Fast Auxiliary Space Preconditioning 1.9.3 Jan/22/2017

Generated by Doxygen 1.8.13

Contents

1	Introduction	1
2	How to obtain FASP	3
3	Building and Installation	5
4	Developers	7
5	Doxygen	9
6	Todo List	11
7	Data Structure Index	13
	7.1 Data Structures	. 13
8	File Index	15
	8.1 File List	. 15
9	Data Structure Documentation	21
	9.1 AMG_data Struct Reference	. 21
	9.1.1 Detailed Description	. 22
	9.2 AMG_data_bsr Struct Reference	. 22
	9.2.1 Detailed Description	. 24
	9.3 AMG_param Struct Reference	. 24
	9.3.1 Detailed Description	. 26

ii CONTENTS

| 9.4 | block_dv | ector Struct I | Reference |
 | . 26 |
|------|-----------|----------------|------------|------|------|------|------|------|------|------|------|
| | 9.4.1 | Detailed Desc | cription . |
 | . 27 |
| 9.5 | block_ive | ector Struct F | Reference |
 | . 27 |
| | 9.5.1 | Detailed Desc | cription . |
 | . 27 |
| 9.6 | dBLCma | t Struct Refe | rence |
 | . 28 |
| | 9.6.1 | Detailed Desc | cription . |
 | . 28 |
| 9.7 | dBSRma | it Struct Refe | rence |
 | . 28 |
| | 9.7.1 | Detailed Desc | cription . |
 | . 29 |
| | 9.7.2 F | Field Docume | entation . |
 | . 29 |
| | 9 | 9.7.2.1 JA | |
 | . 29 |
| | 9 | 9.7.2.2 val | |
 | . 29 |
| 9.8 | dCOOma | at Struct Refe | erence |
 | . 29 |
| | 9.8.1 | Detailed Desc | cription . |
 | . 30 |
| 9.9 | dCSRLm | nat Struct Ref | ference . |
 | . 30 |
| | 9.9.1 | Detailed Desc | cription . |
 | . 31 |
| 9.10 | dCSRma | at Struct Refe | erence |
 | . 31 |
| | 9.10.1 | Detailed Desc | cription . |
 | . 32 |
| 9.11 | ddenmat | Struct Refer | ence |
 | . 32 |
| | 9.11.1 | Detailed Desc | cription . |
 | . 32 |
| 9.12 | dSTRma | t Struct Refe | rence |
 | . 33 |
| | 9.12.1 | Detailed Desc | cription . |
 | . 33 |
| 9.13 | dvector S | Struct Refere | nce |
 | . 34 |
| | 9.13.1 | Detailed Desc | cription . |
 | . 34 |
| 9.14 | grid2d St | truct Referen | ce |
 | . 34 |
| | 9.14.1 | Detailed Desc | cription . |
 | . 35 |
| | 9.14.2 F | Field Docume | entation . |
 | . 35 |
| | g | 9.14.2.1 e | |
 | . 35 |
| | 9 | 9.14.2.2 edç | ges |
 | . 35 |

CONTENTS

	9.14.2.3 ediri	3	35
	9.14.2.4 efather	3	36
	9.14.2.5 p	3	36
	9.14.2.6 pdiri	3	36
	9.14.2.7 pfather	3	36
	9.14.2.8 s	3	36
	9.14.2.9 t	3	37
	9.14.2.10 tfather	3	37
	9.14.2.11 triangles	3	37
	9.14.2.12 vertices	3	37
9.15	BLCmat Struct Reference	3	37
	0.15.1 Detailed Description	3	38
9.16	COOmat Struct Reference	3	38
	9.16.1 Detailed Description	3	39
9.17	CSRmat Struct Reference	3	39
	0.17.1 Detailed Description	3	39
9.18	denmat Struct Reference	4	10
	0.18.1 Detailed Description	4	10
9.19	LU_data Struct Reference	4	10
	0.19.1 Detailed Description	4	11
9.20	LU_param Struct Reference	4	12
	9.20.1 Detailed Description	4	12
9.21	nput_param Struct Reference	4	12
	9.21.1 Detailed Description	4	14
	9.21.2 Field Documentation	4	14
	9.21.2.1 AMG_aggregation_type	4	14
	9.21.2.2 AMG_aggressive_level	4	14
	9.21.2.3 AMG_aggressive_path	4	14

iv CONTENTS

9.21.2.4 AMG_amli_degree	45
9.21.2.5 AMG_coarse_dof	45
9.21.2.6 AMG_coarse_scaling	45
9.21.2.7 AMG_coarse_solver	45
9.21.2.8 AMG_coarsening_type	45
9.21.2.9 AMG_cycle_type	46
9.21.2.10 AMG_ILU_levels	46
9.21.2.11 AMG_interpolation_type	46
9.21.2.12 AMG_levels	46
9.21.2.13 AMG_max_aggregation	46
9.21.2.14 AMG_max_row_sum	47
9.21.2.15 AMG_maxit	47
9.21.2.16 AMG_nl_amli_krylov_type	47
9.21.2.17 AMG_pair_number	47
9.21.2.18 AMG_polynomial_degree	47
9.21.2.19 AMG_postsmooth_iter	48
9.21.2.20 AMG_presmooth_iter	48
9.21.2.21 AMG_quality_bound	48
9.21.2.22 AMG_relaxation	48
9.21.2.23 AMG_Schwarz_levels	48
9.21.2.24 AMG_smooth_filter	49
9.21.2.25 AMG_smooth_order	49
9.21.2.26 AMG_smoother	49
9.21.2.27 AMG_strong_coupled	49
9.21.2.28 AMG_strong_threshold	49
9.21.2.29 AMG_tentative_smooth	50
9.21.2.30 AMG_tol	50
9.21.2.31 AMG_truncation_threshold	50

CONTENTS

	9.21.2.32 AMG_type
	9.21.2.33 ILU_droptol
	9.21.2.34 ILU_lfil
	9.21.2.35 ILU_permtol
	9.21.2.36 ILU_relax
	9.21.2.37 ILU_type
	9.21.2.38 inifile
	9.21.2.39 itsolver_maxit
	9.21.2.40 itsolver_tol
	9.21.2.41 output_type
	9.21.2.42 precond_type
	9.21.2.43 print_level
	9.21.2.44 problem_num
	9.21.2.45 restart
	9.21.2.46 Schwarz_blksolver
	9.21.2.47 Schwarz_maxlvl
	9.21.2.48 Schwarz_mmsize
	9.21.2.49 Schwarz_type
	9.21.2.50 solver_type
	9.21.2.51 stop_type
	9.21.2.52 workdir
9.22 itsolv	er_param Struct Reference
9.22.	1 Detailed Description
9.22.	2 Field Documentation
	9.22.2.1 itsolver_type
	9.22.2.2 maxit
	9.22.2.3 precond_type
	9.22.2.4 print_level

vi CONTENTS

	9.22.2.5 restart	. 56
	9.22.2.6 stop_type	. 56
	9.22.2.7 tol	. 56
9.23	vector Struct Reference	. 56
	.23.1 Detailed Description	. 57
9.24	nallinfo Struct Reference	. 57
	.24.1 Detailed Description	. 57
9.25	nalloc_chunk Struct Reference	. 58
	.25.1 Detailed Description	. 58
9.26	nalloc_params Struct Reference	. 58
	.26.1 Detailed Description	. 58
9.27	nalloc_segment Struct Reference	. 58
	.27.1 Detailed Description	. 59
9.28	nalloc_state Struct Reference	. 59
	.28.1 Detailed Description	. 59
9.29	nalloc_tree_chunk Struct Reference	. 60
	.29.1 Detailed Description	. 60
9.30	/Jumps_data Struct Reference	. 60
	.30.1 Detailed Description	. 60
9.31	nxv_matfree Struct Reference	. 61
	.31.1 Detailed Description	. 61
9.32	edmallinfo Struct Reference	. 61
	.32.1 Detailed Description	. 61
9.33	Pardiso_data Struct Reference	. 62
	.33.1 Detailed Description	. 62
9.34	recond Struct Reference	. 62
	.34.1 Detailed Description	. 62
9.35	recond_block_data Struct Reference	. 63

CONTENTS vii

	9.35.1	Detailed Description	63
	9.35.2	Field Documentation	63
		9.35.2.1 A_diag	63
		9.35.2.2 Ablc	63
		9.35.2.3 amgparam	64
		9.35.2.4 LU_diag	64
		9.35.2.5 mgl	64
		9.35.2.6 r	64
9.36	precond	d_data Struct Reference	64
	9.36.1	Detailed Description	66
9.37	precond	d_data_bsr Struct Reference	66
	9.37.1	Detailed Description	67
9.38	precond	d_data_str Struct Reference	68
	9.38.1	Detailed Description	69
9.39	precond	d_diagbsr Struct Reference	69
	9.39.1	Detailed Description	70
9.40	precond	d_diagstr Struct Reference	70
	9.40.1	Detailed Description	70
9.41	precond	d_sweeping_data Struct Reference	71
	9.41.1	Detailed Description	71
	9.41.2	Field Documentation	71
		9.41.2.1 A	71
		9.41.2.2 Ai	72
		9.41.2.3 local_A	72
		9.41.2.4 local_index	72
		9.41.2.5 local_LU	72
		9.41.2.6 NumLayers	72
		9.41.2.7 r	73
		9.41.2.8 w	73
9.42	Schwar	z_data Struct Reference	73
	9.42.1	Detailed Description	74
9.43	Schwar	z_param Struct Reference	74
	9.43.1	Detailed Description	75

viii CONTENTS

10	File [Docume	ntation	77
	10.1	AuxArr	y.c File Reference	 77
		10.1.1	Detailed Description	 78
		10.1.2	Function Documentation	 78
			10.1.2.1 fasp_array_cp()	 78
			10.1.2.2 fasp_array_cp_nc3()	 78
			10.1.2.3 fasp_array_cp_nc5()	 79
			10.1.2.4 fasp_array_cp_nc7()	 80
			10.1.2.5 fasp_array_invpermut_nb()	 80
			10.1.2.6 fasp_array_null()	 81
			10.1.2.7 fasp_array_permut_nb()	 81
			10.1.2.8 fasp_array_set()	 82
			10.1.2.9 fasp_iarray_cp()	 83
			10.1.2.10 fasp_iarray_set()	 83
	10.2	AuxCo	vert.c File Reference	 84
		10.2.1	Detailed Description	 84
		10.2.2	Function Documentation	 84
			10.2.2.1 endian_convert_int()	 84
			10.2.2.2 endian_convert_real()	 85
			10.2.2.3 fasp_aux_bbyteToldouble()	 86
			10.2.2.4 fasp_aux_change_endian4()	 86
			10.2.2.5 fasp_aux_change_endian8()	 87
	10.3	AuxGiv	ens.c File Reference	 87
		10.3.1	Detailed Description	 88
		10.3.2	Function Documentation	 88
			10.3.2.1 fasp_aux_givens()	 88
	10.4	AuxGra	phics.c File Reference	 89
		10.4.1	Detailed Description	 89

CONTENTS ix

	10.4.2	Function Documentation
		10.4.2.1 fasp_dbsr_plot()
		10.4.2.2 fasp_dbsr_subplot()
		10.4.2.3 fasp_dcsr_plot()
		10.4.2.4 fasp_dcsr_subplot()
		10.4.2.5 fasp_grid2d_plot()
10.5	AuxInp	ut.c File Reference
	10.5.1	Detailed Description
	10.5.2	Function Documentation
		10.5.2.1 fasp_param_check()
		10.5.2.2 fasp_param_input()
10.6	AuxMe	mory.c File Reference
	10.6.1	Detailed Description
	10.6.2	Function Documentation
		10.6.2.1 fasp_mem_calloc()
		10.6.2.2 fasp_mem_check()
		10.6.2.3 fasp_mem_dcsr_check()
		10.6.2.4 fasp_mem_free()
		10.6.2.5 fasp_mem_iludata_check()
		10.6.2.6 fasp_mem_realloc()
		10.6.2.7 fasp_mem_usage()
	10.6.3	Variable Documentation
		10.6.3.1 total_alloc_count
		10.6.3.2 total_alloc_mem
10.7	AuxMe	ssage.c File Reference
	10.7.1	Detailed Description
	10.7.2	Function Documentation
		10.7.2.1 fasp_chkerr()

CONTENTS

10.7.2.2	2 print_amgcomplexity()
10.7.2.3	B print_amgcomplexity_bsr()
10.7.2.4	Print_cputime()
10.7.2.5	5 print_itinfo()
10.7.2.6	6 print_message()
10.8 AuxParam.c File	e Reference
10.8.1 Detailed	Description
10.8.2 Functio	n Documentation
10.8.2.	fasp_param_amg_init()
10.8.2.2	2 fasp_param_amg_print()
10.8.2.3	3 fasp_param_amg_set()
10.8.2.4	fasp_param_amg_to_prec()
10.8.2.5	5 fasp_param_amg_to_prec_bsr()
10.8.2.6	6 fasp_param_ilu_init()
10.8.2.7	7 fasp_param_ilu_print()
10.8.2.8	3 fasp_param_ilu_set()
10.8.2.9	9 fasp_param_init()
10.8.2.	0 fasp_param_input_init()
10.8.2.	1 fasp_param_prec_to_amg()
10.8.2.	2 fasp_param_prec_to_amg_bsr()
10.8.2.	3 fasp_param_schwarz_init()
10.8.2.	4 fasp_param_schwarz_print()
10.8.2.	5 fasp_param_schwarz_set()
10.8.2.	6 fasp_param_set()
10.8.2.	7 fasp_param_solver_init()
10.8.2.	8 fasp_param_solver_print()
10.8.2.	9 fasp_param_solver_set()
10.9 AuxSmallMat.c	File Reference

CONTENTS xi

10.9.1	Detailed Description
10.9.2	Macro Definition Documentation
	10.9.2.1 SWAP
10.9.3	Function Documentation
	10.9.3.1 fasp_blas_smat_inv()
	10.9.3.2 fasp_blas_smat_inv_nc()
	10.9.3.3 fasp_blas_smat_inv_nc2()
	10.9.3.4 fasp_blas_smat_inv_nc3()
	10.9.3.5 fasp_blas_smat_inv_nc4()
	10.9.3.6 fasp_blas_smat_inv_nc5()
	10.9.3.7 fasp_blas_smat_inv_nc7()
	10.9.3.8 fasp_blas_smat_invp_nc()
	10.9.3.9 fasp_blas_smat_Linfinity()
	10.9.3.10 fasp_iden_free()
	10.9.3.11 fasp_smat_identity()
	10.9.3.12 fasp_smat_identity_nc2()
	10.9.3.13 fasp_smat_identity_nc3()
	10.9.3.14 fasp_smat_identity_nc5()
	10.9.3.15 fasp_smat_identity_nc7()
10.10AuxSor	t.c File Reference
10.10.1	Detailed Description
10.10.2	Prunction Documentation
	10.10.2.1 fasp_aux_dQuickSort()
	10.10.2.2 fasp_aux_dQuickSortIndex()
	10.10.2.3 fasp_aux_iQuickSort()
	10.10.2.4 fasp_aux_iQuickSortIndex()
	10.10.2.5 fasp_aux_merge()
	10.10.2.6 fasp_aux_msort()

xii CONTENTS

10.10.2.7 fasp_aux_unique()
10.10.2.8 fasp_BinarySearch()
10.10.2.9 fasp_dcsr_CMK_order()
10.10.2.10fasp_dcsr_RCMK_order()
10.10.2.11fasp_multicolors_independent_set()
10.10.2.12fasp_topological_sorting_ilu()
10.11 AuxThreads.c File Reference
10.11.1 Detailed Description
10.11.2 Function Documentation
10.11.2.1 fasp_get_start_end()
10.11.2.2 fasp_set_GS_threads()
10.11.3 Variable Documentation
10.11.3.1 THDs_AMG_GS
10.11.3.2 THDs_CPR_gGS
10.11.3.3 THDs_CPR_IGS
10.12AuxTiming.c File Reference
10.12.1 Detailed Description
10.12.2 Function Documentation
10.12.2.1 fasp_gettime()
10.13 Aux Vector.c File Reference
10.13.1 Detailed Description
10.13.2 Function Documentation
10.13.2.1 fasp_dvec_alloc()
10.13.2.2 fasp_dvec_cp()
10.13.2.3 fasp_dvec_create()
10.13.2.4 fasp_dvec_free()
10.13.2.5 fasp_dvec_isnan()
10.13.2.6 fasp_dvec_maxdiff()

CONTENTS xiii

10.13.2.7 fasp_dvec_null()	143
10.13.2.8 fasp_dvec_rand()	144
10.13.2.9 fasp_dvec_set()	145
10.13.2.10fasp_dvec_symdiagscale()	145
10.13.2.11fasp_ivec_alloc()	146
10.13.2.12fasp_ivec_create()	146
10.13.2.13fasp_ivec_free()	147
10.13.2.14fasp_ivec_set()	147
10.14BlaArray.c File Reference	148
10.14.1 Detailed Description	149
10.14.2 Function Documentation	149
10.14.2.1 fasp_blas_array_ax()	149
10.14.2.2 fasp_blas_array_axpby()	150
10.14.2.3 fasp_blas_array_axpy()	150
10.14.2.4 fasp_blas_array_axpyz()	151
10.14.2.5 fasp_blas_array_dotprod()	152
10.14.2.6 fasp_blas_array_norm1()	153
10.14.2.7 fasp_blas_array_norm2()	153
10.14.2.8 fasp_blas_array_norminf()	154
10.15BlaEigen.c File Reference	155
10.15.1 Detailed Description	155
10.15.2 Function Documentation	155
10.15.2.1 fasp_dcsr_eig()	155
10.16BlaFormat.c File Reference	156
10.16.1 Detailed Description	157
10.16.2 Function Documentation	157
10.16.2.1 fasp_format_dblc_dcsr()	157
10.16.2.2 fasp_format_dbsr_dcoo()	157

xiv CONTENTS

10.16.2.3 fasp_format_dbsr_dcsr()
10.16.2.4 fasp_format_dcoo_dcsr()
10.16.2.5 fasp_format_dcsr_dbsr()
10.16.2.6 fasp_format_dcsr_dcoo()
10.16.2.7 fasp_format_dcsrl_dcsr()
10.16.2.8 fasp_format_dstr_dbsr()
10.16.2.9 fasp_format_dstr_dcsr()
10.17BlalLU.c File Reference
10.17.1 Detailed Description
10.17.2 Function Documentation
10.17.2.1 fasp_iluk()
10.17.2.2 fasp_ilut()
10.17.2.3 fasp_ilutp()
10.17.2.4 fasp_symbfactor()
10.18BlaILUSetupBSR.c File Reference
10.18.1 Detailed Description
10.18.2 Function Documentation
10.18.2.1 fasp_ilu_dbsr_setup()
10.18.2.2 fasp_ilu_dbsr_setup_levsch_omp()
10.18.2.3 fasp_ilu_dbsr_setup_mc_omp()
10.18.2.4 fasp_ilu_dbsr_setup_omp()
10.19BlaILUSetupCSR.c File Reference
10.19.1 Detailed Description
10.19.2 Function Documentation
10.19.2.1 fasp_ilu_dcsr_setup()
10.20BlalLUSetupSTR.c File Reference
10.20.1 Detailed Description
10.20.2 Function Documentation

CONTENTS xv

xvi CONTENTS

10	.21.2.24fasp_dvec_write()	. 195
10	.21.2.25fasp_dvecind_read()	. 196
10	.21.2.26fasp_dvecind_write()	. 196
10	.21.2.27fasp_hb_read()	. 197
10	.21.2.28fasp_ivec_print()	. 198
10	.21.2.29fasp_ivec_read()	. 198
10	0.21.2.30fasp_ivec_write()	. 199
10	1.21.2.31fasp_ivecind_read()	. 199
10	.21.2.32fasp_matrix_read()	. 200
10	.21.2.33fasp_matrix_read_bin()	. 201
10	.21.2.34fasp_matrix_write()	. 202
10	.21.2.35fasp_vector_read()	. 202
10	.21.2.36fasp_vector_write()	. 203
10.21.3 V	riable Documentation	. 204
10	.21.3.1 dlength	. 204
10	.21.3.2 ilength	. 204
10.22BlaSchwa	rzSetup.c File Reference	. 205
10.22.1 D	etailed Description	. 205
10.22.2 F	nction Documentation	. 205
10	.22.2.1 fasp_dcsr_schwarz_backward_smoother()	. 205
10	.22.2.2 fasp_dcsr_schwarz_forward_smoother()	. 206
10	.22.2.3 fasp_schwarz_setup()	. 207
10.23BlaSmallN	lat.c File Reference	. 207
10.23.1 D	etailed Description	. 209
10.23.2 F	nction Documentation	. 209
10	.23.2.1 fasp_blas_array_axpy_nc2()	. 210
10	.23.2.2 fasp_blas_array_axpy_nc3()	. 210
10	.23.2.3 fasp_blas_array_axpy_nc5()	. 211

CONTENTS xvii

10.23.2.4 fasp_blas_array_axpy_nc7()
10.23.2.5 fasp_blas_array_axpyz_nc2()
10.23.2.6 fasp_blas_array_axpyz_nc3()
10.23.2.7 fasp_blas_array_axpyz_nc5()
10.23.2.8 fasp_blas_array_axpyz_nc7()
10.23.2.9 fasp_blas_smat_aAxpby()
10.23.2.10fasp_blas_smat_add()
10.23.2.11fasp_blas_smat_axm()
10.23.2.12fasp_blas_smat_mul()
10.23.2.13fasp_blas_smat_mul_nc2()
10.23.2.14fasp_blas_smat_mul_nc3()
10.23.2.15fasp_blas_smat_mul_nc5()
10.23.2.16fasp_blas_smat_mul_nc7()
10.23.2.17fasp_blas_smat_mxv()
10.23.2.18fasp_blas_smat_mxv_nc2()
10.23.2.19fasp_blas_smat_mxv_nc3()
10.23.2.20fasp_blas_smat_mxv_nc5()
10.23.2.21fasp_blas_smat_mxv_nc7()
10.23.2.22fasp_blas_smat_ymAx()
10.23.2.23fasp_blas_smat_ymAx_nc2()
10.23.2.24fasp_blas_smat_ymAx_nc3()
10.23.2.25fasp_blas_smat_ymAx_nc5()
10.23.2.26fasp_blas_smat_ymAx_nc7()
10.23.2.27fasp_blas_smat_ymAx_ns()
10.23.2.28fasp_blas_smat_ymAx_ns2()
10.23.2.29fasp_blas_smat_ymAx_ns3()
10.23.2.30fasp_blas_smat_ymAx_ns5()
10.23.2.31fasp_blas_smat_ymAx_ns7()

xviii CONTENTS

10.23.2.32fasp_blas_smat_ypAx()
10.23.2.33fasp_blas_smat_ypAx_nc2()
10.23.2.34fasp_blas_smat_ypAx_nc3()
10.23.2.35fasp_blas_smat_ypAx_nc5()
10.23.2.36fasp_blas_smat_ypAx_nc7()
10.24BlaSmallMatLU.c File Reference
10.24.1 Detailed Description
10.24.2 Function Documentation
10.24.2.1 fasp_smat_lu_decomp()
10.24.2.2 fasp_smat_lu_solve()
10.25BlaSparseBLC.c File Reference
10.25.1 Detailed Description
10.25.2 Function Documentation
10.25.2.1 fasp_dblc_free()
10.25.2.2 fasp_dbsr_getblk()
10.25.2.3 fasp_dbsr_getblk_dcsr()
10.25.2.4 fasp_dbsr_Linfinity_dcsr()
10.25.2.5 fasp_dcsr_getblk()
10.26BlaSparseBSR.c File Reference
10.26.1 Detailed Description
10.26.2 Function Documentation
10.26.2.1 fasp_dbsr_alloc()
10.26.2.2 fasp_dbsr_cp()
10.26.2.3 fasp_dbsr_create()
10.26.2.4 fasp_dbsr_diaginv()
10.26.2.5 fasp_dbsr_diaginv2()
10.26.2.6 fasp_dbsr_diaginv3()
10.26.2.7 fasp_dbsr_diaginv4()

CONTENTS xix

10.26.2.8 fasp_dbsr_diagLU()	. 245
10.26.2.9 fasp_dbsr_diagLU2()	. 246
10.26.2.10fasp_dbsr_diagpref()	. 246
10.26.2.11fasp_dbsr_free()	. 247
10.26.2.12/asp_dbsr_getdiag()	. 248
10.26.2.13fasp_dbsr_getdiaginv()	. 248
10.26.2.14fasp_dbsr_null()	. 249
10.26.2.15fasp_dbsr_perm()	. 250
10.26.2.16fasp_dbsr_trans()	. 251
10.27BlaSparseCheck.c File Reference	. 252
10.27.1 Detailed Description	. 252
10.27.2 Function Documentation	. 252
10.27.2.1 fasp_check_dCSRmat()	. 252
10.27.2.2 fasp_check_diagdom()	. 253
10.27.2.3 fasp_check_diagpos()	. 254
10.27.2.4 fasp_check_diagzero()	. 254
10.27.2.5 fasp_check_iCSRmat()	. 255
10.27.2.6 fasp_check_symm()	. 255
10.28BlaSparseCOO.c File Reference	. 256
10.28.1 Detailed Description	. 256
10.28.2 Function Documentation	. 257
10.28.2.1 fasp_dcoo_alloc()	. 257
10.28.2.2 fasp_dcoo_create()	. 257
10.28.2.3 fasp_dcoo_free()	. 258
10.28.2.4 fasp_dcoo_shift()	. 258
10.29BlaSparseCSR.c File Reference	. 259
10.29.1 Detailed Description	. 260
10.29.2 Function Documentation	. 261

XX CONTENTS

10.29.2.1 fasp_dcsr_alloc()	26
10.29.2.2 fasp_dcsr_compress()	26
10.29.2.3 fasp_dcsr_compress_inplace()	26
10.29.2.4 fasp_dcsr_cp()	26
10.29.2.5 fasp_dcsr_create()	26
10.29.2.6 fasp_dcsr_diagpref()	26
10.29.2.7 fasp_dcsr_free()	26
10.29.2.8 fasp_dcsr_getcol()	26
10.29.2.9 fasp_dcsr_getdiag()	26
10.29.2.10fasp_dcsr_multicoloring()	26
10.29.2.11fasp_dcsr_null()	26
10.29.2.12fasp_dcsr_perm()	26
10.29.2.13fasp_dcsr_permz()	26
10.29.2.14fasp_dcsr_regdiag()	26
10.29.2.15fasp_dcsr_shift()	26
10.29.2.16fasp_dcsr_sort()	27
10.29.2.17fasp_dcsr_sortz()	27
10.29.2.18fasp_dcsr_symdiagscale()	27
10.29.2.19fasp_dcsr_sympart()	27
10.29.2.20fasp_dcsr_trans()	27
10.29.2.21fasp_dcsr_transz()	27
10.29.2.22fasp_icsr_cp()	27
10.29.2.23fasp_icsr_create()	27
10.29.2.24fasp_icsr_free()	27
10.29.2.25fasp_icsr_null()	27
10.29.2.26fasp_icsr_trans()	27
10.30BlaSparseCSRL.c File Reference	27
10.30.1 Detailed Description	27

CONTENTS xxi

10.30.2 Function Documentation
10.30.2.1 fasp_dcsrl_create()
10.30.2.2 fasp_dcsrl_free()
10.31BlaSparseSTR.c File Reference
10.31.1 Detailed Description
10.31.2 Function Documentation
10.31.2.1 fasp_dstr_alloc()
10.31.2.2 fasp_dstr_cp()
10.31.2.3 fasp_dstr_create()
10.31.2.4 fasp_dstr_free()
10.31.2.5 fasp_dstr_null()
10.32BlaSparseUtil.c File Reference
10.32.1 Detailed Description
10.32.2 Function Documentation
10.32.2.1 fasp_sparse_aat_()
10.32.2.2 fasp_sparse_abyb_()284
10.32.2.3 fasp_sparse_abybms_()
10.32.2.4 fasp_sparse_aplbms_()
10.32.2.5 fasp_sparse_aplusb_()
10.32.2.6 fasp_sparse_iit_()
10.32.2.7 fasp_sparse_MIS()
10.32.2.8 fasp_sparse_rapcmp_()
10.32.2.9 fasp_sparse_rapms_()
10.32.2.10fasp_sparse_wta_()
10.32.2.11fasp_sparse_wtams_()
10.32.2.12fasp_sparse_ytx_()
10.32.2.13fasp_sparse_ytxbig_()
10.33BlaSpmvBLC.c File Reference

xxii CONTENTS

10.33.1 Detailed Description
10.33.2 Function Documentation
10.33.2.1 fasp_blas_dblc_aAxpy()
10.33.2.2 fasp_blas_dblc_mxv()
10.34BlaSpmvBSR.c File Reference
10.34.1 Detailed Description
10.34.2 Function Documentation
10.34.2.1 fasp_blas_dbsr_aAxpby()
10.34.2.2 fasp_blas_dbsr_aAxpy()
10.34.2.3 fasp_blas_dbsr_aAxpy_agg()
10.34.2.4 fasp_blas_dbsr_axm()
10.34.2.5 fasp_blas_dbsr_mxm()
10.34.2.6 fasp_blas_dbsr_mxv()
10.34.2.7 fasp_blas_dbsr_mxv_agg()
10.34.2.8 fasp_blas_dbsr_rap()
10.34.2.9 fasp_blas_dbsr_rap1()
10.34.2.10fasp_blas_dbsr_rap_agg()
10.35BlaSpmvCSR.c File Reference
10.35.1 Detailed Description
10.35.2 Function Documentation
10.35.2.1 fasp_blas_dcsr_aAxpy()
10.35.2.2 fasp_blas_dcsr_aAxpy_agg()
10.35.2.3 fasp_blas_dcsr_add()
10.35.2.4 fasp_blas_dcsr_axm()
10.35.2.5 fasp_blas_dcsr_bandwith()
10.35.2.6 fasp_blas_dcsr_mxm()
10.35.2.7 fasp_blas_dcsr_mxv()
10.35.2.8 fasp_blas_dcsr_mxv_agg()

CONTENTS xxiii

10.35.2.9 fasp_blas_dcsr_ptap()	 309
10.35.2.10fasp_blas_dcsr_rap()	 310
10.35.2.11fasp_blas_dcsr_rap2()	 311
10.35.2.12fasp_blas_dcsr_rap4()	 311
10.35.2.13fasp_blas_dcsr_rap_agg()	 312
10.35.2.14fasp_blas_dcsr_rap_agg1()	 313
10.35.2.15fasp_blas_dcsr_vmv()	 314
10.36BlaSpmvCSRL.c File Reference	 314
10.36.1 Detailed Description	 314
10.36.2 Function Documentation	 315
10.36.2.1 fasp_blas_dcsrl_mxv()	 315
10.37BlaSpmvSTR.c File Reference	 315
10.37.1 Detailed Description	 316
10.37.2 Function Documentation	 316
10.37.2.1 fasp_blas_dstr_aAxpy()	 316
10.37.2.2 fasp_blas_dstr_mxv()	 317
10.37.2.3 fasp_dstr_diagscale()	 318
10.38BlaVector.c File Reference	 319
10.38.1 Detailed Description	 319
10.38.2 Function Documentation	 319
10.38.2.1 fasp_blas_dvec_axpy()	 319
10.38.2.2 fasp_blas_dvec_axpyz()	 320
10.38.2.3 fasp_blas_dvec_dotprod()	 321
10.38.2.4 fasp_blas_dvec_norm1()	 321
10.38.2.5 fasp_blas_dvec_norm2()	 322
10.38.2.6 fasp_blas_dvec_norminf()	 323
10.38.2.7 fasp_blas_dvec_relerr()	 323
10.39doxygen.h File Reference	 324

xxiv CONTENTS

10.39.1 Detailed Description
10.40 fasp.h File Reference
10.40.1 Detailed Description
10.40.2 Macro Definition Documentation
10.40.2.1FASP_HEADER
10.40.2.2 ABS
10.40.2.3 DIAGONAL_PREF
10.40.2.4 DLMALLOC
10.40.2.5 FASP_GSRB328
10.40.2.6 FASP_VERSION
10.40.2.7 GE
10.40.2.8 GT
10.40.2.9 INT
10.40.2.10ISNAN
10.40.2.11LE
10.40.2.12LONG
10.40.2.13LONGLONG
10.40.2.14LS
10.40.2.15MAX
10.40.2.16MIN
10.40.2.17NEDMALLOC
10.40.2.18PUT_INT
10.40.2.19PUT_REAL
10.40.2.20REAL
10.40.2.21RS_C1
10.40.2.2SHORT
10.40.3 Typedef Documentation
10.40.3.1 dCOOmat

CONTENTS xxv

10.40.3.2 dCSRLmat	. 333
10.40.3.3 dCSRmat	. 333
10.40.3.4 ddenmat	. 333
10.40.3.5 dSTRmat	. 333
10.40.3.6 dvector	. 333
10.40.3.7 iCOOmat	. 334
10.40.3.8 iCSRmat	. 334
10.40.3.9 idenmat	. 334
10.40.3.10vector	. 334
10.40.4 Variable Documentation	. 334
10.40.4.1 count	. 334
10.40.4.2 IMAP	. 334
10.40.4.3 MAXIMAP	. 335
10.40.4.4 nx_rb	. 335
10.40.4.5 ny_rb	. 335
10.40.4.6 nz_rb	. 335
10.40.4.7 total_alloc_count	. 335
10.40.4.8 total_alloc_mem	. 335
10.41fasp_block.h File Reference	. 336
10.41.1 Detailed Description	. 337
10.41.2 Macro Definition Documentation	. 337
10.41.2.1FASPBLOCK_HEADER	. 337
10.41.3 Typedef Documentation	. 337
10.41.3.1 block_dvector	. 337
10.41.3.2 block_ivector	. 337
10.41.3.3 dBLCmat	. 338
10.41.3.4 dBSRmat	. 338
10.41.3.5 iBLCmat	. 338

xxvi CONTENTS

10.42fasp_const.h File Reference
10.42.1 Detailed Description
10.42.2 Macro Definition Documentation
10.42.2.1 AMLI_CYCLE
10.42.2.2 ASCEND
10.42.2.3 BIGREAL
10.42.2.4 CF_ORDER
10.42.2.5 CGPT
10.42.2.6 CLASSIC_AMG
10.42.2.7 COARSE_AC343
10.42.2.8 COARSE_CR343
10.42.2.9 COARSE_MIS
10.42.2.10COARSE_RS344
10.42.2.11COARSE_RSP
10.42.2.12CPFIRST
10.42.2.13DESCEND
10.42.2.14ERROR_ALLOC_MEM
10.42.2.15ERROR_AMG_COARSE_TYPE
10.42.2.16ERROR_AMG_COARSEING
10.42.2.17ERROR_AMG_INTERP_TYPE
10.42.2.18ERROR_AMG_SMOOTH_TYPE
10.42.2.19ERROR_DATA_STRUCTURE
10.42.2.20ERROR_DATA_ZERODIAG
10.42.2.21ERROR_DUMMY_VAR
10.42.2.2ÆRROR_INPUT_PAR
10.42.2.23ERROR_LIC_TYPE
10.42.2.24ERROR_MAT_SIZE
10.42.2.25ERROR_MISC

CONTENTS xxvii

10.42.2.26ERROR_NUM_BLOCKS
10.42.2.27ERROR_OPEN_FILE
10.42.2.28ERROR_QUAD_DIM
10.42.2.29ERROR_QUAD_TYPE
10.42.2.30ERROR_REGRESS
10.42.2.31ERROR_SOLVER_EXIT
10.42.2.32ERROR_SOLVER_ILUSETUP
10.42.2.33ERROR_SOLVER_MAXIT
10.42.2.34ERROR_SOLVER_MISC
10.42.2.35ERROR_SOLVER_PRECTYPE
10.42.2.36ERROR_SOLVER_SOLSTAG
10.42.2.37ERROR_SOLVER_STAG
10.42.2.38ERROR_SOLVER_TOLSMALL
10.42.2.39ERROR_SOLVER_TYPE
10.42.2.40ERROR_UNKNOWN
10.42.2.41ERROR_WRONG_FILE
10.42.2.42FALSE
10.42.2.43FASP_SUCCESS
10.42.2.44FGPT
10.42.2.45FPFIRST
10.42.2.46G0PT
10.42.2.47LU_MC_OMP
10.42.2.48LUk
10.42.2.49LUt
10.42.2.50LUtp
10.42.2.51INTERP_DIR
10.42.2.52NTERP_ENG
10.42.2.53NTERP_STD

xxviii CONTENTS

10.42.2.54 SPT
10.42.2.55MAT_bBSR
10.42.2.56MAT_bCSR
10.42.2.57MAT_BLC
10.42.2.58MAT_BSR
10.42.2.59MAT_bSTR
10.42.2.60MAT_CSR
10.42.2.61MAT_CSRL
10.42.2.62MAT_FREE
10.42.2.63MAT_STR
10.42.2.64MAT_SymCSR
10.42.2.65MAX_AMG_LVL
10.42.2.66MAX_CRATE
10.42.2.67MAX_REFINE_LVL
10.42.2.68MAX_RESTART
10.42.2.69MAX_STAG
10.42.2.70MIN_CDOF
10.42.2.71MIN_CRATE
10.42.2.72NL_AMLI_CYCLE
10.42.2.73NO_ORDER
10.42.2.74OFF
10.42.2.75ON
10.42.2.76OPENMP_HOLDS
10.42.2.77PAIRWISE
10.42.2.78PREC_AMG
10.42.2.79PREC_DIAG
10.42.2.80PREC_FMG
10.42.2.81PREC_ILU

CONTENTS xxix

10.42.2.82PREC_NULL
10.42.2.83PREC_SCHWARZ
10.42.2.84PRINT_ALL
10.42.2.85PRINT_MIN
10.42.2.86PRINT_MORE
10.42.2.87PRINT_MOST
10.42.2.88PRINT_NONE
10.42.2.89PRINT_SOME
10.42.2.90SA_AMG
10.42.2.91SCHWARZ_BACKWARD
10.42.2.92SCHWARZ_FORWARD
10.42.2.93SCHWARZ_SYMMETRIC
10.42.2.94SMALLREAL
10.42.2.95SMALLREAL2
10.42.2.96SMOOTHER_BLKOIL
10.42.2.97SMOOTHER_CG
10.42.2.98SMOOTHER_GS
10.42.2.99SMOOTHER_GSOR
10.42.2.108MOOTHER_JACOBI
10.42.2.103MOOTHER_L1DIAG
10.42.2.108MOOTHER_POLY
10.42.2.10 3 MOOTHER_SGS
10.42.2.109MOOTHER_SGSOR
10.42.2.10 5 MOOTHER_SOR
10.42.2.10 6 MOOTHER_SPETEN
10.42.2.10 3 MOOTHER_SSOR
10.42.2.10 8 OLVER_AMG
10.42.2.109OLVER BiCGstab

CONTENTS

10.42.2.11 S OLVER_CG
10.42.2.11 \$ OLVER_DEFAULT
10.42.2.11 2 OLVER_FMG
10.42.2.11 \$ OLVER_GCG
10.42.2.11 \(\text{9} \)OLVER_GCR
10.42.2.11 \$ OLVER_GMRES
10.42.2.11 % OLVER_MinRes
10.42.2.11 S OLVER_MUMPS
10.42.2.11 8 OLVER_PARDISO
10.42.2.11 9 OLVER_SBiCGstab
10.42.2.1 29 OLVER_SCG
10.42.2.123OLVER_SGCG
10.42.2.12% OLVER_SGMRES
10.42.2.123OLVER_SMinRes
10.42.2.128OLVER_SUPERLU
10.42.2.12 5 OLVER_SVFGMRES
10.42.2.1 26 OLVER_SVGMRES
10.42.2.123OLVER_UMFPACK
10.42.2.128OLVER_VBiCGstab
10.42.2.1 29 OLVER_VFGMRES
10.42.2.139OLVER_VGMRES
10.42.2.133TAG_RATIO
10.42.2.132TOP_MOD_REL_RES
10.42.2.13 3 TOP_REL_PRECRES
10.42.2.139TOP_REL_RES
10.42.2.135RUE
10.42.2.136A_AMG
10.42.2.13\(\text{JNPT}\)

CONTENTS xxxi

10.42.2.138SERDEFINED	370
10.42.2.139_CYCLE	371
10.42.2.140MB	371
10.42.2.14W_CYCLE	371
10.43fasp_grid.h File Reference	371
10.43.1 Detailed Description	372
10.43.2 Macro Definition Documentation	372
10.43.2.1FASPGRID_HEADER	372
10.43.3 Typedef Documentation	372
10.43.3.1 grid2d	372
10.43.3.2 pcgrid2d	372
10.43.3.3 pgrid2d	373
10.44InterfaceMumps.c File Reference	373
10.44.1 Detailed Description	373
10.44.2 Macro Definition Documentation	373
10.44.2.1 ICNTL	373
10.44.3 Function Documentation	374
10.44.3.1 fasp_solver_mumps()	374
10.44.3.2 fasp_solver_mumps_steps()	374
10.45InterfacePardiso.c File Reference	375
10.45.1 Detailed Description	375
10.45.2 Function Documentation	375
10.45.2.1 fasp_solver_pardiso()	375
10.46InterfaceSamg.c File Reference	376
10.46.1 Detailed Description	376
10.46.2 Function Documentation	377
10.46.2.1 dCSRmat2SAMGInput()	377
10.46.2.2 dvector2SAMGInput()	377

xxxii CONTENTS

10.47InterfaceSuperlu.c File Reference
10.47.1 Detailed Description
10.47.2 Function Documentation
10.47.2.1 fasp_solver_superlu()
10.48InterfaceUmfpack.c File Reference
10.48.1 Detailed Description
10.48.2 Function Documentation
10.48.2.1 fasp_solver_umfpack()
10.49ltrSmootherBSR.c File Reference
10.49.1 Detailed Description
10.49.2 Function Documentation
10.49.2.1 fasp_smoother_dbsr_gs()
10.49.2.2 fasp_smoother_dbsr_gs1()
10.49.2.3 fasp_smoother_dbsr_gs_ascend()
10.49.2.4 fasp_smoother_dbsr_gs_ascend1()
10.49.2.5 fasp_smoother_dbsr_gs_descend()
10.49.2.6 fasp_smoother_dbsr_gs_descend1()
10.49.2.7 fasp_smoother_dbsr_gs_order1()
10.49.2.8 fasp_smoother_dbsr_gs_order2()
10.49.2.9 fasp_smoother_dbsr_ilu()
10.49.2.10fasp_smoother_dbsr_jacobi()
10.49.2.11fasp_smoother_dbsr_jacobi1()
10.49.2.12fasp_smoother_dbsr_jacobi_setup()
10.49.2.13fasp_smoother_dbsr_sor()
10.49.2.14fasp_smoother_dbsr_sor1()
10.49.2.15fasp_smoother_dbsr_sor_ascend()
10.49.2.16fasp_smoother_dbsr_sor_descend()
10.49.2.17/asp_smoother_dbsr_sor_order()

CONTENTS xxxiii

10.49.3 Variable Documentation	393
10.49.3.1 ilu_solve_omp	393
10.50 ltrSmootherCSR.c File Reference	393
10.50.1 Detailed Description	394
10.50.2 Function Documentation	394
10.50.2.1 fasp_smoother_dcsr_gs()	394
10.50.2.2 fasp_smoother_dcsr_gs_cf()	395
10.50.2.3 fasp_smoother_dcsr_gs_rb3d()	396
10.50.2.4 fasp_smoother_dcsr_ilu()	396
10.50.2.5 fasp_smoother_dcsr_jacobi()	397
10.50.2.6 fasp_smoother_dcsr_kaczmarz()	398
10.50.2.7 fasp_smoother_dcsr_L1diag()	399
10.50.2.8 fasp_smoother_dcsr_sgs()	400
10.50.2.9 fasp_smoother_dcsr_sor()	400
10.50.2.10fasp_smoother_dcsr_sor_cf()	401
10.51 ltrSmootherCSRcr.c File Reference	402
10.51.1 Detailed Description	402
10.51.2 Function Documentation	402
10.51.2.1 fasp_smoother_dcsr_gscr()	402
10.52ltrSmootherCSRpoly.c File Reference	403
10.52.1 Detailed Description	404
10.52.2 Function Documentation	404
10.52.2.1 fasp_smoother_dcsr_poly()	404
10.52.2.2 fasp_smoother_dcsr_poly_old()	405
10.53 ltrSmootherSTR.c File Reference	405
10.53.1 Detailed Description	406
10.53.2 Function Documentation	407
10.53.2.1 fasp_generate_diaginv_block()	407

XXXIV CONTENTS

1	0.53.2.2 fasp_smoother_dstr_gs()	07
1	0.53.2.3 fasp_smoother_dstr_gs1()	08
1	0.53.2.4 fasp_smoother_dstr_gs_ascend()	09
1	0.53.2.5 fasp_smoother_dstr_gs_cf()	09
1	0.53.2.6 fasp_smoother_dstr_gs_descend()	11
1	0.53.2.7 fasp_smoother_dstr_gs_order()	12
1	0.53.2.8 fasp_smoother_dstr_jacobi()	12
1	0.53.2.9 fasp_smoother_dstr_jacobi1()	13
1	0.53.2.10fasp_smoother_dstr_schwarz()	14
1	0.53.2.11fasp_smoother_dstr_sor()	14
1	0.53.2.12fasp_smoother_dstr_sor1()	15
1	0.53.2.13fasp_smoother_dstr_sor_ascend()	16
1	0.53.2.14fasp_smoother_dstr_sor_cf()	17
1	0.53.2.15fasp_smoother_dstr_sor_descend()	17
1	0.53.2.16fasp_smoother_dstr_sor_order()	18
10.54KryPbcgs	s.c File Reference	19
10.54.1 E	Detailed Description	19
10.54.2 F	function Documentation	20
1	0.54.2.1 fasp_solver_dblc_pbcgs()	20
1	0.54.2.2 fasp_solver_dbsr_pbcgs()	21
1	0.54.2.3 fasp_solver_dcsr_pbcgs()	22
1	0.54.2.4 fasp_solver_dstr_pbcgs()	23
1	0.54.2.5 fasp_solver_pbcgs()	24
10.55KryPcg.c	File Reference	24
10.55.1 E	Detailed Description	25
10.55.2 F	function Documentation	26
1	0.55.2.1 fasp_solver_dblc_pcg()	26
1	0.55.2.2 fasp_solver_dbsr_pcg()	27

CONTENTS XXXV

10.55.2.3 fasp_solver_dcsr_pcg()
10.55.2.4 fasp_solver_dstr_pcg()
10.55.2.5 fasp_solver_pcg()
10.56KryPgcg.c File Reference
10.56.1 Detailed Description
10.56.2 Function Documentation
10.56.2.1 fasp_solver_dcsr_pgcg()
10.56.2.2 fasp_solver_pgcg()
10.57KryPgcr.c File Reference
10.57.1 Detailed Description
10.57.2 Function Documentation
10.57.2.1 fasp_solver_dcsr_pgcr()
10.58KryPgmres.c File Reference
10.58.1 Detailed Description
10.58.2 Function Documentation
10.58.2.1 fasp_solver_dblc_pgmres()
10.58.2.2 fasp_solver_dbsr_pgmres()
10.58.2.3 fasp_solver_dcsr_pgmres()
10.58.2.4 fasp_solver_dstr_pgmres()
10.58.2.5 fasp_solver_pgmres()
10.59KryPminres.c File Reference
10.59.1 Detailed Description
10.59.2 Function Documentation
10.59.2.1 fasp_solver_dblc_pminres()
10.59.2.2 fasp_solver_dcsr_pminres()
10.59.2.3 fasp_solver_dstr_pminres()
10.59.2.4 fasp_solver_pminres()
10.60KryPvbcgs.c File Reference

xxxvi CONTENTS

10.60.1 Detailed Description
10.60.2 Function Documentation
10.60.2.1 fasp_solver_dblc_pvbcgs()
10.60.2.2 fasp_solver_dbsr_pvbcgs()
10.60.2.3 fasp_solver_dcsr_pvbcgs()
10.60.2.4 fasp_solver_dstr_pvbcgs()
10.60.2.5 fasp_solver_pvbcgs()
10.61KryPvfgmres.c File Reference
10.61.1 Detailed Description
10.61.2 Function Documentation
10.61.2.1 fasp_solver_dblc_pvfgmres()
10.61.2.2 fasp_solver_dbsr_pvfgmres()
10.61.2.3 fasp_solver_dcsr_pvfgmres()
10.61.2.4 fasp_solver_pvfgmres()
10.62KryPvgmres.c File Reference
10.62.1 Detailed Description
10.62.2 Function Documentation
10.62.2.1 fasp_solver_dblc_pvgmres()
10.62.2.2 fasp_solver_dbsr_pvgmres()
10.62.2.3 fasp_solver_dcsr_pvgmres()
10.62.2.4 fasp_solver_dstr_pvgmres()
10.62.2.5 fasp_solver_pvgmres()
10.63KrySPbcgs.c File Reference
10.63.1 Detailed Description
10.63.2 Function Documentation
10.63.2.1 fasp_solver_dblc_spbcgs()
10.63.2.2 fasp_solver_dbsr_spbcgs()
10.63.2.3 fasp_solver_dcsr_spbcgs()

CONTENTS xxxvii

10.63.2.4 fasp_solver_dstr_spbcgs()
10.64KrySPcg.c File Reference
10.64.1 Detailed Description
10.64.2 Function Documentation
10.64.2.1 fasp_solver_dblc_spcg()
10.64.2.2 fasp_solver_dcsr_spcg()
10.64.2.3 fasp_solver_dstr_spcg()
10.65KrySPgmres.c File Reference
10.65.1 Detailed Description
10.65.2 Function Documentation
10.65.2.1 fasp_solver_dblc_spgmres()
10.65.2.2 fasp_solver_dbsr_spgmres()
10.65.2.3 fasp_solver_dcsr_spgmres()
10.65.2.4 fasp_solver_dstr_spgmres()
10.66KrySPminres.c File Reference
10.66.1 Detailed Description
10.66.2 Function Documentation
10.66.2.1 fasp_solver_dblc_spminres()
10.66.2.2 fasp_solver_dcsr_spminres()
10.66.2.3 fasp_solver_dstr_spminres()
10.67KrySPvgmres.c File Reference
10.67.1 Detailed Description
10.67.2 Function Documentation
10.67.2.1 fasp_solver_dblc_spvgmres()
10.67.2.2 fasp_solver_dbsr_spvgmres()
10.67.2.3 fasp_solver_dcsr_spvgmres()
10.67.2.4 fasp_solver_dstr_spvgmres()
10.68PreAMGCoarsenCR.c File Reference

xxxviii CONTENTS

10.68.1 Detailed Description	. 484
10.68.2 Function Documentation	. 484
10.68.2.1 fasp_amg_coarsening_cr()	. 484
10.69PreAMGCoarsenRS.c File Reference	. 485
10.69.1 Detailed Description	. 485
10.69.2 Function Documentation	. 485
10.69.2.1 fasp_amg_coarsening_rs()	. 486
10.70PreAMGInterp.c File Reference	. 486
10.70.1 Detailed Description	. 487
10.70.2 Function Documentation	. 487
10.70.2.1 fasp_amg_interp()	. 487
10.70.2.2 fasp_amg_interp_trunc()	. 488
10.71PreAMGInterpEmin.c File Reference	. 488
10.71.1 Detailed Description	. 489
10.71.2 Function Documentation	. 489
10.71.2.1 fasp_amg_interp_em()	. 489
10.72PreAMGSetupCR.c File Reference	. 490
10.72.1 Detailed Description	. 490
10.72.2 Function Documentation	. 490
10.72.2.1 fasp_amg_setup_cr()	. 490
10.73PreAMGSetupRS.c File Reference	. 491
10.73.1 Detailed Description	. 491
10.73.2 Function Documentation	. 492
10.73.2.1 fasp_amg_setup_rs()	. 492
10.74PreAMGSetupSA.c File Reference	. 492
10.74.1 Detailed Description	. 493
10.74.2 Function Documentation	. 493
10.74.2.1 fasp_amg_setup_sa()	. 493

CONTENTS xxxix

10.75PreAMGSetupSABSR.c File Reference	94
10.75.1 Detailed Description) 4
10.75.2 Function Documentation) 4
10.75.2.1 fasp_amg_setup_sa_bsr()	94
10.76PreAMGSetupUA.c File Reference	95
10.76.1 Detailed Description	95
10.76.2 Function Documentation	96
10.76.2.1 fasp_amg_setup_ua()	96
10.77PreAMGSetupUABSR.c File Reference) 6
10.77.1 Detailed Description	∌7
10.77.2 Function Documentation	3 7
10.77.2.1 fasp_amg_setup_ua_bsr()	3 7
10.78PreBLC.c File Reference	98
10.78.1 Detailed Description	98
10.78.2 Function Documentation	3 9
10.78.2.1 fasp_precond_block_diag_3()	3 9
10.78.2.2 fasp_precond_block_diag_3_amg()	3 9
10.78.2.3 fasp_precond_block_diag_4())0
10.78.2.4 fasp_precond_block_lower_3())0
10.78.2.5 fasp_precond_block_lower_3_amg())1
10.78.2.6 fasp_precond_block_lower_4())2
10.78.2.7 fasp_precond_block_SGS_3())2
10.78.2.8 fasp_precond_block_SGS_3_amg())3
10.78.2.9 fasp_precond_block_upper_3())3
10.78.2.10fasp_precond_block_upper_3_amg())4
10.78.2.11fasp_precond_sweeping())4
10.79PreBSR.c File Reference)5
10.79.1 Detailed Description)6

xI CONTENTS

10.79.2 Function Documentation
10.79.2.1 fasp_precond_dbsr_amg()
10.79.2.2 fasp_precond_dbsr_amg_nk()
10.79.2.3 fasp_precond_dbsr_diag()
10.79.2.4 fasp_precond_dbsr_diag_nc2()
10.79.2.5 fasp_precond_dbsr_diag_nc3()
10.79.2.6 fasp_precond_dbsr_diag_nc5()
10.79.2.7 fasp_precond_dbsr_diag_nc7()
10.79.2.8 fasp_precond_dbsr_ilu()
10.79.2.9 fasp_precond_dbsr_ilu_ls_omp()
10.79.2.10fasp_precond_dbsr_ilu_mc_omp()
10.79.2.11fasp_precond_dbsr_nl_amli()
10.80PreCSR.c File Reference
10.80.1 Detailed Description
10.80.2 Function Documentation
10.80.2.1 fasp_precond_amg()
10.80.2.2 fasp_precond_amg_nk()
10.80.2.3 fasp_precond_amli()
10.80.2.4 fasp_precond_diag()
10.80.2.5 fasp_precond_famg()
10.80.2.6 fasp_precond_free()
10.80.2.7 fasp_precond_ilu()
10.80.2.8 fasp_precond_ilu_backward()
10.80.2.9 fasp_precond_ilu_forward()
10.80.2.10fasp_precond_nl_amli()
10.80.2.11fasp_precond_schwarz()
10.80.2.12fasp_precond_setup()

CONTENTS xli

10.81.1 Detailed Description
10.81.2 Function Documentation
10.81.2.1 fasp_amg_data_bsr_create()
10.81.2.2 fasp_amg_data_bsr_free()
10.81.2.3 fasp_amg_data_create()
10.81.2.4 fasp_amg_data_free()
10.81.2.5 fasp_ilu_data_create()
10.81.2.6 fasp_ilu_data_free()
10.81.2.7 fasp_ilu_data_null()
10.81.2.8 fasp_precond_data_null()
10.81.2.9 fasp_precond_null()
10.81.2.10fasp_schwarz_data_free()
10.82PreMGCycle.c File Reference
10.82.1 Detailed Description
10.82.2 Function Documentation
10.82.2.1 fasp_solver_mgcycle()
10.82.2.2 fasp_solver_mgcycle_bsr()
10.83PreMGCycleFull.c File Reference
10.83.1 Detailed Description
10.83.2 Function Documentation
10.83.2.1 fasp_solver_fmgcycle()
10.84PreMGRecur.c File Reference
10.84.1 Detailed Description
10.84.2 Function Documentation
10.84.2.1 fasp_solver_mgrecur()
10.85PreMGRecurAMLI.c File Reference
10.85.1 Detailed Description
10.85.2 Function Documentation

xlii CONTENTS

10.85.2.1 fasp_amg_amli_coef()
10.85.2.2 fasp_solver_amli()
10.85.2.3 fasp_solver_nl_amli()
10.85.2.4 fasp_solver_nl_amli_bsr()
10.86PreMGSolve.c File Reference
10.86.1 Detailed Description
10.86.2 Function Documentation
10.86.2.1 fasp_amg_solve()
10.86.2.2 fasp_amg_solve_amli()
10.86.2.3 fasp_amg_solve_nl_amli()
10.86.2.4 fasp_famg_solve()
10.87PreSTR.c File Reference
10.87.1 Detailed Description
10.87.2 Function Documentation
10.87.2.1 fasp_precond_dstr_blockgs()
10.87.2.2 fasp_precond_dstr_diag()
10.87.2.3 fasp_precond_dstr_ilu0()
10.87.2.4 fasp_precond_dstr_ilu0_backward()
10.87.2.5 fasp_precond_dstr_ilu0_forward()
10.87.2.6 fasp_precond_dstr_ilu1()
10.87.2.7 fasp_precond_dstr_ilu1_backward()
10.87.2.8 fasp_precond_dstr_ilu1_forward()
10.88SolAMG.c File Reference
10.88.1 Detailed Description
10.88.2 Function Documentation
10.88.2.1 fasp_solver_amg()
10.89SolBLC.c File Reference
10.89.1 Detailed Description

CONTENTS xliii

10.89.2 Function Documentation
10.89.2.1 fasp_solver_dblc_itsolver()
10.89.2.2 fasp_solver_dblc_krylov()
10.89.2.3 fasp_solver_dblc_krylov_block_3()
10.89.2.4 fasp_solver_dblc_krylov_block_4()
10.89.2.5 fasp_solver_dblc_krylov_sweeping()
10.90SolBSR.c File Reference
10.90.1 Detailed Description
10.90.2 Function Documentation
10.90.2.1 fasp_solver_dbsr_itsolver()
10.90.2.2 fasp_solver_dbsr_krylov()
10.90.2.3 fasp_solver_dbsr_krylov_amg()
10.90.2.4 fasp_solver_dbsr_krylov_amg_nk()
10.90.2.5 fasp_solver_dbsr_krylov_diag()
10.90.2.6 fasp_solver_dbsr_krylov_ilu()
10.90.2.7 fasp_solver_dbsr_krylov_nk_amg()
10.91SolCSR.c File Reference
10.91.1 Detailed Description
10.91.2 Function Documentation
10.91.2.1 fasp_solver_dcsr_itsolver()
10.91.2.2 fasp_solver_dcsr_krylov()
10.91.2.3 fasp_solver_dcsr_krylov_amg()
10.91.2.4 fasp_solver_dcsr_krylov_amg_nk()
10.91.2.5 fasp_solver_dcsr_krylov_diag()
10.91.2.6 fasp_solver_dcsr_krylov_ilu()
10.91.2.7 fasp_solver_dcsr_krylov_ilu_M()
10.91.2.8 fasp_solver_dcsr_krylov_schwarz()
10.92SolFAMG.c File Reference

XIIV CONTENTS

10.92.1 Detailed Description	565
10.92.2 Function Documentation	565
10.92.2.1 fasp_solver_famg()	565
10.93SolGMGPoisson.c File Reference	566
10.93.1 Detailed Description	567
10.93.2 Function Documentation	567
10.93.2.1 fasp_poisson_fgmg1d()	567
10.93.2.2 fasp_poisson_fgmg2d()	568
10.93.2.3 fasp_poisson_fgmg3d()	569
10.93.2.4 fasp_poisson_gmg1d()	569
10.93.2.5 fasp_poisson_gmg2d()	570
10.93.2.6 fasp_poisson_gmg3d()	571
10.93.2.7 fasp_poisson_gmgcg1d()	572
10.93.2.8 fasp_poisson_gmgcg2d()	573
10.93.2.9 fasp_poisson_gmgcg3d()	573
10.94SolMatFree.c File Reference	574
10.94.1 Detailed Description	575
10.94.2 Function Documentation	575
10.94.2.1 fasp_solver_itsolver()	575
10.94.2.2 fasp_solver_itsolver_init()	576
10.94.2.3 fasp_solver_krylov()	576
10.95SolSTR.c File Reference	577
10.95.1 Detailed Description	578
10.95.2 Function Documentation	578
10.95.2.1 fasp_solver_dstr_itsolver()	578
10.95.2.2 fasp_solver_dstr_krylov()	579
10.95.2.3 fasp_solver_dstr_krylov_blockgs()	579
10.95.2.4 fasp_solver_dstr_krylov_diag()	580
10.95.2.5 fasp_solver_dstr_krylov_ilu()	581
10.96SolWrapper.c File Reference	582
10.96.1 Detailed Description	582
10.96.2 Function Documentation	582
10.96.2.1 fasp_fwrapper_amg_()	582
10.96.2.2 fasp_fwrapper_krylov_amg_()	583
10.96.2.3 fasp_wrapper_dbsr_krylov_amg()	584
10.96.2.4 fasp_wrapper_dcoo_dbsr_krylov_amg()	585
Index	587

Introduction

Over the last few decades, researchers have expended significant effort on developing efficient iterative methods for solving discretized partial differential equations (PDEs). Though these efforts have yielded many mathematically optimal solvers such as the multigrid method, the unfortunate reality is that multigrid methods have not been much used in practical applications. This marked gap between theory and practice is mainly due to the fragility of traditional multigrid (MG) methodology and the complexity of its implementation. We aim to develop techniques and the corresponding software that will narrow this gap, specifically by developing mathematically optimal solvers that are robust and easy to use in practice.

We believe that there is no one-size-for-all solution method for discrete linear systems from different applications. And, efficient iterative solvers can be constructed by taking the properties of PDEs and discretizations into account. In this project, we plan to construct a pool of discrete problems arising from partial differential equations (PDEs) or $P \leftarrow DE$ systems and efficient linear solvers for these problems. We mainly utilize the methodology of Auxiliary Space Preconditioning (ASP) to construct efficient linear solvers. Due to this reason, this software package is called Fast Auxiliary Space Preconditioning or FASP for short.

The structure of FASP is designed as follows: Level 0 (Aux*.c): Auxiliary functions (timing, memory, ...) Level 1 (Bla*.c): Basic linear algebra subroutines (SpMV, RAP, ILU, ...) Level 2 (Itr*.c): Iterative methods and smoothers (Jacobi, GS, SOR, ...) Level 3 (Kry*.c): Krylov iterative methods (CG, GMRES, ...) Level 4 (Pre*.c): Preconditioners (GMG, AMG, ...) Level 5 (Sol*.c): User interface for FASP solvers (Solvers, wrappers, ...)

FASP contains the kernel part and several applications (ranging from fluid dynamics to reservoir simulation). The kernel part is open-source and licensed under GNU Lesser General Public License or LGPL version 3.0 or later. Some of the applications contain contributions from and owned partially by other parties.

For the moment, FASP is under alpha testing. If you wish to obtain a current version of FASP or you have any questions, feel free to contact us at faspdev@gmail.com.

This software distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

2 Introduction

How to obtain FASP

The most updated version of FASP can be downloaded from

```
http://fasp.sourceforge.net/download/faspsolver.zip
```

We use HG (Mecurial) as our main version control tool. HG is easy to use and it is available at all OS platforms. For people who is interested in the developer version, you can obtain the FASP package with hg:

\$ hg clone https://faspusers@bitbucket.org/fasp/faspsolver

will give you the developer version of the FASP package.

4 How to obtain FASP

Building and Installation

This is a simple instruction on building and testing. For more details, please refer to the README files and the short User's Guide in "faspsolver/doc/".

To compile, you need a Fortran and a C compiler. First, you can type in the "faspsolver/" root directory:

\$ make config

which will config the environment automatically. And, then, you can need to type:

\$ make install

which will make the FASP shared static library and install to PREFIX/. By default, FASP libraries and executables will be installed in the FASP home directory "faspsolver/".

There is a simple GUI tool for building and installing FASP included in the package. You need Tcl/Tk support in your computer. You may call this GUI by run in the root directory:

\$ wish fasp_install.tcl

If you need to see the detailed usage of "make" or need any help, please type:

\$ make help

After installation, tutorial examples can be found in "tutorial/".

Developers

Project leader:

• Xu, Jinchao (Penn State University, USA)

Project coordinator:

• Zhang, Chensong (Chinese Academy of Sciences, China)

Current active developers (in alphabetic order):

- Feng, Chunsheng (Xiangtan University, China)
- Hu, Xiaozhe (Tufts University, USA)
- · Li, Zheng (Kunming University of Science and Technology, China)
- Zhang, Chensong (Chinese Academy of Sciences, China)
- Zhang, Hongxuan (Penn State Univeristy, USA)

With contributions from (in alphabetic order):

- Brannick, James (Penn State University, USA)
- · Chen, Long (University of California, Irvine, USA)
- Huang, Feiteng (Sichuang University, China)
- · Huang, Xuehai (Shanghai Jiaotong University, China)
- · Qiao, Changhe (Penn State University, USA)
- Shu, Shi (Xiangtan University, China)
- · Sun, Pengtao (University of Nevada, Las Vegas, USA)

8 Developers

- Yang, Kai (Penn State University, USA)
- Yue, Xiaoqiang (Xiangtan University, China)
- Wang, Lu (LLNL, USA)
- Wang, Ziteng (University of Alabama, USA)
- Zhang, Shiquan (Sichuan University, China)
- Zhang, Shuo (Chinese Academy of Sciences, China)
- Zhang, Weifeng (Kunming University of Science and Technology, China)
- Zhou, Zhiyang (Xiangtan University, China)

Doxygen

We use Doxygen as our automatically documentation generator which will make our future maintainance minimized. You can obtain the software (Windows, Linux and OS X) as well as its manual on the official website

http://www.doxygen.org

For an ordinary user, Doxygen is completely trivial to use. We only need to use some special marker in the usual comment as we put in c-files.

10 Doxygen

Todo List

File BlaSparseUtil.c

Remove unwanted functions from this file. -Chensong

12 Todo List

Data Structure Index

7.1 Data Structures

Here are the data structures with brief descriptions:

AMG_data	
Data for AMG solvers	 2
AMG_data_bsr	
Data for multigrid levels. (BSR format)	 2
AMG_param	
Parameters for AMG solver	 2
block_dvector	
Block REAL vector structure	 2
block_ivector	
Block INT vector structure	 2
dBLCmat	
Block REAL CSR matrix format	 2
dBSRmat	
Block sparse row storage matrix of REAL type	 2
dCOOmat	
Sparse matrix of REAL type in COO (or IJ) format	 29
dCSRLmat	_
Sparse matrix of REAL type in CSRL format	 30
dCSRmat	
Sparse matrix of REAL type in CSR format	 3
ddenmat	_
Dense matrix of REAL type	 3
dSTRmat	_
Structure matrix of REAL type	 3.
dvector	_
Vector with n entries of REAL type	 34
grid2d	_
Two dimensional grid data structure	 34
Block INT CSR matrix format	٥.
	 3
iCOOmat	0
Sparse matrix of INT type in COO (or IJ) format	 3

4 Data Structure Index

File Index

8.1 File List

Here is a list of all documented files with brief descriptions:

AuxArray.c
Simple array operations – init, set, copy, etc
AuxConvert.c
Some utilities for encoding format conversion
AuxGivens.c
Givens transformation
AuxGraphics.c
Graphical output for CSR matrix
AuxInput.c
Read and check input parameters
AuxMemory.c
Memory allocation and deallocation subroutines
AuxMessage.c
Output some useful messages
AuxParam.c
Initialize, set, or print input data and parameters
AuxSmallMat.c
Simple operations for <i>small</i> dense matrices in row-major format
AuxSort.c
Subroutines for ordering, merging, removing duplicated integers
AuxThreads.c
Get and set number of threads and assign work load for each thread
AuxTiming.c
Timing subroutines
AuxVector.c
Simple operations for vectors
BlaArray.c
BLAS1 operations for arrays
BlaEigen.c
Subroutines for computing the extreme eigenvalues
BlaFormat.c
Subroutines for matrix format conversion

16 File Index

BlaILU.c	
Incomp	lete LU decomposition: ILUk, ILUt, ILUtp
BlaILUSetupBSF	l.c
Setup i	ncomplete LU decomposition for dBSRmat matrices
BlaILUSetupCSF	ł.c
Setup i	ncomplete LU decomposition for dCSRmat matrices
BlaILUSetupSTR	
Setup i	ncomplete LU decomposition for dSTRmat matrices
BlaIO.c	
Matrix/\	/ector input/output subroutines
BlaSchwarzSetu	
Setup p	phase for the Schwarz methods
BlaSmallMat.c	
	perations for <i>small</i> dense matrices
BlaSmallMatLU.c	
	omposition and direct solver for small dense matrices
BlaSparseBLC.c	
•	matrix block operations
BlaSparseBSR.c	
	matrix operations for dBSRmat matrices
BlaSparseCheck	
	properties of sparse matrices
BlaSparseCOO.c	
	matrix operations for dCOOmat matrices
BlaSparseCSR.c	
•	matrix operations for dCSRmat matrices
BlaSparseCSRL.	
•	matrix operations for dCSRLmat matrices
BlaSparseSTR.c	matrix operations for dSTRmat matrices
	matrix operations for do ramat matrices
BlaSparseUtil.c	es for sparse matrix operations
BlaSpmvBLC.c	is for sparse matrix operations
	operations for dBLCmat matrices
BlaSpmvBSR.c	operations for abcomat matrices
•	operations for dBSRmat matrices
BlaSpmvCSR.c	·
	operations for dCSRmat matrices
BlaSpmvCSRL.c	·
	operations for dCSRLmat matrices
BlaSpmvSTR.c	
•	operations for dSTRmat matrices
BlaVector.c	
	operations for vectors
doxygen.h	
	age for Doygen documentation
fasp.h	9. · · · · · · · · · · · · · · · · · · ·
•	eader file for FASP
fasp_block.h	
	file for FASP block matrices
fasp_const.h	
. —	on of all kinds of messages, including error messages, solver types, etc

8.1 File List

fasp_grid.h
Header file for FASP grid
$hb_io.h \dots \qquad ??$
InterfaceMumps.c Interface to MUMPS direct solvers
InterfacePardiso.c Interface to Intel MKL PARDISO direct solvers
InterfaceSamg.c Interface to SAMG solvers
InterfaceSuperlu.c Interface to SuperLU direct solvers
InterfaceUmfpack.c
Interface to UMFPACK direct solvers
Smoothers for dBSRmat matrices
Smoothers for dCSRmat matrices
ItrSmootherCSRcr.c Smoothers for dCSRmat matrices using compatible relaxation
ItrSmootherCSRpoly.c Smoothers for dCSRmat matrices using poly. approx. to A^{-1}
ItrSmootherSTR.c Smoothers for dSTRmat matrices
KryPbcgs.c
Krylov subspace methods – Preconditioned BiCGstab
Krylov subspace methods – Preconditioned CG
Krylov subspace methods – Preconditioned generalized CG
Krylov subspace methods – Preconditioned GCR
KryPgmres.c Krylov subspace methods – Right-preconditioned GMRes
KryPminres.c Krylov subspace methods – Preconditioned minimal residual
KryPvbcgs.c Krylov subspace methods – Preconditioned BiCGstab
KryPvfgmres.c
Krylov subspace methods – Preconditioned variable-restarting FGMRes
Krylov subspace methods – Preconditioned variable-restart GMRes
Krylov subspace methods – Preconditioned BiCGstab with safety net
KrySPcg.c Krylov subspace methods – Preconditioned CG with safety net
KrySPgmres.c Krylov subspace methods – Preconditioned GMRes with safety net
KrySPminres.c Krylov subspace methods – Preconditioned minimal residual with safety net
KrySPvgmres.c Krylov subspace methods – Preconditioned variable-restart GMRes with safety net
malloc.c.h
nedmalloc.h ??

18 File Index

PreAMGCoarsenCR.c
Coarsening with Brannick-Falgout strategy
PreAMGCoarsenRS.c
Coarsening with a modified Ruge-Stuben strategy
PreAMGInterp.c
Direct and standard interpolations for classical AMG
PreAMGInterpEmin.c
Interpolation operators for AMG based on energy-min
PreAMGSetupCR.c
Brannick-Falgout compatible relaxation based AMG: SETUP phase
PreAMGSetupRS.c Ruge-Stuben AMG: SETUP phase
·
PreAMGSetupSA.c Smoothed aggregation AMG: SETUP phase
PreAMGSetupSABSR.c
Smoothed aggregation AMG: SETUP phase (for BSR matrices)
PreAMGSetupUA.c
Unsmoothed aggregation AMG: SETUP phase
PreAMGSetupUABSR.c
Unsmoothed aggregation AMG: SETUP phase (for BSR matrices)
PreBLC.c
Preconditioners for dBLCmat matrices
PreBSR.c
Preconditioners for dBSRmat matrices
PreCSR.c
Preconditioners for dCSRmat matrices
PreDataInit.c
Initialize important data structures
PreMGCycle.c
Abstract multigrid cycle – non-recursive version
PreMGCycleFull.c
Abstract non-recursive full multigrid cycle
PreMGRecur.c
Abstract multigrid cycle – recursive version
PreMGRecurAMLI.c
Abstract AMLI multilevel iteration – recursive version
PreMGSolve.c
Algebraic multigrid iterations: SOLVE phase
PreSTR.c
Preconditioners for dSTRmat matrices
SolAMG.c
AMG method as an iterative solver
SolBLC.c
Iterative solvers for dBLCmat matrices
SolBSR.c
Iterative solvers for dBSRmat matrices
SolCSR.c
Iterative solvers for dCSRmat matrices
SolFAMG.c
Full AMG method as an iterative solver
SolGMGPoisson.c
GMG method as an iterative solver for Poisson Problem
SolMatFree.c
Iterative solvers using MatFree spmv operations

8.1 File List

SolSTR.c	
Iterative solvers for dSTRmat matrices	
SolWrapper.c	
Wrappers for accessing functions by advanced users	rs

20 File Index

Data Structure Documentation

9.1 AMG_data Struct Reference

Data for AMG solvers.

```
#include <fasp.h>
```

Data Fields

SHORT max_levels

max number of levels

· SHORT num levels

number of levels in use <= max_levels

dCSRmat A

pointer to the matrix at level level_num

dCSRmat R

restriction operator at level level_num

dCSRmat P

prolongation operator at level level_num

dvector b

pointer to the right-hand side at level level_num

dvector x

pointer to the iterative solution at level level num

void * Numeric

pointer to the numerical factorization from UMFPACK

Pardiso_data pdata

data for Intel MKL PARDISO

· ivector cfmark

pointer to the CF marker at level level_num

• INT ILU_levels

number of levels use ILU smoother

• ILU_data LU

ILU matrix for ILU smoother.

· INT near kernel dim

dimension of the near kernel for SAMG

• REAL ** near kernel basis

basis of near kernel space for SAMG

INT Schwarz levels

number of levels use Schwarz smoother

• Schwarz_data Schwarz

data of Schwarz smoother

· dvector w

temporary work space

Mumps_data mumps

data for MUMPS

INT cycle_type

cycle type

• INT * ic

indices for different colors

INT * icmap

mapping from vertex to color

· INT colors

number of colors

REAL weight

weight for smoother

9.1.1 Detailed Description

Data for AMG solvers.

Note

This is needed for the AMG solver/preconditioner.

Definition at line 755 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.2 AMG_data_bsr Struct Reference

Data for multigrid levels. (BSR format)

#include <fasp_block.h>

Data Fields

INT max levels

max number of levels

• INT num_levels

number of levels in use <= max_levels

· dBSRmat A

pointer to the matrix at level level_num

· dBSRmat R

restriction operator at level level_num

dBSRmat P

prolongation operator at level level_num

· dvector b

pointer to the right-hand side at level level_num

· dvector x

pointer to the iterative solution at level level_num

· dvector diaginv

pointer to the diagonal inverse at level level_num

dCSRmat Ac

pointer to the matrix at level level_num (csr format)

void * Numeric

pointer to the numerical dactorization from UMFPACK

Pardiso_data pdata

data for Intel MKL PARDISO

dCSRmat PP

pointer to the pressure block (only for reservoir simulation)

• REAL * pw

pointer to the auxiliary vectors for pressure block

dBSRmat SS

pointer to the saturation block (only for reservoir simulation)

• REAL * sw

pointer to the auxiliary vectors for saturation block

· dvector diaginv_SS

pointer to the diagonal inverse of the saturation block at level level_num

ILU_data PP_LU

ILU data for pressure block.

· ivector cfmark

pointer to the CF marker at level level_num

INT ILU levels

number of levels use ILU smoother

ILU_data LU

ILU matrix for ILU smoother.

