

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Компьютерный практикум по учебному курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ» ЗАДАНИЕ № 1

ОТЧЕТ

о выполненном задании

студента 204 учебной группы факультета ВМК МГУ Гаухова Владислава Константиновича

гор. Москва

2020 год

Оглавление

Подвариант №1	4
Постановка задачи	4
Цели практической работы:	4
Описание алгоритмов	4
Тестирование	6
Выводы	9
Код программы	
Подвариант №2	
Постановка задачи	
Цели практической работы	
Описание алгоритмов	
Тестирование	
Выводы	
Код программы	22

Подвариант №1

Постановка задачи

Дана система уравнений Ax=f порядка $n\times n$ с невырожденной матрицей A. Написать программу, решающую систему линейных алгебраических уравнений заданного пользователем размера (n — параметр программы) методом Гаусса и методом Гаусса с выбором главного элемента.

Цели практической работы:

- 1) Реализовать функции для решения следующих задач:
 - 1. Решение СЛАУ стандартным методом Гаусса;
 - 2. Решение СЛАУ методом Гаусса с выбором главного элемента;
 - 3. Вычисление определителя матрицы;
 - 4. Вычисление обратной матрицы;
 - 5. Определить число обусловленности $M_A = ||A|| \times ||A^{-1}||$
- 2) Проверить корректность решения СЛАУ методами Гаусса и верхней релаксации на различных тестах с помощью WolframAlpha;
- 3) Исследовать вопрос вычислительной устойчивости метода Гаусса при больших значениях параметра n;

Описание алгоритмов

Метод Гаусса

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа – прямой и обратный ход.

Прямой ход:

В процессе прямого хода матрица системы с помощью элементарных преобразований над строками приводится к верхней треугольной форме. На i-м шаге в строке выбирается первый ненулевой элемент a_{ii} – ведущий, – после чего i-я строка делится на a_{ii} . Затем из i+1, ... п строк вычитается i-я строка, умноженная на $a_{i+1,i}$... $a_{n,i}$ соответственно. Сложность прямого хода: $Q_1 = \frac{n(n+1)}{2}$ делений и $Q_2 = \frac{n(n^2-1)}{3}$ сложений и умножений.

Обратный ход:

В процессе обратного хода последовательно определяются все неизвестные, с x_n до x_1 . При вычислении значения і-ой переменной, необходимо произвести

n-i умножений и вычитаний и одно деление. Сложность обратного хода: $Q_3=n(n-1)$ сложений и умножений и $Q_4=n$ делений. Таким образом, общая сложность метода Гаусса: $Q=Q_1+Q_2+Q_3+Q_4=\frac{n^3}{3}+O(n^2)$.

Метод Гаусса с выбором главного элемента

В результате округления чисел в методе Гаусса могут возникать ошибки, которые особенно влияют на результат при работе с плохо обусловленными матрицами. Эта проблема решается в методе Гаусса с выбором главного элемента. Его отличие заключается в том, что на каждом шаге прямого хода в качестве ведущего выбирается максимальный из элементов строки. В этом случае в процессе обратного хода роль ошибок округления снижается.

Определитель матрицы

Результат прямого хода метода Гаусса также можно использовать для нахождения определителя матрицы, который будет вычисляться как $(-1)^n \prod_{i=1}^n a_{ii}$, где n – число перестановок столбцов в ходе выделения ведущего элемента.

Обратная матрица

Для вычисления обратной матрицы используется метод Гаусса-Жордана, в котором рассматривается расширенная матрица A|E, E — единичная матрица, равная A по размерам. Левая часть матрицы приводится к единичной; все производимые над ней преобразования выполняются и над правой частью, в результате чего она приводится к виду A^{-1} .

Число обусловленности

Будем считать норму матрицы следующим образом:

$$||A|| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Число обусловленности: $M_A = \left| |A| \right| * \left| |A^{-1}| \right|$

Тестирование

Тестирование реализованных методов решения систем линейных алгебраических уравнений проводилось на предложенных наборах из варианта 3 приложения 1 и примера 1 варианта 2 приложения 2 путём сравнения полученных решений с корректными решениями, представленных WolframAlpha и библиотекой numpy языка руthon.

