

CD4511BMS

CMOS BCD-to-7-Segment Latch Decoder Drivers

December 1992

Features

- · High Voltage Type (20V Rating)
- High Output Sourcing Capability up to 25mA
- · Input Latches for BCD Code Storage
- · Lamp Test and Blanking Capability
- 7 Segment Outputs Blanked for BCD Input Codes > 1001
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C

Applications

- Driving Common Cathode LED Displays
- Multiplexing with Common Cathode LED Displays
- Driving Incandescent Displays
- Driving Low Voltage Fluorescent Displays

Description

CD4511BMS is a BCD-to-7-Segment latch decoder drivers constructed with CMOS logic and n-p-n bipolar transistor output devices on a single monolithic structure. These devices combine the low quiescent power dissipation and high noise immunity features of Intersil CMOS with n-p-n bipolar output transistors capable of sourcing up to 25mA. This capability allows the CD4511BMS types to drive LED's and other displays directly.

Lamp Test (\overline{LT}) , Blanking (\overline{BL}) , and Latch Enable or Strobe inputs are provided to test the display, shut off or intensity modulate it, and store or strobe a BCD code, respectively. Several different signals may be multiplexed and displayed when external multiplexing circuitry is used.

These devices are similar to the type MC14511.

The CD4511BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4W Frit Seal DIP H2R Ceramic Flatpack H6W

Pinout

Functional Diagram

7-Segment Display

Absolute Maximum Ratings

Reliability Information

The second Descriptions	0	0
Thermal Resistance	θ_{ia}	$\theta_{\sf jc}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD)) at +125°C	
For T _A = -55°C to +100°C (Package Typ	oe D, F, K) .	500mW
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package T	ype D, F, K)	Derate
Lineari	ity at 12mW/	°C to 200mW
Device Dissipation per Output Transistor .		100mW
For T _A = Full Package Temperature Rar	nge (All Pack	age Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (N	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μА
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	i	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load ((Note 3)	1	+25°C	14.1	-	V
			_		+125°C	14.2		V
					-55°C	14.0		V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	DD = 5V, VOUT = 0.4V		+25°C	1	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0).5V	1	+25°C	2.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	1.5V	1	+25°C	6.8	-	mA
Output Drive Voltage	LVOH5	VDD = 5V, IOH = -20n	nA	1	+25°C	3.4	-	V
Output Drive Voltage	LVOH10	VDD = 10V, IOH = -20)mA	1	+25°C	8.6	-	V
Output Drive Voltage	LVOH15	VDD = 15V, IOH = -20)mA	1	+25°C	13.7	-	V
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μΑ	4	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 3.6V	VDD = 5V, VOH > 3.6V, VOL < 0.5V		+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 3.6V	VDD = 5V, VOH > 3.6V, VOL < 0.5V		+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 12 VOL < 1.5V	VDD = 15V, VOH > 12.6V, VOL < 1.5V		+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 12 VOL < 1.5V	2.6V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD implemented.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	1040	ns
Data to Output			10, 11	+125°C, -55°C	-	1404	ns
Propagation Delay	TPLH	VDD = 5V, VIN = VDD or GND	9	+25°C	-	1320	ns
Data to Output			10, 11	+125°C, -55°C	-	1782	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	310	ns
			10, 11	+125°C, -55°C	-	419	ns
Transition Time	TTLH	VDD = 5V, VIN = VDD or GND	9	+25°C	-	80	ns
			10, 11	+125°C, -55°C	i	108	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C	4.1	-	V
		T	1, 2	+125°C	4.2	-	V
		T	1, 2	-55°C	4.0	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C	9.1	-	V
		[1, 2	+125°C	9.2	-	V
		T	1, 2	-55°C	9.0	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V
Propagation Delay	TPHL	VDD = 10V	1, 2, 3	+25°C	-	420	ns
Data to Output		VDD = 15V	1, 2, 3	+25°C	-	300	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS(Continued)

