- **31.** Use the K_{sp} values given in **Table 3** to evaluate the solubility of each of the following in moles per liter.
 - a. AgBr
 - b. CoS
- **32.** Complete each of the following relative to the reaction that occurs when 25.0 mL of 0.0500 M Pb(NO₃)₂ is combined with 25.0 mL of 0.0400 M Na₂SO₄ if equilibrium is reached at 25°C.
 - a. Write the solubility equilibrium equation at 25°C.
 - b. Write the solubility equilibrium expression for the net reaction.
- **33.** The ionic substance T_3U_2 ionizes to form T^{2+} and U^{3-} ions. The solubility of T_3U_2 is 3.8×10^{-10} mol/L. What is the value of the solubility product constant?
- **34.** A solution of AgI contains 2.7×10^{-10} mol/L Ag⁺. What is the maximum I⁻ concentration that can exist in this solution?
- **35.** Calculate whether a precipitate will form if 0.35 L of 0.0044 M Ca(NO₃)₂ and 0.17 L of 0.000 39 M NaOH are mixed at 25°C. (See **Table 3** for K_{sp} values.) (Hint: See Sample Problem D.)
- **36.** Determine whether a precipitate will form if 1.70 g of solid AgNO₃ and 14.5 g of solid NaCl are dissolved in 200. mL of water to form a solution at 25°C.
- **37.** If 2.50×10^{-2} g of solid Fe(NO₃)₃ is added to 100. mL of a 1.0×10^{-4} M NaOH solution, will a precipitate form?

MIXED REVIEW

- **38.** Calcium carbonate is only slightly soluble in water.
 - a. Write the equilibrium equation for calcium carbonate in solution.
 - b. Write the solubility product constant expression, K_{sp} , for the equilibrium in a saturated solution of CaCO₃.
- **39.** Calculate the concentration of Hg^{2+} ions in a saturated solution of HgS(s). How many Hg^{2+} ions are in 1000 L of the solution?

- **40.** Calculate the equilibrium constant, *K*, for the following reaction at 900°C.
 - $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$ The components were analyzed, and it was found that $[H_2] = 0.061 \text{ mol/L}$, $[CO_2] = 0.16 \text{ mol/L}$, $[H_2O] = 0.11 \text{ mol/L}$, and [CO] = 0.14 mol/L.
- **41.** A solution in equilibrium with solid barium phosphate is found to have a barium ion concentration of 5.0×10^{-4} M and a K_{sp} of 3.4×10^{-23} . Calculate the concentration of phosphate ion.
- **42.** At 25°C, the value of *K* is 1.7×10^{-13} for the following reaction.

 $2N_2O(g) + O_2(g) \rightleftharpoons 4NO(g)$ It is determined that $[N_2O] = 0.0035$ mol/L and $[O_2] = 0.0027$ mol/L. Using this information, what is the concentration of NO(g) at equilibrium?

- **43.** Tooth enamel is composed of the mineral hydroxyapatite, $Ca_5(PO_4)_3OH$, which has a K_{sp} of 6.8×10^{-37} . The molar solubility of hydroxyapatite is 2.7×10^{-5} mol/L. When hydroxyapatite is reacted with fluoride, the OH⁻ is replaced with the F⁻ ion on the mineral, forming fluorapatite, $Ca_5(PO_4)_3F$. (The latter is harder and less susceptible to cavities.) The K_{sp} of fluorapatite is 1×10^{-60} . Calculate the molar solubility of fluorapatite in water. Given your calculations, can you support the fluoridation of drinking water?
- **44.** Determine if a precipitate will form when 0.96 g Na₂CO₃ is combined with 0.20 g BaBr₂ in a 10. L solution $(K_{sp} = 2.8 \times 10^{-9})$.
- **45.** For the formation of ammonia, the equilibrium constant is calculated to be 5.2×10^{-5} at 25° C. After analysis, it is determined that $[N_2] = 2.00$ M and $[H_2] = 0.80$ M. How many grams of ammonia are in the 10. L reaction vessel at equilibrium? Use the following equilibrium equation.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

CRITICAL THINKING

46. Relating Ideas Let s equal the solubility, in mol/L, of AB₂. In terms of s, what is the molar concentration of A? of B? What is the K_{sp} of AB₂?