In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns In [2]: credit_df = pd.read_csv('CreditRisk.csv') In [3]: credit_df.shape Out[3]: (614, 13) In [4]: credit_df.head() Out[4]: Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loa **0** LP001002 Male No Graduate No 5849 0.0 0 **1** LP001003 Male Graduate 4583 1508.0 128 Yes No **2** LP001005 Graduate Male Yes Yes 3000 0.0 66 **3** LP001006 Male 2583 2358.0 120 Yes No Graduate 4 LP001008 Male Graduate No 6000 0.0 141 No In [5]: credit_df.tail() Out[5]: Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount I 609 LP002978 Female 71 No Graduate No 2900 0.0 **610** LP002979 Graduate 4106 0.0 40 Male Yes 3+ No **611** LP002983 8072 240.0 253 Male Yes Graduate No 7583 187 612 LP002984 Male Yes Graduate No 0.0 613 LP002990 Female No Graduate Yes 4583 0.0 133 In [6]: credit_df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 614 entries, 0 to 613 Data columns (total 13 columns): # Column Non-Null Count Dtype -----0 Loan_ID 614 non-null object Gender 601 non-null object 1 2 Married 611 non-null object 3 Dependents 599 non-null object Education 614 non-null object 4 5 Self_Employed 582 non-null object ApplicantIncome 614 non-null int64 6 7 CoapplicantIncome 614 non-null float64 614 non-null int64 8 LoanAmount 600 non-null float64 9 Loan_Amount_Term Credit_History 564 non-null float64 10 object 11 Property_Area 614 non-null int64 12 Loan_Status 614 non-null dtypes: float64(3), int64(3), object(7)memory usage: 62.5+ KB In [7]: credit_df.describe() Out[7]: ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount_Term Credit_History Loan_Status 614.000000 614.000000 600.00000 5403.459283 1621.245798 141.166124 342.00000 0.842199 0.687296 mean 88.340630 std 6109.041673 2926.248369 65.12041 0.364878 0.463973 0.000000 150.000000 0.000000 0.000000 12.00000 0.000000 min 98.000000 0.000000 25% 2877.500000 0.000000 360.00000 1.000000 1188.500000 125.000000 50% 3812.500000 360.00000 1.000000 1.000000 164.750000 360.00000 1.000000 1.000000 **75**% 5795.000000 2297.250000 81000.000000 41667.000000 700.000000 480.00000 1.000000 1.000000 max In [3]: credit_df.Loan_Status.value_counts() Out[3]: 1 422 0 192 Name: Loan_Status, dtype: int64 In [4]: credit_df.groupby(['Education', 'Loan_Status']).Education.count() Out[4]: Education Loan_Status Graduate 140 340 1 52 Not Graduate 0 82 Name: Education, dtype: int64 In [10]: sns.barplot(y = 'Credit_History', x = 'Loan_Status', hue='Education', data = credit_df) Out[10]: <AxesSubplot:xlabel='Loan_Status', ylabel='Credit_History'> 1.0 Education Graduate Not Graduate 0.8 Credit_History 9.0 0.2 0.0 Loan_Status Fill Null Values In [5]: 100 * credit_df.isnull().sum() / credit_df.shape[0] Out[5]: Loan_ID 0.000000 Gender 2.117264 Married 0.488599 Dependents 2.442997 0.000000 Education Self_Employed 5.211726 0.000000 ApplicantIncome 0.000000 CoapplicantIncome LoanAmount 0.000000 Loan_Amount_Term 2.280130 8.143322 Credit_History Property_Area 0.000000 0.000000 Loan_Status dtype: float64 In [6]: object_columns = credit_df.select_dtypes(include=['object']).columns numeric_columns = credit_df.select_dtypes(exclude=['object']).columns In [13]: #credit_df.columns[credit_df.dtypes == object] #credit_df.columns[credit_df.dtypes == object] In [7]: for column in object_columns: majority = credit_df[column].value_counts().iloc[0] credit_df[column].fillna(majority, inplace=True) In [8]: for column in numeric_columns: mean = credit_df[column].mean() credit_df[column].fillna(mean, inplace=True) In [16]: # Impute In [9]: credit_df.head() Out[9]: Loan_ID Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loa 0 LP001002 0.0 0 Graduate 5849 Male No No 1 LP001003 Graduate