

Podstawy Informatyki

Katedra Telekomunikacji, EiT

dr inż. Jarosław Bułat kwant@agh.edu.pl

Plan prezentacji

- » Systemy liczbowe, systemy pozycyjne
- » Operatory porównania, operacje bitowe
- » Konwersje typów
- » Tekst w C++
- » Typ zmienno-przecinkowy
- » Algorytm: schemat blokowy, pseudocode, implementacja
- » GIT gałęzie

Jak zapisać liczbę?

w systemie pozycyjnym, binarnym

» Zapis w systemie

- » Zapis w systemie
 - jedynkowym

- » Zapis w systemie
 - jedynkowym
 - dziesiętnym

- » Zapis w systemie
 - jedynkowym
 - dziesiętnym
 - trójkowym
 - binarnym

$$\frac{123}{123} = \frac{1}{12} \times 100 + \frac{2}{12} \times 10 + \frac{3}{12} \times 10$$

» Reguły zapisu pozycyjnego

$$\frac{123}{123} = \frac{1}{1} \times 100 + \frac{2}{1} \times 100 + \frac{3}{1} \times 100$$

» Reguły zapisu pozycyjnego

$$\frac{123}{123} = \frac{1}{1} \times 100 + \frac{2}{1} \times 100 + \frac{3}{1} \times 100 + \frac{3}{1} \times 100 + \frac{3}{1} \times 1000 + \frac{3}{1} \times 1$$

- » Reguły zapisu pozycyjnego
- Potęgi to numer pozycji cyfry licząc od prawej strony (LSB)

$$\frac{123}{123} = \frac{1}{1} \times 100 + \frac{2}{1} \times 100 + \frac{3}{1} \times 100 + \frac{3}{1} \times 100 + \frac{3}{1} \times 1000 + \frac{3}{1} \times 1$$

- » Reguły zapisu pozycyjnego
- » Potęgi to numer pozycji cyfry licząc od prawej strony (LSB)

$$123 = 1x100 + 2x10 + 3$$
$$= 1x100 + 2x10 + 3x1$$
$$= 1x10^{2} + 2x10^{1} + 3x10^{0}$$

$$101 = 1x4 + 0x2 + 1x1$$
$$= 1x^{2} + 0x^{2} + 1x^{2}$$

- » Reguły zapisu pozycyjnego
- Potęgi to numer pozycji cyfry licząc od prawej strony (LSB)
- » Podstawa systemu pozycyjnego nie musi być 10
- » Może być inny, np. 2

$$123 = 1x102 + 2x101 + 3x100$$

$$Number = \sum_{i} D_i * R^i$$

» Ogólna zależność systemu pozycyjnego

$$123 = 1x\frac{10^2 + 2x\frac{10^1}{10^1} + 3x\frac{10^0}{10^1}$$

» Ogólna zależność systemu pozycyjnego

$$Number = \sum_{i} D_i * R^i$$

$$1125 = D_3 * R^3 + D_2 * R^2 + D_1 * R^1 + D_0 * R^0$$

$$1125 = 1 * 10^3 + 1 * 10^2 + 2 * 10^1 + 5 * 10^0$$

$$1125 = 1 * 1000 + 1 * 100 + 2 * 10 + 5 * 1$$

https://en.wikipedia.org/wiki/Positional_notation

Konwersja pomiędzy systemami liczbowymi

b	bb	bbb	bbbb	d	0	h
				-	-	-
0	00	000	0000	0	0	0
1	01	001	0001	1	1	1
	10	010	0010	2	2	2
	11	011	0011	3	3	3
		100	0100	4	4	4
		101	0101	5	5	5
		110	0110	6	6	6
		111	0111	7	7	7
			1000	8	10	8
			1001	9	11	9
			1010	10	12	Α
			1011	11	13	В
			1100	12	14	C
			1101	13	15	D
			1110	14	16	Е
			1111	15	17	F

```
b = {0, 1}

o = {0, 1, 2, 3, 4, 5, 6, 7}

d = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

h = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
```


b	bb	bbb	bbbb	d	0	h
				-	-	-
0	00	000	0000	0	0	0
1	01	001	0001	1	1	1
	10	010	0010	2	2	2 3
	11	011	0011	3	3	3
		100	0100	4	4	4
		101	0101	5	5	5
		110	0110	6	6	6
		111	0111	7	7	7
			1000	8	10	8
			1001	9	11	9
			1010	10	12	Α
			1011	11	13	В
			1100	12	14	C
			1101	13	15	D
			1110	14	16	Е
			1111	15	17	F

