Name
Oluwatomilayo Adegbite
Nikolas Maier

Student Number 500569283 500461990

Show that if $|V^*(s) - V_{apr}(s)| \le \epsilon$ for every state s, then $\frac{max}{s \in S} \{L^{\pi'}(s)\} \le \frac{2\gamma \epsilon}{1-\gamma}$

Let s be a state of maximum difference between $V^*(s) - V_{apr}(s)$, by some optimal action being different from the action proscribed by π .

Optimal Action y vs policy Action x

$$V^*(s) = R_s^y + \gamma \sum_{s' \in S} P_{ss'}^y V^*(s')$$
 vs

$$V_{apr}(s) = R_s^x + \gamma \sum_{s' \in S} P_{ss'}^x V^{\pi'}(s')$$

If we followed the non-optimal policy π but behave according to the optimal policy following that we would have a difference of $\gamma(V^*(s) - V_{apr}(s))$.

For ease of use, we shall say $\Delta = V^*(s) - V_{apr}(s)$, so the above will be $(\gamma * \Delta)$, which is worse than our V^* by $(\Delta + \gamma * \Delta)$ ie the difference between V^* and $V_{apr}(s)$ is the normal discounted value (γ) vs the normal discounted value times the less optimal option $(\gamma * \Delta)$.

Given that between the two actions we know the optimal action is y, the following is still true.

$$(\Delta + \gamma^* \Delta) \le (R_s^y + \gamma \sum_{s' \in S} P_{ss'}^y V^*(s')) - (R_s^x + \gamma \sum_{s' \in S} P_{ss'}^x V^*(s'))$$

We also need to remember that since action x looked better according to $V_{apr}(s)$ that we also have the following:

$$0 \ge (R_s^y + \gamma \sum_{s' \in S} P_{ss'}^y V_{apr}(s')) - (R_s^x + \gamma \sum_{s' \in S} P_{ss'}^x V_{apr}(s'))$$

When we consider these two equations and subtract them we cancel out a bunch of them

$$(\Delta + \gamma^* \Delta) \leq (R_s^y + \gamma \sum_{s' \in S} P_{ss'}^y V^*(s')) - (R_s^x + \gamma \sum_{s' \in S} P_{ss'}^x V^*(s')) - (R_s^y + \gamma \sum_{s' \in S} P_{ss'}^y V_{apr}(s')) - (R_s^x + \gamma \sum_{s' \in S} P_{ss'}^x V_{apr}(s'))$$

$$(\Delta + \gamma^* \Delta) \leq (R_s^y + \gamma \sum_{s' \in S} P_{ss'}^y V^*(s')) - (R_s^x + \gamma \sum_{s' \in S} P_{ss'}^x V^*(s')) - (R_s^y + \gamma \sum_{s' \in S} P_{ss'}^x V_{apr}(s')) - (R_s^y + \gamma \sum_{s' \in S} P_{ss'}^x V_{apr}(s')) - (R_s^y + \gamma \sum_{s' \in S} P_{ss'}^x V_{apr}(s')) - (R_s^y + \gamma \sum_{s' \in S} P_{ss'}^x V_{apr}(s'))$$

Keeping in mind that we know $V^*(s) - V_{apr}(s) \le \epsilon$

$$(\Delta + \gamma^* \Delta) \le \gamma \sum_{s' \in S} P^{y}_{ss'} \epsilon + \gamma \sum_{s' \in S} P^{x}_{ss'} \epsilon$$

The RHS can't be bigger than 2 * γ * ϵ

$$\Delta(1 + \gamma) \leq 2 * \gamma * \epsilon$$

$$\Delta \! \leq (2 \ ^*\!\gamma^* \epsilon) \! / \! (1 + \gamma)$$