

Ethernet

"dominant" wired LAN technology:

- cheap \$20 for NIC
- first widely used LAN technology
- Simpler, cheaper than token LANs and ATM
- Kept up with speed race: 10 Mbps 10 Gbps
- Also referred to as 802.3 LAN (IEEE 802.3 working group)

Metcalfe's Ethernet sketch

Star topology

- Bus topology popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- Now star topology prevails
- Connection choices: hub or switch (more later)
 - active *switch* in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Ethernet Frame Structure

 Sending adapter encapsulates IP datagram (or other network layer protocol packet) in <u>Ethernet frame</u>

- Preamble: 7 bytes with pattern 10101010 followed by one byte with pattern 10101011; used to synchronize receiver, sender clock rates
- Addresses: 6 bytes
 - if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to net-layer protocol
 - · otherwise, adapter discards frame
- Type: indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk)
- CRC: checked at receiver, if error is detected, the frame is simply dropped

Unreliable, connectionless service

- Connectionless: No handshaking between sending and receiving adapter.
- Unreliable: receiving adapter doesn't send acks or nacks to sending adapter
 - stream of datagrams passed to network layer can have gaps
 - gaps will be filled if app is using TCP
 - · otherwise, app will see the gaps
- Ethernet's MAC protocol: unslotted CSMA/CD
 - adapter doesn't transmit if it senses that some other adapter is transmitting, that is, carrier sense
 - transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection
 - Before attempting a retransmission, adapter waits a random time, that is, random access

Stan Kurkovsky

Ethernet CSMA/CD algorithm

- 1. Adaptor receives datagram from net layer & creates frame
- 2. If adapter senses channel idle, it starts to transmit frame. If it senses channel busy, waits until channel idle and then transmits
- 3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame!
- 4. If adapter detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, adapter enters **exponential backoff**: after the mth collision, adapter chooses a K at random from {0,1,2,...,2^m-1}. Adapter waits K·512 bit times and returns to Step 2

Ethernet's CSMA/CD (more)

Jam Signal: make sure all other transmitters are aware of collision; 48 bits Bit time: .1 microsec for 10 Mbps Ethernet; for K=1023, wait time is about 50 msec

Exponential Backoff:

- Goal: adapt retransmission attempts to estimated current load
 - · heavy load: random wait will be longer
- first collision: choose K from {0,1}; delay is K⁻ 512 bit transmission times
- after second collision: choose K from {0,1,2,3}...
- after ten collisions, choose K from {0,1,2,3,4,...,1023}

Stan Kurkovsky

CSMA/CD efficiency

- T_{prop} = max prop between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

efficiency =
$$\frac{1}{1 + 5t_{prop} / t_{trans}}$$

- Efficiency goes to 1 as t_{prop} goes to 0
- Goes to 1 as t_{trans} goes to infinity
- Much better than ALOHA, but still decentralized, simple, and cheap

Manchester encoding

- Used in 10BaseT
- · Each bit has a transition
- Allows clocks in sending and receiving nodes to synchronize to each other
 - no need for a centralized, global clock among nodes!
- Hey, this is physical-layer stuff!

Stan Kurkovsky

Gbit Ethernet

- 802.3z
- uses standard Ethernet frame format
- allows for point-to-point links and shared broadcast channels
- in shared mode, CSMA/CD is used; short distances between nodes required for efficiency
- uses hubs, called here "Buffered Distributors"
- Full-Duplex at 1 Gbps for point-to-point links
- 10 Gbps now (802.3ae)

Hubs

physical-layer ("dumb") repeaters:

- bits coming in one link go out all other links at same rate
- all nodes connected to hub can collide with one another
- · no frame buffering
- no CSMA/CD at hub: host NICs detect collisions

Stan Kurkovsky

Switch

- link-layer device: smarter than hubs, take active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-ormore outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent
 - · hosts are unaware of presence of switches
- plug-and-play, self-learning
 - · switches do not need to be configured

Switch: allows multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' simultaneously, without collisions
 - not possible with dumb hub
- Switch Table
 - Q: how does switch know that A' reachable via interface 4, B' reachable via interface 5?
 - <u>A:</u> each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
 - looks like a routing table!
 - <u>Q:</u> how are entries created, maintained in switch table?
 - something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

Stan Kurkovsk

Switch: self-learning

- switch *learns* which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr interface TTL

A 1 60

Switch table (initially empty)

Filtering/Forwarding

}

When switch receives a frame:

- 1. record link associated with sending host
- 2. index switch table using MAC dest address
- 3. if entry found for destination

```
then {
    if dest on segment from which frame arrived then drop the frame else
```

forward the frame on interface indicated

else flood // forward on all but the interface on which the frame arrived

Suppose C sends frame to D

- · Switch receives frame from C
 - notes in bridge table that C is on interface 1
 - because D is not in table, switch forwards frame into interfaces 2 and 3
- · frame received by D

Suppose D replies back with frame to C

- Switch receives frame from D
 - notes in bridge table that D is on interface 2
 - because C is in table, switch forwards frame only to interface 1
- frame received by C

Stan Kurkovsky

Switch: traffic isolation

- switch installation breaks subnet into LAN segments
- switch filters packets:
 - same-LAN-segment frames not usually forwarded onto other LAN segments
 - segments become separate collision domains

Switches vs. Routers

- · both store-and-forward devices
 - routers: network layer devices (examine network layer headers)
 - · switches are link layer devices
- routers maintain routing tables, implement routing algorithms
- switches maintain switch tables, implement filtering, learning algorithms

11

mmary compa	rison			
	hubs	routers	switches	
traffic isolation	no	yes	yes	
plug & play	yes	no	yes	
optimal routing	no	yes	no	
cut through	yes	no	yes	
				Stan Ku