Dynamic documents in R Making tables in Quarto

2023-04-28

Working with descriptive tables

```
descriptives <- diabetes |>
     filter(!is.na(glyhb)) |>
     mutate(
       diabetic = case when(
 4
      glyhb >= 6.5 \sim "Diabetic",
       qlyhb < 6.5 \sim "Healthy",
 6
       NA ~ NA character
      ),
     bmi = (weight / height^2) * 703
10
     ) |>
     group by(diabetic) |>
11
12
     summarise(
13
    n = n(),
14
    across(
15
      c(glyhb, bmi, age),
16
        (.x) mean(.x, na.rm = TRUE)
17
       ))
```

Descriptive statistics table Standard tibble display

```
1 descriptives
# A tibble: 2 x 5
```

Useful in console, but less so for reports or presentation

Visual Editor tables

Visual Editor tables

Your turn 1

Using Visual Editor, create a markdown table that represents these data:

The Physicians' Health Study enrolled over 22,000 male physicians to study the effect of low-dose aspirin on myocardial infarctions (heart attacks). Of those who took aspirin, 129 had heart attacks, while 10,898 did not. Of those who took the placebo, 239 had heart attacks and 10,795 did not.

knitr::kable()

kable() creates formatted tables from rectangular objects (data.frames, matrices, and tibbles)

1 kable(descriptives)

kable() options: column names Supply a vector of new names with col.names argument

```
1 kable(
2 descriptives,
3 col.names = c("Diabetes Status", "N", "A1c", "BMI", "Age")
4 )
```

kable() options: number formatUse digits for decimal place

```
1 kable(
2 descriptives,
3 digits = 1
4 )
```

Your turn 2

Using the tidy() function from broom, turn response_model and marker_model into dataframes, binding them together with bind_rows()

Turn the resulting dataframe into a table using kable()
Set the eval chunk option to true
Render

Your turn 2

- 1 models <- bind_rows(tidy(response_model), tidy(marker_model))</pre>
- 2 kable(models)

term	estimate	std.error	statistic	p.value
(Intercept)	-1.4862242	0.6202284	-2.3962530	0.0165637
age	0.0193911	0.0114681	1.6908683	0.0908620
stageT2	-0.5414264	0.4400027	-1.2305071	0.2185073
stageT3	-0.0595348	0.4504203	-0.1321761	0.8948450
stageT4	-0.2310863	0.4482284	-0.5155549	0.6061653
(Intercept)	0.8336800	0.2497219	3.3384338	0.0010317
trtDrug B	-0.2009397	0.1290364	-1.5572330	0.1212427
stageT2	0.3841096	0.1734658	2.2143255	0.0281131

term	estimate	std.error	statistic	p.value
stageT3	0.2838452	0.1895362	1.4975777	0.1360653
stageT4	0.1987877	0.1818389	1.0932073	0.2758227
age	-0.0004592	0.0044877	-0.1023233	0.9186185

gtsummary

Create publication-ready analytic and summary tables

Good support for wide variety of output formats

Built on the gt package

tbl_cross()

Creates a cross-tabulation of two categorical variables

```
1 library(gtsummary)
2 tbl_cross(
3   data,
4   row = x,
5   col = y
6 )
```

tbl_cross()

```
1 table_data <- diabetes |>
2 mutate(
3  # create diabetic category based on A1c and calculate bmi
4  diabetic = case_when(
5  glyhb >= 6.5 ~ "Diabetic",
6  glyhb < 6.5 ~ "Healthy",
7  NA ~ NA_character_
8  ), bmi = (weight / height^2) * 703
9 ) |>
10 select(diabetic, age, gender, bmi)
```

tbl_cross()

1 tbl_cross(table_data, row = diabetic, col = gender)

	geno	der	
	female	male	Total
diabetic			
Diabetic	36	29	65
Healthy	192	133	325
Unknown	6	7	13
Total	234	169	403

tbl_cross(): variable names

```
1 library(labelled)
2 var_label(table_data$diabetic) <- "Diabetes Status"
3 var_label(table_data$diabetic)</pre>
```

