Определения на экзамен по Математическому Анализу 2 семестр

Данил Заблоцкий

29 июня 2023 г.

Оглавление

0.1	Формула Тейлора	5
0.2	Теорема о существовании и единственности многочлена Тейлора	5
0.3	Формула Тейлора с остаточным членом в форме Пеано, Коши	
	и Лагранжа	5
0.4	Разложение основных функций по формуле Тейлора	6
0.5	Теорема о связи знака производной с монотонностью функции	7
0.6	Необходимое условие локального экстремума	7
0.7	Достаточное условие локального экстремума в терминах пер-	
	вой производной	7
0.8	Достаточное условие локального экстремума в терминах выс-	
	ших производных	7
0.9	Функция, выпуклая вверх (вниз)	8
0.10	Геометрический смысл выпуклости вверх (вниз) функции	8
0.11	Критерий выпуклости в терминах первой производной	8
0.12	Критерий выпуклости в терминах касательной	8
0.13	Критерий выпуклости в терминах высших производных	9
	Первообразная	9
0.15	Неопределенный интеграл, операция интегрирования	9
		10
0.17	Рациональные функции	10
0.18	Простые дроби	10
		11
0.20	Разложение рациональных дробей на простые	12
0.21	Метод неопределенных коэффициентов	12
0.22	Метод Остроградского	13
0.23	Теорема Чебышева	13
0.24	Подстановки Эйлера	13
0.25	Интегральная сумма, интеграл Римана	14
0.26	База на множестве	14
0.27	Предел функции по базе (в том числе, для метрических про-	
	1 /	15
0.28	Основные свойства предела по базе	15
		15
		16
0.31	Разбиение с отмеченными точками	16

0.32	База на множестве разбиений отмеченными точками 16
0.33	Интегрируемая по Риману функция, интеграл Римана (через
	предел по базе)
0.34	Необходимое условие интегрируемости функции
0.35	Суммы Дарбу
0.36	Свойства сумм Дарбу
	Нижний и верхний интегралы Дарбу
	Критерий интегрируемости
	Колебание функции на отрезке
	Теорема Дарбу
	Интегрируемость непрерывных функций
	Интегрируемость функции с конечным числом точек разрыва 19
	Интегрируемость монотонных функций
	Свойства интегрируемых функций
	Аддитивность интеграла Римана
	Монотонность интеграла Римана и ее следствия
	Теорема о среднем
	Первая теорема о среднем
	Интеграл Римана как функция верхнего предела интегриро-
00	вания
0.50	Непрерывность интеграла Римана
	Дифференцируемость интеграла Римана по верхнему преде-
0.0 =	лу и ее следствие
0.52	Вторая теорема о среднем
	Формула Ньютона-Лейбница для непрерывной функции 22
	Формула Ньютона-Лейбница для функции, недиффиренциру-
	емой в некоторых (конечное число) точках отрезка. Следствие. 22
0.55	Формула интегрирования по частям для определенного инте-
	грала
0.56	Формула Тейлора с остаточным членом в интегральной форме 22
	Замена переменной в интеграле Римана (для непрерывных
	функций)
0.58	Замена переменной в интеграле Римана (для интегрируемых
	функций)
0.59	Путь
0.60	Простой путь
0.61	Отношение эквивалентности путей
0.62	Носитель пути
	Кривая на множестве
	Простая кривая
	Параметризация кривой
	Гладкая параметризация кривой
	Ломаная, вписанная в кривую
	Периметр ломаной, вписанной в кривую
	Спрямляемая кривая
	Аличтивность личны кривой 27

0.71	Длина кривой как предел	27
0.72	Формула вычисления длины кривой	27
	Многоугольник	28
0.74	Измеримое по Жордану (квадрируемое) множество. Площадь.	28
	Критерий квадрируемости множества	29
	Криволинейная трапеция	29
	Квадрируемость криволинейной трапеции	29
	Квадрируемость криволинейного сектора	29
	Несобственный интеграл, заданный на луче, на прямой, на	
	отрезке. Сходящийся и расходящийся несобственный интеграл	30
0.80	Критерий Коши сходимости несобственного интеграла	31
	Свойства несобственного интеграла.	32
	Сходимость несобственного интеграла от неотрицательных функ	
	ций	32
0.83	Первый признак сравнения	32
	Второй признак сравнения	33
	Абсолютно сходящийся несобственный интеграл	33
	Связь сходимости и абсолютной сходимости несобственного	00
0.00	интеграла	33
0.87	Признак Вейерштрасса	33
	Условно сходящийся несобственный интеграл	33
	Признак Абеля	34
	Признак Дирихле	34
	Теорема о замене переменной в несобственном интеграле	34
	Линейное пространство	34
	Линейное пространство	35
	Примеры линейных нормированных пространств (ЛНП)	35
	Метрика ЛНП	36
	Банахово ЛНП. Примеры	36
	Теорема о вложенных шарах	37
	Сжимающее отображение	$\frac{37}{37}$
	Принцип сжимающих отображений	$\frac{37}{37}$
	Принцип сжимающих отооражении	$\frac{37}{37}$
	Предкомпактное множество в МП	$\frac{37}{37}$
	тъполне ограниченное множество	38
	2 георема Лаусдорфа	эо 38
	-	
		38
	5 Эквивалентность норм в \mathbb{R}^n	38
	6Линейные отображения в конечномерных пространствах	38
	7Tеорема о матрице линейного отображения	38
	8Теорема о непрерывности линейного отображения	39
	\mathcal{G} Дифференциал в точке в \mathbb{R}^n	39
	ОКритерий дифференцируемости отображения в \mathbb{R}^n	39
	1Область	39
	2Частная производная функции многих переменных	40
0.113	ВСвязь лифференциала и частных произволных	40

0.114Матрица Якоби	40
0.115Дифференцируемость и арифметические операции	41
0.116Дифференцирование композиции	41
0.117Дифференцирование обратного отображения	41

Определения

0.1 Формула Тейлора

Предисловие: Пусть $f:(a;b)\to \mathbb{R},\ x_0\in (a;b).$

Нужно построить многочлен $P(x; x_0)$ вида:

$$P(x;x_0) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n;$$

 $f(x) - P(x; x_0) = r_n(x; x_0)$ - n-ый остаточный член в формуле Тейлора.

Определение. Остаточные члены в форме Пеано имеют вид:

$$r_n(x; x_0) = \underset{x \to x_0}{o} (x - x_0)^n$$

Определение. Пусть $f:(a;b)\to\mathbb{R},\ x_0\in(a;b),\ f(x)$ имеет в точке x_0 производные до n-го порядка включительно.

Многочленом Тейлора (полиномом) функции f(x) в точке x_0 называется многочлен

$$P(x;x_0) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

0.2 Теорема о существовании и единственности многочлена Тейлора

Теорема. Пусть $f:(a;b)\to\mathbb{R},\ x_0\in(a;b),\ f$ имеет в точке x_0 производные до n-го порядка включительно, тогда $\exists!$ многочлен вида:

$$P(x; x_0) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n$$

такой, что

$$f(x) - P(x; x_0) = \underset{x \to x_0}{o} ((x - x_0)^n)$$

0.3 Формула Тейлора с остаточным членом в форме Пеано, Коши и Лагранжа

Пусть $f(x) = P(x; x_0) + r_2(x; x_0)$.

Теорема. Пусть $Q = [x; x_0], \ Q^o = (x; x_0); \ f : Q \to \mathbb{R}$:

- 1. $f, f', ..., f^{(n)}$ непрерывны на Q;
- $2. \ f$ имеет производную (n+1)-го порядка на Q^{o} .

Далее, $\phi: Q \to \mathbb{R}$:

- 1. ϕ непрерывна на Q;
- 2. ϕ дифференцируема на Q^o ;
- 3. $\phi'(t) \neq 0 \ \forall t \in Q^o$.

Тогда $\exists \xi \in Q^o$:

$$r_n(x;x_0) = \frac{\phi(x) - \phi(x_0)}{\phi'(\xi)} * \frac{f^{(n+1)}(\xi)}{n!} * (x - \xi)^n$$

Следствие. Теоремы:

1. Пусть $\phi(t)=x-t, \ \phi(t)=-1, \ \phi(x)=0, \ \phi(x_0)=x-x_0.$ Тогда:

$$r_n(x;x_0) = \frac{f^{(n+1)}(\xi)}{n!} * (x - \xi)^n * (x - x_0)$$

- остаточный член формулы Тейлора в форме Коши.
- 2. $\phi(t) = (x-t)^{n+1}$; $\phi'(t) = (n+1)(x-t)^n(-1)$; $\phi(x) = 0$; $\phi(x_0) = (x-x_0)^{n+1}$. Тогда:

$$r_n(x;x_0) = \frac{-(x-x_0)^{n+1}}{(n+1)!(x-\xi)^n} *f^{(n+1)}(\xi) *(x-\xi)^n = \frac{f^{(n+1)}(\xi)(x-x_0)^{n+1}}{(n+1)!}$$

- остаточный член в формуле Тейлора в форме Лагранжа.

0.4 Разложение основных функций по формуле Тейлора

1.
$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$$

2.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{n-1} \frac{x^{2n+1}}{(2n+1)!} + \underset{x \to 0}{o} (x^{2n-1})$$

3.
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \underset{x \to 0}{o} (x^{2n})$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3!} - \dots + (-1)^{n-1} \frac{x^n}{n!} + \underset{x \to 0}{o}(x^n)$$

5.
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{\alpha!}x^2 + \ldots + \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-(n-1))}{n!}x^n + \underset{x\to 0}{o}(x^n)$$

0.5 Теорема о связи знака производной с монотонностью функции

Утверждение (связь знака производной с монотонностью). Пусть f: $(a;b) \to \mathbb{R}$ дифференцируема на (a;b). Тогда знак производной функции связан с монотонностью следующим образом:

- 1. $f'(x) > 0 \implies f(x)$ возрастает $\implies f'(x) \geqslant 0$;
- 2. $f'(x) \geqslant 0 \implies f(x)$ не убывает $\implies f'(x) \geqslant 0$;
- 3. $f'(x) = 0 \implies f(x) \text{const} \implies f'(x) = 0;$
- 4. $f'(x) < 0 \implies f(x)$ убывает $\implies f'(x) \leqslant 0$;
- 5. $f'(x) \leq 0 \implies f(x)$ не возрастает $\implies f'(x) \leq 0$;

0.6 Необходимое условие локального экстремума

Пусть $f:(a;b)\to\mathbb{R},\ x_0$ - точка внутреннего локального экстремума. Либо $f'(x_0)=0$, либо $f'(x_0)\not\equiv$.

