การพัฒนาโปรแกรมประยุกต์และปัญญาประดิษฐ์ เพื่อการมองเห็นของเครื่องจักร Computer Programing and Artificial Intelligence in Machine Vision

2/4 - Machine Vision and Image Processing

- การติดตั้ง OpenCV Library
- การดำเนินการเกี่ยวกับโหมดสี ขนาดภาพ และการหมุนภาพ
- การดำเนินการเกี่ยวกับจุดภาพ ภายในรูปภาพ
- การดำเนินการเกี่ยวกับคุณสมบัติของรูปภาพ
- การดำเนินการด้วย PIL (Python Imaging Library)
- การวาดเส้น การวาดรูปทรงเรขาคณิต
- การตอบสนองการทำงานกับเมาส์
- การอ่านและแสดงค่าพิกัดจด
- การโหลดไฟล์วีดีโอ และการอ่านค่าคุณสมบัติของไฟล์
- คำถามท้ายบทเพื่อทดสอบความเข้าใจ

https://medium.com/@peatm17/มาเล่น-opencv-กันเถอะ-2-a2013fc4b53a

0/9 – การติดตั้ง OpenCV Library

- 1. การกำหนดตำแหน่งแฟ้มข้อมูล
 - เปิดแฟ้มข้อมูลที่ต้องการ จากนั้นกดปุ่ม Shift + Right Click ตรงที่ว่างของแฟ้มข้อมูล เลือกเมนู Open PowerShell window here

ใช้คำสั่ง jupyter notebook เพื่อเปิดโปรแกรม jupyter ระหว่างใช้งานโปรแกรม ต้องเปิด Windows
 PowerShell ทิ้งไว้เพื่อการเชื่อมต่อการทำงานของระบบ

- 2. การติดตั้งส่วนขยาย และยกเลิกการติดตั้ง
 - เมื่อผู้พัฒนาจะต้องทำการดำเนินการที่มีความซับซ้อนเพิ่มขึ้น การโปรแกรมก็จำเป็นที่จะต้องมีการเรียกใช้คำสั่ง
 พิเศษ ซึ่งอยู่ในส่วนขยายต่าง ๆ โดยใช้คำสั่ง

• การติดตั้งส่วนขยายทำได้ด้วยคำสั่ง

conda install extension-name

การยกเลิกการติดตั้งส่วนขยายทำได้ด้วยคำสั่ง

conda uninstall extension-name

• ตัวอย่าง การติดตั้งและยกเลิกการติดตั้งส่วนขยาย

```
Collecting package metadata (current_repodata.json): ...working... done
Solving environment: ...working... done

## Package Plan ##

environment location: C:\Users\bezr\miniconda3

added / updated specs:
    - pandas

M conda uninstall pandas

Collecting package metadata (repodata.json): ...working... done
Solving environment: ...working... done

## Package Plan ##

environment location: C:\Users\bezr\miniconda3

removed specs:
    - pandas
```

- 3. การประกาศเพื่อเรียกใช้ส่วนขยาย
 - การประกาศเพื่อเรียกใช้ส่วนขยาย import extension-name
 - ตัวอย่างการเรียกใช้ส่วนขยาย datetime เพื่อการทำงานกับข้อมูลวันและเวลา

```
1 import datetime

1 X = datetime.datetime.now()
2 print(X)
3 print("Date : ",X.strftime('%d/%m/%Y'))
4 print("Time : ",X.strftime('%H:%M:%S'))

2021-01-01 11:24:53.722304
Date : 01/01/2021
Time : 11:24:53
import datetime

X = datetime.datetime.now()
print(X)
print("Date : ",X.strftime('%d/%m/%Y'))
print("Time : ",X.strftime('%d/%m/%Y'))
print("Time : ",X.strftime('%H:%M:%S'))
```

- 4. การติดตั้งส่วนขยาย OpenCV
 - การติดตั้งส่วนขยายทำได้ด้วยคำสั่ง conda install -c conda-forge opencv
 - การติดตั้งส่วนขยาย OpenCV ใน Jupyter Notebook
- 1 conda install -c conda-forge opencv
 - หรืออาจติดตั้งส่วนขยาย OpenCV ผ่าน Anconda Promt

1/9 -- การดำเนินการเกี่ยวกับโหมดสี ขนาดภาพ และการหมุนภาพ

5. การอ่านภาพโดยใช้ฟังก์ชัน cv2.imread ()

6. การเปลี่ยนใหมดของภาพด้วย cv2.COLOR_BGR2GRAY

```
import cv2
img = cv2.imread('./image/lena.jpg')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

cv2.imshow('image',gray)
cv2.waitKey(0) # Click ทีรูป กดคีย์ใดๆ จะปัดรูปภาพ
cv2.destroyAllWindows()

### Color of the color
```

- 7. การเปลี่ยนโหมดของภาพด้วย cv2.cvtColor
 - ภาพดี cv2.IMREAD COLOR
 - ภาพโทนสีเทา cv2.IMREAD_GRAYSCALE
 - ภาพโปร่งใส cv2.IMREAD_UNCHANGED

```
1 import cv2
 2 imgUpdate1 = cv2.imread('./image/lena.jpg', cv2.IMREAD_COLOR)
 3 | imgUpdate2 = cv2.imread('./image/lena.jpg', cv2.IMREAD_GRAYSCALE)
4 imgUpdate3 = cv2.imread('./image/lena.jpg', cv2.IMREAD_UNCHANGED)
6 # แบบนี้ก็ทำงานได้เหมือนกัน
7 #imgUpdate1 = cv2.imread('./image/lena.jpg', 0)
8 #imgUpdate2 = cv2.imread('./image/lena.jpg', 1)
9 #imgUpdate3 = cv2.imread('./image/lena.jpg', -1)
10
11 cv2.imshow('image color',imgUpdate1)
12 | cv2.imshow('image gray',imgUpdate2)
13 | cv2.imshow('image unchange',imgUpdate3)
14
                    # Click ที่รูปกดคีย์ใดๆ จะปิดรูปภาพ
15 cv2.waitKey(0)
16 cv2.destroyAllWindows()
```


8. การบันทึกภาพโดยใช้ฟังก์ชัน cv2.imwrite ()

- 9. อ่านค่าความกว้างความสูงด้วยคำสั่ง shape
 - img.shape ผลลัพธ์จากคำสั่ง (Height, Width, Number of Channels)

```
1 import cv2
2 img = cv2.imread('./image/SUT.jpg')
3 hight, width, channel = img.shape
4 print(hight, width)
5 cv2.namedWindow('SUT',cv2.WINDOW_NORMAL)
6 cv2.imshow('SUT',img)
7 cv2.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปัดรูปภาพ
8 cv2.destroyAllWindows()

3229 2486
```

