ŚTUDENĘ REPORT

DETAILS

Name

GOWTHAMI H

EXPERIMENT

Titl

SUM OF NUMBERS AT PRIME FACTORS

Description

Prime factors of a positive integer are the prime numbers that divide that integer exactly.

Given an array arr of n integers and a positive integer num.

Let's suppose prime factorization of num is: $p^a x q^b x r^c x x z^f$, where p,q,r...z are prime numbers.

Sum of numbers in array arr at indices of prime factors of number num is: $a \times arr[p] + b \times arr[q] + c \times arr[r] + + f \times arr[z]$.

You are given an array arr of size n and a positive integer num. You are required to calculate the sum of numbers in arr as mentioned above, and print the same.

Note:

- If arr is empty, print -1.
- If prime factor of num not found as indices, print 0.

Input Format:

The input consists of three lines:

- The first line contains an integer, i.e. n.
- The second line contains an array arr of length of n.
- The third line contains an integer num

The input will be read from the STDIN by the candidates.

Output Format:

Print the sum that was mentioned in the problem statement.

Example:

Input:

6

(EMPE

11 21 32 45 1 23

6

Output:

Roll Number

TEMPBTech-CSE036

Source Code:

```
def prime_factors(n):
    factors = set()
    while n % 2 == 0:
        factors.add(2)
        n //= 2
    for i in range(3, int(n**0.5) + 1, 2):
        while n % i == 0:
            factors.add(i)
            n //= i
    if n > 2:
        factors.add(n)
    return list(factors)
def calculate_sum(arr, num):
    if not arr:
        return -1
    factors = prime_factors(num)
    total_sum = 0
    found_valid_index = False
    for factor in factors:
        if factor < len(arr):</pre>
            total_sum += arr[factor]
            found_valid_index = True
    return total_sum if found_valid_index else 0
n = int(input())
arr = list(map(int, input().split()))
num = int(input())
result = calculate_sum(arr, num)
print(result)
```

1 of 4 9/27/2024, 3:53 PM

Explanation: $6 = 2^{1} \times 3^{1}$ sum = 1*arr[2] + 1*arr[3] = 1*32 + 1*45 = 77RESULT 2 / 5 Test Cases Passed | 40 %

2 of 4 9/27/2024, 3:53 PM

3 of 4 9/27/2024, 3:53 PM

4 of 4