双序列比对-局部比对算法

高建召

致谢

此PPT内容参考了 杨建益老师的PPT。 https://yanglab.nankai.edu.cn/

双序列比对的算法

- □ Dot Matrix,点阵法
- □动态规划算法:
 - Global: Needleman-Wunsch
 - Local: Smith-Waterman
- □ Word or *k*-tuple算法: FASTA, BLAST

动态规划算法: 局部比对

Local alignment: Smith-Waterman

Smith-Waterman algorithm

For generating optimal local alignment?

TF Smith & MS Waterman, Identification of common molecular subsequences. J Mol Biol (1981) 147, 195-197.

Temple F. Smith (1939-) Boston University

Michael S. Waterman (1942-) University of Southern California (USC)

Michael S. Waterman (1942-)

Two differences between SW and NW

• 1. Non-negative scores

Two differences between SW and NW

• 2. Traceback starts at the highest scoring matrix cell and proceeds until a cell with score zero is encountered.

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

	Α	Α	G	Α
Т				
Т				
Α				
Α				
G				

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

		Α	Α	G	Α
	0	0	0	0	0
Т	0				
Т	0				
Α	0				
Α	0				
G	0				

Initialization

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

		Α	Α	G	Α
	0	0	0	0	0
Т	0	0			
Т	0	0			
Α	0	1			
Α	0	1			
G	0	0			

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

		Α	Α	G	Α
	0	0	0	0	0
Т	0	0	0		
Т	0	0	0		
Α	0	1	1		
Α	0	1	2		
G	0	0	0		

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

		Α	Α	G	Α
	0	0	0	0	0
Т	0	0	0	0	
Т	0	0	0	0	
Α	0	1	1	0	
Α	0	1	2	0	
G	0	0	0	3	_

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

Gap penalty: g=-2

extension = opening

		Α	Α	G	Α
	0	0	0	0	0
Т	0	0	0	0	0
Т	0	0	0	0	0
Α	0	1	1	0	1
Α	0	1	2	0	1
G	0	0	0	3 +	_1

Filling done

x:G y:G

Traceback...

x:AG

y:AG

Traceback...

x:AAG

y:AAG

Traceback done

Affine Gap penalty

MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRVKHLKTEAEMKASEDLK
SLEWMVNWAMVNWAAVV——DDFYQELFKAHPEYQNKFGFKAHPEYQNKFGFKGVALG

Gap opening Gap extension

- Gap penalty: $w(k) = a + b \times (k-1)$ $(k \ge 1; a, b < 0)$
 - k: length of continous gaps
 - a: gap opening penalty
 - b: gap entension penalty
- Linear gap penalty if a=b
- Affine gap penalty if a!=b

DP for affine gap penalty case

 O. Gotoh. An improved algorithm for matching biological sequences. Journal of Molecular Biology 162 705-708 1982.

Time complexity O(mn)

带仿射罚分的全局比对

Need 3 matrices instead of 1

M(i,j) best score given that x[i] is aligned to y[j]

 $I_x(i,j)$ best score given that x[i] is aligned to a gap

 $I_y(i,j)$ best score given that y[j] is aligned to a gap

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) + a \\ I_x(i-1,j) + b \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + a \\ I_{y}(i,j-1) + b \end{cases}$$

P29

每一个矩阵值表现为一个状态;

箭头表示状态间的转移。

一个比对就是一条由状态节点连接起来的路径。

Initialization

$$\begin{cases} M(0,0) = 0; \\ M(i,0) = -\infty, M(0,j) = -\infty & (i,j \neq 0) \end{cases}$$

$$\begin{cases} I_x(i,0) = a+b \times i, & (0 \le i \le m) \\ I_x(0,j) = -\infty, & (0 < j \le n) \end{cases}$$

$$\begin{cases} I_y(0,j) = a + b \times j, & (0 \le j \le n) \\ I_y(i,0) = -\infty, & (0 < i \le m) \end{cases}$$

Traceback

- > Start at the largest of M(m,n), $I_x(m,n)$, $I_y(m,n)$
- > Stop at any of M(0,0), $I_x(0,0)$, $I_y(0,0)$