- » bin: "używają komputery"
- » dec/oct/hex: komunikacja z człowiekiem
 - drukowanie
 - wypisywanie na ekranie
 - wprowadzanie (klawiatura)
 - *.txt
- » dec: komunikacja m2m
 - html
 - json
 - txt

$$N = \mathbf{sum_i(d_i r^i)} = d_n r^n \dots d_3 r^3 + d_2 r^2 + d_1 r^1 + d_0 \text{ Number} = \sum_i D_i * R^i$$
 gdzie:

N - wynik, r - podstawa systemu, d - wartość znaku, i - numer znaku

0	1	0	0	1	1	1	$0 = 01000110_2$	<- 8 bitów
2 ⁷ 128 200 80	- 64	2 ⁵ 32 40 80	2 ⁴ 16 20 10	2 ³ 8 10 8	2 ² 4 4 4	2 ¹ 2 2 2 2	2 ⁰ 1 1 1	<- wagi dec <- wagi <mark>oct</mark> <- wagi <mark>hex</mark>
0 0 0	64 100 40	0	0 0 0	8 <mark>10</mark> 8	4 <mark>4</mark> 4	2 2 2	$0 = 78_{10}$ $0 = 116_{8}$ $0 = 4E_{16}$	<- wynik dec <- wynik <mark>oct</mark> <- wynik <mark>dec</mark>

1	0	0	1	1	1	$0 = 01000110_2$	<- 8 bitów
64	32	_	_	_	2	1	<- wagi dec <- wagi oct <- wagi hex
64	0	0	8	4	2	$0 = 78_{10}$	<- wynik dec
1	0	0	1			_ _ _ _ _ _	<- wynik dec
4	0	0	8	4	2	$0 = \{4 E\}_{16}$	<- wynik dec
	2 ⁶ 64 100 40 64	2 ⁶ 2 ⁵ 64 32 100 40 40 80 64 0 1 0	2 ⁶ 2 ⁵ 2 ⁴ 64 32 16 100 40 20 40 80 10 64 0 0 1 0 0	2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 64 32 16 8 100 40 20 10 40 80 10 8 64 0 0 8 1 0 0 1	2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 64 32 16 8 4 100 40 20 10 4 40 80 10 8 4 64 0 0 8 4 1 0 0 1 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

quiz Pl03 bit

socrative.com

- login
- student login

Room name:

KWANTAGH

słowa

```
» {0,1} - bit (ang. bit)
» 8 bitów - bajt (ang. byte)
» 16 bitów (2 bajty) - słowo (ang. word)
» 32 bitów (4 bajty) - słowo
```

64 bity (8 bajtów) - słowo

słowa

```
* {0,1}
* 8 bitów
* bajt
* (ang. bit)
(ang. byte)
(ang. byte)
(ang. word)
32 bitów (2 bajty) - słowo
32 bitów (4 bajty) - słowo
64 bity (8 bajtów) - słowo
```

» 1 bajt == 8 bitów == 1 znak (liczba, cyfra, znaki specjalne, etc...)

słowa

```
* {0,1}
* 8 bitów
* bajt
* 16 bitów (2 bajty) - słowo
* 32 bitów (4 bajty) - słowo
* 64 bity (8 bajtów) - słowo
```

- » 1 bajt == 8 bitów == 1 znak (liczba, cyfra, znaki specjalne, etc...)
- » ISO/IEC 2382-1:1993 w konwencji 2^x czyli wartości 0-255 (256 stanów)

przedrostki

Wielokrotności bitów									
Przedr	ostki d	ziesiętne	Przedrostki binarne						
	(SI)		(IEC 60027-2)						
Nazwa S	ymbol	Mnożnik	Nazwa	Symbol	Mnożnik				
kilobit	kb	$10^3 = 1000^1$	kibibit	Kib	2 ¹⁰ =1024 ¹				
<u>megabit</u>	Mb	$10^6 = 1000^2$	mebibit	Mib	$2^{20} = 1024^2$				
gigabit	Gb	10 ⁹ =1000 ³	gibibit	Gib	$2^{30} = 1024^3$				
terabit	Tb	10 ¹² =1000 ⁴	tebibit	Tib	2 ⁴⁰ =1024 ⁴				
petabit	Pb	$10^{15} = 1000^5$	pebibit	Pib	$2^{50} = 1024^{5}$				
eksabit	Eb	10 ¹⁸ =1000 ⁶	eksbibit	Eib	2 ⁶⁰ =1024 ⁶				
zettabit	Zb	10 ²¹ =1000 ⁷	zebibit	Zib	2 ⁷⁰ =1024 ⁷				
jottabit	Yb	1024=10008	jobibit	Yib	$2^{80} = 1024^{8}$				