· INT near kernel dim

dimension of the near kernel for SAMG

REAL ** near_kernel_basis

basis of near kernel space for SAMG

dCSRmat * A nk

Matrix data for near kernal.

dCSRmat * P_nk

Prolongation for near kernal.

dCSRmat * R nk

Resriction for near kernal.

dvector w

temporary work space

Mumps_data mumps

data for MUMPS

9.2.1 Detailed Description

Data for multigrid levels. (BSR format)

Note

This structure is needed for the AMG solver/preconditioner in BSR format

Definition at line 151 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.3 AMG_param Struct Reference

Parameters for AMG solver.

```
#include <fasp.h>
```

Data Fields

SHORT AMG_type

type of AMG method

SHORT print_level

print level for AMG

INT maxit

max number of iterations of AMG

REAL tol

stopping tolerance for AMG solver

SHORT max_levels

max number of levels of AMG

INT coarse_dof

max number of coarsest level DOF

SHORT cycle_type

type of AMG cycle

· REAL quality_bound

quality threshold for pairwise aggregation

SHORT smoother

smoother type

· SHORT smooth order

smoother order

SHORT presmooth_iter

number of presmoothers

SHORT postsmooth iter

number of postsmoothers

· REAL relaxation

relaxation parameter for SOR smoother

SHORT polynomial_degree

degree of the polynomial smoother

· SHORT coarse solver

coarse solver type

SHORT coarse_scaling

switch of scaling of the coarse grid correction

· SHORT amli_degree

degree of the polynomial used by AMLI cycle

REAL * amli_coef

coefficients of the polynomial used by AMLI cycle

SHORT nl_amli_krylov_type

type of Krylov method used by Nonlinear AMLI cycle

SHORT coarsening_type

coarsening type

SHORT aggregation_type

aggregation type

SHORT interpolation_type

interpolation type

REAL strong_threshold

strong connection threshold for coarsening

· REAL max row sum

maximal row sum parameter

REAL truncation_threshold

truncation threshold

· INT aggressive level

number of levels use aggressive coarsening

INT aggressive_path

number of paths use to determine strongly coupled C points

· INT pair number

number of pairwise matchings

REAL strong_coupled

strong coupled threshold for aggregate

INT max_aggregation

max size of each aggregate

· REAL tentative_smooth

relaxation parameter for smoothing the tentative prolongation

SHORT smooth filter

switch for filtered matrix used for smoothing the tentative prolongation

SHORT ILU levels

number of levels use ILU smoother

SHORT ILU_type

ILU type for smoothing.

• INT ILU Ifil

level of fill-in for ILUs and ILUk

REAL ILU droptol

drop tolerance for ILUt

REAL ILU_relax

relaxation for ILUs

REAL ILU_permtol

permuted if permtol*|a(i,j)| > |a(i,i)|

• INT Schwarz_levels

number of levels use Schwarz smoother

· INT Schwarz mmsize

maximal block size

INT Schwarz_maxlvl

maximal levels

INT Schwarz_type

type of Schwarz method

INT Schwarz_blksolver

type of Schwarz block solver

9.3.1 Detailed Description

Parameters for AMG solver.

Note

This is needed for the AMG solver/preconditioner.

Definition at line 616 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.4 block_dvector Struct Reference

Block REAL vector structure.

#include <fasp_block.h>

INT brow

row number of blocks in A, m

dvector ** blocks

blocks of dvector, point to blocks[brow]

9.4.1 Detailed Description

Block REAL vector structure.

Definition at line 115 of file fasp_block.h.

The documentation for this struct was generated from the following file:

• fasp_block.h

9.5 block_ivector Struct Reference

Block INT vector structure.

```
#include <fasp_block.h>
```

Data Fields

INT brow

row number of blocks in A, m

ivector ** blocks

blocks of dvector, point to blocks[brow]

9.5.1 Detailed Description

Block INT vector structure.

Note

The starting index of A is 0.

Definition at line 131 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.6 dBLCmat Struct Reference

Block REAL CSR matrix format.

```
#include <fasp_block.h>
```

Data Fields

INT brow

row number of blocks in A, m

INT bcol

column number of blocks A, n

dCSRmat ** blocks

blocks of dCSRmat, point to blocks[brow][bcol]

9.6.1 Detailed Description

Block REAL CSR matrix format.

Note

The starting index of A is 0.

Definition at line 79 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.7 dBSRmat Struct Reference

Block sparse row storage matrix of REAL type.

```
#include <fasp_block.h>
```

Data Fields

INT ROW

number of rows of sub-blocks in matrix A, M

INT COL

number of cols of sub-blocks in matrix A, N

INT NNZ

number of nonzero sub-blocks in matrix A, NNZ

• INT nb

dimension of each sub-block

INT storage_manner

storage manner for each sub-block

- REAL * val
- INT * IA

integer array of row pointers, the size is ROW+1

INT * JA

9.7.1 Detailed Description

Block sparse row storage matrix of REAL type.

Note

This data structure is adapted from the Intel MKL library. Refer to: $\label{eq:mkl-library} http://software.intel. \leftarrow \\ com/sites/products/documentation/hpc/mkl/lin/index.htm$

Some of the following entries are capitalized to stress that they are for blocks!

Definition at line 39 of file fasp_block.h.

9.7.2 Field Documentation

9.7.2.1 JA

INT* JA

Element i of the integer array columns is the number of the column in the block matrix that contains the i-th non-zero block. The size is NNZ.

Definition at line 69 of file fasp_block.h.

9.7.2.2 val

REAL* val

A real array that contains the elements of the non-zero blocks of a sparse matrix. The elements are stored block-by-block in row major order. A non-zero block is the block that contains at least one non-zero element. All elements of non-zero blocks are stored, even if some of them is equal to zero. Within each nonzero block elements are stored in row-major order and the size is (NNZ*nb*nb).

Definition at line 62 of file fasp block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.8 dCOOmat Struct Reference

Sparse matrix of REAL type in COO (or IJ) format.

#include <fasp.h>

• INT row

row number of matrix A, m

INT col

column of matrix A, n

• INT nnz

number of nonzero entries

• INT * rowind

integer array of row indices, the size is nnz

• INT * colind

integer array of column indices, the size is nnz

• REAL * val

nonzero entries of A

9.8.1 Detailed Description

Sparse matrix of REAL type in COO (or IJ) format.

Coordinate Format (I,J,A)

Note

The starting index of A is 0. Change I to rowind, J to colind. To avoid with complex.h confliction on I.

Definition at line 212 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.9 dCSRLmat Struct Reference

Sparse matrix of REAL type in CSRL format.

#include <fasp.h>

INT row

number of rows

INT col

number of cols

INT nnz

number of nonzero entries

INT dif

number of different values in i-th row, i=0:nrows-1

INT * nz diff

nz_diff[i]: the i-th different value in 'nzrow'

• INT * index

row index of the matrix (length-grouped): rows with same nnz are together

INT * start

j in {start[i],...,start[i+1]-1} means nz_diff[i] nnz in index[j]-row

• INT * ja

column indices of all the nonzeros

• REAL * val

values of all the nonzero entries

9.9.1 Detailed Description

Sparse matrix of REAL type in CSRL format.

Definition at line 268 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.10 dCSRmat Struct Reference

Sparse matrix of REAL type in CSR format.

```
#include <fasp.h>
```

Data Fields

INT row

row number of matrix A, m

INT col

column of matrix A, n

INT nnz

number of nonzero entries

• INT * IA

integer array of row pointers, the size is m+1

INT * JA

integer array of column indexes, the size is nnz

REAL * val

nonzero entries of A

9.10.1 Detailed Description

Sparse matrix of REAL type in CSR format.

CSR Format (IA,JA,A) in REAL

Note

The starting index of A is 0.

Definition at line 151 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.11 ddenmat Struct Reference

Dense matrix of REAL type.

```
#include <fasp.h>
```

Data Fields

• INT row

number of rows

INT col

number of columns

REAL ** val

actual matrix entries

9.11.1 Detailed Description

Dense matrix of REAL type.

A dense REAL matrix

Definition at line 111 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.12 dSTRmat Struct Reference

Structure matrix of REAL type.

```
#include <fasp.h>
```

Data Fields

• INT nx

number of grids in x direction

INT ny

number of grids in y direction

• INT nz

number of grids in z direction

INT nxy

number of grids on x-y plane

INT nc

size of each block (number of components)

INT ngrid

number of grids

• REAL * diag

diagonal entries (length is $ngrid*(nc^2)$)

INT nband

number of off-diag bands

INT * offsets

offsets of the off-diagonals (length is nband)

REAL ** offdiag

off-diagonal entries (dimension is nband * [(ngrid-|offsets|) * nc 2])

9.12.1 Detailed Description

Structure matrix of REAL type.

Note

Every nc^2 entries of the array diag and off-diag[i] store one block: For 2D matrix, the recommended offsets is [-1,1,-nx,nx]; For 3D matrix, the recommended offsets is [-1,1,-nx,nx,nxy].

Definition at line 307 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.13 dvector Struct Reference

Vector with n entries of REAL type.

```
#include <fasp.h>
```

Data Fields

• INT row

number of rows

• REAL * val

actual vector entries

9.13.1 Detailed Description

Vector with n entries of REAL type.

Definition at line 345 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.14 grid2d Struct Reference

Two dimensional grid data structure.

```
#include <fasp_grid.h>
```

Data Fields

- REAL(* p)[2]
- INT(* e)[2]
- INT(* t)[3]
- INT(* s)[3]
- INT * pdiri
- INT * ediri
- INT * pfather
- INT * efather
- INT * tfather
- INT vertices INT edges
- INT triangles

9.14.1 Detailed Description

Two dimensional grid data structure.

Note

The grid2d structure is simply a list of triangles, edges and vertices. edge i has 2 vertices e[i], triangle i has 3 edges s[i], 3 vertices t[i] vertex i has two coordinates p[i]

Definition at line 22 of file fasp_grid.h.

9.14.2 Field Documentation

9.14.2.1 e

```
INT(* e)[2]
```

Vertices of edges

Definition at line 25 of file fasp_grid.h.

9.14.2.2 edges

```
INT edges
```

Number of edges

Definition at line 36 of file fasp_grid.h.

9.14.2.3 ediri

```
INT* ediri
```

Boundary flags (0 <=> interior edge)

Definition at line 29 of file fasp_grid.h.

```
9.14.2.4 efather
INT* efather
Father edge or triangle
Definition at line 32 of file fasp_grid.h.
9.14.2.5 p
REAL(* p)[2]
Coordinates of vertices
Definition at line 24 of file fasp_grid.h.
9.14.2.6 pdiri
INT* pdiri
Boundary flags (0 <=> interior point)
Definition at line 28 of file fasp_grid.h.
9.14.2.7 pfather
INT* pfather
Father point or edge
Definition at line 31 of file fasp_grid.h.
9.14.2.8 s
```

INT(* s)[3]

Edges of triangles

Definition at line 27 of file fasp_grid.h.

9.14.2.9 t

```
INT(* t)[3]
```

Vertices of triangles

Definition at line 26 of file fasp_grid.h.

9.14.2.10 tfather

```
INT* tfather
```

Father triangle

Definition at line 33 of file fasp_grid.h.

9.14.2.11 triangles

```
INT triangles
```

Number of triangles

Definition at line 37 of file fasp_grid.h.

9.14.2.12 vertices

```
INT vertices
```

Number of grid points

Definition at line 35 of file fasp_grid.h.

The documentation for this struct was generated from the following file:

• fasp_grid.h

9.15 iBLCmat Struct Reference

Block INT CSR matrix format.

```
#include <fasp_block.h>
```

INT brow

row number of blocks in A, m

INT bcol

column number of blocks A, n

• iCSRmat ** blocks

blocks of iCSRmat, point to blocks[brow][bcol]

9.15.1 Detailed Description

Block INT CSR matrix format.

Note

The starting index of A is 0.

Definition at line 98 of file fasp_block.h.

The documentation for this struct was generated from the following file:

• fasp_block.h

9.16 iCOOmat Struct Reference

Sparse matrix of INT type in COO (or IJ) format.

```
#include <fasp.h>
```

Data Fields

INT row

row number of matrix A, m

INT col

column of matrix A, n

INT nnz

number of nonzero entries

• INT * I

integer array of row indices, the size is nnz

• INT * J

integer array of column indices, the size is nnz

INT * val

nonzero entries of A

9.16.1 Detailed Description

Sparse matrix of INT type in COO (or IJ) format.

Coordinate Format (I,J,A)

Note

The starting index of A is 0.

Definition at line 242 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.17 iCSRmat Struct Reference

Sparse matrix of INT type in CSR format.

```
#include <fasp.h>
```

Data Fields

• INT row

row number of matrix A, m

INT col

column of matrix A, n

• INT nnz

number of nonzero entries

INT * IA

integer array of row pointers, the size is m+1

• INT * JA

integer array of column indexes, the size is nnz

INT * val

nonzero entries of A

9.17.1 Detailed Description

Sparse matrix of INT type in CSR format.

CSR Format (IA,JA,A) in integer

Note

The starting index of A is 0.

Definition at line 181 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.18 idenmat Struct Reference

Dense matrix of INT type.

```
#include <fasp.h>
```

Data Fields

• INT row

number of rows

• INT col

number of columns

INT ** val

actual matrix entries

9.18.1 Detailed Description

Dense matrix of INT type.

A dense INT matrix

Definition at line 130 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.19 ILU_data Struct Reference

Data for ILU setup.

#include <fasp.h>

• INT row

row number of matrix LU, m

INT col

column of matrix LU, n

INT nzlu

number of nonzero entries

• INT * ijlu

integer array of row pointers and column indexes, the size is nzlu

• REAL * luval

nonzero entries of LU

INT nb

block size for BSR type only

INT nwork

work space size

• REAL * work

work space

• INT ncolors

number of colors for multi-threading

• INT * ic

indices for different colors

INT * icmap

mapping from vertex to color

• INT * uptr

temporary work space

INT nlevL

number of colors for lower triangle

INT nlevU

number of colors for upper triangle

• INT * ilevL

number of vertices in each color for lower triangle

• INT * ilevU

number of vertices in each color for upper triangle

INT * jlevL

mapping from row to color for lower triangle

INT * jlevU

mapping from row to color for upper triangle

9.19.1 Detailed Description

Data for ILU setup.

Definition at line 403 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.20 ILU_param Struct Reference

Parameters for ILU.

```
#include <fasp.h>
```

Data Fields

• SHORT print_level

print level

SHORT ILU_type

ILU type for decomposition.

• INT ILU_Ifil

level of fill-in for ILUk

REAL ILU_droptol

drop tolerance for ILUt

REAL ILU_relax

add the sum of dropped elements to diagonal element in proportion relax

• REAL ILU_permtol

permuted if permtol* |a(i,j)| > |a(i,i)|

9.20.1 Detailed Description

Parameters for ILU.

Definition at line 377 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.21 input_param Struct Reference

Input parameters.

#include <fasp.h>

- SHORT print_level
- SHORT output type
- char inifile [256]
- · char workdir [256]
- INT problem num
- SHORT solver_type
- SHORT precond_type
- SHORT stop_type
- · REAL itsolver tol
- · INT itsolver maxit
- INT restart
- SHORT ILU_type
- INT ILU Ifil
- · REAL ILU droptol
- REAL ILU relax
- REAL ILU_permtol
- INT Schwarz_mmsize
- INT Schwarz maxlvl
- INT Schwarz_type
- INT Schwarz_blksolver
- SHORT AMG type
- SHORT AMG_levels
- SHORT AMG_cycle_type
- SHORT AMG_smoother
- SHORT AMG_smooth_order
- REAL AMG_relaxation
- SHORT AMG_polynomial_degree
- SHORT AMG_presmooth_iter
- SHORT AMG_postsmooth_iter
- INT AMG_coarse_dof
- · REAL AMG tol
- INT AMG maxit
- SHORT AMG_ILU_levels
- · SHORT AMG coarse solver
- SHORT AMG_coarse_scaling
- SHORT AMG_amli_degree
- SHORT AMG nl amli krylov type
- INT AMG_Schwarz_levels
- SHORT AMG_coarsening_type
- SHORT AMG_aggregation_type
- SHORT AMG_interpolation_type
- REAL AMG_strong_threshold
- REAL AMG_truncation_threshold
- REAL AMG_max_row_sum
- INT AMG_aggressive_level
- INT AMG_aggressive_path
- · INT AMG pair number
- REAL AMG_quality_bound
- REAL AMG_strong_coupled
- INT AMG_max_aggregation
- · REAL AMG tentative smooth
- SHORT AMG_smooth_filter

9.21.1 Detailed Description

Input parameters.

Input parameters, reading from disk file

Definition at line 1071 of file fasp.h.

9.21.2 Field Documentation

9.21.2.1 AMG_aggregation_type

```
SHORT AMG_aggregation_type
```

aggregation type

Definition at line 1125 of file fasp.h.

9.21.2.2 AMG_aggressive_level

```
INT AMG_aggressive_level
```

number of levels use aggressive coarsening

Definition at line 1130 of file fasp.h.

9.21.2.3 AMG_aggressive_path

```
INT AMG_aggressive_path
```

number of paths used to determine strongly coupled C-set

Definition at line 1131 of file fasp.h.

9.21.2.4 AMG_amli_degree

```
SHORT AMG_amli_degree
```

degree of the polynomial used by AMLI cycle

Definition at line 1119 of file fasp.h.

9.21.2.5 AMG_coarse_dof

```
INT AMG_coarse_dof
```

max number of coarsest level DOF

Definition at line 1113 of file fasp.h.

9.21.2.6 AMG_coarse_scaling

```
SHORT AMG_coarse_scaling
```

switch of scaling of the coarse grid correction

Definition at line 1118 of file fasp.h.

9.21.2.7 AMG_coarse_solver

```
SHORT AMG_coarse_solver
```

coarse solver type

Definition at line 1117 of file fasp.h.

9.21.2.8 AMG_coarsening_type

```
SHORT AMG_coarsening_type
```

coarsening type

Definition at line 1124 of file fasp.h.

```
9.21.2.9 AMG_cycle_type
```

SHORT AMG_cycle_type

type of cycle

Definition at line 1106 of file fasp.h.

9.21.2.10 AMG_ILU_levels

SHORT AMG_ILU_levels

how many levels use ILU smoother

Definition at line 1116 of file fasp.h.

9.21.2.11 AMG_interpolation_type

SHORT AMG_interpolation_type

interpolation type

Definition at line 1126 of file fasp.h.

9.21.2.12 AMG_levels

SHORT AMG_levels

maximal number of levels

Definition at line 1105 of file fasp.h.

9.21.2.13 AMG_max_aggregation

 ${\tt INT} \ {\tt AMG_max_aggregation}$

max size of each aggregate

Definition at line 1137 of file fasp.h.

9.21.2.14 AMG_max_row_sum

REAL AMG_max_row_sum

maximal row sum

Definition at line 1129 of file fasp.h.

9.21.2.15 AMG_maxit

INT AMG_maxit

number of iterations for AMG used as preconditioner

Definition at line 1115 of file fasp.h.

9.21.2.16 AMG_nl_amli_krylov_type

SHORT AMG_nl_amli_krylov_type

type of Krylov method used by nonlinear AMLI cycle

Definition at line 1120 of file fasp.h.

9.21.2.17 AMG_pair_number

INT AMG_pair_number

number of pairs in matching algorithm

Definition at line 1132 of file fasp.h.

9.21.2.18 AMG_polynomial_degree

SHORT AMG_polynomial_degree

degree of the polynomial smoother

Definition at line 1110 of file fasp.h.

9.21.2.19 AMG_postsmooth_iter

SHORT AMG_postsmooth_iter

number of postsmoothing

Definition at line 1112 of file fasp.h.

9.21.2.20 AMG_presmooth_iter

SHORT AMG_presmooth_iter

number of presmoothing

Definition at line 1111 of file fasp.h.

9.21.2.21 AMG_quality_bound

REAL AMG_quality_bound

threshold for pair wise aggregation

Definition at line 1133 of file fasp.h.

9.21.2.22 AMG_relaxation

 ${\tt REAL} \ {\tt AMG_relaxation}$

over-relaxation parameter for SOR

Definition at line 1109 of file fasp.h.

9.21.2.23 AMG_Schwarz_levels

INT AMG_Schwarz_levels

number of levels use Schwarz smoother

Definition at line 1121 of file fasp.h.

9.21.2.24 AMG_smooth_filter

```
SHORT AMG_smooth_filter
```

use filter for smoothing the tentative prolongation or not

Definition at line 1139 of file fasp.h.

9.21.2.25 AMG_smooth_order

```
SHORT AMG_smooth_order
```

order for smoothers

Definition at line 1108 of file fasp.h.

9.21.2.26 AMG_smoother

SHORT AMG_smoother

type of smoother

Definition at line 1107 of file fasp.h.

9.21.2.27 AMG_strong_coupled

REAL AMG_strong_coupled

strong coupled threshold for aggregate

Definition at line 1136 of file fasp.h.

9.21.2.28 AMG_strong_threshold

REAL AMG_strong_threshold

strong threshold for coarsening

Definition at line 1127 of file fasp.h.

```
9.21.2.29 AMG_tentative_smooth
```

```
REAL AMG_tentative_smooth
```

relaxation factor for smoothing the tentative prolongation

Definition at line 1138 of file fasp.h.

9.21.2.30 AMG_tol

```
REAL AMG_tol
```

tolerance for AMG if used as preconditioner

Definition at line 1114 of file fasp.h.

9.21.2.31 AMG_truncation_threshold

```
REAL AMG_truncation_threshold
```

truncation factor for interpolation

Definition at line 1128 of file fasp.h.

9.21.2.32 AMG_type

SHORT AMG_type

Type of AMG

Definition at line 1104 of file fasp.h.

9.21.2.33 ILU_droptol

REAL ILU_droptol

drop tolerance

Definition at line 1093 of file fasp.h.

```
9.21.2.34 ILU_lfil
```

INT ILU_lfil

level of fill-in

Definition at line 1092 of file fasp.h.

9.21.2.35 ILU_permtol

REAL ILU_permtol

permutation tolerance

Definition at line 1095 of file fasp.h.

9.21.2.36 ILU_relax

REAL ILU_relax

scaling factor: add the sum of dropped entries to diagonal

Definition at line 1094 of file fasp.h.

9.21.2.37 ILU_type

SHORT ILU_type

ILU type for decomposition

Definition at line 1091 of file fasp.h.

9.21.2.38 inifile

char inifile[256]

ini file name

Definition at line 1078 of file fasp.h.

```
9.21.2.39 itsolver_maxit
```

```
INT itsolver_maxit
```

maximal number of iterations for iterative solvers

Definition at line 1087 of file fasp.h.

9.21.2.40 itsolver_tol

```
REAL itsolver_tol
```

tolerance for iterative linear solver

Definition at line 1086 of file fasp.h.

9.21.2.41 output_type

```
SHORT output_type
```

type of output stream

Definition at line 1075 of file fasp.h.

9.21.2.42 precond_type

```
SHORT precond_type
```

type of preconditioner for iterative solvers

Definition at line 1084 of file fasp.h.

9.21.2.43 print_level

```
SHORT print_level
```

print level

Definition at line 1074 of file fasp.h.

9.21.2.44 problem_num

INT problem_num

problem number to solve

Definition at line 1080 of file fasp.h.

9.21.2.45 restart

INT restart

restart number used in GMRES

Definition at line 1088 of file fasp.h.

9.21.2.46 Schwarz_blksolver

INT Schwarz_blksolver

type of Schwarz block solver

Definition at line 1101 of file fasp.h.

9.21.2.47 Schwarz_maxlvl

INT Schwarz_maxlvl

maximal levels

Definition at line 1099 of file fasp.h.

9.21.2.48 Schwarz_mmsize

INT Schwarz_mmsize

maximal block size

Definition at line 1098 of file fasp.h.

9.21.2.49 Schwarz_type

```
INT Schwarz_type
```

type of Schwarz method

Definition at line 1100 of file fasp.h.

9.21.2.50 solver_type

```
SHORT solver_type
```

type of iterative solvers

Definition at line 1083 of file fasp.h.

9.21.2.51 stop_type

```
SHORT stop_type
```

type of stopping criteria for iterative solvers

Definition at line 1085 of file fasp.h.

9.21.2.52 workdir

```
char workdir[256]
```

working directory for data files

Definition at line 1079 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.22 itsolver_param Struct Reference

Parameters passed to iterative solvers.

```
#include <fasp.h>
```

- SHORT itsolver_type
- SHORT precond_type
- SHORT stop_type
- INT maxit
- REAL tol
- · INT restart
- SHORT print_level

9.22.1 Detailed Description

Parameters passed to iterative solvers.

Definition at line 1147 of file fasp.h.

9.22.2 Field Documentation

9.22.2.1 itsolver_type

SHORT itsolver_type

solver type: see message.h

Definition at line 1149 of file fasp.h.

9.22.2.2 maxit

INT maxit

max number of iterations

Definition at line 1152 of file fasp.h.

9.22.2.3 precond_type

SHORT precond_type

preconditioner type: see message.h

Definition at line 1150 of file fasp.h.

9.22.2.4 print_level

```
SHORT print_level
```

print level: 0-10

Definition at line 1155 of file fasp.h.

9.22.2.5 restart

```
INT restart
```

number of steps for restarting: for GMRES etc

Definition at line 1154 of file fasp.h.

9.22.2.6 stop_type

```
SHORT stop_type
```

stopping criteria type

Definition at line 1151 of file fasp.h.

9.22.2.7 tol

REAL tol

convergence tolerance

Definition at line 1153 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.23 ivector Struct Reference

Vector with n entries of INT type.

```
#include <fasp.h>
```

• INT row

number of rows

INT * val

actual vector entries

9.23.1 Detailed Description

Vector with n entries of INT type.

Definition at line 359 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.24 mallinfo Struct Reference

Data Fields

- MALLINFO_FIELD_TYPE arena
- MALLINFO_FIELD_TYPE ordblks
- MALLINFO_FIELD_TYPE smblks
- MALLINFO FIELD TYPE hblks
- MALLINFO_FIELD_TYPE hblkhd
- MALLINFO_FIELD_TYPE usmblks
- MALLINFO_FIELD_TYPE fsmblks
- MALLINFO_FIELD_TYPE uordblks
- MALLINFO_FIELD_TYPE fordblks
- MALLINFO_FIELD_TYPE keepcost

9.24.1 Detailed Description

Definition at line 69 of file dlmalloc.h.

The documentation for this struct was generated from the following files:

- · dlmalloc.h
- · malloc.c.h

9.25 malloc_chunk Struct Reference

Data Fields

- size_t prev_foot
- size_t head
- struct malloc_chunk * fd
- struct malloc_chunk * bk

9.25.1 Detailed Description

Definition at line 2177 of file malloc.c.h.

The documentation for this struct was generated from the following file:

· malloc.c.h

9.26 malloc_params Struct Reference

Data Fields

- · volatile size_t magic
- size_t page_size
- size_t granularity
- size_t mmap_threshold
- · size_t trim_threshold
- · flag_t default_mflags

9.26.1 Detailed Description

Definition at line 1494 of file malloc.c.h.

The documentation for this struct was generated from the following file:

· malloc.c.h

9.27 malloc_segment Struct Reference

Data Fields

- char * base
- size_t size
- struct malloc_segment * next
- flag_t sflags

9.27.1 Detailed Description

Definition at line 2458 of file malloc.c.h.

The documentation for this struct was generated from the following file:

· malloc.c.h

9.28 malloc_state Struct Reference

Data Fields

- binmap_t smallmap
- · binmap_t treemap
- size_t dvsize
- size_t topsize
- char * least_addr
- · mchunkptr dv
- mchunkptr top
- · size_t trim_check
- · size_t release_checks
- size_t magic
- mchunkptr smallbins [(NSMALLBINS+1) *2]
- tbinptr treebins [NTREEBINS]
- size_t footprint
- size_t max_footprint
- flag_t mflags
- msegment seg
- void * extp
- size_t exts

9.28.1 Detailed Description

Definition at line 2565 of file malloc.c.h.

The documentation for this struct was generated from the following file:

· malloc.c.h

9.29 malloc_tree_chunk Struct Reference

Data Fields

- size_t prev_foot
- size_t head
- struct malloc_tree_chunk * fd
- struct malloc tree chunk * bk
- struct malloc_tree_chunk * child [2]
- struct malloc_tree_chunk * parent
- bindex_t index

9.29.1 Detailed Description

Definition at line 2382 of file malloc.c.h.

The documentation for this struct was generated from the following file:

· malloc.c.h

9.30 Mumps_data Struct Reference

Parameters for MUMPS interface.

```
#include <fasp.h>
```

Data Fields

• INT job

work for MUMPS

9.30.1 Detailed Description

Parameters for MUMPS interface.

Added on 10/10/2014

Definition at line 492 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.31 mxv_matfree Struct Reference

Matrix-vector multiplication, replace the actual matrix.

```
#include <fasp.h>
```

Data Fields

```
    void * data
        data for MxV, can be a Matrix or something else
    void(* fct )(void *, REAL *, REAL *)
        action for MxV, void function pointer
```

9.31.1 Detailed Description

Matrix-vector multiplication, replace the actual matrix.

Definition at line 1055 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.32 nedmallinfo Struct Reference

Data Fields

- size_t arena
- size_t ordblks
- · size_t smblks
- size_t hblks
- size_t hblkhd
- size_t usmblks
- size_t fsmblks
- · size_t uordblks
- size_t fordblks
- size_t keepcost

9.32.1 Detailed Description

Definition at line 168 of file nedmalloc.h.

The documentation for this struct was generated from the following file:

· nedmalloc.h

9.33 Pardiso_data Struct Reference

Parameters for Intel MKL PARDISO interface.

```
#include <fasp.h>
```

Data Fields

void * pt [64]
 Internal solver memory pointer.

9.33.1 Detailed Description

Parameters for Intel MKL PARDISO interface.

Added on 11/28/2015

Definition at line 510 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.34 precond Struct Reference

Preconditioner data and action.

```
#include <fasp.h>
```

Data Fields

void * data

data for preconditioner, void pointer

void(* fct)(REAL *, REAL *, void *)

action for preconditioner, void function pointer

9.34.1 Detailed Description

Preconditioner data and action.

Note

This is the preconditioner structure for preconditioned iterative methods.

Definition at line 1041 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.35 precond_block_data Struct Reference

Data passed to the preconditioner for block preconditioning for dBLCmat format.

```
#include <fasp_block.h>
```

Data Fields

- dBLCmat * Ablc
- dCSRmat * A_diag
- dvector r
- void ** LU_diag
- AMG_data ** mgl
- AMG_param * amgparam

9.35.1 Detailed Description

Data passed to the preconditioner for block preconditioning for dBLCmat format.

This is needed for the block preconditioner.

Definition at line 355 of file fasp_block.h.

9.35.2 Field Documentation

9.35.2.1 A_diag

```
dCSRmat* A_diag
```

data for each diagonal block

Definition at line 362 of file fasp_block.h.

9.35.2.2 Ablc

```
dBLCmat* Ablc
```

problem data, the blocks

Definition at line 360 of file fasp_block.h.

9.35.2.3 amgparam

```
AMG_param* amgparam
```

parameters for AMG

Definition at line 374 of file fasp_block.h.

9.35.2.4 LU_diag

```
void** LU_diag
```

LU decomposition for the diagonal blocks (for UMFpack)

Definition at line 370 of file fasp_block.h.

9.35.2.5 mgl

```
AMG_data** mgl
```

AMG data for the diagonal blocks

Definition at line 373 of file fasp_block.h.

9.35.2.6 r

```
dvector r
```

temp work space

Definition at line 364 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp_block.h

9.36 precond_data Struct Reference

Data passed to the preconditioners.

```
#include <fasp.h>
```

Data Fields

SHORT AMG type

type of AMG method

SHORT print_level

print level in AMG preconditioner

· INT maxit

max number of iterations of AMG preconditioner

SHORT max_levels

max number of AMG levels

REAL tol

tolerance for AMG preconditioner

SHORT cycle_type

AMG cycle type.

· SHORT smoother

AMG smoother type.

SHORT smooth_order

AMG smoother ordering.

· SHORT presmooth iter

number of presmoothing

SHORT postsmooth_iter

number of postsmoothing

REAL relaxation

relaxation parameter for SOR smoother

SHORT polynomial_degree

degree of the polynomial smoother

SHORT coarsening_type

switch of scaling of the coarse grid correction

· SHORT coarse_solver

coarse solver type for AMG

SHORT coarse_scaling

switch of scaling of the coarse grid correction

· SHORT amli_degree

degree of the polynomial used by AMLI cycle

SHORT nl_amli_krylov_type

type of Krylov method used by Nonlinear AMLI cycle

REAL tentative_smooth

smooth factor for smoothing the tentative prolongation

· REAL * amli coef

coefficients of the polynomial used by AMLI cycle

AMG_data * mgl_data

AMG preconditioner data.

• ILU data * LU

ILU preconditioner data (needed for CPR type preconditioner)

dCSRmat * A

Matrix data.

dCSRmat * A nk

Matrix data for near kernel.

dCSRmat * P_nk

Prolongation for near kernel.

dCSRmat * R nk

Restriction for near kernel.

dvector r

temporary dvector used to store and restore the residual

REAL * w

temporary work space for other usage

9.36.1 Detailed Description

Data passed to the preconditioners.

Definition at line 840 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.37 precond_data_bsr Struct Reference

Data passed to the preconditioners.

```
#include <fasp_block.h>
```

Data Fields

SHORT AMG_type

type of AMG method

SHORT print_level

print level in AMG preconditioner

INT maxit

max number of iterations of AMG preconditioner

INT max_levels

max number of AMG levels

REAL tol

tolerance for AMG preconditioner

SHORT cycle_type

AMG cycle type.

· SHORT smoother

AMG smoother type.

SHORT smooth_order

AMG smoother ordering.

SHORT presmooth_iter

number of presmoothing

· SHORT postsmooth_iter

number of postsmoothing

SHORT coarsening_type

coarsening type

· REAL relaxation

relaxation parameter for SOR smoother

· SHORT coarse_solver

coarse solver type for AMG

SHORT coarse_scaling

switch of scaling of the coarse grid correction

SHORT amli_degree

degree of the polynomial used by AMLI cycle

REAL * amli coef

coefficients of the polynomial used by AMLI cycle

REAL tentative_smooth

smooth factor for smoothing the tentative prolongation

• SHORT nl_amli_krylov_type

type of krylov method used by Nonlinear AMLI cycle

AMG_data_bsr * mgl_data

AMG preconditioner data.

AMG_data * pres_mgl_data

AMG preconditioner data for pressure block.

ILU_data * LU

ILU preconditioner data (needed for CPR type preconditioner)

dBSRmat * A

Matrix data.

dCSRmat * A nk

Matrix data for near kernal.

dCSRmat * P_nk

Prolongation for near kernal.

dCSRmat * R_nk

Resriction for near kernal.

dvector r

temporary dvector used to store and restore the residual

REAL * w

temporary work space for other usage

9.37.1 Detailed Description

Data passed to the preconditioners.

Note

This structure is needed for the AMG solver/preconditioner in BSR format

Definition at line 263 of file fasp_block.h.

The documentation for this struct was generated from the following file:

· fasp block.h

9.38 precond_data_str Struct Reference

Data passed to the preconditioner for dSTRmat matrices.

```
#include <fasp.h>
```

Data Fields

SHORT AMG_type

type of AMG method

SHORT print_level

print level in AMG preconditioner

INT maxit

max number of iterations of AMG preconditioner

SHORT max_levels

max number of AMG levels

REAL tol

tolerance for AMG preconditioner

SHORT cycle_type

AMG cycle type.

· SHORT smoother

AMG smoother type.

SHORT presmooth_iter

number of presmoothing

SHORT postsmooth_iter

number of postsmoothing

SHORT coarsening_type

coarsening type

REAL relaxation

relaxation parameter for SOR smoother

SHORT coarse_scaling

switch of scaling of the coarse grid correction

AMG data * mgl data

AMG preconditioner data.

ILU data * LU

ILU preconditioner data (needed for CPR type preconditioner)

· SHORT scaled

whether the matrix are scaled or not

dCSRmat * A

the original CSR matrix

dSTRmat * A_str

store the whole reservoir block in STR format

dSTRmat * SS_str

store Saturation block in STR format

dvector * diaginv

the inverse of the diagonals for GS/block GS smoother (whole reservoir matrix)

ivector * pivot

the pivot for the GS/block GS smoother (whole reservoir matrix)

dvector * diaginvS

the inverse of the diagonals for GS/block GS smoother (saturation block)

ivector * pivotS

the pivot for the GS/block GS smoother (saturation block)

· ivector * order

order for smoothing

• ivector * neigh

array to store neighbor information

· dvector r

temporary dvector used to store and restore the residual

• REAL * w

temporary work space for other usage

9.38.1 Detailed Description

Data passed to the preconditioner for dSTRmat matrices.

Definition at line 933 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.39 precond_diagbsr Struct Reference

Data passed to diagnal preconditioner for dBSRmat matrices.

```
#include <fasp_block.h>
```

Data Fields

• INT nb

dimension of each sub-block

· dvector diag

diagnal elements

9.39.1 Detailed Description

Data passed to diagnal preconditioner for dBSRmat matrices.

Note

This is needed for the diagnal preconditioner.

Definition at line 246 of file fasp_block.h.

The documentation for this struct was generated from the following file:

• fasp_block.h

9.40 precond_diagstr Struct Reference

Data passed to diagonal preconditioner for dSTRmat matrices.

```
#include <fasp.h>
```

Data Fields

• INT nc

number of components

dvector diag

diagonal elements

9.40.1 Detailed Description

Data passed to diagonal preconditioner for dSTRmat matrices.

Note

This is needed for the diagonal preconditioner.

Definition at line 1025 of file fasp.h.

The documentation for this struct was generated from the following file:

· fasp.h

9.41 precond_sweeping_data Struct Reference

Data passed to the preconditioner for sweeping preconditioning.

```
#include <fasp_block.h>
```

Data Fields

- INT NumLayers
- dBLCmat * A
- dBLCmat * Ai
- dCSRmat * local_A
- void ** local_LU
- ivector * local index
- dvector r
- REAL * w

9.41.1 Detailed Description

Data passed to the preconditioner for sweeping preconditioning.

Author

Xiaozhe Hu

Date

05/01/2014

Note

This is needed for the sweeping preconditioner.

Definition at line 387 of file fasp_block.h.

9.41.2 Field Documentation

9.41.2.1 A

dBLCmat* A

problem data, the sparse matrix

Definition at line 391 of file fasp_block.h.

9.41.2.2 Ai

```
dBLCmat* Ai
```

preconditioner data, the sparse matrix

Definition at line 392 of file fasp_block.h.

9.41.2.3 local_A

```
dCSRmat* local_A
```

local stiffness matrix for each layer

Definition at line 394 of file fasp_block.h.

9.41.2.4 local_index

```
ivector* local_index
```

local index for each layer

Definition at line 397 of file fasp_block.h.

9.41.2.5 local_LU

```
void** local_LU
```

Icoal LU decomposition (for UMFpack)

Definition at line 395 of file fasp_block.h.

9.41.2.6 NumLayers

INT NumLayers

number of layers

Definition at line 389 of file fasp_block.h.

9.41.2.7 r

dvector r

temporary dvector used to store and restore the residual

Definition at line 400 of file fasp_block.h.

9.41.2.8 w

REAL* W

temporary work space for other usage

Definition at line 401 of file fasp_block.h.

The documentation for this struct was generated from the following file:

• fasp_block.h

9.42 Schwarz_data Struct Reference

Data for Schwarz methods.

#include <fasp.h>

Data Fields

dCSRmat A

pointer to the matrix

INT nblk

number of blocks

• INT * iblock

row index of blocks

INT * jblock

column index of blocks

• REAL * rhsloc

temp work space???

dvector rhsloc1

local right hand side

dvector xloc1

local solution

• REAL * au

LU decomposition: the U block.

• REAL * al

LU decomposition: the L block.

INT Schwarz_type

Schwarz method type.

INT blk_solver

Schwarz block solver.

INT memt

working space size

• INT * mask

mask

INT maxbs

maximal block size

• INT * maxa

maxa

dCSRmat * blk_data

matrix for each partition

Mumps_data * mumps

param for MUMPS

• Schwarz_param * swzparam

param for Schwarz

9.42.1 Detailed Description

Data for Schwarz methods.

This is needed for the Schwarz solver/preconditioner/smoother.

Definition at line 538 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

9.43 Schwarz_param Struct Reference

Parameters for Schwarz method.

#include <fasp.h>

Data Fields

SHORT print_level

print leve

SHORT Schwarz_type

type for Schwarz method

INT Schwarz_maxlvl

maximal level for constructing the blocks

• INT Schwarz_mmsize

maximal size of blocks

• INT Schwarz_blksolver

type of Schwarz block solver

9.43.1 Detailed Description

Parameters for Schwarz method.

Added on 05/14/2012

Definition at line 467 of file fasp.h.

The documentation for this struct was generated from the following file:

• fasp.h

Chapter 10

File Documentation

10.1 AuxArray.c File Reference

```
Simple array operations – init, set, copy, etc.
```

```
#include <math.h>
#include "fasp.h"
```

Array mapping.

Functions

```
    void fasp_array_null (REAL *x)

      Initialize an array.
• void fasp_array_set (const INT n, REAL *x, const REAL val)
      Set initial value for an array to be x=val.

    void fasp_iarray_set (const INT n, INT *x, const INT val)

      Set initial value for an array to be x=val.

    void fasp_array_cp (const INT n, REAL *x, REAL *y)

      Copy an array to the other y=x.

    void fasp_iarray_cp (const INT n, INT *x, INT *y)

      Copy an array to the other y=x.

    void fasp_array_cp_nc3 (REAL *x, REAL *y)

      Copy an array to the other y=x, the length is 3.

    void fasp_array_cp_nc5 (REAL *x, REAL *y)

      Copy an array to the other y=x, the length is 5.

    void fasp_array_cp_nc7 (REAL *x, REAL *y)

      Copy an array to the other y=x, the length is 7.
• void fasp_array_permut_nb (INT n, INT nb, REAL *x, INT *p, REAL *y)
```

void fasp_array_invpermut_nb (INT n, INT nb, REAL *x, INT *p, REAL *y)

10.1.1 Detailed Description

Simple array operations – init, set, copy, etc.

Note

This file contains Level-0 (Aux) functions

10.1.2 Function Documentation

```
10.1.2.1 fasp_array_cp()
```

Copy an array to the other y=x.

Parameters

n	Number of variables
Х	Pointer to the original vector
У	Pointer to the destination vector

Author

Chensong Zhang

Date

2010/04/03

Definition at line 166 of file AuxArray.c.

10.1.2.2 fasp_array_cp_nc3()

Copy an array to the other y=x, the length is 3.

Parameters

X	Pointer to the original vector
у	Pointer to the destination vector

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

Special unrolled routine designed for a specific application

Definition at line 206 of file AuxArray.c.

10.1.2.3 fasp_array_cp_nc5()

Copy an array to the other y=x, the length is 5.

Parameters

Х	Pointer to the original vector
У	Pointer to the destination vector

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

Special unrolled routine designed for a specific application

Definition at line 227 of file AuxArray.c.

10.1.2.4 fasp_array_cp_nc7()

Copy an array to the other y=x, the length is 7.

Parameters

X	Pointer to the original vector
У	Pointer to the destination vector

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

Special unrolled routine designed for a specific application

Definition at line 250 of file AuxArray.c.

10.1.2.5 fasp_array_invpermut_nb()

Array mapping.

Parameters

n	Size of array
nb	Step size
X	Pointer to the original vector
р	Pointer to index mapping
У	Pointer to the destination vector

Author

Zheng Li

Date

12/04/2016

Definition at line 312 of file AuxArray.c.

```
10.1.2.6 fasp_array_null()
```

```
void fasp_array_null ( {\tt REAL} \, * \, x \, )
```

Initialize an array.

Parameters

```
x Pointer to the vector
```

Author

Chensong Zhang

Date

2010/04/03

Definition at line 30 of file AuxArray.c.

10.1.2.7 fasp_array_permut_nb()

```
void fasp_array_permut_nb (
    INT n,
    INT nb,
    REAL * x,
    INT * p,
    REAL * y )
```

Array mapping.

Parameters

n	Size of array
nb	Step size
Х	Pointer to the original vector
р	Pointer to index mapping
У	Pointer to the destination vector

Author

Zheng Li

Date

12/04/2016

Definition at line 277 of file AuxArray.c.

10.1.2.8 fasp_array_set()

Set initial value for an array to be x=val.

Parameters

n	Number of variables
X	Pointer to the vector
val	Initial value for the REAL array

Author

Chensong Zhang

Date

04/03/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 49 of file AuxArray.c.

10.1.2.9 fasp_iarray_cp()

Copy an array to the other y=x.

Parameters

n	Number of variables
Х	Pointer to the original vector
У	Pointer to the destination vector

Author

Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 186 of file AuxArray.c.

10.1.2.10 fasp_iarray_set()

Set initial value for an array to be x=val.

Parameters

n	Number of variables
X	Pointer to the vector
val	Initial value for the REAL array

Author

Chensong Zhang

Date

04/03/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/25/2012

Definition at line 108 of file AuxArray.c.

10.2 AuxConvert.c File Reference

Some utilities for encoding format conversion.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• unsigned long fasp_aux_change_endian4 (unsigned long x)

Swap order for different endian systems.

double fasp_aux_change_endian8 (double x)

Swap order for different endian systems.

double fasp_aux_bbyteToldouble (unsigned char bytes[])

Swap order of double-precision float for different endian systems.

• INT endian_convert_int (const INT inum, const INT ilength, const INT endianflag)

Swap order of an INT number.

• REAL endian_convert_real (const REAL rnum, const INT vlength, const INT endianflag)

Swap order of a REAL number.

10.2.1 Detailed Description

Some utilities for encoding format conversion.

Note

This file contains Level-0 (Aux) functions

10.2.2 Function Documentation

10.2.2.1 endian_convert_int()

Swap order of an INT number.

Parameters

inum	An INT value
ilength	Length of INT: 2 for short, 4 for int, 8 for long
endianflag	If endianflag = 1, it returns inum itself If endianflag = 2, it returns the swapped inum

Returns

Value of inum or swapped inum

Author

Ziteng Wang

Date

2012-12-24

Definition at line 107 of file AuxConvert.c.

10.2.2.2 endian_convert_real()

Swap order of a REAL number.

Parameters

rnum	An REAL value
ilength	Length of INT: 2 for short, 4 for int, 8 for long
endianflag	If endianflag = 1, it returns rnum itself If endianflag = 2, it returns the swapped rnum

Returns

Value of rnum or swapped rnum

Author

Ziteng Wang

Date

2012-12-24

Definition at line 139 of file AuxConvert.c.

```
10.2.2.3 fasp_aux_bbyteToldouble()
```

```
double fasp_aux_bbyteToldouble (
          unsigned char bytes[])
```

Swap order of double-precision float for different endian systems.

Parameters

bytes A unsigned char

Returns

Unsigend long ineger after swapping

Author

Chensong Zhang

Date

11/16/2009

Definition at line 76 of file AuxConvert.c.

10.2.2.4 fasp_aux_change_endian4()

Swap order for different endian systems.

Parameters

x An unsigned long integer

Returns

Unsigend long ineger after swapping

Author

Chensong Zhang

Date

11/16/2009

Definition at line 27 of file AuxConvert.c.

10.2.2.5 fasp_aux_change_endian8()

```
double fasp_aux_change_endian8 ( \label{eq:change} \mbox{double $x$ )}
```

Swap order for different endian systems.

Parameters

```
x A unsigned long integer
```

Returns

Unsigend long ineger after swapping

Author

Chensong Zhang

Date

11/16/2009

Definition at line 45 of file AuxConvert.c.

10.3 AuxGivens.c File Reference

Givens transformation.

```
#include <math.h>
#include "fasp.h"
```

Functions

void fasp_aux_givens (const REAL beta, dCSRmat *H, dvector *y, REAL *tmp)
 Perform Givens rotations to compute y | beta*e_1- H*y|.

10.3.1 Detailed Description

Givens transformation.

Note

This file contains Level-0 (Aux) functions

10.3.2 Function Documentation

10.3.2.1 fasp_aux_givens()

Perform Givens rotations to compute y |beta*e_1- H*y|.

Parameters

beta	Norm of residual r_0	
Н	Upper Hessenberg dCSRmat matrix: (m+1)*m	
У	Minimizer of beta*e_1- H*y	
tmp	Temporary work array	

Author

Xuehai Huang

Date

10/19/2008

Definition at line 29 of file AuxGivens.c.

10.4 AuxGraphics.c File Reference

Graphical output for CSR matrix.

```
#include <math.h>
#include "fasp.h"
#include "fasp_grid.h"
#include "fasp_functs.h"
```

Functions

- void fasp_dcsr_subplot (const dCSRmat *A, const char *filename, INT size)

 Write sparse matrix pattern in BMP file format.
- $\bullet \ \ void \ fasp_dbsr_subplot \ (const \ dBSRmat \ *A, \ const \ char \ *filename, \ INT \ size)\\$

Write sparse matrix pattern in BMP file format.

void fasp_grid2d_plot (pgrid2d pg, INT level)

Output grid to a EPS file.

INT fasp_dbsr_plot (const dBSRmat *A, const char *fname)

Write dBSR sparse matrix pattern in BMP file format.

• INT fasp_dcsr_plot (const dCSRmat *A, const char *fname)

Write dCSR sparse matrix pattern in BMP file format.

10.4.1 Detailed Description

Graphical output for CSR matrix.

Note

This file contains Level-0 (Aux) functions. It requires AuxMemory.c

10.4.2 Function Documentation

```
10.4.2.1 fasp_dbsr_plot()
```

Write dBSR sparse matrix pattern in BMP file format.

Parameters

Α	Pointer to the dBSRmat matrix
filename	File name

Author

Chunsheng Feng

Date

11/16/2013

Note

The routine fasp_dbsr_plot writes pattern of the specified dBSRmat matrix in uncompressed BMP file format (Windows bitmap) to a binary file whose name is specified by the character string filename.

Each pixel corresponds to one matrix element. The pixel colors have the following meaning:

White structurally zero element Black zero element Blue positive element Red negative element Brown nearly zero element

Definition at line 478 of file AuxGraphics.c.

10.4.2.2 fasp_dbsr_subplot()

Write sparse matrix pattern in BMP file format.

Parameters

Α	Pointer to the dBSRmat matrix
filename	File name
size	size*size is the picture size for the picture

Author

Chunsheng Feng

Date

11/16/2013

Note

The routine fasp_dbsr_subplot writes pattern of the specified dBSRmat matrix in uncompressed BMP file format (Windows bitmap) to a binary file whose name is specified by the character string filename.

Each pixel corresponds to one matrix element. The pixel colors have the following meaning:

White structurally zero element Black zero element Blue positive element Red negative element Brown nearly zero element

Definition at line 113 of file AuxGraphics.c.

10.4.2.3 fasp_dcsr_plot()

Write dCSR sparse matrix pattern in BMP file format.

Parameters

Α	Pointer to the dBSRmat matrix
fname	File name to plot to

Author

Chunsheng Feng

Date

11/16/2013

Note

The routine fasp_dcsr_plot writes pattern of the specified dCSRmat matrix in uncompressed BMP file format (Windows bitmap) to a binary file whose name is specified by the character string filename.

Each pixel corresponds to one matrix element. The pixel colors have the following meaning:

White structurally zero element Black zero element Blue positive element Red negative element Brown nearly zero element

Definition at line 638 of file AuxGraphics.c.

10.4.2.4 fasp_dcsr_subplot()

Write sparse matrix pattern in BMP file format.

Parameters

Α	Pointer to the dCSRmat matrix
filename	File name
size	size*size is the picture size for the picture

Author

Chensong Zhang

Date

03/29/2009

Note

The routine fasp_dcsr_subplot writes pattern of the specified dCSRmat matrix in uncompressed BMP file format (Windows bitmap) to a binary file whose name is specified by the character string filename.

Each pixel corresponds to one matrix element. The pixel colors have the following meaning:

White structurally zero element Blue positive element Red negative element Brown nearly zero element

Definition at line 52 of file AuxGraphics.c.

10.4.2.5 fasp_grid2d_plot()

Output grid to a EPS file.

Parameters

pg	Pointer to grid in 2d
level	Number of levels

Author

Chensong Zhang

Date

03/29/2009

Definition at line 180 of file AuxGraphics.c.

10.5 AuxInput.c File Reference

Read and check input parameters.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

SHORT fasp_param_check (input_param *inparam)

Simple check on input parameters.

void fasp_param_input (const char *fname, input_param *inparam)

Read input parameters from disk file.

10.5.1 Detailed Description

Read and check input parameters.

Note

This file contains Level-0 (Aux) functions. It requires AuxMemory.c and AuxMessage.c

10.5.2 Function Documentation

```
10.5.2.1 fasp_param_check()
```

Simple check on input parameters.

Parameters

inparam	Input parameters
---------	------------------

Returns

FASP SUCCESS if successed; otherwise, error information.

Author

Chensong Zhang

Date

09/29/2013

Definition at line 28 of file AuxInput.c.

10.5.2.2 fasp_param_input()

Read input parameters from disk file.

Parameters

fname	File name for input file
inparam	Input parameters

Author

Chensong Zhang

Date

03/20/2010

Modified by Xiaozhe Hu on 01/23/2011: add AMLI cycle Modified by Chensong Zhang on 01/10/2012 Modified by Ludmil Zikatanov on 02/15/2013 Modified by Chensong Zhang on 05/10/2013: add a new input. Modified by Chensong Zhang on 03/23/2015: skip unknown keyword.

Definition at line 105 of file AuxInput.c.

10.6 AuxMemory.c File Reference

Memory allocation and deallocation subroutines.

```
#include "fasp.h"
```

Functions

void * fasp mem calloc (LONGLONG size, INT type)

1M = 1024 * 1024

void * fasp_mem_realloc (void *oldmem, LONGLONG tsize)

Reallocate, initiate, and check memory.

void fasp_mem_free (void *mem)

Free up previous allocated memory body.

void fasp_mem_usage ()

Show total allocated memory currently.

SHORT fasp_mem_check (void *ptr, const char *message, INT ERR)

Check wether a point is null or not.

SHORT fasp_mem_iludata_check (ILU_data *iludata)

Check wether a ILU_data has enough work space.

SHORT fasp_mem_dcsr_check (dCSRmat *A)

Check wether a dCSRmat A has sucessfully allocated memory.

Variables

- unsigned INT total_alloc_mem = 0
- unsigned INT total_alloc_count = 0

Total allocated memory amount.

• const INT Million = 1048576

Total number of allocations.

10.6.1 Detailed Description

Memory allocation and deallocation subroutines.

Note

This file contains Level-0 (Aux) functions

10.6.2 Function Documentation

10.6.2.1 fasp_mem_calloc()

1M = 1024*1024

Allocate, initiate, and check memory

Parameters

size	Number of memory blocks
type	Size of memory blocks

Returns

Void pointer to the allocated memory

Author

Chensong Zhang

Date

2010/08/12

Modified by Chunsheng Feng on 12/20/2013 Modified by Chunsheng Feng on 07/23/2013 Modified by Chunsheng Feng on 07/30/2013 Modified by Chensong Zhang on 07/30/2013: print error if failed

Definition at line 64 of file AuxMemory.c.

10.6.2.2 fasp_mem_check()

Check wether a point is null or not.

Parameters

ptr	Void pointer to be checked
message	Error message to print
ERR	Integer error code

Returns

FASP_SUCCESS or error code

Author

Chensong Zhang

Date

11/16/2009

Definition at line 201 of file AuxMemory.c.

```
10.6.2.3 fasp_mem_dcsr_check()
```

Check wether a dCSRmat A has sucessfully allocated memory.

Parameters

A Pointer to be cheked

Returns

FASP_SUCCESS if success, else ERROR message (negative value)

Author

Xiaozhe Hu

Date

11/27/09

Definition at line 252 of file AuxMemory.c.

```
10.6.2.4 fasp_mem_free()
```

```
void fasp_mem_free (
     void * mem )
```

Free up previous allocated memory body.

Parameters

mem Pointer to the memory body need to be freed

Returns

NULL pointer

Author

Chensong Zhang

Date

2010/12/24

Definition at line 154 of file AuxMemory.c.

10.6.2.5 fasp_mem_iludata_check()

Check wether a ILU_data has enough work space.

Parameters

iludata Pointer to be cheked

Returns

FASP_SUCCESS if success, else ERROR (negative value)

Author

Xiaozhe Hu, Chensong Zhang

Date

11/27/09

Definition at line 226 of file AuxMemory.c.

10.6.2.6 fasp_mem_realloc()

Reallocate, initiate, and check memory.

Parameters

oldmem	Pointer to the existing mem block
type	Size of memory blocks

Returns

Void pointer to the reallocated memory

Author

Chensong Zhang

Date

2010/08/12

Modified by Chunsheng Feng on 07/23/2013 Modified by Chensong Zhang on 07/30/2013: print error if failed Definition at line 114 of file AuxMemory.c.

```
10.6.2.7 fasp_mem_usage()
```

```
void fasp_mem_usage ( )
```

Show total allocated memory currently.

Author

Chensong Zhang

Date

2010/08/12

Definition at line 179 of file AuxMemory.c.

10.6.3 Variable Documentation

```
10.6.3.1 total_alloc_count
```

```
unsigned INT total_alloc_count = 0
```

Total allocated memory amount.

total allocation times

Definition at line 39 of file AuxMemory.c.

```
10.6.3.2 total_alloc_mem
```

```
unsigned INT total_alloc_mem = 0
```

total allocated memory

Definition at line 38 of file AuxMemory.c.

10.7 AuxMessage.c File Reference

Output some useful messages.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void print_itinfo (const INT ptrlvl, const INT stop_type, const INT iter, const REAL relres, const REAL absres, const REAL factor)

Print out iteration information for iterative solvers.

void print_amgcomplexity (AMG_data *mgl, const SHORT prtlvl)

Print complexities of AMG method.

void print_amgcomplexity_bsr (AMG_data_bsr *mgl, const SHORT prtlvl)

Print complexities of AMG method for BSR matrices.

void print_cputime (const char *message, const REAL cputime)

Print CPU walltime.

void print_message (const INT ptrlvl, const char *message)

Print output information if necessary.

• void fasp_chkerr (const SHORT status, const char *fctname)

Check error status and print out error messages before quit.

10.7.1 Detailed Description

Output some useful messages.

Note

This file contains Level-0 (Aux) functions

10.7.2 Function Documentation

10.7.2.1 fasp_chkerr()

Check error status and print out error messages before quit.

Parameters

status	Error status
fctname	Function name where this routine is called

Author

Chensong Zhang

Date

01/10/2012

Definition at line 199 of file AuxMessage.c.

10.7.2.2 print_amgcomplexity()

Print complexities of AMG method.

Parameters

mgl	Multilevel hierachy for AMG
prtlvl	How much information to print

Author

Chensong Zhang

Date

11/16/2009

Definition at line 79 of file AuxMessage.c.

10.7.2.3 print_amgcomplexity_bsr()

Print complexities of AMG method for BSR matrices.

Parameters

mgl	Multilevel hierachy for AMG
prtlvl	How much information to print

Author

Chensong Zhang

Date

05/10/2013

Definition at line 122 of file AuxMessage.c.

10.7.2.4 print_cputime()

Print CPU walltime.

Parameters

message	Some string to print out
cputime	Walltime since start to end

Author

Chensong Zhang

Date

04/10/2012

Definition at line 165 of file AuxMessage.c.

10.7.2.5 print_itinfo()

Print out iteration information for iterative solvers.

Parameters

ptrlvl	Level for output
stop_type	Type of stopping criteria
iter	Number of iterations
relres	Relative residual of different kinds
absres	Absolute residual of different kinds
factor	Contraction factor

Author

Chensong Zhang

Date

11/16/2009

Modified by Chensong Zhang on 03/28/2013: Output initial guess Modified by Chensong Zhang on 04/05/2013: Fix a typo

Definition at line 36 of file AuxMessage.c.

10.7.2.6 print_message()

Print output information if necessary.

Parameters

ptrlvl	Level for output
message	Error message to print

Author

Chensong Zhang

Date

11/16/2009

Definition at line 182 of file AuxMessage.c.

10.8 AuxParam.c File Reference

Initialize, set, or print input data and parameters.

```
#include <stdio.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void fasp_param_set (int argc, const char *argv[], input_param *iniparam)

Read input from command-line arguments.

• void fasp_param_init (input_param *iniparam, itsolver_param *itsparam, AMG_param *amgparam, ILU_param *iluparam, Schwarz_param *schparam)

Initialize parameters, global variables, etc.

void fasp_param_input_init (input_param *iniparam)

Initialize input parameters.

void fasp_param_amg_init (AMG_param *amgparam)

Initialize AMG parameters.

void fasp_param_solver_init (itsolver_param *itsparam)

Initialize itsolver_param.

void fasp param ilu init (ILU param *iluparam)

Initialize ILU parameters.

void fasp param schwarz init (Schwarz param *schparam)

Initialize Schwarz parameters.

void fasp_param_amg_set (AMG_param *param, input_param *iniparam)

Set AMG param from INPUT.

void fasp param ilu set (ILU param *iluparam, input param *iniparam)

Set ILU_param with INPUT.

void fasp param schwarz set (Schwarz param *schparam, input param *iniparam)

Set Schwarz param with INPUT.

void fasp_param_solver_set (itsolver_param *itsparam, input_param *iniparam)

Set itsolver_param with INPUT.

void fasp_param_amg_to_prec (precond_data *pcdata, AMG_param *amgparam)

Set precond_data with AMG_param.

void fasp_param_prec_to_amg (AMG_param *amgparam, precond_data *pcdata)

Set AMG_param with precond_data.

void fasp_param_amg_to_prec_bsr (precond_data_bsr *pcdata, AMG_param *amgparam)

Set precond_data_bsr with AMG_param.

void fasp_param_prec_to_amg_bsr (AMG_param *amgparam, precond_data_bsr *pcdata)

Set AMG_param with precond_data.

void fasp_param_amg_print (AMG_param *param)

Print out AMG parameters.

void fasp_param_ilu_print (ILU_param *param)

Print out ILU parameters.

void fasp_param_schwarz_print (Schwarz_param *param)

Print out Schwarz parameters.

void fasp_param_solver_print (itsolver_param *param)

Print out itsolver parameters.

10.8.1 Detailed Description

Initialize, set, or print input data and parameters.

Note

This file contains Level-0 (Aux) functions. It requires AuxInput.c and AuxMessage.c

10.8.2 Function Documentation

```
10.8.2.1 fasp_param_amg_init()
```

Initialize AMG parameters.

Parameters

amgparam	Parameters for AMG
----------	--------------------

Author

Chensong Zhang

Date

2010/04/03

Definition at line 393 of file AuxParam.c.

10.8.2.2 fasp_param_amg_print()

Print out AMG parameters.

Parameters

Author

Chensong Zhang

Date

2010/03/22

Definition at line 800 of file AuxParam.c.

```
10.8.2.3 fasp_param_amg_set()
```

Set AMG_param from INPUT.

Parameters

param	Parameters for AMG
iniparam	Input parameters

Author

Chensong Zhang

Date

2010/03/23

Definition at line 521 of file AuxParam.c.

10.8.2.4 fasp_param_amg_to_prec()

Set precond_data with AMG_param.

Parameters

pcdata	Preconditioning data structure
amgparam	Parameters for AMG

Author

Chensong Zhang

Date

2011/01/10

Definition at line 669 of file AuxParam.c.

```
10.8.2.5 fasp_param_amg_to_prec_bsr()
```

Set precond_data_bsr with AMG_param.

Parameters

pcdata	Preconditioning data structure
amgparam	Parameters for AMG

Author

Xiaozhe Hu

Date

02/06/2012

Definition at line 736 of file AuxParam.c.

```
10.8.2.6 fasp_param_ilu_init()
```

Initialize ILU parameters.

Parameters

iluparam	Parameters for ILU
----------	--------------------

Author

Chensong Zhang

Date

2010/04/06

Definition at line 479 of file AuxParam.c.

```
10.8.2.7 fasp_param_ilu_print()
```

Print out ILU parameters.

Parameters

ILU

Author

Chensong Zhang

Date

2011/12/20

Definition at line 901 of file AuxParam.c.

10.8.2.8 fasp_param_ilu_set()

Set ILU_param with INPUT.

Parameters

iluparam	Parameters for ILU
iniparam	Input parameters

Author

Chensong Zhang

Date

2010/04/03

Definition at line 596 of file AuxParam.c.

10.8.2.9 fasp_param_init()

Initialize parameters, global variables, etc.

Parameters

iniparam	Input parameters
itsparam	Iterative solver parameters
amgparam	AMG parameters
iluparam	ILU parameters
schparam	Schwarz parameters

Author

Chensong Zhang

Date

2010/08/12

Modified by Xiaozhe Hu (01/23/2011): initialize, then set value Modified by Chensong Zhang (09/12/2012): find a bug during debugging in VS08 Modified by Chensong Zhang (12/29/2013): rewritten

Definition at line 273 of file AuxParam.c.

10.8.2.10 fasp_param_input_init()

Initialize input parameters.

Parameters

iniparam	Input parameters
----------	------------------

Author

Chensong Zhang

Date

2010/03/20

Definition at line 313 of file AuxParam.c.

10.8.2.11 fasp_param_prec_to_amg()

Set AMG_param with precond_data.

Parameters

amgparam	Parameters for AMG
pcdata	Preconditioning data structure

Author

Chensong Zhang

Date

2011/01/10

Definition at line 704 of file AuxParam.c.

10.8.2.12 fasp_param_prec_to_amg_bsr()

Set AMG_param with precond_data.

Parameters

amgparam	Parameters for AMG
pcdata	Preconditioning data structure

Author

Xiaozhe Hu

Date

02/06/2012

Definition at line 770 of file AuxParam.c.

10.8.2.13 fasp_param_schwarz_init()

Initialize Schwarz parameters.

Parameters

schparam	Parameters for Schwarz method

Author

Xiaozhe Hu

Date

05/22/2012

Modified by Chensong Zhang on 10/10/2014: Add block solver type

Definition at line 501 of file AuxParam.c.

10.8.2.14 fasp_param_schwarz_print()

Print out Schwarz parameters.

Parameters

param Parameters for Schwarz

Author

Xiaozhe Hu

Date

05/22/2012

Definition at line 931 of file AuxParam.c.

10.8.2.15 fasp_param_schwarz_set()

Set Schwarz_param with INPUT.

Parameters

schparam	Parameters for Schwarz method
iniparam	Input parameters

Author

Xiaozhe Hu

Date

05/22/2012

Definition at line 618 of file AuxParam.c.

10.8.2.16 fasp_param_set()

```
void fasp_param_set (
    int argc,
    const char * argv[],
    input_param * iniparam )
```

Read input from command-line arguments.

Parameters

argc	Number of arg input
argv	Input arguments
iniparam	Parameters to be set

Author

Chensong Zhang

Date

12/29/2013

Definition at line 30 of file AuxParam.c.

10.8.2.17 fasp_param_solver_init()

```
void fasp_param_solver_init (
         itsolver_param * itsparam )
```

Initialize itsolver_param.

Parameters

itsparam	Parameters for iterative solvers
----------	----------------------------------

Author

Chensong Zhang

Date

2010/03/23

Definition at line 458 of file AuxParam.c.

10.8.2.18 fasp_param_solver_print()

```
void fasp_param_solver_print (
    itsolver_param * param )
```

Print out itsolver parameters.

Parameters

param	Paramters for iterative solvers
-------	---------------------------------

Author

Chensong Zhang

Date

2011/12/20

Definition at line 960 of file AuxParam.c.

10.8.2.19 fasp_param_solver_set()

Set itsolver_param with INPUT.

Parameters

itsparam	Parameters for iterative solvers
iniparam	Input parameters

Author

Chensong Zhang

Date

2010/03/23

Definition at line 639 of file AuxParam.c.

10.9 AuxSmallMat.c File Reference

Simple operations for *small* dense matrices in row-major format.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Macros

• #define SWAP(a, b) {temp=(a);(a)=(b);(b)=temp;}

Functions

```
    void fasp_blas_smat_inv_nc2 (REAL *a)
```

Compute the inverse matrix of a 2*2 full matrix A (in place)

void fasp_blas_smat_inv_nc3 (REAL *a)

Compute the inverse matrix of a 3*3 full matrix A (in place)

void fasp_blas_smat_inv_nc4 (REAL *a)

Compute the inverse matrix of a 4*4 full matrix A (in place)

void fasp_blas_smat_inv_nc5 (REAL *a)

Compute the inverse matrix of a 5*5 full matrix A (in place)

void fasp_blas_smat_inv_nc7 (REAL *a)

Compute the inverse matrix of a 7*7 matrix a.

• void fasp_blas_smat_inv_nc (REAL *a, const INT n)

Compute the inverse of a matrix using Gauss Elimination.

void fasp_blas_smat_invp_nc (REAL *a, const INT n)

Compute the inverse of a matrix using Gauss Elimination with Pivoting.

INT fasp_blas_smat_inv (REAL *a, const INT n)

Compute the inverse matrix of a small full matrix a.

REAL fasp_blas_smat_Linfinity (REAL *A, const INT n)

Compute the L infinity norm of A.

void fasp_iden_free (idenmat *A)

Free idenmat sparse matrix data memeory space.

void fasp_smat_identity_nc2 (REAL *a)

Set a 2*2 full matrix to be a identity.

void fasp_smat_identity_nc3 (REAL *a)

Set a 3*3 full matrix to be a identity.

void fasp_smat_identity_nc5 (REAL *a)

Set a 5*5 full matrix to be a identity.

void fasp_smat_identity_nc7 (REAL *a)

Set a 7*7 full matrix to be a identity.

void fasp_smat_identity (REAL *a, const INT n, const INT n2)

Set a n*n full matrix to be a identity.

10.9.1 Detailed Description

Simple operations for *small* dense matrices in row-major format.

Note

This file contains Level-0 (Aux) functions. It requires AuxMemory.c

10.9.2 Macro Definition Documentation

10.9.2.1 SWAP

swap two numbers

Definition at line 12 of file AuxSmallMat.c.

10.9.3 Function Documentation

10.9.3.1 fasp_blas_smat_inv()

Compute the inverse matrix of a small full matrix a.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
n	Dimension of the matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

04/21/2010

Definition at line 557 of file AuxSmallMat.c.

```
10.9.3.2 fasp_blas_smat_inv_nc()
```

Compute the inverse of a matrix using Gauss Elimination.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
n	Dimension of the matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 408 of file AuxSmallMat.c.

10.9.3.3 fasp_blas_smat_inv_nc2()

Compute the inverse matrix of a 2*2 full matrix A (in place)

Parameters

a Pointer to the REAL array which stands a 2*2 matrix

```
Author
```

Xiaozhe Hu

Date

18/11/2011

Definition at line 28 of file AuxSmallMat.c.

```
10.9.3.4 fasp_blas_smat_inv_nc3()
```

Compute the inverse matrix of a 3*3 full matrix A (in place)

Parameters

a Pointer to the REAL array which stands a 3*3 matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 64 of file AuxSmallMat.c.

```
10.9.3.5 fasp_blas_smat_inv_nc4()
```

```
void fasp_blas_smat_inv_nc4 ( {\tt REAL} \, * \, a \, )
```

Compute the inverse matrix of a 4*4 full matrix A (in place)

Parameters

a Pointer to the REAL array which stands a 4*4 matrix

Author

Xiaozhe Hu

Date

01/12/2013

Modified by Hongxuan Zhang on 06/13/2014: Fix a bug in M23.

Definition at line 118 of file AuxSmallMat.c.

```
10.9.3.6 fasp_blas_smat_inv_nc5()
```

Compute the inverse matrix of a 5*5 full matrix A (in place)

Parameters

a Pointer to the REAL array which stands a 5*5 matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 176 of file AuxSmallMat.c.

10.9.3.7 fasp_blas_smat_inv_nc7()

```
void fasp_blas_smat_inv_nc7 ( {\tt REAL} \, * \, a \, )
```

Compute the inverse matrix of a 7*7 matrix a.

Parameters

a Pointer to the REAL array which stands a 7*7 matrix

Note

This is NOT implemented yet!

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 392 of file AuxSmallMat.c.

10.9.3.8 fasp_blas_smat_invp_nc()

Compute the inverse of a matrix using Gauss Elimination with Pivoting.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
n	Dimension of the matrix

Author

Chensong Zhang

Date

04/03/2015

Note

This routine is based on gaussj() from "Numerical Recipies in C"!

Definition at line 475 of file AuxSmallMat.c.

10.9.3.9 fasp_blas_smat_Linfinity()

Compute the L infinity norm of A.

Parameters

Α	Pointer to the n*n dense matrix
n	the dimension of the dense matrix

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 598 of file AuxSmallMat.c.

```
10.9.3.10 fasp_iden_free()
```

```
void fasp_iden_free (
    idenmat * A )
```

Free idenmat sparse matrix data memeory space.

Parameters

A Pointer to the idenmat matrix

Author

Chensong Zhang

Date

2010/04/03

Definition at line 631 of file AuxSmallMat.c.

10.9.3.11 fasp_smat_identity()

Set a n*n full matrix to be a identity.

Parameters

ě	а	Pointer to the REAL vector which stands for a n*n full matrix
1	n	Size of full matrix
-	n2	Length of the REAL vector which stores the n∗n full matrix

Author

Xiaozhe Hu

Date

2010/12/25

Definition at line 731 of file AuxSmallMat.c.

10.9.3.12 fasp_smat_identity_nc2()

Set a 2*2 full matrix to be a identity.

Parameters

a Pointer to the REAL vector which stands for a 2*2 full matrix

Author

Xiaozhe Hu

Date

2011/11/18

Definition at line 651 of file AuxSmallMat.c.

```
10.9.3.13 fasp_smat_identity_nc3()
```

Set a 3*3 full matrix to be a identity.

Parameters

a Pointer to the REAL vector which stands for a 3*3 full matrix

Author

Xiaozhe Hu

Date

2010/12/25

Definition at line 668 of file AuxSmallMat.c.

10.9.3.14 fasp_smat_identity_nc5()

```
void fasp_smat_identity_nc5 ( {\tt REAL} \, * \, a \, )
```

Set a 5*5 full matrix to be a identity.

Parameters

a Pointer to the REAL vector which stands for a 5*5 full matrix

Author

Xiaozhe Hu

Date

2010/12/25

Definition at line 685 of file AuxSmallMat.c.

```
10.9.3.15 fasp_smat_identity_nc7()
```

Set a 7*7 full matrix to be a identity.

Parameters

a Pointer to the REAL vector which stands for a 7*7 full matrix

Author

Xiaozhe Hu

Date

2010/12/25

Definition at line 706 of file AuxSmallMat.c.

10.10 AuxSort.c File Reference

Subroutines for ordering, merging, removing duplicated integers.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- INT fasp_BinarySearch (INT *list, const INT value, const INT nlist)
 Binary Search.
- INT fasp_aux_unique (INT numbers[], const INT size)

Remove duplicates in an sorted (ascending order) array.

• void fasp_aux_merge (INT numbers[], INT work[], INT left, INT mid, INT right)

Merge two sorted arrays.

- void fasp_aux_msort (INT numbers[], INT work[], INT left, INT right)
 - Sort the INT array in ascending order with the merge sort algorithm.
- void fasp_aux_iQuickSort (INT *a, INT left, INT right)

Sort the array (INT type) in ascending order with the quick sorting algorithm.

void fasp_aux_dQuickSort (REAL *a, INT left, INT right)

Sort the array (REAL type) in ascending order with the quick sorting algorithm.

void fasp_aux_iQuickSortIndex (INT *a, INT left, INT right, INT *index)

Reorder the index of (INT type) so that 'a' is in ascending order.

void fasp_aux_dQuickSortIndex (REAL *a, INT left, INT right, INT *index)

Reorder the index of (REAL type) so that 'a' is ascending in such order.

void fasp_dcsr_CMK_order (const dCSRmat *A, INT *order, INT *oindex)

Ordering vertices of matrix graph corresponding to A.

 $\bullet \ \ void \ fasp_dcsr_RCMK_order \ (const \ dCSRmat \ *A, \ INT \ *order, \ INT \ *oindex, \ INT \ *rorder)\\$

Resverse CMK ordering.

• void fasp_topological_sorting_ilu (ILU_data *iludata)

Reordering vertices according to level schedule strategy.

void fasp_multicolors_independent_set (AMG_data *mgl, INT gslvl)

Coloring vertices of adjacency graph of A.

10.10.1 Detailed Description

Subroutines for ordering, merging, removing duplicated integers.

Note

This file contains Level-0 (Aux) functions. It requires AuxMemory.c

10.10.2 Function Documentation

10.10.2.1 fasp_aux_dQuickSort()

Sort the array (REAL type) in ascending order with the quick sorting algorithm.

Parameters

а	Pointer to the array needed to be sorted
left	Starting index
right	Ending index

Author

Zhiyang Zhou

Date

2009/11/28

Note

'left' and 'right' are usually set to be 0 and n-1, respectively where n is the length of 'a'.

Definition at line 248 of file AuxSort.c.

10.10.2.2 fasp_aux_dQuickSortIndex()

Reorder the index of (REAL type) so that 'a' is ascending in such order.

Parameters

а	Pointer to the array
left	Starting index
right	Ending index
index	Index of 'a' (out)

Author

Zhiyang Zhou

Date

2009/12/02

Note

'left' and 'right' are usually set to be 0 and n-1,respectively,where n is the length of 'a'. 'index' should be initialized in the nature order and it has the same length as 'a'.

Definition at line 329 of file AuxSort.c.

10.10.2.3 fasp_aux_iQuickSort()

Sort the array (INT type) in ascending order with the quick sorting algorithm.

Parameters

а	Pointer to the array needed to be sorted
left	Starting index
right	Ending index

Author

Zhiyang Zhou

Date

11/28/2009

Note

'left' and 'right' are usually set to be 0 and n-1, respectively where n is the length of 'a'.

Definition at line 210 of file AuxSort.c.

10.10.2.4 fasp_aux_iQuickSortIndex()

Reorder the index of (INT type) so that 'a' is in ascending order.

Parameters

а	Pointer to the array
left	Starting index
right	Ending index
index	Index of 'a' (out)

Author

Zhiyang Zhou

Date

2009/12/02

Note

'left' and 'right' are usually set to be 0 and n-1,respectively,where n is the length of 'a'. 'index' should be initialized in the nature order and it has the same length as 'a'.

Definition at line 288 of file AuxSort.c.

10.10.2.5 fasp_aux_merge()

Merge two sorted arrays.

Parameters

numbers	Pointer to the array needed to be sorted
work	Pointer to the work array with same size as numbers
left	Starting index of array 1
mid	Starting index of array 2
right	Ending index of array 1 and 2

Author

Chensong Zhang

Date

11/21/2010

Note

Both arrays are stored in numbers! Arrays should be pre-sorted!

Definition at line 117 of file AuxSort.c.

10.10.2.6 fasp_aux_msort()

Sort the INT array in ascending order with the merge sort algorithm.

Parameters

numbers	Pointer to the array needed to be sorted
work	Pointer to the work array with same size as numbers
left	Starting index
right	Ending index

Author

Chensong Zhang

Date

11/21/2010

Note

'left' and 'right' are usually set to be 0 and n-1, respectively

Definition at line 179 of file AuxSort.c.

10.10.2.7 fasp_aux_unique()

Remove duplicates in an sorted (ascending order) array.

Parameters

numbers	Pointer to the array needed to be sorted (in/out)
size	Length of the target array

Returns

New size after removing duplicates

Author

Chensong Zhang

Date

11/21/2010

Note

Operation is in place. Does not use any extra or temporary storage.

Definition at line 84 of file AuxSort.c.

10.10.2.8 fasp_BinarySearch()

Binary Search.

Parameters

list	Pointer to a set of values
value	The target
nlist	Length of the array list

Returns

The location of value in array list if succeeded; otherwise, return -1.

Author

Chunsheng Feng

Date

03/01/2011

Definition at line 39 of file AuxSort.c.

10.10.2.9 fasp_dcsr_CMK_order()

Ordering vertices of matrix graph corresponding to A.

Parameters

Α	Pointer to matrix
oindex	Pointer to index of vertices in order
order	Pointer to vertices with increasing degree

Author

Zheng Li, Chensong Zhang

Date

05/28/2014

Definition at line 365 of file AuxSort.c.

10.10.2.10 fasp_dcsr_RCMK_order()

Resverse CMK ordering.

Parameters

Α	Pointer to matrix
order	Pointer to vertices with increasing degree
oindex	Pointer to index of vertices in order
rorder	Pointer to reverse order

```
Author
```

Zheng Li, Chensong Zhang

Date

10/10/2014

Definition at line 414 of file AuxSort.c.

10.10.2.11 fasp_multicolors_independent_set()

```
void fasp_multicolors_independent_set (
         AMG_data * mgl,
         INT gslvl )
```

Coloring vertices of adjacency graph of A.

Parameters

mgl	Pointer to input matrix
gslvl	Used to specify levels of AMG using multicolor smoothing

Author

Zheng Li, Chunsheng Feng

Date

12/04/2016

Definition at line 521 of file AuxSort.c.

10.10.2.12 fasp_topological_sorting_ilu()

Reordering vertices according to level schedule strategy.

Parameters

Author

Zheng Li, Chensong Zhang

Date

12/04/2016

Definition at line 439 of file AuxSort.c.

10.11 AuxThreads.c File Reference

Get and set number of threads and assign work load for each thread.

