

LIBRARY

MILWAUKEE SCHOOL OF ENGINEERING
MILWAUKEE, WISCONSIN

- 1. Our rules are made that the library may be of the greatet use to all its patrons.
- 2. The date on which a book is due will be found stamped on the slip facing the pocket.
- 3. Each borrower is held responsible for all books charged to him.
- 4. All injuries to books beyond reasonable wear and all losses shall be made good to the satisfaction of the librarian.

J. DAVIDSON

DISCARDED BY
MILWAUKEE SCHOOL
OF ENGINEERING
LIBRARY

ELECTRICAL TRANSMISSION

OF

ENERGY.

A MANUAL FOR THE DESIGN OF ELECTRICAL CIRCUITS.

BY

ARTHUR VAUGHAN ABBOTT, C.E.,

CHIEF ENGINEER CHICAGO TELEPHONE CO., MEMBER AMERICAN INSTITUTE OF ELECTRICAL ENGINEERS, MEMBER AMERICAN INSTITUTE OF MINING ENGINEERS,

JUNIOR AMERICAN SOCIETY OF CIVIL ENGINEERS.

WITH NINE FOLDING PLATES.

THIRD EDITION, REVISED.

NEW YORK:

D. VAN NOSTRAND COMPANY.

LONDON:

SAMPSON LOW, MARSTON & COMPANY, LIMITED.

1900.

Entered according to Act of Congress in the year 1898, by

ARTHUR V. ABBOTT,

In the office of the Librarian of Congress at Washington.

PREFACE.

It has been tritely remarked that "There is nothing new under the sun." In view of this sapient aphorism the reader will not expect to find much that is strange or remarkable in the present volume. Books, however, are something like kaleidoscopes, in which ideas, like the bits of colored glass, resolve themselves into innumerable stellate forms, presenting to the inspector picture after picture, each of seemingly different origin from the preceding ones. While investigating a subject, it has been the custom of the author to obtain all the works by different writers on the question under consideration, and to read them successively; thereby viewing the matter from a number of different standpoints. He has found this an exceedingly valuable way of acquiring information, and remembers with the liveliest sense of gratitude the various expositors from whose differing horizons he has scanned the landscape of complicated topics.

The present volume has been prepared chiefly from the aspect of the author's experience, and is an endeavor to collect and arrange in an accessible and convenient form the data necessary to the scientific designing and proportioning of Electrical Circuits. No attempt has been made to describe any Central Station machinery; for the scope of the volume would not permit of an extension beyond the material relevant to the "Transmission of Energy," so aptly and untranslatably termed by the French "Canalisation."

The opening chapters are devoted to an outline of Circuits, and to an annunciation of the principles and laws governing Conductors and Insulators. This is followed by a discussion of the methods of constructing Aerial Lines and description of Underground Conduits

iv PREFACE.

and Conductors. Succeeding these, a chapter is devoted to Testing Instruments, and one to the Methods of Measuring and Inspecting Lines, and of determining and remedying any faults that may be found to exist. In Chapters VII. and VIII., the laws of Continuous and Alternating Circuits are exhibited. Subsequently, distribution proper is treated in three chapters, under the heads of "Series Distribution," "Parallel Distribution," and "Miscellaneous Methods." In the concluding chapter, a rough approximation is given for obtaining the cost of Circuits and cost of the production of Electrical Energy.

It has been the attempt of the author to herein collate such methods of Circuit Construction, in connection with tabulated data, as have been sanctioned by the best practice, both in this country and in Europe. No attempt has been made to render the volume an encyclopedia; and, therefore, all matter obsolete or antiquated has been rejected, and only such is presented as seems to be fully warranted by the present state of the art. Wherever possible, the lines along which future practice is likely to lie have been indicated. chapters on measuring instruments and methods of testing have been carefully abridged to include only such information as is valuable to the practicing engineer, laboratory appurtenances and methods being entirely eliminated. In a large proportion of the methods of measurement, the simple literal formulæ for the solution of the problem in question are given, without any attempt at the necessary demonstration of the truth of the same. Inasmuch, however, as nearly all such formulæ are directly derivable from the laws of Ohm and Kirchhoff, involving only algebraic processes, the reader can easily deduce the equations for himself. For a more complete exposition of the methods of measurement, the reader is referred to the works of Hospitalier, Gerard, Weiller & Vivarez, Kempe, and Monroe & Jameson. In the chapters on Distribution, sufficient importance is attached to the subject to give the mathematical discussion in full, involving, however, only the simplest applications of the calculus. Wherever practicable, liberal use of illustrations has been made; for ocular demonstration is always much clearer and more concise than any verbal description.

To the works of Picou, Hospitalier, Cadiat, Gerard & Weiller, Kempe, Thomson, Kennelly, Ayrton, Perry, Preece, and Heaviside, and to the "Transactions of the Electrical Engineers," the London Electrician, the Electrical World, the Electrical Engineer, and La Lumière Électrique, also the Street Railway Journal, the author has long been indebted for information that has happily led to the successful construction of many transmission plants, and which, passed through the sieve of experience, is here presented to the public; and for benefits thus derived, he has long wished for an opportunity to gratefully acknowledge his obligation. Acknowledgment is particularly due to Mr. F. J. Dommerque, for aid in the preparation of many of the tables, and in verification of the proof-sheets. Convinced, from the standpoint of experience, of the utility of the information, the author trusts that the electrical section of the engineering profession may find the present presentation of value in practical construction.

CHICAGO, ILL., Jan. 15, 1895.

PREFACE TO SECOND EDITION.

In the three years which have elapsed since the publication of the first edition of *The Electrical Transmission of Energy*, the extension of practical applications of electricity has even far exceeded the most sanguine prophesies of growth; but during this time progress has been chiefly along commercial lines rather than those of invention. Few new or startling ideas may be chronicled, but, through the furnace of practical experience, that which was good has been refined and freed from the dross of theory, — has settled into secure and reliable commercial forms. The Author, therefore, has little to add or change in such portions of this work as are purely theoretical, but details of practice have received careful revision.

It was with much apprehension that the Author watched the reception of the first edition, but its appearance developed so many hitherto unknown friends, and even its most severe critics were withal so just and kindly, that a feeling of gratitude soon displaced fear; and to all who have aided, either with welcome words of commendation, or the more valuable though perhaps less pleasing phrases of criticism, the Author here returns his most sincere acknowledgments.

CHICAGO, Nov. 1, 1898.

TABLE OF CONTENTS.

CHAPTER I.
Introduction
Systems.—Indirect Distribution.
CHAPTER II.
The Properties of Wire
CHAPTER III.
The Construction of Aerial Circuits
PART I GENERAL LINE WORK.
Classification. — Aerial Lines. — Poles. — Methods of Preservation. — Height of Poles. — Cross-Arms. — Pins. — Facing of Arms. — Stresses. — Calculation for Pole Strength. — Guying. — Anchor Poles. — Setting Poles. — Insulators. — Value of Insulators. — Oil Insulators. — Tying and Dead-Ending. — Loops. — Stringing Wires. — Wire Joints. — Strength of Joints. — The Suspension of Aerial Cables. — Humming of Wires. — Transposition of Telephone Lines. — Power Circuits. — Pole-Line Specifications.
PART II ELECTRIC RAILWAY CIRCUITS.
Electric Railway Circuits. — Railway Return Circuit. — Electrolytic Action. — Railway Poles. — Wooden Poles. — Iron Poles. — Feed Wire Insulators and Pole Tops. — Trolley Insulators. — Railway Line Work. — Strain Insulators. — Anchors. — Line Sections. — Switches. — Line Crossings.
PART III — LIGHTNING ARRESTERS.
Lightning Guards and Strong Current Arresters. — High Resistance Arrester. — Magnetic Blow-out Arrester. — Mechanical Magnet Arrester. — Air Expansion Arrester. — Non-arcing Metal Arrester. — Discriminating Arresters. — Automatic Cut-outs. — Cable and Switchboard Protectors. — Appendix of Insurance Regulations.
CHAPTER IV.
Construction of Underground Circuits
PART I. — CONDUITS.
Classification. — Valentine Conduit. — Wyckoff Conduit. — Paper Conduit. — Pipe Conduits. — Dorset Conduit. — Chenowith Conduit. — Terra-Cotta Conduits. — Crompton System.

Systems. — Callender Solid System. — Cologne Conduit. — Zurich Conduit. — Manholes. — Junction Boxes for Street Railway Feeds. — Introduction of Circuits. — Pneumatic Rodding. — Gas. — Electric Railway Conduits. — Buda-Pesth Conduit. — Blackpool Conduit. — Love Conduit. — Lenox Avenue Conduit. — Metallic Conduits for Alternating Currents.

PART II. - CABLES AND CONDUIT CONDUCTORS.

Conduit Conductors. — Armored Cables. — The Siemens Cable. — The Edison System. — The Ferranti Mains. — Telegraph Cables. — Subaqueous Cables. — Power Circuits. — Paper Cables. — Telephone Cables. — British Post-Office Cables. — The Patterson Cable. — Glover Cables. — Fowler-Waring Cables. — Felten-Guilleaume Cable. — Beaded Cables. — Cable Joints. — The Connection of Underground and Aerial Systems. — Cable Heads.

CHAPTER V.

Classification. — Instruments for Measurement of Resistance. — Wheatstone Bridge. — Slide Wire Bridge. — Ohm-meter. — Instruments for Measuring Quantity and Pressure. — D'Arsonval Galvanometer. — Ballistic Galvanometer. — Galvanometer Constants. — Reduction to Zero and Inferred Zero. — Shunts. — Weston Instruments. — Cardew Voltmeter. — Electrostatic Voltmeter. — Siemens Dynamometer. — Condensers. — Wattmeters. — Keys. — Magneto. — Ground Indicators. — Boyer Speed Recorder.

CHAPTER VI.

Quantities to be measured. — Electrical Intensity. — Electrical Quantity. — Unit of Current. — The Watt. — Capacity. — Resistance, — Ohm's Law. — Kirchhoff's Laws. — Measurement of Resistance by Deflection. — By Wheatstone Bridge. — By Voltmeter. — By Volt and Ammeter. — Measurement of Small Resistance. — High Resistance. — Insulation Resistance. — By Loss of Charge. — Line Resistance. — Ground Resistance. — Special Methods for Galvanometer Resistance. — For Battery Resistance. — Potential Difference. — By Condenser. — Wheatstone's Method. — Lumsden's Method. — Measurement of Current Strength by Ammeter. — By Voltmeter. — By Differential Galvanometer. — By Slide Wire. — Measurement of Capacity. — Thomson's Method. — Gott's Method. — Divided Charge Method. — Localization of Faults. — Blavier's Method. — Overlap Method. — Loop Test. — Murray's and Varley's Methods. — Localization of Crosses. — Measurement of Inductance. — By Condenser and Bridge. — With Alternating Current. — Mutual Inductance. — Measurement on Alternating Currents. — Difference of Potential. — Current. — Power by two Voltmeters. — By three Ammeters. — Measurement on Polyphase Circuits. — Electrical Railway Testing. — Capacity of Aerial Lines. — The Inductance of Aerial Lines. — Mutual Inductance on Transmission Lines.

CHAPTER VII.

PART I. - CONDUCTORS AND INSULATORS.

Conductors. — Resistance. — Ohm's Law. — Specific Resistance. — Effect of Temperature. — Resistance of Dielectrics. — Line Leakage. — Distribution of Potential. — The Effect of Leakage. — Conductance. — Distribution of Potential in Branch Circuits.

PART II. - THE HEATING OF CONDUCTORS.

Joule's Law.—Location of Circuits.—Bare Wires Freely Suspended.—Radiation and Convection.—Paneled Wire.—Insulated Wire Freely Suspended.—Rheostats and Heaters.—Cost of Electric Heating.—Fuse Wires.—Heating of Insulated Cables.—Heating of Conduit Cables.—Heating of Suspended Cables.

CHAPTER VIII.

Conductors for Alternating Currents
General Considerations. — Classification. — Skin Effect. — Current Density. — Inductance — Magnetic Field. — Electro-motive Force due to Varying Field. — Equation of Energy.— Harmonic Motion. — Average Values. — The Solution of the Energy Equation. — Effect of Mutual Inductance. — General Energy Equation for Mutually Inductive Circuits. — Coefficient of Inductance. — Effect of Capacity. — Solution of the Energy Equation for Circuits with Capacity. — The Energy Equation for Circuits containing Resistance, Inductance, and Capacity. — Graphical Methods. — Vector Quantities. — Composition and Resolution of E.M.F.,—Simple Circuits with one Resistance and Inductance in Series. — Reactance. — Impedance — Resistance Variable. — Inductance Variable. — Simple Circuits with Several Resistance and Inductances in Series. — Simple Circuits with Several Resistances, Inductances, and Capacities in Series. — Circuit with Resistance, Inductance, and Capacity in Parallel. — Method of Equivalent Resistance and Inductance. — Circuits containing Mutual Inductance. — Impedance Tables.
CHAPTER IX.
Series Distribution
Origin. — Classification. — Constant Current Circuits with Generator and Motor at Fixe Distances. — Location of Station. — Current Density in Main Circuit. — Economic Condition — Design for Heating-Limit. — Design for Mechanical Strength. — Minimum First Cost of Line. — Minimum First Cost of Station. — Minimum First Cost of Plant, and Minimum Cost of Maintenance and Operation. — Design for Minimum First Cost of Plant. — Design for Besservice. — Minimum Cost of Plant for Maximum Income. — Calculation of Loads. — Regulation. — Automatic Cut-outs.
CHAPTER X.
Parallel Distribution
The Evolution of the Parallel System. — Methods of Distribution. — The Loop System. — The Spiral Loop. — The Tree System. — The Closet System. — Conical Conductors. — Anti-Parallel Feeding. — Distribution of Potential. — Cylindrical Conductors, Parallel Feeding. — Cylindrical Conductors, Anti-Parallel Feeding. — Conical Conductors, Parallel Feeding. — Conical Conductors, Anti-Parallel Feeding. — Three-Wire System. — Multiple-Series System. — Five-Wire System. — Relative Area covered by the Multiple-Wire Systems. — Feeder an Main System. — Location of Central Station. — Location of the Feeders and Centers of Distribution. — Distributing-Mains. — Calculation of Feeders. — Efficiency of Conductors. — Methods of Regulation. — The Compensator. — The Compensator in Electrical Railway Worl — Fall of Pressure and Necessary Section for Feeders. — Laws of Economy and Feeder Design — General Design for a System in Multiple Arc. — Mechanical Methods. — Station Loads. — Arc Lamps on Constant Potential Circuits. — Electric Railway Wiring. — Three-Wire Rai way Systems.
CHAPTER XI.
Missellaneous Methods and Long-Distance Transmission 48

Motor Transformers. — Compensators. — Motor Transformers Running and Feeding in

Series. — High and Low Potential Distribution from the same Station. — Accumulators. — Sub-Station Accumulators. — Accumulator Distribution. — Regulation by means of Accumulators. — Transformers. — Economy in Conductors. — Isolated Transformers. — Efficiency of Distribution by Isolated Transformers. — Transformers as Sub-Stations, — Polyphase Systems.

— Long-Distance Plants. — Long-Distance Transmission with Continuous Currents. — Line Construction for Long-Distance Transmission. — Relative Amount of Conducting Material for Transmission Systems.

CHAPTER XII.

The Cost of Production and Distribution					٠							52	28
---	--	--	--	--	---	--	--	--	--	--	--	----	----

Cost of Conductors.—Cost of Conduits.—Telephone and Telegraph Lines.—Railway Lines.—Cost of Power-Stations.—Cost of Producing Energy.—Coal Consumption per Watt Hour.—Water-Power.—The Gas-Engine.—The Cost of Electrical Energy, as developed by Wind-Power.—The Actual Cost of Electrical Energy.—Commercial Considerations of Transmission Problems.

TABLE OF SYMBOLS.

A Ammeter, a	mperes.
a Coefficient	in temperature equation for dielectric.
a Coefficient i	n temperature equation, also angular measure.
	in the arms of a Wheatstone Bridge.
	n temperature equation, also angular measure.
	or capacity, and radiation coefficient.
	on any scale instrument, or diameter.
d_c Rate of dep	preciation charged on cost of conduits.
di Rate of de	preciation charged on cost of line.
ds Rate of dep	preciation charged on cost of station.
E Primary ele	
	ive force at any secondary point.
	hours per annum of operation; also galvanometer figure
	nerit.
G Galvanome	er and galvanometer resistance.
	lves of a differential galvanometer.
H Heat units	
IIc Heat units	
H_r Heat units	
$I, I', I'' \dots (and i, i', i'')$, etc.) Currents in amperes, also rate of interest.
	efficient of radiation per unit of surface.
K Cost of pro	ducing energy per watt or K.W.
K' Cost of stat	ion machinery per watt or K.W. of output.
Landl Length.	
m Multiplying	power of shunt.
Q Quantity of	
$R, R', R'' \dots$ Resistance	nknown.
r, r', r'' Resistance	known.
Rt Resistance	at temperature t° C.
Ro Resistance	it temperature 0° C.
ρ Resistance s	specific.
S Shunt, area	of cross-section, and crushing strength.
T Time in sec	onds, also temperature, tension in pounds.
t Conductor t	emperature in degrees C.
θ Temperature	e of air in degrees C.
U' Charge for	nterest and depreciation on line.
U" Energy lost	in transmission in line.
$u_0 - u'$ Drop on lin	e.
V Voltmeter a	nd voltage.

mV W and w Energy in watts. Wr Energy in watts lost by radiation. Z Annual cost to produce W watts. f Deflection. e Electro-motive force at any given instant. f Number of magnetic lines cut, or in field at any given instant. E J The maximum values of the above quantities. F J The mean value of the above quantities. J L L Coefficients of inductance. M Coefficients of mutual inductance. T Time of one complete period. a Amplitude of harmonic motion.
 Wr Energy in watts lost by radiation. Z
 Wr Energy in watts lost by radiation. Z
 Z Annual cost to produce W watts. f Deflection. e Electro-motive force at any given instant. i Current at the same instant. f Number of magnetic lines cut, or in field at any given instant. E The maximum values of the above quantities. F The mean value of the above quantities. f Coefficients of inductance. M Coefficients of mutual inductance. Time of one complete period. a Amplitude of harmonic motion.
f Deflection. e Electro-motive force at any given instant. i Current at the same instant. f Number of magnetic lines cut, or in field at any given instant. E The maximum values of the above quantities. F The mean value of the above quantities. J. L. L', etc. Coefficients of inductance. M Coefficients of mutual inductance. T Time of one complete period. a Amplitude of harmonic motion.
Electro-motive force at any given instant. i
 Current at the same instant. Number of magnetic lines cut, or in field at any given instant. The maximum values of the above quantities. The mean value of the above quantities. The mean value of the above quantities. Coefficients of inductance. Coefficients of mutual inductance. Time of one complete period. Amplitude of harmonic motion.
F
The maximum values of the above quantities. The maximum value of the above quantities. The mean value of the above quantities. L, L', etc Coefficients of inductance. Coefficients of mutual inductance. The coefficients of mutual inductance. Amplitude of harmonic motion.
The maximum values of the above quantities. The mean value of the above quantities. The mean value of the above quantities. L, L', etc Coefficients of inductance. Coefficients of mutual inductance. The mean value of the above quantities. Amount the mean value of the above quantities. Amount the mean value of the above quantities. Amount the mean value of the above quantities.
The mean value of the above quantities. L, L', etc Coefficients of inductance. M Coefficients of mutual inductance. T Time of one complete period. a Amplitude of harmonic motion.
The mean value of the above quantities. L, L', etc Coefficients of inductance. M Coefficients of mutual inductance. T Time of one complete period. a Amplitude of harmonic motion.
#
 L, L', etc Coefficients of inductance. M Coefficients of mutual inductance. T Time of one complete period. a Amplitude of harmonic motion.
 M
 M
a Amplitude of harmonic motion.
A1 f h
$\theta \dots \dots$ Angle of epoch.
ϕ Angle described in time t or dt .
n The frequency or number of periods per second.
ω , , , $2\pi n$.
m Strength of a magnetic pole.
d Distance.
B The total induction, or induction per unit of area.
H Magnetizing force.
J Impedance. J Impedance Factor.
E.M.F Electro-motive force.
c.m Circular mils.
s.m Square mils.
\(\Sign\) Sign for summation,

When the symbols are applied to different circuits sub-letters are used to denote the corresponding value for each circuit.

LIST OF TABLES.

Table	of Symbo	Is
CHAP.	TABLE.	IS
II.	1	Physical Properties of Iron and Steel Wire
	2	Comparison of Wire Gauges
	3	Variation in the Resistance of Copper due to Varying Purity 9
	4	Properties of Copper Wire
	5	Safe Currents for Paneled Wire
	6	Fall of Potential in Copper Wire
	7 A	Properties of Silicon Bronze Wire
	7 B	Properties of Silicon Bronze Wire
	8	Approximate Weights per Mile of Insulated Wire
	9	Stranded Cables
	10	Circular Millage of $\frac{3}{0}$, $\frac{2}{0}$, $\frac{1}{0}$, 1, 2, and 3 Wire
	11	Data of British P.O. Wire (Copper) Specifications 26
	12	Data of British P.O. Wire (Iron) Specifications
	13	Sags and Tensions for Aerial Lines
III.	14	Tensile Strength of Timber
	15	Crushing Strength of Timber
	16	Dimensions of Anchor Poles
VII.	17	Resistance of Metals
	18	Resistance per Grain-foot and Mil-foot
	19	Value of α and β in Formula $R_t = R_o(1 + \alpha t + \beta t^2)$
	20	Value of α in Formula $R_t = R_o (1 + \alpha t)$
	21	Specific Resistance of Insulators
	22	Relative Conductivity of Copper
	23	Values of $.00175 + .013 d$, $\pi (.05625) (1.0077) \theta$, and $1.007t - 1$ 292
	24	Current Curves for Aerial Wires
	25	Current Curves for Wire in Still Air
	26	Safe Currents for Paneled Wires
	27	Rise in Temperature for Paneled Wires
	28	Safe Current for Galvanized Iron Wire. Rheostats 297
	29	Safe Current for Tinned Iron Wire. Rheostats
	30	Safe Current for German Silver Wire. Rheostats 299
	31	Constants for Fuse Wires
	32	Fuse Wires by Preece
	33	Commercial Fuse Wires
	34	Lead and Tin-foil Fuses
	35	Lead and Alloy
	36	Relation between Length and Carrying Capacity
	37	Effect on Carrying Capacity of Fuse Wires of the Duration of Current 304

Снар.	TABLE.	TITLE. PAGE
	38	Carrying Capacity of Lead and Tin Fuse Wires
	39	Fuse Wire Curves, Lead and Tin Alloys
	40	Specific Thermal Conductivity
	41	Temperature Relations of U. G. Cables
VIII.	42	Thickness of Shell on Cylindrical Conductors Affected by the Current
		in an Alternating Circuit
	43	Factor for Virtual Resistance
	44	Impedance Tables
	45	Multipliers to Transform E.S.C.G.S. Units into M.F. per Unit of
		Length
	46	Specific Inductive Capacity
IX.	47	Section A Cost of Laying One Additional Ton of Copper 390
		B. — Sectional Area for 100 Amperes
	48	Hours of Lighting
	49	Hours of Lighting
	50	Hours of Lighting
X.	51	Relation between Cases I., II., III., and IV
	52	Areas Covered by Multiple Wire System
	53	Calculations for Point of Least Pressure
	54	Heating-Limit for Conductors
		Sheet I. Buried Conductors 472
		Sheet II. Aerial and Paneled Conductors 473
		Sheet III. Minimum Safe Diameter of Copper Wire 474
XI.	55	Relative Amounts of Conducting Material in Various Conducting
		Systems
	56	Cost of Conductors
	57	Cost of Conduits
	58	Cost of Pole Lines
	59	Cost of Street Railway Lines
	60	Estimate of Overhead Lines
	61	Operating Expenses of Street Railways
	62	Cost of Power Stations
	63	Cost of Electrical Energy per K.W
	64	Watt Hours per Lb. of Coal
	65	Possible Watt Hours per Lb. of Coal
	66	Cubic Feet of Gas per B.H.P
	67	Cost of Electrical Lighting by Wind-Power
	68	Cost of Producing Energy
	69	Cost of Producing Energy
	70	Cost of Production in Continental Stations
	71	Comparison of Operating Expenses
	72	Cost and Operating Expenses of Lighting Station
	73	C / (T) / 10 · · · · · · · · · · · · · · · · · ·
	74	0 1 17 1 11 2 2 2 2
	64	Cost of Installing and Maintaining Steam Plants
	75	Cost of Energy per H.P. per annum
	76	Tables for determining Economical Conductor Sections Pocket
	77	Tables for determining Economical Conductor Sections Pocket
	78	Tables for determining Economical Conductor Sections Pocket
		O TOTAL CONTRACTOR DECEMBER I DENE

THE

ELECTRICAL TRANSMISSION OF ENERGY.

CHAPTER L

INTRODUCTION.

ELECTRICAL DISTRIBUTION.

Art. 1. Distribution in General. — The distribution of Electricity comprises a study of the appropriate methods for supplying Electrical Energy, generated by one or more sources, to a number of receiving mechanisms, or translating devices, the quantity given to each one being properly proportioned to its needs; the investigation of the conditions for accomplishing this distribution in the most exact and economical manner; and finally an examination of the means whereby distributing plants may be rendered permanent, durable, and secure.

The methods of distribution are chiefly controlled by the way in which it is considered advisable to arrange the receiving mechanisms. This arrangement of the receivers is indicated by the service which they are called upon to perform, and being involved in the design of the plant in question, must be settled in each particular case for itself.

Three principal methods are common for the arrangement of the receiving mechanisms; they may be arranged in *Series*, in *Parallel*, or by a *Combination of the two previous methods*. It is also frequently advisable to employ, between the generators and the receivers, intermediate or auxiliary contrivances, such as accumulators, transformers, or the like, the use of which gives rise to the various problems in indirect distribution.

1

2. Distribution in Series. — Under this method all of the

receivers are placed one after the other in succession upon a single conductor extending throughout the entire circuit from pole to pole of the generator. This method is illustrated in Fig. 1.

3. Distribution in Parallel. — In this

system one or more pairs of conductors, running parallel to

Fig. 1. Diagram of a simple Series Circuit.

Fig. 2. Diagram of a simple Parallel Circuit.

each other, are arranged, extending to the limits of the circuit. Each receiver is connected across one of the pairs of mains, thus forming a circuit which is independent of that of every other receiver. See Fig. 2.

4. Mixed Systems. — A combination of the two preceding methods is a natural consequence, giving rise to designs as exemplified in Fig. 3, some of the receivers being placed in parallel, as previously indicated, while others may be placed in series and joined across the mains from the generator, each series circuit being arranged in

parallel to all the other series circuits, thus uniting in one both

Fig. 3. Diagram of a Series-parallel Circuit.

systems. Obviously, to unite the generators in series and then to place them across the mains in parallel, in a manner similar to the arrangement of the receivers, readily followed; giving rise to the now

famous three, five, and seven wire systems now used for direct current distributions of magnitude.

5. Indirect Distribution. — Finally, if between the generator and the receiver intermediate contrivances for transformation or accu-

mulation of Electrical Energy are employed, the arrangement of the circuits between the generator and the accumulator, or transformers, and between the latter and the receivers, may be entirely different. For example, Fig. 4 shows in outline the combination of a lamp circuit fed by accumulators charged from a generator; the accumulators are in series across the mains of the generator, while the lamps are placed in parallel agrees two believe of the

Fig. 4. Diagram of Indirect Distribution.

in parallel across two halves of the battery of accumulators.

The various methods here outlined, together with the ramifications and modifications practically found to be of advantage, will be successively considered, proceeding from the simple to the more complicated forms. Previously, however, it is advisable to examine the characteristics of the materials adapted to the construction of electric circuits; and to study such methods of construction as the present state of the art indicates as advisable. It is also desirable to become sufficiently familiar with electrical instruments and methods of measuring to enable the practitioner to examine into and determine the performance of a transmission plant, and to remedy any defects or faults that may be revealed.

CHAPTER II.

THE PROPERTIES OF WIRE.

- Art. 6. Every present system for the distribution of energy by electricity comprises, as its most important constituent, a circuit formed of some substance which is a good conductor of electricity, and which, connecting the generators and various receivers, conveys to each its appropriate supply. Inasmuch as the metals are the best conductors, they are universally selected to form at least a part of the conducting circuit, and for this purpose are most conveniently employed in the form of bands, or rods of small dimensions usually termed wire.
 - 7. Wire Manufacture. While a detailed description of the process of wire manufacture is foreign to the scope of this work, it is advisable to outline it sufficiently to enable a proper design for the line circuit to be made. So far as the distribution of electrical energy is concerned, but three kinds of wire have any commercial importance, — iron wire, copper wire, and the various forms of bronze. The metal to be formed into wire is cast, or rolled, into masses about six inches square by three or four feet in length, technically termed "Blooms;" and each bloom is then, by succeeding passes through rolls, reduced to a long and slender rod about half an inch in diameter, and approximately of a circular section. Wire smaller than this size it has been found impracticable to roll. For the lesser diameters recourse is had to the process of wire drawing, which consists in pulling the rolled rod through constantly decreasing holes in a series of hardened steel or agate plates. Thus the rod is given an exact circular cross-section, and by repeated passes through the dies may be reduced in diameter to any desired extent.
 - 8. Hard-Drawing. Pulling the metal through the die produces a change in its molecular structure, whereby the rod becomes considerably compressed and hardened, its tensile strength being markelly augmented, with a corresponding diminution in elasticity. This effect, which seems to be analogous to the process of tempering in

steel, becomes of great importance in increasing the strength of the material forming the wire. Steel having a tensile strength of 60,000 lbs. to 80,000 lbs. per square inch in the bloom, may by this so-called method of "hard-drawing" have its tenacity raised to 300,000 or 350,000 lbs. per square inch. This extraordinary increase is, however, only found in wire of very small diameter. The effect of hard-

Table No. 1.

Physical Properties of Iron and Steel Wire.

Wire Gauge No.	DIAM- ETER	WEIGHT PER MILE,		Breaking Stress in Lbs. for Iron. Breaking Stress in Lbs. for Steel.				
I. S.W. G.	Mils.	LBS.	Bright.	Annealed.	Bright.	Annealed.	PER MILE, OHMS.	
7-0	500	3404	15,700	10,470	20,310	13,611	1.435	
6-0	464	2930	13,525	9,017	17,583	11,722	1.666	
5-0	432	2541	11,725	7,814	15,243	10,159	1.921	
4-0	400	2179	10,052	6,702	13,067	8,712	2.241	
3-0	372	1885	8,694	5,796	11,302	7,534	2.590	
2-0	348	1649	7,608	5,072	9,891	6,593	2.961	
1-0	324	1429	6,595	4,397	8,573	5,726	3.420	
1	300	1225	5,655	3,770	3,751	4,901	4.000	
2 3	276	1037	4,785	3,190	6,221	4,147	4.720	
_	252	864	3,990	2,660	5,187	3,458	5.653	
4	232	732	3,381	2,254	4,395 3,672	2,930 2,447	6.670 7.980	
5	212	612 502	2,824	1,883	3,011	2,007	9.730	
6	192	422	2,316	1,544	2,530	1,668	11.60	
7	176		1,946	1,298	2,091	1,393	14.05	
8	160	348	1,608	1,072		1 '	17.31	
9	144	282	1,303	869	1,694	1,130 893	21.8	
10	128	223	1,030	687	1,339	734	26.7	
11	116	183	845	564 454	1,099 884	590	33.00	
12	104	148	680		691	461	42.7	
13	092	114	532	355			55.5	
14	080	88	402	268	523 424	349 284	69.8	
15	072	70	326	218	42 1 334	284	86.2	
16	064	56	257	172	256	170	116.2	
17	056	42	197	131		170	152.16	
18	048	32	145	97	188		232.5	
19	040	21	100	67	130	87		
20	036	18	82	55	106	72	261.5	

drawing seems to be chiefly confined to a very thin layer or skin on the surface of the wire; so if any mechanical abrasion occurs to the surface, such as cutting or nicking, sufficient to destroy the integrity of this skin, the entire effect of the drawing will be lost. For this reason great care must be exercised in the erection of hard-drawn wire to prevent this destruction of the exterior. The same effect may be produced by annealing. In Table No. 1 the physical charac-

teristics of hard-drawn and annealed iron and steel wire of the more common sizes are given. Unfortunately the process of hard-drawing reduces the electrical conductivity of copper wire from 2 to 4 per. cent; yet the advantages to be derived from increased tenacity more than counterbalance this loss. Attempts have been made to manufacture all but the smallest sizes of wire entirely by rolling; and while the results thus far obtained point toward a very successful accomplishment of this process, rolled wire is not as yet of common commercial occurrence. Curiously, in wire thus manufactured, the hardening of the metals by the rolls seems to extend entirely through the wire, and not to be confined to a superficial skin. In order to make good wire, it is necessary that the blooms from which the rods are rolled should be sound, and free from all slivers, gas bubbles, cold shuts, or other imperfections; for, during the passage of the metal through the rolls and dies, all flaws in the blooms are simply elongated without being eradicated, tending to make the finished wire imperfect and difficult for the linemen to handle, as slivers or checks on the surface of the wire are likely to severely cut or injure the hands of the workmen, and make the process of stringing not only disagreeable but positively dangerous.

9. Wire Gauges. — Until recently an enormous amount of confusion existed as to the terminology applied to the different sizes of wire; and, indeed, in many instances the same trade name was applied by different manufacturers to wire of widely varying diameters. Even in 1883 a number of different wire gauges existed in Europe, and at least three different standards were in vogue in this country. The mistakes arising from the confusion of the gauges became so important that the iron and steel manufacturers met with a view of discussing this question, and of settling upon some universal standard to be adopted by all of the trade. Joint meetings of the Iron and Steel Institute of Great Britain, and of the American Institute of Mining Engineers, resulted in the establishment in England of the Imperial Standard Wire Gauge, and of the adoption in this country of the Brown & Sharp Gauge. On the Continent gauge numbers are rarely used, all wire work being measured in millimeters and decimal fractions thereof. In Table No. 2 will be found a comparison between the various standard wire gauges now employed, together with the nearest corresponding number of the millimeters,

TABLE No. 2.—GIVING RELATIONS BETWEEN

Imperial Standard Wire Gauge. Brown and Sharpe's Wire Gauge. Birmingham or Stubbs Wire Gauge. Washburn and Moen's Wire Gauge. Trenton Wire Gauge. Old English Wire Gauge.

GAUGE		DIAMETER	IN TEN-THO	DUSANDTHS O	F AN INCH.		DIAM.
No.	1. S. W. G.	B. and S. W. G.	B.or S.W.G.	W. and M. W. G.	Trenton W. G.	Old Eng.	MMS.
7-0	5000						12.70
6-0	4640			4600			11.78
5-0	4320			4300	4500		10.97
4-0	4000	4600	4540	3930	4000		10.16
3-0	3720	4096	4250	3620	3600		9.45
2-0	3480	3648	3800	3310	3300		8.84
1-0	3240	3249	3400	3070	3050		8.23
1	3000	2893	3000	2830	2850		7.62
2	2760	2576	2840	2630	2650		7.01
3	2520	2294	2590	2440	2450 2250		5.89
4	2320	2043	2380	2250			5.38
5	2120	1819	2200	2070 1920	2050 1900		4.88
6	1920	1620	2030	1	1750		4.47
7	1760	1443 1285	1800 1650	1770 1620	1600		4.06
8 9	1600 1440	1144	1480	1480	1450		3.66
	1280	1019	1340	. 1350	1300		3.25
10 11	1160	907	1200	1200	1175		2.95
12	1040	808	1090	1050	1050		2.64
13	920	719	950	920	925		2.34
14	800	640	830	800	800	.0830	2.03
15	720	570	720	720	700	720	1.83
16	640	508	650	630	610	650	1.63
17	560	452	580	540	525	580	1.42
18	480	403	490	470	450	490	1.22
19	400	359	420	410	400	400	1.02
20	360	320	350	350	350	350	.91
21	320	284	320	320	310	315	.81
22	280	253	280	280	280	295	.71
23	240	226	250	250	250	270	.61
24	220	201	220	230	225	250	.56
25	200	179	200	200	200	230	.51
26	180	159	180	180	180	205	.46
27	164	142	160	170	170	187	.42
28	148	126	140	160	160	165	.38
29	136	113	130	150	150	155 137	.31
30	124	100	120	140	140	122	.31
31	116	89	100	135	130	112	.27
32	108	79	90	130	120 110	102	.25
33	100	71	80	110	100	95	.23
34	92	63	70	95	95	90	.21
35	84	56	50 40	90	90	75	.19
36	76	50	40	85	85	65	.17
37	68	44 39		80	80	57	.15
38	60	39		75	75	50	.13
39	52 48	35		70	70	45	.12
40	48						.11
41	40						.10
42	36						.03
43	30						.08
44	28						.07
45	28						.00
46	24 20						.0:
47 48	16						.0-
48	10						:0.
50	10						.09

thus giving in a tabular form full information regarding the present method of wire measurement.

10. The Circular Mil. — A convenient trade convention for the measurement of wire has arisen in the use of the so-called "Circular Mil," the "Mil" being the name for the one-thousandth of an inch. The diameter, therefore, of a wire expressed in mils is its diameter in thousandths of an inch with the decimal point removed. If the diameter of any wire expressed in mils be squared, a number is obtained which is proportional to the actual area of the wire itself, and is termed the "circular millage" of the wire.

In Fig. 5 is the diagrammatic representation of a wire, each of the small circles symbolizing a unit wire, one mil, or one-thousandth of

Fig. 5. — Diagram of the Circular Mil.

an inch, in diameter. It will be noticed that the diameter of the wire is ten small circles long, and therefore the wire is ten mils in diameter. The square of ten being 100, the circular millage of this wire would be 100 circular mils. As the area of a circle is the square of its diameter multiplied by .7854, in order to convert the circular millage of any wire into its actual area in square inches, the circular millage must be multiplied by .7854,

and the requisite decimal places pointed off. Thus, in the previous example, a wire of 100 circular mils has an actual area of $.7854 \times 100 = .00007$ square inches. Inasmuch as the circular millage is proportional to the actual area in square inches of the wire, it forms an exceedingly easy and convenient number for the purposes of calculation, and is widely used in this connection.

11. Copper Wire. — It has only been within the last decade that the development of the uses of electrical energy has been sufficiently important to draw careful attention to the materials to be employed in line construction. Previously to 1880, electrical lines were almost exclusively confined to those used by the telegraph, which, with the exception of the submarine cables, were entirely constructed of iron wire. The electrical resistance of iron wire is some seven times greater than that of pure copper, yet it has only been within the last decade that the state of copper metallurgy was sufficiently advanced to render possible the production of pure copper in commercial

quantities. Experiment also indicated that very small quantities of various impurities increased the electrical resistance in an enormous ratio. This increase in resistance, due to the admixture of other substances, is indicated in Table No. 3.

TABLE No. 3.

Variation in the resistance of copper due to varying purity.

Assuming pure copper to have a conductivity of 100:—

The best refined copper would be	9.0
A STATE OF THE STA	86.0
	5.0
	4.0
	5.0
Copper with 10 per cent lead	0.0
Phosphor bronze	9.0
Bronze containing 35 per cent zinc	21.0
" " iron	6.0
Aluminum bronze	2.6
Siemens steel	2.0
Arsenical copper containing 10 per cent arsenic	9.0
Phosphor bronze with 10 per cent of tin	6.5
Phosphor bronze with 9 per cent phosphorus	4.9

From the preceding figures it will be very apparent that high electrical conductivity can only be obtained by the selection of the purest copper. It is not surprising, therefore, that the developments of electrical industries have been followed by a marked improvement in copper metallurgy. The cable extending between Calais and Dover, laid in 1851, had a conductivity of 42 per cent of that of pure copper; the Atlantic cable of 1856 had 50 per cent; the Red Sea cable in 1857, 75 per cent; the Atlantic cable of 1865, 96 per cent. These figures give approximately the rate of improvement in the manufacture of copper for electrical conductors, but it was necessary to await the advent of the modern dynamo in order to produce electrically pure copper at such prices as would permit of a wide commercial application. As long as electrical circuits were confined to telegraphic transmission in which the currents used were exceedingly small, the amount of line resistance was not a very important factor. As soon, however, as the problem was presented of transmitting

large quantities of electrical energy, it became imperative to seek some better material. At present the use of iron and steel wire is confined to circuits carrying but very small amounts of current, hard-drawn copper wire being universally adopted for lines having currents of any magnitude.

12. To properly design an electrical circuit, all of the mechanical and electrical properties of the material to be used must be thoroughly known. These properties for hard-drawn copper wire will be found in Tables Nos. 4, 5, and 6. In addition to its superior conductivity, copper presents a great advantage in durability. Even in the open country, and with all possible protection, iron rusts rapidly; while in the smoky air of most cities, iron lines rarely last more than three years, and cases have been known wherein iron wires have been entirely corroded within a few months. With copper, on the contrary, it is found that the wire becomes rapidly coated with a thin layer of sulphide of copper, probably not over one-thousandth of an inch in thickness, which seems to entirely protect the wire from any subsequent action. At any rate, no copper lines have as yet been in existence long enough for any perceptible corrosion to have made itself manifest.

13. Composite Wire. — From time to time attempts have been made to use a composite wire, which should consist of a steel core, carrying an external sheath of copper; the idea being that the steel interior would add sufficient tensile strength to enable long spans to be used, while the external covering of copper would provide the necessary conductivity for the current. To a certain extent these experiments have been successful; but the use of composite wire has never extended beyond telegraphic or telephonic circuits, and now has fallen into disuse in the presence of the superior article of hard-drawn copper.

In telephonic circles the idea of composite wire has just been revived, in the hope of improving the talking ability of long lines, by providing a medium of higher magnetic permeability. Theoretically, a telephone circuit using a wire with a copper core and an iron sheath ought to talk better than the simple copper wire. Mechanical difficulties of manufacture, however, seem, so far, to be almost insurmountable to the commercial production of such a combination, only one German firm having succeeded in the manufac-

TABLE NO. 4. - Properties of Copper Wire.

15.23	tance oot; oot;	d-liM	828 1.00376 1.003070 1.003070 1.00106
Coef	p. in	Tem Beg	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Lin. In.	s per l	Turns	84 11 12 18 18 18 18 18 18 18 18 18 18 18 18 18
Cur. eres	oriW iA 95	Black in Fre	18 14.6.0 19.0.0
	t Wire	Brigh Pan	
Elong. % in I Foot.		Har	- 2000000000000000000000000000000000000
	-1	nA lsən	100
Tensile Sgth. in Pounds.	p.	neale Har Drav	555 917 15 16 16 16 16 16 16 16 16 16 16 16 16 16
	-1	n A	1
OHMS AT 68° F RESISTIVITY.	Feetper	h-4	20119 140
AL OHMS	r Mile.	Hard- Drawn.	######################################
ACCURDING TO STANDARD O	Ohms per Mile.	An- nealed.	11, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28
EIN INTE ACC SSEN'S ST		Hard- Drawa.	0.50036 0.650034 0.650034 0.650034 1.12649 1.12649 1.12643 1.1
RESISTANCE IN INTERNATIONAL OHMS AT 68° F. ACCORDING TO MATTHIESSEN'S STANDARD OF RESISTIVITY.	Ohms per 1000 Ft.	An- nealed.	0.04893 0.04893 0.04780 0.04770 0.04770 0.04771 0.0471 0.0
S.89.	Ohms per	Pound, Annealed.	8 00007639 00001237 000012483 00001765 0001
GHT PER UNIT OF LENGTH. SPECIFIC GRAVITY, 8.89.	Feet	per Pound.	1.561 1.561 1.562 1.563 1.563 1.563 1.563 1.563 1.563 1.563 1.663
Weight per U	Pounds	per Mile.	28.8.1.4.1.6.6.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.0.1.1.2.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.1.2.4.4.0.1.2.4.4.4.2.4.4.4.2.4.4
WEIGH	1-	per 1000 Feet.	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.
NI A		inches 1 	0000 460.00 2110.00 106190 6000 460.00 2110.00 106190 0000 460.00 110.00 106190 0000 460.01 1.13724 20 0344.80 10534.20 105328 20 0344.81 10534.80 105324.20 105328 20 25.74 105025 20 25.74 1
AREA	Circular	Mills d^2 . d	8 (3504) 4.0 (3504) 4.
p* W!! = W	ls. 1	1M 00.	2 466.00 1 2 466.00 1 2 466.00 1 2 466.00 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	ber E	E)	0000

TABLE No. 5. - SAFE CURRENTS FOR PANELED WIRE.

Applies to insulated copper wires of 98% conductivity, carrying continuous currents, encased in wooden paneling, so that the temperature elevation of any wire shall not, with the proposed current, exceed 18° F. or 10° C.

Amperes.	Nυ B.	IN		CIRCULAR MILS.	Amperes.	Number in B. & S.	CIRCULAR MILS.	Amperes.	Number In B. & S.	CIRCULAR MILS.
1,000			,	2160900	225		297025	15	11	8226
900				1876900	200		254016	12	12	6528
800				1612900	174	0000	211600	10.5	13	5184
700				1345600	147	000	167805	9.0	14	4110
600				1100401	124	00	133079	7.25	15	3260
550				976144	103	0	105592	6.00	16	2581
500				861184	87	. 1	83694	5.50	17	2044
475				804609	73	2	66373	4.00	18	1624
450				748225	61	3	52634	3.25	19	1253
425				692224	52	4	41742	2.75	20	1024
400				640000	43	5	33102	2.25	21	820
375				586756	36	6	26244	2.00	22	626
350				535824	30	7	20822	1.75	23	510
325				485809	25	8	16512	1.50	24	404
300				435600	22	9	13110	1.25	25	320
275				388129	18	10	10381	1.00	26	254
250	١.			342225						

TABLE No. 6.
Fall of Potential in Copper Wire.

BER B. & S. Gauge.	CIRCU- LAR MILS.	POTENTIAL IN VOLTS PER AM- PERE PER 1000 FEET.	Num- BER B. & S. Gauge.	CIRCU- LAR MILS.	POTENTIAL IN VOLTS PER AM- PERE PER 1000 FEET.	Num- BER B. & S. Gauge.	CIRCU- LAR MILS.	FALL OF POTENTIAL IN VOLTS PER AM- PERE PER 1000 FEET.	
0000 2	211600.00	.0505318	5	33102.00	.3230183	13	5178.40	2.064841	
000 1	167805.00	.0637158	6	26250.50	.4073238	14	4106.80	2.668524	
00 1	133079.40	.0803503	7	20816.00	.5136713	15	3256.70	3.208450	
0 1	105592.50	.1012593	8	16509.00	.6476743	16	2582.90	4.139673	
1	83694.20	.1277612	9	13094.00	.8165943	17	2048.20	5.220349	
2	66373.00	.1610920	10	10381.00	1.03	18	1624.30	6.582833	
3	52634.00	.2031469	11	8234.00	1.298521	19	1252.40	8.537567	
4	41742.00	.2561507	12	6529.90	1.637494	20	1021.50	10.46789	

ture. The cost of production also seems to more than compensate for the benefits derived.

Attempts have also been made to use the various alloys of copper with silicon and phosphorus, known under the names of phosphor bronze and silicon bronze. While these alloys have very high tensile strength, in some cases exceeding 80,000 lbs. to the

square inch, their conductivity is so low that they have had but very little commercial extension. In a few cases electric railways have used silicon bronze for trolley wire, but the practice at the present time is almost exclusively confined to the adoption of hard-drawn copper. The properties of silicon bronze are given in Tables Nos. 7A and 7B (see following pages).

14. Galvanizing and Tinning. — As a protection against corrosion, it is customary to coat iron and steel wire with a thin film of zinc, which, being not readily oxidized, serves as a barrier against the destructive action of the elements. While for open country lines this expedient is of considerable value, for city work galvanizing has relatively but little importance; for the various sulphur compounds, so largely present in the smoky atmosphere of towns, act with great rapidity on zinc, cutting away the film, and leaving the iron unprotected. Furthermore, with the best possible care in galvanizing, the coating is never perfectly continuous; and subsequent mechanical operations frequently cut through the zinc, exposing the iron, which immediately commences to oxidize. It has even been asserted that, in view of the inevitable discontinuity of the protecting film, the zinc was a source of evil, forming with the iron a voltaic pair, thus aiding corrosion.

The operation of galvanizing is accomplished by immersing the coil of wire in a pickling bath of dilute sulphuric acid, which serves to remove the scale, rust, and grease, leaving a chemically pure surface for the reception of the zinc. The coil is then placed upon a reel from which it is slowly unrolled, being drawn through a bath of molten zinc, the surface of which is covered with a layer of salammoniac or similar flux. It is necessary that the wire should be immersed in the bath for a sufficient time to become fully heated, in order that the zinc coating may be firmly coherent. As the wire emerges from the bath, the superfluous zinc is wiped away by means of an asbestos roller or similar device. Galvanized wire should be very carefully inspected to see that the zinc coating is, on the one hand, thoroughly continuous; and that, upon the other, the superfluous zinc has been carefully removed, freeing the wire from bunches and lumps, and leaving it with a smooth and polished surface. It is also advisable to test galvanized samples by immersing them for several minutes in a solution of sulphate of copper.

TABLE No. 7A. Properties of the Aluminum Brass and Bronze Co.'s Silicon Bronze Wire.

			GRA	DE B.		DE C.		DE D.	
	Sectional Area in Square Inches.	Š		ronze with strength of	a tensile	Bronze with strength of	Silicon Bronze with a tensile strength of		
les.	Inc	ne Mile in Pounds.	80,000 lbs. per sq. inch and a		90,0	00 lbs.	100,000 lbs. per sq. inch and a		
nch	ı in	E S	per sq. 1:	of 110	per sq. inch and a ductility of 75		ductili	ty of 60	
Diameter in Inches.	Are	Weight of one Mile in Pound	twists in			6 inches.	twists i:	6 inches.	
er	al	t of	Tensile	Resis-	Tensile	Resistance	Tensile	Resistance	
met	ion	ght	Strength	tance per	Strength	per Mile	Strength	per Mile	
Dia	Sect	₩ e.	in Pounds.	Mile in Ohms.	in Pounds.	Ohms.	Pounds.	in Ohms.	
0.005	.0000196	.4	1.6	5119	1.8	5119	2	5119	
.010	.0000785	1.6	6.3	1280 569	7.1 16.0	1280 569	8 18	1280 569	
.015	.0001767	3.6	14.1						
.020	.0003142	6.4	25.1	320	28.3	320	31	320	
.025	.0001000	10.	39.2	205	44.2	205	49	201.7	
.030	.0007069	14.4	56.6	142	63.6	142	71	142.2	
.035	.0000621	19.6	77.6	105	85.4	105	93	104.5	
.040	.0012566	25.6	100	80	113.0	80	126	80.	
.045	.0015904	32.4	127	63	143	63	159	63.22	
.050	.0019635	40.	157	51	177	51	196	51.19	
.055	.0023758	48.4	190	42	214	42	238	42.32	
.060	.0028274	57.6	226	35	254	35	283	35.56	
.065	.0033183	67.6	265	30	299	30	332	30.33	
.070	.0038484	78.4	307	26	346	26	385	26.12	
.075	.0044179	90.	353	23	400	23	445	22.76	
.080	.0050265	102.4	402	20	452	20	503	20.00	
.085	.0056745	115.6	454	17.7	511	17.7	567	17.71	
.000	.0063617	129.6	509	15.8	573	15.8	636	15.80	
.005	.0070882	144.4	567	14.2	638	14.2	709	14.18	
.100	.007854	160.0	628	12.8	707	12.8	785	12.80	
.105	.008659	176.4	693	11.6	779	11.6	866	11.63	
.110	.009503	193.6	760	10.6	855	10.6	950	10.58	
.115	.010387	211.6	831	9.7	935	9.	1039	9.68	
.120	.011310	230.4	905	8.9	1018	8.9	1131	8.88	
.125	.012272	250.	982	8.2	1105	8.2	1227	8.19	
.130	.013273	270.4	1062	7.6	1194	7.6	1329	7.57	
.135	.014314	291.6	1145	7.0	1288	7.0	1430	7.03	
.140	.015394	313.6	1232	6.5	1386	6.5	1539	6.53	
.145	.016513	336.4	1321	6.1	1486	6.1	1651	6.08	
.150	.017672	360.	1414	5.7	1591	5.7	1767	5.69	
.155	.018869	384.4	1510	5.3	1698	5.3	1887	5.35	
.160	.020106	409.6	1608	5.0	1810	5.0	2010	5.00	
.165	.021382	435.6	1711	4.7	1924	4.7	2138	4.70	
.170	.022698	462.4	1816	4.4	2043	4.4	2270	4.43	
.175	.024053	490.	1924	4.2	2165	4.2	2405	4.18	
.180	.025447	518.4	2036	4.0	2290	4.0	2545	3.95	
.185	.026880	547.6	2150	3.7	2419	3.7	2688	3.74	
.190	.023353	577.6	2268	3.6	2552	3,6	2835	3.55	
.195	.029865	603.4	2389	3.4	2033	3.4	2987	3.37	
0.200	.031416	640.	2513	3.2	2823	3.2	3112	3.20	
L						0.2	1112	0.20	

Table No. 7a. — Continued.

Properties of the Aluminum Brass and Bronze Co.'s Silicon Bronze Wire.

n Inches.	Area in Square Inches.	Weight of one Mile in Pounds.	Silicon B a tensile s 130,0 per sq. in ductilit	one E. ronze with strength of OO lbs. ach and a y of 45 6 inches.	Silicon I a tensile 150,0 per sq. ductili	ADE F. Bronze with strength of 000 lbs. inch and a ty of 30 in 6 inches.	GRADE A. Comp. Silicon Bronze with a tensile strength of 75,000 lbs. per sq. inch and a ductility of 75 twists in 6 inches.		
Diameter in Inches	Sectional Area in Square	Weight of	Tensile Strength in Pounds.	Resistance per Mile in Ohms.	Tensile Strength in Pounds.	Resistance per•Mile in Ohms.	Tensile Strength in Pounds.	Resistance per Mile in Ohms.	
0.005	.0000196	.4	2.5	10238	2.9	10238	1.5	2560	
.010	.0000785	1.6	11.2	2560	11.9	5620	6.	640	
.015	.0001767	3.6	22.0	1138	26.5	1138	13.2	285	
.020	.0003142	6.4	40.8	640	47.2 640		23.6	160	
.025	.0004909	10.	63.8	409	73.6	409	36.8	102	
.030	.0007069	14.4	91.9	284	106	284	53	71	
.035	.0009621	19.6	120.3	209	139	209	70	52	
.040	.0012566	25.6	163	160	188	160	94	40	
.045	.0015904	32.4	207	126	239	126	120	32	
.050	.0019635	40.	255	102	295	102	148	25	
.055	.0023758	48.4	309	85	356	85	178	25	
.060	.0028274	57.6	367	71	424	71	214	17.8	
.065	.0033183	67.6	431	61	498	61	249	15.2	
.070	.0038484	78.4 90.	500 578	52 45	577 667	52 45	289 334	13.1 11.4	
1									
.080	.0050265	102.4	653	40	*751	*40	377	10	
.085	.0056745	115.6	738	35	856	35	428	8.8	
.090	.0063617	129.6	827	31	954	31	477	7.9	
.095	.0070882	144.4	921	28	1063	28	532	7.1	
.100	.007851	160.0	1021	25	1183	26	592	6.4	
.105	.008659	176.4	1127	23	1298	23	649	5.8	
.110	.009503	193.6	1235	21	1425	21	713	5.3	
.115	.010387	211.6	1350	19.3	1558	19.3	779	4.8	
.120	.011310	230.4	1470	17.8	1696	17.8	848	4.4	
.125	.012272	250.	1595	16.4	1841	16.4	921	4.1	
.130	.013273	270.4	1726	15.1	1991	15.1	995	3.8	
.135	.014314	291.6	1861	14.1	2147	14.1	1073	3.5	
.140	.015394	313.6	2000	13.1	2309	13.1	1155	3.2	
.145	.016513	336.4	2147	12.2	2478	12.2	1239	3.0	
.150	.017672	360.	2297	11.4	2651	11.4	1326	2.8	
1	.018869	381.1	2453	10.7	2830	10.7	1415	2.6	
.155	.020106	409.6	2614	10.7	3016	10.7	1508	2.5	
.165	.020100	435.6	2780	9.4	3207	9.4	1603	2.4	
1							1702	2.2	
.170	.022698	462.4	2951	8.9	3404	8.9 8.4	1804	2.2	
.175	.024053	490. 518.4	3127 2309	8.4 7.9	3608 3817	7.9	1908	1.9	
.180	.025447								
.185	.026880	547.6	3494	7.5	4032	7.5	2016	1.8	
.190	.028353	577.6	3686	7.1	4253	7.1	2126	1.8	
.195	.029865	608.4	3883	6.7	4480	6.7	2240	1.7	
0.200	.031416	640.	4081	6.4	4712	6.4	2356	1.6	

TABLE NO. 7B.

Table of Silicon Bronze Wire Weights and Electrical Resistances.

Manufactured by the Phosphor Bronze Company, Limited. London.

	5.5		imeters.	illimeters. er in Kilograms.	ounds.	QUALITY A FOR TELEGRAPH LINES, ETC.		QUALITY B FOR RAILWAY TELEGRAPHS, ETC.		QUALITY C FOR TELEPHONE LINES, ETC.	
Nearest B. W. G.	Diameter in Mils.	Diameter in Millimeters.	Sectional Area in Millimeters.	Weight per Kilometer	Weight per Mile in Pounds.	Electrical Resistance at 0° C in Ohms per Kilo.	Electrical Resistance at 32° F in Ohms per Mile.	Electrical Resistance at 0° C in Ohms per Kilo.	Electrical Resistance at 32° P in Ohms per Mile,	Electrical Resistance at 0° C in Ohms per Kilo.	Electrical Resistance at 32° F in Ohms per Mile.
8	158	4.0	12.5664	112.00	400	1.32	2.12	1.54	2.47		
9	148	3.75	11.0446	98.44	348	1.51	2.42	1.83	2.94		
9	138	3.50	9.6211	86.75	1 301	1.73	2.77	2.09	3.35		
10	128	3.25	8.2968	73.94	261	2.01	3.22	2.43	3.86		
11	118	3.0	7.0685	63.00	223	2.36	3.78	2.85	4.57		
11	114	2.9	6.6052	58.87	210	2.53	4.05	3.05	4.90		
11	110	2.8	6.1575	54.88	195	2.71	4.33	3.28	5,25		
12	106	2.7	5.7255	51.03	181	2.91	4.65	3.52	5.64		
12	102	2.6	5.3093	47.32	168	3.14	5.02	3.80	6.09		
12	99	2.5	4.9087	43.75	155	3.40	5.44	4.11	6,60		
13	95	2.4	4.5238	40.32	143	3.69	5.91	4.29	6.90		
13	91	2.3	4.1547	37.03	131	4.02	6.43	4.46	7.15		
13	87	2.2	3.8013	33,88	120	4.39	7.02	5.33	8,55		
14	83	2.1	3.4636	30.87	110	4.82	7.71	5.82	9,32		
14	79	2.0	3.1415	28.00	100	5.31	8.50	6.42	10,30	12.24	19.60
14	75	1.9	2.8352	25.27	92	5.89	9.43	7.00	11.26	13.56	21.70
15	71	1.8	2.5446	22.68	82	6.56	10.50	7.93	12.70	15.11	24.18
15	67	1.7	2.2698	20.23	73	7.37	11.79	8,89	14.25	16.94	27.00
16	63	1.6	2.0105	17.92	64	8.31	13.29	10.04	16.09	19.13	31.35
17	59	1.5	1.7671	15.75	551	9.45	15.12	11.42	18.30	21.77	35.00
17	55	1.4	1.5393	13.72	48	10.85	17.36	13.11	21.00	24.98	40.00
18	51	1.3	1.3273	11.83	42	12.59	20.14	15.20	24.40	28.98	46.00
18	48	1.25	1.2272	10.93	$38\frac{1}{2}$	13.64	21.82	16.35	26.19	30,65	49.00
18	47	1.2	1.1309	10.08	36	14.77	23.63	17.87	28.80	34.01	54.00
19	43	1.1	0.9502	8.47	30	17.58	28.12	21.24	34.00	40.47	66,00
19	40	1.0	0.7854	7.00	25	21.28	34.00	25.70	42.00	48.98	79.00
20	36	0.9	0.6362	5.67	20					60.46	98.00
21	31	0.8	0.5026	4.48	16					73.40	118.00

Any discontinuity in the coating is thereby immediately made manifest by a red spot of precipitated copper. Copper wire which is to be insulated with any of the rubber compounds should be protected by a coating of tin applied in a similar manner, for in the absence of this protection the sulphur universally present in rubber insulations is likely to combine with the copper. Indeed, there are cases on record where wires of small diameter have been by this cause entirely corroded away, and the circuit thus destroyed. Protective

circuits, such as those used for fire and burglar alarm signals, should be specially guarded against this evil.

15. Insulated Wire. — Since the widespread introduction of currents of high pressure, it has become exceedingly important to protect all exposed wires with a sufficient coating of insulating material, so that such circuits may be rendered reasonably safe, and may not become sources of danger to human life. As a result, the wire manufacturers have adopted the custom of covering their product with insulating material of various kinds. This insulating material usually takes the form of a hard braid, composed of either cotton or hemp woven onto the wire, and saturated with some of the compounds of india rubber, or with one of the pitches, tars, or resins. It is obvious that layer after layer of this insulating material may be wound upon the wire, so as to make a covering of almost any desired thickness. When selecting an insulating covering, great attention should be paid to its power of resisting abrasion. The greatest enemy to overhead electric circuits is found in the various tree branches which constantly, by the wind, are brought into contact with the wire, and tend to abrade and destroy the insulation. The insulating covering, therefore, should be tested by rubbing it against a coarse surface similar to the bark of a tree, and noting the time that is required to cut through and expose the wire. Where trees are numerous along the route, no fibrous insulation will stand for a long period of time. A very successful expedient, however, has been found in the device of covering the wire in its passage through the trees with a coating of bamboo. This coating is obtained by sawing ordinary fishing-poles longitudinally, and with a gouge cutting out the knots which occur in the cane. After being prepared in this manner the bamboo may be lashed upon the wire, and it is found that the hard silicious surface of the cane will resist for almost an indefinite period the abrasive action of swaying branches. Other attempts have been made to secure a reliable "tree-wire" by covering the first coating of insulation upon the conductor itself, with an armor formed of a braid of steel wire, or a strip of iron or other metal, spirally wrapped around the insulation. Doubtless such expedients could be made successful; but in order to save expense and secure flexibility, the armor in the usual commercial forms is so light that it rarely survives, for a considerable period, the action of rust

and abrasion. So, while the bamboo expedient is clumsy, it is successful. As insulated wire is usually sold by weight, information as to the gross weight per mile of the more common commercial forms becomes of value to the designer. In Table No. 8 the present commercial forms are tabulated.

The insulating properties of a given covering are usually tested by coiling a length of the wire of from 100 to 1000 feet, depending on the quality of the insulation, in a tub of water, and measuring the leakage current with a sensitive galvanometer. If possible, the battery employed should have at least double the voltage of the current for which the wire is subsequently to be used. For telephone and telegraph cables, it is usual to use from 200 to 500 volts. For other circuits, the test is made with two or three times the voltage that is to be used on the line. After prolonged soaking in the testing tub, the wire battery and galvanometer are joined up in series, the remaining pole of the battery being connected to a plate of metal placed in the tub, and the leakage current measured. While 100 megohms per mile is a very common requirement, it is impossible, in view of the widely varying character of insulations and circuits, to give a definite standard.

16. Flexible Cable. — In this country it is not uncommon to use wire in a single rod up to 1 inch in diameter. Large sizes are, however, exceedingly stiff and difficult to handle, so that for greater diameters, and in many cases for 1 inch or less, it becomes essential to use a stranded conductor in order to obtain the requisite flexibility. Twisted cables are from 10 to 15 per cent more expensive than solid conductors; for, owing to the spiral arrangement of the strands, there is from 1 to 3 per cent more metal per unit of cross-section and length than in a solid conductor of equal resistance. The process of manufacture, also involving two or three additional handlings, adds to the cost; and as the stranded conductor is more bulky, a considerably larger quantity of insulation is required. The ease of erection, however, will in many cases, largely if not entirely, compensate for the increased expenditure in raw material in the stranded conductor. The properties of common commercial flexible cable may be found in Table No. 9.

The use of flexible cable may obviously be avoided by stringing a sufficient number of separate wires, and joining them in multiple

Giving Approximate Weights per Mile of Various Insulated Wires. All Weights are in Lbs. per Mile.

7		_			_			_		_		_			_						-	_		_	-		-		_	_		_		_	
20	19	18	17	16	15	14	13	12	11	10	9	00	7	0	Sī.	4	ಬ	22	р-1	0	00	000	0000				•				mbe 7ire				
1024	1253	1621	2041	2581	3260	4110	5184	6528	8226	10381	13110	16512	20817	26244	33102	41742	52634	66373	83691	105592	133079	167805	211600	250000	300000	350000	400000	450000	500000	Ci	Arcula			S.	
-								105	132	166	210	261	333	420	530	668	842	1062	1339	1688	2129	€ 2685	3386	St: 4224	an 5089	de 5914	d 6758	7603	8148	Dare.	D		J. A.		
	•	· ·	•		•		•	153	190	227	275	333	407	528	649	803	987	1225	1521	1932	2397	2936	3712	•	•			•	•	Braid.	Double		ROEBLIA		
·	•	•	•	•	•	•	•	_		269									1653	2086	2561	3157	3909	. 4926	. 5914	. 6901	. 7883	. 8870	9858		le Triple		Roebling's Sons		
:-		•	· -	-	. 10	. 15	. 15	_	_	225		_	_	_			_	5 1294			2534	7 3062	3828			<u> </u>	•	·		d. Solid.	e	<u> </u>	S.		
ŀ	•		38	79	106	21	137	34	6	<u>ښ</u>	5	61	13	23	9	76	ŏ)4	10	~		32	88			•	•		•		Grade				
.										269	343	396	496	618	745	845	1003	1420	1748	2028	2465	3210	4065							Stranded.	H	-	Episc	KINDS	
-		74	85	100	126	148	174	195	237	264	343	412	491	634	713	871	1129	1409	1763	2112	2693	3221	4013	· ·			· ·	· ·	:	Solid.	Tree		Edison Co.	OF	
-										333	364	423	565	687	797	924	1161	1573	1921	2402	2914	3609	4530						· ·	Stranded	Wire.			INSULATION	
-	· ·		•	95	<u>.</u>	128	•	195	•	28	34	40	47	55	66	81	1015	125	1640	2020	2520	320	3940	•	•	•	•	•	· ·		7 7 7	-			
ŀ	•	_		O1	•		•			_	_	_		_		_			_	_	_	_						•	<u>·</u>		ਹ ਹ	-	SIM	AND	١
.	•	75		102		155		220		340	370	460	540	715	860	1010	1360	1685	2175	3010	3550	4270	4890							Diarucu.	2		SIMPLEX CO	MAKER	
	•	53		73	•	· 110	•	165	•	265	310	388	450	620	730	905	1165	1400	1745	2205	2700	3340	4125							Rubber.	Plain		•	ER.	
-	•	•	•	74		95		142		225	:	335	411	501	607	764	1019	1257	1531	1917	2429	3036	3696						· ·	Double Braid.	Weath	l	ANSON		
-	•	•	•	86	•	116		* 180	•	257		380	465	581	692	845	1056	1320	1637	2006	2640	3168	3960	· ·						Triple Braid.	Weather Proof		IA BRASS		
-	· ·	•	•	79	:	105	•	163	•	252	•	364	449	538	670	834	1003	1240	1500	1880	2323	2930	3538			-	· ·		· ·	Double Braid.	<u> </u>	427	Ansonia Brass and Copper Co		
		:	•	106	•	137		200		290		422	491	580	712	892	1108	1320	1605	1980	2640	3136	3977							Triple Braid.	Fire Proof.		PPER Co.		
-	•	. 43	•	8	•	100		146	•	241	· ·	344	415	505	620	758	0¥0	1180	1491	1895	2425										& F	>. 7	Wire	е.	
-		59		81		117		176		264		364		571	681	834	1056	1133	1509	1920	2347	3181	3727							1	Alun Bras Bror	ss.	and		
55	58	19	68	7	85	111	132	158	190	285	300	390	450	575	720	1880	1025	1270	1600	1990	2600	2957	3960							U	nde V	rw		r's	
	_				_	_			_	_	_	_			_	_		_		_	-		_						_						4

Table No. 8.—Continued.

					_	_		_		_	_		_	_	_	_		_		_				_	_	_		_				
	1	re.	Armor Cable.							95.176	01102	20883	18930	15365	14668	13365	12544	11884	11126	7967	7892							-				
		Candee Wire.		-												1065	¥68		674	•	485	418	348		747	. 154	107	101		. E	5	7
		Cand	Copper. Iron.						•	. 904	0966	2403	1945	1536	1249		800	650	524	431	352	285	230		100	110	OTT	. 69	3	. 12		
			Switch C	-	·	<u>. </u>	· ·					3534	3330	7491	2128	1471	1050	6091	61	588	669	•	•	•	•			-				
	00.	ulatio			-									Ť.	21	14	10	15	ъ	70											—	
	OKONITE CO.	Braided Insulation	tranded							. 88865	1408	3978	3206	25.55	2222	1666	1366	1024	956	703	673											
	OK	Braid	Solid. Stranded.									3684	9702	0722	1738	1450	1144	930	355	587	461	361	354	101	101	143		. 86		73		49
KER.		45		-					-			3384	_	1987	2002	1385	696	190	069	528	625			•			. ,			•	-	
MA		konite	gg. C		-																								-	•	-	
AND		Plain Okonite.	Strande					. ,		5723	4176	3792	3036	2390	2090	1558	1280	940	243	635	561											
KIND OF INSULATION AND MAKER.		Pi	Solid. Stranded. Switch Cords.									3514	2830	2150	1633	1364	1063	853	687	531	426	2000	202	176	2 .	126		82		200		20
SULA	AR	- i			-					4533	3663	3000	3686	2169					- = ·		•						٠		•			•
OF IN	AMERICAN CIRCULAR LOOM CO.	No.	- ni		•					4273	3385	2721	2413	1942	•					-							-	•				
UND (LOOM CO.	o.v.	- ci	•		-				4023	3255	2640	2160	1745	1426	- 311	196	792	009	546	476	000	175	939.			•	-	•			
X	AMER	 .o.,			·	•	•			3787	2983	2369		1528	1231	99.3	803	650	528 528	429	394	200	100	159	130	108			•	-		
-		Bisha Yandd	lu ⊱[-				,				-	-	-	•	1050	947	710	633	492	171	350	0.55	174	132	120	-	-		-	
Ē			d.		-		-			9	21		9	G	6						0							-			•	· ·
		Quadruple	Braid.							4106	3412	2657	940%	161	127	102	78	700	. S	488	415				, ,							
	BRAND.	Triple	Braid.							3911	3250	2523	1955	1548	1224	975	830	069	565	449	390								•		•	•
	SHIELD BRAND	Double	Erand.		•			,		3690	3070	2390	1865	1477	1169	025	0,1	630	515	420	900	170	110	70	09							•
		Stranded.	-							3975	3099	2455	7201	208	202	523	#2	16%										•			•	•
		Stra							٠						_					•							٠			٠		
ular	Circi Circi		A	200000	450000	400000	350000	300000	250000	211600	167805	133079	105592	83694	66373	52025	41742	33102	26244	20817	12110	10281	8226	6528	5184	4110	3260	2581	2044	1624	1253	1024
	r B, 8 Gaug									0000	000	00	0	-	67	0	4	5	9	<u></u>	20 0	20 0	2 [15	13	14	15	16	17	18	19	20

Table No. 8. — Continued.

	MINGHAM GAUGE.	Telephone and Telegraph.	Braided Insulation.	394 to 413	295 to 313	194 to 351	143 to 318	96 to 329	71 to 80	60 to	45 to 48																			•		
	OKONITE WIRE BY BIRMINGHAM GAUGE.	Telephone a	Plain Insulation.	369 to 387	275 to 290	176 to 321	126 to 288	81 to 299	56 to 65	45 to	23 to 334																					
AKER.	Ok	B.W.G.	No.	10	12	14	16	18	020	77.0	7.7	•					•	•	•	•			•	•		•	•	•	•	•	•	
AND MA	N.Y. INSULATED WIRE CO.	Insulated	Wire.																									•				
SULATION	N.Y. IN WIRE	Line	Wire.										1758		1642	1019	755	586		387												
KINDS OF INSULATION AND MAKER	MOORE.	Fire and	proof Wire.							4694	0400	07.77	1763	1463	1177	961	919	634	554	447	359	317		185								•
KI	A. F. MOORE.	Underwri-	ters' Wire.						. 0000	3960	1100	1919	1,199	1240	1003	818	099	538	428	364	285	248		150			•					
	HOLMES, BOOTH, & HAYDEN.	K. K.	Braid.	· ·						9160	0100	2640	1669	1473	1267	834	681	575	424	375	230	274	208	179						•		
	LECTRICAL KS.	Weather-	Wire.									17.10	1495	1077	934	739	581	501	386	343	259	238	185	137								
	AMERICAN ELECTRICAL WORKS.	Underwri-	Wire.									2510	1531	1267	1030	818	099	555	424	371	290	264	211	153								
ıı	r Circuls Iils•		ıΑ	200000	450000	400000	350000	300000	230000	167805	122070	105509	83694	66373	52634	41742	33102	26244	20817	16512	13110	10381	8226	6528	5184	4110	3260	2581	2044	1624	1253	1024
	er B. &		N	 ·	- :				. 0000		3	3 0	· -	. 67	ಣ	4	2	9	7	90	6	10	11	12	13	14	15	16	17	18	19	50

arc, in order to make up the necessary copper section. In fact, this is the plan most usually adopted; for all of the ordinary sizes of wire can readily be obtained in stock, while flexible cable is only made to order, at least in the larger sizes. The use of separate wires leads to greater expense in insulators, pole fixtures, greater weight of insulating material on the wire, and increased cost in stringing. Separate lines also entail a larger annual maintenance, so for all reasons cable is to be preferred when it is possible to obtain it. To facilitate

Fig. 6. Tension Testing-Machine.

calculation, Table No. 10 gives the circular millage of the various combinations of Nos. 000, 00, 0, 1 and 2 wire, from which a line of any copper cross-section may be calculated. After the total circular millage is found for the given line, it should be divided by 211,000 (the area of a 0000 wire), the quotient will be the *least* number of 0000 wires required; if there is a remainder, find the nearest number corresponding to it in the column headed "Circular millage" of Table No. 10, and in the column opposite will be found the least number and size of wires that will make up the required amount.

	_						_	_	_	_				_			_		_	_		_	_	_		_	_	_			_					
61	13	37	37	37	37	37	19	19	19	19	19	19	19	19	19	19	-7	7	~1	7	7	7	7	7	7	7	7	7	7	7	లు	ಲು	ಬ	onanu.	Wires	No. of
12	13	1 12	5 55	14	15	16	12	13	14	15	16	17	100	19	20	21	13	14	15	. 16	17	18	19	20	$20^{\frac{1}{2}}$	21	212	22	23	25	22	23	25	Wire.	Standard Gauge of Each	Legal
.104	.092	,104	.092	.080	.072	.064	.104	.092	.080	.072	.061	.056	.048	.040	.036			.080	.072	.064	.056	.048	.040	.036	.033		.030	.028	.024	.020	.028	.024	.020	Inches.	OF EACE WI	
2,64	2.34	2,64	2.34	2.03	1.83	1.63	2,64	2.34	2,03	1,83	1.63	1.42	1.22	1.02	.914			2.03	1.83	1.63	1.42	1.22	1.02	.914	.838		.762	.711	.609	.508	.711	.609	.508	Mm.	EACH SINGLE WIRE.	Diameter
.936	.828	.728	.644	.560	.504	.448	.520	.460	.400	.360	.320	.280	.240	.200	.180			.240	.216	.192	.168	.144	.120	.108	.099		.090	.084	.072	.060	.059	.051	.042	Inches.	OF THE STRAND.	ieter.
23.7	21.0	18,4	16.3	14.2	12.8	11.3	13.2	11.6	10.1	9,14	8.12	7.10	6.10	5.08	4,57			6.10	5.49	4.88	4.27	3,66	3.04	2.74	2.51		2.28	2.13	1.83	1.54	1.50	. 1.29	1.07	Mm.	STRAND.	
.823	728	.640	.566	.493	.443	.394	.458	.404	.352	.317	.282	.947	.211	.176	.159	.395	.243	.213	.192	.171	.149	.128	.107	.096	.088	.084	.080	.075	.064	.053	.049	.042	.034	Inches.	Diameter.	E
20.9	18.5	16.2	14.3	12.5	11.2	10.0	11.6	10.7	8.94	8.05	7.16	6.27	5.35	4.47	4.03			5.41	4.87	4,34	3.78	3.25	2.71	2.43	2.23		2.03	1.90	1.62	1.35	1.24	1.06	.863	Mm.	ETER.	quivalent 1
.5319	.4162	.3217	.2516	.1909	.1541	.1219	.1647	.1282	.0973	.0789	.0624	.0479	.0349 .	.0243	.0198	.0153	.0465	.0356	.0289	.0229	.0174	.0128	.0089	.0072	.0061	.0056	.0050	.0044	.0032	.0022	.0019	.0014	.0009	Sq. In.	Ar	Equivalent to Solid Wires
343.4	268.7	207.7	162,6	122.9	99.58	78.6	106.3	83.20	62.77	50.96	40.25	30.91	22.66	15.72	12.74			22.98	18.66	14.73	11.28	8.30	5.77	4.65	3.923		3,242	2.849	2.075	1.423	1.216	0.893	0.585	Sq. Mm.	AREA.	res.
10832	8477	6555	5130	3879	3142	2482	3354	2625	1985	1608	1270	973	715	496	402			727	589	465	356	262	182	147	124		102	89	8	45	38	28	19	Lb.	PER STAT- UTE MILE.	Weight of
3052	2389	1847	1445	1093	885	699	945	740	559	453	358	274	201	140	113			205	166	132	100	74	52	42	35		29	25	19	13	11	00	6	Kilog.	PER KILO-	Weight of Conductor.
.0839	.1072	.1386	.1772	.2343	.2892	.3661	.2709	.3462	.4579	.5652	.7154	.9300	1.271	1.831	2.261			1.253	1.543	1.953	2.552	3.473	5.002	6.175	7.342		8,893	10.20	13.89	20.01	23.87	32,50	46.79	Ohms.	PER STAT- UTE MILE.	Resistan
.0521	,0666	.0861	.1101	.1456	.1797	.2274	.1683	.2151	.2845	.3512	.4445	.5790	.7897	1.137	1.404			.7785	.9580	1.213	1.585	2.158	3.108	3.835	4.561		5.525	6.337	8.630	12.43	14.83	20.19	29.07	Ohms.	PER KILO- METER.	Resistance at 60° F.

General Table of Reference for Stranded Cables. TABLE No. 9. USED BY THE INDIA RUBBER, GUTTA PERCHA, & TELEGRAPH WORKS, L't'd.

TABLE~No.~10. Giving the Circular Millage of the Various Combinations of Nos. $\frac{3}{6}, \frac{2}{6}, \frac{1}{6}, 1, 2,$ and 3 Wire.

CIRCULAR MILLAGE.	Wire Combination.	CIRCULAR MILLAGE.	WIRE COMBINATION.
609119	$\frac{3}{0} + \frac{2}{0} + \frac{1}{0} + 1 + 2 + 3$	273339	$\frac{3}{0} + \frac{1}{0}$
556485	$\frac{3}{6} + \frac{2}{6} + \frac{1}{6} + 1 + 2$	255601	$\frac{1}{0} + 1 + 2$
490112	$\frac{3}{0} + \frac{2}{0} + \frac{1}{0} + 1$	252086	$\frac{2}{6} + 2 + 3$
476040	$\frac{3}{6} + \frac{1}{6} + 1 + 2 + 3$	251499	$\frac{3}{6} + 1$
441314	$\frac{3}{6} + \frac{1}{6} + 1 + 2 + 3$	238613	$\frac{2}{6} + \frac{1}{6}$
423406	$\frac{3}{9} + \frac{1}{9} + 1 + 2$	234178	$\frac{3}{0} + 2$
406418	$\frac{3}{6} + \frac{2}{6} + \frac{1}{6}$	224541	$\frac{1}{6} + 2 + 3$
388680	$\frac{2}{6} + \frac{1}{6} + \frac{1}{1} + 2$	220439	$\frac{3}{0} + 3$
370506	$\frac{3}{6} + 1 + 2 + 3$	216773	$\frac{2}{0} + 1$
357033	$\frac{3}{6} + \frac{1}{6} + \frac{1}{1}$	202701	1 + 2 + 3
335780	$\frac{3}{6} + 1 + 2 + 3$	199452	$\frac{2}{0} + 2$
322307	$\frac{2}{0} + \frac{1}{0} + 1$	189228	$\frac{1}{6} + 1$
317872	$\frac{3}{6} + 1 + 2$	185713	$\frac{2}{6} + 3$
308235	$\frac{1}{0} + 1 + 2 + 3$	171907	$\frac{1}{0} + 2$
300884	3 + 2 3 + 2	150067	1 + 2
286812	$\frac{3}{8} + 2 + 3$	136328	1 + 3
283146	$\frac{3}{6} + 1 + 2$	119007	2 + 3

17. Testing and Inspection. — In all large contracts for wire, it is customary to locate an inspector at the manufactory, whose business it is to examine and see that the product complies fully with the specification requirements. The inspector must be provided with a machine for making tension tests, one for tortional tests, a wire gauge, a slide wire bridge, and an accurate scale for determining the weight of coils. One form of the tension-machine is shown in Fig. 6 (p. 22).

The apparatus consists of two clamps, by means of which the ends of each wire sample can be secured, a straining mechanism for applying a breaking stress to the sample, and a scale apparatus for measuring the force required to produce rupture. Though there are many other designs of this apparatus in commercial use, all embrace the same features. By the side of the specimen an apparatus is placed, consisting of two sliding scales, one of which is secured to the top of the sample, and the other to the bottom. As stress is applied to the wire it elongates, the amount being measured by the mutual displacement of the scales. The torsion testing-machine is indicated in Fig. 7.

A set of iron ways carries two clamps, to which the sample to be

examined can be secured. One clamp being movable longitudinally permits the length of test piece to be varied at pleasure. The fixed clamp carries a spindle that, by means of a crank, can be rotated, thus

twisting the specimen. To the spindle is attached a counting-wheel to register the number of twists required to produce rupture. In making all physical examinations great care should be taken to see that the test pieces are carefully set in the axis of the testing-machine, that the stress is applied steadily and uniformly, and that the jaws do not injure the wire, thus giving rise to erroneous results.

Fig. 8 illustrates the best and most useful form of wire gauge, in the shape of a micrometer. In skillful hands this instrument

will give accurate results to a tenthousandth of an inch; and thus the actual size of the sample under examination may at various points be determined, and compared with the tabulated diameter of the desired gauge number. Determination may also be made of the roundness of the wire. Care

Fig. 8. Micrometer Wire Gauge.

should be constantly exercised to always exert a constant, though light, pressure on the micrometer screw, that there may be no springing of the apparatus, and that uniform readings may be obtained. The slide wire bridge, for determining the electrical properties of the samples under examination, will be found illustrated and described in the chapter on testing. For determining the weight of coils and the weight per mile, there is no better instrument than a good platform scale, carefully tested, and adjusted to be sensitive to a fraction of a pound.

18. Specifications for Line Wire. — As a guide to the selection of line wire, the following specifications are the latest issue by the British Postal Telegraph authorities.

I. SPECIFICATIONS FOR COPPER WIRE.

In this specification, the term "piece" shall be understood to mean a single length of wire without joint or splice of any description before being drawn, or in a finished wire; a "coil" shall be held to be a piece of wire in the form of a coil; and a "parcel" shall be any quantity of manufactured wire presented for examination and testing at any one time.

1. The wire shall be drawn in continuous pieces of the respective weights and diameters given in the Table hereunto annexed (see Table No. 11), and every piece must be gauged for a diameter in one or more places.

 $Table\ No.\ 11.$ Data accompanying British P. O. Wire Specifications.

	R STATUTE		TE EQUIVA-	Minimum Breaking	Minimum Number	Maximum Resistance per Mile of	Minimum Weight of
Standard.	Range Allowed.	Standard.	Range Allowed.	Weight.	of Twists.	Wire when Hard at 60° F.	Each Piece (or Coil) of Wire.
Lbs.	Lbs.	Mils.	Mils.	Lbs.		Ohms.	Lbs.
100	$97\frac{1}{2}$	79	78	330	30	9.10	50
	$102\frac{1}{2}$		80		inches.)		
150	1464	97	$95\frac{1}{2}$	490	.g 25	6.05	50
	1533		98		60		
200	195	112	1101	650	E 20	4.53	50
	205		113}				
400	390	158	155½	1250	G 25	2.27	80
	410		1604		25 20 20		
600	585	194	191	1800	<u>.</u> 20	1.484	80
	615		196		9 1		
800	780	224	2201	2400	E 15	1.113	80
	820		226				

A maximum weight of 112 pounds for each coil is fixed for all sizes.

- 2. The wire shall be perfectly symmetrical, uniform in quality, pliable, free from scale, inequalities, flaws, splits, and other defects, and shall be subject to the tests hereinafter provided for.
- 3. Every piece may be tested for ductility and tensile strength, and 5% of the entire number of pieces may be cut and tested in any part. Pieces cut for this purpose shall not be brazed or otherwise joined together, but each length shall be bound up into a separate coil.

- 4. The wire shall be capable of being wrapped in six turns round a wire of its own diameter; unwrapped, and again wrapped in six turns round a wire of its own diameter in the same direction as the first wrapping, without breaking; and shall be also capable of bearing the number of twists set down in detail, without breaking. The twist-test is made as follows: The wire will be gripped by two vises, one of which will be made to revolve at a speed not exceeding one revolution per second. The twist thus given to the wire will be reckoned by means of an ink-mark, which forms a spiral on the wire during torsion, the full number of twists to be visible between the vises.
- 5. Test for tensile strength may be made with a lever or other machine which has the approval of the officer appointed on behalf of the Postmaster-General to inspect the wire, and hereinafter called the Inspecting Officer, who will be afforded all requisite facilities for proving the correctness of the machine.
- 6. The electrical resistance of each test-piece shall be reduced according to its diameter, and shall be calculated for a temperature of 60° F. Such test-piece shall measure not less than one-thirtieth part of an English statute mile.
- 7. If, after the examination of any parcel of wire, 5% of such parcel fail to meet all or any of the requirements of the specification and of the table, the whole of such parcel shall be rejected; and on no account shall such parcel, or any part thereof, be again presented for examination and testing; and this stipulation shall be deemed to be, and shall be treated as, an essential condition of the contract.
- 8. Each piece, when approved by the Inspecting Officer, shall be made into a coil, and be separately bound; and in no case shall two or more pieces be linked or otherwise jointed together. The eye of the coil shall be not less than 18 inches, nor more than 20 inches, in diameter.
- 9. Each coil of approved wire shall be weighed separately, and its weight (in English pounds avoirdupois) stamped on a soft copper label, which shall be provided by the contractors, the label being firmly affixed to the inner part of the coil. The contractors shall also provide the assistance necessary for properly affixing to each coil of approved wire, under the direction of the Inspecting Officer, a metallic seal which shall be provided by the Postmaster-General, the weight of this seal being deducted from the invoiced weight of the wire when each delivery is made, or on completion of the order, as may be arranged.
- 10. The approved wire shall be wrapped in canvas, and be delivered as required, securely packed in casks or cases.

II. SPECIFICATIONS FOR IRON WIRE.

For iron wire the same general characteristics are required in so far as quality of wire and amount of testing and inspection are concerned. The physical requirements, however, will be found in Table No. 12.

TABLE No. 12.

The Specifications issued by the British Postal Telegraph Authorities for the Supply of Galvanized Iron Wire.

Wi	MILE.	PER	D	IAMETI	ER.	Тв		OR ST		TH AN	D	of the Fahr.	. 4		
Standard.	Allo	wed.	Standard.	Allo	wed.	Breaking Weight.	No. of Twists in 6 in.	g Weight not less than	No. of Twists in 6 in.	g Weight not less than	No. of Twists in 6 in.	Resistance per Mile o Standard Size at 60° Fa	Constant, ard Weight by Resistance.	E Pie	eight of ach ce (or oil).
Required St	Minimum.	Maximum.	Required St	Minimum.	Maximum.	Minimum.	Minimum.	For Breaking	Minimum.	For Breaking	Minimum.	Maximum.	being Standard	Minimum.	Maximum.
Lbs.	Lbs.	Lbs.	Mils.	Mils.	Mils.	Lbs.		Lbs.		Lbs.		Ohms.		Lbs.	Lbs.
800	767	833	242	237	247	2480	15	2550	14	2620	13	6.75	5400	90	120
600	571	629	209	204	214	1860	17	1910	16	1960	15	9.00	5400	90	120
450	424	477	181	176	186	1390	19	1425	18	1460	17	12.00	5400	90	120
400 200	377 190	424 213	171	166 118	176 125	1240 620	21 30	1270 638	20 28	1300 655	19 26	13.50 27.00	5400	90	120 65

The most recent practice in American aerial line construction requires manufacturers to furnish line wire under the following requirements:—

COPPER WIRE.

- 1. Finish. Each coil shall be drawn in one length and be exempt from all joints or splices. All wire shall be truly cylindrical and fully up to gauge specified for each size, and must not contain any scale, inequalities, flaws, cold shuts, seams, or other imperfections.
- 2. Inspection. The purchaser will appoint an inspector, who shall be supplied by the manufacturer with all facilities which may be required for examining the finished product, or any of the processes of manufacture. The inspector shall have the privilege of overseeing the packing and shipping of the samples. The inspector will reject any and all wire which does not fully come up to all the specification requirements. The purchaser further reserves the right to reject on reception, any or all lots

- of wire which do not fulfil the specifications, even though they shall previously have been passed or accepted by the inspector.
- 3. Apparatus. The manufacturer must supply, at the mill, the necessary apparatus for making the examination called for. This apparatus shall consist of a tension testing-machine, a torsion testing-machine, an elongation gauge, an accurate platform scale, and an accurate bridge and battery. Each of these pieces of apparatus may be examined by, and shall be satisfactory to, the inspector.
- 4. Packing for Shipment. When ready for shipment, each coil must be securely tied with not less than four separate pieces of strong twine, and shall be protected by a sufficient wrapping of burlap so the wire may not be injured during transportation. The wrappings shall be placed upon the wire bundles, after they have been coiled and secured by the twine. The diameter of the eye of each coil shall be prescribed by the inspector, and all coils shipped shall not vary more than two inches in the diameter of the eye.
- 5. Weight. Each coil shall have its length and weight plainly and indelibly marked upon two brass tags, which shall be secured to the coil, one inside of the wrapping, and the other outside.
- 6. Mechanical Properties. All wire shall be fully and truly up to gauge standard, as per B. and S. wire gauge. The wire shall be cylindrical in every respect. The inspector shall test the size and roundness of the wire by measuring each end of each coil, and also by measuring at least four places in the length of each coil. A variation of not more than one and one-half mils on either side of the specified wire gauge number will be allowed, and the wire must be truly round within one mil upon opposite diameters at the same point of measurement. The strength of the wire shall be determined by taking a sample from one end of each coil, 30" in length. Of this piece, 18" shall be tested for tension and elongagation, by breaking the same in the tension testing-machine. The samples should show a strength in accordance with the following table:—

SIZE OF WIRE, B. & S. GAUGE.	Breaking Weight of Hard-drawn, Lbs,	Breaking Weight of Annealed. Lbs.	SIZE OF WIRE, B. & S. GAUGE.	Breaking Weight of HARD-DRAWN. LBS.	Breaking Weight of Annealed. Les.
0000	9,971	5,650	9	617	349
000	7,907	4,480	10 11	489 388	277 219
00	6,271 4,973	3,553 2,818	12	307	174
1	3,943	2,234	13	244	138
2	3,127	1,772	14	193	109
3	2,480	1,405	15	153	87
4	1,967	1,114	16	133	69
5	1,559	883	17	97	55
6	1,237	700	18	77	43
7	980	555	19	61	34
8	778	440	20	48	27

A variation of 12 per cent on either side of the tabular limits will be accepted by the inspector. The elongation of the wire must be at least 3 per cent for all sizes larger than No. 1; 1½ per cent from No. 1 to No. 10, and I per cent for sizes less than No. 10, for hard-drawn copper wire. The remainder of the sample selected will be tested for torsion. The torsion sample will be twisted in the torsion testing-machine to destruction, one foot in length being placed between the jaws of the machine. Under these circumstances, hard-drawn copper wire shall show not less than 20 twists for sizes over No. 1; from 40 to 90 twists in sizes from No. 1 to No. 10: and not less than 100 twists in sizes less than No. 10. Should the sample selected from one end of each coil show failure to come up to the specifications, the inspector may take a second sample from the other end of the coil. If the average of the results from both samples shall be within the specifications, the coil shall be accepted; if not within the specifications, the coil shall be rejected. The weight per mile shall be determined by carefully weighing 2 per cent of the number of coils called for in the contract; and the weight thus obtained shall correspond, within 2 per cent, on either side of the result given in the following formulæ: -

Weight per mile
$$=\frac{CM}{62.567}$$
; Weight per 1000 ft. $=\frac{CM}{330.353}$.

7. Electrical Properties. — The electrical properties of the wire shall be determined by the inspector, selecting 3 per cent of the coils, and from them taking lengths of 100 ft., 500 ft., or 1000 ft., at his discretion, and measuring the conductivity of the same with a standard bridge. For soft-drawn copper wire, the following resistance per mil ft. will be assumed: —

Temperature in Degrees F.	RESISTANCE LEGAL OHMS.	TEMPERATURE IN DEGREES F.	RESISTANCE LEGAL OHMS.
0	8.96707	60	10.20253
10	9.16413	70	10.42083
20	9.36473	80	10.64268
30	9.56887	90	10.86806
40	9.77655	100	11.09698
50	9.98777		

For hard-drawn wire, the resistance per mil ft. shall be 1.0226 times the foregoing figures. All wire shall be within 98 per cent of the above figures.

8. Requirements for Iron Wire. — All iron wire shall be subjected to the same general requirements as above specified for copper wire, and shall be inspected and tested in the same general manner. The wire shall be carefully annealed, without burning or undue rusting from the heat of the

furnace. It shall be soft, pliable, and capable of elongating not less than 15 per cent in lengths of one foot between the jaws of the testing-machine.

 Mechanical Properties. — Weights and strengths of the various sizes shall be as follows: —

Number B. W. G.	WEIGHT PER MILE.	Breaking Weight.	Number B. W. G.	WEIGHT PER MILE.	Breaking Weight.
4	730	1898	10	260	676
6	540	1404	11	214	556
8	380	988	12	165	429
9	330	858	14	96	250

In general the weight per mile shall be CM/72. High tensile strength is not required; but, in general, wire must not break under less strain than two and one-half times its weight per mile in pounds.

- 10. Torsion Tests. Torsion tests will be made as prescribed for copper wire, and the specimens must not fail under less than 80 twists in a length of one foot. In the mechanical requirements for iron wire, a variation of 3 per cent on either side of the specification limits will be accepted by the inspector.
- 11. The electrical resistance of iron wire will be determined in the same manner as specified for copper wire, excepting that the resistance of the iron wire shall be 6.081 times the resistance of the copper wire per mil ft. at 32° F., with an allowance of .278 per cent for every degree of increase of temperature.
- 12. Galvanizing. When galvanized wire is called for, the galvanizing must be true and smooth over the entire length of all the coils, showing that the zinc has been carefully and evenly wiped off. The wire must show no black spots, scales, or inequalities. The galvanizing will be tested by plunging a sample of wire from 5 per cent of all the coils into a saturated solution of sulphate of copper, and permitting same to remain for 70 seconds. The wire will then be withdrawn and wiped clean. This operation will be repeated four times, at the end of which time, if the wire appears black, the galvanizing will be considered satisfactory, and the sample accepted. If, on the contrary, any precipitated copper is shown, the galvanizing will not be considered sufficiently well done, and the samples may be rejected.
- 19. The Tension of Aerial Lines. When a wire is stretched between the points A and B, Fig. 9, situated at the same level, it describes a curve ADB, known under the name of the catenary.

The horizontal distance AB is termed the span, while the vertical distance CD between the lowest point of the curve and the

horizontal line AB is the deflection. The catenary may be referred to two rectangular co-ordinates, of which the vertical axis Oy passes through the lowest point of the curve, while the horizontal

Fig. 9. Diagram of the Catenary.

axis is situated at such a distance "h," below the point D, or the lowest part of the curve, that if the tension of the wire at this point be represented by T, and the weight per unit of length by P, then

$$h = \frac{T}{P}. (1)$$

Under these conditions the equation of the catenary may be represented by

 $y = \frac{h}{2} \left(e^{\frac{x}{h}} + e^{-\frac{x}{h}} \right), \tag{2}$

in which e is the base of the Napierian system of logarithms. Developing the second number of this equation by McLaurin's formula,

$$y = h \left(1 + \frac{x^2}{1.2.h^2} + \frac{x^4}{1.2.3.4.h^4} + \text{etc.} \right).$$
 (3)

Usually the tension T is so large in respect to the weight P that for all ordinary spans it is sufficient to represent the curve by the following equation, which is readily recognized as that of a parabola,

$$y = h + \frac{x^2}{2h}. (4)$$

Calling the span a, the deflection f, and making $x = \frac{a}{2}$, from equation (4),

 $y = h + \frac{a^2}{8h}$ (5), and $f = \frac{a^2}{8h} = \frac{a^2P}{8T}$. (6)

This last equation gives the deflection at the center, if the weight per unit of length is known, as well as the span and the tension at the lowest point. If the span, the deflection, and weight are known, it is easy to calculate the tension. The tension T_h at the highest point is given by the equation

$$T_h = T + Pf. (7)$$

Except in cases where the deflection is very great, the tension T_h does not sensibly differ from the tension T at the lowest point; and without serious error it may be assumed that the tension calculated by formula (6) represents the tension throughout all points of the span. The length of the wire may be obtained from the equation

$$dl = \sqrt{dx^2 + dy^2} = dx\sqrt{1 + \left(\frac{dy}{dx}\right)^2}.$$
 (8)

Substituting for dy/dx its value from equation (4)

$$dl = dx \left(1 + \frac{x^2}{h^2} \right)^{\frac{1}{2}} = dx \left(1 + \frac{x^2}{2h^2} - \frac{x^4}{8h^4} + \text{etc.} \right), \tag{9}$$

an expression that for common spans reduces to

or

$$dl = dx \left(1 + \frac{x^2}{2h^2}\right)$$
 integrating, (10),

$$l = \int_{-\frac{a}{2}}^{+\frac{a}{2}} dx \left(1 + \frac{x^2}{2h^2} \right) = a + \frac{a^3}{24h^2}, \tag{11}$$

$$l = a + \frac{a^3 P^2}{24 T^2}. (12)$$

If a equals the horizontal span, l the actual length of the wire between the insulators, f the deflection of the wire at the center, P the weight of one unit of length of the wire, and T the tension of the wire at its lowest point, the three following equations are approximate:—

$$f = \frac{a^2 P}{8 T} (13) \qquad T = \frac{a^2 P}{8 f} (14) \qquad l = a + \frac{8 f^2}{3 l} (15)$$

20. Influence of the Variations of Temperature. — The tension in the wire deduced from these formulæ is obviously the tension at the time when the line is erected. If the temperature falls, the

wire tends to contract in proportion to the diminution of temperature. The elasticity of the wire, however, allows it to elongate somewhat under any increase in the tension that results from the contraction. The accumulation of sleet or snow upon the wire adds a very considerable amount to its weight, and consequently to the

TABLE~No.~13. Sags and Tensions to be Observed in Erecting Wires at Various Temperatures. 400 lbs. Iron Wire (No. $7\frac{1}{2}$).

SPAN IN	1	22° Low W			RDINAR	° F. Y Winter RATURE.		VERAGI	F. SUMMER RATURE.		76° Iigh Su Empera	MMER
FEET.	S	ag.	Tension.	S	ag.	Tension.	S	ag.	Tension.	S	ag.	Tension.
	Ft.	In.	Lbs.	Ft.	In.	Lbs.	Ft.	In.	Lbs.	Ft.	In.	Lbs.
300	3	13	270	3	9	227	4	31	200	4	87	180
270	2	65	270	3	13	219	3	23	190	4	07	169
240 .	2	01	270	2	78	210	3	03	178	3	5§	157
210	1 .	612	270	2	11	198	2	$6\frac{1}{2}$	164	2	107	143
180	1	18	270	1	8	184	2	03	148	2	43	128
150	0	91/2	270	1	31	165	1	73	130	1	114	110
			150 Lbs	. н	ard-D	rawn Cop	per	Wire	(No. $12\frac{1}{2}$)).		
		22°			40	° F.		58	° F.		76°	F.
SPAN		Low W		O	RDINAR	Y WINTER	A	VERAGI	E SUMMER	l F	High St	IMMER
IN	Т	EMPER	ATURE.		Темре	RATURE.		Темре	RATURE.	I	EMPERA	TURE.
FEET.	s	ag.	Tension.	S	ag.	Tension.	S	ag.	Tension.	S	ag.	Tension.
	Ft.	ln.	Lbs.	Ft.	In.	Lbs.	Ft.	In.	Lbs.	Ft.	In.	Lbs.
300	2	8	120	3	7	89	+	37	74	4	111	64
270	2	2	120	3	1	81	3	91	69	4	41	60
240	1	83	120	2	(17	80	3	21/2	61	3	83	541
210	1	35	120	2	1;	73	2	85	57½	3	21/2	49
180	0	113	120	1	9	66	2	31	51	2	81	43
150	0	8	120	1	45	58	1	10	41	2	23	36½
			100 Lb	s. H	[ard-L	rawn Cop	per	Wire	(No. 14)			
		22°	F		40	F.	1	58	° F.		76°	F.
SPAN		Low W	INTER	Or	RDINAR	Y WINTER	A	VERAGI	e Summer	I	IIGH St	JMMER
IN	I	EMPER	ATURE.		ГЕМРЕ	RATURE.		Темре	RATURE.	I	EMPERA	TURE.
FEET.	Temperature. Sag. Tension.		Tension.	S	ag.	Tension.	S	ag.	Tension.	5	Sag.	Tension.
	Ft. In. Lbs.		Lbs.	Ft.	In.	Lbs.	Ft.	In.	Lbs.	Ft.	In.	Lbs.
300	2	8	80	3	7	59	4	33	49	4	111	43
270	2	2	80	3	1	56	3	91	46	4	41	40
240	1	83	80	2	63	53	3	21	421	3	83	36
210	1	35	80	2	18	49	2	86	38	3	21	33
180	0	115	80	1	9	44	2	31	34	2	81	29
150	0	8	80	1	45	39	1	10	29	2	23	24
							_			11		

tension to which it is subjected. In order to ensure against accidents, it is therefore necessary to so adjust the tension of the wire when the line is erected, that under all ordinary circumstances no future stresses will be sufficient to exceed the elastic limit of the material. The limiting tension permissible is often assumed to be from one-fifth to one-quarter of the breaking-strain, the limit of elasticity usually being about one-third of the ultimate strength. Lines which are erected in the summer time should be allowed a much greater deflection than those placed in the winter, in order that the contraction due to cold weather may not cause the tension to exceed the safety limit. Long spans must have more slack than short ones, and straight lines must be given more deflection than those in which curves are of frequent occurrence; for the curve allows the line to give somewhat under the additional stresses introduced by contraction. While slack lines are safer so far as the tension on the wires is concerned, they are liable to give extreme trouble from swinging crosses, and from entanglement with neighboring wires. In TABLE No. 13 will be found data indicating the appropriate deflections and tensions to be observed in stringing the more common sizes of iron and copper wire at the various temperatures to be met with in practice.

CHAPTER III.

CONSTRUCTION OF AERIAL CIRCUITS.

PART I. - GENERAL LINE WORK.

- Art. 21. Classification. Assuming the location of the central station as selected, and the general design of the plant determined, the construction of the necessary circuit becomes a matter for consideration. Electrical circuits may be primarily divided into Aerial and Underground, depending upon whether the line is placed upon poles distributed over the surface, or carried through a conduit or other structure buried in the earth. Either form of circuit may be further classified as Metallic or Grounded. In the metallic circuit, the entire line is composed of wire extending from one pole of the generating-station back to the other pole. In the grounded circuit, a portion of the line is composed of wire, while for the remainder the earth as a return is used. Depending on the design of the plant, electrical circuits may still further be catalogued as Telegraph circuits, Telephone circuits, and Power circuits; and the latter group may still further be subdivided into Lighting circuits, Motor circuits, and Railway circuits.
- 22. Aerial Lines. Recently all electrical circuits were of the aerial type; as it has only been within the past decade that the increasing multiplicity of overhead wires has caused the various forms of conduit to spring into existence, that the streets of the larger cities might be freed from the inconvenience of pole circuits.
- 23. Poles. Aerial lines are built by setting upright into the ground poles of sufficient strength to carry the weight of wire necessary for the circuits, and the various lines are supported on insulators placed on cross-arms attached to the tops of the poles. For open country lines wooden poles are used, white Canadian cedar, Northern pine, or chestnut being considered the best material. In the South, cypress or Southern pine is common; but it does not weather as well as the Northern woods. The poles should be sound, live wood,

straight and true, and free from bad knots, shakes, large cracks, dry rot, and other defects. The poles should not be less than six inches in diameter at the top for lines through the open country, or from seven to eight inches for city work. The bark should be carefully stripped from the poles, which should then be shaved and trimmed, and the gains for the cross-arms cut. It is also customary to bolt the cross-arms to the poles previous to setting, as it is considerably more economical for this work to be performed on the ground level. The distance apart at which poles are set varies greatly with the nature of the line, and territory through which it is constructed. For light lines in the open country, from thirty-five to forty-two poles per mile is a common rule. For heavier city lines, forty to fifty poles per mile is usual; while for electric railway work, from forty-five to fifty-five poles to the mile are necessary.

24. Methods of Preservation. -- In this country it is not customary to treat the poles in any way in reference to their preservation, excepting to give them one coat of paint previous to, and one after, erection. In Europe the custom of creosoting, or of treating them with various preserving solutions, is quite common. Besides the operation of creosoting, several methods of preservation have been suggested, which consist in soaking the poles in large tanks filled with solutions of chloride of zinc, chloride of mercury, sulphate of iron, or sulphate of copper. It is the attempt of all of these processes to make the preserving solution saturate the wood, and form, with the various vegetable albumens, insoluble compounds, thus lengthening the life of the timber. With the exception of creosoting, all these methods involve considerable expense, and as yet have not given results that seem to justify the necessary outlay. Recently the process of "Vulcanizing," which simply consists in heating the poles for some hours in a closed cylinder to about 500° F., has given great satisfaction. The high temperature seasons the wood by coagulating the albumen, adding greatly to the life of the pole. The simplicity and cheapness of this process are greatly in its favor.

The treatment by the creosoting process consists in placing the poles in a strong iron vat from which the air can be exhausted. In the vacuum thus produced, all the sap and other juices of the wood flow outwards, and are carried away by a suitable system of piping. Live steam at a pressure of about 100 pounds to the square inch

is then admitted into the cylinder, and the poles thoroughly cooked and steamed for several hours. Subsequent to the steaming, crude petroleum oil is admitted into the cylinder under a hydrostatic pressure of 200 to 300 pounds. By means of this operation it is expected that all the fluids contained in the woods are extracted, and are replaced by the crude petroleum, contributing very materially to the life of the poles. Experiments have shown that lines constructed of poles treated in this manner are in perfectly good condition after twenty years of life.

- 25. The Height of Poles. The height of the poles which it is necessary to use will depend very largely upon the magnitude or number of circuits which they are to sustain. For ordinary city work, for telegraph or telephone construction, a height of 40 to 60 feet is usually employed. In some cases, however, very notably in some of the large metropolitan lines, poles of 100 or even 125 feet in height have been erected, carrying a very large number of wires. Usually it is preferable to use a high pole rather than a low one, in order that the line may be thoroughly clear of the street, and may not become too much of an obstruction to neighboring buildings.
- 26. Cross-Arms. The cross-arms, carrying insulators, should preferably be of yellow pine; they should be carefully sawed, true and square, and should be of sound hard wood, and thoroughly coated with mineral paint having good insulating properties. The crossarms are usually $4\frac{1}{4}$ × $3\frac{1}{4}$, and vary from 3 to 10 feet in length, depending upon the number of insulators to be supported. Two wires are carried on a three-foot arm, and 10 on a ten-foot arm. The top of the arm is rounded with a circular chamfer, as shown at C, Fig. 10, to prevent the accumulation of snow and water. Frequently the arms, including the pins, are assembled at the factory and shipped complete. The cross-arms are usually set 20" apart vertically along the gains, strongly bolted and braced. Two braces are allotted to each arm. They are of galvanized iron, $1_4^{1''}$ wide, $\frac{1}{4}''$ thick, and 28''long. One end of each of the pair of braces is secured to the pole by one of the cross-arm bolts, the other ends being attached to the next arm above, between the second and third pin on the right and left hand of the pole, thus forming a bracket to steady the arm. It has been customary to secure the arm to the pole by means of two lag-bolts passed through the arms, and screwed into the pole. As the thread

of the lag-bolt destroys the fiber of the pole to such an extent that it is usually impossible to replace cross-arms after the line has been some years in service, it is at present considered better to fasten the arm with a single carriage-bolt, passed entirely through both arm and pole, the bolt hole being cleanly bored with a sharp bit, accurately to fit the bolt. The bearings of the bolt-head and nut should be prevented from crushing the wood by ample washers. In lines constructed of machined poles, as in street railway work, when the pole-tops are all uniform in size, the cross-arms may best be fastened by means of a U-bolt that extends entirely around the pole. This method obviates any injury or weakening of the pole itself.

27. Pins. — The insulator pins should be of locust or oak. The pins have a turned shank $1\frac{1}{2}$ " in diameter to fit the hole in the cross-

Fig. 10. Cross-Arms and Pins.

arm, and when in place are secured by a single wire nail driven through the arm. The upper part of the pin is threaded to match the particular insulator for which the line is designed. Where corners in the line occur, the sustaining power of the pin is re-enforced by securing it to the arm by a nut and washer. A corner pin is indicated at B, Fig. 10, and a common pin at A. The pins are placed 10" to 12" apart on the arm, with an allowance of 15" between the two middle pins, in order that the wires supported by them may adequately clear the pole. The general aspect of a properly equipped wooden pole-top, for telephone or telegraph lines, is shown in Fig. 11 (p. 38).

28. The Facing of Arms. — In setting the poles, it is customary to place the cross-arms in such a manner that those on the

adjacent poles shall face each other, while on the next two poles they shall be turned back to back. The object of this disposition of the cross-arms is to prevent accident in case of the breaking of any of the wires. If the cross-arms were all set in one direction, an excessive stress, or some accidental cause, such as a broken pole, might wrench off one of the cross-arms, and the stress being transferred to the next one, like a row of blocks the whole line would go down. On the contrary, if the arms are set alternately facing and back to back, it is practically impossible to pull off more

Fig. 11. Pole-Top.

than two sets of arms, and thus, frequently, a broken pole is kept from falling, and the line saved. To obtain good appearance, the poles should be carefully set plumb and true, leaving their tops essentially in a straight line. In city work this condition can usually be attained by using poles of the same height. In the open country, owing to the differences in level, it is essential to use poles of correspondingly varying heights in order to preserve uniformity.

29. Stresses. — The stresses to which a pole-line is subjected are primarily due to the weight of the wire and cable which the poles have to support, and to the longitudinal stresses due to the

tension upon them. Concerning the stresses to which the poles are subjected, the forces may be divided into three classes.

- 30. First. In straight line work the cross-arms and insulators transmit to the poles the weight of the wire and cables supported upon them. This stress acts vertically, being a direct load tending to break the arm at the center where it is secured to the pole, and to crush the pole as a column. In the winter, the weight thus thrown on poles may be very largely augmented by snow or sleet, with which the wires may become incrusted.
- 31. Second. The action of the wind against the wires develops considerable lateral stress, which causes the poles to vibrate in a dangerous manner, and may break them at or near the surface of the ground.
- 32. There. Whenever a change of direction occurs in a poleline, or wherever one or more wires or cables are terminated, the poles are subjected to a bending-stress, equivalent in the first case to the resultant of the tension in all of the circuits, pulling the poles sidewise; and in the second case, to a bending-moment derived from the sum of all the tensions in the wires, or other circuits which are ended, tending to pull the pole over longitudinally in the direction of the line.

Great care must be exercised in the design of all lines of magnitude, to see that, at the points of change of direction, or at the termination of any or all circuits, the poles are sufficiently strong or carefully braced to withstand these stresses.

In the case of a change of direction in a pole-line, the resultant of the line stress may be readily determined by the application of the well-known principle of the parallelogram of forces. By examining the tensions in the line on either side of the angle, and determining the resultant, the magnitude of the force tending to deflect the pole, and its direction, are readily ascertained. To counterbalance this tendency, the pole must be either stiff enough to stand the bending-moment, or else the top of the pole must be anchored in a direction opposed to the resultant stress, by means of a guy wire or rod.

33. Calculations for Pole Strength. -- A pole subjected to a horizontal force is bent in the direction of the force; the fibers of the wood lying on the side of the pole toward the force being ex-

tended, and those on the opposite side being compressed. If the pole be cylindrical, the section of rupture is at the surface of the ground. If, as is usually the case, the pole be a truncated cone, rupture occurs at the surface of the ground when the diameter of the pole at the point of application of the force is equal to, or greater than, $\frac{2}{3}$ of the diameter at the surface of the ground. When the diameter of the section at the point of application of the force is less, the rupture takes place above the surface of the ground, at that point where the diameter is $\frac{3}{2}$ of the diameter at the point of application of the force.

The horizontal force which a pole will support at the instant of rupture, when the section of rupture coincides with the section at the ground level, is shown by the formula —

$$F = \frac{\pi R^3 T_1}{4 L} \,, \tag{16}$$

where R is the radius of the section at the surface of the ground, L is the height above the soil of the point of application of the force, and T_1 is the resistance, to rupture per unit section of the substance which forms the pole.

Transposing and assuming 10 as a factor of safety, the formula becomes

$$R = \sqrt[3]{\frac{40}{\pi} \frac{FL}{T_1}}. (17)$$

Where the diameter of the section at the point of application of the force is less than $\frac{2}{3}$ of the diameter at the surface of the ground, and the section of rupture is above the ground level, the force F which will rupture the pole is given by the more complicated formula—

$$F = \frac{27 \pi R_1^2 (R - R_1) T_1}{16 L}, \qquad (18)$$

in which R is the radius of the section at the surface of the ground, and R_1 the radius of the section at which the force is applied. F, in all cases, is the resultant of the horizontal forces acting on the pole, and a factor of safety of from 6 to 10 should be used.

The value of T_1 may be found in Tables Nos. 14 and 15, compiled from standard authorities, which give the ultimate or breaking load of various kinds of wood, either in tension or compression.

TABLE No. 14.

Tensile Strength of Timber.

VARIETY.											Breaking		GHT PER
Ash, white .				٠			٠					to	17,000
Ash, American				•							5,500	66	17,000
Ash, English							۰	٠			4,000	66	16,000
Beech			٠				٠	7		۰	5,000	66	12,000
Birch											7,000	66	15,000
Cedar, Lebanon					٠	٠					10,000	66	12,000
Cedar, West In	dia	n		٠	٠		٠			٠	4,000	4.5	7,500
Cedar, America	n												11,400
Chestnut							٠				7,000	66	13,000
Cypress					٠	٠	٠	٠	٠				6,000
Deal, Christiani	a				٠	٠			٠				12,900
Elm											6,000	66	10,000
Oak							٠						10,000
Pine, pitch .								a					7,600
Pine, Riga .	٠			٠			٠			٠			14,300
Pine, yellow .			٠			٠					5,000	33	12,000
Pine, red	٠						٠,						3,000
Poplar		٠			٠					۰	5,500	4.6	7,000
Redwood, California	orn	ia					۰		٠	٠			10,800
Spruce	٠										5,000	6.6	10,000
Sycamore .		٠				٠	٠	٠			9,000	66	13,000

Table No. 15.

Crushing Strength of Timber.

VARIETY.											C			GHT IN LBS.	
Y MRIDII:												PER SQUARE INCH.			
Ash			٠			٠		٠	٠			5,000	to	8,000	
Beech		٠	٠	٠	٠									7,700	
Birch												4,500	66	6,000	
Cedar, red												4,500	66	5,900	
Chestnut .					٠			٠						5,350	
Elm		٠										6,000	**	10,000	
Oak, Ameri	can,	w]	hite	,								4,000	45	9,000	
Oak, Englis	sh											6,500	6.6	9,500	
Oak, Dantz	ic						٠							7,700	
Pine, pitch			٠						٠					6,800	
Pine, yellov	V						۰					5,300	66	6,500	
Pine, red.												6,000	66	7,500	
Pine, white						٠						5,000	6.6	6,000	
Spruce, wh	ite											4,500	6.6	6,000	

34. The preceding formulæ are generally applicable where the forces acting on a pole may be resolved into one horizontal component. Often the horizontal force is exceedingly large, as in a corner or terminal pole. In such cases, an unsupported pole of sufficient strength would be impracticable. By staying the pole with a guy-rod, a new set of conditions arise. Where a pole stands without guying, one-half of its fibers are in tension and the other half in compression. When the guy-rod is added, all the fibers of the pole are under compression, while the guy-rod is under tension.

Let F equal the known horizontal resultant of the forces which act on the pole; β , the angle between the guy-rod and the ground level (horizontal); α , the angle between the guy-rod and the pole (perpendicular); T, the tension on the guy-rod; and S, the crushing-force acting on the pole.

Then,
$$T = \frac{F}{\cos \beta}$$
 (19), and $S = T \cos \alpha$. (20)

These formulæ are true, assuming that the guy-rod is attached to the pole at the point of application of the horizontal resultant force *F*.

Represent by P the total weight of pole cross-arms, guy-rod, fixtures, wires, and cables. The total crushing-force W acting on the pole is then S+P.

Considering the pole now as a long column fixed at one end, in which l is the distance in feet from ground to section just below cross-arms; d is the diameter in inches of the smallest section of the pole below the cross-arms; Hodgkinson's experiments indicated that the ultimate supporting power is given for pine columns by the expression,—

 $W mtext{ (in short tons)} = 4 \frac{d^4}{\ell^2}. mtext{ (21)}$

For any other kind of wood, the resistance to rupture will be in proportion to the respective ultimate crushing-strength, as given in Table No. 15.

35. In the case of the ordinary pole-line, provision must be made for two things — wind pressure, and the crushing-weight due to snow and ice on the wires. Assuming a wind pressure of 30 lbs. per sq. ft., the pressure exerted by the wind on an ordinary 40 ft. pole, measuring 7 in. in diameter at the top, and 14 ins. at the

ground level, will be approximately equivalent to a horizontal force of about 500 lbs. applied at the top of the pole; and a difference of 5 ft. in the length of the pole will make a difference of about 100 lbs. in the resultant pressure.

The pressure per cross-arm carrying 10 wires will be, approximately, 500 lbs. From such data, the total horizontal force acting on the top of the pole can be estimated, and applied in the formulæ. It must be understood that it is unnecessary to use all the preceding formulæ in calculating the size of every pole, as, to a great extent, the judgment of the designer must be exercised. A pole-line with only two or three wires, or a single cross-arm, would need no special precaution against crushing. In a large corner, or terminal pole, wind pressure is a comparatively small proportion of the total bending-force, and is amply provided for by the factor of safety. In each case the controlling destructive force must be provided for, allowing the factor of safety to provide for the others.

The sleet storm, or fall of damp snow, succeeded by a high wind, is the worst enemy of the pole-line. There are cases on record of ice incrustations on a No. 10 wire accumulating to such an extent as to make a continuous cylinder six inches in diameter. The best practice indicates the advisability of making the poles strong enough to withstand all the ordinary attacks of the elements; if then, under an excessive snow load, some of the circuits are ruptured, the repair job is an easy one. A broken pole is much more difficult to replace, and in the act of falling is apt to drag with it a long section of line, thus extending the damage over a large territory.

36. Guying. — In the open country, there is little or no objection to the practice of re-enforcing by means of guy-rods; but in city lines the room occupied in a street by the guys becomes exceedingly objectionable, as in many cases the direction of the resultant is such as to necessitate a guy situated in such a manner as to interfere with traffic. Inasmuch as the method of guying is by far the cheapest expedient, it is still resorted to in all cases where it is possible for it to be successfully accomplished.

Various forms of pole-guys are indicated in Fig. 12, illustrating also the objectionable forms, such as tying the top of the pole by means of a guy, or in placing it directly below the cross-arms. The effect of such guying is to cause the pole to bend directly beneath

the arms, and, ultimately, to fail at this point. Probably the most valuable form of guy is that known as the "Y" guy, consisting in a tension member so arranged as to secure the pole directly at the top of, and immediately under, the cross-arms. In this way nearly all the stress of the line is transferred to the guy, in such a manner as not to cause sensible deflection of the pole. When there are more than two or three cross-arms, "Y" guying should always be adopted. Most frequently guys are made either of one or more strands of No. 8

Fig. 12. Methods of Guying.

iron wire, or of ½" to ¾" steel wire strand. The wire strand is to be preferred, as it is more flexible, more easily drawn to the proper tension, and adapts itself more readily to the emergencies of each particular case. It is also customary, in straight line work, to frequently guy the top of each pole to the base of the next succeeding one for several poles. By this means the lateral vibration introduced by heavy wind storms may, in a great measure, be checked, and frequent instances are on record wherein this method of "head guying," as it is technically termed, has saved a line from destruction.

37. Anchor Poles. — In city lines, where an abrupt angle occurs, or where, for the purpose of entering underground conduits, it is essential to terminate a large and heavy line, it is necessary to provide

Fig. 13. Structural Iron Anchor Pole.

a pole of sufficient stiffness to assume the entire tension of all of the circuits. The neatest solution of the problem is to design a pole of structural iron of sufficient strength to withstand the stresses of all of the circuits, in such a manner as to make the pole entire'v self-

Fig. 14. Plan and Elevation of Combination Anchor Pole. Fig. 15. Detail of Main Guy-Rod.

sustaining. In ordinary line practice it is customary to stretch each wire to a tension of about 150 lbs., while the messenger strands supporting aerial cables usually have a tension of about 3,000 lbs. Thus it will be evident that in heavy lines, carrying say from four to five cables, and from 80 to 100 wires, the line stresses are by no means insignificant quantities, amounting in the above instance to some

Fig. 76. Detail of Pole Lattice. See Table 16, No. 3.

30,000 lbs. upon the top of the pole. For lines of this magnitude, the pole is not less than from 50 to 60 ft. in height, and consequently the bending-moment at the base of the pole is exceedingly severe. There is no difficulty in manufacturing a structural iron or steel pole, setting the same in a heavy base of concrete, and thus

attaining the necessary strength. An illustration of such an anchor pole will be found in Fig. 13. The only objection to a structure of this kind exists in its initial expense, amounting, in the instance above cited, to a cost of some \$600. As a compromise in the matter of expense, the plan has been adopted of constructing a composite pole, and anchoring the same by means of a guy-rod. The design for such a pole is indicated in Fig. 14, with the essential details in Figs. 15, 16, 17, 18, and 19. The pole is made by securing an appropriate wooden spar, about 24" in diameter at the butt, and not less than from 10" to 12" at the top, the height of the pole conforming to the height of the line. The pole is then provided with a frame-work or anchor platform, as shown in plan and elevation in Fig. 14, by means of which the pole is solidly set into the earth. In setting the pole, the anchor platform is set in a direction away from the longitudinal stress of the line, in order that the pole may not fail by overturning, the weight of earth resting upon this platform being more than equal to the bending-moment arising from the line stress. The guy-rod extends from this platform to the top of the pole, so arranged as to take through the guy-rod branches the horizontal components of the line stress. The details of the guy-rod and branches are seen in Figs. 15 and 17.

The top of the pole consists of a lattice-work of angles, as shown in Fig. 16, that are fitted to the top of the pole, three sizes having sufficient range to be readily adapted to all ordinary lines. The latticework consists of two $3'' \times 7''$ steel angles latticed together to readily fit on to the top of the spar. At appropriate intervals light $3'' \times 4''$ angles are set, for the purpose of supporting the cross-arms. The lattice-work is secured to the pole by means of the bands shown in Figs. 18 and 19. At the proper points to balance the line tensions, guy-rod bands shown in Fig. 18 are placed, to which branch guy-rods extending to the main guy-rod, and thence to the anchor platform, are attached, by means of swivel clevises, so that any slack in the guy-rod may be taken up. A slight consideration of this design will show that the lattice-work is amply sufficient to carry, without sensible deflection, and transfer to the two parts of the guy-rod, all the horizontal components of the stresses introduced by the lines. As a result, the spar is entirely relieved from all bending-moment, being subjected solely to the vertical component of the stress in the

Fig. 17. Detail of Guy-Rod Branches.

Fig. 18. Detail of Guy-Rod Bands. See TABLE 16, No. 6.

Fig. 19. Detail of Pole-Bands. See TABLE 16, No. 7.

guy-rod. TABLE No. 16 contains full dimensions of all the sizes

Fig. 20. Composite Anchor Pole.

necessary for anchor poles of this description, capable of carrying from four to ten cross-arms, and from one to four cables. Blanks are left for the height of the pole, length of guyrods, and size of opening in the top and bottom of lattice, as these dimensions will vary with each pole. The dimension letters in the illustration refer to the values to be found in the table. Anchor poles of this description have worked successfully, and may be introduced at about one-half the cost of the corresponding structural iron pole.

The illustration, Fig. 20, is from a photograph of a composite anchor pole of this kind, designed for 100 wires and 4 cables. At the time of the photograph 70 wires were in place, but no cables. The spar forming the pole was a Norway pine stick 70 ft. long, 16" at the top, and 22" at the ground, and set 10 ft. below the surface.

The chief criticism to be passed is the certainty

of the early rotting of the pole at or near its base, where the wood

Table No. 16. — Dimensions for Combination Anchor Poles.

No. 1. Data for Anchor Platform. (See Fig. 14.)

Number of Cross-arms.	Number of Cables.	A	В	C	D	E	F	G
4	0	12' 0"	20' 0"	12"	. 8"	6' 0''	6′′	12//
6	0	12' 0"	20 / 0 //	1277	8//	6' 0"	6′′	12"
8	0	13/ 0//	22 / 0 //	1277	10 ′′	8' 0"	8′′	12"
10	0	13' 0"	22 / 0 //	1277	10 ′′	8' 0"	8//	12//
4	1	12' 0"	20 ' 0 ''	1277	8"	6' 0"	6//	12"
6	1	13' 0"	22 ' 0 ''	1277	10 ′′	8' 0"	8//	12"
8	1	13' 0"	22 ' 0 ''	12 //	10"	8' 0"	8//	1277
10	1	14' 0"	24 ' 0 ''	1277	12"	10' 0"	1077	1277
4	2	13' 0"	22 ' 0 "	12"	10 ′′	8' 0"	8//	12"
6	2	13' 0"	22' 0"	12"	1077	8' 0"	8//	12"
8	2	14' 0"	24 ' 0 ''	12"	12 ′′	10' 0"	10 //	12"
10	2	14' 0"	24 ' 0 ''	12"	12 ′′	107 077	1077	12"
4	3	13' 0"	22 ' 0 ''	12"	10 ′′	8' 0''	8//	12"
6	3	13/0//	22' 0"	12"	10 ′′	8/ 0//	8//	12"
8	3	14' 0"	24' 0"	12"	1277	10' 0''	10 //	12"
10	3	14' 0"	24 ' 0 "	12"	1277	10' 0"	1077	12"

Table No. 16.

No. 2. Data for Main Guy-Rod. (See Fig. 15.)

Number of Cross-arms.	Number of Cables.	A	В	C	D	E
4	0	15"	21//	7''	11/1	3//
6	0	17//	21//	7''	13//	3//
8	0	2 "	21//	7//	11/1	7//
10	0	2 "	21//	7''	11/1	7//
4	1	17/1	21//	7''	13//	3''
6	1	2 "	21//	7//	11//	7//
8	1	2 "	$2\frac{1}{2}''$	7//	11//	
10	1	21//	21//	7//	11//	7//8/7/8
4	2	2 "	21//	7//	11/1	7//
6	2	2 "	21//	7//	11//	7//
8	2	21"	2111	7''	11/1	7//
10	2	21//	3 //	713//	13//	1''
4	3	2 "	$2\frac{1}{2}''$	7''	11//	7// 8 7// 8
6	3	2 "	21//	7''	14"	
8	3	21//	3//	713//	13''	1′′
10	3	27''	31//	91//	21//	1′′

TABLE No. 16.

No. 3. Data for Lattices. (See Fig. 16.)

Number	Olamping Bands.	61	61	ಣ	က	63	¢Ι	en.	62	61	63	ço	co	¢1	्री	cr;	, m
TV-ROD BANDS.	Lower Band.		•	Midway between 6th and 7th arm	Just below 8th arm	•	Just below 6th arm	Just below 8th arm	Midway between 9th and 10th	Midway between 4th and cable-	Midway between 6th and cable- arm	Just below 8th arm	Just above 10th arm	Just above cable arm	Midway between 6th and cable-	Just below 8th arm	Just below 10th arm
Positions of Guy-rod Bands.	Upper Band.	Midway between 2d and 3d arm	Midway between 3d and 4th arm	Midway between 2d and 3d arm	Just above 3d arm	Just below 3d arm	Midway between 2d and 3d arm	Just below 3d arm	Midway between 3d and 4th arm	Just above 2d arm	Midway between 3d and 4th arm	Just below 3d arm	Just above 4th arm	Just above 2d arm	Midway between 3d and 4th arm	Midway between 3d and 4th arm	Just above 4th arm
LATTICES.	thick	\ r(\d)	×44	H4		>	14	1/42	Pitt	1 / 4	H4 ;	-14 -	H4	**************************************	H(d)	>	11/4
LAT	wide C	3//	377	377	377	377	3 //	3%	3//	1,69	\$ 80	37/	3%	3//	3//	1/0	20
	m	:	:	:	:	:	:		:		:	:	:	:		· .	
	A	:	:	:	i.			:		: _	:	:	:	:	:	:	
th of	gnaJ gnA	12' 0"	127 077	18/ 0//	$21/0^{\prime\prime}$	127 077	127.077	18/ 0//	217 077	12, 0,"	12, 0,,	18/ 0//	21, 0,,	12, 0,,	18/ 0//	187 07/	21 ' 0 ''
to .	oN gaA	¢1	¢1	Ç1	63	C3	ଦୀ	¢1	61	¢ì	©1	63	©1	C1	61	01	61
Weight of	in lbs.	11.7	15	11.7	15	15	11.7	15	15	11.7	11.7	15	24.9	11.7	15	6.12	6.42
·	on.	60/00	1,91	500	18 //	1,91	colto	7 // II	16 //	(n)(00	(2)(0)	16//	1.6	(2)00	16//	1,6	16 //
Size of	Angle Iron	6"×31"×3"	31 //	31 1/	31 //	31 //	31 //	31 //	31 //	021 //	31 //	31 /	33 //	31/	31//	33 //	001
0)	Ang	× //9	112	//9	2	112	3 //9	1/2	3 //2	8 // 9	6 // 3	7// 3	7// 3	6 // 3	8 // 2	7// 33	7/1 33
No. of	Cables.	0	0	0	0	Н	H	-	н	83	83	22	63	က	ري د	3	ري 1-
No. of	arms.	4	9	00	10	4	9	00	10	4	9	00	10	4	9	00	10

Table No. 16.

No. 4. Data Guy-Rod Branches. (See Fig. 17.)

Number of Cross-arms.	Number of Cables.	A	В	С	D	E
4	0	15//	21//	7''	11//	3//
6	0	17''	21//	7''	13//	3//
8	0	2 //	21//	7//	11/1	7//
10	0	2 //	21//	7//	11//	7//
4	1	13"	$2\frac{1}{2}''$	7//	13"	3//
6	1	2 //	21//	7//	11//	7//
8	1	2 //	21//	7//	11/1	7//
10	1	21//	21//	7//	11/1	7//
4	2	2 //	21//	7//	11/	7//
6	2	2 //	21//	7//	11/	7//
8	2	21//	21//	7//	1½"	7//
10	2	21//	3 //	713//	13''	1 //
4	3	2"	21//	7//	11/1	7//
6	3	2 //	21//	7//	11//	7//
8	3	21//	3 "/	713//	13//	1 1
10	3	27//	31//	91//	21//	1 //

Table No. 16.

No. 5. Data for Extension Plates. (See Fig. 17.)

Number of Cross-Arms.	Number of Cables.	A	В	C	D	E	F	G
8	0	3 4	31/4	7	54	21/2	3	11/2
10	0	3	31	7	54	$2\frac{1}{2}$	3	11
6	1	34	31/4	7	48	$2\frac{1}{2}$	3	112
8	1	34	34	7	54	$2\frac{1}{2}$	3	$1\frac{1}{2}$
10	1	34	34	7	54	$2\frac{1}{2}$	3	11/2
4	2	34	34	7	48	$2\frac{1}{2}$	3	11/2
6	2	34	31/4	7	48	$2\frac{1}{2}$	3	11/2
8	2	3 4	31/4	7	54	$2\frac{1}{2}$	3	11/2
10	2	3.	33	713	54	3	4	13
4	3	34	31	7	48	$2\frac{1}{2}$	3	11
6	3	3.4	31/2	7	48	$2\frac{1}{2}$	3	11
8	3	3 4	33	713	54	3	4	13
10	3	34	41	91/2	54	$3\frac{1}{2}$	5	21

TABLE No. 16.

. .

