## Homework10

Tony Samour APPU 4600

- 1. For the function  $f(x) = \sin(x)$ . Determine the Padé approximations of degree 6 with
  - (a) Both the numerator and denominator are cubic
  - (b) The numerator is quadratic and the denominator is a fourth degree polynomial.
  - (c) The numerator is a fourth degree polynomial and the denominator is quadratic.

Compare the accuracy of these approximations with the sixth order Maclaurin polynomial by ploting the error over the interval [0, 5].

$$\frac{\text{Padé Approximation:}}{P_{m}^{n}(x) = \underbrace{a_{0} + a_{1} x + \cdots + a_{m} x^{m}}_{1 + b_{1} x + \cdots + a_{n} x^{n}}, \text{ which we will metch to } \underbrace{T_{6}(x) = \sum_{n=0}^{6} \frac{f^{(n)}(o)}{n!} x^{n}}_{n=0}$$

$$T_{6}[s_{1}^{3}](x) = X - \frac{X^{3}}{3!} + \frac{X^{5}}{5!} - \frac{X^{7}}{7!}$$

(a) 
$$P_3^3(x) = \underline{\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x} = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

$$\therefore a_0 + a_1 x + a_2 x^2 + a_3 x^3 = \left(x - \frac{x^3}{3!} + \frac{x^5}{5!}\right) \left(|+b_1 x + b_2 x^2 + b_3 x^3\right)$$

Term (xn) Coefficients

| const          | a <sub>o</sub> = 0                                   | -6           | 1   | b             |
|----------------|------------------------------------------------------|--------------|-----|---------------|
| ×              | $a_i = 1$                                            | 120          | - 1 | l ba          |
| χ²             | $a_2 = b_0$                                          |              |     |               |
| χ³             | $a_3 = b_7 - \frac{1}{3!}$                           |              |     |               |
| x 4            | $0 = b_3 - \frac{b_1}{3!}$                           |              |     |               |
| χ <sup>ε</sup> | $0 = -\frac{bz}{3!} + \frac{1}{5!} \Rightarrow bz =$ | 3 <u>1</u> 5 | -   | <del>20</del> |
| x 6            | $0 = \frac{b_1}{5!} - \frac{b_3}{3!}$                |              |     |               |
|                | 3. 3: 4                                              |              |     |               |

$$\begin{vmatrix} -\frac{1}{6} & 1 \\ \frac{1}{170} & -\frac{1}{6} \end{vmatrix} \begin{bmatrix} b_1 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow b_1 = b_3 = 0$$

$$b_1 = 0 \qquad a_0 = 0$$

$$b_7 = 0 \qquad a_1 = 1$$

$$b_{7} = 0 \qquad a_{i} = 1$$

$$b_{3} = 0 \qquad a_{7} = 0$$

$$a_{3} = -\frac{7}{60}$$

$$P_{3}^{3}(\chi) = \chi - \frac{7}{60} \chi^{5}$$

$$1 + \frac{1}{20} \chi^{2}$$





These approximations are extremely close until the end of the intervel, where the Taylor error increases much quirer.

# ← → + Q = B

(b) 
$$P_{z}^{4}(x) = \underline{\alpha_{o} + \alpha_{1}x + \alpha_{2}x^{2}}$$
 =  $x - \underline{x^{3}} + \underline{x^{5}}$   
 $1 + b_{1}x + b_{2}x^{2} + b_{3}x^{5} + b_{4}x^{4}$  =  $x - \underline{x^{3}} + \underline{x^{5}}$ 

