Internship Program Report

By

ALURI SUPRIYA 18481A0203

In association with

Contents

Introduction	3
Program organiser	3
Courtesy	3
Program details	3
Internship program	3
3 rd May2021: Introduction to EPC Industry	4
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Engineering documentation for commands and formulae	6
7 th May2021: Engineering documentation for Electrical system design	7
10 th May2021: Engineering documentation for Typical diagrams	8
11 th May2021: Classification of Transformers and Generators	9
12 th May2021: Classification of Switchgare construction and power factor improvement	10
17 th May2021: Detailing about UPS system and Busducts	11
18th May2021: Detailing about Motor Starters and Sizing of motors	12
19th May2021: Discribing about Earthing system and Lighting Protection	13
20 th May2021: Lighting or illumination systems and calculations	14
21 th May2021: Lighting or illumination systems using DIALUX software	15
24 th May2021: Cabling and their calculations and types	16
25 th May2021: Cabling calculations and Cable gland selection	17
28 th May2021: Load calculations and Transformer sizing calculations	18
29th May2021: DG set calculations.	19
2nd june2021: Caluculations of Earthing and Lighting protection	20
5 th june 2021: Cable sizing and cable tray sizing calculations.	21
Conclusion	22
Foodbook.	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Dr.G.Srinivasa Rao-Coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Softwar/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: Online through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

1B. ENGINEERING DEPARTMENT

On this we have learnt about Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info exchange
		Deliverables types	Different types of deliverables

Topic details:

SEQUENCE OF DELIVERABLES

On this day we have gone through Deliverable list of details and work flow in electrical detaling.

This topic has given a detailed information of deliverables and its parts. And also gone through electrical information inflow and out flow in a neat manner which gives us an idea regarding electrical terminologies and abbreviations.

5th May2021: Engineering documentation for commands and formulae

3	Electrical Design	Ms word commands
	Documentation	Ms excel formulae
		Auto cad basic commands

Topic details:

MS Word, Excel and Auto cad COMMANDS.

Word Shortcut Keys

Command Name	Keys	
All Caps	Ctrl+Shift+A	
Apply List Bullet	Ctrl+Shift+L	
Auto Format	Alt+Ctrl+K	
Auto Text	F3	
Bold	Ctrl+B	
Cancel	ESC	
Center Para	Ctrl+E	
Change Case	Shift+F3	
Clear	Del	
Close or Exit	Alt+F4	
Copy	Ctrl+C	
Create Auto Text	Alt+F3	
Cut	Ctrl+X	
Double Underline	Ctrl+Shift+D	
Find	Ctrl+F	
Help	F1	
Hyperlink	Ctrl+K	
Indent	Ctrl+M	
Italic	Ctrl+I	
Justify Para	Ctrl+J	
Merge Field	Alt+Shift+F	
New Document	Ctrl+N	
Open	Ctrl+O	
Outline	Alt+Ctrl+O	
Overtype	Insert	
Page	Alt+Ctrl+P	
Page Break	Ctrl+Return	
Paste	Ctrl+V	
Paste Format	Ctrl+Shift+V	
Print	Ctrl+P	
Print Preview	Ctrl+F2	
Redo	Alt+Shift+Backspace	
Redo or Repeat	Ctrl+Y	
Save	Ctrl+S	
Select All	Ctrl+A	
Small Caps	Ctrl+Shift+K	
Style	Ctrl+Shift+S	
Subscript	Ctrl+=	
Superscript	Ctrl+Shift+=	
Task Pane	Ctrl+F1	
Time Field	Alt+Shift+T	

Underline	Ctrl+U	
Undo	Ctrl+Z	
Update Fields	F9	
Word Count List	Ctrl+Shift+G	

Function Keys	
F1	Get Help or visit Microsoft Office Online.
F2	Move text or graphics.
F3	Insert an AutoText (AutoText: A storage location for text or graphics you want to use again, such as a standard contract clause or a long distribution list. Each selection of text or graphics is recorded as an AutoText entry and is assigned a unique name.) entry (after Microsoft Word displays the entry).
F4	Repeat the last action.
F5	Choose the Go To command (Edit menu).
F6	Go to the next pane or frame.
F7	Choose the Spelling command (Tools menu).
F8	Extend a selection.
F9	Update selected fields.
F10	Activate the menu bar.
F11	Go to the next field.
F12	Choose the Save As command (File menu).

In this session we learnt the basic fields of engineering such as MS WORD COMMANDS,MS EXCEL FORMULAE AND BASIC AUTOCAD PRINCIPLES. From these commands we have drawn powerplant sketches .

7th May2021: Engineering documentation for Electrical system design

4 Electrical system Overall plant description design for a small small project Sequence of approach Approach to detailed design

Topic details: Overall plant description, approach to detailed design.

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5 Electrical system
design for typical diagrams
Load lists shedule Power flow diagram
Typical schematic diagram

Topic details: Typical diagrams and Load calculations.