0.7 Достаточное условие локального экстремума в терминах первой производной

Утверждение (достаточное условие локального экстремума в терминах первой производной). Пусть $f:(a;b)\to\mathbb{R},\ f$ - непрерывна на (a;b), дифференцируема везде, кроме точки $x_0,\ x_0\in(a;b)$. Тогда:

- 1. Если $\forall x < x_0$ f'(x) > 0 и $x > x_0$ f'(x) < 0, то x_0 точка локального максимума;
- 2. Если $\forall x < x_0 \ f'(x) < 0$ и $x > x_0 \ f'(x) > 0$, то x_0 точка локального минимума;
- 3. Если f'(x) не меняет знак на (a;b) (за исключением x_0), то в точке x_0 экстремумов нет.

0.8 Достаточное условие локального экстремума в терминах высших производных

Утверждение (достаточное условие локального экстремума в терминах высших производных). Пусть $f:(a;b)\to\mathbb{R}$ непрерывна на (a;b) и имеет производные до n-го порядка включительно, $x_0\in(a;b)$.

Причем $f'(x_0) = f''(x_0) = \ldots = f^{(n-1)}(x_0) = 0, \ f^{(n)}(x_0) \neq 0.$ Тогда:

- 1. Если n = 2k + 1 (нечет.), то экстремума нет;
- 2. Если n=2k (чет.), то при $f^{(n)}(x_0)>0,\,x_0$ точка локального минимума, если $f^{(n)}(x_0)<0,$ то x_0 точка локального максимума.

0.9 Функция, выпуклая вверх (вниз)

Определение. Пусть $f:(a;b)\to\mathbb{R}$. Будем говорить, что f(x) - выпукла вниз (вверх), если $\forall x_1,x_2\in(a;b)$:

$$f(\lambda_1 x_1 + \lambda_2 x_2) \leqslant \lambda_1 f(x_1) + \lambda_2 f(x_2)$$

$$(f(\lambda_1 x_1 + \lambda_2 x_2) \geqslant \lambda_1 f(x_1) + \lambda_2 f(x_2))$$

, при этом $\lambda_1, \lambda_2 > 0$ и $\lambda_1 + \lambda_2 = 1$.

0.10 Геометрический смысл выпуклости вверх (вниз) функции

Это в тетради смотреть, не хочу столько печатать

0.11 Критерий выпуклости в терминах первой производной

Утверждение (критерий выпуклости в терминах первой производной). Пусть функция $f:(a;b)\to \mathbb{R}$ дифференцируема на (a;b).

- f(x) выпукла вниз на $(a;b) \iff f'(x)$ не убывает на (a;b);
- f(x) выпукла вверх на $(a;b) \iff f'(x)$ не возрастает на (a;b).

Строгая выпуклость функции соответствует строгой монотонности производной.

0.12 Критерий выпуклости в терминах касательной

Утверждение. Пусть функция $f:(a;b)\to\mathbb{R}$ дифференцируема на (a;b). Функция f(x) выпукла вниз на $(a;b)\iff$ ее график всеми своими точками лежит не ниже любой ее касательной в $\forall x\in(a;b)$. При этом строгой выпуклости соответствует то, что график функции лежит выше касательной за исключением точки касания.

0.13 Критерий выпуклости в терминах высших производных

Следствие. Пусть функция $f:(a;b)\to\mathbb{R}$ дважды дифференцируема на (a;b). Тогда:

- f(x) выпукла вниз на $(a;b) \iff \forall x \in (a;b) \ f''(x) \geqslant 0;$
- f(x) выпукла вверх на $(a;b) \iff \forall x \in (a;b) \ f''(x) \leqslant 0.$

Строгая выпуклость соответствует строгому неравенству.

0.14 Первообразная

Определение (Первообразная функция). Пусть X - промежуток, $f: X \to \mathbb{R}$. Функция F(x) называется **первообразной** f(x), если производная F'(x) = f(x), при этом F(x) дифференцируема и непрерывна.

Пример. $f(x) = 2x \implies F(x) = x^2$. В самом деле, F'(x) = f(x).

0.15 Неопределенный интеграл, операция интегрирования

Определение (Неопределенный интеграл). Совокупность всех первообразных для функции f(x) на промежутке X называется **неопределенным интегралом** и обозначается:

$$\int f(x)dx$$

Таким образом, $\int f(x)dx = \{F(x) + C, \text{ где } F'(x) = f(x), C \in \mathbb{R}\}$, или:

$$\int f(x)dx = F(x) + C$$

Замечание. (Для неопределенного интеграла)

- $(\int f(x)dx)'_x = (F(x) + C)'_x = F'(x) = f(x);$
- $d(\int f(x)dx) = d(F(x) + C) = (F(x) + C)'dx = F'(x)dx = f(x)dx$;
- $\int d(F(x)) = \int F'(x)dx = \int f(x)dx = F(x) + C, C \in \mathbb{R}.$

Определение (интегрирование). Операция нахождения первообразной функции f(x) называется ее **интегрированием**.

0.16 Основные методы интегрирования

Утверждение. (Основные методы интегрирования) Пусть $f: X \to \mathbb{R}, \ g: X \to \mathbb{R}, \ X$ - промежуток:

- 1. Пусть $\alpha, \beta \in \mathbb{R} = const$, тогда: $\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx.$
- 2. Формула интегрирования по частям: $\int u dv = uv \int u dv, \ u = u(x), v = v(x).$
- 3. Интегрирование подстановкой: Пусть T промежуток, X = X(t) дифференцируема на T. Тогда $\int f(X(t)) * X'(t) dt = F(X(t)) + C = \int f(x) dx + C$.

0.17 Рациональные функции

Определение (Рациональная дробь). Функция вида $\frac{P(x)}{Q(x)}$, где P(x), Q(x) - многочлены, называется **рациональной дробью**, или рациональной функцией.

Если $\deg P(x) < \deg Q(x),$ то дробь называется **правильной**, иначе - **неправильной**.

Если дробь $\frac{P(x)}{Q(x)}$ - неправильная, то ее можно представить в виде $\frac{P(x)}{Q(x)} = M(x) + \frac{P_1(x)}{Q_1(x)}$, где $\frac{P_1(x)}{Q_1(x)}$ - правильная дробь. Поэтому достаточно уметь интегрировать правильную дробь.

0.18 Простые дроби

Определение (Простые дроби). **Простыми дробями** будем называть дроби следующих четырех видов:

- 1. $\frac{A}{x-a}$, $A, a \in \mathbb{R}$
- 2. $\frac{A}{(x-a)^k}$, $A, a \in \mathbb{R}, k > 1$
- 3. $\frac{Ax+B}{x^2+px+q}$, $A, B, p, q \in \mathbb{R}$, $p^2 4q < 0$
- 4. $\frac{Ax+B}{(x^2+px+q)^k}$, $A,B,p,q\in\mathbb{R},\ k>1,\ p^2-4q<0$

0.19Интегрирование простых дробей

1.
$$\int \frac{A}{x-a} dx = A \int \frac{d(x-a)}{x-a} = \left| \int \frac{dt}{t} dt \right| = A \ln|x-a| + C$$

2.
$$\int \frac{A}{(x-a)^k} dx = A \int (x-a)^{-k} dx = A \int (x-a)^{-k} d(x-a) = \left| \int \frac{t^n dt}{t^{n+1}} dt = \frac{t^{n+1}}{n+1} \right| = A \frac{(x-a)^{-k+1}}{-k+1} + C = \frac{A}{(x-a)^{k-1}(1-k)} + C$$

3.
$$\int \frac{Ax+B}{x^2+px+q} dx = \begin{vmatrix} x^2+px+q = (x^2+2\frac{p}{2}x+\frac{p^2}{4}) - \frac{p^2}{4} + q = \\ = (x+\frac{p}{2})^2 - \frac{p^2-4q}{4}, \ (-\frac{p^2-4q}{4} = C > 0) \end{vmatrix} = \int \frac{Ax+B}{(x+\frac{p}{2})^2+C} dx = A \int \frac{xdx}{(x+\frac{p}{2})^2+C} + B \int \frac{dx}{(x+\frac{p}{2})^2+C} = \begin{vmatrix} d((x+\frac{p}{2})^2+C) = \\ = 2(x+\frac{p}{2}dx) \end{vmatrix} = \dots$$

$$\begin{array}{ll} A \int \frac{x dx}{(x+\frac{p}{2})^2 + C} = \frac{A}{2} \int \frac{(2(x+\frac{p}{2}) - p) dx}{(x+\frac{p}{2})^2 + C} = \frac{A}{2} \int \frac{2(x+\frac{p}{2}) dx}{(x+\frac{p}{2})^2 + C} - \\ \frac{Ap}{2} \int \frac{dx}{(x+\frac{p}{2})^2 + C} = \left| \int \frac{dx}{(x+\frac{p}{2})^2 + C} = I \right| = \\ \frac{A}{2} \int \frac{d((x+\frac{p}{2})^2 + C)}{(x+\frac{p}{2})^2 + C} - \frac{Ap}{2} I = \frac{A}{2} \ln |(x+\frac{p}{2})^2 + C| - \frac{Ap}{2} I; \end{array}$$

$$\begin{array}{lll} I & = & \frac{dx}{(x+\frac{p}{2})^2+C} & = & \frac{1}{C}\int\frac{\sqrt{C}d(\frac{x}{\sqrt{C}}+\frac{p}{2\sqrt{C}})}{(\frac{x}{\sqrt{C}}+\frac{p}{2\sqrt{C}})^2+1} & = \\ \big|\int\frac{dt}{t^2+1} & =\arctan t+C \ \big| & = \frac{1}{\sqrt{C}}\arctan(\frac{x+2p}{2\sqrt{C}})+C_1; \end{array}$$

$$\frac{1}{C}(x+\frac{p}{2})^2 = (\frac{1}{\sqrt{C}})^2(x+\frac{p}{2})^2 = (\frac{1}{\sqrt{C}}(x+\frac{p}{2}))^2 = (\frac{x}{\sqrt{C}+\frac{p}{2}})^2;$$

$$\dots = \frac{A}{2} \ln |(x + \frac{p}{2})^2 - \frac{p^2 - 4q}{4}| + (B - \frac{Ap}{2}) \frac{1}{\sqrt{C}} \arctan(\frac{x + 2p}{2\sqrt{C}}) + C_1$$

