஒரு சார்பின் தலைகீழி அல்லது தலைகீழ் சார்பு

(Reciprocal of a function):

 $g: S \rightarrow R$ என்ற சார்பு $g(x) = \frac{1}{f(x)}$ என வரையறுக்கப்படுமாயின் g(x) ஆனது f(x)-ன் தலைகீழி எனப்படும். இச்சார்பு $f(x) \neq 0$ என்ற x-க்கு மட்டுமே வரையறுக்கப்படும். f(x)-ன் தலைகீழ் சார்பு g(x)-ன் சார்பகம்

$$S = R - \{x : f(x) = 0\}$$
 ஆகும்.

எ.கா. 7.25: f(x) = x என f என்ற சார்பு வரையறுக்கப்படுமாயின், இதன் தலைகீழ் சார்பின் வரைபடத்தினை வரைக.

தீர்வு :

$$f(x)$$
-ன் தலைகீழ் சார்பு $\frac{1}{f(x)}$ ஆகும்.

$$\therefore g(x) = \frac{1}{f(x)} = \frac{1}{x}$$

எனவே g-யின் சார்பகம்

 $R-\ \{\ f(x)=0\$ என்றபடி உள்ள x புள்ளிகளின் கணம் $\}$

$$= R - \{0\}$$

$$g(x) = \frac{1}{x}$$
-ன் வரைபடம், படம் 7.27 -ல் காட்டியபடி அமையும்.

குறிப்பு :

- (1) $g(x)=rac{1}{x}$ என்ற சார்பின் வரைபடம், எந்தவொரு அச்சினையும் சந்திப்பதில்லை. **х-**कं மதிப்புக்கு முடிவுள்ள ஆனால் இவ்வளைவரை x, yஅச்சுக்களை முடிவிலியில் (∞-ல்) சந்திக்கும் என்பதனை கவனத்தில் கொள்க. இவ்வாறாக x, y அச்சுகள் $g(x) = rac{1}{x}$ என்ற வளைவரைக்கு முடிவிலியில் தொலைத் அமைகின்றன தொடுகோடுகளாக (asymptotes) [ஒரு வளைவரைக்கு முடிவிலியில் வரையப்படும் தொடுகோடு, தொலைத் தொடுகோடு ஆகும். தொலைத் தொடுகோடுகளைப் பற்றிய விரிவான பாடம் XII வகுப்பில் பார்க்கலாம்].
- (2) தலைகீழ் சார்புகள், இரண்டு சார்புகளின் பெருக்கலோடு தொடர்புடையது. அதாவது f மற்றும் g என்பவை ஒன்றுக்கொன்று தலைகீழ் சார்புகளாயின் f(x) g(x) = 1 ஆகும். நேர்மாறு சார்புகள், இரண்டு சார்புகளின் இணைப்புகளுடன் தொடர்புடையது. அதாவது, f மற்றும் g என்பவை ஒன்றுக்கொன்று நேர்மாறுகளாக இருப்பின் fog = gof = I ஆகும்.

12. எண்ணளவைச் சார்பு அல்லது மட்டுச் சார்பு (Absolute value function) :

 $f: \mathbf{R} \to \mathbf{R}$ என்ற சார்பு f(x) = |x| என வரையறுக்கப்படுமாயின் அது எண்ணளவைச் சார்பு எனப்படும்.

இங்கு
$$|x|=\left\{ egin{array}{ll} x & x\geq 0 \ \mathrm{armin} \ -x & x<0 \ \mathrm{armin} \ \end{array}
ight.$$

இங்கு சார்பகம் R துணைச் சார்பகம் குறையற்ற மெய்யெண்களின் கணம்.

(1) f(x) = |x|(2) f(x) = |x - 1| (3) f(x) = |x + 1| ஆகிய எண்ணளவுச் சார்புகளின் வரைபடங்கள் கீழே கொடுக்கப்பட்டுள்ளது.

13. படிகிலைச் சார்புகள் (Step functions) :

(a) மீப்பெரு முழு எண் சார்பு (Greatest integer function)

ஒரு மெய்யெண் x இடத்து, x-ஐ விட மிகைப்படாத மீப்பெரு முழு எண் மதிப்பைப் பெறும் சார்பு, மீப்பெரு முழு எண் சார்பு எனப்படுகிறது. இது 🛚 x 🖠 எனக் குறிக்கப்படுகிறது.

 $f: \mathbb{R} \to \mathbb{R}$ என்ற சார்பு $f(x) = \lfloor x \rfloor$ என வரையறுக்கப்படுமாயின் அதனை மீப்பெரு முழு எண் சார்பு எனலாம்.

 $\lfloor 2.5 \rfloor = 2, \lfloor 3.9 \rfloor = 3, \lfloor -2.1 \rfloor = -3, \lfloor .5 \rfloor = 0, \lfloor -2.2 \rfloor = -1, \lfloor 4 \rfloor = 4$ என்பதனை கவனிக்கவும்.

இச்சார்பின் சார்பகம் R மற்றும் துணைச் சார்பகம் Z (முழு எண்களின் கணம்) ஆகும்.

(b) மீச்சிறு முழு எண் சார்பு (Least integer function)

ஒரு மெய்யெண் x இடத்து, x-ஐ விட குறையாத மீச்சிறு முழு எண் மதிப்பினை பெறும் சார்பு, மீச்சிறு முழு எண் சார்பு எனப்படுகிறது. இது | x | எனக் குறிக்கப்படுகிறது.

அதாவது $f: \mathbf{R} o \mathbf{R}$ என்ற சார்பு $f(x) = \mid x \mid$ என வரையறுக்கப்படுமாயின் அது மீச்சிறு முழு எண் சார்பு எனப்படும்.

[2.5] = 3, [1.09] = 2, [-2.9] = -2, [3] = 3 என்பதனை கவனிக்கவும்.

இச்சார்பின் சார்பகம் R மற்றும் துணைச் சார்பகம் Z ஆகும்.

 $f(x) = \lfloor x \rfloor$ -ன் வரைபடம்

படம் 7. 29

$$f(x) = \lceil x \rceil$$
-ன் வரைபடம்

14. குறிச்சார்பு (Signum function) :

 $f:\mathbf{R} o \mathbf{R}$ என்ற சார்பு $f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ என வரையறுக்கப்படுமாயின் அது குறிச்சார்பு எனப்படும்.

இதன் சார்பகம் R, வீச்சகம் {-1,0,1} ஆகும்.

15. ஒற்றை மற்றும் இரட்டைப் படைச் சார்புகள் (Odd and even functions) :

சார்பகத்திலுள்ள x-ன் அனைத்து மதிப்புகளுக்கும் f(x)=f(-x) எனில் இச்சார்பு இரட்டைப்படைச் சார்பாகும்.

சார்பகத்திலுள்ள x-ன் அனைத்து மதிப்புகளுக்கும் f(x)=-f(-x) எனில் இச்சார்பு ஒற்றைப்படைச் சார்பாகும்.

உதாரணமாக,, $f(x) = x^2$, $f(x) = x^2 + 2x^4$, $f(x) = \frac{1}{x^2}$, $f(x) = \cos x$ என்பவை இரட்டைப்படைச் சார்புகளாகும்.

 $f(x) = x^3$, $f(x) = x - 2x^3$, $f(x) = \frac{1}{x}$, $f(x) = \sin x$ என்பவை ஒற்றைப்படைச் சார்புகளாகும்.

இரட்டைப்படைச் சார்பின் வரைபடத்தை y-அச்சு மிகச் சரியாக இருசமச்சீர் பகுதிகளாக பிரிக்கிறது. இச்சார்பின் வரைபடம், y-அச்சைப் பொறுத்து சமச்சீரானது. ஒற்றைப்படைச் சார்பின் வரைபடம், ஆதியைப் பொறுத்து சமச்சீரானது.

பண்புகள் :

- (1) இரண்டு ஒற்றைப்படைச் சார்புகளின் கூடுதல் மீண்டும் ஒரு ஒற்றைப்படையாகும்.
- (2) இரண்டு இரட்டைப்படைச் சார்புகளின் கூடுதல் மீண்டும் ஒரு இரட்டைப்படையாகும்.
- (3) ஒரு ஒற்றை மற்றும் இரட்டைப் படைச் சார்புகளின் கூடுதல் ஒற்றையாகவும் இரட்டையாகவும் இல்லாத சார்பாகும்.
- (4) இரண்டு ஒற்றைப்படைச் சார்புகளின் பெருக்கற்பலன் ஒரு இரட்டைப் படையாகும்.
- (5) இரண்டு இரட்டைப்படைச் சார்புகளின் பெருக்கற்பலன் ஒரு இரட்டைப்படையாகும்.
- (6) ஒரு ஒற்றை மற்றும் இரட்டைப்படை சார்புகளின் பெருக்கற்பலன் ஒற்றைப் படையாகும்.
- (7) இரண்டு இரட்டைப் படைச் சார்புகளின் வகுபலன் இரட்டைப் படையாகும். (பகுதிச் சார்பு பூச்சியமற்றது)
- (8) இரண்டு ஒற்றைப்படைச் சார்புகளின் வகுபலன் இரட்டைப் படையாகும். (பகுதிச்சார்பு பூச்சியமற்றது)
- (9) ஒரு இரட்டை மற்றும் ஒற்றைப்படை சார்பு வகுபலன் ஒரு ஒற்றைப்படை சார்பாகும் (பகுதிச் சார்பு பூச்சியமற்றது)

16. திரிகோணமிதிச் சார்புகள் (Trigonometrical functions) :

திரிகோணமிதியில் இரண்டு வகையான சார்புகள் உள்ளன. அவை

- (1) வட்டச் சார்புகள் (Circular functions)
- (2) அதிபரவளையச் சார்புகள் (Hyperbolic functions)

இங்கு நாம் வட்டச் சார்புகளை மட்டுமே எடுத்துக் கொள்வோம்.

- (a) $f(x) = \sin x$
- (b) $f(x) = \cos x$
- (c) $f(x) = \tan x$

- (d) $f(x) = \sec x$
- (e) $f(x) = \csc x$
- $(f) f(x) = \cot x$

என்பன வட்டச் சார்புகள் ஆகும். வட்டச் சார்புகளின் வரைபடங்களை பின்வரும் படங்கள் விளக்குகின்றன.

(c) $y=\tan x$ $\tan x=\frac{\sin x}{\cos x}$ என்பதால் $\cos x\neq 0$ என்ற x-ன் மதிப்புகளுக்கு மட்டுமே $\tan x$ வரையறுக்கப்படுகிறது.

மடங்குகளுக்கு $\tan x$ வரையறுக்கப்படாது)

சார்பகம்
$$=R-\left\{(2\;k+1)\,rac{\pi}{2}
ight\},\quad k\in Z$$
 வீச்சகம் $=(-\infty,\infty)$

(d)
$$y = \csc x$$

 $\sin x$ -ன் தலைகீழி $\csc x$ என்பதால், $\sin x = 0$ என்ற x-ன் மதிப்புகளுக்கு $\csc x$ வரையறுக்கப்படாது.

எனவே π-ன் மடங்குகளைத் தவிர அனைத்து மெய்யெண்களின் கணம் சார்பகமாகும்.

சார்பகம் =
$$R - \{k\pi\}$$
, $k \in Z$
வீச்சகம் = $(-\infty, -1] \cup [1, \infty)$

(e) $y = \sec x$

 $\cos x$ -ன் தலைகீழி $\sec x$ என்பதால் $\cos x = 0$ என்ற x-ன் மதிப்புகளுக்கு $\sec x$ வரையறுக்கப் படாது.

$$\therefore$$
 சார்பகம் $=\mathrm{R}-\left\{(2k+1)rac{\pi}{2}
ight\},\,k\in\mathrm{Z}$ வீச்சகம் $=(-\infty,-1]\cup[1,\infty)$

 $\cot x = \frac{\cos x}{\sin x}$ என்பதால் $\sin x = 0$ என்ற x-ன் மதிப்புகளுக்கு $\cot x$ வரையறுக்கப்படாது.

். சார்பகம் =
$$\mathbf{R} - \{k \; \pi\}, \, k \in \mathbf{Z}$$
 வீச்சகம் = $(-\infty, \infty)$

17. இருபடிச் சார்புகள் (Quadratic functions) :

இது படி இரண்டு கொண்ட பல்லுறுப்புக் கோவை சார்பாகும்.

ஒரு இருபடி சார்பானது $f: \mathbf{R} \to \mathbf{R}$, $f(x) = ax^2 + bx + c$, a, b, $c \in \mathbf{R}$, $a \neq 0$ எனுமாறு வரையறுக்கப்படும் சார்பாகும். ஒரு இருபடிச் சார்பின் வரைபடம் எப்பொழுதும் ஒரு பரவளையமாகும்.

7.3 இருபடி அசமன்பாடுகள் (Quadratic Inequations) :

 $f(x) = ax^2 + bx + c$, a, b, $c \in \mathbb{R}$, $a \neq 0$ என்ற இருபடிச் சார்பு அல்லது கோவையினை எடுத்துக் கொள்க. இங்கு $f(x) \geq 0$, f(x) > 0, $f(x) \leq 0$ மற்றும் f(x) < 0 என்பவை இருபடி அசமன்பாடுகள் ஆகும்.

இருபடி அசமன்பாடுகளைத் தீர்க்க பின்வரும் பொது விதிகள் பெரிதும் பயன்படும்.

பொது விதிகள்:

- $1. \ a > b$ எனில்
 - (i) அனைத்து $c \in \mathbf{R}$ க்கு (a+c) > (b+c)
 - (ii) அனைத்து $c \in \mathbf{R}$ க்கு (a-c) > (b-c)
 - (iii) -a < -b
 - (iv) அனைத்து மிகையெண் c-க்கு ac > bc, $\frac{a}{c} > \frac{b}{c}$
 - (v) அனைத்து குறையெண் c-க்கு $ac < bc, rac{a}{c} < rac{b}{c}$

அசமக் குறிகளான < , > ஆகியவை முறையே \leq , \geq என்ற குறிகளால் மாற்றப்படினும், மேற்கண்ட பண்புகள் உண்மையாகும்.

- ab > 0 எனில் a > 0, b > 0 அல்லது a < 0, b < 0
 - (ii) $ab \ge 0$ எனில் $a \ge 0, b \ge 0$ அல்லது $a \le 0, b \le 0$
 - (iii) ab < 0 எனில் a > 0, b < 0 அல்லது a < 0, b > 0
 - (iv) $ab \le 0$ எனில் $a \ge 0, b \le 0$ அல்லது $a \le 0, b \ge 0$. $a, b, c \in \mathbb{R}$

இருபடிச் சார்பின் சார்பகம் மற்றும் வீச்சகம்

(Domain and range of a quadratic function):

ஒரு இருபடி அசமன்பாட்டினை தீர்ப்பதென்பது, கொடுக்கப்பட்ட அசம நிபந்தனைக்குட்பட்டு சார்பு f(x)-ன் சார்பகத்தை கண்டறிவதே ஆகும்.

இருபடி அசமன்பாடுகளின் தீர்வு காண பல்வேறு முறைகள் உள்ளன. அசமன்பாட்டிற்கு பொருத்தமான ஏதேனும் ஒரு முறையை நாம் தேர்ந்தெடுக்கலாம்.

குறிப்பு : பாடத்திட்டத்தின்படி முறைகளின் முடிவு மட்டுமே தேவை. கற்றல் திறனை அதிகரிக்கும் நோக்கத்தோடு அதன் முறைகள் கொடுக்கப்பட்டுள்ளது.

முறை I : காரணிப்படுத்துதல் முறை :

$$ax^2 + bx + c \ge 0 \qquad \dots (1)$$

என்பது $a,\ b,\ c\in \mathbb{R}$ and $a\neq 0,\ x$ -ல் அமைந்த இருபடி அசமன்பாடு என்க.

இந்த அசமன்பாட்டிற்கு ஒத்த இருபடிச் சமன்பாடு $ax^2 + bx + c = 0$ -ஆகும். இச்சமன்பாட்டின் தன்மை காட்டி (discriminant) $b^2 - 4ac$ ஆகும். இப்பொழுது. மூன்று நிலைமைகள் உருவாகும்.

நிலை (i): $b^2 - 4ac > 0$

இந்நிலைமையில் $ax^2 + bx + c = 0$ -ன் மூலங்கள் மெய் மற்றும் வெவ்வேறானவை ஆகும். இவற்றை α , β என்க.

$$\therefore ax^2 + bx + c = a(x - \alpha) (x - \beta)$$
ஆனால் $ax^2 + bx + c \ge 0$ (1)லிருந்து
$$\Rightarrow \qquad a(x - \alpha) (x - \beta) \ge 0$$

$$\Rightarrow \qquad a > 0$$
 எனில் $(x - \alpha) (x - \beta) \ge 0$
 $a < 0$ எனில் $(x - \alpha) (x - \beta) \le 0$

இந்த அசமன்பாட்டினை பொது விதி (2)-னை பயன்படுத்தி தீர்வு காணலாம்.

நிலை (ii): $b^2 - 4ac = 0$

இந்நிலைமையில் $ax^2+bx+c=0$ -ன் மூலங்கள் மெய் மற்றும் சமமானவை ஆகும். இவற்றை α,α என்க.

$$\therefore ax^2 + bx + c = a(x - \alpha)^2.$$

$$\Rightarrow a(x - \alpha)^2 \ge 0$$

$$\Rightarrow a > 0$$
 రాయోతు $(x - \alpha)^2 \ge 0$ $a < 0$ రాయోతు $(x - \alpha)^2 \le 0$

இந்த அசமன்பாட்டினை பொது விதி 2-னை பயன்படுத்தி தீர்வு காணலாம்.

நிலை (iii): $b^2 - 4ac < 0$

இந்நிலைமையில் $ax^2+bx+c=0$ என்ற சமன்பாட்டின் மூலங்கள் வேறுபட்ட மெய்யற்றவை ஆகும்.

இங்கு
$$ax^2 + bx + c = a\left(x^2 + \frac{bx}{a} + \frac{c}{a}\right)$$
$$= a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}\right]$$

$$= a\left[\left(x+\frac{b}{2a}\right)^2 + \frac{4ac-b^2}{4a^2}\right]$$

 $\therefore ax^2 + bx + c$ -ன் குறியீடு x-ன் எல்லா மதிப்புகளுக்கும் a-ன் குறியீடாக அமையும். ஏனெனில்

 $\left[\left(x+rac{b}{2a}
ight)^2+rac{4ac-b^2}{4a^2}
ight]$ என்பது x-ன் எல்லா மதிப்புகளுக்கும் மிகையெண்ணாகும்.

இவ்வாறாக $ax^2+bx+c\geq 0$ என்ற வகையான அசமன்பாட்டினைத் தீர்க்கும் முறையினைக் கண்டோம்.

முறை : II

ஒத்த பல்லுறுப்புக் கோவையினை காரணிப்படுத்துவதன் மூலமாக ஒரு இருபடிச் சமன்பாட்டினைத் தீர்க்க இயலும்.

$$1. \ ax^2 + bx + c > 0$$
 என்க.
$$ax^2 + bx + c = a(x - \alpha)(x - \beta)$$
 என்க. $\alpha < \beta$ என்க.

മിതെസ (i):
$$x < \alpha$$
 எனில் $x - \alpha < 0 \& x - \beta < 0$

$$\therefore (x-\alpha)(x-\beta) > 0$$

മിതെയ (ii):
$$x > \beta$$
 எனில் $x - \alpha > 0 & x - \beta > 0$

$$\therefore (x - \alpha) (x - \beta) > 0$$

எனவே $(x-\alpha)$ $(x-\beta)>0$ எனில் x-ன் மதிப்புகள் α , β ஆகியவற்றிற்கு வெளியே அமையும்.

$$2. ax^2 + bx + c < 0$$
 என்க.

$$ax^2 + bx + c = a(x - \alpha)(x - \beta)$$
; $\alpha, \beta \in \mathbb{R}$

$$\alpha < \beta$$
 , $\alpha < x < \beta$ என்க.

ങ്ങവേ
$$x - \alpha > 0$$
 and $x - \beta < 0$

$$\therefore$$
 $(x-\alpha)(x-\beta)<0$

எனவே $(x-\alpha)$ $(x-\beta)<0$ எனில் x-ன் மதிப்புகள் α , β ஆகியவற்றிற்கு இடையே அமையும்.

முறை : III

இருபடி அசமன்பாட்டினைத் தீர்ப்பதற்கான நடைமுறை படிநிலைகள்

படிநிலை 1 : x^2 -ன் குணகம் மிகையில்லையெனில், அசமன்பாட்டின் இருபுறமும் – 1ஆல் பெருக்கவும். குறை எண்ணால் பெருக்கும் போது அசமன்பாட்டின் குறி மாறும் என்பதை கவனிக்கவும்.

- **படிநிலை 2 :** இருபடிக் கோவையை காரணிப்படுத்தி அதன் ஒருபடிச் சார்புகளை பூச்சியத்துடன் சமன்படுத்தி தீர்வினைப் பெறவும்.
- **படிநிலை 3 :** படிநிலை 2-ல் பெறப்பட்ட மூலங்களை மெய்யெண் கோட்டில் குறிக்கவும். மூலங்கள் மெய்யெண் கோட்டினை மூன்று இடைவெளிகளாகப் பிரிக்கும்.
- படிநிலை 4: வலக்கோடியிலும் இடக்கோடியிலும் உள்ள இடைவெளிகளில் இருபடிக் கோவையானது மிகைக் குறியீட்டினையும் நடுப்பகுதியில் உள்ள இடைவெளியில் குறைக் குறியினையும் பெறும்.
- படிநிலை 5 : கொடுக்கப்பட்ட அசமன்பாட்டின் தீர்வு கணத்தை, படிநிலை 4-ல் குறிப்பிட்டபடி ஏற்புடைய இடைவெளியினைத் தேர்ந்தெடுக்கவும்.
- **படிநிலை 6 :** அசமன்பாட்டில், சம செயலிகளும் (≤, ≥) இருப்பின், மூலங்களை தீர்வு கணத்தில் சேர்க்கவும்.
- **எ.கா.** 7.26: $x^2 7x + 6 > 0$ என்ற அசமன்பாட்டின் தீர்வு காண்க. **முறை I:**

தீர்வ:
$$x^2 - 7x + 6 > 0$$

$$\Rightarrow$$
 $(x-1)(x-6) > 0$

[இங்கு $b^2 - 4ac = 25 > 0$]

இப்பொழுது பொது விதி2-ஐ பயன்படுத்த,

$$x-1>0, x-6>0$$
 (அல்லது) $(x-1)<0, (x-6)<0$

$$\Rightarrow x > 1, x > 6$$
 $\Rightarrow x < 1, x < 6$

இங்கு
$$x>1$$
ஐ விட்டு விடலாம் $x<6$ ஐ விட்டு விடலாம்

$$\Rightarrow x > 6 \qquad \Rightarrow x < 1$$

$$\therefore x \in (-\infty, 1) \cup (6, \infty)$$

முறை II:

$$x^{2} - 7x + 6 > 0$$

$$\Rightarrow (x - 1)(x - 6) > 0$$

 $(x-lpha)\,(x-eta)>0$ எனில் x-ன் மதிப்புகள் (lpha,eta)க்கு வெளியே இருக்கும்.

$$\Rightarrow x \in (-\infty, 1) \cup (6, \infty)$$

முறை III:

$$x^{2} - 7x + 6 > 0$$

 $\Rightarrow (x - 1)(x - 6) > 0$

காரணிகளைப் பூச்சியத்துக்கு சமப்படுத்த, x = 1, x = 6 என்ற மூலங்கள் இருபடிச் சமன்பாட்டிற்கு கிடைக்கிறது. இம்மூலங்களை மெய்யெண் கோட்டில் குறிக்கவும். மேலும் இடமிருந்து வலமாக இடைவெளிகளை +, –, + என குறிப்பிடவும். இதற்குரிய எண்கோடு

இங்கு $(-\infty, 1)$, (1, 6), $(6, \infty)$ ஆகிய இடைவெளிகள் உள்ளன. (x-1) (x-6) மிகையாக இருக்க வேண்டுமென்பதால் மிகைக்குரிய இடைவெளிகள் $(-\infty, 1)$, $(6, \infty)$ ஆகும்.

$$\Rightarrow$$
 $x \in (-\infty, 1) \cup (6, \infty)$

குறிப்பு : இம்மூன்று முறைகளில் மூன்றாவது முறை மிகவும் உபயோகமானதாகும்.

எ.கா. 7.27: – x^2 + 3x – 2 > 0 என்ற அசமன்பாட்டினைத் தீர்க்க.

தீர்வு :

$$-x^2 + 3x - 2 > 0 \qquad \Rightarrow \qquad -(x^2 - 3x + 2) > 0$$

$$\Rightarrow \qquad x^2 - 3x + 2 < 0$$

$$\Rightarrow \qquad (x - 1)(x - 2) < 0$$

காரணிகளை பூச்சியத்திற்கு சமப்படுத்த, x=1, x=2 என்ற இரண்டு மூலங்கள் இருபடிச் சமன்பாட்டிற்கு கிடைக்கும். இதனை எண் கோட்டில் குறிப்பிட்டு, ஒவ்வொரு இடைவெளிக்கும் இடமிருந்து வலமாக +, -, + எனக் குறியிடவும்.

இங்கு $(-\infty, 1)$, (1, 2), $(2, \infty)$ ஆகிய மூன்று இடைவெளிகள் உள்ளன. (x-1) (x-2) ஒரு குறையெண்ணாக இருக்கத் தேவையான இடைவெளி (1, 2) ஆகும்.

எனவே $x \in (1, 2)$

குறிப்பு: இதனை முதல் இரண்டு முறையிலும் தீர்வு காணலாம்.

எ.கா. **7.28:** தீர்க்க : 4
$$x^2$$
 – 25 ≥ 0

§iia:
$$4x^2 - 25 \ge 0$$
 $\Rightarrow (2x - 5)(2x + 5) \ge 0$

காரணிகளை பூச்சியத்துக்கு சமப்படுத்த $x=\frac{5}{2}$, $x=-\frac{5}{2}$ ஆகிய மூலங்கள் இருபடிச் சமன்பாட்டுக்கு கிடைக்கும். இதனை எண்கோட்டில் குறிப்பிட்டு இடமிருந்து வலமாக ஒவ்வொரு இடைவெளிக்கும் +, -, + என்றவாறு குறிப்பிடவும்.

$$(+) \qquad (-) \qquad (+)$$

$$-\infty \qquad -5/2 \qquad 5/2 \qquad \infty$$

இங்கு $\left(-\infty,-\frac{5}{2}\right)$, $\left(-\frac{5}{2},\frac{5}{2}\right)$ $\left(\frac{5}{2},\infty\right)$ ஆகிய மூன்று இடைவெளிகள் உள்ளன. (2x-5) (2x+5)-ன் மதிப்பு மிகையாகவோ அல்லது பூச்சியமாகவோ இருக்கலாம். எனவே $\left(-\infty,-\frac{5}{2}\right)$, $\left(\frac{5}{2},\infty\right)$ ஆகிய இடைவெளிகளுடன் மூலங்களான $-\frac{5}{2}$, $\frac{5}{2}$ ஆகியவற்றையும் சேர்க்க வேண்டும். எனவே $x\in(-\infty,\frac{-5}{2}]$ \cup $\left[\frac{5}{2},\infty\right)$

எ.கா. 7.29: 64 x^2 + 48x + 9 < 0 என்ற அசமன்பாட்டைத் தீர்க்க.

$$64x^2 + 48x + 9 = (8x + 3)^2$$

 $(8x+3)^2$ என்பது ஒரு வர்க்கமாக உள்ளதால், இது x-ன் மெய் மதிப்புக்கு குறையெண்ணாக இருக்க வாய்ப்பில்லை. எனவே இதற்கு தீர்வு கிடையாது.

எ.கா. 7.30: $f(x)=x^2+2x+6>0$ என்பதன் தீர்வு காண்க (அல்லது) f(x) என்ற சார்பின் சார்பகம் காண்க.

$$x^2 + 2x + 6 > 0$$

 $(x+1)^2 + 5 > 0$

இது x-ன் எல்லா மெய் மதிப்புகளுக்கும் உண்மையாகவே இருக்கும். எனவே தீர்வு கணம் R ஆகும்.

ஏ.கா. 7.31: $f(x) = 2x^2 - 12x + 50 \le 0$ என்பதன் தீர்வு காண்க.

தீர்வு :

$$2x^2 - 12x + 50 \le 0$$

$$2(x^2 - 6x + 25) \le 0$$

$$x^2 - 6x + 25 \le 0$$

$$(x^2 - 6x + 9) + 25 - 9 \le 0$$

$$(x-3)^2 + 16 \le 0$$

x-ன் எந்த மெய் மதிப்பிற்கும் இது உண்மையல்ல.

். கொடுக்கப்பட்ட சமன்பாட்டிற்கு தீர்வு இல்லை.

சில சிறப்பான கணக்குகள் [இருபடி அசமன்பாட்டிற்கு மாற்றத்தக்கவை]

எ.கா. 7.32: தீர்வு காண்க : $\frac{x+1}{x-1} > 0, x \neq 1$

தீர்வு :

$$\frac{x+1}{x-1} > 0$$

தொகுதி, பகுதிகளை (x – 1)ஆல் பெருக்க

$$\Rightarrow \frac{(x+1)(x-1)}{(x-1)^2} > 0$$

$$\Rightarrow (x+1)(x-1) > 0$$

$$[\because (x-1)^2 > 0, x \neq 1]$$

இங்கு (x+1) (x-1)-ன் மதிப்பு மிகையெண்ணாக உள்ளதால் (x + 1) (x - 1) மிகையாக இருக்கும் இடைவெளிகளை தேர்வு செய்க.

$$\therefore x \in (-\infty, -1) \cup (1, \infty)$$

எ.கா. 7.33: தீர்வு காண்க: $\frac{x-1}{4x+5} < \frac{x-3}{4x-3}$

Bir $\frac{x-1}{4x+5} < \frac{x-3}{4x-3}$

$$\Rightarrow \quad rac{x-1}{4x+5} \ - rac{x-3}{4x-3} < 0$$
 (இங்கு குறுக்கு பெருக்கல் காண இயலாது)

$$\Rightarrow \frac{(x-1)(4x-3)-(x-3)(4x+5)}{(4x+5)(4x-3)} < 0$$

$$\Rightarrow \frac{18}{(4x+5)(4x-3)} < 0$$

 \Rightarrow 18 ஒரு மிகை எண் என்பதால் (4x+5)(4x-3)<0

காரணிகளை பூச்சியத்துக்கு சமப்படுத்த, $x=\frac{-5}{4}$, $x=\frac{3}{4}$ என்ற மூலங்கள், இருபடிச் சமன்பாட்டிற்கு கிடைக்கிறது. இதனை எண்கோட்டில் குறிப்பிட்டு +, -, + ஆகிய குறியீடுகளை இடமிருந்து வலமாக இடைவெளிகளுக்கு கொடுக்கவும்.

(4x+5) (4x-3)-ன் மதிப்பு குறையெண்ணாக இருப்பதால் அதற்குரிய இடைவெளி $\left(\frac{-5}{4},\frac{3}{4}\right)$ ஆகும். எனவே $x\in\left(\frac{-5}{4},\frac{3}{4}\right)$

எ.கா. 7.34 : x ஒரு மெய்யெண் எனில், $f(x)=\frac{x^2-3x+4}{x^2+3x+4}$ என்ற சார்பின் வீச்சகம் $\left\lceil \frac{1}{7}, \ 7 \right\rceil$ என நிரூபி.

தீர்வு :

$$y = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$$
 बाकंग क.
$$(x^2 + 3x + 4)y = x^2 - 3x + 4$$
$$\Rightarrow x^2 (y - 1) + 3x (y + 1) + 4(y - 1) = 0$$

இது ஒரு x-ல் அமைந்த இருபடிச் சமன்பாடு ஆகும். x என்பது மெய் என்பதால்

⇒ தன்மைக் காட்டி
$$\geq 0$$
⇒ $9(y+1)^2 - 16(y-1)^2 \geq 0$
⇒ $[3(y+1)]^2 - [4(y-1)]^2 \geq 0$
⇒ $[3(y+1) + 4(y-1)] [3(y+1) - 4(y-1)] \geq 0$
⇒ $(7y-1)(-y+7) \geq 0$
⇒ $-(7y-1)(y-7) \geq 0$
⇒ $(7y-1)(y-7) \leq 0$

இங்கு $\left(-\infty,\frac{1}{7}\right)$, $\left(\frac{1}{7},\,7\right)$, $(7,\,\infty)$ ஆகிய இடைவெளிகள் உள்ளன. $(7y-1)\;(y-7)$ -ன் மதிப்பு குறையாகவோ அல்லது பூச்சியமாகவோ இருக்க அதற்குரிய இடைவெளியான $\left(\frac{1}{7},\,7\right)$ ஐ எடுத்து அதனுடன் மூலங்களான $\frac{1}{7},\,7$ ஐ சேர்க்கவும்.

 $\therefore y \in \left[\frac{1}{7}, 7\right]$ அதாவது $\frac{x^2 - 3x + 4}{x^2 + 3x + 4}$ -ன் மதிப்பு $\frac{1}{7}$ மற்றும் 7 இடையே உள்ளது. அதாவது f(x)-ன் வீச்சகம் $\left[\frac{1}{7}, 7\right]$ ஆகும்.

பயிற்சி 7.1

- (1) $f, g: R \to R$ என்ற சார்புகள் $f(x) = x + 1, g(x) = x^2$ என வரையறுக்கப்படுகிறதெனில் (i) (fog)(x) (ii) (gof)(x) (iii) (fof)(x) (iv) (gog)(x) (v) (fog)(3) ஆகியவற்றைக் காண்க.
- (2) மேற்குறிப்பிட்ட (1)-ல் f, g-ன் வரையறைகளின்படி (i) (f+g)(x) (ii) $(\frac{f}{g})(x)$ (iii) (fg)(x) (iv) (f-g)(x) (v) (gf)(x)
- ஆகியவற்றைக் காண்க. $(3) \ f: \ \mathbf{R} \to \mathbf{R} \ \text{என்ற சார்பு } f(x) = 3x + 2 \ \text{என வரையறுப்பின் } f^{-1}\text{-ஐக்}$
- காண்க. மேலும் $fof^{-1} = f^{-1}of = I$ எனவும் நிரூபிக்க. (4) கீழ்க்காணும் அசமன்பாடுகளுக்குத் தீர்வு காண்க.
 - (i) $x^2 \le 9$ (ii) $x^2 3x 18 > 0$ (iii) $4 x^2 < 0$ (iv) $x^2 + x 12 < 0$ (v) $7x^2 7x 84 \ge 0$ (vi) $2x^2 3x + 5 < 0$ (vi) $\frac{3x 2}{x 1} < 2$, $x \ne 1$ (viii) $\frac{2x 1}{x} > -1$, $x \ne 0$ (ix) $\frac{x 2}{3x + 1} > \frac{x 3}{3x 2}$
- $(\text{vii}) \frac{5x-2}{x-1} < 2, \ x \neq 1 \ (\text{viii}) \frac{2x-2}{x} > -1, x \neq 0 \ (\text{ix}) \frac{3x-2}{3x+1} > \frac{3x-2}{3x-2}$ (5) x ஒரு மெய்யெண் எனில் $\frac{x^2+34x-71}{x^2+2x-7}$ -ன் மதிப்பு 5 மற்றும் 9க்கு
- (3) x ஒரு மெய்யெண் எனில் $x^2 + 2x 7$ -ன மதுப்பு 3 மற்றும் 9க்கு இடையே இருக்காது என நிரூபி. (6) x ஒரு மெய்யெண் எனில் $f(x) = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}$ என்ற சார்பின் வீச்சகம்
- (6) x ஒரு மெய்யெண் எனில் $f(x)=\frac{x^2-2x+4}{x^2+2x+4}$ என்ற சார்பின் வீச்சகம் $\left[\frac{1}{3},\ 3\right]$ என நிரூபி.
- (7) x ஒரு மெய்யெண் எனில் $\frac{x}{x^2 5x + 9}$ என்பது $-\frac{1}{11}$ மற்றும் 1க்கு இடையே அமைந்துள்ளது என நிரூபி.

8. வகை நுண்கணிதம் (DIFFERENTIAL CALCULUS)

நுண்கணிதமென்பது இயக்கம், மாற்றம் அகியவற்றின் கணிதம் ஆகும். அதிகரிக்கும் அல்லது குறையும் அளவுகள், கணித ஆய்வுப் பொருளாக அமையும்போது வளர்ச்சி மற்றும் சிதைவு வீதங்களைக் கணக்கிடுவது அவசியமாகிறது. தொடர்ந்து மாறும் அளவுகள் குறித்த பிரச்சினைகளை (கணக்குகளை) தீர்ப்பதற்கு கண்டுபிடிக்கப்பட்டதே நுண்கணிதம் ஆகும். இத்தகைய வீதங்களை அளப்பதற்கும், அவற்றின் உருவாக்கம் மற்றும் பயன்பாடு குறித்த விதிகளை வகுப்பதற்கும் தேவையான கருவியை விவரிப்பதே வகை நுண்கணிதம் ஆகும்.

ஒரு வாகனத்தின் திசைவேகம் காலத்தைப் பொறுத்து மாறும் வீதம், மக்கள்தொகை வளர்ச்சியானது காலத்தைப் பொறுத்து மாறும் வீதம் போன்றவைகளை கணக்கிடுவதற்கு வகை நுண்கணிதம் பயன்படுகிறது. இலாபங்களை பெருமமாக்குவதற்கும் இழப்புகளை சிறுமமாக்குவதற்கும் வகை நுண்கணிதம் நமக்கு உதவுகிறது.

இங்கிலாந்தைச் சேர்ந்த ஐசக் நியூட்டனும் ஜெர்மனியைச் சார்ந்த கோட்பிறைட்வில்ஹெம் லீப்னிட்சும் தனித்தனியே 17ஆம் நுற்றாண்டில் நுண்கணிதத்தைக் கண்டுபிடித்தனர். மாபெரும் கணிதமேதையான லீப்னிட்ஸ் வடிவ கணிதத்தில் தொடுகோடுகளைத் தீர்மானிக்கும<u>்</u> பிரச்சினையின் ஊடாக நுண்கணிதத்தை அணுகினார். மாபெரும் கணிதமேதையாக மட்டுமின்றி இயற்பியல் அறிஞருமாக விளங்கிய நியூட்டன் தனது இயக்கம் மற்றும் ஈர்ப்பு விதிகளை உருவாக்குவதற்கு நுண்கணிதத்தைப் பயன்படுத்தினார்.

8.1 சார்பு எல்லை (Limit of a function) :

அருகாமை அல்லது நெருக்கம் குறித்த உணர்நிலையுடன் நெருக்கமாக இருப்பது எல்லை எனும் கருத்தாக்கம். இத்தகைய நெருக்கங்களை கூட்டல், பெருக்கல், கழித்தல், வகுத்தல் முதலான இயற்கணித அடிப்படைச் செயல்பாடுகள் மூலம் விளக்க முடியாது. மாறுகிற ஒரு அளவையைச் சார்ந்து இன்னொரு அளவை அமையும் குழல்களில் எல்லைக் கருத்தாக்கம் பயன்படுகிறது. மாறுகிற அளவை கொடுக்கப்பட்ட ஒரு நிலையான மதிப்பிற்கு மிக அருகாமையில் உள்ளபோது அதைச் சார்ந்துள்ள அளவை எவ்வாறு செயல்படுகிறது என நாம் அறிய விரும்பும்போதும் இது பயன்படுகிறது.

இப்போது சில எடுத்துக்காட்டுகளின் மூலம் இந்த எல்லைக் கருத்தாக்கத்தை விளக்குவோம்.

மெய்யெண்களின் கணமாகிய R-லிருந்து R-க்கு வரையறுக்கப்பட்ட சார்பு f(x)=x+4ஐ எடுத்துக் கொள்வோம்.

x-ன் மதிப்புகள் 2-ஐ கீழிருந்தும், மேலிருந்தும் நெருங்கும் போது f(x)-ன் மதிப்பை பட்டியல்கள் 8.1 மற்றும் 8.2-ல் காண்க. x என்ற மாறிக்கு எண்ணற்ற மதிப்புகள் தரமுடியும்.

X	1	1.5	1.9	1	.99	1.9	999		
f(x)	5	5.5	5.9	5	.99	5.9	999		
பட்டியல் 8.1									
х	3	2.	.5 2	2.1	2.0)1	2.00)1	
f(x)	7	6.	.5 (5.1	6.0)1	6.00)1	

பட்டியல் 8.2

அந்த மதிப்புகள் நிலை எண் 2-ஐ நெருங்க நெருங்க, f(x) = x + 4 ஆனது 6-க்கு மிக அருகாமையில் இருக்கும். அதாவது 2-ஐ x-ன் மதிப்புகள் நெருங்கும் போது f(x) ஆனது 6 என்ற எல்லையை நெருங்கும். இதனை $\lim_{x \to 2^-} f(x) = 6$ எனக் குறிப்பது வழக்கம். இந்தக் குறிப்பிட்ட எடுத்துக்காட்டைப் பொறுத்தவரையில் $\lim_{x \to 2^-} f(x)$ -ம் f(2) = 6-ம் ஒன்று எனக் காண்கிறோம். அதாவது $\lim_{x \to 2^-} f(x) = f(2)$.

 $x \to 0$ ' என்பதற்கும் 'x = 0' என்பதற்கும் மிகுந்த வேறுபாடு உள்ளது என்பதையும் கவனிக்க. $x \to 0$ என்பது 0 என்ற எல்லையை x நெருங்குகிறது அல்லது நோக்குகிறது என்றும் ஆனால் x ஒருபோதும் பூச்சியம் ஆகாது என்பதுமாகும். x = 0 என்பது 0 என்ற மதிப்பை x பெறுகிறது என்பதாகும்.

இப்பொழுது $f(x)=\dfrac{x^2-4}{(x-2)}$ என்ற விகிதமுறு சார்பை எடுத்துக் கொள்வோம். x-க்கு 2-ஐத் தவிர எந்த மதிப்பு வேண்டுமானாலும் கொடுக்கலாம். இச்சார்பு x=2 என்ற புள்ளியில் வரையறுக்கப்படவில்லை. ஆனால் 2-க்கு அண்மையில் உள்ள மதிப்புகளுக்கு வரையறுக்கப்பட்டுள்ளது. ஆகவே $\dfrac{\lim}{x\to 2}\dfrac{x^2-4}{(x-2)}$ ஐக் காண முயல்வோம். பட்டியல்கள் 8.3 மற்றும் 8.4 ஆகியன x-ஆனது 2-க்கு கீழான மற்றும் மேலான மதிப்புகளிலிருந்து நெருங்க, f(x)-ன் மதிப்புகளைக் குறிக்கிறது.

X	1	1.5	1.9	1.99	1.999		
f(x)	3	3.5	3.9	3.99	3.999		
பட்டியல் 8.3							
х	3	2.5	2.1	2.01	2.001		
f(x)	5	4.5	4.1	4.01	4.001		

பட்டியல் 8.4

x-ஆனது நிலை எண் 2-ஐ அணுக, f(x) ஆனது 4 என்ற எல்லையை எட்டுகிறது என்பதைப் பார்க்கிறோம். எனவே $\lim_{x \to 2} \frac{x^2 - 4}{(x - 2)} = 4$. $x \neq 2$ எனும்போது, $f(x) = \frac{x^2 - 4}{(x - 2)} = x + 2$ என்பதையும் கவனித்திருப்பீர்கள். இவ்வாறான சார்புகளின் எல்லையைக் கணக்கிட $x \neq 2$ ஆக இருக்கும்போது x = 2 என்ற மதிப்பை x + 2-ல் பிரதியிட்டுப் பெற வேண்டும் என்பதையும் உற்றுக் கவனித்திருப்பீர்கள்.

மேலும் $f(x) = \frac{1}{x}$ என்ற தலைகீழ்ச் சார்பை எடுத்துக் கொள்வோம். f(0)

 $\lim_{x\to 0}\frac{\lim}{f(x)$ ஐக் கணக்கிட முடியுமா என முயல்வோம். x-க்கு 0-வைத் தவிர எந்த மதிப்பு வேண்டுமானாலும் கொடுக்கலாம். பட்டியல்கள் 8.5 மற்றும் 8.6ஐக் கவனிக்க. x-ன் மதிப்புகள் 0-வை மேலிருந்தும், கீழிருந்தும் நெருங்க நெருங்க f(x)-ன் மதிப்புகள் ஒரு நிலை எண்ணையும் அணுகவில்லை என்பதும் புலனாகிறது. அதாவது xஆனது, 0-ஐ அணுக அணுக $f(x) = \frac{1}{x}$ எல்லையை அடையவில்லை என்பது தீர்மானமாகிறது.

х	1/2	1/10	1/100	1/1000
f(x)	2	10	100	1000

பட்டியல் 8.5

х	- 1/2	- 1/10	- 1/100	- 1/1000
f(x)	- 2	- 10	- 100	- 1000

பட்டியல் 8.6

மேற்கண்ட மூன்று எடுத்துக்காட்டுகளில், முதல் இரண்டும் தனித்த மாறிகள் ஒரு நிலை எண்ணை இடமிருந்தோ அல்லது வலமிருந்தோ அணுகும்போது, எல்லையை அடைய முடியுமென்றும் மூன்றாவது எடுத்துக்காட்டு அப்படிப்பட்ட எல்லையை அடையவேண்டிய அவசியமில்லை என்பதையும் புலப்படுத்துகிறது. இந்த மூன்று எடுத்துக்காட்டும் உணர்த்தும் உண்மையிலிருந்து சார்பின் எல்லையை கீழ்வருமாறு வரையறுக்கலாம்.

வரையறை:

f ஆனது x-ஐச் சார்ந்த சார்பு என்க. c , l என்பன இரண்டு நிலை எண்கள். x-ஆனது c-ஐ நெருங்கும்போது, f(x)ஆனது l-ஐ நெருங்குமானால் l-ஐ $\lim_{f(x)$ -ன் எல்லை என்கிறோம். இதனை $\lim_{x \to c} f(x) = l$ என எழுதுவது வழக்கம்.

இடமிருந்து மற்றும் வலமிருந்து எல்லைகள் : (Left hand and Right hand limits)

f(x)-ன் எல்லையை வரையறுக்கும்போது, நிலை எண் c-ஐ x நெருங்க நெருங்க f(x)-ன் மதிப்புகளை கருத்தில் கொண்டோம். x-ன் மதிப்புகள் c-ஐ விட சிறியதாகவோ (இடமிருந்து நெருங்கும் போது) அல்லது பெரியதாகவோ (வலமிருந்து நெருங்கும்போது) இருக்கும். x-ன் மதிப்புகள் c-ஐ விட குறைந்த மதிப்புகளைத்தான் எடுக்க வேண்டும் என்ற நிபந்தனைக்குட்படுத்தினால், x-ஆனது c-யின் கீழிருந்து அல்லது இடமிருந்து நெருங்குகிறது என்போம். இதனை $x \to c - 0$ அல்லது $x \to c$ எனக் குறிக்கப்படும். c-ஐ x-ஆனது இடமிருந்து அல்லது கீழிருந்து நெருங்க f(x)-ன் எல்லையை கீழிருந்து அல்லது இடமிருந்து எல்லை என்போம். இதனை,

அதேபோல், xஆனது c-ஐ விட அதிக மதிப்புகளிலிருந்து நெருங்குமாயின் அதனை $x \to c + 0$ அல்லது $x \to c_+$ எனக் குறிப்பிடலாம். மேலும் $x \to c_+$ எனும் போது f(x)-ன் எல்லையை மேலிருந்து எல்லை $\lim_{x \to c_+} f(x) = \lim_{x \to c_+} f(x)$ என எழுதுவோம்.

கொடுக்கப்பட்ட சார்பு, எல்லையைப் பெற்றிருக்க வேண்டுமெனில் இடமிருந்து மற்றும் வலமிருந்து எல்லைகள் பெற்றிருக்க வேண்டும். மேலும் அவைகள் சமமாக அமைய வேண்டுமென்பதும் அவசியமாகிறது. இடமிருந்து மற்றும் வலமிருந்து எல்லைகள் ஒருதலைபட்ச எல்லைகள் எனவும் அழைக்கப்படும்.

8.1.1 எல்லை காணப் பயன்படும் சில அடிப்படைத் தேற்றங்கள்

(1)
$$f(x) = k$$
 (மாறிலிச் சார்பு) எனில், $x \to c$ $f(x) = k$.

(2)
$$f(x) = x$$
 (சமனிச் சார்பு) எனில், $x \to c$ $f(x) = c$.

(3) f(x), g(x) ஆகியன எல்லை பெற்ற சார்புகள் மற்றும் k மாறிலி எனில்,

(i)
$$\lim_{x \to c} k f(x) = k \lim_{x \to c} f(x)$$
(ii)
$$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$
(iii)
$$\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)$$
(iv)
$$\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$

$$\lim_{x \to c} [f(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x)$$

(v)
$$\lim_{x \to c} \left[\frac{f(x)}{g(x)} \right] = \lim_{x \to c} f(x) / \lim_{x \to c} g(x), \quad g(x) \neq 0$$
(vi)
$$f(x) \leq g(x) \operatorname{grade} \int \lim_{x \to c} g(x) dx$$

$$\lim_{x \to c} g(x) \operatorname{grade} \int \lim_{x \to c} g(x) dx$$

 $(\text{vi) } f(x) \leq g(x)$ எனில், $x \to c$ $f(x) \leq \lim_{x \to c} g(x)$.

எ.கா. 8.1 :

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
-ன் மதிப்பு காண்க.

தீர்வு :

இடமிருந்து மற்றும் வலமிருந்து எல்லைகளைத் தனித்தனியே கண்டுபிடித்து எல்லை மதிப்பைக் காண்போம்.

 $x \to 1_{-}$ எனும்பொழுது, x = 1 - h, h > 0 எனப் பிரதியிடுக.

$$\lim_{x \to 1 - \infty} \frac{x^2 - 1}{x - 1} = \lim_{h \to 0} \frac{(1 - h)^2 - 1}{1 - h - 1} = \lim_{h \to 0} \frac{1 - 2h + h^2 - 1}{-h}$$
$$= \lim_{h \to 0} (2 - h) = \lim_{h \to 0} (2) - \lim_{h \to 0} (h) = 2 - 0 = 2$$

 $x \to 1_+$ எனும் பொழுது, $x=1+h, \, h>0$ எனப் பிரதியிடுக

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{h \to 0} \frac{(1 + h)^2 - 1}{1 + h - 1} = \lim_{h \to 0} \frac{1 + 2h + h^2 - 1}{h}$$

$$= \lim_{h \to 0} (2 + h) = \lim_{h \to 0} (2) + \lim_{h \to 0} (h)$$

$$= 2 + 0 = 2, \quad (8.1.1 \text{ if } (1), (2) \text{ giù பயன்படுத்த})$$

இடமிருந்து மற்றும் வலமிருந்து எல்லைகள் சமம் ஆதலால்,

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
 மதிப்பு பெற்றுள்ளது. மேலும் $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$.

குறிப்பு : $x \neq 1$ ஆதலால் (x-1) ஆல் வகுக்க முடியும்.

$$\therefore \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

ஏ.கா. 8.2: இடமிருந்து மற்றும் வலமிருந்து எல்லைகளை x=4-ல் காண்க.

$$f(x) = \begin{cases} \frac{|x-4|}{x-4} & x \neq 4 & \text{எனும் பொழுது} \\ 0, & x = 4 & \text{எனும் பொழுது} \end{cases}$$

தீர்வு :

x > 4 எனும் பொழுது |x - 4| = x - 4

ਗਲਾਉਂ
$$x \to 4 + f(x) = \lim_{x \to 4 + \frac{1}{x} \to 4} \frac{|x-4|}{|x-4|} = \lim_{x \to 4 + \frac{1}{x} \to 4} \frac{x-4}{|x-4|} = \lim_{x \to 4} (1) = 1$$

$$x < 4$$
 எனும் பொழுது $|x - 4| = -(x - 4)$

எனவே
$$\lim_{x \to 4} \frac{\lim}{f(x)} = \lim_{x \to 4} \frac{-(x-4)}{(x-4)} = \lim_{x \to 4} (-1) = -1$$

வலமிருந்து மற்றும் இடமிருந்து எல்லைகள் ஆகிய இரண்டும் பெற்றிருப்பினும், இவைகள் சமமின்மையால், x=4-ல் கொடுக்கப்பட்ட சார்பிற்கு எல்லை மதிப்பு இல்லை என்பதைப் புரிந்து கொள்க.

$$\mathcal{A}.\mathcal{J}. Rf(4) = \lim_{x \to 4+} f(x) \neq \lim_{x \to 4-} f(x) = Lf(4).$$

ஏ. கா. 8.3

மதிப்பு காண்க
$$\lim_{x \to 0} \frac{3x + |x|}{7x - 5|x|}$$

தீர்வு :

$$Rf(0) = \lim_{x \to 0} \frac{3x + |x|}{7x - 5|x|} = \lim_{x \to 0} \frac{3x + x}{7x - 5x} \quad (x > 0)$$
 ஆதலால் $|x| = x$)
$$= \lim_{x \to 0} \frac{4x}{2x} = \lim_{x \to 0} 2 = 2.$$

$$\begin{split} L f(0) &= \lim_{x \to 0} \frac{3x + |x|}{7x - 5|x|} = \lim_{x \to 0} \frac{3x - x}{7x - 5(-x)} \ (x < 0, \text{ ஆதலால் } |x| = -x) \\ &= \lim_{x \to 0} \frac{2x}{12x} = \lim_{x \to 0} \left(\frac{1}{6}\right) = \frac{1}{6} \ . \end{split}$$

 $Rf(0) \neq Lf(0)$ ஆதலால் எல்லை மதிப்பு இல்லை.

குறிப்பு : f(x) = g(x) / h(x) என்க. x = cயில், $g(c) \neq 0$ மற்றும் h(c) = 0 என இருந்து $f(c) = \frac{g(c)}{0}$ என அமையுமெனில் $x \to c$ f(x) காண இயலாது.

எ.கா. 8.4 : மதிப்பிடுக :
$$\lim_{x \to 3} \frac{x^2 + 7x + 11}{x^2 - 9}$$
 .

தீர்வு :

$$f(x) = \frac{x^2 + 7x + 11}{x^2 - 9} = \frac{g(x)}{h(x)}$$
 என்க. இங்கு $g(x) = x^2 + 7x + 11$; $h(x) = x^2 - 9$. $x = 3$ -ல் $g(3) = 41 \neq 0$ மற்றும் $h(3) = 0$.

மேலும் $f(3)=rac{g(3)}{h(3)}=rac{41}{0}$ ஆகும். எனவே $\dfrac{\lim}{x o 3} rac{x^2+7x+11}{x^2-9}$ காண

இயலாது.

எ.கா. 8.5: மதிப்பிடுக
$$x \to 0$$
 $\frac{\sqrt{1+x}-1}{x}$

தீர்வு :

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} = \lim_{x \to 0} \frac{(\sqrt{1+x} - 1)(\sqrt{1+x} + 1)}{x(\sqrt{1+x} + 1)}$$

$$= \lim_{x \to 0} \frac{(1+x) - 1}{x(\sqrt{1+x} + 1)} = \lim_{x \to 0} \frac{1}{(\sqrt{1+x} + 1)}$$

$$= \lim_{x \to 0} \frac{(1)}{\lim_{x \to 0} (\sqrt{1+x} + 1)} = \frac{1}{\sqrt{1+1}} = \frac{1}{2}.$$

8.1.2 சில முக்கிய எல்லைகள் (Some important limits)

எ.கா. 8.6 :

$$n$$
 ஒரு விகிதமுறு எண்ணாக இருந்து $\left| rac{\Delta x}{a}
ight| < 1$ என இருப்பின்

$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$
 $(a \neq 0)$

தீர்வு : x க்குப் பதிலாக $a+\Delta x$ என ஈடாக்குவோம். பின்பு x o a எனும் பொழுது $\Delta x o 0$ மற்றும் $\left|\frac{\Delta x}{a}\right| < 1$ என்பதைக் கவனிக்க.

எனவே
$$\frac{x^n - a^n}{x - a} = \frac{(a + \Delta x)^n - a^n}{\Delta x} = \frac{a^n \left(1 + \frac{\Delta x}{a}\right)^n - a^n}{\Delta x}$$

விகிதமுறு படிக்குரிய ஈருறுப்புத் தேற்றத்தை $\left(1+rac{\Delta x}{a}
ight)^n$ க்கு உபயோகிக்க

 $\Delta x = x - a$ ஆதலால், $x \to a$ எனும் பொழுது $\Delta x \to 0$ ஆகும்.

எனவே
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = \lim_{\Delta x \to 0} \binom{n}{1} a^{n-1} + \lim_{\Delta x \to 0} \frac{\Delta x \text{ ib}}{\text{படி-களையுமுடைய}}$$

$$= \binom{n}{1} a^{n-1} + 0 + 0 + \dots = na^{n-1} \qquad \because \binom{n}{1} = n \; .$$

இதனைப் பயன்படுத்தும் விதமாக கீழ்க்காணும் எடுத்துக்காட்டுகளைப் பார்ப்போம்

எ.கா. 8.7: மதிப்பிடுக
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$

Strict
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = 3(1)^{3 - 1} = 3(1)^2 = 3$$

67.5.17. 8.8:
$$\lim_{x \to 0} \frac{(1+x)^4 - 1}{x}$$
 влейтв.

தீர்வு : 1+x=t எனப் பிரதியிட $x \to 0$ எனும் பொழுது $t \to 1$

$$\therefore \lim_{x \to 0} \frac{(1+x)^4 - 1}{x} = \lim_{t \to 1} \frac{t^4 - 1^4}{t - 1} = 4(1)^3 = 4$$

ஏ.கா. 8.9: $\lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = 32$ என இருக்குமாறு மிகை முழு n-ஐக் காண்க.

தீர்வு : நாம் $\lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = n2^{n-1}$ என்பதைப் பெற்றிருக்கிறோம்.

$$\therefore n2^{n-1} = 32 = 4 \times 8 = 4 \times 2^3 = 4 \times 2^{4-1}$$

இருபுறமும் ஒப்பிட நாம் பெறுவது n=4

ஏ.கா. 8.10:
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

தீர்வு : $y=\frac{\sin\theta}{\Omega}$ என எடுத்துக் கொள்வோம். $\theta=0$ என்பதைத் தவிர θ -ன் எல்லா மதிப்புகளுக்கும் y வரையறுக்கப்பட்டுள்ளது. $\theta = 0$ -க்கு y-ன் மதிப்பை $\frac{0}{0}$ என்ற 'தேரப்பெறாதது' (indeterminate) ஆகக் காண்கிறோம். θ -க்குப் பதில் - θ பிரதியிட, $\frac{\sin{(-\theta)}}{-\theta} = \frac{\sin{\theta}}{\theta}$ என்பதால் பின்னம் $\frac{\sin{\theta}}{\theta}$ -ன் எண்ணளவை (magnitude) மாறுவதில்லை. எனவே θ ஆனது 0-க்கு வலமிருந்து நெருங்கும் போது $\frac{\sin \theta}{\theta}$ -ன் எல்லையைக் கண்டுபிடித்தல் போதுமானது. அதாவது 🖯 முதல் கால்மானப் பகுதியில் இருக்கும்போது எல்லை கண்டால் போதுமானது. Oவை மையமாகவும் ஒரு அலகு அரமும் கொண்ட வட்டம் ஒன்றை வரைக. OA = OB = 1 என இருக்குமாறு A, B குறித்துக் புள்ளிகளை வட்டத்தின் பரிதியில் 'θ' ஆரையன்களை வட்ட மையத்தில் தாங்கும் AOE என்ற வட்டகோணப் பகுதியை எடுத்துக் கொள்வோம். A என்ற புள்ளியில் வட்டத்திற்கு AD என்ற தொடுகோட்டை வரைவோம். அது OE-ஐ D என்ற புள்ளியில் வெட்டட்டும். OD மற்றும் நாண் AB வெட்டிக் கொள்ளும் புள்ளி C என்க.

படத்தில் $\sin\theta = AC$; $\cos\theta = OC$;

$$\theta = \frac{1}{2} \text{ arc AB, } [OAD] = 90^{\circ}$$

செங்கோண முக்கோணம் OAD-ல்

 $AD = tan\theta$.

நாண் AB-ன் நீளம் $= 2 \sin \theta$

தொடுகோடுகளின் கூடுதல் = AD+BD=2 an heta

வட்ட வில்லின் நீளம் நாணின் நீளத்திற்கும் தொடுகோடுகளின் இடைப்பட்டது என்பதால் கீழ்க்காணும் சமனின்மை நீளத்திற்கும் கிடைக்கும்.

 $2 \sin \theta < 2\theta < 2 \tan \theta$.

$$2\sin\theta$$
-ல் வகுக்க $1<rac{ heta}{\sin heta}<rac{1}{\cos heta}$ அதாவது $1>rac{\sin heta}{ heta}>\cos heta$ ஆகும்.

$$\theta \rightarrow 0$$
 எனும் பொழுது $OC = \cos \theta \rightarrow 1$

அதாவது
$$\lim_{\theta \to 0} \cos\theta = 1$$
 .

எனவே 8.1.1-ன் 3(vi)ஐப் பயன்படுத்த நாம் பெறுவது $1>\dfrac{\lim}{\theta\to0}~\dfrac{\sin\theta}{\theta}>1$

அதாவது மாறி $y=rac{\sin heta}{ heta}$ ன் மதிப்பு ஒன்றிற்கும், ஒன்றை மிக அண்மையில் நெருங்கும் மதிப்பிற்குமிடையே அமைகிறது.

$$\therefore \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1.$$

சார்பு $y=rac{\sin\, heta}{ heta}$ ன் வரைபடம் படம் 8.2ல் காட்டப்பட்டுள்ளது.

எ.கா. 8.11: மதிப்பிடுக : $\lim_{\theta \to 0} \ \frac{1-\cos\theta}{\theta^2}$.

தீர்வு :

$$\frac{1-\cos\theta}{\theta^2} = \frac{2\sin^2\frac{\theta}{2}}{\theta^2} = \frac{1}{2}\frac{\sin^2\left(\frac{\theta}{2}\right)}{\left(\frac{\theta}{2}\right)^2} = \frac{1}{2}\left(\frac{\sin\frac{\theta}{2}}{\frac{\theta}{2}}\right)^2$$

$$\theta \to 0$$
 ஆனால் $\alpha = \frac{\theta}{2} \to 0$ மேலும் $\frac{\lim}{\theta \to 0} \frac{\sin \frac{\theta}{2}}{\frac{\theta}{2}} = \frac{\lim}{\alpha \to 0} \frac{\sin \alpha}{\alpha} = 1$

$$\lim_{\theta \to 0} \frac{1 - \cos\theta}{\theta^2} = \lim_{\theta \to 0} \frac{1}{2} \left(\frac{\sin\frac{\theta}{2}}{\frac{\theta}{2}} \right)^2 = \frac{1}{2} \left(\lim_{\theta \to 0} \frac{\sin\frac{\theta}{2}}{\frac{\theta}{2}} \right)^2$$
$$= \frac{1}{2} \times 1^2 = \frac{1}{2}$$

ஏ.கா. 8.12: மதிப்பிடுக: $x \to 0_+$ $\frac{\sin x}{\sqrt{x}}$

Sing:
$$\lim_{x \to 0} \frac{\sin x}{\sqrt{x}} = \lim_{x \to 0} \frac{\sin x}{\sqrt{x}} = \lim_{x \to 0} \frac{\sin x}{\sqrt{x}} \sqrt{x}$$
$$= \lim_{x \to 0} \frac{\sin x}{\sqrt{x}} \cdot \lim_{x \to 0} \frac{\sin x}{\sqrt{x}} \cdot \lim_{x \to 0} (\sqrt{x}) = 1 \times 0 = 0.$$

குறிப்பு : x < 0 ஆனால் \sqrt{x} கற்பனை ஆதலால், இடமிருந்து எல்லை கிடையாது.

