Suponga que se han construido los vectores \mathbf{u}_1 , \mathbf{u}_2 , . . . \mathbf{u}_k (k < m) y que forman un conjunto ortonormal. Se mostrará cómo construir \mathbf{u}_{k+1} .

Paso 4. Continuación del proceso

Sea

$$\mathbf{v'}_{k+1} = \mathbf{v}_{k+1} - (\mathbf{v}_{k+1} \cdot \mathbf{u}_1) - (\mathbf{v}_{k+1} \cdot \mathbf{u}_2) \, \mathbf{u}_2 - \dots - (\mathbf{v}_{k+1} \cdot \mathbf{u}_k) \, \mathbf{u}_k \tag{6.1.15}$$

entonces para $i = 1, 2, \ldots, k$

$$\mathbf{v'}_{k+1} \cdot \mathbf{u}_i = \mathbf{v}_{k+1} \cdot \mathbf{u}_i - (\mathbf{v}_{k+1} \cdot \mathbf{u}_1) (\mathbf{u}_1 \cdot \mathbf{u}_i) - (\mathbf{v}_{k+1} \cdot \mathbf{u}_2) (\mathbf{u}_2 \cdot \mathbf{u}_i) - \cdots - (\mathbf{v}_{k+1} \cdot \mathbf{u}_i) (\mathbf{u}_1 \cdot \mathbf{u}_i) - \cdots - (\mathbf{v}_{k+1} \cdot \mathbf{u}_k) (\mathbf{u}_k \cdot \mathbf{u}_i)$$

Pero $\mathbf{u}_i \cdot \mathbf{u}_i = 0$ si $j \neq i$ y $\mathbf{u}_i \cdot \mathbf{u}_i = 1$. Por tanto,

$$\mathbf{v'}_{k+1} \cdot \mathbf{u}_i = \mathbf{v}_{k+1} \cdot \mathbf{u}_i - \mathbf{v}_{k+1} \cdot \mathbf{u}_i = 0$$

Así, $\{\mathbf{u}_1, \mathbf{u}_2, \dots \mathbf{u}_k, \mathbf{v}'_{k+1}\}$ es un conjunto linealmente independiente, ortogonal y $\mathbf{v}'_{k+1} \neq \mathbf{0}$.

Paso 5

Sea $\mathbf{u}_{k+1} = \mathbf{v'}_{k+1}/|\mathbf{v'}_{k+1}|$. Entonces es claro que $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}\}$ es un conjunto ortonormal, y se puede continuar de esta manera hasta que k+1=m, con lo que se completa la prueba.

Nota. Como cada \mathbf{u}_i es una combinación lineal de vectores \mathbf{v}_i , gen $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ es un subespacio de gen $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, y como cada espacio tiene dimensión k, los espacios son iguales.

EJEMPLO 6.1.4 Construcción de una base ortonormal en \mathbb{R}^3

Construya una base ortonormal en \mathbb{R}^3 comenzando con la base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$.

SOLUCIÓN > Se tiene
$$|\mathbf{v}_1| = \sqrt{2}$$
, entonces $\mathbf{u}_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$. Entonces

$$\mathbf{v'}_{2} = \mathbf{v}_{2} - (\mathbf{v}_{2} \cdot \mathbf{u}_{1}) \ \mathbf{u}_{1} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix}$$

Como
$$|\mathbf{v'}_{2}| = \sqrt{\frac{3}{2}}, \mathbf{u}_{2} = \sqrt{\frac{2}{3}} \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}.$$