f(x10,)	$f(\chi 0)$ • Once we mote $\int d\theta g(\theta)$, $g(x) = \int d\theta g(x) d\theta$
£ [\(\frac{1}{2}\)	random this is Baysian variable
x	"o bservable"
4	good cwton.
-lnL(0)	Note SdO L(0) + 1.
θ	
L(0) = f(χ 0)	Transformation
P fixed	· What's the PDF of Y(x) under given PDF f(x)?
,	g(7)
	$\Rightarrow \beta(\mathcal{F}) = \frac{1}{ \partial \mathcal{F}/\partial \mathcal{X} } f(\mathcal{X}(\mathcal{F}))$
	
	· Likelihood is invariant to transf. of O.
	L (Φ(0)) = L ((0)) for 0 = Φ(0)
<u>-</u>	
•	· · · · · · · · · · · · · · · · · · ·

	Parameter Estimation	
	f(X, ♥)	
	· Introduce Ô(X) "Estimator" a func. Of R.V. X (i.e. R.V	.]]
on't Sorget	· Introduce E[@ 0] "expectation"	
E[] depends on		
g. (parars)	0. 0 0	
	bias (0) := E[ô 0] - 0 bias of an estimator 0 under 0.	
unbiased estimator bias (0)=($Var[\hat{0} 0] = E[(\hat{0} - E[\hat{0}])^2 0]$	
001	$MSE[\hat{0},0] = E[(\hat{0}-0)^2 0]$ Mean squared exor	·.
	$Cov[\hat{\Theta} \Theta] = Cov[\hat{\Theta}_i, \hat{\Theta}_j \Theta] = E[(\hat{\Theta}_i - E[O_i])(\hat{\Theta}_j - E[O_j]) \Theta]$	
	& Cramér-Rao bound	
	Var $\left[\hat{\theta} \mid 0\right] \ge \frac{\left(1 + \frac{3b}{50}(0)\right)^2}{I(\theta)}$ for 1-D ca	se
	$I_{ij}(0) = E\left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \left(-L_n L(0)\right) \middle \theta\right]$	
	$= \int dx f(x 0) \frac{\partial \partial_{i} \partial \partial_{j}}{\partial x^{2}} \left(-\ln L(0)\right)$	

bias (û / u) = ... = 0

	For O^2 ? $\widehat{O}^2_{MLE} = \sum \frac{(\chi_i - \mu)^2}{N}$ If we know μ , \widehat{O}^2_{MLE} is unbiased. If we don't know,
	$\hat{\mathcal{O}}_{ME}^{2} = \sum_{N=1}^{\infty} \frac{(\chi_{1} - \hat{\mathcal{U}}_{ME})^{2}}{N}$ $\Rightarrow E[\hat{\mathcal{O}}^{2}] = \frac{N-1}{N} \mathcal{O}^{2} \text{biased}^{2}$
	but "asymptotically unbiased
	James-Stein estimator Mis = MMLE (1- (d-2)
	biased, but MSE[Wiss M] < MSE[MMLE M) Vn for Multi-din Gauss
	MSE 2 Var + Bias
	bias/variable trade - off".
,	Met is sood estimator? Minimum bias? Minimum variance?

PDF:
$$\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\lambda)^2}{2\sigma^2}} \prod_{i=1}^{n} \frac{e^{-\frac{t}{i}/\tau + \lambda}}{\tau + \lambda}$$

$$-\ln L(\tau,\lambda) = -\left[C - \frac{(y-\lambda)^{2}}{2\sigma^{2}} + \sum_{i=1}^{n} \left[-\frac{t_{i}}{\tau+\lambda} - \ln(\tau+\lambda) \right]\right]$$

$$(y-\lambda)^{2} \quad \Sigma t_{i} \quad \text{if } t \in \mathbb{R}$$

$$=\frac{(y-\lambda)^2}{2\sigma^2}+\frac{\Sigma t_i}{C+\lambda}+N\ln(\zeta+\lambda)+C$$

(a) MLE
$$\frac{\partial}{\partial \tau}(-\ln L) = -\frac{\Sigma t}{(\tau + \lambda)^2} + \frac{\eta}{|\tau + \lambda|}$$

$$\frac{\partial}{\partial \lambda}(-\ln L) = \frac{\lambda - 7}{\sigma^2} - \frac{\Sigma t_i}{(\tau + \lambda)^2} + \frac{n}{|\tau + \lambda|}$$

Both of them = 0
$$\Leftrightarrow$$
 $\begin{cases} |t+\lambda| = \frac{1}{n} \sum t_i \\ \lambda = \gamma \end{cases}$

$$\lambda(t_i, \emptyset) = \mathcal{I}$$

hereafter
$$\hat{z}(t; j) = \pm \frac{1}{n} Z z_{i} - \hat{z}$$

$$= \pm \frac{1}{n} \sum \ell_i - \mathcal{J}.$$

(b) Variance

$$^{\circ}(y) = \lambda$$
, $(t_i) = \tau + \lambda$. $Var(y) = \sigma^2$, $Var(t_i) = (\lambda + \tau)^2$

