Model Theory Assignment 01

N'Dah Jean KOUAGOU

December 8, 2018

1.

Let A and B be sets and let $f:A\to B$. Let's prove each of the following assertions.

(a) For all $C \subseteq A$, $C \subseteq f^{-1}(f(C))$.

Let $C \subseteq A$ and $x \in C$. Then $f(x) \in f(C)$. But we have :

$$f(x) \in f(C) \Rightarrow x \in f^{-1}(f(C))$$

Therefore $C \subseteq f^{-1}(f(C))$ and we coclude that $C \subseteq f^{-1}(f(C))$ for all $C \subseteq A$

(b) For all $D \subseteq B$, $f(f^{-1}(D)) \subseteq D$

Let $D \subseteq B$ and $y \in f(f^{-1}(D))$. Then there exists $x \in f^{-1}(D) : f(x) = y$. But :

$$x \in f^{-1}(D) \Rightarrow f(x) \in D$$

 $\Rightarrow y \in D$ because $y = f(x)$

As a result $f(f^{-1}(D)) \subseteq D$ and we conclude that $f(f^{-1}(D)) \subseteq D$ for all $D \subseteq B$.

- (c) The function f is injective if and only if, for all $C \subseteq A$, $C = f^{-1}(f(C))$
- •Suppose f is injective and let $C \subseteq A$. We proved in (a) that $C \subseteq f^{-1}(f(C))$ even if f is not injective. So we just need to show that $f^{-1}(f(C)) \subseteq C$. Let $x \in f^{-1}(f(C))$. Then $f(x) \in f(C)$. Since $f(x) \in f(C)$ then there exists $t \in C : f(t) = f(x)$. Thus x = t because f is injective. It follows that $x \in C$ and then $f^{-1}(f(C)) \subseteq C$. As a result, $C = f^{-1}(f(C))$ for all $C \subseteq A$.
- Now suppose for all $C \subseteq A$, $C = f^{-1}(f(C))$. Let's show that f is injective. Let $x, y \in A$ such that f(x) = f(y).

Then $f(\lbrace x\rbrace) = f(\lbrace y\rbrace)$ and $f^{-1}(f(\lbrace x\rbrace)) = f^{-1}(f(\lbrace y\rbrace))$. But $f^{-1}(f(\lbrace x\rbrace)) = \lbrace x\rbrace$ and $f^{-1}(f(\lbrace y\rbrace)) = \lbrace y\rbrace$ by assumption. So $\lbrace x\rbrace = \lbrace y\rbrace$ and it follows that x=y. Hence f is injective. Therefore, f is injective if and only if, for all $C \subseteq A$, $C = f^{-1}(f(C))$

- (d) The function f is surjective if and only if, for all $D \subseteq B$, $f(f^{-1}(D)) = D$
- Suppose f is surjective and let $D \subseteq B$. We have shown in (b) that $f(f^{-1})(D) \subseteq D$. Let's prove that $D \subseteq f(f^{-1}(D))$. Let $y \in D$. Since f is surjective, there exists $x \in A$ such that f(x) = y. We have:

$$\begin{cases} f(x) = y \\ y \in D \end{cases} \Rightarrow f(x) \in D$$
$$\Rightarrow x \in f^{-1}(D)$$
$$\Rightarrow f(x) \in f(f^{-1}(D))$$
$$\Rightarrow y \in f(f^{-1}(D)) \text{ because } y = f(x)$$

So $D \subseteq f(f^{-1}(D))$ and we have: if f is surjective then for all $D \subseteq B$, $f(f^{-1}(D)) = D$

• Suppose $D \subseteq B$, $f(f^{-1}(D)) = D$ for all. Let's show that f is surjective. Let $y \in B$. By assumption we have $f(f^{-1}(\{y\})) = \{y\}$. It follows that $f^{-1}(\{y\}) \neq \emptyset$, otherwise we would have $f(f^{-1}(\{y\})) = \emptyset$. So $\exists x \in A : f(x) = y$. Thus f is surjective.

2.