```
#include <stdio.h>
#include <stdlib.h>
#include "fasp.h"
```

Functions

- void fasp_get_start_end (INT procid, INT nprocs, INT n, INT *start, INT *end)

 Assign Load to each thread.
- void fasp_set_GS_threads (INT mythreads, INT its)

Set threads for CPR. Please add it at the begin of Krylov OpenMP method function and after iter++.

Variables

- INT THDs_AMG_GS =0
- INT THDs_CPR_IGS =0
- INT THDs_CPR_gGS =0

10.11.1 Detailed Description

Get and set number of threads and assign work load for each thread.

Note

This file contains Level-0 (Aux) functions

10.11.2 Function Documentation

10.11.2.1 fasp_get_start_end()

Assign Load to each thread.

Parameters

procid	Index of thread
nprocs	Number of threads
n	Total workload
start	Pointer to the begin of each thread in total workload
end	Pointer to the end of each thread in total workload

Author

Chunsheng Feng, Xiaoqiang Yue and Zheng Li

Date

June/25/2012

Definition at line 85 of file AuxThreads.c.

10.11.2.2 fasp_set_GS_threads()

Set threads for CPR. Please add it at the begin of Krylov OpenMP method function and after iter++.

Parameters

threads	Total threads of solver
its	Current its of the Krylov methods

Author

Feng Chunsheng, Yue Xiaoqiang

Date

03/20/2011

Definition at line 125 of file AuxThreads.c.

10.11.3 Variable Documentation

10.11.3.1 THDs_AMG_GS

```
INT THDs_AMG_GS =0
```

AMG GS smoothing threads

Definition at line 109 of file AuxThreads.c.

10.11.3.2 THDs_CPR_gGS

```
INT THDs_CPR_gGS =0
```

global matrix GS smoothing threads

Definition at line 111 of file AuxThreads.c.

10.11.3.3 THDs_CPR_IGS

```
INT THDs_CPR_1GS =0
```

reservoir GS smoothing threads

Definition at line 110 of file AuxThreads.c.

10.12 AuxTiming.c File Reference

Timing subroutines.

```
#include <time.h>
#include "fasp.h"
```

Functions

```
• void fasp_gettime (REAL *time)

Get system time.
```

10.12.1 Detailed Description

Timing subroutines.

Note

This file contains Level-0 (Aux) functions

10.12.2 Function Documentation

```
10.12.2.1 fasp_gettime()
```

Get system time.

Author

Chunsheng Feng, Zheng LI

Date

11/10/2012

Modified by Chensong Zhang on 09/22/2014: Use CLOCKS_PER_SEC for cross-platform

Definition at line 30 of file AuxTiming.c.

10.13 AuxVector.c File Reference

Simple operations for vectors.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

INT fasp_dvec_isnan (dvector *u)

Check a dvector whether there is NAN.

dvector fasp_dvec_create (const INT m)

Create dvector data space of REAL type.

• ivector fasp_ivec_create (const INT m)

Create vector data space of INT type.

void fasp_dvec_alloc (const INT m, dvector *u)

Create dvector data space of REAL type.

void fasp_ivec_alloc (const INT m, ivector *u)

Create vector data space of INT type.

void fasp_dvec_free (dvector *u)

Free vector data space of REAL type.

void fasp_ivec_free (ivector *u)

Free vector data space of INT type.

void fasp_dvec_null (dvector *x)

Initialize dvector.

void fasp_dvec_rand (const INT n, dvector *x)

Generate random REAL vector in the range from 0 to 1.

void fasp_dvec_set (INT n, dvector *x, REAL val)

Initialize dvector x[i]=val for i=0:n-1.

void fasp_ivec_set (const INT m, ivector *u)

Set ivector value to be m.

void fasp_dvec_cp (dvector *x, dvector *y)

Copy dvector x to dvector y.

REAL fasp_dvec_maxdiff (dvector *x, dvector *y)

Maximal difference of two dvector x and y.

void fasp_dvec_symdiagscale (dvector *b, dvector *diag)

Symmetric diagonal scaling D^{\wedge} {-1/2}b.

10.13.1 Detailed Description

Simple operations for vectors.

Note

This file contains Level-0 (Aux) functions

10.13.2 Function Documentation

10.13.2.1 fasp_dvec_alloc()

Create dvector data space of REAL type.

Parameters

m	Number of rows
и	Pointer to dvector (OUTPUT)

Author

Chensong Zhang

Date

2010/04/06

Definition at line 99 of file AuxVector.c.

10.13.2.2 fasp_dvec_cp()

```
void fasp_dvec_cp ( \label{eq:dvector} \mbox{dvector} \, * \, x, \\ \mbox{dvector} \, * \, y \, )
```

Copy dvector x to dvector y.

Parameters

Х	Pointer to dvector
У	Pointer to dvector (MODIFIED)

Author

Chensong Zhang

Date

11/16/2009

Definition at line 345 of file AuxVector.c.

```
10.13.2.3 fasp_dvec_create()
```

Create dvector data space of REAL type.

Parameters

```
m Number of rows
```

Returns

u The new dvector

Author

Chensong Zhang

Date

2010/04/06

Definition at line 56 of file AuxVector.c.

10.13.2.4 fasp_dvec_free()

```
void fasp_dvec_free ( \label{eq:dvector} \mbox{dvector} \, * \, u \,\,)
```

Free vector data space of REAL type.

Parameters

u Pointer to dvector which needs to be deallocated

```
Author
```

Chensong Zhang

Date

2010/04/03

Definition at line 139 of file AuxVector.c.

```
10.13.2.5 fasp_dvec_isnan()
```

Check a dvector whether there is NAN.

Parameters

```
u Pointer to dvector
```

Returns

Return TRUE if there is NAN

Author

Chensong Zhang

Date

2013/03/31

Definition at line 33 of file AuxVector.c.

10.13.2.6 fasp_dvec_maxdiff()

Maximal difference of two dvector x and y.

Parameters

Χ	Pointer to dvector
У	Pointer to dvector

Returns

Maximal norm of x-y

Author

Chensong Zhang

Date

11/16/2009

Modified by chunsheng Feng, Zheng Li

Date

06/30/2012

Definition at line 368 of file AuxVector.c.

10.13.2.7 fasp_dvec_null()

Initialize dvector.

Parameters

x Pointer to dvector which needs to be initialized

Author

Chensong Zhang

```
Date
```

2010/04/03

Definition at line 177 of file AuxVector.c.

```
10.13.2.8 fasp_dvec_rand()
```

```
void fasp_dvec_rand (  {\rm const\ INT\ } n, \\ {\rm dvector\ } *\ x\ )
```

Generate random REAL vector in the range from 0 to 1.

Parameters

n	Size of the vector
Х	Pointer to dvector

Note

Sample usage:

dvector xapp;

fasp_dvec_create(100,&xapp);

fasp_dvec_rand(100,&xapp);

fasp_dvec_print(100,&xapp);

Author

Chensong Zhang

Date

11/16/2009

Definition at line 203 of file AuxVector.c.

10.13.2.9 fasp_dvec_set()

Initialize dvector x[i]=val for i=0:n-1.

Parameters

n	Number of variables
X	Pointer to dvector
val	Initial value for the vector

Author

Chensong Zhang

Date

11/16/2009

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 235 of file AuxVector.c.

10.13.2.10 fasp_dvec_symdiagscale()

Symmetric diagonal scaling $D^{-1/2}b$.

Parameters

b	Pointer to dvector
diag	Pointer to dvector: the diagonal entries

Author

Xiaozhe Hu

Date

01/31/2011

Definition at line 421 of file AuxVector.c.

```
10.13.2.11 fasp_ivec_alloc()
```

```
void fasp_ivec_alloc ( {\tt const\ INT\ m,} {\tt ivector\ *\ u\ )}
```

Create vector data space of INT type.

Parameters

m	Number of rows
и	Pointer to ivector (OUTPUT)

Author

Chensong Zhang

Date

2010/04/06

Definition at line 119 of file AuxVector.c.

10.13.2.12 fasp_ivec_create()

Create vector data space of INT type.

Parameters

m	Number of rows
---	----------------

```
Returns
```

u The new ivector

Author

Chensong Zhang

Date

2010/04/06

Definition at line 78 of file AuxVector.c.

```
10.13.2.13 fasp_ivec_free()
```

```
void fasp_ivec_free (
          ivector * u )
```

Free vector data space of INT type.

Parameters

u Pointer to ivector which needs to be deallocated

Author

Chensong Zhang

Date

2010/04/03

Note

This function is same as fasp_dvec_free except input type.

Definition at line 159 of file AuxVector.c.

```
10.13.2.14 fasp_ivec_set()
```

Set ivector value to be m.

Parameters

т	Integer value of ivector
и	Pointer to ivector (MODIFIED)

Author

Chensong Zhang

Date

04/03/2010

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 304 of file AuxVector.c.

10.14 BlaArray.c File Reference

BLAS1 operations for arrays.

```
#include <math.h>
#include "fasp.h"
```

Functions

```
    void fasp_blas_array_ax (const INT n, const REAL a, REAL *x)
```

```
x = a * x
```

void fasp_blas_array_axpy (const INT n, const REAL a, REAL *x, REAL *y)

```
y = a * x + y
```

void fasp_blas_array_axpyz (const INT n, const REAL a, REAL *x, REAL *y, REAL *z)

```
z = a * x + y
```

void fasp_blas_array_axpby (const INT n, const REAL a, REAL *x, const REAL b, REAL *y)

```
y = a*x + b*y
```

REAL fasp_blas_array_dotprod (const INT n, const REAL *x, const REAL *y)

Inner product of two arraies (x,y)

• REAL fasp_blas_array_norm1 (const INT n, const REAL *x)

L1 norm of array x.

• REAL fasp_blas_array_norm2 (const INT n, const REAL *x)

L2 norm of array x.

• REAL fasp_blas_array_norminf (const INT n, const REAL *x)

Linf norm of array x.

10.14.1 Detailed Description

BLAS1 operations for arrays.

Note

This file contains Level-1 (Bla) functions.

10.14.2 Function Documentation

```
10.14.2.1 fasp_blas_array_ax()
```

x = a*x

Parameters

n	Number of variables
а	Factor a
Х	Pointer to x

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Note

x is reused to store the resulting array.

Definition at line 36 of file BlaArray.c.

10.14.2.2 fasp_blas_array_axpby()

```
y = a*x + b*y
```

Parameters

n	Number of variables
а	Factor a
X	Pointer to x
b	Factor b
У	Pointer to y

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Note

y is reused to store the resulting array.

Definition at line 219 of file BlaArray.c.

10.14.2.3 fasp_blas_array_axpy()

y = a*x + y

Parameters

n	Number of variables		
а	Factor a		
X	Pointer to x		
У	Pointer to y		

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Note

y is reused to store the resulting array.

Definition at line 88 of file BlaArray.c.

10.14.2.4 fasp_blas_array_axpyz()

z = a*x + y

Parameters

n	Number of variables
а	Factor a
Χ	Pointer to x
У	Pointer to y
Z	Pointer to z

```
Author
```

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 168 of file BlaArray.c.

10.14.2.5 fasp_blas_array_dotprod()

Inner product of two arraies (x,y)

Parameters

n	Number of variables
Х	Pointer to x
у	Pointer to y

Returns

Inner product (x,y)

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 268 of file BlaArray.c.

10.14.2.6 fasp_blas_array_norm1()

L1 norm of array x.

Parameters

n	Number of variables
Х	Pointer to x

Returns

L1 norm of x

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 308 of file BlaArray.c.

10.14.2.7 fasp_blas_array_norm2()

L2 norm of array x.

Parameters

n	Number of variables
Х	Pointer to x

Returns

L2 norm of x

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 348 of file BlaArray.c.

10.14.2.8 fasp_blas_array_norminf()

Linf norm of array x.

Parameters

n	Number of variables
X	Pointer to x

Returns

L_inf norm of x

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Zheng Li on 06/28/2012

Definition at line 389 of file BlaArray.c.

10.15 BlaEigen.c File Reference

Subroutines for computing the extreme eigenvalues.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

REAL fasp_dcsr_eig (dCSRmat *A, const REAL tol, const INT maxit)
 Approximate the largest eigenvalue of A by the power method.

10.15.1 Detailed Description

Subroutines for computing the extreme eigenvalues.

Note

This file contains Level-1 (Bla) functions. It requires AuxVector.c, BlaArray.c, BlaSpmvCSR.c, and BlaVector.c

10.15.2 Function Documentation

```
10.15.2.1 fasp_dcsr_eig()
```

Approximate the largest eigenvalue of A by the power method.

Parameters

Α	Pointer to the dCSRmat matrix
tol	Tolerance for stopping the power method
maxit	Max number of iterations

Returns

Largest eigenvalue

Author

Xiaozhe Hu

Date

01/25/2011

Definition at line 32 of file BlaEigen.c.

10.16 BlaFormat.c File Reference

Subroutines for matrix format conversion.

```
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
```

Functions

SHORT fasp_format_dcoo_dcsr (dCOOmat *A, dCSRmat *B)

Transform a REAL matrix from its IJ format to its CSR format.

• SHORT fasp_format_dcsr_dcoo (dCSRmat *A, dCOOmat *B)

Transform a REAL matrix from its CSR format to its IJ format.

SHORT fasp_format_dstr_dcsr (dSTRmat *A, dCSRmat *B)

Transfer a 'dSTRmat' type matrix into a 'dCSRmat' type matrix.

dCSRmat fasp_format_dblc_dcsr (dBLCmat *Ab)

Form the whole dCSRmat A using blocks given in Ab.

dCSRLmat * fasp_format_dcsrl_dcsr (dCSRmat *A)

Convert a dCSRmat into a dCSRLmat.

dCSRmat fasp_format_dbsr_dcsr (dBSRmat *B)

Transfer a 'dBSRmat' type matrix into a dCSRmat.

dBSRmat fasp_format_dcsr_dbsr (dCSRmat *A, const INT nb)

Transfer a dCSRmat type matrix into a dBSRmat.

dBSRmat fasp_format_dstr_dbsr (dSTRmat *B)

Transfer a 'dSTRmat' type matrix to a 'dBSRmat' type matrix.

dCOOmat * fasp_format_dbsr_dcoo (dBSRmat *B)

Transfer a 'dBSRmat' type matrix to a 'dCOOmat' type matrix.

10.16.1 Detailed Description

Subroutines for matrix format conversion.

Note

This file contains Level-1 (Bla) functions. It requires AuxArray.c, AuxMemory.c, BlaSparseBSR.c, BlaSparseCS←R.c, and BlaSparseCSRL.c

10.16.2 Function Documentation

```
10.16.2.1 fasp_format_dblc_dcsr()
```

Form the whole dCSRmat A using blocks given in Ab.

Parameters

Ab Pointer to dBLCmat matrix

Returns

dCSRmat matrix if succeed, NULL if fail

Author

Shiquan Zhang

Date

08/10/2010

Definition at line 296 of file BlaFormat.c.

10.16.2.2 fasp_format_dbsr_dcoo()

Transfer a 'dBSRmat' type matrix to a 'dCOOmat' type matrix.

_					
Pа	ra	m	Δĺ	םו	re

B Pointer to dBSRmat matrix

Returns

Pointer to dCOOmat matrix

Author

Zhiyang Zhou

Date

2010/10/26

Definition at line 947 of file BlaFormat.c.

10.16.2.3 fasp_format_dbsr_dcsr()

Transfer a 'dBSRmat' type matrix into a dCSRmat.

Parameters

B Pointer to dBSRmat matrix

Returns

dCSRmat matrix

Author

Zhiyang Zhou

Date

10/23/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/24/2012

Note

Works for general nb (Xiaozhe)

Definition at line 499 of file BlaFormat.c.

```
10.16.2.4 fasp_format_dcoo_dcsr()
```

Transform a REAL matrix from its IJ format to its CSR format.

Parameters

Α	Pointer to dCOOmat matrix
В	Pointer to dCSRmat matrix

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xuehai Huang

Date

08/10/2009

Definition at line 31 of file BlaFormat.c.

10.16.2.5 fasp_format_dcsr_dbsr()

Transfer a dCSRmat type matrix into a dBSRmat.

Parameters

Α	Pointer to the dCSRmat type matrix
nb	size of each block

Returns

dBSRmat matrix

Author

Zheng Li

Date

03/27/2014

Note

modified by Xiaozhe Hu to avoid potential memory leakage problem

Definition at line 725 of file BlaFormat.c.

10.16.2.6 fasp_format_dcsr_dcoo()

Transform a REAL matrix from its CSR format to its IJ format.

Parameters

Α	Pointer to dCSRmat matrix
В	Pointer to dCOOmat matrix

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xuehai Huang

Date

08/10/2009

Modified by Chunsheng Feng, Zheng Li

Date

10/12/2012

Definition at line 84 of file BlaFormat.c.

```
10.16.2.7 fasp_format_dcsrl_dcsr()
```

Convert a dCSRmat into a dCSRLmat.

Parameters

A Pointer to dCSRLmat matrix

Returns

Pointer to dCSRLmat matrix

Author

Zhiyang Zhou

Date

2011/01/07

Definition at line 365 of file BlaFormat.c.

```
10.16.2.8 fasp_format_dstr_dbsr()
```

Transfer a 'dSTRmat' type matrix to a 'dBSRmat' type matrix.

Parameters

B Pointer to dSTRmat matrix

Returns

dBSRmat matrix

Author

Zhiyang Zhou

Date

2010/10/26

Definition at line 843 of file BlaFormat.c.

10.16.2.9 fasp_format_dstr_dcsr()

Transfer a 'dSTRmat' type matrix into a 'dCSRmat' type matrix.

Parameters

Α	Pointer to dSTRmat matrix
В	Pointer to dCSRmat matrix

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Zhiyang Zhou

Date

2010/04/29

Definition at line 121 of file BlaFormat.c.

10.17 BlaILU.c File Reference

Incomplete LU decomposition: ILUk, ILUt, ILUtp.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_iluk (INT n, REAL *a, INT *ja, INT *ia, INT Ifil, REAL *alu, INT *jlu, INT iwk, INT *ierr, INT *nzlu)

 Get ILU factorization with level of fill-in k (ilu(k)) for a CSR matrix A.
- void fasp_ilut (INT n, REAL *a, INT *ja, INT *ia, INT Ifil, REAL droptol, REAL *alu, INT *jlu, INT iwk, INT *ierr, INT *nz)

Get incomplete LU factorization with dual truncations of a CSR matrix A.

void fasp_ilutp (INT n, REAL *a, INT *ja, INT *ia, INT Ifil, REAL droptol, REAL permtol, INT mbloc, REAL *alu, INT *jlu, INT iwk, INT *ierr, INT *nz)

Get incomplete LU factorization with pivoting dual truncations of a CSR matrix A.

void fasp_symbfactor (INT n, INT *colind, INT *rwptr, INT levfill, INT nzmax, INT *nzlu, INT *ijlu, INT *uptr, INT *ierr)

Symbolic factorization of a CSR matrix A in compressed sparse row format, with resulting factors stored in a single MSR data structure.

10.17.1 Detailed Description

Incomplete LU decomposition: ILUk, ILUt, ILUtp.

Note

This file contains Level-1 (Bla) functions. It requires AuxMemory.c

Translated from SparseKit Fortran version by Chunsheng Feng, 09/03/2016

10.17.2 Function Documentation

10.17.2.1 fasp_iluk()

Get ILU factorization with level of fill-in k (ilu(k)) for a CSR matrix A.

Parameters

n	row number of A
а	nonzero entries of A
ja	integer array of column for A
ia	integer array of row pointers for A
Ifil	integer. The fill-in parameter. Each row of L and each row of U will have a maximum of Ifil elements (excluding the diagonal element). Ifil must be .ge. 0.
alu,jlu	matrix stored in Modified Sparse Row (MSR) format containing the L and U factors together. The diagonal (stored in alu(1:n)) is inverted. Each i-th row of the alu, jlu matrix contains the i-th row of L (excluding the diagonal entry=1) followed by the i-th row of U.
jlu	integer array of length n containing the pointers to the beginning of each row of U in the matrix alu,jlu.
iwk	integer. The minimum length of arrays alu, jlu, and levs.
ierr	integer pointer. Return error message with the following meaning. 0 -> successful return. >0 -> zero pivot encountered at step number ierr1 -> Error. input matrix may be wrong. (The elimination process has generated a row in L or U whose length is .gt. n.) -2 -> The matrix L overflows the array al3 -> The matrix U overflows the array alu4 -> Illegal value for Ifil5 -> zero row encountered.
nzlu	integer pointer. Return number of nonzero entries for alu and jlu

Note

: All the diagonal elements of the input matrix must be nonzero.

Author

Chunsheng Feng

Date

09/06/2016

Definition at line 66 of file BlaILU.c.

10.17.2.2 fasp_ilut()

Get incomplete LU factorization with dual truncations of a CSR matrix A.

Parameters

n	row number of A
а	nonzero entries of A
ja	integer array of column for A
ia	integer array of row pointers for A
lfil	integer. The fill-in parameter. Each row of L and each row of U will have a maximum of Ifil elements (excluding the diagonal element). Ifil must be .ge. 0.
droptol	real*8. Sets the threshold for dropping small terms in the factorization. See below for details on dropping strategy.
alu,jlu	matrix stored in Modified Sparse Row (MSR) format containing the L and U factors together. The diagonal (stored in alu(1:n)) is inverted. Each i-th row of the alu, jlu matrix contains the i-th row of L (excluding the diagonal entry=1) followed by the i-th row of U.
iwk	integer. The lengths of arrays alu and jlu. If the arrays are not big enough to store the ILU factorizations, ilut will stop with an error message.
ierr	integer pointer. Return error message with the following meaning. $0 ->$ successful return. $>0 ->$ zero pivot encountered at step number ierr. $-1 ->$ Error. input matrix may be wrong. (The elimination process has generated a row in L or U whose length is .gt. n.) $-2 ->$ The matrix L overflows the array al. $-3 ->$ The matrix U overflows the array alu. $-4 ->$ Illegal value for Ifil. $-5 ->$ zero row encountered.
nz	integer pointer. Return number of nonzero entries for alu and jlu

Note

All the diagonal elements of the input matrix must be nonzero.

Author

Chunsheng Feng

Date

09/06/2016

Definition at line 458 of file BlaILU.c.

10.17.2.3 fasp_ilutp()

```
INT mbloc,
REAL * alu,
INT * jlu,
INT iwk,
INT * ierr,
INT * nz )
```

Get incomplete LU factorization with pivoting dual truncations of a CSR matrix A.

Parameters

n	row number of A
а	nonzero entries of A
ja	integer array of column for A
ia	integer array of row pointers for A
lfil	integer. The fill-in parameter. Each row of L and each row of U will have a maximum of Ifil elements (excluding the diagonal element). Ifil must be .ge. 0.
droptol	real*8. Sets the threshold for dropping small terms in the factorization. See below for details on dropping strategy.
permtol	tolerance ratio used to determine whether or not to permute two columns. At step i columns i and j are permuted when $abs(a(i,j))*permtol .gt. abs(a(i,i)) [0 -> never permute; good values 0.1 to 0.01]$
mbloc	integer.If desired, permuting can be done only within the diagonal blocks of size mbloc. Useful for PDE problems with several degrees of freedom. If feature not wanted take mbloc=n.
alu,jlu	matrix stored in Modified Sparse Row (MSR) format containing the L and U factors together. The diagonal (stored in alu(1:n)) is inverted. Each i-th row of the alu,jlu matrix contains the i-th row of L (excluding the diagonal entry=1) followed by the i-th row of U.
iwk	integer. The lengths of arrays alu and jlu. If the arrays are not big enough to store the ILU factorizations, ilut will stop with an error message.
ierr	integer pointer. Return error message with the following meaning. $0->$ successful return. $>0->$ zero pivot encountered at step number ierr. $-1->$ Error. input matrix may be wrong. (The elimination process has generated a row in L or U whose length is .gt. n.) $-2->$ The matrix L overflows the array al. $-3->$ The matrix U overflows the array alu. $-4->$ Illegal value for Ifil. $-5->$ zero row encountered.
nz	integer pointer. Return number of nonzero entries for alu and jlu

Note

: All the diagonal elements of the input matrix must be nonzero.

Author

Chunsheng Feng

Date

09/06/2016

Definition at line 893 of file BlaILU.c.

10.17.2.4 fasp_symbfactor()

Symbolic factorization of a CSR matrix A in compressed sparse row format, with resulting factors stored in a single MSR data structure.

Parameters

n	row number of A
colind	integer array of column for A
rwptr	integer array of row pointers for A
levfill	integer. Level of fill-in allowed
nzmax	integer. The maximum number of nonzero entries in the approximate factorization of a. This is the amount of storage allocated for ijlu.
nzlu	integer pointer. Return number of nonzero entries for alu and jlu
ijlu	integer array of length nzlu containing pointers to delimit rows and specify column number for stored elements of the approximate factors of A. the L and U factors are stored as one matrix.
uptr	integer array of length n containing the pointers to upper trig matrix
ierr	integer pointer. Return error message with the following meaning. 0 -> successful return. 1 -> not enough storage; check mneed.

Author

Chunsheng Feng

Date

09/06/2016

Symbolic factorization of a matrix in compressed sparse row format, * with resulting factors stored in a single MSR data structure. *

This routine uses the CSR data structure of A in two integer vectors * colind, rwptr to set up the data structure for the ILU(levfill) * factorization of A in the integer vectors ijlu and uptr. Both L * and U are stored in the same structure, and uptr(i) is the pointer * to the beginning of the i-th row of U in ijlu. *

Method Used * ====== *

The implementation assumes that the diagonal entries are * nonzero, and remain nonzero throughout the elimination * process. The algorithm proceeds row by row. When computing * the sparsity pattern of the i-th row, the effect of

row * operations from previous rows is considered. Only those * preceding rows j for which (i,j) is nonzero need be considered, * since otherwise we would not have formed a linear combination * of rows i and i. *

The method used has some variations possible. The definition * of ILU(s) is not well specified enough to get a factorization * that is uniquely defined, even in the sparsity pattern that * results. For s=0 or 1, there is not much variation, but for * higher levels of fill the problem is as follows: Suppose * during the decomposition while computing the nonzero pattern * for row i the following principal submatrix is obtained: * ______ * | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | | * | | * | | * | | * | | * | | * | | * | | * | | * | | * | | * | | * | | * | * | | * | * | | * | * | | *

Furthermore, suppose that entry (i,j) resulted from an earlier * fill-in and has level s1, and (j,k) resulted from an earlier * fill-in and has level s2: * _____ * | | | * | | | * | level s2 | * | | | * | * | * | * | * | | * | | | * | level s1 | | * | | | * | | | * | | * | | * | | * | | * | | * | | * | | * | | * | | * | | * |

When using A(j,j) to annihilate A(i,j), fill-in will be incurred * in A(i,k). How should its level be defined? It would not be * operated on if A(i,j) or A(j,m) had not been filled in. The * version used here is to define its level as s1 + s2 + 1. However, * other reasonable choices would have been min(s1,s2) or max(s1,s2). * Using the sum gives a more conservative strategy in terms of the * growth of the number of nonzeros as s increases. *

levels(n+2:nzlu) stores the levels from previous rows, * that is, the s2's above. levels(1:n) stores the fill-levels * of the current row (row i), which are the s1's above. * levels(n+1) is not used, so levels is conformant with MSR format. *

Vectors used: * ======= *

lastcol(n): * The integer lastcol(k) is the row index of the last row * to have a nonzero in column k, including the current * row, and fill-in up to this point. So for the matrix *

after step 1, lastcol() = $[1\ 0\ 0\ 0\ 1\ 0] *$ after step 2, lastcol() = $[2\ 2\ 0\ 0\ 2\ 2] *$ after step 3, lastcol() = $[2\ 3\ 3\ 3\ 2\ 3] *$ after step 4, lastcol() = $[4\ 3\ 4\ 4\ 4\ 3] *$ after step 5, lastcol() = $[4\ 5\ 4\ 5\ 5\ 5] *$ after step 6, lastcol() = $[4\ 6\ 4\ 5\ 5\ 6] *$

Note that on step 2, |astcol(5)| = 2 because there is a * fillin position (2,5) in the matrix. |astcol()| is used * to determine if a nonzero occurs in column |astcol()| = 2 because |astcol()| = 2 because |astcol()| = 2 because there is a |astcol()| = 2 because there is a |astcol()| = 2 because there is a |astcol()| = 2 because |astcol()| = 2 because there is a |astcol()| = 2 because there is a |astcol()| = 2 because |astcol()| = 2 because there is a |astcol()| = 2 because |astcol()| = 2 because |astcol()| = 2 because there is a |astcol()| = 2 because |astcol()| = 2 because

rowll(n): * The integer vector rowll is used to keep a linked list of * the nonzeros in the current row, allowing fill-in to be * introduced sensibly. rowll is initialized with the * original nonzeros of the current row, and then sorted * using a shell sort. A pointer called head * (what ingenuity) is initialized. Note that at any * point rowll may contain garbage left over from previous * rows, which the linked list structure skips over. * For row 4 of the matrix above, first rowll is set to * rowll() = [3 1 2 5 - -], where - indicates any integer. * Then the vector is sorted, which yields * rowll() = [1 2 3 5 - -]. The vector is then expanded * to linked list form by setting head = 1 and * rowll() = [2 3 5 - 7 -], where 7 indicates termination. *

ijlu(nzlu): * The returned nonzero structure for the LU factors. * This is built up row by row in MSR format, with both L * and U stored in the data structure. Another vector, uptr(n), * is used to give pointers to the beginning of the upper * triangular part of the LU factors in ijlu. *

levels(n+2:nzlu): * This vector stores the fill level for each entry from * all the previous rows, used to compute if the current entry * will exceed the allowed levels of fill. The value in * levels(m) is added to the level of fill for the element in * the current row that is being reduced, to figure if * a column entry is to be accepted as fill, or rejected. * See the method explanation above. *

levels(1:n): * This vector stores the fill level number for the current * row's entries. If they were created as fill elements * themselves, this number is added to the corresponding * entry in levels(n+2:nzlu) to see if a particular column * entry will * be created as new fill or not. NOTE: in practice, the * value in levels(1:n) is one larger than the "fill" level of * the corresponding row entry, except for the diagonal * entry. That is why the accept/reject test in the code * is "if (levels(j) + levels(m) .le. levfill + 1)". *

on entry:

n = The order of the matrix A. ija = Integer array. Matrix A stored in modified sparse row format. levfill = Integer. Level of fill-in allowed. nzmax = Integer. The maximum number of nonzero entries in the approximate factorization of a. This is the amount of storage allocated for ijlu.

on return:

nzlu = The actual number of entries in the approximate factors, plus one. ijlu = Integer array of length nzlu containing pointers to delimit rows and specify column number for stored elements of the approximate factors of a. the I and u factors are stored as one matrix. uptr = Integer array of length n containing the pointers to upper trig matrix

ierr is an error flag: ierr = -i -> near zero pivot in step i ierr = 0 -> all's OK ierr = 1 -> not enough storage; check mneed. ierr = 2 -> illegal parameter

mneed = contains the actual number of elements in Idu, or the amount of additional storage needed for Idu

work arrays:

lastcol = integer array of length n containing last update of the corresponding column. levels = integer array of length n containing the level of fill-in in current row in its first n entries, and level of fill of previous rows of U in remaining part. rowll = integer array of length n containing pointers to implement a linked list for the fill-in elements.

external functions:

ifix, float, min0, srtr

Definition at line 1359 of file BlaILU.c.

10.18 BlalLUSetupBSR.c File Reference

Setup incomplete LU decomposition for dBSRmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- SHORT fasp_ilu_dbsr_setup (dBSRmat *A, ILU_data *iludata, ILU_param *iluparam)

 Get ILU decoposition of a BSR matrix A.
- SHORT fasp_ilu_dbsr_setup_levsch_omp (dBSRmat *A, ILU_data *iludata, ILU_param *iluparam)

 Get ILU decoposition of a BSR matrix A based on level schedule strategy.
- SHORT fasp_ilu_dbsr_setup_omp (dBSRmat *A, ILU_data *iludata, ILU_param *iluparam)

 Multi-threads parallel ILU decoposition of a BSR matrix A based on graph coloring.
- SHORT fasp_ilu_dbsr_setup_mc_omp (dBSRmat *A, dCSRmat *Ap, ILU_data *iludata, ILU_param *iluparam)

 Multi-threads parallel ILU decoposition of a BSR matrix A based on graph coloring.

10.18.1 Detailed Description

Setup incomplete LU decomposition for dBSRmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxArray.c, AuxMemory.c, AuxSmallMat.c, AuxSort.c, Aux

Timing.c, BlaSmallMat.c, BlaSparseBSR.c, BlaSparseCSR.c, BlaSparseCSR.c, and PreDataInit.c

10.18.2 Function Documentation

```
10.18.2.1 fasp_ilu_dbsr_setup()
```

```
SHORT fasp_ilu_dbsr_setup (

dBSRmat * A,

ILU_data * iludata,

ILU_param * iluparam )
```

Get ILU decoposition of a BSR matrix A.

Parameters

Α	Pointer to dBSRmat matrix
iludata	Pointer to ILU_data
iluparam	Pointer to ILU_param

Returns

FASP SUCCESS if successed; otherwise, error information.

Author

Shiquan Zhang, Xiaozhe Hu

Date

11/08/2010

Note

Works for general nb (Xiaozhe)
Change the size of work space by Zheng Li 04/26/2015.

Definition at line 44 of file BlalLUSetupBSR.c.

10.18.2.2 fasp_ilu_dbsr_setup_levsch_omp()

Get ILU decoposition of a BSR matrix A based on level schedule strategy.

Parameters

Α	Pointer to dBSRmat matrix
iludata	Pointer to ILU_data
iluparam	Pointer to ILU_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Zheng Li

Date

12/04/2016

Note

Only works for 1, 2, 3 nb (Zheng)

Definition at line 845 of file BlaILUSetupBSR.c.

10.18.2.3 fasp_ilu_dbsr_setup_mc_omp()

Multi-threads parallel ILU decoposition of a BSR matrix A based on graph coloring.

Parameters

Α	Pointer to dBSRmat matrix
Ар	Pointer to dCSRmat matrix and provide sparsity pattern
iludata	Pointer to ILU_data
iluparam	Pointer to ILU_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Zheng Li

Date

12/04/2016

Note

Only works for 1, 2, 3 nb (Zheng)

Definition at line 1079 of file BlaILUSetupBSR.c.

10.18.2.4 fasp_ilu_dbsr_setup_omp()

Multi-threads parallel ILU decoposition of a BSR matrix A based on graph coloring.

Parameters

Α	Pointer to dBSRmat matrix
iludata	Pointer to ILU_data
iluparam	Pointer to ILU_param

Returns

FASP SUCCESS if successed; otherwise, error information.

Author

Zheng Li

Date

12/04/2016

Note

Only works for 1, 2, 3 nb (Zheng)

Definition at line 968 of file BlaILUSetupBSR.c.

10.19 BlaILUSetupCSR.c File Reference

Setup incomplete LU decomposition for dCSRmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• SHORT fasp_ilu_dcsr_setup (dCSRmat *A, ILU_data *iludata, ILU_param *iluparam)

Get ILU decomposition of a CSR matrix A.

10.19.1 Detailed Description

Setup incomplete LU decomposition for dCSRmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxTiming.c, BlaILU.c, BlaSparseCSR.c, and PreDataInit.c

10.19.2 Function Documentation

10.19.2.1 fasp_ilu_dcsr_setup()

Get ILU decomposition of a CSR matrix A.

Parameters

Α	Pointer to dCSRmat matrix
iludata	Pointer to ILU_data
iluparam	Pointer to ILU_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Shiquan Zhang Xiaozhe Hu

Date

12/27/2009

Definition at line 33 of file BlaILUSetupCSR.c.

10.20 BlalLUSetupSTR.c File Reference

Setup incomplete LU decomposition for dSTRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_ilu_dstr_setup0 (dSTRmat *A, dSTRmat *LU)
        Get ILU(0) decomposition of a structured matrix A.
    void fasp_ilu_dstr_setup1 (dSTRmat *A, dSTRmat *LU)
        Get ILU(1) decoposition of a structured matrix A.
```

10.20.1 Detailed Description

Setup incomplete LU decomposition for dSTRmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxMemory.c, AuxSmallMat.c, BlaSmallMat.c, BlaSparseS← TR.c, and BlaArray.c

10.20.2 Function Documentation

```
10.20.2.1 fasp_ilu_dstr_setup0()
```

Get ILU(0) decomposition of a structured matrix A.

Parameters

Α	Pointer to dSTRmat
LU	Pointer to ILU structured matrix of REAL type

Author

Shiquan Zhang, Xiaozhe Hu

Date

11/08/2010

Note

Only works for 5 bands 2D and 7 bands 3D matrix with default offsets (order can be arbitrary)!

Definition at line 33 of file BlaILUSetupSTR.c.

10.20.2.2 fasp_ilu_dstr_setup1()

```
void fasp_ilu_dstr_setup1 (  \label{eq:dstrmat} \text{dSTRmat * } A, \\  \  \  \  \text{dSTRmat * } LU \; )
```

Get ILU(1) decoposition of a structured matrix A.

Parameters

Α	Pointer to oringinal structured matrix of REAL type
LU	Pointer to ILU structured matrix of REAL type

Author

Shiquan Zhang, Xiaozhe Hu

Date

11/08/2010

Note

Put L and U in a STR matrix and it has the following structure: the diag is d, the offdiag of L are alpha1 to alpha6, the offdiag of U are beta1 to beta6

Only works for 5 bands 2D and 7 bands 3D matrix with default offsets

Definition at line 328 of file BlaILUSetupSTR.c.

10.21 BlalO.c File Reference

Matrix/vector input/output subroutines.

```
#include "fasp.h"
#include "fasp_functs.h"
#include "hb_io.h"
```

Functions

 void fasp_dcsrvec1_read (const char *filename, dCSRmat *A, dvector *b) Read A and b from a SINGLE disk file. void fasp_dcsrvec2_read (const char *filemat, const char *filerhs, dCSRmat *A, dvector *b) Read A and b from two disk files. void fasp dcsr read (const char *filename, dCSRmat *A) Read A from matrix disk file in IJ format. void fasp_dcoo_read (const char *filename, dCSRmat *A) Read A from matrix disk file in IJ format – indices starting from 0. void fasp_dcoo1_read (const char *filename, dCOOmat *A) Read A from matrix disk file in IJ format – indices starting from 1. void fasp dcoo shift read (const char *filename, dCSRmat *A) Read A from matrix disk file in IJ format - indices starting from 0. void fasp dmtx read (const char *filename, dCSRmat *A) Read A from matrix disk file in MatrixMarket general format. void fasp_dmtxsym_read (const char *filename, dCSRmat *A) Read A from matrix disk file in MatrixMarket sym format. void fasp dstr read (const char *filename, dSTRmat *A) Read A from a disk file in dSTRmat format. void fasp dbsr read (const char *filename, dBSRmat *A) Read A from a disk file in dBSRmat format. void fasp dvecind read (const char *filename, dvector *b) Read b from matrix disk file. void fasp dvec read (const char *filename, dvector *b) Read b from a disk file in array format. void fasp ivecind read (const char *filename, ivector *b) Read b from matrix disk file. void fasp_ivec_read (const char *filename, ivector *b) Read b from a disk file in array format. void fasp_dcsrvec1_write (const char *filename, dCSRmat *A, dvector *b) Write A and b to a SINGLE disk file. void fasp_dcsrvec2_write (const char *filemat, const char *filerhs, dCSRmat *A, dvector *b) Write A and b to two disk files. void fasp_dcoo_write (const char *filename, dCSRmat *A) Write a matrix to disk file in IJ format (coordinate format) void fasp_dstr_write (const char *filename, dSTRmat *A) Write a dSTRmat to a disk file. void fasp dbsr write (const char *filename, dBSRmat *A) Write a dBSRmat to a disk file. void fasp_dvec_write (const char *filename, dvector *vec) Write a dvector to disk file. void fasp dvecind write (const char *filename, dvector *vec) Write a dvector to disk file in coordinate format. void fasp_ivec_write (const char *filename, ivector *vec) Write a ivector to disk file in coordinate format. void fasp dvec print (INT n, dvector *u)

Print first n entries of a vector of REAL type.

void fasp ivec print (INT n, ivector *u)

Print first n entries of a vector of INT type.

void fasp_dcsr_print (dCSRmat *A)

Print out a dCSRmat matrix in coordinate format.

void fasp_dcoo_print (dCOOmat *A)

Print out a dCOOmat matrix in coordinate format.

void fasp dbsr print (dBSRmat *A)

Print out a dBSRmat matrix in coordinate format.

void fasp dbsr write coo (const char *filename, const dBSRmat *A)

Print out a dBSRmat matrix in coordinate format for matlab spy.

void fasp dcsr write coo (const char *filename, const dCSRmat *A)

Print out a dCSRmat matrix in coordinate format for matlab spy.

void fasp_dstr_print (dSTRmat *A)

Print out a dSTRmat matrix in coordinate format.

void fasp matrix read (const char *filename, void *A)

Read matrix from different kinds of formats from both ASCII and binary files.

void fasp_matrix_read_bin (const char *filename, void *A)

Read matrix in binary format.

void fasp matrix write (const char *filename, void *A, INT flag)

write matrix from different kinds of formats from both ASCII and binary files

void fasp_vector_read (const char *filerhs, void *b)

Read RHS vector from different kinds of formats from both ASCII and binary files.

void fasp vector write (const char *filerhs, void *b, INT flag)

write RHS vector from different kinds of formats in both ASCII and binary files

void fasp hb read (const char *input file, dCSRmat *A, dvector *b)

Read matrix and right-hans side from a HB format file.

Variables

- · INT ilength
- · INT dlength

10.21.1 Detailed Description

Matrix/vector input/output subroutines.

Note

Read, write or print a matrix or a vector in various formats

This file contains Level-1 (Bla) functions. It requires AuxArray.c, AuxConvert.c, AuxMemory.c, AuxMessage.c,

AuxVector.c, and BlaFormat.c

10.21.2 Function Documentation

10.21.2.1 fasp_dbsr_print()

Print out a dBSRmat matrix in coordinate format.

Parameters

A Pointer to the dBSRmat matrix A

Author

Ziteng Wang

Date

12/24/2012

Modified by Chunsheng Feng on 11/16/2013

Definition at line 1447 of file BlaIO.c.

10.21.2.2 fasp_dbsr_read()

Read A from a disk file in dBSRmat format.

Parameters

filename	File name for matrix A
Α	Pointer to the dBSRmat A

Note

This routine reads a dBSRmat matrix from a disk file in the following format: File format:

- · ROW, COL, NNZ
- · nb: size of each block
- storage_manner: storage manner of each block
- · ROW+1: length of IA

```
• IA(i), i=0:ROW
```

• NNZ: length of JA

• JA(i), i=0:NNZ-1

• NNZ*nb*nb: length of val

• val(i), i=0:NNZ*nb*nb-1

Author

Xiaozhe Hu

Date

10/29/2010

Definition at line 698 of file BlaIO.c.

10.21.2.3 fasp_dbsr_write()

Write a dBSRmat to a disk file.

Parameters

filename	File name for A
Α	Pointer to the dBSRmat matrix A

Note

```
The routine writes the specified REAL vector in BSR format. Refer to the reading subroutine \r fasp_dbsr_read.
```

Author

Shiquan Zhang

Date

10/29/2010

Definition at line 1205 of file BlaIO.c.

10.21.2.4 fasp_dbsr_write_coo()

Print out a dBSRmat matrix in coordinate format for matlab spy.

Parameters

filename	Name of file to write to
Α	Pointer to the dBSRmat matrix A

Author

Chunsheng Feng

Date

11/14/2013

Modified by Chensong Zhang on 06/14/2014: Fix index problem.

Definition at line 1483 of file BlaIO.c.

10.21.2.5 fasp_dcoo1_read()

Read A from matrix disk file in IJ format – indices starting from 1.

Parameters

filename	File name for matrix
Α	Pointer to the COO matrix

Note

File format:

- nrow ncol nnz % number of rows, number of columns, and nnz
- i j a_ij % i, j a_ij in each line

difference between fasp_dcoo_read and this function is this function do not change to CSR format

Author

Xiaozhe Hu

Date

03/24/2013

Definition at line 377 of file BlaIO.c.

```
10.21.2.6 fasp_dcoo_print()
```

```
void fasp_dcoo_print ( \label{eq:dcoomat} \mbox{dCOOmat * A )}
```

Print out a dCOOmat matrix in coordinate format.

Parameters

A Pointer to the dCOOmat matrix A

Author

Ziteng Wang

Date

12/24/2012

Definition at line 1426 of file BlaIO.c.

```
10.21.2.7 fasp_dcoo_read()
```

Read A from matrix disk file in IJ format – indices starting from 0.

Parameters

filename	File name for matrix
Α	Pointer to the CSR matrix

Note

File format:

· nrow ncol nnz % number of rows, number of columns, and nnz

```
• i j a_ij % i, j a_ij in each line
```

After reading, it converts the matrix to dCSRmat format.

Author

Xuehai Huang, Chensong Zhang

Date

03/29/2009

Definition at line 326 of file BlaIO.c.

10.21.2.8 fasp_dcoo_shift_read()

Read A from matrix disk file in IJ format - indices starting from 0.

Parameters

filename	File name for matrix
Α	Pointer to the CSR matrix

Note

File format:

- nrow ncol nnz % number of rows, number of columns, and nnz
- i j a_ij % i, j a_ij in each line

i and j suppose to start with index 1!!!

After read in, it shifts the index to C fashin and converts the matrix to dCSRmat format.

Author

Xiaozhe Hu

Date

04/01/2014

Definition at line 427 of file BlaIO.c.

```
10.21.2.9 fasp_dcoo_write()
```

Write a matrix to disk file in IJ format (coordinate format)

Parameters

Α	pointer to the dCSRmat matrix
filename	char for vector file name

Note

```
The routine writes the specified REAL vector in COO format. Refer to the reading subroutine \rownermal{lemmath} ref fasp_dcoo_read.
```

File format:

- The first line of the file gives the number of rows, the number of columns, and the number of nonzeros.
- Then gives nonzero values in i j a(i,j) format.

Author

Chensong Zhang

Date

03/29/2009

Definition at line 1106 of file BlaIO.c.

10.21.2.10 fasp_dcsr_print()

Print out a dCSRmat matrix in coordinate format.

Parameters

A Pointer to the dCSRmat matrix A

Author

Xuehai Huang

Date

03/29/2009

Definition at line 1404 of file BlaIO.c.

```
10.21.2.11 fasp_dcsr_read()
```

Read A from matrix disk file in IJ format.

Parameters

*filename	char for matrix file name
*A	pointer to the CSR matrix

Author

Ziteng Wang

Date

12/25/2012

Definition at line 265 of file BlaIO.c.

10.21.2.12 fasp_dcsr_write_coo()

Print out a dCSRmat matrix in coordinate format for matlab spy.

Parameters

filename	Name of file to write to
Α	Pointer to the dCSRmat matrix A

Author

Chunsheng Feng

Date

11/14/2013

Definition at line 1533 of file BlaIO.c.

10.21.2.13 fasp_dcsrvec1_read()

Read A and b from a SINGLE disk file.

Parameters

filename	File name
Α	Pointer to the CSR matrix
b	Pointer to the dvector

Note

This routine reads a dCSRmat matrix and a dvector vector from a single disk file.

```
The difference between this and fasp\_dcoovec\_read is that this routine support non-square matrices.
```

File format:

- nrow ncol % number of rows and number of columns
- ia(j), j=0:nrow % row index
- ja(j), j=0:nnz-1 % column index
- a(j), j=0:nnz-1 % entry value
- n % number of entries
- b(j), j=0:n-1 % entry value

Author

Xuehai Huang

Date

03/29/2009

Modified by Chensong Zhang on 03/14/2012

Definition at line 94 of file BlaIO.c.

10.21.2.14 fasp_dcsrvec1_write()

Write A and b to a SINGLE disk file.

Parameters

filename	File name
Α	Pointer to the CSR matrix
b	Pointer to the dvector

Note

This routine writes a dCSRmat matrix and a dvector vector to a single disk file. File format:

- nrow ncol % number of rows and number of columns
- ia(j), j=0:nrow % row index
- ja(j), j=0:nnz-1 % column index
- a(j), j=0:nnz-1 % entry value
- n % number of entries
- b(j), j=0:n-1 % entry value

Author

Feiteng Huang

Date

05/19/2012

Modified by Chensong on 12/26/2012

Definition at line 957 of file BlaIO.c.

10.21.2.15 fasp_dcsrvec2_read()

Read A and b from two disk files.

Parameters

filemat	File name for matrix
filerhs	File name for right-hand side
Α	Pointer to the dCSR matrix
b	Pointer to the dvector

Note

This routine reads a dCSRmat matrix and a dvector vector from a disk file.

CSR matrix file format:

- nrow % number of columns (rows)
- ia(j), j=0:nrow % row index
- ja(j), j=0:nnz-1 % column index
- a(j), j=0:nnz-1 % entry value

RHS file format:

- n % number of entries
- b(j), j=0:nrow-1 % entry value

Indices start from 1, NOT 0!!!

Author

Zhiyang Zhou

Date

2010/08/06

Modified by Chensong Zhang on 2011/03/01 Modified by Chensong Zhang on 2012/01/05

Definition at line 186 of file BlaIO.c.

10.21.2.16 fasp_dcsrvec2_write()

Write A and b to two disk files.

Parameters

filemat	File name for matrix
filerhs	File name for right-hand side
Α	Pointer to the dCSR matrix
b	Pointer to the dvector

Note

This routine writes a dCSRmat matrix and a dvector vector to two disk files.

CSR matrix file format:

- nrow % number of columns (rows)
- ia(j), j=0:nrow % row index
- ja(j), j=0:nnz-1 % column index
- a(j), j=0:nnz-1 % entry value

RHS file format:

- n % number of entries
- b(j), j=0:nrow-1 % entry value

Indices start from 1, NOT 0!!!

Author

Feiteng Huang

Date

05/19/2012

Definition at line 1035 of file BlaIO.c.

10.21.2.17 fasp_dmtx_read()

Read A from matrix disk file in MatrixMarket general format.

Parameters

filename	File name for matrix
Α	Pointer to the CSR matrix

Note

File format: This routine reads a MatrixMarket general matrix from a mtx file. And it converts the matrix to dCS Rmat format. For details of mtx format, please refer to http://math.nist.gov/MatrixMarket/. Indices start from 1, NOT 0!!!

Author

Chensong Zhang

Date

09/05/2011

Definition at line 479 of file BlaIO.c.

10.21.2.18 fasp_dmtxsym_read()

Read A from matrix disk file in MatrixMarket sym format.

Parameters

filename	File name for matrix
Α	Pointer to the CSR matrix

Note

File format: This routine reads a MatrixMarket symmetric matrix from a mtx file. And it converts the matrix to dCSRmat format. For details of mtx format, please refer to http://math.nist.gov/MatrixMarket/.

```
Indices start from 1, NOT 0!!!
```

Author

Chensong Zhang

Date

09/02/2011

Definition at line 541 of file BlaIO.c.

```
10.21.2.19 fasp_dstr_print()
```

```
void fasp_dstr_print ( {\tt dSTRmat * A )}
```

Print out a dSTRmat matrix in coordinate format.

Parameters

```
A Pointer to the dSTRmat matrix A
```

Author

Ziteng Wang

Date

12/24/2012

Definition at line 1572 of file BlaIO.c.

```
10.21.2.20 fasp_dstr_read()
```

Read A from a disk file in dSTRmat format.

Parameters

filename	File name for the matrix
Α	Pointer to the dSTRmat

Note

This routine reads a dSTRmat matrix from a disk file. After done, it converts the matrix to dCSRmat format. File format:

- nx, ny, nz
- · nc: number of components
- · nband: number of bands
- n: size of diagonal, you must have diagonal
- diag(j), j=0:n-1
- offset, length: offset and length of off-diag1
- offdiag(j), j=0:length-1

Author

Xuehai Huang

Date

03/29/2009

Definition at line 618 of file BlaIO.c.

10.21.2.21 fasp_dstr_write()

Write a dSTRmat to a disk file.

Parameters

filename	File name for A
Α	Pointer to the dSTRmat matrix A

Note

```
The routine writes the specified REAL vector in STR format. Refer to the reading subroutine \r fasp_dstr_read.
```

Author

Shiquan Zhang

Date

03/29/2010

Definition at line 1146 of file BlaIO.c.

10.21.2.22 fasp_dvec_print()

Print first n entries of a vector of REAL type.

Parameters

n	An interger (if n=0, then print all entries)
и	Pointer to a dvector

Author

Chensong Zhang

Date

03/29/2009

Definition at line 1365 of file BlaIO.c.

10.21.2.23 fasp_dvec_read()

Read b from a disk file in array format.

Parameters

filename	File name for vector b
b	Pointer to the dvector b (output)

Note

File Format:

- nrow
- val_j, j=0:nrow-1

Author

Chensong Zhang

Date

03/29/2009

Definition at line 817 of file BlaIO.c.

10.21.2.24 fasp_dvec_write()

Write a dvector to disk file.

Parameters

vec	Pointer to the dvector
filename	File name

Author

Xuehai Huang

Date

03/29/2009

Definition at line 1260 of file BlaIO.c.

10.21.2.25 fasp_dvecind_read()

Read b from matrix disk file.

Parameters

filename	File name for vector b
b	Pointer to the dvector b (output)

Note

File Format:

- nrow
- ind_j, val_j, j=0:nrow-1

Because the index is given, order is not important!

Author

Chensong Zhang

Date

03/29/2009

Definition at line 767 of file BlaIO.c.

10.21.2.26 fasp_dvecind_write()

Write a dvector to disk file in coordinate format.

Parameters

vec	Pointer to the dvector
filename	File name

Note

The routine writes the specified REAL vector in IJ format.

- The first line of the file is the length of the vector;
- · After that, each line gives index and value of the entries.

Author

Xuehai Huang

Date

03/29/2009

Definition at line 1296 of file BlaIO.c.

10.21.2.27 fasp_hb_read()

Read matrix and right-hans side from a HB format file.

Parameters

input_file	File name of vector file
Α	Pointer to the matrix
b	Pointer to the vector

Note

Modified from the c code hb_io_prb.c by John Burkardt

Author

Xiaoehe Hu

Date

05/30/2014

Definition at line 2067 of file BlaIO.c.

10.21.2.28 fasp_ivec_print()

```
void fasp_ivec_print (  \begin{tabular}{ll} INT $n$, \\ ivector * $u$ ) \end{tabular}
```

Print first n entries of a vector of INT type.

Parameters

n	An interger (if n=0, then print all entries)
и	Pointer to an ivector

Author

Chensong Zhang

Date

03/29/2009

Definition at line 1385 of file BlaIO.c.

```
10.21.2.29 fasp_ivec_read()
```

Read b from a disk file in array format.

Parameters

filename	File name for vector b
b	Pointer to the dvector b (output)

Note

File Format:

- nrow
- val_j, j=0:nrow-1

Author

Xuehai Huang

Date

03/29/2009

Definition at line 907 of file BlaIO.c.

```
10.21.2.30 fasp_ivec_write()
```

Write a ivector to disk file in coordinate format.

Parameters

vec	Pointer to the dvector
filename	File name

Note

The routine writes the specified INT vector in IJ format.

- The first line of the file is the length of the vector;
- After that, each line gives index and value of the entries.

Author

Xuehai Huang

Date

03/29/2009

Definition at line 1331 of file BlaIO.c.

10.21.2.31 fasp_ivecind_read()

Read b from matrix disk file.

Parameters

filename	File name for vector b
b	Pointer to the dvector b (output)

Note

File Format:

- nrow
- ind_j, val_j ... j=0:nrow-1

Author

Chensong Zhang

Date

03/29/2009

Definition at line 867 of file BlaIO.c.

10.21.2.32 fasp_matrix_read()

Read matrix from different kinds of formats from both ASCII and binary files.

Parameters

filemat	File name of matrix file
Α	Pointer to the matrix

Note

Flags for matrix file format:

- fileflag % fileflag = 1: binary, fileflag = 0000: ASCII
- formatflag % a 3-digit number for internal use, see below
- matrix % different types of matrix

Meaning of formatflag:

· matrixflag % first digit of formatflag

```
- matrixflag = 1: CSR format
```

- matrixflag = 2: BSR format
- matrixflag = 3: STR format
- matrixflag = 4: COO format
- matrixflag = 5: MTX format
- matrixflag = 6: MTX symmetrical format
- · ilength % third digit of formatflag, length of INT
- · dlength % fourth digit of formatflag, length of REAL

Author

Ziteng Wang

Date

12/24/2012

Modified by Chensong Zhang on 05/01/2013

Definition at line 1606 of file BlaIO.c.

10.21.2.33 fasp_matrix_read_bin()

Read matrix in binary format.

Parameters

filemat	File name of matrix file
Α	Pointer to the matrix

Author

Xiaozhe Hu

Date

04/14/2013

Modified by Chensong Zhang on 05/01/2013: Use it to read binary files!!!

Definition at line 1712 of file BlaIO.c.

10.21.2.34 fasp_matrix_write()

write matrix from different kinds of formats from both ASCII and binary files

Parameters

filemat	File name of matrix file
Α	Pointer to the matrix
flag	Type of file and matrix, a 3-digit number

Note

Meaning of flag:

- fileflag % fileflag = 1: binary, fileflag = 0: ASCII
- · matrixflag
 - matrixflag = 1: CSR format
 - matrixflag = 2: BSR format
 - matrixflag = 3: STR format

Matrix file format:

- fileflag % fileflag = 1: binary, fileflag = 0000: ASCII
- formatflag % a 3-digit number
- · matrixflag % different kinds of matrix judged by formatflag

Author

Ziteng Wang

Date

12/24/2012

Definition at line 1786 of file BlaIO.c.

10.21.2.35 fasp_vector_read()

Read RHS vector from different kinds of formats from both ASCII and binary files.

Parameters

filerhs	File name of vector file
b	Pointer to the vector

Note

Matrix file format:

- fileflag % fileflag = 1: binary, fileflag = 0000: ASCII
- · formatflag % a 3-digit number
- · vector % different kinds of vector judged by formatflag

Meaning of formatflag:

- · vectorflag % first digit of formatflag
 - vectorflag = 1: dvec format
 - vectorflag = 2: ivec format
 - vectorflag = 3: dvecind format
 - vectorflag = 4: ivecind format
- · ilength % second digit of formatflag, length of INT
- · dlength % third digit of formatflag, length of REAL

Author

Ziteng Wang

Date

12/24/2012

Definition at line 1880 of file BlaIO.c.

10.21.2.36 fasp_vector_write()

write RHS vector from different kinds of formats in both ASCII and binary files

Parameters

filerh	าร	File name of vector file
b		Pointer to the vector
flag		Type of file and vector, a 2-digit number

Note

Meaning of the flags

- fileflag % fileflag = 1: binary, fileflag = 0: ASCII
- · vectorflag
 - vectorflag = 1: dvec format
 - vectorflag = 2: ivec format
 - vectorflag = 3: dvecind format
 - vectorflag = 4: ivecind format

Matrix file format:

- fileflag % fileflag = 1: binary, fileflag = 0000: ASCII
- formatflag % a 2-digit number
- · vectorflag % different kinds of vector judged by formatflag

Author

Ziteng Wang

Date

12/24/2012

Modified by Chensong Zhang on 05/02/2013: fix a bug when writing in binary format

Definition at line 1978 of file BlaIO.c.

10.21.3 Variable Documentation

10.21.3.1 dlength

INT dlength

Length of REAL in byte

Definition at line 18 of file BlaIO.c.

10.21.3.2 ilength

INT ilength

Length of INT in byte

Definition at line 17 of file BlaIO.c.

10.22 BlaSchwarzSetup.c File Reference

Setup phase for the Schwarz methods.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• INT fasp_schwarz_setup (Schwarz_data *Schwarz, Schwarz_param *param)

Setup phase for the Schwarz methods.

void fasp_dcsr_schwarz_forward_smoother (Schwarz_data *Schwarz, Schwarz_param *param, dvector *x, dvector *b)

Schwarz smoother: forward sweep.

void fasp_dcsr_schwarz_backward_smoother (Schwarz_data *Schwarz, Schwarz_param *param, dvector *x, dvector *b)

Schwarz smoother: backward sweep.

10.22.1 Detailed Description

Setup phase for the Schwarz methods.

Note

This file contains Level-1 (Bla) functions. It requires AuxMemory.c, AuxVector.c, BlaSparseCSR.c, BlaSparse← Util.c, and KryPvgmres.c

10.22.2 Function Documentation

10.22.2.1 fasp_dcsr_schwarz_backward_smoother()

Schwarz smoother: backward sweep.

Parameters

Schwarz	Pointer to the Schwarz data
param	Pointer to the Schwarz parameter
X	Pointer to solution vector
b	Pointer to right hand

Author

Zheng Li, Chensong Zhang

Date

2014/10/5

Definition at line 321 of file BlaSchwarzSetup.c.

10.22.2.2 fasp_dcsr_schwarz_forward_smoother()

Schwarz smoother: forward sweep.

Parameters

Schwarz	Pointer to the Schwarz data
param	Pointer to the Schwarz parameter
X	Pointer to solution vector
b	Pointer to right hand

Author

Zheng Li, Chensong Zhang

Date

2014/10/5

Definition at line 211 of file BlaSchwarzSetup.c.

10.22.2.3 fasp_schwarz_setup()

Setup phase for the Schwarz methods.

Parameters

Schwarz	Pointer to the Schwarz data
param	Type of the Schwarz method

Returns

FASP_SUCCESS if succeed

Author

Ludmil, Xiaozhe Hu

Date

03/22/2011

Modified by Zheng Li on 10/09/2014

Definition at line 42 of file BlaSchwarzSetup.c.

10.23 BlaSmallMat.c File Reference

BLAS operations for small dense matrices.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp blas smat axm (REAL *a, const INT n, const REAL alpha)

      Compute alpha*a, store in a.

    void fasp blas smat add (REAL *a, REAL *b, const INT n, const REAL alpha, const REAL beta, REAL *c)

      Compute c = alpha*a + beta*b.

    void fasp blas smat mxv nc2 (REAL *a, REAL *b, REAL *c)

      Compute the product of a 2*2 matrix a and a array b, stored in c.

    void fasp_blas_smat_mxv_nc3 (REAL *a, REAL *b, REAL *c)

      Compute the product of a 3*3 matrix a and a array b, stored in c.
• void fasp_blas_smat_mxv_nc5 (REAL *a, REAL *b, REAL *c)
      Compute the product of a 5*5 matrix a and a array b, stored in c.

    void fasp blas smat mxv nc7 (REAL *a, REAL *b, REAL *c)

      Compute the product of a 7*7 matrix a and a array b, stored in c.

    void fasp blas smat mxv (REAL *a, REAL *b, REAL *c, const INT n)

      Compute the product of a small full matrix a and a array b, stored in c.

    void fasp_blas_smat_mul_nc2 (REAL *a, REAL *b, REAL *c)

      Compute the matrix product of two 2* matrices a and b, stored in c.

    void fasp blas smat mul nc3 (REAL *a, REAL *b, REAL *c)

      Compute the matrix product of two 3*3 matrices a and b, stored in c.

    void fasp blas smat mul nc5 (REAL *a, REAL *b, REAL *c)

      Compute the matrix product of two 5*5 matrices a and b, stored in c.

    void fasp blas smat mul nc7 (REAL *a, REAL *b, REAL *c)

      Compute the matrix product of two 7*7 matrices a and b, stored in c.

    void fasp blas smat mul (REAL *a, REAL *b, REAL *c, const INT n)

      Compute the matrix product of two small full matrices a and b, stored in c.

    void fasp_blas_array_axpyz_nc2 (const REAL a, REAL *x, REAL *y, REAL *z)

      z = a * x + v

    void fasp_blas_array_axpyz_nc3 (const REAL a, REAL *x, REAL *y, REAL *z)

      z = a * x + v

    void fasp_blas_array_axpyz_nc5 (const REAL a, REAL *x, REAL *y, REAL *z)

      z = a * x + y

    void fasp blas array axpyz nc7 (const REAL a, REAL *x, REAL *y, REAL *z)

      z = a * x + y

    void fasp_blas_array_axpy_nc2 (const REAL a, REAL *x, REAL *y)

      y = a*x + y, the length of x and y is 2

    void fasp_blas_array_axpy_nc3 (const REAL a, REAL *x, REAL *y)

      y = a*x + y, the length of x and y is 3

    void fasp blas array axpy nc5 (const REAL a, REAL *x, REAL *y)

      y = a*x + y, the length of x and y is 5

    void fasp_blas_array_axpy_nc7 (const REAL a, REAL *x, REAL *y)

      y = a*x + y, the length of x and y is 7

    void fasp blas smat ypAx nc2 (REAL *A, REAL *x, REAL *y)

      Compute y := y + Ax, where 'A' is a 2*2 dense matrix.

    void fasp_blas_smat_ypAx_nc3 (REAL *A, REAL *x, REAL *y)

      Compute y := y + Ax, where 'A' is a 3*3 dense matrix.
```

void fasp blas smat ypAx nc5 (REAL *A, REAL *x, REAL *y)

Compute y := y + Ax, where 'A' is a 5*5 dense matrix.

void fasp_blas_smat_ypAx_nc7 (REAL *A, REAL *x, REAL *y)

Compute y := y + Ax, where 'A' is a 7*7 dense matrix.

void fasp blas smat ypAx (REAL *A, REAL *x, REAL *y, const INT n)

Compute y := y + Ax, where 'A' is a n*n dense matrix.

void fasp_blas_smat_ymAx_nc2 (REAL *A, REAL *x, REAL *y)

Compute y := y - Ax, where 'A' is a n*n dense matrix.

void fasp_blas_smat_ymAx_nc3 (REAL *A, REAL *x, REAL *y)

Compute y := y - Ax, where 'A' is a n*n dense matrix.

void fasp_blas_smat_ymAx_nc5 (REAL *A, REAL *x, REAL *y)

Compute y := y - Ax, where 'A' is a n*n dense matrix.

void fasp_blas_smat_ymAx_nc7 (REAL *A, REAL *x, REAL *y)

Compute y := y - Ax, where 'A' is a 7*7 dense matrix.

void fasp blas smat ymAx (REAL *A, REAL *x, REAL *y, const INT n)

Compute y := y - Ax, where 'A' is a n*n dense matrix.

void fasp_blas_smat_aAxpby (const REAL alpha, REAL *A, REAL *x, const REAL beta, REAL *y, const INT n)
 Compute y:=alpha*A*x + beta*y.

void fasp blas smat ymAx ns2 (REAL *A, REAL *x, REAL *y)

Compute ys := ys - Ass*xs, where 'A' is a 2*2 dense matrix, Ass is its saturaton part 1*1.

void fasp_blas_smat_ymAx_ns3 (REAL *A, REAL *x, REAL *y)

Compute ys := ys - Ass*xs, where 'A' is a 3*3 dense matrix, Ass is its saturaton part 2*2.

void fasp_blas_smat_ymAx_ns5 (REAL *A, REAL *x, REAL *y)

Compute ys := ys - Ass*xs, where 'A' is a 5*5 dense matrix, Ass is its saturaton part 4*4.

void fasp_blas_smat_ymAx_ns7 (REAL *A, REAL *x, REAL *y)

Compute ys := ys - Ass*xs, where 'A' is a 7*7 dense matrix, Ass is its saturaton part 6*6.

void fasp_blas_smat_ymAx_ns (REAL *A, REAL *x, REAL *y, const INT n)

Compute ys := ys - Ass*xs, where 'A' is a n*n dense matrix, Ass is its saturaton part (n-1)*(n-1).

10.23.1 Detailed Description

BLAS operations for *small* dense matrices.

Note

This file contains Level-1 (Bla) functions. It requires BlaSparseBSR.c, BlaSparseCSR.c, BlaSpmvCSR.c, and PreDataInit.c

Warning

These rountines are designed for full matrices only!

10.23.2 Function Documentation

10.23.2.1 fasp_blas_array_axpy_nc2()

y = a*x + y, the length of x and y is 2

Parameters

а	REAL factor a
X	Pointer to the original array
У	Pointer to the destination array

Author

Xiaozhe Hu

Date

18/11/2011

Definition at line 689 of file BlaSmallMat.c.

10.23.2.2 fasp_blas_array_axpy_nc3()

y = a*x + y, the length of x and y is 3

Parameters

а	REAL factor a
X	Pointer to the original array
У	Pointer to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 712 of file BlaSmallMat.c.

```
10.23.2.3 fasp_blas_array_axpy_nc5()
```

y = a*x + y, the length of x and y is 5

Parameters

а	REAL factor a
X	Pointer to the original array
У	Pointer to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 741 of file BlaSmallMat.c.

10.23.2.4 fasp_blas_array_axpy_nc7()

y = a*x + y, the length of x and y is 7

а	REAL factor a
X	Pointer to the original array
Gene	ate on the attention array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 788 of file BlaSmallMat.c.

10.23.2.5 fasp_blas_array_axpyz_nc2()

z = a*x + y

Parameters

а	REAL factor a
X	Pointer to the original array 1
У	Pointer to the original array 2
Z	Pointer to the destination array

Author

Xiaozhe Hu

Date

18/11/2011

Note

z is the third array and the length of x, y and z is 2

Definition at line 504 of file BlaSmallMat.c.

10.23.2.6 fasp_blas_array_axpyz_nc3()

z = a*x + y

Parameters

а	REAL factor a
X	Pointer to the original array 1
У	Pointer to the original array 2
Z	Pointer to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

z is the third array and the length of x, y and z is 3

Definition at line 531 of file BlaSmallMat.c.

10.23.2.7 fasp_blas_array_axpyz_nc5()

z = a*x + y

а	REAL factor a
Х	Pointer to the original array 1
у	Pointer to the original array 2
Geਔer	at Rointex to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

z is the third array and the length of x, y and z is 5

Definition at line 564 of file BlaSmallMat.c.

10.23.2.8 fasp_blas_array_axpyz_nc7()

z = a*x + y

Parameters

а	REAL factor a
X	Pointer to the original array 1
У	Pointer to the original array 2
Z	Pointer to the destination array

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Note

z is the third array and the length of x, y and z is 7

Definition at line 615 of file BlaSmallMat.c.

10.23.2.9 fasp_blas_smat_aAxpby()

Compute y:=alpha*A*x + beta*y.

Parameters

alpha	REAL factor alpha
Α	Pointer to the REAL array which stands for a n∗n full matrix
Х	Pointer to the REAL array with length n
beta	REAL factor beta
У	Pointer to the REAL array with length n
n	Length of array x and y

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 1312 of file BlaSmallMat.c.

10.23.2.10 fasp_blas_smat_add()

```
void fasp_blas_smat_add (
    REAL * a,
    REAL * b,
    const INT n,
    const REAL alpha,
    const REAL beta,
    REAL * c )
```

Compute c = alpha*a + beta*b.

а	Pointer to the REAL array which stands a n∗n matrix
b	Pointer to the REAL array which stands a n*n matrix
Generated I	^{by} Dixyension of the matrix
alpha	Scalar
beta	Scalar
C	Pointer to the REAL array which stands a n*n matrix

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 58 of file BlaSmallMat.c.

```
10.23.2.11 fasp_blas_smat_axm()
```

Compute alpha*a, store in a.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
n	Dimension of the matrix
alpha	Scalar

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 29 of file BlaSmallMat.c.

10.23.2.12 fasp_blas_smat_mul()

```
void fasp_blas_smat_mul (
    REAL * a,
    REAL * b,
    REAL * c,
    const INT n )
```

Compute the matrix product of two small full matrices a and b, stored in c.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
b	Pointer to the REAL array which stands a n*n matrix
С	Pointer to the REAL array which stands a n*n matrix
n	Dimension of the matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

04/21/2010

Definition at line 452 of file BlaSmallMat.c.

10.23.2.13 fasp_blas_smat_mul_nc2()

Compute the matrix product of two 2* matrices a and b, stored in c.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
b	Pointer to the REAL array which stands a n*n matrix
С	Pointer to the REAL array which stands a n*n matrix

Author

Xiaozhe Hu

Date

18/11/2011

Definition at line 237 of file BlaSmallMat.c.

10.23.2.14 fasp_blas_smat_mul_nc3()

```
void fasp_blas_smat_mul_nc3 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the matrix product of two 3*3 matrices a and b, stored in c.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
b	Pointer to the REAL array which stands a n*n matrix
С	Pointer to the REAL array which stands a n*n matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 266 of file BlaSmallMat.c.

```
10.23.2.15 fasp_blas_smat_mul_nc5()
```

```
void fasp_blas_smat_mul_nc5 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the matrix product of two 5*5 matrices a and b, stored in c.

Parameters

	а	Pointer to the REAL array which stands a 5*5 matrix
	b	Pointer to the REAL array which stands a 5*5 matrix
Ī	С	Pointer to the REAL array which stands a 5*5 matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 303 of file BlaSmallMat.c.

```
10.23.2.16 fasp_blas_smat_mul_nc7()
```

Compute the matrix product of two 7*7 matrices a and b, stored in c.

Parameters

а	Pointer to the REAL array which stands a 7*7 matrix
b	Pointer to the REAL array which stands a 7*7 matrix
С	Pointer to the REAL array which stands a 7*7 matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 362 of file BlaSmallMat.c.

10.23.2.17 fasp_blas_smat_mxv()

Compute the product of a small full matrix a and a array b, stored in c.

Parameters

а	Pointer to the REAL array which stands a n*n matrix
b	Pointer to the REAL array with length n
С	Pointer to the REAL array with length n
n	Dimension of the matrix

Author

Xiaozhe Hu, Shiquan Zhang

Date

04/21/2010

Definition at line 187 of file BlaSmallMat.c.

10.23.2.18 fasp_blas_smat_mxv_nc2()

```
void fasp_blas_smat_mxv_nc2 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the product of a 2*2 matrix a and a array b, stored in c.

Parameters

а	Pointer to the REAL array which stands a 2*2 matrix
b	Pointer to the REAL array with length 2
С	Pointer to the REAL array with length 2

Author

Xiaozhe Hu

Date

18/11/2010

Definition at line 87 of file BlaSmallMat.c.

10.23.2.19 fasp_blas_smat_mxv_nc3()

```
void fasp_blas_smat_mxv_nc3 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the product of a 3*3 matrix a and a array b, stored in c.

Parameters

а	Pointer to the REAL array which stands a 3*3 matrix
b	Pointer to the REAL array with length 3
С	Pointer to the REAL array with length 3

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 109 of file BlaSmallMat.c.

10.23.2.20 fasp_blas_smat_mxv_nc5()

```
void fasp_blas_smat_mxv_nc5 (
    REAL * a,
    REAL * b,
    REAL * c )
```

Compute the product of a 5*5 matrix a and a array b, stored in c.

Parameters

а	Pointer to the REAL array which stands a 5*5 matrix
b	Pointer to the REAL array with length 5
С	Pointer to the REAL array with length 5

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 132 of file BlaSmallMat.c.

