Attorney Docket No.: P-66268/WHD/MTK

(Genentech Docket No.: PR1403)

NOVEL POLYPEPTIDES HAVING HOMOLOGY TO CYTOKINE RECEPTOR FAMILY (CRF) PROTEINS AND NUCLEIC ACIDS ENCODING THE SAME

FIELD OF THE INVENTION

The present invention relates generally to the identification and isolation of novel DNA and to the recombinant production of novel polypeptides having homology to cytokine receptor family (CRF) proteins, designated herein as "PRO1114" polypeptides.

BACKGROUND OF THE INVENTION

Membrane-bound proteins and receptors can play an important role in the formation, differentiation and maintenance of multicellular organisms. The fate of many individual cells, e.g., proliferation, migration, differentiation, or interaction with other cells, is typically governed by information received from other cells and/or the immediate environment. This information is often transmitted by secreted polypeptides (for instance, mitogenic factors, survival factors, cytotoxic factors, differentiation factors, neuropeptides, and hormones) which are, in turn, received and interpreted by diverse cell receptors or membrane-bound proteins. Such membrane-bound proteins and cell receptors include, but are not limited to, cytokine receptors, receptor kinases, receptor phosphatases, receptors involved in cell-cell interactions, and cellular adhesin molecules like selectins and integrins. For instance, transduction of signals that regulate cell growth and differentiation is regulated in part by phosphorylation of various cellular proteins. Protein tyrosine kinases, enzymes that catalyze that process, can also act as growth factor receptors. Examples include fibroblast growth factor receptor and nerve growth factor receptor.

Membrane-bound proteins and receptor molecules have various industrial applications, including as pharmaceutical and diagnostic agents. Receptor immunoadhesins, for instance, can be employed as therapeutic agents to block receptor-ligand interaction. The membrane-bound proteins can also be employed for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction.

Efforts are being undertaken by both industry and academia to identify new, native receptor proteins. Many efforts are focused on the screening of mammalian recombinant DNA

1

libraries to identify the coding sequences for novel receptor proteins.

Many important cytokine proteins have been identified and characterized and shown to signal through specific cell surface receptor complexes. For example, the class II cytokine receptor family (CRF2) includes the interferon receptors, the interleukin-10 receptor and the tissue factor CRFB4 (Spencer et al., J. Exp. Med. 187:571-578 (1998) and Kotenko et al., EMBO J. 16:5894-5903 (1997)). Thus, the multitude of biological activities exhibited by the various cytokine proteins is absolutely dependent upon the presence of cytokine receptor proteins on the surface of target cells. There is, therefore, a significant interest in identifying and characterizing novel polypeptides having homology to one or more of the cytokine receptor family. We herein describe the identification and characterization of a novel polypeptide having homology to cytokine receptor family-4 proteins.

SUMMARY OF THE INVENTION

Applicants have identified a cDNA clone that encodes a novel polypeptide having homology to cytokine receptor family-4 proteins, wherein the polypeptide is designated in the present application as "PRO1114".

In one embodiment, the invention provides an isolated nucleic acid molecule comprising DNA encoding a PRO1114 polypeptide. In one aspect, the isolated nucleic acid comprises DNA encoding the PRO1114 polypeptide having amino acid residues 1 to 311 of Figure 2 (SEQ ID NO:3), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. In other aspects, the isolated nucleic acid comprises DNA encoding the PRO1114 polypeptide having amino acid residues about 30 to 311 of Figure 2 (SEQ ID NO:3) or amino acid 1 or about 30 to X of Figure 2 (SEQ ID NO:3), where X is any amino acid from 225 to 234 of Figure 2 (SEQ ID NO:3), or is complementary to such encoding nucleic acid sequence, and remains stably bound to it under at least moderate, and optionally, under high stringency conditions. The isolated nucleic acid sequence may comprise the cDNA insert of the DNA57033-1403 vector deposited on May 27, 1998 as ATCC which includes the nucleotide sequence encoding PRO1114.

In another embodiment, the invention provides a vector comprising DNA encoding a PRO1114 polypeptide. A host cell comprising such a vector is also provided. By way of example, the host cells may be CHO cells, *E. coli*, or yeast. A process for producing PRO1114 polypeptides is further provided and comprises culturing host cells under conditions suitable for

expression of PRO1114 and recovering PRO1114 from the cell culture.

In another embodiment, the invention provides isolated PRO1114 polypeptide. In particular, the invention provides isolated native sequence PRO1114 polypeptide, which in one embodiment, includes an amino acid sequence comprising residues 1 to 311 of Figure 2 (SEQ ID NO:3). Additional embodiments of the present invention are directed to PRO1114 polypeptides comprising amino acids about 30 to 311 of Figure 2 (SEQ ID NO:3) or amino acid 1 or about 30 to X of Figure 2 (SEQ ID NO:3), where X is any amino acid from 225 to 234 of Figure 2 (SEQ ID NO:3). Optionally, the PRO1114 polypeptide is obtained or is obtainable by expressing the polypeptide encoded by the cDNA insert of the DNA57033-1403 vector deposited on May 27, 1998 as ATCC

In another embodiment, the invention provides chimeric molecules comprising a PRO1114 polypeptide or soluble extracellular domain thereof fused to a heterologous polypeptide or amino acid sequence. An example of such a chimeric molecule comprises a PRO1114 polypeptide fused to an epitope tag sequence or a Fc region of an immunoglobulin.

In another embodiment, the invention provides an antibody which specifically binds to a PRO1114 polypeptide or extracellular domain thereof. Optionally, the antibody is a monoclonal antibody.

In another embodiment, the invention provides an expressed sequence tag (EST) designated herein as DNA48466 comprising the nucleotide sequence of SEQ ID NO:4.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A-C show a nucleotide sequence (SEQ ID NO:1) containing the nucleotide sequence (SEQ ID NO:2) of a native sequence PRO1114 cDNA (nucleotides 250-1182), wherein the nucleotide sequence (SEQ ID NO:1) is a clone designated herein as "UNQ557" and/or "DNA57033-1403". Also presented is the position of the initiator methionine residue as well as the location (as underlined) of oligonucleotide probes based upon the DNA57033-1403 sequence, wherein those probes are designated herein as "57033.AH627.f", "57033.AH629.Nsi.f" and "57033.AH628.r". The deduced amino acid sequence encoded by the DNA57033-1403 molecule is shown below the nucleotide sequence.

Figure 2 shows the amino acid sequence (SEQ ID NO:3) derived from nucleotides 250-1182 of the nucleotide sequence shown in Figure 1. Also shown are the approximate locations of various other important protein domains.

Figures 3A-B show a double-stranded representation of a DNA sequence designated

herein as DNA48466 (SEQ ID NO:4) as well as the locations (as underlined) of oligonucleotide primers based upon the DNA48466 sequence, wherein the oligonucleotide primers are herein designated "48466.f1", "48466.f2", ""48466.r1", "48466.r2" and "48466.p1". The deduced amino acid sequence encoded by the DNA48466 sequence is shown below the nucleotide sequence.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. Definitions

The terms "PRO1114 polypeptide" and "PRO1114" when used herein encompass native sequence PRO1114 and PRO1114 polypeptide variants (which are further defined herein). The PRO1114 polypeptides may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods.

