Sistemas Inteligentes

Cuestiones y ejercicios del bloque 2, tema 4 Aprendizaje no supervisado: algoritmo k-medias

Escola Tècnica Superior d'Informàtica Dep. de Sistemes Informàtics i Computació Universitat Politècnica de València

18 de noviembre de 2024

Cuestiones

- 1 C Durante la ejecución del algoritmo c-means se obtiene la siguiente partición en dos grupos $X_1 = \{(0,0), (1,0), (2,1)\}$ y $X_2 = \{(0,1), (1,2), (2,2)\}$. Calcula la Suma de Errores Cuadráticos (SEC) de dicha partición.
 - A) 8/3
 - B) 4/3
 - C) 16/3
 - D) 5/3
- 2 B Indica cuál de las siguientes afirmaciones con respecto a la Suma de Errores Cuadráticos (SEC) es la correcta:
 - A) La versión de Duda-Hart del c-means garantiza un mínimo global de la SEC.
 - B) No existe ningún algoritmo de coste polinómico que garantice un mínimo global de la SEC.
 - C) La versión de Duda-Hart del c-means garantiza una SEC nula.
 - D) La versión "popular" del c-means garantiza un mínimo local de la SEC.
- 3 B La menor suma de errores cuadráticos con la que los puntos de la figura a la derecha pueden agruparse en dos clústers es:

- B) Entre 10 v 15
- C) Entre 15 y 20
- D) Mayor que 20

4 B La menor suma de errores cuadráticos con la que los puntos de la figura a la derecha pueden agruparse en dos clústers es:

- B) Mayor que 5 y menor que 10.
- C) Mayor que 10 y menor que 15.
- D) Mayor que 15.

5 A Los puntos de la figura a la derecha están siendo agrupados mediante el algoritmo C-Medias y, tras cierta iteración del algoritmo, se tiene la partición $\Pi = \{X_1 = \{(0,0),(0,2)\}, X_2 = \{(2,0),(2,4)\}\}$ medias $\mathbf{m}_1 = (0,1)$ y $\mathbf{m}_2 = (2,2)$, y SEC (suma de errores cuadráticos) J = 10. Si el punto (2,0)se cambia de grupo, entonces:

- A) La nueva SEC será menor que 6.
- B) La nueva SEC estará entre 6 y 10.
- C) La nueva SEC será mayor que 10.
- D) No conviene cambiar ese punto de grupo porque los grupos se quedarían con tallas desequilibradas.

- 6 A Sean dos clases, A y B, de las que se dispone de los siguientes prototipos: $A = \{(0,2),(1,1),(1,3),(2,2)\}$; y $B = \{(0,2),(1,2),(1,3),(2,2)\}$; y $B = \{(0,2),(1,2),(2,2)\}$; y $B = \{(0,2),(2,2),(2,2)\}$; y $B = \{(0,2),(2,2)\}$; y $\{(0,2),(2,2)\}$; y $\{(0,2),(2,$ $\{(3,2),(3,3),(4,2),(4,3)\}$. Supóngase estos dos conjuntos de prototipos constituyen dos clústers que resultan de un proceso de agrupamiento no supervisado. La SEC, J, correspondiente a dicho agrupamiento es:
 - A) $J \leq 6$
 - B) $6 < J \le 8$
 - C) $8 < J \le 10$
 - D) J > 10
- 7 D La diferencia principal entre el aprendizaje supervisado (AS) y no-supervisado (ANS) es que:
 - A) en el AS se conocen las clases correctas de los datos de test, mientras que en el ANS solo se conocen las de entrenamiento.
 - B) en el AS siempre hay un operador humano que supervisa los resultados de forma que el sistema solo sirve de ayuda o asistencia, mientras que en el ANS todo se realiza de forma totalmente automática.
 - C) el ANS es un proceso iterativo mientras que el AS se realiza en un paso.
 - D) en el AS se conocen las etiquetas de clase correctas de todos los datos de aprendizaje, mientras que en el ANS no se conocen.
- 8 B El algoritmo C-medias es una técnica de clustering particional que aplicamos en reconocimiento del habla para...
 - A) Transformar la señal al dominio temporal-frecuencial.
 - B) Diseñar codebooks.
 - C) Entrenar modelos de Markov.
 - D) Ninguna de las anteriores.
- 9 B Sean dos clases, A y B, de las que se dispone de los siguientes prototipos: $A = \{(2,1),(1,2),(2,3),(3,2)\}$ y $B = \{(2,1),(1,2),(2,3),(3,2)\}$ $\{(4,3),(5,3),(3,5),(6,5)\}$. Supóngase estos dos conjuntos de prototipos constituyen dos clústers que resultan de un proceso de agrupamiento particional. La SEC sería:
 - A) SEC < 4
 - B) SEC > 12
 - C) SEC = 11
 - D) 4 < SEC < 10
- 10 C Los puntos de la figura a la derecha están siendo agrupados mediante el algoritmo C-Medias y, tras cierta iteración del algoritmo, se tiene la partición $\Pi = \{X_1 = \{(0,0),(0,3),(3,0)\}, X_2 = \{(3,1)\}\}.$ Sea J' la suma de errores cuadráticos de esta partición y sea J la suma de errores cuadráticos de la partición que se obtiene al cambiar de grupo el punto (3,0). Entonces:

