Using Real-world Images

- Video: A conversation with Andrew Ng 2 min
- **Reading:** Explore an impactful, real-world solution 10 min
- Video: Understanding Image Generator
- **Reading:** Designing the neural network 10 min
- Video: Defining a ConvNet to use complex images 2 min
- **Reading:** Train the ConvNet with ImageGenerator 10 min
- Video: Training the ConvNet with fit_generator 2 min
- **Reading:** Exploring the solution 10 min
- Video: Walking through developing a ConvNet 2 min
- **Reading:** Training the neural network 10 min
- Video: Walking through training the ConvNet with fit_generator 3 min
- **Reading:** Experiment with the horse or human classifier 1h
- Video: Adding automatic validation to test accuracy 4 min
- Reading: Get hands-on and use validation 30 min
- Video: Exploring the impact of compressing images 3 min
- Reading: Get Hands-on with compacted images 30 min
- Quiz: Week 4 Quiz 7 questions

Weekly Exercise - Handling Complex Images

Optional: Ungraded Google Colaboratory environment

Course 1 Wrap up

<u>°</u> **Congratulations! You passed!** GRADE 100% **Keep Learning** TO PASS 80% or Righer

O In these images, the features may be in different parts of the frame

There's a wide variety of horses

There's a wide variety of humans

All of the above

Week 4 Quiz		
Week 4 Quiz		
LATEST SUBMISSION GRADE 100%		
You have to manually do it Receive grade		
Receive grade TensorFlow figureait லஞ்ரமுள்ளுக் contents	Grade 100%	View Feedback
It's based on the directory the image is contained in	1557	We keep your highest score
It's based on the file name		
✓ Correct		♦ ♀ ₽
2. What method on the Image Generator is used to normalize the image?	1/1 point	
normalize		
Rescale_image		
o rescale		
O normalize_image		
✓ Correct		
3. How did we specify the training size for the images?	1 / 1 point	
The training_size parameter on the training generator		
The training_size parameter on the validation generator		
The target_size parameter on the training generator		
The target_size parameter on the validation generator		
✓ Correct		
4. When we specify the input_shape to be (300, 300, 3), what does that mean?	1 / 1 point	
Every Image will be 300x300 pixels, with 3 bytes to define color		
There will be 300 horses and 300 humans, loaded in batches of 3		
Every Image will be 300x300 pixels, and there should be 3 Convolutional Layers		
There will be 300 images, each size 300, loaded in batches of 3		
✓ Correct		
5. If your training data is close to 1.000 accuracy, but your validation data isn't, what's the risk here?	1 / 1 point	
You're overfitting on your training data	.	
You're underfitting on your validation data		
No risk, that's a great result		
You're overfitting on your validation data		
✓ Correct		
6. Convolutional Neural Networks are better for classifying images like horses and humans because:	1/1 point	