Question 2:Design an 3 hall sensor based outer runner Rotor Brushless DC (BLDC) Motor with proper analytical modeling and FEA simulation, considering the following specifications:

Specifications:

Motor Power: 300W

Voltage: 24V

Efficiency: 95%

Power Factor: 0.95

Base RPM: 3000

Motor Outer Diameter: <50mm

Motor Stack Length:<35mm

General Data	Value
Rated Output Power (kW)	0.3
Rated Voltage (V)	24
Number of Poles	8
Given Rated Speed (rpm)	3000
Frictional Loss (W)	2
Windage Loss (W)	2
Rotor Position	Outer
Type of Load	Constant Power
Type of Circuit	Y3
Lead Angle of Trigger in Elec. Degrees	0
Trigger Pulse Width in Elec. Degrees	120
One-Transistor Voltage Drop (V)	0.1
One-Diode Voltage Drop (V)	0.7
Operating Temperature (C)	60

Full Load Data	Value
Average Input Current (A)	14.6938
Root-Mean-Square Armature Current (A)	12.675
Armature Thermal Load (A^2/mm^3)	467.782
Specific Electric Loading (A/mm)	21.3596
Armature Current Density (A/mm^2)	21.9004
Frictional and Windage Loss (W)	6.46288
Iron-Core Loss (W)	0.000289665
Armature Copper Loss (W)	42.456
Transistor Loss (W)	3.02055
Diode Loss (W)	0.575113
Total Loss (W)	52.5148
Output Power (W)	300.135
Input Power (W)	352.65
Efficiency (%)	85.1085
Rated Speed (rpm)	3764.89
Rated Torque (N.m)	<mark>0.761266</mark>
Locked-Rotor Torque (N.m)	6.61458
Locked-Rotor Current (A)	134.939

Stator Data	Value
Number of Stator Slots	12

Outer Diameter of Stator (mm)	34
Inner Diameter of Stator (mm)	18
Type of Stator Slot	4
Stator Slot hs0 (mm)	0.5
Stator Slot hs1 (mm)	0
Stator Slot hs2 (mm)	4.36604
Stator Slot bs0 (mm)	2.5
Stator Slot bs1 (mm)	4.67951
Stator Slot bs2 (mm)	2.33975
Stator Slot rs (mm)	0
Top Tooth Width (mm)	3.99715
Bottom Tooth Width (mm)	3.99715
Skew Width (Number of Slots)	0
Length of Stator Core (mm)	35
Stacking Factor of Stator Core	0.95
Type of Steel	steel_1010
Slot Insulation Thickness (mm)	0
Layer Insulation Thickness (mm)	0
End Length Adjustment (mm)	0
Number of Parallel Branches	2
Number of Conductors per Slot	30
Type of Coils	21
Average Coil Pitch	1
Number of Wires per Conductor	1
Wire Diameter (mm)	0.607
Wire Wrap Thickness (mm)	0
Slot Area (mm^2)	16.5732
Net Slot Area (mm^2)	15.3232
Limited Slot Fill Factor (%)	75
Stator Slot Fill Factor (%)	72.1356
Coil Half-Turn Length (mm)	41.1477

Rotor Data	Value	
Minimum Air Gap (mm)	0.5	
Outer Diameter (mm)	50	
Length of Rotor (mm)	35	
Stacking Factor of Iron Core	0.95	
Type of Steel	steel 1010	
Polar Arc Radius (mm)	17.5	
Mechanical Pole Embrace	0.7	
Electrical Pole Embrace	0.694513	
Max. Thickness of Magnet (mm)	2.5	
Width of Magnet (mm)	9.50042	
Type of Magnet	NdFe35	
Type of Rotor	1	
Magnetic Shaft	Yes	

Permanent Magnet Data	Value
Residual Flux Density (Tesla)	1.23

Coercive Force (kA/m)	890
Maximum Energy Density (kJ/m^3)	273.675
Relative Recoil Permeability	1.09981
Demagnetized Flux Density (Tesla)	0.821076
Recoil Residual Flux Density (Tesla)	1.23
Recoil Coercive Force (kA/m)	890

Material	Density	Weight (kg)	Consumption
	(kg/m^3)		(kg)
Armature Copper	8900	0.038151	-
Permanent Magnet	7400	0.0533973	-
Armature Core Steel	7872	0.118982	0.28143
Rotor Core Steel	7872	0.185016	0.453809
Total Net Weight	-	0.395546	-

No-Load Magnetic Data	Value
Stator-Teeth Flux Density (Tesla)	2.07322
Stator-Yoke Flux Density (Tesla)	0.367495
Rotor-Yoke Flux Density (Tesla)	0.891834
Air-Gap Flux Density (Tesla)	0.888288
Magnet Flux Density (Tesla)	0.891795
Stator-Teeth By-Pass Factor	0.0248351
Stator-Yoke By-Pass Factor	6.14971e-005
Rotor-Yoke By-Pass Factor	5.68177e-005
Stator-Teeth Ampere Turns (A.T)	183.073
Stator-Yoke Ampere Turns (A.T)	0.692669
Rotor-Yoke Ampere Turns (A.T)	5.10189
Air-Gap Ampere Turns (A.T)	423.092
Magnet Ampere Turns (A.T)	-611.794
Armature Reactive Ampere Turns at Start	265.653
Operation (A.T)	
Leakage-Flux Factor	1
Correction Factor for Magnetic Circuit Length of	0.850832
Stator Yoke	
Correction Factor for Magnetic Circuit Length of	0.768587
Rotor Yoke	
No-Load Speed (rpm)	4585.03
Cogging Torque (N.m)	0.126369

Transient FEA Input Data	Value
Armature Winding	

Number of Turns	60
Parallel Branches	2
Terminal Resistance (ohm)	0.0880887
End Leakage Inductance (H)	-1.70735e-007
2D Equivalent Value	
Equivalent Model Depth (mm)	35
Equivalent Stator Stacking Factor	0.95
Equivalent Rotor Stacking Factor	0.95
Equivalent Br (Tesla)	1.23
Equivalent Hc (kA/m)	890
Estimated Rotor Moment of Inertia (kg m^2)	0.000164018

2-D Design of Motor:

3-D Design of Motor:

efficiency = 95%. output power = 12000 100 × 100 = 95 Din = 315.78 W Terminal rent.

Terminal rent.

1315-78

PAN:

P Parellel paths on x Mx stu NEW. ment from - V = I pead Igh rms 16-736 A

I a L

Ic = Jph

Np , No of parelled

path. Not coils Nc = Not stator clot No of coils, in early have

No of coils, in early have

3. Ns = not stator slots

M= not phases:

N.p Ntph = Ntc x Ns x Ns integralian no oftarny Song / Kill All Mills All

lbex are

H

Adult ma and large

They hav

The Euro

They live

If Np parellel park 1012 72 18.0 m / 1/0/2 08 Winding = 2 whole 11,60,8. Dos 1 8.2 2.5 5.6 / In 10 2 3000

ding following an Stot 70 , SS 31 6.95 30 stott. Spoles, 12 slots, 30 conductors full (whole) willed. parellel northis 2 3 109118 = 5 " (repole 11,6018) 6.7 2.5 Tax t

for outer votor volor inverdiameter > dator outerdiameter 2 posellel paths 8 pde - 12 stolf 30 conductors. Steel 1010 natural Nafe 30, or NOFE 35 magnet ayv 300v 95%.