|                                                                                                             | Coefficients                                                                                                                                                                                                                                                 |                                                                                                                                                      |                                  |                           |              |                    |       |                    |                                               |              |       |               |       |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|--------------|--------------------|-------|--------------------|-----------------------------------------------|--------------|-------|---------------|-------|
| cens+                                                                                                       | $a_o = O$                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                  | From                      | n (a)        | , we               | Final | Ы                  | = b=                                          | s = 0        |       |               |       |
| X                                                                                                           | $a_i = 1$                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                  |                           |              |                    |       |                    |                                               |              |       |               |       |
| X                                                                                                           | $a_2 = b_1$                                                                                                                                                                                                                                                  |                                                                                                                                                      |                                  |                           |              |                    | ·. 1  | > <sub>l</sub> = ( | 2                                             |              | ao    | = 0           |       |
| χ³                                                                                                          | $0 = b_2 - \frac{1}{3!}$                                                                                                                                                                                                                                     | => 0 7                                                                                                                                               | = 6                              |                           |              |                    | Ł     | ر<br>مح            | 4                                             |              | a. =  | - 1           |       |
| x 4                                                                                                         | 0 = b - 3                                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                             |                                  |                           |              |                    | b     | 3 =                | 0                                             |              | ar =  |               |       |
| χF                                                                                                          | $0 = b_3 - \frac{1}{3!}$ $0 = \frac{1}{5!} - \frac{5}{3!}$                                                                                                                                                                                                   | · + bu =                                                                                                                                             | ) b <sub>4</sub> =               | 36 - 120                  | ÷ 34         | 0                  |       | )4 =               |                                               |              |       |               |       |
| × 6                                                                                                         | $O = \frac{b_1}{5!} - \frac{b_2}{3!}$                                                                                                                                                                                                                        |                                                                                                                                                      |                                  |                           |              |                    |       |                    | 200                                           |              |       |               |       |
| J.                                                                                                          |                                                                                                                                                                                                                                                              | $\frac{1}{x^2 + \frac{3}{360}}$                                                                                                                      |                                  |                           |              |                    |       |                    |                                               |              |       |               |       |
| <b>₹</b> Figure 1                                                                                           | 1+ (                                                                                                                                                                                                                                                         | , X + 36                                                                                                                                             | S Figure 2                       |                           |              | - 0                | ×     |                    |                                               |              |       |               |       |
|                                                                                                             |                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                  |                           |              |                    |       | þ                  | gen                                           | eral,        | m 4:  | o approxime   | Hus   |
| 10 - f(x) Taylor                                                                                            | nal                                                                                                                                                                                                                                                          | /                                                                                                                                                    | 10 <sup>1</sup> - Taylor Rations |                           |              |                    |       |                    |                                               |              |       | then in       |       |
| 8 -                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                      | 10-2                             |                           |              |                    |       |                    |                                               |              |       | el it interes | لمامع |
| 6 -                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                      | 10-5                             |                           |              |                    |       |                    |                                               |              |       | ) error was   | _     |
| 4 -                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                      | 10-11 -                          |                           |              |                    |       |                    |                                               |              |       | , la at the   |       |
