Assinatura Digital em Documentos PDF (Versão Estendida)

Sandro Lemos¹, Luciano Vargas¹, Rodrigo Mansilha¹, Diego Kreutz¹

¹ Universidade Federal do Pampa (Unipampa)

{NomeSobrenome}@unipampa.edu.br

Resumo. Soluções de assinatura digital existem há mais de 20 anos, mas têm sido adotadas lentamente pela população em geral, possivelmente devido a aspectos culturais e de usabilidade. A pandemia e leis como a nº 14.063/2020, que dispõe sobre uso de assinaturas eletrônicas no Brasil, promoveram a superação de barreiras culturais, mas melhorias de usabilidade ainda persistem e se tornaram urgentes. Neste trabalho investigamos questões de usabilidade em ferramentas que viabilizam assinatura digital de documentos PDF. Como um passo nesta direção, realizamos um estudo empírico com usuários digitalmente proficientes. Os resultados indicam que ainda temos um caminho pela frente quando consideramos usabilidade no contexto de assinaturas digitais.

1. Introdução

A Lei nº 14.063/2020¹ dispõe sobre uso no Brasil de assinaturas eletrônicas (que diferem de assinaturas de próprio punho, capturadas por caneta digital ou fotocópia) para provimento de garantias quanto à integridade de dados, à autenticidade (ou integridade de fonte) e ao não-repúdio baseado essencialmente em algoritmos criptográficos (e não em análise de padrão de escrita). Conforme essa lei, as assinaturas eletrônicas podem ser classificadas em três níveis crescentes de segurança: simples, avançada e qualificada.

A assinatura eletrônica simples não requer certificado digital – a identificação é baseada exclusivamente em registros internos à entidade que mantém o sistema. Um exemplo popular de sistema de assinatura simples é o SEI², que é instanciado por diversos órgãos governamentais, como a Unipampa e o Superior Tribunal de Justiça. Exemplos comerciais de sistemas que oferecem mecanismos para assinatura eletrônica simples são o ClickSign³, DocuSign⁴ e Portal de Assinaturas⁵. Exemplos de registros internos mantidos por sistemas de assinatura simples incluem resumos criptográficos dos documentos (para permitir verificação de integridade de dados), links com tokens de autenticação via email, data, hora e IP de origem do acesso (para identificar a fonte).

As assinaturas eletrônicas avançadas e qualificadas requerem o emprego de algum tipo de certificado e verificação documental da identidade do usuário. A assinatura eletrônica avançada permite a utilização de certificados digitais emitidos por entidades independentes da ICP-Brasil, como a CertSign⁶. Já a assinatura eletrônica qualificada exige também que o certificado digital seja qualificado como ICP-Brasil⁷, isto é, seja emitido

 $^{^{\}rm I}{\rm http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2020/lei/L14063.htm}$

 $^{^2 \}verb|https://www.gov.br/economia/pt-br/acesso-a-informacao/sei|$

 $^{^3}$ https://www.clicksign.com/

⁴https://docusign.com/

⁵https://www.portaldeassinaturas.com.br/

⁶https://www.certisign.com.br

⁷ http://www.planalto.gov.br/ccivil_03/MPV/Antigas_2001/2200-2.htm#art10\%A71

por uma autoridade certificadora com raiz na ICP-Brasil. O ICP-Brasil garante que um determinado conjunto de regras técnicas (e.g., dupla verificação documental da identidade do usuário) sejam rigidamente cumpridas, porém implica em maior custo e compromissos administrativos. Exemplos de serviços que oferecem recursos para assinaturas digitais utilizando certificados ICP-Brasil é o Assinador⁸ (da plataforma Gov.br).

