计算机组成与设计 课程实验报告

学号: 202000130143 姓名: 郑凯饶 班级: 2020 级 1 班

实验题目: 综合实验

实验学时: 2 实验日期: 2022-5-29

实验目的:

实现 CPU 综合电路,包括运算器电路和控制器电路。

实验软件和硬件环境:

软件环境:

Quartus II 软件

硬件环境:

- 1. 实验室台式机
- 2. 计算机组成与设计实验箱

实验原理和方法:

1. 总体架构

图 14-1 CPU 综合实验结构框图

其中 ALU 采用实验 5 中四位补码运算器实现。 UPC 以及 CRAM 构成的控制器电路部分采用实验 13 中的实现。

2. 微指令设计

我们使用微指令的低 10 位进行设计,从高至低依次对应功能(+/-, dm, rm, lm),寄存器使能(CPRO, CPR1, CPR2),数据线(4bit)

指令编写:

高位使用0填充

1 + 2

实验步骤:

连接电路原理图:

整体设计:

ALU 设计:

引脚分配:

Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard	Reserved	Current Strength	Slew Rate	Differential Pair
cpudk	Unknown	PIN_84	5	B5_N0	2.5 V (default)		8mA (default)		
cpudr	Unknown	PIN_34	2	B2_N0	2.5 V (default)		8mA (default)		
	Unknown	PIN_60	4	B4_N0	2.5 V (default)		8mA (default)		
	Unknown	PIN_65	4	B4_N0	2.5 V (default)		8mA (default)		
	Unknown	PIN_70	4	B4_N0	2.5 V (default)		8mA (default)		
	Unknown	PIN_74	5	B5_N0	2.5 V (default)		8mA (default)		
< <new node="">></new>									

测试、调试:

初始状态:

1 + 2 测试:

6 + 8 测试:

验证通过!

结论分析与体会:

这是本学期最后一次实验了,在之前两个实验的基础上我们完成了一个简单 CPU 的设计,并通过简单的算术程序进行验证。

总结一下 Quartus2 的设计经验: 1) 可以对导线进行命名,实现总线和单线的转换连接,提高连线的效率; 2) 遇到复杂的设计,可以考虑进行模块化,解耦整体; 3) 注意命名规范,重命名会引发错误,可以借用 C++命名空间的思想,为模块指定一个特定且唯一的命名前缀,在这个"名字空间"下再进行命名。

希望之后再接再厉将计算机组成原理的知识融会贯通,以一个较为底层的视角解构计算机世界!