lists

operation	array/vector	linked list
find (by value)	$\Theta(n)$	$\Theta(n)$
insert (end)	amortized $O(1)$	$\Theta(1)$
insert (beginning/middle)	$\Theta(n)$	$\Theta(1)$
remove (by value)	$\Theta(n)$	$\Theta(n)$
find (by index)	$\Theta(1)$	$\Theta(1)$

stacks

operation	array/vector	linked list
push	amortized $O(1)$	$\Theta(1)$
pop	$\Theta(1)$	$\Theta(1)$
top	$ \begin{array}{c} \Theta(1) \\ \Theta(1) \\ \Theta(1) \end{array} $	$\Theta(1)$
isEmpty	$\Theta(1)$	$\Theta(1)$

queues

operation	array/vector	linked list
	amortized $O(1)$	$\Theta(1)$
dequeue	$\Theta(1)$	$\Theta(1)$

```
abstract data type with subset of list operations:
    find (by value)
    insert (unspecified location)
    remove (by value)

omits:
    find (by index)
    insert at particular location
```

operation	BST	AVL or	vector	hash table
		red-black		
find (by value)	$\Theta(\text{height})^*$	$\Theta(\log n)$	$\Theta(n)$	$O(1)\dagger$
insert	$\Theta(height)^*$	$\Theta(\log n)$	amortized $O(1)$	$O(1)\dagger$
remove	$\Theta(height)^*$	$\Theta(\log n)$	$\Theta(1)$	$O(1)\dagger$
find max/min	$\Theta(height)^*$	$\Theta(\log n)$	$\Theta(n)$	$\Theta(n)$

operation	BST	AVL or	vector	hash table
		red-black		
find (by value)	$\Theta(\text{height})^*$	$\Theta(\log n)$	$\Theta(n)$	$O(1)\dagger$
insert	$\Theta(\text{height})^*$	$\Theta(\log n)$	amortized $O(1)$	$O(1)\dagger$
remove	$\Theta(height)^*$	$\Theta(\log n)$	$\Theta(1)$	$O(1)\dagger$
find max/min	$\Theta(\text{height})^*$	$\Theta(\log n)$	$\Theta(n)$	$\Theta(n)$

^{*}BST: height is "often" $\Theta(\log n)$, but can be $\Theta(n)$

†hash table — O(1) "usually", but $\Theta(n)$ worst case

operation	BST	AVL or	vector	hash table
		red-black		
find (by value)	$\Theta(\text{height})^*$	$\Theta(\log n)$	$\Theta(n)$	$O(1)\dagger$
insert	$\Theta(height)^*$	$\Theta(\log n)$	amortized $O(1)$	$O(1)\dagger$
remove	$\Theta(\text{height})^*$	$\Theta(\log n)$	$\Theta(1)$	$O(1)\dagger$
find max/min	$\Theta(\text{height})^*$	$\Theta(\log n)$	$\Theta(n)$	$\Theta(n)$

^{*}BST: height is "often" $\Theta(\log n)$, but can be $\Theta(n)$ how to get worst case: insert in sorted order

†hash table — O(1) "usually", but $\Theta(n)$ worst case

operation	BST	AVL or	vector	hash table
		red-black		
find (by value)	$\Theta(\text{height})^*$	$\Theta(\log n)$	$\Theta(n)$	$O(1)\dagger$
insert	$\Theta(height)^*$	$\Theta(\log n)$	amortized $O(1)$	$O(1)\dagger$
remove	$\Theta(height)^*$	$\Theta(\log n)$	$\Theta(1)$	$O(1)\dagger$
find max/min	$\Theta(height)^*$	$\Theta(\log n)$	$\Theta(n)$	$\Theta(n)$

- *BST: height is "often" $\Theta(\log n)$, but can be $\Theta(n)$ how to get worst case: insert in sorted order
- †hash table O(1) "usually", but $\Theta(n)$ worst case how to get worst case: insert specially chosen set of items can design hash table to make this really rare

maps

abstract data type with key-value pairs

examples:

```
key=computing ID, value=grade
key=word, value=definition
key=user ID, value=object with many fields
```

operations:

find value by key insert(key, value) remove by key

map with vector

```
class KeyValuePair {
public:
    string key;
    int value;
};
class VectorMap {
public:
    void insert(const string& key, int value);
    int find(const string& key); // XXX value if not found?
    void remove(const string& key);
private:
    vector<KeyValuePair> data;
};
```

maps

operation	BST	AVL or red-black	vector	hash table
find (by key)	$\Theta(\text{height})^*$	$\Theta(\log n)$	$\Theta(n)$	$O(1)\dagger$
insert	$\Theta(height)^*$	$\Theta(\log n)$	amortized $O(1)$	$O(1)\dagger$
remove (by key)	$\Theta(height)^*$	$\Theta(\log n)$	$\Theta(1)$	$O(1)\dagger$