	Dia. of	RIVETS	out-rate	00%	estrik.	COMP	(C) well	00 चर्च	n+	C.Com	(72)	67mg	62.00	cas	-	60	t-2	-
		0	•	:	25	-55°		20,	22.	25	26,	200	£8,	+	-50	55	+	-
		Z		:	t-	t ~	:	t -	1-	t-	t =	t-	1-	00	t-	[~	00	œ
		M	:	:	21	21	:	21	21	27	23	21	57	21	21	21	21	51
		ı		:	:: 20	2.5	:	27	.00	E 7	~ D	21/20	7 2	===	20 10	1.00	100	27
		X	:	:	5,1	5.5		5,5	52,	9	5,1	10 24	9	1-	22	51	L-	-/c1 [~
	ND.	Н	:	:	-103	50-7	:	-01	E-4	E-130	Ĩ		1-100	21 2x		577	21	C1 tqu
	LOWER BAND.	Ħ	:	:	7	100mg		4	57	7	7	4	*	9	7	-14 0.500	9	63
	VER	t	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:
_	LOV	圧	:	:	62149	90775	:	601494	with	z-(00	cons	0079	CC +3	_	60)44	E=520	-	-
. 18.)		闰	:	:	20 ID	m/so	:	50,30	E(3)	#100 	20.00	20,30	C0/20	-6	20/00	(0)20	-63	1000
(See Fig. 18.)		а	:	:	20/20	50,00	:	comp	20420	20100	C0100	e 30	20/20	~ C	::120 	20/20	High High	€ Color
(Se		Ö	:	:	00100	10[30	:	20(00	es/re	on-jon	coloo	co(00	85100	£0 30	00100	62(20	20/30	62:00
ıds.		A			:		:	:	:	:	_ :			:			:	
Bar		4	:		÷	·		:	:	:	:		:	•	:	:	:	
Data for Guy-Rod Bands.		0	23.1	寸	8	33	7	33	75	32	555	25	00°	+	5.0 1.05	321	世	4
uy-]		Z	t-	00	t-	Ŀ-	00	t-	t-	t-	-1	t~	1-	00	t-	-1	∞	∞
r G		M	12	12	15	12	15	51	15	12	15	12	12	27	12	12	13	12
a fo		H	£000	50.30	200	coton	αlω	eston	estan	0.30	00:00	CC 30	CC120	100	55130	orte:	100	1.0100 pred
Dat		A	10 33	63	2	F.C.	6.3	5	7.U 6044	9	5	10	9	t~	10	10	t-	(-00)
9	BAND.	H	60,44	ଚୀ		C-+	হ1		e==	1720	7.61		£400	<u>01</u>	- 23		51 2x	C1 20.00
No. 6.		H	e====================================	533	7	est-	5.3	7	**************************************	4		4	***	9	7	add Conta	9	622
	UPPER	5	:		:	:	:	:	:	:		:	:	:	:	:	:	
	UP	F4	62.45	65-4	44	03/-3	62/4jz	63.4	62,44	E+10	colve	60.49	1-500	-	60144	r-k0	1	
		<u> </u>	estro —	00/00	200	200	₩ m	1 8 8	₩ (0.10	αln,	20/20	7 X	55.00	1	20:00	Las	\times2	1000
		А	(c)'20	20 K	52150 C2150	estan -	(2)(2)	00×00	(0)(0)	2010	colab	octro	20100	-153	50,00	60/20	122	1000 1000
		0	color	151.0	0.100	min.	25)30	20,00	60/30	65/30	20:00	00100	62/20	20820	00100	00/00	62100	00/00
		B	:	:			_ :	:		_ :		:	:	:	:	:		
		4	:		:			_:	:	·					:	· ·	:	
	No on	CABLES.	0	0	0	0	٦	1	7	٦	22	62	63	62	က	ಣ	ಣ	က
	No. of	CROSS-	4	9	00	10	4	9	00	10	4	9	00	10	4	9	00	10

No. 7. Data for Pole-Bands. (See Fig. 19.)

	Ħ		۵ (9	9	- 9	9	9	9	9	9	9	9	9	9	9	9
	H			- 21	12	13	- E	15	 입	27	21	- 27	13	15 (13	- <u>-</u> -	15	12
	H			700	53	13	cono.	(N)	5.20	(0,00	COX.	500		23		- Es	133	2000
D.		_				-	•	-	-				-	-			-	
BAND				0/4	ester		634	och-p		00/11	· 0H	e coles	coest	001111	· .	- Colonia	- polen	00/49
	<u> </u>			0.00	mino	ecto	00/00	60500	coice	C100	620	500	6300	6300	6000	63100	5:00	EH0
LOWER	n a			olar	183	E-100	8000	scho.	2020	E 000	color	0100	133	2520	otto T	50)20	2000	20,20
ñ	C			e(x	m ho	20,00	10 20	100										
) B		-				*	*	estao •	es(30	ectos *	m.o	20,00	50(100	60 00	66/30	00 10	00(20
	A.						•		· ·	· :	•	:			· ·	· ·		•
		_=			. 9		·	•					9		•			•
	 	-						•			•	·				•	9	9
			<u>:</u> -		15	12	•	•	12	3 12	•		12	3 12	•	•	12	12
D.					ectro —	20 00	•	•		estas 	•	•	20 30	echo	•		. color	:000
BAND		-			•	•		•	•	•			•	•		•	٠	•
	<u>F</u>				toles	copes	•	•	62/4	tajat			esim	coles	•	•	60/49	C)44
MIDDLE	三二				cc120	ocias ————————————————————————————————————	•	•	1-1 10/30	(clop	•	:-	0000	50500 F===		•	00/20	mino mino
MI	<u>A</u>				E100	color	•	•	ectoo		•	•	20100	e:100		•	colao	201X
			:		roke	ocho		-:-	50 00	ectup	•		00(20	00/20		•	65/33	00.30
	 					-	-:	-	•		•		•	•	•	· ·	•	
	4			:		•		•	•	•	•	•		•	<u>:</u>	<u>.</u>		
	_ X			ء 	9	9	9	9	9	9	9	9	9	9	9	9	9	9
		-			0	0	G.	6	0	6	6	0	0	6	6	6	6	6
	Щ_			etro H	22(20	. cotao	00100		co(30	20,30		00130	::120	50100	20120	20100	50130	
BAND.	ひ			:	:	•	:	•		·	:	:	•		<u>.</u>			•
	F4		Her es	277	co l-d	04	00144	60/46	00)-91	62/44	esite	62/48	0.044	62/4	60/4	eol-e	10/-4	onl-dr
UPPER	耳	- 60	70 m	100	(0)00	ector 	500	coho	20/20	(2100	(0)00	10/00	soloo —1	10/20 	00,00	CC130	E-00	20 20
UP	А	20	20 10		x/x0	20100	20/00	C/20	color	:0100	cc 30	eston eston	27/20	20/30	mino	mino	10110	15/70
	0	65		(20	m(m	ce 20	75,30	soloo	m/10	90/20	60300	00[00	:0100	cotoo	ccipo	15 20	20120	estar
	B			:	:	:			:	:		:	· 	•	:	:	:	<u>:</u>
	A		•		:	:	:	:	:	:	:	:	:	:	:		· :	
No. of	CABLES.	0	· c	>	0	0	П	-	г	7	62	.22	23	63	က	ಣ	ಣ	ಣ
No. of	CROSS-	4	1 (6		oo	10	4	9	00	10	4	9	00	10	4	9	œ	10

enters the ground. For this defect there is no cure, excepting the adoption of the structural iron pole, though a good coat of tar or asphalt will give the pole a life of ten or fifteen years.

- 38. Setting the poles. Small and light poles should be set some six feet into the ground, and may be planted by simply excavating a hole a little larger than the butt of the pole, and then placing the same in position by lifting the pole bodily, with a sufficient gang of men, and dropping it into the hole. Where the ground is soft or marshy, or where the stresses brought upon the pole by the tension of the lines is excessive, a foundation should be formed by excavating a hole of sufficient depth, from four to six feet in diameter, and after the pole is planted filling the same with a concrete of broken stone, sand, and cement. A good mixture for this purpose may be made of one part of Rosendale cement, mixed with three parts of sand, and five parts of broken stone. ingredients should be thoroughly mingled, and carefully moistened with about 25 per cent of water, and solidly rammed around the base of the pole. After the concreting is complete, the earth may be replaced and thoroughly tamped into position.
- 39. The "sand-barrel" is often used with success in soft locations. A stout barrel or cask is placed at the bottom of the excavation, into which the butt of the pole is set. A firm loam, clay, or sand, is then packed tightly into the barrel around the pole, thus forming a foundation. In sandy soils the "temporary sand-barrel" is a most valuable device. This consists of an iron cylinder about the size of a very large cask, but split in two parts, and provided with hinges and clasps. The cylinder is set at the bottom of the excavation, and the pole planted inside of it, and the earth carefully rammed around. completely filling the excavation. Then, by means of a fall, the iron cylinder is withdrawn from the earth, and, opening the clasps, is removed from the pole. For large poles it is customary to cut the ground away into a series of steps. The terraces thus made afford an opportunity to ease the pole into its position at the bottom of the hole; and then, with a working wagon or derrick and sufficient tackle, the pole may gradually be raised to, and sustained in, an upright position, while the earth or concrete is tamped around its base.
- 40. Insulators. The number and form of line insulators, together with the materials proposed for their construction, have been

legion. In this country glass is almost universally used for telegraph and telephone work, and for the latter the tendency has been to make the insulator as small and light as possible. In England, however, the porcelain insulator is the most common, the difference in climate fully accounting for the English preference. As an insulating material, glass has several disadvantages. It is considerably more hygroscopic than porcelain, readily condensing on its surface a film moisture which rapidly lowers its insulating qualities. It is very

Fig. 21. Specimen Insulators.

brittle, decidedly more so than porcelain or earthenware. While blown glass is better in every respect than that which is cast, it is so much more expensive that molded insulators are almost universally used. The great advantage of the glass insulator lies in its transparency, which prevents the formation of cocoons under the petticoats of the insulator, that have a very marked effect in lowering the resistance of lines. Ebonite and india-rubber have been used to quite an extent for insulators; but as they quickly roughen by exposure to the weather, and are considerably more expensive, their

use has been almost exclusively confined to electric railway work. Brown stoneware forms an excellent substance for insulators, as it is strong, cheap, and durable, seldom cracks, and its color makes it inconspicuous. Thoroughly vitrified porcelain is probably the best insulator on the whole, and is used almost exclusively in England and on the Continent. The surface resists the formation of film moisture, and is easily washed clean by rain. The more common forms of line insulators are represented in Fig. 21 (p. 59).

41. The Value of Insulators. — Many experiments have been made to determine the value of poles, cross-arms, and insulators, to maintain line insulation. One test made on a telegraph line extending from New York to Boston, gave a result showing an insulation resistance of about 6,000 ohms per mile.

Some interesting figures derived from tests on cross-arms alone, erected in New York city, gave the following data:—

All four surfaces wet with sponge	3,120	ohms
Soaked one day, left to dry one day, and then wet	2,680	ohms
Painted three years before test	6,150	ohms
Same washed	9,166	ohms
Very dry	330,000	ohms
Newly painted	7,214	ohms
Unpainted for many years	4,300	ohms
Same after having been well washed	13,653	ohms
Same after having been well dried	80,000	ohms
Arms and pins together (wet)	3,686	ohms

From the same set of experiments the following figures are derived for the insulating power for dirty and soot-covered glass and pin insulators. The tests were made on 40 insulators, thus representing a mile of line:—

Dipped in water once .				*		23,220	ohms
Dipped in water four times						56,400	ohms
New insulators and pins dir	rect	from	supp	oly	dep't.	66,600	ohms

When the same insulators were carefully cleaned, their insulating power was raised to about three times the above value. These figures give in a striking manner the loss in insulation by exposure to smoke and dirt.

Some more recent experiments have been made by taking 50 of each of the typical forms of insulators, mounting them in the ordi-

nary way, and exposing them for some months to the action of the weather, the leakage over the insulators being carefully determined by the best-known electrical instruments, while a constant meteorological record was kept of the variations in atmospheric conditions. These experiments covered a period of nearly 150 days, observations being made at least once a day during the time. About half of the observations were made in clear weather, one-fifth in fair weather, 18% in cloudy weather, and 12% in foggy or rainy weather. The general results indicate that the greatest losses in insulation occurred during foggy or misty weather, when the insulators became coated with a thick beady film of moisture. During a heavy rain the insulation was somewhat higher; and after a storm, when sufficient time had elapsed for the drying of the insulator, the resistance of the line was considerably improved, owing to the cleaner condition of the insulating surface. The open double petticoat insulator was found to dry more rapidly than the close single petticoat; but during actual rainfall the loss in insulation of the double petticoat form is greater and more rapid than that of the single. In fine weather the large sizes of each form indicate parallel results, though the double petticoat form gave a much higher resistance than the single form of corresponding size. The true value of any form of insulator can only be properly computed when a consideration of the actual size of the insulating-bell has been eliminated, and attention concentrated entirely upon the possible cross-section of conducting material in the shape of moisture or dirt which may be deposited upon the exterior of the bell. To determine this, it is necessary to ascertain the mean circumference of the insulating material, divided by the conducting length between the point at which the wire is secured and the point of attachment of the insulator to the cross-arm. From this, the possible amount of conducting film may be determined by multiplying the mean circumference by the distance over the insulating surface, and evidently a form giving the greatest length in proportion to the mean circumference will have the highest insulating powers.

42. It is necessary to have the insulators closely and accurately fitted to the pins, and to plan the point of attachment of the wire as low down as possible, in order to give the smallest leverage upon the pin. Many forms of insulators have been recently introduced, in which an iron pin is used to secure the insulator to the cross-arm.

Practical test, however, shows that the iron pin is frequently weaker than the corresponding locust pin, though usually it is strong enough

Fig. 22. Fluid Insulator.

to sustain the wire; such pins fail by bending, and allowing the insulator to slip off. Iron pins possess the very valuable characteristic of not undergoing any essential deterioration under weather, and of cutting the cross-arm to a much less extent than the corresponding wooden pin; they are defective, however, in being a much better conductor than the wooden pin, and thereby tending to increase the leakage.

43. Oil Insulators. — The difficulty in sustaining at all times high insulation chiefly

arises in the deterioration of the insulating surface by the deposition thereon of conducting films of moisture from rain and fog, or, in the cities, by the formation of a coating of greasy dust and smoke. Owing to the rapid development of high potential circuits, the necessition

sity has arisen for obtaining the most perfect methods of insulation; and to this end insulators containing oil, so arranged as to form a barrier to the deposit of a conducting film, have been proposed, and have been used with great success. These contrivances are indicated in Fig. 22, from which it is obvious that the portion of the insulator underneath the petticoat can readily be filled with a highly insulating oleaginous liquid.

44. Tying and "Dead-Ending."—
To secure the line-wire to the insulator would seem a simple matter; yet to devise a tie that is secure, simple, economical, and effective has taxed the ingenuity of line men. The standard method now in use is shown in Fig.

Fig. 23. Line-Wire Tier.

method now in use is shown in Fig. 23. The line-wire is laid in the groove of the insulator, on the side away from the pole; a

soft copper tie-wire, one or two gauge numbers smaller than the line-wire, is placed in and around the insulator groove, in such a manner that one end of the tie-wire shall pass down over the line wire, and the other end up over it, as indicated in Fig. 23. The fastening is then completed by wrapping the tie-wire continuously around the line-wire. Much practice is needed to make this tie in the neatest and securest manner, without injury to the surface of the hard-drawn copper of the line. The strength of the insulator tie is usually supposed to be, when well made, about one-fourth to one-third of the line-wire. When a wire terminates, it must be "dead-ended," in order to secure it from falling, and transfer the tension of the wire to the pole. This is accomplished as shown

in Fig. 24. The line-wire is carried entirely around the groove of the insulator, and either wrapped about itself, or fastened with a McIntire joint.

45. Loops. — In order to give service at any point on a line, the necessary circuit must be carried into the premises of the customer. To effect this the line is usually dead-ended on the nearest pole, and a loop carried to the building to be served. For this purpose brackets are necessary; the best forms for the

Fig. 24, "Dead-Ending."

multitude of cases that may arise in practice being indicated in Fig. 25, while in Fig. 11 the bracket in place is illustrated. For a grounded line, a single pin-bracket is sufficient, for only one wire is carried off of the pole. For a metallic circuit, or for a loop in a series circuit, a double pin-bracket is required. A favorite form, with the method of application, is sufficiently clearly illustrated in Fig. 26 to need no additional explanation. Other forms of double brackets are seen in Fig. 25.

46. Stringing Wires. — After the poles and insulators are set, the erection of the wire is to be undertaken. When there are a very few circuits, it is common to mount one or more reels containing the necessary wire upon a cart, and then to drive the cart slowly along, hoisting the wire up to its appropriate place as fast as the cart passes each pole. If a heavy line is in process of construction, the work can be greatly expedited by the use of what is termed a

"running-board." A number of reels of wire, usually ten or more, are mounted upon spindles, and a piece of wood, practically the same

Fig. 25. Standard Brackets.

as a cross-arm, is arranged, to which ten or more wires are attached. Horses are then harnessed to the cross-piece, as the running-board

Fig. 26. A "Loop."

is termed, and as they "walk away," dragging the running-board after them, the wires are paid out from the reels, and, passing over the appropriate cross-arm, may be immediately secured to the insulators by linemen stationed for the purpose. After the wire upon all the reels has been run out, each wire is pulled up to its

Fig. 29. The Come-Along in Service.

appropriate tension by means of a dynamometer, and a small portable vise, technically termed a "come-along," as illustrated in Figs. 27, 28, and 29.

47. Wire Joints.—A legion of methods have been proposed for making splices in wire; but for all-round work, where slight inequalities in the line are not dearmental, the famous Western Union splice, illustrated in Fig. 30, has stood the test of many years' experience, and perhaps can hardly be excelled. For heavy circuits, such as electric railway feeds, the splices should be thoroughly

soldered when made, and protected additionally by three layers of okonite tape thoroughly saturated with B. & P. paint. Line splices should not be made with soldering acid, but resin used as a flux, in order to guard against the possibility of future corrosion. In trolley wires, or

other circuits in which the preservation of continuity is essential, without any enlargement of the wire, splicing is most successfully made by means of the tubular connector, into which the abutting ends of the successive coils may be slipped and brazed. This connector is indicated in Fig. 31. For telephone lines of hard-drawn copper, the McIntire splice, as illustrated in Fig. 32, is a favorite. This device forms a perfect connector; is as enduring as the wire itself; is made without the use of soldering, impervious to

Fig. 31. Trolley Wire Splice.

moisture, and is equally strong as a hard-soldered joint. It moreover retains the inestimable advantage, especially in the use of hard-drawn metal, of retaining in the splice the full strength of the wire. As there is no soldering, the joint can be made with fewer tools, in less time, and does not anneal the wire.

48. The McIntire Splice consists of two tubes drawn side by side from one piece of copper, the interior diameter corresponding to the external diameter of the wires to be joined. The junction is effected by slipping the wires inside the two tubes and then twisting

the tubes on each other, thus by friction firmly binding the two wires together. In Fig. 32, various sizes, kinds, and applications of the McIntire joint are represented, with the special tools necessary to the completion of the joint. Nos. 1, 4, and 6 are completed joints. Nos. 2, 3, 5, 7, 10, 12, 13, 14, 15, 16, 19, 20, and 21 are various sized connectors fitting wire from No. 16 to No. 0. Nos. 17 and 18

are connectors used for joining two wires of different size. No. 8 indicates two wires thus united. No. 11 shows the McIntire joint used to take a branch from a circuit; 22, 23, and 24 are the styles of pliers employed to complete the splices.

49. Strength of Joints. - The strength of wire joints becomes an exceedingly important item in line construction, when it is considered that the weights of sleet and snow, with which aerial construction is frequently loaded in the winter time, introduces stresses that are dangerously near the elastic

limit of the material. A series of experiments made by the Roeblings on copper wire having a strength of 520 lbs., indicate the following characteristics for the different forms of making wire splices: -

Western Union Joint, soldered, average of ten samples, 431 lbs. 83% of breaking strength of wire.

The McIntire Joint, average of nine samples, not soldered, 343 lbs. 66% of breaking strength of wire.

Western Union Joint, average of eleven samples, not soldered, 279 lbs. 53% of breaking strength of wire.

Western Union Joint, dipped and soldered with acid flux, 336 lbs. 68% of breaking strength of wire.

Western Union Joint, dipped and soldered with resin flux, average of ten samples, 339 lbs. 66% of breaking strength of wire.

Western Union Joint, soldered with iron and acid flux, average samples, 400 lbs. 94% of breaking strength of wire.

Western Union Joint, soldered with poured solder, resin flux, average of ten samples, 443 lbs. 85% of breaking strength of wire.

Western Union Joints, soldered with poured tallow flux, average of five samples, 477 lbs. 91% of breaking strength of wire.

Britannia Joint, two inches solder, average of ten samples, 488 lbs. 94% clbreaking strength of wire.

50. The Suspension of Aerial Cables. — Very few of the cables that are used for aerial conductors have sufficient mechanical strength

Fig. 33. Aerial Cable Suspension.

to be self-supporting over the ordinary spans adopted in poleline construction, and it is necessary to arrange some means whereby the cable may be supported at frequent intervals, thus relieving it of any tension. To this end it is customary to run a suspending strand, usually composed of ½" steel wire rope, between the poles, and

hang thereto the cable. Methods for supporting the cables are indicated in Figs. 33 and 34, from which it will be seen that the cable is sustained by a clip, usually made of zinc, in order to obviate corrosion. This clip is passed around the cable, and sometimes secured to a hook, which is then attached to the strand of "messenger wire," as the supporting rope is technically called. In other cases, the clip itself forms a double hook, one part of which is devoted to supporting the cable, while the othe" is thrown over the messenger wire. The latter expedient is more simple, but not as satisfactory as the one first alluded to. It is usual to place the supporting-hooks on the cable at a distance of not less than 18" to 24" centers; as when longer spans are attempted, it is found that the lead sheath of the cable fails under

the tension and vibration to which the line is exposed, and, sooner or later, will admit moisture. Cable for messenger wire should be a good grade of stranded rope, which is as flexible as possible. The pole attachment is made by bolting to the pole a piece of angle iron, which forms the cable cross-arm. The messenger wire is attached to the cross-arm by means of a hook, or even more simply, passed directly through holes drilled in the cross-arm, and slotted out in such a manner as to prevent the messenger wire escaping.

Between successive poles the messenger wire should be drawn up tautly, in order that, when loaded with the cable, it may not present too great a deflection.

51. The Humming of Wires. — Considerable complaint has arisen from the loud humming sound that is occasionally produced by aerial lines, upon which the wind acts after the fashion of a gigantic Æolian harp. Difficulty from this source is more frequently experienced upon lines which are carried over housetops, for the roofs of buildings form a sounding-board that is capable of transmitting the sonorous vibrations throughout the entire structure. Much ingenuity has been expended in endeavoring to combat this difficulty with, it is to be regretted, rather poor success.

Fig. 34. Cable-Hook.

The endeavors have been always in the direction of introducing something between the line and the insulator which would either absorb and annihilate the vibrations, or prevent them from being transmitted from the insulator and pole to the building. One device consists in terminating the line wire a short distance on either side of the insulator, and introducing between the insulator and each side of the line a spring having a sufficient stiffness to withstand the tension of the line, while, on the other hand, possessing sufficient elasticity to absorb and destroy the vibrations produced by the wind. This device is exceedingly expensive, not very successful, and introduces undesirable complications in the line.

Another attempt consists in lining the interior of the insulator with india-rubber, cork, or a similar substance, placing it between

the pin and the insulator. The elasticity of the india-rubber is supposed to be sufficient to take out the vibrations from the oscillating wire, and prevent them from being transmitted to the pole. Unfortunately, any substance of sufficient elasticity to act in this manner is hardly strong enough to withstand the severe stresses brought upon the insulator by the line; and, sooner or later, the insulator becomes loose.

Another method, indicated in Fig. 35, consists in enveloping the wire near the insulator with a piece of india-rubber tubing some eight inches in length, which is covered with a piece of sheet lead. The enveloped wire is then secured to the insulator, as indicated, by means of a second piece of wire, acting as a tie, which is similarly enveloped in india-rubber and lead. This device forms a cushion,

which is fairly successful in absorbing vibrations, and allows the insulator and cross-arm to retain their original strength, and is, withal, exceedingly economical and speedy of application.

52. The transposition of Telephone Lines.—Where aerial telephone lines are of considerable extent, and especially where upon the same pole-line other circuits

are carried, it becomes essential to provide some means of climinating the inductive disturbances that are initiated in the telephonic circuit. To accomplish this, the practice has been introduced of changing the position of each telephone circuit, with reference to all the other circuits, some five or six times in each mile. This is readily done by arranging the telephone circuits and the other circuits in such a manner that the circuits occupy respectively the four corners of a square. Supposing the corners of the square to be numbered from the upper left hand corner in a clock-wise direction, the telephone wires to occupy 2 and 4 and the other circuits 1 and 3, it is obvious that each half of each telephone circuit is contrarily affected by any induction from the corresponding halves of the other circuits. By frequently reversing the positions, so that in successive intervals the telephone circuits occupy the positions 1 and 3 and the other circuits 2 and 4,

while in succeeding intervals the telephone circuits occupy positions 2 and 4 and the other circuits 1 and 3, the inductive disturbances are annulled by reason of the transposition thus introduced. The general arrangement of such a line is indicated in Fig. 36; the upper half of the illustration indicating the general appearance of the pole-line, while the lower half of the figure shows the placing of the circuits at the relative poles where the transpositions are effected. This method has been found to be an almost complete cure for inductive troubles, and is universally adopted upon all telephone lines of magnitude. Its use, however, renders the location of line troubles a little more difficult; but, after a short expe-

rience, the linemen become so expert in the detection of trouble as to render this difficulty of little magnitude. In order, however, to locate a particular line, it becomes necessary to make the transposition according to some preconcerted system, which must be regularly carried out, or else to mark each wire at each successive pole. If transposition occurs at every fourth pole, there would be practically ten transpositions in a mile, and consequently, by numbering poles, it is easy to trace any particular line.

The transpositions are readily effected by dead-ending the wire at each insulator at which a change is to occur, with a McIntire joint, and then splicing across to the other side of the cross-arm. Some common methods are shown in Fig. 37, the illustration being more lucid than any description.

53. Power Circuits. — Aerial circuits for the distribution of large amounts of energy at high potentials are constructed, in general, much after the fashion of telephone and telegraph lines, the principal differences being in matters of detail. In order to transmit large currents, the wire for these circuits must be of correspondingly greater cross-section; and, in view of the greater electrical pressure employed, all the wire is entirely covered with insulating material, as well as being supported on insulators set on the poles. Though the

Fig. 37. Transposition Joints.

individual wires are heavier, power lines as a whole are much lighter than telegraph or telephone lines, for it is rare to find more than two or three circuits carried on a single pole-line. For this reason the poles may be lighter and shorter; but other details, such as cross-arms, insulators, splicing, tying, etc., are precisely the same. On account of the greater danger entailed by high potentials, it is well to pay special attention to careful insulation, and to secure strong and solid construction in every respect. With the exception of rail-way lines, power circuits are almost always metallic; indeed, in most towns there is legislation against operating high potential circuits on grounded lines.

- **54**. **Pole-Line Specifications**. The best American practice is now constructing pole-lines under specifications, of which the following clauses are abstracts of the most important requirements.
- 55. Poles. Standard poles should be of the best quality of live, green cedar, butt cuts, squared at both ends. They shall be reasonably straight, and well proportioned from top to butt, having the bark peeled, and the knots closely trimmed. The poles shall be of the following dimensions:—

]	MICHIGAN CE	DAR.		CANADIAN CE	EDAR.
Length in Feet.	Minimum Circumference at Top.	Minimum Circumference 6' from Butt.	Length in	Minimum Circumference at Top.	Minimum Circumference 6' from Butt.
20	18"	30 ′′	20	18′′	28"
25	18"	33 ′′	25	18"	30 ′′
30	20′′	36 ′′	30	20′′	34 ′′
35	23 "	39 //	35	21 ''	41 ′′
40	23 //	41 "	40	21 ′′	44 ′′
45	23 //	47 ′′	45	21 ′′	47 //
50	23 ′′	50 //	50	21 ′′	50 ′′

A variation in the circumference of the butt of $1^{\prime\prime}$ will be allowed, but the above circumference of top must be insisted upon. All poles shall be subjected to inspection by a representative of the purchasing company, at points of shipment. The tops of the poles shall be carefully roofed, by chamfering the top to equal angles of 45° on either side of the pole center. The roof shall be painted with three coats of best white lead. Each pole shall be gained with the appropriate number of gains to carry the required number of crossarms. The center of the upper gain shall be $10^{\prime\prime}$ from the apex of the pole roof. Each gain shall be cut square and true with the axis of the pole and with all other gains, and shall be cut to accurately fit the cross-arms. All gains shall receive two coats of best white lead previously to the introduction of the arm.

- 56. Guy-Stubs and Anchor-Logs. The quality of wood shall conform to pole requirements. Guy-stubs shall not be less than 24" in circumference at the top. Anchor-logs shall be 10" in diameter and 4 ft. to 8 ft. long.
- 57. Cross-Arms. Cross-arms shall be of thoroughly sound, straight-grain timber, and made of Norway pine or Southern pine, as specified in particular instances. The arms shall be from 3 feet

- to 10 ft. long, $3\frac{1}{4}$ thick, and $4\frac{1}{4}$ deep. They shall be sawn true and square, fully up to the dimensions specified. The two $4\frac{1}{4}$ sides shall be sawn parallel and at right angles to one of the $3\frac{1}{4}$ sides. The other $3\frac{1}{4}$ side shall be chamfered throughout the whole length of the arm with the exception of $10^{\prime\prime}$ in the center, which shall be left square to fit into the gain upon the pole. This chamfering shall be done to the radius of a circle about $40^{\prime\prime}$ in diameter. All crossarms shall receive two good coats of mineral paint put on with a brush.
- 58. Iron Steel Fittings. All iron steel fittings shall be of good quality of best refined wrought iron, that would be conformable to good bridge specifications, and shall be thoroughly galvanized.
- 59. Galvanizing.—All galvanizing may be tested by selecting samples, which shall be plunged in a saturated solution of sulphate of copper for seventy seconds, and then wiped clean. This process will be repeated four times. If, at the end of the fourth trial, the sample appears black, the galvanizing will be accepted; but if any deposit of copper is shown, giving an indication that the iron has been exposed, the sample will be rejected.
 - 60. Cross-Arm Braces. Each cross-arm shall be braced with two galvanized iron braces 1½" wide and ½" thick by 20" to 30' long. Each pair of braces shall be screwed to the pole by one galvanized iron carriage-bolt. All braces shall be attached to the cross-arm by means of ¾" galvanized iron carriage-bolts, of sufficient length to go through the braces and the arm. A galvanized iron washer shall be placed under the head and nut of each bolt.
 - 61. Cross-Arm Bolts. Each cross-arm shall be screwed to the pole by one \S'' galvanized iron bolt, extending entirely through the arm and pole. Under the head and nut of each bolt a galvanized iron washer, not less than $2\frac{1}{2}$ in diameter, shall be placed.
 - 62. Pins. All pins shall be of the best quality of sound, clear, split locust, free from knots and sapwood. The standard pin shall be $1\frac{1}{4}$ " in diameter for the shank in the cross-arm, and 4" in length. The top of the pin shall be $1\frac{5}{8}$ " in diameter, where it rests upon the cross-arm, and then shall be tapered and threaded to fit the insulator for which it is intended. The threading and tapering shall be neatly and accurately cut, showing the full thread, and shall accurately fit the insulator. Each pin shall be secured to the cross-arm by one

six-penny galvanized iron wire nail driven straight through the shank of the pin.

- 63. Insulators. Standard white glass insulators shall be used, which shall be sound and strong, free from fins and sharp edges, having threaded holes accurately molded and of uniform size.
- 64. Guy-Rods. Anchor guys shall be attached to galvanized iron guy-rods. These rods shall be 6 ft. to 8 ft. long, §" in diameter, provided with a square galvanized iron washer, §" in thickness and 3" square, with a ¾" hole for the reception of the rod.
- 65. Wire-Rope Fittings. All wire-rope fittings, such as thimbles, guy-clamps, rings, sockets, etc., shall be of first-class quality of wire-rope fittings, equivalent, in every respect, to those manufactured by the Roebling Company, or Washburn & Moen.
- 66. Lightning-Rods. Every tenth pole shall be supplied with a lightning-rod, made of No. 6 galvanized iron wire, carried at least one foot above the top of the pole, and secured to the same with heavy galvanized steel wire staples, made of No. 4 B. & S. wire. These staples shall be $2\frac{1}{4}$ " in length. The wire shall be carried down the pole, and thoroughly buried in the ground at the base of the pole with at least two hand turns.
- 67. Guy-Rope. Guy-rope shall be of a good flexible quality of steel rope, preferably of seven-strand. Each strand shall be Siemens-Martin steel No. 10 B. & S. wire. The wire shall be cylindrical, free from scales, inequalities, and other imperfections. The wire shall be capable of elongating 4 per cent in 1 ft. lengths, and shall stand at least 15 twists in a length of 6" without breaking. The tensile strength of the wire must be at least 4.8 times its weight in pounds per mile. The seven strands shall be laid up with a right-hand lay, not exceeding $3\frac{1}{2}$ " in length. The galvanizing of the strands must be subjected to the same test as previously specified. Strand-rope shall be furnished in coils of such length as to weigh between 150 and 200 lbs.
- 68. Construction Details.—The line shall be located by measuring off, and placing stakes for pole location at distances of one 130 ft. average. In case of obstacles, the poles should be located as near the stakes as possible. In the distribution of the poles, the strongest and heaviest poles shall be placed on line corners, while the best looking shall be distributed throughout towns and cities, or in

front of residences. The length of the pole shall be proportioned to the contour of the country, so that the line wire may be strung without abrupt changes in level. On straight lines, all poles shall be set in the ground to a depth of 6 ft., unless otherwise particularly specified. All poles shall be set perpendicularly on straight line work. On curves poles should be set with an outward rake. The holes shall be dug sufficiently large to admit the butt of the pole without hewing; and after the pole is set, the earth shall be returned and thoroughly tamped around the base of the pole. Tamping shall be done in the proportion of three tampers to one shoveler. Upon curves, the poles shall be set to a depth of at least $6\frac{1}{2}$ feet. Where the soil is particularly soft, artificial pole foundations of concrete or timber shall be used.

- 69. Placing of Cross-Arms. On straight line work, the cross-arms shall be placed on alternate sides of succeeding poles. On long spans, the cross-arms of terminal poles shall be placed opposite the long section. At the end of lines, the arms of at least the last two poles shall be placed on the side facing the terminal of the line. On curves, the cross-arms shall face toward the middle of the curve. Long spans of 200 feet shall be head-guyed, and, if possible, side-guyed in both directions.
- 70. Tying of Wires. Line-wires shall be tied in the manner shown in Fig. 23. On curves, all wires shall be located upon the side of the insulator away from the center of the curve. On straight lines, all wires to be located on the side of the insulator next the pole, excepting the two wires nearest the pole, which are to be on the outside of the insulator.
- 71. Joints. The joints shall be made with McIntire sleeves, each having three complete twists.

CHAPTER III. (Continued.)

CONSTRUCTION OF AERIAL CIRCUITS. (Continued.)

PART II. - ELECTRIC RAILWAY CIRCUITS.

72. Electric Railway Circuits. — The marvelous extension of the electric railway systems, leading, during the past four years, to an investment in this country of nearly two hundred millions, has caused the development of a special branch of engineering, presenting problems in line construction which are unique to this particular department of the art. At present, with but very few exceptions, the electric railway circuit is an aerial line; yet it must be able to carry very large quantities of electrical energy, at sufficiently high potentials to become a source of danger, provided the very best workmanship and materials are not used. Usually the railway circuit consists of a series of conducting wires, called feeds, extending from the power station over the route of the railway, from which, at various points along the line, energy is supplied to the trolley wire placed over the center of the track. Two forms of railway lines are in use, respectively designated as "center, or side pole," and "span wire" construction, depending upon whether the poles for supporting the trolley and feed wires are extended along the street, between, or just at one side of the tracks, supporting the trolley wire on brackets, or whether they are placed in a double row along the curbs of the street, the trolley wire being carried upon span wires extended across the street from the tops of opposite poles, while the feeds are carried directly on the poles. These methods of construction are indicated in Figs. 38, 39, 40, and 41.

73. The Railway Return Circuit. — With the exception of a few of the early double trolley roads, the electric railway line has always been a grounded return, the current passing from the station through the feed wire to the trolley wire, thence through the car motor into the rails, and back to the station through the ground. So long as railway systems were small, this practice answered well

enough; but with increasing magnitude, the amounts of energy thus discharged into the ground have given rise to very serious and perplexing problems. The first noticeable effect was the production of

Fig. 38. Center Pole Construction.

earth currents of such importance as to seriously interfere with telephonic and telegraphic service; then a wide-spread electrolytic action made its appearance, affecting in a most serious manner all metallic underground structure, such as gas and water pipes, and the lead

sheathes of underground cables; and lastly, in the larger roads, the poor quality of the earth as a conductor makes itself manifest, necessitating a very considerable fall of potential, and consequent wasteful expenditure of energy in this part of the circuit. On account of

.....

these difficulties, the larger roads are now aiding the ground return by re-enforcing it with copper wire "return feeds," looking in the near future to a more or less complete metallic circuit for the railway system.

74. To aid the conductivity of the rails and ground part of the circuit, it is customary to "bond" every rail of the track by uniting

the ends of the adjacent rails with a copper wire, as shown in Fig. 42 (p. 80).

The copper wire is attached to the rails by drilling a hole into either flange, and firmly riveting the bond into place. Considerable difficulty has been experienced with electrolytic action between the rail bond and the iron. To avoid this source of difficulty

Fig. 43. Track and Ground Wire Connection.

recent practice has shown the advisability of making each bond of two or more separate pieces, so that the corrosion and failure of one will leave the other still in condition to carry the necessary current. Rail bonds should always be so placed as to be open to inspection, and careful maintenance should be exercised over them constantly. A great deal of difficulty has been experienced in the

use of bonds that are too small for the amount of current discharged into the rails. In some cases the bonds have been so heavily loaded as to become hot enough to burn their way entirely through the sleepers forming the road-bed. It is also customary to unite all the rail bonds to a central ground wire extending along between the rails of either track, as shown in Figs. 43 and 44.

The ground wire adds to the conductivity of the return circuit, but serves a more important office to bridge any gap resulting from the accidental destruction of one or more bonds. At frequent intervals, as often as two or three times in every mile, the return wire should be thoroughly grounded by attaching it to a long rod or pipe, driven down to a permanently moist stratum of earth, or to a ground plate buried so deeply as to be always wet.

75. The result of the most recent investigations indicates, however, the utter unreliability of placing any dependence upon the earth to form a portion of the return circuit. While in damp weather the earth may, under some circumstances, become a valuable adjunct, the varying hygrometric condition, sandy soils, and imperfect contact between the rails and the ground, are such as to reduce the value of this factor practically to zero. It thus becomes advisable for every road to provide a complete metallic return circuit, of such resistance that, excepting in cases where the cost of producing energy is abnormally cheap, not more than from 3 to 5 per cent of the station output shall be expended in the entire line circuit. The tendency of street railway construction is constantly toward the use of heavier and larger rails, and a more substantial road-bed, so with proper precautions the track may form the return circuit. cross-section of a rail may be fairly accurately estimated by allowing one square inch of cross-sectional area to every 10 lbs. of rail weight per yard of length; thus, a 50-lb. rail would have a cross-section of 5 square inches, and a 90-pound rail, 9 square inches.

Thus, if W be the weight of the rails per yard in any particular track, $\frac{W}{10}$ = area in square inches of each rail.

As the relative electrical conductivities of steel and copper are about as one to six,

 $\frac{W}{60}$ = the area of a copper conductor that

would be equal in conducting power to a rail; and for a double-track road W/15 gives the equivalent copper conductor.

A copper cable equivalent to the rail section of a four-track road laid with 50-lb. rails would be 3.3 square inches; with 60-lb. rails, 4 square inches; with 70-lb. rails, 4.6 square inches; with 80-lb. rails, 5.3; and with 90-lb. rails 6 square inches.

There are very few electrical railways whose managers are sufficiently liberal to provide 6 square inches of cross-sectional area in the copper conducting system, though there are many roads with ninety-pound rails. Thus, from the previous train of reasoning, there is amply sufficient metal provided in the rail sections for the return path of the current, at least in anything but the largest and longest roads.

76. The difficulty heretofore encountered with return circuits has been almost entirely due to the method of securing continuity in the track. When the rails are originally laid, the ordinary fishplate joint forms an amply sufficient path for the current; but oxidization rapidly sets in, and almost before the road is in operation the contacts between the plates and the rail are sufficiently corroded to interpose a resistance of great magnitude. To overcome this, the custom of introducing rail-bonds has arisen. Many roads have been constructed by uniting the ends of the rails with No. 6 iron wire. In the better forms of construction, the iron wire has been replaced by corresponding copper wire, and in addition the ground wire has been introduced to aid the rail-bonds. Usually the ordinary bonds have been from two to three feet in length. Now, if the continuity of the return circuit be made dependent upon the bond connection between the ends of the rail-joints, each mile of track will have in the neighborhood of 830 ft, of either No. 4 or No. 6 iron or copper wire. Taking the most favorable instance of the use of No. 4 copper wire, and allowing a double-track road, the resistance of the return circuit would be .06572 ohm per mile, an amount greatly in excess of that ordinarily allowed in the feed-wire calculations. A greater difficulty is experienced in the resistance of the contact between the rail-bond and the metal of the rail itself. It is customary to secure the bonds by drilling the ends of the rail. and riveting the bond in place. Unless this work is very carefully supervised, the rivets are very rarely tightly driven, and in many cases oxidization sets in before the bond is put in place. As a result, the resistance of the return circuit may be increased to a very large extent over that of the wire employed for the bonds.

77. Some experiments upon the resistance of return circuits of the Utica Electric Railway are confirmatory of the advisability of

utilizing the track for the return path of the current, indicating that the rail section is ample, if proper connections are secured around the joints. Of single-track 60-lb. rails, 690 ft. were joined by fish-plates only, laid on sawed ties, without bonding. The weather was clear, hot, and dry. The resistance was measured, and found to be .2006 of an ohm, giving 1.5349 of an ohm per mile of single track, and .7675 of an ohm for double track. Measurements made upon 4,000 ft. of double track with 60-lb. rails, bonded with one No. 3 copper wire bond and continuous No. 3 copper ground wire, gave .025 ohm as the resistance per mile of double track. A measurement upon 3,800 ft. of single-track, 45-lb. T-rails, bonded with No. 4 galvanized iron wire, gave a resistance of .0577 ohm per mile of double track.

Calculating the resistance of the bond wires in the track in the second test, an amount of .0236 ohm is given, while the measured resistance was .0254, a variation of about 10 per cent from the computed amount. In the third case, the measured resistance was .0577 ohm, and the calculated amount .0556 ohm, giving a difference of .0021 ohm per mile.

78. The solution of the problem, at least for all ordinary cases of street railway construction, lies in the entire utilization of all the track material as a return circuit, by the proper application of suitable conductors, arranged around the joints of all the rails.

It is curious that this apparently so simple solution has so long been neglected; but, on further inspection, the apparent simplicity resolves itself into a problem of considerable complexity, the difficulty being to secure such a connection between the two rail-ends as will be adequate to carry the necessary current, and also will not rapidly deteriorate when exposed to the severity of street service. In all probability the final and adequate solution will be found in some application of electrical welding. At the present time, the West End Street Railway Company of Boston is trying the experiment of electrically welding the ends of adjacent rails, so as to make their track a single, continuous rail with no breaks, at least for sections of some thousands of feet in length — the experiment indicating, contrarily to previously conceived ideas, that expansion devices are not necessary in a street railway track. This theory has received very strong confirmation from the experiments of Mr. Moxam, at the

Cambria Iron Company; and, if sustained by additional experience, the solution of the problem of rail-bonding, as well as that of track construction, will be promptly and completely solved.

79. A somewhat similar experiment has been tried in Cleveland, where a system of railway has been introduced, consisting of 90-lb. rails jointed by specially heavy fish-plates, which were riveted solidly to each end of the rail. Provided the riveting is done when the rails have fairly clean surfaces, it is likely that the joints formed by the fish-plates would be electrically sufficient.

A process has recently been devised that employs the method of casting together the consecutive rail-ends. A portable furnace weighing about 7,000 lbs., and capable of being drawn by two horses, is operated by oil fuel. The furnace has capacity to melt sufficient iron to make 150 or 200 rail-joints per day. A mold is placed around the rail-ends, and melted iron poured in, that, on solidifying, forms a solid block that actually fuses the rail-ends together. No better electrical joint could be obtained; and, if experience shall demonstrate the plan to be a mechanical success, another solution of the return circuit will be secured. This method is now under trial in St. Louis.

80. Probably, however, it will be some time before the success of either of these methods can be demonstrated sufficiently to warrant their adoption on large scales. It therefore becomes essential to arrange some adequate electrical connection for the ends of the rails in existing tracks. To this end, the bond (see Fig. 42) should be as short as practicable. Former practice indicated the use of bond from 2 to 4 ft. in length; but there is certainly no adequate reason why the bonds should not be reduced to from 6" to 8", as it is only essential to have a sufficient length of bond to span across the openings between the rails, allowing a small fraction of an inch for expansion. There is no reason why heavy copper bonds, thus arranged, should not be secured to the ends of the rails by some form of electrical welding which would make a perfect joint between the bond and rail itself — a joint, also, which in the future would never be subjected to electrolytic action or corrosion. If the overhead line can be erected previous to the bonding of the track, the operation of electric welding becomes exceedingly simple, as it is practicable for the power station to furnish all the energy necessary to make the

welds. The Boston experiments have indicated that two 90-lb. rails can be welded by the application of 100 horse-power for about three minutes, while to weld a bond consisting of a 2" by 4" copper strap would not require the expenditure of over 20 or 30 horse-power for an equivalent length of time.

81. Where the preceding methods cannot be adopted, the next best method consists in forming the bonds of a heavy copper strap, some 6" to 8" in length, of at least one-half a square inch of section, and having at either end a forged eye, through which a copper bolt, not less than than three-quarters of an inch in diameter, may be passed. The eyes on the end of the strap and the bolt should be thoroughly tinned, and a hole tapped in each rail-end to receive the bolt. The bond is applied, and the nuts on either end screwed up solidly, so as to pinch the bond tightly between the rail and the head of the bolt. The application of the flame of a blow-lamp for a few minutes then solders the bond and the bolt together in a solid manner. The copper bolt should be sufficiently long to extend through the rail for at least one-quarter of an inch, and then should be headed over, so that by no possibility it can ever become loosened.

The thread in the rail should be tapped slightly small, so when the copper bolt is screwed home it may be absolutely forced into place, the metal of the bolt squeezing itself into the thread cut into the rail. By this means a contact of sufficient area between the rail and the bond can be obtained, and the joint so thoroughly secured by the compression of the two metals, that no future corrosion can take place between the bolt and the rail section. This method of bonding is shown in Fig. 45.

82. A structure of this description will be amply adequate for all roads not requiring a line capacity of more than 4" to 6" of copper cross-section, for it is evident that the rail area supplies sufficient metal section up to this amount. In cases where the energy to be distributed requires a line of larger cross-section than this, it is essential to re-enforce the rails by such a system of return feeders as will add to the rail return a sufficient quantity of copper cross-section. These feeds may either be supported upon the regular line construction of the road, or may be carried between the tracks, as in the old form of return ground wire. In either case,

it is essential to frequently connect the return feeds to the rails by conductors of adequate size.

83. In designing the return circuit, care should be taken in installations where the rail lines do not pass close to the power station, to introduce a sufficient amount of return feeds from the station to the rails as shall be fully equal to the cross-section of the return circuit as obtained through the rails and return feeds.

84. Electrolytic Action. — The most complete investigation upon the electrolytic action of underground currents has been made

Fig. 45. Improved Rail Bonding.

by Mr. I. H. Farnham, of the New England Telephone & Telegraph Co.¹ Mr. Farnham's attention was drawn to the matter some three years ago, by the appearance of injurious corrosion in the lead sheaths of the underground telephone cables. Investigation traced the cause of the corrosion directly to the return current in the ground from the electrical system of the West End Railway, and further showed that the difficulty could be traced to points along the cable where the underground currents tended to leave the cable for a path of less resistance to the station. At the beginning of these investigations, the negative pole of the generating-station was connected to the overhead trolley system, while the opposite pole was

¹ See transactions of American Institute of Electrical Engineers, April, 1894.

put to earth. Many volt-meter measurements were made, to obtain the difference in potential between the underground cables, waterpipes, and gas-pipes, and the surrounding earth, by means of which it was possible to map out the entire city of Boston, showing where the corrosive action was likely to be expected, thus inclosing an area appropriately termed "Danger District." It was suggested to reverse the poles of the dynamo, placing the positive pole to the trolley, and the negative pole to earth. This suggestion was carried into effect, and a second set of measurements made, showing that, under the new conditions, the amount of the danger district was very much decreased, and indicating that the area in which corrosive action might be expected was practically confined to the immediate neighborhood of the power stations, and thus brought very much more under control. It has been pointed out that by restricting the danger district, the intensity of electrolytic action may be much increased. Such an effect as this is a logical consequence, but the restriction of the district to comparatively small areas renders repairs very much easier of execution. To protect underground structures within the danger district, it has been proposed by Mr. Farnham that large copper conductors should be extended from the grounded side of the generators, entirely through the district, and should be connected, as often as possible, to all metallic structures which are exposed to electrolytic action. This experiment was tried in Boston, subsequent volt-meter measurements indicating that the protection thus afforded was sensibly complete.

Mr. Farnham's investigations further indicated that a very small difference in electrical potential was sufficient to initiate the corrosive action.

85. In the discussion of Mr. Farnham's paper, Prof. D. C. Jackson, of Madison University, gives exceedingly interesting results from experiments to determine the minimum amount of electrical pressure likely to be injurious, and the chemical effects which are produced in the soil through the action of the current. Professor Jackson concludes that a difference of potential as small as one-thousandth of a volt, constituting mere directive force, may be sufficient to initiate and continue sufficient corrosive action to be injurious, provided it extends over a considerable period of time. Professor Jackson also says that, in most cases, the action may be considered

Fig. 46. Corroded Water-Pipe

to be that of an electrolytic cell with iron electrodes, having an electrolyte of the various salts of the alkaline metals, or earths, which would be naturally found in the street soils. These alkaline salts are electrolyzed by the current, the acid radicals attracted by the anode and forming an iron salt, while the metals pass over to the cathode, forming with water a hydroxide, liberating hydrogen. The ferrous salt thus formed diffuses toward the cathode, while the alkaline hydroxide, in a similar manner, diffuses toward the anode. Where these salts meet in the soil, ferrous hydroxide is precipitated,

Fig. 47. Corroded Water-Pipe.

and the original salt re-formed.

Assuming the correctness of this theory, it is evident that the actual corrosion is due to an attack by the acid radical of the salt in the electrolyte, which is set free by the passage of the current.

This investigation still further emphasizes the necessity in street railway work of providing a metallic return circuit which shall be amply sufficient to convey to the power-house all the energy required to operate the railway system. The appearance of corroded water-pipes is illustrated in Figs. 46 (p. 87) and 47.

86. Railway Poles. — Nearly all of the timber woods have been

pressed into service for electrical railway construction. Poles of pine, cedar, chestnut, cypress, spruce, and tamarack are most frequently in demand. Of these spruce, cypress, and tamarack, and occasionally poplar, have been used, particularly in the near localities in which the various kinds of timber are found native. Spruce poles make handsome lines, and are strong and elastic, but have a very short life, usually rotting out in from two to three years. Cypress and tamarack have great durability, and are largely used in the Southern States. Cedar, pine, and chestnut are abundant, and in the North poles are usually selected from one of these woods.

White cedar and chestnut are frequently selected, both for cheapness and prompt delivery. Pine, whether Michigan, Oregon, Norway, Georgia, or North Carolina yellow pine, is usually used for manufactured poles.

By means of a little mill-work, railway poles may be made in a wide variety of shape and finish, according to the choice of the designer. Commonly the butt of the pole is left round, while from the ground up it is sawed either square or octagonal. A manufactured pole, without question, when carefully made and tastefully painted, makes a line of unexceptional appearance. The tops of the poles should be carefully chamfered to a neat point, and should be thoroughly painted with at least three coats of best white lead and oil. In crowded localities, the butts of the poles should always be protected by an iron wheel-guard, to prevent injury by collision with the wheels of vehicles.

87. Wooden Poles should be not less than 6" at the top, and at least 28 or 30 ft. in length. For center-pole construction the poles are set at intervals of from 100 to 150 ft. longitudinally, between the rails in case of double track, or just outside of the rail in a single track. The poles may be either round or octagonal. They should be true, straight, and fully up to the size specified, free from knots and shakes, and sound in every respect. Typical railway poles are shown in Figs. 48 and 39.

In setting the poles the base should be thoroughly tarred for a distance of $\tilde{\mathfrak{o}}$ or 6 ft., and firmly planted in the earth, special care being taken to ram the earth solidly around the pole. Where soft ground is encountered, a concrete foundation must be used.

88. For center-pole construction the poles are supplied with brackets as shown in Fig. 38, to which the insulator supporting the trolley wire is attached.

Care should be taken to see that the brackets are sufficiently firm and strong, and that they are solidly attached to the pole, as frequent accidents have occurred by the fall of the bracket due to a blow from a passing trolley.

89. For span-wire construction, two poles are required for each span, one set on either side of the street close to the curb-line. To counterbalance the tension of the span, it is customary to set the poles with a rake, outward away from the center of the street about

- 18". By this means the tension of the span-wire gradually pulls the pole to a straight line. On account of this tension, span-wire construction must be exceedingly solid. Specially good foundations must be provided for the poles, and they must be amply stiff to resist the bending-moment due to the span wire.
- 90. The span-wire should be made of galvanized iron or steel cable about $\frac{3}{8}$ " to $\frac{1}{2}$ " in diameter, depending upon whether the line is a double or single line. The span-wire should be attached to the poles by means of a ratchet shown in Figs. 49, 50, and 51, in order that requisite adjustment of tension or location of insulators may at any time be made. If rigid economy is desired, the span-wire may be fastened by means of an eye-bolt extending through the pole, the

Fig. 51. Pole Ratchets in Place.

tension being adjusted by means of the nut on the shank of the bolt. Each span-wire should be supplied with two strain insulators, one set near to each pole, as a protection against any leakage from the trolley wire, as in Fig. 41. The strain insulators are introduced into the span-wire by forming eyes in the cable by whipping one end of the cable over on itself with annealed copper wire, carefully turning in all of the wire ends. It is not advisable to use iron wire for any purpose of this kind, as it sooner or later rusts.

91. Iron Poles. — Iron poles are made either of successive lengths of wrought-iron pipe shrunk together at the joints, or of some of the various forms of structural iron. A great variety of designs may be found in the market, of which the examples in Figs. 52, 53, 54, and 55 may be considered as typical of the best forms.

Fig. 54. Iron Pipe Poles.

cessible, the thin metal of the shell is likely to suffer from rust. The Iron Pipe pole, Figs. 54 and 55, was the earliest design on the market, and is deservedly a favorite, as it may be obtained in any

desired weight or three or four nected together smaller one. In must be paid to erly joined, se
strength. As usually made, it consists in lengths of iron pipe of different sizes comby shrinking each piece over the next selecting pipe-poles, particular attention the joints, to see that the pieces are propcurely shrunk, and that a sufficient length

Fig. 55. Pipe-Poles for Center Pole Work.

of joint (at least 18" to 24") is used, in order that the respective pieces may not loosen under the vibration of the passing trolley.

In pipe-poles the joint is the weak point. Iron poles should always be set in concrete, as the butt of the pole presents too small a surface to secure a permanent bearing against mere earth.

92. While the iron pole presents the advantage in appearance, and is undoubtedly of greater durability, the metal of which it is formed being an excellent conductor, it presents the disadvantage of exposing the public to much greater danger from leaky trolley wires. The wooden pole is so good an insulator that no accidents have as yet been reported from leaks through the pole. With the iron pole, how-

Fig. 56. Adjustable Iron Pole-Top.

ever, there are many cases reported where either animals or men have received severe shocks from leaky span-wires.

93. Feed-Wire Insulators, and Pole-Tops. — In addition to providing a support for the trolley wire, the railway pole must carry feed-wire, guard-wire, lightning arrester, cut-out switches, and electric light fixtures, and perhaps a lighting circuit. The pole-top becomes an important feature in the circuit. Typical pole-tops are shown in Figs. 56, 57, 58, and 59. The device illustrated in Fig. 56 consists of a casting into which any number (up to seven) of iron supports may be placed. Each support carries a locust pin to which

any desired form of insulator may be attached for sustaining the feed-wires.

In Fig. 58 a variety of pole-tops are shown, all of which are applicable to the pipe-pole, the designs being arranged to meet the usual requirements of street railway work. These tops are made to be insulated, if desired, a precaution well worth the slight extra expense, as leaky trolley wires have already caused sensible damage on iron pole lines.

Fig. 57. Wooden Pole-Tops.

94. For wooden poles, there is no better top than that given in Fig. 57, especially where heavy feeds are to be carried. A cheaper expedient is found in bolting a cross-arm on to the pole, supplied with wooden pins

and glass insulators, in a manner precisely similar to that of the ordinary telegraph construction

tion.

Fig. 59 represents the poletop used in Philadelphia. In this case the feeder system is underground, the tap running up through the center of the pole. The span-wire is provided with a special break insulator close to the pole, and provision is made for guard-wire

and lightning arrester, the whole device being worked out in an exceedingly mechanical manner.

95. Trolley Insulators. — Insulators for supporting trolley wire have presented a difficult problem to mechanical inventors, owing to the severity of the service to which they are subjected. Insulators are usually made by forming a bell of some insulating substance, which is hung from the span-wire, or pole-bracket. The trolley wire is suspended by a clip inserted into the insulating material forming the bell. The general arrangement of standard forms of trolley insulators is indicated in Figs. 60 to 66 inclusive. The attachment of

the trolley wire to the insulator has presented one of the greatest difficulties in the problem. In the early forms, the connection be-

tween the trolley wire and insulator was always accomplished by soldering the wire to a semicircular brass or bronze support, which was screwed to the under side of the insulating bell. This practice was exceedingly objectionable, from the fact that it annealed

the hard-drawn copper used for the trolley wire, and from the difficulty which arose in making a change whenever the insulator

Fig. 59. Pole-Top of Philadelphia Traction Company.

was worn out or destroyed. To obviate these defects, a multitude of devices arose, whereby the trolley wire was inserted into a clip split through the center, clasping the trolley wire, which was prevented from falling out of the clip by a screw, or nut, which locked the two halves of the clip holding the wire in position. The diffi-

culty of soldering was thus obviated, and by loosening the lock-nut, the insulator could at any time be set free from the wire. Such an arrangement always presented the difficulty of offering a slight

LIBRARY OF MILWAUKEE SCHOOL OF ENGINEERING

100

THE ELECTRICAL TRANSMISSION OF ENERGY.

Fig. 61. Trolley Wire Insulator, with Adjustable Wire Clip,

impediment to the passage of the trolley, and concentrating the wear of the trolley wheel upon the clips in such a manner as to rapidly destroy them, allowing the wire to sooner or later fall from the insulator. As these objections are less serious than those presented by the method of soldering, the latter design has been adopted. As trolley insulators must be adapted to all kinds of line construction, a variety of forms must be provided to meet the different methods of suspension. Thus, in Figs. 60, 61, and 62, designs are indicated for span-wire construction, in which the span-wire is placed through ears on top of and around the insulator. In Fig. 63 a form is shown that is adapted to angle iron bracket work. In Fig. 64 a bridge and mine insulator is indicated, planned to be secured against the under side of the overhead roof by means of screws; while in Fig. 65 a double-curve insulator is indicated, the extended ears of which receive the pull-offs that hold the curve in position. In Fig. 66 a sectional view of the hard rubber trolley insulator is shown, exhibiting construction. The insulator consists of a hard rubber bell, into which two threaded bushings of brass are forced, to sustain the trolley wire clip and the span-wire ears. The trolley wire split clip is seen in the lower part of the illustration. To secure an insulating substance from which to form the bells, which should possess sufficient insulating properties to be safe upon a five hundred volt circuit, and strong enough to withstand the blows of the trolley wheel, has presented the greatest difficulty in this problem. Glass, porcelain, and india-rubber have been tried with but little success. Also various other substances, such as mixtures of mica, india-rubber, asbestos, etc., have been experimented with. Present practice indicates that a compound of asbestos and india-rubber, formed under hydraulic pressure in suitable molds, and thoroughly vulcanized, gives the best satisfaction. It is probable, however, that the best trolley insulator has yet to be invented.

96. Railway Line Work.— The railway circuit, for the present at least, is necessarily an aerial line. If the trolley wire were extended in a single straight line, its erection and maintenance would be relatively a simple matter. On the contrary, it must accommodate itself to curves of every description, intersect other lines, and afford proper methods of switching; and, at each of its many supports, it must be thoroughly electrically insulated, with sufficient mechanical strength to withstand the severe usage of the trolley

Fig. 62. Straight Line Insulator.

Fig. 63. Angle Iron Bracket Insulator.

Fig. 64. Bridge and Mine Insulator.

Fig. 65. Double Curve Insulator.

wheel. There are three points in every trolley line deserving of special attention, namely, curves, switches, and cross-overs. To sustain the trolley wire at each curve, it is customary to plant special guy-poles, to which the entire curve is anchored by means of strain insulators or pull-offs; and a similar method is adopted wherever there occurs any change in direction of the trolley wire, as, for

example, in the case of turn-outs. The solution of all problems in railway line construction may be readily solved by careful application of the principle of the parallelogram forces. It is essential to study the location of each point on the line where a change in direction occurs, and determine the resultant of the forces which act upon the trolley wire. As all electric railway work is held in place by means of wire guys, all forms of construction are always in tension, and

must be designed to meet this form of stress in every particular. It is hardly practicable to give diagrams illustrating all the possible forms of wire construction which might be met with. In Figs. 67,

Fig. 67. Curve Construction.

68, and 69 are given the general methods which are in common use on the best roads for curves and turn-outs, in which the location of anchor poles and method of staying may be readily seen. To ascertain the correct location for the pull-off pole, or poles, for a curve,

Fig. 68. Turnout Construction.

draw an equilateral triangle, having for its base the cord of the arc formed by drawing a line between the tangent points of the curve. The last two span-wires should be located at the end of the tangents, which also gives the location of the base of the triangle

AA'C, Fig. 69. The apex of this triangle gives the best location for the pull-off pole at C. If it is inconvenient to locate the pole here, it is permissible to move it slightly forward or backward, or a little to the right or left, though point C is the only correct location. An expedient sometimes adopted for situations of this kind consists in making the pull-offs up on an iron ring, and carrying a pendant over from the ring back to the pole, which, under these circumstances, may be located at any distance along the line CD. If possible, the guy-poles E and F are advisable. Right and left curves may be built, as indicated in Fig. 70, in which A is the point of

Fig. 69. Curve Guy-Poles.

Fig. 70. Right and Left Curve Construction.

location of the switch, and AC and AC" the two curves extending respectively to the right and left. The pull-off pole is located in a straight line at B, which is a prolongation of AC', each half of the double curve being treated in precisely the same manner as indicated for a single curve.

97. Strain Insulators. — As the trolley wire must be retained by tension in its appropriate place along the curve, a form of insulator must be designed which shall sustain a severe lateral pull. Such an insulator has already been alluded to in Fig. 65. Another form of a similar device is shown in Fig. 71. The trolley wire clip is supported by a goose-necked rod, the end of which is protected by

an insulating cover of vulcanized rubber, which is attached to the pull-off wire by means of a bail-shaped swivel, that surrounds the head of the goose-neck. Designs for pull-off insulators are as numerous as those for trolley insulators, and have met with corresponding success. It is frequently necessary to stay trolley wire with lateral guys, which must be carefully insulated; and for this

Fig. 71. Pull-Over or Curve Bracket.

purpose it is necessary to insulate the guy from the trolley wire with a strain insulator. The strain insulator is always subjected to severe tension, often rising to several thousand pounds, and is, further, under constant vibration from the passage of the trolley wheel. Strain insulators in the past have been defective from weak construction. A good form is indicated in Fig. 72, which consists of a strong iron bolt carefully overlaid with vulcanized india-rubber, as

Fig. 72. The Strain Insulator.

an insulator. A disk in the center serves the purpose of a break, preventing the lodgment of a continuous coating of snow and ice. Pull-offs are attached to either end of the guy-wire by means of bail-shaped swivels.

The pull-off wires should be made of $\frac{3}{8}''$ or $\frac{1}{2}''$ steel cable, carefully and neatly secured to the insulators and other attachments. All guy-poles to which strain insulators are attached must be specially heavy, and exceedingly securely set with an extra amount

of outward rake, with especial attention directed to the security of foundation. Moreover, insulators, turn-buckles, pull-offs, and other fixtures upon which special stress is concentrated, should receive particular attention, in view of the severity of service which they are called upon to endure.

Fig. 73. Method of Anchoring Single Line.

98. Anchors.— At the end of every curve and turn-out, and as often as every 2500 ft. in the tangents, the trolley line should be anchored in both directions by means of ears which are soldered to the wire. The object of the anchoring is to sustain the line in both directions, so that in case of rupture of the trolley wire, only

Fig. 74. Method of Anchoring Double Line.

a comparatively short length of line will be pulled down and thrown out of service. In default of the provision of anchoring, instances have been known when the overhead system of an entire railway fell flat to the earth, owing to the rupture of the trolley wire at a single point. The method of constructing the anchors is indicated in Figs. 73 and 74.

A metallic clip, similar in general shape to a trolley line clip, is soldered to the wire, from which four guys are extended to the nearest line-poles in such a way as to sustain the longitudinal tension of the trolley wire in both directions. These guys must be carefully insulated by appropriate strain insulators. Diagrams 73 and 74 indicate clearly the methods to be adopted in both the case of a single- and a double-track road.

99. Line Sections. — As short circuits are a matter of frequent occurrence in street railway work, it is customary to split the trolley wire and the feeder system into a number of independent sections, by introducing section insulators into various parts of the trolley

Fig. 75. Section Insulator.

wire, so that a ground may interrupt the traffic on only a small portion of the line. An approved form of section insulator is shown in Fig. 75, and consists of two trolley wire clips which are separated by a heavy strain insulator. The ends of two adjacent sections of the trolley wire are carried into the metal clips and firmly soldered into place, the strain insulator serving as an electrical break between the sections, and at the same time ensures mechanical continuity, so that the trolley wheel may pass the section insulator without leaving the wire.

100. Switches. — The perfect overhead switch, like the perfect trolley insulator, has yet to be devised. All the arrangements so far provided for this purpose have been, almost invariably, open to the objection that they cause the trolley to run off the wire. Two of

the best forms which have yet been placed on the market are shown in Figs. 76 and 77.

From the illustrations, the device is seen to be a metal casting furnished with ears for the reception of the trolley wires. On one end the switch is provided with a single ear for securing one section of the wire, while on the other side the switch is split into two, three,

Fig. 76. Two-Point Switch.

or more parts, depending upon the number of diverging lines which radiate from the switch. The setting of the switch on the overhead line is a matter of considerable care; and it is only by the most skillful placing of the switch that the trolley wheel, under any circumstances, can be coaxed to remain upon the line. The proper location of the switch is shown in Fig. 78, in which the dotted line

Fig. 77. Three-Point Switch.

indicates the true path described by the trolley wheel, while the heavy central line indicates the correct position of the switch, which should be located at the center of the arc described by the trolley. Double-track roads never require switches, excepting where two or three lines radiate from a single point; and as such intersections are rare, the car conductor can, at these points, be expected to give especial attention to keeping the trolley wheel in proper place. In a

single track it is necessary to have two switches at every turn-out. To avoid the difficulties introduced by switches, it is now customary to run a double trolley wire over single-track roads. While at first this might seem a useless expenditure for wire, it must be recollected that the additional amount of copper employed in a double trolley wire may be deducted from the feed-wire; and, as the trolley wire is uninsulated, it is cheaper in proportion than the feeds. The trolley insulators are more expensive, but the extra cost entailed in this direction is more than compensated by the decreased expense in annual maintenance of trolley wheels and switches.

101. Line Crossings. — Where two different railways intersect each other that do not use the same power station, it is necessary to so arrange the overhead lines on all crossings as to render the roads electrically separate from each other. Each road must have an independent trolley right of way, that is electrically entirely distinct from

Fig. 78. Method of Setting Frog.

that of its neighbor, and yet neither road must place any mechanical obstacles that will interfere with the free passage of the other trolley. A number of automatic devices have been proposed as solutions of the cross-over problem, a typical form employing a light but stiff horseshoe-shaped casting suspended by the usual hanger from the span wire or bracket. One trolley wire is hung in the upper part of the inverted U thus formed, by the usual form of trolley wire insulator, and always runs continuously through the cross-over. The other line enters either end of the U-shaped casting, and normally is open at this point, thus always affording a free passage for the trolley wheel of the first or upper line. To close the lower line a swinging bridge is arranged, that, on the approach of a trolley wheel belonging to the lower line, swings into position across the gap in the U, providing a complete path for the trolley wheel. While inventions of this class are exceedingly ingenious, and are mechanically success-

ful under ordinary circumstances, they are likely to fail in stormy weather, just at a time when the road is most heavily loaded, and their service most in demand.

Fig. 79. Cross-overs and Switches in Place.

The illustration, Fig. 79, is a representation of the overhead system of two intersecting and two branch railway lines. The locations of the switches and cross-overs are readily seen.

CHAPTER III. — Continued.

CONSTRUCTION OF AERIAL CIRCUITS. - Continued.

PART III. - LIGHTNING ARRESTERS.

102. Lightning Guards and Strong Current Arresters. - Aerial circuits are constantly exposed to the incursion of abnormal amounts of electrical energy, either from atmospheric sources, or from accidental contact with other systems. As far as the line is concerned, about the only damage that usually happens is to burn off one or more wires. Unfortunately, however, extraneous electricity is not so easily satisfied, but almost invariably finds way into the terminal station, and there creates havoc among the apparatus or machinery. As long as the problem to be solved was the protection of telephone and telegraph circuits from atmospheric electricity, lightning protectors usually consisted of two serrated plates, one being in series with the line, while the other was set close to, but not touching, the first plate, and connected to the ground. Protectors of this description were based upon the theory that the high potential of the lightning flash would jump the small air-gap between the serrated plates, rather than go through the remainder of the circuit in order to get to earth. While these devices did fairly good work, and undoubtedly obviated a large amount of damage, it soon became evident that they were not universally successful. Recent investigations show that lightning discharges consist of a great number of very rapid electrical oscillations, and that the impedance of almost any circuit is sufficient to cause currents of such high frequency to spit off, and to seek return paths in all directions. In order to increase the impedance of circuits which it is desired to protect, it is customary to introduce impedance coils that consist of an iron core surrounded with a few turns of copper wire, so planned as to present little or no ohmic resistance, the iron core being of sufficient size that the normal current flowing through the coils shall excite but a very small degree of magnetism, the idea being that the foreign current will cause a great number of magnetic lines to be added to the circuit, thereby increasing enormously its inductance, and opposing a large amount of impedance. Lightning arresters of this description, consisting of a number of coils in series, each one fitted with a corresponding spark-gap, have been used with great success by Dr. Lodge, and are employed for the protection of sensitive and delicate instruments used in submarine cable work.

103. The introduction of circuits carrying large currents at high potentials gave rise to an additional factor in the problem of protection, from the fact that while the spark-gap operated to divert to earth a lightning flash or foreign current, an initial discharge occur-

Fig. 80. High Resistance Arrester.

ring between the serrated plates was sufficient to establish an arc, which was thereafter maintained by the heavy current, until the serrated plates were consumed and the lightning guard destroyed. Therefore it became necessary to introduce some additional apparatus which should break or interrupt the arc thus started. To accomplish this end, inventors have labored in five different directions, the results of which have been embodied in various mechanical devices, the following being representative illustrations of each plan.

104. (1) High Resistance Arresters have been made, consisting of a number of thin metal plates, each separated from the other

by means of a sheet of mica or other infusible insulating substance. The line is connected to the top plate, while the bottom plate is in electrical communication with the ground. On the occurrence of a lightning flash the enormous electromotive force of the discharge is supposed to enable the current to find its way over all of the insulating gaps and to ground, while the gaps introduce sufficient resistance to prevent the continuance of an arc after the atmospheric discharge has ceased. This form of lightning arrester is exemplified in Fig. 80. From its simplicity this invention has received quite wide introduction.

The life of this arrester, however, is short, owing to the fact that at each discharge globules of molten metal are likely to form on the

e lges of the disks that bridge across the insulating gaps, and in a short time completely eliminate them, thus short-circuiting the line to earth.

105. (2) The Magnetic Blow-Out Arrester. - This apparatus, invented by the Thomson Houston Co., is represented in Fig. 81. consists of a coil of wire, in series with the line and apparatus to be protected forming the helix of an electro-magnet, between the poles of which are placed two cam-shaped pieces of metal, one being connected to the line and the other to earth, and which are separated by a small air-gap. Under an atmospheric discharge the electro-magnet presents suffi-

Fig. 81. Magnetic Blow-Cut Arrester.

cient impedance to divert the flash, and make it cross the air-gap between the cam-shaped pieces of metal, while the arc which is thus

Fig. 82. Mechanical Magnet Arrester.

formed, being in a strong magnetic field, is extinguished by the action of the electro-magnet. For central station work this has proved an efficient and valuable instrument.

106. (3) The Mechanical Magnet Arrester. — A third form of lightning arrester is indicated in Fig. 82 (see p. 115), in which the extinguishment of the arc is effected by electro-mechanical means.

This device consists of a rectangular block of slate, upon which are set two holders carrying two pieces of electric light carbon, AA. In the center of the block is an electro-magnet, the armature of which forms a lever, carrying at each end two similar pieces of carbon, that, in their normal positon, form two small air-gaps, in connection with the previous holders. One of the holders is connected to the line and the other to earth. On the passage of an atmospheric discharge the flash is shunted, partly through the electro-magnet, which is thereby excited, and partly through the two air-

Fig. 83. Air Expansion Arrester.

gaps to earth. On the excitement of the electro-magnet, it attracts its armature, causing the lever to spring away, carrying its carbon ends away from the holders, thus increasing the gap between the holders and the lever to such an extent as to break the arc which has been formed. As soon as the arc is extinguished, the current ceases to flow through the electro-magnet, and the lever swings back to its normal position, so that the arrester is self-setting.

107. (4) Air Expansion Arrester. - A lightning arrester introduced by the Westinghouse Company is indicated in Fig. 83.

This device consists of a slate box carrying a swinging arm H, supplied at its end with a semicircular rod of carbon B. Inside of the box there are two carbon points AA', placed so as to closely

approach the carbon arc H. It will also be noticed that the box is divided into two parts by the partition OO'. The points A and A' are connected to earth, while the line is attached to the insulated center pivot K. When a discharge takes place, the current finds its way through the metal arm H into the semicircular carbon rod B, jumps the air-gap O into the carbon point A, and thence to earth. An arc is consequently formed at the point O, which instantly heats and expands the air in the compartment of the box in which the discharge takes place. This expansion of the air is sufficiently great

Fig. 84. Non-Arcing Arresters.

to blow the carbon rod out of the box; and as it swings around on the pivot K, the lightning arrester resets itself automatically by entering the compartment on the other side of the partition, and taking up its position in proximity to the other point A'.

Carbon points are used in the lightning arresters because they are infusible, are fairly good conductors, and may be easily replaced when worn.

108. (5) Non-Arcing Metal Arresters. — While experimenting on the subject of lightning arresters, Mr. Wurtz made the singular discovery that metals of a certain chemical group would not allow of

the formation or continuation of an arc. This singular and fortunate discovery has led to the invention of a lightning arrester made of non-arcing metals, as shown in Fig. 84 (see p. 117).

From the illustration, it will be seen that upon a slate base there are placed seven metallic cylinders, the exterior cylinders on each side of the center being connected with the line, while the central cylinder is grounded, the intermediate cylinders forming a series of air-gaps. The cylinders are separated by about the thirty-second of an inch. When a flash takes place, the discharge crosses the air-gaps, seeking the center cylinder, and thence to earth. Mr. Wurtz's discovery lies in the fact that certain metals of the cadmium group do not permit the continuance of an arc, probably due to the fact that when the spark first crosses the gaps it volatilizes and oxidizes

Fig. 85. Diagram of the Wurtz Condenser Arrester.

a certain amount of the metal, and extinguishes itself by interposing a non-conducting medium between the two surfaces. The lightning arrester here described is chiefly valuable in alternating current work, as it is found that, with continuous current machines, the arc is not entirely extinguished, though it is rendered comparatively harmless.

109. Discriminating Arresters. — In a recent paper before the American Institute of Electrical Engineers, Mr. A. J. Wurtz illustrates two new forms of what he terms "discriminating lightning arresters." ¹

The invention of a non-arcing lightning arrester, by Mr. Wurtz, seemed to present an exceedingly satisfactory method of protection for alternating current circuits. On continuous current circuits, however, this lightning arrester does not entirely extinguish the arc,

¹ See transactions of American Institute of Electrical Engineers, May, 1894.

although it renders it comparatively harmless and quiet. Continuing experiments, Mr. Wurtz proposed the device of a condenser lightning arrester particularly adapted to continuous current circuits. This device may be illustrated by diagram, Fig. 85, indicating the method in which the experiments were carried out. A 500-volt continuous current generator is represented at A, connected to an external circuit LG. Across the circuit a condenser K, having a high resistance shunt S, is placed—this high resistance shunt being constructed of a heavy lead-pencil mark upon a sheet of glass; at C a spark-gap is arranged. The condenser serves the purpose of

Fig. 86. The Wurtz Non-Arcing Continuous Current Arrester.

furnishing sufficient capacity in the line to absorb the violent oscillations set up by lightning discharges, while the high resistance shunt S serves the purpose of constantly keeping the condenser discharged to earth, thus keeping it from ever becoming overloaded, the high resistance of the shunt preventing the dynamo from arcing through it. Under these circumstances, the most violent disruptive discharges at B, through C to G, fail to injure in any particular either the condenser or the generator, and the arc at C is not maintained. This device has been put into practical operation in some of the Western electrical railways, and has given most gratifying results.

110. A continued study of the subject led to the invention of a still more simple non-arcing constant current arrester, which for simplicity and cheapness, as well as of effectiveness in action, seems to be almost unsurpassable. This arrester is illustrated in Fig. 86, and consists of two blocks of marble about 3" wide, 3\frac{1}{2}" long, and 1" thick In the lower block two brass electrodes 1" wide are laid and finished flush with the surface, the distance between the ends of the electrodes being about $\frac{1}{2}$. This space is occupied by a series of blocks of lignum vitæ, which are thoroughly charred, or contain a series of charred grooves about 16" wide, and 32" deep. The outer marble block is intended simply to act as a cover, and to protect the apparatus from injury. The charred wood seems to form a conducting path of so high resistance as to prevent the dynamo voltage from crossing it, and yet forms a conductor of sensibly low resistance to the high potential of the lightning flash. Furthermore, the carbon being essentially non-volatile, even under the temperature of the electric spark, no adequate metallic vapors are formed to sustain the arc that is initiated by the flash. As a result, the electrical oscillations set up in the conducting circuit by an electric storm, pass with comparative readiness across the carbon blocks, which are of sufficiently high resistance to extinguish and prevent any dynamo arc. During the past summer these lightning arresters have been given a very successful exhaustive trial on several of the Western electrical railways particularly subject to electric storms.

111. Automatic Cut-Outs. — Both circuits and central station machinery are exposed to danger from overloading. A demand may be made by the line that is sufficient to injure the station machinery; or, conversely, some disarrangement of the station may expose the line to damage from an overload of current. To obviate difficulty from this cause, a great variety of inventions have been proposed, designed to effect the automatic opening of the circuit to be protected when a current greater than the normal amount flows into the line. The most notable and widely extended of these devices is the simple fuse. A block of insulating material is interposed in the circuit, upon which a fine wire or strip of some easily fusible metal, such as lead or tin, or some of the lead-tin alloys, is extended, forming a part of the circuit. The size of this strip is so calculated that, upon any sensible increase of current in the circuit, the strip

will melt and open the circuit. Experience, however, has shown that the melting-point of fuses is difficult to determine with sufficient accuracy, on the one hand, to afford a protection, and, on the other, not to open the circuit too frequently upon slight increase of current. It is also found that considerable time is required to replace a fuse when it is burned, making a long interruption of service. Blocks, carrying two or more fuses, which may be rapidly plugged in and out

of the circuit, form a partial solution of this part of the problem. But the fuse-block cannot be considered all that is desired for a protecting apparatus. Automatic devices have been produced to obviate the defects of the fuse-blocks, with more or less success, a typical form of which is shown in Fig. 87.

This apparatus consists of an electro-magnetic clutch, forming a part of a spring switch so arranged that, when the current in the line increases over the normal amount, the increased magnetism of the

electro-magnet will be sufficient to release the catch holding the switch in position, and the powerful spring, to which the blades of the switch are attached, will be able to act, and, throwing the switch out of gear, open the circuit. In order to obviate the destructive arc which would naturally form between the blades of the switch, two carbon rods are arranged, FF', to play along two carbon plates G and G'. The arc which is formed occurs simply between

Fig. 88. Ewitchboard Protector.

Fig. 89. Cable Protector.

the carbon, which can be readily replaced as fast as used. Automatic cut-outs of this kind can be adjusted to an exceedingly small variation of current, and may be reset so quickly as to cause little or no interruption to the circuit. For all railway work, apparatus of this kind is absolutely essential.

112. Cable and Switchboard Protectors. — Underground cables have been severe sufferers from incursive currents of sufficient magnitude to fuse the lead covering of the cable and entirely destroy them. To afford a protection, a special fuse device, indicated in Fig. 89, has been put in service upon cable-heads forming the junction between aerial lines and underground systems. The illus-

tration shows a single protector, the entire cable being secured by arranging a sufficient number of these protectors, one after another, to correspond to the number of wires. The protector consists of a tube of vulcanized fiber or india-rubber about 6" in length; the ends of the tube carry metallic bushings, one end being attached to a spring A, to which the aerial line is connected, while the other end is secured to a metallic block B, in electrical connection with the wire in the cable. Through the insulating-tube extends a lead fuse arranged to blow at any desired current, forming the only connection between the cable and aerial line. As the end B is sealed, while the end A is open to the atmosphere, the blowing of the fuse causes a disruptive charge, forcing the products of the fusion of the lead wire violently out into the air, thus extinguishing the arc. Experience with this protector has been gratifying, though as yet it is of but limited extent.

113. Switchboard Arresters. — At the switchboard end of Telegraph and Telephone lines, an endeavor has been made to combine a lightning arrester with a sneak current protector, by means of the device indicated in Fig. 88.

The contrivance consists of two parts, - a lightning arrester made of two carbon plates, seen at AA, and a sneak current arrester in the form of a fusible heat-coil at B. One-half of each pair of cable wires enters the terminal C, the other the terminal D. The wire D passes through spring F to spring G, and thence to the switchboard through E. Spring F, however, is in contact with two peculiarly shaped carbon plates. These carbon plates are shown in detail at H. The plates consist of two little blocks of carbon about 1'' thick, one having a groove in the top into which the spring fits. The lower carbon rests upon a metal plate that is thoroughly grounded, and the carbon in addition has a small central concavity filled with a drop of fusible metal. The two carbons are separated by a sheet of mica about $\frac{1}{200}$ in thickness, cut out in such a manner as to bring the drop of fusible metal in the lower carbon almost in contact with the upper carbon plate. A flash of lightning entering D is supposed to follow through spring F to the carbon plate, and then to jump the small air-gap presented by the film of mica, and go to ground through the lower carbon plate. In case the flash should be of sufficient intensity to cause a sensible

amount of heat, the drop of fusible metal is melted, and at the same time sufficient expansion is initiated to short-circuit the two carbon plates across the film of mica, thus dead-grounding the entire combination, and affording protection to the switchboard.

114. In the case of a sneak current, there might be insufficient voltage to cause the discharge to leap the $\frac{1}{200}$ of the mica gap, and yet a sufficient quantity of current might be presented to injure the switchboard. To avoid this, the heat-coil B is introduced in the circuit between the springs G and F. This heat-coil consists of a fine German silver wire wrapped around a small metal plug, which is held in its place by a drop of solder having an exceedingly low meltingpoint. The heat-coil is individually shown at H, where the projecting metal point may be readily distinguished. A close inspection of the cut indicates that the heat-coil rests between the springs F and G, while the point projects through spring F, and rests upon a thin spring directly underneath spring F, over the ground plate, and yet not in contact with the same. Upon the passage through the heat. coil of a current of sensible magnitude, in the neighborhood of amperes, there is sufficient heat evolved in the fine German silver wire to melt the drop of solder, thus allowing the tension of spring G to force the pin through the coil, down upon the auxiliary spring, pressing this spring to metallic contact with the ground plate, thus dead-grounding the system, short-circuiting the switchboard, and preventing the sneak current from injuring the apparatus. Inasmuch as the heat-coils are found to ground the line with the passage of $t_0^{1.5}$ amperes, and as most telephonic and telegraphic apparatus can, for some time, resist a current of ampere, it seems that this device furnishes fairly reasonable protection to switchboard apparatus. The other half of the cable pair, entering by the terminal C, passes, by means of an insulated bolt, through the iron frame on which the apparatus is placed, to a second set of springs, heat-coils, and carbon plates, arranged to duplicate the first set, and passes to the switchboard by E'. Thus both wires of a metallic line are protected.

APPENDIX TO CHAPTER III.

INSURANCE REGULATIONS FOR THE INSTALLATION OF CIRCUITS.

THE following extracts from the National Electrical Code give a consensus of the best expert opinion as to precautions desirable in the construction of electric circuits.

115. GENERAL ARRANGEMENT OF RULES.

- Class A.—Central Stations, dynamo, motor, storage-battery rooms, and transformer sub-stations, Rules 1 to 11.
- Class B. OUTSIDE WORK, Rules 12 to 13.
- Class C. INSIDE WORK, Rules 14 to 39.
 - a. General Instructions, all systems and voltages, Rules 14 to 17.
 - b. Constant-Current System, Rules 18 to 20.
 - c. Constant-Potential Systems.
 - 1. All voltages, Rules 21 to 23.
 - 2. Voltages not over 300, Rules 24 to 31.
 - 3. Voltages between 300 and 3,000, Rules 32 to 37.
 - 4. Voltages over 3,000, Rules 38 and 39.
- Class D. Specifications for Wires and Fittings, Rules 40 to 55.
- Class E. MISCELLANEOUS, Rules 56 to 59.
- Class F. MARINE WIRING, Rules 60 to 72.

116. Class A. 1. GENERATORS MUST BE-

- a. Located in a dry place.
- b. Never placed where hazardous processes are carried on or where exposed to inflammable gases or flyings of combustible material.
- c. Insulated upon floors or base-frames kept filled to prevent the absorption of moisture, and must be kept clean and dry. If base-frame insulation is impractical, the metal frame should be permanently and thoroughly grounded. If frame insulation is impractical, the machine should be surrounded with insulated platforms to prevent injury to operators.
- d. Protected by approved safety fuses.
- e. Supplied with waterproof covers when not in use.
- f. Supplied with plate, stating maker, capacity in volts, amperes, and normal speed, R. P. M.
- 117. 2. CONDUCTORS, EXTENDING FROM GENERATORS TO SWITCHBOARDS OR OTHER INSTRUMENTS AND THENCE TO OUTSIDE LINES, MUST—
- a. Be in plain sight or readily accessible.
- b. Have approved insulation as called for by rules in Class C. In central stations exposed circuits must have a heavy braided non-combustible outside covering. Bus bars may be made of bare metal.
- c. Be rigidly placed.
- d. In all other respects be installed as required by rules in Class C.

118. 3. SWITCHBOARDS.

a. Must be so placed as to prevent danger of communicating fire to adjacent material.

- b. Must be made of non-combustible material or of hard wood in skeleton form, filled to prevent absorption of moisture.
- c. Must be accessible from all sides when wired from the back, but may be placed against a non-combustible wall when wired on the face.
- d. Must be kept free from moisture.
- c. Bus bars must be equipped in accordance with Rules for conductors.
 - 4. RESISTANCE BOXES AND EQUALIZERS.
- a. Should be placed upon switchboard, or, if not, placed at least one foot from all combustible material, and protected by non-inflammable, nonabsorptive, insulating material.
 - 5. LIGHTNING-ARRESTERS MUST BE-
- a. Attached to each side of every overhead circuit.
- b. Located in accessible places, away from combustible materials, and as near as possible to the point where the wires enter the building. Stationarresters should be placed upon the switchboard. Kinks, coils, sharp bends in wires, between the arresters and outside lines, must be avoided.
- c. Provided with a good, permanent ground by conductors equal in conductivity to a No. 6 B. & S. copper wire. Ground conductors should be run in straight lines from the arresters, and never attached to gas-pipes. Choke-coils can be introduced between the arresters and the dynamos. Ground wires should not be inclosed in iron pipes.

119. 6. CARE AND ATTENDANCE.

- a. Competent employees must be provided for all dynamo machinery.
- b. Oily waste must be kept in metal waste-cans, with legs raising the bottoms at least 3 inches from the floor, and with self-closing covers; remove waste daily.
 7. Testing.
- a. All circuits must be provided with reliable, preferably automatic ground detectors, never grounded to gas-pipes within buildings, and—
- b. Where automatic detectors are not practicable, tested daily.
- c. Data from tests must be preserved for Inspection Department.

120. 8. Motors.

- a. The general provisions for generators, α to f inclusive, apply to motors.
- b. Must be wired with the same precautions required by rules in Class C.
- c. The motor and its resistance-box must be protected by cut-out and controlled by switch, plainly indicating whether current is on or off. For one-quarter horse-power, or smaller motors on low-tension circuits, a single-pole switch will suffice. The switch and rheostat must be located within sight of the motor.
- d. Rheostat or starting boxes must conform to Rule 4.
- e. Must not be run in series-multiple or multiple-series.
- f. Must be provided with waterproof cover when not in use.
- g. Electric ceiling-fans must be hung from insulated supports.

121. 9. RAILWAY POWER PLANTS.

a. Each feed-wire before it leaves the station must be equipped with an automatic circuit-breaker, mounted upon fireproof base in full view and easy reach of the attendants.

122. 10. Storage or Primary Battery Installations.

a. When current for light or power is taken from primary or secondary batteries, the same general regulations must be observed as applied to

similar apparatus fed from generators developing the same difference of potential.

- b. Storage-battery rooms must be thoroughly ventilated.
- c. Secondary batteries must be insulated.
- d. Metal connections liable to corrosion must be avoided.

123. 11. TRANSFORMERS -

Must be so placed that the burning of the coils or boiling over of the insulating-oil can do no harm.

124. Class B. OUTSIDE WORK. 12. Wires.

- a. Service-wires must have approved rubber insulation. Line-wires must have approved weatherproof or rubber insulation. Tie-wires must have an insulation equal to that of the conductors they confine.
- b. Must be so placed that moisture cannot form a cross between them, not less than one foot apart, and not in contact with any substance other than their insulating supports. Service-blocks must be covered with two coats of waterproof paint.
- c. Must be at least seven feet above the highest point of flat roofs, and at least one foot above the ridge of pitched roofs.
- d. Must be protected by dead insulated guard iron or wires from possibility of contact with other conducting wires or substances to which current may leak.
- e. Must be provided with petticoat insulators only, glass or porcelain.
- f. Must be so joined as to be both mechanically and electrically secure without solder; joints must then be soldered, and covered with an insulation equal to that of the conductors.
- g. Must, where they enter buildings, have drip-loops, and the holes bushed with non-combustible, non-absorptive tubes slanting upward toward the inside.
- h. Telegraph, telephone, or similar wires must not be placed on the same crossarm with electric light or power circuits.
- i. The metal sheaths of cables must be permanently grounded.

Trolley Wires.

- j. Must not be smaller than No. 0 B. & S. copper or No. 4 B. & S. silicon bronze, and must readily stand the strain put upon them when in use.
- k. Must have a double insulation from ground. In wooden-pole construction, the pole will be considered as one insulation.
- Must be capable of being disconnected at the power-plant or of being subdivided into sections. This rule also applies to feeders.
- Must be protected against accidental contact where crossed by other conductors.
 13. Transformers.
- a. Must not be placed inside of any building excepting central stations.
- b. Must not be attached to the outside wall of buildings unless separated by substantial supports.
 - 125. Class C. INSIDE WORK. a. General Instructions, 14. Wires.
- α . Must not be smaller than No. 14 B. & S., except as specified under 24-u and 40-c.
- b. Tie-wires must have an insulation equal to that of the conductors.
- c. Must be joined so as to be mechanically and electrically secure without solder, and then soldered, and covered with an insulation equal to that of

the conductors. Stranded wires must be soldered before being fastened under clamps or binding-screws; and, when they have a greater conductivity than No. 10 B. & S. copper wire, they must be soldered into lugs.

- d. Must be separated from contact with all portions of the building through which they pass by non-combustible, non-absorptive, insulating-tubes.
- e. Must be kept free from contact with all other conducting material by a continuous, firmly fixed non-conductor, providing a separation of at least one inch.
- f. Must be so placed in damp places that moisture cannot form crosses between conductors or between the conductors and other things.

15. Underground Conductors.

- a. Must be protected, when entering buildings, against moisture and mechanical injury, and all combustible material kept removed from the immediate vicinity.
- b. Must not be so arranged as to shunt the current around any protective device

126	16	TARLE	OF	CARRYING	CAPACITY	OF WIRE	RS.

				20.	4.0		J. 23.1	طلاد	Or	CAI	KIIIG	CALA	CIII	,) I.	4411/1729			
				T	able.	Α.		T	able	В.					T	able A.		Τ	able B.
					UBBEF			W	EATH	EB-					F	TUBREE-		V	EATHER-
					OVERE				PROO							OVERED			PROOF
					WIRES				WIRE							WIRES.			WIRES.
T) 0 0	<u> </u>				No. 4		ζ.			<i>40, 6.</i>						No. 40, a			No. 40, b.
B. & S. (Ġ.			A	MPERI			A	MPER	ES.		JLAR M			A	MPERES.		J	AMPERES.
18					3				ő			200,00	0.			200.			300
16		٠			6				8	3		300,00	0.		٠	270.			400
14					12				16	3		400,00	0.			330.			500
12					17				28	3		500,00	0.			390.			590
10					24				32	2		600,00	0.			450 .			680
8					1)+)				46	3		700,00	() .			500.			760
6					46				68)		800,00				550.		Ċ	840
5					- 1				77			900,00				600.	•	•	920
4					65		•	•	92			000,00				650.	•	•	1,000
3		•	•				•		110			100.00				690.			1,080
2	٠	•	٠		90	•	•		131			200.00							
1		•	٠		4.0=	٠					7	7 -		-	٠				1,150
1	•	٠	•	٠		٠			156			300,00							1,220
0	٠	•			127			٠	188		7	400,00			٠		٠		1,290
00	٠				150				220		. ,	500,00		٠					1,360
000			٠		177	٠	4		262			600,00				890.			1,430
0000	٠				210				312	2	1,	700,00	0.0			930.			1,490
											1,	800,00	0.			970.			1,550
											1,	900,00	0.			1,010.			1,610
											2.	000,00	0.			4 0 0			1,670
											- 7	7				,		-	,

127. 17. SWITCHES, CUT-OUTS, AND CIRCUIT-BREAKERS.

- a. Must be so arranged that each cut-out switch or circuit-breaker will disconnect all the wires of the circuit to which it is attached.
- b. Must not be placed in the immediate vicinity of inflammable material.
- Must, when exposed to dampness, be inclosed in waterproof box or mounted on non-absorptive material.

128. (b) Constant-Current Systems. 18. Wires.

- a. Must have an approved rubber insulation.
- b. Must be arranged to enter and leave buildings through an approved double-contact service switch kept free from moisture and of easy access. Snap-switches must not be used.
- c. Must always be arranged in plain sight and not incased.

- d Must be supported upon glass or porcelain insulators, which separate the wire at least one inch from surface, wired over, and be kept rigidly eight inches from each other, except within the structure of lamps or on hanger-boards.
- e. Must, on side walls, be protected from mechanical injury by boxing inclosing an air-space of at least one inch all around the conductors. The boxing must be closed at the top, the wires passing through bushed holes, and must extend not less than seven feet from the floor. When crossing floor-timbers where the conductors might be exposed to injury, wires must be attached by their insulating supports to the under side of a wooden strip not less than one-half an inch in thickness.

19. Arc Lamps.

- a. Must be carefully isolated from inflammable material.
- b. Must always be provided with whole-glass globes inclosing the arc, securely fastened on a closed base.
- c. Must be provided with a wire netting of not over $1\frac{1}{2}$ inch mesh and an approved spark-arrester, when inflammable material is in the vicinity of the lamps.
- d. Where hanger-boards are not used, lamps must be hung from insulating supports other than their conductors.

20. Incandescent Lamps in Series Circuits.

- a. Must have the conductors installed as provided for in Rule 18. Each lamp is to be provided with an automatic cut-out, and
- b. Suspended from a hanger-board by means of a rigid tube.
- c. Electro-magnetic devices for switches and systems of multiple-series or series-multiple lighting must not be used.
- d. Must not be attached to gas-fixtures.

129. (c) Constant-Potential Systems, All Voltages.

21. Automatic Cut-outs.

- a. Must be placed on all service-wires as near as possible to the point where they enter the building, inside the walls, and arranged to cut off the entire current.
- b. Must be placed at every point where change is made in the size of the wire, unless the cut-out in larger wire will protect the smaller.
- c. Must be in plain sight, or inclosed in an approved box readily accessible.

 Must not be placed in the canopies or shells of fixtures.
- d. Must be so placed that no set of incandescent lamps requiring more than 6 amperes shall be dependent upon one cut-out.
- e. Must be provided with fuses, the capacity of which does not exceed the allowable carrying capacity of the wire. Circuit-breakers must not be set more than 30 per cent above the allowable carrying capacity of the conductors they protect.

22. Switches.

- a. Must be placed on all service-wires, in a readily accessible place, as near as possible to the point where the wires enter the building, and arranged to cut off the entire current.
- b. Must always be placed in dry, accessible places, and grouped as far apart as possible. Knife-switches must be so placed that gravity will tend to open the switch.

- c. Must be double-pole except when the circuits they control supply 3 amperes or less.
- d. Gangs of flush-switches must be inclosed in boxes of fire-resisting material. Where two or more switches are placed under one plate, the box must have a separate compartment for each. No push-buttons for bells, gas-lighting circuits, etc., shall be placed in the same wall-plate with switches controlling lighting or power circuits.

23. Electric Heaters.

- a. Must be placed at a safe distance from inflammable material, and be treated as sources of heat.
- b. Each must have a cut-out and indicating-switch.
- c. Must have the attachment of feed-wires in plain sight, easily accessible, and protected from interference.
- d. Flexible conductors for portable apparatus must have an approved insulating covering.
- e. Each must be provided with a name-plate giving maker and normal capacity in volts and amperes.

130. 2. LOW-POTENTIAL CIRCUITS.

Voltages not over 300. (Any circuit which develops a difference of potential between 10 and 300 volts shall be considered a low-potential circuit.)

24. Wires.

- a. Must not be laid in cement, plaster, or similar finish.
- b. Nor fastened with staples.
- c. Nor be fished for any great distance, and only where inspectors can be satisfied that rules are complied with.
- d. Twin wires must not be used excepting in conduits or where flexible conductors are necessary.
- e. Must be protected on side walls from mechanical injury, and protected when crossing floor-timbers by attaching the wires by their insulating supports to the under side of a wooden strip, not less than one-half inch thick and not less than three inches wide.
- f. When run immediately under roofs, or near water pipes or tanks, they will be considered as exposed to moisture.

Special Rules for Dry Places.

- g. Must have an approved rubber or weatherproof insulation.
- h. Must be rigidly supported on non-combustible, non-absorptive insulators, which separate the wires at least one-half inch from the surface wired over, and two and one-half inches from each other.

Special Rules for Damp Places.

- i. Must have an approved rubber insulation.
- j. Must be rigidly supported on insulators which separate the wires at least one inch from the surface wired over, and two and one-half inches from each other.
- k. Must have no joints or splices.

For Molding Work.

- 1. Must have an approved insulation.
- m. Must never be placed in molding in concealed or damp places.

For Conduit Work.

- n. Must have approved insulation.
- o. Must not be drawn in until all mechanical work on the building is completed.
- p. Must not have wires of different circuits drawn in the same conduit.
- q. Must, for alternating systems, have all wires of the same circuit drawn in the same conduit. This is advised for direct-current systems.

For Concealed Work.

- r. Must have an approved rubber insulation.
- s. Must be rigidly supported upon non-combustible, non-absorptive insulators, which separate the wires at least one inch from the surface wired over, and ten inches from each other.
- t. When it is impossible to place concealed wiring on non-combustible supports, the wires, if not exposed to moisture, may be fished on the loop-system, if inclosed in approved continuous flexible tubing or conduit.

For Fixture Work.

- 21. Must have approved rubber insulation, and shall not be less than No. 18 B. & S. in size.
- v. Supply conductors must be kept clear of the grounded parts of fixtures.

 Shells must be constructed in a manner to permit of this requirement.
- w. Must, when fixtures are wired outside, be so secured as not to be cut or abraded by the motion of the fixtures.

25. Interior Conduits.

- a. Must be continuous from one junction to another or to fixtures, and the conduit tube must properly enter all fittings.
- b. Must be first installed as a complete conduit system without conductors.
- c. Conduits must extend at least one-half inch beyond the finished surface of walls or ceilings, except that, if the end is threaded and a coupling screwed on, the conduit may be left flush.
- d. Must, after conductors are introduced, have all outlets plugged with special wood or fibrous plugs, made in parts, and the outlet then sealed with approved compound. Joints must be air-tight and moisture-proof.
- e. Must have the metal of the conduit permanently and effectually grounded.

26. Fixtures.

- a. Must, when supported from the gas-piping, be insulated from the gas-pipe system by means of approved insulating joints.
- b. Must have all burs or fins removed before the conductors are drawn into the fixture.
- c. The upper end of all fixtures must be sealed moisture-proof.
- d. Combination fixtures must not conceal the conductors in a space less than one-fourth inch.
- e. Must test free from contacts between conductors and fixtures, from short circuits, and from grounds.
- f. Ceiling-blocks should be made of insulating material; or if not, the wires passing through the plates must be surrounded with non-combustible, non-absorptive, insulation.

27. Sockets.

a. Where inflammable gases exist, the lamp and socket must be inclosed in a vapor-tight globe, wired with approved rubber-covered wire soldered directly to the circuit.

- b. In damp places or over specially inflammable stuff, waterproof sockets must be used.

 28 Flexible Cord.
- a. Must have approved insulation and covering.
- b. Must not be used as a support for clusters.
- c. Must not be used except for pendants, wiring of fixtures, or portable lamps or motors.
- d. Nor in show-windows.
- e. Must be protected by insulating bushings where the cord enters the socket.
- f. Must be so suspended that the entire weight of the sockets will be borne by knots under the bushing in the socket, and above the point where the cord comes through the ceiling-block or rosette.

29. Are Lights on Low-Potential Circuits.

- a. Must have a cut-out for each lamp or series of lamps.
- b. Must be furnished with such resistances or regulators as are inclosed in non-combustible material. Incandescent lamps must not be used for resistances.
- c. Must be supplied with globes, and protected by spark-arresters.

30. Economy Coils.

- a. Economy and compensator coils must be mounted on non-combustible.
 non-absorptive insulating supports, allowing an air-space of at least one inch between the frame and support, and in general treated as sources of heat.
 31. Decorative Series Lamps.
- a. Incandescent lamps in series shall not be used excepting by special permission.
 - 131. 3. HIGH-POTENTIAL CIRCUITS. Voltages between 300 and 3,000.

32. Wires.

- a. Must have approved rubber insulation.
- b. Must always be in plain sight, and never incased except where required by the inspection department.
- c. Must be rigidly supported on glass or porcelain insulators carrying the wires at least one inch from the surface wired over, and at least four inches apart for voltages up to 750 and at least eight inches apart for voltages over 750.
- d. Must be protected on side walls from mechanical injury by substantial boxing, retaining an air-space of one inch around the conductors, closed at the top, the wires passing through bushed holes, and extending not less than seven feet from the floor. When crossing floor-timbers wires must be attached by their insulating supports to the under side of a wooden strip not less than one-half inch in thickness.

33. TRANSFORMERS MUST BE PLACED -

- a. At a point as near as possible to that at which the primary wires enter the building.
- b. In an inclosure constructed or lined with fire-resisting material, this inclosure to be securely locked, and access allowed only to responsible persons.
- c. Effectually insulated from the ground and in a practically air-tight inclosure, except that it shall be thoroughly ventilated to the outdoor air, and there must be a six-inch air-space on all sides of the transformer.

34. CAR-WIRING.

a. Must always be run out of reach of passengers, and have an approved rubber insulation.

132. 35. CAR-HOUSES.

- a. Must have the trolley-wires securely supported on insulating hangers.
- b. Must have the trolley-hangers placed at such a distance apart that in case of a break in the trolley-wire, contact could not be made with the floor.
- c. Must have cut-out switch located at proper place outside the building, so that all trolley circuits in the building can be cut out at one point, and line circuit-breakers must be installed, so that when this cut-out switch is open the trolley-wire will be dead at all points within 100 feet of the building. The current must be cut out of the building whenever not in use.
- d. Must have all lamps and stationary motors installed so that one main switch can control the whole of each installation, independently of main feeder-switch. No portable incandescent lamps or twin wires allowed except that portable incandescent lamps may be used in the pits, connections to be made by two approved flexible rubber-covered wires properly connected, and controlled by a switch placed outside the pit.
- e. Must have all wiring and apparatus installed in accordance with rules under Class C.
- f. Must not have any system of feeder distribution centering in the building.
- g. Must have the rails bonded at each joint with not less than No. 2 B. & S. annealed copper wire; also a supplementary wire to be run for each track.
- Must not have cars left with trolley in electrical connection with the trolley-wire.
 - 133. 36. LIGHTING AND POWER FROM RAILWAY WIRES.
- a. Must not be permitted under any pretense in the same circuit with trolley-wires with a ground return except in electric railway cars, electric carhouses and their power-stations, nor shall the same dynamos be used for both purposes.

37. SERIES LAMPS.

- a. No system of multiple-series or series-multiple for light or power shall be used.
- b. Under no circumstances can lamps be attached to gas-fixtures.
 - 134. 4. Voltages over 3,000. 38. PRIMARY WIRES.

Must not be brought into or over buildings except power- and sub-stations.

39. SECONDARY WIRES.

a. Must be installed under Rules for high-potential systems when their immediate primary wires carry a current at a potential of over 3,000 volts.

135. Class D. Fittings, Materials, and Details of Construction.

All Systems and Voltages.

40. Wire Insulation.

a. Rubber-Covered. — The insulating covering must be solid, at least 34 of an inch thick, and covered with a substantial braid. Must not readily carry fire, must show an insulation of one megohm per mile after two weeks' submersion in water at seventy degrees Fahrenheit, and three days' submersion in lime-water, and after three minutes' electrification with 550 volts.

- b. Weatherproof. The insulating covering must not support combustion, must resist abrasion, must be at least one-sixteenth of an inch thick, and thoroughly impregnated with a moisture-repellent.
- c. Flexible Cord. Must be of two-stranded conductors, each having a carrying capacity of not less than a No. 16 B. & S. wire, and each covered by an approved insulation, and protected by a slow-burning, toughbraided outer covering.
 - 1. Insulation for pendants must be moisture and flame proof.
 - 2. Insulation for all other purposes must be solid, at least 312 of an inch thick, and must show an insulation resistance between conductors and between either conductor and the ground of at least one megohm per mile after one week's submersion in water at 70° Fahrenheit, and after three minutes' electrification with 550 volts.
 - 3. The flexible conductors for portable heating-apparatus must have an insulation that will not be injured by heat, which must be protected from mechanical injury by an outer substantial braided covering, and so arranged that mechanical strain will not be borne by the electrical connection.
- d. Fixture Wire. Must have a solid insulation, with a slow-burning, tough outer covering, the whole to be at least 3/2 of an inch thick, and show an insulation between conductors and between either conductor and ground of at least one megohm per mile, after one week's submersion in water at 70° Fahrenheit, and after three minutes' electrification with 550 volts.
 - c. Conduit Wire. 1. For insulated metal conduits, single wires and twin conductors must comply with Section a of these Rules. Concentric wire must have a braided covering between the outer conductor and the insulation of the inner conductor, and must comply with Section a.
 - 2. For non-insulated metal conduits, single wires and twin conductors must comply with section a, and in addition have a second outer fibrous covering at least $\frac{1}{3}$ of an inch thick, and sufficiently tenacious to withstand the abrasion of being hauled through the metal conduit. Concentric conductors must have a braided covering between the outer conductor and the insulation of the inner conductor, and comply with section a of this rule, and must have a fibrous covering $\frac{1}{3}$ of an inch thick, and sufficiently tenacious to withstand the abrasion of being hauled into the conduit.

136. 41. Interior Conduits.

a. Each length of conduit must have the maker's name or initials stamped in the metal so that inspectors can see the same.

Insulated Metal Conduits.

- b. The metal covering must have an equal resistance to penetration by nails as the ordinary commercial form of gas-pipe of same size.
- c. Must not be seriously affected by burning out a wire inside the tube when the metal is connected to one side of the circuit.
- d. Must have the insulating lining firmly secured.
- e. The insulating lining must not crack or break when a length of conduit is uniformly bent, at temperature of 212° Fahrenheit, to an angle of 90° with a curve of fifteen inches radius, for pipes of one inch and less, and fifteen times the diameter of pipe for larger pipes.
- f. The insulating lining must not soften injuriously at a temperature below 212° Fahrenheit, and must leave the water in which it is boiled practically neutral.

- g. The insulating lining must be at least 312 of an inch thick, and the materials composing it must be of such a nature as will not have a deteriorating effect on the insulation of the conductors, and must be sufficiently tough to withstand the abrasion of drawing in and out of long lengths of conductors.
- h. The insulating lining must not be mechanically weak after three days' submersion in water, and when removed from the pipe entire must not absorb more than ten per cent of its weight of water during 100 hours of submersion.
- i. All elbows must be made for the purpose, and not bent from lengths of pipe. The inner radius of any elbow of pipe must not be less than 3½ inches. Must not have more than the equivalent of four quarter bends from outlet to outlet, the bends at the outlets not being counted.

Uninsulated Metal Conduits.

- j. Plain iron or steel pipes of equal strength to resist penetration by nails as ordinary gas-pipe of the same size, provided the interior surfaces are smooth and free from burs, may be used. Pipe to be galvanized, or the interior surfaces coated, to prevent oxidization, with some substance which will not become sticky, and prevent wire from being withdrawn.
- &. All elbows must be made, and not bent from lengths of pipe. The inner radius of any elbow must not be less than 3½ inches. Must have not more than the equivalent of four quarter bends from outlet to outlet, the bends at the outlets not being counted.

137. 42. Wooden Moldings.

- a. Must have, both inside and outside, at least two coats of waterproof paint, or be impregnated with a moisture-repellent.
- b. Must be made of two pieces, backing and capping constructed to thoroughly incase the wire, and provide a one-half inch tongue between conductors and a solid backing, which under-grooves shall not be less than three-eighths of an inch thick, and must afford suitable protection from abrasion.
 138. 43. Switches.
- a. Must be mounted on non-combustible, non-absorptive bases.
- b. Must have carrying capacity sufficient to prevent undue heating.
- c. Must, when used for service-switches, indicate whether the current is on or off.
- d. Must be plainly marked with the name of the maker and the current and voltage for which the switch is designed.
- e. Must, for constant-potential systems, operate successfully at 50 per cent overload, in amperes, with 25 per cent excess voltage under the most severe conditions to be met with in practice.
- f. Must, for constant-potential systems, have a firm and secure contact; must make and break readily, and must not stop when motion has once been imparted by the handle.
- g. Must, for constant-current systems, close the main circuit and disconnect the branch wires when turned "off"; must be constructed to be automatic in action, not stopping between points when started, and must prevent an arc under all circumstances. Must indicate whether the current is on or off.

139. 44. Cut-outs and Circuit-Breakers.

a. Must be supported on bases of non-combustible, non-absorptive insulating material.

- Cut-outs must be provided with covers when not arranged in approved cabinets.
- c. Cut-outs must operate successfully with fuses rated at 50 per cent above and voltage 25 per cent above that for which they are designed, under the most severe conditions of practice.
- d. Circuit-breakers must operate successfully with a current 50 per cent above and a voltage 25 per cent above that for which they are designed, under the most severe conditions of practice.
- e. Must be plainly marked with the name of the maker and current and voltage for which designed.

45. Fuses.

- a. Must have contact surfaces or tips of harder metal having perfect electrical connection with the fusible part.
- b. Must be stamped with about 80 per cent of the maximum current they can carry indefinitely.
- c. Fuse terminals must be stamped with the maker's name, initials, or known trade-mark.

 46. Cut-out Cabinets.
- a. Must be so arranged as to obviate any danger from melted fuses.

140. 47. Sockets.

- a. No portion of the lamp-socket exposed to contact with outside objects must be allowed to come into electrical contact with either conductor.
- b. Must, when provided with keys, comply with the requirements for switches.

141. 48. Hanger-Boards.

- a. Hanger-boards must be so constructed that all wires and current-carrying devices thereon shall be exposed to view, and thoroughly insulated by being mounted on a non-combustible, non-absorptive insulating substance.
 - All switches shall be double-pole automatic in action and strictly non-arcing.

 142. 49. Arc Lamps.
- a. Must be provided with reliable stops to prevent carbons from falling out, in case clamps become loose.
- b. Must be carefully insulated from the circuit in all exposed parts.
- c. Must, for constant-current systems, be provided with an approved handswitch, also an automatic switch that will shunt the current if they fail to feed properly. The hand-switch, if placed anywhere except on the lamp itself, must comply with Rule 48.

143. 50. Spark-Arresters.

a. Spark-arresters must so close the globe that it will be impossible for any sparks to escape.

144. 51. Insulating-Joints.

- a. Must be entirely made of material that will resist the action of illuminating gases, and will not soften under the heat of an ordinary gas-flame, or leak under moderate pressure, and arranged so that a deposit of moisture will not destroy the insulation, and shall have a resistance of not less than 250,000 ohms, and be sufficiently strong to resist the strain to which they will be subjected.
- b. Insulating-joints employing soft rubber will not be allowed.

145. 52. Resistance Boxes and Equalizers.

a. Must be equipped with metal or with other non-combustible frames.

146. 53. Reactive Coils and Condensers.

a. Reactive coils must be made of non-combustible material, and treated as sources of heat.

147. 54. Transformers.

a. Must not be placed in any but metallic or non-combustible cases.

148. 55. Lighting-Arresters.

a. Must be mounted on non-combustible bases, and must be so constructed as not to maintain an arc after the discharge has passed, and must have no moving parts.

149. Class E. MISCELLANEOUS. 56. Insulation Resistances.

All wiring in buildings must test free from grounds, and must have an insulation between conductors and between all conductors and ground as follows. Circuits carrying current up to—

5 amperes		4,000,000 ohms.	200 amperes 100,000 ohms	5.
10 amperes		2,000,000 ohms.	400 amperes 50,000 ohms	s.
25 amperes		800,000 ohms.	800 amperes 25,000 ohms	s.
50 amperes		400,000 ohms.	1,600 amperes, and over,	
100 amperes		200,000 ohms.	12,500 ohms	5.

All cut-outs and safety devices must be in place when test is made. When lamp-sockets, receptacles, and electroliers, etc., are connected, one-half of the above insulation will be required.

150. 57. Protection Against Foreign Currents.

- a. Where telephone, telegraph, or other wires connected with outside circuits are bunched together within a building, and where inside wires are laid in ducts with lighting or power wires, covering of such wires must be fire-resisting or they must be inclosed in air-tight ducts.
- b. All conductors under (a) which run to aerial lines must be provided with approved protective devices which will shunt the instruments in case of a dangerous rise of potential, and will open the circuit and arrest abnormal current. Protectors must have non-combustible insulating bases, and covers provided with a lock, and must be installed under the following requirements:—
 - 1. Protectors must be located at the point where the wires enter the building, either immediately inside or outside the same. If outside, the protector must be inclosed in a metallic waterproof case.
 - 2. If protectors are placed inside the building, the wires from the support outside to the binding-post of the protector shall be of a grade of insulation equal to that of electric light or power wires, and the holes through the outer wall must be bushed as for high-tension service.
 - 3. The wires from the point of entrance to the protector must be run in accordance with rules for high-potential wires.
 - 4. Ground wires shall be insulated, not smaller than No. 16 B. & S. Ground wires shall be kept at least three inches from all conductors, and run in as straight a line as possible to the ground.
 - 5. Ground wires shall be attached to a water-pipe if possible, and shall be carried to and attached to the pipe outside the first joint inside of the foundation walls, and connection be made by soldering. In the

absence of other good ground, the ground shall be made by means of a metallic plate buried permanently in moist earth.

58. Electric Gas-Lighting.

Where electric gas-lighting is to be used on the same fixture with the electric light —

a. No part of the gas-piping or fixture shall be in electric connection with the gas-lighting circuit.

b. The wires shall have non-inflammable or, when concealed, such insulation as required for fixture-wiring for electric lights.

c. The whole insulation must test free from grounds.

d. The two insulations must test perfectly free from connection with each other.

151. Class F. MARINE WORK. 60. Generators must be -

- a. Located in a dry place.
- b. Insulated from their bed-plates.
- c. Provided with waterproof cover, and -
- d. With name-plate, giving the maker, voltage, amperes, and normal speed
 R. P. M.
 152. 61. Wires.
- a. Must have an approved insulation, not less than ½ inch thick for all conductors except portables, and covered with substantial water- and flame-proof braid. The physical characteristics shall not be affected by any change in temperature up to 200° Fahrenheit. After two weeks' submersion in salt water at 70° Fahrenheit, it must show an insulation resistance of one megohm per mile after three minutes' electrification with 550 volts.
- b. Must have no single wire larger than No. 12 B. & S. Stranded conductors must be used when greater carrying capacity is required. No single solid wires smaller than No. 14 B. & S., excepting in fixture-wiring. Stranded wires must be soldered before being fastened under binding-screws. When they have a greater conductivity than No. 10 B. & S., they must be soldered into lugs.
- c. Must be supported in approved molding except at switches and portables.
- d. Must be bushed with hard-rubber tubing one-eighth of an inch thick when passing through beams and non-watertight bulkheads.
- e. Must have, when passing through watertight bulk-heads and through all decks, a metallic-box tube lined with hard rubber. In case of decktubes they shall be boxed to prevent mechanical injury.
- f. Necessary splices or taps must be made both electrically and mechanically secure without solder. They must then be soldered, and covered with an insulating compound equal to that of the wire, and protected by waterproof tape, and then painted with waterproof paint.

153. 62. Portable Conductors.

a. Must be made of two-stranded conductors, each having a carrying-capacity equivalent to No. 14 B. & S. wire, and covered with an approved insulation. When not exposed to moisture or severe mechanical injury, each conductor must have a solid insulation, at least $\frac{1}{32}$ of an inch thick, and must show an insulation between conductors and between each conductor and ground of at least one megohm per mile after one week's submersion in water at seventy degrees and after three minutes' electrification at 550 volts, and be protected by slow-burning, tough-braided

covering. Where exposed to moisture or mechanical injury, each conductor shall have at least $\frac{3}{3}$ of an inch solid insulation protected by tough braid. The two conductors shall then be stranded together, using a jute filling. The whole shall be covered with a layer of flax, at least $\frac{3}{3}$ of an inch thick, and treated with a non-inflammable, waterproof compound. After one week's submersion in water at seventy degrees, with 550 volts and a three minutes' electrification, must show an insulation between the two conductors, or between each conductor and the ground, of one megohm per mile.

63. Bell or Other Wires.

a. Shall never be run in the same duct with lighting or power circuits.

154.	64.	Table	of	Capacity	of	Wires.	
			_		_		

B. & S. G.	AREA. ACTUAL C. M.	No. OF STRANDS.	SIZE OF STRANDS. B. & S. G.	AMPERES.	B. & S. G.	AREA. ACTUAL C. M.	No. of Strands.	SIZE OF STRANDS. B. & S. G.	AMPERES.
19	1,288					38,912	19	17	60
18	1,624			3		49,077	19	16	70
17	2,048					60,088	37	18	85
16	2,583			6		75,776	37	17	100
15	3,257					99,064	61	18	120
14	4,107			12		124,928	61	17	145
12	6,530			17		157,563	61	16	170
	9,016	7	19	21		198,677	61	15	200
	11,368	7	18	25		250,527	61	14	235
	14,336	7	17	30		296,387	91	15	270
	18,081	7	16	35		373,737	91	14	320
	23,709	7	15	40		413,639	127	15	340
	30,856	19	18	50					

When greater conducting area than that of 12 B. & S. G. is required, the conductor shall be stranded in a series of 7, 19, 37, 61, 91, or 127 wires, as may be required; the strand consisting of one central wire, the remaining laid around it concentrically, each layer to be twisted in the opposite direction from the preceding.

155. 65. Switchboards.

- a. Must be of non-combustible, non-absorptive insulating material.
- b. Must be kept free from moisture, and accessible from all sides.
- c. Must have a main switch, cut-out, and ammeter for each generator, a voltmeter, and ground conductor.
- d. Must have a cut-out and switch for each side of each circuit.

156. 66. Resistance Boxes.

- a. Must be non-combustible material.
- 6. Must be mounted on non-inflammable, non-combustible material, preferably on the switchboard.
- c. Must be constructed to allow sufficient ventilation.

157. 67. Switches.

- a. Must have non-combustible, non-absorptive bases.
- b. Must operate successfully at 50 per cent overload in amperes, with 25 per cent excess voltage under the most severe conditions, and must be plainly marked with the name of the maker, current, and voltage.

- c. Must be double-pole when circuits which they control supply more than six 16-candle-power lamps or their equivalent.
- d. Must, when exposed to dampness, be inclosed in a watertight case.

158. 68. Cut-outs.

- a. Must have non-combustible, non-absorptive insulating bases.
- b. Must operate successfully on short circuits, with fuses rated at 50 per cent above and with a voltage 25 per cent above the current and voltage for which they were designed, and must be plainly marked with the name of maker, current, and voltage.
- c. Must be placed at every point where a change is made in the size of the wire, unless the cut-out in the larger wire will protect the smaller.
- d. In places such as upper decks, holds, cargo spaces, and fire-rooms, a water-tight and fireproof cut-out may be used, connecting directly to mains when such cut-out supplies not more than six 16-candle-power lamps or their equivalent.
- e. When placed anywhere except on switchboards and places as specified in d, they shall be in a cabinet lined with fire-resisting material.
- f. Shall be so placed, except for motors, search-lights, and diving-lamps, that no group of lamps requiring more than six amperes shall depend upon one cut-out.
 159. 69. Fixtures.
- a. Shall be mounted on blocks of well-seasoned lumber, treated with two coats of white lead or shellac.
- b. Where exposed to dampness, the lamp must be surrounded by a vaporproof globe, and where exposed to mechanical injury, surrounded by a globe protected by a stout wire guard.
- c. Shall be wired with the same grade of insulation as portable conductors which are not exposed to moisture or mechanical injury.

160. 70. Sockets.

a. No portion of the lamp-socket which is exposed to contact with outside objects shall come into electrical contact with either of the conductors.

161. 71. Wooden Moldings.

- Must be of well-seasoned lumber, and treated inside and out with two coats
 of white lead or shellac.
- b. Must be made in two pieces, so constructed as to thoroughly incase the wire, and provide a one-half inch tongue between conductors and a solid backing under grooves not less than three-eighths of an inch thick.
- c. Where molding is run over rivets, beams, etc., it must be secured to a backing-strip.
- d. Capping must be secured by brass screws.

162. 72. Motors.

- a. Must be wired under the same rules as apply to circuits of the same current and potential for lighting. The motor and resistance-box must be protected by a double-pole cut-out, and controlled by a double-pole switch, unless of one-quarter horse-power or less.
- b. Must be thoroughly insulated.
- c. Shall be covered with waterproof covers when not in use.
- d. Must be provided with a name-plate, with maker's name, capacity in volts and amperes, and the normal speed in revolutions per minute.

CHAPTER IV.

THE CONSTRUCTION OF UNDERGROUND CIRCUITS.

PART I. - CONDUITS.

163. The rapid multiplication of electrical circuits, particularly in business centers of the large towns, has increased the number of aerial wires to such an extent as to become an unbearable street obstruction. To obviate this difficulty the practice has arisen of constructing underground subways, or conduits, into which circuits may be placed.

164. Classification. — Conduits can be divided into two classes, that may, respectively, be termed flexible and inflexible systems, depending upon the possible mutability of the circuits *after* the structure is completed.

In the flexible system, a structure is designed and built under the pavement of the street in such a manner that the electrical circuits which it is to contain may be introduced at any time after the completion of the subway; and from time to time the circuits may be extended, or rearranged or replaced, as the business of the territory shall indicate to be advisable.

Under the inflexible system, as the conduit is built, *all* of the wires which it can ever contain are introduced at the time of construction, the design being such as to preclude any modification of the circuits after the completion of the work. In thickly settled districts, where the amount of electrical business can be fairly accurately gauged, and in which the changes or extensions in the business, beyond that of the original estimate, are small from year to year, the inflexible system presents the advantage of cheapness in initial construction. The design of the structure must contemplate, however, sufficient capacity to embrace all of the probable business which is ever likely to be done, for increased capacity can only be secured by constructing an entirely new conduit. The inflexible system being more economically constructed, and of more economical

maintenance, presents the attractiveness of cheapness, though, unless the amount of business can be accurately gauged and located, this very quality is apt to prove deceptive, and the subsequent cost of extension and rearrangement may greatly exceed the initial expense of a flexible system.

With the flexible system, the subways are designed with sufficient room to be capable of receiving all of the circuits which the most sanguine estimate of the business of the future can call for. The conduits are planned with a number of separate chambers, or ducts, into which the circuits may be placed. The expense, therefore, of the conductors can be reserved until business shall demand their introduction.

Every form of conduit should embrace the following conditions:—

The conduit should be reasonably economical in cost of construction.

It should afford a thorough protection to the inclosed circuits, securing them from the effects of street excavations, and from the incursion of gas, water, or organic acids from the streets, and should protect the insulation of the circuits, and maintain it at a high working average.

It must be rapid and easy of construction, so as not to present undue obstruction to street traffic.

It must be sufficiently flexible to accommodate itself to existing street structures.

It must have sufficient mechanical strength to successfully resist the ordinary destructive influences to which street structures are exposed.

It must present a minimum annual maintenance expense.

165. The Valentine Conduit. — One of the earliest underground distributions was the Valentine system, consisting of a rectangular wooden box some ten to fifteen feet in length, subdivided by vertical and horizontal partitions, into ducts about three inches square, for the reception of the circuits. These boxes were constructed of creosoted yellow pine, and were buried in the earth at a safe distance below the street pavement. At the joints the boxes were spliced by wooden battens, covered with felt and thoroughly pitchel, to exclude moisture. After the wooden box was laid, the whole structure was

thoroughly tarred as an additional precaution against decay. Though Valentine ducts are still used to some extent, experience has demonstrated that this form of conduit is not suitable for permanent underground structures, especially for those in which lead cables are to be placed. The more or less inevitable decay of the wooden box generates sufficient acetic acid to initiate chemical action upon the lead coating, which is sufficient to destroy the cable within a few months. For other forms of cable, excepting those which are lead-coated, the Valentine conduit forms the cheapest device, and one which is reasonably successful for a limited life.

Fig 90. The Wychoff or MacDonald Conduit.

166. The Wyckoff or MacDonald Conduit. — This is an attempt at a structure slightly more substantial than that of Valentine's. It consisted of a number of circular ducts, as represented in Fig. 90, bored in blocks of creosoted wood, the blocks being tongued and grooved together in a substantial manner. This conduit could be so built that the different pieces should always break joint, and therefore the difficulties of unequal settlement of successive lengths was avoided. The Wyckoff is laid precisely the same way as the Valentine, and for lead-coverel cables is open to the same objections.

167. The Paper Conduit. — A conduit involving the use of paper tubes has been proposed, consisting of a rectangular wooden box in which a number of tubes of pasteboard of the requisite size are laid, and the interstices between the tubes filled with asphalt. As a result, the pasteboard forms a mold, around which the asphalt may be poured, thus forming a block filled with smooth cylindrical holes for the reception of the circuits. It is stated that this device gives good results. However, there is as yet insufficient experience with it upon which to base a conclusive verdict.

Fig. 91. Iron Pipe in Conduit.

168. Pipe Conduits. — Four very successful forms of conduit depend upon the use of metal pipe, surrounded either on the interior or the exterior with a cementing compound.

FIRST. — Wrought-Iron Pipe in Hydraulic Cement. — This conduit is constructed by opening an appropriate trench in the street, the bottom of which is covered with a layer of 6" or 7" of good concrete. A suitable mixture for this purpose may be made of two parts Rosendale cement, three parts sand, and five parts broken stone. After the bottom is thoroughly leveled, and the concrete rammed

into place, being carefully graded, a layer of wrought-iron pipe of appropriate diameter to receive the circuits is laid upon the concrete. These pipes are jointed by means of vanishing screw thread couplings, making a joint which is absolutely tight. An entire section of conduit, embracing the space between two adjacent manholes, is laid at one time. As soon as the first layer of pipe is in its place, the spaces between and around the tubes are carefully filled with concrete, thoroughly rammed into place. Upon the setting of this concrete, a second layer of pipe is introduced, and this process repeated until a sufficient number of iron pipes are laid to give the necessary capacity to the subway. See Fig. 91.

After the last row is in place, a top coating of concrete, 3" to 6" in thickness, is spread over the pipe, a layer of plank placed upon the top of the concrete to secure the structure against damage from the tools of workmen opening the streets, and the pavement replaced. This structure makes an excellent conduit in every respect, being probably the best one now known. It is water and gas tight. It may be built to accommodate at pleasure any number of circuits, and is sufficiently flexible to enable reasonable bends between manholes to be successfully made; and in cases of streets crowded with underground structures, the iron pipe may thread through or around other obstructions in a way impracticable in any other form of conduit. Experience with this form of subway has shown that in process of time the iron pipe may rust away; but in this event a smooth cylindrical hole is left, extending through a solid block of concrete, which during the time required for the destruction of the iron pipe has become as hard as stone, thus leaving ample protection for the inclosed circuits. While from a constructive and maintenance standpoint, this device presents all the advantages to be desired for a conduit, it is quite expensive to build.

SECOND. — Wrought-Iron Pipe in Asphaltic Concrete. — A similar conduit has been proposed, by imbedding wrought-iron pipe in asphaltic concrete instead of cement. The substitution, however, of the asphalt for the cement concrete possesses no particular advantage, and is still more expensive to build.

THIRD.—Zinc Tubing in Hydraulic Cement.—To cheapen the iron-pipe conduit, it has been proposed to bed zinc tubing in hydraulic cement; the idea being that economy would be affected by the use

of very thin and light zinc tubing, which would be much cheaper than the previously proposed iron pipe. The zinc tube was simply to serve as a mold around which concrete would be placed; the expectation being that the zinc tube, in any event, would certainly disappear, leaving the desired hole in the cement. This device, however, has not met with success, as the zinc tube, when made

Fig. 92. Cement-lined Iron Pipe.

sufficiently heavy to stand the ramming of the concrete, proved more expensive than the corresponding iron pipe.

169. FOURTH. — Cement-Lincal Iron Pipes. — Another effort to cheapen the iron-pipe conduit has resulted in the construction of a very thin pipe made of sheet iron into which a layer of cement is introduced, surrounding a mandrel, that is subsequently withdrawn,

thus leaving a continuous tube of cement protected by a thin shell of sheet iron, the expectation being that pipe of this description would be sufficiently strong to stand laying in the street, and that after the pipe was once in place it would be protected from further injury by the surrounding concrete and soil. This conduit has met with much deserved success, and so far as first cost is concerned, is decidedly cheaper than that involving the iron pipe. The appearance and method of constructing a conduit of cement-lined iron pipe are shown in Fig. 92.

170. The Dorset or Callender-Webber Conduit. — This conduit consists of tubular blocks some 4 ft. in length, made of asphaltic or pitch concrete molded around mandrels of the required size to

Fig. 93. The Dorset Duct.

give a number of 3" holes extending entirely through the block. See Fig. 93.

The conduit is constructed by laying, at the bottom of an appropriate excavation, a series of the perforated blocks; the joints being made by carefully abutting the ends of successive blocks, and uniting them with a mixture of hot asphalt, pitch, or tar. It was found, however, exceedingly difficult to align the blocks sufficiently accurately to make the ducts exactly continuous; and any subsequent settlement of the soil caused the conduit to open at the respective joints.

171. The Chenowith Conduit. — The Chenowith conduit was an attempt to build between manholes continuous tubes of cement. This was accomplished by making a series of mandrels split lon-

gitudinally into three parts, held in place during construction by a spiral ribbon of sheet iron. A number of these mandrels were placed at the bottom of the street excavation, and concrete tamped solidly around them. The metal ribbon was lubricated with soapstone to facilitate the extraction of the mandrel, and on the withdrawal of the mandrel remained in place in the concrete. After the concrete is set, the metal ribbon can be pulled out and used again. By this means, between successive manholes, a continuous block could be

Fig. 94. 10" × 10" Terra Cotta Duct.

constructed having the appropriate ducts to receive the necessary circuits.

172. The Terra-Cotta Conduit. — An exceedingly valuable form of conduit, embracing nearly all of the points required for the successful protection of electrical circuits, being withal economical to construct, has been found in the use of terra-cotta blocks for the purpose of forming the subway. A rectangular pipe is made of terra-cotta ware about 3 ft. long, having a partition in the center. See Fig. 94.

Successive lengths of this pipe are joined by wrapping the suc-

ceeding sections with heavy jute dipped in asphalt. The jute wrapping makes a joint which successfully holds the lengths of pipe correctly in place, and a thorough application of asphalt ensures a joint which is water and gas tight, and does not decay. Care must be observed not to apply the asphalt too hot, or the jute will be injured. The conduit is formed by placing at the bottom of the

Fig. 95. Laying 10" × 16" Ducts.

street excavation the requisite number of earthenware pipe to give the desired capacity. It is usual to lay the pipe upon a bed of concrete, and to protect it on either side and on the top by a concrete wall 4 to 6" thick. Conduits of this class have been constructed to a large extent, and so far have proved eminently successful. The chief objection to this style of construction is found in the fact that

the earthenware pipes are so designed as to accommodate several cables in one duct. While there is little or no difficulty in introducing several cables into one division, it is often exceedingly difficult to withdraw them after they have been in place any length of time without destroying the sheath. The operation of introducing the $10^{\prime\prime} \times 10^{\prime\prime}$ terra-cotta pipe is shown in Fig. 95.