[1] "Diabetes Status'

tbl_cross(): variable names Set multiple variable lables with list()

```
var_label(table_data) <- list(
gender = "Gender",

diabetic = "Diabetes Status"

4 )</pre>
```

tbl_cross(): variable names

1 tbl_cross(table_data, diabetic, gender)

	Gend	Gender		
	female	male	Total	
Diabetes Status				
Diabetic	36	29	65	
Healthy	192	133	325	
Unknown	6	7	13	
Total	234	169	403	

Your turn 3

Create a contingency table of trial (a dataset from gtsummary) using tbl_cross(): set trt to the rows and response to the columns.

Add a p-value with add_p()

Render

Your turn 3

```
1 trial |>
2 tbl_cross(row = trt, col = response) |>
3 add_p()
```

	Tur	Tumor Response			
	0	1	Unknown	Total	p-value ¹
Chemotherapy Treatment					0.7
Drug A	67	28	3	98	
Drug B	65	33	4	102	
Total	132	61	7	200	
¹ Fisher's exact test					

tbl_summary()

Calculates descriptive statistics

Can split calculations by groups (i.e. categorical or dichotomous variables)

Sensible defaults; easily customized

tbl_summary()

```
var_label(table_data) <- list(
gender = "Gender",
diabetic = "Diabetes Status",
age = "Age",
bmi = "BMI"

)
tbl_summary(table_data)</pre>
```

tbl_summary()

Characteristic	N = 403 ¹
Diabetes Status	
Diabetic	65 (17%)
Healthy	325 (83%)
Unknown	13
Age	45 (34, 60)
Gender	
female	234 (58%)
male	169 (42%)
BMI	28 (24, 32)
Unknown	6
¹ n (%); Median (I0	QR)

tbl_summary(): split by groups

```
1 table_data |>
2 select(diabetic, age, gender, bmi) |>
3 tbl_summary(by = diabetic)
```

tbl_summary(): split by groups

Characteristic	Diabetic , $N = 65^{\circ}$	Healthy , $N = 325^{\circ}$
Age	59 (51, 65)	41 (32, 55)
Gender		
female	36 (55%)	192 (59%)
male	29 (45%)	133 (41%)
BMI	30 (26, 33)	27 (23, 32)
Unknown	2	4
¹ Median (IQR); n	(%)	

tbl_summary():digits

```
table_data |>
select(diabetic, age, gender, bmi) |>
tbl_summary(
by = diabetic,
digits = all_continuous() ~ 1
)
```

tbl_summary():digits

Characteristic	Diabetic , $N = 65^{1}$	Healthy, $N = 325^{\circ}$
Age	59.0 (51.0, 65.0)	41.0 (32.0, 55.0)
Gender		
female	36 (55%)	192 (59%)
male	29 (45%)	133 (41%)
BMI	29.9 (26.4, 33.2)	27.5 (23.4, 31.8)
Unknown	2	4
¹ Median (IQR); n	(%)	

tbl_summary():missing_text

```
1 table_data |>
2   select(diabetic, age, gender, bmi) |>
3   tbl_summary(
4   by = diabetic,
5   missing_text = "(Missing)"
6  )
```

tbl_summary():missing_text

Characteristic	Diabetic , $N = 65^{1}$	Healthy, $N = 325^{1}$
Age	59 (51, 65)	41 (32, 55)
Gender		
female	36 (55%)	192 (59%)
male	29 (45%)	133 (41%)
BMI	30 (26, 33)	27 (23, 32)
(Missing)	2	4
¹ Median (IQR); n	(%)	

tbl_summary(): tests & p-values

```
1 table_data |>
2  select(diabetic, age, gender, bmi) |>
3  tbl_summary(by = diabetic) |>
4  add_p()
```

tbl_summary(): tests & p-values

Characteristic	Diabetic , $N = 65^{\circ}$	Healthy, $N = 325^{1}$	p-value ²
Age	59 (51, 65)	41 (32, 55)	<0.001
Gender			0.6
female	36 (55%)	192 (59%)	
male	29 (45%)	133 (41%)	
BMI	30 (26, 33)	27 (23, 32)	0.003
Unknown	2	4	

