Introduction to LATEX

Author's Name

September 20, 2017

Abstract

The abstract text goes here.

1 Velocity Field & Related Variables

The velocity field is defined

$$\alpha = \sqrt{\beta} \tag{1}$$

1.1 Subsection Heading Here

Write your subsection text here. here is a much longer line of text to see if I can understand where the margins land.

Expression	Code	Variable	Expression	Code	Variable	Expression	Code	Variable
v_r	1	v_r	$\frac{\partial v_{\phi}}{\partial \theta}$	21	$dv_{phi}dt$	$\frac{1}{r} \frac{\partial v_r'}{\partial \theta}$	41	dvp_theta_dtr
$v_{m{ heta}}$	2	v_{-} theta	$\frac{\partial v_r'}{\partial \theta}$	22	dvp_r_dt	$\frac{1}{r} \frac{\partial v_r'}{\partial \theta}$	42	$\mathrm{dvp_phi_dtr}$
$v_{oldsymbol{\phi}}$	3	v_phi	$\frac{\partial v_{\theta}'}{\partial \theta}$	23	dvp_theta_dt	$\frac{1}{r} \frac{\partial \overline{v_r}}{\partial \theta}$	43	$\mathrm{dvm}_{-}\mathrm{r}_{-}\mathrm{dtr}$
v_r'	4	vp_r	$\frac{\partial v'_{\phi}}{\partial \theta}$	24	dvp_phi_dt	$\frac{1}{r} \frac{\partial \overline{v_{\theta}}}{\partial \theta}$	44	dvm_theta_dtr
$v_{m{ heta}}'$	5	vp_theta	$\frac{\partial \overline{v_r}}{\partial \theta}$	25	dvm_r_dt	$\frac{1}{r} \frac{\partial \overline{v_{\phi}}}{\partial \theta}$	45	dvm_phi_dtr
v_ϕ'	6	vp_phi	$\frac{\partial \overline{v_{m{ heta}}}}{\partial heta}$	26	dvm_theta_dt	$\frac{1}{r \sin \theta} \frac{\partial v_r}{\partial \phi}$	46	dv_r_dprs
$\overline{v_r}$	7	$ m vm_r$	$\frac{\partial \overline{v_{\phi}}}{\partial \theta}$	27	dvm_phi_dt	$\frac{1}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi}$	47	dv_theta_dprs
$\overline{v_{m{ heta}}}$	8	vm_theta	$\frac{\partial v_r}{\partial \phi}$	28	dv_r_dp	$\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}$	48	dv_phi_dprs
$\overline{v_{oldsymbol{\phi}}}$	9	vm_phi	$\frac{\partial v_{m{ heta}}}{\partial \phi}$	29	$dv_{theta_{dp}}$	$\frac{1}{r \sin \theta} \frac{\partial v_r'}{\partial \phi}$	49	dvp_r_dprs
$\frac{\partial v_r}{\partial r}$	10	dv_r_dr	$\frac{\partial v_{\phi}}{\partial \phi}$	30	dv_phi_dp	$\frac{1}{r \sin \theta} \frac{\partial v_{\theta}'}{\partial \phi}$	50	dvp_theta_dprs
$\frac{\partial v_{\theta}}{\partial r}$	11	$dv_{-}theta_{-}dr$	$\frac{\partial v_r'}{\partial \phi}$	31	dvp_r_dp	$\frac{1}{r \sin \theta} \frac{\partial v_{\phi}'}{\partial \phi}$	51	dvp_phi_dprs
$\frac{\partial v_\phi}{\partial r}$	12	dv_phi_dr	$\frac{\partial v_{\theta}'}{\partial \phi}$	32	dvp_theta_dp	$\frac{1}{r \sin \theta} \frac{\partial \overline{v_r}}{\partial \phi}$	52	dvm_r_dprs
$\frac{\partial v_r'}{\partial r}$	13	dvp_r_dr	$\frac{\partial v_{\phi}'}{\partial \phi}$	33	dvp_phi_dp	$\frac{1}{r \sin \theta} \frac{\partial \overline{v_{\theta}}}{\partial \phi}$	53	dvm_theta_dprs
$\frac{\partial v_{\theta}'}{\partial r}$	14	dvp_theta_dr	$\frac{\partial \overline{v_r}}{\partial \phi}$	34	dvm_r_dp	$\frac{1}{r \sin \theta} \frac{\partial \overline{v_{\phi}}}{\partial \phi}$	54	dvm_phi_dprs
$\frac{\partial v_{\phi}'}{\partial r}$	15	dvp_phi_dr	$\frac{\partial \overline{v_{m{ heta}}}}{\partial \phi}$	35	dvm_theta_dp	$\frac{\partial^2 v_r}{\partial r^2}$	55	dv_r_d2r
$\frac{\partial \overline{v_r}}{\partial r}$	16	dvm_r_dr	$rac{\partial \overline{v_\phi}}{\partial \phi}$	36	dvm_phi_dp	$\frac{\partial^2 v_{\theta}}{\partial r^2}$	56	$dv_{theta}d2r$
$\frac{\partial \overline{v_{\theta}}}{\partial r}$	17	dvm_theta_dr	$\frac{1}{r}\frac{\partial v_r}{\partial \theta}$	37	$\mathrm{dv}_{-}\mathrm{r}_{-}\mathrm{dtr}$	$\frac{\partial^2 v_{\phi}}{\partial r^2}$	57	dv_phi_d2r
$rac{\partial \overline{v_\phi}}{\partial r}$	18	dvm_phi_dr	$\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}$	38	$dv_{theta_{dtr}}$	$\frac{\partial^2 v_r'}{\partial r^2}$	58	dvp_r_d2r
$\frac{\partial v_r}{\partial \theta}$	19	$\mathrm{dv}_{-}\mathrm{r}_{-}\mathrm{dt}$	$\frac{1}{r} \frac{\partial v_{\phi}}{\partial \theta}$	39	$dv_{phi}dtr$	$\frac{\partial^2 v_{\theta}'}{\partial r^2}$	59	dvp_theta_d2r
$\frac{\partial v_{\theta}}{\partial \theta}$	20	$dv_{theta_{dt}}$	$\frac{1}{r} \frac{\partial v_r'}{\partial \theta}$	40	dvp_r_dtr	$\frac{\partial^2 v_\phi'}{\partial r^2}$	60	dvp_phi_d2r

