

Computer Security

PKCS #1

Hyoungshick Kim

Department of Software College of Software Sungkyunkwan University

PKCS #1 v1.5

- Standard issued by RSA labs in 1993
- Idea: Add random padding
 - To encrypt m, choose random r
 - $-C = [(r|m)^e \mod N]$
- Issues:
 - No proof of CPA-security (unless m is very short)
 - Chosen-plaintext attacks are known if r is too short
 - Chosen-ciphertext attacks are known

PKCS #1 v2.0

- Optimal asymmetric encryption padding (OAEP) applied to message first
- This padding introduces redundancy, so that not every c ∈ Z^{*}_n is a valid ciphertext
 - Need to check for proper format upon decryption
 - Return error if not properly formatted
- RSA-OAEP can be proven CCA-secure under the RSA assumption, if G and H are modeled as random oracles

OAEP

By Bellare & Rogaway, 1994; in RFC 2437

OAEP looks like a kind of Feistel network.

RSA-OAEP operations

- Encryption with the plaintext m
 - 1. $x \leftarrow m \mid 0^{k_1} \oplus G(r)$
 - 2. $y \leftarrow H(x) \oplus r$
 - 3. $C = [(x|y)^e \mod N]$

- Decryption with the ciphertext c
 - 1. $x|y \leftarrow c^d \pmod{N}$ satisfying $|x| = n-k_0$, $|y| = k_0$
 - 2. $u \leftarrow y \oplus H(x)$; $v \leftarrow x \oplus G(u)$ // u = r
 - 3. Output m if $v = m \mid 0^{k_1}$, else reject.

Questions?