. 1		EQUIPMENT	· · ·	113	a st	Absort load	ed Equipme	nt Load factor	Effici	load	Power factor at	Н	kW = A/C		sumed		_	-	KVAr =		-
8.N	Equipment	Description	ld yldd	100	ess e	5	A III	=A/8 or	HII tect	stor C	load factor C		Cont	inuous	ļ.	intermittent	and spares		Stan	nd-by	Remarks
"	No.	an and an age of the second	dr		Non	E KW		In decim	uis In dec		Cos o	NO.	KW	KVAr	ne0.	kW	KVAr	nd.	kW	KVAr	1
_	PROCESS LOADS			++	+-	-						Н									
1		Portable MEG Injection Pump Package	LEWA	++	×	27.0	0 37.00	0.73	0.0	.91	0.83	Н				29.67	19.94	-		_	Portable Skid (Please refer Note-d)
2		Jouid Return Pump Motor	LEWA	++	- î	25.4				93	0.81	-				27.37	19.81				Poliable Skid (Fledise Felei Hote-d)
3		Liquid Return Pump Motor	LEWA	\Box	X	25.4	5 31.00	0.82	0.9	1.93	0.81					21101	10.01	1	27.37	19.81	
4	34-PM8402A	Booster Pump Motor (LRP Package)	LEWA		х	1.40				1.78	0.84				1	1.79	1.16				
5	34-PM8402B	Booster Pump Motor (LRP Package)	LEWA	П	х	1.40				1.78	0.84							1	1.79	1.16	
6	34-PM7902A	Corrosion Inhibitor Injection Pump Motor	LEWA	\perp	X	6.43				.90	0.77	1	7.17	5.94							
7	34-PM7902B	Corrosion Inhibitor Injection Pump Motor	LEWA RAM		X	6.43				1.90	0.77	ш			\mathbf{H}	_	_	1	7.17	5.94	
8		Batch Corrosion Inhibitor Injection Pump Motor	RAM	+++	X	133.5				196	0.80	-			\vdash	_	_	1	139.06 139.06	104.30	
10		Batch Corrosion Inhibitor Injection Pump Motor CHI Inhibitor Injection Pump Motor	LEWA	++	X	6.4				190	0.80	1	7 17	5.94	\vdash	_	_	1	139.06	104.30	VSD for speed control
11		OH Inhibitor Injection Pump Motor OH Inhibitor Injection Pump Motor	LEWA	++	- I x	6.4				90	0.77	+	7.17	0.94				1	7.17	5.94	VSD for speed control
12		Scale Inhibitor Injection Pump Motor	FUTURE	+	×	3.00	4.00	0.75	0.	1.85	0.81	1	3.53	2.56						0.01	Future
13	34-PM7905B	Scale Inhibitor Injection Pump Motor	FUTURE	$^{+}$	х	3.00	4.00	0.75	0.	1.85	0.81							1	3.53	2.56	Future
14	34-KM9602A	Vitrogen Compressor Motor	GENERON	П	х	30.0				.90	0.80	1	33.33	25.00							
15		Ntrogen Compressor Motor	GENERON	\perp	X	30.0				.90	0.80	1	33.33	25.00							
16 17	34-KM9602C	Vitrogen Compressor Motor	GENERON	++	X	30.0		0.80		.90	0.80	ш			1	1.47	1.11	1	33.33	25.00	
17	34-EM9602A 34-EM9602B	Mercooler for Nitrogen Compressor	GENERON GENERON	+++	x	1.10		0.46		1.78	0.80	\vdash				1.47		-		_	
19	34-EM9602C	Aftercooler for Ntrogen Compressor	GENERON	++	- A	1.1				180	0.80	\vdash			-	1,47	1.11	1	1.44	1.08	
20		Mercooler for Ntrogen Compressor	GENERALITY	++	11	6.20		6.20		190	1.00	\vdash								1.00	
21		tydraulic Fluid Pump - Welhead HPU - Very High Pressure	FRAMES	\Box	×	0.11		0.35		1.80	0.70				1	0.24	0.24				
22	34-PM9701B	tydraulic Fluid Pump - Wellhead HPU - Very High Pressure	FRAMES		x	0.19		0.35		.80	0.70					0.24	0.24				
23	34-PM9702A	tydraulic Fluid Pump - Welthead HPU - Medium High Pressure	FRAMES		х	5.80	7.50	0.77		1.80	0.86				1	7.25	4.30				
24	34-PM9702B	tydraulic Fluid Pump - Wellhead HPU - Medium High Pressure	FRAMES		х	5.80		0.77		.80	0.86				1	7.25	4.30				
25	34-A9704A	tydraulic Fluid Pump -IOPPS Valves HPU	LEDEEN		х	5.42		0.99		.80	0.86						4.02				
16	34-A9704B	tydraulic Fluid Pump -IOPPS Valves HPU	LEDEEN	1	X	5.42				1.80	0.86				1	6.78	4.02				
27	34-PM9705A 34-PM9705B	tydraulic Fluid Pump - ESDV's HPU	LEDEEN	++	X	5.42		0.99		1.80	0.86	\vdash			1	6.78 6.78	4.02				
28	34-PM9705B AC-3435	tydraulic Fluid Pump - ESDV's HPU Crane motor	LIEBHERR	11	X	112.0				195	0.90					117.89	57.10				
30	34-XZM8303	Ifeboat Recovery Starter Panel	SCHAT HARDING	1	- A	8.74		0.93		.90	0.82					-11100	37.10	1	9.60	6.70	
31		Flare Knock Out Drum Heater Control Panel	CHROMALOX		x	35.0				.90	0.90				1	38.89	18.83		5100	0.70	
	HVAC LOADS			$^{+}$																	
2		No Control Condension Unit. Of	CCTC	-	x	37.2	5 42.90	0.87		1.82	0.80		45.43	34.07		_	_			_	
33		Air Cooled Condensing Unit - 01 Air Cooled Condensing Unit - 02	CCTC		×	37.2				82	0.80	-	40.43	34.07				1	45.43	34.07	
34	34-YH4201AHU01	Air Handling Unit - 01	CCTC		x	8.85	5 10,00	0.89	0.	1.80	0.80	1	11.06	8.30					40.40	04.01	
35		Nr Handling Unit - 02	CCTC		х	8.8			0.	.80	0.80							1	11.06	8.30	
36	34-YH4201FF01	Fresh Air Fan - 01	CCTC		x	8.00	8.00	1.00		.90	0.80	1	8.89	6.67							
37		Fresh Air Fan - 02	CCTC		х	8.00				.90	0.80							1	8.89	6.67	
38	34-YH4201EF01	Exhaust Fan - Toilet	CCTC		х	1.00				.90	0.80				1	1.11	0.83				
39		Ouct heater - 01	CCTC		х	9.78		1.00		.00	1.00	ш			1	9.78	0.00	_			
40		Ouct heater - 02	CCTC		x	0.90		1.00		.00	1.00	ш				4.69 0.90	0.00			_	
41 42		Duct heater - 03 Duct heater - 04	CCTC		X X	4.96		1.00		.00	1.00	-				4.98	0.00				
72	ELECTRICAL LOADS	ACCUMUM - 04	CCIC	++	^	7.00	4.90	1.00	-		1.00				-	4.00	0.00				
_				-	+					_						_	_				
43 44	AC-3431 UPS-3441/3442/3443	Power Distribution Board	MASSEERA GUTOR		X	41.0				1.98	0.80	1	41.84			$\overline{}$	_				Inclusive of MOV, Choke valve, Control valve and heat tracing loa
45		UPS- Main/Bypass Switchgear 24 V DC UPS	SAFT		x	1.20		1.00		1.80	0.80	1	1.50	21.95		_	_	-		_	
46		Lighting Transformer for LP-3431	SCHNEIDER	++		27.0				198	0.90	1	27.55	13.34							Inclusive of lighting load, convenience outlets and small power to
47	ELTR-3431	Jighting Transformer for ELP-3431	SCHNEIDER		x I	27.0				198	0.90	1		13.34							Inclusive of lighting load, convenience outlets and small power to
48		Welding Socket Outlet 1 - Upper Deck	STAHL	11	×	33.0				1.98	0.80	T.	21100	10.04				1	33.67	25.26	and the state of t
49	WD-3431B	Welding Socket Outlet 2 - Upper Deck	STAHL		x	33.0	0 33.00			.98	0.80								33.67	25.26	
50	WD-3432A	Welding Socket Outlet 1 - Lower Deck	STAHL		х	33.0				.98	0.80							1	33.67	25.26	
51	WD-3432B	Welding Socket Outlet 2 - Lower Deck	STAHL	П	х	33.0				1.98	0.80							1	33.67	25.26	
52	WD-3433A	Welding Socket Outlet 1 - Mezz Deck	STAHL	11	X	33.0				.98	0.80							1	33.67	25.26	
53		Welding Socket Outlet 2 - Mezz Deck	STAHL STAHL	++	X	33.0				1.98	0.80	\vdash			\vdash				33.67	25.26	
54	WD-3434	Welding Socket Outlet - Cellar Deck	SIAPL	++	х	33.0	33.00	1.00	0.5	0	0.80	\vdash						1	33.67	25.26	
	Max, of normal running plant load:	363 kW, 232 kVAr,	$\sqrt{(kW^2 + kV_c kr^2)}$	1	423	kVA	×	- 100		70.7			070			250			671	500	Power factor without compensation [Cos φ] 0.836
	Max. of normal running plant load: (Est. x %E + y %F)						y	= 30		тот	~		278	195		252	125		671	503	Power factor with compensation [Cos o ₁]
		420 kW. 282 kVAr.	$\sqrt{(kW^2 + kV_0^2 dr^2)}$		506	kVA	Z	= 10	20	F.4= y/Q.W	P4E40	Н	3	39		28	12	-	83	38	Regd capacitor rat: [=kW(tan \varphi - tan \varphi_j)] KV/
es -	(Est. x %E + y %F + z%G)	b) Absorbed loads:		++	-	Cons	med loads:	-	_			\vdash		G . *0	land -	hy": kywi	s required	in			
	Load classification/restarting:	- for pumps, shaft load on duty poin			-		"Continuou	s": all load	ds that =	mey							, such as		lor		1
	For definitions of "Vital", "Essentia					-	continuous				operation	n					not norm				1
	Non - Essential*, services and app						operation is										y driven u				QATARGAS 384
	of "Restarting", see DEP 33.64.10					F-	"Intermitter					for					y for nor				OFFSHORE FACILITIES PROJECT
	Electrical engineering guidelines.	- for workshops, the average total to	ed in normal full				intermediat							rur	nning s	steam - d	riven ones	(e.g.c	harge		WELLHEAD PLATFORM 7
		operation.					all electrics							pu	mps, b	oiler feet	d pumps)				
d)	The Panel shall feed Injection Purr	ps P7901A/B.																			
		as standby load during normal running condition based on open	ating philosophy.																		
																					_
																					ACDEA.
	01	24-Jun-07	AK							A	APPROVE	D FO	R CONST	RUCTION							
	00	22-Aug-07	PJ						A	APPRO	VED FOR	CON	STRUCT	ON WITH	HOLD)					
_	В	18-Jul-07	PJ	\neg							SSUED F										SN
	A	26-Oct-06	JG	\neg							IS	SUED	FORID	С							
_	REVISION		PARED BY	\rightarrow									N OF RE								1