Jak porównać coś w C++? operatorem

Operatory porównania

```
#include <iostream>
int main(){
     int a = 3;
     int b = 0;
     int c = (a < b);
     cout << c << endl;
     cout << (a > b) << endl;
     cout << (4 + 2 <= 2 * a) << endl;
     bool b1 = true;
                                // or false
     bool b2 = (4 + 2) <= (2 * a);
     bool b3 = 4 + 2 < 2 * a;
```

```
== równe
```

!= różne

> większe

< mniejsze

>= większe bądź równe

mniejsze bądź równe

- zwracają wartość logiczną
- » z powodu kompatybilności z C:

false: 0

true: wszystko oprócz 0

Operatory porównania

```
#include <iostream>
int main(){
     int a = 3;
     int b = 0;
                           musi być w
     int c = (a < b);
                           nawiasie, inaczej
                           błąd niski priorytet
                           operatora <=
     cout << c << endl;
     cout << (a > b) << end)
     cout << (4 + 2 <= 2 * a) << endl;
     bool b1 = true;
                                 // or false
     bool b2 = (4 + 2) <= (2 * a);
     bool b3 = 4 + 2 < 2 * a;
```

```
== równe
```

- != różne
- > większe
- < mniejsze
- >= większe bądź równe
- mniejsze bądź równe

- zwracają wartość logiczną
- » z powodu kompatybilności z C:
 - false: 0
 - true: wszystko oprócz 0

Operatory logiczne

```
// interval: 0 <= x < 1
int x = 0;
bool res1 = (x >= 0 && x < 1);
bool res2 = (x >= 0 || x < 1);
// always true

bool res3 = (x >= 0 || ++x < 1);
// NEVER EVER !!!
```

```
suma logicznailoczyn logicznynegacja logiczna
```

x | y
 suma logiczna x i y, wynik to:
 zero jeśli x i y mają wartość zero
 niezerowy w innym przypadku
 niezerowy oznacza inny niż 0,

» niezerowy oznacza inny niż 0, może być 1, -1, 2342342, etc...

Operatory bitowe

```
int a1 = 12;
                    // 00001100
                     // 00011000
int a2 = 24;
int b1 = a1 | a2;  // 00011100 == 28
int b2 = a1 & a2; //00001000 == 8
int b3 = b2 >> 1; //00000100 == 4
int b4 = b1 << 2; // 01110000 == 112
int b5 = b4 >> 0; // 01110000 == 112
int b6 = b4 >> 9;
                // 00000000 == 0
// did b5 has "1" on 4th position?
bool res = b5 \& (1 << 4);
cout << res << endl;
```

- suma bitowa
- & iloczyn bitowy
- modulo2 bitowe
- przesunięcie bitowe L
- >> przesunięcie bitowe P
- ~ negacja bitowa
- działa na liczbach całkowitych
- » działa na wszystkich bitach na raz
- » nie mylić & z &&...

quiz Pl03_cmp

socrative.com

- login
- student login

Room name:

KWANTAGH

Operator rzutowania

```
int a = 1 << 20;
                             // 32 bits
                             // 16 bits !!!
short b = a;
b = 1234;
a = b;
                             // ok
float f = 1.9;
int x = f;
                             // x == 1
int c = -1;
unsigned int d = c;
                             // 4294954873
b = (short)a;
b = short(a);
b = static_cast<short>(a); // C++
```

- C++ jest statycznie typowany ale posiada ograniczoną automatyczną konwersję
- » preferowana jawna konwersja
- » możliwe przekłamania
 - kompilator nie zna danych
 - "runtime" nie sprawdza
- » W C++ rekomendowane:

```
dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)
```

- » lepsza kontrola
- » większe możliwości

Operator sizeof()

```
int a;
unsigned int b;
long int c;
float d;
size t sd = sizeof(d);
cout << sizeof(a) << "\n";
cout << sizeof(b) << "\n";
cout << sizeof(c) << "\n";
cout << sd << "\n";
```

- » sizeof(etykieta zmiennej)
- » sizeof(typ)
- » to jest operator, nie funkcja!
- » podaje w bajtach rozmiar typu
- » size_t to jest* unsigned int
 - sugestia że zmienna wyraża rozmiar w bajtach
 - jest nieujemny
 - jest liczbą naturalną**
 - często wyraża kolejność,
 pozycję, rozmiar tablicy, ...
- » operator typeid(...)
 - specyficzne użycie
 - na razie nie potrzebujemy, wiemy jaki jest typ zmiennej

