Intermediate Value Theorem

I am going to rigorously prove the intermediate value theorem (IVT) by using the existence of supremum. The claim of the theorem is as following.

Theorem 1 -

If f is continuous on [a, b], and f(a) < 0 < f(b), then $\exists x \in (a, b) \ni f(x) = 0$

Proof:

Let $A = [x \in [a, b] : f(y) < 0, \forall y \in [a, x]]$

Let C be the smallest element in [a,b] which is larger than every element of A.

Claim: f(C) = 01) $C \neq a$, f(a) < 0f is continuous at a, so

$$\lim_{x \to a^+} f(x) = f(a)$$

 $\exists \delta > 0 \ni 0 \le x - a < \delta$, then

$$|f(x) - f(a)| < -\frac{f(a)}{2}$$

Then, $f(x) - f(a) < -\frac{f(a)}{2}$, so

$$f(x) < \frac{f(a)}{2} < 0$$

 \therefore For all $x \in [a, a + \delta]$,

So all points in $[a, \delta]$ are in A.

 $\therefore C$ is larger than all of these, so C > a.

2) $C \neq b$, $\exists \delta_2 > 0 \ni \text{if } b - \delta_2 < x \leq b$, then

$$|f(x) - f(b)| < \frac{f(b)}{2}$$

Then, we get $-\frac{f(b)}{2} < f(x) - f(b) < \frac{f(b)}{2}$, so

$$f(x) > \frac{f(b)}{2} > 0$$

for all $x \in (b - \delta_2, b]$

So none of these xs are in A.

 \therefore all of the $xs \ge$ everything in A.

Since C was the smallest in [a, b] which was larger than everything in A.

 $\therefore C < x \text{ for all } x \in (b - \delta_2].$

 $\therefore C \neq b.$

Suppose f(C) < 0.

Since f(x) is continuous at C, $\exists \delta_3 > 0 \ni \forall x \in (C - \delta, C + \delta)$,

$$|f(x) - f(C)| < -\frac{f(C)}{2}$$

Then,

$$f(x) - f(C) < -\frac{f(C)}{2}$$

So we get

$$f(x) < \frac{f(C)}{2} < 0$$

Pick $s = C + \frac{\delta}{2}$, then

$$f(y) < 0, \forall y \in [a, s]$$
$$\therefore s \in A.$$
$$\therefore C \ge s = C + \frac{\delta}{2}.$$

This is contraction.

$$\therefore f(C) \ge 0.$$

Then, suppose f(C) > 0.

Since f(x) is continuous at C, $\exists \delta_4 > 0 \ni \forall x \in (C - \delta, C + \delta)$,

$$|f(x) - f(C)| < \frac{f(C)}{2}$$

Then,

$$\frac{f(C)}{2} < f(x) < \frac{3f(C)}{2}$$

Hence, we get

$$0 < \frac{f(C)}{2} < f(x)$$

Then, pick $s' = C - \frac{\delta}{2}$ and we have

$$f(y) > 0, \forall y \in [s', b]$$

 $\therefore s'$ is bigger than every element in A.

$$\therefore C \le s' = C - \frac{\delta}{2}$$

This is contradiction.

$$\therefore f(C) \leq 0$$

Hence,

$$f(C) = 0 \blacksquare$$

.