Information Retrieval 1 Summary

Andrew Yates

a.c.yates@uva.nl

University of Amsterdam

Outline

- Organization
- 2 Recap
- 3 Conclusion

Organization Recap Conclusion

Last Q&A session

- Briefly, RecSys Q&A and discussion questions
- Opportunity to ask questions on any content
- Remainder: I will take requests for example exam/exercise problems to solve (or choose myself if there are no requests)

Exam

- "Open book": you may bring a sheet of paper with notes on both sides (prepared any way you like)
- In-person, on paper
- Off-site (see DataNose)

Outline

- Organization
- 2 Recap
- Conclusion

Information Retrieval 1

- Basic techniques (IR0 recap)
- Four pillars of IR
 - Evaluation
 - Document representation and matching
 - Learning to rank
 - IR-user interaction

Basic techniques

rganization Recap Conclusion

Text analysis

- Statistical properties of written text
 - Zipf's law
 - Heaps' law
- 2 Text analysis pipeline
 - Stop-word removal
 - Stemming
 - Phrases

8

Indexing

- Inverted index
 - Vocabulary
 - Inverted lists
- Constructing an index
 - In-memory problem
 - Distributed indexing
- Updating an index

Four pillars of IR

Evaluation

Document representation & matching

Learning to rank

IR—user interaction

(Offline) Evaluation

- Test collections
 - Test documents
 - Test queries
 - Relevance judgements
- Offline evaluation metrics
 - Unranked: precision, recall, F1
 - Ranked: RR, AP
 - User-based: DCG, RBP, ERR

Document representation and matching

- Term-based retrieval
 - VSM+TF-IDF
 - QLM
 - BM25
- Semantic retrieval
 - LSI
 - LDA
 - AWE & Doc2vec
 - KNRM & Transformer-based neural methods

Document representation and matching

- Vector-based
 - Documents and queries as vectors
 - Match using cosine similarity
 - Methods: VSM, LSI, AWE, Doc2vec
- ② Distribution-based
 - Documents and queries as distributions
 - Match using QLM or Kullback-Leibler divergence
 - Methods: QLM, LDA
- Transformer-based
 - Don't fit neatly into other categories
 - Methods: CEDR, SentenceBERT, ColBERT

Learning to rank

- Point-wise (standard ML)
- Pair-wise
 - Point-wise model $f(d_i)$, pair-wise loss $\mathcal{L}(d_i, d_j)$
 - Method: RankNet
- - Replace cost with $|\Delta evaluation_metric|$
 - Method: LambdaRank

IR-user interactions

- Interactions
 - Ambiguous and biased
- Click models
 - Attempt to distinguish between bias and relevance
 - Methods: PBM, cascade model
- Ounterfactual and online LTR and evaluation
 - Debias logged data for learning and evaluation
 - Or learn/evaluate from online interactions

Scenarios

- Conversational search
 - Document representation & matching
 - IR-user interactions
- 2 Recommender systems
 - Content-based
 - Collaborative filtering
 - Neural methods

Outline

- Organization
- 2 Recap
- 3 Conclusion

Organization Recap Conclusion

Information Retrieval 2

- If you enjoyed this class, consider joining IR2 next semester
- Project-based course
- Guest lectures on advanced topics

Recruiting TAs for next year

- Responsibilities include helping with questions and assignments, possibly running LCs, and help with grading
- I will send an announcement after the exam has been graded

Conclusion

Thanks for following the course, and good luck on the exam.