^{*}BST: height is "often" $\Theta(\log n)$, but can be $\Theta(n)$

†hash table — O(1) "usually", but $\Theta(n)$ worst case

aside: standard library

```
std::map — balanced tree-based map
std::unordered_map — hashtable-based map
unordered map<string, double> grades;
grades["cr4bd"] = 85.0;
if (grades.count("mst3k") > 0) {
    cout << "mst3k_has_a_grade_assigned\n";</pre>
for (unordered_map<string, double>::iterator it = grades.begin();
     it != grades.end(); ++it) {
    cout << it->first << "_" << it->second << "\n";</pre>
```

std::unordered_set — hashtable-based set

std::set — balanced tree-based set

key-value pairs

sets are special maps — map where values are ignored

hashtable

array of some size

larger than # of total elements usually prime size

hash function: map keys to array indices

hash function properties (1)

input: key type (e.g. string) \rightarrow output: unsigned integer then take typically — then take mod of the table size result is the "bucket" used to store info for that key

hash function properties (2)

must be deterministic

each key assigned to exactly one "bucket"

hash function properties (2)

must be deterministic

each key assigned to exactly one "bucket"

should be evenly distributed

two keys *unlikely* to share bucket each bucket about as used as each other bucket

hash function properties (2)

must be deterministic

each key assigned to exactly one "bucket"

should be evenly distributed

two keys *unlikely* to share bucket each bucket about as used as each other bucket

should be fast

activity

```
hash students here by birthday or choose arbitrary date — just be consistent
```

four options:

```
decade of birth year ((year/10)%10) last digit of birth year (year%10) last digit of birth month (month%10) last digit of birth day (day%10)
```

exercise

hashtable: birthdate \rightarrow info about person w/birthdate

which option is best?

A. birth year (year)

B. last digit of birth month (month)

C. last digit of birth day (day)

D. days between now and birthdate ((date - today()).days())

E. sum of year, month, and day (year+month+day)

recall: deterministic, evenly distributed, fast

key: integers

table size: 10

hash function: h(k) = k; hash+mod: $k \mod 10$

insert 7, 18, 41, 34

ndex	keys
9 1	
<u>2</u> 3	
4	
5 6	
7	
9	

key: integers

table size: 10

hash function: h(k) = k; hash+mod: $k \mod 10$

insert 7, 18, 41, 34

7, $h(7) \mod 10 = 7$ — use bucket 7

ndex	keys
9	
L 2	
<u>2</u> 3	
1 5	
<u> </u>	
7	7
2	

```
key: integers table size: 10 hash function: h(k)=k; hash+mod: k \mod 10 insert 7, 18, 41, 34 7, h(7) mod 10 = 7 — use bucket 7 18, h(18) mod 10 = 8 — use bucket 8 ...
```



```
key: integers table size: 10 hash function: h(k)=k; hash+mod: k \mod 10 insert 7, 18, 41, 34 7, h(7) mod 10 = 7 — use bucket 7 18, h(18) mod 10 = 8 — use bucket 8 …
```



```
key: integers table size: 10 hash function: h(k)=k; hash+mod: k \mod 10 insert 7, 18, 41, 34 7, h(7) mod 10 = 7 — use bucket 7 18, h(18) mod 10 = 8 — use bucket 8 …
```



```
key: integers
table size: 10
hash function: h(k) = k; hash+mod: k \mod 10
insert 7, 18, 41, 34
    7, h(7) \mod 10 = 7 — use bucket 7
     18, h(18) \mod 10 = 8 — use bucket 8
```

index keys 0 1 41 2 3 4 5 6 7 8 18 9

```
key: integers
table size: 10
hash function: h(k) = k; hash+mod: k \mod 10
insert 7, 18, 41, 34
    7, h(7) \mod 10 = 7 — use bucket 7
     18, h(18) \mod 10 = 8 — use bucket 8
find 34, 28, 90
    34, h(34) \mod 10 = 4 — use bucket 4 — found
    28, h(28) \mod 10 = 8 — use bucket 8 — not a match
```



```
key: integers
table size: 10
hash function: h(k) = k; hash+mod: k \mod 10
insert 7, 18, 41, 34
    7, h(7) \mod 10 = 7 — use bucket 7
     18, h(18) \mod 10 = 8 — use bucket 8
find 34, 28, 90
    34, h(34) \mod 10 = 4 — use bucket 4 — found
    28, h(28) \mod 10 = 8 — use bucket 8 — not a match
     90, h(90) \mod 10 = 0 — use bucket 0 — nothing there
```

