Algebraic Geometry A Personal View

CSE 590B

James F. Blinn

Mailing List

cse590b@cs.washington.edu

Subscribe at

https://mailman.cs.washington.edu/
mailman/listinfo/cse590b

University of Michigan

University of Michigan

Gordon Romney (U Utah)

1969

University of Utah

JPL/Caltech

JPL/Caltech

Voyager

The Mechanical Universe

Cosmos

Mathematics!

Render 3D Objects

Planar Polygons = First Order Surfaces

Render 3D Objects

Second Order Surfaces

Render 3D Objects

Third (and higher) Order Surfaces

UM, UU, JPL, Microsoft and Now

1962-present

Algebraic Equations

Geometric Shapes

Making Algebraic Geometry
More Understandable

Jim Blinn's Corner Articles

1987 - 2007

Many of them on Algebraic Geometry

Why Am I Here

- Share my enthusiasms
- Help me organize my ideas

I work better if I have an audience (M.B.)

Updates to old articles

Unpublished articles

Keep me from repeating myself

Publish on web site

- One Session every 2 weeks
- Later meetings may get more sketchy
- Discuss open questions

Why Are You Here

- Varied Audience
 - Go slowly at first
 - Prerequisites:
 - vectors and matrices
 - homogeneous coords
- •See old stuff in new ways
- •See new stuff

What I will talk about

- •Real Algebraic Projective Geometry
 - *Real* is more complex than *Complex*
 - Projective is simpler than Euclidean
- •Dimension 1,2,3
- Lowish Order Polynomials
- •Notation, notation, notation
- Lots of Pictures

Pictures? Hartshorne vs. Abraham&Shaw

```
Why no
     can fool you
     show only special cases
     hard to generalize to high dimensions
     hard to make
     forces you to think (visualize internally)
Why yes
     intuition
     see patterns
     I am visual thinker (see patterns)
     pretty
```

Relation Between Algebra and Geometry

$$X^2 + Y^2 = 1$$

Relation Between Algebra and Geometry

$$X^2 + 4Y^2 = 1$$

Relation Between Algebra and Geometry

$$X^2 + X + 4Y^2 = 1$$

General Quadratic Curve

Quadratic Curve

$$AX^{2} + 2BXY + CY^{2}$$

 $+2DX + 2EY + F = 0$

Discriminant

$$\mathbf{D}(A,B,C,D,E,F) = 0$$

$$\mathbf{D}(...) = ACF + 2BED - D^{2}C - E^{2}A - B^{2}F$$

Cubic Curve

$$AX^{3} + 3BX^{2}Y + 3CXY^{2} + DY^{3}$$
$$+3EX^{2} + 6FXY + 3GY^{2}$$
$$+3HX + 3JY + K = 0$$

Discriminant of Cubic

$$\mathbf{D}(A,B,C,D,E,F,G,H,J,K) = 0$$

G. Salmon (1879):

$$\mathbf{D} = A^4 D^4 K^4 - 12A^4 D^3 K^3 GJ$$

$$+36A^4 D^2 K^2 G^2 J^2 + 64A^3 D^3 K^3 F^3$$

$$-192A^2 D^3 K^3 F^2 BE + 192AD^3 K^3 FB^2 E^2$$

$$-64D^3 K^3 B^3 E^3 + \dots$$

D has over 10,000 terms

Discriminant of Cubic

$$\mathbf{D} = 64S^3 + T^2$$

S: degree 4 in *A...K* has 25 terms

T: degree 6 in *A...K* has 103 terms

Want Better Notation

Notation = Creative Abbreviation

$$ab + cd = e$$
$$fb + hd = k$$

$$\begin{bmatrix} a & c \\ f & h \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} e \\ k \end{bmatrix}$$

$$\mathbf{M}\mathbf{v} = \mathbf{w}$$

$$N(Mv) = (NM)v$$

Review of Typical Notation

And some snags

2D Euclidean Geometry

$$\mathbf{P} = \begin{bmatrix} X & Y \end{bmatrix}$$

What Went Wrong?

