Machine Learning Lecture 6 Logistic Regression (Linear Classifiers)

Dr. Ioannis Patras

Slides thanks: Tim Hospedales

Course Context

- Supervised Learning
 - (Linear) regression
 - (Linear) Classifiers and Logistic Regression
 - Neural Networks
- Unsupervised
 - Clustering
 - Density Estimation
 - HMMs

Supervised Learning

- Applications where the training data comprises examples of input vectors along with corresponding target vectors
- Regression: desired output consists of one or more continuous variables
- Classification: Desired output consists of a finite number of discrete categories.

(Linear) Classifier

- Goal:
 - Take an input vector x and assign it to one of K discrete classes y.
- Assume an partition of the feature space: y=f(x)
- Given examples (x_i, y_i) , which may be noisy
- Learn f(x), to enable prediction of y* given new point x*.
 It should generalise well to new x*
 - − E.g., x₁: Fish Weight, x₂=Fish Length, y=Fish Species.

Overview

- Binary Classification Logistic Regression
- Multiclass Classification Max Entropy
- Extensions

Linear Versus Logistic Regression

- Linear & Logistic Regression use different representation/model assumptions.
- Linear Regression $f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} \in [-\infty, \infty]$

X

• Logistic Regression

$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^T \mathbf{x}})} \in [0,1]$$

Sigmoid aka Logistic Function $\sigma(\mathbf{x}) = \frac{1}{(1+e^{-\mathbf{x}})}$

Linear Versus Logistic Regression

- Think about this Logistic function.
 - What if $x \rightarrow -+$ infinity? (Assume w=1)
 - x controls range of $\sigma(x)$ in [0,1]
 - What if x=2 and we increase/decrease w magnitude?
 - w Controls slope of f_w(x)

$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^T \mathbf{x}})}$$

Sigmoid aka Logistic Function $\sigma(\mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{x}})}$

Linear Versus Logistic Regression

- Linear & Logistic Regression use different representation/model assumptions.
- Linear Regression

$$f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

Range: +inf to - inf

Logistic Regression

$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^T \mathbf{x}})}$$
Range: 0 to 1

Sigmoid aka Logistic $\sigma(\mathbf{x}) = \frac{1}{(1+e^{-\mathbf{x}})}$

Logistic Regression: What does it mean for modeling classes?

• With assumption

$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^T \mathbf{x}})}$$

• Probability Model:

$$p(y | \mathbf{x}, \mathbf{w}) = Bernoulli(y | \sigma(\mathbf{w}^T \mathbf{x}))$$

 $- \Rightarrow$ Probability of class y is $\sigma(\mathbf{w}^T \mathbf{x})$

Logistic Regression

$$p(y \mid \mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^T \mathbf{x}})}$$
 Range: 0 to 1

P(Class
$$1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$$

$$P(Class 0 | \mathbf{x}) = 1 - \sigma(\mathbf{w}^T \mathbf{x})$$

$$\sigma(\mathbf{w}^T \mathbf{x}) > 0.5 : Class 1$$

$$\sigma(\mathbf{w}^T \mathbf{x}) < 0.5 : Class 0$$

$$\sigma(\mathbf{w}^T \mathbf{x}) < 0.5 : Class 0$$

What Kind of Decision Boundary Does LR Have?

- Boundary between two classes. Contour where:
 - p(Class 1|x)=p(Class 0|x)=0.5.

$$1/(1+e^{-\mathbf{w}^T\mathbf{x}})=0.5$$

$$2 = 1 + e^{-\mathbf{w}^T \mathbf{x}}$$

$$0 = \mathbf{w}^T \mathbf{x}$$

=> It's a straight line!

$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^T \mathbf{x}})}$$

Parameters **w** specify exactly which straight line we try to separate the data with

Unpacking the decision boundary.