| 2 -                                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                      | 10-14 -                          |                           |              |                    |       | bea                | innin                                         | u bi         | 1 01  | ncc again     | n,    |
| 0-                                                                                                          |                                                                                                                                                                                                                                                              |                                                                                                                                                      | 10-17                            |                           |              |                    |       | Tay                | lac                                           | PUOC         | slage | ols upat th   | ٧     |
| ó                                                                                                           | 1 2 3                                                                                                                                                                                                                                                        | 4 5                                                                                                                                                  | 0                                | 1 2                       | 3 4          | 5                  |       |                    |                                               |              | ,,,,, |               |       |
| #←⇒ <del>+</del> Q∓                                                                                         |                                                                                                                                                                                                                                                              |                                                                                                                                                      | # ← → + Q =                      |                           |              |                    |       |                    |                                               |              |       |               |       |
| (c) P 2 (x                                                                                                  | $(a) = a_0 + a_1$                                                                                                                                                                                                                                            | x + az x2 +                                                                                                                                          | $a_3x^3 + a_1$                   | ωX <sup>4</sup> =         | χ – Δ        | <sup>3</sup> +     | X     |                    |                                               |              |       |               |       |
| ,                                                                                                           |                                                                                                                                                                                                                                                              | b, X + b.                                                                                                                                            | - X <sup>2</sup>                 | ***                       | 3            | 31                 | 5!    |                    |                                               |              |       |               |       |
|                                                                                                             | 1 +                                                                                                                                                                                                                                                          | DIX F D                                                                                                                                              |                                  |                           |              |                    |       |                    |                                               |              |       |               |       |
|                                                                                                             |                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                  |                           |              |                    |       |                    | _                                             |              |       |               |       |
| ·                                                                                                           |                                                                                                                                                                                                                                                              |                                                                                                                                                      |                                  | (- <u>x</u> 3 +           | <u>×</u> 5   | )(14               | h v   | 1 h                | 7 7                                           | <b>)</b>     |       |               |       |
| : ao -                                                                                                      | +<br>+ a,x + azx2                                                                                                                                                                                                                                            |                                                                                                                                                      |                                  | (- <u>x</u> 3 +           | ×5.          | )( +               | Ь,х   | + b <sub>2</sub>   | × 7                                           | )            |       |               |       |
|                                                                                                             | + a,x + azx                                                                                                                                                                                                                                                  |                                                                                                                                                      |                                  | (- <u>x<sup>3</sup></u> + | ×5.          | )(1+               | Ь,х   | + b <sub>2</sub>   | , × <sup>7</sup>                              | )            |       |               |       |
| Yerm (xn)                                                                                                   | $\begin{array}{c} + \alpha_{1} \times + \alpha_{2} \times^{2} \\ \text{Coefficients} \\ \alpha_{1} = 0 \end{array}$                                                                                                                                          | + a 3 x 3                                                                                                                                            | a4x4= ()                         |                           |              |                    |       |                    |                                               |              |       |               |       |
| Yerm (xn)                                                                                                   | $\begin{array}{c} + \alpha_{1} \times + \alpha_{2} \times^{2} \\ \text{Coefficients} \\ \alpha_{1} = 0 \end{array}$                                                                                                                                          | + a 3 x 3                                                                                                                                            | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     |                    | ao =                                          | - 0          |       |               |       |