Top View

Front View (Post Perspective)

2D Projective Geometry 3D Algebraic Objects

$$\mathbf{P} = \begin{bmatrix} x & y & w \end{bmatrix}$$

$$\cong \begin{bmatrix} \alpha x & \alpha y & \alpha w \end{bmatrix}$$

Y
$\cdot \left[\frac{x}{w} \frac{y}{w} \right] X$

Equation of a Line

$$ax + by + cw = 0$$

$$\begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

Equation of a Line

$$ax + by + cw = 0$$

$$\begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\mathbf{P} \cdot \mathbf{L} = 0$$

Row/column standardization?

Two Points Make A Line

$$\begin{bmatrix} x_P & y_P & w_P \\ x_S & y_S & w_S \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} x_P & y_P & w_P \end{bmatrix}$$

$$= & \times$$

$$c \end{bmatrix} \begin{bmatrix} x_S & y_S & w_S \end{bmatrix}$$

$$L = P \times S$$

$$a = y_P w_S - w_P y_S$$
, $b = w_P x_S - x_P w_S$, $c = x_P y_S - y_P x_S$

Two Lines Make A Point

$$\begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} a_L & a_M \\ b_L & b_M \\ c_L & c_M \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x & y & w \end{bmatrix} = \begin{bmatrix} a_L \\ b_L \\ c_L \end{bmatrix} \times \begin{bmatrix} a_M \\ b_M \\ c_M \end{bmatrix}$$

$$P = L \times M$$

Transforming Points

$$\mathbf{PT} = \hat{\mathbf{P}}$$

$$\begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{bmatrix} = \begin{bmatrix} \hat{x} & \hat{y} & \hat{w} \end{bmatrix}$$

Transforming Lines

$$\mathbf{P} \cdot \mathbf{L} = 0$$

$$\mathbf{P}(\mathbf{T}\mathbf{T}^{-1})\mathbf{L} = 0$$

$$(\mathbf{PT})(\mathbf{T}^{-1}\mathbf{L}) = 0$$

$$\tilde{\mathbf{P}} \cdot \tilde{\mathbf{L}} = 0$$

$$\mathbf{PT} = \tilde{\mathbf{P}}$$

$$\mathbf{T}^{-1}\mathbf{L} = \tilde{\mathbf{L}}$$

Matrix Adjugate (fka Adjoint)

$$\mathbf{T} = \begin{bmatrix} \cdots R_1 \cdots \\ \cdots R_2 \cdots \\ \cdots R_3 \cdots \end{bmatrix} \qquad \mathbf{?} \qquad \mathbf{T}^* = \begin{bmatrix} \vdots & \vdots & \vdots \\ R_2 \times R_3 & R_3 \times R_1 & R_1 \times R_2 \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$\mathbf{TT}^* = \begin{bmatrix} \det \mathbf{T} & 0 & 0 \\ 0 & \det \mathbf{T} & 0 \\ 0 & 0 & \det \mathbf{T} \end{bmatrix} = (\det \mathbf{T}) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Transforming Points and Lines

$$\mathbf{PT} = \tilde{\mathbf{P}} \qquad \begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{bmatrix} = \begin{bmatrix} \hat{x} & \hat{y} & \hat{w} \end{bmatrix}$$

$$\mathbf{T}^{*}\mathbf{L} = \tilde{\mathbf{L}} \begin{bmatrix} T^{*}_{11} & T^{*}_{12} & T^{*}_{13} \\ T^{*}_{21} & T^{*}_{22} & T^{*}_{23} \\ T^{*}_{31} & T^{*}_{32} & T^{*}_{33} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \hat{a} \\ \hat{b} \\ \hat{c} \end{bmatrix}$$

