

Tutorial: Introdução à Análise de Dados com Pandas, Matplotlib e Seaborn

Vitor Moreira Casagrande Thiago Pereira da Silva

Agenda

O1 Introdução à Análise de Dados **O2**Conceitos
Fundamentais

O3Ferramentas de Análise de Dados

Q4Processo de Análise de Dados (Pipeline)

O5 Áreas de Aplicação da Análise de Dados O6 Carreiras em Análise de Dados

Quem Somos?

Vitor Moreira Casagrande

- Estudante do curso de Ciência da Computação UFMT Araguaia.
- Entusiasta em Análise de Dados.
- vitormoreiracasagrande@hotmail.com.br

Thiago Pereira da Silva

- Doutor em Ciência da Computação.
- Professor do curso de Ciência da Computação UFMT Araguaia.
- thiago.silva@ufmt.br
- http://lattes.cnpq.br/0241704052892662

O1 Introdução à Análise de dados

O que é Análise de Dados

- É o processo de examinar, limpar, transformar e modelar dados para extrair **informações** úteis, *insights* e apoiar decisões (Foster Provost e Tom Fawcett, 2023).
 - O que os dados estão indicando e como eles podem ser utilizados para resolver problemas.
 - Aquisição de conhecimento.
- Usada em diversas áreas, como negócios, saúde e ciência, e geralmente envolve o uso de ferramentas e técnicas estatísticas e computacionais.

Qual o objetivo da Análise de Dados

Identificar padrões, tendências, correlações e anomalias nos dados que podem ser utilizados para:

- Tomada de decisões;
- Identificar padrões e tendências;
- Aprimorar processos e operações;
- Identificar novas oportunidades de negócios.

Dado x Informação x Conhecimento

- Dado é informação bruta e sem contexto.
- Informação é dado processado e contextualizado.
- Conhecimento é a interpretação e aplicação da informação com base em experiência e análise.

têm um bom desempenho

em outras disciplinas

Etapas Gerais do Processo de Análise de Dados

Obtenção dos dados a partir de diferentes fontes

Limpeza

Remoção de dados inconsistentes, incompletos ou irrelevantes

Exploração

Identificação de padrões, tendências, e relações

Análise

Testar hipóteses e extrair informações significativas

Interpretação

Insights para tomada de decisões ou compreensão do fenômeno estudado

Situando à Análise de Dados

Fonte:

https://blog.infnet.com.br/data-science/big-data-e-machine-learning-como-sao-usados-em-data-science/

O2 Conceitos Fundamentais

Tipos de Variáveis

Quantitativas (escala qualitativa)

- Discreta inteiros (Ex. número de filhos, quantidade de reprovados)
- Contínuas reais (Ex. peso corporal, temperatura)

Qualitativas (ou categóricas)

- Nominais sem ordenação (Ex. sexo, cor dos olhos, doente/sadio)
- Ordinais ordenação (Ex. escolaridade (1º, 2º, 3º graus), mês de observação (janeiro, fevereiro,..., dezembro))

Estatística Descritiva

- Objetivo é sintetizar uma série de valores de mesma natureza, permitindo dessa forma que se tenha uma visão global da variação desses valores (MONTGOMERY; RUNGER 2014).
- Nas variáveis quantitativas (discretas ou contínuas)
 às medidas descritivas mais comuns buscam
 responder às questões:
 - Locação (Centralidade)
 - Dispersão (Variabilidade)
 - Associação

Medidas de Locação

Moda

Valor mais frequente na distribuição dos dados. Distribuições podem ser unimodais ou multimodais.

Média

Média Aritmética

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

Média Ponderada

$$\bar{x}_p = \frac{f_1 x_1 + f_3 x_2 + f_3 x_3 + \dots + f_r x_r}{\sum f_r}$$

Mediana

Valor que separa 50% das observações à sua esquerda e 50% à sua direita quando os dados estão em ordenados. Em amostras pares: mediana é a média dos valores centrais.

