2019 高教社杯全国大学生数学建模竞赛

承诺书

我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为"竞赛章程和参赛规则",可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上 QQ 群、微信群等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或资料(包括网上资料),必须按照规定的参考文献的表述方式列出,并在正文引用处予以标注。在网上交流和下载他人的论文是严重违规违纪行为。

我们以中国大学生名誉和诚信郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号(从 A/B/C/D 中选择一项填写):A
我们的报名参赛队号(12位数字全国统一编号): 4321
参赛学校(完整的学校全称,不含院系名):XX 大学
参赛队员 (打印并签名): 1. 小米
2. 向左
3. 哈哈
指导教师或指导教师组负责人 (打印并签名):
(指导教师签名意味着对参赛队的行为和论文的真实性负责)

(请勿改动此页内容和格式。此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。)

日期: 2017 年 08 月 22 日

2019 高教社杯全国大学生数学建模竞赛

编号专用页

赛区评阅记录(可供赛区评阅时使用):

一块匠	/ 1.1 1/1 1/1 1/1	<u>IX/II/•</u>	
评阅人			
备注			

送全国评阅统一编号(由赛区组委会填写):

全国评阅随机编号(由全国组委会填写):

(请勿改动此页内容和格式。此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。注意电子版论文中不得出现此页。)

全国大学生数学建模竞赛编写的 LATEX 模板

摘要

cumcmthesis 是为全国大学生数学建模竞赛编写的 LATEX 模板,旨在让大家专注于论文的内容写作,而不用花费过多精力在格式的定制和调整上.本手册是相应的参考,其中提供了一些环境和命令可以让模板的使用更为方便.同时需要注意,使用者需要有一定的 LATEX 的使用经验,至少要会使用常用宏包的一些功能,比如参考文献,数学公式,图片使用,列表环境等等.例子文件参看 example.pdf.

另外, 欢迎大家购买我们是视频教程, 点击 这里。 欢迎大家到 QQ 群里沟通交流: 91940767. 关注我们的微信公众号:

关键字: 折叠桌 曲线拟合 非线性优化模型 受力分析

目录

一、模板	(的基本使用 · · · · · · · · · · · · · · · · · · ·	3
二、图片	· · · · · · · · · · · · · · · · · · ·	4
三、绘制	J普通三线表格·····	5
四、公式	<u>. </u>	7
五、其它	· 小功能 · · · · · · · · · · · · · · · · · · ·	8
5.1	脚注・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
5.2	无序列表与有序列表	9
六、参考	文献与引用 · · · · · · · · · · · · · · · · · · ·	9
参考文献	试····································	9
附录 A	模板所用的宏包 · · · · · · · · · · · · · · · · · · ·	10
附录 B	排队算法-matlab 源程序 ······	10
附录 C	规划解决程序_lingo 源代码 · · · · · · · · · · · · · · · · · · ·	11

一、模板的基本使用

要使用LATEX来完成建模论文,首先要确保正确安装一个LATEX的发行版本。

- Mac 下可以使用 MacT_EX;
- Linux 下可以使用 TFXLive;
- windows 下可以使用 TEXLive 或者 MikTEX;