```
10.23.2.21 fasp_blas_smat_mxv_nc7()
```

Compute the product of a 7*7 matrix a and a array b, stored in c.

Parameters

а	Pointer to the REAL array which stands a 7*7 matrix
b	Pointer to the REAL array with length 7
С	Pointer to the REAL array with length 7

Author

Xiaozhe Hu, Shiquan Zhang

Date

05/01/2010

Definition at line 158 of file BlaSmallMat.c.

10.23.2.22 fasp_blas_smat_ymAx()

Compute y := y - Ax, where 'A' is a n*n dense matrix.

Parameters

Α	Pointer to the n*n dense matrix
Х	Pointer to the REAL array with length n
у	Pointer to the REAL array with length n
n	the dimension of the dense matrix

Author

Zhiyang Zhou, Xiaozhe Hu

Date

2010/10/25

Definition at line 1211 of file BlaSmallMat.c.

10.23.2.23 fasp_blas_smat_ymAx_nc2()

Compute y := y - Ax, where 'A' is a n*n dense matrix.

Parameters

Α	Pointer to the 2*2 dense matrix
X	Pointer to the REAL array with length 3
У	Pointer to the REAL array with length 3

Author

Xiaozhe Hu

Date

18/11/2011

Note

Works for 2-component

Definition at line 1081 of file BlaSmallMat.c.

10.23.2.24 fasp_blas_smat_ymAx_nc3()

Compute y := y - Ax, where 'A' is a n*n dense matrix.

Parameters

	Α	Pointer to the 3*3 dense matrix
	Χ	Pointer to the REAL array with length 3
	У	Pointer to the REAL array with length 3

Author

Xiaozhe Hu, Zhiyang Zhou

Date

01/06/2011

Note

Works for 3-component

Definition at line 1109 of file BlaSmallMat.c.

10.23.2.25 fasp_blas_smat_ymAx_nc5()

Compute y := y - Ax, where 'A' is a n*n dense matrix.

Α	Pointer to the 5*5 dense matrix
Х	Pointer to the REAL array with length 5
У	Pointer to the REAL array with length 5

Author

Xiaozhe Hu, Zhiyang Zhou

Date

01/06/2011

Note

Works for 5-component

Definition at line 1139 of file BlaSmallMat.c.

10.23.2.26 fasp_blas_smat_ymAx_nc7()

```
void fasp_blas_smat_ymAx_nc7 (
    REAL * A,
    REAL * x,
    REAL * y )
```

Compute y := y - Ax, where 'A' is a 7*7 dense matrix.

Parameters

Α	Pointer to the 7*7 dense matrix
X	Pointer to the REAL array with length 7
У	Pointer to the REAL array with length 7

Author

Xiaozhe Hu, Zhiyang Zhou

Date

01/06/2011

Note

Works for 7-component

Definition at line 1173 of file BlaSmallMat.c.

10.23.2.27 fasp_blas_smat_ymAx_ns()

```
void fasp_blas_smat_ymAx_ns (
    REAL * A,
    REAL * x,
    REAL * y,
    const INT n )
```

Compute ys := ys - Ass*xs, where 'A' is a n*n dense matrix, Ass is its saturation part (n-1)*(n-1).

Parameters

Α	Pointer to the n*n dense matrix
Х	Pointer to the REAL array with length n-1
У	Pointer to the REAL array with length n-1
n	the dimension of the dense matrix

Author

Xiaozhe Hu

Date

2010/10/25

Note

Only for block smoother for saturation block without explictly use saturation block!!

Definition at line 1486 of file BlaSmallMat.c.

10.23.2.28 fasp_blas_smat_ymAx_ns2()

Compute ys := ys - Ass*xs, where 'A' is a 2*2 dense matrix, Ass is its saturation part 1*1.

Α	Pointer to the 2*2 dense matrix
Χ	Pointer to the REAL array with length 1
У	Pointer to the REAL array with length 1

Author

Xiaozhe Hu

Date

2011/11/18

Note

Works for 2-component (Xiaozhe) Only for block smoother for saturation block without explictly use saturation block!

Definition at line 1362 of file BlaSmallMat.c.

10.23.2.29 fasp_blas_smat_ymAx_ns3()

```
void fasp_blas_smat_ymAx_ns3 (
    REAL * A,
    REAL * x,
    REAL * y )
```

Compute ys := ys - Ass*xs, where 'A' is a 3*3 dense matrix, Ass is its saturaton part 2*2.

Parameters

Α	Pointer to the 3*3 dense matrix
Х	Pointer to the REAL array with length 2
У	Pointer to the REAL array with length 2

Author

Xiaozhe Hu

Date

2010/10/25

Note

Works for 3-component (Xiaozhe) Only for block smoother for saturation block without explictly use saturation block!!

Definition at line 1386 of file BlaSmallMat.c.

10.23.2.30 fasp_blas_smat_ymAx_ns5()

Compute ys := ys - Ass*xs, where 'A' is a 5*5 dense matrix, Ass is its saturaton part 4*4.

Parameters

Α	Pointer to the 5*5 dense matrix
Х	Pointer to the REAL array with length 4
У	Pointer to the REAL array with length 4

Author

Xiaozhe Hu

Date

2010/10/25

Note

Works for 5-component (Xiaozhe) Only for block smoother for saturation block without explictly use saturation block!!

Definition at line 1414 of file BlaSmallMat.c.

10.23.2.31 fasp_blas_smat_ymAx_ns7()

Compute ys := ys - Ass*xs, where 'A' is a 7*7 dense matrix, Ass is its saturaton part 6*6.

Α	Pointer to the 7*7 dense matrix
Χ	Pointer to the REAL array with length 6
У	Pointer to the REAL array with length 6

Author

Xiaozhe Hu

Date

2010/10/25

Note

Works for 7-component (Xiaozhe) Only for block smoother for saturation block without explictly use saturation block!!

Definition at line 1448 of file BlaSmallMat.c.

10.23.2.32 fasp_blas_smat_ypAx()

Compute y := y + Ax, where 'A' is a n*n dense matrix.

Parameters

Α	Pointer to the n*n dense matrix
X	Pointer to the REAL array with length n
У	Pointer to the REAL array with length n
n	Dimension of the dense matrix

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 980 of file BlaSmallMat.c.

10.23.2.33 fasp_blas_smat_ypAx_nc2()

Compute y := y + Ax, where 'A' is a 2*2 dense matrix.

Parameters

	Α	Pointer to the 3*3 dense matrix
	Χ	Pointer to the REAL array with length 3
	У	Pointer to the REAL array with length 3

Author

Xiaozhe Hu

Date

2011/11/18

Definition at line 861 of file BlaSmallMat.c.

10.23.2.34 fasp_blas_smat_ypAx_nc3()

Compute y := y + Ax, where 'A' is a 3*3 dense matrix.

Parameters

Α	Pointer to the 3*3 dense matrix
X	Pointer to the REAL array with length 3
У	Pointer to the REAL array with length 3

Author

Zhiyang Zhou, Xiaozhe Hu

Date

2010/10/25

Definition at line 887 of file BlaSmallMat.c.

```
10.23.2.35 fasp_blas_smat_ypAx_nc5()
```

```
void fasp_blas_smat_ypAx_nc5 (
    REAL * A,
    REAL * x,
    REAL * y )
```

Compute y := y + Ax, where 'A' is a 5*5 dense matrix.

Parameters

Α	Pointer to the 5*5 dense matrix
Χ	Pointer to the REAL array with length 5
У	Pointer to the REAL array with length 5

Author

Zhiyang Zhou, Xiaozhe Hu

Date

2010/10/25

Definition at line 914 of file BlaSmallMat.c.

```
10.23.2.36 fasp_blas_smat_ypAx_nc7()
```

Compute y := y + Ax, where 'A' is a 7*7 dense matrix.

Α	Pointer to the 7*7 dense matrix
X	Pointer to the REAL array with length 7
Gener	ซ ศฟากใช่หาเอา the REAL array with length 7

Author

Zhiyang Zhou, Xiaozhe Hu

Date

2010/10/25

Definition at line 945 of file BlaSmallMat.c.

10.24 BlaSmallMatLU.c File Reference

LU decomposition and direct solver for small dense matrices.

```
#include <math.h>
#include "fasp.h"
```

Functions

- SHORT fasp_smat_lu_decomp (REAL *A, INT pivot[], const INT n)
 LU decomposition of A usind Doolittle's method.
- SHORT fasp_smat_lu_solve (REAL *A, REAL b[], INT pivot[], REAL x[], const INT n) Solving Ax=b using LU decomposition.

10.24.1 Detailed Description

LU decomposition and direct solver for small dense matrices.

Note

This file contains Level-1 (Bla) functions.

10.24.2 Function Documentation

10.24.2.1 fasp_smat_lu_decomp()

LU decomposition of A usind Doolittle's method.

Parameters

Α	Pointer to the full matrix
pivot	Pivoting positions
n	Size of matrix A

Returns

FASP_SUCCESS if successed; otherwise, error information.

Note

Use Doolittle's method to decompose the $n \times n$ matrix A into a unit lower triangular matrix L and an upper triangular matrix U such that A = LU. The matrices L and U replace the matrix A. The diagonal elements of L are 1 and are not stored.

The Doolittle method with partial pivoting is: Determine the pivot row and interchange the current row with the pivot row, then assuming that row k is the current row, k = 0, ..., n - 1 evaluate in order the following pair of expressions U[k][j] = A[k][j] - (L[k][0]*U[0][j] + ... + L[k][k-1]*U[k-1][j]) for j = k, k+1, ..., n-1 L[i][k] = (A[i][k] - (L[i][0]*U[0][k] + ... + L[i][k-1]*U[k-1][k])) / U[k][k] for i = k+1, ..., n-1.

Author

Xuehai Huang

Date

04/02/2009

Definition at line 47 of file BlaSmallMatLU.c.

10.24.2.2 fasp_smat_lu_solve()

```
SHORT fasp_smat_lu_solve (

REAL * A,

REAL b[],

INT pivot[],

REAL x[],

const INT n)
```

Solving Ax=b using LU decomposition.

Α	Pointer to the full matrix
b	Right hand side array
pivot	Pivoting positions
Gexterated	ԵրΡοմոյա to the solution array
n	Size of matrix A

Returns

FASP SUCCESS if successed; otherwise, error information.

Note

This routine uses Doolittle's method to solve the linear equation Ax = b. This routine is called after the matrix A has been decomposed into a product of a unit lower triangular matrix L and an upper triangular matrix U with pivoting. The solution proceeds by solving the linear equation Ly = b for y and subsequently solving the linear equation Ux = y for x.

Author

Xuehai Huang

Date

04/02/2009

Definition at line 118 of file BlaSmallMatLU.c.

10.25 BlaSparseBLC.c File Reference

Sparse matrix block operations.

```
#include <time.h>
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
```

Functions

void fasp_dblc_free (dBLCmat *A)

Free block CSR sparse matrix data memory space.

- SHORT fasp_dcsr_getblk (dCSRmat *A, INT *Is, INT *Js, const INT m, const INT n, dCSRmat *B)
 - Get a sub CSR matrix of A with specified rows and columns.
- SHORT fasp_dbsr_getblk (dBSRmat *A, INT *Is, INT *Js, const INT m, const INT n, dBSRmat *B)

Get a sub BSR matrix of A with specified rows and columns.

dCSRmat fasp_dbsr_getblk_dcsr (dBSRmat *A)

get dCSRmat block from a dBSRmat matrix

• dCSRmat fasp_dbsr_Linfinity_dcsr (dBSRmat *A)

get dCSRmat from a dBSRmat matrix using L_infinity norm of each small block

10.25.1 Detailed Description

Sparse matrix block operations.

Note

This file contains Level-1 (Bla) functions. It requires AuxMemory.c, AuxSmallMat.c, and BlaSparseCSR.c

10.25.2 Function Documentation

Free block CSR sparse matrix data memory space.

Parameters

```
A Pointer to the dBLCmat matrix
```

Author

Xiaozhe Hu

Date

04/18/2014

Definition at line 33 of file BlaSparseBLC.c.

10.25.2.2 fasp_dbsr_getblk()

```
SHORT fasp_dbsr_getblk (

dBSRmat * A,

INT * Is,

INT * Js,

const INT m,

const INT n,

dBSRmat * B)
```

Get a sub BSR matrix of A with specified rows and columns.

Parameters

Α	Pointer to dBSRmat BSR matrix
В	Pointer to dBSRmat BSR matrix
Is	Pointer to selected rows
Js	Pointer to selected columns
m	Number of selected rows
n	Number of selected columns

Returns

FASP_SUCCESS if succeeded, otherwise return error information.

Author

Shiquan Zhang, Xiaozhe Hu

Date

12/25/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 163 of file BlaSparseBLC.c.

10.25.2.3 fasp_dbsr_getblk_dcsr()

get dCSRmat block from a dBSRmat matrix

Parameters

*A	Pointer to the BSR format matrix

Returns

dCSRmat matrix if succeed, NULL if fail

Author

Xiaozhe Hu

Date

03/16/2012

Definition at line 259 of file BlaSparseBLC.c.

```
10.25.2.4 fasp_dbsr_Linfinity_dcsr()
```

get dCSRmat from a dBSRmat matrix using L_infinity norm of each small block

Parameters

```
*A Pointer to the BSR format matrix
```

Returns

dCSRmat matrix if succeed, NULL if fail

Author

Xiaozhe Hu

Date

05/25/2014

Definition at line 315 of file BlaSparseBLC.c.

10.25.2.5 fasp_dcsr_getblk()

```
SHORT fasp_dcsr_getblk (

dCSRmat * A,

INT * Is,

INT * Js,

const INT m,

const INT n,

dCSRmat * B)
```

Get a sub CSR matrix of A with specified rows and columns.

Parameters

Α	Pointer to dCSRmat matrix
В	Pointer to dCSRmat matrix
Is	Pointer to selected rows
Js	Pointer to selected columns
m	Number of selected rows
n	Number of selected columns

Returns

FASP_SUCCESS if succeeded, otherwise return error information.

Author

Shiquan Zhang, Xiaozhe Hu

Date

12/25/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 69 of file BlaSparseBLC.c.

10.26 BlaSparseBSR.c File Reference

Sparse matrix operations for dBSRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

dBSRmat fasp_dbsr_create (const INT ROW, const INT COL, const INT NNZ, const INT nb, const INT storage
 manner)

Create BSR sparse matrix data memory space.

 void fasp_dbsr_alloc (const INT ROW, const INT COL, const INT NNZ, const INT nb, const INT storage_manner, dBSRmat *A)

Allocate memory space for BSR format sparse matrix.

void fasp_dbsr_free (dBSRmat *A)

Free memory space for BSR format sparse matrix.

void fasp_dbsr_null (dBSRmat *A)

Initialize sparse matrix on structured grid.

void fasp_dbsr_cp (dBSRmat *A, dBSRmat *B)

copy a dCSRmat to a new one B=A

INT fasp_dbsr_trans (dBSRmat *A, dBSRmat *AT)

Find $A^{\wedge}T$ from given dBSRmat matrix A.

SHORT fasp_dbsr_diagpref (dBSRmat *A)

Reorder the column and data arrays of a square BSR matrix, so that the first entry in each row is the diagonal one.

dvector fasp dbsr getdiaginv (dBSRmat *A)

Get D^{\wedge} {-1} of matrix A.

• dBSRmat fasp_dbsr_diaginv (dBSRmat *A)

Compute $B := D^{\setminus} \{-1\} * A$, where 'D' is the block diagonal part of A.

dBSRmat fasp_dbsr_diaginv2 (dBSRmat *A, REAL *diaginv)

Compute $B := D^{\setminus} \{-1\} * A$, where 'D' is the block diagonal part of A.

dBSRmat fasp_dbsr_diaginv3 (dBSRmat *A, REAL *diaginv)

Compute $B := D^{\setminus} \{-1\} * A$, where 'D' is the block diagonal part of A.

dBSRmat fasp_dbsr_diaginv4 (dBSRmat *A, REAL *diaginv)

Compute $B := D^{\{-1\}}*A$, where 'D' is the block diagonal part of A.

void fasp dbsr getdiag (INT n, dBSRmat *A, REAL *diag)

Abstract the diagonal blocks of a BSR matrix.

dBSRmat fasp_dbsr_diagLU (dBSRmat *A, REAL *DL, REAL *DU)

Compute B := DL*A*DU. We decompose each diagonal block of A into LDU form and $DL = diag(L^{\{-1\}})$ and $DU = diag(U^{\{-1\}})$.

dBSRmat fasp_dbsr_diagLU2 (dBSRmat *A, REAL *DL, REAL *DU)

Compute B := DL*A*DU. We decompose each diagonal block of A into LDU form and $DL = diag(L^{\{-1\}})$ and $DU = diag(U^{\{-1\}})$.

dBSRmat fasp_dbsr_perm (dBSRmat *A, INT *P)

Apply permutation of A, i.e. Aperm=PAP' by the orders given in P.

10.26.1 Detailed Description

Sparse matrix operations for dBSRmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxArray.c, AuxMemory.c, AuxSmallMat.c, and BlaSmall← Mat.c

10.26.2 Function Documentation

10.26.2.1 fasp_dbsr_alloc()

Allocate memory space for BSR format sparse matrix.

Parameters

ROW	Number of rows of block
COL	Number of columns of block
NNZ	Number of nonzero blocks
nb	Dimension of each block
storage_manner	Storage manner for each sub-block
Α	Pointer to new dBSRmat matrix

Author

Xiaozhe Hu

Date

10/26/2010

Definition at line 90 of file BlaSparseBSR.c.

10.26.2.2 fasp_dbsr_cp()

copy a dCSRmat to a new one B=A

Parameters

Α	Pointer to the dBSRmat matrix
В	Pointer to the dBSRmat matrix

Author

Xiaozhe Hu

Date

08/07/2011

Definition at line 184 of file BlaSparseBSR.c.

10.26.2.3 fasp_dbsr_create()

Create BSR sparse matrix data memory space.

Parameters

ROW	Number of rows of block
COL	Number of columns of block
NNZ	Number of nonzero blocks
nb	Dimension of each block
storage_manner	Storage manner for each sub-block

Returns

A The new dBSRmat matrix

Author

Xiaozhe Hu

Date

10/26/2010

Definition at line 39 of file BlaSparseBSR.c.

```
10.26.2.4 fasp_dbsr_diaginv()
```

Compute B := $D^{\setminus}{-1}*A$, where 'D' is the block diagonal part of A.

Parameters

A Pointer to the dBSRmat matrix

Author

Zhiyang Zhou

Date

2010/10/26

Note

Works for general nb (Xiaozhe)

Modified by Chunsheng Feng, Zheng Li on 08/25/2012

Definition at line 499 of file BlaSparseBSR.c.

10.26.2.5 fasp_dbsr_diaginv2()

Compute B := $D^{\{-1\}}*A$, where 'D' is the block diagonal part of A.

Parameters

Α	Pointer to the dBSRmat matrix	
diaginv	Pointer to the inverses of all the diagonal blocks	

Author

Zhiyang Zhou

Date

2010/11/07

Note

Works for general nb (Xiaozhe)

Modified by Chunsheng Feng, Zheng Li on 08/25/2012

Definition at line 663 of file BlaSparseBSR.c.

10.26.2.6 fasp_dbsr_diaginv3()

Compute B := $D^{-1}*A$, where 'D' is the block diagonal part of A.

Parameters

Α	Pointer to the dBSRmat matrix	
diaginv	Pointer to the inverses of all the diagonal blocks	

Returns

BSR matrix after diagonal scaling

Author

Xiaozhe Hu

Date

12/25/2010

Note

Works for general nb (Xiaozhe)

Modified by Xiaozhe Hu on 05/26/2012

Definition at line 765 of file BlaSparseBSR.c.

10.26.2.7 fasp_dbsr_diaginv4()

Compute B := $D^{-1}*A$, where 'D' is the block diagonal part of A.

Parameters

Α	Pointer to the dBSRmat matrix	
diaginv	Pointer to the inverses of all the diagonal blocks	

Returns

BSR matrix after diagonal scaling

Note

Works for general nb (Xiaozhe)

A is pre-ordered that the first block of each row is the diagonal block!

Author

Xiaozhe Hu

Date

03/12/2011

Modified by Chunsheng Feng, Zheng Li on 08/26/2012

Definition at line 1123 of file BlaSparseBSR.c.

10.26.2.8 fasp_dbsr_diagLU()

Compute B := DL*A*DU. We decompose each diagonal block of A into LDU form and DL = diag(L^{-1}) and DU = diag(U^{-1}).

Parameters

Α	Pointer to the dBSRmat matrix
DL	Pointer to the diag($L^{\{-1\}}$)
DU	Pointer to the diag(U^{-} {-1})

Returns

BSR matrix after scaling

Author

Xiaozhe Hu

Date

04/02/2014

Definition at line 1452 of file BlaSparseBSR.c.

```
10.26.2.9 fasp_dbsr_diagLU2()
```

Compute B := DL*A*DU. We decompose each diagonal block of A into LDU form and DL = diag(L^{-1}) and DU = diag(U^{-1}).

Parameters

Α	Pointer to the dBSRmat matrix
DL	Pointer to the diag(L^{\uparrow} {-1})
DU	Pointer to the diag(U^{-} {-1})

Returns

BSR matrix after scaling

Author

Zheng Li, Xiaozhe Hu

Date

06/17/2014

Definition at line 1680 of file BlaSparseBSR.c.

10.26.2.10 fasp_dbsr_diagpref()

Reorder the column and data arrays of a square BSR matrix, so that the first entry in each row is the diagonal one.

A Pointer to the BSR matrix

Author

Xiaozhe Hu

Date

03/10/2011

Author

Chunsheng Feng, Zheng Li

Date

09/02/2012

Note

Reordering is done in place.

Definition at line 295 of file BlaSparseBSR.c.

10.26.2.11 fasp_dbsr_free()

Free memory space for BSR format sparse matrix.

Parameters

A Pointer to the dBSRmat matrix

Author

Xiaozhe Hu

```
Date
```

10/26/2010

Definition at line 136 of file BlaSparseBSR.c.

```
10.26.2.12 fasp_dbsr_getdiag()
```

Abstract the diagonal blocks of a BSR matrix.

Parameters

n	Number of blocks to get
Α	Pointer to the 'dBSRmat' type matrix
diag	Pointer to array which stores the diagonal blocks in row by row manner

Author

Zhiyang Zhou

Date

2010/10/26

Note

Works for general nb (Xiaozhe)

Modified by Chunsheng Feng, Zheng Li on 08/25/2012

Definition at line 1414 of file BlaSparseBSR.c.

10.26.2.13 fasp_dbsr_getdiaginv()

Get D^{\wedge} {-1} of matrix A.

A Pointer to the dBSRmat matrix

Author

Xiaozhe Hu

Date

02/19/2013

Note

Works for general nb (Xiaozhe)

Definition at line 395 of file BlaSparseBSR.c.

10.26.2.14 fasp_dbsr_null()

Initialize sparse matrix on structured grid.

Parameters

A Pointer to the dBSRmat matrix

Author

Xiaozhe Hu

Date

10/26/2010

Definition at line 161 of file BlaSparseBSR.c.

10.26.2.15 fasp_dbsr_perm()

Apply permutation of A, i.e. Aperm=PAP' by the orders given in P.

Α	Pointer to the original dCSRmat matrix
Р	Pointer to the given ordering

Returns

The new ordered dCSRmat matrix if succeed, NULL if fail

Author

Zheng Li

Date

24/9/2015

Note

P[i] = k means k-th row and column become i-th row and column!

Definition at line 1881 of file BlaSparseBSR.c.

10.26.2.16 fasp_dbsr_trans()

Find A^T from given dBSRmat matrix A.

Parameters

Α	Pointer to the dBSRmat matrix
AT	Pointer to the transpose of dBSRmat matrix A

Author

Chunsheng FENG

Date

2011/06/08

Modified by Xiaozhe Hu (08/06/2011)

Definition at line 211 of file BlaSparseBSR.c.

10.27 BlaSparseCheck.c File Reference

Check properties of sparse matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

INT fasp_check_diagpos (dCSRmat *A)

Check positivity of diagonal entries of a CSR sparse matrix.

SHORT fasp_check_diagzero (dCSRmat *A)

Check wether a CSR sparse matrix has diagonal entries that are very close to zero.

INT fasp_check_diagdom (dCSRmat *A)

Check whether a matrix is diagonal dominant.

INT fasp_check_symm (dCSRmat *A)

Check symmetry of a sparse matrix of CSR format.

void fasp_check_dCSRmat (dCSRmat *A)

Check whether an dCSRmat matrix is supported or not.

SHORT fasp_check_iCSRmat (iCSRmat *A)

Check whether an iCSRmat matrix is valid or not.

10.27.1 Detailed Description

Check properties of sparse matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxMemory.c, AuxMessage.c, AuxVector.c, and BlaSparse ← CSR.c

10.27.2 Function Documentation

10.27.2.1 fasp_check_dCSRmat()

```
void fasp_check_dCSRmat ( \label{eq:dcsrmat} \mbox{dCSRmat * $A$ )}
```

Check whether an dCSRmat matrix is supported or not.

A Pointer to the matrix in dCSRmat format

Author

Shuo Zhang

Date

03/29/2009

Definition at line 278 of file BlaSparseCheck.c.

10.27.2.2 fasp_check_diagdom()

Check whether a matrix is diagonal dominant.

INT fasp_check_diagdom (dCSRmat *A)

Parameters

A Pointer to the dCSRmat matrix

Returns

Number of the rows which are diagonal dominant

Note

The routine chechs whether the sparse matrix is diagonal dominant on every row. It will print out the percentage of the rows which are diagonal dominant and which are not; the routine will return the number of the rows which are diagonal dominant.

Author

Shuo Zhang

Date

03/29/2009

Definition at line 111 of file BlaSparseCheck.c.

10.27.2.3 fasp_check_diagpos()

Check positivity of diagonal entries of a CSR sparse matrix.

Parameters

A Pointer to dCSRmat matrix

Returns

Number of negative diagonal entries

Author

Shuo Zhang

Date

03/29/2009

Definition at line 30 of file BlaSparseCheck.c.

10.27.2.4 fasp_check_diagzero()

Check wether a CSR sparse matrix has diagonal entries that are very close to zero.

Parameters

A pointr to the dCSRmat matrix

Returns

FASP_SUCCESS if no diagonal entry is clase to zero, else ERROR

Author

Shuo Zhang

Date

03/29/2009

Definition at line 67 of file BlaSparseCheck.c.

```
10.27.2.5 fasp_check_iCSRmat()
```

Check whether an iCSRmat matrix is valid or not.

Parameters

A Pointer to the matrix in iCSRmat format

Author

Shuo Zhang

Date

03/29/2009

Definition at line 310 of file BlaSparseCheck.c.

10.27.2.6 fasp_check_symm()

Check symmetry of a sparse matrix of CSR format.

Parameters

A Pointer to the dCSRmat matrix

Returns

1 and 2 if the structure of the matrix is not symmetric; 0 if the structure of the matrix is symmetric,

Note

Print the maximal relative difference between matrix and its transpose.

Author

Shuo Zhang

Date

03/29/2009

Definition at line 156 of file BlaSparseCheck.c.

10.28 BlaSparseCOO.c File Reference

Sparse matrix operations for dCOOmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

dCOOmat fasp_dcoo_create (const INT m, const INT n, const INT nnz)

Create IJ sparse matrix data memory space.

void fasp_dcoo_alloc (const INT m, const INT n, const INT nnz, dCOOmat *A)

Allocate COO sparse matrix memory space.

void fasp_dcoo_free (dCOOmat *A)

Free IJ sparse matrix data memory space.

void fasp_dcoo_shift (dCOOmat *A, const INT offset)

Re-index a REAL matrix in IJ format to make the index starting from 0 or 1.

10.28.1 Detailed Description

Sparse matrix operations for dCOOmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxMemory.c

10.28.2 Function Documentation

10.28.2.1 fasp_dcoo_alloc()

Allocate COO sparse matrix memory space.

Parameters

m	Number of rows
n	Number of columns
nnz	Number of nonzeros
Α	Pointer to the dCSRmat matrix

Author

Xiaozhe Hu

Date

03/25/2013

Definition at line 65 of file BlaSparseCOO.c.

10.28.2.2 fasp_dcoo_create()

Create IJ sparse matrix data memory space.

Parameters

m	Number of rows
n	Number of columns
nnz	Number of nonzeros

Returns

A The new dCOOmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 37 of file BlaSparseCOO.c.

```
10.28.2.3 fasp_dcoo_free()
```

Free IJ sparse matrix data memory space.

Parameters

A Pointer to the dCOOmat matrix

Author

Chensong Zhang

Date

2010/04/03

Definition at line 97 of file BlaSparseCOO.c.

```
10.28.2.4 fasp_dcoo_shift()
```

Re-index a REAL matrix in IJ format to make the index starting from 0 or 1.

Α	Pointer to IJ matrix
offset	Size of offset (1 or -1)

Author

Chensong Zhang

Date

2010/04/06

Modified by Chunsheng Feng, Zheng Li on 08/25/2012

Definition at line 119 of file BlaSparseCOO.c.

10.29 BlaSparseCSR.c File Reference

Sparse matrix operations for dCSRmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

dCSRmat fasp_dcsr_create (const INT m, const INT n, const INT nnz)

Create CSR sparse matrix data memory space.

iCSRmat fasp_icsr_create (const INT m, const INT n, const INT nnz)

Create CSR sparse matrix data memory space.

void fasp_dcsr_alloc (const INT m, const INT n, const INT nnz, dCSRmat *A)

Allocate CSR sparse matrix memory space.

void fasp_dcsr_free (dCSRmat *A)

Free CSR sparse matrix data memory space.

void fasp_icsr_free (iCSRmat *A)

Free CSR sparse matrix data memory space.

void fasp_dcsr_null (dCSRmat *A)

Initialize CSR sparse matrix.

void fasp_icsr_null (iCSRmat *A)

Initialize CSR sparse matrix.

dCSRmat fasp_dcsr_perm (dCSRmat *A, INT *P)

Apply permutation of A, i.e. Aperm=PAP' by the orders given in P.

void fasp_dcsr_sort (dCSRmat *A)

Sort each row of A in ascending order w.r.t. column indices.

void fasp dcsr getdiag (INT n, dCSRmat *A, dvector *diag)

Get first n diagonal entries of a CSR matrix A.

void fasp dcsr getcol (const INT n, dCSRmat *A, REAL *col)

Get the n-th column of a CSR matrix A.

void fasp dcsr diagpref (dCSRmat *A)

Re-order the column and data arrays of a CSR matrix, so that the first entry in each row is the diagonal.

SHORT fasp_dcsr_regdiag (dCSRmat *A, REAL value)

Regularize diagonal entries of a CSR sparse matrix.

void fasp icsr cp (iCSRmat *A, iCSRmat *B)

Copy a iCSRmat to a new one B=A.

void fasp_dcsr_cp (dCSRmat *A, dCSRmat *B)

copy a dCSRmat to a new one B=A

void fasp_icsr_trans (iCSRmat *A, iCSRmat *AT)

Find transpose of iCSRmat matrix A.

INT fasp_dcsr_trans (dCSRmat *A, dCSRmat *AT)

Find transpose of dCSRmat matrix A.

- void fasp dcsr transpose (INT *row[2], INT *col[2], REAL *val[2], INT *nn, INT *tniz)
- void fasp_dcsr_compress (dCSRmat *A, dCSRmat *B, REAL dtol)

Compress a CSR matrix A and store in CSR matrix B by dropping small entries abs(aij)<=dtol.

SHORT fasp_dcsr_compress_inplace (dCSRmat *A, REAL dtol)

Compress a CSR matrix A IN PLACE by dropping small entries abs(aij)<=dtol.

void fasp_dcsr_shift (dCSRmat *A, INT offset)

Re-index a REAL matrix in CSR format to make the index starting from 0 or 1.

void fasp_dcsr_symdiagscale (dCSRmat *A, dvector *diag)

Symmetric diagonal scaling D^{\uparrow} {-1/2} AD^{\uparrow} {-1/2}.

dCSRmat fasp_dcsr_sympart (dCSRmat *A)

Get symmetric part of a dCSRmat matrix.

void fasp dcsr multicoloring (dCSRmat *A, INT *flags, INT *groups)

Use the greedy multi-coloring to get color groups of the adjacency graph of A.

void fasp_dcsr_transz (dCSRmat *A, INT *p, dCSRmat *AT)

Generalized transpose of A: (n x m) matrix given in dCSRmat format.

dCSRmat fasp_dcsr_permz (dCSRmat *A, INT *p)

Permute rows and cols of A, i.e. A=PAP' by the ordering in p.

void fasp_dcsr_sortz (dCSRmat *A, const SHORT isym)

Sort each row of A in ascending order w.r.t. column indices.

10.29.1 Detailed Description

Sparse matrix operations for dCSRmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxArray.c, AuxMemory.c, BlaSparseCSR.c, BlaSparseUtil.c, and BlaArray.c

10.29.2 Function Documentation

10.29.2.1 fasp_dcsr_alloc()

Allocate CSR sparse matrix memory space.

Parameters

m	Number of rows
n	Number of columns
nnz	Number of nonzeros
Α	Pointer to the dCSRmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 129 of file BlaSparseCSR.c.

10.29.2.2 fasp_dcsr_compress()

Compress a CSR matrix A and store in CSR matrix B by dropping small entries abs(aij)<=dtol.

Parameters

Α	Pointer to dCSRmat CSR matrix
В	Pointer to dCSRmat CSR matrix
dtol	Drop tolerance

```
Author
```

Shiquan Zhang

Date

03/10/2010

Modified by Chunsheng Feng, Zheng Li on 08/25/2012

Definition at line 961 of file BlaSparseCSR.c.

10.29.2.3 fasp_dcsr_compress_inplace()

Compress a CSR matrix A IN PLACE by dropping small entries abs(aij)<=dtol.

Parameters

Α	Pointer to dCSRmat CSR matrix
dtol	Drop tolerance

Author

Xiaozhe Hu

Date

12/25/2010

Modified by Chensong Zhang on 02/21/2013

Note

This routine can be modified for filtering.

Definition at line 1041 of file BlaSparseCSR.c.

10.29.2.4 fasp_dcsr_cp()

copy a dCSRmat to a new one B=A

Α	Pointer to the dCSRmat matrix
В	Pointer to the dCSRmat matrix

Author

Chensong Zhang

Date

04/06/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 727 of file BlaSparseCSR.c.

10.29.2.5 fasp_dcsr_create()

Create CSR sparse matrix data memory space.

Parameters

m	Number of rows
n	Number of columns
nnz	Number of nonzeros

Returns

A the new dCSRmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 38 of file BlaSparseCSR.c.

```
10.29.2.6 fasp_dcsr_diagpref()
```

```
void fasp_dcsr_diagpref ( {\tt dCSRmat * A })
```

Re-order the column and data arrays of a CSR matrix, so that the first entry in each row is the diagonal.

Parameters

A Pointer to the matrix to be re-ordered

Author

Zhiyang Zhou

Date

09/09/2010

Author

Chunsheng Feng, Zheng Li

Date

09/02/2012

Note

Reordering is done in place.

Modified by Chensong Zhang on Dec/21/2012

Definition at line 557 of file BlaSparseCSR.c.

10.29.2.7 fasp_dcsr_free()

Free CSR sparse matrix data memory space.

A Pointer to the dCSRmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 170 of file BlaSparseCSR.c.

10.29.2.8 fasp_dcsr_getcol()

Get the n-th column of a CSR matrix A.

Parameters

n	Index of a column of A (0 \leq = n \leq = A.col-1)
Α	Pointer to dCSRmat CSR matrix
col	Pointer to the column

Author

Xiaozhe Hu

Date

11/07/2009

Modified by Chunsheng Feng, Zheng Li on 07/08/2012

Definition at line 478 of file BlaSparseCSR.c.

10.29.2.9 fasp_dcsr_getdiag()

Get first n diagonal entries of a CSR matrix A.

Parameters

	n	Number of diagonal entries to get (if n=0, then get all diagonal entries)
	Α	Pointer to dCSRmat CSR matrix
Ī	diag	Pointer to the diagonal as a dvector

Author

Chensong Zhang

Date

05/20/2009

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 414 of file BlaSparseCSR.c.

10.29.2.10 fasp_dcsr_multicoloring()

Use the greedy multi-coloring to get color groups of the adjacency graph of A.

Parameters

Α	Input dCSRmat
flags	flags for the independent group
groups	Return group numbers

Author

Chunsheng Feng

Date

09/15/2012

Definition at line 1269 of file BlaSparseCSR.c.

```
10.29.2.11 fasp_dcsr_null()
```

Initialize CSR sparse matrix.

Parameters

A Pointer to the dCSRmat matrix

Author

Chensong Zhang

Date

2010/04/03

Definition at line 208 of file BlaSparseCSR.c.

10.29.2.12 fasp_dcsr_perm()

Apply permutation of A, i.e. Aperm=PAP' by the orders given in P.

Parameters

Α	Pointer to the original dCSRmat matrix
Р	Pointer to orders

Returns

The new ordered dCSRmat matrix if succeed, NULL if fail

Author

Shiquan Zhang

Date

03/10/2010

Note

P[i] = k means k-th row and column become i-th row and column!
Deprecated! Will be replaced by fasp_dcsr_permz later. -Chensong

Modified by Chunsheng Feng, Zheng Li on 07/12/2012

Definition at line 251 of file BlaSparseCSR.c.

10.29.2.13 fasp_dcsr_permz()

Permute rows and cols of A, i.e. A=PAP' by the ordering in p.

Parameters

Α	Pointer to the original dCSRmat matrix
р	Pointer to ordering

Note

This is just applying twice fasp_dcsr_transz(&A,p,At). In matlab notation: Aperm=A(p,p);

Returns

The new ordered dCSRmat matrix if succeed, NULL if fail

Author

Ludmil Zikatanov

Date

```
19951219 (Fortran), 20150912 (C)
```

Definition at line 1490 of file BlaSparseCSR.c.

```
10.29.2.14 fasp_dcsr_regdiag()
```

Regularize diagonal entries of a CSR sparse matrix.

Parameters

Α	Pointer to the dCSRmat matrix
value	Set a value on diag(A) which is too close to zero to "value"

Returns

FASP_SUCCESS if no diagonal entry is close to zero, else ERROR

Author

Shiquan Zhang

Date

11/07/2009

Definition at line 663 of file BlaSparseCSR.c.

10.29.2.15 fasp_dcsr_shift()

Re-index a REAL matrix in CSR format to make the index starting from 0 or 1.

Parameters

Α	Pointer to CSR matrix
offset	Size of offset (1 or -1)

Author

Chensong Zhang

Date

04/06/2010

Modified by Chunsheng Feng, Zheng Li on 07/11/2012

Definition at line 1089 of file BlaSparseCSR.c.

```
10.29.2.16 fasp_dcsr_sort()
```

Sort each row of A in ascending order w.r.t. column indices.

Parameters

```
A Pointer to the dCSRmat matrix
```

Author

Shiquan Zhang

Date

06/10/2010

Definition at line 362 of file BlaSparseCSR.c.

```
10.29.2.17 fasp_dcsr_sortz()
```

Sort each row of A in ascending order w.r.t. column indices.

Α	Pointer to the dCSRmat matrix
isym	Flag for symmetry, =[0/nonzero]=[general/symmetric] matrix

Note

Applying twice fasp_dcsr_transz(), if A is symmetric, then the transpose is applied only once and then AT copied on A.

Author

Ludmil Zikatanov

Date

```
19951219 (Fortran), 20150912 (C)
```

Definition at line 1522 of file BlaSparseCSR.c.

10.29.2.18 fasp_dcsr_symdiagscale()

Symmetric diagonal scaling $D^{-1/2}AD^{-1/2}$.

Parameters

Α	Pointer to the dCSRmat matrix	
diag	Pointer to the diagonal entries	

Author

Xiaozhe Hu

Date

01/31/2011

Modified by Chunsheng Feng, Zheng Li on 07/11/2012

Definition at line 1150 of file BlaSparseCSR.c.

10.29.2.19 fasp_dcsr_sympart()

Get symmetric part of a dCSRmat matrix.

Parameters

*A pointer to the dCSRmat matrix

Returns

symmetrized the dCSRmat matrix

Author

Xiaozhe Hu

Date

03/21/2011

Definition at line 1236 of file BlaSparseCSR.c.

10.29.2.20 fasp_dcsr_trans()

Find transpose of dCSRmat matrix A.

Parameters

Α	Pointer to the dCSRmat matrix	
AT	T Pointer to the transpose of dCSRmat matrix A (output	

Author

Chensong Zhang

Date

04/06/2010

Modified by Chunsheng Feng, Zheng Li on 06/20/2012

Definition at line 830 of file BlaSparseCSR.c.

10.29.2.21 fasp_dcsr_transz()

Generalized transpose of A: (n x m) matrix given in dCSRmat format.

Parameters

A Pointer to matrix in dCSRmat for transpose, INPUT		Pointer to matrix in dCSRmat for transpose, INPUT	
	р	Permutation, INPUT	
	AT Pointer to matrix AT = transpose(A) if p = NULL, OR AT = transpose(A)p if p is not N		

Note

The storage for all pointers in AT should already be allocated, i.e. AT->IA, AT->JA and AT->val should be allocated before calling this function. If A.val=NULL, then AT->val[] is not changed.

performs AT=transpose(A)p, where p is a permutation. If p=NULL then p=I is assumed. Applying twice this procedure one gets At=transpose(transpose(A)p)p = transpose(p)Ap, which is the same A with rows and columns permutted according to p.

If A=NULL, then only transposes/permutes the structure of A.

For p=NULL, applying this two times A->AT->A orders all the row indices in A in increasing order.

Reference: Fred G. Gustavson. Two fast algorithms for sparse matrices: multiplication and permuted transposition. ACM Trans. Math. Software, 4(3):250–269, 1978.

Author

Ludmil Zikatanov

Date

19951219 (Fortran), 20150912 (C)

Definition at line 1370 of file BlaSparseCSR.c.

10.29.2.22 fasp_icsr_cp()

Copy a iCSRmat to a new one B=A.

Parameters

Α	Pointer to the iCSRmat matrix	
В	Pointer to the iCSRmat matrix	

Author

Chensong Zhang

Date

05/16/2013

Definition at line 702 of file BlaSparseCSR.c.

10.29.2.23 fasp_icsr_create()

Create CSR sparse matrix data memory space.

Parameters

m	Number of rows
n	Number of columns
nnz	Number of nonzeros

Returns

A the new iCSRmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 84 of file BlaSparseCSR.c.

```
10.29.2.24 fasp_icsr_free()
```

Free CSR sparse matrix data memory space.

Parameters

A Pointer to the iCSRmat matrix

Author

Chensong Zhang

Date

2010/04/06

Definition at line 189 of file BlaSparseCSR.c.

10.29.2.25 fasp_icsr_null()

Initialize CSR sparse matrix.

Parameters

A Pointer to the iCSRmat matrix

Author

Chensong Zhang

Date

2010/04/03

Definition at line 225 of file BlaSparseCSR.c.

```
10.29.2.26 fasp_icsr_trans()
```

Find transpose of iCSRmat matrix A.

Parameters

Α	Pointer to the iCSRmat matrix A	
AT	Pointer to the iCSRmat matrix A'	

Returns

The transpose of iCSRmat matrix A

Author

Chensong Zhang

Date

04/06/2010

Modified by Chunsheng Feng, Zheng Li on 06/20/2012

Definition at line 754 of file BlaSparseCSR.c.

10.30 BlaSparseCSRL.c File Reference

Sparse matrix operations for dCSRLmat matrices.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- dCSRLmat * fasp_dcsrl_create (const INT num_rows, const INT num_cols, const INT num_nonzeros)
 Create a dCSRLmat object.
- void fasp_dcsrl_free (dCSRLmat *A)

Destroy a dCSRLmat object.

10.30.1 Detailed Description

Sparse matrix operations for dCSRLmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxMemory.c Refer to John Mellor-Crummey and John Garvin Optimizaing sparse matrix vector product computations using unroll and jam, Tech Report Rice Univ, Aug 2002.

10.30.2 Function Documentation

10.30.2.1 fasp_dcsrl_create()

Create a dCSRLmat object.

Parameters

num_rows	Number of rows
num_cols	Number of cols
num_nonzeros	Number of nonzero entries

Author

Zhiyang Zhou

Date

01/07/2001

Definition at line 33 of file BlaSparseCSRL.c.

```
10.30.2.2 fasp_dcsrl_free()
```

Destroy a dCSRLmat object.

Parameters

A Pointer to the dCSRLmat type matrix

Author

Zhiyang Zhou

Date

01/07/2011

Definition at line 61 of file BlaSparseCSRL.c.

10.31 BlaSparseSTR.c File Reference

Sparse matrix operations for dSTRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_dstr_null (dSTRmat *A)
 - Initialize sparse matrix on structured grid.
- dSTRmat fasp_dstr_create (const INT nx, const INT ny, const INT nz, const INT nc, const INT nband, INT *offsets)

 Create STR sparse matrix data memory space.
- void fasp_dstr_alloc (const INT nx, const INT ny, const INT nz, const INT nxy, const INT ngrid, const INT nband, const INT nc, INT *offsets, dSTRmat *A)

Allocate STR sparse matrix memory space.

void fasp_dstr_free (dSTRmat *A)

Free STR sparse matrix data memeory space.

void fasp_dstr_cp (dSTRmat *A, dSTRmat *B)

Copy a dSTRmat to a new one B=A.

10.31.1 Detailed Description

Sparse matrix operations for dSTRmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxMemory.c

10.31.2 Function Documentation

10.31.2.1 fasp_dstr_alloc()

Allocate STR sparse matrix memory space.

Parameters

nx	Number of grids in x direction
ny	Number of grids in y direction
nz	Number of grids in z direction
nxy	Number of grids in x-y plane
ngrid	Number of grids
nband	Number of off-diagonal bands
nc	Number of components
offsets	Shift from diagonal
Α	Pointer to the dSTRmat matrix

Author

Shiquan Zhang, Xiaozhe Hu

Date

05/17/2010

Definition at line 112 of file BlaSparseSTR.c.

Copy a dSTRmat to a new one B=A.

dSTRmat * B)

Parameters

Α	Pointer to the dSTRmat matrix
В	Pointer to the dSTRmat matrix

Author

Zhiyang Zhou

Date

04/21/2010

Definition at line 184 of file BlaSparseSTR.c.

10.31.2.3 fasp_dstr_create()

Create STR sparse matrix data memory space.

nx	Number of grids in x direction
ny	Number of grids in y direction
nz	Number of grids in z direction
nc	Number of components
nband	Number of off-diagonal bands
offsets	Shift from diagonal

Returns

The dSTRmat matrix

Author

Shiquan Zhang, Xiaozhe Hu

Date

05/17/2010

Definition at line 60 of file BlaSparseSTR.c.

10.31.2.4 fasp_dstr_free()

Free STR sparse matrix data memeory space.

Parameters

Author

Shiquan Zhang, Xiaozhe Hu

Date

05/17/2010

Definition at line 155 of file BlaSparseSTR.c.

```
10.31.2.5 fasp_dstr_null()
```

Initialize sparse matrix on structured grid.

Parameters

A Pointer to the dSTRmat matrix

Author

Shiquan Zhang, Xiaozhe Hu

Date

05/17/2010

Definition at line 28 of file BlaSparseSTR.c.

10.32 BlaSparseUtil.c File Reference

Routines for sparse matrix operations.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_sparse_abybms_ (INT *ia, INT *ja, INT *ib, INT *jb, INT *nap, INT *map, INT *mbp, INT *ic, INT *jc)
 Multiplication of two sparse matrices: calculating the nonzero structure of the result if jc is not null. If jc is null only finds num of nonzeroes.
- void fasp_sparse_abyb_ (INT *ia, INT *ja, REAL *a, INT *ib, INT *jb, REAL *b, INT *nap, INT *map, INT *mbp, INT *ic, INT *jc, REAL *c)

Multiplication of two sparse matrices: calculating the numerical values in the result.

• void fasp_sparse_iit_ (INT *ia, INT *ja, INT *na, INT *ma, INT *iat, INT *jat)

Transpose a boolean matrix (only given by ia, ja)

- void fasp_sparse_aat_ (INT *ia, INT *ja, REAL *a, INT *na, INT *ma, INT *iat, INT *jat, REAL *at)
 transpose a boolean matrix (only given by ia, ja)
- void fasp_sparse_aplbms_ (INT *ia, INT *ja, INT *ib, INT *jb, INT *nab, INT *mab, INT *ic, INT *jc)

Addition of two sparse matrices: calculating the nonzero structure of the result if jc is not null. if jc is null only finds num of nonzeroes.

void fasp_sparse_aplusb_ (INT *ia, INT *ja, REAL *a, INT *ib, INT *jb, REAL *b, INT *nab, INT *mab, INT *ic, INT *jc, REAL *c)

Addition of two sparse matrices: calculating the numerical values in the result.

void fasp_sparse_rapms_ (INT *ir, INT *jr, INT *ia, INT *ja, INT *ip, INT *jp, INT *nin, INT *ncin, INT *iac, INT *jac, INT *maxrout)

Calculates the nonzero structure of R*A*P, if jac is not null. If jac is null only finds num of nonzeroes.

void fasp_sparse_wtams_ (INT *jw, INT *ia, INT *ja, INT *nwp, INT *map, INT *jv, INT *nvp, INT *icp)

Finds the nonzeroes in the result of $v^{\wedge}t = w^{\wedge}t$ A, where w is a sparse vector and A is sparse matrix. jv is an integer array containing the indices of the nonzero elements in the result.

void fasp_sparse_wta_ (INT *jw, REAL *w, INT *ia, INT *ja, REAL *a, INT *nwp, INT *map, INT *jv, REAL *v, INT *nvp)

Calculate $v^t = w^t A$, where w is a sparse vector and A is sparse matrix. v is an array of dimension = number of columns in A.

void fasp_sparse_ytxbig_ (INT *jy, REAL *y, INT *nyp, REAL *x, REAL *s)

Calculates $s = y^{\wedge} t x$. y-sparse, x - no.

- void fasp_sparse_ytx_ (INT *jy, REAL *y, INT *jx, REAL *x, INT *nyp, INT *nxp, INT *icp, REAL *s)

 Calculates s = y^t x. y is sparse, x is sparse.
- void fasp_sparse_rapcmp_ (INT *ir, INT *jr, REAL *r, INT *ia, INT *ja, REAL *a, INT *ipt, INT *jpt, REAL *pt, INT *nin, INT *ncin, INT *iac, INT *jac, REAL *ac, INT *idummy)

Calculates R*A*P after the nonzero structure of the result is known. iac,jac,ac have to be allocated before call to this function.

ivector fasp sparse MIS (dCSRmat *A)

get the maximal independet set of a CSR matrix

10.32.1 Detailed Description

Routines for sparse matrix operations.

Note

Most algorithms work as follows: (a) Boolean operations (to determine the nonzero structure); (b) Numerical part, where the result is calculated.

: Parameter notation :I: is input; :O: is output; :IO: is both

C-version: by Ludmil Zikatanov 2010-04-08 tested 2010-04-08

: Modifed Xiaozhe Hu 2010-10-18

Note

This file contains Level-1 (Bla) functions. It requires AuxMemory.c

Todo Remove unwanted functions from this file. -Chensong

10.32.2 Function Documentation

10.32.2.1 fasp_sparse_aat_()

transpose a boolean matrix (only given by ia, ja)

Parameters

ia	array of row pointers (as usual in CSR)
ja	array of column indices
а	array of entries of teh input
na	number of rows of A
ma	number of cols of A
iat	array of row pointers in the result
jat	array of column indices
at	array of entries of the result

Definition at line 276 of file BlaSparseUtil.c.

10.32.2.2 fasp_sparse_abyb_()

Multiplication of two sparse matrices: calculating the numerical values in the result.

ia	array of row pointers 1st multiplicand
ja	array of column indices 1st multiplicand
а	entries of the 1st multiplicand
ib	array of row pointers 2nd multiplicand
jb	array of column indices 2nd multiplicand
b	entries of the 2nd multiplicand
ic	array of row pointers in c=a*b
jc	array of column indices in c=a*b
С	entries of the result: c= a*b
nap	number of rows in the 1st multiplicand
тар	number of columns in the 1st multiplicand
mbp	number of columns in the 2nd multiplicand

Modified by Chensong Zhang on 09/11/2012

Definition at line 128 of file BlaSparseUtil.c.

10.32.2.3 fasp_sparse_abybms_()

Multiplication of two sparse matrices: calculating the nonzero structure of the result if jc is not null. If jc is null only finds num of nonzeroes.

Parameters

ia	array of row pointers 1st multiplicand
ia	array of row pointers 1st multiplicand
ja	array of column indices 1st multiplicand
ib	array of row pointers 2nd multiplicand
jb	array of column indices 2nd multiplicand
nap	number of rows of A
тар	number of cols of A
mbp	number of cols of b
ic	array of row pointers in the result (this is also computed here again, so that we can have a stand alone call
	of this routine, if for some reason the number of nonzeros in the result is known)
Generated JC	array of column indices in the result c=a*b

Modified by Chensong Zhang on 09/11/2012

Definition at line 57 of file BlaSparseUtil.c.

10.32.2.4 fasp_sparse_aplbms_()

Addition of two sparse matrices: calculating the nonzero structure of the result if jc is not null. if jc is null only finds num of nonzeroes.

Parameters

ia	array of row pointers 1st summand
ia	array of row pointers 1st summand
ja	array of column indices 1st summand
ib	array of row pointers 2nd summand
jb	array of column indices 2nd summand
nab	number of rows
mab	number of cols
ic	array of row pointers in the result (this is also computed here again, so that we can have a stand alone call
	of this routine, if for some reason the number of nonzeros in the result is known)
jc	array of column indices in the result c=a+b

Definition at line 363 of file BlaSparseUtil.c.

10.32.2.5 fasp_sparse_aplusb_()

```
INT * nab,
INT * mab,
INT * ic,
INT * jc,
REAL * c )
```

Addition of two sparse matrices: calculating the numerical values in the result.

Parameters

ia	array of row pointers 1st summand
ja	array of column indices 1st summand
а	entries of the 1st summand
ib	array of row pointers 2nd summand
jb	array of column indices 2nd summand
b	entries of the 2nd summand
nab	number of rows
mab	number of cols
ic	array of row pointers in c=a+b
jc	array of column indices in c=a+b
С	entries of the result: c=a+b

Definition at line 435 of file BlaSparseUtil.c.

10.32.2.6 fasp_sparse_iit_()

Transpose a boolean matrix (only given by ia, ja)

Parameters

ia	array of row pointers (as usual in CSR)
ja	array of column indices
na	number of rows
ma	number of cols
iat	array of row pointers in the result
jat	array of column indices

Note

For the concrete algorithm, see:

Definition at line 201 of file BlaSparseUtil.c.

get the maximal independet set of a CSR matrix

Parameters

```
A pointer to the matrix
```

Note

: only use the sparsity of A, index starts from 1 (fortran)!!

Definition at line 913 of file BlaSparseUtil.c.

```
10.32.2.8 fasp_sparse_rapcmp_()
```

```
void fasp_sparse_rapcmp_ (
             INT * ir,
             INT * jr,
             REAL * r,
             INT * ia,
             INT * ja,
             REAL * a,
             INT * ipt,
             INT * jpt,
             REAL * pt,
             INT * nin,
             INT * ncin,
             INT * iac,
             INT * jac,
             REAL * ac,
             INT * idummy )
```

Calculates R*A*P after the nonzero structure of the result is known. iac,jac,ac have to be allocated before call to this function.

Note

ir	:I: array of row pointers for R
jr	:I: array of column indices for R
r	:I: entries of R
ia	:I: array of row pointers for A
ja	:I: array of column indices for A
а	:I: entries of A
ipt	:I: array of row pointers for P
jpt	:I: array of column indices for P
pt	:I: entries of P
nin	:I: number of rows in R
ncin	:I: number of rows in
iac	:O: array of row pointers for P
jac	:O: array of column indices for P
ac	:O: entries of P
idummy	not changed

Note

compute R*A*P for known nonzero structure of the result the result is stored in iac,jac,ac!

Definition at line 792 of file BlaSparseUtil.c.

10.32.2.9 fasp_sparse_rapms_()

Calculates the nonzero structure of R*A*P, if jac is not null. If jac is null only finds num of nonzeroes.

Note

Parameters

:I: array of row pointers for R
:I: array of column indices for R
:I: array of row pointers for A
:I: array of column indices for A
:I: array of row pointers for P
:I: array of column indices for P
:I: number of rows in R
:I: number of columns in R
:O: array of row pointers for Ac
:O: array of column indices for Ac
:O: the maximum nonzeroes per row for R

Note

Computes the sparsity pattern of R*A*P. maxrout is output and is the maximum nonzeroes per row for r. On output we also have is iac (if jac is null) and jac (if jac entry is not null). R is (nc,n) A is (n,n) and P is (n,nc)!

Modified by Chensong Zhang on 09/11/2012

Definition at line 518 of file BlaSparseUtil.c.

10.32.2.10 fasp_sparse_wta_()

Calculate $v^t = w^t A$, where w is a sparse vector and A is sparse matrix. v is an array of dimension = number of columns in A.

Note

jw	:I: indices such that w[jw] is nonzero
W	:I: the values of w
ia	:I: array of row pointers for A
ja	:I: array of column indices for A
а	:I: entries of A
nwp	:I: number of nonzeroes in w (the length of w)
тар	:I: number of columns in A
jv	:O: indices such that v[jv] is nonzero
V	:O: the result v^t=w^t A
nvp	:I: number of nonzeroes in v

Definition at line 652 of file BlaSparseUtil.c.

10.32.2.11 fasp_sparse_wtams_()

Finds the nonzeroes in the result of $v^t = w^t A$, where w is a sparse vector and A is sparse matrix. jv is an integer array containing the indices of the nonzero elements in the result.

:I: is input :O: is output :IO: is both

Parameters

	The Property of the Property o
jw	:I: indices such that w[jw] is nonzero
ia	:I: array of row pointers for A
ja	:I: array of column indices for A
nwp	:I: number of nonzeroes in w (the length of w)
тар	:I: number of columns in A
jv	:O: indices such that v[jv] is nonzero
nvp	:I: number of nonzeroes in v
icp	:IO: is a working array of length (*map) which on output satisfies icp[jv[k]-1]=k; Values of icp[] at positions * other than (jv[k]-1) remain unchanged.

Modified by Chensong Zhang on 09/11/2012

Definition at line 599 of file BlaSparseUtil.c.

10.32.2.12 fasp_sparse_ytx_()

Calculates $s = y^{\wedge}t x$. y is sparse, x is sparse.

note: I: is input: O: is output: IO: is both

Parameters

jу	:I: indices such that y[jy] is nonzero
У	:I: is a sparse vector.
nyp	:I: number of nonzeroes in y
jх	:I: indices such that x[jx] is nonzero
Х	:I: is a sparse vector.
пхр	:I: number of nonzeroes in x
icp	???
s	:O: $s = y^t x$.

Definition at line 737 of file BlaSparseUtil.c.

10.32.2.13 fasp_sparse_ytxbig_()

Calculates $s = y^t x$. y-sparse, x - no.

Note

jу	:I: indices such that y[jy] is nonzero	
у	:I: is a sparse vector.	
пур	:I: number of nonzeroes in v	
X	:I: also a vector assumed to have entry for any j=jy[i]-1; for i=1:nyp. This means that x here does not have to	
	be sparse.	
s	:O: $s = y^t x$.	

Definition at line 703 of file BlaSparseUtil.c.

10.33 BlaSpmvBLC.c File Reference

BLAS2 operations for dBLCmat matrices.

```
#include <time.h>
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_blas_dblc_aAxpy (const REAL alpha, dBLCmat *A, REAL *x, REAL *y)
        Matrix-vector multiplication y = alpha*A*x + y.
    void fasp_blas_dblc_mxv (dBLCmat *A, REAL *x, REAL *y)
        Matrix-vector multiplication y = A*x.
```

10.33.1 Detailed Description

BLAS2 operations for dBLCmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires BlaSpmvCSR.c

10.33.2 Function Documentation

10.33.2.1 fasp blas dblc aAxpy()

Matrix-vector multiplication y = alpha*A*x + y.

Parameters

alpha	REAL factor a
Α	Pointer to dBLCmat matrix A
X	Pointer to array x
У	Pointer to array y

Author

Xiaozhe Hu

Date

06/04/2010

Definition at line 33 of file BlaSpmvBLC.c.

10.33.2.2 fasp_blas_dblc_mxv()

Matrix-vector multiplication y = A*x.

Parameters

Α	Pointer to dBLCmat matrix A
X	Pointer to array x
У	Pointer to array y

Author

Chensong Zhang

Date

04/27/2013

Definition at line 158 of file BlaSpmvBLC.c.

10.34 BlaSpmvBSR.c File Reference

BLAS2 operations for dBSRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp blas dbsr axm (dBSRmat *A, const REAL alpha)
```

Multiply a sparse matrix A in BSR format by a scalar alpha.

- void fasp_blas_dbsr_aAxpby (const REAL alpha, dBSRmat *A, REAL *x, const REAL beta, REAL *y)
 Compute y := alpha*A*x + beta*y.
- void fasp_blas_dbsr_aAxpy (const REAL alpha, dBSRmat *A, REAL *x, REAL *y)

```
Compute y := alpha * A * x + y.
```

void fasp_blas_dbsr_aAxpy_agg (const REAL alpha, dBSRmat *A, REAL *x, REAL *y)

Compute y := alpha*A*x + y where each small block matrix is an identity matrix.

- void fasp_blas_dbsr_mxv (dBSRmat *A, REAL *x, REAL *y)
 - Compute y := A*x.

void fasp_blas_dbsr_mxv_agg (dBSRmat *A, REAL *x, REAL *y)

Compute y := A*x, where each small block matrices of A is an identity matrix.

void fasp_blas_dbsr_mxm (dBSRmat *A, dBSRmat *B, dBSRmat *C)

Sparse matrix multiplication C=A*B.

- void fasp_blas_dbsr_rap1 (dBSRmat *R, dBSRmat *A, dBSRmat *P, dBSRmat *B)
 - dBSRmat sparse matrix multiplication B=R*A*P
- void fasp_blas_dbsr_rap (dBSRmat *R, dBSRmat *A, dBSRmat *P, dBSRmat *B)

dBSRmat sparse matrix multiplication B=R*A*P

• void fasp_blas_dbsr_rap_agg (dBSRmat *R, dBSRmat *A, dBSRmat *P, dBSRmat *B)

dBSRmat sparse matrix multiplication B=R*A*P, where small block matrices in P and R are identity matrices!

10.34.1 Detailed Description

BLAS2 operations for dBSRmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxArray.c, AuxMemory.c, BlaSmallMat.c, and BlaArray.c

10.34.2 Function Documentation

10.34.2.1 fasp_blas_dbsr_aAxpby()

Compute y := alpha*A*x + beta*y.

Parameters

alpha	REAL factor alpha
Α	Pointer to the dBSRmat matrix
X	Pointer to the array x
beta	REAL factor beta
У	Pointer to the array y

Author

Zhiyang Zhou

Date

10/25/2010

Modified by Chunsheng Feng, Zheng Li on 06/29/2012

Note

Works for general nb (Xiaozhe)

Definition at line 62 of file BlaSpmvBSR.c.

10.34.2.2 fasp_blas_dbsr_aAxpy()

Compute y := alpha*A*x + y.

alpha	REAL factor alpha
Α	Pointer to the dBSRmat matrix
X	Pointer to the array x
У	Pointer to the array y

Author

Zhiyang Zhou

Date

10/25/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Note

Works for general nb (Xiaozhe)

Definition at line 342 of file BlaSpmvBSR.c.

10.34.2.3 fasp_blas_dbsr_aAxpy_agg()

Compute y := alpha*A*x + y where each small block matrix is an identity matrix.

Parameters

alpha	REAL factor alpha
Α	Pointer to the dBSRmat matrix
Х	Pointer to the array x
У	Pointer to the array y

Author

Xiaozhe Hu

Date

01/02/2014

Note

Works for general nb (Xiaozhe)

Definition at line 616 of file BlaSpmvBSR.c.

```
10.34.2.4 fasp_blas_dbsr_axm()
```

Multiply a sparse matrix A in BSR format by a scalar alpha.

Parameters

Α	Pointer to dBSRmat matrix A
alpha	REAL factor alpha

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 33 of file BlaSpmvBSR.c.

10.34.2.5 fasp_blas_dbsr_mxm()

Sparse matrix multiplication C=A*B.

Α	Pointer to the dBSRmat matrix A
В	Pointer to the dBSRmat matrix B
С	Pointer to dBSRmat matrix equal to A*B

Author

Xiaozhe Hu

Date

05/26/2014

Note

This fct will be replaced! - Xiaozhe

Definition at line 4637 of file BlaSpmvBSR.c.

10.34.2.6 fasp_blas_dbsr_mxv()

Compute y := A*x.

Parameters

Α	Pointer to the dBSRmat matrix
Χ	Pointer to the array x
У	Pointer to the array y

Author

Zhiyang Zhou

Date

10/25/2010

Note

Works for general nb (Xiaozhe)

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 901 of file BlaSpmvBSR.c.

```
10.34.2.7 fasp_blas_dbsr_mxv_agg()
```

Compute y := A*x, where each small block matrices of A is an identity matrix.

Parameters

Α	Pointer to the dBSRmat matrix
X	Pointer to the array x
У	Pointer to the array y

Author

Xiaozhe Hu

Date

01/02/2014

Note

Works for general nb (Xiaozhe)

Definition at line 2687 of file BlaSpmvBSR.c.

10.34.2.8 fasp_blas_dbsr_rap()

dBSRmat sparse matrix multiplication B=R*A*P

R	Pointer to the dBSRmat matrix
Α	Pointer to the dBSRmat matrix
Р	Pointer to the dBSRmat matrix
В	Pointer to dBSRmat matrix equal to R*A*P (output)

Author

Xiaozhe Hu, Chunsheng Feng, Zheng Li

Date

10/24/2012

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 4941 of file BlaSpmvBSR.c.

10.34.2.9 fasp_blas_dbsr_rap1()

dBSRmat sparse matrix multiplication B=R*A*P

Parameters

R	Pointer to the dBSRmat matrix
Α	Pointer to the dBSRmat matrix
Р	Pointer to the dBSRmat matrix
В	Pointer to dBSRmat matrix equal to R*A*P (output)

Author

Chunsheng Feng, Xiaoqiang Yue and Xiaozhe Hu

Date

08/08/2011

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 4757 of file BlaSpmvBSR.c.

10.34.2.10 fasp_blas_dbsr_rap_agg()

```
void fasp_blas_dbsr_rap_agg (
    dBSRmat * R,
    dBSRmat * A,
    dBSRmat * P,
    dBSRmat * B)
```

dBSRmat sparse matrix multiplication B=R*A*P, where small block matrices in P and R are identity matrices!

Parameters

R	Pointer to the dBSRmat matrix
Α	Pointer to the dBSRmat matrix
Р	Pointer to the dBSRmat matrix
В	Pointer to dBSRmat matrix equal to R*A*P (output)

Author

Xiaozhe Hu

Date

10/24/2012

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 5206 of file BlaSpmvBSR.c.

BlaSpmvCSR.c File Reference 10.35

BLAS2 operations for dCSRmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    INT fasp blas dcsr add (dCSRmat *A, const REAL alpha, dCSRmat *B, const REAL beta, dCSRmat *C)

      compute C = alpha*A + beta*B in CSR format

    void fasp_blas_dcsr_axm (dCSRmat *A, const REAL alpha)

      Multiply a sparse matrix A in CSR format by a scalar alpha.

    void fasp blas dcsr mxv (dCSRmat *A, REAL *x, REAL *y)

      Matrix-vector multiplication y = A*x.

    void fasp_blas_dcsr_mxv_agg (dCSRmat *A, REAL *x, REAL *y)

      Matrix-vector multiplication y = A*x, where the entries of A are all ones.

    void fasp blas dcsr aAxpy (const REAL alpha, dCSRmat *A, REAL *x, REAL *y)

      Matrix-vector multiplication y = alpha*A*x + y.

    void fasp_blas_dcsr_aAxpy_agg (const REAL alpha, dCSRmat *A, REAL *x, REAL *y)

      Matrix-vector multiplication y = alpha*A*x + y (the entries of A are all ones)

    REAL fasp_blas_dcsr_vmv (dCSRmat *A, REAL *x, REAL *y)

      vector-Matrix-vector multiplication alpha = y'*A*x

    void fasp_blas_dcsr_mxm (dCSRmat *A, dCSRmat *B, dCSRmat *C)

      Sparse matrix multiplication C=A*B.

    void fasp_blas_dcsr_rap (dCSRmat *R, dCSRmat *A, dCSRmat *P, dCSRmat *RAP)

      Triple sparse matrix multiplication B=R*A*P.

    void fasp blas dcsr rap agg (dCSRmat *R, dCSRmat *A, dCSRmat *P, dCSRmat *RAP)

      Triple sparse matrix multiplication B=R*A*P.
```

void fasp_blas_dcsr_rap_agg1 (dCSRmat *R, dCSRmat *A, dCSRmat *P, dCSRmat *B)

Triple sparse matrix multiplication B=R*A*P (nonzero entries of R and P are ones)

void fasp blas dcsr ptap (dCSRmat *Pt, dCSRmat *A, dCSRmat *P, dCSRmat *Ac)

Triple sparse matrix multiplication B=P'*A*P.

 dCSRmat fasp blas dcsr rap2 (INT *ir, INT *jr, REAL *r, INT *ia, INT *ja, REAL *a, INT *ipt, INT *jpt, REAL *pt, INT n, INT nc, INT *maxrpout, INT *ipin, INT *jpin)

Compute R*A*P.

void fasp blas dcsr rap4 (dCSRmat *R, dCSRmat *A, dCSRmat *P, dCSRmat *B, INT *icor ysk)

Triple sparse matrix multiplication B=R*A*P.

void fasp_blas_dcsr_bandwith (dCSRmat *A, INT *bndwith)

Get bandwith of matrix.

10.35.1 Detailed Description

BLAS2 operations for dCSRmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxArray.c, AuxMemory.c, BlaSparseCSR.c, BlaSparseUtil.c, and BlaArray.c

Sparse functions usually contain three runs. The three runs are all the same but thy serve different purpose.

Example: If you do c=a+b:

- first do a dry run to find the number of non-zeroes and form ic;
- allocate space (memory) for jc and form this one;
- if you only care about a "boolean" result of the addition, you stop here;
- you call another routine, which uses ic and jc to perform the addition.

10.35.2 Function Documentation

10.35.2.1 fasp_blas_dcsr_aAxpy()

Matrix-vector multiplication y = alpha*A*x + y.

Parameters

alpha	REAL factor alpha
Α	Pointer to dCSRmat matrix A
X	Pointer to array x
У	Pointer to array y

Author

Chensong Zhang

Date

07/01/2009

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/26/2012

Definition at line 483 of file BlaSpmvCSR.c.

10.35.2.2 fasp_blas_dcsr_aAxpy_agg()

Matrix-vector multiplication y = alpha*A*x + y (the entries of A are all ones)

Parameters

alpha	REAL factor alpha
Α	Pointer to dCSRmat matrix A
X	Pointer to array x
У	Pointer to array y

Author

Xiaozhe Hu

Date

02/22/2011

Modified by Chunsheng Feng, Zheng Li on 08/29/2012

Definition at line 597 of file BlaSpmvCSR.c.

10.35.2.3 fasp_blas_dcsr_add()

compute C = alpha*A + beta*B in CSR format

Parameters

Α	Pointer to dCSRmat matrix
alpha	REAL factor alpha
В	Pointer to dCSRmat matrix
beta	REAL factor beta
С	Pointer to dCSRmat matrix

Returns

FASP_SUCCESS if succeed, ERROR if not

Author

Xiaozhe Hu

Date

11/07/2009

Modified by Chunsheng Feng, Zheng Li on 06/29/2012

Definition at line 52 of file BlaSpmvCSR.c.

10.35.2.4 fasp_blas_dcsr_axm()

Multiply a sparse matrix A in CSR format by a scalar alpha.

Parameters

Α	Pointer to dCSRmat matrix A
alpha	REAL factor alpha

Author

Chensong Zhang

Date

07/01/2009

Modified by Chunsheng Feng, Zheng Li on 06/29/2012

Definition at line 205 of file BlaSpmvCSR.c.

10.35.2.5 fasp_blas_dcsr_bandwith()

```
\label{eq:continuous_dcsr_bandwith} \begin{array}{c} \text{fasp\_blas\_dcsr\_bandwith (} \\ \\ \text{dCSRmat * A,} \\ \\ \text{INT * bndwith )} \end{array}
```

Get bandwith of matrix.

Parameters

Α	pointer to the dCSRmat matrix
bndwith	pointer to the bandwith

Author

Zheng Li

Date

03/22/2015

Definition at line 2097 of file BlaSpmvCSR.c.

10.35.2.6 fasp_blas_dcsr_mxm()

Sparse matrix multiplication C=A*B.

Parameters

Α	Pointer to the dCSRmat matrix A
В	Pointer to the dCSRmat matrix B
Generate Robin bary to a CSR mat matrix equal to A*	

```
Author
```

Xiaozhe Hu

Date

11/07/2009

Note

This fct will be replaced! -Chensong

Definition at line 763 of file BlaSpmvCSR.c.

10.35.2.7 fasp_blas_dcsr_mxv()

Matrix-vector multiplication y = A*x.

Parameters

Α	Pointer to dCSRmat matrix A
Х	Pointer to array x
У	Pointer to array y

Author

Chensong Zhang

Date

07/01/2009

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/26/2012

Definition at line 229 of file BlaSpmvCSR.c.

10.35.2.8 fasp_blas_dcsr_mxv_agg()

Matrix-vector multiplication y = A*x, where the entries of A are all ones.

Parameters

Α	Pointer to dCSRmat matrix A
X	Pointer to array x
У	Pointer to array y

Author

Xiaozhe Hu

Date

02/22/2011

Modified by Chunsheng Feng, Zheng Li on 08/29/2012

Definition at line 427 of file BlaSpmvCSR.c.

10.35.2.9 fasp_blas_dcsr_ptap()

Triple sparse matrix multiplication B=P'*A*P.

Parameters

Pt	Pointer to the restriction matrix
Α	Pointer to the fine coefficient matrix
Р	Pointer to the prolongation matrix
Ac	Pointer to the coarse coefficient matrix (output)

Author

Ludmil Zikatanov, Chensong Zhang

Date

05/10/2010

Modified by Chunsheng Feng, Zheng Li on 10/19/2012

Note

Driver to compute triple matrix product P'*A*P using Itz CSR format. In Itx format: ia[0]=1, ja[0] and a[0] are used as usual. When called from Fortran, ia[0], ja[0] and a[0] will be just ia(1),ja(1),a(1). For the indices, $ia_Itz[k] = ia_usual[k]+1$, $ja_Itz[k] = ja_usual[k]+1$

Definition at line 1600 of file BlaSpmvCSR.c.

10.35.2.10 fasp_blas_dcsr_rap()

Triple sparse matrix multiplication B=R*A*P.

Parameters

R	Pointer to the dCSRmat matrix R
Α	Pointer to the dCSRmat matrix A
Р	Pointer to the dCSRmat matrix P
RAP	Pointer to dCSRmat matrix equal to R*A*P

Author

Xuehai Huang, Chensong Zhang

Date

05/10/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/26/2012

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 870 of file BlaSpmvCSR.c.

10.35.2.11 fasp_blas_dcsr_rap2()

Compute R*A*P.

Author

Ludmil Zikatanov

Date

04/08/2010

Note

It uses dCSRmat only. The functions called from here are in sparse_util.c. Not used for the moment!

Definition at line 1698 of file BlaSpmvCSR.c.

10.35.2.12 fasp_blas_dcsr_rap4()

Triple sparse matrix multiplication B=R*A*P.

Parameters

R	pointer to the dCSRmat matrix
Α	pointer to the dCSRmat matrix
Р	pointer to the dCSRmat matrix
В	pointer to dCSRmat matrix equal to R*A*P
icor_ysk	pointer to the array

Author

Feng Chunsheng, Yue Xiaoqiang

Date

08/02/2011

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 1796 of file BlaSpmvCSR.c.

10.35.2.13 fasp_blas_dcsr_rap_agg()

Triple sparse matrix multiplication B=R*A*P.

Parameters

R	Pointer to the dCSRmat matrix R
Α	Pointer to the dCSRmat matrix A
Р	Pointer to the dCSRmat matrix P
RAP	Pointer to dCSRmat matrix equal to R*A*P

Author

Xiaozhe Hu

Date

05/10/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/26/2012

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 1152 of file BlaSpmvCSR.c.

10.35.2.14 fasp_blas_dcsr_rap_agg1()

Triple sparse matrix multiplication B=R*A*P (nonzero entries of R and P are ones)

Parameters

R	Pointer to the dCSRmat matrix R
Α	Pointer to the dCSRmat matrix A
Р	Pointer to the dCSRmat matrix P
В	Pointer to dCSRmat matrix equal to R*A*P

Author

Xiaozhe Hu

Date

02/21/2011

Note

Ref. R.E. Bank and C.C. Douglas. SMMP: Sparse Matrix Multiplication Package. Advances in Computational Mathematics, 1 (1993), pp. 127-137.

Definition at line 1417 of file BlaSpmvCSR.c.

10.35.2.15 fasp_blas_dcsr_vmv()

vector-Matrix-vector multiplication alpha = y'*A*x

Parameters

Α	Pointer to dCSRmat matrix A
Х	Pointer to array x
У	Pointer to array y

Author

Chensong Zhang

Date

07/01/2009

Definition at line 708 of file BlaSpmvCSR.c.

10.36 BlaSpmvCSRL.c File Reference

BLAS2 operations for dCSRLmat matrices.

```
#include "fasp.h"
```

Functions

```
    void fasp_blas_dcsrl_mxv (dCSRLmat *A, REAL *x, REAL *y)
    Compute y = A*x for a sparse matrix in CSRL format.
```

10.36.1 Detailed Description

BLAS2 operations for dCSRLmat matrices.

Note

This file contains Level-1 (Bla) functions.

Refer to John Mellor-Crummey and John Garvin Optimizaing sparse matrix vector product computations using unroll and jam, Tech Report Rice Univ, Aug 2002.

10.36.2 Function Documentation

10.36.2.1 fasp_blas_dcsrl_mxv()

Compute y = A*x for a sparse matrix in CSRL format.

Parameters

Α	Pointer to dCSRLmat matrix A
Х	Pointer to REAL array of vector x
У	Pointer to REAL array of vector y

Date

2011/01/07

Definition at line 29 of file BlaSpmvCSRL.c.

10.37 BlaSpmvSTR.c File Reference

BLAS2 operations for dSTRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
    void fasp_blas_dstr_aAxpy (const REAL alpha, dSTRmat *A, REAL *x, REAL *y)
    Matrix-vector multiplication y = alpha*A*x + y.
```

```
\bullet \ \ void \ fasp\_blas\_dstr\_mxv \ (dSTRmat \ *A, \ REAL \ *x, \ REAL \ *y)\\
```

Matrix-vector multiplication y = A*x.

