## Лабораторная работа №4

# Прагматика лабораторной работы

- Знакомство с основной моделью в теории колебаний линейным гармоническим осциллятором.
- Визуализация результатов моделирования путем построения фазового портрета гармонического осциллятора.

## Цель лабораторной работы

- Научиться строить модели гармонических колебаний.
- Научиться решать уравнения гармонического осциллятора.
- Научиться переходить от дифференциального уравнения второго порядка к системе из двух дифференциальных уравнений первого порядка.
- Научиться строить фазовый портрет гармонических колебаний.

#### Задание лабораторной работы

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

1. Колебания гармонического осциллятора без затуханий и без действий внешней силы:

$$\ddot{x} + 6.6x = 0$$

2. Колебания гармонического осциллятора с затуханием и без действий внешней силы:

$$\ddot{x} + 9\dot{x} + 2x = 0$$

3. Колебания гармонического осциллятора с затуханием и под действием внешней силы:

$$\ddot{x} + 2.4\dot{x} + 6x = 0.2cos(3t)$$

На интервале  $t \in [0;52]$  (шаг 0.05) с начальными условиями  $x_0 = 1$ ,  $y_0 = -1.5$ .

# Результаты выполнения лабораторной работы

# Представление уравнения второго порядка в виде системы двух уравнений первого порядка

1. Уравнение  $\ddot{x} + 6.6x = 0$  приводится к системе вида:

$$egin{cases} \dot{x} = y \ \dot{y} = -6.6x \end{cases}$$

2. Уравнение  $\ddot{x} + 9\dot{x} + 2x = 0$  приводится к системе вида:

$$egin{cases} \dot{x} = y \ \dot{y} = -9y - 2x \end{cases}$$

3. Уравнение  $\ddot{x} + 2.4\dot{x} + 6x = 0.2cos(3t)$  приводится к системе вида:

$$egin{cases} \dot{x} = y \ \dot{y} = -2.4y - 6x + 0.2cos(3t) \end{cases}$$

# Построение графиков фазового портрета



Рис.1 Модель колебаний гармонического осциллятора без затуханий и без действий внешней силы



Рис.2 Модель колебаний гармонического осциллятора с затуханием и без действий внешней силы



Рис.3 Модель колебаний гармонического осциллятора с затуханием и с действием внешней силы

#### Выводы

- Научился строить модели и решать уравнения гармонических осцилляторов, строить фазовый портрет гармонических колебаний
  - о без затуханий и без действий внешней силы
  - о с затуханием и без действий внешней силы
  - о с затуханием и с действием внешней силы