## [Mathematics Homework 1]

(伊曼沙-202161014)

1. Use the Bisection method to find  $P_3$  for  $f(x) = \sqrt{x} - \cos(x) = 0$  on [0, 1].



## Matlab script:

```
x1 = input('Enter the value of x1: ');
x2 = input('Enter the value of x2: ');
if y(x1)*y(x2) > 0
    fprintf('No root exist within the given interval \n');
   return
end
if y(x1) == 0
   fprintf('x1 is one of the roots \n')
   return
elseif y(x2) == 0
   fprintf('x2 is one of the root \n')
   return
end
for i = 1: 3
   xh = (x1+x2)/2; % bisection
   if y(x1) * y(xh) < 0
       x2 = xh;
   else
       x1 = xh;
   end
   if abs(y(x1)) < 1.0E-6
```

2. Let f(x) = 3(x + 1)(x - 1/2)(x - 1). Use the Bisection method on the following intervals to find P<sub>3</sub>. a. [-2, 1.5].

| ıntervals | to find I            | 23. a. [            | 2, 1.5].        |                 |                             |                 |                |     |
|-----------|----------------------|---------------------|-----------------|-----------------|-----------------------------|-----------------|----------------|-----|
| (2) Let   | fon z                | 3(20+1)             | (2-12)(         | x-1). Use       | . the Bise                  | from meth       | oil on the fol | lor |
| 3 at 10   | terval               | (a) I.              | 2.157 6         | F1.25, 2.5      | ] find                      | P3:             |                |     |
| Iteration | an                   | bn                  | f(an)           | f(bn)           | $P_n = \frac{Q_n + b_n}{2}$ | f(Pn)           |                |     |
| 1         | -2                   | 1.5                 | -22.5           | 3.75            | -0.25                       | 2:109           |                |     |
| 2         | -2                   | -0.25               | -22.5           | 2.109           | -1.125                      | -1.295<br>2.291 |                |     |
| 3         | -1.125               | -0.25<br>- <b>C</b> | -1.295<br>-5259 | -1/195<br>20109 | 2.109<br>-15625<br>=0.6875  | 1.878           |                |     |
| 624       | $\frac{1}{3} = -1.5$ | 5625                | at Ex           | ,-1.125]        |                             |                 | 7              |     |
| 00        | P3 Z -               | 0.687               | 5 at            | L-1.125         | ,-0.25]                     |                 |                |     |
|           |                      |                     | -               |                 | —                           |                 |                |     |
|           |                      |                     |                 |                 |                             |                 |                |     |

Let f(x) = 3(x + 1)(x - 1/2)(x - 1). Use the Bisection method on the following intervals to find P<sub>3</sub>. a. [-1.25, 2.5].

Therefore 
$$A_n = 3(x+1)(x-2)(x-1)$$
 at  $[-1.25, 2.5]$  find  $A_3$ :

Heather  $A_n = 3(x+1)(x-2)(x-1)$  at  $[-1.25, 2.5]$  find  $A_3$ :

1 -1.25 2.5 -2.953 31.5 0.625 -0.2285

2 0.625 2.5 -0.2285 31.5 1.563

3 0.625 1.563 -0.2285 4.6016 1.094 0.3508

## Matlab script for question 2 a and b:

```
%y = @(x) 3*((x+1) * (x - (1/2)) * (x-1));
y = @(x) 3*x^3 - 1.5*x^2 - 3*x + 1.5;
x1 = input('Enter the value of x1: ');
x2 = input('Enter the value of x2: ');
if y(x1)*y(x2) > 0
    fprintf('No root exist within the given interval \n');
    return
end
if y(x1) == 0
    fprintf('x1 is one of the roots \n')
    return
elseif y(x2) == 0
   fprintf('x2 is one of the root \n')
end
for i = 1:3
    xh = (x1+x2)/2; % bisection
    if y(x1)*y(xh) < 0
       x2 = xh;
    else
       x1 = xh;
    end
    if abs(y(x1)) < 1.0E-6
       break
    end
end
fprintf('The root: %f\n The number of bisections: %d\n',x1,i)
```