

Modelling Procedures in SAS

Module Content

Analysis

- o PROC CORR
- PROC GENMOD
- PROC TTEST

- PROC GPLOT
- o PROC BOXPLOT
- PROC LATTICE

Sampling

- PROC SURVEYSELECT
- PROC HPSPLIT

Modelling

Supervised Learning

Regression

PROC REG

PROC LOGISTIC

Classification

- PROC DISCRIM
- 。 PROC GLM

Scoring

PROC SCORE

Unsupervised Learning

Cluster Analysis

- PROC FACTOR
- PROC PRINCOM

Factor Analysis

- PROC VARCLUS
- PROC FASTCLUS
- PROC CLUSTER

Proc Corr

Pearson correlation coefficient is a measure of linear relationship between two variables. Value of the coefficient is between -1 and +1.

```
Proc corr data = cars2;

VAR horsepower weight;

BY origin;
run;
```

It can be run without By variable to get combined correlations.

plots = matrix/scatter option will add the visual correlation matrix/plot with observations as below

PROC GENMOD

• PROC GENMOD helps us to do Bayesian analysis for distributions like normal, gamma, Gaussian, Poisson and binomial. It also provides Bayesian analysis for links like logit, probit, identity, log, etc. Model parameters are treated as random variables in Bayesian analysis, and inference is based on the posterior distribution of the parameters.

proc genmod data=class;
model height=age / dist=uniform;
bayes outpost=class2; run;
the dist= option specifies the kind of distribution
outpost = option saves samples (posterior) to the POST dataset.

PROC TTEST

• T-test is an analytical test used to test if there is a significant difference between two sets of data, or if mean of data differs significantly from a predicted value.

```
Proc sql;
create table carset as
select make, invoice, length, type, weight, horsepower from cars
Where make in ('Audi', 'BMW');
Quit;
proc ttest data = carset alpha = 0.01 h0 = 0;
var horsepower;
run;
proc ttest data = carset; paired weight*length;
run;
```

One Sample T test

Paired T test

? Not working in SAS university Edition

PROC GPLOT

Proc Gplot helps us to graphically present the information. Its alternative to proc plot. Notice the quit in the end which is needed to run this procedure.

```
proc plot data=sashelp.cars;
plot enginesize*msrp=make;
run;
quit;
proc gplot data=sashelp.cars;
plot enginesize*msrp=make;
run;
quit;
```


PROCs for BOXPLOT

A box-and-whiskers plot displays the *mean*, *quartiles*, *and minimum* and *maximum observations* for a group, organized in panels side by side.

```
proc sgplot data=sashelp.cars;
  vbox msrp/ category=type;
  run;

proc sgpanel data=sashelp.cars;
  panelby origin /rows=1 columns=3;
  vbox msrp/ category=type;
  run;

Use hbox for horizontal panel
```


PROC ANOVA

• The analysis of variance for balanced data can be performed by this procedure.

```
data heart;
set sashelp.heart;
run;
proc anova data=heart;
class smoking_status;
model cholesterol=smoking_status;
run;
```


PROC Lattice

This proc is used to perform the analysis of variance and simple covariance for data from an experiment with a lattice design – rectangular or square lattices.

proc lattice data=test; run;

The Lattice Procedure

Analysis of Variance for Yield						
Source	DF	Sum of Squares	Mean Square			
Replications	1	212.18	212.18			
Blocks within Replications (Adj.)	8	501.84	62.7300			
Component B	8	501.84	62.7300			
Treatments (Unadj.)	24	559.28	23.3033			
Intra Block Error	16	218.48	13.6550			
Randomized Complete Block Error	24	720.32	30.0133			
Total	49	1491.78	30.4445			

Additional Statistics for Yield	
Variance of Means In Same Block	15.7915
Variance of Means in Different Blocks	17.9280
Average of Variance	17.2159
LSD at .01 Level	12.1189
LSD at .05 Level	8.7959
Efficiency Relative to RCBD	174.34

Adjusted Treatment	Magna for Visid
-	
Treatment	Mean
1	19.0681
2	16.9728
3	14.6463
4	14.7687
5	12.8470
6	13.1701
7	9.0748
8	6.7483
9	8.3707
10	8.4489
11	23.5511
12	12.4558
13	12.6293
14	20.7517
15	19.3299
16	12.6224
17	10.5272
18	10.7007
19	7.3231
20	11.4013
21	11.6259
22	18.5306
23	12.2041
24	17.3265
25	15.4048

data test; input Group Block Treatment Yield @@ datalines;