Medidas de Locação

Moda X Média X Mediana

- A moda é útil em casos onde o valor mais frequente é de interesse.
- A **média** é influenciada por valores extremos (*outliers*); isso não ocorre com a **mediana**.
 - Ex. 2 4 6 8 10
 Média = 6 e Mediana = 6
 - Ex. 2 4 6 8 100Média = 24 e Mediana = 6

Medidas de Dispersão

Desvio Médio

Variância (Desvio Padrão) **Amplitude**

Nível de dispersão, em média, da média aritmética.

Nível de dispersão dos dados estão espalhados em relação à média.

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} = \sqrt{s^2}$$
 $\Delta = \text{maior valor} - \text{menor valor}$

Medidas de Dispersão

Desvio Médio

Variância (Desvio Padrão)

Amplitude

- Desvio médio é menos sensível a valores extremos (outliers).
- Um desvio padrão pequeno indica que os valores estão mais próximos da média, enquanto um desvio padrão grande indica uma dispersão maior em relação à média.

```
Ex. Conjunto de dados [2,4,6,8,10]
```

Média = 6

Amplitude = 8

Variância = 8

Desvio Padrão = 2,83

Desvio Médio = 2,4

Ex. Conjunto de dados [2,4,6,8,100]

Média = 24

Amplitude = 98

Variância = 1448

Desvio Padrão = 38,05

Desvio Médio = 30,4

Medidas de Associação

Covariância

Indica a direção do relacionamento entre duas variáveis.

$$\operatorname{Cov}(X,Y) = rac{1}{n} \sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})$$

Positiva: Variáveis aumentam ou diminuem juntas.

Negativa: Uma variável aumenta enquanto a outra diminui.

Coeficiente de Correlação de Pearson

Força e a direção do relacionamento linear entre duas variáveis.

$$r = rac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y}$$
 Desvio padrão

- +1: Correlação perfeita positiva (as variáveis aumentam ou diminuem juntas).
- -1: Correlação perfeita negativa (uma variável aumenta enquanto a outra diminui).
- O: Nenhuma correlação linear

Medidas de Associação

Covariância

Coeficiente de Correlação de Pearson

 O Coeficiente de Correlação de Pearson é normalizado entre -1 e 1. Quanto mais próximos de -1 e 1, mais relacionadas estão as variáveis.

Ex.

X=[1,2,3,4,5,6,7,8,9,10]

Y=[2,4,5,4,6,8,7,10,9,12]

Cov(X,Y)=8.05 r= ≈0.96 (correlação positiva forte) Ex.

X=[1,2,3,4,3,6,7,**82**,9,10]

Y=[2,10,5,4,26,8,7,10,9,2]

Cov(X,Y) = 9.49

r= ≈0.06 (correlação fraca)

Quartis e Percentis

Quartis

Dividem um conjunto de dados ordenado em quatro partes iguais.

- Q1 (Primeiro Quartil): O valor que separa os 25% menores dados.
- **Q2 (Segundo Quartil ou Mediana):** O valor que separa os 50% dos dados (mediana).
- Q3 (Terceiro Quartil): O valor que separa os 75% menores dados.

Percentis

Dividem o conjunto de dados em 100 partes iguais.

- Percentil 50 é a mediana.
- Percentis 25 e 75 são Q1 e Q3, respectivamente

O3 Ferramentas de Análises de Dados

Linguagem R

- Linguagem de programação.
- Análise de dados.
- Estatística.
- Visualização de dados.

https://www.r-project.org/

Python

- Versátil e Simples.
- Alta aplicabilidade (desenvolvimento web, análise de dados, inteligência artificial, etc).
- Alta gama de bibliotecas.

https://www.python.org/

- Biblioteca de código aberto para manipulação e análise de dados em Python.
- Focada em operações de dados tabulares, como em planilhas ou bancos de dados.
- Estrutura de dados do Pandas:
 - Séries e Dataframes.
- Ampla comunidade e documentação.
- Suporte para grandes volumes de dados.
- Integração com outras ferramentas de análise e aprendizado de máquina.
 https://pandas.pydata.org/