¹ Median (IQR); n (%)

² Wilcoxon rank sum test; Pearson's Chi-squared test

tbl_summary(): statistic

```
1 tbl_summary(
2 table_data,
3 statistic = list(all_continuous() ~ "{mean} ({sd})")
4 )
```

N = 403 ¹				
Diabetes Status				
65 (17%)				
325 (83%)				
13				
47 (16)				
234 (58%)				
169 (42%)				
29 (7)				
6				
¹ n (%); Mean (SD)				

```
tbl_summary(): statistic
Access variables by name or type
(all_continuous(), all_categorical(),
all_dichotomous(), etc.)
```

Add other elements to table

Function	Description
add_p()	add p-values to the output comparing values across groups
add_overall()	add a column with overall summary statistics
add_n()	add a column with N (or N missing) for each variable
add_difference()	add column for difference between two group, confidence interval, and p-value
add_stat_label()	add label for the summary statistics shown in each row
add_stat()	generic function to add a column with user-defined values
add_q()	add a column of q values to control for multiple comparisons

gtsummary functions to format table

Function	Description
<pre>modify_header()</pre>	update column headers
<pre>modify_footnote()</pre>	update column footnote
<pre>modify_spanning_header()</pre>	update spanning headers
bold_labels()	bold variable labels
bold_levels()	bold variable levels
<pre>italicize_labels()</pre>	italicize variable labels
italicize_levels()	italicize variable levels
bold_p()	bold significant p-values

Create a summary table of trial by the trt variable.

Modify the label for grade to say "Tumor Grade"

Add an overall column and a p-value

```
Modify the table to use Mean (SD) and n (%) via the statistic argument: list(all_continuous() ~ "{mean} ({sd})", all_categorical() ~ "{n} ({p}%)")
```

Bold the labels

Modify the header with

```
modify_spanning_header(c("stat_1", "stat_2") ~
"**Treatment Received**")
```

```
1 trial |>
    tbl_summary(
     by = trt,
       label = grade ~ "Tumor Grade",
       statistic = list(
         all continuous() ~ "{mean} ({sd})",
         all categorical() \sim "{n} ({p}%)"
   bold labels() |>
10
11 modify spanning header(
   c("stat 1", "stat 2") ~ "**Treatment Received**"
12
13 ) >
14 add overall() >
15 add_p()
```

		Treatmen			
Characteristic	Overall , $N = 200^{7}$	Drug A , N = 98 ¹	Drug B , N = 102^{7}	p-value ²	
Age	47 (14)	47 (15)	47 (14)	0.7	
Unknown	11	7	4		
Marker Level (ng/mL)	0.92 (0.86)	1.02 (0.89)	0.82 (0.83)	0.085	
Unknown	10	6	4		
T Stage				0.9	
T1	53 (26%)	28 (29%)	25 (25%)		
T2	54 (27%)	25 (26%)	29 (28%)		
T3	43 (22%)	22 (22%)	21 (21%)		
T4	50 (25%)	23 (23%)	27 (26%)		
Tumor Grade				0.9	
I	68 (34%)	35 (36%)	33 (32%)		
II	68 (34%)	32 (33%)	36 (35%)		
III	64 (32%)	31 (32%)	33 (32%)		
Tumor Response	61 (32%)	28 (29%)	33 (34%)	0.5	
Unknown	7	3	4		
Patient Died	112 (56%)	52 (53%)	60 (59%)	0.4	
Months to Death/Censor	19.6 (5.3)	20.2 (5.0)	19.0 (5.5)	0.14	
¹ Mean (SD); n (%)					