- A) $J \geq J'$
- B) $\frac{1}{2}J' \le J < J'$
- C) $\frac{1}{4}J' \le J < \frac{1}{2}J'$ D) $J < \frac{1}{4}J'$
- 11 C Cuál de la siguientes afirmaciones en relación al aprendizaje no supervisado es FALSA:
 - A) El objetivo del aprendizaje no supervisado es agrupar en grupos "naturales" los datos disponibles
 - B) Una medida muy empleada para medir la calidad de un agrupamiento particional es la Suma de Errores Cuadráticos (SEC)
 - C) El algoritmo c-medias garantiza un mínimo global del SEC
 - D) Se emplea, por ejemplo, en Reconocimiento Automático del habla para representar una señal acústica como una secuencia de símbolos asociados a los "codewords"
- 12 B Los puntos de la figura a la derecha están siendo agrupados mediante el algoritmo C-Medias y, tras cierta iteración del algoritmo, se tiene la partición $\Pi = \{X_1 = \{(0,0),(0,2)\}, X_2 = \{(2,0),(2,4)\}\},\$ medias $\mathbf{m}_1 = (0,1)$ y $\mathbf{m}_2 = (2,2)$, y SEC (suma de errores cuadráticos) J = 10. Si el punto (2,0)se cambia de grupo, entonces:

- A) La nueva SEC será menor que 5.
- B) La nueva SEC estará entre 5 y 7.
- C) La nueva SEC será mayor que 7 pero menor que 10
- D) Ese punto no se puede cambiar porque deja uno de los grupos con sólo un punto.

- 13 C Sea $X = \{1, 3, 4.5\}$ un conjunto de 3 datos unidimensionales a agrupar en dos clústers mediante alguna técnica de clustering particional. Más concretamente, se desea optimizar el criterio SEC (suma de errores cuadráticos) y emplear el algoritmo C-medias, si bien no se ha decidido si emplearemos la versión popular o la versión de Duda y Hart (DH). Sea $\Pi^0 = \{X_1 = \{1,3\}, X_2 = 4.5\}$ una partición inicial en dos clústers y SEC $J^0 = 2$. Indica cuál de las siguientes afirmaciones es cierta:
 - A) Tanto la versión popular como la DH terminarán sin modificar la partición inicial.
 - B) La versión popular terminará con una partición mejorada, pero no la versión DH, que terminará sin modificar la partición inicial.
 - C) La versión DH terminará con una partición mejorada, pero no la versión popular, que terminará sin modificar la partición inicial.
 - D) Ambas versiones terminarán con particiones mejoradas respecto a la partición inicial.
- 14 A (Examen de SIN del 18 de Enero de 2013)

El criterio de clustering particional "Suma de Errores Cuadráticos" es apropiado cuando los datos forman clústers:

- A) Hiperesféricos y de tamaño similar.
- B) Hiperesféricos y de cualquier tamaño.
- C) Alargados y de tamaño similar.
- D) Alargados y de cualquier tamaño.
- 15 C (Examen de SIN del 30 de Enero de 2013)

Se tienen 3 datos unidimensionales: $x_1 = 0$, $x_2 = 20$ y $x_3 = 35$. Se ha establecido una partición de estos datos en dos clústers, $\Pi = \{X_1 = \{x_1, x_2\}, X_2 = \{x_3\}\}$. La Suma de Errores Cuadráticos (SEC) de esta partición es:

- A) $J(\Pi) = 0$
- B) $0 < J(\Pi) \le 150$
- $\begin{array}{ll} \text{C} & \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \end{array} & \begin{array}{ll} \text{C} & \text{C} \\ \end{array} &$
- D) $J(\Pi) > 300$
- 16 B (Examen de SIN del 30 de Enero de 2013)

Tras aplicar la versión "correcta" ("Duda y Hart") del algoritmo C-medias a la partición de la cuestión anterior (Π) , la partición resultante (Π^*) es: $\Delta J = \frac{n_2}{n_2+1}|x_2-m_2|^2 - \frac{n_1}{n_1-1}|x_2-m_1|^2$