10. อ่านค่าความกว้างความสูงด้วยคำสั่ง shape

• img.shape ผลลัพธ์จากคำสั่ง (Height, Width, Number of Channels)

```
import cv2
    img = cv2.imread('./image/SUT.jpg',cv2.IMREAD_UNCHANGED)
    print(img.shape)
 5 cv2.namedWindow('SUT',cv2.WINDOW_NORMAL)
 6 cv2.imshow('SUT',img)
 8 cv2.waitKey(0) # Click ที่รูปกดดีย์ใดๆ จะปีดรูปภาพ
    cv2.destroyAllWindows()
(3229, 2486, 3)
    • size = 3229 pixel x 2486 pixel
    • channel = 3 is Red, Green and Blue channels.
 1 import cv2
    img = cv2.imread('./image/SUT.png',cv2.IMREAD_UNCHANGED)
 3
    print(img.shape)
 4
 5
    cv2.namedWindow('RGBA_Comp',cv2.WINDOW_NORMAL)
    cv2.imshow('RGBA_Comp',img)
 7
   cv2.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปีดรูปภาพ
    cv2.destroyAllWindows()
(311, 257, 4)
    • size = 311 pixel x 257 pixel
       channel = 4 is Alpha, Red, Green and Blue channels.
```

11. ปรับขนาดภาพด้วยคำสั่ง resize

• ด้วยการกำหนดความกว้างความสูงเพื่อปรับขนาดของภาพ

<mark>กิจกรรมที่ 1/8:</mark> ทำการโหลดรูป Namneung_BNK48.png จากนั้น

- ทดสอบแสดงผลเป็นรูปสีและรูปขาวดำบนหน้าจอดังภาพด้านล่าง ตามโปรแกรมตัวอย่าง พร้อมทั้งบันทึกไฟล์ รูปทั้ง 2 รูป
- เลือกรูปนักแสดงที่สนใจลัวทำการทดสอบเหมือนตัวอย่าง

```
1 import cv2
2 imgColor = cv2.imread('./image/Namneung_BNK48.png', cv2.IMREAD_COLOR)
3 imgGray = cv2.imread('./image/Namneung_BNK48.png', cv2.IMREAD_GRAYSCALE)
4 cv2.imwrite('./image/Namneung_BNK48_C.jpg',imgColor)
6 cv2.imwrite('./image/Namneung_BNK48_G.jpg',imgGray)
7 cv2.imshow('image color',imgColor)
9 cv2.imshow('image gray',imgGray)
10 cv2.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปิดรูปภาพ
12 cv2.destroyAllWindows()
```


12. ปรับขนาดภาพไม่ให้เสียอัตราส่วนด้วย imutils

• เพิ่มส่วนเสริมด้วยคำสั่ง conda install -c conda-forge imutils

Anaconda Prompt (miniconda3) - conda install -c conda-forge imutils (base) C:\Users\Pk007_20200917Bit64>conda install -c conda-forge imutils Collecting package metadata (current_repodata.json): done Solving environment: done ## Package Plan ## 1 import cv2 2 import imutils 3 img = cv2.imread('./image/lena.jpg') 4 cv2.imshow('Orginal Size',img) 5 Output = imutils.resize(img,width=300) 6 cv2.imshow('Resize Image',Output) 8 cv2.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปัดรูปภาพ 9 cv2.destroyAllWindows() Orginal Size Resize Image จะปิดรูปภาพ

13. หมุนภาพด้วยคำสั่ง rotate

- คำสั่ง img.rotate()
- การหมุนภาพ 90 องศาตามเข็มนาฬิกา cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
- การหมุนภาพ 90 องศาทวนเข็มนาฬิกา cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)
- nารหมุนภาพ 180 องศา cv2.rotate(img, cv2.ROTATE_180)

```
import cv2
     imgOrg = cv2.imread('./image/lena.jpg')
     cv2.imshow('Orginal Size',img)
  5 imgR01 = cv2.rotate(imgOrg,cv2.ROTATE 90 CLOCKWISE)
  6 imgR02 = cv2.rotate(imgOrg,cv2.ROTATE_90_COUNTERCLOCKWISE)
     imgR03 = cv2.rotate(imgOrg,cv2.ROTATE 180)
  8
  9 cv2.imshow('Rotate CW90',imgR01)
 10 cv2.imshow('Rotate CCW90',imgR02)
 11 cv2.imshow('Rotate 180',imgR03)
 12
 13 cv2.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปัดรูปภาพ
 14 cv2.destroyAllWindows()
CW90
                        CCW90
                                                 180
```

- 14. หมุนภาพตามองศาที่ต้องการด้วย scipy
 - เรียกใช้ส่วนเสริม from scipy import ndimage
 - การหมุนภาพ 15 องศาตามเข็มนาฬิกา จะใช้เลข -15

```
1 import cv2
2 from scipy import ndimage
3 imgOrg = cv2.imread('./image/lena.jpg')
4 cv2.imshow('Orginal Size',img)
5
6 imgR01 = ndimage.rotate(imgOrg,15)
7 imgR02 = ndimage.rotate(imgOrg,-15)
8 imgR03 = ndimage.rotate(imgOrg,-30)
9
10 cv2.imshow('Rotate CCW15',imgR01)
11 cv2.imshow('Rotate CW15',imgR02)
12 cv2.imshow('Rotate CW30',imgR03)
13
14 cv2.waitKey(0) # Click ทีรูปกดคีย์โดๆ จะปิดรูปภาพ
15 cv2.destroyAllWindows()
```

CCW15 → 15 CW30 → -30 **Proceedings** **Procedings** **Pr

15. การกลับภาพด้วย flip

- คำสั่ง img.flip()
- การกลับภาพ ในแนวตั้ง cv2.flip(originalImage, 0)
- การกลับภาพ ในแนวนอน cv2.flip(originalImage, 1)
- การกลับภาพ ในแนวตั้งและนอน cv2.flip(originalImage, -1)

```
1 import cv2
2 imgOrg = cv2.imread('./image/lena.jpg')
3
4 imgR01 = cv2.flip(imgOrg,0)
5 imgR02 = cv2.flip(imgOrg,1)
6 imgR03 = cv2.flip(imgOrg,-1)
7
8 cv2.imshow('Orginal',img)
9 cv2.imshow('H-Flip',imgR01)
10 cv2.imshow('V-Flip',imgR02)
11 cv2.imshow('HV-Flip',imgR03)
12
13 cv2.waitKey(0) # Click ทีรูปกดคีย์โดๆ จะปัดรูปภาพ
14 cv2.destroyAllWindows()
```


16. การอ่านรูปทั้งหมดจากแฟ้มข้อมูล

```
import os
for root,dirs, files in os.walk("./image"):
    for filename in files:
        print(filename)

lena.jpg
Namneung_BNK48.png
SUT.jpg
SUT_RGBA.png

ek06_Data > Week06_Code > image

Namneung_BNK
SUT SUT_RGBA
SUT_RGBA
```

<mark>กิจกรรมที่ 2/8</mark>: จาก folder flips จงทำการ flip รูปทั้งหมดให้ถูกต้อง

แนวทางของกิจกรรมที่ 2 → การปรับขนาดทุกภาพให้เท่ากัน

```
import os, cv2
 2
   for root,dirs, files in os.walk('./image/flips/'):
3
       for filename in files:
4
            print(filename)
5
            imgOrigin = cv2.imread('./image/flips/' + filename)
            imgResize = cv2.resize(imgOrigin,(400,300))
7
            cv2.imshow(filename,imgResize)
            cv2.imwrite('./image/resize/'+filename,imgResize)
   cv2.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปิดรูปภาพ
9
10
   cv2.destroyAllWindows()
```


