

MAX-PLANCK-INSTITUT FÜR DEMOGRAFISCHE FORSCHUNG

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

How to estimate the infection fatality rate of COVID-19 in Germany (and elsewhere)

COVID-19 mortality

- How lethal is COVID-19?
- Major question since beginning of the pandemic
- Focus today on Germany, but generally applicable

How to measure COVID-19 mortality at the population level

Many ways to measure COVID-19 mortality, some key variants are:

- Absolute measures
 - Deaths associated with COVID-19 (e.g., death certificates)
 - Excess mortality
- Relative measures
 - Case fatality rate (CFR)
 - Infection fatality rate (IFR)

Deaths

Case fatality rate

- CFR = Deaths associated with COVID-19 / COVID-19 positive cases
- Calculation is easy, data available
- Problem: Both numerator and denominator are not complete

Infection fatality rate

- IFR = All COVID-19 deaths / All COVID-19 cases
- Problem: Both numerator and denominator are usually not exactly known
- Solution: Take estimated IFR from somewhere else and account for age structure

Why adjust for age?

- Age is a major predictor of lethality of COVID-19 at the individual level
- The age structure of a population is a key predictor of country differences in mortality (Dowd et al., Dudel et al., Sudharsanan et al., . . .)

IFR =
$$\frac{\sum_{x} N_{x} P_{x} I_{x}}{\sum_{x} N_{x} P_{x}} = \frac{\text{All COVID-19 deaths}}{\text{All COVID-19 cases}}$$

- N_x : Population in age x
- P_x : Proportion of individuals aged x who get COVID-19
- I_x : Infection fatality rate for age x

Age-specific IFR estimates I_X

- Several papers provide estimates of age-specific IFRs (e.g., Verity et al., Salje, et al.)
- Levin et al. combine these

Results of Levin et al. (1)

Results of Levin et al. (2)

$$\log I_x = -7.53 + 0.119x$$

Proportion of COVID-19 cases, P_X

Also provided by Levin et al.

Scenario	Infection Rate by Age (percent)			
	All	0-49	50-64	65+
Scenario #1: current pattern of age-specific prevalence	20	23	16	14
Scenario #2: uniform prevalence	20	20	20	20
Scenario #3: protection of vulnerable age groups	20	26	10	6

Population in age x, N_x

Can be taken from many sources; e.g., Human Mortality Database

$$IFR = \frac{\sum_{x} N_{x} P_{x} I_{x}}{\sum_{x} N_{x} P_{x}}$$

- N_x : From Human Mortality Database
- P_x : Levin et al.
- I_x : Levin et al.