ஏ.கா. 8.13: கணக்கிடுக : $\lim_{x \to 0} \frac{\sin \beta x}{\sin \alpha x}$, $\alpha \neq 0$.

தீர்வு :

$$\lim_{x \to 0} \frac{\sin \beta x}{\sin \alpha x} = \lim_{x \to 0} \frac{\beta \cdot \frac{\sin \beta x}{\beta x}}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}} = \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \beta x}{\beta x}\right)}{\alpha \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\beta x}\right)}{\alpha \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\beta x}\right)}}$$

$$= \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \theta}{\theta}\right)}{\alpha \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \theta}{\theta}\right)}{\alpha \cdot \frac{\sin x}{\alpha x}} = \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\beta x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}}$$

$$= \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \theta}{\theta}\right)}{\alpha \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \theta}{\theta}\right)}{\alpha \cdot \frac{\sin x}{\alpha x}} = \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\beta x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}}$$

$$= \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \theta}{\theta}\right)}{\alpha \cdot \frac{\sin x}{\alpha x}} = \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\beta x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}}$$

$$= \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \theta}{\theta}\right)}{\alpha \cdot \frac{\sin x}{\alpha x}} = \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\alpha x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}}$$

$$= \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \theta}{\theta}\right)}{\alpha \cdot \frac{\sin x}{\alpha x}} = \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\alpha x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}}$$

$$= \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \theta}{\theta}\right)}{\alpha \cdot \frac{\sin x}{\alpha x}} = \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\alpha x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}}$$

$$= \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\theta}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}} = \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\alpha x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}}$$

$$= \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\alpha x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}} = \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\alpha x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}}$$

$$= \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\alpha x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}}} = \frac{\beta \cdot \frac{\lim_{x \to 0} \left(\frac{\sin \alpha x}{\alpha x}\right)}{\alpha \cdot \frac{\sin \alpha x}{\alpha x}}}$$

67.கா. 8.14 : கணக்கிடுக :
$$\lim_{x \to \pi/6} \frac{2 \sin^2 x + \sin x - 1}{2 \sin^2 x - 3 \sin x + 1}$$

தீர்வு :

$$2\sin^{2} x + \sin x - 1 = (2\sin x - 1)(\sin x + 1)$$

$$2\sin^{2} x - 3\sin x + 1 = (2\sin x - 1)(\sin x - 1)$$

$$\lim_{x \to \pi/6} \frac{2\sin^{2} x + \sin x - 1}{2\sin^{2} x - 3\sin x + 1} = \lim_{x \to \pi/6} \frac{(2\sin x - 1)(\sin x + 1)}{(2\sin x - 1)(\sin x - 1)}$$

$$= \lim_{x \to \pi/6} \frac{\sin x + 1}{\sin x - 1} \left(2\sin x - 1 \neq 0 \text{ for } x \to \frac{\pi}{6} \right)$$

$$= \frac{\sin \pi/6 + 1}{\sin \pi/6 - 1} = \frac{1/2 + 1}{1/2 - 1} = -3.$$

ஏ.கா. 8.15: $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$ எனக் காட்டுக.

தீர்வு :

$$e^{x} = 1 + \frac{x}{\boxed{1}} + \frac{x^{2}}{\boxed{2}} + \dots + \frac{x^{n}}{\boxed{n}} + \dots$$

என்பது நமக்குத் தெரியும்

அவ்வாறாயின்
$$e^x - 1 = \frac{x}{\underline{1}} + \frac{x^2}{\underline{2}} + \dots + \frac{x^n}{\underline{n}} + \dots$$
 அதாவது $\frac{e^x - 1}{x} = \frac{1}{\underline{1}} + \frac{x}{\underline{2}} + \dots + \frac{x^{n-1}}{\underline{n}} + \dots$

 $(\because x \neq 0$ ஆதலால் xஆல் வகுக்க இயலும்)

$$\therefore \quad \lim_{x \to 0} \frac{e^x - 1}{x} = \frac{1}{\lfloor \underline{1} \rfloor} = 1.$$

ஏ.கா. 8.16: மதிப்பிடுக $x \to 3$ $\frac{e^x - e^3}{x - 3}$.

தீர்வு :
$$\frac{e^x - e^3}{x - 3}$$
யை எடுத்துக் கொள்வோம்.

y=x-3 என்போம். பின் $x \to 3$ ஆனால் $y \to 0$

్రాంకొంబ
$$\lim_{x \to 3} \frac{e^x - e^3}{x - 3} = \lim_{y \to 0} \frac{e^{y + 3} - e^3}{y} = \lim_{y \to 0} \frac{e^3 \cdot e^y - e^3}{y}$$
$$= e^3 \lim_{y \to 0} \frac{e^y - 1}{y} = e^3 \times 1 = e^3.$$

ஏ.கா. 8.17: மதிப்பிடுக : $\lim_{x \to 0} \frac{e^x - \sin x - 1}{x}$.

தீர்வு :

$$\frac{e^x - \sin x - 1}{x} = \left(\frac{e^x - 1}{x}\right) - \left(\frac{\sin x}{x}\right)$$

$$\lim_{x \to 0} \frac{e^x - \sin x - 1}{x} = \lim_{x \to 0} \left(\frac{e^x - 1}{x}\right) - \lim_{x \to 0} \left(\frac{\sin x}{x}\right) = 1 - 1 = 0$$

எ.கா. 8.18: மதிப்பிடுக : $\lim_{x \to 0} \frac{e^{\tan x} - 1}{\tan x}$

தீர்வ: tanx = y என்க. பின் $x \to 0$ ஆனால் $y \to 0$

ണ്ടായ
$$\lim_{x \to 0} \frac{e^{\tan x} - 1}{\tan x} = \lim_{y \to 0} \frac{e^{y} - 1}{y} = 1$$

от. в. 19: $\lim_{x \to 0} \frac{\log (1+x)}{x} = 1$

தீர்வ: $\log_e(1+x) = \frac{x}{1} - \frac{x^2}{2} + \frac{x^3}{3} - \dots$ என்பது நமக்குத் தெரியும்

இதிலிருந்து
$$\frac{\log_e{(1+x)}}{x} = 1 - \frac{x}{2} + \frac{x^2}{3} - \dots$$

எனவே
$$\underset{x \to 0}{\lim} \frac{\log_e (1+x)}{x} = 1.$$

குறிப்பு : $\log x$ என்பது இயல் மடக்கை $\log_e x$ ஐக் குறிக்கும்

எ.கா. **8.20:** மதிப்பிடுக
$$\lim_{x \to 1} \frac{\log x}{x-1}$$
 .

தீர்வு : x-1=y எனக் கொள்வோம். பின் $x \to 1$ ஆனால் $y \to 0$

எனவே
$$\lim_{x \to 1} \frac{\log x}{x - 1} = \lim_{y \to 0} \frac{\log(1 + y)}{y}$$
$$= 1 \qquad (\sigma.க.\pi.8.19 \text{ ன். படி.})$$

67.55 77. 8.21:
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log a, \quad a > 0$$

தீர்வு : $f(x)=e^{\log f(x)}$ என்பது நமக்குத் தெரியும். இதிலிருந்து

$$a^{x} = e^{\log a^{x}} = e^{x \log a}$$

எனவே $\frac{a^{x} - 1}{x} = \frac{e^{x \log a} - 1}{x \log a} \times \log a$
தற்பொழுது $x \to 0$ ஆனால் $y = x \log a \to 0$
 $\therefore \lim_{x \to 0} \frac{a^{x} - 1}{x} = \lim_{y \to 0} \frac{e^{y} - 1}{y} \times \log a = \log a \lim_{y \to 0} \left(\frac{e^{y} - 1}{y}\right)$
 $= \log a. \quad (\because \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1)$
எ.கா. 8.22: மதிப்பிடுக் $x \to 0$ $\frac{5^{x} - 6^{x}}{x}$

தீர்வு :

$$\lim_{x \to 0} \frac{5^{x} - 6^{x}}{x} = \lim_{x \to 0} \frac{(5^{x} - 1) - (6^{x} - 1)}{x}$$
$$= \lim_{x \to 0} \left(\frac{5^{x} - 1}{x}\right) - \lim_{x \to 0} \left(\frac{6^{x} - 1}{x}\right)$$
$$= \log 5 - \log 6 = \log\left(\frac{5}{6}\right).$$

எ.கா. 8.23: மதிப்பிடுக $x \to 0$ $\frac{3^x + 1 - \cos x - e^x}{x}$

தீர்வு :

$$\lim_{x \to 0} \frac{3^{x} + 1 - \cos x - e^{x}}{x} = \lim_{x \to 0} \frac{(3^{x} - 1) + (1 - \cos x) - (e^{x} - 1)}{x}$$

$$= \lim_{x \to 0} \left(\frac{3^{x} - 1}{x}\right) + \lim_{x \to 0} \left(\frac{1 - \cos x}{x}\right) - \lim_{x \to 0} \left(\frac{e^{x} - 1}{x}\right)$$

$$= \log 3 + \lim_{x \to 0} \frac{2 \sin^{2} x/2}{x} - 1$$

$$= \log 3 + \lim_{x \to 0} \frac{x}{2} \left(\frac{\sin x/2}{x/2}\right)^{2} - 1$$

$$= \log 3 + \frac{1}{2} \lim_{x \to 0} (x) \lim_{x \to 0} \left(\frac{\sin x/2}{x/2}\right)^{2} - 1$$

$$= \log 3 + \frac{1}{2} \times 0 \times 1 - 1 = \log 3 - 1.$$

சில முக்கிய எல்லைகள் :

(1) $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$ –ன் எல்லை கிடைக்கப் பெறும். அதனை e என்பர்.

$$(2)$$
 $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$ -ல் $x = \frac{1}{y}$ எனப் பிரதியிட $\lim_{x \to 0} (1 + x)^{1/x} = e$

$$(3) \lim_{x \to \infty} \left(1 + \frac{k}{x} \right)^x = e^k$$

எல்லைகளின் தீர்வுகளைத் தெரிந்து கொள்ள **தீர்வுப் புத்தகத்தை** பார்க்கவும்.

குறிப்பு : (1) e-ன் மதிப்பு 2 < e < 3 என அமையும்.

$$(2)$$
 $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$ ஆனது x -ன் எல்லா மெய் மதிப்புகளுக்கும் உண்மை ஆகும்.

அதாவது x -ன் எல்லா மெய்மதிப்புகளுக்கும் $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$ ஆகும்.

 $e=e^1=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{r!}+...$ என்பதை கவனத்தில் கொள்க. இந்த மெய்யெண் e எந்த ஒரு பல்லுறுப்புக் கோவைச் சமன்பாட்டையும் நிறைவு செய்யாது. அதாவது $a_0x^n+a_1x^{n-1}+...+a_{n-1}\,x+a_n=0$ என்ற அமைப்பில் உள்ள எந்த ஒரு சமன்பாட்டிற்கும் தீர்வாகாது. எனவே இந்த எண் e-யை கடந்த எண் (transcendental number) என அழைப்பர்.

எ.கா. 8.24: கணக்கிடுக :
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{3x}$$
.

தீர்வு: தற்போது
$$\left(1+\frac{1}{x}\right)^{3x} = \left(1+\frac{1}{x}\right)^x \left(1+\frac{1}{x}\right)^x \left(1+\frac{1}{x}\right)^x$$
. இதலிருந்து
$$\lim_{x \to \infty} \left(1+\frac{1}{x}\right)^{3x} = \lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x \cdot \left(1+\frac{1}{x}\right)^x \cdot \left(1+\frac{1}{x}\right)^x \cdot \left(1+\frac{1}{x}\right)^x$$
$$= \lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x \cdot \lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x \cdot \lim_{x \to \infty} \left(1+\frac{1}{x}\right)^x = e. \ e. \ e. = e^3.$$

எ.கா. 8.25: மதிப்பிடுக :
$$\lim_{x \to \infty} \left(\frac{x+3}{x-1} \right)^{x+3}$$
.

தீர்வு :

$$\lim_{x \to \infty} \left(\frac{x+3}{x-1} \right)^{x+3} = \lim_{x \to \infty} \left(\frac{x-1+4}{x-1} \right)^{(x-1)+4}$$

$$= \lim_{x \to \infty} \left(1 + \frac{4}{x - 1}\right)^{(x - 1) + 4}$$

$$= \lim_{y \to \infty} \left(1 + \frac{4}{y}\right)^{y + 4} \quad (\because y = x - 1 \to \infty \text{ as } x \to \infty)$$

$$= \lim_{y \to \infty} \left(1 + \frac{4}{y}\right)^{y} \left(1 + \frac{4}{y}\right)^{4}$$

$$= \lim_{y \to \infty} \left(1 + \frac{4}{y}\right)^{y} \cdot \lim_{y \to \infty} \left(1 + \frac{4}{y}\right)^{4} = e^{4} \cdot 1 = e^{4}$$

எ.கா. 8.26: மதிப்பிடுக: $x \to \pi/2$ $(1 + \cos x)^3 \sec x$.

தீர்வு : $\cos x = \frac{1}{y}$ எனப் பிரதியிடுவோம். $x \to \frac{\pi}{2}$ எனில் $y \to \infty$

$$\lim_{x \to \pi/2} (1 + \cos x)^3 \sec x = \lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^{3y} = \lim_{y \to \infty} \left[\left(1 + \frac{1}{y} \right)^y \right]^3$$
$$= \left[\lim_{y \to \infty} \left(1 + \frac{1}{y} \right)^y \right]^3 = e^3.$$

ஏ.கா. 8.27: மதிப்பிடுக : $\lim_{x \to 0} \frac{2^x - 1}{\sqrt{1 + x} - 1}$

தீர்வு :

$$\lim_{x \to 0} \frac{2^{x} - 1}{\sqrt{1 + x} - 1} = \lim_{x \to 0} \frac{2^{x} - 1}{(1 + x - 1)} \left(\sqrt{1 + x} + 1 \right)$$

$$= \lim_{x \to 0} \frac{2^{x} - 1}{x} \cdot \lim_{x \to 0} \left(\sqrt{1 + x} + 1 \right)$$

$$= \log 2 \cdot \left(\sqrt{1} + 1 \right) \qquad \left(\because \lim_{x \to 0} \frac{a^{x} - 1}{x} = \log a \right)$$

$$= 2 \log 2 = \log 4.$$

ஏ.கா. 8.28: மதிப்பிடுக: $\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin^{-1} x}$

தீர்வு :

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin^{-1} x} = \lim_{x \to 0} \frac{(1+x) - (1-x)}{\sin^{-1} x} \left(\frac{1}{\sqrt{1+x} + \sqrt{1-x}} \right)$$

 $\sin^{-1}\!x = y$ எனப் பிரதியிடுவோம். $\therefore x = \sin y$ மேலும் $x \to 0$ எனில் $y \to 0$

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin^{-1} x} = \lim_{y \to 0} \frac{2 \sin y}{y} \cdot \lim_{y \to 0} \frac{1}{\sqrt{1+\sin y} + \sqrt{1-\sin y}}$$
$$= 2 \lim_{y \to 0} \left(\frac{\sin y}{y}\right) \left(\frac{1}{\sqrt{1+0} + \sqrt{1-0}}\right)$$
$$= 2 \times 1 \times \frac{1}{2} = 1$$

பயிற்சி 8.1

கீழ்க்கானும் எல்லைகளைக் கணக்கிடுக. (1 – 13)

(1)
$$\lim_{x \to 1} \frac{x^2 + 2x + 5}{x^2 + 1}$$
 (2) $\lim_{x \to 2} \frac{x - 2}{\sqrt{2 - x}}$

(3)
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
 (4) $\lim_{x \to 1} \frac{x^m - 1}{x - 1}$

(5)
$$\lim_{x \to 4} \frac{\sqrt{2x+1}-3}{\sqrt{x-2}-\sqrt{2}}$$
 (6) $\lim_{x \to 0} \frac{\sqrt{x^2+p^2}-p}{\sqrt{x^2+q^2}-q}$

(7)
$$\lim_{x \to a} \frac{\sqrt[m]{x} - \sqrt[m]{a}}{x - a}$$
 (8)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$$

(9)
$$\lim_{x \to 0} \frac{\sqrt{1 + x + x^2} - 1}{x}$$
 (10) $\lim_{x \to 0} \frac{\sin^2(x/3)}{x^2}$

(11)
$$\lim_{x \to 0} \frac{\sin(a+x) - \sin(a-x)}{x}$$
 (12)
$$\lim_{x \to 0} \frac{\log(1+\alpha x)}{x}$$

$$(13) \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n+5}$$

(14)
$$f(x) = \frac{x^3 - 27}{x - 3}$$
 என்ற சார்பிற்கு $x = 3$ -ல் இடமிருந்து மற்றும் வலமிருந்து எல்லைகளை மதிப்பிடுக. 3 ஐ x நெருங்க $f(x)$ க்கு எல்லை உள்ளதா? உம் பதிலுக்குக் காரணம் கூறுக.

(15)
$$\lim_{x \to 3} \frac{x^n - 3^n}{x - 3} = 108$$
 என இருக்குமாறு மிகை முழு n -ஐக் காண்க.

(16) மதிப்பிடுக:
$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x - \sin x}$$
.

(17)
$$f(x) = \frac{ax^2 + b}{x^2 - 1}$$
, $\lim_{x \to 0} f(x) = 1$ மற்றும் $\lim_{x \to \infty} f(x) = 1$ எனில் $f(-2) = f(2) = 1$ என நிறுவுக.

$$(18)$$
 $\lim_{x \to 0} \frac{|x|}{-x}$ மற்றும் $\lim_{x \to 0} \frac{|x|}{-x}$ ஆகியவற்றை மதிப்பிடுக. $\lim_{x \to 0} \frac{|x|}{-x}$ ஐப் பற்றி என்ன கூற முடியும்?

(19) கணக்கிடுக :
$$\lim_{x \to 0} \frac{a^x - b^x}{x}$$
 , $a, b > 0$.
$$\lim_{\text{இதிலிருந்து } x \to 0} \frac{5^x - 6^x}{x}$$
ஐ மதிப்பிடுக.

$$(20) \log (1+x)$$
-ன் தொடரைப் பயன்படுத்தாமல்
$$\lim_{x \to 0} \frac{\log (1+x)}{x} = 1 \ \text{என நிறுவுக}.$$

8.2 சார்பின் தொடர்ச்சி (Continuity of a function) :

fஆனது $\mathbf{I} = [a, b]$ என்ற மூடிய இடைவெளியில் வரையறுக்கப்பட்ட சார்பு. இதன் தொடர்ச்சித் தன்மையை தன் வளைவரை y = f(x) ன் மீது அமைந்த ஒரு துகள், (a, f(a)) என்ற புள்ளியிலிருந்து (b, f(b)) என்ற புள்ளிக்கு தன் பாதையை விட்டு விலகாமல் நகர்ந்து செல்லும் இயக்கத்தின் வாயிலாக விளக்க முடியும்.

ஒரு புள்ளியில் தொடர்ச்சி (Continuity at a point) :

வரையறை : திறந்த இடைவெளி (a,b)யில் ஏதேனும் ஒரு புள்ளி c-யில் சார்பு fஆனது

$$\lim_{x \to c} f(x) = f(c)$$
 என இருக்குமானால்

புள்ளி c-யில் f-ஐ ஒரு தொடர்ச்சியான சார்பு என்போம். இச்சார்பானது lim c-யில் x o c – f(x) = f(c) என இருக்குமானால் இடமிருந்து

தொடர்ச்சியான சார்பு எனவும் $\dfrac{\lim}{x o c + f(x) = f(c)}$ என அமையுமானால் வலமிருந்து தொடர்ச்சியான சார்பு எனவும் கூறுவோம்.

ஒரு சார்பானது ஒரு புள்ளியில் இடமிருந்து மற்றும் வலமிருந்து தொடர்ச்சியாாக இருந்தால் மட்டுமே அச்சார்பு தொடர்ச்சியான சார்பாகும். இதன் மறுதலையும் உண்மையாகும்.

முடிவுப் புள்ளியில் தொடர்ச்சி (Continuity at an end point) :

மூடிய இடைவெளி $[a,\,b]$ -யில் வரையறுக்கப்பட்ட ஒரு சார்பு இடது முடிவுப்புள்ளி a-யில் வலமிருந்த தொடர்ச்சி எனில் f-ஐ a-யில் \lim தொடர்ச்சியான சார்பு என்போம். அதாவது $\lim_{x \to a} f(x) = f(a)$.

 \lim அதுபோல $x \to b$ - f(x) = f(b) எனில் f-ஐ வலது முடிவுப்புள்ளி b-யில் தொடர்ச்சியான சார்பு என்போம்.

ஆக ஒரு சார்பு f-ஆனது ஒரு புள்ளி c-யில் தொடர்ச்சியானதாக இருக்க கீழ்க்காணும் நிபந்தனைகளை நிறைவு செய்ய வேண்டுமென்பதை முக்கியமாக நினைவில் கொள்ள வேண்டும்.

- (i) f(x)ஆனது c-யில் வரையறுக்கப்பட வேண்டும்.
- $\lim_{x\to c} f(x)$ -ன் மதிப்பு காண முடிதல் வேண்டும்.
- $\lim_{x \to c} f(x) = f(c)$ என இருக்க வேண்டும்.

மூடிய இடைவெளியில் தொடர்ச்சி (Continuity in [a,b]) :

ஒரு மூடிய இடைவெளி $[a,\ b]$ -யில் உள்ள ஒவ்வொரு புள்ளியிலும் சார்பு f-ஆனது தொடர்ச்சியானதாக இருக்குமாயின் அது $[a,\ b]$ - ல் ஒரு தொடர்ச்சியான சார்பு என்போம்.

தொடர்ச்சியற்ற சார்புகள் (Discontinuous functions) :

ஒரு சார்பு தன் அரங்கில் உள்ள ஏதேனும் ஒரு புள்ளியில் தொடர்ச்சியற்றதாக இருப்பின் அதனை அப்புள்ளியில் தொடர்ச்சியற்ற சார்பு என்போம்.

தேற்றம் 8.1: f, g என்பன c எனும் புள்ளியில் தொடர்ச்சியான சார்புகள் எனில், f+g, f-g மற்றும் fg என்பனவும் c-யில் தொடர்ச்சியான சார்புகளாகும். மேலும் $g(c) \neq 0$ எனில் f/g-யும் cயில் தொடர்ச்சியான சார்பாகும்.

எ.கா. 8.29: ஒவ்வொரு மாறிலிச் சார்பும் ஒரு தொடர்ச்சியான சார்பு என நிரூபி.

தீர்வு : மாறிலிச் சார்பு fஐ f(x) = k என்போம். f-ன் அரங்கில் ஏதேனும் ஒரு புள்ளி c எனில் f(c) = k. $\lim_{x \to c} \lim_{x \to c} f(x) = \lim_{x \to c} (k) = k$, $\lim_{x \to c} f(x) = f(c)$.

எனவே f(x) = k ஒரு தொடர்ச்சியான சார்பு ஆகும்.

குறிப்பு : y = f(x) = k-ன் வரைபடமானது x-அச்சுக்கு இணையான இடைவெளி ஏதுமற்ற ஒரு நேர்க்கோடு ஆகும். இதிலிருந்து தொடர்ச்சியான சார்புகள் தம்முடைய வரைபடத்தில் (பாதையில்) எந்த இடைவெளியையும் அனுமதிப்பதில்லை என்பதை உணர்வு நிலை வாயிலாகப் புரிந்து கொள்க.

எ.கா. **8.30** : $f(x) = x^n$, $x \in \mathbb{R}$ தொடர்ச்சியான சார்பு.

தீர்வு : R-ன் ஏதேனும் ஒர புள்ளி x_0 என்க.

பின்பு
$$x \to x_0$$
 $f(x) = \lim_{x \to x_0} (x^n) = \lim_{x \to x_0} (x.x...n$ காரணிகள்)
$$\lim_{x \to x_0} \lim_{x \to x_0$$

மேலும்
$$f(x_0) = x_0^n$$
. ஆக $x \to x_0$ $f(x) = f(x_0) = x_0^n$

$$\Rightarrow f(x) = x^n$$
 ஒரு தொடர்ச்சியான சார்பு

ஏ.கா. **8.31:** $k \neq 0$ ஒரு மெய்மாறிலி எனில் $f(x) = kx^n$ $(k \in \mathbb{R})$ தொடர்ச்சியான சார்பு ஆகும் என நிரூபி.

தீர்வு : g(x) = k மற்றும் $h(x) = x^n$ எனக் கொள்வோம்.

எ.கா. 8.29-ன் படி g-யும் எ.கா.8.30-ன்படி h-ம் தொடர்ச்சியான சார்புகள். இவற்றிலிருந்து தேற்றம் 8.1-ன் படி f(x)=g(x) . $h(x)=kx^n$ தொடர்ச்சியான சார்பு ஆகும்.

எ.கா. 8.32: n படி கொண்ட ஒவ்வொரு பல்லுறுப்புக் கோவைச் சார்பும் ஒரு தொடர்ச்சியான சார்பு ஆகும் என நிரூபி.

தீர்வு . n படி கொண்ட பல்லுறுப்புக் கோவைச் சார்பை

 $f(x)=a_0x^n+a_1\,x^{n-1}+a_2x^{n-2}+\ldots+a_{n-1}\,x+a_n$, $a_0\neq 0$ என எடுத்துக் கொள்வோம்.

இப்பொழுது எ.கா. 8.31-ன் படி $a_i x^i$, $i=0,\ 1,\ 2,\ \dots$ n எல்லாம் தொடர்ச்சியான சார்புகள். ஆக தேற்றம் 8.1 படி தொடர்ச்சியான சார்புகளின் கூடுதலும் தொடர்ச்சியான சார்புகள் ஆதலால், f(x)-ம் தொடர்ச்சியான சார்பு ஆகும்.

எ.கா. 8.33: p(x), $q(x) \neq 0$ என்பன பல்லுறுப்புக் கோவைகளாக அமைந்த விகிதமுறுச் சார்பு, r(x) = p(x) / q(x) தொடர்ச்சியான சார்பு ஆகும் என நிரூபி.

தீர்வு. r(x) = p(x) / q(x). p(x), q(x) என்பன பல்லுறுப்புக் கோவைகள் ஆதலால் எ.கா.8.35-ன் படி இவைகள் தொடர்ச்சியான சார்புகள் ஆகும். இதிலிருந்து, தேற்றம் 8.1-ன் படி இரண்டு பல்லுறுப்புக் கோவைச் சார்புகளின் விகிதமும் ஒரு தொடர்ச்சியான சார்பு ஆதலால், r(x)-ம் தொடர்ச்சி ஆகும். அதாவது ஒவ்வொரு விகிதமுறுச் சார்பும் தொடர்ச்சியான சார்பு ஆகும்.

சில முடிவுகள் [நிரூபணமின்றி] :

- படிக்குறிச் சார்பு ஒரு தொடர்ச்சியான சார்பு.
 குறிப்பாக f(x) = e^xம் தொடர்ச்சியான சார்பு ஆகும்.
- (2) $f(x) = \log x, x > 0, R^+$ ல் தொடர்ச்சியான சார்பு ஆகும். இங்கு R^+ என்பது மிகை மெய்யெண்களின் கணம்.
- (3) வட்டச் சார்பு $f(x) = \sin x$ ஆனது R-ல் தொடர்ச்சியானது.
- (4) கொசைன் சார்பு $f(x) = \cos x$ ஆனது R-ல் தொடர்ச்சியானது.

குறிப்பு : இம்முடிவுகளின் நிருபணங்களைக் காண **தீர்வுப் புத்தகத்தைப்** பார்க்கவும்.

எ.கா. **8.34:**
$$f(x) = \begin{cases} \frac{\sin 2x}{x}, & x \neq 0 \text{ எனும் பொழுது} \\ 1. & x = 0 \text{ எனும் பொழுது} \end{cases}$$
 என்ற சார்பு $x = 0$ எனும்

புள்ளியில் தொடர்ச்சியான சார்பா? உங்கள் விடைக்கு காரணம் கூறுங்கள். **தீர்வு :** f(0) = 1 என்பதைக் கவனிக்க.

இப்பொழுது
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin 2x}{x} \left(\because x \neq 0, f(x) = \frac{\sin 2x}{x} \right)$$

$$= \lim_{x \to 0} 2 \left(\frac{\sin 2x}{2x} \right) = 2 \lim_{x \to 0} \left(\frac{\sin 2x}{2x} \right)$$

$$= 2 \lim_{2x \to 0} \left(\frac{\sin 2x}{2x} \right) = 2.1 = 2.$$

 $\lim_{x \to 0} f(x) = 2 \neq 1 = f(0)$ ஆதலால் x = 0-ல் f(x) ஆனது தொடர்ச்சியான சார்பு அல்ல. அதாவது x = 0-ல் f(x) ஒரு தொடர்ச்சியற்ற சார்பு. இச்சார்பை

$$f(x) = \begin{cases} \frac{\sin 2x}{x}, & x \neq 0 \\ 2, & x = 0 \end{cases}$$
 என வரையறுப்பின் $x \to 0$ $f(x) = f(0)$

என்பதைக் கவனித்திருப்பீர்கள். மாற்றி வரையறுக்கப்பட்ட சார்பு x = 0 புள்ளியில் தொடர்ச்சியான சார்பு ஆதலால் இப்படிப்பட்ட புள்ளிகளை நீக்கத்தக்க தொடர்ச்சியின்மைப் புள்ளிகள் என்போம்.

எ.கா. 8.35: x=c எனும் புள்ளியில் கீழ்க்காணும் சார்புக்கு தொடர்ச்சித் தன்மையை ஆய்வு செய்க.

$$f(x) = \begin{cases} \frac{\sin(x-c)}{x-c} & x \neq c \text{ and iv} \\ 0 & x = c \text{ and iv} \end{cases}$$

தீர்வு : x=c-யில் f(c)=0 எனப் பெற்றிருக்கிறோம். இப்பொழுது

$$\lim_{x \to c} f(x) = \lim_{x \to c} \frac{\sin(x - c)}{x - c} = \lim_{h \to 0} \frac{\sin h}{h} \qquad \therefore x \to c$$
 எனும்போது
$$= 1.$$

 $f(c)=0 \neq 1=\dfrac{\lim}{x o c} f(x)$ ஆதலால் f(x) ஆனது x=c-யில் தொடர்ச்சியற்றது.

පුළුப்பு :
$$f(x) = \begin{cases} \frac{\sin(x-c)}{x-c} & x \neq c \text{ and is} \\ 1 & x = c \text{ and is} \end{cases}$$

என மாற்றி வரையறுக்கப்பட்ட சார்பு x = c-ல் தொடர்ச்சியான சார்பு என்பதைக் கவனிக்க. இதிலிருந்து x = c ஆனது நீக்கத்தக்க தொடர்ச்சியின்மைப் (முறிவுப்) புள்ளி என்பதையும் கவனித்துக் கொள்ளுங்கள்.

எ.கா. 8.36 : சார்பு
$$f$$
 ஆனது $f(x) = \begin{cases} -x^2 & x \le 0 \text{ armho} \\ 5x - 4 & 0 < x \le 1 \text{ armho} \\ 4x^2 - 3x & 1 < x < 2 \text{ armho} \\ 3x + 4 & x \ge 2 \text{ armho} \end{cases}$

என வரையறுக்கப்படுகிறது. $x=0,\ 1,\ 2$ ஆகிய புள்ளிகளில் f-ன் தொடர்ச்சித்தன்மையை பரிசோதிக்க.

தீர்வு :

(i)
$$\lim_{x \to 0} \lim_{-f(x) = x \to 0} \lim_{x \to 0} (-x^2) = 0$$

$$\lim_{x \to 0} \lim_{x \to 0} \lim_{x \to 0} \lim_{x \to 0} (5x - 4) = (5.0 - 4) = -4$$

$$\lim_{x \to 0} \lim_{x \to 0} \lim_{x \to 0} \lim_{x \to 0} f(x) \neq 0$$
 புள்ளியில் தொடர்ச்சியற்ற சார்பு.

(ii)
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (5x - 4) = 5 \times 1 - 4 = 1.$$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (4x^2 - 3x) = 4 \times 1^2 - 3 \times 1 = 1$$
Geograph
$$f(1) = 5 \times 1 - 4 = 5 - 4 = 1$$

$$\lim_{x \to 1} \lim_{-f(x) = x \to 1} \lim_{+} f(x) = f(1)$$
 ஆக இருப்பதால் $f(x)$

ஆனது x = 1-ல் தொடர்ச்சியான சார்பு.

(iii)
$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} (4x^2 - 3x)$$

$$= 4 \times 2^2 - 3 \times 2 = 16 - 6 = 10 \ .$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (3x + 4) = 3 \times 2 + 4 = 6 + 4 = 10 \ .$$
 Guquib $f(2) = 3 \times 2 + 4 = 10 \ .$

 $f(2)=\lim_{x\, o\, 2}\, f(x)$ ஆதலால் f(x) ஆனது x=2 என்ற புள்ளியில் தொடர்ச்சியானது ஆகும்.

எ.கா. 8.37 : $\lfloor x \rfloor$ ஆனது மீப்பெரு முழு எண் சார்பைக் குறிக்கிறது. $f(x) = x - \lfloor x \rfloor, x \geq 0$ சார்பின் தொடர்ச்சித்தன்மையை x = 3 என்ற புள்ளியில் விவாதிக்க,

தீர்வு: இப்பொழுது
$$\lim_{x \to 3} - f(x) = \lim_{x \to 3} - x - \lfloor x \rfloor = 3 - 2 = 1,$$
 $\lim_{x \to 3} + f(x) = \lim_{x \to 3} + x - \lfloor x \rfloor = 3 - 3 = 0,$ மற்றும் $f(3) = 0.$ $\lim_{x \to 3} + f(x) \neq \lim_{x \to 3} - f(x)$ என்பதைக் கவனியுங்கள். எனவே $f(x) = x - \lfloor x \rfloor$ ஆனது $x = 3$ ல் தொடர்ச்சியற்ற சார்பு.

பயிற்சி 8.2

சுட்டிக்காட்டப்பட்டுள்ள புள்ளிகளில் தொடர்ச்சித்தன்மையை ஆராய்க.

(1)
$$f(x) = \begin{cases} \frac{x^3 - 8}{x^2 - 4} & x \neq 2 \text{ and iv} \\ 3 & x = 2 \text{ and iv} \end{cases} x = 2$$
-iv

$$(2) \ f(x) = x - |x| \ , x = 0$$
 எனும் புள்ளியில்

(3)
$$f(x) = \begin{cases} 2x, \ 0 \le x < 1 \ \text{ எனும்பொழுது} \\ 3, \ x = 1 \ \text{எனும்பொழுது} \end{cases}$$
 $x = 1$ -ல் $4x, \ 1 < x \le 2$ எனும்பொழுது

(4)
$$f(x) = \begin{cases} 2x - 1, & x < 0 \text{ arminion} \\ 2x + 6, & x \ge 0 \text{ arminion} \end{cases} x = 0$$
-ல்

(5)
$$f(x) = \begin{cases} 1, x \le 3 \text{ aradioù} \\ ax + b, 3 < x < 5 \text{ aradioù} \\ 7, x \ge 5 \text{ aradioù} \end{cases}$$

என்ற சார்பு x=3 மற்றும் x=5 என்ற புள்ளிகளில் தொடர்ச்சியானது எனில் a,b-க்களின் மதிப்பு காண்க.

(6)
$$f(x) = \begin{cases} \frac{x^2}{2}, 0 \le x \le 1 \text{ எனில்} \\ 2x^2 - 3x + \frac{3}{2}, 1 < x \le 2 \text{ எனில்} \end{cases}$$

x=1 எனும் புள்ளியில் தொடர்ச்சியானது எனக்காட்டு.

(7) f(x) = |x - 1| + |x - 2| என்று வரையறுக்கப்பட்ட சார்பு f-ன் தொடர்ச்சித்தன்மையை x = 1 மற்றும் x = 2 என்ற புள்ளிகளில் விவாதிக்க.

8.3 வகையீடு - கருத்தாக்கம் (Concept of Differentiation) :

இதுவரை எல்லை என்கிற கருத்து குறித்து பார்த்தோம். இப்போது ஒரு புள்ளியில் ஏற்படும் மாற்ற வீதத்தைத் துல்லியமாகக் கண்டறிய முயற்சிப்போம். முதலில் உயர்வுகள் (increments) என்றால் என்னவென வரையறுப்போம்.

y=f(x) என்ற சார்பை எடுத்துக் கொள்வோம். இதில் x ஆனது தனித்த மாறி. இப்போது x-ன் மதிப்பு x_0 என்கிற தொடக்க அளவிலிருந்து x_1 என்கிற இறுதி அளவிற்கு மாறுவதாகக் கொள்வோம். இங்கு x-ல் ஏற்பட்டுள்ள மாற்றத்தின் அளவு x-ன் உயர்வு என வரையறுக்கப்படுகிறது. இதனை Δx (டெல்டா x) என்று குறிப்பது வழக்கம். அதாவது $\Delta x=x_1-x_0$ அல்லது $x_1=x_0+\Delta x$

x அதிகரிக்குமானால் $\Delta x > 0$ ஏனெனில் $x_1 > x_0$.

x குறையுமானால் $\Delta x < 0$ ஏனெனில் $x_1 < x_0$.

 x_0 விலிருந்து $x_1=x_0+\Delta x$ ஆக x மாறும்போது, y-ன் மதிப்பு $f(x_0)$ விலிருந்து $f(x_0+\Delta x)$ ஆக மாறுகிறது. $f(x_0)$ -ஐ y_0 என எடுத்துக் கொண்டால் $f(x_0)=y_0$ ஆகும். எனவே $f(x_0+\Delta x)=y_0+\Delta y$. y-ல் ஏற்படும் உயர்வு Δy என்பது x_0 மற்றும் Δx -ன் மதிப்புகளைச் சார்ந்துள்ளது. $(x_0$ -லிருந்து x_1 ஆக மாறும்பொழுது y அதிகரித்தால் Δy மிகை

மதிப்புடையதாக இருக்கும். y மதிப்பு குறைந்தால் Δy குறை மதிப்பு உடையதாக இருக்கும். y-ன் மதிப்பு மாறாது இருந்தால் Δy பூச்சியமாக இருக்கும்)

 Δy என்கிற உயர்வை Δx ஆல் வகுக்கும்போது $\frac{\Delta y}{\Delta x}$ என்கிற தகவு கிடைக்கிறது. இது xன் தொடக்க மதிப்பு x_0 -லிருந்து $x_1 = x_0 + \Delta x$ என்கிற இறுதி மதிப்பிற்கு மாறும் போது x-ஐப் பொறுத்து y-ல் ஏற்படும் மாற்ற வீதத்தின் சராசரி ஆகும். எனவே,

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

இந்தப் பின்னமானது வேறுபாட்டுத் தகவு என்றும் அழைக்கப்படும்.

எ.கா. 8.38: ஒரு ஊழியரின் மாதச் சம்பளம் ரூ.1000/- அவருக்கு ஆண்டுதோறும் ரூ. 100/- ஊதிய உயர்வு வழங்கப்படுகிறது. அவரது வீட்டு வாடகை அவர் ஊதியத்தில் பாதி ஆனால் வீட்டு வாடகையின் ஆண்டு உயர்வு எவ்வளவு? அவரது ஊதியத்தைப் பொறுத்து வீட்டு வாடகையில் ஏற்படும் மாற்ற வீதத்தின் சராசரி என்ன?

தீர்வு :

ஊதியத்தை x எனவும், வீட்டு வாடகையை y என்றும் கொள்வோம்.

இங்கு
$$y = \frac{1}{2} x$$
. மேலும் $\Delta x = 100$.

எனவே
$$\Delta y = \frac{1}{2} (x + \Delta x) - \frac{1}{2} x = \frac{\Delta x}{2} = \frac{100}{2} = 50.$$

எனவே வீட்டு வாடகையின் ஆண்டு உயர்வு ரூ. 50/- ஆகும்.

மாற்ற வீதத்தின் சராசரி
$$\frac{\Delta y}{\Delta x} = \frac{50}{100} = \frac{1}{2}$$
 .

எ.கா. 8.39: $y = f(x) = \frac{1}{x}$ எனில், x ஆனது x_1 லிருந்து $x_1 + \Delta x$ க்கு மாறும்போது xஐப் பொறுத்து y-ன் மாற்ற வீதத்தின் சராசரியைக் காண்க.

§if
$$\mathbf{a}_1: \Delta y = f(x_1 + \Delta x) - f(x_1) = \frac{1}{x_1 + \Delta x} - \frac{1}{x_1}$$
$$= \frac{-\Delta x}{x_1 (x_1 + \Delta x)}$$
$$\therefore \frac{\Delta y}{\Delta x} = \frac{-1}{x_1 (x_1 + \Delta x)}.$$

8.3.1 வகைக்கெழு எனும் கருத்தாக்கம் (Concept of derivative) :

ஒரு நேர்க்கோட்டில் நகரும் ஒரு துகளை (புள்ளியை)க் கருதுவோம். இக்கோட்டில் உள்ள குறிப்பிட்ட புள்ளியிலிருந்து துகள் நகர்ந்த தூரம் s ஆனது காலத்தைப் பொறுத்த சார்பு என்பது தெளிவு :

$$\therefore s = f(t)$$
.

t-ன் குறிப்பிட்ட ஒவ்வொரு மதிப்பிற்கும் அதற்குரிய s-ன் மதிப்பு வரையறுக்கப்படுகிறது. t-யில் Δt என்கிற உயர்வு ஏற்படும் போது $t+\Delta t$ எனும் புதிய கால அளவைக்குரிய தூரம் $s+\Delta s$ ஆகும். இதில் Δs என்பது Δt இடைவெளியில் நகர்ந்த தூரம் ஆகும்.

சீரான இயக்கத்தின் போது தூரத்தில் ஏற்படும் உயர்வு, காலத்தில் ஏற்படும் உயர்வு, காலத்தில் ஏற்படும் உயர்வுக்கு நேர்விகிதத்தில் உள்ளது. $\frac{\Delta s}{\Delta t}$ எனும் வீதம் இந்த இயக்கத்தின் மாறாத திசைவேகத்தைக் குறிக்கிறது. பொதுவாக இவ்வீதம் காலம் t-ஐ மட்டுமின்றி கால உயர்வு Δt -யையும் பொறுத்ததாகும். மேலும் இது t-லிருந்து t + Δt என்கிற கால இடைவெளியில் ஏற்படும் சராசரி திசைவேகமும் ஆகும். Δt பூச்சியத்தை நெருங்க $\frac{\Delta s}{\Delta t}$ என்கிறத் தகவிற்கு கொடுக்கப்பட்ட நேரத்தில் எல்லை இருக்குமானால் அந்த எல்லை திசைவேகத்தைக் குறிக்கிறது. அதாவது,

 $v=rac{\lim}{\Delta t o 0}\,rac{\Delta s}{\Delta t}$ அல்லது $rac{\lim}{\Delta t o 0}\,rac{\Delta s}{\Delta t}$ என்பது கணநேரத் திசைவேகம் (instantaneous velocity) v ஆகும்.

தூரம் s-ஐப் போலவே திசைவேகம் v-யும் காலம் t-ன் சார்பாகும், இந்தச் சார்பு t-ஐப் பொறுத்த s=f(t)-ன் வகைக்கெழு எனப்படும். இவ்வாறு திசைவேகமென்பது காலத்தைப் பொறுத்த தூரம் s-ன் வகைக்கெழு ஆகிறது.

ஒரு வேதியல் வினையில் பங்குபெறும் ஒரு பொருளை எடுத்துக் கொள்வோம். t எனும் நேரத்தில் வினையில் பங்குபெறும் பொருளின் அளவு x ஆனது t-ன் சார்பு ஆகும். Δt அளவு காலம் அதிகரிக்கும்போது x-ன் அளவு $x + \Delta x$ ஆக அதிகரிக்கிறது. $\frac{\Delta x}{\Delta t}$ எனும் வீதம் Δt எனும் கால இடைவெளியில் ஏற்படும் வேதி வினையின் சராசரி வேகத்தைத் தருகிறது. Δt பூச்சியத்தை நெருங்கும் போது $\frac{\Delta x}{\Delta t}$ என்ற வீதத்தின் எல்லை கொடுக்கப்பட்ட t எனும் நேரத்தில் வேதியல் வினையின் வேகத்தைத் தருகிறது.

மேற்குறித்த எடுத்துக்காட்டுகள் ஒரு சார்பின் வகைக்கெழு என்கிற கருத்தாக்கத்திற்கு இட்டுச் செல்கிறது.

வரையறை

 Δx பூச்சியத்தை நெருங்கும் நிலையில் Δx எனும் உயர்வுக்கும் அதைப் பொறுத்து Δy -ல் ஏற்படும் உயர்வுக்கும் உள்ள தகவின் எல்லை, y=f(x) என்கிற சார்பின் வகைக்கெழு என வரையறுக்கப்படுகிறது.

y' அல்லது f'(x) அல்லது $\dfrac{dy}{dx}$ ஆகியவை வகைக்கெழுவை குறிக்கப் பயன்படுகின்றன.

அதாவது

$$\frac{dy}{dx} = y' = f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

மேற்குறித்த எல்லை இல்லாமல் போவதற்கான சாத்தியம் உள்ளது. அப்படியாயின் வகைக்கெழுவும் இராது.

குறிப்பு:

- வகைக்கெழுவைக் கண்டுபிடிப்பதற்கான (1) ஒரு வகைப்படுத்தல் எனப்படும். தவிரவும் $\dfrac{dy}{dx}$ என்கிற குறியீட்டை $dy \div dx$ என்பதாகப் பொருள் கொள்ளக் கூடாது. அது வெறுமனே $\frac{d(y)}{dx}$ அல்லது $\frac{d}{dx}$ f(x) என்று மட்டுமே பொருள் கொள்கிறது. $\frac{d}{dx}$ என்பது ஒரு செயலி. x-ஐப் பொறுத்து வகையீடு செய்யப்படுகிறது என்பதை மட்டுமே அது பொருள் கொள்கிறது. ஆனால் $rac{\Delta y}{\Lambda x}$ என்கிற பின்னம் $\Delta y \div \Delta x$ எனப் பொருள் கொள்கிறது. $rac{dy}{dx}$ என்கிற குறியீடு மற்றும் (அதாவது y-லும் x-லும் ஏற்படும் மிகச்சிறு மாற்றங்கள்) என்கிற இரு எண்களின் தகவையே உணர்த்துகின்ற போதிலும் உண்மையில் அது ஒரு தனித்த எண்தான். $\Delta y,\,\Delta x$ ஆகிய இரண்டும் பூச்சியத்தை நெருங்கும்போது அவற்றின் தகவு $rac{\Delta y}{\Delta x}$ -ன் எல்லையே $rac{dy}{dx}$ ஆகும்.
 - (2) ஏதேனும் ஒரு குறிப்பிட்ட x மதிப்பிற்கு (x_0 என எடுத்துக் கொள்வோம்), கொடுக்கப்பட்ட சார்பு f(x)-ன் வகையீட்டுக் கெழு

- $f'(x_0)$ அல்லது $\left(\frac{dy}{dx}\right)_{x=x_0}$ என்று குறிக்கப்படுகிறது. இது $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$ என்பதைப் பொருள் கொள்கிறது. ஆனால் இந்த எல்லை இருக்கும்போது மட்டுமே இது பொருந்தும்.
- (3) வலமிருந்து $\Delta x \to 0$ ஆகும் போது (அதாவது மிகை மதிப்புகளின் ஊடாக மட்டும் $\Delta x \to 0$ எனில்) $\frac{f(x_0 \Delta x) f(x_0)}{\Delta x}$ என்பதன் எல்லை இருக்குமானால் அது வலப்புற அல்லது ஏறுமுக (progressive) வகையீட்டுக் கெழு எனப்படும். இது $f'(x_0 +) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x} = Rf'(x_0) \text{ என்று}$ குறிக்கப்படுகிறது. இதுபோலவே இடமிருந்து $\Delta x \to 0$ ஆகும் போது (அதாவது குறை மதிப்புகளின் ஊடாக மட்டும் $\Delta x \to 0$ எனில்) $\frac{f(x_0 \Delta x) f(x_0)}{-\Delta x}$ என்பதன் எல்லை இருக்குமானால் அது இடப்புற அல்லது இறங்குமுக (regressive) வகையீட்டுக் கெழு எனப்படும். இது $f'(x_0 -) = \lim_{\Delta x \to 0} \frac{f(x_0 \Delta x) f(x_0)}{-\Delta x} = Lf'(x_0)$ என்று குறிக்கப்படுகிறது.

 $\mathbf{R}f'(x_0) = \mathbf{L}f'(x_0)$ எனில் f எனும் சார்பு $x = x_0$ ல் வகையிடத்தக்கது எனச் சொல்லப்படும். இந்த பொது மதிப்பை $f'(x_0)$ எனக் குறிப்பர். $\mathbf{R}f'(x_0)$ மற்றும் $\mathbf{L}f'(x_0)$ ஆகியவை காணப்பெற்று, சமமற்றதாக இருப்பின் f(x) என்பது $x = x_0$ ல் வகையிடத்தக்கதல்ல. இவற்றில் எதுவும் காணமுடியாத போதும் f(x) ஆனது $x = x_0$ ல் வகையிடத்தக்கதல்ல.

வடிவக்கணிதத்தைப் பொறுத்தமட்டில் இதன் பொருள் என்னவெனில் சார்பின் வரைபடம் ஒரு மூலையைக் கொண்டுள்ளது. எனவே $(x_0,\ f(x_0))$ எனும் புள்ளியில் தொடுகோடு வரைய இயலாது.

8.3.2 வளைவரையின் சாய்வு $\left($ வடிவ கணிதத்தில் $rac{dy}{dx}$ ன் பொருள்ight)

(Slope or gradient of a curve)

ஒரு வளைவரையின் P எனும் புள்ளியில் வளைவரையின் சாய்வு என்பதை எவ்வாறு வரையறுப்பது எனப்பார்ப்போம்.

y = f(x) என்ற வளைவரையின் மீதான நிலைப்புள்ளி என்க. Q ஆனது அதே வளைவரையின் மீதான மற்றுமொரு புள்ளி. இவற்றின் வழியே செல்லும் வெட்டுக்கோட்டை என்க. Qஆனது வளைவரை வழியாக நகர்ந்*து* Pæ நெருங்க வெட்டுக்கோடான

படம் 8.4

PQ ஆனது அதன் எல்லை நிலையாகிய PTஐ அடையும். (படம் 8.4ஐப் பார்க்க)

வரையறை

வளைவரை வழியாக நகர்ந்து செல்லும் புள்ளி Q, நிலைப்புள்ளி Pஐ நெருங்கும்போது வெட்டுக்கோடு PQ, ஒரே ஒரு எல்லை நிலையைப் பெற்றிருப்பின், PQவின் எல்லை நிலையாகிய PTயே Pயில் வளைவரைக்கு வரையப்பட்ட தொடுகோடு ஆகும்.

 $P_0(x_0,\ y_0)$ மற்றும் $P_-(x_0+\Delta x,\ y_0+\Delta y)$ ஆகியன y=f(x)ஆல் வரையறுக்கப்பட்ட வளைவரையின் மீதான ஏதேனும் இரண்டு புள்ளிகள் எனில் (படம் 8.5) இவ்விரு புள்ளிகளின் வழியாகச் செல்லும் வெட்டுக்கோடு P_0P -ன் சாய்வு,

$$m' = an \ \alpha_0' = rac{\Delta y}{\Delta x} = rac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 ஆகும். இங்கு α_0' ஆனது வெட்டுக்கோடு P_0P அனது x அச்சுடன் ஏற்படுத்தும் கோணம் ஆகும்.

 Δx பூச்சியத்தை நெருங்க P ஆனது P_0 ஐ நோக்கி நகருகிறது; புள்ளி $P_0(x_0,\,y_0)$ ல் $f'(x_0)$ இருப்பின், P_0 ல் தொடுகோட்டின் சாய்வு வெட்டுக்கோடு P_0 Pன் சாய்வின் எல்லையாகும். அல்லது

$$m_0 = anlpha_0 = \dfrac{\lim}{\Delta x o 0} \ \dfrac{\Delta y}{\Delta x} = f'(x_0) = \left(\dfrac{dy}{dx}\right)_{x = x_0}$$
 இங்கு $lpha_0$ என்பது தொடுகோடு $P_0 T$ ஆனது x அச்சுடன் ஏற்படுத்தும் கோணம் மற்றும் m_0 அதன் சாய்வு ஆகும். P_0 ல் தொடுகோட்டின் சாய்வே அப்புள்ளியில் வளைவரையின் சாய்வு ஆகும்.

இவ்வாறு, வடிவ கணித ரீதியாக $\frac{\Delta y}{\Delta x}$ என்பதனை $P_0(x_0,y_0)$ வழியாகச் செல்லும் வெட்டுக் கோட்டின் சாய்வு என்றும் $\frac{dy}{dy}$

$$\left(\frac{dy}{dx}\right)_{x=x_0} = f'(x_0)$$
 என்பதான தொடு கோட்டின் சாய்வு என்றும் விளக்க முடியும்.

படம் 8.5

அதாவது வேறுபாட்டுத் தகவு $\frac{\Delta y}{\Delta x}$ வெட்டுக்கோட்டின் சாய்வையும் வகைக்கெழு $\frac{dy}{dx}$ தொடுகோட்டின் சாய்வையும் குறிக்கிறது என்பதே வகைக்கெழுவின் வடிவகணித விளக்கமாகும்.

வரையறை

 $f(x) \quad \textbf{ஆனது} \ x_0 \leq x < b \ \text{என்ற இடைவெளியில் வரையறுக்கப்படின், } x_0 \text{ல்}$ $\lim_{x \, \to \, x_0 \, + \, } \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \quad \text{மதிப்பு பெற்றிருப்பின்,}$

 $f^{'}(x_{0}+) \ = \ \frac{\lim}{x \to x_{0}} + \ \frac{f(x_{0}+\Delta x) - f(x_{0})}{\Delta x} \ \ \text{$\ x}_{0}-\text{$\dot{\text{o}}$} \ \ f(x)-\text{$\dot{\text{o}}$} \ \ \text{and independent of } \ \ \text{and independent of } \ \ \text{$\ x}_{0}$ வைக்கெழு என வரையறுக்கப்படுகிறது. f(x)ஆனது $a < x \le x_{0}$ என்ற இடைவெளியில் வரையறுக்கப்படின் x_{0} ல் f(x)-ன் இடப்புற வகைக்கெழு

$$f'(x_0_) = \lim_{x \to x_0^-} \frac{f(x_0 - \Delta x) - f(x_0)}{-\Delta x}$$
 (மதிப்பு பெற்றிருப்பின்) என வரையறுக்கப்படுகிறது.

f(x) ஆனது $a \le x \le b$ என்ற மூடிய இடைவெளியில் வரையறுக்கப்படின் f'(a)யை f'(a+) எனவும் f'(b)யை f'(b-) எனவும் எழுதுவர்

வகையிடலுக்கும் தொடர்ச்சித் தன்மைக்குமிடையேயான தொடர்பு (Relationship between differentiability and continuity) : தேற்றம் 8.2

வகையிடத்தக்க ஒவ்வொரு சார்பும் தொடர்ச்சியான சார்பு ஆகும்.

நிரூபணம் :

வகையிடத்தக்க சார்பை f(x) என்க. x=c என்ற புள்ளியில் வகையிடத்தக்கது எனில் $f^{'}(c)$ -ஐக் காண முடியும். மேலும் $f^{'}(c)=\frac{\lim\limits_{x\to c}\frac{f(x)-f(c)}{x-c}}{x-c}$

இப்பொழுது
$$f(x)-f(c)=(x-c)$$
 $\frac{\left[f(x)-f(c)\right]}{(x-c)}$, $x\neq c$

 $x \to c$ எனும்போது எல்லை காண

$$\lim_{x \to c} \{f(x) - f(c)\} = \lim_{x \to c} (x - c) \cdot \frac{[f(x) - f(c)]}{(x - c)}$$

$$= \lim_{x \to c} (x - c) \cdot \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

$$= \lim_{x \to c} (x - c) \cdot f'(c) = 0 \cdot f'(c) = 0.$$

இப்பொழுது f(x) = f(c) + [f(x) - f(c)]

மற்றும்
$$\lim_{x \to c} f(x) = f(c) + 0 = f(c)$$

இதிலிருந்து f(x)ஆனது x = c-ல் தொடர்ச்சியானது ஆகும்.

இதன் மறுதலை உண்மை அல்ல. அதாவது தொடர்ச்சியான சார்பு ஒவ்வொன்றும் ஒரு வகையிடத்தக்க சார்பாக இருக்க வேண்டியதில்லை. இதனை ஒரு எடுத்துக்காட்டின் மூலம் நியாயப்படுத்துவோம்.

எ.கா. 8.40:

சார்பு f(x) ஆனது $[0,\,2]$ என்ற மூடிய இடைவெளியில் கீழ்க்காணுமாறு வரையறுக்கப்படுகிறது: $f(x)=\begin{cases} x, & 0\leq x\leq 1 \text{ எனில்} \\ 2x-1, & 1< x\leq 2 \text{ எனில்} \end{cases}$

f(x) ஆனது x=1 எனும் புள்ளியில் தொடர்ச்சியானதாகவும் ஆனால் அப்புள்ளியில் வகையிடத்தக்கதல்ல எனவும் காட்டுக.

தீர்வு :

கொடுக்கப்பட்ட சார்பின் வரைபடம் படம் 8.6ல் காட்டப்பட்டுள்ளது. இச்சார்பானது x=1-ல் தொடர்ச்சியானது. ஏனெனில்

$$\lim_{x \to 1 - f(x)} f(x) = \lim_{h \to 0} f(1 - h)$$

$$= \lim_{h \to 0} (1 - h)$$

$$= 1 - 0 = 1$$

$$\lim_{x \to 1_{+}} f(x) = \lim_{h \to 0} f(1 + h)$$

$$= \lim_{h \to 0} (2(1 + h) - 1)$$

$$= \lim_{h \to 0} (2h + 1)$$

$$= 1.$$

இவ்வாறு f(x) ஆனது x=1-ல் தொடர்ச்சியானது.

இப்பொழுது
$$Rf'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$

$$= \lim_{h \to 0} \frac{[2(1+h)-1] - [2(1)-1]}{h} = \lim_{h \to 0} \frac{2h}{h} = 2 \text{ மற்றும்}$$

$$Lf'(1) = \lim_{h \to 0} \frac{f(1-h) - f(1)}{(1-h)-1} = \lim_{h \to 0} \frac{(1-h)-1}{-h}$$

$$= \lim_{h \to 0} \frac{-h}{-h} = 1.$$

 $Rf'(1) \neq Lf'(1)$ ஆதலால் கொடுக்கப்பட்ட சார்பு x=1-ல் வகையிடத்தக்கதல்ல. வடிவக்கணித ரீதியாக கொடுக்கப்பட்ட வளைவரைக்கு (1,1)-ல் தொடுகோடு இல்லை என்பதாகும்.

எ.கா. 8.41:

 $y = x^{1/3} = f(x)$ எனும் சார்பு x = 0-ல் வகையிடத்தக்கதல்ல எனக் காட்டுக.

தீர்வு :

இச்சார்பானது தனித்த மாறி *x*-ன் எல்லா மதிப்புகளுக்கும் வரையறுக்கப்பட்டு தொடர்ச்சியாகவும் உள்ளது.

இதன் வரைபடத்தை 8.7-ல் காண்க.]

$$y + \Delta y = \sqrt[3]{x + \Delta x}$$

$$\Delta y = \sqrt[3]{x + \Delta x} - \sqrt[3]{x}$$

$$x = 0 - \dot{\omega} \quad y = 0 \text{ ido by is } \Delta y = \sqrt[3]{\Delta x} \quad .$$

$$\text{Sim} \quad \frac{\Delta y}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\sqrt[3]{\Delta x} - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\sqrt[3]{(\Delta x)^2}} = +\infty.$$

இதன் விளைவாக x=0ல் $y=\sqrt[3]{x}$ வகையிடத்தக்கதல்ல என்பது புலனாகிறது. இப்புள்ளியில் அதாவது (0,0) என்ற புள்ளியிடத்துத் தொடுகோடானது x-அச்சுடன் $\frac{\pi}{2}$ என்ற கோணத்தை ஏற்படுத்துகிறது. y-அச்சும் இந்தத் தொடுகோடும் ஒன்று என்பதே இதன் பொருளாகும்.

எ.கா. 8.42: $f(x) = x^2$ ஆனது [0, 1] இடைவெளியில் வகையிடத்தக்கது எனக் காட்டு.

தீர்வு . 0 < c < 1 என இருக்குமாறு c எனும் புள்ளியை எடுத்துக்கொள்வோம். இப்போது

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x^2 - c^2}{x - c} = \lim_{x \to c} (x + c) = 2c.$$
 கடைசிப்புள்ளிகளில்,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} (x) = 0$$

$$\text{Lip min } f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

$$= \lim_{x \to 1} (x + 1) = 2.$$

[0, 1] இடைவெளியின் ஒவ்வொரு புள்ளியிலும் f ஆனது வகையிடத்தக்கதால் $f(x)=x^2$ ஆனது [0,1]-ல் வகையிடத்தக்கதாகும்.

பயிற்சி 8.3

- $f(x) = \begin{cases} x & 0 < x < 1 \ \text{எனில்} \\ 1 & x \geq 1 \ \text{எனில்} \end{cases}$ எனுமாறு \mathbf{R}^+ -ன் மீது f வரையறுக்கப்படுகிறது
- (2) f(x) = |x| ஆதியில் வகையிடத்தக்கதா? உம் பதிலை நியாயப்படுத்தவும்.
- (3) f(x) = |x| + |x 1| என்ற சார்பின் தொடர்ச்சித்தன்மையை R-ல் சரிபார்க்க. x=0 மற்றும் x=1-ல் அதன் வகையிடத்தக்கத் தன்மையைப் பற்றி என்ன கூற முடியும்?

(4) (i)
$$f(x) =\begin{cases} 1, & 0 \le x \le 1 \\ x, & x > 1 \end{cases}$$
 $x = 1$ - $\dot{\omega}$
(ii) $f(x) =\begin{cases} 2x - 3, & 0 \le x \le 2 \\ x^2 - 3, & 2 < x \le 4 \end{cases}$ $x = 2, x = 4$ - $\dot{\omega}$

என்ற சார்புகளின் வகையிடல் தன்மையை சுட்டிக்காட்டப்பட்டுள்ள புள்ளிகளில் விவாதிக்க.

(5)
$$f(x) = \begin{cases} \frac{x(e^{1/x} - 1)}{(e^{1/x} + 1)}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 என்ற சார்பிற்கு $\mathbf{L}f'(0)$ மற்றும் $\mathbf{R}f'(0)$

ஆகியவற்றைக் கணக்கிடுக.

