Lecture Note for Applied Econometrics

Yuta Toyama

Last updated: 2019/05/16

Contents

1	Pre	${f face}$
	1.1	About this
	1.2	Update: April 23, 2019
	1.3	Update: April 16, 2019
	1.4	Acknowledgement (as of April 16, 2019)
2	Intr	roduction to the course 7
	2.1	What is econometrics?
	2.2	Why do we need to learn computation
	2.3	Why do we use R?
3	Intr	roduction of R and R studio
	3.1	Getting Started
	3.2	Helps
	3.3	Quick tour of Rstudio
	3.4	Basic Calculations
	3.5	Getting Help
	3.6	Installing Packages
4	Dat	a and Programming
	4.1	Data Types
	4.2	Data Structures
	4.3	Vectors
	4.4	Vectorization
	4.5	Logical Operators
	4.6	Matrices
	4.7	Lists
	4.8	Data Frames
	4.9	Programming Basics -Control flow
	4.10	for loop
	4.11	Functions
5	Dat	a frame
	5.1	Introduction
	5.2	Load csv file
	5.3	Examine dataframe
	5.4	Subsetting data
6	Exe	rcise 1
	6.1	Update (as of 10am, April 18th)
	6.2	Question: Examine the law of large numbers through numerical simulations

4 CONTENTS

7	A Review of	A Review of Statistics		
	7.1 Estimatic	1	3	
	7.2 Hypothes	s Testing	4	
8		2. 11001,	4	
	8.1 Regressio	framework	4	
	8.2 Theoretic	d Properties of OLS estimator	4	
		tion and Specifications of Linear Regression Model		
		of Fit		
		Inference		
9	Linear Regre	ssion 2: Implementation in R	4	
	J	action in R	4	

Preface

Welcome to Applied Econometrics using R!

1.1 About this

This lecture note is maintained by Yuta Toyama.

1.2 Update: April 23, 2019

• Upload chapter 6 (review of statistics)

1.3 Update: April 16, 2019

- Update chapter 3 (basic programming)
- Upload chapter 4 (Data frame)
- Upload chapter 5 (Exercise 1)

1.4 Acknowledgement (as of April 16, 2019)

- Chapter 2 through 4 are largely based on Applied Statistics with R. https://daviddalpiaz.github.io/appliedstats/
- Chapter 6 is based on "Introduction to Econometrics with R". https://www.econometrics-with-r.org/index.html

6

Introduction to the course

2.1 What is econometrics?

- 1. Estimating economic relationships
 - 1. Demand curve $\log(Q_t) = \alpha_0 + \alpha_1 P_t + \epsilon_t$
 - 2. Production function $Y_{it} = A_{it} K_{it}^{\alpha} L_{it}^{\beta}$
- 2. Testing economic theory
 - Does adverse selection exists in insurance markets?
 - Are consumers rational?
- 3. Determine the effect of a given intervention (causal inference)
 - What is the effect of increasing minimum wage on employment?
 - Do mergers increase the output price?
 - Does democracy cause economic growth? (a series of works by Acemoglu, Robinsohn, and their co-authors).
 - Effects of going to private colleges on your future earnings.
 - Note: Some questions may have underlying economic models, others may not.
- 4. Describe the data (prediction/forecasting)
 - How does the distribution of wage look like?
 - Relationship between electricity consumption and temperature (possibly nonlinear).
 - Related to machine learning (ML).

2.2 Why do we need to learn computation

- 1. Conduct statistical and empirical analysis using your own data set
 - 1. Construct the data set
 - 2. Describe the data
 - 3. Run regression or estimate an economic object
 - 4. Make tables and figures that show the results of your analysis.
- 2. Verify the econometric theory through numerical simulations.
 - Ex. Asymptotic theory considers the case when the sample size is large enough (i.e., $N \to \infty$)
 - Law of large numbers, central limit theorem
 - How well is the asymptotic approximation?
 - Monte Carlo simulations
- We will learn both aspects in this course.

2.3 Why do we use R?

- Many alternatives: Stata, Matlab, Python, etc...
- 1. Free software!!
 - Stata and Matlab are expensive.
 - Though you can use Matlab through the campus license from this April.
- 2. Good balance between flexibility in programming and easy-to-use for econometric analysis
 - Stata is easy to use for econometric analysis, but hard to write your own program.
 - Matlab is the opposite.
 - You can do everything with R, including data construction, regression analysis, and complicated structural estimation.
- 3. Many users
 - Popular in engineering.
 - Many packages being developed (especially important for recently popular tools.)
- Note: Python seems also good, though I have not used it before.

Introduction of R and R studio

3.1 Getting Started

- You can use R/R studio in the PC room.
- However, I strongly recommend you install R/Studio in your laptop and bring it to the class.
- Install in the following order
 - 1. R: https://www.r-project.org/
 - 2. Rstudio: https://www.rstudio.com/
- Now open Rstudio.

3.2 Helps

- The RStudio team has developed a number of "cheatsheets" for working with both R and RStudio.
- This particular cheatsheet for Base R will summarize many of the concepts in this document.

3.3 Quick tour of Rstudio

- There are four panels
 - 1. Source: Write your own code here.
 - 2. Console:
 - 3. Environment/History:
 - 4. Files/Plots/Packages/Help:
- In the Source panel,
 - Write your own code.
 - Save your code in .R file
 - Click Run command to run your entire code.
- In the concole panel,
 - After clicking Run in the source panel, your code is evaluated.
 - You can directly type your code here to implement.

3.4 Basic Calculations

To get started, we'll use R like a simple calculator.

Addition, Subtraction, Multiplication and Division

Math	R	Result
3 + 2	3 + 2	5
3 - 2	3 - 2	1
$3 \cdot 2$	3 * 2	6
3/2	3 / 2	1.5

Exponents

Math	R	Result
3^{2}	3 ^ 2	9
$2^{(-3)}$	2 ^ (-3)	0.125
$100^{1/2}$	100 ^ (1 / 2)	10
$\sqrt{100}$	sqrt(100)	10

Mathematical Constants

Math	R	Result
π	pi	3.1415927
e	exp(1)	2.7182818

Logarithms

- Note that we will use ln and log interchangeably to mean the natural logarithm.
- There is no ln() in R, instead it uses log() to mean the natural logarithm.

Math	R	Result
log(e)	log(exp(1))	1
$\log_{10}(1000)$	log10(1000)	3
$\log_2(8)$	log2(8)	3
$\log_4(16)$	log(16, base = 4)	2

Trigonometry

Math	R	Result
$\sin(\pi/2)$	sin(pi / 2)	1
$\cos(0)$	cos(0)	1

3.5 Getting Help

- In using R as a calculator, we have seen a number of functions: sqrt(), exp(), log() and sin().
- To get documentation about a function in R, simply put a question mark in front of the function name and RStudio will display the documentation, for example:

?log
?sin
?paste
?lm

3.6 Installing Packages

- One of the main strengths of R as an open-source project is its package system.
- To install a package, use the install.packages() function.
 - Think of this as buying a recipe book from the store, bringing it home, and putting it on your shelf.

install.packages("ggplot2")

- Once a package is installed, it must be loaded into your current R session before being used.
 - Think of this as taking the book off of the shelf and opening it up to read.

library(ggplot2)

- Once you close R, all the packages are closed and put back on the imaginary shelf.
- The next time you open R, you do not have to install the package again, but you do have to load any packages you intend to use by invoking library().

Data and Programming

4.1 Data Types

R has a number of basic data types.

- Numeric
 - Also known as Double. The default type when dealing with numbers.
 - Examples: 1, 1.0, 42.5
- Logical
 - Two possible values: TRUE and FALSE
 - You can also use T and F, but this is not recommended.
 - NA is also considered logical.
- Character
 - Examples: "a", "Statistics", "1 plus 2."

4.2 Data Structures

- R also has a number of basic data structures.
- A data structure is either
 - homogeneous (all elements are of the same data type)
 - heterogeneous (elements can be of more than one data type).

Dimension	Homogeneous	Heterogeneous
1	Vector	List
2	Matrix	Data Frame
3+	Array	

4.3 Vectors

4.3.1 Basics of vectors

- Many operations in R make heavy use of vectors.
 - Vectors in R are indexed starting at 1.
- The most common way to create a vector in R is using the c() function, which is short for "combine."

```
c(1, 3, 5, 7, 8, 9)
```

[1] 1 3 5 7 8 9

If we would like to store this vector in a variable we can do so with the assignment operator =.
 The variable x now holds the vector we just created, and we can access the vector by typing x.

```
x = c(1, 3, 5, 7, 8, 9)
x
## [1] 1 3 5 7 8 9
# The following does the same thing.
x <- c(1, 3, 5, 7, 8, 9)
x</pre>
```

[1] 1 3 5 7 8 9

- The operator = and <- work as an assignment operator.
 - You can use both. This does not matter usually.
 - If you are interested in the weird cases where the difference matters, check out The R Inferno.
- In R code the line starting with # is comment, which is ignored when you run the fode.
- A vector based on a sequence of numbers.
- The quickest and easiest way to do this is with the : operator, which creates a sequence of integers between two specified integers.

```
(y = 1:100)
##
      [1]
             1
                      3
                               5
                                    6
                                         7
                                              8
                                                  9
                                                      10
                                                           11
                                                                12
                                                                    13
                                                                         14
                                                                              15
                                                                                  16
                                                                                       17
##
    Г187
           18
                19
                     20
                         21
                              22
                                   23
                                        24
                                            25
                                                 26
                                                      27
                                                           28
                                                               29
                                                                    30
                                                                         31
                                                                              32
                                                                                  33
                                                                                       34
##
    [35]
           35
                36
                     37
                         38
                              39
                                   40
                                        41
                                             42
                                                 43
                                                      44
                                                           45
                                                               46
                                                                    47
                                                                         48
                                                                              49
                                                                                  50
                                                                                       51
##
    [52]
           52
                53
                     54
                         55
                              56
                                   57
                                        58
                                            59
                                                 60
                                                      61
                                                           62
                                                               63
                                                                    64
                                                                         65
                                                                              66
                                                                                  67
                                                                                       68
           69
                     71
                         72
                              73
                                        75
##
    [69]
                70
                                   74
                                            76
                                                 77
                                                      78
                                                           79
                                                               80
                                                                    81
                                                                         82
                                                                              83
                                                                                  84
                                                                                       85
##
    [86]
           86
                87
                     88
                         89
                              90
                                  91
                                        92
                                            93
                                                 94
                                                      95
                                                           96
                                                               97
                                                                    98
                                                                         99 100
```

- By putting parentheses around the assignment,
 - R both stores the vector in a variable called y and
 - automatically outputs y to the console.