Na área de segurança computacional, a assinatura qualificada e a assinatura avançada são classificadas como *assinatura digital*, isto é, realizadas através de um certificado digital. Apesar de a assinatura digital oferecer vantagens significativas em relação à assinatura simples (e à assinatura digitalizada), e estar no mercado há mais de 15 anos, sua adoção ainda é restrita⁹. Acreditamos que a adoção da assinatura digital é limitada por diversos fatores sociais incluindo aspectos econômicos, culturais e políticos, e também tecnológicos, como *usabilidade*. Para dar um exemplo prático, que observamos empiricamente, em 2010 foi implantado o uso de assinatura digital qualificada na Unipampa. Na época, o processo de emissão dos tokens, contendo os certificados digitais, era exclusivamente de forma presencial, ou seja, além dos custos de emissão dos certificados, ainda havia a questão de o processo ser presencial. Um segundo aspecto observado durante os anos de implantação e utilização das assinaturas digitais na instituição estava relacionado às questões culturais (e.g., mudança de paradigma do tradicional papel para o digital) e dificuldades técnicas de utilização dos tokens (e.g., drivers funcionavam bem em algumas versões do Windows) e ferramentas de assinatura digital, que eram escassas.

Do ponto de vista tecnológico, a usabilidade dos sistemas de emissão de certificados digitais tem melhorado, passando de um processo que exigia procedimentos presenciais para algo integralmente online. No caso do ICPEdu, por exemplo, um usuário da Federação CAFé (e.g., aluno ou servidor de uma universidade) pode acessar o portal ICPEdu e, através de suas credenciais institucionais, gerar o certificado digital em poucos minutos. Isso simplifica o processo e melhora a usabilidade. Entretanto, no caso de certificados ICP-Brasil, apesar de termos evoluído de um processo presencial para um online, ainda há aspectos a serem observados com relação a emissão dos certificados. Atualmente, as autoridades certificadoras oferecem um grande leque de opções de certificados com diferentes atributos técnicos e compromissos de custo/benefício. Sabe-se que a disponibilização excessiva de opções é, em geral, desvantajoso pois a etapa decisória atrasa o processo como um todo, quando não o cancela. Por exemplo, a CertSign¹⁰ oferece atualmente 20 opções de certificados digitais, que podem suscitar dúvidas como: qual é a opção mais segura? Qual opção oferece melhor relação custo/benefício para a minha tarefa? Qual alternativa oferece maior compatibilidade com serviços como a declaração de imposto da Receita Federal?

Algumas entidades certificadoras têm procurado reduzir o número de opções, restringindo certas alternativas à determinados mercados. Por exemplo, a Serasa Experian¹¹ oferece apenas quatro opções, que são mais simples e mais facilmente diferenciáveis de certificados para os usuários finais que as 20 opções do CertSign. Apesar de aperfeiçoamentos como esses, acreditamos que ainda há um longo caminho a ser percorrido até

 $^{^{8}}$ http://assinador.iti.br

⁹https://blog.qualisign.com.br/wp-content/uploads/2020/08/Revista-Assinatura-Digital-2.a-edicao-2017-v2.pdf

¹⁰ https://loja.certisign.com.br

¹¹https://serasa.certificadodigital.com.br/

chegarmos em situação de ampla adoção de assinatura digital.

O objetivo geral deste trabalho é caracterizar preliminarmente fatores tecnológicos que eventualmente possam estar atrasando a expansão da adoção de assinaturas digitais para elencar oportunidades de melhorias rumo à ampla adoção de assinatura digital. Especificamente, este trabalho apresenta as seguintes contribuições: (a) uma análise comparativa de 6 ferramentas que permitem a assinatura e verificação de assinaturas; e (b) um estudo baseado em questionário sobre impressões dos usuários sobre o processo de assinatura digital.

O restante deste trabalho está organizado como segue. Na Seção 3 introduzimos a metodologia e os resultados do estudo realizado. Por fim, na Seção 4 apresentamos as considerações finais e perspectivas de trabalhos futuros.

2. Assinaturas Eletrônicas Online

Observações empíricas dos autores sugerem que atualmente o tipo de assinaturas mais comumente utilizada é a assinatura eletrônica simples. Essa classe é amplamente suportada por ferramentas, plataformas online e aplicativos para dispositivos móveis. Por exemplo, nessa classe se enquadra o SEI, que é amplamente utilizado no serviço público brasileiro, em esferas governamentais municipal, estadual e federal. Plataformas online de assinatura de contratos, como ClickSign, DocuSign, Portal de Assinaturas, que são utilizadas por fundações de apoio, agências de fomento e empresas privadas, também são utilizadas majoritariamente para assinaturas simples. Um dos propulsores das assinaturas simples é o fato de elas não dependerem de certificados digitais, o que agilizar e simplifica a utilização para os usuários finais.

