Package 'scCNAutils'

November 5, 2018
Title Functions to analyze copy number aberrations in single-cell data
Version 0.0.0.9000
Description Functions to analyze copy number aberrations in single-cell data. A bunch of scripts and workflows to read and analyze scRNA-seq data and look at CNA-oriented signal.
Depends R ($\xi = 3.4.4$)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports Matrix, dplyr, magrittr, tidyr, rlang, parallel, ggplot2, data.table, Rtsne, FNN, igraph, RcppHMM, GenomicRanges, IRanges
Suggests testthat
RoxygenNote 6.1.0
R topics documented:
auto_cna_call auto_cna_signal bin_genes call_cna

2 auto_cna_call

define_cycling_cells	6
find_communities	7
make_metacells	7
merge_samples	8
norm_ge	9
plot_cna	9
plot_communities	10
plot_qc_cells	11
plot_tsne	
qc_cells	13
qc_filter	13
read_mtx	14
run_pca	
run_tsne	
smooth_movingw	16
zscore	17
	18

auto_cna_call

Automated pipeline to call CNA

Description

Automated pipeline to call CNA

Usage

Index

```
auto_cna_call(ge_df, comm_df, nb_metacells = 10, metacell_size = 3,
  trans_prob = 1e-04, baseline_cells = NULL,
  baseline_communities = NULL, prefix = "scCNAutils_out",
  nb_cores = 1, chrs = c(1:22, "X", "Y"), bin_mean_exp = 3,
  z_wins_th = 3, smooth_wsize = 3)
```

Arguments

ge_df normalized gene expression of all cells (e.g. output from norm_ge. a data.frame with community information, output from find_communities. comm_df the number of metacells per comunity. nb_metacells metacell_size the number of cells in a metacell. trans_prob the transition probability for the HMM. baseline_cells cells to use as baseline. baseline_communities communities to use as baseline. Used if baseline.cells is NULL. the prefix to use for the files created by this function (e.g. graphs). prefix the number of processors to use. nb_cores

auto_cna_signal 3

chrs the chromosome names to keep. NULL to include all the chromosomes.

bin_mean_exp the desired minimum mean expression in the bin.

z_wins_th the threshold to winsorize Z-score. Default is 3

smooth_wsize the window size for smoothing. Default is 3.

Value

a data.frame with CNAs

Author(s)

Jean Monlong

auto_cna_signal $Automated \ pipeline \ to \ compute \ CNA \ signal \ from \ scRNA \ expression$

Description

Goes from reading raw gene counts to CNA-level signal, tSNE and community detection.

Usage

```
auto_cna_signal(data, genes_coord, prefix = "scCNAutils_out",
   nb_cores = 1, pause_after_qc = FALSE, use_cache = TRUE,
   sample_names = NULL, max_mito_prop = 0.2, min_total_exp = 0,
   cells_sel = NULL, chrs = c(1:22, "X", "Y"), cell_cycle = NULL,
   bin_mean_exp = 3, z_wins_th = 3, smooth_wsize = 3, cc_sd_th = 3,
   nb_pcs = 10, comm_k = 100)
```

Arguments

data a data.frame with gene expression or the path to the folder with the 'ma-

trix.mtx', 'genes.tsv' and 'barcodes.tsv' files. A list if multiple samples.

genes_coord either a file name or a data.frame with coordinates and gene names.

prefix the prefix to use for the files created by this function (e.g. graphs).

nb_cores the number of processors to use.

pause_after_qc pause after the QC to pick custom QC thresholds.

use_cache should intermediate files used and avoid redoing steps?

 $sample_names$ the names of each sample. If NULL, tries to use data's names.

max_mito_prop the maximum proportion of mitochondrial RNA.

min_total_exp the minimum total cell expression

cells_sel consider only these cells. Other cells filtered no matter what.

chrs the chromosome names to keep. NULL to include all the chromosomes.

bin_genes

cell_cycle if non-null, either a file or data.frame to compute cell cycle scores. See

details.

bin_mean_exp the desired minimum mean expression in the bin.

z_wins_th the threshold to winsorize Z-score. Default is 3

smooth_wsize the window size for smoothing. Default is 3.

cc_sd_th the number of SD used for the thresholds when defining cycling cells.

nb_pcs the number of PCs used in the community detection or tSNE.

comm_k the number of nearest neighbor for the KNN graph. Default 100.

Value

a data.frame with QC, community and tSNE for each cell.