4.3.2 Useful functions for creating vectors

• Use the seq() function for a more general sequence.

```
seq(from = 1.5, to = 4.2, by = 0.1)
## [1] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1
## [18] 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2
```

• Here, the input labels from, to, and by are optional.

```
seq(1.5, 4.2, 0.1)
## [1] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1
## [18] 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2
```

• The rep() function repeat a single value a number of times.

```
• The rep() function can be used to repeat a vector some number of times.
```

```
rep(x, times = 3)
```

```
## [1] 1 3 5 7 8 9 1 3 5 7 8 9 1 3 5 7 8 9
```

4.3. VECTORS

```
• We have now seen four different ways to create vectors:
       1. c()
       2. :
       3. seq()
       4. rep()
   • They are often used together.
c(x, rep(seq(1, 9, 2), 3), c(1, 2, 3), 42, 2:4)
## [1] 1 3 5 7 8 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 2
## [24] 3 42 2 3 4
  • The length of a vector can be obtained with the length() function.
length(x)
## [1] 6
length(y)
## [1] 100
4.3.3 Subsetting
  • Use square brackets, [], to obtain a subset of a vector.
   • We see that x[1] returns the first element.
## [1] 1 3 5 7 8 9
x[1]
## [1] 1
x[3]
## [1] 5
  • We can also exclude certain indexes, in this case the second element.
x[-2]
## [1] 1 5 7 8 9
  • We can subset based on a vector of indices.
x[1:3]
## [1] 1 3 5
x[c(1,3,4)]
## [1] 1 5 7
  • We could instead use a vector of logical values.
z = c(TRUE, TRUE, FALSE, TRUE, TRUE, FALSE)
Z
## [1] TRUE TRUE FALSE TRUE TRUE FALSE
x[z]
## [1] 1 3 7 8
```

4.4 Vectorization

- One of the biggest strengths of R is its use of vectorized operations.
 - Frequently the lack of understanding of this concept leads of a belief that R is slow.
 - R is not the fastest language, but it has a reputation for being slower than it really is.)
- When a function like log() is called on a vector x, a vector is returned which has applied the function to each element of the vector x.

```
x = 1:10
x + 1

## [1] 2 3 4 5 6 7 8 9 10 11

2 * x

## [1] 2 4 6 8 10 12 14 16 18 20

2 ^ x

## [1] 2 4 8 16 32 64 128 256 512 1024

sqrt(x)

## [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751
## [8] 2.828427 3.000000 3.162278

log(x)

## [1] 0.00000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
## [8] 2.0794415 2.1972246 2.3025851
```

4.5 Logical Operators

Operator	Summary	Example	Result
x < y	x less than y	3 < 42	TRUE
x > y	x greater than y	3 > 42	FALSE
x <= y	x less than or equal to y	3 <= 42	TRUE
x >= y	x greater than or equal to y	3 >= 42	FALSE
x == y	xequal to y	3 == 42	FALSE
x != y	x not equal to y	3 != 42	TRUE
! x	$\operatorname{not} \mathbf{x}$!(3 > 42)	TRUE
хІу	x or y	(3 > 42) TRUE	TRUE
x & y	x and y	(3 < 4) & (42 > 13)	TRUE

• Logical operators are vectorized.

```
x = c(1, 3, 5, 7, 8, 9)

x > 3

## [1] FALSE FALSE TRUE TRUE TRUE

x < 3

## [1] TRUE FALSE FALSE FALSE FALSE FALSE

x == 3
```

[1] FALSE TRUE FALSE FALSE FALSE

4.6. MATRICES 17

4.6 Matrices

4.6.1 Basics

[3,]

7

- R can also be used for matrix calculations.
 - Matrices have rows and columns containing a single data type.
- Matrices can be created using the matrix function.

```
x = 1:9
## [1] 1 2 3 4 5 6 7 8 9
X = matrix(x, nrow = 3, ncol = 3)
Х
##
         [,1] [,2] [,3]
## [1,]
            1
                 4
                      7
## [2,]
            2
                 5
                      8
## [3,]
            3
                 6
                      9
```

- We are using two different variables:
 - lower case x, which stores a vector and
 - capital X, which stores a matrix.
- By default the matrix function reorders a vector into columns, but we can also tell R to use rows instead.

• a matrix of a specified dimension where every element is the same, in this case 0.

```
Z = matrix(0, 2, 4)
Z
## [1] [2] [3] [4]
```

```
## [,1] [,2] [,3] [,4]
## [1,] 0 0 0 0
## [2,] 0 0 0 0
```

- Matrices can be subsetted using square brackets, [].
- However, since matrices are two-dimensional, we need to specify both a row and a column when subsetting.
- Here we get the element in the first row and the second column.

```
Х
```

```
## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 9
X[1, 2]
```

[1] 4

• We could also subset an entire row or column.

```
X[1,]
```

```
## [1] 1 4 7
X[, 2]
```

```
## [1] 4 5 6
```

• Matrices can also be created by combining vectors as columns, using cbind, or combining vectors as rows, using rbind.

```
x = 1:9
rev(x)
## [1] 9 8 7 6 5 4 3 2 1
```

```
rep(1, 9)
```

```
## [1] 1 1 1 1 1 1 1 1 1 rbind(x, rev(x), rep(1, 9))
```

```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## x
         1
              2
                    3
                          4
                                5
                                     6
                                           7
                                                 8
         9
                    7
                          6
                                5
                                      4
                                           3
                                                 2
                                                       1
##
              8
##
         1
                    1
                          1
                                1
                                      1
                                                 1
                                                       1
```

• When using rbind and cbind you can specify "argument" names that will be used as column names.

```
cbind(col_1 = x, col_2 = rev(x), col_3 = rep(1, 9))
```

```
col_1 col_2 col_3
##
##
    [1,]
              1
                     9
                     8
##
    [2,]
              2
                           1
##
    [3,]
              3
                     7
                           1
                     6
##
    [4,]
              4
                           1
```

4.6. MATRICES

```
[5,]
##
             5
                   5
                          1
##
    [6,]
             6
                   4
                          1
   [7,]
             7
                   3
##
                          1
   [8,]
             8
                   2
##
                          1
##
   [9,]
             9
                          1
```

4.6.2 Matrix calculations

• Perform matrix calculations.

```
x = 1:9
y = 9:1
X = matrix(x, 3, 3)
Y = matrix(y, 3, 3)
X
##
        [,1] [,2] [,3]
## [1,]
           1
                 4
## [2,]
           2
                 5
                      8
## [3,]
           3
                 6
                      9
Y
##
        [,1] [,2] [,3]
## [1,]
           9
                 6
## [2,]
           8
                 5
                      2
           7
## [3,]
                 4
                      1
X + Y
##
        [,1] [,2] [,3]
## [1,]
          10
                10
                     10
## [2,]
          10
                     10
                10
## [3,]
          10
                10
                     10
Х - У
##
        [,1] [,2] [,3]
## [1,]
                -2
          -8
                      4
## [2,]
          -6
                 0
                      6
## [3,]
                 2
                      8
          -4
X * Y
        [,1] [,2] [,3]
##
## [1,]
           9
                24
                     21
## [2,]
                25
          16
                     16
## [3,]
          21
                24
                      9
X / Y
              [,1]
                         [,2]
                                  [,3]
## [1,] 0.1111111 0.6666667 2.333333
## [2,] 0.2500000 1.0000000 4.000000
## [3,] 0.4285714 1.5000000 9.000000
```

- Note that X * Y is **not** matrix multiplication.
- It is element by element multiplication. (Same for X / Y).
- Matrix multiplication uses %*%.

• t() which gives the transpose of a matrix

```
X %*% Y
         [,1] [,2] [,3]
##
                54
## [1,]
           90
                      18
## [2,]
          114
                69
                      24
## [3,]
          138
                84
                      30
t(X)
         [,1] [,2] [,3]
##
## [1,]
            1
                 2
## [2,]
            4
                 5
                       6
## [3,]
            7
                 8
                       9
  • solve() which returns the inverse of a square matrix if it is invertible.
Z = matrix(c(9, 2, -3, 2, 4, -2, -3, -2, 16), 3, byrow = TRUE)
##
         [,1] [,2] [,3]
## [1,]
                 2
            9
                      -3
            2
## [2,]
                 4
                      -2
## [3,]
           -3
                -2
                      16
solve(Z)
                [,1]
##
                              [,2]
                                          [,3]
## [1,] 0.12931034 -0.05603448 0.01724138
## [2,] -0.05603448 0.29094828 0.02586207
## [3,] 0.01724138 0.02586207 0.06896552
   • To verify that solve(Z) returns the inverse, we multiply it by Z.
       - We would expect this to return the identity matrix.
       - However we see that this is not the case due to some computational issues.
       - However, R also has the all.equal() function which checks for equality, with some small tolerance
          which accounts for some computational issues.
solve(Z) %*% Z
                  [,1]
                                 [,2]
## [1,] 1.000000e+00 -6.245005e-17 0.000000e+00
## [2,] 8.326673e-17 1.000000e+00 5.551115e-17
## [3,] 2.775558e-17 0.000000e+00 1.000000e+00
diag(3)
##
         [,1] [,2] [,3]
## [1,]
            1
                 0
## [2,]
            0
                       0
## [3,]
            0
                 0
                       1
all.equal(solve(Z) %*% Z, diag(3))
```

[1] TRUE

4.6.2.1 Exercise

• Solve the following simultaneues equations using matrix calculation

$$2x_1 + 3x_2 = 105x_1 + x_2 = 20$$

4.6. MATRICES 21

• Hint: You can write this as Ax = y where A is the 2-times-2 matrix, x and y are vectors with the length of 2.