Expression	Code	Variable	Expression	Code	Variable	Expression	Code	Variable
$\frac{\partial^2 \overline{v_r}}{\partial r^2}$	61	dvm_r_d2r	$\frac{\partial^2 \overline{v_\phi}}{\partial \phi^2}$	81	dvm_phi_d2p	$\frac{\partial^2 v_{\theta}}{\partial \theta \partial \phi}$	101	dv_theta_d2tp
$\frac{\partial^2 \overline{v_{\theta}}}{\partial r^2}$	62	dvm_theta_d2r	$\frac{\partial^2 v_r}{\partial r \partial \theta}$	82	dv_r_d2rt	$\frac{\partial^2 v_{\phi}}{\partial \theta \partial \phi}$	102	dv_phi_d2tp
$\frac{\partial^2 \overline{v_\phi}}{\partial r^2}$	63	dvm_phi_d2r	$\frac{\partial^2 v_{\theta}}{\partial r \partial \theta}$	83	$dv_{theta}d2rt$	$\frac{\partial^2 v_r'}{\partial \theta \partial \phi}$	103	dvp_r_d2tp
$\frac{\partial^2 v_r}{\partial \theta^2}$	64	dv_r_d2t	$\frac{\partial^2 v_{\phi}}{\partial r \partial \theta}$	84	dv_phi_d2rt	$\frac{\partial^2 v_{ heta}'}{\partial heta \partial \phi}$	104	dvp_theta_d2tp
$\frac{\partial^2 v_{\theta}}{\partial \theta^2}$	65	$dv_{theta}d2t$	$\frac{\partial^2 v_r'}{\partial r \partial \theta}$	85	dvp_r_d2rt	$\frac{\partial^2 v_\phi'}{\partial \theta \partial \phi}$	105	dvp_phi_d2tp
$\frac{\partial^2 v_{\phi}}{\partial \theta^2}$	66	$dv_{-}phi_{-}d2t$	$\frac{\partial^2 v_{\theta}'}{\partial r \partial \theta}$	86	dvp_theta_d2rt	$\frac{\partial^2 \overline{v_r}}{\partial \theta \partial \phi}$	106	dvm_r_d2tp
$\frac{\partial^2 v_r'}{\partial \theta^2}$	67	dvp_r_d2t	$\frac{\partial^2 v_{\phi}'}{\partial r \partial \theta}$	87	dvp_phi_d2rt	$\frac{\partial^2 \overline{v_{\theta}}}{\partial \theta \partial \phi}$	107	dvm_theta_d2tp
$\frac{\partial^2 v_{\theta}'}{\partial \theta^2}$	68	dvp_theta_d2t	$\frac{\partial^2 \overline{vr}}{\partial r \partial \theta}$	88	dvm_r_d2rt	$rac{\partial^2 \overline{v_\phi}}{\partial heta \partial \phi}$	108	dvm_phi_d2tp
$\frac{\partial^2 v'_{\phi}}{\partial \theta^2}$	69	dvp_phi_d2t	$\frac{\partial^2 \overline{v_{\theta}}}{\partial r \partial \theta}$	89	dvm_theta_d2rt			
$\frac{\partial^2 \overline{v_r}}{\partial \theta^2}$	70	dvm_r_d2t	$\frac{\partial^2 \overline{v_\phi}}{\partial r \partial \theta}$	90	dvm_phi_d2rt			
$\frac{\partial^2 \overline{v_{\theta}}}{\partial \theta^2}$	71	dvm_theta_d2t	$\frac{\partial^2 v_r}{\partial r \partial \phi}$	91	dv_r_d2rp			
$\frac{\partial^2 \overline{v_\phi}}{\partial \theta^2}$	72	dvm_phi_d2t	$\frac{\partial^2 v_{\theta}}{\partial r \partial \phi}$	92	$dv_{theta}d2rp$			
$\frac{\partial^2 v_r}{\partial \phi^2}$	73	dv_r_d2p	$\frac{\partial^2 v_\phi}{\partial r \partial \phi}$	93	dv_phi_d2rp			
$\frac{\partial^2 v_{\theta}}{\partial \phi^2}$	74	$dv_{theta}d2p$	$\frac{\partial^2 v_r'}{\partial r \partial \phi}$	94	dvp_r_d2rp			
$\frac{\partial^2 v_{\theta}}{\partial \phi^2}$ $\frac{\partial^2 v_{\phi}}{\partial \phi^2}$	75	dv_phi_d2p	$\frac{\partial^2 v_{\theta}'}{\partial r \partial \phi}$	95	dvp_theta_d2rp			
	76	dvp_r_d2p	$\frac{\partial^2 v_\phi'}{\partial r \partial \phi}$	96	dvp_phi_d2rp			
$\frac{\frac{\partial^2 v_r'}{\partial \phi^2}}{\frac{\partial^2 v_\theta'}{\partial \phi^2}}$ $\frac{\frac{\partial^2 v_\theta'}{\partial \phi^2}}{\frac{\partial^2 v_\phi'}{\partial \phi^2}}$	77	dvp_theta_d2p	$\frac{\partial^2 \overline{v_r}}{\partial r \partial \phi}$	97	dvm_r_d2rp			
$\frac{\partial^2 v_\phi'}{\partial \phi^2}$	78	dvp_phi_d2p	$\frac{\partial^2 \overline{v_{\theta}}}{\partial r \partial \phi}$	98	dvm_theta_d2rp			
$\frac{\partial^2 \overline{v_r}}{\partial \phi^2}$ $\frac{\partial^2 \overline{v_\theta}}{\partial \phi^2}$	79	dvm_r_d2p	$\frac{\partial^2 \overline{v_\phi}}{\partial r \partial \phi}$	99	dvm_phi_d2rp			
$\frac{\partial^2 \overline{v_{\theta}}}{\partial \phi^2}$	80	dvm_theta_d2p	$\frac{\partial^2 v_r}{\partial \theta \partial \phi}$	100	dv_r_d2tp			

