= 2118(w-11/q) + 2118(w+11/q) + 2118(w-21/8) + 2118(w-21/8)

I.b.

h[n]: \frac{1}{211} \int H(w) etvn. dw

= \frac{1}{211} \int H(w

_ × _ × _

1.0

 $h_{R}(n) \xrightarrow{DTFT} H_{2}(\omega) = H(\omega) + H^{*}(-\omega)$

He(w) = 1/2 -1/3 -1/3 -1/3 >1/2 1/2 7/3 >1/9

y[n]= 1/2 2,[n] : Since this operation could capture the

han(n) MAN(w)

e Than he(n) -> He(W+Thy)

Q2a. occurred food resolution. GCO (Tg, 217/3) Delsoo = Nx , 211/11/9 = 18 yes: DPT is partiled version of DTFT C. NO; because hain is one infinite length signal. this 2 DPT (HICK) ei an line alianed venian of bali. X[K-No] = XCK] d. IL ROPT acn3 = a, cn3 + ascn3 Χ(ω) = χ(ω) + χ(ω, π) = pood: 20 χ(ω). Σ 2 (2n), e σοη \$3.0. n, 22n > 20 x[n]. e 2 2 1+(-1) n x[n], e

2 × (W/2) + × (W/2+11)

$[4+1+3]$ => $H(z) = a + \beta \overline{z}^1$	
Input: U[n] -> Output: SIn]	
$\chi(z) = \frac{1}{1-z^{\frac{1}{2}}} \longrightarrow \chi(z) = 2$	
we know $H(z) = Y(z)$ $\frac{1}{x(z)}$	
$\Rightarrow A + B \vec{z} = 4 = 1 - \vec{z}$	
1- 27	
$= \qquad d = 1 \qquad \text{and} \qquad \beta = -1. \qquad \boxed{1}$	
$\frac{b}{b} \qquad \text{ae have, } h [n] = S[n] - S[n-1]$ $This is a difference system$	
y(n) = x(n) * h(n) = x(n) - x(n-1)	
$Contact in pob \Rightarrow x[n] = c \forall n$	
$\therefore y[n] = C - C = 0 \forall n$ $\Rightarrow \text{constarts} \text{in puts} \rightarrow \text{zero outsput} ($	

Z4 5, 8 52 are presse system,
$H_1(z)$ $H_2(z) = 1$
$H_1(z) = 1 - \overline{z}$
$\Rightarrow H_2(z) = \frac{1}{1-2^{-1}}$
" There are two time domain signals associated
with the above 2 transform.
pole of $H_{2}(2)$: $Z = 1$
* For non-cousd system, select the
RO < : 121 < 1.
$\Rightarrow h_2[n] = -u[-n-1]$
$verification:$ $h_{i}[n] * h_{i}[n] = S[n]$
LHJ = (S[n) - S[n-1]) * (- u[-n-1])
= - u [-n-1) + u [-n]
= 55ny = 24y

Q5 [2+3]	$y(n) = \alpha y [n-1] + \alpha^{2} y [n-2] + \alpha [n]$
	d G R (real number)
(9)	system transfer function: $H(z) = \frac{y(z)}{x(z)}$
	Taking 2-Transform on both sides
	$Y(z) = \alpha \overline{z}' Y(z) + \alpha^2 \overline{z}' Y(z) + x(z)$
	$\Rightarrow \frac{y(z)}{x(z)} = \frac{1}{1-\sqrt{z'}-\sqrt{z'}}$
	x(2) 1-d2-d2
	: H(2) = Z2
	$z^2 - dz - d^2$
	poles: Z ¹ - 22 - 2 ² =0
	=> 700 ts : d ± \d2+4d2
	$Z_1 = A\left(\frac{1+\sqrt{5}}{2}\right)$ $Z_2 = A\left(\frac{1-\sqrt{5}}{2}\right)$
A	System is stable if the unit circle (121 =1)
	is part of the ROC.

	For	bhe	system.	to be	notable) Unib	circle	(Ontains	pdes.
		. 1	Ine 3	ys fem	is not	t st	able	4	
			12,1	- 1	O-	122	= 1		
		7	d = 1	2 1+√5	01	R d	= ±	1-15	0
b		For						mus+	be
			insic	e the	unit (Ciocle	(121 =	_1)	
		>	[21]	<1	and	12,	۲)		
		<u> </u>	12 (1+15)	<1 '	and	d (1-	√5)) ≺	1
			1212	2	An	-0	lø \	2	(i)
			141 4	15+1	4"			15-1	
			>	121	4	2.			
					_	+1			
			3	2 (2 5+1	, 2 √5+1	-)	0

æ6. [3]	$y(n) = \lambda y(n-1) + \lambda(n)$
	Z E R
	cigen signols: ejun LTI > H (cju) ejun
	reduction in amplitude: $ H(ej^{\omega}) < 1 + \omega$
	$H(z) = y(z) = \frac{1}{ z-d ^2} = \frac{z}{ z-d }$
	$H(Z = e^{j\omega}) = e^{j\omega}$
1	$(e^{j\omega})$ = $\frac{e^{j\omega}}{e^{j\omega}}$ = $\frac{1}{1e^{j\omega}}$
	[H(eja)] < 1 ⇒
	$ e^{j\omega}-a >1$ $\forall \omega$