² Wilcoxon rank sum test; Pearson's Chi-squared test

Other tbl_summary() arguments See the other options with ?tbl_summary()

Argument	Description
label	specify the variable labels printed in table
type	specify the variable type (e.g. continuous, categorical, etc.)
statistic	change the summary statistics presented
digits	number of digits the summary statistics will be rounded to
missing	whether to display a row with the number of missing observations
missing_text	text label for the missing number row
sort	change the sorting of categorical levels by frequency
percent	print column, row, or cell percentages
include	list of variables to include in summary table

tbl_regression()

```
1 model_data <- diabetes |>
2 mutate(bmi = (weight / height^2) * 703)
3 glyhb_model <- lm(glyhb ~ bmi + age, data = model_data)
4 tbl_regression(glyhb_model)</pre>
```

Characteristic		95% CI ¹			
bmi	0.04	0.01, 0.08	0.006		
age	0.05	0.03, 0.06	<0.001		
¹ CI = Confidence Interval					

tbl_regression(): variable labels

Add labels just like tbl_summary()

```
var_label(model_data) <- list(
    bmi = "BMI",
    glyhb = "A1c",
    age = "Age"

glyhb_model <- lm(glyhb ~ bmi + age, data = model_data)
    tbl_regression(glyhb_model)</pre>
```

Characteristic	Beta	95% CI ¹	p-value		
BMI	0.04	0.01, 0.08	0.006		
Age	0.05	0.03, 0.06	<0.001		
¹ CI = Confidence Interval					

tbl_regression(): other options

Argument	Description
label	modify variable labels in table
exponentiate	exponentiate model coefficients
include	names of variables to include in output. Default is all variables
show_single_row	By default, categorical variables are printed on multiple rows. If a variable is dichotomous and you wish to print the regression coefficient on a single row, include the variable name(s) here.
conf.level	confidence level of confidence interval
intercept	indicates whether to include the intercept
estimate_fun	function to round and format coefficient estimates
pvalue_fun	function to round and format p-values
tidy_fun	function to specify/customize tidier function

tbl_regression(): Model statistics Add model statistics from broom::glance()

```
1 tbl_regression(glyhb_model) |>
```

2 add glance source note()

Characteristic		95% Cl ¹	p-value
BMI	0.04	0.01, 0.08	0.006
Age	0.05	0.03, 0.06	<0.001

¹ CI = Confidence Interval

 $R^2 = 0.132$; Adjusted $R^2 = 0.127$; Sigma = 2.06; Statistic = 28.9; p-value = <0.001; df = 2; Log-likelihood = -821; AIC = 1,650; BIC = 1,666; Deviance = 1,617; Residual df = 381; No. Obs. = 384

tbl_regression(): other add options

Function	Description
add_global_p()	adds the global p-value for a categorical variables
<pre>add_glance_source_note()</pre>	adds statistics from glance() as source note
add_vif()	adds column of the variance inflation factors (VIF)
add_q()	add a column of q values to control for multiple comparisons

tbl_regression(): format options

```
1 tbl_regression(glyhb_model) |>
2  add_glance_source_note() |>
3  bold_p() |>
4  bold_labels()
```

Characteristic		95% Cl ¹	p-value
ВМІ	0.04	0.01, 0.08	0.006
Age	0.05	0.03, 0.06	<0.001

¹ CI = Confidence Interval

 $R^2 = 0.132$; Adjusted $R^2 = 0.127$; Sigma = 2.06; Statistic = 28.9; p-value = <0.001; df = 2; Log-likelihood = -821; AIC = 1,650; BIC = 1,666; Deviance = 1,617; Residual df = 381; No. Obs. = 384

Adding captions to tables Use the tbl-cap chunk option

```
1 ```{r}
2 #| label: tbl-with-caption
3 #| tbl-cap: "Association of BMI and Alc adjusted for age"
4 tbl_regression(glyhb_model) |>
5 add_glance_source_note() |>
6 bold_p() |>
7 bold_labels()
```

