

Balancing handover areas among neighbouring cells in 3G networks

Evolutionary Algorithms

Multiobjective optimization and design

Lucas Benedičič

Jožef Stefan International Postgraduate School

May 2010

Outline

- The problem
 - description
 - ... structure
 - ... elements
- Single-objective optimization
- Multi-objective optimization
- 4 Concluding remarks
- 6 Appendix: parameter set-up

Outline

- The problem
 - description
 - ... structure
 - elements
- Single-objective optimization
- Multi-objective optimization
- 4 Concluding remarks
- 6 Appendix: parameter set-up

Neighbour cells

Handover area

Balancing handover area

Balancing UL-DL handover areas

Balancing UL-DL handover areas

Balancing UL-DL handover areas

Outline

- The problem
 - description
 - ... structure
 - elements
- Single-objective optimization
- Multi-objective optimization
- 4 Concluding remarks
- 6 Appendix: parameter set-up

Adjacency Matrix

	CELL 1	CELL 2	CELL 3	CELL 4	CELL 5
CELL 1					
CELL 2					
CELL 3					
CELL 4					
CELL 5					

Adjacency Matrix

	CELL 1	CELL 2	CELL 3	CELL 4	CELL 5
CELL 1	0	0	1	0	1
CELL 2	0	0	0	1	0
CELL 3	1	0	0	0	1
CELL 4	0	1	0	0	0
CELL 5	1	0	1	0	0

Adjacency Matrix - simmetry

	CELL 1	CELL 2	CELL 3	CELL 4	CELL 5
CELL 1	0	0	1	0	1
CELL 2	0	0	0	1	0
CELL 3	1	0	0	0	1
CELL 4	0	1	0	0	0
CELL 5	1	0	1	0	0

Outline

- The problem
 - description
 - ... structure
 - ... elements
- Single-objective optimization
- Multi-objective optimization
- 4 Concluding remarks
- 6 Appendix: parameter set-up

Problem elements

- Candidate solutions: DL power setting for every cell.
- Constraints: solutions within [-2dB, +2dB] of current setting.
- Static problem.

Problem elements

- Candidate solutions: DL power setting for every cell.
- Constraints: solutions within [-2dB, +2dB] of current setting.
- Static problem.

Problem elements

- Candidate solutions: DL power setting for every cell.
- Constraints: solutions within [-2dB, +2dB] of current setting.
- Static problem.

Minimize ...

... the difference between UL and DL areas among neighbour cells.

$$\min |\sum_{i=1}^{|V|} \sum_{j=i}^{|V|} a_{ij} \left(\left(UL(c_i) - UL(c_j) \right) - \left(DL(c_i) - DL(c_j) \right) \right)|$$

- c; i-th cell of the network,
- $DL(c_i)$ downlink power of the *i*-th cell,
- $UL(c_i)$ uplink power of the *i*-the cell.

$$\min |\sum_{i=1}^{|V|} \sum_{j=i}^{|V|} a_{ij} \left(\left(UL(c_i) - UL(c_j) \right) - \left(DL(c_i) - DL(c_j) \right) \right)|$$

- c_i i-th cell of the network,
- $DL(c_i)$ downlink power of the *i*-th cell,
- $UL(c_i)$ uplink power of the *i*-the cell.

$$\min |\sum_{i=1}^{|V|} \sum_{j=i}^{|V|} a_{ij} \left(\left(UL(c_i) - UL(c_j) \right) - \left(DL(c_i) - DL(c_j) \right) \right)|$$

- c; i-th cell of the network,
- $DL(c_i)$ downlink power of the *i*-th cell,
- $UL(c_i)$ uplink power of the *i*-the cell.

$$\min |\sum_{i=1}^{|V|} \sum_{j=i}^{|V|} a_{ij} \left(\left(UL(c_i) - UL(c_j) \right) - \left(DL(c_i) - DL(c_j) \right) \right)|$$

- c; i-th cell of the network,
- $DL(c_i)$ downlink power of the *i*-th cell,
- $UL(c_i)$ uplink power of the *i*-the cell.

