Joining up to minority

Alexandr Kazda

October 7, 2016

I will show how minority is the join of two varieties defined by linear equations.

We take two varieties: V_1 is given by the equations

$$w(x, x, y) = w(x, y, x) = w(y, x, x) = m(x, y, x)$$

 $m(x, x, y) = y$
 $m(y, x, x) = y$.

and V_2 by the three cube-term style equations

$$t(y, x, x, z, y, y, z) = y$$

 $t(x, y, x, y, z, y, z) = y$
 $t(x, x, y, y, y, z, z) = y$.

One possible member of V_1 is \mathbb{Z}_4 with w(x,y,z) = -x - y - z and m(x,y,z) = x - y - z, so V_1 does not have a minority. For a member of V_2 , consider \mathbb{Z}_6 with $t(x_1, \ldots, x_7) = 3x_1 + 3x_2 + 3x_3 + 2x_4 + 2x_5 + 2x_6 + 4x_7$. Again, this shows that V_2 does not have minority.

Taking the join of V_1 and V_2 we will find the minority operation: Consider the term p(x, y, z) = t(x, y, z, m(z, x, y), m(x, y, z), m(y, z, x), w(x, y, z)). We get

$$p(x, x, y) = t(x, x, y, m(y, x, x), m(x, x, y), m(x, y, x), w(x, x, y))$$

= $t(x, x, y, y, y, w(x, x, y), w(x, x, y)) = y$

etc.

However the variety V_1 and V_2 is term-equivalent to just the variety with a minority operation: If n is a minority operation then we can let w(x, y, z) =

m(x, y, z) = n(x, y, z) and $t(x_1, ..., x_7) = n(n(x_1, x_2, x_3), n(x_4, x_5, x_6), x_7)$ and get the equations above.

As to testing for V_1 and V_2 , Dima's example will have the V_2 terms locally (but not globally), and V_1 terms globally: We can take $w(x, y, z) = t_i(y, t_i(x, y, z), y)$ and $m(x, y, z) = t_i(x, y, z)$ for any i.

Thus V_2 invalidates my conjecture that local to global will work whenever dropping any single equation results in a trivial Maltsev condition.