Nonparametric tests for location One-sample case Paired samples Two independent samples

Statistics in Geophysics: Inferential Statistics III

Steffen Unkel

Department of Statistics Ludwig-Maximilians-University Munich, Germany

Background

- Tests not requiring assumptions involving specific parametric distributions for the data or for the sampling distribution of the test statistics are called nonparametric.
- Nonparametric methods are appropriate if
 - we know or suspect that the parametric assumption(s) required for a particular test are not met;
 - a test statistic that is suggested or dictated by the problem at hand is a complicated function of the data, and its sampling distribution is unknown and/or cannot be derived analytically.
- Only a few nonparametric tests for location will be presented here.

One-sample Wilcoxon signed-rank test

- Let X_1, \ldots, X_n be a random sample with continuous cdf $F_X(\cdot)$.
- Suppose that it is desired to test that the 0.5 quantile, x_{med} , of the population sampled from is a specific value, say δ_0 .
- Consider the test problems:
 - (a) $H_0: x_{med} = \delta_0 \text{ vs. } H_1: x_{med} \neq \delta_0$
 - (b) $H_0: x_{med} \ge \delta_0 \text{ vs. } H_1: x_{med} < \delta_0$
 - (c) $H_0: x_{med} \le \delta_0 \text{ vs. } H_1: x_{med} > \delta_0 \text{ .}$
- For i = 1..., n, let $D_i = X_i \delta_0$ and define

$$Z_i = \left\{ \begin{array}{ll} 1 & \text{if} \quad D_i > 0 \\ 0 & \text{if} \quad D_i < 0 \end{array} \right..$$

One-sample Wilcoxon signed-rank test

Test statistic

$$W^+ = \sum_{i=1}^n R_i Z_i,$$

where R_i is the rank of $|D_i|$.

- Rejection region:
 - (a) $W^+ > w_{1-\alpha/2}^+$ or $W^+ < w_{\alpha/2}^+$
 - (b) $W^+ < w_{\alpha}^+$
 - (c) $W^+ > w_{1-\alpha}^+$,

where w_{α}^{+} denotes the α -quantile of the distribution of W^{+} .

One-sample Wilcoxon signed-rank test

- For sufficiently large samples: Approximation by $\mathcal{N}\left(\frac{n(n+1)}{4},\frac{n(n+1)(2n+1)}{24}\right)$.
- Test statistic:

$$Z = rac{W^+ - rac{n(n+1)}{4}}{\sqrt{rac{n(n+1)(2n+1)}{24}}} \stackrel{a}{\sim} \mathcal{N}(0,1) \ .$$

- Rejection region:
 - (a) $Z > z_{1-\alpha/2}$ or $Z < z_{\alpha/2}$
 - (b) $Z < z_{\alpha}$
 - (c) $Z > z_{1-\alpha}$,

where z_{α} is the α -quantile of the standard normal distribution.

Wilcoxon signed-rank test for paired data

- We assume that the sampling situation is such that we observe paired data $(X_1, Y_1), \ldots, (X_n, Y_n)$.
- For i = 1, ..., n, the differences $D_i = X_i Y_i$ arise from a continuous distribution and each pair (X_i, Y_i) is chosen randomly and independent.
- The null hypothesis is that the median difference, δ , between pairs of observations is zero.
- Consider the test problems:
 - (a) $H_0: \delta = 0 \text{ vs. } H_1: \delta \neq 0$
 - (b) $H_0: \delta \ge 0$ vs. $H_1: \delta < 0$
 - (c) $H_0: \delta \leq 0$ vs. $H_1: \delta > 0$.

Wilcoxon signed-rank test for paired data

Define

$$Z_i = \left\{ \begin{array}{ll} 1 & \text{if} & D_i > 0 \\ 0 & \text{if} & D_i < 0 \end{array} \right.$$

Test statistic:

$$W^+ = \sum_{i=1}^n R_i Z_i,$$

where R_i is the rank of $|D_i|$.

Rejection region:

(a)
$$W^+ > w_{1-\alpha/2}^+$$
 or $W^+ < w_{\alpha/2}^+$

(b)
$$W^+ < w_{\alpha}^+$$

(c)
$$W^+ > w_{1-\alpha}^+$$
,

where w_{α}^{+} denotes the α -quantile of the distribution of W^{+} .

Wilcoxon rank-sum test

- Given two samples of independent data, the aim is to test for a possible difference in location.
- The null hypothesis is that the two data samples have been drawn from the same distribution.
- Under H_0 there are n+m observations making up a single distribution, where n (m) denote the number of observations in sample 1 (sample 2).
- The test statistic is a function of the ranks of the data values within the n + m observations that are pooled under H_0 .

Wilcoxon rank-sum test

- Let X_1, \ldots, X_n and Y_1, \ldots, Y_m be two random samples from populations with continuous cdfs $F_X(\cdot)$ and $F_Y(\cdot)$, respectively.
- Consider the test problems:
 - (a) $H_0: x_{med} = y_{med}$ vs. $H_1: x_{med} \neq y_{med}$
 - (b) $H_0: x_{med} \ge y_{med}$ vs. $H_1: x_{med} < y_{med}$
 - (c) $H_0: x_{med} \leq y_{med}$ vs. $H_1: x_{med} > y_{med}$.
- Arrange the n + m observations of the pooled sample $X_1, \ldots, X_n, Y_1, \ldots, Y_m$ in ascending order.
- Define

$$V_i = \begin{cases} 1 & \text{if the } i\text{-th order statistic belongs to the } X \text{ sample} \\ 0 & \text{if the } i\text{-th order statistic belongs to the } Y \text{ sample} \end{cases}$$

Wilcoxon rank-sum test

Test statistic:

$$W_{n,m} = \sum_{i=1}^{n+m} iV_i = \sum_{i=1}^{n} R(X_i)$$
,

where $R(X_i)$ is the rank of X_i in the pooled sample.

- Rejection region:
 - (a) $W_{n,m} > w_{1-\alpha/2}(n,m)$ or $W_{n,m} < w_{\alpha/2}(n,m)$
 - (b) $W_{n,m} < w_{\alpha}(n,m)$
 - (c) $W_{n,m} > w_{1-\alpha}(n,m)$,

where w_{α} denotes the α -quantile of the distribution of $W_{n,m}$.

• For sufficiently large samples: Approximation by $\mathcal{N}(n(n+m+1)/2, nm(n+m+1)/12)$.