4.6.3 Getting information for matrix

• R has a number of matrix specific functions for obtaining dimension and summary information.

```
X = matrix(1:6, 2, 3)
X
##
        [,1] [,2] [,3]
## [1,]
           1
                 3
                      5
## [2,]
           2
                      6
dim(X)
## [1] 2 3
rowSums(X)
## [1] 9 12
colSums(X)
## [1] 3 7 11
rowMeans(X)
## [1] 3 4
colMeans(X)
```

[1] 1.5 3.5 5.5

• The diag() function can be used in a number of ways. We can extract the diagonal of a matrix.

```
diag(Z)
```

```
## [1] 9 4 16
```

• Or create a matrix with specified elements on the diagonal. (And 0 on the off-diagonals.)

diag(1:5)

```
[,1] [,2] [,3] [,4] [,5]
##
## [1,]
            1
                  0
                        0
## [2,]
            0
                  2
                        0
                              0
                                   0
## [3,]
            0
                              0
                                   0
                  0
                        3
## [4,]
            0
                  0
                        0
                              4
                                   0
## [5,]
                        0
                              0
                                   5
```

• Or, lastly, create a square matrix of a certain dimension with 1 for every element of the diagonal and 0 for the off-diagonals.

diag(5)

```
##
         [,1] [,2] [,3] [,4] [,5]
## [1,]
            1
                  0
                        0
## [2,]
                        0
                             0
                                   0
            0
                  1
## [3,]
            0
                  0
                             0
                                   0
                        1
                             1
                                   0
## [4,]
            0
                  0
                        0
## [5,]
                        0
                                   1
```

4.7 Lists

- A list is a one-dimensional heterogeneous data structure.
 - It is indexed like a vector with a single integer value,
 - but each element can contain an element of any type.

```
# creation
list(42, "Hello", TRUE)
## [[1]]
## [1] 42
##
## [[2]]
## [1] "Hello"
##
## [[3]]
## [1] TRUE
ex_list = list(
  a = c(1, 2, 3, 4),
  b = TRUE,
  c = "Hello!",
  d = function(arg = 42) {print("Hello World!")},
  e = diag(5)
)
  • Lists can be subset using two syntaxes,
       1. the $ operator, and
       2. square brackets [].
# subsetting
ex_list$e
##
        [,1] [,2] [,3] [,4] [,5]
## [1,]
                                 0
           1
                0
                      0
                            0
## [2,]
           0
                      0
                            0
                                 0
                 1
## [3,]
           0
                 0
                            0
                                 0
                      1
## [4,]
           0
                 0
                      0
                           1
                                 0
## [5,]
                      0
                                 1
ex_list[1:2]
## $a
## [1] 1 2 3 4
##
## $b
## [1] TRUE
ex_list[1]
## $a
## [1] 1 2 3 4
ex_list[c("e", "a")]
## $e
##
        [,1] [,2] [,3] [,4] [,5]
## [1,]
           1
                 0
                      0
## [2,]
                      0
                                 0
           0
                 1
                            0
```

4.8. DATA FRAMES 23

```
1 0 0
## [3,]
      0 0
## [4,]
                0 1 0
## [5,]
##
## $a
## [1] 1 2 3 4
ex_list["e"]
## $e
##
      [,1] [,2] [,3] [,4] [,5]
## [1,]
      1 0
                0 0
## [2,]
      0
          1
                0
                    0
## [3,]
           0
                    0
                       0
        0
                1
                      0
      0
## [4,]
           0 0 1
## [5,]
ex_list$d
```

function(arg = 42) {print("Hello World!")}

4.8 Data Frames

• We will talk about Dataframe in the next chapter.

4.9 Programming Basics -Control flow-

4.9.1 if/else

• The if/else syntax is:

```
if (...) {
  some R code
} else {
  more R code
}
```

• Example: To see whether x is large than y.

```
x = 1
y = 3
if (x > y) {
    z = x * y
    print("x is larger than y")
} else {
    z = x + 5 * y
    print("x is less than or equal to y")
}
```

```
## [1] "x is less than or equal to y" z
```

[1] 16

- R also has a special function ifelse()
 - It returns one of two specified values based on a conditional statement.

```
ifelse(4 > 3, 1, 0)
```

[1] 1

• The real power of ifelse() comes from its ability to be applied to vectors.

```
fib = c(1, 1, 2, 3, 5, 8, 13, 21)
ifelse(fib > 6, "Foo", "Bar")
```

```
## [1] "Bar" "Bar" "Bar" "Bar" "Foo" "Foo" "Foo"
```

4.10 for loop

• A for loop repeats the same procedure for the specified number of times

```
x = 11:15
for (i in 1:5) {
   x[i] = x[i] * 2
}
```

[1] 22 24 26 28 30

- Note that this for loop is very normal in many programming languages.
- In R we would not use a loop, instead we would simply use a vectorized operation.
 - for loop in R is known to be very slow.

```
x = 11:15
x = x * 2
x
```

[1] 22 24 26 28 30

4.11 Functions

- To use a function,
 - you simply type its name,
 - followed by an open parenthesis,
 - then specify values of its arguments,
 - then finish with a closing parenthesis.
- An **argument** is a variable which is used in the body of the function.

```
# The following is just a demonstration, not the real function in R. function_name(arg1 = 10, arg2 = 20)
```

- We can also write our own functions in R.
- Example: "standardize" variables

$$\frac{x-3}{3}$$

- When writing a function, there are three thing you must do.
 - 1. Give the function a name. Preferably something that is short, but descriptive.
 - 2. Specify the arguments using function()
 - 3. Write the body of the function within curly braces, {}.

4.11. FUNCTIONS 25

```
standardize = function(x) {
  m = mean(x)
  std = sd(x)
  result = (x - m) / std
  return(result)
}
```

- Here the name of the function is standardize,
- The function has a single argument **x** which is used in the body of function.
- Note that the output of the final line of the body is what is returned by the function.
- Let's test our function

}

[1] 100

• Take a random sample of size n=10 from a normal distribution with a mean of 2 and a standard deviation of 5

```
test_sample = rnorm(n = 10, mean = 2, sd = 5)
test_sample
        -1.152080 -1.902363
                                           -3.575524 -10.786826
##
    [1]
                                 7.496638
                                                                   5.679470
    [7]
          0.639967
                     1.931371
                                 6.142081
                                            7.622131
standardize(x = test_sample)
    [1] -0.40376996 -0.53204981 1.07494844 -0.81811925 -2.05107485
        0.76425745 -0.09737386  0.12342460  0.84335249  1.09640474
  • The same function can be written more simply.
standardize = function(x) {
  (x - mean(x)) / sd(x)
```

• When specifying arguments, you can provide default arguments.

```
power_of_num = function(num, power = 2) {
  num ^ power
}
```

• Let's look at a number of ways that we could run this function to perform the operation 10^2 resulting in 100.

```
power_of_num(10)

## [1] 100
power_of_num(10, 2)

## [1] 100
power_of_num(num = 10, power = 2)

## [1] 100
power_of_num(power = 2, num = 10)
```

• Note that without using the argument names, the order matters. The following code will not evaluate to the same output as the previous example.

```
power_of_num(2, 10)
```

[1] 1024

• Also, the following line of code would produce an error since arguments without a default value must be specified.

```
power_of_num(power = 5)
```

get_var = function(x, unbiased = TRUE) {

- To further illustrate a function with a default argument, we will write a function that calculates sample variance two ways.
- By default, the function will calculate the unbiased estimate of σ^2 , which we will call s^2 .

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x - \bar{x})^{2}$$

• It will also have the ability to return the biased estimate (based on maximum likelihood) which we will call $\hat{\sigma}^2$.

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x - \bar{x})^2$$

```
if (unbiased == TRUE){
   n = length(x) - 1
} else if (unbiased == FALSE){
   n = length(x)
}

(1 / n) * sum((x - mean(x)) ^ 2)
}

get_var(test_sample)

## [1] 34.20838

get_var(test_sample, unbiased = TRUE)

## [1] 34.20838

var(test_sample)
```

[1] 34.20838

• We see the function is working as expected, and when returning the unbiased estimate it matches R's built in function var(). Finally, let's examine the biased estimate of σ^2 .

```
get_var(test_sample, unbiased = FALSE)
```

[1] 30.78754

Data frame

5.1 Introduction

• A data frame is the most common way that we store and interact with data in this course.

```
example_data = data.frame(x = c(1, 3, 5, 7, 9, 1, 3, 5, 7, 9),

y = c(rep("Hello", 9), "Goodbye"),

z = rep(c(TRUE, FALSE), 5))
```

- A data frame is a **list** of vectors.
 - Each vector must contain the same data type
 - The difference vectors can store different data types.

example_data

```
##
             У
         Hello TRUE
## 1
     1
## 2
     3
         Hello FALSE
## 3
     5
         Hello TRUE
         Hello FALSE
## 4
    7
         Hello TRUE
## 5 9
         Hello FALSE
## 6
     1
## 7
    3
         Hello TRUE
## 8 5
         Hello FALSE
## 9 7
         Hello TRUE
## 10 9 Goodbye FALSE
```

• write.csv save (or export) the dataframe in .csv format.

