Continuous Random Variables

General Information

- A function $f: \mathbb{R} \to \mathbb{R}$ is a probability mass function (pdf) of a continuous random variable X iff f is nonnegative and $\int_{-\infty}^{\infty} f(x) dx = 1$.
- For any probability mass function f, we have $P(a \le X \le b) = \int_a^b f(x) dx$. Whether the inequality is strict or nonstrict does not affect the above identity.
- A mode of X is any value m such that f(m) is maximum.
- A cumulative distribution function (cdf) $F: \mathbb{R} \to [0,1]$ of a random variable X is defined by

$$F(x) := P(X \le x) = \int_{-\infty}^{x} f(x) dx.$$

- When writing out the cdf as a piecewise function, we explicitly write out the range of values for each case. We reserve the use of "otherwise" for pdf's.
- Any cdf is continuous and nondecreasing.
- Let X be a continuous random variable with cdf F. To find the pdf g of any y(X), we first find its cdf, then differentiate. We achieve this by reverse engineering $y(X) \leq y$ to find an inequality that relates X with y. E.g. $e^X \leq y$ iff $X \leq \ln(y)$.
- A median of X is any value m such that $P(X \le m) = F(m) = 1/2$.
- Mean/Expectation:

$$\mu = \mathrm{E}(X) := \int_{-\infty}^{\infty} x f(x) \, dx$$
 and $\mathrm{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f(x) \, dx$.

• Important property:

$$E(ag(X) \pm bh(x)) = a E(g(X)) \pm E(h(X)).$$

• Variance:

$$\operatorname{Var}(X) := \operatorname{E}(X^2) - [\operatorname{E}(X)]^2.$$

• Important property:

$$Var(aX \pm b) = a^2 Var(X).$$

Special Continuous Random Variables

Definition 2.1

A continuous random variable X has a normal distribution with mean μ and standard deviation σ , denoted by $X \sim N(\mu, \sigma^2)$, iff its pdf f is such that

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

General Information

• A normal distribution is symmetrical about the line $x = \mu$. That is

$$P(X \le \mu - \delta) = P(X \ge \mu + \delta)$$

for each $\delta > 0$. Note that the mean, median, and mode coincide with μ .

- Properties of the normal distribution. Let X and Y be independent, such that $X \sim N(\mu, \sigma^2)$ and $Y \sim N(m, s^2)$. Then, for any $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$,
 - $-nX \sim N(n\mu, n^2\sigma^2),$
 - $-X_1 + X_2 + \dots + X_n \sim N(n\mu, n\sigma^2),$
 - $-aX \pm bY \sim N(a\mu \pm bm, a^2\sigma^2 + b^2s^2)$
- Question phrasing may be misleading at times. Try to use some inference as to what exactly does the setter mean.

Example 2.1

"The mass of the padding is 30% of the mass of a randomly selected light bulb of mass L. Find the probability that a light bulb with padding has mass c."

Then for any light bulb of mass L_1 , the mass of the padding is $0.3L_2$ (and not $0.3L_1$). i.e. we are to find $P(L_1 + 0.3L_2)$.

- A variable Z ~ N(0,1) is said to follow the standard normal distribution.
 Note: Z is reserved for this purpose.
- Let $X \in \mathcal{N}(\mu, \sigma^2)$. Then, $\frac{X-\mu}{\sigma}$ follows the standard normal distribution.
- A continuous random variable X has a uniform distribution over the interval (a, b), which is denoted by $X \sim \mathrm{U}(a, b)$, iff its pdf f is such that

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b, \\ 0 & \text{otherwise.} \end{cases}$$

• What Tail do we select for invNorm?

P(X < x) = p	LEFT
P(-x < X < x) = p	CENTER
P(X > x) = p	RIGHT

• When using invNorm on an inequality, what should the sign be? For simplicity, we write $\mathcal{L}(p) = \text{invNorm}(p, 0, 1, \text{RIGHT})$, and $\mathcal{R}(p) = \text{invNorm}(p, 0, 1, \text{LEFT})$. Then,

$P(Z > z) \ge p$	$z \leq \mathscr{L}(p)$
$P(Z>z) \le p$	$z \ge \mathcal{L}(p)$
$P(Z < z) \ge p$	$z \ge \mathcal{R}(p)$
$P(Z < z) \le p$	$z \leq \mathcal{R}(p)$

Example 2.2

Suppose we want to find the least integer value of m for which $P(Z > 1 - m) \ge 1/2$. Then, using invNorm (RIGHT), we infer that $z \le 0$, not $z \ge 0$. An illustration:

• A continuous random variable Y has an (negative) exponential distribution, which we denote with $Y \sim \text{Exp}(\lambda)$, iff its pdf g is such that

$$g(Y) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

• Expectation and variance:

Distribution	Expectation	Variance
$X \sim \mathrm{U}(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$Y \sim \operatorname{Exp}(\lambda)$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Note: We need to remember the expectation and variance for the uniform distribution, as it is not provided in the MF26 formula sheet (unlike all other distributions).