Pandas

DataFrame

-		
10	ria	
36	ries	, ,

INDEX	DATA	
0	Α	
1	В	
2	С	
3	D	
4	Е	
5	F	

Series 2

INDEX	DATA
0	1
1	2
2	3
3	4
4	5
5	6

Series 3

INDEX DATA

	0	[1, 2]
	1	Α
&	2	1
	3	(4, 5)
	4	{"a": 1}
	5	6

Dataframe

INDEX	SERIES 1	SERIES 2	SERIES 3
0	Α	1	[1, 2]
1	В	2	Α
2	С	3	1
3	D	4	(4, 5)
4	Е	5	{"a": 1}
5	F	6	6

Fonte: https://medium.com/@sardiirfan27/mastering-pandas-for-data-science-part-2-pandas-data-structures-544506d255a6

- Biblioteca de código aberto para criação de gráficos e visualizações 2D.
 - o Gráficos simples até visualizações mais complexas e customizadas
- Gráficos de linha
- Gráficos de barras
- Histogramas
- Boxplot
- Integração com Pandas, Numpy e Seaborn. (Foco do tutorial!)
 https://matplotlib.org/

matpletlib

- Biblioteca de visualização de dados baseada no Matplotlib.
- Fornece uma interface de alto nível para gráficos estatísticos, com estilo e paletas de cores aprimoradas.
- Visualizações Estatísticas.
- Estilo e Paleta de Cores.
- Integração com Pandas e Matplotlib.
 - https://seaborn.pydata.org/

- Biblioteca de código aberto para computação numérica.
- Fornece suporte para arrays e matrizes multidimensionais, além de funções matemáticas avançadas.
- Escrito em C para performance, o NumPy é extremamente rápido em comparação com listas Python
 - o Especialmente em operações com grandes conjuntos de dados.
- Integração com Pandas, SciPy e Scikit-Learn, e amplamente usado em ciência de dados e aprendizado de máquina.

https://numpy.org/

Uses of NumPy

- Ferramenta de código aberto para criação e compartilhamento de documentos que integram código, texto, gráficos e visualizações.
- Utilizado em análise de dados, aprendizado de máquina, pesquisa e ensino.
- Ambiente Interativo.
- Células de código e de Markdown.
- Execução Interativa.

https://jupyter.org/

https://jupyter.org/try-jupyter/lab/ JUpyter a D

Google colab

- Ambiente de notebooks baseado em Jupyter que permite executar código Python diretamente no navegador.
- Armazena e processa dados na nuvem.
- Notebooks Compartilháveis e com colaboração em Tempo real.
- Processadores de alto desempenho (GPUs e TPUs).
- Integração com Google Drive e GitHub.
- Tempo limite de Sessão na modalidade grautuíta.
 https://colab.google/

O4 Processo de Análise de Dados

Etapas de Análise de Dados

- 1. Coleta de Dados
- 2. Limpeza de Dados
- 3. Exploração e Visualização Inicial
- 4. Análise Exploratória e Modelagem
- 5. Interpretação e Apresentação de Resultados

Coleta de Dados:

- Processo de obtenção de informações relevantes para análise, investigação e tomada de decisões:
 - Pesquisas
 - Experimentos
 - Observações
 - Sensores e loT
 - Web Scraping
 - o etc.

Limpeza de Dados

- Processo de preparação dos dados para análise, eliminando ou corrigindo inconsistências, valores ausentes e erros.
- Etapa essencial para garantir que os dados sejam precisos, consistentes e relevantes para a análise.
- Valores ausentes.
- Outliers.
- Duplicatas.

Exploração e Visualização Inicial

- Primeira análise exploratória dos dados para identificar padrões, tendências e possíveis problemas.
- Ajuda a formular hipóteses e direcionar as próximas etapas da análise.
- Entendimento geral dos dados
- Identificar padrões e tendências.
- Detecção de anomalias.
- Estatísticas descritivas.
- Análise de distribuição e correlação de dados.

Análise Exploratória e Modelagem

- Explorar os dados mais aprofundada, buscando relações e padrões que possam guiar a modelagem.
- Análise de correlação.
- Visualizações avançadas (heatmaps, pairplots, etc).
- Testes Estatísticos.
- Construção de modelos preditivos ou classificatórios.