- Really we should be doing: $\sigma(\mathbf{w}^T\mathbf{x} + w_0) = \frac{1}{(1 + e^{-\mathbf{w}^T\mathbf{x} + w_0})}$
 - Recall in linear regression, we used the trick x':=[1,x]
 - Now $\mathbf{w'}$ automatically includes a $[\mathbf{w}_0, \mathbf{w}]$.
 - So $\mathbf{w}'^\mathsf{T}\mathbf{x}' = \mathbf{w}^\mathsf{T}\mathbf{x} + \mathbf{w}_0$
- The decision boundary (red) is perpendicular to the vector w.
 - Weight w₀ controls the displacement of the line from origin.

Choosing the objective function

• For Linear Regression, we had:

$$f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$
 \Rightarrow $E(\mathbf{w}) = \sum_{i} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$

• For Logistic Regression?

$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^T \mathbf{x}})}$$

Choosing the objective function

• For Linear Regression, we had:

Square deviation of prediction from

$$f_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$
 \Rightarrow $E(\mathbf{w}) = \sum_{i} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$

• For Logistic Regression?

Recall y_i: {0,1}

$$p(Y \mid X, \mathbf{w}) = \prod_{i} p(y = 1 \mid \mathbf{x}_{i})^{y_{i}} (1 - p(y = 1 \mid \mathbf{x}_{i}))^{(1 - y_{i})}$$

$$f_{\mathbf{w}}(\mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^{T}\mathbf{x}})}$$
Probability model \mathbf{w} would have got each point correct

Cost:
$$E(\mathbf{w}) = -\sum_{i} y_{i} \log p(y = 1 \mid \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - p(y = 1 \mid \mathbf{x}_{i}))$$
Log Likelihood

Learning Logistic Regression

 Find the weights w that minimize the cost function for data {y,X} or {(y_i,x_i)}:

$$p(y=1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{(1+e^{-\mathbf{w}^T \mathbf{x}})}$$

$$E(\mathbf{w}) = -\sum_{i} y_i \log p(y=1|\mathbf{x}_i) + (1-y_i) \log(1-p(y=1|\mathbf{x}_i))$$

Derivates wrt weights...

$$\frac{dE(\mathbf{w})}{d\mathbf{w}} = -\sum_{i} (\sigma(\mathbf{w}^{T} \mathbf{x}_{i}) - y_{i}) \mathbf{x}_{i}$$

$$\frac{dE(\mathbf{w})}{d\mathbf{w}} = -X^{T}(p(\mathbf{y} \mid X) - \mathbf{y})$$

Aside: Convex vs Closed Form

 Find the weights w to minimize the cost function for data {y,X} or {y_i,x_i}:

$$p(y=1 | \mathbf{x}) = \sigma(\mathbf{w}^{T} \mathbf{x}) = \frac{1}{(1+e^{-\mathbf{w}^{T} \mathbf{x}})}$$

$$E(\mathbf{w}) = -\sum_{i} y_{i} \log p(y=1 | \mathbf{x}_{i}) + (1-y_{i}) \log(1-p(y=1 | \mathbf{x}_{i}))$$

Derivates wrt weights...

$$\frac{dE(\mathbf{w})}{d\mathbf{w}} = -\sum_{i} (\sigma(\mathbf{w}^{T} \mathbf{x}_{i}) - y_{i}) \mathbf{x}_{i}$$

Note: This time (unlike linear regression), we can't rearrange to solve for w! It's stuck inside the sigmoid.

No closed form solution. Only gradient. However it is convex.

Remember what convex means?

Gradient will get the solution as unique minimum.