4.
$$\int \frac{Ax+B}{(x^2+px+q)^k} dx = \begin{vmatrix} d(x^2+px+q) = \\ = 2x+p \end{vmatrix} = \int \frac{\frac{A}{2}(2x+p)+B-\frac{Ap}{2}}{(x^2+px+q)^k} dx = \frac{A}{2} \int \frac{d(x^2+px+q)}{(x^2+px+q)^k} + \frac{Ax+B}{2} dx = \frac{A}{2} \int \frac{d(x^2+px+q)}{(x^2+px+q)^k} dx = \frac{A}{2} \int \frac{d(x^2+px+q)}{(x^2$$

$$(B - \frac{Ap}{2}) \int \frac{dx}{((x + \frac{p}{2})^2 + (\frac{-p^2 + 4a}{4}))^k} = \frac{A}{2(1-k)} \frac{1}{(x^2 + px + q)^{k-1}} + \frac{(B - \frac{Ap}{2})}{(-\frac{p^2 + 4q}{a})^k} \int \frac{dx}{((\frac{x + \frac{p}{2}}{\sqrt{-p^2 + 4q}})^2 + 1)^k} = \frac{A}{2(1-k)} \frac{1}{(x^2 + px + q)^{k-1}} + \frac{(B - \frac{Ap}{2})}{(-\frac{p^2 + 4q}{4})^k} \int \frac{dx}{((\frac{x + \frac{p}{2}}{\sqrt{-p^2 + 4q}})^2 + 1)^k} = \frac{A}{2(1-k)} \frac{1}{(x^2 + px + q)^{k-1}} + \frac{(B - \frac{Ap}{2})}{(-\frac{p^2 + 4q}{4})^k} \int \frac{dx}{((\frac{x + \frac{p}{2}}{\sqrt{-p^2 + 4q}})^2 + 1)^k} = \frac{A}{2(1-k)} \frac{1}{(x^2 + px + q)^{k-1}} + \frac{(B - \frac{Ap}{2})}{(-\frac{p^2 + 4q}{4})^k} \int \frac{dx}{((\frac{x + \frac{p}{2}}{\sqrt{-p^2 + 4q}})^2 + 1)^k} = \frac{A}{2(1-k)} \frac{1}{(x^2 + px + q)^{k-1}} + \frac{(B - \frac{Ap}{2})}{(-\frac{p^2 + 4q}{4})^k} \int \frac{dx}{((\frac{x + \frac{p}{2}}{\sqrt{-p^2 + 4q}})^2 + 1)^k} = \frac{A}{2(1-k)} \frac{1}{(x^2 + px + q)^{k-1}} + \frac{A}{2(1-k$$

$$\frac{A}{2(1-k)} \frac{1}{(x^2+px+q)^{k-1}} + \frac{(B-\frac{Ap}{2})\frac{\sqrt{-p^2+4q}}{2}}{(\frac{-p^2+4q}{4})^k} \int \frac{d\left(\frac{x+\frac{p}{2}}{\sqrt{-p^2+4q}}\right)}{\left(\left(\frac{x+\frac{p}{2}}{\sqrt{-p^2+4q}}\right)^2+1\right)^k}$$

Таким образом, чтобы вычислить интеграл 4., нужно вычислить интеграл
$$\int \frac{dt}{(t^2+1)^k} = \begin{vmatrix} u = \frac{1}{(t^2+1)^k}; & du = d((t^2+1)^k) = -k(t^2+1)^{-k-1}2tdt \\ dv = dt \implies v = t \end{vmatrix} = \frac{t}{(t^2+1)^k} - \int \frac{-2kt^2}{(t^2+1)^{k+1}}dt = \frac{t}{(t^2+1)^k} + 2k(\int \frac{t^2+1}{(t^2+1)^{k+1}}dt - \int \frac{dt}{(t^2+1)^{k+1}});$$

$$\int \frac{dt}{(t^2+1)^k} = \frac{t}{(t^2+1)^k} + 2k \int \frac{dt}{(t^2+1)^k} - 2k \int \frac{dt}{(t^2+1)^{k+1}} \left| \begin{array}{c} \frac{dt}{(t^2+1)^k} = I_k \\ \frac{dt}{(t^2+1)^{k+1}} = I_{k+1} \end{array} \right|; \\
2kI_{k+1} = \frac{t}{(t^2+1)^k} + (2k-1)I_k; \quad I_{k+1} = \frac{t}{2k(t^2+1)^k} + \frac{2k-1}{2k}I_k, \ k = 1, \dots$$

0.20 Разложение рациональных дробей на простые

Лемма. Пусть $\frac{P(x)}{Q(x)}$ - правильная рациональная дробь (несократимая). Причем $Q(x)=(x-a)^kQ_1(x)$, где $Q_1(x)$ не делится на (x-a). Тогда \exists многочлен $P_1(x)$ из $\exists A\in\mathbb{R}: \frac{P(x)}{Q(x)}=\frac{A}{(x-a)^k}+\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$. При этом дробь (рациональная) $\frac{P_1(x)}{(x-a)^{k-1}Q_1(x)}$ - правильная.

Лемма. Пусть $\frac{P(x)}{Q(x)}$ - правильная дробь. При этом $Q(x)=(x^2+px+q)^kQ_1(x)$, здесь $p^2-4q<0$. Тогда $\exists M,N\in\mathbb{R}$ и \exists многочлен $P_1(x):$ $\frac{P(x)}{Q(x)}=\frac{Mx+N}{(x^2+px+q)^k}+\frac{P_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}$. При этом $Q_1(x)$ не делится на x^2+px+q . Дробь $\frac{P_1(x)}{(x^2+px+q)^{k-1}Q_1(x)}$ - правильная.

0.21 Метод неопределенных коэффициентов

Если $\frac{P(x)}{Q(x)}$ - правильная дробь и $Q(x)=(x-a_1)^{k_1}*\ldots*(x-a_s)^{k_s}*(x^2+p_1x+q_1)^{m_1}*\ldots*(x^2+p_rx+q_r)^{m_r}$, то верно следующее разложение:

$$\frac{P(x)}{Q(x)} = \sum_{i=0}^{k_1 - 1} \frac{A_i}{(x - a_i)^{k_1 - i}} + \dots + \sum_{i=0}^{k_s - 1} \frac{A_i^s}{(x - a_s)^{k_s - i}} + \sum_{i=0}^{m_1 - 1} \frac{M_i x + N_i}{(x^2 + p_1 x + q_1)^{m_1 - i}} + \dots + \sum_{i=0}^{m_r - 1} \frac{M_i^r x + N_i^r}{(x^2 + p_r x + q_r)^{m_r - i}},$$

где $A_i, \ldots, A_i^s, M_i, N_i, \ldots, M_i^r, N_i^r \in \mathbb{R}$.

Пример. $Q(x) = (x-1)^3(x+2)^2(x^2+x+1)^3$

$$\frac{x^5 - x^3 + 1}{Q(x)} = \frac{A_0^1}{(x-3)^3} + \frac{A_1^1}{(x-3)^2} + \frac{A_2^1}{(x-3)} + \frac{A_0^2}{(x+2)^2} + \frac{A_1^2}{(x+2)} + \frac{M_0x + N_0}{(x^2 + x + 1)^3} + \frac{M_1x + N_1}{(x^2 + x + 1)^2} + \frac{M_2x + N_2}{(x^2 + x + 1)}$$

Приведем в $\frac{P(x)}{Q(x)} = \sum_{i=0}^{k_1-1} \frac{A_i}{(x-a_i)^{k_1-i}} + \dots$ правую часть к общему знаменателю и получим: $\frac{P(x)}{Q(x)} \equiv \frac{R(x)}{Q(x)};$ $\deg Q(x) = k_1 + \dots + k_s + 2m_1 + \dots + 2m_r = n;$

$$l = \deg R(x) = \deg P(x) \leqslant \deg Q(x) - 1.$$

Количество неизвестных коэф. у множества R(x) равно n штук, приравнивая коэф. при соответствующих степенях x (в том числе при x^0) получим

n уравнений с n неизвестными (старшая степень x множества R(x) равна n-1).

0.22 Метод Остроградского

Теорема. Пусть $\frac{P(x)}{Q(x)}$ - правильная несократимая дробь.

Тогда $\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx$. Дроби $\frac{P_1(x)}{Q_1(x)}$ и $\frac{P_2(x)}{Q_2(x)}$ - правильные. $Q(x) = Q_1(x)Q_2(x)$ и многочлен $Q_2(x)$ представляет собой произведение всех линейных и квадратичных множителей многочлена Q(x), взятых в первой степени.

Пример.
$$\int \frac{x^2+2x+5}{(x-2)(x^2+1)^2} dx = \frac{P_1(x)}{x^2+1} + \int \frac{P_2(x)}{(x-2)(x^2+1)} dx = \frac{Ax+B}{x^2+1} + \int \frac{Cx^2+Dx+E}{(x-2)(x^2+1)} dx$$

0.23 Теорема Чебышева

Теорема. Интеграл $\int x^m (a+bx^n)^p dx$, где $m,n,p\in\mathbb{Q}$, можно привести к интегрированию рациональных функций в следующих случаях:

- $p \in \mathbb{Z}$: замена $x = t^N$, где N общий знаменатель m и n;
- $\frac{m+1}{n} \in \mathbb{Z}$: замена $a+bx^n=t^N,$ где N знаменатель p;
- $\frac{m+1}{n}+p\in\mathbb{Z}$: замена $ax^{-n}+b=t^N,$ где N знаменатель p

0.24 Подстановки Эйлера

- 1. Если a>0, то интеграл вида $\int R(x,\sqrt{ax^2+bx+c})dx$ рационализируется подстановкий $\sqrt{ax^2+bx+c}=t\pm x\sqrt{a}$.
- 2. Если a<0 и c>0, то интеграл вида $\int R(x,\sqrt{ax^2+bx+c})dx$ рационализируется подстановкой $\sqrt{ax^2+bx+c}=tx\pm\sqrt{c}$.
- 3. Если a<0, а подкоренное выражение раскладывается на действительные множители $a(x-x_2)(x-x_2)$, то интеграл вида $\int R(x, \sqrt{ax^2+bx+c}dx)$ рационализируется подстановкий $\sqrt{ax^2+bx+c}=t(x-x_1)$.

Подстановки Эйлера неудобны для практического использования, так как даже при несложных подинтегральных функциях приводят к весьма громоздким вычислениям. Эти подстановки представляют скорее теоретический интерес.

0.25 Интегральная сумма, интеграл Римана

Определение (интеграл Римана). Пусть $f:[a;b] \to \mathbb{R}$. Разобьем отрезок [a;b] на n частей точками $a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. В каждом таком кусочке выберем точку $\xi_i \in [x_{i-1};x_i], \ i=1,\ldots,n$.

$$\Delta i = [x_{i-1}, x_i], \quad \Delta x = x_i - x_{i-1}$$
 - длина отрезка Δi .

Составим сумму $S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$, где $f(\xi_i)$ - высота i-го прямоугольника и Δx_i - ширина i-го прямоугольника.

 S_n - площадь ступенчатой фигуры, составленной из прямоугольников под графиком функции f(x).

Говорят, что функция f интегрируема на [a;b], если существует предел интегральных сумм S_n , то есть $\exists \lim_{\max \Delta x_i \to 0} S_n$, причем этот предел не зависит ни от способа разбиения отрезка [a;b], ни от способа выбора точек ξ_i .

Этот предел называется **интегралом Римана** функции f на [a;b]. Класс интегрируемых функций на отрезке [a;b] будем обозначать R([a;b]).

0.26 База на множестве

Определение (база множества). Пусть X - произвольное множество.