Let
$$J = \left(1, +\infty\right) \subseteq \mathbb{R}$$
. For $j \in J$, let $A_j = \left[1 + \frac{1}{j}, j^2 + 2j + 1\right) \subseteq \mathbb{R}$.
(a) Let's find $\bigcup_{j \in J} A_j$.

$$\bigcup_{j \in J} A_j = \left(1, +\infty\right)$$

$$\bullet \bigcup_{j \in J} A_j \subseteq \left(1, +\infty\right)$$

For all
$$j \in J$$
, $A_j \subseteq \left(1, +\infty\right)$. So $\int_{j \in J} A_j \subseteq \left(1, +\infty\right)$.

$$\bullet \left(1, +\infty\right) \subseteq \bigcup_{j \in J} A_j$$

Let
$$x \in (1, +\infty)$$
.

We want to find j > 1 such that $x \in A_j$, that is, $1 + \frac{1}{j} \le x < j^2 + 2j + 1$. For j > 1, since x > 1, we have:

$$1 + \frac{1}{j} \le x \Leftrightarrow j + 1 \le jx$$
$$\Leftrightarrow j(x - 1) \ge 1$$
$$\Leftrightarrow j \ge \frac{1}{x - 1}$$

Also.

$$x < j^2 + 2j + 1 \Leftrightarrow j^2 + 2j + 1 - x > 0$$

$$\Delta = 4 - 4(1 - x) = 4x$$

$$j_{1} = \frac{-2 - 2\sqrt{x}}{2} = -1 - \sqrt{x} ; \quad j_{2} = \frac{-2 + 2\sqrt{x}}{2} = \sqrt{x} - 1$$
So,
$$\begin{cases} j^{2} + 2j + 1 - x > 0 \\ j > 1 \end{cases} \Leftrightarrow j > \sqrt{x} - 1$$

Then we can take $j = max \left\{ \frac{1}{x-1} \sqrt{x} - 1 \right\} + 1$ and we have $1 + \frac{1}{j} \le x$ and $x < j^2 + 2j + 1$. So $x \in A_j$.

Therefore, $\left(1,+\infty\right)\subseteq\bigcup_{j\in J}A_j$ and we conclude that :

$$\bigcup_{j\in J} A_j = \left(1, +\infty\right)$$

(b) Let's find $\bigcap_{j \in J} A_j$.

$$\bigcap_{j \in J} A_j = \left[2, 4\right]$$

Proof:

$$\bullet \left[2,4\right] \subseteq \bigcap_{j\in J} A_j$$

For all $j \in J$, $1 + \frac{1}{j} < 2 < 4 < j^2 + 2j + 1$. Thus, $\left[2, 4 \right] \subseteq A_j \ \forall j \in J$.

So
$$\left[2,4\right] \subseteq \bigcap_{j\in J} A_j$$
.

$$\bullet \bigcap_{j \in J} A_j \subseteq \left[2, 4\right]$$

Let $x \in \bigcap_{j \in J} A_j$.

Then we have x > 1 and for all $j \in J$, $x \in A_j$.

* Suppose by the contrary that x < 2. We are going to find $j_0 > 1$ such that $x \notin A_{j_0}$. We can take $1 + \frac{1}{j_0} = \frac{x+2}{2}$, the center of (x, 2), that is, $j_0 = \frac{2}{x}$. We have:

$$\begin{cases} j_0 > 1 \text{ because } 1 < x < 2\\ \frac{1}{j_0} + 1 = \frac{x+2}{2} = \frac{x}{2} + 1 = x\left(\frac{1}{2} + \frac{1}{x}\right) > x \text{ because } \frac{1}{x} > \frac{1}{2} \text{ since } 1 < x < 2 \end{cases}$$

So $x \notin A_{j_0}$ and we have a contradiction because $x \in \bigcap A_j$.

* Suppose x > 4. Then $\sqrt{x} - 1 > 1$ and taking $j_1 = \frac{\sqrt[3]{x}}{2}$, we have :

$$\begin{cases} j_1 > 1 \\ j_1^2 + 2j_1 + 1 = \frac{x}{4} + \sqrt{x} + 1 = x \left(\frac{1}{4} + \frac{1}{\sqrt{x}} + \frac{1}{x} \right) \end{cases}$$

$$\Rightarrow \begin{cases} j_1 > 1 \\ j_1^2 + 2j_1 + 1 = x\left(\frac{1}{4} + \frac{1}{\sqrt{x}} + \frac{1}{x}\right) < x\left(\frac{1}{4} + \frac{1}{2} + \frac{1}{4}\right) = x, \text{ because } x > 4 \end{cases}$$

So $x \notin A_{j_1}$, there is a contradiction because $x \in \bigcap_{j \in I} A_j$.