8.4. வகையிடல் முறைகள் (Differentiation techniques) :

இப்பிரிவில், கொடுக்கப்பட்ட சார்புகளின் வகைக்கெழுக்களைப் பெறும் வெவ்வேறு முறைகளைப் பற்றி விவாதிப்போம். அடிப்படைக் கொள்கைகளிலிருந்து y=f(x)-ன் வகைக்கெழுவைக் காண கீழ்க்காணும் செயல் நிலைகள் அவசியமாகும் :

- 1) தனித்த மாறி x-ன் அளவை Δx அளவு உயர்த்தி சார்பின் உயர்த்திய மதிப்பு $y + \Delta y = f(x + \Delta x)$ -ஐக் கணக்கிடவும்.
- 2) சார்பின் இணையான உயர்வு $\Delta y = f(x + \Delta x) f(x)$ -ஐக் காணவும் ;

3) சராசரி வீதமாகிய
$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
-ஐக் காணவும் ;

4) $\Delta x o 0$ எனும் போது மேற்கண்ட வீதத்தின் எல்லை

$$\frac{dy}{dx} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
ஐக் காணவும்.

பொதுமுறையைக் கையாண்டு அடிப்படை (தேர்ந்த)ச் சார்புகளின் வகைக்கெழுக்களை மதிப்பிடுவோம். வசதியின் பொருட்டு $\frac{dy}{dx} = f'(x)$ -ஐ y'எனக் குறிப்பிடுவோம்

8.4.1 அடிப்படைக் கொள்கைககளிலிருந்து சில அடிப்படைச் சார்புகளின் வகைக்கெழு காணல்

I. மாறிலிச் சார்பின் வகைக்கெழு பூச்சியமாகும்

அதாவது,
$$\frac{d}{dx}(c) = 0$$
, இங்கு c மாறிலி ... (1)
 நிரூபணம்:
$$f(x) = c \text{ என். க. பின். } f(x + \Delta x) = c$$

$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\therefore \frac{d}{dx}(c) = \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = 0.$$

$\operatorname{II.} x^n$ -ன் வகைக்கெழு nx^{n-1} இங்கு n ஒரு விகிதமுறு எண்.

அதாவது
$$\frac{d}{dx}(x^n) = nx^{n-1}.$$
 ... (2)

நிருபணம்:
$$f(x) = x^n$$
 என்க. பின் $f(x + \Delta x) = (x + \Delta x)^n$

இப்போது
$$\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$\therefore \frac{d(x^n)}{dx} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x} = \lim_{\Delta x \to 0} \frac{x^n \left(1 + \frac{\Delta x}{x}\right)^n - x^n}{\Delta x}$$

$$= \lim_{\Delta x \to 0} x^n \left[\frac{\left(1 + \frac{\Delta x}{x}\right)^n - 1}{\Delta x} \right]$$

$$= x^{n-1} \lim_{\Delta x \to 0} \left[\frac{\left(1 + \frac{\Delta x}{x}\right)^n - 1}{\frac{\Delta x}{x}} \right].$$

$$y = 1 + \frac{\Delta x}{x}$$
 என்க $\Delta x \to 0$ ஆனால் $y \to 1$.

$$\therefore \frac{d(x^n)}{dx} = x^{n-1} \lim_{y \to 1} \left(\frac{y^n - 1}{y - 1} \right)$$
$$= n x^{n-1}$$
$$= nx^{n-1} \cdot \left[\because \lim_{y \to a} \frac{y^n - a^n}{y - a} = na^{n-1} \right]$$

குறிப்பு: இந்தத் தேற்றம் எந்த ஒரு மெய்யெண்ணிற்கும் உண்மையானது.

எ.கா. 8.43:
$$y = x^5$$
 எனில் $\frac{dy}{dx}$ காண்க

Biral:
$$\frac{dy}{dx} = 5x^{5-1} = 5x^4$$
.

எ.கா. 8.44:
$$y=x$$
 எனில் $\frac{dy}{dx}$ காண்க

தீர்வு:
$$\frac{dy}{dx} = 1.x^{1-1} = 1x^{\circ} = 1$$
.

எ.கா. 8.45: $y = \sqrt{x}$ எனில் $\frac{dy}{dx}$ காண்க.

தீர்வு:
$$y = x^{\frac{1}{2}}$$
;

$$\frac{dy}{dx} = \frac{d}{dx} \left(x^{\frac{1}{2}} \right) = \frac{1}{2} x^{\frac{1}{2} - 1} = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

எ.கா. 8.46: $y=\frac{1}{x\sqrt{x}}$ எனில் $\frac{dy}{dx}$ காண்க.

தீர்வு:
$$y = x^{-\frac{3}{2}}$$
.

$$\frac{dy}{dx} = -\frac{3}{2} x^{-\frac{3}{2} - 1} = -\frac{3}{2} x^{-\frac{5}{2}}$$

III. sinx -ன் வகைக்கெழு cosx

அதாவது
$$y = \sin x$$
 எனில் $\frac{dy}{dx} = \cos x$... (3)

நிரூபணம் :

 $y = \sin x$ என்க.

$$y + \Delta y = \sin(x + \Delta x)$$

$$\Delta y = \sin (x + \Delta x) - \sin x = 2 \sin \frac{(x + \Delta x - x)}{2} \cos \frac{(x + \Delta x + x)}{2}$$

$$= 2 \sin \frac{\Delta x}{2} \cdot \cos \left(x + \frac{\Delta x}{2}\right)$$

$$\frac{\Delta y}{\Delta x} = \frac{2 \sin \frac{\Delta x}{2} \cos \left(x + \frac{\Delta x}{2}\right)}{\Delta x} = \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cos \left(x + \frac{\Delta x}{2}\right)$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \lim_{\Delta x \to 0} \cos \left(x + \frac{\Delta x}{2} \right)$$

$$= 1 \cdot \lim_{\Delta x \to 0} \cos \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) \cdot \int_{\Delta x \to 0} \sin \left$$

IV. cosx -ன் வகைக்கெழு – sinx

அதாவது
$$y = \cos x$$
 எனில் $\frac{dy}{dx} = -\sin x$... (4)

நிரூபணம் : $y=\cos x$. x மதிப்பை Δx அளவுக்கு உயர்த்துக.

பின்
$$y - \cos x$$
. x பதுப்பை Δx அளவுக்கு உயரத்துக். $y + \Delta y = \cos (x + \Delta x)$; $\Delta y = \cos (x + \Delta x) - \cos x$ $= -2 \sin \frac{x + \Delta x - x}{2} \sin \frac{x + \Delta x + x}{2}$ $= -2 \sin \frac{\Delta x}{2} \sin \left(x + \frac{\Delta x}{2}\right)$ $\frac{\Delta y}{\Delta x} = -\frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \sin \left(x + \frac{\Delta x}{2}\right)$; $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = -\lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \sin \left(x + \frac{\Delta x}{2}\right)$

$$= -\frac{\lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \lim_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right)$$

 $\sin x$ தொடர்ச்சியான சார்பு என்பதால்

$$\lim_{\Delta x \to 0} \sin \left(x + \frac{\Delta x}{2} \right) = \sin x \text{ ind } \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \text{ } \therefore \text{ } \frac{dy}{dx} = -\sin x \text{ } .$$

தேற்றம் 8.3 f மற்றும் g ஆகியன x-ஐப் பொறுத்து வகையிடத்தக்க சார்புகள்; c ஒரு மாறிலி எனில்

(i)
$$\frac{d(cf(x))}{dx} = c \frac{d(f(x))}{dx} \qquad \dots (5)$$

(ii)
$$\frac{d(f(x) \pm g(x))}{dx} = \frac{d(f(x))}{dx} \pm \frac{d(g(x))}{dx} \dots (6)$$

எ.கா. 8.47: $y=\frac{3}{\sqrt{x}}$ எனில் $\frac{dy}{dx}$ காண்க.

தீர்வு: $y = 3x^{-\frac{1}{2}}$

$$\frac{dy}{dx} = 3\left(-\frac{1}{2}\right) x^{-\frac{1}{2}-1} = -\frac{3}{2} x^{-\frac{3}{2}}$$

எ.கா. 8.48: y = 3x^4 - 1/\sqrt[3]{x} எனில் $\frac{dy}{dx}$ காண்க.

தீர்வு: $y = 3x^4 - x^{-1/3}$

$$\frac{dy}{dx} = \frac{d}{dx} \left(3x^4 - x^{-1/3} \right) = 3 \frac{d(x^4)}{dx} - \frac{d}{dx} (x^{-1/3})$$
$$= 3 \times 4x^{4-1} - \left(-\frac{1}{3} \right) x^{-\frac{1}{3} - 1}$$
$$= 12x^3 + \frac{1}{3}x^{-\frac{4}{3}}$$

V.
$$y = \log_a x$$
 stables $\frac{dy}{dx} = \frac{1}{x} \log_a e$... (7)

துணைத்தேற்றம் :
$$y = \log_e x$$
 எனில் $\frac{dy}{dx} = \frac{1}{x}$... (8)

நிரூபணம் : (7)ல் a=e எனக் கொள்க.

$$\frac{d}{dx} (\log_e x) = \frac{1}{x} \log_e e = \frac{1}{x} \cdot 1 = \frac{1}{x}.$$

எ.கா. 8.49: $y = x^2 + \cos x$ எனில் y' காண்க.

தீர்வு: $y = x^2 + \cos x$.

எனவே
$$y' = \frac{dy}{dx} = \frac{d}{dx} (x^2 + \cos x)$$

$$= \frac{d(x^2)}{dx} + \frac{d(\cos x)}{dx}$$
$$= 2x^{2-1} + (-\sin x)$$
$$= 2x - \sin x$$

எ.கா. 8.50: $1/\sqrt[3]{x} + \log_5 x + 8$ -ன் x-ஐப் பொறுத்த வகைக்கெழுக் காண்க.

தீர்வு :

$$y = x^{-1/3} + \log_5 x + 8 \text{ strists}$$

$$y' = \frac{dy}{dx} = \frac{d}{dx} \left(x^{-\frac{1}{3}} + \log_5 x + 8 \right)$$

$$= \frac{d \left(x^{-\frac{1}{3}} \right)}{dx} + \frac{d(\log_5 x)}{dx} + \frac{d(8)}{dx}$$

$$= -\frac{1}{3} x^{-\frac{1}{3} - 1} + \frac{1}{x} \log_5 e + 0,$$

$$= -\frac{1}{3} x^{-\frac{4}{3}} + \frac{1}{x} \log_5 e$$

எ.கா. 8.51 : $x^5 + 4x^4 + 7x^3 + 6x^2 + 2$ -ன் வகைக்கெழுக் காண்க.

தீர்வு :

$$y = x^{5} + 4x^{4} + 7x^{3} + 6x^{2} + 8x + 2 \quad \text{string}$$

$$y' = \frac{d}{dx} (x^{5} + 4x^{4} + 7x^{3} + 6x^{2} + 8x + 2)$$

$$= \frac{d(x^{5})}{dx} + \frac{d(4x^{4})}{dx} + \frac{d(7x^{3})}{dx} + \frac{d(6x^{2})}{dx} + \frac{d(8x)}{dx} + \frac{d(2)}{dx}$$

$$= 5x^{4} + 4 \times 4x^{3} + 7 \times 3x^{2} + 6 \times 2x + 8 \times 1 + 0$$

$$= 5x^{4} + 16x^{3} + 21x^{2} + 12x + 8.$$

எ.கா. 8.52: $y=e^{7x}$ -ன் வகைக்கெழுவை அடிப்படைக் கொள்கையை பயன்படுத்தி காண்க.

§ if
$$y = e^{7x}$$

$$y + \Delta y = e^{7(x + \Delta x)}$$

$$\frac{\Delta y}{\Delta x} = \frac{e^{7x} \cdot e^{7\Delta x} - e^{7x}}{\Delta x}$$

மேலும், இதே போன்று

VI.
$$y = \tan x$$
-ன் வகைக்கெழு $y' = \sec^2 x$... (10)

VII.
$$y = \sec x$$
-ன் வகைக்கெழு $y' = \sec x \tan x$... (11)

VIII.
$$y = \csc x$$
-ன் வகைக்கெழு $y' = -\csc x \cot x$... (12)

IX.
$$y = \cot x$$
-ன் வகைக்கெழு $y' = -\csc^2 x$... (13)
குறிப்பு : வகைக் கெழுக்களின் முறையினைக் காண தீர்வுப் புத்தகத்தைப் பார்க்கவும்.
பயிற்சி 8.4

1.
$$y = x^3 - 6x^2 + 7x + 6$$
 எனில் $\frac{dy}{dx}$ காண்க.

2.
$$f(x) = x^3 - 8x + 10$$
 எனில் $f'(x)$ காண்க.
இதிலிருந்து $f'(2)$ மற்றும் $f'(10)$ காண்க.

3.
$$f(x) = ax^2 + bx + 12$$
 என்ற சார்பிற்கு $f'(2) = 11$ மற்றும் $f'(4) = 15$ எனில் a, b -க்களின் மதிப்பு காண்க.

4. கீழ்க்காணும் சார்புகளை x-ஐப் பொறுத்து வகைக்கெழுக் காண்க.

(i)
$$x^7 + e^x$$
 (ii) $\log_7 x + 200$ (iii) $3 \sin x + 4 \cos x - e^x$ (iv) $e^x + 3 \tan x + \log x^6$ (v) $\sin 5 + \log_{10} x + 2 \sec x$ (vi) $\left(x + \frac{1}{x}\right)^3$ (vii) $\left(x - \frac{3}{x}\right)(2x^2 - 4)$

தேற்றம் 8.4: 「வகைப்படுத்தலின் பெருக்கல் விதி 7 (Product Rule) :

u மற்றும் v என்பன x-ஐப் பொறுத்து வகையிடத்தக்க சார்புகள் எனில் இவற்றின் பெருக்கல்

$$y = u(x) \ v(x)$$
 வகையிடத்தக்க சார்பு மற்றும் $y' = u(x) \ v'(x) + v(x) \ u'(x)$ (14) நிருபணம்: $y = u(x) \ v(x)$ $y + \Delta y = u(x + \Delta x) \ v(x + \Delta x)$ $\Delta y = u(x + \Delta x) \ v(x + \Delta x) - u(x) \ v(x)$ $\therefore \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ $= \lim_{\Delta x \to 0} \frac{u(x + \Delta x) \ v(x + \Delta x) - u(x) \ v(x)}{\Delta x}$.

 $u(x+\Delta x)$ v(x)-ஐ தொகுதியில் கூட்டிக்கழித்து மாற்றியமைக்க:

$$\begin{split} y' &= \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) \, v(x + \Delta x) - u(x + \Delta x) \, v(x) + u(x + \Delta x) \, v(x) - u(x) \, v(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) \, \left[v(x + \Delta x) - v(x)\right] + v(x) \, \left[u(x + \Delta x) - u(x)\right]}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, u(x + \Delta x) \cdot \lim_{\Delta x \, \to \, 0} \, \frac{v(x + \Delta x) - v(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, u(x + \Delta x) \cdot \lim_{\Delta x \, \to \, 0} \, \frac{v(x + \Delta x) - v(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, u(x + \Delta x) \cdot \lim_{\Delta x \, \to \, 0} \, \frac{v(x + \Delta x) - v(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, u(x + \Delta x) \cdot \lim_{\Delta x \, \to \, 0} \, \frac{v(x + \Delta x) - v(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, u(x + \Delta x) \cdot \lim_{\Delta x \, \to \, 0} \, \frac{v(x + \Delta x) - v(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, u(x + \Delta x) \cdot \lim_{\Delta x \, \to \, 0} \, \frac{v(x + \Delta x) - v(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, u(x + \Delta x) \cdot \lim_{\Delta x \, \to \, 0} \, \frac{v(x + \Delta x) - v(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, u(x + \Delta x) \cdot \lim_{\Delta x \, \to \, 0} \, \frac{v(x + \Delta x) - v(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, u(x + \Delta x) \cdot \lim_{\Delta x \, \to \, 0} \, \frac{v(x + \Delta x) - v(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} + v(x) \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} \\ &= \lim_{\Delta x \, \to \, 0} \, \frac{u(x + \Delta x) - u(x)}{\Delta x} + v(x)$$

இவற்றிலிருந்து,

$$\lim_{\Delta x \to 0} u(x + \Delta x) = u(x)$$

u மற்றும் v ஆகியன வகையிடத்தக்க சார்புகள் என்பதால்

$$u'(x) = \lim_{\Delta x \to 0} \frac{u(x + \Delta x) - u(x)}{\Delta x}$$
 மற்றும்
$$v'(x) = \lim_{\Delta x \to 0} \frac{v(x + \Delta x) - v(x)}{\Delta x} .$$

எனவே y' = u(x) v'(x) + v(x) u'(x).

அதுபோல, u, v மற்றும் w என்பன வகையிடத்தக்க சார்புகள் ஆக இருந்து y = u(x) v(x) w(x) ஆகவும் இருப்பின்

$$y' = u(x) v(x) w'(x) + u(x) v'(x) w(x) + u'(x) v(x) w(x)$$

குறிப்பு (1): மேற்சொன்ன பெருக்கல் விதியை கீழ்க்காணுமாறு நினைவில் கொள்ளலாம்.

இரு சார்புகளின் பெருக்கலின் வகைக்கெழு

= (முதல் சார்பு) (இரண்டாம் சார்பின் வகைக்கெழு)+

(இரண்டாம் சார்பு) (முதல் சார்பின் வகைக்கெழு).

குறிப்பு (2) : பெருக்கல் விதியை கீழ்க்காணுமாறு திருப்பி எழுதலாம்.

$$(u(x) \cdot v(x))' = u(x) \cdot v'(x) + v(x) \cdot u'(x)$$

$$\frac{(u(x) \cdot v(x))'}{u(x) \cdot v(x)} = \frac{u'(x)}{u(x)} + \frac{v'(x)}{v(x)} .$$
... (15)

இதனை கீழ்க்காணுமாறு பொதுமைப்படுத்தலாம் :

வகையிடத்தக்க சார்புகள் $u_1,\ u_2,\ \dots\ ,u_n$ என்பனவற்றின் வகைக்கெழுக்கள் $u_1',\ u_2',\ \dots,\ u_n'$ எனில்

$$\frac{(u_1 \cdot u_2 \dots u_n)'}{u_1 \cdot u_2 \dots u_n} = \frac{u_1'}{u_1} + \frac{u_2'}{u_2} + \frac{u_3'}{u_3} + \dots + \frac{u_n'}{u_n} . \tag{16}$$

ஏ.கா. **8.53:** வகைப்படுத்து : $e^x \tan x$

தீர்வு: $y = e^x$. tan x என்க.

பின்பு
$$y' = \frac{d}{dx} (e^x \cdot \tan x) = e^x \frac{d}{dx} (\tan x) + \tan x \frac{d}{dx} (e^x)$$

$$= e^x \cdot \sec^2 x + \tan x \cdot e^x$$

$$= e^x (\sec^2 x + \tan x).$$

எ.கா. 8.54: $y = 3x^4 e^x + 2\sin x + 7$ எனில் y' காண்க.

Bing:
$$y' = \frac{dy}{dx} = \frac{d(3x^4 e^x + 2\sin x + 7)}{dx}$$

$$= \frac{d(3x^4 e^x)}{dx} + \frac{d(2\sin x)}{dx} + \frac{d(7)}{dx}$$

$$= 3\frac{d(x^4 e^x)}{dx} + 2\frac{d(\sin x)}{dx} + 0$$

$$= 3\left[x^4 \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(x^4)\right] + 2\cos x$$

$$= 3\left[x^4 \cdot e^x + e^x \cdot 4x^3\right] + 2\cos x$$

$$= 3x^3 e^x (x + 4) + 2\cos x$$

எ.கா. 8.55: x-ஐப் பொறுத்து வகைப்படுத்து : $(x^2 + 7x + 2) (e^x - \log x)$

எ.கா. 8.56: (x^2-1) (x^2+2) -ஐ x-ஐ பொறுத்து வகைக்கெழுவை பெருக்கல் விதியைப் பயன்படுத்தி காண்க. பல்லுறுப்புக் கோவையாக விரிவுபடுத்தியும் வகைக்கெழுக் காண்க. இரண்டும் ஒரே விடையைத் தரும் என்பதை சரிபார்க்க.

இர்வு:
$$y = (x^2 - 1)(x^2 + 2)$$
 என்க.

இப்போது $y' = \frac{d}{dx}[(x^2 - 1)(x^2 + 2)]$

$$= (x^2 - 1)\frac{d}{dx}(x^2 + 2) + (x^2 + 2)\frac{d}{dx}(x^2 - 1)$$

$$= (x^2 - 1)\left[\frac{d}{dx}(x^2) + \frac{d}{dx}(2)\right] + (x^2 + 2)\left[\frac{d}{dx}(x^2) + \frac{d}{dx}(-1)\right]$$

$$= (x^2 - 1)(2x + 0) + (x^2 + 2)(2x + 0)$$

$$= 2x(x^2 - 1) + 2x(x^2 + 2)$$

$$= 2x(x^2 - 1 + x^2 + 2) = 2x(2x^2 + 1).$$

பெருக்கல் விதி

$$y = (x^{2} - 1)(x^{2} + 2) = x^{4} + x^{2} - 2$$
$$y' = \frac{d}{dx}(x^{4} + x^{2} - 2) = 4x^{3} + 2x = 2x(2x^{2} + 1)$$

இரண்டு முறைகளும் ஒரே விடையைத் தருகின்றன என்பதை கவனியுங்கள். **எ.கா.** 8.57: $e^x \log x \cot x$ -ஐ வகைப்படுத்துக.

தீர்வு:
$$y = e^x \log x \cot x$$
 என்க. $= u_1 \cdot u_2 \cdot u_3 \text{ (say)}$ இங்கு $u_1 = e^x : u_2 = \log x, u_3 = \cot x.$ $y' = u_1 u_2 u_3' + u_1 u_3 u_2' + u_2 u_3 u_1'$ $= e^x \log x \left(-\csc^2 x \right) + e^x \cot x \cdot \frac{1}{x} + \log x \cdot \cot x \cdot e^x$ $= e^x \left[\cot x \cdot \log x + \frac{1}{x} \cot x - \log x \cdot \csc^2 x \right]$

குறிப்பு : இந்தக் கணக்கை குறிப்பு (2)-ஐப் பயன்படுத்தி தீர்க்க.

பயிற்சி 8.5

கீழ்க்காணும் சார்புகளை x-ஐப் பொறுத்து வகைப்படுத்துக.

(1)
$$e^x \cos x$$
 (2) $\sqrt[n]{x} \log \sqrt{x}$, $x > 0$
(3) $6 \sin x \log_{10} x + e$ (4) $(x^4 - 6x^3 + 7x^2 + 4x + 2)(x^3 - 1)$
(5) $(a - b \sin x)(1 - 2 \cos x)$ (6) $\csc x \cdot \cot x$
(7) $\sin^2 x$ (8) $\cos^2 x$
(9) $(3x^2 + 1)^2$ (10) $(4x^2 - 1)(2x + 3)$
(11) $(3 \sec x - 4 \csc x)(2 \sin x + 5 \cos x)$

 $(12) \ x^2 \ e^x \sin x$ $(13) \sqrt{x} \ e^x \log x$. தேற்றம் : 8.5 (வகுத்தல் விதி) (Quotient rule) [நிரூபணமின்றி]

u மற்றும் v ஆகியன வகையிடத்தக்கச் சார்புகள் எனில்

$$\frac{d\left(\frac{u}{v}\right)}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \qquad \dots (17)$$
அதாவது $\left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2}$.

ஏ.கா. 8.58: வகைப்படுத்து : $\frac{x^2-1}{x^2+1}$.

தீர்வு:
$$y = \frac{x^2 - 1}{x^2 + 1} = \frac{u}{v}, \ u = x^2 - 1; \ v = x^2 + 1$$
 என்க.

$$y' = \frac{d}{dx} \left(\frac{x^2 - 1}{x^2 + 1} \right) = \frac{(x^2 + 1)(x^2 - 1)' - (x^2 - 1)(x^2 + 1)'}{(x^2 + 1)^2} (17 \text{ in eq.})$$

$$= \frac{(x^2 + 1)(2x) - (x^2 - 1)(2x)}{(x^2 + 1)^2} \frac{\left[(x^2 + 1) - (x^2 - 1) \right] 2x}{(x^2 + 1)^2}$$

$$= 2x \frac{2}{(x^2 + 1)^2} = \frac{4x}{(x^2 + 1)^2}.$$

எ.கா. 8.59: $\frac{x^2 + e^x \sin x}{\cos x + \log x}$ -ன் x-ஐப் பொறுத்த வகைக்கெழுக் காண்க.

தீர்வு :

$$y = \frac{x^2 + e^x \sin x}{\cos x + \log x} = \frac{u}{v}$$
, $u = x^2 + e^x \sin x$, $v = \cos x + \log x$ என்க.

இப்பொழுது

$$y' = \frac{vu' - uv'}{v^2}$$

$$= \frac{(\cos x + \log x)(x^2 + e^x \sin x)' - (x^2 + e^x \sin x)(\cos x + \log x)'}{(\cos x + \log x)^2}$$

$$= \frac{(\cos x + \log x)\left[(x^2)' + (e^x \sin x)'\right] - (x^2 + e^x \sin x)\left[(\cos x)' + (\log x)'\right]}{(\cos x + \log x)^2}$$

$$= \frac{(\cos x + \log x)\left[2x + e^x \cos x + \sin x e^x\right] - (x^2 + e^x \sin x)\left(-\sin x + \frac{1}{x}\right)}{(\cos x + \log x)^2}$$

$$=\frac{(\cos x + \log x)\left[2x + e^x(\cos x + \sin x)\right] - (x^2 + e^x\sin x)\left(\frac{1}{x} - \sin x\right)}{(\cos x + \log x)^2}.$$

எ.கா. 8.60: $\frac{\sin x + \cos x}{\sin x - \cos x}$ -ஐ x-ஐப் பொறுத்து வகைப்படுத்துக.

தீர்வு:
$$y = \frac{\sin x + \cos x}{\sin x - \cos x} = \frac{u}{v}$$
, $u = \sin x + \cos x$, $v = \sin x - \cos x$ என்க.

$$y' = \frac{vu' - uv'}{v^2} = \frac{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}{(\sin x - \cos x)^2}$$

$$= \frac{-\left[(\sin x - \cos x)^{2} + (\sin x + \cos x)\right]^{2}}{(\sin x - \cos x)^{2}}$$

$$= \frac{-\left(\sin^{2} x + \cos^{2} x - 2\sin x \cos x + \sin^{2} x + \cos^{2} x + 2\sin x \cos x\right)}{(\sin x - \cos x)^{2}}$$

$$= -\frac{2}{(\sin x - \cos x)^{2}}$$

பயிற்சி 8.6

கீழ்க்காணும் சார்புகளை வகுத்தல் விதியைப் பயன்படுத்தி வகைப்படுத்துக:

$$(1)\frac{5}{x^2} \qquad (2)\frac{2x-3}{4x+5} \qquad (3)\frac{x^7-4^7}{x-4}$$

$$(4)\frac{\cos x + \log x}{x^2 + e^x} \qquad (5)\frac{\log x - 2x^2}{\log x + 2x^2} \qquad (6)\frac{\log x}{\sin x}$$

(7)
$$\frac{1}{ax^2 + bx + c}$$
 (8) $\frac{\tan x + 1}{\tan x - 1}$ (9) $\frac{\sin x + x \cos x}{x \sin x - \cos x}$ (10) $\frac{\log x^2}{e^x}$

சார்பின் சார்பினது வகைக்கெழு (சங்கிலி விதி) (Chain Rule) :

xன் சார்பாக **ய**வும், **ய**ன் சார்பாக yம் இருப்பின் y ஆனது xன் சார்பு என்று சொல்லப்படும். அதாவது u = f(x) ஆகவும் y = F(u) ஆகவும் இருப்பின் y = F(f(x)) ஆகும். இதனை சார்பின் சார்பு என்பர்.

y = F(u)ல் u-ஐ இடைப்பட்ட மாறி என்றழைக்கலாம்.

தேற்றம் 8.6: u = f(x) ன் வகைக்கெழு f'(x) ஆகவும் y = F(u)-ன் வகைக்கெழு F'(u) ஆகவும் இருப்பின், சார்பின் சார்பான F(f(x))ன் வகைக்கெழு F'(u) f'(x)க்குச் சமம் ஆகும். இங்கு யக்கு f(x) எனப் பிரதியிட வேண்டும்.

நிரூபணம்: u = f(x), y = F(u).

இப்போது
$$u+\Delta u=f(x+\Delta x),\,y+\Delta y=F(u+\Delta u)$$
 எனவே $\frac{\Delta u}{\Delta x}=\frac{f(x+\Delta x)-f(x)}{\Delta x},\,\frac{\Delta y}{\Delta u}=\frac{F(u+\Delta u)-F(u)}{\Delta u}$ $f'(x)=\frac{du}{dx}\neq 0$ எனில் $\Delta u,\,\Delta x\neq 0.$

f ஆனது வகையிடத்தக்க சார்பு ஆதலால், இது தொடர்ச்சியான சார்பும் கூட எனவே $\Delta x
ightarrow 0$ எனில் $x + \Delta x
ightarrow x$, $f(x + \Delta x)
ightarrow f(x)$.

அதாவது,
$$\Delta x \to 0$$
 $(x+\Delta x) = x$ மற்றும் $\Delta x \to 0$ $f(x+\Delta x) = f(x)$. எனவே $\Delta x \to 0$ $(u+\Delta u) = u$.

$$\Delta x \to 0$$
 ஆனால் $\Delta u \neq 0$ ஆதலால் $\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \cdot \frac{\Delta u}{\Delta x}$ என எழுதலாம்.

f மற்றும் F ஆகிய இரண்டும் தொடர்ச்சியான சார்புகள் என்பதால், $\Delta u \to 0$ எனும்பொழுது $\Delta x \to 0$ மற்றும் $\Delta y \to 0$ எனும் பொழுது $\Delta u \to 0$.

ਰਾਗਾਊਗ
$$\frac{\lim}{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{\lim}{\Delta u \to 0} \frac{\Delta y}{\Delta u} \cdot \frac{\lim}{\Delta x \to 0} \frac{\Delta u}{\Delta x}$$
$$= y'(u) \ u'(x) = F'(u) \ f'(x) = F'(f(x)) \ f'(x) \dots (18)$$

இந்தச் சங்கிலி விதியை மேலும் அதிகமான சார்புகளுக்கு விரிவுபடுத்த முடியும்.

அதாவது
$$y = F(u), u = f(t), t = g(x)$$
 எனில்
$$\frac{dy}{dx} = F'(u) \cdot u'(t) \cdot t'(x)$$
 அதாவது
$$\frac{dy}{dx} = \frac{dF}{du} \cdot \frac{du}{dt} \cdot \frac{dt}{dx} \cdot \dots$$
 (19)

ஏ.கா. 8.61: வகைப்படுத்துக : $\log \sqrt{x}$

தீர்வ : $y = \log \sqrt{x}$ என்க.

 $u=\sqrt{x}$ என எடுத்துக்கொள்வோமெனில் $y=\log u$ ஆகும். சங்கிலி விதிப்படி $\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot\dfrac{d\mathbf{u}}{d\mathbf{x}}$

இப்போது
$$\frac{dy}{du} = \frac{1}{u}$$
 ; $\frac{du}{dx}$; $\frac{1}{2\sqrt{x}}$

$$\frac{dy}{dx} = \frac{1}{u} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x} \cdot 2\sqrt{x}} = \frac{1}{2x}.$$

எ.கா. 8.62: வகைப்படுத்துக : sin (log x)

தீர்வு : $y = \sin u$ என்க. இங்கு $u = \log x$

சங்கிலி விதிப்படி,
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
,
$$\text{இப்போது } \frac{dy}{du} = \cos u \; ; \frac{du}{dx} = \frac{1}{x}$$

$$\therefore \quad \frac{dy}{dx} = \cos u \cdot \frac{1}{x} = \frac{\cos (\log x)}{x} \; .$$

எ.கா. 8.63: வகைப்படுத்துக:
$$e^{\sin x^2}$$

தீர்வு: $y = e^{\sin x^2}$; $u = \sin x^2$; $t = x^2$

பின் $y = e^u$, $u = \sin t$, $t = x^2$

∴ சங்கிலி விதிப்படி

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dt} \cdot \frac{dt}{dx} = e^u \cdot \cos t \cdot 2x$$

$$= e^{\sin x^2} \cdot \cos(x^2) \cdot 2x = 2x e^{\sin(x^2)} \cos(x^2)$$

$$= 2x e^{\sin(x^2)} \cos(x^2) \cdot x$$

எ.கா. 8.64: x ஐப் பொறுத்து $\sin(ax + b)$ ஐ வகைப்படுத்துக.
தீர்வு:
$$y = \sin(ax + b) = \sin u, u = ax + b$$

$$\frac{dy}{du} = \cos u \; ; \frac{du}{dx} = a$$

$$\therefore \frac{dy}{du} = \cos u \cdot a = a \cos(ax + b).$$
பயிற்சி 8.7

கிழ்க்காணும் சார்புகளை x ஐப் பொறுத்து வகைப்படுத்துக.
(1) $\log(\sin x)$ (2) $e^{\sin x}$ (3) $\sqrt{1 + \cot x}$
(4) $\tan(\log x)$ (5) $\frac{e^{bx}}{\cos(ax + b)}$ (6) $\log \sec\left(\frac{\pi}{4} + \frac{x}{2}\right)$

 $(4) \tan(\log x)$

$$(5)\frac{e^{bx}}{\cos(ax+b)}$$

(6)
$$\log \sec \left(\frac{\pi}{4} + \frac{x}{2}\right)$$

(7)
$$\log \sin (e^x + 4x + 5)$$

(8)
$$\sin\left(\frac{3}{x^2}\right)$$

(9)
$$\cos(\sqrt{x})$$
 (10) $e^{\sin(\log x)}$.

(10)
$$e^{\sin(\log x)}$$

8.4.2 கேர்மாறு சார்பின் வகைக்கெழு (Derivative of inverse functions)

y=f(x) என்ற சார்பிற்கு $x=\phi(y)$ எனும் நேர்மாறு சார்பு காணப்பெற்று, மேலும் $\frac{dx}{dy} = \phi'(y) \neq 0$ எனில் y = f(x)-ன் வகைக்கெழு $\frac{1}{\phi'(y)}$ க்குச் சமம். அதாவது

$$\frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)} \qquad \dots (20)$$

நிரூபணம் : $x = \phi(y)$ பின் $\frac{dx}{dx} = \frac{d(\phi(y))}{dx}$

அதாவது
$$1=\phi'(y)\,rac{dy}{dx}$$
 (சங்கிலி விதிப்படி)
$$1=rac{dx}{dy}\,.rac{dy}{dx}.\quad ஆகவே, \;rac{dy}{dx}=rac{1}{\left(rac{dx}{dy}
ight)}.$$

நேர்மாறு திரிகோணமிதிச் சார்புகளின் வகைக்கெழு :

I.
$$y = \sin^{-1} x$$
-ன் வகைக்கெழு $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$... (21)

நிரூபணம் :

$$y=\sin^{-1}x$$
 மற்றும் $x=\sin y$ பின் $\frac{dx}{dy}=\cos y=\sqrt{1-\sin^2\!y}=\sqrt{1-x^2}$

$$\frac{d(\sin^{-1}x)}{dx} = \frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)} = \frac{1}{\sqrt{1-x^2}}.$$

II.
$$y = \cos^{-1} x$$
-ன் வகைக்கெழு $\frac{dy}{dx} = -\frac{1}{\sqrt{1-x^2}}$... (22)

நிரூபணம்: $y = \cos^{-1} x$ மற்றும் $x = \cos y$

$$\therefore \frac{dx}{dy} = -\sin y = -\sqrt{1 - \cos^2 y} = -\sqrt{1 - x^2}$$

$$\frac{d(\cos^{-1}x)}{dx} = \frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)} = \frac{-1}{\sqrt{1-x^2}}.$$

மாற்றுமுறை : $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$ என்பது நமக்குத் தெரியும்

$$\Rightarrow \frac{d}{dx} (\sin^{-1} x) + \frac{d}{dx} (\cos^{-1} x) = \frac{d}{dx} \left(\frac{\pi}{2} \right)$$

$$\frac{1}{\sqrt{1 - x^2}} + \frac{d(\cos^{-1} x)}{dx} = 0 \quad \therefore \frac{d(\cos^{-1} x)}{dx} = -\frac{1}{\sqrt{1 - x^2}}.$$

III.
$$y = \tan^{-1} x$$
-ன் வகைக்கெழு $\frac{dy}{dx} = \frac{1}{1 + x^2}$... (23)

நிரூபணம்: $y = \tan^{-1} x$ மற்றும் $x = \tan y$

$$\Rightarrow x' = \frac{d}{dy} (\tan y) = \sec^2 y = 1 + \tan^2 y = 1 + x^2$$
$$y' = \frac{1}{x'} = \frac{1}{1 + x^2}$$

நிருபணம்: $y = \cot^{-1} x$ மற்றும் $x = \cot y$.

$$\frac{dx}{dy} = -\csc^2 y = -(1 + \cot^2 y) = -(1 + x^2)$$

$$\therefore (20)$$
ன் படி
$$\frac{dy}{dx} = \frac{1}{\left(\frac{dx}{dy}\right)} = -\frac{1}{1 + x^2}.$$

மாற்று முறை: $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$ என்பது நமக்குத் தெரியும்.

xஐப் பொறுத்து இருபுறமும் வகைக்கெழுக் காண,

$$\frac{d(\tan^{-1}x)}{dx} + \frac{d(\cot^{-1}x)}{dx} = \frac{d\left(\frac{\pi}{2}\right)}{dx}$$
$$\frac{1}{1+x^2} + \frac{d(\cot^{-1}x)}{dx} = 0$$
$$\therefore \frac{d(\cot^{-1}x)}{dx} = -\frac{1}{1+x^2}.$$

 $V. y = \sec^{-1} x$ -ன் வகைக்கெழு $\frac{dy}{dx} = \frac{1}{r\sqrt{r^2 - 1}}$... (25)

நிரூபணம்:

$$y = \sec^{-1} x$$
 மற்றும் $x = \sec y$

$$\frac{dx}{dy} = \sec y \tan y = \sec y \sqrt{\sec^{2} y - 1}$$

$$\therefore$$
 (20)ன் படி $\frac{d(\sec^{-1}x)}{dx} = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{x\sqrt{x^2 - 1}}$.

VI.
$$y = \csc^{-1} x$$
ன் வகைக்கெழு $\frac{dy}{dx} = -\frac{1}{x\sqrt{x^2 - 1}}$... (26)

கிரூபணம்:

$$y = \csc^{-1}x$$
 மற்றும் $x = \csc y$

$$y = \csc^{-1}x$$
 மற்றும் $x = \csc y$

$$\frac{dx}{dy} = \frac{d(\csc y)}{dy} = -\csc y \cot y$$

$$= -\csc y \sqrt{\csc^{2}y - 1} = -x \sqrt{x^{2} - 1}$$

எனவே (20)ன் படி

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = -\frac{1}{x\sqrt{x^2 - 1}} .$$

ஏ.கா. 8.65: வகைப்படுத்துக : $y = \sin^{-1}(x^2 + 2x)$

தீர்வ: $y = \sin^{-1}(x^2 + 2x)$

 $u=x^2+2x$ என வைத்துக் கொள்வோம். பின் $y=\sin^{-1}(u)$ ஒரு சார்பின் சார்பு.

எனவே சங்கிலி விதிப்படி,

$$y' = \frac{dy}{du} \frac{du}{dx} = \frac{1}{\sqrt{1 - u^2}} \frac{d(x^2 + 2x)}{dx}, \text{ by (21)}$$
$$= \frac{1}{\sqrt{1 - (x^2 + 2x)^2}} (2x + 2) = \frac{2(x + 1)}{\sqrt{1 - x^2(x + 2)^2}}.$$

எ.கா. 8.66: $y = \cos^{-1}\left(\frac{1-x}{1+x}\right)$ எனில் $\frac{dy}{dx}$ காண்க.

தீர்வு: $y = \cos^{-1}\left(\frac{1-x}{1+x}\right)$.

 $u=rac{1-x}{1+x}$ என எடுத்துக் கொள்வோம். எனவே $y=\cos^{-1}(u)$ ஒரு சார்பின் சார்பு.

சங்கிலி விதிப்படி

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
.

$$\therefore \frac{dy}{dx} = -\frac{1}{\sqrt{1 - u^2}} \cdot \frac{d\left(\frac{1 - x}{1 + x}\right)}{dx}
= -\frac{1}{\sqrt{1 - u^2}} \left[\frac{(1 + x)(-1) - (1 - x)(1)}{(1 + x)^2} \right] = -\frac{1}{\sqrt{1 - \left(\frac{1 - x}{1 + x}\right)^2}} \cdot \frac{-2}{(1 + x)^2}
= -\frac{1}{\sqrt{(1 + x)^2 - (1 - x)^2}} \cdot \frac{-2}{(1 + x)^2} = \frac{(1 + x)}{\sqrt{4x}} \cdot \frac{2}{(1 + x)^2} = \frac{1}{\sqrt{x}(1 + x)} \cdot \frac{1 + x}{\sqrt{x}}$$

எ.கா. 8.67: $y = \tan^{-1}(e^x)$ எனில் y'காண்க.

தீர்வு: $y = \tan^{-1}(e^x)$. $u = e^x$ என எடுக்க $y = \tan^{-1}(u)$ ஆகும்.

சங்கிலி விதிப்படி
$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{1+u^2} \cdot \frac{d(e^x)}{dx} = \frac{e^x}{1+e^{2x}}$$
.

பயிற்சி 8.8

கீழ்க்காணும் சார்புகளின் வகைக்கெழுக்கள் காண்க :

(1)
$$\sin^{-1}\left(\frac{1-x}{1+x}\right)$$
 (2) $\cot^{-1}\left(e^{x^2}\right)$

(2)
$$\cot^{-1}(e^{x^2})$$

$$(3) \tan^{-1} (\log x)$$

(4)
$$y = \tan^{-1}(\cot x) + \cot^{-1}(\tan x)$$

8.4.3 மடக்கை மூலம் வகைக்கெழுக் காணல் (Logarithmic differentiation)

 $y=u^{v}$, இங்கு u மற்றும் v ஆகியன x-ன் சார்புகள் எனில் x-ஐப் பொறுத்த y-ன் வகையிடலைக் காண்போம்.

$$y = u^{v}$$
-ஐ $y = e^{\log u^{v}} = e^{v \log u}$ என எழுத முடியும்.

இப்பொழுது y ஆனது சார்பின் சார்பு அமைப்பைச் சார்ந்ததாகும்.

எனவே

$$y' = e^{v \log u} \frac{d(v \log u)}{dx}$$

$$= e^{v \log u} \left[v \cdot \frac{1}{u} u' + \log u \cdot v' \right] = u^{v} \left[\frac{v}{u} u' + v' \log u \right]$$

$$= v u^{v-1} u' + u^{v} (\log u) v'. \qquad \dots (27)$$

மாற்று முறை:

$$y=u^V$$
 இருபுறமும் மடக்கை எடுக்க

$$\log y = \log u^{v} \implies \log y = v \log u$$

xஐப் பொறுத்து இருபுறமும் வகையிட:

$$\frac{1}{y} \frac{dy}{dx} = v \frac{1}{u} u' + v' \log u$$

$$\frac{dy}{dx} = y \left(\frac{v}{u} u' + v' \log u \right) = u^{v} \left(\frac{v}{u} u' + v' \log u \right)$$

ஏ.கா. **8.68:** $y=x^{\alpha}$, (α மெய்யெண்)ன் வகைக்கெழு காண்க.

 $y = x^{\alpha}$, $y = u^{V}$ எனும் வடிவத்தில் உள்ளது. தீர்வு .

இங்கு
$$u=x$$
 , $v=\alpha$

$$u' = 1, v' = 0$$

எனவே (27)-ன் படி,
$$y'=\alpha\,x^{\alpha\,-1}\,.\,1+x^{\alpha}\,.\,(\log x)\,.\,0$$

$$=\alpha x^{\alpha\,-\,1}\quad(\because u=x,\,v=\alpha\,,\,v'=0)$$

குறிப்பு : எ.கா. 8.74லிருந்து x^n ன் வகைக்கெழு $= nx^{n-1}$ ஆனது எந்த மெய்யென் nக்கும் மெய்யானது என்பதை நுட்பமாகக் கவனிப்போமாக.

ஏ.கா. **8.69:** xஐப் பொறுத்து $x^{\sin x}$ ன் வகைக்கெழு காண்க.

தீர்வு:
$$y=x^{\sin x}$$
என்க இங்கு $u=x$; $v=\sin x$; $u'=1$; $v'=\cos x$.

எனவே (27)ன் படி,
$$y' = \frac{dy}{dx} = \sin x \cdot x^{\sin x - 1} \cdot 1 + x^{\sin x} (\log x) \cos x$$
$$= x^{\sin x} \left(\frac{\sin x}{x} + \cos x (\log x) \right).$$

எ.கா. 8.70: வகைப்படுத்துக : $\frac{(1-x)\sqrt{x^2+2}}{(x+3)\sqrt{x-1}}$

தீர்வ: $y = \frac{(1-x)\sqrt{x^2+2}}{(x+3)\sqrt{x-1}}$ என்க.

இருபுறமும் மடக்கை எடுக்க

$$\log y = \log (1 - x) \sqrt{x^2 + 2} - \log (x + 3) \sqrt{x - 1}$$
$$= \log (1 - x) + \frac{1}{2} \log (x^2 + 2) - \log (x + 3) - \frac{1}{2} \log (x - 1).$$

x-ஐப் பொறுத்து வகையிட:

x ஐப் பொறுத்து கீழ்க்காணும் சார்புகளை வகையிடுக

(1)
$$x^{\sqrt{2}}$$
 (2) x^{x^2} (3) $x^{\tan x}$

(5)
$$(\tan^{-1}x)^{\log x}$$
 (6) $(\log x)^{\sin^{-1}x}$ (7) $\frac{(x^2+2)(x+\sqrt{2})}{(\sqrt{x+4})(x-7)}$

(8)
$$(x^2 + 2x + 1)^{\sqrt{x-1}}$$
 (9) $\frac{\sin x \cos(e^x)}{e^x + \log x}$ (10) $x^{\sin x} + (\sin x)^x$

8.4.4 பிரதியிடல் முறை மூலம் வகைக்கெழுக் காணுதல் (Method of substitution):

சில நேரங்களில் பிரதியிடல் முறை வகையிடலை எளிதாக்கும். கீழ்க்காணும் எடுத்துக்காட்டு இம்முறையை விளக்கும்.

ஏ.கா. 8.71 : கீழ்க்காணும் சார்புகளின் வகைக்கெழுக் காண்க.

(i)
$$(ax + b)^n$$
 (ii) $\log (ax + b)^n$

(iii)
$$\sin^{-1} \frac{2x}{1+x^2}$$
 (iv) $\cos^{-1} \frac{1-x^2}{1+x^2}$ (v) $\sin^2 (ax+b)$

தீர்வு: (i) $y = (ax + b)^n$.

u = ax + b எனப் பிரதியிடுக. பின் $y = u^n$.

இப்போது y ஆனது யவைப் பொறுத்த சார்பு மற்றும் u ஆனது x-ஐப் பொறுத்த சார்பு. சங்கிலி விதிப்படி,

$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = nu^{n-1} \cdot \frac{d(ax+b)}{dx}$$
$$= n(ax+b)^{n-1} \cdot a = na(ax+b)^{n-1}.$$

(ii)
$$y = \log (ax + b)^n$$
என்க. $ax + b = u$ எனப் பிரதியிடுக.

பின் (i)ல் உள்ளது போல தொடர, $y' = \frac{na}{ax+b}$.

(iii)
$$y = \sin^{-1} \frac{2x}{1+x^2}$$
.

$$x = \tan\theta$$
 எனப் பிரதியிட, $\theta = \tan^{-1}x$.

$$\therefore y = \sin^{-1} \frac{2 \tan \theta}{1 + \tan^2 \theta} = \sin^{-1} (\sin 2\theta) \left(\because \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta} \right)$$

$$= 2\theta \qquad (\because \sin^{-1}(\sin \theta) = \theta)$$

$$= 2 \tan^{-1} x.$$

$$\frac{dy}{dx} = 2 \frac{d}{dx} (\tan^{-1} x) = \frac{2}{dx}$$

$$\therefore \frac{dy}{dx} = 2 \cdot \frac{d}{dx} \quad (\tan^{-1}x) = \frac{2}{1+x^2} .$$

(iv)
$$y = \cos^{-1} \frac{1 - x^2}{1 + x^2}$$
 or size .

 $x = \tan\theta$ எனப் பிரதியிடுக.

$$\theta = \tan^{-1}x \ \text{lin} \ \text{in} \ \frac{1-x^2}{1+x^2} = \frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos 2\theta$$

$$\therefore y = \cos^{-1}(\cos 2\theta) = 2\theta = 2 \tan^{-1} x$$
$$\frac{dy}{dx} = 2 \cdot \frac{1}{1+x^2} = \frac{2}{1+x^2} .$$

$$(v)$$
 $y=\sin^2(ax+b)$ $ax+b=u$ மற்றும் $v=\sin u$ எனப் பிரதியிடுக. பின் $y=v^2,\,v=\sin u$ மற்றும் $u=ax+b$. எனவே சங்கிலி விதிப்படி

$$\frac{dy}{dx} = \frac{dy}{dv} \cdot \frac{dv}{du} \cdot \frac{du}{dx} = 2 v \cdot \cos u \cdot a$$
$$= 2 a \sin u \cdot \cos u = a \sin 2u = a \sin 2 (ax + b).$$

எ.கா. 8.72:

வகையிடுக (i)
$$\sin^{-1}(3x-4x^3)$$
 (ii) $\cos^{-1}(4x^3-3x)$ (iii) $\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$.

தீர்வு :

(i)
$$y = \sin^{-1}(3x - 4x^3)$$
 என்க. $x = \sin \theta$ எனப் பதிலியிட, $\theta = \sin^{-1}x$.

இப்பொழுது
$$y = \sin^{-1} (3\sin\theta - 4\sin^3\theta)$$

= $\sin^{-1} (\sin 3\theta) = 3\theta = 3\sin^{-1} x$. (∵ $\sin 3\theta = 3\sin\theta - 4\sin^3\theta$)
 $\frac{dy}{dx} = 3 \cdot \frac{1}{\sqrt{1 - x^2}} = \frac{3}{\sqrt{1 - x^2}}$

(ii)
$$y = \cos^{-1}(4x^3 - 3x)$$
 என்க. $x = \cos \theta$ எனப் பிரதியிட, $\theta = \cos^{-1}x$. $y = \cos^{-1}(4\cos^3\theta - 3\cos\theta)$ $= \cos^{-1}(\cos 3\theta)$ ($\therefore \cos 3\theta = 4\cos^3\theta - 3\cos\theta$) $= 3\theta = 3\cos^{-1}x$. $\therefore \frac{dy}{dx} = -\frac{3}{\sqrt{1-x^2}}$.

(iii)
$$y = tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$
 என்க.

$$x = \tan\theta$$
 எන්න. අනයින $\theta = \tan^{-1}x$.
$$y = \tan^{-1}\left(\frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}\right) = \tan^{-1}\left(\tan 3\theta\right) = 3\theta = 3 \tan^{-1}x.$$

$$\therefore \frac{dy}{dx} = \frac{3}{1 + x^2} \ .$$

பயிற்சி 8.10

வகையிடுக :

(1)
$$\cos^{-1} \sqrt{\frac{1 + \cos x}{2}}$$
 (2) $\sin^{-1} \sqrt{\frac{1 - \cos 2x}{2}}$ (3) $\tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}}$ (4) $\tan^{-1} \left(\frac{\cos x + \sin x}{\cos x - \sin x}\right)$ (5) $\tan^{-1} \left(\frac{\sqrt{1 + x^2} - 1}{x}\right)$ (6) $\tan^{-1} \frac{1 + x^2}{1 - x^2}$ (7) $\tan^{-1} \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{ax}}$ (8) $\tan^{-1} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{\sqrt{1 + x} + \sqrt{1 - x}}$ (9) $\cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right]$

(இங்கு $\sin^2 x/2 + \cos^2 x/2 = 1$; $\sin x = 2 \sin x/2 \cos x/2$ எனக் கொள்க.)

8.4.5 துணையலகுச் சார்புகளின் வகைக்கெழு

(Differentiation of parametric functions)

x, y எனும் இரண்டு மாறிகள் மூன்றாவது மாறி t-ன் சார்புகளாக இருப்பின், x, y என்பவை துணையலகுச் சார்புகள் எனப்படும்.

 $x=f(t),\,y=g(t)$ என்பன துணையலகுச் சமன்பாடுகள். t துணையலகு.

t-ன் உயர்வாகிய Δt க்கு இணையாக x, yக்களின் உயர்வை $\Delta x,$ Δy என்போம்.

எனவே
$$x + \Delta x = f(t + \Delta t)$$
 and $y + \Delta y = g(t + \Delta t)$

மற்றும்
$$\Delta x = f(t + \Delta t) - f(t), \quad \Delta y = g(t + \Delta t) - g(t).$$

$$\therefore \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left[\frac{\left(\frac{\Delta y}{\Delta t}\right)}{\left(\frac{\Delta x}{\Delta t}\right)} \right] = \frac{\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta x}}{\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} \dots (28)$$

இங்கு $\frac{dx}{dt} \neq 0$. $\Delta x \to 0$ $\Rightarrow f(t+\Delta t) \to f(t)$ \Rightarrow $\Delta t \to 0$ என்பதைக் கவனிக்கவும்.

ஏ.கா. 8.73: $x = a \cos^3 t$, $y = a \sin^3 t$ எனில் $\frac{dy}{dx}$ காண்க.

Sing:
$$x = a \cos^3 t, y = a \sin^3 t.$$

இப்பொழுது
$$\therefore \frac{dx}{dt} = -3a\cos^2t\sin t$$
 and $\frac{dy}{dt} = 3a\sin^2t\cos t$.

எனவே (28)-ன் படி
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dt}{dt}} = \frac{3a\sin^2 t \cos t}{-3a\cos^2 t \sin t} = -\frac{\sin t}{\cos t} = -\tan t.$$

எ.கா. 8.74: $x = a (\theta + \sin \theta), y = a (1 - \cos \theta)$ எனில் $\frac{dy}{dx}$ காண்க

தீர்வு:
$$\frac{dx}{d\theta} = a (1 + \cos\theta) \qquad \frac{dy}{d\theta} = a(0 + \sin\theta)$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{a\sin\theta}{a(1+\cos\theta)} = \frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}} = \tan\frac{\theta}{2}.$$

பயிற்சி 8.11

x, yஆகியன துணையலகின் ஊடாக பிணைக்கப்பட்ட சமன்பாடுகள் எனில் (துணையலகை நீக்காமல்) $\frac{dy}{dx}$ -ஐக் காண்க.

$$(1)x = a \cos \theta, y = b \sin \theta$$

(2)
$$x = at^2$$
, $y = 2at$

$$(3)x = a \sec^3 \theta, y = b \tan^3 \theta$$

(4)
$$x = 4t$$
, $y = \frac{4}{t}$

(5)
$$x = 2 \cos \theta - \cos 2\theta$$
, $y = 2 \sin \theta - \sin 2\theta$

$$(6) x = a \left(\cos \theta + \log \tan \frac{\theta}{2}\right), y = a \sin \theta \qquad (7) x = \frac{3at}{1 + t^3}, y = \frac{3at^2}{1 + t^3}$$

(7)
$$x = \frac{3at}{1+t^3}$$
, $y = \frac{3at^2}{1+t^3}$

8.4.6 உட்படு சார்புகளின் வகைக்கெழுக் காணல் (Differentiation of implicit functions):

x, y என்பன f(x, y) = 0 என்ற சமன்பாட்டின் வடிவத்தில் பிணைக்கப்பட்டிருந்து இந்தச் சமன்பாடானது y-க்கு எளிமையான முறையில் தீர்வு காண இயலாமலிருப்பின் y-ஐ x-ன் உட்படு சார்பு என்பர். у ஆனது х-ன் சார்பாக வெளிப்படையாக தரப்படின் у ஆனது х-ன் வெளிப்படு சார்பு எனக் கூறப்படும். y ஆனது x-ன் உட்படு சார்பாக இருப்பின் கூட அதன் y-க்குத் தீர்விடாமலேயே தரப்பட்ட தொடர்பை வகையிடுவதின் மூலம் $rac{dy}{dx}$ -ஐக் காண்பது சாத்தியமானதாகும். கீழ்க்காணும் எடுத்துக்காட்டுகளின் மூலம் இதனை விளக்குவோம்.

எ.கா. 8.75: $x^3 + 8xy + y^3 = 6$ எனும்போது $\frac{dy}{dx}$ காண்க.

தீர்வு : $x^3 + 8xy + y^3 = 64$ நமக்குத் தரப்பட்டுள்ளது.

xஐப் பொறுத்து இருபுறமும் வகைப்படுத்த,

$$3x^2 + 8\left[x\frac{dy}{dx} + y \cdot 1\right] + 3y^2\frac{dy}{dx} = 0$$

$$3x^2 + 8y + 8x\frac{dy}{dx} + 3y^2\frac{dy}{dx} = 0$$

$$(3x^2 + 8y) + (8x + 3y^2)\frac{dy}{dx} = 0$$

$$(8x + 3y^2)\frac{dy}{dx} = -(3x^2 + 8y) \qquad \therefore \frac{dy}{dx} = -\frac{(3x^2 + 8y)}{(8x + 3y^2)}$$

எ.கா. 8.76: $\tan (x + y) + \tan (x - y) = 1$ என இருப்பின் $\frac{dy}{dx}$ காண்க

தீர்வு : $\tan(x+y) + \tan(x-y) = 1$ என தரப்பட்டிருக்கிறது.

xஐப் பொறுத்து இருபுறமும் வகையிட,

$$\sec^2(x+y)\left(1+\frac{dy}{dx}\right) + \sec^2(x-y)\left(1-\frac{dy}{dx}\right) = 0$$

$$[\sec^2(x+y) + \sec^2(x-y)] + [\sec^2(x+y) - \sec^2(x-y)] \frac{dy}{dx} = 0$$

$$[\sec^{2}(x+y) - \sec^{2}(x-y)] \frac{dy}{dx} = -[\sec^{2}(x+y) + \sec^{2}(x-y)]$$

$$\therefore \frac{dy}{dx} = -\frac{\sec^2(x+y) + \sec^2(x-y)}{\sec^2(x+y) - \sec^2(x-y)} = \frac{\sec^2(x+y) + \sec^2(x-y)}{\sec^2(x-y) - \sec^2(x+y)}.$$

எ.கா. 8.77: $xy + xe^{-y} + ye^x = x^2$ எனில் $\frac{dy}{dx}$ காண்க.

தீர்வு : $xy + xe^{-y} + ye^x = x^2$ நமக்கு தரப்பட்டிருக்கிறது

xஐப் பொறுத்து இருபுறமும் வகையிட,

$$x\frac{dy}{dx} + y.1 + xe^{-y}\left(-\frac{dy}{dx}\right) + e^{-y}.1 + y.e^{x} + e^{x}\frac{dy}{dx} = 2x$$

$$(y + e^{-y} + ye^{x}) + (x - xe^{-y} + e^{x})\frac{dy}{dx} = 2x$$

$$(ye^{x} + y + e^{-y} - 2x) + (e^{x} - xe^{-y} + x)\frac{dy}{dx} = 0$$

$$(e^{x} - xe^{-y} + x)\frac{dy}{dx} = -(ye^{x} + y + e^{-y} - 2x)$$

$$\therefore \frac{dy}{dx} = -\frac{(ye^{x} + y + e^{-y} - 2x)}{(e^{x} - xe^{-y} + x)} = \frac{(ye^{x} + y + e^{-y} - 2x)}{(xe^{-y} - e^{x} - x)}$$

பயிற்சி 8.12

கீழ்க்கானும் உட்படு சார்புகளுக்கு $\dfrac{dy}{dx}$ காண்க.

(1)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 (2) $y = x \sin y$ (3) $x^4 + y^4 = 4a^2x^3y^3$

(4)
$$y \tan x - y^2 \cos x + 2x = 0$$
 (5) $(1 + y^2) \sec x - y \cot x + 1 = x^2$

(6)
$$2y^2 + \frac{y}{1+x^2} + \tan^2 x + \sin y = 0$$
 (7) $xy = \tan(xy)$ (8) $x^m y^n = (x+y)^{m+n}$

(9)
$$e^x + e^y = e^{x+y}$$
 (10) $xy = 100 (x+y)$ (11) $x^y = y^x$

(12)
$$ax^2 + by^2 + 2gx + 2fy + 2hxy + c = 0$$
 எனில், $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ எனக்காட்டுக.

8.4.7 உயர்வரிசை வகைக்கெழுக்கள் (Higher order derivatives) :

y = f(x) ஆனது xஐப் பொறுத்து வகையிடத்தக்க சார்பாக இருக்கட்டும். இதன் வகைக்கெழுவாகிய

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
 ஐ $y = f(x)$ ன் முதல் வரிசை வகைக்கெழு

என அழைக்கப்படும். xஐச் சார்ந்த முதல் வரிசை வகைக் கெழுவாகிய f'(x) வகையிடத்தக்கதாகவோ அல்லது வகையிடத்தகாததாகவோ இருக்கலாம்.

$$f^{'}(x)$$
 வகையிடத்தக்கதெனில் $\frac{d}{dx} \left(\frac{dy}{dx} \right) = \lim_{\Delta x \to 0} \frac{f^{'}(x + \Delta x) - f^{'}(x)}{\Delta x}$ ஆனது $y = f(x)$ ன் x ஐப் பொறுத்த இரண்டாம் வரிசை வகைக்கெழு என அழைக்கப்படுகிறது. இது $\frac{d^2y}{dx^2}$ என குறிக்கப்படுகிறது.

இதர குறியீடுகளாகிய $y_2,\ y'',\ \ddot{y}$ அல்லது D^2y இங்கு $D^2\equiv \frac{d^2}{dx^2}$ என்பனவும் இரண்டாம் வரிசை வகைக்கெழுக்களைக் குறிக்க பயன்படுத்தப்படுகின்றன. இதுபோலவே y=f(x)ன் மூன்றாம் வரிசை வகைக் கெழுவை $\frac{d^3y}{dx^3}=\frac{d}{dx}\left(\frac{d^2y}{dx^2}\right)=\lim_{\Delta x\to 0}\frac{f''(x+\Delta x)-f''(x)}{\Delta x}$ என வரையறுக்கலாம்.

இங்கு $f^{\prime\prime}(x)$ வகையிடத்தக்கதாயிருக்க வேண்டும் என்பது அவசியம்.

மேலேச் சொன்னது போல $y_3,\ y''',\ y''$ அல்லது D^3y போன்ற குறியீடுகளும் மூன்றாம் வரிசை வகைக்கெழுவைக் குறிக்கப் பயன்படுத்தப்படுகின்றன.

எ.கா. 8.78: $y = x^2$ எனில் y_3 காண்க

Binal:
$$y_1 = \frac{dy}{dx} = \frac{d}{dx} (x^2) = 2x$$

$$y_2 = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} (2x) = 2$$

$$y_3 = \frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2}\right) = \frac{d}{dx} (2) = 0.$$

எ.கா. 8.79:

 $y=A\,\cos\!4x\,+\,B\,\sin\,4x,\,A\,$ மற்றும் B என்பன மாறிலிகள், எனில் $y_2+16y=0$ எனக் காட்டுக.

