

Flickr Scalability

โดย

นายธนกร สว่างโลก

โครงงานในรายงานวิชาคพ.447 นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร
วิทยาศาสตรบัณฑิตสาขาวิชาวิทยาการคอมพิวเตอร์
คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์
ปีการศึกษา 2560

สารบัญ

สารบัญ		.1
	รูป	
1.Flick	r ให้บริการอะไร?	3
2.ประเด็	ก็นปัญหาเกี่ยวกับ Scalability ที่ประสบในการให้บริการ	4
1.	การอัปโหลดรูปภาพมากกว่า 4 แสนภาพต่อวัน(Write problem)	.4
2.	การเข้าใช้งานเว็บไซต์มากกว่า 4 พันล้าน queries ต่อวัน(Read Problem)	.4
3.	การค้นหารูปภาพ(Search problem)	.4
3.เทคนิ	ควิธี หรือสถาปัตยกรรมที่ใช้ในการแก้ปัญหา	5
1.	Shard	.5
2.	Master-Master topology	.6
3.	Cache & server	.6
4.	Load balancer	.6
5.	Big search engine	.6
6.	Dual tree central Database	.6
4.ผลที่ไ	ด้จากการใช้เทคนิควิธีแก้ปัญหา	7
5.ความ	สัมพันธ์กับเนื้อหาที่เรียนในชม.บรรยาย	8
เอกสาร	อ้างอิง	l 1

สารบัญรูป

รูปภาพ	1 หน้าหลักของ Flickr	3
ง รูปภาพ	2 สถาปัตยกรรมของ Flickr	5
รูปภาพ	3 Horizontal Scaling	8
รูปภาพ	4 การทำงานแบบ stateless	8
รูปภาพ	5 master-master ring topology	9
รูปภาพ	6 shard	9
รูปภาพ	7 cache	10
รูปภาพ	8 Reverse-proxy	10

1.Flickr ให้บริการอะไร?

Flickr อ่านว่า "ฟลิคเกอร์" เป็นชื่อของเว็บไซต์ ให้บริการการฝากรูปภาพ วีดีโอไว้ผ่าน ระบบดิจิตอล ได้รับความนิยมมาก มีผู้เข้าใช้งานเว็บไซต์มากกว่า 4 พันล้าน queries ต่อ 1 วัน หน้าหลักของ Flickr แสดงในรูปภาพที่ 1 โดยผู้ใช้สามารถแบ่งปันข้อมูลรูปภาพ วีดีโอกับบุคคลอื่น ได้ทั่วโลก สิ่งที่ทำให้ ฟลิคเกอร์แตกต่างจากเว็บไซต์อัปโหลดรูป วีดีโอทั่วไปคือการมี tag ไว้ เชื่อมโยงรูปภาพที่คล้ายกัน ประเภทเดียวกัน เพื่อให้สามารถค้นหาได้โดยง่าย มีระบบ Organizer คอยจัดกลุ่มภาพที่ความคล้ายกันด้วย tag , Date และบริการอื่นอีกมากมาย

รูปภาพ 1 หน้าหลักของ Flickr

2.ประเด็นปัญหาเกี่ยวกับ Scalability ที่ประสบในการให้บริการ

Flickr เนื่องจากได้รับความนิยมสูงมาก มีผู้เข้าใช้งานเว็บไซต์มากกว่า 4 พันล้าน queries ต่อ 1 วัน มีรูปภาพทั้งหมดมากกว่า 2 พันล้านบนเว็บไซต์ นอกจากนี้ รูปภาพมากกว่า 400,000(สี่ แสน) ภาพ ถูกเพิ่มเข้ามาในระบบต่อ 1 วัน และบริการเหล่านี้ยังเพิ่มขึ้นเรื่อย ๆ ทำให้เจอปัญหา เกี่ยวกับ scalability ดังต่อไปนี้

1. การอัปโหลดรูปภาพมากกว่า 4 แสนภาพต่อวัน(Write problem)

