Inference Basics

ECON 490

Taylor Mackay || Email: tmackay@fullerton.edu

Slides Overview

In these slides, we'll discuss:

- How regression isolates unique variation
- Inference and statistical significance in regression
- Using R for inference

Isolating Variation

Last week, we said that regression isolates *unique* covariance between *Y* and *X*'s

- Represented this visually using Venn diagrams
- Today, we'll explore what this means further

Revisiting Residuals

We've defined residuals previously using the following:

$$Residual = Actual Y - Predicted Y = Y - \hat{Y}$$

 \widehat{Y} is our "best guess" about the value of Y given our X variables

- In other words, everything in Y that our regression can explain is reflected in \hat{Y}
- The residual is all the "left over" variation in $Y \rightarrow it$'s what we **can't** explain

Key property of residuals – they are **uncorrelated** with the explanatory variables in the regression used to generate those residuals

Thinking about Residuals

Suppose we've got the following regression equation: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$

We know regression isolates *unique* variation in our X's

- What does this mean in practice?
- Consider the following regression:

$$X_1 = \alpha_0 + \alpha_1 X_2 + \epsilon$$

Let's denote the residuals from this regression \widetilde{X}_1

- $\widetilde{X_1}$ represents the variation in X_1 that **cannot** be explained by X_2
- In other words, the residuals are the **unique** variation in X_1

An Example

Consider the following regression (using a sample data set I created):

$$log(City\ Economic\ Output\ per\ Capita) =$$

 $\beta_0 + \beta_1 Tech\ Share\ of\ Employment\ + \beta_2 College\ Graduation\ Rate\ + u$

Let's compare the output from two approaches:

- 1. Directly estimate the regression above
- 2. Collect $\widetilde{Tech\ Share}$ residuals from $\widetilde{Tech\ Share} = \alpha_0 + \alpha_1 College\ Graduation + \epsilon$ then estimate the following:

$$log(City\ Economic\ Output\ per\ Capita) = \theta_0 + \theta_1\ Tech\ Share + v$$

Sample Data

Here's what the city.data sample data set we'll use for this example looks like:

city.ID ▼	city.output 🔻	tech.share 🔻	college.grad 🔻
1	\$ 68,156	48%	41%
2	\$ 50,942	33%	10%
3	\$ 50,000	8%	9%
4	\$ 67,387	51%	21%
5	\$ 72,429	84%	0%
6	\$ 85,918	82%	50%
7	\$ 91,717	100%	72%
8	\$ 80,274	45%	20%
9	\$ 85,618	49%	30%
10	\$ 70,186	57%	26%

An Example

Option 1

```
lm(log(city.output) ~ tech.share
+ college.grad, city.data)
```

Gives us the following output:

```
Coefficients:
Estimate
(Intercept) 11.0028
tech.share 0.1105
college.grad 0.4727
```

Coefficients on both tech variables are *identical* (intercepts differ, but that's not important here)

Option 2

Start by running: lm(tech.share ~ college.grad, city.data)

Store residuals *tech. share*, confirm that correlation with *college. grad* is 0

Then run the following:

lm(log(city.output) ~ tech.share.tilde,
city.data)

```
Coefficients:
Estimate
(Intercept) 11.2411
tech.share.tilde 0.1105
```

R Code for Output from Previous Slide

```
# First step - run tech.share ~ college.grad regression
step.1.regression <- lm(tech.share ~ college.grad, city.data)
# Collect tech.share.tilde residuals from this regression
city.data$tech.share.tilde <- step.1.regression$residuals
# Check correlation between tech.share.tilde and college.grad - by definition,
# this is equal to 0
round(cor(city.data$tech.share.tilde, city.data$college.grad), 4)
# Second step - run log(city.output) ~ tech.share.tilde regression
step.2.regression <- lm(log(city.output) ~ tech.share.tilde, city.data)
summary(step.2.regression)
```

Setting the Stage

In most econ-related jobs, you'll work with data in some capacity

- Compare revenue growth, sales trends, user retention, etc.
- Analysis almost always entails looking at summary statistics or graphs

You might never be asked to conduct formal statistical inference

- For this class, focus on (1) design and (2) general awareness of uncertainty
- If I were writing a referee report, discussion would be different!