தீர்வு :

$$y_{1} = \frac{dy}{dx} = (A \cos 4x + B \sin 4x)' = -4A \sin 4x + 4B \cos 4x$$

$$y_{2} = \frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$

$$= \frac{d}{dx} (-4 A \sin 4x + 4B \cos 4x)$$

$$= -16 A \cos 4x - 16 B \sin 4x$$

$$= -16 (A \cos 4x + B \sin 4x) = -16y$$

$$\therefore y_{2} + 16y = 0$$

எ.கா.8.80: $\log(\log x)$ என்ற சார்பின் இரண்டாம் வரிசை வகைக்கெழுவைக் கண்டுபிடிக்கவும்.

சங்கிலி விதிப்படி
$$\frac{dy}{dx} = \frac{1}{\log x} \cdot \frac{d (\log x)}{dx} = \frac{1}{\log x} \cdot \frac{1}{x}$$

$$= \frac{1}{x \log x} = (x \log x)^{-1}$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d (x \log x)^{-1}}{dx} = -(x \log x)^{-2} \cdot \frac{d (x \log x)}{dx}$$

$$= -\frac{1}{(x \log x)^2} \left[x \cdot \frac{1}{x} + \log x \cdot 1 \right] = -\frac{1 + \log x}{(x \log x)^2}.$$

எ.கா. 8.81: $y = \log(\cos x)$ எனில் y_3 கண்டுபிடிக்கவும்.

தீர்வு:
$$y = \log(\cos x)$$
 தரப்பட்டிருக்கிறது.
$$y_1 = \frac{d \left[\log(\cos x)\right]}{dx} = \frac{1}{\cos x} \frac{d \left(\cos x\right)}{dx}, \text{ சங்கிலி விதிப்படி}$$

$$= \frac{1}{\cos x} \cdot (-\sin x) = -\tan x$$

$$y_2 = \frac{d y_1}{dx} = \frac{d \left(-\tan x\right)}{dx} = -\sec^2 x$$

$$y_3 = \frac{d \left(y_2\right)}{dx} = \frac{d \left(-\sec^2 x\right)}{dx} = -2 \sec x \cdot \frac{d \left(\sec x\right)}{dx}$$

$$= -2 \sec x \cdot \sec x \cdot \tan x = -2 \sec^2 x \tan x.$$

எ.கா. 8.82: $y = e^{ax} \sin bx$ எனில் $\frac{d^2y}{dx^2} - 2a \cdot \frac{dy}{dx} + (a^2 + b^2) y = 0$ என நிறுவுக.

தீர்வு:
$$y = e^{ax} \sin bx$$
 தரப்பட்டிருக்கிறது.
$$\frac{dy}{dx} = e^{ax} \cdot b \cos bx + a e^{ax} \sin bx$$

$$= e^{ax} (b \cos bx + a \sin bx)$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left\{ e^{ax} (b \cos bx + a \sin bx) \right\}$$

$$= e^{ax} \left\{ -b^2 \sin bx + ab \cos bx \right\} + (b \cos bx + a \sin bx)a e^{ax}$$

$$= -b^2 (e^{ax} \sin bx) + a b e^{ax} \cos bx + a e^{ax} (b \cos bx + a \sin bx)$$

$$= -b^2 y + a \left(\frac{dy}{dx} - ae^{ax} \sin bx \right) + a \frac{dy}{dx}$$

$$=-b^2y+a\left(\frac{dy}{dx}-a.y\right)+a\frac{dy}{dx}$$
 $=2a\frac{dy}{dx}-(a^2+b^2)y$ எனவே, $\frac{d^2y}{dx^2}-2a\frac{dy}{dx}+(a^2+b^2)y=0$.

ஏ.கா. 8.83: $y=\sin{(ax+b)}$ எனில் $y_3=a^3\sin{\left(ax+b+\frac{3\pi}{2}\right)}$ என நிறுவுக

தீர்வு: $y = \sin(ax + b)$ என கொள்க

$$y_1 = a\cos(ax + b) = a\sin\left(ax + b + \frac{\pi}{2}\right)$$

$$y_2 = a^2 \cos\left(ax + b + \frac{\pi}{2}\right) = a^2 \sin\left(ax + b + \frac{\pi}{2} + \frac{\pi}{2}\right) = a^2 \sin\left(ax + b + 2 \cdot \frac{\pi}{2}\right)$$

$$y_3 = a^3 \cos\left(ax + b + 2 \cdot \frac{\pi}{2}\right) = a^3 \sin\left(ax + b + 2 \cdot \frac{\pi}{2} + \frac{\pi}{2}\right) = a^3 \sin\left(ax + b + 3 \cdot \frac{\pi}{2}\right)$$

எ.கா. 8.84: $y = \cos(m\sin^{-1}x)$ எனில் $(1-x^2)y_3 - 3xy_2 + (m^2 - 1)y_1 = 0$ என நிறுவுக.

தீர்வு: $y = \cos(m\sin^{-1}x)$ நமக்கு தரப்பட்டிருக்கிறது.

$$y_1 = -\sin(m\sin^{-1}x) \cdot \frac{m}{\sqrt{1-x^2}}$$

$$y_1^2 = \sin^2(m\sin^{-1}x)\frac{m^2}{(1-x^2)}$$

இதிலிருந்து
$$(1-x^2)y_1^2 = m^2\sin^2(m\sin^{-1}x) = m^2\left[1-\cos^2(m\sin^{-1}x)\right]$$
 அதாவது, $(1-x^2)y_1^2 = m^2(1-y^2)$.

மீண்டும் வகையிட,
$$(1-x^2)2y_1\frac{dy_1}{dx}+y_1^2\left(-2x\right)=m^2\left(-2y\frac{dy}{dx}\right)$$

$$(1-x^2)2y_1y_2-2xy_1^2=-2m^2yy_1$$

$$(1-x^2)y_2-xy_1=-m^2y$$

மீண்டும் ஒருமுறை வகையிட

$$(1 - x^2) \frac{dy_2}{dx} + y_2 (-2x) - \left[x \cdot \frac{dy_1}{dx} + y_1 \cdot 1 \right] = -m^2 \frac{dy}{dx}$$

$$(1 - x^2) y_3 - 2xy_2 - xy_2 - y_1 = -m^2 y_1$$

$$(1 - x^2) y_3 - 3xy_2 + (m^2 - 1) y_1 = 0.$$

பயிற்சி 8.13

(1)
$$\frac{d^2y}{dx^2}$$
 if $y = x^3 + \tan x$ காண்க.

(2)
$$\frac{d^3y}{dx^3} \text{ if } y = x^2 + \cot x \text{ s. s. s.}$$

(3) இரண்டாம் வரிசை வகைக்கெழுக்கள் காண்க.

(i)
$$x^2 + 6x + 5$$

(iii) $\cot^{-1}x$.

(i) $x^2 + 6x + 5$ (ii) $x \sin x$ (4) மூன்றாம் வரிசை வகைக்கெழுக்கள் காண்க,

(i)
$$e^{mx} + x^3$$

(5)
$$y = 500 e^{7x} + 600e^{-7x}$$
 எனில் $\frac{d^2y}{dx^2} = 49y$ எனக் காட்டுக.

(6) $y = e^{\tan^{-1}x}$ எனில் $(1+x^2)y_2 + (2x-1)y_1 = 0$ என நிறுவுக.

(7)
$$y = \log(x^2 - a^2)$$
 எனில் $y_3 = 2\left[\frac{1}{(x+a)^3} + \frac{1}{(x-a)^3}\right]$ என நிறுவுக.

(8)
$$x = \sin t$$
; $y = \sin pt$ எனில் $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + p^2y = 0$ எனக் காட்டுக.

(9)
$$x = a(\cos \theta + \theta \sin \theta)$$
 எனில் $y = a(\sin \theta - \theta \cos \theta)$,

$$a \theta \frac{d^2y}{dx^2} = \sec^3\theta$$
 எனக் காட்டுக.

(10)
$$y = (x^3 - 1)$$
 எனில் $x^2 y_3 - 2xy_2 + 2y_1 = 0$ என நிறுவுக.

வகைக்கெழுக்களின் பட்டியல்

ΦΙΠΡΟΘΟΙ (**)
$$= 0$$

1. k ; (** ωπρΟΘΟΙ) (**) $= 0$

2. $kf(x)$ (**) $kf(x)$

$$(\sin^{-1}x)' = \frac{1}{\sqrt{1 - x^2}}$$

17.
$$\cos^{-1}x$$
 $(\cos^{-1}x)' = \frac{-1}{\sqrt{1-x^2}}$

18.
$$\tan^{-1}x$$
 $(\tan^{-1}x)' = \frac{1}{1+x^2}$

குறிப்பு : மேலே உள்ள 1 முதல் 25வரையான வாய்பாடுகளில் $\left(\; . \; \right)' = rac{d \; (\; . \;)}{dx}$ என்பதை தெரிந்து கொள்க.

9. தொகையிடல் (Integral Calculus)

9.1 அறிமுகம்:

நுண்கணிதமானது முக்கியமாக வடிவியலில் எழுகின்ற பின்வரும் இரண்டு பிரச்சினைகளை ஆராய்கின்றது.

- (i) வளைவரையின் தொடுகோட்டின் சாய்வினைக் காணுதல். இது வகைநுண் கணிதத்தில் எல்லை காணல் வாயிலாக ஆராயப்படுகின்றது.
- (ii) வளைவரையின் பரப்பளவு காணுதல். இது தொகை நுண்கணிதத்தில் மற்றொரு எல்லை காணல் வாயிலாக ஆராயப்படுகின்றது.

நெடுங்காலமாக தொகை நுண்கணிதமானது இருவேறு திசைகளில் ஆராயப்பட்டு வளர்ச்சிப் பெற்று வந்தது. ஒருபுறம் இலெபினிஸ் (Leibnitz) மற்றும் அவருடைய வழி வந்தவர்கள் தொகை நுண்கணிதத்தினை, வகையிடலின் எதிர்மறை முறை கணிதமாகக் கருதினர். மறுபுறம் ஆர்கிமிடிஸ், யூடோக்ஸஸ் மற்றும் பலர் தொகை நுண்கணிதத்தினை ஒரு கொடுக்கப்பட்ட இடைவெளியில் ஒரு சார்புக்குரிய வளைவரையின்கீழ் உள்ள பரப்பளவை மதிப்பிடும் முறையாகக் கருதினர்.

17ஆம் நூற்றாண்டின் இறுதியில் மேலுள்ள இருவகை கருத்துகளும் சமமானது என கண்டறிந்தனர், அதாவது வளைவரையின் பரப்பளவைக் கண்டறிய உள்ள பொதுவான முறையும், வகையிடலின் எதிர்மறை முறையும் ஒன்றேயென நிரூபிக்கப்பட்டது.

தொகையிடலை வகையிடலின் எதிர்மறை முறையாக முதல் பகுதியிலும், வளைவரையின் பரப்பளவைக் காணும் முறையாக இரண்டாம் பகுதியிலும் காண்போம்.

(+, -) ; (\times, \div) , $(()^n, {}^n \Gamma)$ போன்ற எதிர்மறை செயல்முறை ஜோடிகளைப் பற்றி நன்கு அறிந்துள்ளோம். இதேபோல் வகையிடலும், தொகையிடலும் கூட ஒன்றுக்கொன்று எதிர்மறை செயல்முறை ஜோடியாகும். இப்பகுதியில் வகையிடலின் எதிர்மறைச் செயல்முறையை வரைப்படுத்துவோம்.

வரையறை:

f(x) என்பது I என்கிற இடைவெளியில் வரையறுக்கப்பட்ட ஏதேனும் ஒரு சார்பு என்க. I-ல் உள்ள ஒவ்வொரு x-க்கும் F'(x) = f(x) எனில் F(x) அனது f(x)-ன் எதிர்மறை வகையீடு எனப்படும்.

i.e. x-ஐப் பொறுத்து F(x)-ன் வகையீடு f(x) எனில் F(x) ஆனது x-ஐப் பொறுத்து f(x)-ன் தொகையாகும்.

i.e.
$$\int f(x) dx = F(x)$$

எடுத்துக்காட்டாக,

$$\frac{d}{dx} (\sin x) = \cos x$$
 என அற்வோம்

இவ்வாறாயின், $\int \cos x \, dx = \sin x$. ஆகும்.

மேலும்,
$$\frac{d}{dx}(x^5)=5x^4$$
 என்பதிலிருந்து $\int 5x^4 dx=x^5$

Sum என்ற வார்த்தையின் முதல் எழுத்து S ஆனது மேலும் கீழுமாக நீண்டு ' \int ' என்ற வடிவம் பெற்று தொகையீட்டு குறியாயிற்று.

சார்பு f(x)-ஐ **தொகைச் சார்பு** (Integrand) எனவும் dx-ல் உள்ள x-ஐ **தொகைமாறி** (Integrator) எனவும் கூறுவர். தொகைக் காணும் வழிமுறையினை **தொகையிடல்** என அழைக்கின்றோம்.

தொகைக் காணலின் மாறிலி (Constant of integration) :

கீழ்க்காணும் இரண்டு எடுத்துக்காட்டுகளைக் காண்க.

எ.கா. 9.1:

$$\frac{d}{dx}(2x+5) = 2$$

$$\frac{d}{dx}(2x) = 2$$

$$\frac{d}{dx}(2x-4) = 2$$

$$\frac{d}{dx}(2x-\sqrt{7}) = 2$$

$$\Rightarrow \int 2dx = 2x+? = 2x+C$$

'C' ஆனது 5,0,-4 அல்லது $-\sqrt{7}$ போன்ற எந்த ஒரு மாறிலியாகவும் இருக்கலாம். (படம் 9.1(a)).

எ.கா. 9.2:

$$\frac{d}{dx}(x^2+1) = 2x$$

$$\frac{d}{dx}(x^2) = 2x$$

$$\Rightarrow \int 2xdx = x^2 + ? = x^2 + C$$

$$\frac{d}{dx}(x^2-4) = 2x$$

'C' ஆனது 1, 0, – 4... போன்ற எந்த ஒரு மாறிலியாகவும் இருக்கலாம். (படம் 9.1(b))

இவ்விதமாக $\int f(x) \, dx$ என்ற தொகை ஒரு குறிப்பிட்ட தொகையை மட்டும் குறிக்காமல் ஒரு குறிப்பிட்ட வகையிலுள்ள தொகைகளின் தொகுப்பினைக் குறிக்கிறது. F(x)-ஐ மேற்கண்ட தொகுப்பிலுள்ள ஒரு சார்பாக எடுத்துக் கொண்டால்

$$\int f(x) \, dx = F(x) + C$$
 என எழுதலாம்.

இங்கு 'C' ஆனது தொகை காணலின் மாறிலி என அழைக்கப்படுகிறது. மேலும் 'C' என்பது ஒரு குறிப்பிட்ட மாறிலியாக இல்லாமல் ஏதேனும் ஒரு மாறிலியைக் குறிப்பதால், $\int f(x) \ dx$ -ஐ **வரையறுக்குட்படாத** (indefinite integral) தொகை என்பர்.

சூத்திரங்கள்

要求的ではまです:
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \qquad (n \neq -1)$$

$$\int \frac{1}{x^n} dx = -\frac{1}{(n-1)x^{n-1}} + c \quad (n \neq 1]$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \sec x \tan x dx = -\sec x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \sec^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \csc^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx = -\cot x + c$$

$$\int \cot^2 x dx =$$

எ.கா. 9.3 – 9.7:

கீழ்க்காண்பனவற்றை x-ஐ பொறுத்து தொகை காண்க.

$$(3) x^6$$

4)
$$x^{-2}$$

(3)
$$x^6$$
 (4) x^{-2} (5) $\frac{1}{x^{10}}$ (6) \sqrt{x} (7) $\frac{1}{\sqrt{x}}$

$$(6)\,\sqrt{x}$$

$$(7)\frac{1}{\sqrt{1}}$$

தீர்வு :

(3)
$$\int x^6 dx = \frac{x^{6+1}}{6+1} = \frac{x^7}{7} + c$$
 (6) $\int \sqrt{x} dx = \int x^{1/2} dx$

(4)
$$\int x^{-2} dx = \frac{x^{-2+1}}{-2+1} = -\frac{1}{x} + c$$

(5)
$$\int \frac{1}{x^{10}} dx = \int x^{-10} dx$$
$$= \frac{x^{-10+1}}{-10+1} + c$$

$$\int \frac{1}{x^{10}} \ dx = -\frac{1}{9x^9} + c$$

(இங்கு கீழ்க்காணும் சூத்திரத்தினை நேரடியாகவும் பயன்படுத்தலாம்)

$$\int \frac{1}{x^n} dx = -\frac{1}{(n-1)x^{n-1}} \operatorname{Disc}_{\mathcal{B}} n \neq 1$$

(3)
$$\int x^6 dx = \frac{x}{6+1} = \frac{x}{7} + c$$
 (6) $\int \sqrt{x} dx = \int x^{1/2} dx$ (4) $\int x^{-2} dx = \frac{x^{-2+1}}{-2+1} = -\frac{1}{x} + c$
$$= \frac{x^{3/2}}{3/2} + c$$
 (5) $\int \frac{1}{x^{10}} dx = \int x^{-10} dx$
$$\int \sqrt{x} dx = \frac{2}{3} x^{3/2} + c$$

(7)
$$\int \frac{1}{\sqrt{x}} dx = \int x^{-\frac{1}{2}} dx$$
$$= \frac{x^{-1/2+1}}{-1/2+1} + c$$
$$= \frac{x^{1/2}}{+1/2} + c$$

$$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + c$$

எ.கா. 9.8 – 9.10: தொகைக் காண்க :

$$(8) \frac{\sin x}{\cos^2 x}$$

$$(9)\frac{\cot x}{\sin x}$$

$$(8) \frac{\sin x}{\cos^2 x} \qquad (9) \frac{\cot x}{\sin x} \qquad (10) \frac{1}{\sin^2 x}$$

தீர்வு :

(8)
$$\int \frac{\sin x}{\cos^2 x} dx = \int \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} dx$$
$$= \int \tan x \sec x dx = \sec x + c$$

(9)
$$\int \frac{\cot x}{\sin x} dx = \int \csc x \cot x dx = -\csc x + c$$

$$(10) \int \frac{1}{\sin^2 x} dx = \int \csc^2 x \, dx = -\cot x + c$$

பயிற்சி 9.1

கீழ்க்காண்பனவற்றை x-ஐ பொறுத்து தொகைக் காண்க.

(1) (i)
$$x^{16}$$
 (ii) $x^{\frac{5}{2}}$ (iii) $\sqrt{x^7}$ (iv) $\sqrt[3]{x^4}$

$$(ii) x^{\frac{5}{2}}$$

(iii)
$$\sqrt{x^7}$$

(iv)
$$\sqrt[3]{x^4}$$

$$(v)(x^{10})^{\frac{1}{7}}$$

(2) (i)
$$\frac{1}{x^5}$$

(iii)
$$\frac{1}{\frac{5}{2}}$$

(2) (i)
$$\frac{1}{x^5}$$
 (ii) x^{-1} (iii) $\frac{1}{\frac{5}{x^2}}$ (iv) $\frac{1}{\sqrt[3]{x^5}}$ (v) $\left(\frac{1}{x^3}\right)^{\frac{1}{4}}$

(3) (i)
$$\frac{1}{\csc x}$$
 (ii) $\frac{\tan x}{\cos x}$ (iii) $\frac{\cos x}{\sin^2 x}$ (iv) $\frac{1}{\cos^2 x}$ (v) $\frac{1}{e^{-x}}$

(ii)
$$\frac{\tan x}{\cos x}$$

(iii)
$$\frac{\cos x}{\sin^2 x}$$

(iv)
$$\frac{1}{\cos^2 x}$$

$$(v)\frac{1}{e^{-x}}$$

9.2 x -ன் ஒருபடிச் சார்புகளின் சார்பாக அமைந்த தொகைச் சார்பினைத் தொகையிடல் : i.e. $\int f(ax+b) \, dx$

வகையிடலுக்கும் தொகையிடலுக்கும் உள்ள தொடர்பின்படி

$$\frac{d}{dx} \left[\frac{(x-a)^{10}}{10} \right] = (x-a)^{\frac{1}{2}}$$

$$\frac{d}{dx} \left[\frac{(x-a)^{10}}{10} \right] = (x-a)^9$$
 $\Rightarrow \int (x-a)^9 dx = \frac{(x-a)^{10}}{10}$

$$\frac{d}{dx} \left[\sin (x+k) \right] = \cos(x+k)$$

$$\frac{d}{dx} \left[\sin (x+k) \right] = \cos(x+k) \qquad \Rightarrow \int \cos(x+k) \, dx = \sin(x+k)$$

மேலுள்ள எடுத்துக்காட்டுகளிலிருந்து மாறி x-உடன் எந்த ஒரு மாறிலியைக் கூட்டினாலும் கழித்தாலும் தொகையிட்டு வாய்பாட்டில் எந்த மாற்றமும் ஏற்படுவது இல்லை என அறிகிறோம்.

ஆனால்

$$\frac{d}{dx} \left[\frac{1}{l} (e^{lx+m}) \right] = e^{lx+m} \implies \int e^{lx+m} dx = \frac{1}{l} e^{(lx+m)}$$

$$\frac{d}{dx} \left[\frac{1}{a} \sin(ax+b) \right] = \cos(ax+b) \implies \int \cos(ax+b) dx = \frac{1}{a} \sin(ax+b)$$

இந்த எடுத்துக்காட்டுகளின் மூலம் நாம் அறிவது யாதெனில் மாறி x-உடன் ஏதேனும் ஒரு மாறிலி பெருக்கி வரும் எனில், அடிப்படை தொகையீட்டு வாய்பாட்டை அக்குறிப்பிட்ட மாறிலியால் வகுத்து தேவையான சார்புக்குரிய தொகையைப் பெறலாம் என்பதாகும்.

i.e.
$$\int f(x) \ dx = g(x) + c \ \text{and} \ \hat{\omega}, \ \int f(ax+b) \ dx = \frac{1}{a} \ g(ax+b) + c \ \text{ஆகும்}.$$

விரிவுபடுத்தப்பட்ட அடிப்படை வாய்பாடுகள்

$$\int (ax+b)^n dx = \frac{1}{a} \left[\frac{(ax+b)^{n+1}}{n+1} \right] + c \quad (n \neq -1)$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \log (ax+b) + c$$

$$\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + c$$

$$\int \sin(ax+b) dx = -\frac{1}{a} \cos(ax+b) + c$$

$$\int \cos(ax+b) dx = \frac{1}{a} \sin(ax+b) + c$$

$$\int \sec^2(ax+b) dx = \frac{1}{a} \tan(ax+b) + c$$

$$\int \csc^2(ax+b) dx = -\frac{1}{a} \cot(ax+b) + c$$

$$\int \csc^2(ax+b) \cot(ax+b) dx = -\frac{1}{a} \cot(ax+b) + c$$

$$\int \frac{1}{1+(ax)^2} dx = \frac{1}{a} \tan^{-1}(ax) + c$$

$$\int \frac{1}{\sqrt{1-(ax)^2}} dx = \frac{1}{a} \sin^{-1}(ax) + c$$

மேலுள்ள வாய்பாட்டினை பிரதியிடல் மூலமும் உருவாக்கலாம் என்பதனை பின்னர் காண்போம்.

ஏ.கா. 9.11 – 9.17: கீழ்க்காண்பனவற்றின் தொகைக் காண்க.

$$(11) (3-4x)^7 \qquad (12) \frac{1}{3+5x} \qquad (13) \frac{1}{(lx+m)^n} \qquad (14) e^{8-4x}$$

(15)
$$\sin(lx + m)$$
 (16) $\sec^2(p - qx)$ (17) $\csc(4x + 3)$ $\cot(4x + 3)$

(11)
$$\int (3-4x)^7 dx = \left(-\frac{1}{4}\right) \frac{(3-4x)^8}{8} + c$$
$$\int (3-4x)^7 dx = -\frac{1}{32} (3-4x)^8 + c$$

(12)
$$\int \frac{1}{3+5x} dx = \frac{1}{5} \log (3+5x) + c$$

(13)
$$\int \frac{1}{(lx+m)^n} dx = \left(\frac{1}{l}\right) \left[\frac{(-1)}{(n-1)(lx+m)^{n-1}}\right] + c$$

$$\therefore \int \frac{1}{(lx+m)^n} dx = -\left(\frac{1}{l(n-1)}\right) \frac{1}{(lx+m)^{n-1}} + c$$

(14)
$$\int e^{8-4x} dx = \left(\frac{1}{-4}\right) e^{8-4x} + c$$
$$\int e^{8-4x} dx = -\frac{1}{4} e^{8-4x} + c$$

(15)
$$\int \sin(lx+m) dx = \left(\frac{1}{l}\right) \left[-\cos(lx+m)\right] + c$$
$$= -\frac{1}{l} \cos(lx+m) + c$$

(16)
$$\int \sec^2(p-qx) dx = \left(-\frac{1}{q}\right) \left[\tan(p-qx)\right] + c$$

(17)
$$\int \csc(4x+3) \cot(4x+3) dx = -\frac{1}{4} \csc(4x+3) + c$$

பயிற்சி 9.2

தொகைக் காண்க.

(1) (i)
$$x^4$$
 (ii) $(x+3)^5$ (iii) $(3x+4)^6$ (iv) $(4-3x)^7$ (v) $(lx+m)^8$

(2) (i)
$$\frac{1}{x^6}$$
 (ii) $\frac{1}{(x+5)^4}$ (iii) $\frac{1}{(2x+3)^5}$ (iv) $\frac{1}{(4-5x)^7}$ (v) $\frac{1}{(ax+b)^8}$

(3) (i)
$$\frac{1}{x+2}$$
 (ii) $\frac{1}{3x+2}$ (iii) $\frac{1}{3-4x}$ (iv) $\frac{1}{p+qx}$ (v) $\frac{1}{(s-tx)}$

(4) (i)
$$\sin (x + 3)$$
 (ii) $\sin (2x + 4)$ (iii) $\sin (3 - 4x)$

(iv)
$$\cos (4x + 5)$$
 (v) $\cos (5 - 2x)$

(5) (i)
$$\sec^2(2-x)$$
 (ii) $\csc^2(5+2x)$ (iii) $\sec^2(3+4x)$ (iv) $\csc^2(7-11x)$ (v) $\sec^2(p-qx)$

(6) (i)
$$\sec (3 + x) \tan (3 + x)$$
 (ii) $\sec (3x + 4) \tan (3x + 4)$ (iii) $\sec (4-x) \tan (4-x)$ (iv) $\sec (4-3x) \tan (4-3x)$ (v) $\sec (ax + b) \tan (ax + b)$

(7) (i)
$$\csc(2-x) \cot(2-x)$$
 (ii) $\csc(4x+2) \cot(4x+2)$ (iii) $\csc(3-2x) \cot(3-2x)$ (iv) $\csc(lx+m) \cot(lx+m)$ (v) $\cot(s-tx) \csc(s-tx)$

(8) (i)
$$e^{3x}$$
 (ii) e^{x+3} (iii) e^{3x+2} (iv) e^{5-4x} (v) e^{ax+b}

(9) (i)
$$\frac{1}{\cos^2(px+a)}$$
 (ii) $\frac{1}{\sin^2(l-mx)}$ (iii) $(ax+b)^{-8}$ (iv) $(3-2x)^{-1}$ (v) e^{-x}

(10) (i)
$$\frac{\tan (3-4x)}{\cos (3-4x)}$$
 (ii) $\frac{1}{e^{p+qx}}$ (iii) $\frac{1}{\tan(2x+3)\sin(2x+3)}$ (iv) $(lx+m)^{\frac{1}{2}}$ (v) $\sqrt{(4-5x)}$

பண்புகள்:

$$(1)k$$
 என்பது ஏதேனும் ஒரு மாறிலி எனில் $\int\! k f(x)\ dx = k\,\int\! f(\mathbf{x})\ \mathrm{d}\mathbf{x}$

$$(2)\ f(x)$$
 மற்றும் $g(x)$ என்பவை x -ன் சார்புகள் எனில் $\int [f(x)+g(x)]dx \ = \int f(x)\ dx \ + \int g(x)\ dx$

ஏ.கா. 9.18 – 9.21: கீழ்க்காண்பனவற்றின் தொகைக் காண்க.

$$(18) \ 10x^3 - \frac{4}{x^5} + \frac{2}{\sqrt{3x+5}}$$
 (19) $k \sec^2(ax+a) - \sqrt[3]{(4x+5)^2} + 2\sin(7x-2)$

(20)
$$a^x + x^a + 10 - \csc 2x \cot 2x$$
 (21) $\frac{1}{5} \cos \left(\frac{x}{5} + 7\right) + \frac{3}{(lx+m)} + e^{\frac{x}{2} + 3}$

தீர்வு :

(18)
$$\iint \left(10x^3 - \frac{4}{x^5} + \frac{2}{\sqrt{3x+5}} \right) dx = 10 \int x^3 dx - 4 \int \frac{dx}{x^5} + 2 \int \frac{1}{\sqrt{3x+5}} dx$$

$$= 10\left(\frac{x^4}{4}\right) - 4\left(-\frac{1}{4x^4}\right) + 2\frac{\left[2\sqrt{3x+5}\right]}{3}$$

$$= \frac{5}{2}x^4 + \frac{1}{x^4} + \frac{4}{3}\sqrt{3x+5} + c$$

$$(19) \int \left[k\sec^2\left(ax+b\right) - \sqrt[3]{(4x+5)^2} + 2\sin\left(7x-2\right)\right] dx$$

$$= k \int \sec^2(ax+b) dx - \int (4x+5)^{\frac{2}{3}} dx + 2\int \sin(7x-2) dx$$

$$= k \frac{\tan\left(ax+b\right)}{a} - \frac{1}{4} \frac{(4x+5)^{\frac{2}{3}+1}}{\left(\frac{2}{3}+1\right)} + (2)\left(\frac{1}{7}\right) \left(-\cos\left(7x-2\right)\right) + c$$

$$= \frac{k}{a} \tan\left(ax+b\right) - \frac{3}{20} \left(4x+5\right)^{\frac{5}{3}} - \frac{2}{7} \cos\left(7x-2\right) + c$$

$$(20) \int \left(a^x + x^a + 10 - \csc 2x \cot 2x\right) dx$$

$$= \int a^x dx + \int x^a dx + 10 \int dx - \int \csc 2x \cot 2x dx$$

$$= \frac{a^x}{\log a} + \frac{x^{a+1}}{a+1} + 10x + \frac{\csc 2x}{2} + c$$

$$(21) \int \left(\frac{1}{5}\cos\left(\frac{x}{5}+7\right) + \frac{3}{lx+m} + \frac{x^{\frac{2}{3}+3}}{lx+m}\right) dx$$

$$= \frac{1}{5} \int \cos\left(\frac{x}{5}+7\right) + \frac{3}{lx+m} + \frac{x^{\frac{2}{3}+3}}{lx+m} + \frac{x^{\frac{2}{3}+3}}{lx+m} + c$$

$$= \sin\left(\frac{x}{5}+7\right) + \frac{3}{l} \log\left(lx+m\right) + 2e^{\frac{x^2+3}{2}+3} + c$$

x-ஐ பொறுத்து கீழ்க்காண்பனவற்றின் தொகைக் காண்க.

(1)
$$5x^4 + 3(2x+3)^4 - 6(4-3x)^5$$
 (2) $\frac{3}{x} + \frac{m}{4x+1} - 2(5-2x)^5$

(3)
$$4 - \frac{5}{x+2} + 3\cos 2x$$
 (4) $3e^{7x} - 4\sec (4x+3)\tan(4x+3) + \frac{11}{x^5}$

(5)
$$p \csc^2 (px - q) - 6(1 - x)^4 + 4e^{3 - 4x}$$

(6)
$$\frac{4}{(3+4x)} + (10x+3)^9 - 3\csc(2x+3)\cot(2x+3)$$

(7)
$$6 \sin 5x - \frac{l}{(px+q)^m}$$
 (8) $a \sec^2(bx+c) + \frac{q}{e^{l-mx}}$

(9)
$$\frac{1}{\left(3+\frac{2}{3}x\right)} - \frac{2}{3}\cos\left(x-\frac{2}{3}\right) + 3\left(\frac{x}{3}+4\right)^6$$

(10)
$$7 \sin \frac{x}{7} - 8\sec^2\left(4 - \frac{x}{4}\right) + 10\left(\frac{2x}{5} - 4\right)^{\frac{3}{2}}$$
 (11) $2x^e + 3e^x + e^e$

(12)
$$(ae)^x - a^{-x} + b^x$$

9.3 தொகையீடு காணும் முறைகள்:

தொகையிடல் காண்பது என்பது வகையிடலைப் போன்று அவ்வளவு எளிதல்ல. ஒரு சார்பினை வகையிட வேண்டுமெனில் அதற்கென்று விதிமுறைகள் வகையிடலில் திட்டவட்டமாகவும் மிகத்தெளிவாகவும் உள்ளன.

Lt $\underline{f(x+\Delta x)-f(x)}$ என்ற வரையறுக்கப்பட்ட முறையினை பயன்படுத்தி f(x)-ஐ வகையிடலாம். எடுத்துக்காட்டாக logxஐ வகையிட வேண்டுமெனில் மேலுள்ள முறையினை பயன்படுத்தி வகையிட இயலும். ஆனால் logx-ஐ தொகையிட இப்படிப்பட்ட விதிமுறைகள் கிடையாது. எப்படி தொகையிடத் தொடங்குவது என்பதுகூட வரையறுக்கப்படவில்லை.

மேலும் சார்புகளின் கூட்டல், கழித்தல், பெருக்கல், வகுத்தல் மற்றும் சார்பினது சார்பு போன்ற சார்புகளின் அமைப்புகளை வகையிட தனித்தனி வகையிடல் முறைகள் விளக்கமாக உள்ளன. தொகையீட்டில் இப்படிப்பட்ட விதிமுறைகள் தெளிவாக இல்லை. தொகையிடலில் ஒருசில விதிமுறைகள் இருந்தபோதிலும் அவற்றினை பயன்படுத்த பல கட்டுப்பாடுகள் உள்ளன.

தொகையிடலில் உள்ள இச்சில விதிமுறைகள் மிக முக்கியத்துவம் வாய்ந்தவையாகும். இவ்விதிமுறைகளை தக்க இடங்களில் சிறப்பாக கையாள அதிக பயிற்சி தேவை. தொகைக் காணலுக்குரிய மிக முக்கிய நான்கு முறைகள் கீழ்வருமாறு :

- (1) கூட்டல் அல்லது கழித்தலாக பிரித்தெழுதி தொகையிடல்
- (2) பிரதியிடல் முறை
- (3) பகுதித் தொகையிடல் முறை
- (4) அடுக்குகளை படிப்படியாகச் சுருக்கி தொகை காணும் முறை மேலுள்ள முதல் மூன்று முறையினை மட்டும் இங்கு கற்போம்.

9.3.1 கூட்டல் அல்லது கழித்தல் சார்புகளாக பிரித்தெழுதி தொகைக் காணல்:

கொடுக்கப்படும் தொகைச் சார்பை சில நேரங்களில் தொகையிடல் வாய்ப்பாட்டினை நேரடியாகப் பயன்படுத்தி தொகை காண இயலாது. ஆனால் இதனை கூட்டல் அல்லது கழித்தல் சார்புகளாக பிரித்தெழுதி தொகையிடலுக்கு ஏதுவாக மாற்றியமைத்து தொகை காணலாம். எடுத்துக்காட்டாக

$$(1+x^2)^3$$
, $\sin 5x \cos 2x$, $\frac{x^2-5x+1}{x}$, $\sin^5 x$, $\frac{e^x+1}{e^x}$, $(\tan x + \cot x)^2$ போன்ற

சார்புகளை நேரடியாக வாய்ப்பாட்டின் மூலம் தொகையிட இயலாது. இதனை மேற்கூறியவாறு பிரித்தெழுதி தொகை காணலாம்.

ஏ.கா. 9.22 - தொகை காண்க

(22)
$$\int (1+x^2)^3 dx = \int (1+3x^2+3x^4+x^6) dx$$
$$= x + \frac{3x^3}{3} + \frac{3x^5}{5} + \frac{x^7}{7} + c$$
$$= x + x^3 + \frac{3}{5}x^5 + \frac{x^7}{7} + c$$

(23)
$$\int \sin 5x \cos 2x \ dx = \int \frac{1}{2} \left[\sin (5x + 2x) + \sin (5x - 2x) \right] \ dx$$
$$\left[\because 2\sin A \cos B = \sin (A+B) + \sin(A-B) \right]$$
$$= \frac{1}{2} \int \left[\sin 7x + \sin 3x \right] dx$$
$$= \frac{1}{2} \left[\frac{-\cos 7x}{7} - \frac{\cos 3x}{3} \right] + c$$
$$\therefore \int \sin 5x \cos 2x \ dx = -\frac{1}{2} \left[\frac{\cos 7x}{7} + \frac{\cos 3x}{3} \right] + c$$

$$(24) \int \frac{x^2 - 5x + 1}{x} dx = \int \left(\frac{x^2}{x} - \frac{5x}{x} + \frac{1}{x}\right) dx = \int \left(x - 5 + \frac{1}{x}\right) dx$$

$$= \int x dx - 5 \int dx + \int \frac{1}{x} dx$$

$$= \frac{x^2}{2} - 5x + \log x + c$$

$$(25) \int \cos^3 x dx = \int \frac{1}{4} \left[3\cos x + \cos 3x\right] dx$$

$$= \frac{1}{4} \left[3 \int \cos x dx + \int \cos 3x dx\right]$$

$$= \frac{1}{4} \left[3 \sin x + \frac{\sin 3x}{3}\right] + c$$

$$(26) \int \frac{e^x + 1}{e^x} dx = \int \left(\frac{e^x}{e^x} + \frac{1}{e^x}\right) dx = \int 1 dx + \int e^{-x} dx$$

$$= x - e^{-x} + c$$

$$(27) \int (\tan x + \cot x)^2 dx = \int \left(\tan^2 x + 2\tan x \cot x + \cot^2 x\right) dx$$

$$= \int \left[\left(\sec^2 x - 1\right) + 2 + \left(\csc^2 x - 1\right)\right] dx$$

$$= \int (\sec^2 x + \csc^2 x) dx$$

$$= \tan x + (-\cot x) + c$$

$$= \tan x - \cot x + c$$

$$(28) \int \frac{1}{1 + \cos x} dx = \int \frac{(1 - \cos x)}{(1 + \cos x)(1 - \cos x)} dx$$

$$= \int \frac{1 - \cos x}{1 - \cos^2 x} dx = \int \frac{1 - \cos x}{\sin^2 x} dx$$

$$= \int \left[\frac{1}{\sin^2 x} - \frac{\cos x}{\sin^2 x}\right] dx = \int \left[\csc^2 x - \csc x \cot x\right] dx$$

$$= \int \csc^2 x \, dx - \int \csc x \cot x \, dx$$
$$= -\cot x - (-\csc x) + c$$
$$= \csc x - \cot x + c$$

குறிப்பு: மாற்று முறை

$$\left(\int \frac{1}{1 + \cos x} \, dx = \int \frac{1}{2 \cos^2 \frac{x}{2}} \, dx = \frac{1}{2} \int \sec^2 \frac{x}{2} \, dx = \frac{1}{2} \frac{\tan \frac{x}{2}}{\frac{1}{2}} + c = \tan \frac{x}{2} + c \right)$$

(29)
$$\int \frac{1 - \cos x}{1 + \cos x} dx = \int \frac{2\sin^2 \frac{x}{2}}{2\cos^2 \frac{x}{2}} dx = \int \tan^2 \frac{x}{2} dx$$
$$= \int \left(\sec^2 \frac{x}{2} - 1\right) dx = \frac{\tan \frac{x}{2}}{\frac{1}{2}} - x + c$$
$$= 2 \tan \frac{x}{2} - x + c \dots (i)$$

மாற்று முறை:

$$\int \frac{1-\cos x}{1+\cos x} dx = \int \frac{(1-\cos x)}{(1+\cos x)} \frac{(1-\cos x)}{(1-\cos x)} dx$$

$$= \int \frac{(1-\cos x)^2}{1-\cos^2 x} dx = \int \frac{1-2\cos x + \cos^2 x}{\sin^2 x} dx$$

$$= \int \left[\frac{1}{\sin^2 x} - \frac{2\cos x}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x}\right] dx$$

$$= \int \left[\csc^2 x - 2\csc x \cot x + \cot^2 x\right) dx$$

$$= \int \left[\csc^2 x - 2\csc x \cot x + (\csc^2 x - 1)\right] dx$$

$$= \int \left[2\csc^2 x - 2\csc x \cot x - 1\right] dx$$

$$= 2 \int \csc^2 x \, dx - 2 \int \csc x \cot x \, dx - \int dx$$

$$= -2 \cot x - 2 \left(-\csc x \right) - x + c$$

$$\int \frac{1 - \cos x}{1 + \cos x} \, dx = 2 \csc x - 2 \cot x - x + c \qquad \dots \text{(ii)}$$

குறிப்பு : (i), (ii)-ல் இருந்து $2 \tan \frac{x}{2} - x + c$ -ம் $2 \csc x - 2 \cot x - x + c$ -ம் திரிகோணமிதி விகிதப்படி சமம் எனக் காணலாம்.

$$(30) \int \sqrt{1 + \sin 2x} \, dx = \int \sqrt{(\cos^2 x + \sin^2 x) + (2 \sin x \cos x)} \, dx$$

$$= \int \sqrt{(\cos x + \sin x)^2} \, dx = \int (\cos x + \sin x) \, dx$$

$$= [\sin x - \cos x] + c$$

$$= \int \frac{x^3 + 2}{x - 1} \, dx = \int \left(\frac{x^3 - 1}{x - 1} + \frac{3}{x - 1}\right) \, dx$$

$$= \int \left[\frac{(x - 1)(x^2 + x + 1)}{x - 1} + \frac{3}{x - 1}\right] \, dx$$

$$= \int \left(x^2 + x + 1 + \frac{3}{x - 1}\right) \, dx$$

$$= \frac{x^3}{3} + \frac{x^2}{2} + x + 3 \log(x - 1) + c$$

$$(32) \int \frac{\cos 2x}{\sin^2 x \cos^2 x} \, dx = \int \frac{\cos^2 x - \sin^2 x}{\sin^2 x \cos^2 x} \, dx$$

$$= \int \left(\frac{\cos^2 x}{\sin^2 x \cos^2 x} - \frac{\sin^2 x}{\sin^2 x \cos^2 x}\right) \, dx$$

$$= \int \left(\frac{1}{\sin^2 x} - \frac{1}{\cos^2 x}\right) \, dx$$

$$= \int (\csc^2 x - \sec^2 x) \, dx$$

$$= -\cot x - \tan x + c$$

$$(33) \int \frac{3^{x} - 2^{x+1}}{6^{x}} dx = \int \left(\frac{3^{x}}{6^{x}} - \frac{2^{x+1}}{6^{x}}\right) dx = \int \left[\frac{3}{6}\right]^{x} - 2 \cdot \left(\frac{2}{6}\right]^{x} dx$$

$$= \int \left[\left(\frac{1}{2}\right)^{x} - 2 \cdot \left(\frac{1}{3}\right)^{x}\right] dx = \int (2^{-x} - 2 \cdot 3^{-x}) dx$$

$$= \frac{-2^{-x}}{\log 2} - 2 \cdot \frac{(-3^{-x})}{\log 3} + c$$

$$= \frac{2}{\log 3} 3^{-x} - \frac{1}{\log 2} 2^{-x} + c$$

$$(34) \int e^{x \log 2} \cdot e^{x} dx = \int e^{\log 2^{x}} e^{x} dx = \int 2^{x} e^{x} dx$$

$$= \int (2e)^{x} dx = \frac{(2e)^{x}}{\log 2e} + c$$

$$(35) \int \frac{dx}{\sqrt{x+3} - \sqrt{x-4}} = \int \frac{\sqrt{x+3} + \sqrt{x-4}}{\left\{\sqrt{x+3} - \sqrt{x-4}\right\} \left\{\sqrt{x+3} + \sqrt{x-4}\right\}} dx$$

$$= \int \frac{\sqrt{x+3} + \sqrt{x-4}}{(x+3) - (x-4)} dx = \int \frac{\sqrt{x+3} + \sqrt{x-4}}{7} dx$$

$$= \frac{1}{7} \int \left[(x+3)^{1/2} + (x-4)^{1/2}\right] dx$$

$$\int \frac{dx}{\sqrt{x+3} - \sqrt{x-4}} = \frac{1}{7} \left[\frac{2}{3}(x+3)^{3/2} + \frac{2}{3}(x-4)^{3/2}\right] + c$$

$$(36) \int (x-1)\sqrt{x+1} dx = \int \left\{(x+1) - 2\right\} (\sqrt{x+1}) dx$$

$$= \int \left[(x+1)^{3/2} - 2(x+1)^{1/2}\right] dx$$

$$= \frac{2}{5}(x+1)^{5/2} - 2 \cdot \frac{2}{3}(x+1)^{3/2} + c$$

$$\int (x-1)\sqrt{x+1} dx = \frac{2}{5}(x+1)^{5/2} - \frac{4}{3}(x+1)^{3/2} + c$$

$$= \int \left\{(3x+7)\sqrt{3x+7} - 3\sqrt{3x+7}\right\} dx$$

$$= \int \left\{(3x+7)\sqrt{3x+7} - 3\sqrt{3x+7}\right\} dx$$

$$= \int ((3x+7)^{3/2} - 3(3x+7)^{1/2}) dx$$

$$= \frac{1}{3} \frac{(3x+7)^{5/2}}{5/2} - 3 \cdot \frac{1}{3} \frac{(3x+7)^{3/2}}{3/2} + c$$

$$= \frac{2}{15} (3x+7)^{5/2} - \frac{2}{3} (3x+7)^{3/2} + c$$

$$(37a) \int \frac{9}{(x-1)(x+2)^2} dx = \int \left[\frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2} \right] dx$$
 பகுதிப் பின்னங்களாக
$$= \int \left[\frac{1}{x-1} - \frac{1}{x+2} - \frac{3}{(x+2)^2} \right] dx$$
$$= \log(x-1) - \log(x+2) + \frac{3}{(x+2)} + c$$

பயிற்சி 9.4

தொகைக் காண்க

(1)
$$(2x-5)(36+4x)$$
 (2) $(1+x^3)^2$ (3) $\frac{x^3+4x^2-3x+2}{x^2}$

$$(3)\frac{x^3 + 4x^2 - 3x + 2}{x^2}$$

$$(4) \ \frac{x^4 - x^2 + 2}{x + 1}$$

$$(5)\frac{(1+x)^2}{\sqrt{x}}$$

(4)
$$\frac{x^4 - x^2 + 2}{x + 1}$$
 (5) $\frac{(1+x)^2}{\sqrt{x}}$ (6) $\frac{e^{2x} + e^{-2x} + 2}{e^x}$

(7)
$$\sin^2 3x + 4\cos 4x$$
 (8) $\cos^3 2x - \sin 6x$ (9) $\frac{1}{1 + \sin x}$

(8)
$$\cos^3 2x - \sin 6x$$

$$(9) \frac{1}{1 + \sin x}$$

(10)
$$\frac{1}{1 - \cos x}$$
 (11) $\sqrt{1 - \sin 2x}$

$$(11)\sqrt{1-\sin 2x}$$

$$(12)\sqrt{1+\cos 2x}$$

(13)
$$\frac{1}{\sin^2 x \cos^2 x}$$
 (14) $\frac{\sin^2 x}{1 + \cos x}$

$$(14) \frac{\sin^2 x}{1 + \cos x}$$

$$(15) \sin 7x \cos 5x$$

$$(16) \cos 3x \cos x \qquad (17) \cos 2x \sin 4x$$

$$(17)\cos 2x\sin 4x$$

$$(18) \sin 10x \sin 2x$$

(19)
$$\frac{1 + \cos 2x}{\sin^2 2x}$$
 (20) $(e^x - 1)^2 e^{-4x}$ (21) $\frac{1 - \sin x}{1 + \sin x}$

$$(20) (e^x - 1)^2 e^{-4x}$$

$$(21)\frac{1-\sin x}{1+\sin x}$$

(22)
$$\frac{2^{x+1} - 3^{x-1}}{6^x}$$
 (23) $e^{x \log a} e^x$

$$(23) e^{x \log a} e^{x}$$

$$(24) \ \frac{a^{x+1} - b^{x-1}}{c^x}$$

$$(25) \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2$$

$$(25) \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 \qquad (26) \sin mx \cos nx \ (m > n) \quad (27) \cos px \cos qx \ (p > q)$$

$$(27)\cos px\cos qx\ (p>q)$$

(28)
$$\cos^2 5x \sin 10x$$
 (29) $\frac{1}{\sqrt{x+1} - \sqrt{x-2}}$ (30) $\frac{1}{\sqrt{ax+b} - \sqrt{ax+c}}$ (31) $(x+1)\sqrt{x+3}$ (32) $(x-4)\sqrt{x+7}$ (33) $(2x+1)\sqrt{2x+3}$

(34)
$$\frac{x+1}{(x+2)(x+3)}$$
 (35) $\frac{x^2+1}{(x-2)(x+2)(x^2+9)}$

9.3.2 பிரதியிடல் அல்லது பதிலிடல் முறையில் தொகைக் காணல் :

சில சமயங்களில் கொடுக்கப்பட்டுள்ள தொகைச் சார்பு f(x), தொகை காண்பதற்கேற்ப அமையாமல் இருக்கலாம். அதே நேரத்தில் தொகைச் சார்பு f(x)-ஐ தக்க பிரதியிடல் மூலம் தொகையிடுவதற்கேற்ப மாற்றியமைத்து தொகைக் காண இயலும்.

$$F(u) = \int f(u) \, du$$
, என எடுத்துக்கொண்டால் $\frac{dF(u)}{du} = f(u)$ ஆகும் $u = \phi(x)$ என்க. பின் $\frac{du}{dx} = \phi'(x)$ மேலும் $\frac{dF(u)}{dx} = \frac{dF(u)}{du} \cdot \frac{du}{dx}$ $= f(u) \phi'(x)$ i.e. $\frac{dF(u)}{dx} = f[\phi(x)] \phi'(x) \, dx$ $\Rightarrow F(u) = \int f[\phi(x)] \phi'(x) \, dx$ $\therefore \int f(u) du = \int f[\phi(x)] \phi'(x) \, dx$

$$\int f \left[\phi(x) \right] \phi'(x) dx = \int f(u) du$$

மேற்கண்ட முறையை சிறப்பாக கையாள வேண்டுமெனில் தகுந்த பிரதியிடலைத் தேர்ந்தெடுப்பதில்தான் உள்ளது. பிரதியிடல் சில நேரங்களில் $x=\phi(u)$ எனவும் அல்லது u=g(x) எனவும் தேர்வு செய்தல் வேண்டியிருக்கும்.

ஏ.கா. 9.38 – 9.41: தொகைக் காண்க.

$$(38) \int 5x^4 e^{x^5} dx \qquad (39) \int \frac{\cos x}{1 + \sin x} dx \qquad (40) \int \frac{1}{\sqrt{1 - x^2}} dx \qquad (41) \int \frac{1}{1 + x^2} dx$$

(38), (39) ஆகிய முதல் இரு கணக்குகளை $u = \phi(x)$ எனவும் (40), (41) ஆகிய இரு கணக்குகளை $x = \phi(u)$ எனவும் பிரதியிட்டுத் தொகைக் காண்போம்..

(38)
$$I = \int 5x^4 e^{x^5} dx$$
 என்க.
$$x^5 = u \ \text{எனப் பிரதியிட,} \qquad ... (i)$$
 $\therefore \qquad 5x^4 \ dx = du \qquad ... (ii)$ தொகைமாறி x -ஆனது u -ஆக பிரதியிடப்பட்டு மாற்றப்பட்டதனால்

தொகைமாறி x-ஆனது u-ஆக பிரதியிடப்பட்டு மாற்றப்பட்டதனால் தொகைச் சார்பு முழுவதும் u மூலமாக மாற்றியமைத்தல் வேண்டும்.

$$Arr$$
 Arr Arr Arr Arr Arr Arr என்பதனை Arr Arr

$$I = \int \frac{\cos x}{1 + \sin x} dx \quad \text{என்க}$$

$$(1 + \sin x) = u \quad \text{எனப் பிரதியிட,} \qquad \dots (i)$$

$$\cos x dx = du \qquad \qquad \dots (ii)$$

$$\therefore I = \int \frac{1}{(1 + \sin x)} (\cos x dx)$$

$$= \int \frac{1}{u} du \qquad \qquad ((i), (ii)- ஐ பயன்படுத்தி)$$

$$= \log u + c$$

$$\int \frac{\cos x}{1 + \sin x} dx = \log (1 + \sin x) + c$$

(40)
$$I = \int \frac{1}{\sqrt{1-x^2}} dx$$
 என்க.
$$x = \sin u$$
 எனப் பிரதியிட(i) $\Rightarrow u = \sin^{-1} x$
$$dx = \cos u du$$
(ii)

$$\therefore$$
 I = $\int \frac{1}{\sqrt{1-x^2}} dx$

= $\int \frac{1}{\sqrt{1-\sin^2 u}} (\cos u \, du)$ ((i), (ii)-ஐ பயன்படுத்தி)

= $\int \frac{1}{\sqrt{\cos^2 u}} (\cos u \, du)$

= $\int du = u + c$
 $\therefore \int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + c$ ($\because u = \sin^{-1} x$)

(41) I = $\int \frac{1}{1+x^2} dx$ என்க.

 $x = \tan u$ எனப் பிரதியிட, $\Rightarrow u = \tan^{-1} x$
 $dx = \sec^2 u \, du$
 \therefore I = $\int \frac{1}{1+\tan^2 u} \sec^2 u \, du$

= $\int \frac{1}{\sec^2 u} \sec^2 u \, du = \int du$

I = $u + c$
 $\therefore \int \frac{1}{1+x^2} dx = \tan^{-1} x + c$

சில தேர்ந்தமைந்தத் தொகைகள்

(i)
$$\int \frac{f'(x)}{f(x)} dx = \log [f(x)] + c$$

(ii)
$$\int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} + c$$

நிரூபணம் :

(i) I =
$$\int \frac{f'(x)}{f(x)} dx$$
 என்க.

 $f(x) = u$ எனப் பிரதியிட,

 $\therefore f'(x)dx = du$
 \therefore I = $\int \frac{1}{u} du = \log u + c = \log [f(x)] + c$

i.e. $\int \frac{f'(x)}{f(x)} dx = \log [f(x)] + c$

(ii) I
$$= \int \frac{f'(x)}{\sqrt{f(x)}} dx$$
 என்க.
$$= \int \frac{1}{\sqrt{u}} du \qquad \text{இங்கு } u = f(x) \text{ எனில் } du = f'(x) dx$$
$$= 2\sqrt{u} + c = 2\sqrt{f(x)} + c$$
$$\therefore \int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} + c$$

(iii) I =
$$\int f'(x) [f(x)]^n dx$$
 என்க. இங்கு $n \neq -1$

$$f(x) = u \text{ எனப் பிரதியிட,}$$

$$\therefore f'(x) dx = du$$

$$\therefore I = \int \{f(x)\}^n (f'(x) dx)$$

$$= \int u^n du = \frac{u^{n+1}}{n+1} + c \qquad (\because n \neq -1)$$

$$\therefore \int f'(x) [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + c$$

எ.கா. s 9.42 – 9.47: தொகைக் காண்க.

$$(42)\frac{2x+1}{x^2+x+5} \qquad (43)\frac{e^x}{5+e^x} \qquad (44)\frac{6x+5}{\sqrt{3x^2+5x+6}} \qquad (45)\frac{\cos x}{\sqrt{\sin x}}$$

$$(46) (4x-1) (2x^2-x+5)^4 (47) (3x^2+6x+7) (x^3+3x^2+7x-4)^{11}$$

தீர்வு :

(42)
$$I = \int \frac{2x+1}{x^2+x+5} dx = \int \frac{1}{(x^2+x+5)} \{(2x+1) dx\} \text{ signs.}$$

$$x^2+x+5 = u \text{ sign is signs.}$$

$$(2x+1) dx = du$$

$$\therefore I = \int \frac{1}{u} du = \log u + c = \log (x^2+x+5) + c$$

$$\therefore \int \frac{2x+1}{x^2+x+5} dx = \log (x^2+x+5) + c$$

(43)
$$I = \int \frac{e^x}{5 + e^x} dx \quad \text{என்க.}$$

$$5 + e^x = u \quad \text{எனப் பிரதியிட,}$$

$$e^x dx = du$$

$$\therefore \quad I = \int \frac{1}{5 + e^x} (e^x dx)$$

$$\therefore \quad = \int \frac{1}{u} du$$

$$I = \log u + c = \log (5 + e^x) + c$$
i.e.
$$\int \frac{e^x}{5 + e^x} dx = \log (5 + e^x) + c$$

(44)
$$I = \int \frac{6x+5}{\sqrt{3x^2+5x+6}} dx \quad \text{என்.s.}$$

$$3x^2+5x+6 = t \quad \text{எனப் பிரதியிட,}$$

$$(6x+5) dx = dt$$

$$\therefore \qquad I = \int \frac{1}{\sqrt{t}} dt = 2\sqrt{t} + c = 2\sqrt{3x^2+5x+6} + c$$

$$\therefore \int \frac{6x+5}{\sqrt{3x^2+5x+6}} \, dx = 2\sqrt{3x^2+5x+6} + c$$

ஏ.கா. 9.48 – 9.67: தொகைக் காண்க.

$$(48) x^{16} (1+x^{17})^4 \qquad (49) \frac{x^{24}}{(1+x^{25})^{10}} \qquad (50) \frac{x^{15}}{1+x^{32}} \qquad (51) x(a-x)^{17}$$

(52)
$$\cot x$$
 (53) $\csc x$ (54) $\frac{\log \tan x}{\sin 2x}$ (55) $\sin^{15} x \cos x$

$$(56) \sin^7 x \qquad (57) \tan x \sqrt{\sec x} \qquad (58) \frac{e^{\tan x}}{\cos^2 x} \qquad (59) \frac{e^{\sqrt{x}}}{\sqrt{x}}$$

$$(60)\frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}} \qquad (61) e^{2\log x} e^{x^3} \qquad (62)\frac{\log x}{x} \qquad (63)\frac{1}{x \log x}$$

(64)
$$\frac{1}{x+\sqrt{x}}$$
 (65) $\frac{e^{x/2}-e^{-x/2}}{e^x-e^{-x}}$ (66) $\frac{x^{e-1}+e^{x-1}}{x^e+e^x}$

(67)
$$\alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}}$$
 (68) $(2x - 3) \sqrt{4x + 1}$)

தீர்வு :

$$(48) \quad \int x^{16} \left(1 + x^{17}\right)^4 dx$$

$$I = \int x^{16} \left(1 + x^{17}\right)^4 (dx)$$
 என்க.
$$1 + x^{17} = u$$
 எனப் பிரதியிட, ... (i)
$$17x^{16} dx = du$$

$$dx = \frac{1}{17x^{16}} du$$
 ... (ii)
$$\therefore I = \int x^{16} (u)^4 \left(\frac{1}{17x^{16}} dx\right) \quad ((i), (ii)$$
-ஐ பயன்படுத்தி)
$$= \frac{1}{17} \int u^4 du = \frac{1}{17} \left(\frac{u^5}{5}\right) + c$$

$$\int x^{16} \left(1 + x^{17}\right)^4 dx = \frac{1}{85} \left(1 + x^{17}\right)^5 + c$$

$$(49) \quad \int \frac{x^{24}}{(1+x^{25})^{10}} \ dx$$

$$I = \int \frac{x^{24}}{(1+x^{25})^{10}} dx$$
 என்க.
$$1 + x^{25} = u$$
 என்ப் பிரதியிட, ... (i)
$$25x^4 dx = du$$

$$dx = \frac{1}{25x^{24}} du$$
 ... (ii)
$$\vdots \qquad I = \int \frac{x^{24}}{u^{10}} \left(\frac{1}{25x^{24}} du\right) \qquad ((i), (ii)- 20)$$
 பயன்படுத்தி)
$$= \frac{1}{25} \int \frac{1}{u^{10}} du = \frac{1}{25} \left[-\frac{1}{9u^9}\right] + c$$

$$\vdots \qquad \int \frac{x^{24}}{(1+x^{25})^{10}} dx = -\frac{1}{225 (1+x^{25})^9} + c$$

$$(50) \int \frac{x^{15}}{1+x^{32}} dx$$

$$I = \int \frac{x^{15}}{1+x^{32}} dx \qquad \text{ என். }$$

$$x^{16} = u \text{ என. } i \text{ பி. நி. } 0$$

$$16x^{15} dx = du$$

$$dx = \frac{1}{16x^{15}} du \qquad ... (ii)$$

$$\vdots \qquad = \int \frac{x^{15}}{1+u^2} \left(\frac{1}{16x^{15}} du\right) \qquad ((i), (ii)- 20) \text{ பி. } i \text{ വி. } i \text{ വி. } i \text{ വி. } i \text{ വி. } i \text{ பி. } i \text{ பி. } i \text{ വி. } i \text{ വி.$$

$$\int x(a-x)^{17} dx$$

$$I = \int x(a-x)^{17} dx \quad \text{என்.s.}$$

$$(a-x) = u \quad \text{எனப் பிரதியிட} \Rightarrow x = a-u$$

$$dx = -du$$

$$\vdots \quad I = \int (a-u)u^{17} (-du)$$

$$= \int (u^{18} - au^{17}) du$$

$$I = \frac{u^{19}}{19} - a\frac{u^{18}}{18} + c$$

$$\therefore \int x(a-x)^{17} dx = \frac{(a-x)^{19}}{19} - \frac{a(a-x)^{18}}{18} + c$$

(52) $\int \cot x \, dx$

$$I = \int \cot x \, dx \quad \text{என்க.}$$

$$\sin x = u \quad \text{எனப் பிரதியிட,}$$

$$\cos x \, dx = du$$

$$\therefore \qquad I = \int \frac{\cos x}{\sin x} \, dx = \int \frac{1}{u} \, du = \log u + c$$

$$\therefore \qquad \int \cot x \, dx = \log \sin x + c$$

(53) $\int \csc x \, dx$

Let
$$I = \int \csc x \, dx = \int \frac{\csc x \, [\csc x - \cot x]}{[\csc x - \cot x]} \, dx$$

$$\csc x - \cot x = u \, \text{எனப் பிரதியிட,} \qquad \dots \text{(i)}$$

$$(-\csc x \cot x + \csc^2 x) \, dx = du$$

$$\csc x \, (\csc x - \cot x) \, dx = du \qquad \qquad \dots \text{(ii)}$$

$$\therefore \quad I = \int \frac{\csc x \, [\csc x - \cot x]}{[\csc x - \cot x]} \, dx$$

$$= \int \frac{du}{u} = \log u + c \qquad \text{((i),(ii)-ஐ பயன்படுத்தி)}$$

$$\therefore \int \csc x \, dx = \log(\csc x - \cot x) + c$$
 (அல்லது)
$$\int \csc x \, dx = \log \tan \frac{x}{2} + c \qquad (சுருங்கிய வடிவில்)$$
(54) $\int \frac{\log \tan x}{\sin 2x} \, dx$

$$I = \int \frac{\log \tan x}{\sin 2x} \, dx \qquad \text{என்.s.}$$

$$\log \tan x = u \text{ என.ப் பிரதியி...}, \qquad \dots (i)$$

$$\therefore \frac{1}{\tan x} \sec^2 x \, dx = du \qquad \Rightarrow \frac{\cos x}{\sin x} \cdot \frac{1}{\cos^2 x} \, dx = du$$
i.e. $\frac{2}{2\sin x \cos x} \, dx = du \qquad \Rightarrow \frac{2}{\sin 2x} \, dx = du$

$$dx = \frac{\sin 2x}{2} \, du \qquad \qquad \dots (ii)$$

$$\therefore \qquad I = \int \frac{u}{\sin 2x} \cdot \left(\frac{\sin 2x}{2} \, du\right) \qquad ((i),(ii) - \text{ஐ பயண்படுத்தி})$$

$$= \frac{1}{2} \int u \, du = \frac{1}{2} \left[\frac{u^2}{2}\right] + c$$

$$\int \frac{\log \tan x}{\sin 2x} \, dx = \frac{1}{4} \left[\log \tan x\right]^2 + c$$
(55) $\int \sin^{15} x \cos x \, dx$

$$I = \int \sin^{15} x \cos x \, dx \qquad \text{என.s.}$$

$$\sin x = t \text{ என.ப் பிரதியி...} \Rightarrow \cos x \, dx = dt$$

$$\therefore \qquad I = \int t^{15} \, dt = \frac{t^{16}}{16} + c$$

$$\therefore \int \sin^{15} x \cos x \, dx = \frac{\sin^{16} x}{16} + c$$

$$(56) \int \sin^7 x \, dx$$

$$I = \int \sin^7 x \, dx \quad \text{என.s.}$$

(குறிப்பு : $\sin^n x$, $\cos^n x$ -ல் n ஒரு ஒற்றைப்படை எண்ணாக இருந்தால் மட்டுமே மேலுள்ள முறையை கையாள இயலும்).

