Perfectly Inelastic Collision

In such types of collisions, the bodies move independently before collision but after collision as a one single body.

(1) When the colliding bodies are moving in the same direction

By the law of conservation of momentum

$$m_1 u_1 + m_2 u_2 = (m_1 + m_2) v_{\text{comb}}$$

$$\Rightarrow v_{\text{comb}} = \frac{m_1 u_1 + m_2 u_2}{m_1 + m_2}$$

Before collision

Arter comsion

Loss in kinetic energy

$$\Delta K = \left(\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2\right) - \frac{1}{2}(m_1 + m_2)v_{comb}^2$$

$$\Delta K = \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2} \right) (u_1 - u_2)^2$$

[By substituting the value of v_{comb}]

(2) When the colliding bodies are moving in the opposite direction

By the law of conservation of momentum

$$m_1 u_1 + m_2 (-u_2) = (m_1 + m_2) v_{\text{comb}}$$

(Taking left to right as positive)

$$\therefore v_{\text{comb}} = \frac{m_1 u_1 - m_2 u_2}{m_1 + m_2}$$

when $m_1u_1 > m_2u_2$ then $v_{comb} > 0$ (positive)

i.e. the combined body will move along the direction of motion of mass m_1 .

when $m_1u_1 < m_2u_2$ then $v_{comb} < 0$ (negative)

i.e. the combined body will move in a direction opposite to the motion of mass m_1 .

(3) Loss in kinetic energy

 ΔK = Initial kinetic energy – Final kinetic energy

$$= \left(\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2\right) - \left(\frac{1}{2}(m_1 + m_2)v_{\text{comb}}^2\right)$$

$$= \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (u_1 - u_2)^2$$