1. Tõestada, et kehtib

$$\left(\frac{\partial C_V}{\partial V}\right)_T = T \left(\frac{\partial^2 p}{\partial T^2}\right)_V.$$

2. Näidata, et ideaalse gaasi jaoks

$$\left(\frac{\partial H}{\partial V}\right)_T = 0.$$

- 3. Gaaside olekuvõrrandit suhteliselt madalatel rõhkudel võib esitada kujul pV = RT + pB, kus B ei sõltu rõhust ega ruumalast. Kasutades seda olekuvõrrandit, tuleta avaldis suuruse $\left(\frac{\partial H}{\partial V}\right)_T \left(\frac{\partial E}{\partial V}\right)_T$ jaoks.
- 4. Karburaatormootor võimsusega 735 W kulutab minimaalselt 265 grammi bensiini tunnis. Leida karburaatormootori kaod hõõrdumisel, soojusjuhtivusel jne, kui polütroobi näitaja n = 1.2, bensiini põlemisel eralduv soojushulk $q = 46 \, MJ$ ja kompressiooniaste on $\frac{V_1}{V_2} = 6.2$.
- 5. Leida Gibbs'i vaba energia ühe mooli ideaalse ja van der Waals'i gaaside jaoks.
- 6. Alustades van der Waals'i olekuvõrrandist, leida täisdiferentsiaali dp avaldist dV ja dT kaudu. Segatuletiste $\left(\frac{\partial}{\partial T} \left(\frac{\partial p}{\partial V}\right)_T\right)_V$ ja $\left(\frac{\partial}{\partial V} \left(\frac{\partial p}{\partial T}\right)_V\right)_T$ arvutades näidata, et dp on täisdiferentsiaal.
- 7. Näidata, et Joule'i-Thomson'i efekt ei kehti ideaalse gaasi puhul.
- 8. Troposfäär (Maa atmosfäär 10 km) on tihti püsivas konstantse entroopiaga (mitte aga konstantse temperatuuriga) konvektiivses olekus see tähendab pV^{γ} on kõrgusest sõltumatu $\left(\gamma = \frac{c_p}{c_V}\right)$. Leida selle mudeli puhul temperatuuri sõltuvus kõrgusest $\frac{dT}{dz}$. Teades, et keskmine kaheaatomiline õhu molekul on molaarmassiga $\mu = 29 \ g/mol$ ja hüdrostaatilise rõhu avaldis $dp = -\rho g dz$, leida temperatuuri muutus kõrgusega ühe kilomeetri kohta.
- 9. Näidata, et auru puhul, mis allub olekuvõrrandile $pv_g = RT + K$, Clapeyroni-Clausiuse võrrand omandab järgmise kuju:

$$ln\left(\frac{p_2}{p_1}\right) = \frac{\Delta H_{aur}}{K} ln\left[\frac{T_2(RT_1+K)}{T_1(RT_2+K)}\right],$$

kus K on konstant ja ΔH_{aur} $\left(\Delta H_{aur} = T\Delta v \frac{dv}{dT}\right)$ on aurustumisentalpia (ehk 1 mooli aurustumissoojus), mis kirjeldab vedeliku üleminekut aurufaasi. Kuna vedela faasi eriruumala on väga väike, siis $\Delta v \approx v_g$. NB! Lahenduse leidmiseks tuleb kasutada ositi integreerimist ja sobivat asendust.

10. Solaarkonstant $I_S = 1.4 \ kW/m^2$ annab päikesekiirguse intensiivsuse maapinnal. Eeldades, et Päike (raadius $7 \cdot 10^5 \ km$, kaugus Maast $1.5 \cdot 10^8 \ km$) kiirgab kui must keha, näidata, et selle kiirguse intensiivsus on $6.4 \cdot 10^7 W/m^2$ ja hinnata Päikese temperatuuri.