Thinking about Inference

Up until this point, we've focused on the β 's when we've talked about regression

What is the estimated effect of one variable on another?

Let's imagine there's some "true" relationship that exists between two variables

- If we don't know that true relationship, what do we do?
- Use the data that's available to **estimate** that relationship

There's naturally variability in data - who happens to show up in the sample, etc.

This variability in our data affects our regression estimates

Regression Inference

In our regression review notes, we considered the following regression:

Household Income =
$$\beta_0 + \beta_1 Age + u$$

Estimating this using our ACS data in R gives us the output on the right

```
lm(formula = hhincome ~ age, data = graph.data)
Residuals:
    Min
             1Q Median
                                   Max
-141229 -68518
               -21386
                         51575
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
              10735
                         36505
                                      0.76912
               3792
                                  3.83 0.00019 ***
age
Signif. codes: 0 '*** 0.001 (10 0.01 '*' 0.05 '.' 0.1 ' 1
Residual standard error: 9280 on 148 degrees of freedom
Multiple R-squared: 0.0903,
                               Adjusted R-squared: 0.0842
F-statistic: 14.7 on 1 and //8 DF, p-value: 0.000186
```

Tonight, we want to focus on this output – start by asking, what's our standard error?

Defining Standard Errors (Pt. 1)

Suppose we have the following regression: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$

• How does R calculate the SE for our estimate of β_1 ?

Key "ingredient" – unique or residual variation in our X's

To isolate that variation, revisit the following regression:

$$X_1 = \alpha_0 + \alpha_1 X_2 + \epsilon$$

Remember, residuals from this regression represent variation in X_1 that **cannot** be explained by X_2

Defining Standard Errors (Pt. 2)

We had the following regression from last slide: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$

- We estimate this using lm() in R
- The formula below gives us the SE for our estimate of β_1

$$SE(\hat{\beta}_1) = \frac{\sigma_e}{\sqrt{n}} \times \frac{1}{\sigma_{\tilde{X}_1}}$$

- σ_e is the standard deviation of our residuals (what our model can't explain)
- $SE(\hat{\beta}_1) = \frac{\sigma_e}{\sqrt{n}} \times \frac{1}{\sigma_{\tilde{\chi}_1}}$ n is the sample size (number of observations)
 - $\sigma_{\widetilde{X}_1}$ is the standard deviation of \widetilde{X}_1 = residuals from a regression of X_1 on X_2

Residuals from our $X_1 = \alpha_0 + \alpha_1 X_2 + \epsilon$ regression from last slide

Interpreting our Standard Error Formula

$$SE(\hat{\beta}_1) = \frac{\sigma_e}{\sqrt{n}} \times \frac{1}{\sigma_{\tilde{X}_1}}$$

- σ_{e} is the standard deviation of our residuals (what our model can't explain)
- $SE(\hat{\beta}_1) = \frac{\sigma_e}{\sqrt{n}} \times \frac{1}{\sigma_{\tilde{x}}}$ n is the sample size (number of observations)
 - $\sigma_{\tilde{X}_1}$ is the standard deviation of the residuals from a regression of X_1 on X_2

Don't need to memorize this formula! You should remember the following:

- 1. Adding observations can improve precision (larger \sqrt{n} = smaller SEs)
- 2. Adding X's can help improve precision (smaller σ_e = smaller SEs)...
- 3. ...but this isn't guaranteed (depends on how $\sigma_{\tilde{X}_1}$ changes)

For (2) and (3), what matters is **unique** variability in X_1 (not shared with X_2)

Sampling Variability

We started this section by talking about sampling variability

How does this connect with our SE definition?

Imagine rewinding the clock on our data and letting things play out again

- Not just collecting another survey, but people going to work, etc.
- Big picture's the same ... but the details might differ

If we re-estimate our regression, our estimated β_1 won't be exactly the same

Our standard error is trying to give us a sense of that variability

Heteroskedasticity (HK)

HK occurs when our model does a better job explaining Y for some values of X

than other values

HK causes our normal SE's to be wrong

In practice, this happens all the time

- As a result, we want a method of correcting for HK
- Do this by using HK-robust SE's

Inference in R

Up to this point, we've used the 1m() function to estimate OLS regression

- This reports "vanilla" standard errors
- What if we want heteroskedasticity (HK) robust SE's?