| Yerm (xn)                                                                                                   | $\begin{array}{c} + \alpha_{1} \times + \alpha_{2} \times^{2} \\ \text{Coefficients} \\ \alpha_{1} = 0 \end{array}$                                                                                                                                          | + a 3 x 3                                                                                                                                            | a4x4= ()                         |                           | <i>:</i> . \ |                    | 0     | (                  | αο =<br>αι =                                  | - 0          |       |               |       |
| Yerm (xn)                                                                                                   | $\begin{array}{c} + \alpha_{1} \times + \alpha_{2} \times^{2} \\ \text{Coefficients} \\ \alpha_{1} = 0 \end{array}$                                                                                                                                          | + a 3 x 3                                                                                                                                            | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     |                    | ao =<br>a = = = = = = = = = = = = = = = = = = | 0            |       |               |       |
| Yerm (xn)                                                                                                   | $\begin{array}{c} + \alpha_{1} \times + \alpha_{2} \times^{2} \\ \text{Coefficients} \\ \alpha_{1} = 0 \end{array}$                                                                                                                                          | + a 3 x 3                                                                                                                                            | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     | (                  | 20 = 21 = 22 = 23 = 23 = 23 = 23 = 23 = 23    | 0 - 7-60     |       |               |       |
| Yerm (xn)                                                                                                   | $\begin{array}{c} + \alpha_{1} \times + \alpha_{2} \times^{2} \\ \text{Coefficients} \\ \alpha_{1} = 0 \end{array}$                                                                                                                                          | + a 3 x 3                                                                                                                                            | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     | (                  | ao =<br>a = = = = = = = = = = = = = = = = = = | 0 - 7-60     |       |               |       |
| Yerm (xn)                                                                                                   | $\begin{array}{c} + \alpha_{1} \times + \alpha_{2} \times^{2} \\ \text{Coefficients} \\ \alpha_{1} = 0 \end{array}$                                                                                                                                          | + a 3 x 3                                                                                                                                            | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     | (                  | 20 = 21 = 22 = 23 = 23 = 23 = 23 = 23 = 23    | 0 - 7-60     |       |               |       |
| Yerm (xn)                                                                                                   | $\begin{array}{c} + \alpha_{1} \times + \alpha_{2} \times^{2} \\ \text{Coefficients} \\ \alpha_{1} = 0 \end{array}$                                                                                                                                          | + a 3 x 3                                                                                                                                            | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     | (                  | 20 = 21 = 22 = 23 = 23 = 23 = 23 = 23 = 23    | 0 - 7-60     |       |               |       |
| Yerm (xn)                                                                                                   | coefficients                                                                                                                                                                                                                                                 | + a 3 x 3                                                                                                                                            | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     | (                  | 00 = 21 = 22 = 23 = 23 = 23 = 23 = 23 = 23    | 0 - 7-60     |       |               |       |
| Term(x <sup>n</sup> )  Cens+  X  X <sup>2</sup> X <sup>3</sup> X <sup>4</sup> X <sup>6</sup> X <sup>6</sup> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                         | $\begin{array}{c} + \alpha_3 x^3 \\ + \alpha_3 x^3 \end{array}$ $\Rightarrow a$ $\Rightarrow b_2 = 0$ $\Rightarrow b_1 = 0$                          | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     | (                  | 00 = 21 = 22 = 23 = 23 = 23 = 23 = 23 = 23    | 0 - 7-60     |       |               |       |
| Term(x <sup>n</sup> )  Cens+  X  X <sup>2</sup> X <sup>3</sup> X <sup>4</sup> X <sup>6</sup> X <sup>6</sup> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                         | $\begin{array}{c} + \alpha_3 x^3 \\ + \alpha_3 x^3 \end{array}$ $\Rightarrow a$ $\Rightarrow b_2 = 0$ $\Rightarrow b_1 = 0$                          | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     | (                  | 00 = 21 = 22 = 23 = 23 = 23 = 23 = 23 = 23    | 0 - 7-60     |       |               |       |
| Term(x <sup>n</sup> )  Cens+  X  X <sup>2</sup> X <sup>3</sup> X <sup>4</sup> X <sup>6</sup> X <sup>6</sup> | $\begin{array}{c} + \alpha_{1} \times + \alpha_{2} \times^{2} \\ \text{Coefficients} \\ \alpha_{1} = 0 \end{array}$                                                                                                                                          | $\begin{array}{c} + \alpha_3 x^3 \\ + \alpha_3 x^3 \end{array}$ $\Rightarrow a$ $\Rightarrow b_2 = 0$ $\Rightarrow b_1 = 0$                          | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     | (                  | 00 = 21 = 22 = 23 = 23 = 23 = 23 = 23 = 23    | 0 - 7-60     |       |               |       |
| Term(x <sup>n</sup> )  Cens+  X  X <sup>2</sup> X <sup>3</sup> X <sup>4</sup> X <sup>6</sup> X <sup>6</sup> | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                         | $\begin{array}{c} + \alpha_3 x^3 \\ + \alpha_3 x^3 \end{array}$ $\Rightarrow a$ $\Rightarrow b_2 = 0$ $\Rightarrow b_1 = 0$                          | a4x4= ()                         |                           | <i>:</i> . \ | o <sub>1</sub> = . | 0     | (                  | 00 = 21 = 22 = 23 = 23 = 23 = 23 = 23 = 23    | 0 - 7-60     |       |               |       |
| [Lerm(x <sup>n</sup> )]  (en++                                                                              | Coefficients $a_0 = 0$ $a_1 = 1$ $a_2 = b_1$ $a_3 = b_2 - \frac{1}{3!}$ $a_4 = -\frac{b_1}{3!}$ $0 = \frac{1}{5!} - \frac{b_2}{3!}$ $0 = \frac{1}{5!} - \frac{1}{3!}$ $0 = \frac{1}{5!} - \frac{1}{3!}$ $0 = \frac{1}{5!} - \frac{1}{3!}$ $1 + \frac{1}{5!}$ | $\begin{array}{c} + \alpha_3 x^3 \\ + \alpha_3 x^3 \\ \end{array}$ $\Rightarrow b_2 = 0$ $\Rightarrow b_1 = 0$ $\frac{7}{50} x^3$ $\frac{1}{50} x^2$ | 3: - 200<br>3: 5: = 20           |                           | \            | 01 = 0             | 0     |                    | 20 = 21 = 22 = 22 = 22 = 22 = 22 = 22 =       | 0 1 0 - 7-60 |       | xt (a)        |       |
| [Lerm(x <sup>n</sup> )]  (en++                                                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                         | $\begin{array}{c} + \alpha_3 x^3 \\ + \alpha_3 x^3 \\ \end{array}$ $\Rightarrow b_2 = 0$ $\Rightarrow b_1 = 0$ $\frac{7}{50} x^3$ $\frac{1}{50} x^2$ | 3: - 200<br>3: 5: = 20           |                           | \            | 01 = 0             | 0     |                    | 20 = 21 = 22 = 22 = 22 = 22 = 22 = 22 =       | 0 1 0 - 7-60 |       | x+ (a),       |       |

