Prova tipo A

P2 de Álgebra Linear I-2012.1

5 de maio de 2012.

Nome:	Matrícula:
Assinatura:	Turma:

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota <u>ZERO</u>. Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

\mathbf{Q}	1.a	1.b	1.c	2.a	2.b	2.c	2. d	2.e	3.a	3.b	soma
\mathbf{V}	1.0	1.0	1.0	1.0	0.5	1.0	1.0	1.0	1.0	1.5	10.0
N											

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) não serão corrigidos!!.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

(a) Considere a base β de \mathbb{R}^3

$$\beta = \{(1, 1, 0); (1, 0, 1); (0, 1, 1)\}$$

Determine as coordenadas $(\bar{v})_{\beta}$ do vetor $\bar{v} = (4, 2, 0)$ na base β .

(b) Seja $\alpha=\{\bar{u}_1,\bar{u}_2,\bar{u}_3\}$ uma base de \mathbb{R}^3 . Considere a nova base de \mathbb{R}^3

$$\delta = \{ \bar{u}_1 + \bar{u}_2, \bar{u}_2 + \bar{u}_3, \bar{u}_3 + \bar{u}_1 \}.$$

Sabendo que as coordenadas do vetor \bar{w} na base α são

$$(\bar{w})_{\alpha} = (3, 3, 4),$$

determine as coordenadas $(\bar{w})_{\delta}$ de \bar{w} na base δ .

(c) Determine k para que os vetores

$$\{(1,2,1);(2,k,1);(k,3,k)\}$$

não formem uma base de \mathbb{R}^3 .

Resposta:

2) Considere a aplicação linear $S \colon \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$S(\bar{u}) = \bar{u} \times (1, 1, 1).$$

- (a) Determine a matriz de S na base canônica.
- (b) Determine TODOS os vetores \bar{u} tais que $S(\bar{u}) = \bar{u}$.
- (c) Determine dois vetores \bar{u} e \bar{v} não nulos tais que $S(\bar{u}) = S(\bar{v}) \neq \bar{0}$.
- (d) Estude se S é sobrejetora (isto é, se a imagem de S é \mathbb{R}^3). Determine uma base ortonormal da imagem de S.
- (e) Determine uma base ortonormal da imagem do plano

$$\pi$$
: $x + y - 2z = 0$

pela transformação linear S.

Resposta:

(a) Considere a transformação linear $T\colon\mathbb{R}^3\to\mathbb{R}^3$ cuja matriz na base canônica é

$$[T] = \left(\begin{array}{ccc} 1 & b & 0 \\ 2 & 4 & 1 \\ a & c & d \end{array}\right).$$

Sabendo que o espaço imagem de T é o plano de equação cartesiana

$$x - y + z = 0$$

e que $T(2,-1,0) = \bar{0}$, determine os valores de a,b,c e d.

(b) Considere a matriz

$$A = \left(\begin{array}{ccc} 2 & 2 & 2 \\ 1 & 0 & 2 \\ 2 & 1 & 1 \end{array}\right).$$

Determine a inversa da matriz A.

Critério de correção:

- Um erro nos valores de a, b, c e d nota 0.5, mais de um erro nota zero.
- Um erro nos coeficientes da matriz inversa **nota 1.0**, dois erros **nota 0.5**, três ou mais erros **nota zero**.
- O desenvolvimento da questão é necessário.

Escreva as respostas finais a <u>caneta</u> nos retângulos.

Somente serão aceitas respostas a caneta.

$$a =$$

$$b =$$

$$c =$$

$$d =$$

$$A^{-1} = \left(\begin{array}{c} \\ \\ \end{array} \right).$$

Resposta (desenvolvimento):