Real Analysis Assignments

Mostafa Hassanein

 $20 \ {\rm December} \ 2023$

1.3.7

Proof:

Forward direction: If a set T_1 is denumerable, then there exists a bijection from T_1 onto a denumerable set T_2 .

Since T_1 is denumerable, then there exists a bijection f_1 from N onto T_1 . And since T_2 is denumerable, then there exists a bijection f_2 from N onto T_2 . Also, since f_1 is a bijection, then f_1^{-1} exists and is a bijection from T_1 onto N. Then, the function defined by $f_2 \circ f_1^{-1}$ is a bijection from T_1 onto T_2 , since the composition of bijective functions is bijective.

Reverse direction: If there exists a bijection from a set T1 onto a denumerable set T_2 , then T_1 is denumerable.

Let g be the bijection from T1 to T2.

Since T_2 is denumerable, then there exists a bijection f_2 from N onto T_2 . Also, since g is a bijection, then g^{-1} exists and is a bijection from T_2 onto T_1 . Then, the function defined as $f_1 := g^{-1} \circ f_2$ is a bijection from N onto T_1 , since the composition of bijective functions is bijective.

This implies that the set T_1 is denumerable.

This completes the proof.

1.3.8

Let's define the set S_i as $S_i := \{i\}$, then for each i, S_i is a finite set (of cardinality = 1).

But the union $\bigcup_{i=1}^{\infty} S_i = N$ is infinite, because N is infinite.

2.1.4

By the trichotomy of a, we have three cases: (i) a < 0, (ii) a = 0, and (iii) a > 0.

(i): $a < 0 \Rightarrow a \cdot a > 0 \Rightarrow a \cdot a > a \Rightarrow a \cdot a \neq a$. Therefore, a cannot be less than 0.

(ii): $a = 0 \Rightarrow a \cdot a = a$, because $0 \cdot 0 = 0$.

(iii): a > 0 and $a \cdot a = a \Rightarrow a^{-1} \cdot a \cdot a = a^{-1} \cdot a \Rightarrow a = 1$.

Therefore, a = 0 or a = 1.

2.1.23

Proof:

Forward direction: For a > 0, b > 0, and $n \in N$: If a < b, then $a^n < b^n$.

We use induction.

Base case (n = 1): This case is trivially true because it is given by the hypothesis: $a < b \iff a^1 < b^1$.

Inductive step (n > 1): By the induction hypothesis, we have:

$$a < b \Rightarrow a^n < b^n$$

Since b > 0, multiplying $a^n < b^n$ by b, we get:

$$ba^n < b^{n+1} \tag{1}$$

Since a < b, then b - a > 0; and since a > 0, then $a^n > 0$. Also, since (b - a) > 0 and $a^n > 0$, we have:

$$(b-a)a^n > 0 \Rightarrow ba^n - a^{n+1} > 0 \Rightarrow ba^n > a^{n+1}$$
 (2)

Combining (1) and (2) together, we get:

$$a^{n+1} < ba^n < b^{n+1}$$

Therefore, $a < b \Rightarrow a^{n+1} < b^{n+1}$, thus closing the induction.

Reverse direction: For a > 0, b > 0, and $n \in N$: If $a^n < b^n$, then a < b.

We use induction.

Base case (n = 1): This case is trivially true because it is given by the hypothesis: $a^1 < b^1 \iff a < b$.

Inductive step (n > 1): By the induction hypothesis, we have:

$$a^n < b^n \Rightarrow a < b \tag{3}$$

The contrapositive of (3) is:

$$a \ge b \Rightarrow a^n \ge b^n \tag{4}$$

Since b > 0, multiplying $a^n \ge b^n$ by b, we get:

$$ba^n \ge b^{n+1} \tag{5}$$

Since $a \ge b$, then $a - b \ge 0$; and since a > 0, then $a^n > 0$. Also, since $(a - b) \ge 0$ and $a^n > 0$, we have:

$$(a-b)a^n \ge 0 \Rightarrow a^{n+1} - ba^n \ge 0 \Rightarrow a^{n+1} \ge ba^n \tag{6}$$

Combining (5) and (6) together, we get:

$$a^{n+1} \ge ba^n \ge b^{n+1} \tag{7}$$

Putting (4), (5), (6), and (7) together, we get:

$$a \ge b \Rightarrow a^{n+1} \ge b^{n+1} \tag{8}$$

Taking the contrapositive of (8), we get:

$$a^{n+1} < b^{n+1} \Rightarrow a < b \tag{9}$$

This closes the induction and completes the proof.