| 2.) | 2. Fin           | nd the consta          | ants $x_0$        | $, x_1 \text{ and }$                                         | $c_1$ so th         | hat the              | quadra              | ture for             | rmula          |                                      |            |                             |           |         |              |               |    |       |   |  |
|-----|------------------|------------------------|-------------------|--------------------------------------------------------------|---------------------|----------------------|---------------------|----------------------|----------------|--------------------------------------|------------|-----------------------------|-----------|---------|--------------|---------------|----|-------|---|--|
|     |                  |                        |                   |                                                              | $\int_{0}^{1} f(x)$ | dx = dx              | $\frac{1}{2}f(x_0)$ | + c <sub>1</sub> f(. | $x_1$ )        |                                      |            |                             |           |         |              |               |    |       |   |  |
|     | has              | the highest            | possib            | le degree                                                    | of pre              | cision.              |                     |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |
| S   | ince             | there .                | are               | three                                                        | un kr               | rowne                | , we                | - w                  | ا الزو         | ne ed                                | . 3        | 000                         | 43        | of      | fore         | +12115        | 70 | ode ( | _ |  |
| +   | 0                | approxim               | ωH.               | For                                                          | siupl               | tcì+y                | , 1                 | will                 | cho            | ose                                  |            | (x) =                       |           |         |              |               |    |       |   |  |
|     |                  | $\int_0^1 dx =$        | ١                 | <b>.</b>                                                     | 1 (                 | ) , ,                |                     |                      |                |                                      | F.         | (x) =<br><sub>5</sub> (x) = | χ         | - X     |              |               |    |       |   |  |
| •   | •                | ) ldx =                | \                 | ⇒ 1 =                                                        | 2                   | ') + 6               | ((1)                |                      |                |                                      | 4.         | 3(X) =                      | F X       |         |              |               |    |       |   |  |
|     |                  | 3                      | C <sub>1</sub> =  | <u>5</u>                                                     |                     |                      |                     |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |
|     |                  | ر <sub>ا</sub>         |                   |                                                              |                     | /                    |                     |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |
|     |                  | ) x dx =               | 2 7               | રે રે                                                        | = 2                 | ( X <sub>0</sub> )   | + ¸≥(               | X1)                  |                | _ ,                                  |            |                             |           |         |              |               |    |       |   |  |
|     |                  | •                      |                   |                                                              | ⇒                   | ¥0 +                 | X, = 1              | ョ                    | χ <sub>ο</sub> | - 1·                                 | - X,       |                             |           |         |              |               |    |       |   |  |
|     | (                | ) x 2 dx =             | z ⇒               | 14                                                           | - <u>1</u> (x       | (o) z                | ٦ (x،               | ) 2                  |                |                                      |            |                             |           |         |              |               |    |       |   |  |
|     |                  | Š                      | 3                 | =                                                            | \$ 3/2              | χ <sub>o</sub> ²+    | 3 X,2               | =                    |                |                                      |            |                             |           |         |              |               |    |       |   |  |
|     |                  |                        | 2 /               | \ 2                                                          | <b>9</b> (          | 2                    |                     |                      |                |                                      |            |                             | 2 /       | ( ) ( ) | <del>-</del> |               |    |       |   |  |
|     | Sube             | otilute:               | ≥ (1.             | · X <sub>(</sub> )                                           | + <del>=</del> (    | ۲ <sub>(</sub> ) = 3 | -   -               |                      | <i>→</i>       | 3                                    | 3 <u>×</u> | ) (-3                       | ) - 4     | (3)(3   | -            |               |    |       |   |  |
|     |                  |                        | را) ق             | · (X,+                                                       | x, )                | + 7/<br>2/2          | : 1                 |                      |                |                                      |            | 7                           | 2(3)      |         |              |               |    |       |   |  |
|     |                  |                        |                   | $3x_1^2$ -                                                   | х.<br>Зх.           | → 1<br>+ 2           | <i>=</i> 0          | , )                  |                | =                                    | 3 ±        | 13                          |           | ch      | وه د         | <i>لا</i> ر = | 3+ | J3    |   |  |