Expression	Code	Variable	Expression	Code	Variable	Expression	Code	Variable
$\hat{ ho}v_{T}$	109	rhov_r						
$\hat{ ho}v_{m{ heta}}$	110	rhov_theta						
$\hat{ ho}v_{oldsymbol{\phi}}$	111	rhov_phi						
$\hat{ ho}v_{T}^{\prime}$	112	$\mathrm{rhovp}_{\mathtt{r}}$						
$\hat{ ho}v_{m{ heta}}^{\prime}$	113	${ m rhovp_theta}$						
$\hat{ ho}v_{\phi}^{\prime}$	114	rhovp_phi						
$\hat{ ho}\left\langle v_{r} ight angle$	115	${ m rhovm_r}$						
$\hat{ ho}\left\langle v_{r} ight angle$	116	rhovm_theta						
$\hat{ ho}\left\langle v_{r} ight angle$	117	rhovm_phi						

1.2 Mass Flux

1.3 Vorticity

2 Conclusion

Write your conclusion here.

Expression	Code	Variable	Expression	Code	Variable	Expression	Code	Variable
ω_r	118	vort_r						
$\omega_{m{ heta}}$	119	$vort_theta$						
$\omega_{m{\phi}}$	120	$\mathrm{vort}_{ ext{-}\mathrm{phi}}$						
ω_r'	121	vortp_r						
$\omega_{ heta}'$	122	$vortp_theta$						
ω_ϕ'	123	vortp_phi						
$\overline{\omega_r}$	124	${ m vortm}_{ m r}$						
$\overline{\omega_{m{ heta}}}$	125	$vortm_theta$						
$\overline{\omega_{oldsymbol{\phi}}}$	126	vortmphi						
$\omega \cdot \omega$	127	enstrophy						
$\omega'\cdot\overline{\omega}$	128	$enstrophy_pm$						
$\overline{\omega}\cdot\overline{\omega}$	129	enstrophy_mm						
$\omega' \cdot \omega'$	130	${\it enstrophy_pp}$						