hashtable algorithms

```
find (by key k): compute i = h(k) \mod table size, check bucket at index i
```

need to check key — other keys may use same bucket

insert/remove (by key k): compute $i = h(k) \mod$ table size, use bucket at index i

but what if bucket is used by another key?

find max/min: check all buckets (linear time)

hashing strings

```
unsigned int hash(const string &s) {
    ???
}

unsigned int hashTableIndex(const string &s, int tableSize) {
    return hash(s) % tableSize;
}
```

some proposals (1)

```
unsigned int hash(const string &s) {
    return s[0];
unsigned int hash(const string &s) {
    unsigned int sum = 0;
    for (int i = 0; i < s.size(); ++i) {
        sum += s[i];
    return sum;
```

some proposals (2)

```
unsigned int hash(const string &s) {
    unsigned int sum = 0;
    for (int i = 0; i < s.size(); ++i) {
        // deliberate use of wraparound on overflow
        sum *= 37;
        sum += s[i];
    }
    return sum;
}</pre>
```

hash function: $h(k) = \sum_i k_i$ (ASCII codes); hash+nsod: $(k) \mod 11$ ert "foo", "bar", "baz"

find "baz", "quux"

index keys

hash function: $h(k) = \sum_i k_i$ (ASCII codes); hash+ $\min_{i=1}^{6} k_i$

index keys "foo" 9

find "baz", "quux"

```
hash function: h(k) = \sum_i k_i (ASCII codes); hash+\max_i (ASCII codes); hash+\max_i (ASCII codes); hash+\max_i (ASCII codes); hash+\max_i (Bodes); hash+\min_i (Bodes);
```

```
index keys

0
1 "bar"
2
3
4
5od: "foo"
7
8
```

find "baz", "quux"

```
insert "foo", "bar", "baz"
    h("foo") = 324 - bucket 324 \mod 11 = 5
    h("bar") = 309 - bucket 309 \mod 11 = 1
    h("baz") = 317 - bucket 317 \mod 11 = 9
find "baz", "quux"
```

```
index keys
        "bar"
        "foo"
         9
              "baz"
```

```
insert "foo", "bar", "baz"
    h("foo") = 324 - bucket 324 \mod 11 = 5
    h("bar") = 309 - bucket 309 \mod 11 = 1
    h("baz") = 317 - bucket 317 \mod 11 = 9
```

index keys "bar" "foo" "baz"

find "baz", "quux"

example (2)

```
hash function: h(k) = \sum_i k_i (ASCII codes); hash+nod: 

(k) \bmod 11 8 10 k 10 k
                                                                                         h("baz") = 317 - bucket 317 \mod 11 = 9
```

find "baz", "quux"

$$h("quux") = 317 - bucket 467 \mod 11 = 5$$

example (1b)

key: integers

table size: 10

hash function: h(k) = k; hash+mod: $k \mod 10$

insert 7, 18, 41, 34, 11

index	keys
0 1 2	41
3 4 5	34
0 1 2 3 4 5 6 7 8 9	7 18

example (1b)

key: integers

table size: 10

hash function: h(k) = k; hash+mod: $k \mod 10$

insert 7, 18, 41, 34, 11 12, $h(12) \mod 10 = 2$

index	keys
0	41.
1	12
2 3 4 5 6 7	
4	34
6	7
8	18

9

hashtable algorithms

```
find (by key k): compute i = h(k) \mod table size, check bucket at index i
```

need to check key — other keys may use same bucket

insert/remove (by key k): compute $i = h(k) \mod$ table size, use bucket at index i

but what if bucket is used by another key?

