

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

SOCIAL NETWORKS ANALYSIS A.A. 2022/23

GRAPH THEORY

- Graph Theory is a consolidated branch of Mathematics that allows to describe sets of elements together with binary relations between these elements
 - Started in the XVIII century by Euler
 - Solution to the Konigsberg's bridges problem
- Graph theory provides a unifying language to describe the structure of all kinds of networks
- Nowadays, the possibility of gather data on large scale and work with massive data sets pave the way to new approaches and new problems on graphs
 - Recognize statistical properties characterizing the structure of a network and provide methods to measure them
 - Create network models and describe network formation process
 - Predict the behaviour of a network based on their models and structural properties

GRAPH'S DEFINITION

- A *graph* consists of
 - A set of nodes (vertices)
 - A set of edges (links)
 - ❖ An edge connects two nodes

- Two nodes are adjacent (neighbors) if they are connected by an edge
 - C and D are adjacent through the edge (C, D)
 - B is a neighbor of both C and D

DIRECTED AND UNDIRECTED GRAPHS

- Edges can be oriented
 - Directed edge: the relation holds only between the head and the tail of the edge
 - Undirected edge: the relation holds in both the directions

Undirected graphs

Directed graphs

- Directed and undirected edges differ substantially
 - Different models of network formation and maintainance
 - Different algorithms

Graphs as Models of Networks

• Directed and undirected graphs describe different kinds of networks

• Directed graphs

- The relation between the nodes originates from a unilateral decision
 - ❖ Eg: link to a web page, followers, citation of an article

Undirected graphs

- The relation between the nodes comes from a decision of both the elements
 - * Eg: friendship, alliance, acquaintance, connection, ecc.

Weighted or Signed Graphs

- We can put additional informations to edges
 - sign (friends/enemies)
 - weight (strength of the social connection)
 - distance (connection length)
 - delay (transmission time)
 - reliability (transmission error rate)
 - cost (cost of the link usage)
- In a weighted graph each edge has a number associated that is its weight
- oIn a *signed* graph each edge has a positive/negative sign

GRAPH REPRESENTATION

- Graph Theory is a mathematical theory interesting by itself
 - Studies characteristics and properties of graphs
- A graph is a pair of sets
 - G = (V, E)
 - ❖ V = vertex set
 - \star E = edge set
- More used representations
 - Adiacency matrix
 - * matrix $n \times n (n = |V|)$
 - Element (i, j) = 1 if there is an edge between i and j
 - $w_{i,j}$ is the weight of edge (i, j) if the graph is weighted
 - Lists of vertices *V* and edges *E*
 - \diamond For each vertex v we have the list of vertices adjacent to v
 - * For directed graphs we have separate lists of incoming ant outgoing edges
 - Graphic representation

AN EXAMPLE OF GRAPH REPRESENTATION

Adiacency matrix

VERTICES AND EDGES

- When studying networks vertices and edges can represent entities of the real world
 - Some network abstraction are commonly used

• Some examples

- Communication networks
 - * Network devices, communication links
- Social networks
 - * people, friendships/social connections
 - * companies, commercial relations
- Information networks
 - Web sites, hyperlinks
- Biological networks
 - Species, predator-prey links
 - * molecules, chemical bonds

ARPANET: FIRST VERSION OFINTERNET

o Created in 1970 with 13 nodes

THE GRAPH OF ARPANET

- We are interestd only in connectivity
 - Distances can be represented as edge weights

Transportation Networks

- Most of the graph terminology derives form metaphors based on transportation
 - "shortest path", "diameter", "flow"
- Questions we are interested in
 - The network structure can support the required performances? How much robust is it? Is it exposed to cascading failures?

DEPENDENCY GRAPHS

Undergraduate Computer Science Courses for Majors

- * Calc. Sequence In Arts Is 111; 112; 221; 222
- Nodes are tasks and directed edges are dependencies
- To design complex software systems or industrial processes we need to carefully analize the dependency graph to define a good scheduling policy and avoid deadlocks

STRUCTURAL NETWORKS

- The internal frameworks of mechanical structures such as buildings, vehicles, or human bodies are based on such networks
- rigidity theory studies the stability of such structures from a graph-based perspective

Most Relevant Concepts on Graphs

• "Graph theory is a terminological jungle in which every newcomer may plant a tree"

(Social scientist John Barnes)

- We will introduce only concepts that are relevant for the scope of this course
 - paths
 - cicles
 - connectivity
 - components (giant component)
 - distance