5.2 Load csv file

- We can also import data from various file types in into R, as well as use data stored in packages.
- Read csv file into R.
 - read.csv() function as default
 - read_csv() function from the readr package. This is faster for larger data.

```
# install.packages("readr")
#library(readr)
#example_data_from_csv = read_csv("example-data.csv")
example_data_from_csv = read.csv("example-data.csv")
```

- Note: This particular line of code assumes that the file example_data.csv exists in your current working directory.
- The current working directory is the folder that you are working with. To see this, you type

getwd()

- ## [1] "C:/Users/Yuta/Dropbox/Teaching/2019S_Applied_Econometrics_JPN_ENG/Material_Github"
 - If you want to set the working directory, use setwd() function

```
setwd(dir = "directory path" )
```

5.3 Examine dataframe

• Inside the ggplot2 package is a dataset called mpg. By loading the package using the library() function, we can now access mpg.

library(ggplot2)

- Three things we would generally like to do with data:
 - Look at the raw data.
 - Understand the data. (Where did it come from? What are the variables? Etc.)
 - Visualize the data.
- To look at the data, we have two useful commands: head() and str()

```
head(mpg, n = 10)
```

```
## # A tibble: 10 x 11
##
      manufacturer model displ year
                                         cyl trans drv
                                                            cty
                                                                   hwy fl
                                                                             class
##
      <chr>
                    <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr>
                                                                             <chr>
##
                            1.8 1999
    1 audi
                    a4
                                           4 auto~ f
                                                             18
                                                                    29 p
                                                                              comp~
                                                                    29 p
##
   2 audi
                    a4
                            1.8 1999
                                           4 manu~ f
                                                             21
                                                                             comp~
##
   3 audi
                            2
                                  2008
                                           4 manu~ f
                                                             20
                    a4
                                                                    31 p
                                                                             comp~
##
    4 audi
                                  2008
                                           4 auto~ f
                                                             21
                    a4
                            2
                                                                    30 p
                                                                             comp~
##
   5 audi
                    a4
                            2.8 1999
                                           6 auto~ f
                                                             16
                                                                    26 p
                                                                             comp~
                            2.8 1999
##
    6 audi
                    a4
                                           6 manu~ f
                                                             18
                                                                    26 p
                                                                             comp~
##
    7 audi
                    a4
                            3.1
                                 2008
                                           6 auto~ f
                                                             18
                                                                    27 p
                                                                             comp~
##
    8 audi
                    a4 q~
                            1.8
                                 1999
                                           4 manu~ 4
                                                             18
                                                                    26 p
                                                                             comp~
## 9 audi
                    a4 q~
                                                                    25 p
                            1.8 1999
                                           4 auto~ 4
                                                             16
                                                                             comp~
## 10 audi
                    a4 q~
                            2
                                  2008
                                           4 manu~ 4
                                                                    28 p
                                                                             comp~
```

- The function str() will display the "structure" of the data frame.
 - It will display the number of **observations** and **variables**, list the variables, give the type of each variable, and show some elements of each variable.
 - This information can also be found in the "Environment" window in RStudio.

str(mpg)

```
## Classes 'tbl_df', 'tbl' and 'data.frame':
                                                234 obs. of 11 variables:
                         "audi" "audi" "audi" ...
   $ manufacturer: chr
                         "a4" "a4" "a4" "a4" ...
##
   $ model
                 : chr
   $ displ
                        1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
                  : num
                         1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
##
   $ year
                  : int
##
   $ cyl
                         4 4 4 4 6 6 6 4 4 4 ...
                  : int
                         "auto(15)" "manual(m5)" "manual(m6)" "auto(av)" ...
##
   $ trans
                  : chr
                         "f" "f" "f" "f" ...
                  : chr
                  : int 18 21 20 21 16 18 18 18 16 20 ...
##
   $ cty
```

```
$ hwy
                         29 29 31 30 26 26 27 26 25 28 ...
                  : int
## $ fl
                        "p" "p" "p" "p" ...
                  : chr
## $ class
                  : chr
                         "compact" "compact" "compact" ...
  • names() function to obtain names of the variables in the dataset
names (mpg)
    [1] "manufacturer" "model"
                                      "displ"
                                                      "year"
##
   [5] "cyl"
                                      "drv"
##
                       "trans"
                                                      "cty"
   [9] "hwy"
                       "fl"
                                      "class"
  • To access one of the variables as a vector, we use the $ operator.
mpg$year
     [1] 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 2008 1999 1999 2008
##
    [15] 2008 1999 2008 2008 2008 2008 2008 1999 2008 1999 1999 2008 2008 2008
   [29] 2008 2008 1999 1999 1999 2008 1999 2008 2008 1999 1999 1999 1999 2008
##
   [43] 2008 2008 1999 1999 2008 2008 2008 2008 1999 1999 2008 2008 2008 1999
##
   [57] 1999 1999 2008 2008 2008 1999 2008 1999 2008 2008 2008 2008 2008 2008
   [71] 1999 1999 2008 1999 1999 1999 2008 1999 1999 1999 2008 2008 1999 1999
##
    [85] 1999 1999 1999 2008 1999 2008 1999 1999 2008 2008 1999 1999 2008 2008
   [99] 2008 1999 1999 1999 1999 1999 2008 2008 2008 2008 1999 1999 2008 2008
##
## [113] 1999 1999 2008 1999 1999 2008 2008 2008 2008 2008 2008 2008 1999 1999
## [127] 2008 2008 2008 2008 1999 2008 2008 1999 1999 1999 2008 1999 2008 2008
## [141] 1999 1999 1999 2008 2008 2008 2008 1999 1999 2008 1999 1999 2008 2008
## [155] 1999 1999 1999 2008 2008 1999 1999 2008 2008 2008 2008 1999 1999 1999
## [169] 1999 2008 2008 2008 2008 1999 1999 1999 1999 2008 2008 1999 1999 2008
## [183] 2008 1999 1999 2008 1999 1999 2008 2008 1999 1999 2008 1999 1999 1999
## [197] 2008 2008 1999 2008 1999 1999 2008 1999 1999 2008 2008 1999 1999 2008
## [211] 2008 1999 1999 1999 1999 2008 2008 2008 1999 1999 1999 1999 1999
## [225] 1999 2008 2008 1999 1999 2008 2008 1999 1999 2008
mpg$hwy
##
     [1] 29 29 31 30 26 26 27 26 25 28 27 25 25 25 25 24 25 23 20 15 20 17 17
   [24] 26 23 26 25 24 19 14 15 17 27 30 26 29 26 24 24 22 22 24 24 17 22 21
    [47] 23 23 19 18 17 17 19 19 12 17 15 17 17 12 17 16 18 15 16 12 17 17 16
   [70] 12 15 16 17 15 17 17 18 17 19 17 19 17 17 17 16 16 17 15 17 26 25
  [93] 26 24 21 22 23 22 20 33 32 32 29 32 34 36 36 29 26 27 30 31 26 26 28
## [116] 26 29 28 27 24 24 24 22 19 20 17 12 19 18 14 15 18 18 15 17 16 18 17
## [139] 19 19 17 29 27 31 32 27 26 26 25 25 17 17 20 18 26 26 27 28 25 25 24
## [162] 27 25 26 23 26 26 26 26 25 27 25 27 20 20 19 17 20 17 29 27 31 31 26
## [185] 26 28 27 29 31 31 26 26 27 30 33 35 37 35 15 18 20 20 22 17 19 18 20
## [208] 29 26 29 29 24 44 29 26 29 29 29 29 23 24 44 41 29 26 28 29 29 29 28
## [231] 29 26 26 26
  • We can use the dim(), nrow() and ncol() functions to obtain information about the dimension of the
```

```
## [1] 234
```

[1] 234

nrow(mpg)

dim(mpg)

data frame.

11

```
ncol(mpg)
## [1] 11
```

5.4 Subsetting data

- Subsetting data frames can work much like subsetting matrices using square brackets, [,].
- Here, we find fuel efficient vehicles earning over 35 miles per gallon and only display manufacturer, model and year.

```
mpg[mpg$hwy > 35, c("manufacturer", "model", "year")]
## # A tibble: 6 x 3
##
     manufacturer model
                               year
##
     <chr>>
                  <chr>>
                              <int>
## 1 honda
                  civic
                               2008
## 2 honda
                  civic
                               2008
## 3 toyota
                               2008
                  corolla
## 4 volkswagen
                  jetta
                               1999
## 5 volkswagen
                  new beetle
                               1999
## 6 volkswagen
                  new beetle
```

• An alternative would be to use the subset() function, which has a much more readable syntax.

```
subset(mpg, subset = hwy > 35, select = c("manufacturer", "model", "year"))
```

• Lastly, we could use the filter and select functions from the dplyr package which introduces the %>% operator from the magrittr package.

```
library(dplyr)
mpg %>%
filter(hwy > 35) %>%
select(manufacturer, model, year)
```

• I will give you an assignment about dplyr package in the DataCamp as a makeup lecture.

