Least squares temporal difference learning

$TD(\lambda)$

□ Good properties of TD

- * Easy to implement, traces achieve the forward view
- **★** Linear complexity = fast
- * Combines easily with linear function approximation
- * Outperforms MC methods in practice

Can we do better than $TD(\lambda)$

- □ Bad properties of TD
- Diverges with off-policy sampling
- □ It's less data efficient than it could be:
 - * makes a small incremental update from each sample, then throws it away
 - * it doesn't build a model of the environment
 - * or save data and make multiple passes over the data
 - * stochastic semi-gradient descent

A least squares approach to TD(0), on-policy

- The TD fixed-point solution is the weight vector found by TD in the limit of infinite sampling
- □ The weight vector corresponding to zero MSPBE
- \square It also corresponds to: $E[\delta_t(\theta)\varphi_t \mid \pi] = 0$
 - * the expected (TD-error * features), with samples drawn according to π is zero.

A least squares approach to TD(0), on-policy

$$\Box E[\boldsymbol{\delta}_{t}(\theta)\boldsymbol{\Phi}_{t} \mid \boldsymbol{\pi}] = 0$$

* we can approximate this by making it zero with respect to the observed data

$$\frac{1}{T} \sum_{t=1}^{T} \delta_t(\theta) \phi_t = 0$$

$$= \frac{1}{T} \sum_{t=1}^{T} \left(R_{t+1} + \gamma \theta^{\top} \phi(S_{t+1}) - \theta^{\top} \phi(S_t) \right) \phi(S_t)$$

LSTD(0)

$$= \frac{1}{T} \sum_{t=1}^{T} \left(R_{t+1} + \gamma \theta^{\top} \phi(S_{t+1}) - \theta^{\top} \phi(S_{t}) \right) \phi(S_{t})$$

$$= \frac{1}{T} \sum_{t=1}^{T} R_{t+1} \phi(S_{t}) + \left(\gamma \theta^{\top} \phi(S_{t+1}) - \theta^{\top} \phi(S_{t}) \right) \phi(S_{t})$$

$$= \frac{1}{T} \sum_{t=1}^{T} R_{t+1} \phi(S_{t}) + \frac{1}{T} \sum_{t=1}^{T} \left(\gamma \theta^{\top} \phi(S_{t+1}) - \theta^{\top} \phi(S_{t}) \right) \phi(S_{t})$$

$$= \mathbf{b} + \frac{1}{T} \sum_{t=1}^{T} \left(\gamma \theta^{\top} \phi(S_{t+1}) - \theta^{\top} \phi(S_{t}) \right) \phi(S_{t})$$

$$= \mathbf{b} + \frac{1}{T} \sum_{t=1}^{T} \left(\gamma \phi(S_{t+1})^{\top} \theta - \phi(S_{t})^{\top} \theta \right) \phi(S_{t})$$

$$= \mathbf{b} + \frac{1}{T} \sum_{t=1}^{T} \left(\gamma \phi(S_{t}) \phi(S_{t+1})^{\top} \theta - \phi(S_{t}) \phi(S_{t})^{\top} \theta \right)$$

$$= \mathbf{b} + \frac{1}{T} \sum_{t=1}^{T} \phi(S_{t}) \left(\gamma \phi(S_{t+1}) - \phi(S_{t}) \right)^{\top} \theta$$

$$= \mathbf{b} - \frac{1}{T} \sum_{t=1}^{T} \phi(S_{t}) \left(\phi(S_{t}) - \gamma \phi(S_{t+1}) \right)^{T} \theta$$

$$0 = \mathbf{b} - A_{\pi} \theta$$

LSTD(0)

$$0 = \boldsymbol{b} - A_{\pi}\theta$$
thus,
 $\theta = A_{\pi}^{-1}\boldsymbol{b}$

$$A_{\pi} = \frac{1}{T} \sum_{t=1}^{T} \phi(S_t) (\phi(S_t) - \gamma \phi(S_{t+1}))^{T}$$

$$\mathbf{b} = \frac{1}{T} \sum_{t=1}^{T} R_{t+1} \phi(S_t)$$

Batch policy evaluation with LSTD(0)

- 1. Collect a batch of data by selecting actions according to π
- 2. Compute A_{π} and **b**
- 3. Compute inverse of A_{π}
 - typically with a numerically stable method designed for large matrices
 - e.g., Singular value decomposition
- 4. Directly compute $\theta = (A_{\pi})^{-1}\mathbf{b}$

Incremental policy evaluation with LSTD(0)

- 1. Initialize A_{π} and **b** to zero
- 2. On each step, take action A_t according to π and observe S_{t+1} and R_{t+1}

1.
$$A_{\pi,t+1} = A_{\pi,t} + \phi_t(\phi_t - \gamma\phi_{t+1})^{\top}$$

2.
$$\mathbf{b}_{t+1} = \mathbf{b}_t + R_{t+1}\phi_t$$

• Invert A_{π} and compute $\theta = (A_{\pi})^{-1}b$ when required

LSTD(0) v TD(0)

