Funkce více proměnných

diferenci Směrová derivace gradient Geometr

- diferencovatelné funkce a totální (úplný) diferenciál
- gradient a směrová derivace
- geometrické významy a aplikace

Totální diferenciál (1)

Totální diferenciál nám poskytuje nejlepší možnou aproximaci obecné funkce pomocí funkce lineární. Důvodem pro takovouto aproximaci je skutečnost, že lineární funkce je jednoduchá a snadno se s ní z početního i teoretického hlediska pracuje. Pro snazší pochopení totálního diferenciálu se nejdříve podívejme na případ funkce jedné proměnné.

Nechť $f: \mathbb{R} \to \mathbb{R}$. Budeme aproximovat rozdíl funkčních hodnot $f(x_0 + h) - f(x_0)$ (přírůstek na ose y), kde $x_0 \in D_f$ a $h \neq 0$ je přírůstek na ose x, tj.

$$f(x_0 + h) - f(x_0) \approx df(x_0; h) = f'(x_0) \cdot h$$

kde $df(x_0; h)$ je lineární funkce v proměnné h.

Definice (Diferenciál funkce v \mathbb{R}^n):

Nechť $f: \mathbb{R}^n \to \mathbb{R}$ a bod **a** je vnitřním bodem D_f , pak lineární funkci

$$L(\mathbf{h}) = L(h_1, h_2, \dots, h_n) = A_1h_1 + A_2h_2 + \dots + A_nh_n = \sum_{k=1}^n A_kh_k, \quad \mathbf{h} \in \mathbb{R}^n,$$

pro kterou je

$$\lim_{\|\mathbf{h}\| \to 0} \frac{|f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) - L(\mathbf{h})|}{\|\mathbf{h}\|} = 0$$

nazýváme totálním (úplným) diferenciálem funkce f(x) v bodě a a označujeme jej symbolem df(a; h).

Geometrický význam totálního diferenciálu: Totální diferenciál $L(\mathbf{x})$ nám poskytuje lineární aproximaci obecné funkce $f(\mathbf{x})$ v okolí daného bodu a, např. ve 2D obecně nelineární funkci $f(\mathbf{x})$ nahrazujeme lineární fukcí (rovinou).

více pro-

Totální diferenciál

Věta (Nutná podmínka pro existenci diferenciálu):

Jestliže existuje diferenciál $df(\mathbf{a};\mathbf{h}) = A_1h_1 + A_2h_2 + \ldots + A_nh_n v$ bodě \mathbf{a} , pak má funkce parciální derivace v bodě a a platí

$$A_i = \frac{\partial f}{\partial x_i}(\mathbf{a}), \ 1 \leq i \leq n.$$

Věta (Postačující podmínka pro existenci diferenciálu):

Necht má funkce $f: \mathbb{R}^n \to \mathbb{R}$ spojité parciální derivace ve vnitřním bodě a definičního oboru D_f . Potom existuje diferenciál funkce f v bodě a a platí

$$\mathrm{d}f(\mathbf{a};\mathbf{h}) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(\mathbf{a})h_k, \quad \mathbf{h} \in \mathbf{R}^n.$$

Definice: Funkce $f: \mathbb{R}^n \to \mathbb{R}$ se nazývá diferencovatelná v bodě $\mathbf{a} \in D_f$, pokud totální diferenciál $df(\mathbf{a}; \mathbf{h})$ existuje pro každé $\mathbf{h} \in \mathbb{R}^n$.

Věta: Nechť funkce $f: \mathbb{R}^n \to \mathbb{R}$ je diferencovatelná v daném bodě, pak je v tomto bodě spojitá.

Předmět M₁B

J. Hozman FP TUI

více pro-Totální

diferenciál

Totální diferenciál (3)

Příklad: Vypočtete parciální derivace a diferenciál funkce f v obecném bodě a vycíslete je v daném bodě, je-li

$$f(x, y, z) = 2x^2yz + 3xy^2 + 6xz - 5$$
, $\mathbf{a} = [1, -1, 2]$,

Řešení: Definičním oborem funkce je množina R^3 a parciální derivace existují v celém definičním oboru funkce, tj.

$$\frac{\partial f}{\partial x} = 4xyz + 3y^2 + 6z, \quad \frac{\partial f}{\partial y} = 2x^2z + 6xy, \quad \frac{\partial f}{\partial z} = 2x^2y + 6x.$$

Po dosazení souřadnic bodu a dostaneme

$$\frac{\partial f}{\partial x}(\mathbf{a}) = -8 + 3 + 12 = 7, \quad \frac{\partial f}{\partial y}(\mathbf{a}) = 4 - 6 = -2, \quad \frac{\partial f}{\partial z}(\mathbf{a}) = -2 + 6 = 4.$$

