אינפי 2מ'

מרצה אחראית: מיכל קליינשטרן

תוכן העניינים

5	פרק 1. אינטגרל לא מסוים
5	1. הפונקציה הקדומה
6	2. כללים למציאת פונקציה קדומה
9	פרק 2. אינטגרל מסוים
9	1. חלוקה של קטע, סכום דרבו עליון ותחתון
11	2. אינטגרל עליון, אינטגרל תחתון, אינטגרביליות
19	3. תנאים שקולים לאינטגרביליות
22	4. סכומי רימן
24	5. תנאים מספיקים לאינטגרביליות
27	6. תכונות של פונקציות אינטגרביליות
32	7. משפט ערך הביניים האינטגרלי
35	פרק 3. המשפט היסודי של החדו"א
35	1. פונקציה צוברת שטח
37	2. המשפט היסודי בגרסה הפשוטה ונוסחת ניוטון-לייבניץ
39	3. כלל לייבניץ לאינטגרל מסוים
40	4. המשפט היסודי - הגרסה המלאה
42	5. שיטות אינטגרציה של אינטגרל מסוים ויישומים של המשפט היסודי
51	פרק 4. אינטגרל מוכלל
51	1. אינטגרל מוכלל בתחום לא חסום
54	2. אינטגרל מוכלל של פונקציה לא חסומה בתחום חסום

אינטגרל לא מסוים

1. הפונקציה הקדומה

. בהינתן $f\left(x\right)$, נשאל איזו פונקציה צריך לגזור כך ש $f\left(x\right)$ היא הנגזרת, דוגפאות:

)1(
$$f\left(x\right)=xF\left(x\right)=\frac{x^{2}}{2}\bar{F}=\frac{x^{2}}{2}$$

F'(x)=f(x) אם מתקיים F(x) אם הפונקציה הפונקציה הפונקציה הפונקציה הפונקציה ווער הפונקציה הפונקציים הפונקציה הפונקצי

I בקטע בקטו $f\left(x
ight)$ תהא $F\left(x
ight)$ פונקציה קדומה של הפונקציה בקטע

 $\{F\left(x
ight)+c\mid c\in\mathbb{R}\}$ הוא האוסף של כל הפונקציות הקדומות של f בקטע

יכך ש-
$$c_1\in\mathbb{R}$$
 תיים $G(x)\in\{F(x)+c\mid c\in\mathbb{R}\}$ כך ש- וכחה. (1) תהא $G'(x)=f(x)$, נאדרש. $G'(x)=f(x)$

 $G\left(x
ight)\in\left\{ F\left(x
ight)+c\mid c\in\mathbb{R}
ight\}$ וצ"ל, $f\left(x
ight)$ פונקציה קדומה של (2) מונקציה קדומה של :נגדיר

$$H\left(x\right) = F\left(x\right) - G\left(x\right)$$

גזירה מתקיים של גזירות ומתקיים $H\left(x\right)$

$$H'(x) = F'(x) - G'(x) = 0$$

$$G\left(x
ight) = F\left(x
ight) + Cx \iff H\left(x
ight) = c$$
 כמסקנה מלגראנזי

 $\int f\left(x
ight)dx$: $f\left(x
ight)$ סימון הפונקציה הקדומה של

1.1. אינטגרלים מיידיים.

$$\int \cos x dx = \sin x + c \quad (1)$$

$$\int \sin x dx = -\cos x + c$$
 (2)

$$\int e^x dx = e^x + c$$
 (3)

$$\int e^x dx = e^x + c \quad \text{(3)}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c \quad \text{(4)}$$

$$\int \frac{1}{x^2+1} = \arctan x + c$$
 (5)

הערה 1.1 לא לכל פונקציה יש פונקציה קדומה.

למשל לפונקציה:

$$f(x) = \begin{cases} 0 & -1 \le x \le 0 \\ 1 & 0 < x \le 1 \end{cases}$$

למשל 0, משפט את בכל קטע היות נגזרת לא יכולה שהיא איכולה שמכיל (משפט הארבו) איננו באינפי [-1,1].

אם ננסה למצוא קדומה, נקבל:

$$F(x) = \begin{cases} c_1 & -1 \le x \le 0 \\ x + c_2 & 0 < x \le 1 \end{cases}$$

 $c_1=c_2$ תהיה רציפה, כלומר על מנת היה היה היה היה האירה, על מנת שלה: $F\left(x
ight)$ בכלל לא היה ב-0, ולכן בפרט בכלל לא הנאירה ב-0, ולכן בפרט דעם היא הנאירה שלה:

$$F'_{+}\left(0\right) = \lim_{x \to 0^{+}} \frac{F\left(x\right) - F\left(0\right)}{x - 0} = \lim_{x \to 0^{+}} \frac{\left(x + c\right) - c}{x} = 1 \neq 0 = \lim_{x \to 0^{-}} \frac{c - c}{x - 0} = F'_{-}\left(0\right)$$

הערה 1.2 לא תמיד ניתן למצוא נוסחה אנליטית לפונקציה קדומה. למשל:

$$\int e^{x^2}$$

2. כללים למציאת פונקציה קדומה

.2.1 לינאריות האינטגרל הלא מסוים.

אזי , $a\in\mathbb{R}$ יהי (1)

$$\int af(x) dx = a \int f(x) dx$$

:אדיטיביות (2)

$$\int (f+g)(x) dx = \int f(x) dx + \int g(x) dx$$

ב.2.2 אינטגרציה בחלקים. תזכורת: עבור u,v פונקציות גזירות, מתקיים:

$$(uv)' = u'v + uv' \iff (uv)' - u'v = uv'$$

ולכן:

$$\int uv' = \int \left((uv)' - u'v \right) \underbrace{=}_{\text{triangle}} uv - \int u'v$$

נוסחת האינטגרציה בחלקים:

$$\int uv' = uv - \int u'v$$

דוגמה 1.1 חשבו את האינטגרלים הבאים:

 $\int xe^{x}dx = xe^{x} - \int 1 \cdot e^{x}dx = xe^{x} - e^{x} + c$ $\begin{bmatrix} u = x & u' = 1 \\ v' = e^{x} & v = e^{x} \end{bmatrix}$ $\int \arctan xdx = \int 1 \cdot \arctan xdx = \begin{bmatrix} u = \arctan x & u' = \frac{1}{1+x^{2}} \\ v' = 1 & v = x \end{bmatrix}$

2.3. שיטת ההצבה. תזכורת: כלל השרשרת:

$$(F(g(x)))' = F'(g(x)) \cdot g'(x)$$

פונקציה $f:J \to I$ ותהא קול, בקטע בקטע f(x) פוני קדומה של פונץ תהא פוני המשפט בקטע הא גזירה והפיכה בק $x=\varphi(t)$

אזי:

$$\int f(x) dx = \int f(\varphi(t)) \cdot \varphi'(t) dt$$

דוגמה 1.2

$$\int e^{x^2} 2x dx = ex^2 + c$$

נשתמש במשפט:

$$\begin{cases} x = \varphi\left(t\right) = \sqrt{t} \\ \varphi'\left(t\right) = \frac{1}{2\sqrt{t}} \end{cases} \implies \int e^{x^2} 2x dx = \int \underbrace{e^{\left(\sqrt{t}\right)^2} 2 \cdot \sqrt{t}}_{f\left(\varphi\left(t\right)\right)} \cdot \frac{1}{2\sqrt{t}} dt = \int e^t dt = e^t + c = e^{x^2} + c$$
 בדרך כלל נציב את הפונקציה ההפוכה ונכתוב כך:

כלל נציב את הפונקציה ההפוכה ונכתוב כך:
$$\int e^{x^2} 2x dx = \int e^{t} dt = e^t + c = e^{x^2} + c$$

$$\begin{cases} t = x^2 \\ dt = 2x dx \end{cases}$$

xמטרה: להגדיר שטח בין גרף של פונקציה מוגדרת וחסומה בקטע חסום לבין ציר ה-

- חישוב אינטגרל רימן (אינטגרל מסוים) לפי דארבו.
- כל הפונקציות בדיון יהיו פונקציות חסומות בקטע ולאו דוקא רציפות!

1. חלוקה של קטע, סכום דרבו עליון ותחתון

.1.1 חלוקה של קטע.

. יהיו ממשיים מספרים ממשיים a < b יהיו

ות: חלוקה של [a,b] היא קבוצה סופית של נקודות:

$$P = a = x_0 < x_1 < \ldots < x_n = b$$

 $oldsymbol{:}[0,1]$ ניקח חלוקה כלשהי של הקטע ניקח דוגמה 2.1

 $.P=0,rac{1}{8},rac{1}{3},rac{1}{2},rac{3}{4},1$ עבור

הערה 2.1 חלוקה P כזו הינה קבוצה סדורה!

למעשה, מחלקים את הקטע [a,b] ל-n קטעים לאו בהכרח שוויס. $\Delta x_i=x_i-x_{i-1}$ בסמן את הקטע ה-i ע"י ע"י i, ואת אורכו ב-i, ואת נדיר 2 קירובים מלמעלה ומלמטה.

:לכל $1 \le i \le n$ לכל

$$M_i = \sup \{ f(x) \mid x_{i-1} \le x \le x_i \}$$

 $m_i = \inf \{ f(x) \mid x_{i-1} \le x \le x_i \}$

הערה 2.2 סופרימום ואינפימום קיימים כי דרשנו f חסומה, אך מקסימום ומינימום לא בהכרח קיימים כי לא דרשנו רציפות.

.1.2 סכום דארבו.

 $f\left(x
ight)$ סכוס דארכו לחלוקה - המתאים ארכו סכוס סכוס הגדרה 2.2 סכוס דארכו ארכו פונקציה

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i$$

 $f\left(x
ight)$ ולפונקציה P המתאים לחלוקה ארכו הארכו דארכו סכוס אגדרה 2.3

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i$$

2.3 הערה

10

• נשים לב:

$$M_i=\sup_{x\in[x_{i-1},x_i]}f\left(x
ight)\geq\inf_{x\in[x_{i-1},x_i]}f\left(x
ight)=m_i$$
 ולכן $U\left(f,P
ight)\geq L\left(f,P
ight)$

: מתקיים:
$$1 \leq i \leq n$$
 , $\mathbf{M} = \sup_{[a,b]} f\left(x\right)$, $\mathbf{m} = \inf_{[a,b]} f\left(x\right)$

- (1) $m \leq m_i$
- (2) $M \geq M_i$
- (3) $m \leq M$

טענה [a,b] אזי מתקיים: חלוקה P תהא 2.1 טענה

$$M(b-a) \ge U(f,P) \ge L(f,P) \ge m(b-a)$$

 $U\left(f,P
ight)\geq L\left(f,P
ight)$ הוכחה. ראינו כבר כי מתקיים עתה:

 $L\left(f,P
ight)\geq m\left(b-a
ight)$ ובאותו אופן סה"כ לפי הערה 2.3 מתקבל מש"ל.

f(x) = x בקטע דוגמה ב.2 בקטע f(x) = x ביקח חלוקה ל-x

$$P_n=\left\{0,rac{1}{n}<rac{2}{n}<\ldots<rac{n-1}{n}<1
ight\}$$
 לכל $\Delta x_i=rac{1}{n}$ מתקיים $1\leq i\leq n$ לכל $M_i=rac{i}{n}$ מנוסף, בנוסף,

שכום עליוו:

$$U(f, P_n) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} \underbrace{\frac{i}{n}}_{M_i} \underbrace{\frac{1}{n}}_{\Delta x_i} = \frac{1}{n!} \underbrace{\frac{n(n+1)}{2}}_{N_i} = \frac{n+1}{2n} = \frac{1}{2} + \frac{1}{2n} > \frac{1}{2}$$

סכום תחתון:

$$L\left(f,P_{n}\right) = \sum_{i=1}^{n} \frac{i-1}{n} \cdot \frac{1}{n} = \frac{1}{n^{2}} \sum_{i=1}^{n} i - 1 = \frac{1}{n^{\frac{1}{2}}} \frac{n(n-1)}{2} = \frac{n-1}{2n} = \frac{1}{2} - \frac{1}{2n} < \frac{1}{2}$$

2. אינטגרל עליון, אינטגרל תחתון, אינטגרביליות

.2.1 גישת דרבו.

