Topic: Cofunction identities

Question: Find an angle θ that satisfies the equation.

$$\cos\left(\frac{4\pi}{9}\right) = \sin\theta$$

Answer choices:

$$A \qquad -\frac{\pi}{18}$$

$$\mathsf{B} \qquad \frac{4\pi}{9}$$

C
$$\frac{5\pi}{18}$$

D
$$\frac{\pi}{18}$$

Solution: D

The equation we're given tells us that the sine of some angle is equivalent to cosine of the angle $4\pi/9$. Sine and cosine are cofunctions, which means we can plug into the cofunction identity for cosine that relates them.

$$\cos\theta = \sin\left(\frac{\pi}{2} - \theta\right)$$

$$\cos\left(\frac{4\pi}{9}\right) = \sin\left(\frac{\pi}{2} - \frac{4\pi}{9}\right)$$

Find a common denominator.

$$\cos\left(\frac{4\pi}{9}\right) = \sin\left(\frac{\pi}{2}\left(\frac{9}{9}\right) - \frac{4\pi}{9}\left(\frac{2}{2}\right)\right)$$

$$\cos\left(\frac{4\pi}{9}\right) = \sin\left(\frac{9\pi}{18} - \frac{8\pi}{18}\right)$$

$$\cos\left(\frac{4\pi}{9}\right) = \sin\left(\frac{\pi}{18}\right)$$

So the angle θ that satisfies the equation is $\theta = \pi/18$.

Question: Find θ .

$$\sec\left(\frac{3\pi}{8}\right) = \csc\left(\frac{\pi}{2} - \theta\right)$$

Answer choices:

$$A \qquad \frac{3\pi}{8}$$

B
$$\frac{\pi}{8}$$

C
$$\frac{\pi}{4}$$

D
$$\frac{\pi}{2}$$

Solution: A

Secant and cosecant are cofunctions, which means we can plug into the cofunction identity for secant that relates the two functions.

$$\sec \theta = \csc \left(\frac{\pi}{2} - \theta \right)$$

$$\sec\left(\frac{3\pi}{8}\right) = \csc\left(\frac{\pi}{2} - \frac{3\pi}{8}\right)$$

So the angle θ that satisfies the equation is $\theta = 3\pi/8$.

Topic: Cofunction identities

Question: Find an acute angle that satisfies the equation.

$$\tan(3\alpha + 27^\circ) = \cot(\alpha + 3^\circ)$$

Answer choices:

A 60°

B 18°

C 15°

D 72°

Solution: C

The equation matches the form of the cofunction identity for tangent, $\tan \theta = \cot(90^\circ - \theta)$, where $\theta = 3\alpha + 27^\circ$. Then

$$\alpha + 3^{\circ} = 90^{\circ} - (3\alpha + 27^{\circ})$$

$$\alpha + 3^{\circ} = 90^{\circ} - 3\alpha - 27^{\circ}$$

$$\alpha + 3^{\circ} = 63^{\circ} - 3\alpha$$

$$4\alpha = 60^{\circ}$$

$$\alpha = 15^{\circ}$$

