IC Fab.Tech. OUTLINE

```
Thin Film Formation
Photolithography and Ecthing
Doping
IC Resistor
Sheet Resistance 方块电阻
Diode
nMOSFET: Process Flow
nMOSFET: Fab. and Layout
nMOSFET: Layout Rules
```

IC Fabrication Techniques

OUTLINE

- IC Resistor
- Sheet Resistance
- Diode

Reference Reading

Chapter 5 + Handout + www

< 10μm x 1μm

 (10^{-7} cm^2)

Integrated R

(集成电阻)

~1cm x 1mm

 $(10^{-1} \text{ cm}^{-2})$

Discrete R (离散电阻)

Patterns transfer to wafer:

Three-mask process:

Starting material: p-type wafer with $N_A = 10^{16}$ cm⁻³

Step 1: grow 500 nm of SiO₂

Step 2: pattern oxide using the oxide mask (dark field)

Step 3: implant phosphorus and anneal to form an n-type

layer with $N_D = 10^{20}$ cm⁻³ and depth 100 nm

Step 4: deposit oxide to a thickness of 500 nm

Step 5: pattern deposited oxide using the contact mask (dark field)

Step 6: deposit aluminum to a thickness of 1 μm

Step 7: pattern using the aluminum mask (clear field)

Contact mask (dark field) Al mask (clear field)

A-A Cross-Section: oxidation, photolithography & etching

A-A Cross-Section: oxidation, photolithography & etching

A-A Cross-Section: doping & annealing

deposition, photolithography & etching

Step 5: Pattern oxide

Step 5: Pattern oxide

deposition, photolithography & etching

A-A Cross-Section: metallization

deposition, photolithography & etching Mask #3 Step 6: ΑI Al deposition n+ layer p-type Si Mask #3 Step 7: ΑI Pattern metal n+ layer p-type Si

Summary

Layer-to-Layer Alignment

Importance of Layer-to-Layer Alignment

Example: metal line to contact hole

→ marginal contact

→ no contact!

If the minimum feature size is 2λ , then the safety margin for overlay error is λ .

safety margin to allow for misalignment

- → <u>Design Rules are needed</u>:
 - Interface between designer & process engineer
 - Guidelines for designing masks

IC RESISTOR MASK LAYOUTS – REGISTRATION OF EACH MASK

Registration of mask patterns is critical → show separate layouts to avoid ambiguity

Registration of one mask to the next (also called "alignment" and "overlay") is a crucial aspect of lithography

Same Layout but with misregistration (misalignment)

Lets look again at cross-section A-A to understand the consequence of this misalignment.

A-A Cross-Section: metallization

Same Layout but with misregistration (misalignment)

Lets look again at cross-section A-A to understand the consequence of this misalignment.

Layout with no misregistration (misalignment)

Layout with misregistration (misalignment)

Thus we need safety margins in layout which take into account the possible tolerances in fabrication. Each process has a set of "design rules" which specify the safety margins.

Example of Design Rule: MOSIS

Implementation

A minimum feature size is

System

Using 2λ to stand for the minimum feature size

the smallest dimension that can be produced.

Intel & IBM: $2\lambda = 32nm \rightarrow 22nm$

SMIC (中芯国际): $2\lambda = 65$ nm

XJTLU: $2\lambda = 1\mu m$

XTLU: $2\lambda = 10 \mu m$

• If the minimum feature size is 2λ , then the minimum active area width is 3λ , the minimum metal width is 3λ , and the safety margin for overlay error is λ .

 \leftarrow safety margin to allow for misalignment λ

 2λ is the smallest dimension that can be produced.

the minimum active area width is 3λ .

For IC resistors, the width can be 2λ .

the minimum metal width is 3λ .

