Problem set 4 Spectral Theory

Bruno Seefeld

May 2024

1

(1)

Take v in the ideal I, by polar decomposition we have v=u|v|, with |v| positive, we can write $|v|=u^*v$, this implies $|v|=|v|^*\in I$, therefore $v^*=|v|^*u^*\in I$.

(2)

Let $I = \{fz | f \in C(\mathbb{Z})\}$ where z is the identity on \mathbb{D} . We prove that z^* that does $\mapsto \overline{z}$ is not in I. Suppose there is $f \in I$ with $fz = z^*$, for $x \in \mathbb{R}$ we have f(x)x = x therefore f(x) = 1, and f(ix)(ix) = -ix and f(ix) = -1, taking $x \to 0$ we see that f is not continuous at 0, a contradiction. Therefore the ideal is not self adjoint.

 $\mathbf{2}$

5

Suppose p, q are Murray-von Neumann equivalent, with $p = vv^*$, $q = v^*v$. Let v = u|v| be the polar decomposition of v, with u unitary and |v| self adjoint. We have $p = p^2 = u|v|^2u^*$ and $q = |v|u * u|v| = |v|^2$ clearly $p = uqu^*$.

Now suppose p,q,1-p,1-q are unitarlly equivalent. Say $1-p=u(1-q)u^*=uu^*-uqu^*$, we have $p=uqu^*$ so we can suppose these pairs are conjugated by the same unitary transformation. Let's calculate $p=p^2=(uqu^*)(uqu^*)=(uq)(qu^*)=(uq)(uq)^*$, take v=uq. we have $p=vv^*$ and $v^*v=qu^*uq=q$, therefore they are Murray-von Neumann equivalent.