2/9 -- การดำเนินการเกี่ยวกับจุดภาพ ภายในรูปภาพ

- 17. การอ่านข้อมูลจุดในรูปภาพ
 - ด้วยพิกัดตามคอลัมน์และแถว สำหรับภาพ BGR จะแสดงอาร์เรย์ของค่า Blue, Green, Red สำหรับภาพสีเทา
 จะส่งกลับค่าความเข้ม
 - img[4,4] 4ตัวแรกเป็นแถว, 4ตัวหลังเป็นคอลัมน์

18. การอ่านค่าจุดภาพและแก้ไขค่าของจุด

19. แก้ไขค่าสีของจุดหลายจุด

```
1 import cv2
2 img = cv2.imread('./image/lena.jpg')
3 cv2.imshow('Original',img)
4 for i in range(250,450):
5 for j in range(50,250):
6 img[i,j,2] = 200 # 0B,1G,2R
7 cv2.imshow('Red Change',img)
8 cv2.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปิดรูปภาพ
9 cv2.destroyAllWindows()
```


20. การนำเอาพื้นที่ที่เลือกไว้มาใช้งาน

• พื้นที่ ๆ สนใจภายในภาพ (Region of Interest: ROI) → ROI = img[y1:y2, x1,x2]

21. การกำหนดพื้นที่ๆ สนใจภายในภาพ

พื้นที่ ๆ สนใจภายในภาพ (Region of Interest: ROI) ROI = img[y1:y2, x1,x2]

<mark>กิจกรรมที่ 3/8:</mark> จากหลักการ ROI จงสร้างภาพให้ได้ผลลัพธ์ ดังต่อไปนี้

- ลองแบบนกตัวคัดลอกมาขนาดเท่าเดิม
- ปรับขนาดนกตัวคัดลอกมาให้เล็กลงก่อนวาง

3/9 -- การดำเนินการเกี่ยวกับคุณสมบัติของรูปภาพ

- 22. ติดตั้งส่วนเสริม matplotlib
 - ติดตั้งโมดูล matplotlib โดยสามารถทำผ่านคำสั่ง

conda install matplotlib

```
Anaconda Prompt (miniconda3) - conda install matplotlib

(base) C:\Users\Pk007_20200917Bit64>
(base) C:\Users\Pk007_20200917Bit64>conda install matplotlib

Collecting package metadata (current_repodata.json): done

Solving environment: done
```

23. การพิจารณาจุดภาพด้วย Histogram

```
import cv2 as cv
from matplotlib import pyplot as plt

img = cv.imread('./image/lena.jpg',0) # 0=Gray

plt.hist(img.ravel(),256,[0,256])
plt.show()

cv.imshow('Lena Gray',img)
cv.waitKey(0) # Click ทีรูปกดคีย์ใดๆ จะปัดรูปภาพ
cv.destroyAllWindows()
```


24. การพิจารณาจุดภาพที่มีโหมดเป็นภาพสี

```
1 import cv2 as cv
2 from matplotlib import pyplot as plt
3
4 img = cv.imread('./image/lena.jpg',1) # 1=Color
5 plt.hist(img.ravel(),256,[0,256])
6 plt.show()
7
8 cv.imshow('Lena Color',img)
9 cv.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปัดรูปภาพ
10 cv.destroyAllWindows()
```


25. การพิจารณาจุดภาพแบบแยกโหมดสี

```
import cv2 as cv
 2 from matplotlib import pyplot as plt
 4 img = cv.imread('./image/lena.jpg',1) # 1=Color
 5 color = ('b', 'g', 'r')
 6 for i,col in enumerate(color):
 7
       histr = cv.calcHist([img],[i],None,[256],[0,256])
       plt.plot(histr, color=col)
 8
9
      plt.xlim([0,256])
10 plt.show()
11
12 cv.imshow('Lena Color',img)
13 cv.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปัดรูปภาพ
14 cv.destroyAllWindows()
```


26. การพิจารณาจุดภาพเฉพาะโหมดสี

```
import cv2 as cv
from matplotlib import pyplot as plt

img = cv.imread('./image/beach.jpg',1) # 1=Color
color = ('b', 'g', 'r')
for i,col in enumerate(color):
    histr = cv.calcHist([img],[i],None,[256],[0,256])
    plt.plot(histr, color=col)
    plt.xlim([0,256])
plt.show()

cv.imshow('Lena Color',img)
cv.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปัดรูปภาพ
cv.destroyAllWindows()
```



```
1 import cv2 as cv
2 from matplotlib import pyplot as plt
3 |
4 img = cv.imread('./image/beach.jpg',1) # 1=Color
5 histr = cv.calcHist([img],[i],None,[256],[0,256])
6 plt.plot(histr, color='b')
7 plt.xlim([0,256])
8 plt.show()
9
10 cv.imshow('Lena Color',img)
11 cv.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปัดรูปภาพ
12 cv.destroyAllWindows()
```


27. ตัวอย่างการนำ Histogram ไปใช้ (1)

```
import cv2 as cv
    from matplotlib import pyplot as plt
  4 | img = cv.imread('./image/mango1.jpg',1) # 1=Color
 5 color = ('b', 'g', 'r')
 6 | for i,col in enumerate(color):
        histr = cv.calcHist([img],[i],None,[256],[0,256])
 7
        plt.plot(histr, color=col)
 8
 9
        plt.xlim([0,256])
 10 plt.show()
 11
12 cv.imshow('Mango-1',img)
13 cv.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปีดรูปภาพ
 14 cv.destroyAllWindows()
2000
1500
1000
 500
              50
                       100
                                 150
                                           200
                                                     250
```

28. ตัวอย่างการนำ Histogram ไปใช้ (2)

```
import cv2 as cv
    from matplotlib import pyplot as plt
  2
  3
  4 | img = cv.imread('./image/mango2.jpg',1) # 1=Color
  5 color = ('b', 'g', 'r')
  6 for i,col in enumerate(color):
        histr = cv.calcHist([img],[i],None,[256],[0,256])
  7
 8
        plt.plot(histr, color=col)
 9
        plt.xlim([0,256])
 10 plt.show()
 11
 12 cv.imshow('Mango-2',img)
 13 cv.waitKey(0) # Click ที่รูปกดคีย์ใดๆ จะปีดรูปภาพ
    cv.destroyAllWindows()
                                                         Mango-2
2500
```


29. การใส่คำอธิบายในแผนภาพ

```
import cv2 as cv
     from matplotlib import pyplot as plt
     img = cv.imread('./image/lena.jpg',0) # 0=Gray
     plt.plot(cv.calcHist([img],[0],None,[256],[0,256]))
     plt.show()
2500
2000
1500
1000
500
                100
                      150
     import cv2 as cv
  2 from matplotlib import pyplot as plt
  3 img = cv.imread('./image/lena.jpg',0) # 0=Gray
  4 plt.figure()
  5 plt.title('Grayscale Histogram')
  6 plt.xlabel('Bins')
  7 plt.ylabel('# of Pixels')
  8 plt.plot(cv.calcHist([img],[0],None,[256],[0,256]))
     plt.show()
  2500
  2000
5 1500
5 1000
  500
                  100
                              200
                                    250
                        150
                     Bins
```

