## TRANSFERRED TO THE A.E. SUB-LIBRARY

## AIRCRAFT TEMPLATE DEVELOPMENT

Compiled and Edited
by
AERO PUBLISHERS
and Associated Aeronautical Staff

Under Supervision of Staff Engineer ERNEST J. GENTLE

FIRST EDITION
Revised 1942

Copyright 1942
by
AERO PUBLISHERS
2328 West Seventh Street
Los Angeles 5, California

#### ALL RIGHTS RESERVED

This book or any part thereof may not be reproduced in any form without written permission from the Author and the Publishers.

PRINTED IN THE UNITED STATES
OF AMERICA

## CONTENTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| CHAPTER I: Templates and Their Uses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 7  |
| Templates. Template Material. Use of Templates. Kinds of Templates.                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| CHAPTER II: Aircraft Factory Nomenclature and Relative Subjects                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 20 |
| Orientation. Airplane Nomenclature. Flaps. Empennage. Trim Tab. Landing Gear. General Types of Construction. Lofting. Scrieve Board Layout Procedure. Application of Loft Data to Layouts; to Drawings. General Template Making. Loft and Template Nomenclature. Limits. Jigs and Fixtures. Plaster Mock-up. Form Blocks, Punch Press. Forming Operations. Drop Hammer. Hydro Press. Cutting Operations. Aluminum and Aluminum Alloys.                                                                             |      |
| CHAPTER III: Mathematics for the Template Maker                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54   |
| Calculation of Areas. Trigonometry. Examples of Practical Application.                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| CHAPTER IV: Elementary Drafting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64   |
| Drawing Instruments and Supplies. T-Square. Drafting Triangles. Protractor. Rules, Scales. Compass. Dividers. Bow Instruments. Irregular Curves. Geometrical Construction.                                                                                                                                                                                                                                                                                                                                         |      |
| CHAPTER V: Engineering Drafting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81   |
| Orthographic Projection. Auxiliary Views. Isometric Projection. Drawing Sheet Sizes. Title Blocks. Drafting Abbreviations. Types of Drawings. Checking. Dimension and Extension Lines. Break Lines. Sociional Views. Section Lining. Dimensioning. Crowded Dimensions. Consecutive Dimensions. Over-all Dimensions. Dimensioning Sheet Metal Parts. Joggles. Dimensioning with Tolerances. Base Line Dimensioning: Lettering. Freehand Sketching. True Dimensions. True Length of Lines. Determining True Lengths. |      |
| CHAPTER VI: Principles of Mathematical Development                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111  |
| Bend Allowance. Mold Lines. Developed Widths, other than 90°.<br>Block Lines and Inside Mold Lines. Theory of Development.<br>Transferring Mold Lines into Flat Pattern. Set Back. Diagonal Cut<br>Development. Spring Back.                                                                                                                                                                                                                                                                                       |      |
| CHAPTER VII: Tools and Equipment Used by the Template  Maker                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 135  |
| Files. Draw Filing. Hints on Filing Templates. Drills. Pilot Holes. Fly Cutter. Counter Bore. Surface Plate. Height Gage. Depth Gage. Slide Rule. Micrometer. Shears and Snips. Scribe. Splines and Curves.                                                                                                                                                                                                                                                                                                        |      |
| CHAPTER VIII: Typical Aircraft Parts and Their Flat Pattern Developments                                                                                                                                                                                                                                                                                                                                                                                                                                           | 149  |
| Information Given on Templates. Blueprint Reading. Practical Hints for the Template Maker.                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| CHAPTER IX: Photographic Reproduction of Templates                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 253  |
| CHAPTER X: Trade Ethics and Safety Precaution                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 263  |
| APPENDIX: Tables and Charts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |

#### **PREFACE**

This book on template development for aircraft has been compiled and published to achieve two main objectives: (1) To enable students to learn in the shortest possible time all of the basic principles involved in the developing and making of aircraft templates; (2) To aid aircraft factories materially in solving their skilled personnel problems, by providing for students, apprentices and trainees a basic and authoritative technical text that will give the students exactly the type of practical training that will be of most value to the factories.

In these days of modern mass-production there is a constant daily use of an ever-increasing number of aircraft templates which has become an imperative necessity both for interchangeability and for reduced production costs.

This new and sorely needed book contains a copiously illustrated, complete and comprehensive description of the art and science of making aircraft templates the way the manufacturer wants and must have them. It presents all of the fundamental principles involved. By combining these principles with the proper classroom instruction and practical technical shop experience, the earnest student will gain an understanding which should enable him to develop practically any type of aircraft template with a minimum amount of further guidance or assistance.

Aero Publishers gratefully acknowledge the assistance and collaboration of all individuals and aircraft manufacturers for the valuable help they have rendered. Virtually all aircraft manufacturers in the United States have aided us materially, either directly or indirectly, in establishing and coordinating the standard practices for aircraft template making. In this regard Aero Publishers feel particularly grateful to Beech Aircraft Corporation, Bell Aircraft Corporation, Boeing Aircraft Company, Consolidated Aircraft Corporation, Curtiss-Wright Corporation, Douglas Aircraft Company, Hughes Aircraft Company, Lockheed Aircraft Corporation, Glenn L. Martin Company, North American Aviation, Inc., Northrop Aircraft, Inc., Republic Aviation Corporation, Ryan Aeronautical Company, Vega Airplane Company, and Vultee Aircraft, Inc.

#### INTRODUCTION

Paralleling the rapid advancement of the aviation industry has been the ever growing problem of training new personnel. This problem becomes more acute as the industry is forced to hire men who have had little or no technical training.

A few pointers and a little guidance from authoritative sources, makes a considerable difference in whether the young man just starting is going to make the grade, or just be one among thousands of average workers with average jobs.

Template layout is an old engineering procedure, probably first used in ship building and later in a modified form for automobile design. The modern aircraft manufacturers have adopted this method of maintaining the original development information for further use and reference. The technique used in the early stage of templating, although leaving much to be desired, was rapidly improved through the application of modern engineering principles.

Today templating is almost universally used throughout the aircraft industry and has brought about a complete change in the manufacturing of airplanes on a mass production basis, because information furnished the shop in this form greatly facilitates manufacturing. Layout of flat pattern of sheet metal parts, radial drilling, checking of **concave** and **convex** contours, router patterns, trimming parts, and checking angles are all accomplished with the aid of templates of the various types discussed in the following chapters. The problem of duplicating templates in order to fulfill the need for more than one template has been satisfactorily met by the photographic method. This method duplicates engineering drawings into the form of lines on metal which will later be cut out to make various kinds of templates. As the original drawing is left intact it is possible to retain this material for future reference.

The template department of an aircraft factory is a close associate of the engineering department. In some plants, it is an integral part. The template maker is one of the intermediaries between the engineer and the mechanic in the shop. Taking the engineer's ideas from the blueprints, the template maker transfers them into the form of a template in such a manner that they can be used by the mechanics in the factory.

#### CHAPTER I

#### TEMPLATES AND THEIR USES

## 1:1 Templates.

In the aircraft industry the word template is commonly used to identify a thin metal plate or other suitable material which may be used as a guide or pattern and generally includes the profile, contour, layout of holes and/or bend lines of a part, or an assembly layout of several parts.

## 1:2 Template Material.

The template material is usually metal and should be sufficiently soft to be easily worked, i.e., drilled, filed and cut by the ordinary sheet metal working tools. It should be of sufficient thickness to lie flat with its own weight and yet not too thick or else cutting, filing and punching becomes a problem in itself. Most commonly used metals are body steel, galvanized iron and in some cases ST alclad or terne plate, approximately  $\frac{1}{12}$  or  $\frac{3}{64}$  thick. For certain large templates where added rigidity is required, metal, .064, or approximately  $\frac{1}{16}$  in thickness may be used. Terne plate is used in some localities because of its non-corroding qualities due to a surface coating of a lead alloy consisting of 80 per cent lead and 20 per cent tin.

## 1:3 Template Makers.

The general qualifications of a template maker are an ability to exercise sound judgment and to do a considerable amount of independent thinking. He should have good steady nerves and good eyesight. Exactness, precision, and a great patience for details are all necessary characteristics of his personality.

The template maker works in a very close coordination with the engineering department of an aircraft company. In order to meet the demands of the work, it is desirable that he have completed certain necessary preparatory subjects in high school or college. Algebra, plane and solid geometry, trigonometry, and drafting are necessities. Wood and sheet metal shop work are closely related subjects. The applied material given later on in this text, however, should enable the average person to perform the work of a template maker in a very satisfactory manner.

To train for advancement on the job, the template maker should

make it a point to improve his drafting and ability to read blue-prints. Template layout procedure should be studied. He should endeavor to become proficient at his work, to inspect templates so as to recognize errors in layout or making. For advancement to supervisory positions, trade ethics and better human relations should be studied and practiced.

## 1:4 Use of Templates.

Individual templates can be classified only in a general manner because the various names and types are not standardized in all shops.

A general classification is as follows: Angle Template; Block Template; Contour Template; Drill Template; Drill Jig Template; Flat Template; and Shrink Template.

## 1:5 Angle Template.

An angle template is used to mark the end cutoffs, profile, and layout of holes of a part made from extruded, or formed angle, or T-section stock. It is generally made to fit on the inside of the part, unless the part is exceptionally small, in which case the template would be made to fit outside the part; for the reason that such a template is too small to handle conveniently and would also be easily lost. The angle template must be made in such a manner as to clear the radius of the part upon which it is used. Holes are located on the part through small drilled holes in the angle template, usually a #40 or #50 drill is used.

An angle drill template is similar to an angle template except that its sole use is the direct drilling (as from a drill jig) of holes



Fig. 1:1-Angle Template

into an extruded or formed angle. Normally an angle drill template fits on the outside of a part, and is made as shown in Fig. 1:2 (a) and applied as shown in Fig. 1:2 (b).



Fig. 1:2 (a)—Angle Drill Template
End View



Fig. 1:2 (b)-Angle Drill Template

## 1:6 Form Block Template.

A block template indicates the exact profile of a **form block**. **Pin holes** in the flat templates are drilled to coordinate with pin holes in the block template, which are placed so as to locate correctly the corresponding pins in the form block.

## 1:7 Master Template

A master template, many times called Master Contour Template, shows all of the **mold line** contours for a particular section of

the airplane, such as the horizontal stabilizer rib contours or the outer wing rib contours. All contours included in any one master template have common horizontal and vertical reference lines. Information required for making master templates is taken from scrieve boards, basic dimension reports, and engineering drawings. Master templates for symmetrical sections, such as fuselage bulkheads, are often made for only one-half the contour. Pin holes are provided on the center line of symmetry so that the template is simply turned over to obtain the complete contour. In most cases small holes, usually #40 or #50, are drilled at close intervals along the contours of master templates in order that these contours may be transferred to other templates by the use of a duplicating punch. Refer to Figs. 2:9 and 2:10:

## 1:8 Part Contour Template.

A part contour template is used to check the contour of a part. See Fig. 1:3. On the face of this template a sketch is often painted or scribed, showing the way in which it is to be used. Variations of this type of template are the contour template for a **die** and the contour template for a **punch**. The latter is used to check the contour of a male die. The terms "male" and "female" die are particularly associated with the dies used in conjunction with the **drop hammer** and **hydraulic press**. These terms are further discussed in Chapter 2. Typical contour templates are shown in Fig. 1:4, a and b as applied to the specified sections A, B and C on the part or male portion of a die, and as applied to the female portion of the die.

## 1:9 Box Template to check die.

A box template is a group of contour templates set up together in a honeycomb formation. (See Fig. 1:5.) The purpose of the box template shown in this figure is to check the contours of a female die or full size pattern, and also to check the mating box contour template used to check the contour of the punch of a large die, or full-size pattern. Similar to this is the box shrink template, which is used to check the contours of a **shrink pattern** or to serve as a framework for a **plaster pattern**. See article 1:19.

## 1:10 Drill Template.

A drill template is made of sheet template stock fitted with hardened steel bushings or plates used as **drill guides**.



Fig. 1:4 (a)—Contour Template to check punch



Fig. 1:4 (b)-Contour Template to check die



Fig. 1:5-Box Template

## 1:11 Drill Jig Template.

A drill jig template is used solely by the tool departments to lay out holes in steel assembly jigs or other tools.

## 1:12 Radial Drill Template.

A radial drill template is used as a drill guide to drill flat sheet metal parts or blanks on the radial drill. It is provided with pilot holes¹ to receive the radial drill guide bushings. This template is not designed to indicate the developed profile of a part but in many cases extends beyond that profile to allow edge distance for the pilot holes when drilling holes near the edge of a part. For indexing purposes, two sides are used which are not parallel to one another and which coincide respectively with two sides of the flat template. Coordinated index-pin holes are quite often used for the same purpose.

<sup>&</sup>lt;sup>1</sup> Any size pilot hole may be used as long as the pilot hole and the radial drill guide bushings are the same size. Commonly used sizes are r/4'' or 5/16'' holes.

## 1:13 Flat or Developed Template.

The flat template, as its name implies, is the developed flat pattern of a sheet metal part of any number of bends of a various number of degrees and contours of various radii. This template is the basis for the layout of any metal part formed from sheet metal, and is of utmost importance to production. It is the purpose of this course to instruct the student especially in the development and making of this type of template. See Fig. 1:7.

There are two types of flat templates. One type is a developed flat pattern which predetermines the exact size and shape of material necessary to make a part. The other type is a flat pattern in-



Fig. 1:6-Radial Drill Template

dicating the size and shape of material required to make a part, but which must be trimmed after it is formed or drawn.

The first type shows the blank profile, the complete layout of holes, and often the bend lines. This type of a template is mathematically developed.

The second type is used for drop hammer parts and for other formed or drawn parts which should be trimmed to drawing dimensions after being formed, or whose templates cannot be developed mathematically. This template shows the blank profile, including excess material when required for forming. It is developed by trial and error.

#### 1:14 Form Press Template.

A form press template is a formed piece of deep-drawing body steel whose contour is such that it will **nest** against a given part for which it is made. It is used to mark for trimming, to check the



Fig. 1:7-Flat Template

contour and profile of, and often to drill formed or drawn sheet metal parts. Such parts are usually drop-hammer parts, some hydro-press parts, and any drawn or formed sheet metal part, the profiles of which are impracticable to develop in the flat pattern. See Figs. 1:8 (a) and (b). The form press template is often an inexpensive substitute for a wood or steel box drill jig.

## 1:15 Gage or Inspection Template.

A gage template is designed for checking the accuracy of a completed part. In one form it is similar to a part contour template, except that it is made so as to bound a part on more than one side. On the face of a gage template a sketch is scribed or painted, showing how it is used.

## 1:16 Marking or Trim Template.

The term "marking template" is generally applied to a template designed to fit on the flat surfaces of extruded sections or castings, used to mark cutoffs, cutouts, and hole layouts. Holes in the part are located through small holes usually #40 or #50 pilot holes in the template, and radius tabs are used where necessary.

## 1:17 Nibbler Template (or Block).

Nibbler templates are not truly templates as defined in 1:2, but, for shaping flat parts, they are actually blocks made of masonite or duraluminum; and a nibbler template for shaping formed parts, such as tubing, is actually a jig or fixture. Nevertheless such tools are called nibbler templates because they serve as patterns for the nibbling machine to follow.

## 1:18 Router or Shaper Template.

A router template consists of a sheet of plywood to which are riveted radial drill templates for a group of parts to be drilled on the radial drill and subsequently profiled on the undercut router. The drill templates, for parts made of the same type and thickness of material, are placed in a group which will allow a minimum of waste between parts. The size of a router template is governed by the size of the router table.

## 1:19 Shrink Template.

A shrink template is a contour template made with shrink allowance (oversize). It is used to make shrink patterns for molds or dies used in the drop hammer. See Fig. 1:9 on page 17.



Fig. 1:8 (a)—Form Press Drill Template



Fig. 1:8 (b)—Form Press Drill Template

## 1:20 Summary.

The various aircraft manufacturers differ a little in the making and use of templates from that as set forth in this chapter, but generally the procedure is the same. Some manufacturers make their templates out of body steel, galvanized iron, or terne plate, while others may use 24 ST Alclad. The gage (metal thickness) varies from .032 to .064. In some factories, the template department is an integral part of the engineering or lofting department. Template codes and methods of marking will vary for nearly every plant. Allowable tolerances vary from  $\pm$  .005" to  $\pm$  .010". A tolerance of  $\pm$  .005 is within reasonable working limits if a man is careful.

Upon employment, the template maker will learn the template designations, shop procedures and any informative template cod-



Fig. 1:9-Shrink Template

ing by reading the company's template manual, or in some cases by instructions from lead men and supervisors.

Analyze each new job carefully before starting the work. Remember—"The scrap pile can, to a large degree, measure the success or failure of an organization." Every part must be made exactly according to the blueprint or the part is rejected. The various operations required to produce an airplane from the initial stages on the design board to the final O.K. on the completed plane have been subjected to a series of frequent checks and inspections. This is accomplished by the care and pride each workman takes in his work and the scrutiny of checkers and inspectors at each stage of progress toward completion. Inspection problems are simplified by the use of the templates because the dimensions of parts do not always have to be checked with the drawing. In most cases this can be accomplished by simply laying the part on the full size template.

#### REVIEW QUESTIONS

- 1. What is a template? How is it used?
- 2. What are the materials most commonly used in template making?
- 3. Name at least seven classifications of templates.
- 4. How is an angle template fitted to the part? How is an angle drill template fitted to a part?
- 5. What does a block template indicate?
- 6. What is a master contour template? What is the source of information for making a master contour template?
- 7. Give two variations of the part contour template. How are they used?
- 8. How is a drill jig template used?
- 9. How is a radial drill template used? Does it indicate the developed profile of the part?
- 10. How is a flat template for a drop hammer part developed?
- 11. What is a form press template? Give four uses of a form press template.
- 12. Why are sketches placed on some templates?
- 13. How are the centers of holes located on a part by means of a template?
- 14. How does a gage template differ from a part contour template?

- 15. Give three uses for a marking or trim template.
- 16. How are router templates used?
- 17. What is meant by development?
- 18. What relation has the template department to the engineering department?
- 19. How are inspection problems simplified by use of templates?
- 20. What should the template maker do to acquaint himself with the complete shop procedure of an aircraft company immediately after employment?

#### CHAPTER II.

# AIRCRAFT FACTORY NOMENCLATURE AND RELATIVE SUBJECTS

#### 2:1 Orientation.

In addition to any specific application to templates, probably the first thing that a prospective template man should know or acquire is a general knowledge of the language of the aircraft manufacturing industry. He should learn of the parts and tools where templates have a direct application and as soon as possible, begin in a general way to absorb the technical language of the engineer, the shop man, and the aviation mechanic. He should make it a point to read on allied subjects in order to talk intelligently in aviation terms.

Many good technical aeronautical magazines are published. A man who is intending to make aviation his career should make it a point to subscribe to one or more of these trade journals in order that he may more readily keep abreast of the latest developments.

For the benefit of those who are beginning in the aviation industry, we will, in the next few paragraphs, outline some related information that may assist him in getting acquainted with his new study and supply a general picture of his future work of laying out and making templates.

## 2:2 Airplane Nomenclature.

With the aid of newspapers, magazines, radios, etc., the general public is becoming more acquainted with airplane terminology. However, since a template maker will have occasion to make templates on countless parts, both small and large, it is considered advisable, especially for the beginner, to give a brief resume of airplane nomenclature. Also there are a few notable cases of misconceptions and misnomers which have crept into the aviation language, e.g., calling an airplane a "ship" instead of "airplane" or simply "plane" and referring to "tabs" as "Servo Controls," etc.

The following nomenclature discussion will necessarily be limited to those aircraft parts which require templates before they can be manufactured economically or conveniently.

Figure 2:1 indicates the nomenclature of the parts which are



## AIRCRAFT TEMPLATE DEVELOPMENT

typical of one type of airplane. Careful inspection of the illustration will show the application of the various terms. This illustration shows a countless number of parts which require templates before they can be made. It is seen that the fuselage is the "body" of the plane, and attached to the fuselage is the center section of the wing. The center section is generally the wing root section. On most modern multi-engined airplanes, it carries the landing gear loads, and supports the engine nacelles, fuel tanks, etc.

In most cases the wings are attached to the center section either by joining the wing spars to the center section spars or as in the case of a stressed skin wing, by means of joining the skin and spars. In many instances, particularly in small airplanes, the wings and center section are built as one unit. The spars are the main strength members running from wing tip to wing tip and are enclosed between the upper and lower surfaces of a wing. Ribs are attached to the spars at approximately right angles and spaced at regular intervals along the spar to determine the contour of the wing, and support of the skin or covering. Ribs are also used in the tail surfaces and various control surfaces. Ailerons are the controllable surfaces at the trailing edge of the wing near the tip. The function of the ailerons is to impart a rolling motion on the airplane, i.e., movement about the longitudinal axis. The ailerons are connected to the pilot's control stick or wheel in such a manner that as one is raised, the other is lowered, thereby securing either lateral balance or the desired angle of bank.

## 2:3 Flaps.

Flaps are movable surfaces connected to the rear portion of the wing, generally inboard of the ailerons, and connected to the wings either by means of a hinge, a slide track, or both. The flap surface is moved down or back and occasionally both down and back to create added lift and drag when the airplane is being landed.

## 2:4 Empennage.

The empennage is the tail group consisting of rudder, fin, horizontal stabilizer, and elevator. The rudder is used in conjunction with the ailerons to steer the airplane, i.e., to impart a yawing motion about the vertical axis. The fin, a stationary vertical surface, acts as a stabilizer to provide directional stability. The stabilizer is a horizontal member either fixed or slightly movable which aids in securing longitudinal stability or to prevent the airplane

from pitching. The airplane is made to climb or descend through use of the elevator, a movable airfoil hinged to the rear portion of the stabilizer.

#### 2:5 Trim Tab.

A trim tab or tab as it is often called, is shown as a small movable portion inset into the trailing edge of the rudder. Tabs are also used at times on the ailerons, and elevators. By changing the angular setting of a tab a pilot can adjust the flying position of the main surface to which they are attached. The net result is that the airplane can be trimmed to fly "hands off," which means that the airplane under normal flying conditions will be so balanced by the air controls that it will have a tendency to fly itself automatically on the predescribed course or flight attitude.

Servo controls look very similar to tabs, but are actually a subcontrol for any single large control or system of controls. A Servo control is actually a means of fully actuating the main control to which it is attached

#### 2:6 Landing Gear.

The landing gear of an airplane, consisting of the main landing wheels, the tail wheel or skid and the associated brakes, oleo shock absorbers and struts, supports the airplane on the ground. Struts, as used in the landing gear, are the connecting members between the landing gear and the airplane. They are usually streamlined by the use of fairings if used on a non-retractable landing gear. An oleo shock absorber is an oil dampening device that depends upon the flow of oil through an orifice for its shock absorbing effect.

## 2:7 General Types of Construction.

Inside of the airplane where the great mass of small parts are, we find that the fuselage may be either made up of various members such as tubes or other structural shapes, utilized as braces, or they may be of the stressed skin type (monocoque), which means that there is a minimum of internal members used as stiffeners or braces. The loads are carried by the outside surface (skin) of thin metal or wood.

The wings of an airplane may also be of the same two general types of construction which are used to make fuselages. The simpler wings have spars and ribs connected together and are braced by wires or struts. This structure is then covered with fabric and dopes (varnished with a special preparation). The fabric



Fig. 2:2—Typical All-Metal Construction

covering carries only a vertical load (lift). The more complicated and larger wings are composed of less inside structure (ribs, spars, etc.) which is covered by stressed skin of wood or metal and which carries all the loads imposed on the wing.

Inside the fuselage are to be found such general parts as bulk-heads, rings, gussets, stringers, stiffeners, etc.; and the wings contain such parts as ribs, stiffeners, gussets, tringer, par (beam), ribs, etc., all of which call for templates.



Fig. 2:3-Typical Stressed Skin Fuselage Construction

## 2:8 Lofting.

Lofting is the procedure by which a full sized layout of a given body is made on the loft floor. The loft is oftentimes an integral part of the engineering department and is closely associated with the template department. The results of the various lofting operations are transcribed to a scrieve board, a sheet of wood or metal, in the form of full-size contours and other measurable lines, then master templates are developed from data taken from scrieve

board layouts. All contours of a particular section of the airplane are laid out on the loft floor.



Fig. 2:4-Loft Floor

The following contours and intersections may be developed upon application of the proper lofting methods.

- Fuselage Contours
   Shape and Size of Bulkheads
   Flange Angles of Bulkheads
   Stringer Locations
- b. Nacelle Contours
- c. Wing Tip Contours
- d. Fillet Contours
- e. Wing-Fuselage Intersection
- f. Stabilizer-Fuselage Intersection.
- g. Nacelle-Center Section Intersection
- h. Miscellaneous additional information.

## 2:9 Template Making. (General)

The making of templates is to be coordinated, wherever possi-



ble, with the work being done on the loft floor. The general policy with regard to templates is that they should be used extensively to convey dimensional information to all shop departments.

## 2:10 Loft and Template Nomenclature. (General)

The following are a few general terms which constitute the main part of loft and template nomenclature.

#### Base Line.

The base line is an edge view of a horizontal plane which is used as a zero point from which to measure all vertical ordinates.

#### Bend Allowance.

Bend allowance is the amount of sheet metal required to make a bend over a specific radius. The inside radius is most frequently used in aircraft work. The calculation is based on the thickness of the metal, the type of metal used, the radius of the bend involved, the degree of bend, and the use of bend allowance charts which are derived from an empirical formula.<sup>3</sup>

#### Bend Lines.

Bend lines are used on templates to indicate the extent of material used to make a bend or angle. Not all aircraft manufacturers use them. Some prefer to use only the mold line to indicate the bend. See Fig. 6:21.

#### Block Lines.

A block line is a mold line formed by the inside surfaces of a formed part. The block line forms the edge of the block template. See Fig. 2:11.

#### Body Plan.

The body plan is a view looking forward. As for example, a fuse-lage body plan shows, in a single plane, all the frames or stations in their proper vertical and horizontal relations. See Fig. 2:6.

#### Buttock Line.

A buttock line is an edge view of a vertical plane passed through a body. The centerline of the body in the Plan View is taken as Buttock Line O. The planes of all buttock lines are parallel to the vertical centerline plane. See Figs. 2:5 and 2:6.

#### Diagonal Proof Line.

A diagonal proof line is an edge view of a diagonal plane

See Chapter VI.



Fig. 2:6

through a body. These diagonal planes are passed through the body as a final check on fairness, or for the purpose of fairing portions of the body which undergo abrupt changes or curvature. See Figs. 2:5 and 2.6.

#### Loft Floor.

The loft floor is a large flat surface upon which full size layouts of airplanes are made—generally referred to as "The Loft."

#### Mold Line.

A mold line is the theoretical line formed by the intersection of two surfaces, such as the external edge of frames, stringers, or other shapes. See Fig. 6:4.

#### Pin Holes.

Pin holes are drilled in a flat template to coordinate with pin holes in a block template, which are so placed to locate correctly the indexing pins in the corresponding form block.

#### Radius Tabs.

Radii of corner relief cutouts may be provided with radius tabs,

that is, small projections of metal beyond the actual profile of the part, to receive pilot holes at the center of the radii.

#### Set Back.

In a part having bends or angles, set back is the difference between the sum of the lengths of the distances from the bend lines to the mold line, and the bend allowance.

That is, in Fig. 2:7 Set Back = (AB + BC) - arc AC



#### Tumble Home.

The tumble home line is the abrupt change of curvature of a Mold Line, Buttock Line, or Water Line contour at the end of the contour. See Fig. 2:5.

#### Water Line.

A water line is an edge view of a horizontal plane passed through a body. The base line of the body is taken as water line 0. The planes of all water lines are parallel to the horizontal base line plane. See Fig. 2:5 and 2:6.

## 2:11 Lofting a Fuselage.

The following outline covers the general procedure which is used in fuselage lofting. Similar methods are used for lofting other bodies, such as nacelles, wings, tails, etc.

The Plan and Side Elevations are laid out full size on the loft floor from sketches provided by the Aerodynamic Research Group. See Fig. 2:5.

Fuselage stations which are to be accurately located are first laid out on these two elevation views. Typical stations could be (1) a section through the pilot's compartment, (2) a section at the propeller circle, (3) a section at the main beam of the wing, (4) a section at the rear seat of the cabin, or (5) a section at the rear of the fuselage which is to take the tail wheel supports.

The line of maximum breadth is laid out on the Side Elevation.

Known sections are laid out on the Body Plan Scrieve Board by transferring distances or **offsets** from the Plan and Side Elevations shown on the loft floor. See Fig. 2:6.

Preliminary contours of known sections are laid out on the Body Plan Scrieve Board. Buttock Line Mold Lines and Water Line Mold Lines are laid out and faired with a **spline**. (Refer Fig. 2:5.) The smooth line characteristics of all contours and curves are checked by using Diagonal Proof Lines, after which all faired points are transferred to the Body Plan. See Figs. 2:5 and 2:6. When all curves are fair and smooth, the fuselage is properly lofted.

After such basic data are lofted, it is possible to lay out the additional fuselage stations that are necessitated by the structural requirements of the airplane. Stringers or stiffeners can then be located on each station contour and from these stringer points the bulkhead flange angles can be determined. The flange angles can be calculated or measured by utilizing (1) the distances between the fuselage contour lines as drawn on the Body Plan Scrieve Board and (2) the actual distances between the fuselage station as drawn on the Plan or Side Elevation. The former distance is referred to as the tangent height because it can be considered as the side opposite of a right angled triangle the base of which is equal to part (2) above—that is the plan view distance between stations. Thus, with the side opposite and the base known in any one of the triangles, it is possible to determine the flange angles either by trigonometry or by measuring them with a bevel curve or a bevel stick.

**Station Locations:** Small fractions, 64ths and 32nds, should be avoided wherever possible when locating stations, waterlines, or buttock lines.

**Left Hand View:** In general, all lofting is done as though the object were being viewed from the rear of the airplane looking forward showing the left hand side. Deviations from this convention should be clearly indicated.

Buttock Lines and Water Lines: All Buttock Lines and Water Lines are referred to according to their actual distance (usually measured in inches) from their respective zero lines. Thus, a line, which is parallel to the fuselage Water Line 0 and located at a distance  $32\frac{1}{4}$  inches above it, will be noted as WL+32 $\frac{1}{4}$ . Lines below Water Line 0 will be noted in a similar manner, such as WL  $-18\frac{1}{2}$ .

Buttock Lines should be designated as L or R according to whether they are located to the left or right of Buttock Line 0, when the object is being viewed from the rear. The designation is written as BL 18 L. Refer to Fig. 2:6.

The spacing of the Buttock Lines and Waterlines used in an original construction is dependent upon the shape and curvature of the lines.

#### 2:12 Scrieve Board Layout Procedure.

All layouts which are to supply permanent basic dimension information are to be placed on Scrieve Boards. Only one side of each Scrieve Board is to be used unless the layout on the opposite side is definitely obsolete and is marked as such. Scrieve Board Layouts are all full size. See Fig. 2:6.

All construction lines and cutting planes are identified by letters or numbers placed at both ends of the line. Lines about which views are rotated and from which offsets are measured should be marked RL (Rotation Lines). See Fig. 2:8.



Reference numbers and letters should be clearly marked on the Scrieve Boards.

## 2:13 Application of Loft Data to Layouts.

Layout Draftsmen and Designers who require contour information in order to draw a layout should consult the Loft Group. Contours may be traced by placing a sheet of layout paper over the Scrieve Board Layout and using a sharp pencil to trace the required contour.

All basic reference lines shown on the Scrieve Board should be indicated on the layout and properly designated.

Dimension information obtained from Basic Dimension reports and used in the drawing of a layout should be noted on the layout with a reference to the page and report number.

#### 2:14 Application of Loft Data to Drawings.

Scrieve Board Layouts should be referred to on drawings wherever possible. Where contours and flange angles are to be obtained from Master Templates by the Shop, a definite note stating this fact must be shown. The following type of note is generally satisfactory.

NOTE: OBTAIN CONTOURS AND FLANGE ANGLES FROM MASTER TEMPLATE No. 193276.

Stations, Buttock Lines and Water Lines when shown on drawings, should be indicated by placing the proper designation in a 5%" diameter circle at one end of the line.

Only actual stations which have definite meaning are to be shown on drawings, this includes bulkhead stations, wing rib stations, etc. Intermediate points should be dimensioned from the closest actual station line.

## 2:15 Development of Master Templates.

Master Templates are developed from data taken from Scrieve Board Layouts as well as from basic dimension reports and engineering drawings, and are laid out on template metal (or other suitable material). Holes may be drilled along the contours to allow them to be transferred to other templates with the aid of a transfer punch. See Fig. 2:9.

Master Templates for symmetrical shapes such as fuselage shell are generally made for only one-half of the object. Centerline pin holes are provided so that the half template may be turned over to obtain the complete contour. See Fig. 2:10.

## 2:16 Development of Block Templates.

Many Form Block Templates are made directly from a Master Contour Template. A Block Template is smaller than the **Mold Line** contour shown on the Master Template. The amount of the differ-



Fig. 2:9



Fig. 2:10—Master Template, Fucelage



Fig. 2:11-Block Template

ence between the Master Mold Line contour and the block contour line is calculated by taking into consideration the thickness of the metal, the bend radius, and the angle through which the metal is to be bent. See chapter 6.

## 2:17 Development of Flat Templates.

Flat Templates are developed from Block Templates, or from drawings. When developed from Block Templates, a value may be calculated taking into consideration the flange widths, bend allowance, and metal thickness, and added directly to the Block Template outline, thus completing the Flat Template with a minimum expenditure of time and labor.

All information required to make a blank for a part should be shown on the Flat Template. Fig. 2:12 shows a Flat Template developed from the Block Template shown in Fig. 2:11.

An engineering drawing for a part, such as a nose rib, where



Fig. 2:12—Flat Template

basic information is supplied on the Master Template, should note this fact in the following manner:

NOTE: OBTAIN CONTOUR, FLANGE ANGLES, AND STRINGER LOCATIONS FROM MASTER TEMPLATE No. 190060.

Flange widths, odd cutouts, and other information not shown on the Master Templates should be given on the drawing.

## 2:18 Development of Miscellaneous Small Templates.

The various templates, such as Drill Templates, Marking Templates, etc., which cannot be developed directly from Master Templates, will be laid out from information furnished on Engineering drawings.

#### 2:19 Limits.

Engineering blueprints are usually noted "Unless otherwise specified, limits are plus or minus  $\frac{1}{32}$ , etc." This note is for the finished part or the assembly, whichever the print may be for. However, it is general template practice to hold tolerances to within  $\pm$   $\frac{1}{2}$  of one 64th (or  $\pm$  .008).

This limit on templates is not unreasonable because it gives the workman in his shop, who makes the finished part, approximately the  $\frac{1}{32}$  tolerance allowed on the print. This is possible because if the template is within plus or minus .008, the man in the shop can still be off .023 larger or smaller and the finished part will still be within the specified tolerance (.008 + .023 = .032 =  $\frac{1}{32}$ ). However, if the template was large by  $1\frac{1}{2}$  64ths and due say, to the equipment or the human element, the part was cut out and bent up  $1\frac{1}{2}$  64ths larger than the template, then, when the finished part was checked, we would find that the product was  $\frac{3}{64}$  larger than

the dimensions given on the blueprint, or  $\frac{1}{64}$  larger than the  $\frac{1}{32}$  of an inch allowed for tolerance.

Templates can be tremendous time savers for the shop because when they are followed closely, any number of parts can be made up exactly the same, thus giving us interchangeability between parts.

## 2:20 Jigs and Fixtures.

Jig builders and template makers are closely akin, both in making the tools for the fabrication, and assembly of the component parts of an airplane. A jig is a rigid structure of mechanism either of wood or metal, which holds parts in place while they are in some phase of fabrication prior to assembly, or which holds the component parts of a structure while it is being assembled or disassembled.

A fixture is somewhat similar to a jig. The chief difference being, the fixture in most cases, is a lower priced and simpler mechanism and apt to be a single purpose tool for holding parts during certain machine or hand operations. The term fixture is often applied to any work-holding device which is secured to a bench or a machine while work is being performed on a part.

Various types of assembly jigs are: Fuselage jigs, for erecting the fuselage (Fig. 2:13); wing jigs, for assembling the spars, ribs, and **skin** (Fig. 2:14); center section jigs; welding jigs, for holding tubing and/or metal fittings rigidly in place while being welded together; drill jigs (often made from drill templates); and mating jigs, adjustable jigs used to support a completed component part while it is being aligned and fitted to the main assembly. These are a few of the more commonly used jigs. Nearly every detail or final assembly in the aircraft industry is fabricated and assembled in wood or steel jigs.

## 2:21 Plaster Mock-up.

The Plaster Mock-up is a full-size three-dimensional copy of the airplane or some section thereof. It is made of metal contour templates, wood backing, wire reinforcing and plaster surfacing. The finished contour of a Mock-up gives the true surface or shape of the inside of the skin. All plaster mock-ups unless otherwise specified are built to  $\frac{1}{10}$  of 1 inch per foot shrinkage. That is, a Mock-up covering an area ten feet (120 inches) long by shrink scale will measure 121 inches by standard scale. This  $\frac{1}{10}$  expansion in Mock-up building is to offset the  $\frac{1}{10}$  shrinkage of the kirk-





site from which drop hammer and hydro-press dies are usually made. This metal shrinks  $\frac{1}{10}$  of l inch per foot, hence we speak of making Mock-up to  $\frac{1}{10}$  shrink.

To plan, lay out, and construct a mock-up and develop usable patterns therefrom, one must be acquainted with blueprint reading having to do with various assemblies and parts. All basic reference lines must be learned and regarded as the ABC's of the work. Since the plaster mock-up builder is usually the first shopman to use the blueprints, very often working from prereleased drafts of the blueprint to be, he must have sufficient knowledge to be able to check against errors before they incure loss of time and material in production.

Templates for the mock-up are made from terne plate or galvanized iron, either .032 or .051 inch thickness according to the need of the job. For the larger contour cross-sections, the heavier metal is used. For small sections, lighter weight metal is sufficient. A line representing a cross section of the plane is accurately laid out by means of splining to given points known as half breadths and vertical heights, on a flat piece of template metal. This shape is then cut out and filed to close tolerances, (usually with  $\pm$  .008 of an inch.) The knowledge of flat layout is necessary for the making of the template and for the layout of the cross section lines upon the table upon which these templates are to be mounted.

The use of power tools, such as the band saw for wood and metal, arbor and dato saw, drill press, sander, grinder, router, joiner, and planer are essential to the work. The surface of the mock-up table usually represents a vertical or horizontal cut through that portion of the plane for which the mock-up is being constructed. These surfaces, therefore, must be supported and braced in such a manner that they will remain absolutely flat and unwarped through the useful life of the mock-up. These tables must be built strong enough also to permit their being moved without damage to the mock-up.

When the table is completed and the proper line layout made thereon, the templates are then backed up with plywood in order to secure rigidity. A substantial cleat is fastened to the straight bottom edge and the template is then screwed fast to the table. The templates are then securely braced in a plumb position. This is done by running threaded rods through them with the necessary nuts and washers on each side. When the bolts and nuts are tight-

ened against the templates, they hold them securely in the desired position. See Fig. 2:15. Smaller holes are punched about  $\frac{3}{4}$  of an inch in from the contour edge of the templates so that heavy wire may be passed through them, (See Fig. 2:16), and form a supporting network upon which galvanized screen wire is placed as a backing for the plaster as in Fig. 2:17.

A scratch coat of plaster is then applied, See Fig. 2:18, this coat being kept about ½ of an inch below the contour. As this first application of plaster begins to set, it is scratched away from the side of the templates to prevent the expansion, incidental to setting plaster, from forcing the templates out of their plumb setting. It is obvious that if a template, which represents a portion of the contour at a point of rapid tumble home, should be moved either way from its plumb position it changes the contour and defeats the purpose for using a template at all. The crack or slit which results from scratching the plaster away from the templates is then filled with soft clay before the final or surface coat of plaster is applied. The scratch coat is usually shellacked before the final coat is applied, to reduce the suction and thus give more time to properly spline the surface application:

When the surface has been evenly **splined**, and proves to offer a **fair line** in all directions, it is then given a protective coat of clear lacquer. When duly checked by the inspection department, the mock-up (Fig. 2:19), is ready for the layout of all parts for which patterns are to be made from the mock-up. Here again a knowledge of blueprint reading is essential to the job. Since a greater portion of the layout is designed to be made in projection, various planes must be fixed from which by means of a surface gage, dividers, squares, straight edges and scales, the lines and radii can be accurately laid out. All layout lines such as mold lines, part cut-off lines and essential reference lines are carefully and lightly cut into the surface of the plaster and traced with an indelible pencil so that they will pick up or transfer to the splash cast when it is taken off.

The splash cast is a thin layer of plaster, backed by hemp fiber and a frame of wood or iron to help hold it in place. When a part has been laid-out on the mock-up and the lines have been cut and traced, a coat of **steric acid** is applied as a separator. A thin wood frame or a border of clay is often placed around the outline of the part thus laid out, and a creamy application of plaster is literally splashed or poured on until it is approximately ¼-inch thick, and



Fig. 2:15-Templates for Plaster Mock-Up

before this is set up a backing of hemp fiber mixed in an even thinner consistency of plaster is applied. The frame, which has been prepared in advance, is then tied to the back of the splash cast with the plaster saturated fiber, forming a sort of standard when the splash cast is taken away from the mock-up.

As soon as the splash cast is cold, it is turned over on a bench and the pattern for the part is developed on the layout lines which were transferred from the mock-up. The development of a plaster pattern means the building up of such offsets, joggles, frame thicknesses, corners, bevels, etc., that are needed to make a proper pattern for the part that is to be formed. In doing this due



Fig. 2:16—Templates Cleated to Table and Backed With Plywood for Rigidity



Fig. 2:17—Galvanized Screen Wire Backing for Plaster



Fig. 2:18-Scratch Coat

consideration must be given to bend allowance, spring-back and proper draft for all sides and edges. All beadings, lightning holes, corrugations, too, must be so worked out as to insure proper draft, and make provision for metal thickness according to the side from which it is to be struck by the drop hammer or shaped in the hydro-press.

For **trial fillets** and fairings, modeling clay is very useful. Such fairings can be modeled in clay, and if they meet with engineering approval, they can be readily cast in plaster to form a more permanent plug or pattern.

The utility of the plaster mock-up and the plaster pattern is only partially discovered and is bound to increase in the aircraft industry, in fact, drill jigs, test templates, contour checks and various other useful tools, are constantly being made to facilitate the successful operations of many tooling devices.

#### 2:22 Tool Maker.

The tool maker is primarily a bench worker having the ability to work within very close tolerances with hand tools. He should either be able to operate such power tools as lathe, shaper, planer, etc., or be familiar with their use. In many cases he must design the tool from the blueprint on the part, determining all machining and processing to be done in the machine shop, and finish the tool on the bench. Some of his principle jobs in the aircraft industry are the making of form blocks and punch press dies.



Fig. 2:17 Plaster Mock-Up of Intersection of Fin and Rudder with Fuselage

#### 2:23 Form Blocks.

A form block is a block of suitable material made to the inside dimensions of formed parts to be produced, taking into consideration the forming characteristics of the metal to be worked.

Any material capable of withstanding high pressures without fracture or change of dimensions may be used. However, masonite, zince alloy, wood and steel are most commonly used. Steel is used for major hand forming, and for some hydro-press blocks. Zinc is often used where light hand forming is employed. Masonite is often used for a part that may be completely formed in the hydro-press. Masonite or wood may also be used for hand form blocks for parts, when only a few of such parts are required. Masonite does not split readily and blocks can usually be made from this material easier and cheaper than from zinc alloy or steel.

Block templates are used to determine the size of a form block. They are made to the inside dimensions of formed parts. Block templates indicate the shapes and contours of parts and may have information upon them such as direction of bends, (up or down), flange angles, etc. The amount of information placed upon the template varies with different manufacturers, many working on

the theory that a minimum amount of information is most desirable.

#### 2:24 Punch Press.

A punch press generally consists of a bed or bolster and a mechanically operated ram which engages the punch, or male portion of a die, and forces it into the female portion of the die to shear out parts from stock or to form various parts from the blank. Airplane models change rapidly with the advance in aeronautical research. Consequently, the production of parts is rather limited. As a result, for economical reasons, the most commonly used die on the punch press is the continental die. The continental die, or temporary type, as it is sometimes called, is a low cost die that will suffice for a limited production, somewhere between 400 to a few thousand parts.

A more complex die is the compound die which performs more than one operation upon a part, but which does all the involved operations during one single stroke of the press ram. A representative compound die is the Blank, Pierce and Form Die which performs the operations of blanking, piercing, and forming in one operation of the die in order that all parts may be interchangeable.

## 2:25 Forming Operations.

Blank stock may be formed into parts of various shapes, contours, bends, and angles by hand forming or by the drop hammer, hydro press, power brake, etc. The difference between the hand forming of metal and forming by the other methods given above is that by hand forming the metal is gradually rolled into shape by beating with a wedge shaped fiber mallet, whereas it is pressed, or formed into shape in one operation by the machines.

## 2:26 Drop Hammer.

A drop hammer consists of a stationary bed or anvil and a heavy hammer head, see Fig. 2:20. The punch is attached to the hammer head, which is guided into the die secured to the anvil. The hammer head is freely dropped or in some cases slightly retarded to form the part from blank stock which has been placed on the die. Drop hammer dies are checked for proper contour by contour templates.

Typical examples of drop hammer work are cabin doors, wing corrugations, fairing, tank shells, etc. Materials which may be formed by the drop hammer are aluminum 25½H and 3SO, Alclad 17SO and 24SO, extra deep drawing steel, stainless steel, and Inconel.



Fig. 2:20—Drop Hammer

## 2:27 Hydro-Press.

The hydro-press, as used in aircraft factory production of sheet metal parts, is a large slow-action forming machine operated by means of hydraulic pressure, ranging from 2000 to 5000 tons (approx.). In general terms, the machine consists of a large hydraulic cylinder which actuates a heavy flat ram having a large face area. The base of the machine supports a large flat **platen**, approximately equal in area to that of the face of the ram. See Fig. 2:22. In operation, a series of flat steel, masonite, or zinc alloy form blocks are placed on the platen. Metal parts to be formed are located on top of each form block and a heavy layer of rubber





Fig. 2:21 (a and b)-Parts Made by the Drop Hammer



Fig. 2:22—Hydraulic Press and Airplane Bulkhead Frame that has been formed by the above hydro

blankets is placed over the group. As pressure is applied to the ram, the rubber forms the metal over the form blocks.

The principle advantage of this method of forming is the relatively low cost of making the tools for producing the part. Another is that comparatively little time is required to make the form blocks. The parts are unmarked by the rubber. A wide variety of parts may be formed simultaneously. Another forming machine is the power brake, consisting of a bolster and a ram. The power brake differs from the hand or leaf brake in that it utilizes a male and female die made of tool steel. A typical operation on the power brake is the forming of wing corrugations from flat stock.

## 2:28 Cutting Operations.

The cutting of sheet metal is accomplished by the use of any one or combination of the following tools: bandsaw, table saw, power shear, nibbler, unishear, flycutter, and the router.

The router is a machine using a vertical rotary cutting tool. It is mounted on a large swinging arm, and is used to cut several thicknesses of metal at one time. Router templates are used as guides in cutting out the parts.

## 2:29 Aluminum and Aluminum Alloys.4

Aluminum and its alloys constitute the principle structural material for use in the construction of the airplane. Of all the raw metallic materials used in the fabrication of the airplane, excluding engines, accessories, and other items of equipment, the aluminum alloys constitute over nine-tenths of the weight of the airplane. Aluminum and its various alloys are available in only two basic forms, wrought alloys and cast alloys. The cast condition is produced by heating the material to the melting temperature, pouring into suitable molds, and cooling to room temperature. The wrought condition is always derived from the cast condition and is produced by heating the cast ingot to a temperature of approximately 850°F. and reshaping by rolling, forging, or extruding while in the hot condition. The hot rolling, forging or extruding process breaks up the grain structure and produces a material possessing more desirable physical properties than can be obtained in the cast condition. They may then be rolled while hot down into smaller bars and rods or into sheets. Cast ingots may be heated and placed into an extruding chamber and forced through an orifice to produce any desired extruded

Excerpt from Baughman's Aviation Dictionary & Reference Guide.

shape. The extruding process likewise breaks up the cast structure and produces a wrought condition of the material.

Certain of the aluminum alloys are used in the cast condition. For aircraft use these castings are either made in steel dies (die castings) or are cast in sand molds (sand castings). A modified form of the sand casting has been developed, known as the precision or Antioch casting. Die castings are never used for highly stressed or primary structural parts, because of their relatively poor internal structure due to porosity. Most die castings are not heat treated and for this reason are generally never made from heat treatable alloys. Recent development in the art of die casting has resulted in the ability to control the areas affected by porosity by confining these areas to locations in the rough casting which are to be machined out; for this reason the use of the die casting alloys in the more important applications is increasing. The most common die casting alloys used in aircraft are Alcoa alloys 13, 43, and 85. Since sand castings are used for structural applications they are generally made from heat treatable alloys such as Alcoa alloys 195, 220 and 356. Alloy number 43 is non-heat treatable, but is sometimes sand cast. No. 43 alloy gives a very dense, nonporous, weldable casting. The heat treatable sand castings are assigned a heat treatment designation of T4 or T6 dependent upon whether the casting has been artificially age hardened after solution heat treatment. Alloy 220 is not susceptible to artificial age hardening after solution heat treatment and hence is available only in the 220-T4 condition.

The permanent mold, which is a semi-precision method of casting, is increasing in use and is permitted in structural applications. Permanent mold castings are normally produced from the same types of alloys used for sand casting but with slight modifications in analysis to improve their pouring qualities.

The wrought aluminum alloys may be divided into two classifications: (1) strain hardening, (2) heat treatable. The Aluminum Company of America has assigned the letter S to designate the wrought alloys. The symbol is always used in connection with the Alcoa Number to designate the wrought alloys, regardless of whether they are the strain hardened or the heat treatable alloys.

The strain hardened alloys do not lend themselves to heat treatment. Their physical properties can be increased only by cold work and not by heat treatment. Heat treatment (annealing) would relieve the effects of strain hardening. All of the strain hardened alloys can be annealed; such annealing will produce the most ductile condition of the alloy. The symbol O has been assigned by the Aluminum Company of America to indicate the fully annealed condition of the wrought alloys. This applies to both the strain hardening and the heat treatable alloys. Thus SO indicates a wrought alloy fully annealed. Strain hardening is a relative designation, hence it must be qualified as to the degree of strain hardening. This has been done by using the symbol H. The hard temper designated H is defined by the tensile properties which result from the maximum amount of cold working which is commercially practicable to introduce into the metal. Tempers intermediate between the soft and the hard temper are produced by varying the amount of cold work. The tempers are designated by the fractional symbols 1/4H, 1/2H, and 3/4H, indicating an increase of the strength of the annealed alloy by the corresponding fraction of the spread between the soft SO and the hard SH tempers. The common strain hardening alloys used in aircraft are Alcoa alloys 2S, 3S, 4S and 52S.

The heat treatable wrought alloys are classified as those whose physical properties are improved by heat treatment. The symbol ST is used to designate the heat treated condition of the wrought alloys. Additional physical properties can be imparted to the heat treatable wrought alloys by strain hardening after heat treatment. The symbol R is used to designate such strain hardening after heat treatment. Thus SRT indicates a wrought alloy S, heat treated T followed by strain hardening R after heat treatment. The principle heat treatable wrought alloys used in aircraft construction are Alcoa alloys 14S, 17S, A17S, 24S, 25S and 53S. After heat treatment and full age hardening, these alloys take the ST temper designation. Certain of the heat treatable aluminum alloys fully age-harden within a few hours at room temperature after solution heat treatment while others do not attain their maximum physical properties unless artificially aged at an elevated temperature (usually from 300° to 350° F., depending upon the alloy). The symbol  $\mathbf{W}$  is used to designate the 'as guenched" condition of the wrought alloys, which means that they must be artificially aged at an elevated temperature to bring them to the T condition. Alcoa alloys 53S and 61S are the most common alloys used in aircraft which are used in the "as guenched" condition—53SW and 61SW.

A symbol placed before the alloy number indicates that the

chemical properties have been modified from the basic alloy, thus A 17S indicates that the alloy is similar in chemical composition to 17S. In the particular instance of A 17S, less of the hardening agent (copper) is present than is used in 17S alloy.

# 2:30 Plain Carbon and Alloy Steels.

Although plain carbon and alloy steels constitute a comparatively small part of most modern airplanes, they have specific advantages over aluminum alloys for the design of some aircraft units.

The plain carbon steels have proven to be of great value in the construction of such non-structural units as ducts, air intakes, and fairings, etc. The main advantages of these steels, such as S.A.E.\* 1010 Deep Drawing stock, are the splendid forming and welding characteristics, as well as the low cost of the material as purchased from the rolling mills.

Another type of plain carbon steel which is widely used in the industry is S.A.E. 1117. This is known as a "free-cutting" steel because of the ease with which it can be machined, and consequently is utilized in the design of many small machined parts.

The use of alloy steels in the design of vital fittings and precision machines is of paramount importance to the aircraft industry. Although steels in general have no structural advantages over the light metals such as aluminum or magnesium, a few of the many advantages that make them indispensible to the industry are given below.

Alloy steels may be obtained in a wide range of physical properties, thus permitting the use of the most desirable combination of properties for any particular application. Also, it is possible to produce surface hardnesses in excess of any of the other structural materials. These hardened surfaces permit the manufacture of such parts as ball bearings and gears, etc., which require great hardness combined with toughness. These properties also produce superior abrasion resistance, which is needed in the design of brake drums, cams, and latches. Steels lend themselves to a great variety of surface treatments all of which give them special surface qualities. These treatments may be in the nature of (1) case hardening, nitriding, or flame hardening, (2) electroplating, for wear resistance, corrosion resistance or appearance, or (3) chemical treatment for corrosion protection or as a paint base. The

<sup>\*</sup>Society of Automotive Engineers.

melting points of most of the alloy steels are higher than those of the light alloys. Therefore, they can be used in places where fairly high temperatures must be resisted—such as engine exhaust stacks, etc. Also, the weldability of many of the high strength alloys allows their use in the design of such components as engine mounts and landing gears. One last factor of importance to emphasize is the high density of steels, which, when combined with their favorable strength-weight ratios and stiffness-weight ratios, permits the design of strong compact parts such as springs, cables, bolts, and ball bearings, etc.

#### REVIEW QUESTIONS

- By what means may the template man keep abreast of aircraft developments and new nomenclature?
- 2. Name the control surfaces of an airplane and the action each gives to the airplane.
- 3. Discuss the lofting of a fuselage.
- 4. How are master contour templates developed?
- 5. What is a loft floor?
- 6. What is a body plan?
- 7. Define a mold line; buttock line; waterline; base line; tumble home; bend line; radius tab; tolerance.
- 8. What is bend allowance? Set back? Why are they used?
- 9. What is a jig? Name some special types and tell what they are used for.
- 10. What is a plaster mock-up? How is it made? How is it used?
- 11. What materials are used for form blocks for hand-forming and the hydro-press?
- 12. What determines the size of a form block?
- 13. Describe the continental die. How is it used?
- 14. What is the difference between the hand forming and machine forming of sheet metal?
- 15. How are drop hammer dies checked for contour?
- 16. What purpose does the rubber platen serve on a hydro press?
- 17. What methods are used for assembling aircraft sheet metal parts?
- 18. What are the principal heat treatable wrought alloys used in aircraft construction?
- 19. Define SO, ST, SRT, and  $\frac{1}{2}$  H.
- 20. What line is determined by the edge of a block template?

#### CHAPTER III.

# MATHEMATICS FOR THE TEMPLATE MAKER

A very brief review of mathematics commonly used in template making with typical application:

## 3:1 Conversion of Fractions to Decimals.

It is often necessary to add together several dimensions which are expressed as fractions of inches. It is possible to add fractions by changing them all to a common denominator but this method is more difficult and much more subject to errors than the method of converting fractions to decimals.

There are numerous quick reading decimal equivalent conversion tables published which may be used to convert fractions to decimals or vice versa. If such a table is not available, it is helpful to know that any fraction may be converted into a decimal by dividing the numerator by the denominator, as for example: to change  $^{13}\!\!/_{6}$  to a decimal, divide 13 by 16 to get .8125.

When the thickness of the metal is included in a series of dimensions to be added together the practice of reducing fractional dimensions to decimals allows the thickness to be added into the column very easily because sheet metal thicknesses are usually expressed as decimals: .040, .051, .025, etc.

#### 3:2 Correct Fractions.

A fraction, to be correct, should always be in its lowest reduced form. For example,  $\frac{4}{16}$  and  $\frac{12}{32}$  are incorrect. Such fractions should be reduced to  $\frac{1}{4}$  and  $\frac{3}{8}$ , respectively, by dividing both the numerator and denominator by the largest common divisor. The prevalent use of rules on which the divisions are numbered in 16ths or 32nds has caused a certain amount of incorrect expression of fractions. These rules are faster and easier to read, but scale reading such as  $\frac{8}{16}$  or  $\frac{24}{32}$  should be expressed as  $\frac{1}{2}$  and  $\frac{3}{4}$ .

#### 3:3 Calculation or Areas.

It is often necessary to find the area of shapes which cannot be covered by a single formula. Such shapes should be broken up into separate parts, each of which can be figured as a separate problem.

Fig. 3:1 clearly illustrates a typical problem and the solution. Each part is divided up into a conventional geometrical figure and shows the area of each computed section. The results are then added for the answer.



To find Area of Trapezoid A: 
$$A = \frac{(3.5 + 2.5)(15.589)}{2} = .....$$

To find Area of Triangle B: B = 
$$\frac{\text{Base} \times \text{Height}}{2} = \frac{12 \times 10}{2} = \dots$$
 ...60.000

To find Area of

Rectangle C minus Circular cutout E:

$$C = Base \times Height - \frac{\pi R^2}{2} = (4 \times 10) - \frac{3.1416 \times 9}{2} = 25.863$$

To find Area of

## 3:4 Trigonometry.

Trigonometry is used extensively in the shop, and template makers should be able to solve triangles easily by the use of trigonometry. There is nothing difficult or mysterious about trigonometry. It consists essentially of determining the unknown parts of triangles by using the known parts and the ratios which exist between the parts. There are six parts in every triangle, three sides and three angles. When any three parts are known, provided one of them is a side, the other parts may be calculated.

Right triangles are triangles in which one of the angles is equal to 90°. Right triangles are much simpler to solve than other triangles. A problem which involves a triangle which does not contain a 90° angle may be solved rather simply by dividing the original problem into two or more right triangles.

The following discussion will concern right triangles only.

In a right triangle, the 90° angle is of course known, so in order to solve the unknown elements, it is necessary to know only two other parts, either a side and an angle or two sides. In a right triangle the sides and the ratios between the sides are given names. The sides and their ratios are names according to their position with respect to one of the acute angles which will hereafter be called the angle. The side opposite the angle is called "side opposite." The side opposite the 90° angle is called the "hypotenuse" and is always the longest side. The side, which with the hypotenuse forms the angle, is called the "side adjacent." See Fig. 3:2.

The ratio of the side opposite to the hypotenuse is called the sine of the angle. There are five other ratios between the sides of a right triangle; cosine, tangent, cotangent, secant, and cosecant. These ratios are called trigonometric functions.

