Lehrprojekt:

Energieversorgung eines Quartiers

Christoph Pels Leusden Jakob Wolf Janine Last

BEUTH HOCHSCHULE FÜR TECHNIK BERLIN

University of Applied Sciences

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Beuth Hochschule für Technik Berlin

- Gegründet 1971 als Technische Fachhochschule Berlin
- Über 12.000 Studierende in mehr als 70 Studiengängen
- Eine der größten Fachhochschulen Deutschlands
- Größtes Angebot an ingenieurwissenschaftlichen Studiengängen in Berlin-Brandenburg

Copyright: Beuth Hochschule Berlin

Disclaimer

Alle in diesem Workshop verwendeten Namen sind erfunden oder wurden zufällig ausgewählt. Eventuelle Gemeinsamkeiten mit realen Orten oder Personen sind zufällig und sind von den Autoren nicht beabsichtigt. Dieser Workshop soll ein fiktives Szenario betrachten.

Lizenz

Sofern nicht gesondert vermerkt ist der Inhalt dieser Datei lizensiert als Beuth Hochschule für Technik Berlin, Energie-Workshop (Präsentation) unter CC BY SA: Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 Internationale Lizenz

Download

https://github.com/oemof-heat/educational_project

Warum Energiesystem-Modellierung?

- Zusammenspiel verschiedener Sektoren (Strom, Wärme, Brennstoffe)
- Unterschiedliche Verbraucher (Haushalt, Industrie, Mobilität, Gewerbe)
- Variables EE-Angebot
- Neues Technologien
- Transport- und Verteilnetze (sektorabhängig)
- Kosten, Klimaschutz, Versorgungssicherheit

Bildquelle: "Energy System Puzzle,,, Autor Uwe Krien/Reiner Lemoine Institut, Lizenz CC BY 4.0

Werkzeuge

Quelle: Klemm, Christian, FH Münster, lizensiert unter CC-BY-SA-NC

Auswahlkriterien

- Funktionsumfang, Modellierungsansatz
- Lizenz-Kosten
- Transparenz der Berechnung
- Benutzerfreundlichkeit
- Weitergabemöglichkeit

Das Berechnungswerkzeug

- oemof: open energy system modelling framework
- modularer aufgebaut
- flexibel anpassbar (örtliche und zeitliche Auflösung)
- viele technische Komponenten abbildbar
- lineare Optimierung
- verfügbar unter freier Lizenz
- volle Modellierungs-Transparenz möglich

Weitere Infos im Webinar:

https://oemof.files.wordpress.com/2018/01/2018_01_10_webinar_oemof.pdf

Oemof: Abbildung eines Energiesystems

Quelle: Klemm, Christian, FH Münster, lizensiert unter CC-BY-SA-NC

oemof: Optimierung eines Energiesystems

Quelle: Klemm, Christian, FH Münster, lizensiert unter CC-BY-SA-NC

oemof-Komponenten: Energiebus als Sammler und Verteiler

oemof-Komponenten: Energiewandler und -speicher

Übungsaufgabe 1

Ein Mehrfamilienhaus nutzt zur Wärme- und Stromversorgung eine PV-Anlage und eine Wärmepumpe. Im Keller steht außerdem ein 1000 Liter-Pufferspeicher. Es besteht ein Netzanschluss an das elektrische Versorgungsnetz.

- 1. Zeichnen Sie eine sinnvoll Struktur wie das Energiesystem aus oemof-Komponenten abgebildet werden könnte.
- 2. Überlegen Sie welche Kennzahlen erforderlich wären, um die Eigenschaften des Energiesystems zu beschreiben.

Zwei Typen der Energie-Systemmodellierung:

	Einsatzoptimierung	Investitionsoptimierung
Ausgangs -situation	 Versorgungsaufgabe bekannt Ressourcen bekannt Energiesystem gegeben 	 Versorgungsaufgabe bekannt Ressourcen bekannt Mögliche Komponenten des Energiesystems gegeben
		Aus welche Komponenten besteht das Energiesystem?
Ergebnis	Wie wird Versorgung erbracht?	Wie wird Versorgung erbracht?
	Welche Ressourcen werden genutzt?	Welche Ressourcen werden genutzt?
	Welche Komponenten sind wann in Betrieb?	Welche Komponenten sind wann in Betrieb?

