

Introduction to Human-Computer Interaction

05. Interaction Elements and Fundamental Design Goals

Instructor: Jaemin Jo (조재민, jmjo@skku.edu)
Interactive Data Computing Lab (IDCLab),
College of Computing and Informatics,
Sungkyunkwan University

Interaction Elements

- What are the elements of HCI?
 - HCI researchers' vocabulary (terminology)

- Controls, mapping, degree of freedom (DoF), conceptual model, ...
- These elements are essential to describe the interaction between humans and computers in the real world.

Hard Controls and Soft Controls

- **Hard controls:** joystick, switches, push buttons, keys, ...
 - Once manufactured, their behaviors are constrained.
 - Physical and single-purpose
- Soft controls: display + pointing device + software
 - "malleability of a display"
 - Bring unlimited possibilities to a relative small physical space

Hard Controls and Soft Controls

- Soft controls blur the distinction between controls and displays
- Soft controls need little space

Control-Display Relationship

- **Control-display relationship**: the relationship between what a user does and what is experienced.
- "Move the mouse to the right" -> "Move the cursor on the system to the right"

• Should be natural, seamless, intuitive, and efficient

IDCLab SUN 1398 1398

- Move the mouse to the right -> cursor right
- Move the mouse "forward" -> cursor "up"
 - Raising the mouse "up" off the mouse pad?

• Even though transformed, the mapping can be quickly learned.

- Scrolling exhibits a three-tier control display relationship.
 - Transformation between the hard and soft controls
 - Transformation between the soft control and the view

- More degree-of-freedom (DoF)?
 - The number of parameters can be manipulated independently of others.
- Spatial congruence is achieved in (a).

DOF	Control	Display
х	+ •	+
у	+ •	+
z	+ •	 +
θх	+ •	 +
θу	+ •	+
θ_z	+ •	+

• Interaction (e.g., dragging, see (b)) or soft controls can be used to support manipulation.

• The mapping in (b) look convoluted, but people can quickly learn it.

DOF	Control	Display
х	+ •	
у		
z	+	
θх		+
θу		7 -
θz		

Control-Display Gain

- **CD gain**: the amount of movement in a display object for a given amount of movement in a control.
 - Move mouse 3 cm -> cursor moves 3 cm: CD gain = 3 / 3 = 1
 - Move mouse 3 cm -> cursor moves 6 cm: CD gain = 6 / 3 = 2
- Often the gain is non-linear and uses a power function.
 - Mouse moves slowly -> low CD gain (enhance pointer precision)

Control-Display Gain

• Early research on finding the optimal CD gain (1940s)

Speed-accuracy trade-off

 Very large display, very small displays, remote pointing, 3D interaction, ...

Property Sensed

- Which property of a control is sensed?
 - Position
 - Displacement
 - Force
- Touchscreen: absolute position of fingers
- Mouse: displacement (the amount of movement)
- **Touchpad on laptops**: absolute position is sensed, but operates in mouse-emulation mode

Order of Control

- What does the sensed property change?
- Position-control (zero-order control): the sensed property controls the position of an object
- **Velocity-control** (**first-order control**): the sensed property controls the velocity of an object.

Isotonic joysticks (displacement sensing)

Best when position-control

Isometric joysticks (force sensing) Joystick is fixed

Best when velocity-control

- Is a control-display relationship natural, or must be learned?
- Rotating the knob clockwise → increasing the value
 - Simple, intuitive, and easy

(b)		
DOF	Control	Display
х		
у		/ +
z		
θх		
θ _y θ _z		
θz	+	

(h)

Natural vs Learned Relationship

- But, it is a learned relationship.
 - Think about rotating the knob counter-clockwise
- People with different cultures/ethnicity/geographical groups may have different "expectation."
 - Spatial congruence is important

(b)		
DOF	Control	Display
х		
У	+	+
z		
θх		,
θ_{z}		
θ z		

Natural vs Learned Relationship

- Switch-light interaction: no spatial mapping between a switch and a bulb
 - In UK, up \rightarrow on, but In US, up \rightarrow off
- Physical contradiction in (b)
 - Universal throughout cultures
 - People will learn but may make more errors.
 - (a) is superior to (b).

Mapping

- Relationship between controls and actions should be apparent to users.
 - Minimize the need for labels or legends
 - Work by "logical constraints"

Arbitrary

Paired

Mapping

- Full natural mapping between controls and burners
 - No labels!

1. Provide a good mapping between controls and actions

Affordances

- **Affordances** are properties of objects which show users the actions they can take.
 - Provide strong clues to the operations of things
 - Affordances are everywhere!
- A chair affords sitting = a chair is for sitting
- Buttons for pushing
- Knobs for rotating

Affordance Example

https://uxdesign.cc/what-is-an-affordance-6b60f2de79f2

Affordance Example

Signifier

- Icons showing locked and unlocked states

Affordance

- Thumb-shaped button for opening lid
- Sliding lock for locking coffee mug

https://uxdesign.cc/what-is-an-affordance-6b60f2de79f2

Fundamental Design Goals

- 1. Provide a good mapping between controls and actions
- 2. Provide the right affordances and signifiers

Constraints

- Visible constraints limit the possible actions by appearance.
- Prevent errors

Types of Constraints

Physical

Semantic

You will choose the most meaningful action considering the situation.