[a,b] תהא בקטע וחסומה בקטע בקטע מוגדרה אינטגרל עליון של [a,b] מוגדר להיות:

$$\int_{a}^{\bar{b}} f = \inf_{P} U(f, P)$$

הגדרה (a,b) בקטע של f בקטע (a,b) אינטגרל החתון של בקטע מוגדרת מוגדרת מוגדרה (a,b) מוגדר להיות:

$$\int_{\bar{a}}^{b} f = \sup_{P} L(f, P)$$

אם: [a,b] אם, ק[a,b] אם: אינטגרבילית אינטגרבילית האדרה 2.6

$$\int_{a}^{\bar{b}} f = \int_{a}^{b} f$$

הערה 2.4 למעשה מדובר באינטגרביליות לפי דארבו. אין חשיבות לכינוי מאחר שאלו שקולות.

[0,1] הערה 2.5 ראינו שפונקציית דיריכלה לא אינטגרבילית הימן, למשל בקטע

$$\int_{a}^{\bar{b}} D = 1 \neq 0 = \int_{a}^{b} D$$

 $\mbox{,}[a,b]$ אינטגרבילית רימן אינטגרבילית fאם 2.6 הערה

אז השטח בין גרף הפונקציה לציר x מסומן באופן הבא:

$$\int_{a}^{b} f(x) \underbrace{dx}_{\text{"}\Delta x\text{"}}$$

.[a,b] בקטע בקטע $f\left(x
ight)=c$ באוגמה P תהא תהא חלוקה כלשהי של הקטע $M_i=c$ מתקיים: $1\leq i\leq n$ לכל $m_i=c$

$$U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i$$

$$= c \sum_{i=1}^{n} (x_i - x_{i-1})$$

$$= c ((x_1 - x_0) + (x_2 - x_1) + \dots + (x_n - x_{n-1}))$$

$$= c (b - a)$$

:ולכן: , $L\left(f,P\right)=c\left(b-a\right)$ ולכן: מצד שני, באותו האופן

$$\sup_{P}L\left(f,P\right) =\inf_{P}U\left(f,P\right)$$

:כלומר, f אינטגרבילית רימן לפי ההגדרה, ומתקיים

$$\int_{a}^{b} c dx = c \left(b - a \right)$$

f(x) = x בקטע 1.6 בקטע f(x) = x

U
$$(f,P_n)=rac{1}{2}+rac{1}{2n}$$
 עבור חלוקה ל- n קטעים שווים, ראינו:
$$\mathrm{L}\ (f,P_n)=rac{1}{2}-rac{1}{2n}$$
 מאינפי 1,

$$\inf_{n} U\left(f, P_{n}\right) = \frac{1}{2}$$

נשתמש בטענה שנוכיח בהמשך:

$$\int_a^b f \le \int_a^{\bar{b}} f$$

מתקיים:

$$\{U\left(f,P_{n}\right)\}\subseteq\{U\left(f,P\right)\}$$

-ומכאן ש

$$\frac{1}{2} = \inf_{n} U(f, P_n) \ge \inf_{P} U(f, P)$$

$$\frac{1}{2} = \sup_{n} L(f, P_n) \le \sup_{P} L(f, P)$$

:סה״כ

$$\frac{1}{2} \le \int_{\underline{a}}^{b} f \le \int_{a}^{\overline{b}} f \le \frac{1}{2}$$

ומתקיים: ,[a,b] אינטגרבילית רימן אינטגרבילית לימן ולכן

$$\int_{a}^{b}f=\frac{1}{2}$$

$$.f\left(x\right) =x^{2}\text{ (צור 1) Figure 1.0}$$
 הרגיל: לכצע פעולה דומה עבור

.2.2 עידון.

[a,b] תהא P חלוקה של הקטע .P תהא P' אם P' נאמר שר P'

 $P = \left\{0, \frac{1}{3}, \frac{2}{3}, 1
ight\}$ ניקח ניקח ב.5 תלוקה של הקטע חלוקה של חלוקה של

:נגדיר

$$P' = \left\{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right\}$$

P מתקיים ש- P' עידון של

.Pשל עידון איד $P'' = \left\{0, \frac{1}{4}, \frac{1}{2}, \frac{2}{3}, 1\right\}$ אחת, לעומת זאת,

 $f\left(x
ight)=x^{2}$ נראה דוגמה למה שעושה עידון לסכום העליון ולסכום התחתון: נקח 2.6 דוגמה בקטע [0,1] בקטע

$$P = \left\{0, \frac{1}{3}, \frac{2}{3}, 1
ight\}$$
 ניקח את החלוקה

$$U(f,P) = \sum_{i=1}^{3} M_i \Delta x_i = \frac{1}{3} \left(\frac{1}{3} + \frac{4}{9} + 1 \right) = \frac{4}{27}$$

עתה ניקח את העידון:

$$P' = \left\{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right\}$$

$$U\left(f,P'\right) = \sum_{i=1}^{4} M_i \Delta x_i = M_1 \cdot \frac{1}{3} + \underbrace{M_2 \cdot \left(\frac{1}{2} - \frac{1}{3}\right) + M_3 \cdot \left(\frac{2}{3} - \frac{1}{2}\right)}_{\text{הקטע שבו הוספנו נקודה}} + M_4 \cdot \left(1 - \frac{2}{3}\right)$$

קיבלנו:

$$U(f, P') \le U(f, P)$$

משפט 2.1 משפט העידון:

. תהא $f:[a,b] o\mathbb{R}$ חסומה

[a,b] חלוקה של חקטע P

:מתקיים P' של P' מתקיים

$$U\left(f,P'\right) \leq U\left(f,P\right)$$

$$L(f, P') \ge L(f, P)$$

הוכחה. עבור הסכום העליון באינדוקציה:

 $:\!\!P'$ את לקבל מנת על רחלוקה לחלוקה שהוספנו - N מספר על מנת באינדוקציה נוכיח

 ${\it :}n=1$ בסיס האינדוקציה: ניקח

.אחת נקודה אחת ע"י הוספת מ-P'

 \tilde{x} הוספנו את הנקודה $[x_{i_0-1},x_{i_0}]$ כך שבקטע בקטע ל $1 \leq i_0 \leq n$ הוספנו מסמן:

$$w_{1} = \sup \{ f(x) \mid \{x_{i_{0}-1}, \tilde{x}\} \}$$

$$w_{2} = \sup \{ f(x) \mid \{\tilde{x}, x_{i_{0}}\} \}$$

ואז:

$$U(f, P) = \sum_{i=1}^{n} M_{i} \Delta x_{i} = \sum_{\substack{i=1\\i \neq i_{0}}}^{n} M_{i} \Delta x_{i} + M_{i_{0}} \Delta x_{i_{0}}$$

$$U(f, P') = \sum_{\substack{i=1\\i \neq i_{0}}}^{n} M_{i} \Delta x_{i} + w_{1} (\tilde{x} - x_{i-1}) + w_{2} (x_{i_{0}} - \tilde{x})$$

$$\leq \sum_{\substack{i=1\\i \neq i_{0}}}^{n} M_{i} \Delta x_{i} + M_{i_{0}} (\tilde{x} - x_{i-1}) + M_{i_{0}} (x_{i_{0}} - \tilde{x})$$

$$= \sum_{\substack{i=1\\i \neq i_{0}}}^{n} M_{i} \Delta x_{i} + M_{i_{0}} \Delta x_{i_{0}} = \boxed{U(f, P)}$$

 $U\left(f,P'\right)\leq U\left(f,P\right)$ אז נקודות, אז נקודות מ-P התקבלה מ-P התקבלה אם איי הוספת N נקודות, אזי: איי הוספת N+1 התקבלה מ-P התקבלה מ-P איי הוספת N+1

$$U(f, P') \le U(f, P)$$

 $ilde x_1, ilde x_2,\dots, ilde x_N, ilde x_{N+1}$ נניח שהוספנו ל-P את הנקודות: $P'=P\cup\{ ilde x_1,\dots, ilde x_N\}\,, ilde P=P'\cup\{ ilde x_{N+1}\}$ נסמן: אבל אז.

$$U\left(f, \tilde{P}\right) \underbrace{\leq}_{\text{מבסיס האינדוקציה}} U\left(f, P'\right) \underbrace{\leq}_{\text{מהנחת האינדוקציה}} U\left(f, P'\right)$$

ינסמן: P, נסמן, עבור חלוקה P, נסמן:

$$\lambda\left(P\right) = \max_{1 \le i \le n} \left\{ \Delta x_i \right\}$$

אובייקט אה נקרא פרמטר החלוקה / קוטר החלוקה, ובפועל מדובר במקטע הכי ארוך בחלוקה. בחלוקה P

הערה 2.7 האינטואיציה היא שברגע שיודעים שהמקטע הארוך ביותר מקיים אילוץ מסוים, קל וחומר שהחלוקה כולה תתנהג בצורה נוחה.

בנוסף נסמן:

$$K = \sup\{|f(x)| \mid x \in [a, b]\}$$

אזי הוספת N נקודות, אזי איזי של עידון אם P' אם העידון) אם מסקנה 2.1 מסקנה מסקנה אזי מסקנה אויי

$$\underbrace{\left(U\left(f,P\right)-L\left(f,P\right)\right)}_{\omega\left(f,P\right)}-\underbrace{\left(U\left(f,P'\right)-L\left(f,P'\right)\right)}_{\omega\left(f,P'\right)}\leq4NK\cdot\lambda\left(P\right)$$
 מכונה התנודה

כלומר,

16

$$0 \le \omega(f, P) - \omega(f, P') \le 4NK \cdot \lambda(f, P)$$

. חסומה $f:[a,b] o\mathbb{R}$ תהא 2.2 טענה

אזי, לכל שתי חלוקות P,Q מתקיים:

$$L\left(f,P\right) \leq U\left(f,Q\right)$$

הערה 2.8 המשמעות היא שיש יחס סדר בין כל הסכומים התחתונים לסכומים התחתונים: כל סכום עליון **גדול תמיד** מכל סכום תחתון.

הוכחה. נגדיר עידון משותף:

$$P' = P \cup Q$$

Q עידון של P וגם עידון של P'

מתקיים:

$$L\left(f,P\right)\underbrace{\leq}_{\text{ממשפט העידון}}L\left(f,P'\right)\underbrace{\leq}_{\text{ראינו}}U\left(f,P'\right)\underbrace{\leq}_{\text{ממשפט העידון}}U\left(f,Q\right)$$

מסקנה 2.2 אם נגדיר:

$$A=\{U\left(f,P\right)\mid [a,b]$$
 של P חלוקה לכל
$$B=\{L\left(f,P\right)\mid [a,b] \text{ whith } P$$
 לכל חלוקה לכל $a>b$ מתקיים $a\in A,\ b\in B$ אזי לכל

:משפט 2.2 תהא תהא $f:[a,b] o\mathbb{R}$ תהא

$$m(b-a) \le \underbrace{\int_{\underline{a}}^{b} f}_{\sup B} \le \underbrace{\int_{\underline{a}}^{\overline{b}} f}_{\inf A} \le M(b-a)$$

 $m=\inf_{[a,b]}f$, אור $m=\sup_{[a,b]}f$ כאשר בפרט, אם אינטגרבילית ב-[a,b], אזינ

$$m(b-a) \le \int_a^b f \le M(b-a)$$

:הוכחה. לכל P מתקיים

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$$

ולכן האינפימום מקיים:

$$m\left(b-a\right) \le \inf_{P} U\left(f,P\right) = \int_{a}^{\bar{b}} f$$

באופן דומה,

$$M\left(b-a\right) \ge \sup_{P} L\left(f,P\right) = \int_{a}^{b} f$$

המשך ההוכחה - תרגיל

המשך הוכחה של מיכל מסמסטר חורף קודם:

 $S=\sup A$ נסמן מלעיל, נסמן ריקה א קבוצה קבוצה א קבוצה ומי: תהא

 $.a \leq S$ מתקיים $a \in A$ (1)

$$a>S-arepsilon$$
 כך ש- $a\in A$ קיים $arepsilon>0$ (2)

. חלוקות קבועות לשהן חלוקות P,Qיהיו

 $L\left(f,P
ight)\leq U\left(f,Q
ight)$ לפי טענה 2.2, מתקיים בפרט

 $A = \{L\left(f,P\right) \mid$ חלוקה $P\}$ הקבוצה של מלמעלה חסם $U\left(f,Q\right) \iff$

$$\int_{a}^{b} f = \sup A \le U(f, Q) \iff$$

וזה מהגדרת סופרימום כחסם מלמעלה הקטן ביותר.