- □ Advantages of LSTD(0) algorithm:
- □ No learning rate parameter
- No bias due to initial value function
- Performs much better than TD(0) in practice...more latter

Multiple ways to arrive at LSTD(0) algorithm

- □ Start with the MSPBE
- □ Take the gradient
- Set it equal to zero
- \Box And directly solve for θ

MSPBE

$$MSPBE(\theta) = \| V_{\theta} - \Pi T V_{\theta} \|_{D}^{2}$$

- □ We can rewrite the MSPBE as:
 - * $MSPBE(\theta) = (A_{\pi}\theta \mathbf{b})^{T}C^{-1}(A_{\pi}\theta \mathbf{b})$
 - * where A_{π} is the LSTD(0) matrix
 - **★ b** is the same as in LSTD(0)
 - * C⁻¹ is the inverse feature covariance matrix $C = E[\phi_t \phi_t^T]$
- \Box Take gradient of MSPBE(θ) with respect to θ
 - * $\nabla_{\theta}MSPBE(\theta) = A_{\pi} C^{-1}(A_{\pi}\theta \mathbf{b})$

MSPBE

$$MSPBE(\theta) = \| V_{\theta} - \Pi T V_{\theta} \|_{D}^{2}$$

- $\Box \nabla_{\theta} MSPBE(\theta) = A_{\pi} C^{-1} (A_{\pi} \theta \mathbf{b})$
- $\Box A_{\pi} C^{-1}(A_{\pi}\theta \mathbf{b}) = 0$
 - * A_{π} and C^{-1} inverses exist
 - ***** $(A_{\pi}\theta \mathbf{b}) = 0$
 - ***** $\theta = A_{\pi}^{-1} \mathbf{b}$
- □ Same as LSTD(0)
- The LSTD solution is the direct or closed form solution of the MSPBE

$LSTD(\lambda)$

- To derive the algorithm, again we start with the TDfixed point
- □ In the case of λ >0, the weight vector corresponding to the TD-fixed point satisfies:
- $\Box E[\boldsymbol{\delta}_{t}(\theta)\mathbf{e}_{t} \mid \boldsymbol{\pi}] = 0$
- $\ \square$ Can you follow the same derivation to get the update equations for LSTD(λ)...or template match as guess the algorithm

$LSTD(\lambda)$

$$\mathbf{e}_{t} \leftarrow \gamma \lambda \mathbf{e}_{t-1} + \phi_{t}$$

$$A_{\pi,t+1} = A_{\pi,t} + \mathbf{e}_{t} (\phi_{t} - \gamma \phi_{t+1})^{\top}$$

$$\mathbf{b}_{t+1} = \mathbf{b}_t + R_{t+1}\mathbf{e}_t$$

$LSTD(\lambda)$

- $\ \square$ Finds the same weight vector as found by $TD(\lambda)$ in the limit of infinite sampling
- Corresponds to the closed form solution to the λ version of the MSPBE

LSTD(\lambda) experiments

- □ Boyan Chain
- □ Episodic, 13-state chain
- □ 4D feature vector, but zero error solution possible—we can represent the true value function=[-24,-16,-8,0]

Experimental setup

- □ Want to compare $TD(\lambda)$ and $LSTD(\lambda)$ under early learning and asymptote (close to convergence with a computer program)
- □ Convergence of TD requires

*
$$\alpha_t \ge 0$$
; $\sum \alpha_t = \infty$; $\sum (\alpha_t)^2 < \infty$

- * e.g., $\alpha_t = 1/t$ (harmonic series)
- \square Boyan used $\alpha_{t} = \alpha_{0} (t_{0} + 1)/(t_{0} + t)$
 - \star bigger t_0 , slower α decreases

*
$$\alpha_0 = \{0.1, 0.01\}, t_0 = \{10^2, 10^3, 10^6\}$$

- □ Initial weights = zero vector
- □ Results averaged over 10 independent runs

Results

\(\) sensitivity

Experiment summary

- □ LSTD(λ) learns a good approximation of the value function with less data than TD(λ)
- \square LSTD(λ) gets better long-run error
- □ TD(λ)'s performance is dramatically effected by choice of step-size parameter
- \square LSTD(λ) does not seem sensitive to λ

More incremental form of LSTD

- □ Inverting the matrix in LSTD costs O(n³) computation
- Bradtke and Barto noticed that the Sherman-Morrison formula can be used to incrementally update the inverse of A_π:
 - $A_{\pi^{-1}} = A_{\pi^{-1}} + \text{outer product}$

$$C_{t+1} = C_t - \frac{C_t \mathbf{e_t} (\phi_t - \gamma \phi_{t+1})^\top C_t}{1 + (\phi_t - \gamma \phi_{t+1})^\top C_t \mathbf{e_t}}$$

$$\theta_{t+1} = C_{t+1} \mathbf{b}_{t+1}$$

incremental LSTD

$$C_{t+1} = C_t - \frac{C_t \mathbf{e_t} (\phi_t - \gamma \phi_{t+1})^\top C_t}{1 + (\phi_t - \gamma \phi_{t+1})^\top C_t \mathbf{e_t}}$$