- A) $\Pi^* = \Pi$. $\Delta J = 0$ B) $\Pi^* = \{X_1 = \{x_1\}, X_2 = \{x_2, x_3\}\}$. $\Delta J = \frac{1}{2}|20 35|^2 \frac{2}{1}|20 10|^2 = 112.5 200 = -87.5$ C) $\Pi^* = \{X_1 = \{x_2\}, X_2 = \{x_1, x_3\}\}$. $\Delta J = \frac{1}{2}|0 35|^2 \frac{2}{1}|0 10|^2 = 612.5 200 = 412.5$
- D) Ninguna de las anteriores.
- 17 D Indica cuál de la siguientes afirmaciones sobre Clustering es correcta:
 - A) Se suele emplear el algoritmo Perceptrón a partir de datos de entrenamiento con etiquetas de clase.
 - B) Se suele emplear el algoritmo Perceptrón a partir de datos de entrenamiento sin etiquetas de clase.
 - C) Se suele emplear el algoritmo C-Medias a partir de datos de entrenamiento con etiquetas de clase.
 - D) Se suele emplear el algoritmo C-Medias a partir de datos de entrenamiento sin etiquetas de clase.
- 18 D El criterio de clustering particional "Suma de Errores Cuadráticos" es apropiado cuando los datos forman clústers:
 - A) No alargados.
 - B) Alargados y de cualquier tamaño.
 - C) Alargados y de tamaño similar.
 - D) Ninguna de las anteriores.
- 19 B La menor suma de errores cuadráticos con la que pueden agruparse en dos clústers los puntos a la derecha es un valor:

- B) Entre 3 y 6. J=4
- C) Entre 6 y 9.
- D) Mayor que 9.

20 B La figura a la derecha muestra una partición de 5 puntos bidimensionales en 3 clústers (representados mediante los símbolos •, • y ×). Considera todas las posibles transferencias de clúster de cada punto (en un clúster no unitario). En términos de suma de errores cuadráticos (J):

- B) Sólo se puede mejorar J transfiriendo $(1,1)^t$ del clúster al \circ .
- C) Sólo se puede mejorar J transfiriendo $(2,3)^t$ del clúster \times al \circ .
- D) Las dos transferencias anteriores permiten mejorar J.

21 C La figura a la derecha muestra una partición de 4 puntos bidimensionales en 3 clústers (representados mediante los símbolos •, o y ×). La suma de errores cuadráticos de esta partición es J=1. Si se ejecuta el algoritmo C-medias (de Duda y Hart) a partir de la misma:

- A) No se realizará niguna transferencia de clúster.
- B) Se transferirá un único punto, obteniéndose una partición de J entre $\frac{2}{3}$ y 1.
- C) Se transferirá un único punto, obteniéndose una partición de J entre 0 y $\frac{2}{3}$.
- D) Se realizarán dos transferencias de clúster, obteniéndose una partición de J nula

22 A La menor suma de errores cuadráticos con la que pueden agruparse en dos clústers los puntos a la derecha es un valor:

- A) Entre 0 y 3. J=2
- B) Entre 3 y 6.
- C) Entre 6 v 9.
- D) Mayor que 9.
- 23 C La figura a la derecha muestra una partición de 5 puntos bidimensionales en 2 clústers (representados mediante los símbolos • y o). Considera todas las posibles transferencias de clúster de cada punto. La transferencia más provechosa en términos de suma de errores cuadráticos (SEC) conduce a un incremento de SEC (ΔJ) :

- A) $\Delta J > 0$
- B) $0 \ge \Delta J > -1$
- C) $-1 \ge \Delta J > -2$
- $\Delta J = -1.5 \quad (J = 4.5 \to J = 3)$
- D) $-2 \ge \Delta J$
- 24 B La figura a la derecha muestra 8 puntos bidimensionales. La menor "Suma de Errores Cuadráticos", J, con la que pueden agruparse estos puntos en dos clústers es:

- A) $0 \le J \le 7$
- B) $7 < J \le 14$ J = 10
- C) $14 < J \le 21$
- D) 21 < J
- 25 D La figura a la derecha muestra una partición de 4 puntos bidimensionales en 2 clústers (representados mediante los símbolos \bullet y \circ). La suma de errores cuadráticos (SEC) de esta partición es $J=\frac{30}{9}$. La transferencia del punto $(2,3)^t$ del clúster • al \circ conduce a un incremento de la SEC, ΔJ , tal que:

- A) $\Delta J > 0$
- B) $0 \ge \Delta J > -1$
- C) $-1 \ge \Delta J > -2$
- D) $-2 \ge \Delta J$ $\Delta J = -\frac{21}{9} = -2.33$ $(J = \frac{30}{9} \to J = 1)$
- 26 B Dos versiones bien conocidas del algoritmo C-medias son la de Duda y Hart (DH) y la "popular". Suponiendo que ambas versiones se aplican a partir de un misma partición inicial, indica cuál de las siguientes afirmaciones sobre sus resultados es cierta:
 - A) Ambas versiones obtendrán la misma partición optimizada.
 - B) La versión DH obtendrá una partición final que no podrá mejorarse mediante la versión popular.
 - C) La versión popular obtendrá una partición final que no podrá mejorarse mediante la versión DH.
 - D) La partición final obtenida mediante la versión DH podrá mejorarse mediante la versión popular, y viceversa.

