Name: _____

Math Club: Contest Week Four

Release Date: October 19, 2022

Instructions: Solve the following problem the best you can, first to submit the correct solution via email or the secretaries in Room 332 (with time stamp) wins!

Problem 1. If x + y + z = 0, then compute

$$\left(\frac{y-z}{x} + \frac{z-x}{y} + \frac{x-y}{z}\right) \left(\frac{x}{y-z} + \frac{y}{z-x} + \frac{z}{x-y}\right).$$

Solution. Let us look at

$$\begin{split} \frac{y-z}{x} + \frac{z-x}{y} + \frac{x-y}{z} &= \frac{yz(y-z) + zx(z-x) + xy(x-y)}{xyz} \\ &= \frac{y^2z - yz^2 + z^2x - x^2z + x^2y - xy^2}{xyz} \\ &= \frac{(z^2 + xy - yz - zx)(x-y)}{xyz} \\ &= \frac{(z(z-y) - x(z-y))(x-y)}{xyz} = -\frac{(y-z)(z-x)(x-y)}{xyz}. \end{split}$$

Since x + y + z = 0, it follows that -x = y + z, -y = x + z, and -z = x + y. Thus,

$$(z-x) - (x-y) = z + y - 2x = -3x$$
$$(x-y) - (y-z) = x + z - 2y = -3y$$
$$(y-z) - (z-x) = y + x - 2z = -3z$$

Thus,

$$\frac{x}{y-z} + \frac{y}{z-x} + \frac{z}{x-y} = -\frac{1}{3} \left(\frac{(z-x) - (x-y)}{y-z} + \frac{(x-y) - (y-z)}{z-x} + \frac{(y-z) - (z-x)}{x-y} \right).$$

By substitution reusing the first part of our solution

$$\frac{x}{y-z} + \frac{y}{z-x} + \frac{z}{x-y} = \frac{1}{3} \left(\frac{((y-z) - (z-x))((z-x) - (x-y))((x-y) - (y-z))}{(y-z)(z-x)(x-y)} \right)$$

$$= \frac{1}{3} \left(\frac{(-3z)(-3x)(-3y)}{(y-z)(z-x)(x-y)} \right) = -\frac{9xyz}{(y-z)(z-x)(x-y)}.$$

So

$$\left(\frac{y-z}{x} + \frac{z-x}{y} + \frac{x-y}{z}\right) \left(\frac{x}{y-z} + \frac{y}{z-x} + \frac{z}{x-y}\right)$$

$$= \left(-\frac{(y-z)(z-x)(x-y)}{xyz}\right) \left(-\frac{9xyz}{(y-z)(z-x)(x-y)}\right) = 9.$$