

миэм ниу вшэ

ИНФОКОММУНИКАЦИОННЫЕ СИСТЕМЫ И СЕТИ

STP

What If ...?

What if a broadcast frame or a frame with an unknown destination MAC address were sent into a Layer 2 network with redundant paths?

Example: Source MAC: 00:26:88:02:74:86 / Destination MAC: 00:26:88:02:74:95

Spanning Tree Protocol

STP

- Defined in the IEEE 802.1D-1998 specification
- Builds loop-free paths in redundant Layer 2 networks
- Automatically rebuilds tree when topology changes

How Does it Work?

- Steps for creating a spanning tree include:
 - 1. Switches exchange bridge protocol data units (BPDUs)
 - 2. Root bridge is elected
 - 3. Port role and state are determined
 - 4. Tree is fully converged

Terms and Concepts (1 of 2)

- Key terms and concepts of STP:
 - Bridge ID: Unique identifier for each switch
 - Root bridge: Switch with the lowest bridge ID
 - Root port: The port on each bridge closest to the root bridge
 - Root path cost: A bridge's calculated cost to get from itself to the root bridge
 - Equal to the received root path cost from configuration BPDUs plus the port cost of the root port on the bridge
 - Port cost: Every interface on a bridge has an assigned port cost value
 - Used in the calculation of the root path cost for the local bridge
 - Configurable value (1–20000000)
 - The default value is 20000 for 1 Gigabit Ethernet

Terms and Concepts (2 of 2)

- Key terms and concepts of STP (contd.):
 - Designated bridge: A switch representing the LAN segment
 - Port ID: A unique identifier for each port on each switch
 - Designated port: The designated bridge's forwarding port on a LAN segment
 - The port used by a designated bridge to send traffic from the direction of the root to the LAN or from the LAN toward the root
 - Bridge protocol data unit: Packets used to exchange information between switches
 - Configuration BPDU
 - Topology change notification BPDU

Port States

- Each individual port of each bridge can be in one of four states:
 - Blocking
 - The port drops all data packets and listens to BPDUs
 - The port is not used in active topology
 - Listening
 - The port drops all data packets and listens to BPDUs
 - The port is transitioning and will be used in active topology
 - Learning
 - The port drops all data packets and listens to BPDUs
 - The port is transitioning and the switch is learning MAC addresses
 - Forwarding
 - The port receives and forwards data packets and sends and receives BPDUs
 - The port has transitioned and the switch continues to learn MAC addresses

BPDU—Ethernet Frame Format

Ethernet Frame

BPDU types:

- Configuration BPDUs
 - Used to build the spanning-tree topology
- Topology change notification (TCN) BPDUs
 - Reports topology changes

BPDU Format

Building a Spanning Tree (1 of 3)

- Switches exchange configuration BPDUs:
 - They do not flood—instead each bridge uses information in the received BPDUs to generate its own
- Root bridge is elected based on BPDU information:
 - Criterion for election is the bridge ID
 - The election process reviews priority first—lowest priority wins
 - If the priority values are the same, bridge addresses (MAC) are compared—the lowest identifier wins

Building a Spanning Tree (2 of 3)

Least-cost path calculation to root bridge determines port role; port role determines port state:

Port Role and State Designations

All ports on root bridge assume designated port role and forwarding state

Root ports on switches are placed in the forwarding state; root bridge has no root ports

Designated ports on designated bridges are placed in the forwarding state

All other ports are placed in the blocking state

Building a Spanning Tree (3 of 3)

- The tree is fully converged
 - All traffic between Host A to Host B flows through the root bridge (Switch-1)

Reconvergence Example (1 of 2)

Steps:

- 1. Switch G fails
- 2. Switch E's port leaves forwarding state
- Switch E sends TCNs out root port every 2 seconds until E's root port receives TCN ACK (configuration BPDU)
- 4. Switch B sends TCN ACK
- 5. Switch B sends TCN out root port
- 6. Switch A sends TCN ACK

Reconvergence Example (2 of 2)

- Steps (contd.):
 - 7. The root bridge sets the topology change flag and sends an updated configuration BPDU
 - 8. Switches B and C relay the topology flag to downstream switches
 - All nonroot bridges change the address forwarding table timer to equal the forwarding (default: 15 seconds)

STP Drawbacks

- Slow convergence time
 - STP uses timers to transition between port states
 - STP can take 30 to 50 seconds to respond to a topology change (20 seconds for a BPDU to age out, 15 seconds for the listening state, and 15 seconds for the learning state)
 - Root bridge is responsible for communicating the current tree topology

