WHAT IS CLAIMED IS:

1. An electronic device containing a polythiophene derived from a monomer segment or monomer segments containing two 2,5-thienylene segments, (I) and (II), and an optional divalent linkage D

wherein A is a side chain; B is hydrogen or a side chain; and D is a divalent linkage, and wherein the number of A-substituted thienylene units (I) in the monomer segments is from about 1 to about 10, the number of B-substituted thienylene units (II) is from 0 to about 5, and the number of divalent linkages D is 0 or 1.

- 2. An electronic device in accordance with **claim 1** wherein A is alkyl containing from about 5 carbon atoms to about 25 carbon atoms; B is alkyl containing from about 0 to about 4 carbon atoms; and D is an arylene or a dioxyarene, each containing from about 6 to about 40 carbon atoms, or an alkylene or a dioxyalkane, each containing from about 1 to about 20 carbon atoms.
- 3. An electronic device in accordance with **claim 1** wherein A is alkyl containing from about 6 to about 15 carbon atoms; B is hydrogen; and D is arylene containing from about 6 to about 24 carbon atoms.

- 4. An electronic device in accordance with **claim 1** wherein D is phenylene, tolylene, xylylene, biphenylene, substituted biphenylene, phenanthrenylene, dihydrophenanthrenylene, fluorenylene, dibenzothiophenediyl, dibenzofurandiyl, carbazolediyl, methylene, polymethylene, dialkylmethylene, dioxyalkane, dioxyarene, or oligoethylene oxide.
- 5. An electronic device in accordance with **claim 1** wherein A is hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, or pentadecyl; B is hydrogen; and D is phenylene, tolylene, xylylene, biphenylene, substituted biphenylene, phenanthrenylene, dihydrophenanthrenylene, fluorenylene, dibenzothiophenediyl, dibenzofurandiyl, carbazolediyl, methylene, polymethylene, dialkylmethylene, dioxyalkane, dioxyarene, or oligoethylene oxide.
- 6. A thin film transistor device comprised of a substrate, a gate electrode, a gate dielectric layer, a source electrode and a drain electrode, and a semiconductor layer comprised of the polythiophene of claim 1.
- 7. A thin film transistor device in accordance with **claim 6** wherein A is alkyl containing from about 5 carbon atoms to about 25 carbon atoms; B is hydrogen or a short chain alkyl; and D, when present, is arylene or dioxyarene, each containing from about 6 to about 40 carbon atoms, or alkylene or dioxyalkane, each containing from about 1 to about 20 carbon atoms, and wherein said source electrode and said gate dielectric layer are in contact with said semiconductive layer.

٠,

- 8. A thin film transistor device in accordance with **claim 6** wherein A is alkyl containing from about 6 to about 15 carbon atoms; B is hydrogen; and D is arylene containing from about 6 to about 30 carbon atoms, and wherein said source/drain electrodes and said gate dielectric layer are in contact with said semiconductive layer.
- 9. A thin film transistor device in accordance with **claim 6** wherein D is phenylene, tolylene, xylylene, biphenylene, substituted biphenylene, phenanthrenylene, dihydrophenanthrenylene, fluorenylene, dibenzothiophenediyl, dibenzofurandiyl, carbazolediyl, methylene, polymethylene, dialkylmethylene, dioxyalkane, dioxyarene, or oligoethylene oxide, and wherein said source/drain electrodes and said gate dielectric layer are in contact with said semiconductive layer.
- 10. A thin film transistor device in accordance with **claim 6** wherein A is hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, or pentadecyl; B is hydrogen; and D is phenylene, tolylene, xylylene, biphenylene, substituted biphenylene, phenanthrenylene, dihydrophenanthrenylene, fluorenylene, dibenzothiophenediyl, dibenzofurandiyl, carbazolediyl, methylene, polymethylene, dialkylmethylene, dioxyalkane, or dioxyarene, and wherein said source/drain electrodes and said gate dielectric layer are in contact with said semiconductive layer.

- 11. A thin film transistor device in accordance with **claim 6** wherein said substrate is a plastic sheet of a polyester, a polycarbonate, or a polyimide, said gate, source, and drain electrodes are each independently comprised of gold, nickel, aluminum, platinum, indium titanium oxide, a conductive polymer, a conductive ink or paste comprising a dispersion of conductive particles in a dispersing medium, and said gate dielectric layer is comprised of silicon nitride, silicon oxide, insulating polymers of a polyester, a polycarbonate, a polyacrylate, a poly(methacrylate), a poly(vinyl phenol), a polystyrene, a polyimide, an epoxy resin, an inorganic-organic composite material of nanosized metal oxide particles dispersed in a polymer, a polyimide, or an epoxy resin; and wherein said source/drain electrodes and said gate dielectric layer are in contact with said semiconductive layer.
- 12. A thin film transistor device in accordance with **claim 6** wherein said substrate is glass or a plastic sheet; said gate, source and drain electrodes are each independently comprised of gold; said gate dielectric layer is comprised of an organic polymer of poly(methacrylate), polyacrylate, poly(vinyl phenol), polystyrene, polyimide, polycarbonate, or a polyester, and wherein said source/drain electrodes and said gate dielectric layer are in contact with said semiconductive layer.
- 13. A thin film transistor device in accordance with **claim 6** wherein said polythiophene layer is formed by a solution process of spin coating, stamp printing, screen printing, or jet printing, and wherein said source/drain electrodes and said gate dielectric layer are in contact with said semiconductive layer.

