

<u>Course</u> > <u>Unit 2:</u> ... > <u>Lec. 3: I</u>... > 6. Exer...

6. Exercise: Independence of two events - III

Exercises due Feb 12, 2020 05:29 IST Completed

Exercise: Independence of two events - III

2.0/2.0 points (graded)

When is an event A independent of itself?

Choose one of the following possible answers:

)	Α	w	ays
_				,

- \bigcirc If and only if $\mathbf{P}\left(A
 ight)=0$
- igcup If and only if $\mathbf{P}\left(A
 ight)=1$
- igoreal If and only if ${f P}\,(A)$ is either 0 or 1

Solution:

Using the definition, \boldsymbol{A} is independent of itself if and only if

$$\mathbf{P}(A \cap A) = \mathbf{P}(A) \cdot \mathbf{P}(A).$$

Since $A\cap A=A$, we have $\mathbf{P}\left(A\cap A
ight)=\mathbf{P}\left(A
ight)$ and we obtain the equivalent condition

$$\mathbf{P}(A) = \mathbf{P}(A) \cdot \mathbf{P}(A),$$

or

$$\mathbf{P}\left(A
ight)\cdot\left(1-\mathbf{P}\left(A
ight)
ight)=0,$$

and this happens if and only if $\mathbf{P}\left(A\right)$ is either 0 or 1.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 2: Conditioning and independence:Lec. 3: Independence / 6. Exercise: Independence of two events - III

Show all posts 🕶	by recent activity 🗸
intuitive meaning of question i solved this question mathematically but am struggling to understand intuitively what the res	3 new_ 18 sult means
<u>in the lecture we had the caveat that p(a)<>0</u>	5
General case for 2 events Suppose we have events A and B where P(A) = 0 or P(A) = 1. Are A and B independent?	1 new_ 7
(Possible Spoilers for the question) The non formal definition for independence If two events are independent, then given that one event has occurred, the probability of the	3
Interesting algebra hint This is an interesting thing about algebra I discovered while doing this exercise: If you have a	n equation
Why are people saying P(A) = 0? Is this necessarily a continuous situation, where a point has probability 0? What if event is a second continuous.	subset, with
•)