Learning Logistic Regression

 Find the weights w that minimize the cost function for data {y,X} or {y_i,x_i}:

$$E(\mathbf{w}) = -\sum_{i} y_{i} \log p(y = 1 \mid \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - p(y = 1 \mid \mathbf{x}_{i}))$$

- Algorithm:
 - Repeat:

$$\mathbf{w}' := \mathbf{w} + \alpha \frac{E(\mathbf{w})}{d\mathbf{w}} \qquad \mathbf{w}' := \mathbf{w} - \alpha \sum_{i} (\sigma(\mathbf{w}^{T} \mathbf{x}_{i}) - y_{i}) \mathbf{x}_{i}$$

Until convergence

Checkpoint

- Good practice:
 - Check you understand the dimensions of any algorithm/linear algebra expression.
- Questions:
 - If input data is d dimensions, how many dimensions is w? x?
 - How many dimensions is $\sigma(\mathbf{w}^T\mathbf{x})$
 - How many dimensions is E(w)?
 - How many dimensions is dE(w)/dw?

$$p(y=1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{(1+e^{-\mathbf{w}^T \mathbf{x}})}$$

$$E(\mathbf{w}) = -\sum_{i} y_i \log p(y=1|\mathbf{x}_i) + (1-y_i) \log(1-p(y=1|\mathbf{x}_i))$$

$$\frac{dE(\mathbf{w})}{d\mathbf{w}} = -\sum_{i} (\sigma(\mathbf{w}^T \mathbf{x}_i) - y_i) \mathbf{x}_i$$

What about Confidence?

• Larger magnitude weights result to steeper sigmoid.

 $p(Y \mid X, \mathbf{w}) = \prod_{i} p(y = 1 \mid \mathbf{x}_{i})^{y_{i}} (1 - p(y = 1 \mid \mathbf{x}_{i}))^{(1 - y_{i})}$ $p(y = 1 \mid \mathbf{x}) = \sigma(\mathbf{w}^{T} \mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^{T} \mathbf{x}})}$

What about Confidence?

Larger magnitude weights result to steeper sigmoid.

sigmoid. $p(Y \mid X, \mathbf{w}) = \prod_{i} p(y = 1 \mid \mathbf{x}_{i})^{y_{i}} (1 - p(y = 1 \mid \mathbf{x}_{i}))^{(1 - y_{i})}$ $- \text{ If } \mathbf{w} = 1. \ \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i}) = [0.05, 0.9, 0.9]$ $p(y = 1 \mid \mathbf{x}) = \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^{\mathsf{T}} \mathbf{x}})}$

• Probability of all data = 0.05*0.9*0.9 = 0.04

Learning won't increase weight

- If w=inf. $\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i})=[0,1,1]$

Probability of all data =0*1*1=0.

Larger weights => more confident prediction.

What about Confidence?

Larger magnitude weights result to steeper sigmoid.

 $p(Y \mid X, \mathbf{w}) = \prod_{i} p(y = 1 \mid \mathbf{x}_{i})^{y_{i}} (1 - p(y = 1 \mid \mathbf{x}_{i}))^{(1 - y_{i})}$ $p(y = 1 \mid \mathbf{x}) = \sigma(\mathbf{w}^{T} \mathbf{x}) = \frac{1}{(1 + e^{-\mathbf{w}^{T} \mathbf{x}})}$ = [0.9, 0.9]

- If w=1. $\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i})=[0.9,0.9]$
 - Probability of all data = 0.9*0.9 = 0.8
- If w=inf. $\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i})=[1,1]$

Learning will increase weight

Probability of all data =1*1=1.

Larger weights => more confident prediction.

Regularized Logistic Regression

 To address overconfidence, we can add an L2 norm regularizer.

$$E(\mathbf{w}) = -\sum_{i} y_{i} \log p(y_{i} = 1 \mid \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - p(y_{i} = 1 \mid \mathbf{x}_{i})) + \lambda \mathbf{w}^{T} \mathbf{w}$$

Aside: What is "I2 norm" about?