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPLH	VDD = 10V	1, 2, 3	+25°C	-	520	ns
Data to Output		VDD = 15V	1, 2, 3	+25°C	-	360	ns
Propagation Delay	TPHL	VDD = 5V	1, 2, 3	+25°C	-	700	ns
(BT)		VDD = 10V	1, 2, 3	+25°C	-	350	ns
		VDD = 15V	1, 2, 3	+25°C	-	250	ns
Propagation Delay	TPLH	VDD = 5V	1, 2, 3	+25°C	-	800	ns
(BT)		VDD = 10V	1, 2, 3	+25°C	-	350	ns
		VDD = 15V	1, 2, 3	+25°C	-	300	ns
Propagation Delay	TPHL	VDD = 5V	1, 2, 3	+25°C	-	500	ns
(LT)		VDD = 10V	1, 2, 3	+25°C	-	250	ns
		VDD = 15V	1, 2, 3	+25°C	-	170	ns
Propagation Delay	TPLH	VDD = 5V	1, 2, 3	+25°C	-	300	ns
(LT)		VDD = 10V	1, 2, 3	+25°C	-	150	ns
		VDD = 15V	1, 2, 3	+25°C	-	100	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	185	ns
		VDD = 15V	1, 2, 3	+25°C	-	160	ns
Transition Time	TTLH	VDD = 10V	1, 2, 3	+25°C	-	60	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	-	150	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	70	ns
		VDD = 15V	1, 2, 3	+25°C	-	40	ns
Minimum Data Hold Time	TH	VDD = 5V	1, 2, 3	+25°C	-	0	ns
		VDD = 10V	1, 2, 3	+25°C	-	0	ns
		VDD = 15V	1, 2, 3	+25°C	-	0	ns
Minimum Strobe Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	400	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	160	ns
		VDD = 15V	1, 2, 3	+25°C	-	100	ns
Output Drive Voltage	LVOH5	VDD = 5V, IOH = -10mA	1, 2	+25°C	3.9	-	V
			1, 2	+125°C	3.9	-	V
			1, 2	-55°C	3.8	-	V
		VDD = 5V, IOH = -20mA	1, 2	-55°C	3.55	-	V
		VDD = 5V, IOH = -25mA	1, 2	+25°C	3.1	-	V
			1, 2	-55°C	3.4	-	V
Output Drive Voltage	LVOH10	VDD = 10V, IOH = -10mA	1, 2	+25°C	9.0	-	V
			1, 2	+125°C	9.0	-	V
			1, 2	-55°C	8.85	-	V
		VDD = 10V, IOH = -20mA	1, 2	+125°C	8.4	-	V
			1, 2	-55°C	8.7	-	V
		VDD = 10V, IOH = -25mA	1, 2	+25°C	8.3	-	V
			1, 2	-55°C	8.6	-	V

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS(Continued)

					LIM	ITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Drive Voltage	LVOH15	VDD = 15V, IOH = -10mA	1, 2	+25°C	14.0	-	V
			1, 2	+125°C	14.0	-	V
			1, 2	-55°C	13.9	-	V
		VDD = 15V, IOH = -20mA	1, 2	+125°C	13.5	-	V
			1, 2	-55°C	13.75	-	V
		VDD = 15V, IOH = -25mA	1, 2	+25°C	13.5	-	V
			1, 2	-55°C	13.65	-	V
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A

TABLE 6. APPLICABLE SUBGROUPS (Continued)

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D	•	Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V ± -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	9-15	1-8	16			
Static Burn-In 2 (Note 1)	9-15	8	1-7, 16			
Dynamic Burn- In (Note 1)	9-15	5, 8	3, 4, 16	-	1, 2, 7	6
Irradiation (Note 2)	9-15	8	1-7, 16			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

TRUTH TABLE

LE	BI	ΙŢ	D	С	В	Α	а	b	С	d	е	f	g	DISPLAY
Х	Х	0	Х	Х	Х	Х	1	1	1	1	1	1	1	8
Х	0	1	Х	Х	Х	Х	0	0	0	0	0	0	0	Blank
0	1	1	0	0	0	0	1	1	1	1	1	1	0	1
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	E
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5