173. Terra-Cotta Separate Duct System. — To overcome the difficulty in withdrawing cables, which is experienced in $10'' \times 10''$ ducts, an earthenware conduit has been devised, which consists of a number of blocks of earthenware pipe, each having a separate

Fig. 96. The Terra-Cotta Separate Duct System. Pipe Sections.

duct. These blocks are 5'' square, and from 18'' to 2 ft. in length. They are made of earthen pipe, having the general appearance indicated in Fig. 96.

To construct a subway out of this material, an appropriate street excavation is made, the bottom of which, after having been carefully graded, is lined with a layer of 6" of concrete. Upon this concrete the earthenware ducts are built, in precisely the same fashion as a brick wall is laid up. To secure proper alignment, it is customary to lay one line of duct through the center of the trench, to guide the alignment of all the succeeding layers of pipe. As the work

Fig. 97. The Separate Duct Terra-Cotta Conduit.

progresses, mandrels some 6 or 8 ft. in length, which closely fit the ducts, are placed in each row of pipe, thus ensuring correct alignment, until the cement in which the pipes are laid has had a chance to set. As fast as the subway is built, the mandrels are pulled along, thus keeping the pipe constantly in true line.

Conduits of this description should be constructed by laying the pipe up in a strong mixture of either Rosendale or Portland cement. The joints in the pipe should be hammered down so as to be as close as possible, and not to exceed $\frac{1}{4}$. As all the pipe in burning is slightly concave, care should be taken to lay the subway with the convex sides upward in every instance, so that no obstacles may be experienced in the subsequent introduction of the cables. As the ducts are laid, all the joints between the successive blocks should be thoroughly grouted with cement. This form of conduit presents the advantage of great flexibility; as a subway of any number of ducts can be formed, and, in order to accommodate street obstructions, the geometrical cross-section of the conduit can be varied at pleasure. After completion, a scraper, similar in shape to a boilertube cleaner, should be drawn through each of the ducts, which serves to cut away and clean out all gravel and cement which has found its way accidentally into the ducts, and then by washing the ducts with a stream of water from a hose, a clean, polished hole is obtained, extending between the adjacent manholes. While this form of conduit is slightly more expensive than rectangular earthen pipe, it presents the inestimable advantage of giving a separate duct for each cable. The method observed in building this form of conduit is seen in Fig. 97.

174. The Crompton System. — The subways so far considered have been only adapted to the use of highly insulated cables, as the designs have been such as to afford no insulation to the circuits. Several European attempts have been made to construct a subway in which bare copper conductors could be used, thus avoiding the expense of insulated conductors. Notable among these systems is that of Crompton, which has received quite an extended development in London, Nottingham, and Birmingham. In the Crompton system the conduit is usually laid under the foot-walks, and not under the street proper, as is customary in this country. The construction involves the excavation of a trench, which, for the ordinary sized

conduit is about 3 ft. 5" wide, by 1 ft. 9" deep. This trench is then supplied with a bottom and side walls of concrete, the bottom being about 3" in thickness, while the sides are from 6" to 8". At intervals of about 50 ft., so arranged as to be opposite every alternate house, a handhole cover is introduced, to give access to the conduit for the purpose of taking out service wires. Directly under this handhole a heavy rectangular piece of oak timber is set in the concrete sides of the subway. Upon this timber the requisite number of porcelain insulators are placed to carry the circuits for which the conduit is intended. These insulators have a simple slot on

Fig. 98. Crompton Conduit, Half Plan and Section at Handhole.

their tops in order to receive and carry the lines, that are merely naked strips of copper. Fig. 98 indicates a half-plan and half-section of the conduit at a handhole. At intervals of about 300 ft. the handholes are made quite large in order to afford the necessary room for stretching the copper strips. The subway is completed by placing the requisite iron casting at each of the handholes, and by covering the entire top of the trench with a layer of Yorkshire flagging, after which the paving of the foot-walk is replaced, the only indication remaining being the handhole covers at the houses. The circuits consist of copper strips about $\frac{1}{4}$ " thick, and from 1" to $1\frac{1}{2}$ " wide. The conductors are introduced by running a cord between

the successive handholes, and then joining the copper strips in continuous lengths and hauling them in. The hauling cord is introduced by attaching it to the collar of a small dog, who is trained to run along the bottom of the subway from handhole to handhole. At each handhole cover an inspector is stationed who sees the copper ribbon is placed in the slot of the insulator as it makes its appearance. When a length of 300 ft. of copper ribbon is introduced, one end of it is made fast in the end insulator, and then by means of a hydraulic jack, the ribbon is pulled up to the appropriate tension,

Fig. 99. Crompton Conduit, Longitudinal Section.

and secured at the other end in a similar insulator. The method of joining and securing the strips is indicated in Fig. 99.

Here it will be seen that there are two sets of heavy oak blocks (SB) set in the concrete. On these blocks the insulators (I) rest, and carry clamp (S), that by means of set screws (W) tightly pinch and hold the copper strips in place. A pad of rubber (R) distributes the pressure equally over the insulator and prevents cracking the porcelain. This structure certainly seems to present a maximum of advantage in the way of small street space occupied, ease and economy of construction, and flexibility and convenience for rearrangement or extension of circuits. The English reports are so satisfactory that it seems strange that similar devices are not tried in this country.

175. The Brooks System. — This system, the invention of David Brooks of Philadelphia, embodies the use of a heavy mineral oil, one of the best insulators known. Mr. Brooks's invention consisted in placing in a trench, excavated under the pavement, an iron pipe of

Fig. 100. Brooks System Junction-Box.

sufficient size to carry the necessary conductors for the system. Occasionally a rectangular box is introduced, as shown in Fig. 100, into which each end of the pipe opens by means of a flanged joint. This box serves the purpose of affording an opening into the pipe

Fig. 101. Brooks System Service Box.

Fig. 102. Brooks System Cross-section of Cable and Oil Pipe.

through which the conductors could be drawn in. At various intervals a service-box, as shown in Fig. 101, is introduced, by means of which distribution could be accomplished. The cables used in the Brooks system consisted of solid or stranded copper conductors, shown in section in Fig. 102, covered with a layer of raw jute or hemp, to prevent contact between the conductors, or grounding

on the iron pipe. This covering was placed on the outside of the conductors by a braiding-machine, and then the cable drawn into the pipe through the service-boxes. As soon as the conductor was in position the pipe was filled with boiling resin oil, which formed the insulating material, and preserved the electrical qualities of the cable. While in some instances the Brooks system has been found to stand up admirably under severe tests, considerable difficulty has been experienced in keeping the pipe sufficiently tight to retain the fluid insulator. For electric lighting service the Brooks system has in some instances given fair satisfaction; yet its largest use has probably

Fig. 103. Johnstone System.

been found in telephone and telegraph work, and for this purpose it has not fulfilled expectations, as much of this conduit which has been introduced has, after a time, been found gradually to fail in insulation.

176. The Johnstone System. — The Johnstone conduit system bears evidence of exceedingly careful design, the structure having been planned to meet all exigencies to which subways are called to respond. The arrangement consists of a series of cast-iron troughs made in lengths of about 6 ft., so designed in sections that a conduit of any desired capacity can be built. The sections, as shown in the illustration, Fig. 103, are arranged to comprise a series of rectangular ducts, into which the circuits may be at any time placed by

drawing in cables in the ordinary way. At frequent intervals a service-box is arranged upon the top of the upper row of ducts, out of which appropriate leads can be taken to serve the desired installation. At the street corners iron manholes (Fig. 104) are introduced, into which the ducts end, and from which all rearrangements or connections can be made. While this conduit is admirable in every

Fig. 104. Manhole of Johnstone System.

respect, it is one of the most expensive forms of subway constructed; its cost being so great as to almost prohibit its use.

177. The Kennedy System. — The Westminster Company of London have employed a modification of the Compton conduit, designed by Professor Kennedy, that has given good satisfaction. A general idea of this method may be obtained from the accompanying illustration, Fig. 105, showing a cross-section of this conduit designed to carry two lines of main feeds, and a three-wire distributing system. A trench is excavated in the street, which, in a manner

similar to that of the Compton construction, is lined on the bottom and sides with concrete. The conductors, as in the Compton system, are bare copper strips; but instead of being supported upon insulators set in oak blocks, the insulators are solid porcelain supports, which

Fig. 105. Section of Kennedy System.

are set directly in the concrete bottom. The top of the conduit is covered with flagging or iron casting. The circuits, formed of bare strips of copper wire, are drawn through the conduit, being placed in the insulators by means of handholes in a manner similar to that adopted by the Compton system.

Fig. 106. St. James System.

178. St. James System, London. — This arrangement is very similar to that of the Compton and Kennedy systems. The conduit, however, instead of being formed of concrete, is made of an iron trough, Fig. 106, set at the bottom of the street excavation, thus avoiding the

use of cement, and greatly expediting the street work. This trough is provided with a water-tight cover, secured by means of bolts and packing. At frequent intervals throughout the trench, a porcelain bridge is placed for supporting the circuits, which consist of bare copper strips set on edge, or stranded cable, and strained to be sufficiently taut to remain in a straight line. It is obvious that in all of the systems where bare wire mains are employed, special precaution must be taken to insure careful drainage, so that all incursions of moisture from the street may be readily and quickly removed in order not to flood the mains.

Fig. 107. Parisian System.

179. The Parisian Systems. — A large part of the underground distribution of Paris has been accomplished by the use of bare conductors extended through concrete trenches in a manner similar to the London system. The subway is formed by excavating a trench under the sidewalk, which is lined with concrete on the sides and bottom, having a flagstone, or similar covering, placed over the top (Fig. 107). The cables are almost universally bare stranded copper wire. They are carried through the trench, being supported upon porcelain insulators, carried upon iron pins set and secured in the concrete forming the bottom of the trench. In many of the German and Italian cities similar methods of

distribution have a widespread introduction, and are successfully operated.

180. Inflexible Systems. — The examples of subway systems so far cited appertain exclusively to the flexible system, that, owing to its greater adaptability to service fluctuations, has deservedly obtained a more widespread development. In the succeeding illustrations the inflexible system is presented. Numerous modifications of the methods here given will readily occur to the facile designer, in order to adapt this principle to the varying circumstances of particular localities.

181. The Callander Solid System. — By the Callander solid system a series of cast-iron troughs are arranged along the bottom of a trench excavated in the street. In the troughs the requisite number

Fig. 108. Cross-section of the Callander Solid System.

of cables are extended, supported from time to time upon insulating pieces fixed in the troughs. This protection is found to be necessary, from the fact that the insulating compound, with which the trough is to be filled, is never absolutely hard, but behaves like a very viscous fluid; and if the cables were unsupported they would gradually settle, and ultimately lie upon the cast iron forming the exterior of the subway, thus short-circuiting, and spoiling the entire structure. The cables are usu-

ally stranded copper rope of the appropriate size, covered with an additional insulating compound. In view of the melted asphalt, or insulating compound, which is subsequently poured in, this would seem unnecessarily expensive, as bare copper conductors thus arranged would answer equally as well. After the cables are in place, the entire trough is filled with Trinidad asphalt, thus completing the structure, and presenting an appearance as indicated in Fig. 108, in cross-section.

The troughs are laid in lengths of 6 ft., and are of about $\frac{5}{16}$ " in thickness, a cast-iron cover being placed over the top to protect the conduit from injury. At appropriate intervals manholes are introduced (see Fig. 109).

The design of manhole adopted by the Callander system is one to

afford the greatest possible protection to the circuits. As indicated in Fig. 109, the manhole consists of an excavation below the street level, into which is set an iron chamber surmounted with a water-tight cover, which is screwed down and rendered moisture-proof by being bolted to a rubber gasket that sets upon the top of the manhole casting. The mains contained in their trough of asphalt are carried through the iron walls of the manhole and carefully

Fig. 109. Manhole, Callander Solid System.

cemented into place. The service mains are in a similar manner carried out through a hole drilled into the manhole wall, and through a packed joint that is moisture-proof. The cast-iron box forming the manhole is set inside a cemented chamber that is so arranged as to be entirely surrounded by an air-space, into which drainage may accumulate, and be conducted away by appropriate connection to the sewer. While the Callander system presents a very perfect form of underground service, the iron trough carrying the cable seems an unnecessarily expensive precaution.

182. Two forms of cheaper construction are indicated in Figs. 110 and 111. The arrangement shown in Fig. 110 is that which is adopted in the distributing systems in Cologne and in two or three other European cities. The arrangement consists of a wooden box, shown in cross-section, into which a carefully insulated concentric

INTERIOR CONDUCTOR

INSULATION

LEAD COVER

CONCENTRIC CONDUCTOR

INSULATION

TWO LEAD COVERS

IRON SHEATHING

TARRED HEMP
SHEATHING

Fig. 110. Cologne Conduit.

cable is placed, being suspended at intervals of every few feet by means of an iron strap. After the cable is laid in place, the box is poured full of asphalt, or concrete, thus entirely surrounding the cable with an insulating material. The asphalt and the box serve to protect the cable from injury in the street. Installations of this description have given good service, though they have, as yet, not been in operation sufficiently long to determine their probable life. It is

necessary to use a very carefully prepared cable, as is indicated in the illustration. The cable is concentric, the outer conductor of which is protected by two lead sheaths and an iron armor. The exterior layer is of tarred hemp. It will also seem that an installation of this kind, made and protected

by only a wooden box, would be subject, sooner or later, to the decay of the woodwork.

As an improvement both in durability and economy, the construction indicated in Fig. 111 has been adopted in Zurich. The cable is a concentric conductor, insulated with paper, and having a lead sheath separating the inner and outer mains. The conduit consists of an earthenware trough placed just beneath the pavement level. It is strong, simple, cheap, can be rapidly laid, and affords an

excellent mechanical protection to the cable. It is made in sections of 3 ft. in length, and, if carefully placed in the street excavation, requires only a little grouting at the joints. The cables are simply laid at the bottom of the earthenware trough, which is then filled with sand, and completed with an earthenware cover. Some 18 miles of this conduit, containing 60 miles of cable, are in active operation.

183. Manholes. — It is essential, at frequent intervals, to provide means of access to underground conduits for the introduction or rearrangement of circuits, for distribution, and for such changes in direction of the subway as the location of streets renders essential. Such opportunities for access consist in chambers, constructed under the pavement of the streets, of sufficient size to allow reasonable room for two or three men to work. Usually these chambers are

Fig. 111. Zurich Conduit.

rectangular vaults, built of either concrete or brick. They are roofed over, either with arches or structural iron carrying an arch brick, and provided with an iron frame supporting the manhole cover. The various branches of the conduit are arranged to extend through the walls of the chamber, giving free access to all of the ducts converging at the particular manhole. It is advisable to construct the manholes of ample dimensions; for while, by increasing the size of the chamber, the initial cost of the underground system is slightly augmented, yet the future expense entailed in introducing the circuits, and the labor constantly necessitated by the rearrangement and maintenance, is so much decreased by affording to the workmen a reasonable amount of space in which to perform their avocations, that the extra capital invested is usually found to be well expended.

A vault 5 ft. wide by 7 ft. long, and from 4 ft. 6" to 6 ft. high, is as small as should be designed for large underground systems,

where considerable splicing and rearrangement of circuit is to be expected.

Inasmuch as the manholes are the lowest points of the subway, it is essential to provide for drainage, by connecting the bottoms of each of the vaults with the sewers, by the means of an ample drain-pipe provided with a catch-basin and trap. If

Fig. 112. A Terminal Manhole.

precautions of this kind are omitted, it frequently happens that in heavy rainfalls the conduit becomes flooded, and the circuits much injured. This provision is of paramount importance in subways containing uninsulated circuits. If lighting circuits are reasonably convenient of access, it is well to arrange in the vaults provision for incandescent lamps, as by this means workmen are afforded reasonable illumination for the prosecution of their work,

and all of the dangers attendant upon lanterns, or other methods of lighting, are avoided. While the manholes are in use by the workmen, it is necessary to provide some method of protection to prevent travel in the street from being injured by falling into the manhole, and also to prevent injury occurring to the workmen from causes of this kind. It is common to arrange a circular iron pipe guard, so designed as to be readily folded up. The guard can be unfolded and secured by setting inside the iron ring forming the manhole; and then a suitable red flag, lantern, or other signal can be attached in order to call the attention of the passer-by to the fact that the street is open at these points.

As an example of manhole construction, Fig. 112 is from a

Fig. 113. New York Subway Manhole.

photograph of the terminal manhole of a large underground system. The subway may be seen entering the wall of the manhole, the lower rows of ducts being filled with cables that in the foreground turn and run upward into the station above.

As additional illustration, the vault of the Johnstone, Fig. 104, a splendid but expensive device, and that of the Callender Solid System, Fig. 109, may be consulted.

The typical manhole adopted for New York subways, arranged for high tension current distribution, is shown in Figs. 91 and 113. In Fig. 113 the cross-section of the construction is shown, indicating a brick or iron chamber, into which the iron-pipe ducts open. Special attention is given to the method of securing the cover in order to hermetically seal the chamber. The device con-

sists in a heavy iron frame carrying two covers—an inner and an outer cover. The inner cover rests upon an elevated ring; tightness being secured by means of a circular cylindrical gasket; the cover being forced into place by means of the screw b, and cross-piece b'. Drainage is secured by connecting the gutter formed by the elevated ring to the sewer by means of the pipe P. The structure is completed by the addition of the street cover.

Fig. 114. Street Railway Junction-Box.

The perspective view of this method of construction is shown in Fig. 91, wherein the arrangement for aiding the ventilation of the subways by means of a large air-pipe placed parallel to, and in the same trench with, the ducts, will be noted. The air-pipes extend from the blower stations and connect with the various manholes: maintaining throughout the subway system a pressure slightly in excess of that of the atmosphere. thus preventing the ingress of gas.

184. Junction-Box for Underground Railway Feeds. — A large system

of underground distribution has recently been installed in Philadelphia, in connection with the substitution of electricity for animal power upon the street railway lines.

The conduits consist of cement-lined iron pipes, set in concrete. The main subway from the station consists of eight pipes, three inches in internal diameter, laid two feet deep, and intended each to carry two No. 0000 lead-covered cables. The manholes are placed at suitable distances, to enable careful and efficient handling of the wires, and to allow the railway company to make any combination

or rearrangement of the circuits of the different streets, as may be found advisable. The accompanying illustration, Fig. 114, includes the design of a manhole which has been worked out in admirable fashion for this purpose.

A circular iron chamber is arranged, carrying six inlets, some thing in the shape of a six-point star. Each of the inlets consists of a stuffing-box, through which the cable is introduced into the interior of the manhole by means of a water-tight joint, to which the duct of the subway is hermetically attached. All of the cables thus open into the box, and may obviously be arranged or changed in any desired manner. The cover of the box is firmly locked in place by means of bolts and a water-tight gasket.

185. Introduction of Circuits. - After the completion of the underground structure, the introduction of the circuits becomes a matter for consideration. This is accomplished by the process of "rodding." The workmen are supplied with a number of lightjointed pine sticks, about $\frac{3}{4}$ in diameter, and from 3 to 4 ft. in length. These rods are equipped with a screw or bayonet joint at either end, that they may be successively jointed together in series. Upon entering the manholes, the operator proceeds to connect up one or two lengths of these sticks or rods, and pushes them through the duct of the subway, into which it is proposed to introduce the circuit. By successive additions to the rod, it may be thus shoved entirely through the duct into the next adjacent manhole. Connection is thus obtained between the two manholes, whereby a rope or wire may be extended through the duct. As soon as this is accomplished, the reel upon which the conductor is wound is placed over the opening into one of the manholes, and cables lowered into the vault around a large-sized sheave or pulley, and introduced into the duct. The cable is then attached to the rope, and hauled through the duct from one manhole into the next one; the necessary traction being supplied by means of a fall and windlass located at the farther vault. Thus length after length of circuit may be introduced, until the entire quantity is laid. The different lengths may be then spliced so as to form a continuous circuit.

186. Pneumatic Rodding. — Where it is desired to rod a number of ducts extending between two adjacent manholes, the process may be very greatly facilitated by the recently devised method of

"Pneumatic Rodding." The workmen in one manhole are furnished with a "dart," which is a spool-shaped piece of wood about six inches long, having a leather washer on each end, arranged to make the dart fit tightly into the ducts. The rear end of the dart carries a ring to which a light cord is attached, loosely coiled on the bottom of the manhole. At the more remote manhole, the workmen are provided with an air-pump capable of being fitted over the mouth of the duct. The dart being placed on the mouth of the duct, a few strokes of the air-pump produce sufficient vacuum to cause the dart to fly swiftly through the duct, dragging the cord after it, a few seconds of time being all that is required to perform the operation.

187. Gas. — Perhaps the greatest danger to which underground subways are exposed is the accumulation of illuminating gas, either in the ducts or in the vaults. The pipes forming the gas-plants, ramifying through the streets of all the larger towns, are usually constructed of cast iron, which permits a considerable leakage of gas directly through the material of the pipe itself. In addition to this, the leaky joints and service-pipes are sufficient to completely impregnate the soil of the streets with illuminating gas. In fact, the statistics of some cities show that the gas companies are unable to account for some 15 to 20 per cent of the gas manufactured by them, this loss being almost entirely ascribed to street leakage. The vaults and ducts of the subways form convenient places for the accumulation of the gas, which collects in them by percolating through the soil. In the early days of subway construction, many serious accidents happened, either from asphyxiation of the workmen entering the vaults for the purpose of drawing in, or making changes in, the circuits, or from veritable explosions in the subways, due to the gas forming explosive mixtures with the atmosphere, and chancing to ignite from some accidental spark. To obviate casualties from this cause, it is now customary to provide all of the important subways with means of ventilation, two plans having been adopted which have proved fairly successful.

FIRST. — The least expensive method consists in grading each subway between adjacent manholes, so that the ducts shall have a slight fall from one manhole to the next. In order to provide for a reasonably uniform grade throughout the entire subway, sections between the manholes can be arranged so that two adjacent sections

grade *into* the manhole, and the next two grade *away* from the manhole. Then, if the cover of the vault is arranged with suitable openings, so as to provide a chance for the entrance of air, it is found that the subways will keep fairly pure, in cases where the gas leakage into the soil is not too rapid or excessive.

SECOND. — The method of ventilation which is perhaps the surest, although the most expensive, requires the installation of one or more ventilating plants at various points along the subway. Under these circumstances no particular attention need be paid to grading the conduit, excepting for purposes of drainage; and the vault covers, instead of being rendered open to the atmosphere, are made as nearly air-tight as is practicable. At the ends of the subway, or if the length of the underground construction requires it, at several intermediate points, ventilating plants are arranged, consisting of airblowers driven by some form of prime mover, which constantly forces into the subway quantities of fresh air. At first sight it would seem as if it were essential to keep a steady flow of air through the subway, in order to clear the ducts of the accumulation of gas; but, on the contrary, the attempt of the ventilating plant is to produce a pressure in the subway which is a little greater than that of the atmosphere. Under these circumstances the incursion of gas into the subway is prevented from the mere fact that the pressure there being greater than that of the exterior atmosphere, causes the gas to flow away from and not toward the subway. Under these circumstances, the air which is forced in finds a natural outlet through the porosity of the soil itself.

188. Electric Railway Conduits. — The extension of the electric railway is proving one of the most important factors in electric distribution; and probably this method of propulsion would have attained a still greater expansion could some successful, and at the same time economical, form of substructure be devised which would relieve city streets of the overhead conductors that are essential to the trolley system. Long since the railway feeds were placed underground, either by means of armored insulated cables, or, more economically and equally successfully, by placing bare wire mains in wooden conduits insulated with asphalt, after the fashion of the Callander Solid system. There yet remains the trolley wire, which so far may be practically said to have resisted all attempts at removal.

Many extensive and expensive experiments have been tried with various forms of underground structures, intended to carry the trolley conductor beneath the surface of the street. Generally speaking, these attempts may be so far stated to have been failures; for the difficulties encountered in securing requisite insulation, providing for surface drainage, and allowing successful contacts with the motors, have been too great for inventors entering the field. In favorable locations it is undoubtedly possible to construct a successful street railway substructure, yet the additional expense of the conduit is so

Fig. 115. Details of Buda-Pesth Conduit.

great, and the advantages to be derived from its use so few, that little or no headway is likely to be made in this direction as long as the remotest possibility exists of obtaining an overhead franchise. Three or four electric roads in Europe, and perhaps as many more in this country, are running upon underground systems; but as yet the electrical railway conduit has hardly transcended the experimental stage.

189. The Buda-Pesth Conduit. — The line at Buda-Pesth was a pioneer European experiment. The mechanical details are indicated in Fig. 115, from which it will be seen that the construction resem-

bles a cable road design, the conductors being angle bars supported on the yokes, as at B. The Blackpool conduit is shown at A, Fig. 115. The conductors are copper bars, as at FF, supported on special insulators attached to each side of the conduit. The details

Fig. 116. The Manville Conduit.

of these are shown at P, and a general view of the track at C. From the car the device for contact is a bar extending through the slot, carrying two shoes pressing on the conductors.

190. The Waller and Manville System. — This is constructed as shown in Fig. 116, the upper illustration indicating the arrangement where a single conductor is used, while the lower one gives the

design for a metallic circuit. The conduit consists of a rectangular cement trough placed under the rails. On the under side of the roof a series of insulators is suspended carrying peculiar projecting arms FF. The conductors are heavy copper rods that nominally lie upon the supporting projections FF. The plow or trolley hangs from the car by means of a bar passing through the slot between the rails, and is adjusted at such a height as to run clear of the insulators FF. The trolley carries triangular grooves which engage the copper conductors, lifting them off the insulators in much the same fashion,

Fig. 117. The Love Conduit.

as it runs along, as the grip of a cable car raises the cable from its supporting sheaves.

191. The Love Conduit. — In this country two pieces of railway conduit have been constructed by the Love Electric Traction Company, one in Chicago and one in Washington. These experiments are reported to be giving fair satisfaction. The general plan of the conduit is seen, from Fig. 117, to be modeled after the usual cable railway design.

The yokes are of cast iron, spaced about every 4 ft., and weigh 260 lbs. each. They are mounted on concrete foundations; and concrete is employed about the sides of the conduit, the lining being of cast iron. The depth of the conduit is 20", and it has a

maximum width of 14''. The width of the slot is $\frac{5}{8}''$. The rails are grooved, weigh 62 lbs. to the yard, and are bolted directly to the yokes. The slot rails are of an inverted U shape, and have a long lip or flange extending into the conduit, which protects the conductors from water and other *débris* which might fall into the conduit. The manholes are located every 100 ft., being drained by 6'' pipe. A complete metallic system of conductors is used. The conductors are of hard-drawn copper, $\frac{5}{8}''$ in diameter, and are supported by a special type of insulator, and protected from accidental grounding by water, etc. The conductors are made in sections, of wires connected every 500 ft. by couplings which allow for contrac-

Fig. 118. Lenox Avenue Conduit.

tion and expansion. They are supported from the yokes by clamp insulators, which fit into longitudinal grooves on each side of the conductors, making an uninterrupted surface on the under side of the latter for the trolley wheel. The trolley or plow, shown in the illustration, carries two wheels which run along the under side of the conductors. Each wheel is mounted on a swinging bracket, and is held against the conductor by a spring, so that a perfect connection is secured.

192. The Lenox Avenue Conduit. — As indicative of the probable development of the electrical railway conduit, Fig. 118 is a

cross-section of a conduit which it is proposed to place on Lenox Avenue, New York City. The cable railway type of construction is proposed, consisting of yoke frames embedded in concrete. The conductors are channel irons, and are supported upon a series of soapstone insulators set in the manholes, which are reported to be placed every 30 ft. along the road. Contact is made with the channel iron conductors by means of a plow carrying two rubbing contacts that bear upon the conductors.

193. Metallic Conduits and Cable Sheaths for Alternating Currents. — With the extending tendency to transmit energy by means of alternating currents, the question of the effect of metallic sheaths for conductors, or metallic structures for conduits, assumes considerable importance. Lead and iron are the only metals that have so far been used for this purpose. The impedance to which any alternating current is subjected, is greatly affected by the magnetic permeability of the medium surrounding the conductors; and also depends upon the mechanical disposition of the media. Conductors which are sheathed with metal so disposed as to form a closed circuit have the impedance factor largely increased. Iron sheaths still further augment it. If all the constants of a circuit are known, it is possible to calculate the impedance; but the value of many of the factors, however, is still quite uncertain. Some French experiments upon lead-covered cables and currents at a frequency of 100 per second show the conductors to be subjected to a loss of energy varying from 1 to 2 per cent. With iron sheaths, from 5 to 10 per cent loss is reported, with one extraordinary instance of a 35 per cent loss. While this subject needs much more investigation, it is certainly safe from present appearances to relieve alternating circuits from the presence of metallic surroundings.

CHAPTER IV. — Continued.

THE CONSTRUCTION OF UNDERGROUND CIRCUITS. (Continued.)

PART II. - CABLES AND CONDUIT CONDUCTORS.

Art. 194. Conduit Conductors. — For all underground circuits, excepting such as are designed to go into conduits arranged for bare conductors, some special form of insulation is essential in order to maintain the electrical integrity of the circuits. To accomplish this end, various designs, leading toward the formation of the conductor into cables, have been invented.

195. Armored Cables. — The SIEMENS CABLES. — The earliest attempts toward the construction of underground circuits consisted in the mere excavation of a trench through the street, into which the insulated cable, carrying the distributing circuits, was placed. Experience demonstrated that it was difficult to build a cable with sufficient mechanical strength to be self-protective against destructive influences constantly at work to cause the deterioration of street structures. Even the best armored cables are liable to be ruined by a single stroke of the pickax; so additional precaution was needed, thus causing the development of the more modern types of subway structures. The armored cable, however, is by no means to be despised as a method of underground distribution. On the contrary, the entire system adopted by the Siemens Bros. is based upon a superior construction of the cable (provided with ample protection against damage), laid directly in trenches excavated under the pavement in the street. The Siemens cable is of the concentric type; that is, the two conductors forming the circuit are not laid side by side, but are arranged one inside the other, separated by the appropriate insulating material. Two advantages accrue from this method of construction, one being a notable saving of space, insulating material, and cost of manufacture, and the other the practical impossibility of forming a short circuit with any exterior object, thus affording an immunity against fire risks or injuries to workmen. Three of

the most valuable forms of concentric cable are shown in Figs. 119, 120, and 121.

Cable No. 1, Fig. 119, is used by the electric light installations

Fig. 119. Siemens Incandescent Light Cable, Paris. No. 1.

in the Théâter du Chatelet, and the Opéra Comique, Paris. This cable has a central conductor of 61 wires, each of three millimeters

Fig. 120. Edison Cable, Paris. No. 2.

in diameter, separated by a layer of rubber five millimeters ($\frac{3}{16}$ of an inch) in thickness, outside of which is placed a surrounding conductor composed of 22 strands, each of 7 wires, $1\frac{7}{10}$ millimeters in

diameter. A second coating of india-rubber, covered with a lead sheath, completes the cable.

Cable No. 2, Fig. 120, is the cable used by the Secteur Edison in Paris, that, in addition to the concentric conductors and lead sheath, is provided with a steel wire armor.

Cable No. 3, Fig. 121, is a special cable used by the Siemens Bros. on the five-wire system that they have established in Paris.

1 and 2 are the concentric conductors; 3 the balancing main, to which allusion will be made in the chapter on parallel distri-

Fig. 121. Siemens Concentric Cable. No. 3.

bution; a, b, and c insulation; B lead covering; J jute; A asphaltum insulation; and E iron armor.

The mains are laid by merely excavating a trench in which a bed of sand is placed for the reception of the cable.

The methods of making service connections are indicated in Fig. 122, being very similar to the Edison system adopted in this country. In order to protect the cable from excavators, it is customary to lay directly over the mains a layer of plank or a length of ironwire netting. While the iron-wire netting may call the attention of the excavator to the presence of the structure beneath him, the

plank is found to be by far the most sufficient protection, inasmuch as it actually prevents pick or shovel from cutting through and coming in contact with the cable.

196. The Edison System. — Under this system, bare conductors are inclosed in an iron pipe, protected by an insulating compound, the iron pipe having ample strength to protect the circuits from

Fig. 122. Junction-Box for Siemens Cable.

external injury. The Edison circuit is formed by inclosing in a 16-ft. length of iron pipe, about 3" in diameter, three copper conductors of appropriate size. These conductors are separated from each other by winding each one with a loose spiral of jute or cotton yarn of sufficient thickness to insure the separation of each individual rod from any of its neighbors, and from the exterior pipe. The three copper rods, after having been wound in this fashion, are bundled together, and slipped inside of a length of iron pipe. When

the rods are in position the pipe is poured full of a melted special insulating compound, that, on cooling and hardening, holds the conductors firmly in their place. As soon as the insulating material has hardened, the completed section of pipe, with its three conductors, is carefully tested, and, if found satisfactory, becomes a complete section. All of the Edison underground plant is planned upon the three-wire system. Four different sizes of pipe, carrying correspondingly different sized conductors, are in common use, and are as follows:—

1½" pipe containing 80 M to 120 M circular mils of conductor.

2" pipe containing 150 M to 300 M circular mils of conductor.

 $2\frac{1}{2}$ " pipe containing 350 M to 600 M circular mils of conductor.

3" pipe containing 700 M to one million circular mils of conductor.

The cross-sections of the various sizes of electrical tube are shown in Fig. 123. To lay the mains, excavation is made in the street just under the surface of the pavement. Successive lengths of appropriate size electrical tubes are then laid loosely along the bottom of the trench; each successive length is connected to its neighbor by means of a junction-box shown in Figs. 123 and 124.

In the illustrations it will be seen that the two ends of the pipe enter an egg-shaped casting through two water-tight sleeves at either end of the oval. Inside of the casting, the separate conductors are joined by connectors formed of heavy copper rope. The connectors are screwed to the conductors by means of set screws running through copper castings on the ends of the connecting rope. After the connectors are in place, they are thoroughly soldered to the ends of the mains, thus making the electrical joint. The covering of the egg-shaped casting is screwed down upon the lower half; and by means of a small hole in the top of the casting, the whole of the box is filled full of melted insulating compound, thus forming an absolutely water-tight joint. To connect the consumer to the main line, a junction-box is provided which takes the place of the ordinary connecting-box joining the ends of the two successive pipe lengths, Fig. 124. The service-box is essentially the same as the junction-box, with the exception that it has three outlets instead of two, the third outlet forming a means whereby a third electrical tube may be carried from the street

main to the inside of the wall of the premises of the consumer. At various points along the underground net-work, large distributing-boxes are placed, into which all of the mains from several

Fig. 123. Edison Tubes and Junction-Box.

adjacent streets extend. By means of the flexible connections shown in Figs. 124 and 125, any desired combination or rearrangement of the circuits may be effected. The service-box also forms a ready means of testing and inspecting all of the circuits so as to insure their adequate and proper maintenance. The Edison

system of conduit has in this country received very large development, a great proportion of our cities being supplied with incandescent lights by means of this system. The Edison system presents

Fig. 124. Edison Distributing and Service Boxes.

the advantage that all the work of manufacture can be done in the factory by machinery, by skilled labor, and under the supervision of thoroughly competent inspectors. The street work simply consists in excavating an exceedingly shallow trench, and laying the mains loosely along the bottom of it, and in suitably connecting

the ends of the adjacent tubes. While the Edison system is one of the most admirable that has been devised, it is obvious that it entails considerable expense on account of the necessity of providing each group of mains with a separate iron pipe.

197. The Ferranti Mains. — A description of cable systems would not be complete without reference to the method successfully put into practice in London by Mr. Farranti, involving transmission of alternating currents at a potential of 10,000 volts. Present practice would but rarely justify such pressures, but the time may not be far distant when this amount will be frequently exceeded. The Ferranti mains consist of two concentric copper tubes, A and E, Fig. 126, separated by half an inch of paper, C, saturated with black mineral wax, and protected from injury by a solid iron sheath, D. About thirty miles of these conductors have

Fig. 125. Edison Distributing-Box.

been made, and are working from the Deptford Station in London. The greater proportion of these conductors are designed to carry 250 amperes, and consist of an inner tube $\frac{9}{16}$ " in diameter, giving a cross-section of one-fourth of a square inch. This is separated from the outer tube by the requisite paper insulation, while in turn the outer tube is similarly separated from the iron sheath. A longitudinal and cross-section of the main is indicated in Fig. 126.

The chief point of interest lies in the construction of the joints in order that both the requisite insulation and conductivity should be secured. For convenience in handling, the mains are made in 20-ft. lengths; and the ends of each piece are turned to form long conical male and female sockets, as exhibited at A in the illustration. When the mains are laid, the successive lengths are forced into accurate

contact by a hydraulic jack. The inner conductors are joined by a copper plug a, while the outer ones are connected by a copper sleeve G, that is secured by corrugating the sleeve onto the mains.

198. Telegraph Cables. — For underground telegraph work, the cable is usually made by twisting together a sufficient number of carefully insulated wires to form the desired number of circuits. The wire chosen for the purpose is usually some one of the better forms of rubber-covered wire, to attain the requisite insulation. By means of twisting-machines, the conductors are laid up into a flex-

Fig. 126. The Ferranti Mains.

ible rope, which is afterwards covered with one or more layers of heavy braid, treated with an insulating compound, in order to retain the circuits in their appropriate positions. Cables of this description may be made of any desired size, and supplied with circuits of either large or small wire, at the pleasure of the designer. For an additional mechanical protection, they may be subsequently supplied with either a lead sheath or an armor of iron or steel wire. This, however, is rarely necessary, excepting where specially severe service is to be expected.

199. Subaqueous Cables. — Cases frequently arise where it is necessary to cross, with an electrical circuit, a stream or other body of water. Under these circumstances, a cable specially prepared is necessary, to resist the greater severity of the service. The circuits may be arranged as already described for ordinary telegraph

cables, due care being observed to proportion the copper cross-section for the work which the cable is called upon to perform. After the circuits are laid up, it is necessary to afford the cable a much greater protection than is essential for ordinary underground lines. To this end subaqueous cables are frequently supplied with two or more sheaths, in order to make them absolutely waterproof, and then are supplied with an additional armor of iron or steel wire, which is

Fig. 127. Submarine Telegraph Cable.

braided over the surface of the sheaths. For submarine telegraph work, the lead sheaths usually are omitted, as sufficient insulation can be obtained by covering the wire with a number of layers of insulating compound. The steel armor, however, is an absolute necessity, in order to protect the cable from injury during the period of laying, and to protect it from such destructive influences as chafing against rocks and other obstructions which may be found in the bed prepared for it, and to enable it to resist all injury which may be caused by the keels or anchors of passing vessels. In espe-

cially shallow water, extra precautions must be taken, as here the cable is much more liable to injury. Examples of submarine telegraph cable construction are exemplified in Fig. 127.

200. Power Circuits. — Cables for power circuits may be manufactured of any desired capacity, and especially designed and adapted for particular cases of transmission. For copper cross-sections which are less than 100,000 circular mils, it is customary to use a solid conductor, which is overlaid with several layers of insulating material. For sizes larger than this, the stranded conductor becomes impera-

Fig. 128. Power Cables.

tive, as the solid rod is too stiff to permit of the necessary mechanical manipulations that are required for installation. The general appearance of such cables is indicated in Fig. 128. The practice of drawing a lead sheath over cables of all descriptions is rapidly increasing; as it is found that the continuous film of lead affords an almost perfect protection to the cable, and guarantees to the insulating material a much longer life than can be obtained in any other way.

Experience has also shown that paper thoroughly impregnated with insulating compound, such as the various tars or resins, forms

one of the best insulating materials, provided paper can be kept reasonably dry, as is insured by the use of the lead sheath. A very large class of distributing cables are now made with paper insulation, which give the highest satisfaction in actual service. Some of the varieties of paper insulated cables are shown in Fig. 129.

201. The possible variety in design that could be attained for transmission cables is without limit. In Fig. 130, from Nos. 1 to 22, a variety of cable cross-sections are shown which experience has indicated to be serviceable in various forms of transmission, and which may be obtained in the market without the necessity for special manufacture.

No. 1, No. 3, and No. 15 are examples of feeder cable intended for three-wire distributing systems. Nos. 1 and 3 contain stranded conductors.

In No. 1 each con-

Fig. 129. Paper Cables.

ductor is surrounded by an independent lead sheath, while in No. 3 the lead sheath embraces all three of the mains. Nos. 1 and 3 may be commonly obtained, having from 20,000 to 250,000 circular mils. No. 15 contains no lead sheath, and solid conductors are used, as the cable is rarely called for excepting in small sizes. Nos. 2, 4, 6, 7, and 21 are examples of conductors with lead sheaths and exterior and interior insulation. They are stranded for the sake of greater flexibility, and may be obtained in all the commercial wire sizes. The finer strands, as in No. 2, No. 6, and No. 7, are much more flexible than the coarse wire of No. 4. No. 5 is an unarmored, unsheathed submarine cable designed for

transmission on the three-wire system. The two large conductors are intended for the outside mains, while the smaller one fills the office of the third wire. The three small conductors are intended to serve as pilot wires. Copper cross-section, 450,000 mils. Nos. 8, 9, and 11 are feeder cables, designed for underground power distribution, and may be obtained up to 1,000,000 circular mils. No. 18 is also a feeder cable, with an extra protection of the lead sheath. Nos. 20 and 22 are feeder cables with light insulation, but are only intended for interior work in dry locations, and not for underground service. Copper section up to 1,000,000 circular mils. Nos. 13 and 19 are examples of solid lead-covered and plain insulated underground cable, suitable for arc-light service. Nos. 12 and 15 are similar triple-conductor cables of solid conductors. No. 16 is a triple-conductor concentric cable, with lead sheath, especially adapted to triphase transmission, or other high potential work.

202. Telephone Cables. — For telephone service, cables are required which possess slightly different characteristics from those which would meet the specifications for telegraphic or for power distribution. In the telephone service, it is found essential to reduce the electrostatic capacity to the lowest possible figure, in order to produce a conductor which shall have the requisite talking ability, and also to so arrange the conductors as to neutralize all the effects of either self-induction between the talking circuits, or induction produced by the presence of neighboring currents. To successfully accomplish these requisites, many experiments have been tried, producing a variety of cables that have been more or less successful.

203. The British Post-Office Cable. — A cable largely in use by the English postal service is composed of tinned copper conductors, each of three strands, aggregating a weight of about 20 lbs. per mile, with a resistance of 45 ohms per mile. Each conductor is covered with two coatings of india-rubber, and then taped with thin india-rubber coated cotton, and finally with ozokerite. The conductors are then twisted together in pairs, and laid up in cables of the required number, served with jute, and wrapped with stout asphalted tape. After the core is thus completed, it receives an additional coating of hemp, and another layer of asphalted tape.

204. The Patterson Cables. — The Patterson cables, made by the Western Electric Company, are composed of a number of copper

conductors, usually of No. 18 or 19 gauge, which are insulated from each other by being loosely wrapped with a spiral layer of paper, and are then protected by means of a lead sheath. In the earlier cables it was thought necessary to secure the insulation by forcing liquefied paraffine into the cable, the paraffine being aerated with carbonic acid gas. By this means a very high insulation resistance was obtained, with a notable reduction in electrostatic capacity compared with the rubber cable. All cables of this description are made in twisted pairs; the respective conductors, after being insulated, and before being laid up in the core, are twisted together to give a lav of one turn in some 5" to 7". The entire core is then formed by laying up successive pairs of twisted conductors in a similar spiral manner. While the use of the aerated paraffine was found to be a marked improvement, so far as the electrostatic capacity was concerned, over the former methods, the cable was yet found to present an objectionable amount. To still further reduce this feature, recourse was had to the dry-core cable, which simply consists in papercovered copper conductors laid up and covered with a lead sheath, with no other form of insulation. By this means a cable is obtained in which the dielectric consists largely of air. Cables of this description are made as low as .06 microfarad per mile. The objection to this style of cable lies in its liability to injury, in case the lead sheath is ruptured, and the cable subjected to moisture. When the cables are manufactured, it is customary to seal each end of the cable by the introduction of paraffine or similar insulation, for a space of a few feet, in order to prevent the incursion of moisture when the cable shall be spliced. So long as the lead cover remains intact, no difficulty is experienced; but a rupture of the lead is sufficient to admit moisture to the paper core, when by the capillary attraction of the paper, the moisture is liable to become distributed throughout the entire length of the cable, thus utterly ruining it.

205. The W. T. Glover Cables. — The earlier cables manufactured by this firm were designed for grounded circuits, and were constructed in a manner to lessen and avoid cross-talk, and termed "Anti-Induction Cables." The cable was formed of the requisite number of insulated wires, usually of No. 18 gauge. The wire was of tinned copper, insulated with several thicknesses of pure rubber strip, and served with prepared tape. A number of the wires in the

cables were then coated with a continuous layer of tin-foil, and placed in definite positions in the cable, with regard to the remainder of the conductors. Inasmuch as the location of the wires covered with lead foil was accurately known, they served as a means of locating the positions of the other circuits. The arrangement of the wires in the cables also was such that the lead foils were all in electrical contact. The core thus formed was further protected by means of a lead sheath arranged to come in contact with the previously sheathed conductors. As a result, all of the sheaths were grounded by being connected to the exterior coating. This arrangement of sheathing was designed to intercept induced currents, and protect the cable from cross-talk and the other effects of induction. To design a cable for metallic circuits, a new form was arranged that has been termed the "Magpie Cable." This consists of a number of wires arranged in double pairs. The wires are insulated in the manner already described. The arrangement of the conductors is such that the wires are laid up in strands of four, one of each pair in each strand being covered with white tape and the other pair with black, thus serving as a means of distinguishment, in order that the appropriate conductors may be readily picked out and assigned in arranging the circuits. While these cables have found a wide introduction, the lead sheath and tin-foil wrapping cause them to have a very high electrostatic capacity, something like .27 of a microfarad per mile.

206. The Fowler-Waring Cable. — Two different forms of cable are manufactured under this trade name.

The first class, the Waring cable, is arranged by twisting together a sufficient number of copper conductors and incasing them in a leaden sheath. When this is accomplished, the whole cable is forced full of heavy petroleum oil, something in the fashion of the Brooks system. It is claimed for this cable that it has the ability to resist very high temperatures without serious injury to the insulation. Experiments have been made which show that individual conductors may be heated nearly red-hot, or the exterior of the cable heated to the fusing-point of the leaden sheath, without serious injury.

The second class of cables, known as the Dry Core, is made by wrapping the conductors with a specially prepared vegetable fiber,

arranged to be non-hydroscopic. The wires are then twisted together and lead-covered. This arrangement attains practically the same result as is secured by the paper cables, with the supposed advantage that the prepared fiber does not render the cable so likely to absorb moisture. The Waring cable has an electrostatic capacity of about

Fig. 131. Sections of Felten-Guilleaume Cable.

.16 of a microfarad, and the Dry Core about .07 of a microfarad per mile.

207. The Felten-Guilleaume Cables. — The cables manufactured by this firm are similar, so far as their styles of rubber insulation are concerned, to those of other manufacturers; but they offer a very ingenious and exceedingly valuable form of paper cable. The

Fig. 132. A Twisted Pair.

design of these cables is shown in the accompanying illustrations, Figs. 131 and 132, giving a cross-section and the method of making a single "twisted pair." The conductors are arranged either in pairs or in fours, and are separated by a single strip or two strips of paper. From the illustration, it will be observed that each pair is made by laying between the copper conductors a strip of paper, which is then twisted, and subsequently surrounded with an addi-

tional layer of paper. Each pair of conductors, or each set of four, is thus inclosed in a little paper tube separated transversely by one or two diaphragms of paper. After the completion of the core, the whole cable is incased in a leaden sheath, and then may be further protected by an additional layer of tape or of iron armor. The paper for these cables is either ordinary dried paper, or it may be impregnated with an oil or resin to prevent the incursion of moisture. It is asserted that specimens of these cables have been shown with a capacity as low as .05 microfarad per mile. The same firm also manufactures at present the most successful telephone cables for submarine work. The same system is used, but the construction for marine work is necessarily somewhat different.

A marine cable containing four conductors is shown in Fig. 133.

133. The Guilleaume Submarine Telephone Cable.

The four conductors, with their cross-shaped paper diaphragm, are seen at the center of the cross-section. The group is then wrapped with paper, as previously indicated. This is then sheathed in a lead tube, which is afterwards supplied with an additional insulation in the shape of a double coating of gutta-percha. The armor of the cable, instead of being ordinary iron wire, is formed of galvanized wires so arranged that they lock into each other, forming an envelope that is exceedingly firm and incompressible, and which effectually protects the paper of the cable core from becoming compressed, and the conductor short-circuited

208. The Herrmann Beaded Cable. — One of the early attempts looking toward the reduction of electrostatic capacity for telephone cables was an invention by Herrmann, who conceived the idea of incasing the several conductors of cables in a series of wooden beads,

and then sliding them inside of the common leaden sheath. This construction is indicated in Fig. 134.

While this invention did secure a considerable reduction in the capacity over ordinary rubber insulators, it is more expensive, and has a still greater capacity than the present form of paper cables.

209. Cable Joints and Splices. — The operation of joining underground conductors having a solid core consisting of a single strand, or splicing multi-circuit cables, is one which requires the exercise of extreme care and the employment of the very best skill and workmanship, in order to make splices which shall be durable and lasting, and which shall continuously preserve the conductors from the incursion of moisture.

Fig. 134. The Herrmann Cable.

Case 1. Single-Conductor Cables. — For splices or branches in single-conductor cables, the work should be performed as in Fig. 135, Nos. 1 to 14 inclusive. In order to splice a single stranded cable, the insulation should be carefully laid bare for a length of from 3" to 6", depending upon the size of the cable core. At either end the insulation should be carefully tapered away to form a long cone. The strands of the cable should next be tightly twisted together and dipped in solder, to secure the ends of individual wires. The ends may then be beveled, as indicated in No. 6, with a long scarf, which should then be thoroughly and carefully soldered together, under no circumstances using any acid as a solder flux. When the scarf is thoroughly soldered, it should then be wrapped with a continuous tight serving of copper wire, as indicated in No. 2. The joint is then complete 1, as shown in Nos. 3, 4, and 5, by wrap-

ping layer after layer of okonite tape around the joint, until a smooth, conical splice is obtained, as indicated in No. 5.

· Solid conductors may be spliced in a similar manner, as indicated in Nos. 6, 7, and 8. A branch in a cable may be taken off in a

Fig. 135. Cable Splices.

manner similar to that indicated for splicing, excepting in so far as the description of that process refers to the actual joining of the conductors in the cable. The process for taking off a branch is indicated in Nos. 11 to 14 inclusive. Here the insulation of the cable is laid bare for a couple of inches, the insulation being carefully tapered away on each side. The branch is then firmly lashed to the cable by means of a serving of copper wire, as indicated in No. 2, the whole being securely and firmly soldered to the cable core. The insulation is then replaced in a manner similar to that for making splices, excepting that the layers of tape must be served over the branch as well as over the core of

the cable itself, the final completed joint being finished as shown in No. 14.

210. Case 2. Multi-Conductor Cables. — For all of the special forms of cables, such as those made by the Siemens Bros. and the Edison Company, special methods of splicing are used, which have been indicated in the accounts of the respective styles of cables. For multi-conductor cables of rubber insulation, a length of the cable from 8" to 2 ft. in length, depending upon the number of circuits, must be laid bare of insulation. The separate circuits must then be carefully untwisted from each other, each circuit being properly tagged to preserve its identity. The insulation must then be removed from each of the individual wires. The splice is effected by twisting together and soldering each conductor to the conductor to which it is assigned in the new piece of cable. Insulation, usually consisting of okonite tape, or some equivalent rubber compound, is then replaced upon each of the individual circuits, the circuit replaced in as compact a form as possible, and the whole splice completed by three or four layers of okonite tape serving the entire cable and binding the circuits into position. With special skill, splices may thus be made in okonite cable, which can hardly be detected from the regular cable.

Lead-covered cables with paper compound cores may be spliced by cutting away the lead sheath, exposing the conductors, and splicing them, as has already been indicated. As soon as the splice is completed, a piece of lead pipe of sufficient size, previously slipped over the cable, may be soldered to the lead sheath on either side of the splice, making an absolutely water-tight joint.

For dry-core paper cables, an additional process is necessary to seal either end of the cable to prevent the entrance of moisture while the splice is being made. To this end, as soon as the cable is opened, it is thoroughly heated and dried by immersing it in a bath of boiling paraffine oil, and then hot paraffine is poured into the cable to entirely fill it up, and seal it for the space of some 2 or 3 ft. This is done on each end of the pieces to be spliced; and then the conductors are connected, and are insulated by being covered with paper tubes, the whole core bound together with tape, and a lead sleeve soldered over the joint. With careful workmanship, splices of this kind can be made without injuring the cable in any respect, and without increasing its diameter at the splice more than fifty per cent over that of the original cable.

211. The Connection of Underground and Aerial Systems. — The connection of underground and aerial systems is a problem of great practical importance. It is customary to construct at the junction between the pole-line and the conduit system, a vault or man-

hole of the requisite dimensions, directly at the base of the anchor

Fig. 136. Cable Terminal Pole.

pole forming the end of the pole-line. From this vault, iron pipes of sufficient diameter to permit easy introduction of the necessary cables are run up alongside of the poles to such a distance above the street as to secure the cable from malicious injury. The pipes extend through the earth, and are built through the wall of the vault, with a curve of some 5 or 6 ft. radius. to permit of the easy introduction of the cable. The necessary cables are then passed through the iron pipes, up the side of the pole, and are terminated in cable heads, usually placed upon a balcony or platform, set directly under the lowest cross-arm, Fig. 136.

The cable head is a rectangular cast-iron box, represented in Fig. 137, about 4" in thickness, some 8" or 9" in width, and varying from 18" to 4 ft.

in length, in order to accommodate from twenty-five to one hun-

dred pairs of wires. The lower extremity of the box terminates in a brass tube, which, being threaded into the casting, forms a water-

tight joint. The sleeve of the cable is soldered to the brass thimble, thus completing the connection between the box and cable. The office of the cable-box is to afford a water-tight compartment having a sufficient number of bindingposts to correspond to the number of wires in the cable. Upon the completion of the soldering of the cable sheath to the brass thimble at the base of the box, the wires composing the cable are untwisted inside of the cable-box, and each one soldered to the interior terminal of the binding-post. By this means the wires from the cables are extended through the cable-box to the exterior, in such a manner as to make a waterproof connection, and to afford an easy and rapid means of distribution to the poleline. The appropriate number of cableheads, corresponding to the number of cables ending in any pole-line, are placed in a circular wooden compartment built around the pole above the top of the balcony. The entire construction is indicated in Fig. 136, showing the balcony, cable-box, and cables to the aerial line. The sides of the cable-head, as represented in Fig. 137, are supplied with lightning arresters, of the pattern shown in Fig. 89. As aerial lines are particularly subject to the incursion of strong currents, these protectors are a necessity, to guard the cable wires from in-

jury that would be much more serious than any damage resulting to the pole conductors.

CHAPTER V.

ELECTRICAL INSTRUMENTS.

Art. 212. No exposition of the methods of distributing electrical energy would be complete without such reference to the various electrical instruments, and methods of measurement, as will enable the designer to accurately inspect the condition, and determine the performance, of electrical circuits. The principal electrical instruments may be divided into five classes:—

First. Instruments for the measurement of resistance.

Second. Instruments for the measurement of the quantity of electricity.

Third. Instruments for measuring electrical pressure.

Fourth. Instruments for the measurement of capacity.

Fifth. Instruments for the measurement of the energy delivered by a circuit.

INSTRUMENTS FOR THE MEASUREMENT OF RESISTANCE.

213. The Wheatstone Bridge. — The most widely known instrument for resistance determinations is the Wheatstone Bridge, the theoretical arrangement being shown in Fig. 138. Four resistances, a, b, d, and x, are arranged in the form of a parallelogram, a battery being placed in series with one diagonal and a galvanometer in the other. When the four resistances forming the sides of the bridge are so adjusted that no current flows through the galvanometer, these resistances bear a certain definite relation each to the other. When there is no current between the points A and C, the galvanometer may be removed without altering the current in the arms of the bridge. Also, the points A and C may be short-circuited without interfering with the balance. Suppose the points A and C to be separated; then the joint resistance of the four arms of the bridge

between the points B and E will be, $\frac{(a+x)(b+d)}{a+x+b+d}$. If now the

points A and C be joined, the resistance may be expressed as $\frac{ab}{a+b} + \frac{dx}{d+x}$. These two expressions are evidently equal to each other, and may be stated in the form of an equation,—

$$\frac{(a+x)(b+d)}{a+x+b+d} = \frac{ab}{a+b} + \frac{dx}{d+x},$$
 (22)

which, by simplification, may be reduced to the form

$$x = \frac{ad}{b}. (23)$$

Therefore, if three of the quantities of this equation are known, the fourth can be easily determined. Usually two of the arms consist of fixed known resistances, the third is an adjustable resistance formed of a number of coils whose value has been previously determined,

while the fourth is the unknown resistance which it is desired to measure. By the simplest method, α and δ would be of equal value, in which case x would be equal to d; or, in other words, the resistance between A and E, when the equilibrium is obtained, gives the value of the

Fig. 138. Diagram of Wheatstone Bridge.

resistance to be measured. It is essential that some resistance should be in the arms a and b; for otherwise the galvanometer is short-circuited, and equilibrium will always be apparently produced. Instead of using equal resistances in a and b, one of the two may be 10, 100, or 1000 times as great as the other; or, in fact, any multiple that may be desired. Multiples of ten, however, are those which are most commonly used. If b is made ten times as large as a, the resistance in a0 will be ten times as large as a1, and thus every unit of resistance in a2 will represent one-tenth of a unit in a2. By this means it is practical to determine the value of the unknown resistance to the tenth of a unit. Similarly, by making a2 100 or 1000 times as large as a3, the value of

x may be correspondingly ascertained to the $\frac{1}{100}$ or $\frac{1}{1000}$ of a unit. If, on the contrary, a be made 10, 100, or 1000 times as large as b, each unit in d must be multiplied by the corresponding factor of 10, 100, or 1000, to give the value of x. By this means it is practical to make the bridge measure very small or very large resistances, with fair accuracy. It is obvious that the sensitiveness of the galvanometer employed to detect the current flowing between A and C

Fig 139. Portable Testing Set

forms a large factor in the accuracy of bridge measurements. The more sensitive the galvanometer, the smaller the current it will be possible to detect, and the nearer the bridge arms can be brought to an exact balance. A very convenient and portable form of testing-set, embracing resistance coils, bridge, and galvanometer bridge, is shown in Fig. 139.

At the extreme right of the cut is shown a small D'Arsonval galvanometer, having the advantage of being dead-beat. Next to the galvanometer is the resistance-box, containing four sets of coils, units, tens, hundreds, and thousands; and on the extreme left hand, the arms of the bridge, a and b are seen, the arm a having coils of 1, 10, and 100 ohms, and arm b with coils of 10, 100, and 1000 ohms. By means of pegs, the arms can be arranged either to multiply or divide at pleasure. With the coils in the arms a and b, ratios of 1 to 10, 100, or 1000 can be obtained, either multiplying or dividing; and as the resistance coils measure from 1 ohm to 1111 ohms, the set can measure from $\frac{1}{1000}$ of an ohm to 11 megohms.

214. The Slide Wire Bridge. — While the previously described form of bridge is capable of detecting a thousandth of an ohm, very low resistances are more conveniently measured by a modification of this instrument, termed a "slide wire bridge," as shown in Fig. 140.

Fig. 140. Slide Wire Bridge.

The illustration indicates the simplest and cheapest form of the apparatus, consisting of a baseboard of insulating material upon which are placed three heavy copper bands, A, B, and C. Between the bands A and B, and B and C, are gaps into which any desired resistance coils may be placed. The other ends of the pieces A and C are joined by a uniform wire, having a resistance proportioned to the capacity of the measurement that it is desired to make. Parallel to this wire a scale is placed, having its initial and final points exactly opposite the places where the measuring-wire is connected to the heavy copper bars.

The scale should be graduated to read both ways; and on the assumption that the wire is of uniform resistance throughout, and also that the scale properly corresponds to the beginning and end of the wire, the ratios of the resistances r and r' may be read from the two segments into which any point, such as "B'," divides the wire

and the scale. The point B' forms a sliding contact on the wire, extending from the middle of the bar B to the wire, and including the galvanometer in its circuit.

By examination of the illustration, it will be easy to trace the similarity of the circuits to those of the ordinary Wheatstone bridge. Thus it is evident that the "slide wire bridge" is merely such a modification of the ordinary Wheatstone arrangement as will permit the introduction of any desired low resistances at the points r' and r, and the use of a uniform wire for the variable resistance arm, in order that the variable resistance may be obtained in sufficiently small fractions of a unit.

215. The Ohm-Meter. — It is an obvious consequence from Ohm's law that the resistance of any circuit, or portion of a circuit, may be calculated by measuring the electro-motive force operating, and the amount of current flowing. It is not uncommon to measure the insulation of heavy circuits by ascertaining the difference of potential at the terminals of the dynamo supplying circuit, and then, by means of a milliammeter, determining the leakage between the circuit and the ground, the quotient of these quantities being the desired resistance. The objection to this method is that it requires a simultaneous reading of two instruments, which, in cases of varying currents and varying potentials, is difficult to obtain. As an improvement, an instrument termed the ohm-meter has been devised. that consists of two circuits, one of fine wire and another of coarse wire. At the intersection of the two coils a magnetized needle is suspended, carrying a pointer, that, playing over a scale, serves to determine the readings of the instrument. Using the apparatus, the fine wire coil is connected across the terminals of the circuit, serving, by its effect upon the magnetized needle, to determine the electric pressure; while the coarse wire is connected in series with the circuit whose resistance is desired, and affects the needle proportionally to the amount of current flowing. By the combined action of the two coils, the needle assumes a position of equilibrium, which is in proportion to the resistance of the circuit. An instrument of this description forms an exceedingly useful auxiliary for all circuits carrying heavy currents, as by means of its aid the insulation or resistance of the circuit may be continually determined, even during the time that the plant is under full operation.

216. Another form of ohm-meter, very useful for measuring low resistances, may be constructed by arranging a differential galvanometer so that the coils of the instrument may be moved either toward or away from the needle, by means of a micrometer screw, so arranged that the position of each coil may be accurately determined.

To measure a resistance, a known resistance is placed in one half of the differential galvanometer circuit, and the unknown in the other half. The coils are then adjusted until no deflection is produced on the needle. The relative positions, then, of the two coils, give accurate indications of the unknown resistance in terms of the known resistance. With a sensitive reflecting galvanometer arranged in this manner, it is perfectly practicable to measure one-millionth of an ohm with accuracy.

INSTRUMENTS FOR MEASURING ELECTRICAL QUANTITY AND PRESSURE.

217. Galvanometer. — Nearly all practical instruments for estimating either current or electro-motive force are based on the mutual reactions developed either between a coil of wire and a magnetic field, or between two coils of wire, when arranged to form a part of the circuit it is desired to measure, the only notable exception being in the case of the hot wire and electrostatic voltmeters, to which special reference will be made. *Galvanometers*, as these electro-magnetic instruments are broadly termed, may be used in three distinct ways: —

First. Simply to detect the presence of a current.

Second. When constructed so that their indications are proportional to the electro-motive force, they become voltmeters or pressure indicators.

Third. When the readings correspond to the quantity of current they are termed ammeters.

As a current indicator, the Thomson Reflecting Galvanometer is too well known to need more than passing reference. It is the instrument universally employed for all accurate work involving currents of small magnitude, such as insulation, resistance, and capacity tests. The present forms of this instrument are made to permit the use of a number of interchangeable coils; so, by proper calibration,

the galvanometer may serve either as a voltmeter or an ammeter. As the Thomson instrument is very sensitive to the slightest variation in the external magnetic field, and as it is not dead-beat, its use is almost restricted to laboratory work, and the most refined methods of testing.

Fig. 141. The D'Arsonval Galvanometer.

218. The D'Arsonval Galvanometer. — In the D'Arsonval Galvanometer, Fig. 141, an instrument is obtained, which, while it lacks the extreme sensitiveness and delicacy of the Thomson, is better adapted to the general practice of the electrical engineer. In this instrument the magnetic system is fixed, the poles of which are hollow and inclose a suspended coil of very fine wire, through which

the current to be measured circulates. By this arrangement the instrument is rendered independent of any surrounding magnetic fields, and can be used in close proximity to the largest dynamos; and when used with a short-circuiting key, is perfectly dead-beat. Supplied with a reflecting mirror, reading telescope, and scale, sufficient accuracy and sensitiveness may be obtained for everything but the most delicate tests.

219. The Ballistic Galvanometer. — For some measurements, notably in capacity testing, it is essential to employ a certain modification of the above instruments, usually termed a ballistic galvanometer. The object of this device is to enable accurate determinations of transient currents, such as are produced by the discharge of a condenser, or currents developed by electro-magnetic induction. In the ballistic galvanometer the needle system is so arranged that movement does not (practically) take place until the transient current has ceased. Thus, as its name indicates, the instrument is intended to measure impulses. It is now customary to supply the best Thomson and D'Arsonval instruments with interchangeable needle systems for the purpose of ballistic work. The ballistic needle is usually a thimble or bell-shaped magnet, arranged that its rotation may be as little retarded as possible. The relation between an electric discharge and its effect on a ballistic galvanometer is given by the following formula: -

Let Q = the quantity of electricity in coulombs.

T = the time in seconds required for one complete oscillation.

D =deflection with Q coulombs.

F =figure of merit with a constant current.

Then it can be shown that —

$$Q = \frac{TFD}{2\pi}. (25)$$

For example. Suppose the discharge from a certain condenser gives a throw of 120 divisions on the scale of a ballistic galvanometer, the figure of merit of which is .0002082 amperes, and time of oscillation 6 seconds; what was the amount of electricity? Here

$$T = 6$$

 $D = 120$
 $F = .0002082$ $Q = \frac{6 \times 120 \times .00020082}{2 \times 3.14159} = .0239$ coulombs.

For the full demonstration of this formula, the reader is referred to any of the extended works on testing, particularly that of Kempe.

220. The *constant* of a galvanometer may be defined as the relation existing between the deflection indicated on the scale, the current, and resistance of the circuit.

For example. Suppose a galvanometer having a resistance of r=10,000 ohms is connected with a battery having an internal resistance r'=200 ohms, and an external resistance r''=100,000 ohms, giving a deflection of 20 divisions. The total resistance of the circuit is 110,200 ohms; therefore, as the current in the circuit is inversely proportional to the total resistance, and as the deflection is assumed to be directly proportioned to the current, the constant would be $110,200\times20=2,204,000$. As any change in the resistance of the circuit will change the deflection, it is possible to use the constant to determine unknown resistance. Indeed, this is the most common method used to measure high resistances, such as the insulation of circuits.

221. The *figure of merit* of a galvanometer is the *amount* of current which will produce a deflection of one division or one degree upon the scale. To find this current, it is only necessary to connect up the galvanometer and battery, in series, with a known resistance, and then to measure the deflection produced. Having the total resistance, it becomes a simple matter to calculate the amount of current flowing, and from this to deduce the quantity of current necessary to produce a deflection of one division, which, by definition, is the figure of merit.

For example. Suppose a galvanometer having a resistance of 1,000 ohms to give a deflection of 100 divisions when joined with a battery of 250 ohms and an external resistance of 10,000 ohms, the battery having an electro-motive force of 100 volts. As the total resistance of the circuit is 11,250 ohms, the electro-motive force of 100 volts will produce a current of .0089 of an ampere. Under these circumstances, as the deflection is 100 divisions, the figure of merit of the galvanometer will be .0089 divided by 100 = .000089 of an ampere. That is, .000089 of an ampere will produce a deflection of one division.

222. A galvanometer having a high figure of merit is one the needle of which will deflect from zero with a very small amount of

current. This, however, does not necessarily convey the idea of sensitiveness, for by a sensitive galvanometer is meant one whose needle when deflected under the influence of a current will change perceptibly with very small variation in the current itself. To attain a truly sensitive instrument, it is essential that the needle system should have a fiber suspension, as it is impossible to obtain sensitiveness with any other means.

223. Reduction to Zero. — The *angular* deviation of a needle system in reflecting galvanometers is so small that it is usually customary to assume that the number of divisions in the deflection is proportional to the current that produced it. While for instruments of this class this assumption is essentially true, it is not mathematically correct. For precise work, therefore, it is desirable, as far as possible, to use methods involving "reduction zero;" as in this case the final balance obtained is with a zero reading, which must necessarily be precisely accurate.

224. Inferred Zero. — In a reflecting galvanometer, the angle of maximum sensitiveness is the largest deflection that can practically be obtained; as, however, under any circumstances, the deflection is only a few degrees, the true maximum angle of sensitiveness can rarely, if ever, be reached. The method of inferred zero here comes into play, by means of which increased sensitiveness can readily be obtained. By moving the controlling magnet so that the needle is turned away from the scale to a considerable distance, the readable deflection of the galvanometer can be largely increased.

For example. Suppose the needle normally on the zero of the scale, and that a given current causes it to deflect through 300 divisions. Then an increase in the current of one per cent would increase the deflection $300 \times 101/100 = 303$, an increase of three divisions. Suppose now that the working zero be placed 400 divisions away from the *scale* zero, and that the current has been sufficiently strong to produce a deflection of 300 divisions on the scale, the actual deflection would therefore be equal to 400 + 300 = 700, and an increase in the current of one per cent would increase the deflection to $700 \times 101/100 = 707$, or a deflection of seven additional divisions, for the same small increase of current. It will thus be apparent that the sensitiveness of the instrument may in this manner be very largely increased. An additional use of the inferred

zero is to be found in making insulation or capacity measurements, when the standard, by means of which the galvanometer constant is determined, produces a current through the instrument which is widely different from the current used in making the test.

225. Galvanometer Shunts. — The deflection of a galvanometer being proportional to the current traversing its coils, and the scale being of limited extent, it frequently happens that the current under examination is sufficient to carry the index off the scale, giving a deflection that is unreadable. It is usual, in such cases, to place in

Fig. 142. Diagram of Shunt Connection.

parallel between the terminals of the galvanometer an amount of resistance sufficient to permit of a readable deflection. Such a resistance placed in parallel with the galvanometer is called a "Shunt." In Fig. 142, let G be the resistance of the galvanometer, S that of the shunt,

I the total current, and i and i' the currents in the galvanometer coils and shunt respectively, then —

$$I = i + i'. (26)$$

As the electro-motive force is the same in both branches, the respective currents will be inversely as the resistance of each branch; hence—

$$\frac{i'}{i} = \frac{G}{S} (27), \qquad \text{and } i' = i \times \frac{G}{S}; \tag{28}$$

replacing i' by its value found from equation (27),

$$I = i \times \frac{G + S}{S}. (29)$$

Knowing the deflection given by the galvanometer with a known current, the current i is determined; and from the known resistance G and S, I is readily calculated. The deflection that would be produced on the scale with the current I, assuming the law of proportional deflection to hold true indefinitely, is evidently the deflection given by i multiplied by the factor $\frac{G+S}{S}$. This factor is termed the multiplying power of the shunt, and is frequently symbolized by m. Thus —

$$\frac{G+S}{S}=m. (30)$$

Suppose a galvanometer of 6340 ohms, when shunted with 10 ohms, to give a deflection of 125 divisions, then—

$$125 \times \frac{6340 + 10}{10} = 125 \times 635 = 79375$$
 divisions.

In this case m=635. Any known resistance may be used as a shunt, though for rapid work easy multipliers should be selected. As,—

 $m = \frac{G+S}{S}$ (31), $S = \frac{G}{m-1}$. (32)

Fig. 143. The Weston Voltmeter.

an expression giving the amount of resistance to be placed in a shunt to give any desired multiplying power m. The best galvanometers are accompanied by shunt-boxes having multiples of 10, 100, and 1000.

226. The Weston Instruments. — For the field-work of electrical engineers, the series of instruments manufactured by the Weston Electrical Instrument Co. are eminently desirable. The general form of the Weston instrument is shown in Fig. 143, from which it will

appear that the instrument consists of a small, square mahogany box, about 6" on each side, and about 1" in thickness, which carries a raised brass framework, under which may be seen a graduated scale, over which a pointer travels. The mechanism of the instrument is shown in Fig. 144, and consists of a powerful horseshoe magnet carrying two enlarged pole pieces. Between the polar extensions a fine wire coil is delicately pivoted upon jewel bearings. To this movable coil is attached the pointer, or index, which plays over a graduated scale. If a coil of wire carrying an electrical current is placed between the poles of a magnet, it will tend to set itself at right angles to the lines

Fig. 144. Needle-Bearing Weston Instrument.

of force. In order to make a measuring-instrument, it is necessary that this tendency to turn be opposed by some well-known graduated counter-force. In the Weston instrument this is accomplished by introducing two flat spiral springs, fastened to the ends of the coil above and below, close to the bearings. When no current is in the instrument, these springs will keep the coil at a certain zero position, from which it will be deflected in proportion to the current through the coil. The pointer may therefore be arranged to move over an appropriately graduated scale, giving indications, which, by proper calibration, will be of great precision. Long experience and great care in workmanship have served to refine the details of the Weston instruments until they are exceedingly reliable. They are now made

to cover every practical range of capacity, and are designed to be used either as ammeters, voltmeters, or wattmeters. They are further arranged to be used either on direct or alternating currents.

As the Weston instruments are perfectly dead-beat, and will give fairly reliable readings in even so unfavorable a location as a jolting electric car, they form an essential part of the electrician's outfit. For work requiring particular accuracy, the instruments should be recently calibrated, set quite level, carefully oriented, removed from powerfully varying magnetic fields, and corrected for temperature.

The instruments thus far described have all been of the galvanometer type, and are open to the objections of requiring frequent calibration; of sensitiveness to surrounding magnetic fields; of introducing a slight error by consuming in themselves a small fraction of the energy of the circuit to which they are applied; and of requiring

Fig. 145. The Cardew Voltmeter.

temperature corrections when accurate work is desired. To obviate these difficulties many devices have been proposed, among the most successful of which the Cardew voltmeter and the electrostatic voltmeters of Lord Kelvin may be mentioned.

227. The Cardew Voltmeter. — The operation of the Cardew instrument depends upon the expansion produced in a long fine wire, due to the amount of heat developed in the wire by the current flowing through it. The heating effect of a circuit is proportional to the square of the current, and to the resistance of the circuit. By making the resistance extremely high, the amount of current becomes proportional to the electric pressure. In the Cardew voltmeter a long fine wire gives the necessary resistance. The instrument is shown in Fig. 145, and a view of the mechanism in Fig. 146.

The wire is stretched under the action of a spring, and by suitable mechanism is connected with a registering pointer. When applied to a circuit, a small fraction of the current passes through the

Fig. 146. The Mechanism of the Cardew Voltmeter.

Fig. 147. The Electrostatic Voltmeter.

fine wire, and, being transformed into heat, expands it. The movement of the needle really records the amount of this expansion, which by proper calibration may be made to read in terms of the voltage of the circuit. This instrument is perfectly dead-beat; absolutely insensitive to all magnetic fields; and, when carefully made, forms within a limited range an instrument of great precision.

228. The Electrostatic Voltmeter. — The Kelvin voltmeters are constructed on the principle of an air condenser, one of the sets of plates of which is movable about an axis in such a manner that the capacity of the apparatus may be either increased or diminished. The instruments are so designed that, under the influence of an electrostatic stress, the pointers indicate the tension produced. They cover the widest range, having capacities to measure from 40 to 100,000 volts. As they take no current, they are insensitive to changes in temperature and to varying magnetic fields, and introduce no errors into the circuits to which they are applied. One form of the instrument is shown in Fig. 147.

The instrument consists of quadrant-shaped plates inclosed in a glass case with metal back, the plates being in metallic connection, and nearly surround an aluminum plate suspended between them. The movable aluminum plate carries a pointer which indicates on a scale at the top of the case the difference of potential between the two parts of the condenser. When the fixed and movable plates are connected to two points of an electric circuit, between which there exists a difference of potential, the movable plate places itself in such a position as to augment the capacity of the instrument, and the magnitude of the displacing force is proportional to the square of the difference of potential acting upon the plates. This force is counterbalanced by means of a weight which can be hung upon a knife-edge at the lower extremity of the movable plate. In order to economize time in making readings, there is a device for checking the oscillations of the movable plate, and stops are introduced to limit its range of motion, and prevent damage to the indicator. The scale of the instrument is graduated from 0 to 60, the divisions indicating equal differences of potential. The actual value of any division depends upon the weight that is placed upon the knife-edge of the movable plate. With each instrument a set of three weights is usually supplied, having ratios of 1, 2, and 4. When the smallest

weight is used, each division indicates 50 volts; with the second, 100; and with the third, 200 volts.

229. Siemens Dynamometer. — This instrument consists of two coils of wire, one fixed and one movable, which are arranged as in Fig. 148, so the movable coil surrounds the fixed coil placed in the center of the instrument. By the means of binding-posts on the base, the current to be measured may be caused to flow through both the fixed and the movable coil. The movable coil is suspended from the top of the instrument by means of a spiral spring

Fig. 148. Siemens Dynamometer.

attached to a knob which carries a pointer playing over a graduated scale. When a current is passed through the instrument, there is mutual attraction set up between the movable coil and the fixed coil. The movable coil, therefore. swings about its axis, and, by means of the spiral spring and milled head, may be brought back to its original position at right angles to the fixed coil. The number of degrees or divisions of the scale through which it is necessary to turn the head forms a measure of the current. It is usual to accompany these instruments with a tabular statement showing the value of the divisions on the scale. When wound with coarse wire, this instrument may be used for measuring current strengths of any de-

sired amount up to several thousand amperes. When wound with fine wire, a similar instrument may be used as a voltmeter; and by winding the fixed coil with coarse wire, and the movable coil with fine wire, the instrument becomes a wattmeter whose indications are proportional to the total energy flowing through the circuit.

230. Condensers. — When one conductor is adjacent to another it possesses the property of storing upon its surface a quantity of electrical energy. This quality is called the capacity of the conductor, and plays an important part in the development of electrical circuits. The capacity of a conductor may be numerically defined as

the number of coulombs of electricity required to be given to the one conductor in order to produce a difference of potential of one volt between it and the other. The capacity of a conductor depends upon its geometrical shape, upon its position relatively to the neighboring conductor, and on the characteristics of the dielectric separating the conductors. The Leyden jar is a familiar example. In this case a glass jar, coated inside and out with tin-foil, gives the two conductors which are separated by means of the glass of the jar as a dielectric. The capacity of circuits is usually measured by comparing the quantity of electricity which may be stored upon them with that of a standard condenser. The condenser usually consists of a

box of insulating material in which are preserved a number of alternate layers of tin-foil, separated by paraffine paper or mica as an insulator, the paraffine paper serving in the condenser precisely the same office as the glass in the Leyden jar. A condenser may be charged by connecting its terminals with the poles of a battery, the amount of electricity stored being in proportion to the size of the condenser and the electromotive force of the battery.

The unit of capacity is the "farad." Inasmuch as this unit is too large for

Fig. 149. Standard Condenser.

ordinary work, condensers are usually made in fractions of one or more millionths of a farad, termed a microfarad.

The standard condenser usually takes the form of a carefully finished box, having upon its top a series of plates that may be connected by means of plugs to respective divisions of the condenser. In fact, the apparatus very closely resembles a resistance or megohm box. An exceedingly convenient size is given in the illustration, Fig. 149, having a total capacity of one microfarad, subdivided into five parts of .5, .2, .2, .05, and .05 microfarad each.

231. The different subdivisions of a condenser may be combined either in series, in parallel, or in the various combinations of seriesparallel. Thus: supposing that C'C''C''', etc., be the respective capacities of the various subdivisions of a condenser. They may be grouped

in parallel as represented by C' + C'' + C''' + C'''' + etc. Under this condition the total capacity will be equal to the sum of the respective capacities. This condition may be expressed graphically as shown in Fig. 150.

Fig. 150. Diagram of Condensers in Parallel.

When the combination is made in series the joint capacity follows the law of the resistance of parallel circuits, the capacity being the reciprocal of the sum of the reciprocals of the respective parts. Analytically this is expressed by:—

$$C = \frac{1}{\frac{1}{C'} + \frac{1}{C''} + \frac{1}{C'''} + \frac{1}{C''''} + \text{etc.}}$$

Graphically the relation may be indicated by Fig. 151.

$$C'$$
 — C'' — C''' — . Fig. 151. Diagram of Condensers in Series.

Further combinations may be made by uniting the parts of a condenser in any of the possible series-parallel arrangements. Such combination may be expressed either symbolically or graphically. For example, one combination of a three-part condenser is:—

$$C' + \frac{C''C'''}{C'' + C'''},$$

or graphically, Fig. 152.

Fig. 152. Diagram of Condensers in Series-parallel.

Thus, with two divisions in a condenser, four combinations may be made; viz.:—

$$C'$$
, C'' , $C' + C''$, and $\frac{C'C''}{C' + C''}$.

With three divisions fourteen combinations may be made, the possible combinations increasing in a geometrical ratio with the number of parts of the condenser.

WATTMETERS.

232. The wattmeter forms one of the most valuable measuring instruments at the command of the electrician; for by its use the total energy delivered at any point of a circuit may be measured, irrespective of the variations in potential and current. Instruments of this kind are divided into two classes, known as the Indicating

Wattmeters and the Integrating Wattmeters. Instruments of the first division are typified by the Weston Wattmeter and the Siemens Electro-dynamometer, which have been already described. Their province is simply to indicate the instantaneous value of the product of the volts and amperes traversing any part of the circuit. The second class, or integrating instruments, embrace nearly all the various devices known as electric meters, of which

Fig. 153. Thomson-Houston Wattmeter.

the Thomson Recording Wattmeter is a representative example. These instruments do not indicate instantaneous values, but integrate the total energy delivered to the circuit during the time through which they are attached to it. Thus the readings of these devices are in watt-hours or watt-minutes. To obtain the average instantaneous value of the energy, the reading of the instrument (if in watt-hours) must be multiplied by 3,600, and divided by the time expressed in seconds during which the meter has been in circuit.

233. The Thomson-Houston Wattmeter. — One of the most valuable forms of wattmeter is that devised by Professor Thomson, and is shown in Fig. 153.

It consists of an iron frame carrying two heavy coils of wire, through which runs a light shaft attached, near its base, to a copper

Fig. 154.
Short-circuiting
Key.

plate revolving between the poles of three magnets. The shaft also carries a coil of fine wire placed inside of the coarse wire coils. This instrument is therefore an electrical motor, in which the coarse wire coils form the field, the fine wire coils the armature, the rotation of the shaft being proportional to the product of the current in the coarse and fine wire coils, which, in turn, is proportional to the total quantity of electricity and to the pressure in circuit. The rotation of the copper disk between the poles of the magnets experiences a constant retarding force, which tends to check the motion. The dial at the top serves to register the rotation of the shaft, and is calculated to give readings in watt-hours. Thus this instrument sums up the entire energy which flows through a given circuit between

any two intervals of time at which readings may be taken.

234. Keys. — To complete a set of testing instruments, a number of keys should be provided for readily manipulating the circuits. The most important keys are the short-circuiting key, the reversing key, and the discharge key. See Figs. 154, 155, and 156.

By means of the short-circuiting key, the galvanometer coils may be closed upon themselves at the instant of opening the circuit, thus

checking the oscillations of the needle, and tending to render the instrument deadbeat.

By means of the reversing key the direction of the current in a given circuit may be quickly and conveniently changed.

The discharge key is a device for connecting the condenser alternately with

Fig. 155. Discharge Key.

condenser alternately with the charging battery and the galvanometer, and is a necessary adjunct for all capacity tests.

235. The Magneto. — The apparatus termed "a magneto,"

frequently used in making tests of electrical machinery, is a very convenient rough-and-ready instrument. It consists of a small box,

Fig. 157, carrying a bell furnished with a small alternating current dynamo. By means of a crank at the side of the box the armature of the dynamo can be rapidly rotated, thus generating an alternating current. If the circuit of the machine is closed, the current flows through the bell, and by causing the bell to ring,

Fig. 156. Reversing Key.

gives indication that the circuit is continuous. The magneto is chiefly used to detect low insulation. For this purpose the little generator is wound to be able to ring the bell through a resistance of from twenty to twenty-five thousand ohms. It thus forms a very handy and convenient detector for the purpose of determining short circuits or defective insulation. After considerable practice with a particular instrument, it becomes quite possible to make a rough

Fig. 157. The Magneto.

approximation of the resistance of a circuit by judging from the strength and clearness of the ring which is given.

236. Ground Indicators. — Important lines carrying heavy currents should, as a matter of safety, be provided with constantly acting telltales to instantly indicate any fault in the insulation. The most simple of these contrivances is arranged in the following manner. Two similar incandescent lamps, of an

appropriate voltage to be fully illuminated when placed in parallel across principal conductors, are connected in series as shown in Fig. 158, at L and L' (p. 220).

Under these circumstances the lamps will burn at a dull red. As long as the circuit is completely insulated, no current will traverse

Fig. 158.

Continuous Current Ground Indicator.

the wire f. The galvanometer, or bell, gives no indication, and the aspect of the two lamps is identical. If now, however, a leak occurs at any other point of the line, a current will flow through f. One of the lamps, therefore, will find itself shunted by the circuit through the earth, and will consequently burn less brightly, while the light of the other lamp is augmented.

237. Upon lines carrying alternating currents, an analogous arrangement can be used; and as it is inadvisable to permanently ground any part of the circuit, it is better to interpose in the ground wire a switch, by means of which connection may

be made whenever it is desired to test the insulation of the line. Moreover, it is advisable to make the test-wire a part of the primary circuit of a transformer, in the secondary of which the telltale lamps are placed. The arrangement of this apparatus is shown in Fig. 159.

238. These contrivances, however, are defective to the extent that they do not give continuous and automatic indications of the insulation of the circuit, but require the presence of an operator to obtain results. The following modification of the ground indicator may be used for alternating circuits,

Fig. 159. Ground Indicator for Alternating Currents.

from which continuous indications can be obtained. The principle of this contrivance is shown in Fig. 160.

Between the principal conductors two large metallic plates are connected, C and C', forming the armatures of a condenser. The

other plates are connected to the ground by means of a wire, into which is placed a telephone, t. As long as the insulation remains perfect no current flows through the grounded wire. As soon, however, as a fault occurs, an alternating current is set up in the wire, which manifests itself by so loud a hum in the telephone as easily to be perceived throughout a large room. The sensitiveness of the telephone is sufficient to make this apparatus work successfully with condensers of very small capacity.

239. The Boyer Speed Recorder. -

The Boyer Speed Recorder, Fig. 161, is an instrument for obtaining instantaneous values of, and recording the curve of speed of any axle on any machine, and consists of a little rotary oil-pump supplied with

a gauge, recording pencil, and a cylinder carrying a roll of cross-section paper, which is moved by clockwork. For determination of car speed, indications are obtained by attaching the machine by

means of a belt to the car-axle, the motion of the axle being transmitted to the pump, and producing a pressure upon a piston attached to the pencil, thus causing the piston to rise and fall in proportion to the speed attained by the car. As a result, the instrument traces a curve, whose abscissæ and ordi-

Fig. 161. Boyer Speed Recorder.

nates express, at any instant of time, the value of the car speed as a function of time. A curve, as described by this instrument, is given in Fig. 162 (p. 222).

240. While the indications of the Boyer instrument give instan-

taneous values for car speed, it is frequently of use to obtain the mean speed. Assume on the horizontal axis of the diagram any points A and B, between which it is desirable to obtain the mean speed. The time required for the car to go any short distance dx, at a speed b, is dx/b. Consequently, the total time required for the car to go between points A and B is equal to the —

$$\int_{A}^{B} \frac{dx}{b}.$$

The distance traversed is B-A, hence

$$\frac{B-A}{\int_{A}^{B} \frac{dx}{b}}$$

is the true mean speed.

The integral

$$\int_{A}^{B} dx$$

is the area of a reciprocal curve to that given by the Boyer indicator, between points A and B, which may be obtained as follows:—

Subdivide the base-line of the curve given by the indicator into equal parts, and set off upon the ordinates drawn to these divisions a series of lines, whose length will be, respectively, equal to the reciprocals of the ordinates to the Boyer curve at each proper point.

Drawing a curve from the vertices of these ordinates, a new curve is obtained, which is the reciprocal curve sought for. When the car stops, the value of the expression under the integral

sign becomes infinity, which cannot be included in the calculation.

CHAPTER VI.

METHODS OF ELECTRICAL MEASUREMENT.

Art. 241. To the practicing engineer, the various methods of electrical measurement are chiefly valuable as affording a means of inspecting the condition of the circuit of a plant for the electrical transmission of energy, with a view to the determination of the performance, in order to afford information as to the possibilities of increasing efficiency or remedying defects. In every electrical circuit, there are five elements which are worthy of consideration. To the line may be attributed the properties of resistance, capacity, and inductance, while, having regard to the energy conveyed, there are the factors of potential and quantity of current.

In strictly scientific investigation, all electrical quantities are, by means of the C. G. S. system, finally referred to fundamental units of length, mass, and time. For practical work, the more common commercial units are chiefly used, being readily deduced from the C. G. S. system.

- 242. Electrical Intensity. The amount of energy transmitted by electricity is always measured by the product of two factors, namely, electrical intensity multiplied by electrical quantity. Electrical intensity, pressure, potential, or electro-motive force, as it is variously called, is that property of electrical energy by means of which it is enabled to overcome resistance. While the foregoing synonyms have not quite a parallel significance, when used in the most exact scientific sense, the terms are usually regarded as interchangeable for ordinary work. The commercial unit of electrical pressure is the *Volt*, and may be defined as that amount of electrical pressure which will produce a current of one unit of electrical quantity in a circuit having one unit of resistance in one second (or unit) of time.
- 243. Electrical Quantity. The unit of electrical quantity is the *Coulomb*, and is defined as the amount of electricity which will flow through a circuit having a resistance of one unit in one

second of time, when the difference of electrical pressure between the ends of the circuit is one volt.

244. Unit of Current. — As a corollary to the two preceding units, a circuit having a resistance of one unit, and which, under a pressure of one volt, delivers in a second of time one coulomb of electricity, is stated to carry one unit of current. This unit is termed the *Ampere*. Usually all currents are measured in amperes.

The coulomb defines electrical quantity, pure and simple, while the ampere conveys the idea of rate of transfer; namely, one coulomb per second, the ampere differing from the coulomb by embracing the idea of time.

245. Capacity. — It is found that circuits of all kinds, and, in fact, all conductors and insulators, are capable of storing a certain amount of electrical energy; and the ability to thus contain electrical energy is termed "capacity." The unit of capacity is the Farad, and is that amount of electrical capacity which, under an electrical pressure of one volt, is enabled to store one coulomb of electricity.
Unfortunately for practical use, this unit is altogether too large; and the Microfarad, or millionth of a farad, is the subdivision most commonly employed.

246. Resistance. — The unit of resistance is the Ohm, and is equivalent to the resistance of a column of pure mercury, one square millimeter in cross-section, 106 centimeters in length, at a temperature of 0° Centigrade. For practical purposes, units of resistance, in the form of resistance-boxes, as described in the last chapter, are commonly employed.

247. The Watt. — The amount of energy transmitted during a given time by an electrical current is equivalent to the product of the electrical pressure multiplied by the quantity of electricity. To measure the power of doing work of a given current, gives rise to the employment of a derived unit called the *Watt*, equivalent to the product of the volts and amperes, precisely in a manner similar to the determination of mechanical work by means of the footpound. Thus the rate at which any machine is capable of dispensing energy is measured by the number of foot-pounds per minute that it is capable of delivering; so, in an electrical circuit, the rate of doing work is equal to the number of volt-amperes, or "watts" per unit of time.

248. Ohm's Law. — In any electrical circuit, the generator may be regarded as a contrivance whereby, at one point of the circuit, the electrical potential may be raised; and if, for the sake of illustration, electricity be regarded for the moment as a material substance, the pressure is rendered useful by the amount of electricity which may be set in motion against the resistance of the circuit. In every part of a circuit the amount of work expended is equivalent to the quantity of electricity that passes this portion of the circuit, multiplied by the fall of potential, or loss of pressure, that takes place within the part of the circuit under consideration.

According to the law of conservation of energy, the amount of work done by the generator will be precisely equal to the sum of all the work delivered in the whole circuit. If E be the electromotive force between any two planes in any circuit, R the resistance between the planes, and I the quantity of current flowing, in amperes, the relation existing between these quantities has been stated by Dr. Ohm to be:—

 $R = \frac{E}{I}. (33)$

As above written, Dr. Ohm's law only applies to steady, non-pulsating currents; but if the quantities *E*, *I*, and *R* be assigned values expressing the instantaneous *effective* electro-motive force, *effective* current and impedance of the circuit, having due regard to the positive and negative effects of capacity and inductance, the formula becomes applicable to currents of all descriptions, whether continuous or alternating, and of whatsoever shape of wave.

249. Kirchhoff's Laws. — Kirchhoff has announced, under the form of two laws, principles that underlie many of the formulæ employed in electrical investigation.

First Law. — If any number of conductors meet at a point, and if all the currents flowing toward the point be considered as positive, while all those flowing away from the point be considered negative, and if equilibrium exists, that is, if the electrical potential at the point of junction remains steady, the algebraic sum of all the currents meeting at the point will be zero. Mathematically expressed:—

$$\Sigma I = 0. (34)$$

Second Law. — In any network of electrical conductors forming a closed polygon containing varying currents, varying resistances, and

varying electro-motive forces, the algebraic sum of all the products of the currents and resistances is equal to the sum of all the electro-motive forces, or mathematically:—

$$\Sigma I \times R = \Sigma E. \tag{35}$$

Nearly all the formulæ for electrical measurements are based upon the laws of Ohm and Kirchhoff; and while the demonstration of the succeeding formulæ are not given in full, they may readily be deduced from the above cited laws by the ordinary algebraic processes.

250. It is now proposed to consider the determination of the various electrical quantities in the following order:—

Resistance. Capacity. Current Strength. Inductance. Electro-Motive Force.

For the determination of these quantities, such a selection of

Diagram for Resistance by Deflection.

methods is given as will enable the practicing electrician to choose an arrangement to fit the apparatus commonly to be found in all electrical installations. In the methods given, careful consideration has been exercised to include only those which are of the greatest practical value, leaving laboratory methods and tests at one side, as not being suitable for the

field-work of the electrical engineer.

In all methods of measurement, it is necessary to compare a standard unit with the unknown quantity, in order to ascertain the ratio which exists between the two; and for this purpose it is essential to make use of some form of indicator, by means of which comparison between the standard and the unknown can be readily made. In most electrical measurements, the galvanometer is selected for this purpose.

All of the instruments necessary to the following methods have already been discussed and described in the previous chapter.

251. Measurement of Resistance. — First, by deflection. In Fig. 163, suppose G to be a galvanometer of any desired type, E a battery, or other generator of convenient voltage, and r a known

resistance, such as may be readily found in a standard resistance-box, and that it is further desired to measure the value of some unknown resistance, R. Connect up the galvanometer battery and the known resistance r, as shown in Fig. 163; that is to say, with the galvanometer, battery, and resistance all in series. Let G equal the resistance of the galvanometer, r the known resistance, and r' the resistance of the battery and the remainder of the circuit. In many cases, this latter quantity is so small in comparison with the unknown resistances, that it may be neglected. If E be the electro-motive force of the battery, and I the current in the circuit, a certain deflection d will be produced on the galvanometer. By Ohm's law,

$$I = \frac{E}{G + r' + r};\tag{36}$$

$$I(G+r'+r) = E. (37)$$

Now, for the known resistance r, substitute the unknown resistance R. Under these circumstances, suppose I' to be the current in the circuit, giving a new deflection d' upon the galvanometer.

$$I' = \frac{E}{G + r' + R};\tag{34}$$

$$I'(G + r' + R) = E. (39)$$

Solving for R, transposing, and arranging, —

$$R = \frac{I}{I'} \times (G + r + r') - (G + r'). \tag{40}$$

As the deflections d and d' are proportional to the currents I and I', d/d' is proportional to I/I', and may be substituted for it, hence:—

 $R = \frac{d}{d'}(G + r + r') - (G + r'). \tag{41}$

252. The deflection readings on the galvanometer scale in degrees have been used in the formulæ. When the readings are small, or when no special accuracy is required, this assumption is sufficiently correct. When the deflections are of considerable magnitude, or when in using the scale readings, either of an ordinary galvanometer or of a reflecting instrument, great accuracy is desired, the tangent of d and the tangent of d' should be substituted for the actual reading in degrees. To measure resistance by this method, the resistance of the galvanometer, as well as that of the rest of the circuit, must be known, or neglected.

The galvanometer resistance is usually given by the maker. Knowing the galvanometer resistance, and neglecting that of the battery and connections,—

$$R = \frac{d}{d'}(G+r) - G. \tag{42}$$

By adjusting the resistance r so that d'=2d, the preceding formula is simplified. Under this condition equation becomes —

$$R = \frac{r - G}{2}. (43)$$

When it is inconvenient to make d' equal 2d, simplification may be obtained by making d' any even multiple of d.

253. The quantity rd, obtained by multiplying a known resistance r by the galvanometer deflection produced with the resistance r in circuit, is called the galvanometer constant, and is much used in making line-insulation tests.

Thus a galvanometer, megohm box, and battery are joined up in series, and a deflection of d divisions is obtained with r ohms in circuit, rd being the constant. Any other high unknown resistances, R', R'', R''', etc., now are substituted for r, giving deflection d', d'', d''', etc. In case r is very small compared to R', R'', R''', etc., the method of the inferred zero may be advantageously applied. For great accuracy tangent d, tangent d', etc., should be used. In using a tangent galvanometer with methods in which only one deflection is concerned, it is best to make the deflection as nearly d as possible. If two deflection methods are employed, it is advisable to make them fall, as nearly as may be, at equal distances on either side of d are convenient to employ.

For such measurements a battery of constant electro-motive force must be used, or corrections for change in pressure introduced. There must also be no change in the external magnetic field, or a redetermination of the constant is necessary.

254. Resistance by Wheatstone Bridge. — Resistance measurements by Wheatstone bridge are extremely simple. A battery is connected to the binding-posts, marked "Battery," of the testing-set, and the resistance to be measured connected to the posts marked "x." In each of the bridge-arms a peg is inserted in the coils that

are estimated to furnish the appropriate arm resistance; and then the pegs in the rheostat are shifted about until the needle of the galvanometer fails to move, indicating that a balance has been attained. The resistance indicated by the rheostat, multiplied by the appropriate factor due to the ratio of the bridge-arms, gives the desired resistance. To secure the best results, however, it is advisable to follow certain conditions.

Referring to Fig. 138, Chapter V., assume the letters attached to the various parts of the bridge to represent the resistances corresponding to each one. Make a rough measurement to obtain an

Fig. 164. Diagram of Resistance by Voltmeter Measurement.

approximation to the value of x. Then make the resistance in the arm d, as nearly as convenient, equal to $\sqrt{\frac{Grx + rx^2}{r + x}}$. It should not be less than this quantity, nor larger than G + x.

The electro-motive force of the battery should be as great as is convenient, compatible with safety to the testing-set, and the resistance of the exterior circuit as small as possible. Though these conditions are theoretically desirable, they can be attained practically very rarely, and only within the middle ranges of the capacity of the testing-set. If manipulated with great care and considerable skill, the ordinary testing-sets can be made to measure a thousandth of

an ohm; yet they are hardly reliable to so small an amount; so, if much accurate measurement on small resistances is to be done, recourse should be had either to the slide-wire bridge or to the differential galvanometer. So far as manipulation is concerned, the use of the slide-wire bridge is precisely the same as the common Wheatstone pattern.

Measurement of Resistance by Ohmmeter and Differential Galvanometer have already been described in the account of these

instruments in Chapter V. 255. Resistance Meas-

urement by means of Voltmeter. — To measure resist-

ance by means of a voltmeter. the apparatus should be connected as shown in Fig. 164, in which R is the resistance to be measured. E the battery or source of current, V the voltmeter, and r a known resistance. The voltmeter is first connected around the resistance r. Suppose, under these circumstances, the readings of the voltmeter to be V volts. After this reading is obtained, the voltmeter should be connected in a similar manner around the resistance R to be measured. In the latter case, suppose the readings on the voltmeter to be V' volts, then, —

$$V: V':: R: r,$$

$$R = \frac{rV}{V'}.$$
(44)

By this method the measurement made by the voltmeter is the fall of potential through each resistance. As the electro-motive force is supposed to be constant, the fall is directly proportional to the resistance.

Fig. 165.

Volt and Ammeter.

Diagram of Resistance Measurement with

256. Resistance Measurement with Volt and Ammeter. — A modification of the preceding method may be made, when no con-

venient known resistance is at hand, by using, in place of the known resistance, an ammeter as shown at A in Fig. 165. In this method the current I, flowing in the circuit, is given by the reading of the ammeter; while the fall of potential E, through the unknown resistance, is given by the voltmeter. Thus two elements of Ohm's formula are obtained, from which R may be readily calculated. Thus:—

 $R = \frac{E}{I}. (45)$

257. Small Resistance. — To measure very small resistances, the method indicated by the arrangement in Fig. 166 is to be used,

Fig. 166. Diagram of the Measurement of Low Resistance.

which is practically the same as in the preceding instance, except that, owing to the very small difference of potential to be estimated, a milli-voltmeter, mV, must be substituted for the voltmeter, in order to obtain readings of sufficient accuracy. A battery E, or other source, supplies requisite current, that is measured by the ammeter A. The unknown resistance R is placed in series with the ammeter and battery. The milli-voltmeter is applied to the points B and C, between which lies the resistance to be measured; the

reading giving the fall of potential between B and C. Care should be taken to make good contacts at B and C, that there may be no errors from loss of pressure at these points, and the reading at A and mV should be simultaneous. A very essential and practical application of this method is its adaptability to the measurement of resistance of armatures of dynamo machines. For this measurement the arrangement shown in Fig. 167 should be adopted, in which the milli-voltmeter is clamped to opposite sections of the commutator, while the battery and ammeter are placed in series with the same sections. The milli-voltmeter should be connected directly to the

Fig. 167. Method of Measuring Armature Resistance.

sections, and not to the brushes, to avoid introducing the error of the contact resistance of the brush.

258. High Resistance. — For measuring high resistance, the connections shown in Fig. 168 are preferable. In this case the battery E, voltmeter V, and key K are so arranged that the resistance to be measured, R, may be either included or excluded from the voltmeter circuit. For measurements of this kind, as high an electro-motive force should be used as practicable, it being understood that in any event the potential is not higher than the highest reading of the voltmeter. With this arrangement, supposing r to be the resistance of the voltmeter, two measurements are made; first, with the switch closed, and then with the switch open. Sup-

pose V to be the reading with the switch closed, V' that with the switch open; then —

 $R = r \frac{(V - V')}{\Gamma''}. \tag{46}$

259. A very convenient application of this method of measuring resistance occurs in making frequent trials of the insulation of high potential circuits. It is practical to make such tests with the line in full operation. The apparatus should be arranged as shown in Fig.

Fig. 168. Method of Measuring High Resistance.

169, in which the voltmeter V is connected first from one main, and then from the other main, to the ground. Under these circumstances, if V equals the difference in potential between the two sides of the line, V' the reading between either side of the line and the ground, and r the resistance of the voltmeter; then, representing the line insulation by R, its value is given by the equation—

$$R = r \frac{(V - V')}{V'} \,. \tag{47}$$

260. In the case of a dead ground, V' = V, and, consequently, R = 0. In case there is no current in the main, a test-battery may

be added, and the connection made first to one side of the circuit, and then to the other, as shown in Fig. 170.

As the resistances of the commercial voltmeter and milli-voltmeter

Fig. 169. Diagram of Method of Measuring Insulation Resistance.

vary from a fraction of an ohm to upwards of a megohm, this method may be used with great convenience and accuracy to determine all resistances that are commonly found.

Fig. 170. Diagram of Test for Insulation.

261. Insulation Resistance by the Method of Loss of Charge. — When it is desired to measure the resistance of insulation of a conductor having considerable capacity, this property may be utilized. For example: suppose a cable insulated at one end, having

its sheath grounded. Charged by means of a battery, it acts as a condenser, storing a certain quantity of electricity. If, now, both ends be insulated, the charge slowly diminishes, due to leakage; and it is possible to estimate the resistance of the insulation by the rapidity of loss of charge during a given time. Let E be the respective potential of the cable at the moment of charge, and e the potential after a certain number of seconds, T, has elapsed.

It can be shown, under these circumstances, that

$$R = \frac{26.06}{C \log \frac{E}{\ell}},\tag{48}$$

in which C is the capacity of the cable in microfarads per mile, and R its resistance of insulation in megohms per mile. The measure-

Fig, 171. Diagram of Resistance Measurement by Loss of Charge.

ment of E and e is best made by means of an electrometer. In this case the apparatus should be arranged as shown in Fig. 171, in which E is the charging battery, G the electrometer, C the cable, M a commutator, and K a double key. The cable is charged by connecting it for one minute with the battery. It is then entirely insulated, and, by means of the key K, is placed in connection with the electrometer, and the motion of the spot on the scale observed for a period of one minute. The readings of the electrometer, at the beginning and end of the minute, give E and e. By means of the

electrometer, it is practicable to watch the image on the scale during the whole time of the observation, thus noting all that occurs to the cable during the process of the loss of charge.

- 262. In the absence of an electrometer, the measurement may be made by means of a galvanometer, by connecting the circuit, as shown in Fig. 172. Under these circumstances, E and e are obtained by the deflection of the galvanometer at the beginning and at the end of the time T, and the capacity is calculated from the preceding formula.
- 263. Measurement of Line Resistance. The resistance of lines may be readily measured by means of the Wheatstone bridge, under either of the following three methods:—
 - 1. When the bridge can be grounded at one end and the line at

Fig. 172. Diagram of Insulation Measurement by Loss of Charge with Galvanometer.

the other, so thoroughly as to interpose essentially no ground resistance, and when no earth currents interfere with the measurement, good results can be obtained, the bridge measurement giving directly the desired resistance.

- 2. When a second wire of known resistance can be joined from the farther end of the wire to be measured and returned to the bridge. Under these circumstances, the resistance given by the bridge is that of the sum of the two wires, from which that of the known wire must be deducted, in order to obtain that which is unknown.
- 3. In cases where three wires, X, Y, and Z, are accessible, all of which may have unknown resistance. X and Y are to be joined at the farther end, and the resistance measured on the bridge, giving an

amount A. X and Z are then joined in a similar manner, and measured, giving a resistance B. Y and Z are then joined and measured, giving resistance C. Under these circumstances,

$$X = \frac{A+B-C}{2}; \tag{49}$$

$$Y = \frac{A + C - B}{2};\tag{50}$$

$$Z = \frac{B+C-A}{2}. (51)$$

264. Measurement of Ground Resistance. — The estimation of ground resistance could be accomplished similarly to the determination of any other resistance, were it not for the fact that frequently earth currents from extraneous sources, or polarization set up by the ground plates themselves, tend to vitiate the results. If these perturbating causes do not exist, the Wheatstone bridge may be used, and the resistance determined in the usual fashion. If two wires can be obtained, the measurement may be made as indicated in the preceding paragraph. If the earth currents are reasonably steady, an approximation to the true quantity may be obtained by making two bridge measurements; one with a positive and the other with a negative current, and taking the mean of the results. Otherwise the ground may be treated as a battery, and its resistance determined by any of the methods for measuring battery resistances.

265. Special Methods for Resistance Measurements. — The preceding methods for the determinations of resistance are adapted to all the general cases that will fall under the notice of the electrical engineer. For certain special cases, such as the measuring of galvanometer resistance and internal resistance of batteries, or other generators, some special methods are more expeditious and will now be noted.

266. Galvanometer Resistance by Equal Deflection Method. — Connect up galvanometer G, shunt S, resistance known r, and battery E of so low internal resistance that it may be neglected, as indicated in Fig. 173. Note the deflection of G. Now remove the shunt, and increase r to r', a second known resistance, until the same deflection is given by the galvanometer, then —

$$G = S \times \frac{r' - r}{r}. ag{52}$$

This test is most accurately made by adjusting S, the resistance of the shunt less than G; the resistance r should be as large as possible, but not larger than —

$$r' \times \frac{S}{G+S}$$

r' being the largest attainable resistance. Low resistance battery power of sufficient quantity should be provided to give the deflection as nearly as possible at the angle of maximum sensitiveness.

267. Galvanometer Resistance by the Wheatstone Bridge. Thomson Method. — Arrange the apparatus as shown in Fig. 174. Vary the resistance in the arm a or d, until the deflection on the

Fig. 173. Diagram of Resistance by Equal Deflection.

Fig. 174. Diagram of Galvanometer Resistance. (Thomson's Method.)

galvanometer G remains the same, whether the key k be up or down, then the value of G, the resistance of the galvanometer, is —

$$G = \frac{ad}{b}. (53)$$

268. This test has the merit of being entirely independent of battery resistance, and of being very easily made. To attain the greatest accuracy, a should be about one-tenth of G, and b ten times as large as G. Vary d until it is nearly correct, and then change the battery power so that the final deflection shall be, as near as possible, at the angle of maximum sensitiveness of the galvanometer. Adjust d till the deflection remains unchanged on pressing the key.

269. Galvanometer Resistance by Condenser. — The connections for this method are shown in Fig. 175, in which G is the galvanometer, C the condenser, E the necessary battery furnished with the key K, and S a shunt that can at pleasure be placed around the galvanometer. The condenser is charged with the battery, and then

discharged through the galvanometer, giving deflection d. The condenser is again charged and discharged through the galvanometer, when shunted with a resistance S, giving a second deflection d', then—

$$d = \frac{E}{G};$$

$$d' = \frac{EGS}{G+S};$$

$$\frac{d}{d'} = \frac{S}{G+S};$$

$$G = S\left(\frac{d}{d'} - 1\right).$$
(54)

If S can be made so that d' = d/2, then G = S. (55)

Fig. 175. Diagram of Galvanometer Resistance by Condenser.

270. Measurement of Battery Resistance by Voltmeter. — In Fig. 176 are given the connections for measuring battery resistance with a voltmeter. Suppose the battery to have an electro-motive force E. K is an appropriate key, and r a suitable known resistance. When the key K is open, the reading on the voltmeter indicates the potential of the battery. Upon closing the key K, the voltmeter indicates the difference in potential e existing between the ends of the resistance r. Under these circumstances, the resistance R of the battery is found from the equation, —

$$R = r\left(\frac{E - e}{e}\right). \tag{56}$$

271. Galvanometer Resistance by Deflection. — Connect the galvanometer to be measured in series with a known resistance r, as indicated in Fig. 163, obtaining the deflection d. Replace r by a second known resistance r', quite different from r, giving a second deflection d'. Then, in formula (41), substitute r' for R, and solve for the value of G, obtaining —

Fig. 176.
Diagram of Battery Resistance
by Voltmeter.

 $G = \frac{r'd' - rd}{d - d'}. ag{57}$

272. Battery Resistance by Deflection. — If the galvanometer resistance be known, and two known resistances are at hand, the preceding method may be used to measure battery resistance. The connections are made as already described, the battery occupying the place of the unknown resistance. The known resistances are successively interposed in the circuit, the corresponding deflections obtained, and the necessary substitution made in formula (41).

273. In general, equation (41), involving six variables, of which two, d and d', are always measurable, may be used to determine any one of the remaining four, provided the other three are known, or may be neglected.

274. Battery Resistance by Condenser. — One of the best methods for the measurement of battery resistance is that involving the use of a condenser, for the reason that, while the connections are simple, the battery remains almost constantly upon open circuit, and is, therefore, free from errors due to polarization. The connections are shown in Fig. 177. A circuit is formed, comprising the battery E, the resistance of which, R, is to be measured, the condenser C, the galvanometer G, two keys k and k', and a known resistance r, arranged to shunt the battery. These are connected as shown, so that by depressing the key k the condenser may be charged through the galvanometer G, giving a deflection d on the galvanometer, cor-

responding to E, the electro-motive force of the battery. If now, while the key k remains closed, the key k' be also depressed, the battery is shunted through the resistance r; the potential at the poles of the battery falls to a value e given by the equation —

$$e = E \frac{r}{R+r},\tag{58}$$

and a new deflection d' in the contrary direction is now obtained on the galvanometer, serving to measure the quantity E-e. As the deflections are proportional to the electro-motive force, —

$$\frac{E}{E - e} = \frac{d}{d'};$$

whence —

$$1 + \frac{r}{R} = \frac{d}{d'};$$

$$R = r \times \frac{d'}{d - d'}.$$
(59)

If the resistance r is so arranged that d' = d/2, then R = r. (60)

Fig. 177. Battery Resistance by Condenser.

275. Battery Resistance by Equal Deflection. — The equal deflection method for galvanometer resistance may be applied to determine battery resistance. The connections are shown in Fig. 173, in which R is the battery resistance to be measured, S a shunt of known resistance around the galvanometer G, and known resistance r in series with R and G. The circuits being connected as indicated, a deflection d is obtained on the galvanometer. S is then removed, and r increased to r', until the same deflection is obtained.

Then,
$$R = S \times \frac{r' - r}{r + G}.$$
 (61)

276. S should not be less than R; r + G should not be larger than $s/G \times (G+r')$, r' being the greatest attainable resistance. The deflection should be arranged to fall nearly at the angle of maximum resistance sensitiveness.

277. Measurement of Potential Differences. – The most simple method of measuring potential differences is by means of a voltmeter; the instrument being directly connected to the poles of the generator, and the reading of the needle indicating at once the desired voltage. As various instruments are made to cover a range from .00001 of a volt to 10,000 volts, they are amply sufficient for all ordinary practice.

278. In the case of the Weston instruments, if the polarity of the generator be unknown, the instrument may also serve as a pole-finder; for if, on connecting the instrument, the needle is deflected toward the right, the binding-post on the right hand is the positive pole. If the needle should be deflected entirely across the scale, indicating that the potential difference is greater than the instrument is designed to measure, it is advisable to use one having a greater range. Yet, at the same time, by introducing an additional resistance into the voltmeter circuit, a reasonable approximation to the correct voltage may be obtained. For example: supposing voltmeter reading to 150 volts be the only one at hand, and it is desired to measure in the neighborhood of 600 volts.

Let E=the greatest number of volts to be measured.

Let e = highest reading on the scale of the instrument at command.

Let r = the resistance of this instrument, and

 $R\!=\!$ the additional resistance necessary to make it read E volts, then —

$$R = r \frac{E - v}{v}. ag{62}$$

Under these circumstances, when R ohms are added to the voltmeter circuit, the readings on the scale of the instrument must be multiplied by the factor E/e.

279. It is seldom possible to add the exact quantity R ohms to the voltmeter circuit. Supposing R' ohms to be the nearest approximation to R that can be secured, then the scale readings of the voltmeter must be multiplied by $\frac{R'+r}{r}$ to give correct values.

280. Measurement of Electro-Motive Force. The Condenser Method. — The arrangement of the apparatus for measuring electro-motive force by the condenser method is indicated in Fig. 178, in which G is the galvanometer, E the battery, or generator, to be measured, e the standard cell with which comparison is to be instituted, C the condenser, and S a shunt around the galvanometer. This method consists in charging a condenser having a capacity of about one-tenth microfarad, by means of the standard cell, and then discharging it through the galvanometer, and noting the deflection d. The condenser is now to be charged by the generator whose electromotive force is to be measured, and again discharged through the galvanometer.

A second deflection d' is obtained, the deflections being propor-

Fig. 178. Measurement of Electro-motive Force by Condenser.

tional to the electro-motive forces producing them; and if m be the multiplying power of the shunt,

$$\frac{E}{e} = m \times \frac{d'}{d}; \qquad E = \frac{med'}{d}. \tag{63}$$

281. Measurement of Electro-motive Force. Wheatstone's Method. — The standard cell e is to be joined in series with a galvanometer and any known resistance, giving a convenient deflection d. The resistance is now to be increased by an amount r ohms, and a second deflection d' is obtained. The generator to be measured is now substituted for the standard cell, and the resistance of the circuit so adjusted that the deflection d is repeated. Additional resistance, r' ohms, is now added to the circuit, until the deflection d' is again obtained. Under these circumstances, the relative electromotive forces are directly proportional to the additional resistances required to repeat the deflections, —

$$e: E:: r: r';$$

$$E = \frac{er'}{r}.$$
(64)

The first resistance should be as large as convenient; and the added resistance should be about double the original in order to get the best results.

282. Lumsden's Method. — Join the standard cell e and the generator to be measured, E, with the galvanometer G and the resistance r' and r, as shown in Fig. 179.

Fig. 179. Connections for Lumsden's Method.

Adjust r until no deflection is observed on the galvanometer. Under these circumstances,—

$$e: E: r': r;$$

$$E = \frac{er}{r'}.$$
(65)

283. Measurement of Current Strength. — To measure the amount of current flowing in a given circuit, the direct reading

Fig. 180. Measurement of Current by Shunted Ammeter.

ammeter forms the most convenient instrument. Current strength is measured by interpolating instruments directly in the circuit, the readings on the ammeter giving the volume of current.

284. If the volume of current be too great for the instrument at hand, there are three methods for making the requisite measurements. A circuit may be arranged as shown in Fig. 180, in which the ammeter forms a shunt in connection with another circuit r. Under

these circumstances, knowing the resistance r, and the resistance of the ammeter, which is always to be found marked upon the case containing the instrument, the quantity of current flowing through the two branches of the divided circuit can be readily calculated by the formula for divided circuits, and the total current obtained by adding the respective quantities found in the branches. Suppose an ammeter having a maximum reading of "a" amperes is required to read to A amperes; let r be the resistance of the instrument, r' the resistance of the shunt to be added; then,—

$$r' = \frac{ar}{A - a} \,. \tag{66}$$

The scale reading must be multiplied by A/a.

As ammeters are always very low resistance instruments, great care must be taken to determine accurately the multiplying power of the shunt, and particular pains taken to see that no unknown or variable resistance is introduced in the various contacts.

285. Measurement of Current Strength by Voltmeter. — If the total resistance of the circuit or any portion of it be known, the measurement of the current strength may be made by means of a voltmeter. If, for example, the terminals of a voltmeter be connected across a circuit including a known resistance of r ohms and a reading of V volts be obtained, two quantities in the general equation of Ohm's law are given, from which the current strength may be calculated. By this method very large currents may be measured by the use of the milli-voltmeter. For this purpose arrange a circuit as shown in Fig. 166, containing a copper bar or strip, the resistance of which is known or can be approximately calculated.

The terminals of the milli-voltmeter are to be applied to two points of the strip, and the fall of potential taken by means of the milli-voltmeter between these two points.

Supposing the conductor to have a resistance of r ohms, and the reading of the milli-voltmeter to be E volts, the strength of the current I will be—

 $I = \frac{E}{r}. (67)$

The objection to this method lies largely in the difficulty in determining the resistance of the part of the circuit included between the terminals of the milli-voltmeter.

286. Measurement of Current Strength. DIFFERENTIAL GAL-VANOMETER METHOD. — In one half of a differential galvanometer G, Fig. 181, is placed a standard cell e, and known resistance r. Knowing the electro-motive force of the cell, and the resistance g of one half of the galvanometer, and r the resistance of the rest of the circuit, the current flowing may be calculated. The current to be measured is now passed through the other half g' of the galvanometer, and r varied to r', until the needle remains at zero. If the two coils of the differential galvanometer have equal resistance, the value of the unknown current is given by equation (68).

$$I = \frac{e}{r' + g}. (68)$$

Should the two sides of the galvanometer be unequal, the preceding result must be multiplied by the ratio of the two sides. This ratio may be determined by passing the current from the standard cell simultaneously through both halves of the instrument, and varying the resistance of the respective circuits until equilibrium is produced. The desired ratio is then evidently the ratio between these resistances. If the unknown current is very large, a shunt may be placed in this circuit and the multiplying power introduced in equation (68).

287. SLIDE-WIRE METHOD. — In Fig. 182, AB is a wire of known resistance per unit of length, with a slide at B. The current to be measured is passed through this wire in a direction BA. The galvanometer standard cell and slide-wire are joined as indicated, so that the electro-motive force of the standard cell will oppose that of the current to be measured. The slide is then moved until the galvanometer remains at zero. Under these circumstances, $I = \frac{c}{r}$ (69), r being the resistance of AB, and c the electro-motive force of the standard cell.

288. Measurement of Electrostatic Capacity. — The most accurate and convenient method of measuring electrostatic capacity is to compare the unknown capacity to be estimated with that of a standard condenser. The arrangement of the circuits are given in Fig. 183.

Supposing the capacity to be measured is that of a cable, the apparatus is so arranged that either the condenser or cable, by

Fig. 181. Current Strength by Differential Galvanometer.

Fig. 182. Diagram of Current Strength by Slide Wire.

Fig. 183. Diagram of Circuit for Capacity Measurement.

means of a double key, may be charged from the same battery, and discharged through the galvanometer. Under these circumstances, the relative capacities are proportional to the deflections produced on the scale of the galvanometer. These deflections must be multiplied by the proper factor in case the galvanometer is shunted to bring the readings within the limit of the scale.

289. If a Ballistic galvanometer be employed, the scale readings can be used without correction. If an ordinary galvanometer is used, or one in which provision is made for checking the motion of the needle, a correction for the errors thus introduced must be made. This correction may be obtained by observing the first swing of the needle to the right, giving, for example, a deflection d', then the second swing also to the right, giving the deflection d''. The true

Fig. 184. Diagram of Circuit in Thomson's Method.

deflection on the scale is obtained from the equation

$$d = d' + \frac{d' - d''}{4}. (70)$$

Should the deflections given by the discharge of the cable and that of the standard condenser be sensibly equal, no correction is needed. In cases where the

cable or line to be measured is very long, or has very large capacity, it will not discharge itself instantly; and one of the succeeding methods must be employed in place of the above. It is also customary, in order to obtain uniform results, to allow the electrification by the battery, both of the condenser and that of the capacity to be measured, to proceed for a certain definite length of time, usually for one minute.

290. Thomson's Method. — The connections for Thomson's method for estimating capacity are shown in Fig. 184.

The resistances of two adjacent branches of a Wheatstone bridge are replaced by the capacity x to be measured on one side, and a standard condenser of appropriate capacity C on the other, while the remaining arms a and b are wired as in the cut. These capacities are then charged from the same battery during the same time, and are then simultaneously discharged through the galvanometer by

means of an appropriate key. When the resistances a and b are so adjusted as to produce equilibrium, and the galvanometer indicates no deflection, then

 $x = \frac{Ca}{b}. (71)$

in which x is the capacity to be measured, and a and b the known resistance of the bridge-arms.

291. Gott's Method. — The method here indicated is in some cases more convenient to apply. The capacity to be measured and the standard condenser C are mounted in series, as shown in Fig. 185, arranged so that they may be charged from the battery

Fig. 185. Diagram of Circuit in Gott's Method.

E by means of the key K', and discharged through the galvanometer by the key K. The resistances a and b are adjusted until no deflection is obtained on the galvanometer by closing the key K. Under these circumstances, using the preceding notation,—

$$x = \frac{Ca}{b}. (72)$$

For these two methods it is advisable that the standard condenser and the capacity to be measured should have the same dielectric, as otherwise the different rate of absorption of different dielectrics may cause error.

292. DIVIDED CHARGE METHOD. — If a charged condenser be attached to a second condenser having no charge, the charge which

is in the first condenser will distribute itself between the two in proportion to their relative capacities. Thus, if a standard condenser containing a known charge be placed for a few seconds in communication with a capacity to be measured, and then if the residual charge in the standard condenser be determined, the unknown capacity can be calculated. Thus, if C' be the charge in a condenser of a capacity C which is connected to an unknown capacity C'', the quantity C''' which will remain in C will be —

$$C''' = C' \times \frac{C}{C'' + C},$$

$$C'' = C \times \frac{C' - C'''}{C'''}.$$

$$(73)$$

$$C'' = C \times \frac{C' - C'''}{C'''}. \tag{74}$$

293. The Localization of Faults. - Three kinds of faults are likely to occur in electrical lines: —

FIRST. - The conductor under consideration may be broken and entirely insulated from the other conductors and from earth.

Fig. 186. Diagram of Blavier's Method.

these circumstances, the resistance of the wire is infinite, or is equal to the original insulation of the circuit. If the previous capacity of the line is known, the localization of the fault may be determined by measuring the capacity of the wire; that is to say, the capacity from the testing-station to the point of rupture of the conductor. If the line is one having

considerable capacity per unit of length, so that slight changes in length give rise to relatively large variations in capacity, this method of localization has a fair degree of accuracy.

294. Second. — If the faulty conductor is either crossed with a neighboring conductor, or with the earth, so that the fault has essentially no resistance, it is comparatively easy to locate its position by measuring the resistance of the conductor to the point of the cross. If the original resistance, or resistance per unit of length, be known, the localization of the fault becomes a mere matter of proportion between the measured resistance and that per unit of length.

295. THIRD. — Faults with resistance. Most frequently, however, considerable resistance is encountered at the fault itself; and in

order to locate the position of the fault, some method must be devised either to eliminate or to measure this amount. Blavier's method is shown in Fig. 186, in which A is the testing-station, B the end of the line, F the fault having a resistance R, and x and ythe respective resistances of the segments into which the fault divides the line. The operation consists in measuring the resistance from A, when B is insulated, being the resistance of the part of the line x plus the resistance R of the fault, giving a quantity—

$$x + R = R'$$
.

The end of B is then grounded or connected to a return conductor. and a second measurement taken, giving a quantity, -

$$x + \frac{yR}{y+R} = R''$$
, or $x + \frac{1}{1/R + 1/y} = R''$.

Also it is essential to know the original resistance of the line, —

$$x + y = R'''$$
.

From these three equations the value of x can be calculated, and is shown to be given by the equation —

$$x = R'' - \sqrt{(R' + R'')(R''' - R'')}; \tag{75}$$

and

$$x = R'' - \sqrt{(R' + R'')(R''' - R'')};$$

$$y = R''' - R'' + \sqrt{(R' - R'')(R''' - R'')}.$$
(75)

296. The Overlap Method. — A convenient modification of the foregoing method may be employed when the measurements can be made from each end of the faulty line. Under these circumstances, A measures when B is insulated, and B measures when A is insulated. In the latter case, when B insulates, a measurement from

A gives —
$$x + R = R'$$
.

When B measures, A insulating, —

$$y + R = R''$$
, and $x + y = R'''$, the original resistance.

Then the value of x is found from equation –

$$x = \frac{R''' + R'' - R'}{2};\tag{77}$$

$$y = \frac{R''' - R'' + R'}{2}. (78)$$

The location of faults existing in submarine cables presents problems of peculiar difficulty, owing to the fact that the rupture of the cable usually admits sea-water to the interior, thus allowing a saline solution to come in contact not only with the core, but with the sheath of the cable, thus forming a battery that is capable of giving quite a perceptible current in the core of the cable. Many ingenious and successful methods have been presented for the determination of faults of this kind, for full description of which the reader is referred to works particularly devoted to the subject of electrical testing.

297. Loop Test. Murray's Method. — When both ends of the faulty conductor are accessible to the same testing-station, as, for example, a cable on reels, or if another perfect conductor can be obtained for testing-purposes, the loop-test forms one of the most accurate and convenient of methods. The connections should be

Fig. 187. Circuits for Murray's Method.

Fig. 188. Circuits for Varley's Method.

made as shown in Fig. 187, in which α and b are the arms of a bridge at the testing-station; F the location of the fault; and x and y represent the respective resistances of the segments into which F divides the conductor from c and E (the ends of the bridge-arms) to the fault. c F is the faulty conductor, and EP the perfect one looped with it. AB and AE are adjusted until equilibrium is attained, then —

$$by = ax. (79)$$

Assume R to be the total resistance of the loop, then —

$$R = x + y$$
 and $y = R - x$,

substituting this value of y in equation (79), and solving for x, —

$$x = \frac{Rb}{b+a}. (80)$$

b and a should be made as high as possible to give great range of adjustability. A heavy battery should be employed, especially if the fault has high resistance. The galvanometer should have a resistance of not more than five times that of the circuits under test.

298. Varley Method. — This is a modification of the preceding loop-test, of which the connections are shown in Fig. 188. In the diagram \overline{BC} , \overline{BA} , and AE are the respective arms of the bridge, having the resistances a, b, and d, corresponding in notation to Fig. 138; a and b are the fixed resistances of the bridge, while d is the variable arm. F is the location of the fault, while x and y are respectively segments of the line extending from E and C. The resistance of x + y = R is supposed to be known. The variable arm d is adjusted until the galvanometer indicates equilibrium.

$$a:b::y:(d+x);$$

$$x=\frac{by}{a}-d, \text{ also, }y=R-x;$$

$$therefore, \ x=\frac{b(R-x)}{a}-d;$$

$$x=\frac{Rb-ad}{b+a}. \tag{81}$$

$$x=\frac{R-d}{2}. \tag{82}$$

$$x=\frac{R}{2} = \frac{B}{2} = \frac{B}$$

299. To attain the greatest accuracy, a should be as small as possible, but not less than

 $\frac{Gx}{G+x}$;

b should be so high that when d is a single unit out of balance there will be a perceptible movement of the needle.

300. Localization of Crosses. — To localize the position of a cross between two lines, the following method is sometimes convenient. Arrange connections between the lines, as shown in Fig. 189, in which AB and CD are the crossed lines. Adjust the arms of the bridge a and b and the resistance r to produce equilibrium. Then x + y = br/a. (83)

301. Rearrange the apparatus, making connections as indicated in Fig. 190, by placing the battery between A and the junction of

the bridge-arms, without making other changes, then ax = by, when r = 0. From these two equations

$$x = \frac{b}{a+b} \times \frac{br}{a}. (84)$$

302. Measurements of Coefficients of Inductance. — The determination of the coefficients of inductance may be easily made

Fig. 190. Diagram for the Location of a Cross.

by means of a Wheatstone bridge, a condenser, and a variable non-inductive resistance. The apparatus should be mounted as shown in Fig. 191, in which A and B are the constant arms of the bridge, R the variable arm, S the variable non-inductive resistance, and R'L the inductance to be measured, of

which R' is its ohmic resistance to a continuous current, while C is a condenser placed as a shunt across the arm of the bridge, in which S and R'L are inserted in series. The object of S is to bring the capacity required to balance the inductive resistance within reasonable limits. The balance is obtained by adjusting the mutual values of C, S, and R until no deflection is produced on the galvanometer

when the battery circuit is interrupted. Under these circumstances, if A and B are equal, the value of L is found, from the expression $L = CR^{"2}$ (84), in which R" is equal to the sum of S and R.

303. The value of this method may be extended over greater ranges by giving A and B any desired ratios, as in ordinary bridge measurements. The auxiliary resistance S is required to

Fig. 191. Circuits for Measuring Inductance.

adjust the capacity within reasonable values to balance the inductance. If, for example,

L has a value of .4 Henrys,
R' has a value of 10 Ohms,
C must be equal to .01 of L, or 4000 M.F.

Such a capacity would be beyond ordinary apparatus. By increasing R' to 1000 ohms by the addition of the adjustable resistance S, C becomes equal to A M.F., an easily obtainable capacity.

304. The Measurement of Self-Inductance with an Alternating Current of Known Period. — When an alternating current of known frequency can be obtained, the determination of the coefficients of inductance may be made; the apparatus needed being an alternating current dynamometer, a direct current ammeter, and a non-inductive resistance of known value. These instruments are all set up in series with the generator, in such a way that the current of known frequency may flow through the inductive resistance to be measured, and the known resistance. The direct current ammeter should be provided with a switch whereby it may be short-circuited at pleasure. The necessary measurements then consist in measuring the fall of potential with the alternating current dynamometer around the inductive resistance of which the inductance is desired, and also around the non-inductive resistance. A continuous current is then substituted for the alternating current; the amount of continuous current being varied until the dynamometer gives the same fall of potential across the known non-inductive resistance as was obtained in the first measurement. The amount of the continuous current is then obtained by reading the ammeter; and a measurement of the fall of potential across the inductive resistance, when supplied with a continuous current, is made with the dynamometer. The first and second dynamometer readings E and E' across the terminals of the inductive resistance give two E.M.F.s, the first of which is required to overcome the ohmic resistance plus the inductance, while the second is that required to overcome the ohmic resistance only. Knowing the amount of current I, in the second observation, and the frequency n, in the first, the value of L is determined from the expression—

$$L = \sqrt{\frac{E^2 - E'^2}{2\pi nI}}. (85)$$

305. This method is subject to error, due to the current taken by the dynamometer, which must be of sufficiently high resistance as to be negligible in comparison with the resistance to be measured.

306. Measurement of Mutual Inductance. — The preceding method may be employed to measure the coefficient of mutual inductance M, of two coils. Let R_1 and R_2 be the respective ohmic

resistance of the coils, and L_1 and L_2 the respective coefficients of inductance. First connect the two coils in series, and measure the total inductance by the above method, obtaining a value denoted by L'. Then connect the coils in opposition, and again measure the total inductance, and denote the quantity thus obtained by L''. It

can be shown that $L' = L_1 + L_2 + 2M;$ also, $L'' = L_1 + L_2 - 2M;$ hence, $M = \frac{L' - L''}{4}.$ (86)

307. Measurement of Mutual Inductance. — To determine the mutual inductance of two coils, a circuit should be arranged, as indicated in Fig. 192, in which the first coil A is placed in series with

Fig. 192. Circuit for Measuring Mutual Inductance.

the key K, and the battery P, and resistance R_1 , while the second coil B is placed in series with the galvanometer G and the resistance R_2 . Between the points a and d a condenser C is placed as a shunt. The other extremities b and c of the resistances R_1 and R_2 are placed in series. Opening and closing the key K produces induced currents in the coil B, giving deflections on the galvanometer which are proportional to $M - CR_1 R_2$. By varying the capacity of the condenser, different deflections are obtained, which have the following relation:

 $\frac{M - CR_1R_2}{d} = \frac{M - C'R_1R_2}{d'}. (87)$

in which \mathcal{C} and \mathcal{C}' are the different condenser values, and d and d' the different corresponding deflections, from which the coefficient M is obtained by equation —

 $M = CR_1R_2. (88)$

when d reduces to zero.

MEASUREMENTS ON ALTERNATING CURRENT CIRCUITS.