| (   | Choos            | e X1 = 34              | 13                | $-x_{i}$ ) <sup>2</sup> + $-7x_{i}$ + $-3z_{i}$ - $3x_{i}$ - | Ì                   |                      |                     |                      |                |                                      |            | 6                           |           |         |              |               | 6  |       |   |  |
|     |                  |                        | Ø                 |                                                              |                     |                      |                     |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |
|     | χ <sub>υ</sub> ٠ | - χ <sub>ι</sub> = Ι = | ÷) χ              | (o = 1-                                                      | - X,<br>/ <u>3</u>  | <u>+ 13</u>          | )                   |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |
|     |                  |                        | χ.                | ( <sub>0</sub> = 3                                           | · <u>13</u>         | 6                    |                     | . ,                  |                | C <sub>1</sub> =                     | Ϋ́         |                             |           |         |              |               |    |       |   |  |
|     |                  |                        |                   | (0                                                           | 6                   |                      |                     |                      |                | χο =                                 | 3-         | <u>13</u>                   |           |         |              |               |    |       |   |  |
|     |                  |                        |                   |                                                              |                     |                      |                     |                      |                | χ <sub>0</sub> =<br>χ <sub>ι</sub> = | 6          | ,                           |           |         |              |               |    |       |   |  |
|     |                  |                        |                   |                                                              |                     |                      |                     |                      |                | Xι =                                 | 3.         | <u>1.3</u>                  |           |         |              |               |    |       |   |  |
| 0 / | 2                | (a) Writ               | 0.2.00            | de to ar                                                     | nrovi               | mata                 | r <sup>5</sup> 1    | de ne                | eina s         | com                                  | poeit      | o Trar                      | ozoid     | al rule | To           | lo this       |    |       |   |  |
| (.ک | Э.               | parti                  | ition t           | he inter                                                     | val [-              | [5, 5] i             | nto equ             | nally s              | space          | d poi                                | nts $t_0$  | $,t_1,\ldots$               | $., t_n.$ |         |              |               |    |       |   |  |
|     |                  |                        |                   | her cod<br>ion the                                           |                     |                      |                     |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |
|     |                  |                        |                   | ne even                                                      |                     |                      |                     |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |
|     |                  |                        | The second second | ombine<br>listing o                                          |                     |                      |                     | code t               | hat so         | elects                               | the        | desire                      | d met     | hod if  | you v        | vish.         |    |       |   |  |
| ے ۔ | . ,              |                        |                   |                                                              |                     |                      |                     |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |
| †6  | or C             | -omposite              | - ''              | ape toi                                                      | 00)                 | ru<br>n=)            | ) C                 |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |
|     | \                | Composite<br>f(x) dx = | $\frac{h}{z}$     | F(a) +                                                       | 7.                  | Ž ()                 | (j) + 1             | F(b)                 | - (            | b-a                                  | ) h?       | f"(                         | u)        |         |              |               |    |       |   |  |
|     | ã                |                        | - \               |                                                              |                     | 5=1                  |                     |                      | -              | 7                                    |            |                             |           |         |              |               |    |       |   |  |
|     |                  |                        |                   |                                                              |                     |                      |                     |                      |                | erro                                 |            |                             |           |         |              |               |    |       |   |  |
| 6.  |                  | Composite              | ⋖.                |                                                              | <u>,</u> <u>a</u> . | ٠ م١.                |                     |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |
| 10  | // (             | unyosite               | رن                | mpson'                                                       | ว ำน                | וכ:                  |                     |                      |                |                                      |            |                             |           |         |              |               |    |       |   |  |