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

$$a = -3, b = -1$$

A

A

	Α	С	Α	С	Т
-					
					•

A

A

 $s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$ a=-3,b=-1

$$\begin{cases} M(0,0) = 0; \\ M(i,0) = -\infty, M(0,j) = -\infty & (i, j \neq 0) \end{cases}$$

$$\begin{cases} I_x(i,0) = a + b \times i, & (0 \le i \le m) \\ I_x(0,j) = -\infty, & (0 < j \le n) \end{cases}$$

$$\begin{cases} I_{y}(0,j) = a + b \times j, & (0 \le j \le n) \\ I_{y}(i,0) = -\infty, & (0 < i \le m) \end{cases}$$

	Α	С	Α	C	T
M:0	-∞	-∞	-∞	-∞	-∞
I _x :-3	-∞	-∞	-∞	-∞	-∞
l _y :-3 ←	4 ←	5 ←	6 ←	7 ←	8
-∞					
-4					
-∞					
-∞					
-5					
-∞					
-∞					
-6					
-∞					

 $s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$ a=-3,b=-1

$$\begin{cases} M(0,0) = 0; \\ M(i,0) = -\infty, M(0,j) = -\infty \quad (i, j \neq 0) \end{cases}$$

$$\begin{cases} I_x(i,0) = a + b \times i, & (0 \le i \le m) \\ I_x(0,j) = -\infty, & (0 < j \le n) \end{cases}$$

$$\begin{cases} I_{y}(0,j) = a + b \times j, & (0 \le j \le n) \\ I_{y}(i,0) = -\infty, & (0 < i \le m) \end{cases}$$

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) & A \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) + a \\ I_x(i-1,j) + b \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + a \\ I_{y}(i,j-1) + b \end{cases}$$

	Α	С	Α	С	Т
M:0	-∞	-∞	-∞	-∞	-∞
l _x :-3	-∞	-∞	-∞	-∞	-∞
l _y :-3 ←	4 ←	5 ←	6 ←	7 ←	8
-∞	1 1				
-4 AR	-∞				
-∞	-∞				
-∞	-3				
-5 A R	-2 ^				
-∞	-∞				
-∞	\- 6				
-6	-3				
-∞	-∞				

 $s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$ a=-3,b=-1

$$\begin{cases} M(0,0) = 0; \\ M(i,0) = -\infty, M(0,j) = -\infty & (i, j \neq 0) \end{cases}$$

$$\begin{cases} I_x(i,0) = a + b \times i, & (0 \le i \le m) \\ I_x(0,j) = -\infty, & (0 < j \le n) \end{cases}$$

$$\begin{cases} I_{y}(0,j) = a + b \times j, & (0 \le j \le n) \\ I_{y}(i,0) = -\infty, & (0 < i \le m) \end{cases}$$

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) + a \\ I_x(i-1,j) + b \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + a \\ I_{y}(i,j-1) + b \end{cases}$$

 $s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$ a=-3, b=-1

$$\begin{cases} M(0,0) = 0; \\ M(i,0) = -\infty, M(0,j) = -\infty & (i, j \neq 0) \end{cases}$$

$$\begin{cases} I_x(i,0) = a + b \times i, & (0 \le i \le m) \\ I_x(0,j) = -\infty, & (0 < j \le n) \end{cases}$$

$$\begin{cases} I_{y}(0,j) = a + b \times j, & (0 \le j \le n) \\ I_{y}(i,0) = -\infty, & (0 < i \le m) \end{cases}$$

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) + a \\ I_x(i-1,j) + b \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + a \\ I_{y}(i,j-1) + b \end{cases}$$

 $s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$ a=-3,b=-1

$$\begin{cases}
M(0,0) = 0; \\
M(i,0) = -\infty, M(0,j) = -\infty & (i, j \neq 0)
\end{cases}$$

$$\begin{cases} I_x(i,0) = a + b \times i, & (0 \le i \le m) \\ I_x(0,j) = -\infty, & (0 < j \le n) \end{cases}$$

$$\begin{cases} I_{y}(0,j) = a + b \times j, & (0 \le j \le n) \\ I_{y}(i,0) = -\infty, & (0 < i \le m) \end{cases}$$

$$M(i, j) = \max \begin{cases} M(i-1, j-1) + s(x_i, y_j) \\ I_x(i-1, j-1) + s(x_i, y_j) \\ I_y(i-1, j-1) + s(x_i, y_j) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) + a \\ I_x(i-1,j) + b \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + a \\ I_{y}(i,j-1) + b \end{cases}$$