СЛАУ №1:

$$\begin{cases} 2x_1 + 5x_2 + 4x_3 + x_4 = 20\\ x_1 + 3x_2 + 2x_3 + x_4 = 11\\ 2x_1 + 10x_2 + 9x_3 + 7x_4 = 40\\ 3x_1 + 8x_2 + 9x_3 + 2x_4 = 37 \end{cases}$$

Определитель матрицы коэффициентов:

$$det \begin{bmatrix} 2 & 5 & 4 & 1 \\ 1 & 3 & 2 & 1 \\ 2 & 10 & 9 & 7 \\ 3 & 8 & 9 & 2 \end{bmatrix} = 18 \neq 0$$

Обратная матрица:

$$A^{-1} = \begin{bmatrix} 15 & -21 & 2 & -4 \\ -6.667 & 10.333 & -1 & 1.667 \\ -0.333 & -0.333 & 0 & 0.333 \\ 5.667 & -8.333 & 1 & -1.667 \end{bmatrix}$$

Число обусловленности: $M = 1176 \gg 1$, следовательно, матрица коэффициентов СЛАУ плохо обусловлена.

Ожидаемое решение (Wolfram Alpha): (1; 2; 2; 0)

Решение (метод Гаусса): (1; 2; 2; 0)

Решение (метод Гаусса с выбором главного элемента): (1; 2; 2; 0)

СЛАУ №2:

$$\begin{cases} 6x_1 + 4x_2 + 5x_3 + 2x_4 = 1\\ 3x_1 + 2x_2 + 4x_3 + x_4 = 3\\ 3x_1 + 2x_2 - 2x_3 + x_4 = -7\\ 9x_1 + 6x_2 + x_3 + 3x_4 = 2 \end{cases}$$

Определитель матрицы коэффициентов:

$$det \begin{bmatrix} 6 & 4 & 5 & 2 \\ 3 & 2 & 4 & 1 \\ 3 & 2 & -2 & 1 \\ 9 & 6 & 1 & 3 \end{bmatrix} = 0$$

Определитель равен нулю => СЛАУ вырождена

СЛАУ №3:

$$\begin{cases} 2x_1 + x_2 + x_3 = 2\\ x_1 + 3x_2 + x_3 + x_4 = 5\\ x_1 + x_2 + 5x_3 = -7\\ 2x_1 + 3x_2 - 3x_3 - 10x_4 = 14 \end{cases}$$

Определитель матрицы коэффициентов:

$$det \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 5 & 0 \\ 2 & 3 & -3 & -10 \end{bmatrix} = -242 \neq 0$$

Обратная матрица:

$$A^{-1} = \begin{bmatrix} 0.652893 & -0.165289 & -0.107438 & -0.016529 \\ -0.219008 & 0.371901 & -0.008264 & 0.037190 \\ -0.086777 & -0.041322 & 0.223140 & -0.004132 \\ 0.090909 & 0.090909 & -0.090909 & -0.090909 \end{bmatrix}$$

Число обусловленности: M = 16.958678

Ожидаемое решение (Wolfram Alpha): (1; 2; -2; 0)

Решение (метод Гаусса): (1; 2; -2; 0)

Решение (метод Гаусса с выбором главного элемента): (1; 2; -2; 0)

СЛАУ №4:

$$A_{ij} = \begin{cases} \frac{i+j}{m+n}, & i \neq j, \\ n+m^2 + \frac{j}{m} + \frac{i}{n}, & i = j, \end{cases}$$

При n = 20, m = 8

Элементы вектора f заданы формулой: f[i] = 200 + 50 * i

Определитель матрицы коэффициентов:

$$det[A] = 45032865927535134 * 10^{22} \neq 0$$

Число обусловленности: M = 1.239563

Ожидаемое решение (numpy):

(0.000000; 2.970003; 3.556609 ... 11.145108; 11.611302; 12.080616)

Решение (метод Гаусса):

(0.000000; 2.970003; 3.556609 ... 11.145108; 11.611302; 12.080616)

Решение (метод Гаусса с выбором главного элемента):

(0.000000; 2.970003; 3.556609 ... 11.145108; 11.611302; 12.080616)

Для данной СЛАУ метод Гаусса оказался устойчив, в силу диагонального преобладания матрицы А при заданных значениях m и n.