The statement that the sine of the angle is the ratio of the side opposite to the hypotenuse can be written as a formula or equation:



Ratios between the sides that give the other trigonometric functions are as follows:

Side adjacent Hypotenuse = Cosine of the angle

 $\frac{\text{Side opposite}}{\text{Side adjacent}} = \text{Tangent of the angle}$ 

Side adjacent Side opposite =Cotangent of the angle

 $\frac{\text{Hypotenuse}}{\text{Side adjacent}} = \text{Secant of the angle}$ 

Hypotenuse Side opposite = Cosecant of the angle

These six relations should be memorized by the student.

For a given angle, the ratio of side opposite to hypotenuse has a certain value; for example, if the angle is 20° the ratio is .3420, or:

$$\sin 20^{\circ} = .3420$$

This equation is true regardless of the size of the triangle because as long as the angle is the same, the **ratio** of the sides will not change. But, when the angle changes, the ratio of the sides changes and so the sine changes; for example:

$$\sin 21^{\circ} = .3584$$

The cosine, tangent and other trigonometric functions are similar to the sine in that the value of each varies as the angle varies. Tables of natural values of Trigonometric Functions usually show the values of only the four most important functions, sine, cosine, tangent, and cotangent. If values of the secant and cosecant are desired, they can be found from the following relations:

$$ext{Secant} = egin{array}{c} 1 \ ext{cosine} \end{array}$$

Formulas for finding the length of sides for right angle triangles when an angle and side are known:

Length of Side opposite  $= \begin{array}{l} \text{(Hypotenuse} \times \text{Sine} \\ \text{(Hypotenuse} \div \text{Cosecant} \\ \text{(Side adjacent} \times \text{Tangent} \\ \text{(Side adjacent} \div \text{Cotangent} \end{array}$ 

Length of
Side adjacent = (Hypotenuse × Cosine
(Hypotenuse ÷ Secant
(Side opposite × Cotangent
(Side opposite ÷ Tangent

(Side opposite × Cosecant
(Side opposite × Sine
(Side opposite ÷ Sine
(Side adjacent × Secant
(Side adjacent ÷ Cosine

Care must be exercised in looking up values in trigonometry tables because mistakes are easily made. Ability to use the tables may be checked by verifying the following values:

Sin 77° 30′ = 
$$.9763$$
  
Cos 29° 15′ =  $.8725$   
Tan 56° 40′ =  $1.5204$ 

To demonstrate the use of trigonometry tables in solving a triangle, suppose that a right triangle has a 20° angle and that the side adjacent is 14". What is the length of the hypotenuse and of the opposite side?



Fig. 3:3

In the triangle in Fig. 3:3, the adjacent side (14") and the angle (20°) are known. So to find the hypotenuse "c" the following equation can be written:

$$\frac{14}{c}$$
 = Cos 20°

Solving this equation for "c":

$$c = \frac{14}{\cos 20^{\circ}}$$

The trigonometry table shows that  $\cos 20^{\circ} = .9397$ 

then 
$$c = \frac{14}{.9397}$$
 or 14.89"

To find the opposite side "a", the following equation may be used.

the adjacent side being 14", the angle 20°, and the unknown opposite side "a":

$$\frac{a}{14} = \tan 20^{\circ}$$

or 
$$a = 14 \times \tan 20^{\circ}$$

The trigonometry tables show that tan  $20^{\circ} = .3640$ 

then 
$$a = 14 \times .3640 = 5.096$$
"

To take another example, suppose a right triangle has a side 15" and a side 18". What is the angle adjacent to the 18" side? (Fig. 3:4.)

Using the known sides and the angle being sought, the following equation is written:



Looking up .8333 in the tangent column in the table of trigonometric functions, shows that .8333 is the tangent of angle 39° 48' which is the angle being sought.

In addition to the use of tables of trigonometric functions, the following rules are sometimes helpful in solving for parts of triangles:

- 1. In a right triangle, the sum of the squares of the short sides always equals the square of the hypotenuse. So if the lengths of two sides of a right angle triangle are known, the third may be found by using the equation.
  - $a^2$  plus  $b^2 = c^2$  where "a" and "b" are the short sides and "c" is the hypotenuse.
- 2. In any triangle the sum of the three angles always equals 180". So if two angles are known the third can be found by subtracting the sum of the two known angles from 180°.

## 3:5 Examples of Practical Application of Trigonometry

1. Frequently it is difficult or impossible to measure an angle accurately with a protractor. In many such cases the angle can be accurately calculated by trigonometry.

Fig. 3:5 shows the construction used. If "a" is the angle to be measured, lay off a convenient distance A C (say 10") along one side of the angle and at "C" erect a perpendicular to form a right triangle ABC. Next, measure distance B C. then:

$$tan A = \frac{BC}{10''}$$



By looking up the value of  $\frac{BC}{10}$  in the tangent column in the table of trigonometric functions, the angle "A" can be found.

This method can also be used to construct or lay out various angles. To construct an angle "A" measure off AC=10" along the line from which the angle is to be laid off, beginning at "A", the point where the angle is to start. Then erect a perpendicular at "C". Next, look up the tangent of angle "A".

Since 
$$\tan A = \frac{\text{side opposite}}{AC} = \frac{\text{side opposite}}{10"}$$
  
opposite  $\text{side} = 10 \times \tan A$ 

Therefore lay off on the perpendicular, a distance BC equal to 10 times the value of tan "A". Then a line drawn from "A" through "B" will make an angle "A" with AC.

In using this method to measure or construct angles, all measurements should be made very carefully and the perpendicular erected accurately. A 10" base is used because it makes the calculations very simple, but if necessary a longer or shorter base can be used. When a series of holes are spaced around a circle, the spacing is often specified as so many holes equally spaced.

By trigonometry, it is possible to find out what the straight line distance between the centers of adjacent holes should be in such cases. The spacing of the holes can then be easily checked by scale measurements.

Fig. 3:6

Five holes equally spaced on 10" diameter circle.



Fig. 3:6 shows the construction used. In solving a problem of this kind, it is not necessary to make an accurate layout because no measurements are involved. A rough sketch will be sufficient to show the trigonometry to be used. First a triangle is drawn between the center of the circle and the centers of two adjacent holes. Then this triangle is divided into two right triangles by a line bisecting the angle between the holes. Now "Y" is one-half of the distance being sought and "Y" can be found by solving the right triangle in the following steps:

Angle "a" =  $\frac{1}{2}$  the angle between holes and: Angle between holes =  $\frac{360^{\circ}}{\text{number of holes}}$ 

therefore: angle "a" =  $\frac{1}{2} \times \frac{360^{\circ}}{\text{no. of holes}} - \frac{180^{\circ}}{\text{no. of holes}}$   $a = \frac{180^{\circ}}{5} = 36^{\circ}$ 

The hypotenuse of the triangle is "R" which, being the radius of the circle is always known. With both "a" and "R" known, it is possible to find "Y" from the equation:

$$Sin a = \frac{Y}{R}$$

or:  $Y = R \times Sin a = 5 \times Sin 36^{\circ} = 5 \times .5878 = 2.9390''$  then distance sought = 2Y = 5.8780''

This solution can be written as a single equation which can be used to solve any hole spacing problem.

Straight Line Distance between holes =  $2R \times Sin \frac{180^{\circ}}{no. \text{ of holes}}$ 

3. Drawings of parts sometimes show dimensions in such a way that the part cannot be checked except by elaborate layout work. Sometimes, in such cases, the template maker can use trigonometry to calculate dimensions by which the part can be checked by direct measurement. Fig. 3:7 shows an example of this.



A special set up would be required to check this part using the dimensions shown. But if distances "X" and "Y" and angle "c" were known the part could be easily checked with a scale and protractor. By forming triangles as shown by the dotted lines, distances "X" and "Y" can be determined by trigonometry.

Angle "c" is equal to 180° minus the difference between angles "a" and "b". This can be written as:  $c = 180^{\circ}$  — (b — a).

This can be proved as follows: By extending line "y" to the left to form angles "d" and "e" as shown in Fig. 3:7 it can be seen that:

$$c = 180^{\circ} - e$$
  
and that......e = b - d  
but......d = a (Parallel lines cut by a transverse line)  
therefore......e = b - a

The rest of the problem is left for the student.

<sup>&</sup>lt;sup>5</sup> Although this method is theoretically correct, the template maker soon discovers that the most practical way to divide a circle into an even number of parts is by trial and error.





#### CHAPTER IV.

#### ELEMENTARY DRAFTING

#### 4:1 General.

The purpose of this and the following chapter is to develop the ability to understand and write the universal language of the draftsman and engineer. To develop the ability both to express one's thoughts on paper in the form of drawings and to interpret the thoughts of others expressed in the same manner.

This involves becoming familiar with fundamental principles of geometry, projection and mathematics. Taken step by step, from examples involving first one principle, then two and so on, steadily building brick by brick as we go, we can accomplish much. Learning the single principles thoroughly, finding and using practical applications will impress them firmly on your mind so that they become useful tools, always available for use.

An airplane is a complicated structure, but essentially only an assembly of simple parts, rivets, bolts, stringers, bulkheads, ribs, sheet stock, etc. Taken unit by unit, the airplane becomes understandable though still in its entirety a complicated structure. So it is with drawings. While in many cases apparently complicated, yet line by line, surface by surface, unit by unit, the drawing becomes intelligible and simple. It is from this point of view that we mean to attack the problem, establishing the simple principles, assembling them as we go, and visualizing the parts and the whole in the proper relation to each other.

# 4:2 Drawing Instruments and Supplies.

The drawing board is a flat, smooth surface for holding the paper while drawing is being made. One edge is used as a straight edge to guide the T-Square. Drawing boards are usually made of white pine or a similar soft, smooth grained wood. For the purpose of this course, a drawing board measuring approximately  $14'' \times 20''$  or larger is convenient. This will accommodate  $81/2'' \times 11''$  (size A) and  $11'' \times 17''$  (size B) drawings.

The drawing paper should be a high grade paper with good erasing qualities. Scotch tape, thumb tacks, or staples may be used to secure the paper to the board. It is general practice to place the paper so that the upper edge is parallel to the upper edge of the board. This may be accomplished by adjusting the

paper so that its upper edge coincides with the upper edge of the T-Square before tacking it to the board.

Standard type of drawing pencils should be used in preference to writing pencils as the lead is of a higher grade, and is generally of a more consistent quality. A 5 H is recommended for layout of construction lines, and a 2 H for lettering, sketching and detailing. Many draftsmen prefer the mechanical type of drafting pencil with an adjustable or changeable lead.

Pencils should be sharpened with a knife or a special drafting pencil sharpener. In both cases the wood should be removed leaving the whole lead. After about 1/4" of lead is exposed, it may be pointed with a fine single cut file or a sandpaper pad. Conical points are recommended for pointing, sketching and lettering, whereas chisel points are used for straight lines, where accurate work is essential, e.g., stress diagrams, etc., the flat head of the lead being held parallel to the straight-edge.

## 4:3 T-Square.

The T-Square consists of a long piece called the blade, and a shorter piece at right angles at one end called the head. Unless a person is left handed, the head of the T-Square is always applied to the left side of the board. The inner edge of the head and the upper edge of the blade are the working edges of the T-Square. For accuracy in work they must be smooth and straight. A T-Square may be checked by placing it in a working position with the head firmly against the straight edge of the drawing board and drawing a line along the entire length of the blade.



Fig. 4:1 Checking T-Square

Fig: 4:2
Checking Straight Edge
of a Drawing Board



The T-Square is then turned over and a line drawn along the same edge. If the lines coincide, the T-Square is true. If not, the error is half that of the interval shown between the lines.

If the working edge of the T-Square is found to be true, the straight-edge of the drawing board may be checked by laying the working edge of the T-Square along the straight-edge of the board. If the straight-edge is true, no light cracks will be seen between the edges of the T-Square and the board.

The T-Square is used for drawing horizontal lines with the working edge of the head firmly against the straight-edge of the board. In general, lines should be drawn from left to right with the pencil held firmly against the upper edge of the T-Square.

## 4:4 Drafting Triangles.

Drafting triangles are celluloid right triangles with complementary angles of  $30^{\circ}$  -  $60^{\circ}$  and  $45^{\circ}$  -  $45^{\circ}$ . Vertical lines and inclined lines are drawn with the right triangles, using the T-Square as a guide. Vertical lines are usually drawn from bottom to top of the board with the vertical edge of the triangle towards the left edge of the board. Various combinations of the angles and the T-Square will provide angles of  $15^{\circ}$ ,  $30^{\circ}$ ,  $45^{\circ}$ ,  $75^{\circ}$  and  $90^{\circ}$ .

Triangles will occasionally warp out of square through use. To check how square the 90° angle of a triangle is, place the triangle against the working edge of a T-Square that has been checked. Draw a vertical line, then turn the triangle over and draw another line along the same edge. If the lines coincide, the triangle is square. If not, the error is half of the interval between the lines



Fig. 4:3—Checking a Triangle

Inclined parallel lines may be drawn by using two triangles placed with one edge of each against the other. With the tri-

angles so placed, the edge of one triangle can be made to coincide with the given line. Parallel lines may then be drawn at intervals by sliding the triangle, with one edge parallel to the given line, along the guiding triangle.

#### 4:5 Protractor.

The protractor is a semi-circular celluloid instrument graduated in degrees (generally through 180 degrees). The special type of protractor shown in Fig. 7.9 is preferably used in the template shop for the layout of angles.

#### 4:6 Rules.

A rule in general terms is a flat strip of wood, metal, celluloid, or plastic material, having straight edges indexed or graduated in suitable distance units for the purpose of measuring full or natural sizes of an object. Most rules used in the shop are the flexible or semi-flexible type, having lengths of 6 or 12 inches. Although in many cases, especially in loft work, the 18 or 24 inch rule is very convenient. The graduations on these rules are in halves, quarters, eighths, sixteenths, thirty-seconds and sixty-fourths of an inch.

Quick Reading Rule: A quick reading rule (sometimes called fast reading) is one having the sixty-fourths and thirty-seconds added and the numerical total stamped at regular intervals along the length of each inch division. This system of marking saves time, decreases eye strain and has the possibilities of decreasing errors in measuring.

**Decimal Rule:** As the name implies, this rule is graduated in decimal parts of an inch, and is a valuable rule for use in layout of templates because many shops require that dimensions be in decimals (thousandths).

#### 4:7 Scales.

It is not always possible to draw objects to their true or full size, so they must often be drawn to uniformly reduced dimensions by the use of scales.

A scale is similar to a rule in that it is a straight edged piece of wood, metal, celluloid or plastic, etc., graduated in some regular divisions. It differs from a rule, however, in that whereas a rule is graduated in direct full scale measuring units, the scale is graduated so as to indicate or represent measurements for

making reduced or increased scale (reduced or increased size) of an object.

There are two general types of scales, (1) the mechanical engineers scale, which is sometimes referred to as the Architects' scale, and (2) the civil engineers scale. The mechanical engineers scale is used on machine and structural drawings and is divided into proportional feet and inches, e.g., 6'' = 1' (half size), 3'' = 1' (quarter size),  $1\frac{1}{2}'' = 1'$  (eighth size),  $\frac{1}{2}'' = 1'$  (twenty-fourth size), etc. The civil engineers scale is graduated in tenths of an inch and is used for map making, plotting, graphs, drawing stress diagrams, etc. This scale enables an engineer to read dimensions of less than an inch in 10ths and also scale load diagrams in tenths. Modern engineers are now beginning to use a decimal scale graduated in thousandths.

There are two general types or forms of both the architects scale and the civil engineers scale; (1) the triangular scale (triangular cross section) which has ten of the most commonly used scales on its sides, and (2) the flat scale, which as the name implies is a flat scale with fewer scales on its sides than the triangular scale. Obviously a greater number of flat scales will be required than the triangular form, but many draftsmen prefer to use the flat scale because it is much more convenient to use and there is less lost time due to the fact that the triangular scale has too many scales on the same stick. When chosing a flat rule, be sure to choose one that is easy to pick up.

In summation, we might add that rules are used in the shop and scales are used in the engineering or drafting rooms. An added note of caution is well worthwhile, namely, do not use a wooden rule for drawing lines, do not handle any rule or scale in such a manner as to mar the straightness of the graduated edges and where graduations start at the extreme end of a rule or scale, do not start a measurement from the end because a small portion of the end may we worn or inaccurate.

## 4:8 Compass.

A compass is an instrument consisting of two legs hinged together, one having a pin point and the other a pencil or pen part. For circles with large radii, a lengthening bar may be inserted into the pencil leg. The pencil point should be beveled on one side in such a way that the flat face always faces out

from the center of the circle. This is necessary in order to get a sharp clear line. A  $5\,\mathrm{H}$  lead is often used.

#### 4:9 Dividers.

Dividers are similar in design to a compass with the exception that both legs are provided with pin points. Transfer of dimensions from the scale to the drawing, dividing of lines into equal parts, and transferring lengths of lines from one point to another on a drawing are functions of the dividers.

#### 4:10 Bow Instruments.

Bow instruments are small compasses having a screw arrangement which accurately spaces the legs. They are used in the same manner as the compass and divider. The legs are under spring tension making it possible to draw precise arcs or circles. Bow instruments are generally used for radii of one inch or less. For faster work and less wear on the threads, it is advisable to compress the legs of a bow instrument, while resetting it, thus relieving the pressure on the nut.

### 4:11 Irregular Curves.

Irregular curves may be drawn with a **spline**, or what is commonly called a French Curve. French curves are usually made of celluloid, and are made in a variety of shapes covering a wide range of curves.

In drawing a curve, the line is first plotted with a series of points. Next, the French Curve is adjusted until one of its many curves coincides with three or more points. All but the extreme points covered are included in a line drawn against the edge of the curve. Not more than three points should be connected at one time.

#### 4:12 Geometrical Construction.

The following examples of geometrical constructions are intended to acquaint the student with the problems that will be met in template layout and drafting. No mathematical proofs are given as they may easily be found in the many text books on plane geometry. The template maker, however, should become sufficiently familiar with plane geometry to be able to apply its principles to the solution of layout problems.

#### 4:13 To Draw a Line Parallel to a Given Line at a Given Distance.

Given: Line A B Distance C-D



### Construction:

With R equal to CD, and any two centers such as E and F, draw two arcs. GH drawn tangent to both arcs is parallel to AB.

## 4:14 To Bisect an Angle.

Given: Angle ABC





Construction: With B as a center, strike an arc cutting AB and CB at D and E respectively. With D and E as centers and a radius R, draw two intersecting arcs. BF bisects angle ABC.

# 4:15 To Construct the Perpendicular Bisector of a Line.

Given: Line AB

Fig. 4:6



Construction: With A and B as centers and radius R greater than one-half AB, construct 2 intersecting arcs above and below AB. CD is the perpendicular bisector of AB.

### 4:16 To Find the Center of a Circle.

Given: A circle





Construction: Draw two chords, AB and DC. Construct the perpendicular bisectors EF and GH of AB and DC respectively. Intersection O is the center of the given circle.

# 4:17 To Pass an Arc with a Given Radius Through Two Given Points.

Given: Points A and B Radius R



Fig. 4:8

Construction: With A and B as centers and R as radius, swing two arcs. With intersection C as center and R as radius draw arc DE, which will pass through A and B.

# 4:18 To Divide a Line into Any Number of Equal Parts.

Given: Line AB to be divided into 4 equal parts.

Fig. 4:9



Construction: Draw AC at an acute angle to AB. With a compass or divider, mark off 4 equal segments of convenient length, AD, DE, EF, and FG on the line AC. Draw GB. Construct FJ, EI, and DH parallel to GB. AB is divided into 4 equal parts, AH, HI, IJ, and JB.

# 4:19(a) To Draw a Pendicular from a Point to a Line.

Given: Point "P" and line AB



Construction: Swing an arc from P to intersect AB at C and D. From C and D, swing equal arcs to intersect at M. PM is desired perpendicular.

# 4:19(b) To Construct a Line Perpendicular to Another Line, at Its End.

Given: Line AB.

Construction: Using any size radius from any point "P" swing an arc which will intersect line AB at A and any point between



## 4:20 To Inscribe a Circle in a Triangle.

Given: Triangle ABC





Construction: Bisect any two angles, for example, angle A and angle B. From O construct a line perpendicular to any one side of the given triangle, such as Oc. With Oc as a radius and point O as a center, draw the circle which is tangent to sides a, b, c.

## 4:21 To Circumscribe a Circle about a Triangle.

Given: Triangle ABC

Fig. 4:13



Construct perpendicular bisectors DE and DF to chords CA and AB respectively. With D as a center and DA as a radius, swing circle GAH.

# 4:22 To Draw a Circular Arc of Given Radius Tangent to Two Non-Parallel Lines.

Given: Non-Parallel Lines AD and CB

Radius R

Construction: With R as a distance, construct EF and GF par-

allel to AD and CB respectively. With intersection F as a center and R as a radius, describe arc HI. HI is tangent to CB and AD.



4:23 To Draw an Ellipse by the Concentric Circle Method.



Given: Minor axis CD and major axis AB intersecting at right angles at point O.

Construction: With O as a center and OC as radius, describe a circle. Likewise with radius OA, describe a concentric circle. Next divide the circles with a number of diameters. With T-Square and triangle draw horizontal lines from intersections of the diameters with the smaller circle, and vertical lines from intersections of the diameters with the larger circle. The intersections of the

horizontal and vertical lines thus drawn are connected to complete the ellipse.

# 4:24 Ellipse, Trammel Method.

Fig. 4:16 illustrates the method of drawing an ellipse by use of trammel points. The details of the method consist of setting two points of the trammel at a distance A'O' apart which is equal to one-half the major axis and D'O' equal to one-half the minor axis. Move the trammel points in such a manner as to keep A' on the minor axis and D' on the major axis. The point O' will trace the ellipse.



Fig. 4:16

# 4:25 Regular Polygons.

Regular polygon is the term applied to a geometric figure with all of its sides equal and all of corresponding angles between these sides equal. The primary regular polygons are: equilateral triangle, 3 sides; square, 4 sides; pentagon, 5 sides; hexagon, 6 sides; heptagon, 7 sides; and octagon, 8 sides.

Construction of regular polygons:

Equilateral triangle:







Fig. 4:18

From the limits of s, swing intersecting arcs of length s.

# Pentagon:

To inscribe a pentagon in a circle. Fig. 4:18. Draw the diameter of the circle and radius OC perpendicular to it. Bisect one-half of the diameter. With this point D as center and a radius DC draw arc CE. With center C and radius CE, draw arc intersecting the circle. A line from C to the intersection is one side of the pentagon. Using this length, step off on the circle the other sides of the pentagon.

# Hexagon:



Fig. 4:19

Given: The length of one side of a hexagon.

Construct a circle with radius equal to the side of the given hexagon.

Step off chord distances on the circle equal to radius (s).

# GEOMETRIC CONSTRUCTION PROBLEMS

In the following problems, show all construction lines.

1. Bisect the angle.



2. Draw any triangle with a perimeter equal to the given line. (Sum of three sides equal to given line in length.)



3. Divide this line into three equal parts.

Fig. 4:22

4. Draw a right triangle with the given line as its hypotenuse.

Fig. 4:23

5. Construct a line perpendicular to line AB at B. Use method shown on page 72. Fig. 4:19 (b).

A \_\_\_\_\_\_ B

6. Locate the center of this circle.



7. Draw a line through the given point to the given line so that the angle formed will be equal to the given angle.



Fig. 4:26

8. Extend these two lines and connect them by an arc of 3/4 inch radius.



9. Draw an arc of  $\frac{7}{8}$  inch radius so that it will be tangent to the given circle and the given straight line.



Fig. 4:28

10. Circumscribe a circle about the triangle given below.



Fig. 4:29

- 11. Draw a circle 3 inches in diameter and divide the circumference into 6 equal parts with a compass.
- 12. The altitude of an isosceles triangle is  $2^{1}/_{2}$ ". Construct the triangle by the use of a compass.
- 13. Inscribe a hexagon in a circle which has a  $1\frac{1}{2}$ " radius.
- 14. Inscribe a pentagon in a circle which has a 2" radius.
- 15. Two lines intersect at a  $45^{\circ}$  angle. Draw an arc with a radius of  $\frac{7}{8}$ " tangent to both lines.
- 16. Show two methods of drawing an ellipse. Make the major axis 4" and the minor axis 21/2".



Courtesy of Ryan Aeronautical Co.

Fig. 4:30—Welding stainless steel fittings to Ryan exhaust manifolds by spot welding process.

#### CHAPTER V.

#### ENGINEERING DRAFTING

# 5:1 Orthographic Projection.

The most common method of drawing a part is by orthographic projection. The method used in the United States, called the Third Angle Method, may be explained by visualizing a block in a glass box.



If the views as seen through the various sides of the glass box were drawn on the respective sides, and the box unfolded as shown and laid out flat, we would have before us the Third Angle Method of Orthographic Projection, as standardized in the United States.

It is not always necessary to present all six views of an object. In the case of the block enclosed in the glass box, only the front and top views are necessary to describe the object. The front view, or principal view, as it is sometimes called, of an object is always the view that will give the most information concerning the form of the object. Such other views as are required to complete the information are then added.



# 5:2 Auxiliary Views.

An auxiliary view is used to project the face of an object that would not appear in its true length in a Third Angle Projection. The projection is usually made normal to the face or plane of the object, such as in the accompanying view.



Auxiliary views may be projected from any of the principal views at any angle other than 90°.

# 5:3 Isometric Projections.

One other method of pictorial drawing commonly used by Draftsmen in sketching to illustrate or use as a means of expression (See Freehand Sketching) is isometric projection. In isometric projection the part is drawn to the same scale as the orthographic projection. One edge is drawn in true length and

the square faces projected off at an angle of 30° with the horizontal. A block is shown below in isometric projection. Circles in isometric projection are elliptical in shape.



# 5:4 Drawing Sheet Sizes.

American Standard drawing sheets sizes are given in Fig. 5:6. Sheet sizes A through F are multiples of the commercial letterhead,  $8\frac{1}{2}$ " x 11". This permits the easy folding of tracings and blueprints so as to fit commercial standard letter files. Also, these sheet sizes may be cut without waste from 36 inch rolls of paper. Sheet sizes from G through T are rolled drawings and are used for large parts. Blueprints are always folded with the blue side out and in such a manner so as to have the title block on the outside where it can be read at all times.

#### 5:5 Title Blocks.

In one corner (generally the lower right hand corner) of all blueprints will be noticed a rectangular block. This block is called a title block and is utilized as a record section of the Drawing, and as a source of information pertaining to the part or parts.

The title blocks as shown on the blueprints on the left hand pages of Chapter VIII are typical of those appearing on blueprints. These title blocks give various engineering information relative to the part, such as finish, heat treatment, weight, size, specifications, bill of materials, etc.

# DRAWING SHEET SIZES

| SIZE                         | Α                       | В  | C    | 0  | ·E | F                         | G  | H  | 1         | J  | K    | 7    | M  | $\sim$ | P  | a  | R  | S  |
|------------------------------|-------------------------|----|------|----|----|---------------------------|----|----|-----------|----|------|------|----|--------|----|----|----|----|
| WIDTH                        | 8.5                     | 11 | 11   | 11 | 17 | 17                        | 17 | 17 | 22        | 22 | 25,5 | 25.5 | 34 | 34     | 34 | 34 | 42 | 42 |
| LENGTH                       | //                      | 17 | 25,5 | 34 | 22 | 33                        | 47 | 69 | <i>37</i> | 54 | 47   | 69   | 47 | 58     | 69 | 9/ | 69 | 9/ |
| FLAT DRAWINGS ROLL DRAWINGS  |                         |    |      |    |    |                           |    |    |           |    |      |      |    |        |    |    |    |    |
| 0044464                      | DRAWINGS B.C.D.E. AND F |    |      |    |    | ANY STANDARD WIDTH BY ANY |    |    |           |    |      |      |    |        |    |    |    |    |
| WILL FOLD TO SIZE A.(8.5×11) |                         |    |      |    |    |                           |    |    |           |    |      |      |    |        |    |    |    |    |



ZONING <u>METHOD</u> <u>OF</u> <u>ZONING A DRAWING</u>



# 5:6 Drafting Abbreviations.

Miscellaneous abbreviations used in drafting and general aircraft terminology:

| — A —                     |          |
|---------------------------|----------|
| Absolute Ceiling          | A/C      |
| Accessory                 | ACCES.   |
| Actuating                 |          |
| Adjusting                 |          |
| Adjustment                |          |
| After Bottom Center       |          |
| After Top Center          | A.T.C.   |
| Toward-Tail               |          |
| Aileron                   | AIL.     |
| Air Corps                 | A.C.     |
| Alclad                    | ALC.     |
| Aluminum                  | ALUM.    |
| Aluminum AlloyAL          |          |
| Ammunition                |          |
| Anneal                    |          |
| Antenna                   | ANT.     |
| Approved Type Certificate | A.T.C.   |
| Approximate               |          |
| Army & Navy               |          |
| Arresting                 |          |
| Assembly                  |          |
| Assistant                 |          |
| Atmosphere                |          |
| Attached                  |          |
| Attachment                |          |
| Auxiliary                 |          |
| Average                   | AV.      |
|                           |          |
| — В —                     |          |
| Baggage                   | BAG.     |
| Battery                   | BAT.     |
| Bearing                   |          |
| Before Bottom Center      | B.B.C.   |
| Before Top Center         | B.T.C.   |
| Bill of Materials         | B/M      |
| Bottom Dead Center        | B.D.C.   |
| Bracket                   |          |
| Brake Horse Power         | B.H.P.   |
| Brake Mean Effective      |          |
| Pressure                  | B.M.E.P. |
| Brown & Sharpe Gauge      |          |
| Bulkhead                  |          |
|                           |          |

| Buttock Line       |        |
|--------------------|--------|
| Buttock Line       | B.L.   |
| C                  |        |
| Cancelled          | CAN.   |
| Carburetor         | CARB.  |
| Case Harden        | HARD.  |
| Casting            |        |
| Cast Iron          |        |
| Center             | CTR.   |
| Center of Buoyancy |        |
| Center to Center   |        |
| Center of Gravity  |        |
| Center LineC.L.    | © or © |
| Center of Pressure |        |
| Center Section     |        |
| Centigrade         |        |
| Centimeter         |        |
| Chamfer            | CHAM.  |
| Change             |        |
| Charge             |        |
| Check              |        |
| Chord Line         |        |
| Chrome-Molybdenum  |        |
| Circular Pitch     |        |
| Circumference      |        |
| Clearance          |        |
| Cold Rolled Steel  |        |
| Commercial         |        |
| Compartment        |        |
| CompensatingC      |        |
| Complete           |        |
| Compress           | COMP.  |
| Concentric         |        |
| Conduit            |        |
| Connecting         | CON.   |
| Connection         | CON.   |
| Contract           |        |
| Control            |        |
| Corrugated         | CORR.  |
| Corrugation        |        |
| Counter Bore       |        |
| Counter Drill      |        |
| Countersink        | CSK.   |

Bushing .....BUSH.

| Countersunk          | CSK.     | Experimental     | EXP.  |
|----------------------|----------|------------------|-------|
| Coupling             | COUPL.   | Extinguisher     |       |
| Covered              |          | Extrusion        |       |
| Cubic                |          |                  |       |
| Cubic Feet           |          | —F—              |       |
| Cylinder             |          | Fahrenheit       | T     |
|                      |          | Fairing          |       |
| D                    |          | Federal          |       |
| Degree               | ° or DEG | Feet or Foot     |       |
| Department           |          | Figure           |       |
| Design               |          | Fillet           |       |
| Designation          |          | Fillister Head   |       |
| Desired Loose Fit    |          | Fitting          |       |
| Desired Tight Fit    |          | Flat Head        |       |
| Detail               |          | Flexible         |       |
| Developed Length     |          | Flotation        |       |
| Developed Width      |          | Forward          |       |
| Deviation            |          | Frequency        |       |
| Diagonal             |          | Front            |       |
| Diameter             |          | Fuselage         |       |
| Diagram              |          | i userage        | 05.   |
| Differential         |          | G                |       |
| Dimension            |          | <del></del>      | 2112  |
| Dimension Chart      |          | Gallons          |       |
| Disconnect           |          | Galvanize        |       |
| Disconnecting        |          | Gage             |       |
| Distribution         |          | General          |       |
| Distributor          |          | Generator        |       |
| Ditto                |          | Gram             | GM.   |
| Dozen                |          | **               |       |
| Drafting             |          | — H —            |       |
| Draftsman            |          | Handbook         |       |
| Drafting Room Manual | DRM      | Harden           |       |
| Drawing              | DWG      | Hardware         |       |
| Duralumin            |          | Head             |       |
| Daratumini           | DOINIL   | Headless         |       |
| E                    |          | Heat Treat       |       |
| Each                 | FΔ       | Heavier-Than-Air |       |
| Electrical           |          | Hexagon          |       |
| Electromotive Force  |          | Holder           | HODR. |
| Elevator             |          | Hollow           | HOL.  |
| Emergency            |          | Horizontal       | HOR.  |
| Enclosure            |          | Horse Power      | H.P.  |
| Engine               |          | Hour             | HR.   |
| Engineering          | ENC      | Hydraulic        | HYD.  |
| Engineering          | EULID.   | •                |       |
| Equipment            | EOUT.    | I                |       |
| Equivalent           | ECT      | Ignition         | ICN   |
| Estimate             |          | Inboard          |       |
| Exmausi              |          | IIIDOard         |       |

| InchIN.                                     | Miles Per HourM.P.H. or mph.   |
|---------------------------------------------|--------------------------------|
| IndicatorIND.                               | Mill Cutter                    |
| InformationINFO.                            | MinimumMIN                     |
| Inside Diameter I.D.                        | Minimum Loose FitMin. L. F.    |
| Inside DiameterINSP.                        | Minimum Tight FitMin. T. F.    |
| Inspection GageI.G.                         | MiscellaneousMISC.             |
|                                             | Mold LineML                    |
| Inspector of Naval AircraftI.N.A.           | MountMT.                       |
| Inspector of Army AircraftI.A.A.            | MountingMTG.                   |
| InstallationINSTAL.                         | Mounting                       |
| InstructionINST.                            | — N —                          |
| InstrumentINST. Instrument PanelINST. PANEL | NacelleNAC.                    |
| Instrument Panel INTER CU                   | Naval Aircraft FactoryN.A.F.   |
| InterchangeableINTER. CH.                   | NumberNO.                      |
| IntermediateINTER.                          | Number RequiredNO. REO.        |
| InternalINT.                                | Number RequiredNO. REQ.        |
| <b>— J</b> —                                | -0-                            |
| JunctionJUNCT.                              | ObservationOBS.                |
| •                                           | ObserverOBS.                   |
| — K —                                       | ObsoleteOBS.                   |
| Key WayK'WAY                                | OpeningOPNG.                   |
| Knuckle Line K.L.                           | OperatingOPER.                 |
| Kildokie Lille                              | OscillatorOSCIL.               |
| L                                           | OutboardOB.                    |
|                                             | Outside DiameterO.D.           |
| LandingLDG.                                 |                                |
| Landing GearL.G. or LDG. GR.                | — P —                          |
| LatitudeLAT.                                | Parachute FlarePARA. FLARE     |
| Leading EdgeL.E.                            | PassengerPAS.                  |
| Left Hand L.H.                              | PatentPAT.                     |
| LengthLENG.                                 | PatternPATT.                   |
| Longeron LONG.                              | PerforatePERF.                 |
| LongitudinalLONG.                           | PermanentPERM.                 |
| LubricatingLUB.                             | PiecePC.                       |
| LubricationLUB.                             | Pitch DiameterP. DIA.          |
|                                             | PlatePL                        |
| M                                           | PositionPOS.                   |
| MachineMACH.                                | PoundsLBS.                     |
| Main BeamM.B.                               | Pounds Per Horse PowerLBS/H.P. |
| MaintenanceMAIN.                            | Pounds Per Sq. FootP.S.F.      |
| ManufacturerMFR.                            | Pounds Per Sq. Inch            |
| MaterialMATL.                               | PreliminaryPRELIM.             |
| MaximumMAX.                                 | PressurePRES.                  |
| Maximum Loose FitMAX.L.F.                   | PROD.                          |
| Maximum Tight FitMAX. T.F.                  | PropellerPROP.                 |
| Mean Aerodynamic ChordM.A.C.                | •                              |
| MechanicalMECH.                             | — R —                          |
| MechanismMECH.                              | RadiusR.                       |
| MeterM.                                     | Receiver REC.                  |
|                                             |                                |

| ReceptacleRECEPT.                                                                                                                    | Stock WidthS.W.                         |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| ReferenceREF.                                                                                                                        | StructureSTRUC.                         |
| ReinforcementREINF.                                                                                                                  | SuperchargerSUPCHGR.                    |
| ReinforcingREINF.                                                                                                                    | SupersededSUP.                          |
| ReleaseREL.                                                                                                                          | SupportSUP.                             |
| RequiredREQ.                                                                                                                         | SupportingSUP.                          |
| RequirementsREQMTS.                                                                                                                  | SymmetricalSYM. or SYMM.                |
| RetainerRET.                                                                                                                         | SynchronizeSYNCHR.                      |
| RetainingRET.                                                                                                                        | SystemSYST. or SYM.                     |
| RetractingRETRG.                                                                                                                     | ~ 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 |
| RevisedREV,                                                                                                                          | T                                       |
| RevisionREV.                                                                                                                         |                                         |
| Revolutions Per MinuteR.P.M.                                                                                                         | TemperatureTEMP.                        |
| Right HandR.H.                                                                                                                       | ThreadTHD.                              |
| Round HeadR.H.                                                                                                                       | Thrust LineT.L.                         |
| RubbingRUB.                                                                                                                          | Trailing EdgeT.E.                       |
| RudderRUD.                                                                                                                           | TransformerTRANSF.                      |
|                                                                                                                                      | TransmitterTRANSM.                      |
| — S —                                                                                                                                | TransverseTRANSV.                       |
| Sea LevelS.L.                                                                                                                        | TypicalTYP.                             |
| SectionSECT.                                                                                                                         |                                         |
| SegmentSEG.                                                                                                                          | U                                       |
| SelectorSEL.                                                                                                                         | UltimateULT.                            |
| SeparateSEPT.                                                                                                                        | Universal UNIV.                         |
| Service CeilingS/C                                                                                                                   | Olliversal                              |
| Shear Beam S.B.                                                                                                                      | v                                       |
| Shock Absorber SH. ABS.                                                                                                              | VariationVar.                           |
| SpecialSPEC.                                                                                                                         | VariationVar. VerticalVERT.             |
| SpecificationSPEC.                                                                                                                   | Volts, Volume, VelocityV                |
| Specific GravitySPEC. GRAV.                                                                                                          | vons, volume, velocityv                 |
|                                                                                                                                      |                                         |
| Spherical RadiusSPH. R.                                                                                                              | 137                                     |
| Square FeetSQ. FT.                                                                                                                   | _ w _                                   |
| =                                                                                                                                    | <b> W</b> Water LineW.L.                |
| Square FeetSQ. FT.                                                                                                                   | Water LineW.L.                          |
| Square FeetSQ. FT. Square InchSQ. IN.                                                                                                | Water LineW.L.                          |
| Square Feet         SQ. FT.           Square Inch         SQ. IN.           Stabilizer         STAB.                                 | Water LineW.L.                          |
| Square Feet         SQ. FT.           Square Inch         SQ. IN.           Stabilizer         STAB.           Standard         STD. | Water Line                              |
| Square Feet                                                                                                                          | Water LineW.L.                          |

# 5:7 Layout Drawing.

A layout is used to show clearly the shape or contour, size and location of some particular part or group of parts in the airplane in complete relation to other parts.

To fulfill this obligation, layouts must be of high standard workmanship or they will be of little value in determining detail design. Layouts pass through two stages of completion, (1) Preliminary and (2) Final. No details are made until the final layout is approved.

For sake of clarity, a layout should show primarily the part or group of parts concerned. Views of other parts should be shown in "phantom" where necessary. Weight and quality of lines should be suitable for blueprinting; also for clear accurate reading, even when the layout is covered by a sheet of tracing cloth. 6H pencils are not recommended for layout work; a softer, well sharpened pencil being more desirable.

Layouts should not be converted into regular production drawings, but in their final stage should be suitable, both in workmanship and completeness, for blueprinting. Blueprints of layouts are used in connection with tool work (manufacturing jigs, dies, etc.). Also layouts must be complete enough that detailing can be done without reference to any other source of information. This is necessary because of the fact that, in many cases, detailing will be done by a specialized detail group.

# 5:8 Detail Drawing.

A detail drawing is a drawing of a single part, giving all dimensions and information needed to make the part. The design should be such as will permit making the part in a single fabrication department. Detail drawings do not go to assembly departments; therefore, notes such as "DRILL ½" on ASSEMBLY" are worthless on detail drawings and must appear on the assembly drawing where the operation is to be performed.

# 5:9 Assembly Drawing.

This drawing shows a group of parts fastened together to form a unit which may be installed as such in another assembly or in the plane itself. The assembly drawing should call only for previously fabricated parts, but may show dash numbers where the assembly will be made in one of the departments that does both fabricating and assembly work. However, if any of the parts of the assembly would have to be made in another department, then that part should be detailed separately on another drawing. The assembly drawing preferably has no dash numbers.

The assembly drawing will show the dimensions needed to locate the parts relative to each other, and in addition, if it has dash numbers, will show all dimensions needed to fabricate the details. It will call for A-N or other standard parts needed to assemble the

details, giving instructions for drilling, reaming, trimming, etc., where such information is pertinent.

All **sectional views** which are pertinent to a particular assembly should be shown on the same sheet with the assembly drawing itself.

# 5:10 Sub-Assembly or Sub-Installation.

It is desirable to have large assemblies broken down into a number of smaller sub-assemblies and sub-installations. This not only facilitates production, but permits the assembly drawing to remain clear of too many sectional views and avoids complication of the drawing by eliminating the **callout** of a large number of detail parts. Thus, on a fuselage structure assembly, the major drawing would call for very few parts, and a comparatively large number of sub-assemblies and sub-installations, such as "Installation—Window Frames," "Installation—Nose Baggage Door," "Installation—Cabin Door," "Installation—Main Bulkhead," "Installation—Nose Landing Gear Fitting," etc. The major assembly drawing in this case will show only sufficient dimensions to locate installations and sub-assemblies relative to one another, and will call for very few attaching parts. The bulk of all attaching parts should be indicated on the sub-installation drawings.

# 5:11 Final Assembly Drawing.

The final assembly drawing of any airplane is the index drawing for that particular model. There are no dimensions given, the drawing being devoted solely to the calling out of all major assemblies. In the case of some of the larger units, major assemblies are called out; then by means of brackets, all important sub-assemblies making up the unit are listed and labeled "REF." From these drawings, it is possible to locate all parts or related drawings.

# 5:12 Installation Drawing.

The installation drawing is for the use of one of the Assembly Departments, such as final assembly, and shows where and how one assembly is attached to another when such information is too elaborate to be given on the assembly drawing of the larger of the two assemblies in question. The installation calls for all attaching details such as angles, bolts, screws, etc.; it may call for the smaller of the mating assemblies; it must have no dash numbers. It generally shows only such few dimensions as may be needed to locate parts, or reference dimensions, which may be useful in subsequent engineering work.

# 5:13 Tool Design Drawing.

A special drawing made for constructing production tools, (dies, jigs, fixtures, machinery, etc.). It is generally made by a special department (Tool Design) independent of the engineering department.

# 5:14 Checking

The purpose of checking is to insure that drawings are correctly made with regard to design, drawing, and "system." Each Draftsman is expected to check his own work carefully before it goes to a Checker, and is held responsible for its correctness. As an added precaution, Checkers are trained to find any additional errors on drawings before the drawings get to production departments. The mistakes a Checker finds are a direct reflection on the Draftsman. Those he misses are a reflection on the Checker. Errors discovered in the shop are a reflection on the engineering department. Close cooperation with the Checkers is an important factor and will insure each Draftsman that his drawing is going out correctly.

#### 5:15 Lines and Line Work.

The types of lines and line widths as indicated are standard and should be used on all Engineering drawings and should be sufficiently dense to permit good reproduction. A sample drawing, showing the use of all types of lines, is illustrated in Fig. 5:10.

#### ALPHABET OF LINES



All Dimensions are Approximate—Not to be measured.

Fig. 5:7

#### 5:16 Hidden Lines.

Hidden lines should be avoided as much as possible, sections being preferable in many cases. The standard use of hidden lines is as shown in Fig. 5:8.

All hidden lines, except for very small parts, should be at least  $\frac{3}{16}$  of an inch to  $\frac{1}{4}$  inch long. The length of hidden lines on small parts should be in proportion to the part.



#### 5:17 Dimension and Extension Lines.

Dimension lines should be light lines, unbroken except for the space left for the dimension, and should be of the same weight as those indicated in Fig. 5:14.

Extension or ray lines should not touch the outline of the object by about  $\frac{1}{16}$  inch, and should extend beyond the arrow heads by approximately  $\frac{1}{8}$  inch, as shown in Fig. 5:16.

#### 5:18 Break Lines.

Break lines on small parts are represented by heavy free-hand lines, as shown in Fig. 5:9. Break lines on assemblies or large parts are represented by light ruled lines and free-hand "zig-zags," as shown in Fig. 5:10.

Where it is necessary to show a long break which extends at least 3 inches and not over 12 inches, not more than 2 "zig-zags" should be shown. In breaks exceeding 12 inches, the "zig-zags" should be spaced not less than 4 inches apart.

The method of indicating the ends of shafts, rods, tubes, etc., which have a portion of the length broken out, is shown in Fig. 5:9. These breaks should all be made freehand.



Fig. 5:9

#### 5:19 Center Lines.

A center line is a fine broken line, made up of long and short dashes, alternately spaced. Note Fig. 5:7.

Standard conventions for showing center lines through parts may be noted in the various Figures given in this text.

#### 5:20 Alternate Position Lines.

Alternate positions, or indication of the limiting positions of a moving part, should be shown by a phantom line. Fig. 5:10 shows very clearly a direct application of phantom lines as used for alternate positions.

#### 5:21 Sectional Views.

Sectional views, or sections, should be used when the interior construction cannot be shown clearly by the outside views. The exposed cut surface of the material is indicated by "section lines" or "cross hatching," with uniformly spaced fine lines. The lines should be equally spaced, and the spacing should be from about  $\frac{1}{16}$  inch on small drawings to  $\frac{1}{8}$  inch on large drawings.

Hidden lines and details beyond the cutting plane should be omitted unless absolutely required to properly describe the object. Note Fig. 5:10. Sections must not be "rotated." When a section is removed from its normal projected position, it must maintain its proper orientation, i.e., with its reference plane parallel to the section cutting plane.



Fig. 5:10

# 5:22 Section Lining.

Section lining should be made with light parallel lines at an angle of 45° with the border line of the drawing. Two adjacent parts should be sectioned in opposite direction. A third, adjacent to both, should be sectioned at 30° or 60°. If cut in more than one place, the sectioning of any part should be the same in direction and spacing. If the shape or position of the part would bring

 $45^{\circ}$  sectioning parallel to one of the sides, another angle should be chosen.



Fig. 5:11

Shafts, bolts, nuts, rivets, pins and similar parts, with axes in the cutting plane, should not be sectioned. Note Section A-A of Fig. 5:10.

Section plane through a thin web of a casting should be shown as in Fig. 5:12.



Fig. 5:12

Sectioning with colored pencils or crayons is permissible on layouts and experimental drawings. When crayon sectioning is used, all surfaces cut by the section plane should be filled in solid.

#### 5:23 Alternate Sectional Views.

Cross sections of materials .125 or thinner on detail or assembly drawings may be filled in solid, but lightly, with pencil.

# 5:25 Shading.

Shading of outline to indicate depth of part, or shading of contours, bends, cylinders, etc., is not standard practice in orthographic reproductions and should be avoided.

Shading is permissible only on very complicated layouts where it may help to distinguish intricate parts.

# 5:26 Dimensioning.

Do not dimension parts to explain how they were drawn but to show how they will be made.

All drawings must be so dimensioned that the parts shown thereon can be made exactly as intended by the Designer-Draftsman without the necessity of scaling the drawing or recourse to other information than that given.

The dimensions should include those sizes and distances which will be worked to in actual Shop operations, and should be so given that computations in the Shop will not be necessary. No dimensions should be given other than those actually required to produce the part. There should be no duplication of dimensions.

Dimensions from visible lines rather than from hidden lines, as shown in Fig. 5:13, should be given.



Fig. 5:13

# 5:27 Dimensioned Figures.

All dimensions should be given in **inches.** Inch marks (") are not used. All dimensions should be placed to read from the lower edge of the drawing (to the right and bottom wherever possible). Wherever possible place all dimensions outside of views.

Dimensions in decimals should be carried to at least three places. Decimal points should be made heavy.



#### 5:28 Dimension Lines.

Two dimension lines should not cross each other. If this condition should exist, one line should be broken as shown in Figs. 5:14 and 5:15.

The dimension line will not be broken when dimensioning a part that is shown broken.



#### 5:29 Arrow Heads.

Arrow heads should be three or four times as long as they are wide. Their size should be in proportion to that of the drawing. See Fig. 5:15, article 5:17.

#### 5:30 Crowded Dimensions.

When a number of dimensions of increased lengths are located on either side of a center line, etc., the figures should be staggered as in Fig. 5:16b, rather than in line.

#### 5:31 Consecutive Dimensions.

Consecutive dimensions should be arranged in a continuous line, as in Fig. 5:16a.



# 5:32 Over-all Dimensions.

Over-all dimensions should always be given and be placed outside the intermediate dimensions. Fig. 5:17.

Progressive dimensions should not be used on any type of drawing because it is very easy to introduce **cumulative errors**.



Fig. 5:17

#### 5:33 Dimension on Cross-Hatch

When a dimension must be placed on a cross-hatched surface, leave an area free from hatching in which the dimension is placed, as shown in Fig. 5:18.



Fig. 5:18

#### 5:34 Dimensioning Circles and Radii.

A dimension indicating the diameter of a circle should be followed by the abbreviation "DIA" except where it is obvious from the drawing that the dimension is a diameter.

The dimension of a radius should always be followed by the abbreviation "R." The center should be indicated by a cross, and the dimension line should have one arrow head. See Fig. 5:19.

When the center of an arc is located off the sheet, the radius should be given as shown in Fig. 5:20.



Fig. 5:19



Fig. 5:20

# 5:35 Dimensioning Sheet Metal Parts.

All the pre-mentioned rules for dimensioning are generally applicable to sheet metal parts. The exceptions and specific dimension requirements for sheet metal parts are covered thoroughly in the following articles:

32nds have been accepted as the smallest fractional dimension on sheet metal parts; 64ths should be avoided unless absolutely necessary for items such as contours.

All dimensions must be to the same side of the metal, as in Fig. 5:21.

Dimensions on sheet metal parts are generally given to the mold lines, as shown in Fig. 5:21.

All sheet metal angles should be dimensioned by showing the outside angle. See Fig. 5:22.

All contour offsets should be spaced three inches apart wherever possible. However, if this spacing is not adequate, smaller spacing is permissible.



All joggles should be dimensioned from the original mold.line of the part. The length of the joggle should be indicated by dimensioning the flat surface. See Fig. 5:23.



Where the true angle is not already shown in the plane of the paper, a **section** should be taken perpendicular to the mold line. Fig. 5:24.

Dimensions which are taken in the plane of the metal (other than angles) should be clearly marked "IN THE PLANE OF METAL." or "TRUE."



Fig. 5:25

When a part requires several holes to be drilled in a series, and all are equally spaced, the holes should be dimensioned as shown in Fig. 5:25. When it is necessary to locate holes, rivets, cutouts, etc., on assembly drawings, the dimensions should be tied in with some measurable point on the largest piece in the assembly.

# 5:36 Dimensioning Machined Parts.

General dimensioning practice is also applicable to machined part drawings. All machined parts must be completely dimensioned without cross-reference to any other part, this being a step toward interchangeability of parts.

# 5:37 Dimensioning with Tolerances.

Dimensions which must be held to close tolerances, should be dimensioned in decimals to at least three places, and the drawings should give the limits between which the actual measurements must come.



Fig. 5:26

# 5:38 Base Line Dimensioning.

When extreme accuracy is required, dimensions from a base surface may be used to avoid **cumulative errors**, and to reduce chance for error when changes are made. See Fig. 5:26.

# 5:39 Lettering.

Lettering is the most important part of working drawings. Dimensions, specifications, bill of material, and such other necessary information come under the head of lettering. Costly mistakes, sloppy looking drawings, wasted time and material can be avoided by the development of careful, neat lettering habits.

The single stroke Gothic letters, inclined or vertical, are universally used by draftsmen. By single stroke, it is not meant that the letter is executed in one single continuous movement of the pencil, but it is formed by one or more stems and curves, each of which is made with a single stroke.

Inclined capital letters are generally preferred and used in all cases because it comes more natural to the average person, and is therefore, faster and neater. Dimensions, notes, etc., should be  $\frac{1}{8}$ " high. Title letters should be  $\frac{3}{16}$  inches high. Section letters should be  $\frac{1}{4}$  inch high. Numerals for tolerance notes should be  $\frac{3}{32}$  inches high. Space between lines of lettering should be  $\frac{1}{8}$  inch. Lightly drawn ruled guide lines are often used in lettering. In many cases the use of various types of mechanical lettering guides is permitted.

# 5:40 Freehand Sketching.

Sketching is the basis of Mechanical Drawing. A person with a knowledge of mechanical drawing can find sketching a quick and valuable means of expression. Time can be saved and mis-

# ABCDEFGHIJKLMNO ABCDEFGHIJKLMNOPQRSTUVWXYZ & 0123456789

# ABCDEFGHIJKLMNOPQRSTUVWXYZ & 0123456789

Fig. 5:27

takes avoided in laying out of templates if a rough freehand sketch is made first.

All that is needed for freehand sketching is pencil, paper and eraser. A soft pencil, such as an H or HB, should be used. The paper can be anything with good erasing qualities; although, for those whose sense of proportion is not so good, cross-section paper serves as a guide for straight lines and an approximate scale.

The same rules of projection are followed in sketching as were used in mechanical drawing. Orthographic, oblique, isometric, or perspective projections may be used.

# 5:41 Sketching Technique.

Straight lines should always be drawn as a series of short segments, later connected. This enables you to keep your line rather straight. Horizontal lines should be drawn with the pencil perpendicular to the line and tilted at about 45° to the paper. Vertical lines should be drawn by quick downward movement of the fingers.

Circles and arcs may be more easily drawn by boxing. This consists of drawing a square or octagon for sketching a circle or a rectangle for an ellipse.





Fig. 5:28

# 5:42 Order of Drawing Construction.

There is a definite prescribed order of constructing a drawing. First of all, the draftsman should make a free-hand sketch of the object to be drawn. When he is ready to start the mechanical drawing, the following order of operations should be followed:

- (1) Draw center lines (4H pencil).
- (2) Block in views with construction lines.
- (3) Draw circles and important areas.
- (4) Draw fillets and rounds.
- (5) Draw and/or darken horizontal object lines. (H or 2H pencil)
- (6) Draw and/or darken vertical object lines.
- (7) Draw and/or darken inclined object lines.
- (8) Draw section lines.
- (9) Draw extension lines and dimension lines (3H or 4H pencil)
- (10) Add arrowheads, dimension, and notes (H or 2H pencil)

#### 5:43 True Dimensions.

Many times reference is made to true lengths of lines, sizes of angles, etc. In all cases it refers to the exact or full size measurement of the line or angle. Oftentimes the line or angle does not lie in the plane of the paper. Under these conditions its true length

is not readily ascertained and some means must be found to determine its true length, in order that it can be used in a design or layout of a flat pattern.

# 5:44 True Length of Lines.

In some cases it may be necessary to find the actual or true length of lines or surfaces, i.e., the length of lines and surfaces that do not lie in a plane normal to the line of vision of the observer. Stating this in another manner, we can say the observer must look at the line or surface from a right angle and, in this case, all points on the line or surface are equidistant from the observer, before he can see or measure the true length.

When it becomes necessary to find the true length of a line and graphical methods are used, special attention must be given to the accuracy desired. Paper shrinkage caused by changes in humidity and inaccuracies due to improper drawing surfaces or tools and their uses are factors to be considered. With proper care, however, the graphical method can be correct within the customary tolerances desired. In cases where extreme accuracy is required (especially in large drawings), the drawings are sometimes made on metal or wood as in lofting. In some cases of small structures, where exceptionally accurate measurements of true lengths are necessary, mathematical calculations are used.

# 5:45 Determining True Lengths.

A complete discussion of the methods of determining true lengths of lines properly belongs to a text on descriptive geometry. It varies in accordance with the problem at hand. As far as the template maker is concerned we need only concern ourselves with the true length of straight lines in a few applications and using a simple case of applied algebra, trigonometry and descriptive geometry.

For a simple case of finding the true length of a line, inclined to both the vertical and horizontal, let us consider the case of a pyramid as shown in Fig. 5:29.

The oblique line T-B running from top to bottom does not show its true length in either the front or the top view. Since the base is flat and horizontal, the top view shows the true length of the distance from O, the center of the base, to the corner B. The vertical height (h) can be obtained from the front view. A vertical line T-O from top to bottom will make a right angle with the base, so a right triangle TOB can be constructed using true length of



OB from the top view as one leg and true length (h) from the front view as the other. The true length of TB will then be the hypotenuse of this triangle.

The true length of line TB can also be obtained by rotating it around point T in the top view (See Fig. 5:30), until it is parallel to the base. The length of this line in the top view is then projected down to the base line (extended) in the front view). A line from T to  $b_1$  gives the true length of line TB.

The true length of line TB can also be found by two mathematical methods which will be illustrated. (1) The top view shows the true length of the base line OB (Fig. 5:29) and the front view shows (h), the true length of the line TO. We know that the two lines form a right triangle; from algebra we know that the hypotenuse of a right triangle is equal to  $\sqrt{h^2 + (OB)^2}$ .

Also from trigonometry, 
$$\frac{OB}{TO}$$
 = Tangent of angle OTB and  $\frac{OB}{\text{sine angle OTB}}$  = TB. Ref. Chapter III.

Fig. 5:31 is practically identical to Fig. 5:29 excepting that the apex of the pyramid is not directly over the center of the base. Each of the true lengths of line, OB,  $OB_1$ ,  $OB_2$ , AND  $OB_3$  must be found separately.



Fig. 5:32 is similar to Fig. 5:29 and 5:30 except that the base lines are not horizontal and the true length of OB must be found in addition to that of TB. To find the true length of these use the same methods as used in Fig. 5:29 and 5:30.



Fig. 5:32



Fig. 5:33 is a typical angle part. The edge AB is not shown in its true length in any view given in this figure. This is in keeping with the customary drafting practice, since the experienced person has no difficulty in calculating the true length.

If a perpendicular is drawn from point A in the front view to the outside mold line, it will intersect the mold line at point O. This line would lie in the plane of the metal and would appear in its true length in the side view.

