삼성 DS²과정 프로젝트

Image Restoration Challenge

Jongho Lee, Ph.D

Laboratory for Imaging Science and Technology
Department of Electrical and Computer Engineering
Seoul National University

LABORATORY for I MAGING
SCIENCE &
TECHNOLOGY

프로젝트, 프로젝트, 프로젝트 ...

Classes

제5회 2025 SNU FastMRI Challenge

참가대상

서울대 학부생(1팀 최대 2명)

대회기간

2025.07.01(화) - 2025.08.20(수)

참가방법

온라인접수 (fastmri.snu.ac.kr)

문의방법

이메일문의 (fastmri.snu@gmail.com)

금

총 2,000만원(1등 1,000만원)

괜찮아요!

Deep Learning 몰라요? MRI 몰라요?

→ Tutorial + Q&A 있습니다~

SNU FastMRI Challenge

	2021	2022	2023	2024	2025
-학과	28	41	33	35	34
<u></u> 팀	105	142	144	158	180
— в	174	217	221	254	278

TOP 5	전기정보공학부	92
	기계공학부	16
	컴퓨터공학부	11
	자유전공학부	5
	물리천문학부	4
	회학교육과	4

원자핵공학과

전기정보공학부	101	전기정보공학부	90	전기정보공학부	79	전기정보공학부	88
기계공학부	14	기계공학부	15	컴퓨터공학부	34	컴퓨터공학부	47
컴퓨터공학부	14	자유전공학부	14	기계공학부	31	첨단융합학부	31
자유전공학부	10	컴퓨터공학부	12	점단융합학부	13	기계공학부	26
물리천문학부	8	조선해양공학과	10	지유전공학부	12	지유전공학부	15

2025년

참여학과: **34개 학과, 180팀**

참여인원: 278명

제5회 제1회

삼성DS²과정 Digital Image Processing Challenge

Semiconductor **Image Processing** Challenge

참가대상

서울대 학부생(1팀 최대 2명) 삼성DS²과정생

총 2,000만원(1등 1,000만원)

To be announced

대회기간

200F 07 01/51) 200F 00 20/41 ZUZJ.U1.U1(¥)) - ZUZJ.UU.ZU(干)

괜찮아요!

Deep Learning 몰라요? MRI 몰라요?

참가방법

온라인접수 (fastmri.snu.ac.kr)

→ Tutorial + Q&A 있습니다~

문의방법

이메일문의 (fastmri.snu@gmail.com)

Basic model for degradation

$$I(x,y) \longrightarrow \begin{array}{c} \text{Degradation} \\ \text{PSF: h(x,y)} \\ \text{(e.g blur)} \end{array} \longrightarrow \begin{array}{c} \hat{I}(x,y) \\ \\ n(x,y) \\ \text{noise} \end{array}$$

$$\hat{I}(x,y) \longrightarrow \begin{array}{c} \text{Restoration} \\ \text{filter: r(x,y)} \end{array} \longrightarrow \begin{array}{c} J(x,y) \\ \end{array}$$

$$\hat{I}(x,y) = I(x,y) * h(x,y) + n(x,y)$$
 $J(x,y) = \hat{I}(x,y) * r(x,y) + n(x,y) * r(x,y)$
 $\hat{I}(u,v) = I(u,v)H(u,v) + N(u,v)$ $J(u,v) = \hat{I}(u,v)R(u,v) + N(u,v)R(u,v)$

Easier case

- H = identity (no blur)
 - Degraded image only contains additive noise.
- Noise is typically described by a PMF

$$P(n(x, y) = z)$$
 assume I.I.D.

- Noise may be due to
 - Non-ideal sensor elements
 - Environmental conditions (light level, temp)
 - Corruption during transmission / compression

Noisy images

Determine noise type and power?

- Typical ways
 - Find a region that should be flat (constant intensity)
 - Look at image histogram

$$\hat{\mu} = \sum_{z_i \leftarrow s} z_i p_i(z_i)$$

$$\widehat{\sigma^2} = \sum_{z_i \leftarrow s} (z_i - \mu)^2 p_i(z_i)$$

Denoising

- Low pass filter (image domain, Fourier domain)
- Median filter for salt and pepper noise
- Adaptive filter
- Deep learning based denoising

What happens when we also have degradation?

$$\bullet \hat{I}(x,y) = I(x,y) * h(x,y) + n(x,y)$$

•
$$\hat{I}(u,v) = I(u,v) H(u,v) + N(u,v)$$

blur

• How do we estimate h(x, y)?

