Joongkyu Lee

in linkedin.com/in/joongkyu-lee-939aa91a7 ≥ jklee0717@snu.ac.kr

Research Interests

Sequential Decision Making, Reinforcement Learning, Bandit Algorithms, Statistical Machine Learning, Optimization

EDUCATION

Seoul National University, Seoul, South Korea

Mar. 2023 - Present

Ph.D Candidate in Data Science, Advisor: Min-hwan Oh

Seoul National University, Seoul, South Korea Feb. 2023

M.S. in Data Science, Advisor: Min-hwan Oh

Yonsei University, Seoul, South Korea Feb. 2016

B.S. in Industrial Engineering

PUBLICATIONS

[4] Nearly Minimax Optimal Regret for Multinomial Logistic Bandit

J. Lee and M. Oh

Proceedings of the 38th Neural Information Processing Systems 36 (NeurIPS), 2024.

[3] Randomized Exploration for Reinforcement Learning with Multinomial Logistic Function Approximation

W. Cho, T. Hwang, J. Lee and M. Oh

Proceedings of the 38th Neural Information Processing Systems 36 (NeurIPS), 2024.

[2] Demystifying Linear MDPs and Novel Dynamics Aggregation Framework

J. Lee and M. Oh

Proceedings of the 12th International Conference on Learning Representations (ICLR), 2024.

[1] Learning Uncertainty-Aware Temporally-Extended Actions

J.Lee, S. Park, Y. Tang, and M. Oh

Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI), 2024.

EXPERIENCE

Samsung Electronics | SQL, Python

Aug. 2018 - Dec. 2020

• Production Management Group at Samsung Electronics DS

Military Service Mar. 2016 - Mar.2018

• Republic of Korea Air Force

Industry Projects

Development of Analysis Model to Explore Test Process Equipment Combination and Improve

Flexible Test Performance

Mar. - Sep. 2022

- Director: Prof. Min-hwan Oh
- Funded by SK hynix

Development of an AI-Based Virtual Fighter Jet Training System

Feb. 2024 - Present

- Director: Prof. Min-hwan Oh
- Funded by Korea Aerospace Industries (KAI), LTD

INVITED TALKS & CONFERENCE PRESENTATION

"Contextual Linear Bandits" and "Deep Reinforcement Learning" • SK Telecom Market Top AI Course	July Aug. 2023
"Hierarchical Model-Based Reinforcement Learning with Linear Function Approximation"	
• 2023 Korea Artificial Intelligence Association (KAIA), Best Paper Award	July. 2023
• Earlier Version of "Demystifying Linear MDPs and Novel Dynamics Aggregation Fra	mework"
"Learning Uncertainty-Aware Temporally-Extended Actions"	
• 2023 Korea Data Mining Society	June. 2023
• 2022 INFORMS Annual meeting, Indianapolis	Oct. 2022
• 2022 Korea Artificial Intelligence Association (KAIA)	Aug. 2022
Awards & Scholarships	
Best Paper Award, Korea Artificial Intelligence Association	July. 2023
National Excellence Scholarship, Korea Student Aid Foundation	Spring. 2010 - Fall. 2013
TEACHING EXPERIENCE	
Seoul National University, Seoul, South Korea	
• Machine Learning & Deep Learning	Spring. 2022
• Data Science & Reinforcement Learning	Fall. 2021