Celkově tedy

$$df(\mathbf{x}; \mathbf{h}) = (4xyz + 3y^2 + 6z)h_1 + (2x^2z + 6xy)h_2 + (2x2y + 6x)h_3, \ \mathbf{x} = [x, y, z]$$
$$df(\mathbf{a}; \mathbf{h}) = 7h_1 - 2h_2 + 4h_3,$$

někdy se také můžete setkat se zápisem

$$df = (4xyz + 3y^2 + 6z)dx + (2x^2z + 6xy)dy + (2x2y + 6x)dz,$$

$$df(\mathbf{a}) = 7dx - 2dy + 4dz.$$

J. Hozman FP TUL

Funkce více proměnných

Totální diferencia Směrová

derivace, gradient Geometr.

Směrová derivace a gradient (1)

Připomeňme si nejprve pojem parciální derivace, pro jednoduchost uvažujme 2D problém. Parciální derivace funkce $f: \mathbb{R}^2 \to \mathbb{R}$ v bodě $A = [x_0, y_0] \in \mathbb{R}^2$ jsou derivace ve směrech rovnoběžných s souřadnicovou osou x, resp. y.

$$tg \alpha = \frac{\partial f}{\partial x}(x_0, y_0)$$

$$tg \beta = \frac{\partial f}{\partial y}(x_0, y_0)$$

Směrová derivace a gradient (2)

Parciální derivace funkce $f: \mathbb{R}^n \to \mathbb{R}$ v bodě $\mathbf{x} \in \mathbb{R}^n$ jsou derivace ve směrech rovnoběžných s některou souřadnicovou osou. Jejich zobecněním jsou derivace ve směru.

Definice: Nechť $\vec{u} = [u_1, \dots, u_n]$ je jednotkový vektor ($||\vec{u}|| = 1$) a nechť funkce $f : \mathbb{R}^n \to \mathbb{R}$ je definována v bodě $\mathbf{x} = [x_1, \dots, x_n]$. Existuje-li

$$\lim_{h\to 0}\frac{f(x_1+hu_1,\ldots,x_n+hu_n)-f(x_1,\ldots,x_n)}{h}$$

nazýváme ji derivací funkce f ve směru ü v bodě x a budeme ji značit

$$\frac{\partial f}{\partial u}(\mathbf{x})$$
 nebo $\partial_{\vec{u}}(\mathbf{x})$.

Směrová derivace a gradient (3)

Pokud vektor \vec{u} má i-tou složku rovnu jedné a ostatní složky rovny nule, je derivace ve směru \vec{u} totožná s parciální derivací podle proměnné x_i . Definice derivace ve směru je analogická definici parciální derivace, platí tedy pro počítání derivace ve směru všechna pravidla jako v případě počítání parciálních derivací.

Existence derivace v libovolném směru \vec{u} v bodě x neimplikuje spojitost funkce v daném bodě, neboť derivace ve směru \vec{u} popisují chování funkce v okolí $U(\mathbf{x})$ bodu x na přímce se směrovým vektorem \vec{u} .

Geometrický význam směrové derivace: Pokud je derivace ve směru kladná, funkce roste v tomto směru, opačně je-li derivace ve směru záporná, funkce klesá v tomto směru. Je-li směrový vektor navíc jednotkový udává nám derivace ve směru rychlost růstu/klesání v daném směru.

Věta: Je-li funkce f diferencovatelná v bodě x euklidovského prostoru \mathbb{R}^n , pak má v tomto bodě všechny směrové derivace a platí

$$df(\mathbf{x}, \mathbf{h}) = \frac{\partial f}{\partial \mathbf{h}}(\mathbf{x})$$
 pro všechna $\mathbf{h} \in \mathbf{R}^n$.

Věta (Počítání derivací ve směru):

Nechť jsou parciální derivace $\frac{\partial f}{\partial x_i}$ spojité v bodě $\mathbf{a} \in R^n$ pro $i=1,\ldots,n$ a je dán směr \vec{u} tak, že $\|\vec{u}\|=1$. Potom platí

$$\frac{\partial f}{\partial u}(\mathbf{a}) = \sum_{i=1}^{n} u_i \frac{\partial f}{\partial x_i}(\mathbf{a}).$$

J. Hozman FP TUL

více pro-

Směrová derivace, gradient

Směrová derivace a gradient (4)

Definice: Existují-li parciální derivace $\frac{\partial f}{\partial x_i}$ v bodě $\mathbf{a} \in \mathbf{R}^n$ pro $i = 1, \dots, n$, definujeme gradient funkce f v bodě a předpisem

$$\operatorname{grad} f(\mathbf{a}) := \left(\frac{\partial f}{\partial x_1}(\mathbf{a}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{a})\right) \in \mathbf{R}^n.$$

Pro gradient se také někdy používá značení $\nabla f(\mathbf{a})$.