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. MOSIS Layout Design Rules (sample set)

R1 Minimum active area width R2 Minimum active area spacing Polysilicon rules R3 Minimum poly width R4 Minimum poly spacing R5 Minimum poly-active edge spacing (poly outside active area) Minimum poly-active edge spacing (poly inside active area) Metal rules R8 Minimum metal width R9 Minimum metal spacing Contact rules R10 Poly contact size R11 Minimum poly contact to metal edge spacing R13 Minimum poly contact to active edge spacing R14 Minimum poly contact to active edge spacing R15 Active contact size R16 Minimum active contact to active edge spacing R17 Minimum active contact to active edge spacing R18 Minimum active contact to active edge spacing R19 Minimum active contact to active edge spacing R10 Minimum active contact to active edge spacing R11 Minimum active contact to metal edge spacing
410 MINWS
minas —
=19.0100
R20 Minimum active contact spacing

MOSIS layout design rules

Slide 31

MOSIS layout design rules

IC Fabrication Techniques

<u>OUTLINE</u>

- IC Resistor
- Sheet Resistance
- Diode

Reference Reading

Chapter 5 + Liverpool Handout + www

Using Sheet Resistance (Rs)

Ion-implanted (or "diffused") IC resistor

Electrical Resistance

Resistance
$$R \equiv \frac{V}{I} = \frac{\rho L}{A} = \frac{\rho L}{tW} = \left(\frac{\rho}{t}\right) \left(\frac{L}{W}\right)$$
 (Unit: ohms) where ρ is the resistivity (Ω •cm) \uparrow Mask

Using Sheet Resistance (Rs)

Ion-implanted (or "diffused") IC resistor

Concept of Sheet Resistivity

$$R = \rho L/A = (\rho/t) (L/W)$$
Sheet Resistivity (R_S) Ω /sq
or Sheet Resistance
of Squares

$$R = Rs (L/W)$$

If
$$L = W$$
, $R = R_s$

Number of Squares

R = Rs(L/W)

$$R = 2R_S$$

$$R = R_{S}/2$$
 $R = R_{S}/3$

$$R = Rs/3$$

$$R = 8Rs$$

$$R \approx 6.5R_S$$

Using Sheet Resistance (Rs)

$$R = \left(\frac{\rho}{t}\right)\left(\frac{L}{W}\right) = R_S \frac{L}{W} \approx 9R_S$$

Integrated-Circuit Resistors

SL

The resistivity ρ and thickness t are fixed for each layer in a given manufacturing process

A circuit designer specifies the length *L* and width *W*, to achieve a desired resistance *R*

$$R = R_s \left(\frac{L}{W}\right)$$
 fixed designable

Example: Suppose we want to design a 5 k Ω resistor using a layer of material with $R_{\rm s}$ = 200 Ω/\Box Space-efficient layout

Resistor layout (top view)

W/L = 25

IC Fabrication Techniques

OUTLINE

- IC Resistor
- Sheet Resistance
- Diode

Reference Reading

Chapter 5 + Handout + www

Electrostatics of p-n junction in equilibrium

- Upon application of voltage:
- electrostatics upset: depletion region widens or shrinks
- current flows (with rectifying) behavior)
- carrier charge storage

Process Flow Example #1: Resistor

Process Flow Example #2: diode

A -- **A**

Process Flow Example #1: Resistor

Three-mask process:

Starting material: p-type wafer with $N_A = 10^{16}$ cm⁻³

Step 1: grow 500 nm of SiO₂

Step 2: pattern oxide using the oxide mask (dark field)

Step 3: implant phosphorus and anneal to form an n-type

layer with $N_D = 10^{20}$ cm⁻³ and depth 100 nm

Step 4: deposit oxide to a thickness of 500 nm

Step 5: pattern deposited oxide using the contact mask (dark field)

Step 6: deposit aluminum to a thickness of 1 μm

Step 7: pattern using the aluminum mask (clear field)

A-A Cross-Section: oxidation, photolithography & etching

Step 1:

Grow oxide

Step 2:

Pattern oxide (active mask)

A-A Cross-Section: oxidation, photolithography & etching

Step 1:

Grow oxide

Step 2:

Pattern oxide (active mask)

A-A Cross-Section: doping & annealing

Step 3: Implant & Anneal

phosphorus implant:

after anneal of phosphorus implant:

A-A Cross-Section: Metal contact

Step 4: Deposit 500 nm oxide

Open holes for metal contacts

Step 5:

Pattern oxide (contact mask)

deposition, photolithography & etching

A-A Cross-Section: metallization

deposition, photolithography & etching

Step 6: Al deposition

Step 7:
Pattern metal
(Metal mask)

Example of Design Rule: MOSIS

- R1: the minimum feature size is 2λ,
- R2: the minimum active area width is 3λ,
- R3: the minimum metal width is 3λ,
- R4: the safety margin for overlay error is λ,
- R5: the minimum active contact spacing on different active regions is 6λ.

Layout:

