MATH 1710 Problem Workshop 6

- Show that $\frac{d}{dx} \cot^{-1} x = -\frac{1}{1+x^2}$ using implicit differentiation.
 - 2. Calculate the following
 - (a) $\frac{d}{dx}\sin^{-1}(\sqrt{x})$ when x = 0.64.
 - (b) $\frac{d}{dx} (\tan^{-1} x)^3$ when $x = \sqrt{3}$.

(a) Assuming y is defined as a function of x given by the equation

$$2y \cot^{-1} x = \pi (1 + xy).$$

Find an equation of the tangent line to the curve when x = 1.

- (b) Find the equation of the normal line at the same point.
- 4 Find the position of the point E on the line segment CD in the following figure in order that the angle AEB is as large as possible.

A fisherman, sitting in a stationary boat F observes two other boats travelling on the lake in which he is fishing. Boat A is travelling due east at a constant speed of 50 kilometres per hour along a straight line 1 metre north of the fisherman. Boat B is travelling due north at a constant speed of 40 kilometres per hour along a line two kilometres east of the fisherman. If θ denotes the angle between the two lines of sight of the fisherman, find the rate at which θ is changing at the instant when boat A is $\sqrt{10}$ kilometres from the fisherman and boat B is $2\sqrt{2}$ kilometres from the fisherman.