מאחר שזה מתקיים לכל חלוקה Q, למעשה קיבלנו ש- $\int_{\underline{a}}^{b}f$ חסם מלמטה לקבוצה

$$B = \{U\left(f,Q\right) \mid$$
 חלוקה Q $\}$

$$\int_a^{\bar{b}} f = \inf B \ge \int_a^b f \iff$$

כאשר מעבר זה נובע מהגדרת אינפימום כחסם מלמטה הגדול ביותר.

:משפט 2.3 תהא $f:[a,b] o\mathbb{R}$ תהא

$$m\left(b-a\right) \leq \int_{\underline{a}}^{b} f \leq \int_{a}^{\overline{b}} f \leq M\left(b-a\right)$$

הוכחה.

לכל חלוקה P מתקיים:

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$$

ממשפט,

$$m(b-a) \le \sup_{P} L(f,p) \le M(b-a)$$

$$m(b-a) \le \inf_{P} U(f,p) \le M(b-a)$$

$$\int_{\underline{a}}^{b} f \ge m \left(b - a \right), \int_{a}^{\overline{b}} f \le M \left(b - a \right) \iff$$

: [a,b] ניקח חלוקה כלשהי על כלשהי עיקח ניקח

 $L\left(f,P\right)\leq U\left(f,Q\right)$, $\left[a,b\right]$ של הקטע של חלוקה לכל לכל משפט, לפי

$$\implies \int_{a}^{b} f = \sup_{P} L\left(f, P\right) \le U\left(f, Q\right)$$

 $\int_{\underline{a}}^{b}f\leq U\left(f,Q\right)$ מתקיים Qחלוקה לכל עכשיו עכשיו

$$\int_{a}^{\overline{b}}f=\inf_{Q}U\left(f,Q\right) \geq\int_{\underline{a}}^{b}f\iff$$

3. תנאים שקולים לאינטגרביליות

פוטיבציה: רוצים לפצוא דרכים יותר פשוטות להוכיח אינטגרביליות של פונקציה. קשה פאוד להוכיח ישירות לפי ההגדרה

משפט 2.4 (תנאים שקולים לאינטגרביליות) תהא תהא אוי התנאים שקולים לאינטגרביליות ההא הבאים שקולים:

- [a,b] אינטגרבילית אינטגרבילית f (1)
- -ע כך P כך חלוקה $\varepsilon>0$ לכל (2)

$$\omega\left(f,P\right)\coloneq U\left(f,P\right)-L\left(f,P\right)<\varepsilon$$

(התנודה קטנה כרצוננו)

(3) מתקיים: $\lambda\left(f,P\right)<\delta$ המקיימת חלוקה שלכל כך לכך $\delta>0$ מתקיים, $\varepsilon>0$

$$\omega\left(f,P\right)<\varepsilon$$

. טריוויאלי. (3) \Longrightarrow (2) נשים לב: 2.9 הערה

.[0,1] נוכיח בעזרת אינטגרבילית אינטגר $f\left(x\right)=x^{2}$ שהפונקציה (2) בעזרת נוכיח נוכיח ביש נוכיח בעזרת (2) אינטגרבילית בקטע $\varepsilon>0$ לכל לכל לכל לכל לכל לכל חלוקה P של חלוקה $\varepsilon>0$

$$\omega\left(f,P\right)<\varepsilon$$

הוכחה: יהא $\varepsilon>0$. נסתכל על חלוקה P_n ל-חn נסתכל על גסתכל לוס. באורך שווה, כלומר לכל לכל לכל $\Delta x_i=\frac{1}{n}$

$$\implies \boxed{\mathbf{m}_i = f\left(\frac{i-1}{n}\right) = \frac{(i-1)^2}{n^2}}$$

$$\boxed{\mathbf{M}_i = f\left(\frac{i}{n}\right) = \frac{i^2}{n^2}}$$

$$U\left(f,P\right) - L\left(f,P\right) = \sum_{i=1}^{n} \left(M_{i} - m_{i}\right) \Delta x_{i}$$

$$= \sum_{i=1}^{n} \left(f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right)\right) \frac{1}{n} \quad \underset{\text{define}}{=} \quad \frac{1}{n} \left(f\left(1\right) - f\left(0\right)\right) = \frac{1}{n} < \varepsilon$$

 $.U\left(f,P\right)-L\left(f,P\right)<\varepsilon$ יתקיים ואז יתקיים $n=\left\lceil \frac{1}{\varepsilon}\right\rceil +1$ כך ע- P_{n} חלוקה הקיים $\varepsilon>0$ לכל לכל

. הוכחת המשפט

$$(2) \Leftarrow (1)$$

נתון f אינטגרביליות, כלומר

$$\int_{a}^{\bar{b}}f=\inf_{P}U\left(f,P\right)=\sup_{P}L\left(f,P\right)=\int_{a}^{b}f$$

 $.U\left(f,P\right)-L\left(f,P\right)<\varepsilon$ ע" כך ש- P סלוקה חלוקה $\varepsilon>0$ לכל לכל לכל יימת האים $\varepsilon>0$ יימת יהא יהא

:קיימת חלוקה P_1 כך שמתקיים

$$U(f,P) < \int_{a}^{\overline{b}} + \frac{\varepsilon}{2}$$

:קיימת חלוקה P_2 כך שמתקיים

$$L(f,P) > \int_{\underline{a}}^{b} f - \frac{\varepsilon}{2}$$

. ניקח עידון משותף $P=P_1\cup P_2$ של שתי משפט העידון:

$$\begin{cases} U(f,P) \leq U(f,P_1) \leq \int_a^{\bar{b}} f + \frac{\varepsilon}{2} \\ L(f,P) \geq L(f,P_1) \geq \int_{\underline{a}}^{\underline{b}} f - \frac{\varepsilon}{2} \end{cases}$$

. $\int_{\underline{a}}^{b}f=\int_{a}^{\overline{b}}f$ נתון f אינטגרבילית, ולכן ולכן , שני אינטגרבילית, נחסר בין שתי המשוואות ונקבל בדיוק $\omega\left(f,P
ight)<arepsilon$ נחסר בין שתי המשוואות

$$(3) \Leftarrow (2)$$

$$.U\left(f,P
ight)-L\left(f,P
ight) כך ש- P כך קיימת חלוקה $\delta=rac{arepsilon}{8NK}$ עבור עבור $\varepsilon>0$$$

$$U\left(f, ilde{P}
ight) - L\left(f, ilde{P}
ight) < rac{arepsilon}{2}$$
 מהנתון קיימת חלוקה $ilde{P}$ כך שמתקיים
$$\left[.\lambda\left(P\right) < \delta \right.$$
 תהא P חלוקה כלשהי המקיימת

(עידון משותף). $Q=P\cup ilde{P}$ החלוקה

לפי מסקנה ממשפט העידון,

$$\begin{split} \left(U\left(f,P\right)-L\left(f,P\right)\right)-\left(U\left(f,Q\right)-L\left(f,Q\right)\right) &\leq 4NK\lambda\left(P\right) \\ U\left(f,P\right)-L\left(f,P\right) &\leq \left(U\left(f,Q\right)-L\left(f,Q\right)\right)+4NK\lambda\left(P\right) \\ &\overset{\leq}{\underset{\tilde{P}}{\sim}} \left(U\left(f,\tilde{P}\right)-L\left(f,\tilde{P}\right)\right)+4NK\lambda\left(P\right) \\ &\leq \frac{\varepsilon}{2}+4NK\lambda\left(P\right) \underbrace{=\varepsilon}_{\underset{\text{Truy}}{\sim}} \varepsilon \end{split}$$

נוכיח (2) כוכיח נוכיח (1) ביו (1) כוכיח (1) נתון: לכל arepsilon > 0 קיימת חלוקה P כך ש- arepsilon > 0 קיימת לכל פיימת f אינטגרבילית, כלומר f

$$\underbrace{\int_{\underline{a}}^{b} f}_{\sup_{P} \{L(f, P)\}} = \underbrace{\int_{\underline{a}}^{\overline{b}} f}_{\inf_{P} \{U(f, P)\}}$$

$$\int_{a}^{\overline{b}}f\underbrace{\leq}_{\text{הגדרת הסופרימום}}U\left(f,P\right)\underbrace{\leq}_{P\text{ הגדרת הסופרימום}}L\left(f,P\right)+\varepsilon\underbrace{\leq}_{\text{הגדרת הינפימום}}\int_{\underline{a}}^{b}f+\varepsilon$$

(מתקיים: לכל לכל $\varepsilon>0$ מתקיים:

$$0 \le \int_a^{\bar{b}} f - \int_{\underline{a}}^b f < \varepsilon \implies \int_a^{\bar{b}} f = \int_{\underline{a}}^b f$$

4. סכומי רימן

.(בכל הנקודות בקטע). מוגדרת (בכל הנקודות תהא א תהא (סכום רימן) מוגדרה להגדרה תהא תהא

[a,b] תהא P חלוקה של הקטע

. כרצוננו. גבחר נקודה $x_{i-1} \leq c_i \leq x_i$ נבחר נקודה לבחר בכל $1 \leq i \leq n$

יי: מוגדר ע"י: רימן המתאים לחלוקה P ולבחירת הנקודות סכום רימן המתאים לחלוקה

$$R(f, P, c_i) := \sum_{i=1}^{n} f(c_i) \Delta x_i$$

2.10 הערה

22

- (1) לא דרשנו (בינתיים) חסימות של הפונקציה.
- בהכרח רציפה, ואז סכום דארבו לאו סכום רימן אינו הכללה של סכום דרבו, כי f לא בהכרח רציפה, ואז סכום דארבו לאו דוקא יכול להתקבל כסכום רימן (למשל: הסופרימום הוא אולי לא נקודה בקטע).

 $f\left(x
ight)=x^{2}\left[0,1
ight]$ ניקח ניקח חלוקה P = $\left\{0,rac{1}{2},1
ight\}$

$$U(f,P) = \sum_{i=1}^{2} M_i \Delta x_i = \frac{1}{2} \left(\frac{1}{4} + 1 \right) = \frac{5}{8}$$

$$L(f, P) = \sum_{i=1}^{2} M_i \Delta x_i = \frac{1}{2} \left(0 + \frac{1}{4} \right) = \frac{1}{8}$$

כעת ננסה באמצעות סכום רימן:

$$R(f, P, c_i) = \frac{1}{2} \left(f\left(\frac{1}{3}\right) + f\left(\frac{7}{8}\right) \right) = \dots = \frac{53}{128}$$

טענה c_i מתקיים: לכל מתקיים) אוכיחו לכל מתקיים:

$$L(f, P) \leq R(f, P, c_i) \leq U(f, P)$$

23 . סכומי רימן

4.1. הגדרת רימן לאינטגרביליות.

הערה 2.11 צריך להוכיח שקילות להגדרת דרבו!

