SAMPLE PAPER SCIENCE (CLASS 9)

Q1 What is the correct increasing order of oxidation state of nitrogen in following compound?

NH₃, N₂, NH₂OH, NO₂

b) c)	$NH_3 < NO_2 < N_2 < NH_2OH$ $NH_3 < NH_2OH < NO_2 < N_2$ $NO_2 < OH_2 < NH_2OH < NH_2$ $NH_2 < NH_2OH < N_2 < NO_2$
ANSWE	ER (d)
23 kg o	weight of a person on the Moon is about 1/6 times that on the Earth. He can lift a mass of n the earth. What will be the maximum mass which can be lifted by the same force applied person on the Moon?
b) c)	136 kg 276 kg 138 kg 248 kg
ANSWE	ER-(c)
Q3 Cas	parian strips are present in the of the root.
b) c)	Pericycle Cortex Epiblema Endodermis
ANSWE	ER-(d)
Q4 Wh	at exactly is a conservation force conserving?
b) c)	Force Energy Velocity Acceleration
ANSWE	R- (b)
Q5 A m scale?	easured temperature on Fahrenheit scale is 200°F. What will this reading be on Celsius
a) b) c) d)	40 °C 94 °C 93.3 °C 30 °C

Q6 A baby has been born with a small tail. It is the case exhibiting

ANSWER-(c)

	Atavism
b)	Mutation
c)	Retrogressive evolution
d)	Metamorphosis
ANSWI	ER- (a)
Q7 Wh	at will be the molarity of a solution, which 5.85g of NaCL(s) per 500 mL?
a)	4 moL ⁻¹
•	20 moL ⁻¹
c)	O.2 moL ⁻¹
d)	2 moL ⁻¹
ANSWER(c)	
Q8 A c	onservative force is dependent only on:
a)	Position of the objects
b)	Position of the forces
c)	Position of the path taken
d)	None of the above
d) ANSWI	
ANSWI Q9 A b O₀ with startin	$ER-(a)$ oy throws a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an a the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, tan Θ_0 must be such that, tan Θ_0 is
ANSWI Q9 A b O₀ with starting	ER- (a) oy throws a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an a the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, tan Θ_0 must be such that, tan Θ_0 is 0.2
ANSWI Q9 A b O with startin a) b)	Oy throws a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an a the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, tan Θ_0 must be such that, tan Θ_0 is 0.2
ANSWI Q9 A b Θ ₀ with starting a) b) c)	Oy throws a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an at the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, tan Θ_0 must be such that, tan Θ_0 is 0.2 0.4 2.5
ANSWI Q9 A b O ₀ with starting a) b) c) d)	Oy throws a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an a the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, tan Θ_0 must be such that, tan Θ_0 is 0.2
ANSWI Q9 A b O ₀ with starting a) b) c) d)	errows a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an at the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, tan Θ_0 must be such that, tan Θ_0 is 0.2 0.4 2.5 1.2
ANSWI Q9 A b O ₀ with starting a) b) c) d)	oy throws a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an at the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, $\tan \Theta_0$ must be such that, $\tan \Theta_0$ is 0.2 0.4 2.5 1.2 ER – (b) nutritonally wild type organism which does not require any additional growth suppler
ANSWI Q9 A b Θ ₀ with starting b) c) d) ANSWI	oy throws a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an at the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, $\tan \Theta_0$ must be such that, $\tan \Theta_0$ is 0.2 0.4 2.5 1.2 ER – (b) nutritonally wild type organism which does not require any additional growth suppler
ANSWI Q9 A b O ₀ with starting a) b) c) d) ANSWI Q10 A known	oy throws a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an at the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, $\tan \Theta_0$ must be such that, $\tan \Theta_0$ is 0.2 0.4 2.5 1.2 ER – (b) nutritonally wild type organism which does not require any additional growth suppler as:
ANSWI Q9 A b O₀ with starting a) b) c) d) ANSWI Q10 A known	error (a) oy throws a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an at the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, $\tan \Theta_0$ must be such that, $\tan \Theta_0$ is 0.2 0.4 2.5 1.2 ER – (b) nutritonally wild type organism which does not require any additional growth suppler as: Holotype
ANSWE Q9 A b O0 with starting a) b) c) d) ANSWE Q10 A known a) b)	oy throws a table tennis ball of mass 20g upwards with a velocity of u_0 = 10m/s at an at the vertical. The wind imparts a horizontal force of 0.08 N, so that the ball returns to g point. Then, the angle Θ_0 must be such that, $\tan \Theta_0$ must be such that, $\tan \Theta_0$ is 0.2 0.4 2.5 1.2 ER $-$ (b) nutritonally wild type organism which does not require any additional growth suppler as: Holotype Autotroph