Indian Liver Patients

Octavio M.

11 June 2019

General Overview

This project is part of the Professional Certification of HarvardX: Data Science. The main objective of this to analize one data base and use some ML. First we are going to start with a short introducction, then the given

dataset will be prepared and get ready for a data analysis that will be carried out to acomplish the main goal and develop a machine learning (ML) algorithm that will help us to analize the Indian Liver Patients. After that the results will be explained and it will help to make some conclusions.

Introduction

This project will examine data from liver patients especially concentrating on the relations between a list of key liver indicators, age, gender and then try to use them to predict liver disease.

Here is important to know that if we detect **early signs of liver disease**, we can save a lot of lifes. We know that the models have limitations and some errors, but they help us a lot.

In this project, the possibility of find early signs of liver disease with the variables we said before can help to decrease costs and help to improve the quality of life.

Data

The Liver dataset is automatically downloaded

```
if(!require(tidyverse)) install.packages("tidyverse", repos = "http://cran.us.r-proje
ct.org")
if(!require(caTools)) install.packages("caTools", repos = "http://cran.us.r-project.o
rg")
if(!require(pscl)) install.packages("pscl", repos = "http://cran.us.r-project.org")

liver_data <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/002
25/Indian%20Liver%20Patient%20Dataset%20(ILPD).csv",
    header = FALSE)
colnames(liver_data) <- c("Age", "Sex", "Tot_Bil", "Dir_Bil", "Alkphos", "Alamine",
    "Aspartate", "Tot_Prot", "Albumin", "A_G_Ratio", "Disease")
liver_data$Sex <- (ifelse(liver_data$Sex == "Male", "M", "F"))  #made shorter
liver_data$Disease <- as.numeric(ifelse(liver_data$Disease == 2, 0, 1))  #converted t
o zeros and ones</pre>
```

Analysis

Data

First of all we need to know a little bit of our data set. Down are the first rows of the *Liver Data* subset. The subset contain eleven variables **Age**, **Total_Bilirubin**, **Gender**, **Direct_Bilirubin**,

Alkaline_Phosphotase,Alamine_Aminotransferase,Aspartate_Aminotransferase,Total_Protiens,Albumin, Albumin_and_Globulin_Ratio and Dataset. Each row represent a single patient.

```
Age Sex Tot Bil Dir Bil Alkphos Alamine Aspartate Tot Prot Albumin
##
             0.7
## 1 65
         F
                     0.1
                           187
                                   16
                                           18
                                                   6.8
                                                          3.3
## 2 62
             10.9
                     5.5
                            699
                                           100
                                                   7.5
                                                          3.2
                                    64
         Μ
## 3 62
             7.3
                     4.1
                           490
                                   60
                                            68
                                                   7.0
                                                          3.3
        Μ
## 4
    58
         M
             1.0 0.4
                          182
                                  14
                                           20
                                                   6.8
                                                         3.4
                     2.0 195
## 5 72
              3.9
                                  27
                                           59
                                                  7.3
                                                        2.4
         M
## 6 46 M
             1.8
                     0.7
                          208
                                  19
                                           14
                                                  7.6
                                                        4.4
    A_G_Ratio Disease
##
## 1
       0.90
                 1
        0.74
## 2
                 1
## 3
       0.89
                 1
## 4
        1.00
                 1
## 5
       0.40
                1
        1.30
## 6
```

A summary of the Data:

```
##
                                    Tot Bil
       Age
                    Sex
                                                 Dir Bil
##
  Min. : 4.00 Length:583
                                Min. : 0.400 Min. : 0.100
  1st Qu.:33.00 Class :character 1st Qu.: 0.800 1st Qu.: 0.200
##
## Median :45.00
                Mode :character Median : 1.000 Median : 0.300
                                 Mean : 3.299 Mean : 1.486
## Mean :44.75
##
  3rd Qu.:58.00
                                 3rd Qu.: 2.600 3rd Qu.: 1.300
##
  Max. :90.00
                                 Max. :75.000 Max. :19.700
##
##
     Alkphos
                   Alamine
                                  Aspartate
                                                  Tot Prot
##
  Min. : 63.0 Min. : 10.00 Min. : 10.0
                                               Min. :2.700
  1st Qu.: 175.5 1st Qu.: 23.00 1st Qu.: 25.0
##
                                               1st Qu.:5.800
##
   Median: 208.0 Median: 35.00 Median: 42.0 Median: 6.600
  Mean : 290.6 Mean : 80.71 Mean : 109.9 Mean : 6.483
##
##
   3rd Qu.: 298.0 3rd Qu.: 60.50 3rd Qu.: 87.0 3rd Qu.:7.200
  Max. :2110.0 Max. :2000.00 Max. :4929.0 Max. :9.600
##
##
##
     Albumin
                 A G Ratio
                                 Disease
  Min. :0.900 Min. :0.3000 Min. :0.0000
##
  1st Qu.:2.600    1st Qu.:0.7000    1st Qu.:0.0000
##
  Median :3.100 Median :0.9300 Median :1.0000
##
  Mean :3.142 Mean :0.9471 Mean :0.7136
##
## 3rd Qu.:3.800 3rd Qu.:1.1000 3rd Qu.:1.0000
## Max. :5.500 Max. :2.8000 Max. :1.0000
##
                 NA's :4
```