27 A Considérese la partición $\Pi = \{X_1 = \{(0,0)^t, (0,2)^t\}, X_2 = \{(2,0)^t, (2,4)^t\}\}$ de los puntos de la figura a la derecha. Las medias de esta partición son $\mathbf{m}_1=(0,1)^t$ y $\mathbf{m}_2=(2,2)^t$. Su suma de errores cuadráticos, SEC, es 4 10. Si el punto $(0,2)^t$ se cambia de grupo, entonces:

- A) La nueva SEC será mayor que 10. $\|(0,2)^t (4/3,2)^t\|^2 + \|(2,0)^t (4/3,2)^t\|^2 + \|(2,4)^t (4/3,2)^t\|^2 = 32/3 \frac{2}{100}$
- B) La nueva SEC será mayor que 8 y no mayor que 10.
- C) La nueva SEC será mayor que 6 y no mayor que 8.
- D) La nueva SEC no será mayor que 6.
- 28 D Se tiene un problema de clasificación para el cual se ha aprendido un clasificador. El intervalo de confianza al 95 % para la probabilidad de error de dicho clasificador se ha estimado empíricamente, a partir de un cierto conjunto de muestras de test. Indica cuál de las siguientes opciones permitiría reducir el tamaño del intervalo estimado:
 - A) Reducir significativamente el conjunto de test.
 - B) Mantener el conjunto de test y re-entrenar el clasificador con el algoritmo C-medias de Duda y Hart.
 - C) Mantener el conjunto de test y re-entrenar el clasificador con el algoritmo C-medias convencional ("popular").
 - D) Aumentar significativamente el conjunto de test.
- 29 B Indica cuál de las siguientes afirmaciones sobre aprendizaje supervisado (AS) y no-supervisado (ANS) es correcta:
 - A) Tanto en ANS como en AS se requieren datos de entrenamiento sin etiqueta de clase.
 - B) En ANS se requieren datos de entrenamiento sin etiqueta de clase; en AS, con etiqueta.
 - C) En ANS se requieren datos de entrenamiento con etiqueta de clase; en AS, sin etiqueta.
 - D) Tanto en ANS como en AS se requieren datos de entrenamiento con etiqueta de clase.
- 30 D Considérese el algoritmo C-medias en su versión convencional o "popular" (CM), así como en su versión de Duda y Hart (DH). Aunque ambas optimizan la suma de errores cuadráticos (SEC), sus resultados pueden diferir pues:
 - A) DH mimimiza la SEC y CM la maximiza.
 - B) DH maximiza la SEC y CM la minimiza.
 - C) Ambas maximizan la SEC, si bien DH puede alcanzar mejores soluciones que CM.
 - D) Ninguna de las anteriores.
- 31 D Supongamos que hemos aplicado el algoritmo C-medias a un conjunto de puntos bi-dimensionales para obtener un agrupamiento (partición) en dos clústers. Tras una serie de iteraciones del algoritmo C-medias tenemos el agrupamiento: $\{\{(0,1)^{t},(0,2)^{t}\},\{(0,3)^{t},(0,5)^{t},(0,6)^{t},(0,7)^{t},(1,6)^{t},(-1,6)^{t}\}\}$. Indica la respuesta correcta.
 - A) La suma de errores cuadráticos (SEC) es 15 y puede llegar a ser 8.
 - B) La SEC es 15 y cuando el algoritmo converja será 12.
 - C) La SEC es 12 y cuando el algoritmo converja será 10.
 - D) La SEC es 12 y cuando el algoritmo converja será 6.
- 32 D En la figura de la derecha se representan 4 muestras de bidimensionales. ¿Cuál es el número de clústers que minimiza la suma de errores cuadráticos para dicho conjunto de muestras?

- A) 1
- B) 2
- C) 3
- D) 4 J = 0
- 33 D La figura a la derecha muestra una partición de 4 puntos bidimensionales en 2 clústers (representados mediante los símbolos \bullet y \circ). La transferencia del punto $(2,3)^t$ del clúster \bullet al \circ conduce a una variación de la SEC, ΔJ , tal que:

- $\Delta J > 0$. A)
- B) $0 \ge \Delta J > -\frac{1}{2}$.
- C) $-\frac{1}{2} \ge \Delta J > -1$.
- D) $-1 \ge \Delta J$ $\Delta J = \frac{1}{2} \frac{3}{2} = -1$
- 34 A En la figura de la derecha se muestra una partición de 4 puntos bidimensionales de 2 clústers. La transferencia del punto $(1,1)^t$ del clúster \bullet al clúster \circ

- A) produce un incremento en la SEC.
- B) produce un decremento en la SEC.
- C) no altera la SEC.
- D) produce una SEC negativa.