Recentemente, a utilização de assinaturas eletrônicas avançadas vem ganhando popularidade. Isso se deve a iniciativas como a ICPEdu, que disponibiliza certificados digitais para toda a comunidade de usuários das instituições vinculadas à RNP. Entretanto, a utilização dos certificados ainda é bastante tímida, com exceção de algumas instituições, como a UFSC, que disponibilizam plataformas específicas para assinatura de documentos com certificados digitais ICPEdu. A plataforma Assina@UFSC12 utiliza o conceito de certificados em nuvem, o que simplifica e agiliza a utilização de certificados digitais para os usuários finais. Ao invés de guardar o certificado na sua máquina ou dispositivo específico, o usuário guarda o certificado na própria plataforma de assinatura digital de documentos. Isso resolve algumas das questões de usabilidade da utilização de certificados e assinaturas digitais. O usuário precisa apenas carregar um documento qualquer (e.g., DOCX), que é convertido em PDF pela plataforma para a assinatura digital. Através de credenciais simples (e.g., usuário e senha) ou dados da sessão do navegador, o usuário consegue assinar digitalmente um documento com um único clique. A plataforma permite ainda o compartilhamento do documento para múltiplas assinaturas. Além disso, permite também a verificação da autenticidade das assinaturas.

O portal Assinador da plataforma Gov.br é uma instância do Assina@UFSC. Diferentemente do Assina@UFSC, o portal do Assinador trabalha explicitamente com os três níveis de qualificação das assinaturas, isto é, Bronze (assinaturas simples), Prata (assinaturas avançadas) e Ouro (assinaturas qualificadas). Para o nível Bronze, o usuário

¹²https://assina.ufsc.br

precisa apenas realizar a verificação em um sistema acreditado, como o SIGEPE¹³ (se for funcionário público federal). Entretanto, para utilizar o Assinador, o usuário precisa no mínimo do nível Prata, que pode ser atingido a partir de uma verificação de identidade através de um banco (e.g., Banco do Brasil¹⁴, CEF¹⁵). Bancos são considerados instituições acreditadas para verificação de identidade dos usuários da plataforma para o nível Prata. Para o nível Ouro, o usuário é obrigado e realizar mais um nível de verificação da identidade (e.g., via biometria digital do TSE¹⁶). Na administração pública federal, cada nível de assinatura é admitida para diferentes hipóteses, ou tipos de ações e documentos, conforme detalhado pelo DECRETO Nº 10.543, DE 13 DE NOVEMBRO DE 2020¹⁷. Apesar de o Assinador utilizar o conceito de certificado em nuvem como forma de melhorar a usabilidade de assinaturas digitais, o processo de acesso e validação do cadastro pode ser considerado burocrático para os usuários finais. Cada usuário precisa passar pelos diferentes níveis de validação da plataforma até atingir o nível Ouro, que é utilizado na plataforma para emissão de certificados digitais ICP-Brasil e consequente realização de assinaturas eletrônicas qualificadas.

Apesar de ambas as plataformas online ajudarem na usabilidade da utilização de assinaturas digitais por manterem os certificados em nuvem, elas violam o conceito de segurança centrada no usuário – um dos pilares da ICP. Um certificado digital é pessoal, como um cartão de banco ou um documento de identificação. O fato de os certificados estarem armazenados em nuvem traz riscos de segurança maiores. O que acontece se a nuvem de certificados digitais for comprometida? O que acontece se certificados digitais vazarem da nuvem e o vazamento não for detectado rapidamente? Os atacantes irão poder assinar documentos e causar prejuízos às pessoas? Quem será responsabilizado, uma vez que os certificados são armazenados e gerenciados centralmente?

A plataforma ICPEdu da RNP¹⁸ simplifica a emissão de certificados digitais para pessoas físicas, porém apresenta fragilidades de segurança. Por um lado, o sistema é simples e ágil: para emitir um certificado digital, o usuário necessita ter apenas credenciais válidas em uma das instituições vinculadas a RNP. Com as credenciais (i.e., usuário e senha), o usuário acessa o portal de emissão de certificados e, rapidamente, emite ou revoga um certificado. Por outro lado, o uso de fator único de autenticação é atualmente considerado uma ameaça alta à segurança pois o roubo de credenciais é frequente. O risco que se corre é um agente mal intencionado furtar as credenciais de um usuário legítimo e emitir um certificado digital e assinar documentos em nome dele. Além do efeito negativo local para o usuário atacado, ações como essa podem levar ao descrédito da solução e gerar problemas em nível global.

