System

Assembling and tightening the bicycle bolts

Workspace

Control System Design

Control System Design

Modbus TCP/IP

HMI (MT8071iP)

Receive user's settings. Start/stop operation.

PLC (S7-1200)

Main controller.

Trigger Robot and Computer operations.

Manage all sensors in the system.

Computer

Find nuts positions.
by image processing.
Do trajectory planning for robot

The Workflow

My golden star !!!

Move to P_{prepare-i} Defined when the bike type is chosen.

Move to P_{capture-i}
Defined when the bike type
is chosen.
Cameras are requested to
capture and the img

processing started.

Move to P_{hold-i}
Calculated by
Image Processing Algorithm
At this time, the sockets and the
shaft are co-axial.

The cylinders retract. Move to $P_{prepare-i+1}$

Move to $P_{\text{run-i}}$ Defined when the bike type is chosen.

At this position, the motors run to tighten the nuts.

Still at P_{hold-i}
The cylinders extract to
hold the nuts

Capture, Run and Ref. Positions

The capture position at station i is given by

$$P_{capture-i} = P_{ref-i} + \Delta P_{capture-X}$$

The nut running position at station i is given by

$$P_{run-i} = P_{ref-i} + \Delta P_{run-X}$$

Image Processing Technique

Detect the Nut in the Image (1/2)

(a) Origin Image

(b) Undistorted

(c) Gaussian blurred

(d) Otsu Thresholed

(e) Closing Transformed (Inverted Image) (Dilation followed by Erosion)

Detect the Nut in the Image (2/2)

(a) All contours and their min-fitting-circles

(b) Filter out the "not round" contours.

(c) Final contour (using dimensional comparision)

The "round criterion"

$$\frac{A_C}{A_{MFC}} \in [0.9, 1.1]$$