The front view gives the true length on the mold line that point O is from B. From this information we can construct a right triangle using the true length of OA as one leg and the true length OB as the other leg. The hypotenuse of this triangle would be the true length of line AB. The hypotenuse AB can be measured from the constructed triangle or it may be calculated by the Pythagorean theorem; e.g.,

and 
$$(AB)^2 = (OA)^2 + (OB)^2$$
  
 $AB = \sqrt{(OA)^2 + (OB)^2}$ 

To calculate the true length of the diagonal AB of the box shown, first analyze the situation. Try to find a right triangle that has AB as one of its sides. It can be seen if the point B is connected to the



opposite point C, the right triangle ACB is formed. AC is known, (the length of the box). CB is not immediately apparent, but is found from right triangle BDC with known sides BD and CD. The steps followed in the solution are as follows:

and 
$$(CB)^2 = (CD)^2 + (BD)^2$$
 (1)  
 $(AB)^2 = (CB)^2 + (AC)^2$  (2)

substituting in (2) value of  $(CD)^2 + (BD)^2$  for  $(CB)^2$  in order to use the given dimensions AC, CD and DB.

$$(AB)^2 = (CD)^2 + (BD)^2 + (AC)^2$$
 and 
$$AB = \sqrt{(AC)^2 + (BD)^2 + (CD)^2}$$

#### CHAPTER VI

## PRINCIPLES OF MATHEMATICAL DEVELOPMENT

#### 6:1 Bend Allowance.

In the process of forming sheet metal parts, it is evident that stretch, shrink and other deformations within the metal itself will be unavoidable. This may be more easily understood by examining the following sketch.



Imagine the small squares as molecules of the metal. Note how these molecules are squeezed closer together at the inside of the bend and stretched apart at the outside of the bend. Only by trial and error can one tell exactly how much or how little metal shrinks on forming, as various metals behave differently. The deformation depends on how the metal is formed. Metal bent on a brake may stretch more than the same metal which is bent in a different manner, steel may shrink less than aluminum, etc. Nevertheless, a formula has been devised from hundreds of trials under all conditions. Averages of all of these trials have been found to be accurate within the limits of which the workmen can accurately measure and work.

The predetermined amount of metal which is required and included in the area between the beginning and ending of the bend is known as th **Bend Allowance**, sometimes referred to as B.A. It is the amount of metal (distance) required, in the flat stock, to allow for the bend.

The formula so devised to give this value is known as the **Empirical Bend Allowance Formula:** 

$$(.01743 R + .0078 T) \propto ° = B.A.$$

In this formula, R is the inside Radius as shown in Fig. 6:2. T is the thickness of the metal,  $\alpha$ ° is the number of degrees in the bend as noted on Fig. 6:2. B.A. is the Bend Allowance.



The number of degrees in a bend is always given as the number of degrees through which the metal is bent, angle  $\propto$  ° as shown in above figure.

#### Bend Allowance Charts:

In order to simplify the calculation of bend allowances, charts have been assembled giving the B.A. for various metal thicknesses and bend radii for one degree bends. See appendix. The value obtained from the chart when multiplied by the number of degrees in the bend will give the B.A. There is also a chart giving the complete B.A. for 90° bends, see appendix. It is advisable for the student to thoroughly understand the use of the empirical formula before relying completely on the bend allowance charts.

The use of the Bend Allowance Chart is self-explanatory.

#### Problems:

- Find the bend allowance for a 90° bend in .032 thick material and a ½ Bend radius. Use Empirical Formula.
   Using bend allowance charts in the Appendix:
- 2. Find the bend allowance for a 117° bend in .040 material. Bend radius =  $\frac{5}{32}$ .
- 3. Find from the chart, the allowance for a  $\frac{3}{16}$  radius bend in a piece of .064 23ST **alclad.** Bend to be 90°.
- 4. What is the bend allowance for a  $37\frac{1}{2}^{\circ}$  bend of  $\frac{1}{16}$  radius Material: X4130 Steel, .050 thick.

- 5. A piece of (.020) 24SO alclad is bent around a 1/4 radius through 60°. How much metal should be allowed for the bend?
- 6. Calculate the developed width of the flat for this section.



#### 6:2 Mold Lines.

As seen in problem 6 of the preceding section, flat developments can be made with use of the bend allowance, if the **flange** dimensions, etc., are given from the point at which the bend begins. However, this is not always the case. Dimensions are usually given to what is called the **mold line**. Basically, a mold line is the line formed by the intersection of two planes or surfaces. In this case it refers to two imaginary lines extended to the point of intersection from two non-parallel surfaces. See Fig. 6:4.

As dimensions are usually given to this mold line, we will learn how to calculate the developed length when this is the case. First, we will take up the simple case of a 90° bend. In the following figure, the data for the general case is shown:

Upon closer examination, it will be seen that in this particular case, the value of the dimension F, from the edge of the part to the beginning of the bend, can be calculated by subtracting the sum of T+R from D. This is apparent from the following figure:

Obtaining the value of D - (T + R), which we shall designate by the letter F, we have simply to add to this the value of the B.A. and the second F value of the section, and we have the developed width. Let us illustrate these findings with a numerical case.





Example: Find the developed width of the section shown.



Solution: One might choose either end of the section as a starting point. Suppose we start at the left end. The first value we wish to find is designated in the figure as  $F_1$ . Notice that  $F_1$  is  $\frac{3}{4}$  minus the sum of thickness plus radius:

$$F_1 = .750 - .064 - .25 = .436$$

Next find the  $(B.A.)_1$  for this bend. This value is found to be .4374. The distance  $F_2$  is seen to be 1 minus twice the sum of thickness plus radius:

$$F_2 = 1.000 - .128 - .500 = .372$$

The second bend allowance  $(B.A.)_2$  is the same as the first.  $F_3$  is  $1\frac{1}{2}$  minus the sum of thickness plus radius.

$$F_3 = 1.500 - .064 - .25 = 1.186$$

Adding up all of these values, we have the developed width:

| .436  | $F_1$ |
|-------|-------|
| .4374 | B.A.  |
| .372  | $F_2$ |
| .4374 | B.A   |
| 1.186 | $F_3$ |
| 2.869 | D.W.  |

#### Problems.

1. Find the developed width of a right angle section with both

flanges 1 inch (mold line to edge of metal). The thickness is .040, and the bend radius is  $\frac{1}{8}$ .

2. Find the developed width of the section given in Fig. 6:8. All bends are 90°.



## 6:3 Developed Widths, other than 90°.

A more complex problem confronts us in calculating the developed width of sections with bends other than 90°. Let us ex-



amine two general cases. First with the **bent up angle** more than 90°, and second case with the bent up angle less than 90°.

Case 1.  $\infty > 90^{\circ}$ .

On studying Fig. 6:9 it is apparent that the developed width can be easily found when values are obtained for  $F_1$  and  $F_2$ . This value can be found by subtracting X from  $D_1$  and  $D_2$  respectively. To evaluate X, consider the angle PON.6 This angle can be proved to be equal to the given angle  $\alpha$ . If O, the center of the radius, is connected with M, the mold line point, the line MO will bisect the angle PON. This gives the angle MON the value 1/2  $\alpha$ °. Now consider the triangle MNO with right angle at N. Taking the angle MON as the operating angle we have:

$$\tan \not\preceq MON^7 = \tan^{-\infty} = \frac{\text{Side opposite}}{\text{Side adjacent}} = \frac{MN}{NO} = \frac{X}{T\text{-}R}$$
 Solving for X 
$$X = (T+R) \tan^{-\infty} \frac{\alpha}{2}$$

This is the formula that is always used to determine the X-distance for bends greater than 90° and, as will be shown later, it is also valid for bends of less than 90°.



Fig. 6:10

When labeling angles by letters, the middle letter is understood to locate the vertex of the angle. The other letters designate the leg of the angle.

The symbol  $\angle$  is used to designate the word "angle."

 $R \times THE TANGENT OF I/2 THE ANGLE T <math>\times$  THE TANGENT OF I/2 THE ANGLE

If the bend is exactly  $90^{\circ}$ , we have seen that value of the X-distance was taken as simply T+R. To verify this value and show that it is in accord with the above formula the case for  $90^{\circ}$  will be evaluated.

$$X = (T + R) \tan \frac{\alpha}{2} = (T + R) \tan \frac{90^{\circ}}{2}$$
  $(T + R) \tan 45^{\circ}$   
 $X = (T + R) \tan 45^{\circ}$   
 $\tan 45^{\circ} = 1.00000$   
 $\therefore X = T + R$ 

It is evident from symmetry that the value for X will be the same on each leg of the angle, therefore the developed width is seen to be:

developed width = 
$$D_1 + D_2 - 2X + B.A.$$
 (for  $\propto$ °)  
Case 2.  $\propto < 90$ °.



As in case 1, the angle PON equals  $\infty$  , and angle MON equals  $^\infty$  Therefore we have:

$$\tan \angle MON = \tan \frac{-\alpha}{2} = \frac{MN}{NO} = \frac{X}{(T+R)}$$

$$X = (T+R) \tan \frac{-\alpha}{2}$$

This is the same as the formula derived for Case I, so we conclude that the X-distance for any bend equals the tangent of half the bent up angle times the sum of the thickness plus the radius.

To illustrate the use of these formulas, let us find the developed width of the section shown on Fig. 6:12.



Example: Find the developed width of the section shown: Metal thickness being .025 and bend radius  $\frac{3}{32}$ .

Beginning at the end of the  $76\frac{1}{2}^{\circ}$  flange and proceeding to the right, we have as the value of the first flat distance:

$$F_1 = D_1 - X_1 = 1.1250 - (.0250 + .09375) tan 38\frac{1}{4}^\circ$$
  
 $F_1 = 1.1250 - (.11875) (.78834) = 1.0314$ 

The B.A. for one degree,  $\frac{3}{2}$  radius bend of .025 material is found from the B.A. Chart to be .00183:

$$B.A._1 = 76.5 \times .00183 = .1400$$

The second or mid-flat section is:

$$F_2 = D_2 - X_1 - X_2 = 3.0000 - X_1 - (.11875 \tan 513/4^\circ)$$
  
 $F_2 = 3.0000 - .09362 - (.11875) (1.2685) = 2.7557$ 

The second B.A. is:

$$(B.A.)_2 = 103.5 \times .00183 = .1894$$

The last flat section is:

$$F_3 = D_3 - X_2 = 1.1250 - X_2$$
  
 $F_3 = 1.1250 - .15063 = .9744$ 

Therefore, adding up all of these values we obtain for the developed width:

| $F_1$             | 1.0314 |
|-------------------|--------|
| (BÅ) <sub>1</sub> | .1400  |
| $F_2$             | 2.7557 |
| $(B\tilde{A})_2$  | .1894  |
| $F_3$             | .9744  |
| Developed Width   | 5.0909 |

### Problems.

1. Calculate the developed width for the section shown: Metal thickness is .051 and bend radius is  $^3\!\!1_6$ .



Draw the outline of the flat pattern of the part shown. Mark in the value of the developed width.



Fig. 6:14

#### 6:4 Block Lines and Inside Mold Lines.

It is common engineering practice to give all dimensions for an individual part to the same side of the metal. That is, dimensions will be given to the mold lines formed by the intersections of the various surfaces of the part that would form one and the same surface in the flat pattern. This practice serves to eliminate many errors due to blemishes on the blueprint, etc. In certain cases the use of a new concept is required to be able to fulfill these conditions. That is the use of inside mold lines.



The dimensioning of points to the inside mold lines is shunned as much as possible unless a case, such as mentioned above, necessitates their use.<sup>8</sup>

A case where the use of inside mold lines would be considered practical is shown in Fig. 6:15.

Using figure 6:15 as an example, the developed width can be found by the method explained in article 6:3, with the exception of the value of both of the dimensions indicated as the Y-distance. It is evident from the figure that in this case, Y equals the radius of the bend.

From reasoning analogous to that of article 6:3 for determining the value of the X-distance, it can be shown that for bends other than 90°:

Y distance = 
$$R \times tan$$

See Fig. Nos. 6:9, 6:10 and 6:11

We are now equipped to obtain the developed width of any section.

<sup>8</sup> For this reason, dimensions on parts with only 90° bends often jump from one side of the metal to the other in order to always dimension to the outside mold line.

## 6:5 Theory of Development.

In order to obtain a clear understanding of what is meant and expected by the term development, imagine the unfolding of a box. See Fig. 6:16. Note that as each side is folded down, it maintains a fixed position relative to its bottom edge. The side may be said to be rotating about this edge as an axis. Note that the four axes of rotation (of the four sides) remain fixed with the bottom of the box. The final pattern may be said to be developed in the plane of the bottom panel.



Fig. 6:16

Suppose the box had a cover made from the same piece of material. See Fig. 6:17. Here is seems that the axis of rotation of the cover is not fixed; however, if the sides are first rotated into the plane of the base and the cover then folded down, it is seen that the axis of rotation of the cover remains fixed.

It is general practice when developing a flat pattern to choose one face of the object as a reference plane and work out from this face to complete the development.

In actual aircraft work square corners are not used. The metal must be formed around a radius to prevent it from cracking. It is for this reason that Bend Allowance, X-distances, Set-Backs, etc., are brought into the developments.



Fig. 6:17

Now reconsider a similar box, with a definite thickness and formed around a definite radius. See Fig. 6:18. In this box, the logical choice of reference plane would be that of the base face, labeled face A in the figure. Drawing in the given mold lines of this face Fig 6:19 is obtained.

When convenient, all of the remaining lines should be measured from two of these mold lines.

First, establish the bend lines at which face A just begins to bend. As the bends are all 90°, come back from the mold lines a

distance equal to the thickness of the metal plus the radius. In this case, these dimensions are:

$$.0625 + .1875 = .25$$
 See Fig. 6:20.

Continuing outward, measure the bend allowance from the above bend lines to obtain lines for the end of each bend. The B.A. is found from the chart. The thickness .0625 is not found on the chart, but we can use the value for .063 which is the nearest thickness to .0625 given. The B.A. in this case is .3384. See Fig. 6:21.

The distance .088 from the base mold line to the second bend line was obtained by subtracting the X-distance (.250) from the B.A. As will be learned in article 6:6, the mold line is not in the





center of the bend allowance. This mold line developed from a side instead of the base would be .088 from the other bend line. At this point, the extreme outer boundary of the pattern can be drawn. This outer edge is known to be 3.750 from the outer bend line (found by subtracting the X-distance which is .250 from the overall dimension which is 4.000). In actual layout, dimensions would be added and subtracted in order to be able to measure



Fig. 6:20

this dimension from the mold line. When this line is established Fig. 6:22 can be drawn.



Fig. 6:21

Now, there only remain the corner cutouts to be made. On reexamining the figure notice that the dimensions controlling the width of the flanges is the  $\frac{3}{8}$  dimension taken in from the mold line. This dimension happens to be the same for all sides of this part. (This is not always the case, however.) Measuring in this amount from the original mold lines the edges of the four sides can be drawn.

The figure calls for  $\frac{1}{8}$  relief radii, and to complete the layout, it is necessary to relieve the inside corners of the cutout with  $\frac{1}{8}$  radii. It is inferred from the original figure that these relief radii are to be drawn tangent to the cutout sides. Therefore, completing the layout, our pattern will look like the following when cut out:



Fig. 6:22



## 6:6 Transforming Mold Lines into Flat Pattern.

It is of interest to note what happens to the mold line when the bend is opened into the flat. Figuratively speaking, the mold line seems to divide into two lines when the bend unfolds. This fact will be more apparent in the following figure:



Note how, although the distance CD remains constant, the distance BC shortens to  $B^{\prime\prime}$  C.

We know that the bend may be considered to open from either side. We will think of it opening opposite to the above case:



Combining the two cases, we have Fig. 6:26.



Fig. 6:26

The concept of two mold lines forming from one when a part is developed should be thoroughly understood as it is one of the most common sources of error in template layout. The points  $C_1$  and  $C_2$  may be either within the two bend lines or outside of the bend lines, but in any case, the distance  $BC_1$  will equal  $DC_2$  and  $BC_2 = DC_1 = X$  distance.

#### 6:7 Set Back.

Some manufacturers use the Set Back method of determining allowance for bends. This consists of finding the distance (on the flat pattern) between the two outside mold lines of each bend. In Fig. 6:26,  $C_1$  and  $C_2$  are the two outside mold lines of the bend and the distance between them is the set back. This distance is calculated from a special Set Back Chart. See appendix.

The developed length of the part shown in Fig. 6:24 and Fig. 6:25 would be (AC + EC) — set back, or as shown in Fig. 6:26, (AC<sub>2</sub> + EC<sub>1</sub>) —  $C_1C_2$ .

## 6:8 Diagonal Cut Development.

Frequently parts are fabricated requiring diagonal cuts across the part, therefore the student should familiarize himself with the method used in determining the outline of the cuts in the flat pattern. See Fig. 6:28.

It must first be determined which view of the part is to be used as the basis of the template layout. This would be the view which gives the major outline and dimension detail, the view from which the balance of the part can be most readily developed. In the case of Fig. 6:28 this would be the front view.

The next step required is to layout a developed blank which is the width of the part in the front view and is the developed length for the part. Now draw all bend lines completely across the blank located in their correct relationship to it, also draw mold line "A",





"X" distance from bend line No. 2, and mold line "B", "X" distance from bend line No. 3. (In the front view of Fig. 6:28 the bend lines No. 2 and No. 3 are drawn in to show their relationship to mold lines "A" and "B". It is readily seen that in this view mold lines "A" and "B" are "X" distance from bend lines No. 2 and No. 3 respectively.

In the development blank locate point "E" on mold line "A", point "F" on mold line "B" and points "D" and "E" on the top and bottom lines of the blank. Draw straight lines connecting "D" to "E", "E" to "F" and "F" to "G", thus completing the outline of the diagonal cut in the flat pattern.

If it is desired to hold the diagonal cuts as seen in the bottom view of Fig. 6:28 we would get a slightly different outline in the flat pattern than the one we have just obtained from the front view development.

A line has been drawn in the bottom view of Fig. 6:28 showing the position of bend lines No. 4 and No. 1 in the formed part. It is readily seen that this line is "X" distance from mold lines "A" and "B". Therefore in the development blank we locate mold lines "A" and "B", "X" distance from bend lines No. 4 and No. 1 respectively. Now locate points "D", "E", "F" and "G" on their proper lines in the development blank. Connect all points with straight lines, thus completing the flat pattern.

From the above it is seen that we have two different templates for the same part—depending on the view from which we develop the pattern. In cases of this kind it must be determined which view is desired to be held, or is the most important. By using this view for our development we will hold the diagonal cut where it is most important and have only a slight deviation in the other view.

In cases of this kind it is sometimes desirable to neglect the mold lines and run the outline of the diagonal cut to the center of the bend allowance.

## 6:9 Spring-Back.

When metals having elastic properties are bent through a certain angle so that the material is stressed beyond its yield point, the material, after the pressure has been relieved, has a permanent set which is less than the angle through which it was bent. The



Fig. 6:28



difference between the permanent angle of bend and the maximum angle to which the material was forced, is known as "spring-back." This is a most important factor in the forming of materials in tempered condition, such as high-strength stainless steel or 24ST aluminum alloy. To secure the desired results when forming such materials, the form blocks used are designed to take into account the spring-back.

#### CHAPTER VII

# TOOLS AND EQUIPMENT USED BY THE TEMPLATE MAKER

### 7:1 General.

A template man is a mechanic and as such he will naturally come in contact with the ordinary run of mechanics' hand tools and a few of the machine tools such as drills and drill presses, shears, punches, etc. At the same time he will be in general association with other types of mechanics using the more complicated and specialized equipment. He certainly will be a better craftsman and mechanic if he has a general understanding and knowledge of certain tools and how to properly use them.

The following discussion of hand tools is given for the sole purpose of assisting the junior template maker to more quickly orient himself.

In the majority of cases an aircraft company will specify the minimum tools required before a man is permitted to start work. Many companies have tool stores and will sell to employees at a nominal cost and on a time payment basis.

A good mechanic is one who has sufficiently good tools, not only for the immediate job, but also for the one job that is often just ahead. He buys a good grade of quality tools (never cheap tools) and generally patronizes one of the standard tool manufacturers. Last, but not least, he maintains his tools in good condition.

#### 7:2 Files.

Files are named according to their shape. The files most commonly used by the template maker are the ordinary run of flat, round, half round, square, three cornered, and the vixen which may be either flat or half round.

A general classification of files may be made as follows: (1) Single cut; (2) Double cut; (3) Vixen. The first two may be still further classified as to arrangement or design of the cutting teeth as follows: (1) single-cut Bastard, second-cut and smooth; (2) single-cut Bastard and second cut. The Vixen files have specially deep cut circular teeth and are very useful. They are useful for rapid filing and smooth finishes on wood or soft metals such as dural, zinc alloy, lead, etc.

#### Grade.

Files are graded according to whether their cut is coarse or fine and the longer a file is the less teeth it will have per inch of length and it is therefore coarser accordingly. Files must be of equal length before you can really compare grades of cuts. The principal grades are rough coarse, bastard, second cut, smooth, and dead smooth. Rough files are generally single cut files and the dead smooth is double cut. Grades other than rough and dead smooth are made in both single and double cuts.

#### Cuts.

The cut of a file refers to the manner in which a file is made, i.e., teeth are machine cut on its edges or sides. Single cut files have parallel rows of teeth and the double cut have two sets of parallel rows of teeth which cross each other.

#### 7:3 Draw Filing.

Draw filing is a shop term and refers to a finish operation which some mechanics frequently use. The file is grasped by both hands, one on each end, much the same as though it were a spoke shave or draw knife. Pushing and pulling the file in this sideways fashion, imparts a smooth finish and aids in fairing a long curve.

## 7:4 Hints on Filing Templates.

- 1. A file is a cutting tool and designed to cut as it is thrust forward, away from the body. Never use it backward or apply pressure on the return stroke.
- 2. Do not throw a good file in among other metal tools or miscellaneous iron or steel.
  - 3. Be sure to use a file brush to keep your files clean.
- 4. Whenever possible clamp your work down firmly by either "C" clamps or spring clamps.
- 5. Do not permit the template to overhang the edge of the bench or other support. Too great an overhang may result in bending the template.
- 6. Hold the file firmly and use light long strokes applying an even pressure on the outward or downward stroke. Do not apply pressure on back strokes.
- 7. The file should be held at right angles (90°) to the flat surface of the template.
- 8. Watch your scribed line and do not undercut it. Try to file exactly to the center of the scribed line.

- 9. Never use a file without a handle.
- 10. Never use a file as a hammer.
- 11. Vertical filing is the customary practice among many template makers, i.e., the metal is clamped down to a bench top and filed vertically. See Fig. 7:1.
  - 12. All cutting is done on the downstroke.



Fig. 7:1 Vertical Filing

#### 7:5 Drills.

A template maker need not have a great deal of detailed knowledge concerning drills and drilling, but since he is a mechanic, he should be somewhat familiar with the subject because of its general application.

The smaller sizes of the twist drill will be most generally encountered. The following nomenclature describes a twist drill, shank-fluter, web, body, point, lips, heel, and shank which applies to tapered shank drills.

**Shank:** The round smooth portion which is clamped into the chuck of the drill motor or drill press.

**Tapered Shank:** A tapered shank is used on some of the larger drills when it is more desirable to secure the drill in a tapered holder rather than by a drill chuck. Most of the larger drills are of the taper shank variety.

Flutes: Two special grooves made in the body of the drill for the purpose of allowing the drill cuttings to escape from the point.

Web: The center or bottom portion of the flutes.

**Body:** The portion of the drill which extends between the shank and the point.

**Point:** The tapered or cone shaped portion of the cutting end of the drill.

**Lips:** The portion of the point which actually does the cutting operation.

**Heel:** The area of the point which lies behind the lips or cutting edges of the point.

#### 7:6 Lubricants for Drills.

The template maker is concerned only with drilling small holes in soft steel or aluminum alloys. For steel, any light machine oil or lard oil, etc., is satisfactory. Aluminum alloys are quite often drilled dry because they drill very satisfactorily this way and also it is desirable to keep the surfaces of this alloy clean. Beeswax is sometimes applied to the drill point when drilling aluminum alloys to prevent clogging of the point.

In order to insure accurate drilling, drills must be sharpened correctly and proper drilling speeds used for the type of material being drilled. The best assurance of a correct point is by use of a drill grinding machine. Such a machine may not always be available so every man should be able to sharpen drills by hand on the grinding wheel. The following tips will enable one to more quickly acquire the art. (1) The average point must have from 10° to 12° lip clearance, i.e., the heel should be cut away (lower) than the point. (2) The lips should be of equal length and should be ground so that they will form equal angles with the central axis, the total angle to be as shown in Fig. 7:6—



A, B and C. When sharpening a drill, never force the grinding operation to the point of heating the drill excessively, and it is not advisable to dip a high speed drill into cool water for the purpose of cooling it. The best drill point angles used with various metals and metal thicknesses are shown in Fig. 7:6.

Fig. 7:6 (A) illustrates the best type of point for drilling soft materials such as wood, aluminum or magnesium alloys, soft steel, bakelite, etc., and is one that will center itself readily.

Fig. 7:6 (B) is a typical point used for drilling brass. The ordinary cutting edge as used on most drills will bite too deeply (called hogging) and chatter severely when drilling brass. This can be prevented by grinding a small flat face on the cutting

edge of the drill, i.e., decreasing the acute angle formed by the edge of the lip and the flute.

Fig. 7:6 (C) illustrates the recommended point for drilling such materials as the hard steels (chrome molybdenum, manganese, stainless, etc.).

When using the hand drill or the drill motor and drilling toward surfaces that are easily defaced use a rubber, fiber or wood block guard similar to the one illustrated in Fig. 7:4. Rubber tubing serves the purpose very well for aluminum and dural, while fiber or wood will suffice for steels and other harder materials.

#### 7:7 Pilot Holes.

Pilot holes are small holes drilled in a part to act as a lead for a larger drill, counter bore, or fly cutter, etc. The average pilot hole for a larger drill should be at least less than ½ the diameter of the larger drill. The final pilot hole for a counter bore or fly cutter should be just large enough to give proper clearance for the pilot used on those tools.

## 7:8 Fly Cutter.

A fly cutter is a tool which is sometimes used to cut out large diameter holes in flat parts or stock. It consists of a spindle which fits into the drill chuck. The spindle carries an adjustable cross arm which holds a cutting tool. The spindle has a pilot of a specified size attached to the end opposite the drill chuck.

The cutting tool and cross arm are adjusted to cut the proper diameter circle and the pilot is centered by the pilot hole which has been previously drilled in the part or stock. The fly cutter should be operated at fairly low speeds and a light feeding pressure.

#### 7:9 Counter Bore.

A counter bore is a tool used for enlarging holes throughout a portion of their depth. They are so designated as to impart various shapes or angles to the bottom of the enlarged portion of the hole.

#### 7:10 Surface Plate.

The surface plate is a flat plate of cast iron or mild steel machined to a smooth flat surface. Many of the better surface plates are heavily ribbed beneath the machined surface to prevent distortion or warping. A surface plate may be any size, the most

common size being 12 inches square, although sizes much larger and of shapes other than square are not uncommon. The uses of surface plates in a shop are many and varied, the most important being for checking flat surfaces or as a base from which to make measurements or setups for various hand or machine tooling operations and especially as a base when using height gages, sine bars, etc.

## 7:11 Height Gage.

The height gage is a vertical measuring instrument (usually an upright steel bar with a moveable head), used for finding or laying out of heights of various lines, holes, etc., on tools and equipment when measured from a base such as a surface plate. It is usually 10" to 18" in height, and graduated to read in thousandths of an inch by means of a vernier scale on the moveable head which slides up and down the upright bar.

## 7:12 Depth Gage.

The depth gage is used for measuring the depth of holes, recesses, slots, etc. There are two general types; one which consists of a head with a graduated bar sliding through it; the bar is graduated into ordinary rule graduations. The other is a micrometer depth gage which, as the name implies, is a gage which incorporates a micrometer in the head so that depths are measured in thousandths.

#### 7:13 Slide Rule.

The slide rule is a mighty handy and valuable instrument to any draftsman, engineer or mechanic. It is a means of saving time and labor when problems in multiplication, division or proportion are involved and anyone having a fair knowledge of decimal fractions can learn to use the slide rule in from one to ten hours.

Many beginners steer shy of the slide rule because they think it is complicated. Many persons, who at first feared the slide rule, have suddenly, after a little application, found themselves a new thrill by discovering how to use this former mysterious device.

The slide rule is simply a series of specially constructed scales, one of which is moveable, laid side by side. To use the slide rule, one merely learns to read the various scales and place them in proper relation to each other and know where to look for the answer.

It is beyond the scope of this text to go into the details of learning to read the slide rule, but we do suggest that all students and mechanics get acquainted with it and learn to use it at the first opportunity.

#### 7:14 Micrometer.

A micrometer is a mechanical measuring device especially designed to accurately measure widths, depths, and thicknesses in thousandths of an inch. According to its design, a micrometer may be used to measure the inside diameter of holes or widths of openings, the outside dimensions or thicknesses of parts or the depth of drilled or bored cuts, etc. It is a tool that nearly everyone who works around a shop or drafting room will be concerned with and a beginner should not pass up an opportunity to get acquainted with its operation and uses.

All micrometers have one general or common characteristic which is a threaded spindle having **forty threads** (40) per inch, and adjustable through a distance of one inch.

Because of the fact that a micrometer spindle is threaded forty threads per inch, the spindle must be revolved forty times before it travels through the distance of one inch. Since we desire to measure in thousandths and we are concerned with the inch as a basis of measurement, we must work on the fact that there are 1,000 thousandths in one inch, therefore the spindle will travel  $\frac{1}{40}$ th of its total possible travel of one inch (1000/40) or .025 every time it revolves once. Therefore, the barrel is marked throughout its length in graduations of .025 of an inch with each major division of .100 of an inch numerically stamped upon the barrel, i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc. In order to read the limits of travel in thousandths, (.001, .002, etc.) as the spindle travels through one complete revolution or .025, the thimble, which fits over the spindle and is an integral part of it, has its circumference graduated in thousandths (.001 to .025). In short, to read a micrometer one must know the total number or partial number of revolutions the spindle has made after it has moved away from zero position. For example, if one minor division has been passed on the barrel and three on the thimble, the micrometer reading would be .028.

## 7:15 Shears and Snips.

Numerous kinds of hand lever operated shears and hand snips are used for cutting the template from metal stock. There are two general types of hand lever operated shears: (1) The "Scroll

Shear" which is a deep throated shear. The deep throat permits quite large sheets of metal to be handled. (2) A throatless type is also commonly used where cuts are not too far in from the edge of the metal. Some template departments make use of power metal cutting band saws or high speed power, punch type cutters, similar to a nibbler.

Template makers will find a good pair of husky hand tin shears very useful. Also a special pair of snips is available at most aviation supply houses or tool stores at the various factories. Two pairs of snips, one a right hand and the other a left hand, are used for cutting out right and left hand circular arcs or curves, etc. See Fig. 7:7.

#### 7:16 Scribe.

A scribe is any pointed instrument which can be used to scribe lines and layouts on various surfaces. Any short piece (prefer-



Fig. 7:7 Use of Scribe

ably ½ or ¾6" round) of tool steel properly hardened and ground to a pointed end will serve as a scribe, but anyone of the commercial makes with removable points will give better service and create more pride of ownership in good tools and hence better craftsmen. Fig. 7:9 illustrates correct and incorrect types of points for scribes. The correct point is not flat or blunt, but a finely tapered point which will materially aid in making accurate scribe lines. Fig. 7:7 illustrates proper use of scribe when scribing around the edge of a template or along a steel rule, etc. If incorrectly used, the scribe point will trace a wavy line or one that is too far away from the rule or template.

## 7:17 Triangles and Straight Edges.

Celluloid triangles, rules and straight edges are not used in the shop when used in conjunction with scribes and other shop tools because the soft edge would soon become marred and inaccurate. Metal triangles and steel rules are used.

## 7:18 Splines and Curves.

A spline is a flexible strip of material such as pyralin, wood, etc., and used to produce a long faired line through a series of refer-



ence points established for that purpose. See Fig. 7:8. A French curve or an irregular curve is utilized for the same general purpose as a spline except that the curves are generally shorter and applied to shorter lines and sharper curves. The spline is bent and held to the desired curve by means of "ducks" which are specially shaped weights, (usually lead).

#### 7:19 Protractor.

There are many kinds and types of protractors, but the metal



Fig. 7:9

USE OF SCRIBE

protractor having an adjustable arm is the one most commonly used. A preferred type is shown in Fig. 7:9. It has one edge of the blade in line with the center or pivot point and degree markings on the head. This protractor also has a hollow pivot bearing on a centering pin which permits accurate alignment of the center with a hole or center punch mark.

# 7:20 Whitney Punch.

The Whitney Punch is the manufacturer's name for one of several types of metal punches. There are two general types: (1) a small hand squeezer punch with interchangeable punches and dies and (2) a larger machine incorporating multiple punches and dies arranged on a circular carriage in such a manner that any one of the punches may be operated by a short hand lever. The chief use which the template maker will have for this tool is for cutting out small radii.

# 7:21 Squaring Shear.

As it is necessary to have straight edges and square corners on template stock, a squaring shear is very useful in the template department. The most commonly used machine is one having a straight edge cutting blade, approximately four feet long, operated by a foot treadle. A much larger power driven cutting shear is used in production departments for making much longer and heavier cuts for shearing off strips of metal used for production of parts. See Fig. 7:10.

# 7:22 Duplicating Punch.

This is a special punch used for transferring the centers of holes from templates to stock or parts. A typical duplicating punch is illustrated in Fig. 7:15. When using this punch, make sure it is always held at right angles to the flat surface of the metal and tap it lightly with the hammer. This type of a punch should have a fine center punch point as quite frequently it is necessary to use these duplicated hole centers as centers for scribed holes or radii, etc.

#### 7:23 AN-AC Standards.

Many parts such as bolts, nuts, screws, rivets, and washers have been standardized by the U.S. Army and Navy. Such standards or





specifications are known as (AN) meaning Army and Navy. When the Army alone has standardized a part, it is known as Air Corps specifications, or (AC).

An organization known as the National Aircraft Standards Committee is doing a great deal of excellent work on establishing more complete and effective standards for the aircraft industry.

A detailed discussion of AN or AC specifications is not warranted in this book and the template maker will not have immediate or urgent need for specific use of them. He should however, examine an AN standards book at his earliest opportunity.

#### CHAPTER VIII

# TYPICAL AIRCRAFT PARTS AND THEIR FLAT PATTERN DEVELOPMENTS

#### 8:1 General.

Before proceeding directly into the specific details of developing templates for actual parts, it is perhaps best to offer several helpful suggestions, a few precautions, and a somewhat general statement of facts regarding the drawings of parts and their flat pattern developments, which take up the major portion of this chapter.

The parts chosen for flat pattern development are actual parts from an aircraft factory and were particularly selected because they presented examples of all the essential problems confronting a template maker.

The title blocks used on the drawings of parts are typical engineering title blocks, and those appearing on the developed flat pattern are of a general nature.

No attempt has been made to enter information in all the spaces of the title block, because the template man does not require the omitted information concerning calculated weight, actual weight, heat treat, finish, etc.

The caption "OPP. HAND" refers to parts which are similar or practically identical (two parts, right and left hand, used on the same airplane). The only difference in the two parts is that formed parts have flanges which are bent in opposite directions. When two parts are required and no comments are made as to right and left hand parts, it is assumed that the left hand part is shown in the drawing.

Unless otherwise noted, the scale is assumed to be full scale. There is no scale noted on the drawings used because the originals were full scale and on regular A size  $(8\frac{1}{2}xll)$  drawing sheets, but were subsequently reduced approximately one half to meet the page dimensions of this text.

In order that the student may benefit from pertinent comments and suggestions regarding his work, he should leave the path followed, in solving the problems, exposed to view. This may be accomplished in two ways: First, all construction lines should be drawn in accurately and lightly and not erased; second, all computations should include formulas and all operations should be

shown step by step. This will enable the instructor, who may be considered in the role of an inspector, to call attention to the definite points of departure from a correct construction or a correct solution.

A wrong answer may be the result of an error in interpretation, or an error of carelessness. The first requires a more thorough understanding of the situation involved; the second, more care in performing a simple operation.

# 8:2 Information Given On Templates:

A template does not necessarily have all the information on it which is required to make the part. (This is only a matter of opinion and varies with different manufacturers.) But a good template will eliminate, in most cases, any measuring or figuring of locations of holes, the beginning and ending of bends, slots, and outside contour dimensions.

The main reason for not putting everything on the template is to simplify the template so that one can see at a glance the main development of the part in the flat.

If the information as to the size of each hole, bend radius, gage of material, etc. were all given on the template, it not only would add more confusion to the workman; it would also be a duplication of the same information given on the blueprint.<sup>9</sup>

Also in case of a minor change when the size of a hole, either a rivet hole or a lightening hole, is changed and when the center remains the same, this change will not require that the template be changed because the size of the hole is given on the blueprint only, while just the center location is given on the template.

# 8:3 Blueprint Reading:

On receiving a blueprint the first step is to read the print carefully, bearing in mind the type of template required. Make sure it is the latest print and up-to-date as to changes.

Blueprint reading for template work is entirely different than for checking an assembled or finished part.

The template man must be able to picture in his mind the part unfolded and flat. This type of blueprint reading is not any more difficult than the ordinary blue print reading where one pictures the part bent up and finished. But until one has had the experience and practice, this will be one of the main difficulties en-

<sup>9</sup> Although this seems to be advisable in some cases where the template is large enough and rather simple and where the blueprint is an extremely large and complicated one.

countered. This type of blueprint reading is the first and most important part of template making. An experienced man will be reading the print and in his mind developing and visualizing the part in the flat without giving it a thought as to why and the better a man can do this, the better template man he is going to be.

# 8:4 Practical Hints for the Template Maker.

#### DO'S

- Remove all paint and dirt before sending parts to the spotwelder.
- 2. Clamp all parts, to be spotwelded, securely in place.
- Plug small unwanted holes with a steel rivet made from welding rod and spot weld if possible. If the hole is slightly countersunk from both sides, the plug will stay in better.
- 4. Cover up mis-drawn scribe lines with paint.
- When checking a spline for a smooth curve, raise and lower one duck at a time until the spline does not move when any one duck is removed.
- 6. Use plenty of ducks.
- 7. Hold all punches, drills, etc., perpendicular to the metal.
- 8. Use care in cutting inside radii so as not to bend or distort the template.
- 9. Transfer dimensions with a pair of dividers and trammels whenever it is possible, rather than by rule.
- Allow the drill point to center itself in the template which is to be drilled before you start the motor.
- 11. Remove all burrs from the drilled holes. A good burring tool may be a large drill or a metal countersink. Caution: Do not burr excessively.
- 12. Cover the working edges of all clamps, vises, etc., with masking tape to keep the templates from being scratched.
- Check your tools occasionally especially the rules and triangles.
- 14. Be sure you are working with the latest or up-to-date blueprint.
- 15. Recheck any and all computations.
- 16. Read the blueprint carefully before starting to work. Visualize your problem before starting in. Sometimes a part that is difficult to visualize will become easy if a piece of paper is folded so as to resemble the part.
- Recheck all dimensions, locations of pilot and pin holes, etc., before turning a job in as complete.

#### DON'TS

- 1. Splices in templates are undesirable. Splice only when necessary.
- 2. Don't use rivets in splicing if you can use a spot weld.
- 3. Don't make a butt spot weld joint without approval of supervisor.
- 4. Don't make a solder joint without approval of supervisor.
- 5. Don't measure from the end of the rule. If the graduations start at the extreme end of the scale, start measuring from the one-inch division, but be careful not to read the total measurement one inch too large.
- 6. Don't hit steel numeral or lettering stencils too hard (especially on small templates as they may warp out of shape).
- Don't cut into a new sheet of metal unless there isn't a smaller piece available.
- 8. Don't clamp the template too tight when clamping to the bench, as the template may be warped or bent out of shape.
- 9. Don't throw scrap material on the floor. Use scrap box.
- 10. Don't let a template extend over the edge of the work bench unless ample caution is taken to prevent other people from bumping into it.
- 11. Do not make mistakes in the transposition of numbers; e.g., when reading the dimension 1.187. Do not read it as .187.
- 12. Don't forget to check your work before turning job in to inspection.
- 13. Do not scratch template stock or any metal which is to be used in aircraft construction.

# CAUSES FOR REJECTION BY THE INSPECTION DEPARTMENT

- 1. Template maker placed wrong identifications on the template.
- 2. Template made wrong because obsolete print was used.
- 3. Blueprint was misread.
- 4. Wrong dimensions used.
- 5. Angles and lengths of lines wrong because they were miscalculated.
- 6. Pilot or pin holes miscalculated.

Through the courtesy of the Lockheed Aircraft Corp., Burbank, Calif., the following blueprints of typical aircraft parts have been made available for use in this text.

# PROBLEM INDEX

|                | I MODELLI INDUM     |            |
|----------------|---------------------|------------|
| Number         | Part                | Page       |
| 12101          | Gusset              | 154        |
| 12102          | Strap               | 156        |
| 12103          | Lever               | 158        |
| 12104          | Clip                | 160        |
| 12105          | Bracket             | 162        |
| 12106          | Plate               | 164        |
| 12107          | Bracket             | 166        |
| 12107          | Channel             | 168        |
| 12108          | Bracket             | 170        |
|                |                     | 170        |
| 12110          | Stiffener           | 172        |
| 12111          | Stiffener           |            |
| 12112          | Channel             | 176        |
| 12113          | Stiffener           | 178        |
| 12114          | Support             | 180        |
| 12115          | Bracket             | 182        |
| 12116          | Support             | 184        |
| 12117          | Stiffener           | 186        |
| 12118          | Channel             | 188        |
| 12119          | Angle               | 190        |
| 12120          | Cover               | 192        |
| 12121          | Lever               | 194        |
| 12122          | Stiffener           | 196        |
| 12123          | Bracket             | 198        |
| 12124          | Hat Section         | 200        |
| 12125          | Spar                | 202        |
| 12126          | Vee Section         | 204        |
| 12127          | Channel             | 206<br>208 |
| 12128          | Bracket             | 208<br>210 |
| 12129          | Rib                 | 210        |
| 12130          | Stringer<br>Bracket | 214        |
| 12131          | Clip                | 216        |
| 12132<br>12133 | Clip                | 218        |
| 12133          | Bracket             | 220        |
| 12134          | Bracket             | 222        |
| 12135          | Reinforcement       | 224        |
| 12137          | Bracket             | 226        |
| 12138          | Brace               | 228        |
| 12139          | Bracket             | 230        |
| 12140          | Fly                 | 232        |
| 12141          | Duct                | 234        |
| 12142          | Bracket             | 236        |
| 12143          | Stiffener           | 238        |
| 12144          | Bracket _           | 240        |
| 12145          | Channel             | 242<br>244 |
| 12146          | Bracket             | 244<br>246 |
| 12147          | Channel             | 240        |
|                |                     |            |

Title: Gusset—Landing Gear.



To lay out a template by location of points and straight lines drawn between these points.

Draw a horizontal and a vertical line near the lower left-hand corner of the layout material. From these two reference lines, lo-



cate the points of the five corners of the gusset by using the dimensions that are given on the blueprint.

Connect all points with straight lines.

(Continued on page 248)

Title: Strap—Engine Mount.



To lay out a template by location of radii centers and straight lines drawn tangent to these radii.

Draw a vertical and a horizontal reference line near the center of the layout material. The vertical reference line shall be used as



the vertical center line of the strap and all horizontal dimensions will be measured from this line. The horizontal reference line will be used as the horizontal center line which passes through the cen-

Title:

Engine Control Lever.



# Object:

To lay out a template having tangent radii.

Draw a horizontal and a vertical center line and at the intersection of these lines draw two circles of  $1\frac{1}{16}$ " and  $1\frac{3}{16}$  radius.



Look at the print closely and you will see that the handle is  $\frac{3}{4}$ " wide at the point where it would intersect the  $2\frac{1}{8}$ " diameter circle if it were continued in a straight line. The handle tapers in a

(Continued on page 248)

Title:

Clip-Wing Sta. 189.



# Object:

To develop a template for a part having a single 90° bend.

The developed template will be  $21\!\!4''$  in width and the approximate length can be determined by adding the two  $11\!\!4'$  dimensions.



sions.

Draw two vertical lines  $2\frac{1}{4}$ " apart, and a horizontal line crossing the two vertical lines. The first bend line will be drawn parallel

(Continued on page 248)

Title:
Bracket—Fuselage Cabin Reading Light—Upper.



To develop a template for a part with a single 90° bend and having holes which are located from the mold line.

The relationship of mold lines to bend lines is outlined in Chapter 6.



The finished template will be  $1\frac{1}{2}$ " in width and approximately 2" in developed length. Draw two vertical lines  $1\frac{1}{2}$ " apart. A horizontal line crossing the two vertical lines will become the lower

Title:

Plate—Center Section Gusset.



#### Object:

To develop a template for a part which has a  $90^{\circ}$  bend with varied hole locations.

Finished template will be 6" long and approximately 4" wide. The template should be developed along the lines as previously



described for any part having a single 90° bend. The reference mold line should be drawn in its proper relationship to the bend lines. See Chapter 6. This mold line is drawn on the template to

(Continued on page 249)

Title:

Bracket—Elevator Mast.



#### Object:

To develop a template for two parts similar to each other except for direction of bend.

Draw a horizontal mold line and a vertical reference line. Using dimensions given on print, complete outline, also locate holes in



flat pattern. Notice that flange has been dimensioned on horizontal mold line of front view, therefore, both ends of flange will be located from this horizontal mold line. Direction of bend should

(Continued on page 249)

Title:



To develop a template for a part having two  $90^{\circ}$  bends and to be able to understand the use of tabulated information on drawings.

As this drawing specifies three distinct thicknesses of metal of which this particular channel can be made, it is necessary to pre-



determine which template is to be developed.

The standard practice among many factories calls for certain standard channels or angles under the following manner.

(Continued on page 249)

Title:
Bracket—Fuselage Cabin Reading Light—Lower.



To develop a flat template for a part having two 90° bends with different bend radii.

Procedure for developing the width of this channel is the same as for Problem 12108, except that the portion between the bends



will be computed by subtracting the sum of two thicknesses plus  $\frac{1}{8}$ " and  $\frac{1}{16}$ " radii from the  $\frac{111}{16}$ " dimension. Locate centers of all holes.

Title:

Stiffener—Wing Flap Splice.



# Object:

To develop a template for a part having two bends in opposite directions, one of them being a 90° bend, the second bend 180°.

Subtract the sum of the thickness plus the radius from the  $\frac{5}{8}$ " dimension. Add the bend allowance for the  $90^{\circ}$  bend using .064



material and  $\frac{5}{32}$ " radius. Subtract the sum of the two bend radii and two thicknesses of metal from the  $1\frac{3}{4}$ " dimension, the remainder from this subtraction is the flat distance between bends.

(Continued on page 249)

Title:



To develop a template for a part having three 90° bends.

Draw a rectangle  $2^{27}6_{4}$ " in length and  $616_{4}$ " in width. This rectangle now represents the exact outside shape of the lower left



hand view of the drawing. On the three sides which have flanges, draw parallel lines, metal thickness plus bend radius inside of the original lines. These lines represent the beginning of the bend. The

(Continued on page 250)

Title: Channel—Center Section Front Beam.



To develop a template for a part having four  $90^{\circ}$  bends, two of them bending in one direction, the remaining two in the opposite direction.



Title:
Stiffener—Nacelle Pulley Bracket.



To develop a template for a part having three bends with none of the sides being parallel to another.

Draw outline of front view of part, thus establishing the three mold lines.



For location of bend lines and flange outlines refer to procedure on problem No. 12111. To complete flat pattern indicate direction of bend.

Title:
Support—Nacelle Pulley Bracket.



To develop a flat pattern whose procedure closely parallels that of problem No. 12113.

To lay out flat pattern, follow method used for problem No. 12113. Locate all holes.



Title:
Bracket—Fuselage—Sta. 320. Pulley.



To develop a pulley bracket whose two sides are identical.

In order to take full advantage of the possibility of saving time, the development of this pulley bracket should be started by draw-



ing a rectangle 3%" by 1%". Let the two 3%" sides represent the mold lines from which the horizontal dimensions are given for locating the cutout and six holes. Bend lines are located as in previous problems.

**Title:**Support—Pilot's Seat.



To develop a flat pattern for a part having two  $90^{\circ}$  bends and a diagonal end cut.

Draw a horizontal line and erect two perpendicular lines 5 inches apart which determine the maximum horizontal width of



the flat pattern. On horizontal line locate beginning of a diagonal end cut. Draw bend lines and upper end of flat pattern. Locate the two mold lines which are intersected by the diagonal cut in the

(Continued on page 250)

Title:

Stiffener-Center Section-Tank Panel.



## Object:

To become acquainted with tabulated information and to develope a template from this information.



Title: Channel—Center Section Main Beam Sta. 3%.



To develop a template for a channel which has two diagonal cuts.

Procedure:

Disregard the diagonal cuts until after the complete develop-



ment blank has been laid out. See Chapter 6 for information on diagonal cuts.

Title:

Angle—Wing Flap.



# Object:

To develop a template for a part bent less than 90°.

Refer to discussion on bends of more or less than  $90^{\circ}$  in Chapter 6.



Title:

Cover-Wing Flap.



### Object:

To develop a template for a part having four 90° bends. Also, to develop the end cut on the template so that the finished formed part will have a slanted cut as per print.

The entire development of this cover shall be put down with no attempt to make end cuts until all bend lines and mold lines



have been put into their proper relationship to each other. For proper procedure in developing end cuts, refer to the sketch on use of mold lines in developing a diagonal cut. Chapter 6.

Title:

Lever—Nacelle Oil Regulator.



# Object:

Develop flat pattern for Control Lever.

Construction is similar to problem No. 12103 except for bend allowance.



Title:

Stiffener—Fuselage—Sta. 454.



#### Object

To develop a flat template for a part having four bends and a diagonal cut.

Procedure:

Similar to that which is outlined in problem No. 12120.



Title:

Bracket—Power Plant—Fire Wall.



# Object:

Develop flat pattern for -2 and -3.



Title:
Hat Section—Fuselage, Sta. 141 5/16.



To develop a flat template for a part which is so dimensioned as to require calculations in order to determine the required degree of bends.

A right triangle is formed by the 5% radius and 3% dimension. Solve for  $\alpha$  and the side opposite  $\alpha$ . See sketch on page 250.



Proceed with the customary method of finding bend allowance. Flat area between  $\frac{5}{8}$  radius and  $\frac{3}{4}$  radius can be determined by

(Continued on page 250)

Title:
Spar—Center Section Vertical.



To develop a flat template for a part which is completely dimensioned but requires mathematical calculations to determine bend angles and flat portions.

Similar to problem No. 12124.

| 825 £207         | 。06 d1              | <br>N Grank CHECKER  R CHECKER  R CHECKER  ANDE BY  J CAN GLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 364935 628 1     | .06 AN              | <br>177   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010   010    |
| 3.4              | . <u>?</u> 92 dn    | <br>CHANGE<br>ECTION VERTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.732 —          | ° <u>i</u> ESI NWOO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 33364            | ° <u>7</u> 92 dN    | <br>Ones   Cure   Cu |
| 586 824 520 824. | °06 an              | <br>CHANGE ON CHANGE |
| 01-025           | ,06 dN              | <br>Ct.p. Aeto Pyblishers, Inc. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Title:

Stiffener-Std. Vee Section.



# Object:

To develop a template for Vee section stiffener having a diagonal cut as shown in the side view.

The procedure for development and the method of determin-



ing the angular cut in the developed template has been outlined in Chapter  $\boldsymbol{6}$ .

Title:
Channel—Aileron Control Bracket.



A review of use of mold lines in diagonal cut development.

Similar to previous problems of this type.



Title:

Bracket-Fuselage Sta. 330 Pulley.



# Object:

Develop flat patterns for -2 and -3.

Diagonal cut on -2 will be a straight line completely across flat development. See note at -2 (this side straight in flat pattern).



Title: Rib—Aileron Sta. 310.



**Object:**Develop flat pattern for rib.

Lay out the outline of the rib mold lines from the base reference line as seen in the front view. For balance of layout refer



to Chapter 6 on development for bends more or less than  $90^{\circ}$ 

Title: Stringer—Wing Center Section.



To develop a template for a part having two bends, extending in opposite directions and the flanges bent through an angle greater than  $90^{\circ}$ .

Lay out outline of part as seen in front view, thus establishing mold lines for each bend.



Observe that the top flange is dimensioned at the inside mold line, therefore from the top line of the layout we draw a bend line "Y" distance down. Calculate bend allowance for this flange

(Continued on page 250)

Title:
Bracket—Cabin Light Support.



Develop flat pattern for bracket.

Similar to previous problems. Use Trigonometry to calculate missing dimensions.



Title:

Clip—Fuselage Emergency Door.



# Object:

Develop template for clip.

All dimensions and bend angles are given, thus simplifying the development for this part. However, observe that the l" and



lower 3/8" bend radii are to the outside surface of the metal. We must subtract the metal thickness from these radii and then calculate the bend allowance using these new bend radii. Note direction of bends on template.

Title:

Clip-Radio Support.



#### Object:

Develop flat pattern for clip.

Similar to previous problems. Mark direction of bends on template.



Title:

Bracket—Air Duct Control Pulley.



### Object:

To acquire ability in developing templates from drawings which are dimensioned in a somewhat involved manner.



Title:
Bracket—Landing Gear Switch.



Lay out flat template for bracket.

Use the front view, in which we see the  $1\frac{1}{2}$ " diameter hole, as the start of the pattern. Draw outline of two mold lines on



side and top and bottom edges as seen in this view. Draw bend lines in their correct position. Locate all dimensioned points in the side view by subtracting thickness plus radius from the hori-

(Continued on page 251)

Title:

Reinforcement—Wing Sta. 115.



# Object:

Develop flat pattern for reinforcement.

This part is dimensioned to mold lines which are on opposite sides of the metal. In order to determine the true bend angles



it is necessary to take all dimensions from one side of the metal. See Figure 8:1, page 251, for the method used to solve this problem.

After the true bend angles and flat distance between bends (Continued on page 251)

Title:

Bracket-Landing Gear.



## Object:

Develop flat pattern for bracket.

This part is symmetrical about its center line and can be developed from the center line or from the side view. Procedure



is similar to problem No. 12115.

Title
Brace—Wing Center Section Sta. 14.



Develop flat pattern for brace.

Procedure:

Procedure is similar to previous problems.



Title
Bracket—Oil Cooler Control.



Develop flat patterns for -2 and -3

This is a review of previous problems.



Title:

Fly-Carburetor Heater.



Object:

Develop flat patterns for -2 and -3.

Calculate bend angles by the use of trigonometry. Note direction of bends on template.



Title:
Duct—Nacelle Air Cooler.



To develop a template for the air duct by a combination of layout and calculation.

By the bend allowance formula determine the flat developed length to be 6.365". Use 6.365" as the circumference of the tube.



Dividing 6.365" by  $2\pi=(2\times3.1416)$ , 1.013" is obtained as the radius to use in our development. Using 1.013" as the radius, lay out full size plan and side views of the tube in their correct

(Continued on page 251)

Title:
Bracket—Landing Light Mounting.



Develop flat pattern for bracket.

The flanges are bent back to fasten to the bottom of the part. Therefore the length of the sides which have flanges will be 2"



minus the metal thickness. Development will be similar to previous problems. Note direction of bends on template.

Title:

Stiffener—Rudder Tab.



## Object:

Layout flat pattern for stiffener.

Similar to previous problems.



Title:
Bracket—Wing Tip Rear Beam.



Develop flat pattern for bracket.

Observe note on drawing explaining bend radius. In this case use bend allowance for  $100^\circ$  on the 1/8 bend radius at the left



end of the part and taper the bend lines to a point at the other end. Determine shape of flange ends by locating the flange in its formed position in the front view in relation to its mold line.

(Continued on page 252)

Title:

Channel—Radio Support.



Object:

Develop flat pattern for -2 and -3.

Similar to previous problems. Note that one template is used to make both the left and right parts. Only difference is direction



of bend as marked on the template.

Title:
Bracket—Engine Throttle Control Pulley.



Develop flat patterns for -2 and -3.

By the use of trigonometry solve for all dimensions necessary to lay out flat pattern. Similar to previous problems.



#### Problem No. 12147

Title:
Channel—Engine Controls Pulley Bracket.



#### Object:

Develop flat pattern for channel.

Similar to previous problems. Calculate all dimensions needed to complete the flat pattern. Refer to previous problems and



Chapter 6 for diagonal cuts.

## Problem No. 12101, Continued

Locate the centers of the five  $\frac{3}{16}$  diameter holes by using the vertical and horizontal dimensions from the reference lines.

#### Problem No. 12102, Continued

ter of the strap and all vertical dimensions will be measured from this line.

When all center of radii have been located according to dimensions on the print they should be very lightly prick-punched. By using a pair of dividers or a compass which has been set to the proper radius, the radius can be drawn in. Draw straight lines tangent to all radii, thus completing the template layout.

#### Problem No. 12103, Continued

straight line from this point to the end where it is  $\%_{16}^{\prime\prime}$  wide. Locate the center of the  $5\%^{\prime\prime}$  radius by drawing an arc of  $1^{11}\!\!/_{16}^{\prime\prime}$  radius, which is equal to the  $11\%^{\prime\prime}$  radius plus the  $5\%^{\prime\prime}$  radius. Locate this arc near the intersection of the tapered line with the  $11\%^{\prime\prime}$  radius. Now draw a line parallel to, and  $5\%^{\prime\prime}$  from the tapered line. The intersection of this line with the  $1^{11}\!\!/_{16}^{\prime\prime}$  radius is the center of the  $5\%^{\prime\prime}$  radius.

The pilot holes for the four No. 40 holes can be located by use of a protractor or by stepping it off with a pair of dividers. Six equal spaces in 90° stepped off around the radius will locate each mark at 15° intervals. This gives the location of the first hole, and the others are at 90° intervals from that location.

#### Problem No. 12104, Continued

to the horizontal line.

The proper procedure for obtaining the location of this bend line has been previously described in Chapter 6.

The second bend line will be drawn parallel to and the proper distance from the first bend line. This distance shall be obtained by use of either the Bend Allowance Chart or the Empirical Formula, which has been outlined in Chapter 6. The fourth horizontal line will be drawn in its correct relationship to the last bend line and determines the end of the developed template.

#### Problem No. 12105, Continued

end of the template. The first bend line shall be located by a horizontal line and its distance above the lower end of the template shall be determined by subtracting the sum of the thickness of the metal plus the bend radius from the  $1\frac{5}{6}$ " dimension. (See Chapter

6.) The second bend line will be parallel to the first one, and its relationship to the first bend line will be determined from the Bend Allowance Chart. The fourth line, which determines the end of the developed part will be drawn parallel to the bend lines, its location from the second bend line is determined by subtracting the sum of the thickness plus the radius from the 3%" dimension which is the width of the flange.

The single lower .140 drill size hole will be located by the  $\frac{3}{6}$ " and the  $\frac{3}{4}$ " dimensions. The two .166 drill size holes will be located by drawing two vertical lines parallel to the two sides of the template and  $\frac{5}{16}$ " in, as shown on the blueprint. The other dimension which is necessary for these two holes shall be determined by subtracting the  $\frac{1}{2}$ " dimension from the  $\frac{15}{6}$ " dimension and drawing a horizontal line  $\frac{1}{8}$ " from the lower template line. The two  $\frac{3}{2}$  drill size holes are located by a horizontal line  $\frac{3}{16}$ " from the top of the template and by using the horizontal dimensions,  $\frac{1}{4}$ " and 1".

### Problem No. 12106, Continued

eliminate the necessity of making numerous subtractions when locating the holes.