Pro obecný vektor $\vec{u} \in \mathbb{R}^n$ platí vztahy:

$$\partial_{\vec{u}} f(\mathbf{a}) = \mathrm{d} f(\mathbf{a}; \vec{u}) = \mathrm{grad} f(\mathbf{a}) \cdot \vec{u}.$$

Směrová derivace a gradient (5)

Příklad: Nalezněte směrovou derivaci $\partial_{\vec{u}} f(\mathbf{a})$, kde $f(x,y) = x^2 + xy$, $\vec{u} = (2,-1)$ a $\mathbf{a} = [-2,3]$.

Řešení: Spočteme nejprve jednotlivé parciální derivace a vyčíslíme je v bodě a:

$$\frac{\partial f}{\partial x}(x,y) = 2x + y, \quad \frac{\partial f}{\partial x}(\mathbf{a}) = 2 \cdot (-2) + 3 = -1,$$
$$\frac{\partial f}{\partial y}(x,y) = x, \quad \frac{\partial f}{\partial y}(\mathbf{a}) = -2,$$

a podle vzorce

$$\partial_{\vec{u}}f(\mathbf{a}) = \frac{\partial f}{\partial x}(\mathbf{a}) \cdot u_1 + \frac{\partial f}{\partial y}(\mathbf{a}) \cdot u_2 = (-1) \cdot 2 + (-2) \cdot (-1) = 0.$$

Příklad: Určete vektor grad f v obecném bodě a v daném bodě pro funkci $f(x,y) = 4xy^2 - 6xy + 5$ a bod $\mathbf{a} = [1,-1]$.

Řešení: Spočteme nejprve jednotlivé parciální derivace a vyčíslíme je v bodě a:

$$\frac{\partial f}{\partial x}(x,y) = 4y^2 - 6y, \quad \frac{\partial f}{\partial x}(\mathbf{a}) = 10,$$
$$\frac{\partial f}{\partial y}(x,y) = 8xy - 6x, \quad \frac{\partial f}{\partial y}(\mathbf{a}) = -14,$$

a podle vzorce

$$\operatorname{grad} f(x, y) = (4y^2 - 6y, 8xy - 6x), \quad \operatorname{grad} f(\mathbf{a}) = (10, -14).$$

J. Hozman FP TUI

Funkce více proměnných Totální diferenci Směrová

Geometr.

aplikace

Geometrické aplikace - gradient (1)

Z fyzikálního hlediska gradient funkce určuje směr jejího největšího spádu. Uvažujme modelovou úlohu ve 2D, kde funkce f(x,y) popisuje reliéf krajiny. Naším cílem je vydat se z $[x_0,y_0]$ ve směru \vec{s} s jednotkovou rychlostí $\|\vec{s}\|=1$ takovém, že budeme mít největší vertikální rychlost(tj. budeme nejrychleji stoupat/klesat). Tato rychlost odpovídá směrové derivaci ve směru \vec{s} , pro kterou platí

$$\partial_{\vec{s}} f(x_0, y_0) = \vec{s} \cdot \operatorname{grad} f(x_0, y_0)$$

a extrémních hodnot nabývá pro:

$$\vec{s}_{max} = \frac{\operatorname{grad} f(x_0, y_0)}{\|\operatorname{grad} f(x_0, y_0)\|}, \ \vec{s}_{min} = -\frac{\operatorname{grad} f(x_0, y_0)}{\|\operatorname{grad} f(x_0, y_0)\|}.$$

Vydáme-li se tedy ve směru gradientu budeme maximálně stoupat. Půjdeme-li ve směru opačném, budeme maximálně klesat (rychlost bude záporná). Absolutní hodnota rychlosti této vertikální změny bude $\|\operatorname{grad} f\|$. V případě pohybu ve směru kolmém na gradient budeme mít vertikální rychlost nulovou (nadmořská výška se nemění a pohybujeme se po vrstevnici).