Objective function

$$\min |\sum_{i=1}^{|V|} \sum_{j=i}^{|V|} a_{ij} ((UL(c_i) - UL(c_j)) - (DL(c_i) - DL(c_j)))|$$

- a_{ij} adjacency matrix coefficient at (i,j),
- \bullet |V| total number of cells in the network.

Lucas Benedičič (Jožef Stefan InternationBalancing handover areas among neighbo

$$\min |\sum_{i=1}^{|V|} \sum_{j=i}^{|V|} a_{ij} ((UL(c_i) - UL(c_j)) - (DL(c_i) - DL(c_j)))|$$

- a_{ij} adjacency matrix coefficient at (i,j),
- \bullet |V| total number of cells in the network.

$$\min |\sum_{i=1}^{|V|} \sum_{j=i}^{|V|} a_{ij} ((UL(c_i) - UL(c_j)) - (DL(c_i) - DL(c_j)))|$$

- a_{ij} adjacency matrix coefficient at (i,j),
- |V| total number of cells in the network.

- Discrete search space
 - ► changes of 0.1 dBm.
- Key parameters
 - initial temperature,
 - number of iterations

- Discrete search space
 - ightharpoonup changes of 0.1 dBm.
- Key parameters
 - initial temperature
 - number of iterations

- Discrete search space
 - ightharpoonup changes of 0.1 dBm.
- Key parameters
 - initial temperature,
 - number of iterations

- Discrete search space
 - ightharpoonup changes of 0.1 dBm.
- Key parameters
 - initial temperature,
 - number of iterations.

SA: Results

Minimize ...

... the difference between UL and DL areas among neighbour cells.

Minimize ...

... the total DL power used.

1 - Objective function

$$\min |\sum_{i=1}^{|V|} \sum_{j=i}^{|V|} a_{ij} \left(\left(UL(c_i) - UL(c_j) \right) - \left(DL(c_i) - DL(c_j) \right) \right)|$$

$$\min \sum_{i=1}^{|V|} DL(c_i)$$

1 - Objective function

$$\min |\sum_{i=1}^{|V|} \sum_{j=i}^{|V|} a_{ij} \left(\left(UL(c_i) - UL(c_j) \right) - \left(DL(c_i) - DL(c_j) \right) \right)|$$

$$\min \sum_{i=1}^{|V|} DL(c_i)$$

DEMO

- Continous search space.
- Key parameters
 - population size,
 - number of generations.

DEMO

- Continous search space.
- Key parameters
 - population size,
 - number of generations.

DEMO

- Continous search space.
- Key parameters
 - population size,
 - number of generations.

DEMO

- Continous search space.
- Key parameters
 - population size,
 - number of generations.

DEMO: Results

DEMO: Results

- Both algorithms solved the balancing problem to optimality.
- SA was easier to set-up (implementation + parameter configuration).
- SA took longer running times for comparable good results.

- Both algorithms solved the balancing problem to optimality.
- SA was easier to set-up (implementation + parameter configuration).
- SA took longer running times for comparable good results.

- Both algorithms solved the balancing problem to optimality.
- SA was easier to set-up (implementation + parameter configuration).
- SA took longer running times for comparable good results.

- DEMO analysis included 2 parameters only (lots of other parameters left as default).
- DEMO was much faster (minutes \longleftrightarrow hours).
- DEMO also lowered the total power used (2^{nd}) objective.
- DEMO couldn't find good solutions in a discretized search space.

- DEMO analysis included 2 parameters only (lots of other parameters left as default).
- DEMO was much faster (minutes ←→ hours).
- DEMO also lowered the total power used (2nd objective).
- DEMO couldn't find good solutions in a discretized search space.

- DEMO analysis included 2 parameters only (lots of other parameters left as default).
- DEMO was much faster (minutes \longleftrightarrow hours).
- DEMO also lowered the total power used (2^{nd}) objective).
- DEMO couldn't find good solutions in a discretized search space.

- DEMO analysis included 2 parameters only (lots of other parameters left as default).
- DEMO was much faster (minutes \longleftrightarrow hours).
- DEMO also lowered the total power used (2nd objective).
- DEMO couldn't find good solutions in a discretized search space.

