DM828 (5 ECTS - 2nd Quarter) Introduction to Artificial Intelligence

Introduktion til kunstig intelligens

Marco Chiarandini lektor, IMADA www.imada.sdu.dk/~marco/

What is Al?

Artificial Intelligence is concerned with the general principles of rational agents and on the components for constructing them

Agents: something that acts, a computer program, a robot

Rationality: acting so as to achieve the best outcome, or, under uncertainty, the best expected outcome

In complicated environments, perfect rationality is often not feasible

History

Alan Turing. "Computational Machinery and Intelligence." Mind (1950) [Reference to machine learning, genetic algorithms, reinforcement learning]

Workshop at Dartmouth College in 1956 by John McCarthy, Marvin Minsky, Claude Shannon, Allen Newell, Herbert Simon [The field receives the name Artificial Intelligence]

. . .

Today: AI is a branch of computer science with strong intersection with operations research, decision theory, logic, mathematics and statistics

Contents

- 1. Introduction, Philosophical aspects (1 lecture)
- 2. Problem Solving by Searching (3 lectures)
 - Uninformed and Informed Search
 - Adversarial Search: Minimax algorithm, alpha-beta pruning
- 3. Knowledge, Reasoning and Planning (4 lectures)
 - Propositional Logic, First Order Logic, Inference
 - Automated Planning
- 4. Uncertain Knowledge and Reasoning (5 lectures)
 - Decision Theory
 - Probabilistic Graphical Models
 - Sequential Decisions
 - Multiagent Environments, Game Theory
- 5. Learning (2 lectures)
 - Reinforcement Learning

2. Problem Solving by Searching

- Uninformed and Informed Search
- Adversarial Search: Minimax algorithm, alpha-beta pruning

2. Problem Solving by Searching

- Uninformed and Informed Search
- Adversarial Search: Minimax algorithm, alpha-beta pruning

3. Knowledge Representation

- Propositional logic, First Order Logic, Inference
- Automated Planning

Generate sequences of actions to achieve objectives where actions are abstractions of real activity

```
Init = At(C1, SFO) \land At(C2,JFK) \land At(P1,SFO) \land At(P2,JFK) \land Cargo(C1) \land Cargo(C2) \land Plane(P1) \land
    Plane(P2) \land Airport(JFK) \land Airport(SFO)
Goal = At(C1,JFK) \wedge At(C2,SFO)
Action Load(c,p,a)
    PRECOND: At(c,a) \wedge At(p,a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
    EFFECT: \neg At(c,a) \wedge In(c,p)
Action Unload(c,p,a)
    PRECOND: In(c,p) \wedge At(p,a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)
    EFFECT: At(c,a) \land \neg In(c,p)
Action Fly(p,from,to)
    PRECOND: At(p,from) \land Plane(p) \land Airport(from) \land Airport(to)
    EFFECT: \neg At(p,from) \land At(p,to)
Plan = Load(C1,P1,SFO), Fly(P1,SFO,JFK), Unload(C1,P1,JFK)
        Load(C2,P2,JFK), Fly(P2,JFK,SFO), Unload(C1,P1,JFK)
```

4. Uncertain Knowledge

- Decision Theory
- Probabilistic Graphical Models
- Multiagent Environments, Game Theory

Diagnosis	Well	Cold	Allergy
P(C)	0,90	0,05	0,05
P(sneeze C)	0,10	0,90	0,90
P(cough C)	0,10	0,80	0,70
P(fever C)	0,00	0,70	0,40

Given that we observe x={sneeze, cough, not fever} which class of diagnosis is most likely?

4. Uncertain Knowledge

- Decision Theory
- Probabilistic Graphical Models
- Multiagent Environments, Game Theory

	Prisoner B Stays Silent	Prisoner B Betrays
Prisoner A Stays Silent	Each serves 6 months	Prisoner A: 10 years Prisoner B: goes free
Prisoner A Betrays	Prisoner A: goes free Prisoner B: 10 years	Each serves 5 years

Contents

- 1. Introduction, Philosophical aspects (1 lecture)
- 2. Problem Solving by Searching (3 lectures)
 - Uninformed and Informed Search
 - Adversarial Search: Minimax algorithm, alpha-beta pruning
- 3. Knowledge, Reasoning and Planning (4 lectures)
 - Propositional Logic, First Order Logic, Inference
 - Automated Planning
- 4. Uncertain Knowledge and Reasoning (5 lectures)
 - Decision Theory
 - Probabilistic Graphical Models
 - Sequential Decisions
 - Multiagent Environments, Game Theory
- 5. Learning (2 lectures)
 - Reinforcement Learning

Prerequisites

- ✓ DM502, DM503 Programming (Programmering)
- ✓ DM527 Discrete Mathematics (Matematiske redskaber i datalogi)
- √ DM528 Combinatorics, Probability and Randomized Algorithms
- ✓ DM509 Programming Languages (Programmeringssprog)
- √ ST501 Science Statistics (Science Statistik)

Final Assessment (5 ECTS)

- ▶ 2/3 homeworks including programming
 - pass/fail grading
 - internal examiner
 - programming in [Java|Python]
- A three hour written exam
 - closed books with a maximum of two two-sided sheets of notes.
 - external examiner

Course Material

- Text book
 - Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach Prentice Hall, Third Edition, 2010
- Slides
- Source code and data sets
- www.imada.sdu.dk/~marco/DM828

