LECTURE 18

Cross-Validation and Regularization

Different methods for ensuring the generalizability of our models to unseen data.

Data 100/Data 200, Fall 2021 @ UC Berkeley

Fernando Pérez and Alvin Wan (content by Joseph Gonzalez and Suraj Rampure)

Segment Roadmap

Sections 16.1 through 16.4 discuss train-test splits and cross-validation

- 16.1: why we need to split our data into train and test, and how cross-validation works
- 16.2/16.3: creating train-test split and evaluating models fit on training data using testing data
- 16.4: implementing cross-validation
 - Note: the Pipeline object in scikit-learn is not in scope for this class

Segment Roadmap

Sections 16.1 through 16.4 discuss train-test splits and cross-validation

- 16.1: why we need to split our data into train and test, and how cross-validation works
- 16.2/16.3: creating train-test split and evaluating models fit on training data using testing data
- 16.4: implementing cross-validation
 - Note: the Pipeline object in scikit-learn is not in scope for this class

Sections 16.5 and 16.6 discuss regularization.

- 16.5: why we need to regularize and how penalties on the norm of our parameter vector accomplish this goal
- 16.6: explicitly lists the optimal model parameter when using the L2 penalty on our linear model (called "Ridge Regression")

Segment Roadmap (Optional)

There are also three supplementary videos accompanying this lecture

- They do not introduce any new material, but may be helpful for your understanding
- They do not have accompanying Quick Checks

Sections 16.7 and 16.8 implement ridge and LASSO regression in a notebook

- These videos are helpful in explaining how regularization and cross-validation are used in practice
- These videos again use Pipeline, which is not in scope.

Section 16.9 is another supplementary video, created by Paul Shao (SP20 Data 100 TA)

Great high-level overview of both the bias-variance tradeoff and regularization

Cross Validation

Training Error vs Test Error

Training Error vs Test Error

Training vs Test Error

Training error typically under estimates test error.

8

- Training Data: used to fit model
- Test Data: check generalization error
- How to split?
 - o Randomly, Temporally, Geo...
 - Depends on application (usually randomly)
- What size? (90%-10%)
 - Larger training set more complex models
 - Larger test set better estimate of generalization error
 - Typically between 75%-25% and 90%-10%

Train - Test Split

Train

Test

You can only use the test dataset once after deciding on the model.

Generalization: Validation Split

Cross validation simulates multiple train test-splits on the training data.

Recipe for Successful Generalization

- 1. Split your data into **training** and **test** sets (90%, 10%)
- 2. Use **only the training data** when designing, training, and tuning the model
 - Use cross validation to test generalization during this phase
 - Do not look at the test data
- 3. Commit to your final model and train once more using **only** the training data.
- 4. Test the final model using the **test data**. If accuracy is not acceptable return to (2). (Get more test data if possible.)
- 5. Train **on all available data** and ship it!

Regularization

Parametrically Controlling the Model Complexity

Basic Idea

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i))$$

Such that:

 $f_{ heta}$ does not "overfit"

Can we make this more formal?

Basic Idea

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i))$$

Such that:

Complexity (f_{θ}) $\leq \beta$

How do we define this?

Regularization Parameter

Idealized Notion of Complexity

- Focus on complexity plants or not below the second of t
 - Number and kinds of features
- Ideal definition:

Complexity
$$(f_{\theta}) = \sum_{j=1}^{a} \mathbb{I} [\theta_j \neq 0]$$

Number of non-zero parameters

Ideal "Regularization"

Find the best value of θ which uses fewer than β features.

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i))$$

Such that:

Need an approximation!

Complexity
$$(f_{\theta}) = \sum_{j=1}^{d} \mathbb{I}[\theta_j \neq 0] \leq \beta$$

Combinatorial search problem – NP-hard to solve in general.

Norm Balls $\hat{\theta}_{ m No}$ Reg. Non-convex – Hard to solve constrained optimization problem L⁰ Norm Ball Complexity $(f_{\theta}) = \sum_{j=0}^{\infty} \mathbb{I}[\theta_{j} \neq 0] \leq \beta$

Ideal for
Feature Selection
but combinatorically
difficult to optimize

Encourages
Sparse Solutions
Convex!

