You submitted this guiz on Sat 24 Jan 2015 8:27 AM CET. You got a score of 5.00 out of 5.00.

Question 1

Let two matrices be

$$A = \begin{bmatrix} 1 & -4 \\ -2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$$

What is A + B?

Your Answer

Score

Explanation

$$\begin{bmatrix} 1 & -1 \\ 7 & 9 \end{bmatrix}$$

$$\begin{bmatrix}
1 & -7 \\
-7 & -7
\end{bmatrix}$$

$$\bigcirc \begin{bmatrix} 1 & 7 \\ 7 & 9 \end{bmatrix}$$

$$\begin{array}{c|cc}
\hline
1 & -1 \\
3 & 9
\end{array}$$

✓ 1.00

To add two matrices, add them element-wise.

Total

1.00 / 1.00

Question 2

$$Let x = \begin{bmatrix} 2 \\ 7 \\ 4 \\ 1 \end{bmatrix}$$

What is 3 * x?

Your Answer

Score **Explanation**

$$\begin{bmatrix}
\frac{2}{3} \\
\frac{7}{3} \\
\frac{4}{3} \\
\frac{1}{3}
\end{bmatrix}$$

$$\begin{bmatrix} \frac{2}{3} & \frac{7}{3} & \frac{4}{3} & \frac{1}{3} \end{bmatrix}$$

Question 3

Let u be a 3-dimensional vector, where specifically

$$u = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$

What is u^{T} ?

Your Answer	Score	Explanation
○ [4 1 8]		
[8 1 4]	1.00	
$\begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$		
$\begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$		
Total	1.00 / 1.00	

Question 4

Let u and v be 3-dimensional vectors, where specifically

$$u = \begin{bmatrix} 4 \\ -4 \\ -3 \end{bmatrix} \text{ and } v = \begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix}$$

What is $u^T v$?

(Hint: u^T is a 1x3 dimensional matrix, and v can also be seen as a 3x1 matrix. The answer you want can be obtained by taking the matrix product of u^T and v.)

You entered:

-4

Your Answer		Score	Explanation
-4	~	1.00	
Total		1.00 / 1.00	

Question 5

Let A and B be 3x3 (square) matrices. Which of the following must necessarily hold true?

Your Answer	S	core	Explanation
	✔ 0	.25	Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m \times n$. matrix, and B a $n \times o$ matrix, then C would be $m \times o$. (In our example, $m = n = o = 3$.)
✓ If B is the 3x3 identity matrix, then $A * B = B * A$	✔ 0	.25	Even though matrix multiplication is not commutative in general $(A*B \neq B*A \text{ for general matrices } A, B)$, for the special case where $B=I$, we have $A*B=A*I=A$, and also $B*A=I*A=A$. So, $A*B=B*A$.
A*B = B*A	✓ 0	.25	We saw in the lecture that matrix multiplication is not commutative in general.
✓ If v is a 3	~ 0	.25	Since A and B are both 3x3 matrices, $A*B$ is 3x3 matrix.

dimensional vector, then $A*B*v$ is a 3 dimensional vector.	Thus, $(A*B)*v$ is a 3x3 matrix times a 3×1 matrix (since v is a 3 dimensional vector, and thus also a 3x1 matrix), and the result gives a 3x1 vector.
Total	1.00 /
	1.00