What happens when we also have degradation?

Guess: Take a piece of the degraded image and guess what the original image should have looked like

$$\hat{I}_S(u,v)$$
 vs. $\hat{G}_S(u,v)$
S = guess area Manual guess

$$H(u,v) = \frac{\hat{I}_S(u,v)}{\hat{G}_S(u,v)}$$

- Experiment if you have access to the imaging device: Directly acquire the impulse response / point spread function
- Estimate h(x, y) (e.g. Gaussian blur)

Inverse filtering

- We have the degraded image I(x,y)
- We have the estimated blur h(x,y)
- Inverse filtering

$$J(u,v) = \frac{\hat{I}(u,v)}{H(u,v)}$$

• Usually is bad. Why?

$$J(u,v) = \frac{I(u,v)H(u,v) + N(u,v)}{H(u,v)} = I(u,v) + \frac{N(u,v)}{H(u,v)}$$

 \times If H(u,v) is very small for some (u,v) then $\frac{N(u,v)}{H(u,v)}$ is very large \Rightarrow poor reconstructions.

Wiener filter

Wiener filter: minimum mean-square error filtering

$$e^2 = E\left\{ \left(I(x,y) - \hat{I}(x,y) \right)^2 \right\}$$
 $S_F = |I(u,v)|^2, S_n = |N(u,v)|^2$

$$J(u,v) = \left[\frac{H^*(u,v) S_F(u,v)}{S_F(u,v)|H(u,v)|^2 + S_n(u,v)} \right] \hat{I}(u,v)$$
$$= \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + \frac{S_n(u,v)}{S_F(u,v)}} \right] \hat{I}(u,v)$$

• If we don't know $S_F(u, v)$ (requiring the original image), we use:

$$\bar{\bar{I}}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K}\right] \hat{I}(u,v)$$
Tunable parameter

Wiener filter

Wiener filter

Project overview

- Goal: construct a pipeline to restore corrupted images into clean images
- Dataset
 - Clean gray-scale images
 - Corrupted images generated by
 - Convolution with a 2D kernel
 - Addition of noise

Project overview

- Potential restoration strategies:
 - Classical Wiener filter
 - End-to-end neural network: train a single network to restore clean
 - Two-stage neural network: train a denoising network and a deconvolution network separately

Challenge & approaches

- In practical scenarios, clean ground-truth images are rarely available
 - → A purely supervised approach is unrealistic in many applications
- Possible approaches to consider:
 - Denoising: self-supervised learning, filtering, ...
 - Deconvolution: leveraging multi-orientation information, regularization, thresholding, ...
 - General approach: generating pseudo labels, and any other creative ways

Multiple directional convolution images available for kernel estimation

Dataset

- Train / validation dataset:
 - Clean images: 7,368
 - Forward corruption model:
 - 2D dipole convolution (model is given)
 - Noise model (noise characteristic is not given)
 - For each clean image, you may synthesize corrupted variants, using the provided model
- Test dataset:
 - Corrupted images only: 100 images (one per sample)
 - No clean labels provided

Training data

- Train / validation dataset:
 - X is provided

- Convolution & add noise can be performed via simulator

Test

• Test dataset:

- Corrupted images only: 100 images (one per sample)
- No clean labels provided
- Test code is provided with encrypted evaluator
- Run test code with your test data on the Colab

Task

- Use the forward model to synthesize training pairs
- Construct a pipeline to restore corrupted images into clean images
- You are free to explore any architectures or algorithms
 - Classical image processing
 - End-to-end approach (corrupted → clean)
 - Two-stage approach (denoising + deconvolution)
 - Self-supervised or label-free strategies (recommended for realism)
 - Etc.

• Requirements:

- For each clean image, you may generate up to 6 dipole kernel orientations.
- For each orientation, you may generate up to 2 noisy images.
- Do not exceed 12 corrupted images per clean image (6 orientations × 2 noises)

Evaluation

- Metric (on test dataset)
 - On test dataset
 - PSNR, SSIM
- Presentation
 - Explain your overall pipeline clearly
 - Show example restoration results (before/after).
 - Justify why you chose your specific method.
- Label-free pipelines will receive partial bonus consideration.