Atualmente, o uso de apenas um único fator de autenticação, como credenciais tradicionais (i.e., usuário e senha), é amplamente desaconselhado por especialistas de segurança há vários anos. Na prática, a quantidade e a sofisticação de incidentes de segurança que levam a vazamentos de credenciais tradicionais (i.e., login e senha) tem aumento muito nos últimos anos [de Castro et al., 2020], chegando a números alar-

¹³https://servidor.sigepe.planejamento.gov.br/

¹⁴https://www.bb.com.br

¹⁵https://www.caixa.gov.br

¹⁶https://www.tse.jus.br

 $^{^{17} \}verb|http://www.planalto.gov.br/ccivil_03/_Ato2019-2022/2020/Decreto/D10543.htm|$

¹⁸https://www.rnp.br

mantes (e.g., bilhões) [Bisso et al., 2020]. Sistemas considerados robustos implementam múltiplos fatores de autenticação, além de mecanismos complementares, como *capt-chas*[Yan and El Ahmad, 2008] e *hashcash*[Back, 2002]. Esses mecanismos são implementados a vários anos por serviços de e-mail e diversos sistemas online, por exemplo. Estudos da Google e Microsoft indicam que um segundo fator de autenticação reduz a probabilidade de incidentes de segurança, relacionados ao acesso indevido, a até 99%.

É importante observar que o risco é uma função do produto da probabilidade de uma ameaça ser concretizada pelo impacto do ataque. Portanto, na medida em que as soluções se popularizem, tende a ampliar o impacto de ataque e, consequentemente o risco de segurança. Nesse sentido, acreditamos que a ausência de relatos graves e notórios sobre ataques a sistemas de assinatura eletrônica possa ser explicada pelo baixo potencial de impactos econômico e político, considerando sua popularidade. Entretanto, na medida que plataformas como ICPEdu se popularizem, seja por fatores políticos ou pessoais, aumentará também a atratividade para atacantes que, mantidas as condições atuais, poderão facilmente obter credenciais de usuários e, consequentemente, a certificados digitais dos usuários.

Outro aspecto relevante é a consciência dos usuários em relação aos riscos associados às suas credenciais. Acreditamos que a maioria dos usuários não tem ciência que suas credenciais permitem emitir e utilizar certificados digitais ICPEdu. Isso leva a má avaliação de risco e também tende a aumentar significativamente o tempo até detecção de problemas – até o usuário perceber que um agente malicioso está utilizando um certificado digital em seu nome, pode levar um bom tempo. Enquanto isso, o agente malicioso poderá assinar documentos e acessar sistemas em seu nome, prejudicando o usuário em particular e a confiança no sistema como um todo.

Para mitigar ameaças e riscos de segurança são necessários mecanismos de revocação. Nessa ceara, um problema identificado empiricamente é que as atuais ferramentas de assinatura digital não observam listas de revocação de certificados. Observamos, por exemplo, que um usuário pode utilizar múltiplos certificados digitais ICPEdu para assinatura digital de documentos, apesar de a plataforma ICPEdu permitir apenas um único certificado ativo. Todas as assinaturas digitais, realizadas com certificados revogados ou não, são validadas igualmente pelas ferramentas de assinatura digital, como os leitores e editores de PDF.