Author(s)

Jean Monlong

Description

Merge consecutive genes into expressed bins

Usage

```
bin_genes(ge_df, mean_exp = 3, nb_cores = 1)
```

Arguments

ge_df the input gene expression with coordinate columns (chr, start, end) and

then one column per cell.

mean_exp the desired minimum mean expression in the bin.

nb_cores the number of processors to use.

Value

a data.frame with bin expression.

Author(s)

call_cna 5

call_cna Call CNA

Description

Calls CNA using a HMM approach.

Usage

```
call_cna(z_df, trans_prob = 1e-04, nb_cores = 1, mc_info = NULL)
```

Arguments

z_df the Z-scores, from zscore.

trans_prob the transition probability for the HMM.

nb_cores the number of processor to use.

mc_info the information about the metacells, if relevant. Default is NULL.

Value

a data.frame with the CNA calls.

Author(s)

Jean Monlong

convert_to_coord

Convert gene symbols to coordinates

Description

Convert the 'symbol' column (gene names) into three columns with gene coordinates 'chr', 'start' and 'end'.

Usage

```
convert_to_coord(ge_df, genes_coord, chrs = c(1:22, "X", "Y"),
    rm_dup = TRUE)
```

Arguments

ge_df the data.frame with gene expression and one column 'symbol' with gene

names.

genes_coord either a file name or a data.frame with coordinates and gene names.

the chromosome names to keep. NULL to include all the chromosomes.

rm_dup remove duplicated coordinates? Default is TRUE.

6 define_cycling_cells

Details

If *genes_coord* is a filename, the file is expected to be a tab-delimited file with four columns: 'chr', 'start', 'end', 'symbol'. The order of the columns is not important.

The gene names in column 'symbol' should match the gene names in the input ge_df .

Value

a data.frame with columns 'chr', 'start', 'end' columns with genes coordinates (and still one column per barcode).

Author(s)

Jean Monlong

 $define_cycling_cells$ $Define\ cycling\ cells$

Description

Using cell cycle scores, identify cells that are cycling.

Usage

```
define_cycling_cells(qc_df, sd_th = 3)
```

Arguments

qc_df the output data.frame from qc_cells (ran with a non-null cell_cycle pa-

rameter)

sd_th the number of SD used for the thresholds.

Value

a list with

cells.noc a vector with the names of non-cycling cells

graphs a list of ggplot2 graphs

Author(s)

find_communities 7

find_communities Comm	unnty	detection
-----------------------	-------	-----------

Description

Build a KNN graph and run Louvain algorithm for community detection.

Usage

```
find_communities(pca_o, nb_pcs = 10, k = 100)
```

Arguments

```
pca_o the output of run_pca
```

nb_pcs the number of PCs to use. Default 10.

k the number of nearest neighbor for the KNN graph. Default 100.

Value

```
a data.frame with two columns: 'cell' and 'community'.
```

Author(s)

Jean Monlong

Description

Randomly select cells in each community and merge them to create metacells with higher resolution.

Usage

```
make_metacells(ge_df, comm_df, nb_metacells = 10, metacell_size = 3,
  baseline_cells = NULL, nb_cores = 1)
```

Arguments

ge_df normalized gene expression of all cells (e.g. output from norm_ge.

nb_metacells the number of metacells per comunity.
metacell_size the number of cells in a metacell.

baseline_cells the cells to use for baseline communities.

nb_cores the number of processor to use.

8 merge_samples

Value

a list with

ge a data frame with coordinates and gene expression for each metacell.

info information about which metacell correspond to which community.

Author(s)

Jean Monlong

merge_samples

Merge expression of multiple samples

Description

The expression of multiple samples are merged. New cell names are produced as SAM-PLE_CELL.

Usage

```
merge_samples(ge_list, sample_names = NULL)
```

Arguments

ge_list a list of ge_df (e.g. read from read_mtx).

sample_names the names of each sample. If NULL, tries to use ge_list's names.

Value

a list with

ge the merged gene expression data.frame

info a data.frame with new and original cell names, and corresponding sample

name

Author(s)

norm_ge

norm_ge

Normalize gene expression

Description

The expression of each cell is normalized to account for depth differences.

Usage

```
norm_ge(ge_df, method = c("tmm", "total"), nb_cores = 1)
```

Arguments

 $\begin{array}{ll} \mbox{ge_df} & \mbox{the input gene expression} \\ \mbox{method} & \mbox{the normalization method} \\ \end{array}$

nb_cores the number of processors to use.