INT fasp_dstr_diagscale (dSTRmat *A, dSTRmat *B)
 B=D^{-1}A.

10.37.1 Detailed Description

BLAS2 operations for dSTRmat matrices.

Note

This file contains Level-1 (Bla) functions. It requires AuxArray.c, AuxMemory.c, AuxSmallMat.c, BlaSmallMat.c, and BlaSparseSTR.c

10.37.2 Function Documentation

```
10.37.2.1 fasp_blas_dstr_aAxpy()
```

Matrix-vector multiplication y = alpha*A*x + y.

Parameters

alpha	REAL factor alpha
Α	Pointer to dSTRmat matrix
Х	Pointer to REAL array
У	Pointer to REAL array

Author

Zhiyang Zhou, Xiaozhe Hu, Shiquan Zhang

Date

2010/10/15

Definition at line 55 of file BlaSpmvSTR.c.

10.37.2.2 fasp_blas_dstr_mxv()

Matrix-vector multiplication y = A*x.

Parameters

Α	Pointer to dSTRmat matrix
Х	Pointer to REAL array
У	Pointer to REAL array

Author

Chensong Zhang

Date

04/27/2013

Definition at line 125 of file BlaSpmvSTR.c.

10.37.2.3 fasp_dstr_diagscale()

 $B=D^{-1}A$.

Parameters

Α	Pointer to a 'dSTRmat' type matrix A
В	Pointer to a 'dSTRmat' type matrix B

Author

Shiquan Zhang

Date

2010/10/15

Modified by Chunsheng Feng, Zheng Li

Date

08/30/2012

Definition at line 150 of file BlaSpmvSTR.c.

10.38 BlaVector.c File Reference

BLAS1 operations for vectors.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

```
void fasp_blas_dvec_axpy (const REAL a, dvector *x, dvector *y)

y = a*x + y

void fasp_blas_dvec_axpyz (const REAL a, dvector *x, dvector *y, dvector *z)

z = a*x + y, z is a third vector (z is cleared)

REAL fasp_blas_dvec_dotprod (dvector *x, dvector *y)

Inner product of two vectors (x,y)

REAL fasp_blas_dvec_relerr (dvector *x, dvector *y)

Relative error of two dvector x and y.

REAL fasp_blas_dvec_norm1 (dvector *x)

L1 norm of dvector x.

REAL fasp_blas_dvec_norm2 (dvector *x)

L2 norm of dvector x.

REAL fasp_blas_dvec_norminf (dvector *x)

Linf norm of dvector x.
```

10.38.1 Detailed Description

BLAS1 operations for vectors.

Note

This file contains Level-1 (Bla) functions. It requires AuxMessage.c and BlaArray.c

10.38.2 Function Documentation

Parameters

а	REAL factor a
Χ	Pointer to dvector x
у	Pointer to dvector y

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012

Definition at line 36 of file BlaVector.c.

10.38.2.2 fasp_blas_dvec_axpyz()

z = a*x + y, z is a third vector (z is cleared)

Parameters

а	REAL factor a
X	Pointer to dvector x
У	Pointer to dvector y
Z	Pointer to dvector z

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 88 of file BlaVector.c.

10.38.2.3 fasp_blas_dvec_dotprod()

```
REAL fasp_blas_dvec_dotprod ( \label{eq:dvector} \mbox{dvector} \ * \ x, \\ \mbox{dvector} \ * \ y \ )
```

Inner product of two vectors (x,y)

Parameters

Х	Pointer to dvector x
У	Pointer to dvector y

Returns

Inner product

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 124 of file BlaVector.c.

10.38.2.4 fasp_blas_dvec_norm1()

L1 norm of dvector x.

Parameters

```
x Pointer to dvector x
```

Returns

L1 norm of x

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 225 of file BlaVector.c.

10.38.2.5 fasp_blas_dvec_norm2()

L2 norm of dvector x.

Parameters

Returns

L2 norm of x

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 268 of file BlaVector.c.

```
10.38.2.6 fasp_blas_dvec_norminf()
```

Linf norm of dvector x.

Parameters

```
x Pointer to dvector x
```

Returns

L_inf norm of x

Author

Chensong Zhang

Date

07/01/209

Definition at line 308 of file BlaVector.c.

10.38.2.7 fasp_blas_dvec_relerr()

Relative error of two dvector x and y.

Parameters

Х	Pointer to dvector x
у	Pointer to dvector y

Returns

relative error ||x-y||/||x||

Author

Chensong Zhang

Date

07/01/209

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/23/2012

Definition at line 170 of file BlaVector.c.

10.39 doxygen.h File Reference

Main page for Doygen documentation.

10.39.1 Detailed Description

Main page for Doygen documentation.

10.40 fasp.h File Reference

Main header file for FASP.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "fasp_const.h"
```

Data Structures

struct ddenmat

Dense matrix of REAL type.

· struct idenmat

Dense matrix of INT type.

struct dCSRmat

Sparse matrix of REAL type in CSR format.

struct iCSRmat

Sparse matrix of INT type in CSR format.

struct dCOOmat

Sparse matrix of REAL type in COO (or IJ) format.

struct iCOOmat

Sparse matrix of INT type in COO (or IJ) format.

struct dCSRLmat

Sparse matrix of REAL type in CSRL format.

struct dSTRmat

Structure matrix of REAL type.

· struct dvector

Vector with n entries of REAL type.

struct ivector

Vector with n entries of INT type.

struct ILU_param

Parameters for ILU.

• struct ILU_data

Data for ILU setup.

struct Schwarz_param

Parameters for Schwarz method.

struct Mumps_data

Parameters for MUMPS interface.

• struct Pardiso_data

Parameters for Intel MKL PARDISO interface.

struct Schwarz_data

Data for Schwarz methods.

struct AMG_param

Parameters for AMG solver.

· struct AMG_data

Data for AMG solvers.

· struct precond data

Data passed to the preconditioners.

struct precond_data_str

Data passed to the preconditioner for dSTRmat matrices.

struct precond_diagstr

Data passed to diagonal preconditioner for dSTRmat matrices.

· struct precond

Preconditioner data and action.

struct mxv_matfree

Matrix-vector multiplication, replace the actual matrix.

struct input param

Input parameters.

· struct itsolver_param

Parameters passed to iterative solvers.

Macros

- #define __FASP_HEADER_
- #define FASP_VERSION 1.9

FASP base version information.

#define DLMALLOC OFF

For external software package support.

- #define NEDMALLOC OFF
- #define RS C1 ON

Flags for internal uses.

- #define DIAGONAL PREF OFF
- #define SHORT short

FASP integer and floating point numbers.

- · #define INT int
- #define LONG long
- #define LONGLONG long long
- #define REAL double
- #define MAX(a, b) (((a)>(b))?(a):(b))

Definition of max, min, abs.

- #define MIN(a, b) (((a)<(b))?(a):(b))
- #define ABS(a) (((a)>=0.0)?(a):-(a))
- #define GT(a, b) (((a)>(b))?(TRUE):(FALSE))

Definition of >, >=, <, <=, and isnan.

- #define GE(a, b) (((a)>=(b))?(TRUE):(FALSE))
- #define LS(a, b) (((a)<(b))?(TRUE):(FALSE))
- #define LE(a, b) (((a)<=(b))?(TRUE):(FALSE))
- #define ISNAN(a) (((a)!=(a))?(TRUE):(FALSE))
- #define PUT_INT(A) printf("### DEBUG: %s = %d\n", #A, (A))

Definition of print command in DEBUG mode.

- #define PUT_REAL(A) printf("### DEBUG: %s = %e\n", #A, (A))
- #define FASP_GSRB 1

Typedefs

- typedef struct ddenmat ddenmat
- · typedef struct idenmat idenmat
- typedef struct dCSRmat dCSRmat
- typedef struct iCSRmat iCSRmat
- typedef struct dCOOmat dCOOmat
- typedef struct iCOOmat iCOOmat
- typedef struct dCSRLmat dCSRLmat
- typedef struct dSTRmat dSTRmat
- · typedef struct dvector dvector
- typedef struct ivector ivector

Variables

- unsigned INT total_alloc_mem
- unsigned INT total_alloc_count

Total allocated memory amount.

- INT nx rb
- INT ny_rb
- INT nz_rb
- INT * IMAP
- INT MAXIMAP
- INT count

10.40.1 Detailed Description

Main header file for FASP.

This header file contains general constants and data structures for FASP.

Note

Only define macros and data structures, no function declarations.

Created by Chensong Zhang on 08/12/2010. Modified by Chensong Zhang on 12/13/2011. Modified by Chensong Zhang on 12/25/2011. Modified by Chensong Zhang on 01/25/2015: clean up code Modified by Chensong Zhang on 01/27/2015: remove N2C, C2N, ISTART Modified by Ludmil Zikatanov on 20151011: cosmetics.

Modified by Hongxuan Zhang on 11/28/2015: add Intel MKL PARDISO support.

10.40.2 Macro Definition Documentation

```
10.40.2.1 __FASP_HEADER__
#define __FASP_HEADER__
```

indicate fasp.h has been included before

Definition at line 36 of file fasp.h.

10.40.2.2 ABS

absolute value of a

Definition at line 77 of file fasp.h.

10.40.2.3 DIAGONAL_PREF

```
#define DIAGONAL_PREF OFF
```

order each row such that diagonal appears first

Definition at line 61 of file fasp.h.

10.40.2.4 DLMALLOC

```
#define DLMALLOC OFF
```

For external software package support.

use dimalloc instead of standard malloc

Definition at line 50 of file fasp.h.

10.40.2.5 FASP_GSRB

```
#define FASP_GSRB 1
```

MG level 0 use RedBlack Gauss Seidel Smoothing

Definition at line 1162 of file fasp.h.

10.40.2.6 FASP_VERSION

#define FASP_VERSION 1.9

FASP base version information.

faspsolver version

Definition at line 45 of file fasp.h.

```
10.40.2.7 GE
```

is $a \ge b$?

Definition at line 83 of file fasp.h.

10.40.2.8 GT

Definition of >, >=, <, <=, and isnan.

is a > b?

Definition at line 82 of file fasp.h.

10.40.2.9 INT

```
#define INT int
```

regular integer type: int or long

Definition at line 67 of file fasp.h.

10.40.2.10 ISNAN

```
#define ISNAN( a \ ) \ (((a) \, ! = (a))?(TRUE):(FALSE))
```

is a == NAN?

Definition at line 86 of file fasp.h.

10.40.2.11 LE

is a \leq = b?

Definition at line 85 of file fasp.h.

10.40.2.12 LONG

#define LONG long

long integer type

Definition at line 68 of file fasp.h.

10.40.2.13 LONGLONG

```
#define LONGLONG long long
```

long integer type

Definition at line 69 of file fasp.h.

10.40.2.14 LS

is a < b?

Definition at line 84 of file fasp.h.

10.40.2.15 MAX

Definition of max, min, abs.

bigger one in a and b

Definition at line 75 of file fasp.h.

10.40.2.16 MIN

smaller one in a and b

Definition at line 76 of file fasp.h.

10.40.2.17 NEDMALLOC

```
#define NEDMALLOC OFF
```

use nedmalloc instead of standard malloc

Definition at line 51 of file fasp.h.

10.40.2.18 PUT_INT

```
#define PUT_INT(  A \ ) \ {\tt printf("\#\#\# \ DEBUG: \$s = \$d\n", \ \#A, \ (A))}
```

Definition of print command in DEBUG mode.

print integer

Definition at line 91 of file fasp.h.

```
332
10.40.2.19 PUT_REAL
#define PUT_REAL(
                A) printf("### DEBUG: %s = %e\n", #A, (A))
print real num
Definition at line 92 of file fasp.h.
10.40.2.20 REAL
#define REAL double
float type
Definition at line 70 of file fasp.h.
10.40.2.21 RS_C1
#define RS_C1 ON
Flags for internal uses.
Warning
     Change the following marcos with caution!CF splitting of RS: check C1 Criterion
Definition at line 59 of file fasp.h.
10.40.2.22 SHORT
#define SHORT short
```

FASP integer and floating point numbers.

Definition at line 66 of file fasp.h.

short integer type

Generated by Doxygen

10.40.3 Typedef Documentation

10.40.3.1 dCOOmat typedef struct dCOOmat dCOOmat Sparse matrix of REAL type in COO format 10.40.3.2 dCSRLmat typedef struct dCSRLmat dCSRLmat Sparse matrix of REAL type in CSRL format 10.40.3.3 dCSRmat typedef struct dCSRmat dCSRmat Sparse matrix of REAL type in CSR format 10.40.3.4 ddenmat typedef struct ddenmat ddenmat Dense matrix of REAL type 10.40.3.5 dSTRmat typedef struct dSTRmat dSTRmat Structured matrix of REAL type 10.40.3.6 dvector

typedef struct dvector dvector

Vector of REAL type

```
10.40.3.7 iCOOmat
typedef struct iCOOmat iCOOmat
Sparse matrix of INT type in COO format
10.40.3.8 iCSRmat
typedef struct iCSRmat iCSRmat
Sparse matrix of INT type in CSR format
10.40.3.9 idenmat
typedef struct idenmat idenmat
Dense matrix of INT type
10.40.3.10 ivector
typedef struct ivector ivector
Vector of INT type
10.40.4 Variable Documentation
10.40.4.1 count
INT count
Counter for multiple calls
10.40.4.2 IMAP
INT* IMAP
```

Red Black Gs Smoother imap

10.40.4.3 MAXIMAP INT MAXIMAP Red Black Gs Smoother max DOFs of reservoir 10.40.4.4 nx_rb INT nx_rb Red Black Gs Smoother Nx 10.40.4.5 ny_rb INT ny_rb Red Black Gs Smoother Ny 10.40.4.6 nz_rb INT nz_rb Red Black Gs Smoother Nz 10.40.4.7 total_alloc_count unsigned INT total_alloc_count Total allocated memory amount. total allocation times Definition at line 39 of file AuxMemory.c. 10.40.4.8 total_alloc_mem unsigned INT total_alloc_mem

Generated by Doxygen

total allocated memory

Definition at line 38 of file AuxMemory.c.

10.41 fasp_block.h File Reference

Header file for FASP block matrices.

```
#include "fasp.h"
```

Data Structures

struct dBSRmat

Block sparse row storage matrix of REAL type.

struct dBLCmat

Block REAL CSR matrix format.

struct iBLCmat

Block INT CSR matrix format.

struct block_dvector

Block REAL vector structure.

· struct block ivector

Block INT vector structure.

struct AMG_data_bsr

Data for multigrid levels. (BSR format)

struct precond_diagbsr

Data passed to diagnal preconditioner for dBSRmat matrices.

struct precond_data_bsr

Data passed to the preconditioners.

• struct precond_block_data

Data passed to the preconditioner for block preconditioning for dBLCmat format.

• struct precond_sweeping_data

Data passed to the preconditioner for sweeping preconditioning.

Macros

#define __FASPBLOCK_HEADER__

Typedefs

- typedef struct dBSRmat dBSRmat
- typedef struct dBLCmat dBLCmat
- · typedef struct iBLCmat iBLCmat
- typedef struct block_dvector block_dvector
- typedef struct block_ivector block_ivector

10.41.1 Detailed Description

Header file for FASP block matrices.

Note

This header file contains definitions of block matrices, including grid-major type and variable-major type. In this header, we only define macros and data structures, not function declarations.

Created by Chensong Zhang on 05/21/2010. Modified by Xiaozhe Hu on 05/28/2010: add precond_block
_reservoir_data. Modified by Xiaozhe Hu on 06/15/2010: modify precond_block_reservoir_data. Modified by Chensong Zhang on 10/11/2010: add BSR data. Modified by Chensong Zhang on 10/17/2012: modify comments.
Modified by Ludmil Zikatanov on 10/11/2015: cosmetics.

Modified by Chensong Zhang on 01/13/2017: remove reservoir simulation part

10.41.2 Macro Definition Documentation

```
10.41.2.1 FASPBLOCK_HEADER
```

#define ___FASPBLOCK_HEADER___

indicate fasp_block.h has been included before

Definition at line 23 of file fasp block.h.

10.41.3 Typedef Documentation

10.41.3.1 block_dvector

typedef struct block_dvector block_dvector

Vector of REAL type in Block format

10.41.3.2 block_ivector

typedef struct block_ivector block_ivector

Vector of INT type in Block format

10.41.3.3 dBLCmat

```
typedef struct dBLCmat dBLCmat
```

Matrix of REAL type in Block CSR format

10.41.3.4 dBSRmat

```
typedef struct dBSRmat dBSRmat
```

Matrix of REAL type in BSR format

10.41.3.5 iBLCmat

```
typedef struct iBLCmat iBLCmat
```

Matrix of INT type in Block CSR format

10.42 fasp_const.h File Reference

Definition of all kinds of messages, including error messages, solver types, etc.

Macros

- #define FASP_SUCCESS 0
 - Definition of return status and error messages.
- #define ERROR OPEN FILE -10
- #define ERROR_WRONG_FILE -11
- #define ERROR INPUT PAR -13
- #define ERROR_REGRESS -14
- #define ERROR_MAT_SIZE -15
- #define ERROR NUM BLOCKS -18
- #define ERROR MISC -19
- #define ERROR_ALLOC_MEM -20
- #define ERROR_DATA_STRUCTURE -21
- #define ERROR_DATA_ZERODIAG -22
- #define ERROR_DUMMY_VAR -23
- #define ERROR AMG INTERP TYPE -30
- #define ERROR AMG SMOOTH TYPE -31
- #define ERROR_AMG_COARSE_TYPE -32
- #define ERROR AMG COARSEING -33
- #define ERROR_SOLVER_TYPE -40
- #define ERROR_SOLVER_PRECTYPE -41
- #define ERROR_SOLVER_STAG -42
- #define ERROR_SOLVER_SOLSTAG -43

- #define ERROR_SOLVER_TOLSMALL -44
 #define ERROR_SOLVER_ILUSETUP -45
 #define ERROR_SOLVER_MISC -46
 #define ERROR_SOLVER_MAXIT -48
 #define ERROR_SOLVER_EXIT -49
- #define ERROR_QUAD_TYPE -60
- #define ERROR QUAD DIM -61
- #define ERROR_LIC_TYPE -80
- #define ERROR_UNKNOWN -99
- #define TRUE 1

Definition of logic type.

- #define FALSE 0
- #define ON 1

Definition of switch.

- #define OFF 0
- #define PRINT NONE 0

Print level for all subroutines - not including DEBUG output.

- #define PRINT MIN 1
- #define PRINT SOME 2
- #define PRINT MORE 4
- #define PRINT_MOST 8
- #define PRINT ALL 10
- #define MAT FREE 0

Definition of matrix format.

- #define MAT_CSR 1
- #define MAT_BSR 2
- #define MAT STR 3
- #define MAT CSRL 6
- #define MAT SymCSR 7
- #define MAT BLC 8
- #define MAT_bCSR 11
- #define MAT_bBSR 12
- #define MAT_bSTR 13
- #define SOLVER_DEFAULT 0

Definition of solver types for iterative methods.

- #define SOLVER CG 1
- #define SOLVER BiCGstab 2
- #define SOLVER_VBiCGstab 9
- #define SOLVER_MinRes 3
- #define SOLVER_GMRES 4
- #define SOLVER_VGMRES 5
- #define SOLVER_VFGMRES 6
- #define SOLVER GCG 7
- #define SOLVER GCR 8
- #define SOLVER_SCG 11
- #define SOLVER_SBiCGstab 12
- #define SOLVER_SMinRes 13
- #define SOLVER_SGMRES 14
- #define SOLVER SVGMRES 15
- #define SOLVER_SVFGMRES 16

- #define SOLVER_SGCG 17
- #define SOLVER AMG 21
- #define SOLVER_FMG 22
- #define SOLVER SUPERLU 31
- #define SOLVER_UMFPACK 32
- #define SOLVER MUMPS 33
- #define SOLVER PARDISO 34
- #define STOP_REL_RES 1

Definition of iterative solver stopping criteria types.

- #define STOP REL PRECRES 2
- #define STOP_MOD_REL_RES 3
- #define PREC_NULL 0

Definition of preconditioner type for iterative methods.

- #define PREC DIAG 1
- #define PREC AMG 2
- #define PREC FMG 3
- #define PREC ILU 4
- #define PREC_SCHWARZ 5
- #define ILUk 1

Type of ILU methods.

- #define ILUt 2
- #define ILUtp 3
- #define SCHWARZ FORWARD 1

Type of Schwarz smoother.

- #define SCHWARZ BACKWARD 2
- #define SCHWARZ_SYMMETRIC 3
- #define CLASSIC_AMG 1

Definition of AMG types.

- #define SA AMG 2
- #define UA AMG 3
- #define PAIRWISE 1

Definition of aggregation types.

- #define VMB 2
- #define V_CYCLE 1

Definition of cycle types.

- #define W_CYCLE 2
- #define AMLI CYCLE 3
- #define NL_AMLI_CYCLE 4
- #define SMOOTHER JACOBI 1

Definition of standard smoother types.

- #define SMOOTHER GS 2
- #define SMOOTHER_SGS 3
- #define SMOOTHER_CG 4
- #define SMOOTHER_SOR 5
- #define SMOOTHER_SSOR 6
- #define SMOOTHER GSOR 7
- #define SMOOTHER SGSOR 8
- #define SMOOTHER POLY 9
- #define SMOOTHER L1DIAG 10

• #define SMOOTHER_BLKOIL 11

Definition of specialized smoother types.

- #define SMOOTHER_SPETEN 19
- #define COARSE_RS 1

Definition of coarsening types.

- #define COARSE RSP 2
- #define COARSE_CR 3
- #define COARSE AC 4
- #define COARSE_MIS 5
- #define INTERP_DIR 1

Definition of interpolation types.

- #define INTERP_STD 2
- #define INTERP_ENG 3
- #define GOPT -5

Type of vertices (DOFs) for coarsening.

- #define UNPT -1
- #define FGPT 0
- #define CGPT 1
- #define ISPT 2
- #define NO ORDER 0

Definition of smoothing order.

- #define CF ORDER 1
- #define ILU_MC_OMP 1
- #define USERDEFINED 0

Type of ordering for smoothers.

- #define CPFIRST 1
- #define FPFIRST -1
- #define ASCEND 12
- #define DESCEND 21
- #define BIGREAL 1e+20

Some global constants.

- #define SMALLREAL 1e-20
- #define SMALLREAL2 1e-40
- #define MAX_REFINE_LVL 20
- #define MAX_AMG_LVL 20
- #define MIN_CDOF 20
- #define MIN_CRATE 0.9
- #define MAX CRATE 20.0
- #define MAX RESTART 20
- #define MAX_STAG 20
- #define STAG_RATIO 1e-4
- #define OPENMP_HOLDS 2000

10.42.1 Detailed Description

Definition of all kinds of messages, including error messages, solver types, etc.

Note

This is internal use only. Do NOT change.

Created by Chensong Zhang on 03/20/2010. Modified by Chensong Zhang on 12/06/2011. Modified by Chensong Zhang on 12/25/2011. Modified by Chensong Zhang on 04/22/2012. Modified by Ludmil Zikatanov on 02/15/2013: CG -> SMOOTHER_CG. Modified by Chensong Zhang on 02/16/2013: GS -> SMOOTHER_GS, etc. Modified by Chensong Zhang on 04/09/2013: Add safe Krylov methods. Modified by Chensong Zhang on 09/22/2013: Clean up Doxygen.

Modified by Chensong Zhang on 09/17/2013: Filename changed from message.h.

10.42.2 Macro Definition Documentation

10.42.2.1 AMLI_CYCLE

#define AMLI_CYCLE 3

AMLI-cycle

Definition at line 184 of file fasp_const.h.

10.42.2.2 ASCEND

#define ASCEND 12

Ascending order

Definition at line 245 of file fasp_const.h.

10.42.2.3 BIGREAL

#define BIGREAL 1e+20

Some global constants.

A large real number

Definition at line 251 of file fasp_const.h.

```
10.42.2.4 CF_ORDER
#define CF_ORDER 1
C/F order smoothing
Definition at line 236 of file fasp_const.h.
10.42.2.5 CGPT
#define CGPT 1
Coarse grid points
Definition at line 229 of file fasp_const.h.
10.42.2.6 CLASSIC_AMG
#define CLASSIC_AMG 1
Definition of AMG types.
classic AMG
Definition at line 169 of file fasp_const.h.
10.42.2.7 COARSE_AC
#define COARSE_AC 4
Aggressive coarsening
Definition at line 213 of file fasp_const.h.
10.42.2.8 COARSE_CR
```

#define COARSE_CR 3

Compatible relaxation

Definition at line 212 of file fasp_const.h.

10.42.2.9 COARSE_MIS

```
#define COARSE_MIS 5
```

Aggressive coarsening based on MIS

Definition at line 214 of file fasp_const.h.

10.42.2.10 COARSE_RS

```
#define COARSE_RS 1
```

Definition of coarsening types.

Classical

Definition at line 210 of file fasp_const.h.

10.42.2.11 COARSE_RSP

#define COARSE_RSP 2

Classical, with positive offdiags

Definition at line 211 of file fasp_const.h.

10.42.2.12 CPFIRST

#define CPFIRST 1

C-points first order

Definition at line 243 of file fasp_const.h.

10.42.2.13 DESCEND

#define DESCEND 21

Descending order

Definition at line 246 of file fasp_const.h.

10.42.2.14 ERROR_ALLOC_MEM

#define ERROR_ALLOC_MEM -20

fail to allocate memory

Definition at line 37 of file fasp_const.h.

10.42.2.15 ERROR_AMG_COARSE_TYPE

#define ERROR_AMG_COARSE_TYPE -32

unknown coarsening type

Definition at line 44 of file fasp_const.h.

10.42.2.16 ERROR_AMG_COARSEING

#define ERROR_AMG_COARSEING -33

coarsening step failed to complete

Definition at line 45 of file fasp_const.h.

10.42.2.17 ERROR_AMG_INTERP_TYPE

#define ERROR_AMG_INTERP_TYPE -30

unknown interpolation type

Definition at line 42 of file fasp_const.h.

10.42.2.18 ERROR_AMG_SMOOTH_TYPE

#define ERROR_AMG_SMOOTH_TYPE -31

unknown smoother type

Definition at line 43 of file fasp_const.h.

10.42.2.19 ERROR_DATA_STRUCTURE

#define ERROR_DATA_STRUCTURE -21

problem with data structures

Definition at line 38 of file fasp_const.h.

10.42.2.20 ERROR_DATA_ZERODIAG

#define ERROR_DATA_ZERODIAG -22

matrix has zero diagonal entries

Definition at line 39 of file fasp_const.h.

10.42.2.21 ERROR_DUMMY_VAR

#define ERROR_DUMMY_VAR -23

unexpected input data

Definition at line 40 of file fasp_const.h.

10.42.2.22 ERROR_INPUT_PAR

#define ERROR_INPUT_PAR -13

wrong input argument

Definition at line 31 of file fasp_const.h.

10.42.2.23 ERROR_LIC_TYPE

#define ERROR_LIC_TYPE -80

wrong license type

Definition at line 60 of file fasp_const.h.

10.42.2.24 ERROR_MAT_SIZE

#define ERROR_MAT_SIZE -15

wrong problem size

Definition at line 33 of file fasp_const.h.

10.42.2.25 ERROR_MISC

#define ERROR_MISC -19

other error

Definition at line 35 of file fasp_const.h.

10.42.2.26 ERROR_NUM_BLOCKS

#define ERROR_NUM_BLOCKS -18

wrong number of blocks

Definition at line 34 of file fasp_const.h.

10.42.2.27 ERROR_OPEN_FILE

#define ERROR_OPEN_FILE -10

fail to open a file

Definition at line 29 of file fasp_const.h.

10.42.2.28 ERROR_QUAD_DIM

#define ERROR_QUAD_DIM -61

unsupported quadrature dim

Definition at line 58 of file fasp_const.h.

10.42.2.29 ERROR_QUAD_TYPE

#define ERROR_QUAD_TYPE -60

unknown quadrature type

Definition at line 57 of file fasp_const.h.

10.42.2.30 ERROR_REGRESS

#define ERROR_REGRESS -14

regression test fail

Definition at line 32 of file fasp_const.h.

10.42.2.31 ERROR_SOLVER_EXIT

#define ERROR_SOLVER_EXIT -49

solver does not quit successfully

Definition at line 55 of file fasp_const.h.

10.42.2.32 ERROR_SOLVER_ILUSETUP

#define ERROR_SOLVER_ILUSETUP -45

ILU setup error

Definition at line 52 of file fasp_const.h.

10.42.2.33 ERROR_SOLVER_MAXIT

#define ERROR_SOLVER_MAXIT -48

maximal iteration number exceeded

Definition at line 54 of file fasp_const.h.

10.42.2.34 ERROR_SOLVER_MISC

#define ERROR_SOLVER_MISC -46

misc solver error during run time

Definition at line 53 of file fasp_const.h.

10.42.2.35 ERROR_SOLVER_PRECTYPE

#define ERROR_SOLVER_PRECTYPE -41

unknown precond type

Definition at line 48 of file fasp_const.h.

10.42.2.36 ERROR_SOLVER_SOLSTAG

#define ERROR_SOLVER_SOLSTAG -43

solver's solution is too small

Definition at line 50 of file fasp_const.h.

10.42.2.37 ERROR_SOLVER_STAG

#define ERROR_SOLVER_STAG -42

solver stagnates

Definition at line 49 of file fasp_const.h.

10.42.2.38 ERROR_SOLVER_TOLSMALL

#define ERROR_SOLVER_TOLSMALL -44

solver's tolerance is too small

Definition at line 51 of file fasp_const.h.

10.42.2.39 ERROR_SOLVER_TYPE

```
#define ERROR_SOLVER_TYPE -40
```

unknown solver type

Definition at line 47 of file fasp_const.h.

10.42.2.40 ERROR_UNKNOWN

```
#define ERROR_UNKNOWN -99
```

an unknown error type

Definition at line 62 of file fasp_const.h.

10.42.2.41 ERROR_WRONG_FILE

```
#define ERROR_WRONG_FILE -11
```

input contains wrong format

Definition at line 30 of file fasp_const.h.

10.42.2.42 FALSE

#define FALSE 0

logic FALSE

Definition at line 68 of file fasp_const.h.

10.42.2.43 FASP_SUCCESS

#define FASP_SUCCESS 0

Definition of return status and error messages.

return from function successfully

Definition at line 27 of file fasp_const.h.

10.42.2.44 FGPT #define FGPT 0 Fine grid points Definition at line 228 of file fasp_const.h. 10.42.2.45 FPFIRST #define FPFIRST -1 F-points first order Definition at line 244 of file fasp_const.h. 10.42.2.46 G0PT #define GOPT -5 Type of vertices (DOFs) for coarsening. Cannot fit in aggregates Definition at line 226 of file fasp_const.h. 10.42.2.47 ILU_MC_OMP #define ILU_MC_OMP 1 Multi-colors Parallel smoothing

Definition at line 237 of file fasp_const.h.

```
10.42.2.48 ILUk
#define ILUk 1
Type of ILU methods.
ILUk
Definition at line 155 of file fasp_const.h.
10.42.2.49 ILUt
#define ILUt 2
ILUt
Definition at line 156 of file fasp_const.h.
10.42.2.50 ILUtp
#define ILUtp 3
ILUtp
Definition at line 157 of file fasp_const.h.
10.42.2.51 INTERP_DIR
#define INTERP_DIR 1
Definition of interpolation types.
Direct interpolation
Definition at line 219 of file fasp_const.h.
```

10.42.2.52 INTERP_ENG

#define INTERP_ENG 3

energy minimization interpolation

Definition at line 221 of file fasp_const.h.

10.42.2.53 INTERP_STD

#define INTERP_STD 2

Standard interpolation

Definition at line 220 of file fasp_const.h.

10.42.2.54 ISPT

#define ISPT 2

Isolated points

Definition at line 230 of file fasp_const.h.

10.42.2.55 MAT_bBSR

#define MAT_bBSR 12

block BSR/CSR matrix

Definition at line 101 of file fasp_const.h.

10.42.2.56 MAT_bCSR

#define MAT_bCSR 11

block CSR/CSR matrix == 2*2 BLC matrix

Definition at line 100 of file fasp_const.h.

```
10.42.2.57 MAT_BLC
```

#define MAT_BLC 8

block CSR matrix

Definition at line 96 of file fasp_const.h.

10.42.2.58 MAT_BSR

#define MAT_BSR 2

block-wise compressed sparse row

Definition at line 92 of file fasp_const.h.

10.42.2.59 MAT_bSTR

#define MAT_bSTR 13

block STR/CSR matrix

Definition at line 102 of file fasp_const.h.

10.42.2.60 MAT_CSR

#define MAT_CSR 1

compressed sparse row

Definition at line 91 of file fasp_const.h.

10.42.2.61 MAT_CSRL

#define MAT_CSRL 6

modified CSR to reduce cache missing

Definition at line 94 of file fasp_const.h.

10.42.2.62 MAT_FREE

#define MAT_FREE 0

Definition of matrix format.

matrix-free format: only mxv action

Definition at line 89 of file fasp_const.h.

10.42.2.63 MAT_STR

#define MAT_STR 3

structured sparse matrix

Definition at line 93 of file fasp_const.h.

10.42.2.64 MAT_SymCSR

#define MAT_SymCSR 7

symmetric CSR format

Definition at line 95 of file fasp_const.h.

10.42.2.65 MAX_AMG_LVL

#define MAX_AMG_LVL 20

Maximal AMG coarsening level

Definition at line 255 of file fasp_const.h.

10.42.2.66 MAX_CRATE

#define MAX_CRATE 20.0

Maximal coarsening ratio

Definition at line 258 of file fasp_const.h.

10.42.2.67 MAX_REFINE_LVL

#define MAX_REFINE_LVL 20

Maximal refinement level

Definition at line 254 of file fasp_const.h.

10.42.2.68 MAX_RESTART

#define MAX_RESTART 20

Maximal restarting number

Definition at line 259 of file fasp_const.h.

10.42.2.69 MAX_STAG

#define MAX_STAG 20

Maximal number of stagnation times

Definition at line 260 of file fasp_const.h.

10.42.2.70 MIN_CDOF

#define MIN_CDOF 20

Minimal number of coarsest variables

Definition at line 256 of file fasp_const.h.

10.42.2.71 MIN_CRATE

#define MIN_CRATE 0.9

Minimal coarsening ratio

Definition at line 257 of file fasp_const.h.

```
10.42.2.72 NL_AMLI_CYCLE
#define NL_AMLI_CYCLE 4
Nonlinear AMLI-cycle
Definition at line 185 of file fasp_const.h.
10.42.2.73 NO_ORDER
#define NO_ORDER 0
Definition of smoothing order.
Natural order smoothing
Definition at line 235 of file fasp_const.h.
10.42.2.74 OFF
#define OFF 0
turn off certain parameter
Definition at line 74 of file fasp_const.h.
10.42.2.75 ON
#define ON 1
Definition of switch.
turn on certain parameter
Definition at line 73 of file fasp_const.h.
```

10.42.2.76 OPENMP_HOLDS

#define OPENMP_HOLDS 2000

Smallest size for OpenMP version

Definition at line 262 of file fasp_const.h.

10.42.2.77 PAIRWISE

#define PAIRWISE 1

Definition of aggregation types.

pairwise aggregation

Definition at line 176 of file fasp_const.h.

10.42.2.78 PREC_AMG

#define PREC_AMG 2

with AMG precond

Definition at line 147 of file fasp_const.h.

10.42.2.79 PREC_DIAG

#define PREC_DIAG 1

with diagonal precond

Definition at line 146 of file fasp_const.h.

10.42.2.80 PREC_FMG

#define PREC_FMG 3

with full AMG precond

Definition at line 148 of file fasp_const.h.

10.42.2.81 PREC_ILU

#define PREC_ILU 4

with ILU precond

Definition at line 149 of file fasp_const.h.

10.42.2.82 PREC_NULL

#define PREC_NULL 0

Definition of preconditioner type for iterative methods.

with no precond

Definition at line 145 of file fasp_const.h.

10.42.2.83 PREC_SCHWARZ

#define PREC_SCHWARZ 5

with Schwarz preconditioner

Definition at line 150 of file fasp_const.h.

10.42.2.84 PRINT_ALL

#define PRINT_ALL 10

all: all printouts, including files

Definition at line 84 of file fasp_const.h.

10.42.2.85 PRINT_MIN

#define PRINT_MIN 1

quiet: print error, important warnings

Definition at line 80 of file fasp_const.h.

10.42.2.86 PRINT_MORE

#define PRINT_MORE 4

more: print some useful debug info

Definition at line 82 of file fasp_const.h.

10.42.2.87 PRINT_MOST

#define PRINT_MOST 8

most: maximal printouts, no files

Definition at line 83 of file fasp_const.h.

10.42.2.88 PRINT_NONE

#define PRINT_NONE 0

Print level for all subroutines - not including DEBUG output.

silent: no printout at all

Definition at line 79 of file fasp_const.h.

10.42.2.89 PRINT_SOME

#define PRINT_SOME 2

some: print less important warnings

Definition at line 81 of file fasp_const.h.

10.42.2.90 SA_AMG

#define SA_AMG 2

smoothed aggregation AMG

Definition at line 170 of file fasp_const.h.

10.42.2.91 SCHWARZ_BACKWARD

#define SCHWARZ_BACKWARD 2

Backward ordering

Definition at line 163 of file fasp_const.h.

10.42.2.92 SCHWARZ_FORWARD

#define SCHWARZ_FORWARD 1

Type of Schwarz smoother.

Forward ordering

Definition at line 162 of file fasp_const.h.

10.42.2.93 SCHWARZ_SYMMETRIC

#define SCHWARZ_SYMMETRIC 3

Symmetric smoother

Definition at line 164 of file fasp_const.h.

10.42.2.94 SMALLREAL

#define SMALLREAL 1e-20

A small real number

Definition at line 252 of file fasp_const.h.

10.42.2.95 SMALLREAL2

#define SMALLREAL2 1e-40

An extremely small real number

Definition at line 253 of file fasp_const.h.

10.42.2.96 SMOOTHER_BLKOIL #define SMOOTHER_BLKOIL 11 Definition of specialized smoother types. Used in monolithic AMG for black-oil Definition at line 204 of file fasp_const.h. 10.42.2.97 SMOOTHER_CG #define SMOOTHER_CG 4 CG as a smoother Definition at line 193 of file fasp_const.h. 10.42.2.98 SMOOTHER_GS #define SMOOTHER_GS 2 Gauss-Seidel smoother Definition at line 191 of file fasp_const.h. 10.42.2.99 SMOOTHER_GSOR #define SMOOTHER_GSOR 7 GS + SOR smoother

Definition at line 196 of file fasp_const.h.

10.42.2.100 SMOOTHER_JACOBI

#define SMOOTHER_JACOBI 1

Definition of standard smoother types.

Jacobi smoother

Definition at line 190 of file fasp_const.h.

10.42.2.101 SMOOTHER_L1DIAG

#define SMOOTHER_L1DIAG 10

L1 norm diagonal scaling smoother

Definition at line 199 of file fasp_const.h.

10.42.2.102 SMOOTHER_POLY

#define SMOOTHER_POLY 9

Polynomial smoother

Definition at line 198 of file fasp_const.h.

10.42.2.103 SMOOTHER_SGS

#define SMOOTHER_SGS 3

Symmetric Gauss-Seidel smoother

Definition at line 192 of file fasp_const.h.

10.42.2.104 SMOOTHER_SGSOR

#define SMOOTHER_SGSOR 8

SGS + SSOR smoother

Definition at line 197 of file fasp_const.h.

10.42.2.105 SMOOTHER_SOR

#define SMOOTHER_SOR 5

SOR smoother

Definition at line 194 of file fasp_const.h.

10.42.2.106 SMOOTHER_SPETEN

#define SMOOTHER_SPETEN 19

Used in monolithic AMG for black-oil

Definition at line 205 of file fasp_const.h.

10.42.2.107 SMOOTHER_SSOR

#define SMOOTHER_SSOR 6

SSOR smoother

Definition at line 195 of file fasp_const.h.

10.42.2.108 SOLVER_AMG

#define SOLVER_AMG 21

AMG as an iterative solver

Definition at line 127 of file fasp_const.h.

10.42.2.109 SOLVER_BiCGstab

#define SOLVER_BiCGstab 2

Bi-Conjugate Gradient Stabilized

Definition at line 110 of file fasp_const.h.

10.42.2.110 SOLVER_CG

#define SOLVER_CG 1

Conjugate Gradient

Definition at line 109 of file fasp_const.h.

10.42.2.111 SOLVER_DEFAULT

#define SOLVER_DEFAULT 0

Definition of solver types for iterative methods.

Use default solver in FASP

Definition at line 107 of file fasp_const.h.

10.42.2.112 SOLVER_FMG

#define SOLVER_FMG 22

Full AMG as an solver

Definition at line 128 of file fasp_const.h.

10.42.2.113 SOLVER_GCG

#define SOLVER_GCG 7

Generalized Conjugate Gradient

Definition at line 116 of file fasp_const.h.

10.42.2.114 SOLVER_GCR

#define SOLVER_GCR 8

Generalized Conjugate Residual

Definition at line 117 of file fasp_const.h.

10.42.2.115 SOLVER_GMRES

#define SOLVER_GMRES 4

Generalized Minimal Residual

Definition at line 113 of file fasp_const.h.

10.42.2.116 SOLVER_MinRes

#define SOLVER_MinRes 3

Minimal Residual

Definition at line 112 of file fasp_const.h.

10.42.2.117 SOLVER_MUMPS

#define SOLVER_MUMPS 33

Direct Solver: MUMPS

Definition at line 132 of file fasp const.h.

10.42.2.118 SOLVER_PARDISO

#define SOLVER_PARDISO 34

Direct Solver: PARDISO

Definition at line 133 of file fasp_const.h.

10.42.2.119 SOLVER_SBiCGstab

#define SOLVER_SBiCGstab 12

BiCGstab with safety net

Definition at line 120 of file fasp_const.h.

10.42.2.120 SOLVER_SCG

#define SOLVER_SCG 11

Conjugate Gradient with safety net

Definition at line 119 of file fasp_const.h.

10.42.2.121 SOLVER_SGCG

#define SOLVER_SGCG 17

GCG with safety net

Definition at line 125 of file fasp_const.h.

10.42.2.122 SOLVER_SGMRES

#define SOLVER_SGMRES 14

GMRes with safety net

Definition at line 122 of file fasp_const.h.

10.42.2.123 SOLVER_SMinRes

#define SOLVER_SMinRes 13

MinRes with safety net

Definition at line 121 of file fasp_const.h.

10.42.2.124 SOLVER_SUPERLU

#define SOLVER_SUPERLU 31

Direct Solver: SuperLU

Definition at line 130 of file fasp_const.h.

10.42.2.125 SOLVER_SVFGMRES

#define SOLVER_SVFGMRES 16

Variable-restart FGMRES with safety net

Definition at line 124 of file fasp_const.h.

10.42.2.126 SOLVER_SVGMRES

#define SOLVER_SVGMRES 15

Variable-restart GMRES with safety net

Definition at line 123 of file fasp_const.h.

10.42.2.127 SOLVER_UMFPACK

#define SOLVER_UMFPACK 32

Direct Solver: UMFPack

Definition at line 131 of file fasp_const.h.

10.42.2.128 SOLVER_VBiCGstab

#define SOLVER_VBiCGstab 9

VBi-Conjugate Gradient Stabilized

Definition at line 111 of file fasp_const.h.

10.42.2.129 SOLVER_VFGMRES

#define SOLVER_VFGMRES 6

Variable Restarting Flexible GMRES

Definition at line 115 of file fasp_const.h.

10.42.2.130 SOLVER_VGMRES

#define SOLVER_VGMRES 5

Variable Restarting GMRES

Definition at line 114 of file fasp_const.h.

10.42.2.131 STAG_RATIO

#define STAG_RATIO 1e-4

Stagnation tolerance = tol*STAGRATIO

Definition at line 261 of file fasp_const.h.

10.42.2.132 STOP_MOD_REL_RES

#define STOP_MOD_REL_RES 3

modified relative residual ||r||/||x||

Definition at line 140 of file fasp_const.h.

10.42.2.133 STOP_REL_PRECRES

#define STOP_REL_PRECRES 2

relative B-residual ||r||_B/||b||_B

Definition at line 139 of file fasp_const.h.

10.42.2.134 STOP_REL_RES

#define STOP_REL_RES 1

Definition of iterative solver stopping criteria types.

relative residual ||r||/||b||

Definition at line 138 of file fasp_const.h.

10.42.2.135 TRUE
#define TRUE 1
Definition of logic type.
logic TRUE
Definition at line 67 of file fasp_const.h.
10.42.2.136 UA_AMG
#define UA_AMG 3
unsmoothed aggregation AMG
Definition at line 171 of file fasp_const.h.
10.42.2.137 UNPT
#define UNPT -1
Undetermined points
Definition at line 227 of file fasp_const.h.
10.42.2.138 USERDEFINED
#define USERDEFINED 0
Type of ordering for smoothers.
User defined order
Definition at line 242 of file fasp_const.h.

10.42.2.139 V_CYCLE

#define V_CYCLE 1

Definition of cycle types.

V-cycle

Definition at line 182 of file fasp_const.h.

10.42.2.140 VMB

#define VMB 2

VMB aggregation

Definition at line 177 of file fasp_const.h.

10.42.2.141 W_CYCLE

#define W_CYCLE 2

W-cycle

Definition at line 183 of file fasp_const.h.

10.43 fasp_grid.h File Reference

Header file for FASP grid.

Data Structures

• struct grid2d

Two dimensional grid data structure.

Macros

#define __FASPGRID_HEADER__

Typedefs

- typedef struct grid2d grid2d
- typedef grid2d * pgrid2d
- typedef const grid2d * pcgrid2d

10.43.1 Detailed Description

Header file for FASP grid.

Created by Chensong Zhang on 01/21/2017.

10.43.2 Macro Definition Documentation

```
10.43.2.1 __FASPGRID_HEADER__
#define __FASPGRID_HEADER__
```

indicate fasp_grid.h has been included before

Definition at line 10 of file fasp_grid.h.

10.43.3 Typedef Documentation

```
10.43.3.1 grid2d
```

typedef struct grid2d grid2d

2D grid type for plotting

10.43.3.2 pcgrid2d

typedef const grid2d* pcgrid2d

Grid in 2d

Definition at line 43 of file fasp_grid.h.

10.43.3.3 pgrid2d

```
typedef grid2d* pgrid2d
```

Grid in 2d

Definition at line 41 of file fasp_grid.h.

10.44 InterfaceMumps.c File Reference

Interface to MUMPS direct solvers.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Macros

• #define ICNTL(I) icntl[(I)-1]

Functions

- int fasp_solver_mumps (dCSRmat *ptrA, dvector *b, dvector *u, const SHORT prtlvl)

 Solve Ax=b by MUMPS directly.
- int fasp_solver_mumps_steps (dCSRmat *ptrA, dvector *b, dvector *u, Mumps_data *mumps) Solve Ax=b by MUMPS in three steps.

10.44.1 Detailed Description

Interface to MUMPS direct solvers.

Reference for MUMPS: http://mumps.enseeiht.fr/

10.44.2 Macro Definition Documentation

10.44.2.1 ICNTL

macro s.t. indices match documentation

Definition at line 18 of file InterfaceMumps.c.

10.44.3 Function Documentation

10.44.3.1 fasp_solver_mumps()

Solve Ax=b by MUMPS directly.

Parameters

ptrA	Pointer to a dCSRmat matrix
b	Pointer to the dvector of right-hand side term
и	Pointer to the dvector of solution
prtlvl	Output level

Author

Chunsheng Feng

Date

02/27/2013

Modified by Chensong Zhang on 02/27/2013 for new FASP function names.

Definition at line 40 of file InterfaceMumps.c.

10.44.3.2 fasp_solver_mumps_steps()

Solve Ax=b by MUMPS in three steps.

Parameters

ptrA	Pointer to a dCSRmat matrix	
b	Pointer to the dvector of right-hand side term	
и	Pointer to the dvector of solution	
mumps	Pointer to MUMPS data	

Author

Chunsheng Feng

Date

02/27/2013

Modified by Chensong Zhang on 02/27/2013 for new FASP function names. Modified by Zheng Li on 10/10/2014 to adjust input parameters.

Definition at line 170 of file InterfaceMumps.c.

10.45 InterfacePardiso.c File Reference

Interface to Intel MKL PARDISO direct solvers.

```
#include <time.h>
#include "fasp.h"
#include "fasp functs.h"
```

Functions

INT fasp_solver_pardiso (dCSRmat *ptrA, dvector *b, dvector *u, const SHORT prtlvl)
 Solve Ax=b by PARDISO directly. Each row of A should be in ascending order w.r.t. column indices.

10.45.1 Detailed Description

Interface to Intel MKL PARDISO direct solvers.

Reference for Intel MKL PARDISO: https://software.intel.com/en-us/node/470282

10.45.2 Function Documentation

10.45.2.1 fasp_solver_pardiso()

Solve Ax=b by PARDISO directly. Each row of A should be in ascending order w.r.t. column indices.

Parameters

ptrA	Pointer to a dCSRmat matrix	
b	Pointer to the dvector of right-hand side term	
и	Pointer to the dvector of solution	
prtlvl	Output level	

Author

Hongxuan Zhang

Date

11/28/2015

Definition at line 39 of file InterfacePardiso.c.

10.46 InterfaceSamg.c File Reference

Interface to SAMG solvers.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• void dvector2SAMGInput (dvector *vec, char *filename)

Write a dvector to disk file in SAMG format (coordinate format)

INT dCSRmat2SAMGInput (dCSRmat *A, char *filefrm, char *fileamg)

Write SAMG Input data from a sparse matrix of CSR format.

10.46.1 Detailed Description

Interface to SAMG solvers.

 $\label{lem:condition} \textbf{Reference for SAMG:} \ \texttt{http://www.scai.fraunhofer.de/geschaeftsfelder/nuso/produkte/samg.} \leftarrow \texttt{html}$

Warning

This interface has only been tested for SAMG24a1 (2010 version)!

10.46.2 Function Documentation

10.46.2.1 dCSRmat2SAMGInput()

Write SAMG Input data from a sparse matrix of CSR format.

Parameters

Α	Pointer to the dCSRmat matrix
filefrm	Name of the .frm file
fileamg	Name of the .amg file

Author

Zhiyang Zhou

Date

2010/08/25

Definition at line 60 of file InterfaceSamg.c.

10.46.2.2 dvector2SAMGInput()

Write a dvector to disk file in SAMG format (coordinate format)

Parameters

vec	Pointer to the dvector
filename	File name for input

```
Author
```

Zhiyang Zhou

Date

08/25/2010

Definition at line 31 of file InterfaceSamg.c.

10.47 InterfaceSuperlu.c File Reference

Interface to SuperLU direct solvers.

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• int fasp_solver_superlu (dCSRmat *ptrA, dvector *b, dvector *u, const SHORT prtlvl) Solve Au=b by SuperLU.

10.47.1 Detailed Description

Interface to SuperLU direct solvers.

Reference for SuperLU: http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

10.47.2 Function Documentation

10.47.2.1 fasp_solver_superlu()

Solve Au=b by SuperLU.

Parameters

ptrA	Pointer to a dCSRmat matrix	
b	Pointer to the dvector of right-hand side term	
и	Pointer to the dvector of solution	
prtlvl	Output level	

Author

Xiaozhe Hu

Date

11/05/09

Modified by Chensong Zhang on 11/01/2012 for new FASP function names. Modified by Chensong Zhang on 02/27/2013 for new FASP function names.

Definition at line 41 of file InterfaceSuperlu.c.

10.48 InterfaceUmfpack.c File Reference

Interface to UMFPACK direct solvers.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

INT fasp_solver_umfpack (dCSRmat *ptrA, dvector *b, dvector *u, const SHORT prtlvl)
 Solve Au=b by UMFpack.

10.48.1 Detailed Description

Interface to UMFPACK direct solvers.

Reference for SuiteSparse: http://faculty.cse.tamu.edu/davis/suitesparse.html

10.48.2 Function Documentation

10.48.2.1 fasp_solver_umfpack()

Solve Au=b by UMFpack.

Parameters

ptrA	Pointer to a dCSRmat matrix	
b	Pointer to the dvector of right-hand side term	
и	Pointer to the dvector of solution	
prtlvl	Output level	

Author

Chensong Zhang

Date

05/20/2010

Modified by Chensong Zhang on 02/27/2013 for new FASP function names.

Definition at line 38 of file InterfaceUmfpack.c.

10.49 ItrSmootherBSR.c File Reference

Smoothers for dBSRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_smoother_dbsr_jacobi (dBSRmat *A, dvector *b, dvector *u)
 Jacobi relaxation.
- $\bullet \ \ void \ fasp_smoother_dbsr_jacobi_setup \ (dBSRmat \ *A, \ dvector \ *b, \ dvector \ *u, \ REAL \ *diaginv)\\$
 - Setup for jacobi relaxation, fetch the diagonal sub-block matrixes and make them inverse first.
- void fasp_smoother_dbsr_jacobi1 (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv)
 Jacobi relaxation.
- void fasp_smoother_dbsr_gs (dBSRmat *A, dvector *b, dvector *u, INT order, INT *mark)
 Gauss-Seidel relaxation.
- void fasp_smoother_dbsr_gs1 (dBSRmat *A, dvector *b, dvector *u, INT order, INT *mark, REAL *diaginv) Gauss-Seidel relaxation.
- void fasp_smoother_dbsr_gs_ascend (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv)

 Gauss-Seidel relaxation in the ascending order.
- void fasp_smoother_dbsr_gs_ascend1 (dBSRmat *A, dvector *b, dvector *u)

Gauss-Seidel relaxation in the ascending order.

void fasp smoother dbsr gs descend (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv)

Gauss-Seidel relaxation in the descending order.

void fasp smoother dbsr gs descend1 (dBSRmat *A, dvector *b, dvector *u)

Gauss-Seidel relaxation in the descending order.

void fasp_smoother_dbsr_gs_order1 (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark)

Gauss-Seidel relaxation in the user-defined order.

void fasp_smoother_dbsr_gs_order2 (dBSRmat *A, dvector *b, dvector *u, INT *mark, REAL *work)

Gauss-Seidel relaxation in the user-defined order.

- void fasp_smoother_dbsr_sor (dBSRmat *A, dvector *b, dvector *u, INT order, INT *mark, REAL weight) SOR relaxation.
- void fasp_smoother_dbsr_sor1 (dBSRmat *A, dvector *b, dvector *u, INT order, INT *mark, REAL *diaginv, REAL weight)

SOR relaxation.

- void fasp_smoother_dbsr_sor_ascend (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv, REAL weight) SOR relaxation in the ascending order.
- void fasp_smoother_dbsr_sor_descend (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv, REAL weight) SOR relaxation in the descending order.
- void fasp_smoother_dbsr_sor_order (dBSRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark, REAL weight)

SOR relaxation in the user-defined order.

void fasp smoother dbsr ilu (dBSRmat *A, dvector *b, dvector *x, void *data)

ILU method as the smoother in solving Au=b with multigrid method.

Variables

• REAL ilu_solve_omp = 0.0

10.49.1 Detailed Description

Smoothers for dBSRmat matrices.

Note

This file contains Level-2 (ltr) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxSmallMat.c, AuxTiming.c, BlaSmallMat.c, BlaSpmvBSR.c, and PreBSR.c

10.49.2 Function Documentation

10.49.2.1 fasp_smoother_dbsr_gs()

Gauss-Seidel relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending order DESCEND 21: in
	descending order If mark != NULL: in the user-defined order
mark	Pointer to NULL or to the user-defined ordering

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 08/03/2012

Definition at line 417 of file ItrSmootherBSR.c.

10.49.2.2 fasp_smoother_dbsr_gs1()

```
void fasp_smoother_dbsr_gs1 (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    INT order,
    INT * mark,
    REAL * diaginv )
```

Gauss-Seidel relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending order DESCEND 21: in descending order If mark != NULL: in the user-defined order
mark	Pointer to NULL or to the user-defined ordering
diaginv	Inverses for all the diagonal blocks of A

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 537 of file ItrSmootherBSR.c.

```
10.49.2.3 fasp_smoother_dbsr_gs_ascend()
```

```
void fasp_smoother_dbsr_gs_ascend (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv )
```

Gauss-Seidel relaxation in the ascending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix	
b	Pointer to dvector: the right hand side	
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)	
diaginv	Inverses for all the diagonal blocks of A	

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 574 of file ItrSmootherBSR.c.

10.49.2.4 fasp_smoother_dbsr_gs_ascend1()

Gauss-Seidel relaxation in the ascending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)

Author

Xiaozhe

Date

01/01/2014

Note

The only difference between the functions 'fasp_smoother_dbsr_gs_ascend1' and 'fasp_smoother_dbsr_gs_\iff ascend' is that we don't have to multiply by the inverses of the diagonal blocks in each ROW since matrix A has been such scaled that all the diagonal blocks become identity matrices.

Definition at line 647 of file ItrSmootherBSR.c.

10.49.2.5 fasp_smoother_dbsr_gs_descend()

Gauss-Seidel relaxation in the descending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 718 of file ItrSmootherBSR.c.

10.49.2.6 fasp_smoother_dbsr_gs_descend1()

Gauss-Seidel relaxation in the descending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)

Author

Xiaozhe Hu

Date

01/01/2014

Note

The only difference between the functions 'fasp_smoother_dbsr_gs_ascend1' and 'fasp_smoother_dbsr_gs_⇔ ascend' is that we don't have to multiply by the inverses of the diagonal blocks in each ROW since matrix A has been such scaled that all the diagonal blocks become identity matrices.

Definition at line 792 of file ItrSmootherBSR.c.

10.49.2.7 fasp_smoother_dbsr_gs_order1()

Gauss-Seidel relaxation in the user-defined order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A
mark	Pointer to the user-defined ordering

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 864 of file ItrSmootherBSR.c.

10.49.2.8 fasp_smoother_dbsr_gs_order2()

```
void fasp_smoother_dbsr_gs_order2 (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    INT * mark,
    REAL * work )
```

Gauss-Seidel relaxation in the user-defined order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
mark	Pointer to the user-defined ordering
work	Work temp array

Author

Zhiyang Zhou

Date

2010/11/08

Note

The only difference between the functions 'fasp_smoother_dbsr_gs_order2' and 'fasp_smoother_dbsr_gs_order1' lies in that we don't have to multiply by the inverses of the diagonal blocks in each ROW since matrix A has been such scaled that all the diagonal blocks become identity matrices.

Definition at line 942 of file ItrSmootherBSR.c.

10.49.2.9 fasp_smoother_dbsr_ilu()

```
void fasp_smoother_dbsr_ilu (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    void * data )
```

ILU method as the smoother in solving Au=b with multigrid method.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
Х	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
data	Pointer to user defined data

Author

Zhiyang Zhou, Zheng Li

Date

2010/10/25

NOTE: Add multi-threads parallel ILU block by Zheng Li 12/04/2016. form residual zr = b - A x solve LU z=zr

X=X+Z

Definition at line 1573 of file ItrSmootherBSR.c.

10.49.2.10 fasp_smoother_dbsr_jacobi()

Jacobi relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 08/02/2012

Definition at line 39 of file ItrSmootherBSR.c.

10.49.2.11 fasp_smoother_dbsr_jacobi1()

```
void fasp_smoother_dbsr_jacobi1 (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv )
```

Jacobi relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 08/03/2012

Definition at line 263 of file ItrSmootherBSR.c.

10.49.2.12 fasp_smoother_dbsr_jacobi_setup()

```
void fasp_smoother_dbsr_jacobi_setup (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv )
```

Setup for jacobi relaxation, fetch the diagonal sub-block matrixes and make them inverse first.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
diaginv	Inverse of the diagonal entries

Author

Zhiyang Zhou

Date

10/25/2010

Modified by Chunsheng Feng, Zheng Li on 08/02/2012

Definition at line 154 of file ItrSmootherBSR.c.

10.49.2.13 fasp_smoother_dbsr_sor()

```
void fasp_smoother_dbsr_sor (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    INT order,
    INT * mark,
    REAL weight )
```

SOR relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix	
b	Pointer to dvector: the right hand side	
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)	
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending order DESCEND 21:	
Generated by	Senerated by Dinkrytes cending order If mark != NULL: in the user-defined order	
mark	Pointer to NULL or to the user-defined ordering	
weight	Over-relaxation weight	

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 08/03/2012

Definition at line 1019 of file ltrSmootherBSR.c.

10.49.2.14 fasp_smoother_dbsr_sor1()

SOR relaxation.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending order DESCEND 21: in descending order If mark != NULL: in the user-defined order
mark	Pointer to NULL or to the user-defined ordering
diaginv	Inverses for all the diagonal blocks of A
weight	Over-relaxation weight

Author

Zhiyang Zhou

Date

2010/10/25

Definition at line 1141 of file ItrSmootherBSR.c.

10.49.2.15 fasp_smoother_dbsr_sor_ascend()

```
void fasp_smoother_dbsr_sor_ascend (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    REAL weight )
```

SOR relaxation in the ascending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A
weight	Over-relaxation weight

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 2012/09/04

Definition at line 1182 of file ItrSmootherBSR.c.

10.49.2.16 fasp_smoother_dbsr_sor_descend()

```
void fasp_smoother_dbsr_sor_descend (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    REAL weight )
```

SOR relaxation in the descending order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
	Pointer to dvector: the unknowns (IN: initial guess, OUT: approximation)
Generated by	Doxygen Inverses for all the diagonal blocks of A
weight	Over-relaxation weight

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 2012/09/04

Definition at line 1311 of file ItrSmootherBSR.c.

10.49.2.17 fasp_smoother_dbsr_sor_order()

```
void fasp_smoother_dbsr_sor_order (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    INT * mark,
    REAL weight )
```

SOR relaxation in the user-defined order.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
diaginv	Inverses for all the diagonal blocks of A
mark	Pointer to the user-defined ordering
weight	Over-relaxation weight

Author

Zhiyang Zhou

Date

2010/10/25

Modified by Chunsheng Feng, Zheng Li on 2012/09/04

Definition at line 1442 of file ItrSmootherBSR.c.

10.49.3 Variable Documentation

```
10.49.3.1 ilu_solve_omp

REAL ilu_solve_omp = 0.0
```

ILU time for the SOLVE phase

Definition at line 19 of file ItrSmootherBSR.c.

10.50 ItrSmootherCSR.c File Reference

Smoothers for dCSRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "ItrAuxiliary.inl"
```

Functions

void fasp_smoother_dcsr_jacobi (dvector *u, const INT i_1, const INT i_n, const INT s, dCSRmat *A, dvector *b, INT L)

Jacobi method as a smoother.

void fasp_smoother_dcsr_gs (dvector *u, const INT i_1, const INT i_n, const INT s, dCSRmat *A, dvector *b, INT L)

Gauss-Seidel method as a smoother.

- void fasp_smoother_dcsr_gs_cf (dvector *u, dCSRmat *A, dvector *b, INT L, INT *mark, const INT order)

 Gauss-Seidel smoother with C/F ordering for Au=b.
- void fasp smoother dcsr sgs (dvector *u, dCSRmat *A, dvector *b, INT L)

Symmetric Gauss-Seidel method as a smoother.

• void fasp_smoother_dcsr_sor (dvector *u, const INT i_1, const INT i_n, const INT s, dCSRmat *A, dvector *b, INT L, const REAL w)

SOR method as a smoother.

void fasp_smoother_dcsr_sor_cf (dvector *u, dCSRmat *A, dvector *b, INT L, const REAL w, INT *mark, const INT order)

SOR smoother with C/F ordering for Au=b.

• void fasp_smoother_dcsr_ilu (dCSRmat *A, dvector *b, dvector *x, void *data)

ILU method as a smoother.

void fasp_smoother_dcsr_kaczmarz (dvector *u, const INT i_1, const INT i_n, const INT s, dCSRmat *A, dvector *b, INT L, const REAL w)

Kaczmarz method as a smoother.

void fasp_smoother_dcsr_L1diag (dvector *u, const INT i_1, const INT i_n, const INT s, dCSRmat *A, dvector *b, INT L)

Diagonal scaling (using L1 norm) as a smoother.

• void fasp_smoother_dcsr_gs_rb3d (dvector *u, dCSRmat *A, dvector *b, INT L, const INT order, INT *mark, const INT maximap, const INT nx, const INT nz)

Colored Gauss-Seidel smoother for Au=b.

10.50.1 Detailed Description

Smoothers for dCSRmat matrices.

Note

This file contains Level-2 (Itr) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, BlaArray.c, and BlaSpmvCSR.c

10.50.2 Function Documentation

10.50.2.1 fasp_smoother_dcsr_gs()

Gauss-Seidel method as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
i⊷	Starting index
_← 1	
i⊷	Ending index
_←	
n	
s	Increasing step
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations

Author

Xuehai Huang, Chensong Zhang

Date

09/26/2009

Modified by Chunsheng Feng, Zheng Li on 09/01/2012

Definition at line 200 of file ItrSmootherCSR.c.

10.50.2.2 fasp_smoother_dcsr_gs_cf()

Gauss-Seidel smoother with C/F ordering for Au=b.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations
mark	C/F marker array
order	C/F ordering: -1: F-first; 1: C-first

Author

Zhiyang Zhou

Date

11/12/2010

Modified by Chunsheng Feng, Xiaoqiang Yue on 05/24/2012

Definition at line 369 of file ItrSmootherCSR.c.

10.50.2.3 fasp_smoother_dcsr_gs_rb3d()

Colored Gauss-Seidel smoother for Au=b.

Parameters

и	Initial guess and the new approximation to the solution
Α	Pointer to stiffness matrix
b	Pointer to right hand side
L	Number of iterations
order	Ordering: -1: Forward; 1: Backward
mark	Marker for C/F points
maximap	Size of IMAP
nx	Number vertex of X direction
ny	Number vertex of Y direction
nz	Number vertex of Z direction

Author

Chunsheng Feng

Date

02/08/2012

Definition at line 1431 of file ltrSmootherCSR.c.

10.50.2.4 fasp_smoother_dcsr_ilu()

ILU method as a smoother.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix	
b	Pointer to dvector: the right hand side	
Χ	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)	
data	Pointer to user defined data	

Author

Shiquan Zhang, Xiaozhe Hu

Date

2010/11/12

form residual zr = b - A x

Definition at line 1072 of file ItrSmootherCSR.c.

10.50.2.5 fasp_smoother_dcsr_jacobi()

Jacobi method as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
i⊷	Starting index
_←	
1	
i⊷	Ending index
_←	
n	
s	Increasing step
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations

Author

Xuehai Huang, Chensong Zhang

Date

09/26/2009

Modified by Chunsheng Feng, Zheng Li on 08/29/2012

Definition at line 64 of file ItrSmootherCSR.c.

10.50.2.6 fasp_smoother_dcsr_kaczmarz()

Kaczmarz method as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
i⊷	Starting index
_←	
1	
i⊷	Ending index
_←	
n	
s	Increasing step
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations
W	Over-relaxation weight

Author

Xiaozhe Hu

Date

2010/11/12

Modified by Chunsheng Feng, Zheng Li on 2012/09/01

Definition at line 1151 of file ltrSmootherCSR.c.

10.50.2.7 fasp_smoother_dcsr_L1diag()

Diagonal scaling (using L1 norm) as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
i⊷	Starting index
_←	
1	
i⊷	Ending index
_←	
n	
s	Increasing step
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations

Author

Xiaozhe Hu, James Brannick

Date

01/26/2011

Modified by Chunsheng Feng, Zheng Li on 09/01/2012

Definition at line 1292 of file ItrSmootherCSR.c.

10.50.2.8 fasp_smoother_dcsr_sgs()

Symmetric Gauss-Seidel method as a smoother.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations

Author

Xiaozhe Hu

Date

10/26/2010

Modified by Chunsheng Feng, Zheng Li on 09/01/2012

Definition at line 634 of file ItrSmootherCSR.c.

10.50.2.9 fasp_smoother_dcsr_sor()

SOR method as a smoother.

Parameters

u Pointer to dvector: the unknowns (IN: initial, OUT: approximation)

Parameters

i⊷	Starting index
_←	
1	
i⊷	Ending index
_←	
n	
s	Increasing step
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations
W	Over-relaxation weight

Author

Xiaozhe Hu

Date

10/26/2010

Modified by Chunsheng Feng, Zheng Li on 09/01/2012

Definition at line 750 of file ItrSmootherCSR.c.

10.50.2.10 fasp_smoother_dcsr_sor_cf()

SOR smoother with C/F ordering for Au=b.

Parameters

и	Pointer to dvector: the unknowns (IN: initial, OUT: approximation)
Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
L	Number of iterations
W	Over-relaxation weight
mark	C/F marker array
Gen <i>jerp</i> eterd	Þy ©/ឝ̄vyerd ering: -1: F-first; 1: C-first

```
Author
```

Zhiyang Zhou

Date

2010/11/12

Modified by Chunsheng Feng, Zheng Li on 08/29/2012

Definition at line 878 of file ItrSmootherCSR.c.

10.51 ItrSmootherCSRcr.c File Reference

Smoothers for dCSRmat matrices using compatible relaxation.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void fasp_smoother_dcsr_gscr (INT pt, INT n, REAL *u, INT *ia, INT *ja, REAL *a, REAL *b, INT L, INT *CF)
 Gauss Seidel method restriced to a block.

10.51.1 Detailed Description

Smoothers for dCSRmat matrices using compatible relaxation.

Note

Restricted-smoothers for compatible relaxation, C/F smoothing, etc. This file contains Level-2 (Itr) functions. It requires AuxMessage.c

10.51.2 Function Documentation

10.51.2.1 fasp_smoother_dcsr_gscr()

Gauss Seidel method restriced to a block.

Parameters

pt	Relax type, e.g., cpt, fpt, etc
n	Number of variables
и	Iterated solution
ia	Row pointer
ja	Column index
а	Pointers to sparse matrix values in CSR format
b	Pointer to right hand side – remove later also as MG relaxation on error eqn
L	Number of iterations
CF	Marker for C, F points

Author

James Brannick

Date

09/07/2010

Note

Gauss Seidel CR smoother (Smoother_Type = 99)

Definition at line 41 of file ItrSmootherCSRcr.c.

10.52 ItrSmootherCSRpoly.c File Reference

Smoothers for dCSRmat matrices using poly. approx. to A^{-1} .

```
#include <math.h>
#include <time.h>
#include <float.h>
#include <limits.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "ItrAuxiliary.inl"
```

Functions

- void fasp_smoother_dcsr_poly (dCSRmat *Amat, dvector *brhs, dvector *usol, INT n, INT ndeg, INT L)
 poly approx to A^{-1} as MG smoother
- void fasp_smoother_dcsr_poly_old (dCSRmat *Amat, dvector *brhs, dvector *usol, INT n, INT ndeg, INT L)
 poly approx to A^{-1} as MG smoother: JK<Z2010

10.52.1 Detailed Description

Smoothers for dCSRmat matrices using poly. approx. to A^{-1} .

Note

This file contains Level-2 (Itr) functions. It requires AuxArray.c, AuxMemory.c, BlaArray.c, and BlaSpmvCSR.c Refer to Johannes K. Kraus, Panayot S. Vassilevski, Ludmil T. Zikatanov Polynomial of best uniform approximation to \$x^{-1}\$ and smoothing in two-leve methods, 2013.

10.52.2 Function Documentation

10.52.2.1 fasp_smoother_dcsr_poly()

poly approx to A^{-1} as MG smoother

Parameters

Amat	Pointer to stiffness matrix, consider square matrix.	
brhs	Pointer to right hand side Pointer to solution	
usol		
n	Problem size	
ndeg	Degree of poly	
L	Number of iterations	

Author

Fei Cao, Xiaozhe Hu

Date

05/24/2012

Definition at line 57 of file ItrSmootherCSRpoly.c.

10.52.2.2 fasp_smoother_dcsr_poly_old()

poly approx to A^{-1} as MG smoother: JK<Z2010

Parameters

Amat	Pointer to stiffness matrix
brhs	Pointer to right hand side
usol	Pointer to solution
n	Problem size
ndeg	Degree of poly
L	Number of iterations

Author

James Brannick and Ludmil T Zikatanov

Date

06/28/2010

Modified by Chunsheng Feng, Zheng Li on 10/18/2012

Definition at line 157 of file ItrSmootherCSRpoly.c.

10.53 ItrSmootherSTR.c File Reference

Smoothers for dSTRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void fasp_smoother_dstr_jacobi (dSTRmat *A, dvector *b, dvector *u)

Jacobi method as the smoother.

void fasp smoother dstr jacobi1 (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv)

Jacobi method as the smoother with diag_inv given.

void fasp_smoother_dstr_gs (dSTRmat *A, dvector *b, dvector *u, const INT order, INT *mark)

Gauss-Seidel method as the smoother.

- void fasp_smoother_dstr_gs1 (dSTRmat *A, dvector *b, dvector *u, const INT order, INT *mark, REAL *diaginv)
 Gauss-Seidel method as the smoother with diag_inv given.
- void fasp_smoother_dstr_gs_ascend (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv)

Gauss-Seidel method as the smoother in the ascending manner.

void fasp_smoother_dstr_gs_descend (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv)

Gauss-Seidel method as the smoother in the descending manner.

void fasp_smoother_dstr_gs_order (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark)

Gauss method as the smoother in the user-defined order.

void fasp_smoother_dstr_gs_cf (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark, const INT order)

Gauss method as the smoother in the C-F manner.

void fasp_smoother_dstr_sor (dSTRmat *A, dvector *b, dvector *u, const INT order, INT *mark, const REAL weight)

SOR method as the smoother.

void fasp_smoother_dstr_sor1 (dSTRmat *A, dvector *b, dvector *u, const INT order, INT *mark, REAL *diaginv, const REAL weight)

SOR method as the smoother.

- void fasp_smoother_dstr_sor_ascend (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, REAL weight) SOR method as the smoother in the ascending manner.
- void fasp_smoother_dstr_sor_descend (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, REAL weight)

SOR method as the smoother in the descending manner.

void fasp_smoother_dstr_sor_order (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark, REAL weight)

SOR method as the smoother in the user-defined order.

void fasp_smoother_dstr_sor_cf (dSTRmat *A, dvector *b, dvector *u, REAL *diaginv, INT *mark, const INT order, const REAL weight)

SOR method as the smoother in the C-F manner.

void fasp_generate_diaginv_block (dSTRmat *A, ivector *neigh, dvector *diaginv, ivector *pivot)

Generate inverse of diagonal block for block smoothers.

void fasp_smoother_dstr_schwarz (dSTRmat *A, dvector *b, dvector *u, dvector *diaginv, ivector *pivot, ivector *neigh, ivector *order)

Schwarz method as the smoother.

10.53.1 Detailed Description

Smoothers for dSTRmat matrices.

Note

This file contains Level-2 (Itr) functions. It requires AuxArray.c, AuxMemory.c, AuxSmallMat.c, AuxVector.c, Bla⇔ SmallMat.c, BlaSmallMatLU.c, and BlaSpmvSTR.c

10.53.2 Function Documentation

10.53.2.1 fasp_generate_diaginv_block()

Generate inverse of diagonal block for block smoothers.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
neigh	Pointer to ivector: neighborhoods
diaginv	Pointer to dvector: the inverse of the diagonals
pivot	Pointer to ivector: the pivot of diagonal blocks

Author

Xiaozhe Hu

Date

10/01/2011

Definition at line 1529 of file ItrSmootherSTR.c.

10.53.2.2 fasp_smoother_dstr_gs()

```
void fasp_smoother_dstr_gs (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    const INT order,
    INT * mark )
```

Gauss-Seidel method as the smoother.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix	
b	Pointer to dvector: the right hand side	
и	Pointer to dvector: the unknowns	
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending manner DESCEND 21: in descending manner If mark != NULL USERDEFINED 0 : in the user-defined manner CPFIRST 1 : C-points first and then F-points FPFIRST -1 : F-points first and then C-points	
mark	Pointer to the user-defined ordering(when order=0) or CF_marker array(when order!=0)	

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 211 of file ItrSmootherSTR.c.

10.53.2.3 fasp_smoother_dstr_gs1()

Gauss-Seidel method as the smoother with diag_inv given.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending manner DESCEND 21: in descending manner If mark != NULL USERDEFINED 0 : in the user-defined manner CPFIRST 1 : C-points first and then F-points FPFIRST -1 : F-points first and then C-points
mark	Pointer to the user-defined ordering(when order=0) or CF_marker array(when order!=0)
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 271 of file ItrSmootherSTR.c.

```
10.53.2.4 fasp_smoother_dstr_gs_ascend()
```

Gauss-Seidel method as the smoother in the ascending manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 316 of file ItrSmootherSTR.c.

10.53.2.5 fasp_smoother_dstr_gs_cf()

```
dvector * u,
REAL * diaginv,
INT * mark,
const INT order )
```

Gauss method as the smoother in the C-F manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1
mark	Pointer to the user-defined order array
order	Flag to indicate the order for smoothing CPFIRST 1 : C-points first and then F-points FPFIRST -1 : F-points first and then C-points

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 671 of file ItrSmootherSTR.c.

10.53.2.6 fasp_smoother_dstr_gs_descend()

Gauss-Seidel method as the smoother in the descending manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 431 of file ItrSmootherSTR.c.

```
10.53.2.7 fasp_smoother_dstr_gs_order()
```

```
void fasp_smoother_dstr_gs_order (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    INT * mark )
```

Gauss method as the smoother in the user-defined order.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when $(A->nc)>1$, and NULL when $(A->nc)=1$
mark	Pointer to the user-defined order array

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 548 of file ItrSmootherSTR.c.