具体安装可以参考 Install-LaTeX.pdf 或者其它靠谱的文章。另外可以安装一个易用的编辑器,例如 TrXstudio。

使用该模板前,请阅读模板的使用说明文档。下面给出模板使用的大概样式。

```
\documentclass{cumcmthesis}
%\documentclass[withoutpreface, bwprint]{cumcmthesis} %去掉封面与编号页
\title{论文题目}
\tihao{A}
              % 题号
\baominghao{4321} % 报名号
\schoolname{你的大学}
\membera{成员A}
\memberb{成员B}
\memberc{成员C}
\supervisor{指导老师}
\yearinput{2017} % 年
\monthinput{08} % 月
                % ∃
\dayinput{22}
\begin{document}
   \maketitle
   \begin{abstract}
      摘要的具体内容。
      \keywords{关键词1\quad 关键词2\quad 关键词3}
   \end{abstract}
   \tableofcontents
   \section{问题重述}
   \subsection{问题的提出}
   \section{模型的假设}
   \section{符号说明}
   \begin{center}
      \begin{tabular}{cc}
         \hline
         \makebox[0.3\textwidth][c]{符号} & \makebox[0.4\textwidth][c]{意义} \\ \hline
               & 木条宽度 (cm) \\ \hline
      \end{tabular}
   \end{center}
   \section{问题分析}
```

```
\section{总结}
\begin{thebibliography}{9}%宽度9
\bibitem{bib:one} .....
\end{thebibliography}
\begin{appendices}

\mathrice{m}\Represerve{\appendices}\
\end{appendices}
\end{document}
```

根据要求,电子版论文提交时需要去掉封面和编号页。此时可以加上 without preface 选项,即:

\documentclass[withoutpreface]{cumcmthesis}

这样就能实现了。打印的时候有超链接的地方不需要彩色,可以加上 bwprint 选项。 团队的信息填入指定的位置,并且确保信息的正确性,以免因此白忙一场。 编译记得使用 xelatex,而不是用 pdflatex。 下面给出写作与排版上的一些建议。

二、图片

建模中不可避免要插入图片。图片可以分为矢量图与位图。位图推荐使用 jpg,png 这两种格式,避免使用 bmp 这类图片,容易出现图片插入失败这样情况的发生。矢量图一般有 pdf,eps,推荐使用 pdf 格式的图片,尽量不要使用 eps 图片,理由相同。

注意图片的命名,避免使用中文来命名图片,可以用英文与数字的组合来命名图片。避免使用1,2,3这样顺序的图片命名方式。图片多了,自己都不清楚那张图是什么了,命名尽量让它有意义。下面是一个插图的示例代码。

注意 figure 环境是一个浮动体环境,图片的最终位置可能会跑动。[!h] 中的 h 是 here 的意思,! 表示忽略一些浮动体的严格规则。另外里面还可以加上 btp 选项,它们分别是 bottom, top, page 的意思。只要这几个参数在花括号里面,作用是不分先后顺序的。page 在这里表示浮动页。

\label{fig:flow-chart} 是一个标签,供交叉引用使用的。例如图~\ref{fig:flow-chart}的实际效果是图1。图片是自动编号的,比起手动编号,它更加高效。label 要确保唯一,命名方式推荐用图片的命名方式。

图片并排的需求解决方式多种多样,下面用 minipage 环境来展示一个简单的例子。 注意,以下例子用到了 subcaption 命令,需要加载 subcaption 宏包。

这相当于整体是一张大图片,大图片引用是图 2,子图引用别分是图 2a、图 2b、图 2c。

图 1 问题三流程图

图 2 多图并排示例

如果原本两张图片的高度不同,但是希望它们缩放后等高的排在同一行,参考这个例子:

三、绘制普通三线表格

表格应具有三线表格式,因此常用 booktabs 宏包,其标准格式如表 1 所示。

表 1 标准三线表格

D(in)	$P_u(lbs)$	$u_u(in)$	β	$G_f(psi.in)$
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089

图 3 多图并排示例

其绘制表格的代码及其说明如下。

```
\begin{table}[!htbp]
\caption[标签名]{中文标题}
\begin{tabular}{cc...c}
\toprule[1.5pt]
    表头第1个格 & 表头第2个格 & ... & 表头第n个格 \\
\midrule[1pt]
    表中数据(1,1) & 表中数据(1,2) & ... & 表中数据(1,n)\\
    表中数据(2,1) & 表中数据(2,2) & ... & 表中数据(2,n)\\
    ... ... ... 表中数据(m,1) & 表中数据(m,2) & ... & 表中数据(m,n)\\
    \bottomrule[1.5pt]
\end{tabular}
\end{table}
```