Система β подмножеств множества X называется **базой** на X, если:

- 1. $\forall \beta \in \beta \quad \beta \neq \emptyset$
- 2. $\forall \beta_1, \beta_2 \in \beta \ \exists \beta_3 \in \beta : \beta_3 \subset \beta_1 \cap \beta_2$

Пример (баз множества). 1. $\beta = \{X\}$ - база

2.
$$X = \mathbb{R}, \quad \beta = \{\beta_n = (-\frac{1}{n}; \frac{1}{n}), \ n \in \mathbb{N}\}\$$

3. $X = \mathbb{R}, \quad \beta = \{\beta_{\epsilon} = \{x: \ 0 < |x| < \epsilon\}, \epsilon > 0\}$ (выколотые окрестности нуля)

0.27 Предел функции по базе (в том числе, для метрических пространств)

Определение (предел по базе). Пусть $f:X \to \mathbb{R},\ \beta$ - база на X

Число $A \in \mathbb{R}$ называется **пределом** функции f **по базе** β , если $\forall \epsilon > 0$ \exists элемент базы $\beta \in \beta$: $\forall x \in \beta$: $|f(x) - A| < \epsilon$.

$$\lim_{\beta} f(x)$$

Определение (предел по базе (МП)). Пусть (Y,d) - МП, $f:X\to Y,\ \beta$ - база на X.

 $y \in Y$ называется **пределом** функции f(x) **по базе** β , если $\forall \epsilon > 0 \ \exists \beta \in \beta \ \forall x \in \beta : \ d(f(x), y) < \epsilon$, или, что то же самое, $\forall V_Y(y) \ \exists \beta \in \beta \ f(\beta) \subset V_Y(y)$, где V_Y - окрестность метрического пространства Y.

0.28 Основные свойства предела по базе

Теорема (основные свойства предела по базе). Пусть $f: X \to \mathbb{R}, \ \beta$ - база на X:

- 1. Если $\exists \lim_{\beta} f(x)$, то $\exists \beta \in \beta$: f ограничена на β
- 2. Если $\underset{\beta}{\lim} f(x) = A$ и $\underset{\beta}{\lim} f(x) = B$, то A = B

0.29 Связь предела функции по базе с неравенствами

Теорема (связь предела функции по базе с неравенствами). Пусть $f: X \to \mathbb{R}, \ g: X \to \mathbb{R}, \ \beta$ - база на X:

- 1. Если $\exists \beta \in \beta$: $\forall x \in \beta \ f(x) \leqslant g(x)$, то $\lim_{\beta} f(x) \leqslant \lim_{\beta} g(x)$
- 2. Если $\underset{\beta}{\lim} f(x) < \underset{\beta}{\lim} g(x),$ то $\exists \beta \in \beta \ \forall x \in \beta \quad f(x) < g(x)$

Если $\lim_{\beta} f(x) \geqslant \lim_{\beta} g(x)$, то $\exists \beta \in \beta \ \forall x \in \beta \quad f(x) \geqslant g(x)$

3. Если $h:X\to\mathbb{R}$ и $\exists \beta\in\beta:\ \forall x\in\beta\ f(x)\leqslant h(x)\leqslant g(x)$ И $A=\lim_{\beta}f(x)=\lim_{\beta}g(x),$ то $\lim_{\beta}h(x)=A$

Критерий Коши существования предела 0.30по базе

Теорема (критерий Коши существования предела по базе). Существуют две формулировки:

- 1. Пусть $f: X \to \mathbb{R}, \ \beta$ база на X. Функция f(x) имеет предел по базе $\beta \iff \forall \epsilon > 0 \; \exists \beta \in \beta : \; \forall x_1, x_2 \in \beta$ $\beta |f(x_1) - f(x_2)| < \epsilon$
- 2. Пусть (Y, d) МП (полное), $f: X \to Y$, β база на Y. Функция f(x) имеет предел по базе $\beta \iff \forall \epsilon > 0 \; \exists \beta \in \beta : \; \forall x_1, x_2 \in \beta$ $\beta \ d(f(x_1), f(x_2)) < \epsilon$

0.31Разбиение с отмеченными точками

Определение (разбиение). Пусть дан отрезок [a;b]. **Разбиением** P отрезка [a, b] называется набор точек $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. То есть $P = \{x_0, \dots, x_n\}$. Отрезки $[x_{i-1}; x_i] = \Delta_i$. $x_i - x_{i-1} = \Delta x_i$ - длина i-го отрезка разбиения $\lambda(P) = \max_{i=0,n} \{\Delta x_i\}$. Величины $\Delta_i, \Delta x_i, \lambda(P)$ - параметры ограничения.

Определение (разбиение с отмеченными точками). Разбиением с отмеченными точками называется пара наборов

$$P(\xi) = \{x_0, \dots, x_n\}, \{\xi_0, \dots, \xi_n\},$$

где $a = x_0 < \dots < x_n = b, \; \xi_i \in [x_{i-1}; x_i].$

0.32База на множестве разбиений отмеченными точками

Утверждение. Множество $\beta = \{\beta_{\delta}: \delta > 0\}$ является базой на \Re_{ξ} .

0.33 Интегрируемая по Риману функция, интеграл Римана (через предел по базе)

Определение (!). Пусть $f:[a;b]\to\mathbb{R},\;(P,\xi)$ - разбиение отрезка [a;b] с отмеченными точками. Составим сумму:

$$\sigma(f, (P, \xi)) = \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Можно смотреть на σ для фиксированной функции f(x) как на функцию, сопоставляющую разбиение $(P,\xi)\in\Re_{\xi}$ сумме $\sum_{k=1}^{n}f(\xi_{k})\Delta x_{k}$, то есть $\sigma_{f}:\Re_{\xi}\to\mathbb{R}$ (то есть (P,ξ) - аргумент функции σ).

Говорят, что функция $f:[a;b] \to \mathbb{R}$ интегрируема по Риману на [a;b], если:

$$\exists \lim_{\lambda(P)\to 0} \sigma_f((P,\xi)) = \lim_{\lambda(P)\to 0} \sum_{k=1}^n f(\xi_k) \Delta x_k$$

Или, что то же самое, если $\forall \epsilon>0$ $\exists \delta>0$ и соответствующий элемент $\beta_{\delta}\in\beta$: \forall разбиения (P,ξ) : $\lambda(P)<\delta$ выполняется неравенство $|\sigma_f((P,\xi))-I|<0$:

$$I = \lim_{\lambda(P) \to 0} \sigma_f((P, \xi)) = \int_a^b f(x) dx$$

0.34 Необходимое условие интегрируемости функции

Теорема (необходимое условие интегрируемости функции). *_* Если $f:[a;b] \to \mathbb{R}$ интегрируема на [a;b] (то есть $f \in \mathbb{R}[a;b]$), то f ограничена на [a;b].

0.35 Суммы Дарбу

Определение (нижняя/верхняя суммы Дарбу). Пусть $f[a;b] \to \mathbb{R}, \ P$ - произвольное разбиение отрезка [a;b]. Числа $\underline{S}(P) = \sum_{k=1}^n m_k \Delta x_k$ и $\overline{S}(P) = \sum_{k=1}^n M_k \Delta x_k$, где $m_k = \inf_{\xi \in \Delta k} f(\xi), \ M_k = \sup_{\xi \in \Delta k} f(\xi)$, называются нижней и верхней суммами Дарбу, отвечающими разбиению P.

0.36 Свойства сумм Дарбу

Теорема (свойства сумм Дарбу). Свойства:

1.
$$\forall (P, \xi) \ S(P) \leqslant \sigma_f((P, \xi)) \leqslant \overline{S}(P)$$

- 2. Если разбиение P' получено из разбиения P добавлением новых точек, то $\underline{S}(P')\geqslant \underline{S}(P)$ и $\overline{S}(P')\leqslant \overline{S}(P)$
- 3. $\forall P_1, P_2 \quad \underline{S}(P_1) \leqslant \overline{S}(P_2)$

0.37 Нижний и верхний интегралы Дарбу

Определение (верхний/нижний интеграл Дарбу). Числа $\underline{\mathfrak{I}} = \sup \underline{S}(P)$ и $\overline{\mathfrak{I}} = \inf \overline{S}(P)$ называются нижним и верхним интегралом Дарбу.

0.38 Критерий интегрируемости

Теорема (критерий интегрируемости). Функция $f:[a;b]\to\mathbb{R}$ интегрируема на $[a;b]\iff\lim_{\lambda(P)\to 0}(\overline{S}(P)-\underline{S}(P))=0.$

0.39 Колебание функции на отрезке

Определение. Обозначим $M_i - m_i = \sup_{\xi \in \Delta i} f(\xi) - \inf_{\xi \in \Delta i} f(\xi) = \sup_{x_1, x_2 \in \Delta i} |f(x_1) - f(x_2)| = \omega_i = \omega_i(f, \Delta i).$

 ω_i называется колебанием функции f(x) на отрезке Δi . $\overline{S}(P) - \underline{S}(P) = \sum_{i=1}^n \omega_i \Delta x_i$

0.40 Теорема Дарбу

Теорема (Дарбу). Для любой ограниченной функции $f:[a;b] \to \mathbb{R}$ выполняются равенства:

$$\underline{\mathfrak{I}} = \underset{\lambda(P) \to 0}{\lim} \underline{S}(P); \ \overline{\mathfrak{I}} = \underset{\lambda(P) \to 0}{\lim} \overline{S}(P)$$

0.41 Интегрируемость непрерывных функций

Теорема (интегрируемость непрерывных функций). Пусть $f:[a;b] \to \mathbb{R}$ непрерывна на $[a;b] \implies f$ - интегрируема на [a;b] , то есть $f \in \mathbb{R}[a;b]$.

0.42 Интегрируемость функции с конечным числом точек разрыва

Теорема (интегрируемость функций с конечным числом точек разрыва). Пусть $f:[a;b] \to \mathbb{R}$ - ограничена и имеет на [a;b] конечное число точек разрыва. Тогда $f \in \mathbb{R}[a;b]$ интегрируема на [a;b].

0.43 Интегрируемость монотонных функций

Теорема (интегрируемость монотонных функций). Пусть $f:[a;b]\to\mathbb{R}$ - монотонна на $[a;b]\Longrightarrow f$ - интегрируема на [a;b].