10.53.2.8 fasp_smoother_dstr_jacobi()

Jacobi method as the smoother.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 39 of file ItrSmootherSTR.c.

10.53.2.9 fasp_smoother_dstr_jacobi1()

Jacobi method as the smoother with diag_inv given.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 87 of file ItrSmootherSTR.c.

10.53.2.10 fasp_smoother_dstr_schwarz()

```
void fasp_smoother_dstr_schwarz (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    dvector * diaginv,
    ivector * pivot,
    ivector * neigh,
    ivector * order )
```

Schwarz method as the smoother.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	Pointer to dvector: the inverse of the diagonals
pivot	Pointer to ivector: the pivot of diagonal blocks
neigh	Pointer to ivector: neighborhoods
order	Pointer to ivector: the smoothing order

Author

Xiaozhe Hu

Date

10/01/2011

Definition at line 1651 of file ltrSmootherSTR.c.

10.53.2.11 fasp_smoother_dstr_sor()

```
void fasp_smoother_dstr_sor (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    const INT order,
    INT * mark,
    const REAL weight )
```

SOR method as the smoother.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending manner DESCEND
	21: in descending manner If mark != NULL USERDEFINED 0 : in the user-defined manner CPFIRST 1 :
	C-points first and then F-points FPFIRST -1: F-points first and then C-points
mark	Pointer to the user-defined ordering(when order=0) or CF_marker array(when order!=0)
weight	Over-relaxation weight

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 863 of file ItrSmootherSTR.c.

10.53.2.12 fasp_smoother_dstr_sor1()

SOR method as the smoother.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
order	Flag to indicate the order for smoothing If mark = NULL ASCEND 12: in ascending manner DESCEND 21: in descending manner If mark != NULL USERDEFINED 0 : in the user-defined manner CPFIRST 1 : C-points first and then F-points FPFIRST -1 : F-points first and then C-points
mark	Pointer to the user-defined ordering(when order=0) or CF_marker array(when order!=0)
diaginv	Inverse of the diagonal entries
weight	Over-relaxation weight

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 924 of file ItrSmootherSTR.c.

10.53.2.13 fasp_smoother_dstr_sor_ascend()

```
void fasp_smoother_dstr_sor_ascend (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    REAL weight )
```

SOR method as the smoother in the ascending manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1
weight	Over-relaxation weight

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 970 of file ItrSmootherSTR.c.

10.53.2.14 fasp_smoother_dstr_sor_cf()

```
void fasp_smoother_dstr_sor_cf (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    INT * mark,
    const INT order,
    const REAL weight )
```

SOR method as the smoother in the C-F manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1
mark	Pointer to the user-defined order array
order	Flag to indicate the order for smoothing CPFIRST 1 : C-points first and then F-points FPFIRST -1 : F-points first and then C-points
weight	Over-relaxation weight

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 1342 of file ItrSmootherSTR.c.

10.53.2.15 fasp_smoother_dstr_sor_descend()

```
void fasp_smoother_dstr_sor_descend (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    REAL weight )
```

SOR method as the smoother in the descending manner.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when (A->nc)>1, and NULL when (A->nc)=1
weight	Over-relaxation weight

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 1090 of file ItrSmootherSTR.c.

10.53.2.16 fasp_smoother_dstr_sor_order()

```
void fasp_smoother_dstr_sor_order (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    REAL * diaginv,
    INT * mark,
    REAL weight )
```

SOR method as the smoother in the user-defined order.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
diaginv	All the inverse matrices for all the diagonal block of A when $(A->nc)>1$, and NULL when $(A->nc)=1$
mark	Pointer to the user-defined order array
weight	Over-relaxation weight

Author

Shiquan Zhang, Zhiyang Zhou

Date

10/10/2010

Definition at line 1211 of file ItrSmootherSTR.c.

10.54 KryPbcgs.c File Reference

Krylov subspace methods - Preconditioned BiCGstab.

```
#include <math.h>
#include <float.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

 INT fasp_solver_dcsr_pbcgs (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b.

 INT fasp_solver_dbsr_pbcgs (dBSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b.

• INT fasp_solver_dblc_pbcgs (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned BiCGstab method for solving Au=b.

• INT fasp_solver_dstr_pbcgs (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b.

INT fasp_solver_pbcgs (mxv_matfree *mf, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b.

10.54.1 Detailed Description

Krylov subspace methods – Preconditioned BiCGstab.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, BlaArray.c, Bla←SpmvBLC.c, BlaSpmvBSR.c, BlaSpmvCSR.c, and BlaSpmvSTR.c

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See KrySPbcgs.c for a safer version

10.54.2 Function Documentation

10.54.2.1 fasp_solver_dblc_pbcgs()

A preconditioned BiCGstab method for solving Au=b.

Parameters

Α	Pointer to coefficient matrix
b	Pointer to dvector of right hand side
и	Pointer to dvector of DOFs
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/24/2010

Rewritten by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 06/01/2012: fix restart param-init Modified by Chensong Zhang on 03/31/2013

Definition at line 740 of file KryPbcgs.c.

10.54.2.2 fasp_solver_dbsr_pbcgs()

```
INT fasp_solver_dbsr_pbcgs (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned BiCGstab method for solving Au=b.

Parameters

Α	Pointer to coefficient matrix
b	Pointer to dvector of right hand side
и	Pointer to dvector of DOFs
pc	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/09/2009

Rewritten by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 06/01/2012: fix restart param-init Modified by Chensong Zhang on 03/31/2013

Definition at line 398 of file KryPbcgs.c.

10.54.2.3 fasp_solver_dcsr_pbcgs()

Preconditioned BiCGstab method for solving Au=b.

Parameters

Α	Pointer to coefficient matrix
b	Pointer to dvector of right hand side
и	Pointer to dvector of DOFs
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/09/2009

Rewritten by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 06/01/2012: fix restart param-init Modified by Chensong Zhang on 03/31/2013

Definition at line 56 of file KryPbcgs.c.

10.54.2.4 fasp_solver_dstr_pbcgs()

Preconditioned BiCGstab method for solving Au=b.

Parameters

Α	Pointer to coefficient matrix
b	Pointer to dvector of right hand side
и	Pointer to dvector of DOFs
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

04/25/2010

Rewritten by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 06/01/2012: fix restart param-init Modified by Chensong Zhang on 03/31/2013

Definition at line 1082 of file KryPbcgs.c.

10.54.2.5 fasp_solver_pbcgs()

Preconditioned BiCGstab method for solving Au=b.

Parameters

mf	Pointer to mxv_matfree: spmv operation
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/09/2009

Rewritten by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 06/01/2012: fix restart param-init Modified by Feiteng Huang on 09/26/2012, (mmatrix free)

Definition at line 1424 of file KryPbcgs.c.

10.55 KryPcg.c File Reference

Krylov subspace methods - Preconditioned CG.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

 INT fasp_solver_dcsr_pcg (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b.

INT fasp_solver_dbsr_pcg (dBSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b.

INT fasp_solver_dblc_pcg (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b.

 INT fasp_solver_dstr_pcg (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b.

INT fasp_solver_pcg (mxv_matfree *mf, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient (CG) method for solving Au=b.

10.55.1 Detailed Description

Krylov subspace methods – Preconditioned CG.

Abstract algorithm

PCG method to solve A*x=b is to generate $\{x_k\}$ to approximate x

Step 0. Given A, b, x_0, M

Step 1. Compute residual $r_0 = b-A*x_0$ and convergence check;

Step 2. Initialization $z_0 = M^{-1}*r_0$, $p_0=z_0$;

Step 3. Main loop ...

FOR k = 0:MaxIt

- get step size alpha = f(r_k,z_k,p_k);
- update solution: x_{k+1} = x_k + alpha*p_k;
- perform stagnation check;
- update residual: r_{k+1} = r_k alpha*(A*p_k);
- · perform residual check;
- obtain p {k+1} using {p 0, p 1, ..., p k};
- · prepare for next iteration;
- print the result of k-th iteration; END FOR

Convergence check: norm(r)/norm(b) < tol

Stagnation check:

```
    IF norm(alpha*p_k)/norm(x_{k+1}) < tol_stag</li>
```

- 1. compute $r=b-A*x \{k+1\}$;
- 2. convergence check;
- 3. IF (not converged & restart_number < Max_Stag_Check) restart;
- END IF

Residual check:

- IF $norm(r_{k+1})/norm(b) < tol$
 - 1. compute the real residual $r = b-A*x_{k+1}$;
 - 2. convergence check;
 - 3. IF (not converged & restart_number < Max_Res_Check) restart;
- END IF

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, BlaArray.c, Bla←SpmvBLC.c, BlaSpmvBSR.c, BlaSpmvCSR.c, and BlaSpmvSTR.c

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See KrySPcg.c for a safer version

10.55.2 Function Documentation

10.55.2.1 fasp_solver_dblc_pcg()

Preconditioned conjugate gradient method for solving Au=b.

Parameters

Α	Pointer to dBLCmat: coefficient matrix	
b	Pointer to dvector: right hand side	
и	Pointer to dvector: unknowns	
рс	Pointer to precond: structure of precondition	
tol	Tolerance for stopping	
MaxIt	Maximal number of iterations	
stop_type	Stopping criteria type	
prtlvl	How much information to print out	

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/24/2010

Modified by Chensong Zhang on 04/30/2012 Modified by Chensong Zhang on 03/28/2013

Definition at line 675 of file KryPcg.c.

10.55.2.2 fasp_solver_dbsr_pcg()

```
INT fasp_solver_dbsr_pcg (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned conjugate gradient method for solving Au=b.

Parameters

Α	Pointer to dBSRmat: coefficient matrix
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
Generated by Doxy Reginter to precond: structure of precondition	
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 383 of file KryPcg.c.

10.55.2.3 fasp_solver_dcsr_pcg()

Preconditioned conjugate gradient method for solving Au=b.

Parameters

Α	Pointer to dCSRmat: coefficient matrix	
b	Pointer to dvector: right hand side	
и	Pointer to dvector: unknowns	
рс	Pointer to precond: structure of precondition	
tol	Tolerance for stopping	
MaxIt	Maximal number of iterations	
stop_type	Stopping criteria type	
prtlvl	How much information to print out	

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang, Xiaozhe Hu, Shiquan Zhang

Date

05/06/2010

Modified by Chensong Zhang on 04/30/2012 Modified by Chensong Zhang on 03/28/2013

Definition at line 94 of file KryPcg.c.

10.55.2.4 fasp_solver_dstr_pcg()

```
INT fasp_solver_dstr_pcg (
    dSTRmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned conjugate gradient method for solving Au=b.

Parameters

Α	Pointer to dSTRmat: coefficient matrix
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

04/25/2010

Modified by Chensong Zhang on 04/30/2012 Modified by Chensong Zhang on 03/28/2013

Definition at line 967 of file KryPcg.c.

10.55.2.5 fasp_solver_pcg()

Preconditioned conjugate gradient (CG) method for solving Au=b.

Parameters

mf	Pointer to mxv_matfree: spmv operation
b	Pointer to dvector: right hand side
И	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang, Xiaozhe Hu, Shiquan Zhang

Date

05/06/2010

Modified by Chensong Zhang on 04/30/2012 Modified by Feiteng Huang on 09/19/2012: matrix free Definition at line 1259 of file KryPcg.c.

10.56 KryPgcg.c File Reference

Krylov subspace methods - Preconditioned generalized CG.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

INT fasp_solver_dcsr_pgcg (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned generilzed conjugate gradient (GCG) method for solving Au=b.

INT fasp_solver_pgcg (mxv_matfree *mf, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned generilzed conjugate gradient (GCG) method for solving Au=b.

10.56.1 Detailed Description

Krylov subspace methods - Preconditioned generalized CG.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, BlaArray.c, and BlaSpmvCSR.c

Refer to Concus, P. and Golub, G.H. and O'Leary, D.P. A Generalized Conjugate Gradient Method for the Numerical: Solution of Elliptic Partial Differential Equations, Computer Science Department, Stanford University, 1976

10.56.2 Function Documentation

10.56.2.1 fasp_solver_dcsr_pgcg()

Preconditioned generilzed conjugate gradient (GCG) method for solving Au=b.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/01/2012

Modified by Chensong Zhang on 05/01/2012

Definition at line 52 of file KryPgcg.c.

10.56.2.2 fasp_solver_pgcg()

Preconditioned generilzed conjugate gradient (GCG) method for solving Au=b.

Parameters

mf	Pointer to mxv_matfree: spmv operation	
b	Pointer to dvector: right hand side	
и	Pointer to dvector: unknowns	
pc	Pointer to precond: structure of precondition	Generated by Doxygen
tol	Tolerance for stopping	
MaxIt	Maximal number of iterations	
stop_type	Stopping criteria type – Not implemented	

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/01/2012

Note

Not completely implemented yet! - Chensong

Modified by Chensong Zhang on 05/01/2012 Modified by Feiteng Huang on 09/26/2012: matrix free

Definition at line 203 of file KryPgcg.c.

10.57 KryPgcr.c File Reference

Krylov subspace methods - Preconditioned GCR.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

INT fasp_solver_dcsr_pgcr (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

A preconditioned GCR method for solving Au=b.

10.57.1 Detailed Description

Krylov subspace methods – Preconditioned GCR.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, BlaArray.c, Bla←SpmvCSR.c, and BlaVector.c

10.57.2 Function Documentation

10.57.2.1 fasp_solver_dcsr_pgcr()

A preconditioned GCR method for solving Au=b.

Parameters

Α	Pointer to coefficient matrix
b	Pointer to dvector of right hand side
X	Pointer to dvector of dofs
рс	Pointer to structure of precondition (precond)
tol	Tolerance for stopage
MaxIt	Maximal number of iterations
restart	Restart number for GCR
stop_type	Stopping type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Note

Refer to YVAN NOTAY "AN AGGREGATION-BASED ALGEBRAIC MULTIGRID METHOD"

Author

Zheng Li

Date

12/23/2014

Definition at line 46 of file KryPgcr.c.

10.58 KryPgmres.c File Reference

Krylov subspace methods – Right-preconditioned GMRes.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

 INT fasp_solver_dcsr_pgmres (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop type, const SHORT prtlvl)

Right preconditioned GMRES method for solving Au=b.

 INT fasp_solver_dblc_pgmres (dBLCmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b.

 INT fasp_solver_dbsr_pgmres (dBSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b.

 INT fasp_solver_dstr_pgmres (dSTRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b.

 INT fasp_solver_pgmres (mxv_matfree *mf, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PGMRES (right preconditioned) iterative method.

10.58.1 Detailed Description

Krylov subspace methods - Right-preconditioned GMRes.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, BlaArray.c, Bla←SpmvBLC.c, BlaSpmvBSR.c, BlaSpmvCSR.c, and BlaSpmvSTR.c

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM

See also KryPvgmres.c for a variable restarting version.

See KrySPgmres.c for a safer version

10.58.2 Function Documentation

10.58.2.1 fasp_solver_dblc_pgmres()

Preconditioned GMRES method for solving Au=b.

Parameters

Α	Pointer to dBLCmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/24/2010

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/05/2013: add stop_type and safe check

Definition at line 363 of file KryPgmres.c.

10.58.2.2 fasp_solver_dbsr_pgmres()

```
INT fasp_solver_dbsr_pgmres (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT restart,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned GMRES method for solving Au=b.

Parameters

A	Pointer to dBSRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/12/21

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/05/2013: add stop_type and safe check

Definition at line 666 of file KryPgmres.c.

10.58.2.3 fasp_solver_dcsr_pgmres()

Right preconditioned GMRES method for solving Au=b.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/11/28

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/05/2013: Add stop_type and safe check Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate Modified by Chensong Zhang on 07/30/2014: Make memory allocation size long int Modified by Chensong Zhang on 09/21/2014: Add comments and reorganize code

Definition at line 60 of file KryPgmres.c.

10.58.2.4 fasp_solver_dstr_pgmres()

Preconditioned GMRES method for solving Au=b.

Parameters

A	Pointer to dSTRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/11/28

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/05/2013: add stop_type and safe check

Definition at line 970 of file KryPgmres.c.

10.58.2.5 fasp_solver_pgmres()

Solve "Ax=b" using PGMRES (right preconditioned) iterative method.

Parameters

mf	Pointer to mxv_matfree: spmv operation
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type – DOES not support this parameter
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/11/28

Modified by Chensong Zhang on 05/01/2012 Modified by Feiteng Huang on 09/26/2012: matrix free Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 1274 of file KryPgmres.c.

10.59 KryPminres.c File Reference

Krylov subspace methods - Preconditioned minimal residual.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

 INT fasp_solver_dcsr_pminres (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b.

 INT fasp_solver_dblc_pminres (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b.

 INT fasp_solver_dstr_pminres (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b.

 INT fasp_solver_pminres (mxv_matfree *mf, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b.

10.59.1 Detailed Description

Krylov subspace methods – Preconditioned minimal residual.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, BlaArray.c, Bla←SpmvBLC.c, BlaSpmvCSR.c, and BlaSpmvSTR.c.o

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See KrySPminres.c for a safer version

10.59.2 Function Documentation

10.59.2.1 fasp_solver_dblc_pminres()

A preconditioned minimal residual (Minres) method for solving Au=b.

Parameters

Α	Pointer to dBLCmat: coefficient matrix
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

05/01/2012

Note

Rewritten based on the original version by Xiaozhe Hu 05/24/2010

Modified by Chensong Zhang on 04/09/2013

Definition at line 462 of file KryPminres.c.

10.59.2.2 fasp_solver_dcsr_pminres()

A preconditioned minimal residual (Minres) method for solving Au=b.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

05/01/2012

Note

Rewritten based on the original version by Shiquan Zhang 05/10/2010

Modified by Chensong Zhang on 04/09/2013

Definition at line 55 of file KryPminres.c.

10.59.2.3 fasp_solver_dstr_pminres()

A preconditioned minimal residual (Minres) method for solving Au=b.

Parameters

Α	Pointer to dSTRmat: coefficient matrix
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/09/2013

Definition at line 865 of file KryPminres.c.

10.59.2.4 fasp_solver_pminres()

A preconditioned minimal residual (Minres) method for solving Au=b.

Parameters

mf	Pointer to mxv_matfree: spmv operation
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
107	Total to for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Generated by Doxygen

Returns

Iteration number if converges; ERROR otherwise.

Author

Shiquan Zhang

Date

10/24/2010

Rewritten by Chensong Zhang on 05/01/2012 Modified by Feiteng Huang on 09/26/2012: matrix free

Definition at line 1271 of file KryPminres.c.

10.60 KryPvbcgs.c File Reference

Krylov subspace methods – Preconditioned BiCGstab.

```
#include <math.h>
#include <float.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

 INT fasp_solver_dcsr_pvbcgs (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

 INT fasp_solver_dbsr_pvbcgs (dBSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

 INT fasp_solver_dblc_pvbcgs (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

 INT fasp_solver_dstr_pvbcgs (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

INT fasp_solver_pvbcgs (mxv_matfree *mf, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

10.60.1 Detailed Description

Krylov subspace methods - Preconditioned BiCGstab.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, BlaArray.c, Bla←SpmvBLC.c, BlaSpmvBSR.c, BlaSpmvCSR.c, and BlaSpmvSTR.c
Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM
See KrySPbcgs.c for a safer version

10.60.2 Function Documentation

10.60.2.1 fasp_solver_dblc_pvbcgs()

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

Parameters

Α	Pointer to coefficient matrix
b	Pointer to dvector of right hand side
и	Pointer to dvector of DOFs
pc	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chunsheng Feng

Date

03/04/2016

Definition at line 715 of file KryPvbcgs.c.

10.60.2.2 fasp_solver_dbsr_pvbcgs()

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

Parameters

Α	Pointer to coefficient matrix
b	Pointer to dvector of right hand side
и	Pointer to dvector of DOFs
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chunsheng Feng

Date

03/04/2016

Definition at line 384 of file KryPvbcgs.c.

```
10.60.2.3 fasp_solver_dcsr_pvbcgs()
```

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

Parameters

Α	Pointer to coefficient matrix
b	Pointer to dvector of right hand side
и	Pointer to dvector of DOFs
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chunsheng Feng

Date

03/04/2016

Definition at line 53 of file KryPvbcgs.c.

10.60.2.4 fasp_solver_dstr_pvbcgs()

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

Parameters

Α	Pointer to coefficient matrix
b	Pointer to dvector of right hand side
и	Pointer to dvector of DOFs
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chunsheng Feng

Date

03/04/2016

Definition at line 1046 of file KryPvbcgs.c.

10.60.2.5 fasp_solver_pvbcgs()

```
precond * pc,
const REAL tol,
const INT MaxIt,
const SHORT stop_type,
const SHORT prtlvl )
```

Preconditioned BiCGstab method for solving Au=b, Rewritten from Matlab 2011a.

Parameters

mf	Pointer to mxv_matfree: spmv operation
b	Pointer to dvector of right hand side
и	Pointer to dvector of DOFs
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chunsheng Feng

Date

03/04/2016

Definition at line 1377 of file KryPvbcgs.c.

10.61 KryPvfgmres.c File Reference

Krylov subspace methods – Preconditioned variable-restarting FGMRes.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

 INT fasp_solver_dcsr_pvfgmres (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration and flexible preconditioner can be used.

 INT fasp_solver_dbsr_pvfgmres (dBSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration and flexible preconditioner can be used.

 INT fasp_solver_dblc_pvfgmres (dBLCmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PFGMRES (right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration and flexible preconditioner can be used.

 INT fasp_solver_pvfgmres (mxv_matfree *mf, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration and flexible preconditioner can be used.

10.61.1 Detailed Description

Krylov subspace methods – Preconditioned variable-restarting FGMRes.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, BlaArray.c, Bla← SpmvBLC.c, BlaSpmvBSR.c, and BlaSpmvCSR.c

Refer to A.H. Baker, E.R. Jessup, and Tz.V. Kolev A Simple Strategy for Varying the Restart Parameter in GMR← ES(m) Journal of Computational and Applied Mathematics, 230 (2009) pp. 751-761. UCRL-JRNL-235266. This file is modifed from KryPvgmres.c

10.61.2 Function Documentation

10.61.2.1 fasp_solver_dblc_pvfgmres()

Solve "Ax=b" using PFGMRES (right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration and flexible preconditioner can be used.

Parameters

* A	pointer to coefficient matrix
* <i>b</i>	pointer to right hand side vector
*X	pointer to solution vector
MaxIt	maximal iteration number allowed
tol	tolerance
*pc	pointer to preconditioner data
prtlvl	How much information to print out
stop_type	default stopping criterion,i.e. $ r_k / r_0 < tol$, is used.
restart	number of restart for GMRES

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/04/2012

Note

Based on Zhiyang Zhou's pvgmres.c

Modified by Chunsheng Feng on 07/22/2013: Add adaptive memory allocate Modified by Chensong Zhang on 05/09/2015: Clean up for stopping types

Definition at line 718 of file KryPvfgmres.c.

10.61.2.2 fasp_solver_dbsr_pvfgmres()

```
INT fasp_solver_dbsr_pvfgmres (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT restart,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration and flexible preconditioner can be used.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type – DOES not support this parameter
prtlvl	How much information to print out
1- '	! • • • • • • • • • • • • • • • • • • •

Generated by Doxygen

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

02/05/2012

Modified by Chensong Zhang on 05/01/2012 Modified by Chunsheng Feng on 07/22/2013: Add adaptive memory allocate Modified by Chensong Zhang on 05/09/2015: Clean up for stopping types

Definition at line 388 of file KryPvfgmres.c.

10.61.2.3 fasp_solver_dcsr_pvfgmres()

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration and flexible preconditioner can be used.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
pc	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type – DOES not support this parameter
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/04/2012

Modified by Chensong Zhang on 05/01/2012 Modified by Chunsheng Feng on 07/22/2013: Add adaptive memory allocate Modified by Chensong Zhang on 05/09/2015: Clean up for stopping types

Definition at line 60 of file KryPvfgmres.c.

10.61.2.4 fasp_solver_pvfgmres()

Solve "Ax=b" using PFGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration and flexible preconditioner can be used.

Parameters

mf	Pointer to mxv_matfree: spmv operation
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type – DOES not support this parameter
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/04/2012

Modified by Chensong Zhang on 05/01/2012 Modified by Feiteng Huang on 09/26/2012: matrix free Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 1046 of file KryPvfgmres.c.

10.62 KryPvgmres.c File Reference

Krylov subspace methods - Preconditioned variable-restart GMRes.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

• INT fasp_solver_dcsr_pvgmres (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop type, const SHORT prtlvl)

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during iteration.

• INT fasp_solver_dblc_pvgmres (dBLCmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during iteration.

• INT fasp_solver_dbsr_pvgmres (dBSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during iteration.

 INT fasp_solver_dstr_pvgmres (dSTRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, const SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during iteration.

 INT fasp_solver_pvgmres (mxv_matfree *mf, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration.

10.62.1 Detailed Description

Krylov subspace methods – Preconditioned variable-restart GMRes.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, BlaArray.c, Bla←SpmvBLC.c, BlaSpmvBSR.c, BlaSpmvCSR.c, and BlaSpmvSTR.c

Refer to A.H. Baker, E.R. Jessup, and Tz.V. Kolev A Simple Strategy for Varying the Restart Parameter in GMR← ES(m) Journal of Computational and Applied Mathematics, 230 (2009) pp. 751-761. UCRL-JRNL-235266. See KrySPvgmres.c for a safer version

10.62.2 Function Documentation

10.62.2.1 fasp_solver_dblc_pvgmres()

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during iteration.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/05/2013

Definition at line 402 of file KryPvgmres.c.

10.62.2.2 fasp_solver_dbsr_pvgmres()

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during iteration.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

12/21/2011

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/06/2013: Add stop type support Definition at line 747 of file KryPvgmres.c.

10.62.2.3 fasp_solver_dcsr_pvgmres()

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during iteration.

Parameters

A	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/12/14

Modified by Chensong Zhang on 12/13/2011 Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/06/2013: Add stop type support Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 60 of file KryPvgmres.c.

10.62.2.4 fasp_solver_dstr_pvgmres()

Right preconditioned GMRES method in which the restart parameter can be adaptively modified during iteration.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/12/14

Modified by Chensong Zhang on 05/01/2012 Modified by Chensong Zhang on 04/06/2013: Add stop type support Definition at line 1092 of file KryPvgmres.c.

10.62.2.5 fasp_solver_pvgmres()

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration.

Parameters

mf	Pointer to mxv_matfree: spmv operation
b	Pointer to dvector: right hand side
Х	Pointer to dvector: unknowns
рс	Pointer to precond: structure of precondition
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type – DOES not support this parameter
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

2010/12/14

Modified by Chensong Zhang on 12/13/2011 Modified by Chensong Zhang on 05/01/2012 Modified by Feiteng Huang on 09/26/2012: matrix free Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 1439 of file KryPvgmres.c.

10.63 KrySPbcgs.c File Reference

Krylov subspace methods – Preconditioned BiCGstab with safety net.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

• INT fasp_solver_dcsr_spbcgs (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b with safety net.

 INT fasp_solver_dbsr_spbcgs (dBSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b with safety net.

 INT fasp_solver_dblc_spbcgs (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b with safety net.

 INT fasp_solver_dstr_spbcgs (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned BiCGstab method for solving Au=b with safety net.

10.63.1 Detailed Description

Krylov subspace methods – Preconditioned BiCGstab with safety net.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxVector.c, Bla← Array.c, BlaSpmvBLC.c, BlaSpmvBSR.c, BlaSpmvCSR.c, and BlaSpmvSTR.c

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See KryPbcgs.c for a version without safety net

10.63.2 Function Documentation

10.63.2.1 fasp_solver_dblc_spbcgs()

Preconditioned BiCGstab method for solving Au=b with safety net.

Parameters

Α	Pointer to dBLCmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/31/2013

Definition at line 827 of file KrySPbcgs.c.

10.63.2.2 fasp_solver_dbsr_spbcgs()

```
INT fasp_solver_dbsr_spbcgs (
    dBSRmat * A,
    dvector * b,
    dvector * u,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Preconditioned BiCGstab method for solving Au=b with safety net.

Parameters

Α	Pointer to dBSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/31/2013

Definition at line 439 of file KrySPbcgs.c.

10.63.2.3 fasp_solver_dcsr_spbcgs()

```
precond * pc,
const REAL tol,
const INT MaxIt,
const SHORT stop_type,
const SHORT prtlvl )
```

Preconditioned BiCGstab method for solving Au=b with safety net.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/31/2013

Definition at line 51 of file KrySPbcgs.c.

10.63.2.4 fasp_solver_dstr_spbcgs()

Preconditioned BiCGstab method for solving Au=b with safety net.

Parameters

Α	Pointer to dSTRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Generated by Doxygen

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/31/2013

Definition at line 1215 of file KrySPbcgs.c.

10.64 KrySPcg.c File Reference

Krylov subspace methods – Preconditioned CG with safety net.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

INT fasp_solver_dcsr_spcg (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b with safety net.

INT fasp_solver_dblc_spcg (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b with safety net.

INT fasp_solver_dstr_spcg (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

Preconditioned conjugate gradient method for solving Au=b with safety net.

10.64.1 Detailed Description

Krylov subspace methods – Preconditioned CG with safety net.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxVector.c, Bla←Array.c, BlaSpmvBLC.c, BlaSpmvCSR.c, BlaSpmvSTR.c, and BlaVector.c

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM

See KryPcg.c for a version without safety net

10.64.2 Function Documentation

10.64.2.1 fasp_solver_dblc_spcg()

Preconditioned conjugate gradient method for solving Au=b with safety net.

Parameters

Α	Pointer to dBLCmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/28/2013

Definition at line 381 of file KrySPcg.c.

10.64.2.2 fasp_solver_dcsr_spcg()

Preconditioned conjugate gradient method for solving Au=b with safety net.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
рс	Pointer to the structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/28/2013

Definition at line 51 of file KrySPcg.c.

10.64.2.3 fasp_solver_dstr_spcg()

```
precond * pc,
const REAL tol,
const INT MaxIt,
const SHORT stop_type,
const SHORT prtlvl )
```

Preconditioned conjugate gradient method for solving Au=b with safety net.

Parameters

Α	Pointer to dSTRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
и	Pointer to dvector: the unknowns
MaxIt	Maximal number of iterations
tol	Tolerance for stopping
рс	Pointer to the structure of precondition (precond)
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

03/28/2013

Definition at line 711 of file KrySPcg.c.

10.65 KrySPgmres.c File Reference

Krylov subspace methods - Preconditioned GMRes with safety net.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

 INT fasp_solver_dcsr_spgmres (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b with safe-guard.

 INT fasp_solver_dblc_spgmres (dBLCmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b with safe-guard.

 INT fasp_solver_dbsr_spgmres (dBSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b with safe-guard.

• INT fasp_solver_dstr_spgmres (dSTRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b with safe-guard.

10.65.1 Detailed Description

Krylov subspace methods – Preconditioned GMRes with safety net.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxVector.c, Bla←Array.c, BlaSpmvBSR.c, BlaSpmvBSR.c, BlaSpmvBSR.c, and BlaSpmvSTR.c

Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM See also pgmres.c for a variable restarting version.

See KryPgmres.c for a version without safety net

10.65.2 Function Documentation

10.65.2.1 fasp_solver_dblc_spgmres()

Preconditioned GMRES method for solving Au=b with safe-guard.

Parameters

Α	Pointer to dBLCmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
pc	Pointer to structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/05/2013

Definition at line 395 of file KrySPgmres.c.

10.65.2.2 fasp_solver_dbsr_spgmres()

Preconditioned GMRES method for solving Au=b with safe-guard.

Parameters

Α	Pointer to dBSRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/05/2013

Definition at line 735 of file KrySPgmres.c.

10.65.2.3 fasp_solver_dcsr_spgmres()

Preconditioned GMRES method for solving Au=b with safe-guard.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
Х	Pointer to dvector: unknowns
рс	Pointer to structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/05/2013 Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 55 of file KrySPgmres.c.

10.65.2.4 fasp_solver_dstr_spgmres()

Preconditioned GMRES method for solving Au=b with safe-guard.

Parameters

Α	Pointer to dSTRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/05/2013

Definition at line 1075 of file KrySPgmres.c.

10.66 KrySPminres.c File Reference

Krylov subspace methods - Preconditioned minimal residual with safety net.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

 INT fasp_solver_dcsr_spminres (dCSRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

 INT fasp_solver_dblc_spminres (dBLCmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

 INT fasp_solver_dstr_spminres (dSTRmat *A, dvector *b, dvector *u, precond *pc, const REAL tol, const INT MaxIt, const SHORT stop_type, const SHORT prtlvl)

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

10.66.1 Detailed Description

Krylov subspace methods – Preconditioned minimal residual with safety net.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxVector.c, Bla⇔ Array.c, BlaSpmvBLC.c, BlaSpmvCSR.c, and BlaSpmvSTR.c
Refer to Y. Saad 2003 Iterative methods for sparse linear systems (2nd Edition), SIAM
See KryPminres.c for a version without safety net

10.66.2 Function Documentation

10.66.2.1 fasp solver dblc spminres()

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

Parameters

Α	Pointer to dBLCmat: coefficient matrix
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
рс	Pointer to structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Generated by Doxygen

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/09/2013

Definition at line 499 of file KrySPminres.c.

10.66.2.2 fasp_solver_dcsr_spminres()

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
рс	Pointer to structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/09/2013

Definition at line 51 of file KrySPminres.c.

10.66.2.3 fasp_solver_dstr_spminres()

A preconditioned minimal residual (Minres) method for solving Au=b with safety net.

Parameters

Α	Pointer to dSTRmat: coefficient matrix
b	Pointer to dvector: right hand side
и	Pointer to dvector: unknowns
MaxIt	Maximal number of iterations
tol	Tolerance for stopping
рс	Pointer to structure of precondition (precond)
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/09/2013

Definition at line 947 of file KrySPminres.c.

10.67 KrySPvgmres.c File Reference

Krylov subspace methods - Preconditioned variable-restart GMRes with safety net.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

 INT fasp_solver_dcsr_spvgmres (dCSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration.

 INT fasp_solver_dblc_spvgmres (dBLCmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Preconditioned GMRES method for solving Au=b.

 INT fasp_solver_dbsr_spvgmres (dBSRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop_type, const SHORT prtlvl)

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration.

 INT fasp_solver_dstr_spvgmres (dSTRmat *A, dvector *b, dvector *x, precond *pc, const REAL tol, const INT MaxIt, SHORT restart, const SHORT stop type, const SHORT prtlvl)

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration.

10.67.1 Detailed Description

Krylov subspace methods - Preconditioned variable-restart GMRes with safety net.

Note

This file contains Level-3 (Kry) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxVector.c, Bla Array.c, BlaSpmvBSR.c, BlaSpmvBSR.c, BlaSpmvBSR.c, and BlaSpmvSTR.c

Refer to A.H. Baker, E.R. Jessup, and Tz.V. Kolev A Simple Strategy for Varying the Restart Parameter in GMR← ES(m) Journal of Computational and Applied Mathematics, 230 (2009) pp. 751-761. UCRL-JRNL-235266. See KryPvgmres.c a version without safety net

10.67.2 Function Documentation

10.67.2.1 fasp_solver_dblc_spvgmres()

Preconditioned GMRES method for solving Au=b.

Parameters

Α	Pointer to dBLCmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/06/2013

Definition at line 434 of file KrySPvgmres.c.

10.67.2.2 fasp_solver_dbsr_spvgmres()

```
INT fasp_solver_dbsr_spvgmres (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    precond * pc,
    const REAL tol,
    const INT MaxIt,
    SHORT restart,
    const SHORT stop_type,
    const SHORT prtlvl )
```

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration.

Parameters

Α	Pointer to dBSRmat: coefficient matrix
b	Pointer to dvector: right hand side
Χ	Pointer to dvector: unknowns
pc	Pointer to structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/06/2013

Definition at line 812 of file KrySPvgmres.c.

10.67.2.3 fasp_solver_dcsr_spvgmres()

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration.

Parameters

Α	Pointer to dCSRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
pc	Pointer to structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/06/2013 Modified by Chunsheng Feng on 07/22/2013: Add adapt memory allocate

Definition at line 57 of file KrySPvgmres.c.

10.67.2.4 fasp_solver_dstr_spvgmres()

Solve "Ax=b" using PGMRES(right preconditioned) iterative method in which the restart parameter can be adaptively modified during iteration.

Parameters

Α	Pointer to dSTRmat: coefficient matrix
b	Pointer to dvector: right hand side
X	Pointer to dvector: unknowns
рс	Pointer to structure of precondition (precond)
tol	Tolerance for stopping
MaxIt	Maximal number of iterations
restart	Restarting steps
stop_type	Stopping criteria type
prtlvl	How much information to print out

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

04/06/2013

Definition at line 1190 of file KrySPvgmres.c.

10.68 PreAMGCoarsenCR.c File Reference

Coarsening with Brannick-Falgout strategy.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "PreAMGUtil.inl"
```

Functions

INT fasp_amg_coarsening_cr (const INT i_0, const INT i_n, dCSRmat *A, ivector *vertices, AMG_param *param)
 CR coarsening.

10.68.1 Detailed Description

Coarsening with Brannick-Falgout strategy.

Note

This file contains Level-4 (Pre) functions. It requires AuxMemory.c and ItrSmootherCSRcr.c

10.68.2 Function Documentation

10.68.2.1 fasp_amg_coarsening_cr()

CR coarsening.

Parameters

i_0	Starting index
i_n	Ending index
Α	Pointer to dCSRmat: the coefficient matrix (index starts from 0)
vertices	Pointer to CF, 0: Fpt (current level) or 1: Cpt
param	Pointer to AMG_param: AMG parameters

Returns

Number of coarse level points

Author

James Brannick

Date

04/21/2010

Note

```
vertices = 0: fine; 1: coarse; 2: isolated or special
```

Modified by Chunsheng Feng, Zheng Li on 10/14/2012 CR STAGES

Definition at line 53 of file PreAMGCoarsenCR.c.

10.69 PreAMGCoarsenRS.c File Reference

Coarsening with a modified Ruge-Stuben strategy.

```
#include "fasp.h"
#include "fasp_functs.h"
#include "PreAMGUtil.inl"
```

Functions

• SHORT fasp_amg_coarsening_rs (dCSRmat *A, ivector *vertices, dCSRmat *P, iCSRmat *S, AMG_param *param)

Standard and aggressive coarsening schemes.

10.69.1 Detailed Description

Coarsening with a modified Ruge-Stuben strategy.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxVector.c, Bla⇔ SparseCSR.c, and PreAMGCoarsenCR.c

Refer to Multigrid by U. Trottenberg, C. W. Oosterlee and A. Schuller Appendix P475 A.7 (by A. Brandt, P. Oswald and K. Stuben) Academic Press Inc., San Diego, CA, 2001.

Warning

Do NOT use auto-indentation in this file!!!

10.69.2 Function Documentation

10.69.2.1 fasp_amg_coarsening_rs()

```
SHORT fasp_amg_coarsening_rs (

dCSRmat * A,

ivector * vertices,

dCSRmat * P,

iCSRmat * S,

AMG_param * param )
```

Standard and aggressive coarsening schemes.

Parameters

Α	Pointer to dCSRmat: Coefficient matrix (index starts from 0)
vertices	Indicator vector for the C/F splitting of the variables
Р	Interpolation matrix (nonzero pattern only)
S	Strong connection matrix
param	Pointer to AMG_param: AMG parameters

Returns

FASP SUCCESS if successed; otherwise, error information.

Author

Xuehai Huang, Chensong Zhang, Xiaozhe Hu, Ludmil Zikatanov

Date

09/06/2010

Note

```
vertices = 0: fine; 1: coarse; 2: isolated or special
```

Modified by Xiaozhe Hu on 05/23/2011: add strength matrix as an argument Modified by Xiaozhe Hu on 04/24/2013: modify aggressive coarsening Modified by Chensong Zhang on 04/28/2013: remove linked list Modified by Chensong Zhang on 05/11/2013: restructure the code

Definition at line 69 of file PreAMGCoarsenRS.c.

10.70 PreAMGInterp.c File Reference

Direct and standard interpolations for classical AMG.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_amg_interp (dCSRmat *A, ivector *vertices, dCSRmat *P, iCSRmat *S, AMG_param *param)
 Generate interpolation operator P.
- void fasp_amg_interp_trunc (dCSRmat *P, AMG_param *param)

Truncation step for prolongation operators.

10.70.1 Detailed Description

Direct and standard interpolations for classical AMG.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, and PreAMG← InterpEmin.c

Refer to U. Trottenberg, C. W. Oosterlee, and A. Schuller Multigrid (Appendix A: An Intro to Algebraic Multigrid) Academic Press Inc., San Diego, CA, 2001 With contributions by A. Brandt, P. Oswald and K. Stuben.

10.70.2 Function Documentation

10.70.2.1 fasp_amg_interp()

Generate interpolation operator P.

Parameters

Α	Pointer to dCSRmat coefficient matrix (index starts from 0)
vertices	Indicator vector for the C/F splitting of the variables
P	Prolongation (input: nonzero pattern, output: prolongation)
S	Strong connection matrix
param	AMG parameters

Author

Xuehai Huang, Chensong Zhang

Date

04/04/2010

Modified by Xiaozhe Hu on 05/23/2012: add S as input Modified by Chensong Zhang on 09/12/2012: clean up and debug interp RS Modified by Chensong Zhang on 05/14/2013: reconstruct the code

Definition at line 54 of file PreAMGInterp.c.

10.70.2.2 fasp_amg_interp_trunc()

Truncation step for prolongation operators.

Parameters

Р	Prolongation (input: full, output: truncated)
param	Pointer to AMG_param: AMG parameters

Author

Chensong Zhang

Date

05/14/2013

Originally by Xuehai Huang, Chensong Zhang on 01/31/2009 Modified by Chunsheng Feng, Xiaoqiang Yue on 05/23/2012: add OMP support Modified by Chensong Zhang on 05/14/2013: rewritten

Definition at line 106 of file PreAMGInterp.c.

10.71 PreAMGInterpEmin.c File Reference

Interpolation operators for AMG based on energy-min.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• void fasp_amg_interp_em (dCSRmat *A, ivector *vertices, dCSRmat *P, AMG_param *param) Energy-min interpolation.

10.71.1 Detailed Description

Interpolation operators for AMG based on energy-min.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxVector.c, BlaSmallMatLU.c, BlaSparseCSR.c, KryPcg.c, and PreCSR.c

Refer to J. Xu and L. Zikatanov On An Energy Minimizing Basis in Algebraic Multigrid Methods Computing and visualization in sciences, 2003

10.71.2 Function Documentation

10.71.2.1 fasp_amg_interp_em()

Energy-min interpolation.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix (index starts from 0)
vertices	Pointer to the indicator of CF splitting on fine or coarse grid
Р	Pointer to the dCSRmat matrix of resulted interpolation
param	Pointer to AMG_param: AMG parameters

Author

Shuo Zhang, Xuehai Huang

Date

04/04/2010

Modified by Chunsheng Feng, Zheng Li on 10/17/2012: add OMP support Modified by Chensong Zhang on 05/14/2013: reconstruct the code

Definition at line 57 of file PreAMGInterpEmin.c.

10.72 PreAMGSetupCR.c File Reference

Brannick-Falgout compatible relaxation based AMG: SETUP phase.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• SHORT fasp_amg_setup_cr (AMG_data *mgl, AMG_param *param)

Set up phase of Brannick Falgout CR coarsening for classic AMG.

10.72.1 Detailed Description

Brannick-Falgout compatible relaxation based AMG: SETUP phase.

Note

This file contains Level-4 (Pre) functions. It requires AuxMessage.c, AuxTiming.c, AuxVector.c, and PreAMG← CoarsenCR.c

Setup A, P, R and levels using the Compatible Relaxation coarsening for classic AMG interpolation Refer to J. Brannick and R. Falgout Compatible relaxation and coarsening in AMG

Warning

Not working. Yet need to be fixed. -Chensong

10.72.2 Function Documentation

10.72.2.1 fasp_amg_setup_cr()

```
SHORT fasp_amg_setup_cr (

AMG_data * mgl,

AMG_param * param)
```

Set up phase of Brannick Falgout CR coarsening for classic AMG.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

James Brannick

Date

04/21/2010

Modified by Chensong Zhang on 05/10/2013: adjust the structure.

Definition at line 41 of file PreAMGSetupCR.c.

10.73 PreAMGSetupRS.c File Reference

Ruge-Stuben AMG: SETUP phase.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

SHORT fasp_amg_setup_rs (AMG_data *mgl, AMG_param *param)
 Setup phase of Ruge and Stuben's classic AMG.

10.73.1 Detailed Description

Ruge-Stuben AMG: SETUP phase.

Note

This file contains Level-4 (Pre) functions. It requires AuxMemory.c, AuxMessage.c, AuxTiming.c, AuxVector.

c, BlaILUSetupCSR.c, BlaSchwarzSetup.c, BlaSparseCSR.c, BlaSpmvCSR.c, PreAMGCoarsenRS.c, PreAMG←
Interp.c, and PreMGRecurAMLI.c

Refer to Multigrid by U. Trottenberg, C. W. Oosterlee and A. Schuller Appendix P475 A.7 (by A. Brandt, P. Oswald and K. Stuben) Academic Press Inc., San Diego, CA, 2001.

10.73.2 Function Documentation

10.73.2.1 fasp_amg_setup_rs()

```
SHORT fasp_amg_setup_rs (

AMG_data * mgl,

AMG_param * param)
```

Setup phase of Ruge and Stuben's classic AMG.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Chensong Zhang

Date

05/09/2010

Modified by Chensong Zhang on 04/04/2009. Modified by Chensong Zhang on 05/09/2010. Modified by Zhiyang Zhou on 11/17/2010. Modified by Xiaozhe Hu on 01/23/2011: add AMLI cycle. Modified by Chensong zhang on 09/09/2011 ←: add min dof. Modified by Xiaozhe Hu on 04/24/2013: aggressive coarsening. Modified by Chensong Zhang on 05/03/2013: add error handling in setup. Modified by Chensong Zhang on 05/10/2013: adjust the structure. Modified by Chensong Zhang on 07/26/2014: handle coarsening errors. Modified by Chensong Zhang on 09/23/2014: check coarse spaces.

Definition at line 52 of file PreAMGSetupRS.c.

10.74 PreAMGSetupSA.c File Reference

Smoothed aggregation AMG: SETUP phase.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "PreAMGAggregationCSR.inl"
```

Functions

SHORT fasp_amg_setup_sa (AMG_data *mgl, AMG_param *param)
 Set up phase of smoothed aggregation AMG.

10.74.1 Detailed Description

Smoothed aggregation AMG: SETUP phase.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxTiming.c, AuxVector.c, BlaILUSetupCSR.c, BlaSchwarzSetup.c, BlaSparseCSR.c, BlaSpmvCSR.c, and PreMGRecurAM← II.c.

Setup A, P, PT and levels using the unsmoothed aggregation algorithm; Refer to P. Vanek, J. Madel and M. Brezina Algebraic Multigrid on Unstructured Meshes, 1994

10.74.2 Function Documentation

10.74.2.1 fasp amg setup sa()

```
SHORT fasp_amg_setup_sa (
          AMG_data * mgl,
          AMG_param * param )
```

Set up phase of smoothed aggregation AMG.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xiaozhe Hu

Date

09/29/2009

Modified by Chensong Zhang on 04/06/2010. Modified by Chensong Zhang on 05/09/2010. Modified by Xiaozhe Hu on 01/23/2011: add AMLI cycle. Modified by Chensong Zhang on 05/10/2013: adjust the structure.

Definition at line 56 of file PreAMGSetupSA.c.

10.75 PreAMGSetupSABSR.c File Reference

Smoothed aggregation AMG: SETUP phase (for BSR matrices)

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "PreAMGAggregationCSR.inl"
#include "PreAMGAggregationBSR.inl"
```

Functions

SHORT fasp_amg_setup_sa_bsr (AMG_data_bsr *mgl, AMG_param *param)
 Set up phase of smoothed aggregation AMG (BSR format)

10.75.1 Detailed Description

Smoothed aggregation AMG: SETUP phase (for BSR matrices)

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxSmallMat.c, AuxTiming.c, AuxVector.c, BlaFormat.c, BlaILUSetupBSR.c, BlaSparseBLC.c, BlaSparseBLC.c, BlaSparseBSR.c, BlaSparseCSR.c, and BlaSparseBSR.c, and BlaSparseBSR.c

Setup A, P, PT and levels using the unsmoothed aggregation algorithm; Refer to P. Vanek, J. Madel and M. Brezina Algebraic Multigrid on Unstructured Meshes, 1994

10.75.2 Function Documentation

```
10.75.2.1 fasp_amg_setup_sa_bsr()
```

```
INT fasp_amg_setup_sa_bsr (
          AMG_data_bsr * mgl,
          AMG_param * param )
```

Set up phase of smoothed aggregation AMG (BSR format)

Parameters

mgl	Pointer to AMG data: AMG_data_bsr
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 52 of file PreAMGSetupSABSR.c.

10.76 PreAMGSetupUA.c File Reference

Unsmoothed aggregation AMG: SETUP phase.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "PreAMGAggregationCSR.inl"
```

Functions

• SHORT fasp_amg_setup_ua (AMG_data *mgl, AMG_param *param)

Set up phase of unsmoothed aggregation AMG.

10.76.1 Detailed Description

Unsmoothed aggregation AMG: SETUP phase.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxTiming.c, AuxVector.c, BlaILUSetupCSR.c, BlaSchwarzSetup.c, BlaSparseCSR.c, BlaSpmvCSR.c, and PreMGRecurAM← Ll.c

Setup A, P, PT and levels using the unsmoothed aggregation algorithm; Refer to P. Vanek, J. Madel and M. Brezina Algebraic Multigrid on Unstructured Meshes, 1994

10.76.2 Function Documentation

10.76.2.1 fasp_amg_setup_ua()

```
SHORT fasp_amg_setup_ua (

AMG_data * mgl,

AMG_param * param )
```

Set up phase of unsmoothed aggregation AMG.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xiaozhe Hu

Date

12/28/2011

Definition at line 46 of file PreAMGSetupUA.c.

10.77 PreAMGSetupUABSR.c File Reference

Unsmoothed aggregation AMG: SETUP phase (for BSR matrices)

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "PreAMGAggregationCSR.inl"
#include "PreAMGAggregationBSR.inl"
```

Functions

SHORT fasp_amg_setup_ua_bsr (AMG_data_bsr *mgl, AMG_param *param)
 Set up phase of unsmoothed aggregation AMG (BSR format)

10.77.1 Detailed Description

Unsmoothed aggregation AMG: SETUP phase (for BSR matrices)

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxSmallMat.c, AuxTiming.c, AuxVector.c, BlaFormat.c, BlaILUSetupBSR.c, BlaSparseBLC.c, BlaSparseBSR.c, BlaSparseBSR.c, BlaSpmvBSR.c, BlaSpmvCSR.c, and PreDataInit.c

Setup A, P, PT and levels using the unsmoothed aggregation algorithm; Refer to P. Vanek, J. Madel and M. Brezina Algebraic Multigrid on Unstructured Meshes, 1994

10.77.2 Function Documentation

10.77.2.1 fasp amg setup ua bsr()

```
INT fasp_amg_setup_ua_bsr (
          AMG_data_bsr * mgl,
          AMG_param * param )
```

Set up phase of unsmoothed aggregation AMG (BSR format)

Parameters

mgl	Pointer to AMG data: AMG_data_bsr
param	Pointer to AMG parameters: AMG_param

Returns

FASP_SUCCESS if successed; otherwise, error information.

Author

Xiaozhe Hu

Date

03/16/2012

Definition at line 48 of file PreAMGSetupUABSR.c.

10.78 PreBLC.c File Reference

Preconditioners for dBLCmat matrices.

```
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
```

Functions

- void fasp_precond_block_diag_3 (REAL *r, REAL *z, void *data)
 - block diagonal preconditioning (3x3 block matrix, each diagonal block is solved exactly)
- void fasp_precond_block_diag_3_amg (REAL *r, REAL *z, void *data)
 - block diagonal preconditioning (3x3 block matrix, each diagonal block is solved by AMG)
- void fasp_precond_block_diag_4 (REAL *r, REAL *z, void *data)
 - block diagonal preconditioning (4x4 block matrix, each diagonal block is solved exactly)
- void fasp_precond_block_lower_3 (REAL *r, REAL *z, void *data)
 - block lower triangular preconditioning (3x3 block matrix, each diagonal block is solved exactly)
- void fasp_precond_block_lower_3_amg (REAL *r, REAL *z, void *data)
 - block lower triangular preconditioning (3x3 block matrix, each diagonal block is solved by AMG)
- void fasp precond block lower 4 (REAL *r, REAL *z, void *data)
 - block lower triangular preconditioning (4x4 block matrix, each diagonal block is solved exactly)
- void fasp precond block upper 3 (REAL *r, REAL *z, void *data)
 - block upper triangular preconditioning (3x3 block matrix, each diagonal block is solved exactly)
- void fasp precond block upper 3 amg (REAL *r, REAL *z, void *data)
 - block upper triangular preconditioning (3x3 block matrix, each diagonal block is solved AMG)
- void fasp precond block SGS 3 (REAL *r, REAL *z, void *data)
 - block symmetric GS preconditioning (3x3 block matrix, each diagonal block is solved exactly)
- void fasp precond block SGS 3 amg (REAL *r, REAL *z, void *data)
 - block symmetric GS preconditioning (3x3 block matrix, each diagonal block is solved exactly)
- void fasp_precond_sweeping (REAL *r, REAL *z, void *data)
 - sweeping preconditioner for Maxwell equations

10.78.1 Detailed Description

Preconditioners for dBLCmat matrices.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxVector.c, BlaSpmvCSR.c, and PreMGCycle.c

Warning

Need to be cleaned up. -Chensong

10.78.2 Function Documentation

10.78.2.1 fasp_precond_block_diag_3()

block diagonal preconditioning (3x3 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 31 of file PreBLC.c.

10.78.2.2 fasp_precond_block_diag_3_amg()

block diagonal preconditioning (3x3 block matrix, each diagonal block is solved by AMG)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 115 of file PreBLC.c.

```
10.78.2.3 fasp_precond_block_diag_4()
```

block diagonal preconditioning (4x4 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 180 of file PreBLC.c.

10.78.2.4 fasp_precond_block_lower_3()

block lower triangular preconditioning (3x3 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 276 of file PreBLC.c.

10.78.2.5 fasp_precond_block_lower_3_amg()

block lower triangular preconditioning (3x3 block matrix, each diagonal block is solved by AMG)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 358 of file PreBLC.c.

10.78.2.6 fasp_precond_block_lower_4()

block lower triangular preconditioning (4x4 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

07/10/2014

Definition at line 432 of file PreBLC.c.

10.78.2.7 fasp_precond_block_SGS_3()

block symmetric GS preconditioning (3x3 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/19/2015

Definition at line 693 of file PreBLC.c.

10.78.2.8 fasp_precond_block_SGS_3_amg()

block symmetric GS preconditioning (3x3 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/19/2015

Definition at line 809 of file PreBLC.c.

10.78.2.9 fasp_precond_block_upper_3()

block upper triangular preconditioning (3x3 block matrix, each diagonal block is solved exactly)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
Ge rgeret e	^b ምፀስነሂ ደ የባto precondition data

Author

Xiaozhe Hu

Date

02/18/2015

Definition at line 530 of file PreBLC.c.

```
10.78.2.10 fasp_precond_block_upper_3_amg()
```

block upper triangular preconditioning (3x3 block matrix, each diagonal block is solved AMG)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/19/2015

Definition at line 612 of file PreBLC.c.

10.78.2.11 fasp_precond_sweeping()

sweeping preconditioner for Maxwell equations

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

05/01/2014

Definition at line 919 of file PreBLC.c.

10.79 PreBSR.c File Reference

Preconditioners for dBSRmat matrices.

```
#include "fasp.h"
#include "fasp_functs.h"
#include "PreUtil.inl"
```

Functions

- void fasp_precond_dbsr_diag (REAL *r, REAL *z, void *data)
 Diagonal preconditioner z=inv(D)*r.
- void fasp_precond_dbsr_diag_nc2 (REAL *r, REAL *z, void *data)
 Diagonal preconditioner z=inv(D)*r.
- void fasp_precond_dbsr_diag_nc3 (REAL *r, REAL *z, void *data)
 Diagonal preconditioner z=inv(D)*r.
- void fasp_precond_dbsr_diag_nc5 (REAL *r, REAL *z, void *data)
 Diagonal preconditioner z=inv(D)*r.
- void fasp_precond_dbsr_diag_nc7 (REAL *r, REAL *z, void *data)
 Diagonal preconditioner z=inv(D)*r.
- void fasp_precond_dbsr_ilu (REAL *r, REAL *z, void *data)
 ILU preconditioner.
- void fasp_precond_dbsr_ilu_mc_omp (REAL *r, REAL *z, void *data)
 Multi-thread Parallel ILU preconditioner based on graph coloring.
- void fasp_precond_dbsr_ilu_ls_omp (REAL *r, REAL *z, void *data)

Multi-thread Parallel ILU preconditioner based on level schedule strategy.

- void fasp_precond_dbsr_amg (REAL *r, REAL *z, void *data)
 AMG preconditioner.
- void fasp_precond_dbsr_nl_amli (REAL *r, REAL *z, void *data)
 Nonlinear AMLI-cycle AMG preconditioner.
- void fasp_precond_dbsr_amg_nk (REAL *r, REAL *z, void *data)

 AMG with extra near kernel solve preconditioner.

10.79.1 Detailed Description

Preconditioners for dBSRmat matrices.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxParam.c, AuxVector.c, BlaSmallMat.c, Bla⇔ SpmvBSR.c, BlaSpmvCSR.c, KrySPcg.c, KrySPvgmres.c, PreMGCycle.c, and PreMGRecurAMLI.c

10.79.2 Function Documentation

10.79.2.1 fasp_precond_dbsr_amg()

AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

08/07/2011

Definition at line 974 of file PreBSR.c.

10.79.2.2 fasp_precond_dbsr_amg_nk()

AMG with extra near kernel solve preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 1053 of file PreBSR.c.

10.79.2.3 fasp_precond_dbsr_diag()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Zhou Zhiyang, Xiaozhe Hu

Date

10/26/2010

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/24/2012

Note

Works for general nb (Xiaozhe)

Definition at line 45 of file PreBSR.c.

```
10.79.2.4 fasp_precond_dbsr_diag_nc2()
```

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Zhou Zhiyang, Xiaozhe Hu

Date

11/18/2011

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/24/2012

Note

Works for 2-component (Xiaozhe)

Definition at line 118 of file PreBSR.c.

10.79.2.5 fasp_precond_dbsr_diag_nc3()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Zhou Zhiyang, Xiaozhe Hu

Date

01/06/2011

Modified by Chunsheng Feng Xiaoqiang Yue

Date

05/24/2012

Note

Works for 3-component (Xiaozhe)

Definition at line 167 of file PreBSR.c.

10.79.2.6 fasp_precond_dbsr_diag_nc5()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Zhou Zhiyang, Xiaozhe Hu

Date

01/06/2011

Modified by Chunsheng Feng, Xiaoqiang Yue

Date

05/24/2012

Note

Works for 5-component (Xiaozhe)

Definition at line 216 of file PreBSR.c.

10.79.2.7 fasp_precond_dbsr_diag_nc7()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Zhou Zhiyang, Xiaozhe Hu

Date

01/06/2011

Modified by Chunsheng Feng Xiaoqiang Yue

Date

05/24/2012

Note

Works for 7-component (Xiaozhe)

Definition at line 265 of file PreBSR.c.

10.79.2.8 fasp_precond_dbsr_ilu()

ILU preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang, Xiaozhe Hu

Date

11/09/2010

Note

Works for general nb (Xiaozhe)

Definition at line 311 of file PreBSR.c.

10.79.2.9 fasp_precond_dbsr_ilu_ls_omp()

Multi-thread Parallel ILU preconditioner based on level schedule strategy.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

ZhengLi

Date

12/04/2016

Note

Only works for nb 1, 2, and 3 (Zheng)

Definition at line 767 of file PreBSR.c.

10.79.2.10 fasp_precond_dbsr_ilu_mc_omp()

Multi-thread Parallel ILU preconditioner based on graph coloring.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

ZhengLi

Date

12/04/2016

Note

Only works for nb 1, 2, and 3 (Zheng)

Definition at line 569 of file PreBSR.c.

10.79.2.11 fasp_precond_dbsr_nl_amli()

Nonlinear AMLI-cycle AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/06/2012

Definition at line 1017 of file PreBSR.c.

10.80 PreCSR.c File Reference

Preconditioners for dCSRmat matrices.

```
#include "fasp.h"
#include "fasp_functs.h"
#include "PreUtil.inl"
```

Functions

precond * fasp_precond_setup (const SHORT precond_type, AMG_param *amgparam, ILU_param *iluparam, dCSRmat *A)

Setup preconditioner interface for iterative methods.

void fasp_precond_diag (REAL *r, REAL *z, void *data)

Diagonal preconditioner z=inv(D)*r.

void fasp_precond_ilu (REAL *r, REAL *z, void *data)

ILU preconditioner.

void fasp_precond_ilu_forward (REAL *r, REAL *z, void *data)

ILU preconditioner: only forward sweep.

void fasp_precond_ilu_backward (REAL *r, REAL *z, void *data)

ILU preconditioner: only backward sweep.

void fasp precond schwarz (REAL *r, REAL *z, void *data)

get z from r by Schwarz

void fasp_precond_amg (REAL *r, REAL *z, void *data)

AMG preconditioner.

void fasp_precond_famg (REAL *r, REAL *z, void *data)

Full AMG preconditioner.

void fasp precond amli (REAL *r, REAL *z, void *data)

AMLI AMG preconditioner.

void fasp precond nl amli (REAL *r, REAL *z, void *data)

Nonlinear AMLI AMG preconditioner.

void fasp_precond_amg_nk (REAL *r, REAL *z, void *data)

AMG with extra near kernel solve as preconditioner.

void fasp_precond_free (const SHORT precond_type, precond *pc)

free preconditioner

10.80.1 Detailed Description

Preconditioners for dCSRmat matrices.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxParam.c, AuxVector.c, Blal← LUSetupCSR.c, BlaSchwarzSetup.c, BlaSparseCSR.c, BlaSpmvCSR.c, KrySPcg.c, KrySPvgmres.c, PreAMG← SetupRS.c, PreAMGSetupUA.c, PreDataInit.c, PreMGCycle.c, PreMGCycleFull.c, and Pre← MGRecurAMLI.c

10.80.2 Function Documentation

10.80.2.1 fasp_precond_amg()

AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Chensong Zhang

Date

04/06/2010

Definition at line 408 of file PreCSR.c.

10.80.2.2 fasp_precond_amg_nk()

AMG with extra near kernel solve as preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 540 of file PreCSR.c.

10.80.2.3 fasp_precond_amli()

AMLI AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

01/23/2011

Definition at line 474 of file PreCSR.c.

10.80.2.4 fasp_precond_diag()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Chensong Zhang

Date

04/06/2010

Definition at line 167 of file PreCSR.c.

10.80.2.5 fasp_precond_famg()

Full AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

02/27/2011

Definition at line 441 of file PreCSR.c.

10.80.2.6 fasp_precond_free()

free preconditioner

Parameters

precond_type	Preconditioner type
*pc	precondition data & fct

Returns

void

Author

Feiteng Huang

Date

12/24/2012

Definition at line 624 of file PreCSR.c.

10.80.2.7 fasp_precond_ilu()

ILU preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/06/2010

Definition at line 193 of file PreCSR.c.

10.80.2.8 fasp_precond_ilu_backward()

ILU preconditioner: only backward sweep.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu, Shiquan Zhang

Date

04/06/2010

Definition at line 310 of file PreCSR.c.

10.80.2.9 fasp_precond_ilu_forward()

ILU preconditioner: only forward sweep.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu, Shiquang Zhang

Date

04/06/2010

Definition at line 257 of file PreCSR.c.

10.80.2.10 fasp_precond_nl_amli()

Nonlinear AMLI AMG preconditioner.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Xiaozhe Hu

Date

04/25/2011

Definition at line 507 of file PreCSR.c.

10.80.2.11 fasp_precond_schwarz()

get z from r by Schwarz

Parameters

* <i>r</i>	pointer to residual
*Z	pointer to preconditioned residual
*data	pointer to precondition data

Author

Xiaozhe Hu

Date

03/22/2010

Note

Change Schwarz interface by Zheng Li on 11/18/2014

Definition at line 363 of file PreCSR.c.

```
10.80.2.12 fasp_precond_setup()
```

Setup preconditioner interface for iterative methods.

Parameters

precond_type	Preconditioner type	
amgparam	Pointer to AMG parameters	
iluparam	Pointer to ILU parameters	
Α	Pointer to the coefficient matrix	

Returns

Pointer to preconditioner

Author

Feiteng Huang

Date

05/18/2009

Definition at line 41 of file PreCSR.c.

10.81 PreDataInit.c File Reference

Initialize important data structures.

```
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void fasp_precond_null (precond *pcdata)

Initialize precond data.

void fasp_precond_data_null (precond_data *pcdata)

Initialize precond_data.

AMG_data * fasp_amg_data_create (SHORT max_levels)

Create and initialize AMG_data for classical and SA AMG.

void fasp_amg_data_free (AMG_data *mgl, AMG_param *param)

Free AMG data data memeory space.

AMG_data_bsr * fasp_amg_data_bsr_create (SHORT max_levels)

Create and initialize AMG_data data sturcture for AMG/SAMG (BSR format)

void fasp_amg_data_bsr_free (AMG_data_bsr *mgl)

Free AMG_data_bsr data memeory space.

void fasp_ilu_data_create (const INT iwk, const INT nwork, ILU_data *iludata)

Allocate workspace for ILU factorization.

void fasp_ilu_data_free (ILU_data *ILUdata)

Create ILU_data sturcture.

void fasp_ilu_data_null (ILU_data *ILUdata)

Initialize ILU data.

void fasp_schwarz_data_free (Schwarz_data *Schwarz)

Free Schwarz_data data memeory space.

10.81.1 Detailed Description

Initialize important data structures.

Note

This file contains Level-4 (Pre) functions. It requires AuxMemory.c, AuxVector.c, BlaSparseBSR.c, and Bla⇔ SparseCSR.c

Warning

Every structures should be initialized before usage.

10.81.2 Function Documentation

10.81.2.1 fasp_amg_data_bsr_create()

Create and initialize AMG_data data sturcture for AMG/SAMG (BSR format)

Parameters

max_levels	Max number of levels allowed
------------	------------------------------

Returns

Pointer to the AMG_data data structure

Author

Xiaozhe Hu

Date

08/07/2011

Definition at line 181 of file PreDataInit.c.

10.81.2.2 fasp_amg_data_bsr_free()

Free AMG_data_bsr data memeory space.

Parameters

mgl Pointer to the AMG_data_bsr

Author

Xiaozhe Hu

Date

2013/02/13

Definition at line 211 of file PreDataInit.c.

10.81.2.3 fasp_amg_data_create()

Create and initialize AMG_data for classical and SA AMG.

Parameters

max_levels	Max number of levels allowed
------------	------------------------------

Returns

Pointer to the AMG_data data structure

Author

Chensong Zhang

Date

2010/04/06

Definition at line 75 of file PreDataInit.c.

10.81.2.4 fasp_amg_data_free()

```
void fasp_amg_data_free (
          AMG_data * mgl,
          AMG_param * param )
```

Free AMG_data data memeory space.

Parameters

mgl	Pointer to the AMG_data
param	Pointer to AMG parameters

Author

Chensong Zhang

Date

2010/04/06

Modified by Chensong Zhang on 05/05/2013: Clean up param as well! Modified by Hongxuan Zhang on 12/15/2015: free internal memory for Intel MKL PARDISO.

Definition at line 107 of file PreDataInit.c.

10.81.2.5 fasp_ilu_data_create()

Allocate workspace for ILU factorization.

Parameters

iwk	Size of the index array
nwork	Size of the work array
iludata	Pointer to the ILU_data

Author

Chensong Zhang

Date

2010/04/06

Definition at line 257 of file PreDataInit.c.

10.81.2.6 fasp_ilu_data_free()

Create ILU_data sturcture.

Parameters

11 1 1 -1 - 4 -	Defeate at a Hill state
ILUaata	Pointer to ILU_data

Author

Chensong Zhang

Date

2010/04/03

Definition at line 287 of file PreDataInit.c.

```
10.81.2.7 fasp_ilu_data_null()
```

Initialize ILU data.

Parameters

ILUdata Pointer to ILU_data

Author

Chensong Zhang

Date

2010/03/23

Definition at line 312 of file PreDataInit.c.

10.81.2.8 fasp_precond_data_null()

Initialize precond_data.

Parameters

pcdata Preconditioning data structure

Author

Chensong Zhang

Date

2010/03/23

Definition at line 44 of file PreDataInit.c.

10.81.2.9 fasp_precond_null()

Initialize precond data.

Parameters

pcdata Pointer to precon	d
--------------------------	---

Author

Chensong Zhang

Date

2010/03/23

Definition at line 28 of file PreDataInit.c.

10.81.2.10 fasp_schwarz_data_free()

Free Schwarz_data data memeory space.

Parameters

*Schwarz	pointer to the AMG_data data
----------	------------------------------

Author

Xiaozhe Hu

Date

2010/04/06

Definition at line 327 of file PreDataInit.c.

10.82 PreMGCycle.c File Reference

Abstract multigrid cycle – non-recursive version.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "PreUtil.inl"
```

Functions

```
    void fasp_solver_mgcycle (AMG_data *mgl, AMG_param *param)
    Solve Ax=b with non-recursive multigrid cycle.
    void fasp_solver_mgcycle_bsr (AMG_data_bsr *mgl, AMG_param *param)
```

Solve Ax=b with non-recursive multigrid cycle.

10.82.1 Detailed Description

Abstract multigrid cycle – non-recursive version.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMessage.c, AuxVector.c, BlaSchwarzSetup.c, BlaArray.c, BlaSpmvBSR.c, BlaSpmvCSR.c, ItrSmootherBSR.c, ItrSmootherCSR.c, I

10.82.2 Function Documentation

```
10.82.2.1 fasp_solver_mgcycle()
```

Solve Ax=b with non-recursive multigrid cycle.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Author

Chensong Zhang

Date

10/06/2010

Modified by Chensong Zhang on 12/13/2011 Modified by Chensong Zhang on 02/27/2013: update direct solvers. Modified by Chensong Zhang on 12/30/2014: update Schwarz smoothers.

Definition at line 51 of file PreMGCycle.c.

```
10.82.2.2 fasp_solver_mgcycle_bsr()
```

```
void fasp_solver_mgcycle_bsr (
          AMG_data_bsr * mgl,
          AMG_param * param )
```

Solve Ax=b with non-recursive multigrid cycle.

Parameters

mgl	Pointer to AMG data: AMG_data_bsr
param	Pointer to AMG parameters: AMG_param

Author

Xiaozhe Hu

Date

08/07/2011

Definition at line 275 of file PreMGCycle.c.

10.83 PreMGCycleFull.c File Reference

Abstract non-recursive full multigrid cycle.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "PreUtil.inl"
```

Functions

void fasp_solver_fmgcycle (AMG_data *mgl, AMG_param *param)
 Solve Ax=b with non-recursive full multigrid K-cycle.

10.83.1 Detailed Description

Abstract non-recursive full multigrid cycle.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMessage.c, AuxVector.c, BlaSchwarzSetup. ← c, BlaArray.c, BlaSpmvCSR.c, BlaVector.c, ItrSmootherCSR.c, ItrSmootherCSRpoly.c, KryPcg.c, KrySPcg.c, and KrySPvgmres.c

10.83.2 Function Documentation

10.83.2.1 fasp_solver_fmgcycle()

```
void fasp_solver_fmgcycle (
          AMG_data * mgl,
          AMG_param * param )
```

Solve Ax=b with non-recursive full multigrid K-cycle.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Author

Chensong Zhang

Date

02/27/2011

Modified by Chensong Zhang on 06/01/2012: fix a bug when there is only one level. Modified by Chensong Zhang on 02/27/2013: update direct solvers. Modified by Zheng Li on 11/10/2014: update direct solvers. Modified by Hongxuan Zhang on 12/15/2015: update direct solvers.

Definition at line 43 of file PreMGCycleFull.c.

10.84 PreMGRecur.c File Reference

Abstract multigrid cycle - recursive version.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "PreUtil.inl"
```

Functions

• void fasp_solver_mgrecur (AMG_data *mgl, AMG_param *param, INT level)

Solve Ax=b with recursive multigrid K-cycle.

10.84.1 Detailed Description

Abstract multigrid cycle – recursive version.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMessage.c, AuxVector.c, BlaSpmvCSR.c, ItrSmootherCSR.c, ItrSmootherCSRpoly.c, KryPcg.c, KrySPcg.c, and KrySPvgmres.c

Warning

Not used any more. Will be removed! -Chensong

10.84.2 Function Documentation

10.84.2.1 fasp_solver_mgrecur()

```
void fasp_solver_mgrecur (
          AMG_data * mgl,
          AMG_param * param,
          INT level )
```

Solve Ax=b with recursive multigrid K-cycle.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param
level	Index of the current level

Author

Xuehai Huang, Chensong Zhang

Date

04/06/2010

Modified by Chensong Zhang on 01/10/2012 Modified by Chensong Zhang on 02/27/2013: update direct solvers.

Definition at line 42 of file PreMGRecur.c.

10.85 PreMGRecurAMLI.c File Reference

Abstract AMLI multilevel iteration - recursive version.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "PreUtil.inl"
#include "PreMGCycle.inl"
```

Functions

- void fasp_solver_amli (AMG_data *mgl, AMG_param *param, INT level)

 Solve Ax=b with recursive AML1-cycle.
- void fasp_solver_nl_amli (AMG_data *mgl, AMG_param *param, INT level, INT num_levels)

 Solve Ax=b with recursive nonlinear AMLI-cycle.
- void fasp_solver_nl_amli_bsr (AMG_data_bsr *mgl, AMG_param *param, INT level, INT num_levels) Solve Ax=b with recursive nonlinear AMLI-cycle.
- void fasp_amg_amli_coef (const REAL lambda_max, const REAL lambda_min, const INT degree, REAL *coef)

 Compute the coefficients of the polynomial used by AMLI-cycle.

10.85.1 Detailed Description

Abstract AMLI multilevel iteration - recursive version.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxParam.c, Aux← Vector.c, BlaSchwarzSetup.c, BlaArray.c, BlaSpmvBSR.c, BlaSpmvCSR.c, ItrSmootherBSR.c, ItrSmootherBSR.c, ItrSmootherBSR.c, ItrSmootherBSR.c, and PreCSR.c This file includes AMLI and non-linear AMLI cycles

10.85.2 Function Documentation

10.85.2.1 fasp_amg_amli_coef()

Compute the coefficients of the polynomial used by AMLI-cycle.

Parameters

lambda_max	Maximal lambda
lambda_min	Minimal lambda
degree	Degree of polynomial approximation
coef	Coefficient of AMLI (output)

Author

Xiaozhe Hu

Date

01/23/2011

Definition at line 713 of file PreMGRecurAMLI.c.

10.85.2.2 fasp_solver_amli()

```
void fasp_solver_amli (
          AMG_data * mgl,
          AMG_param * param,
          INT level )
```

Solve Ax=b with recursive AMLI-cycle.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param
level	Current level

Author

Xiaozhe Hu

Date

01/23/2011

Note

AMLI polynomial computed by the best approximation of 1/x. Refer to Johannes K. Kraus, Panayot S. Vassilevski, Ludmil T. Zikatanov, "Polynomial of best uniform approximation to x^{-1} and smoothing in two-level methods", 2013.

Modified by Chensong Zhang on 02/27/2013: update direct solvers. Modified by Zheng Li on 11/10/2014: update direct solvers. Modified by Hongxuan Zhang on 12/15/2015: update direct solvers.

Definition at line 52 of file PreMGRecurAMLI.c.

10.85.2.3 fasp_solver_nl_amli()

```
void fasp_solver_nl_amli (
          AMG_data * mgl,
          AMG_param * param,
          INT level,
          INT num_levels )
```

Solve Ax=b with recursive nonlinear AMLI-cycle.

Parameters

mgl	Pointer to AMG_data data
param	Pointer to AMG parameters
level	Current level
num_levels	Total number of levels

Author

Xiaozhe Hu

Date

04/06/2010

Note

Refer to Xiazhe Hu, Panayot S. Vassilevski, Jinchao Xu "Comparative Convergence Analysis of Nonlinear AML← I-cycle Multigrid", 2013.

Modified by Chensong Zhang on 02/27/2013: update direct solvers. Modified by Zheng Li on 11/10/2014: update direct solvers. Modified by Hongxuan Zhang on 12/15/2015: update direct solvers.

Definition at line 276 of file PreMGRecurAMLI.c.

10.85.2.4 fasp_solver_nl_amli_bsr()

```
void fasp_solver_nl_amli_bsr (
          AMG_data_bsr * mgl,
          AMG_param * param,
          INT level,
          INT num_levels )
```

Solve Ax=b with recursive nonlinear AMLI-cycle.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param
level	Current level
num_levels	Total number of levels

Author

Xiaozhe Hu

Date

04/06/2010

Note

Nonlinear AMLI-cycle. Refer to Xiazhe Hu, Panayot S. Vassilevski, Jinchao Xu "Comparative Convergence Analysis of Nonlinear AMLI-cycle Multigrid", 2013.

Modified by Chensong Zhang on 02/27/2013: update direct solvers. Modified by Hongxuan Zhang on 12/15/2015: update direct solvers.

Definition at line 515 of file PreMGRecurAMLI.c.