4/9 -- การดำเนินการด้วย PIL (Python Imaging Library)

- 30. ติดตั้ง Pillow
 - ติดตั้งโมดูล Pillow โดยสามารถทำผ่านคำสั่ง conda install pillow
- Anaconda Prompt (miniconda3)

(base) C:\Users\Pk007_20200917Bit64>conda install pillow Collecting package metadata (current_repodata.json): done Solving environment: done

- 31. การจัดการภาพด้วยส่วนขยาย Pillow PIL
 - การเรียกใช้ส่วนขยาย pillow from PIL import Image, ImageDraw, ImageFont

```
from PIL import Image
img = Image.open('./image/house.jpg')
img.show()
```


32. การปรับขนาดภาพอย่างง่ายด้วย thumbnail

```
1 from PIL import Image
2 size = 60, 60
3 img = Image.open('./image/lena.jpg')
4 img.thumbnail(size)
5 img.save(r'./image/thumb.jpg')
การบันทึกภาพ
```

33. การจัดการภาพด้วยส่วนขยาย Pillow – PIL

34. การสร้างตัวอักษรลายน้ำบนภาพ

35. การสร้างตัวอักษรลายน้ำภาษาไทย

36. การนำภาพมาซ้อนกันโดยใช้ส่วนขยาย PIL

```
from PIL import Image
img = Image.open('./image/bridge.jpg')
logo = Image.open('./image/SUT_PNG.png')
newsize = (100, 100)
logo = logo.resize(newsize)
img_copy = img.copy()
position = (10,10)
img_copy.paste(logo,position)
img_copy.save('./image/output.jpg')
img_copy.show()
```


37. กรณีเป็นภาพ .png สามารถกำหนดให้โปร่งใสดังนี้

```
from PIL import Image
img = Image.open('./image/bridge.jpg')
logo = Image.open('./image/SUT_PNG.png')
4 newsize = (100, 100)
5 logo = logo.resize(newsize)
6 img copy = img.copy()
7 position = (10,10)
8 img_copy.paste(logo,position,logo)
9 img_copy.save('./image/output fpg')
10 img copy.show()
```

กรณีเป็นภาพ .png สามารถกำหนดให้โปร่งใสดังนี้

<mark>กิจกรรมที่ 4/8</mark>: .ให้เลือกรูปภาพของตัวเอง(ต้องไม่ซ้ำกับเพื่อน) แล้วนำไฟล์ logo (SUT_PNG.png) ไปใส่ไว้ที่รูปของตัวเองที่ เลือก { เป็นดังภาพตัวอย่าง }

```
1 from PIL import Image,ImageDraw,ImageFont
   img = Image.open('./image/picWichai.jpg')
logo = Image.open('./image/SUT_PNG.png')
   4 newsize = (600, 600)
   5 logo = logo.resize(newsize)
  6 img_copy = img.copy()
  8 position_logo = (4000,2400)
  9 img copy.paste(logo,position logo,logo)
  10
  11 position_name = (3900,3000)
 12 draw = ImageDraw.Draw(img_copy)
 13 draw.text(position name, "นายวิชัย ศรีสุรักษ์", font=ImageFont.truetype('./image/THSarabunNew.ttf',200)
 14
  15 img_copy.save('./image/output.jpg')
  16 img_copy.show()
 17
from PIL import Image,ImageDraw,ImageFont
img = Image.open('./image/picWichai.jpg')
logo = Image.open('./image/SUT_PNG.png')
newsize = (600, 600)
logo = logo.resize(newsize)
img_copy = img.copy()
position_logo = (4000,2400)
img_copy.paste(logo,position_logo,logo)
position_name = (3900,3000)
draw = ImageDraw.Draw(img_copy)
draw.text(position_name, "นายวิชัย ศรีสุรักษ์", font=ImageFont.truetype('./image/THSarabunNew.ttf',200))
img_copy.save('./image/output.jpg')
img_copy.show()
```


<mark>กิจกรรมที่ 5/8</mark>: นำไฟล์ในกิจกรรม4 แล้วเลือกโลโก้ของตัวเองใส่ไว้ที่รูปดังภาพ { เป็นดังภาพตัวอย่าง }

```
from PIL import Image, ImageDraw, ImageFont
   2 img = Image.open('./image/picWichai.jpg')
   3 logo = Image.open('./image/Bill DragonBall.png')
   5 #newsize = (600, 600)
   6 #logo = logo.resize(newsize)
   7 #img copy = img.copy()
   8
   9 position logo = (4000,2000)
  10 img_copy.paste(logo,position_logo,logo)
  11
  12 position name = (3900,3000)
 13 t font = ImageFont.truetype('./image/THSarabunNew.ttf',200)
 14 t_color = 'rgb(255, 0, 0)' # (0,0,0)=Black
  15 draw = ImageDraw.Draw(img_copy)
 16 draw.text(position name, "นายวิชัย ศรีสุรักษ์", |fill = t color, font = t font
  17
 18 img copy.save('./image/output.jpg')
  19 img copy.show()
  20 logo.show()
from PIL import Image.ImageDraw.ImageFont
img = Image.open('./image/picWichai.jpg')
logo = Image.open('./image/Bill_DragonBall.png')
#newsize = (600, 600)
#logo = logo.resize(newsize)
#img_copy = img.copy()
position_logo = (4000,2000)
img_copy.paste(logo,position_logo,logo)
position_name = (3900,3000)
t_font = ImageFont.truetype('./image/THSarabunNew.ttf',200)
t_color = 'rgb(255, 0, 0)' # (0,0,0)=Black
draw = ImageDraw.Draw(img_copy)
draw.text(position_name, "นายวิชัย ศรีสุรักษ์", fill = t_color, font = t_font)
img_copy.save('./image/output.jpg')
img_copy.show()
logo.show()
```


5/9 -- การวาดเส้น การวาดรูปทรงเรขาคณิต

- 38. การวาดเส้น การวาดรูปทรงเรขาคณิต
 - เพื่อให้เกิดความเข้าใจเพื่อการอธิบายถึงผลลัพธ์ที่ได้จากการประมาลผลภาพ

39. การวาดเส้น

● วาดเส้นจากจุด (160,160) ไปที่จุด (450,450) ด้วยเส้นสีน้ำเงิน(B,G,R = 250,0,0) ความหนา=5

import cv2

img = cv2.imread('./image/thai-subway.png')
cv2.line(img, (160,160), (450,450), (255,0,0),5)
cv2.imshow('Lab101_Thai Subway by B3601234 Mr.Wichai', img)

cv2.waitKey(0)
cv2.destroyAllWindows()