- 35 A Considérese el algoritmo C-medias de Duda y Hart. Indicar cuál de las siguientes afirmaciones es correcta:
 - A) Su buena eficacia computational se consigue gracias al cálculo incremental de la variación de distorsión y de los vectores media de clúster.
 - B) Determina el número de clústers que minimiza la suma de errores cuadráticos (SEC).
 - C) Cuando un clúster se queda vacío, dicho clúster se elimina.
 - D) Ninguna de las anteriores.
- Considérese el conjunto de aprendizaje formado por los 6 datos tridimensionales de la tabla a la derecha. Se cree que una partición natural de dicho conjunto en 2 clústers consiste en agrupar los primeros 4 datos en un clúster y los 2 últimos en el otro. La suma de errores cuadráticos de dicha partición, J, es:

$\mathbf{x}_n = (x_{n1}, x_{n2}, x_{n3})^t$			
n	x_{n1}	x_{n2}	x_{n3}
1	0	1	1
2	2	1	0
3	1	2	1
4	1	0	2
5	4	6	4
6	6	4	6

- A) J < 3
- B) $3 \le J < 6$
- C) $6 \le J < 12$
- D) 12 < J
- (1+2+1+2)+(3+3)=6+6=12
- 37 C En la figura de la derecha se muestra una partición de 5 puntos bidimensionales de 2 clusters. La transferencia del punto $(1,1)^t$ del cluster \bullet al cluster \circ
 - A) produce un incremento en la SEC.
 - B) produce un decremento en la SEC.
 - C) no altera la SEC.
 - D) produce una SEC negativa.

- 38 C En la figura de la derecha se representan 5 muestras bidimensionales particionadas inicialmente en dos clústers (• y o). ¿Cuál sería el resultado de la aplicación de una iteración del algoritmo C-medias en su versión convencional?, ¿y en su versión Duda y Hart (D&H)?

- B) Sólo la versión convencional transfiere la muestra (3, 2).
- C) Sólo la versión D&H transfiere la muestra (3, 2).
- D) Ninguna de las dos versiones transfiere la muestra (3, 2).

- $39 \mid A \mid$ Se aplica el algoritmo C-medias de Duda y Hart a un conjunto de N vectores no etiquetados y se obtiene una partición de dicho conjunto en C subconjuntos disjuntos cuya suma de errores cuadráticos, SEC, es R. ¿Cuál de las siguientes afirmaciones es falsa?:
 - A) Si $C \ge N/2$, R = 0.
 - B) Si C = N, R = 0.
 - C) Si $C \leq N$, C-medias termina en un número finito de iteraciónes y R es un mínimo local de la SEC.
 - D) Ninguna de las anteriores.
- 40 C En la figura de la derecha se muestra una partición de 6 puntos bidimensionales en 2 clústers, o y •, obtenida mediante el algoritmo C-medias (convencional o "popular"). Si transferimos los puntos $(1,2)^t$ y $(2,1)^t$ del clúster \circ al clúster \bullet , entonces:

- A) se produce un incremento de la SEC.
- B) no se altera la SEC.
- C) se produce un decremento de la SEC.
- D) se produce una SEC igual a 0.

 $J' = J'_{\circ} + J'_{\bullet} = 4 + 0 = 4$

$$J = J_0 + J_{\bullet} = \frac{4}{3} + \frac{4}{3} = \frac{8}{3}$$

 $J = J_{\circ} + J_{\bullet} = \frac{4}{3} + \frac{4}{3} = \frac{8}{3}$ $\Delta J = J - J' = \frac{8}{3} - 4 = -\frac{4}{3} < 0$

41 D La figura a la derecha muestra una partición de 4 puntos bidimensionales en 2 clústers (representados mediante los símbolos \bullet y \circ). La transferencia del punto $(2,3)^t$ del clúster \bullet al \circ conduce a una variación de la SEC, ΔJ , tal que:

- $0 \ge \Delta J > -1$. B)
- C) $-1 \ge \Delta J > -2$.
- D) $-2 > \Delta J$.
- $\Delta J = \frac{2}{3} \frac{6}{3} = -2$

42 B La figura a la derecha muestra una partición de 4 puntos bidimensionales en 2 clústers (representados mediante los símbolos \bullet y \circ). La transferencia del punto $(3,2)^t$ del cluster \bullet al cluster \circ :