10.86 PreMGSolve.c File Reference

Algebraic multigrid iterations: SOLVE phase.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

```
    INT fasp_amg_solve (AMG_data *mgl, AMG_param *param)
        AMG – SOLVE phase.
    INT fasp_amg_solve_amli (AMG_data *mgl, AMG_param *param)
        AMLI – SOLVE phase.
    INT fasp_amg_solve_nl_amli (AMG_data *mgl, AMG_param *param)
        Nonlinear AMLI – SOLVE phase.
    void fasp_famg_solve (AMG_data *mgl, AMG_param *param)
        FMG – SOLVE phase.
```

10.86.1 Detailed Description

Algebraic multigrid iterations: SOLVE phase.

Note

Solve Ax=b using multigrid method. This is SOLVE phase only and is independent of SETUP method used! Should be called after multigrid hierarchy has been generated!

This file contains Level-4 (Pre) functions. It requires AuxMessage.c, AuxTiming.c, AuxVector.c, BlaSpmvCSR.c, BlaVector.c, PreMGCycle.c, PreMGCycleFull.c, and PreMGRecurAMLI.c

10.86.2 Function Documentation

AMG - SOLVE phase.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

Iteration number if converges; ERROR otherwise.

Author

Xuehai Huang, Chensong Zhang

Date

04/02/2010

Modified by Chensong 04/21/2013: Fix an output typo

Definition at line 44 of file PreMGSolve.c.

10.86.2.2 fasp_amg_solve_amli()

```
INT fasp_amg_solve_amli (
          AMG_data * mgl,
          AMG_param * param )
```

AMLI - SOLVE phase.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

01/23/2011

Note

AMLI polynomial computed by the best approximation of 1/x. Refer to Johannes K. Kraus, Panayot S. Vassilevski, Ludmil T. Zikatanov, "Polynomial of best uniform approximation to x^{-1} and smoothing in two-level methods", 2013.

Modified by Chensong 04/21/2013: Fix an output typo

Definition at line 133 of file PreMGSolve.c.

10.86.2.3 fasp_amg_solve_nl_amli()

```
INT fasp_amg_solve_nl_amli (
          AMG_data * mgl,
          AMG_param * param )
```

Nonlinear AMLI - SOLVE phase.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

04/30/2011

Modified by Chensong 04/21/2013: Fix an output typo

Note

Nonlinear AMLI-cycle. Refer to Xiazhe Hu, Panayot S. Vassilevski, Jinchao Xu "Comparative Convergence Analysis of Nonlinear AMLI-cycle Multigrid", 2013.

Definition at line 217 of file PreMGSolve.c.

10.86.2.4 fasp_famg_solve()

FMG - SOLVE phase.

Parameters

mgl	Pointer to AMG data: AMG_data
param	Pointer to AMG parameters: AMG_param

Author

Chensong Zhang

Date

01/10/2012

Definition at line 289 of file PreMGSolve.c.

10.87 PreSTR.c File Reference

Preconditioners for dSTRmat matrices.

```
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

- void fasp_precond_dstr_diag (REAL *r, REAL *z, void *data)
 - Diagonal preconditioner z=inv(D)*r.
- void fasp precond dstr ilu0 (REAL *r, REAL *z, void *data)

Preconditioning using STR_ILU(0) decomposition.

void fasp_precond_dstr_ilu1 (REAL *r, REAL *z, void *data)

Preconditioning using STR_ILU(1) decomposition.

- void fasp_precond_dstr_ilu0_forward (REAL *r, REAL *z, void *data)
 - Preconditioning using STR ILU(0) decomposition: Lz = r.
- void fasp_precond_dstr_ilu0_backward (REAL *r, REAL *z, void *data)

Preconditioning using $STR_ILU(0)$ decomposition: Uz = r.

void fasp_precond_dstr_ilu1_forward (REAL *r, REAL *z, void *data)

Preconditioning using $STR_ILU(1)$ decomposition: Lz = r.

void fasp precond dstr ilu1 backward (REAL *r, REAL *z, void *data)

Preconditioning using $STR_ILU(1)$ decomposition: Uz = r.

void fasp_precond_dstr_blockgs (REAL *r, REAL *z, void *data)

CPR-type preconditioner (STR format)

10.87.1 Detailed Description

Preconditioners for dSTRmat matrices.

Note

This file contains Level-4 (Pre) functions. It requires AuxArray.c, AuxMemory.c, AuxVector.c, BlaSmallMat.c, Bla⇔ Array.c, and ItrSmootherSTR.c

10.87.2 Function Documentation

10.87.2.1 fasp_precond_dstr_blockgs()

CPR-type preconditioner (STR format)

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

10/17/2010

Definition at line 1710 of file PreSTR.c.

10.87.2.2 fasp_precond_dstr_diag()

Diagonal preconditioner z=inv(D)*r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/06/2010

Definition at line 31 of file PreSTR.c.

10.87.2.3 fasp_precond_dstr_ilu0()

```
void fasp_precond_dstr_ilu0 (
    REAL * r,
    REAL * z,
    void * data )
```

Preconditioning using STR_ILU(0) decomposition.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/21/2010

Definition at line 58 of file PreSTR.c.

10.87.2.4 fasp_precond_dstr_ilu0_backward()

Preconditioning using $STR_ILU(0)$ decomposition: Uz = r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

06/07/2010

Definition at line 982 of file PreSTR.c.

10.87.2.5 fasp_precond_dstr_ilu0_forward()

Preconditioning using STR_ILU(0) decomposition: Lz = r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

06/07/2010

Definition at line 819 of file PreSTR.c.

```
10.87.2.6 fasp_precond_dstr_ilu1()
```

Preconditioning using STR_ILU(1) decomposition.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/21/2010

Definition at line 340 of file PreSTR.c.

10.87.2.7 fasp_precond_dstr_ilu1_backward()

Preconditioning using STR_ILU(1) decomposition: Uz = r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/21/2010

Definition at line 1429 of file PreSTR.c.

10.87.2.8 fasp_precond_dstr_ilu1_forward()

Preconditioning using $STR_ILU(1)$ decomposition: Lz = r.

Parameters

r	Pointer to the vector needs preconditioning
Z	Pointer to preconditioned vector
data	Pointer to precondition data

Author

Shiquan Zhang

Date

04/21/2010

Definition at line 1163 of file PreSTR.c.

10.88 SolAMG.c File Reference

AMG method as an iterative solver.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

• void fasp_solver_amg (dCSRmat *A, dvector *b, dvector *x, AMG_param *param)

Solve Ax = b by algebraic multigrid methods.

10.88.1 Detailed Description

AMG method as an iterative solver.

Note

This file contains Level-5 (Sol) functions. It requires AuxMessage.c, AuxTiming.c, AuxVector.c, BlaSparseCSR.c, KrySPgmres.c, PreAMGSetupRS.c, PreAMGSetupUA.c, PreDataInit.c, and PreMGSolve.c

10.88.2 Function Documentation

10.88.2.1 fasp_solver_amg()

Solve Ax = b by algebraic multigrid methods.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
X	Pointer to dvector: the unknowns
param	Pointer to AMG_param: AMG parameters

Author

Chensong Zhang

Date

04/06/2010

Note

Refer to "Multigrid" by U. Trottenberg, C. W. Oosterlee and A. Schuller Appendix A.7 (by A. Brandt, P. Oswald and K. Stuben) Academic Press Inc., San Diego, CA, 2001.

Modified by Chensong Zhang on 01/10/2012 Modified by Chensong Zhang on 07/26/2014: Add error handling for AMG setup

Definition at line 42 of file SolAMG.c.

10.89 SolBLC.c File Reference

Iterative solvers for dBLCmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

- INT fasp_solver_dblc_itsolver (dBLCmat *A, dvector *b, dvector *x, precond *pc, itsolver_param *itparam)

 Solve Ax = b by standard Krylov methods.
- INT fasp_solver_dblc_krylov (dBLCmat *A, dvector *b, dvector *x, itsolver_param *itparam)

Solve Ax = b by standard Krylov methods.

INT fasp_solver_dblc_krylov_block_3 (dBLCmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_←
param *amgparam, dCSRmat *A_diag)

Solve Ax = b by standard Krylov methods.

INT fasp_solver_dblc_krylov_block_4 (dBLCmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_←
param *amgparam, dCSRmat *A_diag)

Solve Ax = b by standard Krylov methods.

• INT fasp_solver_dblc_krylov_sweeping (dBLCmat *A, dvector *b, dvector *x, itsolver_param *itparam, INT NumLayers, dBLCmat *Ai, dCSRmat *local_A, ivector *local_index)

Solve Ax = b by standard Krylov methods.

10.89.1 Detailed Description

Iterative solvers for dBLCmat matrices.

Note

This file contains Level-5 (Sol) functions. It requires AuxMemory.c, AuxMessage.c, AuxTiming.c, AuxVector.c, BlaSparseCSR.c, KryPbcgs.c, KryPgmres.c, KryPminres.c, KryPvbcgs.c, KryPvgmres.c, KryPvgmres.c, FreA⇔ MGSetupRS.c, PreAMGSetupUA.c, PreBLC.c, and PreDataInit.c

10.89.2 Function Documentation

10.89.2.1 fasp_solver_dblc_itsolver()

Solve Ax = b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBLCmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
рс	Pointer to the preconditioning action
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

11/25/2010

Modified by Chunsheng Feng on 03/04/2016: add VBiCGstab solver Definition at line 49 of file SolBLC.c.

10.89.2.2 fasp_solver_dblc_krylov()

Solve Ax = b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBLCmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

07/18/2010

Definition at line 141 of file SolBLC.c.

10.89.2.3 fasp_solver_dblc_krylov_block_3()

Solve Ax = b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBLCmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters for AMG solvers
A_diag	Digonal blocks of A

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

07/10/2014

Warning

Only works for 3by3 block dCSRmat problems!! - Xiaozhe Hu

Definition at line 195 of file SolBLC.c.

10.89.2.4 fasp_solver_dblc_krylov_block_4()

Solve Ax = b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBLCmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters for AMG solvers
A_diag	Digonal blocks of A

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

07/06/2014

Warning

Only works for 4 by 4 block dCSRmat problems!! - Xiaozhe Hu

Definition at line 392 of file SolBLC.c.

10.89.2.5 fasp_solver_dblc_krylov_sweeping()

Solve Ax = b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBLCmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
NumLayers	Number of layers used for sweeping preconditioner
Ai	Pointer to the coeff matrix for the preconditioner in dBLCmat format
local_A	Pointer to the local coeff matrices in the dCSRmat format
local_index	Pointer to the local index in ivector format

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/01/2014

Definition at line 518 of file SolBLC.c.

10.90 SolBSR.c File Reference

Iterative solvers for dBSRmat matrices.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

- INT fasp_solver_dbsr_itsolver (dBSRmat *A, dvector *b, dvector *x, precond *pc, itsolver_param *itparam)

 Solve Ax=b by preconditioned Krylov methods for BSR matrices.
- INT fasp_solver_dbsr_krylov (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam)

Solve Ax=b by standard Krylov methods for BSR matrices.

- $\bullet \ \ \mathsf{INT} \ \mathsf{fasp_solver_dbsr_krylov_diag} \ (\mathsf{dBSRmat} \ *\mathsf{A}, \ \mathsf{dvector} \ *\mathsf{b}, \ \mathsf{dvector} \ *\mathsf{x}, \ \mathsf{itsolver_param} \ *\mathsf{itparam})$
 - Solve Ax=b by diagonal preconditioned Krylov methods.
- INT fasp_solver_dbsr_krylov_ilu (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, ILU_param *iluparam)

Solve Ax=b by ILUs preconditioned Krylov methods.

• INT fasp_solver_dbsr_krylov_amg (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_param *amgparam)

Solve Ax=b by AMG preconditioned Krylov methods.

- INT fasp_solver_dbsr_krylov_amg_nk (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_←
 param *amgparam, dCSRmat *A nk, dCSRmat *P nk, dCSRmat *R nk)
 - Solve Ax=b by AMG with extra near kernel solve preconditioned Krylov methods.
- INT fasp_solver_dbsr_krylov_nk_amg (dBSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_←
 param *amgparam, const INT nk_dim, dvector *nk)

Solve Ax=b by AMG preconditioned Krylov methods with extra kernal space.

10.90.1 Detailed Description

Iterative solvers for dBSRmat matrices.

Note

This file contains Level-5 (Sol) functions. It requires AuxMemory.c, AuxMessage.c, AuxSmallMat.c, AuxTiming. ← c, AuxVector.c, BlaILUSetupBSR.c, BlaSparseBSR.c, KryPbcgs.c, KryPcg.c, KryPgmres.c, KryPvbcgs.c, Kry← Pvfgmres.c, KryPvgmres.c, PreAMGSetupSA.c, PreAMGSetupUA.c, PreBSR.c, and PreDataInit.c

10.90.2 Function Documentation

10.90.2.1 fasp_solver_dbsr_itsolver()

Solve Ax=b by preconditioned Krylov methods for BSR matrices.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
рс	Pointer to the preconditioning action
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou, Xiaozhe Hu

Date

10/26/2010 Modified by Chunsheng Feng on 03/04/2016: add VBiCGstab solver

Definition at line 49 of file SolBSR.c.

10.90.2.2 fasp_solver_dbsr_krylov()

Solve Ax=b by standard Krylov methods for BSR matrices.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou, Xiaozhe Hu

Date

10/26/2010

Definition at line 142 of file SoIBSR.c.

10.90.2.3 fasp_solver_dbsr_krylov_amg()

```
INT fasp_solver_dbsr_krylov_amg (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    AMG_param * amgparam )
```

Solve Ax=b by AMG preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters of AMG

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

03/16/2012

parameters of iterative method

Definition at line 364 of file SolBSR.c.

10.90.2.4 fasp_solver_dbsr_krylov_amg_nk()

```
INT fasp_solver_dbsr_krylov_amg_nk (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    AMG_param * amgparam,
    dCSRmat * A_nk,
    dCSRmat * P_nk,
    dCSRmat * R_nk )
```

Solve Ax=b by AMG with extra near kernel solve preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters of AMG
A_nk	Pointer to the coeff matrix for near kernel space in dBSRmat format
P_nk	Pointer to the prolongation for near kernel space in dBSRmat format
R_nk	Pointer to the restriction for near kernel space in dBSRmat format

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/26/2012

Definition at line 506 of file SolBSR.c.

```
10.90.2.5 fasp_solver_dbsr_krylov_diag()
```

Solve Ax=b by diagonal preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou, Xiaozhe Hu

Date

10/26/2010

Modified by Chunsheng Feng, Zheng Li on 10/15/2012 Definition at line 193 of file SolBSR.c.

10.90.2.6 fasp_solver_dbsr_krylov_ilu()

```
INT fasp_solver_dbsr_krylov_ilu (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    ILU_param * iluparam )
```

Solve Ax=b by ILUs preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
iluparam	Pointer to parameters of ILU

Returns

Iteration number if converges; ERROR otherwise.

Author

Shiquang Zhang, Xiaozhe Hu

Date

10/26/2010

Definition at line 297 of file SolBSR.c.

10.90.2.7 fasp_solver_dbsr_krylov_nk_amg()

```
INT fasp_solver_dbsr_krylov_nk_amg (
    dBSRmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    AMG_param * amgparam,
    const INT nk_dim,
    dvector * nk )
```

Solve Ax=b by AMG preconditioned Krylov methods with extra kernal space.

Parameters

Α	Pointer to the coeff matrix in dBSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters of AMG
nk_dim	Dimension of the near kernel spaces
nk	Pointer to the near kernal spaces

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/27/2012

parameters of iterative method

Definition at line 665 of file SolBSR.c.

10.91 SolCSR.c File Reference

Iterative solvers for dCSRmat matrices.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

- INT fasp_solver_dcsr_itsolver (dCSRmat *A, dvector *b, dvector *x, precond *pc, itsolver_param *itparam)

 Solve Ax=b by preconditioned Krylov methods for CSR matrices.
- INT fasp_solver_dcsr_krylov (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam)

Solve Ax=b by standard Krylov methods for CSR matrices.

INT fasp solver dcsr krylov diag (dCSRmat *A, dvector *b, dvector *x, itsolver param *itparam)

Solve Ax=b by diagonal preconditioned Krylov methods.

INT fasp_solver_dcsr_krylov_schwarz (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, Schwarz
 _param *schparam)

Solve Ax=b by overlapping Schwarz Krylov methods.

• INT fasp_solver_dcsr_krylov_amg (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_param *amgparam)

Solve Ax=b by AMG preconditioned Krylov methods.

INT fasp_solver_dcsr_krylov_ilu (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, ILU_param *iluparam)

Solve Ax=b by ILUs preconditioned Krylov methods.

• INT fasp_solver_dcsr_krylov_ilu_M (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, ILU_param *iluparam, dCSRmat *M)

Solve Ax=b by ILUs preconditioned Krylov methods: ILU of M as preconditioner.

INT fasp_solver_dcsr_krylov_amg_nk (dCSRmat *A, dvector *b, dvector *x, itsolver_param *itparam, AMG_←
param *amgparam, dCSRmat *A_nk, dCSRmat *P_nk, dCSRmat *R_nk)

Solve Ax=b by AMG preconditioned Krylov methods with an extra near kernel solve.

10.91.1 Detailed Description

Iterative solvers for dCSRmat matrices.

Note

This file contains Level-5 (Sol) functions. It requires AuxMemory.c, AuxMessage.c, AuxParam.c, AuxTiming.c, AuxVector.c, BlalLUSetupCSR.c, BlaSchwarzSetup.c, BlaSparseCSR.c, KryPbcgs.c, KryPcg.c, KryPgcg.c, KryPgcg.c, KryPvgmres.c, KryPvgmres.c, KryPvgmres.c, KryPvgmres.c, KryPvgmres.c, PreAMGSetupRS.c, PreAMGSetupRS.c, PreAMGSetupSA.c, PreCSR.c, and PreDataInit.c

10.91.2 Function Documentation

10.91.2.1 fasp_solver_dcsr_itsolver()

Solve Ax=b by preconditioned Krylov methods for CSR matrices.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
рс	Pointer to the preconditioning action
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/25/2009

Note

This is an abstract interface for iterative methods. Modified by Chunsheng Feng on 03/04/2016: add VBiCGstab solver

Definition at line 52 of file SolCSR.c.

10.91.2.2 fasp_solver_dcsr_krylov()

Solve Ax=b by standard Krylov methods for CSR matrices.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang, Shiquan Zhang

Date

09/25/2009

Definition at line 164 of file SolCSR.c.

10.91.2.3 fasp_solver_dcsr_krylov_amg()

Solve Ax=b by AMG preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters for AMG methods

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/25/2009

Definition at line 359 of file SolCSR.c.

10.91.2.4 fasp_solver_dcsr_krylov_amg_nk()

Solve Ax=b by AMG preconditioned Krylov methods with an extra near kernel solve.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
amgparam	Pointer to parameters for AMG methods
A_nk	Pointer to the coeff matrix of near kernel space in dCSRmat format
P_nk	Pointer to the prolongation of near kernel space in dCSRmat format
R nk Generated by Doxy	Pointer to the restriction of near kernel space in dCSRmat format

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/26/2014

Definition at line 632 of file SolCSR.c.

10.91.2.5 fasp_solver_dcsr_krylov_diag()

Solve Ax=b by diagonal preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang, Shiquan Zhang

Date

09/25/2009

Definition at line 214 of file SolCSR.c.

10.91.2.6 fasp_solver_dcsr_krylov_ilu()

Solve Ax=b by ILUs preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
iluparam	Pointer to parameters for ILU

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang, Shiquan Zhang

Date

09/25/2009

Definition at line 464 of file SolCSR.c.

10.91.2.7 fasp_solver_dcsr_krylov_ilu_M()

Solve Ax=b by ILUs preconditioned Krylov methods: ILU of M as preconditioner.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
iluparam	Pointer to parameters for ILU
М	Pointer to the preconditioning matrix in dCSRmat format

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

09/25/2009

Note

This function is specially designed for reservoir simulation. Have not been tested in any other places.

Definition at line 548 of file SolCSR.c.

10.91.2.8 fasp_solver_dcsr_krylov_schwarz()

Solve Ax=b by overlapping Schwarz Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dCSRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
schparam	Pointer to parameters for Schwarz methods

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

03/21/2011

Modified by Chensong on 07/02/2012: change interface

Definition at line 278 of file SolCSR.c.

10.92 SolFAMG.c File Reference

Full AMG method as an iterative solver.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
```

Functions

void fasp_solver_famg (dCSRmat *A, dvector *b, dvector *x, AMG_param *param)
 Solve Ax=b by full AMG.

10.92.1 Detailed Description

Full AMG method as an iterative solver.

Note

This file contains Level-5 (Sol) functions. It requires AuxMessage.c, AuxTiming.c, AuxVector.c, BlaSparseCSR.c, PreAMGSetupRS.c, PreAMGSetupBA.c, PreAMGSetupUA.c, PreDataInit.c, and PreMGSolve.c

10.92.2 Function Documentation

10.92.2.1 fasp_solver_famg()

Solve Ax=b by full AMG.

Parameters

Α	Pointer to dCSRmat: the coefficient matrix
b	Pointer to dvector: the right hand side
Х	Pointer to dvector: the unknowns
param	Pointer to AMG_param: AMG parameters

Author

Xiaozhe Hu

Date

02/27/2011

Modified by Chensong Zhang on 01/10/2012 Modified by Chensong Zhang on 05/05/2013: Remove error handling for AMG setup

Definition at line 35 of file SolFAMG.c.

10.93 SolGMGPoisson.c File Reference

GMG method as an iterative solver for Poisson Problem.

```
#include <time.h>
#include <math.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "PreGMG.inl"
```

Functions

INT fasp_poisson_gmg1d (REAL *u, REAL *b, const INT nx, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method.

 INT fasp_poisson_gmg2d (REAL *u, REAL *b, const INT nx, const INT ny, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method.

INT fasp_poisson_gmg3d (REAL *u, REAL *b, const INT nx, const INT nx, const INT nz, con

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method.

void fasp_poisson_fgmg1d (REAL *u, REAL *b, const INT nx, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method (FMG)

void fasp_poisson_fgmg2d (REAL *u, REAL *b, const INT nx, const INT ny, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method (FMG)

 void fasp_poisson_fgmg3d (REAL *u, REAL *b, const INT nx, const INT ny, const INT nz, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method (FMG)

 INT fasp_poisson_gmgcg1d (REAL *u, REAL *b, const INT nx, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

 INT fasp_poisson_gmgcg2d (REAL *u, REAL *b, const INT nx, const INT ny, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

 INT fasp_poisson_gmgcg3d (REAL *u, REAL *b, const INT nx, const INT ny, const INT nz, const INT maxlevel, const REAL rtol, const SHORT prtlvl)

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

10.93.1 Detailed Description

GMG method as an iterative solver for Poisson Problem.

Note

This file contains Level-5 (Sol) functions. It requires AuxArray.c, AuxMessage.c, and AuxTiming.c

10.93.2 Function Documentation

10.93.2.1 fasp_poisson_fgmg1d()

```
void fasp_poisson_fgmg1d (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method (FMG)

Parameters

	и	Pointer to the vector of dofs
ĺ	b	Pointer to the vector of right hand side
	nx	Number of grids in x direction
	maxlevel	Maximum levels of the multigrid
	rtol	Relative tolerance to judge convergence
	General ded by D	oxParint level for output

Author

Ziteng Wang, Chensong Zhang

Date

06/07/2013

Modified by Chensong Zhang on 01/14/2017: Clean up

Definition at line 445 of file SolGMGPoisson.c.

10.93.2.2 fasp_poisson_fgmg2d()

```
void fasp_poisson_fgmg2d (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT ny,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method (FMG)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	Number of grids in Y direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Author

Ziteng Wang, Chensong Zhang

Date

06/07/2013

Modified by Chensong Zhang on 01/14/2017: Clean up

Definition at line 540 of file SolGMGPoisson.c.

10.93.2.3 fasp_poisson_fgmg3d()

```
void fasp_poisson_fgmg3d (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT ny,
    const INT mz,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method (FMG)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	NUmber of grids in y direction
nz	NUmber of grids in z direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Author

Ziteng Wang, Chensong Zhang

Date

06/07/2013

Modified by Chensong Zhang on 01/14/2017: Clean up

Definition at line 649 of file SolGMGPoisson.c.

10.93.2.4 fasp_poisson_gmg1d()

```
INT fasp_poisson_gmg1d (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method.

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang, Chensong Zhang

Date

06/07/2013

Modified by Chensong Zhang on 01/14/2017: Clean up

Definition at line 45 of file SolGMGPoisson.c.

10.93.2.5 fasp_poisson_gmg2d()

```
INT fasp_poisson_gmg2d (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT ny,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method.

Parameters

Pointer to the vector of dofs
Pointer to the vector of right hand side
Number of grids in x direction
Number of grids in y direction
Maximum levels of the multigrid
Relative tolerance to judge convergence
Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang, Chensong Zhang

Date

06/07/2013

Modified by Chensong Zhang on 01/14/2017: Clean up

Definition at line 171 of file SolGMGPoisson.c.

10.93.2.6 fasp_poisson_gmg3d()

```
INT fasp_poisson_gmg3d (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT ny,
    const INT nz,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method.

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	Number of grids in y direction
nz	Number of grids in z direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang, Chensong Zhang

Date

06/07/2013

Modified by Chensong Zhang on 01/14/2017: Clean up

Definition at line 309 of file SolGMGPoisson.c.

10.93.2.7 fasp_poisson_gmgcg1d()

```
INT fasp_poisson_gmgcgld (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 1D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang, Chensong Zhang

Date

06/07/2013

Modified by Chensong Zhang on 01/14/2017: Clean up

Definition at line 760 of file SolGMGPoisson.c.

10.93.2.8 fasp_poisson_gmgcg2d()

```
INT fasp_poisson_gmgcg2d (
    REAL * u,
    REAL * b,
    const INT nx,
    const INT ny,
    const INT maxlevel,
    const REAL rtol,
    const SHORT prtlvl )
```

Solve Ax=b of Poisson 2D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	Number of grids in y direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang, Chensong Zhang

Date

06/07/2013

Modified by Chensong Zhang on 01/14/2017: Clean up Definition at line 856 of file SolGMGPoisson.c.

10.93.2.9 fasp_poisson_gmgcg3d()

Solve Ax=b of Poisson 3D equation by Geometric Multigrid Method (GMG preconditioned Conjugate Gradient method)

Parameters

и	Pointer to the vector of dofs
b	Pointer to the vector of right hand side
nx	Number of grids in x direction
ny	Number of grids in y direction
nz	Number of grids in z direction
maxlevel	Maximum levels of the multigrid
rtol	Relative tolerance to judge convergence
prtlvl	Print level for output

Returns

Iteration number if converges; ERROR otherwise.

Author

Ziteng Wang, Chensong Zhang

Date

06/07/2013

Modified by Chensong Zhang on 01/14/2017: Clean up

Definition at line 967 of file SolGMGPoisson.c.

10.94 SolMatFree.c File Reference

Iterative solvers using MatFree spmv operations.

```
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "fasp_block.h"
#include "KryUtil.inl"
#include "BlaSpmvMatFree.inl"
```

Functions

- INT fasp_solver_itsolver (mxv_matfree *mf, dvector *b, dvector *x, precond *pc, itsolver_param *itparam)

 Solve Ax=b by preconditioned Krylov methods for CSR matrices.
- INT fasp_solver_krylov (mxv_matfree *mf, dvector *b, dvector *x, itsolver_param *itparam)

Solve Ax=b by standard Krylov methods – without preconditioner.

 $\bullet \ \ void \ fasp_solver_itsolver_init \ (INT \ matrix_format, \ mxv_matfree \ *mf, \ void \ *A) \\$

Initialize MatFree (or non-specified format) itsovlers.

10.94.1 Detailed Description

Iterative solvers using MatFree spmv operations.

Note

This file contains Level-5 (Sol) functions. It requires AuxMessage.c, AuxTiming.c, BlaSpmvBLC.c, BlaSpmvBSR.c, BlaSpmvCSR.c, BlaSpmvCSR.c, KryPbcgs.c, KryPbcgs.c, KryPgcg.c, KryPgmres.c, Kry←pminres.c, KryPvfgmres.c, and KryPvgmres.c

10.94.2 Function Documentation

10.94.2.1 fasp_solver_itsolver()

Solve Ax=b by preconditioned Krylov methods for CSR matrices.

Parameters

mf	Pointer to mxv_matfree MatFree spmv operation
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
рс	Pointer to the preconditioning action
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/25/2009

Note

This is an abstract interface for iterative methods.

Modified by Feiteng Huang on 09/19/2012: matrix free

Definition at line 53 of file SolMatFree.c.

10.94.2.2 fasp_solver_itsolver_init()

Initialize MatFree (or non-specified format) itsovlers.

Parameters

matrix_format	matrix format
mf	Pointer to mxv_matfree MatFree spmv operation
Α	void pointer to the coefficient matrix

Author

Feiteng Huang

Date

09/18/2012

Modified by Chensong Zhang on 05/10/2013: Change interface of mat-free mv Modified by Chensong Zhang on 01/20/2017

Definition at line 201 of file SolMatFree.c.

10.94.2.3 fasp_solver_krylov()

Solve Ax=b by standard Krylov methods – without preconditioner.

Parameters

mf	Pointer to mxv_matfree MatFree spmv operation
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Number of iterations if succeed

Author

Chensong Zhang, Shiquan Zhang

Date

09/25/2009

Modified by Feiteng Huang on 09/20/2012: matrix free

Definition at line 153 of file SolMatFree.c.

10.95 SolSTR.c File Reference

Iterative solvers for dSTRmat matrices.

```
#include <math.h>
#include <time.h>
#include "fasp.h"
#include "fasp_functs.h"
#include "KryUtil.inl"
```

Functions

- INT fasp_solver_dstr_itsolver (dSTRmat *A, dvector *b, dvector *x, precond *pc, itsolver_param *itparam) Solve Ax=b by standard Krylov methods.
- INT fasp_solver_dstr_krylov (dSTRmat *A, dvector *b, dvector *x, itsolver_param *itparam) Solve Ax=b by standard Krylov methods.
- INT fasp_solver_dstr_krylov_diag (dSTRmat *A, dvector *b, dvector *x, itsolver_param *itparam)
- Solve Ax=b by diagonal preconditioned Krylov methods.

 INT fasp_solver_dstr_krylov_ilu (dSTRmat *A, dvector *b, dvector *x, itsolver_param *itparam, ILU_param *iluparam)

Solve Ax=b by structured ILU preconditioned Krylov methods.

• INT fasp_solver_dstr_krylov_blockgs (dSTRmat *A, dvector *b, dvector *x, itsolver_param *itparam, ivector *neigh, ivector *order)

Solve Ax=b by diagonal preconditioned Krylov methods.

10.95.1 Detailed Description

Iterative solvers for dSTRmat matrices.

Note

This file contains Level-5 (Sol) functions. It requires AuxArray.c, AuxMemory.c, AuxMessage.c, AuxSmallMat.c, AuxTiming.c, AuxVector.c, BlaILUSetupSTR.c, BlaSparseSTR.c, ItrSmootherSTR.c, KryPbcgs.c, KryPcg.c, KryPcg.c, KryPcg.c, KryPvbcgs.c, KryPvbcgs.c, KryPvbcgs.c, AuxMessage.c, AuxSmallMat.c, AuxTiming.c, AuxWessage.c, AuxSmallMat.c, AuxTiming.c, AuxWessage.c, KryPcg.c, KryPcg.c

10.95.2 Function Documentation

10.95.2.1 fasp_solver_dstr_itsolver()

Solve Ax=b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dSTRmat format
b	Pointer to the right hand side in dvector format
Х	Pointer to the approx solution in dvector format
рс	Pointer to the preconditioning action
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Chensong Zhang

Date

09/25/2009 Modified by Chunsheng Feng on 03/04/2016: add VBiCGstab solver

Definition at line 46 of file SolSTR.c.

10.95.2.2 fasp_solver_dstr_krylov()

Solve Ax=b by standard Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dSTRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

04/25/2010

Definition at line 134 of file SoISTR.c.

10.95.2.3 fasp_solver_dstr_krylov_blockgs()

```
INT fasp_solver_dstr_krylov_blockgs (
    dSTRmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    ivector * neigh,
    ivector * order )
```

Solve Ax=b by diagonal preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dSTRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
neigh	Pointer to neighbor vector
order	Pointer to solver ordering

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

10/10/2010

Definition at line 341 of file SoISTR.c.

10.95.2.4 fasp_solver_dstr_krylov_diag()

Solve Ax=b by diagonal preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dSTRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Zhiyang Zhou

Date

4/23/2010

Definition at line 182 of file SolSTR.c.

10.95.2.5 fasp_solver_dstr_krylov_ilu()

```
INT fasp_solver_dstr_krylov_ilu (
    dSTRmat * A,
    dvector * b,
    dvector * x,
    itsolver_param * itparam,
    ILU_param * iluparam )
```

Solve Ax=b by structured ILU preconditioned Krylov methods.

Parameters

Α	Pointer to the coeff matrix in dSTRmat format
b	Pointer to the right hand side in dvector format
X	Pointer to the approx solution in dvector format
itparam	Pointer to parameters for iterative solvers
iluparam	Pointer to parameters for ILU

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

05/01/2010

Definition at line 248 of file SolSTR.c.

10.96 SolWrapper.c File Reference

Wrappers for accessing functions by advanced users.

```
#include "fasp.h"
#include "fasp_block.h"
#include "fasp_functs.h"
```

Functions

void fasp_fwrapper_amg_ (INT *n, INT *nnz, INT *ia, INT *ja, REAL *a, REAL *b, REAL *u, REAL *tol, INT *maxit, INT *ptrlvl)

Solve Ax=b by Ruge and Stuben's classic AMG.

void fasp_fwrapper_krylov_amg_ (INT *n, INT *nnz, INT *ia, INT *ja, REAL *a, REAL *b, REAL *u, REAL *tol, INT *maxit, INT *ptrlvl)

Solve Ax=b by Krylov method preconditioned by classic AMG.

INT fasp_wrapper_dbsr_krylov_amg (INT n, INT nnz, INT nb, INT *ia, INT *ja, REAL *a, REAL *b, REAL *u, REAL tol, INT maxit, INT ptrlvl)

Solve Ax=b by Krylov method preconditioned by AMG (dcsr - > dbsr)

INT fasp_wrapper_dcoo_dbsr_krylov_amg (INT n, INT nnz, INT nb, INT *ia, INT *ja, REAL *a, REAL *b, REAL
 *u, REAL tol, INT maxit, INT ptrlvl)

Solve Ax=b by Krylov method preconditioned by AMG (dcoo - > dbsr)

10.96.1 Detailed Description

Wrappers for accessing functions by advanced users.

Note

This file contains Level-5 (Sol) functions. It requires AuxParam.c, BlaFormat.c, BlaSparseBSR.c, BlaSparseCS←R.c, SolAMG.c, SolBSR.c, and SolCSR.c

10.96.2 Function Documentation

10.96.2.1 fasp_fwrapper_amg_()

Solve Ax=b by Ruge and Stuben's classic AMG.

Parameters

n	Number of cols of A
nnz	Number of nonzeros of A
ia	IA of A in CSR format
ja	JA of A in CSR format
а	VAL of A in CSR format
b	RHS vector
и	Solution vector
tol	Tolerance for iterative solvers
maxit	Max number of iterations
ptrlvl	Print level for iterative solvers

Author

Chensong Zhang

Date

09/16/2010

Definition at line 39 of file SolWrapper.c.

10.96.2.2 fasp_fwrapper_krylov_amg_()