Exercise 1

• Due date: April 22th (Monday) 11pm

Rules for Problem Sets

- If you are enrolled in Japanese class (i.e., Wednesday 2nd), you can use both Japanese and English to write your answer.
- Submit your solution through CourseN@vi.
- Submit both your answer and R script.
- Using Rmarkdown would be appreciated, though not mandatory.
 - Rmarkdown introduction in Japanese: https://kazutan.github.io/kazutanR/Rmd_intro.html
 - Rmarkdown introduction in English: https://rmarkdown.rstudio.com/articles_intro.html
- I might cover Rmarkdown in the course later.

6.1 Update (as of 10am, April 18th)

- Please calculate the standard deviation, not the variance in your simulation. The parameter you set when drawing the random number is the mean μ and the standard deviation σ in normal distribution.
- Use seq function to create the sequence of the sample sizes that you use in the simulation.

6.2 Question: Examine the law of large numbers through numerical simulations

Consider the random sample of $\{x_i\}_{i=1}^N$ drawn from the random variable X. The law of large numbers implies that

$$\frac{1}{N} \sum_{i=1}^{N} x_i \stackrel{p}{\longrightarrow} E[X]$$

In other words, the sample mean converges to the population mean in probability as the sample size goes to infinity (i.e., $N \to \infty$).

Similary, the sample variance also converges to the population variance in probability

$$\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 \stackrel{p}{\longrightarrow} V[X]$$

(Note on 4/18) This implies that the sample standard deviation also converges to the population standard deviation

(This is an application of the law of large numbers, though it is a bit involved to prove this.)

The goal of this problem set is to demonstrate these two properties through numerical simulations. Here is what we are going to do:

- 1. For a certain sample size N, draw N random numbers from the normal distribution with known mean and standard deviation.
- 2. Calculate the sample mean and the sample variance for the "data" you draw.
- 3. Repeat this for many different sample sizes.
- 4. Examine to see whether the sample mean and **standard deviation** are getting closer to the true value, which you set when you draw the random numbers, as the sample size gets larger.

6.2.1 How to implement

I explain how to implement this in R step by step below.

- 1. Prepare a function like this
 - 1. There are two inputs: (1) a vector that contains the data $\{x_i\}_{i=1}^N$ and (2) the indicator of whether you calculate the mean or the standard deviation.

```
fun_something = function(firstinput, secondinput){
    # Two inputs: firstinput, secondinput
    # One output: output

# Do something.
return(output)
}
```

2. Use if/else sentence. Example:

```
# "secondinput" is the name of the input variable in your function
if ( secondinput == "mean") {
    # calculate mean of the data (firstinput)
} else if ( secondinput == "sd") {
    # Calculate standard deviation of the data (firstinput)
}
```

- 3. Use **return** function to define the output of the function.
- 2. Construct a vector that contains the sample size you want to use in your simulation. For example:

```
samplesize\_vec = seq(from = 100, to = 100000, by = 100)
```

Here, let's try 100 different sample sizes that ranges from 100 to 100000.

3. Prepare two vectors that contain the result in the forloop below. Since we are trying 100 different sample sizes, let's create a vector with the length of 100.

```
# Hint:
# numeric(k) returns a zero vector with the length of k
# length( vector) returns the length of `vector`

# result_mean = ....
# result_sd = ....
```

4. To create the random draw from the normal distribution, use below

```
# You can choose the mean and the standard deviation as you like.
rnorm(n = 100, mean = 2, sd = 5)
```

4. Use forloop to calculate both mean and the standard deviation for each sample size. For example:

```
for (i in 1:length(samplesize_vec)){
    # Draw the random number

# Calculate the mean using the function you construct.

# Calculate the standard deviation using the function you construct.
}
```

- 5. Plot the result with ggplot2.
 - 1. Install the package if you have not done it yet.
 - 2. Load ggplot2 by library(ggplot2)
 - 3. Use qplot command to make a figure

```
# Create plot and save it as the variable `plot1`
plot1 <- qplot(x = samplesize_vec, y = yourresult, geom = "line")

# print "plot1"
print(plot1)

# save the plot as PNG file
ggsave(file = "filename.png", plot = plot1)</pre>
```

6.2.2 What to submit

Your answer should include

- 1. The true value of mean and variance you choose in your simulation.
- 2. The plot that describes the relationship between the sample mean (variance) and the sample size.
- 3. Explain what the plots from your simulation indicate.

A Review of Statistics

Acknowledgement: This chapter is largely based on chapter 3 of "Introduction to Econometrics with R". https://www.econometrics-with-r.org/index.html

The goal of this chapter is

- 1. Review of important concepts in statistics
 - 1. Estimation
 - 2. Hypothesis testing
- 2. Review of tools from probability theory
 - 1. Law of large numbers
 - 2. Central limit theorem

7.1 Estimation

- Estimator: A mapping from the sample data drawn from an unknown population to a certain feature in the population
- ullet Example: Consider hourly earnings of college graduates Y .
- You want to estimate the mean of Y, defined as $E[Y] = \mu_y$
- Draw a random sample of n i.i.d. (identically and independently distributed) observations Y_1,Y_2,\ldots,Y_N
- How to estimate E[Y] from the data?
- Idea 1: Sample mean

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i,$$

- Idea 2: Pick the first observation of the sample.
- Question: How can we say which is better?

7.1.1 Properties of the estimator

Consider the estimator $\hat{\mu}_N$ for the unknown parameter μ .

1. Unbiasdeness: The expectation of the estimator is the same as the true parameter in the population.

$$E[\hat{\mu}_N] = \mu$$

2. Consistency: The estimator converges to the true parameter in probability.

$$\forall \epsilon > 0, \lim_{N \to \infty} Prob(|\hat{\mu}_N - \mu| < \epsilon) = 1$$

- Intuition: As the sample size gets larger, the estimator and the true parameter is close with probability one.
- Note: a bit different from the usual convergence of the sequence.

7.1.2 Sample mean \bar{Y} is unbiased and consistent

- Showing these two properties using mathmaetics is straightforward:
 - Unbiasedness: Take expectation.
 - Consistency: Law of large numbers.
- Let's examine these two properties using R.
- \bullet Step 1: Prepare a population. Here, I prepare income and age data from PUMS 5% sample of U.S. Census 2000.
 - PUMS: Public Use Microdata Sample
 - Download the example data here as a .csv file. Put this file in the same folder as your R script file

```
# Use "readr" package
library(readr)
pums2000 <- read_csv("data_pums_2000.csv")

## Parsed with column specification:
## cols(
## AGE = col_double(),
## INCTOT = col_double()
## )</pre>
```

• We treat this dataset as **population**.

```
pop <- as.vector(pums2000$INCTOT)</pre>
```

• Population mean and standard deviation

```
pop_mean = mean(pop)
pop_sd = sd(pop)

# Average income in population
pop_mean

## [1] 30165.47

# Standard deviation of income in population
```

```
## [1] 38306.17
```

pop_sd

7.1. ESTIMATION 37

- $\bullet\,$ The distribution has a long tail.
- Let's plot the distribution in log scale

- Let's investigate how close the sample mean constucted from the random sample is to the true population mean.
- Step 1: Draw random samples from this population and calculate \bar{Y} for each sample. Set the sample size N.
- Step 2: Repeat 2000 times. You now have 2000 sample means.

```
# Set the seed for the random number. This is needed to maintaine the reproducibility of the results.
set.seed(123)

# draw random sample of 100 observations from the variable pop
test <- sample(x = pop, size = 100)

# Use loop to repeat 2000 times.
Nsamples = 2000
result1 <- numeric(Nsamples)

for (i in 1:Nsamples ){
    test <- sample(x = pop, size = 100)
    result1[i] <- mean(test)
}

# Simple approach
result1 <- replicate(expr = mean(sample(x = pop, size = 10)), n = Nsamples)
result2 <- replicate(expr = mean(sample(x = pop, size = 100)), n = Nsamples)
result3 <- replicate(expr = mean(sample(x = pop, size = 500)), n = Nsamples)</pre>
```

7.1. ESTIMATION 39

```
# Create dataframe
result_data <- data.frame( Ybar10 = result1,</pre>
                              Ybar100 = result2,
                              Ybar500 = result3)
```

• Step 3: See the distribution of those 2000 sample means.

```
# Use reshape library
# install.packages("reshape")
library("reshape")
# Use "melt" to change the format of result_data
data_for_plot <- melt(data = result_data, variable.name = "Variable" )</pre>
## Using as id variables
# Use "ggplot2" to create the figure.
# The variable `fig` contains the information about the figure
fig <-
  ggplot(data = data_for_plot) +
 xlab("Sample mean") +
  geom_line(aes(x = value, colour = variable ), stat = "density" ) +
  geom_vline(xintercept=pop_mean ,colour="black")
# Display the figure
plot(fig)
```


- Observation 1: Regardless of the sample size, the average of the sample means is close to the population mean. **Unbiasdeness**
- Observation 2: As the sample size gets larger, the distribution is concentrated around the population mean. Consistency (law of large numbers)

7.2 Hypothesis Testing

7.2.1 Central limit theorem

• Cental limit theorem: Consider the i.i.d. sample of Y_1, \dots, Y_N drawn from the random variable Y with mean μ and variance σ^2 . The following Z converges in distribution to the normal distribution.

$$Z = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \frac{Y_i - \mu}{\sigma} \xrightarrow{d} N(0, 1)$$

