Modélisation du transport d'un polluant Projet d'introduction à la recherche

Léo Baty, Chiheb Eddine Najjar, Nathan Godey, Régis Santet,
Song Phuc Duong, Clément Lasuen
sous la direction de
Damiano Lombardi et Sebastien Boyaval
Laboratoire INRIA

2 juin 2018

Sommaire

- Introduction
- Méthodes
 - Proper Orthogonal Decomposition
 - Champs de vitesse étudiés
 - Approche eulerienne
 - Approche lagrangienne
- Résultats et interpretations
 - Approche eulerienne
 - Champ de vitesse uniforme
 - Écoulements cellulaires
 - Approche lagrangienne
 - Champ de vitesse uniforme
 - Écoulements cellulaires
 - Champ de vitesse de Lamb-Oseen
- 4 Conclusion

Introduction

FIGURE 1: Explosion de Deepwater Horizon, 20/04/2010

Equation de transport

$$\partial_t c + u \cdot \nabla c = 0$$

c(x,t) : concentration en polluant à la position $x\in(0,1)^2=\Omega$ à l'instant $t\in[0,T]$

u : champ de vitesse, dépend a priori de x et de t

Champs de vitesse étudiés Champ de vitesse uniforme

$$\begin{cases} u_x = ||u|| \cos(\theta) \\ u_y = ||u|| \sin(\theta) \end{cases}$$

FIGURE 2: Écoulement constant avec un angle heta

Champs de vitesse étudiés Écoulements cellulaires

$$\psi(x,y) = \sin(2\pi x)\sin(2\pi y) + \theta_0\cos(2\pi\theta_1 x)\cos(2\pi\theta_2 y)$$

$$\theta_0 \in [0,2.5] \text{ et } (\theta_1,\theta_2) \in [0.5,4]^2$$

FIGURE 3: Champs de vitesse pour deux jeux de paramètres

Champs de vitesse étudiés Champ de vitesse de Lamb-Oseen

$$\mathbf{V}(r,\theta,t) = \frac{\Gamma}{2\pi r} \left(1 - \exp\left(\frac{-r^2}{4\nu t + r_c^2}\right) \right) \mathbf{u}_{\theta}$$

FIGURE 4: Écoulement Lamb-Oseen

Approche eulerienne

FIGURE 5: Condition initiale...

Approche eulerienne

FIGURE 6: ... et après un certain temps

Champs de vitesse étudiés Approche eulerienne Approche lagrangienne

Approche eulerienne Méthode des volumes finis

Approche eulerienne Modèle réduit

Approche lagrangienne

 $X(\xi,t) \in \mathbb{R}^{n \times 2}$ désigne les positions, à l'instant $t \in [0,T]$, des particules qui étaient initialement aux positions $\xi \in \mathbb{R}^{n \times 2}$

$$\begin{cases} \partial_t X = v(X(\xi, t), t) \\ X(\xi, 0) = \xi \end{cases}$$

Hypothèses

$$v \in \mathcal{C}^0(\mathbb{R}^{n \times 2} \times \mathbb{R}) \cap W^{1,\infty}(\mathbb{R}^{n \times 2} \times \mathbb{R})$$

Théorème de Cauchy-Lipschitz

Existence et unicité d'une solution locale pour des temps arbitraires

Conséquence

Le transport est à vitesse finie

Approche lagrangienne Résolution numérique

Schéma de Crank-Nicholson :

$$X^{(k+1)} = X^{(k)} + \frac{\Delta t}{2} (v(X^{(k)}, t^k) + v(X^{(k+1)}, t^{k+1}))$$

Algorithme du point fixe :

$$\begin{cases} X_0^{(k+1)} = X^{(k)} \\ X_1^{(k+1)} = X^{(k)} + \Delta t v(X^{(k)}, t^k) \\ X_{r+1}^{(k+1)} = X^{(k)} + \frac{\Delta t}{2} (v(X^{(k)}, t^k) + v(X_r^{(k+1)}, t^{k+1})) \end{cases}$$

16 simulations, $\theta \in [0, \frac{\pi}{2}]$

FIGURE 7: Tracé du log des valeurs singulières en fonction du rang

Rôle des modes propres :

Condition initiale, 10 modes

Condition initiale, 20 modes

Condition initiale, 50 modes

Condition initiale, 100 modes

Reconstruction d'une solution fine

Condition initiale, 200 modes

Condition initiale, 500 modes

A mi-parcours, 10 modes

A mi-parcours, 20 modes

A mi-parcours, 50 modes

A mi-parcours, 100 modes

A mi-parcours, 200 modes

A mi-parcours, 500 modes

Approche eulerienne Ecoulements cellulaires

Ecoulement cellulaire

Approche eulerienne Ecoulements cellulaires

FIGURE 8: log des valeurs singulières pour 8000 particules

FIGURE 9: log des valeurs singulières pour 500 particules

FIGURE 10: simulation pour 100 particules, $\theta_0 = \theta_1 = \theta_2 = 0.5$

FIGURE 11: simulation pour 100 particules, $\theta_0 = \theta_1 = \theta_2 = 0.5$

FIGURE 12: simulation pour 100 particules, $\theta_0 = \theta_1 = \theta_2 = 0.5$

FIGURE 13: simulation pour 100 particules, $\theta_0 = \theta_1 = \theta_2 = 0.5$

Approche lagrangienne Champ de vitesse de Lamb-Oseen

Figure 14: log des valeurs singulières pour 100 particules

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.