 $f:[a,b]
ightarrow \mathbb{R}$ תהא (אינטגרביליות לפי לפי אינטגרביליות אינטגרביליות לפי 2.9

אזי $\varepsilon>0$ קיימת $\varepsilon>0$ קיים אזי $I\in\mathbb{R}$ קיים אזי f קיימת בקטע הינטגרבילית בקטע אזי f אזי אינטגרבילית בקטע אזי (a,b], אולכל המקיים: שלכל חלוקה בחירה של נקודות אולכל המקיימת (a,b), אולכל בחירה של נקודות המקיימת אולכל המקיימת שלכל היים:

$$\left| \sum_{i=1}^{n} R\left(f, P, c_{I}\right) - I \right| < \varepsilon$$

(הערות) 2.12 הערות

- $I=\int_a^b f$:מתקיים ומתקיים את (2.9) אז הוא יחיד, ומתקיים (1)
 - חסומה f אם פונקציה f מקיימת את (2.9), אז f חסומה.

הוכחת ההערות.

.(2.9) את המקיים $J \neq I$ המקיים את (2.9).

J עבור $\delta_2>0$ ו- $\delta_1>0$ עבור $\delta_1>0$ עבור .arepsilon>0 יהא

 $\delta = \min\left\{\delta_1, \delta_2
ight\}$ נסתכל על

 $.\lambda\left(P\right)<\delta$ תהא חלוקה חלוקה Pתהא תהא

יהיו $x_{i-1} \le c_i \le x_i$ כלשהן:

$$0 \leq |I-J| = \left|I - \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} + \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} - J\right|$$

$$\leq \left|I - \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}\right| + \left|\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} - J\right| < \varepsilon$$

 $I=J \iff 0 \leq |I-J| < arepsilon$ מתקיים arepsilon > 0 הוכחנו שלכל

המקיימת P המקיימת $\delta>0$ כך שלכל כך קיים $\varepsilon=\frac{1}{2}$ המקיימת (2.9) לפי (2.9) לפי (2.9) לפי $x_{i-1}\leq c_i\leq x_i$ אלכל בחירה של ל $\lambda\left(P\right)<\delta$

$$\left| \sum_{i=1}^{n} f(c_i) \Delta x_i - I \right| < \frac{1}{2}$$

[a,b]-נניח בשלילה ש-f לא חסומה ב-

.(בה"כ מלמעלה) שבו f לא חסומה (בה"כ מלמעלה) שקיים תת-קטע (אינפי 1) שקיים תת-קטע

 $f\left(x_{0}\right)>M$ -פך כך $x_{0}\in\left[x_{j-1},x_{j}\right]$ קיים Mלכל לכל תוזכוות:

$$M=f\left(c_{j}
ight)+rac{1}{\Delta x_{j}}$$
 ניקח:

- כך ער גי
$$x_{j-1} \leq d_j \leq x_j$$
 כך ער (**)
$$f\left(d_j\right) > f\left(c_j\right) + \frac{1}{\Delta x_j}$$

(**) מתקיים d_j ו- ו- $d_i=c_i$ מתקיים מלכל j כך שלכל מתקיים נקח חלוקה לפי לפי שלכל לפי תנאי רימן:

$$\left| \sum_{i=1}^{n} f(d_i) \, \Delta x_i - I \right| < \frac{1}{2}$$

:אבל כעת

$$1 = \frac{1}{2} + \frac{1}{2} = \left| \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} - I \right| + \left| \sum_{i=1}^{n} f\left(d_{i}\right) \Delta x_{i} - I \right| \geq \left| \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} - I + I - \sum_{i=1}^{n} f\left(d_{i}\right) \Delta x_{i} \right|$$

$$= \left| \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} - \sum_{i=1}^{n} f\left(d_{i}\right) \Delta x_{i} \right| \quad \underbrace{=}_{i=1} \int_{0}^{n} \left| f\left(c_{i}\right) - f\left(d_{i}\right) \right| \left| \Delta x_{j} \right| > \frac{1}{\Delta x_{j}} \Delta x_{j} = 1$$

ולכן סתירה.

5. תנאים מספיקים לאינטגרביליות

מוניטונית, מונטוטונית $f:[a,b] o \mathbb{R}$ תהא תהא אינטגרביליות גוררת אינטגרבילית רימן בקטע אזי f אינטגרבילית רימן בקטע ל

הערה 2.13 נרצה להוכיח כי f אינטגרבילית לפי דארבו, בשביל זה נראה כי היא חסומה.

. נתון כי f מונוטונית, נניח בה״כ מונוטונית עולה. הוכח.

 $x \in [a,b]$ מוגדרת בכל נקודה בקטע, כלומר לכל f

$$f(a) \le f(x) \le f(b)$$

[a,b]-ם חסומה $f \Leftarrow$

-נוכיח שלכל [a,b] של הקטע P קיימת חלוקה $\varepsilon>0$ כך שלכל

$$\omega(f, P) = U(f, P) - L(f, P) < \varepsilon$$

 $. \varepsilon > 0$ יהא

. $\Delta x_i=rac{b-a}{n}$ נסתכל על חלוקה [a,b], כלומר שווים של הקטע ל-nל ל-nל תלוקה ל- $m_i=f\left(x_{i-1}\right)$ ו- $M_i=f\left(x_i\right)$

$$\omega\left(f,P\right) = U\left(f,P\right) - L\left(f,P\right) = \sum_{i=1}^{n}\left(M_{i} - m_{i}\right)\Delta x_{i} = \sum_{i=1}^{n}\left(f\left(x_{i}\right) - f\left(x_{i-1}\right)\right)\Delta x_{i} \underbrace{\underbrace{\qquad \qquad \qquad }}_{n} \underbrace{\qquad \qquad b - a}_{n} \cdot \left(f\left(b\right) - f\left(a\right)\right)$$

$$U\left(f,P\right) - L\left(f,P\right) = \frac{b - a}{n}\left(f\left(b\right) - f\left(a\right)\right) \iff$$

$$n > \frac{(b-a)(f(b)-f(a))}{\varepsilon}$$
 שבה P_n חלוקה חלוקה $\varepsilon > 0$ לכל \Longleftrightarrow

$$.U\left(f,P_{n}
ight) -L\left(f,P_{n}
ight) המקיימת$$

הערה 2.14 משפט זה מאפשר להגדיר כל פונקציה מונוטונית בקטע סגור כאינטגרבילית.

דוגמה 2.9 (פונקציות מונוטוניות שאינטגרביליות בקטע חסום)

$$\left[0,1\right]$$
 בקטע $f\left(x
ight) =x^{2}$ (1)

$$[1,2]$$
 בקטע $f(x) = \frac{1}{x}$ (2)

. מספר אי רציפות אי פופי סופי - [0,10] בקטע בקטע (3)

$$f(x) = \begin{cases} 1 - \frac{1}{2^{n-1}} & x \in \left[1 - \frac{1}{2^{n-1}}, 1 - \frac{1}{2^n}\right] \\ 1 & x = 1 \end{cases}$$
 (4)

. פונקציה או הינה מונוטונית בקטע [0,1], ולכן על פי המשפט אינטגרבילית שם

רציפה, $f:[a,b] o \mathbb{R}$ תהא תהא אינטגרביליות גוררת אינטגרביליות (רציפות ביר

[a,b]- אזי אינטגרבילית רימן f

תזכורת:

- (ווירשטראס) ומינימום מקסימום ומקבלת היא היא חסומה אז היא רציפה בקטע (ווירשטראס) אם f
 - (סנטור היינה) אם f רציפה בקטע סגור אז היא רציפה בו במ"ש (קנטור היינה)
- $x,y\in [a,b]$ כך שלכל $\delta>0$ קיימת arepsilon>0 כך שלכל I בתחום רציפה במ"ש בתחום $|f\left(x
 ight)-f\left(y
 ight)|<arepsilon$, מתקיים: $|x-y|<\delta$

. הוכחת המשפט:. כאמור fרציפה בקטע סגור, ולכן חסומה בו לפי ויירשטראס. אור המשפט:. כאמור β ס קיימת $(P)<\delta$ המקיימת שלכל של [a,b] של שלכל חלוקה $\delta>0$ קיימת $\varepsilon>0$ קיימת מתקיים:

$$\omega\left(f,P\right) = U\left(f,P\right) - L\left(f,P\right) < \varepsilon$$

 $.\varepsilon > 0$ יהי

לכל סגור, ולכן קיימת לפי פנטור היינה, ולכן עדיפה לבי שלכל $\delta>0$ סגור, ולכן רציפה לפי לפי תציפה לבי המקיימים אולכן מתקיים וא חמקיים וואר אוליים וואר אוליים ביימים אולכן $|x-y|<\delta$ מתקיימים אוליים מא $x,y\in[a,b]$

 $|x_i-x_{i-1}|<\delta$, $1\leq i\leq n$ לכל לכל המקיימת המקיימת המקיימת לשהי המקיימת המקיימת לכל $[x_{i-1},x_i]$ ולכן מקבלת שם מקסימום ומינימום (רציפה בקטע סגור).

$$x_{i-1} \leq t_1 \leq x_i$$
 כך ש- $M_i = f\left(t_i
ight)$ לכן קיימים: $m_i = f\left(s_i
ight)$

מתקיים:

$$M_{i} - m_{i} = f(t_{i}) - f(s_{i}) < \frac{\varepsilon}{b - a} \iff |t_{i} - s_{i}| \le x_{i} - x_{i-1} < \delta$$

$$U(f, P) - L(f, P) = \sum_{i=1}^{n} (M_{i} - m_{i}) \Delta x_{i} < \sum_{i=1}^{n} \frac{\varepsilon}{b - a} \Delta x_{i} = \varepsilon \iff$$

משפט 2.7 (רציפה פרט למספר סופי של נקודות) תהא $f:[a,b] o\mathbb{R}$ משפט 2.7 משפט עם נק' אי רציפות מסוג עיקרית).

[a,b] אינטגרבילית רימן אינט מספר סופי של נקודות, אזי אינטגרבילית למספר אם רציפה אם f

$$[0,1]$$
 אינטגרבילית רימן אינטגרבילית $f\left(x
ight)=egin{cases} f\left(x
ight)=\sinrac{1}{x} & x
eq 0 \ 0 & x=0 \end{cases}$

6. תכונות של פונקציות אינטגרביליות

הגדרה 2.10 (סימונים מקובלים)

$$\int_a^b f = -\int_b^a f \quad \text{(1)}$$

$$\int_a^a f = 0 \quad \text{(2)}$$

$$\int_a^a f = 0$$
 (2)

. שלילית אז האינטגרל היה בסימן מינוס f אם f

(a < b < c)[a,b] ו- [a,b] ו- [a,b] ו- (אדיטיביות) אינטגרבילית ההא אינטגרבילית (אדיטיביות) ומתקיים: [a,c] ומתקיים אינטגרבילית אינטגרבילית אינטגרבילית

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f$$

הוכחה:.
$$f \Leftrightarrow \begin{cases} a,c \\ b \end{cases}$$
 חסומה בקטע $f \Leftrightarrow (a,c)$ אינט' ב- $[a,b] \Leftrightarrow (a,c)$ חסומה בקטע $f \Leftrightarrow (a,c) \Leftrightarrow (a,c)$ אינטג' ב- $[a,c] \Leftrightarrow (a,c)$ חסומה בקטע $f \Leftrightarrow (a,c)$

 $.U\left(f,P\right)-L\left(f,P\right)<\varepsilon$ עם כך של הקטע של חלוקה חלוקה $\varepsilon>0$ קיימת שלכל נוכיח נוכיח שלכל