Point on Quadratic Curve

$$Ax^{2} + 2Bxy + 2Cxw$$
$$+Dy^{2} + 2Eyw$$
$$+Fw^{2} = 0$$

$$\begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} A & B & C \\ B & D & E \\ C & E & F \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$$

$$\mathbf{P} \cdot \mathbf{Q} \cdot \mathbf{P}^T = 0$$

Transforming a Quadratic

$$\mathbf{PQP}^{T} = 0$$

$$\mathbf{P}(\mathbf{TT}^{*})\mathbf{Q}(\mathbf{TT}^{*})^{T}\mathbf{P}^{T} = 0$$

$$(\mathbf{PT})(\mathbf{T}^{*}\mathbf{QT}^{*T})(\mathbf{PT})^{T} = 0$$

$$\tilde{\mathbf{P}}\tilde{\mathbf{Q}}\tilde{\mathbf{P}}^{T} = 0$$

$$\mathbf{PT} = \tilde{\mathbf{P}}$$

$$\mathbf{T}^*\mathbf{Q}\mathbf{T}^{*T} = \tilde{\mathbf{Q}}$$

Given Point, Find Tangent

$$0 = \mathbf{PQP}^{T}$$

$$= \mathbf{P} \cdot (\mathbf{QP}^{T})$$

$$= \mathbf{P} \cdot \mathbf{L}$$

Given Point, Find Tangent

$$0 = \mathbf{PQP}^{T}$$

$$= \mathbf{P} \cdot (\mathbf{QP}^{T})$$

$$= \mathbf{P} \cdot \mathbf{L}$$

Is a Line Tangent to Q

$$0 = \mathbf{L}^T \mathbf{Q}^* \mathbf{L}$$

Given Tangent, Find Point

$$0 = \mathbf{L}^T \mathbf{Q}^* \mathbf{L}$$
$$= (\mathbf{L}^T \mathbf{Q}^*) \mathbf{L}$$
$$= \mathbf{P} \cdot \mathbf{L}$$

Given Tangent, Find Point

$$0 = \mathbf{L}^T \mathbf{Q}^* \mathbf{L}$$
$$= (\mathbf{L}^T \mathbf{Q}^*) \mathbf{L}$$
$$= \mathbf{P} \cdot \mathbf{L}$$

Three Kinds of Matrix

$$[point] \cdot T = [point]$$

$$[point] \cdot \mathbf{Q} = [line]'$$

$$\left[\text{line}\right]^T \cdot \mathbf{Q}^* = \left[\text{point}\right]$$

Point on Cubic Curve

$$Ax^{3} + 3Bx^{2}y + 3Cxy^{2} + Dy^{3}$$

$$+3Ex^{2}w + 6Fxyw + 3Gy^{2}w$$

$$+3Hxw^{2} + 3Jyw^{2}$$

$$+Kw^{3} = 0$$

Forms of Cubic Curve Equation

$$Ax^{3} + 3Bx^{2}y + 3Cxy^{2} + Dy^{3}$$
$$+3Ex^{2}w + 6Fxyw + 3Gy^{2}w$$
$$+3Hxw^{2} + 3Jyw^{2}$$
$$+Kw^{3} = 0$$

$$\begin{cases}
[x \quad y \quad w] \begin{bmatrix} A & B & E \\ B & C & F \\ E & F & H \end{bmatrix} \begin{bmatrix} B & C & F \\ C & D & G \\ F & G & J \end{bmatrix} \begin{bmatrix} E & F & H \\ F & G & J \\ H & J & K \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} \begin{cases} x \\ y \\ w \end{bmatrix} = 0$$

$$\left\{\mathbf{P}\mathbf{C}\mathbf{P}^T\right\}\mathbf{P}^T = 0$$

Forms of Cubic Curve Equation

$$Ax^{3} + 3Bx^{2}y + 3Cxy^{2} + Dy^{3}$$
$$+3Ex^{2}w + 6Fxyw + 3Gy^{2}w$$
$$+3Hxw^{2} + 3Jyw^{2}$$
$$+Kw^{3} = 0$$

$$\begin{cases}
[x \quad y \quad w] \begin{bmatrix} A & B & E \\ B & C & F \\ E & F & H \end{bmatrix} \begin{bmatrix} B & C & F \\ C & D & G \\ F & G & J \end{bmatrix} \begin{bmatrix} E & F & H \\ F & G & J \\ H & J & K \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} \begin{cases} x \\ y \\ w \end{bmatrix} = 0$$

