Conversión Analógica-Digital

Conversión Analógica—Digital

Proceso de Conversión

fmuestreo >= 2fseñal (Nyquist)

Resolución → Nro. de bits de cuantización

Conversión Analógica–Digital

Transferencia ideal (cuantización uniforme)

Resolución = $Vref/2^N$

Error = +/- LSB

CONVERSIÓN A/D CON ADC0805

CONVERSIÓN A/D CON ADC0805

Conversión A/D: Errores

-Error de Offset: Desviación de la primera transición (0x000 a 0x001) – 0.5 LSB

-No linealidad Integral: Máxima desviación de cualquier transición

-Error de cuanrtización: error entre escalones -+/- 0,5 LSB

-Error de Ganancia: Desviación de la última transición (0x3FE a 0x3FF) – 1,5 LSB

 -No linealidad Diferencial:
 Máxima desviación de cualquier transición – 1LSB

Exactitud absoluta: efecto combinado de todos los errores

CONVERSOR A/D

Conversor A/D de aproximaciones sucesivas 10 bits unipolar, 9 canales, 1 para medir temperatura y otro para tensión estable

Time

Número de Bits	Escalones	Resol. (mV) $Vref = 5V$
8	256	5/256 = 19.53
10	1024	5/1024 = 4.88
12	4096	5/4096 = 1.2
16	65536	5/65536 = 0.076

CONVERSOR A/D

CONVERSOR A/D

Registros a utilizar:

- Multiplexer Selection Register, ADMUX
- Status and Control Register A, ADCSRA
- Status and Control Register B, ADCSRB
- Data Result Registers, ADCRH and ADCRL
- o Digital Input Disable Register 0, DIDR0

Registros a utilizar:

• Registro de control y estado ADMUX

Registros a utilizar:

• Registro de control y estado ADSCRA

Registros a utilizar:

• Registro de control y estado ADSCRB

Habilita Comparador Analógico

ADTS2	ADTS1	ADTS0	Trigger Source
0	0	0	Free running mode
0	0	1	Analog comparator
0	1	0	External interrupt request 0
0	1	1	Timer/Counter0 compare match A
1	0	0	Timer/Counter0 overflow
1	0	1	Timer/Counter1 compare match B
1	1	0	Timer/Counter1 overflow
1	1	1	Timer/Counter1 capture event

Registros a utilizar:

• Registro de datos ADCRH y ADCRL

Registros a utilizar:

• Registro para Deshabilitar Entrada Digital

ADC 6 y 7 no tienen Buffer Digital de Entrada

CONFIGURACIÓN (EJEMPLO)

Luego se deberá leer el registro correspondiente para saber el valor de la conversión.

CONFIGURACIÓN (EJEMPLO)

// conversión AD en modo conversión continua por encuesta

```
Int main(void)
 char datoL, datoH = 0;
 DDRC = 0;
                        // Puerto C como entradas
 ADCSRA = 0x87;
                      // 0b10000111, Habilita ADC,
                       // Prescaler 128, no Interrupts.,
                       // 0b00000011, canal ADC3, Justificado
 ADMUX = 0x03;
                      // derecha, no Vref interna
 ADCSRB = 0;
                     // Free Running (conversión contínua)
                       // Deshabilita buffer digital en ADC3
 DIDR0 = 0x08;
While(1){
                                     //Inicia conversión
ADCSRA = (1 << ADSC);
While ((ADCSRA&(1 << ADIF)) == 0);
                                     // espera que termine la conversión
datoL = ADCL;
                                     // Lee dato convertido
datoH = ADCH;
Return 0;
```

CONFIGURACIÓN (EJEMPLO)

ADC = (Vin x 1024) / Vref

COMPARADOR ANALÓGICO

Permite comparar dos entradas analógica de tensión o una entrada de tensión contra una tensión interna de referencia (Bandgap)

ACO se pone en 1 cuando la tensión de AINO es mayor que AIN1

COMPARADOR ANALÓGICO

Conversión Digital-Analógica

PWM (Modulación por ancho de pulso)

