COMP 6721 Applied Artificial Intelligence (Fall 2021)

Worksheet #1: Solving Problems by Searching

Breadth-First Search. Let's apply the BFS algorithm discussed in the lecture on an example:

Assume U is the **goal state**. Note that **open** is a **queue**:

- 1. open = $[A_{\text{null}}]$, closed = []
- 2. open = $[B_A \ C_A \ D_A]$, closed = [A]
- 3. open = $[C_A \ D_A \ E_B \ F_B]$, closed = $[B \ A]$
- 4. open = [], closed = [

Depth-First Search. Now we do the same for the DFS algorithm:

Function depth_first_search algorithm

Again, assume **U** is the **goal state**. Note that **open** is a **stack**:

- 1. open = $[A_{\text{null}}]$, closed = []
- 2. open = $[B_A \ C_A \ D_A]$, closed = [A]
- 3. open = $[E_B \ F_B \ C_A \ D_A]$, closed = $[B \ A]$
- 4. open = $[K_E \ L_E \ F_B \ C_A \ D_A]$, closed = $[E \ B \ A]$
- 5. open = $[S_K \ L_E \ F_B \ C_A \ D_A]$, closed = $[K \ E \ B \ A]$
- 6. open = [$\underline{}$], closed = [
- 7. open = [], $\operatorname{closed} = [$
- 8. open = [], closed = [

Best-First Search. Next, we try a best-first (greedy) search. We have a heuristic h(n) that estimates the cost for each path. The goal is **P**. At each step, expand the node with the *lowest* cost (as predicted by the heuristic):

- 1. open = $[A_{\mbox{\scriptsize null}}^5],$ closed = []
- 2. open = $[B_A^4 \ C_A^4 \ D_A^6]$ (random choice), closed = [A]
- 3. open = $[C_A^4 E_B^5 F_B^5 D_A^6]$, closed = [B A]
- 5. open = [_____], closed = [____]
- 6.???

Finally, extract the path to the solution from the search result:

Algorithm A. Compute the next step of the Algorithm A on the 8-puzzle:

- 1. Pick the state with the *lowest* total cost f(n)
- 2. and compute the next possible search states, including the new values of f(n), g(n) and h(n).