1127
1135
1148
1156
12616
12712
12812
12913
12108
1 3 11 17

13127 13137

13149

1116

1 3 15 14
1 4 16 18
141716
141813
1 4 19 13
1 4 20 14
152114

run;

Stratified Sampling: PROC Survey select

Proc SURVEYSELECT is used to create samples from datasets. This can be useful in creating a validation dataset for a model, selecting a random set of people to survey or forming a control group of customers to assess

marketing campaign effectiveness.

Use method = urs for unrestricted random sampling (allowing replacements) and method = srs for simple random sampling which restricts replacements.

Sampsize can be used to define size of sample and samprate can be used to express it in %age.

Origin	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Asia	158	36.92	158	36.92
Europe	123	28.74	281	65.65
USA	147	34.35	428	100.00

The FREQ Procedure

Origin	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Asia	53	37.06	53	37.06
Europe	41	28.67	94	65.73
USA	49	34.27	143	100.00

The FREQ Procedure

PROC HPSPLIT

• The HPSPLIT procedure is a high-performance proc that is used to build tree-based models for classification and regression problems. The procedure produces classification trees (for categorical dependent variable), and regression trees (for continuous dependent variable). The output of model is displayed as a set of if-then statements and hence they are called trees.

```
proc hpsplit data=shmeq maxdepth=7 maxbranch=2;
target BAD; input DELIN DERO JOB NINQ RSON / level=nom;
input CLAGE CLN DEBTINC LOAN MORTDU VALUE YOJ / level=int; criterion entropy;
prune misc/ N <= 6; partition fraction(validate=0.2); rules file='rules1.txt';
score out=scored2;
run;</pre>
```


Regression: PROC REG

Linear regression models the relationship between a dependent variable and set of independent variable (s).

```
Proc reg data=sashelp.class;
model weight= height;
run;
```

Obs	Name	Sex	Age	Height	Weight
1	Alfred	M	14	69.0	112.5
2	Alice	F	13	56.5	84.0
3	Barbara	F	13	65.3	98.0
4	Carol	F	14	62.8	102.5
5	Henry	M	14	63.5	102.5
6	James	М	12	57.3	83.0
7	Jane	F	12	59.8	84.5
8	Janet	F	15	62.5	112.5
9	Jeffrey	М	13	62.5	84.0
10	John	M	12	59.0	99.5
11	Joyce	F	11	51.3	50.5
12	Judy	F	14	64.3	90.0
13	Louise	F	12	56.3	77.0
14	Mary	F	15	66.5	112.0
15	Philip	М	16	72.0	150.0
16	Robert	М	12	64.8	128.0
17	Ronald	М	15	67.0	133.0
18	Thomas	М	11	57.5	85.0
19	William	М	15	66.5	112.0

Parameters to evaluate the model

The R-square of 0.77 indicates that Height accounts for 77% of the variation in Weight The p-values indicate that the intercept and Height parameter estimates are highly significant.

From the parameter estimates, the fitted model is Weight = $143.03 + 3.9 \times 10^{-2}$ x Height

PROC REG – Full Syntax

```
    PROC REG;

  MODEL dependents=<regressors>
  BY variables;
  FREQ variable;
  ID variables;
  VAR variables;
  WEIGHT variable;
  ADD variables;
  CODE <options>;
  DELETE variables;
  MTEST<equation,...,equation>;

    OUTPUT<OUT=dataset> <keyword = names> <. . . keyword=names>;

  PLOT<yvariablexvariable> <= symbol> <. . . yvariablexvariable> <= symbol> </ options>;
  PRINT<options> <ANOVA> <MODEL DATA>;
  REFIT;
  RESTRICT equation, . . ., equation;
  REWEIGHT<condition|ALLOBS> </ options> | <STATUS|UNDO>;
  STORE<options>;
  <label: > TESTequation,<,. . .,equation> </ option>;
```