table 环境是一个将表格嵌入文本的浮动环境。tabular 环境的必选参数由每列对应一个格式字符所组成:c表示居中,1表示左对齐,r表示右对齐,其总个数应与表的列数相同。此外,@{文本}可以出现在任意两个上述的列格式之间,其中的文本将被插入每一行的同一位置。表格的各行以\\分隔,同一行的各列则以 & 分隔。\toprule、\midrule和\bottomrule三个命令是由 booktabs 宏包提供的,其中\toprule和\bottomrule分别用来绘制表格的第一条(表格最顶部)和第三条(表格最底部)水平线,\midrule用来绘制第二条(表头之下)水平线,且第一条和第三条水平线的线宽为 1.5pt,第二条水平线的线宽为 1pt。引用方法与图片的相同。

四、公式

数学建模必然涉及不少数学公式的使用。下面简单介绍一个可能用得上的数学环境。

首先是行内公式,例如θ是角度。行内公式使用\$\$包裹。

行间公式不需要编号的可以使用\[\]包裹,例如

$$E = mc^2$$

其中 E 是能量, m 是质量, c 是光速。

如果希望某个公式带编号,并且在后文中引用可以参考下面的写法:

$$E = mc^2 (1)$$

式1是质能方程。

多行公式有时候希望能够在特定的位置对齐,以下是其中一种处理方法。

$$P = UI (2)$$

$$=I^2R\tag{3}$$

&是对齐的位置,&可以有多个,但是每行的个数要相同。

矩阵的输入也不难。

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}$$

分段函数这些可以用 case 环境, 但是它要放在数学环境里面。

$$f(x) = \begin{cases} 0 & x$$
为无理数,
$$1 & x$$
为有理数.

在数学环境里面,字体用的是数学字体,一般与正文字体不同。假如要公式里面有个别文字,则需要把这部分放在 text 环境里面,即 \text{文本环境}。

公式中个别需要加粗的字母可以用 $\alpha \alpha \alpha \alpha \alpha$ 。如 $\alpha \alpha \alpha \alpha \alpha \alpha \alpha$ 。

以上仅简单介绍了基础的使用,对于更复杂的需求,可以阅读相关的宏包手册,如amsmath。

希腊字母这些如果不熟悉,可以去查找符号文件 symbols-a4.pdf,也可以去 detexify 网站手写识别。另外还有数学公式识别软件 mathpix 。

下面简单介绍一下定理、证明等环境的使用。

定义1 定义环境

定义1除了告诉你怎么使用这个环境以外,没有什么其它的意义。

除了 definition 环境, 还可以使用 theorem、lemma、corollary、assumption、conjecture、axiom、principle、problem、example、proof、solution 这些环境,根据论文的实际需求合理使用。

定理1 这是一个定理。

引理1 这是一个引理。

推论1 这是一个推论。

假设1 这是一个假设。

猜想1 这是一个猜想。

公理1 这是一个公理。

定律1 这是一个定律。

问题1 这是一个问题。

例1 这是一个例子。

证明1 这是一个证明。

解1 这是一个解。

五、其它小功能

5.1 脚注

利用 footnote{具体内容} 可以生成脚注1。

¹脚注可以补充说明一些东西

5.2 无序列表与有序列表

无序列表是这样的:

- one
- two
- ...

有序列表是这样子的:

- 1. one
- 2. two
- 3. ...

六、 参考文献与引用

参考文献对于一篇正式的论文来说是必不可少的,在建模中重要的参考文献当然应该列出。LATEX 在这方面的功能也是十分强大的,下面进介绍一个比较简单的参考文献制作方法。有兴趣的可以学习 bibtex 或 biblatex 的使用。

LATEX 的入门书籍可以看《LATEX 入门》[1]。这是一个简单的引用,通过\cite{bibkey}来完成。要引用成功,当然要维护好 bibitem 了。下面是个简单的例子。

参考文献

- [1] 刘海洋. LATEX 入门[J]. 电子工业出版社, 北京, 2013.
- [2] 全国大学生数学建模竞赛论文格式规范 (2013年8月26日修改).