find max/min: check all buckets (linear time)

option 1: separate chaining

```
next:
class HashTableBucket {
                                     index
                                                        NULL
    int key;
    HashTableBucket *next;
                                     123456
    // ... + value?
                                                    key: 26
                                                               key: 59
};
                                                     next:
                                                                 next
class HashTable {
private:
    vector<HashTableBucket> data;
                                                    key: 7
        // could also use
        // vector<HashTableBucket*>10
                                                     next
};
                                                      NULL
// insert {26 (bucket 4), 7 (bucket 7),
          22 (bucket 0), 59 (bucket 4)}
```

key: 22

option 1: separate chaining (alterial) next: class HashTableBucket { index NULL int key; HashTableBucket *next; // ... + value? key: 26 key: 59 **}**; next: next class HashTable { private: vector<HashTableBucket*> data; & key: 7 // could also use // vector<HashTableBucket> 10 next **}**; NULL // insert {26 (bucket 4), 7 (bucket 7),

22 (bucket 0), 59 (bucket 4)}

open addressing generally

 $\begin{array}{l} \text{search } h(k)+f(0) \mod size \\ \\ \text{then } h(k)+f(1) \mod size \\ \\ \\ \text{then } h(k)+f(2) \mod size \\ \\ \\ \\ \\ \end{array}$

linear probing: f(i) = i

probing possibilities

$$h(k) + f(i) \mod size$$

linear: f(i) = i — previous diagram

quadratic: $f(i) = i^2$

double hashing $f(i) = i \times h_2(k)$ (second hash function)

load factors and chaining

$$\textit{load factor: } \lambda = \frac{\# \text{ elements}}{\text{table size}}$$

average number of elements per bucket: λ

find performance

```
average* time for find:
```

unsuccessful: check λ items successful: check $1 + \lambda/2$ items (half of list)

*assuming we choose random keys?

find performance

```
average* time for find:
```

unsuccessful: check λ items successful: check $1 + \lambda/2$ items (half of list)

*assuming we choose random keys?

maybe our keys aren't average

why use a linked list?

```
one item/bucket usually
```

if not — we should use a balanced tree (or change hash functions?)

when not one, probably two or three

linked list — probably most efficient

typical space overhead: one NULL pointer

typical time overhead: check the one pointer

linked list alternatives

```
vector — way too much extra space
size, capacity
extra space reserved in array
remember: typically just one element
```

balanced trees

two pointers about same comparisons as linked list for size 2, 3

find performance revisited

with ideal hash function: $Theta(\lambda)$ (load factor) typically: adjust hashtable size so λ remains approximately constant

actual worst case: $\Theta(n)$ (I choose all the wrong keys)

insert performance

 $\Theta(1)$ assuming we don't care about checking for a duplicate don't care about sorting the linked list insert at head

delete performance

```
need to do a find to get the bucket then linked list removal \Theta(1) (if singly linked list — track previous while finding)
```

avoiding linked lists

```
class HashTableBucket {
    int key;
                             // 4 bytes
                 // 4 bytes
    int value;
    HashTableBucket *next; // 8 bytes
};
gosh, that's a lot of overhead
...even though "usually" one item/bucket
```


38

but what if...

probing possibilities

$$h(k) + f(i) \mod size$$

linear: f(i) = i — previous diagram

quadratic: $f(i) = i^2$

double hashing $f(i) = i \times h_2(k)$ (second hash function)

$$h(k) = 3k + 7$$

$$\mathsf{index} = h(k) \mod 10$$

$$\mathsf{then} \ \mathsf{check} \ h(k) + 1 \mod 10, \ h(k) + 2 \mod 10, \ \mathsf{etc}.$$

$$\mathsf{insert} \ 4, \ 27, \ 37, \ 14, \ 21$$

$$h(k) = \mathsf{19}, \ \mathsf{88}, \ \mathsf{118}, \ \mathsf{49}, \ \mathsf{70}$$

$$h(k) = 3k + 7$$

$$\mathsf{index} = h(k) \mod 10$$

$$\mathsf{then} \ \mathsf{check} \ h(k) + 1 \mod 10, \ h(k) + 2 \mod 10, \ \mathsf{etc}.$$

$$\mathsf{insert} \ \textbf{4,} \ 27, \ 37, \ 14, \ 21$$

$$h(k) = \textbf{19,} \ 88, \ 118, \ 49, \ 70$$

$$h(k) = 3k + 7$$

$$\mathsf{index} = h(k) \mod 10$$

$$\mathsf{then} \ \mathsf{check} \ h(k) + 1 \mod 10, \ h(k) + 2 \mod 10, \ \mathsf{etc}.$$

$$\mathsf{insert} \ 4, \ 27, \ 37, \ 14, \ 21$$

$$h(k) = 19, \ 88, \ 118, \ 49, \ 70$$

$$h(k) = 3k + 7$$

$$\mathsf{index} = h(k) \mod 10$$

$$\mathsf{then} \ \mathsf{check} \ h(k) + 1 \mod 10, \ h(k) + 2 \mod 10, \ \mathsf{etc}.$$

