

Autonomous Helicopter

How to fly it?

岩径のひ

Autonomous Helicopter

Reinforcement Learning

position of helicopter \longrightarrow how to move control sticks state s \longrightarrow action a \searrow \swarrow \uparrow \searrow \searrow \searrow

reward function

positive reward : helicopter flying well +1

negative reward : helicopter flying poorly -1000

Applications

- → Controlling robots
 - Factory optimization
- Financial (stock) trading
 - · Playing games (including video games)

Mars rover example

Mars Rover Example

The Ketum in Reinsorcement Learning of

Return

Return = $0 + (0.9)0 + (0.9)^{2}0 + (0.9)^{3}100 = 0.729 \times 100 = 72.9$

Return = $R_1 + r R_2 + r^2 R_3 + \cdots$ (until terminal state)

Discount Factor r = 0.9 0.99 0.999

r = 0.5Return = $0 + (0.5)0 + (0.5)^{3}0 + (0.5)^{3}100 = 12.5$

Example of Return

100	50	25	12.5	6.25	40	← return	y = 0.5
100	0	0	0	0	40	← reward	,
1	2	3	4	5	6	•	

The return depends on the actions you take.

100	2.5	5	10	20	40	0+(0.5)0+(0.5) ² 40=10
100	0	0	0	0	40	
1	2	3	4	5	6	
100	50	25	12.5	20	40	0+(0.5)40=20
100	0	0	0	0	40	

Policy

policy action state 5

100	←	←	7	→	40
100	4	←	4	4	40
100	7	→	→	→	40
100	4	4	1	→	40

 $\pi(s) = a$ $\pi(2) = \leftarrow$ $\pi(5) = \rightarrow$

A policy is a function $\pi(s) = a$ mapping from states to actions, that tells you what action a to take in a given state s.

The goal of reinforcement learning

Find a policy π that tells you what action (a = π (s)) to take in every state (s) so as to maximize the return.

Review of key concepts

Mars rover

Helicopter

Chess

- states
- actions
- rewards
- discount factor γ
- return
- \rightarrow policy π

6 states

- 100,0,40
 - 0.5

$$R_1 + \gamma R_2 + \gamma^2 R_3 + \cdots$$

position of helicopter

how to move control stick

0.99

$$R_1 + \gamma R_2 + \gamma^2 R_3 + \cdots$$

Find
$$\pi(s) = a$$

pieces on board

possible move

0.995

$$R_1 + \gamma R_2 + \gamma^2 R_3 + \cdots$$

Find
$$\pi(s) = a$$

Markov Decision Process (MDP)

State-action value function desinition

State action value function

$$()(s,a) = Return if you$$

- start in state s.
- take action a (once).
- then behave optimally after that.

$$()(2,\rightarrow) = 12.5$$

$$0+(0.5)0+(0.5)^{2}0+(0.5)^{3}100$$

$$()(2,\leftarrow) = 50$$

$$0+(0.5)100$$

$$()(4,\leftarrow) = 12.5$$

$$()(4,\leftarrow) = 12.5$$

$$()(4,\leftarrow) = 12.5$$

$$()(4,\leftarrow) = 12.5$$

Picking actions

$$\max_{\alpha} (\lambda(s, a))$$

Q(s,a) = Return if you

return

action

reward

- start in state s.
- take action a (once).
- · then behave optimally after that.

The best possible return from state s is $\max Q(s, a)$.

The best possible action in state s is the action a that gives $\max Q(s, a)$.

