MAT0122 ÁLGEBRA LINEAR I FOLHA DE SOLUÇÃO

Nome: Gabriel Haruo Hanai Takeuchi Número USP: 13671636

Assinatura

Gabriel Haruo Hanai Takeuchi

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E8 (Problema 2.14.5 de PNK) Data: 31/08/2022

SOLUÇÃO

1. $\mathbf{u} = 0010010$

A subset whose sum is \mathbf{u} is $\{\mathbf{c}, \mathbf{d}\}$, since:

$$c + d = 0011100 + 0001110 = 0010010 = u$$

2. $\mathbf{u} = 0100010$

Suppose there is a valid subset.

This is a table for all 7-vectors:

	7	6	5	4	3	2	1
a	1	1	1	0	0	0	0
b	0	1	1	1	0	0	0
\mathbf{c}	0	0	1	1	1	0	0
\mathbf{d}	0	0	0	1	1	1	0
\mathbf{e}	0	0	0	0	1	1	1
\mathbf{f}	0	0	0	0	0	1	1
u	0	1	0	0	0	1	0

Regarding bit 7, we can reject vector \mathbf{a} , since there are no other vectors whose sum with \mathbf{a} could result in a most significant bit 0, such as \mathbf{u} . We are left with $\{b, c, d, e, f\}$.

Regarding bit 6, we need vector **b** for the sum of the sixth bit to be 1. We are left with $\{b^1, c, d, e, f\}$.

Regarding bit 5, we need vector \mathbf{c} for the sum of the fifth bit to be 1 (fifth bit of \mathbf{b} + fifth bit of \mathbf{c}). We are left with $\{b, c, d, e, f\}$.

Regarding bit 4, we cannot have vector \mathbf{d} , since the sum of the fourth bit would be 1 and it has to be 0. We are left with $\{b, c, e, f\}$.

Regarding bit 3, we need vector \mathbf{e} for the sum of the third bit to be 0. We are left with $\{b, c, e, f\}$.

¹obs.: the italicized vectors inside the set are the essential ones.

Regarding bit 2, we cannot have vector \mathbf{f} , since the sum of the second bit would be 0 and it has to be 1.

We are left with $\{b, c, e\}$.

By making the addition

$$b + c + e = 010001$$

we are left with a vector \mathbf{not} equal to \mathbf{u} . This makes our initial assumption wrong.

Therefore, such subset does not exist.