We claim:

14	ベカノ
2	K /

A well logging system comprising:

- (a) a downhole well data sensor;
- 3
- a downhole data transmitter; (b)
- 4
- a surface data receiver; and (c)
- 5
- (d) a data transmission cable linking the transmitter and the
- 6

receiver, the cable having at least one pair of insulated

7

conductors wound in a substantially helical twist, an

8

insulation sheath surrounding the twisted pair of conductors

9

and a tensile load carrier surrounding the insulation sheath,

10

the load carrier comprising a sheath of tensile load carrying

11

filaments.

2

1

- A well logging system as described by claim 1 wherein the
- transmitter receiver each includes signal modem and а

2.

- complimentary to each other.
- A well logging system as described by claim 2 wherein the modems 3. utilize data encoding and decoding methods selected from the group
- 3

2

- consisting of (i) QAM, (ii) CAP, and (iii) DMT.
- 1
- A well logging system as described by claim 1 wherein the filaments 4.
- 2
- are distributed about a perimeter of the load carrying sheath in radial
- 3
- layers.

		1
1	5.	well logging system as described by claim 2 wherein wire size
2		respective to filaments in outer radial layers of the sheath are
3	S	greater than those of interior layers.
1	6.	A well logging system as described by claim 1 wherein the cable
2		has seven twisted pairs of insulated conductors within the insulation
3		sheath.
1	7.	A well logging data cable comprising :
2		(a) a twisted pair of signal conductors, each of the conductors
3	,	being separately nsulated;
4		(b) an insulation sheath surrounding the twisted pair of
5	i	conductors; and
6	i .	(c) a tensile load sheath surrounding the insulation sheath, the
7		tensile load sheath comprising a plurality of filaments.
1	8.	A data cable as described by claim 7 comprising at least 6 twisted
2		pairs of conductors disposed around a center conductor, all
3		conductors being within the insulation sheath.
1	9.	A data cable as described by claim \(\frac{1}{3} \) wherein the filaments are
2		distributed about a perimeter of the tensile load sheath in radia!

3

layers.

	٨	
1	10.	A system as described by claim 1 wherein the sensor is selected
2		from the group consisting of (i) a pressure sensor, (ii) a temperature
3		sensor and (iii) a flow sensor.
1	11.	A data cable as described by claim 7 having an effective
2		capacitance between the twisted pair of conductors of less than 30
3		pF per foot of cable length.
Sub	> 12.	A method of transmitting a signal from within a well borehole to a
2 17		surface location comprising
3		(a) transmitting the signal with a downhole data transmitter;
4		(b) conveying the signal on a data transmission cable linking the
5		transmitter and to a surface receiver, the cable having at
6		least one pair of insulated conductors wound in a
7		substantially helical wist, an insulation sheath surrounding
8		the twisted pair of conductors and a tensile load carrier
9		surrounding the insulation sheath, the load carrier comprising
10		a sheath of tensile load carrying filaments.
1	13.	method according to claim 12 wherein the transmitting and
2		receiving the signal are accomplished using complimentary signal
³ /		modems.
<i>y</i> \ (
Κ,		

1

2

3

14. A method according to claim 13 wherein the signal is encoded and decoded using decoding methods selected from the group consisting of (i) QAM, (ii) CAP, and (iii) DMT.