We conclude here how to do load calculations and Typical diagrams and internal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

Classification of
Transformers and Different types of Transformers Different types of Generators
Generators

Topic Details: Classification of Transformers and Generators.

1 Ph. Pad mounted 3 Ph Pole mounted Commercial/ 3 Ph Oil filled (ONAN) Distribution Residential lighting Residential/ street lighting type for industrial & commercial.

415V Diesel generator sets for standby / 240V 1 ph diesel generator set for lighting and& small power only Emergency power supply.

Transformer shall include a primary disconnect on the incoming power source. The disconnect means shall be either a breaker or a load break primary switch that is fused. Transformers are sized to carry the peak running load of all busses connected to them. In addition, feeders to and from power transformers shall be rated to carry full current at the maximum rating.

The packaged combination of a diesel engine, an alternator and various ancillary devices such as base, canopy, sound attenuation, control systems, circuit breakers, jacket water heaters, starting systems etc., is referred to as a Diesel Generating Set or a DG Set in short.

12th May 2021: Classification of Switchgears construction and power factor improvement

7 Classification of Switchgears construction and power factor improvement

Different types of Switchgears Assembles

Power factor improvement

Topic details: Classification of Switchgear construction Feaetures.

Switchgear includes switching & protecting devices like fuses, switches, CTs, VTs, relays, circuit breakers, etc. This device allows operating devices like electrical equipment, generators, distributors, transmission lines, etc.

Power factor defined as the ratio of real power to volt-amperes and is the cosine of the phase angle between the voltage and current in an AC circuit.

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

Busducts are classified into various types depending on its application via phase separated Busducts, segregated phase busducts, non-segregated phase busducts.

18th May 2021: Detailing about Motor Starters and Sizing of motors.

9 Detailing about Motor starters and drives Sizing and selection of motors Motor Starters and Sizing of motors

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter
- Star Delta Starter

- Starting method soft starter, Auto transformer, Star/Delta
- Speed variation Constant speed, variable speed for VFD
 - Frame Size 56 to 280
- Insulation class & Temp rise − A, E, B, F & H
- Protection Protection based on voltage & KW rating
- Cable entry, size & termination Cable sizing based on staring/running voltage drop and short circuit current Vibration monitoring based on KW rating.

19th May2021: Describing about Earthing system and Lighting Protection.

