2003-2004 学年第二学期复变函数与积分变换期终试卷 A (01 级)

专业	班级	学号	姓名	成绩	
一 、填空	圣 (10×3 分)				
1. 复数(-	$\frac{2i}{-1}i$) ⁿ 的三	角表达式为		· · · · · · · · · · · · · · · · · · ·	
$2. w = \frac{1}{z}$	将 z 平面上的由	曲线 x² + → y² 4 变	成w平面上的曲线	是。	
3. 使 f(z)	$) = \frac{\beta m y^3}{2nx^2}$	$y i(x^3 lxy^2)$ 解	折的条件是		
4. Ln(- 3	= 4 <i>i</i>)			· · · · · · · · · · · · · · · · · · ·	
$5. \int_0^i z \mathbf{c}$	os <i>zdz</i> =			0	
$6. \iint_{ z =3} \frac{1}{(z-1)^2}$	$\frac{e^z}{z-1)}dz = $		o		
7. $\lim_{n\to\infty} \left[\frac{1}{1}\right]$	$\left[\frac{+n}{-ni}+e^{\frac{i}{n}}\right]=$		o		
8. 级数 ∑	$\sum_{i=0}^{\infty} \left(\frac{1}{2} - \frac{\sqrt{3}}{2} i \right)$	"(z 2)"的收敛	效圆为	o	
9. $f(t)$	$=e^{t}$ t^3 $3 \pm$	勺拉氏变换 $F(s)$ =	=		
10. F(s) =	$= \frac{s^3 + s^2}{s^2(s^2 + 1)} \sharp$	的拉氏逆变换 $f(t)$)=	0	
二、计算	【 (6×6分)				
1.求 ∛—	 ♀ 2 <i>i</i> 的值。				

2. 求 $(1-i)^{1+i}$ 的值。

3.计算
$$\int_{c=e_1}^{\infty} \frac{\cos z}{z^3} dz$$
, 其中 C_1 : $|z|=2$ 为正向, C_2 : $|z|=3$ 为负向。

4. 计算
$$\int_0^{+\infty} \frac{1-\cos t}{t} e^{-t} dt$$

5. 求
$$f(t) = \frac{e^{-2t} \sin 3t}{t}$$
的拉氏变换。

6. 求 $F(s) = \ln \frac{s^2 + 1}{s^2}$ 的拉氏逆变换f(t)。

三、在复平面上求解析函数 f(z) 使其虚部 $v(x,y) = 3x^2y - y^3 2y$ 。(8分)

四、将函数 $f(z) = z \sin z$ 展开为 $(z - \frac{\pi}{3})$ 的泰勒级数,并指出收敛半径。(8分)

五、将 $f(z) = \frac{1}{z(1-z)^2}$ 分别在 0 < |z| < 1, 1 < |z-1| 内展开成洛朗级数。(10 分)

六、求 $y'' + 2y' - 3y = e^{-t}$ 满足初始条件 y(0) = 0, y'(0) = 1 的解。(8分)