Learning LATEX

EE24BTECH11053 - S A Aravind Eswar*

14. Let S be set of all column matrix $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ such and $X = \sum_{k=1}^6 P_k \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} P_k^T$

that $b_1, b_2, b_3 \in \mathbb{R}$ and the system of equations (in Where P_k^T denotes the transpose of matrix P_k . Then real variables)

$$-x + 2y + 5z = b_1 2x - 4y + 3z = b_2 x - 2y + 2z = b_3$$

has at least one solution. Then, which of the following system(s) (in real variables) has (have) at least

one solution for each $\begin{vmatrix} b_1 \\ b_2 \\ b_3 \end{vmatrix} \in S$ (JEE Adv. 2018)

- 1) $x+2y+3z = b_1, 4y+5z = b_2$ and $x+2y+6z = b_3$
- 2) $x + y + 3z = b_1, 5x + 2y + 6z = b_2$ and -2x $y - 3z = b_3$
- 3) $-x + 2y 5z = b_1, 2x 4y + 10z = b_2$ and $x 4y + 10z = b_2$ $2y + 5z = b_3$
- 4) $sx + 2y + 5z = b_1, 2x + 3z = b_2, x + 4y 5z = b_3$

15. Let
$$M = \begin{bmatrix} 0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1 \end{bmatrix}$$
 and $(adj M) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

 $\begin{bmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \end{bmatrix}$ where a and b are real numbers.

Which of the following options is/are correct? (JEE Adv. 2019)

- 1) a + b = 3
- 2) $det(ad j M^2) = 81$

3)
$$(adjM)^{-1} + adjM^{-1} = -M$$

4) $IfM \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ then $\alpha - \beta + \gamma = 3$

$$P_1 = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, P_3 =$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, P_4 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, P_5 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, P_6 =$$

and
$$X = \sum_{k=1}^{6} P_k \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} P_k^T$$

which of the following options is/are correct? (JEE Adv. 2019)