0.44 Свойства интегрируемых функций

Теорема. Пусть $f \in \mathbb{R}[a;b], g \in \mathbb{R}[a;b]$. Тогда:

- 1. $f \pm g \in R[a;b]$.
- 2. $\alpha f \in R[a;b], \ \alpha \in \mathbb{R}$.
- 3. $f * g \in R[a; b]$.
- 4. $|f| \in R[a;b]$, при этом:
 - $\int_a^b (f \pm g) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$
 - $\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$
 - $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

0.45 Аддитивность интеграла Римана

Определение. Пусть $a>b,\ a,b\in\mathbb{R},$ положим $\int_a^bf(x)dx=-\int_b^af(x)dx.$ Если a=b, то $\int_a^{a=b}f(x)dx=0.$

Теорема (Аддитивность интеграла Римана). Пусть даны точки $a,b,c \in \mathbb{R}$. Если f - интегрируема на большем из отрезков [a;b], [a,c], [b,c], то f - интегрируема и на меньших отрезках. И наоборот, если f интегрирема на двух меньших отрезках, то она интегрируема и на большем отрезке. При этом:

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx + \int_{c}^{a} f(x)dx = 0$$

0.46 Монотонность интеграла Римана и ее следствия

Теорема. Если a < b и $f \in R[a;b]$ и:

- 1. $\forall x \in [a; b] \ f(x) \ge 0$, to $\int_a^b f(x) dx \ge 0$
- 2. $\forall x \in [a; b] \ f(x) > 0$, to $\int_a^b f(x) dx > 0$

Следствие. (теоремы 2.4.9)

- 1. Если $a < b, f, g \in R[a; b]$ и:
 - (a) $\forall x \in [a;b] \ f(x) \leq g(x)$, to $\int_a^b f(x)dx \leq \int_a^b g(x)dx$
 - (b) $\forall x \in [a; b] \ f(x) < g(x), \text{ TO } \int_a^b f(x) dx < \int_a^b g(x) dx$
- 2. Если $f \in R[a;b], \ a < b, \ M = \sup_{x \in [a;b]} f(x), \ m = \inf_{x \in [a;b]} f(x),$ то $m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a).$
- 3. (Теорема о среднем)

Пусть $f \in R[a;b](a>b,a< b), \ m=\inf_{x\in [a;b]}f(x), \ M=\sup_{x\in [a;b]}f(x)$. Тогда существует $\mu\in [m;M]: \int_a^b f(x)dx=\mu(b-a)$.

Следствие. Если, кроме того, f(x) - непрерывна на [a;b], то $\exists c \in [a;b]: \int_a^b f(x)dx = f(x)(b-a).$

0.47 Теорема о среднем

Пусть $f \in R[a;b](a>b,a< b), \ m=\inf_{x\in [a;b]}f(x), \ M=\sup_{x\in [a;b]}f(x).$ Тогда существует $\mu\in [m;M]: \int_a^b f(x)dx=\mu(b-a).$

Следствие. Если, кроме того, f(x) - непрерывна на [a;b], то $\exists c \in [a;b]:$ $\int_a^b f(x) dx = f(x)(b-a).$

0.48 Первая теорема о среднем

Теорема (Первая теорема о среднем). Пусть $f,g \in R[a;b](a > b,a < b), \ m = \inf_{x \in [a;b]} f(x), \ M = \sup_{x \in [a;b]} f(x)$ и g не меняет свой знак на [a;b]. Тогда $\exists \mu \in [m;M]: \int_a^b f(x)g(x)dx = \mu \int_a^b g(x)dx$.

0.49 Интеграл Римана как функция верхнего предела интегрирования

Определение. Пусть $f \in R[a;b], \ x \in [a;b].$ Рассмотрим функцию $F(x) = \int_a^x f(t)dt, \ F(x)$ определена для $\forall x \in [a;b].$

0.50 Непрерывность интеграла Римана

Теорема (непрерывность интеграла Римана). Если $f \in R[a;b]$, то $F(x) = \int_a^x f(t) dt$ - непрерывна на [a;b].

0.51 Дифференцируемость интеграла Римана по верхнему пределу и ее следствие

Теорема (о дифференцируемости интеграла Римана как функции по верхнему пределу). Пусть $f \in R[a;b]$, $x \in [a;b]$ и f непрерывна в точке x, тогда функция $F(x) = \int_a^x f(t)dt$ дифференцируема в точке x, причем:

$$F'(x) = f(x) \implies \left(\int_a^x f(t)dt\right)_x' = f(x)$$

Следствие. Если f - непрерывна на [a;b], то на [a;b] она имеет первообразную, которая равна:

$$\Phi(x) = \int_{a}^{x} f(t)dt + C$$

Замечание. Рассмотрим следующие классы (множества/пространства) функций:

- R[a;b] множество интегрируемых на [a;b] функций;
- C[a;b] множество непрерывных на [a;b] функций;
- $C^o[a;b]$ множество дифференцируемых на [a;b] функций.

Получаем:

$$C^o[a;b] \subset C[a;b] \subset R[a;b].$$

0.52 Вторая теорема о среднем

Теорема (вторая теорема о среднем). Пусть $f,g\in R[a;b]$, причем f - монотонна на [a;b]. Тогда $\exists \xi\in [a;b]$:

$$\int_{a}^{b} f(x)g(x)dx = f(a)\int_{a}^{\xi} g(x)dx + f(b)\int_{\xi}^{b} g(x)dx$$

0.53 Формула Ньютона-Лейбница для непрерывной функции

Теорема. Пусть f - непрерывна на [a;b] и F(x) - её первообразная. Тогда $\int_a^b f(x)dx = F(b) - F(a) = F(x)|_a^b$

0.54 Формула Ньютона-Лейбница для функции, недиффиренцируемой в некоторых (конечное число) точках отрезка. Следствие.

Теорема. Пусть F(x) - непрерывна на [a;b], дифференцируема на [a;b] за исключением не более чем конечного числа точек. Причем всюду, где она дифференцируема: F'(x) = f(x). И, наконец, $f(x) \in R[a;b]$.

Тогда:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)|_{a}^{b}$$

Следствие. Если функция F(x) удовлетворяет условиям теоремы 2.5.2, то $\forall x \in [a;b]$:

$$F(x) = F(a) + \int_{a}^{x} F'(t)dt.$$

0.55 Формула интегрирования по частям для определенного интеграла

Теорема (формула интегрирования по частям). Если фукнции u(x) и v(x) непрерывно дифференцируемы на отрезке [a;b], то справедливо равенство:

$$\int_{a}^{b} u dv = uv|_{a}^{b} - \int_{a}^{b} v du.$$

0.56 Формула Тейлора с остаточным членом в интегральной форме

Теорема (формула Тейлора с остаточным членом в интегральной форме). Пусть функция f(t) имеет на отрезке [a;x] непрерывные производные до n-го порядка включительно. Тогда справедлива формула Тейлора:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} + r_n(a;x),$$

где
$$r_n(a;x) = \frac{1}{(n-1)!} \int_a^x f^{(n)}(t)(x-a)^{n-1} dt.$$

0.57 Замена переменной в интеграле Римана (для непрерывных функций)

Теорема. Пусть $\phi: [\alpha; \beta] \to [a; b]$ - непрерывно дифференцируемое отображение отрезка $[\alpha; \beta]$ в отрезок [a; b], причем $\phi(\alpha) = a$, $\phi(\beta) = b$. Тогда для любой функции f(x), непрерывной на [a; b], функция $f(\phi(t))\phi'(t)$ - непрерывна на $[\alpha; \beta]$ и справедливо равенство:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt.$$

0.58 Замена переменной в интеграле Римана (для интегрируемых функций)

Теорема (замена переменной для интегрируемых функций). Пусть $f:[a;b]\to \mathbb{R},\ f\in R[a;b],$ функция $x=\phi(t):$

- 1. $\phi : [\alpha; \beta] \to [a; b]$
- 2. $\phi(\alpha) = a, \ \phi(\beta) = b$
- 3. $\phi'(t)$ непрерывна на $[\alpha; \beta]$
- 4. ϕ строго монотонна

Тогда:

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t)dt$$

0.59 Путь

Определение. Пусть (X, ρ) - метрическое пространство, $[a; b] \subset \mathbb{R}$. Будем называть **путем** произвольное непрерывное отображение:

$$\gamma:[a;b]\to X$$

0.60 Простой путь

Определение. Пусть $\gamma:[a;b]\to X$ называется простым, если:

$$\forall t_1, t_2 \in [a; b]: \quad \gamma(t_1) = \gamma(t_2) \implies t_1 = t_2$$

а). простой путь

б). непростой путь

0.61 Отношение эквивалентности путей

На множестве путей введем отношение.

Пусть $\gamma_1: [a;b] \to X, \ \gamma_2: [\alpha;\beta] \to X.$

Будем говорить, что γ_1 и γ_2 находятся в отношении " \sim ", то есть $\gamma_1 \sim \gamma_2$, если существует строго возрастающее отображение $\phi: [\alpha; \beta] \to [a; b]$:

$$\phi(\alpha) = a, \ \phi(\beta) = b,$$

а так же:

$$\gamma_2(\tau) = \gamma_1(\phi(\tau))$$

0.62 Носитель пути

Определение. Образ пути γ называется **носителем** этого пути.

Пример. Рассмотрим:

$$\gamma_1 : [0; 1] \to \mathbb{R} : \quad \gamma_1(t) = t;
\gamma_2 : [0; 1] \to \mathbb{R} : \quad \gamma_2(\tau) = \tau^3,$$

Что бы доказать, что $\gamma_1 \sim \gamma_2$, нужно найти строго возрастающее отображение $\phi:[0;1] \to [0;1]$:

$$t = \phi(\tau) = \tau^3$$
, $\phi(\tau)$ - строго возрастающее, $\phi(0) = 0$, $\phi(1) = 1$; $\gamma_2(\tau) = \tau^3 = \phi(\tau) = t = \gamma_1(t) = \gamma_1(\phi(\tau)) \implies \gamma_2(\tau) = \gamma_1(\phi(\tau))$.

0.63 Кривая на множестве

Определение. Кривой в X будем называть класс эквивалентных путей.

0.64 Простая кривая

Определение. Кривая называется **простой**, если она представляется простым путем (это значит, что в ее классе есть простой путь).

0.65 Параметризация кривой

Определение. Путь, представляющий данную кривую (из класса эквивалентности путей) l называется **параметризацией** этой кривой.

0.66 Гладкая параметризация кривой

Определение. Пусть l - простая кривая в \mathbb{R}^2 , $\gamma(t) = (x(t); t(t))$ - ее параметризация. Кривая l называется **гладкой**, если $\forall t \ x(t), y(t)$ имеют непрерывные производные на $[\alpha, \beta]$ и $\nexists t_0 \in [\alpha, \beta]$ ($\gamma : [\alpha, \beta] \to \mathbb{R}^2$), $x'(t_0) = 0$ и $y'(t_0) = 0$.

0.67 Ломаная, вписанная в кривую

Определение. Пусть $l \subset \mathbb{R}^2$ (\mathbb{R}^3) и $\gamma: [\alpha, \beta] \to \mathbb{R}^2$ (\mathbb{R}^3) - параметризация кривой l.

Пусть $\alpha = t_0 < t_1 < \ldots < t_{n-1} < t_n = \beta$ - разбиение отрезка $[\alpha, \beta]$ и $M_i = \gamma(t_i), \ i = \overline{0,n}$ - точка пути γ (кривая l):

$$M_i = \gamma(t_i) = (x(t_i); y(t_i))$$

Тогда отрезок $M_{i-1}M_i$ $(i=\overline{1,n})$ называется **звеном** кривой l. Объединение $\cap M_{i-1}M_i$ - ломаная, вписанная в l.