40. การวาดเส้น โดยปรับให้โปร่งใสด้วยการทำ overlay

- การปรับค่าความโปร่งใสโดยใช้ค่า alpha แล้วใช้คำสั่ง addWeighted() เพื่อปรับให้ภาพเกิดการซ้อนกัน
- วาดเส้นจากจุด (160,160) ไปที่จุด (450,450) ด้วยเส้นสีเขียว (B,G,R = 0,250,0) ความหนา=5
- ค่าความ โปร่งใส alpha = 0.4
- 🔍 วาด Overlay ด้วยความโปร่งใส alpha แล้วซ้อนบนรูปเดิมด้วยความโปร่งใส 1-alpha

```
import cv2

img = cv2.imread('./image/thai-subway.png')
overlay = img.copy()
cv2.line (overlay, (160,160), (450,450), (0,255,0),5)
alpha = 0.4
image_new = cv2.addWeighted (overlay, alpha, img, 1 - alpha, 0)
cv2.imshow('Lab102_Thai Subway by B3601234 Mr.Wichai', image_new)

cv2.waitKey(0)
cv2.destroyAllWindows()
```


41. การวาดรูปทรางเหลี่ยมด้วย rectangle

• วาดสี่เหลี่ยมจุดมุมบนอยู่ที่ (20,50) กว้าง 200 สูง 200 ด้วยเส้นสีเขียว (B,G,R = 0,250,0) ความหนา=3

```
import cv2

img = cv2.imread('./image/thai-subway.png')
overlay = img.copy()
cv2.rectangle(img, (20,50), (200,200), (0,255,0),3)
cv2.imshow('Lab103_Thai Subway by B3601234 Mr.Wichai', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```


42. การวาดรูปทรงเหลี่ยมด้วย rectangle

• วาดสี่เหลี่ยมจุดมุมบนอยู่ที่ 50,100 กว้าง 200 สูง 100

```
import cv2

img = cv2.imread('./image/thai-subway.png')
overlay = img.copy()
x, y, w, h = 50, 100, 200, 100 # Rectangle parameters
cv2.rectangle (overlay, (x, y), (x+w, y+h), (0, 200, 0), -1)
alpha = 0.4
image_new = cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0)|
cv2.imshow('Lab104_Thai Subway by B3601234 Mr.Wichai', image_new)

cv2.waitKey(0)
cv2.destroyAllWindows()
```


43. การวาดรูปทรางกลมด้วย circle

• วาดวงกลมจุดกลางอยู่ที่ 360,180 รัศมีของวงกลม 100

```
import cv2
img = cv2.imread('./image/thai-subway.png')
overlay = img.copy()
x, y = 360,180
cv2.circle (overlay, (x, y), 100, (0, 200, 200), -1)
alpha = 0.4
image_new = cv2.addWeighted (overlay, alpha, img, 1 - alpha, 0)
cv2.imshow('Lab105_Thai Subway by B3601234 Mr.Wichai', image_new)
cv2.waitKey(0)
cv2.destroyAllWindows()
```


44. รูปทรงหลายเหลี่ยมด้วย polylines

- import numpy as np
- ใช้ส่วนขยาย numpy เพื่อช่วยในการสร้างเซ็ตของจุดสำหรับรูปทรงหลายเหลี่ยม
- วาดรูปทรงหลายเหลี่ยมแบบโปร่ง

```
import cv2
import numpy as np

img = cv2.imread('./image/thai-subway.png')
overlay = img.copy()
pts = np.array([[0,365],[0,180],[220,180],[490,365]], np.int32)
pts = pts.reshape((-1, 1, 2))
cv2.polylines (overlay, [pts], True, (0, 0,255), 5)
alpha = 0.4
image_new = cv2.addWeighted (overlay, alpha, img, 1 - alpha, 0)
cv2.imshow('Lab106_Thai Subway by B3601234 Mr.Wichai', image_new)

cv2.waitKey(0)
cv2.destroyAllWindows()
```


45. รูปทรงหลายเหลี่ยมด้วย fillPoly

• การปรับค่าความโปร่งใสโดยใช้ค่า alpha แล้วใช้คำสั่ง addWeighted() เพื่อปรับให้ภาพเกิดการซ้อนกัน

```
import cv2
import numpy as np
img = cv2.imread('./image/thai-subway.png')
overlay = img.copy()
pts = np.array([[0,360],[0,180],[220, 180], [480,360]], np.int32)
pts = pts.reshape((-1, 1, 2))
cv2.fillPoly(overlay, [pts],(0,0,255))
alpha = 0.4
image_new = cv2.addWeighted (overlay, alpha, img, 1 - alpha, 0)
cv2.imshow('Lab107_Thai Subway by B3601234 Mr.Wichai', image_new)
cv2.waitKey(0)
cv2.destroyAllWindows()
```


<mark>กิจกรรมที่ 6/8:</mark> จงใช้วิธีการ overlay เพื่อสร้างรูปดังต่อไปนี้

- ______ 1. ภาพ1 - ทำบนตัวอย่าง ที่กำหนดให้ กำหนดชื่อภาพเป็น <mark>Mission6Pic1_by.B3701234.Mr.Wichai</mark>
- 2. ภาพ2 เลือกรูปถนน(ที่คล้ายคลึงกัน) แล้วทำเหมือนตัวอย่าง พร้อมทั้งใส่ชื่อรหัสบนรูปของตัวเอง Mission6Pic2 by.B3701234.Mr.Wichai
- 3. หากทำการทดลองโปรแกรม ตอนที่ 6/9 จะทำให้หาตำแหน่งง่ายขึ้น

```
import cv2
     img Name = 'Mission1Pic1 by.B3701234.Mr.Wichai'
    def click_event(event, x, y, flags, param):
  5
         if event == cv2.EVENT_LBUTTONDOWN:
                                              # ด้วนปร
  6
             refpt = []
             refpt.append([x,y])
                                             # เพิ่มข้อมูลเข้าไปในตัวแปร
  7
             font = cv2.FONT_HERSHEY_SIMPLEX # font = แบบตัวอักษร
  8
             cv2.putText(img, str(x) + "," + str(y),(x,y), font, 0.5, (255,255,0), 2)
                                            # putText > แสดงตัวอักษรบนหน้าต่างแสดงรป
             cv2.imshow(img_Name, img)
 10
 11
 12 img = cv2.imread(".\image\HighWay.jpg")
 13 cv2.imshow(img Name, img)
 14 cv2.setMouseCallback(img_Name, click_event)
 15
 16 cv2.waitKey(0)
 17 cv2.destroyAllWindows()
Mission1Pic1_by.B3701234.Mr.Wichai
                                     414,303
  B B C NEWS
```