Your turn 5

Create a regression table for response model; exponentiate the output with exponentiate = TRUE

Add a global P-value

Add the model statistics via

add_glance_source_note()

Italicize the variable levels

Merge the table you just made with

marker_table using tbl_merge()

Your turn 5

```
response_table <- response model |>
     tbl regression(
       exponentiate = TRUE
   ) |>
5 add global p() >
   add_glance_source_note() |>
     italicize levels()
   marker_table <- marker_model |>
   tbl regression() |>
10
11
  add global p()
12
   both tables <- list(response table, marker table)</pre>
14 tbl merge(both tables)
```

Your turn 5

		Table 1		Table 2		
Characteristic	OR ¹	95% CI ¹	p-value	Beta	95% CI ¹	p-value
Age	1.02	1.00, 1.04	0.087	0.00	-0.01, 0.01	>0.9
T Stage			0.6			0.2
T1	_	_		_	_	
T2	0.58	0.24, 1.37		0.38	0.04, 0.73	
T3	0.94	0.39, 2.28		0.28	-0.09, 0.66	
T4	0.79	0.33, 1.90		0.20	-0.16, 0.56	
Chemotherapy Treatment						0.12
Drug A				_	_	
Drug B				-0.20	-0.46, 0.05	

¹ OR = Odds Ratio, CI = Confidence Interval

Null deviance = 229; Null df = 182; Log-likelihood = -112; AIC = 234; BIC = 250; Deviance = 224; Residual df = 178; No. Obs. = 183

Cross-referencing tables

- ① A table caption (#| tbl-cap:
 "Title")
- A labeled code chunk prefixed with tbl-(# | label: tbl-chunkname)
- 3 Reference with @tbl-chunk-name

Add a caption to the merged table above
Reference that table below using this format:
@tbl-name-of-chunk
Render

```
1 ```{r}
2 #| label: table-two
3 #| tbl-cap: "Regression models of participant markets and respon
4 tbl_merge(both_tables)
5 ```
```

Regression models of participant markets and response

		Table 1		Table 2		
Characteristic	OR ¹	95% CI ¹	p-value	Beta	95% CI ¹	p-value
Age	1.02	1.00, 1.04	0.087	0.00	-0.01, 0.01	>0.9
T Stage			0.6			0.2
T1	_	_		_	_	
T2	0.58	0.24, 1.37		0.38	0.04, 0.73	
ТЗ	0.94	0.39, 2.28		0.28	-0.09, 0.66	
T4	0.79	0.33, 1.90		0.20	-0.16, 0.56	
Chemotherapy Treatment						0.12
Drug A				_	_	
Drug B				-0.20	-0.46, 0.05	

¹ OR = Odds Ratio, CI = Confidence Interval

Null deviance = 229; Null df = 182; Log-likelihood = -112; AIC = 234; BIC = 250; Deviance = 224; Residual df = 178; No. Obs. = 183

In <u>Table 1</u>, we show two regression models: a linear model of participant markets and a logistic regression model of participant response.

gtsummary: Output formats

Print Engine	Function	HTML	Word	PDF	RTF
<u>gt</u>	<u>as_gt()</u>	(T)	(T)	(T)	À
<u>flextable</u>	<pre>as_flex_table()</pre>	(T)	(C)	(C)	
<u>huxtable</u>	<pre>as_hux_table()</pre>	(T)	(T)	(T)	(T)
<u>kableExtra</u>	<pre>as_kable_extra()</pre>	6		(T)	
<u>kable</u>	<pre>as_kable()</pre>	<u>•</u>	$ \bigcirc $	<u>:</u>	<u>:</u>
<u>tibble</u>	<pre>as_tibble()</pre>				

Also check out the gt package!

"construct a wide variety of useful tables with a cohesive set of table parts"

The Parts of a gt Table

Resources

Quarto: Tables: Quarto documentation on tables gtsummary Website: Many vignettes to learn more about gtsummary gt Website: Vignettes and a short course on learning gt