- 14. A thin film transistor device in accordance with **claim 6** wherein said gate, source and drain electrodes, dielectric, and semiconductor layers are formed from components deposited by solution processes of spin-coating, solution casting, stamp printing, screen printing, and jet printing, and wherein said source/drain electrodes and said gate dielectric layer are in contact with said semiconductive layer.
- 15. A thin film transistor device in accordance with **claim 6** wherein the substrate is a plastic sheet of a polyester or a polycarbonate, and the gate, source and drain electrodes are comprised of conductive polymers of polystyrene sulfonate-doped poly(3,4-ethylenedioxythiophene) or a conductive ink or paste of a colloidal dispersion of a metal of silver or gold in a binder, and the gate dielectric layer is an organic polymer or an inorganic oxide particle-polymer composite, and wherein said source/drain electrodes and said gate dielectric layer are in contact with said semiconductive layer.

16. A thin film transistor device comprised of a substrate, a gate electrode, a gate dielectric layer, a source electrode and a drain electrode, and in contact with the source/drain electrodes and the gate dielectric layer, a semiconductor layer comprised of a polythiophene represented by Formula (III)

$$\begin{array}{c|c}
\hline
\left\{\left(\begin{array}{c} S \\ A \end{array}\right)_{a} & \left(\begin{array}{c} S \\ B \end{array}\right)_{c} & \left(\begin{array}{c} D \\ d \end{array}\right)_{n}
\end{array}$$
(III)

wherein A is a long side chain; B is hydrogen or a short side chain; and D is a divalent segment; a and c represent the number of A-substituted thienylenes; b is the number of B-substituted thienylene units and is from 0 to about 6; d is 0 or 1; and n is the degree of polymerization or the number of the monomer segments in the polythiophene.

- 17. A thin film transistor device in accordance with **claim 1** wherein D is a divalent linkage optionally comprised of a saturated moiety of alkylene, -O-R-O-, -S-R-S-, -NH-R-NH-, where R is alkylene or arylene, or an unsaturated moiety of an arylene or heteroaromatics.
- 18. A thin film transistor device in accordance with **claim 17** wherein A is alkyl containing from 6 to about 25 carbon atoms; B is hydrogen or alkyl containing from 1 to about 3 carbon atoms; D is arylene or dioxyarene, each containing from about 6 to about 40 carbon atoms, or alkylene or dioxyalkane, each containing from about 1 to about 20 carbon atoms.

đ,

- 19. A thin film transistor device in accordance with **claim 17** wherein A is alkyl containing from about 8 to about 12 carbon atoms, and B is a hydrogen atom.
- 20. A thin film transistor device in accordance with **claim 17** wherein A is alkyl containing from 5 to about 15 carbon atoms; B is a hydrogen atom; D is arylene; a, b, c, and m are independently selected from the numbers 1, 2, and 3; and d = 1.
- 21. A thin film transistor device in accordance with **claim 17** wherein A is alkyl containing from about 8 to about 12 carbon atoms; B is a hydrogen atom; D is arylene; a = c = m = 1; b = 2; and d = 1.
- 22. A thin film transistor device in accordance with **claim 17** wherein n is from about 5 to about 5,000.
- 23. A thin film transistor device in accordance with **claim 17** wherein the number average molecular weight (M_n) of (III) is from about 2,000 to about 100,000, and wherein the weight average molecular weight (M_w) is from about 4,000 to about 500,000, each as measured by gel permeation chromatography using polystyrene standards.
- 24. A thin film transistor device in accordance with **claim 17** wherein the number average molecular weight (M_n) of (III) is from about 10,000 to about 30,000 and the weight average molecular weight (M_w) is from about 15,000 to about 100,000.

- 25. A thin film transistor device in accordance with **claim 17** wherein A is hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, or pentyldecyl.
- 26. A thin film transistor device in accordance with **claim 17** wherein D is an arylene selected from the group consisting of phenylene, tolylene, xylylene, biphenylene, substituted biphenylene, fluorenylene, phenanthrenylene, dihydrophenanthrenylene, and dibenzofuranediyl, dibenzothiophenediyl, carbazole-diyl.
- 27. A thin film transistor device in accordance with **claim 17** wherein D is saturated linkage selected from the group consisting of alkylene, dioxyalkane, dioxyarene, and oligoethylene oxide.

5.

