Date	•													
Date	٠	• •	• •	٠.	٠.	 	 	•	٠	•	٠	•	•	٠

A CONSOLIDATED QUESTION PAPER-CUM-ANSWER BOOKLET

MAINS TEST SERIES-2021

(JUNE to DEC.-2021)

IAS/IFoS

MATHEMATICS

Under the guidance of K. Venkanna

FULL SYLLABUS (PAPER-I)

TEST CODE: TEST-9: IAS(M)/05-SEP.-2021

Time: 3 Hours Maximum Marks: 250

INSTRUCTIONS

- 1. This question paper-cum-answer booklet has <u>52</u> pages and has
 - 32 PART/SUBPART questions. Please ensure that the copy of the question paper-cum-answer booklet you have received contains all the questions.
- 2. Write your Name, Roll Number, Name of the Test Centre and Medium in the appropriate space provided on the right side.
- 3. A consolidated Question Paper-cum-Answer Booklet, having space below each part/sub part of a question shall be provided to them for writing the answers. Candidates shall be required to attempt answer to the part/sub-part of a question strictly within the pre-defined space. Any attempt outside the pre-defined space shall not be evaluated."
- 4. Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- Candidates should attempt Question Nos. 1 and 5, which are compulsory, and any THREE of the remaining questions selecting at least ONE question from each Section.
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 7. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 8. All questions carry equal marks.
- All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- All rough work should be done in the space provided and scored out finally.
- 11. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

READ	INSTR	UCT	IONS	ON	THE
LEFT	SIDE	ΟF	THIS	P	AGE
CAREI	FULLY				

Na.	
Name	
Roll No.	
Test Centre	

Do not write your Roll Number or Name

Medium

anywhere else in this Question Papercum-Answer Booklet.

I have read all the instructions and shall abide by them

Signature of the Candidate

I have verified the information filled by the candidate above

Signature of the invigilator

IMPORTANT NOTE:

Whenever a question is being attempted, all its parts/ sub-parts must be attempted contiguously. This means that before moving on to the next question to be attempted, candidates must finish attempting all parts/ sub-parts of the previous question attempted. This is to be strictly followed. Pages left blank in the answer-book are to be clearly struck out in ink. Any answers that follow pages left blank may not be given credit.

DO NOT WRITE ON THIS SPACE

INDEX TABLE

QUESTION	No.	PAGE NO.	MAX. MARKS	MARKS OBTAINED
1	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
2	(a)			
	(b)			
	(c)			
	(d)			
3	(a)			
	(b)			
	(c)			
	(d)			
4	(a)			
	(b)			
	(c)			
	(d)			
5	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
6	(a)			
	(b)			
	(c)			
	(d)			
7	(a)			
	(b)			
	(c)			
	(d)			
8	(a)			
	(b)			
	(c)			
	(d)			
			Total Marks	

DO NOT WRITE ON THIS SPACE

		5 01 52
		SECTION - A
1.	(a)	Suppose U and W are distinct four dimensional subspaces of a vector space V, where dim $V = 6$. Find the possible dimensions of subspace $U \cap W$. [10]

1. (b) Find a Hermitian and a skew - Hermitian matrix each whose sum is the matri	ix
$\begin{bmatrix} 2i & 3 & -1 \end{bmatrix}$	
$\begin{bmatrix} 1 & 2+3i & 2 \end{bmatrix}$)]
$\begin{bmatrix} 2i & 3 & -1 \\ 1 & 2+3i & 2 \\ -i+1 & 4 & 5i \end{bmatrix}$ [10]	-

Show that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (0, 0) though f(x, y) is not continuous at (0, 0).[10]

1.	(d)	Evaluate	$\int_{0}^{\pi/2} \frac{x \sin x \cos x dx}{\sin^4 x + \cos^4 x}$			[10]

1.	(e)	Find the equations of the straight line through the point (3,1,2) to intersect the
		straight line $x + 4 = y + 1 = 2(z - 2)$ and parallel to the plane $4x + y + 5z = 0$.
		[10]

- **2.** (a) (i) Let V be the vector space of 2×2 matrices over the field of real numbers \mathbb{R} . Let $W = \{A \in V \mid Trace \ A = 0\}$. Show that W is a subspace of V. Find a basis of W and dimension of W.
 - (ii) Find the dimension and a basis of the solution space W of the system x+2y+2z-s+3t=0, x+2y+3z+s+t=0,

$$3x + 6y + 8z + s + 5t = 0$$
 [16]

(b) (i) For all real numbers x, f(x) is given as:

 $f(x) = \begin{cases} e^x + a\sin x, & x < 0 \\ b(x-1)^2 + x - 2 & x \ge 0 \end{cases}$ find the values of a and b for which f is differentiable

at x = 0.