```
import cv2
   import numpy as np
 3 img_Name = 'Mission1Pic1_by.B3701234.Mr.Wichai'
5 img = cv2.imread('./image/HighWay.jpg')
7 overlay = img.copy()
8 pts = np.array([[430,300],[500,300],[440, 430], [267,430]], np.int32)
9 pts = pts.reshape((-1, 1, 2))
10 cv2.fillPoly(overlay, [pts],(0,0,255))
11 alpha = 0.5
12 image_new = cv2.addWeighted (overlay, alpha, img, 1 - alpha, 0)
13
14 | overlay = image_new.copy()
15 pts = np.array([[554,300],[632,300],[746, 430], [575,430]], np.int32)
16 pts = pts.reshape((-1, 1, 2))
17 cv2.fillPoly(overlay, [pts],(255,0,0))
18 | alpha = 0.3 |
image_new = cv2.addWeighted (overlay, alpha, img, 1 - alpha, 0)
20
21 cv2.imshow(img Name, image new)
22 cv2.waitKey(0)
23 cv2.destroyAllWindows()
```


6/9 -- การตอ<u>บสนองการ</u>ทำงานกับเมาส์

เพื่อให้การทำงานด้านการโปรแกรมเพื่อการประมวลผลภาพเป็นไปอย่างมีประสิทธิภาพและเกิดความสะดวกใน
 ดำเนินการมากยิ่งขึ้นด้วยการดำเนินการตอบสนองการทำงานกับเมาส์ ตัวอย่างเช่น การกำหนดบริเวณพื้นที่ของภาพ ที่ต้องการเฉพาะส่วน

- 46. การแสดงค่าตอบสนองการทำงานของเมาส์
- การตรวจสอบว่ามีค่าการตอบสนองการทำงานอะไรบ้างของเมาส์
- 1 import cv2
- 2 events = [i for i in dir(cv2) if 'EVENT' in i]
- 3 print(events)

['EVENT_FLAG_ALTKEY', 'EVENT_FLAG_CTRLKEY', 'EVENT_FLAG_LBUTTON', 'EVENT_FLAG_M BUTTON', 'EVENT_FLAG_RBUTTON', 'EVENT_FLAG_SHIFTKEY', 'EVENT_LBUTTONDBLCLK', 'E VENT_LBUTTONDOWN', 'EVENT_LBUTTONUP', 'EVENT_MBUTTONDBLCLK', 'EVENT_MBUTTONDOWN', 'EVENT_MOUSEHWHEEL', 'EVENT_MOUSEMOVE', 'EVENT_MOUSEWHEEL', 'EVENT_RBUTTONDBLCLK', 'EVENT_RBUTTONUP']

47. ตารางค่าตอบสนองการทำงานของเมาส์

Event	Meaning	Value
EVENT_MOUSEMOVE	indicates that the mouse pointer has moved over the window.	1
EVENT_LBUTTONDOWN	indicates that the left mouse button is pressed.	2
EVENT_RBUTTONDOWN	indicates that the right mouse button is pressed.	3
EVENT_MBUTTONDOWN	indicates that the middle mouse button is pressed.	4
EVENT_LBUTTONUP	indicates that left mouse button is released.	
EVENT_RBUTTONUP	indicates that right mouse button is released.	6
EVENT_MBUTTONUP	indicates that middle mouse button is released.	
EVENT_LBUTTONDBLCLK	indicates that left mouse button is double clicked.	
EVENT_RBUTTONDBLCLK	indicates that right mouse button is double clicked.	9
EVENT_MBUTTONDBLCLK	indicates that middle mouse button is double clicked.	10
EVENT_MOUSEWHEEL	positive and negative values mean forward and backward scrolling, respectively.	11
EVENT MOUSEHWHEEL	positive and negative values mean right and left scrolling, respectively.	12

Flag	Meaning	Value
EVENT_FLAG_LBUTTON	indicates that the left mouse button is down.	1
EVENT_FLAG_RBUTTON	indicates that the right mouse button is down.	2
EVENT_FLAG_MBUTTON	indicates that the middle mouse button is down.	3
EVENT_FLAG_CTRLKEY	indicates that CTRL Key is pressed.	4
EVENT_FLAG_SHIFTKEY	indicates that SHIFT Key is pressed.	16
EVENT_FLAG_ALTKEY	indicates that ALT Key is pressed.	32

48. การตั้งค่าการทำงานของเมาส์

การที่จะให้หน้าต่าง ตอบสนองการทำงานกับเมาส์ได้ จะต้องใช้คำสั่ง setMouseCallback โดยระบุชื่อหน้าต่างที่
ต้องการให้มีการอ่านค่าการใช้งานเมาส์ เช่น การคลิก หรือการลากเมาส์ ค่าการใช้งานเมาส์จะถูกส่งไปที่กลุ่มคำสั่ง
ตอบสนองการทำงานกับเมาส์

49. เริ่มต้นการทำงานกับเมาส์

50. การทดสอบการตอบสนองของ Event

51. การทดสอบการตอบสนองของ Event และ Flags

```
ตอบสนองเมื่อกดปุ่มซ้าย
                  ตอบสนองเมื่อกดปุ่มชวา
                        ตอบสนองเมื่อกดปุ่มซ้ายพร้อมกดปุ่ม CTRL
                               ตอบสนองเมื่อกดปุ่มขวาพร้อมกดปุ่ม ALT
 1 import cv2
 2
 3 def clickyevent(event, x, y, flags, param):
 4
        if event == cv2.EVENT_LBUTTONDOWN:
            print("Left Button Down")
 5
 6
 7
        if event == cv2.EVENT_RBUTTONDOWN:
 8
            print("Right Button Down")
 9
        if flags == cv2.EVENT_FLAG_CTRLKEY + cv2.EVENT_FLAG_LBUTTON:
10
11
            print("Left Button Down while pressing CTRL key")
12
        if event == cv2.EVENT_MOUSEMOVE and flags == cv2.EVENT_FLAG_ALTKEY:
13
            print("Right Button Down while pressing ALT key")
14
15
16 img = cv2.imread(".\image\lena.jpg")
17 img_Name = 'Lab202_Lena by B3601234 Mr.Wichai'
18 cv2.imshow(img_Name, img)
19 cv2.setMouseCallback(img Name, click_event)
20
21 cv2.waitKey(0)
22 cv2.destroyAllWindows()
Left Button Down
Right Button Down
Right Button Down
Right Button Down while pressing ALT key
Left Button Down
Left Button Down while pressing CTRL key
Left Button Down
```

52. การอ่านค่าจชพิกัดจุด x,y ของเมาส์

<mark>กิจกรรมที่ 7/8:</mark> วาดรูปทรงกลม

- 1. วาดรูปวงกลมสีเหลืองขนาด 100 px เมื่อมีการคลิกเมาส์บริเวณจุดต่าง ๆบนรูป
- 2. เลือกรูปของตัวเอง แล้วทำเหมือนข้อ 1 โดย (1)ใช้สีที่ชอบ, (2)เปลี่ยนขนาดวงกลมเป็นประมาณ 10% ของรูปภาพ


```
1 import cv2
 3 def click_event(event, x, y, flags, param):
      if event == cv2.EVENT_LBUTTONDOWN:
           print(x, y)
          global img
 7
           global img Name
 8
          overlay = img.copy()
 9
          cv2.circle (overlay, (x, y), 100, (0, 200, 200), -1)
10
           alpha = 0.4
          img = cv2.addWeighted (overlay, alpha, img, 1 - alpha, 0)
11
           cv2.imshow(img_Name, img)
12
13
14 img = cv2.imread(".\image\lena.jpg")
15 img_Name = 'Mission2_Lena by B3601234 Mr.Wichai'
16 cv2.imshow(img_Name, img)
17 cv2.setMouseCallback(img_Name, click_event)
18
19 cv2.waitKey(0)
20 cv2.destroyAllWindows()
304 270
316 137
```

7/9 -- การอ่านและแสดงค่าพิกัดจุด

53. การอ่านและแสดงค่าพิกัดจุด

