武汉大学计算机学院

2020-2021 学年第一学期 2019 级卓越工程师班《计算机组成与设计》

期末考试试题 A 卷 (闭卷)

		班级				
	意:所有答题内: 本考试使用的 RIS			在试题或单	≥楇纰上的── [∶]	侓 尢奴。
_3	31 27 2	26 25 24	20 19 15	14 12	11 7	6 0
R	funct7	rs2	rs1	funct3	rd	opcode
١	imm[rs1	funct3	rd	opcode
S	imm[11:5]	rs2	_	funct3	imm[4:0]	opcode
SB -	imm[12 10:5			funct3	imm[4:1 11]	opcode
U U J		imm[31:1 imm[20 10:1 11			rd rd	opcode opcode
_						-
‡ 0008	算结果为0,011(旨令 beq 所在的均 0010,则此指令 0xFE8	也址为 0x0000	0000 0008 00	24,转移目 为(C)。		
	有些指令集中有 j 内存地址。RISC					
A. ł	peq	B. jalr	C. j	al	D. j	
ᅾ	考虑一个循环, 在	在程序中会被证	周用多次。每	次执行时,	循环结束时的	内分支指名
/15 A	。 V. BIL ナム まれた エエ					11/1 / 10 /
	9次跳转到循环的准确率分别是		生 1 次不跳车	专。采用 1 亿	立预测机制和	

5、 在一个单周期 RISC-V CPU 中,通常是由(A)指令的执行时间决定该 CPU 的时钟频率。

C. 88.89%和 88.89% D. 80%和 100%

6、 在一个没有旁路(前递/forwarding)和冒险检测的五阶段流水线中,寄存器在前半个周期写,后半个周期读。如果想正确运行如下代码,至少需要插入(B)条 NOP指令。

addi x11, x1, 5 ld x12, 0(x2) add x13, x11, x12 addi x14, x12, 15 add x15, x13, x11

A. 2

B. 3

C. 4

D. 5

- 7、 下面有关相关和冒险的说法不正确的是(C)。
 - A. 流水线级数越深,控制相关造成的处罚(penalty)越大
 - B. 有些数据冒险无法只通过旁路(forwarding)消除
 - C. 结构冒险(hazard)可以通过增加资源消除,数据冒险可以通过旁路的方法消除
 - D. 编译器可以通过指令调度来帮助消除指令冒险
- 8、 下面有关 cache 描述正确的是(D)。
 - A. 在预算足够的情况下,增加一级 cache 的大小能降低不命中率,提升系统性能
 - B. 写直达(write through)策略使得每次写操作都要访问下一层存储设备,降低了写操作的性能,在现代系统中已经不再采用
 - C. 多级 cache 系统中,为了方便不同级别 cache 的数据换进换出,通常都采用相同的数据块大小
 - D. 程序的性能不仅与算法复杂度相关,还与算法对数据的访问模式相关
- 9、 假定一个磁盘的转速为 7200RPM,磁盘的平均寻道时间为 8ms,内部数据传输率 为 4MB/s,不考虑排队等待时间,则读一个 512B 扇区的平均时间大约为 (B)。

A. 12.16ms

B. 12.29ms

C. 16.32ms

D. 16.46ms

10、 假定主存地址为 32 位,按字节编址,主存和 Cache 之间采用直接映射方式,主存块大小为 4 个字,每字 32 位,采用回写(write back)方式,则能存放 4K 字数据的 Cache 的总容量的位数至少是(C)。

A. 146K

B. 147K

C. 148K

D. 158K

二、性能计算(每小题 5 分,共 10 分)

编译程序对一个应用程序在给定处理器上的性能有极大的影响。假定一个应用程序,在

1GHz的 CPU上,采用编译程序 A和 B分别编译后得到下表所示数据:

使用编译程序	生成动态指令数	应用程序执行时间
A	1.1×10^9	1.1 秒
В	1.2 x 10 ⁹	1.5 秒

- (1) 分别求使用编译程序 A 和使用编译程序 B 得到的应用程序的平均 CPI。
- (2) 假设开发了一种新的编译程序,只用 8×10^8 条指令,平均 CPI 为 1.2,求这种新的编译程序相对于编译程序 A 和 B 的加速比。
- (1) 时钟周期: 1/1G = 1.0ns