$$\sum_{i,j,k} P_i P_j P_k C_{i,j,k} = 0$$

Two Problems With Notation

Row vs. Column Confusion

$$[point] \cdot \mathbf{Q} = [line]^T$$

Handing More Than Two Indices

$$\mathbf{C} = \begin{bmatrix} \begin{bmatrix} A & B & E \\ B & C & F \\ E & F & H \end{bmatrix} & \begin{bmatrix} B & C & F \\ C & D & G \\ F & G & J \end{bmatrix} & \begin{bmatrix} E & F & H \\ F & G & J \\ H & J & K \end{bmatrix} \end{bmatrix}$$

The Solution

- Steal Notational Tricks from Physics
 - General Relativity
 - Quantum Mechanics
- Tuned to Algberaic Geometry

Old Index Types

$$\mathbf{P} = \begin{bmatrix} P_1 & P_2 & P_3 \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix}$$
Row
Column

New Index Types

$$\mathbf{P} = \begin{bmatrix} P^1 & P^2 & P^3 \end{bmatrix}$$
 $\mathbf{L} = \begin{bmatrix} L_1 & L_2 & L_3 \end{bmatrix}$
CoVariant

The Multiplication Machine

e Multiplication Mac
$$\mathbf{P} \cdot \mathbf{L} = \begin{bmatrix} P_1 & P_2 & P_3 \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix}$$

$$= P^{1}L_{1} + P^{2}L_{2} + P^{3}L_{3}$$

$$= \sum_{i} P^{i}L_{i}$$

$$=P^{\alpha}L_{\alpha}$$

Einstein Index Notation

Three Kinds of Matrix

Three Kinds of Matrix

$$P^jT^i_j=\tilde{P}^i$$

$$P^{i}Q_{ij}=L_{j}$$

$$L_i(Q^*)^{ij}=P^j$$

General Tensor Contraction

$$F_{ij}^{k}H_{km}^{lu}R^{j}S_{u}=W_{im}^{l}$$

Taking More Ideas from Physics

Writing Tensor Contraction in Diagram Form

 $P^{\alpha}L_{\alpha}$

Three Kinds of Matrix

$$P^j T^i_j = \hat{P}^i$$

$$P^{j}T_{j}^{i} = \hat{P}^{i}$$
 $\stackrel{j}{\triangleright}$ $\stackrel{i}{\triangleright}$ $\stackrel{j}{\triangleright}$

$$P^i Q_{ij} = L_j$$

$$P^iQ_{ij} = L_j$$
 $P \rightarrow Q \leftarrow j$ $= L \leftarrow j$

$$L_i(Q^*)^{ij} = P^j$$

$$P \xrightarrow{j}$$

General Tensor Contraction

$$F_{ij}^{k}H_{km}^{lu}R^{j}S_{u}=W_{im}^{l}$$

Don't need index labels

Just be careful about matching dangling arcs

Sum of Terms

$$\mathbf{P} = \mathbf{R}\mathbf{T} + \mathbf{S}$$

$$P^{i} = R^{j}T_{j}^{i} + S^{i}$$

$$P \rightarrow = \mathbb{R} \rightarrow \mathbb{T} \rightarrow + \mathbb{S} \rightarrow$$

Scalar Product

$$\mathbf{P} = \alpha \mathbf{R} + \beta \mathbf{S}$$

$$P \rightarrow = \alpha R \rightarrow + \beta S \rightarrow$$

$$= \alpha$$
 (R) \rightarrow $+\beta$ (S) \rightarrow

Only Connectivity Matters

Rearranging internal arcs/nodes doesn't change value

Now Back To Geometry

Point on a Line

$$ax + by + cw = 0$$

$$\begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\mathbf{P} \cdot \mathbf{L} = 0$$