Geometrický význam gradientu: Gradient v bodě x lze interpretovat jako vektor kolmý na vrstevnici grafu funkce procházející bodem x.

aplikace

Geometrické aplikace - gradient (2)

Příklad: Určete, zda funkce $f(x,y) = \ln(x^2y+1)$, v bodě $\mathbf{a} = [1,2]$ ve směru vektoru $\vec{u} = (1,-1)$ roste či klesá a určete rychlost změny. Dále nalezněte směr \vec{s} , ve kterém funkce v daném bodě \mathbf{a} nejvíce klesá.

Řešení: Definičním oborem je $D_f = \{[x,y] \in \mathbb{R}^2 : x^2y + 1 > 0\}$, $\mathbf{a} \in D_f$ a f má všude spojité parciální derivace, tedy

$$\frac{\partial f}{\partial x} = \frac{2xy}{x^2y+1}, \quad \frac{\partial f}{\partial x}(\mathbf{a}) = \frac{4}{3}, \quad \frac{\partial f}{\partial y} = -\frac{x^2}{x^2y+1}, \quad \frac{\partial f}{\partial y}(\mathbf{a}) = \frac{1}{3}.$$

Pro derivaci funkce f ve směru vektoru \vec{u} dostaneme

$$\frac{\partial f}{\partial u} = \operatorname{grad} f(a) \cdot \vec{u} = \frac{1}{3}(4,1) \cdot (1,-1) = 1 > 0$$
 (roste)

a derivace v jednotkovém směru $ec{u_0} = ec{u}/\|ec{u}\|$ nám určí rychlost změny

$$\frac{\partial f}{\partial u_0} = \frac{\frac{\partial f}{\partial u}}{\|\vec{u}\|} = \frac{1}{\sqrt{2}}.$$

Dále funkce f nejvíce klesá ve směru \vec{s}

$$\vec{s} = -\frac{\operatorname{grad} f(\mathbf{a})}{\|\operatorname{grad} f(\mathbf{a})\|} = -\frac{(4,1)}{\sqrt{17}}.$$

aplikace

Geometrické aplikace - tečná rovina (1)

V následující sekci budeme pro přehlednost uvažovat pouze 2D problém. Předpokládejme, že funkce $f: \mathbb{R}^2 \to \mathbb{R}$ je diferencovatelná v bodě $A = [x_0, y_0] \in \mathbb{R}^2$. Geometricky tento fakt znamená, že existuje tečná rovina T ke grafu funkce f v bodě (A, f(A)).

Definice: Nechť funkce $f: \mathbb{R}^2 \to \mathbb{R}$ má v bodě $[x_0, y_0]$ totální diferenciál, potom funkci

$$z = T(x,y) = f(x_0,y_0) + \frac{\partial f}{\partial x}(x_0,y_0)(x-x_0) + \frac{\partial f}{\partial y}(x_0,y_0)(y-y_0)$$

nazveme tečnou rovinou.

J. Hozman

Funkce více proměnných Totální diference

gradient Geometr. aplikace

Geometrické aplikace - tečná rovina (2)

Ekvivalentně lze tečnou rovinu v bodě $A = [x_0, y_0] \in \mathbb{R}^2$ vyjádřit pomocí diferenciálu jako graf funkce

$$z = f(A) + \mathrm{d}f(A; \mathbf{x} - A)$$

Geometrický význam tečné roviny: Tečná rovina nám poskytuje linární aproximaci obecné funkce v okolí bodu $[x_0, y_0] \in \mathbb{R}^2$.

Známe-li rovnici tečné roviny ke grafu funkce f, můžeme z ní odvodit tvar normálového vektoru. Normálový vektor ke grafu funkce f v bodě $[x_0, y_0, f(x_0, y_0)]$ je každý nenulový násobek vektoru kolmého na tečnou rovinu, tedy libovolný nenulový násobek vektoru

$$\vec{n} = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1\right).$$

Geometrické aplikace - tečná rovina (3)

Příklad: Určete rovnici tečné roviny a normálový vektor ke grafu funkce

$$f(x,y)=\frac{x}{y}$$

 $v \ bode \ a = [1, 1].$

Řešení: Spočteme nejprve jednotlivé parciální derivace a vyčíslíme je v bodě a:

$$\frac{\partial f}{\partial x} = \frac{1}{y}, \quad \frac{\partial f}{\partial x}(\mathbf{a}) = 1, \quad \frac{\partial f}{\partial y} = -\frac{x}{y^2}, \quad \frac{\partial f}{\partial y}(\mathbf{a}) = -1.$$

Protože $f(\mathbf{a}) = f(1,1) = 1$ je rovnice tečné roviny

$$z = 1 + (x - 1) - (y - 1) \equiv x - y - z + 1 = 0$$

a vektor normály je $\vec{n} = (1, -1, -1)$.