Выводы

При выполнении практической работы был изучен и воплощен метод Гаусса и модифицированный метод Гаусса с выбором главного элемента. К преимуществам метода Гаусса можно отнести относительную простоту его реализации и широкую область применения в задачах, связанных с исследованием матриц, включая нахождение определителя и обратной матрицы. Недостатком методов является их неустойчивость при работе с плохо обусловленными матрицами, что могло отразиться на полученном решении. Модифицированный метод Гаусса демонстрирует большую точность для таких СЛАУ.

Код программы

Метод Гаусса

```
1. void
2. Gauss(int n, double arr[][n], double f[n], double *res)
3. {
4.
      //Прямой ход
5.
      for (int i = 0; i < n; ++i) {
6.
         int j = i;
7.
         while(arr[i][i] == 0) { //Поиск ненулевого элемента
8.
            ++j;
9.
         }
10.
         if (i != i) {
11.
            for (int k = i; k < n; ++k) {
12.
              double t = arr[i][k];
13.
              arr[i][k] = arr[j][k];
14.
              arr[j][k] = t;
15.
            }
16.
            double t = f[i];
17.
            f[i] = f[j];
18.
            f[i] = t;
19.
         }
20.
         for (int k = i + 1; k < n; ++k) {
21.
            double k1 = arr[i][i];
22.
            double k2 = arr[k][i];
23.
            for (int z = 0; z < n; ++z) {
              arr[k][z] = arr[i][z] * k2 / k1;
24.
25.
26.
            f[k] = f[i] * k2 / k1;
27.
         }
28.
      }
29.
      //Обратный ход
      for (int i = n - 1; i > 0; --i) {
30.
         for (int j = i - 1; j >= 0; --j) {
31.
            double k1 = arr[i][i] / arr[i][i];
32.
33.
            for (int k = n - 1; k \ge 0; --k) {
              arr[j][k] -= k1 * arr[i][k];
34.
35.
36.
            f[j] = k1 * f[i];
37.
         }
38.
      }
```

```
39. for (int j = 0; j < n; ++j) {
40. res[j] = f[j] / arr[j][j];
41. }
42.}
```

Метод Гаусса с выбором главного элемента

```
1. void
2. Gauss_modif(int n, double arr[][n], double f[n], double *res)
3. {
4.
     //Прямой ход
5.
      for (int i = 0; i < n; ++i) {
6.
        double max value = arr[i][i];
7.
                int max_index = i;
8.
                //Поиск максимального значения
9.
                for (int k = i + 1; k < n; ++k) {
10.
                       if (fabs(max_value) < fabs(arr[k][i])) {
                              max_value = arr[k][i];
11.
12.
                              max_index = k;
13.
                       }
14.
15.
        if (i != max_index) {
16.
           for (int j = 0; j < n; ++j) {
17.
              double t = arr[i][j];
18.
              arr[i][j] = arr[max_index][j];
19.
              arr[max\_index][j] = t;
20.
           }
21.
           double t = f[i];
22.
           f[i] = f[max\_index];
23.
           f[max index] = t;
24.
         }
25.
        for (int k = i + 1; k < n; ++k) {
26.
           double k1 = arr[i][i];
27.
           double k2 = arr[k][i];
28.
           for (int z = 0; z < n; ++z) {
29.
              arr[k][z] = arr[i][z] * k2 / k1;
30.
31.
           f[k] = f[i] * k2 / k1;
32.
         }
33.
      }
34.
     //Обратный ход
35.
     for (int i = n - 1; i > 0; --i) {
```

```
36.
         for (int j = i - 1; j >= 0; --j) {
            double k1 = arr[i][i] / arr[i][i];
37.
38.
            f[i] = k1 * f[i];
            for (int k = n - 1; k \ge 0; --k) {
39.
               arr[j][k] -= k1 * arr[i][k];
40.
41.
            }
42.
          }
43.
      for (int j = 0; j < n; ++j) {
44.
45.
         res[j] = f[j] / arr[j][j];
46.
      }
47.}
```