Outro aspecto importante a ser considerado é local de armazenamento do certificado. Soluções como a Assinador armazenam e gerenciam os certificados centralmente para melhorar a usabilidade dos usuários. O problema essencialmente é que isso viola o princípio básico do certificado digital de segurança centrada no usuário. Os certificados digitais foram concebidos para ficarem em posse do usuário final, pois, afinal de contas, possibilitam a assinatura digital de documentos com validade jurídica. O que o Assinador faz é salvaguardar a caneta e a mão responsável pela assinatura digital. O usuário (potencialmente inconsciente sobre riscos e compromissos) é obrigado a colocar um grande nível de confiança no Assinador, que se torna um ponto central de falha – uma vez comprometido, pode causar problemas para todos os seus usuários e para o sistema de assinatura digital em geral. Além disso, o Assinador não supera completamente as barreiras de usabilidade. Para utilizar a solução, o usuário é obrigado a passar por uma quantidade grande de validações, as quais são um grande desmotivador para a utilização

da plataforma em primeiro lugar. O processo robusto (apesar de burocrático) de acesso a plataforma e verificação da identidade de usuário é muito superior ao da plataforma IC-PEdu. Por outro lado, apresenta uma vulnerabilidade, um risco de segurança elevado, no armazenamento e na gestão da utilização dos certificados digitais.

3. Assinatura Digital Centrada no Usuário

Na sequência, apresentamos um levantamento de dados e discussões acerca de algumas das principais ferramentas que permitem assinaturas digitais centradas no usuário, isto é, onde o certificado digital fica exclusivamente em posse do usuário e não armazenado e gerenciado em uma nuvem, como é o caso do Assinador e do Assina@UFSC, por exemplo. Nosso objetivo é identificar questões de usabilidade e limitações técnicas que podem levar a novos *insights* para a construção de um ecossistema de ferramentas mais amigáveis e robustas para assinatura digital de documentos PDF.

3.1. Metodologia

A nossa primeira avaliação de usabilidade das ferramentas para assinatura digital de documentos PDF foi dividida em duas etapas. Na primeira etapa, realizamos um estudo exploratório das ferramentas que permitem a realização de assinaturas digitais a partir de certificados ICPEdu.

Com a participação dos co-autores do trabalho e mais de 15 estudantes da disciplina de Tópicos em Segurança de Sistemas e da Informação dos cursos de Ciência da Computação e Engenharia de Software da Unipampa, elencamos 6 (seis) ferramentas voltadas para computador pessoal: Okular, Wondershare PDFElement, Foxit Reader, PDF Xchange, Adobe Acrobat e Libre Office.

Na segunda etapa, organizamos um teste do tipo validação/verificação através de tarefas [Rubin et al., 2011] e uma avaliação participativa [Muller et al., 1997, Melo et al., 2020]. A avaliação foi realizada com um grupo de usuários da Unipampa, incluindo alunos dos cursos de Ciência da Computação e Engenharia de Software, analistas e técnicos de tecnologia da informação e auxiliares administrativos da área de tecnologia.

O objetivo da avaliação foi observar questões de usabilidade sobre (a) a geração de certificados digitais ICPEdu Pessoal, (b) a utilização das ferramentas previamente selecionadas para assinatura digital e (c) a verificação das assinaturas digitais. Durante a avaliação, procuramos observar de forma empírica alguns dos princípios de usabilidade [Nielsen, 1994] como: (a) facilidade de aprendizado através da observação de quanto tempo e esforço foi necessário para gerar o certificado e assinar digitalmente um documento PDF; (b) eficiência na assinatura e na verificação de assinaturas em documentos PDF; (c) satisfação do usuário observando a experiência de uso, identificando o quão difícil foi gerar e usar o certificado em determinada ferramenta; e (d) segurança de uso no sentido dos recursos oferecidos pelos sistemas e da percepção do usuário sobre o processo (e.g., emissão do certificado digital).

Inicialmente, estruturamos a avaliação em 11 perguntas¹⁹ envolvendo duas tarefas, a geração do certificado ICPEdu e a utilização do certificado para assinar um documento. Para cada tarefa, relacionamos diferentes questões para entender a percepção do usuário

¹⁹Formulário disponível online em https://bit.ly/3AoX1ah.

sobre cada um dos processos. As questões foram aplicadas de forma online e assíncrona, com e-mail de instruções. Para cada participante, foram selecionadas duas ferramentas para avaliação.

Num segundo momento, realizamos uma chamada síncrona com os participantes do questionário, para fazer a analise colaborativa e coletar impressões, obter *feedback* adicional e discutir os resultados, bem como compreender questões específicas de percepção (e.g., sobre a segurança do processo de emissão dos certificados).