 $.\varepsilon > 0$ יהא

 $L\left(f,P_{1}
ight)-L\left(f,P_{1}
ight)<rac{arepsilon}{2}$ של הקטע כך של קיימת חלוקה קיימת חלוקה קיימת פאינטגרביליות קיימת חלוקה וחלוקה או הקטע פון איימת חלוקה איינטגרביליות פון היימת חלוקה חלוקה איינטגרביליות פון היימת חלוקה היימת חלוקה וחלוקה איינטגרביליות פון היימת חלוקה וחלוקה היימת חלוקה וחלוקה וחלוקה היימת חלוקה וחלוקה וחלול

 $U\left(f,P_{2}
ight)-L\left(f,P_{2}
ight)<rac{arepsilon}{2}$ -של הקטע כך של חלוקה חלוקה ,[b,c] באופן דומה עבור

 $P : P : P_1 \cup P_2$ נסתכל על החלוקה

$$P_1 = \{ a = x_0 < x_1 < \dots < x_n = b \}$$

$$P_2 = \{b = y_0 < y_1 < \dots < y_n = c\}$$

$$\text{(****)} \quad U\left(f,P\right) - L\left(f,P\right) = \sum_{i=1}^{n} \left(M_{i}^{1} - m_{i}^{1}\right) \Delta x_{i} + \sum_{i=1}^{n} \left(M_{i}^{2} - m_{i}^{2}\right) \Delta y_{i} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

[a,c] אינטגרבילית בקטע $f \Leftarrow=$

$$\int_a^c f = \int_a^b f + \int_b^c f$$
 נשאר להוכיח

$$\underbrace{L\left(f,P_{1}\right)+L\left(f,P_{2}\right)}_{L\left(f,P\right)} \leq \int_{a}^{b} f + \int_{b}^{c} f \leq \underbrace{U\left(f,P_{1}\right)+L\left(f,P_{2}\right)}_{U\left(f,P\right)} \iff$$

$$L\left(f,P
ight) \leq \int_{a}^{c}f \leq U\left(f,P
ight)$$
 מהוכחת אינטגרביליות מתקיים:

נחסר בין המשוואות ונקבל:

$$\begin{split} -\left(U\left(P,f\right)-L\left(P,f\right)\right) &\leq \int_{a}^{c} f - \left(\int_{a}^{b} f + \int_{b}^{c} f\right) \leq U\left(f,P\right) - L\left(f,P\right) \\ 0 &\leq \left|\int_{a}^{c} f - \left(\int_{a}^{b} f + \int_{b}^{c} f\right)\right| \leq U\left(f,P\right) - L\left(f,P\right) \underset{\text{(ext) 20}}{<} \varepsilon &\iff \\ \end{split}$$

כפי שראינו פעמים רבות - שוויון.

משפט 2.9 (אדיטיביות עם אוריינטציה) תהא f אינטגרבילית בקטעים המתאימים, אזי:

$$\int_{a}^{b} f + \int_{b}^{c} f = \int_{a}^{c} f$$

וזה ללא כל חשיבות לסדר בין a, b, c.

_____ צריך להוכיח את כל האפשרויות:

- .((2.10) אם a=b=c אם (1)
 - .וכחנו. a < b < c אם
- (3) את כל שאר הווריאציות ניתן להוכיח בקלות באמצעות ההגדרות והדברים שהוכחנו.

[a,b] אינטגרביליות אינטגרביליות תהא לתת-קטע) תהא אינטגרביליות משפט 2.10 משפט אינטגרביליות אינטגרביליות המ $c,d \leq b$ אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית מוע אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית מוע אינטגרבילית אונטגרבילית אונטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אונטגרבילית אונטגרבילית אונטגרבילית אינטגרבילית אינטגרבילית

 $.\varepsilon>0$ הוכחה. יהי

-פך [a,b] כך של הקטע Q של חלוקה קיימת בי[a,b], בי ביליות של ביליות מהגדרת אינטגרביליות של

$$U(Q, f) - L(Q, f) < \varepsilon$$

.(עידון שבו הקטע הקצוות של הקצוות שבו (עידון שבו (עידון שבו הקטע הפנימי). $P' = Q \cup \{c,d\}$

 $U\left(f,P'\right)-L\left(f,P'\right)\leq U\left(f,P\right)-L\left(f,P\right)$ ממשפט העידון, משפט העידון, ווי, $P:=P'\cap [c,d]:$ נגדיר: ענדיר: $P:=P'\cap [c,d]$

$$Q = \{ a = x_0 < x_1 < \dots < x_n = b \}$$

$$P' = \left\{ a = x_0 < x_1 < \dots < \underbrace{x_i = c < \dots < x_{i+k} = d}_{P} < \dots < x_n = b \right\}$$

$$\implies U\left(f,P\right) - L\left(f,P\right) = \sum_{i=1}^{k} \underbrace{\left(M_{i} - m_{i}\right)}_{\geq 0} \underbrace{\Delta x_{i}}_{\geq 0} \qquad \underbrace{\leq}_{P \text{ includes and private and privat$$

משפט 2.11 (תכונות)

מתקיים: $x \in [a,b]$ מתקיים: [a,b] מתקיים: אינטגרבילית אינטגרבילית בקטע

[a,b] אינטגרבילית בקטע $(\varphi\circ f)(x)$ אינסגרבילית בקטע ק $:[c,d] o\mathbb{R}$ אזי לכל

lpha f + g הפונקציה $lpha \in \mathbb{R}$ אזי לכל (מינאריות) אינטגרביליות בקטע היינטגרביליות ומתקיים: (a, b] הפונקציה הפונקציה אינטגרבילית בקטע

$$\int_{a}^{b} (\alpha f + g) = \alpha \int_{a}^{b} f + \int_{a}^{b} g$$

(בהוכחה כדאי לפצל ל-2 משפטים)

הערה בקטע לכן להסתכל על כל הפונקציות האינטגרבילוית בקטע לכן להסתכל ניתן בארה ביתרה לכן להסתכל על להסתכל אופרטור ה-+.

30

$$\int_a^b f \geq 0$$
אזי (אי-שליליות, הא הא היכטגרבילית אינטגרבילית (אי-שליליות) (3)

[a,b] בקטע אינטגרבילית fנתון : נתון אי-שליליות. הוכחת אי-שליליות

$$\sup_{P}\left\{L\left(f,P\right)\right\}=\inf_{P}\left\{U\left(f,P\right)\right\}=\int_{a}^{b}f\iff$$
 נתון $f\geq0$ לכל $f\geq0$

$$L\left(f,P
ight)\geq0$$
 מתקיים P לכל

$$\int_{a}^{b} f \ge 0 \iff \sup_{P} \left\{ L\left(f, P\right) \right\} \ge 0 \iff$$

[a,b] אינטגרביליות בקטע f,g יהיו (4) (מונוטוניות האינטגרל) (4) $\int_a^b f \le \int_a^b g$ אזי $f(x) \le g(x)$ מתקיים $a \le x \le b$

 $.h\left(x\right)\coloneqq g\left(x\right)-f\left(x\right)\underbrace{\geq}_{\text{מהנתון}}0$ נגדיר: נגדיר: הוכחת מונוטוניות האינטגרל.

אינטגרבילית מלינאריות, ולפי תכונה (אי-שליליות), מתקיים: $h\left(x\right)$

$$\int_{a}^{b} (g - f) \ge 0 \iff \int_{a}^{b} h \ge 0$$

$$\int_{a}^{b} g \ge \int_{a}^{b} f \iff \int_{a}^{b} g - \int_{a}^{b} f \ge 0 \iff \int_{a}^{b} f \ge 0$$

אזי: [a,b] אינטגרבילית בקטע אינטגרלי) אינטגרבילית המשולש האינטגרלי) (5)

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

 $|f| \leq f \leq |f|$ מתקיים: מתכונות ערך מחלט, מתקיים: הוכחת אש"מ אינטגרלי.

$$\int_a^b -|f| \leq \int_a^b f \leq \int_a^b |f| \underset{\text{distribe}}{\Longleftrightarrow}$$
 ממונוטוניות האינטגרל
$$-\int_a^b |f| \leq \int_a^b f \leq \int_a^b |f| \underset{\text{distribe}}{\Longleftrightarrow}$$

$$\left|\int_a^b f\right| \leq \int_a^b |f| \underset{\text{urg aints}}{\Longleftrightarrow}$$

31

טענה 2.4 (רציפות במספר סופי של נקודות גוררת אינטגרביליות)

תהא $f:[a,b] o \mathbb{R}$ חסומה חוציפה פרט למספר סופי של נקודות. אזי f:[a,b] איי אינטגרבילית בקטע [a,b]

$$f(x) = egin{cases} \sin rac{1}{x} & x
eq 0 \\ 0 & x = 0 \end{cases}$$
 אינטגרבילית בקטע 2.11 אינטגרבילית בקטע

טענה 2.5 (שינוי במספר סופי של נקודות לא משפיע על האינטגרל)

[a,b] אינטגרבילית בקטע f תהא

תהא תהא קבי טופי של נקודות, בד $g:[a,b]\to\mathbb{R}$ תהא תהא תהא ק $g:[a,b]\to\mathbb{R}$ מתקיים: $f\left(x\right)=g\left(x\right)$

 $.\int_a^b f = \int_a^b g$ אזי אינטגרבילית, ומתקיים: g

.6.1 נקודות למחשבה (תרגילים בנושא אי-שליליות).

- $x\in [a,b]$ לכל לכל $f\leq 0$ מה קורה אם (1)
 - $a \le x \le b$ לכל f > 0 מה אם (2)
 - $f(x_0) > 0$ שבה x_0 (3)
 - (3) + רציפה f (4)

מסקנה 2.3 (נוכל ליצור הרבה פונקציות אינטגרביליות)

אז: [a,b] אז: אם f אינטגרבילית בקטע

- [a,b]אינטגרבילית ב- f^n , $n\in\mathbb{N}$ לכל (1)
 - [a,b]- אינטגרבילית | f (2)
- [a,b]. אינטגרבילית היו $\inf_{[a,b]}|f|>0$ אינטגרבילית (3) אם דוגמה:

נתבונן בפונקציה:

$$f(x) = \begin{cases} x & x \neq 0 \\ 5 & x = 0 \end{cases}$$

האם $\frac{1}{f}$ אינטגרבילית בקטע [0,1]? $\inf_{[0,1]} f = 0 \text{ (2)}$.inf $\inf_{[0,1]} f = 0$ השובה: לא, כי

 $\mbox{,}[a,b]$ אינטגרביליות אינטגרבילית היא אינטגרביליות היא אינטגרביליות פונ' אינטגרביליות (מכפלת היא אינטגרביליות היא אינטגרבילית היא $f\cdot g$ אינטגרבילית בקטע ו[a,b]

הוכחה.

$$f \cdot g = \frac{1}{2} (f+g)^2 - f^2 - g^2$$

לפי התכונות והמסקנות.

7. משפט ערך הביניים האינטגרלי

סענה 2.6 (משפט ערך הביניים האינטגרלי) תהא f פונקציה רציפה בקטע בקטע [a,b] ותהא g פונקציה אינטגרבילית חיובית ממש בקטע בקטע g אזי, קיימת נקודה $a \leq c \leq b$ כך שמתקיים:

$$\int_{a}^{b} f \cdot g = f(c) \int_{a}^{b} g$$

תעיון ההוכחה. f רציפה בקטע סגור בקטע מקסימום ומינימום. $x \in [a,b]$ עלכל כך שלכל $M,m \in \mathbb{R}$

$$m \le f(x) \le M$$

נכפות: ותכונות ותכונות לפתח, ונקבל לפתח, ונמשיך בקטע בקטע ב-0 בקטע נוספות:

$$m \le \frac{\int_a^b fg}{\int_a^b g} \le M$$

. צריך אחלק למקרים עבור אחניים, שארית ארית עבור עבור אריק לחלק למקרים עבור ארית ארית ארית החוכחה של האובדה ש-m,M מתקבלים כמקסימום וכמינימום בקטע.

