Gestion de flux dans le réseau TD n $^{\circ}\,6$

Modélisation mathématique

Q4

Sibylle Roux

Juliette Arazo Tanguy Thomas Nicolas Le Gallo

12 décembre 2017

Table des matières

1	Etude de la file $M/M/1$					
	1.1	Conce	ption d'une représentation informatique	3		
	1.2					
			3			
	1.3		ation de trajectoires	4		
		1.3.1	Simulation de l'évolution d'un file d'attente	4		
		1.3.2	Distribution statistiques de la taille de la file d'attente	4		
		1.3.3	Temps de service supérieur en moyenne aux temps inter-			
			arrivées	5		
		1.3.4	Temps de service inférieur en moyenne aux temps inter-			
			arrivées	6		
		1.3.5	Temps de service égaux en moyenne aux temps inter-arrivées	7		
2	Etude de la file à 3 serveurs					
	2.1	Simula	ation de stratégie circulaire	8		
	2.1	Simula 2.1.1		8		
	2.1		Etude numérique du temps de traversée du système pour une requête	8		
	2.1		Etude numérique du temps de traversée du système pour	8		
	2.1	2.1.1	Etude numérique du temps de traversée du système pour une requête	8 8 8		
	2.1	2.1.1 2.1.2 2.1.3	Etude numérique du temps de traversée du système pour une requête	8 8 8 8		
		2.1.1 2.1.2 2.1.3	Etude numérique du temps de traversée du système pour une requête	8 8 8 8		
		2.1.1 2.1.2 2.1.3 Simula	Etude numérique du temps de traversée du système pour une requête	8 8 8 8 8		
		2.1.1 2.1.2 2.1.3 Simula 2.2.1 2.2.2	Etude numérique du temps de traversée du système pour une requête	8 8 8 8		
3	2.2	2.1.1 2.1.2 2.1.3 Simula 2.2.1 2.2.2	Etude numérique du temps de traversée du système pour une requête	8 8 8 8 8		
3 A	2.2	2.1.1 2.1.2 2.1.3 Simula 2.2.1 2.2.2 Autres	Etude numérique du temps de traversée du système pour une requête	8 8 8 8 8 8		

1 Etude de la file M/M/1

Conception d'une représentation informatique

Pour stocké les valeurs simulés on utilisera un tableau de la forme :

instant
$$t = q(t)$$
 incrément

Cette représentation est idéale : elle réunit toutes les informations utiles du fonctionnement des serveurs :

- l'instant où se passe l'evenement
- le type d'evenement (entrée ou sortie d'un client dans le système)
- le nombres de clients présent dans le système

Cette dernière valeur nous sera utile pour avoir la taille de la fille d'attente :

$$taille_file = max(q(t) - 1, 0) \tag{1}$$

1.2 Conception et développement d'un algorithme de simulation en scilab

Nous avons à notre disposition une fonction SciLab insere(q, ta, ts) avec :

- q : Matrice de notre représentation informatique de la file
- ta : Temps actuel

```
— ts : Temps de service
function newq = insere(q, ta, ts)
    if q($, 1) < ta then // aucune requête dans le système
        q($+1,:) = [ta, 1, 1]; // ajout de la requête en fin de liste
    else // inscription de la requête en file d'attente
        ind = sum(q(:, 1) < ta); // recherche du point d'insertion</pre>
        q(ind+2:$+1, :) = q(ind+1:$, :); // création d'un trou pour insérer
        q(ind+1,:) = [ta, q(ind,2), 1]; // insertion au bon endroit
        q(ind+1:\$,2) = q(ind+1:\$,2) + 1; // correction de la taille de
                                          // la file pour les lignes suivantes
    end
    // Inscription du départ de la requête après son temps de
    // service ts
    s = q(\$, 1) + ts // calcul de la date de sortie
    q(\$+1, :) = [s, q(\$, 2) - 1, -1]; // inscription de la date de sortie à la fin
    newq = q // On renvoie la file ainsi modifiée
endfunction
```

Nous avons aussi la fonction randExp(n, lambda) qui genere un vecteur de taille n de valeurs aléatoires suivant la loi exponentielle de paramètre λ lambda

a = Q (Q(:,1) < Tmax,:) // on renvoie l'état de la file à la date Tmax endfunction

1.3 Simulation de trajectoires

1.3.1 Simulation de l'évolution d'un file d'attente

Pour simuler les différentes trajectoires, on va utiliser une fonction Scilab traj(n, lambda, mu) où :

- n : correspondant à l'instant maximal de la représentation de la file
- lambda : λ correspondant aux temps inter-arrivées
- mu : λ correspondant aux temps de service

```
function traj(n,lambda,mu) for i=1:50 // 50 trajectoires Q = \text{queue(n, lambda, mu); // lambda est 5 fois plus grand que mu } \text{plot2d2}(Q(:,1), \max(Q(:,2) - 1, 0), \text{style=2}) // \text{trace la courbe end} endfunction
```

1.3.2 Distribution statistiques de la taille de la file d'attente

Pour avoir la distribution statistique de des trajectoires, on va utiliser une fonction Scilab distrib(n, lambda, mu) où :

- n : correspondant à l'instant maximal de la représentation de la file
- lambda : λ correspondant aux temps inter-arrivées
- mu : λ correspondant aux temps de service

```
function Qi=distrib(n,lambda,mu)
Qi = zeros(500, 1);
for i=1:500
Q = queue(n, lambda, mu);
Qi(i) = Q($, 2);
end
distr = tabul(Qi,'i')
bar(distr(:,1),distr(:,2)/500)
legend("Distribution de Q"+string(n))
endfunction
```

Lorsque l'amplitude sera très grande, on optera plutôt pour une autre version de cette fonction distribv2(n, lambda, mu):

```
function Qi=distribv2(n,lambda,mu)
Qi = zeros(500, 1);
for i=1:500
Q = queue(n, lambda, mu);
Qi(i) = Q($, 2);
end
histplot(20,Qi)
legend("Distribution de Q"+string(n))
endfunction
```

1.3.3 Temps de service supérieur en moyenne aux temps inter-arrivées

Paramètre : n = 60; lambda = 0.5; mu = 0.2

$1.3.4 \quad \text{Temps de service inférieur en moyenne aux temps inter-arrivées}$

Paramètre : n = 60; lambda = 0.2; mu = 0.5

1.3.5 Temps de service égaux en moyenne aux temps inter-arrivées

Paramètre : n = 60; lambda = 0.5; mu = 0.5

	Q60	Q120
mean()	5.726	8.476
variance()	24.792509	46.350124

2 Etude de la file à 3 serveurs

- 2.1 Simulation de stratégie circulaire
- ${\bf 2.1.1} \quad {\bf Etude\ num\'erique\ du\ temps\ de\ travers\'ee\ du\ syst\`eme\ pour\ une} \\ {\bf requ\^ete}$
- 2.1.2 Etude numérique du nombre de requêtes dans le système
- 2.1.3 Recherche d'un régime stationnaire
- 2.2 Simulation de la stratégie d'affection aléatoire proportionnelle
- 2.2.1 Simulation
- 2.2.2 Etude numérique
- 2.3 Autres stratégies, aléatoires ou/et détérministes
- 3 Conclusion

 \mathbf{A}

A.1