Ejercicio 5.11. Sean $f, g : \mathbb{R} \to \mathbb{R}$ dos funciones continuas y supóngase que f(r) = g(r) para todo $r \in \mathbb{Q}$. ¿Es cierto que f = g?

Solución. En efecto, resultará cierto que f = g. Para comprobarlo, empleamos que para cada $x_0 \in \mathbb{R}$ existe una sucesión $\{r_n : n \in \mathbb{N}\} \subseteq \mathbb{Q}$ de forma que $r_n \to x_0$ cuando $n \to \infty$. Dado que f y g son continuas, $f(r_n) \to f(x_0)$ y $g(r_n) \to g(x_0)$ cuando $n \to \infty$, y dado que $f(r_n) = g(r_n)$ para cada $n \in \mathbb{N}$, dada la unicidad del límite, se tiene que $f(x_0) = g(x_0)$. Concluimos así, dada la arbitrariedad de x_0 , que f = g en \mathbb{R} .

Ejercicio 5.14.a. Demostrar que la ecuación $x2^x = 1$ tiene al menos una solución positiva no mayor que 1.

Solución. Definimos la función $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x2^x - 1$. Que $x_0 \in \mathbb{R}$ sea solución de la ecuación $x2^x = 1$ es equivalente a que x_0 sea un cero de f, y como f(0) = -1 < 0 mientras que $f(1) = 1 \cdot 2^1 - 1 = 1 > 0$, en virtud del Teorema de Bolzano ha de existir $c \in (0,1)$ tal que f(c) = 0. \square

Ejercicio 5.15. Sea \vec{d} una dirección en el plano y sea T un triángulo. Probar que existe una recta con dirección \vec{d} que divide al triágulo en dos partes de igual área.

Solución. Supongamos que $\vec{d} \not\propto (1,0)$ es un vector fijo. Entonces, para cada $x \in \mathbb{R}$ definimos por $\Phi(x)$ el área de la parte del triángulo que queda a la derecha de la recta con dirección \vec{d} y que corta al eje de abscisas en x. Dado que T es acotado, podemos encontrar $x_0, x_1 \in [0,1]$ de forma que $\Phi(x) = 0$ para todo $x > x_0$ y $\Phi(x) = \text{Área}(T)$ para todo $x < x_1$. Así, dado que Φ es continua, pues en particular es Lipschitz², deducimos que, en virtud del Teorema de los Valores Intermedios, existe $c \in (x_1, x_0)$ de forma que $\Phi(c) = \frac{1}{2}\text{Área}(T)$, como se detalla en la Figura 1. Si $\vec{d} \propto (1,0)$

 $[\]Phi(x-h)-\Phi(x)=\text{\'A} rea sombreada} \leq \text{\'A} rea rayada} = \text{base} \cdot \text{altura} \leq \text{diam}(C_{T,\vec{d}})h$ donde $\theta_{\vec{d}} = \arctan(d_2/d_1)$ si $d_1, d_2 \neq 0$, cuyo seno no escribimos ya que es menor o igual que 1, y estamos mayorando la expresión, con lo que la función es Lipschitz, y por ende continua. Si $d_2=0$ se razona análogamente pero en el eje de ordenadas.

²Para ver que es Lipschitz, aunque la rigurosidad en esta solución no sea exhaustiva, fijado el triángulo T y la dirección $\vec{d} = (d_1, d_2)$, construyamos un paralelogramo $C_{T,\vec{d}}$ cualquiera (obviamente acotado), que contenga a T, entonces, como se puede observar en la figura,

FIGURA 1. Representación de la función Φ en tres ocasiones distintas, antes de "barrer" el triángulo (izquierda), cuando ha "barrido" la mitad del triángulo (centro), y una vez ha "barrido" la totalidad del triángulo (derecha).

hacemos el mismo razonamiento, pero considerando $\Phi(x)$ el área de la parte del triángulo que queda abajo de la recta con dirección (1,0) y que corta al eje de ordenadas en x.

Ejercicio 5.17. Sea $f:[0,1] \to \mathbb{R}$ una función continua satisfaciendo f(0) = f(1). Demostrar la existencia de un punto $c \in [0,1/2]$ en el que f(c) = f(c+1/2). Pista: considérese la función g(x) = f(x) - f(x+1/2).

Solución. Consideremos la función $g:[0,1/2]\to\mathbb{R}$ dada por la expresión g(x)=f(x)-f(x+1/2). Entonces, g(0)=f(0)-f(1/2) y

$$g(1/2) = f(1/2) - f(1) = -g(0).$$

Así, si g(0) = 0, elegimos simplemente c = 0, mientras que si $g(0) \neq 0$, sabemos que g(0) = -g(1/2), de forma que los signos de ambas imágenes son opuestos y en virtud del Teorema de Bolzano, existe $c \in (0, 1/2)$ de forma que g(c) = 0, como queríamos demostrar.

Ejercicio 5.18. Demostrar el Teorema del Punto Fijo de Brouwer: sea I un intervalo cerrado y acotado y sea $f: I \to I$ una función continua, existe un punto $c \in I$ tal que f(c) = c.

Solución. Denotemos I = [a, b] para ciertos $a, b \in \mathbb{R}$ con a < b. Si f(a) = a o f(b) = b, ya estaría, sin más que tomar c = a o c = b, respectivamente, de modo que supongamos que no es así. Dado que $f([a, b]) \subset [a, b]$, necesariamente se tiene que f(a) > a y f(b) < b. Consideremos la función auxiliar $h : [a, b] \to \mathbb{R}$ dada por h(x) = f(x) - x, la cual es continua y satisface h(a) = f(a) - a > 0 y h(b) = f(b) - b < 0. Como consecuencia del Teorema de Bolzano, debe existir $c \in (a, b)$ tal que c = h(c) = f(c) - c, esto es, debe existir un punto fijo por c = b.

Ejercicio 5.19. Pruébese que si I es un intervalo real, $f: I \to \mathbb{R}$ una función continua $y t_1, ..., t_n \in I$ son puntos arbitrarios, existe $c \in I$ tal que

$$f(c) = \frac{f(t_1) + \dots + f(t_n)}{n}.$$

Solución. Supongamos, sin pérdida de generalidad, que se verifica que $f(t_1) \leq \cdots \leq f(t_n)$, tras un posible reordenamiento de t_1, \ldots, t_n . Entonces,

$$f(t_1) = \frac{f(t_1) + \dots + f(t_1)}{n}$$

$$\leq \frac{f(t_1) + \dots + f(t_n)}{n}$$

$$\leq \frac{f(t_n) + \dots + f(t_n)}{n} = f(t_n),$$

de forma que por el Teorema de los Valores Intermedios de Bolzano, ha de existir $c \in I$ verificando la condición enunciada.