```
1 import cv2
   img_Name = 'Lab301_B3601234_Mr.Wichai'
4 def click_event(event, x, y, flags, param):
5
       if event == cv2.EVENT_LBUTTONDOWN:
           refpt = []
                                           # ตัวแปร
6
                                          # เพิ่มข้อมลเข้าไปในตัวแปร
           refpt.append([x,y])
           font = cv2.FONT_HERSHEY_SIMPLEX # font = แบบตัวอักษร
8
           cv2.putText(img, str(x) + "," + str(y),(x,y), font, 0.5, (255,255,0), 2)
9
                                      # putText > แสดงตัวอักษรบนหน้าต่างแสดงรูป
10
           cv2.imshow(img_Name, img)
11
12 img = cv2.imread(".\image\lena.jpg")
13 cv2.imshow(img_Name, img)
14 cv2.setMouseCallback(img_Name, click_event)
15
16 cv2.waitKey(0)
17 cv2.destroyAllWindows()
```


54. การกำหนด ROI(Region of Interest) โดยใช้ cv2.selectROI()

55. การกำหนดรูปแบบกรอบ ROI ของ cv2.selectROI()

56. การสร้างภาพจาก ROI

57. การสร้างภาพหลายภาพจาก cv2.selectROIs()

การทำงานของ selectROI()

[362 8 80 116] [461 52 71 102]]

- กำหนดกรอบ ROI แล้วกดปุ่ม Enter เพื่อทำอ่านค่าพื้นที่
- ทำจนครบทุกพื้นที่
- จบการทำงานโดยกดปุ่ม esc

```
1 import cv2
 2 img_Name = 'Lab304_B3601234_Mr.Wichai'
 3 img = cv2.imread("./image/people.jpg")
 4 ROIS = cv2.selectROIs(img_Name + " - Master", img)
 5 print(ROIS)
 6 crop number = 0
 8 for cordinate in ROIS:
      x1=cordinate[0]
 9
    y1=cordinate[1]
x2=cordinate[2]
10
11
     y2=cordinate[3]
imgCrop = img[y1:y1+y2, x1:x1+x2]
12
13
14
      cv2.imshow("ImgCrop No_" + str(crop_number) , imgCrop)
        crop number+=1
15
16
17 cv2.waitKey(0)
18 cv2.destroyAllWindows()
19
[[ 66 53 98 94]
 [167 47 81 104]
[259 30 89 120]
```


<mark>กิจกรรมที่ 8/8:</mark> การสร้างภาพหลายภาพจาก cv2.selectROIs()

1. เลือกรูปของตัวเองที่มีสมาชิกในรูป 4-5 คน (BlackPink, Sistar, Got7, BTS, ...) แล้วทำเหมือนการทดลองก่อนนี้


```
1 import cv2
 2 img Name = 'Mission3 B3601234 Mr.Wichai'
 3 img = cv2.imread("./image/SMF_650.jpg")
 4 ROIS = cv2.selectROIs(img_Name + " - Master", img)
 5 print(ROIS)
 6 crop_number = 0
 8 for cordinate in ROIS:
 9
      x1=cordinate[0]
     y1=cordinate[1]
x2=cordinate[2]
10
11
12
      y2=cordinate[3]
13
        imgCrop = img[y1:y1+y2, x1:x1+x2]
        cv2.imshow("ImgCrop No_" + str(crop_number) , imgCrop)
14
15
        crop number+=1
16
17 cv2.waitKey(0)
18 cv2.destroyAllWindows()
19
[[ 39 53 116 137]
[171 22 120 150]
 [267 24 145 165]
 [375 43 142 147]
 [497 9 133 155]]
```


8/9. การโหลดไฟล์วีดีโอ และการอ่านค่าคุณสมบัติของไฟล์

58. การโหลไฟล์วีดีโอ และการอ่านค่าคุณสมบัติของไฟล์

```
1 import cv2
2 cap = cv2.VideoCapture('./image/move.avi') # กำหนดชื่อไฟล์วีดีโอ
3 frame_number = cap.get(cv2.CAP_PROP_FRAME_COUNT) # จำนวนเฟรม
4 h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # ความสูง
5 W = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # ความกว้าง
6 fps = int(cap.get(cv2.CAP_PROP_FPS)) # จำนวนเฟรมต่อวินาที
7
8 print(frame_number, h, W, fps)
795.0 576 768 10
```

- 59. การทำงานกับภาพเคลื่อนไหว จากไฟล์วีดีโอ
 - การโหลดวีดีโอไฟล์ด้วย cv2.VideoCapture()
 - ตรวจสอบการเปิดไฟล์ด้วยคำสั่ง isOpened() แล้วอ่านภาพทีละเฟรมด้วยคำสั่ง read()

```
      1
      import cv2

      2
      Video_Name = 'Lab401_B3601234 Mr.Wichai' # ชื่อ video

      3
      cap = cv2.VideoCapture('./image/move.avi') # อ่านไฟล์วีดีโอ

      4
      while(cap.isOpened()): # วนช้าจนกว่าจะอ่านภาพหมด

      5
      ret, frame = cap.read() # อ่านภาพที่ละเฟรม

      6
      cv2.imshow(Video_Name, frame) # การแสดงผลทางหน้าจอ

      7
      if cv2.waitKey(1) & 0xff == ord ('q'): # รอกดปุ๋ม q หยุดการทำงาน

      8
      cap.release()

      10
      cv2.destroyAllWindows()
```


- 60. การทำงานการภาพเคลื่อนไหว จากกล้องเว็บแคม
 - การโหลดวีดีโอด้วยการสตรีมจากกล้อง

- 61. การทำงานการภาพเคลื่อนไหว จาก IP Camera
 - การสตรีมวีดีโอผ่านเครือข่าย สามารถทำได่ทาง IP ดังนี้จะต้องทำการกำหนดให้คอมพิวเตอ์ และ IP Camera อยู่ใน วงเครือข่ายที่มี IP วงเดียวกัน

