Deep Equilibrium Models

Трошин Сергей Высшая Школа Экономики

https://arxiv.org/pdf/1909.01377.pdf

Deep Equilibrium Models

Shaojie BaiCarnegie Mellon University

J. Zico Kolter
Carnegie Mellon University
Bosch Center for AI

Vladlen Koltun
Intel Labs

 Advances in Neural Information Processing Systems (NeurIPS), 2019 (Selected for spotlight oral presentation)

Outline

- Deep Learning for Sequence Modelling
- Deep Equilibrium Models
- Experiments
- Convergence, Universality

Deep Learning for Sequence Modelling

Sequence modeling task

$$x_{[1:T]} = [x_1, ..., x_T]$$

$$y_{[1:T]} = [y_1, ..., y_T]$$

Constraint: causality

Applications:

- Language modeling
- Time series tasks

Limitations of using very deep neural networks.

 Need O(L) memory for training, L - the number of layers.

Solutions:

- Gradient Checkpointing (2016): $O(\sqrt{L})$
- Neural ODEs(2018): Constant (using black-box solver for backward pass)

https://github.com/cybertronai/gradient-checkpointing https://arxiv.org/abs/1806.07366

Common deep sequence model

Weight-tied deep sequence model

Weight-tied Input-Injected DNN

$$z^{[i+1]} = f_{\theta,x}(z^{[i]})$$

$$z^{[0]} = 0$$

Trellis networks (2019)

Universal Transformer (2019)

DEQ

What if we increase the number of layers

What is the dynamics of our outputs?

Empirical Evidence

A tendency of layers to converge

Convergence to the same point

$$\lim_{i \to \infty} \mathbf{z}_{1:T}^{[i]} = \lim_{i \to \infty} f_{\theta} \left(\mathbf{z}_{1:T}^{[i]}; \mathbf{x}_{1:T} \right) \equiv f_{\theta} \left(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T} \right) = \mathbf{z}_{1:T}^{\star}$$

Equilibrium Point

Implicit Function Theorem

The Implicit Function Theorem for \mathbb{R}^2 :

Consider a continuously differentiable function $G: \mathbb{R}^2 \to \mathbb{R}^2$

and a point $(x_0, z_0) \in \mathbb{R}^2$ so that $G(x_0, z_0) = 0$.

If $\frac{\partial G}{\partial z}(x_0, z_0) \neq 0$, there is a neighbourhood of (x_0, z_0)

so that whenever x is sufficiently close to x_0 there is a unique z, so that G(x,z)=0.

Implicit differentiation:

$$G(x, z(x)) = 0 \Rightarrow \frac{dG}{dx} = \frac{\partial G}{\partial x} \frac{dx}{dx} + \frac{\partial G}{\partial z} \frac{dz}{dx} = \frac{\partial G}{\partial x} + \frac{\partial G}{\partial z} \frac{dz}{dx} = 0$$

$$\Rightarrow \frac{dz}{dx} = -\left(\frac{\partial G}{\partial z}\right)^{-1} \frac{\partial G}{\partial x}$$

Commentary: ∂ vs d

For a function $G(x, z(x)) : \mathbb{R}^2 \to \mathbb{R}$,

$$\frac{\partial G}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, z(x))}{\Delta x}$$

$$\frac{dG}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, z(x + \Delta x))}{\Delta x}$$

$$z^* = f_{\theta,x} \circ f_{\theta,x} \circ \dots \circ f_{\theta,x}(z_0), \quad z_0 = 0$$

$$f_{\theta,x}(z^*) = z^*$$
 Equilibrium equation

$$y := \{x, \theta\}$$

$$G(y,z) := f_{x,\theta}(z) - z$$

$$\frac{dG}{dy} = \frac{\partial G}{\partial y} + \frac{\partial G}{\partial z} \frac{dz}{dy}$$

$$\frac{dG}{dy} = \frac{\partial G}{\partial y} + \frac{\partial G}{\partial z} \frac{dz}{dy} = 0, \text{ if } z = z^*$$

$$\frac{dz}{dy} = -\left(\frac{\partial G}{\partial z}\right)^{-1} \frac{dG}{dy} = -\left(\frac{\partial f}{\partial z} - I\right)^{-1} \frac{df}{dy}$$

Finally!

A derivative of loss function w.r.t parameters:

$$\frac{\partial \mathcal{E}}{\partial y} = \frac{\partial \mathcal{E}}{\partial z^*} \frac{dz^*}{dy} = -\frac{\partial \mathcal{E}}{\partial z^*} \left(\frac{\partial f}{\partial z} - I\right)^{-1} \frac{df}{dy}$$

Reliable estimation of equilibrium

- Unfortunately $\lim_{i \to \infty} f_{\theta,x} \circ \dots \circ f_{\theta,x}(z_0)$ may not exist or a convergence may be very slow in practice.
- Fortunately, the dimensionality of z is quite low e.g. 500 (comparing with a number of parameters in neural networks). Hence, we can use one of Quasi-Newton methods, e.g. Broyden method (will be shown to reliably find an equilibrium point)

