Project Title: An Aesthetic 2d Plat-Former based game with an Astute Al and its Quality Evaluation

Group Members:

- 1.Tejas Deshmukh
- 2.Gouresh Kochare
- 3.Preet Gandhi

Field] float runSpeed

float jumpSpeed

GAME DEVELOPMENT jumpSpeed

Game Design

- How the game looks like
- What the game will include
- What is the game all about
- □ Scope
- ☐ Technology Stack
- Benefits to environment
- ☐ Theme
- ☐ Applications
- ☐ Future Scope
- Preparing a questionnaire for quality evaluation
- Animations via Adobe Photoshop/Illustrator

Game Coding

A LADDER TAG

- How the game will work
- The logic of the game
- Bug Fixes
 Vector
- C# sharp Scripts or terenderer
- ☐ Game Assets
 - Giving a meaning to animation
- Coding via Unity Game Engine

SaveTheWorld()

Inbuilt Unity Physics Engine

- A 2D Plat former Game
- Player on an odyssey
- Number of puzzles
- Number of levels with an increasing complexity
- Enemies and pitfalls
- Score system
- Health and die system
- Path finding mechanism

Scope

- Basic Player & Enemy Movement
- Implementation of A* path finding algorithm of Al
- Score, Health, Die system
- Various Puzzles and Level advancement logic
- Making original animation, sounds and music
- Designing a Brief Questionnaire for feedback and continuous improvements

A* Path Finding Al algorithm

float runSpeed =

float climbSpeed

MoveHorizontally();
ClimbLadders();
ProcessJump();
SaveTheWorld():

float runSpeed :

float climbSpeed

Score, Health, Die & Traps, Puzzles

EAME DESIGNAL Float jumpSpeed

d] float climbSpeed

Making Pixel Art Animations via Adobe Photoshop

Scripts

PlayerMovement.cs

EnemyMovement.cs

Projectile.cs

DamageDealer.cs

AIPath.cs

Spawner.cs

Score.cs

Health.cs

Level.cs

Analytics.cs

Sfx.cs

BackgroundScroller.cs

Objects

loat climbSpeed

Player Enemy Projectile **Pitfall** SceneLoader **AudioManager ParticleSystem** Canvas GameCamera Background

SaveTheWorld()

Technology Stack

Unity Game Engine 18/19

C# Programming Language

float runSpeed :

float climbSpeed

Benefits to Society & Environment

- Stress Buster
- Logical thinking
- Boosting thinking process
- Puzzle solving capabilities
- Sense of accomplishment
- Hand-eye co-ordination
- Helps socializing

Simulation of a Quagmire

string CLIMB BOOL =

- Making way through dangerous situations
- Enhances split-second decision making
- Boosts auditory perception

Float climbSpeed

Applications

Learning AID in software engineering

Entertainment

To create Music

IncrediBox or MusicLab, etc

Recording original sounds over the mic

ProcessJump()
SaveTheWoold(

Animator animator:

string CLIMB BOOL =

Vector3 screenPos = new Vector3()

SpriteRenderer spriteRenderer;

Tile Maps

Float climbSpeed

Physics 2D Engine & Layer Collision Matrix

State Camera: Cinemachine & other components

And Many other Components and concepts!

Virtual State Cameras

GAME DEVELOPMENT

Designing a Questionnaire

float runSpeed =

float climbSpeed

MoveHorizontally();
ClimbLadders();
ProcessJump();
SaveTheWorld():

GAME DEVELOPMENT

Future Scope

An Al attached to player may help us classify the levels according to their level of complexity and also let us know if it is even possible to complete the level and if yes, know how hard the level actually is which has been designed by us.

TABLE I
A SUMMARY OF THE DATA COLLECTED FOR EACH JUMP TRIAL.

string CLIMB BOOL =

float climbSpeed

screen ID	Trajectory Type	#Jumps	#Successes	%Success
0	Simple	156	136	0.872
1	Simple	131	80	0.611
2	Simple	158	114	0.722
3	Simple	159	104	0.654
4	Simple	153	33	0.216
5	Reentrant	150	53	0.353
6	Reentrant	139	76	0.547
7	Reentrant	134	43	0.321
8	Reentrant	148	32	0.216
9	Trivial	157	139	0.885
10	Falling	151	142	0.940
11	Falling	156	143	0.917
12	Trivial	157	156	0.994
13	Falling	140	128	0.914
14	Falling	141	93	0.660
15	Simple	131	64	0.489

GAME DEVELOPMENT

float climbSpeed

Literature Review

		const storng CLIMB BOOL =		
#	IEEE Paper	Orientation	Authorng JUM	ldea that we took
1	Measuring Quality of Indie Game developed using Unity Framework (Base paper)	Game coding	Mateo Bosnjak & Tihomir Orehovacki	Basic player movement & Quality Evaluation
2	Researching on Al Path- finding Algorithm in the Game Development	Game coding	Yanyan Cao er si	Implementati on of A* Path find
3	Character Design as Bridging Tools of Ideological Message in Game	Game design	Tubagus Zufri, Dodi Hilman, Wahyudi Pratama	Designing of any game object
4	Drawing Equipments with Adobe Illustrator	Game design	Daniel Tofanntali ClimbLadders Process Jump() Save The World	Using different tools to make animation sprites