- Roughly: A norm gives a scalar magnitude from a vector.
 - What are ways you can imagine to do this?

$$\|\mathbf{w}\|_{2} = \sqrt{\sum_{k} w^{2}_{k}} \qquad \|\mathbf{w}\|_{1} = \sum_{k} |w_{k}| \qquad \|\mathbf{w}\|_{0} = \sum_{k} w_{k} \neq 0$$

L2 norm "Euclidean"

L1 norm "Manhattan"

L0 norm

Regularized Logistic Regression

 To address overconfidence, we can add a l2 regularizer.

$$E(\mathbf{w}) = -\sum_{i} y_{i} \log p(y_{i} = 1 \mid \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - p(y_{i} = 1 \mid \mathbf{x}_{i})) + \lambda \mathbf{w}^{T} \mathbf{w}$$

- · Cost is scalar.
 - Need a scalar to quantify how costly a weight vector is.
 - Need a norm of the weight vector. $\lambda \sum_{k} w_{k}^{2} = \lambda \mathbf{w}^{T} \mathbf{w}$

Regularized Logistic Regression

- To address overconfidence, we can add a l2 regularizer.
 - As before we saw this corresponds to zero mean Gaussian weight prior!

$$p(w \mid Y, X) \propto p(Y \mid X, \mathbf{w}) p(\mathbf{w})$$

$$\propto \prod_{i} p(y = 1 \mid \mathbf{x}_{i})^{y_{i}} (1 - p(y = 1 \mid \mathbf{x}_{i}))^{(1 - y_{i})} \exp(-\lambda \mathbf{w}^{T} \mathbf{w})$$

$$E(\mathbf{w}) = -\sum_{i} y_{i} \log p(y_{i} = 1 | \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - p(y_{i} = 1 | \mathbf{x}_{i})) + \lambda \mathbf{w}^{T} \mathbf{w}$$

Learning Regularized Logistic Regression

- Take derivatives of...
 - The Posterior rather than the Likelihood
 - =The augmented cost function

$$E(\mathbf{w}) = -\sum_{i} y_{i} \log p(y_{i} = 1 | \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - p(y_{i} = 1 | \mathbf{x}_{i})) + \lambda \mathbf{w}^{T} \mathbf{w}$$

$$\mathbf{w}' := \mathbf{w} + \alpha \frac{E(\mathbf{w})}{d\mathbf{w}} \qquad \mathbf{w}' := \mathbf{w} - \alpha \sum_{i} (\sigma(\mathbf{w}^{T} \mathbf{x}_{i}) - y_{i}) \mathbf{x}_{i} - \lambda \mathbf{w}$$

Summary

- Logistic Regression
 - Uses sigmoid function to predict probability in [0,1]
 - Weights specify the decision boundary.
 - Weight magnitudes specify its sharpness
- Cost as negative logprobability of correct assignment.
 - Using binary exponent trick.
- Differentiation wrt weights leads to convex gradient-based solution.
 - (But not closed form)
- Regularize to avoid overconfidence.

Linear Classifier Examples – 1

EECS Work ©

- Undergraduate Project
 - x: Text of bills under debate in parliament
 - $-y=f(x)=w^Tx$: Bill is accepted into law or not after parliament debate
- Simple linear classifier can predict with ~85% accuracy!

Linear Classifier Examples – 2

EECS Work

- Person re-identification
 - Take two images (windows) x₁, x₂
 - $F(x_1,x_2) = \mathbf{w}^T | x_1-x_2 |$ if it's the same person or not.

Case Study – Feature Engineering

EECS Work @ ACCV 2014 ©

- Forensic Sketch / Caricature
 - Take an image x
 - $-A_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x}$ says if the face has an attribute i or not
 - E.g., big/small nose, fat/thin lips, long/short hair, male/female
 - Each A_i(x) is a new feature of original image
 - $F(\mathbf{x}_1, \mathbf{x}_2) = \mathbf{w}^T |A(\mathbf{x}_1) A(\mathbf{x}_2)|$ says if the same person or not.
 - => The feature itself is another machine learning model

Forensic sketch

Caricature

Overview

- Binary Classification Logistic Regression
- Multiclass Classification Max Entropy
- Extensions

From Binary to Multiclass

- We know how to model (logistic function) and learn (gradient descent) binary classifiers.
 - What about K>2, multi-class problems?
 - Any ideas?

