第零章 0

$0.1 \quad 0-1$

0.1.1

甜甜圈 T 可由矩形粘合得到, 因此不妨用 (-1,-1)-(1,1) 确定的矩形 S. 并且设粘合映射为 $q:S\to T$.

目标是构造去掉一个点的甜甜圈到两个并起来的圆的形变收缩, 可以先将去点矩形缩成边框, 再用粘合映射把边框变成两个圆. 对前者构造同伦 $f_t: S \times [0,1] \to S$, 则 $g \circ f$ 就是形变收缩对应的同伦.

不妨再设去掉的点即为原点 (0,0), 则 f_t 可为原点为中心的径向投影形成的同伦: 首先设 $g: S \to \partial S$ 是原点出发的径向投影函数, g(x) 即 (0,0) 出发指向 x 的射线与 ∂S 的交点. 则 $f_t(x) = tg(x) + (1-t)x$.

0.1.2

可取

$$f_t(\bar{x}) := t \frac{\bar{x}}{|\bar{x}|} + (1-t)\bar{x}.$$

0.1.3

- (a) 只需将同伦等价函数以及到恒等的同伦都拼接起来.
- (b) 显然.
- (c) $f: X \to Y$ 是同伦等价, e 是其同伦等价逆, $g: X \to Y$ 与之同伦, 则有同伦 h_t , $h_0 = f$, $h_1 = g$. 则 $fe \simeq \mathbb{1}_Y$, $ef \simeq \mathbb{1}_X$. 而 $h_t e: Y \times I \to Y$ 是连续的, 同时 $h_0 e = f e$, $h_1 e = g e$, 所以 $h_t e$ 是 f e, g e 间的同伦. 由

(b) 的结论同伦是等价关系, 所以 $ge \simeq idY$. 同理 $eg \simeq \mathbb{1}_X$, 因此 g 也是同伦等价.

0.1.4

目标是找 $\iota:A\hookrightarrow X$ 作为同伦等价的逆. 弱形变收缩条件说明存在同伦 $f_t:X\times I\to X,\,f_0=\mathbbm{1}_X;\,f_1(A)\subset A;\,$ 对任何 $t,\,f_t(A)\subset A.$ 可以借助 f_t 说明 f_1 恰是嵌入映射 ι 的同伦等价逆.

- (a) 说明 $\iota \circ f_1: X \to A \subset X$ 同伦于 $\mathbb{1}_X$. 因为 $f_1(X) \subset A$ 以及 $\iota|_A = \mathbb{1}_A$, 所以 $\iota \circ f_1 = f_1$. 因此弱形变收缩的条件保证这个同伦成立.
- (b) 说明 $f_1 \circ \iota : A \to A$ 同伦于 $\mathbb{1}_A$. 看起来直接复合 ι 到 f_t 上就可以了. 但要注意 $\mathbb{1}_A$ 定义域和值域都在 A 上, 所以同伦变化必须在 A 内完成. 幸好条件中 $\forall t, f_t(A) \subset A$ 保证了这一点.

0.1.5

记包含映射 $\iota: V \hookrightarrow U$. 要证明 ι 零同伦, 即需要找到其在 V 上到常映射 $V \to x$ 的同伦 $q_t: V \times I \to U$, $q_0 = \iota$, $q_1 = v \in V \mapsto x$.

X 能形变收缩到点 x, 说明有从 $\mathbb{1}_X$ 到常映射 $y \in X \mapsto x$ 的同伦 f_t 且 $f_t(x) \equiv x$. 自然想到, 将 f_t 限制在 $V \times I$ 上, 若结果是同伦, 问题也就迎刃而解. 因此可以尝试找到一个合适的 V.

要让 f_t 限制在 $V \times I$ 上是同伦, 就需要满足 $f_t(V) \subset U$. 因此 V 需要落在 U 在所有时刻的原像里, 即集合 $\cap_t f_t^{-1}(U)$ 里. 因此只需要证明 x 在 $\cap_t f_t^{-1}(U)$ 中有一个开邻域. 换句话说, 找到的 $V \times I$ 要包含在 $f^{-1}(U)$ 内.

因为 f 是连续函数, 因此 f_t 也都是连续的, 故 $f^{-1}(U)$ 是开集. $X \times I$ 取乘积拓扑, 因此 X 中的开集和 I 中开区间的笛卡尔积构成的集族

$$\{W \times J : W \subset X \text{ open}, J = (a, b) \cap I, a < b\}$$

是 $X \times I$ 的一组拓扑基. 因此任意时刻 t 处, $(x,t) \in f^{-1}(U)$ 有基开邻域 $V_t \times I_t$, 这里 $V_t \subset U \subset X$ 是 X 中的开集, I_t 是 I 中的开区间.

