

R4.A.12 Automates et Langages

Thibault Godin; Lucie Naert

IUT Vannes, Département informatique

Motivation

Comment vérifier effectivement que ${m u}=abbba$ appartient au langage ${\cal L}=ab^*a$ mais que ${m v}=abbab$ n'y appartient pas?

DFA

Un automate déterministe fini est un quintuplet $A = (\Sigma, Q, i_0, F, \delta)$, où :

- Σ est un ensemble fini, appelé alphabet.
- Q est un ensemble fini, appelé ensemble des états. (Q et Σ sont disjoints)
- i₀ est un élément distingué de Q, appelé **état initial**.
- F est un sous-ensemble de Q, appelé ensemble des états finaux.
- δ est une application de $Q \times \Sigma$ dans Q, appelée fonction de transition.

Exemple : Considérons l'automate $A = (\Sigma, Q, i_0, F, \delta)$ suivant : $\Sigma = \{a, b\}$, $Q = \{1, 2, 3\}$, $i_0 = 1$, $F = \{3\}$, $\delta(1, a) = 2$, $\delta(1, b) = 1$, $\delta(2, a) = 3$, $\delta(2, b) = 1$, $\delta(3, a) = 3$ et $\delta(3, b) = 3$.

On peut écrire la **table de transition** de δ : $\frac{1}{2}$

$$\delta \quad a \quad b \\
1 \quad 2 \quad 1 \\
2 \quad 3 \quad 1 \\
3 \quad 3 \quad 3$$

On dessine le **graphe de transition** de l'automate :

Lecture et acceptation de mots

$$m{u} \in \mathcal{L}_A$$
 ssi le mot $m{\delta}_u \in Q^*$ de longueur $|m{u}| + 1$ défini par $m{\delta}_u[0] = i_0$ et $m{\delta}_u[k+1] = \delta(m{\delta}_u[k], m{u}[k+1])$ est tel que $m{\delta}_u[|m{u}|] \in F$

\mathcal{L}_A est le langage reconnu par l'automate A.

1. On fait ici démarrer l'indexation de \pmb{u} à 1 et celle de $\pmb{\delta}_u$ à 0 pour améliorer la lisibilité

Langage reconnaissables déterministes

 \leadsto classe de langages reconnus par un DFA : les langages reconnaissables par automates déterministes, i.e. $L \in \mathcal{L}_{det\ rec} \Longleftrightarrow \exists A\ \mathsf{DFA}\ , L = L_A$

Montrer que la classe $\mathcal{L}_{det\ rec}$ est close pour l'intersection, le complément et le préfixe.

En déduire qu'elle est close pour l'union.

	$\mathcal{L}_{\mathit{rec}}$ det
Union	clos
Intersection	clos
Concaténation	?
Complément	clos
Préfixe	clos
Suffixe	?
Miroir	?
Étoile	?

Construction : complément

Si $A = (\Sigma, Q, i_0, F, \delta)$ accepte le langage L alors $A_c = (\Sigma, Q, i_0, Q \setminus F, \delta)$ accepte $\overline{L} = \Sigma^* \setminus L$

Construction: intersection

Si $A=(\Sigma,Q,i_0,F,\delta)$ accepte le langage L et $B=(\Sigma,Q',j_0,F',\delta')$ accepte le langage M alors $AB=(\Sigma,Q\times Q',(i_0,j_0),Q\times Q',\Delta)$ accepte $L\cap M$ (avec $\Delta((i,j),a)=(\delta(i,a),\delta'(j,a))$ la fonction de transition produit)

Construction: préfixe

Un état q devient acceptant s'il est co-accessible depuis un état final, c-à-d si on peut atteindre un état final depuis q.

NFA

Un automate non-déterministe fini est un quintuplet $A = (\Sigma, Q, \delta, I, F)$, où :

- Σ est un ensemble fini, appelé alphabet.
- Q est un ensemble fini, appelé ensemble des états. (Q et Σ sont disjoints)
- I est un sous-ensemble de Q, appelé ensemble des états initiaux.
- F est un sous-ensemble de Q, appelé ensemble des états finaux.
- δ est une application de Q × Σ dans P(Q), appelée fonction de transition.

NFA

<i>A</i> =	({1, 2},	$\{p, q,$	r,s , δ , $\{p\}$, $\{s\}$
	1	2	
р	$\{r,q\}$	Ø	
q	{ <i>r</i> }	{s}	
r	Ø	{ <i>r</i> }	
s	{s}	{s}	

Un run associé à un mot \boldsymbol{u} est le mot $\delta_u \in Q^*$ de longueur $2 |\boldsymbol{u}| + 1$ défini par $\delta_u[0] \in I$ et $\delta_u[k+1] \in \delta(\delta_u[k], \boldsymbol{u}[k+1])$. Un run (chemin) est acceptant si $\delta_u[|\boldsymbol{u}|] \in F$

Un mot est accepté s'il existe un run acceptant associé à ce mot

 \mathcal{L}_A est le langage reconnu par l'automate A.