编译程序 A 得到的 CPI: 1.1s / 1.1G / 1.0ns= 1.0

编译程序 B 得到的 CPI: 1.5s / 1.2G / 1.0ns = 1.25

(2) T_{new} = 指令数 x CPI = 0.8G x 1.2 x 1.0ns = 0.96s

$$T_A/T_{new} = 1.1 / 0.96 = 1.15$$

$$T_B/T_{new} = 1.5 / 0.96 = 1.56$$

三、指令系统(每个空2分,共16分)

```
对如下 C 语言程序:
```

```
int funct(int x, <u>long long int * y</u>) 

{
    int t = \underline{0};
    for (int i=\underline{0}; i < \underline{x}; i++)
    if (\underline{y}[i] >= 0)
    \underline{t++};
    else
    \underline{break};
    return \underline{t};
}
```

对应的 RISC-V 汇编代码如下:

funct:

slli x5, x10, 3 add x5, x5, x11 add x6, x0, x11 add x8, x0, x0

Loop:

bge x6, x5, Exit ld x7, 0(x6) blt x7, x0, Exit addi x8, x8, 1 addi x6, x6, 8 beq x0, x0, Loop

第3页共8页

Exit:

add x10, x8, x0jalr x0, 0(x1)

请填写出 C语言程序中缺失的(1)~(8)。

四、运算器(共10分)

用二进制浮点数加法计算 $(12.75)_{10}$ + $(6.5)_{10}$ 之值(采用 0 舍 1 入法),并把计算结果转换成 IEEE754 半精度浮点数(1 位符号位,5 位阶码,10 位尾数)的二进制位模式和对应的十六进制数。

解: 1、把两个数用规格化科学计数法二进制表示

 $12.75_{10} = 1100.11_2 = 1.10011 \times 2^3$;

 6.5_{10} = 110.1_2 = 1.101×2^2

2、对阶: 1.101×2²=0.1101×2³

3、尾数相加: 1.10011+0.1101=10.01101

4、结果规格化,并检查溢出和舍入 10.01101×2³=1.001101×2⁴,没有溢出,无须舍入

- 5、阶码移码: 4+15=19(100112), 正数符号位: 0, 尾数 001101, 隐藏 1
- 6、二进制位模式和十六进制数

0 10011 0011 0100 00; 0X 4CD0

五、CPU(共25分)

1、(15分)单周期 CPU 数据通路如下图所示:

指令: sd x9, 8(x22)

(1) 对上述指令而言,图中的控制信号值分别是什么?(7分)

RegWrite	ALUSrc	ALUOp	PCSrc	MemWrite	MemRead	MemtoReg
0	1	00/Add	0	1	0	Don't care

第4页共8页

(2) 对上述指令而言,下述数据线上的值为多少? sd 指令的 opcode 为 0x23, funct3 为 0x3。(6分) (所有结果均以 16 进制形式给出!!!)

寄存器 1 号读地址输入	0x16
寄存器 2 号读地址输入	0x9
寄存器写地址输入	0x8
寄存器写数据输入	未知
ImmGen 的输入	0x009B3423
ALU control 的输入	0x3

0x009B3423, 0000 0000 1001 1011 0011 0100 0010 0011

- (3)哪个/些功能单元会产生输出,但不会被实际用到? (2分) 分支中的 Add 产生输出但不会被用到,数据存储器的读端口不产生输出。
- 2、(共10分)流水线示意图如下:

在此流水线上执行下面的指令序列:

add x10,x0,x0

addi x11,x0,100

 $1d \times 10,0(\times 11)$

addi x10,x11,-1

add x10,x11,x11

beq x11,x10,exit

从取第一条指令开始计时,请在下面的表格中填写各时钟周期转发单元(forwarding unit)

的输入输出信号状态值:

时钟周期	Clk5	Clk6	Clk7	Clk8	Clk9
ID/EX.RegisterRs1		7,72			
ID/EX.RegisterRs2		40			
EX/MEM.RegisterRd					
EX/MEM.RegWrite					
MEM/WB.RegisterRd					
MEM/WB.RegWrite					
ForwardA					
ForwardB	NO				

时钟周期	Clk5	Clk6	Clk7	Clk8	Clk9
ID/EX.RegisterRs1	11	11	11	11	11
ID/EX.RegisterRs2	10	10	10	11	10
EX/MEM.RegisterRd	11	10	10	10	10
EX/MEM.RegWrite	1	1	0	1	1
MEM/WB.RegisterRd	10	11	10	10	10
MEM/WB.RegWrite	1	1	1	0	1
ForwardA	10	01	00	00	00
ForwardB	01	10	01	00	10