- A) produce un incremento en la SEC.
- B) produce un decremento en la SEC.
- $\Delta J = 0.5 0.67335 = -0.17335$

- C) no altera la SEC.
- D) produce una SEC negativa.
- 43 C La figura a la derecha muestra una partición de 5 puntos bidimensionales en 2 clústers (representados mediante los símbolos y o). Si, durante la ejecución del algoritmo C-medias, el punto (3,0) se cambia del clúster o al •, entonces (indica cuál de la siguientes afirmaciones es cierta):

- A) Las medias de clúster no cambian.
- B) La suma de errores cuadráticos crece.
- C) La suma de errores cuadráticos decrece.
- D) Solo cambia la suma de errores cuadráticos de uno de los clústers.
- 44 B Se tiene una partición de un conjunto de datos 3-dimensionales en un número de clústers dado, $C \ge 2$. Considérese la transferencia del dato $\mathbf{x} = (3, 2, 9)^t$ de un clúster i a otro $j, j \ne i$. Se sabe que el clúster i contiene 3 datos (contando \mathbf{x}) y el j 4. Asimismo, se sabe que la media del clúster i es $\mathbf{m}_i = (7, 3, 3)^t$ y la del j $\mathbf{m}_j = (7, 6, 7)^t$. Si se realiza dicha transferencia, se producirá un incremento de la suma de errores cuadráticos, ΔJ , tal que: $\Delta J = -50.7$
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \ge 0$
- 45 B Se tiene una partición de un conjunto de datos 3-dimensionales en un número de clústers dado, $C \ge 2$. Considérese la transferencia del dato $\mathbf{x} = (4,5,2)^t$ de un clúster i a otro $j, j \ne i$. Se sabe que el clúster i contiene 3 datos (contando \mathbf{x}) y el j 2. Asimismo, se sabe que la media del clúster i es $\mathbf{m}_i = (10,8,4)^t$ y la del j $\mathbf{m}_j = (7,7,1)^t$. Si se realiza dicha transferencia, se producirá un incremento de la suma de errores cuadráticos, ΔJ , tal que: $\Delta J = -64.2$

B)
$$-70 \le \Delta J < -30$$

C)
$$-30 \le \Delta J < 0$$

D)
$$\Delta J \geq 0$$

46 D En la figura de la derecha se muestra una partición de 5 puntos bidimensionales de 2 clusters. La transferencia del punto $(1,1)^t$ del cluster \circ al cluster \bullet :

- A) Produce un incremento de la Suma de Errores Cuadráticos (SEC).
- B) Produce un decremento de la SEC.
- C) Produce una SEC negativa.
- D) No altera la SEC.
- 47 D La figura siguiente muestra una partición de 6 puntos bidimensionales en dos clústers, y o:

Si intercambiamos de clúster los puntos $(10,1)^t$ y $(7,1)^t$, se produce una variación de la suma de errores cuadráticos (SEC), $\Delta J = J - J'$ (SEC tras el intercambio menos SEC antes del intercambio), tal que:

A)
$$\Delta J < -7$$
.

$$\Delta J = 42.0 - 24.0 = 18.0$$

B)
$$-7 \le \Delta J < 0$$
.

C)
$$0 \le \Delta J < 7$$
.

D)
$$\Delta J \geq 7$$
.

48 B La figura siguiente muestra una partición de 5 puntos bidimensionales en dos clústers, • y o:

Si intercambiamos de clúster los puntos $(1,0)^t$ y $(3,1)^t$, se produce una variación de la suma de errores cuadráticos (SEC), $\Delta J = J - J'$ (SEC tras el intercambio menos SEC antes del intercambio), tal que:

A)
$$\Delta J < -7$$
.

$$\Delta J = 43.7 - 49.2 = -5.5$$

B)
$$-7 \le \Delta J < 0$$
.

C)
$$0 \le \Delta J < 7$$
.

D)
$$\Delta J \geq 7$$
.

49 D La figura siguiente muestra una partición de 6 puntos bidimensionales en dos clústers, • y o:

Si transferimos de clúster el punto $(1,0)^t$, se produce una variación de la suma de errores cuadráticos (SEC), $\Delta J = J - J'$ (SEC tras el intercambio menos SEC antes del intercambio), tal que:

A)
$$\Delta J < -7$$
.

$$\Delta J = 52.5 - 9.3 = 43.2$$

B)
$$-7 < \Delta J < 0$$
.

C)
$$0 \le \Delta J < 7$$
.

D)
$$\Delta J \geq 7$$
.