Age

A big part of the patiens is in the range of age of 25 and 62 years old.

```
liver_data %>%
ggplot(aes(Age)) +
geom_histogram(bins = 6, color = "#00AFBB") +
xlab("Age") +
ylab("Frequency") +
ggtitle("Age of patientes")
```

Age of patientes

As we can see below, there are more male than female, in relative terms **77.8% of Male patients are diseased**

```
liver_data %>%
group_by(Sex,Disease)%>%
summarise (n = n())
```

Sex <chr></chr>	Disease <dbl></dbl>	n <int></int>
F	0	50
F	1	92
M	0	117
М	1	324

Total Bilirubin

Bilirubin is a prodcut of the catabolism, is one of the substance that the liver have the job to filter. Elevated levels of this can be a hint of liver disease, it cause the change of color in the skin (yellow).

```
liver_data %>%
ggplot(aes(log10(Tot_Bil))) +
geom_histogram(bins = 26, color = "#00AFBB") +
xlab("Total Bilirubin") +
ylab("Frequency") +
ggtitle("Distribution of Total Bilirubin (ln)")
```

Distribution of Total Bilirubin (In)

Direct Bilirubin

```
liver_data %>%
ggplot(aes(log10(Dir_Bil))) +
geom_histogram(bins = 26, color = "#00AFBB") +
xlab("Bilirubin") +
ylab("Frequency") +
ggtitle("Distribution of Direct Bilirubin (ln)")
```

Distribution of Direct Bilirubin (In)

Alkaline Phosphotase With this meause we can estimate, in general, the liver health. More means disease.

```
liver_data %>%
ggplot(aes(log10(Alkphos))) +
geom_histogram(bins = 26, color = "#00AFBB") +
xlab("Alkaline Phosphotase") +
ylab("Frequency") +
ggtitle("Distribution of Alkaline Phosphotase (ln)")
```

Distribution of Alkaline Phosphotase (In)

Alamine Aminotransferase

Natural component in the liver. Is tested in a liver panel.

```
liver_data %>%
ggplot(aes(log10(Alamine))) +
geom_histogram(bins = 26, color = "#00AFBB") +
xlab("Alamine Aminotransferase") +
ylab("Frequency") +
ggtitle("Distribution of Alamine Aminotransferase (ln)")
```

Distribution of Alamine Aminotransferase (In)

Aspartate Aminotransferase

Natural component in the liver. Is tested in a liver panel.

```
liver_data %>%
ggplot(aes(log10(Aspartate))) +
geom_histogram(bins = 26, color = "#00AFBB") +
xlab("Aspartate Aminotransferase") +
ylab("Frequency") +
ggtitle("Distribution of Aspartate Aminotransferase (ln)")
```

Distribution of Aspartate Aminotransferase (In)

Total Proteins

Is a measure of globulin and albumin combined

```
liver_data %>%
ggplot(aes(log10(Tot_Prot))) +
geom_histogram(bins = 26, color = "#00AFBB") +
xlab("Total Proteins") +
ylab("Frequency") +
ggtitle("Distribution of Total Proteins (ln)")
```

Distribution of Total Proteins (In)

Albumin

Is a protein contained in the blood that gives structure to the vascular system.

```
liver_data %>%
ggplot(aes((Albumin))) +
geom_histogram(bins = 26, color = "#00AFBB") +
xlab("Albumin") +
ylab("Frequency") +
ggtitle("Distribution of Albumin")
```

Distribution of Albumin

Albumin-Globulin Ratio

Is a general index of disesases.

```
liver_data %>%
ggplot(aes(A_G_Ratio)) +
geom_histogram(bins = 26, color = "#00AFBB") +
xlab("Albumin") +
ylab("Frequency") +
ggtitle("Distribution of Albumin-Globulin Ratio")
```

```
## Warning: Removed 4 rows containing non-finite values (stat_bin).
```

Distribution of Albumin-Globulin Ratio

Model Approach

In this project we want to see if the Logistic Regression can be used on this data set to help us predict liver disease.

```
## Warning: funs() is soft deprecated as of dplyr 0.8.0
## please use list() instead
##
## # Before:
## funs(name = f(.))
##
## # After:
## list(name = ~f(.))
## This warning is displayed once per session.
```

```
train <- liver_data[liver_data$Splits == TRUE, ] #training index
test <- liver_data[liver_data$Splits == FALSE, ] #test indexes</pre>
```

