Конспекты

ПО

электродинамике

2015б

 Φ ТШ -2014

Содержание

1	Список опытных фактов	1
2	Электрическое поле. Напряженность электрического поля.	3
3	Потенциалы. Силовые линии и эквипотенциальные поверхности	4

1 Список опытных фактов

- 1. Существует электрическое взаимодействие, обусловленное зарядами между телами.
- 2. Заряды существуют двух знаков: положительные и отрицательные. Заряды одного знака отталкиваются, разных притягиваются.
- 3. Сила взаимодействия между точечными зарядами обратно пропорциональна квадрату расстояния между ними. Рассмотрим два точечных заряда q_1 и q_2 :

$$F \sim q_1, \quad F \sim q_2, \quad F \sim \frac{1}{r^2}$$

$$F \sim \frac{q_1 q_2}{r^2}$$

4. [Закон Кулона] В системе СИ сила F равна

$$F = k \frac{q_1 q_2}{r^2},$$

где $k = 9 \times 10^9 \, \frac{\mathrm{H} \cdot \mathrm{m}^2}{\mathrm{Kn}^2}$, а $[q] = \mathrm{Kn}$ (кулон).

Два единичных заряда на расстоянии 1 м будут взаимодействовать с силой $F=9\times 10^9\,\mathrm{H}$. Для измерения заряда те должны в первую очередь сохраняться.

5. **[Закон сохранения электрического заряда]** В замкнутой системе суммарный заряд сохраняется:

$$q_{\Sigma} = \sum_{i} q_{i} = const.$$

6. **[Принцип суперпозиции]** Сила, действующая на данный электрический заряд q, равна векторной сумме всех сил, действующих в системе:

$$\mathbf{F} = \sum_{i} \mathbf{F}_{i} = \sum_{i} k \frac{qq_{i}\mathbf{r}_{i}}{r_{i}^{3}}$$

7. **[Дискретность электрического заряда]** Существует элементарный заряд $\bar{e}=1,6\times 10^{-19}\,{\rm K}$ л. Заряд любой частицы является кратным элементарному:

$$q = n\bar{e}, \quad n \in \mathbb{Z}.$$

Заряд электрона равен $q_{\rm эл}=-\bar{e}$, протона $q_{\rm пp}=+\bar{e}$.

2 Электрическое поле. Напряженность электрического поля.

Сила \mathbf{F} , действующая на заряд q, всегда пропорциональна его величине, поэтому (1) можно записать в виде

$$\mathbf{F} = q\mathbf{E},$$

где вектор ${\bf E}$ называют вектором напряженности электрического поля. Это аналог формулы ${\bf F}=m{\bf g}.~{\bf E}$ и ${\bf g}$ являются характеристиками данной точки пространства.

$$[E] = \frac{\mathrm{H}}{\mathrm{K}_{\mathrm{J}}} = \frac{\mathrm{B}}{\mathrm{M}},$$

$$\mathbf{F} = q \sum_{i} \frac{q_i \mathbf{r}_i}{r_i^3} = q \sum_{i} \mathbf{E}_i = q \mathbf{E}.$$

Поле в данной точке есть суперпозиция полей, порождаемых всеми зарядами в системе.

$$\mathbf{E} = \sum_i \mathbf{E}_i,$$

$$\mathbf{E}_i = k \frac{q_i \mathbf{r}_i}{r_i^3}, \quad E_i = k \frac{q_i}{r_i^2}.$$

Электрическое поле создается зарядами и действует на заряды. Заряды не действуют друг на друга и взаимодействуют посредством полей, которые создают.

3 Потенциалы. Силовые линии и эквипотенциальные поверхности

Покажем, что электрическая сила консервативна. В силу принципа суперпозиции

$$\mathbf{E} = \sum_i \mathbf{E}_i,$$

откуда

$$A = \sum_{i} A_{i}.$$

Поле электрического заряда центрально симметричное, следовательно работа электрических сил по замкнутому контуру равна нулю:

$$\oint \mathbf{F} \cdot \mathbf{dl} = q \oint \mathbf{E} \cdot \mathbf{dl} = 0.$$

Если есть консервативная сила, то есть и потенциальная энергия. Например, силе $\mathbf{F}_{\text{грав}} = G \frac{m_1 m_2 \mathbf{r}}{r^3}$ соответствует потенциальная энергия $E = -G \frac{m_1 m_2}{r}$. Рассуждая аналогично, определим потенциальную энергию электрического поля, порождаемого зарядом:

$$E_{\pi} = +k \frac{q_1 q_2}{r}.$$

В соответствии с принципом суперпозиции

$$E_{\Pi} = \sum_{i} E_{i} = \sum_{i} k \frac{qq_{i}}{r_{i}} = q \sum_{i} k \frac{q_{i}}{r_{i}}.$$

Скалярную величину $\varphi=\frac{E_{\Pi}}{q}$ назовем электрическим потенциалом точки.

$$[\varphi] = \frac{Дж}{Kл} = B$$
 (вольт).

Для потенциала также выполняется принцип суперпозиции:

$$\varphi = \sum_{i} \varphi_i = \sum_{i} k \frac{q_i}{r_i}.$$

Потенциал действует на заряды и создается зарядами. Знак потенциала соответствует знаку зарада, его породившего.

Пусть заряд q передвигается в электрическом поле из точки 1 в 2. Тогда работа электрической силы запишется как

$$A = E_{\Pi_1} - E_{\Pi_2} = q\varphi_1 - q\varphi_2 = q(\varphi_1 - \varphi_2).$$

Назовем величину $U=\varphi_1-\varphi_2$ напряжением и запишем работу A в виде

$$A = qU$$
.

Заряд q называется npoбным, если он достаточно мал, чтобы в условии данной задачи не менять распределение и картину поля от всех остальных зарядов.

Для визуального представления полей использутся силовые линии — воображаемые линии, в каждой точке сонаправленные с вектором напряженности электрического поля в этой точке. Густота — величина $\Gamma = \frac{N}{S}$ — это отношение числа N силовых линий, проходящих через единицу площади S, к S; иначе говоря, густота — это «плотность» силовых линий.