50 A La figura siguiente muestra una partición de 5 puntos bidimensionales en dos clústers, • y o:

Si transferimos de clúster el punto $(7,1)^t$, se produce una variación de la suma de errores cuadráticos (SEC), $\Delta J = J - J'$ (SEC tras el intercambio menos SEC antes del intercambio), tal que:

A)
$$\Delta J < -7$$
.

$$\Delta J = 21.8 - 33.2 = -11.3$$

B)
$$-7 \le \Delta J < 0$$
.

C)
$$0 \le \Delta J < 7$$
.

D)
$$\Delta J \geq 7$$
.

51 B Se tiene una partición de un conjunto de datos 3-dimensionales en un número de clústers dado, $C \ge 2$. Considérese la transferencia del dato $\mathbf{x} = (1, 6, 9)^t$ de un clúster j a otro $i, j \ne i$. Se sabe que el clúster j contiene 2 datos (contando \mathbf{x}) y el i 3. Asimismo, se sabe que la media del clúster j es $\mathbf{m}_j = (8, 2, 8)^t$ y la del i $\mathbf{m}_i = (10, 8, 9)^t$. Si se realiza dicha transferencia, se producirá un incremento de la suma de errores cuadráticos, ΔJ , tal que: $\Delta J = -68.2$

A)
$$\Delta J < -70$$

B)
$$-70 \le \Delta J < -30$$

C)
$$-30 \le \Delta J < 0$$

D)
$$\Delta J \geq 0$$

Se tiene una partición de un conjunto de datos 3-dimensionales en un número de clústers dado, $C \ge 2$. Considérese la transferencia del dato $\mathbf{x} = (3, 6, 4)^t$ de un clúster j a otro $i, j \ne i$. Se sabe que el clúster j contiene 3 datos (contando \mathbf{x}) y el i 3. Asimismo, se sabe que la media del clúster j es $\mathbf{m}_j = (3, 3, 2)^t$ y la del i $\mathbf{m}_i = (7, 6, 9)^t$. Si se realiza dicha transferencia, se producirá un incremento de la suma de errores cuadráticos, ΔJ , tal que: $\Delta J = 11.2$

A)
$$\Delta J < -70$$

- B) $-70 \le \Delta J < -30$
- C) $-30 \le \Delta J < 0$
- D) $\Delta J \geq 0$
- 53 D Se tiene una partición de un conjunto de datos 3-dimensionales en un número de clústers dado, $C \ge 2$. Considérese la transferencia del dato $\mathbf{x} = (4,3,5)^t$ de un clúster i a otro $j, j \ne i$. Se sabe que el clúster i contiene 4 datos (contando \mathbf{x}) y el j 3. Asimismo, se sabe que la media del clúster i es $\mathbf{m}_i = (3,8,8)^t$ y la del j $\mathbf{m}_j = (10,9,10)^t$. Si se realiza dicha transferencia, se producirá un incremento de la suma de errores cuadráticos, ΔJ , tal que: $\Delta J = 26.1$
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \geq 0$
- Se tiene una partición de un conjunto de datos 3-dimensionales en un número de clústers dado, $C \ge 2$. Considérese la transferencia del dato $\mathbf{x} = (4, 10, 4)^t$ de un clúster i a otro $j, j \ne i$. Se sabe que el clúster i contiene 4 datos (contando \mathbf{x}) y el j 2. Asimismo, se sabe que la media del clúster i es $\mathbf{m}_i = (1, 8, 2)^t$ y la del j $\mathbf{m}_j = (10, 2, 10)^t$. Si se realiza dicha transferencia, se producirá un incremento de la suma de errores cuadráticos, ΔJ , tal que: $\Delta J = 68.0$
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \geq 0$
- 55 A La figura siguiente muestra una partición de 6 puntos bidimensionales en dos clústers, \bullet y \circ :

- ¿Qué punto al ser transferido de clúster minimiza la variación de la suma de errores cuadráticos (SEC), $\Delta J = J J'$ (SEC tras el intercambio menos SEC antes del intercambio)? $\Delta J = 7.2 13.3 = -6.1$
 - A) $(3,0)^t$
 - B) $(6,2)^t$
 - C) $(4,0)^t$
 - D) $(2,2)^t$
- $56\ \overline{\mathrm{A}}\ \mathrm{La}$ figura siguiente muestra una partición de 6 puntos bidimensionales en dos clústers, \bullet y \circ :

- ¿Qué punto al ser transferido de clúster minimiza la variación de la suma de errores cuadráticos (SEC), $\Delta J = J J'$ (SEC tras el intercambio menos SEC antes del intercambio)? $\Delta J = 11.2 48.0 = -36.8$
 - A) $(0,0)^t$
 - B) $(9,0)^t$
 - C) $(2,1)^t$
 - D) $(3,0)^t$