Types of Constraints

Cultural

Logical

Types of Constraints

• Physical Constraints: Physical limitations constrain possible operations

Semantic Constraints

Depending on our meaning of situation

Cultural Constraints

Allowable actions for social situations

Logical Constraints

- only one piece left, only one possible place to go
- spatial layout of components
- "Natural mapping" work by this constraints

Fundamental Design Goals

- 1. Provide a good mapping between controls and actions
- 2. Provide the right affordances and signifiers
- 3. Use constraints to prevent errors

Metaphors

Do we need to experience a thing to learn how to use it?

 Physical analogy or metaphor is one of the most common ways to learn and adapt.

"Desktop" Interface

- In the CLI era, there was no GUI.
- Using GUI required a new way of thinking.

- Designers exploited the metaphor of the office or desktop to give users a jumpstart on the interface.
 - Users could work with concepts already understood.
 - Documents, folders, filing cabinets, trashcans, pointing, selecting, dragging, dropping, ...
 - "Desktop metaphor"

Metaphor Examples

Metaphors

- Pros
 - Reuse the previous experience to understand the working of a new thing
 - Leverage our knowledge of familiar, concrete objects/experiences
 - Transfer this knowledge to abstract computer and task concepts

Cons

- **Too limited**: The metaphor restricts interface possibility
 - You can undo commands in your desktop but not in the reality
- **Too powerful**: The metaphor makes believe that the system can do things it can't
- **Mismatched**: The metaphor makes it difficult to carry out the task

Fundamental Design Goals

- 1. Provide a good mapping between controls and actions
- 2. Provide the right affordances and signifiers
- 3. Use constraints to prevent errors
- 4. Exploit metaphors

Mental Models

- Why are metaphors effective?
- Because they help you build your mental model.

 Mental model: the user's explanation about how something works in the real world.

Mental Models

• "The models people have of themselves, others, the environment and the things with which they interact. People form mental models through experience, training and instruction"

- Abstract representation
- Enable people to reason about a system
- Affect the way we see and interpret reality
- Allow people to make predictions

Refrigerator Example

What will happen if you turn the control for the freezer to E?

One Reasonable Mental Model

- Two controls and two compartments
- "Okay, one control must be for the freezer and the other for the refrigerator!"

- But in fact, the first control controls the "total" amount of air while the second controls how much of cold air goes to freezer/refrigerator.
- Very hard to make only the freezer colder

Design Model

• A design model is generated over the course of a product's development

No direct interaction!

Design Model

- If the design model doesn't match the users' conceptual model, the user will find the product hard to learn and use.
 - "Why did they design in this way?"
- How to deliver the design model effectively?
 - Manuals?
 - Talking to the user directly?

Conceptual Model

- Formed by
- Affordances
- Constraints
- Mappings
- Feedback the users receive from actions
- The visual cues from the appearance of a product

Conceptual Model Example

- Visibility: all parts visible
- Affordances
 - Handles with holes (putting something into them?)
 - Sharp blades (don't touch this part!)
- Constraints: only two holes (not many possible actions)
- Mappings: big and small holes
 - Small for the thumb and big for other fingers
 - Transfer effect (learnt mapping from adults)
- = Good Conceptual Model
 - Implication is clear.

Conceptual Model Example

Fundamental Design Goals

- 1. Provide a good mapping between controls and actions
- 2. Provide the right affordances and signifiers
- 3. Use constraints do prevent errors
- 4. Exploit metaphors
- 5. Help users to build the right conceptual model

Gulf of Execution/Evaluation (Norman, 2002)

Two gaps between the user and the system

Gulf of Execution

 The difference between the intentions and the allowable actions in the system

- Measure the size of gulf
 - How well the system allows the person to do the intended actions directly, without extra effort?
 - Do the actions match those intended by the person?

Related to functionality and usability

Gulf of Evaluation

The difference between

- the physical representation provided by the system and
- **users' interpretation** (in terms of the intentions and expectations)
- Reflects the amount of effort that the person must exert
 - to interpret the physical state of the system
 - to determine how well the expectations and intentions have been met
- Related to feedback and visibility

Goal: Draw a rectangle

Gulf of Execution Example

Gulf of Execution Example

Goal: Draw a rectangle

0.79
0.63
0.72
0.85
0.43
0.09
0.03
0.54
0.38
0.33
0.46

Goal:
Identify whether X
and Y are correlated

Evaluation

Gulf of Evaluation

Fundamental Design Goals

- 1. Provide a good mapping between controls and actions
- 2. Provide the right affordances and signifiers
- 3. Use constraints to prevent errors
- 4. Exploit metaphors
- 5. Help users to build the right conceptual model
- 6. Make the commands/mechanisms of the system match the thoughts
- 7. Make things visible

Credits

- Our textbook (Human-Computer Interaction by I. Scott MacKenzie)
- Ben Bederson, UMD HCIL
- François Guimbretière, Cornell University
- Jinwook Seo, Seoul National University