Приведение к треугольному виду(возвращает множитель(1 или -1) для вычисления определителя)

```
1. int
2. triangle_form(int n, double arr[][n]) {
3.
      int sign = 1;
4.
      for (int i = 0; i < n; i++) {
5.
         int j;
6.
         for (j = i; j < n; j++) {
7.
            if (arr[j][i]) {
8.
               break;
9.
            }
10.
11.
         if (j == n \parallel fabs(arr[j][i]) < EPS) {
            fprintf(stderr, "det[arr] = 0 \ ");
12.
13.
            return 0;
14.
15.
         if (i != j) {
16.
            sign *=-1;
            for (int k = i; k < n; k++) {
17.
18.
               double t = arr[i][k];
               arr[i][k] = arr[i][k];
19.
20.
               arr[i][k] = t;
21.
            }
22.
         }
23.
         for (int k = i + 1; k < n; k++) {
24.
            double k1 = arr[i][i];
25.
            double k2 = arr[k][i];
26.
            if (fabs(k1) < EPS) {
```

```
27.
              return 0;
28.
29.
           if (fabs(k2) < EPS) {
30.
              continue;
31.
32.
           for (int l = 0; l < n; l++) {
33.
              arr[k][1] = arr[i][1] * k2 / k1;
34.
           }
35.
         }
36.
      }
      return sign;
37.
38.}
```

Вычисление определителя

```
    double matrix_det(int n, double arr[][n])
    {
    int sign = triangle_form(n, arr);
    double ans = 1;
    for (int i = 0; i < n; i++) {</li>
    ans *= arr[i][i];
    }
    return ans * sign;
    }
```

Вычисление обратной матрицы

```
1. void inverse(int n, double arr[][n], double res[][n]) {
2.
      for (int i = 0; i < n; i++) {
3.
         for (int j = 0; j < n; j++) {
            res[i][j] = i == j ? 1 : 0;
4.
5.
         }
6.
7.
      int i = 0;
8.
      int sign = 1;
9.
      for (int i = 0; i < n; i++) {
10.
         for (j = i; j < n; j++) {
11.
            if (arr[j][i]) {
12.
               break;
13.
            }
14.
         }
         if (j == n \parallel fabs(arr[j][i]) < EPS) {
15.
            fprintf(stderr, "det[arr] = 0 \ ");
16.
```

```
17.
            _exit(1);
18.
19.
         if (i != j) {
20.
            sign *=-1;
21.
            for (int k = i; k < n; k++) {
22.
               double t = arr[j][k];
23.
               arr[i][k] = arr[i][k];
24.
               arr[i][k] = t;
25.
               t = res[i][k];
26.
               res[j][k] = res[i][k];
27.
               res[i][k] = t;
28.
            }
29.
30.
         for (int k = i + 1; k < n; k++) {
31.
            double k1 = arr[i][i];
32.
            double k2 = arr[k][i];
33.
            if (fabs(k2) < EPS)
34.
               continue;
35.
            for (int l = 0; l < n; l++) {
36.
               arr[k][1] = arr[i][1] * k2 / k1;
37.
               res[k][1] = res[i][1] * k2 / k1;
38.
            }
39.
         }
40.
41.
      for (int i = n - 1; i > 0; i - -) {
42.
         for (int j = i - 1; j >= 0; j--) {
43.
            if (fabs(arr[i][i]) < EPS) {
44.
               fprintf(stderr, "det[arr] = 0 \ n");
45.
               return 0;
46.
            }
47.
            double k1 = arr[j][i] / arr[i][i];
48.
            for (int k = n - 1; k \ge 0; k - -) {
49.
               arr[i][k] = k1 * arr[i][k];
50.
               res[j][k] = k1 * res[i][k];
51.
            }
52.
         }
53.
54.
      for (int i = 0; i < n; i++) {
55.
         for (int j = 0; j < n; j++) {
56.
            if (fabs(arr[i][i]) < EPS) {
               fprintf(stderr, "det[arr] = 0 \ ");
57.
```

```
58. return 0;

59. }

60. res[i][j] /= arr[i][i];

61. }

62. }

63.}
```

Вычисление числа обусловленности

```
1. double condition_num(int n, double arr[][n])
2. {
3.
      double norm_matr = 0;
4.
     for (int i = 0; i < n; i++) {
        double cur_matr = 0;
5.
6.
        for (int i = 0; i < n; i++) {
7.
           cur_matr += fabs(arr[i][j]);
8.
9.
        if (cur matr > norm matr)
10.
           norm_matr = cur_matr;
11.
      }
12.
     double norm_inv = 0;
13.
     double inv[n][n];
14.
     inverse(n, arr, inv);
15.
     for (int i = 0; i < n; i++) {
16.
        double cur_inv = 0;
        for (int j = 0; j < n; j++) {
17.
           cur_inv += fabs(inv[i][j]);
18.
19.
20.
        if (cur_inv > norm_inv)
21.
           norm inv = cur inv;
22.
      }
     return norm_matr * norm_inv;
23.
24.}
```

