

Il Livello Logico-Digitale

Blocchi funzionali sequenziali

22 -10 -2015

Libreria di blocchi sequenziali

- Tipici principali componenti sequenziali di libreria:
 - Registro parallelo
 - Registro a scorrimento
 - Banco di registri
 - Memoria
- Ognuno di questi blocchi ammette numerose versioni e varianti

Ancora diagramma temporale

Come rappresentare un fascio di segnali

Al tempo T1 i 4 segnali valgono 0100, al tempo T2 i 4 segnali valgono 1101

- □ Il registro parallelo è un vettore di n ≥ 1 flip-flop di tipo
 D. Ha:
 - $n \ge 1$ ingressi I1, ..., In
 - $n \ge 1$ uscite U1, ..., Un
 - e naturalmente l'ingresso di clock CK
- A ogni ciclo di clock, il registro legge e memorizza nel suo stato la parola di n bit presente in ingresso, e la presenta sulle n uscite nel ciclo successivo

Simbolo e funzionamento

Progetto in stile funzionale

Registro parallelo progettato in stile funzionale, usando 4 flip-flop D sincroni sul fronte (di discesa)

Nota bene:

se si usassero dei bistabili D trasparenti (sincronizzati sul livello), durante il livello alto del clock il registro sarebbe esso stesso del tutto trasparente, e dunque non si comporterebbe come un registro ...

Registro parallelo con comando di caricamento

- Funziona come il registro parallelo, ma ha in aggiunta un ingresso di comandi di caricamento (L, ingresso di Load):
 - Se il comando L è attivo (p. es. L = 1), la parola in ingresso al registro viene memorizzata nel registro stesso e presentata in uscita nel ciclo successsivo
 - Altrimenti (cioè L = 0), il registro mantiene il suo stato corrente di memorizzazione

Progetto in stile funzionale

Registro parallelo progettato in stile funzionale, usando 4 flip-flop D sincroni sul fronte (di discesa) e 4 multiplexer a un ingresso di selezione e due ingressi dati

Varianti e integrazioni

- Registro parallelo con comando di ripristino, per azzerare il contenuto
- Registro parallelo con comando di ripristino e di precarica
- Registro parallelo universale, riunisce le funzioni di tutti i registri precedenti: comandi di caricamento, comando di ripristino e comando di precarica

Registro a scorrimento

- □ Il registro a scorrimento è una successione di n ≥ 1 flipflop di tipo D collegati in cascata. Ha:
 - un ingresso seriale S
 - n ≥ 1 uscite parallele U1, ..., Un
 - e naturalmente l'ingresso di clock
- A ogni ciclo di clock, fa scorrere di un bit verso DX la parola memorizzata, perdendo il bit più a DX e aggiungendo a sinistra il bit presente sull'ingresso seriale

Simbolo e funzionamento

registro a scorrimento a DX a 4 bit

diagramma temporale

- scorre a DX
- ecc ...

Progetto in stile funzionale

Registro a scorrimento a DX progettato in stile funzionale, usando 4 flip-flop D sincroni sul fronte (di discesa) collegati in cascata

Nota bene:

se si usassero dei bistabili D trasparenti (sincronizzati sul livello), durante il livello alto del clock un bit potrebbe propagarsi lungo l'intera catena di bistabili ... non sarebbe un comportamento accettabile!

- Registro a scorrimento a SX
- Registro a scorrimento universale: DX e SX (è dotato di un comando di scelta del verso di scorrimento)
- Registro a scorrimento (DX o SX) con funzione di caricamento parallelo
- Registro parallelo / a scorrimento universale: riunisce le funzioni dei registri parallelo e a scorrimento universali
- Registro IN seriale / OUT seriale
- Registro IN parallelo / OUT seriale
- Registro IN parallelo/seriale OUT parallelo/seriale

Register File e memoria

- Componenti di memoria e uscite condivise
- Register File (banco di registri): struttura e funzionamento
- Memoria: struttura e funzionamento
- Banco di memoria
- Tecnologie di memoria

