

EMITTER-STABILIZED BIAS

BJT DC BIASING

prepared by:

Gyro A. Madrona

........

Electronics Engineer

TOPIC OUTLINE

Emitter-Stabilized Bias Circuit

- Base-Emitter Loop
- Collector-Emitter Loop
- Load Line Analysis

EMITTER-STABILIZED BIAS CIRCUIT

CURRENT GAIN

The <u>current gain</u> parameters <u>alpha</u> (α) and <u>beta</u> (β) describe the relationship between currents in the transistor's three terminals (emitter, base, and collector).

Alpha (α) is the ratio of the collector current to the emitter current.

Formula

$$\alpha = \frac{i_C}{i_E}$$

 α is always less than 1 (typically 0.95 to 0.995)

Beta (β) is the ratio of the collector current to the base current.

Formula

$$\beta = \frac{i_C}{i_B}$$

EMITTER-STABILIZED BIAS CIRCUIT

The <u>emitter-stabilized bias</u> is an improved biasing method by adding <u>resistor in the emitter</u> (R_E). This resistor introduces negative feedback, which helps stabilize the operating point against variations in temperature and transistor beta (β).

KVL @B-E

$$it = ip + ic \longrightarrow \beta = \frac{bc}{it}$$

$$it = ip + \beta ip$$

$$ic = \beta ip$$

$$it = ip(\beta + 1)$$

BASE-EMITTER LOOP

Emiller- Stabilized Bias

COLLECTOR-EMITTER LOOP

For the given emitter-stabilized bias network, determine:

- Base current (i_{BQ})
- Collector current (i_{CO})
- Collector-Emitter voltage (v_{CEQ})
- Collector voltage (v_C)

$$\frac{|4| \cdot (e \cdot b + e \cdot b + v_{pe})}{-2|6| + 2|p_{pe}| + 2|p_{pe}| + 2|p_{pe}| + 2|p_{pe}| + 2|p_{pe}| = 0}$$

$$\frac{|4| \cdot (e \cdot b + e \cdot b)}{|4| + 2|p_{pe}| + 2|p_{pe}| + 2|p_{pe}| + 2|p_{pe}|} + \frac{|4|}{|4|} = 0$$

$$\frac{|4| \cdot (e \cdot b + e \cdot b)}{|4| + 2|p_{pe}| + 2|p_{pe}|} + 2|p_{pe}| + 2|p_{pe}|} + 2|p_{pe}|}{|4| + 2|p_{pe}|} + 2|p_{pe}|} + 2|p_{pe}|}$$

$$\frac{|4| \cdot (e \cdot b + e \cdot b)}{|4| + 2|p_{pe}|} + 2|p_{pe$$

PVL@ C-t

Vac

-xo + Vrc + Vat + Vrt = 0

Vat = Vac - Vrc - Vrt

Vat = Vac - icrc - itert
$$\rightarrow$$
 ic x it

Vat = Vac - ic(rc + rt)

Vat = 20 - 1.82 m(2+ 1k)

Vata = 14.54 V

MAS

LOAD LINE ANALYSIS

SATURATION POINT

The <u>saturation point</u> is the operating state where BJT conducts the <u>maximum collector curren</u>t ($i_{C(sat)}$) with zero collector-emitter voltage ($v_{CE} = 0$).

In this region the transistor acts like a <u>closed switch</u> (zero resistance between collector-emitter).

SATURATION POINT

Mentally Short

CUTOFF POINT

The <u>cutoff point</u> is the operating state where BJT conducts zero collector current ($i_C = 0$) with v_{CE} at its maximum ($v_{CE} = V_{CC}$).

In this region the transistor acts like an <u>open switch</u> (infinite resistance between collector-emitter).

CUTOFF POINT

Mentally Open

QUIESCENT POINT

The **Q-point** is the stable DC operating condition characterized by specific value of collector current (i_C) and collector-emitter voltage (v_{CE}) .

Plot the DC load line analysis for the emitterstabilized bias network, indicating:

- Saturation current $(i_{C(sat)})$
- Cutoff voltage ($v_{CE(cutoff)}$)
- Operating Point (Q-Point)

Solution

Saturation Point

$$lc(str) = \frac{20}{2x + 1x}$$

Load Line Analysis

For the given emitter-stabilized bias network, determine:

- Base current (i_{BQ})
- Collector current (i_{CO})
- Collector-Emitter voltage (v_{CEO})
- Emitter voltage (v_E) and plot the DC load line analysis indicating:
- Saturation current $(i_{C(sat)})$
- Cutoff voltage ($v_{CE(cutoff)}$)
- Operating Point (Q-Point)

$$ip = \frac{V\alpha - V_{pt}}{kp + (BH)kt}$$

$$ip = \frac{20 - 0.7}{430k + (90H) | k}$$

$$ip0 = 37.04 \text{ M}$$
ans

$$\frac{kVLQCE}{-VO} \frac{Vu}{Vu} + Vpc + Vpc + Vpc = 0$$

$$VcE = Vcc - Vpc - Vpc$$

$$VcE = Vcc - icpe - icpe - icpe - icpe + vec + vec$$

$$VcE = Vcc - ic(pc + pe)$$

$$VcE = Vcc - ic(pc + pe)$$

$$VcE = Vcc - 3.35m(2K + 1K)$$

$$VcE = 10.01V$$

$$vec = 10.01V$$

Solution

Saturation Point

$$ic(skt) = \frac{20}{2k + 1k}$$

Load Line Analysis

IMPROVE STABILITY

Bias	β	$i_B(\mu A)$	$i_C(mA)$	$v_{CE}(V)$	$\%\Delta v_{\it CE}$
Fixed-Bias	50	47.08	2.35	6.83	-76%
	100	47.08	4.71	1.64	
Emitter- Stabilized	45	40.55	1.82	14.54	-31%
	90	37.04	3.33	10-01	
Voltage- Divider Bias					

LABORATORY

