

Intro to Artificial Intelligence

Boardgame IA Design

B9 - Artificial Intelligence Introduction

M-ALG-900

Intro to Artificial Intelligence

Beyond Deterministic Methods

- Obvious intermediate scoring may be totally impossible to compute
- For instance, the scoring of a go-ban
- We want to train our algorithm to give a scoring faster than getting through a whole tree.

Training (exemple)

- We run a great deal of games N.
- For many of these games we encounter a given situation X.
- The scoring Y of the situation X is the number of final victories in a game encountering a situation X.

$$G(X) = \frac{N(V \cap X)}{N(X)} \sim P(V|X)$$

Supervised Learning

Observations:

- Empirical target variable \tilde{Y} (final scoring of the game)
- Empirical data \tilde{X}

Supervised Learning

Observations:

- Empirical target variable \tilde{Y} (final scoring of the game)
- Empirical data \tilde{X}

Hypotheses:

- \tilde{X} is a set of observation stemming from a stochastic process X
- \tilde{Y} is a set of observation stemming from a stochastic process Y
- there exists a relation Y = f(X)

ARCELONE - BERLIN - BORDEAUX - BRUXELLES - LA REUNION - LILLE - MARSEILLE - MONTPELLIER - NANCY - NANTES - NICE - RENNES - STRASBOURG - TIRANA - TOU

66.7%

Supervised Learning

Observations:

- Empirical target variable \tilde{Y} (final scoring of the game)
- Empirical data \tilde{X}

Hypotheses:

- \tilde{X} is a set of observation stemming from a stochastic process X
- \tilde{Y} is a set of observation stemming from a stochastic process Y
- there exists a relation Y = f(X)

Objectives:

- Build a function \tilde{f} based on \tilde{X} and \tilde{Y}
- Such that \tilde{f} is a good approximation of f
- So we can predict $\tilde{Y}' = \tilde{f}(\tilde{X}')$ on a new sample

Phantom of the Opera

Running a whole lot of games, try to compute scores for different couples (i, g) where i is the number of isolated suspects and g the number of non-isolated ones.

Any questions

?