הערה 2.16 אינטואיציה עבור $g\left(x\right)=1$ מדמה סוג של "ממוצע" במקרה הרציף של אינטגרל. האינטגרל מדומה לסכום שמחלקים ב"מספר האיברים" - אורך הקטע (בדומה לממוצע רגיל).

אינטואיציה עבור $g\left(x
ight)$ כללי: אם רצוננו בממוצע משוקלל, $g\left(x
ight)$ מייצגת את ערך של לולכן צריכה להיות חיובית ממש) סה"כ נקבל:

$$\frac{\int_{a}^{b} f \cdot g}{\int_{a}^{b} g} = f(c)$$

. באשר - $f\left(c\right)$ את קיומו את כדי להבטיח רציפה הממוצע. בריכה להיות רציפה כדי להבטיח

$$\mathbf{f}\left(x
ight)=\sin x$$
 בקטע ניקח:
$$\mathbf{g}\left(x
ight)=x+1>0$$

:לפי המשפט, קיימת $c \leq 1$ כך שמתקיים

$$\int_{0}^{1} \left(x+1 \right) \sin x dx = \sin \left(c \right) \int_{0}^{1} \left(x+1 \right) dx = \sin \left(c \right) \left(\int_{0}^{1} x dx + \int_{0}^{1} 1 dx \right) = \sin \left(c \right) \left(\frac{1}{2} + 1 \right) = \frac{3}{2} \sin \left(c \right)$$

המשפט היסודי של החדו"א

1. פונקציה צוברת שטח

לכל [a,x] אינטגרבילית רימן אינטגרבילית תהא אינטגרבית תהא תהא אונסת עוברת שטח) הגדרה 3.1 (פונקציה צוברת שטח) :נגדיר $a \le x \le b$

$$F\left(x\right) \triangleq \int_{a}^{x} f\left(t\right) \mathrm{d}t$$

[a,b] אינטגרבילית רימן בכל אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית

$$F(x) = \int_{a}^{x} 2dx$$
 בונחע נחישבע $= 2(x-a)$

. אינטגרבילית כי מונוטונית
$$f\left(x\right)=\begin{cases} 0 & 0\leq x<1\\ 1 & 1\leq x<2\\ 2 & 2\leq x\leq 3 \end{cases}$$
 דוגמה 3.2 אינטגרבילית כי מונוטונית.

$$0 \leq x < 1$$
 עבור

$$F\left(x\right)=\int_{0}^{x}f\left(t\right)\mathrm{d}t=\int_{0}^{x}0\mathrm{d}t=0$$

$$2x<2 \ \text{ עבור}$$

$$F\left(x\right)=\int_{0}^{x}f\left(t\right)\mathrm{d}t=\int_{0}^{1}0\mathrm{d}t+\int_{1}^{x}1dt=0+1\cdot\left(x-1\right)=x-1$$

 $2 \le x < 3$ עבור

$$F\left(x\right) = \int_{0}^{x} f\left(t\right) \mathrm{d}t = \int_{0}^{1} 0 \mathrm{d}t + \int_{1}^{2} 1 dt + \int_{2}^{x} 2 dt = 0 + 1 + 2\left(x - 2\right) = 2x - 3$$
 קיבלנו:

$$F(x) = \begin{cases} 0 & 0 \le x < 1 \\ x - 1 & 1 \le x < 2 \\ 2x - 3 & 2 \le x \le 3 \end{cases}$$

שאלות לגבי התוצאה:

- אם זה מקרי? F(x) רציפה. האם זה מקרי?
- אם זה מקרי? $F\left(x\right)$ גזירה בכל הנקודות למעט נקודות התפר. האם זה מקרי?
- פונקציה שלילית וש-f אי שלילית וש-F מונוטונית עולה, באופן שמזכיר את הקשר בין פונקציה פיבלנו ש-f לנגזרת. האם זה מקרי?

משפט 3.1 (הפונקציה צוברת השטח של אינטגרבילית רציפה בקטע)

[a,b]ב- ב-עיפה $F\left(x\right)=\int_{a}^{x}f$ הפונקציה אזי הפונקע, [a,b]רציפה ב-קטע אינטגרבילית אינטגרבילית הפונקציה הפונקציה אזי הפונקציה ב

הוכחה. נוכיח ש- $F\left(x
ight)$ רציפה במ"ש.

f, גתון אינטגרבילית בקטע f

$$[a,b]$$
 חסומה בקטע הסומה $f \iff$. $|f\left(x\right)| \leq M$ - כך ש $0 < M \in \mathbb{R}$

 $a \le x < y \le b$ יהיו

$$\left|F\left(y
ight)-F\left(x
ight)
ight| = \left|\int_{a}^{y}f-\int_{a}^{x}f
ight| = \left|\int_{a}^{y}f+\int_{x}^{a}f
ight| = \left|\int_{x}^{y}f
ight|$$

$$\underbrace{\leq}_{x} \int_{x}^{y} |f| \underbrace{\leq}_{\text{aliculus}} \int_{x}^{y} M \underbrace{=}_{\text{Aw's olicity}} M \left| y - x \right|$$

 $\left| F\left(y\right) -F\left(x\right) \right| \leq M\left| y-x\right|$ מתקיים, $a\leq x< y\leq b$ לכל כי לכל סה"כ סה"כ

ליפשיצית $F \Leftarrow=$

רציפה במ"ש $F \iff$

רציפה. $F \Leftarrow =$

הערה 3.1 המלצה כדי לנתק את המחשבה האוטומטית שאם עושים אינטגרל, הפונקציה שבפנים תמיד רציפה:

הוכיחו שפונקציית רימן / פונקציית תומה / פופקורן / הגשם הנופל:

$$f\left(x\right) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \in \mathbb{Q}, q \neq 0, \text{ be all } x \neq 0, \\ 0 & x \not \in \mathbb{Q} \end{cases}$$

[0,1] אינטגרבילית רימן בקטע

נקודות אי הרציפות הן המספרים הרציונליים (כן מנייה), והפונקציה רציפה עבור כל המספרים האי-רציונליים.

:כל מה שנוכיח על F יהיה נכון גם ל-

$$F\left(x\right) = \int_{a}^{x} f \underbrace{=}_{\text{DECLETAN}} \int_{a}^{x_{0}} f + \int_{x_{0}}^{x} f = C + G\left(x\right)$$

. נבדלות בקבוע $F,\ G$

הערה 3.3 באופן כללי, נגזרת של פונקציה כלשהי לא בהכרח אינטגרבילית.

2. המשפט היסודי בגרסה הפשוטה ונוסחת ניוטוו-לייבניץ

משפט 3.2 (המשפט היסודי של החדו"א - גרסה פשוטה)

. פונקציה אינטגרבילית פונקציה $f:[a,b] o \mathbb{R}$

 $x \in [a,b]$: נגדיר לכל

$$F(x) = \int_{a}^{x} f(t) dt$$

אם , $a \leq x_0 \leq b$ גזירה בנקודה $F\left(x\right)$ אזי אזי , x_0 ומתקיים:

$$F'\left(x_0\right) = f\left(x_0\right)$$

. הערה x_0 אם x_0 נקודת קצה של הקטע, אז הכוונה לרציפות/גזירות חד-צדדיות.

הוכחת המשפט היסודי בגרסה הפשוטה.

$$\lim_{x \to x_0^+} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$$

תהא מצד מירות לכד גזירות מצד ממין (תוכיחו לכד גזירות מצד שמאל). $a \leq x_0 \leq b$

 $a \leq x_0 < x < x_0 + \delta$ בריך להוכיח: לכל $\delta > 0$ קיימת $\delta > 0$ כך שלכל לכל לכל לכל מתקיים:

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| < \varepsilon$$

יהא $\varepsilon > 0$ יהא

נתון ש-f רציפה, ולכן קיימת $x_0 < x < x_0 + \delta_1$ כך שלכל ה $\delta_1 > 0$ מתקיים:

$$|f(t) - f(x_0)| < \varepsilon$$

עבור x כנדרש מתקיים: $\delta = \min\{b-x_0,\delta_1\}$ עבור

$$\left|\frac{F\left(x\right)-F\left(x_{0}\right)}{x-x_{0}}-f\left(x_{0}\right)\right|=\frac{1}{x-x_{0}}\left|\int_{a}^{x}f-\int_{a}^{x_{0}}f-\underbrace{f\left(x_{0}\right)}_{\text{wide field of }}\cdot\underbrace{\underbrace{\left(x-x_{0}\right)}_{\left[x_{0},x\right]\text{ wide field of }}}\right|$$

$$\underset{\text{The field of }}{=}\frac{1}{x-x_{0}}\left|\int_{x_{0}}^{x}f-\int_{x_{0}}^{x}f\left(x_{0}\right)\right|\underbrace{\underset{\text{The field of }}{=}}\frac{1}{x-x_{0}}\left|\int_{x_{0}}^{x}\left(f-f\left(x_{0}\right)\right)\right|$$

$$\underset{\text{Sumary field of }}{\leq}\frac{1}{x-x_{0}}\int_{x_{0}}^{x}\left|f\left(t\right)-f\left(x_{0}\right)\right|\,\mathrm{d}t\underbrace{\underset{\text{The field of }}{\leq}}\frac{1}{x-x_{0}}\int_{x_{0}}^{x}\varepsilon\mathrm{d}t=\varepsilon$$

מסקנה 3.1 לכל פונקציה רציפה בקטע סגור יש פונקציה קדומה, כי עבור:

$$F(x) = \int_{a}^{x} f(t) dt$$

 $F'\left(x
ight)=f\left(x
ight)$ מתקיים מתקיים לכל לפי המשפט לפי בקטע, לפי הקודה בקטע, לפי וזו בדיוק ההגדרה של פונקציה קדומה.

שאלות

(1) האם תמיד נוכל למצוא פונקציה אנליטית קדומה (נוסחה)?

- לא, אבל "נוכל" לחשב את האינטגרל המסוים.

דוגמאות לפונקציות ללא פונקציה אנליטית קדומה:

$$f(x) = \frac{\sin x}{x}$$
 (x)

$$f(x) = e^{x^2} \quad (1)$$

$$f(x) = \sin(x^2)$$
 (x)

$$f(x) = \frac{e^x}{x}$$
 (ד)

צ"ל:

טענה 3.1 (נוסחת ניוטון-לייבניץ (N-L) תהא א $f:[a,b] o \mathbb{R}$ תהא ((N-L) טענה 3.1 נוסחת ניוטון-לייבניץ קדומה של f, אזי:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

הוכחה.