þ

For Composite Simpson's Rule:

$$\int_{a}^{b} f(x) dx = \frac{h}{3} \left( f(a) + 7 \cdot \sum_{j=1}^{2} f(x_{z_{j}}) + 4 \cdot \sum_{j=1}^{2} f(x_{z_{j-1}}) + f(b) \right) - \frac{b-a}{180} h^{4} \cdot f^{(4)}(\mu)$$
My Code:

Output:

```
def driver():
    # Function to integrate
    f = lambda x: 1/(1+x*+2)

# Integration bounds
    a = -5
    b = 5

# N equispaced intervals
    n = 12

x = np.linspace(a,b,n+1)

I_CompTrap = compTrapezoidal(a, b, x, f, n)

I_CompSimp = compSimpson(a, b, x, f, n)

print('Composite Trapezoidal Approximation: ', I_CompTrap)

print('Composite Simpson Approximation: ', I_CompTrap)

print('Composite Simpson Approximation: ', I_CompTrap)

def compTrapezoidal(a, b, x, f, n):
    h = (b-a)/(n)
    fSum = 0

for j in range(1, n-1):
    fSum = fSum + f(x[j])

I = (h/2)*(f(a) + 2*fSum + f(b))
    return I

def compSimpson(a, b, x, f, n):
    h = (b-a)/n
    fSumEven = 0
    fSumOdd = 0

for j in range(1, n-1):
    if (j%2) == 0:
    fSumOdd = fSumOdd + f(x[j])

I = (h/3)*(f(a) + 2*fSumEven + 4*fSumOdd + f(b))
    return I

driver()
```

\$ python3 Problem3.py Composite Trapezoidal Approximation: 2.7030531588427884 Composite Simpson Approximation: 2.6412870352090954

b) Use the error estimates derived in class to choose n so that

$$\left| \int_{-5}^{5} \frac{1}{1+s^2} ds - T_n \right| < 10^{-4} \ \ \text{and} \ \ \left| \int_{-5}^{5} \frac{1}{1+s^2} ds - S_n \right| < 10^{-4},$$

where  $T_n$  is the result of the composite Trapezoidal rule and where  $S_n$  is the result of the composite Simpson's rule. Be sure to explain your reasoning for choosing n in both cases (these n values will be different in the two cases).

Trape roidal Error Term: 
$$\frac{b-a}{2} \cdot h^2 f'(\mu) < 10^{-4}$$

$$f(x) = \frac{1}{1+x^2} \cdot f'(x) = \frac{7x}{(1+x^2)^2} \cdot f''(x) = \frac{2(3x^2-1)}{(x^2+1)^2}$$
where  $|f''(x)|$  accurs at  $|x=0|$   $|f''(0)| = 2$ 

$$\frac{x+[-5,5]}{2} \cdot \frac{5-(-5)^2}{2} \cdot \frac{7}{2} \cdot \frac{7}{2}$$

```
\frac{10^{3}}{n^{2}} < 10^{-4}
\sqrt{10^{7}} < \sqrt{n^{2}}
n > 10^{3/2} \approx n > 3200
Simpson's Error Term: \frac{b-a}{180}h^{4} \cdot f^{(4)}(\mu) < 10^{-4}
Using an online calculator: \frac{2}{0}f^{4}(\frac{1}{1+x^{2}}) = \frac{24 \cdot (5x^{4} - 10x^{2} + 1)}{(1+x^{2})^{5}}
wax f^{(a)}(x) occurs at x = 0, |f^{(4)}(0)| = 24
xe[-5.5]
\frac{5-(-5)}{180} \cdot (\frac{5-(-5)}{n})^{4} \cdot 24 < 10^{-4}
Note: Chose n = 50
pecause n was be even
\frac{|0|^{5}}{180} < 10^{-4}
\frac{|0|^{5}}{180} < 10^{-4}
\frac{|0|^{5}}{180} < 10^{-4}
\frac{|0|^{5}}{180} < 10^{-4}
```

c) Run your code with the predicted values of n and compare your computed values S<sub>n</sub> and T<sub>n</sub> with that of SCIPY's quad routine on the same problem. Run the built in quadrature twice, once with the default tolerance of 10<sup>-6</sup> and another time with the set tolerance of 10<sup>-4</sup>. Report the number of function evaluations required in both cases and compare these to the number of function values your codes (both S<sub>n</sub> and T<sub>n</sub>) required to meet the tolerance

Turn in your codes and the results of this test.