2.2.16

$$\begin{split} V_{\epsilon}(a) &= \{x \in R : |x-a| < \epsilon\} \\ V_{\delta}(a) &= \{x \in R : |x-a| < \delta\} \end{split}$$

(i)
$$V_{\epsilon}(a) \cup V_{\delta}(a) = \{x \in R : |x - a| < \epsilon \text{ and } |x - a| < \delta\}$$

Let $\gamma = \min(\epsilon, \delta)$.

Lower Bound: $|x-a| < \epsilon$ and $|x-a| < \delta \Rightarrow x > a - \epsilon$ and $x > a - \delta \Rightarrow x > a - \gamma$

Upper Bound: $|x-a| < \epsilon$ and $|x-a| < \delta \Rightarrow x < a + \epsilon$ and $x < a + \delta \Rightarrow x < a + \gamma$

Therefore, $V_{\epsilon}(a) \cup V_{\delta}(a)$ is in the γ -neighbourhood of a.

(ii)
$$V_{\epsilon}(a) \cap V_{\delta}(a) = \{x \in R : |x - a| < \epsilon \text{ or } |x - a| < \delta \}$$

Let $\gamma = \max(\epsilon, \delta)$.

Lower Bound: $|x-a| < \epsilon$ or $|x-a| < \delta \Rightarrow x > a - \epsilon$ or $x > a - \delta \Rightarrow x > a - \gamma$

Upper Bound: $|x-a| < \epsilon$ and $|x-a| < \delta \Rightarrow x < a + \epsilon$ and $x < a + \delta \Rightarrow x < a + \gamma$

Therefore, $V_{\epsilon}(a) \cap V_{\delta}(a)$ is in the γ -neighbourhood of a.

2.2.17

Without loss of generality, assume that b > a. Let $\epsilon = \frac{b-a}{2}$

Then,
$$U_{\epsilon}(a) = \{x \in R : |x - a| < \epsilon\}, \text{ and } V_{\epsilon}(b) = \{x \in R : |x - b| < \epsilon\}$$

$$U_{\epsilon}(a) \cap V_{\epsilon}(b) = \{x \in R : |x - a| < \epsilon \text{ and } |x - b| < \epsilon\}$$

Lower Bound:
$$|x-a| < \epsilon$$
 and $|x-b| < \epsilon \Rightarrow x > a - \epsilon$ and $x > b - \epsilon \Rightarrow x > a - \epsilon$ and $x > a -$

But this is a contradiction, since the lower bound is greater than the upper bound. Therefore, we conclude that $U_{\epsilon}(a) \cap V_{\epsilon}(b) = \emptyset$.

2.3.4

$$S_4 = \{1 - (-1)^n / n : n \in N\}$$

Let
$$S' = \{-(-1)^n/n : n \in N\}$$
. Then: $S_4 = 1 + S'$.

$$inf(S') = -(-1)^2/2 = -1/2$$

$$sup(S') = -(-1)^1/1 = 1$$

 $inf(S_4)$:

$$in f(S_4) = 1 + in f(S') = 1 + (-1/2) = 1/2$$

 $sup(S_4)$:

$$sup(S_4) = 1 + sup(S') = 1 + 1 = 2$$

2.3.11

Proof. By the definition of the infimum and supremum we have $inf(S_0) \leq sup(S_0)$. So we need only show that (i) $inf(S) \leq inf(S_0)$, and (ii) $sup(S_0) \leq sup(S)$.

i. $inf(S) \leq inf(S_0)$: We prove this by contradiction. Suppose that $inf(S_0) < inf(S)$. Since $inf(S_0)$ is a infimum for S_0 , then $\forall \epsilon > 0 \ \exists s \in S_0 : s < inf(S_0) + \epsilon$. Taking $\epsilon = [inf(S) - inf(S_0)]/2$

```
\Rightarrow \exists s \in S_0 \text{ and } s < inf(S)
```

$$\Rightarrow s \in S_0 \ and \ s \notin S$$

$$\Rightarrow S_0 \not\subset S$$
.