Discriminant Analysis: PROC DISCRIM

PROC DISCRIM is used to do discriminant analysis by which it classifies observations into multiple groups. It
is like logistic regression, except that it allows multiple categories to be used and doesn't use maximum
likelihood function.

data iris1; set sashelp.iris; run;

Proc DISCRIM data=iris1 distance anova MANOVA CROSSLISTERR; class species; var sepalwidth sepallength petalwidth petallength; run;

			The	e DISCRIM	Procedu	гө					
			Uni	Ivariate Tes	et Statieti	C8					
		F	Statieti	ica, Num D	F=2, Den	DF=1	147				
Variable	Label	Stand Devia		Pooled Standard Deviation	Stand	ard	R-Squ		R-Square /(1-RSq)	F Value	Pr>
SepalLength	Sepal Length (mm)	8.2807 5.147		5.1479	7.9	506	0.6	3187	1.6226	119.26	<.000
SepalWidth	Sepal Width (mm)	4.3	4.3587 3.39		3.3	882	0.4	800	0.6688	49.16	<.000
PetalLength	Petal Length (mm)	17.6	3530	4.3033	20.9	070	0.9	9414	16.0566	1180.16	<.000
PetalWidth	Petal Width (mm)	7.6	3224	2.0465	8.9	873	0.9	289	13.0613	960.01	<.000
		Minithus	ariata 9	Statistics a	nd E Ann	covin	nations				
	Pfaftatto	Multiva	ariate s	Statistics a S=2 M=0.	5 N=71				ne Des	_	
	Statistic Wilks' Lambda	Multiva		S=2 M=0.	5 N=71 F Value		nations n DF	Den D			
		Multiva	0.02	S=2 M=0. Value	5 N=71		n DF		88 <.000	1	
	Wilks' Lambda		0.02	S=2 M=0. Value 2343863	5 N=71 F Value 199.15		n DF	Den D	38 <.000 90 <.000	1	
	Wilks' Lambda Pillal's Trace	Trace	0.02 1.19 32.47	S=2 M=0. Value 2343863 9189883 7732024	5 N=71 F Value 199.15 53.47		n DF 8	Den D	38 <.000 90 <.000 .4 <.000	1	
	Wilks' Lambda Pilial's Trace Hotelling-Lawley Roy's Greatest R	Trace	0.02 1.19 32.47 32.19	S=2 M=0. Value 2343863 9189883 7732024	5 N=71 F Value 199.15 53.47 582.20 1166.96	Nur	n DF 8 8 8	Den D 28 29 203	38 <.000 90 <.000 4 <.000 45 <.000	1	
	Wilks' Lambda Pilial's Trace Hotelling-Lawley Roy's Greatest R	Trace coot F Statie	0.02 1.19 32.47 32.19 tile for	S=2 M=0. Value 2343863 9189883 7732024 9192920	5 N=71 F Value 199.15 53.47 582.20 1166.96 atest Roo	Nur t is a	n DF 8 8 8 4 n uppe	Den D 28 29 203 14 er boun	38 <.000 90 <.000 4 <.000 45 <.000	1	