#### Problem No. 12107, Continued

be called out "Bend Up L.H.," "Bend Down R.H." Location of bend lines similar to problem 12104—see Chapter 6.

## Problem No. 12108, Continued

For example use the callout  $^{11}/_{16}$ " x  $^{15}/_{16}$ " x 4" channel (-4). When this type of information is called out it is understood that a channel  $^{11}/_{16}$ " x  $^{15}/_{16}$ " x 4", .040 thick with  $^{1}/_{8}$  radius is to be developed. (See 12108-T, page 177)

The only difference if -2 (.025) and -3 (.032) were to be used would be in the amount of B. A. and the distance between them, because the basic overall dimensions of the part remain the same.

Procedure for developing the width of this channel is the same as for a 90° angle except that there will be two bend allowances and the portion between the bends will be computed by subtracting the sum of two thicknesses plus two radii from the  $^{15}\!/_{16}$ " dimension.

#### Problem No. 12110, Continued

Add the bend allowance for .064 material and a  $\frac{1}{4}$ " radius which has been computed for a 180° bend. Locate all center punch marks.

#### Problem No. 12111, Continued

bend allowance for .040 material using a  $\frac{1}{8}$ " radius will be computed and by measuring this distance from beginning of the bend toward the outside of the template, the end of the bend will be located for each flange.

Subtract the sum of the metal thickness plus the radius from the  $\%_{16}$ " dimension which is the width of the flange, the remainder, which is the flat portion of the flange, shall be added to each of the three sides.

The part now being fully developed, it will be necessary to cut the reliefs on the two corners. Draw a line horizontally through the part  $^{45}\!\!/_{64}$ " from the base line, also draw vertical lines parallel to the sides,  $^{1}\!\!/_{4}$ " inside each mold line. These lines establish the end cuts on the flanges. Now draw  $^{5}\!\!/_{32}$ " radii tangent to the opposed flange ends.

#### Problem No. 12115, Continued

Subtract metal thickness plus radius from horizontal dimensions given from mold line in side view. Layout these new dimensions from outside bend lines to locate holes and outline of two sides.

#### Problem No. 12116, Continued

side view, one at 2¾ above horizontal line, the other .578 below upper end of flat pattern, determine from the side view where the cut intersects these mold lines and locate these points on the mold lines in the flat pattern. See Chapter 6. Indicate direction of bends and locate holes.

Proposition No. 12124 Continued subtracting, (metal thickness plus  $\frac{3}{4}$  radius plus side opposite  $\frac{1}{4}$  from the  $\frac{2}{8}$  dimension. End developments are as shown in accompanying figure.



### Problem No. 12130, Continued

and draw a line this distance above the first bend line. Add the flat portion of the flange, determined by subtracting "Y" from the  $\frac{3}{4}$ ".

The two bottom flanges are dimensioned to the outside mold line, therefore we draw bend lines "X" distance above each of these mold lines. Calculate bend allowance for these bends and draw lines this distance below our first bend lines. Add flat portion of flanges, determined by subtracting "X" from the 3/4" flange widths.

Diagonal cuts will be handled as in previous problems. Locate center of the relief hole and indicate direction of bends.

#### Problem No. 12135, Continued

zontal dimensions in this view and using these new dimensions from the two outside bend lines.

#### Problem No. 12136, Continued

have been determined the development will be similar to previous problems.



### Problem No. 12141, Continued

relationship to each other, also lay out a development blank 23/4" x 6.365" in a horizontal projection from the side view. Divide the plan view and the development blank into 24 equal spaces, numbering each line and starting from the weld joint. From the intersection of these divisions with the circumference in the plan view, project vertical lines cutting through the side view. From the intersection of these vertical lines with the outline of the side view, project horizontal lines until they intersect the corresponding line in the development blank, thus getting a number of points which form the contour of the flat development.

For the development of the hole through the tube the procedure is similar except the hole in the side view is divided into equal spaces a, b, c, etc. These points are then projected vertically into the plan view giving points a, b, c, etc., on the circumference, and horizontally into the development blank, giving

horizontal lines a, b, c, etc. From the plan view determine the distance from the weld point around the circumference, to points a, b, c, etc. Use these distances to locate vertical lines a, b, c, etc., in the development blank. The intersection of the vertical lines a, b, c, etc., with the horizontal lines a, b, c, etc., establish points which determine the contour of the hole cutout in the flat pattern.

#### Problem No. 12144, Continued

Project a line from this formed position, perpendicular to the mold line until the edge of the flange in the flat pattern is intersected. Draw a line from this intersection to the mold line at the end of the part. This line is the shape of the flange end.

#### CHAPTER IX

## PHOTOGRAPHIC REPRODUCTION OF TEMPLATES

At this time it is not possible to make an estimate of the probable extent to which the new loft photo system will go in template making. It is apparently a permanently established proposition in several of the larger factories. It has been predicted that it will eliminate the need for a great number of template makers but in any event it is not likely that a good template man will ever find his trade of no value to him.

The loft photographic system is not one where the impossible is attainable, nor is it attempted. A great deal of loss of time and duplicated work is eliminated however, because after the engineering department has once laid down the full sized line work, it is not necessary to manually reproduce any portion of it. Several aircraft factories have done some development work on similar photographic methods, namely—Glenn L. Martin, Lockheed Aircraft Corporation. Use of a specific case for a discussion of the system we will follow the details of the system used by the Lockheed Aircraft Corporation.

# Engineering Loft Photographic System:

All structure and sheet metal parts are sketched freehand in order to determine the basic designs. These freehand sketches with the necessary information are turned over to the loftsman, who by using any one of several conventional loft methods, obtains mold line contours or the exact shape of the entire plane. This mold line information is turned over to the detail layout group in the form of full-size line work on specially processed metal. This metal having previously been processed with a special paint which gives a finish to the metal similar to tracing cloth or paper as far as being adaptable to pencil or ink lines, layout work.

At this stage of the development, the engineering work is practically identical to that of the past systems, whereby, draftsmen lay out complete three-views in the conventional manner with the one exception that all dimensions are eliminated. This is possible due to all the layouts being full-size, and methods by which this information is passed on to the Manufacturing Departments. See Fig. 9:1.



Fig. 9:1

After completion of the conventional three-view full-size layout, which has been checked and passed by the Design and Stress Groups, these layouts are then turned over to the men who have had the proper training and experience for the development of flat patterns or templates of all sheet metal structure which is shown in detail on these full-size layouts.

These various flat pattern developments are superimposed over the three-view layouts where it is possible to do so without causing confusion. If it is advisable a flat pattern may be developed to one side of the three-view on the same layout to eliminate possible confusion and to clarify the information which must be transmitted to the Fabrication Departments. Flat pattern developments clearly show in every detail the exact shape of each part which includes the stringer cutout, rivet or bolt location, and all information which is necessary for the Fabrication Department to have in order to pre-cut and drill the parts before they are

formed into the required shape. Also, all the tooling information is shown on these layouts, which will include the exact shape of the form block with all allowances made for spring back of the metal which occurs while the parts are being shaped. Also the location of pin holes or coordination holes is clearly shown and called out.

Upon completion of the flat pattern developments (See Fig. 9:2), the full-size drawings on metal are released to the Photo-



Fig. 9:2

graphic Department where with special cameras and equipment, a  $14" \times 17"$  glass negative is made. See Fig. 9:3. The original layout is then returned to the Engineering Department to be filed for future reference, and the  $14" \times 17"$  negative is used to make

five or six full size prints on metal, by using enlarging equip-

The information obtainable in this form of a full-size exact scale reproduction of the original layout is very useful in a number of the departments throughout the plant. One or more copies



go to the Template Department where all the necessary templates are made by cutting out the various views from the full-size prints. These templates consist of flat pattern templates (see Fig. 9:4), forming block or contour templates, and various other jig and tool templates. The Template Inspection Department receives one copy for reference in checking the workmanship on the templates which have been cut out and turned over to them by the Template Department. (See Fig. 9.6.) The Tool Design Department uses many of these full-size layouts to aid in the design and building of the necessary assembly and drill jigs.



Fig. 9:4—Photographic Reproduction



Fig. 9:5—Shearing Templates from Photographic Reproductions on Metal

It is possible to use this type of layout in many cases as a portion of the assembly jig by mounting hardened drill bushings in the proper location, or by having necessary location blocks mounted in various places to locate and hold the completed parts while



Fig. 9:6

they are being assembled and put together with either rivets, bolts, or by the spot welding operation.

Finished Parts Inspection Groups find these exact full-size layouts very useful in checking formed and fabricated parts. Fig. 9:7. Considerable time is saved by this method of visual inspection when the finished parts are checked to a line in comparison with the time necessary for measuring the parts to each individual dimension. Of course, in this case, the dimensions being eliminated from the layout, it becomes absolutely necessary for the



Fig. 9:7



Fig. 9:8-Developing Tracing, Reproduced from Negative

inspection or the checking of parts to be done by this quicker and more up-to-date method.

It has been found that considerable time is saved by not dimensioning the various detail parts on the layout. This also eliminates numerous changes on layouts which originate from the wrong dimensions being placed on them, due to the fact that either the dimension was originally scaled improperly or in some cases due to errors in the scaling (which are multiplied by scaling  $\frac{1}{4}$  to  $\frac{1}{2}$  size layouts).

In conjunction with this type of layout, which is furnished to the shop for its information, numerous full-size interference layouts are made on the loft floor by the various groups, in order to determine interferences and the correct relationship of various parts to each other.

For example: A complete three-view of an engine installation layout is made full-size on the loft floor, showing in detail the motor in relation to all the necessary structure, plumbing and wiring. In some cases it will be advisable to use different colored pencils to make this type of layout. If and when the fuel lines are laid out with a red pencil, the oil lines with a green pencil, and electrical lines with a purple or some other color, etc., it is



Fig. 9:9—Blueprints being made from Photo-Reproduced Tracing

possible by the use of lights and filters to take photographs of either the entire installation or any separate layout which has been done in the various colors. Then separate prints can be made of fuel lines, oil lines, or electrical installations, without the usual duplication of effort by the Engineer.

This type of interference layout is readily adaptable to numerous assemblies throughout the entire airplane, such as landing gear installation, wing and fuselage, etc. It is not necessary to print this type of layout full-size on metal, as this information is passed on to the shop in the form of blueprints. The blueprints are made from a tracing which has been printed in much the same manner as the full-size layouts on metal, simply by using sensitized tracing paper in the place of metal in the enlarging equipment.

It is advisable in many cases to make the tracings either  $^{1}/_{4}$  or  $^{1}/_{2}$  size where this information is more in the form of a picture of an assembly and will not be needed to obtain dimensions. This proper reduction is made on the tracing by the enlarging equipment.

The conventional method of making blueprints is followed (see Fig. 9:9) which makes it possible to issue information in this form to various groups within the organization where the full-size metal layout is not needed or would not be convenient for them to handle due to the weight and space involved in observing or filing this information.

The original tool planning groups use these 1/4 or 1/2 size blue-prints for their preliminary design and planning; also the Production and Material Control Groups use engineering information issued in this form.

Numerous shrink or expanded contours and templates are required in the Plaster and Pattern Departments. This is accomplished by simply placing the original negative in the enlarging machine where the image is "blown up" to the proper shrink scale and printed on metal. These shrink contours are then cut out and turned over to the proper department where they either become part of the shrink mock-up or are used as tools to make up the necessary patterns.

## CHAPTER X

## TRADE ETHICS AND SAFETY PRECAUTIONS

It is highly important that you as a student maintain a normal physical condition, give ample consideration to personal attitude and working habits relative to your future occupation. Make it a point to cooperate with those around you and always be willing to help someone else if by so doing your employer will be benefited.

The following general requirements apply to persons seeking employment as a template maker or factory mechanic.

- 1. You should have a high school education or its equivalent.
- 2. Have with you your birth certificate or an equivalent statement from an attending doctor or other responsible person who can testify as to the time and place of birth. American Citizenship is required in all military work.
- 3. Be in normal or average physical and mental condition.
- 4. Be of the white race (exceptions made in a few rare cases).
- 5. Age limits are 18 to 30 years for unskilled or semi-skilled persons.
- 6. Ability—if the student has conscientiously applied himself to this text, has a thorough understanding of the subject matter in it, and is also able to apply his knowledge in a practical manner, he should be able to meet the minimum ability requirements of the aviation industry for template layout work.

As an employee you should first of all realize that your job is important and that you must apply yourself to all details in a thorough workmanlike manner. Following is a general list of some things you should conscientiously study and apply to your job.

- 1. Do not neglect to continue your studies; always be preparing for something better.
- 2. Keep yourself and your clothes neat and clean.
- 3. Keep your tools, your bench and your portion of the shop clean and neat.
- 4. Be on time for work and do not try to rush when it is time to guit for the day.
- 5. Always try to keep busy and give your employer a good day's work. If slack periods of time occur occasionally and

the leadman has nothing for you to do, then try to see what you can do to clean up your bench, or work out something that may save time or labor on future jobs, etc.

- Study all blueprints and job orders carefully before starting on the actual work.
- Do not borrow tools. Make it a point to own, at least, the minimum tools required by most companies. A good workman uses and cares for company tools as though they were his own.

When on the job you should conduct yourself in a gentlemanly manner and avoid rowdiness or horseplay at all times. Study company conduct regulations and especially abide by the following general rules.

- Smoking is prohibited at all times except in some cases where specific areas are designated.
- Do not loiter in the wash rooms or toilets during working hours.
- Do not use or bring intoxicating liquor onto company property.
- Do not do personal work on company machinery, or company time.
- 5. Do not engage in gambling in any form during working hours
- 6. Last but not least watch your credit ratings and unpaid bills; most companies do not recognize wage or salary garnishees. A garnishee may result in the loss of your job.

## SAFETY

Safety precautions are a very important part of the workman's duties. Each manufacturer has a well formulated set of rules designed to make the job safe.

Listed below are precautions especially pertaining to the template maker.

Always wear goggles while using or watching the use of the grinder, sander, band-saw, spot welder or any operations where flying particles might injure the eyes.

Never lift or attempt to lift any weight beyond your capacity. Always have sufficient help. When you do lift, keep the back nearly vertical, bend the knees and use the thigh muscles instead of the back muscles.

Do not carry on a conversation while operating a power tool. Keep your eyes and your mind on your work.

Never attempt to adjust, clean or oil a machine until you have turned off the power and the machine has come to a **dead stop**.

Do not use a rag to hold anything being ground or drilled.

Never use any power machinery unless all safety guards are in place.

When grinding see that the rest is secure and set close to the wheel.

Never grind anything on the side of the wheel; use the face only.

Be sure that drill is securely fastened in chuck and chuck wrench is removed before power is turned on.

Clamp small work firmly to table when using the drill press.

Don't use your hand as a brake to stop drill press.

Throw all oily waste or rags into metal containers provided for that purpose. Do not throw papers, metal shavings, scrap or glass into waste cans for oil rags. Do not throw metal shavings or metal scraps into waste paper containers.

Keep floors free of tripping or slipping hazards such as extension cords or pools of oil.

Keep sharp tools out of pockets.

The wearing of rings, neckties or loose clothing while working at power machines is to be avoided.

Soldering irons should always be placed so that you or fellow employees will not be inadvertantly burned.

All sharp edged tools must be used so that the cut is away from the body.

Never use a file without a handle.

Never use defective tools, such as a hammer with a loose head.

Don't use chisels, punches, etc., which have mushroomed heads.

Put sharp tools away when not in use.

Use a brush instead of your hand to clean off table tops, drill press, etc.

Keep gasoline and paint thinner in safe containers and away from spot-welder, soldering iron, etc.

When cutting sheet metal, handle the jagged scraps with care and place them in the proper container.

Remove burns or wire edge from edges of metal after cutting or filing.

Use hand pads when carrying sheets of metal.

Don't leave templates or material extending over edges of table top.

If metal must extend into aisle while cutting or filing, see to it that the protruding sections are well padded.

Keep all machinery guards in place and any defective equipment should be reported to your foreman.

## Accidents

Accidents are painful to you and costly to both you and the company for which you work. All accidents should be reported immediately to your foreman and the first aid department.

Accidents can be caused by running or crowding and other rowdiness or so called horseplay.

## APPENDIX

## GLOSSARY\*

## — A —

ACUTE ANGLE: An included angle of less than 90°.

**ALCLAD:** The registered trade mark used by the Aluminum Company of American to identify a group of high strength sheet aluminum alloys clad with a covering of high purity aluminum.

ARBOR & DATO SAW: A power saw having a shaft or bar for holding cutting tools.

## — B —

- **BAND SAW:** A saw in the form of an endless steel saw blade running over large diameter pulleys. The saw may be either a wood or a metal cutting saw.
- **BEND ALLOWANCE:** The amount of sheet metal required to make a bend over a specific radius. The inside radius is used in aircraft work. It is the amount of metal required from the start of the bend to the end of the bend. It is based on the thickness of the metal, the type of metal used, the radius of bend involved, and the degree of bend. It is estimated from bend allowance charts which are derived from an empirical formula.
- **BENT UP ANGLE:** The angle through which a part is bent up from the flat position.
- **BEVEL CURVE:** Tangent heights laid out in the form of a polar graph for determining flange angles of bulkheads from a body plan view.
- **BEVEL STICKS:** Graduated measuring pieces for determining flange angles of bulkheads from a body plan view.
- **BLANK:** A sheet metal part after it has been blanked out by a die or cut out by hand, etc. It is considered to be a blank as long as there are no forming operations upon it.
- **BODY PLAN:** A view looking forward along the length of a body and showing contours of various cross sections nested inside one another.
- **BODY STEEL:** A type of low carbon sheet steel used in making automobile bodies.

## -C-

CONCAVE: A surface which is hollow or curved inward.

CONVEX: A surface which is the opposite of a concave surface or curved outward.

## \_D\_

- **DEVELOPED WIDTH OR LENGTH:** The true or exact width or length of a part or section before it has been broken up (bent up) as in bending flanges or bending a part into a U shaped section.
- **DEVELOPMENT:** Determining the dimensions and contours of templates.
- DIE: A tool, the purpose of which is to impart any desired shape or impress any desired form or design on metals or materials. On those dies which shear a part out of the stock sheet or form it from the flat sheet, the die is the female portion which the purch enters to perform the required work

<sup>\*</sup>Many of the words and definitions given in this glossary are reprinted from "Baughman's Aviation Dictionary and Reference Guide—Aero-Thesaurus."

## — D — (Continued)

- **DRILL GUIDES:** Hardened steel guides which are used as an aid for accurately drilling holes at specific locations.
- DRILL IIG: A jig which holds parts or units of a structure in the proper position and location for drilling holes. In most cases a drill jig is so designed that the holes must be drilled to the required size, and properly coordinated with other mating parts.
- DROP HAMMER: A large, heavy hammer used to produce certain types of work requiring complicated or elaborate forming, drawing or multiple bending of sheet stock. Matched dies (of zinc and lead alloy) are necessary, making the process economical only for standard production parts. The drop hammer is generally the male portion of a forming die, which is raised by a rope running over a power driven drum and allowed to drop freely into, or onto, the matching portion of the die. Deep draws are possible by this method of bumping. Typical examples of drop hammer work are: Inter-cylinder baffles, tank shells, fairing, wing corrugation, induction systems, etc. Materials from which drophammer parts are made for aircraft are: (1) Aluminum 25½H, 35O; (2) Alclad 17SO and 24SO; (3) Steel, extra deep drawing steel; Stainless steel, and Inconel.
- **DUCKS:** Weights of various sizes and shapes and especially used to hold splines in position. See Fig. 7:8.
- DUPLICATING PUNCH: A center punch used to transfer locations of centers, bend marks, etc., from the template to a part or a jig. The punch has a straight shank which fits accurately into a hole (preferably a small hole, #40 or #50) in the template and a small point just long enough to lightly mark the center location.
- EMPIRICAL FORMULA: Any formula which has been constructed or built up from working experiences, shop practices, etc., rather than from theory and mathematics, e.g., the "empirical formula" in common use for the determination of bend allowances in aircraft sheet metal work has been formed by the experience gained from a large number of tests by bending various thicknesses of metal through many angles.
- **ENGINEERING BLUEPRINTS:** Blue prints of drawings which have been made by the engineering department. They show all engineering data and are the basis from which other special drawings are made.

## -F-

- FAIRING: An auxiliary member or structure whose primary function is to reduce head resistance or drag of the part to which it is fitted.
- FLANGE: Any web stiffening portion of I-beam sections, channel sections, cap strips on wing ribs, or spars, etc.
- FORM BLOCK: A block (die) made of masonite, wood, zinc, steel or aluminum over which sheet metal is formed by any of the various methods of forming sheet metal. A form block is used to bend flanges, put in joggles, form stiffening beads, etc.
- **FRAMES:** The lateral members of monocoque and semi-monocoque structures which give form and maintain the shape of the structure.

-- G --

GALVANIZED IRON: A name applied to iron or steel sheets coated with zinc applied by dipping in a bath of molten metal. The coating of zinc protects the iron core from corrosion.

## — H —

HYDRAULIC PRESS: A pressure press operated by Hydraulics. Large hydraulic presses are used in aircraft production for power forming sheet metal parts. The work is done either by using matched male and female dies of wood, masonite, steel or zinc, or by using a die and thick, heavy rubber blankets or pads which form the metal around or into the die.

## -I-

- INDEXING PINS: Pins used to align or locate parts in relation to each other or relative parts. One use of indexing pins is their use in a form block in conjunction with the pin holes in a template or part which is to be formed.
- INSIDE MOLD LINE: A line formed by the intersecting of two planes (flat surfaces), when dealing with the inside surfaces of the legs of the angle.

## —J—

J CHART: A special bend allowance and development chart. See page 276. JOGGLE: sht. metl.: Offsetting a small portion of a metal part (an angle or a flange, etc.) so that the joggled part will clear (pass over) other parts.

## — K —

**KIRKSITE:** A zinc alloy commonly used to make drop hammer and hydro press dies.

## -L-

LIGHTENING HOLES, in sheet metal parts: Large holes in many sheet metal aircraft parts where the metal has been removed because the metal in that specific location was not doing any useful work and its removal lessened the weight with no decrease in the structural strength of the part; such holes are usually flanged or stiffened at their edges.

## --- M ---

MOLD LINE (ML): A line formed by the intersecting of two planes (flat surfaces). In the case of an angle where the bend is a radius the mold line will be in space at the point where the outside surfaces of the legs of the angle would meet if they were extended. This mold line is called the Outside Mold Line and it is an Inside Mold Line when dealing with the inside surfaces of the legs of the angle.

## -- N ---

- **NEST:** A guide for a die punch or a condition existing when two formed parts are made to fit very close together, i.e., the parts are said to "nest together."
- NIBBLING MACHINE: A machine which incorporates a die and punch which operates at high speed and is used to cut out metal parts, especially those parts which are of any intricate shape. The nibbler was formerly extensively used but of late years other machines have been introduced which do similar work.

## -0-

**OBTUSE ANGLE:** An included angle greater than 90°.

- **OFFSETS:** (dimensioning): A method of dimensioning tapers and angles by means of dimension lines which show the amount of departure of the angle or edge of the part from the base line.
- OUTSIDE MOLD LINE: A line formed by the intersecting of two planes (flat surfaces) where the bend is a radius and the mold line is in space at the point where the outside surfaces of the legs of the angle would meet if extended.

## -- P --

- **PANTOGRAPH:** A duplicating device which will trace the outline of a given object to any desired scale (larger or smaller).
- **PATTERN:** A model for making the mold into which molten metal is poured to form a casting. Also any flat model of a part which can be used as an aid in reproducing other parts.
- **PEIN:** To force or shape the edge of a metal part. Also the name applied to a machinist hammer having one ball or pein surface.
- PILOT HOLE: Locating hole or a small hole used to guide a larger drill.
- PIN HOLE: A hole or holes located accurately in blanks, to enable them to be placed on the locating pins which are inset into the form block. These holes are also generally located on the template.
- PLASTER MOCK-UP: A hollow full sized model or imitation of an object made of plaster of paris. Built upon a framework of wood and wire.
- **PLATEN:** A flat bed or table incorporated in a machine or machine tool for the purpose of supporting and anchoring the work while it is undergoing any process of fabrication.
- **PUNCH.** of a die: The male portion of a die. A metal part is sheared out of a stock sheet because the punch forces the metal through the die and a shearing action exists between the edges of the punch and the die. Also a punch is the male portion of a forming or drawing die.

## \_\_ R \_\_

- RADIAL DRILL: A drill having a moveable head arranged so as to be moved over a large area by the operator and positioned over various holes which are to be drilled.
- **RELIEF RADIUS:** Small holes located at the intersection of two bends. Their purpose is to remove excessive metal at the intersection.
- RIGHT ANGLE: An angle equal to 90°.

## - S -

- SCRATCH COAT: A rough undercoat of plaster used when making a plaster mock-up.
- SCRIBE: A metal marking device.
- SCRIEVE BOARD: A sheet of wood or metal upon which the line results of various lofting operations are recorded in the form of contours and other measurable lines placed on or cut into the board.
- **SHEET METAL:** Metal of any thickness up to one-eighth inch. Metal thicker than one-eighth is termed plate.
- SKIN: The outer covering of monocoque or semi-monocoque structures.
- SPLINE: A flexible strip of some suitable material such as wood, metal, pyralin, plexiglass, celluloid, etc., which can be curved to form faired lines.
- SPRING BACK, metal: The angular amount by which a tempered or semihardened metal springs back after it has been bent through some specific angle. It must be allowed for when making bends with the power brake or when making form blocks and also when making form dies or drawing dies.
- STERIC ACID: Steric acid is a compound often used to coat portions of the frame of a plaster mock-up to prevent the plaster of paris from sticking to it.
- **STRINGER:** An internal longitudinal support for the skin in a monocoque fuselage, also used in the wings as a skin stiffener.

## - T -

**TANGENT HEIGHT:** The length of the side of a right triangle which is opposite the acute angle being considered.

TERNE PLATE: Ordinary soft steel sheet which has a surface coating of an alloy of lead (80%) and tin (20%). Terne plate is sometimes called tin plate.

TRANSFER PUNCH: See Duplicating Punch.

TRIAL FILLETS: Temporary fillets, usually rather rough and unfinished.

# BEND ALLOWANCES FOR U.S.S. GAGE FERROUS SHEET

| 5/16 | 93<br>93<br>93<br>93<br>93<br>93<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1/4  | .00849<br>.00968<br>.00958<br>.01012<br>.01106<br>.01175<br>.01175<br>.01339<br>.01339<br>.01502<br>.01502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 710.<br>710.<br>810.<br>810.         |
| 3/16 | .00691<br>.00745<br>.00800<br>.00809<br>.008063<br>.009063<br>.01018<br>.01127<br>.01181<br>.01189<br>.01395<br>.01396<br>.01396<br>.01396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .01671<br>.01726<br>.01780<br>.01835 |
| 5/32 | .00558<br>.00612<br>.00661<br>.00776<br>.00830<br>.00830<br>.00933<br>.00993<br>.01102<br>.01115<br>.01156<br>.01156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .01647<br>.01701<br>.01756<br>.01756 |
| .125 | 00424<br>006379<br>00658<br>006642<br>006642<br>00751<br>00751<br>00969<br>000969<br>001078<br>01132<br>01132<br>01132<br>01132<br>01132<br>01134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .01623<br>.01677<br>.01732<br>.01786 |
| .109 | .00358<br>.00412<br>.00467<br>.00563<br>.00630<br>.00739<br>.00739<br>.00739<br>.00902<br>.00907<br>.00129<br>.01120<br>.01120<br>.01130<br>.01130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .01610<br>.01665<br>.01719<br>.01774 |
| .094 | .00231<br>.00346<br>.00400<br>.00454<br>.00563<br>.00563<br>.00727<br>.00727<br>.00736<br>.00936<br>.00936<br>.01054<br>.01108<br>.01330<br>.01330<br>.01330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01598<br>.01653<br>.01707<br>.01762 |
| 870. | .00224<br>.00279<br>.00338<br>.00442<br>.00441<br>.00650<br>.00551<br>.00660<br>.00776<br>.00878<br>.00932<br>.00932<br>.01150<br>.01150<br>.01150<br>.01150<br>.01173<br>.011368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .01586<br>.01641<br>.01695<br>.01749 |
| .070 | .00164<br>.00218<br>.00273<br>.00327<br>.00382<br>.00436<br>.00659<br>.00659<br>.00763<br>.00763<br>.00817<br>.00817<br>.00817<br>.00817<br>.00936<br>.00135<br>.01199<br>.01136<br>.01362<br>.01362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .01580<br>.01634<br>.01689<br>.01743 |
| .063 | .00158<br>.00212<br>.00257<br>.00321<br>.00332<br>.00336<br>.00393<br>.00593<br>.00592<br>.00577<br>.00975<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.00976<br>.0 | .01574<br>.01628<br>.01683<br>.01737 |
| .056 | .00098<br>.00153<br>.00207<br>.00208<br>.00316<br>.00425<br>.00425<br>.00638<br>.00643<br>.00643<br>.00643<br>.00643<br>.00752<br>.00752<br>.01079<br>.01133<br>.01242<br>.01134<br>.01134<br>.01134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .01569<br>.01624<br>.01678<br>.01732 |
| .050 | 000093<br>000148<br>000267<br>000267<br>000346<br>000528<br>000528<br>000538<br>000747<br>000747<br>000910<br>001096<br>001123<br>01123<br>01123<br>01237<br>01237<br>01237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .01564<br>.01619<br>.01673<br>.01728 |
| .038 | 00084<br>00138<br>00247<br>002302<br>00302<br>00465<br>006119<br>00628<br>00628<br>00737<br>00737<br>00797<br>00955<br>001173<br>01128<br>01128<br>01128<br>01139<br>011445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .01554<br>.01609<br>.01663<br>.01718 |
| .034 | .00081<br>.00136<br>.00299<br>.00299<br>.00361<br>.00463<br>.006172<br>.00626<br>.00672<br>.00684<br>.00735<br>.00844<br>.00953<br>.00954<br>.00954<br>.01007<br>.01007<br>.01136<br>.01138<br>.01389<br>.01389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .01552<br>.01606<br>.01661<br>.01715 |
| .031 | .00079<br>.00133<br>.00188<br>.00297<br>.003297<br>.00519<br>.00674<br>.00674<br>.00673<br>.00773<br>.00773<br>.00773<br>.00773<br>.00773<br>.00773<br>.00773<br>.00774<br>.00773<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774<br>.00774      | .01550<br>.01604<br>.01658<br>.01713 |
| .028 | .000136<br>.00131<br>.00136<br>.00284<br>.00284<br>.00384<br>.00403<br>.00408<br>.00784<br>.00784<br>.00893<br>.01002<br>.01002<br>.01111<br>.01128<br>.01138<br>.01138<br>.01138<br>.01138<br>.01138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .01547<br>.01602<br>.01656<br>.01710 |
| H    | 1/32<br>3/32<br>1/16<br>3/32<br>3/16<br>1/4<br>9/32<br>5/16<br>1/32<br>3/8<br>1/32<br>1/32<br>1/32<br>1/32<br>1/32<br>1/32<br>1/32<br>1/32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7/8<br>29/32<br>15/16<br>31/32       |

R = inside radius of bend and Values given are based on the empirical formula (J01743R  $\pm$ .0078T) X No. of degrees. R = inside T = thickness of sheet in inches. Values given are Bend Allowance (B.A.) for 1° of the given radii X of the thickness of the metal. Values omitted from table are not to be used as the bends are too sharp for satisfactory production. (¥) <u>@</u>0

R = inside radius of bend

# BEND ALLOWANCES FOR B. & S. GAGE NON-FERROUS SHEET

|          |                                                                     | 480                                            | TST                                                        | 4ST                                                                          |
|----------|---------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|
| 3/16     | .00473<br>.00528<br>.00582<br>.00636                                | .00963<br>.00963<br>.00963                     | .01018<br>.01072<br>.01127<br>.01181<br>.01236<br>.01345   | 01454<br>01562<br>01567<br>01617<br>0167<br>01726<br>01780<br>01835<br>01839 |
| 5/32     | .00394<br>.00449<br>.00503                                          | .00564<br>.00721<br>.00776<br>.00830<br>.00884 | .00993<br>.01048<br>.01102<br>.01157<br>.01157<br>.01266   | .01429<br>.01484<br>.01538<br>.01593<br>.01647<br>.01701<br>.01756           |
| .128     | .00317<br>.00426<br>.00426<br>.00481<br>.00535                      | .00644<br>.00699<br>.00753<br>.00808<br>.00862 | .00971<br>.01025<br>.01080<br>.01133<br>.01189<br>.01298   | .01407<br>.01461<br>.01516<br>.01569<br>.01625<br>.01679<br>.01734           |
| 160.     | .00234<br>.00289<br>.00343<br>.00398<br>.00452                      | .00616<br>.00670<br>.00725<br>.00779<br>.00834 | .00943<br>.00997<br>.01051<br>.01106<br>.01160<br>.01269   | .01378<br>.01432<br>.01487<br>.01540<br>.01596<br>.01650<br>.01705           |
| .081     | .00226<br>.00281<br>.00335<br>.00390<br>.00444<br>.00499            | .00608<br>.00662<br>.00717<br>.00771<br>.00826 | .00935<br>.00989<br>.01043<br>.01098<br>.01152<br>.01261   | .01370<br>.01425<br>.01479<br>.01534<br>.01588<br>.01643<br>.01697           |
| .072     | .00165<br>.00220<br>.00274<br>.00328<br>.00383<br>.00437<br>.00492  | .00601<br>.00655<br>.00710<br>.00764<br>.00819 | .00928<br>.00982<br>.01037<br>.01091<br>.01146             | .01363<br>.01418<br>.01472<br>.01527<br>.01581<br>.01690<br>.01745           |
| .064     | .00159<br>.00213<br>.00268<br>.00322<br>.00377<br>.00431            | .00595<br>.00649<br>.00704<br>.00758<br>.00812 | .00921<br>.00976<br>.01030<br>.01083<br>.01139             | .01357<br>.01411<br>.01466<br>.01519<br>.01575<br>.01629<br>.01684           |
| .051     | .00149<br>.00203<br>.00258<br>.00312<br>.00367<br>.00476            | .00584<br>.00639<br>.00693<br>.00748<br>.00802 | .00966<br>.01020<br>.01073<br>.01129<br>.01183             | .01347<br>.01401<br>.01456<br>.01509<br>.01565<br>.01619<br>.01674           |
| .045     | .00144<br>.00199<br>.00253<br>.00253<br>.00362<br>.00362<br>.00417  | .00580<br>.00634<br>.00689<br>.00743<br>.00798 | .00907<br>.00961<br>.01016<br>.01070<br>.01125             | .01343<br>.01397<br>.01451<br>.01560<br>.01560<br>.01669                     |
| .040     | .00140<br>.00195<br>.00249<br>.00304<br>.00358<br>.00412<br>.00467  | .00576<br>.00630<br>.00685<br>.00739<br>.00794 | .00903<br>.00957<br>.01012<br>.01065<br>.01175<br>.01175   | .01338<br>.01392<br>.01447<br>.01501<br>.01556<br>.01616<br>.01665           |
| .032     | .00073<br>.00135<br>.00138<br>.00243<br>.00297<br>.00352<br>.00406  | .00570<br>.00624<br>.00679<br>.00733           | .00896<br>.00951<br>.01005<br>.01058<br>.01114<br>.01170   | .01332<br>.01386<br>.01441<br>.01550<br>.01664<br>01659<br>.01712            |
| .028     | .00077<br>.00131<br>.00186<br>.00240<br>.00295<br>.00349<br>.00403  | .00567<br>.00621<br>.00676<br>.00730<br>.00785 | .00894<br>.00948<br>.01002<br>.011057<br>.011166<br>.01150 | .01329<br>.01384<br>.01438<br>.01547<br>.01602<br>.01656<br>.01711           |
| .025     | .00074<br>.00129<br>.00183<br>.00238<br>.00292<br>.00347<br>.00401  | .00564<br>.00619<br>.00673<br>.00728           | .00891<br>.00946<br>.01000<br>.01109<br>.01164<br>.01218   | .01327<br>.01381<br>.01436<br>.01490<br>.01545<br>.01599<br>.01654           |
| .022     | .00072<br>.00126<br>.00135<br>.00235<br>.00234<br>.00338<br>.003507 | .00562<br>.00616<br>.00671<br>.00725           | .00889<br>.00943<br>.00998<br>.01107<br>.01161             | .01324<br>.01378<br>.01433<br>.01542<br>.01596<br>.01651                     |
| .020     | .00070<br>.00125<br>.00179<br>.00234<br>.00288<br>.00397<br>.00397  | .00560<br>.00615<br>.00669<br>.00724<br>.00778 | .00887<br>.00942<br>.00996<br>.011051<br>.01160<br>.01160  | .01323<br>.01378<br>.01432<br>.01486<br>.01541<br>.01595<br>.01650           |
| .016     | .00067<br>.00121<br>.00176<br>.00230<br>.00285<br>.00394<br>.00394  | .00557<br>.00612<br>.00666<br>.00721<br>.00775 | .00884<br>.00938<br>.00993<br>.01102<br>.01156<br>.01156   | .01320<br>.01374<br>.01429<br>.01483<br>.01538<br>.01592<br>.01646           |
| <b>-</b> | 1/32<br>1/16<br>3/32<br>1/8<br>5/32<br>5/32<br>3/16<br>1/4<br>9/32  | 5/16<br>11/32<br>3/8<br>13/32<br>7/16<br>15/32 | 1/2<br>17/32<br>9/16<br>19/32<br>5/8<br>21/16<br>23/32     | 3/4<br>25/32<br>13/16<br>27/32<br>7/8<br>29/32<br>15/16<br>31/32             |

Values given are based on the empirical formula (J01743R + .0078T) times No. of degrees. R and T = thickness of sheet in inches.

Values given are Bend Allowances (B.A.) for 1° of the given radii X the thickness of the metal.

Values omitted from table are not to be used as the bends are too sharp for satisfactory production. All values on this page are O.K. for 17SO.

Values below the line are to be used for 24SO, 17ST, 24ST and 24SRT as noted.

|                                                    |      |      |       |       |       | -     |       |        |       | -+    |       | _     |       |       | _     |       | _     | .9657 |        | _      | _      | $\vdash$ | _      |        |        |        |        |        |        |        | _      | _      |        | _      | - for soft dural and steel                  |
|----------------------------------------------------|------|------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------------------------------------|
|                                                    |      | .250 | .2241 | .2736 | .3222 | .3717 | .4203 | .4698  | ,5134 | .5679 | .6165 | 9999  | .7146 | .7641 | .8127 | .8622 | 9108  | .9603 | 1,0089 | 1.0575 | 1.1070 | 1,1556   | 1.2015 | 1.2537 | 1.3032 | 1,3518 | 1.4013 | 1.5499 | 1,4994 | 1.5489 | 1.5975 | 1.6461 | 1.6911 | 1.7442 | of dural                                    |
|                                                    |      | .187 | .1800 | .2295 | .2781 | .3276 | .3762 | .4257  | 4743  | .5238 | .5724 | .6219 | .6705 | .7200 | 989/  | .8172 | .8667 | .9153 | .9648  | 1.0134 | 1.0611 | 1.1115   | 1.1601 | 1.2096 | 1.2573 | 1.3077 | 1.3563 | 1.4058 | 1,4535 | 1.5039 | 1.5543 | 1.6020 | 1.6497 | 1,7001 | for to                                      |
|                                                    |      | .182 | .1764 | .2259 | .2745 | .3240 | .3726 | ,4221  | .4707 | .5202 | ,5628 | .6183 | 6999  | .7164 | .7650 | .8136 | .8631 | .9117 | .9612  | 1.0098 | 1.0593 | 1.1079   | 1.1574 | 1.2060 | 1.2555 | 1.3050 | 1.3536 | 1.4022 | 1.4508 | 1,5003 | 1.5489 | 1.5984 | 1.6470 | 1.6965 |                                             |
| STEEL)                                             | .125 | .129 | .1386 | 1881. | .2367 | .2853 | .3348 | .3834  | .4329 | .4815 | .5310 | .5796 | .6291 | .6777 | .7272 | 77.28 | .8253 | .8739 | .9225  | .9720  | 1.0197 | 1.0701   | 1.1205 | 1.1682 | 1.2159 | 1.2663 | 1.3149 | 1.3644 | 1.4121 | 1.4625 | 1.5111 | 1.5606 | 1,6083 | 1.6587 | line.                                       |
| METAL BEND ALLOWANCE CHART FOR 90° (DURAL & STEEL) | 160' | .094 | .1125 | 1620  | .2106 | .2601 | .3087 | 3582   | .4068 | .4563 | 1048  | ,5544 | .6030 | .6525 | 1107. | .7506 | .7992 | .8487 | .8973  | .9459  | .9945  | 1.0440   | 1.0926 | 1.1421 | 1.1896 | 1.2402 | 1.2888 | 1.3383 | 1.3860 | 1.4364 | 1,4850 | 1.5345 | 1.5822 | 1.6326 | nce below                                   |
| FOR 90° (I                                         |      | .081 | .1053 | .1548 | .2034 | .2529 | .3015 | 3510   | 3998  | °4500 | .4977 | .5672 | 5953  | .6453 | 6833  | .7434 | .7677 | .8415 | 1068.  | 9336   | .9882  | 1.0368   | 1,0863 | 1.1349 | 1.1844 | 1.2330 | 1.2825 | 1,3311 | 1.3806 | 1,4292 | 1.4787 | 1.5273 | 1.5768 | 1.6254 | m allower                                   |
| E CHART                                            | .063 | .064 | 9060  | ,1431 | 7161. | 2412  | 2895  | 2393   | .3879 | .4374 | 0985  | .5355 | .5841 | .6330 | .6822 | .7308 | .7803 | .8289 | .8811  | .9270  | .9747  | 1.0251   | 1.0737 | 1,1232 | 1.1709 | 1.2213 | 1.2699 | 1.3194 | 1.3671 | 1,4175 | 1.4661 | 1.5156 | 1.5633 | 1.6137 | or hard dural Minimim allowance below line. |
| LOWANC                                             | 020  | 150. | .0846 | .1341 | 1827  | .2322 | .2808 | .3303  | .3739 | .4284 | 0774  | .5283 | .5751 | ,6237 | .6732 | .7218 | .7713 | .8199 | .8694  | .9180  | .9657  | 1.0161   | 1.0647 | 1,1142 | 1.1619 | 1,2123 | 1.2609 | 1.3104 | 1.3581 | 1.4085 | 1.4571 | 1.5066 | 1,5543 | 1.6047 | or hard du                                  |
| L BEND AI                                          | .038 | .040 | .0774 | 1230  | .1755 | .2247 | 2736  | .325.5 | 3700  | 4203  | .4609 | .5184 | .5670 | .6165 | .6651 | .7146 | .7632 | .8127 | .8613  | 8016   | .9585  | 1.0089   | 1.0575 | 1.1070 | 1.1547 | 1.2042 | 1.2528 | 1.3023 | 1.3509 | 1.4004 | 1.4490 | 1.4985 | 1.5462 | 1.5966 | ا                                           |
| META                                               | .03  | .032 | 1170. | .1215 | .1692 | .2187 | .7673 | .3160  | 3654  | .4149 | £99°. | .5130 | .5616 | .6111 | .6597 | .7083 | .7578 | .8064 | .8559  | .9045  | .9522  | 1.0026   | 1.0530 | 1,1007 | 1.1484 | 1.1988 | 1.2474 | 1.2969 | 1.3446 | 1.3950 | 1.4436 | 1.4922 | 1.5408 | 1.5912 |                                             |
|                                                    | 028  | 623  | .0648 | .1179 | 1,65  | .2160 | .2646 | 3141   | .3627 | .4122 | 4608  | .5103 | 5885  | 6075  | .6570 | .7056 | .7551 | .8037 | .8532  | 9018   | .9495  | 9886     | 1.0494 | 1,0980 | 1.1457 | 1.1961 | 1.2447 | 1.2942 | 1,3419 | 1.3932 | 1.4409 | 1.4895 | 1,5381 | 1.5885 | below line                                  |
|                                                    | 023  | 0.75 | 0657  | .1152 | .1647 | 2133  | .2625 | 3116.  | 5090  | .4095 | .4550 | .5076 | .5571 | .6057 | .6552 | .7038 | .7524 | 8019  | ,8505  | 0006   | .9486  | .9981    | 1.0467 | 1.0962 | 1.1448 | 1.1943 | 1.2429 | 1.2924 | 1.3410 | 1,3905 | 1.4400 | 1.4886 | 1,5372 | 1.5867 | I edend: Minimum allowance below line       |
|                                                    | 000  | 022  | .0648 | 1134  | 1320  | 2115  | 2610  | 3008   | 3562  | 4086  | 4563  | 5058  | 5544  | 6039  | .6525 | .7020 | .7506 | .8001 | .8487  | .8982  | .9459  | .9963    | 1,0449 | 1.0944 | 1,1421 | 1.1916 | 1.2402 | 1.2897 | 1,3383 | 1.3878 | 1.4364 | 1.4859 | 1.5345 | 1.5840 | Minimim                                     |
|                                                    | F    | ,    | 1/35  | 1/16  | 2/30  | 6     | 2/3   | · ·    | - 7.3 |       | 06/0  | 95/5  | 2,2   | 7/5   | 2, 61 | 91/2  | 15/32 | 1/2   | 17/32  | 9/16   | 19/32  | 5/8      | 21/32  | 11/16  | 23/32  | 3/4    | 25/32  | 13/16  | 27/32  | 2/8    | 29/32  | 15/16  | 31/32  |        | I agand.                                    |

Legend: Minimum allowance below line —

## DECIMAL AND METRIC EQUIVALENTS OF PARTS OF AN INCH

| Fractional<br>Inches          | Decimal<br>Inches | Millimeters | Fractional<br>Inches          | Decimal<br>Inches | Millimeters |
|-------------------------------|-------------------|-------------|-------------------------------|-------------------|-------------|
| <sup>1</sup> ⁄64              | .015625           | 0.39687     | $33_{\!/\!64}$                | .515625           | 13.09692    |
| 1/32                          | .03125            | 0.79375     | 17/32                         | .53125            | 13.49380    |
| $\frac{3}{64}$                | .046875           | 1.19062     | $\frac{35}{64}$               | .546875           | 13.89067    |
| ½16                           | .0625             | 1.58750     | 9/16                          | .5625             | 14.28755    |
| 5/64                          | .078125           | 1.98438     | $\frac{37}{64}$               | .578125           | 14.68443    |
| $\frac{3}{32}$                | .09375            | 2.38125     | $^{19}\!\!/_{\!32}$           | .59375            | 15.08130    |
| 7/64                          | .109375           | 2.77813     | $^{39}\!\!/_{\!64}$           | .609375           | 15.47818    |
| 1/8                           | .125              | 3.17501     | 5/8                           | .625              | 15.87506    |
| $\frac{9}{64}$                | .140625           | 3.57188     | 41/64                         | .640625           | 16.27193    |
| $\frac{5}{32}$                | .15625            | 3.96876     | $21/_{\!\!32}$                | .65625            | 16.66881    |
| $^{11}\!/_{\!64}$             | .171875           | 4.36564     | $^{43}\!\!/_{\!64}$           | .671875           | 17.06569    |
| 3/16                          | .1875             | 4.76251     | <sup>1</sup> 1⁄ <sub>16</sub> | .6875             | 17.46256    |
| 13/64                         | .203125           | 5.15939     | $^{45}\!\!/_{\!32}$           | .703125           | 17.85944    |
| <sup>7</sup> / <sub>32</sub>  | .21875            | 5.55627     | 23/32                         | .71875            | 18.25632    |
| 15/64                         | .234375           | 5.95314     | 47/64                         | .734375           | 18.65319    |
| 1/4                           | .25               | 6.35002     | $\frac{3}{4}$                 | .75               | 19.05007    |
| $^{17}\!\!/_{\!64}$           | .265625           | 6.74690     | $^{49}\!\!/_{\!64}$           | .765625           | 19.44695    |
| $\frac{9}{32}$                | .28125            | 7.14377     | $^{25}\!/_{32}$               | .78125            | 19.84382    |
| $^{19}\!\!/_{\!64}$           | .296875           | 7.54065     | $^{51\!/\!64}$                | .796875           | 20.24070    |
| 5/16                          | .3125             | 7.93753     | <sup>1</sup> 3/ <sub>16</sub> | .8125             | 20.63758    |
| <sup>21</sup> ⁄ <sub>64</sub> | .328125           | 8.33440     | 53/64                         | .828125           | 21.03445    |
| 11/32                         | .34375            | 8.73128     | 27/32                         | .84375            | 21.43133    |
| $^{23}_{64}$                  | .359375           | 9.12816     | 55/64                         | .859375           | 21.82821    |
| 3/8                           | .375              | 9.52503     | 7/8                           | .875              | 22.22508    |
| $^{25}\!\!/_{\!64}$           | .390625           | 9.92191     | 57 <sub>/64</sub>             | .890625           | 22.62196    |
| 13/32                         | .40625            | 10.31879    | $^{29}\!/_{\!32}$             | .90625            | 23.01884    |
| 27/64                         | .421875           | 10.71566    | $^{59}\!\!/_{\!64}$           | .921875           | 23.41571    |
| 7/16                          | .4375             | 11.11254    | 15/16                         | .9375             | 23.81259    |
| 29/64                         | .453125           | 11.50942    | $^{61}\!\!/_{\!64}$           | .953125           | 24.20947    |
| 15/32                         | .46875            | 11.90629    | 31/32                         | .96875            | 24.60634    |
| 31/64                         | .484375           | 12.30317    | 63/64                         | .984375           |             |
| 1/2                           | .5                | 12.70005    | 1                             | 1.00000           | 25.40010    |
|                               |                   |             |                               |                   |             |

## SET-BACK or "J" CHART



CLOSED BEVEL

OPEN BEVEL

-MOLD LINE

J is the amount of set back. It is equal to the difference in the length of the metal that would be required to form the angle DGE and the length of the metal in the arc C. It is the amount to be subtracted from the sum of the flange dimension.

The developed width of the flat strip from which the angle is formed is (A+B)-J.



### THICKNESS

130 120 .100 .000 .080 Ω70 .060 .050 Ω40 .030 Ω20 .010

HOW TO USE SET-RACK CHART: (Example) Metal thickness .050 bent on a radius of 1/8 through a closed angle of 15°.

Lay a straight edge across the chart, connecting points of 1/8" radius and .050 metal thickness. Follow the line of 15° closed bevel over to its intersection with the straight edge and read .190. The amount of J nearest the intersection is the amount of set-back.

NOTE: A or B mimus 1/2 J indicates the location of the center of the bend from the end of the metal.

Set-back is subtracted only once for each bend.

