Rank-65562 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_0^2 X_1 + X_0 X_1 X_2 = 0$$

(1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65562

General information

Number of lines	2
Number of points	5
Number of singular points	1
Number of Eckardt points	0
Number of double points	1
Number of single points	4
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{2}
Type of lines on points	$2, 1^4$

Singular Points

The surface has 1 singular points:

0:
$$P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{20} = \mathbf{Pl}(0, 1, 0, 0, 1, 0)_{11}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_7$$

Rank of lines: (20, 33)

Rank of points on Klein quadric: (11, 7)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points:

The double points on the surface are:

$$P_3 = (0,0,0,1) = \ell_0 \cap \ell_1$$

Single Points

The surface has 4 single points:

The single points on the surface are:

$$0: P_6 = (1,0,1,0)$$
 lies on line ℓ_0

1 :
$$P_7 = (0, 1, 1, 0)$$
 lies on line ℓ_1

2 :
$$P_{13} = (1, 0, 1, 1)$$
 lies on line ℓ_0

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

$$\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \\ 1 \ 1 \ 0 \end{array}$$

3 : $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_1

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_3

Line 1 intersects

Line	ℓ_0
in point	P_3

The surface has 5 points:

The points on the surface are:

 $0: P_3 = (0, 0, 0, 1)$ $1: P_6 = (1, 0, 1, 0)$

 $2: P_7 = (0, 1, 1, 0)$ $3: P_{13} = (1, 0, 1, 1)$

 $4: P_{14} = (0, 1, 1, 1)$