	Wilks' Lambda Pilial's Trace Hotelling-Lawley Roy's Greatest R	Trace loot F Statis NOTE:	0.02 1.19 32.47 32.19 tile for	S=2 M=0. Value 2343863 9189883 7732024 9192920 Roy's Gree	5 N=71 F Value 199.15 53.47 582.20 1166.96 atest Roo liks' Lami	Nur t is a	n DF 8 8 8 4 n uppe	Den D 28 29 203 14 er boun	38 <.000 90 <.000 4 <.000 45 <.000	1	
	Wilks' Lambda Pilial's Trace Hotelling-Lawley Roy's Greatest R	Trace loot F Statis NOTE:	0.02 1.19 32.47 32.19 tic for F Stati	\$=2 M=0. Value 2343863 9189883 7732024 9192920 Roy's Gressistic for Wi	5 N=71 F Value 199.15 53.47 582.20 1166.96 atest Roo liks' Lami	Nur t is a bda is	n DF 8 8 8 4 n uppe	29 29 203 14 er boun	38 <.000 90 <.000 4 <.000 45 <.000	1	
	Wilke' Lambda Piliai's Trace Hotelling-Lawley Roy's Greatest R NOTE: I	Trace loot F Statis NOTE:	0.02 1.19 32.47 32.19 tic for F Stati	S=2 M=0. Value 2343863 9189883 7732024 9192920 Roy's Greatetic for Will criminant Fe	5 N=71 F Value 199.15 53.47 582.20 1166.96 atest Roo like' Lami	Nur t is a bda is	n DF 8 8 8 4 4 n uppe s exact	29 203 14 er boun	88 <.000 90 <.000 .4 <.000 45 <.000 d.	1	
	Wilke' Lambda Pilial's Trace Hotelling-Lawley Roy's Greatest R NOTE: I	Trace loot F Statis NOTE:	0.02 1.19 32.47 32.19 tile for F Stati	S=2 M=0. Value 2343863 9189883 7732024 9192920 Roy's Greatetic for Will criminant Fe	5 N=71 F Value 199.15 53.47 582.20 1166.96 attest Roo like' Lami	Nur	n DF 8 8 8 4 1 n uppe s exact	29 203. 14 er bound.	88 <.000 90 <.000 .4 <.000 45 <.000 d.	1	
	Wilke' Lambda Pillial's Trace Hotelling-Lawley Roy's Greatest R NOTE: I	Trace loot F statie NOTE: Lines Label	0.02 1.19 32.47 32.19 tile for F Stati	\$=2 M=0. Value 2343863 9189883 7732024 9192920 Roy's Greatistic for Wi	5 N=71 F Value 199.15 53.47 582.20 1166.96 atest Roc like' Lami unction f Setosa 35.20986	Nur	n DF 8 8 8 4 n uppe e exact	28 29 203. 14 er boun b	88 <.000 90 <.000 .4 <.000 45 <.000 d. //rginica	1	
	Wilke' Lambda Pillal's Trace Hotelling-Lawley Roy's Greatest R NOTE: I	Trace loot F Statis NOTE: Lines Label Sepai	0.02 1.19 32.47 32.19 tic for F Stati	\$=2 M=0. Value 2343863 9189883 7732024 9192920 Roy's Gres lietic for Wi riminant Fi	5 N=71 F Value 199.15 53.47 582.20 1166.96 atest Roo like' Lami unction 1 Setosa 35.20986 2.35442	Nur	m DF 8 8 8 4 4 n uppe s exact ecles relcolo 1.7540 1.5698	Den D 28 29 203 14 er boun t 0 -10 2	88 <.000 80 <.000 .4 <.000 .5 <.000 d. Arginica 13.26971 1.24458	1	