Multiclass: 1 vs All

- Simple solution: 1-versus-All
 - Use K classifiers, each solving a two class problem of separating class k from all others.
- Issues:
 - Ambiguous regions
 - Gets expensive with many classes

- A 'natural' multiclass approach

Multiclass: Multinomial logistic regression, MaxEnt, softmax.

• Before we had

$$p(y=1 \mid \mathbf{x}) = \frac{1}{(1+e^{-\mathbf{w}^T \mathbf{x}})}$$
$$= Bernoulli(y \mid \sigma(\mathbf{w}^T \mathbf{x}))$$

- ... a Bernoulli likelihood.
- What was the "dice" rather than "coin" distribution?
 - Multinomial. A parameter vector that adds up to 1.
 - Now y=1...K, rather than y=0,1.

$$p(y \mid \mathbf{x}, \mathbf{W}) = \frac{\exp(\mathbf{w}^{T}_{y}\mathbf{x})}{\sum_{y'} \exp(\mathbf{w}^{T}_{y'}\mathbf{x})}$$

 $p(y | \mathbf{x}, \mathbf{W}) = Multi(y | soft \max(\mathbf{w}_{v}^{T}\mathbf{x}))$

Think about Softmax...

- What's the range of exp(w^Tx) for x => -inf or +inf??
- What's the range of: $\frac{\exp(\mathbf{w}^{T}_{y}\mathbf{x})}{\sum_{y'}\exp(\mathbf{w}^{T}_{y'}\mathbf{x})}$
- What if $\mathbf{x}=k\mathbf{w}_{y}$ for one y, and $\mathbf{x}=-k\mathbf{w}_{y'}$ for the others y' != y?
 - And if k => inf?

Relating Softmax to Logistic

- For Binary case K = 2.
 - What happens to Softmax?

$$p(y \mid \mathbf{x}, \mathbf{W}) = \frac{\exp(\mathbf{w}^{T} y \mathbf{x})}{\sum_{y'} \exp(\mathbf{w}^{T} y' \mathbf{x})}$$

$$p(y=1 \mid \mathbf{x}, \mathbf{W}) = \frac{\exp(\mathbf{w}_1^T \mathbf{x})}{\exp(\mathbf{w}_1^T \mathbf{x}) + \exp(\mathbf{w}_2^T \mathbf{x})} = \frac{1}{1 + \exp(\mathbf{w}_2^T \mathbf{x}) / \exp(\mathbf{w}_1^T \mathbf{x})}$$

$$= \frac{1}{1 + \exp(\mathbf{w}_{2}^{T}\mathbf{x} - \mathbf{w}_{1}^{T}\mathbf{x})} = \frac{1}{1 + \exp(-(\mathbf{w}_{1} - \mathbf{w}_{2})^{T}\mathbf{x})}$$

Same as Logistic From $p(y=1 \mid \mathbf{x}) = \frac{1}{(1+e^{-\mathbf{w}^T\mathbf{x}})}$ Before

Evaluating a Multiclass Classifier

- Quantify The Goodness of a MaxEnt Classifier?
 - Again, probability that all data assigned correctly.

$$p(Y \mid X, W) = \prod_{i}^{N} \prod_{c}^{K} p(c \mid \mathbf{x}_{i}, W)^{Y_{ic}}$$

- Where we let Y_{ic} be a sparse binary 1-of-N matrix encoding the labels. I.e., If y_i =c, then Y(i,c)=1.
- Dimensions of Y and W?
 - Y is a N x K matrix of labels.
 - Now W is a KxD matrix stacking D dims of weights for each of K classifiers w_v.