เนื่องจากมี active user หลักร้อยล้านหรือพันล้าน ทำการอัปโหลดรูปภาพขึ้นไปที่ เว็บไซต์ 4 แสนภาพต่อวัน รูปแบบการเก็บข้อมูลต้องรวดเร็ว รองรับการเขียนข้อมูลขนาด ยักษ์ได้

2. การเข้าใช้งานเว็บไซต์มากกว่า 4 พันล้าน queries ต่อวัน(Read Problem)

จำนวนคนเข้าใช้งานสูงมาก คิดเป็น 1 วินาที มีการquery เข้ามาถึง 46296 request(จากผู้ใช้ทั้งหมดใน 1 วัน) เลยทีเดียว เว็บไซต์จำเป็นต้องรองรับการเข้าใช้งาน ของผู้ใช้โดยไม่ล่มไปก่อน

3. การค้นหารูปภาพ(Search problem)

เนื่องจาก Flickr มี Tag ไว้จัดเชื่อมโยงรูปภาพที่คล้ายกัน เหมือนกัน หรือกลุ่ม เดียวกันไว้ด้วยกัน การค้นหารูปภาพ ต้องค้นหาจากรูปภาพมหาศาลและต้องค้นหามา แสดงผลผู้ใช้ได้รวดเร็วด้วย

3.เทคนิควิธี หรือสถาปัตยกรรมที่ใช้ในการแก้ปัญหา

รูปภาพ 2 สถาปัตยกรรมของ Flickr

1. Shard

เพื่อรองรับการเขียน อ่าน ค้นหา ไฟล์รูปภาพให้รวดเร็ว รองรับการทำงานขนาด ยักษ์ได้ ข้อมูลในฐานข้อมูลหลักถูกแบ่ง แต่ละ shard ทำ Master-Master Ring Replication เพื่อให้เขียนข้อมูลได้ดีขึ้นมากขึ้น assign user ให้แต่ละ shard ด้วย random number account id แต่ละ shard จะมีuser 400K+ เท่านั้น กำหนดการ ทำงานของแต่ละ shard ไว้ไม่ให้เกิน 50% อาจจะมีเกินในกรณีที่maintenances หรือ shutdown ถ้าเกินจะทำการ เพิ่ม หรือ upgradeจากการแบ่งข้อมูลเป็น shard ทำให้ สามารถรับมือการอ่านเขียนขนาดยักษ์ได้

2. Master-Master topology

สถาปัตยกรรมก่อนหน้านี้ของ flickr ใช้รูปแบบ Master slave topology ซึ่ง แน่นอนว่า การเข้าใช้มากกว่า 4 พันล้านต่อวัน ทำให้ระบบล่มไปบ่อย และมีการอัปโหลด รูปภาพ (write) มากกว่า 4 แสนรูป เพื่อให้การอัปโหลดสามารถทำได้เร็วมากขึ้น จึงเพิ่ม ตัวเขียนข้อมูลลงไป ทำให้Flickr เปลี่ยนมาใช้ Master-Master topology แต่ละ shard แยกข้อมูลออกจากกันชัดเจน การอ่าน เขียนของ user 1 คนทำใน shard เดียว แก้ปัญหา การ comment ลงคนละ shard ด้วย distributed transaction ถ้าข้อมูลผิดพลาดจะ roll back กลับไป

3. Cache & server

เพื่อลดภาระของ server ลงให้เยอะที่สุด มีการทำ cache เกิดขึ้น ทำ Squid (reverse-proxy) กับไฟล์ html หรือ รูปภาพ เพื่อลดภาระการประมวลผลของserver และ memcache เพื่อประหยัดเวลาการ query ข้อมูลใน database ไม่ต้อง query ซ้ำ กันหลายครั้ง ให้แสดงผลได้เร็วขึ้น สำหรับข้อมูลที่เป็น static ใช้ dedicate server

4. Load balancer

ใช้ pair of Serveriron เป็น load balancer กระจายงานไปให้ server ทำให้ แสดงผลให้ผู้ใช้ทราบได้เร็วขึ้น

5. Big search engine

การ search tag , organize, batch tag change จะใช้ shard search สำหรับ การค้นหาแบบอื่น จะใช้ yahoo search เพื่อให้ค้นหาข้อมูลได้รวดเร็วยิ่งขึ้น