Describing about Earthing systemand Lighting Protection	Plant Earthing system	Lighting Protection materials
Protection.	_	
	about Earthing systemand Lighting	about Earthing systemand Lighting

Topic details: Describing about Earthing system and Lighting Protection.

The purpose of earthing is to prevent damage to people and prevent or limit plant damage. Various earthing systems are provided with each earthing system is isolated from the other.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May 2021: Lighting or illumination systems and calculations.

11 Lighting or Illumination systems and Calculations	Lighting or illumination systems	Lighting calculations
--	----------------------------------	-----------------------

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon, CG Lux

Applicable Standards: IS 6665: Code of practice for industrial lighting, IS 3646: Code of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12 Lighting or Illumination using DIALUX software

Lighting or illumination systems

Operation of dialux software

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

We have the indoor calculations and outdoor calculations too.

Indoor calculation

outdoor calculations

24th May2021: Cabling and their calculations and types.

13	Cabling and their
	types and
	claculations

Cabling calculations

Types of cabling materials

Topic details: Cabling and their types and claculations.

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

Cable trays shall be generally loaded 60 to 70% leaving space for future use. Underground cabling shall be done in concrete cable trenches with cable trays in paved areas and directly buried with mandatory gap of 300mm between different systems of cables.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling		
	claculations and cable gland	Cabling calculations	Cable gland selection
	O		
	Selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point.

Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table

Refer to illustration at the top of the page.

Cable Gland Size	(Alternat	Entry Threads "C" te Metric Thread hs Available)	Cable Bedding Diameter "A"	Overall Cable Diameter "B"	Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length "F"
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	88.0	49.8
755	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	80.0	90.4	3.15	4.0	114.3	125.7	66.6

28 th May2021: Load calculations and Transformer sizing calculations

15 Load calculations and TR Load calculations TR calculations calculations

Topic details:

List of electrical load calculations.

	Equipment	_	quipment Descript			Breaker	Breaker	Breaker	ELCB	Absorbed	Motor/Load	Load	Efficiency	Pover	kW = [A]/[D]		Consumed	Load	kvar = kw	н тап ф
-3	No.	Ec	quipment Descript	ion		Rating	Type	No. of Poles	Rating	Load	Rating	Factor (A)/(B)	at Load Factor [C]	Factor at Load Factor [C]	Continu	ous	Intermi	ttent	Stand	ьу
									mA	[A]	(B)	(C)	(D) decimal		kW.	LVAR	I/U	LVAR	IW	kVA
+						A	_	_	mA	kW	KW.	decimal	decimal	005Ф	kW	EVAF	KW.	KVAR	- KW	EVAF
E	12315	Silica filter feed pump	1						-	12.47	15.00	0.63	0.85	0.73	14.67	13.74				
	2314-A	Absorbesnt/Neutral oil pump (W)							-	3.62	4.70	0.77	0.85	0.73	4.3	4.0				
	2314 -B	Absorbesht/Neutral oil pump (S)								3.11	3.70	0.84	0.85	0.73		cooniide		***************************************	3.7	3.
	2305	Feed Pump (Seperator)								12.58		0.84	0.85	0.73	14.8	13.9		- anneamonna	oomoomoonoAAAs	
MAN	(2305	MICKER (W)				-				12.68	15.00	0.85	0.85	0.73	14.9	14.0				***************************************
	2306	MIXER (S)								12.68		0.85	0.85	0.73			911110911111111111111111111111111111111		14,9	14.
	/2313	Blower					-	-	-	5.45		0.73	0.85	0.73	6.4	6.0				
	tary valve	TK 2313B (I)					-	-		0.53	0.75	0.71	0.85	0.73			0.6	0.6		•
Tec	2314	Sorew conveyor [I]								1.23	150	0.82	0.85				1.45	1.35		•
0.0	2324A	Citric acid tan agitator (W)						-	-	0.91	1.10	0.83	0.85	0.73	1.07	1.00		1		
	2324B	Citric acid tank agitator (S)				-	-	-		0.91	1.10	0.83	0.85	0.73					1.1	1
AC	2305	Citric oil rection vessol agitator						-		3.34		0.90	0.85	0.73	3.93	3.68				
100	2309	Lye oil reaction vessel agitator				-			-	1.21	150	0.81	0.85	0.73	1.42	1.33				
	2310	Lue oil reaction vessel agitator				-		-		1.21	150	0.81	0.85	0.73	142	1.33				
100	2314	Spap Adsorbant Tank Agitator				-	-			2.12	3.00	0.71	0.85		2.49	2.34				
Inc	12314	Doap Adsorbant Lank Aditator	-			-	-	-		212	3.00	0.71	0.00	0.73	2.43	6.34				
1							-	-												
											7/200					20100011111111				1
																	V.000000000000000000000000000000000000			
Ma	udmum of norm s. нИЕ+yMF)	al running plant load :		66.0	kW		61.8	kVAR		sqrt	(kW"+kVAR") =	90.4	kVA	TOTAL	65.40	61.23	2.07	1.94	19.65	18.39
Pe	ak Load:			68.0	kW		63.7	KVAR		rgrt	(kW" +kVAR") =	93.1	kVA	kVA	89.5	9	2.8	14	26.9	1
Œ	t #KE + 9KF +	aMG)																		
A	sumptions																			
10 L	oad factor, Eff	iciency and Power factor.																		
		Load Rating (kW)				Effic	lency		Powerfa	otor										
1		<= 20				0.	85		0.73											
1		> 20 - <= 45 > 45 - < 150				0.	93		0.78											
1		>= 150				0.	9.1		0.02											
-		/ - 100				0.			0.31											

nternz

TR sizing calculations:

29th May2021: DG set calculations.