PROC GLM

• The linear regression model is a special case of a general linear model. In this case dependent variable is a

continuous normally distributed

and no class variables exist among the independent variables.

```
proc glm data = sashelp.class;
model weight = height;
run;
```


PROC LOGISTIC

• Proc Logistics is used to perform logistic regression on the categorical data in a classification problem. Its based on Maximum Likelihood (ML) Estimation and **Fisher Scoring** is generally used for iterative estimation of the regression parameters.

```
data cars1;
set sashelp.cars;
if mpg_highway <20 then efficiency=0;
else efficiency =1;
run;
ods graphics on;
proc logistic data=cars1;
model efficiency = enginesize weight;
oddsratio efficiency;
run;</pre>
```

 Logistic regression is most used proc for modelling decision variables which are categorical and used across industries.

PROC Cluster

PROC CLUSTER performs hierarchical clustering of observations using distance data methods like complete linkage, average linkage, the centroid method, density linkage etc.

proc cluster data= CARS method=ave ccc pseudo PRINT=25

plots=den(height=rsq);

var Wheelbase;

id make;

run;

The CLUSTER Procedure Ward's Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix						
Elgenvalue	Difference	Proportion	Cumulative			
69.0862352		1.0000	1.0000			

Root-Mean-Square Total-Sample Standard Deviation 8.311813

Root-Mean-Square Distance Between Observations 11.75468

Cluster History										
Number of Clusters	Clusters	Joined	Freq	Semipartial R-Square	R-Square	Approximate Expected R-Square	Cubic Clustering Criterion	Pseudo F Statistic	Pseudo t-Squared	Tle
20	CL54	CL49	72	0.0006	.996	.998	-10	4945		
19	CL28	CL311	11	0.0007	.995	.998	-11	4499	22.6	
18	CL38	CL31	26	8000.0	.994	.997	-11	4131	98.1	
17	CL29	CL68	48	8000.0	.993	.997	-11	3842	201	
16	CL84	CL217	11	0.0009	.992	.996	-11	3621		
15	CL312	CL32	4	0.0010	.991	.996	-11	3419	13.4	
14	CL25	CL40	62	0.0012	.990	.995	-11	3239	261	
13	CL27	CL26	63	0.0021	.988	.995	-11	2888	241	
12	CL24	CL16	30	0.0026	.986	.994	-12	2586	57.9	
11	CL30	CL17	75	0.0039	.982	.992	-13	2238	235	
10	CL20	CL23	117	0.0044	.977	.991	-13	2003	528	
9	CL18	CL21	37	0.0054	.972	.988	-13	1817	117	
8	CL14	CL22	91	0.0076	.964	.985	-13	1626	330	
7	CL19	CL15	15	0.0124	.952	.980	-13	1392	74.6	
6	CL13	CL11	138	0.0191	.933	.973	-14	1174	337	
5	CL8	CL12	121	0.0352	.898	.961	-15	928	312	
4	CL9	CL7	52	0.0575	.840	.939	-15	743	134	
3	CL10	CL6	255	0.0764	.764	.890	-13	687	601	
2	CL3	CL5	376	0.2538	.510	.751	-14	443	604	
1	CL2	CL4	428	0.5099	.000	.000	0.00		443	

PROC VARCLUS

• PROC VARCLUS performs clustering of variables, it separates a set of variables using hierarchical clustering.

Proc varclus data=SASHELP.IRIS MAXCLUSTERS=5; var PetalWidth SepalWidth; run;

PROC FASTCLUS

• PROC FASTCLUS performs k-means clustering based on distances computed from one or more variables. This is especially used for large data sets. This procedure uses Euclidean distances by default.

Proc fastclus data=cars maxclusters=15; var EngineSize Cylinders; run;

The FASTCLUS Procedure Replace=FULL Radius=0 Maxclusters=5 Maxiter=

Initial Seeds							
Cluster	Engine Size	Cylinders					
1	5.70000000	8.000000000					
2	8.300000000	10.00000000					
3	5.50000000	12.00000000					
4	3.20000000	6.00000000					
5	2.00000000	3.000000000					

Criterion Based on Final Seeds = 0.3190

Cluster Summary													
Cluster	Frequency	RMS Std Deviation	Maximum Distance from Seed to Observation	Radius Exceeded	Nearest Cluster	Distance Between Cluster Centroids							
1	87	0.3835	1.2793		4	2.4630							
2	2	0.7500	0.7500		3	2.7472							
3	3	0.2041	0.3333		2	2.7472							
4	190	0.3103	1.0478		5	2.3059							
5	146	0.2829	1.1043		4	2.3059							

	Star	59 0.43038 0.850899 5.697896											
Variable	Total STD	Within STD	R-Square	RSQ/(1-RSQ)									
Engine Size	1.10859	0.43038	0.850699	5.697896									
Cylinders	1.55844	0.13568	0.992492	132.189156									
OVER-ALL	1.35183	0.31940	0.944701	17.083671									

Pseudo F Statistic = 1806.60

Approximate Expected Over-All R-Squared = 0.81471

Cubic Clustering Criterion = 31.942

WARNING: The two values above are invalid for correlated variables

	Cluster Mea	ine
Cluster	Engine Size	Cylinders
1	4.72068966	8.000000000
2	7.55000000	10.00000000
3	5.66666667	12.00000000
4	3.28315789	6.00000000
5	2.06575342	4.04166667

Clu	eter Standard D	eviations
Cluster	Engine Size	Cylinders
1	0.542418771	0.0000000000
2	1.060660172	0.0000000000
3	0.288675135	0.0000000000
4	0.438890528	0.0000000000
5	0.325351451	0.232799923

PROC Factor

• This procedure computes a variety of common factors and rotations and used for variable reduction.

