University of Toronto Faculty of Arts and Science

MAT224H1F Linear Algebra II

Final Examination

December 2011

S. Uppal

Duration: 3 hours

Last Name:	
Given Name:	
Student Number:	

No calculators or other aids are allowed.

FOR MARKER USE ONLY			
Question	Mark		
1	/10		
2	/10		
3	/10		
4	/10		
5	/10		
6	/10		
TOTAL	/60		

[10] 1. Let W be the one dimensional subspace of \mathbb{C}^3 spanned by w = (1 - i, 1 + i, 1 + 2i). Find the matrix of the orthogonal projection onto W^{\perp} with respect to the standard basis of \mathbb{C}^3 .

EXTRA PAGE FOR QUESTION 1 - please do not remove.

[10] **2.** Consider the vector spaces $P_1(\mathbb{R})$, and $P_2(\mathbb{R})$ both with inner product

$$< p(x), q(x) > = \int_0^1 p(x)q(x) dx.$$

Let $T: P_2(\mathbb{R}) \to P_1(\mathbb{R})$ be defined by T(p(x)) = p'(x). Find $T^*(p(x))$ for an arbitrary $p(x) = a + bx + cx^2 \in P_2(\mathbb{R})$.

EXTRA PAGE FOR QUESTION 2 - please do not remove.

[10] 3. Let $A = \begin{pmatrix} 2 & 1-i \\ 1+i & 1 \end{pmatrix}$. Find the spectral decomposition of A.

EXTRA PAGE FOR QUESTION 3 - please do not remove.

[10] **4.** Let $N: \mathbb{R}^4 \to \mathbb{R}^4$ be given by

$$N = \begin{bmatrix} 6 & 2 & 1 & -1 \\ -7 & -1 & -1 & 2 \\ -9 & -7 & -2 & -1 \\ 13 & 3 & 2 & -3 \end{bmatrix}$$

- (a) Show that N is nilpotent and find the smallest k such that $N^k = 0$.
- (b) Find the canonical form of N and a canonical basis.

EXTRA PAGE FOR QUESTION 4 - please do not remove.

[10] 5. Let $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ be the linear operator defined by T(p(x)) = p''(x) + p(x). Find a basis α for $P_3(\mathbb{R})$ such that $[T]_{\alpha\alpha}$ is in Jordan canonical form.

EXTRA PAGE FOR QUESTION 5 - please do not remove.

- [10] **6.** Let V and W be finite dimensional inner product spaces over \mathbb{R} and $T: V \to W$ a linear transformation. Let x_1, x_2, \ldots, x_k be vectors in V such that $\{T(x_1), T(x_2), \ldots, T(x_k)\}$ is a basis for the image of T.
 - (a) Prove that $\{T^*(T(x_1)), T^*(T(x_2)), \dots, T^*T(x_k)\}$ is a linearly independent subset of the image of T^* and explain why this implies that $rank(T) \leq rank(T^*)$.
 - (b) Since part (a) holds for all linear transformations from V into W, explain why this implies that $rank(T) = rank(T^*)$.