Question Number	Scheme	Marks
1.	(a) Area $ABC = \frac{1}{2} \times 10 \times 16 \times \sin 35 = 45.9 \text{ cm}^2$	M1 A1
	(b) $BC^2 = 10^2 + 16^2 - 2 \times 10 \times 16 \cos 35$ $BC = \sqrt{93.87} = 9.69$ $\cos B = \frac{10^2 + 93.87 - 16^2}{2 \times 10 \times \sqrt{93.87}}$ $(= -0.3206)$ $\angle B = 108.7^\circ$ alternative (last three marks of part (b) $\frac{16}{\sin B} = \frac{9.69}{\sin 35} \Rightarrow \sin B = \frac{16 \times \sin 35}{9.69} = 0.9472$ M1 A1ft	M1 A1 M1 A1ft A1 (7)
	$\Rightarrow \angle B = 71.3^{\circ} \text{ or } \angle B = 108.7^{\circ}$	
	$\angle A = 35^{\circ}, \angle B = 71.3^{\circ}, \angle C = 73.7^{\circ} \text{ or } \angle A = 35^{\circ}, \angle B = 108.7^{\circ}, \angle C = 36.3^{\circ}$	
	since AC is the longest side, $\angle B$ is the largest angle, so $\angle B = 108.7^{\circ}$ A1 alternative (last three marks of part (b)	
	$\frac{10}{\sin C} = \frac{9.69}{\sin 35^{\circ}} \Rightarrow \sin C = \frac{10\sin 35^{\circ}}{9.69} = 0.5920$ M1 A1ft	
	$\angle C = 36.3^{\circ} \text{ (must be acute)}$ $\angle B = 180^{\circ} - 35^{\circ} - 36.3^{\circ} = 108.7^{\circ}$ A1	

Notes for Question 1

(a)

M1 for any *complete* method for obtaining the area of $\triangle ABC$. Mark scheme uses $\frac{1}{2}ab\sin C$

formula, but the perpendicular height from B can be found (not nec

correct value) and $\frac{1}{2} \times$ base x height used.

A1cao for 45.9 (cm²) must be 3 sf

(b)

M1 for the cosine rule, in either form, with BC as the unknown

A1 for making BC or BC^2 the subject and all numbers correct.

M1 for using the cosine rule to obtain a numerical expression for value of $\cos B$ or or sine rule (either way up) with $\sin B$ as the unknown

A1ft for correct numbers in the sine or cosine rule, follow through their value for BC^2 (or BC).

 $\sin B$ or $\sin C$ must now be the subject.

A1cao for 108.7°. Allow with more digits if rounding penalised in (a).

Alternative for (b): Uses the perp height. Marks for (a) cannot be awarded here, so no mark for finding the height in (b).

Perp from $B = BX = 10\sin 35$	
$AX = 10\cos 35 \Rightarrow XC = 16 - 10\cos 35$	M1A1
$\tan XBC = \frac{XC}{BX} = \frac{16 - 10\cos 35}{10\sin 35}, \angle XBC = \frac{16 - 10\cos 35}{10\sin 35}$	M1,A1
Reqd angle is $55 + 53.7 = 103.7$	A1