In other words,

$$\lim_{N \to \infty} P\left(Z \le z\right) = \Phi(z)$$

- The central limit theorem implies that if N is large **enough**, we can **approximate** the distribution of \bar{Y} by the standard normal distribution with mean μ and variance σ^2/N regardless of the underlying distribution of Y.
- Let's examine this property through simulation!!
- Use the same example as before. Remember that the underlying income distribution is clearly NOT normal.
 - Population mean $\mu = 3.0165467 \times 10^4$ and standard deviation $\sigma = 3.8306171 \times 10^4$. Use these numbers.

```
# Set the seed for the random number
set.seed(124)
# define function for simulation
f_simu_CLT = function(Nsamples, samplesize, pop, pop_mean, pop_sd ){
  output = numeric(Nsamples)
  for (i in 1:Nsamples ){
    test <- sample(x = pop, size = samplesize)</pre>
    output[i] <- ( mean(test) - pop_mean ) / (pop_sd / sqrt(samplesize))</pre>
 return(output)
}
# Comment: You can do better without using forloop. Let me know if you come with a good idea.
# Run simulation
Nsamples = 2000
result_CLT1 <- f_simu_CLT(Nsamples, 10, pop, pop_mean, pop_sd )</pre>
result_CLT2 <- f_simu_CLT(Nsamples, 100, pop, pop_mean, pop_sd )</pre>
result_CLT3 <- f_simu_CLT(Nsamples, 1000, pop, pop_mean, pop_sd )</pre>
# Random draw from standard normal distribution as comparison
```

• Now take a look at the distribution.

```
# Use "melt" to change the format of result_data
data_for_plot <- melt(data = result_CLT_data, variable.name = "Variable" )
## Using as id variables</pre>
```

```
# Use "ggplot2" to create the figure.
fig <-
    ggplot(data = data_for_plot) +
    xlab("Sample mean") +
    geom_line(aes(x = value, colour = variable), stat = "density") +
    geom_vline(xintercept=0, colour="black")

plot(fig)</pre>
```


• As the sample size grows, the distribution of Z converges to the standard normal distribution.

7.2.2 Hypothesis testing

To be added.

Chapter 8

Linear Regression 1: Theory

8.1 Regression framework

- Let Y_i be the dependent variable and X_{ik} be k-th explanatory variable.
 - We have K explantory variables (along with constant term)
 - -i is an index for observations. $i=1,\cdots,N$.
 - Data (sample): $\{Y_i, X_{i1}, \dots, X_{iK}\}_{i=1}^N$
- Linear regression model is defined as

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_K X_{Ki} + \epsilon_i$$

- $-\epsilon_i$: error term (unobserved)
- $-\beta$: coefficients
- Assumptions for Ordinaly Least Squares (OLS) estimation
 - 1. Random sample: $\{Y_i, X_{i1}, \dots, X_{iK}\}$ is i.i.d. drawn sample
 - i.i.d.: identically and independently distributed
 - 2. ϵ_i has zero conditional mean

$$E[\epsilon_i|X_{i1},\ldots,X_{iK}]=0$$

- 3. Large outliers are unlikely: The random variable Y_i and X_{ik} have finite fourth moments.
- 4. No perfect multicollinearity: There is no linear relationship between explanatory variables.
- OLS estimators are the minimizers of the sum of squared residuals:

$$\min_{\beta_0, \dots, \beta_K} \frac{1}{N} \sum_{i=1}^N (Y_i - (\beta_0 + \beta_1 X_{i1} + \dots + \beta_K X_{iK}))^2$$

• Using matrix notation, we have the following analytical formula for the OLS estimator

$$\hat{\beta} = (X'X)^{-1}X'Y$$

where

$$\underbrace{X}_{N\times(K+1)} = \begin{pmatrix} 1 & X_{11} & \cdots & X_{1K} \\ \vdots & \vdots & & \vdots \\ 1 & X_{N1} & \cdots & X_{NK} \end{pmatrix}, \underbrace{Y}_{N\times 1} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_N \end{pmatrix}, \underbrace{\beta}_{(K+1)\times 1} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_K \end{pmatrix}$$

8.2 Theoretical Properties of OLS estimator

• We briefly review theoretical properties of OLS estimator.

1. **Unbiasdness**: Conditional on the explantory variables X, the expectation of the OLS estimator $\hat{\beta}$ is equal to the true value β .

$$E[\hat{\beta}|X] = \beta$$

2. Consistency: As the sample size N goes to infinity, the OLS estimator $\hat{\beta}$ converges to β in probability

$$\hat{\beta} \xrightarrow{p} \beta$$

3. Asymptotic normality: Will talk this later

8.3 Interpretation and Specifications of Linear Regression Model

• Remember that

$$Y_i = \beta_0 + \beta_1 X_{1i} + \dots + \beta_K X_{Ki} + \epsilon_i$$

- The coefficient β_k captures the effect of X_k on Y ceteris paribus (all things being equal)
- · Equivalently,

$$\frac{\partial Y}{\partial X_k} = \beta_k$$

if X_k is continuous random variable.

- If we can estimate β_k without bias, we can obtain **causal effect** of X_k on Y.
 - This is of course very difficult task. We will see this more later.
- We will see several specifications that are frequently used in empirical analysis. 1. Nonlinear term 1. log specification 2. dummy (categorical) variables 3. interaction terms

8.3.1 Nonlinear term

• We can capture non-linear relationship between Y and X in a linearly additive form

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \epsilon_i$$

- As long as the error term ϵ_i appreas in a additively linear way, we can estimate the coefficients by OLS.
 - Multicollinarity could be an issue if we have many polynomials (see later).
 - You can use other non-linear variables such as log(x) and \sqrt{x} .

8.3.2 log specification

- We often use log variables in both dependent and independent variables.
- Using \log changes the interpretation of the coefficient β in terms of scales.

Dependent variable	Explanatory variable	interpretation
\overline{Y}	X	1 unit increase in X causes β units change in Y
$\log Y$	X	1 unit increase in X causes $100\beta\%$ incchange rease in Y
Y	$\log X$	1% increase in X causes $\beta/100$ unit change in Y
$\log Y$	$\log X$	1% increase in X causes $\beta\%$ change in Y

8.3.3 Dummy variable

- A dummy variable takes only 1 or 0. This is used to express qualitative information
- Example: Dummy variable for race

$$white_i = \begin{cases} 1 & if \ white \\ 0 & otherwise \end{cases}$$

• The coefficient on a dummy variable captures the difference of the outcome Y between categories

8.4. MEASURES OF FIT

45

• Consider the linear regression

$$Y_i = \beta_0 + \beta_1 white_i + \epsilon_i$$

The coefficient β_1 captures the difference of Y between white and non-white people.

8.3.4 Interaction term

- You can add the interaction of two explanatory variables in the regression model.
- For example:

$$wage_i = \beta_0 + \beta_1 educ_i + \beta_2 educ_i \times white_i + \epsilon_i$$

where $wage_i$ is the earnings of person i and $educ_i$ is the years of schooling for person i.

• The effect of $educ_i$ is

$$\frac{\partial wage_i}{\partial educ_i} = \beta_1 + \beta_2 white_i,$$

• This allows for heterogenous effects of education across races.

8.4 Measures of Fit

- We often use \mathbb{R}^2 as a measure of the model fit.
- Denote the fitted value as \hat{y}_i

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{i1} + \dots + \hat{\beta}_K X_{iK}$$

- Also called prediction from the OLS regression.
- R^2 is defined as

$$R^2 = \frac{SSE}{TSS},$$

where

$$SSE = \sum_{i} (\hat{y}_i - \bar{y})^2, \ TSS = \sum_{i} (y_i - \bar{y})^2$$

- R^2 captures the fraction of the variation of Y explained by the regression model.
- Adding variables always (weakly) increases R^2 .
- In a regression model with multiple explanatory variables, we often use **adjusted** R^2 that adjusts the number of explanatory variables

$$\bar{R}^2 = 1 - \frac{N-1}{N - (K+1)} \frac{SSR}{TSS}$$

where

$$SSR = \sum_{i} (\hat{y}_i - y_i)^2 (= \sum_{i} \hat{u}_i^2),$$

8.5 Statistical Inference

- Notice that the OLS estimators are **random variables**. They depend on the data, which are random variables drawn from some population distribution.
- We can conduct statistical inferences regarding those OLS estimators: 1. Hypothesis testing 2. Constructing confidence interval
- I first explain the sampling distribution of the OLS estimators.

8.5.1 Distribution of the OLS estimators based on asymptotic theory

- Deriving the exact (finite-sample) distribution of the OLS estimators is very hard.
 - The OLS estimators depend on the data Y_i, X_i in a complex way.
 - We typically do not know the distribution of Y and X.
- We rely on **asymptotic** argument. We approximate the sampling distribution of the OLS esimator based on the cental limit theorem.
- Under the OLS assumption, the OLS estimator has asymptotic normality

$$\sqrt{N}(\hat{\beta} - \beta) \stackrel{d}{\to} N(0, V)$$

where

$$\underbrace{V}_{(K+1)\times(K+1)} = E[\mathbf{x}_i'\mathbf{x}_i]^{-1}E[\mathbf{x}_i'\mathbf{x}_i\epsilon_i^2]E[\mathbf{x}_i'\mathbf{x}_i]^{-1}$$

and

$$\underbrace{\mathbf{x}_{i}}_{(K+1)\times 1} = \begin{pmatrix} 1 \\ X_{i1} \\ \vdots \\ X_{iK} \end{pmatrix}$$

• We can **approximate** the distribution of $\hat{\beta}$ by

$$\hat{\beta} \sim N(\beta, V/N)$$

- The above is joint distribution. Let V_{ij} be the (i,j) element of the matrix V.
- The individual coefficient β_k follows

$$\hat{\beta}_k \sim N(\beta_k, V_{kk}/N)$$

8.5.1.1 Estimation of Asymptotic Variance

- V is an unknown object. Need to be estimated.
- Consider the estimator \hat{V} for V using sample analogues

$$\hat{V} = \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i} \hat{\epsilon}_{i}^{2}\right) \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1}$$

where $\hat{\epsilon}_i = y_i - (\hat{\beta}_0 + \dots + \hat{\beta}_K X_{iK})$ is the residual.