A "native sequence PRO1114 polypeptide" comprises a polypeptide having the same amino acid sequence as a PRO1114 polypeptide derived from nature. Such native sequence PRO1114 polypeptide can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence PRO1114 polypeptide" specifically encompasses naturally-occurring truncated or secreted forms of a PRO1114 polypeptide (e.g., soluble forms containing for instance, an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of a PRO1114 polypeptide. In one embodiment of the invention, the native sequence PRO1114 polypeptide is a mature or full-length native sequence PRO1114 polypeptide comprising amino acids 1 to 311 of Figure 2 (SEQ ID NO:3). Optionally, the PRO1114 polypeptide is obtained or obtainable by expressing the polypeptide encoded by the cDNA insert of the vector DNA57033-1403 deposited on May 27, 1998 as ATCC

The "PRO1114 extracellular domain" or "PRO1114 ECD" refers to a form of the PRO1114 polypeptide which is essentially free of the transmembrane and cytoplasmic domains of the PRO1114 polypeptide. Optionally the PRO1114 ECD will comprise amino acids 1 or about 30 to 229 of Figure 2 (SEQ ID NO:3). Ordinarily, PRO1114 ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domain identified for the PRO1114 polypeptide of the present invention is identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the

domain as initially identified. Accordingly, the PRO1114 polypeptide ECD may optionally comprise amino acids 1 or about 30 to X of Figure 2 (SEQ ID NO:3), wherein X is any one of amino acid residues 225 to 234 of Figure 2 (SEQ ID NO:3).

"PRO1114 variant" means an active PRO1114 polypeptide as defined below having at least about 80% amino acid sequence identity with the PRO1114 polypeptide having the deduced amino acid sequence shown in Figure 2 (SEQ ID NO:3) for a full-length native sequence PRO1114 polypeptide. Such PRO1114 polypeptide variants include, for instance, PRO1114 polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the sequence of Figure 2 (SEQ ID NO:3). Ordinarily, a PRO1114 polypeptide variant will have at least about 80% amino acid sequence identity, preferably at least about 85% amino acid sequence identity, more preferably at least about 90% amino acid sequence identity and even more preferably at least about 95% amino acid sequence identity with the amino acid sequence of Figure 2 (SEQ ID NO:3).

"Percent (%) amino acid sequence identity" or "percent (%) nucleic acid sequence identity" when referring to the PRO1114 amino acid sequences or DNA57033-1403 nucleic acid sequences identified herein, respectively, is defined as the percentage amino acid residues or nucleic acid residues in a candidate sequence that are identical with the amino acid residues in a PRO1114 polypeptide sequence, or the nucleic acid residues in a DNA57033-1403 nucleic acid sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. The % identity values used herein were generated using the WU-BLAST-2 computer program (Altschul et al., Methods in Enzymology 266:460-480 (1996); http://blast.wustl/edu/blast/README.html). Most of the WU-BLAST-2 search parameters were set to the default values. The adjustable parameters were set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold (T) = 11, and scoring matrix = BLOSUM62. The HSP S and HSP S2 parameters, which are dynamic values used by BLAST-2, are established by the program itself depending upon the composition of the sequence of interest and composition of the database against which the sequence is being searched. However, the values may be adjusted to increase sensitivity. A % sequence identity value is determined by the fraction of matching identical residues divided by the total number of residues of the "longer" sequence. The "longer" sequence is the one having the most actual residues in the aligned region (gaps introduced by WU-BLAST-2 to maximize the alignment score are ignored).

Percent amino acid or nucleic acid sequence identity can also be determined in other ways

that are within the skill in the art, for instance, using other publicly available computer software such as ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.

The term "epitope tagged" where used herein refers to a chimeric polypeptide comprising a PRO1114 polypeptide, or domain sequence thereof, fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody may be made, or which can be identified by some other agent, yet is short enough such that it does not interfere with the activity of the PRO1114 polypeptide. The tag polypeptide preferably is also fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 to about 50 amino acid residues (preferably, between about 10 to about 20 residues).

"Isolated," when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the PRO1114 polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.

An "isolated" PRO1114 polypeptide-encoding nucleic acid molecule is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the PRO1114 polypeptide-encoding nucleic acid. An isolated PRO1114 polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated PRO1114 polypeptide-encoding nucleic acid molecules therefore are distinguished from the PRO1114 polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated PRO1114 polypeptide-encoding nucleic acid molecule includes PRO1114 polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express PRO1114 polypeptide where, for example, the nucleic

acid molecule is in a chromosomal location different from that of natural cells.

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

The term "antibody" is used in the broadest sense and specifically covers single anti-PRO1114 polypeptide monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies) and anti-PRO1114 antibody compositions with polypepitopic specificity. The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, *i.e.*, the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts.

"Active" or "activity" for the purposes herein refers to form(s) of PRO1114 which retain the biologic and/or immunologic activities of native or naturally-occurring PRO1114 polypeptide.

The terms "treating", "treatment" and "therapy" as used herein refer to curative therapy, prophylactic therapy, and preventative therapy.

The term "mammal" as used herein refers to any mammal classified as a mammal, including humans, cows, horses, dogs and cats. In a preferred embodiment of the invention, the mammal is a human.

II. Compositions and Methods of the Invention

A. Full-length PRO1114 Polypeptide

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO1114. In particular, Applicants have identified and isolated cDNA encoding a PRO1114 polypeptide, as disclosed in further detail in the Examples below. Using BLAST and FastA sequence alignment computer programs, Applicants found that the PRO1114 polypeptide has significant similarity to the cytokine receptor family of proteins. Accordingly, it is presently believed that PRO1114 polypeptide disclosed in the present application is a newly identified member of the cytokine receptor family of proteins and possesses activity typical of that family.

B. PRO1114 Variants

In addition to the full-length native sequence PRO1114 polypeptide described herein, it is contemplated that PRO1114 variants can be prepared. PRO1114 variants can be prepared by introducing appropriate nucleotide changes into the PRO1114-encoding DNA, or by synthesis of the desired PRO1114 polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the PRO1114 polypeptide, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics.

Variations in the native full-length sequence PRO1114 or in various domains of the PRO1114 polypeptide described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Patent No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding the PRO1114 polypeptide that results in a change in the amino acid sequence of the PRO1114 polypeptide as compared with the native sequence PRO1114. Optionally the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the PRO1114 polypeptide. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the PRO1114 polypeptide with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and

testing the resulting variants for activity in any of the *in vitro* assays described in the Examples below.

The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)], cassette mutagenesis [Wells et al., Gene, 34:315 (1985)], restriction selection mutagenesis [Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the PRO1114-encoding variant DNA.

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.

C. Modifications of PRO1114

Covalent modifications of PRO1114 polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a PRO1114 polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of a PRO1114 polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking PRO1114 to a water-insoluble support matrix or surface for use in the method for purifying anti-PRO1114 antibodies, and vice-versa. Commonly used crosslinking agents include, *e.g.*, 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis-(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino

groups of lysine, arginine, and histidine side chains [T.E. Creighton, <u>Proteins: Structure and Molecular Properties</u>, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the PRO1114 polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence PRO1114 polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence PRO1114 polypeptide.