16 DG set Calculations

Topic details:

Transformer and DG set calculations, types , sizing or selections

	DG SIZING CALCULATIONS	6	
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.73	Avg
	Efficiency	0.85	Avg
	Total operating load on DG set in kVA at 0.73 power factor	78.6	
	Largest motor to start in the sequence - load in KW	15	KW
	Running kVA of last motor (CosØ= 0.91)	24	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter)
	Starting KVA of the largest motor	145	KVA
	(Running kVA of last motor X Starting current ratio of motor)		
	Base load of DG set in KVA	54	KVA
	(Total operating load in kVA – Running kVA of last motor)		
Α	Continous operation under load -P1 Capacity of Did set based on continuous operation under load	54	
	P1 Transient Voltage dip during starting of Last motor	34	KVA
В	P2		
	Total momentary load in KVA	199	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd**)	7.91%	(Assumed)
	Transient Reactance of Generator (Xd²)	10.065%	(Assumed)
	Xd*** = (Xd"+Xd")/2	0.089875	
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor	102	
	P2 = Total momentary load in KVA x Xd''' x <u>(1-Transient Voltage</u> (Transient Voltage Dip)		KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	199	KVA
	overcurrent capacity of DG (K)	150%	
	(Ref: IS/IEC 60034-1, Clause 9.3.2)		
	Capacity of DG set required considering overload capacity (P3) = <u>Total momentary load in KVA</u> overcurrent capacity of DG (K)	133	KVA
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	54	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	102	KVA
	Overload capacity P3	133	KVA
	Considering the last value amongst P1, P2 and P3	133	KVA
	D 5:: 0 . MONTH:		

2nd june 2021: Caluculations of Earthing and Lighting protection.

17 Calculation of
Earthing and
Lighting protection
calculations

Earthing calculations

Lighting protection calculation

Topic details:

Calculation of Earthing and Lighting protection calculations

Earthing calculations:

	1	
Maximum line-to-ground fault in kA for 1 sec	12	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	4.0	
Soil resistivity Ω-meter	15	
Ambient temperature in deg C	50	
Plot dimensions (earth grid) L × B in meters	70	13
Number of earth rods in nos.	6	
Earth electrode sizing:		
Ac - Required conductor cross section in sq.mm		
$I_{\rm lg} = A_{\rm c} x \sqrt{\left[\frac{TCAPx10^{-4}}{t_{\rm c}x\alpha_{\rm r}x\rho_{\rm r}}\right] x l_{\rm n} \left[\frac{K_{\rm o} + T_{\rm m}}{K_{\rm o} + T_{\rm a}}\right]}$		
αr - Thermal co-efficient of resistivity, at 20 oC	0.0032	
pr - Resistivity of ground conductor at 20 oC	20.10	
Ta - Ambient Temperature is °C	20.10	
·	11	
I _{Fq} - RMS fault current in kA = 50 KA		
tc - Short circuit current duration sec	1	
Thermal capacity factor, TCAP Jf(cm3.oC)	3.93	
Tm - Maximum allowable temperature for copper conductor, in oC	419	
K0 - Factor at oC	293	
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	0.100	
11 = Ac *	0.123	
Ac - Required conductor cross section in sq.mm	90	
Earth rod dia in mm	11	
Earth rod dia (including 25% corrosion allowance) in mm	13	

5 th june 2021: Cable sizing and cable tray sizing calculations.

Cable sizing and cable tray sizing Cable sizing calculations Cable tray calculation calculations

Topic details: Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

S.NO.	Description	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)				Load P.F. Running		Motor P.F Staring	SIN Ø Staring	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor	Derating factor k2	Derating factor k3	Derating factor k4	Overal Deratin factor
3	LV MCC	PU235	Silica filter feed pump	10.84	5.00	415	3	18.9	113.11	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
4	LV MCC	PU 2314-A	Absorbesat/Neutral oil pump (V)	3.5	3.70	415	3	5.5	32.87	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
5	LV MCC	PU 2314 -B	Absorbesat/Neutral oil pump (S)	2.70	3.00	415	3	4.7	28.17	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
6	LV MCC	PU2305	Feed Pamp (Superator)	10.94	100	415	3	19.0	114.15	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
7	LV MCC	MX2305	MOJER (W)	11.03	5.00	415	3	19.2	115.09	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
8	LV MCC	MX 2008	MOER(S)	100	5.0	415	3	19.2	115.09	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882
9	LV MCC	BV2313	Blows	4,74	55	415	3	8.2	49.46	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
10	LV MCC	Rotany valve	TK 2008 (I)	0.46	0.5	415	3	0.8	4.80	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
11	LV MCC	SC2314	Screen conveyor (II)	107	150	415	3	1.9	11.16	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
12	LV MCC	AG 2324A	Citric acid tan agitator (VI)	0.79	130	415	3	1.4	8.24	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
13	LV MCC	AG 23248	Citric acid task agitator (S)	0.79	130	415	3	1.4	8.24	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
14	LV MCC	AG 2005	Citric oil rection recool agitator	2.90	37	415	3	5.0	30.26	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882
15	LV MCC	AG 2309	Lee oil reaction recool agillator	1.05		415	3	1.8	10.96	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
16	LV MCC	AG 2310	Lyc oil reaction respel agitator	1.05	150	415	3	1.8	10.96	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882
17	LV MCC	AG 2314	Scop Adsorbant Task Agitator	184	220	415	3	32	19.20	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1/	1	0.882
18													1										

Cable Tray calculations:

	ABLES								
		LT-4		T-0		T-5	1		
LAB	LE TRAY: FROM	L1-4		TO		.1-3			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
	LV MCC	4	6	1	18	18	3.95	0.7	
	PU2315- VFD	4	6	1	18	18	0.37	0.7	<u>l</u>
	PU2315- VFD	5	1.5	1	15	15	3.95	0.4	Ĭ.
	LV MCC	4	2.5	1	16	16	0.37	0.5	
	LV MCC	5	1.5	1	15	15	3.95	0.4	
	LV MCC	4	2.5	1	16	16	0.37	0.5	
	PU 2314 -B- VFD	4	2.5	1	16	16	0.9	0.5	
8	PU 2314 -B- VFD	5	1.5	1	15	15	0.9	0.4	
9	LV MCC	4	6	1	18	18	2.9	0.7	
10	PU2305- VFD	4	6	1	18	18	1.2	0.7	
11	PU2305- VFD	5	1.5	1	15	15	1.2	0.4	
12	LV MCC	4	6	1	18	18	12	0.7	
13	LV MCC	5	1.5	1	15	15	1.45	0.4	
14	LV MCC	4	10	1	18	18	2	0.9	
	LV MCC	5	1.5	1	15	15	2.4	0.4	
	LV MCC	4	6	1	18	18	2.4	0.7	
	BW2313- VFD	4	6	1	18	18	0.85	0.7	
	BW2313- VFD	5	1.5	1	15	15	0.85	0.4	
	LV MCC	4	6	1	18	18	0.85	0.7	
	LV MCC	5	1.5	1	15	15	1	0.4	
21	LVMCC	4	6	1	18	18	0.85	0.7	
	Total			21		348	33.91	11.9	
Calc	ulation					Result			
Maxi	mum Cable Diameter:		18	mm		Selected Cab	le Tray width:	O.K	
Cons	ider Spare Capacity of Cable Tra	au:	30%			Selected Cal	ole Tray Depth:	O.K	
	nce between each Cable:		0	mm			le Tray Weight:	O.K	Including Spare Capacit
Calc	ulated Width of Cable Tray:		452	mm			ole Tray Size:	D.K	Including Spare Capacit
	ulated Area of Cable Tray:		8143	Sq.mm		B : 10 :		2000 100	<i>r</i>
	f Layer of Cables in Cable Tray:		2				ole Tray Size:	300 x 50	mm
	cted No of Cable Tray: cted Cable Tray Width:		1	Nos.			of Cable Tray: \	150.00	No.
	cted Cable Tray Width: cted Cable Tray Depth:		300 50	mm					Kg/Meten/Tray
Selected Cable Tray Depth: 50 Selected Cable Tray Weight Capacity: 150			mm Ko/Mete		Type of Cabi	e 11ay.	Ladder		
	Type of Cable Tray: 150 Ladder				\$1	Cable Trau V	idth Area Remar	25%	
	Total Area of Cable Tray: Ladder						rium Area nemar rea Remaning:	46%	
ı ota	MICO UI CODIC ITAY.		13000	Sq.mm		Cable Hay A	rea memariiriy.	40%	

Conclusion:

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback:

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

ASSIGNMENT - 1 ELECTRICAL LOAD CALCULATIONS LV MCC

				kW = [A] / [D]		Consumed Load		kVAR = kW	x tan φ									
SI. No.	Equipment No.	Equipment Description	Breaker Rating	Breaker Type	Breaker No. of Poles	ELCB Rating	Absorbed Load	Motor / Load Rating	Load Factor [A] / [B]	Efficiency at Load Factor [C]	Power Factor at Load Factor [C]		Continuous Intermittent		ittent	Stand-	ру	Remarks
							[A]	[B]	[C]	[D]	racioi [C]							
			Α			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
1	PU2315	Silica filter feed pump					10.84	15.00	0.72	0.85	0.73	12.75	11.94	1				
2		Absorbesnt/Neutral oil pump (W)					3.15		0.72				3.5					
		Absorbesnt/Neutral oil pump (S)					2.70	3.00	0.90				0.0			3.2	3.0	
		Feed Pump (Seperator)					10.94	11.00	0.99				12.0					
5		MIXER (W)					11.03		0.74				12.1					
6		MIXER (S)					11.03		0.74				•			13.0	12.1	
		Blower					4.74	5.50	0.86				5.2					
8		TK 2313B (I)					0.46		0.84					0.5				
		Screw conveyor (I)					1.07	1.50	0.71				0.07	1.26	1.18			
10 11		Citric acid tan agitator (W) Citric acid tank agitator (S)					0.79 0.79	1.10 1.10	0.72 0.72				0.87	/		0.9	0.9	
		Citric oil rection vessol agitator					2.90	3.70	0.72				3.19			0.9	0.9	
		Lye oil reaction vessel agitator					1.05		0.70				1.16					
		Lye oil reaction vessel agitator					1.05		0.70				1.16					
		Soap Adsorbant Tank Agitator					1.84	2.20	0.84				2.03					
	Maximum of norm (Est. x%E + y%F)	al running plant load : 57.4 kW		53.7	kVAR		sqrt (kW² +kVAR²) =	78.6	kVA	TOTAL	56.86	53.23	1.80	1.69	17.08	15.99	
	Peak Load : (Est. x%E + y%F -	59.1 kW + z%G)		55.3	kVAR		sqrt (kW² +kVAR²) =	81.0	kVA	kVA	77.89	9	2.4	.7	23.40)	
		ciency and Power factor. Load Rating (kW)	Effici	encv		Power fa	actor											
		<= 20	3.0			0.73												
		> 20 - <= 45	0.9) 1		0.78												
		> 45 - < 150	0.9			0.82												
		>= 150	0.9	14		0.91												
	2) Coincidence fac	ctors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intermitte	nt and stan	dby load.														
	-	•		-														

ASSIGNMENT - 2 **Calculation for Transformer Capacity Example of calculation for Transformer Capacity Calculation for consumed load** Consumed loads used for this example are as follows: kW kVar kVA a. Continuous load 56.86 53.2 77.89 --- (i) 1.7 b. Intermittent load / Diversity Factor 1.8 2.47 --- (ii) 17.08 c. Stand-by load required as consumed load 16.0 23.40 --- (iii) Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) = 59.1 55.3 80.97 Future expansion load (20% capacity) 16.19 11.8 11.1 Total Load = 70.9 66.4 97.16 Calculation for 3.3kV / 0.433 kV transformer capacity Max. Consumed load 81.0 kVA Spare capacity 16.2 kVA 97.2 kVA Required capacity = Transformer rated capacity 120 kVA 1.3 Voltage regulation check During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows: (%Z)= 4 & Ratio X/R = Hence, %R =1.176 % 3.82 % %X $P_{M} = 15 \text{ KW having (} \text{ K} = \frac{6}{6} \text{ & C} = \frac{1}{1} \text{ & } \text{Cos } \theta = \frac{0.73}{6} \text{ & } \text{Eff.h} = \frac{0.85}{6} \text{ & } \text{Cos } Q_{S} = \frac{0.25}{6} \text{ }$ Ps = 145.044 KVA Cos θ_s = 0.25 ,Corresponding to Angle θ_s = 75.5225 Degrees for which Sin q_s = P_B in Kvar = 30.39 \ Cos θ_B = 57.35 KVA & PB in KW is = 48.74 & 0.850 Cos θ_B = 0.85 ,Corresponding to Angle θ_s = 31.8026 Degrees, for which Sin θ_s = 85.0011 KW P_{CP} = 170.829 KVAR P_{CQ} = 190.808 KVA $Cos \theta_C = =$ 0.44548 , where as Sin $\theta_{\rm C}$ = 0.895 I Voltage Regulation e

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals

1.4 Selection of rated capacity

120 kVA transformer selected.