0.68 Периметр ломаной, вписанной в кривую

Определение. Периметром ломаной называется сумма длин ее звеньев:

$$p(M_0, M_1, \dots, M_n) = \sum_{i=1}^n |M_{i-1}M_i|$$

0.69 Спрямляемая кривая

Определение. Если множество периметров ломаных, вписанных в данную кривую l - ограничено, то кривую l будем называть **спрямляемой**.

0.70 Аддитивность длины кривой

Теорема (аддитивность длины кривой). Функция S(l) является аддитивной, то есть если $l = l_1 \cup l_2$, то $S(l) = S(l_1) + S(l_2)$.

Более тонко: Пусть $\gamma:[a;b]\to\mathbb{R}^2$ - параметризация спрямляемой кривой l, точка $c\in[a;b]$:

 $\gamma_1: [a;c] \to \mathbb{R}^2$ - параметризация кривой l_1 , $\gamma_2: [c;b] \to \mathbb{R}^2$ - параметризация кривой l_2 , при этом $C = \gamma(c) = \gamma_1(c) = \gamma_2(c)$.

Тогда $S(l) = S(l_1) + S(l_2)$.

0.71 Длина кривой как предел

Теорема. Пусть l - простая спрямляемая незамкнутая кривая в \mathbb{R}^2 и γ : $[a;b] \to \mathbb{R}^2$ - ее параметризация. Пусть $a=t_0 < t_1 < \ldots < t_{n-1} < t_n = b$ - разбиение отрезка [a;b], этому разбиению соответствуют точки M_0, M_1, \ldots, M_n - соответсвующая ломаная, вписанная в l $(M_i = \gamma(t_i))$, тогла:

$$S(l) = \lim_{\lambda \to 0} p(m),$$

где $\lambda = \max_{i} \Delta t_i$, $\Delta t_i = t_i - t_{i-1}$.

0.72 Формула вычисления длины кривой

Теорема (формула для вычисления длины кривой). Пусть l - гладкая кривая; $\gamma:[a;b]\to\mathbb{R}^2$ - ее параметризация (гладкая, то есть $\gamma(t)=(x(t);y(t))$, где x(t) и y(t) имеют непрерывные произведения на [a;b]). Тогда l - спрямляема и:

$$S(l) = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

0.73 Многоугольник

Определение. Многоугольник - множество точек плоскости, границей которого является объединение конечного числа непересекающихся простых ломаных, при этом это объединение само является замкнутой ломаной.

0.74 Измеримое по Жордану (квадрируемое) множество. Площадь.

Определение. Множество $G \subset \mathbb{R}^2$ называется измеримым по Жардану (или квадрируемым), если:

$$S_* = \sup_{A \subset G} S(A) = S^* = \inf_{B \supset G} S(B),$$

где sup берется по всем многоугольникам, вписанным в G, а inf - по всем многоугольникам, описанным около G. При этом их общее значение $S=S_*=S^*$ называется площадью G, или мерой Жардана.

$$S_*$$
 - внутренняя мера, S^* - внешняя мера.

Другими словами, множество $G\subset \mathbb{R}^2$ квадрируемо, если внутреняя и внешняя меры совпадают.

Здесь S(A), S(B) - площади многоугольников A и B. Многоугольник A можно разбить на конечное число прямоугольников и прямоугольных треугольников:

$$S_{\square} = ab; \quad S_{\triangle} = \frac{1}{2}ab$$

Пример. (из определения)

1. Квадрируемые множетсва на плоскости.

Круг с границей:

$$x^2 + y^2 = 1$$

Упражнение: доказать, что круг - квадрируемое множество.

2. Неквадрируемые множества на плоскости.

Множество точек одинарного квадрата с рациональными координатами:

$$G = (\mathbb{Q} \times \mathbb{Q}) \cap ([0;1] \times [0;1])$$

Вписанный многоугольник $A=\emptyset$, S(A)=0. Многоугольник $B=[0;1]\times [0;1]$ имеет площадь равную 1 (S(B)=1).

$$S_* = 0, \quad S^* = \inf_{B' \supset G} S(B') = S(B) = 1 \ (S_* \neq S^*)$$

0.75 Критерий квадрируемости множества

Теорема (критерий квадрируемости). Множество $G\subset\mathbb{R}^2$ квадрируемо $\iff \forall \epsilon>0$ \exists многоугольники A и B:

- 1. $A \subset G$, $B \supset G$,
- 2. $S(B) S(A) < \epsilon$.

0.76 Криволинейная трапеция

Определение. Криволинейная трапеция - часть плоскости, ограниченная прямыми $x=a, \ x=b,$ графиком функции y=f(x) и осью Ox.

0.77 Квадрируемость криволинейной трапеции

Теорема. Криволинейная трапеция квадрируема и ее площадь равна:

$$S = \int_{a}^{b} f(x)dx,$$

где f(x) - непрерывна на $[a;b], f(x) \ge 0.$

0.78 Квадрируемость криволинейного сектора

Определение. Фигура на плоскости, ограниченная лучами $\phi = \alpha$ и $\phi = \beta$ и кривой $\rho = \rho(\phi)$ называется **криволинейным сектором**.

Теорема. Пусть криволинейный сектор Ω ограничен лучами $\phi = \alpha, \ \phi = \beta$ и кривой $\rho = \rho(\phi).$ Тогда:

$$S(\Omega) = \frac{1}{2} \int_{\alpha}^{\beta} \rho^{2}(\phi) d\phi,$$

где $\rho(\phi)$ - непрерывна на $[\alpha; \beta]$.

0.79 Несобственный интеграл, заданный на луче, на прямой, на отрезке. Сходящийся и расходящийся несобственный интеграл

Определение. Пусть $f:[a;+\infty)\to\mathbb{R}$ (задана на луче) и $\forall b\in[a;+\infty)$ $f\in R[a;b].$ Рассмотрим:

$$\lim_{b \to +\infty} \int_{a}^{b} f(x) dx,$$

этот предел называется **несобственным интегралом** от функции f(x) на луче $[a; +\infty)$.

Если этот предел существует и конечен, то несобственный интеграл называется **сходящимся**, иначе **расходящимся**. Обозначение:

$$\int_{a}^{+\infty} f(x)dx \stackrel{def}{=} \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$$

Определение. (продолжение определения)

1.
$$\int_{2}^{+\infty} \frac{dx}{x^{2}} = \lim_{b \to \infty} \int_{2}^{b} \frac{dx}{x^{2}} = \lim_{b \to +\infty} (F(b) - F(2)) = \lim_{b \to +\infty} (-\frac{1}{b} + \frac{1}{2}) = \frac{1}{2}.$$

Аналогично, пусть функция $f:(-\infty;a]\to\mathbb{R},\ f\in R[a;b],\ \forall b\in(-\infty;a].$

$$\lim_{b \to -\infty} \int_{a}^{b} f(x) dx,$$

этот предел называется **несобственным интегралом** от функции f(x) на луче $(\infty; a]$.

Если этот предел существует и конечен, то соответственно несобственный интеграл - сходящийся. Обозначается:

$$\int_{-\infty}^{a} f(x)dx \stackrel{def}{=} \lim_{b \to -\infty} \int_{b}^{a} f(x)dx.$$

Аналогично:

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx = \lim_{c \to +\infty, b \to -\infty} \int_{b}^{c} f(x)dx,$$

где $c \to +\infty, b \to -\infty$ - независимые друг от друга $(\forall b, c \ f(x) \in R[b;c]).$

2. Далее, пусть $f:[a;b) \to \mathbb{R}: \ \forall c \in [a;b) f \in R[a;c]$. Положим:

$$\int_{a}^{b} f(x)dx = \lim_{c \to b} \int_{a}^{c} f(x)dx.$$

Эта величина называется **несобственным интегралом** от функции f на полуинтервале [a;b).

Если предел существует, то несобственный интеграл называется **схо- дящимся**, иначе **расходящимся**.

Аналогично, пусть $f:(a;b]\to\mathbb{R}$, причем $\forall c\in(a;b]\ f\in R[c;b]$:

$$\int_{a}^{b} f(x)dx \stackrel{def}{=} \lim_{c \to a} \int_{c}^{b} f(x)dx -$$

несобственный интеграл от функции f(x) на полуинтервале (a;b].

Аналогично, пусть $f:(a;b)\to\mathbb{R}$, причем $\forall c,d\in(a;b)$ $f\in R[c,d]$. Тогда:

$$\int_{a}^{b} f(x)dx \stackrel{def}{=} \lim_{c \to a, d \to b} \int_{c}^{d} f(x)dx,$$

(где $c \to a, d \to b$ - независимые друг от друга) - несобственный интеграл от f(x) на (a;b)

3. Пусть $f:[a;b] \to \mathbb{R}$ и $\exists c \in (a;b): \ f$ - неограниченана в точке c.

$$\int_{a}^{b} f(x)dx = \int_{a}^{c-\epsilon} f(x)dx + \int_{c+\epsilon}^{b} f(x)dx =$$

$$\lim_{\epsilon \to 0} \int_{a}^{c-\epsilon} f(x)dx + \lim_{\epsilon} \int_{c+\epsilon}^{b} f(x)dx.$$

Если lim существует, то интеграл ялвяется сходящимся.

В дальнейшем будем рассматривать:

$$\int_{a}^{\omega} f(x)dx,$$

где $\omega = +\infty, -\infty, b.$

0.80 Критерий Коши сходимости несобственного интеграла

Теорема (Критерий Коши). Пусть $\forall b \in [a; \omega) \ f \in R[a; b]$.

 $\int_a^\omega f(x)dx$ сходится \iff $\forall \epsilon>0$ $\exists B\in [a;\omega): \ \forall b_1,b_2\in (a;\omega)$ и $b_1,b_2>B$ верно неравенство:

$$\left| \int_{b_{1}}^{b_{2}} f(x) dx \right| < \epsilon$$

0.81 Свойства несобственного интеграла

Теорема. Пусть $\forall b \in [a; \omega) \ f \in R[a; b]$.

1. Тогда $\int_a^\omega f(x)dx$ сходится \iff $\forall b \in [a;\omega)$ $\int_b^\omega f(x)dx$ сходится и

$$\int_{a}^{\omega} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{\omega} f(x)dx$$

2.

$$\lim_{b \to \omega} \int_{b}^{\omega} f(x) dx = 0$$

3. $\forall c \in \mathbb{R}$

$$\int_{a}^{\omega} cf(x)dx = c \int_{a}^{\omega} f(x)dx$$

(то есть если $c\int_a^\omega f(x)dx$ сходится, то сходится $\int_a^\omega c(x)dx$ и наоборот, и они равны)

4. Если $\int_a^\omega f(x)dx$ и $\int_a^\omega g(x)dx$ сходятся, то сходится и

$$\int_{a}^{\omega} (f(x) + g(x))dx = \int_{a}^{\omega} f(x)dx + \int_{a}^{\omega} g(x)dx$$

0.82 Сходимость несобственного интеграла от неотрицательных функций

Теорема (несобственная сходимость интеграла от неотрицательной функции). Пусть $f \in R[a;b]$ для $\forall b \in (a;\omega)$ и $f(x) \leq 0 \ \forall x \in [a;\omega)$.