## COMBINED SET BACK AND BEND ALLOWANCE CHART



DRILL SIZES

When specifying drilled holes give nominal drill size and decimal equivalent to three places.

| SIZE     | DECIMAL<br>EQUIV. | SIZE  | DECIMAL<br>EQUIV. | SIZE  | DECIMAL<br>EQUIV. | SIZE    | DECIMAL<br>EQUIV. |
|----------|-------------------|-------|-------------------|-------|-------------------|---------|-------------------|
| 80       | .0135             | 7/64  | .1094             | 17/64 | .2656             | 49/64   | .7656             |
| 79       | .0145             | 35    | .1100             | Н Н   | .2660             | 25/32   | .7812             |
| 1/64     | .0156             | 34    | .1110             | 1     | .2720             | 51/64   | •7968             |
| 78       | .0160             | 33    | .1130             | J     | .2770             | 13/16   | .8125             |
| 77       | .0180             | 32    | .1160             | K     | .2810             | 53/64   | .8281             |
| 76       | .0200             | 31    | .1200             | 9/32  | .2812             | 27/32   | .8437             |
| 75       | .0210             | 1/8   | .1250             | Ĺ     | .2900             | 55/64   | .8593             |
| 74       | .0225             | 30    | .1285             | М     | .2950             | 7/8     | .8750             |
| 73       | .0240             | 29    | .1360             | 19/64 | .2969             | 57/64   | .8906             |
| 72       | .0250             | 28    | .1405             | N     | .3020             | 29/32   | .9062             |
| 71       | .0260             | 9/64  | .1406             | 5/16  | .3125             | 59/64   | -9218             |
| 70       | .0280             | 27    | .1440             | 0     | .3160             | 15/16   | .9375             |
| 69       | .0292             | 26    | .1470             | P     | .3230             | 61/64   | .9531             |
| 68       | .0310             | 25    | .1495             | 21/64 | .3281             | 31/32   | -9687             |
| 1/32     | .0313             | 24    | .1520             | Q     | .3320             | 63/64   | .9843             |
| 67       | .0320             | 23    | .1540             | R     | .3390             |         | 1.0000            |
| 66       | .0330             | 5/32  | .1562             | 11/32 | •3437             | 1 1/64  | 1.0156            |
| 65       | .0350             | 22    | .1570             | \$    | .3480             | 1 1/32  | 1.0312            |
| 64       | .0360             | 21    | .1590             | T     | .3580             | 1 3/64  | 1.0468            |
| 63       | .0370             | 20    | .1610             | 23/64 | .3594             | 1 1/16  | 1.0625            |
| 62       | .0380             | 19    | .1660             | U     | .3680             | 1 5/64  | 1.0781            |
| 61       | .0390             | 18    | .1695             | 3/8   | .3750             | 1 3/32  | 1.0937            |
| 60       | .0400             | 11/64 | .1719             | V     | .3770             | 1 7/64  | 1,1093            |
| 59       | .0410             | 17    | .1730             | W     | .3860             | 1 1/8   | 1.1250            |
| 58       | .0420             | 16    | .1770             | 25/64 | .3906             | 1 9/64  | 1.1406            |
| 57       | .0430             | 15    | .1800             | X     | .3970             | 1 5/32  | 1.1562            |
| 56       | .0465             | 14    | .1820             | Y     | .4040             | 1 11/64 | 1.1718            |
| 3/64     | .0469             | 13    | .1840             | 13/32 | .4062             | 1 3/16  | 1.1875            |
| 55<br>54 | .0520             | 3/16  | .1875             | 27/64 | .4130             | 1 7/32  | 1.2031            |
| 53       | .0595             | 11    | .1910             | 7/16  | .4375             | 1 15/64 | 1,2343            |
| 1/16     | .0625             | 10    | .1935             | 29/64 | .4531             | 1 1/4   | 1.2500            |
| 52       | .0635             | 9     | .1960             | 15/32 | .4687             | 1 9/32  | 1.2812            |
| 51       | .0670             | 8     | .1990             | 31/64 | .4844             | 1 5/16  | 1.3125            |
| 50       | .0700             | 7     | .2010             | 1/2   | .5000             | 1 11/32 | 1.3437            |
| 49       | .0730             | 13/64 | .2031             | 33/64 | .5156             | 1 3/8   | 1.3750            |
| 48       | .0760             | 6     | .2040             | 17/32 | .5312             | 1 13/32 | 1.4062            |
| 5/64     | .0781             | 5     | .2055             | 35/64 | .5468             | 1 7/16  | 1.4375            |
| 47       | .0785             | 4     | .2090             | 9/16  | .5625             | 1 15/32 | 1,4687            |
| 46       | .0810             | 3     | .2130             | 37/64 | .5781             | 1 1/2   | 1.5000            |
| 45       | .0820             | 7/32  | .2187             | 19/32 | .5937             | 1 17/32 | 1.5312            |
| 44       | .0860             | 2     | .2210             | 39/64 | .6093             | 1 9/16  | 1.5625            |
| 43       | .0890             | !     | .2280             | 5/8   | .6250             | 1 19/32 | 1.5937            |
| 42       | .0935             | Α,    | .2340             | 41/64 | .6406             | 1 5/8   | 1.6250            |
| 3/32     | .0937             | 15/64 | .2344             | 21/32 | .6562             | 1 21/32 | 1,6562            |
| 41       | .0960             | В     | .2380             | 43/64 | .6718             | 1 11/16 | 1.6875            |
| 40       | .0980             | C     | .2420             | 11/16 | .6875             | 1 23/32 | 1.7187            |
| 39       | .0995             | D     | .2460             | 45/64 | .7031             | 1 3/4   | 1.7500            |
| 38       | .1015             | E-1/4 | .2500             | 23/32 | .7187             |         |                   |
| 37       | .1040             | F     | .2570             | 47/64 | .7343             |         | ļ                 |
| 36       | .1065             | G     | .2610             | 3/4   | .7500             | L       |                   |

# DECIMAL EQUIVALENTS



0°

## READ DOWN

ı٥

| Γ′       | sin            | tan            | cot                | cos             |          | 1  | 7        | sin        | tan            | cot                | cos        |                |
|----------|----------------|----------------|--------------------|-----------------|----------|----|----------|------------|----------------|--------------------|------------|----------------|
| 0        | .00000         | .00000         | - &                | 1.0000          | 60       | 1  | 0        | .01745     | . 01746        | 57. 290            | . 99985    | 60             |
| 1        | 029            | 029            | 3437. 7            | 000             | 59       | 1  | 1        | 774        | 775            | 56. 351            | 984        | 59             |
| 2        | 058            | 058            | 1718. 9            | 000             | 58       | 1  | 2        | 803        | 804            | 55. 442            | 984        | 58             |
| 3        | 087            | 087            | 1145. 9            | 000             | 57       | l  | 3        | 832        | 833            | 54. 561            | 983        | 57             |
| 4        | 116            | 116            | 859. 44            | 000             | 56       | J  | 4        | 862        | 862            | 53. 709            | 983        | 56             |
| 5        | 145            | 145            | 687. 55            | 000             | 55       | 1  | 5        | 891        | 891            | 52, 882            | 982        | 55             |
| 6        | 175            | 175            | 572. 96            | 000             | 54       | ı  | 6        | 920        | 920            | 52, 081            | 982        | 54             |
| 7        | 204            | 204            | 491. 11            | 000             | 53       | L  | 7        | 949        | 949            | 51. 303            | 981        | 53             |
| 8        | 00233          | . 00233        | 429. 72            | 000             | 52       | 1  | 8        | .01978     | .01978         | 50. 549            | 980        | 52             |
| 9        | 262            | 262            | 381. 97            | 000             | 51       |    | 9        | .02007     | . 02007        | 49. 816            | 980        | 51             |
| 10       | 291            | 291            | 343. 77            | 1.0000          | 50       | L  | 10       | 036        | 036            | 49. 104            | . 99979    | 50             |
| 11       | 320            | 320            | 312. 52            | • <b>99</b> 999 | 49       | ı  | 11       | 065        | 066            | 48. 412            | 979        | 49             |
| 12<br>13 | 349            | 349<br>378     | 286. 48            | 999             | 48       | L  | 12       | 094        | 095            | 47. 740            | 978        | 48             |
| 14       | 378<br>407     | 378<br>407     | 264. 44<br>245. 55 | 999             | 47<br>46 | ı  | 13<br>14 | 123<br>152 | 124            | 47. 085            | 977        | 47             |
|          |                |                |                    | 999             |          | 1  |          |            | 153            | 46. 449            | 977        | 46             |
| 15       | 436            | 436            | 229. 18            | 999             | 45       | 1  | 15       | 181        | 182            | 45. 829            | 976        | 45             |
| 16<br>17 | 465<br>. 00495 | 465            | 214. 86            | 999             | 44       | 1  | 16       | 211        | 211            | 45. 226            | 976        | 44             |
| 18       | 524            | . 00495<br>524 | 202. 22<br>190. 98 | 999<br>999      | 43<br>42 | 1  | 17 18    | 240<br>269 | . 02240        | 44. 639            | 975        | 43             |
| 19       | 553            | 553            | 180. 93            | 999             | 41       | ı  | 19       | 298        | 269<br>298     | 44. 066            | 974        | 42             |
| 20       | 582            | 582            | 171. 89            | . 99998         | 40       | 1  | 20       | . 02327    |                | 43. 508            | 974        | 41             |
| 21       | 611            | 611            | 163. 70            | 998             | 39       | ı  | 21       | 356        | 328            | 42. 964            | . 99973    | 40             |
| 22       | 640            | 640            | 156. 26            | 998             | 38       | 1  | 22       | 385        | 357<br>386     | 42. 433<br>41. 916 | 972        | 39             |
| 23       | 669            | 669            | 149. 47            | 998             | 37       | ı  | 23       | 414        | 415            | 41. 411            | 972        | 38             |
| 24       | 698            | 698            | 143. 24            | 998             | 36       | l  | 24       | 443        | 444            | 40. 917            | 971<br>970 | 37             |
| 25       | . 00727        | . 00727        | 137. 51            | 997             | 35       | 1  | 25       | 472        | 473            |                    |            | 36             |
| 26       | 756            | 756            | 132. 22            | 997             | 34       | ı  | 26       | 501        | . 02502        | 40. 436<br>39. 965 | 969        | 35             |
| 27       | 785            | 785            | 127. 32            | 997             | 33       | ı  | 27       | 530        | 531            | 39. 506            | 969        | 34             |
| 28       | 814            | 815            | 122. 77            | 997             | 32       | ı  | 28       | 560        | 560            | 39. 057            | 968<br>967 | 33<br>32       |
| 29       | 844            | 844            | 118. 54            | 996             | 31       | l  | 29       | 589        | 589            | 38. 618            | 966        | 31             |
| 30       | 873            | 873            | 114. 59            | . 99996         | 30       | 1  | 30       | . 02618    | 619            | 38. 188            | . 99966    |                |
| 31       | 902            | 902            | 110. 89            | 996             | 29       | 1  | 31       | 647        | 648            | 37. 769            | 965        | 30<br>29       |
| 32       | 931            | 931            | 107. 43            | 996             | 28       | ı  | 32       | 676        | 677            | 37. 358            | 964        | 28             |
| 33       | 960            | 960            | 104. 17            | 995             | 27       | ı  | 33       | 705        | 706            | 36. 956            | 963        | 27             |
| 34       | .00989         | .00989         | 101. 11            | 995             | 26       | ١  | 34       | 734        | 735            | 36. 563            | 963        | 26             |
| 35       | .01018         | .01018         | 98. 218            | 995             | 25       | 1  | 35       | 763        | . 02764        | 36, 178            | 962        | 25             |
| 36       | 047            | 047            | 95. 489            | 995             | 24       |    | 36       | 792        | 793            | 35. 801            | 961        | 24             |
| 37       | 076            | 076            | 92. 908            | 994             | 23       | 1  | 37       | . 02821    | 822            | 35. 431            | 960        | 23             |
| 38       | 105            | 105            | 90. 463            | 994             | 22       | 1  | 38       | 850        | 851            | 35. 070            | 959        | 22             |
| 39       | 134            | 135            | 88. 144            | 994             | 21       | 1  | 39       | 879        | 881            | 34. 715            | 959        | 21             |
| 40       | 164            | 164            | 85. 940            | . 99993         | 20       | l  | 40       | 908        | 910            | 34. 368            | . 99958    | 20             |
| 41       | 193            | 193            | 83. 844            | 993             | 19       | ı  | 41       | 938        | 939            | 34. 027            | 957        | 19             |
| 42<br>43 | 222            | 222            | 81. 847            | 993             | 18       | l  | 42       | 967        | 968            | 33. 694            | 956        | 18             |
| 43       | . 01251<br>280 | 251<br>. 01280 | 79. 943            | 992             | 17       | l  | 43       | .02996     | . 02997        | 33. 366            | 955        | 17             |
| 45       |                |                | 78. 126            | 992             | 16       | ١. | 44       | . 03025    | . 03026        | 33. 045            | 954        | 16             |
| 46       | 309<br>338     | 309            | 76. 390            | 991             | 15       |    | 45       | 054        | 055            | 32. 730            | 953        | 15             |
| 47       | 367            | 338<br>367     | 74. 729<br>73. 139 | 991             | 14       |    | 46       | 083        | 084            | 32. 421            | 952        | 14             |
| 48       | 396            | 396            | 71. 615            | 991<br>990      | 13<br>12 | ı  | 47       | 112        | 114            | 32. 118            | 952        | 13             |
| 49       | 425            | 425            | 70. 153            | 990             | 11       |    | 48<br>49 | 141<br>170 | 143            | 31. 821            | 951        | 12             |
| 50       | 454            | 455            | 68. 750            | . 99989         | 10       |    | 50       |            | 172            | 31. 528            | 950        | 11             |
| 51       | 483            | 484            | 67. 402            | 989             | 10       |    | 50<br>51 | 199        | 201            | 31. 242            | . 99949    | 10             |
| 52       | . 01513        | . 01513        | 66. 105            | 989             | 8        |    | 52       | . 03257    | 230<br>. 03259 | 30. 960            | 948        | 9              |
| 53       | 542            | 542            | 64. 858            | 988             | 7        |    | 53       | 286        | 288            | 30. 683<br>30. 412 | 947        | 8              |
| 54       | 571            | 571            | 63. 657            | 988             | 6        |    | 54       | 316        | 317            | 30. 412            | 946        | 7              |
| 55       | 600            | 600            | 62. 499            | 987             | 5        |    | 55       | 345        | 346            |                    | 945        | 6              |
| 56       | 629            | 629            | 61. 383            | 987             | 4        | ı  | 56       | 374        | 376            | 29. 882<br>29. 624 | 944        | 5              |
| 57       | 658            | 658            | 60. 306            | 986             | 3        | П  | 57       | 403        | 405            | 29. 024            | 943        | 4              |
| 58       | 687            | 687            | 59. 266            | 986             | 2        | П  | 58       | 432        | 434            | 29. 122            | 942<br>941 | 3              |
| 59       | 716            | 716            | 58. 261            | 985             | ī        | П  | 59       | 461        | 463            | 28. 877            | 941        | 2              |
| 60       | . 01745        | . 01746        | <b>57.</b> 290     | . 99985         | 0        |    | 60       | . 03490    | . 03492        | 28. 636            | . 99939    | ō              |
|          | cos            | cot            | tan                | sin             | ,        |    |          | COS        | cot            | tan                | sin        | <del>,</del> " |
|          |                |                |                    |                 |          |    |          |            | - 100          |                    | OYTE       |                |

2°

## READ DOWN

3°

| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ′           | sin | tan | cot | cos |          |   | ′  | sin     | tan     | cot    | cos     |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-----|-----|-----|----------|---|----|---------|---------|--------|---------|----|
| 1 5199 5211 .3999 938 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0           |     |     |     |     |          |   | 0  | . 05234 | . 05241 | 19.081 |         | 60 |
| 2 548 547 5590 28. 166 937 58 2 2 992 299 371 880 58 58 4 606 609 .712 935 56 4 3 331 328 .756 855 58 58 56 6 664 669 .712 935 56 4 355 377 .666 857 56 56 664 664 667 .271 933 54 5 5 379 387 .566 858 58 7 666 684 667 .271 933 54 5 5 379 387 .566 858 58 7 669 896 27 .057 938 7 387 .566 858 58 7 669 896 27 .057 938 7 696 857 56 8 8 58 7 6 8 6 8 57 56 8 8 58 7 8 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |     |     |     |     |          |   |    | 263     | 270     |        |         |    |
| 3         57/1         606         609         712         936         67         3         3211         328         768         858         57         56         66         638         .490         994         55         6         357         387         .664         855         55         6         379         387         .664         855         55         5         379         387         .664         855         55         5         379         387         .664         855         55         6         408         416         444         385         55         5           6         664         667         693         696         27.087         933         52         8         463         444         368         852         55         5           9         03752         754         6.837         930         51         9         05405         0.0503         171         349         51           11         810         812         232         99929         50         10         524         533         18.076         69           11         839         852         264         922         44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |     |     |     |     |          |   |    |         | 299     |        |         |    |
| 4         6006         6009         .712         9935         56         4         350         357         666         557         56           6         664         667         .271         933         54         6         408         416         .464         854         54           7         693         696         67         .271         933         54         6         408         416         .464         834         54           8         723         .03725         26.845         931         52         8         466         474         288         851         52           10         781         733         .432         .99929         50         10         524         84         468         49         15           11         810         812         .230         927         49         11         553         562         17         980         846         49           12         839         842         24         1         4         640         49           14         897         900         .462         9923         45         15         669         678         811<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |     |     |     |          |   |    | 321     | 328     | . 768  |         |    |
| 6         6634         667         271         993         54         6         408         464         555         55         57         464         555         55         57         464         555         55         58         7         464         554         552         53         8         723         10         781         754         6.87         930         51         9         0.5495         .05503         171         849         51           10         781         733         432         .99929         50         10         524         533         18,075         99847         50           11         810         812         .230         9927         49         11         555         562         179         98         44         44         887         990         462         992         44         14         640         640         702         98         44         44         887         990         42         992         44         14         640         640         702         884         43         18         640         452         992         44         16         669         708         821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4           |     |     |     |     |          |   | 4  | 350     | 357     |        |         |    |
| 6 664 667 27.0 938 54 6 408 416 464 854 54 7 7 693 696 27.0 57 932 53 7 437 445 366 852 53 8 723 \ 80752 5754 637 930 51 9 05495 05503 171 849 51 10 781 783 -322 -998 50 10 524 533 18.075 99847 50 11 810 812 230 927 49 11 553 562 17.9 80 846 49 11 2 839 842 26.031 926 48 12 582 591 886 844 48 13 868 871 25.835 925 47 13 611 620 793 842 47 14 897 900 642 924 46 14 640 649 702 841 46 15 926 929 -452 294 46 14 640 649 702 841 46 15 926 929 -452 294 46 14 640 649 702 841 46 15 926 929 -452 294 46 14 660 640 649 702 841 46 15 926 929 -452 294 46 14 660 640 649 702 841 46 17 03884 03987 25.080 921 43 17 .05727 737 431 838 44 18 .04013 .04016 24.888 919 42 18 756 .05768 .343 834 42 19 042 046 .719 918 41 19 785 785 785 256 833 41 19 042 046 .719 918 41 19 785 785 785 256 833 41 22 100 104 .368 916 39 21 844 854 17.084 829 39 22 129 133 .906 915 33 22 873 883 16.999 827 38 82 21 229 129 133 .906 915 33 22 873 883 16.999 827 38 82 21 229 129 133 .906 915 33 22 873 883 16.999 827 38 82 21 229 129 133 .906 915 38 22 873 883 16.999 827 38 82 21 229 129 133 .906 915 38 22 873 883 16.999 827 38 82 21 229 24 6 .04250 .532 910 34 26 .05899 .05999 668 821 34 22 22 24 6 .04250 .532 910 34 26 .05899 .05999 688 821 34 22 23 29 333 3337 22.058 911 35 25 909 23 27 .06018 .06029 .587 819 33 29 333 333 23.058 912 86 24 931 990 912 86 24 931 991 84 832 824 36 829 39 333 333 23.058 912 86 24 931 990 912 86 24 931 991 84 832 824 36 82 39 822 82 83 84 84 84 84 84 84 84 84 84 84 84 84 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |     |     |     |     | 55       |   | 5  | 379     | 387     | . 564  | 855     |    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |     |     |     |     |          |   |    | 408     |         |        |         |    |
| 8         723         .03725         268.445         931         52         8         466         574         .268         851         52           10         781         783         .432         .9992         50         10         524         533         18.075         .99847         50           11         810         812         .230         927         49         11         553         562         17.980         846         49         51         258         591         18.075         .99847         50           12         889         842         26.081         926         48         12         582         591         886         844         48         12         582         591         884         484         48         14         640         640         640         702         841         46         640         640         702         842         44         16         698         708         521         838         44         17         03984         03987         25.08         991         43         17         05727         737         431         834         42         19         994         42         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |     |     |     |     |          |   | 7  | 437     | 445     |        |         |    |
| To   To   To   To   To   To   To   To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |     |     |     |     |          |   |    | 466     | 474     | . 268  |         |    |
| 11         810         812         2.30         927         49         11         553         562         17.980         844         49           12         839         842         26.031         926         48         12         582         591         886         844         48           13         886         8711         25.835         925         47         13         611         620         703         842         47           15         926         929         452         923         45         16         609         708         609         606         669         678         611         820         41         46         609         708         521         838         44         14         60         698         708         521         838         44         16         609         708         521         838         44         18         609         708         521         838         44         18         785         521         838         44         18         785         521         838         44         18         785         521         838         44         18         785         521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9           |     |     |     | 930 | 51       |   | 9  | . 05495 | . 05503 | . 171  | 849     | 51 |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |     |     |     |     |          |   | 10 | 524     | 533     | 18.075 | . 99847 | 50 |
| 13         868         871         25,835         925         47         13         611         620         .793         842         47           15         926         929         924         46         14         640         649         .702         841         47           16         935         958         926         922         44         16         698         708         521         838         44           17         .03984         .03987         25, 080         991         43         17         .05727         .737         .431         886         43           18         .04013         .04016         24, 898         919         42         18         .756         .05766         .342         834         42           20         071         075         .542         .99917         40         20         814         824         .169         .99831         40           21         100         104         .368         916         38         21         844         854         17.08         829         39           22         17         201         695         911         36         24 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>553</td> <td>562</td> <td>17.980</td> <td>846</td> <td>49</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |     |     |     |     |          |   |    | 553     | 562     | 17.980 | 846     | 49 |
| 14         887         990         6.42         924         46         14         640         649         702         841         46           16         926         929         452         923         45         15         669         678         611         838         44           17         0.3984         0.3987         25.080         921         43         17         .05727         737         481         838         44           18         .04013         .04016         24.989         919         42         18         756         .05766         .343         834         42           19         042         046         .719         918         41         19         785         .795         .256         833         41           20         071         075         .542         .9917         40         20         814         824         169         .9831         44           21         100         104         .368         916         39         21         844         824         17         .9983         31           22         129         133         196         915         35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |     |     |     |     |          |   |    | 582     | 591     | . 886  | 844     | 48 |
| The color of the |             |     |     |     |     |          | ш |    | 611     | 620     | . 793  | 842     | 47 |
| 16         955         958         224         922         44         16         698         708         521         838         44           17         0.03984         0.3987         25.080         921         43         17         0.5727         737         431         836         43           18         0.4013         0.4016         24         898         919         42         18         755         0.5766         343         834         43           19         0.42         0.46         .719         918         41         19         785         756         0.55766         333         34           20         0.071         0.75         5.52         99917         40         20         814         824         169         99831         40           21         100         104         368         916         39         21         844         854         17.084         829         39           22         133         191         23.68         913         37         23         9902         912         36         24         931         941         832         824         36           25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |     |     |     |     |          |   | 14 | 640     | 649     | . 702  | 841     | 46 |
| 17         .03984         .03987         25.080         921         43         17         .05727         737         .431         836         43           19         042         046         .719         918         41         19         755         .05766         .343         834         42           20         0701         075         .542         .99917         40         20         814         824         169         99831         40           21         100         104         .368         916         39         21         844         854         17.084         829         39           22         129         133         .196         915         38         22         833         16.17         0.084         829         39           24         188         191         23         8902         912         915         826         37           25         217         220         .695         911         35         25         .960         970         .750         822         35           26         246         .04250         .552         910         34         26         .05989         .0688<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |     |     |     |     |          |   | 15 | 669     | 678     | . 611  | 839     | 45 |
| 18         .04013         .04016         24. 898         919         42         18         755         .05766         .343         834         42           20         0771         075         .542         .99917         40         20         814         824         169         .99831         40           21         100         104         .368         916         39         21         844         854         17.084         829         39           22         129         133         .196         915         38         22         873         883         16,999         827         38           24         188         162         24.026         913         37         23         902         912         .915         826         37           25         217         220         .655         911         35         25         960         970         750         822         35           26         246         .04250         .532         910         34         26         .05989         .05999         .668         821         34           27         .04275         279         372         3058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |     |     |     |     |          |   |    |         |         | . 521  | 838     | 44 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |     |     |     |     |          |   |    |         |         | . 431  |         | 43 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 21         100         104         .368         916         39         21         844         854         17.084         829         39           22         129         133         .196         915         38         22         873         883         16, 999         827         38           24         188         191         23.859         912         36         24         931         941         .832         824         36           25         217         220         .695         911         35         25         960         970         .750         822         36           27         .04275         279         .372         909         33         27         .06018         .06029         .587         819         33           28         304         308         .214         907         22         88         047         058         16.507         817         33           30         362         366         22.904         .9990         30         105         116         .350         .9813         30           31         391         395         .752         904         991         31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |     |     |     |     |          | 1 |    | 785     |         | . 256  | 833     | 41 |
| 22         129         133         196         915         88         22         873         883         16.099         827         38           24         188         191         23         859         912         36         24         931         941         832         324         36           25         217         220         .695         911         35         25         960         970         .750         822         35           26         246         .04250         .532         910         34         26         .05989         .05899         .668         821         34           27         .04275         279         .372         909         33         27         .06018         .06029         .587         819         33           28         304         308         .214         907         32         28         047         058         16.507         817         32           29         333         337         23.058         906         31         29         076         087         .428         815         31           31         391         394         420         424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |     |     |     |     |          |   |    | 814     | 824     |        | . 99831 | 40 |
| 23         159         162         24.026         913         37         23         902         912         .915         826         37           24         188         191         223, 859         912         36         24         931         941         .322         824         36           26         246         .04250         .532         910         34         26         .05989         .05999         .668         821         34           27         .04275         279         .372         909         33         27         .06018         .06029         .587         819         33           28         304         308         .214         907         32         28         047         058         16.507         817         32           29         333         337         23.058         906         31         29         076         087         .428         815         31           30         362         366         22.904         .99905         30         30         105         116         .350         .9813         30           31         34         429         424         .602         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |     |     |     |     |          |   |    |         |         |        |         | 39 |
| 24         188         191         23.859         912         36         24         931         941         .832         824         36           25         217         220         .695         911         35         25         .960         970         .756         822         35           26         246         .04250         .532         910         34         26         .05899         .05999         .587         819         33           28         304         308         .214         907         32         28         047         058         16.507         817         32           29         333         337         23.058         906         31         29         076         087         .428         815         31           30         362         366         22.904         .99905         30         30         105         116         .350         .99813         30           31         391         395         .752         904         29         31         134         145         .272         812         29           34         478         .04483         .308         900         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 25         217         220         .695         911         35         25         960         970         .750         822         35           26         246         .04250         .532         910         34         26         .05989         .05999         .668         821         34           27         .04275         279         .372         909         33         27         .06018         .06029         .587         819         33           28         304         308         .214         907         32         28         047         058         16.507         817         32           29         333         337         23.058         906         31         29         .076         087         .428         815         31           30         362         366         22.904         .994         29         31         134         145         .272         812         29           31         391         395         .752         904         29         31         134         145         .272         .812         29           32         420         424         454         454         9901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 26         246         .04250         .532         910         34         26         .05989         .05999         .668         821         34           27         .04275         279         .372         909         33         27         .06018         .06029         .587         819         33           28         304         308         .214         907         32         28         047         058         16. 507         817         32           29         333         337         23.058         906         31         29         076         087         428         815         31           30         362         366         22.904         .9902         28         31         134         145         .55         .9813         30           31         391         395         .752         902         28         32         163         175         .195         810         28           32         420         424         .602         902         28         32         163         175         .195         810         28           33         4478         .04483         308         802         25 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>941</td> <td>. 832</td> <td>824</td> <td>36</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |     |     |     |     |          | 1 |    |         | 941     | . 832  | 824     | 36 |
| 27         .04275         279         .372         909         33         27         .06018         .06029         .587         819         33         229         333         337         23.058         906         31         29         076         087         .428         815         31           30         362         366         22.904         .99905         30         30         105         116         .350         .99813         30           31         391         395         .752         904         29         31         134         145         .272         812         29           32         420         424         602         902         28         32         163         175         195         810         28           34         478         .04483         .308         900         26         34         221         223         16.043         806         26           35         .04507         512         .164         898         25         35         .06250         262         15.969         804         25           36         536         541         22.022         897         24         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |     |     |     |     |          |   |    |         | 970     | . 750  |         |    |
| 28         304         308         214         907         32         28         047         058         16.507         817         32           29         333         337         23.058         906         31         29         076         087         .428         815         31           30         362         366         22.904         .9905         30         30         055         16         .350         .99813         30           31         391         395         .752         904         29         31         134         145         .272         812         29           32         420         424         602         902         28         32         163         175         .195         810         28           34         478         .04483         .308         900         26         34         221         233         16.043         806         26           35         .04507         512         .164         898         25         35         .06250         262         15.969         804         25           36         536         541         22.022         897         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |     |     |     |     |          |   |    | . 05989 |         |        |         |    |
| 29         333         337         23.058         906         31         29         076         087         . 428         815         31           30         362         366         22.904         .99905         30         30         105         116         .350         .99813         30           31         391         395         .752         904         29         31         134         145         .272         812         29           32         420         424         .602         902         28         32         163         175         .195         810         28           33         449         454         .454         901         27         33         192         204         .119         808         27           34         478         .04483         308         900         26         34         221         223         16.043         806         26           36         536         541         22.022         897         24         36         279         .06291         .895         803         24           37         565         570         21.881         896         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |     |     |     |     |          | 1 |    |         |         |        |         |    |
| 30         362         366         22. 904         .99905         30         30         105         116         .350         .99813         30           31         391         395         .752         904         29         31         134         145         .272         812         29           32         420         424         602         902         28         32         163         175         .195         810         28           33         449         454         454         901         27         33         192         204         .119         808         27           34         478         .04483         .308         900         26         34         221         223         16.043         806         26           36         536         541         22.022         897         24         36         279         .06291         15.969         804         25           37         565         570         21.881         896         23         37         308         321         895         803         24           40         653         658         .470         99892         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 31         391         395         .752         904         29         31         134         145         .272         812         29           32         420         424         .602         902         28         32         163         175         .195         810         28           34         478         .04483         .308         900         26         34         221         233         16.043         806         26           35         .04507         512         .164         898         25         35         .06250         262         15.969         804         25           36         536         541         22.022         897         24         36         6279         .06291         .895         803         24           37         565         570         21.881         896         23         37         308         321         895         803         24           38         594         599         743         894         22         38         337         350         .748         799         22           40         653         658         470         .99892         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |     |     |     |     |          |   |    |         | 087     |        |         | 31 |
| 32         420         424         602         902         28         32         163         175         .195         810         28           33         449         454         .454         901         27         33         192         204         .119         808         27           35         .04507         512         .164         898         25         35         .06250         262         15.969         804         25           36         536         541         22.022         897         24         36         279         .06291         .895         803         24           37         565         570         21.881         896         23         37         308         321         821         801         23           39         623         628         .608         .893         21         39         366         379         .676         797         21           40         653         658         .470         .9982         20         40         305         379         .676         599785         20           41         682         6687         .337         890         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 33         449         454         454         901         27         33         192         204         119         808         27           34         478         .04483         .308         900         26         34         221         233         16.043         806         26           35         .04507         512         .164         898         25         35         .06250         262         15.969         804         25           36         536         541         22.022         897         24         36         279         .06291         15.969         804         25           37         565         570         21.881         896         23         37         308         321         821         891         24           38         594         599         .743         894         22         38         337         350         .748         799         22           40         653         658         .470         .99892         20         40         395         408         .605         .99795         21           41         682         687         .337         890         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 34         478         .04483         .308         900         26         34         221         233         16.043         806         26           35         .04507         512         .164         898         25         35         .06250         262         15.969         804         25           36         536         541         22.022         897         24         36         279         06291         .895         803         24           37         565         570         21.881         896         23         37         308         321         .821         801         23           38         594         599         .743         894         22         38         337         350         .748         799         21           40         653         658         .470         .99892         20         40         395         408         .605         .99795         20           41         682         687         .337         890         19         41         424         438         .534         793         19           42         .04711         .04716         .205         889         18 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 35         .04507         512         .164         898         25         35         .06250         262         15.969         804         25           36         536         541         22.022         897         24         36         279         .06291         .895         803         24           37         565         570         21.881         896         23         37         308         321         801         23           38         594         599         .743         894         22         38         337         350         .748         799         22           39         623         628         .606         893         21         39         366         379         .676         797         21           40         653         658         .470         .9982         20         40         395         408         .605         .9975         20           41         682         687         .337         890         19         41         424         438         .534         793         19           42         .04716         .205         889         18         42         453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 36         536         541         22.022         897         24         36         279         .06291         .895         803         24           37         565         570         21.881         896         23         37         308         321         821         801         23           38         594         599         .743         894         22         38         337         350         .748         799         22           40         653         658         .470         .99892         20         40         395         408         .605         .99795         21           41         682         687         .337         890         19         41         424         438         .534         793         19           42         .04711         .04716         .205         889         18         42         .453         .467         15.464         792         18           43         740         745         21.075         888         17         43         .06482         496         .394         790         17           44         769         7745         21.075         888         15 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 37         565         570         21. 881         896         23         37         308         321         821         801         23           38         594         599         .743         894         22         38         337         350         .748         799         22           40         653         658         .470         .99892         20         40         395         408         .605         .99795         20           41         682         687         .337         890         19         41         424         438         .534         793         19         44         424         438         .534         793         19         44         424         438         .534         793         19         14         424         438         .534         793         19         14         424         438         .534         793         19         14         424         438         .454         793         19         14         424         438         .454         793         19         18         42         453         467         15.464         792         18         44         511         .6682         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 38         504         599         .743         894         22         38         337         350         .748         799         22           40         658         658         .470         .9982         20         40         335         408         .605         .99785         20           41         682         6687         .337         890         19         41         424         438         .534         .793         19           42         .04711         .04716         .205         889         18         42         453         467         15. 464         792         18           43         740         7745         21.075         888         17         43         .06452         496         .394         790         17           44         769         774         20.946         886         16         44         511         .06525         .325         788         16           45         798         803         819         885         15         45         540         554         .257         788         16           45         798         803         819         882         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 39         623         628         .606         893         21         39         366         379         .676         797         21           40         653         658         .470         99892         20         40         395         408         .605         .99795         21           41         682         687         .337         890         19         41         424         438         .534         793         19           42         .04711         .04716         .205         889         18         42         453         467         15. 464         792         18           43         740         745         21. 075         888         17         43         06482         496         .394         790         18           44         769         774         20.946         866         16         44         511         06525         325         788         16           45         798         803         .819         885         15         45         540         554         .257         786         15           46         827         833         662         .569         882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |     |     |     |     |          | [ |    |         |         |        |         |    |
| 40         653         658         .470         .99892         20         40         395         408         .605         .99795         20           41         682         687         .337         890         19         41         424         4488         .534         793         19         18         42         443         448         .534         793         19         18         42         443         446         792         18         43         .740         745         21,075         888         17         43         .06482         496         .394         790         17         44         769         774         20,946         886         16         44         511         .06525         .325         788         16           45         798         803         .819         885         15         45         545         554         .554         .257         786         15           46         327         833         .693         882         13         47         598         613         .122         782         13           47         856         862         .569         882         13         47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 41         682         687         .337         890         19         41         424         438         .534         793         19           42         .04711         .04716         .205         889         18         42         453         467         15. 464         792         19           43         740         745         21.075         888         17         43         .06482         466         394         790         17           44         769         774         20.946         886         16         44         511         .06525         .325         788         16           45         798         803         819         885         15         45         540         554         .257         788         16           45         827         833         .693         881         14         46         569         584         .189         784         14           48         885         862         .569         882         13         47         598         613         .122         782         13           49         914         920         .325         879         11 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |     |     |     |     |          | - |    |         |         |        |         |    |
| 42         .04711         .04716         .205         889         18         42         453         467         15. 464         792         18           43         740         745         21. 075         888         17         43         .06482         496         .394         790         17           44         769         774         20.946         886         16         44         511         .06525         .325         788         16           45         798         803         .819         885         15         45         540         554         .257         786         15           46         827         833         .693         883         14         46         569         882         13         17         598         613         .122         782         13           48         885         891         .446         881         12         48         627         642         15.056         780         12           49         914         920         .325         879         11         49         656         671         14.990         778         11           50         943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 43         740         745         21.075         888         17         43         .06482         496         .394         790         17           44         769         774         20.946         886         16         44         511         .06525         .325         788         16           45         798         803         819         885         15         45         540         554         .257         786         15           46         827         833         .693         883         14         46         569         584         .189         784         14           47         856         862         .569         882         13         47         598         613         .122         782         13           48         885         891         .446         881         12         48         627         642         15.056         780         12           49         914         920         .325         879         11         49         656         671         14,990         778         11           50         943         949         .206         .99878         10 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |     |     |     |     |          |   |    |         |         |        |         |    |
| 44         769         774         20.946         886         16         44         511         .06525         .325         788         16           45         798         803         819         885         15         45         540         554         .257         788         16           46         827         833         .693         881         14         46         569         554         .189         784         14           47         856         862         .569         882         13         47         598         613         .122         782         13           48         885         891         .446         881         12         48         627         642         15.056         780         13           49         914         920         .325         879         11         49         656         671         14.990         778         11           50         943         949         .206         .99878         10         50         685         700         .924         .99776         10           51         .04972         .04978         20.087         876         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |     |     |     |     |          |   |    |         |         |        |         |    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |     |     |     |     |          | 1 |    |         |         |        |         |    |
| 46         827         833         .693         883         14         46         569         584         .189         784         14           47         856         862         .569         882         13         47         598         613         1.122         782         13           48         885         891         .446         881         12         48         627         642         15.056         780         12           49         914         920         .325         879         11         49         656         671         14.990         778         11           50         943         949         .206         .99878         10         50         685         700         .924         .99776         10           51         .04972         .04978         20.087         876         9         51         .06714         730         .860         774         9           52         .05001         .05007         19.70         875         8         52         743         .06759         .795         772         8           53         030         037         .855         873         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |     |     |     |     |          | 1 |    |         |         |        |         |    |
| 47         856         862         .569         882         13         47         598         613         .122         782         13           48         885         891         .446         881         12         48         627         642         15.056         780         12           49         914         920         .325         879         11         49         656         671         14.990         778         11           50         943         949         .206         .99878         10         50         685         700         .924         .99776         10           51         .04972         .04978         20.087         876         9         51         .06714         730         .860         774         99776         10           52         .05001         .05007         19.970         875         8         52         743         .06759         .795         772         8           53         030         037         .855         873         7         53         773         788         .732         770         7         54         605         666         .766         55         881 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |     |     |     |          | 1 |    |         |         |        |         |    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |     |     |     |     |          |   |    |         |         | 122    |         |    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |     |     |     |     |          | 1 |    |         |         |        |         |    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |     |     |     |     |          | ١ |    |         |         |        |         |    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |     |     |     |     |          | 1 |    |         |         |        |         |    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |     |     |     |     |          | 1 |    |         |         |        |         |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |     |     |     |     |          | 1 |    |         |         |        |         | 8  |
| 54         059         066         .740         872         6         54         802         817         .669         768         6           55         088         095         627         870         5         55         831         847         .606         766         76         5           56         117         124         .516         869         4         56         860         876         .544         764         4           57         146         153         .405         867         3         57         889         905         .482         762         3           58         175         182         .296         866         2         58         918         934         .421         762         3           59         205         212         188         864         1         59         947         963         361         758         1           60         .05234         .05241         19.081         .99863         0         60         .06976         .06993         14.301         .99756         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |     |     |     |     | 1 7      |   |    |         |         |        |         | 7  |
| 55         088         095         627         870         5         55         831         847         .606         766         5           56         117         124         .516         869         4         56         860         876         .544         764         4           57         146         153         .405         867         3         57         889         99         .482         762         2           58         175         182         .296         866         2         58         918         934         .421         760         2           59         205         212         188         864         1         59         947         963         .361         758         1           60         .05234         .05241         19.081         .99863         0         60         .06976         .06993         14.301         .99756         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |     |     |     |     |          |   |    |         |         |        |         | 6  |
| 56         117         124         .516         869         4         56         860         876         .544         764         4           57         146         153         .405         867         3         57         889         905         .482         762         3           58         175         182         .296         866         2         58         918         934         .421         760         2           59         205         212         188         864         1         59         947         963         .361         758         1           60         .05234         .05241         19.081         .99863         0         60         .06976         .06993         14.301         .99756         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |     |     |     |     |          | 1 |    |         |         |        | 766     | 5  |
| 57     146     153     .405     867     3     57     889     905     .482     762     3       58     175     182     .296     866     2     58     918     934     .421     760     2       59     205     212     .188     864     1     59     947     963     .361     758     1       60     .05234     .05241     19.081     .99633     0     60     .06976     .06993     14.301     .99756     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |     |     |     |     |          | 1 |    |         |         |        |         |    |
| 58     175     182     296     866     2     58     918     934     .421     760     2       59     205     212     188     864     1     59     947     963     .361     758     1       60     .05234     .05241     19.081     .99863     0     60     .06976     .06993     14.301     .99756     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |     |     |     |     |          |   |    |         |         |        |         | 3  |
| 59     205     212     188     864     1     59     947     963     361     758     1       60     .05234     .05241     19.081     .99863     0     60     .06976     .06993     14.301     .99756     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |     |     |     |     | ž        |   |    |         |         | . 421  |         | 2  |
| 60 .05234 .05241 19.081 .99863 0 60 .06976 .06993 14.301 .99756 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |     |     |     |     |          |   |    |         |         |        |         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |     |     |     |     |          |   |    | .06976  | . 06993 | 14.301 | . 99756 | 0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del> |     |     |     | sin | <b>,</b> | 1 |    | cos     | cot     | tan    | sin     | 1  |

READ DOWN

|  | 0 |
|--|---|
|  |   |

|          |                |                |                  |                 |                 |    |          |                        | 4              |                   |            |                                                  |
|----------|----------------|----------------|------------------|-----------------|-----------------|----|----------|------------------------|----------------|-------------------|------------|--------------------------------------------------|
|          | sin            | tan            | cot              | cos             |                 | l  | <u></u>  | sin                    | tan            | cot               | COS        |                                                  |
| 0        | .06976         | . 06993        | 14.301           | • <b>99</b> 756 | 60              |    | 0        | .08716<br>745          | . 08749        | 11. 430<br>. 392  | .99619     | 60                                               |
| 1<br>2   | .07005<br>034  | .07022         | . 241<br>. 182   | 754<br>752      | 59<br>58        | H  | 2        | 774                    | 778<br>807     | . 354             | 617<br>614 | 59<br>58                                         |
| 3        | 063            | 051<br>080     | . 124            | 750             | 57              | H  | 3        | 803                    | 837            | . 316             | 612        | 57                                               |
| 4        | 092            | 110            | . 065            | 748             | 56              |    | 4        | 831                    | 866            | . 279             | 609        | 56                                               |
| 5        | 121            | 139            | 14.008           | 746             | 55              |    | 5        | 860                    | 895            | . 242             | 607        | 55                                               |
| 6        | 150            | 168            | 13. 951          | 744             | 54              | H  | 6        | 889                    | 925            | . 205             | 604        | 54                                               |
| 7        | 179            | 197            | . 894            | 742             | 53              | H  | 7        | 918                    | 954            | . 168             | 602        | 53                                               |
| 8        | 208            | 227            | . 838            | 740             | 52              |    | 8        | 947                    | . 08983        | . 132             | 599        | 52                                               |
| 9        | 237            | . 07256        | . 782            | 738             | 51              |    | 9        | .08976                 | .09013         | . 095             | 596        | 51                                               |
| 10       | . 07266        | 285            | . 727            | . 99736         | 50              |    | 10       | . 09005                | 042            | . 059             | . 99594    | 50                                               |
| 11       | 295            | 314            | . 672            | 734             | 49              |    | 11       | 034                    | 071            | 11.024            | 591        | 49                                               |
| 12       | 324            | 344            | . 617            | 731             | 48              | П  | 12       | 063                    | 101            | 10.988            | 588        | 48                                               |
| 13       | 353            | 373            | . 563            | 729             | 47              | П  | 13       | 092                    | 130            | . 953             | 586        | 47                                               |
| 14       | 382            | 402            | 13. 510          | 727             | 46              | П  | 14       | 121                    | 159            | . 918             | 583        | 46                                               |
| 15       | 411            | 431            | . 457            | 725             | 45              | П  | 15       | 150                    | 189            | . 883             | 580        | 45                                               |
| 16       | 440            | 461            | . 404            | 723             | 44<br>43        |    | 16<br>17 | 179<br>208             | 218<br>. 09247 | . 848<br>. 814    | 578        | 44<br>43                                         |
| 17<br>18 | 469<br>. 07498 | 490            | . 352<br>. 300   | 721<br>719      | 42              |    | 18       | . 09237                | 277            | . 780             | 575<br>572 | 43                                               |
| 19       | 527            | . 07519<br>548 | . 248            | 719             | 41              | H  | 19       | 266                    | 306            | . 746             | 570        | 41                                               |
| 20       | 556            | 578            | 197              | . 99714         | 40              | Ш  | 20       | 295                    | 335            | .712              | . 99567    | 40                                               |
| 21       | 585            | 607            | . 146            | 712             | 39              | H  | 21       | 324                    | 365            | . 678             | 564        | 39                                               |
| 22       | 614            | 636            | . 096            | 710             | 38              | П  | 22       | 353                    | 394            | 10. 645           | 562        | 38                                               |
| 23       | 643            | 665            | 13. 046          | 708             | 37              |    | 23       | 382                    | 423            | . 612             | 559        | 37                                               |
| 24       | 672            | 695            | 12.996           | 705             | 36              |    | 24       | 411                    | 453            | . 579             | 556        | 36                                               |
| 25       | 701            | 724            | . 947            | 703             | 35              |    | 25       | 440                    | . 09482        | . 546             | 553        | 35                                               |
| 26       | . 07730        | . 07753        | . 898            | 701             | 34              |    | 26       | . 09469                | 511            | . 514             | 551        | 34                                               |
| 27       | 759            | 782            | . 850            | 699             | 33              |    | 27       | 498                    | 541            | . 481             | 548        | 33                                               |
| 28       | 788            | 812            | . 801            | 696             | 32              |    | 28       | 527                    | 570            | . 449             | 545        | 32                                               |
| 29       | 817            | 841            | . 754            | 694             | 31              |    | 29       | 556                    | 600            | . 417             | 542        | 31                                               |
| 30       | 846            | 870            | . 706            | . 99692         | 30              |    | 30<br>31 | 585                    | 629            | . 385             | . 99540    | 30                                               |
| 31<br>32 | 875<br>904     | 899<br>929     | . 659<br>12. 612 | 689<br>687      | 29<br>28        |    | 32       | 614<br>642             | 658<br>688     | . 354<br>10. 322  | 537<br>534 | 29<br>28                                         |
| 33       | 933            | 958            | . 566            | 685             | 27              |    | 33       | 671                    | . 09717        | . 291             | 531        | 27                                               |
| 34       | 962            | . 07987        | . 520            | 683             | 26              |    | 34       | 700                    | 746            | . 260             | 528        | 26                                               |
| 35       | .07991         | .08017         | . 474            | 680             | 25              | 1  | 35       | . 09729                | 776            | . 229             | 526        | 25                                               |
| 36       | .08020         | 046            | . 429            | 678             | 24              | ı  | 36       | 758                    | 805            | . 199             | 523        | $\bar{24}$                                       |
| 37       | 049            | 075            | . 384            | 676             | 23              | ı  | 37       | 787                    | 834            | . 168             | 520        | 23                                               |
| 38       | 078            | 104            | 12. 339          | 673             | 22              | ı  | 38       | 816                    | 864            | . 138             | 517        | 22                                               |
| 39       | 107            | 134            | . 295            | 671             | 21              |    | 39       | 845                    | 893            | . 108             | 514        | 21                                               |
| 40       | 136            | 163            | . 251            | . 99668         | 20              |    | 40       | 874                    | 923            | . 078             | . 99511    | 20                                               |
| 41       | 165            | 192            | . 207            | 666             | 19              |    | 41       | 903                    | 952            | . 048             | 508        | 19                                               |
| 42       | 194            | 221            | . 163            | 664             | 18              | •  | 42       | 932                    | .09981         | 10.019            | 506        | 18                                               |
| 43<br>44 | 223<br>. 08252 | . 08251        | . 120            | 661<br>650      | 17<br>16        | ١. | 43<br>44 | 961<br>• <b>09</b> 990 | .10011<br>040  | 9. 9893<br>. 9601 | 503<br>500 | 17<br>16                                         |
| 45       |                | 280            | . 077            | 659             | $\frac{10}{15}$ |    | 45       | .10019                 | 069            | . 9310            | 497        | $\frac{10}{15}$                                  |
| 46       | 281<br>310     | 309<br>339     | 12.035<br>11.992 | 657<br>654      | 14              |    | 46       | 048                    | 099            | . 9021            | 497<br>494 | 14                                               |
| 47       | 339            | 368            | . 950            | $654 \\ 652$    | 13              | ١  | 47       | 077                    | 128            | . 8734            | 494<br>491 | 13                                               |
| 48       | 368            | 397            | . 909            | 649             | 12              | ١  | 48       | 106                    | 158            | . 8448            | 488        | 12                                               |
| 49       | 397            | 427            | . 867            | 647             | îĩ              | ١  | 49       | 135                    | 187            | . 8164            | 485        | îĩ                                               |
| 50       | 426            | 456            | . 826            | . 99644         | 10              | ١  | 50       | 164                    | 216            | . 7882            | . 99482    | 10                                               |
| 51       | 455            | 485            | . 785            | 642             | 9               | ı  | 51       | 192                    | . 10246        | . 7601            | 479        | 9                                                |
| 52       | . 08484        | . 08514        | . 745            | 639             | 8               | ١  | 52       | 221                    | 275            | 9. 7322           | 476        | 8                                                |
| 53       | 513            | 544            | . 705            | 637             | 7.              |    | 53       | . 10250                | 305            | . 7044            | 473        | 7                                                |
| 54       | 542            | 573            | 11. 664          | 635             | 6               | 1  | 54       | 279                    | 334            | . 6768            | 470        | _6_                                              |
| 55       | 571            | 602            | . 625            | 632             | 5               |    | 55       | 308                    | 363            | . 6493            | 467        | 5                                                |
| 56<br>57 | 600            | 632            | . 585            | 630             | 4               | ١  | 56       | 337                    | 393            | . 6220            | 464        | 4                                                |
| 58       | 629<br>658     | 661<br>690     | . 546<br>. 507   | 627<br>625      | 3 2             |    | 57<br>58 | 366<br>395             | 422<br>452     | . 5949<br>. 5679  | 461<br>458 | 3                                                |
| 59       | 687            | 720            | . 468            | 625             | 1               | 1  | 59       | 395<br>424             | 452<br>481     | . 5411            | 455<br>455 | 4<br>3<br>2<br>1                                 |
| 60       | .08716         | . 08749        | 11.430           | . 99619         | ō               | 1  | 60       | .10453                 | .10510         | 9. 5144           | . 99452    | Ô                                                |
| Ë        | cos            | cot            | tan              | sin             | Ť               | 1  | <u> </u> | COS                    | cot            | tan               | sin        | <del>                                     </del> |
| L        |                |                | i san            | l orn           |                 | 1  |          | LVB                    | 000            | FOTE              | DILL       |                                                  |

|                 |                | 6              | 0                 | I                 | REAL           | ) ] | DOW             |                   |                    | 7°                |                        |          |
|-----------------|----------------|----------------|-------------------|-------------------|----------------|-----|-----------------|-------------------|--------------------|-------------------|------------------------|----------|
| 1               | sin            | tan            | cot               | cos               |                |     | ,               | sin               | tan                | cot               | cos                    |          |
| 0               | . 10453        | . 10510        | 9. 5144           | • 99452           | 60             |     | 0               | . 12187           | . 12278            | 8. 1443           | .99255                 | 60       |
| 1<br>2          | 482<br>511     | 540<br>569     | . 4878            | 449<br>446        | 59<br>58       |     | 1               | 216               | 308                | . 1248            | 251                    | 59       |
| 3               | 540            | 599            | . 4352            | 443               | 57             |     | 3               | 245<br>274        | 338<br>367         | . 1054            | 248                    | 58<br>57 |
| 4               | 569            | 628            | . 4090            | 440               | 56             |     | 4               | 302               | 397                | . 0667            | 244<br>240             | 56       |
| 5               | 597            | 657            | . 3831            | 437               | 55             |     | 5               | 331               | 426                | . 0476            | 237                    | 55       |
| 6 7             | 626<br>655     | 687<br>716     | . 3572            | 434<br>431        | 54<br>53       |     | 6               | 360               | 456                | . 0285            | 233                    | 54       |
| 8               | 684            | . 10746        | . 3060            | 428               | 52             |     | 7<br>8          | 389<br>418        | 485<br>. 12515     | 8.0095            | 230                    | 53       |
| ğ               | . 10713        | 775            | . 2806            | 424               | 51             |     | 9               | . 12447           | 544                | 7.9906<br>.9718   | 226<br>222             | 52<br>51 |
| 10              | 742            | 805            | 9. 2553           | . 99421           | 50             |     | 10              | 476               | 574                | . 9530            | . 99219                | 50       |
| 11<br>12        | 771<br>800     | 834<br>863     | . 2302            | 418<br>415        | 49<br>48       |     | 11              | 504               | 603                | . 9344            | 215                    | 49       |
| 13              | 829            | 893            | . 1803            | 412               | 47             |     | 12<br>13        | 533<br>562        | 633<br>662         | . 9158            | 211                    | 48       |
| 14              | 858            | 922            | . 1555            | 409               | 46             |     | 14              | 591               | 692                | . 8789            | 208<br>204             | 47<br>46 |
| 15              | 887            | 952            | . 1309            | 406               | 45             |     | 15              | 620               | 722                | . 8606            | 200                    | 45       |
| 16              | 916            | . 10981        | . 1065            | 402               | 44             |     | 16              | 649               | . 12751            | 7.8424            | 197                    | 44       |
| 17<br>18        | 945<br>. 10973 | . 11011<br>040 | . 0821            | 399<br>396        | 43<br>42       |     | 17<br>18        | 678               | 781                | . 8243            | 193                    | 43       |
| 19              | 11002          | 070            | . 0338            | 393               | 41             |     | 19              | . 12706<br>735    | 810<br>840         | . 8062<br>. 7882  | 189<br>186             | 42<br>41 |
| 20              | 031            | 099            | 9.0098            | . 99390           | 40             |     | 20              | 764               | 869                | . 7704            | . 99182                | 40       |
| 21              | 060            | 128            | 8.9860            | 386               | 39             |     | 21              | 793               | 899                | 7525              | 178                    | 39       |
| 22              | 089            | 158            | . 9623            | 383               | 38             |     | 22              | 822               | 929                | . 7348            | 175                    | 38       |
| 23<br>24        | 118<br>147     | 187<br>217     | . 9387<br>. 9152  | 380<br>377        | -37<br>36      |     | $\frac{23}{24}$ | 851               | 958                | . 7171            | 171                    | 37       |
| $\frac{24}{25}$ | 176            | . 11246        | . 8919            | $\frac{377}{374}$ | 35             |     | 25              | 880<br>908        | . 12988<br>. 13017 | . 6996            | 167                    | 36       |
| 26              | 205            | 276            | . 8686            | 370               | 34             |     | 26              | 908               | 047                | 7. 6821<br>. 6647 | 163<br>160             | 35<br>34 |
| 27              | 234            | 305            | . 8455            | 367               | 33             |     | 27              | 966               | 076                | 6473              | 156                    | 33       |
| 28              | . 11263        | 335            | . 8225            | 364               | 32             |     | 28              | . 12995           | 106                | . 6301            | 152                    | 32       |
| 29              | 291            | 364            | . 7996            | 360               | 31             |     | 29              | .13024            | 136                | . 6129            | 148                    | 31       |
| 30              | 320<br>349     | 394<br>423     | . 7769<br>8. 7542 | 99357 $354$       | 30<br>29       | ı   | 30              | 053               | 165                | . 5958            | . 99144                | 30       |
| 31<br>32        | 378            | 452            | . 7317            | 351               | 28             |     | 31<br>32        | 081<br>110        | 195<br>224         | . 5787<br>. 5618  | 141<br>137             | 29<br>28 |
| 33              | 407            | 11482          | . 7093            | 347               | 27             |     | 33              | 139               | . 13254            | 5449              | 133                    | 27       |
| 34              | 436            | 511            | . 6870            | 344               | 26             |     | 34              | 168               | 284                | 7. 5281           | 129                    | 26       |
| 35              | 465            | 541            | . 6648            | 341               | 25             | ١   | 35              | 197               | 313                | . 5113            | 125                    | 25       |
| 36              | 494            | 570<br>600     | . 6427<br>. 6208  | 337<br>334        | 24<br>23       |     | 36<br>37        | . 13226<br>254    | 343<br>372         | . 4947            | 122                    | 24       |
| 37<br>38        | $11523 \\ 552$ | 629            | . 5989            | 331               | 22             | ١   | 38              | $\frac{254}{283}$ | 402                | . 4781<br>. 4615  | 118<br>114             | 23<br>22 |
| 39              | 580            | 659            | . 5772            | 327               | 21             |     | 39              | 312               | 432                | . 4451            | 110                    | 21       |
| 40              | 609            | 688            | . 5555            | . 99324           | 20             |     | 40              | 341               | 461                | . 4287            | . 99106                | 20       |
| 41              | 638            | . 11718        | 8. 5340           | 320               | 19             |     | 41              | 370               | . 13491            | . 4124            | 102                    | 19       |
| 42              | 667<br>696     | 747<br>777     | . 5126            | 317<br>314        | 18<br>17       | 1   | 42<br>43        | 399<br>427        | 521<br>550         | . 3962<br>7. 3800 | 098<br>094             | 18<br>17 |
| 43<br>44        | 725            | 806            | . 4701            | 310               | 16             |     | 44              | . 13456           | 580                | . 3639            | 091                    | 16       |
| 45              | . 11754        | 836            | . 4490            | 307               | 15             | 1   | 45              | 485               | 609                | 3479              | 087                    | 15       |
| 46              | 783            | 865            | . 4280            | 303               | 14             | l   | 46              | 514               | 639                | . 3319            | 083                    | 14       |
| 47              | 812            | 895            | . 4071            | 300               | 13             | 1   | 47              | 543               | 669                | . 3160            | 079                    | 13       |
| 48              | 840            | 924<br>954     | . 3863<br>. 3656  | 297<br>293        | 12<br>11       | ١   | 48<br>49        | 572<br>600        | 698                | . 3002            | 075<br>071             | 12<br>11 |
| 49<br>50        | 869<br>898     | .11983         | . 3450            | 99290             | 10             | 1   | 50              | 629               | 758                | . 2687            | . 99067                | 10       |
| 51              | 927            | .12013         | 8. 3245           | 286               | 9              | l   | 51              | 658               | 787                | 7. 2531           | 063                    | 9        |
| 52              | 956            | 042            | .3041             | 283               | 8              | ı   | 52              | . 13687           | 817                | . 2375            | 059                    | 8        |
| 53              | .11985         | 072            | . 2838            | 279               | 7              |     | 53              | 716               | 846                | . 2220            | 055                    | 7<br>6   |
| 54              | . 12014        | 101            | . 2636            | $\frac{276}{272}$ | <u>6</u><br>5  | 1   | 54<br>55        | $\frac{744}{773}$ | 876<br>906         | . 2066            | $\frac{051}{047}$      | 5        |
| 55<br>56        | 043<br>071     | . 131<br>160   | . 2434            | 269               | 4              | 1   | 56              | 802               | 935                | . 1759            | 043                    | 4        |
| 57              | 100            | 190            | 2035              | 265               | 3              |     | 57              | 831               | 965                | . 1607            | 039                    | 3 2      |
| 58              | 129            | 219            | . 1837            | 262               | 2              | ١   | 58              | 860               | . 13995            | . 1455            | 035                    |          |
| 59              | 158            | 249            | . 1640            | 258               | 1 0            |     | 59<br>60        | 889               | .14024             | . 1304<br>7. 1154 | 031<br>• <b>99</b> 027 | 1        |
| 60              | . 12187        | .12278         | 8. 1443           | .99255            | <del>,</del> u | ł   | 100             | . 13917           | . 14054            | 7. 1154<br>tan    | sin                    | ۳,       |
| 1               | cos            | cot            | tan               | sin               | 1              | 1   | L               | cos               | COL                | LALI              | BIR                    |          |