Addition of glycosylation sites to PRO1114 polypeptides may be accomplished by altering the amino acid sequence thereof. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence PRO1114 polypeptide (for O-linked glycosylation sites). The PRO1114 amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the PRO1114 polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the PRO1114 polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the PRO1114 polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exoglycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

Another type of covalent modification of PRO1114 comprises linking the PRO1114 polypeptide to one of a variety of nonproteinaceous polymers, *e.g.*, polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

PRO1114 polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising a PRO1114 polypeptide fused to another, heterologous

polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of a PRO1114 polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl- terminus of the PRO1114 polypeptide. The presence of such epitope-tagged forms of a PRO1114 polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the PRO1114 polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a PRO1114 polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al., Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; an α-tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].

The PRO1114 polypeptide of the present invention may also be modified in a way to form a chimeric molecule comprising a PRO1114 polypeptide fused to a leucine zipper. Various leucine zipper polypeptides have been described in the art. See, e.g., Landschulz et al., Science 240:1759 (1988); WO 94/10308; Hoppe et al., FEBS Letters 344:1991 (1994); Maniatis et al., Nature 341:24 (1989). It is believed that use of a leucine zipper fused to a PRO1114 polypeptide may be desirable to assist in dimerizing or trimerizing soluble PRO1114 polypeptide in solution. Those skilled in the art will appreciate that the leucine zipper may be fused at either the N- or C-terminal end of the PRO1114 molecule.

D. Preparation of PRO1114

The description below relates primarily to production of PRO1114 by culturing cells transformed or transfected with a vector containing PRO1114 polypeptide encoding nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be

employed to prepare PRO1114 polypeptides. For instance, the PRO1114 sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1969); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of PRO1114 polypeptides may be chemically synthesized separately and combined using chemical or enzymatic methods to produce a full-length PRO1114 polypeptide.

1. Isolation of DNA Encoding PRO1114

DNA encoding a PRO1114 polypeptide may be obtained from a cDNA library prepared from tissue believed to possess the PRO1114 mRNA and to express it at a detectable level. Accordingly, human PRO1114-encoding DNA can be conveniently obtained from a cDNA library prepared from human tissue, such as described in the Examples. The PRO1114-encoding gene may also be obtained from a genomic library or by oligonucleotide synthesis.

Libraries can be screened with probes (such as antibodies to a PRO1114 polypeptide or oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning:

A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding PRO1114 is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].

The Examples below describe techniques for screening a cDNA library. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like ³²P-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., supra.

Sequences identified in such library screening methods can be compared and aligned to

other known sequences deposited and available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined through sequence alignment using computer software programs such as ALIGN, DNAstar, and INHERIT which employ various algorithms to measure homology.

Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., <u>supra</u>, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

2. Selection and Transformation of Host Cells

Host cells are transfected or transformed with expression or cloning vectors described herein for PRO1114 polypeptide production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supra.

Methods of transfection are known to the ordinarily skilled artisan, for example, CaPO₄ and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., <u>supra</u>, or electroporation is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with *Agrobacterium tumefaciens* is used for transformation of certain plant cells, as described by Shaw et al., <u>Gene</u>, <u>23</u>:315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, <u>Virology</u>, <u>52</u>:456-457 (1978) can be employed. General aspects of mammalian cell host system transformations have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., <u>J. Bact.</u>, <u>130</u>:946 (1977) and Hsiao et al., <u>Proc. Natl. Acad. Sci. (USA)</u>, <u>76</u>:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, *e.g.*, polybrene, polyornithine, may also be used. For various techniques for

transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537 (1990) and Mansour et al., Nature, 336:348-352 (1988).

Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as *E. coli*. Various *E. coli* strains are publicly available, such as *E. coli* K12 strain MM294 (ATCC 31,446); *E. coli* X1776 (ATCC 31,537); *E. coli* strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635).

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for PRO1114-encoding vectors. *Saccharomyces cerevisiae* is a commonly used lower eukaryotic host microorganism.

Suitable host cells for the expression of glycosylated PRO1114 are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., <u>J. Gen Virol.</u>, <u>36</u>:59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, <u>Proc. Natl. Acad. Sci. USA</u>, <u>77</u>:4216 (1980)); mouse sertoli cells (TM4, Mather, <u>Biol. Reprod.</u>, <u>23</u>:243-251 (1980)); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, ATCC CCL51). The selection of the appropriate host cell is deemed to be within the skill in the art.

3. Selection and Use of a Replicable Vector

The nucleic acid (e.g., cDNA or genomic DNA) encoding the desired PRO1114 polypeptide may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these

components employs standard ligation techniques which are known to the skilled artisan.

The desired PRO1114 polypeptide may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the PRO1114-encoding DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces α -factor leaders, the latter described in U.S. Patent No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.

Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2μ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.

Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for *Bacilli*.

An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the PRO1114-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR activity, prepared and propagated as described by Urlaub et al., <u>Proc. Natl. Acad. Sci. USA</u>, <u>77</u>:4216 (1980). A suitable selection gene for use in yeast is the *trp*1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., <u>Nature</u>, <u>282</u>:39 (1979); Kingsman et al., Gene, 7:141 (1979); Tschemper et al., Gene, 10:157 (1980)]. The *trp*1 gene provides a selection

marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, Genetics, 85:12 (1977)].

Expression and cloning vectors usually contain a promoter operably linked to the PRO1114-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding the PRO1114 polypeptide.

Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., J. Biol. Chem., 255:2073 (1980)] or other glycolytic enzymes [Hess et al., J. Adv. Enzyme Reg., 7:149 (1968); Holland, Biochemistry, 17:4900 (1978)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.

PRO1114 transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, *e.g.*, the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems.

Transcription of a DNA encoding a PRO1114 polypeptide by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of

DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α -fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the PRO1114 coding sequence, but is preferably located at a site 5' from the promoter.

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding PRO1114.

Still other methods, vectors, and host cells suitable for adaptation to the synthesis of PRO1114 polypeptides in recombinant vertebrate cell culture are described in Gething et al., Nature, 293:620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058.

4. Detecting Gene Amplification/Expression

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or

polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence PRO1114 polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to PRO1114-encoding DNA and encoding a specific antibody epitope.

5. Purification of Polypeptide

Forms of PRO1114 may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of PRO1114 polypeptides can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents.

It may be desired to purify PRO1114 from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the PRO1114 polypeptide. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular PRO1114 polypeptide produced.

E. Uses for PRO1114

Nucleotide sequences (or their complement) encoding PRO1114 polypeptides have various applications in the art of molecular biology, including uses as hybridization probes, in chromosome and gene mapping and in the generation of anti-sense RNA and DNA. PRO1114-encoding nucleic acid will also be useful for the preparation of PRO1114 polypeptides by the recombinant techniques described herein.