Value

a data.frame with the normalized expression.

Author(s)

Jean Monlong

plot_cna

Heatmap of CNA

Description

Heatmap of CNA

Usage

```
plot_cna(cna_df, chrs_order = c(1:22, "X", "Y"))
```

Arguments

cna_df CNA from call_cna.

chrs_order order of the chroosomes in the graph.

Value

a ggplot2 graph

Author(s)

10 plot_communities

Description

Graphs about the communities found by find_communities. For example the size of the communities or the distribution of QC metrics in each community.

Usage

```
plot_communities(comm_df, qc_df = NULL, info_df = NULL)
```

Arguments

qc_df a data.frame with QC metrics (output from qc_cells). Default is NULL

(i.e. not used)

info_df a data.frame with sample merge info (output from merge_samples). De-

fault is NULL (i.e. not used)

Details

If the QC data.frame is provided, the distribution of QC metrics is shown to investigate if some communities are batch effects.

If multiple samples were merged (merge_samples), the proportion of cells from each sample of origin can be shown if the info_df data.frame is provided.

If qc_df and/or info_df are null but their columns present in comm_df, their corresponding graphs will be generated. Hence a merged version of comm_df, qc_df and info_df works (e.g. output of auto_cna_signal.

Value

```
a list of ggplot2 graphs.
```

Author(s)

Jean Monlong

```
## Not run:
ggp.l = plot_communities(comm_df, qc_df)

## Print first graph
ggpl.l[[1]]

## Customize ggplot
ggpl.l[[1]] + ggtitle('First graph about communities')
```

plot_qc_cells 11

```
## End(Not run)
```

 $plot_qc_cells$

 $QC\ graphs$

Description

```
\operatorname{QC} graphs
```

Usage

```
plot_qc_cells(qc_df)
```

Arguments

qc_df

the output data.frame from qc_cells

Value

a list of ggplots

Author(s)

Jean Monlong

```
## Not run:
ggp.l = plot_qc_cells(qc_df)

## Print first graph
ggpl.l[[1]]

## Customize ggplot
ggpl.l[[1]] + ggtitle('First QC graph')

## End(Not run)
```

12 plot_tsne

plot_tsne $tSNE$ $graphs$	plot_tsne	$tSNE\ graphs$	
---------------------------	-----------	----------------	--

Description

tSNE graphs colored according to QC metrics or sample labels.

Usage

```
plot_tsne(tsne_df, qc_df = NULL, comm_df = NULL, info_df = NULL)
```

Arguments

tsne_df the output data.frame from run_tsne (columns: cell, tsne1, tsne2)

qc_df a data.frame with QC metrics (output from qc_cells). Default is NULL (i.e. not used)

comm_df a data.frame with communities (output from find_communities). Default is NULL (i.e. not used)

info_df a data.frame with sample merge info (output from merge_samples).

Details

If the QC data.frame is provided, the distribution of QC metrics is shown to investigate if some communities are batch effects.

If multiple samples were merged (merge_samples), the points can be colored by sample of origin by providing the info_df data.frame.

If any qc_df/comm_df/info_df are null but their columns present in tsne_df, their corresponding graphs will be generated. Hence a merged version of tsne_df, comm_df, qc_df and info_df works (e.g. output of auto_cna_signal.

Value

```
a list of ggplot objects
```

Author(s)

Jean Monlong

```
## Not run:
ggp.l = plot_tsne(tsne_df, qc_df, comm_df)
## Print first graph
ggpl.l[[1]]
## Customize ggplot
```

 qc_cells 13

```
ggpl.l[[1]] + ggtitle('First tSNE graph')
## End(Not run)
```

qc_cells

Compute quality control metrics for each cell

Description

From raw gene expression, a few QC metrics are computed.

Usage

```
qc_cells(ge_df, cell_cycle = NULL)
```

Arguments

ge_df the input gene expression with a 'symbol' column and then one column

per cell.

cell_cycle if non-null, either a file or data.frame to compute cell cycle scores. See

details.

Details

If cell_cycle is provided it should be a data.frame (or a tsv file) with two columns: 'symbol' with gene names, and 'phase' with the cell cycle phase (e.g. either 'G1.S' or 'G2.M').

Value

a data.frame with qc metrics per cell.