Operator - kolejność

- » kolejność obliczania operandów nie jest gwarantowana ze względu na możliwość optymalizacji kodu lub out-of-order
- » przy operacjach logicznych &&, || część obliczeń może zostać pominięta (jeżeli nie wpływa na wynik)
 - a>0 || ++b<4</pre>
- » użycie operandów które wpływają na wartość pozostałych nie jest ustandaryzowane co do kolejności, różnice pomiędzy operatorami
 - int i =1;
 - tablica[i]=++i; (nie jest pewne czy tablica[1] czy tablica[2])
- » wniosek: zrezygnuj ze złożonych obliczeń w jednym wyrażeniu, rozbij na kilka wyrażeń (na kilka linii)

Tekst w C/C++

+dziwne literki... ąęśćłóżź


```
char c = 'a';
char d = 65;
```

// single quote

- » char to krótki inteager
 - liczba: -128...0...127
 - znak w kodzie ASCII
 - 'a' to kod ASCII znaku


```
char c = 'a';
char d = 65;

// char == character
// "character" is pronounced "ka-rak-ter"
// "char" is usually pronounced "tchar", not "kar"

// source: http://www.stroustrup.com/bs_faq2.html#char
```

- » char to krótki inteager
 - liczba: -128...0...127
 - znak w kodzie ASCII
 - 'a' to kod ASCII znaku


```
char c = 'a';
char d = 65;

// char == character
// "character" is pronounced "ka-rak-ter"
// "char" is usually pronounced "tchar", not "kar"

// source: http://www.stroustrup.com/bs_faq2.html#char
```

- » char to krótki inteager
 - liczba: -128...0...127
 - znak w kodzie ASCII
 - 'a' to kod ASCII znaku


```
char c = 'a';
char d = 65;
char e = '1' + 1;
cout << c << "\n";
cout << c << "\n";
cout << c++c << "\n";
cout << char(c + 1) << "\n";
cout << d << "\n";
cout << e << "\n";
cout << e << "\n";
cout << c << "\n";
cout << d << "\n";
cout << e << "\n";
cout << (int)e << "\n";
// '2' means ASCII(50)</pre>
```

- » char to krótki inteager
 - liczba: -128...0...127
 - znak w kodzie ASCII
 - 'a' to kod ASCII znaku

- » można inkrementować
- » zwrócić uwagę na automatyczną konwersję typu !!
- » znaki specjalne

ASCII

- » American Standard for Code Information Interchange
- » 128 kodów:
 - litery (duże/małe)
 - cyfry
 - dodatkowe znaki
 - znaki specjalne
- * '\n' == 0xA (10) Unix
- » '\n' == 0xC 0xA Windows
- » pozostałe 128 kombinacji:
 - symbole
 - znaki narodowościowe
- » PL: ISO8859-2 vs CP1250 latin-2