Optimal Q function

State-action value Junction example OPtional Lob see how I and revent Charge policy To QGs a Bellman Equation whelp compute Bellman Equation Q(s,a) =Return if you start in state s. take action a (once). R(1)=100 R(2)=0 ... R(6)=40 · then behave optimally after that. R(s) = reward of current state s: current state a: current action s': state you get to after taking action aa': action that you take in state s' $Q(s,a) = R(s) + r \max_{\alpha} Q(s',\alpha')$ Q (S,q) = R(S) + 7 max (S', q') Bellman Equation 12 terminal Q(s,a) = R(s) $Q(s,a) = R(s) + \gamma \max_{a'} Q(s',a')$ 5 = 2100 100 50 (12.5) 25 (6.25) 12.5 10 6.25 20 40 40 a=> 5'= 3 40 $(2, 3) = R(2) + 0.5 \max_{\alpha} (2(3, \alpha))$ = 0+(0.5)25 = 12.5 5=4 $Q(4, \leftarrow) = R(4) + 0.5 \max_{\alpha} Q(3, \alpha')$ a= < 5'= 3 = 0+(0.5)25=12.5 Q(2, -)=R(2)+7 m Q(3, a) = 0+ 0.5 (2t)

Explanation of Bellman Equation

$$Q(s,a) = \text{Return if you}$$
• start in state s.
• take action a (once).
• then behave optimally after that.

The best possible return from state $s' \text{is max } Q(s',a')$

$$Q(s,a) = R(s) + \gamma \max_{a'} Q(s',a')$$

$$Q(s,a) = R(s) + \gamma \max_{a'} Q(s',a')$$
Reward you get right away Return from behaving optimally starting from state s'.

$$R_1 + r R_2 + r^2 R_3 + r^3 R_4 + \cdots$$

$$Q(s,a) = R_1 + r R_2 + r^2 R_3 + r^3 R_4 + \cdots$$

Explanation of Bellman Equation

$$Q(s,a) = R(s) + \gamma \max_{a'} Q(s',a')$$

Random Cstochastic) environment Coptional)

Stochastic Environment

Expected Return

Expected Return = Average($R_1 + \gamma R_2 + \gamma^2 R_3 + \gamma^3 R_4 + \cdots$) = $E[R_1 + \gamma R_2 + \gamma^2 R_3 + \gamma^3 R_4 + \cdots]$

Expected Return

Goal of Reinforcement Learning:

Choose a policy $\pi(s)=a$ that will tell us what action a to take in state s so as to maximize the expected return.

Bellman Equation:

G 通过更强 misstep_pnb 观察Q登化

Example of Continuous State application

Discrete vs Continuous State

Discrete State:

Continuous State:

$$s = \begin{bmatrix} y \\ \theta \\ \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix}$$

Autonomous Helicopter

$$s = \begin{bmatrix} y \\ z \\ \phi \\ \theta \\ \omega \\ \dot{x} \\ \dot{y} \\ \dot{z} \\ \dot{\phi} \\ \dot{\theta} \\ \dot{\omega} \end{bmatrix}$$

Lunar lander

Lunar Lander

Reward Function

- Getting to landing pad: 100 140
- Additional reward for moving toward/away from pad.
- Crash: -100
- Soft landing: +100 Leg grounded: +10
- Fire main engine: -0.3
- Fire side thruster: -0.03

Lunar Lander Problem

Learn a policy π that, given

$$s = \begin{bmatrix} y \\ \dot{x} \\ \dot{y} \\ \theta \\ \dot{\theta} \\ l \\ r \end{bmatrix}$$

picks action $a = \pi(s)$ so as to maximize the return.

$$\gamma = 0.985$$

Learning the State-Value Sunction

Dan

Deep Reinforcement Learning

$$\vec{x} = \begin{bmatrix} s \\ a \end{bmatrix} \begin{bmatrix} x \\ y \\ \theta \\ \vdots \\ 1 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \\ \vdots \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \\ \vdots \\ y \end{bmatrix}$$
12 inputs 64 units 64 units 1 unit

In a state s, use neural network to compute Q(s, nothing), Q(s, left), Q(s, main), Q(s, right)Pick the action a that maximizes Q(s, a)

Learning Algorithm

Initialize neural network randomly as guess of $\underline{Q(s,a)}$. Repeat {

Take actions in the lunar lander. Get (s, a, R(s), s'). Store 10,000 most recent (s, a, R(s), s') tuples.