(57) $\int \tan x \sqrt{\sec x} \, dx$

$$I = \int \tan x \sqrt{\sec x} \ dx$$
 என்க.
$$\sec x = t \ \text{எனப் பிரதியிட},$$

$$\sec x \tan x \ dx = dt \qquad \therefore \ dx = \frac{dt}{\sec x \tan x}$$

முழுமையாக t-க்கு மாற்ற

(கொடுக்கப்பட்ட தொகைச்சார்பு $e^{f(x)}$ என்ற அமைப்பில் உள்ளபோது, f(x) ஆனது x-ல் ஒருபடி சார்பின் சார்பாக இல்லாமலிருப்பின் u=f(x) எனப் பிரதியிடுதல் மூலம் தொகைக் காணலாம்).

$$I = \int \frac{e^{\tan x}}{\cos^2 x} dx \text{ signs.}$$

$$\tan x = t \text{ signs.} \Omega x \text{ signs.}$$

$$\sin x = t \text{ signs.} \Omega y \text{ signs.}$$

$$\sin x = t \text{ signs.} \Omega y \text{ signs.}$$

$$\therefore I = \int \frac{e^t}{\cos^2 x} \cdot \cos^2 x dt = \int e^t dt = e^t + c$$

$$\therefore \int \frac{e^{\tan x}}{\cos^2 x} dx = e^{\tan x} + c$$

$$(59) \int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

$$I = \int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx \text{ signs.}$$

$$\sqrt{x} = t \text{ signs.} \Omega y \text{ signs.} \therefore x = t^2 \Rightarrow dx = 2t dt$$

$$\therefore I = \int \frac{e^t}{t} \cdot 2t dt = 2 \int e^t dt = 2 e^t + c$$

$$\therefore \int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = 2 e^{\sqrt{x}} + c$$

$$(60) \int \frac{e^{\sin^{-1} x}}{\sqrt{1 - x^2}} dx$$

$$I = \int \frac{e^{\sin^{-1} x}}{\sqrt{1 - x^2}} dx \text{ signs.}$$

$$\sin^{-1} x = t \text{ signs.} \Omega y \text{ signs.}$$

$$\sin^{-1} x = t \text{ signs.} \Omega y \text{ signs.}$$

$$\frac{1}{\sqrt{1 - x^2}} dx = dt \Rightarrow dx = \sqrt{1 - x^2} dt$$

$$\therefore I = \int \frac{e^t}{\sqrt{1-x^2}} \sqrt{1-x^2} dt$$

$$= \int e^t dt = e^t + c$$

$$\therefore \int \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}} dx = e^{\sin^{-1}x} + c$$

$$(61) \int e^{2\log x} e^{x^3} dx$$

$$I = \int e^{2\log x} e^{x^3} dx \text{ stones.}$$

$$x^3 = t \text{ stones.} \text{ i. If } \int e^{\log x^2} e^{x^3} dx = \int x^2 e^{x^3} dx$$

$$= \int x^2 e^t \left(\frac{1}{3x^2} dt\right)$$

$$= \frac{1}{3} \int e^t dt = \frac{1}{3} e^t + c$$

$$\therefore \int e^{2\log x} e^{x^3} dx = \frac{1}{3} e^{x^3} + c$$

$$(62) \int \frac{\log x}{x} dx$$

$$I = \int \frac{\log x}{x} dx \text{ stones.}$$

$$\log x = u \text{ stones.} \text{ i. If } \int \frac{u}{x} (x du) = \int u du = \frac{u^2}{2} + c$$

$$\int \frac{\log x}{x} dx = \frac{1}{2} [\log x]^2 + c$$

(63)
$$\int \frac{1}{x \log x} dx$$

$$I = \int \frac{1}{x \log x} dx \text{ signs.}$$

$$\log x = u \text{ signs is } \Omega \eta \mathcal{B} u \Omega_{-},$$

$$\frac{1}{x} dx = du \qquad \therefore dx = x du$$

$$\therefore I = \int \frac{1}{xu} (x du) = \int \frac{1}{u} du = \log u + c$$

$$\int \frac{1}{x \log x} dx = \log (\log x) + c$$

$$(64) \int \frac{1}{x + \sqrt{x}} dx$$

$$I = \int \frac{1}{x + \sqrt{x}} dx \text{ signs.}$$

$$\sqrt{x} = t \text{ signs is } \Omega \eta \mathcal{B} u \Omega_{-}, \implies x = t^2 dx = 2t dt$$

$$\therefore I = \int \frac{1}{t^2 + t} 2t dt = 2 \int \frac{t}{t(t+1)} dt$$

$$= 2 \int \left(\frac{1}{1+t}\right) dt = 2 \log (1+t) + c$$

$$\therefore \int \frac{1}{x + \sqrt{x}} dx = 2 \log (1+\sqrt{x}) + c$$

$$(65) \int \frac{e^{x/2} - e^{-x/2}}{e^x - e^{-x}} dx$$

$$I = \int \frac{e^{x/2} - e^{-x/2}}{e^x - e^{-x}} dx \text{ signs.}$$

$$e^{x/2} = t \text{ signs is } \Omega \eta \mathcal{B} u \Omega_{-} \implies \frac{1}{2} e^{x/2} dx = dt$$

 $dx = \frac{2}{e^{x/2}} dt = \frac{2}{t} dt$

$$\therefore \quad I = \int \frac{t - 1/t}{t^2 - 1/t^2} \left(\frac{2dt}{t}\right)$$

$$= 2 \int \frac{(t^2 - 1)}{(t^4 - 1)} \frac{dt}{t} = 2 \int \frac{(t^2 - 1)}{t^4 - 1} dt$$

$$= 2 \int \frac{t^2 - 1}{(t^2 - 1)(t^2 + 1)} dt = 2 \int \frac{1}{1 + t^2} dt = 2 \tan^{-1} t + c$$

$$\therefore \int \frac{e^{v2} - e^{-v2}}{e^x - e^{-x}} dx = 2 \tan^{-1} (e^{v2}) + c$$

$$(66) \int \frac{x^e - 1 + e^{x - 1}}{x^e + e^x} dx$$

$$I = \int \frac{x^e - 1 + e^{x - 1}}{x^e + e^x} dx$$

$$I = \int \frac{x^e - 1 + e^{x - 1}}{x^e + e^x} dx$$

$$I = \int \frac{x^e - 1 + e^{x - 1}}{x^e + e^x} dx$$

$$I = \int \frac{x^e - 1 + e^{x - 1}}{x^e + e^x} dt ... (ii)$$

$$\therefore I = \int \frac{(x^e - 1 + e^{x - 1})}{t} dt ... (iii)$$

$$\therefore I = \int \frac{(x^e - 1 + e^{x - 1})}{t} dt = \frac{1}{e} \log t + c$$

$$\therefore \int \frac{x^e - 1 + e^{x - 1}}{x^e + e^x} dx = \frac{1}{e} \log (x^e + e^x) + c$$

$$(67) \int \alpha \beta x^{\alpha - 1} e^{-\beta x^{\alpha}} dx$$

$$I = \int \alpha \beta \, x^{\alpha - 1} \, e^{-\beta x^{\alpha}} \, dx \quad \text{strips.}$$

$$-\beta x^{\alpha} = u \quad \text{strips.} \quad \Box g g g g g g = \Rightarrow -\alpha \beta x^{\alpha - 1} dx = du \quad \Box dx = -\frac{1}{\alpha \beta \, x^{\alpha - 1}} \, du$$

$$\therefore \quad I = \int \alpha \beta x^{\alpha - 1} \, e^{u} \left(\frac{-1}{\alpha \beta \, x^{\alpha - 1}} \right) du = -\int e^{u} \, du = -e^{u} + c$$

$$\therefore \quad \int \alpha \beta \, x^{\alpha - 1} \, e^{-\beta x^{\alpha}} \, dx = -e^{-\beta x^{\alpha}} + c$$

$$(68) \int (2x - 3) \sqrt{4x + 1} \, dx$$

$$I = \int (2x - 3) \sqrt{4x + 1} \, dx \quad \text{strips.}$$

$$(4x + 1) = t^{2} \text{ strips.} \quad \Box g g g g g g = \Rightarrow x = \frac{1}{4} (t^{2} - 1) \quad \Box \, dx = \frac{t}{2} \, dt$$

$$\therefore \quad I = \int \left\{ 2 \cdot \frac{1}{4} (t^{2} - 1) - 3 \right\} (t) \left(\frac{t}{2} \right) dt = \int \frac{1}{2} (t^{2} - 1 - 6) \cdot \frac{t^{2}}{2} \, dt$$

$$= \frac{1}{4} \int (t^{4} - 7t^{2}) \, dt = \frac{1}{4} \left(\frac{t^{5}}{5} - \frac{7}{3} \, t^{3} \right) + c$$

$$\int (2x - 3) \sqrt{4x + 1} \, dx = \frac{1}{20} (4x + 1)^{5/2} - \frac{7}{12} (4x + 1)^{3/2} + c$$

பயிற்சி 9.5

தொகைக் காண்க

(1)
$$x^{5}(1+x^{6})^{7}$$
 (2) $\frac{(2lx+m)}{lx^{2}+mx+n}$ (3) $\frac{4ax+2b}{(ax^{2}+bx+c)^{10}}$ (4) $\frac{x}{\sqrt{x^{2}+3}}$ (5) $(2x+3)\sqrt{x^{2}+3x-5}$ (6) $\tan x$ (7) $\sec x$ (8) $\cos^{14}x\sin x$ (9) $\sin^{5}x$ (10) $\cos^{7}x$ (11) $\frac{1+\tan x}{x+\log\sec x}$ (12) $\frac{e^{m\tan^{-1}x}}{1+x^{2}}$

(13)
$$\frac{x\sin^{-1}(x^2)}{\sqrt{1-x^4}}$$

(13)
$$\frac{x\sin^{-1}(x^2)}{\sqrt{1-x^4}}$$
 (14)
$$\frac{5(x+1)(x+\log x)^4}{x}$$
 (15)
$$\frac{\sin(\log x)}{x}$$

$$(15) \frac{\sin(\log x)}{x}$$

$$(16) \ \frac{\cot x}{\log \sin x}$$

$$(17) \sec^4 x \tan x$$

$$(18) \tan^3 x \sec x$$

$$(19) \ \frac{\sin x}{\sin (x+a)}$$

$$(20) \frac{\cos x}{\cos (x - a)}$$

$$(20)\frac{\cos x}{\cos(x-a)} \qquad (21)\frac{\sin 2x}{a\cos^2 x + b\sin^2 x}$$

$$(22) \ \frac{1 - \tan x}{1 + \tan x}$$

$$(23) \frac{\sqrt{\tan x}}{\sin x \cos x} \qquad (24) \frac{(\log x)^2}{x}$$

$$(24) \frac{(\log x)^2}{x}$$

$$(25) e^{3\log x} e^{x^4}$$

$$(26)\frac{x^{e-1} + e^{x-1}}{x^e + e^x + e^e}$$
 (27) $x (l-x)^{16}$

$$(27) x (l-x)^{10}$$

(28)
$$x(x-a)^m$$

$$(29) x^2 (2-x)^{15} (30) \frac{\sin \sqrt{x}}{\sqrt{x}}$$

$$(30) \frac{\sin \sqrt{x}}{\sqrt{x}}$$

(31)
$$(x+1)\sqrt{2x+3}$$

$$(32)(3x+5)\sqrt{2x+1}$$

$$(33)(x^2+1)\sqrt{x+1}$$

9.3.3 பகுதித் தொகையிடல்:

- (i) தொகைச் சார்பு f(x) ஆனது இருவேறு சார்புகளின் பெருக்கலாக இருந்தாலோ
- (ii) நேரடியாக தொகையிடல் வாய்ப்பாட்டை தொகையிட முடியாத சார்பாக இருந்தாலோ அல்லது
- (iii) $tan^{-1}x$, logx போன்ற சார்பு தனியாகத் தொகைக் கொடுக்கப்பட்டிருந்தாலோ

பகுதித் தொகையிடல் முறையினைப் பயன்படுத்தி தொகை காணலாம்.

தொகையிடல் சூத்திரத்தினை இரு சார்புகளுக்குரிய பெருக்கலின் வகையீட்டு வாய்ப்பாட்டின் மூலம் தருவிக்கலாம்.

f(x), g(x) என்பன வகையிடத்தக்க ஏதேனும் இருசார்புகள் என்க.

அவ்வாறாயின்
$$\frac{d}{dx} [f(x) g(x)] = f'(x) g(x) + f(x) g'(x)$$

வகையிடலின் எதிர்மறை முறையின் வரையறைப்படி

$$f(x) g(x) = \int f'(x) g(x) dx + \int f(x) g'(x) dx$$

மாற்றி அமைக்க

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx \qquad ... (1)$$

மேலுள்ள சூத்திரத்தினை எளிய முறையில் மாற்றி எழுத

$$u=f(x),\ v=g(x)$$
 என எடுத்துக் கொள்வோம்

$$\therefore du = f'(x) dx, dv = g'(x) dx$$

எனவே (1) ஆனது
$$\int u \, dv = uv - \int v \, du$$

மேலுள்ள தொகையிடல் சூத்திரமானது $\int u\ dv$ -இன் முழுமையான தீர்வாக இல்லாமல், தீர்வின் ஒரு பகுதியை மட்டும் அளித்து மீதியை மற்றொரு தொகையிடல் $\int v\ du$ வாயிலாக எழுதப்பட்டிருப்பதால், இச்சூத்திரத்தினை **பகுதித் தொகையிடல்** என அழைக்கிறோம்.

பகுதித் தொகையிடல் முறையினை சிறப்பாக கையாள வேண்டுமெனில் $\int u \, dv$ -இல் u என்ற சார்பை தேர்வு செய்வதில்தான் உள்ளது. u-ஐ தேர்வு செய்ய கீழ்க்காணும் முறையினை கையாளுதல் உகந்தது.

- (i) தொகைச் சார்பு logx, tan⁻¹x ... போன்ற நேரடி தொகைக் காண இயலாத சார்பாக இருக்கும்போது logx, tan⁻¹x-ஐ u ஆக எடுத்தல் வேண்டும்.
- (ii) தொகைச் சார்பு இரு சார்புகளின் பெருக்கல் சார்பாக இருக்கும்போது இரண்டும் தனித்தனியே தொகைக் காண இயலும்போது, அதில் ஒரு சார்பு x^n $(x \in \mathbb{N})$ ஆக இருப்பின் $u = x^n$ என எடுத்துக் கொள்ளவும்.
- (iii) மற்றபடி யஜ நம் விருப்பப்படி தேர்வு செய்து கொள்ளலாம்.

கீழ்க்காணும் அட்டவணை, பகுதி தொகையீட்டில் **u**, dv ஆகியவற்றை தேர்வு செய்ய உதவும்.

எண்	கொடுக்கப்பட்ட தொகைகள்	и	dv	иஐ தேர்வு செய்ய காரணம்
1.	$\int \! \log x dx$	$\log x$	dx	1
	$\int \tan^{-1} x dx$	$\tan^{-1}x$	dx	log <i>x</i> , tan ⁻¹ <i>x</i> நேரடியாக தொகை காண இயலா <i>து</i> .
2.	$\int x^n \log x dx$	$\log x$	$x^n dx$	<i>элг</i> өөн <u>ფ</u> рдоггэд.
3.	$\int x^n \tan^{-1} x \ dx$	$\tan^{-1}x$	$x^n dx$	
4.	$\int x^n e^{ax} dx$ (<i>n</i> is a positive integer)	χ^n	e ^{ax} dx	இரண்டும் தொகையிட இயலும் x ⁿ ஐ யஆக எடுத்தால் x-ன் அடுக்கு, வகையிடல் மூலம் படிப்படியாக குறைந்து கொண்டே போகும்.
5.	$\int x^n(\sin x \text{ or } \cos x)dx$	x ⁿ	sin <i>x dx</i> or cos <i>xdx</i>	இரண்டும் தொகையிட இயலும் x^n ஐ யஆக எடுத்தால் x -ன் அடுக்கு, வகையிடல் மூலம் படிப்படியாக குறைந்து கொண்டே போகும்.
6.	$\int e^{ax} \cos bx dx \text{or}$ $\int e^{ax} \sin bx dx$	e^{ax} or $\cos bx / \sin bx$	மற்றவை	-

ஏ.கா. 9.69 – 9.84: தொகைக் காண்க

(69) xe^x (70) $x \sin x$ (71) $x \log x$ (72) $x \sec^2 x$

 $(73) x \tan^{-1} x$ $(74) \log x$ $(75) \sin^{-1} x$ $(76) x \sin^2 x$

(77)
$$x \sin 3x \cos 2x$$
 (78) $x 5^x$ (79) $x^3 e^{x^2}$ (80) $e^{\sqrt{x}}$ (81) $\int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx$ (82) $\tan^{-1} \left(\frac{2x}{1 - x^2}\right)$ (83) $x^2 e^{3x}$ (84) $x^2 \cos 2x$

$$(79) x^3 e^{x^2}$$
 $(80) e^{\sqrt{x^2}}$

$$(81) \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx$$

$$(82) \tan^{-1} \left(\frac{2x}{1 - x^2} \right)$$

$$(83) x^2 e^{3x}$$

$$(84) x^2 \cos 2x$$

தீர்வு :

(69)
$$\int xe^x dx = \int (x) (e^x dx)$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த

u = x மற்றும் $dv = e^x dx$ என எடுத்துக் கொள்வோம்.

பிறகு
$$du = dx \, \text{மற்றும்} \ v = \int e^x \, dx = e^x \, \text{ஆகும்}.$$

$$\therefore \int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + c$$

$$(70) \int x \sin x \, dx = \int (x) (\sin x \, dx)$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த

u=x மற்றும் $dv=\sin dx$ என எடுத்துக் கொள்வோம்.

$$du = dx$$
 மற்றும் $v = -\cos x$

$$\therefore \int x \sin x \, dx = (x) (-\cos x) - \int (-\cos x) (dx)$$

$$= -x \cos x + \int \cos x \, dx$$

$$\therefore \int x \sin x \, dx = -x \cos x + \sin x + c$$

$$(71) \int x \log x = \int (\log x) (x dx)$$

 $\log x$ -ஐ வாய்ப்பாட்டின் மூலம் நேரடியாகத் தொகையிட இயலாததால்

$$u = \log x$$
 மற்றும் $dv = x \, dx$ என எடுத்துக் கொள்வோம்

:
$$du = \frac{1}{x} dx$$
 பற்றும் $v = \frac{x^2}{2}$

$$\therefore \qquad \int x \log x = (\log x) \left(\frac{x^2}{2}\right) - \int \left(\frac{x^2}{2}\right) \left(\frac{1}{x} dx\right)$$

$$= \frac{x^2}{2} \log x - \frac{1}{2} \int x \, dx$$

$$\therefore \int x \log x = \frac{x^2}{2} \log x - \frac{1}{4} x^2 + c$$

$$(72) \int x \sec^2 x \, dx = \int (x) (\sec^2 x \, dx)$$

$$\therefore (72) \int x \sec^2 x \, dx = \int (x) (\sec^2 x \, dx)$$

$$\therefore (72) \int x \sec^2 x \, dx = \int (x) (\sec^2 x \, dx)$$

$$\therefore (72) \int x \sec^2 x \, dx = \int (x) (x) \cos x + c$$

$$\therefore \int x \sec^2 x \, dx = x \tan x - \int (x) \sin x \, dx$$

$$= x \tan x - \log \sec x + c$$

$$\therefore \int x \sec^2 x \, dx = x \tan x + \log \cos x + c$$

$$(73) \int x \tan^{-1} x \, dx = \int (\tan^{-1} x) (x \, dx)$$

$$\therefore (73) \int x \tan^{-1} x \, dx = \int (\tan^{-1} x) (x \, dx)$$

$$\therefore (73) \int x \tan^{-1} x \, dx = \int (\tan^{-1} x) (x \, dx)$$

$$\therefore (73) \int x \tan^{-1} x \, dx = \int (\tan^{-1} x) (x \, dx)$$

$$\therefore (73) \int x \tan^{-1} x \, dx = \int (\tan^{-1} x) (x \, dx)$$

$$\therefore (73) \int x \tan^{-1} x \, dx = \int (\tan^{-1} x) (x \, dx)$$

$$\therefore (73) \int x \tan^{-1} x \, dx = \int (\tan^{-1} x) (x \, dx)$$

$$\therefore (73) \int x \tan^{-1} x \, dx = \int (\tan^{-1} x) (x \, dx)$$

$$\therefore (73) \int x \tan^{-1} x \, dx = \int (\tan^{-1} x) (x \, dx)$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(\frac{x^2}{1+x^2}\right) dx$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(\frac{1+x^2}{1+x^2}\right) dx$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{1+x^2}\right) dx$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{1+x^2}\right) dx$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \int \left(1 - \frac{1}{1+x^2}\right) dx$$

$$= \frac{x^2}{2} \tan^{-1} x - \frac{1}{2} \left[x - (\tan^{-1} x)\right] + c$$

$$\therefore \int x \tan^{-1} x \, dx = \frac{1}{2} \left[x^2 \tan^{-1} x + \tan^{-1} x - x\right] + c$$

$$(74) \int \log x \, dx = \int (\log x) \, (dx)$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த

$$u = \log x \qquad dv = dx$$

$$= (\log x)(x) - \int x \cdot \frac{1}{x} dx \qquad du = \frac{1}{x} dx \qquad v = x$$

$$= x \log x - \int dx$$

$$\therefore \int \log x \, dx = x \log x - x + c$$

(75)
$$\int \sin^{-1} x \, dx = \int (\sin^{-1} x) \, (dx)$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் $u=\sin^{-1}x$ dv=dx பயன்படுத்த $\int \sin^{-1}x \ dx = (\sin^{-1}x) \ (x) - \int x \ . \frac{1}{\sqrt{1-x^2}} \ dx$ $u=\frac{1}{\sqrt{1-x^2}} \ dx$ v=x $= x \sin^{-1}x - \int \frac{x}{\sqrt{1-x^2}} \ dx$

பிரதியிடல் முறையினை கையாள

$$\sqrt{1-x^2} = t$$

$$1-x^2 = t^2$$

$$-2x \, dx = 2t \, dt$$

$$dx = \frac{2t dt}{-2x} = \frac{-t}{x} \, dt$$

$$\therefore \int \sin^{-1}x \, dx = x \sin^{-1}x - \int \frac{x}{t} \left(\frac{-t}{x} \, dt\right)$$

$$= x \sin^{-1}x + \int dt = x \sin^{-1}x + t + c$$

$$\therefore \int \sin^{-1}x \, dx = x \sin^{-1}x + \sqrt{1-x^2} + c$$

$$(76) \int x \sin^2 x \, dx$$

$$I = \int x \sin^2 x \, dx \qquad \text{sin} s. \qquad \qquad [\sin x \sin \frac{1}{x}] \sin^2 x \, dx$$

$$= \int x \left\{ \frac{1}{2} (1 - \cos 2x) \right\} \, dx \qquad \qquad \sin^2 x = \frac{1}{2} (1 - \cos 2x)]$$

$$= \frac{1}{2} \int (x - x \cos 2x) \, dx$$

$$= \frac{1}{2} \left[\int x \, dx - \int x \cos 2x \, dx \right]$$

$$I = \frac{1}{2} \left[\frac{x^2}{2} - I_1 \right] \qquad \dots (1)$$

இங்கு $I_1 = \int x \cos 2x \, dx$

பகுதித் தொகையிடலின் சூத்திரத்தைப் u=x $dv=\cos 2x\ dx$ பயன்படுத்த I_1 $du=dx \qquad v=\frac{\sin 2x}{2}$

$$I_{1} = \int (x) (\cos 2x \, dx) \qquad du = dx \qquad v = \frac{\sin 2x}{2}$$

$$= \left[\frac{x \sin 2x}{2} - \int \frac{\sin 2x}{2} \, dx \right]$$

$$= \frac{x}{2} \sin 2x - \frac{1}{2} \left(\frac{-\cos 2x}{2} \right)$$

$$I_{1} = \frac{x}{2} \sin 2x + \frac{1}{4} \cos 2x$$

I₁ஐ (1)-ல் பிரதியிட

$$I = \frac{1}{2} \left[\frac{x^2}{2} - I_1 \right]$$

$$= \frac{1}{2} \left[\frac{x^2}{2} - \left(\frac{x}{2} \sin 2x + \frac{1}{4} \cos 2x \right) \right] + c$$

$$\therefore \int x \sin^2 x \, dx = \frac{x^2}{4} - \frac{x}{4} \sin 2x - \frac{\cos 2x}{8} + c$$

(77)
$$\int x \sin 3x \cos 2x \, dx = \int x \frac{1}{2} \left[\sin (3x + 2x) + \sin(3x - 2x) \right] dx$$

 $\left(\because \sin A \cos B = \frac{1}{2} \left\{ \sin(A + B) + \sin(A - B) \right\} \right)$

(78) $\int x \, 5^x \, dx = \int (x) \, (5^x \, dx)$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த u=x $dv=5^x$ dx

$$\int x \, 5^x \, dx = x \frac{5^x}{\log 5} - \int \frac{5^x}{\log 5} \, dx \qquad du = dx \quad v = \frac{5^x}{\log 5}$$
$$= \frac{x5^x}{\log 5} - \frac{1}{\log 5} \cdot \frac{5^x}{\log 5} + c$$
$$\therefore \int x \, 5^x \, dx = \frac{x5^x}{\log 5} - \frac{5^x}{(\log 5)^2} + c$$

(79) முதல் (82) வரை உள்ள எடுத்துக்காட்டுகளில், தக்க பிரதியிடல் மூலம் கொடுக்கப்பட்ட தொகைச் சார்பினை பகுதி தொகையிடல் சூத்திரத்தினை பயன்படுத்துமாறு மாற்றி அமைத்து தொகை காணப்பட்டுள்ளது.

(79)
$$\int x^3 e^{x^2} dx$$
Let
$$I = \int x^3 e^{x^2} dx$$

$$x^2 = t \text{ Gross is.}$$

$$\therefore 2x dx = dt$$

$$\therefore dx = \frac{dt}{2x}$$

$$\therefore \mathbf{I} = \int x^3 \cdot e^t \cdot \frac{dt}{2x}$$

$$= \frac{1}{2} \int x^2 e^t dt = \frac{1}{2} \int (t) (e^t dt)$$

$$u = t \quad dv = e^t dt$$

$$du = dt \quad v = e^t$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த

$$(80) \int e^{\sqrt{x}} dx$$

I
$$= \int e^{\sqrt{x}} dx \text{ என்க.}$$

$$\sqrt{x} = t \text{ எனப் பிரதியிட,}$$

$$\therefore x = t^2 \implies dx = 2t dt$$

$$I = \int e^t 2t dt$$

$$= 2 \int (t) (e^t dt)$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த du=dt $v=e^t$

$$I = 2\left(te^{t} - \int e^{t} dt\right)$$

$$= 2\left(te^{t} - e^{t}\right) + c$$

$$\int e^{\sqrt{x}} dx = 2\left(\sqrt{x}e^{\sqrt{x}} - e^{\sqrt{x}}\right) + c$$

$$(\because t = \sqrt{x})$$

u = t $dv = e^t dt$

$$(81) \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx$$

$$I = \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} dx \quad \text{or in s.}$$

$$\sin^{-1} x = t$$
 எனப் பிரதியிட $\Rightarrow x = \sin t$

$$\frac{1}{\sqrt{1-x^2}} dx = dt$$

$$dx = \sqrt{1-x^2} dt$$

$$\vdots \quad I = \int x \frac{t}{\sqrt{1-x^2}} \cdot \left(\sqrt{1-x^2} dt\right)$$

$$= \int xt dt$$

$$= \int (\sin t) (t) dt$$

$$I = \int (t) (\sin t dt) \qquad dv = \sin t dt$$

$$U = \int (-\cos t) - \int (-\cos t) dt$$

$$= t (-\cos t) - \int (-\cos t) dt$$

$$= -t \cos t + \int \cos t dt$$

$$= -t \cos t + \sin t + c$$

$$I = -(\sin^{-1}x) \left(\sqrt{1-x^2}\right) + x + c$$

$$\vdots \quad \int \frac{x \sin^{-1}x}{\sqrt{1-x^2}} dx = x - \sqrt{1-x^2} \sin^{-1}x + c$$

$$0 \le t = \sqrt{1-\sin^2 t} = \sqrt{1-x^2}$$

$$(82) \int \tan^{-1} \left(\frac{2x}{1-x^2}\right) dx$$

$$I = \int \tan^{-1} \left(\frac{2x}{1-x^2}\right) dx$$

$$I = \int \tan^{-1} \left(\frac{2x}{1-x^2}\right) dx$$

$$\therefore \qquad I = \int \tan^{-1} \left(\frac{2\tan\theta}{1 - \tan^2 \theta} \right) \sec^2 \theta \ d\theta$$
$$= \int \tan^{-1} \left(\tan 2\theta \right) \sec^2 \theta \ d\theta$$

 $x = \tan\theta$ எனப் பிரதியிட $\Rightarrow dx = \sec^2\theta d\theta$

$$= \int 2\theta \sec^2\theta \, d\theta$$

$$= 2 \int (\theta) (\sec^2\theta \, d\theta) \qquad u = \theta \quad dv = \sec^2\theta \, d\theta$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த $du=d\theta$ v= an heta

$$\therefore I = 2 \left[\theta \tan \theta - \int \tan \theta \, d \, \theta \right]$$

$$= 2\theta \tan \theta - 2 \log \sec \theta + c$$

$$I = 2 \left(\tan^{-1} x \right) (x) - 2 \log \sqrt{1 + \tan^{2} \theta} + c$$

$$\therefore \int \tan^{-1} \left(\frac{2x}{1 - x^{2}} \right) dx = 2x \tan^{-1} x - 2 \log \sqrt{1 + x^{2}} + c$$

(83), (84) எடுத்துக்காட்டுகளில் x-ன் அடுக்கு இரண்டு ஆதலால் இருமுறை பகுதித் தொகையிடல் முறை பயன்படுத்தப்பட்டுள்ளது.

(83)
$$\int x^2 e^{3x} dx = \int (x^2) (e^{3x} dx)$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த

சூத்திரத்தைப் பயன்படுத்த
$$\int x^2 e^{3x} \, dx = \frac{x^2 e^{3x}}{3} - \int \frac{e^{3x}}{3} \, 2x \, dx$$

$$du = 2x \, dx \quad v = \frac{e^{3x}}{3}$$

 $u = x^2$ $dv = e^{3x} dx$

$$= \frac{x^2 e^{3x}}{3} - \frac{2}{3} \int (x) (e^{3x} dx)$$

u = x $dv = e^{3x} dx$ $du = dx v = \frac{e^{3x}}{2}$ மீண்டும் பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த

$$\int x^2 e^{3x} dx = \frac{x^2 e^{3x}}{3} - \frac{2}{3} \left\{ x. \frac{e^{3x}}{3} - \int \frac{e^{3x}}{3} dx \right\}$$

$$= \frac{x^2 e^{3x}}{3} - \frac{2x e^{3x}}{9} + \frac{2}{9} \int e^{3x} dx$$

$$= \frac{x^2 e^{3x}}{3} - \frac{2x e^{3x}}{9} + \frac{2}{27} e^{3x} + c$$

$$\therefore \int x^2 e^{3x} dx = \frac{x^2 e^{3x}}{3} - \frac{2x e^{3x}}{9} + \frac{2e^{3x}}{27} + c$$

(84)
$$\int x^2 \cos 2x \, dx = \int (x^2) (\cos 2x \, dx)$$

$$u = x^{2}$$

$$du = 2x dx$$

$$dv = \cos 2x dx$$

$$v = \frac{\sin 2x}{2}$$

$$\int x^2 \cos 2x \, dx = x^2 \frac{\sin 2x}{2} - \int \frac{\sin 2x}{2} \cdot 2x \, dx$$
$$= x^2 \frac{\sin 2x}{2} - \int (x) (\sin 2x \, dx)$$

$$u = x$$

$$du = dx$$

$$dv = \sin 2x \, dx$$

$$du = -\cos 2x$$

$$v = \frac{-\cos 2x}{2}$$

$$\int x^2 \cos 2x \, dx = x^2 \frac{\sin 2x}{2} - \left\{ \frac{x(-\cos 2x)}{2} - \int \left(\frac{-\cos 2x}{2} \, dx \right) \right\}$$
$$= \frac{x^2 \sin 2x}{2} + \frac{x \cos 2x}{2} - \frac{1}{2} \int \cos 2x \, dx$$
$$I = \frac{x^2 \sin 2x}{2} + \frac{x \cos 2x}{2} - \frac{1}{4} \sin 2x + c$$

$$\therefore \int x^2 \cos 2x \, dx = \frac{1}{2} x^2 \sin 2x + \frac{1}{2} x \cos 2x - \frac{1}{4} \sin 2x + c$$

கீழ்க்கண்ட எடுத்துக்காட்டுகளில் உள்ள தொகைச்சார்பு முடிவில்லாத சுழற்தொகை சார்புகளை கொண்டது.

எ.கா. 9.85 – 9.87: கீழ்க்காண்பவைகளை மதிப்பிடுக

(85)
$$\int e^x \cos x \, dx$$
 (86) $\int e^{ax} \sin bx \, dx$ (87) $\int \sec^3 x \, dx$

தீர்வு: (85)
$$\int e^{x} \cos x \, dx = \int (e^{x}) (\cos x \, dx)$$

இங்கு இருசார்புகளும் தொகைக் காண இயலும் சார்புகளாதலால் *u-*ஐ தேர்வு செய்வது நமது விருப்பம்.

$$u = e^{x} dv = \cos x dx$$
$$du = e^{x} dx v = \sin x$$

$$\int e^x \cos x \, dx = e^x \sin x - \int \sin x \, e^x \, dx$$

$$= e^{x} \sin x - \int (e^{x}) (\sin x \, dx) \quad \dots (1) \quad u = e^{x} \qquad dv = \sin x \, dx$$
$$du = e^{x} \, dx \qquad v = -\cos x$$

மீண்டும் பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த

$$\int e^x \cos x \, dx = e^x \sin x - \left[e^x \left(-\cos x \right) - \int \left(-\cos x \right) \left(e^x \, dx \right) \right]$$
$$= e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$

i.e.
$$\int e^x \cos x \, dx = e^x \sin x + e^x \cos x - \int e^x \cos x \, dx \dots (2)$$

 $\int e^x \cos x \, dx$ இருபுறமும் இருப்பதால் மாற்றி அமைக்க

$$2\int e^x \cos x \, dx = (e^x \sin x + e^x \cos x)$$

$$\therefore \int e^x \cos x \, dx = \frac{1}{2} \left[e^x \sin x + e^x \cos x \right] + c$$

$$\int e^x \cos x \, dx = \frac{e^x}{2} (\cos x + \sin x) + c$$

(86)
$$\int e^{ax} \sin bx \, dx = \int (\sin bx) \left(e^{ax} dx \right)$$

இரு சார்புகளும் தொகை காண இயலும் சார்பு எனவே u-ஐ நம் விருப்பப்படி தேர்வு செய்யலாம்

எனவே u-ஐ நம் விருப்பப்படி தேர்வு செய்யலாம்
$$du = b \cos bx \, dx$$

$$\int e^{ax} \sin bx \, dx = (\sin bx) \frac{e^{ax}}{a} - \int \frac{e^{ax}}{a} (b \cos bx) \, dx$$

$$= \frac{1}{a} e^{ax} \sin bx - \frac{b}{a} \int \cos bx \cdot e^{ax} \, dx$$

மீண்டும் பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த $u=\cos bx$ $dv=e^{ax} dx$ $du=-b \sin bx dx$

$$\int e^{ax} \sin bx \, dx = \frac{1}{a} e^{ax} \sin bx - \frac{b}{a} \left[(\cos bx) \left(\frac{e^{ax}}{a} \right) - \int \frac{e^{ax}}{a} (-b \sin bx \, dx) \right]$$
$$= \frac{1}{a} e^{ax} \sin bx - \frac{b}{a^2} e^{ax} \cos bx - \frac{b^2}{a^2} \int e^{ax} \sin bx \, dx$$

$$\int e^{ax} \sin bx \, dx = \frac{1}{a} e^{ax} \sin bx - \frac{b}{a^2} e^{ax} \cos bx - \frac{b^2}{a^2} \int e^{ax} \sin bx \, dx$$

மாற்றி அமைக்க

$$\int e^{ax} \sin bx \, dx + \frac{b^2}{a^2} \int e^{ax} \sin bx \, dx = \frac{1}{a} e^{ax} \sin bx - \frac{b}{a^2} e^{ax} \cos bx$$

i.e.
$$\left[1 + \frac{b^2}{a^2}\right] \int e^{ax} \sin bx \, dx = \left[\frac{1}{a} e^{ax} \sin bx - \frac{b}{a^2} e^{ax} \cos bx\right]$$
$$\left(\frac{a^2 + b^2}{a^2}\right) \int e^{ax} \sin bx \, dx = e^{ax} \left(\frac{a \sin bx - b \cos bx}{a^2}\right)$$
$$\therefore \qquad \int e^{ax} \sin bx \, dx = \left(\frac{a^2}{a^2 + b^2}\right) \times \frac{e^{ax}}{a^2} (a \sin bx - b \cos bx)$$
$$\therefore \int e^{ax} \sin bx \, dx = \left(\frac{e^{ax}}{a^2 + b^2}\right) (a \sin bx - b \cos bx) + c$$

 $e^{ax}\cos bx$ அல்லது $e^{ax}\sin bx$ -ஐ தொகைச் சார்பாக கொடுக்கப்பட்டு இருந்தாலும், பகுதித் தொகையிடலை இருமுறை பயன்படுத்தி, பின் சமன்பாட்டை தீர்த்து தீர்வு காணுதல் வேண்டும்.

கவனம் :

பகுதித் தொகையிடல் சூத்திரத்தினை பயன்படுத்தும்போது u, dv என்ற ஜோடியினை தேர்வு செய்யும்போது மிகவும் கவனத்துடன் செயல்பட வேண்டும். தொடக்கத்தில் u, dv ஜோடியினை எந்தெந்த சார்புகளுக்குத் தேர்வு செய்தோமோ, அதே முறையினை அடுத்து வரும் பகுதித் தொகையினுக்கும் தேர்வு செய்தல் வேண்டும். மாற்றி தேர்வு செய்தல் கூடாது.

$$\int e^x \sin x \, dx$$
 -ஐ எடுத்துக் கொண்டால் தொடக்கத் தேர்வு
$$\int e^x \sin x \, dx = -e^x \cos x + \int \cos x \, e^x \, dx \qquad \qquad u = e^x \qquad dv = \sin x \, dx$$
 மீண்டும் பகுதித் தொகையிடலின் சூத்திரத்தை $du = e^x \, dx \quad v = -\cos x$ R.H.S-ல் மாற்றியமைக்கு பயன்படுத்த

 $\int e^x \sin x \, dx = -e^x \cos x + \int \cos x \, e^x - \int e^x (-\sin x) \, dx \quad u = \cos x \qquad dv = e^x \, dx$ $du = -\sin x \, dx \quad v = e^x$

$$\int e^x \sin x \, dx = -e^x \cos x + \cos x \, e^x + \int e^x \sin x \, dx$$

$$\int e^x \sin x \, dx = \int e^x \sin x \, dx ?$$

இறுதியில் L.H.Sல் உள்ளதைப் போலவே R.H.S-ல் கிடைக்கப் பெற்றோம்.

87)
$$\int \sec^3 x \, dx = \int (\sec x) (\sec^2 x \, dx)$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த

$$\int \sec^3 x \, dx = \sec x \tan x - \int (\tan x) (\sec x \tan x \, dx) \qquad u = \sec x \qquad dv = \sec^2 x \, dx$$

$$= \sec x \tan x - \int \tan^2 x \sec x \, dx$$

$$= \sec x \tan x - \int (\sec^2 x - 1) \sec x \, dx$$

$$= \sec x \tan x - \int (\sec^3 x - \sec x) \, dx$$

$$= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx$$
$$\int \sec^3 x \, dx = \sec x \tan x - \int \sec^3 x \, dx + \log (\sec x + \tan x)$$

மாற்றி அமைக்க,

$$2 \int \sec^3 x \, dx = \sec x \tan x + \log (\sec x + \tan x)$$
$$\int \sec^3 x \, dx = \frac{1}{2} \left[\sec x \, \tan x + \log (\sec x + \tan x) \right] + c$$

பயிற்சி 9.6

தொகைக் காண்க

- (1) xe^{-x} (2) $x \cos x$ (3) $x \csc^2 x$ (4) $x \sec x \tan x$
- (5) $\tan^{-1} x$ (6) $x \tan^2 x$ (7) $x \cos^2 x$ (8) $x \cos 5x \cos 2x$
- (9) $2x e^{3x}$ (10) $x^2 e^{2x}$ (11) $x^2 \cos 3x$ (12) $(\sin^{-1}x) \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}$
- (13) $x^5 e^{x^2}$ (14) $\tan^{-1} \left(\frac{3x x^3}{1 3x^2} \right)$ (15) $x \sin^{-1}(x^2)$ (16) $\csc^3 x$
- (17) $e^{ax}\cos bx$ (18) $e^{2x}\sin 3x$ (19) $e^{x}\cos 2x$ (20) $e^{3x}\sin 2x$
- (21) $\sec^3 2x$ (22) $e^{4x} \cos 5x \sin 2x$ (23) $e^{-3x} \cos^3 x$

வகை 1: 9.88 – 9.93: சிறப்பான தொகைகள்

(88)
$$\int \frac{dx}{a^2 - x^2}$$
 (89) $\int \frac{dx}{x^2 - a^2}$ (90) $\int \frac{dx}{a^2 + x^2}$ (91) $\int \frac{dx}{\sqrt{a^2 - x^2}}$ (92) $\int \frac{dx}{\sqrt{x^2 - a^2}}$ (93) $\int \frac{dx}{\sqrt{x^2 + a^2}}$

தீர்வு :

(88)
$$\int \frac{dx}{a^2 - x^2} = \int \frac{1}{(a - x)(a + x)} dx$$
$$= \frac{1}{2a} \int \frac{2a}{(a - x)(a + x)} dx$$
$$= \frac{1}{2a} \int \frac{(a - x) + (a + x)}{(a - x)(a + x)} dx$$

(பகுதிப் பின்னங்களாக பிரிக்கும் முறையையும் கையாளலாம்).

$$= \frac{1}{2a} \int \left[\frac{1}{a+x} + \frac{1}{a-x} \right] dx$$

$$= \frac{1}{2a} \left[\log (a+x) - \log(a-x) \right]$$

$$\therefore \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left(\frac{a+x}{a-x} \right) + c$$

(89)
$$\int \frac{dx}{x^2 - a^2} dx = \int \frac{dx}{(x - a)(x + a)}$$

$$= \frac{1}{2a} \int \frac{2a}{(x - a)(x + a)} dx = \frac{1}{2a} \int \frac{(x + a) - (x - a)}{(x - a)(x + a)} dx$$

$$= \frac{1}{2a} \int \left[\frac{1}{x - a} - \frac{1}{x + a} \right] dx$$

$$= \frac{1}{2a} \left[\log(x - a) - \log(x + a) \right]$$

$$\therefore \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log\left(\frac{x - a}{x + a}\right) + c$$

(90)
$$I = \int \frac{dx}{a^2 + x^2} \text{ or sin s.}$$

$$x = a \tan \theta \text{ or soliding bull} \Rightarrow \theta = \tan^{-1}(x/a)$$

$$dx = a \sec^2 \theta d\theta$$

$$\therefore I = \int \frac{a \sec^2 \theta d\theta}{a^2 + a^2 \tan^2 \theta} = \int \frac{a \sec^2 \theta d\theta}{a^2 \sec^2 \theta} = \frac{1}{a} \int d\theta$$

$$I = \frac{1}{a} \theta + c$$

$$\therefore \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + c$$
(91)
$$I = \int \frac{dx}{\sqrt{a^2 - x^2}} \text{ or sin s.}$$

$$x = a \sin \theta \text{ or soliding bull} \Rightarrow \theta = \sin^{-1}(x/a)$$

$$dx = a \cos \theta d\theta$$

$$\therefore I = \int \frac{a \cos \theta d\theta}{\sqrt{a^2 - a^2 \sin^2 \theta}} = \int \frac{a \cos \theta d\theta}{a \sqrt{1 - \sin^2 \theta}}$$

$$= \int \frac{1}{\cos \theta} \cos \theta d\theta = \int d\theta$$

$$I = \theta + c$$

$$\therefore \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + c$$
(92)
$$I = \int \frac{1}{\sqrt{x^2 - a^2}} dx \text{ or sin s.}$$

$$u = x + \sqrt{x^2 - a^2} \text{ or soliding bull...},$$

$$du = \left(1 + \frac{(2x)}{2\sqrt{x^2 - a^2}}\right) dx = \left(\frac{\sqrt{x^2 - a^2} + x}}{\sqrt{x^2 - a^2}}\right) dx$$

$$\therefore dx = \frac{\sqrt{x^2 - a^2}}{x + \sqrt{x^2 - a^2}} du = \frac{\sqrt{x^2 - a^2}}{u} du$$

$$\therefore I = \int \frac{1}{\sqrt{x^2 - a^2}} \cdot \left(\frac{\sqrt{x^2 - a^2}}{u} du\right)$$

$$= \int \frac{1}{u} du$$

$$I = \log u + c$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \log \left(x + \sqrt{x^2 - a^2}\right) + c$$

 $(x=a\,\sec\!\theta\,$ என்ற பிரதியிடல் மூலமும் தொகைக் காணலாம் என செய்து அறிக)

(93)
$$I = \int \frac{dx}{\sqrt{x^2 + a^2}} \text{ states.}$$

$$u = x + \sqrt{x^2 + a^2} \text{ states.}$$

$$du = \left(1 + \frac{2x}{2\sqrt{x^2 + a^2}}\right) dx = \left(\frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}}\right) dx$$

$$\therefore dx = \frac{\sqrt{x^2 + a^2}}{x + \sqrt{x^2 + a^2}} du = \frac{\sqrt{x^2 + a^2}}{u} du$$

$$\therefore I = \int \frac{1}{\sqrt{x^2 + a^2}} \cdot \left(\frac{\sqrt{x^2 + a^2}}{u} du\right)$$

$$= \int \frac{1}{u} du$$

$$I = \log u + c$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left(x + \sqrt{x^2 + a^2}\right) + c$$

 $(x=a \, an \, \theta \,$ எனப் பிரதியிடல் மூலமும் தொகைக் காணலாம் என செய்து அறிக)

குறிப்புரை:

எளிதாகத் தொகைக் காண பயன்படக்கூடிய கீழ்க்காணும் பிரதியிடலை நினைவில் கொள்க.

கொடுக்கப்பட்டது	பிரதியிடல்
a^2-x^2	$x = a \sin\theta$
$a^2 + x^2$	$x = a \tan \theta$
x^2-a^2	$x = a \sec \theta$

எ.கா. 9.94 – 9.105 :

தொகைக் காண்க :

$$(94)\frac{1}{1+9x^2} \qquad (95)\frac{1}{1-9x^2} \qquad (96)\frac{1}{1+\frac{x^2}{16}} \qquad (97)\frac{1}{1-4x^2}$$

$$(98)\frac{1}{(x+2)^2-4} \qquad (99)\frac{1}{(2x+1)^2-9} \qquad (100)\frac{1}{\sqrt{25-x^2}} \qquad (101)\frac{1}{\sqrt{1-\frac{x^2}{16}}}$$

$$(102)\frac{1}{\sqrt{1-16x^2}} \qquad (103)\frac{1}{\sqrt{x^2-9}} \qquad (104)\frac{1}{\sqrt{4x^2-25}} \qquad (105)\frac{1}{\sqrt{9x^2+16}}$$

தீர்வு :

(94)
$$\int \frac{1}{1+9x^2} dx = \int \frac{1}{1+(3x)^2} dx$$
$$= \left[\tan^{-1} \left(\frac{3x}{1} \right) \right] \times \frac{1}{3} + c$$
$$= \frac{1}{3} \tan^{-1} 3x + c$$

(95)
$$\int \frac{1}{1 - 9x^2} dx = \int \frac{1}{1 - (3x)^2} dx$$
$$= \frac{1}{2.1} \log \left(\frac{1 + 3x}{1 - 3x} \right) \times \frac{1}{3}$$
$$= \frac{1}{6} \log \left(\frac{1 + 3x}{1 - 3x} \right) + c$$

(96)
$$\int \frac{1}{1 + \frac{x^2}{16}} dx = \int \frac{1}{1 + \left(\frac{x}{4}\right)^2} dx$$
$$= \left[\frac{1}{1} \tan^{-1} \left(\frac{x}{4}\right)\right] \frac{1}{(1/4)}$$
$$= 4 \tan^{-1} \left(\frac{x}{4}\right) + c$$

(97)
$$\int \frac{1}{1 - 4x^2} dx = \int \frac{1}{1 - (2x)^2} dx$$

$$= \left[\frac{1}{2.1} \log \left(\frac{1 + 2x}{1 - 2x} \right) \right] \times \frac{1}{2}$$

$$= \frac{1}{4} \log \left(\frac{1 + 2x}{1 - 2x} \right) + c$$
(98)
$$\int \frac{dx}{(x + 2)^2 - 4} = \int \frac{dx}{(x + 2)^2 - 2^2}$$

$$= \frac{1}{2.(2)} \log \left(\frac{(x + 2) - 2}{(x + 2) + 2} \right)$$

$$= \frac{1}{4} \log \left(\frac{x}{x + 4} \right) + c$$
(99)
$$\int \frac{1}{(2x + 1)^2 - 9} dx = \int \frac{1}{(2x + 1)^2 - 3^2} dx$$

$$= \left[\frac{1}{2.(3)} \log \left(\frac{(2x + 1) - 3}{(2x + 1) + 3} \right) \right] \times \frac{1}{2}$$

$$= \frac{1}{12} \log \left(\frac{2x - 2}{2x + 4} \right)$$

$$= \frac{1}{12} \log \left(\frac{x + 1}{x + 2} \right) + c$$
(100)
$$\int \frac{1}{\sqrt{25 - x^2}} dx = \int \frac{1}{\sqrt{5^2 - x^2}} dx$$

$$= \sin^{-1} \frac{x}{5} + c$$
(101)
$$\int \frac{1}{\sqrt{1 - \frac{x^2}{16}}} dx = \int \frac{1}{\sqrt{1 - \left(\frac{x}{4}\right)^2}} dx$$

$$= \left[\sin^{-1} \left(\frac{x}{4} \right) \right] \cdot \frac{1}{1/4}$$

$$= 4 \sin^{-1} \left(\frac{x}{4} \right) + c$$

(102)
$$\int \frac{1}{\sqrt{1 - 16x^2}} dx = \int \frac{1}{\sqrt{1 - (4x)^2}} dx$$
$$= \left[\sin^{-1} (4x) \right] \frac{1}{4}$$
$$= \frac{1}{4} \sin^{-1} (4x) + c$$
(103)
$$\int \frac{1}{\sqrt{2 - x^2}} dx = \int \frac{1}{\sqrt{2 - x^2}} dx$$

(103)
$$\int \frac{1}{\sqrt{x^2 - 9}} dx = \int \frac{1}{\sqrt{x^2 - 3^2}} dx$$
$$= \log \left(x + \sqrt{x^2 - 9} \right) + c$$

(104)
$$\int \frac{1}{\sqrt{4x^2 - 25}} dx = \int \frac{1}{\sqrt{(2x)^2 - 5^2}} dx$$
$$= \log \left[2x + \sqrt{(2x)^2 - 5^2} \right] \times \frac{1}{2} + c$$
$$= \frac{1}{2} \log \left[2x + \sqrt{4x^2 - 25} \right] + c$$

(105)
$$\int \frac{1}{\sqrt{9x^2 + 16}} dx = \int \frac{1}{\sqrt{(3x)^2 + 4^2}} dx$$
$$= \log \left[3x + \sqrt{(3x)^2 + 4^2} \right] \times \frac{1}{3} + c$$
$$= \frac{1}{3} \log \left[3x + \sqrt{9x^2 + 16} \right] + c$$

വടെ
$$2:\int \frac{dx}{ax^2+bx+c}$$
 , $\int \frac{dx}{\sqrt{ax^2+bx+c}}$

இவ்வடிவிலுள்ள தொகைகளை கணக்கிட முதலில் $(ax^2 + bx + c)$ -ஐ இரு வர்க்கங்களின் கூடுதலாக கீழ்க்காணுமாறு பிரித்தெழுதி வகை1-ன் ஏதேனும் ஒரு சிறப்பான அமைப்பிற்கு கொண்டு வந்து தொகைக் காணலாம்.

 $(ax^2 + bx + c)$ -ஐ இருவர்க்கங்களின் கூடுதலாக பிரித்தெழுத முதலில் x^2 -இன் குணகம் aவை பொது காரணியாக வெளியில் எடுத்துக் கொள்ள வேண்டும். பின் x-ன் குணகத்தை இரண்டால் வகுத்து அதன் வர்க்கத்தினை கூட்டியும் கழித்தும் இரு வர்க்கங்களின் கூடுதலாக பின்வருமாறு எழுதலாம்.

i.e.
$$ax^{2} + bx + c = a\left[x^{2} + \frac{b}{a}x + \frac{c}{a}\right]$$
$$= a\left[\left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \left(\frac{b}{2a}\right)^{2}\right]$$

அல்லது நேரடியாக கீழ்க்காணும் வாய்ப்பாட்டினை பயன்படுத்தலாம்.

$$ax^{2} + bx + c = \frac{1}{4a} \left[(2ax + b)^{2} + (4ac - b^{2}) \right]$$

ஏ.கா. *9.106 – 9.113:* தொகைக் காண்க

$$(106) \frac{1}{x^2 + 5x + 7}$$

$$(107) \frac{1}{x^2 - 7x + 5}$$

$$(108) \frac{1}{\sqrt{x^2 + 16x + 100}}$$

$$(109) \frac{1}{\sqrt{9 + 8x - x^2}}$$

$$(110) \frac{1}{\sqrt{6 - x - x^2}}$$

$$(111) \frac{1}{3x^2 + 13x - 10}$$

$$(112) \frac{1}{2x^2 + 7x + 13}$$

$$(113) \frac{1}{\sqrt{18 - 5x - 2x^2}}$$

தீர்வு :

$$(106) \int \frac{1}{x^2 + 5x + 7} dx = \int \frac{1}{\left(x + \frac{5}{2}\right)^2 + 7 - \left(\frac{5}{2}\right)^2} dx = \int \frac{1}{\left(x + \frac{5}{2}\right)^2 + \frac{3}{4}} dx$$

$$= \int \frac{1}{\left(x + \frac{5}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} dx = \frac{1}{\frac{\sqrt{3}}{2}} \tan^{-1} \left(\frac{x + \frac{5}{2}}{\frac{\sqrt{3}}{2}}\right) + c$$

$$\int \frac{1}{x^2 + 5x + 7} dx = \frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2x + 5}{\sqrt{3}}\right) + c$$

$$(107) \int \frac{1}{x^2 - 7x + 5} dx = \int \frac{1}{\left(x - \frac{7}{2}\right)^2 + 5 - \left(\frac{7}{2}\right)^2} dx = \int \frac{1}{\left(x - \frac{7}{2}\right)^2 - \left(\frac{\sqrt{29}}{2}\right)^2} dx$$

$$= \frac{1}{2 \cdot \frac{\sqrt{29}}{2}} \log \left(\frac{\left(x - \frac{7}{2}\right) - \frac{\sqrt{29}}{2}}{\left(x - \frac{7}{2}\right) + \frac{\sqrt{29}}{2}}\right) + c$$

$$\int \frac{1}{x^2 - 7x + 5} dx = \frac{1}{\sqrt{29}} \log \left(\frac{2x - 7 - \sqrt{29}}{2x - 7 + \sqrt{29}}\right) + c$$

$$(108) \int \frac{1}{\sqrt{x^2 + 16x + 100}} dx = \int \frac{1}{\sqrt{(x + 8)^2 + 100 - (8)^2}} dx$$

$$= \int \frac{1}{\sqrt{(x + 8)^2 + 6^2}} dx$$

$$= \log \left[(x + 8) + \sqrt{(x + 8)^2 + 6^2} \right] + c$$

$$= \log \left((x + 8) + \sqrt{x^2 + 16x + 100} \right) + c$$

$$(109) \int \frac{1}{\sqrt{9 + 8x - x^2}} dx = \int \frac{1}{\sqrt{9 - (x^2 - 8x)}} dx = \int \frac{1}{\sqrt{9 - \left\{ (x - 4)^2 - 4^2 \right\}}} dx$$

$$= \int \frac{1}{\sqrt{9 + 16 - (x - 4)^2}} dx = \int \frac{1}{\sqrt{5^2 - (x - 4)^2}} dx$$

$$\int \frac{1}{\sqrt{6 - x - x^2}} dx = \sin^{-1} \frac{x - 4}{5} + c$$

$$(110) \int \frac{1}{\sqrt{6 - (x - 4)^2}} dx = \int \frac{1}{\sqrt{6 - \left\{ (x + \frac{1}{2})^2 - \left(\frac{1}{2}\right)^2 \right\}}} dx$$

$$= \int \frac{1}{\sqrt{\left(6 + \frac{1}{4}\right) - \left(x + \frac{1}{2}\right)^2}} dx = \int \frac{1}{\sqrt{\left(\frac{5}{2}\right)^2 - \left(x + \frac{1}{2}\right)^2}}$$

$$= \sin^{-1} \left(\frac{x + \frac{1}{2}}{\frac{5}{2}}\right) + c = \sin^{-1} \left(\frac{2x + 1}{5}\right) + c$$

$$\int \frac{1}{\sqrt{6 - x - x^2}} dx = \sin^{-1} \left(\frac{2x + 1}{5}\right) + c$$

111 முதல் 113 வரை உள்ள எடுத்துக்காட்டுகளில்

 $ax^2 + bx + c = \frac{1}{4a} \left[(2ax + b)^2 + (4ac - b^2) \right]$ என்ற நேரடி வாய்ப்பாடு பயன்படுத்தப்பட்டுள்ளது.

வகை
$$3:\int \frac{px+q}{ax^2+bx+c} \ dx$$
 , $\int \frac{px+q}{\sqrt{ax^2+bx+c}} \ dx$ என்ற வடிவிலுள்ள

தொகைகளைக் காணல்

தொகுதி px + q-ஐ பகுதியின் வகைக்கெழுவின் மடங்கு மற்றும் ஒரு மாறிலியைக் கொண்டதாகப் பிரித்து தொகைக் காணும் வடிவில் எழுதி எளிதில் தொகை காணலாம்.

அதாவது

$$(px+q)=\mathrm{A}\,rac{d}{dx}\,(ax^2+bx+c)+\mathrm{B}$$
 என எடுத்துக் கொண்டால்

i.e.
$$(px+q) = A(2ax+b) + B$$
 ஆகும்.

இட, வலப்பக்கங்களிலுள்ள *x*-ன் குணகங்களையும் மாறிலிகளையும் தனித்தனியே சமப்படுத்தி A, B-ன் மதிப்புகளை காணலாம்.