Rapid Spanning Tree Protocol

- RSTP was first defined in IEEE 802.1w and later incorporated into IEEE 802.1D-2004
- Convergence improvements:
 - Point-to-point link designation
 - Edge port designation
 - A port that connects to a LAN with no other bridges attached
 - It is always in the forwarding state
 - Allows for rapid recovery from failures
 - A new root port or designated port can transition to forwarding without waiting for the protocol timers to expire
 - Direct and indirect link failure and recovery

RSTP Port Roles

- RSTP introduces new port roles:
 - Alternate port:
 - Provides an alternate path to the root bridge (essentially a backup root port)
 - Blocks traffic while receiving superior BPDUs from a neighboring switch
 - Backup port:
 - Provides a redundant path to a segment (on designated switches only)
 - Blocks traffic while a more preferred port functions as the designated port
- RSTP continues to use the root and designated port roles

Switch-1 (Root Bridge)

Root Port = \mathbb{R}

Designated Port = **D**

Alternate Port = (A)

Backup Port = B

STP and RSTP Port States

RSTP uses fewer states than STP but has the same functionality

Rapid Spanning Tree BPDUs

- Rapid Spanning Tree BPDUs:
 - Act as keepalives
 - RSTP-designated ports send Configuration BPDUs every hello time (default of 2 seconds)
 - Provide faster failure detection
 - If a neighboring bridge receives no BPDU within 3 times the hello interval (3 x 2 = 6 seconds), connectivity to the neighbor is faulty

RST BPDU Format

Transitioning to the Forwarding State

■ STP:

- Takes 30 seconds before the ports start forwarding traffic after port enablement
 - 2x forwarding delay (listening + learning)

RSTP:

- Uses a proposal-and-agreement handshake on point-to-point links instead of timers
 - Exceptions are alternate ports that immediately transition to root,
 and edge ports that immediately transition to the forwarding state
 - Nonedge-designated ports transition to the forwarding state once they receive explicit agreement

Topology Change Reconvergence

- Topology changes occur only when nonedge ports transition to the forwarding state:
 - Port transitions to the discarding state no longer trigger the STP TCN/TCN Acknowledgment sequence
 - The initiator sends RSTP TCNs (RST BPDU with TCN flag set) out of all designated ports as well as out of the root port
 - Because of the received RSTP TCN, switches flush the majority of MAC addresses in the bridge table
 - Switches do not flush MAC addresses learned from edge ports
 - Switches do not flush MAC addresses learned on port receiving TCN

Indirect Link Failure

- When an indirect link failure occurs:
 - Switch-2's root port fails—it assumes it is the new root
 - Switch-3 receives inferior BPDUs from Switch-2—it moves the alternate port to the designated port role
 - Switch-2 receives superior BPDUs, knows it is not the root, and designates the port connecting to Switch-3 as the root port

Direct Link Failure

- When a direct link failure occurs:
 - Alternate port transitions to forwarding state and assumes root port role following the failure of the old root port
 - Switch-3 signals upstream switches to flush their MAC tables by sending RSTP TCNs out new root port
 - Upstream switches only flush MAC entries that they learned on active ports that did not receive the RSTP TCNs (except edge ports)

RSTP Interoperability with STP

- STP and RSTP interoperability considerations:
 - If a switch supports only the STP protocol, it discards any RSTP BPDUs it receives
 - If an RSTP-capable switch receives BPDUs, it reverts to STP mode on the receiving interface only and sends STP BPDUs

Test Your Knowledge (1 of 4)

Which switch will be elected the root bridge?

```
{master:0}[edit protocols rstp]
user@Switch-1# show
bridge-priority 4k;
interface ge-0/0/8.0 {
   cost 1;
}
interface all {
   priority 128;
   cost 200000;
}
```

```
{master:0}[edit protocols rstp]
user@Switch-3# show
bridge-priority 32k;
interface all {
   priority 16;
   cost 2000;
}
```

```
Switch-1 Switch-2 ge-0/0/1.0 Switch-2 Switch-3 Switch-4
```

```
{master:0}[edit protocols rstp]
user@Switch-2# show
bridge-priority 8k;
interface ge-0/0/10.0 {
   cost 1;
}
interface all {
   priority 16;
   cost 20000;
}
```

```
{master:0} [edit protocols rstp]
user@Switch-4# show
bridge-priority 36k;
interface all {
   priority 128;
   cost 20000;
}
```

Test Your Knowledge (2 of 4)