Assignment - 3

	Assignment - 3		
	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.73	Avg
	Efficiency	0.85	Avg
	Total operating load on DG set in kVA at 0.73 power factor	78.6	
	Largest motor to start in the sequence - load in KW	15	KW
	Running kVA of last motor (CosØ= 0.91)	24	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter)
	Starting KVA of the largest motor	145	KVA
	(Running kVA of last motor X Starting current ratio of motor)		
	Base load of DG set in KVA	54	KVA
	(Total operating load in kVA – Running kVA of last motor)		
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	54	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	199	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd'')	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd''' =(Xd"+Xd')/2	0.089875	, ,
	Transient Voltage Dip	15%	(Max)
	Tursent Voltage Sup	25/3	(WILL)
	Transient Voltage dip during Soft starter starting of Last motor	102	
	P2 = Total momentary load in KVA x Xd'" x (1-Transient Voltage Dip) (Transient Voltage Dip)		KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
		199	KVA
	Total momentary load in KVA		NV/
	overcurrent capacity of DG (K)	150%	
	(Ref: IS/IEC 60034-1, Clause 9.3.2)		
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA	133	KVA
	overcurrent capacity of DG (K)		
	Considering the last value amongst P1, P2 and P3 Continous operation under load -P1	54	KVA
	Senting a specialist and the sent sent sent sent sent sent sent sen		
	Transient Voltage dip during Soft starter starting of Last motor P2	102	KVA
	Overload capacity P3	133	KVA
	Considering the last value amongst P1, P2 and P3	133	KVA
	Hence, Existing Generator 133 KVA is adequate to cater the loads as per re-		
	scheduled loads		
	NOTE: VOLTAGE DIP CONSIDERED - 15%		

Assignment - 4

Lightning Calculations

	1
Location	Mangalore
Building	Concrete, Industrial
Type of Building	Flat Roofs (a)
Building Length (L)	14
Building breadth (W)	4
Building Height (H)	5

Risk Factor Calculation

1 Collection Area (A_c)

A_c	$= (L^*W) + (2^*L^*H) + (2^*W^*H) + (3.14^*H^*H)$
	314 5

2 Probability of Being Struck (P)

P	=	$A_c^* N_g^* 10^{-6}$
		0.00059755

3 Overall weighing factor

a) Use of structure (A)	=	1.2
b) Type of construction (B)	=	0.4
c) Contents or consequential effects (C)	=	0.8
d) Degree of isolation (D)	=	1.0
e) Type of country (E)	=	0.3
Wo - Overall weighing factor	=	A * B * C * D * E
	=	0.115

4 Overall Risk Factor Po = P * Wo Po = 6.88378E-05 Pa 10^{-5}

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10 $^{-5}$ Since Po > Pa lightning protection required.

5 Air Terminations

Perimeter of the building	=	2(L+W)	
	=	36	Mts.

6 Down Conductors

Perimeter of building = 36 Mts. No. of down conductors based on perimeter = 3 Nos.

Hence 2 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Steel Strip

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

Assignment – 5 – CABLE SIZING

S.NO.	Description	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)		ad Starting	Load P.F.		Motor P.F Staring		Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)			Cable Reactance (Ohms/kM)	Voltage drop (Running) (V)	Voltage drop (Running) (%)	Voltage drop (Starting) (V)	Voltage drop (starting) (%)		Cable	Bland size
3	LVMCC	PU2315	Silica filter feed pump	10.84	15.00	415	3 18	.9 113.11	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	95	3.9400	0.0902	9.94	2.40	59.50	14.34	OK	18 2	20
4	LVMCC	PU 2314-A	Absorbesnt/Neutral oil pump (W)	3.15	3.70	415	3 5.	5 32.87	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	6.89	1.66	41.29	9.95	OK	16 20	20s
5	LVMCC	PU 2314 -B	Absorbesnt/Neutral oil pump (S)	2.70	3.00	415	3 4.	7 28.17	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	60	9.4800	0.1007	3.73	0.90	22.35	5.39	OK	16 20	20s
6	LVMCC	PU2305	Feed Pump (Seperator)	10.94	11.00	415	3 19	.0 114.15	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	85	3.9400	0.0902	8.98	2.16	53.73	12.95	OK	18 20	20s
7	LVMCC	MX2305	MIXER (W)	11.03	15.00	415	3 19	.2 115.09	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	7.99	1.92	47.80	11.52	OK	18 20	20s
8	LVMCC	MX 2308	MIXER (S)	11.03	15.00	415	3 19	.2 115.09	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	105	2.3400	0.0852	6.71	1.62	40.07	9.66	OK	18 20	20s
9	LVMCC	BW 2313	Blower	4.74	5.50	415	3 8.	2 49.46	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	100	3.9400	0.0902	4.58	1.10	27.39	6.60	OK	18 20	20s
10	LVMCC	Rotary valve	TK 2313B (I)	0.46	0.55	415	3 0.	8 4.80	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	100	3.9400	0.0902	0.44	0.11	2.66	0.64	OK	18 20	20s
11	LVMCC	SC2314	Screw conveyor (I)	107	1.50	415	3 1.	9 11.16	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	0.77	0.19	4.64	1.12	OK	18 2	20
12	LVMCC	AG 2324A	Citric acid tan agitator (W)	0.79	1.10	415	3 1	4 8.24	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	110	9.4800	0.1007	2.00	0.48	11.99	2.89	OK	16 20	20s
13	LVMCC	AG 2324B	Citric acid tank agitator (S)	0.79	1.10	415	3 1.	4 8.24	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	0.57	0.14	3.42	0.82	OK	18 2	20
14	LVMCC	AG 2305	Citric oil rection vessol agitator	290	3.70	415	3 5.	0 30.26	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	105	3.9400	0.0902	2.94	0.71	17.59	4.24	OK	18 2	20
15	LVMCC	AG 2309	Lye oil reaction vessel agitato		1.50	415	3 1.	8 10.96	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	85	9.4800	0.1007	2.06	0.50	12.31	2.97	OK	16 3	32
16	LVMCC	AG 2310	Lye oil reaction vessel agitator	1.05	1.50	415	3 1.	8 10.96	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	2.30	0.55	13.76	3.32	OK		20s
17	LVMCC	AG 2314	Soap Adsorbant Tank Agitator	1.84	2.20	415	3 3.	2 19.20	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	65	9.4800	0.1007	2.75	0.66	16.50	3.98	OK	16 20	20s
18 19																															├		
20						-	_				1		-							1										$\vdash \vdash$	\vdash	+	
21								-																			1			\vdash			
22																														—			
23																																	
24 25																																	
26											-																			\vdash	\vdash	+	
27							_		+										1	 	1									\vdash	+-+		
			1				_		+	1									 	 	†	 								\vdash	-	+	
			1	+	1		_				1						1			1										\vdash	+		
-			-	+	-		_		+	1						 	+	-	-	 	+		-		-		-			\vdash	+	+	
																1																	