28. A thin film transistor device in accordance with **claim 16** wherein said polythiophene (III) is selected from (1) through (17) wherein n represents the number of repeating segments

$$\begin{array}{c} C_8H_{17} \\ S \\ S \\ H_{17}C_8 \end{array}$$

$$(1)$$

$$C_{12}H_{25}$$
 S
 $H_{25}C_{12}$
(3)

(4)

5,

$$C_{10}H_{21}$$

$$C_{10}H_{21}$$

$$C_{10}H_{21}$$

$$C_{10}H_{21}$$

$$C_{10}H_{21}$$

$$C_{10}H_{21}$$

$$C_{10}H_{21}$$

 $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$ $C_{10}H_{21}$

(6)

$$C_{12}H_{25}$$
 S
 $H_{25}C_{12}$
(7)

$$CH_3$$
 CH_3 CH_3

(8)

$$C_{12}H_{25}$$
 $C_{12}H_{25}$
 $C_{12}H_{25}$

(9)

5.

$$C_{12}H_{25}$$

$$C_{12}H_{25}$$

$$C_{12}H_{25}$$

$$C_{12}H_{25}$$

$$C_{10}H_{25}$$

$$C_{12}H_{25}$$

$$C_{12}H_{25}$$

$$C_{12}H_{25}$$

$$C_{11}H_{25}$$

$$C_{12}H_{25}$$

$$C_{12}H_{25}$$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$

$$C_{12}H_{25}$$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$

(14)

$$C_{12}H_{25}$$
 S
 $C_{12}H_{25}$
 C_{13}
 C_{13}
 C_{13}
 C_{13}
 C_{12}
 C_{13}

(15)

(16)

(17)

29. A thin film transistor device in accordance with **claim 16** wherein polythiophene (III) is alternatively wherein n represents the number of segments

$$\begin{array}{c|c}
C_8H_{17} \\
S \\
S \\
H_{17}C_8
\end{array}$$
(1)
$$\begin{array}{c|c}
C_{10}H_{21} \\
S \\
H_{21}C_{10}
\end{array}$$
(2)

$$C_{12}H_{25}$$
 S
 S
 $H_{25}C_{12}$
(3)

(4)

(5)

$$\begin{array}{c|c}
C_{12}H_{25} \\
S \\
H_{25}C_{12}
\end{array}$$
(7)

$$C_{12}H_{25}$$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$
 $C_{12}H_{25}$

30. A thin film transistor device in accordance with ${\bf claim\ 16}$ wherein polythiophene (III) is alternatively wherein n represents the number of segments

$$\begin{array}{c}
C_8H_{17} \\
S
\end{array}$$

$$\begin{array}{c}
S\\
H_{17}C_8
\end{array}$$
(1)

$$C_{10}H_{21}$$
 S
 $H_{21}C_{10}$
 S
 (2)

(4)

(5)

31. A thin film transistor device in accordance with **claim 16** wherein said polythiophene is alternatively

$$C_{10}H_{21}$$
 S
 S
 $H_{21}C_{10}$
(2)

$$C_{12}H_{25}$$
 S
 $H_{25}C_{12}$
(3)

$$C_{10}H_{21} C_{10}H_{21}$$

$$C_{10}H_{21} C_{10}H_{21}$$

$$C_{10}H_{21} C_{10}H_{21}$$

$$C_{10}H_{21} C_{10}H_{21}$$

- 32. A thin film transistor device in accordance with **claim 16** wherein said substrate is a plastic sheet of a polyester, a polycarbonate, or a polyimide; said gate, source, and drain electrodes are each independently comprised of gold, nickel, aluminum, platinum, or indium titanium oxide; and said gate dielectric layer is comprised of silicon nitride, silicon oxide, insulating polymers of polyester, polycarbonates, polyacrylate, poly(methacrylate), poly(vinyl phenol), polystyrene, polyimide, or an epoxy resin.
- 33. A thin film transistor device in accordance with **claim 17** wherein said substrate is glass or a plastic sheet; said gate, source and drain electrodes are each independently comprised of gold or a metal dispersion in a binder; said gate dielectric layer is comprised of an organic polymer of polyester, polycarbonate, polyacrylate, poly(methacrylate), poly(vinyl phenol), polystyrene, polyimide, or an epoxy resin, or an inorganic-organic composite of nanosized metal oxide particles dispersed in a polymer of a polyester, a polyimide, or an epoxy resin.
- 34. A thin film transistor device in accordance with **claim 16** wherein the thickness of the substrate is from about 10 micrometers to about 10 millimeters; the thickness of the gate dielectric layer is from about 10 nanometers to about 1 micrometer; the thickness of the polythiophene semiconductor layer is from about 10 nanometers to about 1 micrometer; the thickness of the gate electrode layer is from about 10 nanometers to about 10 micrometers; and the thickness of the source or drain electrode is from about 40 nanometers to about 1 micrometer.