

Новосибирский государственный университет Физический факультет Кафедра автоматизации физико-технических исследований

Фирсов Артемий Борисович

РАЗРАБОТКА ПРОГРАММНОГО МОДУЛЯ ДЛЯ ВЫЯВЛЕНИЯ ТРОЙНЫХ ВЗАИМОДЕЙСТВИЙ В БИОЛОГИЧЕСКИХ СЕТЯХ С УЧЕТОМ ВРЕМЕННЫХ ЗАДЕРЖЕК

Место выполнения: ИЦиГ, лаборатория молекулярно-генетических систем

Научный руководитель: Титов Игорь Иванович, к.ф.-м.н., с.н.с.

Области применения

Реконструкция:

- 1. Метаболических сетей
- 2. Генных сетей
- 3. Нейронных сетей
- 4. Пространственных контактов в биополимерах (белки, РНК, хроматин)
- 5. И т.д.

Виды взаимодействий

Парные

$\rightarrow A \leftrightarrow B \leftrightarrow C \leftarrow$

A B C
A
B
C

Correlation

Прямые и непрямые

Прямые

Высокого порядка

Тройные взаимодействия

- Тройные взаимодействия присутствуют в реальных биологических системах
- Алгоритмы, учитывающие тройные взаимодействия, являются лидерами в DREAM Challenge

Analysis of higher-order neuronal interactions based on conditional inference, Robert Gütig, Ad Aertsen, Stefan Rotter.

Global quantitative modeling of chromatin factor interactions. Zhou J, Troyanskaya OG.

Finding High-Order Correlations in High-Dimensional Biological Data. Xiang Zhang, Feng Pan, and Wei Wang Department of Computer Science University of North Carolina at Chapel Hill

DTW-MIC Coexpression Networks from Time-Course Data. Samantha Riccadonna, Giuseppe Jurman, Roberto Visintainer, Michele Filosi, Cesare Furlanello

Взаимодействия с учетом временной задержки

- Часто результат взаимодействия виден спустя некоторое время
- Учет задержек позволяет воостановить историю взаимодействий

TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. Zoppoli P., Morganella S., Ceccarelli M. BMC Bioinform

MIDER: Network Inference with Mutual Information Distance and Entropy Reduction. Alejandro F. Villaverde, John Ross, Federico Morán, Julio R. Banga

Существующие решения нахождения взаимодействий

- Выявляет прямые взаимодействия
- Учитывает временные задержки
- Открытая реализация в MatLab
- Не учитывает тройные взаимодействия

Global Quantitative Modeling of Chromatin Factor Interactions

- Выявляет прямые взаимодействия
- Не учитывает временные задержки
- Нет реализации в MatLab
- Учитывает тройные взаимодействия

Villaverde, A., Ross, J., Morán, F., and Banga, J.R. (2014). MIDER: network inference with mutual information distance and entropy reduction. PloS ONE 9(5):e96732

Global quantitative modeling of chromatin factor interactions. Zhou J, Troyanskaya OG. PLoS Comput Biol. 2014 Mar 27;10(3):e1003525. doi: 10.1371/journal.pcbi.1003525. eCollection 2014.

Цель работы

Разработка модуля для нахождения тройных взаимодействий в биологических сетях с учетом временных задержек

Задачи

- Реализация алгоритма нахождения тройных взамодействий на основе алгоритма MIDER
- Оптимизация алгоритма регуляризацией Шмидта
- Тестирование алгоритма на площадке DREAM Challenges
- Доработка алгоритма методом DTW учета временных задержек

Алгоритм DTW

Dynamic Time Warping Matching