- Technically speaking, \hat{V} converges to V in probability. (Proof is out of the scope of this course)
- We often use the (asymptotic) standard error $SE(\hat{\beta}_k) = \sqrt{\hat{V}_{kk}/N}$.
- The standard error is an estimator for the standard deviation of the OLS estimator $\hat{\beta}_k$.

8.5.2 Hypothesis testing

- OLS estimator is the random variable.
- You might want to test a particular hypothesis regarding those coefficients.
 - Does x really affects y?
 - Is the production technology the constant returns to scale?
- Here I explain how to conduct hypothesis testing
- Step 1: Consider the null hypothesis H_0 and the alternative hypothesis H_1

$$H_0: \beta_1 = k, H_1: \beta_1 \neq k$$

where k is the known number you set by yourself.

• Step 2: Define t-statistic by

$$t_n = \frac{\hat{\beta}_1 - k}{SE(\hat{\beta}_1)}$$

• Step 3: We reject H_0 is at α -percent significance level if

$$|t_n| > C_{\alpha/2}$$

where $C_{\alpha/2}$ is the $\alpha/2$ percentile of the standard normal distribution.

- We say we fail to reject H_0 if the above does not hold.

8.5.2.1 Caveats on Hypothesis Testing

- We often say $\hat{\beta}$ is statistically significant at 5% level if $|t_n| > 1.96$ when we set k = 0.
- Arguing the statistical significance alone is not enough for argument in empirical analysis.
- Magnitude of the coefficient is also important.
- Case 1: Small but statistically significant coefficient.
 - As the sample size N gets large, the SE decreases.
- Case 2: Large but statistically insignificant coefficient.
 - The variable might have an important (economically meaningful) effect.
 - But you may not be able to estimate the effect precisely with the sample at your hand.

8.5.2.2 F test

• We often test a composite hypothesis that involves multiple parameters such as

$$H_0: \beta_1 + \beta_2 = 0, \ H_1: \beta_1 + \beta_2 \neq 0$$

• We use **F** test in such a case (to be added).

8.5.3 Confidence interval

• 95% confidence interval

$$CI_n = \left\{ k : \left| \frac{\hat{\beta}_1 - k}{SE(\hat{\beta}_1)} \right| \le 1.96 \right\} = \left[\hat{\beta}_1 - 1.96 \times SE(\hat{\beta}_1), \hat{\beta}_1 + 1.96 \times SE(\hat{\beta}_1) \right]$$

• Interpretation: If you draw many samples (dataset) and construct the 95% CI for each sample, 95% of those CIs will include the true parameter.

8.5.4 Homoskedasticity vs Heteroskedasticity

- So far, we did not put any assumption on the variance of the error term ϵ_i .
- The error term ϵ_i has **heteroskedasticity** if $Var(u_i|X_i)$ depends on X_i .
- If not, we call ϵ_i has homoskedasticity.
- This has an important implication on the asymptotic variance.
- Remember the asymptotic variance

$$\underbrace{V}_{(K+1)\times(K+1)} = E[\mathbf{x}_i'\mathbf{x}_i]^{-1}E[\mathbf{x}_i'\mathbf{x}_i\epsilon_i^2]E[\mathbf{x}_i'\mathbf{x}_i]^{-1}$$

Standard errors based on this is called heteroskedasticity robust standard errors/

If homoskedasticity holds, then

$$V = E[\mathbf{x}_i' \mathbf{x}_i]^{-1} \sigma^2$$

where $\sigma^2 = V(\epsilon_i)$.

- In many statistical packages (including R and Stata), the standard errors for the OLS estimators are calcualted under homoskedasticity assumption as a default.
- However, if the error has heteroskedasticity, the standard error under homoskedasticity assumption will be **underestimated**.
- In OLS, we should always use heteroskedasticity robust standard error.
 - We will see how to fix this in R.

Chapter 9

Linear Regression 2: Implementation in R

9.1 Implementation in R

9.1.1 Preliminary: packages

- We use the following packages:
 - AER:
 - dplyr : data manipulation
 - stargazer: output of regression results

```
# Install package if you have not done so
# install.packages("AER")
# install.packages("dplyr")
# install.packages("stargazer")
# install.packages("lmtest")

# load packages
library("AER")
library("dplyr")
library("stargazer")
library("lmtest")
```

9.1.2 Empirical setting: Data from California School

- Question: How does the student-teacher ratio affects test scores?
- We use data from California school, which is included in AER package.
 - See here for the details: https://www.rdocumentation.org/packages/AER/versions/1.2-6/topics/ CASchools

```
# load the the data set in the workspace
data(CASchools)
```

• Use class() function to see CASchools is data.frame object.

```
class(CASchools)
```

- ## [1] "data.frame"
 - We take 2 steps for the analysis.

- Step 1: Look at data (descriptive analysis)
- Step 2: Run regression

9.1.3 Step 1: Descriptive analysis

- It is always important to grasp your data before running regression.
- head() function give you a first overview of the data.

head(CASchools)

```
##
     district
                                       school county grades students
## 1
       75119
                           Sunol Glen Unified Alameda KK-08
                                                                  195
## 2
       61499
                        Manzanita Elementary
                                                Butte KK-08
                                                                  240
## 3
       61549
                 Thermalito Union Elementary
                                                Butte
                                                      KK-08
                                                                 1550
## 4
       61457 Golden Feather Union Elementary
                                                       KK-08
                                                                  243
                                                Butte
## 5
       61523
                     Palermo Union Elementary
                                                Butte
                                                      KK-08
                                                                 1335
## 6
        62042
                     Burrel Union Elementary Fresno
                                                      KK-08
                                                                  137
##
     teachers calworks
                        lunch computer expenditure
                                                       income
                                                                english read
## 1
        10.90
              0.5102 2.0408
                                    67
                                           6384.911 22.690001
                                                              0.000000 691.6
## 2
       11.15 15.4167 47.9167
                                    101
                                           5099.381 9.824000 4.583333 660.5
## 3
       82.90 55.0323 76.3226
                                    169
                                           5501.955 8.978000 30.000002 636.3
## 4
       14.00 36.4754 77.0492
                                    85
                                           7101.831 8.978000 0.000000 651.9
## 5
       71.50 33.1086 78.4270
                                    171
                                           5235.988 9.080333 13.857677 641.8
## 6
        6.40 12.3188 86.9565
                                    25
                                           5580.147 10.415000 12.408759 605.7
##
     math
## 1 690.0
## 2 661.9
## 3 650.9
## 4 643.5
## 5 639.9
## 6 605.4
```

• Alternatively, you can use browse() to see the entire dataset in browser window.

9.1.3.1 Create variables

- Create several variables that are needed for the analysis.
- We use dplyr for this purpose.

```
CASchools %>%
  mutate( STR = students / teachers ) %>%
  mutate( score = (read + math) / 2 ) -> CASchools
```

9.1.3.2 Descriptive statistics

- There are several ways to show descriptive statistics
- The standard one is to use summary() function

summary(CASchools)

```
##
                           school
      district
                                                                 grades
                                                    county
   Length: 420
                        Length: 420
                                                              KK-06: 61
                                            Sonoma
                                                       : 29
   Class :character
                                                              KK-08:359
##
                       Class :character
                                            Kern
                                                       : 27
##
   Mode :character
                       Mode :character
                                            Los Angeles: 27
##
                                            Tulare
                                                       : 24
##
                                            San Diego : 21
                                            Santa Clara: 20
##
```

```
##
                                        (Other)
                                                  :272
##
                                                          lunch
      students
                       teachers
                                         calworks
##
   Min. : 81.0
                    Min. : 4.85
                                      Min. : 0.000 Min.
                                                            : 0.00
                    1st Qu.: 19.66
                                                    1st Qu.: 23.28
   1st Qu.: 379.0
                                      1st Qu.: 4.395
   Median : 950.5
                    Median: 48.56
                                      Median :10.520
                                                      Median: 41.75
##
  Mean
         : 2628.8
                   Mean : 129.07
                                      Mean :13.246
                                                     Mean
                                                            : 44.71
                                      3rd Qu.:18.981
   3rd Qu.: 3008.0
                    3rd Qu.: 146.35
                                                      3rd Qu.: 66.86
          :27176.0
                    Max. :1429.00
                                      Max. :78.994 Max.
##
   Max.
                                                             :100.00
##
##
      computer
                     expenditure
                                      income
                                                     english
   Min. :
                    Min.
                          :3926
                                  Min.
                                        : 5.335
                                                  Min. : 0.000
              0.0
   1st Qu.: 46.0
                    1st Qu.:4906
                                  1st Qu.:10.639
                                                  1st Qu.: 1.941
##
                    Median:5215
##
   Median : 117.5
                                  Median :13.728
                                                  Median: 8.778
                    Mean
                                        :15.317
                                                  Mean
                                                        :15.768
  Mean : 303.4
                         :5312
                                  Mean
   3rd Qu.: 375.2
                    3rd Qu.:5601
                                  3rd Qu.:17.629
                                                  3rd Qu.:22.970
##
   Max.
          :3324.0
                    Max.
                          :7712
                                  Max.
                                         :55.328
                                                  Max.
                                                         :85.540
##
##
        read
                       math
                                       STR
                                                     score
                  Min.
                         :605.4
                                        :14.00
##
  Min. :604.5
                                  Min.
                                                 Min.
                                                        :605.5
   1st Qu.:640.4
                  1st Qu.:639.4
                                  1st Qu.:18.58
                                                 1st Qu.:640.0
##
  Median :655.8
                  Median :652.5
                                  Median :19.72
                                                 Median :654.5
  Mean :655.0
                  Mean :653.3
                                  Mean :19.64
                                                 Mean :654.2
  3rd Qu.:668.7
                                  3rd Qu.:20.87
                                                 3rd Qu.:666.7
##
                   3rd Qu.:665.9
## Max. :704.0
                  Max. :709.5
                                  Max. :25.80
                                                 Max. :706.8
##
```