Replay Buffer

Train neural network:

Create training set of 10,000 examples using

$$x = (s, a)$$
 and $y = R(s) + \gamma \max_{a'} Q(s', a')$

Train Q_{new} such that $Q_{new}(s,a) \approx y$.

Set
$$Q = Q_{new}$$
.

Algorithm resinement: Improve d neural network

fwg(x) = y

Deep Reinforcement Learning

$$s = \begin{bmatrix} x \\ y \\ \theta \\ \dot{x} \\ \dot{y} \\ \dot{\theta} \\ l \\ r \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 64 \text{ units} \end{bmatrix}$$
8 inputs 64 units 4 units

((s, right)

Q(s, nothing) Q(s, left)Q(s, main)

In a state s, input s to neural network. Pick the action a that maximizes Q(s,a).

Algorithm resinement: &-greedy Policy

Learning Algorithm

Initialize neural network randomly as guess of $\underline{\mathit{Q}(\mathit{s},\mathit{a})}.$ Repeat {

Take actions in the lunar lander. Get (s, a, R(s), s'). Store 10,000 most recent (s, a, R(s), s') tuples.

Train model:

Create training set of 10,000 examples using

$$\mathbf{x} = (s,a) \text{ and } \mathbf{y} = R(s) + \gamma \max_{a'} Q(s',a').$$
 Train Q_{new} such that $Q_{new}(s,a) \approx y.$ $f_{w.b}(x) \approx y$ Set $Q = Q_{new}.$

How to choose actions while still learning?

In some state s

Option 1:

Pick the action \underline{a} that maximizes Q(s, a).

Option 2:

$$\varepsilon$$
-greedy policy (ε = 0.05) 0.95

Start ε high
1.0 \longrightarrow 0.01
Gradually decrease

Algorithm resinement: Mini-batch and soft update

How to choose actions while still learning?

}

$$\boxed{J(w,b)} = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

m = 100,000,000

repeat {
$$w = w - \alpha \frac{\partial}{\partial w} \left[\frac{1}{2m'} \sum_{i=1}^{m'} (f_{w,b}(\mathbf{x}^{(i)}) - y^{(i)})^2 \right]$$

$$b = b - \alpha \frac{\partial}{\partial b} \frac{1}{2m'} \sum_{i=1}^{m'} (f_{w,b}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^2$$

Mini-batch

Mini-batch

G MB - A trainingset it too in 2

Learning Algorithm

Initialize neural network randomly as guess of Q(s,a)Repeat {

Take actions in the lunar lander. Get (s, a, R(s), s').

Store 10,000 most recent (s, a, R(s), s') tuples.

Replay Buffer

Train model:

1,000

Create training set of 10,000 examples using

$$x = (s, a)$$
 and $y = R(s) + \gamma \max_{a'} Q(s', a')$

Train Q_{new} such that $Q_{new}(s,a) \approx y$.

Set $Q = Q_{new}$.

2) Minlatch 会带单G空光变化工

312 soft update

Soft Update

Set
$$Q = Q_{new}$$
. \subseteq $Q(s, a)$
 W_{new} , B_{new}

$$W = 0.01 W_{\text{new}} + 0.99 W$$
 $W = 1W_{\text{new}} + 0W$
 $B = 0.01 B_{\text{new}} + 0.99 B$

The state of reinforcement Learning

Limitations of Reinforcement Learning

- · Much easier to get to work in a simulation than a real robot!
- Far fewer applications than supervised and unsupervised learning.
- But ... exciting research direction with potential for future applications.

Summers of the course

Courses

- Supervised Machine Learning: Regression and Classification
 Linear regression, logistic regression, gradient descent
- Advanced Learning Algorithms
 Neural networks, decision trees, advice for ML
- Unsupervised Learning, Recommenders, Reinforcement Learning Clustering, anomaly detection, collaborative filtering, contentbased filtering, reinforcement learning