(ii) Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.

P.T.O.

2.	(c)	A sphere S has points $(0,1,0)$, $(3, -5, 2)$ at opposite ends of a diameter. Find the
		equation of the sphere having the intersection of the sphere S with the plane
		5x - 2y + 4z + 7 = 0 as a great circle. [17]
ı		

3. (b) (i) If
$$z = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$$
 show that

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = 0$$

(ii) Find constant a and b for which

$$F(a,b) = \int_{0}^{\pi} \left\{ \sin x - (ax^{2} + bx) \right\}^{2} dx \text{ is a minimum.}$$
 [18]

3.	(c)	Find the smallest sphere (i. e, the sphere of smallest radius) which to	ouches the
		lines $\frac{x-5}{2} = \frac{y-2}{-1} = \frac{z-5}{-1}$ and $\frac{x+4}{-3} = \frac{y+5}{-6} = \frac{z-4}{4}$.	[12]

4.	(a)	(i)	Let A be a square matrix of order 3 such that each of its diagonal elements is 'a' and each of its off-diagonal elements is 1. If B = bA is orthogonal determine the values of a and b.
			If M_2 (R) is space of real matrices of order 2×2 and $P_2(x)$ is the space of real polynomials of degree at most 2, then find the matrix representation of T: $M_2(R) \to P_2(x)$, such that $T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + c + (a - d) x + (b + c) x^2$, with respect

to the standard bases of $M_2(R)$ and $P_2(x)$, further find the null space of T.

[8+8=16]

4	(b)	Find the minimum distance of the line given by the planes $3x + 4y + 5z = 7$ and
4.	(b)	Find the minimum distance of the line given by the planes $3x+4y+5z=7$ and $x-z=9$ from the origin, by the method of Lagrange's multipliers. [14]

		25 of 52	
ŀ.	(c)	 (i) The plane x - 2y + 3z = 0 is rotated through a right angle about its line intersection with the plane 2x + 3y - 4z - 5 = 0; find the equation of plane in its new position. (ii) Show that the feet of the normals from the point P(α, β, γ), β ≠ 0 on the parabolic plane in the plane x - 2y + 3z = 0 is rotated through a right angle about its line intersection with the plane 2x + 3y - 4z - 5 = 0; find the equation of plane in its new position. 	f the
			20]

SEC'	TION	- B
------	------	-----

5.	(a)	Solve:	$\frac{dy}{dx} = \frac{y^2(x-y)}{3xy^2 - x^2y - 4y^3}, y(0) = 1.$	[10]
----	-----	--------	---	------

5.	(b)	(i) $L{F(t)}$ (i	ii) L{F'(t)}				
		For the func	anction given by	∫2t,	$0 \le t \le 1$		[10]
		ror the falle	tion given by	t,	t>1		[10]

		29 of 52
5.	(c)	A sphere of weight W and radius a lies within a fixed spherical shell of radius b, and a particle of weight w is fixed to the upper end of the vertical diameter prove
		that the equilibrium is stable if
		$\frac{W}{W} > \frac{b-2a}{a}.$
		w a
1		

5.	(d)	A particle of mass m, is falling under the influence of gravity through a medium
	()	whose resistance equals μ times the velocity. If the particle were released from
		rest, determine the distance fallen through in time t. [10]

5.	(e)	Show that $\vec{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative force. Hence, find the scalar
		potential. Also find the work done in moving a particle of unit mass in the force field from $(1, -2, 1)$ to $(3, 1, 4)$. [10]

6.	(b)	Solve	(1+2x) ²	$\frac{d^2y}{dx^2} - 6$	(1+2x)	$\frac{dy}{dx} + 16y$	= 8 (1+2	$(2x)^2$; $y(0)$:	= 0 and $y'(0)$) = 2.	[16]

6.	(c)	Solve the differential equation $(x^2 + y^2) (1 + p)^2 - 2 (x + y) (1 + p) (x + yp) + (x + yp)^2 = 0$, where $p = \frac{dy}{dx}$, by reducing it to Clairaut's form by using suitable
		substitution. [12]

