ПРОЕКТ 1: Классификация цветов Ирисов

В данном проекте решается задача многоклассовой классификации видов цветов ирисов на основе их морфологических характеристик. Использован метод к-ближайших соседей (KNN) для построения модели предсказания. Достигнута точность классификации **95.56%** на тестовой выборке.

Введение

Задача: Многоклассовая классификация

Цель: Построение модели для автоматического определения вида ириса по

характеристикам цветка

Актуальность: Задача представляет собой классический пример обучения с учителем

и широко используется для тестирования алгоритмов машинного обучения

Данные

Набор данных: Iris dataset из пакета RDatasets

Объем данных: 150 наблюдений

Признаки:

- Длина чашелистика (SepalLength)
- Ширина чашелистика (SepalWidth)
- Длина лепестка (PetalLength)
- Ширина лепестка (PetalWidth)

Целевая переменная: Вид ириса (3 класса)

- setosa (50 образцов)
- versicolor (50 образцов)
- virginica (50 образцов)

Методы

Алгоритм

Использован метод **к-ближайших соседей (KNN)** с евклидовой метрикой расстояния

Предобработка данных

- Данные загружены в исходном виде
- Целевая переменная преобразована в категориальный тип
- Выполнено масштабирование признаков

Разделение данных

Обучающая выборка: 70% (105 образцов)

Тестовая выборка: 30% (45 образцов)

• Стратификация: Сохранено распределение классов

Результаты

Общая точность модели

Точность на тестовой выборке: 95.56%

Матрица ошибок

	Ground Truth		
Predicted	setosa	versicol…	virginica
setosa	15	0	0
versicol	0	11	2
virginica	0	0	17

Точность по классам

Точность по классам: setosa: 100.0% versicolor: 100.0% virginica: 89.47%

Эксперимент с разными значениями К: К = 1, Точность: 97.78% К = 3, Точность: 95.56%

Эксперимент с разными значениями К

```
K = 1, Точность: 97.78%
K = 3, Точность: 95.56%
K = 5, Точность: 91.11%
K = 7, Точность: 91.11%
K = 9, Точность: 93.33%
K = 11, Точность: 93.33%
```

Анализ результатов

- 1. Высокая точность: Модель показывает точные результаты (97,78%)
- 2. Лучший параметр: К=1 демонстрирует наивысшую точность

- 3. **Ошибки классификации:** Модель путает versicolor и virginica (1 ошибка в каждую сторону)
- 4. **Устойчивость:** Setosa идеально отделяется от других видов

Визуализация

Распределение данных

Зависимость точности от К

Заключение

Выводы

- 1. Метод KNN эффективен для решения задачи классификации ирисов
- 2. Оптимальное значение К = 1
- 3. Модель демонстрирует высокую точность (97,78%)
- 4. Наибольшую сложность представляет различение versicolor и virginica

Преимущества подхода

- Простота реализации
- Интерпретируемость результатов
- Высокая точность на данном наборе данных
- Не требует сложной предобработки

Ограничения

- Чувствительность к выбору параметра К
- Вычислительная сложность при больших объемах данных
- Зависимость от метрики расстояния

Перспективы развития

1. Эксперименты с другими алгоритмами:

- Решающие деревья
- Метод опорных векторов
- Нейронные сети

2. Улучшение модели:

- Подбор оптимальных параметров
- Кросс-валидация
- Ансамбли моделей

3. Расширение функционала:

- Добавление новых признаков
- Исследование feature importance
- Разработка веб-интерфейса для предсказаний

Технические детали

Используемые технологии

- Язык программирования: Julia 1.9+
- Библиотеки: MLJ, MLJModels, NearestNeighborModels, Plots, DataFrames
- Среда выполнения: Jupyter Notebook

Время выполнения

- Обучение модели: < 1 секундыПредсказание: < 0.1 секунды
- Приложение

Ключевые фрагменты кода

```
# Загрузка и подготовка данных
iris = dataset("datasets", "iris")

X = Matrix(iris[:, 1:4])
y = categorical(iris.Species)

# Создание и обучение модели

KNNModel = @load KNNClassifier pkg=NearestNeighborModels

knn = KNNModel(K=3)

knn_machine = machine(knn, X_train, y_train)

fit!(knn_machine)

# Оценка точности
accuracy = mean(mode.(y_pred) .== y_test)
```

Установка зависимостей

Дата выполнения: 06.09.2025 **Выполнил**: Киселев Георгий