WHAT IS CLAIMED IS:

l	1. A self-compacting, fiber-reinforced engineered cementitious		
2	composite comprising:		
3	cementitious material comprising:		
4	cement and sand;		
5	at least one polymeric thickener;		
6	at least one superplasticizer; and		
7	water; and		
8	from 0.5 to 10 volume % of hydrophilic reinforcing fibers.		
1	2. The composite of claim 1 wherein the hydrophilic fibers		
2	comprise polyvinyl alcohol fibers.		
1	3. The composite of claim 1 further comprising hydrophobic		
2	fibers.		
1	4. The composite of claim 1 wherein the hydrophilic fibers have		
2	a tenacity of about 1000 - 2500 MPa.		
1	5. The composite of claim 1 wherein the polymeric thickener and		
2	the superplasticizer are provided as a single chemical serving both the functions of		
3	the polymeric thickener and superplasticizer.		
1	6. The composite of claim 5 wherein the hydrophilic fibers have		
2	a modulus (E) of about 30 - 60 GPa.		
1	7. The composite of claim 6 wherein the hydrophilic fibers have		
2	a diameter of about 10 - 60 μ m.		
1	8. The composite of claim 7 wherein the hydrophilic fibers have		
2	a length of about 5 - 30 mm.		
-			

1

2

18.

material is case without the use of any external vibration.

1	9.	The composite of claim 1 wherein the hydrophilic fibers are	
2	coated with an oiling agent.		
1	10.	A method of making a composite structural material	
2	(engineered cement	itious composite), said method comprising:	
3	mixii	ng from 0.5 to 10 volume % of hydrophilic reinforcing fibers	
4	with cementitious r	naterial comprising cement and sand, at least one polymeric	
5	thickener, at least one superplasticizer, and water.		
1	11.	The method of claim 10 wherein the hydrophilic fibers	
2	comprise polyvinyl alcohol fibers.		
1	12.	The method of claim 10 further comprising hydrophobic	
2	fibers.		
1	13.	The method of claim 10 wherein the hydrophilic fibers have	
2	a tenacity of about	1000 - 2500 MPa.	
1	14.	The method of claim 13 wherein the hydrophilic fibers have	
2	a modulus (E) of about 30 - 60 GPa.		
1	15.	The method of claim 14 wherein the hydrophilic fibers have	
2	a diameter of about 10 - 60 μ m.		
1	16.	The method of claim 15 wherein the hydrophilic fibers have	
2	a length of about 5	- 30 mm.	
1	17.	The method of claim 10 wherein the composite structura	
2	material is case wit	hout the use of any external vibration.	

The method of claim 16 wherein the composite structural

2

provided in a bundle form.

l	19.	The method of claim 9 wherein the hydrophilic fibers are	
2	coated with an oiling	g agent.	
1	20.	A method of making a composite structural materia	
2		tious composite), said method comprising:	
		•	
3	1)	mixing powders of dry cement, sand, fly ash and defoamer	
4	2)	mixing the dry powder mixture of 1) with water;	
5	3)	mixing an aqueous solution of cellulose compound with the	
6	mixture of 2);		
7	4)	mixing an aqueous solution of superplasticizer with the	
8	mixture of 3); and		
9	5)	mixing hydrophilic fibers with the mixture of 4).	
1	21.	The method of claim 20 wherein the components and the	
2	mixture of 2) are mixed for about 2 minutes, wherein the components of mixture 3		
3	are mixed for about 5 to 10 minutes, and wherein the components of mixture 4) are		
4	mixed for about 2 m		
1	22.	The method of claim 21 wherein additional water is mixed	
2	with the mixture of 3		
-	with the inixture or .		
l	23.	The method of claim 20 wherein the reinforcing hydrophilic	
2	noers are pre-soaked	l in water before being mixed with the mixture of 4).	
1	24.	The method of claim 20 wherein the hydrophilic fibers are in	
2	random, discontinuo	us ioiii.	
	25	The method of claim 20 wherein the hydrophilic fibers are	
1	25.	The method of claim 20 wherein the hydrophine fibers are	