Test Part 2

Parvesh Adi Lachman

October 2023

1 Problem 1

Claim: $\{ n : 28 \mid n \} \subseteq \{ n : 4 \mid n \} \cap \{ n : 14 \mid n \}.$

- a) In order to prove $\{n:28\mid n\}\subseteq \{n:4\mid n\}\cap \{n:14\mid n\}$ we will show that if $28\mid n$ then $4\mid n$ and $14\mid n$.
- b) To prove if $28 \mid n$ then $4 \mid n$ and $14 \mid n$, we will assume $28 \mid n$. We want to show $4 \mid n$ and $14 \mid n$.
- c) **Proof:** In order to show $\{n: 28 \mid n\} \subseteq \{n: 4 \mid n\} \cap \{n: 14 \mid n\}$, we will show the equivalent statement: if $28 \mid n$ then $4 \mid n$ and $14 \mid n$. To do this, we will assume $28 \mid n$; we want to show that $4 \mid n$ and $14 \mid n$.

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
	28 n	By assumption
\Rightarrow	$n = 28c, c \in \mathbb{Z}$	By def of divisible by 28
\Rightarrow	$n = 28c$ and $n = 28c$, where $c \in \mathbb{Z}$	By def of n and by def of and
\Rightarrow	$n = 4 \cdot 7 \cdot c$ and $n = 14 \cdot 2 \cdot c$, where	By refactoring
	$c \in \mathbb{Z}$	
\Rightarrow	$n = 4k$ and $n = 14l$, where $k, l \in \mathbb{Z}$	Since product of ints is int
\Rightarrow	n is divisible by 4 and n is divisible	By def of divisible by 4 and 14
	by 14	
\Rightarrow	$4 \mid n \text{ and } 14 \mid n$	By def of divisible by 4 and 14

2 Problem 2

Claim: Let $f, n, m \in \mathbb{Z}$. If $f \mid n$ and $f \nmid m$ then $f \nmid (n + m)$.

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
BWOC,	There exists $f, n, m \in \mathbb{Z}$. such that	Since this is the negation of the claim
suppose	$f \mid n, f \nmid m \text{ and } f \mid (n+m)$	
\Rightarrow	$n = fc, (n+m) = fd, c, d \in \mathbb{Z}$	By def of divisible by f
\Rightarrow	$(n+m) - n = fd - fc, c, d \in \mathbb{Z}$	By substitution
\Rightarrow	$m = fd - fc, d, c \in \mathbb{Z}$	By algebra
\Rightarrow	$m = f(d-c), c, d \in \mathbb{Z}$	By factoring
\Rightarrow	$m = fv, v \in \mathbb{Z}$	Since difference of ints is int
\Rightarrow	m is divisible by f	By def of divisible by f
\Rightarrow	$f \mid m$	By def of divisible by f
\Rightarrow	Contradiction	Because we stated $f \nmid m$ and we
		showed that $f \mid n$, thus contradiction

Explanation: Since our negation of the claim was that there exists $f, n, m \in \mathbb{Z}$. such that $f \mid n, f \nmid m$ and $f \mid (n+m)$. We assumed that $f \nmid m$, this means that f does not divide m. However when trying to prove by contradiction, we showed that $f \mid m$ from our assumption. Thus we have proved our claim.

3 Problem 3

Claim: Let p,q be prime numbers with $p \neq q$ (i.e they are distinct). Then $\sqrt{p \cdot q}$ is irrational.

	Mathematical Reasoning	Reason this Statement is True
		(From the Approved List)
BWOC,	$\sqrt{p \cdot q}$ is rational	Since this is the negation of our claim
suppose	•	
\Rightarrow	$\sqrt{p \cdot q} = \frac{n}{d}$ where $n, d \in \mathbb{Z}, d \neq 0$,	By def of rational
	and n, d are in their lowest forms	
\Rightarrow	$p \cdot q = \frac{n^2}{d^2}$	By squaring both sides
\Rightarrow	$d^2p \cdot q = n^2$	By algebra
\Rightarrow	$p \cdot q \mid n^2$	By def of divisible by $p \cdot q$
\Rightarrow	$p \cdot q \mid n$	For $n \in \mathbb{Z}$, if n^2 is even then n is even,
		and if n^2 is odd then n is odd. If $p \cdot q$
		n^2 then $p \cdot q \mid n$
\Rightarrow	$n = p \cdot q \cdot c$, where $c \in \mathbb{Z}$	By def of divisible by $p \cdot q$
\Rightarrow	$d^2p \cdot q = c^2 \cdot q^2 \cdot p^2, c \in \mathbb{Z}$	By substitution
\Rightarrow	$p \cdot q \cdot c^2 = d^2, c \in \mathbb{Z}$	By algebra
\Rightarrow	$p \cdot q \mid d^2$	By def of divisible by $p \cdot q$
\Rightarrow	$p \cdot q \mid d$	For $n \in \mathbb{Z}$, if n^2 is even then n is even,
		and if n^2 is odd then n is odd. If $p \cdot q$
		n^2 then $p \cdot q \mid n$
\Rightarrow	Contradiction	Because $p \cdot q$ cannot divide both n and
		d

Explanation: Since we assumed that that n,d are in their lowest forms, both n and d cannot be divided by $p \cdot q$. We know that p and q are distinct primes such that (n,d)=1. In the proof we showed that $p \cdot q$ divides n and d, which is not true. Thus there is a contradiction.