Beispiel Einsatzoptimierung

Strom und Wärmeversorgung einer deutschen Kleinstadt mit 10.000 Einwohnern

Abbildungsnachweis: File:Nassau Luftbild 070.jpg, https://commons.wikimedia.org/w/index.php?title=File:Nassau Luftbild 070.jpg&oldid=167023111 (last visited August 13, 2019)

https://github.com/oemof-heat/energy-system-planning-workshop

Übungsaufgabe 2

Es soll die Wärme- und Stromversorgung eines Quartiers geplant werden (Investitionsoptimierung). Dazu soll ein kosten-optimales Energiesystem gefunden werden. Folgende technische Optionen stehen zur Verfügung:

- Gaskessel
- Blockheizkraftwerk
- PV-Anlage
- Solarthermie-Anlage
- Wärmepumpe
- Wärmespeicher
- Stromspeicher
- 1. Zeichnen Sie eine sinnvoll Struktur wie das Energiesystem aus oemof-Komponenten abgebildet werden könnte.
- 2. Überlegen Sie welche Kennzahlen erforderlich wären, um die Eigenschaften des Energiesystems zu beschreiben.

Energiesystem für das Quartier

Übungsaufgabe 3

Definieren Sie das Quartier:

1. Anzahl von Einfamilienhäusern (EFH) und Mehrfamilienhäusern (MFH) inkl. typische Wohnfläche und Personenzahl, z.B.

$$A_{EFH} = 150 \text{ m}^2;$$
 $PZ_{EFH} = 4$
 $A_{MFH} = 6 \times 80 \text{ m}^2$ $PZ_{MFH} = 6 \times 3$

2. Festlegung spezifischer Bedarf an elektrischer Energie, z.B.

EFH: 4000 kWh/a

MFH: 6 x 2500 kWh/a

3. Festlegung spezifischer Raumwärmebedarf (stark abhängig von Sanierungsgrad des Quartiers) sowie Wärmebedarf für Brauchwasser, z.B.

EFH: $q_{EFH} = 50 - 150 \text{ kWh} / (\text{m}^2 \text{ x a})$

MFH: $q_{MFH} = 40 - 120 \text{ kWh} / (\text{m}^2 \text{ x a})$

Brauchwasser: 750 – 900 kWh / (Person x a)

4. Bestimmen Sie den Jahresbedarf an elektrischer und thermischer Energie.

Wie ist die zeitliche Variation des Bedarfs?

Parameter Einheit Erläuterung

$P^{*}\left(t\right)$	%	normierte elektrische Bedarfsleistung (gegebene Zeitreihe)
$Q^*(t)$	%	normierte thermische Bedarfsleistung (gegebene Zeitreihe)
W_{el}	kWh	elektrische Jahresarbeit (festzulegende Kennzahl)
W_{th}	kWh	thermische Jahresarbeit (festzulegende Kennzahl)
Δt	h	Länge des Zeitschritts der Zeitreihe
n	1	Anzahl der Zeitschritte

Die absoluten Werte für die Bedarfsleistung kann dann berechnet werden:

$$P\left(t
ight) = P^{*}\left(t
ight) \cdot rac{W_{el}}{\sum_{i}^{n}P^{*}\left(t_{i}
ight) \cdot \Delta t}$$
 $Q\left(t
ight) = Q^{*}\left(t
ight) \cdot rac{W_{th}}{\sum_{i}^{n}Q^{*}\left(t_{i}
ight) \cdot \Delta t}$

Annahmen zur Vereinfachung der Rechnung

- Verlustfreier Energietransport
- Konstante Preise für Strom-, Wärme- und Gasbezug
- Kein Ertrag für Überschüsse
- Konstanter CO₂-Preis
- Keine Begrenzungen bei bezogenen Energiemengen (auch Umgebungswärme)

Randbedingungen: Solare Einstrahlung

Daten: Strahlungsdaten aus eigener Berechnungen basierend auf DWD Climate Data Center (CDC)

Welche Daten werden für eine Investitionsoptimierung benötigt?

Bedarfe:

- Jahresbedarf Strom und Wärme
- Zeitreihen-Faktoren

Energiesystem:

- Konverter: Wirkungsgrade, spezifische Kosten, spezifische CO2-Emissionen
- Speicher: Einspeicher- bzw. Ausspeicherverluste, Selbstentladerate
- Lebensdauern, Größenbegrenzungen (Min / Max)

Annahmen und Umgebungsbedingungen:

- Kosten Strom- bzw. Wärmebezug, Gas, CO₂
- Zinsen
- Solare Einstrahlung

oemof-Eingabe Teil 1 (Beispieldatensatz)