• What role and state will be assigned to the various switch ports?

```
{master:0}[edit protocols rstp]
user@Switch-1# show
bridge-priority 4k;
interface ge-0/0/8.0 {
   cost 1;
}
interface all {
   priority 128;
   cost 200000;
}
```

```
{master:0} [edit protocols rstp]
user@Switch-3# show
bridge-priority 32k;
interface all {
   priority 16;
   cost 2000;
}
```

```
Switch-1

Switch-2

ge-0/0/1.0

R

B

R

B

R

B

R

B

Switch-2

ge-0/0/12.0

Switch-3
```

```
Forwarding = (
```

Blocking = **B**

Root Port = R

Designated Port = **D**

Alternate Port = A

```
{master:0}[edit protocols rstp]
user@Switch-2# show
bridge-priority 8k;
interface ge-0/0/10.0 {
   cost 1;
}
interface all {
   priority 16;
   cost 20000;
}
```

```
{master:0}[edit protocols rstp]
user@Switch-4# show
bridge-priority 36k;
interface all {
   priority 128;
   cost 20000;
}
```

Test Your Knowledge (3 of 4)

Assume ge-0/0/8 on Switch-1 has failed, what role and state will be assigned to the remaining ports?

```
{master:0}[edit protocols rstp]
user@Switch-1# show
bridge-priority 4k;
interface ge-0/0/8.0 {
   cost 1;
}
interface all {
   priority 128;
   cost 200000;
}
```

```
{master:0}[edit protocols rstp]
user@Switch-3# show
bridge-priority 32k;
interface all {
    priority 16;
    cost 2000;
}
```

```
Root Bridge
Switch-1
Switch-2

ge-0/0/1.0

R

ge-0/0/12.0
Switch-3
```

```
Forwarding = (B)
Blocking = (B)
```

Root Port = R

Designated Port = **①**

Alternate Port = A

```
{master:0}[edit protocols rstp]
user@Switch-2# show
bridge-priority 8k;
interface ge-0/0/10.0 {
   cost 1;
}
interface all {
   priority 16;
   cost 20000;
}
```

```
{master:0}[edit protocols rstp]
user@Switch-4# show
bridge-priority 36k;
interface all {
   priority 128;
   cost 20000;
}
```

Test Your Knowledge (4 of 4)

Based on the modified configurations, what role and state will be assigned to Switch-4's ports?

```
{master:0}[edit protocols rstp]
user@Switch-1# show
bridge-priority 4k;
interface all {
   priority 128;
   cost 20000;
}
```

```
Switch-1
Switch-2

ge-0/0/1.0

ge-0/0/12.0
Switch-4
```

```
{master:0}[edit protocols rstp]
user@Switch-2# show
bridge-priority 32k;
interface all {
   priority 16;
   cost 20000;
}
```

```
{master:0}[edit protocols rstp]
user@Switch-3# show
bridge-priority 32k;
interface all {
   priority 16;
   cost 20000;
}
```

```
Switch-3

ge-0/0/12.0

Forwarding = 

Blocking = 

Root Port = 

Designated Port = 

Alternate Port = 

Alte
```

```
{master:0} [edit protocols rstp]
user@Switch-4# show
bridge-priority 36k;
interface ge-0/0/8.0 {
    priority 32;
}
interface ge-0/0/12.0 {
    priority 16;
}
```

What If...?

• Given the topology below, what if User A connects a personal (unauthorized) switch running the spanning tree protocol to Switch-2?

BPDUs would be exchanged, a new STP calculation would occur, and the rogue switch would become part of the spanning tree, potentially leading to a network outage

BPDU Protection

- BPDU protection prevents rogue switches from connecting to the network and causing undesired Layer 2 topology changes and possible outages
 - If a BPDU is received on a protected interface, the interface is disabled and transitions to the blocking state
 - Use the drop option to discard incoming BPDUs while allowing the interface to continue forwarding traffic

Configuring BPDU Protection

{master:0}[edit protocols rstp]

BPDU protection can be enabled on switches whether or not the spanning tree protocol enabled:

```
user@Switch-2# show
   interface ge-0/0/6.0 {
       edge;
                                                             Use bpdu-block-on-edge option
   bpdu-block-on-edge
                                                            when spanning tree protocol is enabled
   {master:0} [edit ethernet-switching-options]
   user@Switch-2# show
   bpdu-block {
       interface qe-0/0/6.0;
                                                                              ge-0/0/6.
                                                      User A
                                                                                       Switch-2
  Use bpdu-block option when
spanning tree protocol is not enabled
```

Monitoring BPDU Protection

Before BPDU is received on protected interface

user@Switch-2> show spanning-tree interface ge-0/0/6.0

Spanning tree interface parameters for instance 0

State VLAN members

up

default.