- 308. Measurements of Potential. Measurements of potential upon alternating current circuits may be readily made by means of hot wire voltmeters, Siemens dynamometers, or electrostatic voltmeters. With the electrostatic instruments sufficient range can usually be obtained so that pressure determinations on any ordinary alternating circuits may be made directly by interpolating the voltmeter across the circuit. With the Siemens dynamometers or the Cardew voltmeters, the instruments rarely have sufficient range to permit of a direct determination; and recourse is usually had to the method of using a small step-down transformer, by means of which the voltage of the circuit is reduced in proportion to the ratio of the windings of the transformer. Under these circumstances, to obtain the actual voltage of the circuit, it is necessary to multiply the readings of the voltmeter by the ratio of transformation.
- 309. Measurement of Current. The determination of current quantity may be made upon alternating circuits by means of a Siemens dynamometer, a Thomson balance, or other instruments of similar construction and based upon parallel principles. The operation consists in inserting the measuring instrument directly in the circuit, and obtaining the desired readings. In measurements of this kind, as well as those described for obtaining the pressure of the circuit, the readings of the instruments indicate what is termed "the effective current, or potential," being the square root of the mean square of the instantaneous values of current or pressure.
- 310. Measurement of Power. The method to be used in determining the power transmitted by an alternating circuit depends upon whether the circuit under examination is inductive or non-inductive. In the case of non-inductive circuits, it is simply necessary to measure the virtual pressure and virtual current, as already described, taking the product of these two quantities as the amount of power transmitted. When the inductance of the circuit is considerable, the power measurements may be made with an electrodynamometer, either of the Siemens or the Kelvin type the coarse wire coils being connected in series with the circuit, while the fine wire is placed across the mains. Under these circumstances, to secure accuracy, the following conditions are essential:—

First. The ratio of the inductance of the instrument to its resistance must be very small.

Second. The period of vibration of the movable coil must be very great compared with the period of the circuit.

Third. When an auxiliary transformer is used for reducing the voltage, the current required for the fine wire coil must be very small.

311. Power Measurement by Two Voltmeters. — Messrs. Ayrton & Sumpner are the authors of the following method for the measurement of power of an alternating current by the employment of two voltmeters and a non-inductive resistance. The circuit is arranged so that the inductive resistance of the circuit and the non-inductive resistance "r" are placed in series with each other. Then, by means of two voltmeters, the fall of potential across the inductive resistance $e_{\rm I}$, and across the non-inductive resistance $e_{\rm R}$, is measured.

Fig. 193. Three-Ammeter Method.

The total fall across both resistances is also measured and denoted by e.

The power transmitted by the circuit, denoted by W watts is then,—

 $W = \frac{c^2 - c_1^2 - e_R^2}{c_{1,r}^2}.$ (89)

Method employing Three Ammeters. — J. A. Fleming is authority for measuring the power in an alternating circuit by the employment of three ammeters, as arranged in the accompanying illustration, Fig. 193. The inductive resistance is supposed to be placed at MN, and the known non-inductive resistance r, while the ammeters are shown at A_1 , A_2 , A_3 . The reading of the ammeters gives three currents, from which the power in watts, represented by W, is obtained from the formula, —

$$W = \frac{r}{2} (I_1^2 - I_2^2 - I_3^2), \tag{90}$$

MEASUREMENTS ON POLYPHASE CURRENT CIRCUITS.

312. Diphase Circuits.—Case 1.— To determine the power transmitted by diphase circuits, two conditions must be considered.

First. — Circuits containing four wires. Under these circumstances, each circuit may be measured separately and entirely independent of the other circuits, and the results considered either alone or in conjunction with the results obtained from the second circuit.

Second. — Three wires with a common return.

To determine the power delivered by such a circuit, two wattmeters are necessary, and should be placed with the coarse wires in series with the separate parts of the component circuits, while the fine wire is placed across the common return and each of the exterior wires.

- 313. Triphase Currents. Measurements upon triphase circuits for current and potential may be made in the same manner as described for ordinary alternating circuits. To determine the power delivered by a triphase circuit, three cases must be considered.
- 314. Case 1.—Where the circuits supply non-inductive resistance without current lag. Under these circumstances, the power is equal to $\sqrt{3}$ times the product of the current intensity in each circuit, multiplied by the effective difference of potential between the wires. This method holds good indifferently, whether the arrangement of circuit is the star or the triangle method.
- 315. Case 2.—Case of equal lag and equal current. One watt-meter is arranged with its coarse wire in series on one of the circuits; and two readings are made with the fine wire successively, between the circuit under measurement and each of the other branches. The sum of the results thus obtained is the total power transmitted.
- 316. Case 3.— The general method for any current and any lag. Two wattmeters are employed, arranged with the coarse wires inserted in two of the three circuits and the fine wires placed respectively between the third circuit and the other two. The sum of the readings thus obtained gives the total power transmitted by the circuit.
- 317. Eectrical Railway Testing. By means of the foregoing sethods the electrical engineer will be able to make such selection

as to enable him to thoroughly investigate the electrical properties of any ordinary line construction. No data or methods are given, either for the examination of dynamo machinery or for the determination of special factors, being beyond the scope of this volume. There remains, however, the special case of electric railway testing, which, having chiefly for its object the determination of the electrical properties of the conducting system, necessarily embraces within the measurements made for this purpose a large amount of data applicable to ascertaining the performance of the car-motors and the generating-station. A necessary adjunct to the examination of an electric railway plant is a reasonably accurate plan and profile of the entire line. If not already in existence, a transit survey may be rapidly made with sufficient accuracy, covering from ten to twenty miles per day's work. The tangents may be run out with great rapidity by stadia measurements, the location and amount of all gradients being simultaneously determined by means of a grade-screw on the vertical circle of the transit. The curves may be rapidly located by chord deflections. A testing-car should now be provided, which should be equipped with the following instruments: an integrating wattmeter, a Weston voltmeter, ammeter, and milli-voltmeter, a Boyer speed recorder, a revolution counter, a stop-watch reading to quarter seconds, and a gong. A separate observer should be provided for each instrument, with appropriate note-books having numbered lines, so that all observations may be correlated by corresponding numbers.

The instruments may all be appropriately arranged on the carseats, being protected as much as possible against jarring by extra cushions and rubber springs. The voltmeter and ammeter are introduced in the motor circuit, so as to measure the amount of current and pressure. The wattmeter is similarly introduced, in order to integrate the total energy expended. The general connections of these instruments are indicated in Fig. 194.

The speed counter is to be connected to the driven axle of the car, provided only one motor is used; or if the car is a double motor equipment, one may be temporarily thrown out of service. The object of the counter is to determine the number of revolutions of the car-wheel, that, being multiplied by the wheel circumference, will give accurately the distance traveled by the car. Indeed, so

accurate is this method of measuring that repeated trials over a six-mile stretch of road have checked within an error of fifteen feet. It is obvious that, to prevent error, the counter must be attached to a driven, not a driving axle. The Boyer speed-recorder may be attached to the same axle, and, being a self-recording instrument, may be placed in charge of the same observer who records the counter. The instruments being in readiness, the car is arranged to start from one end of the line, one of the observers being detailed to strike the gong at the instant each line-pole passes the center of

Fig. 194. Diagram of Circuits in Testing-Car.

the car. At each gong-stroke each observer records the reading of his particular instrument.

318. The records will then show readings corresponding to successive points along the line, as marked by each pole, consisting —

1st.	۰		Time in seconds	4th.	٠		Wattmeter
2d.			Voltmeter	5th.		٠	Revolution-counter
3d.			Ammeter	6th.			Pole number

On the conclusion of the run, the information from each of these records should be plotted as a curve upon the sheet of profile-paper containing the plan and profile of the road, as developed from the previously mentioned surveys.

319. Contemporaneously with the trip of the inspection-car, station voltmeter readings should be obtained, either by a self-recording instrument, or by five-second interval observations. These should likewise be plotted as a curve on the profile-sheet. The line should now be short-circuited at the extreme end, through sufficient resistance not to overload the generator, but yet to permit a heavy current to pass through all the wiring, and the inspection-car again sent over the road, hauled by horses, so that the car will take no current. During this trip voltmeter readings should be made at each pole, together with a repetition of the station voltmeter observations. These readings should likewise be plotted on the profile-sheet. From this test, the behavior of the line under a steady load may be

Fig. 195. Diagram of Test-Circuit for Electric Railway.

contrasted with previous curves of variable load. During this trip the milli-voltmeter should be connected with the fore and aft wheels of the car. Then the readings of the instrument will indicate the fall of potential in the rails in each car-length, affording a ready means of detecting any discontinuity in the return current, such as poor bonding, etc.

320. The examination may now be completed by measuring from the station the insulation and conductivity, jointly and separately, of the ground return feeder system and trolley wire. This is best accomplished by stringing a test-wire of about No. 14 or 16 gauge parallel with all the lines, and arranging the stations and testing-instruments as in Fig. 195. By this means, the line resistance, as well as the ground resistance, can be separately determined. A careful consideration and comparison of the curves to be developed from

this information will, from a maintenance standpoint, be richly rewarded; for in this way only is it practicable to so thoroughly and carefully adjust the conducting system of a railway line to the loading thrown upon it, as to secure a proper distribution of energy with reference to the demands introduced by grades, curves, variation in moving load, and the demands caused by the stopping and starting of the cars, in order that the line and station shall work together harmoniously in the endeavor to attain a maximum efficiency.

321. The Capacity of Aerial Lines. — Though the preceding methods are applicable to the determination of electrical quantities under all circumstances, when applied to the measurement of transmission lines, special precautions have sometimes to be taken. The capacity of an aerial line is a difficult quantity to measure, for the

reason that lines of this kind are usually not highly insulated, and for this reason will discharge themselves in an extremely short period of time. It is possible, however, to obtain quite accurate results for aerial line capacity by arranging the circuits as shown in Fig. 196, in which $A\overline{B}$ is a lever pivoted at C, that by means of spring r is kept constantly in contact with the terminal a of the battery key M.

Connection for Measuring Capacity in Aerial Lines.

The line L is brought to the center of this lever at C. A second key K is mounted in series with the galvanometer, the depression of which makes contact with the lever AB at B. It is apparent that the action of this key is to open the battery circuit and close the galvanometer circuit, approximately, at the same instant. The line is charged for one minute by closing the battery key M. Then, by depressing the key K, the battery circuit is opened and the line circuit closed through the galvanometer at the same instant. The readings of the galvanometer, in comparison with those of a standard condenser, by any of the methods already given, furnish the necessary data for calculating the line capacity. This galvanometer reading, however, must be corrected for two errors.

322. FIRST. — It is usually found that different readings are ob-

tained when the line is charged with a positive current than when it is charged with a negative current. This difference is owing to the presence of the earth currents, which always manifest themselves upon aerial lines of any magnitude. Two deflections, therefore, obtained with currents of different sign, will differ by an amount due to the presence of such a foreign current. The deflections, therefore, must be corrected by subtracting or adding to the galvanometer reading obtained by the battery discharge the amount of deflection due to the earth current. This correction may be readily obtained by closing the galvanometer key with the battery key open for a few moments, and reading the deflection given by the earth current.

323. Second. — The deflection obtained upon the galvanometer is not exact, unless the opening of the battery circuit and the closing of the galvanometer circuit occur at mathematically the same instant; and the apparatus can rarely, if ever, be adjusted to accurately accomplish this. Therefore, usually the battery is short-circuited through the galvanometer for a very short interval of time. To determine the value of the error thus introduced, substitute for the line L three standard condensers, the capacities of which are known quite accurately to be in the ratio of 1½, 2, and 4, and by closing the key K, measure the galvanometer deflections obtained with these condensers in the place of the line, exactly in the same way as the line measurement is made. If the source of error alluded to does not exist, the following relation would be true:—

$$\frac{d'}{1.5} = \frac{d''}{2} = \frac{d'''}{4}$$

in which d', d'', d''', are the respective deflections. If equality does not exist in the above equation, the following relation evidently will hold, —

 $\frac{d'+x}{1.5} = \frac{d''+x}{2} = \frac{d'''+x}{4},$

in which x is such a quantity as will satisfy the equation. From the known value of the standard condensers with which these readings are made, it is possible to calculate the value of x, and thus determine the error introduced by the momentary short-circuiting of the battery through the galvanometer. Having obtained this figure with standard condensers, it may be applied to correction of the galvanometer reading, as obtained from the experiments upon the line.

324. An example may perhaps render the subject more clear. Suppose an aerial line, when tested with a positive current, to give a deflection of 73 divisions on the galvanometer scale, and with a negative current, of 113 divisions, also, that the deflection due to earth current is found to be 20 divisions. The true deflection on the galvanometer evidently then should be d=73+20=113-20=93. the earth current evidently opposing the positive current. To introduce the second correction, assume three condensers, having the ratios of $1\frac{1}{2}$, 2, and 4, to give on the galvanometer scale deflections of 72, 88, 152. In order that the three numbers representing the deflections shall stand in the same ratio as the capacity of the condensers, it is necessary to subtract from each one 24. Correcting

the line galvanometer deflection by the same number, the value of 69 remains as the true deflection.

325. The capacity of aerial lines in reference to the earth, as usually measured, is considerably greater than that which would be theoretically in- Circuit for the Measurement of Inductance on Aerial Lines. dicated. To account for

the discrepancy between the measured figures and those given by theory, it is usually assumed that the insulators, poles, and crossarms possess a sensible capacity which is inevitably measured in all trials made upon aerial lines. Confirmation of this hypothesis is obtained in the fact that in dry weather the line deflection falls, and agrees much more closely with the results indicated by theory.

326. The Inductance of Aerial Lines. - The estimation of the inductance of aerial lines may be made by any of the methods given; those that employ the Wheatstone bridge, as indicated in Fig. 197, being particularly convenient. The two parts of the line L and L' are looped into the station, L being connected to AB, one of the bridge-arms, and C connected to AC, the other. In the line L the variable resistance r, and variable condenser c are arranged, while the contact a represents the slide of the bridge, as, for this experiment, a slide-wire bridge is a convenient piece of apparatus. After adjusting a to obtain a balance for constant current, the capacity of the condenser c is increased or diminished, until the needle of the galvanometer remains at zero on interruption of the current. The inductance of the line is then given by the expression, $L = c r^2$. (91)

327. It must not be forgotten that the line itself has always a capacity; so from the above expression the true inductance of the line is not obtained, but a quantity equal to $L = \frac{1}{3} CR^2$, in which R is the resistance and C the capacity of the line itself. To demonstrate this, suppose, in Fig. 198, the two parts of the line to be

Fig. 198. Diagram of Line Capacity.

- represented by \overline{AC} and $\overline{A_1C_1}$, and assume the line to be divided into n equal parts, \overline{AB} , \overline{BC} , etc., and $\overline{A_1B_1}$, $\overline{B_1C_1}$, etc. At each section of the line imagine a small condenser to be placed, whose capacity $c_1 c_2$ etc., is the capacity of the section under consideration. Represent the resistance of each section by ρ , and the capacity of the condenser at each point by ϕ . The condenser c_1 placed across the points $A\overline{A_1}$ acts as an inductance of the value $-\phi n^2 \rho^2$; the next condenser c_2 at BB_1 acts as an inductance of the value $-\phi (n-1)^2 \rho^2$, and so on for all the n sections into which the line is divided. All of the condensers are equivalent to an inductance of the value $-\phi \rho^2 (1+2^2+3^2+\ldots+(n-1)^2+n^2)$, but the sum of the squares of the numbers from 1 to n is

$$\frac{n(n+1)(2n+1)}{6},$$

and the value of the inductance equivalent to the condensers is

$$-\frac{n(n+1)(2n+1)}{6}\phi\rho^{2}.$$

$$\phi = \frac{C}{n}, \quad \text{and} \quad \rho = \frac{R}{n},$$

As

the preceding expression becomes

$$-\frac{n(n+1)(2n+1)}{6n^3}CR^2$$
.

When
$$n = \infty$$
,
$$\frac{n(n+1)(2n+1)}{6n^3} = \frac{1}{8},$$

and consequently the capacity of the line acts as an inductance of the value $-\frac{1}{3}CR^2$. Consequently the true value of the inductance of the line is obtained by adding to the value of L, as given in equation (91), the value of the negative inductance due to capacity, or

$$L = c r^2 + \frac{1}{3} CR^2. (92)$$

C and R being measured by any desired method.

328. Measurement of Mutual Inductance on Transmission Lines. — To estimate mutual inductance on a pair of lines, the apparatus should be arranged as shown in Fig. 199, in which L is the *primary* or inducing line, and L' the circuit in which inductance is to

Fig. 199. Circuit for Measuring Mutual Inductance on Aerial Lines.

be measured. By means of the key K the primary line L is earthed through the resistance R; an electrical impulse is sent through this line from the battery P that produces inductive effects on the other line L'. The grounds rr_1 , as well as the earths at the remote ends of the lines, must be entirely separate from each other. The deflection produced on the galvanometer by the mutual inductance of the lines, and the charge of the condenser C, is proportional to M-CRR', C being the capacity of the condenser, R the resistance of the rheostat, and R' that of the line L'. By adjusting the rheostat and condenser till no deflection is observed,

$$M = CRR'. (93)$$

As earth currents are likely to give much trouble in obtaining the final balance, a small battery p, with an adjustable shunt, may be placed in L', and arranged to neutralize such disturbances.

CHAPTER VII.

CONTINUOUS CURRENT CONDUCTORS.

PART I. - CONDUCTORS AND INSULATORS.

Art. 329. Conductors. — When a quantity of positive electricity is placed upon any perfectly insulated body, it occupies for the first infinitesimal period of time, a small surface immediately surrounding the point of contact, and raises the potential of this surface. Very rapidly, however, the charge distributes itself over the entire surface; bringing every point thereof to the same potential. As, by hypothesis, the body is perfectly insulated, this distribution of the charge can only take place by a passage of *Electric Energy* through the body itself. The property thus possessed by all substances to permit with varying degrees of rapidity the transfer of electrical energy is called conductivity.

330. In some materials the distribution of the charge takes place almost instantaneously, while for others an extremely long time is required. Good conductors are those which permit the distribution of the charge to take place with great rapidity, while those requiring a greater length of time are called poor conductors, or insulators. If the substance under consideration is in the form of a wire, one end of which is maintained at a higher potential than the other, a continual passage of electrical energy will take place from the end having the higher potential to that which is lower. This condition once established, the quantity of electricity stored on the surface of the wire remains uniformly distributed, and evidently a steady flow or current takes place.

331. From experiment it is ascertained that wires of different material, of the same geometrical dimensions, submitted to the same differences of potential, transmit very different quantities of electricity during the same interval of time. The quantity, therefore, of electricity which one substance, under precisely similar conditions, is able to transmit, compared with that of another, is a measure of its conducting power.

332. Resistance: Ohm's Law. — Let E be the difference of potential maintained between the extremities of a conductor, and I the intensity of the current; that is to say, the quantity of electricity that passes any given cross-section in successive equal intervals of time; if R is the resistance of the conductor, then —

$$I = \frac{E}{R}, \qquad R = \frac{E}{I}, \qquad RI = E.$$
 (94)

With a given difference of potential E, I decreases directly in proportion as R increases, and also with a definite resistance R, I is directly proportioned to E. This is the famous law of Dr. Ohm, that thus unites by an algebraic equation the three most important electric quantities. Be it noted, however, that Ohm's formula, in this form, applies to *steady and continuous currents only*.

333. The resistance R of a conductor depends not only upon the material used, but also upon its geometrical dimensions. It is, therefore, possible to express the resistance of any conductor as a function of its geometrical magnitudes, and of a coefficient depending upon the physical constitution of the material employed. Dr. Ohm, further, established the proposition that the resistance of any conductor is inversely proportioned to the cross section S, measured normal to the direction of the current, and directly proportioned to the length l of the conductor, and to a coefficient ρ , which he denominated the *specific resistance* of the material. Thus, algebraically,

$$R = \frac{\rho l}{S} \,. \tag{95}$$

The geometrical dimensions being easily ascertained, it is sufficient for the purposes of calculation to know ρ for the materials under consideration. Substituting in (94),—

$$\frac{\rho l}{S} = \frac{E}{I} \,. \tag{96}$$

If ρ , l, S, and E are constant, S/I gives the current density per unit of area of the cross-section of the conductor.

334. Specific Resistance. — The resistance offered by a unit volume of any substance, as compared with the resistance of a unit volume of any other substance, selected as a standard, is termed "Specific Resistance." As the metal silver has the least resistance of any now known, or in other words is the best conductor, it is

usually selected as the standard. In English measures the cubic inch is the volume adopted for comparison, while in the C. G. S. system the cubic centimeter is used. Thus the absolute resistances of various substances would be the opposition offered per cubic inch or cubic centimeter, while the specific resistance is the ratio of the absolute resistance to the absolute resistance of silver. The value of the absolute and specific resistances of the chief metals will be found in Table No. 17. For wire work the resistance of a grain

 $TABLE\ \ No.\ \ 17.$ Chemically pure Metals arranged in Order of Increasing Resistance for the Same Length and Sectional Area.

NAME OF METAL.	RESISTANCE AT 0° CEN	IN MICROHMS	Relative
NAME OF METAL.	Cubic Centimeter.	Cubic Inch.	RESISTANCE.
Silver, annealed	1.504	0.5921	1.
Copper, annealed	1.598	0.6292	1.063
Silver, hard-drawn	1.634	0.6433	1.086
Copper, hard-drawn	1.634	0.6433	1.086
Gold, annealed	2.058	0.8102 .	1.369
Gold, hard-drawn	2.094	0.8247	1.393
Aluminum, annealed	2.912	1.147	1.935
Zinc, pressed	5.626	2.215	3.741
Platinum, annealed	9.057	3.565	6.022
Iron, annealed	9.716	3.825	6.460
Gold-silver alloy (2 oz. gold, 1 oz. silver),			
hard or annealed	10.87	4.281	7.228
Nickel, annealed	12.47	4.907	8.285
Tin, pressed	13.21	5.202	8.784
Lead, pressed	19.63	7.728	13.05
German silver, hard or annealed	20.93	8.240	13.92
Platinum-silver alloy (1 oz. platinum, 2			
oz. silver), hard or annealed	24.39	9.603	16.21
Antimony, pressed	35.50	13.98	23.60
Mercury	94.32	37.15	62.73
Bismuth, pressed	131.2	51.65	87.23

foot, or the resistance of a wire weighing one grain, and one foot in length, and also the resistance of a mil foot, or the resistance of a wire one mil ($_{10}$ $_{00}$ of an inch) in diameter, and one foot long, are convenient working quantities. Table No. 18 supplies this data for the most common metals and alloys, giving also the values of the gramme-meter, and millimeter-meter.

335. It should be carefully noted that different specimens of apparently chemically pure metal give different resistance, that can only be accounted for on the supposition that the varying processes

TABLE No. 18.

Resistances of Metals for Grain-foot, Mil-foot, Gramme-meter, and Millimeter-meter. (Legal Ohms.)

Name of metals arranged in order of increasing resistance for the same length and weight.	Resistance of a wire 1 foot long, weigh- ing 1 grain.	Resistance of a wire 1 foot long, 1000 of an inch in dia- meter.	Resistance of a wire 1 meter long, weighing 1 gramme.	Resistance of a wire 1 meterlong, 1 millimeter in diameter.
	Ohms 0° C.	Ohms 0° C.	Ohms 0° C.	Ohms 0° C.
Aluminum, annealed	0.1074	17.53	0.0749	0.03710
Copper, annealed	0.2041	9.612	0.1420	0.02034
Copper, hard-drawn	0.2083	9.83	0.1453	0.02081
Silver, annealed	0.2190	9.048	0.1527	0.01916
Silver, hard-drawn	0.2389	9.826	0.1662	0.02080
Zinc, pressed	0.5766	33.85	0.4023	0.07163
Gold, annealed	0.5785	12.38	0.4035	0.02620
Gold, hard-drawn	0.5884	12.60	0.4104	0.02668
Iron, annealed	1.085	58.45	0.7570	0.1237
Tin, pressed	1.380	79.47	0.9632	0.1682
Gold-silver alloy (2 oz. gold, 1 oz. sil-				
ver), hard or annealed	2.364	65.37	1.650	0.1384
German silver, hard or annealed	2.622	125.91	1.830	0.2666
Platinum, annealed	2.779	54.49	1.938	0.1153
Lead, pressed	3.200		2.232	0.2498
Antimony, pressed	3.418	213.6	2.384	0.4521
Platinum-silver (1 oz. platinum, 2 oz.				
silver), hard or annealed	4.197	146.70	2.924	0.3106
Bismuth, pressed	18.44	789.3	12.88	1.670
Mercury	18.51	572.3	12.91	1.211

The following specific data relative to the resistances of copper in various forms has received the sanction of the report of a committee upon wiring, appointed by the American Society of Electrical Engineers.

Table of Values based upon Matthiessen's Correct Standard.

	B. A. Units.	LEGAL OHMS.
	0° C.	0° C.
Matthiessen's Standard Meter-gramme, hard	1469	.1453
Meter-gramme, soft	1436	.1420
Meter-millimeter, hard	.02104	.02080
Meter-millimeter, soft	.02057	.02034
Cubic-centimeter, hard	.000001652	.000001634
Cubic-centimeter, soft	.000001616	.000001598
Mil-foot, hard	9.940	9.829
Mil-foot, soft	9.720	9.612
Specific resistance of hard copper (1 cub. cent.) = 16	334 (C. G. S. units)	
Specific resistance of soft copper (1 cub. cent.) = 15	98 (C. G. S. units).	4
Matthiessen's Standard specific gravity of hard copp	er, 8.89.	
Resistance of hard copper is 1.0226 times that of soft	t copper.	
Resistance of soft copper is .9779 times that of hard	copper.	
Legal ohm is equal to 1.0112 B. A. units.		
D. A. unit is equal to 9889 Legal olyms		

of manufacture produce corresponding inequality in molecular structure, sufficient to account for these discrepancies. Even with pure specimens, in special cases, a variation of 16 per cent in the same

metal tested at the same temperature has been noted. In ordinary commercial products the range of variation may naturally be still greater.

336. Effect of Temperature. — Specific resistances, also, are functions of temperature. For pure metals, the resistance increases as the temperature is augmented. The formula representing the effect of temperature may be written —

$$R_t = R_o \left(1 + at + \beta t^2 \right), \tag{97}$$

in which R_t is the final temperature, R_a the temperature at which the specific resistance is originally measured, and α and β are coefficients denoting the function of the specific resistance and temperature. For any purpose but the most exact calculation, the approximation, --- $R_t = R_o (1 + at).$ (98)

is amply sufficient. The values of these coefficients are shown in Tables Nos. 19 and 20. For copper, formula (97) becomes (approxi-

mately) --- $R_t = R_0 (1 + .00387 t + .00000597 t^2).$ (99)

TABLE No. 19

Value of α and β in Formula $R_{\delta} = R_{0} (1 + \alpha t + \beta t^{2})$.

DESCRIPTION OF METALS.							α	β
Pure Metals .							+ 0.003824	+ 0.00000126
Mercury							+0.0007485	- 0.000000398
Platinum-silver							+ 0.00031	-0.000000398
German silver							+ 0.0004433	+ 0.000000155

Table No. 20.

Value of α in Formula $R_t = R_o (1 + \alpha t)$.

DESCRIPTION OF METALS.	a	Description of Metals.	а
Silver	$\begin{array}{c} 0.377\times10^{-2}\\ 0.388\times10^{-2}\\ 0.365\times10^{-2}\\ 0.390\times10^{-2}\\ 0.247\times10^{-2}\\ 0.453\times10^{-2}\\ 0.365\times10^{-2}\\ 0.387\times10^{-2} \end{array}$	Antimony	0.389 × 10 - 2 0.354 × 10 - 2 0.088 × 10 - 2 0.022 to 0.031 × 10 - 2 0.065 × 10 - 2 0.133 × 10 - 2 0.028 to 0.044 × 10 - 2

337. Resistance of Dielectrics. — Experiment shows that there is a large class of bodies which permit of the transmission of electrical energy so slowly that they may be termed non-conductors, insulators, or dielectrics. Generally speaking, the metals and solutions of the metallic salts may be classed as conductors, while all other substances fall in the category of insulators. There is, however, much variation in the relative value of non-conductors as insulators. In electrical construction the property of high resistance is employed entirely to isolate, or insulate, electrical currents in such a manner as to confine the transfer of energy along the paths which it is desired to have it take. Insulators may be applied to conduct the circuits in one of two ways.

338. First.—The insulating substance may be arranged as a series of supports to which the circuit is attached from point to point, in order to separate it entirely from electrical communication with other bodies. For this purpose dielectrics, such as wood, glass, porcelain, india-rubber, and their various compounds, are molded into appropriate forms, mechanically arranged to permit of the attachment of the conductor circuit to the insulator, and then the attachment of the insulator to the support designed to carry the circuit, in such a manner as to electrically isolate the circuit by means of the insulators from the supports. The various forms of insulators for this purpose have been already treated in Chapter III.

339. Second. — The insulating substance may be arranged as a uniform and continuous coating, so applied as to surround and envelop the circuit from end to end, thus rendering additional support unnecessary, and allowing the circuit to be placed in proximity to the ground or other bodies, at the same time preserving the electrical isolation. For this purpose the various forms of india-rubber are the basis of nearly all insulating materials. It is usual to secure sufficient mechanical strength by covering the conductor with one or more layers of fibrous material, such as braid composed of hemp, cotton, or silk, or by wrapping it with sheets of paper or jute, or similar material. These fibrous coverings may be impregnated with insulating compound, either previous or subsequent to their application to the conductor. As an example, the cables manufactured by Siemens Bros. are covered with jute impregnated with ozokerite. The Farranti mains are separated by a number of layers of paper

impregnated with a compound of black wax. The Edison conductors are embedded in their tubes in a special mixture of india-rubber and resins. The various forms of okonite, ozokerite, and india-rubber covered wires all depend upon protection consisting of various india-rubber compounds, each applied in a manner peculiar to the particular manufacturer.

340. The various forms of india-rubber, under the names of caoutchouc and gutta-percha, are most extensively used for cable insulation, although the melting-point of the latter is so low as to prevent its wide adoption.

Gutta-percha is a material of varying composition, depending upon its mode of manufacture; and, consequently, having a specific resistance varying between 25×10^{12} and 500×10^{12} ohms-centimeter. By fairly good methods of manufacture and the employment of pure materials, a resistance of 200×10^{12} ohms-centimeter, at a temperature of 24° C., may be obtained. Caoutchouc has also a varying composition and resistance. It is valuable, however, in its ability to resist heat. By submitting the substance to the process of vulcanization at 130° C., a temperature much higher than should ever be attained by the passage of the current, a valuable and durable insulator is obtained, having a resistance of 7500×10^{12} ohms-centimeter.

341. The variation in specific resistance of dielectrics under changes in temperature is very much more rapid and much larger in amount than those of metals. This variation can only be expressed by an exponential equation, $R_o = R_t$ at (100), a being a coefficient that, owing to the process of manufacture, has to be determined separately for each specimen of insulating compound. Experiments upon guttapercha used in submarine cable work assign a value to it between the limits of 0.876 and 0.894. For caoutchouc, the value is less carefully established, but probably lies between a = 0.941 and a = 0.955. For a variation of between 12° and 15° C., on either side of a temperature of 24° C., the specific resistance is approximately halved or doubled. For other insulating materials, the processes of manufacture vary too widely to permit the establishment of temperature coefficients. Table No. 21 gives the specific resistance of some of the more common insulators.

342. Line Leakage. — Where transmission lines are supported

Table No. 21.

Specific Resistance of Insulators.

Name.	RESISTANCE IN MEGOHMS PER CUBIC CEN- TIMETER.	Name.	RESISTANCE IN MEGOHMS PER CUBIC CENTIMETER.
Mica	$\begin{array}{c} 84 \times 10^{-6} \\ 450 \times 10^{-6} \\ 9000 \times 10^{-6} \\ 28000 \times 10^{-6} \\ 15000 \times 10^{-6} \\ 34000 \times 10^{-6} \\ 8 \times 10^{-6} \end{array}$	Olive oil	$\begin{array}{c} 1\times 10^{-6}\\ .35\times 10^{-6}\\ 350\times 10^{-6}\\ 14\times 10^{-6}\\ 1670\times 10^{-6}\\ 450\times 10^{-6} \end{array}$

upon molded insulators, as in the ordinary forms of telegraph lines and other bare wire installations, the resistance of the line insulation varies from time to time, depending upon the state of the weather, the cleanliness of the insulating surfaces, and the number of points of attachment of the conductor to the insulators. Owing to these indeterminate factors, it is impossible to predict or calculate, excepting within very wide limits, the insulation resistance of such lines. Data for the probable resistance value to be expected from molded insulators will be found in Chapter III. For conductors which are entirely covered by insulating material, such as underground and submarine cables, the insulation resistance is much more exactly known, and usually operates under very much narrower variations. As there is no known substance that forms a perfect insulator, there is found, in the most carefully constructed lines, surrounded with

the greatest amount of protection, a constant and quite perceptible electrical leakage taking place through the dielectric substances employed for insulation. Knowing the specific resistance of the dielectric and the geometrical relations of the conductor and insulator, the probable insulation resistance may be quite closely calculated. Thus, in Fig. 200, consider the case of a cable having a central conductor of the radius R, surrounded by a layer of insulating material having a

Fig. 200.
Section of Insulated
Conductor.

radius R_2 and of a specific resistance ρ , and let L be the length of the cable. The resistance of an infinitely thin layer of a thickness dR_2 of the insulator at a distance R_1 from the center of the cable will be

 $\frac{\rho \alpha R_2}{2 \pi R_1 L}$,

and the resistance of the entire coating is obtained by integrating the previous expression between the limits R and R_2 , obtaining the value

 $\frac{\rho}{2\pi L} \int_{R}^{R_2} \frac{dR_2}{R_1} = \frac{\rho}{2\pi L} \times \log_{\epsilon} \frac{R_2}{R}.$ (101)

The portion $\rho/2\pi$ is a constant factor for any given dielectric, so if A represents this factor, and L be made unity, and the diameter of the core and cable be substituted for R and R_2 , the insulation resistance is given by the expression $A \log D/d$.

343. Distribution of Potential in a Conducting Circuit. – In the preceding paragraphs the relation expressed by Ohm's formula has been considered as applied to a circuit having a uniform resistance, and subjected to the effect of a single unvarying electro-motive force. Such a simple state rarely exists in practice, thus making it necessary to now investigate the conditions which obtain under more complex relationships. Electrical circuits usually consist of a generator of some description, the office of which is to impress upon the circuit an electro-motive force of sufficient amount to perform the work demanded; a line of conducting material serving to connect the generator with the various receiving mechanisms employed to utilize the energy produced; and lastly, the receivers of various kinds, in which the transmitted energy is applied to useful work. An analysis, therefore, of the entire circuit separates it into three parts deserving of consideration.

First. The generator, or source of electro-motive force.

Second. The line, or conducting system.

Third. The receivers.

In each of these divisions a certain amount of electro-motive force is expended, being employed either to overcome the resistance of the separate divisions, or expended in the receivers.

344. From a commercial standpoint, the expenditure of the electro-motive force may be separated into two parts:—

First. The amount necessary to overcome the resistance of the various parts of the circuit, in order to convey from point to point the necessary quantity of electricity.

Second. The electro-motive force usefully expended in producing mechanical work, or the evolution of energy in such a form as to be commercially valuable in the receivers.

345. That portion of the electro-motive force expended in overcoming the resistance of the various parts of the circuit is, as will be subsequently shown, transformed into heat, which by radiation is dissipated and lost, so far as its commercial value in the receiver is considered, excepting in so far as its employment for the purpose of transporting the current from point to point of the circuit be embraced in the term of commercial use. This energy used in overcoming the resistance of the circuit is frequently, though erroneously, termed "wasted energy;" for it is solely by virtue of the expenditure of this portion of the total energy of the circuit that the remainder of the energy is transferred from the point of production to the point of consumption. Inasmuch as there is no known substance possessing no resistance, every part of the circuit involves the expenditure and dissipation as heat of a greater or less quantity of electro-motive force, in order to transmit the necessary current.

346. Transforming Ohm's formula, IR = E is obtained, indicating that the quantity of electro-motive force expended in the circuit is equivalent to the current, multiplied by the resistance of the conductor.

If i, i', i'', etc., be the currents in various portions of a circuit, and r, r', r'', etc., be the resistance of the corresponding parts of the circuit, and e, e', e'', etc., be the expenditures of electro-motive force in each of these corresponding parts of the circuit, the following relations hold:—

$$ir + i'r' + i''r'' +$$
, etc. = $e + e' + e'' +$, etc. = $\Sigma ir = \Sigma e = IR = E$, (102)

the capital letters standing for the sum of the quantities represented by small type.

In the above equations, great care must be taken to apply to each of the electro-motive forces its appropriate sign, in order that the summation may give the algebraic sum of the various electro-motive forces. Consider the example of a dynamo employed to charge a storage battery. Suppose that the dynamo furnishes a potential of 12 volts, and is employed in charging 5 cells of storage battery, the total potential of which, when fully charged at 2 volts per cell, would amount to 10 volts.

Suppose the resistance of the generator to be $\frac{2}{10}$ of an ohm, and that of the leads to be $\frac{1}{10}$ of an ohm, and the resistance of the storage

battery for of an ohm. The total resistance of the circuit will then be $\frac{5}{10}$ of an ohm, and through this the generator will be capable of transmitting a current of 24 amperes. The resistance of $\frac{2}{10}$ of an ohm for the storage battery is made upon the assumption that the charging is commenced when the battery is entirely discharged, and that the cells only oppose to the passage of the current their ohmic resistance. As the charging proceeds, an electro-motive force is developed in the storage battery, which opposes that of the generator, tending constantly, as it increases, to cut down the effective electro-motive force, thus reducing the amount of current flowing. When the batteries are charged to their normal rating, each one would furnish a *counter* electro-motive force of 2 volts, the 5 cells aggregating a total counter electro-motive force of 10 volts. Under these circumstances, the total effective resistance of the circuit would be d ohm for the ohmic resistance of the generator, leads, and battery, with a counter electro-motive force of 10 volts developed by the cells. Assuming the previous notation, e=2, $\ge e=10$, E=12, $R=\frac{1}{2}$, the value of the current then becomes —

$$I = \frac{E-\mathbf{\Sigma}\boldsymbol{e}}{R} = \frac{12-(2\times5)}{\frac{1}{2}} = 4.$$

Thus, when the batteries are sufficiently charged to give a counter electro-motive force of 2 volts each, the current in the circuit would be reduced from 24 amperes to 4 amperes. If the charging be continued, the electro-motive force of the cells gradually rises more and more, until finally the opposing electro-motive force exactly balances that of the generator, and the charging automatically ceases.

347. The most convenient way to represent the potential distribution in a complicated circuit is the graphical method, in which values along the axis of Y be taken to represent the electro-motive force, and those along the axis of X represent the relative lengths and resistances of the different parts of the circuit.

Thus, in diagram, Fig. 201 represents the previously cited example of a dynamo machine charging 5 cells of storage battery. On the right hand of the illustration the general circuit is indicated, AB being the lead from the positive pole of the dynamo to the storage battery, BC the battery, CD the negative lead returning from the battery to the generator, and DA the circuit in the dynamo machine. On the left hand of the figure, assume OY is the potential axis, single

volts being represented to scale, as shown in the diagram. Assume OX as the axis of resistance, in a similar manner. Under the supposition that the battery is charged to a potential 2 volts per cell, the total current flowing in the circuit will be 4 amperes, as previously shown. Assume, also, that the resistances in the various parts of the circuit, named AB, BC, CD, and DA, are uniform throughout each of the separate parts, the current, of course, being constant throughout the entire circuit. The fall of potential in AB will then be $ri = e = .05 \times 4 = .2$ volts. Along OY lay off OY positively upward, to represent 12 volts, the total potential of the generator. From A lay off AB horizontally, equal to .05 of an ohm, the resistance of AB in the other diagram. Lay off BB' vertically, negatively

Fig. 201. Diagram of Potential Distribution in a Simple Circuit.

downward equal to .2 volts, and draw AB'; then AB' represents the distribution of the potential throughout the lead AB. Between B and C there is an ohmic resistance of .2 ohm, and a counter electromotive force of 2 volts per cell, or 10 volts. The fall of potential in this part of the circuit will then, evidently, be $r'i+\sum e=.2\times 4+2\times 5=10.8$ volts. From B lay off $\overline{\rm BC}$, horizontally, equal to .2 ohms, and CC', vertically downward, equal to 10.8+.2 volts. Join $\overline{\rm B'C'}$, the line $\overline{\rm B'C'}$ representing the distribution of potential throughout the battery. The fall of potential in the lead CD is calculated in a manner similar to that indicated for AB, and the fall of potential in the generator DA in the same way; and thus, in the left hand illustration, the irregular line AB'C'DA indicates, for each of the various parts of the circuit, the distribution of the generator potential.

348. The Effect of Leakage. — In the preceding section the lines \overline{AB}' and C'D in the left diagram represent the distribution of potential along the conductors \overline{AB} and CD that unite the generator to the receivers. It is evident, from the reasoning and construction employed, that these are straight lines, having equations of the form — y = ax + b (103)

and that throughout the entire length of each conductor a constant and uniform current existed. This condition can only be fulfilled by assuming that the conductors are perfectly insulated; for, if the insulation is defective in any way, some electricity will escape sidewise between the conductors, and the current will be less at the point B than it is at A by this amount of leakage. Consider two points in the conductor, the first one at a distance x from the origin, and the second at a distance x+dx. The electro-motive force acting between these points is dE, while the resistance of the conductor between them is rdx, when r is the resistance of the lead for unit of length. The current flowing between these points is then —

$$I = -\frac{dE}{rdx}. (104)$$

If the conductors were perfectly insulated, this value would be constant throughout the entire length, and equation would be that of a straight line. If the conductor leaks, then *more* electricity enters every element at the point x than leaves the element at the point x + dx, the difference in the quantity which enters the element and that which leaves it going to supply the leakage. If r_1 be the insulation resistance per unit of length, r_1/dx is the insulation resistance of the element dx, and the flow of electricity sidewise from this element is — $\frac{dI}{dx} = \frac{Edx}{dx}$

element is — $-dI = \frac{Edx}{r_1}.$ (105)

Eliminating I by differentiating equations (104) and (105), and putting

$$m^2 = \frac{r_1}{r},$$

$$\frac{E}{m^2} = \frac{d^2 E}{dx^2}.$$
(106)

But this is the differential equation of the arc of a catenary, which when integrated gives rise to the equation —

$$E = Ae^{\frac{x}{m}} + Be^{-\frac{x}{m}}. ag{107}$$

¹ See Rankins's Applied Mechanics, p. 175.

For ordinary transmission, lines of moderate length, well built, carefully insulated and maintained, the leakage is so small that without sensible error it may be neglected. For very long lines, such as submarine cables or overland telegraph or telephone lines, the straight line assumption is not sufficient, and the catenary equation should be used.

349. Conductance. - From Ohm's formula, it appears that the resistance of any circuit is proportional to the geometrical dimensions of the conductor, and to its specific resistance. If R be the resistance of any conductor, the reciprocal of R, or 1/R, gives a quantity which is appropriately denominated, "The Conductance of the Circuit," or a quantity to which the ability to transmit electrical energy is proportional. If, between the terminals of any generator, a number of conducting circuits be extended, having the resistance of r, r', r'', etc., the conductance of each branch will be 1/r, 1/r', 1/r'', etc. It is evident that the total conductance is equal to the sum of the conductances of the individual parts. Thus, representing by c, c', c'', etc., the individual conductances, and by C the total conducting power of the circuit, C=c+c'+c'', etc. But c, c', c'', etc.; are respectively equal to 1/r, 1/r', 1/r'', etc., or the conductance is equal to the sum of the reciprocals of the individual resistances. As resistance is the reciprocal of conductance, the total resistance, therefore, of a number of branch circuits is equal to the reciprocal of the sum of the reciprocals of the individual resistances, or symbolically:—

$$R = \frac{1}{r + \frac{1}{r'} + \frac{1}{r''} + \text{etc.}}$$
 (108)

350. A graphic method of quickly determining the resistance of two branch circuits is given by Mr. Preece.¹

Assume in the diagram, Fig. 202, the line \overline{AB} drawn horizontally to represent the resistance of one of the branch circuits; lay off \overline{BC} to the same scale equal to the other resistance, and at C erect a perpendicular \overline{CD} equivalent to \overline{BC} . Join A and D, and at B erect a perpendicular \overline{BE} , which will, to the same scale, represent the joint resistance of the two resistances, \overline{AB} and \overline{BC} . By drawing the line \overline{BD} , and dividing \overline{AB} , \overline{BD} , and \overline{BE} , according to the proper proportional scale of each line, joint resistances may be easily found in the

¹ See Manual of Teleptony, by Preece and Stubbs, p. 164.

circuit consisting of a single source of electro-motive force, introduced in a circuit consisting of a single conductor extending from pole to pole of the generator. In practice, however, actual installations are usually very much more complex, frequently consisting of a number of generators placed at different points of a complex network of conductors, which ramify in all directions over the territory to be supplied. To determine accurately the description of potential and current in a complicated network, is a matter of exceeding importance to the electrical engineer. While calculations of this kind are based on simple algebraic applications of the laws of Ohm and Kirchhoff, a complete solution of the distributing problem is difficult of successful solution, owing to the fact that, while the principles are simple, the application of them leads, usually, to exceedingly complicated and intricate equations. Any network of circuits may always be resolved into one of four elementary cases.

352. Case 1.— Is that of a simple circuit embracing a generator placed in a continuous, straight conductor, extending from one pole to the other of the generator without branches, and may be treated directly by Ohm's law.

353. Case 2. — This consists of a generator supplied with a circuit consisting of one or more branches, as shown in Fig. 203, in

which E is the generator or source of electromotive force, ab and ac the conductors from the generator to the points b and c, at which points the circuit branches or divides into two parts of varying resistance. Let E denote the E.M.F. of the generator, and r_e its resistance. Let r_1 be the resistance of ab and ac, and r_2 and r_3 the respective resist-

ances of the two branches from b to c, then the combined resistance between bc is —

$$[r_2; r_3] = \frac{r_2 \times r_3}{r_2 + r_3}. (109)$$

The total resistance of the entire circuit R is,

$$R = r_e + r_1 + \frac{r_2 \times r_3}{r_2 + r_3}. (110)$$

Denote the respective currents in the various parts of the circuit by i_1 , i_2 , and i_3 , as indicated in the diagram, then,—

$$i_1 = \frac{E(r_2 + r_3)}{r'_1 r_2 + r'_1 r_3 + r_2 r_3};$$
(111)

$$i_2 = \frac{Er_3}{r'_1r_0 + r'_1r_3 + r_2r_3}; (112)$$

$$i_3 = \frac{Er_2}{r'_1r_2 + r'_1r_3 + r_2r_3}; (113)$$

$$\frac{\dot{i}_2}{\dot{i}_3} = \frac{r_8}{r_2} \,. \tag{114}$$

Here $r'_1 = r_e + r_1$. If there are *n* branches, *n* similar equations may be formed.

354. Case 3. — This is indicated diagrammatically in Fig. 204, in which there are two sources of electro-motive force, E₁ and E₂. In a circuit consisting of three branches that are respectively ab, ad, cb, cd, and db, let r, r_1 , and r_2 , be the respective resistance of the several branches as indicated in the diagram, and i_1 , i_1 , and i_2 ,

the corresponding currents. Let E_1 and E_2 be the acting E.M.F.s, then the applications of Kirchhoff's laws give rise to the following equations for the current values: -

$$i = \frac{E_1 r_2 \pm E_2 r_1}{r r_1 + r r_2 + r_1 r_2}; \tag{115}$$

$$i_{1} = \frac{E_{1} (r + r_{2}) \mp E_{2}r}{rr_{1} + rr_{2} + r_{1}r_{2}};$$

$$i_{2} = \frac{E_{2} (r + r_{2}) \mp E_{1}r}{rr_{1} + rr_{2} + r_{1}r_{2}}.$$
(116)

$$i_2 = \frac{E_2 (r + r_2) \mp E_1 r}{r r_1 + r r_2 + r_1 r_2}.$$
 (117)

When the double sign (± or ∓) is used, the upper sign is to be taken in cases where the E.M.F.s oppose each other, and the lower one where the E.M.F.s act together. Considering these equations, it is evident that, excepting when particular values are assigned to the constants of the circuits, there will be current in all of the branches.

To make $i=0, \dots$

$$\frac{E_1}{E_2} = \frac{r_1}{r_2}$$
, or $E_1 = E_2 \frac{r_1}{r_2}$. (118)

To make $i_1 = 0$, —

$$\frac{E_1}{E_2} = \frac{r}{r + r_2}$$
, or $E_1 = E_2 \frac{r}{r + r_2}$. (119)

To make $i_2 = 0$, —

$$\frac{E_1}{E_2} = \frac{r + r_1}{r}$$
, or $E_1 = E_2 \frac{r + r_1}{r}$. (120)

As there are several quantities (E.M.F.s and resistances) in these expressions, parallel results may be attained by changing either one,

Fig. 205.

or any desired combination, of the variables to attain the desired ratios. When there are n branches in the network and n E.M.F.sacting, similar equations may be deduced.

355. Case 4. — The last elementary combination is illustrated in Fig. 205, and consists of an E.M.F. acting in a circuit of seven branches, ab, ad, bc, be, dc, de, and ec as shown. As above, let E represent the E.M.F., i, i_1 , etc., and r, r_1 , etc., the respective currents and resistances in the several branches as shown in the diagram, then, —

i)
$$i = \frac{r_1 r_2 + r_1 r_4 + r_1 r_5 + r_2 r_3 + r_2 r_5 + r_3 r_4 + r_3 r_5 + r_4 r_5}{N} \times E;$$
 (121)
k) $i_1 = \frac{r_2 r_3 + r_3 r_4 + r_3 r_5 + r_4 r_5}{N} \times E;$ (122)

$$k) i_1 = \frac{r_2 r_3 + r_3 r_4 + r_3 r_5 + r_4 r_5}{N} \times E; (122)$$

$$i_2 = \frac{r_1 r_4 + r_3 r_4 + r_3 r_5 + r_4 r_5}{N} \times E;$$
 (123)

$$m) \quad i_3 = \frac{r_1 r_2 + r_1 r_4 + r_1 r_5 + r_2 r_5}{N} \times E; \tag{124}$$

$$n) i_4 = \frac{r_1 r_2 + r_1 r_5 + r_2 r_3 + r_2 r_5}{N} \times E; (125)$$

$$o) i_5 = \frac{r_1 r_4 - r_2 r_3}{N} \times E. (126)$$

In the above expressions, —

$$N = rr_1r_2 + rr_1r_4 + rr_1r_5 + rr_2r_3 + rr_2r_5 + rr_3r_4 + rr_3r_5 + rr_4r_5 + r_1r_2r_6 + r_1r_2r_4 + r_1r_3r_4 + r_1r_3r_5 + r_1r_4r_5 + r_2r_3r_4 + r_2r_3r_5 + r_2r_4r_5.$$

Equation (126) shows that in the branch cc, the current i_5 becomes zero, when,—

 $r_1 r_4 = r_2 r_3$, or $\frac{r_1}{r_2} = \frac{r_3}{r_4}$, or $\frac{r_1}{r_8} = \frac{r_2}{r_4}$. (127)

356. All networks, no matter how complicated, may be analyzed by resolving them into combinations of the foregoing elementary forms. By then successively applying the equations given for each of the elementary forms and summing the results, the distribution of current and potential, no matter how complicated, may be finally arrived at. It should be noted, however, that algebraic processes of this kind are exceedingly complicated, and are particularly liable to lead to error, owing to the multiplicity and complexity of the symbols, and, therefore, great care must be taken to avoid numerical mistakes in attaining the final result.

CHAPTER VII.

CONTINUOUS CURRENT CONDUCTORS. (Continued.)

PART II. - THE HEATING OF CONDUCTORS.

Art. 357. Joule's Law. — A portion of the electrical energy delivered to any conductor is found to be expended in the conductor itself, and by some mysterious process, sometimes termed by investigators "molecular friction," is transformed into heat, and serves to raise the temperature of the material forming the conductor. Experiment has shown that the quantity of heat thus produced is proportional to the square of the current, the resistance of the circuit, and the time during which the current flows.

To Doctor Joule is due the mathematical expression for the amount of heat thus developed.

Let I be the current in amperes,

R the resistance of the circuit,

T the time in seconds during which the current flows,

H the heat developed in calories (gramme degree),

s the cross-section of the conductor,

d the diameter of the conductor,

l its length,

 ρ the specific resistance of the material forming the conductor.

Joule's Law indicates, for the amount of heat developed in any circuit, — $H = .24 I^2 RT.$ (128)

The resistance R of the circuit is $\rho l/s$, which, for a cylindrical conductor, becomes $4\rho l/\pi d^2$. Substituting in the preceding formula, —

$$H = \frac{.30557 \,\rho I I^2 T}{d^2}.\tag{129}$$

If l and T are written as units of length and time respectively, then the above expression, formula (129) gives the amount of heat evolved per unit of length of the conductor per unit of time. The

heat thus generated augments the temperature of the conductor; and were it not for radiation and convection, this elevation of the conductor temperature would increase until the fusing-point of the circuit was reached, and the current interrupted by the melting of the conductor. When the cooling of the circuit equals the heat evolution, equilibrium is obtained, the conductor remaining at a constant temperature above its surroundings, as long as the current remains constant. To safely design electrical circuits, in order that their carrying capacity may be, on the one hand, such as to exempt them from becoming sources of danger, and on the other hand, to attain an economical disposition of the conducting material, is a matter of supreme importance.

358. Location of Circuit. — It is necessary to consider conductors under the various aspects in which electrical circuits may be placed.

First. Bare wires may be freely suspended in the atmosphere.

Second. Bare wires may be inclosed in panel moldings, or other forms of interior conduit.

Third. Insulated wires may be freely suspended in the air.

Fourth. Insulated cables may be buried in underground conduits, or extended under water; and, as a corollary, adjacent underground conductors may exercise a mutual influence on each other, the passage of the current in one cable being sufficient to cause the temperature of the conductor to seriously influence that of a neighboring cable. Each of these cases will be considered successively.

359. First, Bare Wires Freely Suspended. — The resulting temperature to be attained by electrical conductors has been studied in England by Professor Forbes, and investigated in this country by Mr. A. E. Kennelly. Both of these investigators have based their researches upon the laws for radiation and convection established by Dulong and Petit. Mr. Kennelly's experiments have been the more complete and exhaustive, and, forming a classic paper presented to the Edison Convention in 1889, are usually assumed as indicating the best present knowledge on the subject.

360. Radiation and Convection. — Two causes are, manifestly, operative to reduce the temperature of a conductor.

First. Heat may be lost by direct radiation from the surface of the conductor.

Second. Heat may be lost by convection.

The quantity of heat radiated by a conductor is proportional to the amount of radiating surface, the difference in the temperature between the conductor and that of its surroundings, the time during which radiation takes place, and to an arbitrary coefficient depending upon the nature of the radiating surface.

Thus, if k be the coefficient of radiation per unit of area,

 θ the temperature of the surrounding air,

t the temperature attained by the conductor,

the radiating power of length l and diameter d is $\kappa \pi dl(t-\theta)T$.

If l and T are respectively units of length and time, the expression per unit of length per unit of time becomes $3.1416 \kappa d(t-\theta)$.

Mr. Kennelly's experiments, confirming the investigations of Dulong and Petit, indicate that for radiation the quantity of heat dissipated per square centimeter of surface is given by the expression (1.0077^{θ}) $(1.007^{t}-1)C$, in which C is a constant depending upon the physical character of the radiating surface.

361. For highly polished metals (the poorest radiators), \mathcal{C} is equal to one; while for roughened and blackened surfaces \mathcal{C} has a greater value, being usually assumed as two, but sometimes rising to a higher value. For electrical calculation, it is more convenient to express the energy lost in the conductor in watts, instead of thermal units or calories.

Denoting then the total energy transformed in the conductor into heat by W watts, and that portion of W lost by radiation by W_r , and the portion lost by convection by W_c , —

$$W = W_r + W_c$$
.

Under these circumstances, the expression for the radiation per square centimeter is —

$$W_r = .05625 (1.0077^{\theta}) (1.007^{t} - 1) C.$$
 (130)

For a polished wire of diameter d and any surface, the radiation becomes —

 $W_r = .05625 \left[(1.0077^{\theta}) (1.007^t - 1) \pi dC \right]$ (131)

per unit of length and time.

362. Cooling is also aided by convection. The amount of heat lost from this cause, as determined by Mr. Kennelly, is —

$$W_c = .00175 (t - \theta);$$
 (132)

and the investigation indicated that this relation was independent of the amount of surface, holding true for a wire of any diameter per unit of length.

This relation is found strictly applicable for still air in an inclosed location. But Mr. Kennelly's experiments show that, for ordinary aerial lines, even under the most unfavorable assumption of calm weather, the above quantity can be increased by an amount equal to — $0.013 d (t - \theta)$.

Therefore the complete expression for W_c becomes —

$$W_c = (.00175 + .013 d) (t - \theta). \tag{133}$$

363. The amount of energy in watts W developed in the conductors, per unit of length and time, is I^2R . As soon as the temperature of the conductor ceases to rise, there must evidently be equilibrium between the heat evolution in the conductor and the amount lost by radiation and convection. Then,—

$$\begin{split} I^2R &= .05625 \left[(1.0077^{\theta}) \left(1.007^t - 1 \right) \right] C\pi d + \left[(.00175 + .013 \, d) \left(t - \theta \right) \right]. \end{split}$$
 To simplify, let
$$\begin{bmatrix} (.00175 + .013 \, d) \left(t - \theta \right) \right] = a, \\ .05625 \, \pi \left[(1.0077^{\theta}) \left(1.007^t - 1 \right) \right] = b \, ; \end{split}$$
 then,
$$I^2R = bdC + a \, ;$$
 but
$$R = \frac{4 \, \rho_o \left(1 + at + \beta t^2 \right)}{\pi d^2} \, , \end{split}$$

at any temperature above 0° C.; hence, as the temperature attained by the conductor is a function of the resistance, this quantity must be substituted for R.

$$I^{2} = \frac{\pi d^{2} (bdC + a)}{4 \rho_{o} (1 + at + \beta t^{2})} = \frac{\pi d^{2}}{4} \times \frac{bdC + a}{\rho_{o} (1 + at + \beta t^{2})},$$

$$I = .8862 d\sqrt{\frac{bdC + a}{\rho_{o} (1 + at + \beta t^{2})}}.$$
(135)

As both θ and t enter into the quantity under the radical sign, I can only be obtained by successive approximations.

364. In Tables Nos. 22 and 23 will be found the values of —

$$R_t = \rho_o (1 + at + \beta t^2),$$

 $.05625 \pi (1.0077^{\theta}),$
 $1.007^{\ell} - 1,$
 $0.00175 + 0.013 d;$

and

by means of which, by simple substitution, the carrying capacity of any wire in amperes may be found for any surrounding temperature, and any determined rise of temperature, between 0° and 200° C.

TABLE No. 22. Copper Resistance.

365. In Table No. 22 the base line is assumed horizontally opposite 1 on the left-hand vertical axis, the relative resistances being

reckoned positively upward, and the relative conductivity negatively downward. The specific resistance is a positive curve, running upward from the point 1.589 on the left-hand axis. The temperature

Table No. 23.

scale will be found horizontally along the bottom, and the resistance scale on the left hand. In Table No. 23, for the curve giving values of .00175 + .013d, the values of d are horizontally along the top of the

sheet, the temperature scale horizontally along the bottom. Two curves are given for this expression; one plotted to the natural scale of the sheet, as indicated on the left-hand axis, and the other exagger-

Table No. 25.

ated ten times, the axis being on the right hand. The other two curves, for values of $.05625\pi$ (1.0077^{θ}) and $1.007^{t}-1$, hardly need explanation, being referred to the lower and left-hand axes.

366. By means of the preceding formulæ and tables, quite accu-

rate determinations may be made of the probable temperature to be obtained in any conductor by the passage of any current. For aerial lines, the free circulation of air and effect of wind is usually to reduce the temperature below that indicated by the formula. For a good approximation, the Tables Nos. 24 and 25, deduced from Kennelly's experiments, may be employed for determining the probable temperature of the conductors.

TABLE No. 26.

AMPERES.	MINIMUM SAFE DIAMETER OF DIAMETER OF COPPER WIRE.			FALL OF POTENTIAL IN WIRE AT FULL LOAD.		MPERES.	MINIMUM SAFE DIAMETER OF COPPER WIRE.		AR MILS.	FALL OF POTENTIAL IN WIRE AT FULL LOAD.	
AME	Inches.	Cms.	CIRCULA PER AD	Volts per Foot.	Volts per Meter.	AMB	Inches.	Cms.	CIRCULAR PER AMPI	Volts per Foot.	Volts per Meter.
1	0.015	0.038	225	0.0503	0.165	130	0.377	0.958	1090	0.0103	0.0337
5	0.043	0.109	370	0.0305	0.100	140	0.396	1.01	1120	0.0099	0.0327
10	0.069	0.175	480	0.0237	0.0777	150	0.415	1.05	1150	0.00975	0.0320
15	0.090	0.229	540	0.0208	0.0681	175	0.461	1.17	1210	0.00929	0.0305
20	0.109	0.277	590	0.0189	0.0621	200	0.504	1.28	1270	0.00887	0.0291
25	0.126	0.320	640	0.0177	0.0581	225	0.545	1.38	1320	0.00853	0.0280
30	0.142	0.361	670	0.0167	0.0548	250	0.585	1.49	1370	0.00817	0.0268
35	0.158	0.401	710	0.0158	0.0518	275	0.623	1.58	1410	0.00793	0.0262
40	0.172	0.437	740	0.0152	0.0499	300	0.660	1.68	1450	0.00771	0.0253
45	0.186	0.472	770	0.0147	0.0481	325	0.697	1.77	1490	0.00753	0.0247
50	0.200	0.508	800	0.0141	0.0461	350	0.732	1.86	1530	0.00734	0.0241
55	0.213	0.541	825	0.0136	0.0447	375	0.766	1.95	1570	0.00716	0.0235
60	0.225	0.572	845	0.0133	0.0437	400	0.800	2.03	1600	0.00714	0.0231
65	0.238	0.605	870	0.0129	0.0423	425	0.832	2.11	1630	0.00692	0.0227
70	0.250	0.635	890	0.0126	0.0413	450	0.865	2.20	1660	0.00674	0.0221
75	0.262	0.655	915	0.0123	0.0403	475	0.897	2.28	1690	0.00665	0.0218
80	0.274	0.696	940	0.0120	0.0393	500	0.928	2.36	1720	0.00652	0.0214
85	0.285	0.724	960	0.0118	0.0386	550	0.988	2.51	1775	0.00634	0.0208
90	0.296	0.752	970	0.0116	0.0379	600	1.049	2.66	1840	± 0.00616	0.0202
95	0.307	0.780	990	0.0113	0.0372	700	1.16	2.95		0.00585	0.0192
100	0.318	0.808	1010	0.0111	0.0365	800	1.27	3.23	2020	0.00558	0.0133
110	0.339	0.861	1040	0.0108	0.0353	900	1.37	3.48	2080	0.00539	0.0177
120	0.358	0.909	1070	0.0105	0.0346	1000	1.47	3.73	2160	0.00521	0.0171

Data. — Insulated house wires carrying continuous currents, and incased in wooden paneling. Copper resistivity, 1.650 microhms @ 0° C. = 1.870 microhms @ 34° C. assumed temperature of full load; conductivity allowed, 98 per cent.

367. It should be carefully noted that the rise of temperature of the conductor increases its resistance a very notable amount, and should not be forgotten in the design of the circuit. To compensate for this extra resistance, either additional conductor section must be provided, or a greater pressure at the terminals of the generator. See Table No. 26 for full data for proportioning circuits.

368. Second, Paneled Wire. — Interior wiring is usually either protected by ornamental moldings, or run in interior conduits of some description. Being thus in a confined location, the effects of radiation and convection are reduced to a minimum. The circuits may also be surrounded by inflammable material, so that particular care must be exercised to secure safety. The consensus of opinion of the American and Foreign Underwriters' Associations limits the allowed elevation of temperature in paneled conductors to a rise not to exceed 10° C. For this amount, Mr. Kennelly's experiments indicate the safe current in amperes to be expressed by the relations, —

```
\begin{split} I &= 560d^{\frac{3}{2}} \dots \dots \text{ if } d \text{ is in inches.} \\ I &= 0.01775d^{\frac{3}{2}} \dots \dots \text{ if } d \text{ is in mils.} \\ I &= 138d^{\frac{3}{2}} \dots \dots \text{ if } d \text{ is in centimeters.} \\ I &= 4.375d^{\frac{3}{2}} \dots \dots \text{ if } d \text{ is in millimeters.} \end{split}
```

Reciprocally -

```
d = 0.0147I^{\frac{2}{3}} . . . . . . if d is in inches. d = 14.7I^{\frac{2}{3}} . . . . . . if d is in mils. d = 0.0374I^{\frac{2}{3}} . . . . . if d is in centimeters. d = 0.374I^{\frac{2}{3}} . . . . . if d is in millimeters.
```

From these data, and as a result of his experiments, Mr. Kennelly gives Tables Nos. 26 and 27; Table No. 27 indicating the current and resulting temperature, in paneled wire, up to 300 amperes, and to a diameter of .450"; Table No. 26 giving the minimum safe diameter and fall of potential, up to 1,000 amperes, for a rise of temperature of 10° C.

369. Third, Insulated Wire Freely Suspended. — Apparently, insulated wires, with their non-conducting coatings, would be subjected to a greater elevation of temperature than bare wire. The insulation, however, increases the amount of radiating surface of the conductor, and also provides a surface which, from its physical characteristics, is a much more efficient radiator than the polished metal. It seems probable that this increased efficiency and size of the surface fully counterpoise, at least in most cases, the non-conducting effect of the insulating covering. From Professor Forbes's experiments, this relation would seem to be substantiated, and therefore ordinary insulated wires may usually be treated as if they were uninsulated. This branch of the subject, however, is worthy of more extended investigation.

370. Rheostats and Heaters. — In many electrical appliances it is customary to control the amount of energy delivered to the translating device by the aid of a resistance capable of being varied to suit

Table No. 27.

the demands upon the receiver, which acts as a dam, or valve, interposed in the circuit to control the amount of current. Such resistances are termed rheostats, and dissipate a certain amount of energy as electricity, transforming same into heat. The determination of

the size of wire to be used for such purposes may be made by the use of the preceding formulæ. Usually, however, rheostats are made either of German silver or iron wire; and for either of these materials, Tables Nos. 28, 29, and 30 may be used to obviate calculation. A number of devices have recently made their appearance for heating by electricity, such as car-heaters, flat-irons, cooking-utensils, and the like. Nearly all of them are based upon the transformation of electrical energy into heat energy by the interposition of the resistance of a bare conductor, usually consisting of a small metallic wire embedded in a vitreous enamel of high melting-point.

Table No. 28.

Safe Current for Galvanized Iron Wire. Rheostats.

D IN CIRCULAR MILS.	MAXIMUM SAFR CURRENT IN AMPERES IN WOOD FRAMES.	Maximum Safe Current in Amperes in Iron Frames.	Maximum Safe Current for One Minute.	FEET PER OHM.
59536	55	63.8	125	645
50625	48	55.6	110	549
42849	41	47.5	90	463
36864	30	34.8	78	398
31329	26	30.1	67	337
26244	23	26.6	56	283
21904	20	23.2	46	236
18225	17	19.7	36	196
14400	14.5	16.2	32	155
11025	12	13.9	22	119
8464	10	11.6	17	91.4
6400	8	9.28	13	69.1
5184	6	6.96	11	56.0
3969	5	5.8	8.9	42.8
2916	3.7	4.29	8	31.4

The energy supplied by the device is, by the resistance of the wire, transformed into heat, and serves to raise the temperature of the entire apparatus to a useful limit. All such devices may be calculated by the methods already indicated, due consideration being given to the conducting power of the enamel, in which the heating part of the circuit is embedded. Some heating contrivances, however, designed to operate upon alternating current circuits, take advantage of the work done by hysteresis in rapidly alternating magnetic cycles. For devices of this kind, it is hardly necessary to state that the preceding calculations do not apply.

371. Cost of Electrical Heating.— The cost of electrical heating in its various forms is, probably, the most important factor in the

development of this branch of industry. Probably electrical heating has its widest development in the warming of street-cars during the cold season of the year. Car-heaters operated by coal cost from \$15.00 to \$25.00, with an installation expense of \$1.50. With fuel at \$4.50 per ton, and labor \$1.50 per day, the cost of operating coal car-heaters is about 16 cents per day of 24 hours. Per contra, electric heaters cost from \$35.00 to \$40.00, and the expense for current amounts to from 30 to 40 cents per day in moderate weather, and from 60 to 80 cents per day in the coldest weather. These figures are based on fuel at \$3.00 per ton at the generating-station. For

TABLE No. 29.

Safe Current for Tinned Iron Wire. Rheostats.

D IN CIRCULAR MILS.	Maximum Safe Current Capacity. Wood Frame.	MAXIMUM SAFE CURRENT CAPACITY. IRON FRAME.	Maximum Safe Current Capacity for One Minute.	FEET PER
16509	17.4	20.3	43.6	205
13094	14.6	17.1	36.6	173
10381	12.3	14.3	30.8	137
8234	10.3	12	25.7	108
6529	8.7	10.1	21.8	86.4
5178	7.3	8.5	18.3	68.5
4106	6.1	7.1	15.3	54.3
3256	5.1	6	12.9	43.1
2582	4.3	5	10.8	34.1
2048	. 3.6	4.2	9.1	27.1
1624	3.0	3.5	7.6	21.4
1252	2.52	2.9	6.3	16.5
1021	2.17	2.5	5.4	13.5
810	1.82	2.1	4.5	10.7
642	1.53	1.77	3.8	8.49
500	1.28	1.49	3.2	6.73
404	1.08	1.2	2.3	5.34

cooking by electricity, it is found that an ordinary oven requires about 25 amperes at 110 volts, a frying-pan $2\frac{1}{2}$ amperes, a flat-iron from 2 to 3 amperes, and a soldering-iron from 2 to 3 amperes. It is claimed that ordinary meat can be roasted in an electric oven, supplied with 25 amperes, in from 7 to 8 minutes per pound of meat introduced. For heating water, the cost under the present rates for current, averages about 2 to 5 cents per gallon of water heated. An ordinary oven is entailed with an expense of from 3 to 6 cents per hour. Under these circumstances, if the electrical current be estimated at an expense of \$60.00 per H.P. annum of 400 hours, it

would correspond to coal at \$6.00 a ton, which is not very different from the actual expense to small consumers.

372. Fuse Wires. — Electrical circuits are protected against overloading, in the majority of cases, by the interposition at various points of short pieces of fusible metal so designed that a slight access of current above the normal amount, for which the circuit is

TABLE No. 30.

Safe Current in German Silver Wire. Rheostats.

D IN CIRCULAR MILS.	Maximum Safe Current in Amperes.	FEET PER OHM.	D IN CIRCULAR MILS.	Maximum Safe Current in Amperes.	FEET PER Онм.
10381 -	8.5	60.9	1252.4	1.21	7.25
8234	5.4	47.6	1021.5	.99	5.91
6529.9	4.6	37.8	810.1	.88	4.69
5178.4	3,8	29.9	642.7	.66	3.72
4106.8	3.2	23.7	509.45	.55	2.95
3256.7	2.7	18.8	404.01	.488	2.33
2582.9	2.3	14.9	320.04	.434	1.85
2048.2	1.9	11.8	254.01	.385	1.47
1624.3	1.65	9.40	201.5	.343	1.16

calculated, will melt the fuse, and afford protection from further injury by opening the leads. The first experimental determination of the constants for fuse wires was made by Mr. Preece in 1884; the investigation showed that the relation between the diameter of the wire and the fusing current is expressed by the equation,—

$$I = ad^{\frac{3}{2}}, \tag{136}$$

in which a is a constant for a given metal or alloy. In 1890 continued investigation by Mr. Precee (published in the *Electrical Engineer*) showed that the following values for a should be assumed:—

TABLE No. 31.

Copper			2530	Platinoid	1173
Silver			1900	Iron	777.4
Aluminum			1873	Tin	405.5
Platinum			1277	Alloy (Tin 1, Lead 2).	325.5
German Silver.	۰	,	1292	Lead	340.6

These values indicate the current in amperes required for fusing a cylindrical conductor of one centimeter in diameter, of each of the materials named. Still more recent data by the same author are com-

TABLE No. 32. Giving the Sizes of Various Wires which will be Fused by a Given Current. By MR. W. H. PREECE.

	CURRENT IN AMPERES.	Tin W	TIRE.	LEAD 1	WIRE.	COPPER	WIRE.	IRON V	VIRE.				
1	IN PEF	Diameter	Approx.	Diameter	Approx.	Diameter	Approx.	Diameter	Approx.				
4	AM	Inches.	S. W. G.	Inches.	S. W. G.	Inches.	S. W. G.	Inches.	S. W. G.				
1				1	-								
1	1	0.0072	36	0.0081	35	0.0021	47	0.0047	40				
4	2	0.0113	31	0.0128	30	0.0034	43	0.0074	36				
1	3	0.0149	28	0.0168	27	0.0044	41	0.0097	33				
4	4	0.0181	26	0.0203	25	0.0053	39	0.0117	31				
1	5	0.0210	25	0.0236	23	0.0062	38	0.0136	29				
1													
1	10	0.0334	21	0.0375	20	0.0098	33	0.0216	24				
1	15	0.0437	19	0.0491	18	0.0129	30	0.0283	22				
1	20	0.0529	. 17	0.0595	17	0.0156	28	0.0343	20.5				
1	25	0.0614	16	0.0690	15	0.0181	26	0.0398	19				
1	30	0.0694	15	0.0779	14	0.0205	25	0.0450	18.5				
1													
1	35	0.0769	14.5	0.0864	13.5	0.0227	24	0.0498	18				
200	40	0.0840	13.5	0.0944	13	0.0248	23	0.0545	17				
	45	0.0909	13	0.1021	12	0.0268	22	0.0589	16.5				
1	50	0.0975	12.5	0.1095	11.5	0.0288	22	0.0632	16				
1	60	0.1101	11	0.1237	10	0.0325	21	0.0714	15				
	70		40	0.4054	0.5	0.0000	00	0.0504					
4	70	0.1220	10	0.1371	9.5	0.0360	20 19	0.0791	14				
-1	80	0.1334	9.5	0.1499	8.5	0.0394	18.5	0.0864	13.5				
1	90	0.1443	8.5	0.1621 0.1739	7	0.0426	18	0.1003	13 12				
-	120	0.1548	7	0.1759	6	0.0516	17.5	0.1003	11				
-	120	0.1748	1	0.190±	0	0.0516	17.5	0.1133	11				
	140	0.1937	6	0.2176	5	0.0572	17	0.1255	10				
1	160	0.1937	5	0.2176	4	0.0625	16	0.1255	9.5				
1	180	0.2118	4	0.2573	3	0.0676	16	0.1372	9				
-	200	0.2457	3.5	0.2760	2 .	0.0725	15	0.1592	8				
	250	0.2851	1.5	0.3203	0	0.0841	13.5	0.1848	6.5				
1		5,2301	2.0	0.0200		0.5011	23.0	3,1010	3.0				

TABLE No. 33. Data Commercial Fuse Wire.

Rated Capacity. Amperes.	Fusing Current. Amperes.	Diameter in Thousandths of an Inch	Sectional Area of Wire. Fractional Parts of Square Inch	B. and S. Gauge Nearest Number.	Rated Capacity. Amperes.	Fusing Current. Amperes	Diameter in Thousandths of an Inch.	Sectional Area of Wire. Fractional Parts of Square Inch.	B. and S. Gauge. Nearest Number.
1	1.730	.010	.00007	30	40	54.10	.100	.00785	10
3	4.892	.020	.00031	24	50	63.11	.110	.00950	9
5	8.988	.030	.00070	20	60	81.08	.130	.01327	8
7	11.32	.035	.00096	19	70	90.61	.140	.01539	7
10	13.84	.040	.00125	18	80	100.50	.150	.01767	61
15	19.34	.050	.00196	16	90	110.70	.160	.02010	6
20	25.42	.060	.00294	14	100	132.10	.180	.02544	5
25	32.04	.070	.00384	13	125	154.70	200	.03141	4
30	39.14	.080	.00502	12					

piled in Table No. 32. The more fusible metals, such as lead, tin, or bismuth, or alloys of various proportions of them, are chiefly used for fuse wires; and great difficulty has been experienced in obtaining

veritable ratings. As each manufacturer used different proportions of the alloying ingredients, designating them simply by trade numbers, and as usually different batches from the same maker possess

varying melting-points, owing to differences in composition, no rules could be given for fuse wires, beyond the arbitrary directions of the maker. Mr. Bathurst, in the *Electrical World*, has given the results of a recent investigation of the subject, deducing the results given in Tables Nos. 33, 34, and 35.

373. The terminals to which the fuse is connected exercise a very marked effect upon the fusing-point, especially when the fuse is of short length. Some experiments made by Mr. C. P. Matthews of Cornell University indicate the relation which exists between the length of a fuse and the amount of current required to melt it.

. Table No. 36.

Relation between Length and Carrying Capacity of Fuse Wires.

These relations are plotted in Table No. 36. For the curve A in this table the axis of X indicates the length of the fuse between terminals, while the axis of Y gives the fusing current in amperes for each length. For example, it will be noted that a fuse eight inches in length requires a current of 6.6 amperes, while a half-inch fuse of the same material, tin, carries a current of 12.5 amperes; thus showing a variation of more than 100 per cent in the carrying capacity of the fuse, produced simply by the effect of its length. The terminals act to conduct away the heat developed in the fuse by the passage of the current, and to dissipate the same, so that the heat energy developed is not allowed to act upon the safety device.

The curves B and C in Table No. 36 indicate the effect of inclosing the fuse wire in a glass tube, in order to concentrate the heat action. The inclosure acts to check radiation and convection, and so depresses the carrying capacity, causing the fuse to fail with a smaller current. Manifestly, fuses should be selected with reference to the kind of fuse block in which they are to be used, as a closed block would evidently require a larger fuse than one freely exposed to the atmosphere.

The effect of time during which the current acts, also exercises an important factor in the behavior of fuse wires. Table No. 37

TABLE No. 37.

Effect on Carrying Capacity of Fuse Wires of the Duration of the Current.

indicates the importance of this factor. Curve A' indicates the behavior of a fuse under a current causing failure in twenty seconds, B' under a current causing failure in ten seconds, while curve C' is the rating of the fuse. The results of Mr. Matthews's experiments on tin-lead alloys are embodied in Tables Nos. 38 and 39. The tests on the actual compositions given in Table No. 38 indicate that the mixture used quite closely followed the formula, $-I = ad^{\frac{3}{2}}$, from which, for the alloys given, the breaking current for various sizes of wire may be found. The fusing constant for unit wires of lead-tin alloys was determined and plotted in Table No. 39. From this curve, the current to fuse any alloy of lead and tin may be ascertained, and

by substituting in Formula (136) the limiting current deduced for any wire.

374. It has also been ascertained that the behavior of the fuse

TABLE No. 38.

TABLE No. 39.

40

52 58 DIAMETERS

64 70 76

82

5

Fuse Wire Curves, Lead and Tin Alloys.

wires under alternating currents appears to be different from that under a continuous current.

Experience has shown that the action of the alternating current seems to have a disintegrating effect upon the fuses, which causes

them to blow more readily after use, thus necessitating a constant renewal of the fuses, and supervision over the circuits. From investigation by Mr. Sturtevant of Cornell University, it would seem that the alternating current exercises an action upon the fuse wire, which causes some molecular change, probably making the wire crystallize, and causing the fuse to become brittle. As a result of this change, the fuses, after a short time, were found to fail with a lower current on an alternating circuit than caused them to yield when they were first introduced. These experiments indicate a grave objection to the use of fuse wires as protectors for alternating circuits, from the fact that if when first introduced they have only such a reasonable margin of safety as will save the circuit from injury from overloading, they will inevitably fail after a short use, thus adding largely to maintenance expense, and to the interruptions to the service. On the contrary, if the fuses are introduced of sufficient size in the beginning to have a long life, they will not protect the circuits from overloading in the early days of their introduction. Other investigators question these conclusions, and it is probable that additional experiment is needed to settle the question.

375. Fourth, The Heating of Insulated Cables. - Mr. Kennelley's 1 investigations, as given in a recent paper to the Association of Edison Illuminating Companies, have also extended to the calculation of the temperature that insulated, sheathed, or armored cables will probably attain when subjected to the passage of a current. The simplest case is that of a solid, cylindrical conductor having a radius r, surrounded by an insulated covering of radius r', over which a lead sheath or armor wire is laid, the whole cable being placed in such a location that the sheath is maintained at the constant temperature of the surrounding medium, as, for example, in the case of a submarine cable. The temperature attained by the conductor will depend upon the amount of energy transformed into heat in the core, and on the resistance offered to diffusion of this heat by the surrounding envelope of insulating covering. If the insulator had no thermal resistance, the heat would evidently be diffused and carried away as fast as it was produced. The transference of heat energy taking place between any two planes, separated by a uniform medium, is

¹ Paper before the Edison Illuminating Companies, August, 1893.

governed by laws similar to those that apply to electrical circuits. So the amount of heat passing depends on the difference of thermal potential between the planes, the geometrical form of the medium separating the planes, the specific thermal resistance of the medium, and the time during which the thermal potential acts. If θ is the temperature of the coolest plane, and t that of the warmest one, then $t-\theta$ is the thermal potential tending to cause heat energy to pass from one to the other, which, for strict accuracy, should be referred to the Centigrade scale of the air thermometer. If t be the distance between the planes, t the cross-section of the separating medium, and t the specific thermal resistance, then, —

$$H = S \frac{(t - \theta) T}{\rho' l},$$

H being expressed in gramme calories. If l and T are units of length and time, then, —

$$H = S \frac{(t-\theta)}{\rho'}, \quad \text{and} \quad (t-\theta) = H \frac{\rho'}{S}.$$
 (137)

The similarity between this formula and that for the current in an electrical circuit is evident. In fact, H can be termed the *Heat* current. For a cable having a conducting core of radius r and a coating of insulation r', Mr. Kennelly shows that the resistance to the heat current will be —

$$\frac{\rho'}{2\pi} \log_e \frac{r'}{r} = .159 \; \rho' \log_e \frac{r'}{r};$$
 (138)

therefore, the heat current will be -

$$H = \frac{t - \theta}{.159 \ \rho' \log_e \frac{r'}{r}} \quad t - \theta = H\left(.159 \ \rho' \log_e \frac{r'}{r}\right); \tag{139}$$

but $H = .24 I^2 R$, whence, –

$$I = \sqrt{\frac{t - \theta}{R\left(.159 \ \rho' \log_e \frac{r'}{r}\right)}}.$$
 (140)

To simplify, let —

$$A = t - \theta$$
, and $B = .159 \, \rho' \log_e \frac{r'}{r}$;
$$I = \sqrt{\frac{A}{RB}}. \tag{141}$$

then,

376. From this formula, the carrying capacity of a submarine cable may be calculated when the geometrical dimensions, thermal resistance, and permissible core temperature are known. Unfortunately, data on specific thermal resistance are very meager; tests on a Siemens cable indicated the thermal resistance to be 750 units, while tests on cables buried in sandy soil give 50 as a mean for specific resistance for the earth. Additional data, so far as can be ascertained, are given, Table No. 40. With due regard to the preservation of insulation, the core temperature should never be allowed to rise over 60° to 65° C.; and as the temperature of the cable environment may reach 30° to 35° C., there remains a possible difference in temperature of 35° C.

Table No. 40.

Giving Specific Thermal Conductivity in C. G. S. Units.

Name of Substance.	SPECIFIC CONDUCTIVITY.	Name of Substance.	Specific Conductivity.
Vulcanized Rubber	.000098	Glass	,0005
Beeswax	.000087	Wood	.0003
Felt	.000087	Caoutchouc	.00041
Vulcanite	.000083	Gutta-percha	.00048
Cotton Wool	.000043	Sandy Loam	.008
Sawdust	.000123	Bricks and Cement	.003
Sand	.000131	India Rubber	.0004
Paraffine	.000113	Sand with Air Spaces	.09

377. Conduit Cables. — Conduit cables differ from submarine cables to the extent that the sheath is not exposed to the cooling of a water circulation, and therefore the sheath more nearly approximates to the core temperature. In other words, the ground or conduit interposes an additional thermal resistance to the diffusion of heat. Calling the ground thermal resistance B', —

$$H = \frac{A}{B + B'}. ag{142}$$

The value of B' is given by the formula, —

$$B' = .159 \,\rho'' \log_e \sqrt{n^4 - n^2}, \tag{143}$$

in which ρ'' is the ground thermal resistance, and n the ratio of the depth of the center of the cable below the top of the soil, to the radius of the outside of the cable. For a conduit cable, then, formula (141) must include B', and will stand,—

$$I = \sqrt{\frac{A}{R(B+B')}}. (144)$$

378. The Effect of Adjacent Cables. — When several cables occupy adjacent ducts of a conduit, or are buried in the same trench, the temperature attained by each will depend in part on the amount of heat it receives from its neighbors. Each cable may be regarded as a center of radiation; the surrounding soil being imagined as divided into a number of cylindrical layers of increasing diameter and decreasing temperature. The effect on neighboring cables may be ascertained by determining the temperature of the cylinder in which the affected cable rests. For this purpose, Mr. Kennelly gives the following Table, No. 41, the left-hand column giving the probable temperature to be found in the successive cylindrical layers in per cent of the *sheath* temperature of the cable at the center; while the right-hand column indicates the distance in centimeters of the layers from the center.

TABLE No. 41.

Temperature Relations of Neighboring Underground Cables.

Percentage of Sheath Elevation.	Horizontal Distance between Axes. Cm.	Percentage of Sheath Elevation.	Horizontal Distance between Axes. Cm.	Percentage of Sheath Elevation.	Horizontal Distance between Axes. Cm.
95	3.15	60	14.58	30	56.0
90	3.93	55	18.16	25	71.2
85	4.88	50	22.65	20	91.8
80	6.07	45	28.88	15	121.5
75	7.55	40	35.38	10	169.1
70	9.40	35	44.38	5	269.6
65	11.71				

379. Suspended Cables. — There only remains to consider heavily insulated sheathed cables suspended in air. Such cases are presented by cables that are in part on pole lines, or that are compelled to pass for some distance through a large vault or subway. The limiting current for an aerial cable is obtained from the formula, —

$$I = \sqrt{\frac{A}{R\left(B + \frac{1}{e}\right)}},\tag{145}$$

in which e is the total heat emission per unit of area of the *sheath*. With due regard to the safety of the cable, the temperature of the sheath should not rise more than 20° or 30° above the atmosphere; for that range e may be assumed as sensibly constant, and its value deter-

mined from equations on page 287, and I determined by substitution in (145).

Concentric Cables. — The case of concentric cables, where one conductor is entirely surrounded by another, heat being evolved in both conductors, may be treated as an aggravated case of "Adjacent Cables," and calculated accordingly. Large factors of safety should, however, be allowed, as many factors enter into the heating problem that are as yet not completely determined.

CHAPTER VIII.

CONDUCTORS FOR ALTERNATING CURRENTS.

Art. 380. General Considerations. — When alternating current circuits commenced to attain a commercial importance, they were proportioned according to Ohm's formula and Joule's formula, as given in the preceding chapter; but results experimentally determined indicated wide departures from these laws. Sometimes the current in the conductors was much less than that which would be expected from the electro-motive force and resistance of the circuit. In other cases, electro-motive forces absorbed by the circuits were far in excess of the product of the current and the resistance of the conductor; and the product of the current in amperes, and the electro-motive force in volts, failed to give the amount of energy in watts. Where more than one electro-motive force operated upon a circuit, the resulting electro-motive force was sometimes found to be greater than the algebraic sum of the electro-motive forces, and in other cases to be less. When branch circuits were used, the currents in the respective branches did not divide proportionally to the resistance, thus causing the anomaly of the sum of the currents in the branch circuits to be sometimes greater than the total current in the main circuit, and sometimes less. In other peculiar instances it was found that the electro-motive force at the terminals of long lines of mains was greater than the impressed electro-motive force given by the generator at the beginning of the circuit. It became, therefore, essential to more carefully study the distribution of current and potential in alternating circuits, in an endeavor to reconcile these anomalies with the laws of the conservation of energy.

381. In the constant current circuit, the office of the generator is to produce at one point in the conductor a constant and steady elevation of electrical potential. A familiar comparison may be made to the case of an air-blower, or fan. The office of the fan is to create a certain elevation of air pressure; and the quantity of the resulting current of air depends entirely upon the friction, or resist-

ance, of the pipes or ducts through which the air flows. If the pipe leading from the fan be entirely closed, the revolution of the fanwheel simply increases the air pressure inside of the fan-casing; and as the inclosed air revolves with the moving wheel, little or no energy is consumed beyond that required to overcome the friction of the bearings, and no current of air is transmitted. By opening the air-pipe a current of air is immediately established, the quantity of which depends directly upon the resistance of the pipe. The energy of this air-current is directly proportional to the product of the pressure given by the fan and the quantity of the air flowing; and, consequently, the energy absorbed by the fan is in a like manner proportional to the aforementioned product. A dynamo operating upon an open circuit is occupied only in raising the electrical potential between the brushes; and, as the circuit is open, no energy is expended in the circuit, and no energy is absorbed by the dynamo, excepting that necessary to overcome the frictional resistances of the machine itself. On closing the circuit through a varying resistance, the energy delivered by the generator to the circuit is directly proportional to the product of the current and the electro-motive force, while the current is inversely proportional to the resistance; also the energy absorbed by the generator is correspondingly proportional to the same quantities. In the continuous current generator, the electro-motive force produced is a constant and unvarying quantity. With the alternating current generator, the electro-motive force is a constantly varying quantity, causing the current to vary in a like manner, in which variation may be found the origin of the previously mentioned anomalies.

382. Classification. — The apparent discrepancy between the distribution of current and potential in an alternating current circuit, and the apportionment as indicated by the laws of Ohm and Joule, may be conveniently, for investigation, divided into three parts:—

Case 1. Skin Effect.

Case 2. Inductance.

Sec. a. Effect of Inductance.

Sec. b. Effect of Mutual Inductance.

CASE 3. Capacity.

These divisions will now be separately treated.

383. Case 1: Skin Effect - Current Density. - According to

the latest theories regarding the nature of electricity, it is believed that electrical disturbance is due to elastic reactions set up in the ether. In dielectric bodies the ether is, as it were, confined and prevented from moving. In conductors, on the contrary, the ether particles find themselves at liberty, and are more free to move under the stresses set up by electrical action. A conductor, therefore, may be simply regarded as a hole in the dielectric, through which the stresses set up between the ether particles can relieve themselves more freely. Assuming the truth of this supposition, it is evident that the dielectric, rather than the conductor, is worthy of interest and investigation. Thus, in the case of an alternating current, the dielectric is stressed first in one direction and then in the other. With a continuous current, however, the stress would always be in the same direction. In the latter case, the ether particles, finding themselves in the neighborhood of a conductor, would, so to speak, soak into the wire, and there relieved from the confining action of the dielectric, would be enabled to move and adjust themselves to the stress imposed by the generator. Evidently some time must be required for this action to take place. With an alternating current, however, the ether particles are alternately stressed first in one direction and then in the other; and if the reversals occur so frequently as to prevent the ether particles from penetrating the conductor, it is obvious that the interior of the wire will not be subjected to electric action, and will be of little or no service as a conductor. An analogy to this phenomenon may be obtained in alternately heating and cooling a body. Consider a round copper rod (one of the best conductors of heat) to be alternately plunged with great rapidity first into a furnace and then into a freezing mixture. The first effect of the furnace is to heat intensely the exterior of the rod, and by conduction all portions of the metal tend to assume the same temperature. This, however, requires time; and if, before the heat energy can proceed to the central portion of the rod, it be plunged into the freezing mixture, the effect of the furnace is annulled, and the conductor tends to become chilled. Thus, it is conceivable that, if the alternations be sufficiently rapid in proportion to the speed of conduction, the interior of the body could never be affected, no matter how intense the source of either heat or cold. So, with an alternating current, if the reversals are extremely rapid, the outer

layers of the conductor only are affected, and the electrical action commonly known as "A Current" is confined to the surface of the conductor. If the conductor be large and the reversals quite rapid, the exterior only plays a part in the transference of energy. Owing to this restriction of the current to the surface of the conductor, it is plain that the interior becomes of no value for the purpose of power transmission, and that calculations as to the resistance of the circuit must be based solely upon that portion of the cross-section that is affected at each reversal. Evidently the resistance is increased in proportion to the restriction of the conductor, and this in turn is proportional to the frequency of the reversals. The extra resistance entailed by lack of penetration of the energy into the body of the conductor is chiefly noticeable with wires or cables of large size, and may readily be practically obviated by using a stranded conductor, in which the interior strands are frequently brought to the surface, or one formed of strips, in which the various component parts of the conductor are brought into close proximity with the dielectric, in order that they may be more fully exposed to the penetrating influence of the energy. This phenomenon of increased resistance has been treated from a mathematical standpoint by Lord Kelvin, Lord Rayleigh, and Mr. Heaviside; but the mathematical discussion transcends the scope of this volume. Professor Gray, in his Absolute Measurements in Electricity and Magnetism, shows that the effective resistance to rapidly alternating currents may, without sensible error, be represented by the ohmic resistance of a cylindrical shell of certain thickness, on the outside of the conductor, throughout which the current density is sensibly constant. The following, TABLE No. 42, gives the thickness of copper and iron shells to be assumed in calculating the apparent resistance of alternating circuits:—

TABLE No. 42.

Thickness of Shell on Cylindrical Conductors Affected by the Current in an Alternating Circuit.

FREQUENCY,	THICKNESS OF SHELL IN CM.		
	Copper.	Iron.	
80	.719	.0976	
120	.587	.0789	
160	.509	.0691	
200	.455	.0671	

¹ Absolute Measurements in Electricity and Magnetism, vol. ii., part i., p. 338.

A consideration of these data indicates the futility of employing thick wire or cable for high frequency currents, as the center of the conductor is valueless. Lord Kelvin shows that the increase in apparent resistance due to unequal current density, for the same wires, varies as the square root of the frequency, that is as \sqrt{n} , and gives the following, Table No. 43, showing the factor for virtual or effective resistance for periods of 40 and 80, and for wires from 5 cm. to 10 cm. in diameter:—

Table No. 43.

FACTOR FOR VIRTUAL RESISTANCE.	DIAMETER IN CENTIMETERS.		FACTOR FOR	DIAMETER IN CENTIMETERS.	
	Frequency 80.	Frequency 40.	VIRTUAL. RESISTANCE.	Frequency 80.	Frequency 40.
1.0000	0.5	0.71	1.863	4.5	6.36
1.0001	1.0	1.41	2.043	5.0	7.07
1.0258	1.5	2.12	2.220	5.5	7.78
1.0805	2.0	2.83	2.394	6.0	8.48
1.175	2.5	3.54	3.096		11.3
1.319	3.0	4.24	3.794	10	14.1
1.492	3.5	4.95	5.573	15	21.2
1.678	4.0	5.66	7.325	20	28.3

To use this Table, find in the column headed "Diameter" the size of the conductor; opposite, in the column headed "Factor," will be found a quantity by which the ohmic resistance is to be multiplied to obtain the virtual resistance. For any other frequency, multiply the factor by the \sqrt{n} .

384. Case 2: Inductance.

Sec. a. — Effect of Inductance.

Magnetic Field Due to Current. — If some iron filings be sprinkled on a glass plate placed over a small magnet, and the plate gently tapped to overcome the frictional resistance between the surface and the filings, the particles of iron are seen to arrange themselves along a series of lines that form closed curves extending from pole to pole of the magnet.

385. To Faraday is due the conception that the entire space surrounding any magnet is thus filled with "Lines of Magnetic Force," the filings on the plate merely serving to render the state of space adjacent to the magnet visible to the eye. In the C. G. S. system of units, a magnetic pole is defined as a magnet of such

strength as to repel an equal and similar magnet with a force of one dyne, when the two poles are placed one centimeter apart. Coulomb expressed the law of magnetic action by the equation —

$$F = \frac{mm'}{d^2}, \qquad (146)$$

in which F is the mutual attraction or repulsion, m and m' the strengths of the two poles, and d the distance between them. This expression is equivalent to asserting that the force between the poles varies as the product of the pole strengths, divided by the square of the distance separating them. If both poles have the same sign, the product is positive; and, as repulsion exists, it is termed a positive quantity. Conversely, a negative sign would be applied to the force of attraction between two opposite poles. The strength or intensity of any magnetic field, at any point, is estimated by the effect which the field produces upon a unit positive magnetic pole placed at the point in question. Imagine a unit magnetic pole placed at any point in a magnetic field, and so disassociated from all matter as to be perfectly free to move. The direction in the field in which this hypothetical pole would then travel is termed the "Positive direction" of the lines of force; and the effort which the unit pole would exert in its motion is the measure of the magnetic strength, and is usually expressed by H. H varies from point to point in all magnetic fields, though in large dynamos the field is so strong that H is sensibly uniform through the space under consideration, both in direction and magnitude. If, in every square centimeter of a field, the unit pole be acted upon with a force of one dyne, there is said to be "one line of Magnetic Force per centimeter," and the field is said to have "one unit of Intensity." When the intensity is H, there are H lines of force to each square centimeter; thus the intensity of the magnetic field is conceived of as proportional to the number of lines of magnetic force passing through each square centimeter of surface perpendicular to the direction of the lines of force.

386. Suppose a sphere to be described about a unit magnetic pole, having a radius of 1 cm. The surface of this sphere contains 4π sq. cm. As, by definition, the unit pole emits one line of force through each square centimeter, 4π lines of force will emanate from a unit pole; and from a pole with the strength m, there will be $4\pi m$

lines of force. In air the number of lines is the same as the number of lines of magnetizing force, and for many other substances this proposition holds true.

387. Some elements possess the property of greatly augmenting the number of lines, which are then termed "Lines of Induction." This is notably the case with iron. The sum of all lines per square centimeter, normal to the direction of the lines, is termed "The Total Induction," and is denoted by B. In a non-magnetic medium B=H; but in one that is magnetic, B>H, and the ratio of B/H is called the permeability, and is symbolized by μ .

388. Faraday showed that every circuit carrying a current excites a magnetic field surrounding the conductor, in which the lines are closed circles inclosing the conductor. The sum of all the lines of force passing through the area inclosed by any electrical circuit is termed "The Total Induction of the Circuit," and, when the circuit is placed away from magnetic media, is directly proportional to the current.

According to the C. G. S. system, a unit current is one which, flowing in a circuit of 1 cm. radius, acts on a unit magnetic pole placed at the center of the circuit with a force of one dyne per square centimeter of length of the circuit. The ampere is one-tenth of the C. G. S. unit. If F be the number of lines threading a circuit, and I be the current, then F varies as I, or F = LI, in which L is termed the coefficient of inductance, and may be defined as the ratio of the total inductance to the current producing it. Thus, in a circuit of 2 cm. radius, carrying two units of current, there will be 25.12 lines of force linked with the circuit; for, by definition, each unit length of the conductor acts on a unit pole at the center with one unit or one line of force per unit of current. As the conductor is 4 cm. in diameter, the length of the circuit will be 12.56 cm.; and as there are two units of current flowing, there will be a total of 25.12 lines of force linked in the circuit.

In this case F=25.12; I=2; and hence, L will equal $\frac{25}{2}$ 12 or 12.56. Thus, if the geometrical dimensions of the circuit be known, the current flowing, and the permeability of the surrounding medium, it is possible to calculate the coefficient L. For ordinary cases, L is constant, and will be so considered. If the current is a variable one, changing from time to time, the relation of the current and

the induction during any small interval of time is given by the

 $\frac{dF}{dt} = L\frac{di}{dt}.$

389. Electro-Motive Force due to Varying Field. — Faraday proved that, when a conductor is so moved in a magnetic field as to cut the lines of force, the conductor becomes the seat of an electromotive force directly proportional to the rate at which the lines are cut, and acting at right angles to the direction in which the conductor moves, so as to oppose, or obstruct, the motion of the conductor. From this, it is evident that to move a closed conductor in any magnetic field requires the expenditure of energy. Faraday further showed that, if the circuit be maintained stationary, and the magnetic field varied so as to increase or diminish the number of lines of induction, a similar result is obtained. Thus, at any instant, e = -dF/dt. In this equation, e symbols the electro-motive force developed at any instant, while the negative sign indicates that the direction of this electro-motive force is such as to oppose a change in the number of lines of induction that thread the circuit. A C. G. S. unit of E. M. F. is developed when there is a change in induction of one line per second; and as this quantity is too small for convenient use, the volt is 108 times the C. G. S. unit.

390. Equation of Energy. — In Chapter VII. it has been demonstrated by Ohm's law that, for circuits acted on by constant E. M. F.s, the current is

 $I = \frac{E - e}{R} \,,$

in which E is the electro-motive force of the generator, R the resistance of the circuit, and e any opposing E.M.F.s. When a variable current exists in a circuit, the preceding paragraphs show that there is always an E.M.F. set up, due to the inductance of the circuit, that opposes the E.M.F. of the generator, having a value numerically equal to—

$$e = \frac{dF}{dt}; (147)$$

but,
$$\frac{dF}{dt} = \frac{Ldi}{dt};$$

hence,
$$e = L \frac{di}{dt}.$$
 (148)

The total energy supplied in a time F to a circuit is EIT watts. By Joule's law, it is shown that I^2RT watts are transformed into heat and dissipated by radiation. Throughout an infinitesimal of time, any E.M.F. and any current may be considered constant. Also, by the principle of conservation of energy, the total energy expended in a circuit in any time must be equal to the total energy delivered to it. The energy equation is, therefore, for the time dt

$$eidt = Ri^2 dt + Li \frac{di}{dt} dt; (149)$$

dividing by
$$idt$$
, $e = Ri + L\frac{di}{dt}$. (150)

In this equation, e is any instantaneous value of the E.M.F. impressed by the generator on the circuit; Ri is the E.M.F. expended in overcoming the ohmic resistance of the conductor; $L\frac{di}{dt}$ is the E.M.F. required to balance the counter E.M.F. set up in the circuit by the change initiated in the magnetic field by a constantly varying current.

391. Expenditure of Energy. — As the current variations are a consequence of the varying impressed E.M.F., the counter E.M.F. of inductance is directly connected with, and is a function of, the impressed E.M.F. As the current varies from zero to a maximum I, the energy expended in heat during any complete current cycle is $\frac{1}{2}RI^2$, while that expended in the magnetic field is —

$$\int_{0}^{T} Lidi = \frac{1}{2} LI^{2}. \tag{151}$$

As that portion of the energy represented by $\frac{1}{2}LI^2$ is intimately

connected with the nature of the variations of the impressed *E. M. F.*, it is now necessary to closely study their phenomena.

Let the diagram, Fig. 206, represent a uniform magnetic field, in which the lines of force are indicated by straight lines extending

Fig. 206. Diagram of the Motion of a Conductor in a Magnetic Field.

between the poles N and S. Suppose A to be the cross-section of a closed conductor revolving uniformly in the direction of the dotted circle. The rate at which the conductor will cut the force

lines is seen by inspection to vary as the sine of the angle of rotation, being a maximum when the conductor is moving across the diameter NS, and a minimum when it is at right angles to this line. As the E. M. F. initiated is, at any instant, numerically equal to the rate of cutting, the E. M. F. is a sine function of the angle of rotation, passing, in every revolution, through two zero points at B and C, and then through a positive and negative maximum at the intersections of the diameter NS. As the rotation is uniform, the E. M. F. is a sine function of the time of rotation. In practice, the curves of alternating electro-motive forces are found to closely approach the preceding proposition; and even when the departure from a simple sine curve is considerable, by Fourier's theorem, it may be demonstrated that any E. M. F. curve may be expressed as

Fig. 207. Diagram of Harmonic Motion.

the sum of a series of terms, each of which is a simple sine function of the time of rotation. Consider now the curve of a sine function.

392. Harmonic Motion. — In the diagram of "Harmonic Motion," Fig. 207, suppose the line \overline{AB} to be pivoted at the point A, and to revolve about, in the plane of the paper, this point as a center. The end of the line B will trace the circumference FCDE. Assuming F as the starting-point, the projection of \overline{AB} at any time, on the diameter \overline{CE} , is \overline{AB} sin BAF. When B is at F, the projection is zero. When B is at C, \overline{AB} coincides with \overline{AC} , the projection being a maximum equal to the radius of the circle. If the diagram be viewed edgewise, by placing the eye in the plane of the paper somewhere in the prolongation of \overline{AF} , the point B will appear to travel uniformly backward and forward along the line \overline{EC} from E to C. Such motion is termed "Harmonic." The radius of the circle is the amplitude, designated by a, while the time T required to make a

complete revolution is termed "The Period." Positive rotation is reckoned as counter-clockwise, in the direction of the arrow. The crank of a steam-engine, when viewed from a point in the line prolonging the piston-rod, or the motion of the bob of a clock pendulum, when seen from the point of suspension, are familiar examples of harmonic motion. If AB describes any angle ϕ in a time t seconds, the angular velocity denoted by ω is —

$$\frac{\phi}{t}$$
, or $\phi = \omega t$,

where ω is the angle described in a unit of time; also, as the entire circumference is described in the time T,—

$$\omega = \frac{2\pi}{T}$$
, and $\phi = \frac{2\pi t}{T}$.

The number of revolutions in one second is 1/T, and is designated as the "Periodicity, or Frequency," usually denoted by n. The angular velocity may be expressed in terms of the frequency; that is to say, $\omega = 2 \pi n$, and $\phi = 2 \pi nt$. Reckoning time from F, when the projection of \overline{AB} on \overline{AC} is zero, and denoting the projection on \overline{AC} by y,— $y = a \sin \phi = a \sin \omega t$.

and y is a sine, or harmonic function of the time. If the time interval be reckoned from some other point, say P, then there is an angle θ between this point and the point of zero projection F. This angle is termed "The Angle of Epoch," and the angle $\phi + \theta$ is called the phase. In this case $y = a \sin(\phi + \theta)$;

or,
$$y = a \sin (\varphi + \theta);$$

 $y = a \sin (\omega t + \theta).$ (152)

393. When θ is positive, measured from F in the direction of the arrow, it is often called the "Angle of Advance." When it is negative, measured clockwise from F to some point P", it is termed "The Angle of Lag." It is readily seen that when the angle of phase is zero, $A\overline{B}$ coincides with $A\overline{F}$, and the projection on y is zero. When the phase is 90° , and AB falls along AC, the projection is a positive maximum, and y = +a. At 180° y is again zero, and AB coincides with $A\overline{D}$, and lastly at 270° , y = -a, a negative maximum $A\overline{B}$ coinciding with $A\overline{E}$. With every revolution this cycle is repeated. Conceive now that while $A\overline{B}$ is revolving about A, the paper be moved steadily and uniformly in a direction contrary to the arrow mark, while A remains stationary. The point A will trace a line

 \overline{GH} , while the point B will trace a sinuous line KRMSO. As the motion of the paper is uniform, the distances along \overline{GH} will represent intervals of time, while the vertical distances between \overline{GH} and the points of the curve will represent successive projections of \overline{AB} on \overline{AC} . In the diagram, the various elements of the curve are represented, as follows:—

Generating point B.
Circle of revolution FCDE.
Axis of time \overrightarrow{GH} or axis of x.
Amplitude $a = \overrightarrow{AB} = \overrightarrow{AF} = \overrightarrow{KL} = \overrightarrow{LR}$.
Angle of advance $\theta = \overrightarrow{PAF} = \overrightarrow{Angle}$ of epoch.
Angle of lag $-\theta = \overrightarrow{FAP''}$.
Angle described in time $t = \phi = \overrightarrow{PAB}$.
Angle of phase $\theta + \phi = \overrightarrow{FAB}$.
Time of epoch $\overrightarrow{Kp'}$.
Time of phase $i + \overrightarrow{Kp'} = \overrightarrow{Kb'}$.

394. The point B in the diagram may represent the cross-section of any one of the armature conductors of the common dynamo, and so the path described by this and all other armature conductors will coincide with that in which B moves. As the *E.M.F.* initiated in each conductor is proportional to the rate at which the lines of the magnetic field are cut, and as this rate varies according to the sine of the angle of rotation, the sine curve KRMS is representative of the periodic variations of the *E.M.F.* set up in the conductor. As the *E.M.F.* is constantly varying, the current will be correspondingly periodic, and the locus of its curve will be a line similar to the curve KRMS.

395. Average Values. — If, in the equation —

$$y = a \sin(\omega t + \theta),$$

E or I be substituted for a, y becomes the value of the E.M.F. or current at any given instant.

$$e = E \sin(\omega t + \theta); \tag{153}$$

$$i = I\sin\left(\omega t + \theta\right). \tag{154}$$

In practical work the average values of these quantities are much more in demand than the above instantaneous values. As a sine curve is a succession of similar and equal positive and negative cycles, the average ordinate for any period, or succession of periods,

is algebraically zero; but as the latter half of each period is the same as the first with its sign reversed, the average ordinate for any half period will be the arithmetical mean ordinate. During a half period, indicated by T/2, a certain quantity $\mathcal Q$ of electricity will flow through the circuit, and the alternating current may be compared to a steady current which would deliver the same quantity of electricity throughout the same circuit, in the same time. If $\mathfrak F$ is this current then—

$$Q = \Im \frac{T}{2} = \int_{0}^{T} i dt; \qquad (155)$$
but,
$$i = I \sin (\omega t + \theta);$$
whence
$$\Im \frac{T}{2} = \int_{0}^{T} I \sin (\omega t + \theta) dt = \frac{IT}{\pi};$$
and
$$\Im = \frac{2I}{\pi} = .6369 I. \qquad (156)$$

Thus it appears that a continuous current necessary to deliver in the same time the same amount of electricity as an alternating one, will have .6369 of the value of the maximum ordinate of the alternating current.

396. Alternating currents may also be compared to continuous currents by noting the relative thermal or chemical effects produced. Any current, whether alternating or continuous, in traversing a conductor evolves heat at a rate which is measured by $\Im^2 RT$. The readings of a Cardew voltmeter are obtained by noting the heating effect produced in a long, even, high resistance wire. As the thermal effect is proportional to the square of the current, and as the current is proportional to the voltage, it is evident that the instrument really measures the mean square of all the instantaneous current values that occur while the measurement is being made; and if the relation of the mean square to the maximum value be known, the readings of the voltmeter will furnish the necessary data to calculate the E.M.F. curve. By Joule's law, the heat evolved is $\Im^2 RT$; hence, during half a period, —

$$\mathfrak{J}^2 R \, \frac{T}{2} = \int_0^{\frac{T}{2}} i^2 R dt \,; \tag{157}$$

replacing i by its value from equation (154), —

$$\mathfrak{J}^{2}R \, \frac{T}{2} = R \, I^{2} \int_{0}^{T} \sin^{2} \left(\omega t + \theta\right) \, dt.$$

$$\mathfrak{J} = \frac{I}{\sqrt{2}} = .707 \, I. \tag{158}$$

Thus it appears that the arithmetical mean electro-motive force or current is less than that indicated by the Cardew voltmeter, or other similar instrument; for, from equation (156), the arithmetical mean is .6369; and from the preceding equation (158), the square root of the mean squares is .707, and the difference, .071, is about ten per cent. Having the voltmeter readings, the maximum electro-motive force may be obtained by multiplying the voltmeter value by 1.415.

397. The Solution of the Energy Equation.

A. CIRCUITS CONTAINING RESISTANCE AND INDUCTANCE.

Having thus considered the elementary properties of the curve of harmonic motion, the way is prepared for a general solution of the equation representing the balance of energy in an alternating current circuit. Referring to Fig. 207, assume t to be reckoned from F, and $E = \overline{AB}$, then, $e = E \sin \omega t$; also, as has been proved,—

$$e = Ri + L\frac{di}{dt};$$

 $Ri + L\frac{di}{dt} = E \sin \omega t;$ (159)

hence,

transposing, and dividing by L,—

$$\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}\sin \omega t. \tag{160}$$

This is a linear differential equation of the first order, of which the general type is, —

 $\frac{dy}{dx} + Py - Q = 0.$

The solution 1 of such an equation is, —

$$y = e^{-\int P dx} \left[\int Q e^{\int P dx} dx + C \right].$$

Substituting the values of the coefficients derived from equation (159), and performing the integration indicated in the exponents of e,—

 $i = \frac{E}{L} e^{-\frac{Rt}{L}} \int e^{\frac{Rt}{L}} \sin \omega t \, dt + C e^{-\frac{Rt}{L}}.$

Integrating by the rules for exponential functions,² and reducing to simplest form,—

$$i = \frac{E}{\sqrt{R^2 + L^2 \omega^2}} \sin\left(\omega t - \tan^{-1} \frac{L\omega}{R}\right) + Ce^{-\frac{Rt}{L}}.$$

¹ See Carr's Synopsis of Pure Mathematics, p. 472, art. 3110.

² Carr, Synopsis of Pure Mathematics, p. 325, art, 1998.

It can be shown that the constant of integration which contains the exponential term applies to the circuit only for a minute period of time immediately succeeding the first application of the *E.M.F.*. This term may therefore be disregarded in a consideration of the constant régime of an alternating current circuit; the equation therefore reduces to—

$$i = \frac{E}{\sqrt{R^2 + L^2 \omega^2}} \sin\left(\omega t - \tan^{-1} \frac{L\omega}{R}\right). \tag{161}$$

398. This equation indicates, —

First. An harmonic impressed *E.M.F.* in a circuit containing resistance and inductance produces a current that is a sine function of the periodic time.

Second. The current lags behind the E.M.F. by an angle of which the tangent is $L\omega/R$.

Third. When $\sin\left(\omega t - \tan^{-1}\frac{L\omega}{R}\right) = 1$, the current attains the maximum value, and —

$$I = \frac{E}{\sqrt{R^2 + L^2 \omega^2}}. (162)$$

The quantity $L\omega$ is called "Reactance," and the quantity $\sqrt{R^2 + L^2\omega^2}$, the apparent resistance of the circuit, is denominated "Impedance," often symbolized by J, and will be more fully treated under the sections on "Graphical Methods." If this quantity be substituted for R in Ohm's formula when applied to alternating circuits, his equation will hold true.

Fourth. If L=0, the equation reduces to $i=E\sin\omega t/R$ which accords directly with Ohm's law. Impedance, as deduced from this expression, causes the current to lag behind the impressed E.M.F., and reduces its successive values.

Fifth. If R=0, $i=\frac{E}{L\omega}\sin{(\omega t-90^\circ)}$, indicating that when the resistance is so small as to be negligible, the current cannot exceed $E/L\omega$, and then lags 90° behind the impressed E.M.F.

Sixth. If either R or L become indefinitely large, the current reduces to zero.

¹ Fleming, Alternate Current Transformer, p. 102.

Sec. b. — The Effect of Mutual Inductance.

399. If a circuit A is placed in such a manner as to be in close proximity to a second circuit B, that carries an alternating current, the varying magnetic field initiated by the B circuit will react on the A circuit and set up therein an E.M.F. If it be imagined that two circuits are so close together as to occupy the same space, it is evident the total induction of the B circuit will pass through the A circuit, and the E.M.F. set up in the A circuit will be equal to the inductance of the circuit, and may be represented by L_R . If the conditions be reversed, and the current be assumed in the A circuit, its inductance will act in a similar manner on the B circuit, with an effect to be measured by LA. Now, if current flows in both circuits, each will react upon the other, proportionally to the current in each. In this hypothesis, the two circuits are assumed to be so close together that all the lines of force generated by each will be linked with the other, and the coefficient M of the mutual inductance may be defined as "The total induction, linked with both the circuits, divided by the sum of the currents in both circuits." If, as in the previous supposition, two circuits are supposed to coincide in space, it is evident that —

 $M < \text{or} = L_A,$ $M < \text{or} = L_B;$ $M^2 < \text{or} = L_A L_B.$

therefore,

and the maximum possible value of M is the square root of the product of the inductances.

B. THE GENERAL EQUATION OF ENERGY FOR MUTUALLY INDUCTIVE CIRCUITS.

400. For a simple circuit having resistance and inductance in series, the energy equation has two terms, Ri^2 denoting the portion transformed into heat, and $Li\frac{di}{dt}$ measuring the amount expended in the magnetic field. When there are two or more circuits in close proximity, a portion of the magnetic field created by each will be employed in inducing an E.M.F. in the other circuits, and may be measured by the product of the coefficient of mutual inductance and the current. Consider the case of two circuits A and B with impressed E.M.F.s E_A and E_B , with resistances R_A R_B , inductances

 L_A L_B , currents I_A I_B , and a mutual inductance M, then for circuit A the energy equation is —

$$E_{A}dt = R_{A}I_{A}^{2}dt + L_{A}I_{A}dI_{A} + MI_{A}dI_{B}; (163)$$

and for B,

$$E_B dt = R_B I_B^2 dt + L_B I_B dI_B + M I_B dI_A; (164)$$

adding,

$$(E_A + E_B) dt = (R_A I_A^2 + R_B I_B^2) dt + L_A I_A dI_A + L_B I_B dI_B + M (I_A dI_B + I_B dI_A).$$
(165)

The first term on the right-hand side of equation (165) is the heating effect, the second and third are the energies expended in inductance, while the fourth is that due to mutual reaction; but the second, third, and fourth terms form the exact differential of —

$$\frac{L_{A}I_{A}^{2}}{2} + \frac{L_{B}I_{B}^{2}}{2} + MI_{A}I_{B},$$

and the equation for the circuits reduces to -

$$E_A + E_B = \frac{1}{2} (L_A I_A + L_B I_B) + M I_A I_B + R_A I_A^2 + R_B I_B^2.$$
 (166)

An extension of the same process may be used when there are more than two circuits. Usually alternating circuits can be so designed and erected as to reduce mutually inductive effects to so small values that they may be neglected. Exceptions occur in the construction of dynamo machinery. Rarely more than two circuits are involved, and usually only one of the two is subjected to an impressed E.M.F. In such cases the presence of iron renders the introduction of the permeability factor μ essential. This subject will be further expanded in the sections on Graphical Methods.

401. Coefficients of Inductance. — Conformably with the C. G. S. system, inductances are lengths, and theoretically can be computed from the geometrical relations of the circuit. As the process of calculation is sometimes tedious, the most useful values are here appended. Several units have been in vogue for inductance. English and Continental electricians have been in favor of adopting the term "secohm" or "quad," being the equivalent of 1,000,000,000 cm. of length or an earth quadrant. In this country the term "Henry" is authorized for the same value. In many respects, inductances behave like resistances, absorbing from the circuit a certain amount of energy. Unlike resistance, this energy is not transformed into heat; but in some, at present unknown, manner, is stored in the mag-

netic field, and when the circuit is interrupted, appears in the form of the well-known extra current. In the following values, the circuits are assumed to be of non-magnetic material, and to be immersed in a non-magnetic medium, in which the permeability $\mu=1$; when the composition of the circuit, or when the circuits, are adjacent to materials in which the permeability differs from the above values, the necessary permeability factor must be introduced in all of the formulæ. In the expressions, C. G. S. units are employed, I (length), d (distance), r (radius), all in centimeters; and the values obtained for the coefficients are likewise in the same unit. To reduce these values to "henrys," the value of L should be divided by 1,000,000,000. The currents also are in C. G. S. units, and must be changed where amperes are used, by multiplying by the proper value. Mutual inductance is symbolized by M, and self inductance by L.

First. Inductance of a circuit of two long parallel copper wires of radius r, and interaxial distance d per unit of length

$$L = l\left(.5 + 2\log_{\ell}\frac{d}{r}\right).$$

When the length of the circuit is *l*, or half the length of the conductor measured around the loop, the total inductance is —

$$L = 2 l \left(.5 + 2 \log_{\epsilon} \frac{d}{r} \right)$$

Second. Coil of a single layer; l = length of coil, n = number of turns, r = radius of coil.

$$L = \frac{4 \, \pi^2 r^2 n^2}{/} \, .$$

Third. Coil of several layers; l = length of coil, R = radius of outer layer, r = radius of inner layer, n = radius of turns.

$$L = \frac{4 \, \pi^2 n^4}{3 \, l^8} (R - r) \, (R^3 - r^8).$$

Fourth. Coil in the form of a ring; A = radius of the ring, a = radius of the coil, n = number of turns.

$$L = 2 \pi n^2 (A - \sqrt{A^2 - a^2}).$$

Fifth. If a second coil be formed on the first, having m turns of wire, the mutual inductance is —

$$M = 2 \pi nm (A - \sqrt{A^2 - a^2}).$$

Sixth. Two wires wound parallel to each other, having a length l, and radii r and r', and having a distance between centers of b.

$$L = 2 l \left(.5 + \log_{\ell} \frac{b^2}{rr'}\right).$$

Seventh. Mutual inductance of two concentric coils; l = length, the outer one having m turns, the inner one n, and a radius of r.

$$M = \frac{4 \pi^2 r^2 nm}{I}.$$

Eighth. Two circles each of a radius r, parallel to each other, and separated by a distance d, have a mutual inductance of —

$$M = 4 \pi r \left[1 + \frac{3 d^2}{16 r^2} + \dots \right] \log_{\epsilon} \frac{8 r}{d} - 4 \pi r \left[2 + \frac{d^2}{16 r^2} + \dots \right].$$

402. Case 3: Effect of Capacity. — If any very carefully insulated conductor be connected to any source of electrical energy, a uniform distribution of potential rapidly takes place, all parts of the conductor presently arriving at that of the source of supply. Experiment and theory indicate that the change in the potential of the different parts of the conductor, necessary to accomplish the condition of potential equality with the source, is accompanied by the transfer of a certain quantity of electricity. If the potential of the source is greater than that of the conductor, the transfer is from the source to the conductor, while if the converse be true, the electrical movement is in the inverse direction. The amount of electricity which, under these circumstances, can be received by a body measures its "Capacity." In the C. G. S. system the capacity of a body is measured by the quantity of electricity that is absorbed during an increase of potential of one C. G. S. unit, between the body receiving the charge and that of its surroundings. The unit of capacity is the Farad, and is that amount of capacity which, when charged with one coulomb of electricity, will exhibit a difference of potential of one volt. So large a capacity as a farad exists only in imagination; for the capacity of the earth is only about .0007 farad, and that of the sun .076 farad. Practically, the Microfarad, or the one-millionth of a farad, is usually employed.

The capacity of any conductor depends upon its size and shape; and upon the size, shape, proximity, and state of insulation of neighboring bodies; and the nature of the dielectric that separates them.

Also, as electricity behaves as if it possessed elasticity, capacity is not a constant quantity, but depends upon the potential acting in the circuit. By increasing the surface of the conductor, and decreasing the distance separating it from neighboring conductors, capacity is augmented. Arrangements of conductors to attain the greatest possible capacity are called "Condensers," of which the common Leyden Jar, or a collection of metal plates separated by thin sheets of dielectric, are familiar examples. The capacity of a condenser may be determined from the formula ¹—

$$C = \frac{S}{4 \pi d},$$

in which S is the area of the plates, d the distance between them, C being the capacity in electrostatic units.

403. Suppose a simple circuit containing a condenser in series with resistance. During the first few infinitesimals of time succeeding the establishment of difference of potential at any part of the circuit, electricity flows into the line and is absorbed by the condenser. During the time of charge, the difference of potential at the terminals of the condenser gradually rises until it equals that of the generator, and then the flow of current stops. A parallel example could be drawn by imagining a steam-boiler to be connected by a long pipe to a tank, or reservoir. On opening the valve the steam will flow into the tank until the pressure in the tank equals that of the boiler, when the flow will cease. Also, the higher the boiler pressure, the greater the quantity of steam that will be forced into the tank. When the pressure is equalized no further flow takes place, excepting a slight transfer necessary to compensate for condensation or leakage. As no electric circuit is perfectly insulated, the parallel is still closer, as after the condenser is charged there still remains a slight flow to compensate for poor insulation and Clielectric leakage.

404. Now, consider the case of an alternating current circuit, under an harmonic E.M.F., that with every cycle constantly varies between a plus and minus maximum. Throughout one part of the cycle the current is gaining strength from the minus maximum to the plus maximum, and the difference of potential at the terminals of the condenser is thereby being constantly increased. Throughout the

¹ See Barker's Physics, p. 560.

other half, as the impressed *E.M.F.* is decreasing, the condenser is discharging itself into the circuit, and returning some of the energy previously absorbed. If, in the steam-boiler example, the pressure in the boiler be imagined to undergo a periodic variation, there would be backward and forward flow between the boiler and the tank, and the tank and boiler, in each cycle.

Throughout every period of any alternating circuit, a certain quantity of electricity is set in motion by the impressed E.M.F. Manifestly, if a condenser of sufficient size to absorb, under the potential of the impressed E.M.F., this quantity of electricity, the presence of such a condenser in the circuit will not effect the apparent quantity of the current. By definition, capacity is a function of the acting E.M.F., or in other words, the potential at the terminals of the condenser is proportional to the charge it contains. Hence, the potential at the condenser terminals in any such circuit is an harmonic sine function of the period of the circuit; and the condenser acts to introduce into the circuit an additional E.M.F., of which the account must be taken in a consideration of current and potential distribution.

405. The Solution of the Energy Equation for Circuit with Capacity.

C. CIRCUITS CONTAINING RESISTANCE AND CAPACITY.

As the capacity of a condenser is the amount of electricity in one conductor, when there is a unit difference of potential between the pair of conductors forming the combination, the charge q at any other potential E will be— $q = CE, \tag{167}$

C being the capacity of the condenser. The energy W expended in charging a condenser can be shown 1 to be $W=\frac{1}{2}\,q^2/C$; differentiating, — $dW=\frac{qdq}{C}\,. \tag{168}$

The total energy delivered to a circuit in a time dt is eidt. When there exist resistance and capacity but no inductance, this quantity must be spent in heat and in charging the capacity. The heat expenditure is measured by $\Re i^2 dt$. That stored in the condenser is

plainly
$$\frac{qdq}{Cdt} dt$$
; hence, the energy equation is —
$$eidt = Ri^2 dt + \frac{qdq}{Cdt} dt. \tag{169}$$

¹ Barker's *Physics*, p. 566.

With a current *i* flowing for a time *dt*, a quantity of electricity *idt* will pass into the condenser, hence—

$$idt = dq$$
, or $q = \int idt$; (70)
 $eidt = Ri^2 dt + \frac{1}{C} idt \int idt$;

therefore, dividing by *idt*,—

$$\epsilon = Ri + \frac{1}{C} \int i dt, \tag{171}$$

an equation resembling that applying to circuits containing resistance and inductance. Differentiating to get rid of the sign of integration, and transposing,—

 $\frac{di}{dt} - \frac{1}{R}\frac{de}{dt} + \frac{i}{R\bar{C}} = 0.$

Remembering that $e = E \sin \omega t$, and employing a similar method of solution to that indicated on p. 324, and neglecting the constant of integration, —

$$i = \frac{E}{\sqrt{R^2 + \frac{1}{C^2 \omega^2}}} \sin\left(\omega t + \tan^{-1} \frac{1}{RC \omega}\right)$$
 (172)

406. This equation indicates -

First. That an harmonic impressed E.M.F. in a circuit containing resistance and capacity gives rise to a current that is an harmonic sine function of the periodic time.

Second. The current is in advance of the E.M.F. by an angle of which the tangent is $1/RC_{\omega}$.

Third. When $\sin (\omega t + \tan^{-1} 1 / RC_{\omega})$ becomes unity, the current attains its maximum value, and —

$$I = \frac{E}{\sqrt{R^2 + \frac{1}{C^2 \omega^2}}}.$$
 (173)

The quantity $\sqrt{R^2+1/C^2\omega^2}$ is the apparent resistance of the circuit, termed "Impedance," often symbolized by J, and will be more fully treated in the sections on "Graphical Methods." If this quantity be substituted for R in Ohm's formula, the equation will hold true when applied to alternating currents. $1/C_{\omega}$ is the "Reactance of the Circuit."

Fourth. When C diminishes to 0, i becomes 0. Such a condition obtains when the size of the conductor is indefinitely decreased, or the thickness of the dielectric indefinitely increased.

Fifth. If R = 0, the equation reduces to

$$i = \frac{E}{1/C\omega} \sin(\omega t + 90^\circ) = C\omega E \sin(\omega t + 90^\circ), \tag{174}$$

showing a current 90° in advance of the impressed E.M.F., with a maximum value numerically equal to $C\omega E$. If the resistance of the circuit be so small as to be negligible, the above condition is attained when the condenser is short-circuited.

Sixth. If R increases to infinity, i reduces to 0, but if C increases, $\tan^{-1}\frac{1}{CR\omega}$ decreases, and at $C=\infty$ the formula becomes $i=E/R\sin\omega t$, thus reducing to Ohm's equation, with the current in phase with the impressed E.M.F. Such a condition occurs when the thickness of the dielectric is reduced to zero, and the condenser plates touch each other. The interpretation of this result is found in the statement that under such circumstances no charge, no matter how large, can produce any difference of potential between the plates. Making the condenser infinitely large is equivalent to removing it from the circuit. Compare these deductions with those derived from equation (161).

The symbol ω has been employed as an abbreviation of $2\pi n$; but this quantity is the distance traveled by the generator point B (see Fig. 207) in one second of time, when the radius of the generating circle, or amplitude, is unity. When the amplitude has any other value, it must be introduced into the above expression. As both inductance and capacity are expressed in units of length, the expressions for the reactance $L\omega$, or $2\pi nL$, and $1/C\omega$, or $1/2\pi nC$, are distances. If L and C be thought of as the radii of the generating circle, $L\omega$ and $1/C\omega$ are values of the speed at which the generating point is traveling. Mr. Kennelly has very aptly termed these values the "Inductance Speed" and the "Reciprocal of the Capacity Speed."

D. THE ENERGY EQUATION FOR CIRCUITS CONTAINING RESISTANCE, INDUCTANCE, AND CAPACITY.

407. In the energy equation for a circuit with resistance and inductance,—

 $i = \frac{E}{\sqrt{R^2 + L^2 \omega^2}} \sin\left(\omega t - \tan^{-1}\frac{L\omega}{R}\right).$

Suppose $L\omega$ to be equal to $L'\omega + L''\omega$ then —

$$i = \frac{E}{\sqrt{R^2 + (\bar{L}'\omega + L''\omega)^2}} \sin\left(\omega t - \tan^{-1}\frac{L'\omega + L''\omega}{R}\right);$$

now, for $L''\omega$ substitute $-1/C\omega$, and -

$$i = \frac{E}{\sqrt{R^2 + \left(L'\omega - \frac{1}{C\omega}\right)^2}} \sin\left[\omega t + \tan^{-1}\left(\frac{1}{CR\omega} - \frac{L'\omega}{R}\right)\right]$$

408. This equation indicates —

First. That both current and charge are simple harmonic functions, and may either lag behind the impressed E.M.F. or be in advance of it, depending as to whether $L'\omega > \text{or} < 1 / C\omega$, the algebraic sum of these quantities determining the tangent of the angular relation of the current and impressed E.M.F.

Second. If $L'\omega=1$ / $C\omega$, the two quantities neutralize each other, and the current is in phase with the E.M.F.; the equation then reduces to —

 $i = \frac{E}{R} \sin \omega t.$

It is thus evident that a judicious relation of inductances and capacities may be employed to adjust the angular relation of current and *E.M.F.* in any desired fashion.

Third. When the sine becomes unity, the maximum value of the current is reached, as —

$$I = \frac{E}{\sqrt{R^2 + \left(L'\omega - \frac{1}{C\omega}\right)^2}}.$$

409. The quantity —

$$\sqrt{R^2 + \left(L'\omega - \frac{1}{C\omega}\right)^2}$$

is the "Impedance of the Current," and behaves like a resistance; for when this quantity is substituted for R in Ohm's formula, it applies perfectly to alternating circuits. The quantity $L'\omega - \frac{1}{C\omega}$ is the "Reactance," to be more fully treated in the paragraphs on "Graphical Methods."

Fourth. Either R, L, or C may vary from 0 to ∞ , and resulting current determined by the principles already indicated as applying to the limits of these quantities.

- Fifth. In a circuit containing resistance, inductance, and capacity, the impressed E.M.F. is expended in balancing three quantities: the heat losses, measured by RI^2 ; the reactance due to inductance, estimated by $L\omega I$; and that due to capacity, equal to $I/C\omega$. It is easy to see that $I/C\omega$ can have such a value as to cause this component of the E.M.F. to exceed, numerically, the impressed E.M.F.
- 410. Graphical Methods. While the preceding paragraphs have given an outline of the algebraic treatment of alternating current circuits essential to an elementary conception of the subject, the same problems may be handled geometrically by graphical methods. In many cases, these methods are far simpler than analytical solutions, and always present the advantage of appealing directly to the eye in such a manner as to insure immediate detection of error. *Electrographics* has already received considerable attention from many eminent electricians, to which the reader is referred for more detailed descriptions. As alternating current problems are most conveniently handled by the use of vectorial algebra, it is advisable to define the elementary uses of vectors before proceeding to the consideration of the problems.
- 411. Vector Quantities. When the symbols of ordinary algebra are assigned a definite meaning, they usually become scalar quantities, that is, quantities which simply have a numerical value. or are mere numbers. When dealing with geometrical magnitudes, it is not only necessary to consider the numerical value of various lines, but also to consider the direction of each line. A vector quantity, therefore, is one in which the direction of the quantity is considered as well as its scalar magnitude. Direction is considered as positive when it is reckoned upwards, and negative when it is downwards from a horizontal base line. Right-handed rotation is negative, and left-handed positive. Suppose AB, No. 1, Fig. 208, "Diagram of Operations on Vectors," to be a straight line of two units in length, inclined at an angle of 35° to the base line AC. Let DE, No. 2, be any other straight line inclined at an angle of 75° to the same base and of four units in length. These lines are plain vectors, of which the scalar magnitudes are, respectively, two and four units.

¹ See Fleming's Alternating Current Transformer; Blakesley's Alternating Currents; Kapp's Dynamos, Alternators, and Transformers; Gerard's Leçons sur L'Électricité; Kennelly Trans. A. I. E. E., April, 1893, and Electrical World, vol. 22, p. 306; vol. 23, p. 17; Rimmington, Electrical Review for 1893, p. 664; Emmett's Alternating Current Wiring.

Fig. 208. Diagram of Operations on Vectors.