id var_name	value	unit	comment
1 W_el	400000	0 kWh	el. Jahresarbeit
2 W_th	1800000	0 kWh	th. Jahresarbeit
3 vc_gas	0.03	Euro/kWh	spez. Kosten für Erdgas
4 vc_CO2	0.15	Euro/kWh	spez. Kosten für CO2-Emissionen
5 vc_el	0.4	Euro/kWh	spez. Kosten für Strom aus dem Netz
6 vc_th	0.3	Euro/kWh	spez. Kosten für Fernwärme
- DV	004	0.5 (1.14)	
7 capex_PV		0 Euro/kW	spez. Investitionskosten der Solaranlage
8 capex_Sol		0 Euro/kW	spez. Investitionskosten der Solarthermieanlage
9 capex_Gaskessel		0 Euro/kW	spez. Investitionskosten des Gaskessels
10 capex_BHKW	400	0 Euro/kW	spez. Investitionskosten des BHKW
11 capex_Waermepumpe	900	0 Euro/kW	spez. Investitionskosten der Waermepumpe
12 capex_Stromspeicher	800	0 Euro/kWh	spez. Investitionskosten des Stromspeichers
13 capex_Waermespeicher	20	0 Euro/kWh	spez. Investitionskosten des Waermespeichers
14 cf PV	0.15		Wirkungsgrad der Solaranlage
15 cf Sol	0.7		Wirkungsgrad der Solarthermieanlage
16 cf Gaskessel	0.9		thermischer Wirkungsgrad des Gaskessels
17 cf_BHKW_el	0.4		el. Wirkungsgrad des BHKW
18 COP_Waermepumpe	3.5		Wirkungsgrad der Waermepumpe
19 cf_Stromspeicher_ein	0.95		Einspeicherwirkungsgrad des Stromspeichers
20 cf_Stromspeicher_aus	•	1	Ausspeicherwirkungsgrad des Stromspeichers
21 cf_Waermespeicher_ein	0.95		Einspeicherwirkungsgrad des Waermespeichers
22 cf_Waermespeicher_aus	•	1	Einspeicherwirkungsgrad des Waermespeichers

Hinweis: Diese Werte bilden kein konkretes Energiesystem ab und stellen keine allgemein gültigen oder empfohlenen Werte da. In einzelnen Fällen wurden bewusst besonders hohe oder niedrige Werte angesetzt, um technologische Optionen in der Optimierung zu berücksichtigen.

oemof-Eingabe Teil 2 (Beispieldatensatz)

23 A_min_PV	0 m2	Mindestflaeche der Solaranlage
24 A_min_Sol	250 m2	Mindestflaeche der Solarthermieanlage
25 min_Gaskessel	0 kW	Mindestgroesse des Gaskessels
26 max_Gaskessel	inf kW	Maximalgroesse des Gaskessels
27 min_BHKW	0 kW	Mindestgroese des BHKW
28 max_BHKW	inf kW	Maximalgroesse des BHKW
29 min_Waermepumpe	0 kW	Mindestgroesse der Waermepumpe
30 max_Waermepumpe	inf kW	Maximalgroesse der Waermepumpe
31 min_Stromspeicher	0 kWł	Mindestgroesse des Stromspeichers
32 max_Stromspeicher	inf kWl	Maximalgroesse des Stromspeichers
33 min_Waermespeicher	0 kWl	Minimalgroesse des Waermespiechers
34 max_Waermespeicher	inf kWl	Maximalgroesse des Waermespeichers
35 n_PV	20 Jahr	
36 n_Sol	20 Jahr	· · · · · · · · · · · · · · · · · · ·
37 n_Gaskessel	20 Jahr	e Lebenszeit des Gaskessels
38 n_BHKW	20 Jahr	
39 n_Waermepumpe	20 Jahr	e Lebenszeit der Waermepumpe
40 n_Stromspeicher	20 Jahr	e Lebenszeit des Stromspeichers
41 n_Waermespeicher	20 Jahr	e Lebenszeit des Waermespeichers
42 wacc	0.04	gewichtete durchschnittliche Kapitalkosten
43 A_Kollektor_gesamt	2000 m2	Gesamte maximale Kollektorflaeche für PV und Solarthermie
44 lr_Stromspeicher	0	Verlustrate Stromspeicher
45 isl Stromspeicher	0.5	Anfangsladestand Stromspeicher
46 lr_Waermespeicher	0.03	Verlustrate Waermespeicher
47 isl_Waermespeicher	0.5	Anfangsladestand Waermespeicher
48 emission_gas	202 g/kV	Vh spez. Emissionen Erdgas
49 emission_el	537 g/kV	,
50 emission_th	280 g/kV	·

Hinweis: Diese Werte bilden kein konkretes Energiesystem ab und stellen keine allgemein gültigen oder empfohlenen Werte da. In einzelnen Fällen wurden bewusst besonders hohe oder niedrige Werte angesetzt, um technologische Optionen in der Optimierung zu berücksichtigen.

Übungsaufgabe 4

- Passen Sie den Eingabe-Datensatz so an, dass das von Ihnen definierte Quartier berechnet werden kann.
- 2. Treffen Sie falls erforderlich weitere Annahmen, um alle erforderlichen Eingabeparametern zu definieren.
- 3. Führen Sie eine Optimierungsrechnung mit oemof durch.