借此得到了一组 $\{V_t \times I_t \subset U \subset X \times I : t \in I\}$, 每个 $V_t \times I_t$ 覆盖 (x,t) 附近的一部分. 故 I_t 构成 I 的开覆盖. 因为 I = [0,1] 是紧集, 根据有限覆盖性质, 存在有限的子覆盖 $\{I_{t_1}, \cdots, I_{t_n}\}$. 那么我们只需取 $V := \bigcap_{i=1}^n V_{t_i}, V$ 就是开集 (开集的有限交) 且满足 $V \times I \subset U$.

0.1 0-1

0.1.6

(a) 取 $f_t(x,y) := (x,ty)$. f_t 是连续函数,且 $f_0(x,y) = (x,0)$ 是 X 到线段 $[0,1] \times 0$ 的收缩函数, $f_1 = \mathbb{1}_X$. 此外,对线段 $[0,1] \times 0$ 中的点 (x,0), $f_t(x,0) \equiv (x,0)$,所以 $f|_{[0,1] \times 0} = \mathbb{1}$. 故 f_t 是 X 到 $[0,1] \times 0$ 的形变收缩

由上结论, X 显然是可以进一步缩到一个点的, 同时因为 f_t 在线段上始终不变, 很容易让拓展的同伦始终在那个点上保持不变. 即 X 可以形变收缩到线段 $[0,1] \times 0$ 上任意一点.

至于 X 不能形变收缩到其他单点,直观的原因可以如下理解: 形变收缩的过程中,任何一个点都是沿着一条连续的路径移动到终点的. 由于 X 上端的齿仅存在于横坐标有理数处,这就意味着如果要缩到 $y \neq 0$ 的任意点 \mathbf{p} 处,距离 \mathbf{p} 再近的点也不能直接移动过去,而是要沿着自己所在的齿下移,在 $[0,1] \times 0$ 上移动到 \mathbf{p} 对应的横坐标处,再沿着齿上移. 因此 \mathbf{p} 附近的点都要先跑到离 \mathbf{p} 很远的地方再跑回来,而形变收缩的连续性要求它们不能都离 \mathbf{p} 太远.

有了以上的思路, X 不能形变收缩到其他单点可以如下证明: 设 X 通过同伦 g_t 形变收缩到点 $\mathbf{p} = (p_1, p_2), p_2 \neq 0$. 取一列 [0, 1] 间收敛到 p_1 的有理数 $\{r_i\}_{i=1}^{\infty}, r_t \neq p_1$. 则 (r_i, p_2) 收敛到 (p_1, p_2) .

接下来证明, 任意 (r_i, p_2) 在形变收缩的过程中, 总是要走到 $(r_i, 0)$ 点的:

首先, $g_t(r_i, p_2)$ 可以看作 t 为参数的一条连续的曲线, 不妨记之为 $\gamma(t) = (\gamma_x(t), \gamma_y(t))$. 于是 $\gamma_y(t)$ 也是连 续函数. 由于 $\gamma_x(0) = r_i$, $\gamma_x(1) = p_1$, 根据介值定 理, 取无理数 $s_1 \in [r_i, (r_i + p_2)/2)$, 一定存在 t_1 , 其处 $\gamma_x(t_1) = s_1$.

类似如上过程,可以逐个找到 s_i 和 t_i , r_i < s_i < $(r_i + s_{i-1})/2$, t_i < t_{i-1} , 且 $\gamma_x(t_i) = s_i$. 因为 t_i 是单调下降且有界的数列,故其必有极限 \bar{t} . 则根据连续性,

$$r_i = \lim_{i \to \infty} \gamma_x(t_i) = \gamma_x(\bar{t})$$

也就是说 $\gamma(\bar{t}) = (r_i, 0)$, 结论证毕.

有了以上的结论, 可知对任意 i, 点 (r_i, p_2) 会在某个时刻 t_i 到达 $(r_i, 0)$. 即 $g_{t_i}(r_i, p_2) = (r_i, 0)$. 取 $\{t_i\}$ 的一个收敛子列 $\{t_{i_k}\}_{k=1}^\infty$, 记其极限为 t. 则 (r_{i_k}, p_2, t_{i_k}) 收敛到 (p_1, p_2, t) . 那么根据 g 的连续性,

$$g_t(p_1, p_2) = \lim_{k \to \infty} g_{t_{i_k}}(r_{i_k}, p_2) = \lim_{k \to \infty} (r_{i_k}, 0) = (p_1, 0)$$

但因为 g_t 在 (p_1, p_2) 上应不变,即 $g_t(p_1, p_2) = (p_1, p_2)$,矛盾. 故 X 不能形变收缩到 \mathbf{p} 点, 证讫.