Генерация матрицы для примера 1-2

```
    void matrix_generate_1 (int n, int m, double arr[][n])
    {
    for (int i = 0; i < n; ++i) {</li>
    for (int j = 0; j < n; ++j) {</li>
    if (i == j) {
    arr[i][i] = n + m*m + i*(1.0/m + 1.0/n);
    } else {
```

```
8. arr[i][j] = (i + j)/(n + m);

9. }

10. }

11. }
```

Генерация вектора правой части для примера 1-2

```
1. void f_genetate_1 (int n, double f[n])  
2. {  
3. for (int i = 1; i <= n; ++i) {  
4. f[i] = 200 + 50 * i;  
5. }  
6. }
```

Подвариант №2

Постановка задачи

Дана система уравнений Ax=f порядка $n\times n$ с невырожденной матрицей A. Написать программу численного решения данной системы линейных алгебраических уравнений (n — параметр программы), использующую численный алгоритм итерационного метода Зейделя; в случае использования итерационного метода верхней релаксации итерационный процесс имеет следующий вид:

$$(D + \omega A^{(-)}) \frac{x^{k+1} - x^k}{\omega} + Ax^k = f,$$

где $D, A^{(-)}$ - соответственно диагональная и нижняя треугольные матрицы, k - номер текущей итерации, ω - итерационный параметр (при $\omega = 1$ метод верхней релаксации переходит в метод Зейделя).

Цели практической работы

- 1) Изучить метод верхней релаксации
- 2) Реализовать метод верхней релаксации
- 3) Разработать критерий остановки процесса для заданной точности
- 4) Изучить скорость сходимости итераций к точному решению задачи

Описание алгоритмов

Метод верхней релаксации

Метод верхней релаксации — стационарный итерационный метод решения СЛАУ. В ходе этого метода каждый следующий вектор приближения точного решения вычисляется по формуле:

$$(D + wT_H)\frac{(x^{k+1} - x^k)}{w} + Ax^k = f$$

 x^i – вектор i-го приближения решения СЛАУ;

D — матрица, содержащая только диагональные элементы матрицы A;

 T_H — матрица, содержащая только элементы матрицы A ниже диагонали;

w – итерационный параметр.

В алгоритме программной реализации используется следующая формула для пересчёта вектора приближённого решения:

$$x_i^{k+1} = x_i^k + \frac{w}{a_{ii}} (f_i - \sum_{j=1}^{i-1} a_{ij} x_j^{k+1} - \sum_{j=i}^{n} a_{ij} x_j^k), \quad i = \overline{1, n}$$

Критерием остановки алгоритма будет выражаться следующий образом:

$$||x^k - x||_2 < ||A^{-1}|| * ||\varphi^k|| = \varepsilon$$

Где $\varepsilon > 0$ – некая фиксированная точность, φ^k – невязка уравнения.

При достижении предварительно заданного максимального числа итераций программа также заканчивает вычисления.

Тестирование

Тестирование реализованных методов решения систем линейных алгебраических уравнений проводилось на предложенных наборах из варианта 3 приложения 1 и примера 2 варианта 2 приложения 2 путём сравнения полученных решений с корректными решениями, представленных WolframAlpha и функциями из библиотекой питру языка руthon.

СЛАУ №1:

$$\begin{cases} 2x_1 + 5x_2 + 4x_3 + x_4 = 20\\ x_1 + 3x_2 + 2x_3 + x_4 = 11\\ 2x_1 + 10x_2 + 9x_3 + 7x_4 = 40\\ 3x_1 + 8x_2 + 9x_3 + 2x_4 = 37 \end{cases}$$

Определитель матрицы коэффициентов:

$$det \begin{bmatrix} 2 & 5 & 4 & 1 \\ 1 & 3 & 2 & 1 \\ 2 & 10 & 9 & 7 \\ 3 & 8 & 9 & 2 \end{bmatrix} = 18 \neq 0$$

Обратная матрица:

$$A^{-1} = \begin{bmatrix} 15 & -21 & 2 & -4 \\ -6.667 & 10.333 & -1 & 1.667 \\ -0.333 & -0.333 & 0 & 0.333 \\ 5.667 & -8.333 & 1 & -1.667 \end{bmatrix}$$

Число обусловленности: $M = 1176 \gg 1$, следовательно, матрица коэффициентов СЛАУ плохо обусловлена.