- This returns the descriptive statistics for all the variables in dataframe.
- You can combine this with dplyr::select

```
CASchools %>%
  select(STR, score) %>%
  summary()
```

```
##
         STR
                        score
          :14.00
  Min.
                   Min.
                           :605.5
  1st Qu.:18.58
                   1st Qu.:640.0
## Median :19.72
                   Median :654.5
## Mean
         :19.64
                   Mean
                           :654.2
## 3rd Qu.:20.87
                   3rd Qu.:666.7
## Max.
          :25.80
                   Max.
                           :706.8
```

• You can do a bit lengthly thing manually like this.

```
# compute sample averages of STR and score
avg_STR <- mean(CASchools$STR)
avg_score <- mean(CASchools$score)

# compute sample standard deviations of STR and score
sd_STR <- sd(CASchools$STR)
sd_score <- sd(CASchools$score)

# set up a vector of percentiles and compute the quantiles
quantiles <- c(0.10, 0.25, 0.4, 0.5, 0.6, 0.75, 0.9)
quant_STR <- quantile(CASchools$STR, quantiles)
quant_score <- quantile(CASchools$score, quantiles)</pre>
```

```
##
               Average StandardDeviation quantile.10. quantile.25.
## quant STR
              19.64043 1.891812 17.3486
                                                     18.58236
## quant_score 654.15655
                            19.053347
                                          630.3950
                                                     640.05000
##
             quantile.40. quantile.50. quantile.60. quantile.75.
## quant_STR
               19.26618 19.72321
                                      20.0783
                                                 20.87181
                649.06999
                            654.45000
                                        659.4000
                                                   666.66249
## quant_score
             quantile.90.
## quant_STR
                21.86741
## quant_score
                678.85999
```

• My personal favorite is to use stargazer function.

```
stargazer(CASchools, type = "text")
```

```
##
## Statistic N
                       St. Dev.
                                Min
                 Mean
                                        Pct1(25) Pct1(75)
## students 420 2,628.793 3,913.105 81 379 3,008 27,176
## teachers 420 129.067 187.913 4.850 19.662 146.350 1,429.000
## calworks 420 13.246 11.455 0.000 4.395 18.981 ## lunch 420 44.705 27.123 0.000 23.282 66.865
                                                        78.994
                                                         100.000
## computer 420 303.383 441.341 0
                                        46
                                                375.2
                                                        3,324
## expenditure 420 5,312.408 633.937 3,926.070 4,906.180 5,601.401 7,711.507
          420 15.317
## income
                        7.226 5.335 10.639 17.629 55.328
## english 420 15.768 18.286
                                 0
                                         1.9
                                                 23.0
                                                          86
## read
          420 654.970 20.108 604.500 640.400 668.725 704.000
           420 653.343 18.754 605
## math
                                        639.4
                                                 665.8
                                                          710
                                14.000 18.582
## STR
           420 19.640
                        1.892
                                                 20.872
                                                         25.800
## score
           420 654.157 19.053 605.550 640.050 666.662 706.750
```

• You can choose summary statistics you want to report.

```
CASchools %>%
  stargazer( type = "text", summary.stat = c("n", "p75", "sd") )
```

```
## english
                420
                      23.0
                                18.286
                     668.725
## read
                420
                                20.108
## math
                420
                      665.8
                                18.754
## STR
                420
                     20.872
                                 1.892
## score
                420
                     666.662
                                19.053
```

- $\bullet \ \, See \ \, https://www.jakeruss.com/cheatsheets/stargazer/\#the-default-summary-statistics-table \ \, for \ \, the details.$
- We will use stargazer to report regression results.

9.1.3.3 Scatter plot

• Let's see how test score and student-teacher-ratio is correlated.

```
plot(score ~ STR,
    data = CASchools,
    main = "Scatterplot of TestScore and STR",
    xlab = "STR (X)",
    ylab = "Test Score (Y)")
```

Scatterplot of TestScore and STR

• Use cor() to compute the correlation between two numeric vectors.

```
cor(CASchools$STR, CASchools$score)
```

```
## [1] -0.2263627
```

9.1.4 Step 2: Run regression

9.1.4.1 Simple linear regression

- We use lm() function to run linear regression
- First, consider the simple linear regression

```
score_i = \beta_0 + \beta_1 size_i + \epsilon_i
```

where $size_i$ is the class size (student-teacher-ratio).

- From now on we call student-teacher-ratio (STR) class size.
- To run this regression, we use 1m

```
# First, we rename the variable `STR`
CASchools %>%
  dplyr::rename( size = STR) -> CASchools

# Run regression and save results in the variable `model1_summary`
model1_summary <- lm( score ~ size, data = CASchools)

# See the results
summary(model1_summary)</pre>
```

```
## Call:
## lm(formula = score ~ size, data = CASchools)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -47.727 -14.251
                  0.483 12.822 48.540
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 698.9329
                          9.4675 73.825 < 2e-16 ***
               -2.2798
                           0.4798 -4.751 2.78e-06 ***
## size
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 18.58 on 418 degrees of freedom
## Multiple R-squared: 0.05124,
                                   Adjusted R-squared:
## F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
```

- Interpretations
 - An increase of one student per teacher leads to 2.2 point decrease in test scores.
 - p value is very small. The effect of the class size on test score is significant. Note: Be careful.
 These standard errors are NOT heteroskedasiticity robust. We will come back to this point soon.
 - $-R^2 = 0.051$, implying that 5.1% of the variance of the dependent variable is explained by the model.
- You can add more variable in the regression (will see this soon)

9.1.4.2 Correction of Robust standard error

- We use vcovHC() function, a part of the package sandwich, to obtain the robust standard errors.
 - The package sandwich is automatically loaded if you load AER package.

```
# compute heteroskedasticity-robust standard errors
vcov <- vcovHC(model1_summary, type = "HC1")</pre>
```

```
# get standard error: the square root of the diagonal element in vcov
robust_se <- sqrt(diag(vcov))
robust_se</pre>
```

```
## (Intercept) size
## 10.3643617 0.5194893
```

- Notice that robust standard errors are larger than the one we obtained from lm!
- How to combine the robust standard errors with the original summary? Use coeftest() from the package lmtest

```
# load `lmtest`
library(lmtest)

# Combine robust standard errors
coeftest(model1_summary, vcov. = vcov)
```

9.1.4.3 Report by Stargazer

• stargazer is useful to show the regression result.

```
# load
library(stargazer)

# Create output by stargazer
stargazer::stargazer(model1_summary, type ="text")
```

```
##
##
                Dependent variable:
##
##
                    score
## -----
## size
                   -2.280***
                    (0.480)
##
##
                  698.933***
## Constant
##
                   (9.467)
##
 _____
## Observations
                    420
                    0.051
## R2
## Adjusted R2
                    0.049
## Residual Std. Error 18.581 (df = 418)
## F Statistic 22.575*** (df = 1; 418)
*p<0.1; **p<0.05; ***p<0.01
## Note:
```

• Use robust standard errors in stargazer output

```
##
Dependent variable:
##
             -----
                   score
## -----
## size
                 -2.280***
##
                  (0.519)
##
## Constant
                 698.933***
##
                 (10.364)
## -----
## Observations
                   420
## R2
                  0.051
## Adjusted R2
                  0.049
## Residual Std. Error 18.581 (df = 418)
## F Statistic 22.575*** (df = 1; 418)
## Note:
            *p<0.1; **p<0.05; ***p<0.01
```

9.1.4.4 Full results

Taken from https://www.econometrics-with-r.org/7-6-analysis-of-the-test-score-data-set.html

```
# load the stargazer library
# estimate different model specifications
spec1 <- lm(score ~ size, data = CASchools)</pre>
spec2 <- lm(score ~ size + english, data = CASchools)</pre>
spec3 <- lm(score ~ size + english + lunch, data = CASchools)</pre>
spec4 <- lm(score ~ size + english + calworks, data = CASchools)</pre>
spec5 <- lm(score ~ size + english + lunch + calworks, data = CASchools)</pre>
# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(spec1, type = "HC1"))),</pre>
               sqrt(diag(vcovHC(spec2, type = "HC1"))),
               sqrt(diag(vcovHC(spec3, type = "HC1"))),
               sqrt(diag(vcovHC(spec4, type = "HC1"))),
               sqrt(diag(vcovHC(spec5, type = "HC1"))))
# generate a LaTeX table using stargazer
stargazer(spec1, spec2, spec3, spec4, spec5,
          se = rob_se,
      digits = 3,
```

```
header = F,
column.labels = c("(I)", "(II)", "(III)", "(IV)", "(V)"),
type ="text",
keep.stat = c("N", "adj.rsq"))
```

##								
##		Dependent variable:						
##		(T)	(77)	score	(TV)	(11)		
## ## ##		(I) (1)	(II) (2)	(III) (3)	(IV) (4)	(V) (5)		
	size			-0.998*** (0.270)				
	english			-0.122***				
## ## ##	lunch		(0.031)	(0.033) -0.547***	(0.030)	(0.036) -0.529***		
## ##	Tunch			(0.024)		(0.038)		
##	calworks				-0.790*** (0.068)			
## ## ##	Constant			700.150*** (5.568)				
## ##								
##	Observations Adjusted R2	0.049	0.424	0.773	420 0.626	420 0.773		
	Note:				1; **p<0.05	; ***p<0.01		

• The coefficient on the class size decreases as we add more explantory variables. Can you explain why? (Hint: omitted variable bias)