6.	(d)	Use Laplace transform method to solve the following initial value problem:	
		$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = e^t$, $x(0) = 2$ and $\frac{dx}{dt}\Big _{t=0} = -1$	[14]
		at at at $ _{t=0}$	
1			

7.	(a)	small heavy ring which can slide on a rough horizontal rod which passes through A. If the weight of the ring be n times the weight of the chain, show that its greatest
		possible distance from A is $\frac{2l}{\lambda} \log \left\{ \lambda + \sqrt{(1+\lambda^2)} \right\}$, where $1/\lambda = \mu(2n-1)$ and μ is
		the coefficient of friction. [16]

7.	(b)	A particle is projected with velocity V from the cusp of a smooth inverted cycloid
		down the arc, show that the time of reaching the vertex is $2\sqrt{(a/g)} \tan^{-1} \left[\sqrt{(4ag)} / V \right]$
		[18]

7. (A shot fired at an elevation α is observed to stike the foot of a tower which rises above a horizontal plane through the point of projection. If θ be the angle subtended by the tower at this point, show that the elevation required to make the shot strike the top of the tower is $\frac{1}{2}\Big[\theta + \sin^{-1}\big(\sin\theta + \sin2\alpha\cos\theta\big)\Big] \qquad \qquad \textbf{[16]}$

8.	(a)	Find the angle between the tangents to the curve $\vec{r} = t^2 \hat{i} - 2t \hat{j} + t^3 \hat{k}$	at the points
		t = 1 and $t = 2$	[09]

8. (b) (i) Find $f(r)$ such that $\nabla f = \frac{1}{2}$ and $f(1) = \frac{1}{2}$	8.	(b) (i)	Find f(r) such that $\nabla f = \frac{\vec{r}}{r^5}$ and f(1) =
---	----	---------	---

(ii) Find the curvature and torsion at any point of the curve $x = a\cos 2t$, $y = a\sin 2t$, $z = 2a\sin t$

P.T.O.

Š	8.	(c)	Evaluate the integral:	J.	$\int \overline{F} \cdot \hat{n} ds$	where
---	----	-----	------------------------	----	--------------------------------------	-------

 $\overline{F} = 3xy^2\hat{i} + \left(yx^2 - y^3\right)\hat{j} + 3zx^2\hat{k} \text{ and S is a surface of the cylinder } y^2 + z^2 \le 4, -3 \le x \le 3,$ using divergence theorem. **[10]**

8.	(d)	Verify Stoke's theorem for the vector $A = 3y\hat{i} - xz\hat{j} + yz^2\hat{k}$, where S is the surface of
		the paraboloid $2z = x^2 + y^2$ bounded by $z = 2$ and C is its boundary. [15]

-	
ROUGH SP	ACE
ROUGHSP	ACE
ROUGH SP	ACE
ROUGHSP	ACE
ROUGH SP	ACE

No.1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS IN IFoS (FROM 2008 TO 2019)

OUR RANKERS AMONG TOP 10 IN IFoS

DISSII KIIMAD AIR-01 IFoS-2019

PRATAP SINGH AIR-01 IFoS-2015

PRATEEK JAIN AIR-03 IFoS-2016

STONARTHA GUPTA AIR-03 IFoS-2014

VARIIN CUNTURALLI AIR-04 IFoS-2014

AIR-04 IFoS-2010

O IMPRIM IGTARN AIR-05 IFoS-2019

DESHAL DAN AIR-05 IFoS-2017

PARTH JAISWAL AIR-05 IFoS-2014

HIMANSHU GUPTA AIR-05 IFoS-2011

ASHISH REDOY MY AIR-06 IFoS-2015

ANUPAH SHUKLA AIR-07 IFoS-2012

ARMCHAL SPINASTAW AIR-09 IFoS-2018

HARSHVARDHAM AIR-10 IFoS-2017

AIR-30

AIR-93

AIR-22

AIR-21

AIR-67

101 AIR-13

AIR-72 AIR-11 AIR-36 ONLY IMS PROVIDES SCIENTIFIC & INNOVATIVE TEACHING METHODOLOGIES FULLY REVISED STUDY MATERIALS AND FULLY REVISED TEST SERIES.

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9 © Ph.:011-45629987, 9999197625 💋 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152

No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS (FROM 2008 TO 2019)

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152