Universität Salzburg Florian Graf

Machine Learning

Übungsblatt 8 28 Punkte

Aufgabe 1. Ridge- und Lasso Regression

16 P.

Gegeben sei eine Stichprobe $\mathcal{D} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\} \subset \mathbb{R}^{d \times 1}$. Wir wollen ein lineares Regressionsmodell $\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}}$ lernen, wobei $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\top} \in \mathbb{R}^{n \times d}$ und $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$.

Im Falle von Least-Squares Regression wird $\hat{\mathbf{w}}$ durch das Optimierungsproblem $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$ bestimmt. In dieser Aufgabe betrachten wir die regularisierten Modelle Ridge- und Lasso-Regression.

(a) Ridge Regression entspricht dem Minimierungsproblem $\hat{\mathbf{w}}_{\text{Ridge}} = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|_2^2$, wobei $\lambda > 0$. Bestimmen Sie $\hat{\mathbf{w}}_{\text{Ridge}}$.

Hinweis: Sie haben bereits auf Blatt 3 gezeigt, dass jede positiv definite Matrix invertierbar ist.

- (b) Lasso Regression entspricht dem Minimierungsproblem $\hat{\mathbf{w}}_{\text{Lasso}} = \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w})$, wobei $f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|_1$ und $\lambda > 0$. Der Einfachheit halber fixieren wir den konstanten Term $w_0 = 0$. Bestimmen Sie zunächst $\hat{\mathbf{w}}_{\text{Lasso}}$ in dem Fall von nur einem normierten Merkmal, d.h. $x_i \in \mathbb{R}$ und $\frac{1}{n} \sum_{i=1}^n x_i^2 = 1$. Gehen Sie dabei folgendermaßen vor.
 - (i) Bestimmen Sie die Ableitung an den Stellen wof differenzierbar ist.
 - (ii) Skizzieren Sie die Ableitung f'(w) handschriftlich in einem Koordinatensystem.
 - (iii) Schließen Sie auf die Form von f. Beschreiben Sie die Form im Allgemeinen und skizzieren Sie f in den folgenden Fällen:
 - (A) $\hat{w}_{\text{OLS}} < 0 \text{ und } \frac{\lambda}{2} < \hat{w}_{\text{OLS}}$
 - (B) $\hat{w}_{\text{OLS}} < 0 \text{ und } \frac{\lambda}{2} = \hat{w}_{\text{OLS}}$
 - (C) $\hat{w}_{\text{OLS}} < 0 \text{ und } \frac{\bar{\lambda}}{2} > \hat{w}_{\text{OLS}}$

Hierbei ist \hat{w}_{OLS} der entsprechende ordinary least squares Schätzer auf den Daten $(x_1, y_1), \ldots, (x_n, y_n)$.

- (iv) Bestimmen Sie $\hat{\mathbf{w}}_{Lasso} = \operatorname{argmin}_{\mathbf{w}} f(\mathbf{w})$.
- (c) Bestimmen Sie $\hat{\mathbf{w}}_{\text{Lasso}}$ im Fall von d Merkmalen ($\mathbf{x}_i \in \mathbb{R}^d$) unter der Annahme, das die Merkmale $\mathbf{x}_{:,i} \in \mathbb{R}^n$ orthonormal sind.
- (d) Wir betrachten erneut den Fall, dass die Merkmale $\mathbf{x}_{:,j} \in \mathbb{R}^n$ orthonormal sind. Wir schätzen \mathbf{w} mittels den folgenden Methoden: (a) Least-Squares, (b) Ridge Regression mit Parameter λ_2 und (c) Lasso Regression mit Parameter λ_1 .

Abbildung 1: \hat{w}_i vs. $c_i = \mathbf{x}_{:,i}^{\top} \mathbf{y}$.

- (i) Ordnen Sie den Kurven in Abbildung 1 die Regressionsmodelle zu. Begründen Sie Ihre Wahl.
- (ii) Bestimmen Sie die zugehörigen Werte der Regularisierungsstärken λ_1 und λ_2 .

Wir betrachten Daten $(\mathbf{x}_i, y_i)_{i=1}^n$ mit $\mathbf{x}_i \in \mathbb{R}^d$ und $y_i \in \{-1, 1\}$, die tatsächlich durch ein lineares Modell generiert werden, d.h. $y_i = \mathbf{w}^{\top} \mathbf{x}_i + \varepsilon_i$. Hierbei sind die \mathbf{x}_i deterministisch und die $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ unabhängig normalverteilt.

Es kann als bekannt vorrausgesetzt werden, dass der OLS Schätzer für \mathbf{w} durch die Formel $\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ gegeben ist, wobei $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^{\top}$ und $\mathbf{y} = [y_1, \dots, y_n]^{\top}$.

Wir betrachten nun $\hat{\mathbf{w}}$ als Zufallsvariable (die durch das Rauschen ε_i beeinflusst wird).

- (a) Zeigen Sie, dass der OLS Schätzer erwartungstreu ist, also dass $\mathbb{E}[\hat{\mathbf{w}}] = \mathbf{w}$.
- (b) Bestimmen Sie die Kovarianzmatrix $\Sigma(\hat{\mathbf{w}}) = \mathbb{E}[(\hat{\mathbf{w}} \mathbb{E}[\hat{\mathbf{w}}])(\hat{\mathbf{w}} \mathbb{E}[\hat{\mathbf{w}}])^{\top}]$ des OLS Schätzers $\hat{\mathbf{w}}$. Geben Sie außerdem die Spur der Kovarianzmatrix in Abhängigkeit der Eigenwerte von $\mathbf{X}^{\top}\mathbf{X}$ an.
- (c) Wiederholen Sie die Aufgaben (a) und (b) für den Ridge Schätzer.
- (d) Interpretieren Sie die Ergebnisse aus den Aufgaben (a) bis (c). Gehen Sie insbesondere auf die Rolle der Regularisierung ein.