.
$$G\left(x
ight)=\int_{a}^{x}f\left(t
ight)\mathrm{d}t$$
 :נגדיר

f לפי המשפט היסודי, $G\left(x
ight)$ היא פונקציה קדומה של

 $\left(G'\left(x
ight)=f\left(x
ight)$ מתקיים x מתקיים בכל נקודה בקטע, ולכן לכל f

$$G\left(x
ight)=F\left(x
ight)+C$$
 -פיים כך ש- קיים \subset כד שי ידוע: פונקציות קדומות נבדלות בקבוע

$$F\left(b\right)-F\left(a\right) \underbrace{=}_{\text{eitqzvin}}\left(G\left(b\right)+C\right)-\left(G\left(a\right)+C\right)=G\left(b\right)-G\left(a\right)$$

$$\underbrace{=}_{G}\int_{a}^{b}f-\int_{a}^{a}f\underbrace{=}_{\int_{a}^{a}f=0}\int_{a}^{b}f$$

דוגמה 3.3

$$\int_0^1 x^2 \mathrm{d}x = \left. \frac{x^3}{3} \right|_0^1 = \frac{1}{3}$$

דוגמה 3.4

$$\int_{-\pi}^{\pi} \cos^2 x \, \mathrm{d}x = \int_{-\pi}^{\pi} \frac{1}{2} \left(1 + \cos \left(2x \right) \right) \, \mathrm{d}x = \left. \frac{1}{2} \left(x + \frac{\sin \left(2x \right)}{2} \right) \right|_{-\pi}^{\pi} = \pi$$

3. כלל לייבניץ לאינטגרל מסוים

דוגמה 3.5 (מוטיבציה)

$$G\left(x
ight)=\int_{\cos x:=lpha(x)}^{7x^{2}:=eta(x)}\sin\left(t
ight)\mathrm{d}t$$
 (1) האם עותר לעשות?) - בו

 $:G\left(x
ight)$ נמצא את

$$G(x) = -\cos t|_{\cos x}^{7x^2} = -(\cos(7x^2) - \cos(\cos(x)))$$

נגוזר לפי כלל השרשרת:

$$G'\left(x\right) = -\sin\left(\cos x\right)\left(-\sin x\right) - \left(-\sin\left(7x^2\right)\right) \cdot 14x = \sin\left(7x^2\right) \cdot 14x - \sin\left(\cos x\right)\left(-\sin x\right)$$

$$\underbrace{=}_{\text{Deco}} f\left(\beta\left(x\right)\right) \cdot \beta'\left(x\right) - f\left(\alpha\left(x\right)\right) \cdot \alpha'\left(x\right)$$

$$F\left(x
ight)=\int_{a}^{x}e^{t^{2}}\mathrm{d}t$$
 \Longrightarrow $F'\left(x
ight)=e^{t^{2}}$ נגדיר:
$$G\left(x
ight)=F\left(x^{3}
ight)=\int_{a}^{x^{3}}e^{t^{2}}\mathrm{d}t$$

$$G(x) = F(x^3) = \int_a^{x^3} e^{t^2} dt$$

מתקיים:

$$G'(x) = F'(x^3) \cdot 3x^2 = e^{(x^3)^2} \cdot 3x^2$$

f אינטגרל מסוים) תהא f רציפה בקטע (אינטגרל לייבניץ אינטגרל (כלל לייבניץ הייבניץ לאינטגרל מסוים)

יות אזי: $a \leq \alpha\left(x\right), \beta\left(x\right) \leq b$ ש- פונקציות גזירות כך פונקציות מירות כך מונקציות מירות כך פונקציות מירות כ

$$G\left(x\right) = \int_{\alpha(x)}^{\beta(x)} f$$

גזירה, ומתקיים:

$$G'(x) = f(\beta(x)) \cdot \beta'(x) - f(\alpha(x)) \cdot \alpha'(x)$$

<u>ללא הוכחה.</u>

4. המשפט היסודי - הגרסה המלאה

משפט 3.4 (המשפט היסודי - הגרסה המלאה)

[a,b] רציפה בקטע אינטגרבילית בקטע ותהא [a,b] ותהא

:אזי:
$$F'\left(x
ight)=f\left(x
ight)$$

$$\int_{a}^{b} f = F(b) - F(a)$$

הערה 3.5 למעשה מדובר בסוג של "הרחבה" לנוסחת ניוטון לייבניץ, למקרים בהם אין פונקציה קדומה, אבל כן יש פונקציה רציפה שאינה גזירה רק במספר סופי של נקודות.

דוגמה 3.6

$$f(x) = \begin{cases} x & 0 \le x \le 1\\ \sin x & 1 \le x \le 2 \end{cases}$$

[0,2] אינטגרבילית בקטע

"ננחש:

$$F(x) = \begin{cases} \frac{x^2}{2} & 0 \le x < 1\\ -\cos x & 1 \le x \le 2 \end{cases}$$

לא רציפה ולכן לא ניתן להפעיל את המשפט, Fאבל אם "נדאג" ש-F אבל אם "נדאג" אבל אם המשפט יעבוד.

הוכחת המשפט היסודי בגרסה המלאה.

נשתמש בהגדרת רימן לאינטגרביליות:

 $I=\int_a^b f$:ונסמן, [a,b] אינטגר
נילית בקטע אינטגר

המקיימת P הלוקה אלכל $\delta>0$ קיימת $\varepsilon>0$ קיימת כך פאלכל קיים אבריך להוכיח: אבריך להוכיח: $c_i\in[x_{i-1},x_i]$ מתקיים: $\lambda\left(P\right)<\delta$

$$\left| \sum_{i=1}^{n} f(c_i) \, \Delta x_i - I \right| < \varepsilon$$

 $.\{y_1,\dots,y_k\}$ ע"י , $F'\neq f$ או גזירה לא א די שבהן את נסמן את תהא תהא תהא חלוקה כלשהי המקיימת לא . $\lambda\left(Q\right)<\delta$ נגדיר עידון של Q נגדיר עידון של

$$P = Q \cup \{y_1, \dots, y_k\}$$

 $\lambda\left(P
ight) \leq \lambda\left(Q
ight) < \delta$ מתקיים

לכל $i \leq n$ מספר הנקודות בחלוקה P), מספר $i \leq i \leq n$ לכל מספר הנקודות בחלוקה, F רציפה ב- $[x_{i-1},x_i]$ וגזירה בקטע הפתוח F'(x)=f(x) , F'(x)=f(x)

:טמתקיים, גראנז', קיימת נקודה $x_{i-1} < c_i < x_i$, כך שמתקיים

$$\frac{F\left(x_{i}\right) - F\left(x_{i-1}\right)}{x_{i} - x_{i-1}} = f\left(c_{i}\right)$$

$$\implies \varepsilon > \left| \sum_{i=1}^{n} f(c_i) \Delta x_i - I \right| = \left| \sum_{i=1}^{n} \left(F(x_i) - F(x_{i-1}) \right) - I \right|$$

$$|F(b) - F(a) - I| < \varepsilon$$
 , $\varepsilon > 0$ לכל

$$F(b) - F(a) = I$$

5. שיטות אינטגרציה של אינטגרל מסוים ויישומים של המשפט היסודי

.5.1 שיטות אינטגרציה של אינטגרל מסוים.

.[a,b] עטענה 3.2 (אינטגרציה בחלקים) תהיינה ע $u\left(x
ight)$ תהיינה בקטע (אינטגרציה בחלקים)

אם u,v גזירות בקטע [a,b] (פרט אולי למספר סופי של נקודות), ובנוסף u',v' אינטגרביליות ב- [a,b] אזי:

$$\int_a^b u'v = uv|_a^b - \int_a^b uv'$$

דוגמה 3.7 חשבו:

$$\int_{-\pi}^{\pi} x \sin x dx = \underbrace{\qquad \qquad \qquad }_{\substack{u = x \qquad v' = \sin x \\ u' = 1 \qquad v = -\cos x}} -x \cos x \Big|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \cos x dx$$

$$= - \left(-\pi - \pi \right) + \sin x \big|_{-\pi}^{\pi} = 2\pi$$

תרגול עצמי:

$$\int_{-\pi}^{\pi} x \cos x \mathrm{d}x = 0$$

הוכחת אינטגרציה בחלקים. נתון u,v רציפות וגזירות. $F \coloneqq u \cdot v \;.$ נגדיר: $x \mapsto F \coloneqq u \cdot v$

$$F'=u'v+uv'\iff$$

$$u'v+uv'+uv'+a$$
 היא הקדומה של
$$F\iff uv|_a^b=\int_a^b(u'v+uv')=\int_a^bu'v+\int_a^buv'\iff uv|_a^b$$

וע"י העברת אגפים נקבל את השוויון הרצוי.

,[a,b] עטענה (שיטת ההצבה) תהא $f:[a,b] o \mathbb{R}$ תהא (שיטת ההצבה)

ותא: [a,b] רציפה של נקודות) וגזירה (פרט אולי למספר סופי של נקודות) עינות א $\psi:[\alpha,\beta]\to[a,b]$ נתון עי ψ אינטגרבילית, ו- $\psi:[\alpha,\beta]$ אינטגרבילית, וי עינטגרבילית, וי

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\psi(t)) \cdot \psi'(t) dt$$

דוגמה 3.8

(ו) חשבו:

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \int_{x(t) = \psi(t) = \sin t} \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2} t} \cdot \cos t dt = \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt$$

$$= \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} dt dt = \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt$$

$$= \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt$$

 $x=\sin t$ בפועל בשיטת ההצבה לרוב רושמים: $\mathrm{d}x=\cos t\mathrm{d}t$

$$\int_0^\pi \sin x \mathrm{d}x$$

$$t = \sin x$$

$$\mathrm{d}t = \cos x \mathrm{d}x$$

$$u = \cot x$$

$$\int_0^\pi \sin x \mathrm{d}x = \int_0^0 \text{(משהו) } \mathrm{d}t = 0$$

:0-בפועל קל להשתכנע שהאינטגרל שונה מ

 $x=\psi\left(t
ight)$ בסדר? - לפי המשפט בריך לסמן את את צריך לסמן - לפי לפי המשפט , $t=\psi\left(x
ight)=\sin x$ בהצבה שביצענו לעיל, ניסינו להציב

 $f\left(t
ight)=\left($ משהו עבור (משהו) מפעילים את מפעילים אנחנו כלומר כלומר כלומר בקטע .[0,0] $:=\left[a,b\right]$

, ונשים הרציפות והגזירות, עת תנאי הרציפות והגזירות, $\psi\left(x\right)$ ב-נתבונן ב- $\psi\left(x\right)$ ואמנם:

$$0 = \psi\left(a\right) = \sin 0 = 0$$

$$\pi \neq \psi\left(b\right) = \sin 0 = 0$$

כלומר, תנאי המשפט לא מתקיימים ולכן המעבר לא אפשרי.

לעומת זאת, אם ψ הייתה חד-חד-ערכית בתחום המתאים (ולכן גם הפיכה בו כי רציפה), היינו יכולים לבצע את המעבר כפי שרצינו.

 $\int_a^b f =$ - פדומה F קדומה לכן ולכן הוכחת שיטת f קדומה (תון ש- fרציפה בקטע הוכחת הוכחת הוכחת $F\left(b\right) - F\left(a\right)$

 $:G\left(t
ight) =F\left(\psi \left(t
ight)
ight)$ נסתכל על הפונקציה:

- . רציפה רציפת רציפות $G\left(t
 ight)$ (1)
- :מתקיים גזירות, ומתקיים גזירה כהרכבת גזירות, ומתקיים

$$G'\left(t
ight)$$
 בלל השרשרת $F'\left(\psi\left(t
ight)
ight)\cdot\psi'\left(t
ight)=f\left(\psi\left(t
ight)
ight)\cdot\psi'\left(t
ight)$

רציפות ו- ψ' אינטגרבילית, רציפה הרכבה של הציפה הציפה $f\left(\psi\left(t\right)\right)$ (3) ולכן $f\left(\psi\left(t\right)\right)\cdot\psi'\left(t\right)$ אינטגרבילית.

לכן לפי המשפט היסודי,

$$\int_{\alpha}^{\beta} f(\psi(t)) \cdot \psi'(t) dt = \int_{\alpha}^{\beta} G'(t) dt = G(\beta) - G(\alpha) =$$

$$F(\psi(\beta)) - F(\psi(\alpha)) = F(b) - F(a) = \int_{a}^{b} f(t) dt = G(\beta) - G(\alpha) = G(\beta) - G(\alpha) = G(\alpha) = G(\alpha) + G(\alpha) = G(\alpha) = G(\alpha) + G(\alpha) = G(\alpha) = G(\alpha) = G(\alpha) + G(\alpha) = G($$

דוגמה 3.9 חשבו:

$$\int_0^1 \frac{e^x}{e^{2x} + 1} dx$$

$$[0,1]$$
 נשים לב שהפונקציה הפיכה בתחום
$$t=e^x \label{eq:t}$$
 נציב:
$$\mathrm{d}t=e^x dx \iff \ln t=x$$

$$\begin{split} \int_0^1 \frac{e^x}{e^{2x}+1} dx &= \int_1^e \frac{\frac{1}{\xi}}{t^2+1} \cdot \frac{1}{\xi} \mathrm{d}t = \int_1^e \frac{1}{t^2+1} \mathrm{d}t \iff \\ &= \arctan t|_1^e = \arctan e - \frac{\pi}{4} \end{split}$$

.5.2 שימושים ויישומים של אינטגרל מסוים.