It follows that $\bigcap_{j\in J}A_j\subseteq\left[2,4\right]$ and we conclude that $\bigcap_{j\in J}A_j=\left[2,4\right]$

nice!!

(c) If we made
$$J = \begin{bmatrix} 1, +\infty \end{bmatrix}$$
 only $\bigcap_{j \in J} A_j$ would change and become

$$\bigcap_{j \in J} A_j = \left[2, 4 \right)$$

3.

We define \sim on $\mathbb{Z} \times \mathbb{R}$ as follows. For all (x_1, x_2) , $(y_1, y_2) \in \mathbb{Z} \times \mathbb{R}$, $(x_1, x_2) \sim (y_1, y_2)$ if $x_1 = y_1$.

- (a) Let's prove that \sim is an equivalent relation on $\mathbb{Z} \times \mathbb{R}$.
- Reflexivity

Let $(x,y) \in \mathbb{Z} \times \mathbb{R}$. We have x = x. So $(x,y) \sim (x,y)$. Hence, \sim is reflexive.

• Symmetry

Let (x_1, x_2) , $(y_1, y_2) \in \mathbb{Z} \times \mathbb{R}$. We have :

$$\begin{pmatrix} x_1, x_2 \end{pmatrix} \sim \begin{pmatrix} y_1, y_2 \end{pmatrix} \Rightarrow x_1 = y_1$$
$$\Rightarrow y_1 = x_1$$
$$\Rightarrow \begin{pmatrix} y_1, y_2 \end{pmatrix} \sim \begin{pmatrix} x_1, x_2 \end{pmatrix}.$$

So \sim is symmetric.

• Transitivity

Let
$$(x_1, x_2)$$
, (y_1, y_2) , $(z_1, z_2) \in \mathbb{Z} \times \mathbb{R}$
Suppose $(x_1, x_2) \sim (y_1, y_2)$ and $(y_1, y_2) \sim (z_1, z_2)$.

Then we have:

$$x_1 = y_1 \text{ and } y_1 = z_1$$

$$\Rightarrow x_1 = z_1$$

$$\Rightarrow \left(x_1, x_2\right) \sim \left(z_1, z_2\right).$$

Thus \sim is transitive.

Therefore, \sim is an equivalence relation on $\mathbb{Z} \times \mathbb{R}$.

(b) Let's prove that $\mathbb{Z} \cong (\mathbb{Z} \times \mathbb{R}) / \sim$. We use the notation [.] for the equivalence classes.

Consider the function

$$\varphi: \left(\mathbb{Z} \times \mathbb{R}\right) / \sim \longrightarrow \mathbb{Z}$$

$$\left[\left(x, y\right)\right] \mapsto x$$

• Let's show that φ is well defined.

Let
$$\left[\left(x_1, x_2 \right) \right]$$
, $\left[\left(y_1, y_2 \right) \right] \in \left(\mathbb{Z} \times \mathbb{R} \right) / \sim$
Suppose $\left[\left(x_1, x_2 \right) \right] = \left[\left(y_1, y_2 \right) \right]$

Then we have:

$$x_1 = y_1$$

$$\Rightarrow \varphi\left(\left[\left(x_1, x_2\right)\right]\right) = \varphi\left(\left[\left(y_1, y_2\right)\right]\right)$$

6

So φ is well defined.

ullet Let's show that φ is one-to-one

Let
$$\left[\left(x_1, x_2\right)\right], \left[\left(y_1, y_2\right)\right] \in \left(\mathbb{Z} \times \mathbb{R}\right) / \sim \text{ such that }$$

$$\varphi\left(\left[\left(x_{1}, x_{2}\right)\right]\right) = \varphi\left(\left[\left(y_{1}, y_{2}\right)\right]\right). \text{ We have :}$$

$$\varphi\left(\left[\left(x_{1}, x_{2}\right)\right]\right) = \varphi\left(\left[\left(y_{1}, y_{2}\right)\right]\right)$$

$$\Rightarrow x_{1} = y_{1}$$

$$\Rightarrow \left(x_{1}, x_{2}\right) \sim \left(y_{1}, y_{2}\right)$$

$$\Rightarrow \left[\left(x_{1}, x_{2}\right)\right] = \left[\left(y_{1}, y_{2}\right)\right]$$

It follows that φ is one-to-one.