0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	6
0 ^@	1 ^A	2 ^B	3 ^ C	4 ^D	5 ^E	6 ^ F	7 ^G	8 ^ H	9 ^I	10 ^ J	11 ^K	12 ^L	13 ^M	14 ^N	15 ^ 0
NUL	SOH	STX	ETX	ЕОТ	ENQ	ACK	BEL	BS	нт	LF	VT	FF	CR	S0	SI
NULL	START OF HEADING	START OF TEXT	END OF TEXT	END OF TRANSM.	ENQUIRY	ACKNOWL - EDGE	BELL	BACKSP.	CHARACT. TAB'TION	LINE FEED	LINE TAB'TION	FORM FEED	CARRIAGE RETURN	SHIFT OUT	SHIFT IN
16 ^ P	17 ^ Q	18 ^R	19 ^S	20 ^T	21 ^U	22 ^ V	23 ^W	24 ^X	25 ^Y	26 ^ z	27 ^[28	29 ^]	30	31
DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
DATALINK ESCAPE		DEVICE CONTROL2	DEVICE CONTROL3	DEVICE	NEG.ACK- NOWLEDGE		END OF TRANS.	CANCEL	END OF MEDIUM	SUBS- TITUTE	ESCAPE	INFO. SEP. 4	INFO. SEP. 3	INFO. SEP. 2	INFO. SEP. 1
	excl	&# 34 ;	8#35	8 36 dollar	8#37	8#38; amp	&#39;</td><td>40 ;</td><td>&#41;</td><td>42 ast</td><td>43 plus</td><td>44 comma</td><td>8#45;</td><td>946</td><td>sol</td></tr><tr><td></td><td>exc1;</td><td>equot ;</td><td>#</td><td>\$</td><td>0/</td><td>&</td><td>apos</td><td>f f</td><td>)</td><td>*</td><td>+</td><td>comma;</td><td>_</td><td>period</td><td>/</td></tr><tr><td>SPACE</td><td>EXCLAM.</td><td>оиот.</td><td>NUMBER</td><td>DOLLAR</td><td>/O PERCENT</td><td>AMPER-</td><td>APOS-</td><td>LEFT</td><td>RIGHT</td><td>ASTERISK</td><td> -</td><td>COMMA</td><td>HYPHEN-</td><td>FULL</td><td>SOLIDUS</td></tr><tr><td>0:</td><td>MARK 49:</td><td>MARK 50</td><td>SIGN 8=51:</td><td>SIGN 8#52;</td><td>SIGN 8#53;</td><td>SAND</td><td>TROPHE 55</td><td>PAREN.</td><td>PAREN.</td><td>&#58:</td><td>SIGN 8 59</td><td>8 60 :</td><td>MINUS 61</td><td>STOP 62</td><td>?:</td></tr><tr><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td>12 Section (4)</td><td></td><td>colon</td><td>semi</td><td>&1t;</td><td>equals</td><td>@gt;</td><td>quest</td></tr><tr><td>Θ</td><td> 1</td><td>2</td><td>3</td><td> 4</td><td> 5</td><td>6</td><td> /</td><td>8</td><td>9</td><td> :</td><td>;</td><td> <</td><td>=</td><td>></td><td>?</td></tr><tr><td>DIGIT ZERO</td><td>DIGIT ONE</td><td>DIGIT TWO</td><td>DIGIT THREE</td><td>DIGIT FOUR</td><td>DIGIT FIVE</td><td>DIGIT SIX</td><td>DIGIT SEVEN</td><td>DIGIT EIGHT</td><td>DIGIT NINE</td><td>COLON</td><td>SEMI - COLON</td><td>LSTHAN SIGN</td><td>EQUALS SIGN</td><td>GRTHAN SIGN</td><td>QUEST- ION MAR</td></tr><tr><td>@ commat</td><td>&#65;</td><td>B</td><td>&#67;</td><td>&#68;</td><td>&#69;</td><td>&#70;</td><td>&#71;</td><td>&#72;</td><td>&#73;</td><td>&#74;</td><td>&#75;</td><td>&#76;</td><td>&#77;</td><td>&#78;</td><td>&#79;</td></tr><tr><td>@</td><td>Δ</td><td>В</td><td>Γ</td><td>D</td><td>F</td><td>F</td><td>G</td><td>Н</td><td>I</td><td>J</td><td>Κ</td><td>1</td><td>М</td><td>N</td><td>n</td></tr><tr><th>COMM'IAL</th><th></th><th></th><th></th><th></th><th> -</th><th>•</th><th>J</th><th> ' '</th><th>_</th><th>J</th><th>1</th><th>_</th><th></th><th>1 1</th><th></th></tr><tr><td>AT P</td><td>&#81;</td><td>&#82;</td><td>&#83;</td><td>&#84;</td><td>&#85;</td><td>&#86;</td><td>&#87;</td><td>&#88;</td><td>&#89;</td><td>Z</td><td>&#91;</td><td>&#92;</td><td>&#93;</td><td>&#94;</td><td>_</td></tr><tr><th>D</th><th>\cap</th><th>R</th><th>S</th><th> ┰ </th><th>u</th><th>V</th><th>W</th><th>Χ</th><th>Υ</th><th>7</th><th>alsqb;</th><th>bsol;</th><th>@rsqb;</th><th>hat</th><th>01owbar</th></tr><tr><th></th><th>Ų</th><th>Г</th><th>3</th><th>1</th><th>U</th><th>\ V</th><th>VV</th><th>^</th><th> 1</th><th>Ζ</th><th>L</th><th>'</th><th>J</th><th></th><th>_</th></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>BRACKET</td><td>SOLIDUS</td><td>BRACKET</td><td>CIRCUM'X ACCENT</td><td>50000 60000</td></tr><tr><td>96 grave</td><td>&#97;</td><td>b _</td><td>c</td><td>&#100;</td><td>&#101;</td><td>&#102;</td><td>&#103;</td><td>&#104;</td><td>i _</td><td>&#106;</td><td>&#107;</td><td>l _</td><td>&#109;</td><td>&#110;</td><td>&#111;</td></tr><tr><th>` </th><th>a</th><th>b</th><th>С</th><th>d</th><th>е</th><th>∣f</th><th>g</th><th> h</th><th> i</th><th>j</th><th>k</th><th> 1</th><th>m</th><th>n</th><th>0</th></tr><tr><th>GRAVE ACCENT</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr><tr><td>&#112;</td><td>q</td><td>&#114;</td><td>&#115;</td><td>&#116;</td><td>&#117;</td><td>&#118;</td><td>&#119;</td><td>&#120;</td><td>&#121;</td><td>&#122;</td><td>{</td><td>&#124;</td><td>&#125;</td><td>&#126;</td><td>127 ^?</td></tr><tr><td>n</td><td>a</td><td>r</td><td>S</td><td>t</td><td>u</td><td>V</td><td>W</td><td>X</td><td>V</td><td>Z</td><td>ſ</td><td></td><td>}</td><td>~</td><td>DEL</td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>								