TRUTH TABLE (Continued)

LE	BI	ΙΤ	D	С	В	Α	а	b	С	d	е	f	g	DISPLAY
0	1	1	0	1	1	0	0	0	1	1	1	1	1	Ь
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	9
0	1	1	1	0	1	0	0	0	0	0	0	0	0	Blank
0	1	1	1	0	1	1	0	0	0	0	0	0	0	Blank
0	1	1	1	1	0	0	0	0	0	0	0	0	0	Blank
0	1	1	1	1	0	1	0	0	0	0	0	0	0	Blank
0	1	1	1	1	1	0	0	0	0	0	0	0	0	Blank
0	1	1	1	1	1	1	0	0	0	0	0	0	0	Blank
1	1	1	Х	Х	Х	Х				*				*

X = Don't Care

NOTE: Display is blank for all illegal input codes (BCD > 1001).

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 3. TYPICAL DATA-TO-OUTPUT, LOW-TO-HIGH-LEVEL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE

^{*} Depends on BCD code previously applied when LE = 0

Typical Performance Characteristics

FIGURE 4. TYPICAL DATA-TO-OUTPUT, HIGH-TO-LOW-LEVEL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 5. TYPICAL LOW-TO-HIGH-LEVEL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 6. TYPICAL HIGH-TO-LOW TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 7. TYPICAL VOLTAGE DROP (VDD TO OUTPUT) vs OUT-PUT SOURCE CURRENT AS A FUNCTION OF SUPPLY

FIGURE 8. TYPICAL DYNAMIC POWER DISSIPATION CHARACTERISTICS

Applications Interfacing with Various Displays

DUTY CYCLE = 100%

ISEG = IDIODEAVG. = 20mA AT LUMINOUS INTENSITY/SEGMENT = 250µcd

$$R = \frac{VOH - VDF}{ISEG}$$

FIGURE 9. DRIVING COMMON CATHODE 7-SEGMENT LED DISPLAYS (EXAMPLE HEWLET-PACKARD 5082-7740)

A MEDIUM BRIGHTNESS INTENSITY DISPLAY CAN BE OBTAINED WITH LOW VOLTAGE FLUORESCENT DISPLAYS SUCH AS THE TUNG-SOL DIGIVAC S/G* SERIES

* Trademark Tung-Sol Division Wagner Electric Co.

2 OF 7 SEGMENTS SHOWN CONNECTED

RESISTORS R FROM VDD TO EACH 7-SEGMENT DRIVER OUTPUT ARE CHOSEN TO KEEP ALL NUMITRON SEGMENTS SLIGHTLY ON AND WARM

FIGURE 10. DRIVING LOW VOLTAGE FLOURESCENT DISPLAYS

FIGURE 11. DRIVING INCANDESCENT DISPLAYS (RCA NU-MITRON DR2000 SERIES DISPLAYS)

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Applications Interfacing with Various Displays (Continued) **MULTIPLEXING SCHEME SHOWING ISEG 2 OF 7 SEGMENTS CONNECTED** TRANSISTORS T1 - T4 (2N3053 OR 2N2102) D HAVE IC MAX. RATING > 7 x ISEG LE **DUTY CYCLE = 25% VDD** ISEG = (IDIODEAVG) x 4 (VOH - VDF-VCE) ISEG VCE VO1 Q0 4 T1 ↓ vss V02 Q1 T2 CD4024BMS CD4555BMS vss VO3 Q2 Q3 vss

FIGURE 12. MULTIPLEXING WITH COMMON CATHODE 7-SEGMENT LED DISPLAYS (EXAMPLE HEWLET-PACKARD 5082-7404 4 CHARACTER DISPLAY OR 4 DISCRETE MONOSANTO MAN 3 DISPLAYS)

Waveforms

FIGURE 13. DYNAMIC WAVEFORMS

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL. PASSIVATION: 10.4kÅ - 15.6kÅ, Silane
BOND PADS: 0.004 inches X 0.004 inches MIN
DIE THICKNESS: 0.0198 inches - 0.0218 inches