.5.2.1 חישובי שטח.

$$f\left(x
ight) =x$$
 בקטע $f\left(x
ight) =x$ דוגמה 3.10 חשבו את השטח הכלוא בין הפונקציות:

$$S = \int_0^1 \left(x - x^2 \right) dx + \int_1^2 \left(x^2 - x \right) dx = \left(\frac{x^2}{2} - \frac{x^3}{3} \right) \Big|_0^1 + \left(\frac{x^3}{3} - \frac{x^2}{2} \right) \Big|_1^2 = 1$$

באמצעות המשפט היסודי בגרסה המלאה, ניתן גם לחשב:

$$S = \int_0^2 \left| x - x^2 \right| \mathrm{d}x$$

בין השטח הכלוא ק[a,b] אינטגרביליות אינטגרבילות שתי פונקציות שתי בהינתן שתי בהינתן שתי פונקציות שווה:

$$S = \int_{a}^{b} |f - g|$$

5.2.2. חישוב גבולות.

f אינטגרבילית בקטע ע"י גבול סכומי דרבו/רימן) תהא אינטגרבילית גע"י גבול אינטגרל ע"י גבול סכומי הבו

:אז לכל סדרה של חלוקות או המקיימת לכל סדרה או חלוקות או לכל

$$\lim_{n\to\infty}\lambda\left(P_n\right)=0$$

מתקיים:

$$\lim_{n\rightarrow\infty}L\left(f,P_{n}\right)=\lim_{n\rightarrow\infty}U\left(f,P_{n}\right)=\int_{a}^{b}f$$

 $: \!\! x_{i-1}^{(n)} \leq c_i^{(n)} \leq x_i^{(n)}$ ובנוסף, לכל בחירה של

$$\lim_{n \to \infty} R\left(f, c_i^{(n)}, P_n\right) = \int_a^b f$$

 $.\lambda\left(P_{n}\right)=\frac{1}{n}$ אבהן שבהן חלוקות עבור המשפט את תנסו תנסו

דוגמה 3.11 חשבו:

$$\lim_{n \to \infty} \frac{\sin \frac{1}{n} + \sin \frac{2}{n} + \ldots + \sin \frac{n}{n}}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sin \frac{k}{n} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n} \cdot \underbrace{\frac{1}{n}}_{f(c_i)} \underbrace{\frac{1}{n}}_{\Delta x_i}$$

 $f\left(x
ight)=\sin\left(x
ight)$ מזכיר סכום רימן עבור

עבור חלוקת הקטע [0,1] ל-n קטעים שווים.

ולכן לפי המשפט:

$$\lim_{n\to\infty}\frac{\sin\frac{1}{n}+\sin\frac{2}{n}+\ldots+\sin\frac{n}{n}}{n}=\int_0^1\sin x\mathrm{d}x=\cos1-1$$

.5.2.3 חישוב מסה בהינתו הצפיפות ליחידת שטח (פיסיקה).

.5.2.4 אורך העקום.

נחלק את הקטע למספר חופי של חת למספר [a,b] למספר הקטע נחשב:

$$\ell_i = \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1})^2)}$$

ואז אורך העקום:

$$\implies L = \sum_{i=1}^{n} \ell_{i} = \sum_{i=1}^{n} \sqrt{(x_{i} - x_{i-1})^{2} + (f(x_{i}) - f(x_{i-1})^{2})} = \sum_{i=1}^{n} \underbrace{|x_{i} - x_{i-1}|}_{\Delta x_{i}} \sqrt{1 + \left(\frac{f(x_{i}) - f(x_{i-1})}{x_{i} - x_{i-1}}\right)^{2}}$$

-ט כך c_i קיימת לגראנז', פיימת לנדרוש ש-

$$\left(\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}\right) = f'(c_i)$$

$$L = \sum_{i=1}^{n} \sqrt{1 + \left(f'\left(c_{i}\right)\right)^{2}} \underset{n \to \infty}{\longrightarrow} \int_{a}^{b} \sqrt{1 + \left(f'\right)^{2}} \mathrm{d}x$$

דוגמה 3.12 נחשב אורך של רבע מעגל, ובעזרת זה נמצא היקף של מעגל:

$$f\left(x\right) = \sqrt{1-x^2}$$

$$\implies f'\left(x\right) = \frac{-2x}{2\sqrt{1-x^2}} = \frac{-x}{\sqrt{1-x^2}}$$

$$\sqrt{1+(f')} = \sqrt{1+\frac{x^2}{1-x^2}} = \sqrt{\frac{1}{1-x^2}} = \sqrt{1+(f')^2} = \frac{1}{\sqrt{1-x^2}}$$

$$L_{\text{ANCT}} = \int_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \frac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arcsin x \Big|_{-\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} = \frac{\pi}{2}$$

 $.4L=2\pi$ היקף מעגל ברדיוס היקף מעגל \Longleftarrow

4 פרק

אינטגרל מוכלל

1. אינטגרל מוכלל בתחום לא חסום

אינטגרבילית קינט אינטגר $f:[a,\infty]\to\mathbb{R}$ תהא חסום לא התחום לא מוכלל בתחום אינטגרבילית אינטגרב (a,M) אינטגרב (a,M) אם קיים הגבול

$$\lim_{M \to \infty} \int_{a}^{M} f\left(x\right) \mathrm{d}x$$

:נגדיר

$$\int_{a}^{\infty}f\left(x\right)\mathrm{d}x\triangleq\lim_{M\rightarrow\infty}\int_{a}^{M}f\left(x\right)\mathrm{d}x$$

- אם הגבול קיים (מספר סופי), נאמר שהאינטגרל פתכנס.
 - אם הגבול לא קיים, נאמר שהאינטגרל מתכדר.

. מתבדר אבל מוגדר המוכלל האינטגרל אז האינטגרל אבל אם 4.1 הערה הערה $\int_a^\infty f = \pm \infty$ אם

דוגמה 4.1 (חשבו אם קיים)

$$\int_0^\infty e^{-x} \mathrm{d}x$$

נסמן .M>0לכל $\left[0,M\right]$ קטע בכל הילטגרבילית $f\left(x\right)=e^{-x}$ נסמן

52 אינטגרל מוכלל

$$\int_0^M e^{-x} \mathrm{d}x = -e^{-x} \Big|_0^M = -\left(e^{-M} - e^{-0}\right) = 1 - e^{-M} \underset{M \to \infty}{\longrightarrow} 1$$

$$\implies \int_0^\infty e^{-x} \mathrm{d}x = 1$$

$$\int_0^\infty \sin x \mathrm{d}x$$

נגדיר בקטע [0,M], נחשב: f ,M>0 לכל .f (x) f (x) f

$$\int_0^M \sin x \mathrm{d}x = -\cos x \big|_0^M = -\left(\cos M - \cos 0\right) = \underbrace{1 - \cos \left(M\right)}_{\text{the position}}$$

לכן אינטגרל זה מתבדר.

$$\int_0^\infty \frac{1}{1+x^2} \mathrm{d}x$$

 $:\!M>0$ לכל $\left[0,M\right]$ לכלת בקטע ,
 $f\left(x\right)=\frac{1}{1+x^{2}}$ נגדיר נגדיר

$$\int_0^M \frac{1}{1+x^2} \mathrm{d}x = \arctan M \big|_0^M = \arctan M \underset{M \to \infty}{\longrightarrow} \frac{\pi}{2}$$

(4) ה-ד-ו-ג-מ-ה

(2)

(3)

נבדוק עבור אילו ערכים של $P \in \mathbb{R}$, האינטגרל הבא מתכנס:

$$\int_{1}^{\infty} \frac{1}{r^{P}} \mathrm{d}x$$

- . עבור מתבדר, $\int_1^\infty \frac{1}{x^P} = \infty$ נקבל $P \leq 0$ עבור
 - :עבור P=1, נקבל

$$\int_{1}^{M} \frac{1}{x} dx = \ln x \Big|_{1}^{M} = \ln M \xrightarrow[M \to \infty]{} \infty$$

מתבדר.

:עבור $P \neq 1$, נקבל •

$$\int_{1}^{M} \frac{1}{x^{P}} dx = \frac{x^{-P+1}}{-P+1} \bigg|_{1}^{M} = \frac{M^{-P+1}}{-P+1} - \frac{1}{1-P}$$

$$1 - P < 0$$
 עבור $P > 1$, נקבל

$$\frac{M^{1-P}}{1-P} \xrightarrow[M \to \infty]{} 0 \iff$$

כלומר - מתכנס.

$$1 - P > 0$$
 נקבל $0 < P < 1$ עבור -

$$\frac{M^{1-P}}{1-P} \underset{M \to \infty}{\longrightarrow} \infty \Leftarrow$$

כלומר, האינטגרל מתבדר.

לסיכום:

$$\int_{1}^{\infty} \frac{1}{x^{P}} \mathrm{d}x$$

P > 1 מתכנס אם"ם

. מתבדר $\int_1^\infty \frac{1}{\sqrt{x}}$ אבל אבל מתכנס, מתבדר $\int_1^\infty \frac{1}{x^2} \mathrm{d}x$

. מתבדר, גם אם האינטגרל, $\int_a^\infty f = \pm \infty$ גם אם 4.2 הערה הערה

. הערה אינטגרל הוא הוא $\int_a^\infty f$ 4.3 הערה

:הערה 4.4 באופן דומה מגדירים

$$\int_{-\infty}^{a} f = \lim_{m \to -\infty} \int_{m}^{a} f$$

הערה 4.5 (אדיטיביות עבור אינטגרל מוכלל שידוע כי מתכנס)

אם $\int_a^\infty f$ מתכנס, אז:

$$\int_{a}^{\infty} f = \int_{a}^{b} f + \int_{b}^{\infty} f$$

 $.b \geq a$ עבור

דוגמה 4.3 חשבו אם מתכנס:

4. אינטגרל מוכלל

$$\int_{-\infty}^{\infty} x \mathrm{d}x$$

:אסור לעשות

$$\int_{-\infty}^{\infty} x dx \neq \lim_{M \to \infty} \int_{-M}^{M} x dx = \lim_{M \to \infty} 0 = 0$$

$((-\infty,\infty)$ אינטגרל מוכלל בקטע (אינטגרל 4.6 אינטגרל

. נקודה כלשהי נקודה (a,bן ותהא קבכל אינטגרבילית אינטגרבילית בכל אינטגרבילית אינטגרבילית מנת לבדוק התכנסות של $\int_{-\infty}^{\infty}f$ נדרוש ששני האינטגרלים הבאים יתכנסו:

$$\int_{-\infty}^c f, \quad \int_c^\infty f$$
 . $\int_{-\infty}^\infty f = \int_{-\infty}^c f + \int_c^\infty f$ ואז

 $:\int_{-\infty}^{\infty}x\mathrm{d}x$ דוגמה 4.4 נבדוק את

$$\int_0^M x \mathrm{d}x = \left. \frac{x^2}{2} \right|_0^M = \frac{M^2}{2} \underset{M o \infty}{\longrightarrow} \infty$$
כלומר $\int_{-\infty}^\infty x \mathrm{d}x$ מתבדר.

2. אינטגרל מוכלל של פונקציה לא חסומה בתחום חסום

הגדרה 4.2 (נקודת סינגולריות של פונקציה) תהא המגדרת בסכיכה מנוקכת (יכולה להיות גם f תהא הגדרה x_0 של מוגדרת) של מינגולריות של פונקציה)

(יכולה להיות אדדית), אם בכל ביבה של תיכולה להיות אדדית), אם אח ביל מינה אינה א x_0 היא נקודת הינגולריות של היות אינה חסומה. f

דוגמה 4.5 למשל, עבור הפונקציה:

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

. היא נקודת סינגולריות $x_0=0$