Interpretação e Apresentação de Resultados

- Processo de traduzir os resultados de análises e modelagem para insights compreensíveis e relevantes para o problema em questão.
- Comunicação clara dos *insights*, das conclusões e das implicações dos resultados para as partes interessadas.
 - Explicar as conclusões
 - Fornecer recomendações
 - Apoiar a tomada de decisões
- Adicionalmente podem ser usados Dashboards interativos (Power BI, Tableau, etc).

05 Áreas de Aplicação da Análise de Dados

Negócios e Marketing

- Segmentação de Clientes
- Previsão de Vendas
- Análise de Sentimento

Finanças e Bancos

- Detecção de Fraudes
- Análise de Crédito
- Gestão de Riscos
- Entendimento do Mercado

Saúde

- Diagnóstico Precoce e Prognóstico
- Pesquisa de Genética e Genômica
- Monitoramento de Pacientes
- Planejamento de Saúde Pública

Setor Público e Governamental

- Planejamento Urbano e de Infraestrutura
- Previsão de Desastres Naturais
- Análise de Crimes
- Monitoramento Ambiental

Ciência e Pesquisa

- Análise de Grandes Conjuntos de Dados (astrofísica, biologia molecular).
- Modelagem matemática para prever fenômenos físicos, biológicos e químicos.
- **Descoberta** de medicamentos através da análise de dados clínicos para identificar compostos promissores e simular testes de medicamentos.

PARTE 2 DO TUTORIAL SEXTA-FEIRA

Agenda

O1 Introdução à Análise de Dados O2 Conceitos Fundamentais **O3**Ferramentas de Análise de Dados

Q4Processo de Análise de Dados (Pipeline)

O5 Áreas de Aplicação da Análise de Dados

O7Práticas
Recomendadas

08Montando o
Ambiente

Oó Carreiras em Análise de Dados

- Responsável pela coleta, limpeza, análise e interpretação de dados para produzir relatórios e gerar insights.
- Excel, SQL, Python, ferramentas de visualização de dados.

Cientista de Dados

 Responsável pelo desenvolvimento de modelos preditivos, machine learning e análise exploratória avançada dos dados.

Python, machine learning, deep learning, estatística, SQL, Hadoop, Spark.

Engenheiro de Dados

- Responsável pela construção e manutenção de infraestruturas para coleta, armazenamento e processamento de grandes volumes de dados
- Habilidades em programação, frameworks de machine learning, DevOps, cloud computing

07 Práticas Recomendadas

Planejamento e organização

- Dividir o projeto em pequenas tarefas e definir um cronograma
- Ferramentas: Trello, Notion

Documentação

- Documentar o código e as análises é fundamental para que outros possam entender o projeto.
- Usar Markdown para comentários e explicações.

Controle de Versão

- Controle de versão permite acompanhar o histórico de mudanças no código e facilita o trabalho colaborativo.
- GitHub.

Ambientes Virtuais

- al in atalax
- Um ambiente virtual é um espaço isolado no sistema onde é possível instalar dependências específicas para um projeto.
- Isolamento de dependências.
- Reprodutibilidade.
- Facilidade de manutenção, permitindo atualizar pacotes sem afetar outros pacotes.

O8 Montando o Ambiente

Montando o Ambiente Virtual

1. Crie o ambiente virtual

python3 -m venv nome_do_ambiente

2. Ative o ambiente virtual

source nome_do_ambiente/bin/activate

3. Instale o Jupyter Notebook no ambiente virtual

pip install jupyter

4. Adicione o ambiente virtual ao Jupyter Notebook

pip install ipykernel
python -m ipykernel install --user --name=nome_do_ambiente

5. Inicie o Jupyter Notebook

jupyter notebook

Referências

- PROVOST, Foster; FAWCETT, Tom. Data science for business: what you need to know about data mining and data-analytic thinking. 1. ed. Sebastopol: O'Reilly Media, 2013.
- MONTGOMERY, Douglas C.; RUNGER, George C. Estatística aplicada e probabilidade para engenheiros. 6. ed. Rio de Janeiro: LTC, 2014.

Obrigado!

Alguma dúvida?

vitormoreiracasagrande@hotmail.com thiago.silva@ufmt.br

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