$$V_{ar}(\hat{\lambda}) = \sigma^2$$

$$\vee (\chi) = \langle (\chi - \langle \chi \rangle)^2 \rangle$$

Date

$$Var(\hat{\tau}) = Var\left(\frac{1}{n}\sum_{i}t_{i} - \gamma\right)$$

$$= \left\langle \left(\frac{1}{n}\sum_{i}t_{i} - \gamma\right) - \left(\frac{1}{n}\sum_{i}t_{i} - \gamma\right)^{2}\right\rangle$$

$$= \left\langle \left[\frac{1}{n}\sum_{i}t_{i} - (t_{i})\right] - \left(\gamma\right) - \left(\gamma\right)\right]^{2}\right\rangle = \frac{1}{n^{2}}Var(t_{i}) + Var(y)$$

$$= \left\langle \left[\frac{1}{n}\sum_{i}t_{i} - (\tau+\lambda) - \gamma + \lambda\right]^{2}\right\rangle$$

$$= \left\langle \left[\frac{1}{n^{2}}\sum_{i}t_{i} - (\tau+\lambda) - \gamma + \lambda\right]^{2}\right\rangle$$

$$= \left\langle \left[\frac{1}{n^{2}}\sum_{i}t_{i} - (\tau+\lambda) - \gamma + \lambda\right]^{2}\right\rangle$$

$$= \left\langle \frac{1}{n^{2}}(\sum_{i}t_{i})^{2} + \gamma^{2} + \tau^{2} - 2\tau + \sum_{i}t_{i}\right\rangle$$

Formula $V(a \times b \times) = a^2 V(x) + b^2 V(y) + 2ab Cov(x,y)$

MSE A rule S dominates S' if R is $k(0,S) \leq R$ is $k(0,S') \neq 0$ admissible if f no other rules dominates it. Bayes' R is k		Decision Theory
$x \in X : random var space \\ o \in A : "action" $		$\theta \in \Theta$; parameter space $f(x \theta)$
Loss (0, $\delta(x)$) and Risk (0, δ) = $E_{f(x 0)}[Loss(0, \delta(x))]$ example: MSE A rule δ dominates δ' if Risk (0, δ) \leq Risk (0, δ') \forall 0 admissible iff no other rules dominates it. Bayes' Risk $\Gamma(\pi, \delta) = E_{\pi(0)}[R(0, \delta)]$ $= \int d0 \int dx \pi(0) \delta(x 0) L(0, \delta(x))$ Expected Loss $\Gamma(\pi, \delta) = E_{\pi(0 x)} Loss(0, \delta)$ Every admissible rule is a generalized Bayes rule (for some prior $\pi(0)$)		
example: MSE A rule S dominates S' if R isk $(0, S) \leq R$ isk $(0, S')$ $\forall 0$ admissible iff no other rules dominates it. Bayes' R isle		
example: MSE A rule S dominates S' if R isk $(0, S) \leq R$ isk $(0, S')$ $\forall 0$ admissible iff no other rules dominates it. Bayes' R ish		Loss (0, $\delta(x)$) and Risk (0, δ) = Econor Loss (0, $\delta(x)$)
MSE A rule S dominates S' if $Risk(0,S) \leq Risk(0,S')$ $\forall 0$ admissible iff no other rules dominates $i \neq 1$. Bayes' Risk $ r(\pi,S) = E_{\pi(0)} [R(0,S)] $ $ = \int d0 \int dx \pi(0) S(x 0) L(0,S(x)) $ Expected Loss $ r(\pi,S) = E_{\pi(0 x)} Loss(0,S) $ • Every admissible rule is a generalized Bayes rule (for some prior $\pi(0)$)	example:	7 (10)
Bayes' Risk	,	· A rule & dominates & if Risk (0, 8) = Risk (0, 8') +0
$r(\pi, \delta) = \mathbb{E}_{\pi(0)} \left[R(0, \delta) \right]$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ f(x \theta) \ L(0, \delta(x))$ $= \int d\theta \int dx \ \pi(0) \ dx \ dx$ $= \int d\theta \int dx \ \pi(0) \ dx$ $= \int d\theta \int dx \ d$		admissible iff no other rules dominates it.
$= \int d\theta \int dx \mathcal{T}(0) f(x \theta) L(0,\delta(x))$ Expected Loss $P(\mathcal{T},\delta) = E_{\mathcal{T}(0 x)} Loss(0,\delta)$ • Every admissible rule is a generalized Bayes rule (for some prior $\mathcal{T}(0)$)		Bayes' Riste
Expected Loss $P(\pi, S) = E_{\pi(0 x)} Loss(0, S)$ • Every admissible rule is a generalized Bayes rule (for some prior $\pi(0)$)		$r(\pi, 8) = E_{\pi(0)}[R(0,8)]$
$P(\pi, S) = E_{\pi(0 x)} Loss(0, S)$ • Every admissible rule is a generalized Bayes rule (for some prior $\pi(0)$)		= \int d0 \int dx \tau(0) \x(\pi) \L(0, \x(\pi))
$P(\pi, S) = E_{\pi(0 x)} Loss(0, S)$ • Every admissible rule is a generalized Bayes rule (for some prior $\pi(0)$)		Expected Loss
(for some prior T(0))		· ·
(for some prior T(0))		
(for some prior T(0))		· Every admissible rule is a generalized Bayes rule
		· Every Bayes procedures advissible.