ROTATE= (PROMAX/VARIMAX for example) option can be used produce rotations

```
data test:
input Population School Employment Services
House Value;
cards;
 5500
        12.8
                2500
                       270
                              24000
 1000
        10.9
                640
                       10
                             10030
 3440
                             9300
        8.8
               1000
                       10
 3800
        13.6
                              25000
                1700
                       140
 4000
        12.8
                1600
                              25000
                       140
 8200
        8.3
                             12000
               2600
                       60
 1200
        11.4
                400
                             16000
                       10
 9100
                              14000
        11.5
                3300
                       60
 9900
        12.5
                3400
                              18000
                       180
 9600
        13.7
                3600
                       390
                              25000
 9600
        9.6
               3300
                       80
                             12000
 9400
        11.4
                4000
                       100
                              13000
proc factor data=test simple corr;
```

run;

PROC PRINCOM

- Like Proc FACTOR, proc PRINCOMP also does PCA or dimensionality reduction. It's a linear combination of variables where weights are chosen using explanation of highest variation using eigen values
- procPRINCOMP is slightly faster than PROC FACTOR

proc princomp data=SEco out = test1 outstat=stat; run;

							Simple	Stat	istics						
			P	opulai	pulation School						Services	Hou	seValue		
	M	ean	624	1.666	667	11.441	66667	2333	.333333	12	0.8333333	1700	00.00000		
	st	to	343	9.994	274	1.786	54483	1241	.211529	11	4.9275134	636	37.53128		
	-			_	Popula	flon	Correla School		Matrix iploymen	4	Services	House	eValue		
		Popul	latio	_	_	0000	0.0098	Lii	0.972	_	0.4389		0.0224		
		Scho			0.0	0098	1.0000		0.154	3	0.6914		0.8631		
		Emple	oym	ent	0.9	9724	0.1543		1.000	0	0.5147		0.1219		
		Servi				1389	0.6914		0.514	_	1.0000		0.7777		
		House	eVal	10	0.0	1224	0.8631		0.121	9	0.7777		1.0000		
					-	Inanya	slues of th	ne Co	rrelation	Mof	riv				
				E	Elgenva	-	Differen		Proporti		Cumulat	lve			
					.87331		1.076653		0.57		0.57				
					.79666		1.581823	21	0.35		0.93				
					.21483		0.114902		0.04		0.97	-			
					.09993 .01525		0.084678	888	0.02		0.99				
				3 (.01525	031		_	0.00	131	1.00	700			
							Elge	nvect	tore						
						Prin1	Pri	n2	Prins	3	Prin4	Pri	n5		
				ation		42730	_		0.059517	_	.204033	0.6894			
			choc		_	52507		_	0.688822		.353571	0.1748			
			mplo ervic	ymen		96695 50057		_	0.247958 664076	_	.500386	6980			
				Value		66738			139849		.763182	0824			
			cro	e Plo	4							Vari	anco Ev	plained	
3.0		-	cre	eric	л				1.0	0 -		Vall		o	
	1														
2.5									0.8	В					
2.0											-/-				
2.0	-								5 0.€	6 .	_				
1.5	\	\							Proportion 9:0	- '					
		\							0.4	4					
1.5		-\										1			
			\						0.2	2					
			1												
0.5					_	_	_		0.0	0			-	-	
				3	4		5		3.4		1	2	3	4	
0.5	1 2				- 4		3					2	3	4	
	1 2											Deire	inal Ca		
					onen	t								mponent mulative	

PROC SCORE

 PROC SCORE is a SAS Post Processing procedure, where we use values obtained already from the processed dataset and do our execution. This allows to reduce the processing time. Proc score combined data from two data set – raw data and the one which has the coefficient processed from another procedure.

```
proc reg data=sashelp.cars outest=test1;
model mpg_city=weight horsepower length;
run;

proc score data=sashelp.cars score=test1 type=parms predict out=test2;
var weight horsepower length;
run;
```

		Paran	neter Estimat	88		
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	39.43701	2.25174	17.51	<.0001
Welght	Weight (LBS)	1	-0.00346	0.00034211	-10.10	<.0001
Horsepower		1	-0.02572	0.00283	-9.09	<.0001
Length	Length (IN)	1	-0.00784	0.01518	-0.52	0.6059