$$\mathsf{insert} \ 4, \ 27, \ 37, \ 14, \ 21$$

$$h(k) = \mathsf{19}, \ \mathsf{88}, \ \mathsf{118}, \ \mathsf{49}, \ \mathsf{70}$$

index

$$h(k) = 3k + 7$$

$$\mathsf{index} = h(k) \mod 10$$

$$\mathsf{then} \ \mathsf{check} \ h(k) + 1 \mod 10, \ h(k) + 2 \mod 10, \ \mathsf{etc.}$$

$$\mathsf{insert} \ 4, \ 27, \ 37, \ 14, \ 21$$

$$h(k) = 19, \ 88, \ 118, \ 49, \ 70$$

$$h(k) = 3k + 7$$

$$\mathsf{index} = h(k) \mod 10$$

$$\mathsf{then} \ \mathsf{check} \ h(k) + 1 \mod 10, \ h(k) + 2 \mod 10, \ \mathsf{etc.}$$

$$\mathsf{insert} \ 4, \ 27, \ 37, \ 14, \ 21$$

$$h(k) = 19, \ 88, \ 118, \ 49, \ 70$$

the clumping

we tend to get "clumps" of used buckets reason why linear probing isn't the only way

probing possibilities

$$h(k) + f(i) \mod size$$

linear: f(i) = i — previous diagram

quadratic: $f(i) = i^2$

double hashing $f(i) = i \times h_2(k)$ (second hash function)

index

$$h(k) = 3k + 7$$
 index = $h(k) \mod 10$ then check $h(k) + 1^2 \mod 10$, $h(k) + 2^2 \mod 10$, etc. insert 4, 27, 14, 37, 22, 34 $h(k) = 19$, 88, 49, 118, 73, 109

$$h(k) = 3k + 7$$
 index = $h(k) \mod 10$ then check $h(k) + 1^2 \mod 10$, $h(k) + 2^2 \mod 10$, etc. insert 4, 27, 14, 37, 22, 34 $h(k) = 19$, 88, 49, 118, 73, 109

$$h(k) = 3k + 7$$
 index = $h(k) \mod 10$ then check $h(k) + 1^2 \mod 10$, $h(k) + 2^2 \mod 10$, etc. insert 4, 27, 14, 37, 22, 34 $h(k) = 19$, 88, 49, 118, 73, 109

index

$$h(k) = 3k + 7$$

$$\mathsf{index} = h(k) \mod 10$$

$$\mathsf{then} \ \mathsf{check} \ h(k) + 1^2 \mod 10, \ h(k) + 2^2 \mod 10, \ \mathsf{etc}.$$

$$\mathsf{insert} \ 4, \ 27, \ 14, \ 37, \ 22, \ 34$$

$$h(k) = 19, \ 88, \ 49, \ 118, \ 73, \ 109$$

$$h(k) = 3k + 7$$
 index = $h(k) \mod 10$ then check $h(k) + 1^2 \mod 10$, $h(k) + 2^2 \mod 10$, etc. insert 4, 27, 14, 37, 22, 34 $h(k) = 19$, 88, 49, 118, 73, 109

$$h(k) = 3k + 7$$
 index = $h(k) \mod 10$
$$\frac{1}{2}$$
 then check $h(k) + 1^2 \mod 10$, $h(k) + 2^2 \mod 10$, etc.
$$\frac{3}{4}$$
 insert 4, 27, 14, 37, 22, 34
$$h(k) = 19, 88, 49, 118, 73, 109$$

$$h(k) = 3k + 7$$

$$\mathsf{index} = h(k) \mod 10$$

$$\mathsf{then} \ \mathsf{check} \ h(k) + 1^2 \mod 10, \ h(k) + 2^2 \mod 10, \ \mathsf{etc.}$$

$$\mathsf{insert} \ 4, \ 27, \ 14, \ 37, \ 22, \ 34$$

$$h(k) = 19, \ 88, \ 49, \ 118, \ 73, \ 109$$

probing possibilities

$$h(k) + f(i) \mod size$$

linear: f(i) = i — previous diagram

quadratic: $f(i) = i^2$

double hashing $f(i) = i \times h_2(k)$ (second hash function)