PATHS

- A characteristic of the social networks is that nodes can influence each other indirectly
 - Influence can travel along the connections of the network
- Several things can travel along edges of a graph
 - Vehicles
 - information
 - influence or popularity
 - diseases
- A *path* is a sequence of nodes such that every two consecutive nodes in the path are connected by an edge
 - You can also see the path as a sequence of edges, where two consecutive edges share an endpoint
 - If there exists a path between u and v then they are in an undirected relation
- Multiplying the adiacency matrix for itself k times we can find how many paths of length k there are between each pair of nodes
 - $M^k(u, v) = \#$ paths of length k between u and v

D · ---- ~

- MIT BBN RAND UCLA is a path
- UCSB UCLA RAND MIT is not a path
- A path can go through the same node several times
 - SRI STAN UCLA SRI UTAH MIT
- A *simple path* never goes through the same node twice
- A *shortest path* is a path that goes through the minimum number of edges

CYCLES

- A *cycle* is a simple path that starts and ends in the same node
 - LINC CASE CARN HARV BBN MIT LINC is a cycle
 - A cycle has at least three edges
- In communication networks and transportation networks each node lies on one or many cycles
 - Redundancy introduced to increase the robustness of the network
 - The network is guaranteed to work even in presence of a limited number of faults
- In a social network cycles are very common but accidental and we don't care of them
 - Es: the bestfriend of the cousin of my wife is the sister of my officemate

DIRECTED PATHS AND CYCLES

- Directed paths and cycles can be defined similarly to the undirected case
 - We have only to take care of the direction of the edges in the path
- Sometimes we consider undirected cycles even in directed graphs
 - We simply ignore the edges' directions
 - Useful if we are interested in the existence of a relation, independently from who activated it

CONNECTIVITY

- Two nodes u e v are connected if there exists a path from u to v
- A graph is *connected* if there exists a path between each pair of nodes in the graph
 - The graph of ARPANET is connected
 - Communication networks are usually connected
- In most of the cases graphs are disconnected
 - Social networks
 - Collaboration networks
 - *etc.*
- A directed graph is *strongly connected* if there exists a directed path between each pair of nodes in the graph

COMPONENTS

- If a graph is not connected it can be partitioned in subgraphs that are connected
- A *connected component C* in a undirected graph is a subset of nodes such that
 - There exists a path between each pair of nodes in C
 - For each node u not in C, there exists at least one vertex v in C such that there exists no path between u and v
- A *strongly connected component S* in a directed graph is a subset of nodes such that
 - There exists a directed path between each pair of nodes in S
 - For each node u not in S, there exists at least one vertex v in S such that there exists no directed path between u and v
- An edge belongs to a component if both its endpoints belong to the component
- The edge is a bridge if its removal makes the component disconnected

COMPONENTS

- This graph has three connected components
 - {A,B}, {C,D,E}, {F,G,...,M}
- o {H, L, M} is not a component
- o(D, E) is a bridge

COMPONENT ANALYSIS

- Analyzing the components of a graph we can gain useful informations on the global structure of the network
 - Which edges tie different components?
 - How information spreads in the network?
 - Which role has each node?

Graph of the scientific collaborations in a research center

COMPONENT ANALYSIS

- In many cases it's crucial to recognize components in a network
- A component is a region of the network densely connected
 - We would like to recognize the most densely connected components and their borders
- Anothe important type of analysis
 - We consider only edges with weight greater than a given threshold
 - Gradually increasing the threshold the graph will break into several components
 - The remaining components include nodes that are strongly tied

THE GIANT COMPONENT

- Several graphs are not connected byt they include a very large component
 - E.g. The graph or the love relations in a high school, the graph of the Web
- A *giant component* is a connected component containing a large fraction of the nodes
 - Usually the giant component is unique
- When two giant components merge it can give raise to dramatic events
 - The graph of the human relations between populations before the America discover had two giant components
 - Their fusion brought to the extermination of one of the two components

THE GIANT COMPONENT

• The existence of a giant component in this network implies a higher risk of diffusion of sexual diseases

Particular Classes of Graphs

• There are specific topologies that occur very often and there were very well studied

Trees and Forests

Star

Clique

NEIGHBORHOODS

• The neighborhood of a node is the set of nodes that are adjacent to it

• The neighborhood of a set of nodes S is the set of nodes that do not belong to S but they are adjacent to some nodes in S

DEGREES

- The *degree* of a node is the number of its neighbors
 - Number of edges adjacent to the node
 - It's equal to the size of the neighborhood
- In a directed graph we distinguish between indegree and out-degree
 - In-degree: number of incoming edges
 - Out-degree: number of outgoing edges

DISTANCES

- The *distance* between a pair of nodes is the length of the shortest path connecting the nodes
 - We assume each edge has weigth 1
- The *diameter* of a graph is the largest distance between a pair of nodes in the graph
 - Which is the distance between MIT and SDC?
 - Which is the diameter of the network?

