

ADVANCED PROCESS MODELLING FORUM

Optimising industrial waste-water systems:

From food production to shale gas

Marc Pau-Roig – Applications Engineer

Waste-water treatment in Process Industries

Process Industries face more and more

Waste-water treatment related constraints

- High discharge quality requirements (→ violation costs)
- Space availability (e.g. Off-shore platforms)
- Water availability (dry areas, big cities)
- Best Available Technology (BAT) compliance

I am presenting:

g WATER

Process units library

for

water and wastewater

treatment chains

gWATER is a library...

gWATER classification

Biodegradable waters

Non-biodegradable waters

gWATER sub-libraries & industry scope

		Urban	Potable	Food	Mining	Chemistry	Oil & gas
Biodegradable	gWATER - Basics I						
	gWATER - Advanced Biology						
	gWATER - Aeration						
	gWATER - Sludge train						
	gWATER - Fixed Film						
	gWATER - Batch						
Non-biodegradable	gWATER - Basics II						
	gWATER - Sedimentation						
	gWATER - Flotation						
	gWATER - Filtration						
	gWATER - Ion exchange						
Non	gWATER - Membranes						
	gWATER - Distribution						

Biodegradable treatment schemes

- Conventional Activated Sludge (CAS)
- Membrane Bio-Reactors (MBR)
- Biofilters

gWATER: Biological Process – Activated Sludge

gWATER: Biological Process – Biofilm reactors

Non-biodegradable waters

- Mining and Mineral Processing Industries
- Desalination
- Water purification
- Oil & Gas produced water

gWATER: Dissolved Air Flotation

gWATER: Membrane network (MF/UF/NF/RO)

- Water purification
- Waste water desalination
- Complex ions removal
- Ultrapure water production

gWATER: Ion exchange + Reverse Osmosis

Water softening & desalination

Wastewater treatment technologies for Shale Gas

Veolia's OPUS system

Desalination of water with high concentrations of sparingly soluble solutes (e.g., SiO2, CaSO4, and Mg(OH)2), organics, and boron.

Wastewater treatment technologies for Shale Gas

gWATER structure

- Flexible water characterisation
- Modularity

Challenge: water characterisation

- ☐ All stream components are classified into one of these groups
- ☐ The number and the nature of components is fully customisable
- ☐ Each groups will behave differently in the different process units models

gWATER: modularity, a key to efficient development

Biology combined with reactor modelling

Any combination of that (that make sense) is possible, thanks to the modularity

gWATER added value

- Treatment chain design, sizing
 - What combination of equipment?
 - How many units? Optimal layout?
 - Energy demand and possible reuse? (Pressure exchangers, etc...)
 - Water demand and reuse.
- Operational decisions linked to constraints
 - Optimal number of units/lines in use.
 - Batch/continuous process (electricity cost)
 - Other managing options (e.g. Shale gas produced water)

Thank you