This is a contradiction. Therefore, we must conclude that $inf(S) \leq inf(S_0)$.

ii. $sup(S_0) \leq sup(S)$: We prove this by contradiction.

Suppose that $sup(S_0) > sup(S)$.

Since $sup(S_0)$ is a supremum for S_0 , then $\forall \epsilon > 0 \ \exists s \in S_0 : s > sup(S_0) + \epsilon$.

Taking
$$\epsilon = [sup(S_0) - sup(S)]/2$$

$$\Rightarrow \exists s \in S_0 \text{ and } s > \sup(S)$$

$$\Rightarrow s \in S_0 \text{ and } s \notin S$$

$$\Rightarrow S_0 \not\subset S$$
.

This is a contradiction. Therefore, we must conclude that $sup(S_0) \leq sup(S)$.

3.1.1.b

$$x_n := (-1)^n/n = (-1, 1/2, -1/3, 1/4, -1/5, ...)$$

3.1.5.d

Required to show: $\lim(\frac{n^2-1}{2n^2+3}) = \frac{1}{2}$

Proof. Given any $\epsilon > 0$, we need to find $k(\epsilon)$ such that for all $n \geq k$: $\left| \frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2} \right| < \epsilon$:

$$\begin{split} |\frac{n^2-1}{2n^2+3}-\frac{1}{2}| &< \epsilon \\ |\frac{2n^2-2-2n^2-3}{4n^2+6}| &< \epsilon \\ |\frac{-5}{4n^2+6}| &< \epsilon \\ \frac{5}{4n^2+6} &< \epsilon \\ \frac{5}{4n^2+6} &\leq \frac{5}{n^2} \leq \frac{5}{n} < \epsilon \end{split}$$

Taking $k(\epsilon) = 5/\epsilon$ satisfies the required conditions.

3.1.7

Required to show: $\lim(\frac{1}{\ln(n+1)}) = 0$

Proof. Given any $\epsilon > 0$, we need to find $k(\epsilon)$ such that for all $n \geq k$: $\left| \frac{1}{\ln(n+1)} - \frac{1}{\ln(n+1)} \right|$ $0 | < \epsilon$:

$$\begin{split} |\frac{1}{\ln(n+1)} - 0| &< \epsilon \\ \frac{1}{\ln(n+1)} &< \epsilon \\ \ln(n+1) &> \frac{1}{\epsilon} \\ n+1 &> e^{\frac{1}{\epsilon}} \\ n &> e^{\frac{1}{\epsilon}} - 1 \end{split}$$

Taking $k(\epsilon) = e^{\frac{1}{\epsilon}} - 1$ satisfies the required conditions.

b

i.
$$k(1/2) = e^2 - 1 = 7$$

ii. $k(1/10) = e^{10} - 1 = 22026$

3.1.9

Proof. $\lim(x_n) = 0 \Rightarrow \forall \epsilon > 0$ there exists $k(\epsilon)$ such that for all $n \geq k$: $|x_n - 0| < \infty$

 $\Rightarrow \forall \epsilon > 0 \text{ there exists } k(\epsilon) \text{ such that for all } n \geq k : x_n < \epsilon \text{ (because } x_n > 0).$ $\Rightarrow \forall \epsilon > 0 \text{ there exists } k(\epsilon) \text{ such that for all } n \geq k : \sqrt{x_n} - 0 < \sqrt{\epsilon} = \epsilon'.$

Since ϵ' can take on any value greater than zero, then by the definition of the limit of a sequence this shows that $\lim(\sqrt{x_n}) = 0$.

3.1.12

Required to show: $\lim(\sqrt{n^2+1}-n)=0$

Proof. Given any $\epsilon > 0$, we need to find $k(\epsilon)$ such that for all $n \ge k$: $|(\sqrt{n^2 + 1} - n) - 0| < \epsilon$:

$$\begin{split} |(\sqrt{n^2+1}-n)-0| < \epsilon \\ |\sqrt{n^2+1}-n| < \epsilon \\ \sqrt{n^2+1}-n \le \sqrt{(n+1/n)^2}-n < \epsilon \\ \sqrt{n^2+1}-n \le (n+1/n)-n < \epsilon \\ \sqrt{n^2+1}-n \le 1/n < \epsilon \end{split}$$

Taking $k(\epsilon) = \frac{1}{\epsilon}$ satisfies the required conditions.