Durante o momento síncrono, também aplicamos o SUS (*System Usability Scale*) por ser um questionário simples, de rápida aplicação, e com boa confiabilidade [Bangor et al., 2008, Kortum and Bangor, 2013]. O SUS é um instrumento de pesquisa, desenvolvido por [Brooke et al., 1996], que contém dez questões em escala Linkert²⁰ que visam medir a usabilidade de produtos, avaliando a satisfação do usuário em relação ao mesmo. Utilizamos a versão em português proposta por [Martins et al., 2015] substituindo a palavra produto por sistema, tornando possível uma comparação com os resultado do questionário que aplicamos anteriormente.

3.2. Resultados

Ao total, obtivemos respostas de 18 participantes. A proficiência digital dos respondentes foi alta, com média de 4,5 (de 5) pontos. A maioria dos participantes (79%) afirmou que sabe diferenciar entre assinatura simples e qualificada. Além disso, 90% dos participantes informou que já tinha assinado digitalmente algum documento. *Com base nisso, concluímos que o nível de conhecimento sobre o tema do grupo entrevistado pode ser caracterizado entre intermediário e avançado.*

Na emissão do certificado ICPEdu, primeira tarefa, perguntamos quanto tempo o usuário gastou no processo. Os resultados são apresentados na Figura 1.

Figura 1. Tempo para criar o certificado

Podemos observar que 75% dos participantes levou 10 minutos ou menos para emitir um certificado ICPEdu. Entretanto, é interessante observar que 25% necessitou mais de 10 minutos ou não conseguiu emitir o certificado (e.g., problemas para identificar

²⁰https://psycnet.apa.org/record/1933-01885-001.

a instituição ou credenciais). Acreditamos que esse seja um dado preocupante em termos de usabilidade, especialmente considerando que trata-se de um grupo de pessoas com alta proficiência digital.

O nível de dificuldade na geração do certificado foi considerado entre fácil a muito fácil pelos entrevistados. Combinado com a análise colaborativa síncrona, realizada após a aplicação do formulário, a maioria dos participantes consideram que o processo de geração do certificado no site do ICP-Edu Pessoal²¹ não apresenta dificuldades técnicas.

Com relação às ferramentas de assinatura de PDF, os entrevistados informaram que não encontraram dificuldades técnicas na instalação. Entretanto, na segunda tarefa, que consistiu na utilização do certificado para assinar digitalmente um documento PDF, um percentual significativo (43%, como pode ser visto na Figura 2), levou mais de 20 minutos para assinar o documento ou não conseguiu assinar. Corroborando, metade dos respondentes informou que teve que recorrer a manuais das ferramentas para assinar digitalmente o documento. Considerando que os participantes são digitalmente proficientes, podemos certamente inferir que as ferramentas ainda pecam em termos de usabilidade. Usuários leigos, acostumados a aplicativos de dispositivos móveis que não necessitam de manuais, certamente serão desestimulados a utilizar ferramentas pouco intuitivas como essas. Acreditamos que as ferramentas ainda precisam evoluir em termos de usabilidade de forma a impulsionar o ecossistema das assinaturas digitais.

Figura 2. Tempo para assinar o PDF

Para o experimento com SUS, realizado de forma síncrona, tivemos 9 participantes. A mediana para cada uma das dez perguntas ficou em: 4, 3, 3, 1, 2, 2, 2, 3, 3, 2. Isto resulta em um índice SUS de 62,5 (somatório da mediana * 2,5). Analisando a mediana dos resultado SUS de cada respondente temos um índice de 57,5. Segunda a classificação de usabilidade sugerida por [Bangor et al., 2009] temos um boa usabilidade para um grupo de usuários digitalmente proficientes, que quando comparada com o resultados do questionário é bastante compatível.

Considerando os participantes da pesquisa, realizamos também um terceiro experimento, utilizando 4 arquivos assinados digitalmente, entre os quais 2 dos arquivos estavam assinados com certificados ICPEdu revogados. Neste experimento observamos

²¹https://pessoal.icpedu.rnp.br

que nenhuma das ferramentas auxiliou os participantes a identificar que dois dos documentos estavam assinados com certificados revogados. Embora a amostra seja pequena, acreditamos que o resultado seja relevante considerando a importância dessa funcionalidade para o ecossistema de assinaturas eletrônicas avançadas ou qualificadas. Isso indica há desafios e oportunidades de pesquisa e desenvolvimento a serem explorados nesse aspecto.