Ожидаемое решение(Wolfram Alpha): (1; 2; 2; 0)

Решение (метод верхней релаксации): выполнено 1000 итераций, решение не найдено.

СЛАУ №2:

$$\begin{cases} 6x_1 + 4x_2 + 5x_3 + 2x_4 = 1\\ 3x_1 + 2x_2 + 4x_3 + x_4 = 3\\ 3x_1 + 2x_2 - 2x_3 + x_4 = -7\\ 9x_1 + 6x_2 + x_3 + 3x_4 = 2 \end{cases}$$

Определитель матрицы коэффициентов:

$$det \begin{bmatrix} 6 & 4 & 5 & 2 \\ 3 & 2 & 4 & 1 \\ 3 & 2 & -2 & 1 \\ 9 & 6 & 1 & 3 \end{bmatrix} = 0$$

Определитель равен нулю => СЛАУ вырождена

СЛАУ №3:

$$\begin{cases} 2x_1 + x_2 + x_3 = 2\\ x_1 + 3x_2 + x_3 + x_4 = 5\\ x_1 + x_2 + 5x_3 = -7\\ 2x_1 + 3x_2 - 3x_3 - 10x_4 = 14 \end{cases}$$

Определитель матрицы коэффициентов:

$$det \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 5 & 0 \\ 2 & 3 & -3 & -10 \end{bmatrix} = -242 \neq 0$$

Обратная матрица:

$$A^{-1} = \begin{bmatrix} 0.652893 & -0.165289 & -0.107438 & -0.016529 \\ -0.219008 & 0.371901 & -0.008264 & 0.037190 \\ -0.086777 & -0.041322 & 0.223140 & -0.004132 \\ 0.090909 & 0.090909 & -0.090909 & -0.090909 \end{bmatrix}$$

Число обусловленности: M = 16.958678

Ожидаемое решение (Wolfram Alpha): (1; 2; -2; 0)

Решение (метод верхней релаксации):

45 итераций при w = 0.4 (0.999998 2.000001 -2.000000 -0.000000)

26 итераций при w = 0.6 (0.999999 2.000001 -2.000000 -0.000000)

16 итераций при w = 0.8 (1.000000 2.000000 -2.000000 0.000000)

11 итераций при w = 1.0 (1.000000 2.000000 -2.000000 0.000000)

16 итераций при w = 1.2 (1.000000 2.000000 -2.000000 0.000000)

43 итераций при w = 1.4 (1.000000 2.000000 -2.000000 0.000000)

Решение не найдено за 1000 итераций при w = 1.6

СЛАУ №4:

$$A_{ij} = \begin{cases} \frac{i+j}{m+n}, & i \neq j, \\ n+m^2 + \frac{j}{m} + \frac{i}{n}, & i = j, \end{cases}$$

При n = 20, m = 8

Элементы вектора f заданы формулой: f[i] = 200 + 50 * i

Определитель матрицы коэффициентов:

$$det[A] = 45032865927535134 * 10^{22} \neq 0$$

Число обусловленности: M = 1.239563

Ожидаемое решение (Wolfram Alpha):

(0.000000; 2.970003; 3.556609 ... 11.145108; 11.611302; 12.080616)

Решение (метод верхней релаксации): (0.000000; 2.970003; 3.556609 ... 11.145108; 11.611302; 12.080616)

31 итераций при w = 0.4

18 итераций при w = 0.6

11 итераций при w = 0.8

5 итераций при w = 1.0

12 итераций при w = 1.2

20 итераций при w = 1.4

36 итераций при w = 1.6

СЛАУ №5

$$A_{ij} = \begin{cases} q_M^{i+j} + 0.1 \cdot (j-i), & i \neq j, \\ (q_M - 1)^{i+j}, & i = j, \end{cases}$$

При n = 40, M = 2,
$$f[i] = \left| x - \frac{n}{10} \right| \cdot i \cdot \sin(x)$$

При x = 5:

Определитель матрицы коэффициентов:

$$det[A] = 2.254305 \neq 0$$

Число обусловленности: M = 3162.480388 >> 1

Ожидаемое решение (Wolfram Alpha)

Решение (метод верхней релаксации): решение не найдено за 1000 итераций.