Linee di uscita condivise

- L'organizzazione interna della memoria e la struttura dei banchi di memoria e dei banchi di registri prevedono generalmente che le uscite di 2 o più componenti siano collegate alle stesse linee di uscita (bus)
- Sono necessari opportuni "elementi funzionali" (circuiti di pilotaggio delle uscite del componente) che garantiscano la NON interferenza (dei segnali) tra i moduli che condividono le stesse linee di uscita

Circuiti di pilotaggio delle uscite: Buffer tri-state

- E' il circuito elementare modellabile come un contatto a tre posizioni:
- in stato di bassa impedenza consente di avere in uscita o il livello alto (1) o il livello basso (0)
- in stato di alta impedenza (Z) isola elettricamente l'uscita
- l'uscita tri-state viene gestita da un apposito ingresso di controllo (Ouput Enable) che, se non attivo, forza lo stato di alta impedenza

Funzionamento

Buffer tri-state: multiplexer sulle linee di uscita

FIGURE B.9.2 Four three-state buffers are used to form a multiplexor. Only one of the four Select inputs can be asserted. A three-state buffer with a deasserted Output enable has a high-impedance output that allows a three-state buffer whose Output enable is asserted to drive the shared output line.

Banco di registri (register file)

 Spesso occorre utilizzare un certo numero di registri paralleli con funzione di caricamento, tutti aventi le stesse dimensioni e le stesse funzioni (ad es. nel data-path della CPU)

 I registri vengono organizzati in una struttura a vettore, chiamata banco di registri o register file (RF)

Banco di registri: caratteristiche

- Consideriamo come esempio di riferimento un banco di 32 registri da
 32 bit ciascuno (Register File del MIPS)
- Ogni registro è identificato da un indirizzo (numero di registro) specificato su 5 bit
 - con n ≥ 1 registri occorrono $\lceil \log_2 n \rceil$ bit
- Le operazioni eseguibili sul banco sono:
 - lettura: si presentano in uscita i 32 bit memorizzati nel registro indirizzato
 - scrittura: si memorizzano 32 bit acquisiti in ingresso nel registro indirizzato
- Porta di lettura/scrittura: insieme di segnali che consentono la lettura e la scrittura dei registri
 - 1 porta di lettura e scrittura
 - 1 porta di lettura e 1 di scrittura
 - 2 porte di lettura e 1 di scrittura (vedi ALU)

Register File del MIPS

- 2 porte di lettura indipendenti
- 1 porta di scrittura
 con le opportune temporizzazioni è possibile accedere in parallelo a 3 registri distinti

Accesso in lettura:

- lo stato del registro non viene modificato
- poiché le porte di lettura e scrittura sono distinte e indipendenti non è necessario un comando di lettura esplicito: è sufficiente fornire l'indirizzo dei registri coinvolti e la lettura avviene ogni ciclo di clock
- la realizzazione del banco può richiedere buffer tri-state le uscite devono essere scollegate elettricamente

Accesso in scrittura

- indirizzo del registro
- dato da scrivere
- segnale di scrittura esplicito (Write)

Il segnale di clock è sottointeso

Register File del MIPS: porte di lettura

- L'indirizzo del registro da leggere è usato come segnale di controllo del multiplexer
- I due multiplexer vengono controllati in modo indipendente

Register File del MIPS: porte di lettura (un'altra versione)

- Tutte le uscite dei registri condividono le stesse linee di uscita
- L'indirizzo del registro da leggere è usato come segnale di ingresso al decodificatore (5:32)
- Le 32 linee di registro (uscite del decoder) sono attive in mutua esclusione e sono usate come linee di *Enable* per il buffer tristate della porta di lettura considerata
- I decodificatori sono controllati in modo indipendente