• Let's show that φ is surjective.

Let
$$x \in \mathbb{Z}$$
. We have $\left[\begin{pmatrix} x, x \end{pmatrix}\right] \in \mathbb{Z} \times \mathbb{R}$ and $\varphi\left(\left[\begin{pmatrix} x, x \end{pmatrix}\right]\right) = x$. So φ is surjective.

As a result, φ is a bijection from $\left(\mathbb{Z} \times \mathbb{R}\right) \Big/ \sim$ to \mathbb{Z} and we conclude that $\mathbb{Z} \cong \left(\mathbb{Z} \times \mathbb{R}\right) \Big/ \sim$.

(c) We define an addition operation on
$$\left(\mathbb{Z} \times \mathbb{R}\right) / \sim$$
 as follows.
For all $\left[\left(x_1, x_2\right)\right], \left[\left(y_1, y_2\right)\right] \in \left(\mathbb{Z} \times \mathbb{R}\right) / \sim$, $\left[\left(x_1, x_2\right)\right] + \left[\left(y_1, y_2\right)\right] = \left[\left(x_1 + y_1, x_2 + y_2\right)\right]$

Let's prove that this operation is well defined.

Let
$$\left[\left(x_{1}, x_{2}\right)\right]$$
, $\left[\left(y_{1}, y_{2}\right)\right]$, $\left[\left(z_{1}, z_{2}\right)\right]$, $\left[\left(t_{1}, t_{2}\right)\right] \in \left(\mathbb{Z} \times \mathbb{R}\right) / \sim$ such that $\left[\left(x_{1}, x_{2}\right)\right] = \left[\left(y_{1}, y_{2}\right)\right]$ and $\left[\left(z_{1}, z_{2}\right)\right] = \left[\left(t_{1}, t_{2}\right)\right]$.

Let's show that $\left[\left(x_{1}, x_{2}\right)\right] + \left[\left(z_{1}, z_{2}\right)\right] = \left[\left(y_{1}, y_{2}\right)\right] + \left[\left(t_{1}, t_{2}\right)\right]$.

We have $\left[\left(x_{1}, x_{2}\right)\right] + \left[\left(z_{1}, z_{2}\right)\right] = \left[\left(x_{1} + z_{1}, x_{2} + z_{2}\right)\right]$ and $\left[\left(y_{1}, y_{2}\right)\right] + \left[\left(t_{1}, t_{2}\right)\right] = \left[\left(y_{1} + t_{1}, y_{2} + t_{2}\right)\right]$.

So we have to show that $\left[\left(x_{1} + z_{1}, x_{2} + z_{2}\right)\right] = \left[\left(y_{1} + t_{1}, y_{2} + t_{2}\right)\right]$.

We have:

So that addition operation is well defined on $\left(\mathbb{Z}\times\mathbb{R}\right)\Big/\sim$.

4.

Let $1 \leq n \in \mathbb{N}$.

We want to show that $\mathbb{N} \cong \mathbb{N}^n$.

Consider the map:

$$\phi_1: \mathbb{N} \to \mathbb{N}^n$$

$$m \mapsto \underbrace{(m, m, \dots, m)}_{n \text{ times}}.$$

 ϕ_1 is well defined because for all $x, y \in \mathbb{N}$, we have

$$x = y \Rightarrow \underbrace{(x, x, \dots, x)} = \underbrace{(y, y, \dots, y)} \Rightarrow \phi_1(x) = \phi_2(y)$$

$$\phi_1$$
 is well defined because for all $x, y \in \mathbb{N}$, we have $x = y \Rightarrow \underbrace{(x, x, \dots, x)}_{n \text{ times}} = \underbrace{(y, y, \dots, y)}_{n \text{ times}} \Rightarrow \phi_1(x) = \phi_2(y)$. Let $m_1, m_2 \in \mathbb{N}$ such that $\phi(m_1) = \phi(m_2)$. Then $\underbrace{(m_1, m_1, \dots, m_1)}_{n \text{ times}} = \underbrace{(m_2, m_2, \dots, m_2)}_{n \text{ times}}$

Thus $m_1 = m_2$ and it follows that ϕ_1 is injective. (1)

Consider the map:

$$\phi_2: \mathbb{N}^n \to \mathbb{N}$$

 $(m_1, m_2, \dots, m_n) \mapsto P_1^{m_1} \times P_2^{m_2} \times \dots \times P_n^{m_n},$
where P_1, P_2, \dots are consecutive (so distinct)
prime numbers biginning by $P_1 = 2$.