V202	20							Resi	ılts: WOF	K.TEST2						
Obs	Make	Model	Type	Origin	DriveTrain	MSRP	Invoice	EngineSipe	Cylinders	Horsepower	MPG_City	MPG_Highway	Weight	Wheelbase	Length	MODE
1	Acura	MDX	SUV	Asia	All	\$36,945	\$33,337	3.5	6	265	17	23	4451	106	199	15.79
2	Acura	RSX Type S Str	Sedan	Ania	Front	\$23,820	\$21,761	2.0	4	200	24	31	2778	101	172	23.34
2	Acura	TSX 4dr	Sedan	Asia	Front	\$26,990	\$24,647	2.4	4	200	22	29	3230	105	193	21.69
4	Acura	TL-4dr	Sedan	Asia	Front	\$33,195	\$30,299	3.2	6	270	20	28	3675	108	196	18.66
5	Acura	3.5 RL 4dr	Sedan	Asia	Front	\$43,755	\$39,014	3.5	6	225	18	24	3880	115	197	18.66
•	Acura	3.5 RL w/Navigation 4dr	Sedan	Asia	Front	\$46,100	\$41,100	3.5	6	225	18	24	3883	115	197	18.65
7	Acura	NSX coupe 3tr manual S	Sports	Asia	Rear	\$89,765	\$79,978	3.2	6	290	17	24	3153	100	174	19.72
	Audi	At 1.8T40	Sedan	Europe	Front	\$25,940	\$23,508	1.8	4	170	22	31	3252	104	179	22.40
•	Audi	At1.8T convertible 3th	Sedan	Europe	Front	\$35,940	\$32,506	1.8	4	170	23	30	3638	105	190	21.08
10	Audi	A4 3.0 4dr	Sedan	Europe	Front	\$31,840	\$29,946	3.0	6	220	20	28	3462	104	179	20.41
11	Audi	At 3.0 Quatro 4dr manual	Sedan	Europe	All	\$33,430	\$30,366	2.0	6	220	17	26	3583	104	179	19.99
12	Audi	A4 3.0 Quatro 4dr auto	Sedan	Europe	All	\$34,480	\$31,388	2.0	6	220	18	25	3627	104	179	19.84
13	Audi	A6 3.0 40°	Sedan	Europe	Front	\$36,640	\$33,129	3.0	6	220	20	27	3561	109	192	19.96
14	Audi	A6 3.0 Quatro 4dr	Sedan	Europe	All	\$39,640	\$35,982	3.0	6	220	18	26	2000	109	192	19.00
15	Audi	At 3.0 convertible 3th	Sedan	Europe	Front	\$42,490	\$39,325	3.0	6	220	20	27	3814	106	190	19.10
16	Audi	At 3.0 Quatro convetible 3tr	Sedan	Europe	Al	\$44,240	\$40,075	3.0		220	18	25	4013	105	190	18.50
17	Audi	A6 2.7 Turbo Quatro 4dr	Sedan	Europe	All	\$42,840	\$38,940	2.7	6	250	18	25	3636	109	192	18.2
18	Audi	A6 4.2 Quatro 4dr	Sedan	Europe	All	\$49,690	\$44,936	4.2		300	17	24	4024	109	193	16.30
19	Audi	All L Quatto 4dr	Sedan	Europe	Al	\$69,190	\$64,740	4.2		230	17	24	4399	121	204	16.13
20	Audi	St Quatro 4dr	Sedan	Europe	All	\$49,040	\$43,556	4.2		340	14	20	3625	104	179	16.0
21	Audi	RS 6 40*	Sports	Europe	Front	\$84,600	\$76,417	4.2		450	15	22	4004	109	191	12.4
22	Audi	TT 1.8 convertible 3dr (coupe)	Sports	Europe	Front	\$35,940	\$32,512	1.8	4	180	20	28	3131	96	159	22.7
23	Audi	TT 1.8 Quatro 3dr (convertible)	Sports	Europe	All	\$37,390	\$33,891	1.8	4	225	20	28	2921	96	159	22.3
24	Audi	TT 3.2	Sports	Europe	All	\$40,590	\$36,739	3.2	6	250	21	29	3351	96	159	20.1

In the modelling process, it is a common step to impute missing data.

- Replace missing values or outliers with mean of the continuous variable.
- Replace missing values with median value of the ordinal categorical variables.
- Replace missing values with mode value of the nominal categorical variables.

```
Example:

proc stdize data=old reponly

method=median

out=new;

var Var1 Var2 Var3;
run;
```


Thank You