Можно заметить, что матрицы СЛАУ №1 и №5 плохо обусловлены, из-за чего решение не было найдено данным методом. Матрицы СЛАУ №3 и №4 имеют хорошую обусловленность матрицы, к тому же матрица №4 симметрична. Результаты сходимости метода при разных w показывают, что для данных СЛАУ оптимальным параметром является $w \approx 1$.

Выводы

При выполнении практической работы был изучен и воплощен итерационный метод верхней релаксации. При исследовании скорости сходимости данного метода было замечено, что скорость сходимости метода существенно зависит от параметра w. Оптимальный параметр зависит от самих матриц СЛАУ.

Код программы

Метод верхней релаксации

```
1. double *relaxation(int n, double arr[][n], double *f, double w,
2.
        int max_iter, double eps)
3. {
4.
      double *x = calloc(n, sizeof(double));
5.
      double *tmp = calloc(n, sizeof(double));
6.
      for (int i = 0; i < n; i++) {
7.
        x[i] = 0;
8.
        tmp[i] = 0;
9.
10.
      for (int k = 0; k < \max iter; k++) {
11.
        for (int i = 0; i < n; i++) {
12.
           double sub 1 = 0, sub 2 = 0;
13.
           for (int i = 0; i < i; i++) {
14.
              sub_1 += arr[i][j] * tmp[j];
15.
16.
           for (int j = i; j < n; j++) {
17.
              sub_2 += arr[i][j] * x[j];
18.
19.
           tmp[i] = x[i] + w / arr[i][i] * (f[i] - sub_1 - sub_2);
20.
21.
        double dist = 0;
22.
        for (int i = 0; i < n; i++) {
23.
           dist += (x[i] - tmp[i]) * (x[i] - tmp[i]);
24.
25.
        double inv[n][n];
26.
        double arr_copy[n][n];
27.
        for (int i = 0; i < n; i++) {
28.
           for (int j = 0; j < n; j++) {
```

```
29.
              arr\_copy[i][j] = arr[i][j];
30.
           }
31.
         }
32.
        inverse(n, arr copy, inv);
33.
        double inv_norm = condition_num(n, arr_copy);
34.
        double norm_nev = 0;
35.
        for (int i = 0; i < n; i++) {
36.
           double sum = 0;
37.
           for (int j = 0; j < n; j++) {
38.
              sum += arr[i][j] * tmp[j];
39.
           }
40.
           sum = f[i];
           norm_nev += sum * sum;
41.
42.
        }
43.
        norm_nev = sqrt(norm_nev);
44.
        if (norm_nev * inv_norm < eps) {</pre>
45.
           printf("k = %d\n", k);
46.
           return tmp;
47.
         }
48.
        for (int i = 0; i < n; i++) {
49.
           x[i] = tmp[i];
50.
         }
51.
      }
52.
      return x;
53.}
```

Генерация матрицы для примера 1-2

```
13.void matrix_generate_1 (int n, int m, double arr[][n])
14.{
15.
      for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
16.
17.
           if (i == j) {
18.
              arr[i][i] = n + m*m + i*(1.0/m + 1.0/n);
19.
            } else {
20.
              arr[i][j] = (i + j)/(n + m);
21.
           }
22.
         }
      }
23.
24.}
```

Генерация вектора правой части для примера 1-2

```
7. void f_genetate_1 (int n, double f[n])
8. {
9. for (int i = 1; i <= n; ++i) {</li>
10. f[i] = 200 + 50 * i;
11. }
12.}
```

Генерация матрицы для примера 2-2

```
1. void matrix_generate_2(int n, int m, double arr[][n])
2. {
      double q = 1.001 - 2 * m * 0.001;
3.
      for (int i = 0; i < n; ++i) {
4.
5.
         for (int j = 0; j < n; ++j) {
6.
           if (i == j) {
7.
              arr[i][j] = pow(q - 1, i + j);
8.
            } else {
              arr[i][j] = pow(q, i + j) + 0.1 * (j - i);
9.
10.
           }
         }
11.
12.
      }
13.}
```

Генерация вектора правой части для примера 2-2

```
    void f_genetate_2(int n, double x, double f[n])
    {
    for (int i = 0; i < n; ++i) {</li>
    f[i] = fabs(x - n/10.0) * i * sin(x);
    }
    }
```