Reliable estimation of equilibrium: forward pass

Broyden method:

finds
$$z$$
, such that $G(y,z)=0$ or more formally, $z=\arg\min_{z}\|G(y,z)\|_{2}$

$$z_{i+1} = z_i - \alpha B G(y, z_i)$$
, for $i = 0, 1, 2, ...$

$$B pprox J_G^{-1} \big|_{\mathcal{I}_i}$$
 – low rank approximation

$$\alpha$$
 – step size

DEQ-transformer finds equilibrium more reliably

Forward Pass:

$$\mathbf{z}_{1:T}^{\star} = \mathsf{RootFind}(g_{\theta}; \mathbf{x}_{1:T})$$

Backward Pass:

$$\frac{\partial \ell}{\partial (\cdot)} = -\frac{\partial \ell}{\partial \mathbf{z}_{1:T}^{\star}} (J_{g_{\theta}}^{-1}|_{\mathbf{z}_{1:T}^{\star}}) \frac{\mathrm{d} f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\mathrm{d}(\cdot)} = -\frac{\partial \ell}{\partial h} \frac{\partial h}{\partial \mathbf{z}_{1:T}^{\star}} (J_{g_{\theta}}^{-1}|_{\mathbf{z}_{1:T}^{\star}}) \frac{\mathrm{d} f_{\theta}(\mathbf{z}_{1:T}^{\star}; \mathbf{x}_{1:T})}{\mathrm{d}(\cdot)}$$

Forward & Backward

What we already have:

• Forward: $z^* = \text{Broyden}(f, x, z_0)$

• Backward:
$$\frac{\partial \mathcal{E}}{\partial y} = -\frac{\partial \mathcal{E}}{\partial z^*} \left(J_G^{-1} \big|_{z^*} \right) \frac{df}{dy}$$

Accelerating Backward

• Backward:
$$\frac{\partial \mathcal{E}}{\partial y} = -\frac{\partial \mathcal{E}}{\partial z^*} \left(J_G^{-1} \big|_{z^*} \right) \frac{df}{dy}$$

- Instead of calculating $-\frac{\partial \mathcal{E}}{\partial z^*}\left(J_G^{-1}\left|_{z^*}\right.\right)$ directly, we can hack and solve a linear system:
- let $\mathbf{b} = -\left(\frac{\partial \mathcal{E}}{\partial z^*}\right)^T$, $\mathbf{A} = J_G^T|_{z^*}$, $\mathbf{x} = -\frac{\partial \mathcal{E}}{\partial z^*}\left(J_G^{-1}|_{z^*}\right)^T$
- solve Ax + b = 0 for unknown x again with Broyden

Experiments

(Long-Range) Copy Memory Task

Word-level Language Modeling on Penn Treebank (PTB)

2) Does not include memory for word embeddings

https://github.com/locuslab/deq/blob/master/presentations/DEQ_slides.pdf

Word-level Language Modeling on WikiText-103 (WT103)

https://github.com/locuslab/deq/blob/master/presentations/DEQ_slides.pdf

Convergence, Universality

Is fixed point unique?

1) Upper diagonal matrix condition

$$\mathbf{z}^{[1]} = \sigma(W_1\mathbf{x} + b_1)$$

$$\mathbf{z}^{[2]} = \sigma(W_2\mathbf{z}^{[1]} + b_2) \iff \begin{bmatrix} \mathbf{z}^{[1]} \\ \mathbf{z}^{[2]} \\ \mathbf{z}^{[3]} \end{bmatrix} = \sigma\left(\begin{bmatrix} 0 & 0 & 0 \\ W_2 & 0 & 0 \\ 0 & W_3 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{z}^{[1]} \\ \mathbf{z}^{[2]} \\ \mathbf{z}^{[3]} \end{bmatrix} + \begin{bmatrix} W_1 \\ 0 \\ 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \right)$$

$$\mathbf{z}^{[3]} = \sigma(W_3\mathbf{z}^{[2]} + b_3)$$
(Apply this **three** times to $\begin{bmatrix} \mathbf{z}^{[1]} & \mathbf{z}^{[2]} & \mathbf{z}^{[3]} \end{bmatrix}^{\top} = \mathbf{0}$)

Is fixed point unique?

2) Contractive mapping condition

Equation
$$z = \sigma(Az + Ux)$$
 has unique solution if

$$\forall z_1, z_2 \mid \sigma(z_1 - z_2) \mid \leq |z_1 - z_2|$$

$$\forall z, |z| \leq 1 |Az| \leq 1$$

Is fixed point for Transformer of Trellis Network unique?

None of these two conditions can be applied:(

But there are guys who try to enforce one of them to make problem well-posed (Implicit Deep Learning,

https://arxiv.org/pdf/1908.06315.pdf)

More Implicit Layers

Far not a complete list:

- OptNet [Amos and Kolter, 2017]
- Differentiable Physics [Belbute-Peres et al., 2018]
- Combinatorial optimisation [Wang et al., 2019]

$$z_{i+1} = \underset{z}{\operatorname{argmin}} \quad \frac{1}{2} z^T Q(z_i) z + q(z_i)^T z$$

subject to $A(z_i) z = b(z_i)$
 $G(z_i) z \leq h(z_i)$

Conclusions

- DEQ a memory efficient model for sequential data, but can be slow to train.
- When some optimal conditions holds we can forget about the path and directly solve for a Jacobian through them.
- Every feed-forward deep model can be made implicit
- Further theoretical research is required

References

- https://arxiv.org/pdf/1909.01377.pdf Deep Equilibrium Models
- https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf Transformer
- https://arxiv.org/pdf/1807.03819.pdf Universal Transformer
- https://arxiv.org/pdf/1810.06682.pdf
 Trellis Networks
- https://github.com/cybertronai/gradient-checkpointing Gradient Checkpointing
- https://arxiv.org/abs/1806.07366 Neural ODEs
- https://arxiv.org/pdf/1908.06315.pdf
 Implicit Deep Learning
- https://arxiv.org/pdf/1703.00443.pdf OptNet
- https://arxiv.org/pdf/1905.12149.pdf SATNet