Installation und Rechnung

Siehe "MET_Installation-Guide-1.0"

Die Ergebnisse: Energiesystem

Gesamtkosten in Tsd. Euro/a	332.9	Einsatz der Speicher	
CO2-Emissionen_t/a	318.1	Stromspeicher Vollzyklen	Kein Stromspeicher installiert.
Deckungsgrad	0.9915985162849611	Gesamtstrom aus Speicher/Gesamtstrombedarf	Kein Stromspeicher installiert.
Investitionsgroesse_PV_kW	262.5	Waermespeicher Vollzyklen	118.93930546314618
dazu benoetigte Flaeche_m2	1750.0	Gesatmwaerme aus Speicher/Gesamtwaermebedarf	0.046750698538595994
Investitionsgroesse_Solarthermie_kW	175.0	CO2-Emissionen	
dazu benoetigte Flaeche_m2	250.0	Durch Gaskessel t/a	2.8
Investitionsgroesse_Gaskessel_kW	55.5	Durch BHKW t/a	311.5
Investitionsgroesse_BHKW_kW	153.5	Durch zugekauften Strom_t/a	3.5
Investitionsgroesse_Waermepumpe_kW	247.9	Durch zugekaufte Waerme_t/a	0.2
Investitionsgroesse_Stromspeicher_kWh	0.0	Kosten	0.2
Investitionsgroesse_Waermespeicher_kWh	206.3	Anteilige Investitionskosten in Tsd. Euro/a	50.0
Strom		davon fuer PV	15.5
Gesamtbedarf_Strom_MWh	400.0	davon fuer Solarthermie	12.9
Stromueberschuss_MWh	0.0	davon fuer Gaskessel	0.4
Gesamtstromerzeugung inkl. WP_MWh	671.4	davon fuer's BHKW	4.5
davon aus PV	47.9	davon fuer Waermepumpe	16.4
davon aus BHKW	616.9	·	-
davon zugekauft	6.6	davon fuer Stromspeicher	0.0
Waerme		davon fuer Waermespeicher	0.3
Gesamtbedarf_Waerme_MWh	1800.0	Betriebskosten in Tsd. Euro/a	282.9
Waermeueberschuss_MWh	0.1	davon fuer Gaseinkauf	46.7
Gesamtwaermeerzeugung_MWh	1806.0	davon fuer CO2_Emissionen	233.4
davon aus Solarthermie	149.0	davon fuer Stromzukauf	2.6
davon aus Gaskessel	12.5	davon fuer Waermezukauf	0.2
davon aus BHKW	694.0	Deckungsgrad	
davon aus Waermepumpe	949.9	Autarkie_el	0.9835120330851665
davon zugekauft	0.6	Autarkie_th	0.9996849994847556

Die Ergebnisse: Zeitreihe Strom

Die Ergebnisse: Zeitreihe Wärme

Beispielwoche Winter

Beispielwoche Frühling

Beispielwoche Sommer

Beispielwoche Herbst

Lernkontrollfragen:

- 1. Welches sind typische Auswahlkriterien für Software zur Modellierung von Energiesystemen?
- 2. Aus welchen Elementen lässt sich ein Modell eines Energiesystems konfigurieren?
- 3. Welche zwei Modellierungstypen gibt es?
- 4. Was sind typische Daten, die Sie festlegen müssen, um eine Modellrechnung durchzuführen?
- 5. Welche Vereinfachungen wurden genutzt?
- 6. Welche Ergebnisse lieferten die Rechnungen?

Mir hat gefallen	Das sollte man anders machen
Ich habe gelernt	Mir ist unklar

Das Projekt oemof_heat

Erweiterung von oemof für Wärmekomponenten

- Wärmepumpen
- Kollektoren
- Speicher
- Netze

Anwendungen für assoziierte Partner, u.a.

- Energieavantgarde Anhalt
- Innogy (RWE)
- Geoforschungszentrum

Open Science Ansatz

- Software
- Daten

Vernetzung

- weitere oemof Nutzer
- Weitere Gruppen der Energiesystemmodellierung

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

FZK 03ET4047B

Kontakt

Prof. Dr.-Ing. Christoph Pels Leusden Beuth Hochschule Berlin Fachbereich Maschinenbau, Veranstaltungstechnik, Verfahrenstechnik

christoph.pels-leusden@beuth-hochschule.de

Vielen Dank für Ihren Besuch beim Workshop "Wir bauen uns ein Energiesystem"

Gerhard Mester creator QS:P170,Q1512151 (https://commons.wikimedia.org/wiki/File:20170313_xl_1911-Karikatur-Gerhard-Mester-Energiespeicher.jpg), https://creativecommons.org/licenses/by-sa/4.0/legalcode

Copyright: Beuth Hochschule Berlin