 $\int_{a}^{\omega} f(x)dx$ сходится $\iff \exists M > 0: \ \forall b \in (a;\omega)$

$$\int_{a}^{b} f(x)dx < M.$$

0.83 Первый признак сравнения

Теорема (первый признак сравнения). Если $\forall x \in [a;\omega) \ f(x) \leqslant g(x)$ и $\forall b \in [a;\omega) \ f,g \in R[a;b], \ f(x) \geqslant 0, \ g(x) \geqslant 0,$ тогда:

- 1. Если $\int_a^\omega g(x)dx$ сходится $\implies \int_a^\omega f(x)dx$ сходится.
- 2. Если $\int_a^\omega f(x)dx$ расходится $\implies \int_a^\omega g(x)dx$ расходится.

0.84 Второй признак сравнения

Теорема (второй признак сравнения). Если $\forall x \in [a;\omega) \ f(x) > 0, \ g(x) > 0$ и $\exists \lim_{x \to \omega} \frac{f(x)}{g(x)} = A$ (либо 0, либо $+\infty$, либо $const \neq 0$), тогда:

- 1. Если $A=+\infty$, то из расходимости $\int_a^\omega g(x)dx$ следует расходимость $\int_a^\omega f(x)dx$, а из сходимости $\int_a^\omega f(x)dx$ следует сходимость $\int_a^\omega g(x)dx$.
- 2. Если A=0, то из расходимости $\int_a^\omega f(x)dx$ следует расходимость $\int_a^\omega g(x)dx$, а из сходимости $\int_a^\omega g(x)dx$ следует сходимость $\int_a^\omega f(x)dx$.
- 3. Если $A=const\neq 0$, то интегралы $\int_a^\omega f(x)dx$ и $\int_a^\omega g(x)dx$ ведут себя одинаково.

0.85 Абсолютно сходящийся несобственный интеграл

Определение. Пусть $\forall b \in [a;\omega) \ f \in R[a;b].$ $\int_a^\omega f(x) dx$ называется абсолютно сходящимся, если сходится $\int_a^\omega |f(x)| dx.$

0.86 Связь сходимости и абсолютной сходимости несобственного интеграла

Теорема. Если $\int_a^\omega |f(x)| dx$ сходится, то $\int_a^\omega f(x) dx$ тоже сходится (или если интеграл абсолютно сходящийся, то он сходящийся).

При этом:

$$\left| \int_{a}^{\omega} f(x) dx \right| \leqslant \int_{a}^{\omega} |f(x)| dx$$

0.87 Признак Вейерштрасса

Следствие (признак Вейерштрасса). Если $\forall x \in [a;\omega) \ |f(x)| \leqslant g(x)$ и $\int_a^\omega g(x) dx$ сходится, то $\int_a^\omega f(x) dx$ сходится.

0.88 Условно сходящийся несобственный интеграл

Определение. Если $\int_a^\omega |f(x)| dx$ расходится, а $\int_a^\omega f(x) dx$ сходится, то \int_a^ω называется условно сходящимся.

0.89 Признак Абеля

Теорема (признак Абеля). Если:

- 1. \int_a^{ω} сходится,
- 2. g(x) монотонна и ограничена на $[a; \omega)$,

то $\int_a^{\omega} f(x)g(x)dx$ - сходится.

0.90 Признак Дирихле

Теорема (признак Дирихле). Если:

1. Функция $F(b)=\int_a^b f(x)dx$ ограничена на $[a;\omega),$ то есть $\exists M>0:\ \forall b\in [a;\omega)$

 $\left| \int_{a}^{b} f(x)dx \right| \leqslant M,$

2. g(x) - монотонна на $[a;\omega)$ и $g(x)\to 0$ при $x\to\omega$. Тогда $\int_a^\omega f(x)g(x)dx$ - сходится.

0.91 Теорема о замене переменной в несобственном интеграле

Теорема (о замене переменной в несобственном интеграле). Пусть $\forall b \in [a; \omega), f \in C[a; b]$ (множество непрерывных функций), функция $x = \phi(t)$:

- 1. $\phi: [\alpha; \omega_1) \to [a; \omega),$
- 2. $\phi(\alpha) = a$, при $t \to \omega_1, \ \phi(t) \to \omega$,
- 3. $\phi(t)$ монотонно возрастает на $[\alpha; \omega_1)$,
- 4. $\phi'(t)$ непрерывна на $[\alpha; \omega_1)$,

Тогда интегралы $\int_a^\omega f(x)dx$ и $\int_\alpha^{\omega_1} f(\phi(t))\phi'(t)dt$ ведут себя одинаково и равны между собой.

0.92 Линейное пространство

Определение. Линейным пространством называется четверка (X,K,+,*), где X - множество, K - поле, "+" - операция сложения на X ("+" : $X \times X \to X$), " * " - операция умножения элемента поля K на элемент множества X (" * " : $K \times X \to X$).

При этом выполняются следующие аксиомы:

- 1. < X, + > абелева группа;
- 2. (a) $\forall \alpha, \beta \in K$ и $\forall x \in X$ $(\alpha \beta)x = \alpha(\beta X)$,
 - (b) $\forall x, y \in X, \ \forall \alpha \in K \ \alpha(x+y) = \alpha x + \alpha y,$
 - (c) $\forall \alpha, \beta \in K, \forall x \in X \quad (\alpha + \beta)x = \alpha x + \beta x$,
 - (d) $\forall x \in X, 1 \in K \quad 1x = x$.

0.93 Линейное нормированное пространство. Норма

Определение. Линейным нормированным пространством называется пара (X, ||*||), где X - линейное пространство над полем \mathbb{R} , а ||*|| - функция из X в \mathbb{R} .

 $||*||:X\to\mathbb{R}$, причем выполнены следующие аксиомы для нее:

- 1. $||x|| = 0 \iff x = \overline{0}$ (читается "норма от x"),
- 2. $\forall \lambda \in \mathbb{R} ||\lambda x|| = |\lambda| * ||x||,$
- 3. $\forall x, y \in X ||x + y|| \leq ||x|| + ||y||$ (неравенство треугольника).

Функция || * || называется **нормой**.

0.94 Примеры линейных нормированных пространств (ЛНП)

Пример. ЛНП:

- 1. $X = \mathbb{R}, \ \forall x \in X \quad ||x|| = |x|$ (норма = модулю по свойствам нормы),
- 2. $X = \mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$ (*n* раз), $\forall x \in X ||x|| = (\sum_{k=1}^n a_k^2)^{\frac{1}{2}}$, $x = (a_1, ..., a_n) \in X$. Покажем, что это норма:

1.,2. - очевидно. Докажем, что $\forall x,y\in X\;||x+y||\leqslant ||x||x+||y||$, то есть докажем, что $(\sum_{k=1}^n(x_k+y_k)^2)^{\frac{1}{2}}\leqslant (\sum_{k=1}^nx_k^2)^{\frac{1}{2}}+(\sum_{k=1}^ny_k^2)^{\frac{1}{2}}$ (\triangle).

Рассмотрим $\sum_{k=1}^n (x_k+y_k)^2 = \sum_{k=1}^n x_k^2 + 2 \sum_{k=1}^n x_k y_k + \sum_{k=1}^n y_k^2 \leqslant |$ используем неравенство Назарова-Заблоцкого (Коши-Буньковского) $\sum_{k=1}^n x_k y_k \leqslant (\sum_{k=1}^n x_k^2)^{\frac{1}{2}} (\sum_{k=1}^n y_k^2)^{\frac{1}{2}} | \leqslant \sum_{k=1}^n x_k^2 + 2 (\sum_{k=1}^n x_k^2)^{\frac{1}{2}} (\sum_{k=1}^n y_k^2)^{\frac{1}{2}} + \sum_{k=1}^n y_k^2 = [(\sum_{k=1}^n x_k^2)^{\frac{1}{2}} + (\sum_{k=1}^n y_k^2)^{\frac{1}{2}}]^2.$

Имеем:

$$\sum_{k=1}^{n} (x_k + y_k)^2 \leqslant \left[\left(\sum_{k=1}^{n} x_k^2 \right)^{\frac{1}{2}} + \left(\sum_{k=1}^{n} y_k^2 \right)^{\frac{1}{2}} \right]^2 \implies$$

приходим к (\triangle) операцией взятия корня от обеих частей неравенства

$$\implies (\sum_{k=1}^{n} (x_k + y_k)^2)^{\frac{1}{2}} \leqslant (\sum_{k=1}^{n} x_k^2)^{\frac{1}{2}} + (\sum_{k=1}^{n} y_k^2)^{\frac{1}{2}}.$$

3.
$$X = \mathbb{R}^n, \ \forall x = (x_1, \dots, x_n) \in X \quad ||x|| = \max_{k=1, n} |x_k|.$$

Такое ЛНП обозначается $\mathbb{R}_{\infty}^{\ltimes}$.

4.
$$X = \mathbb{R}^n, \ \forall x = (x_1, \dots, x_n) \in X \quad ||x|| = (\sum_{k=1}^n x_k^p)^{\frac{1}{p}}, \ p > 1.$$

Упражнение: доказать, что введенная функция есть норма, используя неравенство Левановича (Гельдера):

$$\sum_{k=1}^{n} x_k y_k \leqslant \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} y_k^p\right)^{\frac{1}{p}}.$$

- 5. X пространство непрерывных на [a;b] функций, то есть $X=C[a;b],\ \forall x\in X\quad ||x||=\max_{t\in[a;b]}|x(t)|;\ 1,2,3$ почти очевидно.
- 6. $X = C[a; b], \ \forall x \in X \quad ||x|| = \int_a^b |x(t)| dt.$

Покажем, что введенная функция есть норма:

(a) $||x(t)|| = 0 \iff x(t) = 0;$

Пусть $\int_a^b |x(t)| dt = 0$. От противного. Допустим, что $\exists t_0 \in [a;b]: x(t_0) \neq 0$. Тогда $\exists t_0 \in [\alpha;\beta], \ [\alpha;\beta] \subset [a;b]$ и $\forall t \in [\alpha;\beta] \ |x(t)| > 0$,

$$\int_{a}^{b} x(t)|dt \geqslant \int_{a}^{\beta} |x(t)|dt$$

Противоречие $\implies \forall t \in [a; b] |x(t)| = 0.$

- (b) $||\lambda x|| = |\lambda| * ||x||$ (из свойств определенного интеграла);
- (c) $||x+y|| \le ||x|| + ||y||$ (из свойств определенного интеграла);
- 7. X = C[a; b].

0.95 Метрика ЛНП

ЛНП (C[a;b], ||x||(*)) образначается $C^p[a;b]$.

Утверждение. Пусть (X, ||*||) - ЛНП. Тогда функция $\rho X \times X \to \mathbb{R}$, опредленная $\rho(x, y) = ||x - y||$, является метрикой ЛНП.