 ϕ_2 is well defined because for all $(m_1, m_2, \dots, m_n), (m'_1, m'_2, \dots, m'_n) \in \mathbb{N}^n$, we have

$$(m_1, m_2, \dots, m_n) = (m'_1, m'_2, \dots, m'_n) \Rightarrow P_1^{m_1} \times P_2^{m_2} \times \dots \times P_n^{m_n} = P_1^{m'_1} \times P_2^{m'_2} \times \dots \times P_n^{m'_n}$$

$$\Rightarrow \phi_2((m_1, m_2, \dots, m_n)) = \phi_2((m'_1, m'_2, \dots, m'_n))$$

We show that ϕ_2 is injective :

Let $(m_1, m_2, \ldots, m_n), (m'_1, m'_2, \ldots, m'_n) \in \mathbb{N}^n$. Suppose $\phi_2((m_1, m_2, \ldots, m_n)) = \phi_2((m'_1, m'_2, \ldots, m'_n))$. Then we have

$$\phi_2((m_1, m_2, \dots, m_n)) = \phi_2((m'_1, m'_2, \dots, m'_n))$$

$$\Leftrightarrow P_1^{m_1} \times P_2^{m_2} \times \dots \times P_n^{m_n} = P_1^{m'_1} \times P_2^{m'_2} \times \dots \times P_n^{m'_n}$$

$$\Rightarrow P_1^{m_1} = P_1^{m'_1}, P_2^{m_2} = P_2^{m'_2}, \dots, P_n^{m_n} = P_n^{m'_n}, \text{ because the decomposition of a number into powers of distinct prime numbers is unique.}$$

$$\Rightarrow m_1 = m'_1, m_2 = m'_2, \dots, m_n = m'_n$$

 $\Rightarrow (m_1, m_2, \dots, m_n) = (m'_1, m'_2, \dots, m'_n)$

So ϕ_2 is injective. (2)

From (1) and (2) and using the theorem of Cantor-Bernstein-Schroeder, we conclude that $\mathbb{N} \cong \mathbb{N}^n$.

5.

Let
$$\mathbb{N}^{<\omega} = \bigcup_{n \in \mathbb{N}} \mathbb{N}^n$$

Let's prove that $\mathbb{N} \cong \mathbb{N}^{<\omega}$ Consider the map :

$$\varphi_1: \mathbb{N} \to \mathbb{N}^{<\omega}$$
$$m \mapsto m$$

 φ_1 is well defined because for all $m_1, m_2 \in \mathbb{N}$ we have : $m_1 = m_2 \Rightarrow \varphi_1(m_1) = \varphi_1(m_2)$.

We show that φ_1 is injective :

Let $m_1, m_2 \in \mathbb{N}$. Suppose $\varphi_1(m_1) = \varphi_1(m_2)$. Then we have $m_1 = m_2$ by definition of φ_1 . So φ_1 is injective. (3)

Consider the map:

$$\varphi_2: \mathbb{N}^{<\omega} \to \mathbb{N} \text{ defined by }: \begin{cases} \varphi_2(X) = 0 \text{ if } X = () \text{ the empty sequence} \\ \varphi_2(X) = P_1^{m_1} \times \cdots \times P_k^{m_k} \times P_{k+1}^k \text{ if } X = (m_1, \dots, m_k) \end{cases}$$
 where $1 \le k \in \mathbb{N}$ and

 P_1, P_2, \ldots , are consecutive (so distinct) prime numbers beginning by $P_1 = 2$.

 φ_2 is well defined because for all $(m_1,\ldots,m_{k_1}),(m'_1,\ldots,m'_{k_2})\in\mathbb{N}^{<\omega}$ we have: $(m_1,\ldots,m_{k_1})=(m'_1,\ldots,m'_{k_2})\Rightarrow P_1^{m_1}\times\cdots\times P_{k_1}^{m_{k_1}}\times P_{k_1+1}^{k_1}=P_1^{m'_1}\times\cdots\times P_{k_2}^{m'_{k_2}}\times$ $P_{k_2+1}^{k_2} \Rightarrow \varphi_2((m_1, \dots, m_{k_1})) = \varphi_2((m'_1, \dots, m'_{k_2}))$

Of course, each element of $\mathbb{N}^{<\omega}$ is either (), the empty sequence or in the form (m_1,\ldots,m_k) with $1\leq k\in\mathbb{N}$ and $m_i\in\mathbb{N}$ for all $1\leq i\leq k$.