Evaluating a Multiclass Classifier

- · Quantify The Goodness of a MaxEnt Classifier?
 - Again, probability that all data assigned correctly.

$$p(Y \mid X, W) = \prod_{i=1}^{N} \prod_{c} p(c \mid \mathbf{x}_{i}, \mathbf{w}_{y})^{Y_{ic}}$$

- To specify a cost, take logs as usual.

$$E(\mathbf{W}) = \sum_{i}^{N} \sum_{c} Y_{ic} \log p(c \mid \mathbf{x}_{i}, W) \qquad p(c \mid \mathbf{x}, \mathbf{W}) = \frac{\exp(\mathbf{w}^{T}_{c} \mathbf{x})}{\sum_{c'} \exp(\mathbf{w}^{T}_{c'} \mathbf{x})}$$

$$E(\mathbf{W}) = \sum_{i}^{N} \left[\left(\sum_{c} Y_{ic} \mathbf{w}_{c}^{T} \mathbf{x}_{i} \right) - \log \left(\sum_{c'} \exp(\mathbf{w}_{c'}^{T} \mathbf{x}_{i}) \right) \right]$$

$$E(\mathbf{W}) = \sum_{i}^{N} \left[\left(\sum_{c} Y_{ic} \mathbf{w}_{c}^{T} \mathbf{x}_{i} \right) - \log \left(\sum_{c'} \exp(\mathbf{w}_{c'}^{T} \mathbf{x}_{i}) \right) \right]$$

Learning MaxEnt

• Differentiate the cost wrt W.

$$E(\mathbf{W}) = \sum_{i}^{N} \sum_{c} Y_{ic} \log p(c \mid \mathbf{x}_{i}, W)$$

$$E(\mathbf{W}) = \sum_{i}^{N} \sum_{c} Y_{ic} \log p(c \mid \mathbf{x}_{i}, W) \qquad p(c \mid \mathbf{x}, \mathbf{W}) = \frac{\exp(\mathbf{w}^{T}_{c} \mathbf{x})}{\sum_{c'} \exp(\mathbf{w}^{T}_{c'} \mathbf{x})}$$

$$E(\mathbf{W}) = \sum_{i}^{N} \left[\left(\sum_{c} Y_{ic} \mathbf{w}_{c}^{T} \mathbf{x}_{i} \right) - \log \left(\sum_{c'} \exp(\mathbf{w}_{c'}^{T} \mathbf{x}_{i}) \right) \right]$$

Intuition:

If x_i supposed to be class c: - Push w_c towards/away from x as appropriate

(Differentiating the matrix one vector at a time)

Summary

- Multi-class classification:
 - Simple indirect solution 1-vs-All of Logistic regressions
 - Direct solution: Use softmax.
- Cost function: Probability of correct assignment.
 - Use binary exponentiation trick again to express succinctly.
- Can learn with gradient as before.
- Same form as LR in the case where K=2.

Overview

- Binary Classification Logistic Regression
- Multiclass Classification Max Entropy
- Extensions
 - Non-linear
 - Sparse regularizers
 - Multi-label

Non-linear trick

- As with Linear Regression, we can use a fixed non-linear (e.g., polynomial) transformation.
 - Result: Non-linear in feature-space. Linear wrt w

$$p(y=1 \mid \mathbf{x}) = \sigma(\mathbf{w}^T \phi(\mathbf{x})) = \frac{1}{(1 + e^{-\mathbf{w}^T \phi(\mathbf{x})})}$$
$$\phi(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2, x_1 x_2]^T$$

$$p(y=1 \mid \mathbf{x}) = \sigma(w_0 + w_1x_1 + w_2x_1^2 + w_3x_2 + w_5x_2^2 + w_5x_1x_2)$$

Non-linear trick

• Using non-linear logistic regression this way, can result to over/underfitting again.

Non-linear trick

• Contrast non-linear we saw in regression....

