Project Design Phase-I Proposed Solution Template

Date	19 September 2022
Team ID	PNT2022TMID25491
Project Name	Predicting the energy output of wind turbine
	based on weather condition
Maximum Marks	2 Marks

Proposed Solution Template:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be	It is necessary to find a way to predict the
	solved)	energy output of a wind turbine in different
		weather conditions. The obtained wind energy
		must be used to give a steady supply of
		electricity.
2.	Idea / Solution description	It is necessary to analyse and to store the data
		of the wind turbine in different weather
		conditions. With the past data stored in the
		database, we can predict the output of a wind
		turbine. And a prediction system is developed
		with a method of combining statistical models
		and physical models. Hence the output energy
		can be forecasted by the auto regressive model.
3.	Novelty / Uniqueness	Present wind farms don't have any methods to
		predict the output energy based on the
		changing weather conditions. By implementing
		this model, it can be useful to predict the
		output energy before and the efficiency of the
		wind farms can also been improved.
4.	Social Impact / Customer Satisfaction	Currently wind energy is not the primary source
		of electricity, but by implementing our solution
		we can produce more energy. So the utilisation
		of non renewable resources can also be
		minimised. A wind farm with prediction mode
		would be more efficient than the present one.
		Switching to a clean source of energy is good for
		both human health and the environment.
5.	Business Model (Revenue Model)	Improvement of life standard, local
		employment, social bonds creation, income
		development, better health, consumer choice,
		demographic impacts, and community
		development can be achieved by the proper
		usage of renewable energy systems.
6.	Scalability of the Solution	It can be applied on the large scale in the
		existing wind farm. So the performance can also be
		improved.