- 412. The addition of vectors is accomplished by joining them end to end and then connecting their extremities; the line connecting the extremities, being the vector sum of the two vectors to be added. Thus, to add \overline{AB} and \overline{DE} , draw $\overline{A'B'}$, as in No. 3, parallel and equal to \overline{AB} , and from B' draw $\overline{B'E'}$ parallel and equal to \overline{DE} and join $\overline{A'E'}$. Then $\overline{A'E'}$ in direction and magnitude is the sum of \overline{AB} and \overline{DE} . In this case \overline{AB} plus \overline{DE} equals 5.7, and is inclined to the base line at an angle of 62° 30′.
- 413. Similarly, subtraction is performed. Thus, to perform the operation $\overline{DE} \overline{AB}$, draw, as in No. 4, $\overline{D'E'}$ equal and parallel to \overline{DE} . From E' lay off $\overline{E'A'}$ equal and parallel to \overline{AB} . Join $\overline{D'A'}$. Then $\overline{D'A'}$ measured positively is the desired result; in this case $\overline{D'A''} = 2.8$, and is inclined to the base at 101° 30'. To perform the operation $\overline{AB} \overline{DE}$, draw, as in No. 5, $\overline{A'B'}$ equal and parallel to \overline{AB} . From B' draw $\overline{B'E'}$, negatively, equal and parallel to \overline{DE} . Join $\overline{A'E'}$. In this case $\overline{A'E'}$ has the same numerical value as in No. 4, but it is a negative quantity, and not a positive one, as in No. 4. Also in No. 4 the angle of inclination is positive and 101° 30', while in No. 5 it is negative and is 78° 30'.
- 414. Multiplication of vectors is performed by multiplying the scalar magnitudes and taking the sum of their angular directions. Thus, the product of \overline{AB} and \overline{DE} is the plain vector \overline{FG} , No. 6, equal to $2\times 4=8$ units in length, and inclined $35+75=110^\circ$ to the base line.
- 415. Conversely, division is performed by dividing the scalar magnitudes, and taking the difference of the angles. Thus, in No. 7, DE / AB = 4/2 = 2, inclined at an angle of $75^{\circ} 35^{\circ} = 40^{\circ}$ to the base line. Also, in No. 8, AB / DE = 2/4 = .5, inclined at an angle of $35^{\circ} 75^{\circ} = -40^{\circ}$.
- 416. The reciprocal of the vector is a plain vector having a scalar magnitude equal to the reciprocal of the scalar of the original vector, but inclined to the base line at the same angle as the original vector.
 - 417. The solution of the following problems will now be given:
 - 1. Composition and resolution of electro-motive forces.
- 2. Electrical properties of simple circuits with one resistance and one inductance in series.
 - a. The resistance variable.
 - b. The inductance variable.

- 3. Electrical properties of simple circuits with several resistances and inductances in series.
- 4. Electrical properties of simple circuits with one resistance and one capacity in series.
 - a. Resistance variable.
 - b. Capacity variable.
- 5. Electrical properties of simple circuits with several resistances and capacities in series.
- 6. Electrical properties of simple circuits with resistance, inductance, and capacity in series.
- 7. Electrical properties of simple circuits with several resistances, inductances, and capacities in series.
- 8. Electrical properties of circuits with resistance, inductance, and capacity in multiple arc.
 - 9. Electrical properties of mutual inductive circuits.
- 418. 1. Composition and Resolution of Electro-Motive Forces. For continuous current circuits it has been shown that the effective E.M.F. was equal to the algebraic sum of all the E.M.F.s acting on the circuit. For alternating currents it must now be proved that a similar proposition holds true, provided the vector, or geometrical sum, is taken.

In "Diagram of Composition of E.M.F.s," Fig. 209, suppose the line \overline{AB} represents one E.M.F. acting on a circuit, and $\overline{\overline{AB'}}$ represents another, the two E.M.F.s to have the same period, and separated by angle BAB'. Draw BB' and B'B' respectively equal and parallel to AB' and AB, forming the parallelogram AB'B"B. Draw the diagonal \overline{AB} ." Since \overline{BB} " is equal and parallel to \overline{AB} , the projection of BB" on AC is equal to the projection of AB; that is, y'y'' = Ay. The projection of \overline{AB} is Ay', hence the sum of the projections of \overline{AB} and $\overline{AB'}$ is Ay'', and, from the geometry of the figure, this is equal to the projection of AB", or the projection of the diagonal of the parallelogram. Suppose the parallelogram AB'B" B revolves about A as a center, all of the lines retaining the same angular relation. The sum of the projections of \overline{AB} and $\overline{AB'}$ will, in every position, be the projection of $A\overline{B''}$; and as these lines revolve harmonically, they will trace three sine curves, indicated by the heavy line, the light line, and the dotted line, numbered I, II, III. As $\overline{BB''}$ is equal and parallel to $\overline{AB'}$, it will be at once perceived, by the previously outlined rules for vector quantities, that $\overrightarrow{AB''}$ is the vector sum of \overrightarrow{AB} and $\overrightarrow{AB'}$; hence the sine curve III, is the vector sum of I and II, and at all points represents the resultant of the harmonic E.M.F.s acting on the circuit. Should more than two E.M.F.s act on a circuit, the same train of reasoning may be extended by selecting any two E.M.F.s and combining them into a single, resultant curve. This resultant and any other E.M.F. may then be united into a third resultant, and the process repeated until the final curve is obtained. In a like manner it can be shown that any number of E.M.F.s of varying periods may give rise to a single resultant E.M.F.s, while the converse of this proposition is equally obvious; namely, that a single E.M.F.s may be resolved into any two components. The similarity between this construction and

Fig. 209. Diagram of Composition of E.M.F.s.

that employed by the science of mechanics, in the parallelogram of forces, is obvious. If, therefore, in a complex circuit, the E.M.F.s in the various branches are given in magnitude and direction, the resultant E.M.F., or that which it is necessary to impress on the circuit, is readily deducible. Given the electrical properties of the various branches of a compound circuit and the several currents required, the impressed E.M.F. may be decomposed into components having magnitudes and directions suitable to produce the desired currents in each branch; or, finally, given the resultant E.M.F., and all but one of the components, the missing component may be found, and the electrical relation of the circuits adjusted to suit. In the solution for the Energy Equation, as applied to circuits containing resistance, inductance, and capacity, it was shown that the energy delivered to the circuit split into three parts, the RI component in phase with the current; $L\omega I$, 90° behind the current,

and $I/C_{\rm in}$ 90° in advance. As these components may assume a great variety of values, and as in multiple arc circuits other phase relations may obtain, it is easy to see that the maximum values of the components may be greater, equal, or less (numerically), than that of the resultant. The geometrical construction will always, in a clear and simple manner, elucidate any case of this description.

419. 2. Electrical Properties of Simple Circuits with One Resistance and One Inductance in Series. — Referring to Fig. 207, "Diagram of Harmonic Motion," assume that the full line KRMSO represents the current curve due to an harmonically varying E.M.F. in a simple circuit having resistance and self-induction. The counter E.M.F., due to self-induction of the current, originates in the varying

magnetic field set up by the changing current, and is directly proportional to the rate of change of this field. The rate of variation of the current, at any time, is measured by a tangent to the curve at the point of time under consideration. A simple inspection of the curve indicates that the maximum value of this tangent

occurs at the points O and π , while at $\pi/2$ and $3\pi/2$; the tangent is horizontal, and its value 0; therefore the points K and M correspond to the maximum ordinates of the curve of E.M.F. due to inductance, indicating that this curve is similar to the current curve in period and shape, but lags behind it at an angle of 90°. Such a curve is represented by the dotted line cutting the axis of X 90° behind the current curve. It is, therefore, possible to represent geometrically the relations of an alternating current circuit containing resistance and inductance, by a right-angle triangle. In Fig. 210, "Diagram of E.M.F. in a Simple Circuit Containing Resistance and Inductance," draw a line horizontally from A to B in a positive direction. At A lay off AB to any convenient scale, equal numerically to R. At B draw BC perpendicularly and positively to AB, and lay off BC to the same scale of a value equal to $L\omega$. Draw AC, then AC to the

same scale represents the $\sqrt{R^2 + L^2}\omega^2$. Considering the equation $I\sqrt{R^2 + L^2}\omega^2 = E$, it is seen that the impressed *E.M.F.* may be divided into two components:—

First. The component acting in the direction of the current and expended in overcoming the ohmic resistance. This component is often termed "The Power Electro-motive Force," and is numerically equal to RI.

Second. "The Reactive Electro-motive Force" in quadrature with the current, and employed in balancing the counter E.M.F. of inductance, and numerically equal to $L\omega I$.

420. Reactance. — The quantity L_{ω} , which is the measure of this effect, has recently been denominated "Reactance" by the American Society of Electrical Engineers, and is defined as "numerically equal to the component of the impressed E.M.F. at right angles to the current, divided by the current." The reactive E.M.F. in any circuit may arise from inductance, mutual inductance, capacity, or from the introduction of a counter electro-motive force due to any exterior cause; and the impressed E.M.F. may always be regarded as the vector sum of two components, one of which transmits power, and the other which balances "reactance." In circuits containing mutual inductance, the reaction due to the current in the secondary coil may be resolved into two components, one in the same direction as the primary, and the other at right angles to it, thus obeying the foregoing definition. Some objection to this broad use of the term "reactance" has been made by Continental electricians, who hold that the employment of words ending in "ance" should be restricted to apply to the constants of a circuit; thus resistance, conductance, permittance, are invariables for any given circuit; while under the above definition, "reactance" would vary when applied to circuits containing motors or mutual inductance. For such circuits all confusion may readily be avoided by using the term "equivalent reactance," or equivalent resistance in cases where such quantities can be variable.

Reactance is measured in ohms. In many respects it closely resembles resistance, but no power is expended in overcoming reactance, as it is at right angles to the current; and, therefore, the product of this *E.M.F.* component and the current is zero watts. As will presently be shown, reactance may arise from other influences than simple inductance. From an inspection of the diagram,

it will be seen that reactance tends to produce a phase difference between the impressed electro-motive force and the current. If θ represents this angle,

$$\tan \theta = -\frac{BC}{AB} = -\frac{\text{Reactance}}{\text{Resistance}} = -\frac{L\omega}{R},$$

the current being in advance of the impressed electro-motive force when θ is positive, and lagging behind it when it is negative.

421. Impedance. — The quantity $\sqrt{R^2 + L^2}\omega^2$, represented by the hypothenuse of the triangle, as the vector sum of the resistance and the reactance, has been termed "The Impedance of the Circuit," denoting the total opposition to transfer experienced by the current. In a simple circuit containing only resistance and inductance, the power E.M.F. is equal to the ohmic E.M.F., or RI, and the reactive E.M.F. is equal to the inductive E.M.F., or $L_{\omega}I.$ This may be indicated in the diagram by simply changing the scale sufficiently to introduce the numerical factor I. As an example, assume in the diagram, Fig. 210 — $\overline{AB} = R = 40$ ohms.

 $\overline{AB} = R = 40 \text{ ohms},$ $\overline{BC} = L = .08 \text{ henry},$ n = 60, $\omega = 377$;

then $L \omega = 2 \times 3.1415 \times 60 \times .08 = 30.16 = \overline{\rm BC}$, and the impedance AC equals $\sqrt{40^2 + 30.16^2} = 50.095$ ohms, say 50 ohms. With a maximum impressed E.M.F. of 1000 volts the maximum current will be $\frac{10.00}{50^0} = 20$ amperes. The power $E.M.F. = 40 \times 20 = 800$ volts. The reactive $E.M.F. = 20 \times 30.16 = 600$ volts, while the current will lag behind the impressed E.M.F. by an angle whose tangent is $\frac{3.0\cdot16}{40} = .755$, or 37° . The arrows indicate the direction of the forces.

Sec. a. — The Resistance Variable.

422. Suppose that in any given circuit E and L remain constant, while R becomes variable, what is the effect on I? With a continuous current, I varies directly as R; but in an alternating current circuit, I varies as the vector sum R and $L\omega$, or as $\sqrt{R^2 + L^2\omega^2}$. From inspection, it is evident that when R = 0, $I = E/L\omega$. Therefore, when R vanishes, the current can never attain a greater value than $E/L\omega$. When $R = \infty$, I becomes 0; thus these values indicate the

limit of I in both directions. To determine the successive values of I between these boundaries, construct a triangle of energy, as shown in Fig. 211, "Diagram of Current Values in Circuits containing Resistance and Inductance with Variable Resistance," by drawing \overline{AB} positively and equal to RI, BC perpendicularly to \overline{AB} positively and

Fig. 211. Diagram of Current Values in Circuits containing Resistance and Inductance with Variable Resistance.

equal to $L\omega I$, then $\overline{AC} = I \times \sqrt{R^2 + L^2\omega^2}$. Divide RI by R to find the value of I. Suppose this to be \overline{AD} , then by similar triangles —

$$\overline{\mathrm{DE}} = \frac{L\omega I}{R}$$
, and $\overline{\mathrm{AE}} = I \times \frac{\sqrt{R^2 + L^2\omega^2}}{R}$.

423. The maximum value of I is $E/L\omega$; and when the current has this value, the power component of the impressed E.M.F. is 0, and the current is 90° behind the impressed E.M.F. When R is infinitely large, the current is infinitely small, the angle of lag

becomes infinitely small, and the vanishing current coincides with the impressed E.M.F. From A draw AF perpendicularly to $\overline{AC} = E/L\omega$. By its magnitude and direction, this line represents the maximum value of the current. Also the point A represents in direction and magnitude the vanishing value of the current, and coinciding with \overline{AC} represents the minimum value of the current. All other values must lie between these two. On \overline{AF} as a diameter, draw a semicircle AGF. By geometry, all triangles drawn as ADF on \overline{AF} , and limited by the semicircle AGF, are right-angled at D; but the maximum and minimum limits of these triangles are the maximum and minimum limits of the current values, hence all current values may be represented by the varying values of the vector \overline{AD} . As a concrete example, assume —

$$R = 2.5 \text{ ohms},$$
 $\omega = 314.15,$ $I = 4 \text{ amperes},$ $L\omega = 1.25,$ $RI = 10,$ $L = .004 \text{ henry},$ $L\omega I = 5;$

then,

$$E = I\sqrt{R^2 + L^2\omega^2} = 4\sqrt{2.5^2 + 1.25^2} = 11.18.$$

$$\frac{E}{R} = \frac{11.18}{2.5} = 4.47 \; ; \; \frac{E}{L\omega} = \frac{11.18}{1.25} = 8.95 \; ; \; \frac{RI}{L\omega} = \frac{10}{1.25} = 8.$$

$$\tan \theta = \frac{L\omega I}{RI} = \frac{L\omega}{R} = \frac{5}{10} = .5 = 26^{\circ} 34'$$

$$90^{\circ} - \theta = 63^{\circ} 26'.$$

Sec. b. — Inductance Variable.

- **424.** When L varies, the current limits are 0 when L is infinity, and E/R when L is 0, the current equation then reducing to Ohm's formula. By a similar train of reasoning to that employed in Sec. a, it is easily shown that when L is variable, the current variation is given by a vector drawn from point E in the previously mentioned diagram, and limited by a semicircle drawn on AE. This is indicated in the illustration by dotted lines. The arrows indicate the direction of the current variation in both Secs. a and b.
- 425. 3. Electrical Properties of Simple Circuits with Several Resistances and Inductances in Series. In the case of a circuit containing a number of distributed resistances and inductances, the

¹ This proposition was first demonstrated by Messrs. Bedell and Crehore, see Alternating Currents, p. 223.

impedance is calculated by obtaining the vector sum of all resistances and the sum of all inductances. This is most conveniently done diagrammatically, as indicated in Fig. 212, "Diagram of E.M.F. in a Circuit containing Several Resistances and Inductances in Series." There are two methods, each attaining the same result, though the first to be described has the advantage of more clearly featuring all points of the circuit, and indicating more explicitly the distribution of currents and potentials. Assume as an example a

 $\sqrt{R'^2 + L'^2\omega^2} = \sqrt{3^2 + 8.29^2}$ Fig. 212. = 8.82 = J'. Fig. 212. = and Inductances in Series.

the impedance of R' and $L'\omega$.

Proceed in a like manner with R'' and $L''\omega$, obtaining point e, then c''e will be the impedance of R'' and $L''\omega$, or J''=13.45. Join a and e. Then \overline{ae} will represent $J_n=29.05$, the impedance equivalent to the vector sum of all resistances and all inductances. The same result may be gained as shown by the dotted lines, by which the sum of R+R'+R'' is laid off horizontally, positively, as ab+bc+cd, then the sum of $L\omega+L'\omega+L''\omega$ is laid off vertically, positively, as

db'' + b''d' + d'e, thus reaching the same point e as in the previous construction, obtaining $J_n = 29.05$, as before. The angles of lag of the current, and the components of the E.M.F., are calculated in the manner already indicated. By the latter method, the total impedance of the circuit obtained is the same as that given by the former; and while more speedy of execution, the former gives a much clearer and more vivid idea of the component parts of the circuit.

- 426. 4. Electrical Properties of Simple Circuits with one Resistance and one Capacity in Series. Turning to Fig. 207, and remembering that the tangent to the current curve KRMSO has a maximum value at the points O and π , it is evident that at these points there will be the greatest difference of potential exerted on the capacity of the circuit, and a maximum current will flow. It is also evident that the condenser current will oppose the line current; for as the current in the line decreases, the charge in the condenser will flow out, tending to continue the line current by the amount of charge due to the capacity, while, when the current is increasing, the condenser will absorb electricity, thus tending to reduce the line flow.
- 427. As an aid to the conception of the rôle played by a condenser, and its effect to introduce an E.M.F. 90° in advance of the impressed E.M.F., consider the mechanical analogy of the common hydraulic elevator supplied with an air compression tank. The elevator is operated by a piston traveling to and fro in a cylinder. As the elevator falls, water is forced into the tank, and the air compressed; while, as it rises, the pressure of the compressed air tends to balance the weight of the car. To stretch the analogy a little, suppose the elevator to make regular trips, thus moving harmonically, and suppose that when it is at mid-stroke, the air in the tank is at atmospheric pressure. The motion of the elevator will be swiftest at mid-stroke and zero at either end, and may typify the current curve; the top, middle, and end of the stroke corresponding to the points $\pi/2$, π , and $3\pi/2$, of Fig. 207. The counter E.M.F. set up by the condenser has its analogy in the air pressure in the tank, while the charge is represented by the amount of water forced in. When the car is at mid-stroke, it is moving most rapidly, the air pressure is zero, and the water occupies one-half the space devoted to it in the tank. This state corresponds to the points O and π in Fig. 207.

As the car falls, the water is forced into the tank, the air pressure increases, the tank is filled, and the motion of the car decreases to zero; corresponding to a quarter period on the curve from O to $\frac{\pi}{2}$. At the points O and π the charge and counter E.M.F. are zero, and the current is a maximum. Between O and $\pi/2$ the current decreases; the charge and counter E.M.F. increase. From mid-stroke to the end the increasing air pressure opposes the fall of the car,

as the increasing counter Power E.M.F. R I E.M.F. opposes the cur-Resistance R = 40 ohms rent, while the increasing volume of water typifies Fig. 213. Diagram of E.M.F. in a Simple Circuit Containing Resistance the augmenting condenser and Capacity in Series. charge. As the air pressure balances the car, it is evidently equal, and opposite to it, and must be 90° in advance. The effect, therefore, of the condenser is to introduce an E.M.F. 90° in advance of the impressed E. M. F. condition is indicated in the diagram by the broken line III or VWYZ. The same relation is shown algebraically in the solution of the General Energy Equations. Thus, Capacity introduces a Reactance measured by $-\frac{1}{C_0}$. Remembering the negative nature of this Reactance, the triangle of E. M. F. may be constructed vectorially, as already indicated in the sections applying to Resistance and Impedance.

428. In Fig. 213, "Diagram of Electro-Motive Force in a Simple Circuit containing Resistance and Capacity in Series," draw $A\bar{C}$ horizontally and positively equal to R. From C draw $B\bar{C}$ negatively, and to the same scale equal to the quantity $-\frac{1}{C\omega}$. Draw

 \overline{AB} , then \overline{AB} represents $\sqrt{R^2 + \frac{1}{C^2 \omega^2}}$. Adopting a similar notation to that employed in the diagram of electro-motive force in a simple circuit containing resistance and inductance in series, the horizontal

line $A\overline{C}$ measures the resistance of the circuit, and by a simple change in scale, to introduce the factor I, will measure that component of the impressed electro-motive force which is in phase with the current, usually denominated "Power Component." The line \overline{BC} measures the reactance $-\frac{1}{C\omega}$, or the reactive component of the impressed electro-motive force $-I/C\omega$; while \overline{AB} measures the $\sqrt{R^2+\frac{1}{C^2\omega^2}}$, and is the impedance of the circuit. When the factor I is introduced in the two sides of the triangle, the hypothenuse measures the total energy of the circuit EI. To illustrate by a concrete example. Suppose in the diagram the same value for the resistance R, 40 ohms, and n=60 as was assumed in the diagram of electro-motive force in a simple circuit containing resistance and inductance, then $\omega=377$. Let C equal .00000425 farad, then $-\frac{1}{C\omega}=-62.6$ and $\sqrt{R^2+\frac{1}{C^2\omega^2}}=\sqrt{40^2+62.6^2}=74.3$ ohms. The properties of impedance and reactance as given in this diagram are similar to those described in

 $=\sqrt{40^2+62.6^2}=74.3$ ohms. The properties of impedance and reactance, as given in this diagram, are similar to those described in the section treating of resistance and inductance in series; namely, the impedance of the circuit is the effective resistance or opposition encountered by the current, and which, when substituted for R in Ohm's law, renders his formula equally applicable to the alternating current circuits. The reactance of the circuit also possesses the same properties as indicated in the previous example; remembering, however, that the effect of inductance is to introduce a positive reactance, while the effect of capacity is to introduce one which is negative. Thus, it is apparent that capacity tends to oppose and neutralize inductance, and by proper proportioning of these quantities in any circuit, one may be so designed as to counteract and neutralize the other.

Sec. a. — Resistance Variable. Sec. b. — Capacity Variable.

429. In the paragraph treating of electrical properties of simple circuits with one resistance and one inductance in series, two sub-headings were given, indicating a method of geometrical construction whereby the different values of the current could be ascertained when either the resistance or the inductance in the circuit was supposed to vary from zero to infinity. As capacity has

been shown to introduce a negative reactance in the circuit, it is evident that the same construction may be used to determine the varying current in a circuit containing resistance and capacity, by constructing a diagram precisely similar to the one already alluded

to, in which the reactance of the circuit is laid off negatively instead of positively; thus, under these circumstances, in a circuit containing resistance and capacity, when these quantities vary from zero to infinity, varying values of the current will be found as vector quantities bounded by semicircles drawn upon diameters having the values of $E/1/C_{\omega}$ when R is variable, and upon a di-

 $R^{2} + 1 / C^{2}\omega^{2}$ ameter equal to when C is variable.

In a construction so obvious it is not necessary to repeat the diagram.

430. 5. Electrical Properties of Simple Circuits with Several Resistances and Capacities in Series. -In the case of a number of resistances and capacities in series, motive force may be constructed as indi-

cated in No. 3, bearing in mind the negative value of the reactances, and drawing the vectors representing them negatively downwards. In every other particular the construction is precisely the same as that outlined in No. 3, and the result may be obtained by the directions there given.

431. 6. Electrical Properties of Simple Circuits with Resistance, Inductance, and Capacity in Series. - To treat this case, it is requisite to recollect that the reactance of the circuit must be the vector sum of the positive and negative values of the two reactances developed by the inductance and the capacity. The case is illustrated in Fig. 214, "Diagram of Electro-Motive Force in a Simple Circuit containing Resistance, Inductance, and Capacity in Series," by assuming the values given in the previous examples, Nos. 2 and 4, namely:—

$$R = 40,$$
 $L\omega = 30.16,$ $N = 60,$ $1 / C\omega = 62.6,$ $\omega = 377.$

From any point B, draw $\overline{\rm BD}$ perpendicularly and positively equal to $L_{\omega}=30.16$. From D draw $\overline{\rm DC}$ negatively downwards equal to $-1/C_{\omega}$. For a certain distance $\overline{\rm DC}$ will coincide with $\overline{\rm DB}$, but as $1/C_{\omega}$ is greater than L_{ω} , $\overline{\rm CD}$ will be longer than $\overline{\rm DB}$. The difference, BC, will be equal to the vector sum of $L_{\omega}-\frac{1}{C_{\omega}}=30.16$ -62.6=-32.44.

From B draw \overline{BA} horizontally and equal to R, in this case equal to 40. Draw \overline{AC} , then the vector \overline{AC} is equal to $\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}$.

In this diagram, as it is constructed, the vector sum of the three quantities $R + L\omega - \frac{1}{C\omega}$ has been obtained, which is evidently the impedance of the circuit in question. As in the previous diagrams, the horizontal line \overline{AB} represents the resistance, or by a change of scale sufficient to introduce the factor I, represents the power component of the impressed electro-motive force. The vertical line \overline{BC} represents the net reactance of the circuit, or the vector sum of the positive reactance due to impedance and negative reactance due to capacity; while \overline{AC} represents the impedance of the circuit, or the impressed E.M.F. when the factor I is introduced.

432. 7. Electrical Properties of a Simple Circuit with Several Resistances, Inductances, and Capacities in Series. — By the principles already laid down, it is evident that where a number of resistances, inductances, and capacities are joined in series in a single circuit, the solution of the problem may be directly obtained by constructing an appropriate triangle of electro-motive forces, giving the vector sums of all the quantities producing impedance. Either of the methods given in No. 3 may be used, care being taken

to attribute to each vector its appropriate direction, positively and negatively.

433. 8. Electrical Properties of Circuits with Resistances, Inductances, and Capacities in Multiple Arc. — In the previous chapter it has been shown that in the case of a continuous current, the total resistance of a number of branch circuits joined in multiple arc is given by the reciprocal of the sum of the reciprocals of all the resistances. It has been shown that Ohm's formula applies to alternating current circuits when the apparent resistance or impedance of the circuit is substituted for R in the ordinary formula; so, in the case of alternating currents when traversing circuits in multiple arc, if for R the impedance of the various circuits be substituted, a correct solution is immediately arrived at. Therefore if, in accordance with the principles already laid down, the impedances of a number of multiple arc circuits be determined, and the sum of the reciprocals of these impedances be obtained, the total impedance of the circuit will be the reciprocal of this sum. To illustrate the case by a concrete diagram, suppose in Fig. 215, "Diagram of Electro-Motive Forces in a Complex Circuit containing Several Resistances, Inductances, and Capacities in Parallel," that G represents the diagram of the circuit. Here X is the generator to which five circuits, A, B, C, D, and E are joined in multiple arc. The circuit A has a simple resistance of 60 ohms; the circuit B has a resistance of 30 ohms in series with an inductance of .06 henry; the circuit C has a simple capacity of 13 mf.; the circuit D has a resistance of 50 ohms in series with a capacity of 5 mf., and an inductance of .18 henrys. The circuit E has a simple inductance of .09 henrys. To determine the total inductance of the circuit, assume any base line as ax. On this base line lay off \overline{ab} equal to R, equal to 60. As there is no inductance, the impedance in this circuit $J_A = 60.$

At any other point on the base line, construct a triangle of the electro-motive forces for the second circuit B, by laying off $c\overline{d}=R=30$; \overline{de} vertically and positively $=L\omega=45.24$. Join \overline{ce} to obtain the impedence $J_B=54.27$. Proceed in a like manner with the remaining circuits, C, D, and E, obtaining the inductances—

$$J_c = 102.02,$$
 $J_D = 138.7,$ $J_E = 67.86.$

¹ The frequency n in this example is 120 per second.

Flg. 215. Diagram of E.M.F.s in a Complex Circuit with Several Resistances, Inductances, and Capacities in Paralls.

Each of these are plain vectors. Obtain now the reciprocal of each one, remembering that the reciprocal of a vector is a plain vector having a scalar magnitude equal to the reciprocal of the original vector and lying in the same direction. Thus,—

the reciprocal of
$$J_A=.0166$$
, the reciprocal of $J_D=.0072$. $J_B=.0183$, $J_G=.0098$,

Assume any point, a', and draw $\overline{a'b'}$ parallel to \overline{ab} , and make it to any convenient scale equal to the reciprocal f_A .

From b' draw $\overline{b'e'}$ parallel to \overline{ce} , making $\overline{b'e'}$ equal to the reciprocal J_B . From e' draw $\overline{e'g'}$ parallel to fg, making $e'\overline{g'}$ equal to the reciprocal of \overline{fg} . From g' draw $\overline{g'j'}$, parallel to \overline{kj} , making it equal to the reciprocal of J_D . From j' draw $\overline{j'i'}$ parallel to \overline{ml} , making it equal to the reciprocal of J_E . Join the points, a' and i', then the line a'i' will, in direction, represent the resultant electro-motive force acting in the circuit, and in magnitude will be the sum of the reciprocals of all the impedances in circuit. Obtaining the reciprocal of this sum, in this particular case equal to 30.5, the total impedance of the circuit is given as 30.5 ohms.

The phase of the impressed electro-motive force, with reference to the currents in the various branches or parts of the branches, may be found by the previously given rules. The direction of the arrows in the diagram indicates the direction of the current in the various parts of the circuit.

434. Method of Equivalent Resistance and Inductance. — When a number of circuits in multiple arc are acted upon by an electro-motive force, it is possible, theoretically, to replace the several resistances, inductances, and capacities, by an equivalent resistance and inductance, remembering that a capacity is equivalent to a negative inductance. The equivalent resistance and inductance would be such a resistance and inductance as would cause the same current (both in magnitude and phase) to flow in the main leads, as would pass when the several parallel circuits were connected. The substitution of such an equivalent inductance and resistance evidently produces no change in the main circuit, and could displace the branch circuits without producing any variation, either in magnitude or in phase, in the original current. The employment of such a

hypothetical substitution as this simplifies, in some cases, the solution of problems in alternating currents, when applied to a number of branch circuits. The application of this method is a direct cor-

Fig. 216. Diagram of the Method of Equivalent Resistance and Inductance.

ollary to the proposition of Art. 422, and can be, perhaps, most clearly described by the use of an example. Suppose in Fig. 216 the generator G supplies two leads A and A', extending from the generator to a center of distribution. From this point suppose four

circuits B, C, D, and E to be placed in parallel across the leads, and let each circuit be respectively denominated by its appropriate letter. Let the frequency be 159.15, so that $\omega = 1000$. For the circuit B:—

$$R_B = 3$$
 ohms, $L_B = .002$ henry, $L_B \omega = 2$.

For the circuit C:-

$$R_c = 1.5$$
 ohms, $L_c = .0043$ henry, $L_c \omega = 4.3$.

For the circuit D:-

$$R_{\scriptscriptstyle D}=2.5$$
 ohms, $C_{\scriptscriptstyle D}=.00006$ microfarad, $C_{\scriptscriptstyle D}\,\omega=.06$, $1\,/\,C_{\scriptscriptstyle D}\,\omega=16.67$.

For the circuit E:-

$$R_E = 1.5$$
 ohms, $C_E = .00019$ microfarad, $C_E \omega = .19$, $1 / C_E \omega = 5.26$.

From the above data the impedance of each branch circuit may be directly calculated, as,—

$$J_B = 3.60,$$
 $J_C = 4.56,$ $J_D = 16.72,$ $J_E = 5.47.$

Now, assume any convenient electro-motive force to act at the center of distribution, uniformly affecting all of the branch circuits. For this purpose it is very convenient to assume 100 volts, as then all the quantities to be derived from the solution will be in percentage, and may be conveniently and easily handled. With the assumption of 100 volts as the electro-motive force, calculate from the impedance as above obtained, the currents in each of the branches, obtaining,—

$$I_B = 27.8,$$
 $I_C = 21.9,$ $I_D = 5.98,$ $I_E = 18.2.$

Now, referring to the diagram, draw any line AB to any convenient scale, making \overline{AB} equal to 100 volts. At A lay off \overline{Ac} , making the angle BAc equal to $\tan^{-1}\frac{L_B\omega}{R_B}$. If the line AB represents the electro-motive force, then the line Ac is equal to I_BR_B , and the line \overline{cB} is equal to $L_{B^{\omega}}I_B$. In a similar manner construct other triangles AcB, AgB, and AhB, remembering that in circuits containing inductance the angle θ must be laid off from the line of electro-motive force negatively, while in circuits containing capacity it must be laid off positively. From what has previously been demonstrated, it is obvious that the points e, c, B, h, g, and A will lie on the circumference of a circle drawn upon \overline{AB} as a diameter. On each of the lines \overline{Ac} , \overline{Ae} , \overline{Ag} , and \overline{Ah} , lay off \overline{Ad} , \overline{Af} , \overline{Ak} , and Ai, respectively,

equal to the currents in each of the branches, or in other words, divide these lines by the resistance in each branch. The lines Ad, \overline{Af} , \overline{Ak} , and \overline{Ai} , will then represent, in direction and magnitude, the currents in each of the branch circuits. From what has previously been shown, it is evident that the vector sum of all the currents would be equivalent to the resultant current, or the current in the main lines A, A'. To obtain this resultant current select in the diagram any current vector as \overline{Af} . From the point f draw a line parallel to the next current vector \overline{Ad} , and lay off \overline{fb} equal to \overline{Ad} . From the point b draw \overline{bm} parallel and equal to \overline{Ai} . From the point m draw \overline{mn} equal to \overline{Ak} . The broken line Afbmn represents the vector addition of all the lines representing the currents, or in other words, forms a polygon of currents. This construction is parallel to the polygon of forces in mechanics. To find the resultant current, namely, the vector sum of all the component currents, draw \overline{nA} , thus completing the current polygon. Then the line $n\bar{A}$ will represent, both in direction and magnitude, the current in the main leads. Prolong $n\bar{A}$ until it intersects the circumference drawn upon the line AB at O. Then, evidently, the lines AO and OB represent respectively the product of the current in the main leads by such resistance and such inductance as is equivalent to the vector sum of all the inductances acting in the branch circuits, or $\overline{AO} = RI_A$ and OB = $L_{\omega}I_{A}$. By dividing these lines by the current, the respective desired equivalent resistance and inductance is immediately obtained. In this particular example the current in the main leads, —

 $I_{\rm A}=39.4, \qquad RI_{\rm A}=94.3 \qquad R=2.27={\rm equivalent\ resistance}.$ $L\omega I_{\rm A}=33, \qquad L\omega=.838, \qquad L\omega /\omega=.000838={\rm equivalent\ inductance}.$

The tangent of the angle of lag is obtained in the usual manner. 435. By this method the currents in each of the branch circuits, and the equivalent resistance and inductance necessary to produce in the main leads the same current as would flow with all of the parallel circuits working under the given conditions, are obtained. The assumption, however, has been made of an electro-motive force of one hundred volts. If, now, any other electro-motive force is operative, it is simply necessary to change the scale of the entire diagram by the proportion which 100 bears to the real electro-motive force. To complete the solution of the problem, it must be recollected that so

far no account has been taken of the circuit AA', extending from the generator to the "Center of Distribution." The entire solution of the problem is evidently obtained by taking the vector sum of the resistance and inductance of the main leads, together with the equivalent inductance and resistance of the branch circuits, as given

Fig. 217. Diagram of E.M.F. in Mutually Inductive Circuits.

by this problem. The method of obtaining the vector sum of two inductances and resistances in series has already been given.

436. 9. The Properties of Circuits containing Mutual Inductance. — The most frequent and important cases of mutual inductance are to be found in the construction of dynamo machinery; the common transformer forming a convenient example. Here two circuits are in close proximity to each other, in one of which an impressed

E.M.F. acts, producing by mutual inductance a useful E.M.F. in the neighboring circuit. Mr. Kennelly is the deviser of the neatest method of graphically solving this problem, of which the following example is an illustration.

Assume two circuits A and B, indicated in Fig. 217, "Diagram of E.M.F. in Mutually Inductive Circuits." For simplicity, a non-magnetic medium is predicated; though by the simple introduction of the permeability factor μ in the formulæ, the same treatment will apply to any media. Suppose the circuit A to consist of a generator supplying an E.M.F. denoted by $E_a = 1000$ volts. Let the resistance and inductance of the generator be respectively $r_{al} = 5$ ohms, and $l_{ai} = .02$ hen. Let the line have a resistance of $r_{a2} = 10$ ohms, and an inductance of $l_{a2} = .01$ hen., with a capacity of $C_a = 15$ mf. Let the resistance and inductance of the primary coil be $r_{a3} = 40$ ohms, and $l_{a3} = .12$ hen. Then the total resistance $R_a = r_{a1} + r_{a2} + r_{a3}$ =5+10+40=55 ohms, and the total inductance $L_a=l_{a1}+l_{a2}$ $+ l_{a3} = .02 + .01 + .12 = .15$ hen. For the secondary circuit, suppose the resistance and inductance of the coil to be $r_{b1} = 15$ ohms, and $l_{b1} = .18$ hen., and for the leads $r_{b2} = 10$ ohms, and $l_{b2} = .015$ hen., with a capacity of $C_b = 8$ mf.; with finally a resistance and inductance in the receivers of $r_{b3} = 100$ ohms, and $l_{b3} = .005$ hen. Then the total resistance and inductance of the B circuit is $R_b = r_{b1} + r_{b2}$ $+ r_{b3} = 15 + 10 + 100 = 125$ ohms, and $L_b = l_{b1} + l_{b2} + l_{b3} = .18$ +.015 + .005 = .20 hen. Let the mutual inductance be M = .12hen., and the frequency 159.15 (in round numbers 160), so that $\omega_{n} = 2 \pi n = 2 \times 3.14 \times 159.15 = 1000.$

437. As a preliminary to the final solution, suppose the circuit B to be absent, then in circuit A the impedance—

$$J_a = \sqrt{R_a^2 + \left(L_a \omega - \frac{1}{C_a \omega}\right)^2} = \sqrt{55^2 + 83.4^2} = 99.9 \text{ ohms.}$$

Denote the reactance of circuit A, $\left(L_{a\omega} - \frac{1}{C_{a\omega}}\right) = 83.4$, by ρ_a . The current in circuit A is $i_a = E_a/J_a = 1000/99.9 = 10$ amperes (about). The triangle of E.M.F. is drawn as at C by laying off from A $A\bar{B} = R_a = 55$ ohms. From B draw $\bar{B}C$ perpendicularly and positively equal to $L_{a\omega} = 150$. From C lay off $\bar{C}D$ perpendicularly

¹ Electrical World, vol. xxii., p. 306.

and negatively equal to $\frac{1}{C_a\omega}=66.6$, thus leaving $\overline{\rm DB}=\rho_a=83.4$. Draw $\overline{\rm AD}$, obtaining $J_a=99.9$.

438. Now suppose circuit B to be brought into such relations with circuit A that the coefficient of mutual induction M shall have the previously assigned value of .12 hen. The first effect of the current i_a in circuit A is to initiate an induced E.M.F. in circuit B measured by ω $Mi_a = E_b = 1000 \times .12 \times 10 = 1200$ volts; tending to produce in B a current $i_b = E_b/J_b$. But —

$$\left(L_b\omega - \frac{1}{C_b\omega}\right) = \rho_b = 200 - 125 = 75,$$

Also

$$J_b = \sqrt{R_b^2 + \left(L_b\omega - \frac{1}{C_b\omega}\right)^2} = \sqrt{125^2 - 75^2} = 145.8.$$

and hence

$$i_b = \frac{1200}{145.8} = 8.2$$
 amperes.

Construct now the triangle of E.M.F. in the secondary circuit B, as shown at D by the methods already given. The current in the circuit B will react in turn on A, tending in that circuit to set up an E.M.F. that would give rise to a current superimposed on the current i_a that is already passing. The modified primary current will again react on the secondary, causing a new adjustment of current value, this process continuing till equilibrium is attained. Denoting by i_A the final value of the current in the A circuit, this value could be derived from the expression $i_A = E_a/J_A$, in which J_A is different from J_a . The value J_A of the impedance, which will give the true amount of the final current in the A circuit, may be termed the "Effective Impedance;" and is shown to be derived by increasing the resistance of the A circuit by a quantity z^2R_b , and diminishing the reactance by $z^2\rho_b$; in which $z=\omega M/J_b$. The final primary current then becomes—

$$i_{A} = \frac{E_{a}}{\sqrt{(R_{a} + z^{2}R_{b})^{2} + (\rho_{a} - z^{2}\rho_{b})^{2}}}.$$
(175)

In this example, $z=1000\times.12\,/\,145.8=.828\,;~z^2R_b=85.5\,;$ and $z^2\!\rho_b=51.5\,;$ therefore, —

$$i_{\rm A} = \frac{1000}{\sqrt{(55 + 85.5)^2 + (83.4 - 51.5)^2}} = 7$$
 amperes.

It also follows that the true secondary E.M.F. will be equal to $\omega Mi_A = 1000 \times .12 \times 7 = 840$ volts, and the current in the circuit $B = i_B = E_b/J_b = zi_A = 840/145.8 = 5.8$ amperes. This result is graphically shown at C by increasing \overline{AB} to \overline{AE} , making $\overline{AE} = z^2R_b$; and decreasing \overline{BD} by $\overline{FD} = z^2\rho_b$. Then the effective impedance J_A is $\overline{FE} = 143.6$. The angles of phase may be determined in the usual manner.

439. In this example, only one of the circuits has been given an impressed E.M.F.; but the same method can readily be extended to embrace an impressed E.M.F. in both circuits, by taking in circuit B the vector sum of the impressed and induced E.M.F. No allowance is made for hysteresis, which will doubtless limit to a certain extent this method.

440. Impedance Tables. — From the preceding considerations, it is perceived that inductance and capacity, when of sensible amount, play an exceedingly important part in modifying the current, both in magnitude and direction. For convenience in treatment, the subject may be divided into two parts:—

CASE I, - CIRCUIT CONTAINING RESISTANCE AND INDUCTANCE.

Sec. a. Two parallel aerial wires as a complete metallic circuit.

Sec. b. One aerial wire with ground return.

Sec. c. Concentric cables.

CASE II. — CIRCUITS CONTAINING RESISTANCE, INDUCTANCE, AND CAPACITY.

Secs. a, b, and c, as above.

Sec. d. Effect of adjacent bodies.

Case I.—Circuits containing Resistance and Inductance.

441. Sec. a. — Two parallel overhead wires, as a complete metallic circuit.

From the energy equation the general value of the impedance J in any circuit containing resistance and inductance is $\sqrt{R^2 + L^2 \omega^2}$. If, in this expression, R be the value of the ohmic resistance for a unit of length of the conductor, the value of J may be arranged as a simple numerical factor, to be used as a multiplier; and if l be the length of any circuit, R its resistance per unit

of length, and J the impedance factor, the total impedance of the circuit becomes JRI. The values of J may be determined graphically, with sufficient accuracy for common practice, by the aid of the accompanying tables, with the avoidance of much tedious calculation. As the tabular values are given for commercial copper, it is only necessary, when the impedance factor is ascertained, to multiply it by the resistance of one unit length of the proposed conductor, and by the length of the circuit, to determine the total impedance.

442. The coefficient of inductance L for two indefinitely long parallel wires is given on p. 328, as $.5 + 2\log_\epsilon\frac{d}{r}$, where L is the value per centimeter of length, when d is the distance between the centers of the conductors, and r the radius of the wire, in the same units. For demonstrations of this formula, the reader is referred to Mr. Kennelly's paper on Impedance.¹ The resistance of the conductor per centimeter, when ρ is the specific resistance, is $R = \rho / \pi r^2$. Substituting these values in the general expression for impedance,—

$$J = \sqrt{1 + \frac{L^2 \omega^2}{R^2}} = \sqrt{1 + \frac{4 \pi^4 n^2 r^4}{\rho^2} \left(.5 + 2 \log_{\ell} \frac{d}{r}\right)^2}.$$
 (176)

By inspection, this expression is resolvable into four parts; viz.: -

$$\frac{4 \pi^4 n^2}{\rho^2}$$
, r^4 , and $\left(.5 + 2 \log_{\epsilon} \frac{d}{r}\right)^2$.

Each of these parts, or components, may be plotted as a curve, and the value of the entire quantity obtained rapidly by summing the *separate parts*. It is the object of TABLE No. 44 to facilitate this process.

443. The base line of the portion of Sheet 1, on the right of the double line, is divided into 100 equal parts allotted to the diameter of the conductor. The top of the sheet is similarly allotted to the distance between the axes of the conductors. As the scales are decimal, either, or both, may be multiplied or divided by any power of 10, in order to extend the range of the Table. The vertical axis in the center of Sheet 1 gives the values of d/r. Thus, the portion of Sheet 1 marked **a**, bounded by the top and bottom lines of the sheet, the vertical axis on the left, and including the diagonals to the equal part scale on the base line, will give the value of d/r for a circuit of

¹ Trans. A. I. E. E.; vol. x., No. 4., p. 203.

any size of wire from .001'' to 1'' in diameter, and having the axes of the conductors separated from .1'' to 100'' apart.

444. On the left hand of the double line, the curve **b** on Sheet 1 gives the values of $\left(.5 + 2\log_{\epsilon}\frac{d}{r}\right)^2$, the vertical axis and scale for this curve being the same as that for d/r. On Sheet 2, curve **d** on the left hand of the sheet is an extension to higher ranges of the curve **b** of Sheet 1, giving extended values of $\left(.5 + 2\log_{\epsilon}\frac{d}{r}\right)^2$. The curve **c**, Sheet 1, gives on the extreme right-hand scale the values of r^4 in the same units as the base line of the sheet; so if the base line be multiplied or divided by any power of 10, this axis must be similarly multiplied or divided by the same power of 10 raised to the fourth power.

On the right hand of Sheet 2 is the frequency curve **e**, giving the value of $4\pi^4n^2/\rho^2$.

445. An example will illustrate the use of the tables. Let it be - required to find the impedance factor of two parallel wires, No. 18 Am. W. G., one-half inch apart, working under a frequency of 150. The dotted lines on the tables indicate the course to be followed in obtaining the components of the factor. The diameter of No. 18 wire is 40 mils. On Sheet 1 find the diagonal ending at 40. Follow this diagonal until it intersects a vertical line passing through .5 of an inch, on the top base line for the distance separating the wires. In this case, the vertical through .5 in. does not intersect the diagonal through 40; therefore, take the vertical through .05, or, in other words, divide the distance between the wires by 10. From the point where the vertical through .05 intersects the diagonal through 40, follow a horizontal line to the left, finding in the column marked "Values of d/r" the quantity 2.45. As the upper base line used as - the distance between the wires was divided by 10, the value found for d/r must be multiplied by 10, making 24.5 for the value of d/r, thus determining one of the desired components of the impedance

factor. As the curve **b** for values of $\left(.5 + 2\log_{\epsilon}\frac{d}{r}\right)^2$ on Sheet 1 does not run as high as 24.5, turn to the extension of the same curve **d** on Sheet 2. Find 24.5 on the scale marked d/r; follow a horizontal from this value to the left, to the intersection of the curve. From

this point follow the vertical line downward to the base line, finding 48 as the value of $\left(5+2\log_\epsilon\frac{d}{r}\right)^2$, corresponding to d/r=24.5, giving the second component. To find the value of r^4 , return to the diagonal ending in 40 on Sheet 1. From the foot of the diagonal, follow a vertical upward to the intersection with curve **c**, then follow a horizontal to the right to the vertical axis marked "Values of r^4 ," finding .000006 as the value of r^4 , the third component. To ascertain the value of $4\pi^4n^2/\rho^2$, turn to the frequency curve **e** in Sheet 2, find the frequency (150 in this example) on the vertical axis on the right; follow a horizontal to the intersection with the curve, and then a vertical down to the base line, obtaining the value of $4\pi^4n^2/\rho^2$ as 3.1 for the fourth component.

446. To recapitulate, the four components now stand: -

1st.
$$\frac{4 \pi^4 n^2}{\rho^2} = 3.1$$
, 2d. $r^4 = .000006$, 3d. $\frac{d}{r} = 24.5$, 4th. $\left(.5 + 2\log_{\ell}\frac{d}{r}\right)^2 = 48$; then,
$$J = \sqrt{1 + \left[3.1 \times .000006 \times 48\right]},$$
 $J = \sqrt{1.0008928},$ $J = 1.000446.$

447. When the decimal part of the quantity under the radical sign is less than .1, the square root may be found with sufficient accuracy by dividing the decimal part of the quantity by 2, and prefixing 1 to the quotient. For greater values than this, consult any good table of square roots. The value of J thus found is the value for one unit of length. To obtain the total impedance of any circuit, it is now necessary to multiply this factor by the resistance of the conductor per unit of length (to be obtained from any wire table), and by the length of circuit expressed in the same units. In all circuits falling under this case, the value of J will be greater than unity, indicating that the effect of inductance is to increase the resistance. As I varies as d, it is evident that this factor may be materially reduced by bringing the two conductors as close together as possible. With uninsulated aerial lines, the wires must be separated at least six inches, or more, to prevent crosses. In conduit lines, with careful construction, this distance may be greatly decreased, while in

concentric cables, d may be reduced to a fraction of an inch. The table may also be applied to determining the impedance of circuits carrying polyphase sine currents of equally effective intensity, provided the component parts of the circuit are equally distant from each other. The assumption is also made that the current density is uniform throughout the entire conductor, and that the current waves penetrate equally throughout its entire mass. For currents of ordinary frequency, this supposition is essentially true, attention having been already directed to "Skin Effect." The determination of the impedance factor, by this method, is accurate only when the form of the current wave is a sine curve. Any departure from this form serves to increase the value of the impedance factor, and must be calculated from the particular shape of the wave employed. As the departure from the sine curve is most apparent in poor dynamo machinery working on a light load, and as transmission calculations are always made for full load with good machinery, the agreement of the current wave to the theoretical form is very close, the method may be regarded as practically accurate.

448. Sec. b. — An aerial line with ground return.

When a circuit is composed of one aerial wire placed at a height "h" above the ground, and the earth used as a return, Mr. Heaviside has shown that by the method of "Images" the ground may be replaced by an imaginary wire situated at an interaxial distance from the real wire equal to 2h. Such a circuit immediately reduces to Case 1, by making "d" in the formula equal to twice the height of the line above the ground.

449. Sec. c. — Concentric cables.

Suppose one conductor to be rolled out into a thin sheet and formed into a tube surrounding the other conductor, this forming a concentric cable, in which the same amount of metal is employed, and the distance from the central conductor to the surrounding ring is maintained, the same as in the case of two parallel wires. Evidently, the resistance of the circuit is unchanged, and, also, each element in the ring is at the same interaxial distance as in the original circuit. The geometrical relations of the currents of the two conductors are unaltered, and the impedance may be calculated by the preceding methods, by substituting for d, in the preceding nota-

¹ See Jour. Tel. Eng., vol., vii. p. 303.

tion, the value r' of the radius of the external conductor in the concentric cable.

Case II. — CIRCUITS CONTAINING RESISTANCE, INDUCTANCE, AND CAPACITY.

450. Sec. a. — Two parallel aerial wires as a complete metallic circuit.

The determination of the impedance factor for circuits containing resistance and inductance has been shown to be a simple matter. While both inductance and capacity are always present in all forms of electrical apparatus, the capacity effect is usually much less apparent, and may be more safely neglected, than that presented by inductance. Moreover, in a single circuit, inductance always manifests itself in series with the rest of the circuit, either sensibly, concentrated at a single point, as in the case of a very short line supplying transformers, or else distributed from point to point along the line, as exemplified in a pair of transmission mains. Contrariwise, capacity usually exhibits itself as a high resistance shunt, acting as a branch circuit between the conductors, and must therefore be treated by the law of divided circuits. Occasions arise, as in the construction of some forms of dynamo machinery and in certain telephone circuits, where a large amount of capacity in the shape of condensers is placed in series at one point, in the circuits. Such cases, however, do not fall within the scope of transmission problems as usually understood, and when encountered may be solved by direct application of the

formula $\sqrt{R^2 + \left(L_{\omega} - \frac{1}{C_{\omega}}\right)^2}$. Consider the case of an aerial line.

Here are two indefinitely long parallel conductors, each having a surface equal to the length of *one-half* the circuit multiplied by the circumference of the conductors, and separated by a stratum of air equal to the distance between the wires. Evidently this combination possesses all the characteristics of a condenser placed across the conductors. If, now, the circuit be supposed to be subdivided into a large number of equal parts, each of one linear unit in length, and each part on one conductor be conceived of as joined to the corresponding part on the other conductor by a condenser having a capacity equal to the capacity of the line per unit of length, the line may be represented as the sum of a great number of branch circuits, each

containing a capacity equal to the capacity per unit of length. The total impedance of such a circuit is the reciprocal of the vector sum of all the reciprocals of the branches. Moreover, as even dry air is not a perfect dielectric, and as aerial circuits are rarely, if ever, immersed in even moderately dry air, there will also be a certain amount of leakage across the conductors per unit of length; and thus the branch circuits along the conductor may be regarded as circuits having a capacity equal to the capacity per unit of length of the line, in series with a resistance equal to the insulation of the line per unit of length. The line may now be regarded as a number of branch circuits, containing resistance, inductance, and capacity, and treated accordingly. The full and exact solution of this problem leads to the use of hyperbolic functions and complex algebraic quantities. There are three methods of approximation which avoid mathematical difficulties, and which may be quickly and rapidly applied.

- 451. 1. When the line is not over three to five miles in length, the total capacity and leakage may be considered as concentrated in an equivalent condenser placed across the center of the line. There are, then, two parts of the circuit to consider. First: The portion extending from the generator to the center of the line, having a resistance and inductance equal to one-half of the total resistance and inductance of the line. Second: At the center of the line is a branch circuit consisting of two parts; one having a resistance and inductance equal to one-half of the total line resistance and inductance, and the other a resistance and capacity equal to the total line capacity and line insulation. The joint impedance of these branches is to be obtained by either the method given on p. 351 or that on p. 353. Having obtained this joint impedance, it is necessary to add it to the impedance of the first portion of the circuit, remembering that the vector sum is the desired quantity.
- 452. 2. A closer approximation may be obtained by dividing the line into any desired number of parts, attaching to each its proper resistance, inductance, and capacity, and obtaining the joint impedance of all these branches, as above indicated. In this way accuracy may be carried to any desired limit that the patience of the operator will permit.
- 453. 3. As capacity is equivalent to a negative inductance, it can be shown 1 that for an aerial line uncomplicated by the resistance,

¹ See Traité de Télégraphie, par T. Tomas, p. 313.

inductance, and capacity of the receivers at the end of the line, the impedance may be expressed by —

$$J = \sqrt{R^2 + (L - \frac{1}{3} CR^2)^2 \omega^2}.$$
 (177)

454. Tabular Values. — For all these methods, the capacity per unit of length of the line is required. Unfortunately, the capacity of a circuit is a function, not only of the geometrical relations of the conductors and the potential acting, but is also affected by the geometrical relations of the circuit to all other neighboring bodies. Thus, for the simple case of an ordinary aerial line, to accurately ascertain the capacity, consideration must be given not only to the two conductors, but to the presence of the poles, insulators, and cross-arms, or other supports, and also to the earth itself. If other conductors are in the immediate vicinity, the results are still further involved, while if the neighboring wires are under electrical action, the mutual reactions present a problem of the greatest complexity. If the mutual effect of two parallel wires of a radius r and separated by a distance d, is considered, while the reaction of neighboring bodies, the earth included, be neglected (which in a majority of cases is sensibly true), Mr. Heaviside 1 shows that the capacity is determined by the expression —

 $C = \frac{1}{4 \log_{\ell} \frac{d}{r}}.$

Here the value of C is in electrostatic C. G. S. units.

On Sheet 3, Table No. 44, \mathbf{f} and \mathbf{f}' are plotted for this value of C. To use these curves, the ratio of d/r is found from the diagonal scale \mathbf{a} , Sheet 1, and the value of C is ascertained by following a horizontal line from the value of d/r (found as previously described on Sheet 1), on the left-hand scale, to its intersection with the curve \mathbf{f} or \mathbf{f}' , and then a vertical line to the top or bottom of the sheet. Here, on the scale marked —

$$\frac{1}{4\log_{\epsilon}\frac{d}{r}},$$

will be found the value of C. To illustrate: Assume two bare wires, No. 00, are placed on insulators in a conduit 6'' apart. As the conductor is 365 mils diameter, r = 183 mils (.463 cm.) and d = 6''

¹ Electrical Papers. vol. i., p. 43.

(15 cm.). On Sheet 1, as already explained, find the value of d/r as 32.4, then turning to Sheet 3, find 32.4 on the left-hand scale marked "d/r"; follow a horizontal line to the curve \mathbf{f} , value of

$$\frac{1}{4\log_{\epsilon}\frac{d}{r}}$$

then follow a vertical to the top scale of the Table marked Values of

$$\frac{1}{4\log_{\ell}\frac{d}{r}},$$

finding .074 as the desired capacity of the wires in electrostatic C. G. S. units, per centimeter of length.

455. Usually capacity in microfarads per unit of length is a more convenient quantity for the purpose of calculation. The following, Table No. 45, gives the necessary multipliers sufficing to transform E. S. C. G. S. units into M.F. for each of the customary units of length.

Table No. 45.

Multipliers to Transform E. S. C. G. S. Units into M.F. per Unit of Length.

E. S. C. G. S. Units Multiplied by	EQUALS M.F. PER	E. S. C. G. S. UNITS MULTIPLIED BY	EQUALS M.F. PER
.19	Mile of 5280 feet.	.000108	Yard.
.036	1000 feet.	.1205	Kilometer.

456. Thus, in the example, $.074 \times .19 = .01405$ M.F. per mile, it will be seen that the vertical scales d/r, 2 h/r, and 2 h/d have two sets of numbers, one in heavy type, and one in light. There are two curves for each expression, one drawn with a heavy line, and one with a light line. Also, the horizontal scales for the heavy line curves will be found at the bottom of the sheet, and for the light line curves at the top. The heavy type on the vertical scales correspond to the heavy curves, the values of which must be read off on the scales at the bottom of the sheet, while the light-face type on the vertical scales corresponds to the light curves, values of which must be read on the scales on the top of the sheet. The heavy curves are drawn for the small values of d/r from 0 to 20, and the small values of 2 h/r and 2 h/d from 1 to 2,000; while the light curves are for larger values of d/r from 20 to 500, and the large

values of 2h/r and 2h/d from 2,000 to 20,000. Having, by means of the Tables, ascertained the value of the line capacity per unit of length, the impedance may be determined by either of the above methods at the discretion of the operator.

457. Sec. b. — One aerial wire with ground return.

By means of the method of "Images," as indicated on page 364, it can be shown that the capacity of an aerial wire with a ground return is given by the expression—

$$C = \frac{1}{4 \log_{\epsilon} \frac{2 d}{r}},$$

and the value of this formula may be at once derived as just described, by substituting 2d for d.

458. Sec. c. — Concentric Cables.

When one of the conductors is rolled into a cylinder surrounding the other, forming a concentric cable, the geometrical relations of the circuit are not altered, and the capacity may be expressed by the same formulæ, by substituting r', the radius of the outer conductor, for d. In the formula—

$$C = \frac{1}{4 \log_{\epsilon} \frac{d}{r}},$$

the value of C is for one *unit* of conductor length, and the total capacity is obtained by multiplying by the entire length of the circuit. In speaking of concentric cables, it is usual to consider the *length* of the *cable*, which is only *one-half* the length of the circuit contained by the *cable*; and if the formula—

$$C = \frac{1}{4 \log_{\ell} \frac{r'}{r}}.$$

used to give the capacity of a cable, be multiplied by the length of the cable, the result will be only one-half the desired amount. It is necessary that the value of \mathcal{C} be multiplied by the cable circuit or twice the length of the cable for the true capacity, and the formula reduces to the common expression—

$$C = \frac{1}{2\log_{\epsilon} \frac{r'}{r}}.$$

459. Sec. d. — Effect of adjacent bodies.

In the consideration of capacity effect, attention has only so far been given to the mutual reactions of the two conductors forming the circuit. If circuits were always perfectly insulated so as to be electrically separated from all other bodies, there would be no further modification; but, in view of defective insulation, it becomes necessary to recognize the pressure of other bodies. Take the simple case of a single wire of radius r, set at a height h above the ground, with a ground return as modified by the pressure of an additional wire of the same size, set at a distance d from the first wire. Mr. Heaviside shows (in the article above referred to) that, under these circumstances,—

 $C = \frac{.4343 \left(2 \log \frac{2 h}{r}\right)}{\left(2 \log \frac{2 h}{r}\right)^2 - \left(2 \log \sqrt{1 + \left[\frac{2 h}{d}\right]^2}\right)^2}.$ (178)

On Sheet 3, Table No. 44, there will be found, on the right-hand side of the center vertical scale, a set of diagonals \mathbf{a}' for ascertaining the values of 2h/d and 2h/r. The height above the ground h is on the top horizontal scale, while the diameter of the conductors and the distance between them will be found on the bottom scale; the portion of the table is used in a manner similar to that given for the \mathbf{a} on Sheet 1. As an example, assume a No. 00 wire 10 ft. from the ground, with a second No.00 wire 6" from it. Here, the diameter of the wire is 365 mils, hence r=183, d=6"=h=10 ft. =120". Find 2h/d=40, by following a diagonal from 6 on the lower bottom scale to its intersection with a vertical through 120 on the top scale, and then a horizontal to the scale marked "2h/d," finding 40 as the desired value. Find 2h/r=1,310, in a similar manner. Then determine the values of —

$$.4343\left(2\log\frac{2h}{r}\right)$$
 and $\left(2\log\frac{2h}{r}\right)^2$,

by following a horizontal from $1{,}310$ to the intersection with the respective curves \mathbf{g}' and \mathbf{h}' , and then a vertical to the lower scales, getting respectively 2.7 and 38.8 as the desired values. The value

for
$$\left(2\log\sqrt{1+\left[\frac{2}{d}\right]^2}\right)^2$$
 is gained in a similar manner, as 10.26,

by following a horizontal through 40 to the intersection with the curve i, and then a vertical to the top scale, obtaining 10.26; then, $C=\frac{2.7}{38.8-10.26}=.094 \text{ electrostatic C. G. S. units.}$

In a similar manner the effect of more than one adjacent wire may be obtained. The problem, however, soon becomes so complex as to be very difficult of solution. The addition of a second wire increases the capacity about 11 per cent, and with three more wires the increment is about 24 per cent. Probably the most important case of the effect of adjacent bodies is the consideration of the reaction of the earth on a complete metallic circuit. For this combination Mr. Heaviside shows that the capacity is given by the expression—

 $C = \frac{.4343 \left(2\log\sqrt{1+\left[\frac{2h}{d}\right]^2}\right)}{\left(2\log\frac{2h}{r}\right)^2 - \left(2\log\sqrt{1+\left[\frac{2h}{d}\right]^2}\right)^2}.$ (179)

The solution of this formula is made in the same manner as given for the preceding case. Assuming the same data as in the last example, — $C = \frac{1.39}{38.8 - 10.26} = .048 \text{ electrostatic C.G.S. units.}$

460. Character of Dielectric. — In the preceding formulæ for capacity, the value of the specific inductive capacity of the dielectric has been assumed as 1, the value for air. Should any other substance be used, the formulæ must be multiplied by the proper coefficient k, for difference in specific inductive capacity; the value for k will be found in Table No. 46.

TABLE No. 46.
Specific Inductive Capacity.

Name of Substance.	SPECIFIC INDUC- TIVE CAPACITY.	Name of Substance.	Specific Inductive Capacity.
Air	1 1.90 to 3.013 1.95 to 2.740 1.93 2.580 to 4.20 2.284 2.220 to 3.70 2.160 1.6 to 2.070 1.98 to 2.00 1.810	Carbon Di-oxide Hydrogen Vacuum Yellow Wax Resins Hooper's Composition Mica Flint Glass, extra dense Distilled Water Ozokerite Pitile	1.00066 .99967 .99941 1.86 1.80 3.10 5.00 6.55 to 10.10 76.00 2.13 1.80

CHAPTER IX.

SERIES DISTRIBUTION.

- Art. 461. Origin. In the earliest attempts to distribute energy by means of electricity, one source of supply, or generator, was connected directly with a single device for utilizing the energy produced. The generator and receiver were separated by but a short distance; and thus a simple circuit of wire, sufficient to carry the small amount of current produced by the early dynamos, was amply sufficient for the purpose required.
- 462. The next step in the development of distribution was the introduction of two or more receiving mechanisms placed successively upon the same circuit. From this as a starting-point systems for supplying electrical energy have gradually grown until they have attained their present complexity, involving miles of mains receiving from central stations of immense size amounts of energy to be measured by thousands of horse-power, and distributing the same over many square miles of territory. So long as a single generator supplied but one receiver, the load was a constant one, the receiver, when running, absorbing all the energy delivered by the generator, and the generator operating under no load when the receiver was cut out of service. In modern systems the load not only varies in quantity from time to time, thus varying the demands placed both on the distributing system and upon the generators; but often the load is a movable one, its position with reference to the generating-station constantly varying. Thus it is apparent that with the developments of new and additional methods for utilizing electrical energy many complicating factors have been introduced into the problem of distri bution.
- 463. Classification. The quantity of energy carried by any circuit is measured by the product of two factors, one, the electromotive force or pressure, being that unknown quality of this form of energy by means of which it is enabled to overcome resistance, and the other the quantity or amount of electricity, which, by the aid of

the electro-motive force, is set in motion, and is therefore capable of doing work. Three methods may therefore be employed for varying the amount of energy delivered by any circuit. If the quantity of electricity remains constant, the quantity of energy will vary directly as the electro-motive force. If the voltage is kept constant, and the quantity of current varied, the amount of energy transmitted will be in direct proportion to this variation. To state the relation in mathematical language, if Q be the quantity of energy, V the voltage of the circuit, and I the amount of current in amperes, Q varies directly as the product of VI. Thus it is apparent that by varying either of the factors, the amount of energy transmitted to any point may be consequently changed in any desired degree. It is also plain that a similar change could be effected by varying both the current and electro-motive force. For most purposes, however, the variation of both factors introduces undesirable complications to such an extent that this latter method is rarely, if ever, adopted. To recapitulate, therefore, circuits may be treated:—

First. As constant current circuits.

Second. As constant potential circuits.

The problem of distribution under either of the preceding divisions may still further be varied by the relative position of the generator and receivers. Under the supposition either of a constant current or a constant potential circuit, the receivers may either be placed at a constant distance from the generating-station, or may, from time to time, occupy a varying position with reference to the same. So four conditions arise under which distribution may be considered.

- 1. Constant Current Circuits having the generators and receivers at fixed distances respecting each other.
- 2. Constant Current Circuits having the generators and receivers at varying distances respecting each other.
- 3. Constant Potential Circuits having the generators and receivers at constant distance respecting each other.
- 4. Constant Potential Circuits having the generators and receivers at varying distances respecting each other.
- 464. 1. Constant Current Circuits with Generators and Receivers at Fixed Distances. From the first attempts involving a single generator delivering all of its energy to one receiver, the next

step was to embrace along one circuit two or more receivers, placed one after the other. As the receivers were arranged succeeding each other, having the same current pass through all of them, this kind of circuit came to be known under the name of "Series Distribution." The current through the entire circuit being a constant one, this method is particularly adapted to installations covering a large territory, in which the load throughout the entire area is essentially uniform. Municipal illumination, whether by arc or incandescent lamps, is properly arranged by the series system. The operation of motors upon series circuits is perfectly feasible, especially if the motor load be so reasonably constant that the machines may run steadily and uniformly. As all of the receivers are traversed by the same current, the conductor that successively unites them is most simply arranged along the sides of an irregular polygon of which the various receivers form the apices. The location of the line should therefore be designed by a careful examination of the proposed site of the circuit, in order to select among all of the possible locations that which will give a polygon having the shortest total perimeter. Frequently the arrangement of city streets, or regulations of city authorities, militate against the selection of the shortest and most direct route for the circuit. The dictates of economy, however, indicate that special attention should be given to arranging the circuit with a view to attaining the minimum length of conductor that can possibly be selected.

- 465. Location of Station.— After the location of the circuit is determined, it is entirely immaterial at which point upon the route the central station is placed. Should it be impracticable to locate the plant exactly upon the line of the route, it should be situated as near to it as circumstances will permit; and all locations giving the same distance measured along the line of the conductor from pole to pole of the generators are equally favorable. This latitude in the location of the central station is one of the most valuable properties of the series system; for it allows the selection of the site of the central station to be entirely controlled by such conditions as economy in cost of real estate, availability of fuel, water supply, etc.
- 466. Current Density in Main Circuit. As soon as the location of the circuit is selected, it becomes possible to design the line. Here the engineer must make such a selection between the dimensional selection between the dimensional selection between the dimensional selection.

sions for the conductor as indicated by strict rules of economy, and those proscribed by the commercial limitations of manufactured goods, as will lead to the best and most economical design. The nature of the service to which the plant is to be applied is usually the chief governing condition; so a reasonably accurate knowledge of the number of receivers, the current and electro-motive force of each, and the resistance of the line, must be known, together with a parallel knowlelge of the properties of the generators obtainable, in order that the supply and demand of station and line may be mutually adjusted. As the plant is to be a constant current one, in which all parts of the circuits are traversed by the same current, it is apparent that all the receivers must be capable of operating under this imposed current, and that only such receivers as can do so must be placed in the Only such generators as can supply this predetermined current can be used in the station. By varying the electro-motive force at the terminals of the receivers, different amounts of power can be supplied to different customers.

Let

I = the current selected for the line in amperes.

E = the electro-motive force of the station.

e, e', e'', etc. = electro-motive forces of the different receivers.

n, n', n'', etc. = the number of each kind of receiver.

R = the resistance of the line.

L = the length of the line from pole to pole of the station.

S = the cross-section of the conductor.

ho = the specific resistance of the conductor.

The energy demanded by the receivers is evidently—

$$\Sigma I (ne + n'e' + n''e'' + \text{etc.}).$$
 (180)

The resistance of the line is -

$$R = \frac{\rho L}{S}.$$

In order to deliver a current of I amperes to the customers, an amount of energy equal to $\rho LI^2/S$ must be expended in the line; the station, therefore, must supply energy to the amount of —

$$EI = \sum I (ne + n'e' + n''e'' + \text{ etc.}) + \frac{\rho LI^2}{S}.$$
 (181)

The number of receivers, the current, and electro-motive force required by them, with the length of the conducting circuit, are fixed by the general condition of service that the proposed plant is intended to perform; so in equation (181) there remains E, ρ , and S as possible variables whose value is to be determined by the designer according to the best economic condition. Experience has eliminated all materials except copper from circuits designed to supply power; ρ , therefore, may always be assumed as the specific resistance of this metal. In the selection of E, the engineer is limited to the existing commercial forms of dynamos, or some combination of them. It is advisable to keep E as low as possible; for with high potentials the danger and difficulties to be encountered, the probabilities of interruption to service, and the expense of maintenance are largely increased, thus, in reality, S becomes the important variable; solving, then, for S, —

$$S = \frac{\rho LI}{E - \sum (ne + n'e' + n''e'' + \text{etc.})}.$$
 (182)

For an exact solution of this equation the value of E must be known. This, however, as has been seen, may vary within what may be called commercial limits. Now, as the cost of the line varies quite closely with S, it becomes important to inquire into the conditions governing S and E that shall, in the most commercial manner, reduce original outlay and maintenance.

The quantity I/S is the current density per unit of area of the conductor, and is frequently used, lines being simply proportioned so that the current density shall not exceed a certain predetermined amount.

467. Economical Conditions. — So long as electrical distributions were comparatively of small magnitude, involving but a single generator supplying one receiver and requiring but a limited circuit, the question of economy in the conductors occupied but a small and subordinate field of consideration. A wire amply large enough to transmit all of the energy was introduced with but little thought as to the cost of the circuit. As soon, however, as systems of distribution commenced to ramify over areas of magnitude, the cost of the copper conductors immediately arose to a position of great importance, in many cases equalling, if not exceeding, the cost of the remainder of the plant; therefore rendering it imperative that their design should be treated with the utmost care along the lines of the most rigid economy.

In designing a system of conductors, eight points must be carefully considered in order to secure the best results.

- 1. The conductors *must* be so proportioned that the energy transmitted through them will not cause an undue rise of temperature.
- 2. The conductors *must* have such mechanical properties as to enable them to be successfully erected, and so durable as to require a minimum of annual maintenance.
- 3. The conductors *may* be so designed as to entail a minimum first cost in line construction.
- 4. The conductors *may* be designed to attain a minimum first cost for station construction.
- 5. The conductors *may* be so designed to reduce first cost of plant, and cost of operation and maintenance to a minimum.
- 6. The conductors *may* be designed to secure minimum total first cost of installation.
- 7. The conductors *may* be so designed as to secure maximum conditions of good service.
- 8. The conductors *may* be so designed as to attain a maximum of income with a minimum of station first cost.
- 468. Careful consideration of the foregoing conditions indicate such a degree of incompatibility between them that it is impossible to fully realize all in any one plant. The skill of the designer is, therefore, to be exhibited in such a selection of governing conditions as will, in each particular case, develop a maximum service with a maximum economy. Compliance with the first two conditions is necessary in all distributing installations; for if either the safe heating limit, or working strength of the conductors be exceeded, the lines become positive sources of danger to life and property.
- 469. 1. Design for Heating Limit. In every conductor a certain amount of energy is transformed into heat and wasted by being radiated from the conductor itself.

The most economical size of conductor to be used for a particular installation will then depend largely upon the cost of producing energy; for, if the station operating expenses are low, so that the cost of production is small, and cost of the conductors comparatively high, it is obvious that the least metal section consistent with safety should be selected, in order that the interest on the cost and the maintenance expenses of the conductor may be a minimum, and balance the cost of the amount of energy lost by transformation into heat.

470. On the contrary, where station operating expenses are high, and cost of conductor installation is comparatively low, the converse will hold true; it being under these circumstances advisable to put a larger investment of capital into the conductors in order to reduce the losses in the line to a minimum.

471. It is conceivable that, under the first conditions, the cost of producing the energy lost in the conductors may be so great, that to attain the most economical arrangement the conductors should be so small that the energy transformed into heat would be sufficient to raise the conductors to a dangerous temperature.

Notwithstanding the masterly investigations of Mr. Kennelly into the subject of the heating of conductors, to which reference has been made in Chapter VII., there is yet hardly as much experimental knowledge on the subject as could be desired, so that electrical circuits are often located in situations to which Mr. Kennelly's rules do not fully apply, or in which the service is of unexpected severity.

The case of concentric conductors is one of peculiar interest. Here one conductor, being entirely within and inclosed by a second, can have little or no chance for radiating the heat developed in it unless the limit be kept to so low a point that the heat in the interior conductor may pass through the insulating envelope, through the second conductor, and thence through the exterior envelope, into the air, without developing in the central conductor a destructive temperature. Under such circumstances, a very large factor of safety must be allowed in the heating limit assigned. This point is particularly emphasized in Mr. Kennelly's deductions. Circuits of this kind are particularly liable to injury from overheating, as they are used to transmit very large quantities of electrical energy, and the pressure brought to bear on the designer to effect a saving of copper is usually severe. Such circuits are also usually inclosed in some form of conduit structure where the chances for radiation are exceedingly poor. It is true that the conduits being buried in the earth are constantly surrounded by a low mean temperature, which greatly adds to the safety of the inclosed circuits; yet, on the other hand, the lack of air circulation and poor conductivity, of either the earth or conduit structure, must not be lost sight of in planning for the dissipation of the heat inevitably evolved. For interior wiring, special pains should be exercised in the design of the conductors to keep their maximum temperature well under control. While the rules of the various boards of Fire Underwriters (See Appendix to Chapter III.), if followed, are designed to afford ample protection to buildings carrying electrical circuits, there always exists a temptation on the part of the designer, as well as of the contractor and builder, to effect economy by using a minimum amount of copper, protected by a low grade of insulation; by employing the cheapest and least efficient forms of interior conduits; and to reduce the number of safety appliances to a minimum. The consumer, on the other hand, usually plans for less electrical service than his future requirements are certain to demand. Thus there is the constant tendency on the one side toward insufficient conductors and dangerous installations, and on the other toward the use of a current exceeding that even for which the circuits, conduits, and other appliances were designed. is therefore essential to use particular care and to check the designs for size of conductors with the most unfavorable circumstances that can be applied to the location in which they are placed, as indicating the probable temperature that may be attained by the circuits.

472. 2. Mechanical Strength. — It frequently occurs that the safe heating limit indicates a wire of so small a size as, mechanically, to be impracticable. All circuits, whether overhead, underground, or in interior conduits, require a certain amount of mechanical strength in order that the conductors may be introduced in their appropriate places with a minimum amount of installation expense, and without endangering the integrity of the line. The lines must likewise have sufficient strength to withstand for a reasonable period of time the natural wear and tear to which plants of this kind are subjected. It would at first sight appear that the conductors, after being installed either in underground conduits, or as house-wiring, should be exempt from disturbing influences, and would constantly retain their integrity. On the contrary, numerous causes are operative, constantly exposing the circuits to disturbing influences, such as settlement and shrinkage of the structures in which the circuits are inclosed, the mischief done by rats and mice, necessary changes and rearrangement of the lines, and many other causes of similar description - all tending to affect the mechanical integrity of the conductors.

In aerial circuits unusual snow or sleet loads, high winds, the

abrasion of tree branches, etc., are constantly tending to destroy the conductors. Thus, in many cases, the safe heating limit may indicate a conductor too weak from a mechanical standpoint to be successful; and the introduction of such a circuit, while perhaps more economical in first cost, will, in a very short time, prove to be enormously expensive from the standpoint of maintenance.

473. 3. Minimum First Cost of Line. — The first cost of any circuit is separable into three distinct elements:

First. The actual cost of the copper necessary to transmit the required amount of energy.

Second. The cost of insulating or protecting the same electrically.

Third. The cost of installing or erecting the circuits.

For installations simply for temporary purposes, such as the illumination of, or operation of motors for, the construction of public works, etc., in which the area covered is of small extent, and the plant only expected to run for a limited portion of time, the most rigid economy should be exercised in the design of the circuit, and in the provisions made for its introduction; for it is obvious that the circuit being in use but for a short period of time, and in a location where the wire is likely to undergo considerable injury, will be subject to but very little salvage when the work for which it is installed is completed. Thus, under these circumstances, the cheapest kind of pole-line, with meager insulation, sufficient only for purposes of safety to the workmen, and embracing the smallest possible amount of copper, is the one to be selected.

From such circuits it is rare to obtain more than one-third or one-fourth of the value of the line as salvage.

The generating-plant, on the contrary, so far as dynamos and engine consist, is but little injured by service of this kind, and may, at the end of the work, be credited back at almost its full value. In such lines it usually pays to waste a large amount of energy in the conductors in order to reduce the first cost of the line to a minimum.

474. With permanent distribution plants of large magnitude, such as are usually tributary to central stations, the first cost of the circuit, while it should receive careful consideration, should never be allowed to militate against the introduction of the very best possible

style of conductors adequately designed for the work thrown upon them, and protected by all the best known means, either in underground conduits or on the strongest and most substantially constructed pole-lines.

475. 4. Minimum First Cost of Station. — The minimum first cost of station is obviously incompatible with the minimum first cost of conductors, for, if the amount of metal in the conducting circuit be reduced to the lowest point of safety, a very much larger amount of energy will be lost in the circuit, and still an additional amount usually escapes through leakage due to defective insulation.

To obtain minimum first cost on station plant, it is essential to expend a much larger capital in the line, in order that the station plant may be enabled to deliver the requisite amount of energy to the various receivers, without being loaded with line losses.

- 476. In city locations, where underground conduits are a necessity, the cost of the circuits is the largest item in the installation of the plant. In order to avoid constant reopening of the streets to accommodate enlargements or extensions, it is advisable to work out the design of the conductors on a sufficiently large scale to meet all of the business that is likely to accrue for several years. The conductors under these circumstances will be much larger, and will cover a very much greater territory, than the immediate demands of the business will indicate, and will necessitate a corresponding investment. Yet a structure of this kind, carefully arranged to reduce the annual maintenance to a minimum is, under such circumstances, a paying investment. The station, on the other hand, may be planned for a minimum of first cost, and the buildings so arranged that additional generating units may be added from time to time as the business grows. The utility, under such circumstances, of a super-abundance of copper in the conductors is also apparent, as it evidently affords to the station the ability to carry the load thrown upon it with the least expenditure of energy lost in the conductors themselves, and with the least initial investment of capital.
- 477. 5. Minimum First Cost of Plant and Minimum Cost of Maintenance and Operation. To reduce the initial cost of the conducting system to a minimum, it is necessary to employ the smallest mains consistent with safety. This plan causes consid-

erable waste of energy in the leads by transformation into heat, thus increasing the cost of the operating expense by the amount required to produce this lost energy, and also necessitating such an additional expense in the construction of the station as is required to provide the additional amount of plant necessary to produce the energy wasted in the conductors, over and above that which is essential to supply the demands of the customers. Thus undue economy introduced by reducing the size of the conducting system may increase both the total cost of the plant and the cost of operation. On the contrary, by using large mains of low resistance, the lost energy and cost of additional station capacity may be reduced to any desired amount, but only by a corresponding increase in the expense of the conducting system.

478. There evidently exists in every plant a certain relation between the cost of station equipment, conducting system, and lost energy that will reduce the sum of these three quantities to a minimum, indicating the conductor that in the long run will be the cheapest, both as regards the gross expense of installation and the cost of operation. The determination of this, the most economical cross-section of the conductor, is somewhat complicated, and must be made for each plant under its peculiar conditions of operation, with special reference to the following considerations:—

First. Cost of station per watt of output.

Second. Cost of producing energy per watt.

Third. Cost of conductor per unit of cross-section and length.

Fourth. Cost of conductor insulation per unit of cross-section and length.

Fifth. Cost of erecting or installing the line (such as pole-line or conduit expense).

Sixth. Rate of interest on total invested capital.

Seventh. Rate of depreciation upon capital invested in the station.

Eighth. Rate of depreciation upon the cost of the metallic portion of the conducting system.

Ninth. Rate of depreciation upon the cost of the insulating portion of the conducting system.

Tenth. Rate of depreciation upon the cost of the conduit, or pole-line.

- 479. This problem was first proposed to electrical engineers by Sir William Thomson in 1881. The solution then suggested predicated that the total cost of the conducting system varied directly as the weight of the material employed for the conductors, and that it was simply essential to make the annual interest and depreciation upon the cost of the conducting system equal to the cost of the energy wasted therein. Closer investigation, however, indicates the advisability of considering as variables all of the afore-mentioned quantities.
- 480. Scrutinizing the cost of conductors, their expense may evidently be divided into two parts one the cost of the metal employed, and the other the cost of the insulating material. The expense of bare wire and copper strips evidently varies as their weight or cross-section; and the expense of the material for uninsulated lines may be expressed by the equation —

$$y = bS, (183)$$

in which y is the cost per unit of length, S being the cross-section of the conductor expressed in any desired units, and b a constant depending upon the varying price of line material per unit of weight.

Stranded cable is slightly more expensive than solid conductors, but this simply increases the value of b.

481. While the amount of insulating material necessary to protect wires and cables does not vary exactly with the area, the rate of variation for all of the more common forms commercially employed is so nearly proportional to the cross-section, that this rate may be assumed without serious error. So, for any given class or kind of insulation, the expense of the conducting system may, with sensible accuracy, be expressed by the equation, —

$$y = a + bS, (184)$$

in which a and b are constants, depending upon the mode of manufacture, and the kind and quality of the insulation, and the current market price of the material used. To determine the constants of this equation for any particular make of conductor, or class and quality of insulation, the prices for three or four cross-sectional areas should be obtained, and their values plotted on a sheet of cross-section paper by assuming the axis X to be the axis of the areas, and that of Y the axis of cost. By obtaining three or four points in this

way, and drawing through them a line, a curve of prices is obtained, the tangent to which, at any point, is expressed by the equation, y = a + bS, from which the cost of any desired size of conductors may be readily obtained. Some examples of such curves will be found in Chap. XII.

482. By means of a similar train of reasoning and graphical construction, the cost of pole-lines, conduits, subways, or other structures necessary for the installation of the conducting system, may be expressed and obtained by a similar equation —

$$y' = a' + b'S, \tag{185}$$

in which y' is the cost per unit of length of the structure, and a' and b' are constants, depending upon the kind of line to be built, while S is the area of the conductor as before.

483. The cost of the line installation, however, cannot be nearly so exactly determined for variations in the size of the conductors, as it is evident that the style of installation which is adopted is a very large factor in the rate of variation of the cost. In the ordinary poleline, the cost will be almost precisely the same for a very large variation in the cross-section of the conducting system; for a single line of poles may be made to carry either one very small conductor, or a great many of large cross-section, the only additional expense entilled upon the additional number of wires being that necessary for the insulators, and the labor of putting the lines into place. Thus, for pole-line construction, the constant a' is a large proportion of the value of y, b' S being relatively small.

484. In a similar manner, that fraction of the cost of underground conduits, which is embraced in the items of paving, excavation, construction of manholes, etc., is very nearly constant over very wide ranges of conduit capacity and line area, the cost of the material used for the ducts, and labor of placing the same, being the chief items that vary to any great extent with the size of the conductor. For a concrete conduit, for example, with bare wire mains, the value of b' is zero; for this description of conduit can contain any desired cross-section of conductor, with no variation in the expense of construction. The cost of placing the conductors in position should be included in the term b', and will also be found to be sensibly constant for all cross-sections, excepting for conductors of very

large size, but will vary considerably if the required conductor section is split into several parts.

485. Equations for minimum first cost of plant, and minimum cost of operation and maintenance.

Let i = the rate of interest charged against the plant in per cent.

 d_l = the rate of depreciation charged against the line in per cent.

 d_c = the rate of depreciation charged against the conduit in per cent.

L = the length of the conducting system in any desired units.

U'' = the annual charge against the line for interest and depreciation.

The cost of the line will be -

$$Ly = L[(a + bS) + (a' + b'S)];$$
 (186)

then, $U'' = L \left[(a + bS) \times (i + d_l) + (a' + b'S) (i + d_c) \right].$ (187)

For simplification, let

and $\beta = L (a (i + d_l) + a' (i + d_c)),$ and $\beta = L (b (i + d_l) + b' (i + d_c));$ then, $U'' = \alpha + \beta S.$ (188)

Let F = the number of hours per annum that the plant operates.

K = the cost of producing energy per watt-hour, K.W.-hour, or H.P.-hour,

then assuming the notation on page 375, $\rho I^2 L/S$ gives the energy lost in the line, and as ΣI (ne + etc.) is the energy supplied to the customers, the station must supply—

$$\sum I(ne + \text{etc.}) + \frac{\rho I^2 L}{S}$$
 watts.

The cost per annum of the energy lost in the line will be $F\rho I^2LK/S$. If K' be the cost per watt of output for equipping the station, and i and d_s the rates of interest and depreciation on the station, then

$$\frac{\rho I^2 L K'}{S} (i + d_s)$$

will be the annual charge for interest and depreciation on this expense. If U' be the total cost per annum of the lost energy, then

$$U' = \frac{\rho L I^2}{S} [FK + K' (i + d_s)]. \tag{189}$$

For simplification, let

$$\lambda = \rho L I^{2} [FK + K' (i + d_{s})];$$

$$U' = \frac{\lambda}{S}.$$

then,

Let U = U' + U'', then

$$U = a + \beta S + \frac{\lambda}{S}; \tag{190}$$

differentiating with respect to S,

$$dU = \beta dS - \frac{\lambda dS}{S^2};$$

$$\frac{dU}{dS} = \beta - \frac{\lambda}{S^2} = 0;$$

$$S^2 = \frac{\lambda}{\beta}, \qquad S = \sqrt{\frac{\lambda}{\beta}}.$$
(191)

486. A consideration of this equation will reveal several important deductions.

First. It will be noticed that the value of S obtained makes that fraction of U' which varies with S equal to U'', indicating that the most economical area of the conductor to be employed is that in which the annual cost of energy expended in it is equal to the sum of the interest and depreciation on that fraction of the total capital outlay which is proportional to the weight of the conductor employed.

- 487. It is also to be seen that inasmuch as E and L do not enter into this equation, the most economical section of the conductor depends simply upon the amount of current in the circuit, and is entirely independent, either of the voltage at the generators, or at the distance to which the energy is transmitted.
- 488. In selecting the values for the various constants in the preceding discussion, considerable judgment should be exercised.

The value of i, the rate of interest upon the total capital invested, will vary according to the location, and will naturally be made to conform to the prevailing rates of interest for money at the location of the plant.

- 489. The rate of depreciation on the station, d_s , will naturally subdivide itself into four constituents, the rate on the buildings being the least of these, which for fire-proof construction may be taken as low as 2 to 3 per cent, while for buildings of wood or of less permanent character this constant will vary from 5 to 8 per cent. The depreciation on dynamos, provided standard types of machines are selected, and are not allowed to be dangerously overloaded, is also exceedingly small, varying from 2 to 4 per cent.
 - 490. For the prime movers, whether steam or water motors are

selected, the rate should be considerably higher, varying from 5 to 10 per cent, while on the boilers, in the case of the steam plant, the rates of depreciation are greatest, and should be assumed at from 8 to 16 per cent.

- **491.** For the constant d_c , the depreciation upon the conduit or pole-line part of the conducting system also varies between widely different limits.
- **492.** Permanent structures, such as cement-lined or iron-pipe concrete conduits, or earthen-pipe conduits, undergo little or no depreciation, and for these structures d_c may be assumed not to exceed 2 per cent per annum.
- 493. For wooden conduits or pole-lines, on the contrary, the value of d_c should be from 10 to 20 per cent, depending on the location. In a similar manner d_l , the depreciation on the value of the circuits, may extend over a wide range. For lead-covered cables with the highest kind of insulation, placed in underground circuits, this factor may be almost neglected. For rubber-covered wire in underground conduits, or in exposed pole-lines in thickly settled cities, this constant should have a value of 20 per cent, or more, as the insulation is very rapidly deteriorated by the effects of gas and water. For the best insulation on heavy aerial lines d_l should vary from 5 to 10 per cent; but for the poorer kinds, such as underwriters' wire, it should be 20 to 30 per cent. In cases where there are many trees, d_l may be as high as 40 to 60 per cent.
- 494. It is thus evident that, in determining the factors entering into the interest charge upon the cost of the plant, much careful consideration must be given, as usually the tendency is to place these factors so low that, after a short time of operation, the maintenance charges are found to be very much larger than was first estimated, and consequently sad inroads are made into the net profits of the plant.
- 495. The determination of the factor K' is one which will vary considerably with the character of the plant under consideration. Apparently this value would be most properly computed by determining the cost per watt of output, then assigning K' such a fractional part of this sum as is represented by the ratio of the lost energy to the total output. In many instances this value is correct. However, in the case of a large station, with a very short line, this would proba-

bly give K' too great a value; while, on the contrary, in the case of a small station with a very long line, it would give K' too small a value. It is, therefore, essential to canvass each particular instance for itself, and assign to K' such a proportionate assessment of the total station value as seems to fit the particular circumstances.

496. In a similar manner, in assigning a value to K, consideration must be given to the mutual relations of the line and station. Apparently K would be given by dividing the total operating expenses by the total output in watts; and while this value in many cases is partially correct, there are frequent situations in which it departs widely from the true amount. The values of both K' and K, and in fact all quantities of this nature, are most accurately ascertained by plotting a curve as indicated in Fig. 218, in which the axis of X indicates the varying output of the station, and that of Y either

of K or K'.

(in the case of K') the cost of installation, or (in the case of K) the cost of producing energy, and selecting for the desired value of K or K', that obtained from the equation of a tangent to the curve at that particular point, representing the circumstances in question. By this process, assuming W to represent the capacity of the station, dK'/dW or dK/dW is obtained, instead of K/W or K'/W; for

in all such calculations the rate of variation of the factors entering into the problem is the true value desired.

497. Conductor Tables. — To facilitate calculations for the most economical conductor cross-section, Professor Forbes in England, and Professor Cartwright in this country, have calculated a series of tables, involving the cost of erecting or laying one ton of copper and the interest and depreciation charges allowed upon the plant, from which the most economical current density per unit, of actual crosssection of conductor, can readily be ascertained. Extracts from these Tables are given in Table No. 47, A and B (pp. 390 and 391).

In section A, the left-hand vertical column contains the rate of interest and depreciation, while the top horizontal line gives figures for the cost of laying, or erecting, one ton of copper. This cost is supposed to cover the entire cost per ton of the wire or cable, with its insulation, pole-line, conduit, or other supporting structure.

In section B, the left-hand vertical column indicates the cost of energy, in terms of one electrical horse-power, at the terminals of the generating station, while the top horizontal lines give the area of the conductor in square inches, or in circular mils. This Table is calculated for a current of 100 amperes.

The use of the Table may be best indicated by an example. Suppose, for instance, that the cost of laying one ton of copper is \$600, and that 12 per cent is allowed for the sum of the interest and depreciation upon the conducting system. Following the horizontal line opposite 12 per cent in the left-hand vertical column of A, until this line intersects the column headed \$600, the number .144 is obtained.

Assume also that the cost of producing one electrical horse-power is \$60 per year. Taking the horizontal line opposite \$60 in the first left-hand vertical column of Table B, follow the horizontal line along until the nearest corresponding number to 144 is obtained (in this particular example the number is exactly 144, being found opposite 60). Running up this column to the top of the table, $\frac{22}{100}$ of a square inch, or 280,104 circular mils, is obtained for the requisite cross-section of the conducting system to carry 100 amperes.

If the desired current in the conducting system is any other quantity than 100 amperes, the cross-section of the conductor is obtained by solving a direct proportion thus:—

100 (amperes) : proposed current :: (the tabular area) : the desired area.

498. 6. The Conductors may be so designed as to secure a total minimum first cost of installation, irrespective of operation and maintenance.

There arises frequent occasion to use an electric plant on work of more or less temporary nature, in which the total cost of the machinery and operation must be charged against the work in question, as the circumstances are such as to preclude the credit of any salvage. Usually, under such conditions, the cost of operation cuts too small a figure to be regarded. The cost of line and generating-plant must for this case be made a minimum. Assuming the previous notation, the station must have a capacity to supply—

$$EI \text{ watts} = \sum I(ne + n'e' + n''e'' + \text{etc.}) + \frac{\rho LI^2}{s};$$

Table No. 47. — Section A.

Cost of Laying One Additional Ton of Copper.

		\$300	\$325	\$350	\$375	\$400	\$425	\$450	\$475	
	5	.030	.033	.035	.038	.040	.043	.045	.048	
nd	6	.036	.039	.042	.045	.048	.051	.054	.057	
t a	7	.042	.046	.049	.053	.056	.060	.063	.067	
Annual Allowance for Interest and Depreciation in per cent.	8	.048	.052	.056	.060	.064	.068	.072	.076	
nual Allowance for Intere Depreciation in per cent.	9	.054	.059	.063	.068	.072	.077	.081	.086	
og t	10	.060	.065	.070	.075	.080	.085	.090	.095	
n ir	12	.072	.078	.084	.090	.096	.102	.108	.114	
owa	14	.084	.091	.098	.105	.112	.119	.126	.133	
All	16	.096	.104	.112	.120	.128	.136	.144	.152	
ual Oe p	18	.108	.117	.126	.135	.144	.158	.162	.171	
nu	20	.120	.130	.140	.150	.160	.170	.180	.190	
V	25	.150	.163	.175	.188	.200	.213	.225	.238	
		\$500	\$550	\$600	\$650	\$700	\$750	\$800	\$900	
	5	.050	.055	.060	.065	.070	.075	, .080	.090	
and	6	.060	.066	.072	.078	.084	.090	.096	.108	
st	7	.070	.077	.084	.091	.098	.105	.112	.126	
itere	8	.080	.088	.096	.104	.112	.120	.128	.144	
or In	9	.090	.099	.108	.117	.126	.135	.144	.162	
o fo	10	.100	.110	.120	.130	.140	.150	.160	.180	
n ii	12	.120	.132	.144	.156	.168	.180	.192	.216	
lowa	14	.140	.154	.168	.182	.196	.210	.224	.252	
Annual Allowance for Interest and Depreciation in per cent.	16	.160	.176	.192	.208	.224	.240	.256	.288	
nua. Dej	18	.180	.198	.216	.234	.252	.270	.288	.324	
Anr.	20	,200	.220	.240	.260	.280	.300	.320	.360	
4	25	.250	.275	.300	.325	.350	.375	.400	.450	
		\$1000	\$1100	\$1200	\$140	00 \$3	1600	\$1800	\$2000	
_	5	.100	.110	.120	.140		160	.180	.200	
anc	6	.120	.132	.144	.168		192	.216	.240	
st	7	.140	.154	.168	.196		224	.252	.280	
ntere	8	.160	.176	.192	.224		256	.288	.320	
or Ir	9	.180	.198	.216	.252		288	.324	.360	
a p	10	.200	.220	.240	.280		320	.360	.400	
anc n ii	12	.240	.264	.288		.336		.432	.480	
lowe	14	.280	.308	.336	.392		448	.504	.560	
2 '0	16	.320	.352	.384	.448		512	.576	.640	
1 A							576	.648	.720	
nual A	18	.360	.396	437	HUG,					
Annual Allowance for Interest and Depreciation in per cent.		.360	.396	.432	.504	1	640	.720	.800	

Table No. 47. — Section B.

Sectional Area for 100 Amperes in Square Inches and Circular Mils.

	127,320.	140,052.	152,784.	165,516.	178,248.	190,980.	203,712.	216,444.	229,176.	241,908.	254,640.	267,372.	280,104.
	.10	.11	.12	.13	.14	.15	.16	.17	.18	.19	.20	.21	.22
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 1115	291 349 407 465 524 582 640 698 757 815 873 931 989 1047	240 289 337 385 433 481 529 577 625 673 721 769 817 865 914	202 242 283 323 364 404 415 526 566 606 647 727 768 808	172 207 241 275 310 344 379 413 448 482 517 551 585 620 654 689 723	148 178 208 238 267 327 356 386 446 445 505 534 564 624 653	129 155 181 207 233 259 285 310 336 362 388 414 440 466 491 517 543 569 595	114 136 159 182 204 227 250 273 295 318 341 364 409 432 455 547 500 523	101 121 141 161 201 221 241 261 281 302 322 383 403 423 463 463 505	090 108 126 144 162 180 198 216 234 252 270 287 303 323 341 359 377 395 413 431 449	081 097 113 129 145 161 177 193 209 225 241 257 274 290 306 322 339 355 371 387 403 419	073 087 102 116 131 146 160 175 190 204 219 233 233 248 262 277 291 306 320 335 349 364 378	066 079 092 105 118 132 145 158 171 185 211 224 237 251 264 277 290 304 317 330 343	060 072 084 096 108 120 132 144 156 168 180 192 204 216 228 240 252 261 276 288 301 313
	292,836.	305,568.	318,300.	331,032.	343,764.	356,496.	369,228.	381,960.	304,692.	407,424.	420,156.	432,888.	445,620.
	.23	.24	.25	.26	.27	.28	.29	.30	.31	.32	.33	.34	.35
25 30 35 40 45 50 60 65 70 75 80 85 90 90 100 105 110	055 066 077 088 099 110 121 132 143 154 165 176 187 198 209 220 231 242 253 264 275	051 061 071 081 091 101 111 121 131 141 152 162 172 182 192 202 212 222 232 242 253	047 056 065 074 084 093 103 112 121 131 140 149 158 167 177 186 195 204 214 223 233	043 052 060 069 077 086 095 103 112 120 129 138 146 155 164 172 181 189 198 207 215	040 048 056 064 072 080 088 096 104 112 120 128 136 144 152 160 168 176 184 192 200	037 045 052 059 067 074 082 089 097 104 111 119 126 134 141 148 156 163 171 178	035 042 048 055 062 069 076 083 090 097 104 111 118 125 131 138 145 152 159 166	032 039 045 052 058 065 071 076 084 091 097 103 110 116 123 129 136 142 149 155 162	036 042 048 054 061 067 073 079 085 091 109 115 121 127 133 139 145 151	040 045 051 057 063 068 074 080 085 091 097 102 108 114 119 125 131	043 048 053 059 064 069 075 080 086 091 096 102 107 112 118 123 128	045 050 055 060 065 070 076 081 086 091 096 101 116 111 116	048 052 057 062 067 071 076 081 086 090 095 100 105 109
	30 35 40 45 50 55 60 65 70 75 80 95 110 115 	10 25 291 30 349 35 407 40 465 45 524 45 525 55 640 698 65 757 70 815 75 873 80 931 85 989 1047 95 100 105 110 115 110 115 110 115 110 115 110 115 110 115 110 110 115 110 111	10	10	10	10	10	10	10	10	10	10	10

if K' is the installation cost per watt of output, —

$$K'\left[\sum I\left(ne + n'e' + n''e'' + \text{etc.}\right) + \frac{\rho LI^2}{S}\right]$$

is the cost of the station.

The cost of the line is (see equation (186)) —

$$L[(a + bS) + (a' + b'S)];$$

so that the total cost of the plant is -

$$U = K' \left[\sum_{b', S} I(ne + n'e' + n''e'' + \text{etc.}) + \frac{\rho L I^2}{S} \right] + L\left[(a + bS) + (a' + b'S) \right], \tag{192}$$

for which a minimum must be obtained.

Differentiating,
$$dU = \frac{d(\rho L I^2) K'}{S} + d[L(bS + b'S)];$$
 (193)

$$dU - \frac{K'\rho I^2 dS}{S^2} + L(b + b') dS = 0;$$

$$\frac{dU}{dS} = \frac{K'\rho I^2}{S^2} - L(b + b');$$

$$\frac{K'\rho I^2}{S^2} = L(b + b');$$

$$\frac{K'\rho I^2}{L(b + b')} = S^2;$$

$$S = \sqrt{\frac{K'\rho I^2}{L(b + b')}}.$$
 (194)

- 499. The value of S thus obtained must be used with due regard to the precautions indicated on page 377. It is also necessary to consider carefully whether the length of time during which the plant will be in use, and whether the circumstances of operation, are such as to cause interest, depreciation and cost of lost energy to become an appreciable factor.
- 500. 7. Design for the Accomplishment of Best Service. The preceding paragraphs have treated at length the method for determining the minimum cost of a plant to accomplish a given service. In many instances, however, this factor is *not* the most important one in the solution of the problem, for the reason that the conditions of minimum expense will militate against the accomplishment of a satisfactory service to the consumers. In series circuits, where the line is intended for a constant current, the calcu-

lation of the conductor can usually be accomplished along the lines indicated under the previous headings.

501. In other forms of distribution, however, as, for example, upon the parallel system, the conductors must be so arranged as to deliver to the consumer a certain definite pressure. Inasmuch as the variation in the potential at the different points along the mains is a function of the amount of current transmitted, and as the amount of current will depend upon the demands of the conducting system, it becomes essential to so design conductors, irrespective of economy, that the pressure required at the various points of the conducting system shall not vary too greatly.

502. Under such conditions, service requirements, rather than the dictates of maximum economy, must govern the design of the conductors. This case, however, will be more extensively treated in the sections upon multiple arc distribution. Other circumstances, however, frequently arise in which service conditions should govern the size selected for the conducting system. The endeavor of the capitalist is always to reduce initial investment to a minimum, but there is no better guaranty of a paying investment than uniformly successful service.

503. 8. Minimum Cost of Plant to Attain a Maximum Income. — The income to be derived from a distributing-plant must not be lost sight of in the design of the conducting system; and in some cases, though rarely, this becomes so important a factor as to govern the design.

In locations where power is cheap, and transportation facilities are such as to largely increase the cost of materials, it would, from the standpoint of economy solely, be advisable to design the conducting system according to Sec. 3. In many cases, however, this might lead to the expenditure of so large an amount of the station output in the conducting system that the load on the station might be so close to the total station capacity that the losses entailed in the conducting system would prevent service to the maximum number of consumers that could otherwise be placed upon the line. To increase the station capacity sufficiently to serve a very small additional proportion of consumers, might add so largely to the station cost as to be prohibitive, on account of the commercial size of the units of machinery obtainable. On the contrary, by increasing the size of the

conductors, so as to reduce the losses in the line, the station may be able to supply sufficient additional power to accommodate the desired customers. Under these circumstances it may be exceedingly advisable to increase the size of the mains, and correspondingly, their cost, to such an extent as to allow the station to supply additional customers without incurring the expense of a large building and additional prime movers and their generators.

504. Calculation of Loads. — In order to properly arrive at the most advantageous proportion for the relation of the line to the station, it is essential to accurately determine the conditions of load under which the plant will operate.

For series circuits the solution of the problem is facilitated by the fact that the amount of current is a constant quantity during the entire time that the circuit is under operation. Therefore, to obtain the requisite data for calculating the load, it is simply essential to ascertain for each day in the year the number of hours that the circuit is likely to be in operation, and take the sum.

As series circuits are chiefly employed in lighting installations, Tables Nos. 48, 49, and 50 are given as indicating the average number of daily hours of service for each month in the year. Circuit loads can by this means be easily estimated.

505. Regulation. — Systems to work under series distribution can only be regulated by varying the voltage or the pressure at the central station to correspond with the changes in load thrown upon the distributing system. From this cause, automatic regulation can only be perfectly mechanically attained in the simple example of the transmission of power between two similar dynamos, one serving as a generator while the other acts as a motor.

506. For ordinary distributing-plants two methods are adopted to secure regulation under the varying load. If it is desired to throw out of service one or more of the receivers, it is necessary to short-circuit those whose service is to be discontinued, in order not to interrupt the rest of the line. If this is done, it is evident that the resistance of the entire line has been decreased by the amount due to the receivers that have thus been short-circuited. Thus, the equilibrium of the line has been disturbed, and the current increased just in proportion to the diminution of the resistance. It is practicable to maintain equilibrium by substituting for the short-circuited

Table No. 48.

Hours of Lighting.—Giving Approximate Daily Number of Hours from Sunset to Sunrise, and from Sunset to Midnight for each Month in the Year. Standard Time, Latitude 42° N.

	No. of H	OURS FROM		No. of Hours from			
Name of Month.	Sunset to Sunrise.	Sunset to Midnight.	Name of Month.	Sunset to Sunrise.	Sunset to Midnight.		
	н. м.	н. м.		H. M.	н. м.		
January	14.20	7.0	July	9.11	4.30		
February	13.20	6.28	August	10.05	5.10		
March	12.12	5.50	September	11.33	5.52		
April	10.40	5.20	October	12.48	6.40		
May	9.37	4.50	November	14.00	7.17		
June	8.48	4.28	December	14.24	7.26		

Table No. 49.

Showing Hours of Lighting Exclusive of Sundays and Four Holidays.

Taken from actual records of the average time of lighting during three years, including fogs and dark days.

Hours of Lighting.	Period of the Year During which Light is required at these hours.	TOTAL NUMBE OF HOURS of lighting per annum.		
6 A.M. till daylight.	October 1 to March 15.	200		
Dusk till 5.30 P.M.	October 1 to March 1.	150		
Dusk till 6.30 p.m.	September 7 to April 1.	300		
Dusk till 7.15 P.M.	August 15 to May 1.	400		
Dusk till 7.45 P.M.	August 7 to May 11.	600		
Dusk till 8 p.m.	July 28 to June 5.	800		
Dusk till 9 P.M.		1,050		
Dusk till 10 p.m.		1,440		
Dusk till 11 P.M.		1,800		
Dusk till midnight.	All the year.	2,150		
Dusk till 2.15 A.M.		3,000		
All night.		4,300		

TABLE No. 50.

Showing Hours of Lighting Throughout a Year of 8,760 Hours.

Daily Lighting.	JANUARY.	FEBRUARY.	MARCH.	APRIL.	MAY.	JUNE.	July.	AUGUST.	SEPTEMBER.	OCTOBER.	November.	DECEMBER.	TOTAL PER ANNUM.
From sundown to 8 P.M	125	89	67	36	6			21	54	87	117	140	742
From sundown to 9 P.M	156	117	98	66	37	20	25	52	84	118	147	171	1091
From sundown to 10 P.M	187	145	129	96	68	50	56	83	114	149	177	202	1456
From sundown to 11 P.M	218	173	160	126	99	80	87	114	144	180	207	233	1821
From sundown to midnight	249	201	191	156	130	110	118	145	174	211	237	264	2186
From sundown to 2 A.M	311	257	253	216	192	170	180	207	234	273	297	326	2916
From sundown to 4 A.M	373	313	315	276	254	230	242	269	294	335	357	388	3646
From 4 A.M. to sunrise	125	92	69	32	3			24	51	75	103	154	728
From 5 A.M. to sunrise	94	64	38	2					21	44	73	123	459
From 6 A.M. to sunrise	63	36	7							13	43	63	254

receiver an equivalent resistance. But by this device no economy is introduced, for the entire circuit is then expending precisely the same amount of energy as it was previously called upon to deliver. Even in cases where the power costs little or nothing, it is necessary to complicate the installation by separate pieces of apparatus to accomplish this short-circuiting that shall be capable of absorbing and destroying, by conversion into heat, the amount of energy usually taken by the receiver.

507. In order to avoid loss of power, it is sometimes practicable to introduce devices for short-circuiting the receivers, which shall substitute for the receiver an apparatus which will introduce into the circuit an opposing electro-motive force equivalent to, or producing the same effect, as the receiver itself. This method is widely applied to alternating current circuits under the various forms of choking or reactive coils. The arrangement consists of an electromagnet, having a divided core, preferably with a closed magnetic circuit. The self-induction of the coil is so calculated as to produce at its terminals an electro-motive force of opposite sign equivalent to that of the apparatus which has been short-circuited. Under these circumstances, neither the current nor electro-motive force of the generators has been changed; but their difference of phase has been slightly altered, thereby effecting a saving of energy equal to that previously expended in the short-circuited receiver. Alternating circuit devices of this kind practically save all of the energy that would be otherwise expended in the receivers, excepting the small amount absorbed by the reaction coil, which is usually inappreciable.

508. A second method of regulation, which is less simple and less economical in its effect upon the energy dispensed in the circuit, may be applied to constant current machines, in which the reactive coil is inoperative. This scheme of regulation consists in applying to the dynamo machine a regulating apparatus which shall affect the potential delivered at the terminals of the machine itself. All devices of this kind involve an electro-magnet, which is excited by the current delivered by the machine. When, by the short-circuiting of any of the receivers, the resistance of the line is decreased, there is a proportionate increase in the quantity or current sent out by the generator. This addition to the line current, flowing through the

regulator, excites the electro-magnet, forming a part of the apparatus, to a greater degree, thereby setting in motion a train of mechanism which may be arranged to accomplish either of the three following results:—

- 509. 1. The regulator may be so arranged as to shunt or diminish the current flowing through the field magnets of the generator. Under these circumstances, a decrease in the current flowing through the fields decreases the number of magnetic lines in the magnetic circuit of the generator; and this weakening of the magnetism is followed by a proportionate decrease in the voltage of the machine, thereby restoring the balance of the circuit.
- 510. 2. The regulator may be so arranged as either to increase the air-gap, or to short-circuit a part of the magnetic circuit of the generator, thereby accomplishing the same result in decreasing the voltage of the machine.
- 511. 3. The regulating mechanism may be arranged so that on the increase of current flowing through the circuit, the regulator shall automatically shift the brushes on the dynamo away from their position of maximum voltage to some other place on the commutator, thus giving a decrease in the pressure developed by the machine.
- 512. While many of these devices have mechanically been brought to great perfection and are eminently successful, yet this method of government is attended by difficulties involving a loss of economy or danger to the commutator, or other parts of the generator, to such an extent that series circuits are rarely selected for distribution under any circumstances excepting those involving loads which are expected to be reasonably constant during the greater part of the time in which service is expected.
- 513. Series distribution, therefore, possesses the advantage that the amount of current can never exceed a certain predetermined limit. This presents security against the chances of danger from short-circuiting, for a sensible loss of current is immediately indicated by the irregular action of the receivers that may lie between the points of leakage. This quality is not possessed by other methods of distribution. On the contrary, the series system has the disadvantage of a lower efficiency for the percentage of energy expended in the circuits, and is only constant so long as the resistance and the current remain mutually unchanged. Therefore the efficiency falls

in proportion to the number of receivers that are put out of commission.

514. Automatic Cut-outs for Series Circuits. – A great number of devices have been arranged for the purpose of automatic cutting out of the various receivers on series circuits. These devices may be divided into two classes.

Lamp Cut-outs. — These devices, operating on and especially adapted to arc lamps, are so arranged as to cut the lamp out of circuit as soon as the carbons are entirely consumed. All such contrivances are based upon a differential magnet, so planned that when the resistance of the circuit, due to the increase in the length of the arc, becomes sufficiently great, a portion of the circuit will be shunted into a fine wire coil on the differential magnet, and by closing its armature, will cut the lamp out of series.

515. Time Cut-outs. — Other automatic cut-outs are arranged upon the principle of allowing the translating device to operate for a certain number of hours, and then cut it out of the circuit. These devices are usually based upon the application of a clock to a shunt operated by an electro-magnet, so arranged that after the receiver has operated a certain number of hours, the clock mechanically closes the shunt, throwing the current around the receiver. Such devices are applied to cut out constant current motors, and also to cut out arc lamps that are contracted to burn a certain, definite number of hours each day.

While contrivances of this kind have evinced remarkable ingenuity on the part of their inventors, and while on some circuits they form valuable adjuncts, they add so great a degree of complexity, and require so much additional maintenance expense, that their utility is, in many cases, quite questionable.

516. Designs for Series Circuits. — In the use to which series circuits are most frequently applied, namely, for municipal illumination, it is obvious that the greater part of the plant load will be thrown on at about sundown, and will remain essentially constant throughout the entire hours of the night, all of the lamps being simultaneously extinguished at the succeeding sunrise. Thus, under these circumstances, the plant load is essentially a constant quantity during its entire time of service; and while during different periods of the year the varying lengths of night and day, or the demand

caused by cloudy and stormy weather, is of such a nature that, while it increases or decreases the length of time that the plant is at work, it does not vary to any appreciable extent the load which the plant is called upon to carry.

517. Arc-light installations are frequently designed to supply commercial lights in addition to those used for city lighting. The commercial lights in interior locations may be called upon to run at very different periods of time than those demanded for municipal illumination; but the conditions giving rise to the demand for such lights will naturally be tolerably constant throughout the territory that would ordinarily be embraced by the lighting plant. So while the length of time that commercial lamps would be required to burn might be very different from that called for by the city lighting, yet both the commercial and municipal loads would be reasonably con-

stant quantities. Many attempts have been made to so plan arc circuits that the commercial load will be separated or rendered distinct from the municipal load. This can always be done by running independent circuits for each kind of service; yet this plan

Fig. 219. Diagram of Series Lighting.

naturally entails a certain amount of waste conductor material, for while the commercial lights may be required at an earlier hour than the municipal lights, and also may be extinguished at an earlier hour, yet for the great proportion of the time both kinds of service are simultaneous.

Any design of circuits, therefore, which can be made so that at least for a part of each day one circuit may be used for both sets of lamps, will result in a corresponding saving in copper expense for the original circuit.

518. One method for introducing a saving in the copper required for circuits containing both commercial and municipal arcs has been proposed by Mr. Sharpstein, in the *Electrical Engineer*. This method is shown in Fig. 219.

Two machines were installed in the station indicated at No. 1 and No. 2, and the circuits so arranged that all the commercial lamps were on wire G, while all the municipal lamps were on wire F.

When the commercial lamps were placed in operation, machine No. 1 was started, and with the switchboard, cables, and plugs, A and G were connected, and B and E. When service was needed for the municipal lamps, machine No. 2 was started, the brushes being placed at the point of minimum working capacity. Then, by means of the remaining hole in the terminal B, machine No. 1 was connected with C, and by means of the remaining hole in E the third wire leg was connected with D. As a result, machine No. 2 was in circuit with no load; and if the brushes had not been placed at the point of minimum capacity, a burn-out would have occurred. Now, by connecting E and B, both machines are placed upon the commercial circuit, and in order to cut E out and get F into circuit, one plug of the cable, just removed from the switchboard, should be placed in the remaining hole at D. The other plug is put into the right hand, and held near F until the plug in E is withdrawn far enough to draw a short

Fig. 220. Arc-Lamp Circuit.

arc, when the plug in the right hand is put into one of the holes in F, when the arc at E is extinguished, and both lamp-legs are on both machines.

519. There are many obvious objections to running dynamos in series, as is required by the preceding method. The geographical location of the respective commercial and municipal arcs is not always such as to enable the saving of an appreciable amount of copper. Mr. C. G. Young has indicated two methods, as shown in the accompanying illustrations, which avoid the difficulties of placing the dynamos in series, and yet accomplish a notable saving of copper. In Fig. 220 three dynamos are shown as operating three circuits, which may be arranged either to run conjointly or independently, with four wires instead of six. A little study of the diagram will render the operation of the currents entirely clear. If all the lamps are in operation at once, it is evident that wires Nos. 2 and 3 will carry double the current of 1 and 4. If the dynamos are worked

fully up to their capacity, an extra allowance of copper must evidently be provided in this part of the circuit. It will often happen, however, that there is sufficient spare voltage, or the extra pressure may be obtained by a slight increase in speed, so that no extra copper is needed. In the case in point, No. 6 wire was used throughout the entire circuits, and proved entirely successful.

520. Where the station load can be subdivided into three parts, operating at different times in the 24 hours, and geographically so located as to be separable one from the other, the arrangement shown in Fig. 221 effects a reduction in line material. Under these circumstances continuous service is given on line A, day service on

Fig. 221. Arc-Lamp Circuit.

lines A and B, and night service on lines A and C, thereby saving one-half the copper that would be called for by three independent circuits. A switch introduced at S serves to isolate line C, in order to protect the trimmers.

521. DIVISION 2, Constant Current Circuits, Embracing Generators and Receivers at Varying Distances from each other, has as yet received little or no practical development. Several attempts have been made to introduce the series system upon electric railways; but so far the practical difficulties have been found commercially insurmountable, and the attempts have been abandoned.

Divisions 3 and 4 of the classification of circuits on page 373, treating of constant potential circuits, covering at present the most important electrical plants, will be considered in a succeeding chapter.

CHAPTER X.

PARALLEL DISTRIBUTION.

Art. 522. The Evolution of the Parallel System. - In the discussion upon series distribution, in Chapter IX., it has been shown that the development and extension of this method are limited in several directions. As the current in a series system is constant throughout the entire circuit, a variation in the number of customers, or in the amounts of energy supplied to respective customers, can only be obtained by a corresponding variation in the potential of the system. Every additional receiver increases the tension proportionally to the amount of energy required to supply the additional demand; and the practical limit of possible difference of potential is reached, when a comparatively small number of translating devices have been placed upon the circuit. Experience has, thus far, demonstrated the inadvisability of increasing the potential of direct current circuits beyond 4,000 or 5,000 volts. Occasionally installations have been operated as high as 10,000 volts; and though the tendency is toward higher pressure, such tensions require more careful and constant supervision and maintenance, and the gravity of injury arising from an accidental short-circuit is very largely increased. the series circuit finds itself at a disadvantage when widely different amounts of energy are desired by various consumers along the line. As the quantity of energy to be delivered to each customer can only be varied by changing the potential between the terminals of the translating devices supplying the different subscribers, a customer using a large amount of energy must, necessarily, receive mains having great difference of potential. This has always been found to be a source of difficulty and danger; experience having shown the hazard to the community at large of introducing high potential circuits directly into residences, or the places of business, of the subscribers, where they are likely to be under the management of those little skilled in electrical manipulation. In order to attain any reasonable degree of economy, it has been shown that the load upon a series

circuit must be nearly constant and uniform throughout the whole time that the circuit operates, and that a series plant becomes decidedly uneconomical when applied to the service of customers demanding widely varying supplies of energy, extending over different periods of time. In the development of electrical industries, central stations soon reached a sufficient magnitude to bring the limitations of the series circuit into sharp conflict with desired business extensions. To enable the central station to supply a large number of customers, without introducing potentials that are impracticable, the first step in electrical evolution was to equip the station with a number of generators, each one of which was arranged to operate upon a separate and independent circuit. By this means dangerous potentials were avoided; but still all of the individual circuits were open to the remaining objections of the series method, and the large number of independent machines proved decidedly expensive in operation. The multiplicity of circuits soon became confusing, and much duplication of wire was necessary in order to cover a reasonable amount of territory. To improve the economy of the station, large dynamos were planned, capable of supplying a number of different circuits, upon each one of which the various receivers were placed in series. Such an arrangement is indicated in Fig. 222.

523. It should be noted, in the examination of all the illustrations giving diagrammatically the outlines of various circuits, that the sketches serve merely to illustrate the principles of the circuit, without having special reference to the kind of receivers, or translating devices, which may be employed upon installations of differing design. Though the multiplication of circuits from one machine formed a step in advance, enabling the station to operate somewhat more flexibly and economically than the single series circuit, as indicated in Fig. 222, in so far as losses in the dynamos themselves were concerned, it in no wise obviated the other limitations to which the series circuit is subjected. As each of the series circuits from the generator is supplied with the requisite number of receivers to exhaust the potential of the dynamo, the tension of the system may, evidently, be reduced to any desired safe and practical limits, by multiplying the number of circuits, and proportionally reducing the number of receivers which are placed upon each one. Another advantage accrues from the ability to arrange the differing circuits in such a manner that

they may be thrown in and out of commission, in a way to allow a much greater variation of the load upon the station. In the case of an electric lighting plant intended to supply both municipal and commercial arcs, it is feasible to arrange a multiple circuit generator of sufficient capacity to supply the current required for both circuits, placing all the municipal arcs upon one, and all the commercial lights upon the other. The two circuits would thus be entirely separate and independent of each other, and could be operated during differ-

Fig. 222. Contrast between Plain Series and Series Multiple Systems.

ent times of the day with essentially the same economy, so far as the losses in the circuit were concerned, as would accrue provided all the lamps were placed upon a single line. While this method introduces economy in the series system so far as the circuit losses are concerned, unless the generator be worked for a greater proportion of the time at its full load, the dynamo losses tend, to a considerable extent, to counterbalance the economy gained. While this method presents a partial solution of the problem, it in no wise provides any

ability to deliver to the different customers varying amounts of energy, or to render the various customers independent of each other, in order that they may throw in and out of service, at pleasure, their receivers. This is really the most important disability of the series circuit.

524. If the multiplication of separate circuits should be carried to its limit, each receiver would be supplied with a separate and independent wire from the generating-station, as shown in Fig. 223, and then all the chief objections to the series circuit disappear. In this case the potential of the generating-station is reduced to the highest pressure required by any receiver that may be placed in service. As each receiver is supplied with a separate and independent circuit extended from the receiver to the generating-station, every translat-

Fig. 223. Diagram of Independent Circuit for Each Receiver.

ing device is entirely independent from every other one, and may be thrown in or out of the circuit, without interfering in the slightest with the service of any other consumer.

525. From the independence of the individual circuits, the amounts of energy supplied to the different receivers may be varied, by varying the quantity of current, without changing the pressure of any of the circuits. Thus, any subscriber may be supplied with any desired number of translating devices of different powers, and the amount of energy supplied varied at pleasure, by varying the quantity of current entering each translating device. As the various receivers may be adjusted to work upon any convenient electrical pressure, the circuits can be easily designed to never exceed safe limits; and by increasing the quantity of current supplied by the station, it becomes possible to distribute energy over a very large territory and to a great

number of customers. The independence of the receivers also allows the customers to throw their loads on and off at pleasure, or to vary them to any extent. It is now evident that all receivers, instead of operating under a constant current and a varying pressure, operate under a constant pressure and a varying amount of current. The evolution, therefore, of electrical distribution has, evidently, taken place by a differentiation of the series method, the early single circuit being finally split up into such a number of parts as will practically give an independent line to each of the respective customers. To serve a large territory, however, by actually giving to each customer a circuit

Fig. 224. The Parallel System.

completely his own, extending from his receiver back to the generating-station, would introduce such complexities of wiring as to prohibit the introduction of this plan in installations of any magnitude. To avoid this objection, the next step consisted in uniting the adjacent receivers into bunches, the various groups being placed in parallel to each other across the line, the system finally developing into the plan indicated in Fig. 224, in which the essential independence of the individual receiver is manifest. From the characteristic parallelism of the individual receiver circuits, the system has derived its name of the "Parallel" or "Multiple Arc System."

526. Methods of Distribution. — The arrangement whereby each translating device is supplied with an entirely independent cir-

cuit, extending from the generator to the receiver, gives the individual customer the best possible service and the greatest independence. As each receiver is absolutely separate from every other one in the entire installation, it may be thrown on or off the circuit, or the amount of energy absorbed varied, without affecting in the slightest degree any other customers. With the individual circuit arrangement, provided the speed of the generator at the station be maintained constant, and the dynamo is not overloaded, the service delivered to all of the customers will attain the greatest uniformity. The inconvenience of this method, giving rise, in stations supplying a large number of customers, to utterly impracticable multiplication and complexity of circuits, has been noted, and the method of obviating this, by uniting the various receivers into groups, and placing them in parallel across a common set of conductors, indicated. A difficulty here arises from the fact that the fall of potential along the conductors is not only a function of the resistance of the mains, and so an inseparable concomitant of the distance of the various customers from the station, but is also a function of the amount of current which, at the time being, is passing through the mains. Thus, referring to Fig. 224, and assuming the plant represented to be a lighting circuit, the current at A will be much greater when all of the lamps are in operation than when the group at C only is in service. As the fall of potential depends, not only on the resistance of AC, but also upon the amount of current flowing through the mains, the decrease in the pressure at A will be much greater when all of the lamps at A, B, and C are lighted, than when a single group is alone in service. On the supposition that the generator always produces a constant potential, if the mains are so calculated as to give B precisely the required tension, when all the lamps are in service, the pressure at B will be too high when A and C are extinguished; or, if the mains are calculated so as to give the required tension at B when the other lamps are extinguished, if A and C are in service, the tension at B will be too low, and the lamps will not burn with their required brilliancy. To obviate this difficulty, many systems of wiring have been devised, all of which may be finally reduced to four elementary forms. Before giving the fundamental systems the necessary careful consideration, it is advisable to review hastily the various plans of wiring. The ordinary features of the parallel system

are exemplified in Figs. 224 and 225. From the generator two or more sets of mains are extended through the district to be served, the various receivers being placed in bunches across the mains, as indicated in the illustrations. A very slight consideration of the diagrams will show that the electrical distance from the generator to the various receivers varies with the successive translating devices, and that the simple fact of the variation in distance from the receivers to the generator would preclude the possibility of supplying a uniform pressure throughout the entire system. Evidently the electrical distance from the generator to the group A, Fig. 224, is much less than it is from the generator to the groups B and C. As there is no known substance which may be employed for the conducting

Fig. 225. Complete Multiple Arc System.

system having no resistance, it is impossible on this account to render the pressure at A the same as it is at B and C.

527. The Loop System. — The loop system is an endeavor to so design the conducting circuit as to render the electrical distance from the generator to each of the receivers the same throughout the entire circuit.

Thus, in Fig. 226, one of the conducting leads aa', from the generator A, extends directly away from the dynamo to the end of the system, having the receivers placed in succession along its length. The main BCb, on the contrary, extends from the generator to the most remote point of the circuit b', without being attached to any of the receivers. At the point b' it returns upon itself, toward the generator, having upon this branch the connections to all of the receiv-

ers. An inspection of the diagram will show that, under these circumstances, the distance from the pole A of the generator to the pole B, throughout any of the translating devices, is precisely the same; so the pressure in all of the receivers is not affected by their proximity or remoteness from the generating-station; and were it not that the fall of pressure is a function of the amount of current flowing, the receivers would always obtain a constant potential.

528. The Spiral Loop. — Another loop arrangement is indicated in Fig. 227, in which the parallel conductors, A and B, are extended in the arcs of spirals from the generating-station throughout the territory to be served, both spiral arcs extending from one pole of the generator nearly to the other pole. In both of the loop systems the amount of material required for the conducting system is considerably increased, with, however, the advantage of much greater constancy in the electrical pressure delivered to the receivers.

529. The Tree System. — Nearly all of the earlier installations upon the parallel system were laid out upon the so-called "Tree System," indicated in Fig. 228. The origin of the name is made quite evident by the illustration, from which it will appear that the main conductors in the system resemble a tree trunk, from which the auxiliary leads branch in various directions, quite after the fashion of a spreading tree, the receivers occupying the places of the twigs, leaves, and fruit. As the fall of pressure throughout the installation is augmented by the varying electrical distance of the receivers from the source of supply, the plan is, in this respect, defective.

530. The Closet System.—The "Closet System" was an attempt to minimize the effect of electrical distance by collecting the various receivers into groups, each one of which was supplied with a separate and independent circuit back to the generating-station. This design is indicated in Fig. 229, the receivers being collected into four groups, those of each bunch equally placed in a circle around a center of distribution. From each distributing center, a set of leads is carried back to the generating-station, thus rendering each group independent of the other groups. This method is chiefly used in interior wiring, and may have formed the basis for the development of the famous "Feeder and Main System," to which detailed refer-

ence will be shortly made. The detail of a single group, in the Closet System, is given in Fig. 230. Here the receivers are placed in a circle around two circular mains, which receive their special circuit to the generating-station at two points diametrically opposite each other. A little consideration of the diagram indicates that the electrical distance of all of the receivers, with reference to the attachments of the feeding circuits, is the same.

531. Conical Conductors. — Referring to Figs. 224 and 225, it is evident that the greatest current in the conductors occurs in the section immediately between the generator and that of the first consumer; and as the distance from the station increases, thus pla-

cing more and more consumers between the station and the point of the mains under consideration, the current in the conductors decreases in direct proportion to the number of receivers that lie towards the station. It needs but little consideration to perceive that, if the cross-section of the mains is kept constant throughout the entire system, the conducting material in the circuit is not disposed to the best advantage. Either the current density near the station is

The Closet System, Detail of Group.

too great, and the mains are in danger of becoming overheated, or, at the more remote portions of the systems, the current density is too small, and the conducting material is wasted. To proportion the mains to attain a *constant current density* throughout the entire system is evidently the remedy. Such an arrangement, when carried to the limit, would produce a conical conductor having the greatest cross-section at the station, and gradually tapering to zero at the extrer ity of the system. Under such a design, the *rate* of fall of the potential, due to the resistance of the conductors, evidently becomes much more uniform throughout the entire length of the circuit. Such an arrangement of conductors is indicated in Fig. 231.

532. Another attempt to equalize pressure throughout the system has resulted in the employment of two conical conductors, so placed that the apex of one of the conductors is connected to one

of the poles of the generator, while the base of the other conductor is connected to the other pole. Such an arrangement is shown in Fig. 232.

Though this plan tends to equalize the *total* resistance of the conductors to the receivers from pole to pole of the generator, it produces quite an unequal variation in the "drop" to which the various receivers are subjected. The resistance of \overline{AB} is less than

Fig. 231. Conical Conductors.

 $\overline{\text{CD}}$, though the current is the same in both. Hence there will be more drop in CD than in $\overline{\text{AB}}$, and of the total drop due to conductor resistance a greater proportion will occur in CD than in $\overline{\text{AB}}$.

533. Anti-Parallel Feeding. — In the diagram of the loop system, Fig. 226, one conductor, in extending away from the station, ran to the extremity of the line and then returned upon itself. A modification of the loop system is shown in Fig. 233, in which this extension of the conductor is split between both mains. In this

Fig. 232. Anti-Conical Conductors.

illustration the current enters the mains at opposite extremities, flowing in reverse directions through the two conductors. Such a method is termed "Anti-Parallel Feeding," and, as is shortly to be shown, is attended with some considerable advantage.

534. The Distribution of Potential. — Satisfactory service in all systems operating under the parallel method can only be accomplished by preserving, under all conditions of loading, an essentially constant pressure throughout the entire circuit of conductors. Theoretically, the pressure at the terminals of all the translating devices,

be they what they may, should be perfectly uniform at all times and under all conditions of loading, whether the load be that on the translating device in question or that of the entire system. Practically, under no circumstances is it possible to attain an exact equality in the electrical pressure under all conditions. To reach this result in even a manner to secure satisfactory service, requires, with the best exercise of the greatest skill in proportioning, an expenditure of enormous amounts of copper in the conducting system. All of the forms of wiring may be reduced to four elementary forms; and, therefore, a very careful consideration of the distribution of potential through each of these elementary forms, becomes a matter of prime

Fig. 233. Anti-Parallel Feeding.

importance to the successful designer of a parallel system. In order to simplify this investigation, the four primary forms of wiring may be classified as follows:—

First. Cylindrical conductors, parallel feeding.

Second. Conical conductors, parallel feeding.

Third. Cylindrical conductors, anti-parallel feeding.

Fourth. Conical conductors, anti-parallel feeding.

To further simplify investigation, let it be assumed in all of the four cases now to be considered, that the conductors are two straight lines, supplied with an indefinite number of receivers, uniformly and equally distributed along the entire length of the conductors, each receiver taking the same amount of current, which is equivalent to assuming that the current supplied by the station flows between the

two mains in a thin, uniform sheet, extending from end to end of the conductors. Such an assumption has a mechanical analogy in the replacement of a set of steps by an inclined plane having the same pitch. The load on the mains, in this connection, is supposed to be a constant one and uniform.

CASE I. — Cylindrical Conductors — Parallel Feeding.

535. In Fig. 234, let \overline{AB} and \overline{CD} be the two parallel cylindrical conductors connected to the source of supply at A and C, the current flowing in the direction of the arrows.

Fig. 234. Diagram of Potential Distribution in Case I.

Let \mathcal{L} be the length of the mains in any desired units;

 I_o and $-I_o$ the currents at the station in each main,

i and -i' the currents at any point x in each main;

 V_o and v_o be the potentials at the station assumed to be constant;

V' and v' be the potentials at any point distant x units from the station, then,

 $V_o - v_o = u_o$, the difference of potential between the mains at the station.

Also V' - v' = u', the difference at any point x; then,

 $u_0 - u' =$ the fall of potential or drop between the station and point x.

Let R = the resistance of each main per unit of length.

Consider an element of the conductor dx at the point x. By hypothesis, the current decreases regularly from I_o at the point A, to 0 at the point B, the extremity of the mains. Hence, in each element of the conductor AB, along its entire length, an elementary amount of current will pass from this conductor to the other main. As, by hypothesis, the rate of flow between the mains is uniform, I/L will be the rate of flow from one conductor to the other conductor. At any point x, the current in the mains will be the total current at the station, minus all the current which has been transferred across from one main to the other, between the station and the point x under consideration.

The resistance of the element of conductor dx is Rdx. By Ohm's Law, the variation of potential in any conductor is E = RI; hence, in the two mains —

$$d(u_o - u') = Rdx \times 2\left(I_o - \frac{I_o x}{L}\right); \tag{195}$$

arranging, -

$$d(u_o - u') = 2RI_o\left(1 - \frac{x}{L}\right)dx.$$

Integrating between x = 0 and x = L, —

$$u_o - u' = 2 R I_o \int_0^L \left(1 - \frac{x}{L}\right) dx;$$

$$u_o - u' = \frac{R I_o x}{L} (2 L - x).$$
(196)

This equation represents a branch of a parabola to which the conductor is an asymptote. When x=0, $u_o-u'=0$, showing no drop at the origin; when x=L, $u_o-u'=RI_oL$. To find the maximum drop,—

$$\frac{d(u_o - u')}{dx} = 2 RI_o \left(1 - \frac{x}{L} \right) = 0.$$

$$\frac{d^2(u_o - u')}{dx^2} = -2 RI_o;$$
(197)

or $u_o - u'$ is a maximum when x = L (198), with a value of RI_oL . 536. Take an example. Suppose, in Fig. 234,—

$$I_o = 12$$
 amperes. $V_o - v_o = 40$. $L = 60$ feet. $u_o - u' = \frac{RI_o x}{L}(2L - x)$. $u_o - u' = \frac{.02 \times 12x}{60} \times (120 - x)$.

