Table 2: Evaluation of Wasserstein-Filtered Data Augmentation on ISIC 2018 Dataset

Gen	Model	Acc	Prec	\mathbf{Rec}	$\mathbf{F1}$	Gen	Model	Acc	Prec	Rec	F1
3	Augmented Wass			60.00 62.86		18	Augmented Wass			48.57 58.57	
6	Augmented Wass			45.71 57.14		21	Augmented Wass			47.14 64.29	
9	Augmented Wass			50.00 55.71	50.10 53.73	24	Augmented Wass			55.71 64.29	

Performance metrics (%) on a 7-class skin cancer image dataset (ISIC 2018) [1] with 1,257 original training samples and varying numbers of generated images (Gen) from SD-XL, mixed at strength=0.15 and strength=0.8 (default: 0.75). Higher strength increases diversity but introduces suboptimal samples, requiring Wass filtering. Baseline: original samples (averaged across tasks); Augmented: unfiltered generated data; Wass: Wasserstein-filtered data, retaining the top 60% of images. Wass consistently enhances performance over the baseline.

[1] ISIC 2018: The International Skin Imaging Collaboration: A Resource for Skin Cancer Research, arXiv:1807.07543.