- \square When we use batch LSTD(λ), we typically wait until we have process many samples before we invert A_π
- With the incremental version, we are effectively inverting the C matrix on every step
 - * in the beginning of learning this can lead to very poor behavior
 - * most of C is zero
- □ We initialize $C_0 = I\beta$
 - * β can be very small (e.g., 0.0001) or very large (e.g., 10000)
- \square Incremental LSTD(λ)'s performance is sensitive to this value

Sometimes we still want to do $TD(\lambda)$

- If the number of features is large, and/or the number of value functions is large
- □ O(n²) computation and memory per time-step, per value function hurts

Sometimes we still want to do $TD(\lambda)$

 Local IU work (Gehring, Pan, & White) on LSTD on Mountain Car domain

Sometimes we still want to do $TD(\lambda)$

□ Boyan's Backgammon experiment:

sometimes $TD(\lambda)$, sometimes $LSTD(\lambda)$

□ Boyan:

* "If a domain has many features and simulation data is available cheaply, then incremental methods such as $TD(\lambda)$ may have better real-time performance than least-squares methods. On the other hand, some reinforcement learning applications have been successful with small numbers of features ... and in these situations $LSTD(\lambda)$ should be superior."

□ Szepesvari:

* if we take into account **frequency** with which samples are available, $TD(\lambda)$ will achieve better accuracy than $LSTD(\lambda)$ at high sampling rates—e.g., some robots

Policy iteration with LSTD(λ)

- Use state-action features
- □ Define a behavior policy μ —(e.g., epsilon-greedy)
- □ Define a target policy $\pi = \mu$
- □ Select actions according to µ
- □ Use incremental LSTD(λ) to update θ

Like an LSTD variant of Sarsa(λ)

incremental LSTD for control

$$C_{t+1} = C_t - \frac{C_t \mathbf{e_t} (\phi_t - \gamma \phi_{t+1})^\top C_t}{1 + (\phi_t - \gamma \phi_{t+1})^\top C_t \mathbf{e_t}}$$

- $\hfill\Box$ There can be large variance in performance of incremental LSTD($\!\lambda\!$) control algorithm
- □ Best practice:
 - * use the algorithm in mini-batch style
 - * only recompute θ every **k** iterations
 - * updating θ changes the policy
 - * smooths out problems due to initial non-accurate C matrix learning to strange initial policies
 - * k is problem dependent

incremental LSTD for control

- In general it is widely held that incremental LSTD for control suffers from the forgetting problem
- Most of the C matrix summarizes prior policies that are no longer the current behavior policy
 - * ...the policy changes continually during policy iteration
 - ***** C is out of date and strongly skewing the solution for θ
 - * form of non-stationarity
- Linear, incremental methods like Sarsa use a vector of weights that seems to more naturally handle this problem
- There are no conclusive imperial studies comparing Sarsa and incremental LSTD for control

Off-policy LSTD(λ)

- Simple extension
- Just add importance sampling corrections to the traces :

$$\mathbf{e}_{t} \leftarrow \rho_{t}(\gamma \lambda \mathbf{e}_{t-1} + \phi_{t})$$

$$A_{\pi,t+1} = A_{\pi,t} + \mathbf{e}_{t}(\phi_{t} - \gamma \phi_{t+1})^{\top}$$

$$\mathbf{b}_{t+1} = \mathbf{b}_{t} + R_{t+1}\mathbf{e}_{t}$$

$$\rho_{t} \stackrel{\text{def}}{=} \frac{\pi(A_{t}|S_{t})}{\mu(A_{t}|S_{t})}$$

- Can implement incrementally with Sherman-Morrison formula
- Proven to converge under general conditions by Yu (2010)

Off-policy, policy iteration with LSTD(λ)

- Use state-action features
- □ Define a behavior policy μ —(e.g., epsilon greedy)
- □ Define a target policy π —(greedy)
- Select actions according to µ
- □ Use off-policy incremental LSTD(λ) to update θ

□ Like a LSTD variant of $Q(\lambda)$ learning

References

□ LSTD

- * Bradtke and Barto (1996). Linear least-squares algorithms for temporal difference learning
- * Geramifard et al (2006). Incremental Least-Squares Temporal Difference Learning
- * Szepesv´ari (2009). Algorithms for Reinforcement Learning.

\Box LSTD(λ)

- * Boyan (2002). Technical Update: Least-Squares Temporal Difference Learning.
- * Gehring et al (2016). Incremental Truncated LSTD.
- □ Off-policy LSTD(λ)
 - * Yu (2010). Convergence of Least Squares Temporal Difference Methods Under General Conditions.