Let x be successively 10, 20, 30, 40, 50, and 60, then —

$$\frac{.02 \times 12}{60} \times 10 \times (120 - 10) = 4.4;$$

$$\frac{.02 \times 12}{60} \times 20 \times (120 - 20) = 8.0;$$

$$\frac{.02 \times 12}{60} \times 30 \times (120 - 30) = 10.8;$$

$$\frac{.02 \times 12}{60} \times 40 \times (120 - 40) = 12.8;$$

$$\frac{.02 \times 12}{60} \times 50 \times (120 - 50) = 14.0;$$

$$\frac{.02 \times 12}{60} \times 60 \times (120 - 60) = 14.4.$$

537. From these values, the curve AB in Fig. 234 is plotted. A very slight consideration of this curve indicates a very unequal drop along the conductors, evidently due to varying current density per unit of cross-section in the mains. For incandescent lighting circuits, it is possible to compensate to some extent for this inequality, by placing lamps of different voltage across the main, the higher voltage lamps being located nearer the source of supply. While almost any desired voltage of lamp may be quite readily obtained, yet to assume this method of compensation introduces a very undesirable maintenance complexity into the service. Furthermore, the slightest inspection indicates that the conducting material is badly disposed in reference to the load on the mains. Either that portion of the conductors nearest the station is too heavily loaded, and dangerously near the heating limit, or at the extremities of the mains there is too much copper, and economy may be introduced in original capital outlay by a reduction in the cross-section. To assume a safe current density per unit of cross-section, and then to construct the main to realize at all points this density, leads to a much more effective disposition of the conducting material. This is accomplished by a tapering conductor, the cross-section of which varies directly with the current.

CASE II. — Conical Conductors — Parallel Feeding.

538. In Fig. 235, let AB and CD be two parallel conical conductors connected to the station at A and C, and having a cross-section constantly decreasing in proportion to the diminution of the current,

so that the current density shall be constant at all cross-sections. Assume the notation as indicated in Case I., with the exception of the symbol R, which in Case I. had a constant value per unit of length, while in the present case the value of R will evidently vary with the distance from the generating-station. In Case I., R was the resistance per unit of length of each main; in the present conditions

Fig. 235. Diagram of Potential Distribution in Case II.

R will vary with x, and is the resistance of a unit of length at the point x only; therefore, for R substitute r, denoting a variable resistance, —

 $d(u_o - u') = rdx \times 2\left(I_o - \frac{I_o x}{L}\right),\tag{199}$

in which r is the resistance per unit of length at x. But $r = \rho / S$ at any point x, ρ being the specific resistance and S the section of the conductor, then,—

 $d\left(u_{o}-u'\right) = \frac{\rho dx}{S} \times 2\left(I_{o} - \frac{I_{o}x}{L}\right);\tag{200}$

arranging,
$$d\left(u_{o}-u'\right)=\frac{2\rho I_{o}\left(1-\frac{x}{L}\right)dx}{S}.$$
 but,
$$\frac{\left(1-\frac{x}{L}\right)}{S}$$

is the current density per unit of cross-section, which by hypothesis is constant; hence, integrating,—

$$u_o - u' = 2 R_o I_o x,$$
 (201)

 R_o being the resistance per unit of length at the origin.

This is the equation of a straight line, indicating a uniform drop from the station to the end of the conducting system, $u_o - u'$ being a maximum when x = L.

539. Assuming the data in the example given in Case I., $u_o - u' = 28.8$ volts, and the curve \overline{EG} (see Fig. 235) is obtained, showing that, with a conical conductor having the same unit resistance at the origin as a cylindrical one, there is twice the drop; but, however, the weight of copper used in each main is only one-third of that employed in the cylindrical mains. This is evident from the fact that, in both systems the diameter at the origin and the length are the same, while the weights are in the same proportion as the · volume of a cylinder and cone having the same base and altitude, or as one to three. If in the conical system the same weight of copper is allowed as in the cylindrical, the relative drop in the two systems is reduced in the proportion of two to three, as indicated in Fig. 235 by the curve EF. The section of the conductors at the origin is then three times as great as in the cylindrical system. Thus, for the same cost of conducting system, the variation in potential may be decreased and the drop rendered more uniform by this method.

CASE III. — Cylindrical Conductors — Anti-Parallel Feeding.

540. In Cases I, and II., the adjacent ends of the mains A and C are connected to the generator, the path of the current being outward away from the stations along the main AB, and backward toward the station through CD. Thus the direction of the current in AB is opposite to the direction of the current in CD. It is sometimes feasible to connect the *opposite* ends of the main to the station

instead of the adjacent ends. Such a disposition is shown in Fig. 236, A being connected to one pole of the generator, and D to the other, the path of the current, as indicated by the arrows, being in the same direction in both mains. In this case an examination of the diagram shows that no receiver can enjoy the full difference of potential supplied by the generating-station, for the reason that V_o is at one end of one main, and v_o at the opposite end of the other. In this case $u_o - u'$ is not the fall of potential throughout the entire length of both conductors, but is the variation between the different receivers, and is less than the total fall for the two mains by the amount lost in either one of the conductors.

Fig. 236. Diagram of Distribution of Potential in Case III.

A further study of the diagram will show that —

$$d(u_o - u') = R(i - i') dx, (202)$$

i and i' being the current in the respective mains at the point x.

$$i = I_o - \frac{I_o}{L} x;$$

$$-i' = \frac{I_o}{L} x;$$

$$i - i' = I_o - \frac{2I_o}{L} x;$$

$$d(u_o - u') = RI_o \left(1 - \frac{2x}{L}\right) dx.$$

$$u_o - u' = RI_o \int_0^L \left(1 - \frac{2x}{L}\right) dx;$$

$$u_o - u' = \frac{RI_o x}{L} (L - x).$$
(204)

Integrating

This equation is also that of a parabola; but the vertex is at the center of the mains, and the maximum variation is one-half that of Case I. When x=0 and x=L, u_o-u' is 0, showing that at each end the receivers are operating under the same potential. To locate the maximum difference of potential between the receivers, —

$$d\left(\frac{u_o - u'}{dx}\right) = RI_o\left(1 - \frac{2x}{L}\right) = 0;$$

$$RI_o - \frac{2RI_o}{L}x = 0;$$

$$x = L/2,$$
(205)

a maximum; hence, the greatest drop is at the center of the main, and has the value $RI_oL/4$.

541. Taking the same value for the constants and variables as was assumed in the example in Case I., the curve CD plotted in Fig. 236 is obtained.

This curve shows the rate of variation in pressure between the various receivers along the mains, and does not indicate the entire drop between the potential of the generator and the point of least pressure in the conductor; for, as has already been indicated, the value of $u_o - u'$ is less than the total difference of potential by a quantity equal to the fall in pressure in one-half of the conducting system. The curve of total fall of potential may be obtained by decreasing the ordinates of $\overline{\text{CD}}$ by a quantity equal to $RI_oL/2$, which is the resistance of half the conducting system, and is represented in Fig. 236 by the curve $\overline{\text{C'D'}}$. Comparing these curves with Cases I. and II., a much more uniform and regular service to the customers is indicated, demonstrating the advantageousness of this method of wiring in cases where it is possible to employ it.

CASE IV. — Conical Conductors — Anti-Parallel Feeding.

542. The plan of feeding from the opposite ends of the mains may be applied in conical conductors with equal advantage. The arrangement is shown in Fig. 237. From the equations in Cases II. and III., — $d(u_o - u') = (ri - r'i') dx, \tag{206}$

r and r' and i and i' being the resistances and currents in either main, respectively, at the point x. Hence, by a similar train of reasoning as in the previous cases, $r = \rho i / S$, and $r' = \rho i' / S'$; but

 $\rho i/S$ and $\rho i'/S'$ are constants for each main, by hypothesis; hence,—

 $d\frac{(u_o - u')}{dx} = 0; (207)$

 $u_o - u' =$ a constant. But $u_o - u'$ is here, as in Case III., the difference in pressure between the receivers; hence, —

$$V' - v' = V_o - v_n = V_o - v_o - R_o I_o L; (208)$$

integrating (207)
$$u_o - u' = R_o I_o L. \tag{209}$$

543. This is the equation of a straight parallel to the axis of x; hence, by this method of wiring, there is no pressure *variation* between the different receivers, all being submitted to precisely the same difference of potential. This method, then, presents an ideal

solution of constant pressure distribution. The only variation to which the receivers are subjected is that due to a change in the loading of the entire system, which may be compensated for by the methods of regulation to be described later on. The same conclusions as to the relations of the amount of drop and weight of copper in the conducting system may be applied in this case as in Case II.

544. Collecting the curves indicated by these equations, and referring them to a single set of axes, a diagram is obtained as indicated in Fig. 238, from which a glance will show the relative potential distribution occurring in the four elementary systems. The four equations from which these curves are deduced are also here collected in a group, in order that their properties may be readily scanned. The salient deductions from these equations are collected in Table No. 51, in order to render them more conspicuous.

Fig. 238. Curves of Potential Distribution, Cases I., II., III., and IV.

545. Case I.
$$u_o - u' = \frac{RI_o x}{L} (2L - x)$$
. (210)

Case II.
$$u_o - u' = 2 R_o I_o x$$
. (211)

Case III.
$$u_o - u' = \frac{RI_o x}{L} (L - x)$$
. (212)

Case IV.
$$u_0 - u' = R_0 I_0 L.$$
 (213)

TABLE No. 51.

Relations between Cases I., II., III., and IV.

CASE No.	Design.	DROP BETWEEN RECEIVERS.	RELATIVE WEIGHT.	RELATIVE ENERGY EXPENDED.	GREATEST DROP BETWEEN RECEIVERS.	DROP BETWEEN GENERATOR AND RECEIVER AT HIGHEST VOLTAGE.	DROP BETWEEN GENERATOR AND RECEIVER AT LOWEST VOLTAGE.
1	2	3	4	5	6	7	8
I. {	Parallel Feeding Cylindrical Conductors	2	3	2	RLI	0	RLI
11. {	Parallel Feeding Conical Conductors	4		2	2 RLI		 2 <i>RLI</i>
ш. {	Anti-Parallel Feeding Cylindrical Conductors	1		3	$\frac{RIL}{4}$	$\frac{RLI}{2}$	$\frac{3\ RLI}{4}$
IV. {	Anti-Parallel Feeding Conical Conductors	0	1	3	0	RLI	RLI

546. In this Table the diameter of the conductors at the generator is the same in all cases. If the same *weight* of copper be allowed in all cases, the value in Cols. 6 and 8, Case II., and Cols. 7 and 8, Case IV., must be multiplied by 3/2; and the values in Col. 5, Cases II. and IV., divided by 2.

In the fifth column of this Table, figures are given showing the amount of energy which is lost by transformation into heat, due to the resistance of the conductor under a condition of maximum loading. This column is calculated from the following equation:—

$$U = \int r dx i^2,$$

in which r is the resistance per unit of length at the point where the current in the main is i. Integrating, the quantity of energy lost in the cylindrical conductors is found to be—

$$\frac{2}{3} RIL, \tag{214}$$

and for conical conductors

RIL. (215)

547. This corresponds with the relation shown in the Table No. 51. If it is allowable to use the same amount of metal in both conical and cylindrical conductors, the section nearest the station in conical mains may be made three times as large as that in the cylindrical conductors. Under these circumstances, the receivers are subjected to a much less difference of potential, and, at the same time, the energy wasted in the conductors is reduced by one-half of the amount that would be lost in cylindrical conductors having the same amount of copper. From the preceding considerations, it is evident that wherever it is practicable, the conical conductor fed upon the anti-parallel system gives the most uniform and regular service, wastes the least amount of energy, and subjects the receivers to the smallest potential variation. Wherever practicable, therefore, this method should be adopted.

MULTIPLE WIRE SYSTEMS.

548. The Three-Wire System. — If it were feasible to successfully manufacture incandescent lamps capable of operating under any desired voltage, it would be possible, by increasing the resistance of the lamps, to work central stations at higher potentials, and economize in the material employed in the conducting system. It has been

shown that, if the available potential remains constant, the amount of energy distributed will vary directly as the current, and the amount of energy lost in the circuit as the square of the current. By increasing the pressure, more energy may be delivered, or a greater territory served, without increasing the losses in the circuit. So far, attempts to make incandescent lamps of much more than 200 ohms resistance have not been commercially successful; and for the standard 16 candle-power lamp, an available difference of pressure at the lamp terminals of about 100 volts is all that can be rendered useful. Experience has shown that a maximum variation in pressure throughout the conducting system of more than 10 per cent is not compatible with good service. Thus, the greatest difference in pressure at the generators, in the methods of wiring so far described, is limited to about 110 volts. Any plan which will render available a greater dif-

Fig. 239. Multiple Series System.

ference of potential will introduce a notable economy in the cost of the conducting system.

549. Suppose two conductors A and C, Fig. 239, between which is maintained a difference of potential double that which is necessary for any one of the receivers; for example, 220 volts in an incandescent lighting system of 110 volt lamps. It is then feasible to place lamps in series of two between the mains A and C. Therefore, for a given number of lamps, the necessary quantity of current is halved, and the admissible fall of potential may be doubled. The resistance of the conductors for a given output along the line may be quadrupled, and, consequently, the price of installation is reduced nearly 75 per cent. This device, however, involves the sacrifice of the independence of each receiver. As the receivers are placed in groups, each one involving a series of two, it is necessary to throw in or out of service an entire group; for if a single receiver be placed

in service, it will receive double the pressure for which it was intended. This defect, however, may be obviated, by so designing the station machinery that the dynamos are operated in groups of two placed in series, to obtain the desired voltage, and then introducing a third wire B, as indicated in Fig. 240, which occupies a position intermediate between the two generators, and extends through the entire system of conductors. Under these circumstances, each *unit* in the station must consist of two generators, connected together in series. By inspection, it is evident that the middle wire is traversed by a current which is only equal to that originated by the *difference* in the number of receivers that are simultaneously in service on the two sides of the system. The principal, or outer conductors, when the

Fig. 240. Three-Wire System.

whole plant is in service, only carry a current equal to one-half that which would be necessary to supply the same number of receivers if installed on the two-wire system; and in this case, as the center wire is not traversed by any current, it has received the name of the "Neutral Wire."

550. Supposing now that a part of the load on one side of the system be thrown off. In the previous instance, both sides were balanced, but now one side needs more current than the other; and to preserve the independence of the individual receivers, the neutral wire acts as an overflow main, permitting the excess of current on the overloaded side of the system to return to the generator without affecting the other side. For example, in Fig. 240, suppose 100 receivers to be in service between A and B, and 80 between B and C,

each requiring one ampere; 100 amperes will be needed on the AB side, and 80 on the BC side. 100 amperes will evidently pass out through A, 80 back through C, and 20 back through B. By this method it is practical to introduce very large economics in the cost of the conductors, to greatly extend the scope of the plant and the distance over which it is possible, from a financial standpoint, to transmit electrical energy. The copper saving which may, in this way, be practiced, is easy to calculate, and depends upon the rules which have already been given. Suppose that, for a given plant, a certain economical density of current has been determined. This value is independent of the method of distribution employed; so if the same current density is to be used in the two systems, it will be observed that, by the three-wire method, the fall of potential is reduced to one-half. As an example, assume a current of 500 amperes under a pressure of 110 volts to be required by the receivers, with a drop of 8 volts, and that the most advantageous current density is found to be 1000 amperes per square inch. It is necessary then to employ for two-wire system conductors .5 in area, each giving rise in the length of the conducting system to a drop of about 7½ per cent of the total available potential. Adopting the three-wire system for the same case, as the potential is doubled, the same amount of energy is delivered with half the current, and so the current of the outer conductors is reduced to 250 amperes, and, at the same current density, the amount of copper is reduced in each conductor to .25 sq. in, in area. It is a common practice to make the third wire equal in section to the principal conductors, then the total cross-section is .75 sq. in., instead of 1.00 sq. in., and the total amount of copper is reduced by one-fourth. The fall of potential, however, remains equal to 8 volts; and, inasmuch as the total voltage is raised to 220, the percentage value of the fall potential is only 3.6 per cent instead of 74 per cent, as in the preceding example. If, on the contrary, the calculations are based upon an equal percentage fall of potential in each case, the economy to be obtained in the amount of copper is evidently increased to five-eighths. Thus, in reality, each of the three conductors of this system may be reduced to one-fourth of the area necessary with the two-wire plan, the third wire being still assumed to be equal to the other two. Therefore, the total amount of copper in the three conductors is only three-eighths of that

which is required under the two-wire system to deliver the same amount of energy with the same percentage of drop. If all the receivers on one side of the conducting system were out of service, while all on the other side were in commission, it is conceivable that the neutral wire would be called on to carry a current as great as that of the outer main. This can only happen by some accident, such as the blowing of a main fuse, which would actually *open* one of the outer conductors; for by no possibility of service condition would half of the customers be out of service while the other half were in action.

551. Good practice indicates the advisability of placing half of the receivers of each customer on one side of the system, and half on the other. Then, in the event of the opening of one conductor, one-half of all of the receivers that are in the circuit are thrown out; and under this condition the neutral wire can only be traversed by

Fig. 241. Balancing Diagram.

one-half the current of the outer main, and the relative amounts of copper for the two and three wire systems under such similar conditions are as sixteen to five. It is also feasible, by a careful study of the various consumers, to place across the outer conductors such of the receivers as are able to accommodate themselves to great changes in voltage, as motors, for example, or groups of lamps that are rarely in service. Moreover, the two halves of every important installation may always be arranged to make the demands of each part sensibly the same. This precaution prevents long portions of the neutral conductor from being traversed by a current of sensible amount that does no useful work, thus economizing the lost energy.

552. The different parts of the third wire may be traversed by various amounts of current, both as to intensity and as to sign, although at the same time a balance of the whole system be carefully preserved. Fig. 241 gives an illustration of this condition, from which it is obvious that on each side of the system the same number

of lamps are in use, and that, while a part of the third wire is traversed by a current equal to three lamps, the system, on the whole, is balanced, and the portion of the conductor nearer the station is entirely neutral. It is advisable to carefully study every important installation, and to arrange the distribution of currents to attain the maximum conductor and energy economy.

553. Such are the advantages of the three-wire system. On the other hand, there are certain inconveniences, which it is now advisable to consider. It must be noted that it is necessary to maintain in operation two dynamos, instead of a single machine; and a station unit on the three-wire plan must consist of two dynamos, each having half of the power required on the two-wire plan. While the weight of the two dynamos for the same output will not differ sensibly from that of a single machine, the initial cost, expense of operation, and loss of efficiency are increased. The apparatus at the central station becomes somewhat more complicated; but this inconvenience is confined to the dynamos, for the engine, or other motor, may remain in each case the same. The driving machinery, such as shafting, pulleys, etc., must be connected to two generators instead of one. Also, the difference of potential between the system and the ground is doubled, and the chances of accident due to failure of insulation become largely increased. These objections to the three-wire system are by no means comparable with the advantages and economy to be derived; so all central stations of any importance are now, without hesitation, designed and laid out in accordance with the principles enunciated. Indeed, so great are the benefits, that the economical principles outlined have been extended, and similar systems using five and seven wires, with corresponding advantages, are by no means unique.

554. Multiple-Series System and Modifications of the Three-Wire System. — In local installations of small extent, where the full plant load, or at least the greater part of it, is constantly on the circuit, and where the independence of the individual receiver is not essential, it becomes possible to avoid the complexity introduced by the three-wire system, by operating the receivers in groups of two or more, placed upon circuits in parallel with each other, thus giving rise to the multiple-series method — see Fig. 239. The origin of the three-wire system was, doubtless, an effort to secure at once

the independence of each receiver, and the economy of high potential.

In the multiple-series system, all the receivers of each group must be in operation at any one time; as, if any one of the group is thrown out of service, the remainder will be either subjected to an electrical pressure greater than that for which they were designed, or idle resistance must be introduced in the circuit to absorb the energy previously consumed by the now isolated receiver. In this direction the multiple-series circuit labors under the same disadvantages and limitations as the ordinary plain-series circuit.

It is possible in some cases, where the load on the system is a reasonably constant one, to simplify to some extent the three-wire system by avoiding the complexity of two dynamos at the central station. In Fig. 242 such an arrangement is indicated — a single dynamo supplying the circuit having double the electro-motive force of the receiv-

Fig. 242. Three-Wire System with Single Dynamo.

ers on the sides A and B. The third wire still exists in the circuit, but does not return to the station, nor is any connection made with the generator. Under these circumstances, if any one of the receivers in the group A be thrown out of commission, the circuit of none of the others will be actually opened, and, consequtly, their operation will proceed uninterruptedly. As the generator produces a constant electro-motive force, and as now the resistance of the A group of receivers is increased by the opening of the circuit of one or more of them, and is higher than the resistance of the B group, the fall of potential throughout the system will be the same as when all the receivers were in operation, but the potential upon the A group will now be greater than that upon the B group. While formerly the potential of the central conductor cc was precisely midway between the potentials of the external conductors, the potential of cc is now not midway between those of the outer conductors, but approximates more nearly to that of the conductor B. In cases where such a

variation in service can be tolerated, as in factories, or other commercial institutions operating their own lighting plants, this method approximates sufficiently toward the best service to be desirable.

555. For very small installations, where the mains extend a considerable distance from the generator, yet where the load is so light as to render two machines inexpedient, the conductor economy of

Fig. 243.
Three-Brush Three-Wire System.

the three-wire system may be rendered available by the device indicated in Fig. 243. Here the generator is supplied with a third brush F', set midway between the regular brushes, to which the third wire is attached. If the system is well balanced, with rarely any current in the neutral, this scheme is fairly successful; otherwise, there is likely to be destructive sparking at the commutator.

556. The three-wire system is susceptible of a very great number of modifications, many of which will readily occur to the fertile designer. Mr. Leonard, in the *Electrical Engineer*, indicates several useful combinations, which are illustrated in Figs. 244, 245, and 246.

In the arrangement outlined in Fig. 244, a single dynamo is connected to the external conductors M and P, having an electro-motive force double that of the receivers to be placed upon the circuit. The third wire, instead of returning to the generator, is connected with the pole of the storage battery S, the other pole of which is in electrical communication

with the main M. Under these circumstances, a current thrown upon the third wire N is absorbed by the storage battery, while the extra load upon the M side of the system is cared for by the output of current from the battery in question.

557. In Fig. 245 an arrangement is indicated, consisting of two generators, A and B; the A generator has double the potential of

all of the receivers, while the B dynamo is capable of developing an electrical pressure equal to that required by a single receiver.

When the load on the P side of the system is greater than that on the M side, a current returning through the central conductor N

Fig. 244. Three-Wire System with Storage Battery Equalizer.

actuates the dynamo B, causing it to operate as a motor, and thus, by means of the counter shaft E, relieving the prime mover of a part of the load of the dynamo A. When, on the contrary, the M side of the system is overloaded, the dynamo B acts as a generator, supplying the necessary additional current.

Fig. 245. Three-Wire System with Motor-Dynamo.

558. The design of Fig. 246 is a modification of the preceding arrangement, by means of which the generator A may be located at a considerable distance from the district to be served, while in close proximity to the district a motor R and generator C are located. The generator A may be run at a sufficiently high potential to make the loss between G and R comparatively small, while by means of

the motor R the second generator C may be made to operate in conjunction with the generator A upon the three-wire system, as indicated in the previous design.

559. The Five-Wire System. — By an extension of the principles thus developed, a greater number of circuits may originate from the same station, giving rise to methods of multiple wire distribution, embracing five or even seven wires, operating at correspondingly high potentials, and enabling a corresponding reduction in the expense of the conducting system. All of the advantages previously enumerated are augmented in proportion to the increase in the number of wires, while, on the other hand, the objections inherent in the multiple wire systems present themselves with correspondingly in-

Fig. 246. Three-Wire System with Compensating Dynamo and Motor.

creasing force. The greater the complexity of the station, and the difficulties of obtaining sufficient insulation for the higher potential differences have so far, in this country at least, prevented a very wide introduction of anything but the three-wire system. Nearly all of the plants of the Edison Company in this country are built upon the three-wire plan, and form the most notable, and the most thoroughly designed and executed, examples of this method of distribution. In Europe, on the contrary, where the areas to be covered are perhaps not so great as in America, and where greater care and more thorough work is to be expected from an older and more complete civilization, the five and seven wire systems have attained quite a wide introduction, accompanied with very notable success.

560. In Fig. 247 are given diagrammatically the systems of

some of the most extensive European systems of direct current distribution, being adopted in the following towns:—

- A. Parallel system, Berlin (Markgrafenstrasse Station), La Coruna.
- B. Parallel system with secondary batteries, Salzburg, Lyons, Toulon, Montpellier.
- C. Simple three-wire system, Berlin (Mauerstrasse Station, Schiffbauerdamm, and Spandauerstrasse), Elberfeld, Helsingborg, Malaga.
- D. Three-wire system with one dynamo and secondary batteries, Mülhausen, Stockholm, Sundswall.
- E. Three-wire system using two dynamos, Vienna (Mariahilf), Darmstadt, The Hague, Stettin, Breslau, Copenhagen.
- F. The five-wire system with equalizing dynamo, Trient.
- G. The five-wire system with equalizing dynamo and secondary batteries, Paris (Place Clichy).
- H. The five-wire system with two generator dynamos, Vienna (Neubad).

561. The use of auxiliary dynamo machinery in several of these installations will be noticed. The method of employment is similar to that already indicated in Figs. 244, 245, and 246, for the three-wire system, and in Fig. 248, showing in detail the design for a five-wire system. Here the generator G runs at a potential sufficient for four receivers, and is attached to the two external mains of the system. At any desired intermediate point or points, three dynamo machines are introduced, each one operating at a potential equal to a single receiver. So long as the system is entirely balanced, the auxiliary dynamos absorb merely sufficient power to turn their armatures against friction of the bearings and the slight losses due to internal

Fig. 248. Five-Wire System with Motor-Dynamo.

currents. In the case of any want of balance in any part of the system, the dynamo connected with that portion acts either as a motor or as a generator, depending upon whether the unbalancing is such as to give rise to a current flowing towards the station through the intermediate wire, or away from the station. In the first instance, the current flowing toward the station passes through the auxiliary dynamo, causing it to run as a motor, thus releasing the station of that amount of load. Contrariwise, should the unbalancing make the current flow away from the station in any intermediate wire, the dynamo acts as a generator, demanding from the station such an amount of power as will enable it to add to the circuit the required current. This subject will be further illustrated in the paragraphs upon motor transformers, in the succeeding chapter.

562. Relative Area Covered by Two, Three, and Five Wire Systems. — The territory that can be served by a central station only, depends upon the amount of copper that is placed in the conducting system in proportion to the number of customers to be served. With a limited drop, the cost of the conducting system may, even in a small territory, rise to such an amount as to prevent the enterprise from being a commercial success. If a given receiver is to operate at a definite distance from the station under a predetermined drop, the weight of the conducting system is readily calculated. If the distance is increased M times, the drop remaining the same, the weight of the conducting system will be proportional to M^2 . In general, the weight and, consequently, approximately, the cost of the conducting system, is expressed by the formula —

$$W = AI^2, (216)$$

in which W is the total weight of the circuit, A a constant embracing the drop, the conductor weight per customer, and the length of the system. With a drop of 5 per cent, and an average of $12\frac{1}{2}$ lbs. of copper per lamp in the conducting system per 50 watt lamp, a single station on the two-wire system is limited to a radius of about 1600 ft. To extend the territory to 2300 ft., formula (216) indicates that an expenditure of 25 lbs. of copper per lamp is required. Table No. 52 indicates the relative possible areas to be served, and weight of copper per lamp and drop.

TABLE No. 52.

Areas Covered by Multiple-Wire Systems.

	RADIUS OF PROFITABLE DISTRICT WITH 5% DROP.					
KIND OF SYSTEM.	Copper 12½ lbs. per 50 Watt Lamp.	Copper 25 lbs. per 50 Watt Lamp.				
2-Wire System	1600 Feet.	2300 Feet.				
2-Wire System Feeders and Mains .	2500 Feet.	3500 Feet.				
3-Wire System	2300 Feet.	3500 Feet.				
3-Wire System Feeders and Mains .	4000 Feet.	6000 Feet.				
5-Wire System	5000 Feet.	7200 Feet.				
5-Wire System Feeders and Mains .	8200 Feet.	12000 Feet.				

563. The Feeder and Main System. — All the methods for circuit design thus far indicated may, analytically, be reduced to one of the four elementary cases. When applied to the distribution of very large amounts of electrical energy, extending over considerable areas,

embracing points widely separated from each other, all of these methods, even including the multiple-wire systems, require the expenditure of so much material in the conducting system, in order to maintain a sufficiently uniform electrical pressure throughout the conducting network, as to make the cost of the system too great to permit of a profitable return upon the capital invested. As a solution of this problem, Mr. Edison, in this country, introduced the Feeder and Main System, which consists in subdividing the territory to be served into a large number of districts, by grouping the customers in proximity to each other into blocks located as near as possible at equal distances around a number of central points. From each of these radiating centers, receiving the name of Centers of Distribution, a pair of conductors, termed Feeders, is carried back to the central station. Upon the feeders no customers whatsoever are, under any circumstances, placed. From each of the centers of distribution there also extend a second set of mains running electrically away from the center of distribution, and so away from the central station, the office of which is to serve the various consumers.

564. This set of conductors has received the name of "Distributing Mains." By this means the entire territory is split up into a number of subdivisions, each in the most direct electrical communication with the station, by means of such an independent pair of conductors as will enable the station to supply the distributing center with the required amount of current, at any desired electrical pressure. Inasmuch as there are no customers upon the feeders, the fall of potential in the feeders is a matter of but little importance so far as the requirements of good service are concerned, these conductors being designed merely to supply to the distributing center the required amount of current under the most economical conditions. The central station may embrace a number of different dynamos, all running at different electrical pressures, each one conveying to its appropriate center the necessary current, so adjusted that on arrival at the distributing center all of the currents will come in under a uniform pressure, maintaining the essential constant electrical potential over the entire district. Such an arrangement is indicated diagrammatically in Figs. 249, 250, and 251.

In Fig. 249 the central station is shown at MN. From this point a pair of feeders MA, MA' extend to the center of distribution

AA'. Two other sets of feeders also extend to the centers CC and BB'. From AA', BB', and CC' the distributing mains are extended, across which the receivers are located. From M to A, B, and C any desired fall of potential may be allowed to take place in the feeders without in any way affecting the service of the respective receivers extended upon the distributing mains emanating from these points.

Fig. 249. Feeder System.

The distributing mains, however, must be so designed that, with all variation of load which shall be thrown upon them, the fall of potential shall be kept within such a limit as good service conditions require.

565. A similar design is indicated in Fig. 250, in which the station is located at MN in the center of the district to be served,

Fig. 250. Feeders and Mains.

from which three sets of feeders, MA, MB, MC, and MA', MB', and MC', extend to the distributing mains, that are located in ellipses around the central station. As in the previous illustration, no receivers are placed upon the feeders, so the variation in pressure in this part of the conducting circuit does not affect the customers, but may be made as great as the rules of maintenance, economy, and

safety dictate. Upon the distributing mains, A, B, C, and A', B', and C', the drop must be restrained within service limits, no matter at what sacrifice of conducting material. This design is much superior to that in the preceding illustration, as it is evident that each feeder can supply the distributing mains in two directions, thus shortening the electrical length of the distributing mains, and obviating accident in case of the rupture of any conductor.

566. A still further improvement is indicated in Fig. 230, in which the distributing mains assume the form of a circle, around

Fig. 251. Feeder System, Paris.

which the receivers are equally spaced, while the feeders are introduced at two diametrically opposite points upon the circumference.

567. For installations upon a large scale, such as are required by urban distributing plants, especially for incandescent lighting, all of the foregoing principles are usually combined in the design of the conducting system. An excellent example of this is indicated in Fig. 251, giving in a skeleton form the mains of the Edison Company along one section of the plant in Paris. A slight inspection of the diagram indicates that the general design of the conducting circuit is that of a three-wire system embracing conical conductors for the distributing mains, with anti-parallel feeding, thus realizing the highest

economy in the conducting material, and the least possible potential variation.

568. Location of the Central Station. — In the case of series distribution, it is shown that the location of the central station is a matter of relatively slight importance, provided the site is chosen on the perimeter of the polygon formed by the line of circuit; that all locations on this line are equally advantageous; and that in case it is necessary to slightly depart from the actual location of the circuit, all points are equally available that are equally distant from the line. Under the parallel system the location of a central station becomes a matter of the most paramount importance; for, under this system, the amount of current, and *not* the electrical pressure, is the governing factor.

The losses entailed by the conducting system vary as the square of the current flowing, and as the resistance of the conducting system; and as the supply of a definite territory requires a definite current, the resistance remains as the only variable at the command of the engineer. The dictates of both maintenance and economy, and the requirements of good service, make it essential to reduce the expense of the conductor system in every direction to the lowest possible amount. As will be now shown, this is best accomplished by locating the central station at the electrical center of gravity of the district to be served, considered in relation to the various points to which energy must be distributed, and the amount of energy to be conveyed to each respective center. In many cases, the very important consideration of coal and water supply, the availability and economy of real estate, and physical causes affecting the ability to obtain the requisite foundations for heavy machinery, must be taken into consideration in the selection of the station site. Leaving, for the present, these conditions out of the question, the location of the site should be determined, in so far as the relation to the conducting system is concerned, at such a point in the district as will place it at the electrical center of the conducting system. To properly locate the central station, a reasonably accurate map should be made of the district, with a careful canvass of all the probable customers, obtaining the amounts of energy that they are likely to demand. An inspection of a good map so prepared will enable the engineer to select a number of points in the district, which will, from the topographical features of the territory, be made centers of distribution. From these centers of distribution the distributing mains extend, electrically speaking, away from the station, while toward the station from each point the feeders will run. From a canvass of the customers, the amount of energy to be delivered at each of the centers of distribution is determined, thus giving the maximum current flowing through the feeders, and the current to be diffused by the distributing mains. These amounts should be carefully noted opposite each of the centers of distribution, where the feeder joins the distributing main.

569. To determine the proper station site, suppose, in Fig. 252, the irregular outline includes the territory to be served, the black dots scattered throughout indicating the location of each of the

Fig. 252.

Diagram to Determine

Location of Station.

centers of distribution, and the amount of current to be delivered at each of the respective points. The problem to be solved, in order to determine the proper location of the station, is to ascertain the electrical center of gravity of the points of distribution, precisely as the center of gravity of an irregular solid would be obtained. Graphically, a solution is obtained by selecting any two centers of distribution, and joining them by a straight line.

This line should be divided into two parts, inversely proportional to the amount of current to be delivered at each of the centers; such a point is then electrically the center of gravity of the two distributing points in question. The process is repeated until the resultant center of gravity of all of the centers of distribution is obtained, indicating the best location for the station, considering simply maximum economy in the cost and maintenance of the distributing system. Analytically, the determination of the station site is as follows:—

Assume that at the points 1, 2, 3, etc., currents represented by i, i', i'', etc., are to be delivered, and that the centers of distribution may be connected by straight lines with the station. The weight of each conductor for a given fall of potential is proportional to the product of a constant depending upon the allowable drop, the current i, and the square of the length of the con-

ductor l. Hence, the weight of each conductor O1, O2, O3, etc., will be—

 $w = Al^{2}i, (217)$

in which w is the weight of the conductor, and A the constant above referred to. The total weight of the feeder system is the sum of all these equations applied from the point O to the distributing points 1, 2, 3, etc., —

$$W = A \sum l^2 i.$$
 (218)

The study of mechanics presents a similar problem, the solution of which indicates a key to the solution of the above equation.

If, at the points 1, 2, 3, etc., masses of matter are supposed to be concentrated, the magnitude of which may be represented by the current values i, i', i'', etc., the term $\sum l^2 i$ represents the moment of inertia of this system with reference to the point O, from which the following conclusions may be drawn:—

570. First. The moment of inertia of the system, with reference to the center of gravity, is a minimum.

Second. The moment of inertia referred to any other point than the center of gravity, depends upon the distance "D" between the center of gravity and the second point of reference. The moment of inertia is equal upon all points of any circumference described with the center of gravity as a center with "D" for a radius, therefore — The best site for a central station is the electrical center of gravity of the centers of distribution. All locations equally distant from this point are equal in value. As the station is removed from the electrical center of gravity, the pounds of copper required for the conducting system are rapidly increased.

571. Let W be the weight of copper required for the conductors, when the station is located at the electrical center of gravity of the system, and W' the weight when located at any point distant d feet from the center of gravity.

Let I be the length of any feed.

Let i be the current in this feed.

Let L be the average length of all the feeds.

Let I be the total current.

Let the above symbols apply when the station is located at the electrical center of gravity, then,—

$$\Sigma /^2 i = L^2 I (219)$$

$$W = AL^2I, (220)$$

A being a constant depending on the allowable drop, as shown in the paragraph on the "Limits of the Three-Wire System." If the station is moved to another site, distant d feet from the center of gravity, then,—

Let l' = the new length of any feed,

Let L' = the average length of all the feeds,

Let W' = the weight of copper now required,

Let i and I remain the amounts of the current, as before;

then,
$$\Sigma l'^2 i = L'^2 I,$$
 (221)
and $W' = A L'^2 I;$ (222)
from which $W' - W = L'^2 - L^2.$

The mean length is analogous to radius of gyration and, therefore, —

$$L^{2} - d^{2} = L^{2}; \quad W' - W = AId^{2}.$$

$$\frac{W' - W}{W} = \frac{d^{2}}{L^{2}}.$$
(223)

and

This is the equation of a parabola having its vertex at the origin and branching upward away from the axis of x. So the conductor material increases very rapidly as the station is moved away from the electrical center of gravity of the system. Increasing the weight of the conducting system means not only a much larger initial investment, but also increased maintenance expense, and increased cost due to energy lost in the conducting system.

572. On the other hand, the removal of the station from the center of gravity may permit the utilization of real estate at such an advantage as will more than compensate for the extra capital invested in the line. Furthermore, locations may be chosen permitting the utilization either of water-power directly, or of water to supply condensing engines, or may provide access to transportation facilities for fuel supply, thus cheapening the cost of power production to such an extent as to make the additional conductor investment required by the change in location a most desirable investment. The decision of the location should be determined from the following considerations: Determine the cost of plant, and cost of operation, with station located at the electrical center of gravity. Determine the value of the same items with the station placed at any other location presenting supposed advantages. An equation between these quantities will at once indicate which of the two sites possesses the greater advantages. and the relative value of the merits in both cases.

573. Location of the Feeders and Centers of Distribution. In the preceding analytical investigation, it has been assumed that the feeders extended to the centers of distribution in straight lines. In practice, this would rarely be the case, and the symbols in the equations must be assigned values obtained from the actual location of the conductors. Many other circumstances contribute to limit the number of feasible selections for the location of the central station, and the design for the main feeds. Regarding the points where the feeds unite and join the network of distributing mains, it is obvious that the possible theoretical locations are very much limited, and must conform to urban geography.

Distributing boxes and other conduit structure must be located on the streets and at street corners; and, therefore, for each block there can only be four possible locations from which to choose for the junction between the main feeds and the distributing mains. Application of the equations, however, are available in determining which, of all possible locations, will be, on the whole, the most advantageous; and the actual placing of the mains should conform, as nearly as possible, to that which is thus obtained.

574. Distributing Mains. - It has been pointed out that the reason for employing the system of feeders and mains, is the necessity for preserving, at all points throughout the distributing mains, a constant difference of potential, in order to secure satisfactory service to the consumers. In illuminating plants, the most brilliant lamps will evidently be those placed nearest the junction between the feeds and distributing mains, while those of the least brilliancy will be such as are located midway between the two feeding-points. Experience has shown that a variation of 2 per cent in the voltage at any lamp is about as large as can be entertained compatibly with reasonably good service. Therefore, the value of 2 per cent of the available voltage, at the center of distribution, is a compulsory constant, and must be applied in the equations for determining the copper crosssection of the distributing mains. At each junction point between a feeder and the network of distributing mains, there flows a current having a maximum value sufficient to supply the territory surrounding the distributing center. This current must now be subdivided among the various distributing mains that terminate at the center of distribution, in proportion to the probable demands of each main. In the district thus to be served, the total number of lamps and their distance from the center of distribution being determined from the map and canvass of the territory, the copper cross-section to deliver the required current with the specified fall of potential may be readily calculated by the methods already given.

575. It should be carefully noted, however, that all calculations should be made for the maximum load that will ever be thrown upon any conductor. It has been customary to calculate a section of the mains for several points in the network where the heaviest and where the lightest loads may reasonably be expected to occur, and proportion the rest of the system between these extremes. Good engineering, however, scarcely sanctions this practice; for while in complicated plants full calculation is exceedingly tedious, satisfactory service, and economy in first cost, always warrant the most careful investigation and calculation of the design of the conducting system. If the junction points between the feeds and network are placed too far apart, the equations will indicate an excessive copper cross-section for the distributing mains, in order to prevent too great a fall of potential. Such a result points to the advisability of introducing a greater number of feeders, in order to reduce the copper cross-section to a minimum. Evidently a relation between the copper to be placed in the feeders and in the mains may be written, which, when differentiated and equated to zero, will give the minimum copper volume to be employed in the entire plant.

576. Calculation of Feeders. — As the feeders operate as simple conductors of definite length and carrying a definite maximum current, the calculation of the appropriate section by Ohm's formula, taking into consideration the lines of economy indicated by Lord Kelvin, becomes exceedingly simple. The only constants requiring careful determination are those of the allowable fall of potential in the feeds, the maximum and mean currents, and time of operation. As no customers are connected with the feeders, service limitations have no bearing in the calculations for this part of the conducting system. Here, on the contrary, the rules of economy and safety become of paramount importance. It is first advisable to determine the maximum current to which each feed will be subjected, and then to ascertain the requisite cross-section required by heating limit to carry this current. For this purpose,

formulæ for current density, given in the preceding chapter, are available. Particular care, however, must be taken in the case of conduit or concentric conductors, to allow an ample margin of safety. Having determined the minimum cross-section for the maximum current, it is advisable to apply Lord Kelvin's laws, as indicated in the section for "Minimum Cost of Plant," and "Minimum Cost of Operation and Maintenance," to determine whether the cross-section already found is that indicated by the dictates of economy. All of the necessary constants may be readily valued, excepting the quantities I and T, indicating the mean current and time of operation of the plant. These demand careful study, and can only be estimated by considerable experience in similar plants, operating under equivalent conditions to the one under consideration. In series plants, the determination of T and I presents no difficulty; for I (the current) is a constant, and T is the total annual hours of operation. With parallel plants, however, the current is constantly varying, and to ascertain its mean annual value (the quantity necessary to consider) requires special investigation and precaution.

577. The energy lost in the conducting system, by transformation into heat, is proportional to the square of the current multiplied by time during which it flows. Thus, if i, i', i'', etc., are the respective currents flowing for a time dt, then the energy wasted is proportional to— $\sum (i^2 + i'^2 + i''^2 + \text{etc.}) dt, \qquad (224)$

which is a quantity which may differ considerably from the square of the mean current multiplied by the time of its flow. To determine the current and time factors, it is advisable to procure a number of load curves from stations probably similar to the one under design. From a careful consideration of these a fair estimate may be made. This value may be checked by a consideration of the probable number of consumers to be obtained for the plant, with the amount and length of time that they are likely to use a current. It is considered that 500 hours per year is a minimum for paying stations. Greater values, 1,500 hours (4½ hours per day) for ordinary custom lighting, such as restaurants, stores, etc., or 3,600 hours for public lighting, etc., requiring all night service, are the customary averages. From a careful analysis of the probable demands for

current, and a comparison with load diagrams of stations similarly situated, it is possible to deduce the probable load diagram of the plant with a reasonable degree of accuracy. Given the load diagram, the value of the expression, —

$$\Sigma (i^2 + i'^2 + i''^2 + \text{etc.}) dt$$

is most easily made by integrating with a planimeter the area of the load diagram. By this method the appropriate values for I and T are readily selected, and a solution of the equations in Chapter IX. indicates the appropriate economical section for the feeder; a repetition of the process serving to determine the section for all the various feeder mains. Having determined the appropriate current density for the feeder, both with respect to the heating limit and dictates of economy, the fall of potential in each feed is given by the equation $E = \rho li/S$.

578. The question of the best number of feeds to be employed yet remains, and deserves careful consideration. The weight of copper is not increased by augmenting the number of feeds; for, by multiplying the feeds, the weight of distributing mains may be decreased. The expense of installing and the cost of laying the feeders are, however, augmented to some extent by the number introduced. This, however, is largely counterbalanced by the greater saving in copper that can be made in the distributing mains; for the increased number of feeds will render the potential throughout the network more constant and uniform, thereby reducing the amount of copper required in this part of the system.

It is sometimes assumed that the weight of distributing mains in the network varies inversely as the square of the number of feeds; while this ratio is probably too large, it is certainly greater than the first power, and, as will be shown, increasing the number of feeds forms one of the best methods for close regulation. The exact number of feeds to be introduced in any plant is a question of judgment which can only be adequately determined by special consideration of the design of the plant and of the probable number of consumers. Beyond this no fixed rule can be given.

579. Efficiency of the Conductors. — The minimum efficiency of the network of distributing mains is that which corresponds to the maximum current, and may be deduced from the calculations for

current density. A consensus of experience, in distributing plants of this nature, indicates that a permissible fall of potential of 7 per cent may, in the feeders, be allowed, 2 per cent in the network of distributing mains, and 1 per cent in the consumers' wiring, reckoned upon the potential at the terminals of the generators. It may, therefore, be assumed that about 90 per cent of the energy delivered by the station reaches the consumers. The mean annual efficiency may be considerably higher than this, for the instances in which a plant is being constantly worked to its full capacity are very rare. Occasional overloading, even to the extent of causing a loss in the feeds of from 15 to 18 per cent, will not seriously alter the annual efficiency, inasmuch as the time of such overloading is usually extremely short. Even under these circumstances, an annual efficiency of 95 per cent or more may be reached by the conducting system.

- 580. Methods of Regulation. The prime condition demanded by good service is that the difference of potential at the terminals of the receivers shall remain constant. A network properly calculated does not cause a loss of over 2 per cent between the receivers, the feeds being so designed as to deliver equal pressures to all the centers of distribution. The station should be so arranged that the potential delivered by the generators may be slightly varied to correspond to the demands of the service. Direct current distribution is usually effected by arranging a number of similar generators to operate in parallel, and connecting them at pleasure with the various feeders, to meet the varying demands of the service. The divergence of the current among the various feeders should take place in accordance with the demands of the customers; and to this end it is necessary that the station should be able to control the supply in such a manner that it may take place substantially in accordance with the requirements of each circuit, so a knowledge of the actual potential delivered from time to time at the centers of distribution is essential
- 531. For this purpose a series of fine wires called voltmeter wires, or pilot wires, are extended through the conduits from the centers of distribution back to the station along each of the feeder circuits. These wires, running from the centers of distribution, are permanently connected to the voltmeters in the station, and so give a constant indication of the pressure actually delivered at these

points. If there are as many tell-tale wires and voltmeters as there are feeders, it becomes a very easy matter for the station attendants to keep a perfectly constant pressure at the centers of distribution. An improvement over this method, combining a greater sensitiveness with a clearer knowledge of the demands of the circuit, consists in supplying each of the feeders with an ampere meter having a double scale arranged to measure the current flowing in the feed, and the fall of potential thereby occasioned.

582. The most common method of station control consists in introducing in each of the feeders an adequate, adjustable rheostat, either of wire or carbon, by means of which the current delivered to the feeder in question may, from time to time, be adjusted by the station attendant. It has been recently proposed to accomplish regulation by giving the field magnets of the generators a differential winding, placed in series with the pilot wires returning from the centers of distribution, in such a manner that a fall of potential at the center of distribution will be followed by an increase of current - through the field coils of the generator, and a proportional increase in the pressure delivered by the machine. A parallel result could evidently be attained by over-compounding the generators, and passing the feeder current through the field coils. The difficulty with both of these methods lies in the necessity of so constructing the generators that their fields may work at a very low degree of saturation, in order to be sensitive to slight variations in field current, and in the inevitable sluggishness with which the magnetic circuits of large dynamos will respond to changes in the field currents, even at low points of saturation.

583. A more hopeful design for automatic regulation lies in arranging the governor of the engine, or other prime mover, to respond to changes in the feeder currents, in a way to vary the speed of the generator. Designs of this kind are reported to be very successful. Regulation may also be accomplished by multiplying the number of feeds, with the notable advantages of a proportionate saving in the energy expended in the conductors, and a much more satisfactory service. Where regulation by a multiplication of feeds is undertaken, they are so arranged that they can be cut in and out of service, in such a manner as to vary the total resistance of the circuit, as nearly as may be, in proportion to the changes of load.

Then, during the hours of minimum service, only a few feeds are in service, and as the load increases, more and more are thrown in service.

584. The Compensator. — The most ingenious, and probably the most successful, method of regulation consists in the employment of compensating dynamos, whereby such an amount of energy as is wasted in any feeder may be restored to the current transmitted from the station. To overcome the ohmic resistance of any conductor requires the expenditure of a certain amount of energy. This expenditure of energy manifests itself in a fall of the electrical pressure. If, by some device, there could be added to the station output precisely the amount of voltage that is expended in transmitting the current through the feeder, the energy would always arrive at the center of distribution under a constant tension. Mr. W. S. Barstow conceived and put in practice the idea of using a small auxiliary dynamo, the office of which should be to add, from time to time, to the station's current the required amount of voltage necessary to overcome the resistance of the feed. As usually arranged, a small dynamo is placed with its brushes in series with the feeder circuit. The station current, passing through the armature of the compensator, receives precisely the additional amount of electrical energy that is to be expended in transmitting the current through the feeds. As the increase of energy is manifested by an elevation of potential, the compensating dynamo is frequently known as "Barstow's Booster." If the compensators are made sufficiently large, that they may normally work along the straight portion of the characteristic, either the whole or any desired fraction of the main current may be passed through the field coils, and the device made self-regulating, the voltage imparted by the compensator automatically varying precisely in proportion to the current output. To accomplish this requires a larger and more expensive dynamo; and it is, therefore, frequently customary merely to pass the current through the brushes, depending for adjustment upon the normal regulation of a rheostat placed in the field circuit. In Fig. 253 is given the curve of pressure at the station end of a feeder in the Brooklyn Edison Station, as obtained from Mr. Barstow's experiments, recorded in the Electrical Engineer. It is further shown that the cost of transmitting a current of 300 amperes over a distance of about two miles, by means

of the compensator, averaged about \$4.32 per day for the winter months, and \$3.00 per day for the summer months. In the diagram, the energy added by the compensator is clearly represented, as indicated by the varying pressure delivered to the feeder. The constant in this diagram is one volt drop to every 7.82 amperes.

585. The compensator method has recently been still further developed by Messrs. Barstow and Mailloux in the Brooklyn Edison station. Here the service conditions are found to be such as to require the station to supply three different voltages. To operate sufficient independent dynamos to supply the three voltages would require too large a plant, and would not be conducive to good station economy. The solution of the problem is diagrammatically indicated in Fig. 254.

Fig. 253. Curve of Feeder Pressure, Brooklyn Edison Station.

The station is supplied with three sets of omnibus bars, one for high pressure, one for normal pressure, and one for low pressure. By appropriate switches, any feeder or set of feeders may be connected to any set of omnibus bars. Normally, the dynamos of the station represented by BB are connected to the main bus bars, furnishing 220 volts on a three-wire system. For the high and low pressure service, two sets of compensators are provided, C and C⁴ being the low pressure compensators, while C¹ and C³ are the high pressure machines. The entire compensator plant is so mounted as to be driven from the dynamo C², that, receiving power from the main omnibus bars, acts as a motor. When it is desired to raise the pressure of any feeder, the machines C¹ and C³, driven by C², operate as dynamos supplying the desired additional energy. When it is

desired to reduce the pressure, C and C⁴ operate as motors, absorbing a certain amount of energy and depressing the potential. By this means the main generators are run at such a pressure as is found suitable for the majority of distributing centers, while the pressure to the long feeds may be re-enforced, and that in the short feeds diminished. The beauty in the device is the ability to change the pressure in any set of feeds, without interrupting the service. This is accomplished by a pair of auxiliary omnibus bars A⁸ and A⁹, to which any feeder may, for the time being, be transferred. By means of the rheostats E and E' the pressure in the feeder after transference is raised or lowered to that corresponding to the high or low omnibus bars. The feeder is then again transferred to either the high or low bar, the whole operation being accomplished without the slightest interruption. The connections in the diagram are so obvious as to render further explanation unnecessary.

586. The Compensator in Electric Railway Work. - The application of the compensator to electric railway circuits has recently been made by J. H. Vail, in the construction of a road from Poughkeepsie to New Hamburg. The power station is at Poughkeepsie, and is located centrally with reference to some ten miles of track extending through the streets of that town. A spur line runs due south connecting the towns of Wappinger Falls and New Hamburg, a distance of over ten miles. To avoid the excessive amount of copper that a line of this length would require, under the usual design of street railway circuits, a compensator is introduced in the station, that, by means of two No. 0000 feed wires, carries the necessary current to a distributing center eight miles south of the power station, thus supplying this section of the system, with the employment of a very small amount of conducting material in the overhead line.

587. Knowing the cost of building the feeder system, the cost of compensator and of operation, it is a simple matter to substitute these values in the equations given for feeder calculations, and ascertain the relative economy. Under ordinary circumstances, Mr. Vail shows that for a plant delivering 200 amperes at 500 volts, the compensator system requires less initial capital investment, when the distance to which the current is transmitted exceeds from two and one-half to three miles, and that the operating expense is decreased when the distance exceeds one and one-half miles.

- 588. As the capital absorbed by the feeder system designed to maintain a constant potential varies as the square of the distance over which the current is delivered, while the cost of the compensator varies directly as the distance, it is evident that great economy may be effected by this means, in long distance transmission.
- 589. The compensator also adds great flexibility to the railway system. It is usually necessary to introduce a large amount of copper in the feeder system to provide for emergencies, such as excursions, etc., or for unusual bunching of cars at particular points. By the aid of the compensator, the feeder system may be designed for normal traffic only, and by means of a switchboard, the extra pressure delivered by the compensator applied to the various sections of the line, as occasion may from time to time require. A similar advantage appears in the ability to meet the load changes in a distributing system during the daily variation of traffic. If the circuit is calculated for the hours of greatest business, the copper employed is partally idle during a greater proportion of the time; while, if the circuit is arranged for the average business, it will not carry the maximum loading. To build the line for average work, and to put the compensator into service upon the system morning and evening, and on holidays, is an economical solution of the problem.
- 590. Fall of Pressure and Necessary Section in the Feeders. The pressure at the centers of distribution, where the feeder joins the network, being maintained constant by some form of regulator placed at the station in the feeder circuit under the control of the station attendants, the loss of pressure in the feeder is not a factor in the supply condition of preserving a constant potential at every consumer.

Let S be the cross-section of one main.

L be the length.

I be the current.

 ρ be the specific resistance in any desired units, as the mil-foot, square-inch-mile, square-millimeter-kilometer, etc.

V be the potential at the generator.

v be the potential at the center of distribution.

Then V - v is the loss in the feed, and —

$$V - v = \frac{I\rho L}{S}. (225)$$

 ρ must be given such a value as will be cognizant of the final temperature to be attained by the conductor.

591. Solving now for $S - S = \frac{I\rho L}{V - S}$. (226)

From this expression the area of either the feeds or the distributing-mains may be calculated, in so far as the variation in pressure is considered to be the governing condition.

For a three-wire system, let Fig. 255 represent the feeders, Vv and V''v' the outer mains, while V'v' is the neutral wire.

Let V, V', and V'' represent the respective pressures at the generators. v, v', and v'' the pressure at the center of distribution.

I, I', and I'' the respective currents, S the sectional area of the outer main, and S' the area of the neutral, the remaining symbols retaining the preceding meaning.

Fig. 255. Diagram for Fall of Pressure in Feeders.

Then V-V' and V'-V'' are respectively the differences in pressure between the outer mains and the neutral wire at the generators, and v-v' and v'-v'' are the corresponding differences at the center of distribution. Then the drop along Vv is—

$$(V - V') - (v - v') = \rho L \left(\frac{I}{S} + \frac{I - I''}{S'}\right)$$
 (227)

and along V'' v'' —

$$(V' - V'') - (v' - v'') = \rho L \left(\frac{I''}{S} - \frac{I - I''}{S'} \right). \tag{228}$$

592. In the best designed three-wire systems, it is customary to make the area of the neutral conductor equal to one-half of the area in either of the outer conductors. Assuming, then, that the greatest inequality in the balance between the two sides of a three-wire system is 2p per cent of the maximum load, the current in the outer main, having the lightest load, will evidently be I(100-p), and in

the outer main with the heavy load, I(100 + p), and the current in the neutral wire will be p I; p being expressed in percentage. The value to be assigned to p will vary greatly, depending upon the care exercised in the balancing of the load on the two sides of the system. Good practice indicates the advisability of placing one-half the load of each consumer on each side of the mains. If this is skillfully done, it is rarely that the want of balance will rise above 5 or 10 per cent. When this arrangement is conscientiously carried out, it is impossibe for the load on the neutral wire to rise above 50 per cent of the entire load of the whole plant; for, even in the extent of the failure of one of the main conductors, half of the total load on the plant would be thrown off, and therefore the neutral wire could, even under the most extraordinary circumstances, only be called upon to carry one-half of the total current for which the conducting system is designed. From experience p has been found to vary from 5 to 25 per cent for installations skillfully designed. In the St. James station in London, working under a maximum output of some 3,000 amperes, the variation in balance rarely exceeds 7 per cent.

593. To determine the necessary section for the outer conductor of a three-wire system, let q = the relative area of the outer and neutral wires, then, from what precedes,—

$$(V - V') - (v - v') = \rho L \left(\frac{I}{S} + \frac{pI}{S/q} \right);$$

$$(V - V') - (v - v') = \rho L \left(\frac{I(1 + pq)}{S} \right);$$

$$S = \frac{\rho L I(1 + pq)}{(V - V') - (v - v')}.$$
(229)

From this expression it may be observed that if, in imagination, the resistance of the outer conductor be increased in the proportion of 1 + pq to 1, the neutral wire may be omitted from the calculation, and designs made as if it did not exist.

594. The Laws of Economy in Feeder Design. — In transmission parlance, the word feeder is broadly applied to any conductor in which the current density at any particular time is uniform at each point of the entire length of the conductor, no matter what the variations in density may be that occur between successive time intervals. In other words, a feeder is such a conductor as carries for the time

under consideration a uniform current between two fixed points. The current in the feed may vary from time to time, but it does not vary with the length of the circuit. In the simplest case of a series circuit, a constant current is always maintained throughout the entire length of each conductor, the only variable being the *length* of time during which the current acts.

- 595. While it is conceivable that a series circuit might operate with currents of different intensity from day to day, yet such conditions have not been put into practice, and the time element is the only variable. Knowing the respective costs of the line, the station, and the production of energy, and the interest and depreciation charged on the plant, the method of ascertaining the most economical cross-section for the conductor has been indicated in Chapter IX.
- 596. In the parallel system, conductors are found in which, by reason of the attachment of the receivers at different points, the current density varies from point to point along the circuit. By definition, such conductors are excluded from the class "Feeders," being termed "Distributing-Mains." As a condition of good service, the pressure must be constant within very small limits, along the entire length of each distributing-main. With the feeders, as there are no customers to be supplied, the pressure may vary from point to point to any extent, so long as the desired voltage is given to the distributing main at the point of attachment to the feeder. The current, however, is constant from point to point. Two diametrically opposite conditions prevail in these two classes of conductors. In the feeder the current is constant and the pressure varies. In the distributing main the pressure must be uniform while the current varies. With the feeder, then, there are no service limitations upon the variation in potential, and consequently the dictates of economy may be closely followed in the design of this part of the circuit. By multiplying the number of feeds, the length and size of the distributing-mains may be reduced to a minimum, and thus the greater proportion of the plant brought under the operation of economical law.
- 597. Each feeder receives at one end energy from the generating-station in the form of current under a predetermined pressure, and delivers at the other end a less amount of energy, owing to inevitable losses in transmission. Therefore, in every transmission problem the following quantities must be dealt with, any or all of

which may be variable; and it is now necessary, under the circumstances of each case, to ascertain the most economical disposition of the material employed in the conductor system, due consideration being given to the commercial aspects of both the generating and the receiving station.

Let V = the pressure at the receiving end of the feeder.

v = the pressure at the delivering end of the feeder.

W = the power given to the receiving end of the feeder.

w = the power obtained at the delivering end of the feeder.

I = the current in amperes.

S = the cross-section of the feeder.

L = the length of the feeder in any units.

 ρ = the resistance per unit of length (such as the mil-foot).

598. The values of L and ρ are always determined by the geographical conditions and the selection of the conductor, and are then fixed for each plant. Between the other variables the following relations exist:—

$$V-v=rac{IL
ho}{S}\;; \qquad W=VI\;; \qquad w=vI\;;$$

so, if any two of the above first six variables are given, a single additional relation prescribed by economic law serves to fix the value of the remaining four.

599. Between six variables fifteen combinations, two at a time, can be made. When applied to feeder design, some of these combinations are mere repetitions of each other; others have no practicable bearing, but there are eleven cases which the engineer may be called on to consider. These may be stated as follows:—

Case No. 1 2 3 4 5	GIVEN.	REQUIRED. 1, W, w, S. v, W, w, S. v, I, W, S. v, I, W, w. V, W, w, S.	7 8 9 10	U, S. I, S. W, w. W, S. w, S.	REQUIREB. V, I, W, w. V, v, W, w. V, v, I, S. V, v, I, w. V, v, I, w.
5	v, I.	V, W, w, S.	11	w, S.	V, v, I, W.
6	v, W.	V, I, w, S.			

600. Each of these cases is now to be considered in detail, and for convenience the following notation is employed:—

y = a + bS, equation of cost of line per unit of length.

y' = a' + b'S, equation of cost of installing line per unit of length.

L(y + y') or L[(a + bS) + (a' + b'S)] =total cost of line.

i = rate of interest in per cent charged against entire cost of plant.

 d_l = rate of depreciation in per cent charged against cost of line.

 d_c = rate of depreciation in per cent charged against cost of conduit or poles.

 d_s = rate of depreciation in per cent charged against cost of station.

 F_{\perp} = number of hours that the plant operates per annum.

K =cost in dollars of operating per watt or K.W. of output,

 $K' = \cos t$ in dollars of station equipment per watt or K.W. of output.

A = price in dollars received per watt or K.W. of energy delivered.

 $U'=\cos t$ of energy expended in the line. The line resistance is $\rho L/S$, I amperes flow for F hours, hence, $\rho LI^2F/S$ watts are expended, and the cost of this is $\rho LI^2FK/S$. The cost of station required to produce this energy is $\rho LI^2K'/S$, and the

interest and depreciation on this sum is $\frac{\rho L I^2 K'}{S}$ $(i+d_s)$;

hence, the total cost of the energy expended in the line, is

$$U' = \frac{\rho LI^2}{S} \left[FK + K' \left(i + d_s \right) \right].$$

To simplify, let $\lambda = \rho L I^2 [FK + K'(i + d_s)];$ then, $U' = \lambda / S$. Also, let $\omega = \rho L [FK + K'(i + d_s)];$

then, $U' = \omega I^2 / S$.

U'' = annual charge against the line for interest and depreciation.

 $U'' = L[(a + bS)(i + d_i) + (a' + b'S)(i + d_c)].$

To simplify, let

 $a = L[a(i + d_l) + a'(i + d_c)]$ and $\beta = L[b(i + d_l) + b'(i + d_c)];$

then, $U'' = \alpha + \beta S$.

 $U = U' + U'' = \frac{\lambda}{S} + \alpha + \beta S = \text{total annual cost of line.}$

VIF = W =total power produced.

 $VI[FK + K'(i + d_s)] = \text{total annual cost to produce } W$; also let Z = total annual cost to produce W.

To simplify, let $\gamma = [FK + K'(i + d_s)];$ then, $Z = VI\gamma$.

 $G = \text{gross annual expense} = Z + \alpha + \beta S$, or $VI\gamma + \alpha + \beta S$, or Z + U'', or $VI\gamma + U''$.

$$w = F\left(VI - \frac{I^2 \rho L}{S}\right) = \frac{FI(VS - I \rho L)}{S}.$$

To simplify, let $\epsilon = VI$, and $\delta = I^2 \rho L$;

$$w = F\left(\epsilon - \frac{\delta}{S}\right).$$

$$Aw = \text{annual income} = FA\left(\epsilon - \frac{\delta}{S}\right).$$

601. Case I. — Given V and v, required I, W, w, and S.

As V and v are the given, the ratio of the energy received by the feeder to that delivered by it is fixed. It is also evident that the cost of the line, station, and operation (per unit of energy transmitted) decreases as the total output increases. Thus, there will be no one value of current and conductor section that will give the maximum economy; but the greater the current and section, the less will be the expense per unit of energy distributed. The size of the conductor will depend upon the demand for current at the receiving-station; and the larger this is, the greater the economy.

The smallest section under the limiting values V and v, consistent with safety, should be employed. As a corollary, it must always be considered whether there is *sufficient demand* at the receivingend to pay for the transmission of current; for it is evident that the values V and v might be so limited that not enough current could be sold to pay for the cost of production and transportation.

602. Case II. — Given V and I, required v, W, w, and S.

Under the circumstances, VI = W, thus fixing one of the desired variables. If it be assumed that there is a market for all the energy the circuit can deliver, it is evident that the most economical section is that which will make the ratio of the gross annual income to the gross annual expense a maximum.

Gross income
$$= Aw = FA\left(VI - \frac{I^2\rho L}{S}\right) = FA\left(\epsilon - \frac{\delta}{S}\right).$$

Gross expense = $Z + \alpha + \beta S$;

$$\frac{FA\left(\epsilon - \frac{\delta}{S}\right)}{Z + \alpha + \beta S}$$

must be a maximum; this will occur when --

$$S = \frac{\beta \delta + \sqrt{\beta^2 \delta^2 + \beta \epsilon \delta Z + \beta \epsilon \delta a}}{\beta \epsilon}.$$
 (230)

603. CASE III. — Given V and w, required v, I, W, and S.

The pressure at the receiving-end of the feeder, and the quantity of energy delivered at the delivering-end, are predicated; and

the most economical section is that for which the cost of the energy expended in the line, plus interest and depreciation, is a minimum, or U' + U'' must be a minimum, and also —

$$VI - \frac{I^2 \rho L}{S} = w. \tag{231}$$

By the original condition,

$$U = \frac{\omega I^2}{S} + a + \beta S. \tag{232}$$

From equation (231), -

$$S = \frac{I^2 \rho L}{VI - w};\tag{233}$$

substituting this value in equation (232), -

$$U = \frac{\omega \left(VI - w\right)}{\rho L} + a + \beta \frac{I^2 \rho L}{VI - w}; \tag{234}$$

differentiating and equating to 0,

$$I = \frac{w}{V} \left[1 + \sqrt{\frac{\beta L^2 \rho^2}{\beta L^2 \rho^2 + \omega V^2}} \right]. \tag{235}$$

Having found the value of I, S is obtained by direct substitution in (233).

604. CASE IV. - Given V and S, required v, I, W, and w.

As the pressure and section are given, it is evidently necessary to ascertain I to meet the economic conditions. The ratio of the gross income to gross expense must be a maximum; for if it be attempted to make U' + U'' a minimum, U' will become 0 when I is 0, but U'' will remain unchanged. When I is 0, there is no income, and there is expense without income, and the above ratio would be 0, and not a maximum.

 $Aw = FA\left(VI - \frac{I^2 \rho L}{S}\right).$ Gross income is Z + U'':

Gross expense is

 $FA\left(VI - \frac{I^2\rho L}{S}\right)$

and

must be a maximum. This will occur when —

$$I = \frac{U''}{V\gamma} \left[\sqrt{\frac{V^2 \gamma S}{U'' \rho L} + 1} - 1 \right]. \tag{236}$$

Case V. — Given v and I, required V, W, w, and S.

605. The pressure at the delivery end of the feeder and the current being fixed, w = vI. It is also evident that the ratio of gross income to gross expense is a maximum when the cost of transporting and delivering the predetermined current I is a minimum. This occurs when U = U' + U'' is a minimum, or when —

$$S = \sqrt{\lambda / \beta}. \tag{237}$$

This is the historic problem proposed by Lord Kelvin, the solution of which is given in full in Chapter IX.

606. Case VI. — Given v and W, required V, I, w, and S.

In this case W = (VI), thus fixing the product of two of the desired variables. The section and current must be such as to make the ratio of the gross income to the gross expense a maximum.

The gross income is AF v I, and the gross expense is $VI \gamma + \alpha$

 $+\beta S$, and $\frac{AFvI}{VIy+a+\beta S}$

must be a maximum.

Also $vI + \frac{LI^2\rho}{S} = VI$, and $S = \frac{L\rho I^2}{(VI) - vI}$; substituting, $AFv = \frac{I}{(VI)\gamma + a + \frac{\beta L\rho I^2}{(VI) - vI}}.$

To simplify, let $VI\gamma + \alpha = \Psi$, and $\beta L\rho$ (VI) = Ω , then—

$$\frac{AFv}{\Psi + \frac{\beta L \rho I^2}{(VI) - vI}}$$

must be a maximum. This will occur when —

$$I = \frac{VI}{\Omega - \Psi v^2} \left[\sqrt{\Omega \Psi} - \Psi v \right], \tag{238}$$

and

$$S = \frac{\Omega}{(\Omega - \Psi v^2) (\Omega - v) \sqrt{\Omega \Psi}} \left[\sqrt{\Omega \Psi} - \Omega v \right]^2.$$
 (239)

607. CASE VII. - Given v and S, required V, I, W, and w.

The conditions here are similar to those in Case IV.; and it is necessary to determine I to make the ratio of gross income to gross expense a maximum, under similar conditions to those in Case IV.

Gross income = Aw = FvIA.Gross expense $= vIF\gamma + \frac{\omega I^2}{S} + U'',$ and $FvA \times \frac{I}{vF\gamma I + \frac{\omega I^2}{S} + U''}$

must be a maximum. This condition will be realized when -

$$vF\gamma + \frac{\omega I}{S} + \frac{U''}{I}$$

is a minimum, or when -

$$I = \sqrt{\frac{SU''}{\omega}}.$$
 (240)

608. CASE VIII. — Given I and S, required V, v, W, and w.

As I and S are given, the amount of energy annually expended and the charge for interest and depreciation are fixed. Increasing the pressure V will increase the amount of energy delivered, and thus increase the ratio of the gross income to gross expense, and tending toward greater economy.

609. CASE IX. — Given W and w, required V, v, I, and S.

Here W - w is the energy expended in the conductor; and as ρ and L are known, S can be immediately found, thus reducing this Case to the same condition as Case VII.

610. CASE X. - Given W and S, required V, v, I, and w.

Under these circumstances the size of the conductor is given, but not the energy expended in it. As the energy expended in transmission varies as the square of the current, and the quantity of energy as the product of the current and pressure, the higher the pressure and the smaller the current the greater will be the energy delivered, and the smaller will be the cost of transporting it. Hence the greatest value assignable to V under the limits of safety will determine this quantity. The remaining unknown quantities follow immediately.

611. Case XI. — Given w and S, required V, v, I, and W.

The same reasoning and conclusions apply as in Case X.

612. As all the economic formulæ may be deduced by the rules for maxima and minima, the solutions beyond the deduction of the

working equations have not been given. Care must be exercised in the selection of the proper value for I. In series circuits there is no difficulty or chance for error, as I can have only one constant and uniform value. In the parallel system I may be either the "greatest current" to be transmitted, the "average current," or the "square root of the mean squares" of the varying current values. The appropriate methods for evaluating I will be found in succeeding paragraphs.

613. General Design for a Conducting System in Multiple Arc. — To skillfully plan a parallel system for the distribution of electrical energy, even for installations of moderate size, it is first essential to obtain an accurate map of the district intended to be covered by the central station. This map should be of sufficient scale to enable the premises of all of the customers to be indicated with a reasonable degree of accuracy, both as to the location and frontage along the respective streets. Supplementing such a map, a careful canvass of the district to be served should be made, with a view to ascertaining the probable customers and the nature and amount of service which they are likely to call for. The demands of urban service upon a parallel system are usually limited to supplying incandescent lamps and the operation of stationary motors. The number of incandescent lamps that will probably meet the requirements of each consumer, may be determined by ascertaining the number of gas-burners, or other means of illumination, in vogue at the time of making the estimate, and then assuming the probable demands of the customer to increase from 20 to 30 per cent for incandescent lamps, on account of the greater popularity and desirability of electrical illuminations. The time during which each customer will probably require service should also be noted as an important factor in determining the probable load diagram to be placed upon the station. A fair estimate, based upon incandescent installations in a number of the larger cities, indicates that about one sixteen-candle-power lamp may be expected for every linear yard of the conducting system throughout the principal streets, and about one lamp to two yards in the streets of less importance. Out of one hundred customers, 10 per cent is usually allowed for cafés and restaurants, 34 per cent to stores, 21 per cent to banks and mercantile houses, 27 per cent to theaters, and 8 per cent for residences. In France the figures average 28 per cent for cafés and restaurants,

21 per cent for workshops, $27\frac{1}{4}$ per cent for stores, $7\frac{1}{4}$ per cent for residences and hotels, and 16 per cent for theaters and halls.

614. Experience has also shown that it is necessary to install for occasional use a great many more lamps than, under any but the most exceptional circumstances, are ever placed in service at any one time.

The following list indicates the maximum number of lamps actually lighted, in comparison with the total number actually installed, in the lighting-plants of the following cities:—

London .		40 per cent.	Berlin and Hamburg .	58 per cent.
Vienna .		52 per cent.	Darmstadt	60 per cent.
Newcastle		45 per cent.	Düsseldorf	51 per cent.
Cologne .		70 per cent.	Hanover	55 per cent.

- 615. The number of lamp-hours per lamp also forms an important consideration. From the lighting-plants in London, it is found that in the district covered by the St. James Station, 935 lamp-hours per lamp per annum are obtained: from the Westminster station, 643 hours; from the Metropolitan, 550 hours; from the Chelsea Station, 350 hours; and from Kensington, 354 hours. The St. James Station serves a district largely made up of business houses; while the proportion of business to residence houses steadily decreases in the districts of Westminster, Metropolitan, and Kensington.
- 616. Having completed a canvass of the district, it then becomes necessary to construct a load diagram for each street. An inspection of the map will indicate the probable location for the various feeding-points. It is, in fact, hardly practical to arrange feeding-points at any other place than at the street intersections; for it is quite essential to plan the feeder system so that each feeder may be adjusted to supply a maximum number of distributing-mains and this can be best accomplished by uniting a feeder to the several mains running from each street corner, extending along the streets radiating from such an intersection. Having made a preliminary determination of the feeding-points, the load diagrams for each street extending between two adjacent feeding-points should be plotted as follows:—
- 617. In Fig. 256, assume \overline{AB} to any convenient scale to be the distance from the feeding-center A to the center B. Lay off \overline{AC} ,

CD, DE, EF, FG, GB to same scale to represent the respective street frontages of the various customers. At the appropriate points in each house-front, place the consumer's main, and at this point erect a perpendicular to AB, making each one to scale to represent the probable maximum circuit for each subscriber. A line joining the tops of the perpendiculars is the desired load-line. For a two-wire system, the sum of the loads on both sides of the street may either be plotted upon a single diagram, or two separate diagrams made, the results of which may, on the completion of the calculation, be summed.

618. For a three-wire system two diagrams are advisable, upon each of which half the load on each side of the street is to be

plotted. A and B, the ends of the street diagram, are the feeding-points from which the current enters the distributing-mains in opposite directions. It now becomes essential to determine the point of minimum pressure along the distributing-mains, the amount of drop, and the quantity of current which will enter the main from the points A and B. If the customers along B are so distributed that the current may, without sensible error, be supposed to be uniformly distributed between the two mains, the calculation of the point of maximum drop may be made by the equations already indicated in Cases I. to IV., depending upon the method of feeding and the kind of mains adopted. It is rare, however, that the distribution is sufficiently regular to allow of the assumption of a uniform distribution

of current. For cases of irregular distribution, Messrs. Herzog and Stark have given an analytical method in the Electrical World of Aug. 23, 1890, for determining the current in all parts of a conducting system, no matter how complicated. The method consists in determining, in each mesh of the network of mains, the point of lowest potential, and then, in imagination, cutting the conductors open at this point, thus resolving the most intricate network into a number of elementary forms, which are comparable with Cases I. to IV. inclusive, and may be solved by these methods. By this means the system is, so to speak, differentiated into elementary parts, and the calculations for each element rendered comparatively simple. After the computations for each of the elements are completed, the final result may be gained by the summation of all of the partial calculations. While the method thus outlined gives results which are exhaustive in the extreme, possessing all of the elegance of mathematical treatment, the following plan is suggested as giving results which are correct within the probable accuracy of any ordinary canvass, and is more readily adapted to the office-work of the practicing engineer.

619. An example will best elucidate the application of the method. In Fig. 257, let I and A be two feeding-points in a distributing network supplying current to the consumers B, C, D, E, F, G, and H. The location of the consumers with reference to the points A and I, together with the currents supplied to each, must be ascertained, or assumed within reasonable limits. These data are then to be collected in a tabular form, as indicated in Table No. 53.

TABLE No. 53.

l ₁ DISTANCE in feet from A.	l ₂ DISTANCE in feet from D.	i CURRENT in Ampere per house.	l_1i	l_2i	$\Sigma(l_1i)$	$\Sigma(l_2i)$
To B 40	590	5	200	2950	200	
C 140	490	80	11200	39200	11400	
D 265	365	30	7950	10950	19350	27800
E 340	290	16	5440	4640	24790	16850
F 415	215	20	8300	4300		12210
G 490	140	24	11760	3360		7910
H 565	65	70	39550	4550		4550

The distance of each consumer from the feeding-points A and I are given in the columns l_1 and l_2 , while the respective currents are in column i. In the columns headed l_1i and l_2i will be found the electrical moments of each consumer with respect to the feeding-points A and I, or the product of each consumer's current by the distance of his supply lead from A and from I. The point of lowest pressure on the distributing-main AI is the electrical center of gravity of all the consumers with reference to A and I, and is to be obtained by summing and equating the moments. The columns headed $\Sigma(l_1i)$ and $\Sigma(l_2i)$ give these sums for this example. Should equality between the moments on the right and left hand be found to occur exactly at the main of any consumer, then half of the cur-

rent supplied to him plus all the current going to all the customers on the left will be derived from the left-hand feeding-point, while the other half of his current plus all the demand on the right hand will come from the right-hand feeding-point, and the greatest drop will be exactly at the main of this consumer.

620. Usually, as is the case in this example, the electrical center of gravity lies part way between two customers; for it is easy to see from the Table that D will get a portion of his supply from A, and the rest from I.

Let
$$x = \text{number of amperes derived from } A,$$
 and $30 - x = \text{number of amperes desired from } I;$ then $11400 + 265 x = 16850 + 365 (30 - x).$ $x = 26.$

Therefore, D will get 26 amperes from A, and 4 from I. If R represent the resistance of the conductor from either feeding-point to D, then the total fall of pressure is —

$$\frac{1}{2}$$
 (11400 + 265 × 26) $R = 9145 R$.

621. To determine the necessary size to give the distributing-main AI, the allowable drop and want of balance must be known. Supposing that this example is to apply to the common three-wire low potential distribution, with 220 volts between the outer mains; that there is a possible want of balance of 25 per cent; and that the neutral wire is half the section of the outer mains. Then, remem-

Fig. 258. City Distribution.

bering that the resistance of 1 ft. of copper conductor 1 sq. in. in section at 80° F. $(26.7^{\circ}$ C.) is .0000086 ohm, and substituting in formula (229) —

$$S = \frac{\rho LI(1+\rho q)}{(V-V')-(v-v')} = \frac{.0000086\times 9145\,(1+.25\times 2)}{(220-110)-(213.4-106.7)} = .036 \text{ sq. in.}$$

for the outer conductor, and .036/2 = .018 sq. in. for the neutral.

622. Having thus determined the distributing-main between A and I, a repetition of the process may be employed in every street in the proposed distribution. By combining at each feeding-point all of the currents to be there delivered, the necessary feeder current is obtained. The feeders are now to be calculated to obtain the most economical action.

623. Suppose Fig. 258 to represent the territory to be supplied in a typical urban distributing plant, and assume it to be decided to employ Fowler-Warring light-armor cables laid in $10'' \times 10''$ terracotta conduit for the feeders. It is now required to solve equation (191); and for this purpose let the following value of the constants be assumed to exist:—

$$(a)$$
 (b)

(1) y = a + bS = 400 + 10000 S = cost per mile per sq. in. of conductor section.

- (2) y' = a' + b'S = 1320 + 0S = cost per mile per duct (b' is 0, as there is no variation in conduit cost with change in conductor section).
- (3) L = 1.75 miles (measured along the conductor, out and return).
- (4) i = 6 per cent (\$.06), interest on invested capital.
- (5) $d_t = 12$ per cent (\$.12), depreciation on conductor.
- (6) $d_c = 10$ per cent (\$.10), depreciation on conduit.
- (7) $d_s = 8$ per cent (\$.08), depreciation on station plant.
- (8) $\alpha = 1.75 [400 (.06 + .12) + 1320 (.06 + .10] = 495.60.$
- (9) $\beta = 1.75 [10000 (.06 + .12)] = 3150.00.$
- (10) $\rho = .0456$ ohms, resistance of 1 mile of copper conductor of 1 square inch in section at 75° F.
- (11) F = 2200, hours of operation per annum.
- (12) K = 3.5 cents (\$.035), cost of producing energy per K.W. hour.
- (13) K' = \$75.00, cost of station per K.W. of output.
- (14) I = 150 amperes.
- (15) $\lambda = \frac{\rho L I^2}{1000} \left[FK + K'(i + d_s) \right] = \frac{.0456 \times 1.75 \times 150^2}{1000} \left[2200 \times .035 \right]$

$$+75 (.06 + .08)$$
] = 157.5, $S = \sqrt{\frac{\lambda}{\beta}} = \sqrt{\frac{157.5}{3150.00}} \sqrt{.05} = .2236 \text{ sq. in.}$

624. The value of a and b for the price of the light-armor cables, and a' and b' for the cost of the conduit, are readily deduced from Tables Nos. 56 and 57, in which the curves plotted are functions of the cost per mile and section for cable, and cost per mile and number of ducts for the conduit. While the curves are not perfectly regular, the relations, (1) and (2), are easily seen to express the average function of price and section and price and number of

ducts. As there are three main feeds for every three-wire system, and as it is usual to lay the three distributing-mains, or at least place the ducts for them, where the conduit is installed, the expression for a'+b's is based on six ducts. A repetition of this process for each feeder of different length or of different loading will serve to complete all the design for the circuit to the consumer's premises.

625. For the inside work, the methods already given will determine the requisite wire sizes for all varieties of circuits. But for the sake of completeness and clearness the present example will be followed to the end. Let Fig. 259 represent the house-plan having four circuits carrying five lamps each, and for ease in calculation each lamp may take one ampere; hence the conductors from the street to the center of distribution B must be designed for 20 amperes. Heating-limit and permissible

wiring.
626. As to the permissible drop, the

best practice indicates an allowance of one-fourth to three-fourths of one per cent in the lamp circuits; and from one to four per cent in the building-mains. In this example assume .25 per cent drop in the lamp circuit, and 2 per cent in the build-

drop are the governing factors in house

ing main from the street to the point B. Let the circuit distance from the street to B be 300 ft., that is, the total length of conductor employed. Turning to Table No. 26, it is seen that a 20-ampere circuit requires a wire .109" in diameter to be safe from overheating. This, from Table No. 4 is seen to be between Nos. 9 and 10; but the resistance of 300 ft. of No. 9 is .238 ohms; and if this wire is used, the drop will be .792 \times 300 \times 20 / 1000 = 4.75 volts. As the allowable drop is only 2 volts, a larger wire must be used. To preserve the drop within the limit of 2 volts, the resistance of this part of circuit must be not over .1 ohm or .333 ohm per 1000 ft. Looking in Table No. 4, this value is found between Nos. 5 and 6. Probably a No. 5 would do, but No. 6 is safer.

627. Now in the four circuits C, D, E and F, there are exhibited examples respectively of Cases I. to IV. inclusive, pp. 459–460. Each circuit must carry 5 amperes, is supposed to be 75 ft. long, and the

drop must not exceed .25 volt. If the resistance of 1 mil-foot be taken at 10.61 ohms, and if S is the required wire section, then, from formula (197,) —

 $S = \frac{10.61 \ LI}{u_o - u'};$

but $u_o - u' = .25$, L = 75, and I = 5; hence, $S = 10.61 \times 75 \times 5 / 25 = 15900$ cm;

which, from Table No. 4, is between Nos. 8 and 9 wire. It is always advisable to use the size of wire larger than indicated in the formula. The circuits D, E, and F may be calculated in the same way by substituting in the formulæ under Cases II., III., and IV., or the relative section may be at once obtained by multiplying the section just found by the coefficients in Table No. 51.

then, for BD, $15900 \times 2 = 31800$, or No. 5 wire, BE, 15900 / 4 = 3975, or No. 14 wire, BF, 15900 / 2 = 7850, or No. 11 wire.

- 628. For BD and BF the conductors are supposed to be conical, the sections given being that required at the first lamp, beyond which the section may taper to a point at the end of the circuit. It is possible to accomplish this either by the use of a special standard conductor made for the particular location, or by running a number of separate small wires connected in parallel. In short circuits the saving in copper will not usually pay for the extra trouble involved in the conical conductors.
- 629. In Table No. 54 necessary data relating to heating-limits may be found. Sheet 1 relates to buried conductors. The top horizontal line gives the loss in volts. The area of the conductors is to be found in the column headed "Section in Square Inches;" while the figures in the body of the table are ampere feet, corresponding to the loss in volts and sectional area. This table is calculated for a maximum temperature elevation in buried cables of 80° C. In sheet 2 will be found the data for the safe currents for aerial conductors, while on sheet 3 will be found the corresponding curves. In this connection, it is well to refer to the special section on the heating of conductors in Chapter VII.
- 630. Mechanical Methods. The preceding solutions are entirely algebraical. It is occasionally customary to lay out upon a reasonably large scale a map of the district to be served, and then

TABLE No. 54.

Heating-Limits for Conductors. Sheet I. — Buried Conductors,

1,000,000 C.r. M.		-		13					Porting	Conductors	cors.				
Mathematical Column Mathematical Column	SIZE OF CONDUCTOR.		-	CA	KRYING C.	APACITY IN	AMPERES	FOR RISE	N TEMPER	ATURE ABO	VE THE GR	DIND OF			-
0.000 Ci. Milis 414 680 688 775 864 889 980 100 100 1170 1170 55 60 850,000 u. u. s. 384 580 675 770 883 770 100 1170 1170 1128 1284 850,000 u. u. s. 386 515 619 688 770 880 900 945 1040 1170 1128 1284 850,000 u. u. s. 335 454 685 618 770 880 900 945 1040 1189 1184 1184 750,000 u. u. s. 239 428 428 770 770 881 900 945 1040		5,	.0T	15°	20°	25°	30°	23.55	400	E V		JO CANO			_
500,000 (1 ml) 400 500 675 770 824 930 1000 1100 1176 1128 1284 500,000 (1 ml) 384 538 644 720 721 864 927 885 1040 1140 1129 1284 800,000 (1 ml) 385 444 688 725 828 890 945 1000 1140 1192 11284 800,000 (1 ml) 312 444 683 648 726 896 946 1000 1149 1002 1149 1148 1148 700,000 (1 ml) 312 442 656 670 770 806 640 677 770 806 940 940 960 960 940 1048 1040 1048 1040 1048 1040 1048 1040 1048 1040 1048 1040 1048 1040 1048 1040 1048 1040 1048 1040 1048 104	Cir.	414	580	869	97.F	1			O#	45,	20°	55°	°09	65° Fahr.	
800,000 (, , , , , , , , , , , , , , , ,	99 (400	260	675	025	#G8	930	1000	1060	1120	1176	1000	1000		
SGN,000 (1 ml.) 366 515 619 628 791 864 997 985 100 1022 1144 1144 <	9.9	384	5238	647	000	8223	006	965	1026	1086	1140	1100	1284	1335	
800,000 (i. ii.) 345 494 583 688 750 988 890 945 700 1184	850,000 ** **	366	10	GTO	027	791	864	927	985	1010	1000	1192	1245	1292	
750,000 4 75 75 75 85 96 97 145	800,000 ** 64	3.15	48.1	600	988	759	828	890	945	1000	1040	1142	1184	1240	
770,000 ii ii 233 438 537 618 613 776 86 862 914 1000 1000 1000 1000 1000 1000 ii ii 233 412 426 550 624 681 773 777 824 863 900 1000 1000 1000 1000 1000 1000 ii ii 234 426 550 624 640 513 640 641 652 643 641 673 777 824 863 900 1000 1000 1000 1000 ii ii 235 336 340 513 583 440 513 581 643 641 673 777 824 883 900 900 942 550,000 ii ii 235 330 330 330 340 440 515 561 643 644 641 778 507 644 651 778 733 777 778 878 880 880 880 880 880 880 880	750,000 ** **	390	469	000	649	726	792	850	903	922	1000	5801	1142	1188	
CGO,000 II 203 410 508 GS9 770 771 821 970 1000 1042 CGO,000 II 273 813 405 556 GS9 777 821 870 910 1000 1042 COO,000 II II 273 814 652 683 777 824 863 900 <th< td=""><td>700,000 **</td><td>310</td><td>420</td><td>000</td><td>819</td><td>693</td><td>756</td><td>802</td><td>862</td><td>917</td><td>2001</td><td>1048</td><td>1092</td><td>1138</td><td></td></th<>	700,000 **	310	420	000	819	693	756	802	862	917	2001	1048	1092	1138	
600,000 u u 255 341 495 550 669 684 770 777 824 913 992 996 996 997 970 0 u u 255 330 336 440 515 661 603 647 777 824 894 913 992 996 942 950,000 u u u 255 330 336 440 515 661 603 647 651 776 814 870 913 992 992 992 992 992 993 993 993 993 99	650,000 **	2 6	100	170	586	629	720	773	891	210	002	1000	1042	1085	
550,000 (i. i. i.) 27.5 38.5 490 513 589 642 678 77.1 728 683 990 942 678 67.1 728 683 990 942 678 678 77.1 728 789 880 990 942 678 678 678 678 77.1 728 789 880 990 942 880 990 942 880 990 942 880 990 942 880 990 942 880 990 942 880 990 942 880 990 942 880 990 942 880 990 942 880 990 942 880 990 980 990 980	99 99 99	293	717	495	550	624	681	730	2021	010	913	952	986	1033	
500,000 (i. ii.) 254 355 428 474 652 603 677 776 814 850 890 450,000 (i. ii.) 235 336 449 515 661 603 647 776 776 776 776 776 776 776 776 776 776 776 776 776 776 776 776 777	550,000 65	273	383	460	513	589	649	000	999	\$28 -	863	006	942	296	
200,000 ii ii 235 330 396 440 550 641 671 773 765 798 835 400,000 ii ii 137 376 396 440 477 677 644 673 673 765 776 776 550,000 ii ii 178 276 332 385 488 668 603 633 670 776 776 550,000 ii ii 168 231 276 387 488 468 603 633 569 649 670 770	000,000	254	355	428	474	525	CO2	000	(32	776	814	850	890	660	
450,000 (i. ii.) 116 304 366 477 710 701 603 647 678 677 678 679	23 000,000	235	330	396	440	200 21	000	047	691	758	765	798	0 00	070	
400,000 i. i. 197 276 332 407 607 644 678 613 643 670 776 300,000 i. i. 178 250 302 335 448 668 663 654 610 648 670 776 776 776 776 610 648 670 776 610 648 668 659 659 659 659 668 698 670 776 670 776 670 670 776 670 670 670 776 670 <	450,000 **	216	304	386	400	cre	199	603	647	678	711	140	000	198	
550,000 ii iii 73 20 352 369 438 468 503 633 670 702 550,000 ii 168 231 276 335 337 442 442 511 536 549 670 702 500,000 ii 168 231 276 335 337 442 467 490 513 648 500,000 ii 198 276 386 275 342 467 490 513 586 000 ii 101 178 214 288 275 349 450 440 480 00 ii 101 124 288 275 394 420 440 460 480 00 ii 101 124 186 183 277 294 372 396 377 415 480 480 480 480 480 480 480	400,000 **	107	200	000	707	477	202	544	578	613	640	24.7	977	807	
900.000 i. i. 178 259 335 387 423 454 482 511 536 568 <	350 000 66 66	101	2/0	335	369	438	468	503	800	010	043	029	702	729	
20000 8. S. C. 168 231 276 308 355 407 454 457 558	300 000 66	178	250	302	335	397	493	250	600	200	594	619	648	673	
0000 B. S.S. C. 148 207 248 276 311 349 442 467 480 513 536 0000 B. S. S. C. 1 1 1 1 348 376 329 440 460 480	200,000	168	231	276	308	100	407	#0#	482	511	536	559	1000	809	
0000 B. & S. G. 127 i 78 214 289 277 389 440 440 450 550 550 500 500 500 540 570 590 500 500 540 570 590 590 500 500 540 570 590 590 590 590 590 590 590 590 590 59	3	148	202	948	076	000	705	415	442	467	490	513	0 0	000	
(1) 156 247 259 275 300 322 342 362 370 480 (1) 156 184 265 277 268 277 294 312 380 377 415 (1) 166 152 189 187 278 277 294 312 380 377 415 (1) 166 183 146 168 183 197 298 277 282 387 415 (1) 49 168 184 177 187 187 282 387 387 387 (1) 420 69 83 94 107 117 185 145 163 171 177 189 187	0000 B. & S.	127	178	514	0000	511	348	373	394	450	440	460	000	1,00	
0 (1) 50 1884 2005 237 258 277 294 312 300 337 415 1 (1) 152 169 185 213 229 242 352 320 387 415 1 4 66 93 110 124 145 185 197 208 229 229 252 270 382 387 <th< td=""><td>" 000</td><td>101</td><td>150</td><td>40.4</td><td>238</td><td>275</td><td>300</td><td>322</td><td>342</td><td>369</td><td>200</td><td>00#</td><td>480</td><td>200</td><td></td></th<>	" 000	101	150	40.4	238	275	300	322	342	369	200	00#	480	200	
0 4 70 126 152 169 195 213 229 228 325 326 382 387 1 66 69 130 146 168 183 197 208 229 258 270 382 387 2 40 66 83 146 168 183 197 208 229 282 282 283 282 282 283 282 282 283 282 282 283 282 282 283 282 282 283 282 282 283 282 282 283 282<		107	001	184	202	237	258	22.6	904	200	000	397	415	422	
4 77 108 130 146 168 183 17 225 275 270 282 295		08	126	152	169	195	913	000	¥070	515	376	342	357	361	
1		1 22	108	130	146	168	100	577	242	258	270	282	2975	300	
4 57 80 96 108 124 150 167 177 189 197 206 216 4 49 69 83 94 107 115 145 153 145 163 171 179 216 4 49 69 83 94 107 117 118 171 179 216 216 4 29 49 65 67 74 81 87 92 183 142 148 155 162 4 20 56 65 74 81 87 92 98 107 117 4 40 46 55 63 69 74 48 61 65 69 77 79 4 16 23 24 48 51 65 69 60 60 60 4 16 23 26 30 33 <td>*</td> <td>99</td> <td>93</td> <td>110</td> <td>19.4</td> <td>140</td> <td>100</td> <td>181</td> <td>208</td> <td>65</td> <td>232</td> <td>242</td> <td>983</td> <td>0000</td> <td></td>	*	99	93	110	19.4	140	100	181	208	65	232	242	983	0000	
4.6 4.9 6.9 8.3 1.24 135 145 153 163 171 170 240 6 4.2 5.9 7.0 7.9 107 117 125 133 142 148 155 162 6 4.2 5.0 7.0 7.9 107 117 125 133 142 148 155 162 6 4.2 5.0 6.0 7.4 81 87 92 198 108 107 117 187 6 4.0 4.0 6.0 6.0 7.4 79 83 87 90 107 112 6 1.0 2.0 2.0 4.0	. 39	57	08	96	100	25.0	907	167	177	189	197	906	010	200	
4 4 5 6 7 9 107 117 125 133 142 148 15<	3	49	69	000	100	124	135	145	153	163	171	170	1010	220	
4 34 49 70 79 91 99 106 112 120 150 162 4 29 41 49 55 65 65 74 81 87 92 98 102 131 137 4 20 28 34 46 55 67 61 65 69 74 79 83 87 92 96 4 16 20 28 34 46 65 67 67 65 69 72 79 4 16 23 28 32 36 44 48 51 65 68 67 67 67 6 17 23 26 30 33 35 37 46 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 67 <td>. A.</td> <td>67</td> <td>0 0</td> <td>3 6</td> <td># 1</td> <td>107</td> <td>117</td> <td>125</td> <td>133</td> <td>149</td> <td>140</td> <td>7 1 0</td> <td>187</td> <td>190</td> <td></td>	. A.	67	0 0	3 6	# 1	107	117	125	133	149	140	7 1 0	187	190	
(4) 24 58 65 74 81 87 92 98 125 131 137 (4) 24 55 63 65 67 61 65 63 74 79 98 102 107 112 (4) 16 28 34 46 65 67 61 65 69 72 79 92 96 (4) 16 23 34 39 44 48 51 65 68 72 75 79 (4) 16 23 36 34 48 51 65 68 77 75 79 (4) 16 23 26 30 33 42 44 67	10	3 6	60	0/	62	91	66	106	119	1001	0.70	COJ	162	165	
1 29 41 49 55 63 69 74 79 83 102 107 112 1 20 28 34 46 65 67 61 65 69 72 79 96 1 1 23 28 34 48 61 65 68 72 79 96 4 16 23 28 32 36 31 44 46 67 67 4 17 23 26 30 33 35 37 90 50 52 64	: :	\$	49	58	65	74	000	0.4	777	077	125	131	137	139	
(1) 24 38 40 46 52 57 (4) 79 83 87 92 96 (1) 16 28 34 39 44 48 61 65 69 83 87 96 (1) 16 23 28 39 44 48 61 65 63 72 79 96 (1) 13 23 26 30 33 35 37 97 90 64 67 (2) 14 19 23 26 30 33 35 37 90 52 64	0 1	65	41	49	55	3	4 8	0 1	28	200	102	107	112	114	
(4) 20 28 34 39 44 48 61 65 69 72 75 (4) 16 28 28 39 44 48 61 65 68 61 64 67 (4) 16 23 28 39 36 39 35 49 60 69 67 67 67 (5) (5) (5) (5) (5) (5) 63 64 67 (6) (6) (7) (7) (7) (7) 67 67 (7) (7) (7) (7) (7) (7) (7) (7) (8) (1) (2) (3) <	27	24	33	40	46	S 25	3 1	40	- 62	83	228	92	98	277	
4 16 23 28 29 39 39 44 48 51 55 68 61 64 67 4 19 23 26 30 33 42 44 46 61 64 67 5 5 23 36 33 35 37 37 50 53 54	32	20	28	34	000	0.00	1.0	19	29	69	72	725	0 0	300	
4 14 19 23 26 30 42 44 46 50 52 54	33 6	16	23	96	00	44	48	51	200	58	61	64	13	08	
15 23 33 35 37 50 54		14	10	000	20	36	33	42	44	46	20	E 02	10	89	
			CI	23	56	30	655	35	27	30	3 7	7.0	54	55	

to build a model network of wire of reduced gauge to correspond in resistance to the scale of the map; and then, by supplying the network so designed with a battery current, and measuring the fall of potential in various spots by means of a voltmeter, to make the determination of the location of the central station, the size of the

Table No. 54.

Heating-Limits for Conductors. Sheet II.— Aerial and Paneled Conductors.

Size of Wire B. & S. G.	SECTION in Sq. Mils. RESISTANCE IN OHMS		CURRENT IN AMP. FOR Wire in Panels.	CURRENT IN AMPERE for Conductors in Still Air. CURRENT IN AMPERE for Aerial Conductors.									
SIX	S iii	R _B	Z , N	5=	10°	20°	40°	80°	5°	10°	20°	40°	
0000	166190	.05012	175	101	146	204	288	403.8	229.6	331.6	461	636	
000	131790	.06320	143.5	89	125	177	248	345.9	198.1	280.6	388.6	536	
00	104518	.07969	124	77	106	152.7	214.9	299	169.7	237.9	328.9	453	
0	82887	.1004	103.5	67	93	132	186.8	257	143.8	200.8	280.8	383.5	
1	65732	.1267	87	57	84	115.6	160.9	222.7	121.8	168.7	236.8	326	
2	52128	.1598	73	50	69	99	140	192.3	102.5	141.8	198.4	272	
3	41329	.2015	62	44	60	86	121.6	166.4	86.7	120.4	169	234	
4	32784	.2541	51.5	39	52	74	105.75	143.8	73.1	101.5	143	198.7	
5	25999	.3204	43.5	34	47	66	92.5	125.5	62.6	87	122.5	170	
6	20618	.4040	36.5	29	42	58	81	109.6	53.5	74.6	104.8	145	
7	16351	.5094	30.75	25	37	50.6	71	95.5	45.6	63.7	89.2	123	
8	12967	.6424	25.75	22	32	44.4	63.6	83.5	39.3	55	77	106	
9	10283	.8100	21.75	19	28	37.5	57.1	72.6	33.6	47.5	-66	90.4	
10	8155	1.021	18	17	24.3	33.7	50.5	62.8	28.7	41	56.4	77	
11	6467	1.253	15	15	22	29.6	45	55.7	24.8	35.4	48.5	66	
12	5129	1.624	13	13	19.5	26	39.5	49	21.8	30.8	42	57	
13	4067	2.048	11	11	17	22.9	34.5	42.5	19	27	37	49.6	
14	3225	2.582	5	9.5	15	20	30.1	37.5	16.5	23.9	32.2	42.6	
15	2558	3.256	7	8	13.5	17.5	26	32.7	14.2	20.2	27.5	26.1	
16	2029	4.106	6	7	12	15	22	28	12	17	23	30	
17	1609	5.178	5.25										
18	1276	6.529	4.6										
19	1012	8.233	4										
20	802.3	10.38	3.5							•			
21	636.3	13.09	3										
22	504.6	16.51	2.5										
23	400.2	20.82	2										
24	317.3	26.25	1.6										
25	251.7	3 '.10	1.4										

feeds and distributing-mains, and the fall of pressure at various points, entirely in an experimental manner. For very large plants, and those presenting peculiar complexities, a practical method of this kind has certain advantages, especially as the model may afterward be preserved as a *fac-simile* of the conducting system; and may, from time to time in the future, be used to afford means of solving prob-

lems relative to the addition or extensions to the conducting system, or the introduction of new customers. Such a method is, however, usually considerably slower and more expensive than the analytical one; and erroneous deductions, due to imperfections in the scale ratios, are likely to be serious. To determine the point of greatest drop, a method embracing a mechanical application of the principle of moments is, however, rapidly and accurately available.

631. Suppose a scale-beam to be arranged as shown in Fig. 260, with the supporting pivot at the center, the length of the scale-beam L and L' at either side of the pivot being so arranged as to correspond, on any desired scale, to the length of the street between the

distributing-centers under consideration. Between the points a and f, on the left-hand side of the pivot, arrange scale-pans at distances to correspond to the consumers' frontage along the street. Arrange a corresponding set of scale-pans upon the right-hand side of the pivot in the same order as those indicated in the left-hand side, and balance the beam. In each of the scale-pans on the left-hand side, place weights corresponding to the amounts of current required by the respective customers. Now remove the weights from a, and place them in the corresponding pan on the right hand of the supporting pivot. Continue this operation until the scale-beam again balances about the center pivot. Suppose, when equilibrium is obtained, the weights in the scale-pans A, C, and D have been removed from the left-hand side of the lever, and have been placed upon the right-hand side, the interpretation of this result means that the

point of lowest pressure is located at a distance from α equal to αe .

632. It sometimes occurs that equilibrium can be obtained only by *dividing* the weight in one of the scale-pans. Thus, for example, supposing all of the weights in A, C, and D to be removed to the right-hand side of the lever, and one-half of the weight in E. It is evident, under these circumstances, that the point of lowest potential is at the point e, and that one-half of the current supplied to e comes from e and one-half from e.

633. Station Loads. - The behavior of a central station under the load thrown upon it, and a study of the variation in the loading due to business emergencies, form one of the most interesting and attractive of investigations for the electrical engineer. This examination is chiefly attractive to the central station designer; the results of the investigation of station-loading being valuable in the solution of transmission problems, only as they afford means of determining the probable loads and variation in loading to which the circuit will be submitted. In the elucidation of this part of the problem, experience is the only guide. As an exponent of the loading to which the central stations in urban districts may reasonably expect to be submitted, the curves given in diagrams Nos. 1 to 17 inclusive, Fig. 261, are presented. The curves numbered from 1 to 12 inclusive are the average monthly curves obtained from the operation of St. James Station in London; they are exhibited by the London Electrician as sample curves, giving a fair indication of the monthly output of the St. James Station during the period of a year. In each curve the horizontal axis to a scale of sixteen hours to an inch represents the hours of the day, while the vertical axis represents 1,600 amperes to the inch. The heavy line in each of the diagrams indicates the current output for each hour of the day in one main conductor. while the dotted line gives the current flowing through the other wire, requiring an algebraical summation to give the total station output; the departure of the dotted line from the full line fairly represents the amount of unbalance to which the plant was subjected. An examination of all of the curves reveals a close family resemblance existing between them. In every instance the quantity of current slowly increases from 5 A.M. to about 3 P.M. From this time until from 5 to 9 P.M. the current rises sharply,

Fig. 261. Curves of Station Output.

May 18, 2,149 Units.

No. 7. July 20, 2,082 Units.

No. 6. June 8, 2,529 Units.

No. 8, Aug. 10, 1,973 Units.

Fig. 261. Curves of Station Output. (Continued.)

No. 9. Sept. 7. 1,980 Units.

No. 11. Nov. 23, 5,345 Units.

No. 13. Heavy Fog, 7,942 Units.

No. 10. Oct. 26, 4,267 Units.

No. 12. Dec. 14, 4,822 Units.

No. 14. Curve of Annual Output.

Fig. 261. Curves of Station Output. (Continued.)

No. 15. Output Curve, Cincinnati Edison Station.

No. 16. Output Boston Edison Station.

No. 17. Output Curve, Brooklyn Edison Station.

usually attaining a maximum value between the hours 7 and 9, the variation in the maximum having its origin in the varying length of the days from month to month. The total Board of Trade units delivered by the station is indicated upon each diagram. From January to August the station output regularly decreases, attaining a minimum in August. The minimum current at this time is not only due to the greater length of days, but is also owing to vacation absence during the month of August of the greater part of the business population. If the current curve followed strictly the relation between the lengths of day and night, the minimum would evidently occur in the early part of July, instead of August. In September and October the current output increases toward a maximum more rapidly than the decrease occurred in the earlier part of the season, indicating a resumption of business in September. The curves for November and December are very nearly alike in output, showing that the maximum demand is thrown upon the station a little earlier than the occurrence in the shortest days of the year; for it is a noticeable fact that, although the actual length of the day is a minimum in December, the amount of cloudy weather which occurs in the latter part of October and November makes a greater proportional demand for light in these two months. Diagram No. 13 is exhibited, showing the remarkable fluctuations and extraordinary demand on the station due to exceedingly stormy and foggy weather. Here the maximum current output occurred between the hours of 3 and 5 in the afternoon, instead of between 5 and 7, as in the normal December curve; the output in this case being nearly 8,000 units against the normal December output of 4,800, nearly doubling the demands upon the station.

In diagram No. 14 a summary of the year's work is given by plotting the output of each month. Here the vertical axis indicates the station output at the rate of 8,000 units per inch, while the horizontal axis is at a scale of 8 months to the inch.

634. In diagrams Nos. 15, 16, and 17 are represented the curves obtained from the Cincinnati Edison Station, the Boston Edison Station, and the Brooklyn Edison Station. All of these bear a striking similarity to the London curves, exhibiting, however, some local peculiarities. In the diagrams from Cincinnati and Boston, the

theater load brings a noticeable elevation into the curve at eight o'clock in the evening. In Brooklyn a similar rise of current may also be noted, but this is much smaller in comparison than in the previously mentioned cities. This is owing to the greater proportion of residence population in the district served by the Brooklyn Station.

635. A study of station load curves affords to the designer the best indication of the amount of load thrown on the conductor system, from which a deluction of the amount of current and the time of flow can be most accurately made, for application in the economical formulæ. To determine the mean annual current most accurately, as great a number of diagrams as possible should be procured from the station under consideration, or from one as nearly similar

to it as practicable. If it is possible to obtain the daily load curve for a year, an accurate determination of the constants may be made. Professor Patterson of Michigan has indicated an extremely ingenious method for the solution of this problem, which may be best illustrated by applying his process to the determination of the amount of mean output of the St. James Station. Assuming the curve of annual output as indicated in diagram No. 14, draw a circle, Fig. 262,

Diagram to Determine Mean Annual Current from Station Load Curves.

having a radius equal to the greatest ordinate of this curve, and subdivide the circle into twelve equal parts, by drawing radii to the circumference at the points Ja, Fb, Ma, Ap, My, Jn, Jy, Au, Sp, Oc, Nv, and Dc, each corresponding to a monthly ordinate in No. 14. Upon each of the radii lay off, from the center of the circle outward, a distance equal to the ordinates of the curve in diagram No. 14. By connecting all of these points an area will be obtained, which is indicated by the shading in Fig. 262. Find the area of this shaded curve by means of a planimeter, and then find the radius of a circle corresponding in area to the area of the shaded portion. The radius of this circle will, to the scale selected for the original circle, and corresponding to the monthly load diagram, be the amount of the mean annual output; for, evi ently, each elementary area of the

shaded figure is proportional to the square of the radius vector. In the illustration given, the circle corresponding in area to the shaded figure is given by a dotted line, the radius of which is .42''. Diagram 14, Fig. 261, is 8,000 units per inch, consequently the mean annual output of the St. James Station would be $8,000 \times .42 = 3,360$ units.

636. Algebraically the same result may be arrived at by finding from the load diagrams the maximum current output, and then ascertaining the relative lengths of time that the plant operates under different fractions of maximum load, say at intervals of 5 per cent, from 5 per cent to 100 per cent. Then, by multiplying the number of hours by the square of the percentage time operation, and extracting the square root of the sum, the square root of the mean square of the annual current is obtained.

637. Arc-Lamps on Constant Potential Circuits. — For every purpose excepting that of arc-lighting, the constant potential circuit, from its greater economy, lower pressures, and greater flexibility, has received a greater development. Many attempts have been made to operate arc-lamps upon constant potential circuits; but the variation in the voltage of the circuit, together with the necessity of the introduction of large, wasteful resistances, has prevented, until recently, the wide adoption of this practice. Successful lamps now, however, are constructed to operate upon constant potential circuits, and the number of these installations is now very rapidly increasing. Lamps are arranged across the constant potential mains of a 110 volt circuit, by placing either two or three lamps in series. In the case of two lamps in series, each lamp would operate at from 40 to 45 volts, thus consuming from 80 to 90 volts out of the possible 110 volts. Under these circumstances, from 20 to 30 volts would be lost in the necessary wasteful resistance, to be inserted in series with the lamps. In many cases, this amount of waste energy is not a serious factor, in a consideration of the other advantages to be derived from the constant potential circuits. The same lamps, however, may be adjusted to run on a 35 volt arc, by means of which three lamps may be placed in series, thus taking 105 volts, and necessitating only a loss of 5 volts in extra resistance. In a similar manner, six lamps may be placed in series across the outer mains of a three-wire circuit. The lamps, also, may be adjusted to take from 3 to 20 amperes, by this means permitting a great variation in the amount of candle-power delivered to the consumer.

638. Electrical Railway Wiring. — So far the distribution of electrical energy under the parallel system has been considered only for the case in which the receivers and the station were placed at constant and fixed distances from each other. A very important application of the system has arisen in the construction of electrical railways, in which the receivers are constantly varying the distance between themselves and the station. The electrical railway problem is also further complicated by the fact that the load thrown upon the station is rapidly varying throughout very wide limits. Take the case of a small road operating a single car. It is evident that at each stop and start of the car the entire station load will be thrown off and on, thus causing the station output to vary from zero to a

Fig. 263. Station Diagram, Navesink Mountain Railway.

maximum many times an hour. As more and more cars are operated, the station load becomes more nearly constant; but even with roads of the largest capacity, the variation in the station load is large in comparison with that thrown upon ordinary lighting plants.

In Fig. 263 is shown the variation of station load upon a road carrying four cars. The curves here given are by Messrs. Herring & Aldrich, from a test made upon the Navesink Mountain Road. The time during which the measurements are taken covers a period of fifty minutes; and during this short interval of time, with four cars in operation, the load on the station has rapidly varied from zero nearly to 300 amperes.

639. In Fig. 264 the load diagram of the Minneapolis Street Railway is shown. Here 142 motors were in operation, requiring an

average current of 1,168 amperes. Even with this large number of cars in service, the station load varied from 600 to nearly 1,800 amperes within three hours. Many variations of 400 to 500 amperes

occurred within a few minutes of each other. It is plain, from an inspection of these diagrams, that the demands on the conducting system of an electrical street railway are exceptionally severe, and great precautions must be taken to proportion the wiring in such a

Fig. 265. Load Diagram, Philadelphia Traction Company.

manner as to readily respond to the severest calls that may be made upon it.

640. In Fig. 265 the load diagram from one of the stations of the Philadelphia Traction Company is given as an example from a large and heavily loaded road. Here the variation between the night and day load is striking, but the effect of a large number of cars to smooth out and even the general line is still more noticeable. From

these examples the designer can gather a close approximation to the probable load line of the plant under consideration.

641. The electrical railway system should be constructed upon the feeder and main system; but it is impossible to secure the advantage of connecting the distributing-mains and feeders together, forming a network, for the reason that, in order to avoid interruptions of traffic upon the entire road, it is essential that the trolley wire shall be split into a great number of sections, each one of which is independent of any and all other sections. This precaution is necessary in order to avoid shutting down the whole line in case of a short circuit at any point. Should the wiring be a continuous network, it is evident that the grounding of any portion will throw the whole road out of commission; while, if the trolley wire be subdivided into numerous separately insulated sections, the accidental disarrangement of any one will in no wise interfere with the traffic of the road, excepting in the section injured. For this reason, it is customary to subdivide the trolley wire into a number of parts, each one of which is entirely insulated, and provided with a separate circuit to the station. a form of wiring is evidently the feeder and main system in the simplest form. Each section of the trolley wire forms a distributingmain that is connected to the station by means of its appropriate and special conductor. To determine the load diagram of an electrical railway, which is an essential consideration in the calculation of a conducting system, it is necessary to ascertain the number of cars which will at any one time be concentrated on any section of trolley wire, and the maximum amount of current to be taken by each car. To this end, it is essential to secure a plan and profile of the road, showing where the grades and curves occur, and where the travel is likely to be a maximum, requiring the greatest number of stops and starts, also where the cars will be most heavily loaded. Of all the factors entering into the problem of railway wiring, the live load in the car plays the part of least importance. The difference in the current required by an empty car and a fully loaded car is but a small proportion of the current required to start a car, or move it upon curves and grades. For an ordinary car carrying two fifteen to twenty-five horse-power motors, an average running current of from fifteen to thirty amperes is required. To start the same car upon curves or grades will cause the starting current to rise to fifty or

even one hundred amperes for a few moments. The severest stress to which the conducting system of an electrical railway circuit can be subjected occurs in the case of a blockade, when a large number of heavily loaded cars may be expected to start almost simultaneously. It is for cases of this kind that the wiring of the road should be most especially planned, for nothing is so detrimental to streetcar motors as to subject them to the requirements of starting under an excessive fall of potential. Such a stress as this almost invariably injures the insulation of the armature, causing the motor to sooner or later burn out. It is, therefore, advisable to prepare the load diagram of each section of the trolley wire with the maximum possible current in view, bearing in mind particularly, that experience has shown that traffic on electrical railway lines immediately increases upon the introduction of the electrical system, usually indicating it advisable to double or triple the load which is, or has been, carried by other forms of traction on the same line. Having obtained the load diagram for each section of the trolley wire, the calculation of the fall of potential in a particular section of trolley wire is an exceedingly simple matter. The calculation of feeders for each section of wire may be made according to the formulæ already given. It is usually advisable to extend the feeders to the center of each trolley wire section, and then to branch the feeders longitudinally along the trolley wire for such a distance as will enable the feeds to supply the required current under the given fall of potential clear to both ends of the section. While railway motors are sensitive to changes in the potential, they will bear a much greater variation than incandescent lamps, so it is customary to design the conducting system of an electrical road to work under a difference of potential for an average maximum current of from 50 to 75 volts on a 500-volt circuit. The mean annual current for a road is so difficult to predict, previous to the operation of the line, that it is exceedingly hard to apply the formulæ for maximum economy. Experience has also shown that in most cases the most economical current density requires the conducting system to vary over too great a difference of potential to enable the motors to safely and successfully operate. The conditions, therefore, which usually limit electric railway wiring are those of the maximum allowable fall of pressure, which should never exceed 10 to 12 per cent of the available voltage at the station. To compensate for the drop in the line, it is advisable to over-compound the generators at the station, that, with an increased demand upon the conducting systems, the voltage of the generators shall rise in proportion to the demand upon the line, thus enabling a very notable saving in the cost of the conducting system to be made.

642. Three-Wire Railway System. — A recent novel and successful experiment in three-wire distribution has been put into operation by the electric railway companies in Portland, Oregon, and in Bangor, Maine, for supplying energy to the street railway. The station and railway lines are planned on three-wire system, the generators running at 1,000 volts; the trolley wires throughout the double track being respectively the positive and negative leads, while the ground return assumes the function of the neutral wire. The feeder system is designed to operate with the trolley wire, and is split into two halves, corresponding in sign to the trolley wire. Accidental grounds on the line only interrupt service in the section in which the defect occurs. By careful scheduling, the car-load is so proportioned that excessive unbalancing of the system does not occur, and for more than a year the plan has been in successful operation.

If the topographical conditions of the country are such, and the arrangement of the schedule will permit of quite an accurate balance of the load upon the two sides of a three-wire system when applied to an electrical railway circuit, there is no reason why this method should not be successfully adopted; and experience in the abovenamed cities demonstrates that it can be done. As the only reason for adopting the three-wire system in an electrical railway is economy in conducting material, and as the endeavor to continually maintain a proper balance between the two sides of the system is rarely uniformly successful, it would hardly seem as if the game were worth the candle, under ordinary circumstances. Usually economy in copper section could be better attained when the power station is located at a distance from the electrical center of gravity of the road, by adopting some form of motor transformer to permit of the station being operated at a high potential, while the line runs under the ordinary 500 volts.

CHAPTER XI.

MISCELLANEOUS METHODS.

MOTOR TRANSFORMERS, ACCUMULATORS, TRANSFORMERS, THE POLY-PHASE SYSTEM, AND LONG DISTANCE TRANSMISSION.

643. In the description of multiple-wire systems, it has been shown that economy in distribution can be effected by raising the potential of the generator station, and decreasing the current through the conducting system; but, at least in lighting-circuits, a practical limit is soon reached to the possible elevation of potential, by the limited resistance of incandescent lamps, and the independence of the various customers is seriously interfered with in the attempt to run several lamps in series, in order to render elevated potential available. Many attempts have been made to render feasible distribution at high voltages, in order to cover large areas without too serious loss in the conducting system, and without too great an expenditure of capital for the conductors, by means of auxiliary pieces of apparatus, whereby a high voltage and small current supplied by the station could be transformed and changed into a lower voltage and greater current for the consumer.

Devices of this kind have been more or less successful, and already have attained so wide an introduction in distributing systems that, while the consideration of the various appliances used in this connection more strictly belongs to a discussion of station machinery, yet no treatise upon electrical distribution would be complete without, at least, a limited reference to the various systems that have thus been inaugurated.

644. Motor Transformers. — The modern motor transformer is a dynamo machine, the armature of which contains two circuits and two commutators. These commutators are usually arranged upon opposite ends of the shaft extending through the armature, so that essentially the machine may be said to be two dynamo machines, excited by the same field magnets. The high potential line from the station is brought to the brushes of one of the commutators,

to which the fine wire windings of the armature are attached, and the machine acts as a motor, the armature rotating rapidly between the poles of the fields. The field magnets are in a similar manner excited by the line current. Now, it is evident that the other set of windings of the armature, being rotated in a powerful magnet field, will behave as a dynamo generating a current, that, flowing out through the remaining commutator, may be used in precisely the same manner as a current from any other source of electrical energy. From a study of the principles governing dynamo electric machinery, it is known that the voltage produced by a dynamo acting as a generator, or absorbed by one acting as a motor, is proportional to the rate at which the armature conductors cut the magnetic lines of the field. In the case of the motor generator, inasmuch as the armature runs in a constant field, the voltages on the two commutators will evidently be proportional to the number of turns in the respective halves of the armature. Thus, by making the windings of that portion of the armatures connected to the line of fine wire and a great number of turns, while those on the generator side are of coarse wire with a small number of turns, it is perfectly feasible to transform the high potential and small current supplied by the station line to a low potential and large current for consumers' use. So, in cases where distribution is required over a very large area, it is possible to design the main source of supply to distribute a small current of a few amperes at a high potential (say several thousand volts), running the primary conducting system to a number of substations, which approximately take the place of centers of distribution in the feeder and main system.

645. At each of the subordinate stations, by means of a motor transformer, the small current and high potential of the original supply is changed to a large current at low voltage, giving a safe and practical supply for all consumers. Such an arrangement leads to marked economy in the primary conducting system, especially if the geographical circumstances are such as to necessitate the expansion of the system over a large territory, and also renders all of the customers entirely independent of each other. The various motor transformers may either be operated in series or in parallel; and, furthermore, additional advantage may be obtained by arranging either the primary or secondary system, or both, to operate upon the multiple-wire system.

646. Installations of this kind have already reached considerable development, especially in Europe, where by their aid widely extended distribution is made a commercial success. Little or no difficulty is experienced with the motor transformers, as, by careful proportioning, these machines may be made exceedingly permanent and durable, requiring for annual maintenance only the renewal of the commutators and the brushes; and when suitably calculated for the loads placed upon them, they can be made exceedingly economical, having an efficiency of over ninety per cent at full load. As, however, they are dynamic machines, a certain amount of supervision is essential; and, therefore, usually an attendant is constantly required at each of the sub-stations during such times of the day as the motor dynamos are in operation. The expense of maintenance

Fig. 266. Compensator on Three-Wire System.

and lack of efficiency of the motor generators are comparatively small items, being usually much less than the cost of interest, depreciation, and loss of energy in the ordinary conducting systems. The cost of attendants, however, is quite a serious item, and has so far limited to a notable extent the expansion of this system. The system just outlined for the employment of motor transformers is one that has received, perhaps, the largest sanction by experience. There are, however, many special methods, of which the following are perhaps the most important.

647. Compensators. — The use of motor generators for compensator has already been alluded to. The design of a compensator plant will be more clearly understood by reference to Figs. 266 and 267.

The simplest case is the employment of a compensator upon the three-wire system, the outline of the connections being shown in

Fig. 266. A is the generating-station, B and C being the two compensators. These compensators are two dyamos, shunt wound, the fields being placed across the outer mains, as shown at F and G. The armatures of the two compensators are wound upon the same shaft, in order to rotate exactly in unison. When the two outer

Fig. 267. Compensator on Five-Wire System.

conductors of the line are equally loaded, a very small current flows through the compensators, simply sufficient to turn the armatures, overcoming the frictional resistance. As soon as the system becomes unbalanced, the armature connected with the main carrying the least current becomes a motor, while the other armature plays

Fig. 268. Diagram of Currents in Five-Wire Compensator.

the part of a dynamo, the balance of the system being restored; for one of the compensators, acting as a motor, drives the other armature as a generator, furnishing the excess current required upon the overloaded main.

648. The calculations for the amount of current required in the various compensators may be made by the application of Kirchhoff's laws. Fig. 267 gives an illustration of the compensator

method, as applied to a five-wire system, and will form a sample to elucidate the application of the calculations.

Let X be the current from the station;

m, n, p, q the currents in the different receivers; e the voltage of the receivers; and

E=4e, the voltage of the station.

649. Let A, B, C, D, and E, and A', B', C', D', and E' be the respective mains, with the compensators located between A'B', B'C', and D'E'. By Kirchhoff's laws, the values of the currents in the intermediate wires may be readily found, as indicated in the illustration.

If X is the current supplied by the station, and x, y, z, and t the currents in the armatures of the compensators, the following equations are readily deduced:—

$$X + x - m = 0. (241)$$

$$y + m - n - x = 0. (242)$$

$$z + n - p - y = 0. (243)$$

$$q - t - X = 0. (244)$$

From which m-x=n-y=p-z=q-t=X.

650. Moreover, if it is assumed that the compensators have an equal output, whether acting either as generators or motors, and neglecting the small amount of energy expended to overcome their ohmic resistances, and assuming e to be the electro-motive force required for the lamps, the following equation obtains:—

$$4 eX = e (m + n + p + q);$$
 (245)

From which
$$X = \overline{m+n+p+q/4}$$
. (246)

651. Solving, the various values for the currents in the compensators and in the separate wires, as indicated on Fig. 268, are obtained. As all of the compensators are shunt wound machines, having their fields excited between the outer conductors, they always revolve in the same direction, no matter whether acting as generators or motors; and, under the present state of perfection in dynamo construction, they require an exceedingly small amount of attention. The independence of the system is further preserved by the ability to insert compensators at any number of points across the primary mains. This method renders it feasible to operate a station by an

available water-power, situated at some distance from the center of gravity of the consumers, delivering the energy thus obtained at a high potential through a small pair of conductors, and placing the compensators in parallel across the mains at the various centers of distribution. To determine the size of the compensators, it is necessary to establish the greatest possible difference in loading between the outer conductors and any of the intermediate ones, and proportion the compensator to deliver the current thus indicated. By designing the system according to the observance of precautions indicated for the multiple-wire systems, so that the load of the various consumers shall be equally subdivided among the intermediate conductors, it is practical to reduce the probable lack of balance to a small percentage, thereby reducing in a corresponding proportion the size of the compensators required to maintain the balance.

An ingenious method of utilizing motor transformers has been devised by Mr. Bernstein. While usually applied to straight currents, it is also applicable to alternating currents. The method consists in laying from the central station a series circuit receiving power from a single generator, including in the circuit any desired number of motor transformers. One striking peculiarity of this system is the arrangement of the engine, or other prime mover, without any speed regulator for controlling changes in load; the engine being allowed to run at any desired speed up to a certain predetermined maximum, which will correspond to a delivery of the highest voltage to be obtained from the generator.

The motor transformers are those having double windings on the armatures, the motor side of each transformer being connected in series with the primary line, so that the whole number forms a group of series motors operating upon the station circuit. The other windings of the armature are arranged to be in series with the receivers of each separate circuit, and are proportioned to supply the requisite number of receivers that may be expected upon each of the secondary circuits. The number of customers upon the secondary circuits may be increased or diminished at pleasure, by simply short-circuiting the apparatus of the customer, which is for the time being thrown out of service, by this means rendering the various receivers independent of each other. The general outline of this circuit is shown in Fig. 269.

In this design it is apparent that neither the motor transformers nor the generators and engine at the station require any special supervision, the whole plant being entirely self-regulating. The efficiency of the design is low as is common in series circuits, unless the plant can be arranged to operate essentially under a constant full load. It is also noteworthy that there is no need of automatically

Fig. 269. Series Motor Transformers.

regulating the position of the brushes on the series machines, as is customary; for inasmuch as the current is constant in both armature circuits, regulation is accomplished entirely by a variation in the speed of rotation of the various armatures of the motor transformers.

653. High and Low Potential Distribution from the Same Station. — M. Rechniewski has devised the following ingenious

Fig. 270. High and Low Potential from One Station.

method for delivering two different potential values at one station. The generators are arranged at A, Fig. 270, in such a manner that part of the dynamos may operate in parallel upon the circuit BC, which may be supposed to feed a group of 110 volt lamps placed close to the station. The remaining dynamos are placed in series with the first machines, giving a 220 volt circuit to be used, for exam-

ple, at a considerable distance from the plant. At D a motor transformer is placed, so designed that in connection with the circuit D E it shall absorb 110 volts, leaving 110 from the 220 of the circuit to pass the lamps at E. From the other side of the motor transformer at F, a 110 volt current is obtained, which is also passed to the lamps at E. By this ingenious device, only half of the energy undergoes transformation, and the advantages of a high potential with a minimum loss of efficiency is secured.

654. Leonard's System of Motor Regulation. — For the special case of electric motors, operating under wide variations of load and speed, particularly in instances where the direction of rotation is frequently reversed, Mr. H. W. Leonard proposes the following method of regulation, depending upon the principle that the poten-

Fig. 271. Leonard's System.

tial at the motor terminals should be proportional to the desired speed, while the current should vary as the torque or twisting moment required. The method is diagrammatically shown in Fig. 271, in which B is the motor, and A and C two generators, the office of the generator C being simply to excite the fields of the motor B and the generator A. The field currents are controlled by the rheostats D and E. The armatures of the generator and motor are directly connected. So long as the generator A is operated at a constant speed, the electro-motive force generated will be proportional to the strength of its field, which is controlled by the rheostat D. The field of the motor being constant, the speed of its amature will depend upon the applied electro-motive force; and, hence, this speed is also controlled by the rheostat D. The current will automatically vary proportionally to the torque exercised by the motor armature,

and the efficiency will be constant and independent of both speed and torque. Reversal of rotation is readily accomplished by a reversal of the field current. This method has been very successfully applied to the operation of elevators and to similar pieces of machinery.

655. Accumulators. — The discovery of the storage battery two decades ago seemed to present to electricians a means whereby electrical energy could be stored and preserved to meet future demands. It is difficult to say why the application of the storage battery to central station use has not in this country reached a wider development, for in Europe there are very many plants that owe their commercial success essentially to combinations of storage batteries and dynamo machinery. The central station engineer is compelled to meet and combat two difficulties. If the plant be so designed as to be sufficient for the maximum load, it will, for a very large proportion of the time, run under so light a load as to be exceedingly inefficient, thus largely increasing the cost of the production of energy. If, on the contrary, the station be so arranged as to be fairly loaded during the majority of the time of action, it will fail in capacity throughout the periods of heavy load. As an adjustment to the conditions of varying load, central stations are usually so planned as to consist of a number of units which may be thrown on and off to accommodate the station to the demands thrown upon it. While this is a partial solution of the problem, so far as the working efficiency is concerned, it necessitates the investment of a very large amount of capital in machinery, which is necessarily idle for a great portion of the time.

656. Examining Diagram No. 11, Fig. 262, it will be seen that the mean current of the St. James Station for the twenty-four hours of November 21, was about 1,200 amperes, while the maximum current rose to nearly 3,000 amperes. Could some means be provided that the station might run uniformly during the twenty-four hours at a steady load, the superfluous energy not needed in the lines during the greater part of the day being conserved and rendered available during the hours of heavy load, it is apparent that the initial capital invested in the station could be reduced in proportion to the output required, while the machinery could be so proportioned as to constantly run at its point of maximum efficiency. The ac-

cumulator provides precisely the means needed. By arranging the station so that the dynamos shall have a capacity, for the average load called for, with such an accumulator capacity as will enable the dynamos, plus the accumulators, to serve the maximum current, it is evident that the station may be continuously operated during the whole of each twenty-four hours, at its most economical load; the surplus current during the hours of light load flowing into, and being conserved by the accumulators, while, during the hours of heavy load, the accumulators discharge themselves into the line, supplementing the dynamo output to the extent of rendering it possible for the station to meet the demands of the consumers.

657. The recent perfection of the storage batteries indicates such an improvement in efficiency and in the life of the battery plates as to make this method of equalizing the central station load an exceedingly promising one. Reports from Europe indicate in the Hanover Station a battery efficiency, for an entire year, of 78.4 per cent. Several plants in Germany give 78 per cent. The Fifty-third Street Edison Station in New York reports a daily efficiency as high as 85 per cent, and the Crompton-Howell Company in London are prepared to guarantee 85 per cent upon all the batteries supplied by them. Nearly all authorities admit that 75 per cent may be constantly realized, and that, under favorable conditions, 80 per cent or more may be expected. When it is considered that, as the batteries are only used to supply a fraction of the entire station output, usually from 30 to 50 per cent of the full current demanded of the station, the loss entailed by the lack of battery efficiency upon the whole station output is comparatively a small quantity. In the Hanover Station, for example, where the battery output is very high, being 54 per cent of the whole station output, the loss entailed by the battery is so comparatively small that the station averages an efficiency of over 91 per cent, a very much higher average than can be attained by stations operating solely by mechanical means, owing to the loss entailed by running the plant for a large number of hours in an unloaded condition.

658. The electrical railway problem would seem to receive from the storage battery an exceedingly happy solution, for, from

the station curves already given in Chapter X., the irregularity of load upon a railway station is seen to be exceedingly severe and irregular. It may be almost confidently stated that no electrical railway plant can operate at its point of maximum efficiency, on account of sudden and extreme variations of load to which the station is subjected. To, therefore, supply railway stations with a suitable accumulator plant, which should allow engines to run at a reasonably constant and uniform load at the point of maximum efficiency, and allow the battery to make up in the line deficiencies of the current supplied by the dynamos, would certainly be attended with the happiest results. Already railway station managers in this country are seriously considering the increasing of station capacity by means of accumulators, and the wide adoption of this method in the near future seems to be a foregone conclusion.