Register File del MIPS: porta di scrittura

- Un solo registro deve modificare il proprio contenuto
- L'indirizzo del registro da scrivere è fornito come ingresso al decodificatore
- La linea «di registro» e il segnale di write abilitano un solo registro in scrittura
- Sul fronte attivo del clock (segnale non mostrato) il dato da scrivere D viene memorizzato nel registro e si presenta in uscita dopo un opportuno ritardo di propagazione

Lettura e scrittura di un registro nello stesso ciclo di clock

La scrittura avviene sul fronte di salita del ciclo e quindi la lettura fornisce il valore scritto al ciclo precedente

- La memoria è un blocco funzionale di tipo sequenziale complesso
 - Mantiene a tempo indefinito se alimentata (SRAM) le informazioni memorizzate e permette l'access in lettura o in scrittura
- Ha una struttura a vettore (almeno in termini di segnali di accesso esterni) i cui elementi sono le parole di memoria di un certa lunghezza
- Un componente integrato (chip) di memoria si caratterizza specificando:
 - la capacità, misurata in numero totale di bit memorizzabili: di solito si esprime come prodotto del numero di parole per il numero di bit per parola
 - le funzioni: lettura e scrittura, solo lettura
 - il numero di porte di accesso
 - e il tempo necessario per l'accesso

Interfaccia di memoria

- Il contenuto della memoria viene letto o scritto una parola per volta, in un ciclo di clock (più cicli in memorie lente)
- Si accede a una parola di memoria tramite la porta di accesso alla memoria
- La porta di accesso alla memoria può funzionare in lettura e scrittura (è il caso più frequente), solo in lettura e teoricamente anche solo in scrittura (caso poco frequente)

Segnali dell'interfaccia di memoria

- Gli ingressi di indirizzo, che codificano in binario l'indirizzo della parola su cui si deve operare
- Le uscite/ingressi di dato, che servono per leggere/scrivere una parola
- Per le linee di dato e indirizzo sono da rispettare i tempi di set_up e hold, quindi questi segnali vengono forniti per primi in modo che siano stabili quando le linee di comando sono attivate a seconda dell'operazione
- il comando di scrittura, Write enable. Se Write enable è un impulso deve avere una durata minima che consenta di soddisfare quanto sopra
- il comando di abilitazione delle uscite dati, OE (output enable): OE = 1 le uscite sono abilitate; OE = 0 le uscite sono isolate
- il comando di abilitazione del componente, CS (chip select): CS = 1 chip attivo, si può accedere al contenuto; CS = 0 chip non attivato

Cicli di lettura e scrittura

Ciclo di lettura

- indirizzo della parola da leggere
- comando di lettura (WE a livello 0)
- non isolare le uscite dati (OE = 1)
- abilitare il componente (CS = 1)
- contenuto della parola disponibile sulle uscite. Ritardo di lettura: 8 -20 ns

Ciclo di scrittura

- indirizzo della parola da scrivere
- dato da scrivere in ingresso
- comando di scrittura (WE a livello 1)
- isolare le uscite dati (OE = 0)
- abilitare il componente (CS = 1).
 Ritardo di scrittura: 8 20 ns

Struttura della memoria

organizzazione a matrice di bistabili

- Matrice di bistabili (righe=parole, colonne = bit della parola), completandola con reti combinatorie di controllo per gestire l'accesso alle parole
- Le uscite del decoder sono le linee di parola
- Ogni bistabile ha la sua uscita in tristate perché condivisa con gli altri in posizione omologa
- Non adatta a dimensioni significative di memoria (decoder e linee di parola)

Banco di memoria: organizzazione a matrice di componenti e decodifica dell'indirizzo a due livelli

FIGURE B.9.4 Typical organization of a 4M \times **8 SRAM as an array of 4K** \times **1024 arrays.** The first decoder generates the addresses for eight 4K \times 1024 arrays; then a set of multiplexors is used to select 1 bit from each 1024-bit-wide array. This is a much easier design than a single-level decode that would need either an enormous decoder or a gigantic multiplexor. In practice, a modern SRAM of this size would probably use an even larger number of blocks, each somewhat smaller.

