Blatt 3 - Gruppe 3

Mike Lenz, Jonas Tesfamariam

9. Mai 2023

Aufgabe 1

```
a)  \{1,2,3,4\}  für m=2  \{\{1\}\{2,3,4\}\}, \{\{2\}\{1,3,4\}\}, \{\{3\}\{1,2,4\}\}, \{\{4\}\{1,2,3\}\}, \{\{1,2\}\{3,4\}\}, \{\{1,3\}\{2,4\}\}, \{\{1,4\}\{2,3\}\}  für m=3  \{\{1\}\{2\}\{3,4\}\}, \{\{1\}\{3\}\{2,4\}\}, \{\{2\}\{3\}\{1,4\}\}, \{\{3\}\{4\}\{1,2\}\}, \{\{1\}\{4\}\{2,3\}\}, \{\{2\}\{4\}\{1,3\}\}
```

 $\{\{1\}\{2\}\{3\}\{4\}\}$

b)

Wir zeigen, dass

$$\sum_{m=0}^{n} S(n,m) = \sum_{k=0}^{n-1} {n-1 \choose k} B_k = B_n$$

Zuerst formen wir um

$$\sum_{m=0}^{n} S(n,m) = S(n,n) + \sum_{m=0}^{n-1} S(n,m) = 1 + \sum_{m=0}^{n-1} S(n,m)$$

und verwenden Dann die Formel für die Stirlingzahlen aus Satz 1.9.10

$$1 + \sum_{m=0}^{n-1} S(n,m) = 1 + \sum_{m=0}^{n-1} \sum_{k=m}^{n-1} {n-1 \choose k} S(k,m).$$

Nun lösen wir die Summen auf (Wir lassen die 1 am Anfang raus weil wir keine Ahnung haben wo wir sie in der Folgenden Form einbringen sollen)

$$\binom{n-1}{0}S(0,0) + \binom{n-1}{1}(S(1,0) + S(1,1)) + \ldots + \binom{n-1}{n-1}(S(n-1,0) + \ldots + S(n-1,n-1))$$

Hier ist eine Visualisierung warum wir es so auflösen können

Dies können wir umformen zu

$$\sum_{k=0}^{n-1} \left(\binom{n-1}{k} \sum_{m=0}^{k} S(k,m) \right) = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k$$

Wodurch wir gezeigt haben, dass

$$\sum_{k=0}^{n-1} \binom{n-1}{k} B_k = B_n$$

 $\mathbf{c})$

Anwenden der Formel $\sum_{k=0}^{i} {i \choose k} B_k$

$$B_0 = B_1 = 1 (1)$$

$$B_2 = B_0 + B_1 = 2 (2)$$

$$B_3 = B_0 + 2B_1 + B_2 = 5 (3)$$

$$B_4 = B_0 + 3B_1 + 3B_2 + B_3 = 15 (4)$$

Das Ergebnis beschreibt die Anzahl der Äquivalenzrelationen für $M = \{1, 2, 3, 4\}$. Die Anzahl in a) stimmt mit dem Ergebnis aus c) überein.

Aufgabe 2

a)

Wir definieren unser Problem als ein Zahlpartitionsproblem:

Wir nehmen die 12 (n) Tafeln Schokolade als unsere Zahl, die partitioniert werden soll und die 4 (m) Pakete als die Variablen. Somit erhalten wir:

$$12 = p_1 + p_2 + p_3 + p_4$$

Da in jedem Paket mindestens eine Tafel Schokolade sein soll wenden wir die Formel aus Satz 1.10.13 an. Hiermit haben wir

$$\binom{n-1}{m-1} = \binom{12-1}{4-1} = \binom{11}{3} = 165$$

Möglichkeiten die Tafeln Schokolade auf die Pakete aufzuteilen.

b)

Dieses Problem ist ähnlich zu dem vorherigen. Unsere Zahl, welche partitioniert werden soll, ist nun 13 (n) und die Anzahl der Variablen bleibt bei 4 (m), da wir nur die Quersumme von Zahlen bis 9999 betrachten sollen. Jedoch gilt nun, dass $p_i = 0$ möglich ist (z.B. wegen der Quersumme von 3082 oder auch 382). Deshalb verwenden wir die Formel aus Satz 1.10.16:

$$\binom{n+m-1}{m-1} = \binom{13+4-1}{4-1} = \binom{16}{3} = 560$$

Aufgabe 3

/

Aufgabe 4

a)

Wir betrachten Dominosteine als Multimengen D mit zwei Einträgen (also gilt |D|=2=n). Die Menge der Möglichen Augenzahlen der Quadrate ist $A=\{1,2,3,4,5,6,7\}$ mit |A|=7=m. Die Anzahl der möglichen Multimengen (Anzahl verschiedener Dominosteine) ist berechenbar mithilfe der Formel aus Satz 1.11.6:

$$\binom{n+m-1}{m-1} = \binom{2+7-1}{7-1} = \binom{8}{6} = 28$$

Es gibt also 28 verschiedene Dominosteine.

b)

Die Augen der Würfel sind durch $A = \{1, 2, 3, 4, 5, 6\}$ mit |A| = 6 = m beschrieben und die Menge des Wurfs mit n Würfeln ist eine Multimenge W mit |W| = n. Wir können nun wieder die Formel aus Satz 1.11.6 verwenden:

$$\binom{n+m-1}{m-1} = \binom{n+6-1}{6-1} = \binom{n+5}{5}$$

Abhängig von der Anzahl der Würfel (n) gibt es somit $\binom{n+5}{5}$ mögliche Ergebnisse.

Aufgabe 5

```
import scipy.special as sc # Needed for binom
\mathbf{def} \ \mathrm{S(n,m)}:
  # Base cases
  if (n != 0 \text{ and } m == 0) \text{ or } (n < m):
    return 0
  if (n = 0 \text{ and } m = 0) or (n = m):
    return 1
  # Recursion
  return S(n-1,m-1) + m * S(n-1,m)
\mathbf{def} \ \mathrm{B(n)}:
  total = 0
  for i in range (n+1):
     total += S(n, i)
  return total
# Implementation for Bell numbers according to 1b)
\mathbf{def} B1b(n):
  if n == 0:
    return 1
  total = 0
  for k in range (0,n):
     total += sc.binom(n-1,k) * B1b(k)
  return total
# Compare the two implementations with the number we get in
   \hookrightarrow 1c)
print (B(4),B1b(4)) # 15 15
\mathbf{print}(B(10))
                      # 115975
```