659. Sub-Station Accumulators. - The accumulator may be used in a manner similar to the motor transformer by being located at a number of sub-stations which may correspond to centers of distribution. The employment of accumulators in this manner forms one solution of high potential transmission, by allowing the generating-station to work at high pressure, the batteries in the sub-stations being arranged to be charged in series, while they are discharged into the consumers' circuits in parallel. In this way the batteries at the sub-stations may be charged under a very high potential with a small quantity of current, and yet serve a large territory at the ordinary lighting voltage with a large current. Inasmuch as the batteries do not need constant attention, it is practical to place the care of a number of sub-stations in the hands of a single assistant, who may visit each station at different periods of the day, giving each of the separate batteries such supervision and maintenance as may be necessary. In this respect, the accumulator is an improvement over the motor dynamo, for the latter almost necessitates the constant presence of an attendant. On the other hand, however, the cost of battery maintenance, including the deterioration of the plates, the losses of exciting fluid, etc., are considerably larger than the maintenance expense entailed by motor generators; for, while the present battery manufacturers are prepared to give five or even ten years' guarantee for the permanence of their goods, the life of a motor dynamo, the commutators and brushes alone excepted, is practically without limit. Accumulator stations may be designed either on single or multiple wire systems, for either the primary or secondary conducting systems, or both.

660. Accumulator Distribution. — The more customary methods of distribution by means of accumulators are indicated in Figs. 272 and 273. In the first illustration, the batteries B B B B are arranged in series along the entire line, the generator feeding all

Fig. 272. Accumulator Distribution.

Fig. 273. Accumulators on Three-Wire Mains.

of the sets. The receivers are taken off in four parallel circuits, each one of the batteries being of sufficient voltage to adequately supply all of the customers. A similar arrangement is indicated in the latter illustration, with the simple modification that in this case the secondary consumers' circuits are laid out upon the three-wire system.

661. Regulation by Means of Accumulators. — A very convenient application of the accumulator system is in the accomplishment of the regulation of voltage to be delivered at the end of the feeders, by planning the battery so that there are a sufficient number of cells

to make up for the fall of pressure in the feeds, and arranging the extra cells in such a manner as to be readily thrown in and out of service by means of an appropriate switching apparatus.

Thus the accumulator forms an exceedingly valuable and simple method of regulating the potential delivered at the ends of the feeder system. As the load is thrown on the plant, the increasing current causing a drop at the ends of the feeds, additional cells may be switched into the circuits in series, thus increasing the potential precisely in accordance with the demands of the line.

662. Transformers. — The devices for rendering high potential circuits available, that have so far been considered, are those applicable to straight currents. The alternating current presents a solution of the problem, at least so far as lighting-circuits are concerned, in an exceptionally beautiful manner. The motor transformer and the accumulator are dynamic pieces of apparatus, which constantly require more or less supervision, and from this cause are sources of considerable expense. With the alternating system, the principles of induction may be so utilized as to enable the plant to distribute electrical energy over wide areas with the greatest economy, without the interposition of machinery needing supervision. In the case of the motor transformer, a rotating armature is supplied with a high potential current through the fine windings, and distributes a low potential current through the coarse windings. In this case, the cutting of the magnetic lines is accomplished by the rotation of the armature. In the case of the alternating currents, no dynamic rotation is necessary, as the wave form of the current itself supplies the necessary changes in the magnetic field. The transformer in its essential parts consists merely of an iron core surrounded with two coils of wire, a fine coil and a coarse coil. The fine coil is connected to the primary line, receiving electrical energy at a high potential, while the coarse wire coil is in communication with the lines of the consumers. The alternations of the primary current cause magnetic alternations in the core, thus inducing a secondary current in the coarse wire coil. Without serious error, it may be stated that the transformation thus effected is in proportion to the ratio of the number of turns of wire in the coarse coil to the number in the fine coil. If the primary wire is operated under 2,000 volts, and 100 volts is required in the consumer's circuit, the turns on the two coils in the transformer will be in the proportion of twenty to one. The advantage of the transformer lies chiefly in the fact that it needs absolutely *no* supervision. Once built and placed in position, it needs no further attention, unless injured from some exterior cause, but will go on performing its part of the service for an indefinite time.

663. Economy in the Conductor. — It is easy to calculate the economy that may be made in the circuits. Let W be the energy in watts to be transmitted between the generating station and the receivers. Supposing I to be the current, and E to be the difference of potential, and w the energy which is lost in the line, equal to a certain fraction m of W. If direct current distribution is used, the resistance of the line becomes, —

$$R = m\frac{E}{I}; (247)$$

and also, $w = mEI = RI^2$. (248)

Suppose, on the contrary, that the same energy be transmitted under a difference of potential K times more elevated and a current K times more feeble. Under these circumstances —

$$w = R \frac{I^2}{K^2}; \tag{249}$$

from which it follows that $R = K^2R$, and therefore, as the length of line remains the same in the two cases, the same relations exist between the relative amounts of copper that are necessary for the appropriate circuit. For example: energy transmitted under a potential of two thousand volts requires four hundred times less copper for the same line losses than is needed under a transmission of one hundred volts; and conversely, with a tension of two thousand volts, it is possible to make the circuit four hundred times as long, with the same loss, as would be required for a potential of one hundred volts. Thus it is evident that raising the pressure of the energy will permit a distribution over a very much greater space. For an aerial line, the economy indicated is usually attainable; but when the circuit is placed underground, the full saving can very rarely be realized, for in the latter case a large proportion of the expense of line is required in the construction of the subway. Under these circumstances, a saving in the weight of the conductors will only decrease the total cost of the circuit by a smaller proportion,

inasmuch as the cost of the subway will remain the same. It should also be recollected that the saving in the cost of the circuit is also offset by the expense made necessary by the use of transformers - an outlay of capital that is necessary to incur when the plant is first established.

664. There are three possible ways in which transformers may be operated.

All of the primaries may be in series with the receivers

Fig. 274. Transformer Circuits.

Second. Both the primaries and the receivers on the secondaries may be in series.

on the secondaries in parallel.

Third. The primaries and the receivers on the secondaries may both be in parallel. These methods are indicated diagramatically in Fig. 274, Nos. 1, 2, and 3.

According to the first system, if any receiver be put into or out of commission, the resistance of the secondary circuit will be correspondingly diminished or increased. This will proportionally vary the impedance of the primary circuit; and the current therein will be, in a like manner, varied in

quantity. Such a system cannot be made self-regulating; and, if used, must depend entirely upon manual regulation at the station.

665. In the second system, with the receivers arranged in series, a practical working arrangement is obtained, if the primary current is derived from a constant current alternator having the ability (by compound winding or automatic regulators) of maintaining a constant current for considerable variations in the impedance of the primary circuit. This arrangement has received quite a wide development in arc-lighting plants operated by alternating currents, the customary design being indicated in Fig. 275.

666. The third method is the one most usually employed; for, if the transformers are designed with sufficient impedance in the

Fig. 275. Transformer for Arc Lamps.

primary circuit to practically block out all current, when the secondary is open, the system then becomes almost perfectly self-regulating.

667. Usually, however, the transformer service is installed as indicated in Fig. 276. With this arrangement, the transformers may

Fig. 276. Common Transformer System.

be regarded, in their relation to the central station, precisely as if they were the receivers themselves, and the distribution studied and designed in accordance with the principles for direct currents. Where the area to be covered is very large, or the amount of energy transmitted great, the feeder and main system finds economical application, as indicated in Fig. 277.

668. The transformer system further presents great flexibility in the distribution from the secondary circuit. Where a large number of receivers are to be supplied at a single location, the transformers may be banked, with their secondaries in parallel, as shown in Fig. 278. Contrariwise, if higher potential be desired to overcome the resistance of long interior leads, the secondaries may be placed in series, as in Fig. 279, thus doubling the potential of the

Fig. 277. Feeder and Main System with Transformer.

individual transformer. Finally, the service leads may be arranged upon a multiple-wire system, the transformer secondaries being arranged in series, and appropriately connected with the intermediate wires. For three-wire distribution the arrangement is indicated in Fig. 280. Even with the best proportional transformers, there is a small unavailable consumption of energy due to I^2R losses and hysteresis. When operating under a large load, the percentage of energy thus wasted becomes insignificant; but, during the hours of light loading, these wastes rise to formidable proportions. From this aspect, the common method of installing a separate transformer to serve the wants of each consumer is exceedingly

detrimental to the attainment of high service efficiency. The transformer supplied to each customer must have sufficient capacity to carry the maximum load ever desired. Necessarily, even during the

Fig. 278. Wiring for Transformer Secondary Circuits. Secondaries in Parallel.

daily hours of maximum loading, the transformer will be operating uneconomically at a light load. This is particularly the case in residence districts, where each individual house must have a possible transformer capacity sufficient to provide for occasional fêtes, while

the daily load is but a fraction of the occasional demand. A great improvement in efficiency may be attained by designing the transformers to serve groups of buildings, as it is evident that special loading will rarely simultaneously occur to more than one customer

in such a group. Thus the average load will much more nearly approach a full load.

669. If the transformer is located to feed a subscriber, or group of subscribers, it is most appropriately placed at the center of gravity of the system of receivers that it is expected to feed. Inasmuch as it is not advisable to allow a high-tension circuit to enter the houses of the subscribers, this condition cannot always be strictly followed.

Theoretically, the transformer system becomes the most economical under the following conditions:—

First. A supply to the transformers by a primary circuit served by a system of feeders.

Second. A secondary circuit from the transformers supplying the receivers by a multiple-wire system.

670. The Efficiency of Distribution by Isolated Transformers. — The greatest offset to the use of the transformers lies in the low efficiency which is to be obtained when the instruments are operated for a greater part of the time under a light load. No matter to what extent the perfection of the transformer may be carried, the output is never quite equal to the total amount of energy which is supplied to it. For example, supposing the output of a transformer under full load to be 95 per cent of the energy supplied to it, there remains 3 per cent to be lost by hysteresis and Foucault currents, and 2 per cent due to heating of the circuits. The loss by hysteresis is continual, and is entirely independent of the loading placed upon the transformer. The heating-losses, however, diminish in proportion to the load. Now, with all the transformers at work during twenty-four hours of each day, assuming, as a fair estimate, that they will operate for two hours under a full load, four hours under a half load, and during the remainder of the time under no load, the mean daily efficiency then becomes easy to calculate. Assuming the efficiency of the transformer to be 95 per cent at full load, the demand on the station during the twenty-four hours is as follows: -

3 per	cent	durin	g 18	h	ours				۰			٠	==	.54
50 per	cent	durir	ig 4	ł ho	ours		٠	٠	٠	٠	۰	۰	=	2.00
100 per	cent	durir	ig 2	? ho	ours				٠	٠			==	2.00
Total														4.54

The output which the transformer gives to the secondary circuit is —

0.00 during	18	ho	urs				í	٠			=0.00
0.46 during	4	ho	urs								=1.84
$0.95 \ \mathrm{during}$	2	ho	urs		۰				٠	٠	=1.90
Total .									٠		3.74

The total efficiency is —

$$3.74 / 4.54 = 0.825$$
.

671. Now, admitting the above excellent conditions, and allowing an annual operation covering 1,500 hours, the employment of the transformers reduces, in the above proportion, the amount of electrical energy which can be utilized in the secondary circuits. If, on the other hand, the transformers operate for two hours under full load, and only two hours under a half load, the efficiency is lowered 4 per cent. From these figures, it is evident that great care should be exercised in the selection and design of a plant. If, for example, it is practical, in a mountainous region, to take advantage of a waterfall, where the power costs little or nothing, and where the expense of installation is moderate, it is evident that the transformer system may be used with great economy and advantage. On the other hand, in cases where natural power is not available, as, for instance, in the center of a crowded city, and it becomes essential to use steam power, the losses experienced in the transformer may entail a coal expense which is equal to, and often far greater than, the interest and depreciation of a large conducting system.

672. Transformers Arranged as Sub-Stations. — In order to avoid the loss of energy due to light loading of the transformers, they may be grouped in sufficient numbers at a single spot, thus forming an auxiliary station. It is a simple matter here to install appropriate switches, by means of which the transformers may be thrown out of circuit during the idle hours of the day, when the load is comparatively light, and may be successively thrown into action as the load increases. This operation is usually a manual one, thus requiring the presence of an attendant during a part of each day. If, however, the sub-stations are so arranged that the attendant can proceed from one to the other successively, to cut in or out the various instruments, a single attendant will be sufficient. Many pieces

of apparatus have been proposed to throw the transformers in and out of circuit automatically; and while, on the one hand, it is doubtless possible to accomplish this, it will be necessary to have much greater experience with automatic machines of this description before full confidence and reliance can be placed upon them. The location of the auxiliary stations should be studied with equal care to that which is devoted to the selection of the site of the main plant. The secondary system of mains and feeders also becomes a matter of care in design, and requires even greater attention than in the case of house-to-house transformers. The three-wire system now becomes particularly applicable, in view of the economy to be derived in the conductors, especially as the auxiliary stations are designed to feed a much larger territory. With the auxiliary station arrangement, it becomes practically advisable to feed each sub-station by means of a single pair of mains extending from the main generating-plant. Under these circumstances, particular care should be taken to connect the auxiliary stations among themselves in such a manner that, in case of any accident to a pair of mains from the central station to a particular auxiliary station, the service may not be interrupted, but that the incapacitated sub-station may be fed by a roundabout circuit through the other auxiliary plants from the central station. A separate dynamo may be arranged to connect each set of mains to its corresponding transformer, or set of transformers. However, from an economical standpoint, it is usually preferable to unite the generators among themselves, in order to make them operate under the best possible conditions of loading. It should be noted here that one of the largest English central stations has preferred to employ a small number of machines, graded in size in such a way that one after the other may be thrown in or out of service, so as to keep the machines that are at work constantly under full load, and, therefore, operating at their point of maximum economy.

673. Polyphase Transmission. — Electrical distribution, as accomplished by the ordinary alternating current, can, as yet, only be considered to be entirely successful when applied with currents of reasonably high frequency to incandescent lighting. The carbons in arc lamps operated by alternating current, being equally consumed, the reflecting power of the crater formed in a direct current lamp is lost, and considerable illuminating efficiency sacrificed. By increas-

ing the size of the upper carbon, and by means of reflectors, alternating current arcs are greatly improved; but they are hardly regarded as quite equal to those of direct current installations. With low frequencies, unsteadiness in both arc and incandescent lamps becomes quite noticeable, while with high frequencies the impedance and capacity, especially of long circuits with large currents, become almost unmanageable factors. For power distribution in any form, the plain alternating current is particularly disadvantageous, for as yet no thoroughly successful alternating current motor has been devised. The common synchronizing motor must be started by auxiliary apparatus, and brought into step with the generator, before the load is applied, and then can only operate under almost constant

Fig. 281. Diagram of Triphase Armature Connnections.

conditions of loading. In the search for the ideal alternating current motor, electricians have evolved the polyphase system, which, particularly for power transmission, presents especial advantages.

674. For a proper comprehension of the polyphase systems, some consideration of the way that electric currents are generated is necessary. Suppose, in Fig. 281, N and S be the poles of a generator, between which a gramme ring armature is revolved. If the opposite diameters of the armature be connected by means of brushes to two collecting-rings, an undulating current is obtained that may be represented by the line AAA, Fig. 282. Suppose, instead of this arrangement, that three coils, distant 120 degrees from each other, are taken as indicated in Fig. 281, and brought to three collecting rings, a, b, c. In every revolution of the armature each coil will become the seat of an undulatory current, precisely similar to the

one already cited, excepting that, as the coils are separated by 120 degrees, the phases of the three currents will lag behind each other by a similar amount. These currents are shown in Fig. 283. Evidently any number of coils could be thus arranged, giving rise to a corresponding number of different phased currents. To avoid impracticable complexity of circuits, distribution has, so far, been confined to diphase and triphase currents. The diphase current is given in Fig. 282, AA and BB being the two waves, separated by

Fig. 282. Diagram of Diphase Currents.

one quarter of a period. Diphase transmission may be accomplished by providing two separate circuits, requiring four wires, one for each wave. It is possible to economize conducting material, by providing a common return conductor for both waves; but as is indicated by the line CC in Fig. 282, giving the algebraic sum of the two currents, the common return must be a larger conductor, thus destroying the symmetry of the circuit, Returning to Fig. 283, the three currents, lagging by one-third of a period each, have equal effective intensities, with the further advantage of having their algebraic sum constantly equal to zero. Three equal and symmetrical conductors

will then serve to transmit triphase currents. The connection between the generator, the circuit, and the receivers, may be made in two ways, by what is called "star connection," or by "triangle connection," diagrammatically indicated in Fig. 284. The star connection possesses the advantage, that, with it, it is possible to connect the common center of the three circuits to a fourth, or neutral, wire, and to arrange the receivers working as simple resistances. such as incandescent lamps, between the neutral wire and either of the other three. The three sections of the generator now act each as an ordinary alternating current dynamo, without disturbing reactions upon other parts of the system. The triangle mode of connection does not permit of this latitude. The famous Lauffen-Frankfort transmission circuit employed triphase station apparatus, the circuit being diagrammatically indicated in Fig. 285, in which GS is the generating-station, a, b, and c, the three leads to a step-up transformer T, RS is the receiving-station with step-down transformer T, and the three main leads, a, b, and c, with the neutral wire NW. It will be noticed that the center of the "star connection," to which the neutral is attached, is grounded both at the generating-station and at the receiving-station, on the low potential side of the transmitting system.

675. To determine the difference of potential existing between any two wires upon a triphase system, it is easy to see, by an examination of Fig. 283, that if E is the electro-motive force between the two wires, and e is the difference in potential between any wire and the neutral point, then,—

$$E = e \, 2 \sin 60^{\circ} = 1.732 \, e. \tag{250}$$

With a triphase system it is, therefore, possible to establish six different circuits, each of which may be conveniently used for incandescent lighting.

Diagrammatically, this arrangement is shown in Fig. 286. The common center, or neutral point of the three wires, is represented at O. From the terminals of the three wires, a, b, and c, three mains extend, across which lamps may be placed. The neutral wire is shown by the dotted lines ONW extending from the center of the three wires. Between the neutral wire and any one of the external leads, as a, b, or c, lamps may be also placed. It must be noted that

0 Fig. 285. The Lauffen-Frankfort Circuit. ш

the voltages between the three wires, ac and ab, or cb, and between any of the wires a, b, c, and the neutral wire, will vary in the proportion above indicated; namely, as 1 to 1.732, and, therefore, on each of the different circuits here represented different voltage lamps must be used.

Incandescent lamps arranged between each of the three wires a, b, c, and the neutral wire, possess greater independence than those which are situated between either of the three wires ab, ac, or cb. The lamps which are installed in connection with the neutral wire possess complete independence of each other, and also in reference to the three main circuits. In this case each of the three circuits acts independently of the other, the entire system behaving as if

Fig. 286. Triphase Circuits.

there were three separate and independent generating-stations, each lagging behind one another one-third of a period; on the contrary, the lamps which are installed between the circuits *ab*, *ac*, or *bc*, are more or less inter-dependent, as it is found that, when the three circuits are unbalanced, considerable difficulty in regulation arises.

676. As yet, triphase distribution has not been very extensively applied to arc-lighting, as it is probable that, with the present lamps, difficulties due to self-induction in the regulating mechanism of the lamps might be encountered. The principal advantage, however, of the triphase system is obtained when it is applied to the operation of electrical motors. Referring to Fig. 287, a typical dynamo for triphase work is shown. Here the machine consists of a shaft carrying a gramme ring armature, placed so as to rotate between the two field magnets. The shaft carries a commutator at B, and

three collecting-rings, a, b, and c, the connections to the armature being separated from each other by 120 degrees, each part being, as indicated in the illustration, carried to its appropriate collectingring. Such a machine as this is extremely flexible in service.

First. By applying power to pulley A, making the armature turn mechanically, a continuous current may be obtained from the commutator B.

Second. By supplying a continuous current to the commutator B, the dynamo is operated as a motor, and mechanical power may be obtained from the pulley A.

Third. By applying mechanical power to the pulley A, turning the armature, and, instead of collecting the current at the commutator B, collecting it by the rings a, b, and c, a triphase alternating current generator is obtained, being self-excited by a current derived

Fig. 287. Triphase Generator.

from the armature by the commutator at B.

Fourth. By supplying triphased alternating currents to the collecting-rings a, b, and c, a synchronous alternating current motor is obtained, and mechanical power may be derived from the pulley A.

Fifth. If a continuous current be supplied to the commutator B, a triphased alternating current may be obtained from the collectors a, b, and c; thus, in this case the dynamo acts as a motor transformer, transforming a continuous current to a triphase alternating current.

Sixth. If a triphase alternating current be supplied to the collectors a, b, and c, a continuous current may be obtained from the commutator B, the dynamo now operating as a motor transformer, changing a triphase alternating current into a continuous current. While the preceding example of a dynamo machine presents an interesting illustration of the interconvertibility of electrical currents and mechanical forces, the chief interest in a triphase system lies in its application to non-synchronous motors, or those having revolving magnetic fields. In the previous instance it is shown that a triphase current is only connected with the armature of the motor and not with the fields. If, on the contrary, the triphase current be arranged to excite the fields of the motor, it is apparent that the sign of the field will vary, as the wave entering the field coils, and, in a multi-polar machine, the magnetic field will evidently rotate around the ring forming the magnetic circuit, precisely in accordance with the successive waves entering from each of the three wires. In a nonsynchronous motor the armature consists of an electrical circuit closed upon itself, and in no electrical connection with the line circuit, or the magnetizing fields of the machine. The valuable properties of the non-synchronous revolving field motor consist in the ability of the machine to start itself and bear wide changes in loading, without manifesting any of the injurious qualities that are usually found in the ordinary synchronous type of machine. The efficiency also of the non-synchronous motor is quite high, usually ranging considerably over 90 per cent.

677. While alternating currents lend themselves extremely readily to long distance transmission, it is evident, from what precedes, that it is difficult to design a plant for all round service. While the plain alternating current is advantageous for incandescent lighting, it is badly adapted to the distribution of power; and, on the other hand, while a triphase system lends itself especially to power transmission, it is not so well adapted for incandescent lighting, especially under circumstances where it is necessary to connect the lights across three wires of the triphase system. At present, the best design for long distance transmission seems to lie in the adoption of a di- or triphase system for the main transmission, arranging the receiving-station with motor transformers, from which direct currents may be obtained for local distribution,

for operation of stationary motors, and the supply of arc and incandescent lighting.

678. Long Distance Transmission. — Ever since the classical experiments of Marcel Deprez in 1882, demonstrating the reversibility of dynamo machinery, the problem of the transfer of large amounts of power over long distances has been a favorite study of the electrical engineer.

Every waterfall has been a temptation to the engineer, in the mists of which the enthusiasm of the scientist has seen possible golden returns derivable from the transmission of the energy therein developed to a commercial center. Chiefly, the long distance problem is one of station machinery, and, in this respect, transcends the scope of the present manual; yet the subject is one of so great importance, that a brief reference, particularly directed to the line problems arising in long distance transmission, seems essential.

679. In order that a long-distance plant may be commercially successful, four requisites are essential.

First. There must be available water-power, or other source of power, by means of which the initial production of energy can be very cheaply made.

Second. The plant necessary for the utilization and the transmission of the power must be installed with a reasonable outlay of capital.

Third. Transmission must be effected at sufficiently high potentials, so that interest and depreciation in the cost of the line and cost of energy lost by transmission shall not too greatly augment the cost of the power delivered at the receiving-station.

Fourth. A reasonable market must exist for the disposition of the energy from the receiving-station.

680. Usually the cost of improvement of water-powers and the cost of the generating-plant and circuit are so great that, unless large amounts of energy can be obtained at a particularly low initial expense, the plant does not become a commercial success. It has been considered impracticable to build direct current apparatus at sufficiently high potentials to warrant the transmission of energy over lines of considerable magnitude. The difficulties encountered in the construction of direct current generators operating under

potentials of more than three or four thousand volts has, so far, been found too great to permit of their use in long-distance transmission. Experts are, at the present time, not wanting who feel confident that direct current apparatus can be produced which shall be capable of operating at much higher electrical pressures; but whether this prediction shall prove to be true, especially with the heavy currents that must necessarily accompany a distribution of magnitude, the future only can decide. All of the long-distance transmission plants now in existence, with hardly an exception, have been constructed to embrace the use of alternating current apparatus. The usual arrangement of the plant is diagrammatically shown

Fig. 288. Diagram of Typical Long-Distance Circuit.

in Fig. 288. Here M is the water-wheel, or other prime mover, from which energy to drive the alternating current generator A is obtained. This dynamo is usually a machine operating at quite a low electrical pressure, frequently not higher than 50 volts. This machine is connected with a *step-up* transformer T_1 , the office of which is to raise the voltage of the generator to any desired quantity, for transmission through the circuits II, II. Between the step-up transformer and the receiving-station T_2 the line extends, forming the secondary circuit of the first transformer T_1 and the primary circuit of the second transformer T_2 . This latter transformer is a *step-down* transformer, the office of which is to reduce the pressure delivered by the line to such a voltage as shall be convenient for distribution and utilization in any desired way, such

as the operation of motors, or the feeding of an illuminating circuit (as indicated in the diagram). The secondary circuit of this transformer forms the distributing circuit of the plant. This is the general design of plants for the Electrical Transmission of Energy, and in no other direction has electrical engineering advanced more rapidly. In the United States installations aggregating 300,000 H. P. are now (1898) delivering thousands of horse-power over distances from ten to fifty miles, at potentials of 10,000 volts. What voltage can be carried by the transmission-line, and safely handled at the generating and receiving stations, has been the debatable ground. For urban distribution by alternating currents, employing reducing transformers, there seems to be a preference for 2,000 volts. A few plants have been installed at 1,000 volts and a number at 3,000 volts. In special cases, 4,000, 5,000, and even 6,000 volts have been employed; so present practice tends toward the employment of generators connected directly to the distributing circuits where economical transmission may be attained by 6,000 volts. For greater ranges, low-potential generators are employed with step-up transformers at the generating station, delivering energy at 10,000 volts to the transmission-lines, which end at the receiving stations in step-down transformers. Present experience indicates that 10,000 volts may be safely handled, but with higher potentials regard must be given to meteorological conditions. Two general designs are now common. First: Synchronous generators and motors at the generating and receiving stations may be connected by the line and its auxiliary apparatus, for the supply of mechanical power. In such an arrangement the line is the equivalent of a long belt. Second: Polyphase generators at the generating station may, by means of the line, supply energy to the receiving station. Step-down transformers and a secondary network of conductors may distribute alternating current to consumers. Polyphase motors may deliver mechanical power, while rotary converters can furnish direct current. Here the receiving station becomes the analogue of a completely developed station for supplying electricity. In plants of the first design the line pressure may vary with the load, while in the second it is important to secure a close regulation at the receiving station. The use of polyphase currents in the secondary system demands four wires for the most economical conductor design, but avoids the losses in, and the use of, large rotary machinery; but the employment of rotary transformers allows of the use of three wire mains, and the utilization or contribution to existing direct-current systems. Thus the best design for a transmission-plant lies chiefly in a wise selection of central-station apparatus, and so is beyond the scope of this volume; but a concise description of the more important American installations may be of value.

681. The Big Cottonwood Plant (Utah). — The power-plant utilizes a waterfall in Big Cottonwood Cañon, giving 2,500 available H. P. The present installation consists of four 600 H. P. Pelton wheels, connected to 450-kilowatt triphase generators, delivering alternating current at 60 cycles and 2,000 volts. Step-up transformers raise the pressure to 10,000 volts for the transmission-line, a wooden-pole line fourteen miles long to Salt Lake City. The poles are 40 feet long, 8" diameter at the top, set 100 feet apart, and carry four circuits of three wires, each of No. 2 bare copper, on porcelain double-petticoat insulators. The sub-station is provided with step-down transformers, reducing the pressure to 2,000 volts for delivery to the secondary system. The loss in the line is five per cent.

682. The Blue Lakes (Cal.) Plant. — The installation comprises three 700 H. P. Pelton wheels running under a head of 1,040 feet. The wheels are coupled to 450-kilowatt Stanley diphase inductor generators delivering current at 60 cycles and 2,400 volts. Step-up transformers raise the pressure to 11,000 volts. The pole-line is 39 miles long, running to the city of Stockton. The poles are 35 feet long, red cedar, 6" top, 10" butt, set 6' in the ground. There are two circuits of four wires each, of No. 3 B. & S. bare copper. Each circuit is on a separate cross-arm, two wires being located on each side of the pole. The wires are carried on double-petticoat porcelain insulators. A line of barbed fence wire supported on the tops of the poles, and grounded at frequent intervals, affords protection from lightning.

683. The Folsom, Sacramento (Cal.), Plant. — The power-plant contains four pairs of 30" McCormick turbine wheels of 1,200 H. l'. each, coupled to 750-kilowatt General Electric three-phase generators delivering current at 60 cycles and 800 volts. Step-up transformers deliver energy to the line at 11,000 volts, extending from Folsom to Sacramento, a distance of about 24 miles. Cedar poles 40 feet long,

16" at the butt, are used, set 105 apart. Each pole carries five arms $4" \times 4" \times 7'$ long, set 16" apart. Each circuit consists of three pairs of No. 6 bare copper wire supported on double-petticoat porcelain insulators. The loss in transmitting 3,000 H. P. is $7\frac{1}{2}$ per cent. At Sacramento a sub-station with step-down transformers is designed to deliver currents at 125, 500, and 1,000 volts, that are used respectively with three sets of mains. Three 250-kilowatt synchronous motors drive a line-shaft to operate a 200-kilowatt and a 100-kilowatt, 500-volt railway generators, and three 100-light and two 75-light arc machines.

684. The Fresno (Cal.) Plant. — Pelton water-wheels, each developing 500 H. P. under a head of 1,400 feet, are directly connected to General Electric three-phase generators, each of 340-kilowatts capacity. Step-up transformers raise the voltage to 11,200 volts. The transmission-line carries two circuits, each of three pairs of bare copper wire, extends 35 miles to Fresno, ending in a substation with reducing transformers, one to reduce the pressure to 200, one to 1,000, and one to 3,000 volts; corresponding to a triple distributing system, a four-wire low-tension circuit, a four-wire 1,000-volt circuit for light and power, and a four-wire 3,000-volt circuit. The sub-station contains two 60 H. P. three-phase induction motors, that drive two 80 arc-light machines.

685. The Helena (Montana) Plant. — The present capacity is 4,000 H. P., with a possible future capacity of 10,000 H. P. The power-house is equipped with American turbine wheels, mounted in pairs, each set developing 500 H. P., directly connected to 350-kilowatt Westinghouse alternators. Step-up transformers raise the pressure to 10,000 volts. The line consists of four circuits of No. 4 bare copper wire, two running to East Helena, eleven miles, and two circuits to Helena, seven miles. Step-down transformers deliver current to the secondary system. Two 175-kilowatt rotary converters supply the street railway and two 100-kilowatt motors operate arc machines.

686. The Indian Orchard Plant, Springfield, Mass. — The power-plant consists of thirty six inch turbine wheels, of 480 H. P. each, with a total equipment aggregating 1,920 H. P. The turbines are belted to counter shafting, from which the generators receive power. The electrical equipment consists of 360-kilowatt diphase alternators,

operating at 6,000 volts, and delivering current directly to the transmission-lines. At Springfield, diphase synchronous motors receive power from the transmission-lines, and drive counter shafting from which arc-light and direct-current machines are operated.

687. The Lowell (Mich.) Plant. — The power-house is equipped with three 100 H. P. turbine wheels, belted to a counter shaft and thence to the generators. The electrical equipment consists of a 1,000-volt generator (with exciter), of 200-kilowatts capacity, operating at 133 cycles. Step-up transformers raise the pressure to 10,000 volts, and deliver it to the transmission-line, extending 18 miles to Grand Rapids. At this city a sub-station reduces the potential to 2,000 volts for the distributing system. The pole-line consists of thirty-foot poles six inches top, set 100 feet apart. The circuit consists of four No. 6 bare copper wires placed upon double-petticoat porcelain insulators.

688. The Montmorency Falls (Canada) Plant. — The Montmorency Falls, eight miles from Quebec, afford a water-power capable of developing 12,000 H. P., with a head of 275 feet. A generating station has been constructed, equipped with Little Giant turbine wheels, each of 700 H. P. capacity, connected directly to Stanley diphase generators. Each generator has a capacity of 600 kilowatts, and delivers alternating currents at 5,200 volts, and a frequency of 66. From the power-house two pole-lines extend to Quebec. Each consists of four No. 0 B. & S. bare copper wires carried upon wooden poles, by porcelain insulators. A loss of ten per cent in the line is shown. At Quebec step-down transformers reduce the current to 2,000 volts for distribution.

689. The Nevada County (Cal.) Electric Power Co. Plant. — The power-plant utilizes a fall of 200 feet head on the south branch of the Yuba River. Five Pelton wheels of 500 H. P. each are coupled to 340-kilowatt diphase 5,000-volt Stanley generators. Current is supplied directly to the line at the generating pressure. The line consists of two circuits of four wires each, of No. 3 bare copper, extending four miles; then one circuit of No. 6 wire extends to Nevada City, one mile, and one circuit of No. 3 wire to Grass Valley, four miles. Sub-stations with step-down transformers supply the distributing network, at a pressure of 2,000 volts.

690. The Niagara Plant. — Turbine wheels are employed, which

are set in a slot cut in the rock, to place the wheels nearly at the level of the base of the Falls. The wheels are set horizontally, a pair being placed upon each shaft, delivering 5,500 H. P., directly connected to diphase Westinghouse alternators, delivering current at 2,200 volts and 25 periods. Upwards of 25,000 H. P. is electrically distributed, and about 8,000 H. P. is distributed directly from the turbine shafts, and work upon an extension to develop some 40,000 additional H. P. is nearly completed. The Niagara plant delivers energy at three voltages, and under three forms of current. A portion leaves the power-house as diphase alternating current at 2,200 volts and 25 cycles, used by the consumers in the immediate vicinity. A portion is, at the power-station by means of rotary converters, transformed to 500-volt direct current, and employed in operating the street railways. A third portion is, by means of static transformers, changed to a triphase current at 11,000 volts, and transmitted to Buffalo. The transmission-line is an aerial pole-line for about 26 miles to the city limits of Buffalo, and an underground conduit line to the distributing station. The poles are white cedar, shaved and painted, set from 7' to 8' in the ground. They are from 35 feet to 65 feet in length, depending upon the contour of the ground, and vary from 14" to 28" in diameter at the butt, and not less than 8" at the top. Two cross-arms, placed on each pole, carry four circuits of three wires each, one circuit being placed upon each side of each pole, upon each arm. While the plant is operating at 11,000 volts, the line is designed for 22,000 volts. Each wire is 350,000 circular mils secured in a groove on top of the insulator, which is specially designed of porcelain, and tested to 40,000 volts. Lightning-guards are provided in the shape of a line of barbed-iron fencewire strung upon the outside end of each cross-arm; at every fifth pole a lightning-arrester is attached. The aerial line ends at the city limits of Buffalo; and from thence the circuits are spliced into cables. extended in terra-cotta conduit. The conduit is composed of twelve 3" tile ducts. Each cable is 350,000 circular mils, having 3" rubber insulation, covered with rubber tape, and protected with a lead sheath.

691. The Ogden, Salt Lake City (Utah), Transmission-Plant. — Water-power is obtained from the Ogden River, six or seven miles from Ogden. A dam furnishes a large storage reservoir, from which

water is carried through a flume five miles, to the power-house. The effective head is 450 feet, and the capacity of the pipe about 10,000 H. P. Knight water-wheels, of 1,200 H. P. each, are directly connected to General Electric generators, delivering current at 2,300 volts and 60 cycles. The generators are triphase alternators of 750 kilowatts each. Five are in operation, with provision for ten in the future. Step-up transformers raise the voltage to 11,100 volts, and deliver the current to the transmission-line, consisting of two circuits, each consisting of three No. 6 bare copper wires strung upon porcelain insulators, extending thirty-six miles to Salt Lake City. The line is built of cedar poles from 30' to 70' in length, 9'' to 10'' tops. Two cross-arms are supplied, the upper one carrying two wires, one on each side of the pole, while the lower one carries four wires, two on each side of the pole. The insulator-pins are so placed that the three wires on each side of the pole form an equilateral triangle of two feet on each side, making one circuit. Ordinarily the line potential at Ogden is 16,100 volts, and at Salt Lake City 13,800 volts, showing a line-loss of about fourteen per cent. At Salt Lake City step-down transformers reduce the pressure to 2,300 volts for the sécondary network.

As an experiment, the two circuits were connected up in such a manner as to transmit power from Ogden to Salt Lake and back to Ogden again. The transformers were arranged for a pressure of 30,000 volts; and 1,000 H. P. was thus transmitted over 73 miles of circuit, with a loss of nine per cent in the lines and four per cent in the transformers.

692. The Portland (Oregon) Transmission-Plant. — The station is designed for an ultimate capacity of 12,000 H. P., of which 4,000 is now in use. The wheel-plant consists of Victor turbine wheels of 500 H. P. each, to which 450-kilowatt General Electric triphase generators are directly attached, that deliver current at 6,000 volts to the transmission-line. The circuit is a bare-wire pole-line extending 12 miles from the power-station to Portland. The sub-station contains transformers which reduce the line pressure to 1,000 volts for delivery to the secondary four-wire system, also rotary transformers for delivering current at 500 volts to the street-railway system.

693. The St. Anthony Falls (Minn.) Plant. — The power-plant utilizes the Falls of St. Anthony. The wheel-plant consists of ten

turbine wheels, of 1,000 H. P. each. The electrical equipment consists of seven 700-kilowatt triphase alternators, furnishing current at 3,450 volts, with a frequency of 342, and three 750 direct-current generators, furnishing current at 600 volts. Three sub-stations are provided, two in Minneapolis and one in St. Paul. Sub-station No. 1 is two miles from the power-house. Sub-station No. 2 is four miles. Sub-station No. 3 is ten miles. To Nos. 1 and 2, current is carried at the generator potential of 3,450 volts, on two triple-conductor lead cables. For sub-station No. 1, the cables are No. 000 B. & S. wire. For sub-station No. 2, the cables are No. 0000 B. & S. wire. All the cables are laid underground in conduits of cement-lined pipe. At the sub-stations, reducing transformers lower the pressure to 400 volts, and deliver it to rotary converters for supplying 600-volt direct current to the railway system. For sub-station No. 3, step-up transformers at the power-house raise the potential to 12,000 volts. The high-potential line is composed of one No. 0 triple concentric leadcovered cable. At sub-station No. 3, step-down transformers and rotary converters are used.

694. Long-Distance Transmission with Continuous Current. — The transmission plants so far described have all been operated by alternating currents. A Swiss installation has recently been put in operation, by means of which direct currents are utilized for transmission. The instance in question is that of some paper-mills near Soleure. As the power-plant was insufficient, it was decided to increase the plant by rendering available a waterfall situated some twenty miles away. To this end two direct current gramme machines of 5,000 volts each were arranged to operate in series. While the machines have been tested to 5,000 volts, they usually operate under a potential of 3,300 volts, making 6,600 volts in the line. The machines are of especially careful design and of unusually strong construction. They deliver to the line about 40 amperes, corresponding to an output of some 400 H. P. The line operates under a fall of potential of 600 volts. Bare copper conductors are used for the line construction, of seven millimeters diameter. The line is entirely aerial, and, passing through a mountainous country, is liable to injury from lightning. At the paper-mills two motors are used, similar to the generators in design and construction. The commercial efficiency of the plant, from the shaft of the turbine at the power-station, to the motor shaft, is said to exceed 75 per cent.

695. Line Construction for Long-Distance Transmission. --While the greater preponderance of thought in designing for a longdistance transmission plant must be expended upon the station and design of the machinery therein, the circuit should by no means be omitted from consideration. To transmit energy at sufficiently high potentials to make long-distance transmission a commercial success, particular pains must be undertaken with the forms of insulation. On the whole, probably, a bare wire line carefully supported upon adequate poles presents the best solution. It may be argued that a pole-line is specially exposed, and is liable to destruction from the severity of the elements. It is certainly feasible to construct a line sufficiently strong, so that it shall be perfectly capable of withstanding all the present known exigencies of the elements, at least in temperate climates. This merely means sufficiently heavy and strong poles, placed near enough together so that the line loads, due either to wind stresses or to the accumulation of sleet and ice, may never be sufficient to break the line down, and is readily accomplished by the use of steel supporting poles, built short and strong.

696. By placing the poles sufficiently near each other, the tension of the spans can be reduced almost to any desired limit, that the conductors may never rupture from overloading. By further providing insulated cables, there would seem to be little probability that grave difficulties would arise from short-circuiting by the crossing of the conductors themselves. The difficulty of insulation at the poles, however, is a more serious one, some form of fluid insulator probably providing the best solution of the problem. While the adoption of the underground conduit, as indicated in the Niagara plant, affords complete protection from the elements, it seems a very open question as to whether it will be practicable to keep a conduit sufficiently dry to render the circuits safe, and also whether it will be possible for workmen to enter the conduit for purposes of repairs, when the plant is in operation. It is also quite certain that, should any accident occur in a section of conduit with the conductors in close proximity to each other, the resultant damage to the circuits would be incomparably greater. In addition to the mechanical features of line construction and insulation, presented in the longdistance transmission problem, there now arises for consideration the effects of impedance and capacity, when the line is used for the transmission of alternating currents of high frequency.

Unfortunately, while the probable theoretical behavior of circuits under an alternating current can be fairly calculated, provided all of the constants are accurately known, the variables are so great in number, and there is as yet so limited experience in transmission of this kind, that the best and most careful mathematical calculations are liable to lead to unexpected results, chiefly owing to present inability to assign to all variables their proper values. This is notably the case when it is considered the practical impossibility of deducing the true form of the current wave in a dynamo that is yet only designed. Certain it is, from experiments already made in longdistance transmission, and especially with high frequencies, that the effect of capacity and impedance exercises a very marked effect upon line transmission and the ability to utilize the energy at the receivingstation. With each wave of current, the entire line must be filled and discharged; so with high frequencies absorption of energy by the line will interfere materially with the efficiency of the plant, and, further, the line, by its capacity, may give rise to discharge currents at the receiving-station of enormous magnitude. It is probable, that in an endeavor to meet these difficulties, the designers of the Niagara plant have selected the low frequency of 163 per second for their generators. It is their expectation that this frequency will be sufficient to produce insensible variation in ordinary illumination; and at the receiving-station, in order to overcome the capacity effect, it is proposed to use an artificial load for the starting of the motors.

697. Relative Amount of Conducting Material for Transmission Systems. — In connection with the discussion upon the design of the Niagara transmission plant, the question of the relative amount of copper necessary to employ in a conducting system has been made the subject of extended investigations by Mr. Kennelly, Dr. Bell, Mr. Steinmetz, Mr. Kapp, and others. In considering the relative amount of conducting material, it is necessary to observe that there are two aspects to the problem. In the case of alternating currents, the electro-motive force is constantly varying with the phase of the current; and not only the amounts of ohmic resistance and impedance of the conductors are to be taken into con-

sideration, but the electrical stresses to which the insulating material is subjected must not be forgotten. With continuous currents electro-chemical effects also come into play. If the electro-motive force effective at the termini of the translating device be assumed, it is quite easy to show that the alternating systems are considerably more economical in conducting material than the direct current systems, and that the multiphase systems are still more economical than the diphase. This, however, leaves the important consideration out of the problem of the electrical stresses on the insulators. Nearly all investigators agree with the following results obtained by Mr. Kennelly and Mr. Steinmetz, as given in the *Electrical World*, and by Loppè et Bouquet.²

Table No. 55.

Giving Relative Amounts of Conducting Material in Various Conducting Systems.

	On Basis of EQUAL EFFECTIVE E.M.F. at Translating Device.	On Basis of MAXIMUM E.M.F. Between Conductors.
Continuous current (metallic circuit)	100	100
Simple alternating current (metallic circuit) .	100	200
Diphase with common return wire	73	291
Triphase system Y connections	25	150
Triphase system \(\triangle \) connections	75	150
Continuous current three-wire, allowing 60 per cent of outside copper to neutral wire. Five-wire continuous current system, allow-	32.5	130.
ing also 60 per cent of outside copper to inside wires	11.9	190.

¹ Electrical World, vol. xxiii. p. 3.

² Courants Alternatifs Industriels, par Loppè et Bouquet, p. 194.

CHAPTER XII.

THE COST OF PRODUCTION AND DISTRIBUTION.

698. The problem of determining the cost, either of an installation for the distribution of energy, or the price of producing that energy, is one containing so many factors, each of which are variables within so wide limits, and are so modified and controlled by local circumstances, that a general solution is an impossibility. Yet to afford some assistance toward an approximate general solution under conditions which are likely to be frequently realized, and to enable the designer to obtain figures necessary for the application of the

Table No. 56.

TABLE NO. 56 (Continued). Cost of Conductors.

economical formulæ given in Chapters IX. and X., the following data are presented.

699. Cost of Conductors. — In Chapter IX., it has been shown

Table No. 56 (Continued).

that the cost of conducting mains may be expressed by an equation of the form of y=a+bx.

In sheets A, B, C, D, E, and F, TABLE No. 56, are given the

curves calculated by the foregoing equation, for a number of the more common electrical conductors. In determining these curves, the cost of copper has been estimated at seventeen cents per pound, and the cost of the various kinds of insulation determined from the manufacturer's current price-list, without any attempt at the inclu-

Table No. 56 (Continued).

Cost of Conductors.

sion of the various trade discounts, which are factors too uncertain to be embraced in tabular values of this kind. All of the curves are plotted with the axis of x as the function of conductor area in square inches, while the axis of y indicates the cost in dollars, per mile, for the corresponding areas. On sheet A will be found curves for

underwriters' line wire, weather-proof wire, compound insulated wire, electric-light cables, and telephone cables. In the case of the first four curves, the copper areas are square inches of conductor section for the whole cable. In the case of the telephone cables, the copper

Table No. 56 (Continued).

area is the sum of the areas of all of the conductors included in the cable, it being hardly necessary to state that the individual conductors are insulated from each other, in order to render them applicable to telephone service. In sheets B and C, two other series of curves

are given. In sheets D, F, and G will be found some of the more prominent cables made by English manufacturers; the prices, however, correspond very closely to those of American make.

700. Cost of Conduits. — In Chapter IX. it was also shown

TABLE No. 56 (Continued).

Cost of Conductors.

that the cost of conduit systems could be expressed by an equation similar to that of copper conductors, of the form, y = a' + b'x.

On sheets W, X, Y, and Z, TABLE No. 57, the curves for costs of the more prominent forms of conduit are given. On sheet X the cost of the Johnstone System is plotted, the axis of x being the duct

capacity in square inches, while the axis of y is the cost per mile in dollars. On sheet Y may be found similar curves for the cost of the Crompton System as built in London.

On sheets W and Z the underground conduits more commonly used in this country, consisting of $10^{\prime\prime}\times10^{\prime\prime}$ terra-cotta pipe, $5^{\prime\prime}\times5^{\prime\prime}$ single-duct terra-cotta pipe, cement-lined, pipe, and iron pipe, are indicated in a similar manner. In calculating the cost of conduit, the prices of ducts, per foot, are assumed as they would average at any one of

TABLE No. 57.

Cost of Conduit,

14000

13000

JOHNSTONE SYSTEM

12000

UNDERGROUND CONDUITS.

11000

8000

9000

Cost

10000

8000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

100

4000 3000 2000

the larger cities, either along the Atlantic Coast, or east of the Mississippi River. Prices of labor are estimated at \$2.00 per day; the cost of repaving for macadamized streets at 60 cents per square yard, wooden paved streets at \$1.00 per square yard, and granite paved streets at \$1.50 per square yard, 10 per cent allowance being made for waste and loss in paving materials. The manholes have been estimated at intervals of 300 ft., and are supposed to be 5 ft. wide, 7 ft. long, and 5 ft. in depth, with 8" common brick walls laid in hydraulic cement. The conduits have been estimated at an

40 50

60 70 80

DUCT CAPACITY IN SQUARE INCHES

90 100 sq.in.

Table No. 57 (Continued).

Cost of Conduit.

average depth of 3 ft. below the surface of the ground, with no special allowance for the removal or replacement of complicated underground structures.

701. Cost of Pole-Lines. — In Table No. 58, the average cost of the construction of pole-lines such as would be suitable,

Table No. 57 (Continued).

Cost of Conduit.

either in urban districts, or in an open country for ordinary aerial lines, or for common electric railway feeder lines, is given. The estimate is made up for various sizes of poles, from 30 to 50 ft. inclusive, per mile of poles, without arms. In addition, the cost

of cross-arms complete with insulators, and the cost of stringing bare wire, not over No. 8 gauge, either iron or copper, is indicated. From the figures here given, it is reasonable to assume that an average estimate of the cost of line construction may be made when the number of wires to be strung is determined upon.

702. Railway Lines. — The cost of building electrical railway lines may be divided into two parts, the cost of the trolley line proper, and the cost for the necessary feeds, and the erection of the same. A trolley line for a double-track road with wooden poles, using

TABLE No. 58.

Cost of Pole Lines.

Cost per mile of Line Poles set, but without arms.

Cost of one ten-pin arm, complete with insulators on pole, \$1.30, common.

Cost of one ten-pin arm, complete with insulators on pole, \$1.90, yellow pine.

Cost of stringing wire per mile, \$2.50 to \$10.00.

The cost of "Anchor Poles" is the cost for each pole complete.

			ŀ	H EIGHT	OF Po	LES.		
	30	Ft.	40	Ft.	45	Ft.	50	Ft.
Location.	Line.	Anchor.	Line.	Anchor.	Line.	Anchor.	Line.	Anchor.
City Line, Favorable Circumstances City Line, Unfavorable Circumstances	\$500 550	\$135 160	\$675 725	\$150 180	\$800 875	\$160 190	\$1050 1200	\$17 20
Country Line, Favorable Circumstances Country Line, Unfavorable Circumstances	250 300		400		500 575		775 900	

one of the cheaper style brackets, may be built for from \$800.00 to \$1,200.00 per mile. If iron poles are used, the cost will be from \$1,200.00 to \$1,600.00 per mile. These figures presuppose centerpole construction. If side-pole construction is used, the cost for wooden poles will be increased by about \$200.00 per mile, while the cost for iron poles will be augmented by from \$400.00 to \$600.00 per mile. The cost for stringing feed-wires, including insulators, pins, arms, etc., will vary from \$50.00 to \$100.00 per mile, depending upon the number of feeds and the size of the wire. For a complete electrical railway line, the following figures, obtained from some twenty representative roads in this country, will serve as a fair average.

TABLE No. 59. — Cost of Street Railway Lines.

						COST PER MILE.
Round wooden poles, unpainted.						\$2,000.00 to \$2,500.00
Machined wooden poles, painted a						
Machined wooden poles, painted a	IIG	30	L 111	1 30	JIL	
soil						2,500.00 to 3,000.00
Iron poles, center construction .						4,000.00 to 5,000.00
Iron poles, span-wire construction						5,000.00 to 6,000.00

The above figures include the cost of the feeds; but on most of these roads the amount of copper was smaller than the requirements should justify, so that, properly speaking, these figures should be increased by some 10 to 15 per cent, in order to afford a sufficient amount of copper for adequate service. A detailed estimate of the cost of overhead line work will be found in Table No. 60.

703. Street Railway Operating Expenses. — The cost of operating an electrical railway depends, as is the case in every electrical plant, on the size, the daily hours of service, and care and skill exercised in administration. In Table No. 61 will be found the "Mileage," "Cost of Power," "Cost of Repairs," and "Cost of Removing Snow" for nineteen representative roads, from which a close estimate of probable actual operating costs can be obtained.

Table No. 61.

Operating Expenses of Street Railways.

Name.	Mileage.	Cost of Electric Power.	Cost of Repairs to Wiring, etc.	Cost Removing Ice and Snow.
		Per Car Mile.	Per Car Mile.	Per Car Mile.
Brockton	883.254	\$0.0203	\$0.0027	\$0.0039
Fitchburg and Leominster	323.436	.0248	.0017	.0056
Globe (Fall River)	729.378	.0206	.0009	.0039
Gloucester	214.658	.0400	.0009	.0034
Haverhill and Amesbury ,	413.560	.0443		.0033
Holyoke	266.688	.0350	.0006	.0084
Interstate	331,563	.0596	.0010	.0037
Lowell, Lawrence, and Haverhill	305.694	.0396	.0007	
Lowell and Suburban	1,276.257	.0137	.0001	.0063
Lynn and Boston	4,059.479	.0223	.0015	.0070
Merrimack Valley	303.933	.0410	.0023	.0112
Newburyport and Amesbury	258.191	.0294	.0042	.0104
Newton	265.503	.0360	.0036	.0050
Quincy and Boston	151.909	.0573	.0023	.0090
Springfield	1,441.768	.0301	.0026	.0090
Union	580.482	.0077	.0009	.0020
West End	18,669.809	.0235	.0053	.0055
Worcester	1,208.854	.0100	.0005	.0044
Worcester, Leicester, and Spencer .	351.851	.0389	.0056	.0095

TABLE No. 60.

Estimate of Cost for One Mile of Street Railway Line.

Items. D			SINGER INDON	INDUN			попри	DOUBLE TRACK.	
	Unit Prices.	Ordinary Span Construction.	y Span	Bracket Construction.	cket uction.	Ordinary Spar Construction.	Ordinary Span Construction.	Bra	Bracket Construction.
		Quantity.	Amount.	Quantity.	Amount.	Quantity.	Amount.	Quantity.	Amount.
Wooden Poles, set	\$6.00	Num. 88	\$528.00	Num. 44	\$264.00	Num. 88	\$528.00	Num. 88	\$528.00
Pins and Insulators	.07	Num. 44	3.08	Num. 44	3.08	Num. 44	3.08	Num. 44	3.08
Span Wire,	.01	1,800 ft.	18.00			1,800 ft.	18.00		
Trolley Wire, No. 0, B. and S	.14	1,700 lbs.	238.00	1,700 lbs.	238.00	3,400 lbs.	476.00	3,400 lbs.	476.00
Feed Wire, No. 00, B. & S	.13}	2,400 lbs.	324.00	2,400 lbs.	324.00	2,400 lbs.	324.00	2,400 lbs.	324.00
Eye Bolts, ordinary	.12	Num. 88	10.56			Num. 88	10.56		
Eye Bolts, special	.50								
Brackets erected	3.50			Num. 44	154.00			Num. 88	308.00
Line Insulators	.75	Num. 44	33.00			Num. 88	00.99		
Line Insulator Brackets	1.00			Num. 44	44.00			Num. 88	88.00
Labor Running Trolley Wire	•		75.00		75.00		150.00		150.00
Labor Running Feed Wire	•		35.00		35.00		20.00		50.00
Labor Running Span Wire	•		20.00		:		20.00		
Totals for Wooden Pole Construction			1,314.64		1,137.08		1,675.64		1,927.08
Totals for Iron Pole Construction, including Insu-	22.00		2,722.64	:	1,841.08	•	3,083.64		3,335.08
Totals for Lattice Iron Pole Construction, including Insulators	31.00		3,514.64		2,237.08		3,875.64		4,127.08

704. Cost of Power-Stations. — The cost of power-stations, excluding the expense for real estate and buildings, varies greatly with the type of prime mover employed, and with the conditions necessary to obtain good foundations, and with other local circumstances. The following figures are fair averages.

Table No. 62. — Cost of Power-Stations.

High-speed simple engines				,	\$10.00 to	\$15.00 per H. P.
High-speed compound engines		٠	٠	٠	12.00 to	20.00 per H. P.
Condensing engines		٠		۰	15.00 to	25.00 per H. P.
Triple-expansion engines	٠	٠	٠	٠	20.00 to	30.00 per H. P.
Boilers, horizontal iron tubular			٠	٠	9.00 to	12.00 per H. P.
Boilers, vertical iron tubular .				٠	11.00 to	14.00 per H. P.
Boilers, water-tube safety	٠	٠	۰	٠	15.00 to	25.00 per H. P.
Dynamos					20.00 to	30.00 per H. P.
Sundries					10.00 to	20.00 per H. P.

Averages taken from the best stations throughout the country, capable of supplying from 500 to 1,000 H.P., will show a total expense for machinery and installation of from \$55.00 to \$80.00 per horse-power of station.

705. The Cost of Producing Energy. — The cost of produ cing energy in the various stations throughout the country varies greatly with the price of labor and the cost of fuel. The most accurate information upon this subject has been calculated and compiled by Dr. C. E. Emery, and presented to Electrical Engineers in the Transactions of April, 1893. In this paper Dr. Emery summarizes all of the cost entering into production and maintenance of power for engines which are reasonably well loaded, and for stations of medium capacity, say 500 H. P. Taking Dr. Emery's figures as a basis, Table No. 63 has been calculated, showing the cost of delivering electrical energy at the terminals of the generators in the supply station. Two sets of values are here given, one for 3,080 kilowatt hours per annum, equivalent to the operation of the station for 308 days of ten hours each; the other is the cost of the production of 7,300 kilowatt hours per annum, or equivalent to the operation of the station for 365 days of 20 hours each. In this latter table such a sufficient margin in capitalization is introduced as will provide for about 50 per cent extra machinery to meet cases of break-downs, and to provide for special station loads. In the lower part of this table these costs have been further computed, showing, under each circumstance, and for each of the varying fuel prices, the cost of the production of one kilowatt hour.

TABLE No. 63.

Cost of Producing Electrical Energy per Kilowatt for 308 Days of 10 Hours, and 365 Days of 20 Hours.

		OF	308 10 HO	DAYS JRS EA	CH.	OF		DAYS URS EA	сн.
	Type of Engine.	Cost	of Coal	per 224	o lbs.	Cost	of Coal	per 224	o lbs.
		\$2.00	\$3.00	\$4.00	\$5.00	\$2.00	\$3.00	\$4.00	\$5.00
gg.	Simple High Speed	\$55.80	\$65.28	\$74.78	\$84.25	\$95.55	\$117.00	\$138.43	\$159.90
Non- condensing.	Compound High Speed	49.33	55.80	65.23	71.74	82.72	99.61	116.52	133.44
000	Simple Low Speed	57.46	62.99	71.55	89.01	90.35	109.70	129.01	148.36
	Simple High Speed	44.85	51,14	57.46	63.79	75.57	88.86	103.16	117.45
nsing	Compound High Speed	43.93	49.68	55.41	61.16	71.88	84.87	97.88	110.87
Condensing.	Simple Low Speed	44.88	50.77	56.67	62.58	72.40	86.40	99.07	112.40
	Compound Low Speed	43.75	49.06	54.36	59.64	69.43	81.44	93.44	105.34
		Cost	per K	ilowatt	Hour.				
lg.	Simple High Speed	1.8117	2.119	2.428	2.7355	1.3089	1.6028	1.8963	2.1905
Non- condensing.	'Compound High Speed	1.6015	1.8117	2.118	2.3294	1.1335	1.3647	1.5962	1.8278
100	Simple Low Speéd	1.8655	2.0450	2.323	2.890	1.2375	1.503	1.7685	2.0322
	Simple High Speed	1.4560	1.6603	1.8655	2.071	1.0353	1.2172	1.4192	1.600
Condensing.	Compound High Speed	1.4262	1.6130	1.7993	1.9858	0.9847	1.1628	1.341	1.519
Conde	Simple Low Speed	1.4570	1.6475	1.8400	2.032	0.9918	1.1836	1.357	1.5398
	Compound Low Speed	1.4203	1.5928	1.7649	1.9364	0.9514	1.1156	1.2800	1.444

706. Coal-Consumption per Watt Hour. — From a report made to the National Electric Light Association, Feb. 29, 1894, by a committee specially appointed to investigate the subject, the data exhibited in Table No. 64 are obtained as indicating the actual consumption of coal in plants in commercial service per

watt hour produced. The table indicates an average yield of 92 watt hours per pound of coal consumed. The advantage of large units and continuous operation is exhibited in the case of the delivery of 208 watt hours per pound of hard screenings in a plant loaded to 4,000,000 watts running 24 hours per day, as contrasted with 30 watt hours per pound of soft coal, with an output of 60,000 watts and a seven-hour service. Assuming a mechanical efficiency

TABLE No. 64.

Actual Watt Hours Delivered Per Pound of Coal—Commercial Plants.

1	2	3	4	1	2	3	4
Hours per day of Oper- ation of Plant.	Watt Hours per day Delivered.	Kind of Coal.	Watt Hours per lb. of Coal.	Hours per day of Oper- ation of Plant.	Watt Hours per Day Delivered.	Kind of Coal.	Watt Hours per lb. of Coal.
24	1,609,070	Slack	150	6	91,368	Lehigh Pea	65
$15\frac{1}{2}$	187,860		64	141/2	377,000	Buckwheat	90
6	312,000		72	15	990,000	Ant. Buckwheat	110
6	361,800	Slack	45	12	336,000	Pardee Soft	96
91/2	2,090,000	Indiana Block	53	16	787,520	Bituminous	121
24	259,000	Indiana Block	166	15	1,248,000	Buckwheat	192
7	59,500	Soft	30	24	1,002,624	Pittsburgh	122
10	247,500	Slack	56	14	312,666	Leh. Valley Pea	109
141	381,023	Soft	52	71	267,375	Bituminous	76
6	110,880	Pea	110	16.3	547,028	Buckwheat	114
15	270,000	Slack	46	24	3,750,000	Soft Coal	68
6	279,000		70	10	246,000	Coal	117
8	152,000	Slack	108	10	246,001	Lump	46
21	12,920,136	Screenings	183	5	72,800	Slack	40
24	2,217,600			9	135,000	Bituminous	56
24	3,840,000	Hard Screenings	208	11	242,000	McAl. Lump	76
18	586,740	Soft	186	71	171,197	Iowa Slack	47

of 90 per cent in the transmission from the engines, and the same figure for the conversion in the dynamo, a yield in watt hours per pound of coal as indicated in Table No. 65 should be obtained.

707. Water-Power. — The value of electricity as a means of distributing energy has been especially extolled in connection with the utilization of water-powers. In many cases the claims made for this means of distribution have been fully substantiated. It should, however, be recollected that, in most cases where available water-powers exist in proximity to centers where there is a demand for power, the water-powers have been already made thoroughly avail-

able, as, for example, in many of the rivers upon the Atlantic Coast, especially in the North-eastern States. In the far West, where water-powers are more plenty, settlement is, as yet, so sparsely distributed that, even were all the machinery for availability in place, the power could not be sold for lack of customers. Some special cases will, however, undoubtedly from time to time appear, as for example, in the present undertaking to utilize a portion of the water-power of the Niagara, and transmit the same to the neighboring cities, in which the availability of electricity will prove itself of exceeding value. Dr. Emery has shown, by careful computation, that in many cases the cost of improvement required for the utilization of water-power reaches a sum so large that the interest and depreciation upon the same, in the end, aggregate more than the cost

 $T^{\rm ABLE} \quad No. \quad 65.$ Possible Watt Hours Per Pounds of Coal.

COAL CONSUMPTION PER I. H. P. IN POUNDS.	Possible Watt Hours Pro- DUCED.	COAL CONSUMP- TION PER I. H. P. IN POUNDS.	Possible Watt Hours Pro-
1.5	402	5	120
2	302	6	100
3	201	7	86
4	151	8	75

of power production by means of steam; and that it is only under very exceptional circumstances that a cost of more than \$140.00 per H. P. obtained is justified as an improvement expense.

708. So far as station equipment expenses are concerned, it is found that the cost of water-wheels, penstocks, shafting, etc., required to deliver the power to the dynamo, is very nearly as great as that incurred in steam machinery. A fair average, perhaps, may be taken at from \$40.00 to \$75.00 per horse-power rendered available. The actual cost of water-power throughout this country is quite an uncertain quantity. In the New England States, the cost averages nearly \$20.00 per horse-power per year, thus approximating to the cost of steam-power.

709. In some of the Southern States, where water-powers are less fully in demand, the cost is lower, varying from \$12.00 to \$15.00 per annum per horse-power. So, while electricity lends

itself most readily to the transmission of power over comparatively long distances, the financial outcome of the utilization of any water-power should be closely scrutinized, both from the standpoint of the probable expense of the necessary improvement required, and also from the standpoint of the ability to find customers for the power obtained when the development shall be complete.

- 710. The Gas-Engine. Internal conbustion engines, or gasengines as they are more frequently called, are deserving of notice as prime movers for electrical plants under some circumstances. As the gas-engine requires no boiler, the apparatus requires less space for installation than is necessary in the case of steam. Very much less care and attention are needed to operate the engine, as there is no fire to tend, and no steam pressure to watch. As there is no possibility of an explosion, a licensed engineer is not, by city regulations, required as an attendant, and a much cheaper grade of labor may be employed. Per contra, fuel in the form of gas is, except in specially favored locations, much more expensive per unit of output than coal, notwithstanding the greater engine efficiency. The engine itself is much more complicated, and entails a greater cost for maintenance.
 - 711. With a good quality of gas supplied at a fair and steady pressure, the consumption of gas per brake horse-power varies greatly with the size of the engine. Average values of gas required will be found in Table No. 66.

Table No. 66. — Cubic Feet of Gas per Hour per B. H. P. Output.

Brake horse-power 3 5 10 15 20 25 50 75 100 Cubic feet of gas used per hour, 37 32.5 28 25 23 21.5 19 17 16

712. The cost of engine and installation will vary from \$50.00 per horse-power for small sizes to \$35.00 for the larger ones. With gas at \$1.00 per M, the cost of producing electrical energy may be estimated at 7 to 10 cents per K. W, hour for small engines under ten horse-power, and from 3 to 5 cents for engines of fifty horse-power and over. As these figures are from one-half to two-thirds of the cost of operating small steam-engines, the economy of the gas-engine for very small plants is evident. With large installation the steam-engine is usually considered to show a much greater economy than

Table No. 67. Showing Cost of Electric Lighting by Wind-Power.

et.	ting, and	1 117:1-3	a, wina			nse of its per l		,	- 50 ner			-	ense of erating lectrici	g	Accumu-
Diameter of Wind-wheel in Feet.	Cost of Geared Windmill, Shafting, and	d of the little	16 Miles per Hour.	Av. No. of Hours this HP. will be Developed per Day.	Interest on First Cost at 5 per cent per annum.	Depreciation at 5 per cent.	Attendance.	Oil.	Watts Recovered from Dynamo	cent Efficiency.	Cost of Dynamo.	Interest on First Cost,	Depreciation at 5 per cent.	Oil.	Watt Hours Recovered from Accumulators per Day, Efficiency 45 per cent.
$ \begin{array}{c c} 8\frac{1}{2} \\ 10 \\ 12 \\ 13 \end{array} $	\$153 164 177 181		0.04 0.12 0.21 0.25	8 8 8	0.26 0.28 0.30 0.31	0.26 0.28 0.30 0.31	0.06 0.06 0.06 0.06	0.04 0.04 0.04 0.07		14.9 44.8 78.3 93.2	\$15 20 25 30	\$0.03 0.03 0.04 0.05	\$0.03 0.03 0.04 0.05	\$0.05 0.05 0.06 0.06	53.7 161.1 279.6 335.7
14 16 18 20	227 301 350		0.28 0.41 0.61	8 8 8	0.39 0.51 0.60 0.64	0.31 0.39 0.51 0.60 0.64	0.06 0.06 0.06 0.06	0.07 0.07 0.07 0.07	10 13 25	93.2 04.4 52.9 27.5	35 40 50 60	0.05 0.07 0.08 0.10	0.05 0.07 0.08 0.10	0.06 0.10 0.10 0.30	376.0 550.5 1,433.4
20 22 25 30 36	373 544 584 679 743		0.79 1.23 1.34 2.40 2.95	8 8 8 8	0.64 0.93 1.00 1.16 1.27	0.64 0.93 1.00 1.16 1.27	0.06 0.06 0.06 0.06	0.10 0.10 0.10 0.13	4: 4: 8:	79.7 58.8 99.8 95.2 90.3	130 140 175 210	0.10 0.22 0.24 0.30 0.36	0.10 0.22 0.24 0.30 0.36	0.30 0.40 0.40 0.50	1,761.9 2,890.4 3,148.9 5,639.8 6,932.2
40 50 60	842 1,592 1,902	4	1.42 3.88 0.00	8 8	1.44 2.73 3.26	1.44 2.73 3.26	0.06 0.06 0.06	0.13 0.16 0.16	1,6 2,5	18.7 66.2 30.0	270 300 400	0.46 0.51 0.68	0.46 0.51 0.68	0.50 0.60 0.80	10,386.6 16,167.3 23,499.0
Diameter of Wind-wheel in Feet.	Number of Lamps 16 C. P. 110 Volts.	will run per Day.	Required Capacity of Accu- mulators in Ampere Hours.	-!	Cells.	Cost of Automatic Battery Regulator.	Interest on First Cost.	Depreciation at 20	per cent.	Attendance.		Total Expense of Obtaining Electricity per Hour.	Total Cost of the 8 Hours Daily Storage.	Equivalent Number of	- ¥ +
$egin{array}{c} 8rac{1}{2} \\ 10 \\ 12 \\ 13 \\ 14 \\ 16 \\ \end{array}$	1 2 1 4 1 8 1 8 2 4 4	0.84 2.52 4.38 5.25 5.89 4.31	4 4 5 6 7 10		21 27 32 37 54	\$20.00 20.00 20.00 20.00 20.00 20.00	\$0.07 0.08 0.09 0.10 0.12	\$0. 0. 0. 0.	28 32 36 40 48	\$0.2 0.2 0.2 0.2 0.2	4 4 4 4 4	\$1.32 1.36 1.48 1.60 1.81 2.23	\$10.56 10.88 11.84 12.80 14.48 17.84	0.8 2.5 4.3 5.2 5.8 8.6 22.4	2 4.32 8 2.70 6 2.43 9 2.46 2 2.08
18 20 22 25 30	6 4 10 4 12 4 20 4	i.49 i.60 i.53 i.11 i.42	26 32 52 57 103	2 2 4	24 53 49 73 70	20.00 20.00 20.00 20.00 20.00 20.00	0.25 0.30 0.46 0.50 0.84 1.01	1.0 1.3 1.3 2.0 3.3 4.0	20 84 00 86	0.2 0.2 0.2 0.2 0.2 0.2	1 1 4 4	3.08 3.68 5.30 5.78 7.95 9:24	24.64 29.44 42.40 46.21 63.60 73.92	27.6 45.3 49.3 88.4 108.5	0 1.07 0 0.94 2 0.94 0 0.72
36 40 50 60	38 4 60 4	.34 .30 .22 .33	125 190 294 427	1		20.00 20.00 20.00 20.00	1.52 2.22 3.21	6.0 8.8 12.8	08 88	0.2 0.2 0.2 0.2	4	12.23 18.64 25.19	98.64 149.10 201.50	163.4 253.2 368.0	0 0.60 0 0.59

the gas-engine, though under special circumstances, when either natural gas or producer gas can be obtained at very low rates, the cost of power delivered by the gas-engine will compare favorably with that obtained from steam. In Europe the gas-engine is being tried to a much greater extent than in this country. Several of the large Continental stations are operating solely in this way, and recently some English stations have be enequipped with 350 H. P. gas-engines.

TABLE No. 68.

Cost of Producing Electrical Energy per K.W. Hour.

		(Cost in	CENTS O	F
Location of Station.	System.	Fuel.	STORES AND WATER.	Labor.	Тотац
Newcastle	Steam Turbine	1.60	.54	1.76	3.90
Leeds	Alternating Current, Rope driving	2.46	.42	2.74	5.62
Bournemouth	Alternating Current, Rope driving	3.62	.54	2.48	6.64
House to House Company	Alternating Current, Rope driving	3.86	.82	2.50	7.18
Newcastle on Tyne	Alternating Current, Rope driving	1.24	.32	1.44	3.00
Metropolitan Company	Mixed System	3.60	.48	1.50	5.58
Eastbourne	Alternating Current, Rope driving	2.84	.28	2.80	5.92
Exeter	Alternating Current, Rope driving	2.70		!	
City of London Company .	Mixed System	2.48	.46	1.82	4.76
Chelmsford	Mixed System	1.92	.32	1.88	4.12
Chelsea	Motor Transformer	2.22	.68	1.54	4.44
Oxford	Motor Transformer	1.40	.09	2.48	3.97
Preston	Direct Current	3.30	.90	2.70	6.90
Liverpool	Direct Current	1.90	.30	.74	2.94
Birmingham	Direct Current	1.76	.34	1.64	3.74
Charing Cross	Direct Current	2.26	.37	1.22	3.85
Hare	Direct Current	2.52	.40	2.88	5.80
St. James	Direct Current	1.74	.27	1.38	3.39
Bradford	Direct Current	1.32	.19	1.62	3.13
Brighton	Direct Current	1.80	.33	1.72	3.85
Kingston	Direct Current	1.74	.30	1.22	3.26
Westminster	Direct Current	1.56	.38	1.90	3.84
Knightbridge	Direct Current	1.26	.34	1.20	2.80
Ideal Station	Direct Current	.54	.06	.40	1.00

Statistics are not yet to be obtained as to the economic performance of these large units, though the designers, with good foundation, predict favorable results.

713. The Cost of Electrical Energy as Developed by Wind-Power. — In some localities, notably in the Western portion of this country, where fuel is high priced, it is feasible to utilize wind-power by means of windmills for the purpose of generating electricity.

Mr. G. H. Morse ¹ has compiled some valuable statistics regarding the cost of developing power in this way, which are abstracted in Table No. 67. Owing to the uncertainty of the wind, it is necessary to provide a very large margin in the battery plant, or in times of calm weather there will not be a sufficient reserve.

714. The Actual Cost of Electrical Energy. — Whether for the design of a new plant, or as a guide in the operation of an existing installation, data as to present operating costs of representative electrical plants are of the utmost value to the engineer. A collection of the best existing information has been made of practice both in this country and Europe, and will be found in Tables Nos. 68 to 73 inclusive.

Table No. 68 is given by Mr. Crompton,2 and contains the actual

TABLE No. 69.

Cost of Producing Electrical Energy per Kilowatt Hour.

BRADFORD	STA	ric	N.							LIVERPOOL STATION.
Cost in	1890								8.2 cents.	Cost in 1891 6.04 cen
	1891								5.94 cents.	1893 5.72 cen
	1893	٠			٠			٠	5.14 cents.	
ST. PANCE	as Sī	`A'	TIO	N.						WESTMINSTER STATION.
Cost in	1892								9.32 cents.	Cost in 1891 6.66 cen
	1893		٠			٠	٠		7.10 cents.	1893 4.57 cen
Brighton	STAT	10	N.							NOTTING HILL STATION.
Cost in	1892								7.52 cents.	Cost in 1891 24.66 cen
	1893		١.						5.92 cents.	1893 10.58 cen

cost of producing electricity in twenty-three of the best English plants. The costs are itemized into "Fuel," "Stores," and "Labor," thus giving a very complete sub-division of the subject. For an ideal station, yet one within the limits of present engineering skill, Mr. Crompton estimates a capital of \$2,500,000 to be required for an output of 5,000,000~K.~W. per annum, and that it is possible to bring the cost of production only to about 1 cent per K.~W. hour. In this table there are no allowances for interest, depreciation, taxes, and management; allowing $1\frac{1}{2}$ cents for these items, and $\frac{1}{2}$ cent for profit, it is calculated that, under the favorable conditions of a very large plant continuously operated, electricity could be sold at a profit at

¹ See Year Book Soc. Eng., University of Minnesota, 1894.

² See Journal Institute Electrical Engineers, June, 1894.

TABLE NO. 70. — Cost of Production in Continental Plants.

12,000 12,000 23		Direct	Direct Current.	Direct Cur	rent with A	Direct Current with Accumulators.	Alternating.	
10,000			Hamburg.	Barmen.	Hanover.	Düsseldorf.	Cologne.	
272,829,96 473,912,00 204,425,53 504,176,51 557,194,58 472,629 24,25 31,43 908,50 30,23 50,23 46,32 46,32 46,881,80 112,245,49 23,995,08 65,002,22 54,710,04 54,700,04 20,782,13 23,683,13 8,365,07 18,370,92 54,710,04 54,710,04 20,782,14 8,567,28 15,621,30 4,46 2,77 34,46 20,782,14 85,677,28 15,621,30 4,46 7 34,46 20,784,11 85,677,28 15,621,30 11,34 7 34,11 20,784,11 18,05 11,34 37,285 30,785 30,794 11,33 122,026 45,240 484,111 11,400 14,84 18,134 33,228 30,5 5,70 14,8 18,23 16,8 31,6 11,100 14,84 17,3 16,8 31,6 11,100 14,000 7,32 17,9 16,4	GENERAL DATA. Fifty-watt lamrs capable of being supplied from the works. Fifty-watt lamps capable of being supplied from the mains. Available power in Fullowatts	10,000 12,000 500	11,600 12,000 580	4,500 6,500 225	12,000 23,000 600	12,000 23,000 600	13,600	
11,245.49 23,995.08 65,002.22 54,710.04 54,738 12,245.49 23,695.08 15,829.29 15,839.19 15,839.	Installation capital, havebase of FIRST ESTABLISHMENT. Specific expenditure, in dollars per kilowatt Specific expenditure, in dollars per lamp Receiffers Ann Perpenses	272,829.96 545,53 24.25	473,912.90 816.93 31.43	204,425.53 908.50 31.53	504,176.51 785.70 39.28	557,194.58 926.35 46.32	472,500.58 693.55 34.68	
17,000	Duration of working, in years Total receipts, in dollars Recaptly, aper cent of the capital To al expenditure, in dollars	5 46,281.80 20.50	4 112,245.49 23.68	5 23,995.08 11.74	65,002.22 15.8	1 54,710.04	54,738.65	
113.438 552.900 114.906 472.520 484.111 134.52 134.285 134.2	Ex renditure, per cent of the capital Rough total profits, in dollars Profits, per cent of the capital	17,498.99 6.41 28,782.81	26,568.21 5.62 85,677.28	8,365.67 4.9 15,629.43	18,370.92 4,46 46,621.30	15,328.13 2.72 39,38 <u>1</u> .91	20,460.21 4.07 34,278,44	
14	EXPENSES — COST. Total energy in 1 ilowatt hours, produced. Total energy in kilowatt hours, distributed. Efficiency of the mains, per cent	305,794	542,900	114,996	* :	484,111 337,285	307.05	
11,100	Energy in watt hours per lb. coal, produced Energy in watt hours per lb. coal, distributed Salari-s in cents, per kilowatt hour, produced Salari-s in cents, per kilowatt hour, distributed	2.4.	148	104.18 104.18 104.18		69.68 185 129 1.63		
11,100	Cost par kilowatt hour in cents, produced Cost per ki owatt hour in cents, fistibuted Mean selling price in cents per halowatt hour, including all expenses Charge without deduction for the kilowatt hour, in cents	25.00 E	4.91 5.18 21.86	6.85 6.85 6.85 6.85 6.55	4.05 4.05 5.02 17.79	2.33 3.15 4.54 16.20	2.93 	
11,100	Price per cubic foot of gas, consumption above 3,000 cubic feet, cents.	11:	 	.12	105	20.95	16.96 .081	
59,573 194,733 279,506 42,584 154,836 216,561 71,5 79,4 77.5 77.5 14,2 62	Number of B-wa.t lamps installed M xinum power utilized in kilowatts Ratio of power utilized to puer a vailable Duration of lighting, in hours, per annum.	11,100 400 0.80	14,000 462 0.79	7,325 139 0.61	13,642 415 0.48	16,623 309 0.51	15,329 325 0.50	
35 42.3	Energy expended for the charge, in kilowatt hours Energy for the charge, in kilowatt hours Energy fights by the disch rg, in Piowatt hours. In usini befide roy of the acumunators, per cent R to of energy supplied by the acumulators to the total energy distributed.			59,573 42,584 71.5	194,733 154,836 154,836	419 279,506 216,561 77.5	 	
7 7	per cent Loss in the accumulators, per cent of the total energy distributed		 	35	42.3	62		

3 cents per K. W. hour. Present practice indicates that on the average the selling price must be about double this figure.

715. There is no doubt that improved machinery, better engineering, and a more thorough study of electrical science, are constantly tending to reduce the cost of production. This is exemplified in Table No. 69, collected from data given by Mr. Stevens. Here a comparison is given between the cost of production at six of the large English stations for the past three years. On an average, there has been a decrease of about 30 per cent in actual cost. From these figures it seems not impossible that Mr. Crompton's expectations may be realized.

716. In the Electro-technische Zeitschrift, Max Meyer 1 gives an article on the operating expenses of a number of the largest stations on the Continent, from which TABLE No. 70 is epitomized. costs here are in the neighborhood of 5 cents per K. W. hour. TABLE No. 71 is a comparison of operating expenses of a large number of central stations made by H. A. Foster.² As the data are derived from fifty-four plants, the averages would seem to be exceedingly trustworthy. The cost of production from these figures is seen to be about 5.4 cents per K. W. hour. In the same article, Mr. Foster has made a very extensive collection of data from information obtained from a hundred and fifty lighting-stations in this country. As the range of the inquiries is very broad, Table No. 72 has been compiled from this source, embracing the figures thus obtained from actual practice as to the cost of installation and operation of lightingplants. The cost of plant per K. W. includes buildings and real estate, whenever owned by the operating company, and also the cost of the circuits. On the whole, the costs per K. W. hour are higher than those from European stations, but it must be remembered that the foreign data are taken from very large plants under continued operation. To select from Table No. 72 stations of similar size will show a close agreement in operating costs.

717. In the *Review of Reviews*, February, 1893, Mr. R. J. Finley discusses "American Street Lighting," giving considerable data regarding the cost of plant and operation of municipal stations, in contrast with those of private ownership. The motive-power is not stated, an omission greatly detracting from the value of any compari-

¹ See Electrical World, vol. xxiv., p. 206. 2 Electrical Engineer, vol. xviii, p. 188.

sons that may be instituted. A summary of the data is to be found in Table No. 73. All the figures apply to the operation of nominal 2,000 c.p. arc lamps.

718. Commercial Consideration of Transmission Problems. — Every long-distance installation, from a constructive standpoint, must be regarded as made up of three factors.

First. A generating-station, including prime movers for utilizing the source of energy, and dynamo machinery for transforming

Table No. 71.

Comparison of Operating Expenses of Central Station.

	Lab	or.	Fu	e1.	Supplie Offic	Total Cost in Dollars.	
Nature of Station.	Cost per K.W. in Dollars.	Per Cent of Total.	Cost per K.W. in Dollars.	Per Cent of Total.	Cost per K.W. in Dollars.	Per Cent of Total.	Per K.W. Hour.
14 American Municipal Sta- tions, Contin. Cur. Arc 5 American Municipal Sta-	.0251	42.9	.0173	29.6	.0161	27.5	.0585
tions, Incandescent 1 American Municipal Sta-	.0244	40.9	.0226	37.9	.0126	21.2	.0596
tion, Arc. New 6 American Stations, Mixed	.0317	54.2	.0199	34	.0069	11.8	.0585
Output of 5,300,000 K.W.			.0095	20			.0473
5 German Stations, Output 1,907,900 K.W	.0218	46.5					.0469
23 English Stations, avge. Crompton	.0144	25.7	.0222	39.6	.0194	34.7	.0560
Crompton Lowest Items in 23 Sta-	.004	15	.0054	20	.0170	65	.0264
tions, Weaver	.0074	19.8	.0126	33.8	.0173	46.4	.0373

mechanical energy into electrical energy at proper potentials for economical transmission.

Second. The necessary line for transferring this energy from the generating-station to the receiving-station.

Third. The receiving-station, embracing such dynamo machinery as is necessary to reduce the high potentials used in the line to convenient voltage for distribution and use by customers.

The vital consideration in all such installations then becomes the cost of energy delivered at the receiving-station by the transmission

Table No. 72. — Cost and Operating Expenses of Lighting-Stations.

	of of in sin ts.	First Plant .W.	ng esm.	s	ost V.	Орг	ERATIN	G EXP	ENSES.	Fixed Charges per K.W. of Total Output,	. Z
LOCATION OF PLANT.	Total Capacity o Dynamos i Kilowatts,	Total Firstost of Pla per K.W. Capacity.	Operating Expenses per K.W.	Fixed Charges per K.W.	Total Cost per K.W.	ut.	oer ut.	ies W.	per i.	Cha Out	Total Cost per K.W.
I DANGE	Total Capacity Dynamos Kilowatts	Total Cost of per K Capac	Operating Expenses per K. W.	Cha per A	Total per K	Labor per K.W.	Fuel per K.W. Output.	Supplies per K.W Output.	Office per K.W. Output.	Fixed per K Total	Tota per Ou
		ļ	,			be	F .0	S ed -			
Arkansas. Hope	21,00	\$228.60	\$ 32.38	\$ 30.85	\$ 63.23	\$.0274	\$.0114		\$.0371	.0758
Little Rock California.	69.60	570.97	130.04	77.08	207,12	.0338	.0177	\$.0144		.039	.1049
Santa Cruz Alameda	26.08 45.60	986.84	250.00	117.87	367.87	.0648	.0493	.0617	::	.0826	.259
Connecticut. South Norwalk	44,40	486.50	99.55	31,25	130.80	.0317	.0199	.0069		.0185	.0771
Georgia.											
Madison	63.00	365.08	92.79	49.28	142.07	.0276	.0257	.041	.0016	.0511	.147
Metropolis Aurora	68.40 120.00	377.69	48.24 84.01	50.99	135.00	.0257	.0151	.0045	.0028	.0295	.0774
Chicago Elgin	888.00 60.00	774.13 400.00	120.80 113.58	91.21 50.00	212.01 163.58	.0274 .0272	.0135 .0153	.0101 .0154		.0386	.0896 .0834
Indiana.	}										
Goshen	19.20 86.40	572.92 318.63	141.43 59.96	77.34 43.04	218.77 103.00	.0305 .012	,0284	.006 .0054	: :	.0357 .0131	.1009 .0313
Fairfield Marshalltown	14.40	416.66	68.44	56.25	124.69	.0372 .0088	.0355	.0147 .0068		.0718 .0271	.1591 .0471
Kansas. Council Grove	16.30	490.80		62.57							
Lyons Maine.	32.40	169.75	22.42	22.91	45.33						
Lewiston	48.00	333.33	104.16	45.00	149.16	.0165	.0083	.0127		.0162	.0536
Maryland. Frederick	28.80	520.83	121.52	70.31	191.83	.0228	.0114	.0177		.0301	.0821
Michigan. Bay City	87.00	413.60	103.20	51.57	154.77	.0148	.0102	.0117	.006	.0214	.0642
Minnesota. Fulda	30.00	166.66	42.00	22.50	64.50	.0294	.0326	.0065		.0367	.1054
Luverne	79.20 10.30	123.74 291.26	36.94 143.20	17.10 39.32	54.04 182.52	.0099	.0211	.0049		.0168 .0331	.0528 .154
Sleepy-Eye Lake Missouri.	19.56		107.62								
Shelbina	39.00 30.00	182.62 466.66	67.44 87.00	26.47 63.00	93.91 150.00	.026 .0217	.0353	.0314	.0023	.0374 .0409	.1324 .0975
Hannibal	222.00	211.40	31.09	23.07	54.16	.0142	.0071	.011		.0241	.0565
Nebraska. Crete	16.30	582.82	157.66	78.68	236.34	.081	.0616	.0225	.0051	.0822	.2473 .0561
Falls City North Carolina.	36.00	250.00	74.44	31.25	105.69	.0177	.0145	.0022	.0051	.0100	101701
High Point New Jersey.	24.45		53.41			• •		• •		• •	
Madison	198.00	176.77									
New York. Dunkirk	50.40 49.44	394.18 525.88	69.53 127.34	49.27 70.99	118.80 198.33	.0091	.0118	.0125	.0005	.0236	.0569 .0502
West Troy Westfield	76.80	169.27	77.52	19.46	96.98	.0259	.0082	.0425	.0003	.0188	.0956
Ohio. St. Clairsville	44.00	225.22	39.20	28.40	67.60	.0146 .0272	.0048	.0073 .015	.0012	.0204	.0483 .0825
Painesville Pennsylvania.	43.20	300.92	80.28	37.61	117.89					1	
Easton Quakertown	64.80 56.20	617.20 328.06	137.45 97.24	70.97 38.94	208.42 136.18	.0156 .0246	.0194 .0172	.0179	.0038	.0294 .0313	.086 .1095
Texas. Galveston	122.40	326.80	135.67	44.11	179.78	.0221	.011	.017		.0163	.0664
Virginia. Farmville	32.40	370.37	79.63	50.00	129.63	.029	.021	.0042		.034	.0884
Washington. Chehalis	59.40	252.52	94.94	44.52	139.46	.0247	.0343	.0054		.0315	.096
Wisconsin. Hudson	16.30	429.44	92.02	57.97	149.99	.0125	.0125	.0167		.0261	.0679

plant, in comparison with the cost of manufacturing a similar amount of energy by some other means at this station.

719. To determine the cost of energy delivered by the transmis-

TABLE No. 73.

Cost of Plant and of Operating for Arc-Light Stations.

LOCATION OF PLANT. 24 Private Stations.	Number of Lamp Hours per Annum.	Cost per Lamp Hr.	Cost per Lamp Hr.	LOCATION OF PLANT. 24 Private Stations.	Number of Lamp Hours per Annum.	Cost per Lamp Hr. per Annum.	Cost per Lamp Hr.
1. Texarkana, Ark. 2. Jacksonville, Ill. 3. Joliet, Ill. 4. Peoria, Ill. 5. S. ringfi.ld, Ill. 6. Streator, Ill. 7. Kokomo, Ind. 8. Logansport, Ind. 9. Arkansas City, Kan. 10. Augusta, Me. 11. Bath, Me. 12. Grand Rapids, Mich.	3741 2190 3741 2190 2190 3741 3741 2190 1872 3285 2237 3741	\$160.00 96.00 124.00 145.00 137.00 96.00 100.00 100.00 72.00 76.33 125.00 109.00	.0428 .0437 .0631 .0662 .0625 .0256 .0267 .0456 .0384 .0232 .0528 .0293	13. Lansing, Mich. 14. Kansas City, Mo. 15. Sedalia, Mo. 16. Springfield, Mo. 17. Bellaire, O. 18. Tremont, O. 19. Hillsborough, O. 20. Lebanon, Pa. 21. New Castle, Pa. 22. Dallas, Tex. 23. Houston, Tex. 24. Parkersburgh, Va.	2190 3741 2190 2190 2190 3741 2190 1872 3741 3741 3741	\$100.00 200.75 87.00 136.00 90.00 90.00 70.00 80.00 95.85 150.00 102.00	.0456 .0534 .0398 .0620 .0410 .0240 .0320 .0427 .0214 .0258 .0400 .0272
AVERAGES	Total Lamp Hours per Annum.	Cost of Plant per Lamp.	Cost per Lamp Hr.	19 MUNICIPAL PLANTS.	Total Lamp Hours	Cost of Plant per Lamp.	Cost per Lamp Hr.
1. Little Rock, Ark	2920 2775 3741 3650 3741 2555 2190 3741 2190 3741	\$317.00 531.00 333.00 288.00 263.00 160.00 294.00 272.00 250.00	.0315 .0469 .0240 .0213 .0225 .0231 .0428 .0347 .0365	11. Lewiston, Me	2190 2190 2920 2190 1872 2190 2555 3650 2555	150.00 210.00 264.00 315.00 200.00 556.00 270.00 150.00 228.00	.0332 .0380 .0354 .0331 .0330 .0545 .0311 .0158
Averages					2819	\$279.00	.0328

sion plant, the following items must be taken, as affecting the total expense:—

First. The interest and depreciation on the necessary capital invested in improving the water-power, or other source of energy,

and in the purchase of the necessary machinery, engines, dynamos, water-wheels, etc., and in the acquisition of real estate and erection of buildings required for the generating-station; in other words, the total cost of the generating-station.

720. Second. The cost of obtaining power at the generating-station. This item will include rent paid for water-power, or interest on the necessary capital invested in the purchase of water-right. A similar expense would be the cost of purchase of fuel at a location where such a low price for coal could be obtained as would seemingly warrant the installation of a transmission plant.

721. Third. The expense of energy at the generating-station is further augmented by the cost of such labor and superintendence as may be necessary to operate and maintain the plant.

722. Fourth. The interest and depreciation on the cost of erecting the line between the generating-station and the receiving-station.

723. *Fifth*. The cost of energy lost in transmission between the generating and the receiving station.

Interest and depreciation on the cost of the machinery, buildings, etc., for the *receiving-station*, do not enter into the expense of delivering energy at the receiving-station, for the reason that, were any different arrangements made for obtaining electrical energy at the receiving-station than that of the transmission plant, a station essentially similar, so far as this cost is concerned, would be necessary.

Summarized: The cost of energy at the receiving-station, then, stands as follows:—

First. Interest and depreciation upon the capital invested in the generating-station.

Second. Cost of obtaining energy at the generating-station.

Third. Labor at the generating-station.

Fourth. Interest and depreciation upon cost of transmitting line.

Fifth. Losses in line transmission.

724. To determine the advisability of the installation of a long-distance plant, it is necessary to compare the probable cost of energy delivered to the receiving-station by the long-distance plant, with the cost of a corresponding amount, as obtained at this location, by any other means. Should the figure obtained for the cost of energy by a long-distance plant be equal to that required by the manufac-

ture of energy in any other way, it is evident that the long-distance plant will stand on precisely equal footing with any other installation. Should the amount for production of energy by a long-distance plant be less than that by other installations, the long-distance plant will be profitable in that proportion.

725. The ability to produce energy at the receiving-station will be limited to the power derived by means of a steam-engine. Cases where wind, tidal power, or other methods would be available, are so infrequent that they may be discarded without seriously affecting the result, and attention confined solely to the production of energy at the receiving-station, by means of a steam-engine, in contradistinction to that obtained by the transmission plant. The cost of the production of energy by means of steam-power is tolerably well ascertained. The cost of energy will vary with the kind of engine, the price of coal, the rate of interest and depreciation upon the capital invested in the plant, and cost of necessary labor. In Table No. 74 a series of curves with necessary data is given, for determining the capital to be invested in a steam-plant, the cost of perpetual maintenance of the same, and the production of power. The Table is divided into four parts.

First. A schedule giving the cost of steam-plant per horse-power at the engine and per kilowatt of energy delivered at the terminals of the generator. In this latter column the values are assumed for engines working at a reasonably steady full load, with an efficiency of 90 per cent in the generator. The figures are those which would apply to fairly large installations, say from 250 horse-power upwards, and would prevail for most locations east of the Mississippi River, in this country. Special charges necessitated by locations out of the ordinary have not been considered. The schedule is arranged to embrace seven different styles of engines, considered to be those which are more likely to be used.

726. The second division of the Table embraces a set of curves arranged for the purpose of calculating the interest and depreciation to be allowed upon the steam-plant. A separate line is given for each type of engine, the horizontal axis being scaled for interest and depreciation, while the vertical axis gives the amount to be assessed per horse-power per annum, for varying rates on the interest and depreciation scale.

The third part of the Table is devoted to the cost of fuel and supplies in dollars per horse-power per year.

The horizontal axis here embraces the cost of coal in tons, of 2,240 pounds, from \$2.00 to \$10.00 per ton, while the vertical axis indicates the corresponding cost per horse-power per annum. It should be here noted that the lines are so drawn as to *include* the cost of the ordinary amount of oil and other minor supplies which would be naturally required in a steam-plant. While these values are not absolutely correct, as a slight variation in the cost of the minor supplies, in comparison with the cost of coal, would make slight changes, it is considered that it is sufficiently accurate for ordinary purpose of estimate.

The fourth division of the Table applies in a similar manner to rates of wages for engineer and fireman. On the horizontal axis will be found the rates per day for engineer and fireman, two scales, one for each class of labor, being indicated. The vertical axis gives the wages cost per horse-power per annum. In each of the divisions a separate line will be found for each kind of engine, which may be readily identified on the schedule by means of a corresponding initial letter, used in each of the divisions. To use the Table, select on the horizontal axis the value required; follow a vertical line to its intersection with the line indicating the kind of engine proposed to install, and then follow a horizontal line to the left to the vertical axis, finding the value desired. This Table forms a convenient means whereby the engineer may rapidly determine the probable cost of energy per horse-power per annum, as developed by a steamplant erected at the receiving-station. It is now necessary to ascertain the cost of energy delivered at the receiving-station, when obtained through the medium of long-distance transmission, and compare this with the cost of energy as obtained by means of the steam-plant.

727. The factors composing the cost of energy at the *receiving-station*, as delivered by the transmission plant, are as follows:—

First. Interest and depreciation on cost of generating-station.

Second. Cost of power at generating-station.

Third. Cost of labor at generating-station.

Fourth. Interest and depreciation on cost of line.

Fifth. Cost of energy lost in the line.

TABLE No. 74.

Cost of Installing and Maintaining Steam-Plant.

<u>.</u>								
Sheet 1.	Kilowatt. 85% Efficiency.	\$97.00	106.30	92.65	84.30	92.00	85.30	92.65
Total Cost per H.P.	Stack and Supervision during Buildings. Installation.	\$61.50	67.20	58.80	53.50	58.37	54.60	58.80
P. OF	Stack and Buildings.	\$16.00	15.00	14.00	12.00	11.50	11.00	11.00
COST PER H.P. OF	Boiler.	\$26.00	24.00	21.00	18.00	17.00	16.00	30.00 15.00 11.00
800	Engine.	\$17.00	25.00	22.00	21.00	27.00	25.00	30.00
	TYPE OF ENGINE.	Simple High-Speed Non-Condensing,	Simple Low-Speed Non-Condensing,	Compound High-Speed Non-Condensing,	Simple High-Speed Condensing,	Simple Low-Speed Condensing,	Compound High-Speed Condensing,	Compound Low-Speed Condensing,
tion,	Designa	A	m	0	A	田	F	5

NOTE. - For detailed information, see Sheet of Curves in pocket, marked Table No. 74, Sheet 1.

Table No. 74 (Continued)

Cost of Installing and Maintaining Steam Plant

Interest and Depreciation, in Dollars,

Interest and Depreciation, in per cent.

Table No. 74 (Continued).

Cost of Installing and Maintaining Steam-Plant.

Table No. 74 (Continued).

Cost of Installing and Maintaining Steam-Plant.

For this purpose, it is convenient to refer to Table No. 75. The use of this table, as it is slightly complex, will be best comprehended by means of an example.

Assume the following data: -

α.	Cost of generating-station per horse-power	\$150.00.
1.	Interest and depreciation on generating-station	
	per annum	10 per cent.
2.	Cost of water per horse-power per annum	\$15.00
3.	Cost of labor	\$2.50 per day.
Ъ.	Cost of line per mile	\$1800.00.
c.	Length of line	5 miles.
4.	Interest and depreciation on cost of line per	
	annum	15 per cent
5.	Loss in line	20 per cent.
d.	Power transmitted	400 H. P.

To find cost of energy at receiving-station.

728. Refer to Table No. 75, finding, on the left-hand side, along the vertical axis, two scales, one labeled "Cost of Generating-Plant per H. P." Taking this scale, proceed to \$150.00 (a), the assumed cost of the plant per horse-power. From \$150.00 follow a horizontal line (this example may be readily traced by following the dotted lines upon the diagram, which have no reference to any calculations excepting the particular example now under consideration) to the point of intersection of the horizontal with the diagonal line marked "Interest and Depreciation" (1), and labeled "10 per cent," the assumed value. The amount of interest and depreciation is then found by following a vertical line downward to the lower scale, marked "Interest and Depreciation on Generating-Plant per H. P.," giving \$15.00 as the interest and depreciation per horse-power of plant capacity per annum. It is now necessary to take into consideration the cost of water per annum, which is assumed to be \$15.00 (2).

729. From the point of intersection of the horizontal through \$150.00, with the interest diagonal 10 per cent follow a vertical line upwards to the intersection of the diagonal under "Cost of Water-Power per H. P.," labeled "\$15.00." Then follow a horizontal line to the right to the left-hand scale on the right-hand side of the diagram, — the scale labeled "Interest and Depreciation on the Generating-Plant plus the cost of Water-Power per H. P." The

value here given, \$30.00, is the sum of the first and second items. To include the cost of labor (3), return to the intersection with the "Cost of Water" diagonal through \$15.00, follow the horizontal line to the right to the intersection of the "Cost of Labor per Day" diagonal, labeled \$2.50. At this point follow a vertical line to the extreme upper scale of diagram, labeled "Interest and Depreciation plus Cost of Water, plus Cost of Labor, or total Cost at Generating-Station per H. P.," finding the total value to be \$32.50 as the cost per horse-power per annum at the generating-station. It now remains to find and add to this amount the cost of the energy lost in transmission (5) between the generator and the receiving-station, and the interest and depreciation on the cost of the line, in order to get the total expense of energy at the receiving-station.

730. From the intersection of the previous horizontal line with the diagonal for the "Cost of Labor per Day," marked "\$2.50," follow a vertical line downward to intersection with the diagonal under the heading "Losses in Line," labeled "20 per cent." From this point follow a horizontal line to the right, to the left-hand scale on the right-hand side of the diagram, headed "Interest and Depreciation plus Cost of Water, plus Cost of Labor, plus Losses in Line." Here the value of \$39.00 will be found as the cost per horse-power per annum of energy delivered at the receiving-station by the transmission plant, exclusive of interest and depreciation on the cost of the line, which figure it is now necessary to ascertain. The previous amount, \$39.00, must be carefully noted, as it is necessary to add the amount of the interest and depreciation on the line to it. To find this latter figure, return to the extreme left-hand vertical scale of the diagram headed "Cost of Line per Mile in Dollars" (b). Selecting the figure \$1800.00, the assumed cost of the line per mile, follow a horizontal line to the right to the intersection of the diagonal marked (15 per cent) (4), the assumed rate of interest and depreciation on the line, under head "Interest and Depreciation." From this intersection follow a vertical line upwards to the lower top scale marked "Interest and Depreciation on Line per Mile," obtaining the value \$270,00 as interest and depreciation on the line per mile of length. This figure is, evidently, not the total amount necessary to obtain, as the length of the line is not included. From the upper left-hand corner of the diagram will be seen the number of radiating

diagonal lines headed "Length of Line in Miles" (c). From the intersection of the previously mentioned vertical with the diagonal headed "5 Miles," follow a horizontal line to the right, obtaining, on the scale marked "Interest and Depreciation on the Whole Line," the figure \$1350.00 as the amount of this charge. As the entire calculation is made per unit of power, it is evident that the charge for interest and depreciation on the line must be divided by the total amount of power transmitted in order to obtain the proper proportional charge per unit of energy supplied. To secure this result, the last obtained amount must be divided by the amount of power transmitted, namely, 400 horse-power (d). To accomplish this, return on the horizontal line through \$1350.00, until an intersection is obtained with the diagonal marked "400 H. P." Here follow a vertical line to the lower top scale of the diagram marked "Interest and Depreciation on the Whole Line per Horse-Power," finding a value of \$3.37 as the amount for the interest and depreciation on the line per unit of power, to be added to the previously obtained cost of \$39.00, making a total cost of \$42.37 per annum per horse-power, delivered at the receiving-station.

731. In this example the process has been given in extenso step by step, in order to familiarize the reader thoroughly with the workings of the diagram, and to show that the process may be stopped at any desired step, and used to obtain the value of any successive set of items. If it is wished to complete the entire calculations without any reference to the intermediate steps, the process is as follows:—

732. Find the cost of the generating-station per horse-power on the left-hand scale of diagram. In this example, start at \$150.00, follow a horizontal line to intersection with the "Interest" diagonal; from this point follow a vertical line to the intersection with "Cost of Water per H. P." diagonal, then a horizontal line to the "Cost of Labor per Day" diagonal, then vertical line to the intersection with diagonal headed "Losses of Line," then horizontal line to the right to the left-hand scale on the right-hand side of diagram, finding the figure \$39.00 as the "Cost of Power at the Receiving-Station."

783. In a similar manner, to obtain the value for "Interest and Depreciation on Cost of Line per H. P.," start at \$1,800.00 on left-hand scale on diagram, follow a horizontal to intersection with the

"Interest" diagonal, then the vertical to intersection of diagonal giving "Length of Line," then vertical to lower scale on top of the diagram, giving \$3.37 as the total cost per unit of power, for "Interest and Depreciation on the Line." Add these two figures to obtain the desired result.

From slight consideration it is evident, by these tables, problems involving the commercial aspect of long-distance transmission may be rapidly solved, providing the necessary data for obtaining the constants are at hand.

734. Economical Conductor Section. — In long distance transmission, the cost of the line rises to be one of the most important factors, if not the principal one, in the installation.

To determine the most economical area for the conductor, the principles given in Chapter IX. should be used, and may be directly applied to the greatest advantage. The equation there given for finding the proper conductor area is—

$$U = \alpha + \beta S + \frac{\lambda}{S}.$$

In this equation three coefficients must be considered; namely, α , β , and λ .

By the process of differentiation a disappears; so to determine the value of S, the quantities β and λ only need enter into consideration. The term β is substituted for the expression $L [b(i+d_i) +$ $b'(i+d_c)$], involving the interest and depreciation to be allowed upon the cost of the conductor, and upon the structure used for supporting or protecting it. Two rates of interest and depreciation were allowed, as in the most refined calculations, especially those involving the cost of conduit structures, the interest and depreciation assessed upon the conduit would be different from that on the conductor. For ordinary purposes of calculation, as an abridgment of the process, the two rates may be assumed the same, and the value of β considered to be $L(b + b')(i + d_c)$. The term λ involves the amount of current transmitted, the resistance and length of the line, the interest and depreciation allowed upon the cost of the station per unit of output, and the cost of producing the energy lost in the line; adopting the notation of Chapter IX., $\lambda = I^2 \rho L [FK + K']$ $(i+d_s)$.

735. For the purpose of facilitating calculations of the most

economical conductor cross-section, Tables Nos. 76, 77, and 78 are presented for determining the values of the above coefficients, giving a solution directly of the equation $x = \sqrt{\lambda/\beta}$.

Tables Nos. 77 and 78 are arranged in two parts—part B of each Table being laid out to a reduced scale, as compared with part A. As the scales in all of the Tables are decimal, the range of the Tables may be extended in any direction by multiplying or dividing by any power of 10. By means of the decimal arrangement and the double sets of values given, all problems within ordinary ranges may be readily solved. As the use of the Tables is a little complicated, an example will perhaps best elucidate their application.

Returning to the data given on p. 560 used to exemplify the use of Table No. 75, and adding to the constants there assumed, the amount of current to be transmitted through the line, 200 amperes, and the length of time this current flows through the line, 3,000 hours per annum, let it be required to find the most economical cross-section for the conductor.

736. The Tables have been calculated, by assuming the length of the line to be one mile of double circuit; that is, a mile away from the station and a mile back, making the total actual length of the line two miles. It will also appear that the most economical conductor cross-section, as determined for a mile of double circuit, will equally apply to a line of any length, for reason that, as the resistance increases directly in proportion to the length of the line, the amount of energy wasted and the interest and depreciation on the cost of the line will correspondingly increase in the same direct proportion.

737. Table No. 76 serves to determine the two constants inside the brackets; namely, FK, and $K'(i+d_s)$. To determine the value of this latter quantity, look for the cost of the generating-station along the top scale of diagram labeled "Cost of the Generating-Station per H. P.," or K'. In the example under consideration, \$150.00 is assumed for the cost of the station, while the interest and depreciation $(i+d_s)$ is given on the diagonals running downward from the right-hand upper corner. From \$150.00 or "Cost of Station" follow a vertical downward to the intersection of the diagonal marked " $(i+d_s)$ " for the assumed rate of 10 per cent, then follow a horizontal line to the right, to the left-hand scale marked " $K'(i+d_s)$," here

finding the value of "\$15.00" as the amount of this expression. Note this value. Now, to determine FK, having the annual cost of producing energy per horse-power, as obtained from Table No. 75. It must be recollected that this cost per horse-power, as given by TABLE No. 75, is based upon operating the station 3,000 hours per annum. In order to find the cost per horse-power hour, select on the lower horizontal scale, labeled "Cost of Energy at the Generating-Station per H. P.," the cost gathered from TABLE No. 75, follow a vertical line upward to intersection with diagonal line marked "3,000" hours," then follow a horizontal to the right-hand scale on the righthand side of the diagram, finding the desired amount on the scale marked "Cost of Energy at Generating-Station per H.-P. hour." In the example under consideration, from TABLE No. 75, a cost of \$32.50 was obtained as the "Cost of 1 H.P. for 3,000 hours." Select this point on the lower scale, follow a vertical line upward to intersection with diagonal labeled "3,000 hours," then follow a horizontal to the right, to the right-hand scale, the value of \$.0108 is found as the "Cost of one H.-P. hour." FK is the cost per horsepower, multiplied by the time of operation, and is obtained from the Table by following a horizontal line to the *left* from the cost per horsepower hour on the right-hand scale till the horizontal intersects the diagonal marked with the number corresponding to the annual time of operation. Thus, supposing the plant to operate for 5,000 hours, following diagonal from the right-hand scale through .0108 to the intersection of the diagonal labeled "5,000 hours," then a vertical downward to the horizontal scale, the value of \$54.16 is found for FK. Continuing, however, the original example on the supposition that the plant operates for 3,000 hours, the value of \$32.50 is found for FK. Note this value. The Table thus gives the values of the two quantities inside the brackets; namely, FK and K' ($i + d_s$). These two values must now be added, giving \$47.50 as the total of the quantity inside the brackets.

738. Now, turning to Table No. 77, the top scale is labeled value of $FK + K'(i+d_s)$. The left-hand scale gives the values of $I^2\rho L$, while the lower scale gives the values of $I^2\rho L \times [FK + K'(i+d_s)]$, or the value of λ . On the top scale of the diagram find the value of $FK + K'(i+d_s)$, as obtained from Table No. 76. Connect this point with the origin at the lower left-hand corner by a diagonal line (see

dotted line). The value of $I^2\rho$ must now be obtained. The conductor in this example is assumed to be soft copper, to operate at a temperature not exceeding 30° C. Find upon the lower scale of the diagram the temperature of the conductor, then follow a vertical line upwards to the intersection with the diagonal labeled "200 amperes S. C." (soft copper). Follow a horizontal line to the left from this intersection to the left-hand scale, from which the value of $I^2\rho L$ is obtained as 5. From the intersection of this horizontal line with the diagonal to the origin drawn from the value of $FK + K'(i + d_s)$, on the top scale, follow a vertical line downwards to the lower scale labeled "Value of $I^2 \rho L [FK + K' (i + d_s)]$," obtaining here the value of this expression as 250, or the value of λ . The dotted lines on the Tables serve to show the course followed in the solution of this particular example, but have no reference to the solution of any other. The dotted lines have been drawn on both parts of each diagram, in order to show that the same result is obtained on each. The operator should use that section of diagram which will give the most advantageous scale. Now, turning to TABLE No. 78, find upon the right-hand vertical scale, headed "Cost of Line per Mile," the amount of capital invested in the line, recollecting that the mile here referred to is two actual miles of circuit. In this case the cost of the circuit mile is \$1,800. Follow a horizontal from this figure to intersection with the diagonal giving the determined rate of "Interest and Depreciation," in this example 15 per cent being selected. From this intersection follow a vertical line upward to the top scale of the diagram, here finding the value of $L[b(i+d_i) + b'(i+d_c)]$, or β . The value here obtained is \$270.00. Connect this point by a diagonal with the origin at the lower right-hand corner. From TABLE No. 77, the value of λ was found to be 250. On the lower horizontal line, marked "Value of \(\lambda\)," find 250. At this point erect a perpendicular until it intersects the diagonal previously drawn from the point on the top scale, giving the value of β to the origin. The point of intersection of the vertical and this diagonal is, evidently, the value of λ/β . From this intersection follow a horizontal line to the left, until the curve C is intersected, then follow a vertical downward to the lower horizontal scale marked "Value of S," here finding 195 of a sq. in. as the most economical value of the cross-section of the conductor.

Though the process of using the Tables, as here described, may seem somewhat complicated, experience gained from the solution of half-a-dozen examples will enable the operator to determine the most economical cross-section of conductor in one-quarter the time that is required to read the description.

By means of the graphical methods thus outlined, the designer may rapidly determine the best cross-section for the conductors of a transmission plant under any of the usual limiting conditions. A careful comparison should always be instituted between the section thus ascertained and that indicated by each of the various other governing factors that enter into every distributing problem; for the most economical conductor section is by no means always the most advisable one to employ.

In the distribution of energy by means of electricity, the principles outlined form a ground-work sufficient to enable the designer to so utilize materials and energy as to attain the desired result. Facts and laws are, however, like tools, the value of the product depending largely on the skill of the workman.

THE END.

ART.	PAGE.	ART.	PAGE.
500	Accomplishment of Best Service, De-	383	Alternating Current Conductors, Thick-
	sign for		ness of Shells Effected by 314
659	Accumulators, Sub-station 498-199	383	Alternating Circuits, Table of Virtual
660	Accumulator Distribution 499		Resistance
661	Accumulators, Means of Regulation by	391	Alternating Circuits, Expenditure of
	499-500	1	Energy in
655, 661	I Accumulators 496, 500	18	American Wire, Specifications 28131
714	Actual Cost of Producing Electrical	714	America, Cost of Producing Electricity
	Energy 547-549		in
412	Addition of Vectors	226	Ammeter, Weston 209-211
497	Additional Ton of Copper, Table of	283	Ammeter, Measurement Current
	Cost of 390–391		Strength of 244
459-460	Adjacent Bodies, Effect on Capacity of	56	Anchor Guy Stubs
	Circuits 370-371	37	Anchor Poles
211	Aerial and U. G. Systems, Connection	37	Anchor Poles, Iron 47
	of 195-197	37	Anchor Poles, Dimensions of 53-57
19	Aerial Lines, Tension 31	98	Anchors
21	Aerial Circuits, Construction of 36	533	Auti-Parallel Feeding 412
22	Aerial Lines	542-543	Anti-Parallel Feeding, Conical Conduc-
50	Aerial Cables, Suspension of 68-69		tors 420–121
321-325	Aerial Lines, The Capacity of 263-265	540	Anti-Parallel Feeding, Cylindrical Con-
326	Aerial Lines, Inductance of 265		ductors 418-420
378	Aerial Cables, Heating of 309), 142 Arc Circuit Conductors, 129, 132, 136
629	Aerial and Paneled Conductors, Heat	128	Arc Lamp, Insurance Regulations for . 129
	Limits for 471, 472, 475	130	Arcs on Constant Potential Circuits, In-
107	Air Expansion Arrester	005	surance Regulations for
123, 131	, 147 Alternating Current System, Ins.	637	Arc Lamps on Constant Potential Cir-
	Regulations for 127, 132, 137	200	cuits
304	Alternating Currents, Measurement of	666	Arc Lamps, Transformers for 503
	Inductance by Means of 255	562	Areas, Relative, covered by Multiple-
308	Alter rating Current Potential, Measure-	194	Wire Systems
	ment of	104	Armored Cables
308-316	Alternating Current Circuits, Measure-	108	Arresters, High Resistance 114
	ments on	105	Arrester, Wurtz
309	Alternating Current Circuits, Measurement of Currents	105	Arrester, Thompson-Houston
	Alternating Current Circuits, Two Volt-	106	Arrester, Edison Lightning
311	meters, Power Measurement 258	103	Arrester, Mechanical Magnet
044	Alternating Current Circuits, Measure-	107	Arrester, Westinghouse
311	ment Power by 3 Ammeters 258	108	Arrester, Non-arcing, Wurtz
000 400	Alternating Currents, Conductors for	100	Arrester, Condenser
380-400	Afternating Currents, Conductors for	109	Arrester, Discriminating
200	Alternating Currents, Classification of	109	Arrester, Non-arcing Continuous Cur-
382	Effect on Conductors		rent, Wurtz
382	Alternating Currents, Skin Effect in	112	Arre fers, Lightning, for Cables 122
002	Conductors for	113	Arresters, Lightning, for Sw. Bds 123
383	Alternating Current Circuits, Current	114	Arresters, Sneak Current
000	Density in	111	Automatic Cut-outs
	Density in		
	*/(161	

ART.	PAGE.	ART.	PAGE
514	Automatic Cut-outs 398	181	Callander Solid Conduit 160
	Average Values of Circuit Constants	170	Callander, Weber Conduit, The 147
000-000	322–324	504	Calculation of Loads
010			Calculation of Feeders 441-446
219	Ballistic Galvanometer 205-206		
14	Bamboo as an Insulator		Calculation of Distributing Mains . 467-468
122	Batteries, Insurance Regulations for . 126	613-630	Conducting System in Multiple Arc,
270	Battery Resistance, Measurement of . 239		General Design for 463-472
270	Battery Resistance, Measurement of, by	623	Calculation of Feeds
	Voltmeter	625-629	Calculation of Inside Wiring 470-471
272	Battery Resistance by Deflection 240	727-738	Calculation, Tabular, for Cost of
274	Battery Resistance by Condenser 240		Line 560-567
275	Battery Resistance by Equal Deflection 241	647	Calculations for Compensators . 490-491
387	B, Definition of 317	126-154	Capacity of Wires, Insurance Regula-
578	Best Number of Feeds 446		tions for
581	Big Cotton Wood Plant 519	245	Capacity
189	Blackpool Conduit		Capacity Measurement 246–250
682		290	
	Blue Lakes Plant 519	230	Capacity, Estimation of, by Thomson's
±00-±00	Bodies, adjacent, Effect on the Capacity		Method 218
	of Circuits	291	Capacity, Measurement of, by Gott's
61	Bolts, Cross-Arm		Method
74	Bonding Rail 80-82	292	Capacity, Measurement of, by Divided
76-77	Bonding-Resistance of, Rail 83-84		Charge 249–250
81	Bonds, Railway, Size of 86	321-325	Capacity of Aerial Lines, The 263-265
239-240	Boyer's Speed Recorder 221-222	382	Capacity
46	Brackets 64	384	Capacity
60	Braces, Cross-Arm	400-105	Capacity, Effect of 329-331
18	British Post-Office, Specifications 26-27	427	Capacity, Effect of
18	British Wire, Specification 26–27		Capacity, Inductance, and Resistance,
18	British Specifications for Iron Wire 28		Circuits containing 365–371
203	British Post-Office, Telephone Cable . 188	459_460	Capacity of Circuits as Modified by Par-
	Branch Circuits, Description of Current	100 100	allel Wires 370–371
001-000	and Potential 282-286	450 400	
213	Bridge, Wheatstone 198–201	400-100	Capacity of Circuits, Effect of Adjacent
		40	Bodies on
2 4	Bridge, Slide Wire 201–202	12	Carrying Capacity of Paneled Wire 12
175	Brooks Conduit	119	Care and Attendance, Insurance Regula-
180	Buda-Pesth Conduit 170-171		tions for
13	Cable, Flexible 18-21	131	Car Wiring, Insurance Regulations
	Cable, Switchboard, Protectors . 122-124		for
112	Cable Protectors	227	Cardew Voltmeter 211
193	Cable Sheaths for Alternating Currents 174	79	Cast Railway Joints 85
194	Cables, Armored 175	19	Catenary, The, Equations of 32
195	Cables, Siemens 175	169	Cement-Lined Iron Pipe Conduit 146
198	Cables, Telegraph 183	88	Center-Pole Construction 91
199	Cables, Submarine 183-185	88	Center-Pole Railway Construction, 91
201	Cables, Paper,	91	Center-Pole Construction 96
201	Cable Transmission 186-188	568-574	
202-210	Cables, Telephone 188-194	573	Center of Distribution and Location of
203	Cable, Telephone, British Post-Office . 188		Feeders 443
204	Cable, Patterson, Telephone 188-189	460	Character of Dielectrics
205	Cables, Glover, Telephone 189-190	171	Chenowith Conduit, The
206	Cables, Fowler-Waring, Telephone 190	10	Circular Mil, The
207	Cable. Felten-Guilleaume, Tele-	16	
201		10	Circular Millage of Combinations of
one	phone	04	Wire 000 to No.3
208	Cable, Beaded, Hermann, The, Tele-	53	Circuits, Power
13610	phone	72	Circuits, Electric Railway 7
50~ .(0)	Cable Joints and Splices 193-195	73-85	Circuit, Railway Return 77-9
211	Cable Heads 197	75-77	Circuit-Rails as Railway Return 82-8
377	Cables, Conduit, Heating of 308	115-162	Circuits, Insurance Regulations . 125-14
33-35	Calculations for Pole Strength 41-45	185	Circuits, The Introduction of 167-16
240	Calculation for Boyer's Speed Recorder 222	196	Circuits, Edison 178-18

ART.		1	
197	PAGE.	ART.	PAGE.
	Circuits, The Farranti 182-183		Circuits, Series, Design for 398-101
200	Circuits, Power Distribution 185-186	521	Circuits, Constant Current, Embracing
308-316	Circuits, Alternating Currents, Measure-	}	Generators and Receivers at varying
	ments on		Distances 401
391	Circuits, Alternating, Expenditure of	534	Circuits, Parallel Distribution of, Poten-
	Energy in		
205 206		005	tial in
399-390	Circuit Constants, Average Values	637	Circuits, Constant Potential, Arc Lamps
	of		on
397–398	Circuits Containing Resistance and In-	668	Circuit Wiring, Secondary, Transformer, 505
	ductance	680	Circuit, Long Distance, Typical 517
405-407	Circuits with Capacity, Solution of En-	382	Classification of the Effect of Alternat-
	ergy Equation for		
400 400		463	ing Currents
400-109	Circuits with Capacity, Solution of	!	Classification of Series Circuits . 372-374
	Energy Equation for, Discussion	132	Clear Work, Insurance Regulations for, 130
	of	530	Closet System 410-111
407-409	Circuits Containing Resistance, Induct-	706	Coal Consumption per Watt Hour 541-742
	ance, and Capacity, Energy Equa-	302-307	Coefficients, Inductance, Measurements
	tion, Discussion of 333-335		of
419	Circuits, Simple, with One Resistance	307	Co ffi ients of Mutual Inductance, Meas-
XXO	and One Inductance in Series, Electri-	001	
		404	urement of
	cal Properties of 340-341	401	Coefficients of Inductance 327-329
426	Circuits, Simple, with One Resistance	182	Cologne Conduit
	and One Capacity in Series, Electri-	13	Composite Wire
	cal Properties of 346-348	16	Combination Wire Table 24
428	Circuits, Simple, containing Resistance	37	Composite Poles 52-57
	and Capacity in Series, Graphical	46	Come Alongs
	Solution of Electro-motive Force 347	372	
			Commercial Fuse Wire, Table for 300
429	Circuits, Simple, containing Resistance	418	Composition and Resolution of Electro-
	and Capacity, Variable Resistance	m 0.4	motive Forces ,
	in	584	Compensator
430	Circuits, Simple, with Several Resist-	586	Compensator in Railway Work 452
	ances and Capacities in Series, Elec-	646	Compensator on Three-Wire System . 400
	trical Properties of	647	Compensators, Calculations for . 400-491
431	Circuits, Simple, containing Resistance,	718-738	Commercial Considerations of Trans-
	Inductance, and Capacity in Series,		mission Problems 550-565
	Electrical Properties of 349-350	21	Construction, Line
432	Circuits, Simple, with Several Resist-	21	Construction, Aerial Circuits 33
432		68	
	ances, Inductances, and Capacities in		Construction Details
	Series, Electrical Properties of . 350-351	74	Construction, Ground Wire 80
433	Circuits containing Resistances, Induct-	109	Condenser Arrester
	ances, and Capacities in Multiple Arc,	109	Continuous Current Arrester 119
	Electrical Properties of 351-354	124, 126,	, 127, 130, 131, 135, 149, 151, 154, Conduc-
436	Circuits Containing Mutual Inductance,		tors, Insurance Regulations for, 127,
	Properties of 357-360		128, 130, 131, 132
440 440	Circuits Containing Resistance and In-		134, 137, 138, 139
710-113		130-136	Conduit, Interior, Insurance Regulations
	ductance, Impetance Tables for, 360-365	100-100	
450-459	Circuits Containing Resistance, Induc-	1.00	for
	tance, and Capacity 365-371	163	Construction of Underground Circuits . 141
459-460	Circuits Capacity, Effect of Adjacent	164	Conduits, Classification of 141
	Bodies on 370–371	165	Conduit, Valentine
459_160	Circuits Capacity, as Modified by Par-	166	Conduit, Wyckoff
100-100	allel Wires 370–371	166	Conduit, McDonald 143
4.00			Conduit, Paper
463	Circuits, Series, Classification of . 372-374		
464	Circuits, Constant Current with Genera-		Conduit, Zinc Tubing
	tors and Receivers at Fixed Distances, 373		Conduit, Iron Pipe in Asphalt Concrete, 145
466	Circuit, Main Current Density . 374-376	168	Conduit, Wrought-Iron Pipe in Hy-
467	Circuits, Series, Economical Conditions		draulic Cement 144
	in	168-169	Conduits, Pipe 144-147
407	Circuite Series Conductor Tables for	169	Conduit, Cement-Lined Iron Pipe 146
497	Circuits, Series, Conductor Tables for,		Conduit, Callander-Weber 147

ART.	PAGE.	ART.	PAGE
170	Conduit, The Dorset	521	Constant Current Circuits Embracing
191	Conduit, Love Railway 172-173		Generators and Receivers at Varying
171	Conduit, The Chenowith 147		Distances
172-174	Conduit, Terra-Cotta, The 148-152	531	Conical Conductors 411-412
173	Conduit, Terra-Cotta Separate Duct . 150	535-537	Conductors, Cylindrical, Parallel Feed-
174	Conduit, The Crompton 152-154		ing 414–416
175	Conduit, Brooks	538-539	Conical Conductors, Parallel Feeding,
176	Conduit, The Johnstone 156-157		416–418
177	Conduit, Kennedy, The 157	540-541	Conductors, Cylindrical, Anti-Parallel,
178	Conduit, The St. James, London 158		418-420
179	Conduits, The Parisian Systems 159	542-543	Conical Conductors, Anti-Parallel Feed-
180	Conduits, Inflexible 160		ing 420-421
181	Conduit, Callendar Solid 160	579	Conductors, Efficiency of 446-447
182	Conduit, Cologne	620	Conductors, Buried, Table of Heating
182	Conduit, Zurich		Limits 472–475
188-193	Conduits for Electric Railways . 169-174	629	Conductors, Aerial and Paneled, Heat
189	Conduit, Buda-Pesth 170-171		Limits for 471–475
189	Conduit, Blackpool Railway 170-171	663	Conductors, Economy in, With Trans-
192	Conduit, Lenox Avenue Railway . 173-174		former Service 501
193	Conduits, Metallic, for Alternating Cur-	675	Connection, Polyphase System, Meth-
	rents		ods of 511–513
194	Conduit Conductors	694	Continuous Current, Long Distance
194	Conductors for Conduits 175		Transmission with 524
196	Conductors, Edison 178-182	695	Construction Line, Long Distance
211	Connection of Underground and Aerial		Transmission for
	Systems 195–197	697	Conducting Material for Transmission
220	Constant of Galvanometer 206		Systems, Relative Amounts 526-527
	Condensers 214–217	698	Conductors, Cost
231	Condensers, Arrangement of 215-217	700	Conduit, Cost
269	Condenser, Measurement of Galvanom-	706	Consumption Coal per Watt Hour, 541-542
	eter Resistance by 238-239	711	Consumption of Gas by Gas Engines . 544
274	Condenser, Measurement Battery Re-	718-738	Considerations, Commercial, of Trans-
	sistance by 240		mission Problems 550-565
329	Conductors	145	Cooking, Insurance Regulations for 134
	Conductors, Continuous Current . 268-310	11	Copper Wire 8
	Continuous Current Conductors , 268-310	11	Copper Resistance, Variations in 9
343-349	Conducting Circuit, Distribution of Po-	11	Copper Wire, Impurities in 9
349	tential in	12	Copper Wire, Table of the Properties
350	Conductance	40	of
€00	Conductance, Graphical Method of De-	12	Copper Wire, Fall of Potential in 12
357	termining	18	Copper Wire, Specifications for 26-27
	Conductors, Heating of	13-18	Copper Wire, Resistance of 11-20
900-303	Conductors, Radiation and Convection	20	Copper Wire, Tensions in 34–35
900 909	from	144	Cord Pendants, Insurance Regulations
365	Convection	40=	for
379	Conductors, Heating of	497	Cost of Laying One Additional Ton of
	Concentric Cables, Heating of 310	Man	Copper, Table of 390-291
376	Conduit Cables, Heating of 308	503	Cost of Plant Minimum to obtain Maxi-
990-400	Conductors for Alternating Currents	000 800	mum Income, Design for 393-194
200	311-371	098-138	Cost of Production and Distribution,
382	Conductors, Alternating	000	528-567
382	Conductors for Alternating Current,	698	Cost, Conductors
401	Skin Effect in	700	Cost, Conduit
464	Constant Current Circuits with Genera-	701	Cost of Telephone and Telegraph
407	tors and Receivers at Fixed Distances, 373	700	Lines
467	Conditions, Economical, in Series Cir-	702	Cost of Railway Lines , 537-538
480	cuits	704	Cost, Power Stations
483	Conduits Equation for Cost of . 383-385	705	Cost of Producing Energy 540-542
497	Conductor Tables for Society Circ. 14, 200, 200	705	Cost of Installing and Maintaining
401	Conductor Tables for Series Circuits 388-389		Steam Plants 540-541, 550-559

ART.	PAGE.	ART.	PAGE.
707	Cost of Water-Power 542-544	111	Cut-outs, Automatic
710-712	Cost of Gas Engines 544	127, 129	, 139 Cut-outs, Insurance Regulation for,
712	Cost of Producing Energy per Kilo-		128, 129, 126
	Watt Hour 546-550	535-537	Cylindrical Conductors, Parallel Feed-
713	Cost of Lighting by Wind-Power . 545-546		ing 414-116
714	Cost, Actual, of Producing Electrical	540-541	Cylindrical Conductors, Auti-Parallel
	Energy 547-549		Feeding 418-420
714	Cost of Producing Electricity in Eu-	218	D'Arsonval Galvanometer 204-205
	rope 547–549	44	Dead-Ending 62-63
716	Cost of Producing Electricity in	251	Deflection, Measurement of, Resistance
	America		by
727-738	Cost of Line, Tabular Calculation for,	266	Deflection, Equal Resistance Galvano-
	560-567		meter by
26	Cross-Arms	272	Deflection, Resistance Battery by 240
57	Cross-Arms	385	Definition of H 316
60	Cross-Arm Braces	387	Definition of B
61	Cross-Arm Bolts	287	Definition of μ
60	Cross-Arms, Placing of 76	466	Density Current, Main Circuit . 374-376
60	Cross-Arms, Location of	488-494	Depreciation Rates 386-387
101	Cross-Overs and Switches	687	Deptford Plant 521
174	Crompton System, The 152-154	469-471	Design for Heating Limit 377-379
300	Crosses, Localization of	472	Disign for Mechanical Strength . 379-380
33	Crushing Strength, Timber 43	473-474	Dasign for Minimum First Cost of
96	Curves, Railway 105-106		Line
96	Curves, Location of 105-106	475	Design for Minimum First Cost of Sta-
96	Curve Construction, Right and Left 106		tion
214	Current Unit	477-408	Design for Minimum First Cost of Plant
	Current Strength, Measurement of, 244-246		and Minimum Cost of Maintenance
283	Current Strength by Ammeter 244		and Operation
285	Current Strength, Measurement of, by	498	Design to Secure Total Minimum First
	Voltmeter 245		Cost of Installation 380–392
286	Current Strength, Estimation of, by	500	Design for Accomplishment of Best Ser-
	Differential Galvanometer 246		vice
287	Current Strength, Estimation of, by	503	Dusign for Minimum Cost of Plant to
	Slide Wire Bridge 246		Obtai i Maximum Income 303-304
309	Current Measurement of Alternating	516-519	Design for Series Circuits 308-401
	Circuits		Designs, Special, for Three-Wire Sys-
313	Currents, Diphase, Measurements on . 259		tem
329-379	Current, Continuous, Conductors for,	68	Details, Construction
	268-310	495	Determination of Factor K and K' 3.7
351-356	Current Distribution in Branch Circuits	635	Determination of Mean Annual Current, 431
	282-286	633	Diagram, Station Loads 477-179
365	Current, Strength to Heat Wires 293	638	Diagrams, Electric Railway Load, 483-434
365	Curves, Current Strength to Heat Wires	337	Dielectrics, Resistance of 273
	293	460	Dielectrics, Character of
368	Currents in Paneled Wire 295	254	Differential Galvanometer, Measure-
383	Current Density in Alternating Current		ment of Resistance by 230
	Circuits	286	Differerential Galvanometer, Measure-
464	Current, Constant, Circuits with Gener-		ment Current Strength 246
	ators and Receivers at Fixed Dis-	37	Dimensions for Anchor Poles 50-57
	tances	312	Diphase Circuits, Measurements on 257
466	Current Density, Main Circuit . 374-376	1	Distribution in General
	Curves and Tabular Data for Various	1	Distribution Methods
	Forms of Conductors, Parallel Sys-	2	Distribution in Series 2
	tem 421-423	3	Distribution in Parallel 2
633	Curves, Station Load 476-478	5	Distribution, Indirect
B33	Curves, Load, St. James Station . 476-478		Discriminating Arrester
	Current, Mean Annual, Determination		Distribution of Potential in Conducting
	of 481		Circuit
394	Current, Continuous, Long Distance	351-356	Distribution of Potential and Current
	Transmission with 524		in Branch Circuits 282-286