6. Dual tree central Database

เป็นฐานข้อมูลที่ไว้เก็บข้อมูลของ user ว่าข้อมูลของ user อยู่ใน shard ไหน สถาปัตยกรรมแบบ ช่วยให้แสดงผลได้เร็วขึ้น เพราะไม่ต้องไปเสียเวลาค้นหาว่าผู้ใช้คนนี้อยู่ ใน shard ไหนทุกครั้ง

4.ผลที่ได้จากการใช้เทคนิควิธีแก้ปัญหา

- 1. Flickr สามารถรองรับการเข้าใช้งานขนาดยักษ์ได้มากขึ้น
- 2. Flickr สามารถแสดงผลการค้นหารูปได้เร็วมากขึ้น
- 3. Flickr สามารถอ่านเขียนข้อมูลไฟล์ได้เร็วมากขึ้น
- 4. ฐานข้อมูลเข้าถึงได้ตลอดเวลาและรวดเร็วยิ่งขึ้น เพราะ แบ่งเป็น shardไว้
- 5. เว็บไซต์ไม่ล่มบ่อย ใช้งานได้นานขึ้น
- 6. สามารถทำ scaling เพิ่มได้ในอนาคต

5.ความสัมพันธ์กับเนื้อหาที่เรียนในชม.บรรยาย

1. มีการทำ horizontal scaling เพื่อขยายการทำงานให้รองรับผู้ใช้ได้มากขึ้น

รูปภาพ 3 Horizontal Scaling

2. Server มีการทำงานแบบ stateless

รูปภาพ 4 การทำงานแบบ stateless

- 3. มีการใช้ load balancer เพื่อกระจายการทำงานของ server ไม่ให้หนักเกินไป
- 4. มีการใช้ master-master ring topology เพื่อให้เขียนข้อมูลได้มากขึ้น

รูปภาพ 5 master-master ring topology

5. มีการทำ shard เพื่อแบ่งฐานข้อมูลให้ทำกระบวนการอ่านเขียน ค้นหาได้รวดเร็วยิ่งขึ้น

รูปภาพ 6 shard

6. มีการทำ cache เพื่อให้ค้นหาข้อมูลได้เร็วยิ่งขึ้น

รูปภาพ 7 cache

7. มีการทำ reverse-proxy เพื่อลดภาระการทำงานของฝั่ง server

รูปภาพ 8 Reverse-proxy

เอกสารอ้างอิง

Modify. Flickr คืออะไร ไว้ใช้ทำอะไร[ออนไลน์]. 2013. สืบค้นจาก: https://www.modify.in.th/3851

Jose Vieitez. What is the software architecture of Flickr? [ออนไลน์]. 2016. สืบค้นจาก: https://www.quora.com/What-is-the-software-architecture-of-Flickr

Josh Lowensohn. Flickr hits 2 billion shots

Flickr's got a lot of pictures, but what's the big picture when it comes to photo uploading?[ออนไลน์]. 2007. สืบค้นจาก: https://www.cnet.com/news/flickr-hits-2-billion-shots/

highscalability. *Flickr Architecture*[ออนไลน์]. 2007. สืบค้นจาก: http://highscalability.com/blog/2007/11/13/flickr-architecture.html

Dathan Vance Pattishall. <u>Federation at Flickr: Doing Billions of Queries Per Day</u>
[ออนไลน์]. สืบค้นจาก: https://www.scribd.com/doc/2592098/DVPmysqlucFederation-at-Flickr-Doing-Billions-of-Queries-Per-Day [เข้าถึงเมื่อ Dec 19,2017]

Mikhail Panchenko. *The Evolution of the Flickr Architecture*[ออนไลน์].2010. สืบค้น จาก: https://www.infoq.com/presentations/Flickr-Architecture

Apiwat Tatsanakitti<u>. หลักการทำงานของ Proxy Server และ Reverse Proxy [ฉบับ</u> <u>ละเอียดอ่อน][</u>ออนไลน์].2016. สืบค้นจาก:

http://network99public.blogspot.com/2016/06/proxy-server-reverse-proxy.html