 $s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$ a=-3,b=-1

Filling done

$$M(i,0) = -\infty, M(0,j) = -\infty \quad (i, j \neq 0)$$

$$\begin{cases} I_x(i,0) = a + b \times i, & (0 \le i \le m) \\ I_x(0,j) = -\infty, & (0 < j \le n) \end{cases}$$

 $\int M(0,0) = 0;$

$$\begin{cases} I_{y}(0,j) = a + b \times j, & (0 \le j \le n) \\ I_{y}(i,0) = -\infty, & (0 < i \le m) \end{cases}$$

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) + a \\ I_x(i-1,j) + b \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + a \\ I_{y}(i,j-1) + b \end{cases}$$

x:A--AT

y:ACACT Traceback

Traceback

Another alignment

x:AA--T

y:ACACT

Another alignment

x:A-A-T

y:ACACT

Another alignment

$$s(x_i, y_j) = \begin{cases} 1, & \text{if } x_i = y_j \\ -1, & \text{otherwise} \end{cases}$$

$$a = -3, b = -1$$

x:A--AT

y:ACACT

x:AA--T

y:ACACT

x:A-A-T

y:ACACT

带仿射罚分的局部比对

SW-DP with affine gap penalty

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \\ 0 \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i-1,j) + a \\ I_x(i-1,j) + b \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) + a \\ I_{y}(i,j-1) + b \end{cases}$$

SW-DP with affine gap penalty

Initialization

$$M(i,0) = M(0,j) = 0$$

$$I_{x}(i,0) = I_{x}(0,j) = -\infty$$

$$I_{v}(i,0) = I_{v}(0,j) = -\infty$$

SW-DP with affine gap penalty

- Traceback
 - > Start at the largest of M(i,j)
 - > Stop at M(i,j)=0

软件、服务器操作

全局比对: Needleman-Wunsch算法

https://blast.ncbi.nlm.nih.gov/Blast.cgi

Specialized searches

SmartBLAST

Find proteins highly similar to your query

Primer-BLAST

Design primers specific to your PCR template

Global Align

Compare two sequences across their entire span (Needleman-Wunsch)

CD-search

Find conserved domains in your sequence

IgBLAST

Search immunoglobulins and T cell receptor sequences

VecScreen

Search sequences for vector contamination

CDART

Find sequences with similar conserved domain architecture

Targeted Loci

Search markers for phylogenetic analysis

Multiple Alignment

Align sequences using domain and protein constraints

MOLE-BLAST

Establish taxonomy for uncultured or environmental sequences

Global Alignment

局部比对: Smith-Waterman算法

https://www.ebi.ac.uk/Tools/psa/emboss_water/

作业

Homework 2

1.Please find the best global alignment of following two sequences

- > AGTTGC
- > CAGA

Score matrix

	Α	Т	G	С
Α	2	1	-1	-1
Т	1	2	-1	-1
G	-1	-1	2	1
С	-1	-1	1	2

Gap penalty: open=extension=-2

2.Please find the best global alignment of following two sequences

> AGTTGC

> CAGA

Score matrix

	А	Т	G	С
А	2	1	-1	-1
Т	1	2	-1	-1
G	-1	-1	2	1
С	-1	-1	1	2

Gap penalty: open=-2, extension=-1

Your answers to 1,2 should include the following

- 1. Alignment matrix
- 2. Trace back path
- 3. Alignment result

in a similar format as the examples given in the class.

编程题目:

3*. Write a program to align any two protein sequences with BLOSUM62 matrix, available at:

http://yanglab.nankai.edu.cn/teaching/bioinformatics/BLOSUM62.txt

Gap opening=-11 Gap extension=-1

To examine whether your program is correct, you can compare your result with the program at http://zhanglab.ccmb.med.umich.edu/NW-align/