READ UP 82°

83°

8° READ DOWN 9°

| 7           | sin        | tan            | cot              | cos             |              | Ī | 71              | sin            | tan        | cot              | COS        |                  |
|-------------|------------|----------------|------------------|-----------------|--------------|---|-----------------|----------------|------------|------------------|------------|------------------|
| 0           | . 13917    | . 14054        | 7. 1154          | .99027          | 60           | 1 | 0               | . 15643        | . 15838    | 6. 3138          | · 98769    | 60               |
| ĭ           | 946        | 084            | . 1004           | 023             | 59           | ١ | 1               | 672            | 868        | . 3019           | 764        | 59               |
| $\tilde{2}$ | . 13975    | 113            | . 0855           | 019             | 58           | 1 | 2               | 701            | 898        | . 2901           | 760        | 58               |
| 3           | . 14004    | 143            | . 0706           | 015             | 57           |   | 3               | 730            | 928        | . 2783           | 755        | 57               |
| 4           | 033        | 173            | . 0558           | 011             | 56           | ١ | 4               | 758            | 958        | . 2666           | 751        | 56               |
| 5           | 061        | 202            | . 0410           | 006             | 55           | 1 | 5               | 787            | . 15988    | . 2549           | 746        | 55               |
| 6           | 090        | 232            | . 0264           | . 99002         | 54           |   | 6               | . 15816        | .16017     | . 2432           | 741        | 54               |
| 7           | 119        | 262            | 7.0117           | <b>. 98</b> 998 | 53           | Н | 7               | 845            | 047        | . 2316           | 737        | 53               |
| 8           | 148        | . 14291        | 6.9972           | 994             | 52           |   | 8               | 873            | 077        | . 2200           | 732        | 52               |
| 9           | 177        | 321            | . 9827           | 990             | 51           |   | 9               | 902            | 107        | 6. 2085          | 728        | 51               |
| 10          | 205        | 351            | . 9682           | 986             | 50           |   | 10              | 931            | 137        | . 1970           | . 98723    | 50               |
| 11          | . 14234    | 381            | . 9538           | 982             | 49           |   | 11              | 959            | 167        | . 1856           | 718        | 49               |
| 12          | 263        | 410            | . 9395           | 978             | 48<br>47     |   | 12<br>13        | . 15988        | 196<br>226 | . 1742<br>. 1628 | 714        | 48               |
| 13          | 292        | 440            | . 9252<br>. 9110 | 973<br>969      | 46           |   | 14              | . 16017<br>046 | . 16256    | . 1515           | 709        | 47<br>46         |
| 14          | 320        | 470            | . 8969           | 965             | 45           |   | $\frac{14}{15}$ | 074            | 286        | . 1402           | 704<br>700 | 100 00           |
| 15          | 349        | 499            | . 8828           | 965<br>961      | 45<br>44     |   | 16              | 103            | 280<br>316 | . 1290           | 700<br>695 | 45<br>44         |
| 16          | 378<br>407 | . 14529<br>559 | 6. 8687          | . 98957         | 43           |   | 17              | 132            | 346        | . 1178           | 690        | 43               |
| 17<br>18    | 436        | 588            | . 8548           | 953             | 42           |   | 18              | 160            | 376        | 6. 1066          | 686        | 42               |
| 19          | 464        | 618            | . 8408           | 948             | 41           |   | 19              | 189            | 405        | . 0955           | 681        | 41               |
| 20          | . 14493    | 648            | . 8269           | 944             | 40           | 1 | 20              | 218            | 435        | . 0844           | . 98676    | 40               |
| 21          | 522        | 678            | . 8131           | 940             | 39           | 1 | 21              | 246            | 465        | . 0734           | 671        | 39               |
| 22          | 551        | 707            | 7994             | 936             | 38           | • | 22              | . 16275        | . 16495    | . 0624           | 667        | 38               |
| 23          | 580        | 737            | . 7856           | 931             | 37           | ı | 23              | 304            | 525        | . 0514           | 662        | 37               |
| 24          | 608        | . 14767        | . 7720           | 927             | 36           | ł | 24              | 333            | 555        | . 0405           | 657        | 36               |
| 25          | 637        | 796            | 6. 7584          | . 98923         | 35           | 1 | 25              | 361            | 585        | . 0296           | 652        | 35               |
| 26          | 666        | 826            | . 7448           | 919             | 34           | • | 26              | 390            | 615        | .0188            | 648        | 34               |
| 27          | 695        | 856            | . 7313           | 914             | 33           | 1 | 27              | 419            | 645        | 6.0080           | 643        | 33               |
| 28          | . 14723    | 886            | . 7179           | 910             | 32           | 1 | 28              | 447            | 674        | 5. 9972          | 638        | 32               |
| 29          | 752        | 915            | . 7045           | 906             | 31           | 1 | 29              | 476            | 704        | . 9865           | 633        | 31               |
| 30          | 781        | 945            | . 6912           | 902             | 30           | l | 30              | 505            | . 16734    | . 9758           | . 98629    | 30               |
| 31          | 810        | . 14975        | . 6779           | 897             | 29           | ı | 31              | . 16533        | 764        | . 9651           | 624        | 29               |
| 32          | 838        | .15005         | . 6646           | 893             | 28           | ı | 32              | 562            | 794        | . 9545           | 619        | 28               |
| 33          | 867        | 034            | . 6514           | 889             | 27           | ı | 33              | 591            | 824        |                  | 614        | 27               |
| 34          | 896        | 064            | 6. 6383          | . 98884         | 26           | 1 | 34              | 620            | 854        | . 9333           | 609        | 26               |
| 35          | 925        | 094            | . 6252           | 880             | 25           | ı | 35              | 648            | 884        | . 9228           | 604        | 25               |
| 36<br>37    | 954        | 124<br>153     | .6122            | 876<br>871      | 24<br>23     | ı | 36<br>37        | 677            | 914<br>944 | 5. 9124<br>9019  | 600        | 24               |
| 38          | 15011      | 183            | . 5863           | 867             | 22           | 1 | 38              | 706<br>734     | . 16974    | . 8915           | 595        | 23<br>22         |
| 39          | 040        |                | . 5734           | 863             | 21           | ı | 39              | . 16763        | .17004     | . 8811           | 590<br>585 | 21               |
| 40          | 069        | 243            | . 5606           | 858             | 20           | 1 | 40              | 792            | 033        | . 8708           | . 98580    | 20               |
| 41          | 097        | . 15272        | . 5478           | 854             | 19           | 1 | 41              | 820            | 063        | . 8605           | 575        | 19               |
| 42          | 126        |                | . 5350           | 849             | 18           | ı | -42             | 849            | 093        | . 8503           | 570        | 18               |
| 43          | 155        | 332            | 6. 5223          | . 98845         | 17           | ĺ | 43              | 878            | 123        | . 8400           | 565        | 17               |
| 44          | 184        | 362            | . 5097           | 841             | 16           | ı | 44              | 906            | 153        | 5. 8298          | 561        | 16               |
| 45          | . 15212    | 391            | . 4971           | 836             | 15           | 1 | 45              | 935            | 183        | . 8197           | 556        | 15               |
| 46          | 241        | 421            | . 4846           | 832             | 14           | ı | 46              | 964            | . 17213    | . 8095           | 551        | 14               |
| 47          | 270        |                | . 4721           | 827             | 13           | 1 | 47              | . 16992        | 243        | . 7994           | 546        | 13               |
| 48          | 299        | 481            | . 4596           | 823             | 12           | l | 48              | . 17021        | 273        | . 7894           | 541        | 12               |
| 49          | 327        | 511            | . 4472           | 818             | 11           | 1 | 49              | 050            | 303        | . 7794           | 536        | 11               |
| 50          | 356        | . 15540        | . 4348           | 814             | 10           | 1 | 50              | 078            | 333        | . 7694           | . 98531    | 10               |
| 51          | 385        | 570            | . 4225           | 809             | 9            | ١ | 51              | 107            | 363        | . 7594           | 526        | 9                |
| 52          | . 15414    | 600            |                  | . 98805         | 8 7          | ı | 52              | 136            | 393        |                  | 521        | 8 7              |
| 53<br>54    | 442<br>471 | 630<br>660     | . 3980           | 800<br>796      | 6            | ı | 53<br>54        | 164            | . 17423    | . 7396           | 516        | 7                |
| 55          | 500        | 689            | . 3737           | 790             |              | 1 |                 | . 17193        | 453        | . 7297           | 511        | 6                |
| 56          | 500<br>529 |                | . 3617           | 791             | 5<br>4       | l | 55<br>56        | 222            | 483        | . 7199           | 506        | 5                |
| 57          | 529<br>557 | 749            | . 3496           | 787<br>782      | 3            | 1 | 56<br>57        | 250<br>279     | 513<br>543 | .7101            | 501        | 4                |
| 58          | 586        |                | . 3376           | 778             | 2            | l | 58              | 308            | 573        | . 7004           | 496<br>491 | 1 3              |
| 59          | 615        | 809            | . 3257           | 773             | ī            |   | 59              | 336            | 603        | . 6809           | 486        | 1 1              |
| 60          | . 15643    | . 15838        | 6. 3138          | .98769          | Ô            | 1 | 60              | . 17365        | . 17633    | 5.6713           | .98481     | 3<br>2<br>1<br>0 |
| <u> </u>    | COS        | cot            | tan              | sin             | <del>-</del> | 1 |                 | COS            | cot        | tan              | sin        | ۳                |
|             |            |                |                  |                 |              | ı |                 |                | 1 000      | PO TT            | Ditt       | 1                |

|                                         |                        |                         |                  |            |                 |     |                                               | UNCTI      | ONS         |                  |              |                 |
|-----------------------------------------|------------------------|-------------------------|------------------|------------|-----------------|-----|-----------------------------------------------|------------|-------------|------------------|--------------|-----------------|
|                                         |                        | 10                      | J°               | F          | READ            | ) I | oow:                                          | N          | 11          | c                |              |                 |
|                                         | sin                    | ian                     | cot              | cos        |                 | ı   | ′                                             | sin        | tan         | cot              | cos          |                 |
| 0                                       | . 17365                | . 17633                 | 5. 6713          | . 98481    | 60              | Н   | 0                                             | . 19081    | . 19438     | <b>5.</b> 1446   | .98163       | 60              |
| $\begin{array}{c c} 1 \\ 2 \end{array}$ | 393<br>422             | 663<br>693              | .6617            | 476<br>471 | 59              | Н   | $\begin{array}{ c c }\hline 1\\2 \end{array}$ | 109        | 468         | . 1366           | 157          | 59              |
| 3                                       | 451                    | 723                     | . 6425           | 466        | 58<br>57        | П   | 3                                             | 138<br>167 | 498<br>529  | . 1286           | 152          | 58              |
| 4                                       | 479                    | 753                     | . 6329           | 461        | 56              | ı   | 4                                             | 195        | 559         | . 1207<br>. 1128 | 146<br>140   | 57<br>56        |
| 5                                       | 508                    | 783                     | . 6234           | 455        | 55              | П   | $\frac{1}{5}$                                 | 224        | 589         | . 1049           | 135          |                 |
| 6                                       | 537                    | . 17813                 | . 6140           | 450        | 54              | Н   | 6                                             | 252        | 619         | . 0970           | 129          | 55<br>54        |
| 7                                       | . 17565                | 843                     | . 6045           | 445        | 53              | П   | 7                                             | 281        | 649         | . 0892           | 124          | 53              |
| 8                                       | 594                    | 873                     | . 5951           | 440        | 52              | П   | 8                                             | . 19309    | 680         | . 0814           | 118          | 52              |
| 9                                       | 623                    | 903                     | 5857             | 435        | 51              | П   | 9                                             | 338        | . 19710     | 5. 0736          | . 98112      | 51              |
| 10                                      | 651                    | 933                     | 5. 5764          | . 98430    | 50              | П   | 10                                            | 366        | 740         | . 0658           | 107          | 50              |
| 11<br>12                                | 680<br>708             | 963<br>. 1 <b>7</b> 993 | . 5671           | 425<br>420 | 49              | П   | $\begin{array}{c c} 11 \\ 12 \end{array}$     | 395        | 770         | . 0581           | 101          | 49              |
| 13                                      | 737                    | .18023                  | . 5578<br>. 5485 | 420<br>414 | 48<br>47        | П   | 13                                            | 423<br>452 | 801         | . 0504           | 096          | 48              |
| 14                                      | 766                    | 053                     | . 5393           | 409        | 46              | Н   | 14                                            | 481        | 831<br>861  | . 0427<br>. 0350 | 090<br>084   | 47<br>46        |
| 15                                      | . 17794                | 083                     | . 5301           | 404        | 45              | Н   | 15                                            | 509        | 891         | . 0273           | 079          | 45              |
| 16                                      | 823                    | 113                     | 5209             | 399        | 44              | Н   | 16                                            | 19538      | 921         | . 0197           | 079          | 44              |
| î7                                      | 852                    | 143                     | 5118             | 394        | 43              |     | 17                                            | 566        | 952         | . 0121           | 067          | 43              |
| 18                                      | 880                    | 173                     | . 5026           | 389        | 42              | П   | 18                                            | 595        | .19982      | <b>5.</b> 0045   | 061          | 42              |
| 19                                      | . 909                  | 203                     | . 4936           | 383        | 41              | П   | 19                                            | 623        | .20012      | 4.9969           | . 98056      | 41              |
| 20                                      | 937                    | 233                     | 5. 4845          | . 98378    | 40              | H   | 20                                            | 652        | 042         | . 9894           | 050          | 40              |
| 21                                      | 966                    | . 18263                 | . 4755           | 373        | 39              | П   | 21                                            | 680        | 073         | . 9819           | 044          | 39              |
| 22                                      | .17995                 | 293                     | . 4665           | 368        | 38              | П   | 22                                            | 709        | 103         | . 9744           | 039          | 38              |
| 23                                      | .18023                 | 323                     | . 4575           | 362        | 37              | Н   | $\begin{vmatrix} 23 \\ 24 \end{vmatrix}$      | 737        | 133         | - 9669           | 033          | 37              |
| 24                                      | 052                    | 353                     | . 4486           | 357        | 36              | П   | $\frac{24}{25}$                               | . 19766    | 164         | . 9594           | 027          | 36              |
| 25<br>26                                | 081                    | 384                     | . 4397           | 352<br>347 | 35<br>34        | П   | 26                                            | 794<br>823 | 194 $20224$ | . 9520<br>. 9446 | 021          | 35              |
| 27                                      | 109<br>138             | 414<br>444              | 4308             | 341        | 33              | П   | 27                                            | 851        | 254         | 4. 9372          | 016<br>010   | 34<br>33        |
| 28                                      | 166                    | 474                     | . 4131           | 336        | 32              | П   | 28                                            | 880        | 285         | . 9298           | . 98004      | 32              |
| 29                                      | 195                    | . 18504                 | . 4043           | 331        | 31              | П   | 29                                            | 908        | 315         | . 9225           | . 97998      | 31              |
| 30                                      | 224                    | 534                     | 5, 3955          | . 98325    | 30              | П   | 30                                            | 937        | 345         | . 9152           | 992          | 30              |
| 31                                      | 252                    | 564                     | . 3868           | 320        | 29              | ı   | 31                                            | 965        | 376         | . 9078           | 987          | 29              |
| 32                                      | . 18281                | 594                     | . 3781           | 315        | 28              | П   | 32                                            | .19994     | 406         | . 9006           | 981          | 28              |
| 33                                      | 309                    | 624                     | . 3694           | 310        | 27              |     | 33                                            | .20022     | 436         | . 8933           | 975          | 27              |
| 34                                      | 338                    | 654                     | . 3607           | 304        | 26              | П   | 34                                            | 051        | . 20466     | . 8860           | 969          | 26              |
| 35                                      | 367                    | 684                     | . 3521           | 299        | 25              |     | 35                                            | 079        | 497         | 4. 8788          | 963          | $\frac{25}{24}$ |
| 36                                      | 395                    | 714                     | . 3435           | 294        | 24              | П   | 36<br>37                                      | 108<br>136 | 527         | . 8716<br>. 8644 | 958<br>97952 | 23              |
| 37<br>38                                | 424<br>452             | . 18745<br>775          | . 3349           | 288<br>283 | $\frac{23}{22}$ |     | 38                                            | 165        | 557<br>588  | . 8573           | 946          | 22              |
| 39                                      | 481                    | 805                     | . 3203           | 277<br>277 | 21              | П   | 39                                            | 193        | 618         | . 8501           | 940          | 21              |
| 40                                      | . 18509                | 835                     | 5. 3093          | 98272      | 20              | H   | 40                                            | 222        | 648         | . 8430           | 934          | 20              |
| 41                                      | 538                    | 865                     | . 3008           | 267        | 19              |     | 41                                            | 250        | 679         | . 8359           | 928          | 19              |
| 42                                      | 567                    | 895                     | . 2924           | 261        | 18              | П   | 42                                            | . 20279    | 709         | . 8288           | 922          | 18              |
| 43                                      | 595                    | 925                     | . 2839           | 256        | 17              | П   | 43                                            | 307        | . 20739     | . 8218           | 916          | 17              |
| 44                                      | 624                    | 955                     | . 2755           | 250        | 16              | П   | 44                                            | 336        | 770         | 4. 8147          | . 97910      | 16              |
| 45                                      | 652                    | .18986                  | . 2672           | 245        | 15              | П   | 45                                            | 364        | 800         | . 8077           | 905          | 15              |
| 46                                      | 681                    | .19016                  | . 2588           | 240        | 14              |     | 46<br>47                                      | 393<br>421 | 830<br>861  | . 8007<br>. 7937 | 899<br>893   | 14<br>13        |
| 47                                      | 710                    | 046                     | . 2505           | 234<br>229 | 13<br>12        |     | 48                                            | 421<br>450 | 891         | . 7867           | 887          | 12              |
| 48<br>49                                | 738<br>. 18767         | 076<br>106              | . 2422           | 229<br>223 |                 | П   | 49                                            | 478        | 921         | 7798             | 881          | 11              |
|                                         |                        | 136                     | 5. 2257          | . 98218    | 10              | ı   | 50                                            | 507        | 952         | 7729             | 875          | 10              |
| 50<br>51                                | 795<br>824             | 166                     | . 2174           | 212        | 9               | П   | 51                                            | . 20535    | . 20982     | . 7659           | 869          | 9               |
| 52                                      | 852                    | 197                     | 2092             | 207        | 8               | ۱   | 52                                            | 563        | .21013      | 4. 7591          | . 97863      | 8               |
| 53                                      | 881                    | . 19227                 | 2011             | 201        | 7               | П   | 53                                            | 592        | 043         | . 7522           | 857          | 7               |
| 54                                      | 910                    | 257                     | . 1929           | 196        | 6               | П   | 54                                            | 620        | 073         | . 7453           | 851          | 6               |
| 55                                      | 938                    | 287                     | . 1848           | 190        | 5               |     | 55                                            | 649        | 104         | . 7385           | 845          | 5               |
| 56                                      | 967                    | 317                     | . 1767           | 185        | 4               |     | 56                                            | 677        | 134         | . 7317           | 839          | 4               |
| 57                                      | .18995                 | 347                     | . 1686           | 179        | 3 2             |     | 57<br>58                                      | 706<br>734 | 164<br>195  | . 7249<br>. 7181 | 833<br>827   | 3<br>2          |
| 58                                      | .19024                 | 378                     | . 1606<br>. 1526 | 174<br>168 | 1               | ۱   | 59                                            | 763        | 225         | 7114             | 821          | ĩ               |
| 59<br><b>60</b>                         | 052<br>. <b>19</b> 081 | 408<br>. 19438          | 5. 1446          | .98163     | Ô               |     | 60                                            | . 20791    | . 21256     | 4. 7046          | .97815       | ō               |
| 100                                     | -                      | cot                     | tan              | sin        | <del>-</del> -  |     |                                               | cos        | cot         | tan              | sin          | 7               |
| L                                       | cos                    | COL                     | i ran            | 1 15111    | <u>'</u>        | 1   |                                               |            |             | 00               |              |                 |

79° READ UP 78°

12° READ DOWN 13°

| <del>- , - ,</del> |            | 14                 |                    |                   |       | ı | 7 1 | sin             | tan     | cot     | cos 1             |     |
|--------------------|------------|--------------------|--------------------|-------------------|-------|---|-----|-----------------|---------|---------|-------------------|-----|
| اجُا               | sin        | tan                | cot                | .97815            | 60    |   | 0   | . 22495         | . 23087 | 4. 3315 | . 97437           | 60  |
| 0                  | . 20791    | . 21256<br>286     | 4. 7046<br>4. 6979 | 809               | 59    |   | ĭ   | 523             | 117     | 257     | 430               | 59  |
| 1 2                | 820<br>848 | 316                | 912                | 803               | 58    |   | 2   | 552             | 148     | 200     | 424               | 58  |
| 3                  | 877        | 347                | 845                | 797               | 57    |   | 3   | 580             | 179     | 143     | 417               | 57  |
| 4                  | 905        | 377                | 779                | 791               | 56    |   | 4   | 608             | 209     | 086     | 411               | 56  |
| 5                  | 933        | 408                | 712                | 784               | 55    |   | 5   | 637             | 240     | 4. 3029 | 404               | 55  |
| 6                  | 962        | 438                | 646                | 778               | 54    |   | 6   | 665             | 271     | 4. 2972 | 398               | 54  |
| 7                  | . 20990    | 469                | 580                | 772               | 53    |   | 7   | 693             | 23301   | 916     | 391               | 53  |
| 8                  | . 21019    | . 21499            | 4. 6514            | 766               | 52    |   | 8   | . 22722         | 332     | 859     | 384               | 52  |
| 9                  | 047        | 529                | 448                | 760               | 51    |   | 9   | 750             | 363     | 803     | 378               | 51  |
| 10                 | 076        | 560                | 382                | . 97754           | 50    |   | 10  | 778             | 393     | 747     | . 97371           | 50  |
| 11                 | 104        | 590                | 317                | 748               | 49    |   | îĭ  | 807             | 424     | 691     | 365               | 49  |
| 12                 | 132        | 621                | 252                | 742               | 48    |   | 12  | 835             | 455     | 635     | 358               | 48  |
| 13                 | 161        | 651                | 187                | 735               | 47    |   | 13  | 863             | 485     | 580     | 351               | 47  |
| 14                 | 189        | 682                | 122                | 729               | 46    |   | 14  | 892             | 516     | 4. 2524 | 345               | 46  |
| 15                 | 218        | $\frac{-332}{712}$ | 4. 6057            | $\frac{723}{723}$ | 45    |   | 15  | 920             | . 23547 | 468     | 338               | 45  |
| 16                 | . 21246    | . 21743            | 4. 5993            | 717               | 44    |   | 16  | 948             | 578     | 413     | 331               | 44  |
| 17                 | 275        | 773                | 928                | 711               | 43    |   | 17  | . 22977         | 608     | 358     | 325               | 43  |
| 18                 | 303        | 804                | 864                | 705               | 42    |   | 18  | 23005           | 639     | 303     | 318               | 42  |
| 19                 | 331        | 834                | 800                | 698               | 41    |   | 19  | 033             | 670     | 248     | 311               | 41  |
| 20                 | 360        | 864                | 736                | . 97692           | 40    |   | 20  | 062             | 700     | 193     | . 97304           | 40  |
| 21                 | 388        | 895                | 673                | 686               | 39    |   | 21  | 090             | 731     | 139     | 298               | 39  |
| 22                 | 417        | 925                | 609                | 680               | 38    |   | 22  | 118             | . 23762 | 084     | 291               | 38  |
| 23                 | 445        | 956                | 4. 5546            | 673               | 37    |   | 23  | 146             | 793     | 4. 2030 | 284               | 37  |
| 24                 | 474        | . 21986            | 483                | 667               | 36    |   | 24  | 175             | 823     | 4. 1976 | 278               | 36  |
| 25                 | . 21502    | .22017             | 420                | 661               | 35    |   | 25  | 203             | 854     | 922     | 271               | 35  |
| 26                 | 530        | 047                | 357                | 655               | 34    |   | 26  | 231             | 885     | 868     | 264               | 34  |
| 27                 | 559        | 078                | 294                | 648               | 33    |   | 27  | . 23260         | 916     | 814     | $\frac{257}{257}$ | 33  |
| 28                 | 587        | 108                | 232                | 642               | 32    |   | 28  | 288             | 946     | 760     | 251               | 32  |
| 29                 | 616        | 139                | 169                | 636               | 31    |   | 29  | 316             | . 23977 | 706     | $\frac{244}{244}$ | 31  |
| 30                 | 644        | 169                | 107                | . 97630           | 30    |   | 30  | 345             | . 24008 | 653     | . 97237           | 30  |
| 31                 | 672        | 200                | 4. 5045            | 623               | 29    | ı | 31  | 373             | 039     | 600     | 230               | 29  |
| 32                 | 701        | 231                | 4. 4983            | 617               | 28    | l | 32  | 401             | 069     | 547     | 223               | 28  |
| 33                 | 729        | . 22261            | 922                | 611               | 27    | ı | 33  | 429             | 100     | 4. 1493 | 217               | 27  |
| 34                 | . 21758    | 292                | 860                | 604               | 26    | l | 34  | 458             | 131     | 441     | 210               | 26  |
| 35                 | 786        | 322                | 799                | 598               | 25    | ĺ | 35  | . 23486         | 162     | 388     | 203               | 25  |
| 36                 | 814        | 353                | 737                | 592               | 24    | İ | 36  | 514             | 193     | 335     | 196               | 24  |
| 37                 | 843        | 383                | 676                | 585               | 23    |   | 37  | 542             | 223     | 282     | 189               | 23  |
| 38                 | 871        | 414                | 615                | 579               | 22    | l | 38  | 571             | . 24254 | 230     | 182               | 22  |
| 39                 | 899        | 444                | 555                | 573               | 21    |   | 39  | 599             | 285     | 178     | 176               | 21  |
| 40                 | 928        | 475                | 4. 4494            | . 97566           | 20    |   | 40  | 627             | 316     | 126     | . 97169           | 20  |
| 41                 | 956        | . 22505            | 434                | 560               | 19    |   | 41  | 656             | 347     | 074     | 162               | 19  |
| 42                 | . 21985    | 536                | 373                | 553               | 18    | 1 | 42  | 684             | 377     | 4.1022  | 155               | 18  |
| 43                 | . 22013    | 567                | 313                | 547               | 17    | ı | 43  | 712             | 408     | 4. 0970 | 148               | 17  |
| 44                 | 041        | 597                | 253                | 541               | 16    |   | 44  | . 23740         | 439     | 918     | 141               | 16  |
| 45                 | 070        | 628                | 194                | 534               | 15    |   | 45  | 769             | . 24470 | 867     | 134               | 15  |
| 46                 | 098        | 658                | 134                | 528               | 14    | ı | 46  | 797             | 501     | 815     | 127               | 14  |
| 47                 | 126        | 689                | 075                | 521               | 13    | ŀ | 47  | 825             | 532     | 764     | 120               | 13  |
| 48                 | 155        | 719                | 4.4015             | 515               | 12    |   | 48  | 853             | 562     | 713     | 113               | 12  |
| 49                 | 183        | . 22750            | <b>4. 3</b> 956    | 508               | _11_  |   | 49  | 882             | 593     | 662     | 106               | 11  |
| 50                 | 212        | 781                | 897                | . 97502           | 10    |   | 50  | 910             | 624     | 611     | . 97100           | 10  |
| 51                 | 240        | 811                | 838                | 496               | 9     |   | 51  | 938             | 655     | 560     | 093               | 9   |
| 52                 | . 22268    | 842                | 779                | 489               | 8     |   | 52  | 966             | . 24686 | 4.0509  | 086               | 8 7 |
| 53                 | 297        | 872                | 721                | 483               | 7     |   | 53  | <b>. 23</b> 995 | 717     | 459     | 079               | 7   |
| 54                 | 325        | 903                | 662                | 476               | 6     | • | 54  | . 24023         | 747     | 408     | 072               | 6   |
| 55                 | 353        |                    | 604                | 470               | 5     |   | 55  | 051             | 778     | 358     | 065               | 5   |
| 56                 | 382        |                    | 546                | 463               | 4     |   | 56  | 079             | 809     | 308     | 058               | 4   |
| 57                 | 410        |                    | 488                | 457               | 3     | ĺ | 57  | 108             | 840     | 257     | 051               | 3   |
| 58                 | 438        |                    | 430                | 450               | 2     | ı | 58  | 136             | 871     | 207     | 044               | 2   |
| 59                 | 467        |                    | 372                | 444               | 1     | 1 | 59  | 164             | 902     | 158     | 037               |     |
| 60                 | . 22495    |                    | 4. 3315            | .97437            | 0     |   | 60  | . <b>24</b> 192 | . 24933 | 4.0108  | <b>. 97</b> 030   | 0   |
| 1                  | cos        | cot                | tan                | sin               | l ' ' | ı | 1   | cos             | cot     | tan     | sin               | ,   |

APPENDIX

287

## TRIGONOMETRIC FUNCTIONS 14° READ DOWN 15°

| 71                                       | sin                   | tan               | cot            | cos             |                 | ır   |                 | sin             | tan                    | cot            | 000               | <del>-</del> |
|------------------------------------------|-----------------------|-------------------|----------------|-----------------|-----------------|------|-----------------|-----------------|------------------------|----------------|-------------------|--------------|
| 0                                        | . 24192               | . 24933           | 4.0108         | . 97030         | 60              | 1 1  | 0               | . 25882         | . 26795                | 3. 7321        | . 96593           | 60           |
| ľil                                      | 220                   | 964               | 058            | 023             | 59              | П    | ĭ               | 910             | 826                    |                |                   |              |
| 2                                        | 249                   | . 24995           | <b>4.0</b> 009 | 015             | 58              | П    | 2               | 938             | 857                    | 234            |                   |              |
| 3                                        | 277                   | . 25026           | <b>3.9</b> 959 | 008             | 57              | Н    | 3               | 966             | 888                    |                |                   |              |
| 4                                        | 305                   | 056               | 910            | <b>. 97</b> 001 | 56              | Ш    | 4               | . <b>25</b> 994 | 920                    |                |                   |              |
| 5                                        | 333                   | 087               | 861            | <b>. 96</b> 994 | 55              | П    | 5               | · 26022         | 951                    | 105            | 555               | 55           |
| 6                                        | 362                   | 118               | 812            | 987             | 54              | П    | 6               | 050             | . 26982                | 062            | 547               | 54           |
| 7                                        | 390                   | 149               | 763            | 980             | 53              | П    | 7               | 079             | . 27013                | <b>3.</b> 7019 |                   |              |
| 8                                        | 418                   | $\frac{180}{211}$ | 714<br>665     | 973             | 52              | Ш    | 8               | 107             | 044                    | 3.6976         |                   |              |
| 9                                        | <u>. 24446</u><br>474 | $\frac{211}{242}$ | 617            | 966             | 51              | 1    | 9               | 135             | 076                    | 933            |                   |              |
| 10<br>11                                 | 503                   | 25273             | 568            | 959<br>952      | 50<br>49        | Н    | 10<br>11        | 163             | 107                    | 891            | . 96517           |              |
| 12                                       | 531                   | 304               | 3. 9520        | 945             | 48              | П    | 12              | 191<br>219      | 138<br>169             | 848<br>806     | 509<br>502        |              |
| 13                                       | 559                   | 335               | 471            | . 96937         | 47              | П    | 13              | . 26247         | 201                    | 764            |                   |              |
| 14                                       | 587                   | 366               | 423            | 930             | 46              | П    | 14              | 275             | 232                    | 722            |                   |              |
| 15                                       | 615                   | 397               | 375            | 923             | 45              | 1 1  | 15              | 303             | . 27263                | 680            | 479               | 45           |
| 16                                       | 644                   | 428               | 327            | 916             | 44              | П    | 16              | 331             | 294                    | 3. 6638        | 471               | 44           |
| 17                                       | 672                   | 459               | 279            | 909             | 43              | Н    | 17              | 359             | 326                    | 596            |                   |              |
| 18                                       | 700                   | . 25490           | 232            | 902             | 42              | П    | 18              | 387             | 357                    | 554            | 456               |              |
| 19                                       | . 24728               | 521               | 184            | 894             | 41              | 11.  | 19              | 415             | 388                    | 512            | 448               | 41           |
| 20                                       | 756                   | 552               | 136            | 887             | 40              | П    | 20              | 443             | 419                    | 470            | . 96440           | 40           |
| 21                                       | 784                   | 583               | 089            | . 96880         | 39              | П    | 21              | . 26471         | 451                    | 429            | 433               |              |
| 22                                       | 813                   | 614               | 3.9042         | 873             | 38              | П    | 22              | 500             | . 27482                | 387            | 425               | 38           |
| $\begin{bmatrix} 23 \\ 24 \end{bmatrix}$ | 841<br>869            | 645<br>676        | 3. 8995<br>947 | 866<br>858      | 37<br>36        | Н    | 23<br>24        | 528<br>556      | 513                    | 346            | 417               | 37           |
|                                          |                       |                   |                |                 |                 | 1 }  |                 |                 | 545                    | 3. 6305        | 410               | 36           |
| 25<br>26                                 | 897<br>925            | 707<br>. 25738    | 900<br>854     | 851             | 35<br>34        | П    | $\frac{25}{26}$ | 584             | 576                    | 264            | 402               | 35           |
| 27                                       | 954                   | 769               | 807            | 844<br>837      | 33              | П    | 27              | 612<br>640      | 607<br>638             | 222<br>181     | 394<br>386        | 34           |
| 28                                       | . 24982               | 800               | 760            | 829             | 32              | П    | 28              | 668             | 670                    | 140            | 379               | 32           |
| 29                                       | . 25010               | 831               | 714            | . 96822         | 31              | Н    | 29              | 696             | 701                    | 100            | 371               | 31           |
| 30                                       | 038                   | 862               | 3. 8667        | 815             | 30              | lŀ   | 30              | . 26724         | . 27732                | 059            | . 96363           | 30           |
| 31                                       | 066                   | 893               | 621            | 807             | 29              | Ш    | 31              | 752             | 764                    | 3.6018         | 355               | 29           |
| 32                                       | 094                   | 924               | 575            | 800             | 28              | П    | 32              | 780             | 795                    | 3.5978         | 347               | 28           |
| 33                                       | 122                   | 955               | 528            | 793             | 27              | П    | 33              | 808             | 826                    | 937            | 340               | 27           |
| 34                                       | 151                   | <b>. 25</b> 986   | 482            | 786             | 26              | L    | 34              | 836             | 858                    | 897            | 332               | 26           |
| 35                                       | 179                   | . 26017           | 436            | 778             | 25              | П    | 35              | 864             | 889                    | 856            | 324               | 25           |
| 36                                       | 207                   | 048               | 391            | 771             | $\frac{24}{23}$ | П    | 36              | 892             | 921                    | 816            | 316               | 24           |
| 37<br>38                                 | . 25235<br>263        | 079<br>110        | 3. 8345<br>299 | . 96764<br>756  | 23              | П    | 37<br>38        | 920<br>948      | 952<br>• <b>27</b> 983 | 776<br>736     | 308<br>301        | 23<br>22     |
| 39                                       | 291                   | 141               | 254            | 749             | 21              | П    | 39              | . 26976         | . 28015                | 696            | 293               | 21           |
| 40                                       | 320                   | 172               | 208            | 742             | 20              | -    | 40              | .27004          | 046                    | 3. 5656        | . 96285           | 20           |
| 41                                       | 348                   | 203               | 163            | 734             | 19              | H    | 41              | 032             | 077                    | 616            | 277               | 19           |
| 42                                       | 376                   | 235               | 118            | 727             | 18              | П    | 42              | 060             | 109                    | 576            | $\tilde{2}69$     | 18           |
| 43                                       | 404                   | . 26266           | 073            | 719             | 17              | 1    | 43              | 088             | 140                    | 536            | 261               | 17           |
| 44                                       | . 25432               | 297               | 3.8028         | 712             | 16              | H    | 44              | 116             | 172                    | 497            | 253               | 16           |
| 45                                       | 460                   | 328               | 3.7983         | . 96705         | 15              | ١ſ   | 45              | 144             | 203                    | 457            | 246               | 15           |
| 46                                       | 488                   | 359               | 938            | 697             | 14              | П    | 46              | 172             | . 28234                | 418            | 238               | 14           |
| 47                                       | 516                   | 390               | 893            | 690             | 13              | П    | 47              | 200             | 266                    | 379            | 230               | 13           |
| 48                                       | 545                   | 421               | 848            | 682             | 12              | П    | 48              | 228<br>256      | 297<br>329             | 3. 5339<br>300 | $\frac{222}{214}$ | 12<br>11     |
| 49                                       | 573                   | 452               | 804            | 675             | 11              | I  - | 49              | 27284           | 360                    | 261            | . 96206           | 10           |
| 50                                       | 601                   | 483               | 760            | 667             | 10              | П    | 50<br>51        | 312             | 391                    | 201<br>222     | 198               | 10           |
| 51<br>52                                 | 629<br>. 25657        | 515<br>26546      | 715<br>3. 7671 | 660<br>653      | 8               | П    | 52              | 340             | 423                    | 183            | 190               | 8            |
| 53                                       | 685                   | 577               | 627            | . 96645         | 7               | П    | 53              | 368             | . 28454                | 144            | 182               | 8            |
| 54                                       | 713                   | 608               | 583            | 638             | 6               | П    | 54              | 396             | 486                    | 105            | 174               | 6            |
| 55                                       | 741                   | 639               | 539            | 630             | 5               | l    | 55              | 424             | 517                    | 067            | 166               | 5            |
| 56                                       | 769                   | 670               | 495            | 623             | 4               | Н    | 56              | 452             | 549                    | 3.5028         | 158               | 4            |
| 57                                       | 798                   | 701               | 451            | 615             | 3               | П    | 57              | 480             | 580                    | 3.4989         | 150               | 3            |
| 58                                       | 826                   | 733               | 408            | 608             | 2               |      | 58              | 508             | 612                    | 951            | 142               | 2            |
| 59                                       | 854                   | 764               | 364            | 600             | 1               |      | 59              | 536             | 643                    | 912            | 134               | 1            |
| 60                                       | <b>. 25</b> 882       | <b>. 26</b> 795   | 3. 7321        | <b>. 96</b> 593 | 0               | L    | 60              | . 27564         | <b>. 28</b> 675        | 3. 4874        | <b>.96</b> 126    | 0            |
|                                          | COS                   | cot               | tan            | sin             | 7               |      |                 | cos             | cot                    | tan            | sin               | ′ ′          |

75° READ UP 74°

16° READ DOWN 17°

| , ,      | sin             | tan                    | cot            | cos             |          | 1  | ,        | sin         | tan             | cot             | cos        | _                |
|----------|-----------------|------------------------|----------------|-----------------|----------|----|----------|-------------|-----------------|-----------------|------------|------------------|
| 0        | . 27564         | . 28675                | 3. 4874        | . 96126         | 60       |    | 0        | . 29237     | . 30573         | 3. 2709         | . 95630    | 60               |
| ĭ        | 592             | 706                    | 836            | 118             | 59       |    | ĭ        | 265         | 605             | 675             | 622        | 59               |
| 2        | 620             | 738                    | 798            | 110             | 58       |    | 2        | 293         | 637             | 641             | 613        | 58               |
| 3        | 648             | 769                    | 760            | 102             | 57       |    | 3        | 321         | 669             | 607             | 605        | 57               |
| 4        | 676             | 801                    | 722            | 094             | 56       |    | 4        | 348         | 700             | 573             | 596        | 56               |
| 5        | 704             | 832                    | 684            | 086             | 55       |    | 5        | 376         | 732             | 539             | 588        | 55               |
| 6        | 731             | 864                    | 646            | 078             | 54       |    | 6        | 404         | 764             | 506             | - 579      | 54               |
| 7        | . 27759         | 895                    | 608            | . 96070         | 53       |    | 7        | 432         | . 30796         | 3. 2472         | 571        | 53               |
| 8        | 787             | 927                    | 3. 4570        | 062             | 52       |    | 8        | 460         | 828             | 438             | 562        | 52               |
| 9        | 815             | 958                    | 533            | 054             | 51       |    | 9        | . 29487     | 860             | 405             | 554        | 51               |
| 10       | 843             | . 28990                | 495            | 046             | 50       | ١. | 10       | 515         | 891             | 371             | . 95545    | 50               |
| 11       | 871             | . 29021                | 458            | 037             | 49       |    | 11       | 543         | 923             | 338             | 536        | 49               |
| 12       | 899             | 053                    | 420            | 029             | 48       |    | 12       | 571         | 955             | 305             | 528        | 48               |
| 13       | 927             | 084                    | 383            | 021             | 47       |    | 13       | 599         | . 30987         | 272             | 519        | 47               |
| 14       | 955             | 116                    | 346            | 013             | 46       |    | 14       | 626         | • <b>31</b> 019 | 3. 2238         | 511        | 46               |
| 15       | . 27983         | 147                    | 3. 4308        | . 96005         | 45       |    | 15       | 654         | 051             | 205             | 502        | 45               |
| 16       | .28011          | 179                    | 271            | <b>. 95</b> 997 | 44       |    | 16       | 682         | 083             | 172             | 493        | 44               |
| 17       | 039             | 210                    | 234            | 989             | 43       | l  | 17       | 710         | 115             | 139             | 485        | 43               |
| 18       | 067             | . 29242                | 197            | 981             | 42       |    | 18       | . 29737     | 147             | 106             | 476        | 42               |
| 19       | 095             | 274                    | 160            | 972             | 41       | ı  | 19       | 765         | 178             | 073             | 467        | 41               |
| 20       | 123             | 305                    | 124            | 964             | 40       |    | 20       | 793         | 210             | 041             | . 95459    | 40               |
| 21       | 150             | 337                    | 087            | 956             | 39       |    | 21       | 821         | 242             | <b>3. 2</b> 008 | 450        | 39               |
| 22       | 178             | 368                    | 050            | 948             | 38       |    | 22       | 849         | . 31274         | <b>3.</b> 1975  | 441        | 38               |
| 23       | 206             | 400                    | 3. 4014        | 940             | 37       |    | 23       | 876         | 306             | 943             | 433        | 37               |
| 24       | . 28234         | 432                    | 3. 3977        | 931             | 36       |    | 24       | 904         | 338             | 910             | 424        | 36               |
| 25       | 262             | . 29463                | 941            | . 95923         | 35       |    | 25       | 932         | 370             | 878             | 415        | 35               |
| 26       | 290             | 495                    | 904            | 915             | 34       |    | 26       | 960         | 402             | 845             | 407        | 34               |
| 27       | 318             | 526                    | 868            | 907             | 33       |    | 27       | .29987      | 434             | 813             | 398        | 33               |
| 28       | 346             | 558                    | 832            | 898             | 32<br>31 |    | 28       | .30015      | 466             | 780             | 389        | 32               |
| 29       | 374             | 590                    | 796            | 890             |          |    | 29       | 043         | . 31498         | 3. 1748         | 380        | 31               |
| 30       | 402             | 621                    | 759            | 882             | 30       | l  | 30       | 071         | 530             | 716             | . 95372    | 30               |
| 31       | 429             | 653                    | 723            | 874             | 29<br>28 | ŀ  | 31       | 098         | 562             | 684             | 363        | 29               |
| 32       | 457             | 685                    | 687<br>3. 3652 | 865             | 27       | ı  | 32       | 126         | 594             | 652             | 354        | 28               |
| 33       | . 28485         | 29716                  | 616            | . 95857<br>849  | 26       |    | 33       | 154         | 626             | 620             | 345        | 27               |
| 34       | 513             |                        |                |                 |          |    | 34       | 182         | 658             | 588             | 337        | 26               |
| 35       | 541             | 780                    | 580            | 841             | 25<br>24 | ı  | 35       | 209         | 690             | 556             | 328        | 25               |
| 36       | 569             | 811<br>843             | 544<br>509     | 832<br>824      | 23       |    | 36       | 237         | 722             | 524             | 319        | 24               |
| 37<br>38 | 597<br>625      | 875                    | 473            | 816             | 22       |    | 37<br>38 | 30265 $292$ | . 31754         | 3. 1492         | 310        | 23               |
| 39       | 652             | 906                    | 438            | 807             | 21       | 1  | 39       | 320         | 786             | 460<br>429      | 301        | 22<br>21         |
| 40       |                 |                        | 402            | 799             | 20       | ı  |          |             | 818             |                 | 293        |                  |
| 41       | 680<br>708      | 938<br>• <b>29</b> 970 | 367            | 799<br>791      | 19       | 1  | 40       | 348         | 850             | 397             | . 95284    | 20               |
| 42       | . 28736         | .29970<br>.30001       | 3. 3332        | . 95782         | 18       | 1  | 41<br>42 | 376<br>403  | 882<br>914      | 366<br>334      | 275        | 19               |
| 43       | 764             | 033                    | 297            | 774             | 17       | 1  | 43       | 431         | 914             | 303             | 260<br>257 | 18<br>17         |
| 44       | 792             | 065                    | 261            | 766             | 16       | ı  | 44       | 451<br>459  | .31978          | 3. 1271         | 257<br>248 | 16               |
| 45       | 820             | 097                    | 226            | 757             | 15       | 1  | 45       | . 30486     | .32010          | 3. 12/1         |            |                  |
| 46       | 847             | 128                    | 191            | 749             | 14       | 1  | 46       | 514         | 042             | 240<br>209      | 240<br>231 | 15<br>14         |
| 47       | 875             | 160                    | 156            | 740             | 13       | 1  | 47       | 542         | 042             | 209<br>178      | 231<br>222 | 13               |
| 48       | 903             | 192                    | 122            | 732             | 12       | ı  | 48       | 570         | 106             | 146             | 213        | 12               |
| 49       | 931             | 224                    | 087            | 724             | îĩ       | ı  | 49       | 597         | 139             | 115             | 204        | 11               |
| 50       | 959             | 255                    | 052            | 715             | 10       |    | 50       | 625         | 171             | 084             | . 95195    | 10               |
| 51       | 28987           | . 30287                | 3. 3017        | . 95707         | 9        | 1  | 51       | 653         | 203             | 053             | 186        | 9                |
| 52       | 29015           | 319                    | 3. 2983        | 698             | š        | 1  | 52       | 680         | 235             | <b>3.</b> 1022  | 177        | 8                |
| 53       | 042             | 351                    | 948            | 690             | 7        | l  | 53       | 30708       | . 32267         | 3. <b>0</b> 991 | 168        | 7                |
| 54       | 070             | 382                    | 914            | 681             | 6        | l  | 54       | 736         | 299             | 961             | 159        | 8<br>7<br>6      |
| 55       | 098             | 414                    | 879            | 673             | 5        | 1  | 55       | 763         | 331             | 930             | 150        |                  |
| 56       | 126             | 446                    | 845            | 664             | 4        | ı  | 56       | 791         | 363             | 899             | 142        | 4                |
| 57       | 154             | 478                    | 811            | 656             | 3        | ı  | 57       | 819         | 396             | 868             | 133        | 3                |
| 58       | 182             | 509                    | 777            | 647             | 2        | 1  | 58       | 846         | 428             | 838             | 124        | ž                |
| - 59     | 209             | 541                    | 743            | 639             | 1        | 1  | 59       | 874         | 460             | 807             | 115        | 5<br>4<br>3<br>2 |
| 60       | <b>. 29</b> 237 | <b>. 30</b> 573        | 3. 2709        | . <b>95</b> 630 | 0        | 1  | 60       | . 30902     | . 32492         | 3. 0777         | . 95106    | ō                |
|          | cos             | cot                    | tan            | sin             | ,        | l  |          | cos         | cot             | tan             | sin        | ,                |
| -        |                 |                        |                |                 |          |    | -        |             |                 | ,               |            |                  |

## 18° READ DOWN 19°

| _′_             | sin             | tan             | cot             | cos        |          |   |              | sin                | tan        | cot               | cos            |          |
|-----------------|-----------------|-----------------|-----------------|------------|----------|---|--------------|--------------------|------------|-------------------|----------------|----------|
| 0               | <b>. 30</b> 902 | <b>. 32</b> 492 | 3.0777          | . 95106    | 60       |   | 0            | . 32557            | . 34433    | 2.9042            | . 94552        | 60       |
| 1               | 929             | 524             | 746             | 097        | 59       |   | 1            | 584                | 465        | <b>2.9</b> 015    | 542            | 59       |
| 2               | 957             | 556             | 716             | 088        | 58       | ı | 2            | 612                | 498        | 2.8987            | .533           | 58       |
| 3               | . 30985         | 588             | 686             | 079        | 57       | l | 3            | 639                | 530        | 960               | 523            | 57       |
| 4               | . 31012         | 621             | 655             | 070        | 56       | ı | 4            | 667                | 563        | 933               | 514            | 56       |
| 5               | 040             | 653             | 625             | 061        | 55       | П | 5            | 694                | 596        | 905               | 504            | 55       |
| 6               | 068             | 685             | 595             | 95052      | 54       | П | 6            | 722                | 628        | 878               | 495            | 54       |
| 7               | 095             | 717             | 565             | 043        | 53       |   | 7            | 749                | 661        | 851               | 485            | 53       |
| 8               | 123             | . 32749         | 535             | 033        | 52       | П | 8            | . 32777            | 693        | 824               | 476            | 52       |
| 9               | 151             | 782             | 3. 0505         | 024        | 51       | П | 9            | 804                | . 34726    | 797               | 466            | 51       |
| 10              | 178             | 814             | 475             | 015        | 50       |   | 10           | 832                | 758        | 770               | . 94457        | 50       |
| ii              | 206             | 846             | 445             | . 95006    | 49       | ı | îi           | 859                | 791        | 2. 8743           | 447            | 49       |
| 12              | 233             | 878             | 415             | 94997      | 48       | ı | 12           | 887                | 824        | 716               | 438            | 48       |
|                 | 261             | 911             | 385             | 988        | 47       |   | 13           | 914                | 856        | 689               | 428            | 47       |
| 13<br>14        | . 31289         | 943             | 356             | 979        | 46       |   | 14           | 942                | 889        | 662               | 418            | 46       |
|                 |                 |                 | 326             |            |          | 1 | _            |                    |            |                   |                |          |
| 15              | 316             | . 32975         |                 | 970        | 45       | ı | 15           | 969                | 922        | 636               | 409            | 45       |
| 16              | 344             | . 33007         | 296             | 961        | 44       | П | 16           | . 32997            | 954        | 609               | 399            | 44       |
| 17              | 372             | 040             | 3. 0267         | 952        | 43       |   | 17           | . 33024            | . 34987    | 582               | 390            | 43       |
| 18              | 399             | 072             | 237             | 943        | 42       |   | 18           | 051                | . 35020    | 556               | 380            | 42       |
| 19              | 427             | 104             | 208             | 933        | 41       |   | 19           | 079                | 052        | 529               | 370            | 41       |
| 20              | 454             | 136             | 178             | . 94924    | 40       |   | 20           | 106                | 085        | 2. 8502           | . 94361        | 40       |
| 21              | 482             | 169             | 149             | 915        | 39       |   | 21           | 134                | 118        | 476               | 351            | 39       |
| 22              | . 31510         | 201             | 120             | 906        | 38       | ı | 22           | 161                | 150        | 449               | 342            | 38       |
| 23              | 537             | 233             | 090             | 897        | 37       |   | 23           | 189                | 183        | 423               | 332            | 37       |
| $\overline{24}$ | 565             | . 33266         | 061             | 888        | 36       | 1 | 24           | . 33216            | 216        | 397               | 322            | 36       |
| $\frac{-1}{25}$ | 593             | 298             | 032             | 878        | 35       |   | 25           | 244                | . 35248    | 370               | 313            | 35       |
| 26              | 620             | 330             | <b>3.0</b> 003  | 869        | 34       | 1 | 26           | 271                | 281        | 344               | 303            | 34       |
| 27              | 648             | 363             | 2. 9974         | 860        | 33       |   | 27           | 298                | 314        | 318               | 293            | 33       |
| 28              | 675             | 395             | 945             | . 94851    | 32       |   | 28           | 326                | 346        | 291               | 284            | 32       |
| 29              | 703             | 427             | 916             | 842        | 31       |   | $\tilde{29}$ | 353                | 379        | 2. 8265           | 274            | 31       |
|                 |                 |                 |                 | 832        | 30       |   | 30           | $\frac{-381}{381}$ | 412        | 239               | . 94264        | 30       |
| 30              | 730             | 460             | 887             |            | 29       |   | 31           | . 33408            | . 35445    | $\frac{239}{213}$ | 254            |          |
| 31              | . 31758         | . 33492         | 858<br>829      | 823<br>814 | 28       |   | 32           | 436                | 477        | 187               | 245            | 29<br>28 |
| 32              | 786             | 524             |                 |            |          | 1 | 33           |                    |            |                   |                |          |
| 33              | 813             | 557             | 800             | 805        | 27<br>26 | 1 | 34           | 463                | 510        | 161               | 235            | 27       |
| 34              | 841             | 589             | 772             | 795        |          | 1 |              | 490                | 543        | 135               | 225            | 26       |
| 35              | 868             | 621             | 2. 9743         | 786        | 25       | ł | 35           | 518                | 576        | 109               | 215            | 25       |
| 36              | 896             | 654             | 714             | . 94777    | 24       | ı | 36           | 545                | 608        | 083               | 206            | 24       |
| 37              | 923             | 686             | 686             | 768        | 23       | ı | 37           | 573                | 641        | 057               | 196            | 23       |
| 38              | 951             | . 33718         | 657             | 758        | 22       | ı | 38           | . 33600            | 674        | 032               | 186            | 22       |
| 39              | .31979          | 751             | 629             | 749        | 21       |   | 39           | 627                | . 35707    | <b>2.</b> 8006    | 176            | 21       |
| 40              | . 32006         | 783             | 600             | 740        | 20       | 1 | 40           | 655                | 740        | <b>2.7</b> 980    | . 94167        | 20       |
| 41              | 034             | 816             | 572             | 730        | 19       | 1 | 41           | .682               | 772        | 955               | 157            | 19       |
| 42              | 061             | 848             | 544             | 721        | 18       | 1 | 42           | 710                | 805        | 929               | 147            | 18       |
| 43              | 089             | 881             | 515             | 712        | 17       | 1 | 43           | 737                | 838        | 903               | 137            | 17       |
| 44              | 116             | 913             | 2. 9487         | . 94702    | 16       | 1 | 44           | 764                | 871        | 878               | 127            | 16       |
| 45              | 144             | 945             | 459             | 693        | 15       | 1 | 45           | . 33792            | 904        | 852               | 118            | 15       |
| 46              | 171             | . 33978         | 431             | 684        | 14       | 1 | 46           | 819                | 937        | 2. 7827           | 108            | 14       |
| 47              | 199             | .34010          | 403             | 674        | 13       | 1 | 47           | 846                | . 35969    | 801               | 098            | 13       |
| 48              | 227             | 043             | 375             | 665        | 12       | 1 | 48           | 874                | . 36002    | 776               | . 94088        | 12       |
| 48              | 254             | 075             | 347             | 656        | îī       | ١ | 49           | 901                | 035        | 751               | 078            | 11       |
|                 |                 | 108             | 319             | 646        | 10       | 1 | 50           | 929                | 068        | 725               | 068            | 10       |
| 50              | . 32282         | T40             | 2. 9291         | 637        | 9        | 1 | 51           | 956                | 101        | 700               | 058            | 9        |
| 51              | 309             |                 | 2. 9291         | . 94627    | 8        | 1 | 52           | .33983             | 134        | 675               | 049            | 8        |
| 52              | 337             | 173             | 235             | 618        | 7        | 1 | 53           | 34011              | 167        | 2. 7650           | 039            | 7        |
| 53              | 364             | 205             | 235             | 609        | 6        | ı | 54           | 038                | . 36199    | 625               | 029            | 6        |
| 54              | 392             | . 34238         |                 |            |          | 1 |              | 065                | 232        | 600               | 019            | 5        |
| 55              | 419             | 270             | 180             | 599        | 5        | 1 | 55           | 093                | 232<br>265 | 575               | .94009         | 4        |
| 56              | 447             | 303             | 152             | 590        | 4        | 1 | 56           | 120                | 205<br>298 |                   | .93999         | 3        |
| 57              | 474             | 335             | 125             | 580        | 3        | 1 | 57           |                    |            | 550               |                | 3        |
| 58              | 502             | 368             | 097             | 571        | 2        | ı | 58           | 147                | 331        | 525               | 989            | 2        |
| 59              | 529             | 400             | 070             | 561        | 1        | 1 | 59           | 175                | 364        | 500               | 979<br>• 93969 | 9        |
| 60              | . 32557         | . <b>34</b> 433 | <b>2. 9</b> 042 | . 94552    | 0        | 1 | 60           | .34202             | . 36397    | 2. 7475           |                | <u>.</u> |
|                 | cos             | cot             | tan             | sin        | <u>'</u> | 1 |              | cos                | cot        | tan               | sin            | <u> </u> |
|                 |                 |                 |                 |            |          | _ |              | ,                  |            |                   |                |          |

71° READ UP 70°

20° READ DOWN 21°

|                 |                        | 20               | ,                      |                        | EAD      |    | OW                                  | .,             | 21                     |                        |                  |                 |
|-----------------|------------------------|------------------|------------------------|------------------------|----------|----|-------------------------------------|----------------|------------------------|------------------------|------------------|-----------------|
|                 | sin                    | tan              | cot                    | cos                    |          |    | . '                                 | sin            | tan                    | cot                    | cos              |                 |
| 0               | . 34202                | . 36397          | 2. 7475                | . 93969                | 60       |    | 0                                   | . 35837        | . 38386                | 2.6051                 | .93358           | 60              |
| 1               | 229                    | 430<br>463       | 450<br>425             | 959<br>949             | 59<br>58 |    | $egin{array}{c} 1 \\ 2 \end{array}$ | 864<br>891     | 420<br>453             | 028<br><b>2. 6</b> 006 | 348              | 59              |
| 3               | 257<br>284             | 496              | 400                    | 939                    | 57       |    | 3                                   | 918            | 487                    | <b>2. 5</b> 983        | 337<br>327       | 58<br>57        |
| 4               | 311                    | 529              | 376                    | 929                    | 56       |    | 4                                   | 945            | 520                    | 961                    | 316              | 56              |
|                 |                        | 562              | 351                    | 919                    | 55       |    | 5                                   | .35973         | 553                    | 938                    | 306              |                 |
| 5<br>6          | 339<br>366             | 595              | 326                    | 909                    | 54       |    | 6                                   | .36000         | 587                    | 916                    | 295              | 55<br>54        |
| 7               | . 34393                | 628              | 302                    | 899                    | 53       |    | 7                                   | 027            | 620                    | 893                    | 285              | 53              |
| 8               | 421                    | 661              | 277                    | 889                    | 52       |    | 8                                   | 054            | 654                    | 871                    | . 93274          | 52              |
| 9               | 448                    | . 36694          | 2. 7253                | 879                    | 51       |    | 9                                   | 081            | . 38687                | 848                    | 264              | 51              |
| 10              | 475                    | 727              | 228                    | . 93869                | 50       |    | 10                                  | 108            | 721                    | 826                    | 253              | 50              |
| 11              | 503                    | 760              | 204                    | 859                    | 49       |    | 11                                  | 135            | 754                    | 2. 5804                | 243              | 49              |
| 12              | 530                    | 793              | 179                    | 849                    | 48       |    | 12                                  | 162            | 787                    | 782                    | 232              | 48              |
| 13              | 557                    | 826              | 155                    | 839                    | 47       |    | 13                                  | 190            | 821                    | 759                    | 222              | 47              |
| 14              | . 34584                | 859              | 130                    | 829                    | 46       |    | 14                                  | 217            | 854                    | 737                    | 211              | 46              |
| 15              | 612                    | 892              | 106                    | 819                    | 45       |    | 15                                  | . 36244        | 888                    | 715                    | 201              | 45              |
| 16              | 639                    | 925              | 082                    | 809                    | 44       |    | 16                                  | 271            | 921                    | 693                    | . 93190          | 44              |
| 17              | 666                    | 958              | 058                    | 799                    | 43<br>42 |    | 17                                  | 298            | 955                    | 671                    | 180              | 43              |
| 18<br>19        | 694<br>721             | .36991<br>.37024 | 034<br><b>2. 7</b> 009 | 789<br>779             | 42       |    | 18<br>19                            | 325<br>352     | .38988<br>.39022       | 2. 5649<br>627         | 169              | 42<br>41        |
| 20              | 748                    | 057              | 2. 6985                | . 93769                | 40       |    | 20                                  | 379            | 055                    | 605                    | 159<br>148       | 40              |
| 20              | . 34775                | 090              | 2. 6985<br>961         | 759                    | 39       |    | 20<br>21                            | 406            | 089                    | 583                    | 148<br>137       | 39              |
| 22              | 803                    | 123              | 937                    | 748                    | 38       |    | 22                                  | 434            | 122                    | 561                    | 127              | 38              |
| 23              | 830                    | 157              | 913                    | 738                    | 37       |    | 23                                  | 461            | 156                    | 539                    | 116              | 37              |
| 24              | 857                    | 190              | 889                    | 728                    | 36       |    | 24                                  | . 36488        | 190                    | 517                    | 106              | 36              |
| 25              | 884                    | 223              | 865                    | 718                    | 35       |    | 25                                  | 515            | 223                    | 2. 5495                | . 93095          | 35              |
| 26              | 912                    | . 37256          | 841                    | 708                    | 34       |    | 26                                  | 542            | . 39257                | 473                    | 084              | 34              |
| 27              | 939                    | 289              | 818                    | 698                    | 33       |    | 27                                  | 569            | 290                    | 452                    | 074              | 33              |
| 28              | 966                    | 322              | 2. 6794                | 688                    | 32       |    | 28                                  | 596            | 324                    | 430                    | 063              | 32              |
| 29              | . 34993                | 355              | 770                    | 677                    | 31       |    | 29                                  | 623            | 357                    | 408                    | 052              | 31              |
| 30              | . 35021                | 388              | 746                    | . 93667                | 30       |    | 30                                  | 650            | 391                    | . 386                  | 042              | 30              |
| 31              | 048                    | 422              | 723                    | 657                    | 29       |    | 31                                  | 677            | 425                    | 365                    | 031              | 29              |
| 32<br>33        | 075<br>102             | 455<br>37488     | 699<br>675             | 647<br>637             | 28<br>27 |    | 32                                  | 704            | 458                    | 2. 5343                | 020              | 28              |
| 34              | 130                    | 521              | 652                    | 626                    | 26       | ١. | 34                                  | . 36731<br>758 | 39492 $526$            | 322<br>300             | .93010<br>.92999 | 27<br>26        |
| 35              | 157                    | 554              | 628                    | 616                    | 25       |    | 35                                  | 785            | 559                    | 279                    | 988              | $\frac{20}{25}$ |
| 36              | 184                    | 588              | 2. 6605                | 606                    | 24       |    | 36                                  | 812            | 593                    | 257                    | 978              | 24              |
| 37              | . 35211                | 621              | 581                    | 596                    | 23       |    | 37                                  | 839            | 626                    | 236                    | 967              | 23              |
| 38              | 239                    | 654              | 558                    | 585                    | .22      |    | 38                                  | 867            | 660                    | 214                    | 956              | 22              |
| 39              | 266                    | 687              | 534                    | 575                    | 21       |    | 39                                  | 894            | 694                    | 193                    | . 945            | 21              |
| 40              | 293                    | . 37720          | 511                    | . 93565                | 20       |    | 40                                  | 921            | . 39727                | 2, 5172                | 935              | 20              |
| 41              | 320                    | 754              | 488                    | 555                    | 19       |    | 41                                  | 948            | 761                    | 150                    | 924              | 19              |
| 42              | 347                    | 787              | 464                    | 544                    | 18       |    | 42                                  | . 36975        | 795                    | 129                    | 913              | 18              |
| 43              | 375                    | 820              | 441                    | 534                    | 17       |    | 43                                  | . 37002        | 829                    | 108                    | . 92902          | 17              |
| 44              | . 35402                | 853              | 2. 6418                | 524                    | 16       |    | 44                                  | 029            | 862                    | 086                    | 892              | 16              |
| 45              | 429                    | 887              | 395                    | 514                    | 15       |    | 45                                  | 056            | 896                    | 065                    | 881              | 15              |
| 46<br>47        | 456<br>484             | 920<br>953       | 371<br>348             | 503<br>493             | 14<br>13 |    | 46                                  | 083            | 930                    | 044                    | 870              | 14              |
| 48              | 511                    | . 37986          | 348<br>325             | 493<br>483             | 13       |    | 47<br>48                            | 110<br>137     | 963<br><b>. 39</b> 997 | 023<br><b>2. 5</b> 002 | 859<br>849       | 13<br>12        |
| 49              | 538                    | 38020            | 302                    | 472                    | 11       |    | 49                                  | 164            | .40031                 | 2. 4981                | 838              | 11              |
| 50              | 565                    | 053              | 279                    | . 93462                | 10       | 1  | 50                                  | 191            | 065                    | 960                    | 827              | 10              |
| 51              | . 35592                | 086              | 256                    | 452                    | 9        |    | 51                                  | 218            | 098                    | 939                    | 816              | 19              |
| 52              | 619                    | 120              | 2. 6233                | 441                    | 8        | ı  | $5\hat{2}$                          | . 37245        | 132                    | 918                    | . 92805          | ጸ               |
| 53              | 647                    | 153              | 210                    | 431                    |          |    | 53                                  | 272            | 166                    | 897                    | 794              | 7 6             |
| 54              | 674                    | 186              | 187                    | 420                    | _6_      |    | 54                                  | 299            | 200                    | 876                    | 784              |                 |
| 55              | 701                    | 220              | 165                    | 410                    | 5        |    | 55                                  | 326            | 234                    | 2. 4855                | 773              | 5               |
| 56              | 728                    | 253              | 142                    | 400                    | 4        |    | 56                                  | 353            | 267                    | 834                    | 762              | 4               |
| 57              | 755                    | 286              | 119                    | 389                    | 3 2      |    | 57                                  | 380            | 301                    | 813                    | 751              | 4<br>3<br>2     |
| 58              | 782                    | 320              | 096                    | 379                    | 2        |    | 58                                  | 407            | 335                    | 792                    | 740              | 2               |
| 59<br><b>60</b> | 810<br>. <b>35</b> 837 | 353<br>. 38386   | 074<br><b>2. 6</b> 051 | 368<br>• <b>93</b> 358 | 1        | l  | 59                                  | 434            | 369                    | 772                    | 729              | 1               |
| F-00            | C08                    | cot              | tan                    |                        | -,-      |    | 60                                  | . 37461        | .40403                 | 2. 4751                | . 92718          | 0               |
|                 | COB                    | COL              | tan                    | sin                    |          | l  |                                     | cos            | cot                    | tan                    | sin              | <u> </u>        |