DRAM: qualche considerazione

- RAM dinamiche: il singolo bit di informazione è «memorizzato» nella carica di un condensatore il cui accesso avviene tramite un transistor che può «leggere» o «scrivere» il suo valore (durata della carica alcuni millisecondi)
- Usano un singolo transistor per cella contro i 4-6 delle SRAM, quindi hanno un costo inferiore per bit e sono più dense. Tempi di accesso maggiori
- E' necessario il refresh delle parole di memoria (lettura e riscrittura del contenuto) per la degradazione della carica
- Sono organizzate sempre con decodifica dell'indirizzo a due livelli per diminuire i tempi di refresh
- Le operazioni di refresh consumano meno del 2% dei cicli di memoria

Linee indirizzo multiplate: segnali RAS e CAS per utilizzare correttamente i

bit indirizzo

Latch di colonna: contiene i contenuto di una riga letta

La singola operazione di refresh riscrive un'intera riga

FIGURE B.9.6 A 4M × 1 DRAM is built with a 2048 × 2048 array. The row access uses 11 bits to select a row, which is then latched in 2048 1-bit latches. A multiplexor chooses the output bit from these 2048 latches. The RAS and CAS signals control whether the address lines are sent to the row decoder or column multiplexor.

- Memoria RAM (Random Access Memory) realizzata con bistabili
- Capacità medio-piccola
- Tempo di accesso molto breve
- Funziona in lettura e scrittura
- Volatile: senza alimentazione il contenuto della memoria svanisce
- Usi: svariati, in particolare come cache
- La memoria SRAM consuma parecchi transistor per bit memorizzato (circa 6 transistor per bit)

- La tecnologia DRAM usa circa 1 transistor per bit memorizzato
 - Sfrutta il fenomeno dell'accumulo temporaneo di carica sul transistor (capacità parassita)
 - Internamente contiene un circuito di rinfresco che rigenera le cariche
- Memoria RAM (matrice di transistor) ad altissima densità
- Capacità grande-grandissima
- Tempo di accesso medio
- Funziona in lettura e scrittura
- Volatile: senza alimentazione il contenuto della memoria svanisce
- Usi: numerossisimi, la memoria centrale dei calcolatori normalmente è DRAM

- Memoria ROM (Read Only Memory), realizzata come matrice di transistor
- Capacità grande
- Tempo di accesso medio
- Funziona in sola lettura
- Persistente: il contenuto permane anche in assenza di alimentazione
- Usi: per memorizzare programmi permanenti, non modificabili; grandi volumi di produzione

- Capacità e tempo simili alla ROM
- Sola lettura e persistenti
- Sono programmabili sul campo, tramite un apposito programmatore:
 - PROM: programmabile una volta sola
 - EPROM: cancellabile con raggi UV
 - EEPROM: cancellabile elettricamente (si può anche scrivere un solo byte per volta)
- Usi: piccoli volumi di produzione, prototipi

- Capacità e tempo simili alla DRAM (o solo di poco inferiori)
- Funziona in lettura e scrittura (la scrittura però è a blocchi di byte)
- Persistente: il contenuto permane anche in assenza di alimentazione
- Usi: dati multimediali (p. es. immagini statiche, sequenze video), programmi fissi ma periodicamente aggiornabili

Tabella riassuntiva

Tipo	Categoria	Modalità di cancellazione	Scrittura byte	Volatile	Usi specifici
SRAM	lett/scritt	elettrica	si	si	cache
DRAM	lett/scritt	elettrica	si	si	mem. centrale
ROM	sola lett	nessuna	no	no	grandi vol.
PROM	sola lett*	nessuna	no	no	piccoli vol.
EPROM	sola lett*	luce UV	no	no	prototipi
EEPROM	sola lett*	elettrica	si (lenta)	no	prototipi
FLASH	lett/scritt	elettrica	a blocchi	no	multimedia

^{*}Le memorie cancellabili vengono talvolta qualificate come "memorie prevalentemente a sola lettura" (read-mostly), invece che "a sola lettura" (read-only)