The full-length DNA57033-1403 nucleotide sequence (SEQ ID NO:1) or the full-length native sequence PRO1114 (SEQ ID NO:2) nucleotide sequence, or portions thereof, may be used as hybridization probes for a cDNA library to isolate the full-length PRO1114 gene or to isolate still other genes (for instance, those encoding naturally-occurring variants of PRO1114 or

PRO1114 from other species) which have a desired sequence identity to the PRO1114 nucleotide sequence disclosed in Figure 1 (SEQ ID NO:1). Optionally, the length of the probes will be about 20 to about 50 bases. The hybridization probes may be derived from the UNQ557 (DNA57033-1403) nucleotide sequence of SEQ ID NO:1 as shown in Figure 1 or from genomic sequences including promoters, enhancer elements and introns of native sequence PRO1114-encoding DNA. By way of example, a screening method will comprise isolating the coding region of the PRO1114 gene using the known DNA sequence to synthesize a selected probe of about 40 bases. Hybridization probes may be labeled by a variety of labels, including radionucleotides such as ³²P or ³⁵S, or enzymatic labels such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems. Labeled probes having a sequence complementary to that of the PRO1114 gene of the present invention can be used to screen libraries of human cDNA, genomic DNA or mRNA to determine which members of such libraries the probe hybridizes to. Hybridization techniques are described in further detail in the Examples below.

The ESTs disclosed in the present application may similarly be employed as probes, using the methods disclosed herein.

The probes may also be employed in PCR techniques to generate a pool of sequences for identification of closely related PRO1114 sequences.

Nucleotide sequences encoding a PRO1114 polypeptide can also be used to construct hybridization probes for mapping the gene which encodes that PRO1114 polypeptide and for the genetic analysis of individuals with genetic disorders. The nucleotide sequences provided herein may be mapped to a chromosome and specific regions of a chromosome using known techniques, such as *in situ* hybridization, linkage analysis against known chromosomal markers, and hybridization screening with libraries.

When the coding sequences for PRO1114 encode a protein which binds to another protein (example, where the PRO1114 polypeptide functions as a receptor), the PRO1114 polypeptide can be used in assays to identify the other proteins or molecules involved in the binding interaction. By such methods, inhibitors of the receptor/ligand binding interaction can be identified. Proteins involved in such binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction. Also, the receptor PRO1114 polypeptide can be used to isolate correlative ligand(s). Screening assays can be designed to find lead compounds that mimic the biological activity of a native PRO1114 or a receptor for PRO1114. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug

candidates. Small molecules contemplated include synthetic organic or inorganic compounds. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell based assays, which are well characterized in the art.

Nucleic acids which encode PRO1114 polypeptide or any of its modified forms can also be used to generate either transgenic animals or "knock out" animals which, in turn, are useful in the development and screening of therapeutically useful reagents. A transgenic animal (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A transgene is a DNA which is integrated into the genome of a cell from which a transgenic animal develops. In one embodiment, cDNA encoding PRO1114 polypeptide can be used to clone genomic DNA encoding PRO1114 in accordance with established techniques and the genomic sequences used to generate transgenic animals that contain cells which express DNA encoding PRO1114. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009. Typically, particular cells would be targeted for PRO1114 transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding PRO1114 introduced into the germ line of the animal at an embryonic stage can be used to examine the effect of increased expression of DNA encoding PRO1114. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this facet of the invention, an animal is treated with the reagent and a reduced incidence of the pathological condition, compared to untreated animals bearing the transgene, would indicate a potential therapeutic intervention for the pathological condition.

Alternatively, non-human homologues of PRO1114 can be used to construct a PRO1114 "knock out" animal which has a defective or altered gene encoding PRO1114 as a result of homologous recombination between the endogenous gene encoding PRO1114 and altered genomic DNA encoding PRO1114 introduced into an embryonic cell of the animal. For example, cDNA encoding PRO1114 can be used to clone genomic DNA encoding PRO1114 in accordance with established techniques. A portion of the genomic DNA encoding PRO1114 can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector [see e.g., Thomas and Capecchi, Cell, 51:503 (1987)

for a description of homologous recombination vectors]. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell, 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in *Teratocarcinomas and Embryonic Stem Cells: A Practical Approach*, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152]. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to defend against certain pathological conditions and for their development of pathological conditions due to absence of the PRO1114 polypeptide.

PRO1114 polypeptides of the present invention which possess biological activity related to that of the cytokine receptor family of proteins may be employed both *in vivo* for therapeutic purposes and *in vitro*. Those of ordinary skill in the art will well know how to employ the PRO1114 polypeptides of the present invention for such purposes.

F. Anti-PRO1114 Antibodies

The present invention further provides anti-PRO1114 polypeptide antibodies. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies.

1. Polyclonal Antibodies

The anti-PRO1114 antibodies of the present invention may comprise polyclonal antibodies. Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include the PRO1114 polypeptide or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor.

Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

2. Monoclonal Antibodies

The anti-PRO1114 antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized *in vitro*.

The immunizing agent will typically include the PRO1114 polypeptide or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Rockville, Maryland. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63].

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against a PRO1114 polypeptide. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980).

After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods [Goding, supra]. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown *in vivo* as ascites in a mammal.

The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences [U.S. Patent No. 4,816,567; Morrison et al., Proc. Natl. Acad. Sci. USA 81, 6851-6855 [1984]] or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression

of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.

In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art.

3. Humanized Antibodies

The anti-PRO1114 antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) which contain minimal sequence Humanized antibodies include human derived from non-human immunoglobulin. immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536

(1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, <u>J. Mol. Biol.</u>, <u>227</u>:381 (1991); Marks et al., <u>J. Mol. Biol.</u>, <u>222</u>:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., <u>Monoclonal Antibodies and Cancer Therapy</u>, Alan R. Liss, p. 77 (1985) and Boerner et al., <u>J. Immunol.</u>, <u>147(1)</u>:86-95 (1991)].

4. Bispecific Antibodies

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for a PRO1114 polypeptide, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities [Milstein and Cuello, Nature, 305:537-539 (1983)]. Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin

light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

5. Heteroconjugate Antibodies

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells [U.S. Patent No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. It is contemplated that the antibodies may be prepared *in vitro* using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

G. Uses for anti-PRO1114 Antibodies

The anti-PRO1114 antibodies of the present invention have various utilities. For example, anti-PRO1114 antibodies may be used in diagnostic assays for PRO1114 polypeptides, e.g., detecting expression in specific cells, tissues, or serum. Various diagnostic assay techniques known in the art may be used, such as competitive binding assays, direct or indirect sandwich assays and immunoprecipitation assays conducted in either heterogeneous or homogeneous phases [Zola, Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc. (1987) pp. 147-158]. The antibodies used in the diagnostic assays can be labeled with a detectable moiety. The detectable moiety should be capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as ³H, ¹⁴C, ³²P, ³⁵S, or ¹²⁵I, a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin, or an enzyme, such as alkaline phosphatase, beta-galactosidase or horseradish peroxidase. Any method known in the art for conjugating the antibody to the detectable moiety may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, J. Histochem. and Cytochem., 30:407 (1982).

Anti-PRO1114 antibodies also are useful for the affinity purification of PRO1114 polypeptides from recombinant cell culture or natural sources. In this process, the antibodies

against a PRO1114 polypeptide are immobilized on a suitable support, such a Sephadex resin or filter paper, using methods well known in the art. The immobilized antibody then is contacted with a sample containing the PRO1114 polypeptide to be purified, and thereafter the support is washed with a suitable solvent that will remove substantially all the material in the sample except the PRO1114 polypeptide, which is bound to the immobilized antibody. Finally, the support is washed with another suitable solvent that will release the PRO1114 polypeptide from the antibody.