22° READ DOWN 23°

|                                       |                    | 22                   |                   |            | עהנ             | DOM                                      |                | 4                 | 3.0            |            |            |
|---------------------------------------|--------------------|----------------------|-------------------|------------|-----------------|------------------------------------------|----------------|-------------------|----------------|------------|------------|
|                                       | sin                | tan                  | cot               | cos        |                 | /                                        | sin            | tan               | cot            | cos        |            |
| 0                                     | . 37461            | . 40403              | 2. 4751           | . 92718    | 60              | 0                                        | . 39073        |                   |                |            |            |
| 1                                     | 488                | 436                  | 730               | 707        | 59              | 1                                        | 100            |                   |                |            |            |
| $\frac{2}{3}$                         | 515<br>542         | 470<br>504           | 709<br>689        | 697<br>686 | 58              | $\begin{vmatrix} 2\\3 \end{vmatrix}$     | 127            | 516               |                |            |            |
| 4                                     | 569                | 538                  | 668               | 675        | 57<br>56        | 4                                        | 153<br>180     | 551<br>585        | 501            |            |            |
|                                       |                    | 572                  | 648               |            |                 |                                          |                |                   |                |            |            |
| 5<br>6                                | 595<br>622         | 606                  | 627               | 664<br>653 | 55<br>54        | 5<br>6                                   | 207            | 619               | 464            | . 91994    |            |
| 7                                     | 649                | 640                  | 606               | 642        | 53              | 7                                        | 234<br>260     | 654               |                | 982        |            |
| 8                                     | 676                | 674                  | 586               | 631        | 52              | 8                                        | 287            | 688               | 2. 3426<br>407 | 971<br>959 |            |
| 9                                     | 703                | . 40707              | 2. 4566           | 620        | 51              | 9                                        | . 39314        | 757               | 388            | 948        |            |
| 10                                    | . 37730            | 741                  | 545               | . 92609    | 50              | 10                                       | 341            | 791               | 369            | 936        |            |
| îi l                                  | 757                | 775                  | 525               | 598        | 49              | îi                                       | 367            | 826               | 351            | 925        |            |
| 12                                    | 784                | 809                  | 504               | 587        | 48              | 12                                       | 394            | 860               | 332            | 914        |            |
| 13                                    | 811                | 843                  | 484               | 576        | 47              | 13                                       | 421            | 894               |                | . 91902    |            |
| 14                                    | 838                | 877                  | 464               | 565        | 46              | 14                                       | 448            | 929               | 2. 3294        | 891        | 46         |
| 15                                    | 865                | 911                  | 443               | 554        | 45              | 15                                       | 474            | 963               | 276            | 879        | 45         |
| 16                                    | 892                | 945                  | 423               | 543        | 44              | 16                                       | 501            | . 42998           | 257            | 868        | 44         |
| 17                                    | 919                | . 40979              | 403               | 532        | 43              | 17                                       | 528            | . 43032           | 238            | 856        | 43         |
| 18                                    | 946                | . 41013              | 2. 4383           | 521        | 42              | 18                                       | . 39555        | 067               | 220            | 845        | 42         |
| 19                                    | 973                | 047                  | 362               | 510        | 41              | 19                                       | 581            | 101               | 201            | 833        | 41         |
| 20                                    | . 37999            | 081                  | 342               | . 92499    | 40              | 20                                       | 608            | 136               | 183            | 822        | 40         |
| 21                                    | . 38026            | 115                  | 322               | 488        | 39              | 21                                       | 635            | 170               | 2. 3164        | . 91810    | 39         |
| 22                                    | 053                | 149                  | 302               | 477        | 38              | 22                                       | 661            | 205               | 146            | 799        | 38         |
| 23<br>24                              | 080                | 183                  | 282<br>262        | 466        | 37              | $\begin{vmatrix} 23 \\ 24 \end{vmatrix}$ | 688            | 239               | 127            | 787        | 37         |
|                                       | 107                | 217                  |                   | 455        | 36              |                                          | 715            | 274               | 109            | 775        | 36         |
| 25<br>26                              | 134                | $\frac{.41251}{285}$ | $\frac{242}{222}$ | 444<br>432 | 35<br>34        | 25<br>26                                 | 741<br>. 39768 | 308<br>. 43343    | 090<br>072     | 764        | 35         |
| 27                                    | 161<br>188         | 319                  | 2. 4202           | 421        | 33              | 27                                       | 795            | 378               | 072            | 752<br>741 | 34<br>33   |
| 28                                    | 215                | 353                  | 182               | 410        | 32              | 28                                       | 822            | 412               | 035            | 729        | 32         |
| 29                                    | 241                | 387                  | 162               | 399        | 31              | 29                                       | 848            | 447               | 2. 3017        | . 91718    | 31         |
| 30                                    | . 38268            | 421                  | 142               | . 92388    | 30              | 30                                       | 875            | 481               | 2. 2998        | 706        | 30         |
| 31                                    | 295                | 455                  | $12\overline{2}$  | 377        | 29              | 31                                       | 902            | 516               | 980            | 694        | 29         |
| 32                                    | 322                | . 41490              | 102               | 366        | 28              | 32                                       | 928            | 550               | 962            | 683        | 28         |
| 33                                    | 349                | 524                  | 083               | 355        | 27              | .33                                      | 955            | 585               | 944            | 671        | 27         |
| 34                                    | 376                | 558                  | 063               | 343        | 26              | 34                                       | .39982         | 620               | 925            | 660        | 26         |
| 35                                    | 403                | 592                  | 043               | 332        | 25              | 35                                       | .40008         | . 43654           | 907            | 648        | 25         |
| 36                                    | 430                | 626                  | 023               | 321        | 24              | 36                                       | 035            | 689               | 889            | 636        | 24         |
| 37                                    | 456                | 660                  | 2.4004            | 310        | 23              | 37                                       | 062            | 724               | 2. 2871        | . 91625    | 23         |
| 38                                    | 483                | 694                  | <b>2. 3</b> 984   | 299        | $\frac{22}{21}$ | 38<br>39                                 | 088<br>115     | 758<br>793        | 853<br>835     | 613        | 22<br>21   |
| 39                                    | . 38510            | . 41728              | 964               | 287        |                 | 40                                       |                | 828               | 817            | 601<br>593 |            |
| 40                                    | 537                | 763                  | 945               | . 92276    | 20<br>19        | 40                                       | 141<br>168     | 828<br>862        | 799            | 593<br>578 | <b>,20</b> |
| $\begin{array}{c c}41\\42\end{array}$ | 564<br>591         | 797<br>831           | 925<br>906        | 265<br>254 | 18              | 42                                       | 195            | 897               | 781            | 566        | 18         |
| 43                                    | 617                | 865                  | 886               | 243        | 17              | 43                                       | . 40221        | 932               | 763            | 555        | 17         |
| 44                                    | 644                | 899                  | 867               | 231        | 16              | 44                                       | 248            | . 43966           | 745            | 543        | 16         |
| 45                                    | 671                | 933                  | 2. 3847           | 220        | 15              | 45                                       | 275            | . 44001           | 2. 2727        | . 91531    | 15         |
| 46                                    | 698                | . 41968              | 828               | 209        | 14              | 46                                       | 301            | 036               | 709            | 519        | 14         |
| 47                                    | 725                | 42002                | 808               | 198        | 13              | 47                                       | 328            | 071               | 691            | 508        | 13         |
| 48                                    | . 38752            | 036                  | 789               | 186        | 12              | 48                                       | 355            | 105               | 673            | 496        | 12         |
| 49                                    | 778                | 070                  | 770               | 175        | 11              | 49                                       | 381            | 140               | 655            | 484        | 11         |
| 50                                    | 805                | 105                  | 750               | . 92164    | 10              | 50                                       | 408            | 175               | 637            | 472        | 10         |
| 51                                    | 832                | 139                  | 731               | 152        | 9               | 51                                       | . 40434        | 210               | 620            | 461        | 9          |
| 52                                    | 859                | 173                  | 2. 3712           | 141        | 8<br>7          | 52                                       | 461            | . 44244           | 2. 2602        | . 91449    | 8          |
| 53                                    | 886                | 207                  | 693               | 130        |                 | 53<br>54                                 | 488<br>514     | $\frac{279}{314}$ | 584<br>566     | 437<br>425 | 7<br>6     |
| 54                                    | 912                | . 42242              | 673               | 119        | 6               |                                          | 541            | 349               | 549            | 414        | -5         |
| 55                                    | 939                | 276                  | 654               | 107        | 5<br>4          | 55<br>56                                 | 567            | 349<br>384        | 549<br>531     | 414        | 4          |
| 56                                    | 966                | 310                  | 635<br>616        | 096<br>085 | 3               | 57                                       | 594            | 418               | 513            | 390        | 3          |
| 57<br>58                              | . 38993<br>. 39020 | 345<br>379           | 597               | 073        | 2               | 58                                       | 621            | 453               | 496            | 378        | 2          |
| 59                                    | 046                | 413                  | 578               | 062        | 1               | 59                                       | 647            | 488               | 478            | 366        | ĩ          |
| 60                                    | . 39073            | . 42447              | 2. 3559           | . 92050    | Ô               | 60                                       | .40674         | . 44523           | 2. 2460        | . 91355    | ō          |
| <del></del>                           | cos                | cot                  | tan               | sin        | 7               |                                          | cos            | cot               | tan            | sin        | ,          |
|                                       |                    |                      |                   |            |                 | L                                        |                |                   | 1              |            |            |

67° READ UP 66°

24° READ DOWN 25°

| 7               | sin        | tan                | cot            | cos                           |                 |   | ′               | sin                    | tan             | cot            | COB                  |                  |
|-----------------|------------|--------------------|----------------|-------------------------------|-----------------|---|-----------------|------------------------|-----------------|----------------|----------------------|------------------|
| 0               | . 40674    | . 44523            | 2. 2460        | . 91355                       | 60              |   | 0               | . 42262                | <b>. 46</b> 631 | 2. 1445        | . 90631              | 60               |
| 1               | 700        | 558                | 443            | 343                           | 59              |   | 1               | 288                    | 666             | 429            | 618                  | 59               |
| 2               | 727        | 593                | 425            | 331                           | 58              |   | 2<br>3          | 315                    | 702<br>737      | 413            | 606                  | 58               |
| 3               | 753        | 627                | 408            | 319<br>307                    | 57<br>56        |   | 4               | 341<br>367             | 772             | 396<br>380     | 594<br>582           | 57               |
| 4               | 780        | 662                | 390            |                               |                 |   |                 | 394                    | 808             |                |                      | 56               |
| 5               | 806        | 697                | 373            | 295                           | 55              |   | 5               | 394<br>420             | 808<br>843      | 364<br>348     | 569                  | 55               |
| 6               | . 40833    | 732                | 355            | 283                           | 54              |   | 6<br>7          | . 42446                | 843<br>879      | 348<br>332     | 557                  | 54               |
| 7               | 860        | . 44767            | 338<br>320     | . 91272<br>260                | 53<br>52        |   | 8               | 473                    | 914             | 315            | 545<br>532           | 53<br>52         |
| 8               | 886<br>913 | 802<br>837         | 2. 2303        | 248                           | 51              |   | 9               | 499                    | 950             | 2. 1299        | 520                  | 51               |
| 10              | 939        | 872                | 286            | 236                           | 50              |   | 10              | 525                    | . 46985         | 283            | . 90507              | 50               |
| 11              | 966        | 907                | 268            | 224                           | 49              |   | 11              | 552                    | 47021           | 267            | 495                  | 49               |
| 12              | . 40992    | 942                | 251            | $\tilde{2}\tilde{1}\tilde{2}$ | 48              |   | 12              | 578                    | 056             | 251            | 483                  | 48               |
| 13              | 41019      | . 44977            | 234            | 200                           | 47              |   | 13              | 604                    | 092             | 235            | 470                  | 47               |
| 14              | 045        | 45012              | 216            | 188                           | 46              | ŀ | 14              | . 42631                | 128             | 219            | 458                  | 46               |
| 15              | 072        | 047                | 199            | . 91176                       | 45              | ı | 15              | 657                    | 163             | 203            | 446                  | 45               |
| 16              | 098        | 082                | 182            | 164                           | 44              |   | 16              | 683                    | 199             | 187            | 433                  | 44               |
| 17              | 125        | 117                | 2, 2165        | 152                           | 43              |   | 17              | 709                    | 234             | 171            | 421                  | 43               |
| 18              | 151        | 152                | 148            | 140                           | 42              | ı | 18              | 736                    | 270             | 2. 1155        | 408                  | 42               |
| 19              | 178        | 187                | 130            | 128                           | 41              | 1 | 19              | 762                    | 305             | 139            | 396                  | 41               |
| 20              | 204        | 222                | 113            | 116                           | 40              | ı | 20              | 788                    | . 47341         | 123            | . 90383              | 40               |
| 21              | 231        | . 45257            | 096            | 104                           | 39              | • | 21              | . 42815                | 377             | 107            | 371                  | 39               |
| 22              | . 41257    | 292                | 079            | . 91092                       | 38              | ı | 22              | 841                    | 412             | 092            | 358                  | 38               |
| 23              | 284        | 327                | 062            | 080                           | 37              | 1 | 23              | 867                    | 448             | 076            | 346                  | 37               |
| 24              | 310        | 362                | 045            | 068                           | 36              | ı | 24              | 894                    | 483             | 060            | 334                  | 36               |
| 25              | 337        | 397                | 028            | 056                           | 35              | 1 | 25              | 920                    | 519             | 044            | 321                  | 35               |
| 26              | 363        | 432                | 2. 2011        | 044                           | 34              | • | 26              | 946                    | 555             | 028            | 309                  | 34               |
| 27              | 390        | 467                | 2. 1994        | 032                           | 33              | ı | 27<br>28        | 972<br>. <b>42</b> 999 | 590             | <b>2.</b> 1013 | 296                  | 33               |
| 28<br>29        | 416<br>443 | . 45502<br>538     | 977<br>960     | 020<br>• <b>91</b> 008        | 32<br>31        | 1 | 29              | .42999                 | 626 $47662$     | 2. 0997<br>981 | 284<br>271           | 32<br>31         |
| 30              | 469        | 573                | 943            | .90996                        | 30              | 1 | 30              | 051                    | 698             | 965            | $\frac{271}{.90259}$ |                  |
| 31              | . 41496    | 608                | 926            | 984                           | 29              | ı | 31              | 077                    | 733             | 965<br>950     | 246                  | 30<br>29         |
| 32              | 522        | 643                | 909            | 972                           | 28              | l | 32              | 104                    | 769             | 934            | 233                  | 28               |
| 33              | 549        | 678                | 892            | 960                           | 27              | 1 | 33              | 130                    | 805             | 918            | $\frac{200}{221}$    | 27               |
| 34              | 575        | 713                | 876            | 948                           | 26              | • | 34              | 156                    | 840             | 903            | 208                  | 26               |
| 35              | 602        | . 45748            | 2. 1859        | 936                           | 25              | 1 | 35              | 182                    | 876             | 887            | 196                  | 25               |
| 36              | 628        | 784                | 842            | 924                           | 24              | ı | 36              | 209                    | 912             | 2. 0872        | 183                  | 24               |
| 37              | 655        | 819                | 825            | . 90911                       | 23              |   | 37              | . 43235                | 948             | 856            | 171                  | 23               |
| 38              | 681        | 854                | 808            | 899                           | 22              | ı | 38              | 261                    | . 47984         | 840            | 158                  | 22               |
| 39              | 707        | 889                | 792            | 887                           | 21              | ı | 39              | 287                    | . 48019         | 825            | 146                  | 21               |
| 40.             | . 41734    | 924                | 775            | 875                           | 20              | ı | 40              | 313                    | 055             | 809            | . 90133              | 20               |
| 41              | 760        | 960                | 758            | 863                           | 19              | ı | 41              | 340                    | 091             | 794            | 120                  | 19               |
| 42<br>43        | 787        | . 45995<br>. 46030 | 742<br>2, 1725 | 851                           | 18<br>17        | ۱ | 42<br>43        | 366                    | 127             | 778            | 108                  | 18               |
| 44              | 813<br>840 | 065                | 708            | 839<br>826                    | 16              | 1 | 44              | 392<br>. 43418         | 163<br>. 198    | 763<br>2. 0748 | 095<br>082           | 17<br>16         |
| 45              | 866        | 101                | 692            | 814                           | $\frac{10}{15}$ | 1 | 45              | 445                    | 234             | 732            |                      |                  |
| 46              | 892        | 136                | 675            | . 90802                       | 14              | 1 | 46              | 445                    | . 48270         | 732            | 070<br>057           | 15<br>14         |
| 47              | 919        | 171                | 659            | 790                           | 13              | 1 | 47              | 497                    | 306             | 701            | 037                  | 13               |
| 48              | 945        | 206                |                | 778                           | 12              |   | 48              | 523                    | 342             | 686            | 032                  |                  |
| 49              | 972        | 242                |                | 766                           | iĩ              | 1 | 49              | 549                    | 378             | 671            | 019                  | ii               |
| 50              | .41998     | 277                | 609            | 753                           | 10              | 1 | 50              | 575                    | 414             | 655            | • 90007              | 10               |
| 51              | .42024     | 312                | 592            | 741                           | 9               | 1 | 51              | 602                    | 450             | 640            | .89994               |                  |
| 52              | 051        | . 46348            | 2. 1576        | 729                           | 8               | ١ | 52              | . 43628                | 486             | 2.0625         | 981                  | 8                |
| 53              | 077        | 383                |                | . 90717                       | 7               | 1 | 53              | 654                    | . 48521         | 609            | 968                  |                  |
| 54              | 104        |                    |                | 704                           | 6               | 1 | 54              | 680                    | 557             | 594            | 956                  |                  |
| 55              | 130        |                    |                | 692                           | 5               | 1 | 55              | 706                    | 593             | 579            | 943                  | 5                |
| 56              | 156        |                    |                | 680                           |                 | 1 | 56              | 733                    | 629             | 564            | 930                  | 4                |
| 57              | 183        |                    |                | 668                           |                 | ١ | 57              | 759                    | 665             | 549            | 918                  | 3                |
| 58              | 209<br>235 |                    |                | 655                           |                 | ١ | 58              | 785                    | 701             | 533            | 905                  | 4<br>3<br>2<br>1 |
| 59<br><b>60</b> | . 42262    |                    |                | . 90631                       | 1               | 1 | 59<br><b>60</b> | 811                    | 737             | 518            | 892                  |                  |
| 100             |            |                    |                |                               | <del>-</del>    | - | 100             | . 43837                | . 48773         | <b>2.0</b> 503 | . 89879              | , U              |
| <u></u>         | cos        | cot                | tan            | sin                           | <u> </u>        | 1 | L               | cos .                  | cot.            | tan            | sin                  | <u> </u>         |

26° READ DOWN 27°

|                |                 | 20               |                |            | GAD |     | OWI                  | •              | 27              |         |            |        |
|----------------|-----------------|------------------|----------------|------------|-----|-----|----------------------|----------------|-----------------|---------|------------|--------|
|                | sin             | tan              | cot            | cos        |     | H   |                      | sin            | tan             | cot     | cos        |        |
| 0              | <b>. 43</b> 837 | . 48773          | <b>2.0</b> 503 | . 89879    | 60  | H   | 0                    | 45399          | . 50953         | 1.9626  | . 89101    | 60     |
| 1              | 863             | 809              | 488            | 867        | 59  | Н   | 1                    | 425            | · 50989         | 612     | 087        | 59     |
| 2              | 889             | 845              | 473            | 854        | 58  | П   | 2                    | 451            | . 51026         | 598     | 074        | 58     |
| 3              | 916             | 881              | 458            | 841        | 57  | H   | 3                    | 477            | 063             | 584     | 061        | 57     |
| 4              | 942             | 917              | 443            | 828        | 56  | П   | 4                    | 503            | 099             | 570     | 048        | 56     |
| 5              | 968             | 953              | 428            | 816        | 55  | li  | - 5                  | 529            | 136             | 556     | 035        | 55     |
| 6              | . 43994         | . 48989          | 413            | 803        | 54  | Н   | 6                    | 554            | 173             | 542     | 021        | 54     |
| 7              | . 44020         | . 49026          | 398            | 790        | 53  | Н   | 7                    | . 45580        | 209             | 528     | 89008      | 53     |
| 8              | 046             | 062              | 2. 0383        | 777        | 52  | ll  | 8                    | 606            | 246             | 1. 9514 | 88995      | 52     |
| 9              | 072             | 098              | 368            | 764        | 51  | 11  | 9                    | 632            | 283             | 500     | 981        | 51     |
| 10             | .098            | 134              | 353            | . 89752    | 50  | 11  | 10                   | 658            | 319             | 486     | 968        | 50     |
| 11             | 124             | 170              | 338            | 739        | 49  | П   | îĭ                   | 684            | . 51356         | 472     | 955        | 49     |
| 12             | 151             | 206              | 323            | 726        | 48  | ı   | $\tilde{1}\tilde{2}$ | 710            | 393             | 458     | 942        | 48     |
| 13             | 177             | $\overline{242}$ | 308            | 713        | 47  | П   | 13                   | 736            | 430             | 444     | 928        | 47     |
| 14             | 203             | 278              | 293            | 700        | 46  | ı   | 14                   | 762            | 467             | 430     | 915        | 46     |
| 15             | . 44229         | . 49315          | 2, 0278        | 687        | 45  | ı   | 15                   |                |                 |         |            |        |
| 16             | 255             | 351              | 263            | 674        | 44  | 1   | 16                   | . 45787        | 503             | 1. 9416 | 902        | 45     |
| 17             | 281             | 387              | 248            | 662        | 43  | П   | 17                   | 813            | 540             | 402     | . 88888    | 44     |
| 18             | 307             | 423              | 233            | 649        | 42  | ı   |                      | 839            | 577             | 388     | 875        | 43     |
| 19             | 333             | 459              | 233<br>219     | 636        | 41  | П   | 18                   | 865            | 614             | 375     | 862        | 42     |
|                |                 |                  |                |            |     | ı   | 19                   | 891            | 651             | 361     | 848        | 41     |
| 20             | 359             | 495              | 204            | 89623      | 40  | 11  | 20                   | 917            | . 51688         | 347     | 835        | 40     |
| 21             | 385             | 532              | 189            | 610        | 39  | H   | 21                   | 942            | 724             | 333     | 822        | 39     |
| 22             | . 44411         | 568              | 174            | 597        | 38  | П   | 22                   | 968            | 761             | 1. 9319 | 808        | 38     |
| 23             | 437             | 604              | 160            | 584        | 37  | Н   | 23                   | . 45994        | 798             | 306     | 795        | 37     |
| 24             | 464             | . 49640          | 2. 0145        | 571        | 36  | ] [ | 24                   | .46020         | 835             | 292     | . 88782    | 36     |
| 25             | 490             | 677              | 130            | 558        | 35  | 1   | 25                   | 046            | 872             | 278     | 768        | 35     |
| 26             | 516             | 713              | 115            | 545        | 34  | ll  | 26                   | 072            | 909             | 265     | 755        | 34     |
| 27             | 542             | 749              | 101            | 532        | 33  | 1   | 27                   | 097            | 946             | 251     | 741        | 33     |
| 28             | 568             | 786              | 086            | 519        | 32  | ı   | 28                   | 123            | •51983          | 237     | 728        | 32     |
| 29             | . 44594         | 822              | 072            | 506        | 31  | ı   | 29                   | 149            | • <b>52</b> 020 | 1. 9223 | 715        | 31     |
| 30             | 620             | 858              | 057            | . 89493    | 30  | 11  | 30                   | 175            | 057             | 210     | 701        | 30     |
| 31             | 646             | 894              | 042            | 480        | 29  | H   | 31                   | 201            | 094             | 196     | . 88688    | 29     |
| 32             | 672             | 931              | 028            | 467        | 28  | Н   | 32                   | 226            | 131             | 183     | 674        | 28     |
| 33             | 698             | . 49967          | <b>2.0</b> 013 | 454        | 27  | 11  | 33                   | .46252         | 168             | 169     | 661        | 27     |
| 34             | 724             | · 50004          | 1.9999         | 441        | 26  | ı   | 34                   | 278            | 205             | 155     | 647        | 26     |
| 35             | 750             | 040              | 984            | 428        | 25  | ŀl  | 35                   | 304            | 242             | 142     | 634        | 25     |
| 36             | . 44776         | 076              | 970            | 415        | 24  | ۱ ۱ | 36                   | 330            | 279             | 128     | 620        | 24     |
| 37             | 802             | 113              | 955            | 402        | 23  | ı   | 37                   | 355            | 316             | 1. 9115 | 607        | 23     |
| 38             | 828             | 149              | 941            | 389        | 22  | ı   | 38                   | 381            | . 52353         | 101     | . 88593    | 22     |
| 39             | 854             | 185              | 926            | 376        | 21  | П   | 39                   | 407            | 390             | 088     | 580        | 21     |
| 40             | 880             | 222              | 912            | . 89363    | 20  | 1   | 40                   | 433            | 427             | 074     | 566        | 20     |
| 41             | 906             | 258              | 897            | 350        | 19  | ı   | 41                   | 458            | 464             | 061     | 553        | 19     |
| $\frac{1}{42}$ | 932             | 295              | 883            | 337        | 18  |     | 42                   | . 46484        | 501             | 047     | 539        | 18     |
| 43             | 958             | . 50331          | 1. 9868        | 324        | 17  | ll  | 43                   | 510            | 538             | 034     | 526        | 17     |
| 44             | . 44984         | 368              | 854            | 311        | 16  | ıI  | 44                   | 536            | 575             | 020     | 512        | 16     |
| 45             | • 45010         | 404              | 840            | 298        | 15  | 11  | 45                   | 561            | 613             | 1.9007  | . 88499    | 15     |
| 46             | 036             | 441              | 825            | 285        | 14  | ı   | 46                   | 587            | 650             | 1.8993  | 485        | 14     |
| 47             | 062             | 477              | 811            | 272        | 13  | 11  | 47                   | 613            | . 52687         | 980     | 472        | 13     |
| 48             | 088             | 514              | 797            | 259        | 12  | ıl  | 48                   | 639            | 724             | 967     | 458        | 12     |
| 49             | 114             | 550              | 782            | 245        | 11  | ı   | 49                   | 664            | 761             | 953     | 445        | îĩ     |
| 50             |                 |                  | 768            | . 89232    | 10  | ıI  | 50                   | 690            | 798             | 940     | 431        | 10     |
|                | 140<br>166      | 587<br>623       | 768<br>754     | 219        | 9   | ı   | 51                   | . 46716        | 836             | 940     | 417        | 9      |
| 51             |                 | .50660           | 1. 9740        | 219<br>206 | 8   | ) J | 52                   | 742            | 873             | 913     | 404        | 8      |
| 52             | . 45192         |                  | 725            | 206<br>193 | 7   | IJ  | 53                   | 767            | 910             | 1. 8900 | . 88390    | 8      |
| 53<br>54       | 218             | 696              | 725            | 180        | 6   | ıI  | 54                   | 793            | 910             | 887     | 377        | 6      |
|                | 243             | 733              |                |            |     | H   |                      |                |                 | 873     |            | 5      |
| 55             | 269             | 769              | 697            | 167        | 5   | H   | 55                   | 819            | • <b>52</b> 985 |         | 363        | 5<br>4 |
| 56             | 295             | 806              | 683            | 153        | 4   | ıI  | 56                   | 844            | . 53022         | 860     | 349        | 3      |
| 57             | 321             | 843              | 669            | 140        | 3   | ( 1 | 57                   | 870            | 059             | 847     | 336<br>322 | 2      |
| 58             | 347             | 879              | 654            | 127        | 2   | IJ  | 58                   | 896            | 096             | 834     | 322<br>308 | 1      |
| 59             | 373             | 916              | 640            | 114        | 1   | ı   | 59                   | 921            | 134             | 820     |            | 0      |
| 60             | <b>. 45</b> 399 | <b>. 50</b> 953  | 1. 9626        | . 89101    | 0   | 11  | 60                   | <b>.46</b> 947 | . 53171         | 1.8807  | - 88295    | _,_    |
| L              | cos             | cot              | tan            | sin        |     | l l |                      | cos            | cot             | tan     | sin        |        |
|                |                 |                  |                |            |     |     |                      |                | cc              |         |            | _      |

63° READ UP 62°

28° READ DOWN 29°

| 71         | sin            | tan        | cot          | cos            |                      |    | 7              | sin        | tan                    | cot           | cos               |             |
|------------|----------------|------------|--------------|----------------|----------------------|----|----------------|------------|------------------------|---------------|-------------------|-------------|
| 0          | . 46947        | . 53171    | 1.8807       | . 88295        | 60                   | l  | 0              | . 48481    | . 55431                | 1.8040        | . 87462           | 60          |
| 1          | 973            | 208        | 794          | 281            | 59                   |    | 1              | 506        | 469                    | 028           | 448               | 59          |
| 2          | . 46999        | 246        | 781          | 267            | 58                   | ١. | 2              | 532        | 507                    | 016           | 434               | 58          |
| 3          | . 47024        | 283        | 768          | 254            | 57                   | l  | 3              | 557        | 545                    | 1.8003        | 420               | 57.         |
| 4          | 050            | 320        | 755          | 240            | 56                   |    | 4              | 583        | 583                    | 1.7991        | 406               | _56         |
| 5          | 076            | 358        | 741          | 226            | 55                   |    | 5              | 608        | 621                    | 979           | 391               | 55          |
| 6          | 101            | 395        | 728          | 213            | 54                   |    | 6              | 634        | 659                    | 966           | 377               | 54          |
| 7          | 127            | . 53432    | 715          | . 88199        | 53                   |    | 7              | 659        | . 55697                | 954           | 363               | 53          |
| 8          | 153            | 470        | 702          | 185            | 52                   | •  | 8              | 684        | 736                    | 942           | . 87349           | 52          |
| 9          | 178            | 507        | 689          | 172            | _51                  |    | 9              | 710        | 774                    | 930           | 335               | 51          |
| 10         | . 47204        | 545        | 1. 8676      | 158            | 50                   |    | 10             | . 48735    | 812                    | 917           | 321               | 50          |
| 11         | 229            | 582        | 663          | 144            | 49                   | ı  | 11             | 761        | 850                    | 905           | 306               | 49          |
| 12         | 255            | 620        | 650<br>637   | 130<br>117     | 48<br>47             |    | 12<br>13       | 786        | 888                    | 1. 7893       | 292               | 48          |
| 13<br>14   | 281<br>306     | 657<br>694 | 624          | . 88103        | 46                   | 1  | 14             | 811<br>837 | 926<br>. <b>55</b> 964 | 881<br>868    | $\frac{278}{264}$ | 47<br>46    |
|            | 332            | . 53732    | 611          | 089            | 45                   |    | 15             | 862        |                        |               |                   |             |
| 15<br>16   | 358            | 769        | 598          | 075            | 44                   | l  | 16             | 862<br>888 | .56003<br>041          | 856<br>844    | 250<br>. 87235    | 45          |
| 17         | 383            | 807        | 585          | 062            | 43                   | ١  | 17             | 913        | 079                    | 832           |                   | 44          |
| 18         | . 47409        | 844        | 572          | 048            | 42                   |    | 18             | 938        | 117                    | 820           | 221<br>207        | 43<br>42    |
| 19         | 434            | 882        | 559          | 034            | 41                   | 1  | 19             | 964        | 156                    | 808           | 193               | 41          |
| 20         | 460            | 920        | 1. 8546      | 020            | 40                   |    | 20             | .48989     | 194                    | 1. 7796       | 178               | 40          |
| 21         | 486            | 957        | 533          | . 88006        | 39                   | ı  | 21             | 49014      | 232                    | 783           | 164               | 39          |
| $\hat{22}$ | 511            | . 53995    | 520          | 87993          | 38                   |    | 22             | 040        | 270                    | 771           | 150               | 38          |
| 23         | 537            | 54032      | 507          | 979            | 37                   | l  | 23             | 065        | . 56309                | 759           | 136               | 37          |
| 24         | 562            | 070        | 495          | 965            | 36                   |    | 24             | 090        | 347                    | 747           | . 87121           | 36          |
| 25         | 588            | 107        | 482          | 951            | 35                   | l  | 25             | 116        | 385                    | 735           | 107               | 35          |
| 26         | . 47614        | 145        | 469          | 937            | 34                   | 1  | 26             | 141        | 424                    | 723           | 093               | 34          |
| 27         | 639            | 183        | 456          | 923            | 33                   | 1  | 27             | 166        | 462                    | 711           | 079               | 33          |
| 28         | 665            | 220        | 443          | 909            | 32                   | ı  | 28             | . 49192    | 501                    | 1. 7699       | 064               | 32          |
| 29         | 690            | 258        | 430          | 896            | 31                   |    | 29             | 217        | 539                    | 687           | 050               | 31          |
| 30         | 716            | 296        | 1. 8418      | . 87882        | 30                   |    | 30             | 242        | . 56577                | 675           | 036               | 30          |
| 31         | 741            | . 54333    | 405          | 868            | 29                   | 1  | 31             | 268        | 616                    | 663           | 021               | 29          |
| 32         | 767            | 371        | 392          | 854            | 28                   | 1  | 32             | 293        | 654                    | 651           | . 87007           | 28          |
| 33<br>34   | 793            | 409<br>446 | 379<br>367   | 840<br>826     | 27<br>26             |    | 33             | 318        | 693                    | 639           | . 86993           | 27          |
|            | . 47818        |            |              |                |                      |    | 34             | 344        | 731                    | 627           | 978               | 26          |
| 35         | 844            | 484<br>522 | 354          | 812            | 25<br>24             | ı  | 35             | 369        | 769                    | 615           | 964               | 25          |
| 36<br>37   | 869<br>895     | 560        | 341<br>329   | 798<br>. 87784 | 23                   | ı  | 36             | . 49394    | 808                    | 1. 7603       | 949               | 24          |
| 38         | 920            | 597        | 316          | 770            | 22                   | ı  | 38             | 419<br>445 | 846<br>885             | 591<br>579    | 935               | 23          |
| 39         | 946            | 635        | 303          | 756            | $\tilde{2}\tilde{1}$ | ı  | 39             | 470        | 923                    | 567           | 921<br>906        | 22<br>21    |
| 40         | 971            | . 54673    | 1. 8291      | 743            | 20                   |    | 40             | 495        | .56962                 | 556           | 892               | 20          |
| 41         | .47997         | 711        | 278          | 729            | 19                   |    | 41             | 521        | .57000                 | 544           | 892<br>878        | 19          |
| 42         | 48022          | 748        | 265          | 715            | 18                   | l  | 42             | 546        | 039                    | $5344 \\ 532$ | . 86863           | 18          |
| 43         | 048            | 786        | 253          | 701            | 17                   | l  | 43             | 571        | 078                    | 520           | 849               | 17          |
| 44         | 073            | 824        | 240          | 687            | 16                   |    | 44             | . 49596    | 116                    | 1. 7508       | 834               | 16          |
| 45         | 099            | 862        | 228          | . 87673        | 15                   |    | 45             | 622        | 155                    | 496           | 820               | 15          |
| 46         | 124            | 900        | 215          | 659            | 14                   | l  | 46             | 647        | 193                    | 485           | 805               | 14          |
| 47         | 150            | 938        | 202          | 645            | 13                   | l  | 47             | 672        | 232                    | 473           | 791               | 13          |
| 48         | 175            | .54975     | 190          | 631            | 12                   | 1  | 48             | 697        | 271                    | 461           | 777               | 12          |
| 49         | 201            | - 55013    | 177          | 617            | 11                   |    | 49             | 723        | 309                    | 449           | 762               | 11          |
| 50         | 226            | 051        | 1. 8165      | 603            | 10                   | ı  | 50             | 748        | . 57348                | 437           | 748               | 10          |
| 51<br>52   | . 48252<br>277 | 089<br>127 | 152          | 589            | 9                    | l  | 51             | 773        | 386                    | 426           | . 86733           | 9           |
| 52<br>53   | 277<br>303     | 127<br>165 | $140 \\ 127$ | . 87575<br>561 | 8<br>7               |    | 52             | . 49798    | 425                    | 1. 7414       | 719               | 8           |
| 54         | 328            | 203        | 115          | 546            | 6                    |    | ·53<br>54      | 824        | 464                    | 402           | 704               | 7           |
| 55         | 354            | 241        | 103          |                | $-\frac{6}{5}$       | ĺ  |                | 849        | 503                    | 391           | 690               | 6           |
| 56         | 354<br>379     | 241<br>279 | 090          | 532<br>518     | 4                    | 1  | 55             | 874        | 541                    | 379           | 675               | 5           |
| 57         | 405            | 317        | 078          | 504            | 3                    |    | 56<br>57       | 899<br>924 | 580                    | 367           | 661               | 4<br>3      |
| 58         | 430            | 355        | 065          | 490            | 2                    |    | 58             | 924<br>950 | 619<br>657             | 355<br>344    | $\frac{646}{632}$ | 2           |
| 59         | 456            | 393        | 053          | 476            | ĩ                    |    | 59             | .49975     | 696                    | 332           | 617               | 1           |
| 60         | .48481         | . 55431    | 1.8040       | . 87462        | Ô                    |    | 60             | 50000      | .57735                 | 1.7321        | . 86603           | ō           |
|            | cos            | cot        | tan          | sin            | -                    |    | <del>-</del> - | cos        | cot                    | tan           | sin               | <u>-</u> ,- |
|            |                |            |              |                |                      | ı  |                |            | CUL                    | ran           | SIII              |             |

APPENDIX 295

### TRIGONOMETRIC FUNCTIONS

30° READ DOWN 31°

| 7 1          |                | 4                 |                |                 |                | r   | 7 1             |                        | +                      | -at 1          |                  |                 |
|--------------|----------------|-------------------|----------------|-----------------|----------------|-----|-----------------|------------------------|------------------------|----------------|------------------|-----------------|
| 1            | sin            | tan               | cot            | cos             |                | -   | 0               | sin                    | tan                    | cot            | COS              | 60              |
| 0            | .50000         | .57735<br>774     | 1. 7321<br>309 | <b>.86</b> 603  | <b>60</b>   59 | 1   | 1               | .51504<br>529          | .60086<br>126          | 1. 6643<br>632 | .85717<br>702    | 59              |
| 1            | 025<br>050     | 813               | 297            | 573             | 58             | -   | 2               | 554                    | 165                    | 621            | 687              | 58              |
| 3            | 076            | 851               | 286            | 559             | 57             | - 1 | 3               | 579                    | 205                    | 610            | 672              | 57              |
| 4            | 101            | 890               | 274            | 544             | 56             | ١   | 4               | 604                    | 245                    | 599            | 657              | 56              |
| 5            | 126            | 929               | 262            | 530             | 55             | ı   | 5               | 628                    | 284                    | 588            | 642              | 55              |
| 6            | 151            | . 57968           | 251            | 515             | 54             | -   | 6               | 653                    | 324                    | 577            | 627              | 54              |
| ř            | 176            | . 58007           | 239            | 501             | 53             | - 1 | 7               | 678                    | . 60364                |                | . 85612          | 53              |
| 8            | 201            | 046               | 228            | . 86486         | 52             | ١   | 8               | 703                    | 403                    | 555            | 597              | 52              |
| 9            | 227            | 085               | 1. 7216        | 471             | 51             | 1   | 9               | . 51728                | 443                    | 545            | 582              | 51              |
| 10           | . 50252        | 124               | 205            | 457             | 50             |     | 10              | 753                    | 483                    | 1. 6534        | 567              | <b>50</b><br>49 |
| 11           | 277            | 162               | 193            | 442             | 49             |     | 11<br>12        | 778<br>803             | 522<br>562             | 523<br>512     | 551<br>536       | 48              |
| 12           | 302            | $\frac{201}{240}$ | 182<br>170     | 427<br>413      | 48<br>47       | 1   | 13              | 828                    | 602                    | 501            | 521              | 47              |
| 13<br>14     | 327<br>352     | 279               | 159            | 398             | 46             | 1   | 14              | 852                    | 642                    | 490            | 506              | 46              |
| 15           | 377            | . 58318           | 147            | 384             | 45             | lŀ  | 15              | 877                    | . 60681                | 479            | . 85491          | 45              |
| 16           | 403            | 357               | 136            | . 86369         | 44             | ŀ   | 16              | 902                    | 721                    | 469            | 476              | 44              |
| 17           | 428            | 396               | 124            | 354             | 43             | Н   | 17              | 927                    | 761                    | 458            | 461              | 43              |
| 18           | 453            | 435               | 1. 7113        | 340             | 42             | П   | 18              | 952                    | 801                    | 447            | 446              | 42              |
| 19           | 478            | 474               | 102            | 325             | 41             | l   | 19              | . 51977                | 841                    | 436            | 431              | 41              |
| 20           | . 50503        | 513               | 090            | 310             | 40             | H   | 20              | . 52002                | 881                    | 1. 6426        | 416<br>401       | 40<br>39        |
| 21           | 528            | 552               | 079            | 295             | 39             | ı   | 21<br>22        | $026 \\ 051$           | 921<br>• <b>60</b> 960 | 415<br>404     | 385              | 38              |
| 22           | 553            | 591               | 067            | 281<br>266      | 38<br>37       | ı   | 23              | 076                    | 61000                  | 393            | . 85370          | 37              |
| 23           | 578            | 631<br>. 58670    | 056<br>045     | . 86251         | 36             | ı   | 24              | 101                    | 040                    | 383            | 355              | 36              |
| 24           | 603            | 709               | 033            | 237             | 35             | H   | 25              | 126                    | 080                    | 372            | 340              | 35              |
| 25<br>26     | 628<br>654     | 748               | 022            | 222             | 34             | Н   | 26              | 151                    | 120                    | 361            | 325              | 34              |
| 27<br>27     | 679            | 787               | 1. 7011        | 207             | 33             | П   | 27              | 175                    | 160                    | 351            | 310              | 33              |
| 28           | 704            | 826               | 1.6999         | 192             | 32             | П   | 28              | . 52200                | 200                    | 340            | 294              | 32              |
| $\tilde{29}$ | 729            | 865               | 988            | 178             | 31             |     | 29              | 225                    | 240                    | 329            | 279              | 31              |
| 30           | . 50754        | 905               | 977            | 163             | 30             |     | 30              | 250                    | 280<br>61320           | 1. 6319<br>308 | 264<br>. 85249   | 30<br>29        |
| 31           | 779            | 944               | 965            | 148             | 29             |     | 31<br>32        | 275<br>299             | 360                    | 297            | 234              | 28              |
| 32           | 804            | . 58983           |                | . 86133<br>119  | 28<br>27       |     | 33              | 324                    | 400                    | 287            | 218              | 27              |
| 33           | 829<br>854     | . 59022<br>061    | 932            | 104             |                | 1   | 34              | 349                    | 440                    | 276            | 203              | 26              |
| 34           | 879            | 101               |                | 089             |                | 1   | 35              | 374                    | 480                    | 265            | 188              | 25              |
| 35<br>36     | 904            |                   |                | 074             |                | 1   | 36              | . 52399                | 520                    |                | 173              | 24              |
| 37           | 929            | 179               |                | 059             | 23             | 1   | 37              | 423                    | 561                    |                | 157              | 23              |
| 38           | 954            | 218               | 887            | 045             |                | 1   | 38              | 448                    | 601                    | 234<br>223     | 142<br>. 85127   | $\frac{22}{21}$ |
| 39           | .50979         | 258               |                | 030             |                | 1   | 39              | 473                    | . 61641                |                | 112              | 20              |
| 40           | . 51004        | 297               | 864            | 015             |                | 1   | 40              | 498<br>522             |                        |                | 096              | 19              |
| 41           | 029            |                   |                | .86000          | 19             | 1   | 41 42           | 547                    | 761                    |                | 081              | 18              |
| 42           | 054            | 376               |                | . <b>85</b> 985 |                | 1   | 43              | 572                    |                        |                | 066              | 17              |
| 43           | 104            |                   |                | 956             |                | 1   | 44              | . 52597                |                        | 170            | 051              | 16              |
| 44           | 129            |                   |                | 941             |                | 1   | 45              | 621                    | 882                    |                | 035              | 15              |
| 45<br>46     | 154            |                   |                | 926             | 14             | 1   | 46              | 646                    | 922                    |                | 020              | 14              |
| 47           | 179            |                   | 786            | 911             | 13             | 1   | 47              | 671                    |                        | 139<br>128     | .85005<br>.84989 | 13<br>12        |
| 48           | 204            | 612               | 775            | 896             |                |     | 48              | 696<br>720             |                        |                | 974              | 11              |
| 49           | 229            |                   |                | 88              |                | -   | 49              | 745                    |                        |                | 959              | 10              |
| 50           | . 51254        |                   |                | 860             |                |     | 50<br>51        | . 52770                |                        |                | 943              | 9               |
| 51           | 279            |                   | 742            | . 8585          | l 9<br>3 8     |     | 52              | 794                    |                        |                | 928              | 8               |
| 52           | 304            |                   |                | 836<br>82       |                |     | 53              | 819                    | 204                    | 076            | 913              |                 |
| 53           | 329<br>354     |                   |                | 80              |                | 1   | 54              | 844                    |                        |                | . 84897          |                 |
| 54           |                |                   |                | 795             |                | 1   | 55              | 869                    |                        |                | 882              |                 |
| 55           | 379<br>404     |                   |                | 77              | 7 4            | 1   | 56              | 893                    | 32                     |                | 866              |                 |
| 56<br>57     | 429            |                   | 676            | 76              | 2 3            | ļ   | 57              | 918                    |                        |                |                  |                 |
| 58           | 45             |                   | 665            | 74              | 7 2            | 1   | 58              | 943                    |                        |                |                  |                 |
| 59           | 47             | 9 04              | 6 654          |                 |                |     | 59<br><b>60</b> | 967<br>. <b>529</b> 99 |                        | ·              |                  |                 |
| 60           | . <b>51</b> 50 | 4 . <b>60</b> 08  |                |                 | 7 0            | 4   | 100             | _                      | cot                    | tan            | sin              | 17              |
|              | cos            | cot               | tan            | sin             | L              | _1  |                 | cos                    | 1 401                  | 1 04.1         | <u> </u>         |                 |

59° READ UP 58°

32° READ DOWN 33°

| <del></del> - |         |         |            |            |                                                | - | 7        | 22.0    | dam I             |                   |         |     |
|---------------|---------|---------|------------|------------|------------------------------------------------|---|----------|---------|-------------------|-------------------|---------|-----|
| ائيا          | sin     | tan     | cot        | COS        |                                                |   |          | sin     | tan               | cot               | COS     |     |
| 0             | . 52992 | . 62487 | 1.6003     | . 84805    | 60                                             |   | 0        | . 54464 | 64941             | 1.5399            | . 83867 | 60  |
| 1             | . 53017 | 527     | 1. 5993    | 789        | 59                                             |   | 1 2      | 488     | 64982             | 389               | 851     | 59  |
| 2             | 041     | 568     | 983        | 774        | 58                                             |   |          | 513     | . 65024           | 379               | 835     | 58  |
| 3             | 066     | 608     | 972        | 759        | 57                                             |   | 3        | 537     | 065               | 369               | 819     | 57  |
| 4             | 091     | 649     | 962        | 743        | 56                                             | 1 | _ 4_     | 561     | 106               | 359               | 804     | 56  |
| 5             | 115     | 689     | 952        | 728        | 55                                             |   | 5        | 586     | 148               | 350               | 788     | 55  |
| 6             | 140     | . 62730 | 941        | 712        | 54                                             |   | 6        | 610     | 189               | 340               | 772     | 54  |
| 7             | 164     | 770     | 931        | 697        | 53                                             |   | 7        | . 54635 | 231               | 330               | . 83756 | 53  |
| 8             | 189     | 811     | 921        | . 84681    | 52                                             |   | 8        | 659     | 272               | 1. 5320           | 740     | 52  |
| 9             | . 53214 | 852     | 911        | 666        | 51                                             |   | 9        | 683     | . 65314           | 311               | 724     | 51  |
| 10            | 238     | 892     | 1. 5900    | 650        | 50                                             |   | 10       | 708     | 355               | 301               | 708     | 50  |
| 11            | 263     | 933     | 890        | 635        | 49                                             |   | 11       | 732     | 397               | 291               | 692     | 49  |
| 12            | 288     | . 62973 | 880        | 619        | 48                                             |   | 12       | 756     | 438               | 282               | 676     | 48  |
| 13            | 312     | . 63014 | 869        | 604        | 47                                             |   | 13       | 781     | 480               | 272               | 660     | 47  |
| 14            | 337     | 055     | 859        | 588        | 46                                             |   | 14       | 805     | 521               | 262               | 645     | 46  |
| 15            | 361     | 095     | 849        | . 84573    | 45                                             |   | 15       | . 54829 | 563               | 253               | . 83629 | 45  |
| 16            | . 53386 | 136     | 839        | 557        | 44                                             |   | 16       | 854     | 604               | 1. 5243           | 613     | 44  |
| 17            | 411     | 177     | 829        | 542        | 43                                             |   | 17       | 878     | . 65646           | 233               | 597     | 43  |
| 18            | 435     | 217     | 818        | 526        | 42                                             |   | 18       | 902     | 688               | $\frac{200}{224}$ | 581     | 42  |
| 19            | 460     | 258     | 808        | 511        | 41                                             |   | 19       | 927     | 729               | 214               | 565     | 41  |
|               |         |         |            |            | 40                                             |   | 20       | 951     | $\frac{729}{771}$ | $\frac{214}{204}$ |         |     |
| 20            | 484     | 299     | 1. 5798    | 495        |                                                |   |          |         |                   |                   | 549     | 40  |
| 21            | 509     | . 63340 | 788        | 480        | 39                                             | ı | 21       | 975     | 813               | 195               | 533     | 39  |
| 22            | 534     | 380     | 778        | 464        | 38                                             | ı | 22       | . 54999 | 854               | 185               | 517     | 38  |
| 23            | 558     | 421     | 768        | . 84448    | 37                                             |   | 23       | . 55024 | 896               | 175               | . 83501 | 37  |
| 24            | . 53583 | 462     | 757        | 433        | 36                                             |   | 24       | 048     | 938               | 1. 5166           | 485     | 36  |
| 25            | 607     | 503     | 747        | 417        | 35                                             |   | 25       | 072     | <b>. 65</b> 980   | 156               | 469     | 35  |
| 26            | 632     | 544     | 737        | 402        | 34                                             | 1 | 26       | 097     | . 66021           | 147               | 453     | 34  |
| 27            | 656     | 584     | 727        | 386        | 33                                             |   | 27       | 121     | 063               | 137               | 437     | 33  |
| 28            | 681     | 625     | 717        | 370        | 32                                             |   | 28       | 145     | 105               | 127               | 421     | 32  |
| 29            | 705     | . 63666 | 707        | 355        | 31                                             |   | 29       | 169     | 147               | 118               | 405     | 31  |
| 30            | 730     | 707     | 1. 5697    | . 84339    | 30                                             | ı | 30       | . 55194 | 189               | 108               | 389     | 30  |
| 31            | 754     | 748     | 687        | 324        | 29                                             | l | 31       | 218     | 230               | 099               | . 83373 | 29  |
| 32            | . 53779 | 789     | 677        | 308        | 28                                             | ı | 32       | 242     | 272               | 1. 5089           | 356     | 28  |
| 33            | 804     | 830     | 667        | 292        | 27                                             |   | 33       | 266     | 314               | 080               | 340     | 27  |
| 34            | 828     | 871     | 657        | 277        | 26                                             | ı | 34       | 291     | . 66356           | 070               | 324     | 26  |
| 35            | 853     | 912     | 647        | 261        | 25                                             | ı | 35       | 315     | 398               | 061               | 308     | 25  |
| 36            | 877     | 953     | 637        | 245        | 24                                             |   | 36       | 339     | 440               | 051               | 292     |     |
| 37            | 902     | .63994  | 627        | 230        | 23                                             | ı | 37       | 55363   | 482               | 042               | 276     | 23  |
| 38            | 926     | . 64035 | 617        | . 84214    | 22                                             | ı | 38       | 388     | 524               | 032               | 260     | 22  |
| 39            | 951     | 076     | 607        | 198        | 21                                             | ı | 39       | 412     | 566               | 023               | . 83244 | 21  |
| 40            | . 53975 | 117     | 1. 5597    | 182        | 20                                             | 1 | 40       | • 436   | 608               | 013               | 228     | 20  |
| 41            | . 54000 | 158     | 587        | 167        | 19                                             | 1 | 41       | 460     | . 66650           | 1. 5004           | 212     | 19  |
| 42            | 024     | 199     | 577        | 151        | 18                                             | ١ | 42       | 484     | 692               | 1. 4994           | 195     |     |
| 43            | 049     | 240     | 567        | 135        | 17                                             | ı | 43       | 509     | 734               | 985               | 179     | 17  |
| 44            | 073     | 281     | 557        | 120        | 16                                             | ١ | 44       | 533     | 776               | 975               | 163     | 16  |
| 45            | 073     | . 64322 | 547        | . 84104    | 15                                             | l | 45       | . 55557 |                   | 966               |         | 15  |
|               | 122     |         |            |            | 14                                             | 1 |          |         | 818               |                   | 147     |     |
| 46<br>47      | 146     | 363     | 537<br>527 | 088<br>072 | 13                                             | ı | 46<br>47 | 581     | 860               | 957               | 131     | 14  |
|               |         | 404     | 527<br>517 | 072        |                                                | ı |          | 605     | 902               | 947               | . 83115 |     |
| 48            | 171     | 446     |            |            | 12                                             | ı | 48       | 630     | 944               | 938               | 098     |     |
| 49            | 195     | 487     | 507        | 041        | 11                                             | ı | 49       | 654     | . 66986           | 928               | 082     |     |
| 50            | 54220   | 528     | 1. 5497    | 025        | 10                                             | ı | 50       | 678     | . 67028           | 919               | 066     | 10  |
| 51            | 244     | 569     | 487        | .84009     | 9                                              | ı | 51       | 702     | 071               | 1. 4910           | 050     | 9   |
| 52            | 269     | . 64610 | 477        | . 83994    | 8                                              | 1 | 52       | . 55726 | 113               | 900               | 034     |     |
| 53            | 293     | 652     | 468        | 978        |                                                | 1 | 53       | 750     | 155               | 891               | 017     | 7   |
| 54            | 317     | 693     | 458        | 962        | 6                                              | 1 | 54       | 775     | 197               | 882               | . 83001 | 6   |
| 55            | 342     | 734     | 448        | 946        | 5                                              | 1 | 55       | 799     | 239               | 872               | 82985   | 5   |
| 56            | 366     |         | 438        | 930        |                                                | ı | 56       | 823     | 282               | 863               | 969     | 4   |
| 57            | 391     | 817     | 428        | 915        | 3                                              | 1 | 57       | 847     | 324               | 854               | 953     | 3   |
| 58            | 415     |         | 418        | 899        | 2                                              | l | 58       | 871     | 366               | 844               | 936     | 3 2 |
| 59            | 440     |         | 408        | 883        | ī                                              | 1 | 59       | 895     | 409               | 835               | 920     | Ī   |
| 60            | . 54464 |         | 1.5399     | . 83867    | Ō                                              | ı | 60       | . 55919 | . 67451           | 1. 4826           | . 82904 | Ō   |
|               | cos     | cot     | tan        | sin        | 7                                              | 1 |          | COS     | cot               | tan               | sin     | 1   |
|               |         |         |            | . WILL     | <u>.                                      </u> | 1 |          | , LVB   |                   | LAM               | . DITT  |     |