Unicode

» UTF-8

» zestaw znaków mający obejmować wszystkie pisma świata

» jeden znak to 1-4 bajtów

» kompatybilny (w dół) z ASCII

» pliterki 2 bajty/sztuka

» 1 112 064 unikalne znaki

» 1 bajt: **0xxxxxx**, gdzie kolejne "x" to bity

» 2 bajty: 110xxxxx 10xxxxxx

» 3 bajty: 1110xxxx 10xxxxxx 10xxxxxx

» 4 bajty: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

» długość tekstu w znakach != długość tekstu w bajtach

» niekompatybilne z C

» trudności w sortowaniu z uwzględnieniem znaków narodowych

UTF-32/UCS-4

UTF-16

UTF-8

UTF-7

UCS-2

UTF-9 UTF-18

UTF-EBCDIC

UTF-6

UTF-5

UTF-8

Share of web pages with different encodings

https://en.wikipedia.org/wiki/UTF-8

quiz Pl03_char

socrative.com

- login
- student login

Room name:

KWANTAGH

Trochę arytmetyki... 0.7 == 0.699999988079

IEEE-754 (float)

- » 1 bit znaku, 8 bitów wykładnika (cechy), 23 bity mantysy, = 32 bity
- » dokładność 7-8 cyfr
- » zakres 10⁻⁴⁵...10³⁸
- » specjalne wartości bitowa dla NaN, zero, inf
- » mnożenie: z=x*y -> liczba bitów wyniku: wykładnik 9, mantysa 46
- » wpisując z do zmiennej float wykonuje się uproszczenie

IEEE-754 (float)

```
#include <iostream>
#include <iomanip>
using namespace std;
int main(){
     float a = 9.2;
     cout << std::setprecision(10);</pre>
                                       // "nothing"
     cout << a << "\n";
                                       // 9.199999809
     float big = 100000000;
                                       //1e8
     float small = 1;
     float res1 = (big + small) - big;
     float res2 = (big - big) + small;
     cout << res1 << "\n";
     cout << res2 << "\n";
```

- » obliczenia numeryczne
- » błędy kumulują się przy złożonych obliczeniach
- » kolejność wykonywania operacji arytmetycznych ma znaczenie
- » reprezentacjazmiennoprzecinkowajest skwantowana
- » po każdej operacji matematycznej wynik jest zaokrąglany!

IEEE-754 (float)

```
#include <iostream>
#include <iomanip>
using namespace std;
int main(){
     float a = 9.2;
     cout << std::setprecision(10);</pre>
                                       // "nothing"
     cout << a << "\n";
                                        // 9.199999809
     float big = 100000000;
                                        //1e8
     float small = 1;
     float res1 = (big + small) - big;
     float res2 = (big - big) + small;
     cout << res1 << "\n";
                                        // 0
     cout << res2 << "\n";
                                        // 1
```

- » obliczenia numeryczne
- » błędy kumulują się przy złożonych obliczeniach
- » kolejność wykonywania operacji arytmetycznych ma znaczenie
- » reprezentacjazmiennoprzecinkowajest skwantowana
- » po każdej operacji matematycznej wynik jest zaokrąglany!

ToDo - zadanie domowe

- » Współcześnie, wartości całkowito-liczbowe są reprezentowane w tzw. "kodzie uzupełnień do dwóch" (w skrócie U2)
- » W ramach pracy własnej:
 - poczytaj o U2
 - przekonwertuj "int" na bity, sprawdź czy jest w U2
 - rozpisz bitowo dowolną liczbę float a następnie sprawdź czy reprezentacja w C++ wygląda tak samo

Co to jest algorytm?