```
void fasp_fwrapper_krylov_amg_ (
    INT * n,
    INT * nnz,
    INT * ia,
    INT * ja,
    REAL * a,
    REAL * b,
    REAL * tol,
    INT * maxit,
    INT * ptrlvl )
```

Solve Ax=b by Krylov method preconditioned by classic AMG.

Parameters

n	Number of cols of A	
nnz	Number of nonzeros of A	
ia	IA of A in CSR format	
ja	JA of A in CSR format	
а	VAL of A in CSR format	
b	RHS vector	
Generated by Soyvarion vector		
tol	Tolerance for iterative solvers	
maxit	Max number of iterations	
ptrlvl	Print level for iterative solvers	

Author

Chensong Zhang

Date

09/16/2010

Definition at line 89 of file SolWrapper.c.

10.96.2.3 fasp_wrapper_dbsr_krylov_amg()

Solve Ax=b by Krylov method preconditioned by AMG (dcsr - > dbsr)

Parameters

n	Number of cols of A
nnz	Number of nonzeros of A
nb	Size of each small block
ia	IA of A in CSR format
ja	JA of A in CSR format
а	VAL of A in CSR format
b	RHS vector
и	Solution vector
tol	Tolerance for iterative solvers
maxit	Max number of iterations
ptrlvl	Print level for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

03/05/2013

Definition at line 156 of file SolWrapper.c.

10.96.2.4 fasp_wrapper_dcoo_dbsr_krylov_amg()

Solve Ax=b by Krylov method preconditioned by AMG (dcoo - > dbsr)

Parameters

n	Number of cols of A
nnz	Number of nonzeros of A
nb	Size of each small block
ia	IA of A in COO format
ja	JA of A in COO format
а	VAL of A in COO format
b	RHS vector
и	Solution vector
tol	Tolerance for iterative solvers
maxit	Max number of iterations
ptrlvl	Print level for iterative solvers

Returns

Iteration number if converges; ERROR otherwise.

Author

Xiaozhe Hu

Date

03/06/2013

Definition at line 242 of file SolWrapper.c.

Index

FASPBLOCK_HEADER	input_param, 47
fasp_block.h, 337	AMG_nl_amli_krylov_type
FASPGRID_HEADER	input_param, 47
fasp_grid.h, 372	AMG_pair_number
FASP_HEADER	input_param, 47
fasp.h, 327	AMG_param, 24
	AMG_polynomial_degree
Α	input_param, 47
precond_sweeping_data, 71	AMG_postsmooth_iter
A_diag	input param, 47
precond_block_data, 63	AMG_presmooth_iter
ABS	input param, 48
fasp.h, 327	AMG_quality_bound
AMG_ILU_levels	input_param, 48
input_param, 46	AMG_relaxation
AMG_Schwarz_levels	input_param, 48
input_param, 48	AMG_smooth_filter
AMG_aggregation_type	input param, 48
input_param, 44	AMG smooth order
AMG_aggressive_level	input_param, 49
input_param, 44	AMG smoother
AMG_aggressive_path	input_param, 49
input_param, 44	AMG_strong_coupled
AMG_amli_degree	input_param, 49
input_param, 44	AMG_strong_threshold
AMG_coarse_dof	input_param, 49
input_param, 45	AMG_tentative_smooth
AMG_coarse_scaling	input_param, 49
input_param, 45	AMG tol
AMG_coarse_solver input_param, 45	input_param, 50
AMG_coarsening_type	AMG_truncation_threshold
input_param, 45	input_param, 50
AMG_cycle_type	AMG_type
input_param, 45	input_param, 50
AMG_data, 21	AMLI CYCLE
AMG data bsr, 22	fasp_const.h, 342
AMG_interpolation_type	ASCEND
input param, 46	fasp_const.h, 342
AMG levels	Ablc
input_param, 46	precond_block_data, 63
AMG_max_aggregation	Ai
input_param, 46	precond sweeping data, 7
AMG_max_row_sum	amgparam
input_param, 46	precond block data, 63
AMG maxit	AuxArray.c, 77
/ IIVIO_IIIQAIL	Auxarray.c, 77

fasp_array_cp, 78	fasp_param_input_init, 111
fasp_array_cp_nc3, 78	fasp_param_prec_to_amg, 112
fasp_array_cp_nc5, 79	fasp_param_prec_to_amg_bsr, 112
fasp_array_cp_nc7, 79	fasp_param_schwarz_init, 113
fasp_array_invpermut_nb, 80	fasp_param_schwarz_print, 113
fasp_array_null, 81	fasp_param_schwarz_set, 114
fasp_array_permut_nb, 81	fasp_param_set, 114
fasp_array_set, 82	fasp_param_solver_init, 115
fasp_iarray_cp, 82	fasp_param_solver_print, 115
fasp_iarray_set, 83	fasp_param_solver_set, 116
AuxConvert.c, 84	AuxSmallMat.c, 117
endian_convert_int, 84	fasp_blas_smat_Linfinity, 122
endian_convert_real, 85	fasp_blas_smat_inv, 118
fasp_aux_bbyteToldouble, 86	fasp_blas_smat_inv_nc, 119
fasp_aux_change_endian4, 86	fasp_blas_smat_inv_nc2, 119
fasp_aux_change_endian8, 87	fasp_blas_smat_inv_nc3, 120
AuxGivens.c, 87	fasp_blas_smat_inv_nc4, 120
fasp_aux_givens, 88	fasp_blas_smat_inv_nc5, 121
AuxGraphics.c, 89	fasp_blas_smat_inv_nc7, 121
fasp_dbsr_plot, 89	fasp_blas_smat_invp_nc, 122
fasp_dbsr_subplot, 90	fasp_iden_free, 123
fasp_dcsr_plot, 91	fasp_smat_identity, 123
fasp_dcsr_subplot, 91	fasp_smat_identity_nc2, 124
fasp_grid2d_plot, 92	fasp_smat_identity_nc3, 124
AuxInput.c, 93	fasp_smat_identity_nc5, 125
fasp_param_check, 93	fasp_smat_identity_nc7, 125
fasp_param_input, 94	SWAP, 118
AuxMemory.c, 95	AuxSort.c, 126
fasp_mem_calloc, 95	fasp_BinarySearch, 132
fasp_mem_check, 97	fasp_aux_dQuickSort, 127
fasp_mem_dcsr_check, 98	
form many from 00	fasp_aux_dQuickSortIndex, 128
fasp_mem_free, 98	fasp_aux_iQuickSort, 128
fasp_mem_iludata_check, 99	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103 print_itinfo, 104	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103 print_itinfo, 104 print_message, 105	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136 THDs_AMG_GS, 137
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103 print_itinfo, 104 print_message, 105 AuxParam.c, 105	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136 THDs_AMG_GS, 137 THDs_CPR_gGS, 137
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103 print_itinfo, 104 print_message, 105 AuxParam.c, 105 fasp_param_amg_init, 107	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136 THDs_AMG_GS, 137 THDs_CPR_gGS, 137 THDs_CPR_IGS, 137
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103 print_itinfo, 104 print_message, 105 AuxParam.c, 105 fasp_param_amg_init, 107 fasp_param_amg_print, 107	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136 THDs_AMG_GS, 137 THDs_CPR_gGS, 137 THDs_CPR_IGS, 137 AuxTiming.c, 138
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity bsr, 103 print_cputime, 103 print_itinfo, 104 print_message, 105 AuxParam.c, 105 fasp_param_amg_init, 107 fasp_param_amg_print, 107 fasp_param_amg_set, 108	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136 THDs_AMG_GS, 137 THDs_CPR_JGS, 137 AuxTiming.c, 138 fasp_gettime, 138
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103 print_itinfo, 104 print_message, 105 AuxParam.c, 105 fasp_param_amg_init, 107 fasp_param_amg_print, 107 fasp_param_amg_set, 108 fasp_param_amg_to_prec, 108	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136 THDs_AMG_GS, 137 THDs_CPR_IGS, 137 THDs_CPR_IGS, 137 AuxTiming.c, 138 fasp_gettime, 138 AuxVector.c, 139
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103 print_itinfo, 104 print_message, 105 AuxParam.c, 105 fasp_param_amg_init, 107 fasp_param_amg_print, 107 fasp_param_amg_set, 108 fasp_param_amg_to_prec, 108 fasp_param_amg_to_prec_bsr, 109	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136 THDs_AMG_GS, 137 THDs_CPR_gGS, 137 THDs_CPR_IGS, 137 AuxTiming.c, 138 fasp_gettime, 138 AuxVector.c, 139 fasp_dvec_alloc, 140
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103 print_itinfo, 104 print_message, 105 AuxParam.c, 105 fasp_param_amg_init, 107 fasp_param_amg_print, 107 fasp_param_amg_set, 108 fasp_param_amg_to_prec, 108 fasp_param_amg_to_prec_bsr, 109 fasp_param_ilu_init, 109	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136 THDs_AMG_GS, 137 THDs_CPR_gGS, 137 THDs_CPR_IGS, 137 AuxTiming.c, 138 fasp_gettime, 138 AuxVector.c, 139 fasp_dvec_alloc, 140 fasp_dvec_cp, 140
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103 print_itinfo, 104 print_message, 105 AuxParam.c, 105 fasp_param_amg_init, 107 fasp_param_amg_print, 107 fasp_param_amg_set, 108 fasp_param_amg_to_prec, 108 fasp_param_ilu_init, 109 fasp_param_ilu_print, 110	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136 THDs_AMG_GS, 137 THDs_CPR_gGS, 137 THDs_CPR_IGS, 137 AuxTiming.c, 138 fasp_gettime, 138 AuxVector.c, 139 fasp_dvec_alloc, 140 fasp_dvec_create, 141
fasp_mem_iludata_check, 99 fasp_mem_realloc, 99 fasp_mem_usage, 100 total_alloc_count, 101 total_alloc_mem, 101 AuxMessage.c, 101 fasp_chkerr, 102 print_amgcomplexity, 102 print_amgcomplexity_bsr, 103 print_cputime, 103 print_itinfo, 104 print_message, 105 AuxParam.c, 105 fasp_param_amg_init, 107 fasp_param_amg_print, 107 fasp_param_amg_set, 108 fasp_param_amg_to_prec, 108 fasp_param_amg_to_prec_bsr, 109 fasp_param_ilu_init, 109	fasp_aux_iQuickSort, 128 fasp_aux_iQuickSortIndex, 129 fasp_aux_merge, 130 fasp_aux_msort, 130 fasp_aux_unique, 131 fasp_dcsr_CMK_order, 132 fasp_dcsr_RCMK_order, 133 fasp_multicolors_independent_set, 134 fasp_topological_sorting_ilu, 134 AuxThreads.c, 135 fasp_get_start_end, 136 fasp_set_GS_threads, 136 THDs_AMG_GS, 137 THDs_CPR_gGS, 137 THDs_CPR_IGS, 137 AuxTiming.c, 138 fasp_gettime, 138 AuxVector.c, 139 fasp_dvec_alloc, 140 fasp_dvec_cp, 140

fasp_dvec_maxdiff, 142	fasp_dcoo1_read, 182
fasp_dvec_null, 143	fasp_dcoo_print, 183
fasp_dvec_rand, 144	fasp_dcoo_read, 183
fasp_dvec_set, 144	fasp_dcoo_shift_read, 184
fasp_dvec_symdiagscale, 145	fasp_dcoo_write, 185
fasp_ivec_alloc, 146	fasp_dcsr_print, 185
fasp_ivec_create, 146	fasp_dcsr_read, 186
fasp_ivec_free, 147	fasp_dcsr_write_coo, 186
fasp_ivec_set, 147	fasp_dcsrvec1_read, 187
	fasp_dcsrvec1_write, 188
BIGREAL	fasp_dcsrvec2_read, 189
fasp_const.h, 342	fasp_dcsrvec2_write, 190
BlaArray.c, 148	fasp_dmtx_read, 190
fasp_blas_array_ax, 149	fasp_dmtxsym_read, 191
fasp_blas_array_axpby, 149	fasp_dstr_print, 192
fasp_blas_array_axpy, 150	fasp_dstr_read, 192
fasp_blas_array_axpyz, 151	fasp_dstr_write, 193
fasp_blas_array_dotprod, 152	fasp_dvec_print, 194
fasp_blas_array_norm1, 152	fasp_dvec_read, 194
fasp_blas_array_norm2, 153	fasp_dvec_write, 195
fasp_blas_array_norminf, 154	fasp_dvecind_read, 195
BlaEigen.c, 155	fasp_dvecind_write, 196
fasp_dcsr_eig, 155	fasp_hb_read, 197
BlaFormat.c, 156	fasp_ivec_print, 197
fasp_format_dblc_dcsr, 157	fasp_ivec_read, 198
fasp_format_dbsr_dcoo, 157	fasp_ivec_write, 199
fasp_format_dbsr_dcsr, 158	fasp_ivecind_read, 199
fasp_format_dcoo_dcsr, 159	fasp_matrix_read, 200
fasp_format_dcsr_dbsr, 159	fasp_matrix_read_bin, 201
fasp_format_dcsr_dcoo, 160	fasp_matrix_write, 201
fasp_format_dcsrl_dcsr, 161	fasp_vector_read, 202
fasp_format_dstr_dbsr, 161	fasp_vector_write, 203
fasp_format_dstr_dcsr, 162	ilength, 204
BlalLU.c, 163	BlaSchwarzSetup.c, 205
fasp_iluk, 163	fasp_dcsr_schwarz_backward_smoother, 205
fasp_ilut, 165	fasp_dcsr_schwarz_forward_smoother, 206
fasp_ilutp, 166	fasp_schwarz_setup, 206
fasp symbfactor, 167	BlaSmallMat.c, 207
BlalLUSetupBSR.c, 170	fasp_blas_array_axpy_nc2, 209
fasp_ilu_dbsr_setup, 171	fasp_blas_array_axpy_nc3, 210
fasp_ilu_dbsr_setup_levsch_omp, 172	fasp_blas_array_axpy_nc5, 211
fasp ilu dbsr setup mc omp, 172	fasp_blas_array_axpy_nc7, 211
fasp_ilu_dbsr_setup_omp, 173	fasp_blas_array_axpyz_nc2, 212
BlaILUSetupCSR.c, 174	fasp_blas_array_axpyz_nc3, 212
fasp_ilu_dcsr_setup, 175	fasp_blas_array_axpyz_nc5, 213
BlaILUSetupSTR.c, 175	fasp_blas_array_axpyz_nc7, 214
fasp_ilu_dstr_setup0, 176	fasp_blas_smat_aAxpby, 214
fasp_ilu_dstr_setup1, 176	fasp_blas_smat_add, 215
BlalO.c, 177	fasp_blas_smat_axm, 216
dlength, 204	fasp_blas_smat_mul, 216
fasp_dbsr_print, 179	fasp_blas_smat_mul_nc2, 217
fasp_dbsr_read, 180	fasp_blas_smat_mul_nc3, 217
fasp_dbsr_write, 181	fasp_blas_smat_mul_nc5, 218
fasp_dbsr_write_coo, 181	fasp_blas_smat_mul_nc7, 219
100p_000i_11110_000, 101	140p_5140_51141_1107, 210

fasp_blas_smat_mxv, 219	fasp_dcsr_compress_inplace, 262
fasp_blas_smat_mxv_nc2, 220	fasp_dcsr_cp, 262
fasp_blas_smat_mxv_nc3, 220	fasp_dcsr_create, 263
fasp_blas_smat_mxv_nc5, 221	fasp_dcsr_diagpref, 263
fasp_blas_smat_mxv_nc7, 222	fasp_dcsr_free, 264
fasp_blas_smat_ymAx, 222	fasp_dcsr_getcol, 265
fasp_blas_smat_ymAx_nc2, 223	fasp_dcsr_getdiag, 265
fasp_blas_smat_ymAx_nc3, 223	fasp_dcsr_multicoloring, 266
fasp_blas_smat_ymAx_nc5, 224	fasp_dcsr_null, 267
fasp_blas_smat_ymAx_nc7, 225	fasp_dcsr_perm, 267
fasp_blas_smat_ymAx_ns, 225	fasp_dcsr_permz, 268
fasp_blas_smat_ymAx_ns2, 226	fasp_dcsr_regdiag, 269
fasp_blas_smat_ymAx_ns3, 227	fasp_dcsr_shift, 269
fasp_blas_smat_ymAx_ns5, 227	fasp_dcsr_sort, 270
fasp_blas_smat_ymAx_ns7, 228	fasp_dcsr_sortz, 270
fasp_blas_smat_ypAx, 229	fasp_dcsr_symdiagscale, 271
fasp_blas_smat_ypAx_nc2, 229	fasp_dcsr_sympart, 271
fasp_blas_smat_ypAx_nc3, 230	fasp_dcsr_trans, 272
fasp_blas_smat_ypAx_nc5, 231	fasp_dcsr_transz, 273
fasp_blas_smat_ypAx_nc7, 231	fasp_icsr_cp, 273
BlaSmallMatLU.c, 232	fasp_icsr_create, 274
fasp_smat_lu_decomp, 232	fasp_icsr_free, 275
fasp smat lu solve, 233	fasp_icsr_null, 275
BlaSparseBLC.c, 234	fasp_icsr_trans, 276
fasp_dblc_free, 235	BlaSparseCSRL.c, 276
fasp_dbsr_Linfinity_dcsr, 237	fasp_dcsrl_create, 277
fasp_dbsr_getblk, 235	fasp_dcsrl_free, 277
fasp_dbsr_getblk_dcsr, 236	BlaSparseCheck.c, 252
fasp_dcsr_getblk, 237	fasp_check_dCSRmat, 252
BlaSparseBSR.c, 238	fasp_check_diagdom, 253
fasp_dbsr_alloc, 239	fasp_check_diagpos, 253
fasp_dbsr_cp, 241	fasp_check_diagzero, 254
fasp_dbsr_create, 241	fasp check iCSRmat, 255
fasp dbsr diagLU2, 246	fasp_check_symm, 255
fasp dbsr diagLU, 245	BlaSparseSTR.c, 278
fasp_dbsr_diaginv, 242	fasp_dstr_alloc, 279
fasp_dbsr_diaginv2, 243	fasp_dstr_cp, 280
fasp dbsr diaginv3, 243	fasp dstr create, 280
fasp dbsr diaginv4, 244	fasp_dstr_free, 281
fasp dbsr diagpref, 246	fasp_dstr_null, 281
fasp_dbsr_free, 247	BlaSparseUtil.c, 282
fasp dbsr getdiag, 248	fasp_sparse_MIS, 288
fasp_dbsr_getdiaginv, 248	fasp sparse aat , 283
fasp_dbsr_null, 249	fasp_sparse_abyb_, 284
fasp_dbsr_perm, 249	fasp_sparse_abybms_, 285
fasp dbsr trans, 251	fasp_sparse_aplbms_, 286
BlaSparseCOO.c, 256	fasp_sparse_aplusb_, 286
fasp_dcoo_alloc, 257	fasp_sparse_iit_, 287
fasp_dcoo_alloc, 257 fasp_dcoo_create, 257	fasp_sparse_rapcmp_, 288
fasp_dcoo_create, 257 fasp_dcoo_free, 258	
fasp_dcoo_ree, 258	fasp_sparse_rapms_, 289
• — —	fasp_sparse_wta_, 290
BlaSparseCSR.c, 259	fasp_sparse_wtams_, 291
fasp_dcsr_alloc, 261	fasp_sparse_ytx_, 292
fasp_dcsr_compress, 261	fasp_sparse_ytxbig_, 292

BlaSpmvBLC.c, 293	fasp_const.h, 343
fasp_blas_dblc_aAxpy, 293	COARSE_AC
fasp_blas_dblc_mxv, 294	fasp_const.h, 343
BlaSpmvBSR.c, 295	COARSE_CR
fasp_blas_dbsr_aAxpby, 295	fasp_const.h, 343
fasp_blas_dbsr_aAxpy, 296	COARSE_MIS
fasp_blas_dbsr_aAxpy_agg, 297	fasp_const.h, 343
fasp_blas_dbsr_axm, 298	COARSE_RSP
fasp_blas_dbsr_mxm, 298	fasp_const.h, 344
fasp_blas_dbsr_mxv, 299	COARSE_RS
fasp_blas_dbsr_mxv_agg, 300	fasp_const.h, 344
fasp_blas_dbsr_rap, 300	CPFIRST
fasp_blas_dbsr_rap1, 301	fasp_const.h, 344
fasp_blas_dbsr_rap_agg, 302	count
BlaSpmvCSR.c, 303	fasp.h, 334
fasp_blas_dcsr_aAxpy, 304	JDI Oward OO
fasp_blas_dcsr_aAxpy_agg, 305	dBLCmat, 28
fasp_blas_dcsr_add, 305	fasp_block.h, 337
fasp_blas_dcsr_axm, 306	dBSRmat, 28
fasp_blas_dcsr_bandwith, 307	fasp_block.h, 338
fasp_blas_dcsr_mxm, 307	JA, 29
fasp_blas_dcsr_mxv, 308	val, 29
fasp_blas_dcsr_mxv_agg, 308	dCOOmat, 29
fasp_blas_dcsr_ptap, 309	fasp.h, 333 dCSRLmat, 30
fasp_blas_dcsr_rap, 310	
fasp_blas_dcsr_rap2, 311	fasp.h, 333 dCSRmat, 31
fasp_blas_dcsr_rap4, 311	fasp.h, 333
fasp_blas_dcsr_rap_agg, 312	dCSRmat2SAMGInput
fasp_blas_dcsr_rap_agg1, 313	InterfaceSamg.c, 377
fasp_blas_dcsr_vmv, 313	DESCEND
BlaSpmvCSRL.c, 314	fasp_const.h, 344
fasp_blas_dcsrl_mxv, 315	DIAGONAL PREF
BlaSpmvSTR.c, 315	fasp.h, 327
fasp_blas_dstr_aAxpy, 316	DLMALLOC
fasp_blas_dstr_mxv, 316	fasp.h, 328
fasp_dstr_diagscale, 318	dSTRmat, 33
BlaVector.c, 319	fasp.h, 333
fasp_blas_dvec_axpy, 319	ddenmat, 32
fasp_blas_dvec_axpyz, 320	fasp.h, 333
fasp_blas_dvec_dotprod, 321	dlength
fasp_blas_dvec_norm1, 321	BlalO.c, 204
fasp_blas_dvec_norm2, 322	doxygen.h, 324
fasp_blas_dvec_norminf, 323	dvector, 34
fasp_blas_dvec_relerr, 323	fasp.h, 333
block_dvector, 26	dvector2SAMGInput
fasp_block.h, 337	InterfaceSamg.c, 377
block_ivector, 27	3 -, -
fasp_block.h, 337	е
	grid2d, 35
CF_ORDER	ERROR_ALLOC_MEM
fasp_const.h, 342	fasp_const.h, 344
CGPT	ERROR_AMG_COARSE_TYPE
fasp_const.h, 343	fasp_const.h, 345
CLASSIC_AMG	ERROR_AMG_COARSEING

fasp_const.h, 345	grid2d, 35
ERROR_AMG_INTERP_TYPE	efather
fasp_const.h, 345	grid2d, 35
ERROR_AMG_SMOOTH_TYPE	endian_convert_int
fasp_const.h, 345	AuxConvert.c, 84
ERROR_DATA_STRUCTURE	endian_convert_real
fasp_const.h, 345	AuxConvert.c, 85
ERROR DATA ZERODIAG	
fasp const.h, 346	FALSE
ERROR_DUMMY_VAR	fasp_const.h, 350
fasp const.h, 346	FASP GSRB
ERROR INPUT PAR	fasp.h, 328
fasp_const.h, 346	FASP_SUCCESS
ERROR_LIC_TYPE	fasp_const.h, 350
fasp_const.h, 346	FASP VERSION
ERROR MAT SIZE	_
	fasp.h, 328
fasp_const.h, 346	FGPT
ERROR_MISC	fasp_const.h, 350
fasp_const.h, 347	FPFIRST
ERROR_NUM_BLOCKS	fasp_const.h, 351
fasp_const.h, 347	fasp.h, 324
ERROR_OPEN_FILE	FASP_HEADER, 327
fasp_const.h, 347	ABS, 327
ERROR_QUAD_DIM	count, 334
fasp_const.h, 347	dCOOmat, 333
ERROR_QUAD_TYPE	dCSRLmat, 333
fasp_const.h, 347	dCSRmat, 333
ERROR_REGRESS	DIAGONAL_PREF, 327
fasp_const.h, 348	DLMALLOC, 328
ERROR SOLVER EXIT	dSTRmat, 333
fasp_const.h, 348	ddenmat, 333
ERROR_SOLVER_ILUSETUP	dvector, 333
fasp_const.h, 348	FASP_GSRB, 328
ERROR SOLVER MAXIT	FASP_VERSION, 328
fasp_const.h, 348	GE, 328
ERROR SOLVER MISC	GT, 329
fasp_const.h, 348	iCOOmat, 333
ERROR SOLVER PRECTYPE	iCSRmat, 334
	IMAP, 334
fasp_const.h, 349 ERROR SOLVER SOLSTAG	
	INT, 329
fasp_const.h, 349	ISNAN, 329
ERROR_SOLVER_STAG	idenmat, 334
fasp_const.h, 349	ivector, 334
ERROR_SOLVER_TOLSMALL	LONGLONG, 330
fasp_const.h, 349	LONG, 330
ERROR_SOLVER_TYPE	LE, 329
fasp_const.h, 349	LS, 330
ERROR_UNKNOWN	MAXIMAP, 334
fasp_const.h, 350	MAX, 330
ERROR_WRONG_FILE	MIN, 331
fasp_const.h, 350	NEDMALLOC, 331
edges	nx_rb, <mark>335</mark>
grid2d, 35	ny_rb, 335
ediri	nz_rb, 335

PUT_INT, 331	AuxArray.c, 79
PUT_REAL, 331	fasp_array_invpermut_nb
REAL, 332	AuxArray.c, 80
RS_C1, 332	fasp_array_null
SHORT, 332	AuxArray.c, 81
total_alloc_count, 335	fasp_array_permut_nb
total_alloc_mem, 335	AuxArray.c, 81
fasp_BinarySearch	fasp_array_set
AuxSort.c, 132	AuxArray.c, 82
fasp_amg_amli_coef	fasp_aux_bbyteToldouble
PreMGRecurAMLI.c, 534	AuxConvert.c, 86
fasp_amg_coarsening_cr	fasp_aux_change_endian4
PreAMGCoarsenCR.c, 484	AuxConvert.c, 86
fasp_amg_coarsening_rs	fasp_aux_change_endian8
PreAMGCoarsenRS.c, 485	AuxConvert.c, 87
fasp_amg_data_bsr_create	fasp_aux_dQuickSort
PreDataInit.c, 523	AuxSort.c, 127
fasp_amg_data_bsr_free	fasp_aux_dQuickSortIndex
PreDataInit.c, 524	AuxSort.c, 128
fasp_amg_data_create	fasp_aux_givens
PreDataInit.c, 524	AuxGivens.c, 88
fasp_amg_data_free	fasp_aux_iQuickSort
PreDataInit.c, 525	AuxSort.c, 128
fasp_amg_interp	fasp_aux_iQuickSortIndex
PreAMGInterp.c, 487	AuxSort.c, 129
fasp_amg_interp_em PreAMGInterpEmin.c, 489	fasp_aux_merge AuxSort.c, 130
fasp_amg_interp_trunc	fasp_aux_msort
PreAMGInterp.c, 488	AuxSort.c, 130
fasp_amg_setup_cr	fasp_aux_unique
PreAMGSetupCR.c, 490	AuxSort.c, 131
fasp_amg_setup_rs	fasp_blas_array_ax
PreAMGSetupRS.c, 492	BlaArray.c, 149
fasp_amg_setup_sa	fasp_blas_array_axpby
PreAMGSetupSA.c, 493	BlaArray.c, 149
fasp_amg_setup_sa_bsr	fasp_blas_array_axpy
PreAMGSetupSABSR.c, 494	BlaArray.c, 150
fasp amg setup ua	fasp_blas_array_axpy_nc2
PreAMGSetupUA.c, 496	BlaSmallMat.c, 209
fasp_amg_setup_ua_bsr	fasp_blas_array_axpy_nc3
PreAMGSetupUABSR.c, 497	BlaSmallMat.c, 210
fasp_amg_solve	fasp_blas_array_axpy_nc5
PreMGSolve.c, 537	BlaSmallMat.c, 211
fasp_amg_solve_amli	fasp_blas_array_axpy_nc7
PreMGSolve.c, 538	BlaSmallMat.c, 211
fasp_amg_solve_nl_amli	fasp_blas_array_axpyz
PreMGSolve.c, 539	BlaArray.c, 151
fasp_array_cp	fasp_blas_array_axpyz_nc2
AuxArray.c, 78	BlaSmallMat.c, 212
fasp_array_cp_nc3	fasp_blas_array_axpyz_nc3
AuxArray.c, 78	BlaSmallMat.c, 212
fasp_array_cp_nc5	fasp_blas_array_axpyz_nc5
AuxArray.c, 79	BlaSmallMat.c, 213
fasp_array_cp_nc7	fasp_blas_array_axpyz_nc7

BlaSmallMat.c, 214	BlaSpmvCSR.c, 311
fasp_blas_array_dotprod	fasp_blas_dcsr_rap4
BlaArray.c, 152	BlaSpmvCSR.c, 311
fasp_blas_array_norm1	fasp_blas_dcsr_rap_agg
BlaArray.c, 152	BlaSpmvCSR.c, 312
fasp_blas_array_norm2	fasp_blas_dcsr_rap_agg1
BlaArray.c, 153	BlaSpmvCSR.c, 313
fasp_blas_array_norminf	fasp_blas_dcsr_vmv
BlaArray.c, 154	BlaSpmvCSR.c, 313
fasp_blas_dblc_aAxpy	fasp_blas_dcsrl_mxv
BlaSpmvBLC.c, 293	BlaSpmvCSRL.c, 315
fasp_blas_dblc_mxv	fasp_blas_dstr_aAxpy
BlaSpmvBLC.c, 294	BlaSpmvSTR.c, 316
fasp_blas_dbsr_aAxpby	fasp_blas_dstr_mxv
BlaSpmvBSR.c, 295	BlaSpmvSTR.c, 316
fasp_blas_dbsr_aAxpy	fasp_blas_dvec_axpy
BlaSpmvBSR.c, 296	BlaVector.c, 319
fasp_blas_dbsr_aAxpy_agg	fasp_blas_dvec_axpyz
BlaSpmvBSR.c, 297	BlaVector.c, 320
fasp_blas_dbsr_axm BlaSpmvBSR.c, 298	fasp_blas_dvec_dotprod BlaVector.c, 321
fasp blas dbsr mxm	fasp_blas_dvec_norm1
BlaSpmvBSR.c, 298	BlaVector.c, 321
fasp_blas_dbsr_mxv	fasp_blas_dvec_norm2
BlaSpmvBSR.c, 299	BlaVector.c, 322
fasp_blas_dbsr_mxv_agg	fasp_blas_dvec_norminf
BlaSpmvBSR.c, 300	BlaVector.c, 323
fasp_blas_dbsr_rap	fasp_blas_dvec_relerr
BlaSpmvBSR.c, 300	BlaVector.c, 323
fasp_blas_dbsr_rap1	fasp_blas_smat_Linfinity
BlaSpmvBSR.c, 301	AuxSmallMat.c, 122
fasp_blas_dbsr_rap_agg	fasp_blas_smat_aAxpby
BlaSpmvBSR.c, 302	BlaSmallMat.c, 214
fasp_blas_dcsr_aAxpy	fasp_blas_smat_add
BlaSpmvCSR.c, 304	BlaSmallMat.c, 215
fasp_blas_dcsr_aAxpy_agg	fasp_blas_smat_axm
BlaSpmvCSR.c, 305	BlaSmallMat.c, 216
fasp_blas_dcsr_add	fasp_blas_smat_inv
BlaSpmvCSR.c, 305	AuxSmallMat.c, 118
fasp_blas_dcsr_axm	fasp_blas_smat_inv_nc
BlaSpmvCSR.c, 306	AuxSmallMat.c, 119
fasp_blas_dcsr_bandwith	fasp_blas_smat_inv_nc2
BlaSpmvCSR.c, 307	AuxSmallMat.c, 119
fasp_blas_dcsr_mxm	fasp_blas_smat_inv_nc3
BlaSpmvCSR.c, 307	AuxSmallMat.c, 120
fasp_blas_dcsr_mxv	fasp_blas_smat_inv_nc4
BlaSpmvCSR.c, 308	AuxSmallMat.c, 120
fasp_blas_dcsr_mxv_agg	fasp_blas_smat_inv_nc5
BlaSpmvCSR.c, 308	AuxSmallMat.c, 121
fasp_blas_dcsr_ptap	fasp_blas_smat_inv_nc7
BlaSpmvCSR.c, 309	AuxSmallMat.c, 121
fasp_blas_dcsr_rap	fasp_blas_smat_invp_nc
BlaSpmvCSR.c, 310	AuxSmallMat.c, 122
fasp_blas_dcsr_rap2	fasp_blas_smat_mul

BlaSmallMat.c, 216	dBSRmat, 338
fasp_blas_smat_mul_nc2	iBLCmat, 338
BlaSmallMat.c, 217	fasp_check_dCSRmat
fasp_blas_smat_mul_nc3	BlaSparseCheck.c, 252
BlaSmallMat.c, 217	fasp_check_diagdom
fasp_blas_smat_mul_nc5	BlaSparseCheck.c, 253
BlaSmallMat.c, 218	fasp_check_diagpos
fasp_blas_smat_mul_nc7	BlaSparseCheck.c, 253
BlaSmallMat.c, 219	fasp_check_diagzero
fasp_blas_smat_mxv	BlaSparseCheck.c, 254
BlaSmallMat.c, 219	fasp_check_iCSRmat
fasp_blas_smat_mxv_nc2	BlaSparseCheck.c, 255
BlaSmallMat.c, 220	fasp_check_symm
fasp_blas_smat_mxv_nc3	BlaSparseCheck.c, 255
BlaSmallMat.c, 220	fasp_chkerr
fasp_blas_smat_mxv_nc5	AuxMessage.c, 102
BlaSmallMat.c, 221	fasp_const.h, 338
fasp_blas_smat_mxv_nc7	AMLI_CYCLE, 342
BlaSmallMat.c, 222	ASCEND, 342
fasp_blas_smat_ymAx	BIGREAL, 342
BlaSmallMat.c, 222	CF_ORDER, 342
fasp_blas_smat_ymAx_nc2	CGPT, 343
BlaSmallMat.c, 223	CLASSIC_AMG, 343
fasp_blas_smat_ymAx_nc3	COARSE_AC, 343
BlaSmallMat.c, 223	COARSE_CR, 343
fasp_blas_smat_ymAx_nc5	COARSE_MIS, 343
BlaSmallMat.c, 224	COARSE_RSP, 344
fasp_blas_smat_ymAx_nc7	COARSE_RS, 344
BlaSmallMat.c, 225	CPFIRST, 344
fasp_blas_smat_ymAx_ns	DESCEND, 344
BlaSmallMat.c, 225	ERROR_ALLOC_MEM, 344
fasp_blas_smat_ymAx_ns2	ERROR_AMG_COARSE_TYPE, 345
BlaSmallMat.c, 226	ERROR_AMG_COARSEING, 345
fasp_blas_smat_ymAx_ns3	ERROR_AMG_INTERP_TYPE, 345
BlaSmallMat.c, 227	ERROR_AMG_SMOOTH_TYPE, 345
fasp_blas_smat_ymAx_ns5	ERROR_DATA_STRUCTURE, 345
BlaSmallMat.c, 227	ERROR_DATA_ZERODIAG, 346
fasp_blas_smat_ymAx_ns7	ERROR_DUMMY_VAR, 346
BlaSmallMat.c, 228	ERROR_INPUT_PAR, 346
fasp_blas_smat_ypAx	ERROR_LIC_TYPE, 346
BlaSmallMat.c, 229	ERROR_MAT_SIZE, 346
fasp_blas_smat_ypAx_nc2	ERROR_MISC, 347
BlaSmallMat.c, 229	ERROR_NUM_BLOCKS, 347
fasp_blas_smat_ypAx_nc3	ERROR_OPEN_FILE, 347
BlaSmallMat.c, 230	ERROR_QUAD_DIM, 347
fasp_blas_smat_ypAx_nc5	ERROR_QUAD_TYPE, 347 ERROR REGRESS, 348
BlaSmallMat.c, 231	-
fasp_blas_smat_ypAx_nc7	ERROR_SOLVER_EXIT, 348
BlaSmallMat.c, 231	ERROR_SOLVER_ILUSETUP, 348
fasp_block.h, 336	ERROR_SOLVER_MAXIT, 348
FASPBLOCK_HEADER, 337	ERROR_SOLVER_MISC, 348 ERROR SOLVER PRECTYPE, 349
block_dvector, 337 block_ivector, 337	ERROR_SOLVER_PRECTIFE, 349 ERROR_SOLVER_SOLSTAG, 349
dBLCmat, 337	ERROR_SOLVER_SOLSTAG, 349 ERROR_SOLVER_STAG, 349
ublomat, 301	LNNON_SOLVEN_STAG, 349

ERROR_SOLVER_TOLSMALL, 349	SCHWARZ_FORWARD, 361
ERROR_SOLVER_TYPE, 349	SCHWARZ_SYMMETRIC, 361
ERROR_UNKNOWN, 350	SMALLREAL2, 361
ERROR_WRONG_FILE, 350	SMALLREAL, 361
FALSE, 350	SMOOTHER_BLKOIL, 361
FASP_SUCCESS, 350	SMOOTHER_CG, 362
FGPT, 350	SMOOTHER_GSOR, 362
FPFIRST, 351	SMOOTHER_GS, 362
G0PT, 351	SMOOTHER_JACOBI, 362
ILU_MC_OMP, 351	SMOOTHER_L1DIAG, 363
ILUk, 351	SMOOTHER_POLY, 363
ILUt, 352	SMOOTHER_SGSOR, 363
ILUtp, 352	SMOOTHER_SGS, 363
INTERP_DIR, 352	SMOOTHER_SOR, 363
INTERP_ENG, 352	SMOOTHER_SPETEN, 364
INTERP_STD, 353	SMOOTHER_SSOR, 364
ISPT, 353	SOLVER_AMG, 364
MAT BLC, 353	SOLVER_BiCGstab, 364
MAT_BSR, 354	SOLVER_CG, 364
MAT CSRL, 354	SOLVER DEFAULT, 365
MAT CSR, 354	SOLVER_FMG, 365
MAT FREE, 354	SOLVER GCG, 365
MAT_STR, 355	SOLVER_GCR, 365
MAT SymCSR, 355	SOLVER GMRES, 365
MAT bBSR, 353	SOLVER MUMPS, 366
MAT_bCSR, 353	SOLVER MinRes, 366
MAT_bSTR, 354	SOLVER_PARDISO, 366
MAX_AMG_LVL, 355	SOLVER_SBiCGstab, 366
MAX CRATE, 355	SOLVER SCG, 366
MAX REFINE LVL, 355	SOLVER SGCG, 367
MAX RESTART, 356	SOLVER_SGMRES, 367
MAX STAG, 356	SOLVER_SMinRes, 367
MIN_CDOF, 356	SOLVER SUPERLU, 367
MIN CRATE, 356	SOLVER SVFGMRES, 367
NL_AMLI_CYCLE, 356	SOLVER SVGMRES, 368
NO ORDER, 357	SOLVER UMFPACK, 368
_ <i>,</i>	-
OFF, 357	SOLVER_VBiCGstab, 368 SOLVER_VFGMRES, 368
OPENMP_HOLDS, 357	
ON, 357	SOLVER_VGMRES, 368
PAIRWISE, 358	STAG_RATIO, 369
PREC_AMG, 358	STOP_MOD_REL_RES, 369
PREC_DIAG, 358	STOP_REL_PRECRES, 369
PREC_FMG, 358	STOP_REL_RES, 369
PREC_ILU, 358	TRUE, 369
PREC_NULL, 359	UA_AMG, 370
PREC_SCHWARZ, 359	UNPT, 370
PRINT_ALL, 359	USERDEFINED, 370
PRINT_MIN, 359	V_CYCLE, 370
PRINT_MORE, 359	VMB, 371
PRINT_MOST, 360	W_CYCLE, 371
PRINT_NONE, 360	fasp_dblc_free
PRINT_SOME, 360	BlaSparseBLC.c, 235
SA_AMG, 360	fasp_dbsr_Linfinity_dcsr
SCHWARZ_BACKWARD, 360	BlaSparseBLC.c, 237

fasp_dbsr_alloc	fasp_dcoo_free
BlaSparseBSR.c, 239	BlaSparseCOO.c, 258
fasp_dbsr_cp	fasp_dcoo_print
BlaSparseBSR.c, 241	BlalO.c, 183
fasp_dbsr_create	fasp_dcoo_read
BlaSparseBSR.c, 241	BlaIO.c, 183
fasp_dbsr_diagLU2	fasp_dcoo_shift
BlaSparseBSR.c, 246	BlaSparseCOO.c, 258
fasp_dbsr_diagLU	fasp_dcoo_shift_read
BlaSparseBSR.c, 245	BlaIO.c, 184
fasp_dbsr_diaginv	fasp_dcoo_write
BlaSparseBSR.c, 242	BlalO.c, 185
fasp_dbsr_diaginv2	fasp_dcsr_CMK_order
	AuxSort.c, 132
BlaSparseBSR.c, 243	
fasp_dbsr_diaginv3	fasp_dcsr_RCMK_order
BlaSparseBSR.c, 243	AuxSort.c, 133
fasp_dbsr_diaginv4	fasp_dcsr_alloc
BlaSparseBSR.c, 244	BlaSparseCSR.c, 261
fasp_dbsr_diagpref	fasp_dcsr_compress
BlaSparseBSR.c, 246	BlaSparseCSR.c, 261
fasp_dbsr_free	fasp_dcsr_compress_inplace
BlaSparseBSR.c, 247	BlaSparseCSR.c, 262
fasp_dbsr_getblk	fasp_dcsr_cp
BlaSparseBLC.c, 235	BlaSparseCSR.c, 262
fasp_dbsr_getblk_dcsr	fasp_dcsr_create
BlaSparseBLC.c, 236	BlaSparseCSR.c, 263
fasp_dbsr_getdiag	fasp_dcsr_diagpref
BlaSparseBSR.c, 248	BlaSparseCSR.c, 263
fasp_dbsr_getdiaginv	fasp_dcsr_eig
BlaSparseBSR.c, 248	BlaEigen.c, 155
fasp_dbsr_null	fasp_dcsr_free
BlaSparseBSR.c, 249	BlaSparseCSR.c, 264
fasp_dbsr_perm	fasp_dcsr_getblk
BlaSparseBSR.c, 249	BlaSparseBLC.c, 237
fasp_dbsr_plot	fasp_dcsr_getcol
AuxGraphics.c, 89	BlaSparseCSR.c, 265
	•
fasp_dbsr_print	fasp_dcsr_getdiag
BlalO.c, 179	BlaSparseCSR.c, 265
fasp_dbsr_read	fasp_dcsr_multicoloring
BlalO.c, 180	BlaSparseCSR.c, 266
fasp_dbsr_subplot	fasp_dcsr_null
AuxGraphics.c, 90	BlaSparseCSR.c, 267
fasp_dbsr_trans	fasp_dcsr_perm
BlaSparseBSR.c, 251	BlaSparseCSR.c, 267
fasp_dbsr_write	fasp_dcsr_permz
BlalO.c, 181	BlaSparseCSR.c, 268
fasp_dbsr_write_coo	fasp_dcsr_plot
BlalO.c, 181	AuxGraphics.c, 91
fasp_dcoo1_read	fasp_dcsr_print
BlaIO.c, 182	BlaIO.c, 185
fasp_dcoo_alloc	fasp_dcsr_read
BlaSparseCOO.c, 257	BlaIO.c, 186
fasp_dcoo_create	fasp_dcsr_regdiag
BlaSparseCOO.c, 257	BlaSparseCSR.c, 269
-, -	,

fasp_dcsr_schwarz_backward_smoother	fasp_dstr_write
BlaSchwarzSetup.c, 205	BlalO.c, 193
fasp_dcsr_schwarz_forward_smoother	fasp_dvec_alloc
BlaSchwarzSetup.c, 206	AuxVector.c, 140
fasp_dcsr_shift	fasp_dvec_cp
BlaSparseCSR.c, 269	AuxVector.c, 140
fasp_dcsr_sort	fasp_dvec_create
BlaSparseCSR.c, 270	AuxVector.c, 141
fasp_dcsr_sortz	fasp_dvec_free
BlaSparseCSR.c, 270	AuxVector.c, 141
fasp_dcsr_subplot	fasp_dvec_isnan
AuxGraphics.c, 91	AuxVector.c, 142
fasp_dcsr_symdiagscale	fasp_dvec_maxdiff
BlaSparseCSR.c, 271	AuxVector.c, 142
fasp_dcsr_sympart	fasp_dvec_null
BlaSparseCSR.c, 271	AuxVector.c, 143
fasp_dcsr_trans	fasp_dvec_print
BlaSparseCSR.c, 272	BlaIO.c, 194
fasp_dcsr_transz	fasp_dvec_rand
BlaSparseCSR.c, 273	AuxVector.c, 144
fasp_dcsr_write_coo	fasp_dvec_read
BlalO.c, 186	BlaIO.c, 194
fasp_dcsrl_create	fasp_dvec_set
BlaSparseCSRL.c, 277	AuxVector.c, 144
fasp_dcsrl_free	fasp_dvec_symdiagscale
BlaSparseCSRL.c, 277	AuxVector.c, 145
fasp_dcsrvec1_read	fasp_dvec_write
BlalO.c, 187	BlalO.c, 195
fasp_dcsrvec1_write	fasp_dvecind_read
BlalO.c, 188	BlalO.c, 195
fasp_dcsrvec2_read	fasp_dvecind_write
BlalO.c, 189	BlalO.c, 196
fasp_dcsrvec2_write	fasp_famg_solve
BlalO.c, 190	PreMGSolve.c, 539
fasp_dmtx_read	fasp_format_dblc_dcsr
BlalO.c, 190	BlaFormat.c, 157
fasp_dmtxsym_read	fasp_format_dbsr_dcoo
BlalO.c, 191	BlaFormat.c, 157
fasp_dstr_alloc	fasp_format_dbsr_dcsr
BlaSparseSTR.c, 279	BlaFormat.c, 158
fasp_dstr_cp	fasp format dcoo dcsr
BlaSparseSTR.c, 280	BlaFormat.c, 159
fasp_dstr_create	fasp_format_dcsr_dbsr
BlaSparseSTR.c, 280	BlaFormat.c, 159
•	
fasp_dstr_diagscale BlaSpmvSTR.c, 318	fasp_format_dcsr_dcoo
•	BlaFormat.c, 160
fasp_dstr_free	fasp_format_dcsrl_dcsr
BlaSparseSTR.c, 281	BlaFormat.c, 161
fasp_dstr_null	fasp_format_dstr_dbsr
BlaSparseSTR.c, 281	BlaFormat.c, 161
fasp_dstr_print	fasp_format_dstr_dcsr
BlalO.c, 192	BlaFormat.c, 162
fasp_dstr_read	fasp_fwrapper_amg_
BlalO.c, 192	SolWrapper.c, 582

fasp_fwrapper_krylov_amg_	BlaILU.c, 163
SolWrapper.c, 583	fasp_ilut
fasp_generate_diaginv_block	BlaILU.c, 165
ItrSmootherSTR.c, 407	fasp_ilutp
fasp_get_start_end	BlaILU.c, 166
AuxThreads.c, 136	fasp_ivec_alloc
fasp_gettime	AuxVector.c, 146
AuxTiming.c, 138	fasp_ivec_create
fasp_grid.h, 371	AuxVector.c, 146
FASPGRID_HEADER, 372	fasp_ivec_free
grid2d, 372	AuxVector.c, 147
pcgrid2d, 372	fasp_ivec_print
pgrid2d, 372	BlalO.c, 197
fasp_grid2d_plot	fasp_ivec_read
AuxGraphics.c, 92	BlalO.c, 198
fasp_hb_read	fasp_ivec_set
BlalO.c, 197	AuxVector.c, 147
fasp_iarray_cp	fasp_ivec_write
AuxArray.c, 82	BlaIO.c, 199
fasp iarray set	fasp_ivecind_read
AuxArray.c, 83	BlaIO.c, 199
fasp_icsr_cp	fasp_matrix_read
BlaSparseCSR.c, 273	BlalO.c, 200
fasp icsr create	fasp_matrix_read_bin
BlaSparseCSR.c, 274	BlalO.c, 201
fasp_icsr_free	fasp_matrix_write
BlaSparseCSR.c, 275	BlalO.c, 201
fasp_icsr_null	fasp_mem_calloc
BlaSparseCSR.c, 275	AuxMemory.c, 95
fasp_icsr_trans	fasp_mem_check
BlaSparseCSR.c, 276	AuxMemory.c, 97
fasp_iden_free	fasp_mem_dcsr_check
AuxSmallMat.c, 123	AuxMemory.c, 98
fasp_ilu_data_create	fasp mem free
PreDataInit.c, 525	AuxMemory.c, 98
fasp_ilu_data_free	fasp_mem_iludata_check
PreDataInit.c, 526	AuxMemory.c, 99
fasp_ilu_data_null	fasp_mem_realloc
PreDataInit.c, 526	AuxMemory.c, 99
fasp_ilu_dbsr_setup	fasp_mem_usage
BlaILUSetupBSR.c, 171	AuxMemory.c, 100
fasp_ilu_dbsr_setup_levsch_omp	fasp_multicolors_independent_set
BlaILUSetupBSR.c, 172	AuxSort.c, 134
fasp_ilu_dbsr_setup_mc_omp	fasp param amg init
BlaILUSetupBSR.c, 172	AuxParam.c, 107
fasp_ilu_dbsr_setup_omp	fasp_param_amg_print
BlalLUSetupBSR.c, 173	AuxParam.c, 107
fasp_ilu_dcsr_setup	fasp_param_amg_set
BlalLUSetupCSR.c, 175	AuxParam.c, 108
fasp_ilu_dstr_setup0	fasp_param_amg_to_prec
BlalLUSetupSTR.c, 176	AuxParam.c, 108
fasp_ilu_dstr_setup1	
BlalLUSetupSTR.c, 176	fasp_param_amg_to_prec_bsr AuxParam.c, 109
fasp_iluk	fasp_param_check
iasp_iiait	idop_param_oneon

AuxInput.c, 93	PreCSR.c, 515
fasp_param_ilu_init	fasp_precond_block_SGS_3
AuxParam.c, 109	PreBLC.c, 502
fasp_param_ilu_print	fasp_precond_block_SGS_3_amg
AuxParam.c, 110	PreBLC.c, 503
fasp_param_ilu_set	fasp_precond_block_diag_3
AuxParam.c, 110	PreBLC.c, 499
fasp_param_init	fasp_precond_block_diag_3_amg
AuxParam.c, 111	PreBLC.c, 499
fasp_param_input	fasp_precond_block_diag_4
AuxInput.c, 94	PreBLC.c, 500
fasp_param_input_init	fasp_precond_block_lower_3
AuxParam.c, 111	PreBLC.c, 500
fasp_param_prec_to_amg	fasp_precond_block_lower_3_amg
AuxParam.c, 112	PreBLC.c, 501
fasp_param_prec_to_amg_bsr	fasp_precond_block_lower_4
AuxParam.c, 112	PreBLC.c, 501
fasp_param_schwarz_init	fasp_precond_block_upper_3
AuxParam.c, 113	PreBLC.c, 503
fasp_param_schwarz_print	fasp_precond_block_upper_3_amg
AuxParam.c, 113	PreBLC.c, 504
fasp_param_schwarz_set	fasp_precond_data_null
AuxParam.c, 114	PreDataInit.c, 527
fasp_param_set	fasp_precond_dbsr_amg
AuxParam.c, 114	PreBSR.c, 506
fasp_param_solver_init AuxParam.c, 115	fasp_precond_dbsr_amg_nk PreBSR.c, 506
fasp_param_solver_print	fasp_precond_dbsr_diag
AuxParam.c, 115	PreBSR.c, 507
fasp_param_solver_set	fasp_precond_dbsr_diag_nc2
AuxParam.c, 116	PreBSR.c, 508
fasp_poisson_fgmg1d	fasp_precond_dbsr_diag_nc3
SolGMGPoisson.c, 567	PreBSR.c, 508
fasp_poisson_fgmg2d	fasp_precond_dbsr_diag_nc5
SolGMGPoisson.c, 568	PreBSR.c, 509
fasp_poisson_fgmg3d	fasp_precond_dbsr_diag_nc7
SolGMGPoisson.c, 568	PreBSR.c, 510
fasp_poisson_gmg1d	fasp_precond_dbsr_ilu
SolGMGPoisson.c, 569	PreBSR.c, 511
fasp_poisson_gmg2d	fasp_precond_dbsr_ilu_ls_omp
SolGMGPoisson.c, 570	PreBSR.c, 511
fasp_poisson_gmg3d	fasp_precond_dbsr_ilu_mc_omp
SolGMGPoisson.c, 571	PreBSR.c, 512
fasp_poisson_gmgcg1d	fasp_precond_dbsr_nl_amli
SolGMGPoisson.c, 572	PreBSR.c, 513
fasp_poisson_gmgcg2d	fasp_precond_diag
SolGMGPoisson.c, 572	PreCSR.c, 516
fasp_poisson_gmgcg3d	fasp_precond_dstr_blockgs
SolGMGPoisson.c, 573	PreSTR.c, 541
fasp_precond_amg	fasp_precond_dstr_diag
PreCSR.c, 514	PreSTR.c, 541
fasp_precond_amg_nk	fasp_precond_dstr_ilu0
PreCSR.c, 515	PreSTR.c, 542
fasp_precond_amli	fasp_precond_dstr_ilu0_backward

PreSTR.c, 542	ItrSmootherBSR.c, 383
fasp_precond_dstr_ilu0_forward	fasp_smoother_dbsr_gs_ascend1
PreSTR.c, 543	ItrSmootherBSR.c, 383
fasp_precond_dstr_ilu1	fasp_smoother_dbsr_gs_descend
PreSTR.c, 544	ItrSmootherBSR.c, 384
fasp_precond_dstr_ilu1_backward	fasp_smoother_dbsr_gs_descend1
PreSTR.c, 544	ItrSmootherBSR.c, 385
fasp_precond_dstr_ilu1_forward	fasp_smoother_dbsr_gs_order1
PreSTR.c, 545	ItrSmootherBSR.c, 385
fasp_precond_famg	fasp_smoother_dbsr_gs_order2
PreCSR.c, 517	ItrSmootherBSR.c, 386
fasp_precond_free	fasp_smoother_dbsr_ilu
PreCSR.c, 517	ItrSmootherBSR.c, 387
fasp_precond_ilu	fasp_smoother_dbsr_jacobi
PreCSR.c, 518	ItrSmootherBSR.c, 387
fasp_precond_ilu_backward	fasp_smoother_dbsr_jacobi1
PreCSR.c, 518	ItrSmootherBSR.c, 388
fasp_precond_ilu_forward	fasp_smoother_dbsr_jacobi_setup
PreCSR.c, 520	ItrSmootherBSR.c, 388
fasp_precond_nl_amli	fasp_smoother_dbsr_sor ItrSmootherBSR.c, 389
PreCSR.c, 520	,
fasp_precond_null	fasp_smoother_dbsr_sor1 ItrSmootherBSR.c, 390
PreDataInit.c, 527	
fasp_precond_schwarz PreCSR.c, 521	fasp_smoother_dbsr_sor_ascend ItrSmootherBSR.c, 390
fasp_precond_setup	fasp_smoother_dbsr_sor_descend
PreCSR.c, 522	ItrSmootherBSR.c, 391
fasp_precond_sweeping	fasp_smoother_dbsr_sor_order
PreBLC.c, 504	ItrSmootherBSR.c, 392
fasp_schwarz_data_free	fasp_smoother_dcsr_L1diag
PreDataInit.c, 528	ItrSmootherCSR.c, 399
fasp_schwarz_setup	fasp_smoother_dcsr_gs
BlaSchwarzSetup.c, 206	ItrSmootherCSR.c, 394
fasp_set_GS_threads	fasp_smoother_dcsr_gs_cf
AuxThreads.c, 136	ItrSmootherCSR.c, 395
fasp_smat_identity	fasp_smoother_dcsr_gs_rb3d
AuxSmallMat.c, 123	ItrSmootherCSR.c, 395
fasp smat identity nc2	fasp_smoother_dcsr_gscr
AuxSmallMat.c, 124	ItrSmootherCSRcr.c, 402
fasp_smat_identity_nc3	fasp smoother dcsr ilu
AuxSmallMat.c, 124	ItrSmootherCSR.c, 396
fasp_smat_identity_nc5	fasp_smoother_dcsr_jacobi
AuxSmallMat.c, 125	ItrSmootherCSR.c, 397
fasp_smat_identity_nc7	fasp_smoother_dcsr_kaczmarz
AuxSmallMat.c, 125	ItrSmootherCSR.c, 398
fasp_smat_lu_decomp	fasp_smoother_dcsr_poly
BlaSmallMatLU.c, 232	ItrSmootherCSRpoly.c, 404
fasp_smat_lu_solve	fasp_smoother_dcsr_poly_old
BlaSmallMatLU.c, 233	ItrSmootherCSRpoly.c, 404
fasp_smoother_dbsr_gs	fasp_smoother_dcsr_sgs
ItrSmootherBSR.c, 381	ItrSmootherCSR.c, 399
fasp_smoother_dbsr_gs1	fasp_smoother_dcsr_sor
ItrSmootherBSR.c, 382	ItrSmootherCSR.c, 400
fasp_smoother_dbsr_gs_ascend	fasp_smoother_dcsr_sor_cf

II 0 II 00D 101	K B I 440
ItrSmootherCSR.c, 401	KryPvbcgs.c, 446
fasp_smoother_dstr_gs	fasp_solver_dblc_pvfgmres
ItrSmootherSTR.c, 407	KryPvfgmres.c, 452
fasp_smoother_dstr_gs1	fasp_solver_dblc_pvgmres
ItrSmootherSTR.c, 408	KryPvgmres.c, 457
fasp_smoother_dstr_gs_ascend	fasp_solver_dblc_spbcgs
ItrSmootherSTR.c, 409	KrySPbcgs.c, 463
fasp_smoother_dstr_gs_cf	fasp_solver_dblc_spcg
ItrSmootherSTR.c, 409	KrySPcg.c, 468
fasp_smoother_dstr_gs_descend	fasp_solver_dblc_spgmres
ItrSmootherSTR.c, 411	KrySPgmres.c, 472
fasp_smoother_dstr_gs_order	fasp_solver_dblc_spminres
ItrSmootherSTR.c, 412	KrySPminres.c, 476
fasp_smoother_dstr_jacobi	fasp_solver_dblc_spvgmres
ItrSmootherSTR.c, 412	KrySPvgmres.c, 479
fasp_smoother_dstr_jacobi1	fasp_solver_dbsr_itsolver
ItrSmootherSTR.c, 413	SolBSR.c, 553
fasp_smoother_dstr_schwarz	fasp_solver_dbsr_krylov
ItrSmootherSTR.c, 413	SolBSR.c, 553
fasp_smoother_dstr_sor ItrSmootherSTR.c, 414	fasp_solver_dbsr_krylov_amg
,	SolBSR.c, 554
fasp_smoother_dstr_sor1 ItrSmootherSTR.c, 415	fasp_solver_dbsr_krylov_amg_nk
	SolBSR.c, 555
fasp_smoother_dstr_sor_ascend ItrSmootherSTR.c, 416	fasp_solver_dbsr_krylov_diag SolBSR.c, 556
fasp_smoother_dstr_sor_cf ItrSmootherSTR.c, 416	fasp_solver_dbsr_krylov_ilu SolBSR.c, 556
fasp_smoother_dstr_sor_descend	fasp_solver_dbsr_krylov_nk_amg
ItrSmootherSTR.c, 417	SolBSR.c, 557
fasp_smoother_dstr_sor_order	fasp_solver_dbsr_pbcgs
ItrSmootherSTR.c, 418	KryPbcgs.c, 420
fasp_solver_amg	fasp_solver_dbsr_pcg
SolAMG.c, 546	KryPcg.c, 427
fasp_solver_amli	fasp_solver_dbsr_pgmres
PreMGRecurAMLI.c, 534	KryPgmres.c, 436
fasp_solver_dblc_itsolver	fasp_solver_dbsr_pvbcgs
SolBLC.c, 548	KryPvbcgs.c, 447
fasp_solver_dblc_krylov	fasp solver dbsr pvfgmres
SolBLC.c, 548	KryPvfgmres.c, 453
fasp_solver_dblc_krylov_block_3	fasp_solver_dbsr_pvgmres
SolBLC.c, 549	KryPvgmres.c, 458
fasp_solver_dblc_krylov_block_4	fasp_solver_dbsr_spbcgs
SolBLC.c, 550	KrySPbcgs.c, 463
fasp_solver_dblc_krylov_sweeping	fasp_solver_dbsr_spgmres
SolBLC.c, 551	KrySPgmres.c, 473
fasp_solver_dblc_pbcgs	fasp_solver_dbsr_spvgmres
KryPbcgs.c, 420	KrySPvgmres.c, 480
fasp_solver_dblc_pcg	fasp_solver_dcsr_itsolver
KryPcg.c, 426	SolCSR.c, 559
fasp_solver_dblc_pgmres	fasp_solver_dcsr_krylov
KryPgmres.c, 435	SolCSR.c, 560
fasp_solver_dblc_pminres	fasp_solver_dcsr_krylov_amg
KryPminres.c, 441	SolCSR.c, 560
fasp_solver_dblc_pvbcgs	fasp_solver_dcsr_krylov_amg_nk

0.1000	
SolCSR.c, 561	KryPminres.c, 443
fasp_solver_dcsr_krylov_diag	fasp_solver_dstr_pvbcgs
SolCSR.c, 562	KryPvbcgs.c, 448
fasp_solver_dcsr_krylov_ilu	fasp_solver_dstr_pvgmres
SolCSR.c, 562	KryPvgmres.c, 460
fasp_solver_dcsr_krylov_ilu_M	fasp_solver_dstr_spbcgs
SolCSR.c, 563	KrySPbcgs.c, 466
fasp_solver_dcsr_krylov_schwarz	fasp_solver_dstr_spcg
SolCSR.c, 564	KrySPcg.c, 469
fasp_solver_dcsr_pbcgs	fasp_solver_dstr_spgmres
KryPbcgs.c, 421	KrySPgmres.c, 474
fasp_solver_dcsr_pcg KryPcg.c, 428	fasp_solver_dstr_spminres KrySPminres.c, 478
fasp_solver_dcsr_pgcg KryPgcg.c, 431	fasp_solver_dstr_spvgmres KrySPvgmres.c, 482
fasp_solver_dcsr_pgcr	fasp_solver_famg
KryPgcr.c, 434	SolFAMG.c, 565
fasp_solver_dcsr_pgmres	fasp_solver_fmgcycle
KryPgmres.c, 437	PreMGCycleFull.c, 531
fasp_solver_dcsr_pminres	fasp_solver_itsolver
KryPminres.c, 442	SolMatFree.c, 575
fasp_solver_dcsr_pvbcgs	fasp_solver_itsolver_init
KryPvbcgs.c, 448	SolMatFree.c, 576
fasp_solver_dcsr_pvfgmres	fasp_solver_krylov
KryPvfgmres.c, 454	SolMatFree.c, 576
fasp_solver_dcsr_pvgmres	fasp_solver_mgcycle
KryPvgmres.c, 459	PreMGCycle.c, 529
fasp_solver_dcsr_spbcgs	fasp_solver_mgcycle_bsr
KrySPbcgs.c, 464	PreMGCycle.c, 530
Triyor bogoto, To I	i iciviacyolo.o, ooo
fasp_solver_dcsr_spcg	fasp_solver_mgrecur
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474	fasp_solver_mgrecur PreMGRecur.c, 532
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579 fasp_solver_dstr_krylov_diag	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423 fasp_solver_pcg
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579 fasp_solver_dstr_krylov_diag SolSTR.c, 580	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423 fasp_solver_pcg KryPcg.c, 430
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579 fasp_solver_dstr_krylov_diag SolSTR.c, 580 fasp_solver_dstr_krylov_ilu	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423 fasp_solver_pcg KryPcg.c, 430 fasp_solver_pgcg
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579 fasp_solver_dstr_krylov_diag SolSTR.c, 580 fasp_solver_dstr_krylov_ilu SolSTR.c, 581	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423 fasp_solver_pcg KryPcg.c, 430 fasp_solver_pgcg KryPgcg.c, 432
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579 fasp_solver_dstr_krylov_diag SolSTR.c, 580 fasp_solver_dstr_krylov_ilu SolSTR.c, 581 fasp_solver_dstr_pbcgs	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423 fasp_solver_pcg KryPcg.c, 430 fasp_solver_pgcg KryPgcg.c, 432 fasp_solver_pgmres
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579 fasp_solver_dstr_krylov_diag SolSTR.c, 580 fasp_solver_dstr_krylov_ilu SolSTR.c, 581 fasp_solver_dstr_pbcgs KryPbcgs.c, 422	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423 fasp_solver_pcg KryPcg.c, 430 fasp_solver_pgcg KryPgcg.c, 432 fasp_solver_pgmres KryPgmres.c, 439
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579 fasp_solver_dstr_krylov_diag SolSTR.c, 580 fasp_solver_dstr_krylov_ilu SolSTR.c, 581 fasp_solver_dstr_pbcgs KryPbcgs.c, 422 fasp_solver_dstr_pcg	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423 fasp_solver_pcg KryPcg.c, 430 fasp_solver_pgcg KryPgcg.c, 432 fasp_solver_pgmres KryPgmres.c, 439 fasp_solver_pminres
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579 fasp_solver_dstr_krylov_diag SolSTR.c, 580 fasp_solver_dstr_krylov_ilu SolSTR.c, 581 fasp_solver_dstr_pbcgs KryPbcgs.c, 422 fasp_solver_dstr_pcg KryPcg.c, 429	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423 fasp_solver_pcg KryPcg.c, 430 fasp_solver_pgcg KryPgcg.c, 432 fasp_solver_pgmres KryPgmres.c, 439 fasp_solver_pminres KryPminres.c, 444
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579 fasp_solver_dstr_krylov_diag SolSTR.c, 580 fasp_solver_dstr_krylov_ilu SolSTR.c, 581 fasp_solver_dstr_pbcgs KryPbcgs.c, 422 fasp_solver_dstr_pcg KryPcg.c, 429 fasp_solver_dstr_pgmres	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423 fasp_solver_pcg KryPcg.c, 430 fasp_solver_pgcg KryPgcg.c, 432 fasp_solver_pgmres KryPgmres.c, 439 fasp_solver_pminres KryPminres.c, 444 fasp_solver_pvbcgs
fasp_solver_dcsr_spcg KrySPcg.c, 468 fasp_solver_dcsr_spgmres KrySPgmres.c, 474 fasp_solver_dcsr_spminres KrySPminres.c, 477 fasp_solver_dcsr_spvgmres KrySPvgmres.c, 481 fasp_solver_dstr_itsolver SolSTR.c, 578 fasp_solver_dstr_krylov SolSTR.c, 578 fasp_solver_dstr_krylov_blockgs SolSTR.c, 579 fasp_solver_dstr_krylov_diag SolSTR.c, 580 fasp_solver_dstr_krylov_ilu SolSTR.c, 581 fasp_solver_dstr_pbcgs KryPbcgs.c, 422 fasp_solver_dstr_pcg KryPcg.c, 429	fasp_solver_mgrecur PreMGRecur.c, 532 fasp_solver_mumps InterfaceMumps.c, 374 fasp_solver_mumps_steps InterfaceMumps.c, 374 fasp_solver_nl_amli PreMGRecurAMLI.c, 535 fasp_solver_nl_amli_bsr PreMGRecurAMLI.c, 536 fasp_solver_pardiso InterfacePardiso.c, 375 fasp_solver_pbcgs KryPbcgs.c, 423 fasp_solver_pcg KryPcg.c, 430 fasp_solver_pgcg KryPgcg.c, 432 fasp_solver_pgmres KryPgmres.c, 439 fasp_solver_pminres KryPminres.c, 444

KryPvfgmres.c, 455	efather, 35
fasp_solver_pvgmres	fasp_grid.h, 372
KryPvgmres.c, 461	p, 36
fasp_solver_superlu	pdiri, <mark>36</mark>
InterfaceSuperlu.c, 378	pfather, 36
fasp_solver_umfpack	s, 36
InterfaceUmfpack.c, 379	t, 36
fasp_sparse_MIS	tfather, 37
BlaSparseUtil.c, 288	triangles, 37
fasp_sparse_aat_	vertices, 37
BlaSparseUtil.c, 283	GT
fasp_sparse_abyb_	fasp.h, 329
BlaSparseUtil.c, 284	• •
fasp_sparse_abybms_	iBLCmat, 37
BlaSparseUtil.c, 285	fasp_block.h, 338
fasp_sparse_aplbms_	ICNTL
BlaSparseUtil.c, 286	InterfaceMumps.c, 373
fasp_sparse_aplusb_	iCOOmat, 38
BlaSparseUtil.c, 286	fasp.h, 333
fasp sparse iit	iCSRmat, 39
BlaSparseUtil.c, 287	fasp.h, 334
•	ILU MC OMP
fasp_sparse_rapcmp_	<u> </u>
BlaSparseUtil.c, 288	fasp_const.h, 351
fasp_sparse_rapms_	ILU_data, 40
BlaSparseUtil.c, 289	ILU_droptol
fasp_sparse_wta_	input_param, 50
BlaSparseUtil.c, 290	ILU_lfil
fasp_sparse_wtams_	input_param, 50
BlaSparseUtil.c, 291	ILU_param, 42
fasp_sparse_ytx_	ILU_permtol
BlaSparseUtil.c, 292	input_param, 51
fasp_sparse_ytxbig_	ILU_relax
BlaSparseUtil.c, 292	input_param, 51
fasp_symbfactor	ILU_type
BlaILU.c, 167	input_param, 51
fasp_topological_sorting_ilu	ILUk
AuxSort.c, 134	fasp_const.h, 351
fasp_vector_read	ILUt
BlaIO.c, 202	fasp_const.h, 352
fasp_vector_write	ILUtp
BlaIO.c, 203	fasp_const.h, 352
fasp_wrapper_dbsr_krylov_amg	IMAP
SolWrapper.c, 584	fasp.h, 334
fasp_wrapper_dcoo_dbsr_krylov_amg	INTERP DIR
SolWrapper.c, 585	fasp_const.h, 352
	INTERP ENG
GOPT	fasp_const.h, 352
fasp_const.h, 351	INTERP STD
GE	fasp_const.h, 353
fasp.h, 328	INT
grid2d, 34	fasp.h, 329
e, 35	ISNAN
edges, 35	fasp.h, 329
ediri, 35	ISPT
Guili, JJ	IOI I

fasp_const.h, 353	restart, 53
idenmat, 40	Schwarz_blksolver, 53
fasp.h, 334	Schwarz_maxlvl, 53
ilength	Schwarz_mmsize, 53
BlalO.c, 204	Schwarz_type, 53
ilu_solve_omp	solver_type, 54
ItrSmootherBSR.c, 393	stop_type, 54
inifile	workdir, 54
input_param, 51	InterfaceMumps.c, 373
input_param, 42	fasp_solver_mumps, 374
AMG_ILU_levels, 46	fasp_solver_mumps_steps, 374
AMG_Schwarz_levels, 48	ICNTL, 373
AMG_aggregation_type, 44	InterfacePardiso.c, 375
AMG_aggressive_level, 44	fasp_solver_pardiso, 375
AMG_aggressive_path, 44	InterfaceSamg.c, 376
AMG_amli_degree, 44	dCSRmat2SAMGInput, 377
AMG_coarse_dof, 45	dvector2SAMGInput, 377
AMG_coarse_scaling, 45	InterfaceSuperlu.c, 378
AMG_coarse_solver, 45	fasp_solver_superlu, 378
AMG_coarsening_type, 45	InterfaceUmfpack.c, 379
AMG_cycle_type, 45	fasp_solver_umfpack, 379
AMG_interpolation_type, 46	ItrSmootherBSR.c, 380
AMG_levels, 46	fasp_smoother_dbsr_gs, 381
AMG_max_aggregation, 46	fasp_smoother_dbsr_gs1, 382
AMG_max_row_sum, 46	fasp_smoother_dbsr_gs_ascend, 383
AMG_maxit, 47	fasp_smoother_dbsr_gs_ascend1, 383
AMG_nl_amli_krylov_type, 47	fasp_smoother_dbsr_gs_descend, 384
AMG_pair_number, 47	fasp_smoother_dbsr_gs_descend1, 385
AMG_polynomial_degree, 47	fasp_smoother_dbsr_gs_order1, 385
AMG_postsmooth_iter, 47	fasp_smoother_dbsr_gs_order2, 386
AMG_presmooth_iter, 48	fasp_smoother_dbsr_ilu, 387
AMG_quality_bound, 48	fasp_smoother_dbsr_jacobi, 387
AMG_relaxation, 48	fasp_smoother_dbsr_jacobi1, 388
AMG_smooth_filter, 48	fasp_smoother_dbsr_jacobi_setup, 388
AMG_smooth_order, 49	fasp_smoother_dbsr_sor, 389
AMG_smoother, 49	fasp_smoother_dbsr_sor1, 390
AMG_strong_coupled, 49	fasp_smoother_dbsr_sor_ascend, 390
AMG_strong_threshold, 49	fasp_smoother_dbsr_sor_descend, 391 fasp smoother dbsr sor order, 392
AMG_tel_50	
AMG_tol, 50 AMG truncation threshold, 50	ilu_solve_omp, 393 ItrSmootherCSR.c, 393
AMG_truncation_trieshold, 50 AMG_type, 50	fasp smoother dcsr L1diag, 399
	fasp smoother dcsr gs, 394
ILU_droptol, 50 ILU Ifil, 50	fasp_smoother_dcsr_gs_cf, 395
ILU_permtol, 51	fasp_smoother_dcsr_gs_rb3d, 395
ILU_relax, 51	fasp_smoother_dcsr_ilu, 396
ILU_type, 51	fasp_smoother_dcsr_jacobi, 397
inifile, 51	fasp_smoother_dcsr_kaczmarz, 398
itsolver_maxit, 51	fasp_smoother_dcsr_sgs, 399
itsolver_tol, 52	fasp_smoother_dcsr_sgs, 399
output_type, 52	fasp_smoother_dcsr_sor_cf, 400
precond_type, 52	ItrSmootherCSRcr.c, 402
print_level, 52	fasp_smoother_dcsr_gscr, 402
problem_num, 52	ItrSmootherCSRpoly.c, 403
problem_num, oz	ili ciliotiloi coi ipoiy.o, 700

fasp_smoother_dcsr_poly, 404	fasp_solver_dcsr_pgcr, 434
fasp_smoother_dcsr_poly_old, 404	KryPgmres.c, 435
ItrSmootherSTR.c, 405	fasp_solver_dblc_pgmres, 435
fasp_generate_diaginv_block, 407	fasp_solver_dbsr_pgmres, 436
fasp_smoother_dstr_gs, 407	fasp_solver_dcsr_pgmres, 437
fasp_smoother_dstr_gs1, 408	fasp_solver_dstr_pgmres, 438
fasp_smoother_dstr_gs_ascend, 409	fasp_solver_pgmres, 439
fasp_smoother_dstr_gs_cf, 409	KryPminres.c, 441
fasp_smoother_dstr_gs_descend, 411	fasp_solver_dblc_pminres, 441
fasp_smoother_dstr_gs_order, 412	fasp_solver_dcsr_pminres, 442
fasp_smoother_dstr_jacobi, 412	fasp_solver_dstr_pminres, 443
fasp_smoother_dstr_jacobi1, 413	fasp_solver_pminres, 444
fasp_smoother_dstr_schwarz, 413	KryPvbcgs.c, 445
fasp_smoother_dstr_sor, 414	fasp_solver_dblc_pvbcgs, 446
fasp_smoother_dstr_sor1, 415	fasp_solver_dbsr_pvbcgs, 447
fasp_smoother_dstr_sor_ascend, 416	fasp_solver_dcsr_pvbcgs, 448
fasp_smoother_dstr_sor_cf, 416	fasp_solver_dstr_pvbcgs, 448
fasp_smoother_dstr_sor_descend, 417	fasp_solver_pvbcgs, 449
fasp_smoother_dstr_sor_order, 418	KryPvfgmres.c, 451
itsolver_maxit	fasp_solver_dblc_pvfgmres, 452
input_param, 51	fasp_solver_dbsr_pvfgmres, 453
itsolver_param, 54	fasp_solver_dcsr_pvfgmres, 454
itsolver_type, 55	fasp_solver_pvfgmres, 455
maxit, 55	KryPvgmres.c, 456
precond_type, 55	fasp_solver_dblc_pvgmres, 457
print_level, 55	fasp_solver_dbsr_pvgmres, 458
restart, 56	fasp_solver_dcsr_pvgmres, 459
stop_type, 56	fasp_solver_dstr_pvgmres, 460
tol, 56	fasp_solver_pvgmres, 461
itsolver_tol	KrySPbcgs.c, 462
input_param, 52	fasp_solver_dblc_spbcgs, 463
itsolver_type	fasp_solver_dbsr_spbcgs, 463
itsolver_param, 55	fasp_solver_dcsr_spbcgs, 464
ivector, 56	fasp_solver_dstr_spbcgs, 466
fasp.h, 334	KrySPcg.c, 467
	fasp_solver_dblc_spcg, 468
JA	fasp_solver_dcsr_spcg, 468
dBSRmat, 29	fasp_solver_dstr_spcg, 469
KryPbcgs.c, 419	KrySPgmres.c, 471
fasp_solver_dblc_pbcgs, 420	fasp_solver_dblc_spgmres, 472
fasp_solver_dbsr_pbcgs, 420	fasp_solver_dbsr_spgmres, 473
fasp_solver_dcsr_pbcgs, 421	fasp_solver_dcsr_spgmres, 474
fasp_solver_dstr_pbcgs, 422	fasp_solver_dstr_spgmres, 474
fasp_solver_pbcgs, 423	KrySPminres.c, 475
KryPcg.c, 424	fasp_solver_dblc_spminres, 476
fasp_solver_dblc_pcg, 426	fasp_solver_dcsr_spminres, 477
fasp_solver_dbsr_pcg, 427	fasp solver dstr spminres, 478
fasp_solver_dcsr_pcg, 428	KrySPvgmres.c, 479
fasp_solver_dstr_pcg, 429	fasp_solver_dblc_spvgmres, 479
fasp_solver_pcg, 430	fasp_solver_dbsr_spvgmres, 480
KryPgcg.c, 431	fasp_solver_dcsr_spvgmres, 481
fasp_solver_dcsr_pgcg, 431	fasp_solver_dstr_spvgmres, 482
fasp_solver_pgcg, 432	
KryPgcr.c, 433	LONGLONG
·	

face b 000	MINI
fasp.h, 330 LONG	MIN fasp.h, 331
fasp.h, 330	mallinfo, 57
LU_diag	malloc chunk, 58
precond_block_data, 64	malloc_params, 58
LE	malloc_segment, 58
fasp.h, 329	malloc_state, 59
local_LU	malloc_tree_chunk, 60
precond_sweeping_data, 72	maxit
local_A	itsolver_param, 55
precond_sweeping_data, 72	mgl
local_index	precond_block_data, 64
precond_sweeping_data, 72	Mumps_data, 60 mxv_matfree, 61
LS food by 200	mxv_mamee, or
fasp.h, 330	NEDMALLOC
MAT BLC	fasp.h, 331
fasp_const.h, 353	NL_AMLI_CYCLE
MAT BSR	fasp_const.h, 356
fasp_const.h, 354	NO_ORDER
MAT_CSRL	fasp_const.h, 357
fasp_const.h, 354	nedmallinfo, 61
MAT_CSR	NumLayers precond sweeping data, 72
fasp_const.h, 354	nx_rb
MAT_FREE	fasp.h, 335
fasp_const.h, 354	ny_rb
MAT_STR	fasp.h, 335
fasp_const.h, 355	nz rb
MAT_SymCSR	fasp.h, 335
fasp_const.h, 355 MAT_bBSR	
fasp_const.h, 353	OFF
MAT bCSR	fasp_const.h, 357
fasp_const.h, 353	OPENMP_HOLDS
MAT_bSTR	fasp_const.h, 357 ON
fasp_const.h, 354	fasp_const.h, 357
MAX_AMG_LVL	output_type
fasp_const.h, 355	input_param, 52
MAX_CRATE	· -
fasp_const.h, 355	p
MAX_REFINE_LVL	grid2d, 36
fasp_const.h, 355	PAIRWISE
MAX_RESTART fasp_const.h, 356	fasp_const.h, 358
MAX STAG	PREC_AMG
fasp_const.h, 356	fasp_const.h, 358 PREC_DIAG
MAXIMAP	fasp_const.h, 358
fasp.h, 334	PREC FMG
MAX	fasp_const.h, 358
fasp.h, 330	PREC_ILU
MIN_CDOF	fasp_const.h, 358
fasp_const.h, 356	PREC_NULL
MIN_CRATE	fasp_const.h, 359
fasp_const.h, 356	PREC_SCHWARZ

fasp_const.h, 359	fasp_precond_block_lower_3_amg, 501
PRINT_ALL	fasp_precond_block_lower_4, 501
fasp_const.h, 359	fasp_precond_block_upper_3, 503
PRINT_MIN	fasp_precond_block_upper_3_amg, 504
fasp_const.h, 359	fasp_precond_sweeping, 504
PRINT_MORE	PreBSR.c, 505
fasp_const.h, 359	fasp_precond_dbsr_amg, 506
PRINT_MOST	fasp_precond_dbsr_amg_nk, 506
fasp_const.h, 360	fasp_precond_dbsr_diag, 507
PRINT_NONE	fasp_precond_dbsr_diag_nc2, 508
fasp_const.h, 360	fasp_precond_dbsr_diag_nc3, 508
PRINT SOME	fasp_precond_dbsr_diag_nc5, 509
fasp_const.h, 360	fasp_precond_dbsr_diag_nc7, 510
PUT INT	fasp_precond_dbsr_ilu, 511
fasp.h, 331	fasp_precond_dbsr_ilu_ls_omp, 511
PUT REAL	fasp_precond_dbsr_ilu_mc_omp, 512
fasp.h, 331	fasp_precond_dbsr_nl_amli, 513
Pardiso_data, 62	PreCSR.c, 513
pcgrid2d	fasp_precond_amg, 514
fasp_grid.h, 372	fasp_precond_amg_nk, 515
pdiri	fasp precond amli, 515
grid2d, 36	fasp_precond_diag, 516
pfather	fasp_precond_diag, 517
·	fasp_precond_famg, 517 fasp_precond_free, 517
grid2d, 36	· — —
pgrid2d	fasp_precond_ilu, 518
fasp_grid.h, 372	fasp_precond_ilu_backward, 518
PreAMGCoarsenCR.c, 483	fasp_precond_ilu_forward, 520
fasp_amg_coarsening_cr, 484	fasp_precond_nl_amli, 520
PreAMGCoarsenRS.c, 485	fasp_precond_schwarz, 521
fasp_amg_coarsening_rs, 485	fasp_precond_setup, 522
PreAMGInterp.c, 486	PreDataInit.c, 522
fasp_amg_interp, 487	fasp_amg_data_bsr_create, 523
fasp_amg_interp_trunc, 488	fasp_amg_data_bsr_free, 524
PreAMGInterpEmin.c, 488	fasp_amg_data_create, 524
fasp_amg_interp_em, 489	fasp_amg_data_free, 525
PreAMGSetupCR.c, 490	fasp_ilu_data_create, 525
fasp_amg_setup_cr, 490	fasp_ilu_data_free, 526
PreAMGSetupRS.c, 491	fasp_ilu_data_null, 526
fasp_amg_setup_rs, 492	fasp_precond_data_null, 527
PreAMGSetupSA.c, 492	fasp_precond_null, 527
fasp_amg_setup_sa, 493	fasp_schwarz_data_free, 528
PreAMGSetupSABSR.c, 494	PreMGCycle.c, 529
fasp_amg_setup_sa_bsr, 494	fasp_solver_mgcycle, 529
PreAMGSetupUA.c, 495	fasp_solver_mgcycle_bsr, 530
fasp_amg_setup_ua, 496	PreMGCycleFull.c, 530
PreAMGSetupUABSR.c, 496	fasp_solver_fmgcycle, 531
fasp_amg_setup_ua_bsr, 497	PreMGRecur.c, 532
PreBLC.c, 498	fasp_solver_mgrecur, 532
fasp_precond_block_SGS_3, 502	PreMGRecurAMLI.c, 533
fasp_precond_block_SGS_3_amg, 503	fasp_amg_amli_coef, 534
fasp_precond_block_diag_3, 499	fasp_solver_amli, 534
fasp_precond_block_diag_3_amg, 499	fasp solver nl amli, 535
fasp_precond_block_diag_4, 500	fasp_solver_nl_amli_bsr, 536
fasp_precond_block_lower_3, 500	PreMGSolve.c, 537

fasp_amg_solve, 537	r
fasp_amg_solve_amli, 538	precond_block_data, 64
fasp_amg_solve_nl_amli, 539	precond_sweeping_data, 72
fasp_famg_solve, 539	REAL
PreSTR.c, 540	fasp.h, 332
fasp_precond_dstr_blockgs, 541	RS_C1
fasp_precond_dstr_diag, 541	fasp.h, 332
fasp_precond_dstr_ilu0, 542	restart
fasp_precond_dstr_ilu0_backward, 542	input_param, 53
fasp_precond_dstr_ilu0_forward, 543	itsolver_param, 56
fasp_precond_dstr_ilu1, 544	
fasp_precond_dstr_ilu1_backward, 544	S
fasp_precond_dstr_ilu1_forward, 545	grid2d, 36
precond, 62	SA_AMG
precond_block_data, 63	fasp_const.h, 360
A_diag, 63	SCHWARZ_BACKWARD
Ablc, 63	fasp_const.h, 360
amgparam, 63	SCHWARZ_FORWARD
LU_diag, 64	fasp_const.h, 361
mgl, 64	SCHWARZ_SYMMETRIC
r, 64	fasp_const.h, 361
precond_data, 64	SHORT
precond_data_bsr, 66	fasp.h, 332
precond_data_str, 68	SMALLREAL2
precond_diagbsr, 69	fasp_const.h, 361
precond_diagstr, 70	SMALLREAL
precond_sweeping_data, 71	fasp_const.h, 361
A, 71	SMOOTHER_BLKOIL
Ai, 71	fasp_const.h, 361
local_LU, 72	SMOOTHER_CG
local_A, 72	fasp_const.h, 362
local_index, 72	SMOOTHER_GSOR fasp_const.h, 362
NumLayers, 72	SMOOTHER GS
r, 72	fasp const.h, 362
w, 73	SMOOTHER_JACOBI
precond_type	fasp_const.h, 362
input_param, 52	SMOOTHER_L1DIAG
itsolver_param, 55	fasp_const.h, 363
print amgcomplexity	SMOOTHER_POLY
AuxMessage.c, 102	fasp_const.h, 363
print_amgcomplexity_bsr	SMOOTHER_SGSOR
AuxMessage.c, 103	fasp const.h, 363
print_cputime	SMOOTHER_SGS
AuxMessage.c, 103	fasp_const.h, 363
print_itinfo	SMOOTHER_SOR
AuxMessage.c, 104	fasp const.h, 363
print_level	SMOOTHER_SPETEN
input_param, 52	fasp_const.h, 364
itsolver_param, 55	SMOOTHER_SSOR
print_message	fasp_const.h, 364
AuxMessage.c, 105	SOLVER AMG
problem_num	fasp_const.h, 364
input_param, 52	SOLVER BiCGstab
	302121. <u>_</u> 3.300000

fasp_const.h, 364 SOLVER_CG fasp_const.h, 365 SOLVER_DEFAULT fasp_const.h, 365 SOLVER_GGG fasp_const.h, 366 SOLVER_GGG fasp_const.h, 366 SOLVER_GGG fasp_const.h, 366 SOLVER_GGG fasp_const.h, 366 SOLVER_MIMPS fasp_const.h, 366 SOLVER_SEGGG fasp_const.h, 366 SOLVER_SEGGG fasp_const.h, 366 SOLVER_SEGGGG fasp_const.h, 366 SOLVER_SEGGGG fasp_const.h, 366 SOLVER_SEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		
fasp_consth, 364 Schwarz_maxiv SOLVER_DEFAULT input_param, 53 fasp_consth, 365 Schwarz_mmsize SOLVER_GCG input_param, 53 SOLVER_GCG Schwarz_param, 74 SOLVER_GCG Schwarz_param, 74 SOLVER_GCR SolAMGs, 545 fasp_consth, 365 SOLVER_GCR SOLVER_GMRES fasp_solver_amp, 546 SOLVER_GMRES fasp_solver_amp, 546 SOLVER_MIMPS fasp_solver_dblc_krylov_block_3, 549 fasp_consth, 366 fasp_solver_dblc_krylov_block_4, 550 fasp_solver_dblc_krylov_block_4, 550 fasp_solver_dblc_krylov_block_4, 550 fasp_solver_dblc_krylov_block_6 fasp_solver_dblc_krylov_block_6 fasp_solver_dblc_krylov_block_6 fasp_solver_dblc_krylov_block_6	fasp_const.h, 364	input_param, 53
SOLVER_DEFAULT	_	
fasp const.h, 365 Schwarz_mmsize SOLVER_FMG input_param, 53 Schwarz_param, 74 Schwarz_param, 74 SOLVER_GCG Schwarz_lype fasp_const.h, 365 solMG.c, 545 SOLVER_GCR SolMG.c, 545 fasp_const.h, 365 fasp_solver_amg, 546 SOLVER_MIMPS fasp_solver_dblc_krylov, 548 fasp_const.h, 366 fasp_solver_dblc_krylov, 548 fasp_const.h, 366 fasp_solver_dblc_krylov, 548 fasp_const.h, 366 fasp_solver_dblc_krylov, 548 SOLVER_MIMPS fasp_solver_dblc_krylov, 548 fasp_const.h, 366 fasp_solver_dblc_krylov, 548 SOLVER_MIMPS fasp_solver_dblc_krylov, 548 fasp_const.h, 366 fasp_solver_dblc_krylov, 548 SOLVER_SOL fasp_solver_dblc_krylov, 548 fasp_const.h, 366 fasp_solver_dblc_krylov_blc_4, 550 fasp_const.h, 366 fasp_solver_dblc_krylov_blc_4, 550 fasp_const.h, 366 fasp_solver_dblc_krylov_blc_4, 550 fasp_const.h, 366 fasp_solver_dblc_krylov_dall_solver_dblc_krylov_dblc_4, 550 fasp_const.h, 367 fasp_solver_dblc_krylov_dblc_4, 550 fasp	• —	
SOLVER_FMG		. —
Schwarz_param, 74	• —	
SOLVER_GCG Schwarz_type input_param, 53 SOLVER_GCR sinput_param, 53 SOLMGC, 545 fasp_const.h, 365 fasp_solver_amg, 546 SOLVER_GMRES SolBLC.c, 547 fasp_const.h, 365 fasp_solver_dblc_krylov_548 SOLVER_MUMPS fasp_solver_dblc_krylov_block_3, 549 SOLVER_MinRes fasp_solver_dblc_krylov_block_3, 549 SOLVER_MinRes fasp_solver_dblc_krylov_block_4, 550 fasp_const.h, 366 fasp_solver_dblc_krylov_sweeping, 551 SOLVER_PARDISO fasp_solver_dblc_krylov_sweeping, 551 fasp_const.h, 366 fasp_solver_dblc_krylov_selock_4, 550 fasp_const.h, 366 fasp_solver_dblc_krylov_selock_4, 550 fasp_const.h, 366 fasp_solver_dblc_krylov_ms_551 SOLVER_SCG fasp_solver_dblc_krylov_amg, 554 fasp_const.h, 366 fasp_solver_dblc_krylov_amg, 555 fasp_const.h, 367 fasp_solver_dcll_krylov_amg, 556 fasp_const.h, 367 fasp_solver_dcll_krylov_amg, 557 SOLVER_SUMRES fasp_solver_dcll_krylov_amg, 560 fasp_const.h, 367 fasp_solver_dcll_krylov_amg, 560 SOLVER_SUFGMRES fasp_solver_dcll_krylov_amg, 560	_	• —
fasp_const.h, 365 SOLVER_GCR SolAMC.c, 545 fasp_const.h, 365 fasp_const.h, 365 fasp_const.h, 365 fasp_const.h, 365 fasp_solver_dolc_itsolver, 548 fasp_solver_dolc_krylov_548 fasp_const.h, 366 fasp_const.h, 366 fasp_solver_dolc_krylov_block_d, 549 fasp_const.h, 366 fasp_solver_dolc_krylov_block_d, 550 fasp_const.h, 366 fasp_solver_dolc_krylov_block_d, 550 fasp_const.h, 366 fasp_solver_dolc_krylov_block_d, 550 fasp_const.h, 366 fasp_solver_dolc_krylov_block_d, 550 fasp_const.h, 366 fasp_solver_dols_krylov_ame_s551 fasp_const.h, 366 fasp_solver_dols_krylov_ame_s551 fasp_const.h, 366 fasp_solver_dols_krylov_ame_s551 fasp_solver_dols_krylov_s60 fasp_solver_dols_krylov_ame_s551 fasp_solver_dols_krylov_ame_s551 fasp_solver_dols_krylov_ame_s551 fasp_solver_dols_krylov_ame_s551 fasp_solver_dols_krylov_ame_s551 fasp_solver_dols_krylov_ame_s551 fasp_solver_dols_krylov_s60 fasp_solver_	• —	
SOLVER_GCR fasp_const.h, 365 SOLVER_GMRES fasp_const.h, 365 SOLVER_MUMPS fasp_const.h, 366 SOLVER_MIMPS fasp_const.h, 366 SOLVER_MINRES fasp_const.h, 366 SOLVER_MINRES fasp_const.h, 366 SOLVER_PARDISO fasp_const.h, 366 SOLVER_PARDISO fasp_const.h, 366 SOLVER_SOLVER_DIONE fasp_const.h, 366 SOLVER_SOLVER_SOLVER_DIONE fasp_const.h, 366 SOLVER_SOL	_	
fasp_const.h, 365 fasp_solver_amg, 546 SOLVER GMRES SolBL.C.c, 547 fasp_const.h, 365 fasp_solver_dblc_itsolver, 548 SOLVER_MUMPS fasp_solver_dblc_krylov, 548 fasp_const.h, 366 fasp_solver_dblc_krylov_block_3, 549 fasp_const.h, 366 fasp_solver_dblc_krylov_sweeping, 551 SOLVER_PARDISO SolBSR.c, 552 fasp_const.h, 366 fasp_solver_dbsr_krylov_sweeping, 551 SOLVER_SBICGstab fasp_solver_dbsr_krylov_amg, 554 fasp_const.h, 366 fasp_solver_dbsr_krylov_amg, 555 Gasp_const.h, 366 fasp_solver_dbsr_krylov_amg, 555 Gasp_const.h, 366 fasp_solver_dbsr_krylov_ind_ing, 556 fasp_const.h, 366 fasp_solver_dbsr_krylov_ind_ing, 556 fasp_const.h, 366 fasp_solver_dbsr_krylov_ind_ing, 556 fasp_const.h, 367 fasp_solver_dbsr_krylov_ind_ing, 557 SOLVER_SGMRES fasp_solver_dbsr_krylov_ind, 560 fasp_const.h, 367 fasp_solver_dcsr_krylov_ind, 560 fasp_const.h, 367 fasp_solver_dcsr_krylov_ind, 562 fasp_solver_dcsr_krylov_ind, 562 fasp_solver_dcsr_krylov_ind, 562 fasp_const.h, 368 fasp_solver_dcsr_krylov_ind, 562		• —
SOLVER_GMRES fasp_const.h, 365 SOLVER_MUMPS fasp_const.h, 366 SOLVER_MINRES fasp_const.h, 366 SOLVER_MINRES fasp_const.h, 366 SOLVER_MINRES fasp_const.h, 366 SOLVER_PARDISO fasp_const.h, 366 SOLVER_PARDISO fasp_const.h, 366 SOLVER_SICGstab fasp_const.h, 366 SOLVER_SICGstab fasp_const.h, 366 SOLVER_SCG fasp_const.h, 366 SOLVER_SCG fasp_const.h, 366 SOLVER_SCG fasp_const.h, 367 SOLVER_SCG fasp_const.h, 367 SOLVER_SCG fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_DIFFERLU fasp_const.h, 368 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_DIFFERLU fasp_const.h, 369 SOLVER_DIFFERLU fasp_const.h, 369 SOLVER_DIFFERLU		
fasp_const.h, 365 fasp_solver_dblc_itsolver, 548 SOLVER_MUMPS fasp_solver_dblc_krylov, 548 fasp_const.h, 366 fasp_solver_dblc_krylov_block_3, 549 SOLVER_MinRes fasp_solver_dblc_krylov_block_4, 550 fasp_const.h, 366 fasp_solver_dblc_krylov_sweeping, 551 SOLVER_PARDISO fasp_solver_dbsr_krylov_sweeping, 551 fasp_const.h, 366 fasp_solver_dbsr_krylov_amg, 554 fasp_const.h, 366 fasp_solver_dbsr_krylov_amg, 554 SOLVER_SCG fasp_solver_dbsr_krylov_amg, 556 fasp_const.h, 366 fasp_solver_dbsr_krylov_amg, 556 SOLVER_SGGG fasp_solver_dbsr_krylov_amg, 556 fasp_const.h, 367 fasp_solver_dbsr_krylov_inl_m, 555 fasp_const.h, 367 fasp_solver_dcsr_krylov_inl_m, 556 fasp_const.h, 367 fasp_solver_dcsr_krylov_inl_m, 556 fasp_const.h, 367 fasp_solver_dcsr_krylov_amg, 560 fasp_solver_dcsr_krylov_inl_m, 561 fasp_solver_dcsr_krylov_amg, 660 fasp_const.h, 367 fasp_solver_dcsr_krylov_amg, 650 fasp_const.h, 368 fasp_solver_dcsr_krylov_amg, 650 fasp_const.h, 368 fasp_solver_dcsr_krylov_amg, 650 fasp_const.h, 368 fa	• —	· — — •
SOLVER_MUMPS fasp_const.h, 366 fasp_const.h, 367 fasp_const.h, 368 fasp_const.h, 369	_	
fasp_const.h, 366 SOLVER_MinRes fasp_const.h, 366 SOLVER_PARDISO fasp_const.h, 366 SOLVER_PARDISO fasp_const.h, 366 SOLVER_SBIGGstab fasp_const.h, 366 SOLVER_SCG fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SMINReS fasp_const.h, 367 SOLVER_SMINRES fasp_const.h, 367 SOLVER_SMINRES fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 STAG_RATIO fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 SOLVER_VGNOP, 576 fasp_solver_itsolver, 575 fasp_solver_itsolver, 575 fasp_solver_itsolver, 576 fasp_solver_itsolver, 578	• —	• — — —
SOLVER_MinRes fasp_const.h, 366 fasp_const.h, 366 SOLVER_PARDISO fasp_const.h, 366 SOLVER_SBICGstab fasp_const.h, 366 SOLVER_SCG fasp_const.h, 367 SOLVER_SCG fasp_const.h, 367 SOLVER_SCBC fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_ONST.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 369 STAG_RATIO fasp_poisson_gmg3d, 571 fasp_poisson_gmg3d, 572 fasp_poisson_gmg3d, 573 fasp_poisson_gmg3d, 573 SolMalFree.c, 574 fasp_poisson_gmg3d, 573 SolMalFree.c, 574 fasp_poisson_gmg3d, 573 Fasp_solver_itsolver, 575 fasp_solver_itsolver, 575 fasp_solver_itsolver, 575 fasp_solver_itsolver, 576 fasp_solver_itsolver, 576 fasp_solver_itsolver, 576 fasp_solver_itsolver, 578 fasp_solver_itsolver, 578 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_itsolver, 578		
fasp_const.h, 366 SOLVER_PARDISO fasp_const.h, 366 SOLVER_SBiCGstab fasp_const.h, 366 SOLVER_SBiCGstab fasp_const.h, 366 SOLVER_SCG fasp_const.h, 366 SOLVER_SCG fasp_const.h, 366 SOLVER_SCG fasp_const.h, 366 SOLVER_SCG fasp_const.h, 367 SOLVER_SCG fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SMinRes fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 368 SOLVER_VENCES fasp_const.h, 368 SOLVER_VENCES fasp_const.h, 368 SOLVER_VENCES fasp_const.h, 369 STAG_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 SOLVER_UPECRES fasp_const.h, 369 SOLVER_UPECRES fasp_const.h, 369 SOLVER_UPICORES fasp_con	• —	
SOLVER_PARDISO fasp_const.h, 366 SOLVER_SBICGstab fasp_const.h, 366 SOLVER_SCG SOLVER_SCG fasp_const.h, 366 SOLVER_SCG fasp_const.h, 366 SOLVER_SCG fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SMINRES fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBICGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 369 SOLVER_VFGMRES fasp_const.h, 369 SOLVER_VFGMRES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 SOLVER_VFICT, 369 SOLVER_LES fasp_const.h, 369 SOLVER_LES fasp_colver_dstr_krylov, 576 Fasp_solver_dstr_krylov, 578	_	
fasp_const.h, 366 SOLVER_SBIGGstab fasp_const.h, 366 SOLVER_SCG fasp_const.h, 366 SOLVER_SCG fasp_const.h, 366 SOLVER_SCG fasp_const.h, 366 SOLVER_SCG fasp_const.h, 367 SOLVER_SCG fasp_const.h, 367 SOLVER_SCMRES fasp_const.h, 367 SOLVER_SCMRES fasp_const.h, 367 SOLVER_SCMRES fasp_const.h, 367 SOLVER_SCOR fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBIGGstab fasp_const.h, 368 SOLVER_VBIGGstab fasp_const.h, 368 SOLVER_VBIGGstab fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 STAG_RATIO fasp_const.h, 369 STAG_RATIO fasp_poisson_gmggdd, 570 fasp_poisson_gmggdd, 570 fasp_poisson_gmggdd, 572 fasp_poisson_gmggdd, 573 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 SOLVER_URL RES fasp_const.h, 369 SOLVER_URL	• —	
SOLVER_SBICGstab fasp_solver_dbsr_krylov, 553 fasp_const.h, 366 fasp_solver_dbsr_krylov_amg, 554 SOLVER_SGG fasp_solver_dbsr_krylov_amg, k, 555 fasp_const.h, 366 fasp_solver_dbsr_krylov_diag, 556 SOLVER_SGCG fasp_solver_dbsr_krylov_iiu, 556 fasp_const.h, 367 fasp_solver_dbsr_krylov_nk_amg, 557 SOLVER_SMIRES fasp_solver_dcsr_krylov_amg, 550 fasp_const.h, 367 fasp_solver_dcsr_krylov_amg, 560 SOLVER_SUPERLU fasp_solver_dcsr_krylov_amg, 562 fasp_const.h, 367 fasp_solver_dcsr_krylov_amg, 562 SOLVER_SVFGMRES fasp_solver_dcsr_krylov_amg, 562 fasp_const.h, 367 fasp_solver_dcsr_krylov_iiu, 562 fasp_solver_dcsr_krylov_amg, 562 fasp_solver_dcsr_krylov_img, 562 fasp_solver_dcsr_krylov_img, 562 fasp_solver_dcsr_krylov_img, 562 fasp_solver_dcsr_krylov_img, 562 fasp_solver_dcsr_krylov_img, 562 fasp_solver_dcsr_krylov_img, 563 fasp_solver_dcsr_krylov_img, 563 fasp_solver_dcsr_krylov_img, 563 fasp_solver_dcsr_krylov_img, 564 fasp_solver_dcsr_krylov_img, 564 fasp_solver_dcsr_krylov_img, 564 fasp_solver_dcsr_krylov_img, 564 fasp_solver_dcsr_krylov_img, 56	_	
fasp_const.h, 366 SOLVER_SCG fasp_const.h, 366 SOLVER_SGCG fasp_const.h, 366 SOLVER_SGCG fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SMINRES fasp_const.h, 367 SOLVER_SUPERLU fasp_solver_dcsr_krylov_amg_nk, 561 fasp_solver_dcsr_krylov_diag, 562 fasp_solver_dcsr_krylov_diag, 562 fasp_solver_dcsr_krylov_ilu_M, 563 fasp_solver_dcsr_krylov_ilu_M, 563 fasp_solver_dcsr_krylov_ilu_M, 563 fasp_solver_dcsr_krylov_ilu_M, 563 fasp_solver_dcsr_krylov_ilu_M, 563 fasp_solver_fasp_solver_dcsr_krylov_schwarz, 564 SOLVER_SVEMMES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBICGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 SOLVER_VGMRES fasp_const.h, 369 STOP_MCD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 SOLVER_CRES fasp_const.h, 369 SOLVER_CRES fasp_solver_itsolver_init, 576 fasp_solver_itsolver_init, 576 fasp_solver_dstr_krylov, 576 SOLVER_SOLVER_SOLVER_CRES fasp_solver_dstr_krylov, 576 SOLVER_SOLVER_SOLVER_SOLVER_CRES fasp_solver_dstr_krylov, 578	• —	
SOLVER_SCG fasp_const.h, 366 SOLVER_SGCG fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SMINES fasp_const.h, 367 SOLVER_SMINES fasp_const.h, 367 SOLVER_SMINES fasp_const.h, 367 SOLVER_SWINES fasp_const.h, 367 SOLVER_SWINES fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVEGMRES fasp_const.h, 367 SOLVER_SVEGMRES fasp_const.h, 367 SOLVER_SVEGMRES fasp_const.h, 368 SOLVER_SVEGMRES fasp_const.h, 368 SOLVER_SVEGMRES fasp_const.h, 368 SOLVER_SVEGMRES fasp_const.h, 368 SOLVER_SWINES fasp_const.h, 368 SOLVER_SWINES fasp_const.h, 368 SOLVER_VINES fasp_const.h, 369 SOL	_	· ·
fasp_const.h, 366 SOLVER_SGCG fasp_const.h, 367 SOLVER_SGMRES Gasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SMINES fasp_const.h, 367 SOLVER_SMINES fasp_const.h, 367 SOLVER_SMINES fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 SOLYER_VFGMRES fasp_const.h, 360 Fasp_cons	• —	·
SOLVER_SGCG fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SMINRES fasp_const.h, 367 SOLVER_SMINRES fasp_const.h, 367 SOLVER_SMINRES fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 368 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UFGMRES fasp_const.h, 369 SOLVER_UFGMRES fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 SOLYER_UFGMES fasp_const.h, 360 Fasp_const.h, 360	-	
fasp_const.h, 367 SOLVER_SGMRES fasp_const.h, 367 SOLVER_SMinRes fasp_const.h, 367 SOLVER_SMinRes fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VFIGMRES fasp_const.h, 368 SOLVER_VFIGMRES fasp_const.h, 368 SOLVER_VFIGMRES fasp_const.h, 368 SOLVER_VFIGMRES fasp_const.h, 368 SOLVER_VBICGstab fasp_const.h, 368 SOLVER_VBICGstab fasp_const.h, 368 SOLVER_VFIGMRES fasp_const.h, 368 SOLVER_VFIGMRES fasp_const.h, 368 SOLVER_VFIGMRES fasp_const.h, 368 SOLVER_VFIGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 SOLVER_VGMRES fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 SOLVER_VSIONERS fasp_solver_itsolver, 575 fasp_solver_itsolver, 575 fasp_solver_itsolver, 576 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_itsolver, 578 SWAP AuxSmallMat.c, 118		
SOLVER_SGMRES fasp_const.h, 367 SOLVER_SMinRes fasp_const.h, 367 SOLVER_SMinRes fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_SUPERLU fasp_const.h, 368 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBICGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 369 SOLVER_VFGMRES fasp_const.h, 369 SOLVER_VFGMRES fasp_const.h, 369 SOLVER_URDECRES fasp_solver_itsolver, 575 fasp_solver_itsolver, 575 fasp_solver_itsolver, 576 SOLVER_URDECRES fasp_solver_dcsr_krylov, 576 SOLVER_URDECRES fasp_solver_dcsr_krylov, 578 SOLVER_URDECRES fasp_solver_dcsr_krylov, 578	SOLVER_SGCG	· – – • – • –
fasp_const.h, 367 SOLVER_SMinRes fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBIGGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 369 SOLVER_VFGMRES fasp_const.h, 369 STAG_RATIO fasp_poisson_gmg2d, 572 fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 SOLMATFree.c, 574 fasp_solver_itsolver, 575 fasp_const.h, 369 SOLVER_RES fasp_solver_itsolver, 575 fasp_solver_itsolver, 576 Fasp_solver_itsolver, 578 Fasp_solver_dstr_itsolver, 578 Fasp_solver_dstr_krylov, 578	• —	· · ·
SOLVER_SMinRes fasp_const.h, 367 fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBICGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 SOLVER_VGMRES fasp_colver_itslover, 575 Fasp_colver_itslover, 578 Fasp_colver_dstr_itslover, 578 Fasp_colver_dstr_krylov, 578	SOLVER_SGMRES	SolCSR.c, 558
fasp_const.h, 367 SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBiCGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VBMRES fasp_const.h, 368 SOLVER_VBiCGstab fasp_const.h, 368 SOLVER_VBMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 SOLVER_VGMRES fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 SOLVER_VERES fasp_const.h, 369 SOLVER_VFGMRES fasp_const.h, 369 SOLVER_VGMOP_REL_RES fasp_const.h, 369 SOLVER	• —	
SOLVER_SUPERLU fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBiCGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VBiCGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 SOLVER_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 SOLVER_RES fasp_const.h, 369 SOLVER_VFGMES fasp_const.h, 369 SOLVER_VFG	SOLVER_SMinRes	fasp_solver_dcsr_krylov, 560
fasp_const.h, 367 SOLVER_SVFGMRES fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBICGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 SOLVER_RES fasp_c	• —	fasp_solver_dcsr_krylov_amg, 560
SOLVER_SVFGMRES fasp_const.h, 367 fasp_solver_dcsr_krylov_ilu, 562 fasp_const.h, 367 fasp_solver_dcsr_krylov_ilu_M, 563 fasp_solver_dcsr_krylov_schwarz, 564 fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBICGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 SOMATFree.c, 574 STOP_REL_PRECRES fasp_solver_itsolver, 575 fasp_const.h, 369 SOLVER_VGMS SOLVER_VGMS SOLVER_VGMS Fasp_solver_itsolver, 576 fasp_solver_krylov, 576 SUSP_REL_RES fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	SOLVER_SUPERLU	fasp_solver_dcsr_krylov_amg_nk, 561
fasp_const.h, 367 SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBiCGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 STAG_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 SOLVER_PRECRES fasp_const.h, 369 SOLVER_PRECRES fasp_const.h, 369 SOLVER_RECRES fasp_solver_itsolver, 575 fasp_const.h, 369 SOLVER_RECRES fasp_solver_itsolver_init, 576 fasp_const.h, 369 SOLVER_RECRES fasp_solver_krylov, 576 SOLVER_RECRES fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	fasp_const.h, 367	fasp_solver_dcsr_krylov_diag, 562
SOLVER_SVGMRES fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBICGstab fasp_const.h, 368 SOLVER_VBICGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 STAG_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 SOLMATFree.c, 574 STOP_REL_PRECRES fasp_const.h, 369 SOLMATFree.c, 574 STOP_REL_RES fasp_const.h, 369 SOLMATFree.c, 575 fasp_const.h, 369 SOLMATFree.c, 576 SOLMATFRECRES fasp_solver_itsolver, 575 fasp_const.h, 369 SOLMATFRECRES fasp_solver_itsolver_init, 576 SOLMATFRECRES fasp_solver_itsolver_init, 576 SOLMATFRECRES fasp_solver_itsolver_init, 576 Fasp_const.h, 369 SOLMATFRECRES fasp_solver_itsolver_init, 576 Fasp_solver_itsolver_init, 576 Fasp_solver_dstr_itsolver, 578 Fasp_solver_dstr_krylov, 578	SOLVER_SVFGMRES	fasp_solver_dcsr_krylov_ilu, 562
fasp_const.h, 368 SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBiCGstab fasp_const.h, 368 SOLVER_VBiCGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 369 STAG_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 SOLMATFree.c, 574 Fasp_const.h, 369 SOLMATFree.c, 575 fasp_const.h, 369 SOLMATFRES fasp_solver_itsolver, 575 fasp_solver_itsolver, 576 Fasp_const.h, 369 SOLMATFRES fasp_solver_dstr_itsolver, 576 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	• —	fasp_solver_dcsr_krylov_ilu_M, 563
SOLVER_UMFPACK fasp_const.h, 368 SOLVER_VBiCGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 369 STAG_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 SOLVER_VGMRES fasp_solver_itsolver, 575 fasp_const.h, 369 SOLVER_VGMRES fasp_solver_itsolver_init, 576 fasp_const.h, 369 SOLVER_VGMRES fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	SOLVER_SVGMRES	
fasp_const.h, 368 SOLVER_VBiCGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 STAG_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 SOLMATFree.c, 574 fasp_solver_itsolver, 575 fasp_const.h, 369 STOP_REL_RES fasp_solver_itsolver_init, 576 STOP_REL_RES fasp_const.h, 369 SOLMATERES fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578 SWAP AuxSmallMat.c, 118		SolFAMG.c, 565
SOLVER_VBiCGstab fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_poisson_gmg1d, 569 SOLVER_VGMRES fasp_poisson_gmg1d, 569 SOLVER_VGMRES fasp_const.h, 368 STAG_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_solver_itsolver, 575 fasp_const.h, 369 STOP_REL_RES fasp_solver_krylov, 576 STOP_REL_RES fasp_const.h, 369 SOLSTR.c, 577 SWAP AuxSmallMat.c, 118		
fasp_const.h, 368 SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 STAG_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_solver_itsolver_init, 576 Fasp_const.h, 369 SOLMATFRES. Fasp_solver_krylov, 576 STOP_REL_RES fasp_const.h, 369 SOLSTR.c, 577 SWAP AuxSmallMat.c, 118	fasp_const.h, 368	SolGMGPoisson.c, 566
SOLVER_VFGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 SOLVER_VGMRES fasp_const.h, 368 STAG_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_solver_itsolver, 575 fasp_solver_itsolver_init, 576 STOP_REL_RES fasp_solver_krylov, 576 STOP_REL_RES fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	SOLVER_VBiCGstab	fasp_poisson_fgmg1d, 567
fasp_const.h, 368 SOLVER_VGMRES fasp_poisson_gmg1d, 569 SOLVER_VGMRES fasp_const.h, 368 STAG_RATIO fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 SOLMatFree.c, 574 fasp_solver_itsolver, 575 fasp_const.h, 369 STOP_REL_RES fasp_solver_init, 576 STOP_REL_RES fasp_solver_krylov, 576 STOP_REL_RES fasp_solver_krylov, 576 SOLSTR.c, 577 SWAP AuxSmallMat.c, 118 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578		fasp_poisson_fgmg2d, 568
SOLVER_VGMRES fasp_const.h, 368 fasp_const.h, 368 fasp_poisson_gmg3d, 571 STAG_RATIO fasp_const.h, 369 fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_solver_itsolver_init, 576 Fasp_const.h, 369 STOP_REL_RES fasp_solver_krylov, 576 Fasp_const.h, 369 SOISTR.c, 577 SWAP AuxSmallMat.c, 118 fasp_solver_dstr_krylov, 578	SOLVER_VFGMRES	fasp_poisson_fgmg3d, 568
fasp_const.h, 368 STAG_RATIO fasp_const.h, 369 fasp_const.h, 369 STOP_MOD_REL_RES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_solver_itsolver_init, 576 fasp_const.h, 369 SOISTR.c, 577 SWAP AuxSmallMat.c, 118 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	fasp_const.h, 368	fasp_poisson_gmg1d, 569
STAG_RATIO fasp_const.h, 369 fasp_const.h, 369 fasp_poisson_gmgcg2d, 572 fasp_const.h, 369 fasp_poisson_gmgcg2d, 573 fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 Fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 SOISTR.c, 577 SWAP AuxSmallMat.c, 118 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	SOLVER_VGMRES	fasp_poisson_gmg2d, 570
fasp_const.h, 369 STOP_MOD_REL_RES fasp_poisson_gmgcg2d, 572 fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 SOISTR.c, 577 SWAP AuxSmallMat.c, 118 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	fasp_const.h, 368	fasp_poisson_gmg3d, 571
STOP_MOD_REL_RES fasp_const.h, 369 SOIMatFree.c, 574 STOP_REL_PRECRES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 SOISTR.c, 577 SWAP AuxSmallMat.c, 118 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	STAG_RATIO	fasp_poisson_gmgcg1d, 572
fasp_const.h, 369 SolMatFree.c, 574 STOP_REL_PRECRES fasp_const.h, 369 fasp_solver_itsolver, 575 fasp_solver_itsolver_init, 576 STOP_REL_RES fasp_const.h, 369 SolSTR.c, 577 SWAP AuxSmallMat.c, 118 SolMatFree.c, 574 fasp_solver_itsolver, 575 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	fasp_const.h, 369	fasp_poisson_gmgcg2d, 572
STOP_REL_PRECRES fasp_const.h, 369 fasp_solver_itsolver, 575 fasp_const.h, 369 fasp_solver_itsolver_init, 576 fasp_const.h, 369 fasp_const.h, 369 SolSTR.c, 577 SWAP AuxSmallMat.c, 118 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	STOP_MOD_REL_RES	fasp_poisson_gmgcg3d, 573
fasp_const.h, 369 STOP_REL_RES fasp_const.h, 369 fasp_const.h, 369 SolSTR.c, 577 SWAP AuxSmallMat.c, 118 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	fasp_const.h, 369	SolMatFree.c, 574
STOP_REL_RES fasp_solver_krylov, 576 fasp_const.h, 369 SOISTR.c, 577 SWAP fasp_solver_dstr_itsolver, 578 AuxSmallMat.c, 118 fasp_solver_dstr_krylov, 578	STOP_REL_PRECRES	fasp_solver_itsolver, 575
fasp_const.h, 369 SolSTR.c, 577 SWAP AuxSmallMat.c, 118 SolSTR.c, 577 fasp_solver_dstr_itsolver, 578 fasp_solver_dstr_krylov, 578	fasp_const.h, 369	fasp_solver_itsolver_init, 576
SWAP fasp_solver_dstr_itsolver, 578 AuxSmallMat.c, 118 fasp_solver_dstr_krylov, 578	STOP_REL_RES	fasp_solver_krylov, 576
AuxSmallMat.c, 118 fasp_solver_dstr_krylov, 578	fasp_const.h, 369	SolSTR.c, 577
· ·	SWAP	fasp_solver_dstr_itsolver, 578
Schwarz_blksolver fasp_solver_dstr_krylov_blockgs, 579	AuxSmallMat.c, 118	fasp_solver_dstr_krylov, 578
	Schwarz_blksolver	fasp_solver_dstr_krylov_blockgs, 579

```
fasp_solver_dstr_krylov_diag, 580
                                                            fasp_const.h, 371
    fasp solver dstr krylov ilu, 581
                                                       workdir
SolWrapper.c, 582
                                                            input_param, 54
    fasp_fwrapper_amg_, 582
    fasp_fwrapper_krylov_amg_, 583
    fasp_wrapper_dbsr_krylov_amg, 584
    fasp wrapper dcoo dbsr krylov amg, 585
solver_type
    input_param, 54
stop_type
    input_param, 54
    itsolver_param, 56
    grid2d, 36
THDs_AMG_GS
    AuxThreads.c, 137
THDs_CPR_gGS
    AuxThreads.c, 137
THDs CPR IGS
    AuxThreads.c, 137
TRUE
    fasp_const.h, 369
tfather
    grid2d, 37
tol
    itsolver_param, 56
total_alloc_count
    AuxMemory.c, 101
    fasp.h, 335
total alloc mem
    AuxMemory.c, 101
    fasp.h, 335
triangles
    grid2d, 37
UA_AMG
    fasp_const.h, 370
UNPT
    fasp_const.h, 370
USERDEFINED
    fasp_const.h, 370
V_CYCLE
    fasp_const.h, 370
VMB
    fasp_const.h, 371
val
    dBSRmat, 29
vertices
    grid2d, 37
    precond_sweeping_data, 73
W_CYCLE
```