HOW TO COMPUTE MINIMAL DISTANCES

- Given a graph, how can we compute the minimal distances from a node to all the others?
 - We need an efficient algorithm
- How can we approach the problem?
 - BFS

Breadth-first search (BFS)

- Starting from the source node (*root*)
 - Find all nodes adjacent to root
 - * These nodes are at "distance 1"
 - Find all the nodes that are adjacent to nodes at distance 1 and not yet visited
 - * These nodes are at "distance 2"
 - •
 - Find all the nodes that are adjacent to nodes at distance *j* and not yet visited
 - * These nodes are at "distance j+1"
 - Stops when there are no other adjacent vertices not visited

BFS TREE

BFS ON THE GRAPH OF ARPANET

SMALLWORLD PHENOMENON

- Hypothesis: in large scale networks most of the nodes belong to a giant component and they are connected through very short paths
 - Informations/infections spread very fast
- First experiment realized by Stanley Milgram in 1960s (research budget \$680)
 - 296 people, randomly chosen in the USA, was asked to deliver a letter to a given recipient
 - * They received a profile of the recipient (address, work, education, place of origin, interests, ecc.)
 - * They could send the letter to one of their friends or acquantainces
 - The experiment measured the average number of hops for each letter

SIX DEGREES OF SEPARATION

- In the Milgram's experiment only 64 letters were delivered to the recipient
 - Average number of hops < 6

The experiment has been largely critized in the following years but ...

SIX DEGREES OF SEPARATION

- In recent years several experiments confirmed Milgram's results
- o In 2008 Leskovec and Horvitz realized a new version of the Milgram's experiment
 - They used data related to Messenger's connections of 240 milion users in a period of 30 days
 - Their graph has a giant component with average distance equal to 6.6
- In each run they selected a random sample of 1000 users and computed minimal distances with BFS

Leskovec and Horvitz Results

expected average distance = 6.6, median = 7

ZIX рысьына он оныкимиа

- Graph of the scientific collaborations rooted in Paul Erdös
 - Most of the mathematicians (and computer scientists) have Erdös numer < 5

HOW TO DESCRIBE A GRAPH WITHOUT REPRESENTING EXPLICITLY

- A large scale network can have millions of nodes
 - It cannot be represented explicitly
 - *We need a set of quantitative parameters that can describe the graph
 - *We use these parameters to compare graphs without representing them
- Some of the most used parameters
 - diameter, average path length
 - Clustering indices
 - Centrality measures
 - Node degree distribution

DEGREE DISTRIBUTION

- The distribution of the node degrees is fundamental characteristic of the network
- o Pr(d) = fraction of nodes with degree <math>d
 - Probability that a node randomly chosen has degree d
- k-regular graphs have a degenerate degree distribution
- Random graphs have a Poisson degree distribution
- In several networks the degree distribution is a power law
 - $Pr(d) = cd^{-\gamma}$

DIAMETER AND AVERAGE PATH LENGTH

- The diameter is an upper bound to the length of the shortest path between each pair of nodes in a connected graph
- The average path length is the average of the shortest path lengths between all pairs of nodes
- Comparing the diameter with the average path length we can obtain useful informations
 - If they are not comparable then there are very few pairs of nodes that are very far apart

CLUSTERING INDICES

- An interesting information about a social network is how much connected and close it is
 - How many of my friends are friends each other?
- These charactesistics can be measured through the clustering indices
- Two alternative definitions
 - Overall clustering: fraction of node pairs that are adjacent and they have a common neighbor
 - Individual clustering (of node u): fraction of pairs of u's neighbors that are adjacent
 - * Average Clustering is the average of the individual clusterings of all nodes in the graph

CENTRALITY MEASURES

- They measure the relevance (centrality) of a node in the network related to a given process
 - We can use them to compare nodes
- There are several centrality measures that can model different processes
 - Degree centrality
 - Closeness centrality
 - Betweenness centrality
 - Katz-prestige centrality
 - Eigenvector centrality

NETWORK DATA-SETS

- On the web there are several datasets of large scale netowrks
 - Collaboration grpahs
 - Wikipedia, World of Warcraft, Citation graphs
- Who-talks-to-Whom Graphs
 - Microsoft IM, Cell phone graphs
- Information networks
 - Snapshots of the Web, social netowrks, blogging sites
- Technological networks
 - Power grids, communication links, Internet
- Networks in the Natural world
 - Food webs, neural interconnections, cell metabolism

- SNAP is a general purpose network analys and graph mining library leaded by Jure Leskovec at Stanford University
 - http://snap.stanford.edu/data
 - There is a repository with lots of data on large scale networks