Algorytm

- » Jasno zdefiniowane czynności konieczne do wykonania pewnego rodzaju zadania (wiki)
- » Umożliwia wykonanie obliczeń, przetwarzania danych,
- » Może być wyrażony jako:
 - schemat blokowy
 - pseudo-kod
 - kod źródłowy w języku programowania
 - maszyna Turinga
 - język naturalny,
- » Pomimo różnego sposobu zapisu, wynik powinien być taki sam

https://www.laserfiche.com/ecmblog/10-funny-flowcharts-to-beat-march-madness-fury/

Namo

ANSI/ISO

	Shape	Name
		Flowline (Arrowhead) ^[15]
		Terminal ^[14]
50.00		Process ^[15]
		Decision ^[15]

https://en.wikipedia.org/wiki/Flowchart

- » Typ diagramu przedstawiający kolejne czynności w algorytmie
- » Pokazuje kolejne kroki w postaci figur geometrycznych połączonych strzałkami
- » Ilustruje sposób rozwiązania danego problemu
- » Wykorzystywany do analizy, dokumentacji i projektowania programów komputerowych

ANSI/ISO Shape	Name
	Flowline (Arrowhead) ^[15]
	Terminal ^[14]
	Process ^[15]
\Diamond	Decision ^[15]

www.agh.edu.pl

ANSI/ISO Shape	Name
	Flowline (Arrowhead) ^[15]
	Terminal ^[14]
	Process ^[15]
$\langle \rangle$	Decision ^[15]

https://en.wikipedia.org/wiki/Flowchart

Pseudokod

- » Typ wysokopoziomowego opisu, który reprezentuje algorytm
- » Szkielet algorytmu
- » Nie zawiera detali
- » Tylko najważniejsze koncepcje pozwalające zrozumieć algorytm
- » Zapis nie jest ustandaryzowany
- » Nie można skompilować :(

```
Do i = 1 \text{ to } 100
     set p to true
     If i is divisible by 3
          print "Fizz"
          set p to false
     If i is divisible by 5
          print "Buzz"
          set p to false
     lf p
          print i
     print a newline
```


Pseudokod

Pascal style pseudo code

```
procedure fizzbuzz
  For i := 1 to 100 do
    set print_number to true;
    If i is divisible by 3 then
      print "Fizz";
      set print_number to false;
    If i is divisible by 5 then
      print "Buzz";
      set print_number to false;
    If print_number, print i;
    print a newline;
  end
```

C style pseudo code:

```
void function fizzbuzz {
  for (i = 1; i \le 100; i++) {
    set print_number to true;
    If i is divisible by 3 {
      print "Fizz";
      set print number to false; }
    If i is divisible by 5 {
      print "Buzz";
      set print_number to false; }
    If print number, print i;
    print a newline;
```


ANSI/ISO Shape	Name
	Flowline (Arrowhead) ^[15]
	Terminal ^[14]
	Process ^[15]
\Diamond	Decision ^[15]

```
Do i = 1 \text{ to } 100
     set p to true
     If i is divisible by 3
          print "Fizz"
          set p to false
     If i is divisible by 5
          print "Buzz"
         set p to false
     lf p
          print i
     print a newline
```


quiz Pl03_alg

socrative.com

- login
- student login

Room name:

KWANTAGH

GIT gałęzie

Master == główna gałąź, podstawowa, stabilny kod, często ograniczone prawa zapisu

- » Master == główna gałąź, podstawowa, stabilny kod, często ograniczone prawa zapisu
- » Z każdego miejsca (commit) mogę utworzyć inne, niezależne wersje kodu

- » Master == główna gałąź, podstawowa, stabilny kod, często ograniczone prawa zapisu
- » Z każdego miejsca (commit) mogę utworzyć inne, niezależne wersje kodu
- » Rozwój programu odbywa się zazwyczaj w innych gałęziach (np. Develop)

- » Master == główna gałąź, podstawowa, stabilny kod, często ograniczone prawa zapisu
- » Z każdego miejsca (commit) mogę utworzyć inne, niezależne wersje kodu
- » Rozwój programu odbywa się zazwyczaj w innych gałęziach (np. Develop)
- » W pewnym momencie może nastąpić scalenie (merge) gałęzi,

- > git clone https://gitlab.com/gr/pro.git
- > cd pro/

» Clone kopiuje tylko gałąź Master

- > git clone https://gitlab.com/gr/pro.git
- > cd pro/
- > git branch -a

- Clone kopiuje tylko gałąź Master
- » Pokaż wszystkie gałęzie: local i remote

- > **git** clone https://gitlab.com/gr/pro.git
- > cd pro/
- > git branch -a

git branch -a

* master remotes/origin/AbandonedGUI remotes/origin/HEAD -> origin/master remotes/origin/master remotes/origin/v3beta

- » Clone kopiuje tylko gałąź Master
- » Pokaż wszystkie gałęzie: local i remote

- > git clone https://gitlab.com/gr/pro.git
- > cd pro/
- > git branch -a
- > git checkout v3beta

git branch -a master

* v3beta remotes/origin/AbandonedGUI remotes/origin/HEAD -> origin/master remotes/origin/master remotes/origin/v3beta

- Clone kopiuje tylko gałąź Master
- Pokaż wszystkie gałęzie: local i remote
- » Przełączanie gałęzi (ściąga na dysk!)