• Warning: The G.C. tends to incorrectly process an integral if its upper and lower bounds contain $\pm E99$.

Sampling and Estimation

Definition 3.1

A sample is a finite subset of the population.

Definition 3.2

A random sample is a sample selected such that each member of the population has an equal probability of being selected.

Definition 3.3

Any statistic T derived from a random sample and used to estimated an unknown population parameter θ is known as an *estimator*. It is an *unbiased* estimator iff $E(T) = \theta$. If T is unbiased we commonly write $\hat{\theta}$ for T.

General Information

- Either write $\hat{\mu}$ or write out "Unbiased estimate of the population mean $\mu, \bar{x} = \dots$ " Same holds for other population parameters θ .
- Estimators you should know:

	Parameter	Estimator	Unbiased?	Formula
	Population Mean μ	Sample Mean \overline{X}	✓	$\frac{X_1 + X_2 + \dots + X_n}{n}$
•	Population Variance σ^2	Sample Variance σ_n^2	×	$\frac{\sum (X_i - \overline{X})^2}{n}$ $\frac{\sum X_i^2}{n} - \overline{X}^2$
		S^2	√	$\frac{n}{n-1}\sigma_n^2$ $\sum (X_i - \overline{X})^2$ $n-1$
				$\frac{1}{n-1} \left[\sum X_i^2 - \frac{(\sum X_i)^2}{n} \right]$
	Population Proportion p	Sample Proportion P_s	✓	$\frac{X}{n}$

• Let X be a random variable following any distribution, and suppose we have a random sample X_1, X_2, \ldots, X_n of size $n \geq 50$.

Then by CLT (Central Limit Theorem), since $n \geq 50$ is large,

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 and $X_1 + X_2 + \dots + X_n \sim N(n\mu, \nu\sigma^2)$

approximately.

- Assumptions when using CLT:
 - The sample is random.
 - Each X_i is independent and identically distributed.
- Suppose $X \sim N(\mu, \sigma^2)$ is known and we pick a particular sample. Let the unbiased estimates for the population mean and variance of this sample be \bar{x} and s^2 , respectively. Then,

Distribution	Is An Approximation?
$\overline{X} \sim N(\mu, \sigma^2)$	No
$\overline{X} \sim N(\overline{x}, \sigma^2)$	Yes
$\overline{X} \sim N(\mu, s^2)$	Yes
$\overline{X} \sim N(\overline{x}, s^2)$	Yes

So, if we obtain any of the latter three in solving a question, we must write " $X \sim N(_,_)$ approximately" (even though we knew X exactly follows a normal distribution!)

• Pooled estimators you should know. First assume we have two populations, from which we select a random sample of size n_1 and n_2 . We let \overline{X}_1 and S_1^2 denote the sample mean and unbiased estimator for variance, respectively. Similarly define \overline{X}_2 and S_2^2 .

Parameter	Unbiased Pooled Estimator
Mean	$\hat{\mu} = \frac{n_1 \overline{X}_1 + n_2 \overline{X}_2}{n_1 + n_2}$
Variance	$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$

• Let $0 < \alpha < 1$

The following definition is found in Hogg-McKean-Craig. Similar definitions are also found in Wackerly-Mendenhall-Schaefer and Nitis Mukhopadhyay.

Definition 3.4

Let X_1, X_2, \ldots, X_n be a sample on a random variable X, where X has pdf $f(x; \theta)$, $\theta \in \Omega$. Let $0 < \alpha < 1$ be specified. Let $L = L(X_1, X_2, \ldots, X_n)$ and $U = U((X_1, X_2, \ldots, X_n))$ be two statistics. We say that the interval (L, U) is a $(1 - \alpha)100\%$ confidence interval for θ iff

$$1 - \alpha = P_{\theta}[\theta \in (L, U)].$$

That is, the probability that the interval contains θ is $1-\alpha$, which is called the *confidence coefficient* or *confidence level* of the interval.

- We cannot write "a $1-\alpha$ (e.g. 0.95) confidence interval". The $1-\alpha$ must always be expressed as a *percentage*.
- Let $\hat{\theta}$ be a statistic that is normally distributed with mean θ and standard error $\sigma_{\hat{\theta}}$. We see that

$$\frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}} = Z \sim \mathcal{N}(0, 1).$$

Rewriting $P(-z_{1-\alpha/2} < Z < z_{1-\alpha/2}) = 1 - \alpha$ gives

$$P(\hat{\theta} - z_{1-\alpha/2}\sigma_{\hat{\theta}} < \theta < \hat{\theta} + z_{1-\alpha/2}\sigma_{\hat{\theta}}) = 1 - \alpha.$$

Hence, a $(1 - \alpha)100\%$ confidence interval for θ is

$$(\hat{\theta} - z_{1-\alpha/2}\sigma_{\hat{\theta}}, \ \hat{\theta} + z_{1-\alpha/2}\sigma_{\hat{\theta}}).$$

(Wackerly-Mendenhall-Schaefer)

• Let $0 < \alpha < 1$ and X_1, X_2, \dots, X_n be a sample on a random variable X with mean μ , where

n is large. Then, an approximate $(1-\alpha)100\%$ confidence interval for μ is

$$\left(\bar{x}-z_{1-\alpha/2}\frac{s}{\sqrt{n}}, \ \bar{x}+z_{1-\alpha/2}\frac{s}{\sqrt{n}}\right).$$

When the variance σ^2 is known, we can replace s with σ . If the distribution of X is known to be normal, in addition to σ^2 being known exactly, then the confidence interval is exact; it is not just an approximation.