Spreads weight over features (robust) does not encourage sparsity

Compromise
Need to tune
two regularization
parameters

Generic Regularization (Constrained)

Defining $Complexity(f_{\theta}) = R(\theta)$

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i))$$

Such that: $R(\theta) \leq \beta$

There is an equivalent unconstrained formulation (obtained by Lagrangian duality)

Generic Regularization (Constrained)

Defining $\mathbf{Complexity}(f_{\theta}) = R(\theta)$

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathbf{Loss}(y_i, f_{\theta}(x_i)) + \lambda R(\theta)$$
Regularization

There is an equivalent unconstrained formulation (obtained by Lagrangian duality)

Parameter

Determined through cross validation

Standardization and the Intercept Term

• Height =
$$\theta_2$$
 weight_in_tons

Regularization penalized dimensions equally ardization

Standardization

- Ensure that each dimensions has the same scale
- centered around zero

Intercept Terms

Typically don't regularize intercept term

For each dimension k: $z_k = \frac{x_k - \mu_k}{\sigma_k}$

Ridge Regression

"Ridge Regression" is a term for the following specific combination of model, loss, and regularization:

- Model: $\hat{\mathbb{Y}} = \mathbb{X}\theta$
- Loss: Squared loss
- Regularization: L2 regularization

The **objective function** we minimize for Ridge Regression is average squared loss, plus an added penalty:

$$\hat{ heta}_{ ext{ridge}} = rg\min_{ heta} rac{1}{n} ||\mathbb{Y} - \mathbb{X} heta||_2^2 + \lambda \sum_{i=1}^d heta_i^2$$

Ridge Regression

We can also express this objective slightly differently:

$$\hat{ heta}_{ ext{ridge}} = rg \min_{ heta} rac{1}{n} ||\mathbb{Y} - \mathbb{X} heta||_2^2 + \lambda \sum_{j=1}^d heta_i^2.$$

$$\hat{ heta}_{ ext{ridge}} = rg \min_{ heta} rac{1}{n} ||\mathbb{Y} - \mathbb{X} heta||_2^2 + \lambda || heta||_2^2$$

The latter representation ignores the fact that we don't regularize the intercept term.

L2 norm of theta (hence, L2 regularization)

Ridge Regression

Ridge Regression has a closed form solution, conveniently:

$$\hat{ heta}_{ ext{ridge}} = (\mathbb{X}^T \mathbb{X} + n \lambda I)^{-1} \mathbb{X}^T \mathbb{Y}$$

Unlike OLS, there always exists a unique optimal parameter vector for Ridge Regression.

This is important, you should remember it!

LASSO Regression

"LASSO Regression" is a term for the following specific combination of model, loss, and regularization:

- Model: $\hat{\mathbb{Y}} = \mathbb{X}\theta$
- Loss: Squared loss
- Regularization: L1 regularization

The **objective function** we minimize for LASSO Regression is average squared loss, plus an added penalty:

$$\hat{ heta}_{ ext{LASSO}} = rg\min_{ heta} rac{1}{n} ||\mathbb{Y} - \mathbb{X} heta||_2^2 + \lambda \sum_{j=1}^d | heta_i|$$

LASSO Regression

We can also express this objective slightly differently:

$$\hat{ heta}_{ ext{LASSO}} = rg \min_{ heta} rac{1}{n} ||\mathbb{Y} - \mathbb{X} heta||_2^2 + \lambda \sum_{j=1}^d | heta_i|$$

$$\hat{ heta}_{ ext{LASSO}} = rg \min_{ heta} rac{1}{n} ||\mathbb{Y} - \mathbb{X} heta||_2^2 + \lambda || heta||_1^2$$

Unfortunately, there is no closed-form solution for the optimal parameter vector for LASSO. We must use numerical methods (like gradient descent).

Summary of Regression Methods

Name	Model	Loss	Reg.	Objective	Solution
OLS	$\hat{\mathbb{Y}}=\mathbb{X} heta$	Squared loss	None	$rac{1}{n} \mathbb{Y}-\mathbb{X} heta _2^2$	$\hat{ heta}_{ ext{OLS}} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{Y}$
Ridge Regression	$\hat{\mathbb{Y}}=\mathbb{X} heta$	Squared loss	L2	$rac{1}{n} \mathbb{Y}-\mathbb{X} heta _2^2+\lambda\sum_{j=1}^d heta_i^2$	$\hat{ heta}_{ ext{ridge}} = (\mathbb{X}^T \mathbb{X} + n \lambda I)^{-1} \mathbb{X}^T \mathbb{Y}$
LASSO	$\hat{\mathbb{Y}}=\mathbb{X} heta$	Squared loss	L1	$rac{1}{n} \mathbb{Y}-\mathbb{X} heta _2^2+\lambda\sum_{j=1}^d heta_i $	No closed form

Fitting vs. Evaluating

While we may use a regularized objective function to determine our model's parameters, we still look at (root) mean squared error to evaluate our model's performance.

$$\hat{ heta}_{ ext{ridge}} = rg \min_{ heta} rac{1}{n} ||\mathbb{Y} - \mathbb{X} heta||_2^2 + \lambda \sum_{j=1}^d heta_i^2$$

$$ext{RMSE} = \sqrt{rac{1}{n}\sum_{i=1}^n (y_i - \mathbb{X}_i^T\hat{ heta}_{ ext{ridge}})^2} = \sqrt{rac{1}{n}||\mathbb{Y} - \mathbb{X}\hat{ heta}_{ ext{ridge}}||_2^2}$$

The regularization penalty is there for the purposes of model fitting only.