DG categories (Possibly invented by M. Kelly at UIUC!)
(Ref. Bondal - Kapranov, Keller)

Abelian cedegory: abstraction that captures structure of Ab = castegory of abelian groups and R-mod = ceet. of modules / R, R a ring.

Triangulated ceetegory: Abstraction that capatives structure of K(A) = homotopy casegory of complexes in A or D(A) = derived castegory of A = K(A)[qiso'] (A an abelian category)

Wheat about the cuteyony Ch(A) of chain complexes itself? It is most naturally a Differential Graded (DG) certegory.

Let k be a commutation ring (often we take k a field)

We say ℓ is a k-linear cutegary if for any objects $X, Y \in Ob \mathcal{E}$, the horn set home (X,Y) is equipped W/ struct. of k-module, and composition $(V,Y) \times b_{acc}(X,Y) \to b_{acc}(Y,Y)$

home $(Y, Z) \times home(X, Y) \rightarrow home(X, Z)$ is k-bilinear, allowing us to write it as a map home $(Y, Z) \otimes home(X, Y) \rightarrow home(X, Z)$

A k-linear cadegor is called additive if it admits all finite direct sums of objects.

A DG category is a k-linear coetagory & with the additional structures of a Z-grading home (X,Y) = & home (X,Y) can each hom-module an operator d_{XY}^i : home d_{XY}^i : hom Such theat composition o: home $(Y, Z) \not\in home(X, Z) \rightarrow home(X, Z)$ is a chain map (comprutes of differentials) $d_{X,X}^{o}(id_{X}) = 0.$ The example is Ch(R-mod) where R is a k-algebra Objects = Cochain complexes of left R-modules (K', d_k) $d_c: K^i \rightarrow K^{i+1}$ $d_k^2 = 0$ R-module hom hom $((K',d_k),(L',d_L)) = \bigoplus hom^P((K,d_k),(L,d_L))$

 $hom^{p}((K',d_{k}),(L',d_{L})) = \pi hom_{R}(K^{i},L^{i+p})$

Definition of the space hom P(K,L) does not involve d_{K} or d_{L} . Elements of hom' $((K,d_{K}),(L,d_{L}))$ are not necessarily chain maps.

Differential on hom' ((K', dk), (L', dL)) involves "commuting with the internal differentials"

Formally expect that if $x \in K^i$ and $f \in hom^j(K', L')$ than $f(x) \in L^{i+j}$ By leibniz, would have $d_{L}(f(x)) = d_{hom(k,L)}(f) \cdot x + (-1)^{s} f(d_{K}(x))$ We define $d_{hom(k,L)}(f) = d_{L} \cdot f - (-1)^{deg} f \cdot d_{K}$ These definitions make Ch(R-mod) into a DG - cutegory

The cohomology or homotopy cutegory of a DG category

Given a DG category E, we make form there is a subscutegory $Z^{o}(E)$ with the same objects with morphims the degree zero coeycles.

 $Hom_{z^{\circ}(e)}(X,y) = Z^{\circ}(hom_{e}(X,y)) = \{f \in hom_{e}^{\circ}(X,y) \mid df = 0\}$

Z°(Ch(R-mod)) is the truditional category of chain complexes and chain maps.

We can also take degree zero columplayy H°(E)

Hom Hor) (X,Y) = HO(home(X,Y)) = ZO(home(X,Y))/Jhome(X,Y)

H° (ch (R-mod)) is the traditional homotopy cartegory of chain complexes of R-modules

We can also get a Z-graded cuteyony by considerity cohomology of all degrees. H(E)

Homin(x,y) = Hi(home(x,y))

A DG functor $F:A \rightarrow B$ is a functor that preserves the k-liner structure and direct sums, the grading, and such that $F: hom(X,Y) \rightarrow hom_B(FX,FY)$ is a chain map.

Such a functor induces $H(F): H(A) \rightarrow H(B)$ $H(F): H(A) \rightarrow H(B)$ we say F is a <u>quasi equivalence</u> of H(F) and H(F)are equivalences of ordinary cadegories.

That is F: hom, (X,Y) -> hom, (FX,FY) is always a quasi-isomorphism of complexes, and HIF) is essentially surjective

If A is a DG cutegory linear overk, then an A-module is a DG-functor A -> Ch(k-mod)

The collection of all DG functors $\{F:A \rightarrow B\}$ itself forms a DG centergony Fun(A,B)

Let F,G; A -> B be two DG functives Let hern k (F,G) be the set of Funld,B)

grading preserving natural transformations $\eta:F \Rightarrow G[k]$, for getting the differential.

So for each $X \in ObA$ $M_X \in hem_B(FX, GX)$ The differential is just M_X .

Eg A-mod = Fun (A, Ch(k-mod)) us a DG certegory