3.2 Orthonormalbasen

- 44. Das Gram-Schmidt Verfahren zum ersten: Eine explizite Formel. Im Beweis von Satz 3.27 (Gram-Schmidt Verfahren) wird für die linear unabhängige, abzähbare Teilmenge $M=\{x_1,x_2,\dots\}$ des Hilbertraums H das Orthonormalsystem $S=\{e_1,\dots\}$ konstruiert. Ziel dieser Aufgabe ist es explizite Formeln für die e_i herzuleiten. (Diese werden in den nächsten beiden Aufgaben dringendst benötigt!). Herzstück ist es natürlich, eine explizite Formel für die Ortogonalprojektion P_{M_n} auf $M_n=\mathrm{span}\{x_1,\dots,x_n\}$ zu finden. (Tipp: Eine Möglichkeit ist es, die Formel zu erraten oder nachzuschlagen und dann Aufgabe 38 zu verwenden.)
- 45. Die Legendre-Polynome—Das Gram-Schmidt Verfahren zum zweiten. Im Hilbertraum $L^2[-1,1]$ wende das Gram-Schmidt Verfahren auf die Funktionen $x_n(t)=t^n$, $n\in\mathbb{N}_0$ an. Dadurch entsteht die orthonormale Folge L_n der Legendre-Funktionen und die Folge P_n der Legendre-Polynomen, die gemäß

$$L_n(x) = \sqrt{n + \frac{1}{2}} P_n(x)$$

definiert ist. (Die Legendre-Polynome finden vor allem in der Quantenmechnik bei der Diskussion der Drehimpulsoperatoren Verwendung—Stichwort: "Kugelfunktionen"—unter anderem bei der Lösung der Schrödingergleichung für das Wasserstoffatom). *Hinwes:* Berechne zunächst "auf Vorrat" $\int_{-1}^{1} x^n dt$ und halte mindestens bis P_3 durch oder verwende ein Computeralgebrasystem deiner Wahl.

46. Die Laguerre-Polynome—Das Gram-Schmidt Verfahren zum dritten. Im Hilbertraum $L^2[0,\infty]$ wende das Gram-Schmidt Verfahren auf die Funktionen $x_n(t) = (-t)^n e^{-t/2}$, $n \in \mathbb{N}_0$ an, um die Laguerre-Funktionen f_n zu berechnen und damit die Laguerre-Polynome L_n , die gemäß

$$f_n = \frac{1}{n!} e^{-t/2} L_n$$

definiert sind. (Die Laguerre-Polynome treten in der Quantenmechanik ebenfalls bei der Lösung der Schrödinger-Gleichung (Radialanteil) für das Wasserstoffatom auf.) Hinweis: Beschaffe dir wiederum auf Vorrat die Integrale $\int_0^\infty e^{-t}tdt$ (Tipp: Gamma-Funktion) und halte bis L_3 durch, oder/und verwende ein Computeralgebrasystem deiner Wahl.

47. Der Satz von Riesz-Fischer.

Gib konkret den Isomorphismus aus Thm. 3.36 für den Hilbertraum $L^2[-\pi,\pi]$ und die Orthonormalbasis

$$\frac{1}{\sqrt{2\pi}}, \ \frac{1}{\sqrt{\pi}}\cos(kx), \ \frac{1}{\sqrt{\pi}}\sin(kx), \quad (k=1,2,\dots)$$

an und leite aus der Gleichheit der entsprechenden Skalarprodukte in L^2 und l^2 die Parseval-Gleichung für die "klassischen" Fourierkoeffizienten a_k , b_k ab.

Hinweis: Hier wird die konkrete Rechnung einfacher, wenn l^2 in der Form

$$l^2 = \{(\alpha_0, \alpha_1, \alpha_2, \dots; \beta_1, \beta_2, \dots) | \alpha_i, \beta_i \in \mathbb{C}, \sum |\alpha_i|^2 + \sum |\beta_i|^2 < \infty\}$$

11

geschrieben wird. Warum ist das erlaubt?

3.3 Dualraum eines Hilbertraums, Adjungierter Operator

$48.\ H'\ als\ Hilbertraum.$

Mache Bem. 3.43 explizit indem du zeigst, dass H' vermöge der folgenden Definition zum Hilbertraum wird: Für y im Hilbertraum H sei f_y das durch $f_y(x) = \langle x|y\rangle$ definierte stetige, lineare Funktional auf H (vgl. Thm. 3.42, Satz von Riesz-Fréchet) und weiters sei das Skalarprodukt auf H' definiert durch

$$\langle f_y | f_z \rangle := \langle z | y \rangle.$$

49. Eigenschaften der Adjunktion.

Beweise Prop. 3.45 aus der Vorlesung, dh. zeige für die Operatoren $T, T_2, T_2 \in L(K, H)$ zwischen den Hilberträumen K und H sowie ihren Adjungierten $T*, T_1^*, T_2^* \in L(K, H)$ die folgenden Aussagen:

- (i) $T^{**} = T$
- (ii) $||T^*|| = ||T|| = ||T^*T||^{1/2}$
- (iii) $(T_1^* + T_2)^* = T_1^* + T_2^*$
- (iv) $(\lambda T)^* = \bar{\lambda} T^*$ (für alle $\lambda \in \mathbb{K}$)
- (v) $(ST)^* = T^*S^*$ (für $S \in L(K,G)$, G ein weiterer Hilbertraum)
- $(vi) id_H^* = id_K$
- (vii) $(T^{-1})^* = (T^*)^{-1}$, falls T invertier bar ist.