(i)
$$\int \frac{px+q}{ax^2+bx+c} = \int \frac{A(2ax+b)+B}{ax^2+bx+c} dx$$
$$= A \int \left(\frac{2ax+b}{ax^2+bx+c}\right) dx + B \int \frac{1}{ax^2+bx+c} dx$$
$$\left(\because \int \frac{f'(x)}{f(x)} dx = \log f(x) \Rightarrow \int \left(\frac{2ax+b}{ax^2+bx+c}\right) dx = [\log(ax^2+bx+c)]\right)$$
$$\therefore \int \frac{px+q}{ax^2+bx+c} dx = A [\log(ax^2+bx+c)] + B \int \frac{1}{ax^2+bx+c} dx$$

(ii)
$$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx = A \int \frac{(2ax+b)}{\sqrt{ax^2+bx+c}} dx + B \int \frac{1}{\sqrt{ax^2+bx+c}} dx$$
$$\left(\int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} \right) \Rightarrow \int \frac{(2ax+b)}{\sqrt{ax^2+bx+c}} dx = 2\sqrt{ax^2+bx+c}$$
$$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx = A\left(2\sqrt{ax^2+bx+c}\right) + B \int \frac{1}{\sqrt{ax^2+bx+c}} dx$$

எ.கா. *114:* தொகைக் காண்க :

$$(114)\frac{4x-3}{x^2+3x+8} \qquad (115)\frac{3x+2}{x^2+x+1} \qquad (116)\frac{5x-2}{x^2-x-2}$$

$$(117)\frac{3x+1}{\sqrt{2x^2+x+3}} \qquad (118)\frac{x+1}{\sqrt{8+x-x^2}} \qquad (119)\frac{4x-3}{\sqrt{x^2+2x-1}}$$

தீர்வு :

$$(114) \int \frac{4x-3}{x^2+3x+8} \ dx$$

$$4x-3=A\frac{d}{dx}\;(x^2+3x+8)+B$$
 என்க.
$$4x-3=A(2x+3)+B\qquad \dots (i)$$
 மாற்றி அமைக்க
$$4x-3=(2A)\;x+(3A+B)$$
 குணகங்களை சமப்படுத்த,
$$2A=4 \quad \Rightarrow \ A=2$$

$$3A+B=-3 \quad \Rightarrow \ B=-3-3A=-9$$

∴ (i) ⇒

$$(4x-3) = 2(2x+3) + (-9)$$

$$\therefore \int \frac{4x-3}{x^2+3x+8} dx = \int \frac{2(2x+3) + (-9)}{x^2+3x+8} dx$$

$$= 2 \int \frac{(2x+3)}{x^2+3x+8} dx - 9 \int \frac{dx}{x^2+3x+8}$$

$$\int \frac{4x-3}{x^2+3x+8} dx = 2I_1 - 9I_2 \qquad ... (1)$$

$$I_1 = \int \frac{(2x+3)}{x^2+3x+8} dx \text{ which If } I_2 = \int \frac{dx}{x^2+3x+8} dx$$

$$I_1 = \int \frac{(2x+3)}{x^2+3x+8} dx$$

$$x^{2} + 3x - 18 = u \quad \text{stable} \quad (2x+3)dx = du$$

$$I_{1} = \int \frac{du}{u} = \log(x^{2} + 3x + 8) \qquad \dots (2x+3)dx = 0$$

$$I_{2} = \int \frac{dx}{x^{2} + 3x + 8} = \int \frac{4(1)}{(2x+3)^{2} + 4 \times 8 - 3^{2}} dx$$

$$12 = \int \frac{1}{x^2 + 3x + 8} = \int \frac{1}{(2x + 3)^2 + 4 \times 8 - 3^2} dx$$
$$= \int \frac{4}{(2x + 3)^2 + (\sqrt{23})^2} dx = 4 \times \frac{1}{\sqrt{23}} \times \frac{1}{2} \tan^{-1} \frac{2x + 3}{\sqrt{23}}$$

I₂ =
$$\frac{2}{\sqrt{23}} \tan^{-1} \frac{2x+3}{\sqrt{23}}$$
 ... (3)
(2), (3)-ஐ (1)-ல் பிரதியிட,
$$\therefore \qquad \int \frac{4x-3}{x^2+3x+8} \ dx = 2 \log (x^2+3x+8) - \frac{18}{\sqrt{23}} \tan^{-1} \frac{2x+3}{\sqrt{23}}$$
(115) $\int \frac{3x+2}{x^2+x+1} \ dx$

$$3x + 2 = A \frac{d}{dx} (x^2 + x + 1) + B$$
 ਰਾਕਾਂਡ,
 $(3x + 12) = A(2x + 1) + B \dots (1)$

i.e. 3x + 2 = (2A)x + (A + B)ஒத்த உறுப்புகளைச் சமப்படுத்த

$$2A = 3$$
 ; $A + B = 2$
 $\therefore A = \frac{3}{2}$; $\frac{3}{2} + B = 2$ $\Rightarrow B = 2 - \frac{3}{2} = \frac{1}{2}$

$$A = \frac{3}{2}$$
 and $B = \frac{1}{2}$ in (1) எனப் பிரதியிட,

$$\therefore (3x+2) = \frac{3}{2}(2x+1) + (\frac{1}{2})$$

$$\therefore \int \frac{3x+2}{x^2+x+1} dx = \int \frac{\frac{3}{2}(2x+1) + (\frac{1}{2})}{x^2+x+1} dx$$
$$= \frac{3}{2} \int \frac{2x+1}{x^2+x+1} dx + \frac{1}{2} \int \frac{1}{x^2+x+1} dx$$

$$\therefore \int \frac{3x+2}{x^2+x+1} dx = \frac{3}{2} \left\{ \log (x^2+x+1) \right\} + I \dots (2)$$

(2) Find
$$I = \frac{1}{2} \int \frac{1}{x^2 + x + 1} dx = \frac{1}{2} \int \frac{4 \times 1}{(2x + 1)^2 + 4 \times 1 \times 1 - 1^2} dx$$
$$= 2 \int \frac{1}{(2x + 1)^2 + (\sqrt{3})^2} = 2 \times \frac{1}{\sqrt{3}} \left(\frac{1}{2}\right) \tan^{-1} \left(\frac{2x + 1}{\sqrt{3}}\right)$$

$$I = \frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right)$$

மேலுள்ள I-ஐ (2)-ல் பிரதியிட,

$$\therefore \int \frac{3x+2}{x^2+x+1} dx = \frac{3}{2} \log(x^2+x+1) + \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right) + c$$

$$(116) \int \frac{5x-2}{x^2-x-2} \ dx$$

$$5x - 2 = A \frac{d}{dx} (x^2 - x - 2) + B$$
 என்க.
 $5x - 2 = A(2x - 1) + B$... (1)
 $5x - 2 = (2A)x - A + B$

ஒத்த உறுப்புகளைச் சமப்படுத்த,

$$2A = 5$$
 ; $-A + B = -2$

$$\therefore A = \frac{5}{2} \quad ; -\frac{5}{2} + B = -2 \implies B = -2 + \frac{5}{2} = \frac{1}{2}$$

$$A = \frac{5}{2} \text{ and } B = \frac{1}{2} \text{ From (1)-ideal Large Maller},$$

$$(5x - 2) = \frac{5}{2} (2x - 1) + \frac{1}{2}$$

$$\therefore \int \frac{5x-2}{x^2-x-2} dx = \int \frac{\frac{5}{2}(2x-1) + (\frac{1}{2})}{x^2-x-2} dx$$
$$= \frac{5}{2} \int \frac{2x-1}{x^2-x-2} dx + \frac{1}{2} \int \frac{1}{x^2-x-2} dx$$

$$\therefore \int \frac{5x-2}{x^2-x-2} dx = \frac{5}{2} \left\{ \log (x^2-x-2) \right\} + I...(2)$$

$$I = \frac{1}{2} \int \frac{1}{x^2 - x - 2} dx = \frac{1}{2} \int \frac{4 \times 1}{(2x - 1)^2 - 8 - 1} dx$$

$$= \frac{1}{2} \int \frac{4}{(2x - 1)^2 - 3^2} = \frac{4}{2} \times \frac{1}{2 \times 3} \frac{1}{2} \log \left[\frac{2x - 1 - 3}{2x - 1 + 3} \right]$$

$$I = \frac{1}{3 \times 2} \log \left[\frac{2x - 4}{2x + 2} \right] = \frac{1}{6} \log \left(\frac{x - 2}{x + 1} \right)$$

$$\int \frac{5x-2}{x^2-x-2} dx = \frac{5}{2} \log(x^2-x-2) + \frac{1}{6} \log\left(\frac{x-2}{x+1}\right) + c$$

குறிப்பு : பகுதிப் பின்னங்களாக பிரித்து தொகைக் காண்க.

(117)
$$\int \frac{3x+1}{\sqrt{2x^2+x+3}} dx$$
$$3x+1 = A\frac{d}{dx} (2x^2+x+3) + B \text{ so sit 5.}$$
$$3x+1 = A(4x+1) + B \qquad \dots (1)$$
$$3x+1 = 4Ax + A + B$$

ஒத்த உறுப்புகளைச் சமப்படுத்த,

$$4A = 3$$
; $A + B = 1$
 $\therefore A = \frac{3}{4}$ $B = 1 - A = 1 - \frac{3}{4} = \frac{1}{4}$

(i)-
$$\sin \omega \omega$$
 $\Rightarrow : 3x + 1 = \frac{3}{4} (4x + 1) + \frac{1}{4}$

$$\therefore \int \frac{3x+1}{\sqrt{2x^2+x+3}} dx = \int \frac{\frac{3}{4}(4x+1) + \frac{1}{4}}{\sqrt{2x^2+x+3}} dx$$

$$= \frac{3}{4} \int \frac{4x+1}{\sqrt{2x^2+x+3}} dx + \frac{1}{4} \int \frac{1}{\sqrt{2x^2+x+3}} dx$$

$$\therefore \int \frac{3x+1}{\sqrt{2x^2+x+3}} dx = \frac{3}{4} \left\{ 2\sqrt{2x^2+x+3} \right\} + \mathbf{I} \dots (2) \quad \left(\because \int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} \right)$$

②
$$i$$
 $\mathbf{I} = \frac{1}{4} \int \frac{1}{\sqrt{2x^2 + x + 3}} dx$

$$= \frac{1}{4} \int \frac{\sqrt{4.2}}{\sqrt{(4x + 1)^2 + 24 - 1}} dx$$

$$= \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{(4x + 1)^2 + (\sqrt{23})^2}} dx$$

$$\mathbf{I} = \frac{1}{\sqrt{2}} \left[\log (4x + 1) + \sqrt{(4x + 1)^2 + 23} \right] \times \frac{1}{4}$$

$$\int \frac{3x+1}{\sqrt{2x^2+x+3}} dx = \frac{3}{2} \sqrt{2x^2+x+3} + \frac{1}{4\sqrt{2}} \left\{ \log (4x+1) + \sqrt{(4x+1)^2+23} \right\} + c$$

(118)
$$\int \frac{x+1}{\sqrt{8+x-x^2}} \ dx$$

$$x + 1 = A \frac{d}{dx} (8 + x - x^2) + B$$
 என்க.
 $x + 1 = A(1 - 2x) + B$... (1)
 $= (-2A)x + A + B$

ஒத்த உறுப்புகளைச் சமப்படுத்த,

$$-2A = 1$$
; $A + B = 1$
 $\therefore A = -\frac{1}{2}$ $B = 1 - A = 1 - \frac{1}{2} = \frac{3}{2}$

$$\mathbf{A}=-rac{1}{2}$$
 மற்றும் $\mathbf{B}=rac{3}{2}$ எனப் பிரதியிட,

$$x + 1 = -\frac{1}{2} (1 - 2x) + \frac{3}{2}$$

$$\therefore \int \frac{x+1}{\sqrt{8+x-x^2}} dx = \int \frac{-\frac{1}{2}(1-2x) + \frac{3}{2}}{\sqrt{8+x-x^2}} dx$$
$$= -\frac{1}{2} \int \frac{(1-2x)}{\sqrt{8+x-x^2}} dx + \frac{3}{2} \int \frac{1}{\sqrt{8+x-x^2}} dx$$

$$\therefore \int \frac{x+1}{\sqrt{8+x-x^2}} dx = -\frac{1}{2} \left\{ 2\sqrt{8+x-x^2} \right\} + \mathbf{I}...(2)$$

இங்கு

$$\mathbf{I} = \frac{3}{2} \int \frac{1}{\sqrt{8 + x - x^2}} dx$$

$$= \frac{3}{2} \int \frac{1}{\sqrt{-\{x^2 - x - 8\}}} dx$$

$$= \frac{3}{2} \int \frac{\sqrt{4 \times 1}}{\sqrt{-\{(2x - 1)^2 - 32 - 1\}}} dx$$

$$= \frac{3}{2} \int \frac{2}{\sqrt{(\sqrt{33})^2 - (2x - 1)^2}} dx$$

$$= 3\left[\left(\frac{1}{2}\right) \sin^{-1}\left(\frac{2x-1}{\sqrt{33}}\right) \right]$$
$$\mathbf{I} = \frac{3}{2} \sin^{-1}\left(\frac{2x-1}{\sqrt{33}}\right)$$

(2)-ல் பிரதியிட,

$$\int \frac{x+1}{\sqrt{8+x-x^2}} \, dx = -\sqrt{8+x-x^2} + \frac{3}{2} \sin^{-1} \left(\frac{2x-1}{\sqrt{33}}\right) + c$$

(119)
$$\int \frac{4x-3}{\sqrt{x^2+2x-1}} dx$$
$$4x-1 = A(2x+2) + B \text{ so size.} \qquad ... (1)$$
$$4x-3 = (2A)x+2A+B$$

ஒத்த உறுப்புகளைச் சமப்படுத்த,

$$4 = 2A ; 2A + B$$

$$\therefore A = 2, B = -3 - 2A = -3 - 4 = -7$$

$$A = 2 \text{ in in in in } B = -7 \text{ stat} (1) - \text{sin in in } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 1 - \text{sin } 197 \text{ for in } 197 \text{ for in$$

(2)-ல் பிரதியிட,

$$\int \frac{4x-3}{\sqrt{x^2+2x-1}} \, dx = 4\sqrt{x^2+2x-1} - 7\log\left\{ (x+1) + \sqrt{x^2+2x-1} \right\} + c$$

$$\int \frac{1}{\sqrt{a^2-x^2}} \, dx = \sin^{-1}\frac{x}{a} + c$$

$$\int \frac{1}{\sqrt{x^2-a^2}} \, dx = \log\left[x + \sqrt{x^2-a^2} \right] + c$$

$$\int \frac{1}{\sqrt{x^2+a^2}} \, dx = \log\left[x + \sqrt{x^2+a^2} \right] + c$$

ஆகியவற்றினை முன்பே கண்டோம். அதே வகையில் அமைந்துள்ள கீழுள்ள மூன்று வாய்பாட்டினைக் காண்க.

வகை IV:

$$(120)\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\frac{x}{a} + c$$

$$(121)\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log\left[x + \sqrt{x^2 - a^2}\right] + c$$

$$(122)\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log\left[x + \sqrt{x^2 + a^2}\right] + c$$

$$(120)\mathbf{I} = \int \sqrt{a^2 - x^2} \, dx \quad \text{etais.}$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த
$$dv = dx$$

$$\mathbf{I} = x\sqrt{a^2 - x^2} - \int x\left(-\frac{x}{\sqrt{a^2 - x^2}}\right) dx \qquad u = \sqrt{a^2 - x^2} \qquad v = x$$

$$du = \frac{-2x}{2\sqrt{a^2 - x^2}} dx$$

$$= x\sqrt{a^2 - x^2} - \int \frac{-x^2}{\sqrt{a^2 - x^2}} dx$$

$$= x\sqrt{a^2 - x^2} - \int \frac{a^2 - x^2 - a^2}{\sqrt{a^2 - x^2}} dx$$

$$= x \sqrt{a^2 - x^2} - \int \left(\frac{a^2 - x^2}{\sqrt{a^2 - x^2}} + \frac{(-a^2)}{\sqrt{a^2 - x^2}}\right) dx$$

$$= x \sqrt{a^2 - x^2} - \int \sqrt{a^2 - x^2} dx + \int \frac{a^2}{\sqrt{a^2 - x^2}} dx$$

$$\mathbf{I} = x \sqrt{a^2 - x^2} - \mathbf{I} + a^2 \int \frac{1}{\sqrt{a^2 - x^2}} dx$$

$$\mathbf{I} + \mathbf{I} = x \sqrt{a^2 - x^2} + a^2 \cdot \sin^{-1} \frac{x}{a}$$

$$\therefore 2\mathbf{I} = x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a}$$

$$\mathbf{I} = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c$$

$$\therefore \int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + c$$

(121) Let $\mathbf{I} = \int \sqrt{x^2 - a^2} \, dx$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த
$$u=\sqrt{x^2-a^2}$$
 $dv=dx$
$$\mathbf{I}=x\sqrt{x^2-a^2}-\int x\left(\frac{x}{\sqrt{x^2-a^2}}\right)dx \qquad du=\frac{2x}{2\sqrt{x^2-a^2}}dx \qquad v=x$$

$$=x\sqrt{x^2-a^2}-\int \frac{x^2-a^2+a^2}{\sqrt{x^2-a^2}}dx$$

$$=x\sqrt{x^2-a^2}-\int \frac{x^2-a^2}{\sqrt{x^2-a^2}}dx-\int \frac{a^2}{\sqrt{x^2-a^2}}dx$$

$$=x\sqrt{x^2-a^2}-\int \sqrt{x^2-a^2}dx-a^2\int \frac{1}{\sqrt{x^2-a^2}}dx$$

$$\mathbf{I}=x\sqrt{x^2-a^2}-\mathbf{I}-a^2\log\left[x+\sqrt{x^2-a^2}\right]$$

$$\therefore 2I = x\sqrt{x^2 - a^2} - a^2 \log \left[x + \sqrt{x^2 - a^2} \right]$$

$$\therefore I = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left[x + \sqrt{x^2 - a^2} \right] + c$$

$$\therefore \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left[x + \sqrt{x^2 - a^2} \right] + c$$

(122) Let
$$\mathbf{I} = \int \sqrt{x^2 + a^2} \, dx$$

பகுதித் தொகையிடலின் சூத்திரத்தைப் பயன்படுத்த
$$u = \sqrt{x^2 + a^2}$$
 $dv = dv$

$$\therefore \ \mathbf{I} = x \sqrt{x^2 + a^2} - \int \left(\frac{x^2}{\sqrt{x^2 + a^2}}\right) dx \qquad du = \frac{2x}{2\sqrt{x^2 + a^2}} dx \qquad v = x$$

$$= x \sqrt{x^2 + a^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{x^2 + a^2}} dx$$

$$= x \sqrt{x^2 + a^2} - \int \frac{x^2 + a^2}{\sqrt{x^2 + a^2}} dx + \int \frac{a^2}{\sqrt{x^2 + a^2}} dx$$

$$= x \sqrt{x^2 + a^2} - \int \sqrt{x^2 + a^2} dx + a^2 \int \frac{1}{\sqrt{x^2 + a^2}} dx$$

$$\mathbf{I} = x \sqrt{x^2 + a^2} - \mathbf{I} + a^2 \log\left[x + \sqrt{x^2 + a^2}\right] + c$$

$$\therefore 2\mathbf{I} = x \sqrt{x^2 + a^2} + a^2 \log\left[x + \sqrt{x^2 + a^2}\right] + c$$

$$\therefore \mathbf{I} = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log\left[x + \sqrt{x^2 + a^2}\right] + c$$

$$\therefore \int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log\left[x + \sqrt{x^2 + a^2}\right] + c$$

எ.கா.: 9.123 – 9.131: தொகைக் காண்க :

$$(123)\sqrt{4-9x^2} \qquad (124)\sqrt{16x^2-25} \qquad (125)\sqrt{9x^2+16} \qquad (126)\sqrt{2x-x^2}$$

$$(127)\sqrt{x^2 - 4x + 6} \quad (128)\sqrt{x^2 + 4x + 1} \quad (129)\sqrt{4 + 8x - 5x^2}$$

$$(130) \quad \sqrt{(2 - x)(1 + x)} \qquad (131)\sqrt{(x + 1)(x - 2)}$$

தீர்வு :

$$(123) \sqrt{4 - 9x^2} dx = \int \sqrt{2^2 - (3x)^2} dx = \frac{1}{3} \left[\frac{(3x)}{2} \sqrt{2^2 - (3x)^2} + \frac{2^2}{2} \sin^{-1} \frac{3x}{2} \right] + c$$
$$= \frac{1}{3} \left[\frac{3x}{2} \sqrt{4 - 9x^2} + 2 \sin^{-1} \frac{3x}{2} \right] + c$$

$$(124)\int \sqrt{16x^2 - 25} \ dx = \int \sqrt{(4x)^2 - 5^2} \ dx$$
$$= \frac{1}{4} \left[\frac{(4x)}{2} \sqrt{(4x)^2 - 5^2} - \frac{25}{2} \log \left[4x + \sqrt{(4x)^2 - 5^2} \right] \right]$$
$$= \frac{1}{8} \left[4x \sqrt{16x^2 - 25} - 25 \log \left(4x + \sqrt{16x^2 - 25} \right) \right] + c$$

(125)
$$\int \sqrt{9x^2 + 16} \ dx = \int \sqrt{(3x)^2 + 4^2} \ dx$$
$$= \frac{1}{3} \left[\frac{(3x)}{2} \sqrt{(3x)^2 + 4^2} + \frac{4^2}{2} \log \left[3x + \sqrt{(3x)^2 + 4^2} \right] \right]$$
$$= \frac{1}{6} \left[3x \sqrt{9x^2 + 16} + 16 \log \left(3x + \sqrt{9x^2 + 16} \right) \right] + c$$

(126)
$$\int \sqrt{2x - x^2} dx = \int \sqrt{1 - \{x^2 - 2x + 1\}} dx = \int \sqrt{1^2 - (x - 1)^2} dx$$
$$= \frac{(x - 1)}{2} \sqrt{1 - (x - 1)^2} + \frac{1^2}{2} \sin^{-1} \left(\frac{x - 1}{1}\right) + c$$
$$= \frac{x - 1}{2} \sqrt{2x - x^2} + \frac{1}{2} \sin^{-1} (x - 1) + c$$

$$(127) \int \sqrt{x^2 - 4x + 6} \, dx = \int \sqrt{x^2 - 4x + 4 + 2} \, dx = \int \sqrt{(x - 2)^2 + (\sqrt{2}^2)} \, dx$$
$$= \frac{(x - 2)}{2} \sqrt{(x - 2)^2 + (\sqrt{2})^2} + \frac{(\sqrt{2})^2}{2} \log \left[(x - 2) + \sqrt{(x - 2)^2 + (\sqrt{2})^2} \right] + c$$

$$= \frac{(x-2)}{2} \sqrt{x^2 - 4x + 6} + \log \left[(x-2) + \sqrt{x^2 - 4x + 6} \right] + c$$

$$(128) \int \sqrt{x^2 + 4x + 1} \, dx = \int \sqrt{(x+2)^2 - (\sqrt{3})^2} \, dx$$

$$= \frac{(x+2)}{2} \sqrt{(x+2)^2 - (\sqrt{3})^2} - \frac{(\sqrt{3})^2}{2} \log \left[(x+2) + \sqrt{(x+2)^2 - (\sqrt{3})^2} \right] + c$$

$$= \frac{(x+2)}{2} \sqrt{x^2 + 4x + 1} - \frac{3}{2} \log \left[(x+2) + \sqrt{x^2 + 4x + 1} \right] + c$$

$$(129) \int \sqrt{4 + 8x - 5x^2} \, dx = \int \sqrt{-\{5x^2 - 8x - 4\}} \, dx$$

$$\left(\because ax^2 + bx + c = \frac{1}{4a} \left[(2ax + b)^2 + (4ac - b^2) \right] \right)$$

$$= \int \frac{1}{\sqrt{4 \times 5}} \sqrt{-\{(10x - 8)^2 - 80 - 64\}} \, dx$$

$$= \frac{1}{\sqrt{20}} \left[\left(\frac{1}{10} \right) \left(\frac{10x - 8}{2} \sqrt{12^2 - (10x - 8)^2} + \left(\frac{12^2}{2} \right) \sin^{-1} \frac{10x - 8}{12} \right) \right]$$

$$= \frac{1}{\sqrt{20}} \left[\frac{1}{10} (5x - 4) \sqrt{80 + 16x - 100x^2} + \frac{36}{5} \sin^{-1} \left(\frac{5x - 4}{6} \right) \right]$$

$$= \frac{1}{\sqrt{20}} \left[\left(\frac{5x - 4}{10} \right) \sqrt{20} \sqrt{(4 + 8x - 5x^2)} + \frac{36}{5} \sin^{-1} \frac{5x - 4}{6} \right]$$

$$\therefore \int \sqrt{4 + 8x - 5x^2} \, dx = \frac{5x - 4}{10} \sqrt{4 + 8x - 5x^2} + \frac{18}{5\sqrt{5}} \sin^{-1} \frac{5x - 4}{6} + c$$

$$(130) \int \sqrt{(2 - x)(1 + x)} \, dx = \int \sqrt{2 + x - x^2} \, dx = \int \sqrt{-(x^2 - x - 2)} \, dx$$

$$= \int \frac{\sqrt{-\{(2x - 1)^2 - 8 - 1\}}}{\sqrt{4.1}} \, dx = \frac{1}{2} \int \sqrt{3^2 - (2x - 1)^2} \, dx$$

$$= \frac{1}{2} \left[\frac{1}{2} \frac{(2x-1)}{2} \sqrt{3^2 - (2x-1)^2} + \left(\frac{1}{2}\right) \frac{3^2}{2} \sin^{-1}\left(\frac{2x-1}{3}\right) \right]$$

$$= \frac{1}{8} \left[(2x-1) \sqrt{8 + 4x - 4x^2} + 9 \sin^{-1}\left(\frac{2x-1}{3}\right) \right]$$

$$= \frac{1}{8} \left[2(2x-1) \sqrt{2 + x - x^2} + 9 \sin^{-1}\left(\frac{2x-1}{3}\right) \right]$$

$$(131) \int \sqrt{(x+1)(x-2)} \, dx = \int \sqrt{x^2 - x - 2} \, dx = \int \frac{\sqrt{(2x-1)^2 - 8 - 1}}{\sqrt{4}} \, dx$$

$$= \frac{1}{2} \int \sqrt{(2x-1)^2 - 3^2} \, dx$$

$$= \frac{1}{2} \left[\left(\frac{1}{2}\right) \left(\frac{2x-1}{2}\right) \sqrt{(2x-1)^2 - 3^2} - \left(\frac{1}{2}\right) \left(\frac{3^2}{2}\right) \log\left\{(2x-1) + \sqrt{(2x-1)^2 - 3^2}\right\} \right]$$

$$\int \sqrt{(x+1)(x-2)} dx = \frac{1}{2} \left[\frac{(2x-1)}{4} \sqrt{(2x-1)^2 - 9} - \frac{9}{4} \log\left\{(2x-1) + \sqrt{(2x-1)^2 - 9}\right\} \right]$$

$$\text{Lump \hat{p}-$ 49.7}$$

தொகை காண்க.

(1)
$$\frac{1}{x^2 + 25}$$
, $\frac{1}{(x+2)^2 + 16}$, $\frac{1}{(3x+5)^2 + 4}$, $\frac{1}{2x^2 + 7x + 13}$, $\frac{1}{9x^2 + 6x + 10}$
(2) $\frac{1}{16-x^2}$, $\frac{1}{9-(3-x)^2}$, $\frac{1}{7-(4x+1)^2}$, $\frac{1}{1+x-x^2}$, $\frac{1}{5-6x-9x^2}$
(3) $\frac{1}{x^2 - 25}$, $\frac{1}{(2x+1)^2 - 16}$, $\frac{1}{(3x+5)^2 - 7}$, $\frac{1}{x^2 + 3x - 3}$, $\frac{1}{3x^2 - 13x - 10}$
(4) $\frac{1}{\sqrt{x^2 + 1}}$, $\frac{1}{\sqrt{(2x+5)^2 + 4}}$, $\frac{1}{\sqrt{(3x-5)^2 + 6}}$, $\frac{1}{\sqrt{x^2 + 3x + 10}}$, $\frac{1}{\sqrt{x^2 + 5x + 26}}$
(5) $\frac{1}{\sqrt{x^2 - 91}}$, $\frac{1}{\sqrt{(x+1)^2 - 15}}$, $\frac{1}{\sqrt{(2x+3)^2 - 16}}$, $\frac{1}{\sqrt{x^2 + 4x - 12}}$, $\frac{1}{\sqrt{x^2 + 8x - 20}}$
(6) $\frac{1}{\sqrt{4-x^2}}$, $\frac{1}{\sqrt{25-(x-1)^2}}$, $\frac{1}{\sqrt{11-(2x+3)^2}}$, $\frac{1}{\sqrt{1+x-x^2}}$, $\frac{1}{\sqrt{8-x-x^2}}$
(7) $\frac{3-2x}{x^2 + x + 1}$, $\frac{x-3}{x^2 + 21x + 3}$, $\frac{2x-1}{2x^2 + x + 3}$, $\frac{1-x}{1-x-x^2}$, $\frac{4x+1}{x^2 + 3x + 1}$
(8) $\frac{x+2}{\sqrt{6+x-2x^2}}$, $\frac{2x-3}{\sqrt{10-7x-x^2}}$, $\frac{3x+2}{\sqrt{3x^2 + 4x + 7}}$, $\sqrt{\frac{1+x}{1-x}}$, $\frac{6x+7}{\sqrt{(x-4)(x-5)}}$
(9) $\sqrt{1+x^2}$, $\sqrt{(x+1)^2 + 4}$, $\sqrt{(2x+1)^2 + 9}$, $\sqrt{(x^2 - 3x + 10)}$

9.4 வரையறுத்தத் தொகை:

பண்டைய கிரேக்கர்கள் தொகை நுண்கணிதத்தின் அடிப்படைக் கோட்பாடுகளை வடிவ இயலின் மூலமாக அறிந்திருந்தனர்.

கிரேக்க வடிவ கணித மேதை ஆர்க்கிமிடிஸ் வட்டத்தின் பரப்பளவைக் காண கீழ்க்காணும் முறையினை கையாண்டார். முதலில் கொடுக்கப்பட்ட வட்டத்தினுள் வட்டத்தை தொட்டுச் செல்லும் ஒழுங்கு பலகோண உருவத்தை வரைந்து அதன் தோராய மதிப்பை அளவுகளை கண்டார். பின் அதன் பக்க மேன்மேலும் பக்கங்களின் குறைத்து, எண்ணிக்கையை அதிகரித்து, இறுதியில் தோராய மதிப்பிலிருந்து சரியான மதிப்பினைக் காணும் முறையை கண்டறிந்தார்.

படம் 9.2

இதே போல் ஒரு ஒழுங்கற்ற உருவமுள்ள தளத்தின் பரப்பளவைக் காண அதனை சம அகலம் கொண்ட சிறுசிறு செவ்வக பட்டைகளாகப் பிரித்து அதன் கூட்டுத் தொகையினை தோராய பரப்பளவாகவும், பின்னர் அகலத்தின் அளவினை மேலும் மேலும் குறைத்து செவ்வகத்தின் எண்ணிக்கையை அதிகரித்து இறுதியில், இதன் கூட்டல்கள் எல்லைத் தொகையினை கொடுக்கப்பட்ட தளத்திற்கு சமமான பரப்பு எனக் கண்டறிந்தனர்.

பரப்பளவு, கன அளவு மற்றும் பல அளவைகளை மிகத் துல்லியமாக கணக்கிட முறையாகவும் எளிமையாகவும் வழிவகுப்பதே தொகை நுண் கணிதத்தின் தனிச்சிறப்பாகும்.

தொகையீட்டை ஒரு கூட்டுத்தொகையாக காணல் :

வரையறுக்கப்பட்ட தொகையீட்டைப் பற்றி தெளிவாக அறிந்து கொள்ள பின்வரும் எளிய நிலையை எடுத்துக் கொள்வோம்.

y = f(x) என்பது [a, b] என்ற மூடிய இடைவெளியில் வரையறுக்கப்பட்ட ஒரு தொடர்ச்சியாக அதிகரிக்கும் சார்பு என்க. மேலும் முடிவுள்ள மதிப்புகளை ஏற்கும் சார்பு என்க. இச்சார்பு

y = f(x) என்கிற தொடர்ச்சியான வளைவரை ஒன்றைக் குறிக்கும்.

இவ்வளைவரைக்கும் $x=a,\ x=b,\$ என்ற இரு குத்துக் கோடுகளுக்கும் xஅச்சுக்கும் இடைப்பட்ட பரப்பை ${f R}$ என்போம்.

மூடிய இடைவெளி $[a,\ b]$ -ஐ n-உள் இடைவெளிகளாக பிரித்து, அவற்றின் மீது n செவ்வகப் பட்டைகளைக் கொண்ட பல பக்க வடிவத்தினை படத்தில் காட்டியபடி R-ல் வரையறுப்போம். ஒவ்வொரு செவ்வகப் பட்டையின் அகலமும் Δx என கொண்டால்

$$\therefore \Delta x = \frac{b-a}{n}$$
 ஆக இருக்கும்.

 $x_0, x_1, x_2.....x_r....x_n$ ஐ நுண் இடைவெளிகளின் முனைப்புள்ளிகளாகக் கொள்வோம்.

இங்கு
$$x_0 = a, x_1 = a + \Delta x, x_2 = a + 2\Delta x, \dots, x_r = a + r\Delta x, \dots, x_n = b$$

படம் 9.4-ல் பலபக்க வடிவத்தின் பரப்பளவு n செவ்வகப் பட்டையின் பரப்பளவின் கூடுதலாகும்.

 $oldsymbol{x}$ -ன் நுண் இடைவெளியில் $oldsymbol{x}$ -ன் இடப்பக்க மதிப்பினை எடுத்துக் தோள்வோம்.

$$S_n = A_1 + A_2 + \dots + A_n$$

$$= f(x_0) \Delta x + f(x_1)\Delta x \dots + f(x_{n-1}) \Delta x$$

$$= [f(a) + f(a + \Delta x) + \dots f(a+r \Delta x) \dots$$

$$+ f(a + (n-1)\Delta x)] \Delta x$$

$$= \sum_{r=1}^{n} f\{a + (r-1)\Delta x\}.(\Delta x) = \Delta x \sum_{r=1}^{n} f\{a + (r-1)\Delta x\}$$

$$S_n = \frac{b-a}{n} \sum_{r=1}^{n} f\left\{a + (r-1)\Delta x\right\}$$

ஒவ்வொரு செவ்வகப் பட்டையின் அகலத்தையும் பாதியாக குறைத்து செவ்வகங்களின் எண்ணிக்கையை இரு மடங்காக அதிகரிக்கும்போது, பலபக்க வடிவத்தின் பரப்பளவு படம் 9.5-ல் காட்டியபடி அமைகிறது. 9.4-ஐயும் 9.5-ஐயும் ஒப்பிடுகையில் பலபக்க வடிவத்தின் பரப்பளவு 9.4-ல் உள்ள பரப்பை விட 9.5-ல் உள்ள

பரப்பு R-ன் பரப்புக்கு மிக நெருங்கி அமைவது அறிய முடிகிறது.

இவ்வாறாக பக்கங்களின் எண்ணிக்கை 'n'-ஐ உயர்த்திக் கொண்டே போனால் S_n -ன் மதிப்பு R-ஐ நெருங்குவதை உணரலாம்.

இறுதியில்
$$\underset{n\to\infty}{\operatorname{Lt}}$$
 $\operatorname{S}_n = \underset{n\to\infty}{\operatorname{Lt}} \frac{b-a}{n}$ $\underset{r=1}{\overset{n}{\sum}} f\left\{a+(r-1)\Delta x\right\} \to \operatorname{R}$

இதேபோல், x-ன் மதிப்பினைை நுண் இடைவெளிகளின் வலது மதிப்புகளை எடுத்துக் கொண்டால்

$$\underset{n \to \infty}{\text{L}t} S_n = \underset{n \to \infty}{\text{L}t} \frac{b-a}{n} \sum_{r=1}^{n} f(a+r \Delta x) \to R$$

i.e.
$$R = \frac{Lt}{n \to \infty} \frac{b-a}{n} \sum_{r=1}^{n} f(a+r\Delta x) \to R$$
$$\sum_{r=1}^{n} f(a+r\Delta x) \to R$$
$$\sum_{r=1}^{n} f(a+r\Delta x) \to R$$

வரையறை : f(x) என்பது [a, b] என்ற மூடிய இடைவெளியில் வரையறுக்கப்பட்டச் சார்பு எனில், x=a முதல் x=b வரைக்கும் வளைவரை f(x)-ன் வரையறுத்தத் தொகையினை கீழ்க்காண் எல்லை மதிப்பு இருப்பின்

$$\begin{bmatrix} Lt & b-a \\ n \to \infty \end{bmatrix} \sum_{r=1}^n f(a+r\Delta x), \ (\text{இங்கு } \Delta x = \frac{b-a}{n})$$
 என வரையறுக்கலாம்

ஒருபுறம் வரையறுத்த தொகையினை மேற்காட்டியபடி கூடுதலின் எல்லை மதிப்பின் மூலம் காணலாம். மறுபுறம் வரையறுத்த தொகையினை வகையிடலின் எதிர்மறை முறையின் மூலமும் காணலாம் என்பதனை இப்போது காண்போம்.

வகையிடலின் எதிர்மறை முறையில் அரங்கம் R-ன் பரப்பளவைக் காணல் :

மேற்கண்ட எடுத்துக்காட்டில் உள்ள R என்ற அதே அரங்கத்தின் பரப்பை இங்கு காண்போம். மேற்கூறியபடி R என்ற அரங்கம் $x = a, \quad x = b$ என்ற குத்துக் கோடுகளுக்கும் f(x) என்ற வளைவரைக்கும் *x-அச்சுக்கும்* இடைப்பட்டபரப்பாகும் (படம் 9.6)

P(x, y) என்பது f(x)-ன் மேலுள்ள ஏதேனும் ஒரு புள்ளி என்க. இடமிருந்து P வரை x-அச்சுக்கும் வளைவரைக்கும் இடையே உள்ள பரப்பினை **A**_x என கொள்வோம். (படம் 9.7)

 $Q(x + \Delta x, y + \Delta y$ என்ற புள்ளி Pக்கு மிக அருகாமையில் f(x)-ன் மேலுள்ள மற்றொரு புள்ளி என்க.

PQ என்ற வில்லிற்கும் x- அச்சுக்கும் இடையே உள்ள பட்டையின் பரப்பினை $\Delta {f A}_x$ என எடுத்துக்கொள்வோம் (படம் 9.7)

நீளம் y ஆகவும் Δx -ஐ அகலமாகவும் கொண்ட செவ்வகப் பட்டையின் பரப்பு y . Δx --ஐ

 ΔA_{χ} -ன் தோராய மதிப்பாக எடுத்துக் கொள்வோம். P,Q இரு புள்ளிகளும் மிக அருகாமையில் உள்ள புள்ளிகளாதலால்

$$\Delta \mathbf{A}_x \approx y \cdot \Delta x$$
 $\therefore \frac{\Delta \mathbf{A}_x}{\Delta x} \approx y$

 Δx -ன் மதிப்பினை குறைத்துக் கொண்டே போனால்,

படம் 9.7

வளைவரையின் பரப்பின் குறைபாடும் (Error) குறைந்து கொண்டே போகும்,

 $\Delta x
ightarrow 0$ எனில் $\Delta {f A}_{\it X}
ightarrow 0$ ஆகும்.

$$\therefore \frac{\mathbf{L}t}{\Delta x \to 0} \quad \frac{\Delta \mathbf{A}_{X}}{\Delta x} = y$$

$$\Rightarrow \quad \frac{d\mathbf{A}_{X}}{dx} = y$$

். வகையிடல் எதிர்மறையின் வரையறையின்படி

$$\frac{d\mathbf{A}_X}{dx} = y \implies \mathbf{A}_X = \int y dx$$

இடமிருந்து ${f P}$ வரை, வளைவரை f(x)-க்கும் x-அச்சுவிற்கும் இடையே உள்ள பரப்பு ${f A}_x$ ஆனது வரையறுக்கப்படாத தொகை $\int y dx$ என கிடைக்கிறது.

$$\int y dx = F(x) + c$$
 என்க.

x=a எனில், இடமிருந்து x=a என்ற குத்துக்கோடுவரை வளைவரையின் பரப்பு \mathbf{A}_a ஆகும்.

$$\int y dx = F(a) + c$$
 ஆகும்.

x=b எனில், இடமிருந்து x=b குத்துக்கோடுவரை வளைவரையின் பரப்பு \mathbf{A}_b ஆகும். \mathbf{A}_b -ன் மதிப்பு

$$\int y dx = F(b) + c$$
 ஆகும்.

∴ தேவைப்படும் R-ன் பரப்பு

$$(\mathbf{A}_b - \mathbf{A}_a)$$
 ஆகும்.

அதாவது R-ன் பரப்பை

$$\int y dx - \int y dx$$
$$x = b$$
ഖനെ $x = a$ ഖനെ

$$= (F(b) + c) - (F(a) + c)$$

குறியீட்டின் மூலம் $\int y dx = F(b) - F(a)$

என எழுதலாம்.

 $x=a,\;x=b$ என்ற குத்துக் கோடுகளுக்கும் வளைவரை f(x)க்கும், x-அச்சுக்கும் இடையே உள்ள R-ன் பரப்பு

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
 – II எனகிடைக்கப் பெற்றோம்.

a மற்றும் bஐ வரையறுத்தத் தொகையிடலின் முறையே கீழ் எல்லைப் புள்ளி மற்றும் மேல் எல்லை என அழைக்கிறோம்.

I, II-ல் இருந்து (கீழ்க்கண்டவை எல்லை மதிப்பை அடைந்தால்)

$$R = Lt \xrightarrow{D-a} \sum_{n=1}^{n} \sum_{r=1}^{n} f(a+r\Delta x) = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

என நிரூபணமாகிறது.

வரையறுத்தத் தொகையைக் காண கீழ் கொடுக்கப்பட்ட கூட்டல் வாய்ப்பாடு உதவும்.

(i)
$$\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$$

(ii)
$$\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$$

(iii)
$$\sum_{r=1}^{n} r^3 = \left[\frac{n(n+1)}{2}\right]^2$$

(iv)
$$\sum_{r=1}^{n} a^{r} = a \left(\frac{a^{n} - 1}{a - 1} \right) ; (a \neq 1)$$

எடுத்துக்காட்டு :

y = 3x என்ற நேர்க்கோட்டிற்கும் x-அச்சுக்கும் x = 2 , x = 6 ஆகிய குத்துக் கோட்டிற்கும் இடையே உள்ள

R-ன் பரப்பைக் காண்போம். (படம் 9.9)

(1) சரிவகம் ABCD-ன் பரப்பினை வடிவக் கணிதத்தின் சூத்திரத்தின் மூலம் காண

$$R = \frac{h}{2} [a + b]$$

$$= \frac{4}{2} [6 + 18] = 2 \times 24$$

(2) தொகையீட்டை கூட்டுத் தொகையாக காணல் பரப்பு ABCD-ஐ அகலமுள்ள n-செவ்வகப் பட்டைகளாக பிரிப்போம். இங்கு a = 2, b = 6

∴ ஒவ்வொரு பட்டையின் அகலம்

$$\Delta x = \frac{b - a}{n}$$
i.e. $\Delta x = \frac{6 - 2}{n}$

$$\Delta x = \frac{4}{n}$$

வரையறுத்தத் தொகையில் சூத்திரப்படி

$$R = \frac{\operatorname{Lt}}{n \to \infty} \frac{b - a}{n} \sum_{r=1}^{n} f(a + r \Delta x)$$

$$= \frac{\operatorname{Lt}}{n \to \infty} \frac{4}{n} \sum_{r=1}^{n} f\left(2 + r\left(\frac{4}{n}\right)\right)$$

$$= \frac{\operatorname{Lt}}{n \to \infty} \frac{12}{n} \sum_{r=1}^{n} \left(2 + \frac{4r}{n}\right) ; \left[\because f(x) = 3x, f\left(2 + r\frac{4}{n}\right) = 3\left[2 + r\left(\frac{4}{n}\right)\right]\right]$$

$$= \frac{\operatorname{Lt}}{n \to \infty} \frac{12}{n} \left[\sum_{r=1}^{n} 2 + \frac{4}{n} \sum_{r=1}^{n} r\right]$$

$$= \frac{\operatorname{Lt}}{n \to \infty} \frac{12}{n} \left[2n + \frac{4}{n} \frac{(n)(n+1)}{2}\right]$$

$$= \frac{\operatorname{Lt}}{n \to \infty} \frac{12}{n} \left[2n + 2(n+1)\right]$$

$$=\frac{\mathrm{Lt}}{n o\infty}\ 12\Big[2+2\frac{(n+1)}{n}\Big]$$
 $=\frac{\mathrm{Lt}}{n o\infty}\ 12\Big[2+2\Big(1+\frac{1}{n}\Big)\Big]$
 $=12\left[2+2\left(1+0\right)\right]$ $n o\infty$ எனில் $\frac{1}{n} o0$ ஆகும்.
 $=12 imes4$
 $=48$ சதுர அலகுகள் ... (ii)

R=48 சதுர அலகுகள் (3) வகையிடல் எதிர்மறை முறை

 $R = \int_{2}^{b} f(x) dx = \int_{2}^{6} 3x dx = 3 \int_{2}^{6} x dx = 3 \left[\frac{x^{2}}{2} \right]_{2}^{6}$ $= 3\left[\frac{6^2-2^2}{2}\right] = 3\left[\frac{36-4}{2}\right] = 3 \times \frac{32}{2}$

R = 48 சதுர அலகுகள் ... (iii)

(i), (ii) மற்றும் (iii)-லிருந்து R-ன் மதிப்பை

$$\mathbf{R} = \frac{\mathbf{L}t}{n o \infty} \frac{b-a}{n} \sum f(a+r \Delta x) = \int\limits_a^b f(x) \ dx$$
 எல்லை மதிப்பை அடைந்தால் சரிபார்க்கலாம்

எ.கா. 9.132 -9.134:

கொடுக்கப்பட்ட தொகையினை வரையறுத்த கூட்டுத்தொகையின் எல்லையாகக் காண்க.

$$(132) \int_{1}^{2} (2x+5) dx \quad (133) \int_{1}^{3} x^{2} dx \quad (134) \int_{2}^{5} (3x^{2}+4) dx$$

$$(132) \int_{1}^{2} (2x+5) dx$$

$$1$$

$$f(x) = 2x + 5$$
 மற்றும் $[a, b] = [1, 2]$ என்க.
$$\Delta x = \frac{b - a}{n} = \frac{2 - 1}{n} = \frac{1}{n}$$

$$\therefore \Delta x = \frac{1}{n}$$

$$f(x) = 2x + 5$$

$$\therefore f(a + r \Delta x) = f\left(1 + r \frac{1}{n}\right) = 2\left(1 + \frac{r}{n}\right) + 5$$

மூடிய இடைவெளி [1, 2]ஐ n எண்ணிக்கையில் சம நுண் இடைவெளிகளாகப் பிரிப்போம்.

சூத்திரத்தின்படி

$$\int_{a}^{b} f(x) dx = \int_{\Delta x \to 0}^{Lt} \Delta x \sum_{r=1}^{n} f(a+r\Delta x)$$

$$\frac{2}{n} \int_{a}^{b} (2x+5) = \int_{a}^{b} \int_{a}^{b} \left(\frac{1}{n}\right) \sum_{r=1}^{n} \left(2\left(1+\frac{r}{n}\right)+5\right)$$

$$= \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \left(\frac{1}{n}\right) \sum_{r=1}^{n} \left(\frac{1}{n}\right) \left(\frac{1}{n}\right) \sum_{r=1}^{n} \left(\frac{1}{n}\right) \left(\frac{1}{n}\right) \sum_{r=1}^{n} \left(\frac{1}{n}\right) \sum_{r=1}^{n} \left(\frac{1}{n}\right) \sum_{r=1}^{n} \sum_{r=$$

சரிபார்த்தல்:
$$\int\limits_{1}^{2} (2x+5) \, dx = \left[2\left(\frac{x^2}{2}\right) + 5x\right]_{1}^{2}$$
$$= (2^2-1^2) + 5(2-1) = (4-1) + (5\times1)$$
$$\int\limits_{1}^{2} (2x+5) \, dx = 8$$
 சதுர அலகுகள்

$$(133) \int_{1}^{3} x^2 dx$$

 $f(x) = x^2$, [a, b] = [1, 3] என்க.

மூடிய இடைவெளி [1, 3]ஐ n-சம நுண் இடைவெளிகளாகப் பிரிக்க.

சூத்திரத்தின்படி

$$\int_{a}^{b} f(x) dx = \text{Lt} \sum_{\Delta x \to 0}^{n} \Delta x \sum_{r=1}^{n} f(a + r \Delta x)$$

$$\int_{1}^{3} x^{2} dx = \int_{n \to \infty}^{\text{Lt}} \frac{2}{n} \sum_{r=1}^{n} \left(1 + \frac{4}{n} r + \frac{4}{n^{2}} r^{2} \right)$$

$$= \int_{n \to \infty}^{\text{Lt}} \frac{2}{n} \left[\sum 1 + \frac{4}{n} \sum r + \frac{4}{n^{2}} \sum r^{2} \right]$$

$$= \int_{n \to \infty}^{\text{Lt}} \frac{2}{n} \left[n + \frac{4}{n} \cdot \frac{n(n+1)}{2} + \frac{4}{n^{2}} \frac{(n)(n+1)(2n+1)}{6} \right]$$

$$= \int_{n \to \infty}^{\text{Lt}} 2 \left[1 + \frac{2(n+1)}{n} + \frac{2}{3} \left(\frac{n+1}{n} \right) \cdot \left(\frac{2n+1}{n} \right) \right]$$

$$= \int_{n \to \infty}^{\text{Lt}} 2 \left[1 + 2 \left(1 + \frac{1}{n} \right) + \frac{2}{3} \left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right) \right]$$

$$= 2 \left[1 + 2 + \frac{2}{3} (1) (2) \right] \text{ as } \int_{n \to \infty}^{\text{Lt}} \frac{1}{n} \to 0$$

$$=2\left[3+\frac{4}{3}\right]$$

$$\therefore \int_{1}^{3} x^{2} dx = \frac{26}{3}$$
 சதுர அலகுகள்

$$(134) \int_{2}^{5} (3x^2 + 4) dx$$

 $f(x) = 3x^2 + 4$ மற்றும் [a, b] = [2, 5] என்க.

மூடிய இடைவெளி [2, 5]ஐ *n* சம அகலம் கொண்ட நுண்வெளிகளாகப் பிரிக்க

$$\Delta x = \frac{5-2}{n}$$

$$\Delta x = \frac{3}{n}$$

$$f(x) = 3x^2 + 4$$

$$\therefore f(a+r\,\Delta x) = f\left(2+r\,.\frac{3}{n}\right)$$

$$=3\left(2+\frac{3r}{n}\right)^2+4$$

சூத்திரத்தின்படி

$$\int_{a}^{b} f(x) dx = \text{Lt} \sum_{\Delta x \to 0}^{n} \Delta x \sum_{r=1}^{n} f(a + r \Delta x)$$

$$\int_{2}^{5} (3x^{2} + 4) dx = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \left(3\left(2 + \frac{3r}{n}\right)^{2} + 4 \right)$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{r=1}^{n} \left(3\left(4 + \frac{12}{n}r + \frac{9}{n^{2}}r^{2}\right) + 4 \right)$$

$$= \lim_{n \to \infty} \frac{3}{n} \sum_{r=1}^{n} \left(12 + \frac{36}{n}r + \frac{27}{n^{2}}r^{2} + 4 \right)$$

$$= \frac{\operatorname{Lt}}{n \to \infty} \frac{3}{n} \sum_{r=1}^{n} \left[16 + \frac{36}{n} (r) + \frac{27}{n^2} (r^2) \right]$$

$$= \frac{\operatorname{Lt}}{n \to \infty} \frac{3}{n} \left[\sum 16 + \frac{36}{n} \sum r + \frac{27}{n^2} \sum r^2 \right]$$

$$= \frac{\operatorname{Lt}}{n \to \infty} \frac{3}{n} \left[16n + \frac{36}{n} \frac{(n)(n+1)}{2} + \frac{27}{n^2} \frac{n(n+1)(2n+1)}{6} \right]$$

$$= \frac{\operatorname{Lt}}{n \to \infty} 3 \left[16 + 18 \frac{(n+1)}{n} + \frac{9}{2} \left(\frac{n+1}{n} \right) \left(\frac{2n+1}{n} \right) \right]$$

$$= \frac{\operatorname{Lt}}{n \to \infty} 3 \left[16 + 18 \left(1 + \frac{1}{n} \right) + \frac{9}{2} \left(1 + \frac{1}{n} \right) \left(2 + \frac{1}{n} \right) \right]$$

$$= 3 \left[16 + (18 \times 1) + \frac{9}{2} (1)(2) \right] = 3 [43]$$

$$= 3 \left[16 + (18 \times 1) + \frac{9}{2} (1)(2) \right] = 3 [43]$$

10. நிகழ்தகவு

(PROBABILITY)

"The theory of probability is nothing more than good sense confirmed by calculation"

- Pierre Laplace

10.1 அறிமுகம்

நிகழ்தகவு, வாய்ப்பு, ஊகித்தல் போன்றவை அனைவருக்கும் நன்கு அறிமுகமான சொற்களாகும். பல நேரங்களில் நாம் கீழ்க்காணும் வாக்கியங்களைச் சொல்லி (அ) சொல்லக் கேட்டிருக்கிறோம்.

"இம்முறை இந்திய கிரிக்கெட் அணி உலகக் கோப்பையை வெல்வதற்குப் பிரகாசமான **வாய்ப்பு** உள்ளது"

"வருகின்ற பொதுத் தேர்வில் நம்பள்ளி மாணவ மாணவியர்கள் மாநில அளவில் அதிக மதிப்பெண் பெற்றுத் தேர்ச்சி பெற **சாத்தியங்கள்** உள்ள து."

"**அகேமாக** இன்று மழை பெய்யலாம்."

மேலுள்ள வாக்கியங்களில் கூறப்பட்ட 'வாய்ப்பு', 'சாத்தியங்கள்' மற்றும் 'அநேகமாக' போன்ற சொற்றொடர்கள், அந்நிகழ்ச்சிகளின் நிச்சயமற்றத் தன்மையினை உணர்த்துகின்றன. அன்றாட வாழ்வில் நாம் எடுக்கும் பல முடிவுகள் நிச்சயமற்ற தன்மையினால் பதிக்கப்படுகின்றன.

இந்நிச்சயமற்றத் தன்மையினை மதிப்பிட கணிதத்தில் உள்ள ஒரு பிரிவே '**நிகழ்தகவியல்**' ஆகும். நிகழ் தகவினை பற்றி அறிந்து கொள்ளுமுன் அவற்றில் பயன்படுத்தப்படும் சில முக்கியச் சொற்களை அறிந்து கொள்வோம்.

சோதனை (Experiment) : ஒரு செயல்பாடு வரையறுக்கப்பட்ட முடிவுகளைக் கொண்டிருக்குமேயானால், அச்செயல்பாட்டினை சோதனை என அழைக்கிறோம்.

கிர்ணயிக்கப்பட்ட சோதனை (Deterministic experiment) : ஒரே மாதிரியான சூழ்நிலைகளில், ஒரு சோதனையின் முடிவுகளை முன்கூட்டியே உறுதியாகக் கணிக்க முடியுமாயின், அது நிர்ணயிக்கப்பட்ட சோதனையாகும்.

சமவாய்ப்பு சோதனை (Random experiment): ஒரு சோதனையில் கிடைக்கக்கூடிய எல்லாவித சாத்தியக்கூறுகளை (முடிவுகளை) அறிந்தும், சோதனைக்கு முன்பே முடிவினைத் தீர்மானிக்க முடியாதவாறு வாய்ப்புகள் உள்ள சோதனையே சமவாய்ப்புச் சோதனையாகும். **எடுத்துக்காட்டு :** (i) சீரான நாணயத்தைச் சுண்டி விடுதல் (ii) பகடையை உருட்டி விடுதல்

மேலுள்ள இரண்டு சோதனைகளில் எல்லாவித நிகழ்வுகள் (முடிவுகளும்) அறிந்தும், என்ன நிகழும் என்பதை முன்கூட்டியே திட்டவட்டமாக கூற இயலாது. எனவே இச்சோதனைகள் சமவாய்ப்புச் சோதனைகளாகும்.

ஒரு சாதாரண (அல்லது அடிப்படை) **நிகழ்ச்சி (Simple event)** : ஒரு சமவாய்ப்புச் சோதனையில் கிடைக்கக்கூடிய அடிப்படை நிகழ்வுகளை (முடிவுகளை) மேலும் பிரிக்க இயலாது எனில் அது ஒரு சாதாரண அல்லது அடிப்படை நிகழ்ச்சியாகும்.

கூறுவெளி (Sample space): சமவாய்ப்பு சோதனையின் எல்லா நிகழ்வுகளையும் கொண்ட கணமானது **கூறுவெளி** எனப்படும்.

கிகழ்ச்சி (Event) : கூறுவெளியின் வெற்றற்ற ஒவ்வொரு உட்கணமும் ஒரு நிகழ்ச்சியாகும். கூறுவெளி S ஆனது உறுதியான (அல்லது) நிச்சயம் நிகழக்கூடிய (sure event) நிகழ்ச்சி எனப்படும். Sல் உள்ள வெற்றுக் கணமானது **இயலா கிகழ்ச்சி** (impossible event) எனப்படும்.

எடுத்துக்காட்டாக, ஒரு ஒழுங்கான பகடையை ஒருமுறை உருட்டி விடுகையில் கிடைக்கக்கூடிய கூறுவெளியானது

 $S = \{1, 2, 3, 4, 5, 6\}$

- $\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}$ என்பவை சாதாரண அல்லது அடிப்படை நிகழ்ச்சிகளாகும்.
 - {1}, {2, 3}, {1, 3, 5}, {2, 4, 5, 6} என்பவை சில நிகழ்ச்சிகளாகும்.

ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் (Mutually exclusive events) :

ஒரு சமவாய்ப்பு சோதனையில் இரண்டு அல்லது இரண்டிற்கு மேற்பட்ட நிகழ்ச்சிகளில் பொதுவான அடிப்படை நிகழ்ச்சிகள் ஏதும் இல்லையெனில், அத்தகைய நிகழ்ச்சிகளை ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் என்பர்.

எடுத்துக்காட்டு : ஒரு பகடையை உருட்டும் போது {1,2,3} மற்றும் {4,5,6} ஆகிய இரு நிகழ்ச்சிகளும் ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகளாகும்.

யாவுமளாவிய கிகழ்ச்சிகள் [பூரண கிகழ்ச்சிகள்] (Exhaustive events) :

ஒரு சோதனையில் நிகழும் எந்த ஒரு நிகழ்ச்சியும், கொடுக்கப்பட்டுள்ள நிகழ்ச்சிகளின் தொகுப்புக்குள் அடங்குமேயானால் அந்நிகழ்ச்சிகளின் தொகுப்பு யாவுமளாவிய நிகழ்ச்சிகள் எனப்படும்.

எடுத்துக்காட்டு :

{1, 2, 3}, {2, 3, 5}, {5, 6} மற்றும் {4, 5} என்ற நிகழ்ச்சிகள் ஒரு பகடையை உருட்டுவதனால் கிடைக்கும் நிகழ்ச்சிககளுக்கு 'யாவுமளாவிய நிகழ்ச்சிகளாகும்'

சமவாய்ப்பு நிகழ்ச்சிகள் (Equally likely events) :

ஒரு நிகழ்ச்சி கணத்திலுள்ள நிகழ்ச்சிகள் ஒன்றைக் காட்டிலும் மற்றொன்று நிகழும் வாய்ப்பு அதிகமில்லாமல், சமவாய்ப்புகள் பெற்றிருப்பின் இந்நிகழ்ச்சிகள் சமவாய்ப்பு நிகழ்ச்சிகள் எனப்படும்.

எடுத்துக்காட்டு : ஒரு சீரான நாணயத்தைச் சுண்டினால் கிடைக்கும் சமவாய்ப்புடைய நிகழ்ச்சிகள் {தலை (H)} மற்றும் {பூ (T)}.

எடுத்துக்காட்டு :

	சமவாய்ப்புச்	முடிவுகளின்				
முயற்சி	சோதனை	மொத்த	கூறுவெளி			
		எண்ணிக்கை				
(1)	சீரான	$2^1 = 2$	{H,T}			
	நாணயத்தை					
	சுண்டுதல்					
(2)	சீ ரான 2	$2^2 = 4$	{HH, HT, TH, TT}			
	நாணயங்களை					
	சுண்டுதல்					
(3)	சீரான 3	$2^3 = 8$	{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}			
	நாணயங்களைச்					
	சுண்டுதல்					
(4)	ஒரு சீரான	$6^1 = 6$	{1, 2, 3, 4, 5, 6}			
	பகடையை					
	உருட்டுதல்					
(5)	இரு சீரான	$6^2 = 36$	$\{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6),$			
	பகடைகளை		(3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6),			
	உருட்டுதல்		(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)			
(6)	52 சீட்டுகளைக்	$52^1 = 52$	Heart ♥A 2 3 4 5 6 7 8 9 10 J Q K #Ашіц ыры			
	கொண்ட ஆட்ட		Diamond ◆ A 2 3 4 5 6 7 8 9 10 J Q K சிவப்பு கிறம்			
	சீட்டுக் கட்டிலிருந்து		Spade			
	ஒன்றை உருவுதல்		Club 📤 A 2 3 4 5 6 7 8 9 10 J Q K கருப்பு கிறம்			

குறியீடுகள் :

A மற்றும் B ஏதேனும் இரு நிகழ்ச்சிகள் எனில்

- (i) $A \cup B$ என்பது A அல்லது B அல்லது இரண்டுமே நிகழ்வதற்கான நிகழ்ச்சியைக் குறிக்கும்.
- (ii) $A\cap B$ என்பது Aவும் Bயும் ஒரே நேரத்தில் நிகழ்வதைக் குறிக்கும்.
- (iii) $ar{A}$ அல்லது A' அல்லது A^c என்பது Aவின் நிகழாமையைக் குறிக்கும்.

(iv) $(A\cap \overline{B})$ என்பது A மட்டும் நிகழ்வதை குறிக்கும் நிகழ்ச்சி.

எடுத்துக்காட்டாக, ஒரு சீரான பகடையை உருட்டும்போது அதன் கூறுவெளி $S=\{1,2,3,4,5,6\}$

 $A=\{1,2\},\,B=\{2,3\},\,C=\{3,4\},\,D=\{5,6\},\,E=\{2,4,6\}$ என்பன S-ன் சில நிகழ்ச்சிகள் என்க.

- (1) A, B, C மற்றும் D நிகழ்ச்சிகள் சமவாய்ப்புள்ள நிகழ்ச்சிகளாகும். (ஆனால் E அல்ல).
- (2) A, C மற்றும் D ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகளாகும். ஏனெனில்

$$A \cap C = C \cap D = A \cap D = \phi$$
.

- (3) Bயும் Cயும் ஒன்றையொன்று விலக்கா நிகழ்ச்சிகள். ஏனெனில் $B \cap C = \{3\} \neq \emptyset$.
- (4) A, C மற்றும் D என்ற நிகழ்ச்சிகளின் தொகுப்பு யாமளாவியவை. ஏனெனில் A \cup C \cup D = S
- (5) A, B மற்றும் C நிகழ்ச்சிகளின் தொகுப்பு யாமளாவியை அல்ல. ஏனெனில் $\{5, 6\}$ என்ற நிகழ்ச்சி A, B மற்றும் Cயின் சேர்ப்புக் கணத்தில் இல்லை. (i.e. $A \cup B \cup C \neq S$).

10.2 நிகழ்தகவின் வரையறை (Classical definition of probability) :

ஒரு சோதனையில் யாவுமளாவிய, ஒன்றையொன்று விலக்கிய, சமவாய்ப்புள்ள முடிவுகள் n எண்ணிக்கையிலும் அவற்றில் m எண்ணிக்கையுள்ள முடிவுகள் A விற்கு சாதகமாகவும் இருப்பின் Aயினுடைய நிகழ்தகவு $\frac{m}{n}$ ஆகும்.

அதாவது
$$P(A) = \frac{m}{n}$$

இதனையே பின்வருமாறும் கூறலாம்.

ஒரு சமவாய்ப்பு சோதனையின் கூறுவெளி S எனவும் அதன் ஏதேனும் ஒரு நிகழ்ச்சி A எனவும் கொள்க. S மற்றும் A-லுள்ள உறுப்புகளின் எண்ணிக்கை முறையே n(S) மற்றும் n(A) எனில் A-ன் நிகழ்தகவு

$$P(A)=rac{n(A)}{n(S)} \ = rac{A$$
விற்கு சாதகமான நிலைகளின் எண்ணிக்கை

கிகழ்தகவின் அடிப்படைக் கொள்கைகள் (Axioms of probability) :

S என்பது ஒருசமவாய்ப்புச் சோதனையின் முடிவுற்ற கூறுவெளி. A என்பது Sன் யாதேனும் ஒரு நிகழ்ச்சி. P(A) என்பது Aவின் நிகழ்தகவு எனில் கீழ்க்கண்ட அடிப்படை கொள்கைகளை நிறைவு செய்யும்.

- $(1) O \le P(A) \le 1$
- (2) P(S) = 1
- (3) A மற்றும் B ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள் எனில் $P(A \cup B) = P(A) + P(B)$

குறிப்பு:

 ${
m A}_1,\ {
m A}_2\ \ldots\ldots\ {
m A}_n$ என்பன ஒன்றையொன்று விலக்கும் 'n' நிகழ்ச்சிகள் எனில்

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + P(A_3) + ... + P(A_n)$$

எ.கா. 10.1:

A, B மற்றும் C என்ற ஒன்றையொன்று விலக்கிய மூன்று நிகழ்ச்சிகளை மட்டுமே கொண்டுள்ள ஒரு சோதனையின் நிகழ்ச்சிகளின் நிகழ்தகவுகள் பின்வருமாறு கொடுக்கப்பட்டுள்ளன. இவை சாத்தியமானவையா என ஆராய்க.