六、(本题 19分)

1、(每小题 2 分, 共 8 分) 现有一个采用直接映射策略的 cache, 大小为 4KB, 块大小为 64 字节。有如下 C 语言代码:

double array[LEN];

for (int
$$i = 0$$
; $i < 1024$; $i++$)

- 一个 double 占 8 字节。假设系统中没有其他程序在运行, cache 初始时是空的。
 - (1) 若 STRIDE 定义为 1, LEN 从 512 变为 1024 时, 性能有明显的下降, 请分析原因。
- (2) 在第1问的条件下,若 cache 改为采用 LRU 的全相联映射策略,程序性能会提升吗?请解释原因。
- (3) 若 STRIDE 定义为 16, LEN 为 512 时, cache 利用率为多少? 若 LEN 增加到 1024,程序性能会出现什么变化? 此时 cache 利用率为多少?请解释原因。
 - (4) 在第3问前提下,若 cache 改为采用 LRU 的全相联映射策略,程序性能会提升吗?

第6页共8页

请解释原因。

解:有26个 cache 块,一个块可以装8个 double

- (1) STRIDE 为 1, 顺序访问数组。LEN 为 512 时, 数组大小为 4KB, 基本能装进 cache 中, 数组增大到 1024, cache 中装不下, 多次遍历数组元素每次都会 miss, 所以性能下降。
 - (2) 不会,因为工作集大于 cache 大小 (capacity miss),改为全相联也不能消除 miss。
- (3) 步长为 16, 对数据块的访问是 0, 2, 4, 6...... Cache 利用率是 50%, LEN 为 512 时, 访问数据集还是能全部装进 cache 中的。若增加到 1024, 工作集大小与 cache 大小一致, 但是因为采用直接映射, 有一半的 cache 用不上, 每次访问都还是会 miss, 程序性能会急剧下降, 此时 cache 利用率还是 50%。
- (4) 改为全相联映射, cache 利用率可以变为 100%, 整个工作集都能装进 cache 中,性能会提升。
- 2、(11分)某计算机采用页式虚拟存储管理方式,按字节编址,虚拟地址为32位,物理地址为24位,页大小为8KB; TLB采用全相联映射; Cache 数据区大小为64 KB,按2路组相联方式组织,主存块大小为64B。存储访问过程的示意图如下。

部分页表内容:

有效位	标记	物理页号	
0	0x7F180	0x002	
-1	0x3FFF1	0x035	
0	0x02FF3	0x351	
-1	0x03FFF	0x153	

请回答下列问题。

(1) 图中字段 A~G 的位数各是多少?TLB 标记字段 B 中存放的是什么信息?(4 分)页的大小为 8 KB,页内偏移地址为 13 位,故 A=B=32-13=19;D=13;C=24-13=11;主存块大小为 64 B,故 G=6。2 路组相联,每组数据区容量有 64 B×2=128 B,共有 64 KB/128 B=512 组,故 F=9;E=24-G-F=24-6-9=9。

因而 A=19, B=19, C=11, D=13, E=9, F=9, G=6。(各 0.5 分, 共 3.5 分)

TLB 中标记字段 B 的内容是虚页号,表示该 TLB 项对应哪个虚页的页表项。(0.5 分)

(2) 虚拟地址 0x07FFF180 所在的页面是否在主存中?若在主存中,则该虚拟地址对应的物理地址是什么?将该主存块装入到 Cache 中时,所映射的 Cache 组号是多少?对

应的 H 字段内容是什么? (4分)

(0x2A7180) (111000110B 或者 454) (001010100B)

(3) 假定为该机配置一个 4 路组相联的 TLB, 其它不变, TLB 共可存放 8 个页表项, 若其当前内容如下图所示,则此时虚拟地址 0x00048BAC 所在的页面是否存在主存中? 要求说明理由。(3 分)

组号	有效位	标记	物理 页号		有效位	标记	物理 页号	有效位	标记	物理 页号	有效位	标记	物理 页号
0	0	-	-		1	0x00001	0x015	0	-	-	1	0x00012	0x01F
1	1	0x00013	0x02D	V	0	-	-	1	0x10008	0x7E	0		

在,0x00012的那个标记是对的。

思路: 标记 18 位,组地址 1 位,前 19 位为 0000 0000 0000 0010 010 ,组地址位为 0 ,第 0 组中存在标记为 0x0012 的页,其页框号为 1F,故 0x00048BAC 所在的页面存在主存中。