附录 A 模板所用的宏包

表 2 宏包罗列

	模板 —————	中已经加载的宏	:包 ————————————————————————————————————	
amsbsy	amsfonts	amsgen	amsmath	amsopn
amssymb	amstext	appendix	array	atbegshi
atveryend	auxhook	bigdelim	bigintcalc	bigstrut
bitset	bm	booktabs	calc	caption
caption3	CJKfntef	cprotect	ctex	ctexhook
ctexpatch	enumitem	etexcmds	etoolbox	everysel
expl3	fix-cm	fontenc	fontspec	fontspec-xetex
geometry	gettitlestring	graphics	graphicx	hobsub
hobsub-generic	hobsub-hyperref	hopatch	hxetex	hycolor
hyperref	ifluatex	ifpdf	ifthen	ifvtex
ifxetex	indentfirst	infwarerr	inteale	keyval
kvdefinekeys	kvoptions	kvsetkeys	13keys2e	letltxmacro
listings	longtable	lstmisc	ltcaption	ltxcmds
multirow	nameref	pdfescape	pdftexcmds	refcount
rerunfilecheck	stringenc	suffix	titletoc	tocloft
trig	ulem	uniquecounter	url	xcolor
xcolor-patch	xeCJK	xeCJKfntef	xeCJK-listings	xparse
xtemplate	zhnumber			

以上宏包都已经加载过了,不要重复加载它们。

附录 B 排队算法-matlab 源程序

```
kk=2; [mdd,ndd] = size(dd);
while ~isempty(V)
[tmpd,j]=min(W(i,V));tmpj=V(j);
for k=2:ndd
[tmp1,jj]=min(dd(1,k)+W(dd(2,k),V));
tmp2=V(jj);tt(k-1,:)=[tmp1,tmp2,jj];
tmp=[tmpd,tmpj,j;tt];[tmp3,tmp4]=min(tmp(:,1));
if tmp3==tmpd, ss(1:2,kk)=[i;tmp(tmp4,2)];
else,tmp5=find(ss(:,tmp4)~=0);tmp6=length(tmp5);
if dd(2,tmp4)==ss(tmp6,tmp4)
ss(1:tmp6+1,kk)=[ss(tmp5,tmp4);tmp(tmp4,2)];
else, ss(1:3,kk)=[i;dd(2,tmp4);tmp(tmp4,2)];
end:end
dd=[dd,[tmp3;tmp(tmp4,2)]];V(tmp(tmp4,3))=[];
[mdd,ndd] = size(dd); kk = kk + 1;
end; S=ss; D=dd(1,:);
```

附录 C 规划解决程序-lingo 源代码

```
kk=2;
[mdd,ndd] = size(dd);
while ~isempty(V)
   [tmpd,j]=min(W(i,V));tmpj=V(j);
for k=2:ndd
   [tmp1,jj]=min(dd(1,k)+W(dd(2,k),V));
   tmp2=V(jj);tt(k-1,:)=[tmp1,tmp2,jj];
end
   tmp=[tmpd,tmpj,j;tt];[tmp3,tmp4]=min(tmp(:,1));
if tmp3==tmpd, ss(1:2,kk)=[i;tmp(tmp4,2)];
else,tmp5=find(ss(:,tmp4)~=0);tmp6=length(tmp5);
if dd(2,tmp4)==ss(tmp6,tmp4)
   ss(1:tmp6+1,kk)=[ss(tmp5,tmp4);tmp(tmp4,2)];
else, ss(1:3,kk)=[i;dd(2,tmp4);tmp(tmp4,2)];
end;
   dd=[dd,[tmp3;tmp(tmp4,2)]];V(tmp(tmp4,3))=[];
   [mdd,ndd] = size(dd);
   kk=kk+1;
end;
S=ss;
D=dd(1,:);
```