(Hogg-McKean-Craig)

• Let X be a Bernoulli random variable with probability of success p, where X is 1 or 0 if the outcome is success or failure, respectively. Suppose X_1, X_2, \ldots, X_n is a random sample from the distribution of X, where n is large. Let $\hat{p} = \overline{X}$ be the sample proportion of successes. Then, an approximate $(1 - \alpha)100\%$ confidence interval for p is given by

$$\left(\hat{p} - z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \ \hat{p} + z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right).$$

(Letting $Y = X_1 + X_2 + \cdots + X_n \sim B(n, p)$ gives $\hat{p} = Y/n$, which is the phrasing used by the school's notes.)

(Hogg-McKean-Craig)

Note

Standard phrasing for the interpretation of a $(1-\alpha)100\%$ confidence interval (a,b).

The probability that the interval (a, b) contains the $[\mu \text{ in context}]$ is $1 - \alpha$.

Note

Standard phrasing for what is a $(1 - \alpha)100\%$ confidence interval for θ ?

It is an interval which has probability $1 - \alpha$ of containing the true value of θ .

Note

Standard phrasing for whether mean/proportion in context has likely increased/decreased, when given suitable confidence intervals.

- 1. There is no conclusive result.
 - Since the old and new $(1-\alpha)\%$ confidence intervals overlap, we are unable to conclude whether the [mean/proportion in context] has decreased or not. Hence, it is inconclusive from these figures on whether the [context (e.g. an awareness campaign)] has been effective.
- 2. It has likely increased/decreased.

The old $(1 - \alpha)\%$ confidence interval is to the left/right of the new $(1 - \alpha)\%$ confidence interval, such that they do not overlap. So, can conclude that the [mean/proportion in context] likely increased/decreased. Hence, these figures suggests that the [context (e.g. an awareness campaign)] has been effective.

G.C. Skills

Calculating statistics (i.e. \bar{x} , s, etc) by G.C. given data for a sample.

- 1. Keying in the data: $\mathtt{stat} \Longrightarrow \mathtt{1}\mathtt{:}\mathtt{Edit} \Longrightarrow \mathsf{Key}$ in the data into one of the lists \mathtt{L}_i .
- $\text{2. Calculating the statistic: stat} \Longrightarrow \mathtt{CALC} \Longrightarrow \mathtt{1-Var} \ \mathtt{Stats} \ (\mathtt{List:L}_i) \Longrightarrow \mathtt{Calculate}.$
- 3. Getting the statistic for further calculations: $vars \implies 5$: Statistics \implies Select the desired statistic.

G.C. Skills

Calculating the symmetric confidence interval by G.C.

```
 \begin{array}{ll} \text{Mean:} & \text{stat} \Longrightarrow \text{TESTS} \Longrightarrow 7\text{:}\text{ZInterval...} \\ \text{Proportion:} & \text{stat} \Longrightarrow \text{TESTS} \Longrightarrow \text{A:}1\text{-}\text{PropZInt...} \\ \end{array}
```

Correlation and Linear Regression

Note

A good scatter diagram should follow the guidelines below.

- The relative position of each point on the scatter diagram should be clearly shown.
- The range of values for the set of data should be clearly shown by marking out the extreme x and y values on the corresponding axis.
- The axes should be labeled clearly with the variables.

General Information

• The Product Moment Correlation Coefficient is a measure of the linear correlation between two variables. It is defined by

$$r = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sqrt{\left[\sum x^2 - \frac{(\sum x)^2}{n}\right] \left[\sum y^2 - \frac{(\sum y)^2}{n}\right]}},$$

which takes on a value from 0 to 1.

- When r = 0, there is no linear relationship. But, a nonlinear relationship may be present. Additionally, the regression lines are perpendicular.
- The closer the value of r is to 1 (or -1), the stronger the positive (or negative) linear correlation. Furthermore, the regression lines coincide.

• The regression line of y on x minimises the sum of squares deviation (error) in the y-direction. (i.e. we are assuming x is the independent variable whose values are known exactly.) It is given by

$$y = \bar{y} + b(x - \bar{x}),$$
 where $b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}.$

- The point (\bar{x}, \bar{y}) always lies on both the regression lines of y on x, and x on y.
- Say we are given the value of one variable, and asked to approximate the the value of the other variable. Then, we should always use the line of the *dependent* variable on the *independent*.
- ullet Estimations should not be taken for data outside the range of the sample provided, even if the value of r is close to 1.