(i)
$$P(A) = \frac{1}{3}$$
, $P(B) = \frac{1}{3}$, $P(C) = \frac{1}{3}$

(ii)
$$P(A) = \frac{1}{4}$$
, $P(B) = \frac{3}{4}$, $P(C) = \frac{1}{4}$

(iii)
$$P(A) = 0.5$$
, $P(B) = 0.6$, $P(C) = -0.1$

(iv)
$$P(A) = 0.23$$
, $P(B) = 0.67$, $P(C) = 0.1$

(v)
$$P(A) = 0.51$$
, $P(B) = 0.29$, $P(C) = 0.1$

தீர்வு :

(i) P(A), P(B) மற்றும் P(C)-ன் மதிப்புகள் யாவும் [0, 1] என்ற மூடிய இடைவெளிக்குள் அமைந்துள்ளன. மேலும், இவற்றின் கூட்டுத்தொகை

$$P(A) + P(B) + P(C) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

கொடுக்கப்பட்டுள்ள நிகழ்தகவுகள் சாத்தியமானவையே

(ii) O ≤ P(A), P(B), P(C) ≤ 1 என கொடுக்கப்பட்டுள்ளது. ஆனால் இவற்றின் கூட்டுத்தொகை

$$P(A) + P(B) + P(C) = \frac{1}{4} + \frac{3}{4} + \frac{1}{4} = \frac{5}{4} > 1$$

எனவே கொடுக்கப்பட்டுள்ள நிகழ்தகவுகள் சாத்தியமானவை அல்ல.

(iii) P(C) = - 0.1 ஒரு குறை எண்ணாயிருப்பதால் இது சாத்தியமானதல்ல.

- (iv) சாத்தியமானது. ஏனெனில் $0 \le P(A)$, P(B), $P(C) \le 1$ மேலும் இவற்றின் கூட்டுத்தொகை P(A) + P(B) + P(C) = 0.23 + 0.67 + 0.1 = 1
- (v) $0 \le P(A)$, P(B), $P(C) \le 1$ இருந்தாலும், இவற்றின் கூட்டுத்தொகை $P(A) + P(B) + P(C) = 0.51 + 0.29 + 0.1 = 0.9 \ne 1$. எனவே இது சாத்தியமல்ல.

குறிப்பு :

மேற்கூறிய எடுத்துக்காட்டுகளில் ஒவ்வொரு சோதனைக்கும் சரியான மூன்று நிகழ்ச்சிகள் மட்டுமே உள்ளன. எனவே அவையாவுமளாவிய நிகழ்ச்சிகளாகும். அதாவது அவைகளின் சேர்ப்பு கூறுவெளி கணமாகும். எனவேதான் இவைகளின் நிகழ்தகவுகளின் கூட்டுத்தொகை 1க்கு சமமாக இருத்தல் வேண்டும்.

ஏ.கா. 10.2: இரண்டு நாணயங்கள் ஒரே சமயத்தில் ஒருமுறை சுண்டப்படுகின்றன.

- (i) சரியாக ஒரு தலை (ii) குறைந்தது ஒருதலையாவது
- (iii) அதிகபட்சமாக ஒரு தலை கிடைப்பதற்கான நிகழ்தகவுகளைக் காண்க.

தீர்வு :

കുവൃതിയാണ്
$$S = \{HH, HT, TH, TT\}, n(S) = 4$$

A என்பது சரியாக ஒருதலையைப் பெறக்கூடிய நிகழ்ச்சி என்க. B என்பது குறைந்தது ஒருதலையாவது பெறக்கூடிய நிகழ்ச்சி என்க. C என்பது அதிகபட்சமாக ஒருதலையைப் பெறக்கூடிய நிகழ்ச்சி என்க.

$$\therefore A = \{HT, TH\}, n(A) = 2$$
 $B = \{HT, TH, HH\}, n(B) = 3$
 $C = \{HT, TH, TT\}, n(C) = 3$

(i)
$$P(A) = \frac{n(A)}{n(S)} = \frac{2}{4} = \frac{1}{2}$$
 (ii) $P(B) = \frac{n(B)}{n(S)} = \frac{3}{4}$ (iii) $P(C) = \frac{n(C)}{n(S)} = \frac{3}{4}$

எ.கா. 10.3: ஒரு சோடிப் பகடைகளை உருட்டி விடும்போது அவற்றின் கூட்டுத்தொகை (i) 7 (ii) 7 அல்லது 11 (iii) 11 அல்லது 12 கிடைப்பதற்கான நிகழ்தகவுகளைக் காண்க.

தீர்வு :

കുതൃവണ്
$$S = \{(1,1), (1,2) \dots (6,6)\}$$

நிகழக்கூடிய மொத்த அடிப்படை நிகழ்ச்சிகள் = $6^2 = 36 = n(S)$

A, B, மாற்று C ஆனது முறையே கூட்டுத்தொகை 7, 11 மற்றும் 12 கிடைப்பதற்கான நிகழ்ச்சிகள் என்க.

$$\therefore A = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}, \ n(A) = 6.$$

$$B = \{(5,6), (6,5)\}, \ n(B) = 2$$

$$C = \{(6,6)\}, \ n(C) = 1$$

(i)
$$P($$
கூட்டுத்தொகை $7) = P(A) = \frac{n(A)}{n(S)} = \frac{6}{36} = \frac{1}{6}$

(ii)P (7 அல்லது 11)= P(A or B) = P(A
$$\cup$$
 B) = P(A) + P(B)

(∵Aயும் Bயும் ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள் i.e. A∩B=ф)

$$=\frac{6}{36}+\frac{2}{36}=\frac{8}{36}=\frac{2}{9}$$

$$P(7 \text{ or } 11) = \frac{2}{9}$$

(iii) P (11 or 12) = P(B or C) = P(B
$$\cup$$
 C) = P(B) + P(C) (\cdot B, C ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள்) = $\frac{2}{36} + \frac{1}{36} = \frac{3}{36} = \frac{1}{12}$

$$P(11$$
 அல்லது 12)= $\frac{1}{12}$

எ.கா. 10.4: மூன்று வெவ்வேறு நபர்களுக்கு மூன்று கடிதங்கள் அவர்களுக்கான எழுதப்பட்டு மூன்று உறைகளில் விலாசமும் எழுதப்பட்டுள்ளன. முகவரியைப் பார்க்காமலே கடிதங்களை உறையிலிடும்போது (i) எல்லா கடிதங்களும் அவற்றிற்குரிய சரியான உறையிலிட (ii) எல்லா கடிதங்களுமே தவறாக உறையிலிட நிகழ்தகவுகள் காண்க.

தீர்வு :

A, B மற்றும் C என்பவை உறைகளைக் குறிக்கும் என்க. 1, 2 மற்றும் 3 ஆனது முறையே A, B மற்றும் Cக்கான கடிதங்களைக் குறிக்கும் என்க.

கடிதங்களை உறைகளில் இடுவதற்கான எல்லா சாத்தியக்கூறுகளும் பின்வருமாறு :

சாத்தியக்கூறுகள்

உறைகள்

	c_1	c_2	c_3	c_4	c_5	c_6
A	1	1	2	2	3	3
В	2	3	1	3	1	2
C	3	2	3	1	2	1

X என்பது எல்லா மூன்று கடிதங்களும் அவற்றிற்குரிய சரியான உறையிலிடுவதற்கான நிகழ்ச்சி என்க.

Y என்பது மூன்று கடிதங்களுமே தவறாக உறையிலிடுவதற்கான நிகழ்ச்சி என்க.

$$S = \{c_1, c_2, c_3, c_4, c_5, c_6\}, n(S) = 6$$

$$X = \{c_1\}, n(X) = 1 Y = \{c_4, c_5\}, n(Y) = 2$$

$$\therefore P(X) = \frac{1}{6}$$

$$P(Y) = \frac{2}{6} = \frac{1}{3}$$

ஏ.கா. 10.5: ஒரு கிரிக்கெட் சங்கத்தில் மொத்தம் 15 உறுப்பினர்கள் உள்ளனர். அவர்களில் 5 பேர் மட்டுமே பந்து வீசும் திறம் படைத்தவர்கள். இவர்களுள் 11பேர் கொண்ட ஒரு குழுவில் குறைந்தது 3 பந்து வீச்சாளர்களாவது இடம்பெறுவதற்கான நிகழ்தகவு காண்க.

தீர்வு :

A, B மற்றும் C என்ற நிகழ்ச்சிகள் அமைவதற்கான வழிகள் பின்வருமாறு :

நிகழ்ச்சிகள்	11 உறுப்பில சேர்வ		சேர்வு அமைவ வழிகளின் என		தேர்வு செய்யும் விதங்களின் மொத்த
	5 பந்து வீச்சாளர்கள்	மற்ற 10 பேர்	5 பந்து வீச்சாளர்கள்	மற்ற 10 பேர்	எண்ணிக்கை
A	3	8	5c ₃	$10c_{8}$	$5c_3 \times 10c_8$
В	4	7	5c ₄	10c ₇	$5c_4 \times 10c_7$
С	5	6	5c ₅	$10c_{6}$	$5c_5 \times 10c_6$

யாவுமளாவிய நிகழ்ச்சிகளின் = \\ 15 உறுப்பினர்களிலிருந்து மொத்த எண்ணிக்கை \\ = \\ 11 விளையாட்டு வீரர்களின் சேர்வு

$$n(S) = 15C_{11}$$

 $P\left(\mathcal{B}_{\mathbf{A}}^{\mathbf{B}}\right) = P[A] = P[A]$ அல்லது P[A] = P[A] அல்லது P[A] = P[A]

$$= P[A \cup B \cup C]$$
$$= P(A) + P(B) + P(C)$$

(∵நிகழ்ச்சிகள் A, B, C ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள்)

$$= \frac{5C_3 \times 10C_8}{15C_{11}} + \frac{5C_4 \times 10C_7}{15C_{11}} + \frac{5C_5 \times 10C_6}{15C_{11}}$$

$$= \frac{5C_2 \times 10C_2}{15C_4} + \frac{5C_1 \times 10C_3}{15C_4} + \frac{5C_0 \times 10C_4}{15C_4} \quad (\because nCr = nCn - r)$$

$$= \frac{450}{1365} + \frac{600}{1365} + \frac{210}{1365} = \frac{1260}{1365}$$

 $P\left($ குறைந்தது 3 பந்து வீச்சாளர்களாவது $ho=rac{12}{13}$

பயிற்சி 10.1

- (1) ஒன்றையொன்று விலக்கிய A, B, C மற்றும் D என்ற நான்கு நிகழ்ச்சிகளை மட்டுமே கொண்ட ஒரு சோதனையின் நிகழ்ச்சிகளின் நிகழ்தகவு பின்வருமாறு
 - (i) P(A) = 0.37, P(B) = 0.17, P(C) = 0.14, P(D) = 0.32
 - (ii) P(A) = 0.30, P(B) = 0.28, P(C) = 0.26, P(D) = 0.18
 - (iii) P(A) = 0.32, P(B) = 0.28, P(C) = -0.06, P(D) = 0.46
 - (iv) P(A) = 1/2, P(B) = 1/4, P(C) = 1/8, P(D) = 1/16
 - (v) P(A) = 1/3, P(B) = 1/6, P(C) = 2/9, P(D) = 5/18

மேற்கூறியவற்றில் உள்ள நிகழ்தகவுகள் சாத்தியமானவையா எனத் தீர்மானிக்கவும்.

- (2) இரண்டு பகடைக் காய்களை ஒருமுறை உருட்டி விடும்போது அவற்றின் கூட்டுத்தொகை (i) 5க்கும் குறைவாக (ii) 10க்கு மேற்பட்டதாக (iii) 9 அல்லது 11 கிடைப்பதற்கான நிகழ்தகவுகள் காண்க.
- (3) மூன்று நாணயங்கள் ஒருமுறை சுண்டப்படகின்றன. (i) சரியாக இரண்டு தலைகள் (ii) குறைந்தது இரண்டு தலைகள் (iii) அதிகபட்சமாக இரண்டு தலைகள் கிடைப்பதற்கான நிகழ்தகவுகள் காண்க.
- (4) 52 சீட்டுக்களை கொண்ட ஒரு கட்டிலிலிருந்து ஒரு சீட்டு உருவப்படுகிறது. அச்சீட்டு
 - (i) காலாட்படை வீரன் (jack) (ii) 5 அல்லது அதற்கும் குறைவான எண்
 - (iii) அரசி (Queen) அல்லது 7 கிடைப்பதற்கான நிகழ்தகவுகள் காண்க.
- (5) ஒரு பையில் 5 வெள்ளைநிறப் பந்துகளும், 7 கருப்பு நிறப் பந்துகளும் உள்ளன. பையிலிருந்து 3 பந்துகளை சமவாய்ப்பு முறையில் எடுக்கப்பட்டால் (i) மூன்றுமே வெள்ளைநிறப் பந்துகள் (ii) ஒன்று வெள்ளைப் பந்து, இரண்டு கருப்புநிறப் பந்துகள் கிடைப்பதற்கான நிகழ்தகவுகளைக் காண்க.

- (6) ஒரு பெட்டியில் 10 மின் விளக்குகள் உள்ளன. அவற்றுள் இரண்டு சேதமடைந்துள்ளன. சமவாய்ப்பு முறையில் 5 மின் விளக்குகள் எடுக்கப்பட்டால், அவற்றுள் எதுவுமே சேதமடையாது இருப்பதற்கான நிகழ்தகவு என்ன?
- (7) ஒரு பெட்டியில் 4 மாம்பழங்களும், 3 ஆப்பிள் பழங்களும் உள்ளன. சமவாய்ப்பு முறையில் இரண்டு பழங்கள் எடுக்கப்பட்டால் (i) ஒரு மாம்பழமும் ஒரு ஆப்பிள் பழமும் (ii) இரண்டும் ஒரே வகையைச் சார்ந்ததாகவும் கிடைப்பதற்கான நிகழ்தகவுகளைக் காண்க.
- (8) ஒரு பள்ளியில் மிகச்சிறந்த 10 மாணவ மாணவிகளில் 6 பேர் மாணவிகள், 4 பேர் மாணவர்கள். சமவாய்ப்பு முறையில் 4 பேர் கொண்ட குழு ஒன்று அறிவுப் போட்டிக்காகத் தேர்வு செய்யப்படுகிறது. குழுவில் குறைந்தது 2 மாணவிகளாவது இடம் பெறுவதற்கான நிகழ்தகவினைக் காண்க.
- (9) (i) ஒரு சாதாரண வருடத்தில் (ii) ஒரு லீப் வருடத்தில் 53 ஞாயிற்றுக்கிழமைகள் வருவதற்கான நிகழ்தகவுகள் காண்க.
- (10) முதல் 50 மிகை முழுக்களிலிருந்து ஒரு எண் தேர்ந்தெடுக்கப்படுகிறது. அது ஒரு பகா எண் அல்லது 4-இன் மடங்காக இருக்க நிகழ்தகவு யாது?

10.3 நிகழ்தகவின் சில அடிப்படைத் தேற்றங்கள்

நிகழ்தகவியலில் உள்ள எல்லாத் தேற்றங்களும் நேரடியாகவோ அல்லது மறைமகமாகவோ, நிகழ்தகவின் அடிப்படைக் கொள்கைகளைப் பயன்படுத்தியே தருவிக்கப்படுகின்றன.

நிகழ்தகவின் சில முக்கியத் தேற்றங்களை இங்கு காண்போம்.

தேற்றம் 10.1: நடக்கவியலா நிகழ்ச்சியின் நிகழ்தகவு பூச்சியம்.

நிரூபணம்:

நடக்கவியலா நிகழ்ச்சி ¢ல், Sஎன்ற கூறுவெளியில் உள்ள எந்த ஒரு உறுப்பும் இருக்காது.

∴ S ∪ φ = S
$$P(S ∪ φ) = P(S)$$

$$P(S) + P(φ) = P(S)$$
(∵ Sயும் фயும் ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள்)
∴ P(φ) = 0

தேற்றம் 10.2:

 $ar{ ext{A}}$ என்பது $egin{aligned} ext{A} egin{aligned} ext{B} ext{A} & ext{B} \ ext{B} & ext{B} \ ext{B} \end{aligned}$

நிரூபணம் :

S என்பது கூறுவெளி என்க.

$$A \cup \overline{A} = S$$

 $P(A \cup \overline{A}) = P(S)$

$$P(A) + P(\overline{A}) = 1$$

(: Aவும் $\stackrel{-}{A}$ ம் ஒன்றையொன்று விலக்கிய நிகழ்வுகள். மேலும் P(S)=1)

Fig. 10. 1

$$\therefore P(\overline{A}) = 1 - P(A)$$

தேற்றம் 10.3: A, Bஎன்பன ஏதேனும் இரு நிகழ்ச்சிகள். B என்பது Bன் நிரப்பியெனில்

$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$

நிரூபணம்:

Aஎன்பது $(A \cap B)$ மற்றும் $(A \cap B)$ ஆகிய ஒன்றையொன்று விலக்கிய இரு நிகழ்ச்சிகளின் சேர்க்கையாகும். (படம் 10.2ஐ காண்க)

i.e.
$$A = (A \cap \overline{B}) \cup (A \cap B)$$

$$\therefore P(A) = P[(A \cap \overline{B}) \cup (A \cap B)]$$

Fig. 10. 2

 $(::(A\cap ar{B}\)$ மற்றும் $(A\cap B)$ ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள்)

$$P(A) = P(A \cap \overline{B}) + P(A \cap B)$$

மாற்றியமைக்க

$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$

$$P(\overline{A} \cap B) = P(B) - P(A \cap B)$$
 என நிறுவலாம்

தேற்றம் 10.4: நிகழ்தகவின் கூட்டல் தேற்றம்

(Addition theorem on Probability):

A, B என்பன ஏதேனும் இரு நிகழ்ச்சிகள் எனில்,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

நிரூபணம் :

$$A \cup B = (A \cap \overline{B}\) \cup B$$
 (படம் 10.3 ஐ பார்க்க)

$$P(A \cup B) = P[(A \cap B) \cup B]$$

(∵ A∩ B யும் Bயும் ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள்)

$$=P(A \cap \overline{B}) + P(B)$$
 $= [P(A) - P(A \cap B)] + P(B)$ (தேற்றம் 3ன் படி) $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$

குறிப்பு :

மேலுள்ள நிகழ்தகவு கூட்டல் தேற்றத்தின் மூன்று நிகழ்ச்சிகளுக்கான விரிவாக்கம். A, B மற்றும் C ஏதேனும் மூன்று நிகழ்ச்சிகளில் எனில்

$$P(A \cup B \cup C) = \{P(A) + P(B) + P(C)\} - \{P(A \cap B) + P(B \cap C) + P(C \cap A)\}$$
$$+ P(A \cap B \cap C)$$

எ.கா. 10.6:

 $P(A) = 0.35, \ P(B) = 0.73$ மற்றும் $P(A \cap B) = 0.14$ எனில் பின்வருவனவற்றின் மதிப்புகளைக் காண்க.

 $(i)P(A\cup B)\quad (ii)\ P(\overline{A}\cap B)\quad (iii)\ P(A\cap \overline{B}\)\quad (iv)\ P(\overline{A}\cup \overline{B}\)\quad (v)\ P(\overline{A\cup B}\)$ §ing :

(i)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= 0.35 + 0.73 - 0.14 = 0.94$$
$$P(A \cup B) = 0.94$$

(ii)
$$P(\overline{A} \cap B) = P(B) - P(A \cap B)$$

= 0.73 - 0.14 = 0.59

$$P(\overline{A} \cap B) = 0.59$$

(iii)
$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$
$$= 0.35 - 0.14 = 0.21$$
$$P(A \cap \overline{B}) = 0.21$$

(iv)
$$P(\overline{A} \cup \overline{B}) = P(\overline{A \cap B}) = 1 - P(A \cap B) = 1 - 0.14$$
$$P(\overline{A} \cup \overline{B}) = 0.86$$

(v)
$$P(\overline{A \cup B}) = 1 - P(A \cup B) = 1 - 0.94 = 0.06$$
 (by (1)) $P(\overline{A \cup B}) = 0.06$

எ.கா. 10.7: நன்கு கலைக்கப்பட்ட 52 சீட்டுக்களைக் கொண்ட ஒரு சீட்டுக் கட்டிலிருந்து ஒரு சீட்டு உருவப்படுகிறது. அச்சீட்டானது (i) அரசன் அல்லது அரசி (ii) அரசன் அல்லது ஸ்பேட் (iii) அரசன் அல்லது கருப்புச் சீட்டு கிடைப்பதற்கான நிகழ்தகவுகளைக் காண்க.

தீர்வு :

கூறுவெளியிலுள்ள புள்ளிகளின் எண்ணிக்கை = 52

i.e.
$$n(S) = 52$$

A-அரசனைத் தேர்ந்தெடுப்பதற்கான நிகழ்ச்சி;

B-அரசியைத் தேர்ந்தெடுப்பதற்கான நிகழ்ச்சி

C-ஸ்பேட் சீட்டைத் தேர்ந்தெடுப்பதற்கான நிகழ்ச்சி

D-கருப்புநிறச் சீட்டைத் தேர்ந்தெடுப்பதற்கான நிகழ்ச்சி என்க.

∴
$$n(A) = 4$$
, $n(B) = 4$, $n(C) = 13$, $n(D) = 26$
Geograph $n(A \cap C) = 1$, $n(A \cap D) = 2$

(i)
$$P$$
 [அரசன் அல்லது அரசி] = $P[A$ அல்லது $B] = P(A \cup B)$ = $P(A) + P(B)$

 $(\therefore A, B$ ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள் i.e. $A \cap B = \emptyset$)

$$= \frac{n(A)}{n(S)} + \frac{n(B)}{n(S)}$$
$$= \frac{4}{52} + \frac{4}{52} = \frac{2}{13}$$

(ii)P[அரசன் அல்லது ஸ்பேட்]=P(A அல்லது $C)=P(A\cup C)$

$$= P(A)+P(C)-P(A \cap C)$$

(:: Аயும் Сயும் ஒன்றையொன்று விலக்கா நிகழ்ச்சி)

$$= \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52}$$
$$= \frac{4}{13}$$

(iii)
$$P[$$
அரசன் அல்லது கருப்புநிறச் சீட்டு $] = P(A \$ அல்லது $D) = P(A \cup D)$

$$= P(A) + P(D) - P(A \cap D)$$
($\because A$ யும் D யும் ஒன்றையொன்று விலக்கா நிகழ்ச்சிகள்)
$$= \frac{4}{52} + \frac{26}{52} - \frac{2}{52} = \frac{28}{52}$$

$$= \frac{7}{13}$$

ஏ.கா. 10.8: ஒரு மாணவிக்கு IITல் இடம் கிடைப்பதற்கான நிகழ்தகவு 0.16, அரசு மருத்துவக் கல்லூரியில் இடம் கிடைப்பதற்கான நிகழ்தகவு 0.24, இரண்டிலும் இடம் கிடைப்பதற்கான நிகழ்தகவு 0.11 எனில் அவருக்கு (i) இரண்டில் குறைந்தது ஓரிடத்திலாவது இடம் கிடைப்பதற்கான (ii) இரண்டில் ஒன்றில் மட்டுமே இடம் கிடைப்பதற்கான

நிகழ்தகவுகளைக் காண்க.

தீர்வு :

I என்பது IITல் இடம் கிடைப்பதற்கான நிகழ்ச்சி என்க. M என்பது அரசு மருத்துவக் கல்லூரியில் இடம் கிடைப்பதற்கான நிகழ்ச்சி என்க.

$$\therefore P(I) = 0.16, P(M) = 0.24$$
 மற்றும் $P(I \cap M) = 0.11$

(i) P(குறைந்தது ஓரிடத்திலாவது இடம் கிடைக்க)

$$= P(I \text{ or } M) = P(I \cup M)$$

$$= P(I) + P(M) - P(I \cap M)$$

$$= 0.16 + 0.24 - 0.11$$

$$= 0.29$$

(ii) P(ஒன்றில் மட்டுமே இடம் கிடைக்க) = P[I அல்லது M].

$$= P[(I \cap \overline{M}) \cup (\overline{I} \cap M)]$$

$$= P(I \cap \overline{M}) + P(\overline{I} \cap M)$$

$$= \{P(I) - P(I \cap M)\} + \{P(M) - P(I \cap M)\}$$

$$= \{0.16 - 0.11\} + \{0.24 - 0.11\}$$

$$= 0.05 + 0.13$$

$$= 0.18$$

படம் 10. 4

பயிற்சி 10.2

- (1) ஒரு சமவாய்ப்புச் சோதனையில் P(A)=0.36, P(A அல்லது B)=0.90(ii) $P(\overline{A} \cap \overline{B})$ மற்றும் P(Aவும் Bயும்) = 0.25 எனில் (i) P(B), ஆகியவற்றைக் காண்க.
- (2) P(A) = 0.28, P(B) = 0.44 மற்றும் இவ்விரு நிகழ்ச்சிகள் Aயும் Bயும் ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள் எனில்
 - $(i)\ P(ar{A}\)$ $(ii)\ P(A\cup B)$ $(iii)\ (A\cap ar{B}\)$ $iv)\ P(ar{A}\ \cap ar{B}\)$ ஆகியவற்றைக் காண்க.
- (3) P(A) = 0.5, P(B) = 0.6 மற்றும் $P(A \cap B) = 0.24$. எனில்
- (i) $P(A \cup B)$ (ii) $P(\overline{A} \cap B)$ (iii) $P(A \cap \overline{B})$
- (iv) $P(\bar{A} \cup \bar{B})$
- $(\mathrm{v})\,\mathrm{P}(ar{\mathrm{A}}\,\capar{\mathrm{B}}\,)$ ஆகியவற்றினைக் காண்க.
- (4) ஒரு பகடை இருமுறை உருட்டப்படகிறது. "முதல் முறை வீசுவதில் 4 விழுவது" நிகழ்ச்சி A எனவும், "இரண்டாவது முறை வீசுவதில் 4 விழுவது" B எனவும் கொண்டால் P(A \cup B)ஐ காண்க.
- (5) A என்ற நிகழ்ச்சியின் நிகழ்தகவு 0.5. B என்ற நிகழ்ச்சியின் நிகழ்தகவு 0.3. Aயும் Bயும் ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகளெனில் Aவும் அல்லாமல் Bயும் அல்லாமல் இருக்கக்கூடிய நிகழ்ச்சியின் நிகழ்தகவு யாது?
- (6) 52 சீட்டுகள் உள்ள ஒரு சீட்டுக் கட்டிலிருந்து சமவாய்ப்பு முறையில் ஒரு சீட்டு உருவப்படுகிறது. அந்தச் சீட்டு (i) அரசி அல்லது க்ளப் (ii) அரசி அல்லது கருப்புச் சீட்டு கிடைப்பதற்கான நிகழ்தகவுகளைக் காண்க.
- (7) புதிதாக ஒரு கப்பல் கட்டப்பட்டுள்ளது. அக்கப்பலின் அமைபிற்காக அதற்கு விருது கிடைப்பதற்கான நிகழ்தகவு 0.25, நேர்த்தியான முறையில் மூலப்பொருட்களைப் பயன்படுத்தியதற்காக அதற்கு விருது கிடைப்பதற்கான நிகழ்தகவு 0.35, மேற்கண்ட இரு விருதுகளையும் பெறுவதற்கான நிகழ்தகவு 0.15 எனில்
 - (i) குறைந்தது ஒரு விருதாவது கிடைப்பதற்கு
 - (ii) ஒரே ஒரு விருது மட்டும் கிடைப்பதற்கு நிகழ் தகவுகள் யாவை?

10.4 சார்புஙிலை ஙிகழ் தகவு (Conditional probability) :

சார்புநிலை நிகழ்தகவின் கருத்தாக்கத்தினை அறிந்துக் கொள்ள முதலில் ஒரு எடுத்துக்காட்டினைக் காண்போம்.

ஒரு சீரான பகடை உருட்டப்படுவதாகக் கொள்வோம். அதன் கூறுவெளி $S = \{1, 2, 3, 4, 5, 6\}$.

இப்போது நாம் இரு வினாக்களை எழுப்புவோம்.

Q 1: பகடையில் 4-ஐ விடக் குறைவான இரட்டைப்படை எண் கிடைப்பதற்கான நிகழ்தகவு யாது?

Q2 : பகடையில் இரட்டைப்படையெண் விழுந்திருப்பின் அது 4ஐ விடக் குறைவானதாக கிடைக்க நிகழ்தகவு யாது?

நிலை 1:

4ஐ விடக் குறைவான இரட்டைப்படை எண்கள் கிடைப்பதற்கான நிகழ்ச்சி {2} ஆகும்.

$$\therefore P_1 = \frac{n(\{2\})}{n(\{1, 2, 3, 4, 5, 6\})} = \frac{1}{6}$$

நிலை 2:

இங்கு முதலில் கூறுவெளி Sஐ இரட்டைப்படை எண்களை மட்டுமே கொண்ட ஒரு உபகணத்திற்கு கட்டுப்படுத்துகிறோம். அதாவது {2, 4, 6} என்ற உபகணத்திற்கு கட்டுப்டுத்தகிறோம். பிறகு 4ஐ விடக் குறைவான இரட்டைப்படை எண் கிடைப்பதற்கான நிகழ்ச்சி {2}க்கு நிகழ்தகவு காண்கிறோம்.

$$\therefore P_2 = \frac{n(\{2\})}{n(\{2,4,6\})} = \frac{1}{3}$$

மேற்கண்ட இரண்டு நிலைகளிலும் நிகழக்கூடிய நிகழ்ச்சிகள் ஒன்றாக இருந்தாலும், அவற்றின் யாவுமளாவிய விளைவினைகள் வெவ்வேறாக இருக்கின்றன.

நிலை இரண்டில், கூறுவெளியை ஒரு குறிப்பிட்ட நிபந்தனைக்கு உட்படுத்தி பிறகு நிகழ்தகவினைக் கண்டறிகிறோம். இத்தகைய நிகழ்தகவானது சார்பு நிலை நிகழ்தகவு எனப்படும்.

வரையறை [சார்புஙிலை ஙிகழ்தகவு] : (Conditional probability) :

நிகழ்ச்சி A ஏற்கனவே நிகழ்ந்துள்ள நிலையில் Aன் நிபந்தனையில் Bயின் சார்புநிலை நிகழ்தகவு $P\left(B/A\right)$ எனக் குறிக்கப்படின்,

$$P(B/A) = \frac{P(A \cap B)}{P(A)} \quad P(A) \neq 0$$

இதே போல்

$$P(A/B) = rac{P(A \cap B)}{P(B)}$$
 $P(B) \neq 0$ என வரையறுக்கலாம்.

ஏ.கா. 10.9: P(A) = 0.4 P(B) = 0.5 $P(A \cap B) = 0.25$ எனில்

(i)
$$P(A/B)$$
 (ii) $P(B/A)$ (iii) $P(\overline{A}/B)$

$$(iv) P(B/\overline{A})$$
 $(v) P(A/\overline{B})$ $(vi) P(\overline{B}/A)$ ஐக் காண்க.

தீர்வு :

(i)
$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0.25}{0.50} = 0.5$$

(ii)
$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{0.25}{0.40} = 0.625$$

(iii)
$$P(\overline{A}/B) = \frac{P(\overline{A} \cap B)}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)} = \frac{0.5 - 0.25}{0.5} = 0.5$$

(iv)
$$P(B/\overline{A}) = \frac{P(B \cap \overline{A})}{P(\overline{A})} = \frac{P(B) - P(A \cap B)}{1 - P(A)} = \frac{0.5 - 0.25}{1 - 0.4} = 0.4167$$

(v)
$$P(A/\overline{B}) = \frac{P(A \cap \overline{B})}{P(\overline{B})} = \frac{P(A) - P(A \cap B)}{1 - P(B)} = \frac{0.4 - 0.25}{1 - 0.5} = 0.3$$

(vi)
$$P(\overline{B}/A) = \frac{P(A \cap \overline{B})}{P(A)} = \frac{P(A) - P(A \cap B)}{P(A)} = \frac{0.4 - 0.25}{0.4} = 0.375$$

தேற்றம் 10.6 : நிகழ்தகவின் பெருக்கல் தேற்றம்

(Multiplication theorem on probability):

உடனிகழ்வுகளாக ஏற்படும் A, B என்னும் இரு நிகழ்ச்சிகளின் நிகழ்தகவு

$$P(A \cap B) = P(A) \cdot P(B/A)$$

அல்லது $P(A \cap B) = P(B) \cdot P(A/B)$

குறிப்பு : சார்புநிலை நிகழ்தகவினை மாற்றி எழுத நிகழ்தகவின் பெருக்கல் தேற்றம் கிடைக்கிறது.

சார்பிலா நிகழ்ச்சிகள் (Independent events) :

நிகழ்ச்சிகளில் ஏதேனும் ஒரு நிகழ்ச்சி நடைபெறுவதும் அல்லது நடைபெறாததுமான நிகழ்வு மற்ற நிகழ்ச்சிகளின் நடைபெறும் அல்லது நடைபெறாமைக்கான நிகழ்தகவினை பாதிக்காது எனில் இந்நிகழ்ச்சிகளை சார்பிலா நிகழ்ச்சிகள் என கூறுவர்.

வரையறை : $P(A \cap B) = P(A) \cdot P(B)$ எனில் A, B என்ற இரு நிகழ்ச்சிகளும் சார்பிலா நிகழ்ச்சிகளாகும்.

இந்த வரையறை

$$P(A/B) = P(A), P(B/A) = P(B)$$

குறிப்பு : $P(A_1 \cap A_2 \cap A_3 \dots A_n) = P(A_1)$. $P(A_2) \dots (A_n)$ எனில் $A_1, A_2 \dots A_n$ என்பவை ஒன்றுக்கொன்று சார்பிலா நிகழ்ச்சிகளாகும்

கிளைத் தேற்றம் 1: A மற்றும் B சார்பிலா நிகழ்ச்சிகள் என்றால்

 \mathbf{A} மற்றும் $\mathbf{ar{B}}$ ஆகியவையும் சார்பிலா நிகழ்ச்சிகளேயாகும்.

நிரூபணம் :

A மற்றும் B சார்பிலா நிகழ்ச்சிகளாதலால்

$$P(A \cap B) = P(A) \cdot (PB)$$
 ... (1)

A யும் $ar{B}$ ம் சார்பிலா நிகழ்ச்சிகள் என நிறுவ,

$$P(A \cap \overline{B} \) \ = \ P(A) \ . \ P(\overline{B} \)$$
என நிறுவ வேண்டும்.

நாம் அறிந்தபடி

$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$

$$= P(A) - P(A) \cdot P(B) \quad \text{(by (1))}$$

$$= P(A) [1 - P(B)]$$

$$P(A \cap \overline{B}) = P(A) \cdot P(\overline{B})$$

். Aயும் B ம் சார்பிலா நிகழ்ச்சிகளாகும்.

இதேபோல் பின்வரும் கிளைத்தேற்றத்தையும் நிருபிக்கலாம்.

கிளைத்தேற்றம் 2: Aமற்றும் B சார்பிலா நிகழ்ச்சிகள் எனில்

 $ar{ ext{A}}$ மற்றும் $ar{ ext{B}}$ ஆகியவையும் சார்பிலா நிகழ்ச்சிகளாகும்.

குறிப்பு : A₁, A₂... A_n ஆகியவை ஒன்றுக்கொன்று சார்பிலா நிகழ்ச்சிகள்

எனில், $ar{A}_1$, $ar{A}_2$, ... $ar{A}_n$ ஆகியவையும் ஒன்றுக்கொன்று சார்பிலா நிகழ்ச்சிகளாகும்.

ஏ.கா. 10.10: 52 சீட்டுகள் கொண்ட ஒரு சீட்டுக்கட்டிலிருந்து இரண்டு சீட்டுகள் ஒன்றன்பின் ஒன்றாக உருவப்படுகிறது. இரண்டுமே அரசனாகக் கிடைப்பதற்கான நிகழ்தகவினை பின்வரும் நிபந்தனைகளின்படி காண்க.

- (i) முதலில் உருவிய சீட்டு மீண்டும் வைக்கப்படுகிறது
- (ii) முதலில் உருவிய சீட்டு கட்டில் மீண்டும் வைக்கப்படவில்லை.

தீர்வு :

A என்பது முதல்முறை எடுக்கப்படும் போது அரசனாக கிடைக்கப்பெறும் நிகழ்ச்சி என்க.

B என்பது இரண்டாம் முறை எடுக்கப்படும்போது அரசனாக கிடைக்கப்பெறும் நிகழ்ச்சி என்க.

நிலை i: சீட்டு மீண்டும் வைக்கப்படுகிறது

நிகழ்ச்சி Aயானது Bயின் நிகழ்தகவினை பாதிக்காது. ஆதலால் Aவும் Bவும் சார்பிலா நிகழ்ச்சிகளாகும்.

$$P(A \cap B) = P(A) \cdot P(B)$$
$$= \frac{4}{52} \times \frac{4}{52}$$
$$P(A \cap B) = \frac{1}{169}$$

நிலை ii: சீட்டு மீண்டும் வைக்கப்படவில்லை

முதல்முறை எடுக்கும்போது மொத்தம் 52 சீட்டுகளும் அதில் 4 அரசன் சீட்டுகளும் இருக்கும். முதல் சீட்டை மீண்டும் வைக்காமல் இரண்டாம் முறை எடுக்கும் போது மொத்தம் 51 சீட்டுகளில் 3 அரசன் சீட்டுகள் இருக்கும். எனவே முதலில் நடந்த நிகழ்ச்சி Aவானது, பின் நடக்கும் நிகழ்ச்சி Bயின் நிகழ்தகவினைப் பாதிக்கிறது. ஆதலால் A,B நிகழ்ச்சிகள் சார்பிலா நிகழ்ச்சிகள் அல்ல. அவை ஒன்றுக்கொன்று சார்ந்த நிகழ்ச்சிகளாகும்.

$$\begin{array}{rcl} \therefore \ P(A \cap B) & = & P(A) \ . \ P(B/A) \\ & \textcircled{@} \ \dot{\text{fig.}}, & P(A) & = & \frac{4}{52} & ; & P(B/A) & = & \frac{3}{51} \\ & P(A \cap B) & = & P(A) \ . \ P(B/A) & = & \frac{4}{52} \ . & \frac{3}{51} \\ & P(A \cap B) & = & \frac{1}{221} \end{array}$$

எ.கா. 10.11: ஒரு நாணயம் இருமுறை சுண்டிவிடப்படுகிறது. E= முதல்முறை சுண்டும்போது தலை விழுதல், F= இரண்டாம் முறை சுண்டும்போது தலை விழுதல் என வரையறுக்கப்பட்டால் பின்வரும் நிகழ்தகவினைக் காண்க.

(i)
$$P(E \cap F)$$
 (ii) $P(E \cup F)$ (iii) $P(E/F)$

தீர்வு: கூறுவெளி

$$S = \left\{ (H,H), (H,T), (T,H), (T,T) \right\}$$

$$\omega \dot{p} \mathcal{D} \dot{\omega} \quad E = \left\{ (H,H), (H,T) \right\}$$

$$F = \left\{ (H,H), (T,H) \right\}$$

$$\therefore E \cap F = \left\{ (H,H) \right\}$$

$$(i) \qquad P(E \cap F) = \frac{n(E \cap F)}{n(S)} = \frac{1}{4}$$

$$(ii) \qquad P(E \cup F) = P(E) + P(F) - P(E \cap F)$$

$$= \frac{2}{4} + \frac{2}{4} - \frac{1}{4} = \frac{3}{4}$$

$$P(E \cup F) = \frac{3}{4}$$

$$P(E \cap F) = \frac{P(E \cap F)}{P(F)} = \frac{1/4}{2/4} = \frac{1}{2}$$

$$P(E/F) = \frac{P(E \cap F)}{P(F)} = \frac{P(F) - P(E \cap F)}{P(F)}$$

$$= \frac{2/4 - 1/4}{2/4} = \frac{1}{2}$$

$$P(E/F) = \frac{1}{2}$$

$$P(E/F) = \frac{1}{4}$$

$$\therefore P(E) P(F) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$P(E \cap F) = P(E) \cdot P(F)$$

E மற்றும் F சார்பிலா நிகழ்ச்சிகளாகும்,

மேற்கண்ட எடுத்துக்காட்டில் E மற்றும் F ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகளல்ல. ஆனால் அவை சார்பிலா நிகழ்ச்சிகளாகும்.

முக்கிய குறிப்பு :

சார்பிலா தன்மை நிகழ்தகவின் பண்புகளைக் கொண்டது. ஆனால் ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள் கணங்களின் பண்புகளைக் கொண்டது. ஆகையால் சார்பிலா நிகழ்ச்சிகளை அவற்றின் நிகழ்தகவுகளின் மூலமும், ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகளை அவற்றின் கணங்களாகக் கொண்டும் கண்டறியலாம்.

தேற்றம் 10.7: A மற்றும் B என்ற இரு நிகழ்ச்சிகளானவை $P(A) \neq 0$, $P(B) \neq 0$ என இருப்பின்

- (i) A மற்றும் B ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள் எனில் அவை சார்பில நிகழ்ச்சிகளாக இருக்க இயலாது.
- (ii) A மற்றும் B சார்பிலா நிகழ்ச்சிகள் எனில் அவை ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகளாக இருக்க இயலாது. (நிரூபணம் தேவையில்லை)

எ.கா. 10.12: P(A) = 0.5, $P(A \cup B) = 0.8$ மற்றும் A, B சார்பிலா நிகழ்ச்சிகள் எனில் P(B)ஐக் காண்க.

தீர்வு :

$$\begin{split} P(A \cup B) &= P(A) + P(B) - P(A \cap B) \\ P(A \cup B) &= p(A) + P(B) - P(A) \cdot P(B) \end{split}$$

(∵ A மற்றும் B சார்பிலா நிகழ்ச்சிகள்)

i.e.
$$0.8 = 0.5 + P(B) - (0.5) P(B)$$
$$0.8 - 0.5 = (1 - 0.5) P(B)$$
$$\therefore P(B) = \frac{0.3}{0.5} = 0.6$$
$$P(B) = 0.6$$

ஏ.கா. 10.13: X, Y மற்றும் Z என்ற மூன்று மாணவர்களிடம் ஒரு கணக்கு தீர்வு காணக் கொடுக்கப்படுகிறது. அவர்கள் அதை தீர்ப்பதற்கான நிகழ்தகவு முறையே $\frac{1}{2}$, $\frac{1}{3}$ மற்றும் $\frac{2}{5}$ எனில், அந்த கணக்கினை தீர்க்கப்படுவதற்கான நிகழ்தகவு யாது?

தீர்வு :

X, Y மற்றும் Z என்ற மாணவர்கள் கணக்கின் தீர்வினைக் காண்பதற்கான நிகழ்ச்சிகளை முறையே A, B மற்றும் C என்க.

$$\therefore$$
 P(A) = $\frac{1}{2}$; P(\overline{A}) = 1 - P(A) = 1 - $\frac{1}{2}$ = $\frac{1}{2}$

$$P(B) = \frac{1}{3}$$
; $P(\overline{B}) = 1 - P(B) = 1 - \frac{1}{3} = \frac{2}{3}$
 $P(C) = \frac{2}{5}$; $P(\overline{C}) = 1 - P(C) = 1 - \frac{2}{5} = \frac{3}{5}$

P[கணக்கு தீர்க்கப்பட்டது] = P[குறைந்தது ஒருவராவது கணக்கினை தீர்வு காண்பது]

$$= P(A \cup B \cup C) = 1 - P(\overline{A \cup B \cup C})$$
 $= 1 - P(\overline{A} \cap \overline{B} \cap \overline{C})$ (டுமார்கன் விதிப்படி)
 $= 1 - P(\overline{A}) \cdot P(\overline{B}) \cdot P(\overline{C})$

(::A,B,C சார்பிலா நிகழ்வுகள். எனவே $ar{A}$, $ar{B}$, $ar{C}$ சார்பிலா நிகழ்ச்சிகளாகும்)

$$= 1 - \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{5} = 1 - \frac{1}{5}$$

 $P[ssm \dot{s}g \ \sharp \dot{r}\dot{s}\dot{s}\dot{c}\dot{u}\dot{u}\dot{u}\underline{c}\underline{c}\underline{s}] = \frac{4}{5}$

ஏ.கா. 10.14: X என்பவர் 95% நிலைகளில் உண்மையே பேசுபவர். Y என்பவர் 90% நிலைகளில் உண்மையே பேசுபவர் எனில் ஒரே கருத்தை இருவரும் கூறுகையில் ஒருவருக்கொருவர் முரண்பட்ட கருத்தினை தெரிவிப்பதற்கான நிலைகளின் சதவீதம் யாது?

தீர்வு : A என்பது X உண்மையை பேசும் நிகழ்ச்சி என்க. B என்பது Y உண்மை பேசும் நிகழ்ச்சி என்க.

C என்பது ஒருவருக்கொருவர் முரண்பட்ட கருத்தினை கூறும் நிகழ்ச்சி என்க.

$$P(A) = 0.95$$
 : $P(\overline{A}) = 1 - P(A) = 0.05$

$$P(B) = 0.90$$
 : $P(\overline{B}) = 1 - P(B) = 0.10$

். C = (A உண்மை பேச மற்றும் B உண்மை பேசாதிருப்பது அல்லது B உண்மை பேச மற்றும் A உண்மை பேசாதிருப்பது)

$$C = [(A \cap \overline{B}) \cup (\overline{A} \cap B)]$$

$$\therefore P(C) = P[(A \cap \overline{B}) \cup (\overline{A} \cap B)]$$

படம் 10. 5

$$= P(A \cap \overline{B}) + P(\overline{A} \cap B)$$

 $(: \bar{A} \cap B$ மற்றும் $A \cap \bar{B}$ ஒன்றுக்கொன்று விலக்கிய நிகழ்ச்சிகள்.)

$$= P(A) \cdot P(\overline{B}) + P(\overline{A}) \cdot P(B)$$
 $(\because A, \overline{B})$ சார்பிலா நிகழ்ச்சிகள்.

மேலும் \overline{A} , B சார்பிலா நிகழ்ச்சிகள்)

$$= (0.95) \times (0.10) + (0.05) (0.90)$$

= 0.095 + 0.045

= 0.1400

P(C) = 14%

பயிற்சி 10.3

- (1) சார்பிலா மற்றும் ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகளை வரையறுக்க. இரண்டு நிகழ்ச்சிகள் ஒரே சமயத்தில் ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகளாகவும் சார்பிலா நிகழ்ச்சிகளாகவும் இருக்க இயலுமா?
- (2) A மற்றும் B சார்பிலா நிகழ்ச்சிகள் எனில் \overline{A} மற்றும் \overline{B} சார்பிலா நிகழ்ச்சிகள் என நிரூபிக்க.
- $(3)\ \ P(A)=0.4,\ P(B)=0.7\$ மற்றும் $P(B\ /\ A)=0.5$ எனில் $P(A\ /\ B)$ மற்றும் $P(A\cup B)$ ஆகியவற்றைக் காண்க.
- $(4)\ \ P(A)=2/5,\ P(B)=3/4\$ மற்றும் $A\cup B=($ கூறுவெளி) எனில், $P(A\ /\ B)$ ஐ காண்க.
- (5) $P(A \cup B) = 0.6$, P(A) = 0.2 மற்றும் A, B சார்பிலா நிகழ்ச்சிகள் எனில் P(B)-ஐக் காண்க.
- (6) P(A ∪ B) = 5/6, P(A ∩ B) = 1/3 மற்றும் P(B
) = 1/2 எனில் A மற்றும் B சார்பிலா நிகழ்ச்சிகள் எனக் காட்டுக.
- (7) P(A) = 0.25, P(B) = 0.48 மற்றும் A, B சார்பிலா நிகழ்ச்சிகள் எனில்

find (i)
$$P(A \cap B)$$
 (ii) $P(B / A)$ (iii) $P(\overline{A} \cap \overline{B})$ stricts.

(8) P(A) = 0.50, P(B) = 0.40 மேலும் P(A ∩ B) = 0.20 எனில் கீழ்க்காண்பவைகளைச் சரிபார்க்க.

(i)
$$P(A / B) = P(A)$$
, (ii) $P(A / \overline{B}) = P(A)$

(iii)
$$P(B / A) = P(B)$$
 (iv) $P(B / \overline{A}) = P(B)$

- (9) P(A) = 0.3, P(B) = 0.6 மேலும் $P(A \cap B) = 0.25$
 - (i) $P(A \cup B)$ (ii) P(A/B) (iii) $P(B/\overline{A})$ (iv) $P(\overline{A}/B)$ (v) $P(\overline{A}/\overline{B})$ ஐக் காண்க.
- (10) P(A) = 0.45 மற்றும் $P(A \cup B) = 0.75$ எனில் கீழ்க்கண்டவற்றிற்கு P(B)-ன் மதிப்பினைக் காண்க. (i) A மற்றும் B ஒன்றையொன்று விலக்கிய நிகழ்ச்சிகள் (ii) A மற்றும் B சார்பிலா நிகழ்ச்சிகள் (iii) $P(A \mid B) = 0.5$ (iv) $P(B \mid A) = 0.5$
- (11) 52 சீட்டுகள் கொண்ட சீட்டுக் கட்டிலிருந்து இரண்டு சீட்டுகள் ஒன்றன்பின் ஒன்றாக உருவப்படுகிறது. பின்வரும் நிலைகளில், இரண்டு சீட்டுகளுமே காலாட்படை வீரர்களாக (jacks) கிடைப்பதற்கான நிகழ்தகவுகள் காண்க. (i) இரண்டாம் சீட்டு உருவும் முன்னரே முதல் சீட்டு மீண்டும் கட்டிலேயே வைக்கப்படுகிறது. (ii) முதல் சீட்டு கட்டில் வைக்கப்படாமல் இரண்டாம் சீட்டு உருவப்படுகிறது.
- (12) 52 சீட்டுகள் கொண்ட ஒரு கட்டிலிருந்து ஒரு சீட்டு உருவப்படுகிறது. கீழ்க்காண்பனவற்றிற்கு நிகழ்தகவுகள் காண்க.
 - (i) சிவப்பு அரசனாக இருப்பது (ii) சிவப்பு ஏஸ் (Ace)ஆகவோ அல்லது கருப்பு ராணியாகவோ இருப்பது.
- (13) ஒரு பையில் 5 வெள்ளைநிறப் பந்துகளும் 3 கருப்பு நிறப் பந்துகளும் உள்ளன. மற்றொரு பையில் 4 வெள்ளைப் பந்துகளும் 6 கருப்புநிறப் பந்தகளும் 6 கருப்புநிறப் பந்தகளும் உள்ளன. ஒவ்வொரு பையிலிருந்தும் ஒரு பந்து எடுக்கப்படகிறது எனில் (i) இரண்டும் வெள்ளைநிறப் பந்துகள் (ii) இரண்டும் கருப்புநிறப் பந்துகள் (iii) ஒரு வெள்ளை மற்றும் ஒரு கருப்பு பந்து கிடைப்பதற்கான நிகழ்தகவுகள் காண்க.
- (14) ஒரு கணவரும் மனைவியும் ஒரே பதவிக்குரிய இரண்டு காலியான இடங்களுக்குத் தேர்வு செய்ய நேர்முகத் தேர்விற்கு அழைக்கப்படுகின்றனர். கணவர் தேர்வு செய்யப்படுவதற்கான நிகழ்தகவு 1/6, மனைவி தேர்வு செய்யப்படுவதற்கான நிகழ்தகவு 1/5
 - (i) இருவருமே தேர்வு செய்யப்படுவதற்கு (ii) இருவரில் ஒருவர் மட்டுமே தேர்வு செய்யப்படுவதற்கு (iii) இருவருமே தேர்வு செய்யப்படாததற்கான நிகழ்தகவுகளைக் காண்க.
- (15) கணிதவியலில் ஒரு வினாவானது மூன்று மாணவர்களிடம் தீர்வு காண்பதற்காகக் கொடுக்கப்படுகிறது. அவர்கள் தனித்தனியே தீர்ப்பதற்கான நிகழ்தகவு 1/2, 1/3 மற்றும் 1/4 (i) அந்த வினா தீர்வு கொண்டிருப்பதற்கான நிகழ் தகவு யாது? (ii) சரியாக ஒருவர் மட்டுமே அந்த வினாவிற்குத் தீர்வு காண்பதற்கான நிகழ் தகவு யாது?

- (16) சம வாய்ப்பு முறையில் ஒரு வருடம் தேர்ந்தெடுக்கப்படுகிறது. அது
 (i) 53 ஞாயிறுகளைக் கொண்டதாக இருப்பதன் நிகழ் தகவு யாது?
 (ii) 53 ஞாயிறுகளைக் கொண்ட ஒரு லீப் வருடமாக கிடைப்பதற்கான நிகழ்தகவு யாது?
- (17) ஒரு மாணவருக்கு IITஇல் இடம் கிடைப்பதற்கான நிகழ்தகவு 60%, அவருக்கு அண்ணா பல்கலைக் கழகத்தில் இடம் கிடைப்பதற்கான நிகழ் தகவு 75% எனில் (i) இரண்டில் சரியாக ஒன்றில் மட்டும் இடம் கிடைப்பதற்கான (ii) குறைந்தது ஒன்றிலாவது இடம் கிடைப்பதற்கான நிகழ்தகவுகளைக் காண்க.
- (18) ஒரு இலக்கை குறிபார்த்து சுடும்போது 5ல் 4 முறை Aவும், 4ல் 3முறை B-யும், 3ல் 2 முறை Cயும் சரியாக இலக்கைச் சுடுகின்றனர். அந்த இலக்கை சரியாக இருவர் மட்டுமே சுடுவதற்கான நிகழ்தகவு யாது?
- (19) ஒரு வகுப்பில் 2/3 பங்கு மாணவர்களும், மீதம் மாணவியர்களும் உள்ளனர். ஒரு மாணவி முதல் வகுப்பில் தேர்ச்சிப் பெற நிகழ்தகவு 0.75, மாணவர் முதல் வகுப்பில் தேர்ச்சிப் பெற நிகழ்தகவு 0.70. சமவாய்ப்பு முறையில் ஒருவர் தேர்ந்தெடுக்கப்பட்டால் அவர் முதல் வகுப்பில் தேர்ச்சி பெற்றவருக்கான நிகழ்தகவு யாது?
- (20) 80% நிலைகளில் A உண்மையை பேசுகிறார். 75% நிலைகளில் B உண்மையை பேசுகிறார் எனில், ஒரே கருத்தை கூறுகையில், ஒருவருக்கொருவர் முரண்பட்ட கருத்தை கூறுவதற்கான நிகழ்தகவு யாது?

10.5 ஒரு நிகழ்ச்சியின் கூட்டு நிகழ்தகவு (Total probability of an event):

A₁, A₂ ... A_n என்பன ஒன்றை ஒன்று விளக்கிய யாவுமளாவிய நிகழ்ச்சிகள் மற்றும் B என்பது கூறுவெளியில் உள்ள ஏதேனும் ஒரு நிகழ்ச்சி எனில்

$$P(B) = P(A_1) \cdot P(B/A_1)$$

+ $P(A_2) \cdot P(B/A_2) \cdot ... + P(A_n) \cdot P(B/A_n)$

P(B) என்பது நிகழ்ச்சி Bன் கூட்டு நிகழ் தகவு ஆகும்.

படம் 10.7

எ.கா. 10.15: ஒரு ஜாடியில் 10 வெள்ளை மற்றும் 5 கருப்பு பந்துகள் உள்ளன. மற்றொரு ஜாடியில் 3 வெள்ளை மற்றும் 7 கருப்பு பந்துகள் உள்ளன. சமவாய்ப்பு முறையில் ஒரு ஜாடி தேர்ந்தெடுக்கப்பட்டு அதிலிருந்து இரண்டு பந்துகள் எடுக்கப்படுகின்றன. இரு பந்துகளும் வெள்ளை நிறப் பந்துகளாக இருப்பதற்கான நிகழ்தகவு காண்க.

தீர்வு :

A₁ என்பது ஜாடி-Iஐ தேர்ந்தெடுக்கும் நிகழ்ச்சி என்க. A₂ என்பது ஜாடி-IIஐ தேர்ந்தெடுக்கும் நிகழ்ச்சி என்க. B என்பது இரண்டு வெள்ளைப் பந்துகளைத் தேர்ந்தெடுக்கும் நிகழ்ச்சி என்க.

இங்கு நிகழ்ச்சி B-ன் கூட்டு நிகழ்தகவினைக்

படம் 10.8

காண வேண்டும். i.e. P(B). A_1 மற்றும் A_2 என்பன ஒன்றையொன்று விலக்கிய, யாவுமளாவிய நிகழ்ச்சிகள் என்பது தெளிவாக தெரிகிறது.

$$\begin{array}{c} P(B) \,=\, P(A_1) \,.\, P(B/A_1) \\ \qquad \qquad +\, P(A_2) \,.\, P(B/A_2) \,\, \ldots \, (1) \\ P(A_1) \,=\, \frac{1}{2} \,\, ;\, P(B/A_1) = \frac{10C_2}{15C_2} \\ P(A_2) \,=\, \frac{1}{2} \,\, ;\, P(B/A_2) \,=\, \frac{3C_2}{10C_2} \\ P(A_2) \,=\, \frac{1}{2} \,\, ;\, P(B/A_2) \,=\, \frac{3C_2}{10C_2} \\ P(B) \,=\, P(A_1) \,.\, P(B/A_1) \,+\, P(A_2) \,.\, P(B/A_2) \\ \qquad \qquad =\, \left(\frac{1}{2}\right) \left(\frac{10C_2}{15C_2}\right) \,+\, \left(\frac{1}{2}\right) \left(\frac{3C_2}{10C_2}\right) = \frac{1}{2} \left[\frac{3}{7} + \frac{1}{15}\right] \\ P(B) \,=\, \frac{26}{105} \end{array}$$

எ.கா. 10.16: ஒரு தொழிற்சாலையில் I மற்றும் II என்ற இருவகை இயந்திரங்கள் தொழிற்சாலையின் உற்பத்தியில் 30% உள்ளன. இயந்திரம்-Iன் 70% இயந்திரம்-IIன் மூலமும் மூலமும் உற்பத்தி செய்யப்படுகிறது. மேலும் இயந்திரம்-Iன் மூலம் உற்பத்தி செய்யப்பட்ட பொருட்களில் 3% குறைபாடுள்ளதாகவும், இயந்திரம்-IIன் மூலம் உற்பத்தி செய்யப்பட்ட பொருட்களில் 4% குறைபாடுள்ளதாகவும் இருக்கிறது. உற்பத்தி செய்யப்பட்ட பொருட்களிலிருந்து, சமவாய்ப்பு முறையில் ஒரு அப்பொருள் பொருள் தேர்ந்தெடுக்கப்படுகிறது. குறைபாடுடன் இருப்பதற்கான நிகழ்தகவு யாது?

தீர்வு :

A₁ என்பது இயந்திரம்-Iன் உற்பத்தி பொருள்களின் நிகழ்ச்சி என்க. A₂ என்பது இயந்திரம்-IIன் உற்பத்தி பொருள்களின் நிகழ்ச்சி என்க. B என்பது குறைபாடுள்ள ஒரு பொருளைத் தேர்ந்தெடுப்பதற்கான நிகழ்ச்சி என்க.

$$\therefore P(A_1) = \frac{30}{100} ; P(B/A_1) = \frac{3}{100}$$

$$P(A_2) = \frac{70}{100} ; P(B/A_2) = \frac{4}{100}$$

இங்கு B-ன் கூட்டு நிகழ்தகவினையே வினாவாக கேட்கப்பட்டுள்ளது.

A₁ மற்றும் A₂ என்பன ஒன்றை ஒன்று விலக்கிய, மேலும் யாவுமளாவிய நிகழ்ச்சிகளாகும். ஆதலால்

$$P(B) = P(A_1) P(B/A_1) + P(A_2) P(B/A_2)$$

$$= \left(\frac{30}{100}\right) \left(\frac{3}{100}\right) + \left(\frac{70}{100}\right) \cdot \left(\frac{4}{100}\right)$$
$$= \frac{90 + 280}{10000}$$

$$P(B) = 0.0370$$

தேற்றம் 10.8: பேயிஸ்-ன் தேற்றம் (Bayes' Theorem) :

 $A_1, \quad A_2, \quad \dots \quad A_n$ என்ற ஒன்றையொன்று விலக்கிய மற்றும் யாமளாவிய நிகழ்ச்சிகளாகவும் மேலும் $P(A_i) > 0 \; (i=1,\; 2\; \dots\; n)$ எனில் $P(B) > 0 \;$ இருக்கும்படி B என்ற எந்த ஒரு நிகழ்ச்சிக்கும்

Fig. 10.11

$$P(A_i/B) = \frac{P(A_i) P(B/A_i)}{P(A_1) P(B/A_1) + P(A_2) P(B/A_2) + ... + P(A_n) P(B/A_n)}$$

(நிரூபணம் தேவையில்லை)

இந்த சூத்திரமானது $P(A_i/B)$ க்கும் $P(B/A_i)$ க்கும் உள்ள தொடர்பினை கொடுக்கிறது.

ஏ.கா. 10.17: ஒரு தொழிற்சாலையில் I மற்றும் II என்ற இரு இயந்திரங்கள் உள்ளன. அவைகள் முறையே 30% மற்றும் 70% பொருட்களை உற்பத்தி செய்கின்றன. இவற்றுள் இயந்திரம்-I உற்பத்தி செய்ததில் இயந்திரம்-II உற்பத்தி செய்ததில் 4%மும் குறைபாடுள்ளதாக இருக்கிறது. உற்பத்தி செய்யப்பட்ட பொருள்களிலிருந்து, சமவாய்ப்பு முறையில் தேர்ந்தெடுக்கப்பட்ட ஒரு பொருள் குறைபாடுள்ளதாக இருப்பின், அப்பொருள் இயந்தி II உற்பத்தி செய்ததற்கான நிகழ்தகவு யாது? எடுத்துக்காட்டு 10.16ல் கொடுக்கப்பட்ட (மேலுள்ள வினாவுடன் ஒப்பிட்டுப் பார்க்கவும்).

தீர்வு :

 A_1 மற்றும் A_2 முறையே இயந்திரங்கள்-I மற்றும் II மூலம் உற்பத்தி செய்யப்பட்ட பொருள்களின் நிகழ்ச்சி என்க.

B என்பது குறைபாடுள்ள ஒரு பொருளை தேர்ந்தெடுப்பதற்கான நிகழ்ச்சி என்க.

$$P(A_1) = \frac{30}{100} ; P(B/A_1) = \frac{3}{100}$$
$$P(A_2) = \frac{70}{100} ; P(B/A_2) = \frac{4}{100}$$

இப்போது நாம் சார்புநிலை நிகழ் தகவு $P(A_2/B)$ யினை கண்டறிதல் வேண்டும்.