Overview

- Binary Classification Logistic Regression
- Multiclass Classification Max Entropy
- Extensions
 - Non-linear
 - Sparse regularizers
 - Multi-label

Regularization for Sparsity

• Common to use I2 regularization

$$E(\mathbf{w}) = -\sum_{i} y_{i} \log p(y_{i} = 1 \mid \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - p(y_{i} = 1 \mid \mathbf{x}_{i})) + \lambda \mathbf{w}^{T} \mathbf{w}$$

• ...as for linear regression, l1 is also possible

$$E(\mathbf{w}) = -\sum_{i} y_{i} \log p(y_{i} = 1 \mid \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - p(y_{i} = 1 \mid \mathbf{x}_{i})) + \lambda \sum_{d} |w_{d}|$$

This increases sparsity...

Regularization for Sparsity

• Common to use I2 regularization

$$E(\mathbf{w}) = -\sum y_i \log p(y_i = 1 \mid \mathbf{x}_i) + (1 - y_i) \log(1 - p(y_i = 1 \mid \mathbf{x}_i)) + \lambda \mathbf{w}^T \mathbf{w}$$

- Sometimes we want sparsity.
 - Delete irrelevant distractor features.
 - Save memory.
 - Gain domain insight.

Can't differentiate wrt w

- How? Remember those regularizers...
 - LO is explicit about sparsity. Cost=# non-zero elements.

$$\left\|\mathbf{w}\right\|_2 = \sqrt{\sum_2 w^2} k$$

$$\left\|\mathbf{w}\right\|_1 = \sum_k \left|w_k\right|$$

$$\|\mathbf{w}\|_{2} = \sqrt{\sum_{k=1}^{\infty} w_{k}^{2}} \qquad \|\mathbf{w}\|_{1} = \sum_{k=1}^{\infty} |w_{k}| \qquad \|\mathbf{w}\|_{0} = \sum_{k=1}^{\infty} w_{k} \neq 0$$

L1 Regularization

• L1 regularization increases sparsity.... Why?

L1 Regularization

- But L1 regularisation still harder to Optimize. Why?
 - Absolute value has no derivative at zero (nonsmooth corner)

$$\|\mathbf{w}\|_1 = \sum_k |w_k|$$

Overview

- Binary Classification Logistic Regression
- Multiclass Classification Max Entropy
- Extensions
 - Non-linear
 - Sparse regularizers
 - Multi-label
 - Large Scale
 - Interpretation

Multi-Label Classification

- Logistic Regression assumed data like {x_i, y_i}.
 - And trained predictor:

$$p(y=1 \mid \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{(1+e^{-\mathbf{w}^T \mathbf{x}})}$$

- What about if you have {x_i,y_i}? (Vector of labels)
 - Classification analogy of multiple output linear regression.
 - When?
 - E.g., Webpage topic classifier for indexing. One web page can have multiple topics: Education+Government, Business+Finance, Business+Movie Industry..
 - Person can have multiple nationalities
 - Movie/music can span multiple genres.

Multilabel vs Multiclass

- Multiclass
 - Predict p(y|x).
 - y=1...K. Exclusive.
 - X has to have exactly one label.
- Multi-label
 - Predict p(y|x)
 - y is binary vector of size K.
 - If $y_k=1$, then **x** has label k.
 - If $y_k=1$ for all k. Then **x** has all labels.
 - If $y_k=0$ for all k. Then **x** has no labels.

Multilabel vs Multiclass

Multiclass

- One x has exactly one label
- Train data is scalar y for one x
- Prediction y=f(x) is a scalar
- y=1....K exclusive
- P(y|x) is a K-sized vector

Multilabel

- One x has many labels (0 to K)
- Train data is vector y for one x.
- Prediction **y**=f(**x**) is a K-vector
- $y_k = \{0,1\}$
- P(y|x) is a K-sized vector.

How to do Multi-label Classification?

- Given data {y_i,x_i}.
 - Train an independent logistic regression classifier for each $p_k(y_k|\mathbf{x})$.
 - Stack up the results $p(\mathbf{y} | \mathbf{x}) = [p_1(y_1 | \mathbf{x}).....p_K(y_K | \mathbf{x})].$
- This does not take into account label dependencies.