The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.

EXAMPLES

Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Rockville, Maryland.

EXAMPLE 1: Isolation of cDNA clones Encoding Human PRO1114

1. Preparation of oligo dT primed cDNA library

mRNA was isolated from human breast carcinoma tissue using reagents and protocols from Invitrogen, San Diego, CA (Fast Track 2). This RNA was used to generate an oligo dT primed cDNA library in the vector pRK5D using reagents and protocols from Life Technologies, Gaithersburg, MD (Super Script Plasmid System). In this procedure, the double stranded cDNA was sized to greater than 1000 bp and the Sall/NotI linkered cDNA was cloned into Xhol/NotI cleaved vector. pRK5D is a cloning vector that has an sp6 transcription initiation site followed by an SfiI restriction enzyme site preceding the Xhol/NotI cDNA cloning sites.

2. Preparation of random primed cDNA library

A secondary cDNA library was generated in order to preferentially represent the 5' ends of the primary cDNA clones. Sp6 RNA was generated from the primary library (described above), and this RNA was used to generate a random primed cDNA library in the vector pSST-AMY.0 using reagents and protocols from Life Technologies (Super Script Plasmid System, referenced

above). In this procedure the double stranded cDNA was sized to 500-1000 bp, linkered with blunt to NotI adaptors, cleaved with SfiI, and cloned into SfiI/NotI cleaved vector. pSST-AMY.0 is a cloning vector that has a yeast alcohol dehydrogenase promoter preceding the cDNA cloning sites and the mouse amylase sequence (the mature sequence without the secretion signal) followed by the yeast alcohol dehydrogenase terminator, after the cloning sites. Thus, cDNAs cloned into this vector that are fused in frame with amylase sequence will lead to the secretion of amylase from appropriately transfected yeast colonies.

3. Transformation and Detection

DNA from the library described in paragraph 2 above was chilled on ice to which was added electrocompetent DH10B bacteria (Life Technologies, 20 ml). The bacteria and vector mixture was then electroporated as recommended by the manufacturer. Subsequently, SOC media (Life Technologies, 1 ml) was added and the mixture was incubated at 37°C for 30 minutes. The transformants were then plated onto 20 standard 150 mm LB plates containing ampicillin and incubated for 16 hours (37°C). Positive colonies were scraped off the plates and the DNA was isolated from the bacterial pellet using standard protocols, e.g. CsCl-gradient. The purified DNA was then carried on to the yeast protocols below.

The yeast methods were divided into three categories: (1) Transformation of yeast with the plasmid/cDNA combined vector; (2) Detection and isolation of yeast clones secreting amylase; and (3) PCR amplification of the insert directly from the yeast colony and purification of the DNA for sequencing and further analysis.

The yeast strain used was HD56-5A (ATCC-90785). This strain has the following genotype: MAT alpha, ura3-52, leu2-3, leu2-112, his3-11, his3-15, MAL⁺, SUC⁺, GAL⁺.

Transformation was performed based on the protocol outlined by Gietz et al., Nucl. Acid. Res., 20:1425 (1992). Transformed cells were then inoculated from agar into YEPD complex media broth (100 ml) and grown overnight at 30°C. The YEPD broth was prepared as described in Kaiser et al., Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, NY, p. 207 (1994). The overnight culture was then diluted to about 2 x 10^6 cells/ml (approx. OD₆₀₀=0.1) into fresh YEPD broth (500 ml) and regrown to 1 x 10^7 cells/ml (approx. OD₆₀₀=0.4-0.5).

The cells were then harvested and prepared for transformation by transfer into GS3 rotor bottles in a Sorval GS3 rotor at 5,000 rpm for 5 minutes, the supernatant discarded, and then resuspended into sterile water, and centrifuged again in 50 ml falcon tubes at 3,500 rpm in a

Beckman GS-6KR centrifuge. The supernatant was discarded and the cells were subsequently washed with LiAc/TE (10 ml, 10 mM Tris-HCl, 1 mM EDTA pH 7.5, 100 mM Li₂OOCCH₃), and resuspended into LiAc/TE (2.5 ml).

Transformation took place by mixing the prepared cells (100 μ l) with freshly denatured single stranded salmon testes DNA (Lofstrand Labs, Gaithersburg, MD) and transforming DNA (1 μ g, vol. < 10 μ l) in microfuge tubes. The mixture was mixed briefly by vortexing, then 40% PEG/TE (600 μ l, 40% polyethylene glycol-4000, 10 mM Tris-HCl, 1 mM EDTA, 100 mM Li₂OOCCH₃, pH 7.5) was added. This mixture was gently mixed and incubated at 30°C while agitating for 30 minutes. The cells were then heat shocked at 42°C for 15 minutes, and the reaction vessel centrifuged in a microfuge at 12,000 rpm for 5-10 seconds, decanted and resuspended into TE (500 μ l, 10 mM Tris-HCl, 1 mM EDTA pH 7.5) followed by recentrifugation. The cells were then diluted into TE (1 ml) and aliquots (200 μ l) were spread onto the selective media previously prepared in 150 mm growth plates (VWR).

Alternatively, instead of multiple small reactions, the transformation was performed using a single, large scale reaction, wherein reagent amounts were scaled up accordingly.

The selective media used was a synthetic complete dextrose agar lacking uracil (SCD-Ura) prepared as described in Kaiser et al., Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, NY, p. 208-210 (1994). Transformants were grown at 30°C for 2-3 days.

The detection of colonies secreting amylase was performed by including red starch in the selective growth media. Starch was coupled to the red dye (Reactive Red-120, Sigma) as per the procedure described by Biely et al., <u>Anal. Biochem.</u>, <u>172</u>:176-179 (1988). The coupled starch was incorporated into the SCD-Ura agar plates at a final concentration of 0.15% (w/v), and was buffered with potassium phosphate to a pH of 7.0 (50-100 mM final concentration).

The positive colonies were picked and streaked across fresh selective media (onto 150 mm plates) in order to obtain well isolated and identifiable single colonies. Well isolated single colonies positive for amylase secretion were detected by direct incorporation of red starch into buffered SCD-Ura agar. Positive colonies were determined by their ability to break down starch resulting in a clear halo around the positive colony visualized directly.