A₁ மற்றும் A₂ ஆகிய இரு நிகழ்ச்சிகள் ஒன்றையொன்று விலக்கிய மேலும் யாவுமளாவிய நிகழ்ச்சிகளாதலால், பேயிஸ்-ன் (Bayes') தேற்றப்படி

$$\begin{split} P(A_2/\,B) &= \frac{P(A_2) \cdot P(B/\,A_2)}{P(A_1) \cdot P(B/\,A_1) \, + P(A_2) \cdot P(B/\,A_2)} \\ &= \frac{\left(\frac{70}{100}\right) \times \left(\frac{4}{100}\right)}{\left(\frac{30}{100}\right) \left(\frac{3}{100}\right) + \left(\frac{70}{100}\right) \left(\frac{4}{100}\right)} = \frac{0.0280}{0.0370} = \frac{28}{37} \\ P(A_2/\,B) &= \frac{28}{37} \end{split}$$

எ.கா. 10.18: ஒரு அலுவலகத்தில் X, Y மற்றும் Z ஆகியோர் அலுவலகத்தின் தலைமையதிகாரியாக பொறுப்பேற்பதற்கான வாய்ப்புகள் முறையே 4:2:3 என்ற விகிதத்தில் அமைந்துள்ளன. அவர்கள் தலைமை அதிகாரிகளாக பொறுப்பேற்பின் போனஸ் திட்டத்தை (bonus scheme) அமுல்படுத்துவதற்கான நிகழ்தகவுகள் முறையே 0.3, 0.5 மற்றும் 0.4.

அலுவலகத்தில் போனஸ் திட்டம் அறிமுகப்படுத்தப்பட்டிருப்பின் Z தலைமையதிகாரியாக நியமனம் செய்யப்படவதற்கான நிகழ்தகவினைக் காண்க.

தீர்வு :

A₁, A₂ மற்றும் A₃ என்பவை முறையே X, Y மற்றும் Z ஆகியோர் தலைமையதிகாரியாக நியமனம் பெறுவதற்கான நிகழ்ச்சிகள் என்க. B என்பது போனஸ் திட்டத்தை அமுல்படுத்துவதற்கான நிகழ்ச்சி என்க.

படம் 10.13

$$P(A_1) = \frac{4}{9} ; P(B/A_1) = 0.3$$

$$P(A_2) = \frac{2}{9} ; P(B/A_2) = 0.5$$

$$P(A_3) = \frac{3}{9} ; P(B/A_3) = 0.4$$

நாம் சார்புநிலை நிகழ் தகவு P(A₃/ B) யினை காண வேண்டும்.

A₁, A₂ மற்றும் A₃ நிகழ்ச்சிகள் ஒன்றையொன்று விலக்கிய, யாவுமளாவிய நிகழ்ச்சிகளாதலால் பேயிஸ்-ன் தேற்றத்தின்படி

$$\begin{split} P(A_3/B) &= \frac{P(A_3) \cdot P(B/A_3)}{P(A_1) \cdot P(B/A_1) + P(A_2) \cdot P(B/A_2) + P(A_3) \cdot P(B/A_3)} \\ &= \frac{\left(\frac{3}{9}\right)(0.4)}{\left(\frac{4}{9}\right)(0.3) + \left(\frac{2}{9}\right)(0.5) + \left(\frac{3}{9}\right)(0.4)} = \frac{12}{34} \\ P(A_3/B) &= \frac{6}{17} \end{split}$$

எ.கா. 10.19: X, Y மற்றும் Z என்ற மூன்று வாடகைக்கார் நிறுவனத்திடமிருந்து, ஆலோசனை தரும் ஒரு நிறுவனம் கார்களை வாடகைக்கு வாங்குகிறது. 20% கார்களைXயிடமிருந்தும், 30% Yயிடம் இருந்தும் 50% Zயிடம் இருந்தும் வாடகைக்கு அமர்த்துகிறது. இவற்றுள் 90%, 80% மற்றும் 95% கார்கள் முறையே X, Y மற்றும் Z இடம் நல்ல நிலையில் இயங்கும் கார்களாகும், எனில் (1) ஆலோசனை நிறுவனம் ஒரு நல்ல நிலையில் இயங்கும் ஒரு காரை வாடகைக்கு பெறுவதற்கான நிகழ் தகவு யாது? (ii) வாடகைக்கு அமர்த்தப்பட்ட கார் நல்ல நிலையில் இயங்கும் கார் எனில் அந்த கார் Yயிடமிருந்து பெறப்பட்டதற்கான நிகழ்தகவு யாது?

தீர்வு :

X, Y மற்றும் Z என்ற நிறுவனங்களிடம் இருந்து முறையே வாடகைக்கு கார்களை அமர்த்தும் நிகழ்ச்சிகளை A, B மற்றும் C என்க. வாடகைக்கு அமர்த்தப்பட்ட கார் நல்ல நிலையில் இருப்பதற்கான நிகழ்ச்சியினை G என்க.

$$\therefore$$
 P(A₁) = 0.20 ; P(G/A₁) = 0.90
P(A₂) = 0.30 ; P(G/A₂) = 0.80
P(A₃) = 0.50 ; P(G/A₃) = 0.95

(i) நாம் முதலில் Gயின் கூட்டு நிகழ்தகவினை காண வேண்டும். i.e. P(G)

 $A_1,\ A_2$ மற்றும் A_3 ஒன்றையொன்று விலக்கிய, யாவுமளாவிய நிகழ்ச்சிகளாதலால்

$$\begin{split} P(G) &=& P(A_1) \cdot P(G/A_1) + P(A_2) \cdot P(G/A_2) + P(A_3) \cdot P(G/A_3) \\ &=& (0.2) (0.90) + (0.3) (0.80) + (0.5) (0.95) \\ &=& 0.180 + 0.240 + 0.475 \\ P(G) &=& 0.895 \end{split}$$

(ii) இங்கு நாம் P(A₂/G)ஐ காண வேண்டும்.

பேயிஸ்-ன் சூத்திரப்படி,

$$\begin{split} P(A_2/G) &= \frac{P(A_2) \cdot P(G/A_2)}{P(A_1) \cdot P(G/A_1) + P(A_2) \cdot P(G/A_2) + P(A_3) \cdot P(G/A_3)} \\ &= \frac{(0.3) \cdot (0.80)}{(0.895)} \qquad \qquad (P(G) = 0.895) \\ &= \frac{0.240}{0.895} \\ P(A_2/G) &= 0.268 \cdot (\text{Gbstythelians}) \end{split}$$

பயிற்சி 10.4

(1) A என்னும் பையில் 5 வெள்ளை, 6 கருப்பு பந்துகளும், B என்னும் பையில் 4 வெள்ளை மற்றும் 5 கருப்பு பந்துகளும் உள்ளன. சமவாய்ப்பு முறையில் ஒரு பையை தேர்ந்தெடுத்து அதிலிருந்து ஒரு பந்து எடுக்கப்படுகிறது. அது வெள்ளை நிறப்பந்தாக இருப்பதற்கான நிகழ்த்தகவைக் காண்க.

- இயந்திரம்-I மற்றம் II என்ற தொழிற்சாலையில் (2) ஒரு இயந்திரங்கள் உள்ளன. தொழிற்சாலையின் மொத்த உற்பத்தியில் 25% இயந்திரம்-Iம் மற்றும் 75% இயந்திரம்-IIம் உற்பத்தி செய்கிறது. மேலும் இயந்திரம்-I உற்பத்தி செய்ததில் 3%மும் இயந்திரம்-II 4%(பும் செய்ததில் உற்பத்தி குறைபாடுள்ளதாக இருக்கிறது. முறையில் தெர்ந்தெடுக்கப்பட்ட பொருள் சமவாய்ப்பு ஒரு குறைபாடுள்ளதாக இருப்பதற்கான நிகழ்தகவு என்ன?
- (3) ஒரே மாதிரியாகத் தோற்றமளிக்கும் இரு பெட்டிகளில், முதல் பெட்டியில் 5 வெள்ளை மற்றும் 3 சிவப்புப் பந்துகளும், இரண்டாவது பெட்டியில் 4 வெள்ளை மற்றும் 6 சிவப்பு பந்துகளும் உள்ளன. சமவாய்ப்பு முறையில் ஒரு பெட்டியைத் தேர்ந்தெடுத்து, அதிலிருந்து ஒரு பந்து எடுக்கப்படுகிறது. (i) அது வெள்ளைநிறப் பந்தாக இருப்பதற்கான நிகழ் தகவு யாது? (ii) எடுக்கப்பட்ட பந்து வெள்ளை நிறமாக இருப்பின், அது முதல் பெட்டியிலிருந்து கிடைப்பதற்கான நிகழ் தகவு யாது?
- (4) ஒரு தொழிற்சாலை உற்பத்தி செய்யும் மொத்த பொருட்களில் 45% இயந்திரம்-Iம் 55% இயந்திரம்-IIம் உற்பத்தி செய்கிறது. இயந்திரம்-I உற்பத்தி செய்யும் பொருள்களில் 10%மும் இயந்திரம்-II உற்பத்தி செய்யும் பொருள்களில் 5%மும் குறைபாடுள்ளதாக இருக்கிறது. ஒரு நாளைய உற்பத்தியிலிருந்து சமவாய்ப்பு முறையில் ஒரு பொருள் தேர்ந்தெடுக்கப்படுகிறது.
 - (i) அது குறைபாடு உள்ள பொருளாக கிடைப்பதற்கான நிகழ்தகவு யாது? (ii) அது குறைபாடு உள்ள பொருளாக இருப்பின், இயந்திரம்-II உற்பத்தி செய்வதற்கான நிகழ் தகவு யாது?
- (5) மூன்று ஜாடிகளில் சிவப்பு மற்றும் வெள்ளை வில்லைகள் கீழ்க்கண்டவாறு உள்ளது.

சிவப்பு வெள்ளை

gпц I : 6 4 gпц II : 3 5 gпц III : 4 6

சமவாய்ப்பு முறையில் ஒரு ஜாடி தேர்ந்தெடுக்கப்பட்டு அதிலிருந்து ஒரு வில்லை எடுக்கப்படுகிறது.

- (i) அது வெள்ளைநிறம் கொண்ட வில்லையாக இருப்பதற்கான நிகழ்தகவு யாது?
- (ii) அந்த வில்லை வெள்ளைநிறம் கொண்டதாக இருப்பின்,ஜாடி II-லிருந்து எடுக்கப்பட்டதற்கான நிகழ் தகவு யாது?

குறிக்கோள் வினாக்கள்

ஏற்புடைய விடையினை எடுத்தெழுதுக.

- (1) சரியான கூற்று எது?
 - (1) மெய்யெண்களின் கணம் ஒரு மூடிய கணம்
 - (2) குறையில்லா எண்களின் கணத்தினை (0, ∞) எனக் குறிப்பிடலாம்.
 - (3) [3, 7] என்ற கணம் 3 மற்றும் 7க்கு இடையே உள்ள இயல் எண்களின் கணம்
 - (4) (2, 3) என்ற கணம் [2, 3]-ன் உட்கணம்
- (2) சரியான கூற்றுகள் எவை?
 - (i) ஒரு தொடர்பானது சார்பாகவும் இருக்கும்.
 - (ii) ஒரு சார்பு, தொடர்பாகவும் இருக்கும்.
 - (iii) தொடர்பு இல்லாத சார்பினை வரையறுக்க இயலும்
 - (iv) சார்பு இல்லாது தொடர்பினை வரையறுக்க இயலும்
 - (3) (iii), (iv) (4) அனைத்தும் (1) (ii), (iii), (iv) (2) (ii), (iii)
- (3) மேற்கோர்த்தல் சார்பு எது?

 - (1) $f: R \to R$; $f(x) = x^2$ (2) $f: R \to [1, \infty)$; $f(x) = x^2 + 1$ (3) $f: R \to \{1, -1\}$; $f(x) = \frac{|x|}{x}$ (4) $f: R \to R$; $f(x) = -x^2$
- (4) ஒன்றுக்கு ஒன்று இல்லாத சார்பு எது?
 - (2) $f: R \to R$; $f(x) = x^2 + 1$ (1) $f: R \to R$; f(x) = x + 1
 - (3) $f: R \to \{1, -1\}$; f(x) = x 1 (4) $f: R \to R$; f(x) = -x
- (5) $f: \mathbf{R} \to \mathbf{R}^+$; $f(x) = x^2$ என வரையறுத்தால் f^{-1}
 - (1) மேற்கோர்த்தல் அல்ல
 - (2) ஒன்றுக்கு ஒன்று அல்ல
 - (3) மேற்கோர்த்தல் மற்றும் ஒன்றுக்கு ஒன்று அல்ல
 - (4) சார்பு அல்ல
- (6) சரியான கூற்றுகள் எவை?
 - (i) ஒரு மாறிலிச் சார்பு, பல்லுறுப்புக் கோவையாகும்
 - (ii) ஒரு பல்லுறுப்புக் கோவை, ஒரு இருபடிச் சார்பாகும்
 - (iii) ஒவ்வொரு ஒருபடிச் சார்புக்கும் நேர்மாறு சார்பு உண்டு
 - (iv) ஒரு மாறிலிச் சார்பு ஒன்றுக்கு ஒன்றாக இருக்க அதன் சார்பகம் ஒற்றை உறுப்புக் கணமாக இருத்தல் வேண்டும்
 - (1) (i), (iii) (2) (i), (iii), (iv) (3) (ii), (iii)

	(ii) tan சார்பின் வீச்சகம் R ஆகும்.(iii) cos சார்பின் வீச்சகம் sin சார்பின் வீச்சகமும் ஒன்றாகும்								
	(iv) Cot சார்பின் சார்பகம் R – {k π} ஆகும்								
	(1) அனைத்தும் (2) (i), (iii) (3) (ii), (iii), (iv) (4) (iii), (iv)								
(8)	் சரியான கூற்றுகள் எவை? (i) fog என்ற சார்புகளின் இணைப்பும் fg என்ற சார்புகளின்								
	பெருக்கலும் சமமானது.								
	(ii) fog என்ற சார்புகளின் இணைத்தலில், g-ன் துணைச் சார்பகம்,								
	f-ன் சார்பகமாக இருக்கும். (:::) f								
	(iii) fog மற்றும் gof கிடைக்க ஏதுவானால் fog = gof ஆகும்								
	(iv) f , g என்ற சார்புகள் ஒரே சார்பகத்தையும் துணைச்								
	சார்பகத்தையும் கொண்டிருக்குமானால் $fg = gf$ ஆகும். (1) அனைத்தும் (2) (ii), (iii), (iv) (3) (iii), (iv) (4) (ii), (iv)								
(9)	$\lim_{x \to -6} (-6)$								
	(1) 6	(2) - 6	(3) 36	(4) - 36					
(10)	$\lim_{x \to -1} (x)$								
(10)									
	(1) - 1	* *	(3) 0	(4) 0.1					
(11)	f(x) = - x + 3 என்ற சார்பின் $x o 1$ -ன் இடப்பக்க எல்லை								
	(1) 2	(2) 3	(3) 4	(4) - 4					
(12)	f(x) = x எனின்	v Rf(0) =							
	(1) x	(2) 0	(3) - x	(4) 1					
(12)	$\lim_{x \to 1} \frac{x^{1/3} - 1}{x - 1}$								
(13)	$x \to 1$ $x - 1$								
	$(1)\frac{2}{3}$	$(2) - \frac{2}{3}$	$(3)\frac{1}{3}$	$(4) - \frac{1}{3}$					
	3	(2) 3	(3) 3	(1) 3					
(14)	$\lim_{x \to 0} \frac{\sin 5x}{x}$								
` /	$x \to 0$ x	1							
	(1) 5	$(2)\frac{1}{5}$	(3) 0	(4) 1					
	lim	· ·							
(15)	$x \to 0 x \cot x$								
	(1) 0	(2) - 1	(3) ∞	(4) 1					

(7) சரியான கூற்றுகள் எவை?(i) வட்டச் சார்புகளின் சார்பகம் R ஆகும்.

- (16) $\lim_{x \to 0} \frac{2^{x} 3^{x}}{x}$ (1) $\log \left(\frac{3}{2}\right)$ (2) $\log \left(\frac{2}{3}\right)$ (3) $\log 2$ (4) $\log 3$ (17) $\lim_{x \to 1} \frac{e^{x} - e}{x - 1}$ (1) 1 (2) 0 (3) ∞ (4) e
- (18) $\lim_{x \to \infty} \left(1 \frac{1}{x}\right)^x$ (1) e (2) -e (3) $\frac{1}{e}$ (4) 0
- (19) f(x) = |x| என்ற சார்பு
 (1) x = 0-ல் தொடர்ச்சியானது
 (2) x = 0-ல் தொடர்ச்சியற்றது
 (3) x = 0-ல் வலப்பக்கமாக தொடர்ச்சியற்றது
- $(4) \ x = 0 \dot{\omega} \ \text{இடப்பக்கமாக தொடர்ச்சியற்றது}$ $(20) \ f(x) = \begin{cases} \frac{\sin(x-2)}{x-2}, \ x \neq 2 \\ x = 0, & x = 2 \end{cases}$ என்ற சார்பு எப்புள்ளியில் தொடர்ச்சியற்றது.
 - (1) x = 0 (2) x = -1 (3) x = -2 (4) x = 2
- (21) $f(x) = \frac{x^2 + 1}{x^2 3x + 2}$ என்ற சார்பு R-ல் எந்த புள்ளியைத் தவிர மற்றப் புள்ளிகளுக்குத் தொடர்ச்சியானது?
- (1) x = 1 (2) x = 2 (3) x = 1, 2 (4) x = -1, -2
- (22) $f(x) = \lfloor x \rfloor$ என்ற மீப்பெரு முழு எண் சார்பு எனில் (1) f(x) எல்லா குறை, மிகை முழு எண்களுக்கும் தொடர்ச்சியானது
 - $(2)\,f\!(x)$ எல்லா குறை, மிகை முழு எண்களுக்கும் தொடர்ச்சியற்றது
 - (3) x=0 என்பது மட்டுமே தொடர்ச்சியற்ற புள்ளி
- (4) x = 1 மட்டுமே தொடர்ச்சி உள்ள புள்ளி (23) $y = \tan x$ என்ற சார்பு எப்புள்ளியில் தொடர்ச்சியானது?
 - (1) x = 0 (2) $x = \frac{\pi}{2}$ (3) $x = \frac{3\pi}{2}$ (4) $x = -\frac{\pi}{2}$

- (24) f(x) = |x| + |x 1| என்ற சார்பு
 - (1) x = 0 என்ற புள்ளியில் மட்டுமே தொடர்ச்சியானது
 - (2) x = 1 என்ற புள்ளியில் மட்டுமே தொடர்ச்சியானது
 - (3) x=0, x=1 என்ற புள்ளிகளில் தொடர்ச்சியானது
 - (4) $x=0,\,1$ என்ற புள்ளிகளில் தொடர்ச்சியற்றது
- $(25) \ f(x) = egin{cases} kx^2 & x \leq 2 \ 3 & x > 2 \end{cases}$ என்ற சார்பு x = 3தொடர்ச்சியானதாக இருப்பின், R-ன் மதிப்பு என்ற சார்பு x = 2 என்ற புள்ளியில்
- $(2)\frac{4}{3}$
- (4) 0
- (26) $f(x) = \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$ எனில் Rf'(0)-ன் மதிப்பு

- (4) 2
- (27) $f(x) = |x \alpha|$ எனில் Lf' (α)-ன் மதிப்பு
 - $(1) \alpha$

- (4) 1
- (28) $f(x)=egin{cases} 2, & x\leq 1 \ x, & x>1 \end{cases}$ என்ற சார்புக்கு எப்புள்ளியில் வகைக்கெழு இல்லை.

- (3) x = 1
- (4) x = -2
- (29) $f(x)=x^2\mid x\mid$ என்ற சார்புக்கு x=0-ல் வகைக்கெழு
 - (1) 0

- (4) 1

- (30) $\int \sin^2 x \, dx =$
 - $(1)\frac{\sin^3 x}{3} + c$

- $(2) \frac{\cos^2 x}{2} + c$
- $(3) \frac{1}{2} \left[x \frac{\sin 2x}{2} \right] + c$
- $(4)\frac{1}{2}[1+\sin 2x]+c$
- (31) $\int \sin 7x \cos 5x \, dx =$

 - $(1) \frac{1}{35} \cos 7x \sin 5x + c \qquad (2) -\frac{1}{2} \left[\frac{\cos 12x}{12} + \frac{\cos 2x}{2} \right] + c$

 - $(3) -\frac{1}{2} \left[\frac{\cos 6x}{6} + \cos x \right] + c \qquad (4) \frac{1}{2} \left[\frac{\cos 12x}{12} + \frac{\cos 2x}{2} \right] + c$
- (32) $\int \frac{e^x}{e^x + 1} dx =$
 - $(1)\frac{1}{2}x + c \quad (2)\frac{1}{2}\left(\frac{e^x}{1+e^x}\right)^2 + c \quad (3)\log(e^x + 1) + c \quad (4)x + e^x + c$

(33)
$$\int \frac{1}{e^x} dx =$$
(1) $\log e^x + c$ (2) $-\frac{1}{e^x} + c$ (3) $\frac{1}{e^x} + c$ (4) $x + c$

$$(34) \int \log x \, dx =$$

$$(1)\frac{1}{x} + c \qquad (2)\frac{(\log x)^2}{2} + c \qquad (3) x \log x + x + c \qquad (4) x \log x - x + c$$

$$(35) \int \frac{x}{1+x^2} dx =$$

(1)
$$\tan^{-1}x + c$$
 (2) $\frac{1}{2}\log(1+x^2) + c$ (3) $\log(1+x^2) + c$ (4) $\log x + c$

(36)
$$\int \tan x \, dx =$$

(1)
$$\log \cos x + c$$
 (2) $\log \sec x + c$ (3) $\sec^2 x + c$ (4) $\frac{\tan^2 x}{2} + c$

(37)
$$\int \frac{1}{\sqrt{3+4x}} dx =$$

$$(1)\frac{1}{2}\sqrt{3+4x} + c$$

$$(2)\frac{1}{4}\log\sqrt{3+4x} + c$$

$$(3)2\sqrt{3+4x} + c$$

$$(4)-\frac{1}{2}\sqrt{3+4x} + c$$

$$(38) \quad \int \left(\frac{x-1}{x+1}\right) \, dx =$$

$$(1)\frac{1}{2}\left(\frac{x-1}{x+1}\right)^2 + c \qquad (2) x - 2\log(x+1) + c$$

$$(3)\frac{(x-1)^2}{2}\log(x+1) + c \qquad (4)x + 2\log(x+1) + c$$

(39)
$$\int \csc x \, dx =$$

(1)
$$\log \tan \frac{x}{2} + c$$
 (2) $-\log (\csc x + \cot x) + c$

$$(3) \log (\csc x - \cot x) + c$$
 $(4) மேற்கூறிய அனைத்தும்$

(40) மூன்று பகடைகள் உருட்டப்படும்பொழுது. சோதனையின் விளைவுகளின் எண்ணிக்கை

$$(1) 2^3$$
 $(2) 3^6$ $(3) 6^3$ $(4) 3^2$

(41)	மூன்று நாணயங்கள் சுண்டப்படுகின்றன. குறைந்தபட்சம் 2 தலைகள் கிடைக்க நிகழ்தகவு						
	$(1)\frac{3}{8}$	$(2)\frac{7}{8}$	$(3)\frac{1}{8}$	$(4)\frac{1}{2}$			
(42)	$P(A)=0.35, P(B)=0.73$ மற்றும் $P(A\cap B)=0.14$ எனில் $P(\overline{A}\cup \overline{B})=(1)~0.94$ (2) 0.06 (3) 0.86 (4) 0.14						
(43)	P(A) = 0.16, P A , B என்ற நி நடக்க நிகழ்தக	(B) = 0.24 மற்றும் F கழ்ச்சிகள் உள்ளன. (வு	$P(A {ackslash} B) = 0.11$ என இரு நிகழ்ச்சிகளில்	ஒன்றே ஒன்று			
(44)	(1) 0.29 A மற்றும் B இர	(2) 0.71 ரண்டும் சாரா நிகழ்ச்8	(3) 0.82 சிகள் எனில் <i>P(A/B</i>	(4) 0.18) =			
	(1) P(A)	$(2) P(A \cap B)$	(3) P(A) = P(B)	$(4)\frac{P(A)}{P(B)}$			
(45)	$P(A) \neq 0$ மற்றும் $P(B) \neq 0$ எனுமாறு A , B இரு நிகழ்ச்சிகளாகும். A யும் B யும் ஒன்றையொன்று விலக்கும் நிகழ்ச்சிகள் எனில் $(1)\ P(A \cap B) = P(A)\ P(B)$ $(2)\ P(A \cap B) \neq P(A)\ .\ P(B)$						
(46)	(3) P(A/B) = P(X, Y) என்		(4) P(B/A) = P(A) 95, 80 சதவீதத	.) த்தில் உண்மை			
(47)		(2) 86% ம் <i>C</i> என்ற 3 ப		0 0			
	கொடுக்கப்படுகிறது. அவர்கள் தீர்ப்பதற்கான நிகழ்தகவுகள் முறையே $\frac{1}{3}$, $\frac{2}{5}$ மற்றும் $\frac{1}{4}$ எனில் கணக்கைத் தீர்ப்பதற்கான நிகழ்தகவு						
	$(1)\frac{4}{5}$	$(2)\frac{3}{10}$	$(3)\frac{7}{10}$	$(4)\frac{1}{30}$			
(48)	$P(A) = 0.50, P(B) = 0.40$ மற்றும் $P(A \cap B) = 0.20$ எனில் $P(A/\overline{B}) = 0.20$						
(40)	(1) 0.50 (3) 0.70	10 0	(2) 0.40 (4) 0.10				
(49)	உள்ளன. மற்ெ பந்துகளும் உள்	10 வெள்ளைப் பந்த றாரு பையில் 5 வெ ரளன. ஒரு பையை தே டுக்கப்படுகிறது. அத	ள்ளைப் பந்துகளு நர்ந்தெடுத்து பின்எ	ம் 10 கறுப்புப் னர் அதிலிருந்து			
	$(1)\frac{5}{11}$	$(2)\frac{5}{12}$	$(3)\frac{3}{7}$	$(4)\frac{4}{7}$			

விடைகள்

பயிற்சி 7.1

(1) (i)
$$x^2 + 1$$
 (ii) $(x + 1)^2$ (iii) $x + 2$ (iv) x^4 (v) 10 (vi) 16

(2) (i)
$$x^2 + x + 1$$
 (ii) $\frac{x+1}{x^2}$ for $x \neq 0$ (iii) $x^3 + x^2$ (iv) $1+x-x^2$ (v) $x^3 + x^2$

(3)
$$f^{-1}(x) = \frac{x-2}{3}$$

(4) (i)
$$x \in [-3, 3]$$

(ii)
$$x \in (-\infty, -3) \cup (6, \infty)$$

(iii)
$$x \in (-\infty, -2) \cup (2, \infty)$$

(iv)
$$x \in (-4,3)$$

(v)
$$x \in (-\infty, -3] \cup [4, \infty)$$

(vii)
$$x \in (0, 1)$$

(viii)
$$x \in (-\infty, 0) \cup (1/3, \infty)$$

(ix)
$$x \in (-\infty, -1/3) \cup (2/3, \infty)$$

பயிற்சி 8.1

- (1) 4 (2) 0 (3) 2x (4) m (5) $\frac{2\sqrt{2}}{3}$

- (6) $\frac{q}{p}$ (7) $\frac{\sqrt[m]{a}}{ma}$ (8) $\frac{2}{3}$ (9) $\frac{1}{2}$ (10) $\frac{1}{9}$

- (11) $2\cos a$ (12) α (13) e (14) $y\dot{b}$; $x \to 3$ f(x) = 27
- (15) n = 4 (16) 1 (18) $-1; 1; \lim_{x \to 0} \frac{|x|}{x}$ கிடைக்காது
- (19) $\log_e\left(\frac{a}{b}\right)$; $\log_e\left(\frac{5}{6}\right)$

- (1) x = 2-ல் தொடர்ச்சியானது (2) x = 0-ல் தொடர்ச்சியானது
- (3) x = 1-ல் தொடர்ச்சிற்றது
- (4) x = 0-ல் தொடர்ச்சிற்றது
- (5) a = 3; b = -8
- (7) x = 1, x = 2-ல் தொடர்ச்சியானது

- (2) இல்லை; Lf '(0) = -1; Rf '(0) = 1
- (3) \mathbf{R} -ல் f தொடர்ச்சியானது ; x=0, x=1-ல் வகைக்கெழு இல்லாதது
- (4) (i) x = 1-ல் வகைக்கெழு இல்லாதது
 - (ii) x = 2-ல் வகைக்கெழு இல்லாதது ; ஆனால் x = 4-ல் வகைக்கெழு உண்டு.
- (5) Lf'(0) = -1; Rf'(0) = 1

பயிற்சி 8.4

(1)
$$3x^2 - 12x + 7$$
 (2) $3x^2 - 8$; $f'(2) = 4$; $f'(10) = 292$ (3) $a = 1$; $b = 7$

(4) (i)
$$7x^6 + e^x$$
 (ii) $\frac{\log_7 e}{x}$ (iii) $3\cos x - 4\sin x - e^x$ (iv) $e^x + 3\sec^2 x + \frac{6}{x}$

$$(v) \frac{\log_{10} e}{x} + 2 \sec x \tan x$$
 $(vi) \frac{-3}{2x^2 \sqrt{x}} + 7 \sec^2 x$

(vii)
$$3\left(1+x^2-\frac{1}{x^2}-\frac{1}{x^4}\right)$$
 (viii) $\left(4x-6-\frac{12}{x^2}\right)$

பயிற்சி 8.5

(1)
$$e^x (\cos x - \sin x)$$
 (2) $\frac{\sqrt[n]{x}}{2x} \left(1 + \frac{\log x}{n}\right)$

$$(3) 6 \log_{10}e \left(\frac{\sin x}{x} + \cos x \log_e x \right)$$

$$(4) (7x^6 - 36x^5 + 35x^4 + 12x^3 + 24x^2 - 14x - 4)$$

(5)
$$b$$
 (2 cos 2 x - cos x) + 2 a sin x (6) - cosec x (cot² x + cosec² x)
(7) sin2 x (8) - sin 2 x (9) 12 x (3 x ² + 1) (10) 2(12 x ² + 12 x - 1)

(7)
$$\sin 2x$$
 (8) $-\sin 2x$ (9) $12x(3x^2+1)$ (10) $2(12x^2+12x-1)$

$$(11) 6 \tan^2 x + 20 \cot^2 x + 26$$

$$(12) xe^{x} \left[x \cos x + x \sin x + 2 \sin x \right] \qquad (13) \frac{e^{x}}{\sqrt{x}} \left(1 + x \log x + \frac{\log x}{2} \right)$$

(1)
$$-\frac{10}{x^3}$$
 (2) $\frac{22}{(4x+5)^2}$ (3) $\frac{6x^7 - 28x^6 + 4^7}{(x-4)^2}$

(4)
$$\frac{e^{x} \left(\frac{1}{x} - \sin x - \cos x - \log x\right) - 2x \left(\cos x + \log x\right) + x - x^{2} \sin x}{\left(x^{2} + e^{x}\right)^{2}}$$

(5)
$$\frac{4x(1 - 2\log x)}{(\log x + 2x^2)^2}$$

(5)
$$\frac{4x(1-2\log x)}{(\log x + 2x^2)^2}$$
 (6) $\frac{\sin x - x \log x \cos x}{x \sin^2 x}$ (7) $\frac{-(2ax+b)}{(ax^2+bx+c)^2}$

$$(7) \frac{-(2ax+b)}{(ax^2+bx+c)^2}$$

$$(8) \frac{-2\sec^2 x}{\left(\tan x - 1\right)^2}$$

$$(8) \frac{-2\sec^2 x}{(\tan x - 1)^2} \qquad (9) \frac{-(x^2 + 2)}{(x \sin x - \cos x)^2} \qquad (10) e^{-x} \left(\frac{2}{x} - 2\log x\right)$$

$$(10) e^{-x} \left(\frac{2}{x} - 2\log x \right)$$

$$(1) \cot x$$

(2)
$$\cos x e^{\sin x}$$

(1)
$$\cot x$$
 (2) $\cos x e^{\sin x}$ (3) $\frac{-\csc^2 x}{2\sqrt{1+\cot x}}$ (4) $\frac{\sec^2 (\log x)}{x}$

$$(4) \frac{\sec^2(\log x)}{x}$$

(5)
$$\frac{e^{bx} (a \sin (ax+b) + b \cos (ax+b))}{\cos^2 (ax+b)}$$
 (6) $\frac{1}{2} \tan \left(\frac{\pi}{4} + \frac{x}{2}\right)$

$$(6) \frac{1}{2} \tan \left(\frac{\pi}{4} + \frac{x}{2} \right)$$

(7)
$$(e^x + 4) \cot (e^x + 4x + 5)$$
 (8) $\frac{3}{2} \sqrt{x} \cos (x \sqrt{x})$

$$(8) \frac{3}{2} \sqrt{x} \cos \left(x \sqrt{x} \right)$$

$$(9) \ \frac{-\sin\sqrt{x}}{2\sqrt{x}}$$

$$(10) \frac{\cos(\log x) e^{\sin(\log x)}}{x}$$

$$(1)\frac{-1}{\sqrt{x}(1+x)}$$

$$(2) \frac{-2x e^{x^2}}{1 + e^{2x^2}}$$

$$(1)\frac{-1}{\sqrt{x}(1+x)} \qquad (2)\frac{-2xe^{x^2}}{1+e^{2x^2}} \qquad (3)\frac{1}{x(1+(\log x)^2)} \quad (4)-2$$

$$(1) \ \frac{\sqrt{2}x^{\sqrt{2}}}{x}$$

$$(2) x^{x^{2}+1} (1+2 \log x)$$

(1)
$$\frac{\sqrt{2}x^{\sqrt{2}}}{x}$$
 (2) $x^{x^{2+1}} (1 + 2 \log x)$ (3) $x^{\tan x} \left(\frac{\tan x}{x} + \sec^2 x (\log x)\right)$

(4)
$$\sin x^{\sin x} \cos x (1 + \log \sin x)$$

(5)
$$(\tan^{-1}x)^{\log x} \left(\frac{\log x}{(1+x^2)\tan^{-1}x} + \frac{\log(\tan^{-1}x)}{x} \right)$$

(6)
$$(\log x)^{\sin^{-1}x} \left[\frac{\log (\log x)}{\sqrt{1-x^2}} + \frac{\sin^{-1}x}{x \log x} \right]$$

(7)
$$\frac{(x^2+2)(x+\sqrt{2})}{\sqrt{x+4}(x-7)} \left\{ \frac{24}{x^2+2} + \frac{1}{x+\sqrt{2}} - \frac{1}{2(x+4)} - \frac{1}{x-7} \right\}$$

(8)
$$(x^2 + 2x + 1)^{\sqrt{x-1}} \left[\frac{2\sqrt{x-1}}{(x+1)} + \frac{\log(x+1)}{\sqrt{x-1}} \right]$$

(9)
$$\frac{\sin x \cos(e^x)}{e^x + \log x} \left[\cot x - e^x \tan(e^x) - \frac{(xe^x + 1)}{x(e^x + \log x)} \right]$$

(10)
$$x^{\sin x} \left(\frac{\sin x}{x} + \log x \cos x \right) + (\sin x)^x (x \cot x + \log \sin x)$$

(1)
$$\frac{1}{2}$$
 (2) 1 (3) $\frac{1}{2}$ (4) 1 (5) $\frac{1}{2(1+x^2)}$

$$(\frac{1}{2})$$

(6)
$$\frac{2x}{1+x^4}$$
 (7) $\frac{1}{2\sqrt{x}(1+x)}$ (8) $\frac{1}{2\sqrt{1-x^2}}$ (9) $-\frac{1}{2}$

$$(8) \frac{1}{2\sqrt{1-x^2}}$$
 $(9) -\frac{1}{2}$

$$(1) -\frac{b}{a} \cot \theta \qquad (2) \frac{1}{t} \qquad (3) \frac{b}{a} \sin \theta \qquad (4) -\frac{1}{t^2}$$

$$(2)\frac{1}{t}$$

$$(3)\frac{b}{a}\sin\theta$$

$$(4) - \frac{1}{t^2}$$

(5)
$$\tan\left(\frac{3\theta}{2}\right)$$
 (6) $\tan\theta$ (7) $\frac{t(2-t^3)}{1-2t^3}$

$$(7)\frac{t(2-t^3)}{1-2t^3}$$

(1)
$$\frac{b^2x}{a^2y}$$
 (2) $\frac{\sin y}{1-x\cos y}$ (3) $\frac{x^2(x-3a^2y^3)}{y^2(3a^2x^3-y)}$ (4) $\frac{2+y(\sec^2x+y\sin x)}{2y\cos x-\tan x}$

$$(4) \frac{2 + y (\sec^2 x + y \sin x)}{2y \cos x - \tan x}$$

(5)
$$\frac{y \csc^2 x + (1+y^2) \sec x \tan x - 2x}{\cot x - 2y \sec x}$$

(6)
$$2\left(\frac{xy - (1+x^2)^2 \tan x \sec^2 x}{(1+x^2) \left[4y (1+x^2) + (1+x^2) \cos y + 1\right]}\right)$$

(7)
$$-\frac{y}{x}$$
 (8) $\frac{y}{x}$ (9) $e^{x-y} \left(\frac{1-e^y}{e^x-1} \right)$ (10) $\frac{100-y}{x-100}$ (11) $\frac{y(x \log y - y)}{x(y \log x - x)}$

(1)
$$2(3x + \tan x + \tan^3 x)$$
 (2) $-2(1 + 4\cot^2 x + 3\cot^4 x)$

(3) (i) (2) (ii)
$$2\cos x - x \sin x$$
 (iii) $\frac{2x}{(1+x^2)^2}$

(4) (i)
$$m^3 e^{mx} + 6$$
 (ii) $x \sin x - 3 \cos x$

குறிப்பு : பயிற்சி எண் 9.1லிருந்து 9.9வரையிலான அனைத்து விடைகளுடன் '*c*' என்ற மாறத்தக்க மாறிலியை (arbitrary constant) சேர்த்துக் கொள்ளவும்,

பயிற்சி 9.1

(1) (i)
$$\frac{x^{17}}{17}$$
 (ii) $\frac{2}{7} x^{7/2}$ (iii) $\frac{2}{9} x^{9/2}$ (iv) $\frac{3}{7} x^{7/3}$ (v) $\frac{7}{17} x^{17/7}$

(2) (i)
$$-\frac{1}{4x^4}$$
 (ii) $\log x$ (iii) $-\frac{2}{3x^{3/2}}$ (iv) $-\frac{3}{2x^{2/3}}$ (v) $4x^{1/4}$

(3) (I)
$$-\cos x$$
 (ii) $\sec x$ (iii) $-\csc x$ (iv) $\tan x$ (v) e^x

(1) (i)
$$\frac{x^5}{5}$$
 (ii) $\frac{(x+3)^6}{6}$ (iii) $\frac{(3x+4)^7}{21}$ (iv) $-\frac{(4-3x)^8}{24}$ (v) $\frac{(lx+m)^9}{9l}$

(2) (i)
$$-\frac{1}{5x^5}$$
 (ii) $-\frac{1}{3(x+5)^3}$ (iii) $-\frac{1}{8(2x+3)^4}$ (iv) $\frac{1}{30(4-5x)^6}$ (v) $-\frac{1}{7a(ax+b)^7}$

(3) (i)
$$\log(x+2)$$
 (ii) $\frac{1}{3} \log(3x+2)$ (iii) $-\frac{1}{4} \log(3-4x)$

(iv)
$$\frac{1}{q} \log (p + qx)$$
 (v) $-\frac{1}{t} \log (s - tx)$

(4) (i)
$$-\cos(x+3)$$
 (ii) $-\frac{1}{2}\cos(2x+4)$ (iii) $\frac{1}{4}\cos(3-4x)$

(iv)
$$\frac{1}{4} \sin(4x+5)$$
 (v) $-\frac{1}{2} \sin(5-2x)$

(5) (i)
$$-\tan(2-x)$$
 (ii) $-\frac{1}{2}\cot(5+2x)$ (iii) $\frac{1}{4}\tan(3+4x)$

(iv)
$$\frac{1}{11} \cot (7 - 11x)$$
 (v) $-\frac{1}{q} \tan (p - qx)$

(6) (i)
$$\sec (3+x)$$
 (ii) $\frac{1}{3} \sec (3x+4)$ (iii) $-\sec (4-x)$

(iv)
$$-\frac{1}{3} \sec (4-3x)$$
 (v) $\frac{1}{a} \sec (ax+b)$

(7) (i)
$$\csc(2-x)$$
 (ii) $-\frac{1}{4}\csc(4x+2)$ (iii) $\frac{1}{2}\csc(3-2x)$

(iv)
$$-\frac{1}{l}$$
 cosec $(lx + m)$ (v) $\frac{1}{t}$ cosec $(s - tx)$

(8) (i)
$$\frac{e^{3x}}{3}$$
 (ii) e^{x+3} (iii) $\frac{1}{3}e^{3x+2}$ (iv) $-\frac{1}{4}e^{5-4x}$ (v) $\frac{1}{a}e^{ax+b}$

(9) (i)
$$\frac{1}{p} \tan (px + a)$$
 (ii) $\frac{1}{m} \cot (l - mx)$ (iii) $-\frac{1}{7a} (ax + b)^{-7}$

(iv)
$$-\frac{1}{2}\log(3-2x)$$
 (v) $-e^{-x}$

(10) (i)
$$-\frac{1}{4} \sec (3-4x)$$
 (ii) $-\left(\frac{1}{q}\right) \frac{1}{q^{p+qx}}$ (iii) $-\frac{1}{2} \csc (2x+3)$

(iv)
$$\frac{2}{3l} (lx + m)^{3/2}$$
 (v) $-\frac{2}{15} (4 - 5x)^{3/2}$

(1)
$$x^5 + \frac{3}{10}(2x+3)^5 + \frac{1}{3}(4-3x)^6$$
 (2) $3\log x + \frac{m}{4}\log(4x+1) + \frac{(5-2x)^6}{6}$

(3)
$$4x - 5\log(x+2) + \frac{3}{2}\sin 2x$$
 (4) $\frac{3}{7}e^{7x} - \sec(4x+3) - \frac{11}{4x^4}$

(5)
$$-\cot(px-q) + \frac{6}{5} (1-x)^5 - e^{3-4x}$$

(6)
$$\log (3+4x) + \frac{(10x+3)^{10}}{100} + \frac{3}{2} \csc (2x+3)$$

(7)
$$-\frac{6}{5}\cos 5x + \frac{1}{p(m-1)(px+q)^{m-1}}$$

(8)
$$\frac{a}{b} \tan(bx+c) + \frac{q}{me^{l-mx}}$$

(9)
$$\frac{3}{2} \log \left(3 + \frac{2}{3}x\right) - \frac{2}{3} \sin \left(x - \frac{2}{3}\right) + \frac{9}{7} \left(\frac{x}{3} + 4\right)^7$$

(10)
$$-49\cos\frac{x}{7} + 32\tan\left(4 - \frac{x}{4}\right) + 10\left(\frac{2x}{5} - 4\right)^{5/2}$$

(11)
$$2\frac{x^{e+1}}{e+1} + 3e^x + xe^e$$
 (12) $\frac{(ae)^x}{1 + \log a} + \frac{a^{-x}}{\log a} + \frac{b^x}{\log b}$

(1)
$$\frac{8}{3}x^3 + 26x^2 - 180x$$
 (2) $\frac{x^7}{7} + \frac{x^4}{2} + x$

(3)
$$\frac{x^2}{2} + 4x - 3\log x - \frac{2}{x}$$
 (4) $\frac{x^4}{4} - \frac{x^3}{3} + 2\log(x+1)$

(5)
$$\frac{2}{5} x^{5/2} + \frac{4}{3} x^{3/2} + 2\sqrt{x}$$
 (6) $e^x - \frac{e^{-3x}}{3} - 2e^{-x}$

$$(7) \quad \frac{1}{2} \left(x - \frac{\sin 6x}{6} \right) + \sin 4x$$

$$(8)\frac{1}{4}\left(\frac{3\sin 2x}{2} + \frac{\sin 6x}{6}\right) + \frac{\cos 6x}{6}$$

(9)
$$\tan x - \sec x$$

$$(10) - \csc x - \cot x$$

(11)
$$\pm (\sin x + \cos x)$$

$$(12)\sqrt{2} \sin x$$

(13)
$$\tan x - \cot x$$

$$(14) x - \sin x$$

$$(15) -\frac{1}{2} \left(\frac{\cos 12x}{12} + \frac{\cos 2x}{2} \right)$$

$$(16)\frac{1}{2}\left(\frac{\sin 4x}{4} + \frac{\sin 2x}{2}\right)$$

$$(17) \quad -\frac{1}{2} \left(\frac{\cos 6x}{6} + \frac{\cos 2x}{2} \right)$$

$$(17) \quad -\frac{1}{2} \left(\frac{\cos 6x}{6} + \frac{\cos 2x}{2} \right) \qquad (18) \qquad \frac{1}{2} \left(\frac{\sin 8x}{8} - \frac{\sin 12x}{12} \right)$$

(19)
$$-\frac{1}{2} \cot x$$

$$(20) - \left(\frac{e^{-2x}}{2} - \frac{2}{3}e^{-3x} + \frac{1}{4}e^{-4x}\right)$$

(21)
$$2 \tan x - 2 \sec x - x$$

$$(22) - 2\frac{3^{-x}}{\log 3} + \frac{2^{-x}}{3\log 2}$$

$$(23) \ \frac{(ae)^x}{1 + \log a}$$

$$(24) a \left[\frac{(a/c)^x}{\log a - \log c} \right] - \frac{1}{b} \left[\frac{(b/c)^x}{\log b - \log c} \right]$$

$$(25)\frac{x^2}{2} + 2x + \log x$$

$$(26) - \frac{1}{2} \left[\frac{\cos{(m+n)x}}{m+n} + \frac{\cos{(m-n)x}}{(m-n)} \right]$$

$$(27)\frac{1}{2} \left[\frac{\sin(p+q)x}{p+q} + \frac{\sin(p-q)x}{p-q} \right] \qquad (28) - \frac{1}{2} \left[\frac{\cos 10x}{10} + \frac{\cos 20x}{40} \right]$$

$$(28) - \frac{1}{2} \left[\frac{\cos 10x}{10} + \frac{\cos 20x}{40} \right]$$

$$(29)\frac{2}{9}[(x+1)^{3/2}+(x-2)^{3/2}]$$

$$(29)\frac{2}{9}\left[\left(x+1\right)^{3/2}+\left(x-2\right)^{3/2}\right] \qquad (30)\frac{2}{3a(b-c)}\left[\left(ax+b\right)^{3/2}+\left(ax+c\right)^{3/2}\right]$$

$$(31) \ \frac{2}{5} (x+3)^{5/2} - \frac{4}{3} (x+3)^{3/2} \qquad (32) \ \frac{2}{5} (x+7)^{5/2} - \frac{22}{3} (x+7)^{3/2}$$

$$(32)\frac{2}{5}(x+7)^{5/2} - \frac{22}{3}(x+7)^{3/2}$$

$$(33) \ \frac{1}{5} (2x+3)^{5/2} - \frac{2}{3} (2x+3)^{3/2} \qquad (34) \ 2 \log (x+3) - \log (x+2)$$

$$(34)\ 2\log(x+3) - \log(x+2)$$

(35)
$$\frac{5}{52} \log \left(\frac{x-2}{x+2} \right) + \frac{8}{39} \tan^{-1} \left(\frac{x}{3} \right)$$

(1)
$$\frac{(1+x^6)^8}{48}$$
 (2) $\log(lx^2+mx+n)$ (3) $-\frac{2}{9(ax^2+bx+c)^9}$

(4)
$$\sqrt{x^2 + 3}$$
 (5) $\frac{2}{3} (x^2 + 3x - 5)^{3/2}$ (6) $\log \sec x$

(7)
$$\log(\sec x + \tan x)$$
 (8) $-\frac{\cos^{15} x}{15}$ (9) $-\frac{\cos^{5} x}{5} + \frac{2}{3}\cos^{3} x - \cos x$

$$(10) \ \frac{-1}{7} \sin^7 x + \frac{3}{5} \sin^5 x - \sin^3 x + \sin x \qquad (11) \log (x + \log \sec x)$$

$$(12)\frac{1}{m} e^{m \tan^{-1} x} \qquad (13)\frac{1}{4} (\sin^{-1} x^2)^2 \qquad (14) (x + \log x)^5$$

(15)
$$-\cos(\log x)$$
 (16) $\log\log\sin x$ (17) $\frac{\sec^4 x}{4}$

(18)
$$-\sec x + \frac{\sec^3 x}{3}$$
 (19) $(x+a)\cos a - \sin a \log \sin (x+a)$

(20)
$$(x-a)\cos a + \sin a \log \cos (x-a)$$
 (21) $\frac{1}{b-a}\log (a\cos^2 x + b\sin^2 x)$

(22)
$$\log \cos \left(\frac{\pi}{4} - x\right)$$
 (23) $2\sqrt{\tan x}$ (24) $\frac{1}{3} (\log x)^3$

(25)
$$\frac{1}{4} e^{x^4}$$
 (26) $\frac{1}{e} \log (x^e + e^x + e^e)$ (27) $\frac{(l-x)^{18}}{18} - \frac{l(l-x)^{17}}{17}$

(28)
$$\frac{a}{m+1} (x-a)^{m+1} + \frac{1}{m+2} (x-a)^{m+2}$$

$$(29) \quad -\frac{(2-x)^{18}}{18} + \frac{4}{17} (2-x)^{17} - \frac{1}{4} (2-x)^{16} \qquad (30) - 2\cos\sqrt{x}$$

$$(31) \ \frac{1}{2} \left[\frac{(2x+3)^{5/2}}{5} - \frac{(2x+3)^{3/2}}{3} \right] \qquad (32) \frac{1}{2} \left[\frac{3}{5} (2x+1)^{5/2} + \frac{7}{3} (2x+1)^{3/2} \right]$$

(33)
$$2\left[\frac{(x+1)^{7/2}}{7} - \frac{2}{5}(x+1)^{5/2} + \frac{2}{3}(x+1)^{3/2}\right]$$

$$(1) - xe^{-x} - e^{-x}$$

(2)
$$x \sin x + \cos x$$

(3)
$$-x \cot x + \log \sin x$$

(4)
$$x \sec x - \log(\sec x + \tan x)$$

(5)
$$x \tan^{-1} x - \frac{1}{2} \log (1 + x^2)$$
 (6) $x \tan x + \log \cos x - \frac{x^2}{2}$

$$(6) x \tan x + \log \cos x - \frac{x^2}{2}$$

(7)
$$\frac{1}{2} \left[\frac{x^2}{2} + \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} \right]$$

$$(7) \quad \frac{1}{2} \left[\frac{x^2}{2} + \frac{x \sin 2x}{2} + \frac{\cos 2x}{4} \right] \quad (8) \quad \frac{1}{2} \left(\left(\frac{\sin 7x}{7} + \frac{\sin 3x}{3} \right) + \left(\frac{\cos 7x}{49} + \frac{\cos 3x}{9} \right) \right)$$

(9)
$$2\left[\frac{1}{3}xe^{3x} - \frac{e^{3x}}{9}\right]$$

$$(10)\left(\frac{x^2}{2} - \frac{x}{2} + \frac{1}{4}\right) e^{2x}$$

(11)
$$\frac{1}{3} x^2 \sin 3x + \frac{2}{9} x \cos 3x - \frac{2}{27} \sin 3x$$
 (12) $(\sin^{-1} x - 1) e^{\sin^{-1} x}$

$$(12) \left(\sin^{-1} x - 1\right) e^{\sin^{-1} x}$$

(13)
$$\frac{1}{2} (x^4 - 2x^2 + 2)e^{x^2}$$

(13)
$$\frac{1}{2} (x^4 - 2x^2 + 2)e^{x^2}$$
 (14) $3 \left[x \tan^{-1} x - \frac{1}{2} \log (1 + x^2) \right]$

(15)
$$\frac{1}{2} \left[x^2 \sin^{-1}(x^2) + \sqrt{1 - x^4} \right]$$

(15)
$$\frac{1}{2} \left[x^2 \sin^{-1}(x^2) + \sqrt{1 - x^4} \right]$$
 (16) $-\frac{1}{2} \csc x \cot x + \frac{1}{2} \log \tan \frac{x}{2}$

(17)
$$\frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx)$$
 (18) $\frac{e^{2x}}{13} (2 \sin 3x - 3 \cos 3x)$

$$(18)\frac{e^{2x}}{13} (2 \sin 3x - 3 \cos 3x)$$

(19)
$$\frac{e^x}{5}$$
 (cos 2x + 2 sin 2x)

$$(20)\frac{e^{3x}}{13} (3 \sin 2x - 2 \cos 2x)$$

(21)
$$\frac{1}{4} [\sec 2x \tan 2x + \log (\sec 2x + \tan 2x)]$$

(22)
$$\frac{e^{4x}}{2} \left[\frac{1}{65} \left(4 \sin 7x - 7 \cos 7x \right) - \frac{1}{25} \left(4 \sin 3x - 3 \cos 3x \right) \right]$$

(23)
$$\frac{e^{-3x}}{4} \left[\frac{3}{10} \left(-3\cos x + \sin x \right) + \frac{1}{6} \left(-\cos 3x + \sin 3x \right) \right]$$

(1) (i)
$$\frac{1}{5} \tan^{-1} \left(\frac{x}{5}\right)$$
 (ii) $\frac{1}{4} \tan^{-1} \left(\frac{x+2}{4}\right)$ (iii) $\frac{1}{6} \tan^{-1} \left(\frac{3x+5}{2}\right)$ (iv) $\frac{2}{\sqrt{55}} \tan^{-1} \left(\frac{4x+7}{\sqrt{55}}\right)$ (v) $\frac{1}{9} \tan^{-1} \left(\frac{3x+1}{3}\right)$

(2) (i)
$$\frac{1}{8} \log \left(\frac{4+x}{4-x} \right)$$
 (ii) $\frac{1}{6} \log \left(\frac{x}{6-x} \right)$ (iii) $\frac{1}{8\sqrt{7}} \log \left(\frac{\sqrt{7}+1+4x}{\sqrt{7}-1-4x} \right)$ (iv) $\frac{1}{\sqrt{5}} \log \left(\frac{\sqrt{5}-1+2x}{\sqrt{5}+1-2x} \right)$ (v) $\frac{1}{6\sqrt{6}} \log \left(\frac{\sqrt{6}+1+3x}{\sqrt{6}-1-3x} \right)$

(3) (i)
$$\frac{1}{10} \log \left(\frac{x-5}{x+5} \right)$$
 (ii) $\frac{1}{16} \log \left(\frac{2x-3}{2x+5} \right)$ (iii) $\frac{1}{6\sqrt{7}} \log \left(\frac{3x+5-\sqrt{7}}{3x+5+\sqrt{7}} \right)$ (iv) $\frac{1}{\sqrt{21}} \log \left(\frac{2x+3-\sqrt{21}}{2x+3+\sqrt{21}} \right)$ (v) $\frac{1}{17} \log \left(\frac{3x-15}{3x+2} \right)$

(4) (i)
$$\log \left(x + \sqrt{x^2 + 1}\right)$$
 (ii) $\frac{1}{2} \log \left[(2x + 5) + \sqrt{(2x + 5)^2 + 4}\right]$
(iii) $\frac{1}{3} \log \left[(3x - 5) + \sqrt{(3x - 5)^2 + 6}\right]$ (iv) $\log \left[\left(x + \frac{3}{2}\right) + \sqrt{x^2 + 3x + 10}\right]$
(v) $\log \left[\left(x + \frac{5}{2}\right) + \sqrt{x^2 + 5x + 26}\right]$

(5) (i)
$$\log \left(x + \sqrt{x^2 - 91}\right)$$
 (ii) $\log \left[(x+1) + \sqrt{(x+1)^2 - 15}\right]$
(iii) $\frac{1}{2} \log \left[(2x+3) + \sqrt{(2x+3)^2 - 16}\right]$ (iv) $\log \left[(x+2) + \sqrt{x^2 + 4x - 12}\right]$
(v) $\log \left[(x+4) + \sqrt{x^2 + 8x - 20}\right]$

(6) (i)
$$\sin^{-1}\left(\frac{x}{2}\right)$$
 (ii) $\sin^{-1}\left(\frac{x-1}{5}\right)$ (iii) $\frac{1}{2} \sin^{-1}\left(\frac{2x+3}{\sqrt{11}}\right)$ (iv) $\sin^{-1}\left(\frac{2x-1}{\sqrt{5}}\right)$ (v) $\sin^{-1}\left(\frac{2x+1}{\sqrt{33}}\right)$

(7) (i)
$$-\log(x^2 + x + 1) + \frac{8}{\sqrt{3}} \tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right)$$

(ii)
$$\frac{1}{2} \log (x^2 + 21x + 3) - \frac{27}{2\sqrt{429}} \log \left(\frac{2x + 21 - \sqrt{429}}{2x + 21 + \sqrt{429}} \right)$$

(iii)
$$\frac{1}{2} \log (2x^2 + x + 3) - \frac{3}{\sqrt{23}} \tan^{-1} \left(\frac{4x + 1}{\sqrt{23}} \right)$$

(iv)
$$\frac{1}{2} \log (1 - x - x^2) + \frac{3}{2\sqrt{5}} \log \left(\frac{\sqrt{5} + 2x + 1}{\sqrt{5} - 2x - 1} \right)$$

(v)
$$2 \log (x^2 + 3x + 1) - \sqrt{5} \log \left(\frac{2x + 3 - \sqrt{5}}{2x + 3 + \sqrt{5}} \right)$$

(8) (i)
$$-\frac{1}{2}\sqrt{6+x-2x^2} + \frac{9}{4\sqrt{2}}\sin^{-1}\left(\frac{4x-1}{7}\right)$$

(ii)
$$-2\sqrt{10-7x-x^2} - 10\sin^{-1}\left(\frac{2x+7}{\sqrt{89}}\right)$$

(iii)
$$\sqrt{3x^2 + 4x + 7}$$
 (iv) $\sin^{-1}x - \sqrt{1 - x^2} + c$

(v)
$$6\sqrt{x^2 - 9x + 20} + 34 \log \left[(x - 9/2) + \sqrt{x^2 - 9x + 20} \right]$$

(9) (i)
$$\frac{x}{2} \sqrt{1+x^2} + \frac{1}{2} \log \left[x + \sqrt{1+x^2}\right]$$

(ii)
$$\frac{x+1}{2} \sqrt{(x+1)^2 + 4} + 2 \log \left[(x+1) + \sqrt{(x+1)^2 + 4} \right]$$

(iii)
$$\frac{1}{4} \left[(2x+1)\sqrt{(2x+1)^2+9} + 9\log \left\{ (2x+1) + \sqrt{(2x+1)^2+9} \right\} \right]$$

(iv)
$$\frac{2x-3}{4} \sqrt{x^2-3x+10} + \frac{31}{8} \log \left[(x-3/2) + \sqrt{x^2-3x+10} \right]$$

$$(10) \quad (i) \frac{x}{2} \sqrt{4 - x^2} + 2\sin^{-1}\left(\frac{x}{2}\right) \quad (ii) \left(\frac{x+2}{2}\right) \sqrt{25 - (x+2)^2} + \frac{25}{2} \sin^{-1}\left(\frac{x+2}{5}\right)$$

$$(iii) \frac{1}{6} \left[(3x+1) \sqrt{169 - (3x+1)^2} + 169 \sin^{-1}\left(\frac{3x+1}{13}\right) \right]$$

$$(iv) \frac{2x-3}{4} \sqrt{1 - 3x - x^2} + \frac{13}{8} \sin^{-1}\left(\frac{2x+3}{\sqrt{13}}\right)$$

$$(v) \frac{2x+1}{4} \sqrt{6 - x - x^2} + \frac{25}{8} \sin^{-1}\left(\frac{2x+1}{5}\right)$$

பயிற்சி 10.1

- (1) (i) ஆம் (ii) இல்லை (iii) இல்லை, :: P(C) ஒரு குறைமதிப்பாகும் (iv) இல்லை, $: \sum P \neq 1 \quad (v)$ ஆம்
- (2) (i) $\frac{1}{6}$ (ii) $\frac{1}{12}$ (iii) $\frac{1}{6}$ (3) (i) $\frac{3}{8}$ (ii) $\frac{1}{2}$ (iii) $\frac{7}{8}$ (4) (i) $\frac{2}{13}$ (ii) $\frac{4}{13}$ (iii) $\frac{2}{13}$
- (5) (i) $\frac{1}{22}$ (ii) $\frac{21}{44}$ (6) $\frac{2}{9}$ (7) (i) $\frac{4}{7}$ (ii) $\frac{3}{7}$ (8) $\frac{37}{42}$ (9) (i) $\frac{1}{7}$ (ii) $\frac{2}{7}$ (10) $\frac{27}{50}$

பயிற்சி 10.2

- (1) (i) 0.79 (ii) 0.10
- (2) (i) 0.72 (ii) 0.72 (iii) 0.28 (iv) 0.28
- (3) (i) 0.86 (ii) 0.36 (iii) 0.26 (iv) 0.76 (v) 0.14
- $(4)\frac{11}{36}$ (5) 0.2

- (6) (i) $\frac{4}{13}$ (ii) $\frac{7}{13}$
- (7) (i) 0.45 (ii) 0.30

பயிற்சி 10.3

- (1) இயலாது
- (3) (i) $\frac{9}{10}$ (ii) $\frac{2}{7}$ (4) $\frac{1}{5}$
- (5) 0.5

- $(7) \ \ (i) \ 0.12 \qquad \qquad (ii) \ 0.48 \qquad \qquad (iii) \ 0.39$
- (9) (i) $\frac{13}{20}$ (ii) $\frac{5}{12}$ (iii) $\frac{1}{2}$ (iv) $\frac{7}{12}$ (v) $\frac{7}{8}$

- (10) (i) $\frac{3}{10}$ (ii) $\frac{6}{11}$ (iii) 0.6 (iv) 0.525

- (11) (i) $\frac{1}{169}$ (ii) $\frac{1}{221}$ (12) (i) $\frac{1}{26}$ (ii) $\frac{1}{13}$
- (13) (i) $\frac{1}{4}$ (ii) $\frac{9}{40}$ (iii) $\frac{21}{40}$
- (14) (i) $\frac{1}{30}$ (ii) $\frac{3}{10}$ (iii) $\frac{2}{3}$
- (15) (i) $\frac{3}{4}$ (ii) $\frac{11}{24}$
- (16) (i) $\frac{5}{28}$ (ii) $\frac{1}{14}$
- (17) (i) 0.45 (ii) 0.9
- $(18)\frac{13}{30} \qquad (19)\frac{43}{60} \qquad (20)\frac{7}{20}$

- பயிற்சி 10.4
 (1) $\frac{89}{198}$ (2) $\frac{3}{80}$ (3) (i) $\frac{41}{80}$ (ii) $\frac{25}{41}$

- (4) (i) $\frac{29}{400}$ (ii) $\frac{11}{29}$ (5) (i) $\frac{13}{24}$ (ii) $\frac{5}{13}$

குறிக்கோள் வினாக்கள் - விடைகள்

(1) 4	(2) 1	(3) 2	(4) 2	(5) 4	(6) 2
(7) 3	(8) 4	(9) 2	(10) 1	(11) 1	(12) 2
(13) 3	(14) 1	(15) 4	(16) 2	(17) 4	(18) 3
(19) 1	(20) 4	(21) 3	(22) 2	(23) 1	(24) 3
(25) 1	(26) 1	(27) 3	(28) 3	(29) 1	(30) 3
(31) 2	(32) 3	(33) 2	(34) 4	(35) 2	(36) 2
(37) 1	(38) 2	(39) 4	(40) 3	(41) 4	(42) 3
(43) 4	(44) 1	(45) 2	(46) 3	(47) 3	(48) 1
(49) 2					