Basis:

1. Overall derating factor k = k1 x k2 x k3 x k4

K1=Rating factor for variation in air/ground temperature

K2=Rating factor for depth of laying

K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil

2. LT Motors: Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed

TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation $\pm 10\,\%$

	ABLES ETRAY: FROM	174		ТО		.T-5		1	
ABL	E IKAT: PROM	LT-4	1	10	L	.1-0			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	LV MCC	4	6	1	18	18	3.95	0.7	
2	PU2315- VFD	4	6	1	18	18	0.37	0.7	
3	PU2315- VFD	5	1.5	1	15	15	3.95	0.4	
4	LV MCC	4	2.5	1	16	16	0.37	0.5	
5	LV MCC	5	1.5	1	15	15	3.95	0.4	
6	LV MCC	4	2.5	1	16	16	0.37	0.5	
7	PU 2314 -B- VFD	4	2.5	1	16	16	0.9	0.5	
8	PU 2314 -B- VFD	5	1.5	1	15	15	0.9	0.4	
9	LV MCC	4	6	1	18	18	2.9	0.7	
10	PU2305- VFD	4	6	1	18	18	1.2	0.7	
11	PU2305- VFD	5	1.5	1	15	15	1.2	0.4	
12	LV MCC	4	6	1	18	18	1.2	0.7	
13	LV MCC	5	1.5	1	15	15	1.45	0.4	
14	LV MCC	4	10	1	18	18	2	0.9	
15	LVMCC	5	1.5	1	15	15	2.4	0.4	
-	LV MCC	4	6	1	18	18	2.4	0.7	
17	BW2313- VFD	4	6	1	18	18	0.85	0.7	
18	BW2313- VFD	5	1.5	1	15	15	0.85	0.4	
19	LV MCC	4	6	1	18	18	0.85	0.7	
	LV MCC	5	1.5	1	15	15	1	0.4	
21	LV MCC	4	6	1	18	18	0.85	0.7	
	Total		l	21		348	33.91	11.9	
laxin onsi istar alcu	ulation num Cable Diameter: der Spare Capacity of Cable Tray: nce between each Cable: lated Width of Cable Tray: lated Area of Cable Tray:		18 30% 0 452 8143	mm mm mm Sq.mm		Result Selected Cable T Selected Cable T Selectrd Cable T Selected Cable T	ray Depth: ray Weight: ray Size:	0.K 0.K 0.K 0.K	Including Spare Capacity Including Spare Capacity
	Layer of Cables in Cable Tray:	2			Required Cable T		300 x 50	mm	
	ted No of Cable Tray:	1	Nos.		Required Nos of		1	No	
	ted Cable Tray Width:		300	mm		Required Cable T		150.00	Kg/Meter/Tray
	ted Cable Tray Depth:		50	mm		Type of Cable Tra	ay:	Ladder	
	ted Cable Tray Weight Capacity:		150	Kg/Meter					
	of Cable Tray:		Ladder	Samm		Cable Tray Width		25% 46%	
otal .	Area of Cable Tray:		15000	Sq.mm		Cable Tray Area I	Remaning:	46%	

Assignment - 7

Earthing calculations inputs

Maximum line-to-ground fault in kA for 1 sec Earthing material (Earth rod & earth strip) Depth of earth flat burrial in meter 12 GI 0.5 4.0 15 50 70 Depth of earth flat burrial in meter
Average depth / length of Earth rod in meters
Soil resistivity \(\Omega \text{-meter} \)
Ambient temperature in deg C
Plot dimensions (earth grid) L x B in meters
Number of earth rods in nos. 130

	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I _{I-g} - RMS fault current in kA = 50 KA	11
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
11 = Ac *	0.123
	90
Earth rod dia in mm	11
Earth rod dia (including 25% corrosion allowance) in mm	13

IEEE Std 80-2000 IEEE GUIDE FOR SAFETY

Table 1-Material constants

Description	Material conductivity (%)	α, factor at 20 °C (1/°C)	K _o at 0 °C (0 °C)	Fusing* temperature Tm (°C)	ρ, 20 °C (μΩ-cm)	TCAP therma capacity [J/(cm ^{3.°} C)]
Copper, annealed soft-drawn	100.0	0.003 93	234	1083	1.72	3.42
Copper, commercial hard-drawn	97.0	0.003 81	242	1084	1.78	3.42
Copper-clad steel wire	40.0	0.00378	245	1084	4.40	3.85
Copper-clad steel wire	30.0	0.003 78	245	1084	5.86	3.85
Copper-clad steel rod ^b	20.0	0.00378	245	1084	8.62	3.85
Aluminum, EC grade	61.0	0.00403	228	657	2.86	2.56
Aluminum, 5005 alloy	53.5	0.003.53	263	652	3.22	2.60
Aluminum, 6201 alloy	52.5	0.003 47	268	654	3.28	2.60
Aluminum-clad steel wire	20.3	0.00360	258	657	8.48	3.58
Steel, 1020	10.8	0.00160	605	1510	15.90	3.28
Stainless-clad steel rod ^c	9.8	0.00160	605	1400	17.50	4,44
Zinc-coated steel rod	8.6	0.003 20	293	419	20.10	3.93
Stainless steel, 304	2.4	0.001 30	749	1400	72.00	4.03

From ASTM standards.
*Copper-clad seel rods based on 0.254 mm (0.010 in) copper thickness.
*Stainless-clad steel rod based on 0.508 mm (0.020 in) No. 304 stainless steel thickness over No. 1020 steel core.