Author(s)

Jean Monlong

qc_filter

Filter cells based on QC results

Description

Filter cells based on QC results

Usage

```
qc_filter(ge_df, qc_df, max_mito_prop = 0.2, min_total_exp = 0,
    cells_sel = NULL)
```

14 read_mtx

Arguments

ge_df the input gene expression with a 'symbol' column and then one column

per cell.

qc_df the output data.frame from qc_cells

max_mito_prop the maximum proportion of mitochondrial RNA.

cells_sel consider only these cells. Other cells filtered no matter what.

Value

 ge_df with only the cells that passed the filters

Author(s)

Jean Monlong

read_mtx

Read a trio of genes, barcodes and mtx files.

Description

Read a trio of genes, barcodes and mtx files.

Usage

```
read_mtx(mtx_file = "matrix.mtx", genes_file = "genes.tsv",
  barcodes_file = "barcodes.tsv", path = ".", rm_dup = TRUE,
  genes_col = 2)
```

Arguments

mtx_file the path to the mtx file genes_file the path to the genes file. barcodes_file the path to the barcodes file

path the path to the folder containing the files

rm_dup remove duplicated gene names? Default is TRUE. genes_col the column to use in genes_file. Default is 2.

Value

a data frame with a 'symbol' column with gene names and one column per barcode.

Author(s)

run_pca 15

run_pca	$Run\ PCA$	

Description

PCA analysis, eventually using a subset of core cells for the PC construction.

Usage

```
run_pca(z_df, core_cells = NULL, out_pcs = 100)
```

Arguments

z_df a data.frame with z-scores for each cell

core_cells if non-NULL, a vector with the names of the cells to use as core cells. See

details. Default is NULL.

out_pcs the number of top PCs to report. Default is 100.

Details

Cells in core_cells are used to build the principal components to which all cells are then projected to. Usually used to reduce the effect of cell cycle in the PCA, by using only cells that don't cycle (see qc_cells) as core_cells.

The graph (sdev.graph) shows the standard deviation for the top 50 PCs. To show more/less PCs, add xlim(1,N) to the sdev.graph. See examples.

Value

a list with

x the PC matrix

sdev the standard deviations of the PCs

sdev.graph a ggplot graph of the sdev

Author(s)

Jean Monlong

```
## Not run:
pca.o = run_pca(z)

## Zoom in to the top 20 PCs
pca.o$sdev.graph + xlim(1,20)

## End(Not run)
```

16 smooth_movingw

 run_tsne $Run\ tSNE$

Description

tSNE from PCA results.

Usage

```
run_tsne(pca_o, nb_pcs = 10, nb_it = 1000)
```

Arguments

pca_o the output of run_pca

nb_pcs the number of PCs to use. Default 10.nb_it the number of iterations. Default 1000.

Value

a data.frame with columns: cell, tsne1, tsne2

Author(s)

Jean Monlong

Description

The expression/score of a gene/bin is replaced by a summary of bins around. For example the median across 3 bins.

Usage

```
smooth_movingw(df, wsize = 3, nb_cores = 1, FUN = stats::median)
```

Arguments

df the input data.frame with coordinate columns (chr, start, end) and then

one column per cell

wsize the window size. Default is 3.

nb_cores the number of processors to use.

FUN the function to apply to each window. Default is median.

zscore 17

Value

a data.frame with smoothed signal.

Author(s)

Jean Monlong

zscore

 $Compute\ Z ext{-}score$

Description

Transform gene expression into a scaled score, either using all cells or a subset of cells as baseline.

Usage

```
zscore(ge_df, wins_th = 3, method = c("z", "norm"), normals = NULL)
```

Arguments

ge_df the input expression data.frame

wins_th the threshold to winsorize Z-score. Default is 3 method the normalization method. Either 'z' or norm'.

normals the cells to use as normals. If NULL (default) all cells are used as normals

Value

a data.frame with Z-scores.

Author(s)

Index

```
\verb"auto_cna_call", 2
auto_cna_signal, 3, 10, 12
{\tt bin\_genes},\, {\tt 4}
call_cna, 5, 9
\verb|convert_to_coord|, \, 5
{\tt define\_cycling\_cells},\, 6
find_communities, 2, 7, 7, 10, 12
make_metacells, 7
merge\_samples, 8, 10, 12
norm_ge, 2, 7, 9
plot_cna, 9
plot_communities, 10
plot_qc_cells, 11
plot_tsne, 12
qc_cells, 6, 10-12, 13, 15
qc_filter, 13
read_mtx, 8, 14
run_pca, 7, 15, 16
run_tsne, 12, 16
{\tt smooth\_movingw},\, {\color{red} 16}
zscore, 5, 17
```