4. Considerações Finais

Os resultados do nosso levantamento permitem concluir que ainda há diversas oportunidades de melhoria em ferramentas que permitem assinatura digital de documentos PDF, incluindo Okular, Wondershare PDFElement, Foxit Reader, PDF Xchange, Adobe Acrobat e Libre Office.

Com base nos dados levantados, concluímos que nenhuma dessas ferramentas é suficientemente intuitiva a ponto de apresentar uma boa usabilidade para usuários que não sejam digitalmente proficientes.

Ferramentas como a PDF Xchange se destacam das demais, entretanto, são comerciais e funcionam exclusivamente em ambientes Windows. As opções em ambientes Linux são limitadas, como o Okular, versão que suporta assinaturas digitais, está disponível, hoje, apenas em algumas distribuições, e o Libre Office utiliza o Draw para assinar, ferramenta pouco conhecida, além disso a importação dos certificados exigem instalação de software adicional que dificultam para o usuário digitalmente pouco fluente.

Como trabalhos futuros vislumbramos: (a) ampliar a quantidade e diversidade do público entrevistado; (b) analisar em profundidade plataformas online como o Assina@UFSC e o Assinador Gov.br; (c) investigar aplicativos para dispositivos móveis, cuja grande maioria informa a finalidade assinatura digital no próprio nome, entretanto, na verdade, oferecem majoritariamente apenas a opção de assinaturas digitalizadas. Aplicativos de assinatura digital, que utilizem certificados digitais, podem ser uma das alternativas para melhorar questões de usabilidade, simplificando a emissão, armazenamento e utilização de certificados digitais.

Referências

- Back, A. (2002). Hashcash-a denial of service counter-measure.
- Bangor, A., Kortum, P., and Miller, J. (2009). Determining what individual sus scores mean: Adding an adjective rating scale. *Journal of usability studies*, 4(3):114–123.
- Bangor, A., Kortum, P. T., and Miller, J. T. (2008). An empirical evaluation of the system usability scale. *Intl. Journal of Human–Computer Interaction*, 24(6):574–594.
- Bisso, R., Kreutz, D., Rodrigues, G., and Paz, G. (2020). Vazamentos de dados: Histórico, impacto socioeconômico e as novas leis de proteção de dados. *Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação*, 3(1).
- Brooke, J. et al. (1996). Sus-a quick and dirty usability scale. *Usability evaluation in industry*, 189(194):4–7.
- de Castro, A., Quirino, F., Vogt, F., Chervinski, J., Kreutz, D., and Viegas, P. (2020). Os meus dados de fato vazaram? uma análise de serviços que monitoram vazamentos de

- dados na internet. Revista Eletrônica Argentina-Brasil de Tecnologias da Informação e da Comunicação, 3(1).
- Kortum, P. T. and Bangor, A. (2013). Usability ratings for everyday products measured with the system usability scale. *International Journal of Human-Computer Interaction*, 29(2):67–76.
- Martins, A. I., Rosa, A. F., Queirós, A., Silva, A., and Rocha, N. P. (2015). European portuguese validation of the system usability scale (sus). *Procedia Computer Science*, 67:293–300.
- Melo, A. M., Crespo, Í. M., Medeiros, G. C., and de Oliveira, A. B. (2020). Estratégias remotas à avaliação de interfaces de usuário. In *Anais da IV Escola Regional de Engenharia de Software*, pages 245–254. SBC.
- Muller, M. J., Haslwanter, J. H., and Dayton, T. (1997). Participatory practices in the software lifecycle. In *Handbook of human-computer interaction*, pages 255–297. Elsevier.
- Nielsen, J. (1994). Usability engineering. Morgan Kaufmann.
- Rubin, J., Chisnell, D., and Spool, J. (2011). *Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests*. Wiley.
- Yan, J. and El Ahmad, A. S. (2008). Usability of captchas or usability issues in captcha design. In *Proceedings of the 4th symposium on Usable privacy and security*, pages 44–52.