Now we show that φ_2 is injective.

Let $(m_1, \ldots, m_{k_1}), (m'_1, \ldots, m'_{k_2}) \in \mathbb{N}^{<\omega}$. Suppose $\varphi_2((m_1, ..., m_{k_1})) = \varphi_2((m'_1, ..., m'_{k_2}))$. If $k_1 = 0$, that is, $(m_1,\ldots,m_{k_1})=()$, then we have $(m'_1,\ldots,m'_{k_2})=()$ because by the definition of φ_2 , only () satisfies $\varphi(()) = 0$. Thus in this case we have $(m_1,\ldots,m_{k_1})=(m'_1,\ldots,m'_{k_2}).$

So suppose $k_1 \neq 0, k_2 \neq 0$ and suppose $k_1 \neq k_2$, say $k_1 < k_2$. We have:

$$\varphi_2((m_1,\ldots,m_{k_1})) = \varphi_2((m'_1,\ldots,m'_{k_2}))$$

$$\varphi_{2}((m_{1}, \dots, m_{k_{1}})) = \varphi_{2}((m'_{1}, \dots, m'_{k_{2}}))$$

$$\updownarrow$$

$$P_{1}^{m_{1}} \times \dots \times P_{k_{1}}^{m_{k_{1}}} \times P_{k_{1}+1}^{k_{1}} = P_{1}^{m'_{1}} \times \dots \times P_{k_{2}}^{m'_{k_{2}}} \times P_{k_{2}+1}^{k_{2}}$$

But P_{k_2+1} divides $P_1^{m_1'} \times \cdots \times P_{k_2}^{m_{k_2}'} \times P_{k_2+1}^{k_2}$ and does not divide $P_1^{m_1} \times \cdots \times P_{k_1}^{m_{k_1}} \times P_{k_1+1}^{k_1}$. So there is a contradiction. It follows (by symmetry) that $k_1 = k_2$ and we have:

$$P_1^{m_1} \times \cdots \times P_{k_1}^{m_{k_1}} = P_1^{m'_1} \times \cdots \times P_{k_2}^{m'_{k_2}}$$

 $\Rightarrow m_1 = m'_1, \dots, m_{k_1} = m'_{k_2}, \text{ because}$
the decomposition of a number
into powers of distinct prime numbers is unique.
 $\Rightarrow (m_1, \dots, m_{k_1}) = (m'_1, \dots, m'_{k_2})$

Hence φ_2 is one-to-one (4).

From (3) and (4) and using the theorem of Cantor-Bernstein-Schroeder, we conclude that $\mathbb{N} \cong \mathbb{N}^{<\omega}$.

6.

For any set X the power of X is defined to be $\mathcal{P}(X) = \{A : A \subseteq X\}$.

Let's prove that $X < \mathcal{P}(X)$ for every set X.

Let X be a set.

- If $X = \emptyset$ we have |X| = 0 and $|\mathcal{P}(X)| = 1$. So we have $X < \mathcal{P}(X)$.
- Suppose $X \neq \emptyset$.
- *Consider the map:

$$\Phi: X \to \mathcal{P}(X)$$
$$x \mapsto \{x\}$$

 Φ is well defined because for all $x, y \in X$ we have :

$$x = y \Rightarrow \{x\} = \{y\} \Rightarrow \Phi(x) = \Phi(y).$$

We show that Φ is injective :

Let $x_1, x_2 \in X$. Suppose $\Phi(x_1) = \Phi(x_2)$.

Then we have $\{x_1\} = \{x_2\} \Rightarrow x_1 = x_2$. So Φ is one-to-one.

*Now we have to show that there is no surjective function from X to $\mathcal{P}(X)$.

Suppose there exists such a function, say f.

Let
$$A = \left\{ x \in X : x \notin f(x) \right\}.$$

Since f is surjective then there exists $y \in X$ such that f(y) = A.

But we have : $y \in A \Leftrightarrow y \notin f(y) = A$. There is a contradiction. Therefore, there is no surjective function from X to $\mathcal{P}(X)$.

we conclude that $X < \mathcal{P}(X)$.

nice job!!