$$P^iL_i=0$$

$$P \rightarrow L = 0$$

Point on a Quadratic Curve

$$Ax^{2} + 2Bxy + 2Cxw$$

$$+Dy^{2} + 2Eyw$$

$$+Fw^{2} = 0$$

$$[x \quad y \quad w]\begin{bmatrix} A & B & C \\ B & D & E \\ C & E & F \end{bmatrix}\begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$$

$$\begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} A & B & C \\ B & D & E \\ C & E & F \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$$

$$\mathbf{P} \cdot \mathbf{Q} \cdot \mathbf{P}^T = 0$$

$$P^i Q_{ij} P^j = 0$$

$$P \rightarrow Q \leftarrow P = 0$$

Point on a Cubic Curve

$$Ax^{3} + 3Bx^{2}y + 3Cxy^{2} + Dy^{3}$$
$$+3Ex^{2}w + 6Fxyw + 3Gyw^{2}$$
$$+2Hxw^{2} + 3Jyw^{2}$$
$$+Kw^{3} = 0$$

$$\left\{ \begin{bmatrix} x & y & w \end{bmatrix} \begin{bmatrix} A & B & E \\ B & C & F \\ E & F & H \end{bmatrix} \begin{bmatrix} B & C & F \\ C & D & G \\ F & G & J \end{bmatrix} \begin{bmatrix} E & F & H \\ F & G & J \\ H & J & K \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} \right\} \begin{bmatrix} x \\ y \\ w \end{bmatrix} = 0$$

$$P^i P^j P^k C_{ijk} = 0$$

Transforming a Point

$$\mathbf{PT} = \tilde{\mathbf{P}}$$

$$P^iT_i^{\ j}=\tilde{P}^j$$

$$P \rightarrow T \rightarrow = \tilde{p} \rightarrow$$

Transforming a Line

$$\left(\mathbf{T}^{*}\right)\mathbf{L}=\widetilde{\mathbf{L}}$$

$$\left(T^{*}\right)_{i}^{i}L_{i}= ilde{L}_{j}$$

Transforming A Quadratic Curve

$$\left(\mathbf{T}^*\right)\mathbf{Q}\left(\mathbf{T}^*\right)^T = \tilde{\mathbf{Q}}$$

$$\left(T^{*}\right)_{k}^{i}Q_{ij}\left(T^{*}\right)_{l}^{j}=\tilde{Q}_{kl}$$

Transforming A Transformation

$$T^*MT = \tilde{M}$$

$$\left(T^{*}\right)_{k}^{l} M_{i}^{j} \left(T\right)_{j}^{l} = \tilde{M}_{k}^{l}$$

$$T^* \to M \to T \to M$$

Transforming a Cubic Curve

$$\left(T^*\right)_l^i \left(T^*\right)_m^j \left(T^*\right)_n^k C_{ijk} = \tilde{C}_{lmn}$$

General Transformation Rule

Dot and Cross Product

Levi-Civita Epsilon

$$\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = +1$$

$$\varepsilon_{321} = \varepsilon_{132} = \varepsilon_{213} = -1$$

$$\varepsilon_{ijk} = 0 \quad \text{otherwise}$$

$$\varepsilon = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Cross Product

$$\begin{bmatrix} x_P & y_P & w_P \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_S \\ y_S \\ w_S \end{bmatrix} =$$

$$\begin{bmatrix} y_P w_S - w_P y_S & w_P x_S - x_P w_S & y_P x_S - x_P y_S \end{bmatrix}$$

$$P^{i}S^{j}\varepsilon_{ijk}=L_{k}$$

Levi-Civita Epsilon Diagram

Levi-Civita Epsilon Diagram

Cross Product

$$\begin{bmatrix} P^1 & P^2 & P^3 \end{bmatrix} imes \begin{bmatrix} S^1 & S^2 & S^3 \end{bmatrix} = \begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix}$$