Use lm_robust() function from the estimatr package

Two benefits to lm_robust():

- Robust SEs + p-values + etc.
- Summary output is easier to work with in R

Reading Regression Results

```
Call:
lm robust(formula = hhincome ~ sex + age + education + statefip,
   data = subset.data, clusters = statefip, se type = "stata")
Standard error type: stata
Coefficients:
                     Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper [
(Intercept)
                                2283.92
                                          61.865 2.612e-04 131467.5 151121.3
                     141294.4
                       6767 8 995 96 -6 991 2 9940-92 -11940-2 -2486 4 2
                       -506.8
                                          -6.327 2.408e-02
                                                                     -162.2
age
                                  80.09
                                                            -851.4
                      DUNNIA 1020.20 4.000 3.//8E-02 /00.0 3400./
EUGELLONHS Grau
educationCollege Grad 73217.4 7110.49 10.297 9.300e-03 42623.4 103811.3
statefipFlorida
                                 440.63 -66.645 2.251e-04 -31261.6 -27469.9
                     -29365.7
statefipTexas
                     -25113.8
                                 211.93 -118.501 7.121e-05 -26025.7 -24201.9
```

Key components:

educationHS Grad

0.038

- Coefficient estimate
- Std. Error & P-Value
- Confidence Interval (CI)

Use round() to check size of p-values

P-Values

Statistics like t-stats and p-values are calculated using your β estimate and SE

In practice, p-values are the easiest way to check statistical significance

- Generally, estimates with p-values less than 0.05 are statistically significant
- What does this mean?

Imagine collecting our data again and estimating the same regression

• What's the probability we observe a t-stat at least as large as our original value, if there was actually no "true" effect?

Confidence Intervals

95 pct. confidence interval around a coefficient:

$$\hat{\alpha}_1 \pm 1.96 * SE_{\hat{\alpha}_1}$$

Useful for characterizing the *practical* significance of an estimate

- What range of estimates can we rule out?
- Sometimes, precisely estimated 0's are informative

F-Tests

Regression output tells us statistical significance of individual coefficients

- Want to test the joint significance of multiple coefficients?
- Use the linearHypothesis() function from the car package

```
model <- lm_robust(data = acs.data, hhincome ~ sex + age + education)

# Joint test that both age and education are equal to 0. P-value is reported

# is the last number on second row:

Linear hypothesis test

Hypothesis:

age = 0
education = 0

Model 1: restricted model
Model 2: hhincome ~ sex + age + education

Res.Df Df Chisq Pr(>Chisq)
1 246964
2 246964
2 246962 2 13054 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Interpreting Statistical Tests

P-values *don't* tell us the probability our estimate is correct

- Likewise, confidence intervals aren't measuring (subjective) confidence
- Instead, describing what would happen if we fired up our time machine

In practice, try closely reading the language journal articles use

- Initially formal language (reject / fail to reject, etc.), then a change of tone
- Think about distinguishing between signal and noise

Precise estimates are more likely to be signal than noise ... but no guarantees!

Practical Advice (Pt. 1)

General rule of thumb - p-value less than 0.05 is "statistically significant"

- In some contexts, p-value < 0.10 is the standard
- For papers, defer to authors' interpretations

Practical significance is what ultimately matters

How large is your estimated effect?

For your capstone analysis, use robust SE's via 1m_robust() in R

Practical Advice (Pt. 2)

What "breaks" normal inference? What causes problems for regression?

- Main pitfall = having too few observations
- Context matters how many observations is enough?

A very rough rule of thumb = you should have at least ~50 observations

- What comparisons do you care about?
- If you care about estimating a difference between groups, then ideally, you'd like each group to have 40-50 observations

Sometimes, just having lots of data isn't enough

- Suppose you have GDP data for the US → lots of years... but only one country
- We'll talk more about this issue later