ART.	PAGE.	ART.	PAGE.
	Discussion of Energy Equation 324	121-132	Electric Railways, Insurance Regula-
	Discussion of Solution of Energy Equa-		tions for 126-133
400-400	tions for Circuits with Capacity. 332–333	188-193	Electric Railmay Conduits 169-174
405 400			Electrical Instruments 198-223
407-408	Discussion of Energy Equation of Cir-	228	Electrostatic Voltmeter
	cuits Containing Resistance, Induc-		
	tance, and Capacity 333-335	241~328	Electrical Measurement, Methods
461-520	Distribution, Series 372-401		of
461	Distribution, Series, Origin of 372	242	Electrical Inductance
522-642	Distribution, Parallel 402-487	243	Electrical Quantity 223-224
	Distribution, Methods of 406-423	277-281	Electro-Motive Force, Measurement
534	Distribution of Potential in Parallel		of
	Circuits 412	281	Electro-Motive Force, Measurement
574	Distributing Mains		of by Wheatstone Method 243
	Distributing Mains, Calculation of 467-468	288_292	Electrostatic Capacity, Measurement
		200 202	of 246-250
.6 53	Distribution, High and Low Potential	290	Electrostatic Capacity by Thomson's
	from same Station 494-495	200	
4660	Distribution Accumulator 499	001	Method
664-667	Distribution, Methods of, by Trans-	291	Electrostatic Capacity by Gott's
	formers 502–504		Method
670	Distribution of Insulated Transformers,	292	Electrostatic Capacity by Divided
	Efficiency of 506-507		Charge, Measurement of 249-250
678-694	Distance, Long, Transmission Plants, 516, 525	317	Electrical Railway Testing 259
	Distribution and Production, Cost of, 528-567	371	Electric Heating 297-298
292	Divided Charge for Measuring Capacity,	371	Electric Heating, Cost of 297-298
202	249-250	389	Electro-Motive Force due to Varying
415	Division of Vectors		Field
170		418	Electro-Motive Forces, Composition and
	Dorset Conduit, The	110	Resolution of
46	Dynamometers, Wire 65	410	
46	Dynamometers 65	419	Electrical Properties of Simple Circuits
229	Dynamometers, Siemens 214		with One Resistance and One Induct-
75	Earth, The, as a Railway Return Circuit 82		ance in Series 340–341
467	Economical Conditions in Series Cir-	425	Electrical Properties, Simple Circuits
	cuits 376–377		with Several Resistances and Induct-
.663	Economy in Conductors with Trans-		ances in Series 344-346
	former Service 501	426	Electrical Properties of Simple Circuits
106	Edison Lightning Arrester 116		with One Resistance and One Capacity
196	Edison System		in Series, 346-348
196	Edison Mains 178-182	428	Electro-Motive Force in Simple Circuits
196	Edison Circuits 178–182		Containing Resistance and Capacity in
30	Effect of Temperature 33–34		Series, Graphical Solution of 347
193	Effect on Alternating Current Circuits	430	Electrical Properties of Simple Circuits
100		450	The state of the s
	of Metallic Conductors and Cable		with Several Resistances and Capaci-
	Sheaths	101	ties in Series
336	Effect of Temperature on Resistance . 272	431	Electrical Properties of Simple Circuits
343	Effect of Leakage 280		Containing Resistance, Inductance,
384	Effect of Inductance 315		and Capacity in Series 349-350
	Effect of Mutual Inductance 326-327	432	Electrical Properties of Simple Circuits
402-405	Effect of Capacity 329-351		with Several Resistances, Inductances,
427	Effect of Capacity		and Capacities in Series 350-351
459-460	Effect of Adjacent Bodies on Capacity of	433	Electrical Properties of Circuits with
	Circuits 370-371		Resistances, Inductances, and Capaci-
379	Efficiency of Conductors 446-447		ties in Multiple Arc 351-354
670	Efficiency of Distribution of Insulated	638	Electric Railway Load Diagrams 483-484
	Transformers 506-507	1	Electric Railway Wiring 483-487
18	Electrical Properties of Wire, Specifica-	714	
		414	Electrical Energy, Actual Cost of Pro-
72	tions for	714	ducing
84-87	Electric Railway Circuits	714	Electricity in Europe, Cost of Produc-
	Electrolytic Action 89–90		ing
150	Electric Gas Lighting, Insurance Regu-	714	Electricity in America, Cost of Produc-
	lations for		ing ESI ESC

ART.	PAGE.	ART.	PAGE,
390	Energy Equation	535-537	Feeding, Parallel, Conical Conductors
391	Energy, Expenditure of, in Alternating Circuits		416-418
397	Enarry Equation Discussion of	555~559	Feeding, Parallel, Conical Conductors
	Energy Equation, Discussion of 324		416–418
405-407	Energy Equation for Circuits with Ca pacity, Solution of 331-333	540-541	Feeding, Anti-Parallel, Cylindrical Conductors
406-409	Energy Equation for Circuits with Capacity, Discussion of 332–333	542-543	Feeding, Anti-Parallel, Conical Conductors 420-421
407-408	Energy Equation of Circuits containing	563_567	Feeder and Main System 435-439
	Resistance, Inductance, and Capacity,	573	The state of the s
		913	Feeders, Location of Center of Distri-
405 400	Discussion of		bution
	Energy Equation of Circuits cotanining		Feeders, Calculation of 414-446
	Resistance, Inductance, and Ca-	578	Feeds, Best Number of 446
	pacity	590-594	Feeders, Necessary in Section and Fall
705	Energy, Cost of producing 540-542		of Pressure 453-455
712	Energy, Cost of producing per Kilo-	623	Feeds, Calculation of
	Watt Hour 546-570	688	Feeder and Main System with Trans-
710-712	Engines, Gas, Cost of		former 504
711	Engines, Gas, Consumption of gas in . 544	207	Felten-Guilleaume Cable, Telephone
91	Equations for the Catenary	201	191–192
275	Equal Deflection, Measurement of Bat-	384	
210	tery Resistance	221	Field, Magnetic, Due to Current 315
390			Figure of Merit of Galvanometer 206
	Equation of Energy , . 318	17	Fire, Inspection of
397	Equation, Energy, Discussion of 324		Fire Underwriters, Regulations . 125-140
400	Equation of Energy, General, for Mutual	473-474	First Cost of Line, Design for Minimum
	Inductive Circuits 326		380–381
480	Equation for Cost of Conductors . 383-385	58	Fittings, Iron and Steel 74
483	Equation for Cost of Conduits 384	559	Five-Wire Systems
434-435	Equivalent Resistance and Inductance, Method of	130	Fixture Work, Insurance Regulations for
560	European Multiple Wire Systems 432	16	Flexible Wire, Insulated 18-21
714	Europe, Cost of Producing Electricity	16	Flexible Cable 18–10
***	in 547-549	16	Flexible Cable, Tables of 23, 19-21
E99 595	Evolution of the Parallel System . 402-406	43	Fluid Insulators 62
85	Examples of Electrolytic Action 89-97	683	Folsom Plant
77	*	389	Force, Electro-Motive, Due to Varying
4.6	Experiments upon the Resistance of	909	Field
405	Return Circuits 84 Expansion Arrester, Air	206	Fowler-Waring Telephone Cable 190–191
107		685	Frankfort-Lauffen Plant 519
158	Exterior Wires, Insurance Regulations, 137		
619	Example of Street Loading 466-467	684	Fresno Plant
391	Expenditure of Energy in Alternating	139	Fuses, Insurance Regulations for 136
	Circuits		Fuses
703	Expense Operating Street Railway 538-539	373	Fuse Wire, Length and Carrying Ca-
495	Factor K and K' , Determination of . 387		pacity
12	Fall of Potential in Copper Wire 12	374	Fuse Wires, Lead and Tin 305
347	Fall of Potential, Representation of, 278-279	14	Galvanizing
590-594	Fall of Pressure and Necessary Section	14	Galvanized Wire 17-16
	in Feeders 453-455	59	Galvanizing of Iron Fittings 74
690	Falls, Niagara, Plant 521	217-226	Galvanometer 203-204
84	Farnham's, I. H., Experiments on Elec-	217	Galvanometer, Thomson 203
01	trolytic Action 87–88	218	Galvanometer, D'Arsonval 204-205
197	Farranti, Circuits, The 182–183	219	Galvanometer, Ballistic 205-206
197	Farranti Mains 182-183	220	Galvanometer, Constant 206
	Faults, Localization of 250–254	221	Galvanometer, Figure of Merit of 206
	Faults in Line	225	Galvanometer Shunts 208–209
293-301			Galvanometer Resistance, by Equal De-
297	Faults, Line, Loop Test for 252	200	flection
297	Faults, Line, Murray's Method for 252	267	Galvanometer Resistance 237–238
298	Faults, Line, Varley Method for 253		Galvanometer Resistance by Wheat-
93	Feed Wire Insulators and Pole Tops, 97-99	207-208	
533	Feeding, Anti-Parallel 412		stone Bridge

ART.	PAGE.	ART.	PAGE
269	Galvanometer Resistance by Condenser	469-471	Heating Limit, Design 377-378
	238-239	620	Heating Limits, Table of, Buried Con-
271	Galvanometer Resistance, Measurement		ductors 472, 474-475
21.	by Deflection	629	Heat Limits for Aerial or Paneled Con-
187	Gas	000	ductors 471–472, 475
	Gas Engines, Cost of 554	25	Height of Poles
		686	Heilbronn-Lauffen Plant
711	Gas Consumed by Gas Engines 544		
9	Gauges, Wire 6-25	685	Helena Plant
9	Gauges, Wire, Relation between 7	608	Hermann Beaded Cable, The, Tele-
17	Gauge, Micrometer 25		phone 192–193
116	Generator or Motor, Insurance Regula-	131	High Potential Wires, Insurance Regu-
	tions for		lations for
400	General Equation of Energy for Mutu-	104	High Resistance Arresters
	ally Inductive Circuits 326	258-262	High Resistance, Measurement of, 232-235
464	Generators and Receivers at Fixed Dis-	653	High and Low Potential Distribution
	tances, Constant Current Circuits 373		from Same Station 494-495
521	Generators and Receivers at Varying	404	Hours of Lighting, Table of 395
	Distances, Constant Current Circuits,	504	Hours, Service, Table of 395
	embracing 401	615	Hours, Lamp, Number 464
613-630	General Design for Conducting System	51	Humming of Wires 69-70
	in Multiple Arc 463-472	5	Indirect Distribution
370	German Silver Wire for Rheostats 299		Indicators, Ground
205	Glover Cables, Telephone 189-190		Indicators, Ground for Alternating Cur-
329	Good Conductor	\$170 Z.10	rent
291	Gott's Method for Electrostatic Ca-	242	Inductance, Electrical
201	pacity 249		Inductance, Measurement of
347	Graphical Representation of Fall of Po-	326	Inductance of Aerial Lines
0	tential in Conducting Circuit . 278-279	382	Inductance
359	Graphical Method for Determining Con-		
0.77		384	Inductance
410	ductance	324	Inductance, Variable 344
428	Graphical Methods	384	Inductance, Effect of 315
410	Graphical Solution of Electro-Motive	397-398	Inductance and Resistance, Circuits
	Force in Simple Circuits Containing		Containing
5 1	Resistance and Capacity in Series 347		Inductance, Mutual, Effect of 326-327
74	Ground Wire Construction 80	401	Inductance, Coefficients of 327–329
	Ground Indicators 219–221	434-435	Inductance and Resistance Equivalent,
200-208	Ground Indicators for Alternating Cur-		Method of
	rent	450-459	Inductance, Resistance, and Capacity,
26 - '66	Ground Resistance, Measurement of		Circuits Containing 365-371
	236-237	180	Inflexible Conduits
31)	Gutta-Percha, Resistance of 274	224	Inferred Zero 207
23	Guying 45-46	421	Impedance 342
. 6	Guy Stubs, Anchor	440	Impedance Tables 360
64	Guy Rods	440-449	Impedance Tables for Circuits Contain-
C7	Guv Rope		taining Resistance and Inductance, 360-365
8	Hard Drawing 4	11	Impurities in Copper Wire 9
392 393	Harmonic Motion 320-322	686	Indian Orchard Plant 520
385	H, Definition of	1	Introduction 1
120	Heating, Insurance Regulations for 130	185	Introduction of Circuits, The 167-168
211	Heads for Cables	14	Insulated Wire
357	Heating of Conductors 287	16	Insulated Wire, Table of Weights of 19-21
353	Heating of Bare Wires Freely Sus-	14	Insulator, Bamboo as an
	pended 288	17	Inspection
335	Heating Power of Current	40	Insulators
365	Heating of Conductors	41-42	Insulators, The Value of 60-61
363	Heating of Insulated Wire 295	41-42	Insulators and Insulating, Power of 60-61
370	Heaters	43	Insulators, Fluid 60
	Heating of Insulated Cables 306–310	43	
373	Heating of Aerial Cables	63	Insulators, Oil
37.)	Heating of Concentric Cables 310	03	Insulators for Food Wire

577

ART.	PAGE.	ART.	PAGE
95	Insulators, Trolley 98-104	124	Insurance Regulations for Exterior
97	Insulators, Strain		Wires
99	Insulators, Railway Section 109	124	Insurance Regulations for Wires Enter-
115-162			ing Buildings
116	Insurance Regulations for Generator or	131	Insurance Regulations for High Poten-
	Motor	101	
119	Insurance Regulations for Care and At-	124	tial Wires
110		12/1	Insurance Regulations for Outside
124	tendance	105	Wires
	Insurance Regulations for Conductors . 127	125	Insurance Regulations for Inside Wires, 133
118	Insurance Regulations for Switchboards, 125	200	Insulation, Paper
145	Insurance Regulations for Resistance		Instruments, Electrical 198-223
	Boxes	226	Instruments, Weston, The 209-211
148	Insurance Regulations for Lightning Ar-	258-261	Insulation Resistances, Measurement
	resters		of
119	Insurance Regulations for testing 126	261	Insulation Resistance 234–235
130	Insurance Regulations for Arc Circuit	342	Insulators, Resistance of 275
	Conductors	369	Insulated Wires, Heating of 295
126	Insurance Regulations for Interior Con-	369	Insulated Wire Freely Suspended, Heat-
	duits		ing of
127	Insurance Regulations for Arc Lamps . 128	375-379	Insulated Cables, Heating of 306-310
128	Insurance Regulations for Low Pressure	498	Installation, Design to Secure Total
	Circuits		Minimum First Cost of 389-392
128	Insurance Regulations for Outside Aerial	625-629	Inside Wiring, Calculation of 470-471
	Conductors	670	Insulated Transformers, Efficiency of
129	Insurance Regulations for Underground		Distribution of 506-507
	Conductors	705	Installing and Maintaining Steam Plants,
130	Inside Wiring, Insurance Regulations for, 127		Cost of 540-541, 556-559
131	Insurance Regulations for Sizes of Con-	8	Iron and Steel Wire, Properties of 5
	ductors	8-18	Iron and Steel Wire, Strength of 5-31
135	Insurance Regulations for Interior Con-	18	Iron Wire Specifications, British Post-
	duit 131-104		Office
136	Insurance Regulations for Cut-Outs, 128-129	18	Iron Wire Specifications 30
137	Insurance Regulations for Fuses 136	18	Iron Wire, Mechanical Properties of . 31
138	Insurance Regulations for Switches 129	20	Iron and Copper Wire, Line Tensions
139	Insurance Regulations for motors 126		in 34–35
140	Insurance Regulations for Alternating	37	Iron Anchor Poles 47
	Current Systems 127-132-137	37	Iron Top Poles
140	Insurance Regulations for Arcs on Con-	58	Iron and Steel Fittings 74
	stant Potential Circuits 132	59	Iron Fittings, Galvanizing of 74
141	Insurance Regulations for Fixture Work, 131	91	Iron Poles
142	Insurance Regulations for Electric Gas	168	Iron Pipe Conduit in Asphalt Concrete, 145
4-X-2	Lighting	370	Iron Wire Rheostats, Safe Current for . 297
143	Insurance Regulations for Pendants 132	85	Jackson, D. C., Experiments on Electro-
143	Insurance Regulations for Sockets 131		lytic Action 88
144	Insurance Regulations for Cord Pendants, 132	47-49	Joints in Wire 66–68
145	Insurance Regulations for Heating 130	49	Joints, Strength of 67-68
145	Insurance Regulations for Cooking 130	124	Joints of Wires, Insurance Regulations
	Insurance Regulations for Electric Rail-	121	for
131	ways	176	Johnstone Conduit, The 156–157
101	Insurance Regulations for Power Sta-		Joints and Splices for Cables 193–195
121		184	Junction Boxes for Street Railway
124	tions	104	Feeds 166
	Insurance Regulations for Trolley Wires, 127	357	Joule's Law
131	Insurance Regulations for Car-wiring . 133		
115	Insurance Regulations for Lighting and		Kennedy Conduit
	Power Wires		Keys
122	Insurance Regulations for Batteries 126		Kelvin Voltmeter
126–154	Insurance Regulations for Capacity of		Kirschhoff's Laws
	Wire		Lattice Top Poles 48-57
124	Insurance Regulations for Joints of		Lattice Pole, Railway 94 Laws Kirschhoff's
	Wires	249	Laws, Kirschhoff's

ART.	PAGE.	ART.	PAGE.
248	Law, Ohm's	701	Lines, Telephone and Telegraph, Cost of,
342	Leakage, Line		535-537
348	Leakage, Effect of	654	Leonard System of Motor Regulation . 495
		638	
374	Lead and Tin Fuse Wire 305		Load, Electric Railway, Diagrams, 483-484
192	Lenox Avenue Railway Conduit . 173-174	637	Lamps, Arc, on Constant Potential
66	Lightning Rods		Circuits 482
102-113	Lightning Arresters 113–123	633	Loads, Station, Diagrams 477-479
112	Lightning Arresters for Cables 122	633	Load Curves, St. James Station . 476-478
113	Lightning Arresters for Switchboards . 123	633	Load, Station, Curves 476-478
116	Light, Heat, or Power Circuits, Insur-	633-636	Loads, Station 476-482
	ance Regulations for	629	Limits, Heat, for Aerial and Paneled
122	Lightning Arresters, Insurance Regula-		Conductors 471–472, 475
	lations for	620	Limits, Table of Heating, Buried Con-
115	Lighting and Power Wires, Insurance	020	ductors 472–475
220	Regulations for	P04	
00		504	Loads, Calculation of 394
20	Line Tension for Iron and Copper Wire,	619	Loading, Street, Example of 466-467
0.4	34-35		Loads, Street 464–467
21	Line Construction	465	Location of Station
22	Lines, Aerial	573	Location of Feeders and Center of Dis-
29	Lines, Stresses in 40-41		tribution
58	Line Fittings	568-572	Location, Central Station 439-442
96	Line Work, Railway 101	527	Loop System 408-410
99	Line Sections, Railway 109	528	Loop, Spiral 410
101	Line Crossings, Railway		Long Distance Transmission Plants, 516, 525
263-264	Line Resistance, Measurement of, 236-237	980	Long Distance Circuit, Typical 517
	Line Faults, Localization of 250-254	694	Long Distance Transmission with Con-
296	Line Faults by Overlap Method	004	_
300		00"	tinuous Current 524
	Line Crosses, Localization of	695	Long Distance Transmission Line, Con-
342	Line Leakage		struction for 523
96	Location of Curves 105–106	17	Machines, Testing 24–25
96	Location of Railway Curve Guy Poles . 106	676	Machines, Polyphase 513-515
293-301	Localization of Faults 250–254	105	Magnetic Blow-out Arrester 115
300	Localization of Crosses 253	73-74	Methods of Rail Bonding 80-82
45	Loops 63	235	Magneto
297	Loop Test for Line Faults 252	384	Magnetic Field Conduit and Current . 315
261	Loss of Charge, Resistance, Measure-	384	Magnetic Field Due to Current 315
	ment by	196	Mains, Edison 178-182
191	Love Railway Conduit 172-173	197	Mains, Farranti
687	Lowell Plant	466	Main Circuit, Current Density
130	Low Pressure Circuits, Insurance Regu-		
100	, , , , , , , , , , , , , , , , , , , ,	563-567	
(20)	lations for	574	Mains, Distributing
282	Lumsden's Method, Measurement of		Mains, Distributing, Calculation of, 467-468
	E.M.F.	668	Main and Feeder System, with Trans-
282	Lumsden's Method, Measurement of		formers 504
	Potential 244	7	Manufacture, Wire 4
514	Lamp Cut-outs 398	182	Manholes 163–165
614	Lamps, Ratio of Number Installed to	335	Matthieson's Standard 271
	Number Actually Lighted 464	166	McDonald, The, Conduit 143
615	Lamp Hours, Number 464	48	McIntire Splices 66-67
666	Lamps, Arc, Transformers for 503	49	McIntire Joints, Strength of 68
404	Lighting, Table of Hours of 395	635	Mean Annual Current, Determination of, 481
	Limit, Heating, Design 377–379	661	
473_474	Line, Design for Minimum First Cost of,	001	Means of Accumulators, Regulation by,
TIO-TI'S		071 075	499 -500
005	380–381		Measurement of Resistance 226-242
695	Line Construction for Long Distance	251	Measurement of Resistance by Deflec-
	Transmission		tion
727-738	Line, Cost of, Tabular Calculations for,	254	Measurement of Resistance by Wheat-
	560-567		stone Bridge
713	Lighting by Wind Power, Cost of, 545-546	254	Measurement of Resistance by Differ-
702	Lines, Railway, Cost of 537-538		ential Galvanometer 230

ART.	PAGE.	ART.	PAGE.
255	Measurement of Resistance by Volt-	18	Mechanical Properties of Wire 29
	meter	18	Mechanical Properties, Iron Wire 31
257	Measurement of Small Resistance, • 231-232	106	Mechanical Magnet Arrester 116
256	Measurement of Resistance by Voltme-	472	Mechanical Strength, Design for 379-380
	ter and Ammeter 230-231	630	Mechanical Methods 471-475
	Measurement of High Resistance . 232-235	1	Methods of Distribution
258–259	Measurement of Resistance by Volt-	24	Methods of Preserving Poles 37
	meter	108	Metal Arresters, Non-arcing 117
261	Measurement, Resistance by, Loss of	193	Metallic Conduit and Cable Sheaths for
	Charge	0.44 0.00	Alterating Currents
	Measurement of Line Resistance. 236-237		Methods of Electrical Measurement, 223-267
264	Measurement, Ground Resistance 237	410	Methods, Graphical
267	Measurement of Battery Resistance by	434-435	Methods of Equivalent Resistance and
.)70	Voltmeter	F00 F45	Inductance
270	Measurement of Battery Resistance 239		Methods of Distribution 406–423
274	Measurement of Battery Resistance by		Methods of Regulation 447-453
075	Condenser	630	Methods, Mechanical 471-475
275	Measurement of Battery Resistance by	664-667	Methods of Distribution by Trans-
077 NOI	Equal Deflection	0775	formers 502–504
	Measurement of Electro-Motive Force,	675	Methods of Connection, Polyphase
211-201	242-243	17	System 511–513
278	Measurement of Potential by Weston		Minimum First Cost of Line, Design
	Voltmeter ,	210-111	for
280	Measurement, Electro-Motive Force . 243	475	Minimum First Cost of Station, Design
282	Measurement of Potential by Lums-	210	for
	den's Method 244	477-498	Minimum First Cost of Plant and Mini-
283-288	Measurement, Current Strength . 244-246		mum Cost of Maintenance and Opera-
283	Measurement, Current Strength of Am-		tion, Design for
	meter 245	503	Minimum Cost of Plant to obtain Maxi-
286	Measurement, Current Strength, Differ-		mum Income, Design for 392-394
	ential Galvanometer Method 246	643-697	Miscellaneous Methods 488-527
288-292	Measurement, Electrostatic Capacity,	4	Mixed Systems 2
	246-250	688	Montmorency Falls Plant 521
304	Measurement of Self-Inductance 255	120	Motors, Insurance Regulations for 126
304	Measurement of Inductance by means		Motion, Harmonic
	of Alternating Currents 255	561	Motor Transformers
306-307	Measurement, Mutual Inductance, 255-256		Motor Transformers 488–495
307	Measurement of Mutual inductance,	652	Motor Transformers, Running and Feed-
	Coefficients of	OW 4	ing in Series 493–494
308-316	Measurements on Alternating Current	654	Motor Regulation, Leonard System of . 495
	Circuits		Multiple Wire Systems 423-434 Multiple Series Systems, Modifications
308	Measurement of Alternating Current	554~500	of Three-Wire System 428–432
000	Potential	560	Multiple Wire Systems, European 4/2
309 .	Circuits 257	562	Multiple Wire Systems, Relative Areas
210	Measurement of Power in Alternating	002	covered by
310	Circuits, The	316-630	Multiple Arc, General Design for Con-
310	Measurement of Power in Alternating		ducting System in 463-472
010	Current Circuit, Two Voltmeters 258	297	Murray's Method for Line Faults 252
311	Measurement of Power in Alternating	306-307	Mutual Inductance, Measurement of, 255-256
941	Current Circuits by three Ammeters . 258	328	Mutual Inductance on Transmission
312-316	Measurements on Polyphase Current		Lines
	Circuits 257	399-400	Mutual Inductance, Effect of 326-327
312	Measurements on Diphase Circuits 257	400	Mutually Inductive Circuits, General
	Measurement of Aerial Line Capacity, 263-265		Equation of Energy for 326
326	Measurement of Inductance, Aerial	414	Multiplication of Vectors
	Lines 265	433	Multiple Arc, Circuits containing Re-
328	Measurement, Mutual Inductance on		sistances, Inductances, and Capacities
	Transmission Lines 267		in

		ART.	PAGE,
ART.	PAGE.		Plants, Transmission, Long Distance, 516-525
436	Mutual Inductance, Properties of Cir-		
	cuits containing	681	Plant, Big Cotton Wood 519
455	Multipliers to Transform E. S. C. G. S.	682	Plant, Blue Lakes 519
	Units into E.M.F., Table of 368	683	Plant, Folsom
689	Nevada Co. Plant 521	684	Plant, Fresno 520
690	Niagara Falls Plant 521	685	Plant, Helena 520
108	Non-arcing Metal Arresters 117	686	Plant, Indian Orchard 520
109	Non-arcing Wurtz Continuous Current	687	Plant, Lowell 521
100	Arrester	688	Plant, Montmorency Falls 521
614	Number of Lamps Installed to Lamps	689	Plant, Nevada Co 521
014		690	Plant, Niagara
0.4 19	Actually Lighted, Ratio of 464	691	, 0
615	Number Lamp Hours 464		Plant, Ogden
691	Ogden Plant	692	Plant, Portland
43	Oil Insulators 62	693	Plant, St. Anthony's Falls 523
215	Ohm-meter	186	Pneumatic Rodding 167
254	Ohm-meter, Measurement of Resistance, 230	23	Poles
248	Ohm's Law	23	Poles, Wooden
332	Ohm's Law	24	Poles, Methods of Preservation 37-38
703	Operating Expense Street Railway, 538-539	25	Poles, Height of
461	Origin of Series Distribution , 372	28	Pole Tops 40
124	Outside Aerial Conductors, Insurance	33-35	Pole Strengths, Calculations for 41-45
	Regulations for 127	36	Poles, Methods of Guying 45–46
124	Outside Wires, Insurance Regulations for, 127	37	Poles, Anchor 47–57
296	,	37	Poles with Iron Tops 48-57
	Overlap Method for Line Faults 251	38	
	Paneled Wire		Pole Setting
12	Paneled Wire, Carrying Capacity of 12	53-71	Pole Line Specifications 72–76
366	Paneled Wire, Safe Current for 294	55	Poles
368	Paneled Wires, Current in 295	86–92	Poles, Railway
629	Paneled and Aerial Conductors, Heat	91	Poles, Iron
	Limits for 471–475	91	Pole, Center, Construction 96
167	Paper Conduit 144	93	Pole Tops, Feed Wire Insulators . 97-99
200	Paper Insulation	93	Pole Tops
201	Paper Cables	312-316	Polyphase Current Circuits, Measure-
3	Parallel, Distribution in 2		ments on
179	Parisian Conduits	673-677	Polyphase Transmission 508-516
459-460	Parallel Wires, Capacity of Circuits	675	Polyphase System, Methods of Connec-
	Modified by	010	tion 511–513
599_019	Parallel Distribution 402-487	676	
	Parallel System, Evolution of 402-406	638	Polyphase Machines , 513–515
			Pomona Plant, The
999-994	Parallel Feeding, Cylindrical Conduc-	213	Portable Testing Sets
MOO MOO	tors 414-416	592	Portland Plant
538-539	Parallel Feeding, Conical Conductors,		Potential, Measurement of 242-244
	416–418	308	Potential in Alternating Current Cir-
544-548	Parallel System, Curves and Tabular		cuits, Measurements of 257
	Data for Various Forms of Conductors,	343-349	Potential in Conducting Circuit . 276-281
	421-423	351-356	Potential and Current, Distribution of
204	Patterson Cable, Telephone 188-189		in Branch Circuits 282-286
351-356	Potential Distribution in Branch Cir-	534	Potential in Parallel Circuits, Distribu-
	cuits 282–286		tion of 412
130	Pendants and Sockets, Insurance Regu-	653	Potential, High and Low, Distribution
	lations for	000	
27		MO	from Same Station 494–495
62	Pins	53	Power Circuits
	Pins	121	Power Stations, Insurance, Regulations
91	Pipe Poles		for
	Pipe Conduits	200	Power Circuits 185-186
26	Placing of Cross-Arms 38–39	247	Power, Unit of
69	Placing of Cross-Arms 76	310	Power in Alternating Current Circuits,
477-198	Plant, Design for Minium First Cost		Measurement of 257-258
	of and Minium Cost of Maintenance	310	Power, Measurement in Alternating
	and Operation		Current Circuits by Two Voltmeters 256

ART.	PAGE.	ART.	PAGE.
311	Power, Measurement in Alternating	81 86-92	Railway Bonds, Size of
704	Current Circuits by Three Ammeters, 258	88	Railway Poles 90-97
707	Power Stations, Cost	89-90	Railway Construction, Center Pole . 91
713	Power, Water, Cost of 542-544	91	Railway Span Wire Construction . 92–93
	Power, Wind, Cost of Lighting by, 545-546	91	Railway Lattice Pole
990-99¥	Pressure, Fall of, and Necessary Sec-	96	Railway Iron Pipe Poles 95–96
124	tion in Feeders 453–455 Primary Conductors, Insurance Regu-	96	Railway Line Work
124	lations for	96	Railway Curves 105–106
6	Properties of Wire	96	Railway Turn-outs
8	Properties of Iron and Steel Wire 5	96	
13	Properties of Silicon Bronze Wire . 12-16	98	Railway Curve Guy Poles, Location of . 106 Railway Line Anchors 108
12	Properties of Copper Wire 11	99	Railway Section Insulators 109
16	Properties of Flexible Cables	99	Railway Line Sections
18	Properties of Iron Wire, Mechanical . 31	100	Railway Lines, Switches for 109-110
419	Properties, Electrical, of Simple Cir-	101	Railway Line Crossings
110	cuits with One Resistance and One	586	Railway Work, Compensator in 452
	Inductance in Series 340-341		Railway Electric Wiring 483–487
425	Properties, Electrical, Simple Circuits	642	Railway Systems, Three-Wire 487
100	with Several Resistances and Induc-	702	Railway Lines, Cost of 537-538
	tances in Series 344–346	703	Railway, Street, Operating Expense, 538-539
426	Properties, Electrical, of Simple Cir-	89	Ratchets, Span Wire 92
	cuits with One Resistance and One	488-494	Rates of Depreciation 386-387
	Capacity in Series 346-348	614	Ratio of Number of Lamps Installed
430	Properties, Electrical, of Simple Cir-		to Lamps Actually Lighted 464
	cuits with Several Resistances and	420	Reactance
	Capacities, in Series 349	416	Reciprocal of Vectors
431	Properties, Electrical, of Simple Cir-	464	Receivers and Generators at Fixed Dis-
	cuits Containing Resistance, Induc-		tances, Constant Current Circuits 373
	tance, and Capacity in Series . 349-350	223	Reduction to Zero 207
432	Properties, Electrical, of Simple Cir-	689	Redlands Plant, The
	cuits with Several Resistances, In-		Regulation
	ductances, and Capacities in Series,	580–581 654	Regulation, Methods of 447-453 Regulation, Motor, Leonard's System of, 495
433	Properties, Electrical, of Circuits with	661	Regulation by Means of Accumulators,
433	Resistances, Inductances, and Capa-	001	499–500
	cities in Multiple Arc 351–354	9	Relations between Wire Gauges, Table of, 7
436	Properties of Circuits Containing Mu-	373	Relation between Carrying Capacity and
100	tual Inductance 357–360		Length of Fuse Wires 303
698-738	Production and Distributing, Cost of,	562	Relative Areas covered by Multiple
	528-567		Wire Systems
705	Producing Energy, Cost of 540-542	697	Relative Amounts of Conducting Mate-
712	Producing Energy, Cost of, per Kilo-		rial for Transmission Systems . 526-527
	Watt Hour 546–550	11	Resistance of Silicon Bronze Wire . 12-16
718-738	Problems, Transmission, Commercial,		Resistance of Copper Wire 11-30
	Considerations of , 550–565		Resistance of Rail Bonding 83–84
411	Quantities, Vector	118	Resistance Boxes, Insurance Regula-
360-363	Radiation and Convection from Con-	040	tions for
	ductors		Resistance
	Radiation		Resistance, Measurement of 220–242 Resistance, Measurement of, by Deflec-
72	Railway Circuits	201	tion
	Railway Return Circuit 77-90	254	Resistance, Measurement by Wheat-
	Rail Bonding, Methods of 80-82	201	stone Bridge
	Rail Bonding 80–82 Railway Return Wire 80	254	Resistance, Measurement by Ohm-meter, 230
	Rails as Railway Return Circui 82–84		Resistance, Small, Measurement of, 231-232
	Railway Return Circuit, the Eat has a, 82		Resistance, Measurement of, by Volt-
	Rail Circuit, Resistance of 84		meter
	Rail Welding 84	258-261	Resistance, Insulation, Measurement
	Railway Joints, Cast Connection of . 85		of 234–235

ART.	PAGE.	ART.	PAGE
			Series Circuits, Design for 398-401
261	Resistance, Loss of Charge by, Measure-		
	ment	554-560	Series Systems, Multiple and Modifica-
265-276	Resistance, Special Methods for . 237-242		tion of Three-Wire System 428-435
266	Resistance, Galvanometer, by Equal	663	Service Transformer, Economy in Con-
	Deflection		ductors 501
266	Resistance, Galvanometer 237-238	38	Setting Poles
		225	Shunts for Galvanometer 208-209
267-268	Resistance, Galvanometer, by Wheat-		
	stone Bridge	195	Siemens Cable
272	Resistance, Battery, by Deflection 240	229	Siemens Dynamometer 214
332	Resistance 269	11	Silicon Bronze Wire 12-16
334	Resistance, Specific 269	11	Silicon Bronze Wire, Table of Proper-
334	Resistance, Table for Metals 270		ties of 12-16
		419	Simple Circuits with One Resistance
335	Resistance, Table for Unit Lengths 271	413	
336	Resistance, Variation with Temperature, 272		and One Inductance in Series, Elec-
337	Resistance of Dielectrics 273		trical Properties of 340-341
340	Resistance of Gutta-Percha 274	425	Simple Circuits with Several Resist-
397-398	Resistance and Inductance, Circuits		ances and Inductances in Series, Elec-
	Containing		trical Properties of 344-340
407 400		400	
407-408	Resistance, Inductance, and Capacity,	426	Simple Circuits with One Resistance
	Circuits Containing, Equation of		and One Capacity in Series, Electri-
	Energy		cal Properties of 346-348
418	Resolution and Composition of Electro-	428	Simple Circuits Containing Resistance
	Motive Forces		and Capacity in Series, Graphical So-
422	Resistances, Variable 342-343		lution of Electro-Motive Force 347
429	Resistance, Variable, in Circuits Con-	429	Simple Circuits Containing Resistance
120		420	
	taining Resistance and Capacity, 348-349		and Capacity, Variable Capacity in, 348-349
434-435	Resistance and Inductance, Equivalent,	430	Simple Circuits with Several Resistances
	Method of		and Capacities in Series, Electrical
450-459	Resistance, Inductance, and Capacity,		Properties of
	Circuits Containing 365-371	431	Simple Circuits Containing Resistance,
370	Rheostats	401	Inductance, and Capacity in Series,
370			
	Rheostats and Heaters 296		Electrical Properties of 349–350
96	Right and Left Curve Construction 106	432	Simple Circuits with Several Resist-
79	Riveted Railway Joints 85		ances, Inductances and Capacies, Elec-
64	Rods, Guy 75		trical Properties of 350-351
66	Rods, Lightning 75	126-154	Sizes of Conductors, Insurance Regula-
186	Rodding		tions for 128–139
8	Rolling of Wire	373	
67	_		Size, Fuse Wires, Table of 300
	Rope, Guy	382	Skin Effect, Alternating Currents 312
46	Running Board 63-64	383	Skin Effect
12	Safe Current for Paneled Wire 12	214	Slide Wire Bridge 201-202
366	Safe Current for Paneled Wire, Table of, 294	287	Slide Wire Bridge, Method for Estimat-
370	Safe Current for Iron Wire, Rheostats . 297		ing Current Strength 246
370	Safe Current for German Silver Wire,	114	
0.0	*		Sneak Current Arresters 124
10	Rheostats	130	Sockets, Insurance Regulations for 131
19	Sags and Tensions for Erecting Iron and	405-407	Solution of Energy, Equations for Cir-
	Copper Wire		cuits with capacity 331-333
39	Sand Barrels 58	406-409	Solution of Energy, Equations for Cir-
668	Secondary Circuit Wiring, Transformers, 505		cuits with capacity, Discussion of 332-333
304	Self-Inductance, Measurement of 255	248	Solution, Graphical, of Electro-Motive
2	Series, Distribution in	240	
			Force in Simple Circuits Containing
	Series Distribution 372-401		Resistance and Capacity in Series 347
461	Series Distribution, Origin of 372	89-90	Span Wire Railway, Construction . 92-93
463	Series Circuits, Classification of . 372-374	89	Span Wire, Construction 91-93
467	Series Circuits, Economical Conditions	89	Span Wire Ratchets
	in 376–377		
497		90	Span Wire
	Series Circuits, Conductor Tables, 388–389	18	Specification for Iron Wire 28
500	Service, Design for Accomplishment for	18	Specification for Copper Wire 26-27
	Best 392–393	18	Specifications, British Post-Office . 26-27
504	Service Hours Table of . 395	18	Specifications Duitish Wine OC 9

ART.	PAĞE.	ART.	PAGE,
18	Specifications, American Wire 28-31	118	Switchboards, Insurance Regulations
18	Specifications for Electrical Properties		for
	of Wire 30-31	127	Switches, Insurance Regulations for . 129
18	Specifications for Copper Wire 29-31	4	Systems, Mixed 2
18	Specifications, Iron Wire 30	522-525	
54-71	Specification for Pole Line 73-76	527	System, Loop 408-410
332	Specific Resistance	529	System, Tree
342	Specific Resistance	530	System, Closet 410-411
342	Specific Resistance of Insulators 274)	System, Three-Wire 423-428
239-240	Speed Recorder, Boyer's 221-222	548-561	
	Special Methods for Resistance . 237-342	555	System, Three-Wire, with One Genera-
	Special Designs for Three-Wire Sys-		tor
	tem 430–432	559	Systems, Five-Wire
528	Spiral Loop 410	560	Systems, Multiple Wire, European 432
47-49	Splices, Wire	563-567	System, Feeder and Main 435-439
48	Splices, McIntire 66-67	642	Systems, Railway, Three-Wire 487
	Splices for Cables 193-195	646	System, Three-Wire, Compensator on . 490
693	St. Anthony's Falls Plant 523	654	System, Leonard, Motor Regulation . 495
335	Standard of Copper Resistance	675	System, Polyphase, Methods of Connec-
465	Station Location	010	tion 511–513
475	Station, Design for Minimum, First	668	System, Feeder and Main, Transform-
	Cost of	500	ers with 504
568-574	Station, Central Location 439–442	9	Table of Wire Gauges
	Station Loads	12	Table of Wife Gauges
633	Station Load Curves 476-478	16	Table, Combination Wire 24
633	Station Load Curves, St. James . 476–478	334	Table of Resistance of Metals
633	Station Loads, Diagram 477–479	335	Table of Resistance of Metals 270 Table of Resistance for Unit Lengths . 271
659	Station, Sub-Accumulation 498-499	364	Table of Resistance for Unit Lengths . 271 Table of Variation of Copper Resistance
672	Station, Sub-Transformers as 507-508	003	
704		383	with Temperature
8	Stations, Power, Cost 540 Steel Wire, Properties of 5	300	Table of Thickness of Shells in Alterna-
91	Steel Poles	383	ting Current Conductors 314
178	St. James Conduit	909	Table of Virtual Resistance in Alternating Current Circuits
633	St. James Station, Load Curves . 476–478	504	
8-18	Strength of Iron and Steel Wire 5-31	440	Table of Hours of Lighting 395
705	Steam Plants, Cost of Installing and		Tables, Impedance
10.)	Maintaining 540-541, 556-559	410-110	ing Resistance and Inductance 360–65
16	Stranded Cables, Table of 20–23	455	Table of Multipliers to Transform E. S.
29	Stranded Cables, Table of	4:00	C. G. S. Units into E.M.F
33		497	Tables, Conductor, for Series Circuits,
	Strength, Timber	497	388–389
46	Stringing of Wires 63–64	407	
49	Strength of Joints 67-68 Strength of Western Union Joints 68	497	Table of Cost of Laying One Additional
49		E04 .	Ton of Copper 390–391 Table of Service Hours
49	Strength of McIntire Joints 68 Strain Insulators	504	Tabile of Service Hours
97		944-948	
184	Street Railway Junction Boxes 166		Forms of Conductors, Parallel System 421-423
472	Strength, Mechanical, Design for 379-380	000	
	Street Loads	620	Table of Heating Limits, Buried Con-
619	Street Loading, Example of 466-467	707 700	ductors
703	Street Railway, Operating Expense, 538-539		Tabular Calculation for Cost of Line 560-567
187	Subway, Gas in	52	Telephone Lines, Transposition of . 70-72
	Submarine Cables 183–185	198	Telegraph Cables
	Sub-aqueous Cables 183–185		Telephone Cables 188–194 Telephone Cable, British Post-Office . 188
	Subtraction of Vectors		Telephone Cable, Patterson 188–189
	Sub-Station Accumulators 498–499		
	Sub-Stations, Transformers as 507-508	691	Telluride Plant
	Suspension of Aerial Cables 68-69	701	Telephone and Telegraph Lines, Cost of, 535–537
	Suspended Cables, Heating of 309	90	
	Switches for Railway Lines 109-110	20	Temperature, Influence on Aerial Lines,
113	Switchboard Protectors 123		33–34

ART.	PAGE.	ART.	PAGE
336	Temperature, Effect on Resistance 272	672	Transformers as Sub-Stations 507-508
341	Temperature in Dielectrics, Resistance		Transmission, Polyphase 508-510
	of	678-694	Transmission Plants, Long Distance, 516-525
17	Tension Testing-Machines 22-25	694	Transmission, Continuous Current, Long
19	Tension Aerial Lines		Distance with 524
19	Tension and Sags for Erecting Iron and	695	Transmission, Long Distance Line, Con-
10	Copper Wire	000	struction for 525
33		697	Transmission Systems, Relative
	Tensile Strength, Timber 43	001	
	Terra Cotta Conduit 148–152	E40 E00	Amounts of Conducting Material, 526-527
173	Terra-Cotta Separate Duct Conduit, The, 150	718–738	Transmission Problems, Commercial
17	Testing		Considerations of 550-565
17	Testing of Wire	529	Tree System
17	Testing-Machines 24-25	47	Trolley Wire Splices 66
123	Testing, Insurance Regulations for 127	95	Trolley Insulators
213	Testing Sets 200	124	Trolley Wires, Insurance Regulations for,
213	Testing Sets, Portable 200		127
317	Testing of Electrical Railways 259	96	Turn-Outs, Railway 105
105	Thomson-Houston Arrester 115	44	Tying and Dead-Ending 62-63
217	Thomson Galvanometer 203	44	Tying 62-63
232	Thomso i-Houston Wattmeter 217	70	Tying of Wires
290	Thomson Method for Electrostatic Ca-	680	Typical Long Distance Circuit 527
250		387	μ , Definition of
	pacity		
554	Three-Wire System with One Generator, 430	127	Underground Conductors, Insurance
	Three-Wire System 423–428		Regulations for
554-560	Three-Wire System, Multiple Series,	163	Underground Circuits, Construction of . 141
	Systems and Modification of . 428-432	211	Underground and Aerial Systems, Con-
-557-560	Three-Wire System, Special Designs for		nection of 195–197
	430-432	244	Unit of Current
642	Three-Wire Railway Systems 487	247	Unit of Power
646	Three-Wire System, Compensator on . 490	335	Unit Lengths, Table, Resistance of 271
33	Timber, Strength of 43	455	Units, E. S. C. G. S., into E.M.F.
514	Time Cut-outs		Table, to Transform 368
14	Tinning 15-16	41-42	Value of Insulators, The 60-61
14	Tinned Wire 13-16	165	Valentine, The, Conduit 142
374	Tin and Lead Fuse Wire 305		Values, Average, of Circuit Constants,
681	Tivoli Station , 518		322-324
17	Torsion Testing-Machines	11	Variations in Copper Resistance 9
498	Total Minimum First Cost of Installa-	26	- ·
200		20	Variations of Temperature, Influence of,
=0	tion, Design to Secure 389-392	000	33–34
52	Transposition of Telephone Lines , 70-72	298	Varley Method for Line Faults 253
201	Transmission Cable 186-188	324	Variable Inductances
328	Transmission Lines, Measurement, Mu-	336	Variation of Resistance with Tempera-
	tual Inductance 267		ture
14	Tree Wire	341	Variation of Dielectrics with Tempera-
313	Triphase Circuits, Measurements on . 259		ture
561	Transformers, Motor 434	389	Varying Field, Electro-Motive Force
644-653	Transformers, Motor 488-495		Due to
652	Transformers, Motor, Running and	422	Variable Resistances 342-343
	Feeding in Series 493-494	429	Variable Capacity in Simple Circuits
662-673	Transformers 500-508		Containing Resistance and Capacity,
663	Transformer Service with Economy in		348-349
	Conductors 501	429	
661_667		120	Variable Resistance in Circuits Con-
001-007	Transformers by Methods of Distribu-	440	taining Resistance and Capacity, 348-349
000	tion	411	Vector Quantities
666	Transformers for Arc Lamps 503	412	Vectors, Addition of
668	Transformers with Main System, Feeder	413	Vectors, Subtraction of
	and 504	414	Vectors, Multiplication of 337
668	Transformers, Secondary Circuit Wiring, 505	415	Vectors, Division of 337
670	Transformers, Insulated, Efficiency of	416	Vectors, Reciprocal of 337
	Distribution of 506-507	226	Voltmeter, Weston 209-211

ART.	PAGE.	ART.	
227	Voltmeter, Cardew	18	Wire, Iron, Specifications for 28
228	Voltmeter, Electrostatic	18	Wire, Mechanical Properties of 29
228	Voltmeter, Kelvin	20	
256	Voltmeter and Ammeter, Resistance.	46	Wire, Iron and Copper, Line Tension, 34-35
200	Measurement by 230-231	46	Wires, stringing of 63-64
258_250	Voltmeter, Measurement of Resistance	47-49	Wire Dynamometers 65 Wire Joints 66–68
200-200	by	47	
285	Voltmeter, Measurement for Current	47-49	Wire Splices, Trolley
200	Strength 245	51	Wire Splices
232	Wattmeters	71	Wires, Humming of 69-70
232	Wattmeters		Wire Joint
247		74	Wire, Railway Return 80
706		125	Wiring, Inside, Insurance Regulations for,
707	Watt Hour, Coal Consumption per, 541-542	404	127
16	Water-Power, Cost of 542–544	124	Wires Entering Buildings, Insurance
78	Weights per Mile of Insulated Wire. 19-21	405	Regulations for
49	Welding of Rails 84	125	Wire, Inside, Insurance Regulations for, 127
	Western Union Joints, Strength of 68	358	Wires, Bare, Freely Suspended, Heat-
107	Westinghouse Arrester	000 000	ing of
226	Weston Instruments 209-211	360-363	Wires, Radiation and Convection from,
213	Wheatstone Bridge 198–201		288-290
254	Wheatstone Bridge, Resistance Meas-		Wires, Fuse
0.00	urement by	358	Wires, Bare, Freely Suspended, Heat-
267-268	Wheatstone Bridge, Galvanometer Re-	***	ing of
	sistance by		Wire, Multiple, System 423–424
281	Wheatstone's Method of Electro-Mo-		Wiring, Inside, Calculation of . 470-471
	tive Force Measurement		Wiring, Electric Railway 483-487
713	Wind-Power, Cost-of Lighting by, 545-546	668 '	Wiring, Secondary Circuit Transformer, 505
6	Wire, Properties of 4	23	Wooden Poles
7	Wire Manufacture 4	86-87	Wooden Poles, Railway 90-91
8	Wire, Rolling of 5	168	Wrought-Iron Pipe Conduit 144
9	Wire Gauges 6-25	168	Wrought-Iron Pipe in Asphaltic Cement, 145
11	Wire, Silicon Bronze 13-16	104	Wurtz Arrester
11	Wire, Copper, Impurities in 9	108	Wurtz Non-Arcing Arrester 117
13	Wire Composite 10	109	Wurtz Non-Arcing Continuous Current
14	Wire, Galvanized 13-16		Arrester
14	Wire, Tinned 13–16	166	Wyckoff, The, Conduit 143
14	Wire, Tinned and Galvanized 13-16	168	Zinc Tubing in Hydraulic Cement 145
14	Wire, Insulated	182	Zurich Conduit
14	Wire, Tree	224	Zero, Inferred
17	Wire, Testing of 24-25	223	Zero, Reduction to 207

LIST OF WORKS

ON

ELECTRICAL SCIENCE.

PUBLISHED AND FOR SALE BY

D. VAN NOSTRAND COMPANY,

23 Murray and 27 Warren Streets, New York.

- **ABBOTT, A. V.** The Electrical Transmission of Energy. A Manual for the Design of Electrical Circuits. Third Edition, revised. Illustrations and 9 folding plates. 8vo, cloth. \$4.50.
- ARNOLD, E. Armature Windings of Direct Current Dynamos. Extension and application of a general winding rule. Translated from the original German by Francis B. DeGress, M.E. (In press.)
- ATKINSON, PHILIP. Elements of Static Electricity, with full description of the Holtz and Topler Machines, and their mode of operating. Second Edition. Illustrated. 12mo, cloth. \$1.50
 - The Elements of Dynamic Electricity and Magnetism. Third Edition. Illustrated. 12mo, cloth. \$2.00.
 - Elements of Electric Lighting, including Electric Generation, Measurement, Storage, and Distribution. Tenth Edition. Fully revised and new matter added. Illustrated. 8vo, cloth. \$1.50.
 - Power Transmitted by Electricity and Applied by the Electric Motor, including Electric Railway Construction. Illustrated. Second Edition, Fully Revised, and New Matter added. 12mo, cloth, \$2.00.
- BADT, F. B. New Dynamo Tender's Handbook. 70 Illustrations. 16mo, cloth. \$1.00.
 - Electric Transmission Handbook. Illustrations and Tables. 16mo, cloth, \$1.00.

 Incandescent Wiring Handbook. Fourth Edition. Illustrations and Tables. 12mo, cloth. \$1.00.
 - Bell Hanger's Handbook. Third Edition. Illustrated. 12mo, cloth. \$1.00.
- BIGGS, C. H. W. First Principles of Electrical Engineering. Being an attempt to provide an Elementary Book for those who are intending to enter the profession of Electrical Engineering. Second Edition. Illustrated. 12mo, cloth. \$1.00.
- BLAKESLEY, T. H. Papers on Alternating Currents of Electricity. For the use of Students and Engineers. Third Edition, enlarged. 12mo, cloth. \$1.50.

VAN NOSTRAND'S LIST OF WORKS

- BOTTONE, S. R. Electrical Instrument-Making for Amateurs. A Practical Handbook. Sixth Edition. Enlarged by a chapter on "The Telephone." With 48 Illustrations. 12mo, cloth. 50 cents.
 - Electric Bells, and All about Them. A Practical Book for Practical Men. With over 100 Illustrations. Fifth Edition. 12mo, cloth. 50 cents.
 - The Dynamo: How Made and How Used. A Book for Amateurs. Eighth Edition. 100 Illustrations. 12mo, cloth. \$1.00.
 - Electro-Motors: How Made and How Used. A Handbook for Amateurs and Practical Men. Illustrated. 12mo, cloth. 50 cents.
- CLARK, D. K. Tramways: Their Construction and Working. Embracing a Comprehensive History of the System, with Accounts of the Various Modes of Traction, a Description of the Varieties of Rolling Stock, and Ample Details of Cost and Working Expenses; with Special Reference to the Tramways of the United Kingdom. Second Edition. Revised and rewritten. With over 400 Illustrations. Contains a special section on Electric Traction. Thick 8vo, cloth. \$9.00.
- CROCKER, F. B., and WHEELER, S. S. The Practical Management of Dynamos and Motors. Eighth Edition. Illustrated. 12mo, cloth. \$1.00.
- CROCKER, F. B. Electric Lighting. A Practical Exposition of the Art for the Use of Electricians, Students, and Others interested in the Installation or Operation of Electric Lighting Plants. Volume I.: The Generating Plant. 8vo, cloth. \$3.00.
- CUMMING, LINNÆUS, M.A. Electricity Treated Experimentally. For the Use of Schools and Students. Third Edition. 12mo, cloth. \$1.50.
- DESMOND, CHAS. Electricity for Engineers. Part I.: Constant Current. Part II.: Alternate Current. Revised Edition. Illustrated. 12mo, cloth. \$2.50.
- DU MONCEL, Count TH. Electro-Magnets: The Determination of the Elements of their Construction. 16mo, cloth. (No. 64 Van Nostrand's Science Series.) 50 cents.
- DYNAMIC ELECTRICITY. Its Modern Use and Measurement, chiefly in its application to Electric Lighting and Telegraphy, including: 1. Some Points in Electric Lighting, by Dr. John Hopkinson. 2. On the Treatment of Electricity for Commercial Purposes, by J. N. Schoolbred. 3. Electric-Light Arithmetic, by R. E. Day, M.E. 18mo, boards. (No. 71 Van Nostrand's Science Series.) 50 cents.
- EMMETT, WM. L. Alternating Current Wiring and Distribution. 16mo, cloth. Illustrated. \$1.00.
- EWING, J. A. Magnetic Induction in Iron and Other Metals. Second Issue.
 Illustrated. 8vo, cloth. \$4.00.
- FISKE, Lieut. BRADLEY A., U.S.N. Electricity in Theory and Practice; or, The Elements of Electrical Engineering. Tenth Edition. 8vo, cloth. \$2.50.
- FLEMING, Prof. J. A. The Alternate-Current Transformer in Theory and Practice. Vol. I.: The Induction of Electric Currents. 500 pp. Fifth Issue. Illustrated. 8vo, cloth. \$5.00. Vol. II.: The Utilization of Induced Currents. Third Issue. 594 pp. Illustrated. 8vo, cloth. \$5.00.
 - Electric Lamps and Electric Lighting. 8vo, cloth. \$3.00.

ON ELECTRICAL SCIENCE.

- FOSTER, HORATIO A. Electrical Engineer's Pocket-Book. (In press.)
- GORDON, J. E. H. School Electricity. 12mo, cloth. \$2.00.
- GORE, Dr. GEORGE. The Art of Electrolytic Separation of Metals (Theoretical and Practical). Illustrated. 8vo, cloth. \$3.50.
- GUILLEMIN, AMÉDÉE. Electricity and Magnetism. Translated, revised, and edited by Prof. Silvanus P. Thompson. 600 Illustrations and several Plates. Large 8vo, cloth. \$8.00.
- GUY, ARTHUR F. Electric Light and Power, giving the result of practical experience in Central-Station Work. 8vo, cloth. Illustrated. \$2.50.
- **HASKINS, C. H.** The Galvanometer and its Uses. A Manual for Electricians and Students. Fourth Edition, revised. 12mo, morocco. \$1.50.
 - Transformers: Their Theory, Construction and Application Simplified. Illustrated. 12mo, cloth. \$1.25.
- HAWKINS, C. C., and WALLIS, F. The Dynamo: Its Theory, Design, and Manufacture. 190 Illustrations. 8vo, cloth. \$8.00.
- HOBBES, W. R. P. The Arithmetic of Electrical Measurements. With numerous examples, fully worked. New Edition. 12mo, cloth. 50 cents.
- **HOSPITALIER**, E. Polyphased Alternating Currents. Illustrated. 8vo, cloth, \$1.40.
- HOUSTON, Prof. E. J. A Dictionary of Electrical Words, Terms, and Phrases. Fourth Edition, Rewritten and greatly enlarged. Large 8vo, 570 illustrations, cloth. \$7.00.
- INCANDESCENT ELECTRIC LIGHTING. A Practical Description of the Edison System, by H. Latimer. To which is added: The Design and Operation of Incandescent Stations, by C. J. Field; A Description of the Edison Electrolyte Meter, by A. E. Kennelly; and a Paper on the Maximum Efficiency of Incandescent Lamps, by T. W. Howells. Illustrated. 16mo, cloth. (No. 57 Van Nostrand's Science Series.) 50 cents.
- INDUCTION COILS: How Made and How Used. Fifth Edition. 16mo, cloth. (No. 53 Van Nostrand's Science Series.) 50 cents.
- KAPP, GISBERT, C.E. Electric Transmission of Energy and its Transformation, Subdivision, and Distribution. A Practical Handbook. Fourth Edition, thoroughly revised. 12mo, cloth. \$8.50.
 - Alternate-Current Machinery. 190 pp. Illustrated. (No. 96 Van Nostrand's Science Series.) 50 cents.
 - Dynamos, Alternators, and Transformers. Illustrated. 8vo, cloth. \$4.00.
- KEMPE, H. R. The Electrical Engineer's Pocket-Book: Modern Rules, Formulæ, Tables, and Data. Second Edition, with additions. 32mo, leather. \$1.75.
 - A Handbook of Electrical Testing. Fifth Edition. 200 Illustrations. 8vo. cloth. \$7.25.
- KENNELLY, A. E. Theoretical Elements of Electro-Dynamic Machinery. Vol. I. Illustrated. 8vo, cloth. \$1.50.
- KILGOUR, M. H., and SWAN, H., and BIGGS, C. H. W. Electrical Distribution: Its Theory and Practice. Illustrated. 8vo, cloth. \$4.00.

VAN NOSTRAND'S LIST OF WORKS

- LOCKWOOD, T. D. Electricity, Magnetism, and Electro-Telegraphy. A Practical Guide and Handbook of General Information for Electrical Students,
 Operators, and Inspectors. Fourth Edition. Illustrated. 8vo, cloth. \$2.50.
- LORING, A. E. A Handbook of the Electro-Magnetic Telegraph 16mo, cloth. (No. 39 Van Nostrand's Science Series.) 50 cents.
- MARTIN, T. C., and WETZLER, J. The Electro-Motor and its Applications.

 Fourth Edition. With an Appendix on the Development of the Electric

 Motor since 1888, by Dr. L. Bell. 300 Illustrations. 4to, cloth. \$3.00.
- MAVER, WM., Jr. American Telegraphy: Systems, Apparatus, Operations. 450 Illustrations. 8vo, cloth. 575 Pages. \$3.50.
- MORROW, J. T., and REID, T. Arithmetic of Magnetism and Electricity. 12mo, cloth. \$1.00.
- MUNRO, JOHN, C.E., and JAMIESON, ANDREW, C.E. A Pocket-Book of Electrical Rules and Tables. For the use of Electricians and Engineers.

 Twelfth Edition. Revised and enlarged. With numerous diagrams. Pocket size, leather. \$2.50.
- NIPHER, FRANCIS E., A.M. Theory of Magnetic Measurements. With an Appendix on the Method of Least Squares. 12mo, cloth. \$1.00.
- NOLL, AUGUSTUS. How to Wire Buildings. A Manual of the Art of Interior Wiring. Fourth Edition. 8vo, cloth. Illustrated. \$1.50.
- OHM, Dr. G. S. The Galvanic Circuit Investigated Mathematically. Berlin, 1827. Translated by William Francis. With Preface and Notes by the Editor, Thos. D. Lockwood. 12mo, cloth. (No. 102 Van Nostrand's Science Series.) 50 cents.
- OUDIN, MAURICE A. M. S. Standard Polyphase Apparatus and Systems. Illustrated with many photo-reproductions, diagrams and tables. 8vo. cloth. \$3.00.
 - The excuse for this little book, is the demand for information, in a convenient form, on the characteristics and uses of the various types of Polyphase Apparatus, and on the actual working of the several Polyphase Systems now sanctioned by the best practice.—Preface.
- PALAZ, A. Treatise on Industrial Photometry. Specially applied to Electric Lighting. Translated from the French by G. W. Patterson, Jr., Assistant Professor of Physics in the University of Michigan, and M. R. Patterson, B.A. Second Edition. Fully Illustrated. 8vo, cloth, \$4.00.
- PARSHALL, H. F., and HOBART, H. M. Armature Windings of Electric Machines. With 140 full-page plates, 65 tables and descriptive letter-press.

 4to, cloth. \$7.50.
- PERRY, NELSON W. Electric Railway Motors. Their Construction, Operation, and Maintenance. An Elementary Practical Handbook for those engaged in the management and operation of Electric Railway Apparatus, with Rules and Instructions for Motormen. 12mo, cloth. \$1.00.
- PLANTÉ, GASTON. The Storage of Electrical Energy, and Researches in the Effects created by Currents combining Quantity with High Tension. Translated from the French by Paul B. Elwell. 89 Illustrations. 8vo. \$4.00.
- POPE, F. L. Modern Practice of the Electric Telegraph. A Handbook for Electricians and Operators. An entirely new work, revised and enlarged, and brought up to date throughout. Illustrations. 8vo; cloth. \$1.50.

- PREECE, W. H., and STUBBS, A. J. Manual of Telephony. Illustrated. 12mo, cloth. \$4,50.
- RECKENZAUN, A. Electric Traction. Illustrated. 8vo, cloth. \$4.00.
- RUSSELL, STUART A. Electric-Light Cables and the Distribution of Electricity. 107 Illustrations. 8vo, cloth. \$2.25.
- SALOMONS, Sir DAVID, M.A. Electric-Light Installations. A Practical Handbook. Seventh Edition, revised and enlarged. Vol. I.: Management of Accumulators. Illustrated. 12mo, cloth. \$1.50. Vol. II.: Apparatus. Illustrated. 12mo, cloth. \$2.25. Vol. III.: Application. Illustrated. 12mo, cloth. \$1.50.
- SCHELLEN, Dr. H. Magneto-Electric and Dynamo-Electric Machines. Their Construction and Practical Application to Electric Lighting and the Transmission of Power. Translated from the third German edition by N. S. Keith and Percy Neymann, Ph.D. With very large Additions and Notes relating to American Machines, by N. S. Keith. Vol. I. with 353 Illustrations, Third Edition. \$5.00.
- SLOANE, Prof. T. O'CONOR. Standard Electrical Dictionary. 300 Illustrations. 8vo, cloth. \$3,00.
- SNELL, ALBION T. Electric Motive Power. The Transmission and Distribution of Electric Power by Continuous and Alternate Currents. With a Section on the Applications of Electricity to Mining Work. Illustrated. 8vo, cloth. \$4.00.
- SWINBURNE, JAS., and WORDINGHAM, C. H. The Measurement of Electrical Currents. Electrical Measuring Instruments. Meters for Electrical Energy. Edited, with Preface, by T. Commerford Martin. Folding Plate and numerous Illustrations. 16mo, cloth. 50 cents.
- THOM, C., and JONES, W. H. Telegraphic Connections, embracing recent methods in Quadruplex Telegraphy. Twenty colored plates. 8vo, cloth. \$1.50.
- THOMPSON, EDWARD P. How to Make Inventions; or, Inventing as a Science and an Art. An Inventor's Guide. Second Edition. Revised and Enlarged. Illustrated. 8vo, paper. \$1.00.
- THOMPSON, Prof. S. P. Dynamo-Electric Machinery. With an Introduction and Notes by Frank L. Pope and H. R. Butler. Fully Illustrated. (No. 66 Van Nostrand's Science Series.) 50 cents.
 - Recent Progress in Dynamo-Electric Machines. Being a Supplement to "Dynamo-Electric Machinery." Illustrated. 12mo, cloth. (No. 75 Van Nostrand's Science Series.) 50 cents.
 - The Electro-Magnet and Electro-Magnetic Mechanism. Second Edition, revised. 213 Illustrations. 8vo, cloth. \$6.00.
- TREVERT, E. Practical Directions for Armature and Field-Magnet Winding. Illustrated. 12mo, cloth. \$1.50.
 - How to Build Dynamo-Electric Machinery. Embracing the Theory, Designing, and Construction of Dynamos and Motors. With Appendices on Field-Magnet and Armature Winding, Management of Dynamos and Motors, and useful Tables of Wire Gauges. Illustrated. 8vo, cloth. \$2.50.
- TUMLIRZ, Dr. Potential, and its Application to the Explanation of Electrical Phenomena. Translated by D. Robertson, M.D. 12mo, cloth. \$1.25.

- TUNZELMANN, G. W. de. Electricity in Modern Life. Illustrated. 12mo, cloth. \$1.25.
- URQUHART, J. W. Dynamo Construction. A Practical Handbook for the Use of Engineer Constructors and Electricians in Charge. Illustrated. 12mo, cloth. \$3.00.
 - Electric Ship-Lighting. A Hand-book on the Practical Fitting and Running of Ships' Electrical Plant, for the Use of Ship Owners and Builders, Marine Electricians and Sea-going Engineers in Charge. 88 Illustrations. 12mo, cloth. \$3.00.
 - Electric Light Fitting. A Hand-book for Working Electrical Engineers, Embodying Practical Notes on Installation Management. Second Edition, with additional chapters. With numerous Illustrations. 12mo, cloth. \$2.00.
- WALKER, FREDERICK. Practical Dynamo-Building for Amateurs. How to Wind for any Output. Illustrated. 16mo, cloth. (No. 98 Van Nostrand's Science Series.) 50 cents.
- WALMSLEY, R. M. The Electric Current. How Produced and How Used. With 379 Illustrations. 12mo, cloth. \$3.00.
- WEBB, H. L. A Practical Guide to the Testing of Insulated Wires and Cables. Illustrated. 12mo, cloth. \$1.00.
- WORMELL, R. Electricity in the Service of Man. A Popular and Practical Treatise on the Application of Electricity in Modern Life. From the German, and edited, with copious additions, by R. Wormell, and an Introduction by Prof. J. Perry. With nearly 850 Illustrations. Royal 8vo, cloth. \$5.00.
- WEYMOUTH, F. MARTEN. Drum Armatures and Commutators. (Theory and Practice.) A complete treatise on the theory and construction of drumwinding, and of commutators for closed-coil armatures, together with a full résumé of some of the principal points involved in their design; and an exposition of armature reactions and sparking. Illustrated. 8vo, cloth. \$3.00.

Catalogue of the Scientific Publication's and Importations of D. Van Nostrand Company, 23 Murray Street and 27 Warren Street, New York.

A. B. C. CODE. (See Clausen-Thue.)

- ABBOTT, A. V. The Electrical Transmission of Energy. A Manual for the Design of Electrical Circuits. Second Edition, Revised. Fully illustrated. 8vo, cloth...........\$4 50
- ADAMS, J. W. Sewers and Drains for Populous Districts. Embracing Rules and Formulas for the dimensions and construction of works of Sanitary Engineers. Fifth Edition. 8vo, cloth. \$2.50
- A. 1 CODE. (See Clausen-Thue.)
- AIKMAN, C. M., Prof. Manures and the Principles of Manuring. 8vo, cloth.....\$2.60
- ALEXANDER, J. H. Universal Dictionary of Weights and Measures, Ancient and Modern, reduced to the Standards of the United States of America. New Edition, enlarged. 8vo, cloth..\$3.50
- ALLEN, C. F. Tables for Earthwork Computation 8vo, cloth........\$1.50
- ANDERSON, J. W. The Prospector's Handbook; A Guide for the Prospector and Traveller in search of Metal-bearing or other Valuable Minerals. Seventh Edition, thoroughly revised and much enlarged. 8vo, cloth. \$1.50

- ANDES, LOUIS. Vegetable Fats and Oils, Their Practical Preparation, Purification and Employment for various Purposes. Their Properties, Adulteration and Examination, A Hand Book for Oil Manufacturers and Refiners, Candle, Soap and Lubricating Oil Manufacturers and the Oil and Fat Industry in general. Translated from the German. With 94 illustrations. 8vo, cloth......\$4.00
- ARNOLD, Dr. R. Ammonia and Ammonium Compounds. A Practical Manual for Manufacturers, Chemists, Gas Engineers and Drysalters. Second Edition. 12mo, cloth......\$2.00

- The Elements of Dynamic Electricity and Magnetism. Third Edition. 120 illustrations. 12mo, cloth.....\$2.00
- Power Transmitted by Electricity and its Application by the Electric Motor, including Electric Railway Construction. Illustrated. 12mo, cloth. Second edition revised......\$2.00
- AUCHINCLOSS, W. S. Link and Valve Motions Simplified. Illustrated with 29 woodcuts and 20 lithographic plates, together with a Travel Scale, and numerous useful tables. Thirteenth Edition, revised. 8vo, cloth. \$2.00

- Engine Indicator, with directions for its use. By Charles T. Porter. Revised, with notes and large additions as developed by American practice; with an appendix containing useful formulæ and rules for engineers. Illustrated. Fourth Edition. 12mo, cloth......\$1.00

- Incandescent Wiring Hand-Book. With 35 illustrations and five tables. Fifth Edition. 18mo, cloth........\$1.00

- BARNARD, JOHN H. The Naval Militiaman's Guide.
 Full leather, pocket form.......\$1.25
- BARWISE, SIDNEY, M. D., London. The Purification of Sewage. Being a brief account of the Scientific Principles of Sewage Purification and their Practical Application. 12mo, cloth. Illustrated. \$2.00
- BAUMEISTER, R. The Cleaning and Sewerage of Cities. Adapted from the German with permission of the author. By J. M. Goodell, C. E. Second edition, revised and corrected, together with an additional appendix. 8vo, cloth. Illustrated. \$200

- - Ceramic Art. A Report on Pottery, Porcelain, Tiles, Terra-Cotta, and Brick. 8vo, cloth......\$2.00

- Poisons: their Effects and Detection. A Manual for theuse of Analytical Chemists and Experts, with an Introductory Essay on the growth of Modern Toxicology. Third Edition, revised and enlarged. 8vo, cloth. \$7.50
- BODMER, G. R. Hydraulic Motors; Turbines and Pressure Engines, for the use of Engineers, Manufacturers, and Students. Second Edition, revised and enlarged. With 204 illustrations. 12mo, cloth. \$5.00
- erse Tables, Showing the Difference of Latitude and Departure of every minute of the Quadrant and to five places of decimals. 8vo, cloth. \$5.00
- Electric Bells, and all about them. A Practical Book for Practical Men. With more than 100 illustrations. 12mo, cloth. Fourth Edition, revised and enlarged................................50

- BOTTONE, S. R. The Dynamo: How Made and How Used. A Book for Amateurs. Eighth Edition. 12mo, cloth...\$1.00
- Hand Book for Amateurs and Practical Men. Second Edition. 12mo, cloth.

- BOWSER, Prof. E. A. An Elementary Treatise on Analytic Geometry. Embracing Plane Geometry, and an Introduction to Geometry of three Dimensions. 12mo, cloth. Nineteenth Edition \$1.75
- An Elementary Treatise on Analytic Mechanics. With numerous examples. 12mo, cloth. Twelfth Edition....\$3.00
- An Elementary Treatise on Hydro-Mechanics.
 With numerous examples. 12mo, cloth. Fifth Edition......\$2.50
- Academic Algebra. Third Edition. 12mo, cloth...\$1.25
- College Algebra. Fourth Edition. 12mo, cloth..... \$1.75
- BOWIE, AUG. J., Jun., M. E. A Practical Treatise on Hydraulic Mining in California. With Description of the Use and Construction of Ditches, Flumes, Wrought-iron Pipes and Dams; Flow of Water on Heavy Grades, and its Applicability, under High Pressure, to Mining. Fifth Edition. Small quarto, cloth. Illustrated. \$5.00
- BURGH, N. P. Modern Marine Engineering, applied to Paddle and Screw Propulsion. Consisting of 36 colored plates, 259 practical woodcut illustrations, and 403 pages of descriptive matter. The whole being an exposition of the present practice of James Watt & Co., J. & G. Rennie, R. Napier & Sons, and other celebrated firms. Thick quarto, half morocco \$10.00

- BURT, W. A. Key to the Solar Compass, and Surveyor's Companion. Comprising all the rules necessary for use in the field; also description of the Linear Surveys and Public Land System of the United States, Notes on the Barometer, Suggestions for an Outfit for a Survey of Four Months, etc. Fifth Edition. Pocket-book form, tuck. \$2.50
- CAMPIN, FRANCIS. On the Construction of Iron Roofs. A Theoretical and Practical Treatise, with wood-cuts and Plates of Roofs recently executed. 8vo, cloth...........\$2.00

- CHAUVENET, Prof. W. New Method of Correcting Lunar Distances, and Improved Method of Finding the Error and Rate of a Chronometer, by Equal Altitudes. 8vo, cloth.......\$2 00
- CHRISTIE, W. WALLACE. Chimney Design and Theory. A Book for Engineers and Architects, with numerous half-tone illustrations and plates of famous chimneys. 12mo, cloth...\$3.00

- CLARK, D. KINNEAR, C. E. Tramways, their Construction and Working, embracing a comprehensive history of the system, with accounts of the various modes of traction, a description of the varieties of rolling stock, and ample details of Cost and Working Expenses. Second Edition. Re-written and greatly enlarged, with upwards of 400 illustrations. Thick 8vo, cloth........\$9 00
- —— The Steam Engine. A Treatise on Steam Engines and Boilers; comprising the Principles and Practice of the Combustion of Fuel, the Economical Generation of Steam, the Construction of Steam Boilers, and the Principles, Construction and Performance of Steam Engines, Stationary, Portable, Locomotive and Marine, exemplified in Engines and Boilers of recent date. Illustrated by above 1,300 figures in the text, and a series of folding plates drawn to scale. 2 vols. 8vo, cloth..................................\$15.00

- CLEEMANN, THOS. M. The Railroad Engineer's Practice. Being a Short but Complete Description of the Duties of the Young Engineer in the Prelimary and Location Surveys and in Construction. 4th ed., revised and enlarged. Illus. 12mo, cloth \$1.50
- CLEVENGER, S. R. A Treatise on the Method of Government Surveying as prescribed by the U. S. Congress and Commissioner of the General Land Office, with complete Mathematical, Astronomical and Practical Instructions for the use of the United States Surveyors in the field. 16mo, morocco\$2.50
- COFFIN, Prof. J. H. C. Navigation and Nautical Astronomy. Prepared for the use of the U. S. Naval Academy. New edition. Revised by Commander Charles Belknap. 52 woodcut illustrations. 12mo, cloth......net, \$3.50
- COLE, R. S., M. A. A Treatise on Photographic Optics.

 Being an account of the Principles of Optics, so far as they apply to Photography. 12mo, cloth. 103 illustrations and folding plates. \$2.50

- COLLINS, JAS. E. The private Book of Useful Alloys and Memoranda for Goldsmiths, Jewelers, etc. 18mo, cloth.... .50
- CORNWALL, prof. H. B. Manual of Blow-pipe Analysis, Qualitative and Quantitative. With a Complete System of Descriptive Mineralogy. 8vo, cloth, with many illustrations....\$2.50

- DAVIES, E. H. Machinery for Metalliferous Mines

 A Practical Treatise for Mining Engineers, Metallurgists and Manufacturers. With upwards of 300 illustrations, 8vo, cloth.....\$5.00
- DAY, CHARLES. The Indicator and its Diagrams.

 With Chapters on Engine and Boiler Testing; Including a Table of
 Piston Constants compiled by W. H. Fowler. 12mo, cloth. 125
 illustrations. \$2.00
- Practical Calculator. A Compilation of Useful Rules and Problems arithmetically solved, together with General Information applicable to Shop-Tools, Mill-Gearing, Pulleys and Shafts, Steam-Boilers and Engines. Embracing valuable Tables and Instruction in Screw-cutting, Valve and Link Motion, etc. 16mo, full morocco, pocket form. \$1.25

- DODD, GEO. Dictionary of Manufactures, Mining, Machinery, and the Industrial Arts. 12mo, cloth..........\$1.50

- Maximum Stresses under Concentrated Loads.

 Treated graphically. Illustrated. 8vo, cloth\$1.50
- Treatise on the Metallurgy of Gold; a Practical Treatise on the Metallurgical Treatment of Gold-Bearing Ores, including the Processes of Concentration and Chlorination, and the Assaying, Melting and Refining of Gold. Fourth Edition, revised and greatly enlarged. 187 illustrations. 12mo, cloth.........\$5.00
- The Metallurgy of Argentiferous Lead; a Practical Treatise on the Smelting of Silver-Lead Ores and the Refining of Lead Bullion. Including Reports on Various Smelting Establishments and Descriptions of Modern Smelting Furnaces and Plants in Europe and America. With 183 illustrations. 8vo, cl.......\$5.00
- Cyanide Process for the Extraction of Gold and its Practical Application on the Witwatersrand Gold Fields in South Africa. Second edition enlarged. 8vo, cloth. Illustrations and folding plates. \$3.00

- ELLISON, LEWIS M. Practical Application of the Indicator. With reference to the Adjustment of Valve Gear on all styles of Engines. Second Edition, revised. 8vo, cloth, 100 illustrations. \$2.00
- EVERETT, J. D. Elementary Text-Book of Physics.

 Illustrated. Seventh Edition. 12mo, cloth...................................\$1.50
- FANNING, J. T. A Practical Treatise on Hydraulic and Water-Supply Engineering. Relating to the Hydrology, Hydrodynamics, and Practical Construction of Water-Works in North America. 180 illustrations. 8vo, cloth. Fourteenth Edition, revised, enlarged, and new tables and illustrations added. 650 pages. \$5.00
- FISH, J. C. L. Lettering of Working Drawings. Thirteen plates, with descriptive text. Oblong, 9x12½, boards.....\$1.00

- FLEISCHMANN, W. The Book of the Dairy. A Manual of the Science and Practice of Dairy Work. Translated from the German, by C. M. Aikman and R. Patrick Wright. 8vo, cloth...\$4.00
- FLEMING, Prof. J. A. The Alternate Current Transformer in Theory and Practice. Vol. I—The Induction of Electric Currents; 611 pages. New edition. Illustrated. 8vo, cloth...\$5.00 Vol. 2. The Utilization of Induced Currents. Illustrated. 8vo, cloth....\$5.00

- FOLEY, NELSON and THOS. PRAY, Jr. The Mechanical Engineers' Reference Book for Machine and Boiler Construction, in two parts.

 —Boiler Construction. Part 1—General Engineering Data. Part 2
 With fifty-one plates and numerous illustrations, specially drawn for this work. Folio, half mor......\$25.00

- FOSTER, H. A. Electrical Engineers' Pocket Book. 1000 pages with the collaboration of Eminent Specialists...(In Press.)
- FOX, WM., and C. W. THOMAS, M. E. A Practical Course in Mechanical Drawing. 12mo, cloth with plates....\$1.25
- FRANCIS, Jas. B., C.E. Lowell Hydraulic Experiments. Being a selection from experiments on Hydraulic Motors, on the Flow of Water over Weirs, in open Canals of uniform rectangular section, and through submerged Orifices and diverging Tubes. Made at Lowell, Mass. Fourth edition, revised and enlarged, with many new experiments, and illustrated with 23 copper-plate engravings. 4to, cloth. \$15.00

- GEIPEL, WM. and KILGOUR, M. H. A Pocketbook of Electrical Engineering Formulæ. Illustrated. 18mo, mor. \$3.00 Large paper edition, wide margins. 8vo, morocco, gilt edges \$5.00

- GILLMORE, Gen. Q. A. Treatise on Limes, Hyraulic Cements, and Mortars. Papers on Practical Engineering, United States Engineer Department, No. 9, containing Reports of numerous

Experiments conducted in New York City during the years 1858 to 1861, inclusive. With numerous illustrations. 8vo, cloth\$4.00
GILLMORE, Gen. Q. A. Practical Treatise on the Construction of Roads, Streets, and Pavements. With 70 illustrations. 12mo, cloth
12mo, cloth,
Practically applied to Steam, Gas, Oil and Air Engines. 12mo, cloth. Illustrated
GOODEVE, T. M. A Text-Book on the Steam-Engine. With a Supplement on Gas-Engines. Twelfth Edition, enlarged. 143 illustrations. 12mo, cloth
GORDON, J. E. H. School Electricity. Illustrations. 12mo, cloth. \$2.00
GORE, G., F. R. S. The Art of Electrolytic Separation of Metals, etc. (Theoretical and Practical.) Illustrated. 8vo cloth. \$3.50 — Electro Chemistry Inorganic. Third Edition. 8vo
eloth
cloth
GRIFFITHS, A. B., Ph.D. A Treatise on Manures or the Philosophy of Manuring. A Practical Hand-Book for the Agriculturist, Manufacturer, and Student. 12mo, cloth\$3.00
GROVER, FREDERICK. Practical Treatise on Modern Gas and Oil Engines. 8vo, cloth. Illustrated\$2.00
GURDEN, RICHARD LLOYD. Traverse Tables computed to 4 places Decimals for every of angle up to 100 of Distance. For the use of Surveyors and Engineers. New Edition Folio, half mo
the Result of Practical Experience in Central-Station Work. 8vo cloth. Illustrated

HAEDER, HERMAN, C. E. A Handbook on the Steam Engine. With especial reference to small and medium sized engines. English edition, re-edited by the author from the second German edition, and translated with considerable additions and alterations by H. H. P. Powles. 12mo, cloth. Nearly 1100 illus. ..\$3.00

HALL, WM. S. Prof. Elements of the Differential and Integral Calculus. Second edition. 8vo, cloth. Illus-Illus-

HALSEY, F. A. Slide Valve Gears, an Explanation of the action and Construction of Plain and Cut-off Slide Valves. Illustrated. 12mo, cloth. Sixth Edition......\$1.50

- HAWKE, WILLIAM H. The Premier Cipher Telegraphic Code Containing 100,000 Words and Phrases. The most complete and most useful general code yet published. 4to, cloth ..\$5.00
- HAWKINS, C. C., and WALLIS, F. The Dynamo; its Theory, Design and Manufacture. 190 illustrations, 12mo, cloth, \$3.00

- HENRICI, OLAUS. Skeleton Structures, Applied to the Building of Steel and Iron Bridges. Illustrated.......\$1.50
- HERRMANN, Gustav. The Graphical Statics of Mechanism. A Guide for the Use of Machinists, Architects, and Engineers; and also a Text-book for Technical Schools. Translated and annotated by A. P. Smith, M. E. 12mo, cloth, 7 folding plates. Third Edition......\$2.00

- --- The Interpretation of Water Analysis.....(In Press.)
- HOBBS, W. R. P. The Arithmetic of Electrical Measurements, with numerous examples. Fully Worked. 12mo, cloth, .50
- HOLLEY, ALEXANDER L. Railway Practice. American and European Railway practice in the Economical Generation of Steam, including the Materials and Construction of Coal-burning Boilers, Combustion, the Variable Blast, Vaporization, Circulation, Superheating, Supplying and Heating Feed Water, etc., and the Adaptation of Wood and Coke-burning Engines to Coal-burning; and in Permanent Way, including Road-bed, Sleepers, Rails, Joint Fastenings, Street Railways, etc. With 77 lithographed plates. Folio, cloth
- HOLMES, A. BROMLEY. The Electric Light Popularly Explained. Fifth Edition. Illustrated. 12mo, paper...\$0.40
- HOPKINS, NEVIL M. Model Engines and Small Boats. New Methods of Engine and Boiler Making with a chapter on Elementary Ship Design and Construction. 12mo, cloth......\$1.25

- The Works' Manager's Hand-Book of Modern Rules, Tables, and Data for Civil and Mechanical Engineers. Millwrights and Boiler-makers, etc., etc. With upwards of 150 illustrations. Fifth Edition. Carefully revised, with additions. 8vo, cloth. \$6.00
- INNES, CHARLES H. Problems in Machine Design, For the Use of Students, Draughtsmen and others. 12mo, cl...\$2.00
- ----- Centrifugal Pumps, Turbines and Water Motors.
 Including the Theory and Practice of Hydraulics. 12mo, cl...\$1.50
- ISHERWOOD, B. F. Engineering Precedents for Steam Machinery. Arranged in the most practical and useful manner for Engineers. With illustrations. 2 vols. in 1. 8vo, cloth.....\$2.50
- JAMIESON, ANDREW, C.E. A Text-Book on Steam and Steam-Engines. Specially arranged for the use of Science and Art, City and Guilds of London Institute, and other Engineering Students. *Tenth Edition*. Illustrated. 12mo, cloth.......\$3.00
- Elementary Manual on Steam and the Steam Engine. Specially arranged for the use of First-Year Science and Art, City and Guilds of London Institute, and other Elementary Engineering Students. Third Edition. 12mo, cloth............\$1.50

- JOYNSON, F. H. The Metals used in Construction. Iron, Steel, Bessemer Metal, etc. Illustrated. 12mo, cloth.... .75

- KANSAS CITY BRIDGE, THE With an Account of the Regimen of the Missouri River and a Description of the Methods used for Founding in that River. By O. Chanute, Chief Engineer, and George Morrison, Assistant Engineer. Illustrated with 5 lithographic views and 12 plates of plans. 4to, cloth. \$6.00
- KAPP, GISBERT, C.E. Electric Transmission of Energy and its Transformation, Subdivision, and Distribution. A Practical hand-book. Fourth Edition, revised 12mo, cloth. \$3.50
- KEMPE, H. R. The Electrical Engineer's Pocket
 Book of Modern Rules, Formulæ, Tables and Data. Illustrated.
 32mo. Mor. gilt. \$1.75

- KING, W. H. Lessons and Practical Notes on Steam.

 The Steam-Engine, Propellers, etc., for Young Marine Engineers,
 Students, and others. Revised by Chief Engineer J. W. King, United
 States Navy. Nineteenth Edition, enlarged. 8vo, cloth......\$2.00
- KINGDON, J. A. Applied Magnetism. An introduction to the Design of Electromagnetic Apparatus. 8vo, cloth...\$3.00
- KIRKALDY, Wm. G. Illustrations of David Kirk-aldy's System of Mechanical Testing, as Originated and Carried On by him during a Quarter of a Century. Comprising a Large Selection of Tabulated Results, showing the Strength and other Properties of Materials used in Construction, with Explanatory Text and Historical Sketch. Numerous engravings and 25 lithographed plates, 4to, cloth. \$20.00
- KIRKWOOD, JAS. P. Report on the Filtration of River Waters for the supply of Cities, as practised in Europe, made to the Board of Water Commissioners of the city of St. Louis. Illustrated by 30 double-plate engravings. 4to, cloth. \$7.50
- Corpuscular Theory comprehending Unity of Force, Identity of Matter, and its Multiple Atom Constitution, etc. 12mo, cloth,..\$1.50

to Repair Them. With eigthy-nine illustrations. 8vo, cloth. Second Edition. \$2.00
Triple and Quadruple Expansion Engines and Boilers and their Management. With fifty-nine illustrations. Third edition, revised. 12mo, cloth. \$2.00
Refrigerating Machinery: Its Principles and Management. With sixty-four illustrations. 12mo, cloth\$2.00
LECKY, S. T. S. "Wrinkles" in Practical Navigation. With 130 illustrations. 8vo, cloth Ninth Edition, revised\$8.40
LEITZE, ERNST. Modern Heliographic Processes. A Manual of Instruction in the Art of Reproducing Drawings, Engravings, etc., by the action of Light. With 32 woodcuts and tenspecimens of Heliograms. 8vo, cloth. Second Edition
LEVY, C. L. Electric Light Primer. A Simple and Comprehensive digest of all the most important facts connected with the running of the dynamo, and electric lights, with precautions for safety. For the use of persons whose duty it is to look after the plant. 8vo, paper
LOCKE, ALFRED G. and CHARLES G. A Practical Treatise on the Manufacture of Sulphuric Acid. With 77 Constructive Plates drawn to Scale Measurements, and other Illustrations. Royal 8vo, cloth
LOCKERT, LOUIS. Petroleum Motor-Cars. 12mo, cloth\$1.50
LOCKWOOD, THOS. D. Electricity, Magnetism, and Electro-Telegraphy. A Practical Guide for Students, Operators, and Inspectors. 8vo, cloth. Third Edition\$2.50
— Electrical Measurement and the Galvanometer; Its Construction and Uses. Second Edition. 32 illustrations. 12mo, cloth
LODGE, OLIVER J. Elementary Mechanics, including Hydrostatics and Pneumatics. Revised Edition. 12mo, cloth. \$1.50
LORING, A. E. A Hand-Book of the Electro-Magnetic Telegraph. Paper boards50 Cloth75 Morocco .\$1.00
LUCE, Com. S. B. Text-Book of Seamanship. The Equipping and Handling of Vessels under Sail or Steam. For the use of the U. S. Naval Academy. Revised and enlarged edition, by Lt. Wm. S. Benson. 8vo, cloth

LUNGE, GEO. A Theoretical and Practical Treatise on the Manufacture of Sulphuric Acid and Alkali with the Collatera Branches. Vol. I. Sulphuric Acid. Second Edition, Revised and enlarged. 342 illustrations. 8vo, cloth. \$15.00 Vol. II. Second Edition, revised and enlarged. 8vo, cloth. \$16.80 Vol. III. 8vo, cloth. New Edition, 1896. \$15.00 LUNGE, GEO., and HURTER, F. The Alkali Maker's
Pocket Book. Tables and Analytical Methods for Manufacturers of Sulphuric Acid, Nitric Acid, Soda, Potash and Ammonia. Second Edition. 12mo, cloth
LUQUER, LEA McILVAINE, Ph. D. Minerals in Rock Sections. The Practical Method of Identifying Minerals in Rock Sections with the microscope. Especially arranged for Students in Technical and Sientifice Schools. 8vo, cloth. Illustrated
MACCORD, Prof. C. W. A Practical Treatise on the Slide-Valve by Eccentrics, examining by methods the action of the Eccentric upon the Slide-Valve, and explaining the practical processes of laying out the movements, adapting the Valve for its various duties in the Steam-Engine. Second Edition. Illustrated. 4to cloth \$2.50
MAGUIRE, Capt. EDWARD, U. S. A. The Attack and Defence of Coast Fortifications. With Maps and Numerous Illustrations. 8vo, cloth. \$2.50
MAGUIRE, WM. R. Domestic Sanitary Drainage and Plumbing Lectures on Practical Sanitation. 332 illustrations 8vo
MARKS, EDWARD C. R. Mechanical Engineering Materials: Their Properties and Treatment in Construction. 12mo cloth. Illustrated
Machinery. 12mo, cloth
MARKS, G. C. Hydraulic Machinery Employed in the concentration and Transmission of Power. 12mo, cloth\$1.25
MAVER, WM. American Telegraphy: Systems, Apparatus, Operation. 450 illustrations. 8vo, cloth
MAYER, Prof. A. M. Lecture Notes on Physics.

McCULLOCH, Prof. R. S. Elementary Treatise on the Mechanical Theory of Heat, and its application to Air and Steam Engines. 8vo, cloth. \$3.50

McNEILL, BEDFORD. McNeill's Code. Arranged to meet the requirements of Mining, Metallurgical and Civil Engi-

neers, Directors of Mining, Smelting and other Companies, Bankers, Stock and Share Brokers, Solicitors, Accountants, Financiers, and General Merchants. Safety and Secrecy. 8vo, cloth\$6.00

- MINIFIE, WM. Mechanical Drawing. A Textbook of Geometrical Drawing for the use of Mechanics and Schools, in which the Definitions and Rules of Geometry are familiarly explained; the Practical Problems are arranged from the most simple to the more complex, and in their description technicalities are avoided as much as possible. With illustrations for Drawing Plans, Sections, and Elevations of Railways and Machinery; an Introduction to Isometrical Drawing, and an Essay on Linear Perspective and Shadows. Illustrated with over 200 diagrams engraved on steel. Ninth thousand. With an appendix on the Theory and Application of Colors. 8vo, cloth. \$4.00

- MORRIS, E. Easy Rules for the Measurement of Earthworks by means of the Prismoidal Formula. 8vo, cloth, illus....\$1.50
- MOSES, ALFRED J., and PARSONS, C. L. Elements of Mineralogy, Crystallography and Blowpipe Analysis from a practical standpoint. Second Thousand. 8vo, cloth, 336 illus.net, \$2.00
- MOSES, ALFRED J. The Characters of Crystals.

 An Introduction to Physical Crystallography, containing 321 Illustrations and Diagrams. 8vo, 211 pp.......net, \$2.00
- MULLIN, JOSEPH P., M.E. Modern Moulding and Pattern-Making. A Practical Treatise upon Pattern-Shop and Foundry Work: embracing the Moulding of Pulleys, Spur Gears, Worm Gears, Balance-Wheels, Stationary Engine and Locomctive Cylinders, Globe Valves, Tool Work, Mining Machinery, Serew Propellers, Pattern-Shop Machinery, and the latest improvements in English and American Cupolas; together with a large collection of original and carefully selected Rules and Tables for every-day use in the Drawing Office, Pattern-Shop and Foundry. 12mo, cloth, illustrated....\$2.50

- MUNRO, JOHN, C.E., and JAMIESON, ANDREW, C.E. A Pocketbook of Electrical Rules and Tables for the use of Electricians and Engineers. Thirteenth edition, revised and enlarged. With numerous diagrams. Pocket size. Leather. \$2.50
- MURPHY, J. G., M.E. Practical Mining. A Field
 Manual for Mining Engineers. With Hints for Investors in Mining Properties. 16mo, morocco tncks.....\$1.00
- NAQUET, A. Legal Chemistry. A Guide to the Detection of Poisons, Falsification of Writings, Adulteration of Alimentary and Pharmaceutical Substances, Analysis of Ashes, and examination of Hair, Coins, Arms, and Stains, as applied to Chemical Jurisprudence, for the use of Chemists, Physicians, Lawyers, Pharmacists and Experts. Translated, with additions, including a list of books and memoirs on Toxicology, etc., from the French, by J. P. Battershall, Ph. D., with a preface by C. F. Chandler, Ph.D., M.D., LL.D. 12mo, cloth. \$2.00
- NASMITH, JOSEPH, The Student's Cotton Spinning. Third edition, revised and enlarged. 8vo, cloth, 622 pages, 250 illustrations.....\$3.00
- NEWALL, JOHN W. Plain Practical Directions for Drawing, Sizing and Cutting Bevel-Gears, showing how the Teeth may be cut in a Plain Milling Machine or Gear Cutter so as to give them a correct shape from end to end; and showing how to get out
- tography. 12mo, cloth. Illustrated. N.Y., 1899...... In press.
- NEWLANDS, JAMES. The Carpenters' and Joiners' Assistant: being a Comprehensive Treatise on the Selection, Preparation and Strength of Materials, and the Mechanical Principles of Framing, with their application in Carpentry, Joinery, and Hand-Railing; also, a Complete Treatise on Sines; and an illustrated Glossary of Terms used in Architecture and Building. Illustrated. Folio,
- NIPHER, FRANCIS E., A.M. Theory of Magnetic Measurements, with an appendix on the Method of Least Squares. 12mo, cloth. \$1.00
- NOAD, HENRY M. The Students' Text Book of Electricity. A new edition, carefully revised. With an Introduction and additional chapters by W. H. Preece. With 471 illustrations. 12mo, cloth\$4.00
- NUGENT, E. Treatise on Optics; or, Light and Sight theoretically and practically treated, with the application to Fine Art and Industrial Pursuits. With 103 illustrations. 12mo, cloth...\$1.50
- O'CONNOR, HENRY. The Gas Engineer's Pocket Book. Comprising Tables, Notes and Memoranda; relating to the Manufacture, Distribution and Use of Coal Gas and the Construction of Gas Works. 12mo, full leather, gilt edges...............\$3.50

- OUDIN, M. A. Standard Polyphase Apparatus and Systems. Fully Illustrated......\$3.00

- PARSHALL, H. F., and HOBART, H. M. Armature Windings of Electric Machines. With 140 full page plates, 65 tables, and 165 pages of descriptive letter-press. 4to, cloth.....\$7 50
- PEIRCE, B. System of Analytic Mechanics. 4to,

- PHILLIPS, JOSHUA. Engineering Chemistry. A
 Practical Treatise for the use of Analytical Chemists, Engineers, Iron
 Masters, Iron Founders, students and others. Comprising methods
 of Analysis and Valuation of the principal materials used in Engineering works, with numerous Analyses, Examples and Suggestions.
 314 ills. Second edition, revised and enlarged. 8vo, cloth...\$4.00
- PICKWORTH, CHAS. N. The Indicator Hand Book.
 A Practical Manual for Engineers. Part I. The Indicator: Its
 Construction and Application. 81 illustrations. 12mo, cloth...\$1.50

PICKWORTH, CHAS. N. The Slide Rule. A Price of the Manual of Instruction for all Users of the Modern Type of Stale, containing Succint Explanation of the Principle of Slide Formputation, together with Numerous Rules and Practical Illustions, exhibiting the Application of the Instrument to the Every Work of the Engineer,—Civil, Mechanical and Electrical. 12 flexible cloth. Fifth edition.	lide Rule tra- day mo,
PLANE TABLE, The. Its Uses in Topographical States Coast Sur Illustrated. 8vo, cloth	vey. 2.00
PLANTE, GASTON. The Storage of Electrical Energy and Researches in the Effects created by Currents, combining Que tity with High Tension. Translated from the French by Paul	ian-

- POOLE, JOSEPH. The Practical Telephone Hand-Book and Guide to the Telephonic Exchange. 288 illustrations. Secona edition, revised and enlarged. 12mo, cloth........\$1.50
- POPE, F. L. Modern Practice of the Electric Telegraph. A Technical Hand-Book for Electricians, Managers and Operators.

 *Fifteenth edition, rewritten and enlarged, and fully illustrated.**

 **Stock of the Electric Telegraph.*

 **Index of the Electric Telegraph.*

 **Inde
- POWLES, H. H. Steam Boilers.....(In Press.)

PRAY, Jr., THOMAS. Twenty Years with the In-
PRAY, Jr., THOMAS. Twenty Years with the Indicator; being a Practical Text-Book for the Engineer or the Student,
with no complex Formulæ. Illustrated. 8vo, cloth\$2,50
Steam Tables and Engine Constant. Compiled from Regnault, Rankine and Dixon directly, making use of the exact
records. 8vo, cloth
PRACTICAL IRON FOUNDING. By the author of
Pattern Making, &c., &c. Illustrated with over one hundred
engravings. 12mo, cloth\$1.50
PREECE, W. H. Electric Lamps(In Press.)
PREECE, W. H., and STUBBS, A. T. Manual of Telephony. Illustrations and plates. 12mo, cloth
PREMIER CODE. (See Hawke, Wm. H.)
PRESCOTT, Prof. A. B. Organic Analysis. A Manual
of the Descriptive and Analytical Chemistry of certain Carbon Com-
pounds in Common Use; a Guide in the Qualitative and Quantitative
Analysis of Organic Materials in Commercial and Pharmaceutical
Assays, in the estimation of Impurities under Authorized Standards, and in Forensic Examinations for Poisons, with Directions for Ele-
mentary Organic Analysis. Fourth edition 8vo, cloth\$5.00
— Outlines of Proximate Organic Analysis, for the
Identification, Separation, and Quantitative Determination of the more commonly occurring Organic Compounds. Fourth edition.
12mo, cloth
First Book in Qualitative Chemistry. Eighth edition.
12mo, eloth
— and OTIS COE JOHNSON. Qualitative Chemical
Analysis. A Guide in the Practical Study of Chemistry and in the
work of Analysis. Fourth fully revised edition. With Descriptive Chemistry extended throughout\$3.50
PRITCHARD, O. G. The Manufacture of Electric
PRITCHARD, O. G. The Manufacture of Electric Light Carbons. Illustrated. 8vo, paper
PULLEN, W. W. F. Application of Graphic Methods
to the Design of Structures. Specially prepared for the use of En-
gineers. A Treatment by Graphic Methods of the Forces and Principles necessary for consideration in the Design of Engineering Struc-
tures, Roofs, Bridges, Trusses, Framed Structures, Wells, Dams,
Chimneys and Masonry Structures. 12mo, cloth. Profusely Illus-
trated
PULSIFER, W. H. Notes for a History of Lead. 8vo, cloth, gilt tops\$4.00
PYNCHON, Prof. T. R. Introduction to Chemical
Physics, designed for the use of Academies, Colleges, and High
Schools. Illustrated with numerous engravings, and containing copious experiments with directions for preparing them. New edition, re-
vised and enlarged, and illustrated by 269 illustrations on wood.
8vo, cloth\$3.00

RADFORD, Lieut. CYRUSS. Handbook on Naval Gunnery. Prepared by Authority of the Navy Department. For the use of U. S. Navy, U. S. Marine Corps and U. S. Naval Reserves. Revised and enlarged, with the assistance of Stokely Morgan, Lieut.

RAFTER, GEO. W. and M. N. BAKER. Sewage Dis-Disposal in the United States. Illustrations and folding plates.

U. S. N. Third edition. 12mo, flexible leather.\$2.00

Second edition. 8vo, cloth......\$6.00 RAM, GILBERT S. The Incandescent Lamp and its Manufacture, 8vo., cloth......\$3.00 RANDALL, J. E. A Practical Treatise on the Incan-RANDALL, P. M. Quartz Operator's Hand-book. New edition, revised and enlarged, fully illustrated. 12mo, cloth...... \$2.00 RANKINE, W. J. MACQUORN. Applied Mechanics. Comprising the Principles of Statics and Cinematics, and Theory of Structures, Mechanism, and Machines. With numerous diagrams. Fifteenth edition. Thoroughly revised by W. J. Millar. 8vo, cloth.....\$5.00 - Machinery and Millwork. Comprising the Geometry, Motions, Work, Strength, Construction, and Objects of Machines, etc. Illustrated with nearly 300 woodcuts. Secenth edition. Thoroughly revised by W. J. Millar. 8vo, cloth.......\$5.00 - The Steam-Engine and Other Prime Movers. With diagram of the Mechanical Properties of Steam, folding plates, numerous tables and illustrations. Thirteenth edition. Thoroughly revised by W. J. Millar. 8vo, cloth......\$5.00 - Useful Rules and Tables for Engineers and Others. With appendix, tables, tests, and formulæ for the use of Electrical Engineers. Comprising Submarine Electrical Engineering, Electric Lighting, and Transmission of Power. By Andrew Jamieson, C.E., F.R.S.E. Seventh edition. Thoroughly revised by W. J. Millar. Crown 8vo, cloth......\$4.00 A Mechanical Text Book. By Prof. Macquorn Rankine and E. F.B amber, C. E. With numerous illustrations. Fourth

edition. 8vo, cloth......\$3.50 RAPHAEL, F. C. Localisation of Faults in Electric Light Mains. 8vo, cloth\$2.00 RECKENZAUN, A. Electric Traction on Railways and Tramways. 213 Illustrations, 12mo, cloth.....\$4.00

- REED'S ENGINEERS' HAND-BOOK, to the Local Marine Board Examinations for Certificates of Competency as First and Second Class Engineers. By W. H. Thorn. With the answers to the Elementary Questions. Illustrated by 297 diagrams and 36 large plates. Sixteenth edition, revised and enlarged. 8vo, cloth. \$5.00
- Useful Hints to Sea-going Engineers, and How to Repair and Avoid "Break Downs;" also Appendices Containing Boiler Explosions, Useful Formulæ, etc. With 36 diagrams and 4 plates. Second edition, revised and enlarged. 12mo, cloth...\$1.40
- REINHARDT, CHAS. W. Lettering for Draftsmen, Engineers and Students. A Practical System of Free-hand Lettering for Working Drawings. Fourth thousand. Oblong, boards...\$1.00

ROSE, JOSHUA, M.E. The Pattern-Makers Assistant.
Embracing Lathe Work, Branch Work, Core Work, Sweep Work, and
Practical Gear Constructions, the Preparation and Use of Tools,
together with a large collection of useful and valuable Tables. Eighteenth edition. Illustrated with 250 engravings.
cloth\$2.50
- Key to Engines and Engine-running. A Practical
Treatise upon the Management of Steam Engines and Bollers for
the Use of Those who Desire to Pass an Examination to Take
Charge of an Engine or Boiler. With numerous illustrations, and
Instructions Upon Eugineers' Calculations, Indicators, Diagrams,
Engine Adjustments, and other Valuable Information necessary for Engineers and Firemen. 12mo, cl
SABINE, ROBERT. History and Progress of the
Electric Telegraph. With descriptions of some of the apparatus.
Second edition, with additions. 12mo, cloth\$1.25
SAELTZER, ALEX. Treatise on Acoustics in connec-
tion with Ventilation. 12mo, cloth\$1.00
SALOMONS, Sir DAVID, M.A. Electric-Light Instal-
lations. A Practical Handbook. Eighth edition, revised and en-
larged with numerous illustrations. Vol. I., The management of
Accumulators. 12mo, cloth. \$1.50 Vol. II., Apparatus, 296 illustrations. 12mo., cloth. \$2.25
Vol. III., Applications, 12mo., cloth
SANFORD, P. GERALD. Nitro-Explosives. A Prac-
tical Treatise concerning the Properties, Manufacture and Analysis
of Nitrated Substances, including the Fulminates, Smokeless Pow-
ders and Celluloid. 8vo. cloth, 270 pages\$3.00
SAUNNIER, CLAUDIUS. Watchmaker's Handbook.
A Workshop Companion for those engaged in Watchmaking and
allied Mechanical Arts. Translated by J. Tripplin and E. Rigg.
Second edition, revised with appendix. 12mo, cloth\$3.50
SCHELLEN, Dr. H. Magneto-Electric and Dynamo-
Electric Machines: their Construction and Practical Application to
Electric Lighting, and the Transmission of Power. Translated from
the third German edition by N. S. Keith and Percy Neymann, Ph.D.
With very large additions and notes relating to American Machines, by
N. S. Keith. Vol. 1., with 353 illustrations. Second edition\$5,00
SCHUMANN, F. A Manual of Heating and Ventilation
in its Practical Application, for the use of Engineers and Architects, Embracing a series of Tables and Formulæ for dimensions of heating,
and rolling and rolling for difficulties of heating,

SCIENCE SERIES, The Van Nostrand. [See List, p. 33]

flow and return pipes for steam and hot-water boilers, flues, etc. 1 mo, illustrated, full roan. \$1.50

Formulas and Tables for Architects and Engineers in calculating the strains and capacity of structures in Iron and Wood. 12mo, morocco, tucks. \$1.50

- SEATON, A. E. A Manual of Marine Engineering.
 Comprising the Designing, Construction and Working of Marine
 Machinery. With numerous tables and illustrations reduced from
 Working Drawings. Fourteenth edition. Revised throughout, with
 an additional chapter on Water Tube Boilers. 8vo, cloth. 1899. \$6.00
- SEXTON, A. HUMBOLDT. Fuel and Refractory Materials. 8vo, cloth \$2.00
- SHOCK, WM. H. Steam Boilers, Their Design, Construction and Management. 4to, half morocco...........\$15.00
- SHREVE, S. H. A Treatise on the Strength of Bridges and Roofs. Comprising the determination of Algebraic formulas for strains in Horizontal, Inclined or Rafter, Triangular, Bowstring, Lenticular, and other Trusses, from fixed and moving loads, with practical applications, and examples, for the use of Students and Engineers. 87 woodcut illus. Fourth edition. 8vo, cloth....\$3.50
- SHUNK, W. F. The Field Engineer. A Handy Book of practice in the Survey, Location, and Truck-work of Railroads, containing a large collection of Rules and Tables, original and selected, applicable to both the Standard and Narrow Gauge, and prepared with special reference to the wants of the young Engineer. Eleventh edition, revised and enlarged. 12mo, morocco, tucks........\$2.50

SIMMS, W. F. Practical Tunnelling. Fourth edition, revised and greatly extended. With additional chapters illustrating recent practice by D. Kinnear Clark. With 36 plates and other illustrations. Imperial 8vo, cloth. \$12 00

Utilization. A Practical Manual for the Use of Corporations, Local Boards, Medical Officers of Health, Inspectors of Nuisances, Chemists, Manufacturers, Riparian Owners, Engineers, and Rate-payers.

SMITH, ISAAC W., C.E. The Theory of Deflections and of Latitudes and Departures. With special applications to Curvilinear Surveys, for Alignments of Railway Tracks. Illustrated.

Sewage Treatment, Purification, and

SLATER, J. W.

12mo, cloth.....

Tomo, morocoo, tucks
GUSTAVUS W. Notes on Life Insurance. Theoretical and Practical. Third edition, revised and enlarged. 8vo, cloth. \$2.00
SNELL, ALBION T. Electric Motive Power: The Transmission and Distribution of Electric Power by Continuous and Alternate Currents. With a Section on the Applications of Electricity to Mining Work. 8vo., cloth, illustrated\$4.00
SPEYERS, CLARENCE L. Text Book of Physical Chemistry. 8vo, cloth\$2.25
STAHL, A. W., and A. T. WOODS. Elementary Mechanism. A Text-Book for Students of Mechanical Engineering. Fourth edition, enlarged. 12mo, cloth\$2.00
STALEY, CADY, and PIERSON, GEO. S. The Separate System of Sewerage: its Theory and Construction. Second edition, revised. 8vo, cloth. With maps, plates and illustrations. \$3.00
STEVENSON, DAVID, F.R.S.N. The Principles and Practice of Canal and River Engineering. Revised by his sons David Alan Stevenson, B. Sc., F.R.S.E., and Charles Alexander Stevenson, B. Sc., F.R.S.E., Civil Engineer. Third edition, with 17 plates. 8vo, cloth. \$10.00
— The Design and Construction of Harbors. A Treatise on Maritime Engineering. Third edition, with 24 plates. 8vo, cloth
STEWART, R. W. A Text Book of Light. Adapted to the Requirements of the Intermediate Science and Preliminary Scientific Examinations of the University of London, and also for General Use. Numerous Diagrams and Examples. 12mo, cloth, \$1.00
- A Text Book of Heat. Illustrated. 8vo. cloth\$1.00

for use in the field. Tables containing all the functions of a one degree curve, from which a corresponding one can be found for any required degree. Also, Tables of Natural Sines and Tangents. 12mo, morocco, tucks \$2.00
STILLMAN, PAUL. Steam-Engine Indicator and the Improved Manometer Steam and Vacuum Gauges; their Utility and Application. New edition. 12mo, flexible cloth\$1.00
STONE, General ROY. New Roads and Road Laws in the United States. 200 pages, with numerous illustrations. 12mo, cloth
STONEY, B. D. The Theory of Stresses in Girders and Similar Structures. With observations on the application of Theory to Practice, and Tables of Strength, and other properties of Materials. New revised edition, with numerous additions on Graphic Statics, Pillars, Steel, Wind Pressure, Oscillating Stresses, Working Loads, Riveting, Strength and Tests of Materials. 8vo, 777 pages, 143 illustrations, and 5 folding plates
STUART, C. B. U. S. N. Lives and Works of Civil and Military Engineers of America. With 10 steel-plate engravings. 8vo, cloth
The Naval Dry Docks of the United States. Illustrated with 24 fine Engravings on Steel. Fourth edition. 4to, cloth
SWEET, S. H. Special Report on Coal, showing its Distribution, Classification, and Costs delivered over different routes to various points in the State of New York and the principal cities on the Atlantic Coast. With maps. 8vo, cloth\$3.00
SWINTON, ALAN A. CAMPBELL. The Elementary Principle of Electric Lighting. Illustrated. 12mo, cloth60
TEMPLETON, WM. The Practical Mechanic's Workshop Companion. Comprising a great variety of the most useful rules and formulæ in Mechanical Science, with numerous tables of practical data and calculated results facilitating mechanical operations. Revised and enlarged by W. S. Hutton. 12mo, morocco \$2.00
THOM, CHAS., and WILLIS H. JONES. Telegraphic Connections: embracing Recent Methods in Quadruplex Telegraphy. Oblong, 8vo, cloth. 20 full page plates, some colored\$1.50
THOMPSON, EDWARD P., M. E. How to Make Inventions; or, Inventing as a Science and an Art. A Practical Guide for Inventors. Second edition. 8vo, boards

- THOMPSON, EDWARD P., M. E. Roentgen Lays and Phenomena of the Anode and Cathode. Principles, Applications and Theories. For Students, Teachers, Physicians, Photographers, Electricians and others. Assisted by Louis M. Pignolet, N. D. C. Hodges, and Ludwig Gutmann, E. E. With a Chapter on Generalizations, Arguments, Theories, Kindred hadiations and Phenomena. By Professor Wm. Anthony. 8vo, cloth. 50 Diagrams, 40 Half tones. \$1.50

- TRATMAN, E. E. RUSSELL. Railway Track and Track-Work. With over two hundred illustrations. 8vo, cloth. \$3.00
- Electricity and its Recent Applications. A Practical Treatise for Students and Amateurs, with an Illustrated Dictionary of Electrical Terms and Phrases. Illustrated. 12mo, cloth..\$2.00
- TUCKER, Dr. J. H. A Manual of Sugar Analysis, including the Applications in General of Analytical Methods to the Sugar Industry. With an Introduction on the Chemistry of Cane Sugar, Dextrose, Levulose, and Milk Sugar. 8vo, cloth, illustrated. \$3.50
- TUMLIRZ, DR. O. Potential and its Application to the Explanation of Electric Phenomena, Popularly Treated. Translated from the German by D. Robertson. Ill. 12mo, cloth....\$1.25
- TUNNER, P. A. Treatise on Roll-Turning for the Manufacture of Iron. Translated and adapted by John B. Pearse, of the Pennsylvania Steel Works, with numerous engravings, woodcuts. 8vo, cloth, with folio atlas of plates......\$10.00
- URQUHART, J. W. Electric Light Fitting. Embodylng Practical Notes on Installation Management. A Hand-book for Working Electrical Engineers—with numerous illustrations. 12mo, cloth. \$2.00
- Electro-Plating. A Practical Hand Book on the Deposition of Copper, Silver, Nickel, Gold, Brass, Aluminium, Platininum, etc. Third edition. \$2.00

URQUHART, J. W. Electrotyping. A Practical Manual forming a New and Systematic Guide to the Reproduction and Multiplication of Printing Surfaces, etc. 12mo\$2.00
Dynamo Construction: a Practical Hand-Book for the Use of Engineer Constructors and Electricians in Charge, em- bracing Frame Work Building, Field Magnet and Armature Winding and Grouping, Compounding, etc., with Examples of Leading Eng- lish, American and Continental Dynamos and Motors, with numerous illustrations. 12mo, cloth
— Electric Ship Lighting. A Hand-Book on the Practical Fitting and Running of Ship's Electrical Plant. For the Use of Ship Owners and Builders, Marine Electricians and Sea Going Engineers-in-Charge. Numerous illustrations. 12mo, cloth\$3.00
UNIVERSAL TELEGRAPH CIPHER CODE. Arranged for General Correspondence. 12mo, cloth\$1.00
VAN HEURCK, Dr. HENRI. The Microscope, Its Construction and Management, including Technique, Photo-Micrography and the Past and Future of the Microscope. English edition re-edited and augmented by the Author from the fourth French edition, and translated by Wynne E. Baxter, F.R.M.S. 3 Plates and upwards of 250 Illustrations. Imperial 8vo, cloth\$7.00
VAN NOSTRAND'S Engineering Magazine. Complete sets, 1869 to 1886 inclusive. Complete sets, 35 vols., in cloth
VAN WAGENEN, T. F. Manual of Hydraulic Mining. For the Use of the Practical Miner. Revised and enlarged edition. 18mo, cloth
WALKER, W. H. Screw Propulsion. Notes on Screw Propulsion, its Rise and History. 8vo, cloth
WALKER, SYDNEY F. Electrical Engineering in Our Homes and Workshops. A Practical Treatise on Auxiliary Electrical Apparatus. Third edition, revised, with numerous illustrations \$2.00
—— Electric Lighting for Marine Engineers, or How to Light a Ship by the Electric Light and How to Keep the Apparatus in Order. 103 illustrations. 8vo, cloth. Second edition\$2.00
WALLIS-TAYLER, A. J. Modern Cycles, A Practical Handbook on Their Construction and Repair. With 300 illustrations. 8vo, cloth\$4.00
— Motor Cars, or Power Carriages for Common Roads. 8vo, cloth, with numerous illustrations\$1.80
— Bearings and Lubrication. A Handbook for every user of Machinery. 8vo, cloth, fully illustrated\$1.50

- Sugar Machinery. A Descriptive Treatise, Devoted to the Machinery and Apparatus used in the Manufacture of Cane and Beet Sugars. 12mo, cloth, ill. \$2.00
- Water Analysis. A Practical Treatise on the Examination of Potable Water. Tenth edition. 12mo, cloth.....\$2.00

- How to Drain a House. Practical Information for Householders. New and enlarged edition. 12mo, cloth.....\$1.25
- WATT, ALEXANDER. Electro-Deposition. A Practical Treatise on the Electrolysis of Gold, Silver, Copper, Nickel, and other Metals, with Descriptions of Voltaic Batteries, Magneto and Dynamo-Electric Machines, Thermopiles, and of the Materials and Processes used in every Department of the Art, and several chapters on Electro-Metallurgy. With numerous illustrations. Third edition, revised and corrected. Crown, 8vo, 568 pages............\$3.50

- WATT, ALEXANDER. The Art of Leather Manufacture. Being a Practical Handbook, in which the Operations of Tanning, Currying, and Leather Dressing are Fully Described, and the Principles of Tanning Explained, and many Recent Processes Introduced. With numerous illustrations. Second edition. 8vo, cl.\$4.00
- Weale's Rudimentary Scientific Series, [see list, p. 39.]

- WESTON, EDMUND B. Tables Showing Loss of Head Due to Friction of Water in Pipes. Second edition. 12mo,

- WHEELER, Prof, J. B. Art of War. A Course of Instruction in the Elements of the Art and Science of War, for the Use of the Cadets of the United States Military Academy, West Point, N. Y. 12mo, cloth. \$1.75

- --- Practical Tables in Meteorology and Hypsometry, in connection with the use of the Barometer. 4to, cloth.... \$2.50
- WILLYOUNG, E. G., and W. M. STONE, Ph. D. Electrical Instruments and Measurements. 12mo, cl. 2 vols.... In Press.
- WOODBURY, D. V. Treatise on the Various Elements of Stability in the Well-Proportioned Arch. 8vo, half morocco...\$4.00
- Elements of Mechanics; including Kinematics, Kinetics and Statics. With applications. 8vo, cloth..........\$2.50
- WYLIE, CLAUDE. Iron and Steel Founding. Illustrated with 39 diagrams. Second edition, revised and enlarged.

 8vo, cloth. \$2.0

Catalogue of the Van Nostrand Science Series.

THEY are put up in a uniform, neat, and attractive form. 18mo, boards. Price 50 cents per volume. The subjects are of an eminently scientific character, and embrace a wide range of topics, and are amply illustrated when the subject demands.

- No. 1. CHIMNEYS FOR FURNACES AND STEAM-BOILERS. By R. Armstrong, C.E. Third American edition, revised and partly rewritten, with an appendix on Theory of Chimney Draught, by F. E. Idell, M.E.
- No. 2. STEAM-BOILER EXPLOSIONS. By Zerah Colburn. New edition, revised by Prof. R. H. Thurston.
- No. 3. PRACTICAL DESIGNING OF RETAINING-WALLS.
 By Arthur Jacob, A.B. Second edition, revised, with additions by Prof.
 W. Cain.
- No. 4. PROPORTIONS OF PINS USED IN BRIDGES. Second edition, with appendix. By Charles E. Bender, C.E.
- No. 5. VENTILATION OF BUILDINGS. By W. F. Butler. Second edition, re-edited and enlarged by James L. Greenleaf, C.E.
- No. 6. ON THE DESIGNING AND CONSTRUCTION OF STORAGE RESERVOIRS. By Arthur Jacob, A.B. Second edition, revised, with additions by E. Sherman Gould.
- No. 7. SURCHARGED AND DIFFERENT FORMS OF RETAINING-WALLS. By James S. Tate, C.E.
- No. 8. A TREATISE ON THE COMPOUND ENGINE. By John Turnbull, jun. Second edition, revised by Prof. S. W. Robinson.
- No. 9. A TREATISE ON FUEL. By Arthur V. Abbott, C. E. Founded on the original treatise of C. William Siemens, D.C.L.
- No. 10. COMPOUND ENGINES. Translated from the French of A. Mallet. Second edition, revised, with Results of American Practice, by Richard H. Buel, C.E.
- No. 11. THEORY OF ARCHES. By Prof. W. Allan.
- No. 12. A THEORY OF VOUSSOIR ARCHES. By Prof. W. E. Cain. Second edition, revised and enlarged. Illustrated.
- No. 13. GASES MET WITH IN COAL-MINES. By J. J. Atkinson. Third edition, revised and enlarged by Edward H Williams, jun.

D. VAN NOSTRAND COMPANY'S

- No. 14. FRICTION OF AIR IN MINES. By J. J. Atkinson.
- No. 15. SKEW ARCHES. By Prof. E. W. Hyde, C.E. Illustrated.
- No. 16. A GRAPHIC METHOD FOR SOLVING CERTAIN ALGEBRAIC EQUATIONS. By Prof. George L. Vose.
- No. 17. WATER AND WATER-SUPPLY. By Prof. W. H. Corfield of the University College, London.
- No. 18. SEWERAGE AND SEWAGE PURIFICATION. By M. N. Baker, Assoc. Ed. Engineering News.
- No. 19. STRENGTH OF BEAMS UNDER TRANSVERSE LOADS. By Prof. W. Allan, author of "Theory of Arches."
- No. 20. BRIDGE AND TUNNEL CENTRES. By John B. Mc-Master, C.E.
- No. 21. SAFETY VALVES. By Richard H. Buel, C.E. Second edition.
- No 22. HIGH MASONRY DAMS. By E. Sherman Gould, C.E.
- No. 23. THE FATIGUE OF METALS UNDER RRPEATED STRAINS. With Various Tables of Results and Experiments. From the German of Prof. Ludwig Spangenburgh, with a Preface by S. H. Shreve, A.M.
- No. 24. A PRACTICAL TREATISE ON THE TEETH OF WHEELS. By Prof. S. W. Robinson. Second edition, revised.
- No. 25. ON THE THEORY AND CALCULATION OF CANTILEVER BRIDGES. By R. M. Wilcox, Ph.B.
- No. 26. PRACTICAL TREATISE ON THE PROPERTIES OF CONTINUOUS BRIDGES. By Charles Bender, C.E.
- No. 27. ON BOILER INCRUSTATION AND CORROSION By F. J. Rowan. New edition, revised and partly rewritten by F. L. Idell, M. E.
- No. 28. TRANSMISSION OF POWER BY WIRE ROPES
 By Albert W. Stahl, U.S.N. Second edition.
- No. 29. STEAM INJECTORS. Translated from the French of M. Leon Pochet.
- No. 30. TERRESTRIAL MAGNETISM, AND THE MAGNET-ISM OF IRON VESSELS. By Prof. Fairman Rogers.
- No. 31. THE SANITARY CONDITION OF DWELLING-HOUSES IN TOWN AND COUNTRY. By George E. Waring, jun.
- No. 32. CABLE-MAKING FOR SUSPENSION BRIDGES. By W. Hildenbrand, C.E.
- No. 33. MECHANICS OF VENTILATION. By George W. Rafter, C.E. New edition (1895), revised by author.
- No. 34. FOUNDATIONS. By Prof. Jules Gaudard, C.E. Translated from the French.
- No. 35. THE ANEROID BAROMETER: ITS CONSTRUCTION AND USE. Compiled by George W. Plympton. Fourth edition
- No. 36. MATTER AND MOTION. By J. Clerk Maxwell, M.A. Second American edition.

SCIENCE SERIES.

- No. 37. GEOGRAPHICAL SURVEYING: ITS USES, METH-ODS, AND RESULTS. By Frank De Yeaux Carpenter, C.E.
- No. 38. MAXIMUM STRESSES IN FRAMED BRIDGES. By Prof. William Cain, A.M., C.E. New and revised edition.
- No. 39. A HANDBOOK OF THE ELECTRO-MAGNETIC TELEGRAPH. By A. E. Loring.
- No. 40. TRANSMISSION OF POWER BY COMPRESSED AIR. By Robert Zahner, M.E. Second edition.
- No. 41. STRENGTH OF MATERIALS. By William Kent, C.E., Assoc. Ed. Engineering News.
- No. 42. VOUSSOIR ARCHES APPLIED TO STONE BRIDGES, TUNNELS, CULVERTS, AND DOMES. By Prof. William Cain.
- No. 43. WAVE AND VORTEX MOTION. By Dr. Thomas Craig of Johns Hopkins University.
- No. 44. TURBINE WHEELS. By Prof. W. P. Trowbridge, Columbia College. Second edition.
- No. 45. THERMODYNAMICS. By Prof. H. T. Eddy, University of Cincinnati.
- No. 46. ICE-MAKING MACHINES. New edition, revised and enlarged by Prof. J. E. Denton. From the French of M. Le Doux.
- No. 47. LINKAGES; THE DIFFERENT FORMS AND USES OF ARTICULATED LINKS. By J. D. C. de Roos.
- No. 48. THEORY OF SOLID AND BRACED ARCHES. By William Cain, C.E.
- No. 49. ON THE MOTION OF A SOLID IN A FLUID. By Thomas Craig, Ph.D.
- No. 50. DWELLING-HOUSES: THEIR SANITARY CONSTRUCTION AND ARRANGEMENTS. By Prof. W. H. Corfield.
- No. 51. THE TELESCOPE: ITS CONSTRUCTION, ETC. By Thomas Nolan.
- No. 52. IMAGINARY QUANTITIES. Translated from the French of M. Argand. By Prof. Hardy.
- No. 53. INDUCTION COILS: HOW MADE AND HOW USED. Fifth edition.
- No. 54. KINEMATICS OF MACHINERY. By Prof. Kennedy. With an introduction by Prof. R. H. Thurston.
- No. 55. SEWER GASES: THEIR NATURE AND ORIGIN. By A. de Varona.
- No. 56. THE ACTUAL LATERAL PRESSURE OF EARTH-WORK. By Benjamin Baker, M. Inst. C.E.
- No. 57. INCANDESCENT ELECTRIC LIGHTING. A Practical Description of the Edison System. By L. H. Latimer, to which is added the Design and Operation of Incandescent Stations, by C. J. Field, and the Maximum Efficiency of Incandescent Lamps, by John W. Howell.
- No. 58. 'THE VENTILATION OF COAL-MINES. By W. Fairley. M.E., F.S.S.

D. VAN NOSTRAND COMPANY'S

- No. 59. RAILROAD ECONOMICS; OR, NOTES, WITH COM-MENTS. By S. W. Robinson, C.E.
- No. 60. STRENGTH OF WROUGHT-IRON BRIDGE MEM-BERS. By S. W. Robinson, C E.
- No. 61. POTABLE WATER AND METHODS OF DETECT-ING IMPURITIES. By M. N. Baker, Ph.B.
- No. 62. THE THEORY OF THE GAS-ENGINE. By Dugald Clerk.
 Second edition. With additional matter. Edited by F. E. Idell, M.E.
- No. 63. HOUSE DRAINAGE AND SANITARY PLUMBING.
 By W. P. Gerhard. Seventh edition, revised.
- No. 64. ELECTRO-MAGNETS. By Th. du Moncel, 2d revised edition.
- No. 65. POCKET LOGARITHMS TO FOUR PLACES OF DECI-MALS.
- No. 66. DYNAMO-ELECTRIC MACHINERY. By S. P. Thompson. With notes by F. L. Pope. Third edition.
- No. 67. HYDRAULIC TABLES BASED ON "KUTTER'S FORMULA." By P. J. Flynn.
- No. 68. STEAM-HEATING. By Robert Briggs. Second edition, revised, with additions by A. R. Wolff.
- No. 69. CHEMICAL PROBLEMS. By Prof. J. C. Foye. Fourth edition, revised and enlarged.
- No. 70. EXPLOSIVE MATERIALS. The Phenomena and Theories of Explosion, and the Classification, Constitution and Preparation of Explosives. By First Lieut. John P. Wisser, U.S.A.
- No. 71. DYNAMIC ELECTRICITY. By John Hopkinson, J. A. Schoolbred, and R. E. Day.
- No. 72. TOPOGRAPHICAL SURVEYING. By George J. Specht, Prof. A. S. Hardy, John B. McMaster, and H. F. Walling.
- No. 73. SYMBOLIC ALGEBRA; OR, THE ALGEBRA OF ALGEBRAIC NUMBERS. By Prof. W. Cain.
- No. 74. TESTING MACHINES: THEIR HISTORY, CONSTRUCTION, AND USE. By Arthur V. Abbott.
- No. 75. RECENT PROGRESS IN DYNAMO-ELECTRIC MA-CHINES. Being a Supplement to Dynamo-Electric Machinery. By Prof. Sylvanus P. Thompson.
- No. 76. MODERN REPRODUCTIVE GRAPHIC PROCESSES. By Lieut. James S. Pettit, U.S.A.
- No. 77. STADIA SURVEYING. The Theory of Stadia Measurements. By Arthur Winslow.
- No. 78. THE STEAM-ENGINE INDICATOR, AND ITS USE By W. B. Le Van.
- No. 79. THE FIGURE OF THE EARTH. By Frank C. Roberts, C.E.
- No. 80. HEALTHY FOUNDATIONS FOR HOUSES. By Glenn Brown

SCIENCE SERIES.

- No. 81. WATER METERS: COMPARATIVE TESTS OF ACCURACY, DELIVERY, ETC. Distinctive features of the Worthington, Kennedy, Siemens, and Hesse meters. By Ross E. Browne.
- No. 82. THE PRESERVATION OF TIMBER BY THE USE OF ANTISEPTICS. By Samuel Bagster Boulton, C.E.
- No. 83. MECHANICAL INTEGRATORS. By Prof. Henry S. H. Shaw, C.E.
- No. 84. FLOW OF WATER IN OPEN CHANNELS, PIPES, CONDUITS, SEWERS, ETC. With Tables. By P. J. Flynn, C.E.
- No. 85 THE LUMINIFEROUS ÆTHER. By Prof. de Volson Wood.
- No. 86. HAND-BOOK OF MINERALOGY; DETERMINATION AND, DESCRIPTION OF MINERALS FOUND IN THE UNITED STATES. By Prof. J. C. Foye.
- No. 87. TREATISE ON THE THEORY OF THE CONSTRUCTION OF HELICOIDAL OBLIQUE ARCHES. By John L. Culley, C.E.
- No. 88. BEAMS AND GIRDERS. Practical Formulas for their Resistance. By P. H. Philbrick.
- No. 89. MODERN GUN-COTTON: ITS MANUFACTURE, PROPERTIES, AND ANALYSIS. By Lieut. John P. Wisser, U.S.A.
- No. 90. ROTARY MOTION, AS APPLIED TO THE GYRO-SCOPE. By Gen. J. G. Barnard.
- No. 9t. LEVELING: BAROMETRIC, TRIGONOMETRIC, AND SPIRIT. By Prof. I. O. Baker.
- No. 92. PETROLEUM: ITS PRODUCTION AND USE. By Boverton Redwood, F.I.C., F.C.S.
- No. 93. RECENT PRACTICE IN THE SANITARY DRAIN-AGE OF BUILDINGS. With Memoranda on the Cost of Plumbing Work. Second edition, revised. By William Paul Gerhard, C. E.
- No. 94. THE TREATMENT OF SEWAGE. By Dr. C. Meymott Tidy.
- No. 95. PLATE GIRDER CONSTRUCTION. By Isami Hiroi, C.E. Second edition, revised and enlarged. Plates and Illustrations.
- No. 96. ALTERNATE CURRENT MACHINERY. By Gisbert Kapp, Assoc. M. Inst., C.E.
- No. 97. THE DISPOSAL OF HOUSEHOLD WASTE. By W. Paul Gerhard, Sanitary Engineer.
- No. 98. PRACTICAL DYNAMO-BUILDING FOR AMATEURS. HOW TO WIND FOR ANY OUTPUT. By Frederick Walker. Fully illustrated.
- No. 99. TRIPLE-EXPANSION ENGINES AND ENGINE TRIALS. By Prof. Osborne Reynolds. Edited, with notes, etc., by F. E. Idell, M. E.

SCIENCE SERIES.

- No. 100. HOW TO BECOME AN ENGINEER; OR, THE THEORETICAL AND PRACTICAL TRAINING NECESSARY IN FITTING FOR THE DUTIES OF THE CIVIL ENGINEER. The Opinions of Eminent Authorities, and the Course of Study in the Technical Schools. By Geo. W. Plympton, Am. Soc. C.E.
- No. 101. THE SEXTANT AND OTHER REFLECTING MATHEMATICAL INSTRUMENTS. With Practical Suggestions and Wrinkles on their Errors, Adjustments, and Use. With thirty-three illustrations. By F. R. Brainard, U.S.N.
- No. 102. THE GALVANIC CIRCUIT INVESTIGATED MATHEMATICALLY. By Dr. G. S. Ohm, Berlin, 1827. Translated by William Francis. W. h Preface and Notes by the Editor, Thomas D. Lockwood, M.I.E.E.
- No. 103. THE MICROSCOPICAL EXAMINATION OF POTA-BLE WATER. With Diagrams. By Geo, W. Rafter.
- No. 104. VAN NOSTRAND'S TABLE-BOOK FOR CIVIL AND MECHANICAL ENGINEERS. Compiled by Geo. W. Plympton, C.E.
- No. 105. DETERMINANTS, AN INTRODUCTION TO THE STUDY OF. With examples. By Prof. G. A. Miller.
- No. 106. TRANSMISSION BY AIR-POWER. Illustrated. By Prof. A. B. W. Kennedy and W. C. Unwin.
- No. 107. A GRAPHICAL METHOD FOR SWING-BRIDGES. A Rational and Easy Graphical Analysis of the Stresses in Ordinary Swing-Bridges. With an Introduction on the General Theory of Graphical Statics. 4 Plates. By Benjamin F. LaRue, C.E.
- No. 108. A FRENCH METHOD FOR OBTAINING SLIDE-VALVE DIAGRAMS. 8 Folding Plates. By Lloyd Bankson, B.S., Assist, Naval Constructor, U.S.N.
- No. 109. THE MEASUREMENT OF ELECTRIC CURRENTS.

 ELECTRICAL MEASURING INSTRUMENTS, By Jas. Swinburne. Meters
 for Electrical Energy. By C. H. Wordingham. Edited by
 T. Commerford Martin. Illustrated.
- No. 110. TRANSITION CURVES. A Field Book for Engineers, containing Rules and Tables for laying out Transition Curves. By Walter G. Fox.
- No. 111. GAS-LIGHTING AND GAS-FITTING, including Specifications and Rules for Gas Piping, Notes on the Advantages of Gas for Cooking and Heating, and useful Hints to Gas Consumers. Second edition, rewritten and enlarged. By Wm. Paul Gerhard.
- No. 112. A PRIMER ON THE CALCULUS. By E. Sherman Gould, C.E.
- No. 113. PHYSICAL PROBLEMS AND THEIR SOLUTION. By A. Bourgougnon, formerly Assistant at Bellevue Hospital.
- No. 114. MANUAL OF THE SLIDE RULE. By F. A. Halsey of the American Machinist.

DISCARDED BY
MILWAUKEE SCHOOL
OF ENGINEERING
LIBRARY

SCHOOL OF ENGINEERING