4. Isolation of DNA by PCR Amplification

When a positive colony was isolated, a portion of it was picked by a toothpick and diluted into sterile water (30 μ l) in a 96 well plate. At this time, the positive colonies were either frozen

and stored for subsequent analysis or immediately amplified. An aliquot of cells (5 μ l) was used as a template for the PCR reaction in a 25 μ l volume containing: 0.5 μ l Klentaq (Clontech, Palo Alto, CA); 4.0 μ l 10 mM dNTP's (Perkin Elmer-Cetus); 2.5 μ l Klentaq buffer (Clontech); 0.25 μ l forward oligo 1; 0.25 μ l reverse oligo 2; 12.5 μ l distilled water. The sequence of the forward oligonucleotide 1 was:

5'-TGTAAAACGACGGCCAGT<u>TAAATAGACCTGCAATTATTAATCT</u>-3' (SEQ ID NO:5)

The sequence of reverse oligonucleotide 2 was:

5'-CAGGAAACAGCTATGACC<u>ACCTGCACACCTGCAAATCCATT</u>-3' (SEQ ID NO:6)

PCR was then performed as follows:

a.		Denature		92°C, 5 minutes
b.	3 cycles of:	Denature Anneal Extend	•	92°C, 30 seconds 30 seconds 60 seconds
c.	3 cycles of:	Denature Anneal Extend	-	92°C, 30 seconds 30 seconds 60 seconds
d.	25 cycles of:	Denature Anneal Extend	•	92°C, 30 seconds 30 seconds 60 seconds
e.		Hold	4°C	

The underlined regions of the oligonucleotides annealed to the ADH promoter region and the amylase region, respectively, and amplified a 307 bp region from vector pSST-AMY.0 when no insert was present. Typically, the first 18 nucleotides of the 5' end of these oligonucleotides contained annealing sites for the sequencing primers, wherein these sequences may differ depending upon the sequencing primers employed. Thus, the total product of the PCR reaction from an empty vector was 343 bp. However, signal sequence-fused cDNA resulted in considerably longer nucleotide sequences.

Following the PCR, an aliquot of the reaction (5 μ l) was examined by agarose gel electrophoresis in a 1% agarose gel using a Tris-Borate-EDTA (TBE) buffering system as described by Sambrook et al., supra. Clones resulting in a single strong PCR product larger than

400 bp were further analyzed by DNA sequencing after purification with a 96 Qiaquick PCR clean-up column (Qiagen Inc., Chatsworth, CA).

5. Identification of Full-length Clone

A cDNA sequence isolated in the above screen was found, by BLAST and FastA sequence alignment, to have sequence homology to a nucleotide sequence encoding the cytokine receptor family of proteins. This cDNA sequence is herein designated DNA48466 (see Figures 3A-B). Based on the sequence homology, probes were generated from the sequence of the DNA48466 molecule (see Figures 3A-B) and used to screen a human breast carcinoma library (LIB135) prepared as described in paragraph 1 above. The cloning vector was pRK5B (pRK5B is a precursor of pRK5D that does not contain the SfiI site; see, Holmes et al., Science, 253:1278-1280 (1991)), and the cDNA size cut was less than 2800 bp.

A full length clone was identified that contained a single open reading frame with an apparent translational initiation site at nucleotide positions 250-252 and ending at the stop codon found at nucleotide positions 1183-1185 (Figure 1, SEQ ID NO:1). The predicted polypeptide precursor is 311 amino acids long, has a calculated molecular weight of approximately 35,076 daltons and an estimated pI of approximately 5.04. Analysis of the full-length PRO1114 sequence shown in Figure 2 (SEQ ID NO:3) evidences the presence of the following: a signal peptide from about amino acid 1 to about amino acid 29, a transmembrane domain from about amino acid 230 to about amino acid 255, potential N-glycosylation sites from about amino acid 40 to about amino acid 43 and from about amino acid 134 to about amino acid 137, an amino acid sequence block having homology to tissue factor proteins from about amino acid 92 to about amino acid 119 and an amino acid sequence block having homology to integrin alpha chain proteins from about amino acid 232 to about amino acid 262. Clone UNQ557 (DNA57033-1403) has been deposited with ATCC on May 27, 1998 and is assigned ATCC deposit no.

Analysis of the amino acid sequence of the full-length PRO1114 polypeptide suggests that it possesses significant sequence similarity to the cytokine receptor family of proteins, thereby indicating that PRO1114 may be a novel cytokine receptor family member. More specifically, an analysis of the Dayhoff database (version 35.45 SwissProt 35) evidenced significant homology between the PRO1114 amino acid sequence and the following Dayhoff sequences, G01418, INR1_MOUSE, P_R71035, INGS_HUMAN, A26595_1, A26593_1, I56215 and TF_HUMAN.

EXAMPLE 2: Use of PRO1114-encoding DNA as a hybridization probe

The following method describes use of a nucleotide sequence encoding PRO1114 as a hybridization probe.

DNA comprising the coding sequence of full-length PRO1114 (as shown in Figure 1, SEQ ID NO:1) or a fragment thereof is employed as a probe to screen for homologous DNAs (such as those encoding naturally-occurring variants of PRO1114) in human tissue cDNA libraries or human tissue genomic libraries.

Hybridization and washing of filters containing either library DNAs is performed under the following high stringency conditions. Hybridization of radiolabeled PRO1114 polypeptide-derived probe to the filters is performed in a solution of 50% formamide, 5x SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 50 mM sodium phosphate, pH 6.8, 2x Denhardt's solution, and 10% dextran sulfate at 42°C for 20 hours. Washing of the filters is performed in an aqueous solution of 0.1x SSC and 0.1% SDS at 42°C.

DNAs having a desired sequence identity with the DNA encoding full-length native sequence PRO1114 polypeptide can then be identified using standard techniques known in the art.

EXAMPLE 3: Expression of PRO1114 Polypeptides in E. coli

This example illustrates the preparation of unglycosylated forms of PRO1114 polypeptides by recombinant expression in *E. coli*.

The DNA sequence encoding the full-length PRO1114 polypeptide or a fragment or variant thereof is initially amplified using selected PCR primers. The primers should contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector. A variety of expression vectors may be employed. An example of a suitable vector is pBR322 (derived from *E. coli*; see Bolivar et al., Gene, 2:95 (1977)) which contains genes for ampicillin and tetracycline resistance. The vector is digested with restriction enzyme and dephosphorylated. The PCR amplified sequences are then ligated into the vector. The vector will preferably include sequences which encode for an antibiotic resistance gene, a trp promoter, a polyhis leader (including the first six STII codons, polyhis sequence, and enterokinase cleavage site), the PRO1114 coding region, lambda transcriptional terminator, and an argU gene.

The ligation mixture is then used to transform a selected E. coli strain using the methods

described in Sambrook et al., <u>supra</u>. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing.

Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with antibiotics. The overnight culture may subsequently be used to inoculate a larger scale culture. The cells are then grown to a desired optical density, during which the expression promoter is turned on.

After culturing the cells for several more hours, the cells can be harvested by centrifugation. The cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized PRO1114 polypeptide can then be purified using a metal chelating column under conditions that allow tight binding of the polypeptide.

EXAMPLE 4: Expression of PRO1114 Polypeptides in Mammalian Cells

This example illustrates preparation of glycosylated forms of PRO1114 polypeptides by recombinant expression in mammalian cells.

The vector, pRK5 (see EP 307,247, published March 15, 1989), is employed as the expression vector. Optionally, the PRO1114-encoding DNA is ligated into pRK5 with selected restriction enzymes to allow insertion of the PRO1114-encoding DNA using ligation methods such as described in Sambrook et al., supra. The resulting vector is called pRK5-PRO1114.