$$P \times S = L$$

$$P^{i}S^{j}\varepsilon_{ijk}=L_{k}$$

Anti-Symmetry and Epsilon

$$\mathbf{P} \times \mathbf{S} = -(\mathbf{S} \times \mathbf{P})$$

Mirror Reflections flip sign

AxA=0

Two Types of Epsilon

COvariant

 \mathcal{E}_{ijk}

CONTRAvariant

cijk

The Other Cross Product

$$\begin{bmatrix} L_1 \\ L_2 \\ L_3 \end{bmatrix} \times \begin{bmatrix} M_1 \\ M_2 \\ M_3 \end{bmatrix} = \begin{bmatrix} P^1 & P^2 & P^3 \end{bmatrix} \qquad \qquad \mathbf{L} \times \mathbf{M} = \mathbf{P}$$

$$L_i M_j \varepsilon^{ijk} = P^k$$

Triple Product

$$\mathbf{P} \times \mathbf{R} \cdot \mathbf{S} = \mathbf{R} \times \mathbf{S} \cdot \mathbf{P} = \mathbf{S} \times \mathbf{P} \cdot \mathbf{R} =$$

$$=[PRS]$$

$$L \times M \cdot N = M \times N \cdot L = N \times L \cdot M =$$

$$=[LMN]$$

Generating Algebraic Relations Between Diagrams

Linear Combinations of Points

$$\Rightarrow = \alpha \longrightarrow + \beta \longrightarrow + \gamma \longrightarrow$$

Linear Combinations of Points

$$[\![\cdots \mathbf{W} \cdots]\!] = [\![\alpha \quad \beta \quad \gamma]\!] \begin{bmatrix} \cdots \mathbf{B} \cdots \\ \cdots \mathbf{R} \cdots \\ \cdots \mathbf{G} \cdots \end{bmatrix}$$

Cramer's Rule

Basic Linear Relationship

$$\det \begin{bmatrix} \cdots B \cdots \\ \cdots R \cdots \\ \cdots G \cdots \end{bmatrix} \longrightarrow = \det \begin{bmatrix} \cdots W \cdots \\ \cdots R \cdots \\ \cdots G \cdots \end{bmatrix} \longrightarrow + \det \begin{bmatrix} \cdots B \cdots \\ \cdots W \cdots \\ \cdots G \cdots \end{bmatrix} \longrightarrow + \det \begin{bmatrix} \cdots B \cdots \\ \cdots R \cdots \\ \cdots W \cdots \end{bmatrix}$$

Grassman-Plucker relation

Note Symmetry

Arc Swapping Identity

Arc Swapping Identity - Variations

Swap heads

Swap tails

Swap heads (dual)

An Application of Arc Swapping

An Application of Arc Swapping

An Application of Arc Swapping

$$3 \longrightarrow M \longrightarrow M \longrightarrow M$$

Compare with:
$$\mathbf{M}\mathbf{M}^* = (\det \mathbf{M})\mathbf{I}$$

Relation of Diagram to Adjugate

$$D_{mn} = M^{ij}M^{kl}\varepsilon_{ikn}\varepsilon_{ljm} = \sum_{k=1}^{n} M^{ij}M^{kl}$$

Example element:

Adjugate and Determinant

Another Arc Swap Application

Another Arc Swap Application

Another Arc Swap Application

Epsilon-Delta Rule

$$\mathcal{S}^i_j = egin{bmatrix} \imath & \bigwedge \\ j & \end{pmatrix}$$

$$\varepsilon_{\alpha j k} \varepsilon^{\alpha l m} = \delta^l_j \delta^m_k - \delta^m_j \delta^l_k$$

Algebraic Interpretation

$$A \times (B \times C) = (A \cdot C)B - (A \cdot B)C$$

Projection from L thru C onto G

Projection from L thru C onto G

$$\mathbf{L} \times \mathbf{C} = \mathbf{R}$$

$$\mathbf{G} \times \mathbf{R} = \mathbf{S}$$

Projection from L thru C onto G

$$S = \alpha L + \beta C$$

Projection from L thru C onto G

$$S = \alpha L + \beta C$$

$$\mathbf{S} \cdot \mathbf{G} = 0$$

$$0 = \alpha (\mathbf{L} \cdot \mathbf{G}) + \beta (\mathbf{C} \cdot \mathbf{G})$$

$$\alpha = (\mathbf{C} \cdot \mathbf{G})$$

$$\beta = -(\mathbf{L} \cdot \mathbf{G})$$

$$S = (C \cdot G)L - (L \cdot G)C$$

Shadow Projection Matrix

$$C \rightarrow T \rightarrow = S \rightarrow$$

An Important Identity

What is transformed Epsilon?

