Prova scritta_20 Giugno 2024

Cognome e Nome	
----------------	--

E' necessario selezionare una delle tre opzioni:

□ Svolgo l'intera prova poiché non ho preso parte o non ho superato il primo parziale del 9/5/2024 (temp	0 8
disposizione: 2 ore).	

□ Ho superato il parziale del 9/5/2024 e svolgo il 2° parziale (solo esercizi 3 e 4; tempo a disposizione: 1 ora) □ Svolgo l'intera prova, rinunciando al voto sufficiente (\ge 16/30) preso nel primo parziale del 9/5/2024 (tempo a disposizione: 2 ore).

ESERCIZIO 1

Un boccale di birra viene lanciato lungo il banco e cade al suolo, ad una distanza di 1.40 m dalla base del banco. Il tempo di volo è 0.419 s.

Considerando il sistema di riferimento cartesiano x-y mostrato in figura, calcolare:

- 1) la posizione finale del boccale lungo l'asse y;
- 2) le componenti v_x e v_y , il modulo e la direzione del vettore velocita finale nell'istante precedente l'impatto con il suolo.

ESERCIZIO 2

Un blocchetto di ghiaccio di massa m = 2 g viene lasciato scivolare, partendo da fermo, dal bordo di un contenitore semisferico di raggio r = 22 cm privo di attrito. Calcolare:

- 3) il lavoro compiuto dalla forza di gravità sul blocchetto quando questo ha raggiunto il punto B;
- 4) la velocità del blocchetto nel punto B e la sua accelerazione centripeta.

ESERCIZIO 3

Lo stato di due moli di gas monoatomico ideale passa in maniera adiabatica da V_A = 0.025 m^3 e P_A = 6 $\times 10^5$ Pa a V_B = 0.012 m^3 e P_B = 20×10^5 Pa. Successivamente il gas viene raffreddato a volume costante fino ad arrivare alla temperatura di 720 K. Calcolare:

- 5) la temperatura nei punti A e B;
- 6) il lavoro totale fatto dal gas e la variazione di energia interna totale.

ESERCIZIO 4: il quarto esercizio può essere scelto dal candidato fra i due che seguono

Una macchina di Carnot opera tra due sorgenti di temperatura T_1 = 580 °C e T_2 = 27 °C. Ad ogni ciclo, eroga 1200 J di lavoro. Calcolare:

- 7) il rendimento del motore;
- 8) il calore fornito dalla sorgente calda e quello ceduto alla sorgente fredda durante il ciclo.

Oppure

Nella rete illustrata in figura, R_1 = 3 k Ω , R_2 = 1.2 k Ω ., R_3 = 22 k Ω e R_4 = 400 Ω . Calcolare:

- 7) la resistenza fra i punti A e B;
- 8) la corrente che passa nel punto A se fra i punti A e B viene inserito un generatore di tensione da 20 V.

SOLUZIONE PROVA SCRITTA DEL 20 GIUGNO 2024

ESERCIZIO 1

1)
$$y_{4} = y_{i} + v_{i}t + \frac{1}{2}at^{2}$$
 $y_{f} = 0 + 0 + \frac{1}{2}(-9.8 \text{ m/s}^{2})(0.418 \text{ m})^{2} = 0.86 \text{ m}$

2) $v_{x} = \frac{x_{f}}{t} = \frac{1.40 \text{ m}}{0.418 \text{ m}} = 3.34 \text{ m/s}$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + (-9.8 \text{ m/s}^{2})(0.418 \text{ s})$
 $v_{y} = v_{y} + 2 = 0 + ($

ESERCIZIO 2

3)
$$W = -\Delta E_{p} = E_{p,A} - E_{p,B} =$$

$$= Mg^{2} - O = 0.002 \text{ kg} \times 9.8 \text{ m/s}^{2} :$$

$$\times 0.22 \text{ m} =$$

$$= 4.3 \times 10^{-3} \text{ J}$$
4) $W = \Delta E_{k} = \frac{1}{2} \text{ m} v_{B}^{2} - \frac{1}{2} \text{ m} v_{A}^{2} =$

$$= \frac{2 \times 4.3 \times 10^{-3} \text{ J}}{0.002 \text{ kg}} = \frac{2 \times 4.3 \times 10^{-3} \text{ J}}{0.002 \text{ kg}} = \frac{2 \times 4.3 \times 10^{-3} \text{ J}}{0.002 \text{ kg}} = \frac{2.08 \text{ m/s}}{2} = \frac{(2.08 \text{ m/s})^{2}}{0.22 \text{ m}} = \frac{(2.08 \text{ m/s})^{2}}{0.22 \text{ m}} = \frac{19.67 \text{ m/s}^{2}}{2} = \frac{19.6$$

ESERCIZIO 3

5)

	P(105Pa)	V(m3)	T(k)					
4	6	0.025	902					
В	20	0.012	1443					
C	NON RICHIESTO	0.012						
$T_{A} = \frac{P_{A}V_{A}}{uR} = \frac{(6\times 10^{5} P_{e})(0.025 ui^{3})}{2(8.314 \text{J/mol} \text{K})} = 902 \text{K}$								
$T_{B} = \frac{P_{B}V_{B}}{UR} = \frac{(20 \times 10^{5} R)(0.012 \text{ MeV}^{3})}{Z \times 8.314 \text{ J/MeV}} =$								
= 1443 K								

	DEint	Q	Woul fos	We	belges
AB	+		+		-
BC	_		0	0	
WAB	$= \Delta \mathcal{E}_i$	int = 1	uev (T3	-TA) =	=
	$= \left 2 \times \frac{3}{2} \right $ $= \left 3484 \right $		J / W. rest (-	1443k-	PozK)
Wdel ges	= -1	3484 5	Levo fetto	to toke	e. s
DEint	= MCV((Te-TA)	= 2/3		heedle
$= 2 \cdot \frac{3}{2}$	8.314 7/	molk (=	120k - 90	ozk) =	
= - (1539 7				

La variazione totale di energia interna si poteva anche calcolare sommando algebricamente le variazioni che avvenivano nei due tratti AB e BC.

ESERCIZIO 4

Prima Opzione

 Q_1 è calore assorbito \Rightarrow ha segno positivo, 1846 J

Q₂ è calore ceduto ⇒ ha segno negativo, -646 J

Seconda Opzione

$$R_{p} = R_{3} / R_{4} = \frac{R_{3} R_{4}}{R_{3} + R_{4}} = \frac{(22 \times 0.4) (K R)^{2}}{22.4 \text{ ks2}} = 0.382 \text{ ks2}$$

$$= 0.382 \text{ ks2}$$

$$R_{5} = R_{2} + R_{p} = (1.2 + 0.382) \text{ ks2} = 1.582 \text{ ks2}$$

$$R_{AB} = R_{1} / R_{3} = \frac{R_{1} R_{3}}{R_{1} + R_{3}} = \frac{(3 \times 1.582) (k \times 1)^{2}}{4.582 \text{ ks2}} = 0.382 \text{ ks2}$$

$$= 1.04 \text{ ks2}$$

$$S) I = \frac{V}{R} = \frac{20 V}{1.04 \text{ ks2}} = 19 \times 10^{-3} \text{ A}$$