chi (basic book)

- FLP -> TLP processor design migration
- global-sem computation in pavallal
 - Compute local start/end indexes

 - Compute local sums into global seem

Serial vs. thee-reduction way 3 (log f)

- task parallel vs. data parallel
- -/ Communication Synchronization load balancing

-parallel programming paradigms

THE parallel Long.

US explicit (e.g. OpenMp, MpI, --) PThread

- -process/Thread
- -damo Unix forty Join -output trace

wichule <unistd.h> - for forkes

wichele (sys/wait.h) - for wait = join

```
Chr - (basic book) parallel HW and 5W
   - von Neumann bottleneck: Chusperd = mem speed
               2. V.M.
3. ILP — fine gracin
4. TLP — coarse "
          -cache access pattern affects performance
              4C++ vow-major vs. col-major access
                                             more misses
           - ILP - Scalar pipeline
                     L'multiple-issue machines
                                             ) SW VS. HW speculation
                         [VLIW
| Superscalar
           -JLP - f multi'Threadige (e.g., SMT)
multicore processor
                            SUT-fine grained
                                          1 moto. per thread -> compete for
                                                                resources.
    -processor design migration
          scalar processor
Serial control Scalar pipelined "

(ILp) - multi-issue "

(VLIW/Superscalar)
```

(multithreadip/multicore)

Control flows

(TLP) - TLP processors

- multicare processor design issues
IN - should be scalable
IN - should be scalable fault tolerency low power consumption efficient mem. hierarchy
low power consumption
efficient mem. hierarchy
- building shared-mem system with multicore processors
UMA NUMA
[00] [00] [0-0] [men] [men]
- multicore chip arch.
- hierarchical design — eg., Core is, it Finite Line Line Line Line Line Line Line Lin
-network : Intend
Tem Tem
Springer book
Pavallel Arch. and taxonomy
- The same of the

- Flynn's taxo.

- memory organization of pra. comp.

- Shared-menn - distributed mem. - virtual shared mem. (DSM)

- Kai Hwang's taxo. of MIMD systems SMP - NUMA - Shared mem. MPP NORWA - distr. mem.

- STMD mode computation VS. Larray processors

 $(A) + (B) \Rightarrow (c) \quad C_{i} = A_{i} + B_{i} \quad (1 \le i \le n)$ performance on SISD VS. <u>SIMD</u>

-vector processor way

away processor way

- SIMP VS. MIMD - characteristics

- data-parallel applications | - cocres grained parellel applications | - data-parallel/task-parallel.

ch2	 basi	è	book	,
THE RESIDENCE PROPERTY.				

-parallel programming on MIMD

- Shared-mem system

a process - forks threads

- distributed-mem system

multiple processes

| SPMD - Same program for all threads - (for both date take parallel | MPMD - running a separate prog. on each processor.

- shared-mem. programming

of dynamic threads — when needed

Static threads — at the same time (at begining)

- non determinism — on thread termination

- critical section and mutex control — mutex

semaphore

- thread safety — some serial

busy-waiting

malfunction & mi parallel prof.

- distributed-mem programming

- multiple processes, each on different cpu/opsys.

- MSG-passing ApI — Send/receive — synchromization

- one-sided comm.

- Controlled by 1 process(P1)

- Controlled by 1 process(P1)

- Controlled by 1 process(P1)

- reduction 200

— on CoW (cluster of multicere nodes)
hybrid programming is possible

4) MpI + OpenMp model

- To for parallel programming suggested rules:

-file access: a single process/thread should access
any single file
(not 2 processes open the same file)

-stdio Lun-determinism

= performance

ideal speadup = $\frac{T_S}{T_P} = \frac{T_S}{T_P} = \frac{T_S}{T_P}$

effective $Tp' = \frac{Ts}{p} + Toverhead$ $S' = p \cdot \left(\frac{Ts}{Ts + p \cdot To}\right) \qquad \text{effective speedup}$ $S' = \frac{Ts}{p} = \left(\frac{Ts}{p} + To\right)$

- maximum speedup from parallelization

Amdahl's law

$$Sp = \frac{1}{(1-Fe) + \frac{Fe}{Se}}$$

4) 18% serial, 90% parallel => max. speed up achievable?

- Scalability-of parallel program

proklem 5,72e n, #2-processors p.

(n-) k*n)-yielding same E, — weakly scalable

proklem F, p. weakly scalable

with n,p only pokp - yields Same E - Strongly Scalable.

- parallel program design steps

- 1. partition
- 2. determine Communication
- 3. aggregation reduce comm. cost 4. mapping assign tasks to processes/threads

ex) histogram making program

Skared-bin way -> race condition (mutex)

VS -- local-bin and then combine way f-data parallel

-- Send/receive

Advanced book ch1.

- Computation to-comm. ratio -> the higher the better.
- runtine analysis example with global sum computation Zi=0 A I i I

[Sevial time
$$T_5(1,n) = N-1$$

[parallel time $T_p(p,n) = T_p(2^3, 2^k) = (2^{k-3}-1) + 78$
 \Rightarrow weakly Scalable program. comp. time time
(proof)

- -parallel program design

 [-partitioning
 -Communication
 -synchronization
 -Load balancing
- -prefix_Sum example -concept

 (step1: local sum in each processor

 step2: prefix_sum comp. with right-most values only

 step3: addition of resulting value from each local

 array

 from step2 to right neighbor.
- mage classifier example task-vs. data-parallel approaches.

Advanced book chr.

2. arbitrary CW - random selection
3. Common CW - when all values are equal, write.
4. Combining CW fall values are (Combined into a single value. (2.9. Sum, min, ...)

- parallel prefix Computation (on PRAM) $\begin{cases}
S_0 = X_0 \\
S_1 = X_0 \circ X_1
\end{cases} = X_0 \circ X_1 \circ \cdots \circ X_{N-1}$ $\begin{cases}
S_{N-1} = X_0 \circ X_1 \circ \cdots \circ X_{N-1}
\end{cases}$

1. recursive doubling with n processors

log n steps

- hi each step, all ops are

parallel using n processors.

C(n) = T(p, n) * p = d(log n) * n = d(n * log n)- not cost optimal.

2. Cost optimal approach with p= n/logn processors.

- Foster's parallel algo. design method.

partition -> comm. -> agglomeration -> mapping

4) Jacobi iteration

1