In one embodiment, the selected host cells may be 293 cells. Human 293 cells (ATCC CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM supplemented with fetal calf serum and optionally, nutrient components and/or antibiotics. About 10 μg pRK5-PRO1114 DNA is mixed with about 1 μg DNA encoding the VA RNA gene [Thimmappaya et al., Cell, 31:543 (1982)] and dissolved in 500 μl of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M CaCl₂. To this mixture is added, dropwise, 500 μl of 50 mM HEPES (pH 7.35), 280 mM NaCl, 1.5 mM NaPO₄, and a precipitate is allowed to form for 10 minutes at 25°C. The precipitate is suspended and added to the 293 cells and allowed to settle for about four hours at 37°C. The culture medium is aspirated off and 2 ml of 20% glycerol in PBS is added for 30 seconds. The 293 cells are then washed with serum free medium, fresh medium is added and the cells are incubated for about 5 days.

Approximately 24 hours after the transfections, the culture medium is removed and replaced with culture medium (alone) or culture medium containing 200 μ Ci/ml ³⁵S-cysteine and 200 μ Ci/ml ³⁵S-methionine. After a 12 hour incubation, the conditioned medium is collected,

concentrated on a spin filter, and loaded onto a 15% SDS gel. The processed gel may be dried and exposed to film for a selected period of time to reveal the presence of PRO1114 polypeptide. The cultures containing transfected cells may undergo further incubation (in serum free medium) and the medium is tested in selected bioassays.

In an alternative technique, PRO1114-encoding DNA may be introduced into 293 cells transiently using the dextran sulfate method described by Somparyrac et al., Proc. Natl. Acad. Sci., 12:7575 (1981). 293 cells are grown to maximal density in a spinner flask and 700 μ g pRK5-PRO1114 DNA is added. The cells are first concentrated from the spinner flask by centrifugation and washed with PBS. The DNA-dextran precipitate is incubated on the cell pellet for four hours. The cells are treated with 20% glycerol for 90 seconds, washed with tissue culture medium, and re-introduced into the spinner flask containing tissue culture medium, 5 μ g/ml bovine insulin and 0.1 μ g/ml bovine transferrin. After about four days, the conditioned media is centrifuged and filtered to remove cells and debris. The sample containing expressed PRO1114 polypeptide can then be concentrated and purified by any selected method, such as dialysis and/or column chromatography.

In another embodiment, PRO1114 polypeptide can be expressed in CHO cells. The pRK5-PRO1114 vector can be transfected into CHO cells using known reagents such as CaPO₄ or DEAE-dextran. As described above, the cell cultures can be incubated, and the medium replaced with culture medium (alone) or medium containing a radiolabel such as ³⁵S-methionine. After determining the presence of PRO1114 polypeptide, the culture medium may be replaced with serum free medium. Preferably, the cultures are incubated for about 6 days, and then the conditioned medium is harvested. The medium containing the expressed PRO1114 polypeptide can then be concentrated and purified by any selected method.

Epitope-tagged PRO1114 polypeptide may also be expressed in host CHO cells. The PRO1114-encoding DNA may be subcloned out of the pRK5 vector. The subclone insert can undergo PCR to fuse in frame with a selected epitope tag such as a poly-his tag into a Baculovirus expression vector. The poly-his tagged PRO1114-encoding DNA insert can then be subcloned into a SV40 driven vector containing a selection marker such as DHFR for selection of stable clones. Finally, the CHO cells can be transfected (as described above) with the SV40 driven vector. Labeling may be performed, as described above, to verify expression. The culture medium containing the expressed poly-His tagged PRO1114 polypeptide can then be concentrated and purified by any selected method, such as by Ni²⁺-chelate affinity chromatography.

EXAMPLE 5: Expression of a PRO1114 Polypeptide in Yeast

The following method describes recombinant expression of PRO1114 polypeptides in yeast.

First, yeast expression vectors are constructed for intracellular production or secretion of PRO1114 polypeptide from the ADH2/GAPDH promoter. DNA encoding the PRO1114 polypeptide of interest, a selected signal peptide and the promoter is inserted into suitable restriction enzyme sites in the selected plasmid to direct intracellular expression of the PRO1114 polypeptide. For secretion, DNA encoding the PRO1114 polypeptide can be cloned into the selected plasmid, together with DNA encoding the ADH2/GAPDH promoter, the yeast alphafactor secretory signal/leader sequence, and linker sequences (if needed) for expression of the PRO1114 polypeptide.

Yeast cells, such as yeast strain AB110, can then be transformed with the expression plasmids described above and cultured in selected fermentation media. The transformed yeast supernatants can be analyzed by precipitation with 10% trichloroacetic acid and separation by SDS-PAGE, followed by staining of the gels with Coomassie Blue stain.

Recombinant PRO1114 polypeptide can subsequently be isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters. The concentrate containing the PRO1114 polypeptide may further be purified using selected column chromatography resins.

EXAMPLE 6: Expression of PRO1114 Polypeptides in Baculovirus-Infected Insect Cells

The following method describes recombinant expression of PRO1114 polypeptides in Baculovirus-infected insect cells.

The PRO1114-encoding DNA is fused upstream of an epitope tag contained within a baculovirus expression vector. Such epitope tags include poly-his tags and immunoglobulin tags (like Fc regions of IgG). A variety of plasmids may be employed, including plasmids derived from commercially available plasmids such as pVL1393 (Novagen). Briefly, the PRO1114-encoding DNA or the desired portion of the PRO1114-encoding DNA (such as the sequence encoding the extracellular domain of a transmembrane protein) is amplified by PCR with primers complementary to the 5' and 3' regions. The 5' primer may incorporate flanking (selected) restriction enzyme sites. The product is then digested with those selected restriction enzymes and subcloned into the expression vector.

Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGold™ virus DNA (Pharmingen) into *Spodoptera frugiperda* ("Sf9") cells (ATCC CRL 1711) using lipofectin (commercially available from GIBCO-BRL). After 4 to 5 days of incubation at 28°C, the released viruses are harvested and used for further amplifications. Viral infection and protein expression is performed as described by O'Reilley et al., Baculovirus expression vectors: A laboratory Manual, Oxford:Oxford University Press (1994).

Expressed poly-his tagged PRO1114 polypeptide can then be purified, for example, by Ni²⁺-chelate affinity chromatography as follows. Extracts are prepared from recombinant virusinfected Sf9 cells as described by Rupert et al., Nature, 362:175-179 (1993). Briefly, Sf9 cells are washed, resuspended in sonication buffer (25 mL Hepes, pH 7.9; 12.5 mM MgCl₂; 0.1 mM EDTA; 10% Glycerol; 0.1% NP-40; 0.4 M KCl), and sonicated twice for 20 seconds on ice. The sonicates are cleared by centrifugation, and the supernatant is diluted 50-fold in loading buffer (50 mM phosphate, 300 mM NaCl, 10% Glycerol, pH 7.8) and filtered through a 0.45 µm filter. A Ni2+-NTA agarose column (commercially available from Qiagen) is prepared with a bed volume of 5 mL, washed with 25 mL of water and equilibrated with 25 mL of loading buffer. The filtered cell extract is loaded onto the column at 0.5 mL per minute. The column is washed to baseline A₂₈₀ with loading buffer, at which point fraction collection is started. Next, the column is washed with a secondary wash buffer (50 mM phosphate; 300 mM NaCl, 10% Glycerol, pH 6.0), which elutes nonspecifically bound protein. After reaching A₂₈₀ baseline again, the column is developed with a 0 to 500 mM Imidazole gradient in the secondary wash buffer. One mL fractions are collected and analyzed by SDS-PAGE and silver staining or western blot with Ni²⁺-NTA-conjugated to alkaline phosphatase (Qiagen). Fractions containing the eluted His₁₀-tagged PRO1114 polypeptide are pooled and dialyzed against loading buffer.