2. Problemas

1. Se tienen los siguientes 5 vectores bidimensionales:

 $J = J_1 + J_2 = 28$

$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 7 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} 4 \\ 6 \end{pmatrix}, \quad \mathbf{x}_4 = \begin{pmatrix} 8 \\ 2 \end{pmatrix} \quad \text{y} \quad \mathbf{x}_5 = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$$

Se desea agrupar estos vectores de manera no-supervisada en 2 clases. Partiendo de la partición

$$\Pi = \{X_1 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}, X_2 = \{\mathbf{x}_4, \mathbf{x}_5\}\}\$$

realiza una traza de ejecución de una iteración del bucle principal del algoritmo c-medias.

$$\mathbf{m}_{1} = \frac{1}{3}(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3}) = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

$$\mathbf{m}_{2} = \frac{1}{2}(\mathbf{x}_{4} + \mathbf{x}_{5}) = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

$$J_{1} = \|\mathbf{x}_{1} - \mathbf{m}_{1}\|^{2} + \|\mathbf{x}_{2} - \mathbf{m}_{1}\|^{2} + \|\mathbf{x}_{3} - \mathbf{m}_{1}\|^{2} = 8 + 10 + 2 = 20$$

$$J_{2} = \|\mathbf{x}_{4} - \mathbf{m}_{2}\|^{2} + \|\mathbf{x}_{5} - \mathbf{m}_{2}\|^{2} = 4 + 4 = 8$$

Si transferimos $\mathbf{x}_n \in X_i$ a X_j , entonces $\Delta J = \frac{|X_j|}{|X_i|+1} \|\mathbf{x}_n - \mathbf{m}_j\|^2 - \frac{|X_i|}{|X_i|-1} \|\mathbf{x}_n - \mathbf{m}_i\|^2$

¿Transferimos \mathbf{x}_1 de X_1 a X_2 ? : $\Delta J = \frac{2}{3} \cdot 58 - \frac{3}{2} \cdot 8 = \frac{80}{3} > 0 \Rightarrow \text{NO}$

¿Transferimos \mathbf{x}_2 de X_1 a X_2 ? : $\Delta J = \frac{2}{3} \cdot 20 - \frac{3}{2} \cdot 10 = -\frac{5}{3} < 0 \Rightarrow \text{SI}$

$$\mathbf{m}_{1} = \mathbf{m}_{1} - \frac{\mathbf{x}_{2} - \mathbf{m}_{1}}{|X_{1}| - 1} = \begin{pmatrix} 5/2 \\ 13/2 \end{pmatrix} = \begin{pmatrix} 2.5 \\ 6.5 \end{pmatrix}$$

$$\mathbf{m}_{2} = \mathbf{m}_{2} + \frac{\mathbf{x}_{2} - \mathbf{m}_{2}}{|X_{2}| + 1} = \begin{pmatrix} 20/3 \\ 10/3 \end{pmatrix} = \begin{pmatrix} 6.67 \\ 3.33 \end{pmatrix}$$

¿Transferimos \mathbf{x}_3 de X_1 a X_2 ? : $\Delta J = \frac{3}{4} \cdot \frac{128}{9} - \frac{2}{1} \cdot \frac{10}{4} = \frac{17}{3} = 5.67 > 0 \Rightarrow \text{NO}$

 $\text{$\overleftarrow{\iota}$ Transferimos \mathbf{x}_4 de X_2 a X_1?} : \quad \Delta J = \frac{2}{3} \cdot \frac{151}{2} - \frac{3}{2} \cdot \frac{32}{9} = \frac{805}{16} = 50.31 > 0 \ \Rightarrow \ \text{NO}$

¿Transferimos \mathbf{x}_5 de X_2 a X_1 ? : $\Delta J = \frac{2}{3} \cdot \frac{61}{2} - \frac{3}{2} \cdot \frac{80}{9} = 7 > 0 \Rightarrow \text{NO}$

(AQUÍ TERMINA LA RESPUESTA AL ENUNCIADO). El algoritmo continúa como sigue:

¿Transferimos \mathbf{x}_1 de X_1 a X_2 ? : $\Delta J = \frac{3}{4} \cdot \frac{410}{9} - \frac{2}{1} \cdot \frac{5}{2} = \frac{175}{6} = 29.17 > 0 \Rightarrow \text{NO}$

¿Transferimos \mathbf{x}_2 de X_2 a X_1 ? : $\Delta J = \frac{2}{3} \cdot \frac{45}{2} - \frac{3}{2} \cdot \frac{80}{9} = \frac{5}{3} = 1.67 > 0 \Rightarrow \text{NO}$

No es necesario seguir ya que no se realizará ninguna transferencia. La partición optimizada es:

$$\Pi = \{X_1 = \{\mathbf{x}_1, \mathbf{x}_3\}, X_2 = \{\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5\}\}\$$

10