$$h(k) = k$$
 index
$$\begin{array}{c} \text{index} \\ \text{index} = h(k) \mod 10 \\ \text{then check } h(k) + h_2(k) \mod 10, \ h(k) + 2h_2(k) \mod 20, \ \text{etc.} \\ \text{...where } h_2(k) = 7 - (k \mod 7) \\ \text{insert 89, 18, 58, 49, 69, 60} \\ \end{array}$$

$$h(k) = k$$
 index
$$h(k) = h(k) \mod 10$$
 then check $h(k) + h_2(k) \mod 10$, $h(k) + 2h_2(k) \mod 20$, etc.
$$h(k) = h_2(k) = h_2(k) = h_2(k) \mod 7$$
 insert 89, 18, 58, 49, 69, 60

$$h(k) = k$$
 index
$$h(k) = h(k) \mod 10$$

$$\frac{1}{2}$$
 then check $h(k) + h_2(k) \mod 10$, $h(k) + 2h_2(k) \mod 20$, etc.
$$\dots$$
 where $h_2(k) = 7 - (k \mod 7)$
$$\frac{1}{6}$$
 insert 89, 18, 58, 49, 69, 60

$$h(k) = k$$
 index
$$0$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$
 then check $h(k) + h_2(k) \mod 10$, $h(k) + 2h_2(k) \mod 10$, etc.
$$\frac{58}{6}$$
 ... where $h_2(k) = 7 - (k \mod 7)$ insert 89, 18, 58, 49, 69, 60

double hashing thrashing

$$h(k) = k$$
; $h_2(k) = (k \mod 5) + 1$
index = $h(k) \mod 10$
then check $h(k) + h_2(k) \mod 10$, $h(k) + 2h_2(k) \mod 10$, etc.
insert 10, 12, 14, 16, 18, 36

index

double hashing thrashing

$$h(k) = k$$
; $h_2(k) = (k \mod 5) + 1$
index = $h(k) \mod 10$
then check $h(k) + h_2(k) \mod 10$, $h(k) + 2h_2(k) \mod 10$, etc.
insert 10, 12, 14, 16, 18, 36

double hashing thrashing

why prime sizes

prime sizes prevent this problem

 $h_2(k)$ (2) was not relatively prime to table size (10)

result: didn't use all elements of table

similar issues with i^2 , etc.

rehashing

how big should the table be?

want to resize it!

called "rehashing"

...because we recompute every key's hash

when to rehash?

load factor $\lambda=$ elements/table size typical policy: resize table when $\lambda>$ threshold java.util policy: when $\lambda>0.75$

alternatives:

only when insert fails?

rehashing big-oh

worst case:

everything hashes to same bucket

 $\Theta(n)$ time per insert

 $\Theta(n)$ inserts

 $\Theta(n^2)$ total time

if keys are well spread out between buckets "about" linear time

handling removal

```
with chaining: easy
remove from linked list

with open addressing: hard
need to not disrupt searches
option 1: rehash every time (super-expensive)
option 2: placeholder value + rehash eventually
option 3: disallow deletion (lab 6)
```

cryptographic hashes

example: SHA-256

input: any string of bits

output: 256 bits

have security properties normal hashes don't:

collision resistence preimage resistence

cryptographic hashes

example: SHA-256

input: any string of bits

output: 256 bits

have security properties normal hashes don't:

collision resistence preimage resistence

collision resistence

security property of a cryptographic hash

it's very hard to find keys k_1 and k_2 so $h(k_1) = h(k_2)$

note: why SHA-256's output is so big (256 bits) otherwise, just generate lots of hashes...

example application: verify download with hash of file contents it's very hard to find two files with the same hash even if you're trying

exercise: collision non-resistence

exercise: how to construct two strings with same hash?

```
unsigned int hash(const string &s) {
    unsigned int sum = 0;
    for (int i = 0; i < s.size(); ++i) {
        // deliberate use of wraparound on overflow
        sum *= 37;
        sum += s[i];
    return sum;
```

exercise: collision non-resistence

exercise: how to construct two strings with same hash?

one idea: $\{60, x\}$ and $\{59, x + 37\}$ have the same hash

```
unsigned int hash(const string &s) {
    unsigned int sum = 0;
    for (int i = 0; i < s.size(); ++i) {
        // deliberate use of wraparound on overflow
        sum *= 37;
        sum += s[i];
    return sum;
```

55

cryptographic hashes

example: SHA-256

input: any string of bits

output: 256 bits

have security properties normal hashes don't:

collision resistence

preimage resistence

preimage resistence

security property of a cryptographic hash

if given V, very hard to find k so h(k) = V