- > git clone https://gitlab.com/qr/pro.git
- > cd pro/
- > git branch -a
- > git checkout v3beta
- > git checkout master

git branch -a

* master
v3beta
remotes/origin/AbandonedGUI
remotes/origin/HEAD -> origin/master
remotes/origin/master
remotes/origin/v3beta

- » Clone kopiuje tylko gałąź Master
- » Pokaż wszystkie gałęzie: local i remote
- » Przełączanie gałęzi
- » Przełączenie gałęzi (lokalnie)

- > git clone https://gitlab.com/qr/pro.git
- > cd pro/
- > git branch -a
- > git checkout v3beta
- > **git** checkout master
- > git branch -d v3beta

git branch -a

* master remotes/origin/AbandonedGUI remotes/origin/HEAD -> origin/master remotes/origin/master remotes/origin/v3beta

- » Clone kopiuje tylko gałąź Master
- » Pokaż wszystkie gałęzie: local i remote
- » Przełączanie gałęzi
- » Przełączenie gałęzi (lokalnie)
- » Skasowanie gałęzi lokalnie

- > git clone https://gitlab.com/qr/pro.git
- > cd pro/
- > git branch -a
- > git checkout v3beta
- > **git** checkout master
- > git branch -d v3beta
- > git push origin --delete v3beta

- Clone kopiuje tylko gałąź Master
- » Pokaż wszystkie gałęzie: local i remote
- » Przełączanie gałęzi
- » Przełączenie gałęzi (lokalnie)
- » Skasowanie gałęzi lokalnie
- » Skasowanie gałęzi na serwerze

- > git clone https://gitlab.com/qr/pro.git
- > cd pro/
- > git branch -a
- > git checkout v3beta
- > git checkout master
- > git branch -d v3beta
- > git push origin --delete v3beta
- > git checkout -b feature1

- » Clone kopiuje tylko gałąź Master
- » Pokaż wszystkie gałęzie: local i remote
- » Przełączanie gałęzi
- » Przełączenie gałęzi (lokalnie)
- » Skasowanie gałęzi lokalnie
- » Skasowanie gałęzi na serwerze
- » Utworzenie nowej gałęzi (lokalnie) o nazwie feature1

- > git clone https://gitlab.com/qr/pro.git
- > cd pro/
- > git branch -a
- > git checkout v3beta
- > **git** checkout master
- > git branch -d v3beta
- > git push origin --delete v3beta
- > git checkout -b feature1
- > git push -u origin feature1

- » Clone kopiuje tylko gałąź Master
- » Pokaż wszystkie gałęzie: local i remote
- » Przełączanie gałęzi
- » Przełączenie gałęzi (lokalnie)
- » Skasowanie gałęzi lokalnie
- » Skasowanie gałęzi na serwerze
- » Utworzenie nowej gałęzi (lokalnie) o nazwie feature1
- » Wysłanie gałęzi na serwer
 - główny serwer to "origin"
 - gałąź umieszcza się tylko raz na serwerze

- > git clone https://gitlab.com/qr/pro.git
- > cd pro/
- > git branch -a
- > git checkout v3beta
- > **git** checkout master
- > git branch -d v3beta
- > git push origin --delete v3beta
- > git checkout -b feature1
- > git push -u origin feature1
- > # change something
- > git commit -am "hot fix"
- > git push

- » Clone kopiuje tylko gałąź Master
- » Pokaż wszystkie gałęzie: local i remote
- » Przełączanie gałęzi
- » Przełączenie gałęzi (lokalnie)
- » Skasowanie gałęzi lokalnie
- » Skasowanie gałęzi na serwerze
- » Utworzenie nowej gałęzi (lokalnie) o nazwie feature1
- » Wysłanie gałęzi na serwer
 - główny serwer to "origin"
 - gałąź umieszcza się tylko raz na serwerze
 - później już tylko commit i push (nie trzeba wskazywać -u origin)

Dziękuję