Use Modification of EpsDel

Apply to Transformed Epsilon

Mirror Reflection = Change Sign

Move over = sign

Recall previous diagram

An Important Identity

Diagram of Transformed Quadratic Determinant

MAJOR PUNCHLINE

Of all the Gazillion possible polynomials in the coefficients

Tensor Diagrams express only those that represent Invariant Properties

Trace of Matrix

$$\operatorname{trace} \mathbf{T} = \sum_{i} T_{i}^{i} = \boxed{\mathbf{T}}$$

trace
$$\mathbf{Q} = \sum_{i} Q_{ii} = \frac{\mathbf{Q}}{?}$$

Discriminant of Cubic

Discriminant of Cubic

Discriminant of Cubic

$$\mathbf{D} = 64S^3 + T^2$$

S: degree 4 in *A...K* has 25 terms

T: degree 6 in *A...K* has 103 terms

$$S = -\frac{1}{24}$$

"Phase space" of cubics

$$\mathbf{D} = 64S^3 + T^2$$

$$\{\alpha,\beta\} = \begin{cases} \alpha,\beta\} = \begin{cases} \alpha,\beta\} = \begin{cases} \alpha,\beta\} = \begin{cases} \alpha,\beta\} \end{cases}$$

History of Diagrammatic Invariant Notation

1878 Sylvester & Clifford1885 Kempe

1989 Olver & Shakiban1990 Stedman1992-2007 Blinn2011 Richter-Gebert

Effect of Changes

Geometric Transformation

Homogeneous Scale

What Stays Constant?

Where do we go from here

Other Dimensions

Polynomials in P^1

2D algebra

$$f(x,w) = Ax^2 + Bxw + Cw^2$$

Curves in P^2

3D algebra

$$f(x, y, w) = Dx^2 + Eyw + Fw^2 + ...$$

Surfaces in P^3

4D algebra

$$f(x, y, z, w) = Gx^2 + Hyw + Jzw + ...$$

The Grid

	2D=P ¹ Point sets on line	3D=P ² Curves in plane	4D=P ³ Surfaces in space
LINEAR			
QUADRATIC			
CUBIC			
QUARTIC			
etc			

Other Dimensions

$$2D: ax+bw$$

$$3D: ax + by + cw$$

$$4D: ax + by + cz + dw$$

Same Across Dimensionality

$$P \rightarrow Q \leftarrow P = 0$$

Dimensionality and Epsilon

2D algebra

1D geometry

3D algebra

2D geometry

4D algebra

3D geometry

Previews of Coming Attractions

Discriminant Surface

$$-A^{2}D^{2} + 6ABCD - 4AC^{3} - 4B^{3}D + 3B^{2}C^{2} = 0$$

Resultants

Theorem of Pascal

5 Points Determine a Quadratic

Intersecting Two Quadratic Curves

Analyzing Cubic Curves

$$C = K K + L M$$

Parametric Curves

Parametric

Implicit

Degeneracy:
Base Point if

Group Structure of Cubic

Three Dimensional Projective Geometry

3 Points = A Plane

2 Points = A Line

Discriminant of Quadric

Three Skew Lines

Steiner Surfaces

Parametric

Tangent

Implicit

Tensor Diagrams

- Keep Track of CoVariant/ContraVariant Pairings
- Represent Higher Order Curves Nicely
- Express Only Invariant Quantities
- Allow for Algebra on These Quantities
- Are coordinate free
- Allow us to feel really cool at sharing notation with Einstein and Feynman

More Information

www.JimBlinn.com