MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

3. Funciones Continuas

3.1. En los siguientes casos, encuentra $\delta > 0$ de modo que si $0 < |x - x_0| < \delta$, entonces $|f(x)-f(x_0)|<\epsilon.$

A)
$$f(x) = 1/x$$
, $x_0 = 2$ y $\epsilon = 1/2$ B) $f(x) = \frac{x-1}{x^2-1}$, $x_0 = 1$ y $\epsilon = 1/3$

C) $f(x) = \frac{1}{x-1} - \sqrt{x}$, $x_0 = 2$ y $\epsilon = \frac{1}{n}$.

3.2. De las siguientes funciones, calcula su dominio y los límites (o límites laterales) relevantes para representar la gráfica de cada función.

a) $f(x) = \frac{1+x^2}{x+1}$ b) $f(x) = \sqrt{|x+5| - |x-7|}$ c) $f(x) = \sqrt{1 - \sqrt{1-x^2}}$

d)
$$f(x) = \frac{x}{\sqrt{x^3 - x^2}}$$
 e) $f(x) = |x| + 1 + \frac{\log |x|}{x^2}$ e) $f(x) = \begin{cases} \frac{x}{1 - x^2} & \text{si } x > 0 \\ \frac{x + 1}{x^2 - 1} & \text{si } x < 0 \end{cases}$
3.3. Calcula los correspondientes límites laterales y determina si las siguientes funciones

son continuas.

a) $f(x) = \begin{cases} \frac{e^{1/x}}{1+e^{1/x}} & \text{si } x \le 0 \\ \frac{1-\sqrt{1-x^2}}{x^2} & \text{si } x > 0 \end{cases}$ b) $f(x) = \begin{cases} \frac{x^2+1}{1+x} & \text{si } x < -1 \\ e^{\frac{1}{x+1}} & \text{si } x \ge -1 \end{cases}$

- 3.4. Demuestra que $\lim_{x \to \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + \dots + b_1 x + b_0} \in \mathbb{R}, b_m \neq 0$, si y solo si $m \geq n$. ¿Cuánto vale este límite?
- 3.5. Algunas afirmaciones de las que siguen son verdaderas. Otras son falsas. Justifica cómo es cada una:

Existen al menos dos funciones f y g definidas sobre \mathbb{R} tales que:

Existen at menos dos funciones f(x) is definited best formula. A) $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} g(x) = \infty$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$.

B) $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} g(x) = \infty$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 3$.

C) $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to \infty} g(x) = \infty$ if $\lim_{x \to \infty} \frac{f(x)}{g(x)}$, if $\lim_{x \to \infty} f(x) = \infty$.

D) $\lim_{x \to \infty} f(x) = 0$, $\lim_{x \to \infty} g(x) = 0$ y $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$.

E) $\lim_{x \to \infty} f(x) = 0$, $\lim_{x \to \infty} g(x) = 0$ y no existe $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ ni es

3.6. Utiliza que $\lim_{x\to 0} \frac{\sin x}{x} = 1$ para calcular los siguientes límites: a) $\lim_{x\to 0} \frac{\sin 2x}{x}$ b) $\lim_{x\to 0} \frac{\sin ax}{bx}$ c) $\lim_{x\to 0} \frac{\sin^2 2x}{x^2}$

1

- **3.7.** Encuentra la función f^{-1} y su dominio en los casos

- a) $f(x) = 2^x = e^{x \log 2}$ b) $f(x) = \frac{2}{4x 5}$ c) $f(x) = \tan(\frac{\pi}{2}e^{-x}), x \ge 0$ d) $f(x) = \frac{1}{x \sqrt{x}}$.

 - **3.8.** sea $P(x) = x^n + ... + a_1 x + a_0$ una función polinómica. Prueba que
- a) si P es de grado par, entonces $\lim_{x\to+\infty} P(x) = \infty$,
- b) si P es de grado impar, entonces $\lim_{x\to-\infty} P(x) = -\infty$,
- c) si P es grado impar, entonces la ecuación P(x) = 0 tiene al menos una ecuación.
- **3.9.** Para cada una de las siguientes funciones f polinómicas encuentra un entero $m \in \mathbb{Z}$ de modo que la ecuación f(x) = 0 tenga una solución en [m, m+1].
- a) $f(x) = x^3 x + 3$ b) $f(x) = x^5 + 5x^4 + 2x + 1$ a) $f(x) = x^5 + x + 1$ d) $f(x) = 4x^2 4x + 1$

- **3.10.** Sea $f:[0,2] \to [0,2]$ una función continua de modo que f(0)=f(2). Demuestra que existen dos puntos $x, y \in [0, 2]$ a los cuales les pasa que |x - y| = 1 y que f(x) = f(y).
- **3.11.** Se consideran las ecuaciones f(x) = 0 dadas por las funciones siguientes. ¿Cuáles tienen solución y cuáles no? Justifica tu respuesta.

- a) $f(x) = \frac{x^4 + x^3 + 4}{x^2 + 1}$ b) $f(x) = \frac{x^4 + x^3 + 4}{(x^2 11)^2}$ c) $f(x) = |\ln |x|| (3x 6)$ d) $f(x) = \frac{x^15 + 7x^2 12}{\ln x} x^2$.
- **3.12.** Sea d una dirección en el plano y T un triángulo. Prueba que existe una recta con dirección d de modo que divide al triángulo en dos partes de áreas iguales.
- **3.13.** Un coche recorre 100 kilómetros en 50 minutos sin detenerse. Demuestra que hubo un minuto en el cual recorrió 2 kilómetros.
- **3.14.** Sean $x_1, x_2, x_3, ..., x_n$, números reales distintos. Encuentra una función polinómica f de grado n-1 de modo que $f(x_i) = a_i$, donde $a_1, a_2,, a_n$ son números dados y i = 1, 2,n.
- a) Encuentra un polinomio de grado 2, P, de modo que P(0) = 2, P(1) = -1 y P(2) = 6
- b) Encuentra un polinomio de grado 3, P, tal que P(-1) = 3, P(0) = 4, P(1/2) = 2 y P(2/3) =-3.
- **3.15.** Construye una función $f: \mathbb{R} \to \mathbb{R}$ continua que, en cada caso, verifique las propiedades-
- a) $\lim_{x\to -\infty} f(x) = 2$, $\lim_{x\to \infty} f(x) = 1$ y f(x) > 0 para todo $x \in \mathbb{R}$. b) f(x) = 1 para todo $x \in [-3, 3]$, f(x) < 0 si |x| > 5 y $\lim_{x\to \pm \infty} f(x) = 0$.
- **3.16.** Para cada una de las funciones siguientes di cuales están acotadas superior o inferiormente y cuáles tienen máximo y/o mínimo. Haz un boceto de sus gráficas.

- a) $f(x) = \frac{x}{1+x^2}$, en [-5,5] b) $g(x) = \frac{3+x}{2+x}$, en [-3,2] c) $h(x) = \frac{x}{2} + |x|$, en [-2,2] d) $l(x) = \frac{1}{1+|x-1|} + |2-x|$, en \mathbb{R} .