Male Yes No 4583 1508.0 128 2 LP001005 Male Graduate Yes 3000 0.0 66 Yes 2358.0 2583 120 3 LP001006 Male Yes No Graduate Graduate 0.0 4 LP001008 Male 6000 141 In [10]: credit_df.drop('Loan_ID', axis=1, inplace=True) In [11]: object_columns = credit_df.select_dtypes(include=['object']).columns credit_df.head() In [12]: Out[12]: Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantIncome LoanAmount Loan_Amount 0 0.0 0 Male No Graduate No 5849 1 Male Yes Graduate No 4583 1508.0 128 3000 0.0 66 Male Graduate Yes Yes 2583 2358.0 120 Male No Graduate Male No Graduate No 6000 0.0 141 **Categorical Columns** In [13]: credit_df[object_columns].Property_Area Out[13]: 0 Urban Rural Urban Urban Urban 609 Rural 610 Rural 611 Urban 612 Urban 613 Semiurban Name: Property_Area, Length: 614, dtype: object In [14]: credit_df[object_columns].Property_Area.head() Out[14]: 0 Urban Rural Urban 3 Urban Urban Name: Property_Area, dtype: object In [24]: credit_df_dummy = pd.get_dummies(credit_df, columns=object_columns) In [25]: # Sklearn - LabelEncoding # Sklearn - LabelBinarize # Sklearn - OneHotEncoding In [26]: credit_df_dummy.shape Out[26]: (614, 25) Model In [28]: from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.metrics import accuracy_score, confusion_matrix, classification_report In [31]: | X = credit_df_dummy.drop('Loan_Status', axis=1) y = credit_df_dummy.Loan_Status train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.3, random_state=42) In [32]: train_x.shape, test_x.shape Out[32]: ((429, 24), (185, 24)) **Decision Tree** In [54]: | dt_model = DecisionTreeClassifier(max_depth=14) In [55]: | dt_model.fit(train_x, train_y) Out[55]: DecisionTreeClassifier(max_depth=14) In [56]: train_y_hat = dt_model.predict(train_x) test_y_hat = dt_model.predict(test_x) In [41]: print('-'*20, 'Train', '-'*20) print(classification_report(train_y, train_y_hat)) print('-'*20, 'Test', '-'*20) print(classification_report(test_y, test_y_hat)) ----- Train ----recall f1-score support precision 0 1.00 1.00 1.00 127 1 1.00 1.00 1.00 302 accuracy 1.00 429 macro avg 1.00 1.00 1.00 429 weighted avg 1.00 1.00 1.00 429 ----- Test recall f1-score support precision 0.53 0.48 0.50 65 0.73 0.78 0.75 120 1 185 accuracy 0.67 0.63 185 macro avg 0.63 0.63 weighted avg 0.67 185 0.66 0.67 In [57]: print('-'*20, 'Train', '-'*20) print(classification_report(train_y, train_y_hat)) print('-'*20, 'Test', '-'*20) print(classification_report(test_y, test_y_hat)) ----- Train ----recall f1-score support precision 0.99 1.00 127 1.00 1 1.00 1.00 1.00 302 429 1.00 accuracy macro avg 1.00 1.00 1.00 429 weighted avg 1.00 1.00 1.00 429 ----- Test -----recall f1-score precision support 0 0.58 0.54 0.56 65 0.76 0.79 0.78 120 1 185 accuracy 0.70 macro avg 0.67 0.67 0.67 185 weighted avg 0.70 185 0.70 0.70 **SVM** In [109]: svm_model = SVC(kernel='rbf', gamma=0.00001, C=1000) In [110]: | svm_model.fit(train_x, train_y) Out[110]: SVC(C=1000, gamma=1e-05) In [111]: train_y_hat = svm_model.predict(train_x) test_y_hat = svm_model.predict(test_x) In [112]: print('-'*20, 'Train', '-'*20) print(classification_report(train_y, train_y_hat)) print('-'*20, 'Test', '-'*20) print(classification_report(test_y, test_y_hat)) ----- Train -----recall f1-score support precision 0 127 0.95 0.95 0.95 1 0.98 0.98 0.98 302

0.97

0.96

0.97

recall f1-score support

0.24

0.73

0.60

0.49

0.56

accuracy macro avg

accuracy

macro avg

weighted avg

Out[113]: array([[12, 53],

In []:

0

1

In [113]: confusion_matrix(test_y, test_y_hat)

weighted avg

0.96

0.97

0.36

0.65

0.51

0.55

[21, 99]], dtype=int64)

precision recall f1-

0.96

0.97

0.18

0.82

0.50

0.60

429

429

429

65

120

185

185

185