Multi-label Example

Overview

- Binary Classification Logistic Regression
- Multiclass Classification Max Entropy
- Extensions
 - Non-linear
 - Sparse regularizers
 - Multi-label
 - Large Scale
 - Interpretation

Large Scale

 As for linear regression, the strategy is to minimise the cost function

$$E(\mathbf{w}) = -\sum_{i} y_{i} \log p(y_{i} = 1 \mid \mathbf{x}_{i}) + (1 - y_{i}) \log(1 - p(y_{i} = 1 \mid \mathbf{x}_{i})) + \lambda \mathbf{w}^{T} \mathbf{w}$$

• By iterating:

$$\mathbf{w}^{s+1} := \mathbf{w}^s - \alpha \sum_{i=1}^{N} (\sigma(\mathbf{w}^T \mathbf{x}_i) - y_i) \mathbf{x}_i - \lambda \mathbf{w}$$

- Means that you have to read database off disk into memory very many times.
 - Notice inner loop over i=1...N
 - ... within an iterative loop over s

Large Scale

- Regular:
 - Iterate S times:

$$\mathbf{w}^{s+1} := \mathbf{w}^s - \alpha \sum_{i=1}^{N} (\sigma(\mathbf{w}^T \mathbf{x}_i) - y_i) \mathbf{x}_i - \lambda \mathbf{w}$$

- SGD with mini-batches:
 - Iterate M times:
 - Select a random subset B of total N examples
 - Iterate S times:

$$\mathbf{w}^{s+1} := \mathbf{w}^s - \alpha \sum_{i=1}^{B} (\sigma(\mathbf{w}^T \mathbf{x}_i) - y_i) \mathbf{x}_i - \lambda \mathbf{w}$$

- Before: S memory reads of full database.
 - Now M*(B/N) reads. Can be << S.
 - E.g., M=N/B => Read once.

Overview

- Binary Classification Logistic Regression
- Multiclass Classification Max Entropy
- Extensions
 - Non-linear
 - Sparse regularizers
 - Multi-label
 - Large Scale
 - Interpretation

Interepreting Logistic Regression Outputs

- Once learned: $\mathbf{w} = \arg\min E(\mathbf{w})$
 - Recall each w_k is multiplied with x_k in $\sigma(\mathbf{w}^T\mathbf{x})$
 - => Positive $w_k =>$ Feature is indicator of class.
 - $=> Negative w_k => Contra-indicator.$
 - If I1 regularizer killed wk
 - Irrelevant to classification.

LR Interpretation Example

LR Interpretation Example **EECS Work** © Table 7. Logistic regression model with all predictors using data without outliers. Estimate Standard Error P value -0.32546 0.22806 -1.427 0.153555 (Intercept) 0.02054 4.316 1.59E-05** t person singular pronouns 0.08867 t person plural pronouns 0.000452*** 0.88577 0.21676 4.38E-05*** Positive emotion words 0.13363 0.02517 5.31 1.10E-07** Negative emotion words -0.12299 0.05362 -2.294 0.021806* Anxiety words 0.85417 0.21939 3.893 9.88E-05*** -0.03407 0.14776 Feeling words -0.231 0.817626 Tentative words -0.11298 0.05405 -2.09 0.036593* Certainty words -0.03662 0.07287 -0.503 0.615252 0.115288 -0.09091 0.05773 -1.575 Achievement words 0.116749 Religion words -0.22651 0.1444 -1.569 Death words 0.24512 0.245182

Summary

- Non-linear extensions exist
 - Like linear regression, take fixed polynomial basis functions.
 - Then you would need to regularize for more than 'just' overconfidence.
- L2/L1 regularizer options also exist.
 - L2 is efficient.
 - L1 less efficient, but helps find sparsity.
- Multi-label versus Multi-class classification.
 - Multi-label: Simple solution by K-binary classifiers.