TEORIA GRAFURILOR ȘI COMBINATORICĂ

Răspunsuri la examenul parțial (B)

4 decembrie 2015

- 1. Fie A mulţimea numerelor întregi cuprinse între 12 şi 547 inclusiv; $N=|A|;\ N_3=$ câte numere din A se divid cu 3; $N_5=$ câte numere din A se divid cu 5; şi N_{15} câte numere din A se divid cu 3 şi 5 (deci cu 15). Conform principiului incluziunii şi excluziunii, numărul căutat este $N-N_3-N_5+N_{15}$. Însă $N=547-12+1=536,\ N_3=182-4+1=179,\ N_5=109-3+1=107,\$ şi $N_{15}=36-1+1=36,\$ deci numărul căutat este 536-179-107+36= **286**.
- 2. (a) Permutarea $\langle 1, 2, 5, 6, 4, 3 \rangle$ are rangul 17.
 - (b) $108_6 = 300 \Rightarrow 3$ -permutarea cu repetiție a lui $\{1, 2, 3, 4, 5, 6\}$ are are rangul 108 este $\langle \mathbf{4}, \mathbf{1}, \mathbf{1} \rangle$.
 - (c) $\langle 4, 3, 7, 1, 2, 5, 6, 7, 8, 9 \rangle$.
- 3. (a) Aplicăm regula produsului:
 - Mai întâi alegem pozițilie unde apare 8: sunt C(5,2) posibilități.
 - Apoi alegem una din cele 3 poziții rămase, unde apare cifra 7: sunt C(3,1) posibilități.
 - Apoi completăm cele 2 poziții rămase cu cifre diferite de 8 și 7: sunt 14² posibilități.

Deci numărul căutat este $C(5,2) \cdot C(3,1) \cdot 14^2$.

(b) Un astfel de şir conține cifra 6 de k ori, unde k=0,1,2 sau 3. Numărul de şiruri din M care conțin cifra 6 de k ori este $C(5,k) \cdot 15^{5-k}$. Din regula sumei rezultă că numărul căutat este

$$C(5,0) \cdot 15^5 + C(5,1) \cdot 15^4 + C(5,2) \cdot 15^3.$$

- (c) **16** şiruri: 00000, 11111, ..., EEEEE, FFFFF.
- 4. Ecuația caracteristică este $r^2 10r + 25 = 0$, care are rădăcina dublă r = 5. Deci $a_n = (a \cdot n + b) \cdot 5^n$ pentru $n \ge 0$. Din condițiile $a_0 = 4$, $a_1 = 35$ rezultă că b = 4 și a = 3. Deci $\mathbf{a_n} = (\mathbf{3n} + \mathbf{4}) \cdot \mathbf{5^n}$.

- 5. (a) Evident că $a_1 = 3$. Dacă $n \ge 2$, atunci un astfel de şir de lungime n fără cifre consecutive este de forma $d_1d_2 \dots d_n$. Aplicăm regula produsului pentru a număra câte şiruri de acest fel putem construi, de la stânga la dreapta:
 - Pentru d_1 putem alege orice cifră din $\{1,2,3\} \Rightarrow 3$ posibilități.
 - Pentru d_i ($2 \le i \le n$) putem alege orice cifră din $\{1, 2, 3\}$ diferită de $d_{i-1} \Rightarrow 2$ posibilități.

Rezultă că $a_n = 3 \cdot \underbrace{2 \cdot \ldots \cdot 2}_{n-1 \text{ ori}} = 3 \cdot 2^{n-1}$. Deci $\mathbf{a_n} = \mathbf{3} \cdot \mathbf{2^{n-1}}$.

(b) $\mathbf{a_4} = \mathbf{3} \cdot \mathbf{2^3} = \mathbf{24}$.

- (a) $G = \{(1)(2)(3)(4)(5)(6), (1,2)(3)(4)(5,6), (1,5)(3,4)(2,6), (1,6)(2,5)(3,4)\}.$
- (b) $\frac{1}{4} \cdot (3^6 + 3^4 + 2 \cdot 3^3) = 216$.
- 7. (a) În câte feluri se pot pune n persoane la k mese rotunde astfel încât toate mesele să fie ocupate.
 - (b) **(b5)**.

Punctaj:

Start: 1pt

1: 1pt

2: (a) 0.75pt; (b) 0.75pt; (c) 0.5pt

3: $0.5 \times 3 = 1.5$ pt

4: 1pt

5: $0.75 \times 2 = 1.5$ pt

6: $0.5 \times 2 = 1$ pt

7: $0.5 \times 2 = 1$ pt

Total: 10pt