```
User Password
                                                            IP Camera
1 import cv2
 2 cap = cv2.VideoCapture('rtsp://admin: abcd1234@192.168.1.153:554/Streaming/Channels/101/'
 3 Video_Name = 'Lab403_B3601234 Mr.Wichai' # ชื่อ video
                                                        # วนซ้ำไม่รู้จบ
4 while(True):
      ret, frame = cap.read()
                                                        # อ่านภาพที่ละเฟรม
      gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # เปลี่ยนภาพเป็นสีเทา
6
      cv2.imshow(Video_Name, gray) # การแสดงผลทางหน้าจอ
if cv2.waitKey(1) & 0xff == ord(|'q'): # รอกดปุ่ม q หยุดการทำงาน
7
8
10 cap.release()
11 cv2.destroyAllWindows()
12
```

การพัฒนาโปรแกรมประยุกต์และบัญญาประดิษฐ์ เพื่อการมองเห็นของเครื่องจักร Computer Programing and Artificial Intelligence in Machine Vision

ขื่อ-สกุล :

9/9 -- คำถามท้ายบทเพื่อทดสอบความเข้าใจ

กิจกรรมที่ 1/8: ทำการโหลดรูป ZZZZZZZ_BNK48.png

รูปโปรแกรม Jupyter Notebook

Code Python3

ผลการทำงาน

กิจกรรมที่ 2/8: จาก folder flips จงทำการ flip รูปทั้งหมดให้ถูกต้อง

ฐปโปรแกรม Jupyter Notebook

Code Python3

ผลการทำงาน

กิจกรรมที่ 3/8: จากหลักการ ROI จงสร้างภาพให้ได้ผลลัพธ์ เป็น นกสองตัว

ฐปโปรแกรม Jupyter Notebook

Code Python3

ผลการทำงาน

กิจกรรมที่ 4/8: .ให้เลือกรูปภาพของตัวเอง(ต้องไม่ซ้ำกับเพื่อน) แล้วนำไฟล์ logo (SUT_PNG.png) ไปใส่ไว้ที่รูปของตัวเองที่ เลือก { เป็นดังภาพตัวอย่าง }

ฐปโปรแกรม Jupyter Notebook

Code Python3

ฐปเดิม

รูป ที่เพิ่มโลโก้ SUT และชื่อนักศึกษา

กิจกรรมที่ 5/8: นำไฟล์ในกิจกรรม4 แล้วเลือกโลโก้ของตัวเองใส่ไว้ที่รูปดังภาพ { เป็นดังภาพตัวอย่าง }

รูปโปรแกรม Jupyter Notebook

Code Python3

โลโก้ที่เลือก

ฐปเดิม

รูป ที่เพิ่มโลโก้ SUT และชื่อนักศึกษา

กิจกรรมที่ 6/8: จงใช้วิธีการ overlay เพื่อสร้างรูปดังต่อไปนี้

- 1. ภาพ1 ทำบนตัวอย่าง ที่กำหนดให้ กำหนดชื่อภาพเป็น Mission6Pic1_by.B3701234.Mr.Wichai
- 2. ภาพ2 เลือกรูปถนน(ที่คล้ายคลึงกัน) แล้วทำเหมือนตัวอย่าง พร้อมทั้งใส่ชื่อรหัสบนรูปของตัวเอง Mission6Pic2 by.B3701234.Mr.Wichai
- 3. หากทำการทดลองโปรแกรม ตอนที่ 6/9 จะทำให้หาตำแหน่งง่ายขึ้น

```
import cv2
     img_Name = 'Mission1Pic1_by.B3701234.Mr.Wichai'
    def click_event(event, x, y, flags, param):
  5
         if event == cv2.EVENT_LBUTTONDOWN:
                                             # ด้วนปร
             refpt = []
  7
             refpt.append([x,y])
                                             # เพิ่มข้อมูลเข้าไปในตัวแปร
  8
             font = cv2.FONT_HERSHEY_SIMPLEX # font = แบบตัวอักษร
             cv2.putText(img, str(x) + "," + str(y),(x,y), font, 0.5, (255,255,0), 2)
  9
             cv2.imshow(img_Name, img)
                                            # putText > แสดงตัวอักษรบนหน้าต่างแสดงรูป
 10
 11
 12 img = cv2.imread(".\image\HighWay.jpg")
 13 cv2.imshow(img_Name, img)
 14 cv2.setMouseCallback(img_Name, click_event)
 15
 16 cv2.waitKey(0)
 17 cv2.destroyAllWindows()
Mission1Pic1 bv.B3701234.Mr.Wichai
                                                                                     414,303
  B B C NEWS
```

```
import cv2
 2 import numpy as np
 3 img_Name = 'Mission1Pic1_by.B3701234.Mr.Wichai'
 5 img = cv2.imread('./image/HighWay.jpg')
 7 overlay = img.copy()
8 pts = np.array([[430,300],[500,300],[440, 430], [267,430]], np.int32)
9 pts = pts.reshape((-1, 1, 2))
10 cv2.fillPoly(overlay, [pts],(0,0,255))
11 | alpha = 0.5
12 image_new = cv2.addWeighted (overlay, alpha, img, 1 - alpha, 0)
13
14 overlay = image_new.copy()
15 pts = np.array([[554,300],[632,300],[746, 430], [575,430]], np.int32)
16 pts = pts.reshape((-1, 1, 2))
17 cv2.fillPoly(overlay, [pts],(255,0,0))
18 alpha = 0.3
19 image_new = cv2.addWeighted (overlay, alpha, img, 1 - alpha, 0)
20
21 cv2.imshow(img Name, image new)
22 cv2.waitKey(0)
23 cv2.destroyAllWindows()
```


กิจกรรมที่ 7/8: วาดรูปทรงกลม

- 1. วาดรูปวงกลมสีเหลืองขนาด 100 px เมื่อมีการคลิกเมาส์บริเวณจุดต่าง ๆบนรูป
- 2. เลือกรูปของตัวเอง แล้วทำเหมือนข้อ 1 โดย (1)ใช้สีที่ชอบ, (2)เปลี่ยนขนาดวงกลมเป็นประมาณ 10% ของรูปภาพ

```
1 import cv2
 3 def click_event(event, x, y, flags, param):
    if event == cv2.EVENT_LBUTTONDOWN:
5
           print(x, y)
           global img
 6
 7
          global img_Name
         overlay = img.copy()
9
         cv2.circle (overlay, (x, y), 100, (0, 200, 200), -1)
           alpha = 0.4
10
          img = cv2.addWeighted (overlay, alpha, img, 1 - alpha, 0)
11
12
         cv2.imshow(img_Name, img)
13
14 img = cv2.imread(".\image\lena.jpg")
15 img Name = 'Mission2 Lena by B3601234 Mr.Wichai'
16 cv2.imshow(img Name, img)
17 cv2.setMouseCallback(img Name, click event)
18
19 cv2.waitKey(0)
20 cv2.destroyAllWindows()
```

304 270 316 137

กิจกรรมที่ 8/8: การสร้างภาพหลายภาพจาก cv2.selectROIs()

1. เลือกรูปของตัวเองที่มีสมาชิกในรูป 4-5 คน (BlackPink, Sistar, Got7, BTS, ...) แล้วทำเหมือนการทดลองก่อนนี้


```
1 import cv2
 2 img_Name = 'Mission3_B3601234_Mr.Wichai'
 3 img = cv2.imread("./image/SMF_650.jpg")
 4 ROIS = cv2.selectROIs(img_Name + " - Master", img)
 5 print(ROIS)
 6 crop_number = 0
 7
 8 for cordinate in ROIS:
 9
     x1=cordinate[0]
     y1=cordinate[1]
10
      x2=cordinate[2]
11
      y2=cordinate[3]
12
      imgCrop = img[y1:y1+y2, x1:x1+x2]
13
       cv2.imshow("ImgCrop No_" + str(crop_number) , imgCrop)
14
15
       crop_number+=1
16
17 cv2.waitKey(0)
18 cv2.destroyAllWindows()
19
```