Summary of training

```
summary(train)
```

```
Tot Bil
                                                Dir Bil
       Age
                    Sex
## Min. : 4.00 Length:371
                               Min. :-0.6931 Min. :-2.3026
  1st Qu.:33.00 Class :character 1st Qu.:-0.2231 1st Qu.:-1.6094
  Median: 45.00 Mode: character Median: 0.0000 Median: -1.2040
## Mean :44.29
                               Mean : 0.4635 Mean :-0.6463
##
  3rd Qu.:57.00
                                3rd Qu.: 0.9555 3rd Qu.: 0.2624
## Max. :90.00
                               Max. : 4.3175 Max. : 2.9806
##
##
    Alkphos
                Alamine Aspartate
                                            Tot Prot
  Min. :4.143 Min. :2.303 Min. :2.485 Min. :1.281
##
  1st Qu.:5.185    1st Qu.:3.219    1st Qu.:3.258    1st Qu.:1.758
## Median :5.371 Median :3.611 Median :3.761
                                           Median :1.872
  Mean :5.518 Mean :3.794 Mean :4.010 Mean :1.856
## 3rd Qu.:5.697 3rd Qu.:4.151 3rd Qu.:4.500 3rd Qu.:1.974
##
  Max. :7.654 Max. :7.396 Max. :8.503 Max. :2.262
##
##
    Albumin
                A G Ratio
                               Disease
                                            Splits
## Min. :1.400 Min. :0.3000 Min. :0.0000 Mode:logical
  1st Qu.:2.600    1st Qu.:0.7000    1st Qu.:0.0000    TRUE:371
## Median :3.100 Median :0.9000 Median :1.0000
  Mean :3.138 Mean :0.9474 Mean :0.7197
## 3rd Qu.:3.800 3rd Qu.:1.1000 3rd Qu.:1.0000
## Max. :5.500 Max. :2.8000 Max. :1.0000
##
                NA's :1
```

Logistic Model

```
fit <- glm(Disease ~ Age + Sex + Tot_Bil + Dir_Bil + Alkphos + Alamine + Aspartate +
    Tot_Prot + Albumin + A_G_Ratio, data = train, family = binomial(link = "logit"))</pre>
```

Coefficients:

```
summary(fit)
```

```
##
## Call:
## glm(formula = Disease ~ Age + Sex + Tot_Bil + Dir_Bil + Alkphos +
     Alamine + Aspartate + Tot Prot + Albumin + A G Ratio, family = binomial(link
= "logit"),
##
    data = train)
##
## Deviance Residuals:
    Min 1Q Median 3Q Max
## -2.4587 -0.9377 0.3171 0.8345 1.7431
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -15.855900 4.120022 -3.848 0.000119 ***
## Age
             0.021706 0.008757 2.479 0.013190 *
            -0.400726 0.326646 -1.227 0.219901
## SexM
## Tot Bil
             0.427679 0.743300 0.575 0.565035
             ## Dir Bil
## Alkphos
             0.937354 0.321930 2.912 0.003595 **
## Alamine
## Aspartate 0.198097 0.288925 0.686 0.492943
## Tot_Prot 5.326228 2.391509 2.227 0.025938 *
## Albumin
            -1.455345 0.764960 -1.903 0.057104 .
## A G Ratio
             1.890692 1.222460 1.547 0.121953
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
    Null deviance: 439.54 on 369 degrees of freedom
##
## Residual deviance: 341.15 on 359 degrees of freedom
   (1 observation deleted due to missingness)
## AIC: 363.15
##
## Number of Fisher Scoring iterations: 6
```

Pseudo R-Square and Log-Likelihoods: Usign the McFadden **R2** as a measure, the model explains just 22.5% of the disease classification.

```
## 11h 11hNull G2 McFadden r2ML ## -170.5744495 -220.0989199 99.0489409 0.2250101 0.2348626 ## r2CU ## 0.3375943
```

Now we will use the Coefficient of Discrimination

```
Test_Predictions <- data.frame(Probability = predict(fit, test, type = "response"))
Test_Predictions$Prediction <- ifelse(Test_Predictions > 0.5, 1, 0)
Test_Predictions$Disease <- test$Disease
accuracy <- mean(Test_Predictions$Disease == Test_Predictions$Prediction, na.rm = TRU
E)
disease <- Test_Predictions$Probability[which(Test_Predictions$Disease == 1)]
non <- Test_Predictions$Probability[which(Test_Predictions$Disease == 0)]
Coef_Desc <- mean(disease, na.rm = TRUE) - mean(non, na.rm = TRUE)
print(accuracy)</pre>
```

```
## [1] 0.6889952
```

The Coefficient of Discrimination is=

```
print(Coef_Desc)
```

```
## [1] 0.1420897
```

The accuracy of our model is=

```
print(accuracy)
```

```
## [1] 0.6889952
```

The model accuracy tell us the time our model made the right prediction, meaning taht the **prediction was** right 69% of the times.

Final considerations and further discussion

With the construction of the Pseudo R values (22.5%) that is really low for a predictor, i consider it will not help us at all to predict the disease and only will be a waste of time use it. But given it high accuracy of 69%, we can add more variables and values to the data set and could be use in a further test for the liver disease.

This model can be use for early detection, not for diagnostic.