0.96 Банахово ЛНП. Примеры

Определение. Если линейное нормированное пространство является полным относительно введенной метрики, то оно называется **банахово**.

 $(X - \text{полное}, \text{ если } \forall \text{ фундаментальная последовательность сходится}).$

Пример. (банаховых пространств)

- 1. $X = \mathbb{R}$ банахово;
- 2. $X = C[a; b], ||x|| = \max_{t \in [a:b]} |x(t)|;$
- 3. $C_p[a;b] \Pi H \Pi, X = C[a;b],$

$$||x|| = (\int_a^b |x(t)|^p dt)^{\frac{1}{p}}.$$

0.97 Теорема о вложенных шарах

Теорема (о вложенных шарах). Метрическое пространство (МП) является полным $\iff \forall$ последовательность вложенных замкнутых шаров, радиусы которых стремятся к нулю, имеют в нем непустое пересечение.

0.98 Сжимающее отображение

Определение. Пусть $(X, \rho_X), \ (Y, \rho_Y)$ - МП. Отображение $f: X \to Y$ называется **сжимающим**, если $\exists 0 \leqslant \alpha < 1: \ \forall x_1, x_2 \in X$

$$\rho_Y(f(x_1), f(x_2)) \le \alpha * \rho_X(x_1, x_2).$$

0.99 Принцип сжимающих отображений

Теорема (принцип сжимающих отображений). Сжимающее отображение полного МП в себя имеет единственную неподвижную точку, то есть если (X,ρ) - полное, отображение $f:X\to X$ - сжимающее, то

$$\exists ! a \in X : f(a) = a.$$

0.100 Предкомпактное множество в МП

Определение. Множество E в метрическом пространстве называется **предкомпактным** (относительно компактным), если ее замыкание \overline{E} компактно.

0.101 Вполне ограниченное множество

Определение. Множество E в МП (X,ρ) называется вполне ограниченным, если $\forall \epsilon>0$ \exists конечная ϵ -сеть для E.

Напоминание: ϵ -сеть - набор $\{x_1,\ldots,x_n\mid x_i\in E\}\ \forall x\in E\ \exists$ хотя бы одна точка $x_i:\ \rho(x,x_i)<\epsilon$.

0.102 Теорема Хаусдорфа

Теорема (Хаусдорфа). Множество E в полном МП (X, ρ) ялвяется предкомпактным \iff оно вполне ограничено.

$\mathbf{0.103}$ Теорема о полноте \mathbb{R}^n

Теорема. Пространство \mathbb{R}^n (n-мерное линейное пространство с евклидовой метрикой),

$$||x|| = (\sum_{i=1}^{n} (x^i)^2)^{\frac{1}{2}}$$
 - полное

$\mathbf{0.104}$ Критерий компактности \mathbb{R}^n

Теорема (критерий компактности в \mathbb{R}^n). Множество $E \subset \mathbb{R}^n$ компактно \iff замкнуто и ограничено.

0.105 Эквивалентность норм в \mathbb{R}^n

Определение. Пусть $(X, ||*||_1), (X, ||*||_2)$ - линейное нормированное пространство (конечномерное). Говорят, что $||*||_1 \sim ||*||_2$ (эквивалентны), если $\exists c_1, c_2 > 0 \ (c_1, c_2 \in \mathbb{R})$:

$$\forall x \in X \quad c_1 * ||x||_2 \leqslant ||x||_1 \leqslant c_2 * ||x||_2 \quad (*)$$

Теорема (эквивалентность норм в конечномерном пространстве). Если X - конечномерное пространство МП, и $||*||_1$, $||*||_2$ - две нормы на нем, то:

$$|| * ||_1 \sim || * ||_2$$

0.106 Линейные отображения в конечномерных пространствах

Определение. Пусть X,Y - линейные пространства. Отображение $L:X\to Y$ называется **линейным**, если $\forall x_1,x_2\in X$ и $\alpha,\beta\in\mathbb{R}$:

$$L(\alpha x_1 + \beta x_2) = \alpha * L(x_1) + \beta L(x_2) = \alpha L x_1 + \beta L x_2.$$

0.107 Теорема о матрице линейного отображения

Теорема. Всякому линейному отображению $L: \mathbb{R}^n \to \mathbb{R}^k$ можно поставить в соответствие матрицу A размером $k \times n$:

$$\forall x \in \mathbb{R}^n \quad L(x) = Ax.$$

При этом, если в \mathbb{R}^n и \mathbb{R}^k зафиксированны базисы, то матрица A определяется однозначно.

0.108 Теорема о непрерывности линейного отображения

Утверждение. Если $L: \mathbb{R}^n \to \mathbb{R}^k$ - линейно, то оно непрерывно.

0.109 Дифференциал в точке в \mathbb{R}^n

Определение. Пусть $D\subset \mathbb{R}^n,\ f:D\to \mathbb{R}^k,$ точка $a\in D$ - предельная точка для D.

Отображение f называется **дифференцируемым** в точке a, если $\forall h: a+h \in D \; \exists$ линейное отображение $L(a): \mathbb{R}^n \to \mathbb{R}^k:$

$$f(a+h) - f(a) = L(a)h + o(h), \quad h \to \overline{0}.$$

Линейный оператор L(a) называется **дифференциалом** (или **касательным отображением**, или **производным отображением**) функции f и обозначается:

$$Df(x)$$
, $df(x)$

0.110 Критерий дифференцируемости отображения в \mathbb{R}^n

Утверждение. Пусть $f: D \to \mathbb{R}^k, \ D \subset \mathbb{R}^n, \ a \in D$

и
$$f(x) = \begin{pmatrix} f^1(x) \\ f^2(x) \\ \vdots \\ f^k(x) \end{pmatrix} = \begin{pmatrix} f^1(x^1, x^2, \dots, x^n) \\ f^2(x^1, x^2, \dots, x^n) \\ \vdots \\ f^k(x^1, x^2, \dots, x^n) \end{pmatrix}$$

Отображение f дифференцируемо в точке $a \iff$ отображение $f^i:D \to \mathbb{R}$ дифференцируемо в точке a.

0.111 Область

Определение. Множество $D\subset\mathbb{R}^n$ называется **областью**, если оно открыто и линейно связно.

0.112 Частная производная функции многих переменных

Определение. Пусть D - область в \mathbb{R}^n , $f:D\to\mathbb{R}$,

$$f(x) = f(x^1, x^2, \dots, x^n), \quad x \in D.$$

$$\lim_{h^i \to 0} \frac{f(x^1, x^2, \dots, x^i + h^i, \dots, x^n) - (f(x^1, x^2, \dots, x^n))}{h^i},$$

если этот предел существует.

Обозначение:

$$\frac{\partial f}{\partial x^i}$$
 or f'_{x^i}

0.113 Связь дифференциала и частных производных

Теорема (о связи дифференциала и частных производных). Если $f: D \to \mathbb{R}$ (D - область в \mathbb{R}^n) дифференцируема в точке $x \in D$, то она имеет в точке x все частные производные, при этом:

$$df(x)h = \frac{\partial f}{\partial x^1}h^1 + \frac{\partial f}{\partial x^2}h^2 + \dots + \frac{\partial f}{\partial x^n}h^n =$$

$$= \left(\begin{array}{ccc} \frac{\partial f}{\partial x^1} & \frac{\partial f}{\partial x^2} & \dots & \frac{\partial f}{\partial x^n} \end{array}\right) * \begin{pmatrix} h^1 \\ h^2 \\ \vdots \\ h^n \end{pmatrix}$$

(здесь везде $1, 2, \ldots, n$ - индексы, а не степени или производные).

0.114 Матрица Якоби

Пусть $f: \mathbb{R}^n \to \mathbb{R}^k$.

Матрицей Якоби отображения f в точке $x \in \mathbb{R}$ называется:

$$\Im(x) = \begin{pmatrix} \frac{\partial f^1}{\partial x^1} & \cdots & \frac{\partial f^1}{\partial x^n} \\ \frac{\partial f^2}{\partial x^1} & \cdots & \frac{\partial f^2}{\partial x^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^k}{\partial x^1} & \cdots & \frac{\partial f^k}{\partial x^n} \end{pmatrix}$$

Здесь
$$f(x) = \begin{pmatrix} f^1(x) \\ \vdots \\ f^k(x) \end{pmatrix}$$

Т. обр. $df(x)h = \Im(x)h = \begin{pmatrix} \frac{\partial f^1}{\partial x^1} & \cdots & \frac{\partial f^1}{\partial x^n} \\ \frac{\partial f^2}{\partial x^1} & \cdots & \frac{\partial f^2}{\partial x^n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^k}{\partial x^1} & \cdots & \frac{\partial f^k}{\partial x^n} \end{pmatrix} * \begin{pmatrix} h^1 \\ \vdots \\ h^k \end{pmatrix} = \begin{pmatrix} df^1(x)h \\ df^2(x)h \\ \vdots \\ df^k(x)h \end{pmatrix}$

Часто матрицу Якоби отображения f будем обозначать f'.

0.115 Дифференцируемость и арифметические операции

Теорема. Пусть $D \subset \mathbb{R}^n$ - область, $f: D \to \mathbb{R}^k$, $g: D \to \mathbb{R}^k$, если f и g дифференцируемы в точке $x \in D$, то $\forall \lambda_1, \lambda_2 \in \mathbb{R}$ функция $\lambda_1 f + \lambda_2 g$ дифференцируема в точке x, при этом:

$$(\lambda_1 f + \lambda_2 g)' = \lambda_1 f' + \lambda_2 g',$$

где $(\lambda_1 f + \lambda_2 g)', \ f', \ g'$ - матрицы Якоби.

Теорема. Пусть D - область в \mathbb{R}^n , $f:D\to\mathbb{R},\ g:D\to\mathbb{R}$. Если f,g - дифференцируемы в точке $x\in D$, то $f\cdot g$ дифференцируемо в точке x и если $g(x)\neq 0$, то $\frac{f}{g}$ - дифференцируемо в точке x, при этом:

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x);$$
$$(\frac{f}{g})'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}.$$

0.116 Дифференцирование композиции

Теорема (дифференцирование композиции). Пусть X - область в \mathbb{R}^n, Y - область в $\mathbb{R}^m, f: X \to Y, g: Y \to \mathbb{R}^k$.

Если f дифференцируема в точке $x \in X$, g - дифференцируема в точке $y = f(x) \in Y$, то $g \circ f$ дифференцируема в точке x и $(g \circ f)'(x) = g'(y) \cdot f'(x)$.

0.117 Дифференцирование обратного отображения

Теорема (о дифференцируемости обратного отображения). Пусть D - область в $\mathbb{R}^n, \ f: D \to \mathbb{R}^n$:

1. f дифференцируемо в точке $x \in D$;

- 2. f имеет обратное отображение в D;
- 3. f^{-1} непрерывно в точке y = f(x);
- 4. f'(x) обратимая матрица.

Тогда $f^{-1}:f(D)\to D$ дифференцируемо в точке y=f(x) и $(f^{-1})'=[f'(x)]^{-1}.$