WHAT IS CLAIMED IS:

1	1. A reactor for growing a gallium containing single crystal,
2	comprising:
3	a multi-zone heater;
4	a growth zone, wherein said multi-zone heater maintains at least one
5	substrate within said growth zone at a growth temperature greater than 850° C;
6	an extended gallium source within a multi-zone gallium source zone,
7	wherein said multi-zone heater maintains a first portion of said extended gallium source
8	at a first temperature greater than 450° C while simultaneously maintaining a second
9	portion of said extended gallium source at a second temperature in the range of 30° C to
10	100° C, wherein upon reaction initiation said second portion comprises at least 50 percent
11	of said extended gallium source;
12	a halide reaction gas source coupled to said multi-zone gallium source
13	zone;
14	an inert gas source coupled to said multi-zone gallium source zone to
15	transport a first reaction product from said multi-zone gallium source zone to said growth
16	zone; and
17	a reaction gas source coupled to said growth zone.
1	2. The reactor of claim 1, wherein upon reaction initiation said second
2	portion comprises at least 90 percent of said extended gallium source.
1	3. The reactor of claim 1, wherein said second temperature is in the
2	range of 30° C to 40° C.
1	4. The reactor of claim 1, further comprising a first aluminum source
2	zone, wherein said halide reaction gas source and said inert gas source are coupled to said
.3	first aluminum source zone, and wherein said multi-zone heater maintains a first
4	aluminum source within said first aluminum source zone to a third temperature greater
5	than 700° C.
1	5. The reactor of claim 4, further comprising a second aluminum

source zone, wherein said halide reaction gas source and said inert gas source are coupled

- 3 to said second aluminum source zone, and wherein said multi-zone heater maintains a
- 4 second aluminum source within said second aluminum source zone to a fourth greater
- 5 than 700° C.
- 1 6. The reactor of claim 1, wherein said multi-zone heater is a multi-
- 2 zone resistive heater furnace.
- The reactor of claim 1, further comprising an acceptor impurity
- 2 source zone, wherein said inert gas source is coupled to said acceptor impurity source
- 3 zone, and wherein said multi-zone heater maintains an acceptor impurity within said
- 4 acceptor impurity source zone at a third temperature.
- 1 8. The reactor of claim 1, further comprising a donor impurity source
- 2 zone, wherein said inert gas source is coupled to said donor impurity source zone, and
- 3 wherein said multi-zone heater maintains a donor impurity within said donor impurity
- 4 source zone at a third temperature.
- 1 9. The reactor of claim 1, further comprising means for transferring
- 2 said at least one substrate within said growth zone to a second growth zone.
- 1 10. The reactor of claim 9, wherein said multi-zone heater maintains
- 2 said at least one substrate within said second growth zone at a third temperature.
- 1 The reactor of claim 10, wherein said growth temperature is in the
- 2 range of 1,000° C to 1,100° C and wherein said third temperature is in the range of
- 3 850° C to 1,000° C.
- 1 12. The reactor of claim 1, wherein said halide gas source supplies HCl
- 2 gas.
- 1 13. The reactor of claim 1, wherein said reaction gas source supplies
- 2 ammonia gas.