Alternatively, purification of the IgG tagged (or Fc tagged) PRO1114 polypeptide can be performed using known chromatography techniques, including for instance, Protein A or protein G column chromatography.

EXAMPLE 7: Preparation of Antibodies that Bind PRO1114 Polypeptides

This example illustrates the preparation of monoclonal antibodies which can specifically bind to PRO1114 polypeptides.

Techniques for producing the monoclonal antibodies are known in the art and are described, for instance, in Goding, <u>supra</u>. Immunogens that may be employed include purified PRO1114 polypeptide, fusion proteins containing a PRO1114 polypeptide, and cells expressing

recombinant PRO1114 polypeptide on the cell surface. Selection of the immunogen can be made by the skilled artisan without undue experimentation.

Mice, such as Balb/c, are immunized with the PRO1114 immunogen emulsified in complete Freund's adjuvant and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms. Alternatively, the immunogen is emulsified in MPL-TDM adjuvant (Ribi Immunochemical Research, Hamilton, MT) and injected into the animal's hind foot pads. The immunized mice are then boosted 10 to 12 days later with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the mice may also be boosted with additional immunization injections. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect anti-PRO1114 polypeptide antibodies.

After a suitable antibody titer has been detected, the animals "positive" for antibodies can be injected with a final intravenous injection of PRO1114 polypeptide. Three to four days later, the mice are sacrificed and the spleen cells are harvested. The spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids.

The hybridoma cells will be screened in an ELISA for reactivity against PRO1114 polypeptide. Determination of "positive" hybridoma cells secreting the desired monoclonal antibodies against a PRO1114 polypeptide is within the skill in the art.

The positive hybridoma cells can be injected intraperitoneally into syngeneic Balb/c mice to produce ascites containing the anti-PRO1114 polypeptide monoclonal antibodies. Alternatively, the hybridoma cells can be grown in tissue culture flasks or roller bottles. Purification of the monoclonal antibodies produced in the ascites can be accomplished using ammonium sulfate precipitation, followed by gel exclusion chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can be employed.

Deposit of Material

The following materials have been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, USA (ATCC):

Material

ATCC Dep. No.

Deposit Date

DNA57033-1403

May 27, 1998

This deposit was made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purpose of Patent Procedure and the Regulations thereunder (Budapest Treaty). This assures maintenance of a viable culture of the deposit for 30 years from the date of deposit. The deposit will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Genentech, Inc. and ATCC, which assures permanent and unrestricted availability of the progeny of the culture of the deposit to the public upon issuance of the pertinent U.S. patent or upon laying open to the public of any U.S. or foreign patent application, whichever comes first, and assures availability of the progeny to one determined by the U.S. Commissioner of Patents and Trademarks to be entitled thereto according to 35 USC §122 and the Commissioner's rules pursuant thereto (including 37 CFR §1.14 with particular reference to 886 OG 638).

The assignee of the present application has agreed that if a culture of the materials on deposit should die or be lost or destroyed when cultivated under suitable conditions, the materials will be promptly replaced on notification with another of the same. Availability of the deposited material is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

WHAT IS CLAIMED IS:

- 1. Isolated nucleic acid comprising DNA having at least an 80% sequence identity to (a) a DNA molecule encoding a PRO1114 polypeptide comprising the sequence of amino acid residues 1 to 311 of Figure 2 (SEQ ID NO:3), or (b) the complement of the DNA molecule of (a).
- 2. The nucleic acid of Claim 1, wherein said DNA comprises the nucleotide sequence of SEQ ID NO:1 or its complement.
- 3. The nucleic acid of Claim 1, wherein said DNA comprises nucleotides 250-1182 of the nucleotide sequence of SEQ ID NO:1 (SEQ ID NO:2).
- 4. Isolated nucleic acid comprising DNA having at least an 80% sequence identity to (a) a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. ______ (DNA57033-1403), or (b) the complement of the DNA molecule of (a).
- 5. The nucleic acid of Claim 4 which comprises a DNA molecule encoding the same mature polypeptide encoded by the human protein cDNA in ATCC Deposit No. (DNA57033-1403).
- 6. Isolated nucleic acid comprising DNA having at least an 80% sequence identity to (a) a DNA molecule encoding a PRO1114 polypeptide comprising the sequence of amino acid residues about 30 to 311 of Figure 2 (SEQ ID NO:3), or (b) the complement of the DNA molecule of (a).
- 7. Isolated nucleic acid comprising DNA having at least an 80% sequence identity to (a) a DNA molecule encoding a PRO1114 polypeptide comprising the sequence of amino acid residues 1 or about 30 to X of Figure 2 (SEQ ID NO:3), or (b) the complement of the DNA molecule of (a), wherein X is any one of amino acid residues 225 to 234 of Figure 2 (SEQ ID NO:3).
 - 8. A vector comprising the nucleic acid of any one of Claims 1 to 7.

9. cell transform	The vector of Claim 8 operably linked to control sequences recognized by a host ned with the vector.
10.	A host cell comprising the vector of Claim 8.
11.	The host cell of Claim 10, wherein said cell is a CHO cell.
12.	The host cell of Claim 10, wherein said cell is an E. coli.
13.	The host cell of Claim 10, wherein said cell is a yeast cell.
	A process for producing a PRO1114 polypeptide comprising culturing the host 10 under conditions suitable for expression of said PRO1114 polypeptide and id PRO1114 polypeptide from the cell culture.
15. to 311 of Figu	Isolated native sequence PRO1114 polypeptide comprising amino acid residues 1 are 2 (SEQ ID NO:3).
16. Figure 2 (SEC	Isolated PRO1114 polypeptide comprising amino acid residues about 30 to 311 of Q ID NO:3).
	Isolated PRO1114 polypeptide comprising amino acids 1 or about 30 to X of the equence shown in Figure 2 (SEQ ID NO:3), wherein X is any one of amino acids Figure 2 (SEQ ID NO:3).
18. deposited as A	Isolated PRO1114 polypeptide encoded by the cDNA insert of the vector ATCC Accession No (DNA57033-1403).

The chimeric molecule of Claim 19, wherein said heterologous amino acid sequence is an epitope tag sequence.

19.

20.

amino acid sequence.

A chimeric molecule comprising a PRO1114 polypeptide fused to a heterologous

- 21. The chimeric molecule of Claim 19, wherein said heterologous amino acid sequence is a Fc region of an immunoglobulin.
 - 22. An antibody which specifically binds to a PRO1114 polypeptide.
 - 23. The antibody of Claim 22, wherein said antibody is a monoclonal antibody.
- 24. An isolated DNA48466 nucleic acid comprising the nucleotide sequence of SEQ ID NO:4 or its complement.

Abstract of the Disclosure

The present invention is directed to novel polypeptides having homology to the cytokine receptor family of proteins and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.

GenenGenes Feedback