Want to verify  $\int_{-5}^{3} f(x) dx - T_n \left| \langle 10^{-4} \right|$  and  $\left| \int_{-5}^{5} f(x) dx - S_n \right| < 10^{-4}$ 

## Code:

```
def driver():
    # Function to integrate
    f = lambds x: 1/(1+x*+2)
    # Integration bounds
    a = -5
    b = 5

# N equispaced intervals
    # For Simpson's Rule, n = 2k
    n = 3200

X = np.linspace(a,b,n+1)

I_CompTrap, traptvalCount = compTrapezoidal(a, b, x, f, n)
    L_CompSimp, simptvalCount = compSimpson(a, b, x, f, n)

Ieval = quad(f, a, b)

arrTrap = abs(leval - I_CompSimp)

print('Composite Trapezoidal Approximation: ', I_CompTrap, 'Num Evaluations: ', trapEvalCount)

print('Composite Trapezoidal Approximation: ', I_CompSimp, 'Num Evaluations: ', simpEvalCount)

print('Gimpsone Error: ', errTrap)

print('Simpsone Error: ', errSimp)

print('Simpsone Error: ', ereSimp)

def compTrapezoidal(a, b, x, f, n):
    h = (b-a)/(n)
    fSim = 0

evalCount = 2

for j in range(1, n-1):
    fSum = fSum + f(x[j])
    evalCount = 1

I = (h/2)*(f(a) + 2*fSum + f(b))
    return I, evalCount
```

```
def compSimpson(a, b, x, f, n):
    h = (b-a)/n
    fSumEven = 0
    fSumOdd = 0
    evalCount = 2

for j in range(1, n-1):
    if (j%2) == 0:
        fSumEven + f(x[j])
        evalCount += 1

for jj in range(1, n):
    if (jj%2) != 0:
        fSumOdd = fSumOdd + f(x[jj])
        evalCount += 1

I = (h/3)*(f(a) + 2*fSumEven + 4*fSumOdd + f(b))
    return I, evalCount
driver()
```

Out out for n = 3200: \$ python3 Problem3.py
Composite Trapezoidal Approximation: 2.746681172914857 Num Evaluations: 3200
Trapezoidal Error: [1.20360975e-04 2.74668116e+00]
Composite Simpsons Approximation: 2.746801533890024 Num Evaluations: 3201
Simpsons Error: [8.88178420e-15 2.74680152e+00]
Built-In Quadrature: (2.7468015338900327, 1.4334139675000002e-08) The error term is of order 10-4 for trapezoidal Output for n= 100 > Much Getter for n = 50 \$ python3 Problem3.py
Composite Trapezoidal Approximation: 2.7383834749902114 Num Evaluations: 50
Trapezoidal Error: [0.00841806 2.73838346]
Composite Simpsons Approximation: 2.746801738009728 Num Evaluations: 51
Simpsons Error: [2.04119695e-07 2.74680172e+00]
Built-In Quadrature: (2.7468015338900327, 1.4334139675000002e-08) Z Error > 10-4 For N=49 onys@TonyStudio MINGW64 ~/Documents/APPM4600/Samour\_APPM4600/Homework/Homework 0 (main)
5 python3 Problem3.py
Composite Trapezoidal Approximation: 2.738195772308147 Num Evaluations: 49
Trapezoidal Error: [0.00860576 2.73819576]
Composite Simpsons Approximation: 2.7384137098658767 Num Evaluations: 49
Simpsons Error: [0.00838782 2.7384137 ]
Built-In Quadrature: (2.7468015338900327, 1.4334139675000002e-08)