{master:0}

{master:0}

Interface

qe-0/0/6.0

State Role Port Cost 20000 FWD DESG user@Switch-2> show ethernet-switching interfaces ge-0/0/6.0 Tagging Blocking

Before BPDU violation

User A

ge-0/0/6.0

Switch-2

After BPDU is received on protected interface

```
{master:0}
user@Switch-2> show spanning-tree interface ge-0/0/6.0
                                                                            After BPDU violation
{master:0}
user@Switch-2> show ethernet-switching interfaces ge-0/0/6.0
Interface
                   VLAN members
                                               Tagging Blocking
             State
                                         Tag
                                               untagged Disabled by bpdu-control
qe-0/0/6.0
                    default
             down
```

untagged unblocked

Tag

```
{master:0}
user@Switch-2> clear ethernet-switching bpdu-error interface ge-0/0/6.0 -
                                                                                  Re-enables interface
```

What If...?

software configuration issue

• Given the topology below, what if BPDUs sent by Switch-2 were not received by Switch-3?

blocked port and causing a Layer 2 loop

Loop Protection

- The loop protection feature provides additional protection against Layer 2 loops by preventing nondesignated ports from becoming designated ports
 - Enable loop protection on all non-designated ports
 - Ports that detect the loss of BPDUs transition to the "loop inconsistent" role which maintains the blocking state
 - Port automatically transitions back to previous or new role when it receives a BPDU

Configuring Loop Protection

 Configure loop protection on non-designated ports (root and alternate ports):

```
{master:0}[edit protocols rstp]
user@Switch-3# show
interface ge-0/0/10.0 {
    bpdu-timeout-action {
        block;
    }
}
interface ge-0/0/12.0 {
    bpdu-timeout-action {
        block;
    }
}
```

Use the block or alarm action in conjunction with the loop protection feature

Monitoring Loop Protection

When BPDUs are received on protected interface:

{master:0}
user@Switch-3> show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface	Port ID	Designated Designated		Port	State	Role
		port ID	bridge ID	Cost		
ge-0/0/10.0	128:523	128:523	4096.002688027490	20000	FWD	ROOT
ge-0/0/12.0	128:525	128:525	16384.0019e2516580	20000	BLK	ALT

When BPDUs are not received on protected interface:

{master:0}
user@Switch-3> show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface	Port ID	Designated	Designated	Port	State	Role
		port ID	bridge ID	Cost		
ge-0/0/10.0	128:523	128:523	4096.002688027490	20000	FWD	ROOT
ge-0/0/12.0	128:525	128:525	32768.0019e2553600	20000	BLK	DIS (Loop-Incon)

What If...?

• Given the topology and details below, what if a rogue switch with a bridge priority of 4K was connected to the Layer 2 network?

BPDUs would be exchanged, a new STP calculation would occur, and the rogue switch would become the new root bridge potentially leading to a network outage

Root Protection

- Enable root protection to avoid unwanted STP topology changes and root bridge placement
 - If a superior BPDU is received on a protected interface, the interface is disabled and transitions to the blocking state

Root protection is typically configured on the ports of aggregation switches that connect to access switches

Configuring Root Protection

Enable root protection on ports that should not receive superior BPDUs from the root bridge and should not be elected as the root port:

Monitoring Root Protection

Before superior BPDU is received on protected interface

{master:0}

user@Switch-1> show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface	Port ID	Designated	Designated	Port	State	Role
		port ID	bridge ID	Cost		
ge-0/0/6.0	128:519	128:519	4096.0019e2516580	20000	FWD	DESG
ge-0/0/7.0	128:520	128:520	4096.0019e2516580	20000	FWD	DESG
ge-0/0/8.0	128:521	128:521	4096.0019e2516580	20000	FWD	DESG
ge-0/0/12.0	128:525	128:525	4096.0019e2516580	20000	FWD	DESG
ge-0/0/13.0	128:526	128:526	4096.0019e2516580	20000	FWD	DESG

After superior BPDU is received on protected interface

{master:0}

user@Switch-1> show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface	Port ID	Designated port ID	Designated bridge ID	Port Cost	State	Role Superior
ge-0/0/6.0	128:519	128:519	0.002688027490	20000	BLK	ALT (Root-Incon)
ge-0/0/7.0	128:520	128:520	4096.0019e2516580	20000	FWD	DESG
ge-0/0/8.0	128:521	128:521	4096.0019e2516580	20000	FWD	DESG
ge-0/0/12.0	128:525	128:525	4096.0019e2516580	20000	FWD	DESG
ge-0/0/13.0	128:526	128:526	4096.0019e2516580	20000	FWD	DESG

Switch-1 (Root Bridge) Priority = 4k

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