34°

READ DOWN

35°

|                      |            | 4 1                    |                |                         |          | r  | -, ,     |                |            |            |            |          |
|----------------------|------------|------------------------|----------------|-------------------------|----------|----|----------|----------------|------------|------------|------------|----------|
|                      | sin        | tan                    | cot            | cos                     | - 20     | ı  |          | sin            | tan        | cot        | cos        |          |
| 0                    | . 55919    | . <b>674</b> 51<br>493 | 1. 4826<br>816 | . 82904                 | 60       | П  | 0        | . 57358        | .70021     | 1. 4281    | . 81915    | 60       |
| 1                    | 943<br>968 | 536                    | 807            | 887<br>871              | 59<br>58 | ı  | 1        | 381            | 064        | 273        | 899        | 59       |
| 3                    | . 55992    | 578                    | 798            | 855                     | 57       | ı  | 2 3      | 405            | 107        | 264        | 882        | 58       |
| 4                    | .56016     | 620                    | 788            | 839                     | 56       |    |          | 429            | 151        | 255        | 865        | 57       |
|                      |            |                        |                |                         | _        | ı  | 4        | 453            | 194        | 246        | 848        | 56       |
| 5                    | 040        | 663                    | 779            | 822                     | 55       | 1  | 5        | 477            | 238        | 237        | 832        | 55       |
| 6                    | 064        | . 67705                | 770            | 806                     | 54       | Н  | 6        | 501            | 281        | 229        | 815        | 54       |
| 7                    | 088        | 748                    | 761            | 790                     | 53       | 1  | 7        | 524            | . 70325    | 220        | . 81798    | 53       |
| 8                    | 112        | 790                    | 751            | 773                     | 52       | ı  | 8        | 548            | 368        | 1. 4211    | 782        | 52       |
| 9                    | 136        | 832                    | 742            | . 82757                 | 51       | Н  | 9        | . 57572        | 412        | 202        | 765        | 51       |
| 10                   | 160        | 875                    | 1. 4733        | 741                     | 50       | Н  | 10       | 596            | 455        | 193        | 748        | 50       |
| 11                   | 184        | 917                    | 724            | 724                     | 49       | Н  | 11       | 619            | 499        | 185        | 731        | 49       |
| 12                   | . 56208    | . 67960                | 715            | 708                     | 48       | 11 | 12       | 643            | 542        | 176        | 714        | 48       |
| 13                   | 232        | . 68002                | 705            | 692                     | 47       | П  | 13       | 667            | 586        | 167        | 698        | 47       |
| 14                   | 256        | 045                    | 696            | 675                     | 46       | ı  | 14       | 691            | 629        | 158        | 681        | 46       |
| 15                   | 280        | 088                    | 687            | 659                     | 45       |    | 15       | 715            | . 70673    | 150        | . 81664    | 45       |
| 16                   | 305        | 130                    | 678            | 643                     | 44       | П  | 16       | 738            | 717        | 1. 4141    | 647        | 44       |
| 17                   | 329        | 173                    | 669            | 626                     | ·43      | ı  | 17       | 762            | 760        | 132        | 631        | 43       |
| 18                   | 353        | 215                    | 659            | . 82610                 | 42       | П  | 18       | . 57786        | 804        | 124        | 614        | 42       |
| 19                   | 377        | 258                    | 650            | 593                     | 41       | ۱  | 19       | 810            | 848        | 115        | 597        | 41       |
| 20                   | . 56401    | 301                    | 1. 4641        | 577                     | 40       | 1  | 20       | 833            | 891        | 106        | 580        | 40       |
| $\tilde{2}\tilde{1}$ | 425        | . 68343                | 632            | 561                     | 39       | П  | 21       | 857            | 935        | 097        | 563        | 39       |
| $\tilde{2}\tilde{2}$ | 449        | 386                    | 623            | 544                     | 38       | Н  | 22       | 881            | .70979     | 089        | 546        | 38       |
| 23                   | 473        | 429                    | 614            | 528                     | 37       | ı  | 23       | 904            | .71023     | 080        | . 81530    | 37       |
| $\tilde{24}$         | 497        | 471                    | . 605          | 511                     | 36       | П  | 24       | 928            | 066        | 1. 4071    | 513        | 36       |
| 25                   | 521        | 514                    | 596            | 495                     | 35       | ı  | 25       | 952            | 110        | 063        | 496        | 35       |
| 26                   | 545        | 557                    | 586            | 478                     | 34       | 1  | 26       | 976            | 154        | 054        | 479        | 34       |
| 27                   | 569        | 600                    | 577            | . 82462                 | 33       |    | 27       | . 57999        | 198        | 045        | 462        | 33       |
| 28                   | . 56593    | . 68642                | 568            | 446                     | 32       |    | 28       | .58023         | 242        | 037        | 445        | 32       |
| 29                   | 617        | 685                    | 559            | $\hat{4}\hat{2}\hat{9}$ | 31       |    | 29       | 047            | 285        | 028        | 428        | 31       |
| 30                   | 641        | 728                    | 1. 4550        | 413                     | 30       |    | 30       | 070            | . 71329    | 019        | 412        | 30       |
|                      |            |                        | 541            | 396                     | 29       | 1  | 31       | 094            | 373        | 019        | 81395      | 29       |
| 31                   | 665<br>689 | 771<br>814             | 532            | 380                     | 28       | 1  | 32       | 118            | 417        | 1. 4002    | 378        | 28       |
| 32<br>33             |            | 857                    | 523            | 363                     | 27       |    | 33       | 141            | 461        | 1. 3994    | 361        | 27       |
| 34                   | 713<br>736 | 900                    | 514            | 347                     | 26       |    | 34       | 165            | 505        | 985        | 344        | 26       |
|                      |            |                        |                | 330                     | 25       | 1  | 35       | 189            | 549        | 976        | 327        | 25       |
| 35                   | 760        | 942                    | 505            | . 82314                 | 24       | 1  | 36       | . 58212        | 593        | 968        | 310        | 24       |
| 36                   | . 56784    | . 68985                | 496            | 297                     | 23       | 1  | 37       | 236            | 637        | 959        | 293        | 23       |
| 37                   | 808        | . 69028                | 487<br>478     | 281                     | 22       | 1  | 38       | 260            | . 71681    | 951        | 276        | 22       |
| 38                   | 832        | 071                    |                | 264                     | 21       | ı  | 39       | 283            | 725        | 942        | . 81259    | 21       |
| 39                   | 856        | 114                    | 469            |                         | -        | 1  |          |                |            |            |            |          |
| 40                   | 880        | 157                    | 1. 4460        | 248                     | 20       | 1  | 40       | 307            | 769        | 934        | 242        | 20       |
| 41                   | 904        |                        | 451            | 231                     | 19       | 1  | 41       | 330            | 813        | 925        | 225        | 19       |
| 42                   | 928        |                        | 442            | 214                     | 18       | ١  | 42       | 354            | 857        | 1. 3916    | 208        | 18       |
| 43                   | 952        |                        | 433            | 198                     | 17       | ١  | 43<br>44 | 378<br>. 58401 | 901<br>946 | 908<br>899 | 191<br>174 | 17<br>16 |
| 44                   | . 56976    | . 69329                | 424            | 181                     | 16       | 1  |          |                |            |            |            |          |
| 45                   | .57000     |                        | 415            | 165                     | 15       | 1  | 45       | 425            | .71990     | 891        | 157        | 15       |
| 46                   | 024        | 416                    | 406            | . 82148                 | 14       | ľ  | 46       | 449            | .72034     | 882        | 140        | 14       |
| 47                   | 047        | 459                    | 397            | 132                     | 13       | ı  | 47       | 472            | 078        | 874        | . 81123    | 13       |
| 48                   | 071        | 502                    | 388            | 115                     | 12<br>11 | ı  | 48       | 496            | 122<br>167 | 865        | 106        | 12<br>11 |
| 49                   | 095        | 545                    | 379            | 098                     |          | 1  | 49       | 519            |            | 857        | 089        |          |
| 50                   | 119        |                        | 1. 4370        | 082                     | 10       | ı  | 50       | 543            | 211        | 848        | 072        | 10       |
| 51                   | 143        |                        | 361            | 065                     | 9        | ı  | 51       | 567            | 255        | 1. 3840    | 055        | 9        |
| -52                  | 167        | . 69675                |                | 048                     | 8 7      | ı  | 52       | . 58590        |            | 831        | 038        | 8<br>7   |
| 53                   | . 57191    | 718                    |                | 032                     |          | ۱  | 53       | 614            | . 72344    | 823        | 021        | 1        |
| 54                   | 215        | 761                    | 335            | . 82015                 | 6        | 1  | 54       | 637            | 388        | 814        | . 81004    | 6        |
| 55                   | 238        | 804                    | 326            | . 81999                 | 5        | 1  | 55       | 661            | 432        | 806        | . 80987    | 5        |
| 56                   | 262        | 847                    | 317            | 982                     | 4        | ı  | 56       | 684            | 477        | 798        | 970        | 4        |
| 57                   | 286        | 891                    | 308            | 965                     | 3        | ۱  | 57       | 708            |            | 789        | 953        | 3        |
| 58                   | 310        | 934                    | 299            | 949                     | 2        | ۱  | 58       | 731            | 565        | 781        | 936        | 2        |
| 59                   | 334        |                        | 290            | 932                     | 1        | ١  | 59       | 755            | 610        | 772        | 919        | 1        |
| 60                   | . 57358    |                        | 1. 4281        | . 81915                 | 0        | 1  | 60       | . 58779        | .72654     | 1.3764     | . 80902    | . 0      |
|                      | cos        | cot                    | tan            | sin                     | ′        | 1  | L        | cos            | cot        | tan        | i sin      |          |
| 1                    |            | ·                      |                |                         |          | _  |          |                |            |            |            |          |

37° -36° READ DOWN

| ′        | sin             | tan        | cot                | cos               |          | П  | ′                | sin              | tan              | cot               | cos            |                      |
|----------|-----------------|------------|--------------------|-------------------|----------|----|------------------|------------------|------------------|-------------------|----------------|----------------------|
| 0        | . 58779         | . 72654    | 1.3764             | . 80902           | 60       | П  | 0                | .60182           | • 7 <b>5</b> 355 | 1.3270            | .79864         | 60                   |
| 1        | 802             | 699        | 755                | 885               | 59       | Н  | 1                | 205              | 401              | 262               | 846            | 59                   |
| 2        | 826             | 743        | 747                | 867               | 58       | П  | 2                | 228              | 447<br>492       | 254               | 829            | 58                   |
| 3<br>4   | 849<br>873      | 788<br>832 | 739<br>730         | 850<br>833        | 57<br>56 |    | 3<br>4           | 251<br>274       | 538              | 246<br>238        | 811<br>793     | 57<br>56             |
| 5        | 896             | 877        | $-\frac{730}{722}$ | 816               | 55       |    | $-\frac{\pi}{5}$ | 298              | 584              | $\frac{230}{230}$ | 776            |                      |
| 6        | 920             | 921        | 713                | 799               | 54       | H  | 6                | 321              | 629              | 222               | 758            | 55<br>54             |
| 7        | 943             | . 72966    | 705                | . 80782           | 53       |    | 7                | 344              | . 75675          | 214               | 741            | 53                   |
| 8        | 967             | .73010     | 697                | 765               | 52       | ١  | 8                | 367              | 721              | 206               | 723            | 52                   |
| 9        | . 58990         | 055        | 688                | 748               | 51       |    | 9                | . 60390          | 767              | 1. 3198           | 706            | 51                   |
| 10       | . 59014         | 100        | 1. 3680            | 730               | 50       | П  | 10               | 414              | 812              | 190               | . 79688        | 50                   |
| 11       | 037             | 144        | 672                | 713               | 49       | П  | 11               | 437              | 858              | 182               | 671            | 49                   |
| 12       | 061             | 189<br>234 | 663<br>655         | 696<br>679        | 48<br>47 | П  | 12<br>13         | 460<br>483       | 904<br>950       | 175<br>167        | 653            | 48                   |
| 13<br>14 | 084<br>108      | 234<br>278 | 647                | 662               | 46       | Н  | 14               | 506              | . <b>75</b> 996  | 157               | 635<br>618     | 47<br>46             |
| 15       | 131             | . 73323    | 638                | . 80644           | 45       | П  | 15               | 529              | 76042            | 151               | 600            | 45                   |
| 16       | 154             | 368        | 630                | 627               | 44       |    | 16               | 553              | 088              | 143               | 583            | 45<br>44             |
| 17       | 178             | 413        | 622                | 610               | 43       | Н  | 17               | . 60576          | 134              | 1. 3135           | 565            | 43                   |
| 18       | 201             | 457        | 613                | 593               | 42       | П  | 18               | 599              | 180              | 127               | 547            | $\tilde{42}$         |
| 19       | . 59225         | 502        | 605                | 576               | 41       | ۱۱ | 19               | 622              | 226              | 119               | 530            | 41                   |
| 20       | 248             | 547        | 1. 3597            | 558               | 40       | П  | 20               | 645              | 272              | 111               | . 79512        | 40                   |
| 21       | 272             | 592        | 588                | 541               | 39       | П  | 21               | 668              | 318              | 103               | 494            | 39                   |
| 22       | 295             | . 73637    | 580                | . 80524           | 38       | П  | 22               | 691              | 364              | 095               | 477            | 38                   |
| 23<br>24 | 318             | 681<br>726 | 572                | 507<br>489        | 37<br>36 | П  | 23<br>24         | 714              | 410<br>456       | 087               | 459            | 37                   |
|          | 342             |            | 564                | $\frac{489}{472}$ |          | П  | $\frac{24}{25}$  | 738              |                  | 079               | 441            | 36                   |
| 25       | 365<br>389      | 771<br>816 | 555<br>547         | 472<br>455        | 35<br>34 |    | 26               | 761<br>. 60784   | . 76502<br>548   | 072<br>1. 3064    | 424            | 35<br>34             |
| 26<br>27 | . 59412         | 861        | 539                | <b>438</b>        | 33       | П  | 27               | 807              | 594              | 056               | 406<br>388     | 33                   |
| 28       | 436             | 906        | 531                | 420               | 32       |    | 28               | 830              | 640              | 048               | 371            | 32                   |
| 29       | 459             | 951        | 522                | 403               | 31       | П  | 29               | 853              | 686              | 040               | 353            | 31                   |
| 30       | 482             | .73996     | 1. 3514            | . 80386           | 30       |    | 30               | 876              | 733              | 032               | . 79335        | 30                   |
| 31       | 506             | .74041     | 506                | 368               | 29       | П  | 31               | 899              | 779              | 024               | 318            | 29                   |
| 32       | 529             | 086        | 498                | 351               | 28       | П  | 32               | 922              | 825              | 017               | 300            | 28                   |
| 33       | 552             | 131        | 490                | 334               | 27       | П  | 33               | 945              | 871              | 009               | 282            | 27                   |
| 34       | 576             | 176        | 481                | 316               | 26       | П  | 34               | 968              | 918              | 1.3001            | 264            | 26                   |
| 35       | . 59599<br>622  | 221<br>267 | 473<br>465         | 299<br>282        | 25       |    | 35<br>36         | .60991<br>.61015 | .76964<br>.77010 | 1.2993            | 247            | 25                   |
| 36<br>37 | 646             | 312        | 457                | . 80264           | 24<br>23 |    | 37               | 038              | 057              | 985<br>977        | 229<br>211     | 24<br>23             |
| 38       | 669             | . 74357    | 449                | 247               | 22       | П  | 38               | 061              | 103              | 970               | 193            | 22                   |
| 39       | 693             | 402        | 440                | 230               | 21       | П  | 39               | 084              | 149              | 962               | 176            | $\tilde{2}\tilde{1}$ |
| 40       | 716             | 447        | 1. 3432            | 212               | 20       |    | 40               | 107              | 196              | 954               | 79158          | 20                   |
| 41       | 739             | 492        | 424                | 195               | 19       | П  | 41               | 130              | 242              | 946               | 140            | 19                   |
| 42       | 763             | 538        | 416                | 178               | 18       | П  | 42               | 153              | 289              | 938               | 122            | 18                   |
| 43       | . 59786         | 583        | 408                | 160               | 17       |    | 43               | 176              | . 77335          | 1. 2931           | 105            | 17                   |
| 44       | 809             | 628        | 400                | 143               | 16       |    | 44               | . 61199          | 382              | 923               | 087            | 16                   |
| 45       | 832             | . 74674    | 392                | . 80125           | 15       |    | 45               | 222              | 428              | 915               | 069            | 15                   |
| 46<br>47 | 856<br>879      | 719<br>764 | 384<br>375         | 108<br>091        | 14<br>13 |    | 46<br>47         | 245<br>268       | 475<br>521       | 907<br>900        | 051            | 14                   |
| 48       | 902             | 810        | 367                | 073               | 12       |    | 48               | 208<br>291       | 568              | 892               | 033<br>.79016  | 13<br>12             |
| 49       | 926             | 855        | 359                | 056               | 11       |    | 49               | 314              | 615              | 884               | 78998          | 11                   |
| 50       | 949             | 900        | 1, 3351            | 038               | 10       |    | 50               | 337              | . 77661          | 876               | 980            | 10                   |
| 51       | 972             | 946        | 343                | 021               | 19       |    | 51               | 360              | 708              | 869               | 962            | 9                    |
| 52       | <b>. 59</b> 995 | .74991     | 335                | . 80003           | 8        | Ш  | 52               | . 61383          | 754              | 1. 2861           | 944            | 8                    |
| 53       | .60019          | . 75037    | 327                | . 79986           | 7        |    | 53               | 406              | 801              | 853               | 926            | 7                    |
| 54       | 042             | 082        | 319                | 968               | 6        |    | 54               | 429              | 848              | 846               | 908            | _ 6                  |
| 55       | 065             | 128        | 311                | 951               | 5        |    | 55               | 451              | 895              | 838               | 891            | 5                    |
| 56       | 089             | 173        | 303                | 934               | 4        |    | 56               | 474              | 941              | 830               | 873            | 4                    |
| 57       | 112<br>135      | 219<br>264 | 295<br>287         | 916<br>899        | 3 2      |    | 57<br>58         | 497<br>520       | .77988<br>.78035 | 822               | 855            | 3                    |
| 58<br>59 | 158             | 310        | 278                | 881               | í        |    | 59               | 543              | 082              | 815<br>807        | 837<br>819     | 2                    |
| 60       | .60182          | . 75355    | 1. 3270            | . <b>79</b> 864   | Ô        |    | 60               | . 61566          | .78129           | 1. 2799           | <b>.78</b> 801 | ō                    |
| 1        | cos             | cot        | tan                | sin               | デ        |    |                  | cos              | cot              | tan               | sin            | <del>,</del>         |
|          |                 |            | 3°                 |                   | <u></u>  |    |                  |                  |                  |                   | ~***           |                      |
|          |                 |            | KE                 | A.                | D UP     |    | 52               | <u>.</u> ~       |                  |                   |                |                      |

39°

#### APPENDIX

# TRIGONOMETRIC FUNCTIONS

38° READ DOWN

|     |         | 38       |            |         |             |    |          |                   | <del></del>    | , ,               |                   | $\overline{}$   |
|-----|---------|----------|------------|---------|-------------|----|----------|-------------------|----------------|-------------------|-------------------|-----------------|
| ′ 1 | sin     | tan      | cot        | cos     |             |    |          | sin               | tan            | cot               | cos               | -               |
| 0   | . 61566 | .78129   | 1. 2799    | .78801  | 60          | 1  | 0        | . 62932           | . 80978        | 1. 2349<br>342    | .77715<br>696     | <b>60</b><br>59 |
| 1   | 589     | 175      | 792        | 783     | 59          | П  | 1        | 955               | . 81027<br>075 | 334               | 678               | 58              |
| 2   | 612     | 222      | 784        | 765     | 58          | ı  | 2        | .62977            | 123            | 327               | 660               | 57              |
| 3   | 635     | 269      | 776        | 747     | 57<br>56    | Н  | 3 4      | . 63000<br>022    | 171            | 320               | 641               | 56              |
| 4   | 658     | 316      | 769        | 729     |             | ı  |          |                   |                | $\frac{320}{312}$ | 623               | 55              |
| 5   | 681     | 363      | 761        | 711     | 55          | П  | 5        | 045               | 220            |                   | 605               | 54              |
| 6   | 704     | 410      | 753        | 694     | 54          | Н  | 6        | 068               | 268            | 305<br>298        | 586               | 53              |
| 7   | 726     | 457      | 746        | 676     | 53          | П  | 7        | 090               | 316            | 298<br>290        | . 77568           | 52              |
| 8   | 749     | 504      | 738        | . 78658 | 52          | ı  | 8        | 113               | 364<br>413     | 290<br>283        | 550               | 51              |
| 9   | . 61772 | . 78551  | 731        | 640     | 51          | ı  | 9        | 135               |                |                   | 531               | 50              |
| 10  | 795     | 598      | 1. 2723    | 622     | 50          | 1  | 10       | . 63158           | 461            | 1. 2276<br>268    | 513               | 49              |
| 11  | 818     | 645      | 715        | 604     | 49          | 1  | 11       | 180               | . 81510        | 261               | 494               | 48              |
| 12  | 841     | 692      | 708        | 586     | 48          | 1  | 12       | 203<br>225        | 558<br>606     | 254               | 476               | 47              |
| 13  | 864     | 739      | 700        | 568     | 47          | ľ  | 13       | $\frac{225}{248}$ | 655            | 247               | 458               | 46              |
| 14  | 887     | 786      |            | 550     | 46          |    | 14       |                   |                | 239               | 439               | 45              |
| 15  | 909     |          |            | . 78532 | 45          | ł  | 15       | 271               | 703            | 239               | . 77421           | 44              |
| 16  | 932     | 881      |            | 514     | 44          | 1  | 16       | 293               | 752            | 232               | 402               | 43              |
| 17  | 955     |          |            | 496     | 43          | ł  | 17       | . 63316           | 800<br>849     | 218               | 384               | 42              |
| 18  | . 61978 | 78975    |            | 478     | 42          | 1  | 18       | 338               |                | 210               | 366               | 41              |
| 19  | . 62001 | 79022    |            | 460     | 41          | -1 | 19       | 361               | 898            |                   | 347               | 40              |
| 20  | 024     |          |            | 442     | 40          | 1  | 20       | 383               | 946            | 1, 2203<br>196    | 347<br>329        | 39              |
| 21  | 046     | 3 117    | 640        | 424     | 39          | 1  | 21       | 406               |                | 189               | 310               | 38              |
| 22  | 069     | 164      |            |         | 38          | 1  | 22       | 428               |                |                   | 77292             | 37              |
| 23  | 092     | 2 212    | 624        |         |             | 1  | 23       | 451               | 092<br>141     | 174               | 273               | 36              |
| 24  | 113     | 5 259    | 617        | 369     |             | _  | 24       | . 63473           |                |                   | $\frac{210}{255}$ | 35              |
| 25  | 138     | 306      | 609        | 351     | 35          | 1  | 25       | 496               |                |                   | 236               | 34              |
| 26  | 160     |          |            |         | 34          | ١  | 26       | 518               |                |                   | 218               | 33              |
| 27  | . 6218  |          | 1 594      |         |             | 1  | 27       | 540               |                |                   | 199               | 32              |
| 28  | 20      |          |            |         |             | 1  | 28       | 563               |                |                   | 181               | 31              |
| 29  | 22      | 9 . 7949 | 6 579      |         |             | _[ | 29       | 585               |                |                   | .77162            | 30              |
| 30  | 25      | 1 54     | 4 1. 2572  | 261     |             | 1  | 30       | 608               |                |                   | 144               | 29              |
| 31  | 27      |          | 1 564      |         |             | 1  | 31       | . 63630           |                |                   | 125               | 28              |
| 32  | 29      | 7 63     | 9 557      |         |             | 1  | 32       | 653               |                |                   | 107               | 27              |
| 33  | 32      |          |            |         |             | 1  | 33       | 675               |                |                   | 088               | 26              |
| 34  | 34      | 2 73     | 4 542      |         |             | _  | 34       | 698               |                |                   | 070               | 25              |
| 35  | . 6236  | 5 78     | 1 534      |         |             |    | 35       | 720               |                |                   | 051               | 24              |
| 36  |         |          | 9 52       |         |             |    | 36       | 745<br>765        |                |                   | 033               |                 |
| 37  |         | 1 87     |            |         |             |    | 37       | 78                |                |                   | .77014            | 22              |
| 38  | 43      | 3 92     |            |         |             |    | 38       | . 6381            |                |                   | .76996            | 21              |
| 39  | 45      | 6 .7997  | $ 2  50^4$ |         |             |    | 39       |                   |                |                   | 977               | 20              |
| 40  | 47      | 9 . 8002 | 0 1. 249   |         |             |    | 40       | 83                |                |                   | 959               |                 |
| 41  |         |          | 7 48       |         |             |    | 41       | 85-<br>87         |                | 045               |                   |                 |
| 42  |         | 4 11     | 5 48       | 2 04    |             |    | 42       | 89                |                |                   |                   |                 |
| 43  | 54      | 16       |            |         |             |    | 43       | 92                |                |                   | 908               |                 |
| 44  |         |          |            |         |             |    | 44       | 94                |                |                   | 884               | 15              |
| 45  | 59      |          |            |         |             |    | 45       | 96                |                |                   |                   | 14              |
| 46  |         | 15 30    |            |         |             |    | 46<br>47 | .6398             |                |                   | 847               | 13              |
| 47  | 63      | 38 35    |            |         |             |    | 48       | 6401              | · .            | 7 1. 2002         | 828               | 12              |
| 48  | 66      |          |            |         |             |    | 49       | 03                |                |                   |                   |                 |
| 49  |         |          |            |         |             | _  | 50       | 05                |                |                   |                   |                 |
| 50  | 70      |          |            |         |             |    | 51       | 07                |                |                   | 772               | 2 9             |
| 5   |         | 28 54    |            |         |             | 9  | 52       | 10                |                |                   | 754               |                 |
| 5   | 2 . 627 |          |            |         |             | 3  | 53       |                   |                | 4 967             |                   | 7               |
| 5   | 3 7     |          | 42 40      |         |             | 6  | 54       |                   |                | 3 960             |                   |                 |
| 5   |         |          | 90 39      |         |             |    | 55       |                   |                |                   | 69                | <b>5</b>        |
| 5   | 5 8     |          | 38 38      | 86      |             | 5  | 56       |                   |                | 2 946             | 67                | 9 4             |
| 5   | š 8     | 42 7     | 86 37      |         |             | 3  | 57       | 21                |                | 1 939             | 66                |                 |
| Š   | 7 I 8   |          | 34 37      |         |             | 2  | 58       | 1                 |                | 1 933             |                   |                 |
| 5   | 8 8     |          | 82 36      |         |             | í  | 59       |                   |                | 0 92              |                   |                 |
| 5   | 9   9   |          | 30 35      |         |             | ō  | 60       |                   |                | 0 1.191           |                   | 4 0             |
| 6   | 0 .629  |          |            | _       | <u>~</u>  , | -  | I ⊢~     | cos               | cot            | tan               | sin               | 1 '             |
|     | cos     | cot      | tan        | sin     |             | _  | I        |                   |                |                   |                   |                 |
|     |         |          |            | -       | _           |    | n m      | •                 |                | 50°               |                   |                 |

50°

40° READ DOWN 41°

| , 1      | gi- I             | ton                | cot        | CCC 1          |          | ۱۱         | ,        | sin        | tan                | cot        | cos               | _        |
|----------|-------------------|--------------------|------------|----------------|----------|------------|----------|------------|--------------------|------------|-------------------|----------|
| 0        | sin<br>. 64279    | - 83910            | 1. 1918    | -76604         | 60       |            | 0        | . 65606    | .86929             | 1. 1504    | ·75471            | 60       |
| 1        | 301               | . 83910<br>. 83960 | 910        | 586            | 59       | П          | 1        | 628        | 86980              | 497        | 452               | 59       |
| 2        | 323               | 84009              | 903        | 567            | 58       |            | 2        | 650        | .87031             | 490        | 433               | 58       |
| 3        | 346               | 059                | 896        | 548            | 57       |            | 3        | 672        | 082                | 483        | 414               | 57       |
| 4        | 368               | 108                | 889        | 530            | 56       |            | 4        | 694        | 133                | 477        | 395               | 56       |
| 5        | 390               | 158                | 882        | 511            | 55       |            | 5        | 716        | 184                | 470        | 375               | 55       |
| 6        | 412               | 208                | 875        | 492            | 54       |            | 6        | 738        | 236                | 463        | 356               | 54       |
| 7        | 435               | 258                | 868        | 473            | 53       |            | 7        | 759        | 287                | 456        | 337               | 53       |
| 8        | . 64457           | 307                | 861        | 76455          | 52       |            | 8        | 781        | 338                | 450        | . 75318           | 52       |
| 9        | 479               | 357                | 854        | 436            | 51       |            | 9        | . 65803    | 389                | 443        | 299               | 51       |
| 10       | 501               | 407                | 1. 1847    | 417            | 50       |            | 10       | 825        | 441                | 1. 1436    | 280               | 50       |
| 11       | 524               | . 84457            | 840        | 398            | 49       |            | 11<br>12 | 847<br>869 | . 87492            | 430<br>423 | 261               | 49       |
| 12       | 546               | 507                | 833        | 380            | 48<br>47 |            | 13       | 891        | 543<br>595         | 423<br>416 | $\frac{241}{222}$ | 48<br>47 |
| 13<br>14 | 568<br>590        | 556<br>606         | 826<br>819 | 361<br>342     | 46       | ١          | 14       | 913        | 646                | 410        | 203               | 46       |
| 15       | 612               | 656                | 812        | 323            | 45       |            | 15       | 935        | 698                | 403        | 184               | 45       |
| 15<br>16 | . 64635           | 706                | 806        | 76304          | 44       |            | 16       | 956        | 749                | 396        | . 75165           | 44       |
| 17       | 657               | 756                | 799        | 286            | 43       |            | 17       | .65978     | 801                | 389        | 146               | 43       |
| 18       | 679               | 806                | 792        | 267            | 42       |            | 18       | .66000     | 852                | 383        | 126               | 42       |
| 19       | 701               | 856                | 785        | 248            | 41       |            | 19       | 022        | 904                | 376        | 107               | 41       |
| 20       | 723               | 906                | 1. 1778    | 229            | 40       |            | 20       | 044        | .87955             | 1. 1369    | 088               | 40       |
| 21       | 746               | . 84956            | 771        | 210            | 39       |            | 21       | 066        | .88007             | 363        | 069               | 39       |
| 22       | 768               | . 85006            | 764        | 192            | 38       |            | 22       | 088        | 059                | 356        | 050               | 38       |
| 23       | 790               | 057                | 757        | 173            | 37       |            | 23       | 109        | 110                | 349        | 030               | 37       |
| 24       | . 64812           | 107                | 750        | . 76154        | 36       |            | 24       | 131        | 162                | 343        | .75011            | 36       |
| 25       | 834               | 157                | 743        | 135            | 35       |            | 25       | . 66153    | 214                | 336        | .74992            | 35       |
| 26       | 856               | 207                | 736        | 116            | 34       |            | 26<br>27 | 175<br>197 | 265                | 329<br>323 | 973               | 34<br>33 |
| 27<br>28 | 878<br>901        | 257<br>308         | 729<br>722 | 097            | 33<br>32 |            | 28       | 218        | 317<br>369         | 323<br>316 | 953<br>934        | 32       |
| 28       | 923               | 358                | 715        | 078<br>059     | 31       |            | 29       | 240        | 421                | 310        | 915               | 31       |
| 30       | 945               | 408                | 1. 1708    | 039            | 30       |            | 30       | 262        | . 88473            | 1. 1303    | 896               | 30       |
| 31       | 945<br>967        | . 85458            | 702        | 022            | 29       |            | 31       | 284        | 524                | 296        | 876               | 29       |
| 32       | . 64989           | 509                | 695        | .76003         | 28       |            | 32       | . 66306    | 576                | 290        | 857               | 28       |
| 33       | .65011            | 559                | 688        | .75984         | 27       |            | 33       | 327        | 628                | 283        | 838               | 27       |
| 34       | 033               | 609                | 681        | 965            | 26       | ı          | 34       | 349        | 680                | 276        | . 74818           | 26       |
| 35       | 055               | 660                | 674        | 946            | 25       | ı          | 35       | 371        | 732                | 270        | 799               | 25       |
| 36       | 077               | 710                | 667        | 927            | 24       | ı          | 36       | 393        | 784                | 263        | 780               | 24       |
| 37       | 100               | 761                | 660        | 908            | 23       | l          | 37       | 414        | 836                | 257        | 760               | 23       |
| 38       | 122               | 811                | 653        | 889            | 22       | ı          | 38<br>39 | 436        | 888                | 250<br>243 | $741 \\ 722$      | 22<br>21 |
| 39       | 144               | 862                | 647        | 870            | 21       | l          |          | . 66458    | . 940              |            |                   |          |
| 40       | 166               | 912                | 1. 1640    | 851            | 20       | ı          | 40       | 480        | . 88992<br>. 89045 | 1. 1237    | 703               | 20       |
| 41<br>42 | 188<br>. 65210    | .85963<br>.86014   | 633<br>626 | 832<br>75813   | 19<br>18 | ı          | 41<br>42 | 501<br>523 | 097                | 230<br>224 | 683<br>664        | 19<br>18 |
| 43       | 232               | 064                | 619        | . 75813<br>794 | 17       | l          | 43       | 545        | 149                | 217        | .74644            | 17       |
| 44       | $\frac{252}{254}$ | 115                | 612        | 775            | 16       | ı          | 44       | 566        | 201                | 211        | 625               | 16       |
| 45       | 276               | 166                | 606        | 756            | 15       | l          | 45       | 588        | 253                | 204        | 606               | 15       |
| 46       | 298               | 216                | 599        | 738            | 14       | 1          | 46       | 66610      | 306                | 197        | 586               | 14       |
| 47       | 320               | 267                | 592        | 719            | 13       | ı          | 47       | 632        | 358                | 191        | 567               | 13       |
| 48       | 342               | 318                | 585        | 700            | 12       |            | 48       | 653        | 410                | 184        | 548               | 12       |
| 49       | 364               | 368                | 578        | 680            | 11       | 1          | 49       | 675        | 463                | 178        | 528               | 11       |
| 50       | . 65386           | 419                | 1. 1571    | 661            | 10       | l          | 50       | 697        | . 89515            | 1. 1171    | 509               | 10       |
| 51       | 408               | . 86470            | 565        | . 75642        | 9        | l          | 51       | 718        | 567                | 165        | . 74489           | 9        |
| 52<br>53 | 430<br>452        | 521<br>572         | 558<br>551 | 623<br>604     | 8<br>7   | ŀ          | 52<br>53 | 66762      | 620<br>672         | 158<br>152 | 470<br>451        | 8<br>7   |
| 54       | 474               | 623                | 544        | 585            | 6        | l          | 54       | 783        | 725                | 145        | 431               | 6        |
| 55       | 496               | 674                | 538        | 566            | 5        | 1          | 55       | 805        | 777                | 139        | 412               | 5        |
| 56       | 518               | 725                | 531        | 547            | 4        |            | 56       | 827        | 830                | 132        | 392               | 4        |
| 57       | 540               |                    | 524        | 528            | 3        |            | 57       | 848        | 883                | 126        | 373               | 3 2      |
| 58       | 562               | 827                | 517        | 509            | 2        |            | 58       | 870        | 935                | 119        | 353               |          |
| 59       | 584               | 878                | 510        | 490            | 1        | 1          | 59       | 891        | 89988              | 113        | 334               | 1        |
| 60       | <b>. 65</b> 606   |                    | 1. 1504    | .75471         | 0        | l          | 60       | . 66913    | <b>.90</b> 040     | 1.1106     | .74314            | 0        |
| <u></u>  | cos               | cot.               | tan        | sin            | ,        | 1          | L        | cos        | cot                | tan        | sin               |          |
|          |                   | 4                  | 9°         |                | RE       | <b>X</b> D | UP       |            | 48                 | c          |                   |          |

|                 |                 | 42              | 20             | H                 | EAD             | I | ow.                                     | N<br>N                 |                        | 3°             |                        |              |
|-----------------|-----------------|-----------------|----------------|-------------------|-----------------|---|-----------------------------------------|------------------------|------------------------|----------------|------------------------|--------------|
| ′               | sin             | tan             | cot            | cos               |                 | 1 | /                                       | sin                    | tan                    | cot            | cos                    | Т            |
| 0               | <b>. 66</b> 913 | <b>. 90</b> 040 | 1.1106         | .74314            | 60              | 1 | 0                                       | .68200                 | . 93252                | 1. 0724        | . 73135                | 60           |
| 1 1             | 935             | 093             | 100            | 295               | 59              | ı | 1                                       | 221                    | 306                    | 717            | 116                    |              |
| 2 3             | 956<br>978      | 146<br>199      | 093<br>087     | 276               | 58              | ı | 2                                       | 242                    | 360                    | 711            | 096                    |              |
| 4               | . 66999         | 251             | 087            | 256<br>237        | 57<br>56        | ı | 3 4                                     | 264<br>285             | 415<br>469             | 705            | 076                    |              |
| 5               | •67021          | 304             | 074            | 217               | 55              | l | 5                                       | 306                    | 524                    | 699            | 056                    |              |
| 6               | 043             | 357             | 067            | 198               | 54              | ı | 6                                       | 327                    | . 93578                | 692<br>686     | .73016                 |              |
| 7               | 064             | 410             | 061            | 178               | 53              | ı | 7                                       | 349                    | 633                    | 680            | 72996                  |              |
| 8               | 086             | 463             | 1. 1054        | . 74159           | 52              | l | 8                                       | 370                    | 688                    | 674            | 976                    |              |
| 9_              | 107             | . 90516         | 048            | 139               | 51              | ı | 9                                       | . 68391                | 742                    | 668            | 957                    | 51           |
| 10              | 129             | 569             | 041            | 120               | 50              | 1 | 10                                      | 412                    | 797                    | 1.0661         | 937                    | 50           |
| 11              | 151             | 621             | 035            | 100               | 49              | ı | 11                                      | 434                    | 852                    | 655            | 917                    | 49           |
| 12<br>13        | 172<br>. 67194  | 674<br>727      | 028<br>022     | 080<br>061        | 48<br>47        | 1 | 12<br>13                                | 455<br>476             | 906<br>• <b>93</b> 961 | 649<br>643     | 897                    | 48           |
| 14              | 215             | 781             | 016            | 041               | 46              | ı | 14                                      | 497                    | .94016                 | 637            | 877<br>857             | 47<br>46     |
| 15              | 237             | 834             | 009            | 022               | 45              | ı | 15                                      | 518                    | 071                    | 630            | . 72837                | 45           |
| 16              | 258             | 887             | 1. 1003        | .74002            | 44              | ı | 16                                      | 539                    | 125                    | 624            | 817                    | 44           |
| 17              | 280             | 940             | 1. 0996        | .73983            | 43              | [ | 17                                      | 561                    | 180                    | 618            | 797                    | 43           |
| 18              | 301             | . 90993         | 990            | 963               | 42              | ı | 18                                      | . 68582                | 235                    | 612            | 777                    | 42           |
| 19              | 323             | . 91046         | 983            | 944               | 41              |   | 19                                      | 603                    | 290                    | 606            | 757                    | 41           |
| 20              | . 67344         | 099             | 977            | 924               | 40              | 1 | 20                                      | 624                    | 345                    | 1. 0599        | 737                    | 40           |
| 21              | 366             | 153             | 971            | 904               | 39              | 1 | $\begin{array}{c} 21 \\ 22 \end{array}$ | 645                    | 400                    | 593            | 717                    | 39           |
| 22<br>23        | 387<br>409      | 206             | 964            | 885               | 38<br>37        | 1 | 22                                      | 666<br>688             | 455<br>94510           | 587<br>581     | 697<br>. 72677         | 38<br>37     |
| 24              | 430             | 259<br>313      | 958<br>951     | 865<br>846        | 36              | 1 | 24                                      | 709                    | 565                    | 575            | 657                    | 36           |
| $\frac{24}{25}$ | 452             | 366             | 1. 0945        | . 73826           | 35              | 1 | 25                                      | 730                    | 620                    | 569            | 637                    | 35           |
| 26              | 473             | 419             | 939            | 806               | 34              | ĺ | 26                                      | 751                    | 676                    | 562            | 617                    | 34           |
| 27              | 495             | 473             | 932            | 787               | 33              |   | $\overline{27}$                         | . 68772                | 731                    | 556            | 597                    | 33           |
| 28              | . 67516         | . 91526         | 926            | 767               | 32              |   | 28                                      | 793                    | 786                    | 550            | 577                    | 32           |
| 29              | 538             | 580             | 919            | 747               | 31              |   | 29                                      | 814                    | 841                    | 544            | 557                    | 31           |
| 30              | 559             | 633             | 913            | 728               | 30              | 1 | 30                                      | 835                    | 896                    | 1. 0538        | 537                    | 30           |
| 31              | 580             | 687             | 907            | 708               | 29              |   | 31                                      | 857                    | .94952                 | 532            | 517                    | 29           |
| 32              | 602             | 740             | 900            | 688               | 28              | 1 | 32                                      | 878                    | .95007                 | 526<br>519     | . <b>724</b> 97<br>477 | 28<br>27     |
| 33<br>34        | 623<br>645      | 794<br>847      | 894<br>1. 0888 | 669<br>. 73649    | 27<br>26        |   | 33<br>34                                | 899<br>920             | 062<br>118             | 513            | 457                    | 26           |
| 35              | . 67666         | 901             | 881            | 629               | $\frac{20}{25}$ | ı | 35                                      | 941                    | 173                    | 507            | 437                    | 25           |
| 36              | 688             | . 91955         | 875            | 610               | 24              | l | 36                                      | 962                    | 229                    | 501            | 417                    | 24           |
| 37              | 709             | 92008           | 869            | 590               | 23              |   | 37                                      | . 68983                | 284                    | 495            | 397                    | 23           |
| 38              | 730             | 062             | 862            | 570               | 22              | П | 38                                      | . 69004                | 340                    | 489            | 377                    | 22           |
| 39              | 752             | 116             | 856            | 551               | 21              |   | 39                                      | 025                    | 395                    | 483            | 357                    | 21           |
| 40              | 773             | 170             | 850            | 531               | 20              |   | 40                                      | 046                    | 451                    | 1. 0477        | 337                    | 20           |
| 41              | 795             | 224             | 843            | 511               | 19              |   | 41                                      | 067                    | . 95506                | 470            | . 72317<br>297         | 19           |
| 42              | 816             | 277             | 1. 0837        | . 73491           | 18              |   | 42<br>43                                | 088<br>109             | 562<br>618             | 464<br>458     | 297<br>277             | 18<br>17     |
| 43<br>44        | . 67837<br>859  | 331<br>385      | 831<br>824     | 472<br>452        | 17<br>16        |   | 44                                      | 130                    | 673                    | 452            | 257                    | 16           |
| 45              | 880             | 439             | 818            | 432               | 15              |   | 45                                      | . 69151                | 729                    | 446            | 236                    | 15           |
| 45<br>46        | 901             | .92493          | 812            | 413               | 14              |   | 46                                      | 172                    | 785                    | 440            | 216                    | 14           |
| 47              | 923             | 547             | 805            | 393               | 13              |   | 47                                      | 193                    | 841                    | 434            | 196                    | 13           |
| 48              | 944             | 601             | 799            | 373               | 12              | 1 | 48                                      | 214                    | 897                    | 428            | . 72176                | 12           |
| 49              | 965             | 655             | 793            | 353               | 11              | Н | 49                                      | 235                    | . 95952                | 422            | 156                    | 11           |
| 50              | . 67987         | 709             | 786            | 333               | 10              | П | 50                                      | 256                    | . 96008                | 1. 0416<br>410 | 136<br>116             | 10<br>9      |
| 51              | . 68008         | 763             | 1. 0780        | . 73314           | 9               |   | 51                                      | 277<br>. 69298         | 064<br>120             | 410<br>404     | 095                    | 8            |
| 52<br>53        | 029             | 817<br>872      | 774<br>768     | 294<br>274        | 8               | П | 52<br>53                                | 319                    | 176                    | 398            | 075                    | 8            |
| 53<br>54        | 051<br>072      | 926             | 768<br>761     | $\frac{274}{254}$ | 6               | 1 | 54                                      | 340                    | 232                    | 392            | 055                    | 6            |
| 55              | 093             | . 92980         | 755            | $\frac{231}{234}$ | -5              |   | 55                                      | 361                    | 288                    | 385            | 035                    | 5            |
| 56              | 115             | . 93034         | 749            | 215               | 4               | П | 56                                      | 382                    | 344                    | 379            | <b>. 72</b> 015        | 4            |
| 57              | 136             | 088             | 742            | 195               | 3               | П | 57                                      | 403                    | 400                    | 373            | .71995                 | 3            |
| 58              | 157             | 143             | 736            | 175               | 2               | П | 58                                      | 424                    | 457                    | 367            | 974                    | 2<br>1       |
| 59              | 179             | 197             | 730            | 155               | 1               | ı | 59<br><b>60</b>                         | 445<br>. <b>69</b> 466 | 513<br>• <b>96</b> 569 | 361<br>1. 0355 | 954<br>71934           | o l          |
| 60              | . 68200         | . 93252         | 1.0724         | . 73135           | _0              | H | -00                                     |                        | cot                    | tan            | sin                    | <del>-</del> |
|                 | cos             | cot             | tan            | sin               | لــُــا         |   |                                         | COS                    | COL                    | FGIL           | BITT                   |              |

46°

44° READ DOWN 44°

| 1  | sin             | tan             | cot     | cos     |            |          | sin     | tan             | cot     | cos     |             |
|----|-----------------|-----------------|---------|---------|------------|----------|---------|-----------------|---------|---------|-------------|
| 0  | . 69466         | . 96569         | 1.0355  | .71934  | 60         | 30       | 091     | 270             | 1.0176  | 325     | 30          |
| 1  | 487             | 625             | 349     | 914     | 59         | 31       | 112     | 327             | 170     | 305     | 29          |
| 2  | 508             | 681             | 343     | 894     | 58         | 32       | 132     | 384             | 164     | 284     | 28          |
| 3  | 529             | 738             | 337     | 873     | 57         | 33       | 153     | 441             | 158     | 264     | 27          |
| 4  | 549             | 794             | 331     | 853     | 56         | 34       | . 70174 | . 98499         | 152     | 243     | 26          |
| 5. | 570             | 850             | 325     | 833     | 55         | 35       | 195     | 556             | 147     | 223     | 25          |
| 6  | 591             | 907             | 319     | 813     | 54         | 36       | 215     | 613             | 141     | 71203   | 24          |
| 7  | . 69612         | <b>. 96</b> 963 | 313     | 792     | 53         | 37       | 236     | 671             | 135     | 182     | 23          |
| 8  | 633             | . 97020         | 307     | 772     | 5 <b>2</b> | 38       | 257     | 728             | 129     | 162     | 22          |
| 9  | 654             | 076             | 301     | . 71752 | 51         | 39       | 277     | 786             | 123     | 141     | 21          |
| 10 | 675             | 133             | 1.0295  | 732     | 50         | 40       | 298     | 843             | 1. 0117 | 121     | 20          |
| 11 | 696             | 189             | 289     | 711     | 49         | 41       | 319     | 901             | 111     | 100     | 19          |
| 12 | 717             | 246             | 283     | 691     | 48         | 42       | . 70339 | <b>. 98</b> 958 | 105     | 080     | 18          |
| 13 | 737             | 302             | 277     | 671     | 47         | 43       | 360     | <b>. 99</b> 016 | 099     | 059     | 17          |
| 14 | 758             | - 359           | 271     | 650     | 46         | 44       | 381     | 073             | 094     | 039     | 16          |
| 15 | 779             | 416             | 265     | 630     | 45         | 45       | 401     | 131             | 088     | .71019  | 15          |
| 16 | . 69800         | . 97472         | 259     | 610     | 44         | 46       | 422     | 189             | 082     | .70998  | 14          |
| 17 | 821             | 529             | 253     | 590     | 43         | 47       | 443     | 247             | 076     | 978     | 13          |
| 18 | 842             | 586             | 247     | 71569   | 42         | 48       | 463     | 304             | 070     | 957     | 12          |
| 19 | 862             | 643             | 241     | 549     | 41         | 49       | 484     | 362             | 064     | 937     | .11         |
| 20 | 883             | 700             | 1. 0235 | 529     | 40         | 50       | 505     | 420             | 1. 0058 | 916     | 10          |
| 21 | 904             | 756             | 230     | 508     | 39         | 51       | . 70525 | . 99478         | 052     | 896     | 9           |
| 22 | 925             | 813             | 224     | 488     | 38         | 52       | 546     | 536             | 047     | 875     | 8<br>7      |
| 23 | 946             | 870             | 218     | 468     | 37         | 53       | 567     | 594             | 041     | . 70855 |             |
| 24 | 966             | 927             | 212     | 447     | 36         | 54       | 587     | 652             | 035     | 834     | 6           |
| 25 | <b>. 69</b> 987 | . 97984         | 206     | 427     | 35         | 55       | 608     | 710             | 029     | 813     | 5           |
| 26 | <b>. 70</b> 008 | . 98041         | 200     | 407     | 34         | 56       | 628     | 768             | 023     | 793     | 4           |
| 27 | 029             | 098             | 194     | . 71386 | 33         | 57       | 649     | 826             | 017     | 772     | 4<br>3<br>2 |
| 28 | 049             | 155             | 188     | 366     | 32         | 58       | 670     | 884             | 012     | 752     |             |
| 29 | 070             | 213.            | 182     | 345     | 31         | 59       | 690     | 99942           | 006     | 731     | 1           |
| 30 | 091             | 270             | 1. 0176 | 325     | 30         | 60       | .70711  | 1.0000          | 1.0000  | . 70711 | 0           |
|    | cos             | cot             | tan     | sin     | ′          | <u> </u> | cos     | cot             | tan     | sin     | ′           |

45° READ UP 45°

## LOGARITHM TABLES

| No. | Log.     | No. | Log.     | No. | Log.     | No. | Log.     | No. | Log.     |
|-----|----------|-----|----------|-----|----------|-----|----------|-----|----------|
| 1   | 0.000000 | 21  | 1.322219 | 41  | 1.612784 | 61  | 1.785330 | 81  | 1.908485 |
| 2   | 0.301030 | 22  | 1.342423 | 42  | 1.623249 | 62  | 1.792392 | 82  | 1.913814 |
| 3   | 0.477121 | 23  | 1.361728 | 43  | 1.633468 | 63  | 1.799341 | 83  | 1.919078 |
| 4   | 0.602060 | 24  | 1.380211 | 44  | 1.643453 | 64  | 1.806180 | 84  | 1.924279 |
| 5   | 0.698970 | 25  | 1.397940 | 45  | 1.653213 | 65  | 1.812913 | 85  | 1.929419 |
| 6   | 0.778151 | 26  | 1.414973 | 46  | 1.662758 | 66  | 1.819544 | 86  | 1.934498 |
| 7   | 0.845098 | 27  | 1.431364 | 47  | 1.672098 | 67  | 1.826075 | 87  | 1.939519 |
| 8   | 0.903090 | 28  | 1.447158 | 48  | 1.681241 | 68  | 1.832509 | 88  | 1.944483 |
| 9   | 0.954243 | 29  | 1.462398 | 49  | 1.690196 | 69  | 1.838849 | 89  | 1.949390 |
| 10  | 1.000000 | 30  | 1.477121 | 50  | 1.698970 | 70  | 1.845098 | 90  | 1.954243 |
| 11  | 1.041393 | 31  | 1.491362 | 51  | 1.707570 | 71  | 1.851258 | 91  | 1.959041 |
| 12  | 1.079181 | 32  | 1.505150 | 52  | 1.716003 | 72  | 1.857332 | 92  | 1.963788 |
| 13  | 1.113943 | 33  | 1.518514 | 53  | 1.724276 | 73  | 1.863323 | 93  | 1.968483 |
| 14  | 1.146128 | 34  | 1.531479 | 54  | 1.732394 | 74  | 1.869232 | 94  | 1.973128 |
| 15  | 1.176091 | 35  | 1.544068 | 55  | 1.740363 | 75  | 1.875061 | 95  | 1.977724 |
| 16  | 1.204120 | 36  | 1.556303 | 56  | 1.748188 | 76  | 1.880814 | 96  | 1.982271 |
| 17  | 1.230449 | 37  | 1.568202 | 57  | 1.755875 | 77  | 1.886491 | 97  | 1.986772 |
| 18  | 1.255273 | 38  | 1.579784 | 58  | 1.763428 | 78  | 1.892095 | 98  | 1.991226 |
| 19  | 1.278754 | 39  | 1.591065 | 59  | 1.770852 | 79  | 1.897627 | 99  | 1.995635 |
| 20  | 1.301030 | 40  | 1.602060 | 60  | 1.778151 | 80  | 1.903090 | 100 | 2.000000 |

### INDEX

#### **INDEX**

| INDEX                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Abbreviations, 86-89 Accidents, 266 Acute Angle, 267 Advancement Hints, 7 Airplane Nomenclature, 20-28 Alclad, 49, 267 Alternate Position Lines, 95, 96 Aluminum Alloys, 49 AN-AC Standards, 146 Angle, The, 56 Angle Template, 8 Appendix, 267 Arbor and Dato Saw, 267 Area Calculations, 54 Assembly Drawing, 90 Auxiliary Views, 83 Band Saw, 267 Base Line, 28 | Counter Bore, 140 Crowded Dimensions, 99 Cumulative Errors, 100 Curves, 69, 144 Cut-off Template, 15 Cutting Operations, 49 Decimal Equivalents, 275, 279 Depth Gage, 141 Detail Drawing, 90 Development, 122, 267 of Bends, 111 Diagonal Cut, Development, 130, 133 Proof Line, 28 Dimensioning, Drafting, 98 Joggles, 101 Machined Parts, 102 Radii, 100 Sheet Metal Parts, 101 |  |  |  |  |  |  |
| Bend Allowance, 28, 111, 267                                                                                                                                                                                                                                                                                                                                       | To Base Line, 103                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Charts, 272, 273, 274, 277                                                                                                                                                                                                                                                                                                                                         | Tolerances, 102                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Formula, 112<br>Bend Lines, 28                                                                                                                                                                                                                                                                                                                                     | Dimension Lines, 94, 99<br>On Cross Hatch, 100                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Bent-up Angle, 116, 267                                                                                                                                                                                                                                                                                                                                            | Dividing A Line, 71                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Bevel Curve Sticks, 267 Bisecting an Angle, 70 Blank, 267 Block Lines, 28, 120 Template, 9, 34 Blueprint Reading, 150                                                                                                                                                                                                                                              | Drafting (Drawing), 64 Abbreviations, 86-89 Boards, 64 Instruments, 64 Paper, 64 Sheet Sizes, 84, 85                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Body Plan, 28, 267                                                                                                                                                                                                                                                                                                                                                 | Draw Filing, 136                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Box Template, 12<br>Break Lines, 94<br>Bulkhead Stations, 27<br>Buttock Lines, 27, 28, 31                                                                                                                                                                                                                                                                          | Drill, 137<br>Gage, 139<br>Grinding, 138<br>Guard, 139                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Center Lines, 95 Checking Drawings, 92 Citizenship Requirements, 263 Compass, 68 Compound Die, 45 Concave, 267 Consecutive Dimensions, 99                                                                                                                                                                                                                          | Guides, 268 Guides, 268 Jig, 268 Jig Template, 12 Nomenclature, 137 Point, 139 Sizes, 278                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Continental Die, 45                                                                                                                                                                                                                                                                                                                                                | Drill Template, 9                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Contour Template, 10, 11 Cosecant, 57 Cosine, 57                                                                                                                                                                                                                                                                                                                   | Drop Hammer, 45, 46, 268 Parts, 47 Ducks, 144, 268                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| Cotangent, 57                                                                                                                                                                                                                                                                                                                                                      | Duplicating Punch, 145, 146, 268                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

| Ellipse Construction, 74             | Indexing Pins, 269                  |  |  |  |  |
|--------------------------------------|-------------------------------------|--|--|--|--|
| Empirical Bend Allowance Formula,    | Index of Problems, 153              |  |  |  |  |
| 111, 268                             | Information, Markings on Templates, |  |  |  |  |
| Engineering Blueprints, 268          | 150                                 |  |  |  |  |
| Equilateral Triangle, 76             | Inside Mold Line, 114, 120, 269     |  |  |  |  |
| Equipment For Template Maker, 135    | Inspection Mold Line, 114, 208, 209 |  |  |  |  |
| Extension Lines, 94                  | Inspection Template, 15             |  |  |  |  |
|                                      | Installation Drawing, 91            |  |  |  |  |
| Fairing, 268                         | Interference Layout, 261            |  |  |  |  |
| File, 135                            | Irregular Curves, 69                |  |  |  |  |
| Cut, 136                             | Isometric Projection, 83            |  |  |  |  |
| Grade, 136                           |                                     |  |  |  |  |
| Filing, 137                          | J-Chart, 269, 276                   |  |  |  |  |
| Hints, 136                           | <b>Jigs</b> , 36, 37, 38            |  |  |  |  |
| Fin, 22                              | Joggle, 269                         |  |  |  |  |
| Final Assembly Drawing, 91           | TT: 1 : 1 000                       |  |  |  |  |
| Fixtures, 36                         | Kirksite, 269                       |  |  |  |  |
| Flange, 268                          | Landing Gear, 23                    |  |  |  |  |
| Flaps, 22                            | Lettering, 103                      |  |  |  |  |
| Flat Template, 13, 35                | Layout Drawing, 89                  |  |  |  |  |
| Development, 34                      | Lightening Holes, 269               |  |  |  |  |
| Fly Cutter, 140                      | Limits, 35                          |  |  |  |  |
| Form Block, 44, 268                  | Line Work, 92                       |  |  |  |  |
| Material, 44                         | Loft Floor, 26, 29                  |  |  |  |  |
| Template, 9                          | Layout, 27                          |  |  |  |  |
| · ·                                  | Nomenclature, 28                    |  |  |  |  |
| Press Drill Template, 16             |                                     |  |  |  |  |
| Press Template, 14                   | Photo System, 253                   |  |  |  |  |
| Forming Operations, 45               | Template Coordination, 26           |  |  |  |  |
| Frames, 268                          | Lofting, 25                         |  |  |  |  |
| Freehand Sketching, 103              | a Fuselage, 27, 30                  |  |  |  |  |
| French Curve, 69, 144                | Lubricants for Drills, 138          |  |  |  |  |
|                                      | Marking Template, 15                |  |  |  |  |
| Fuselage Jig, 37                     | Master Contour Template, 9          |  |  |  |  |
| Structures, 23                       | Template, 10, 33                    |  |  |  |  |
| Gage Template, 15                    | Template Development, 33            |  |  |  |  |
| Galvanized Iron, 268                 |                                     |  |  |  |  |
| Geometrical Construction, 69         | Mathematical Development, 111       |  |  |  |  |
| Glossary, 267                        | Mathematics, 54                     |  |  |  |  |
| Goggles, 264                         | Measuring Rules, 67                 |  |  |  |  |
|                                      | Micrometer, 142                     |  |  |  |  |
| Greek Alphabet, 302                  | Mock-Up, 36                         |  |  |  |  |
| Grinding Drill, 138                  | Template, 39, 42                    |  |  |  |  |
| Height Gage, 141                     | Mold Line, 29, 113, 269             |  |  |  |  |
| Hexagon, 76                          | In Flat Pattern, 128                |  |  |  |  |
| Hidden Lines, 93                     | Monocoque Type Structure, 23        |  |  |  |  |
|                                      | Makanal Riaman Grant And Control    |  |  |  |  |
| Hints for Template Maker, 151        | National Aircraft Standards Commit- |  |  |  |  |
| Honeycomb Templates, 10              | tee, 148                            |  |  |  |  |
| Hydraulic (Hydro) Press, 47, 48, 269 | Natural Trigonometric Functions of  |  |  |  |  |
| Hypotenuse, 57                       | Angles, 280-302                     |  |  |  |  |

INDEX

305

Nibbler Block, 15 Safety Precautions, 264 Machine, 269 Scales, 67 Template, 15 Scratch Coat, 40, 43, 270 Scribe, 143, 145, 270 Obtuse Angle, 269 Scrieve Board, 25, 29, 270 Offsets, 30, 269 Layout, 32 Opposite Hand, 149 Scroll Shear, 142 Orientation, 20 Secant, 57 Orthographic Projections, 81 Section Lining, 96 Outside Mold Line, 114, 269 Views, 95 Over-all Dimensions, 99 Sectional Views, 97 Set-back, 30, 130 Pantograph, 270 Chart, 276, 277 Parallel Line Construction, 69 Part Contour Template, 10 Shading, 97 Pattern, 270 Shaper Template, 15 Pein, 270 Sharpening Drill, 139 Shears, 142 Pencils, Drawing, 65 Sheet Metal, 270 Pentagon, 76 Shock Absorber, 23 Perpendicular Bisector, 70 Shrink Template, 15 To End of Line, 72 by Photo Process, 262 Photographic Processes, 253 Side Adjacent, 56 Pilot Hole, 140, 270 Opposite, 56 Sizes, 12 Sine, 56 Pin Holes, 9, 29, 270 Plaster Mock-up, 36, 44, 270 Sketching Technique, 104 Skin, 270 Power Shear, 147 Slide Rule, 141 Practical Hints, 151 Snips, 142 Problem Index, 153 Spar Locations, 22 Progressive Dimensions, 100 Spline, 69, 144, 270 Proof Line, 28 Protractor, 144, 145 Spring Back, 132, 270 Drafting, 67 Squaring Shear, 146 Punch, 270 Stabilizer, 22 Press. 45 Station Lines, 27 Locations, 31 Qualifications (Template Maker), 7 Steric Acid, 270 Quick Reading Rule, 67 Stressed Skin, 23 Radial Drill, 270 Stringer, 270 Template, 13 Struts, 23 Radius Tabs, 29 Sub-Assembly Drawing, 91 Regular Polygons, 75 Sub-Installation Drawing, 91 Relief Radius, 270 Surface Plate, 140 Rib Locations, 22 Right Angle, 270 Tab, 23 Triangles, 56 Tangent, 57 Height, 31, 271 Router Template, 15 Tapered Drill Shank, 138 Rudder, 22

Template Defined, 7

Material, 7, 17

Nomenclature, 28

Terne Plate, 7, 271

Theory of Development, 122

Third Angle Method, 81

Title Blocks, 84

Tool Design Drawing, 92

Transfer Punch, 271

Trial Fillets, 43, 271

Triangles

Drafting, 66

Metal, 144

Trigonometry, 55

Formulas, 57

Tables, 280-302

Use of Tables, 58

True Dimensions, 105

Length of Lines, 106

T-Square, 65

Tumble Home, 27, 30

Typical Aircraft Parts, 149

Waterlines, 27, 28, 31

Whitney Punch, 146

Wrought Alloys, 50

X-Distance, 117

Y-Distance, 121