^{2.} On fait ici démarrer l'indexation de $\emph{\textbf{u}}$ à 1 et celle de $\emph{\delta}_\emph{u}$ à 0 pour améliorer la lisibilité

ε -NFA

Un automate non-déterministe fini à transitions spontanées est un quintuplet $A = (\Sigma, Q, \delta, I, F)$, où :

- Σ est un ensemble fini, appelé alphabet.
- Q est un ensemble fini, appelé **ensemble des états**. (Q et Σ sont disjoints)
- I est un sous-ensemble de Q, appelé ensemble des états initiaux.
- F est un sous-ensemble de Q, appelé ensemble des états finaux.
- δ est une application de $Q \times (\Sigma \cup \{\varepsilon\})$ dans $\mathcal{P}(Q)$, appelée fonction de transition.

$\varepsilon\text{-NFA}$

<i>A</i> =	({a,b}	$\{1, 2,$	$3\}, \delta,$	$\{1,3\},\{1,2\}$
	a	Ь	ε	
1	Ø	{2}	{3}	
2	{2,3}	{3}	Ø	
3	{1}	Ø	Ø	

ε -Clôture

Soit $A = (\Sigma, Q, \delta, I, F)$ un ε -NFA. On peut obtenir un NFA équivalent $A' = (\Sigma, \hat{Q}, \delta^*, I, F)$

Pour cela on calcule les ε -clôtures, c-à-d l'ensemble des états que l'on peut atteindre par un nombre quelconque de ε -transitions.

La clôture \hat{q} de l'état q est le plus petit ensemble décrit par $q \in \hat{q}$ et $\hat{q} = \bigcup_{p \in \delta(q, \varepsilon)} \hat{p}$

Attention, \hat{q} est un ensemble! \hat{Q} sont les ε -clôtures δ^* donné par $\delta^*(\hat{q}, x) = \bigcup_{p \in \hat{q}} \delta(p, x)$

$$A' = (\mathcal{P}(\{1,2,3\}), \{a,b\}, \delta, \{1,3\}, \{1,2\})$$

$$\begin{vmatrix} a & b \\ \{1,3\} & \{1,3\} & \{2\} \\ \{2\} & \{2,3\} & \{3\} \\ \{3\} & \{1,3\} & \emptyset \end{vmatrix}$$

Langage reconnaissables non-déterministes

 \leadsto classe de langages reconnus par un $(\varepsilon$ -)NFA : les langages reconnaissables par automates non-déterministes, i.e. $L \in \mathcal{L}_{ndet\ rec} \Longleftrightarrow \exists A\ (\varepsilon$ -)NFA , $L = L_A$

Montrer que la classe $\mathcal{L}_{ndet\ rec}$ est close pour l'union, la concaténation et l'étoile.

	$\mathcal{L}_{ndet\ rec}$
Union	clos
Intersection	?
Concaténation	clos
Complément	?
Préfixe	?
Suffixe	?
Miroir	?
Étoile	clos

Déterminisation : $\mathcal{L}_{det\ rec} = \mathcal{L}_{ndet\ rec}$

Rabin-Scott powerset construction :

À partir du NFA $N=(\Sigma,Q,\delta,I,F)$, on construit le DFA

$$D = (\Sigma, Q_d, \delta_d, i_d, F_d)$$

- $Q_d = \mathcal{P}(Q)$
- $i_d = I$
- $F_d = \{q \in Q_d | q \cap F \neq \emptyset\}$
- $\delta_d(q,x) = \bigcup_{p \in q} \delta(p,x) \quad q \in Q_d$

Déterminisation : $\mathcal{L}_{det\ rec} = \mathcal{L}_{ndet\ rec}$

Déterminisation : $\mathcal{L}_{det\ rec} = \mathcal{L}_{ndet\ rec}$

	a	Ь	ε
1	Ø	{2}	{3}
2	{2,3}	{3}	Ø
3	{1}	Ø	Ø

	a	Ь
{1,3}	{1}	{2}
{2}	{2,3}	{3}
{3}	{1}	Ø

	а	b
$\{1, 3\}$	{1,3}	{2}
{2}	{2,3}	{3}
$\{2, 3\}$	{1,2,3}	{3}
{3}	{1,2}	Ø
$\{1, 2, 3\}$	{1,2,3}	$\{2, 3\}$
Ø	Ø	Ø

Langages reconnaissables

 \leadsto classe de langages reconnus par un automate finis : les langages reconnaissables, i.e. $L \in \mathcal{L}_{rec} \Longleftrightarrow \exists A \ \mathsf{FA}, L = L_A$

	$\mathcal{L}_{ndet\ rec}$
Union	clos
Intersection	clos
Concaténation	clos
Complément	clos
Préfixe	clos
Suffixe	clos
Miroir	clos
Étoile	clos

Ainsi $\mathcal{L}_{reg} \subset \mathcal{L}_{rec}$

$\mathcal{L}_{reg} \subset \mathcal{L}_{rec}$ Thompson (1968)³

(A) Ensemble vide ∅

(B) Mot vide ϵ

(C) Lettre $a \in \Sigma$

(E) Union $R \cup S$

(F) Étoile R*

$\mathcal{L}_{reg} = \mathcal{L}_{rec}$

Brzozowski & McCluskey (1963)

Ainsi $\mathcal{L}_{rec} \subset \mathcal{L}_{reg}$

Synthèse

	$\mathcal{L}_{\textit{rec}}$
Union	clos
Intersection	clos
Concaténation	clos
Complément	clos
Préfixe	clos
Suffixe	clos
Miroir	clos
Étoile	clos