Lecture 9: February 11, 2015 cs 573: Probabilistic Reasoning Professor Nevatia
Spring 2015

Review

- Assignment #3 will be posted today; due Monday Feb 25
- Last lecture:
 - Sum-Product Variable Elimination Algorithm
 - Applies to arbitrary directed and undirected graphs
- Today's objective
 - Analysis of VE algorithm
 - Graph-Theoretic implications
 - Cluster-tree algorithm

Dealing with Evidence

- Just work with reduced factors, where only terms corresponding to the evidence are used.
- VE will compute P(Y, e) (joint probability)
 - To compute conditional probability, divide by P(e)
 - $P(e) = \sum_{Y} P(y,e)$
 - Dividing by P(e) is equivalent to normalizing P(Y, e)
- Example:
 - Next slide using the "student" network
 - Compute P (J | i^1 , h^0)

Example: Inference with Evidence

Compute P (J | i^1 , h^0)

Elimination order: C,D, G, S, L

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1'	C	$\phi_C(C), \phi_D(D,C)$	C,D	$\tau_1'(D)$
2'	D	$\phi_G[I=i^1](G,D), \phi_I[I=i^1](), \tau_1'(D)$	G, D	$ au_2'(G)$
5'	G	$\tau_2'(G), \phi_L(L,G), \phi_H[H=h^0](G,J)$	G, L, J	$ au_5'(L,J)$
6'	S	$\phi_S[I=i^1](S), \phi_J(J,L,S)$	J, L, S	$\tau_6'(J,L)$
7'	L	$\tau'_{6}(J,L), \tau'_{5}(J,L)$	J, L	$ au_7'(J)$

Table 9.3 A run of sum-product variable elimination for $P(J, i^1, h^0)$

VE for Conditional Probabilities (9.2)

Algorithm 9.2 Using Sum-Product-VE for computing conditional probabilities

```
Procedure Cond-Prob-VE (

\mathcal{K}, // A network over \mathcal{X}
\mathbf{Y}, // Set of query variables
\mathbf{E} = \mathbf{e} // Evidence
)

\Phi \leftarrow \text{Factors parameterizing } \mathcal{K}
Replace each \phi \in \Phi by \phi[\mathbf{E} = \mathbf{e}]
Select an elimination ordering \prec
\mathbf{Z} \leftarrow = \mathcal{X} - \mathbf{Y} - \mathbf{E}
\phi^* \leftarrow \text{Sum-Product-VE}(\Phi, \prec, \mathbf{Z})
\alpha \leftarrow \sum_{\mathbf{y} \in Val(\mathbf{Y})} \phi^*(\mathbf{y})
\mathbf{return } \alpha, \phi^*
```

Complexity Analysis

- Let *n* be number of random variables, *m* number of initial factors
- At each step, we pick a variable to eliminate, say X_i . We multiply all factors containing X_i , to get a new factor ψ_i . Sum out X_i to get τ_i .
- Let N_i be number of entries in ψ_i , let $N_{max} = \max_i (N_i)$
- Total number of factors in Φ is m + n (m initial, n is number of τ_i .)
- Mulitplications: each factor is multiplied exactly once, cost of computing ψ_i is at most N_i as each entry of ϕ is multiplied into exactly one entry of ψ_i .
 - Total number of multiplications is $\leq (n + m) N_{max} = O(mN_{max})$
- Additions: each entry in ψ_i is touched exactly once, so total is $\leq nN_{max}$.
- Hence, total complexity is $O(mN_{max})$
- Exponential growth is in size of the factors ψ_i

Graph Theoretic Analysis

- Graph-Theoretic analysis provides some insights
- Definition of scope of a *set* of factors, Φ : union of scope of the factors, ϕ , in the set.
- Let H_{Φ} be an undirected graph whose nodes are in scope of Φ ; edges between pairs of nodes that are in scope of one of the factors ϕ in Φ .
 - Moralizes v-structures in a directed graph
- H_{Φ} is a fully connected sub-graph over the scope of each factor in Φ , hence a minimal I-map for distribution, P, defined by Φ .
- Given a context E = e, we use the reduced factors and find a correspondingly reduced graph.
- (Formal definition: 9.4 and proposition 9.1 in the book.)

Elimination as Graph Transformation

- To eliminate a variable, X, we first create a single factor ψ that combines all factors containing X; let Y be the other variables present in ψ . then we eliminate X to create τ that does not contain X. Let Φ_x be the resulting set of factors.
- Consider new induced graph H_{Φ_X} . It will contain edges between all the variables in Y, some may have been already present, new ones are called *fill* edges. X and all edges to it are removed.

Remove D then I.

Note fill edge G - S

Induced Graph

- Union of all graphs resulting from different steps of the elimination algorithm
- $I_{\Phi, \prec}$ is the induced graph, \prec is the elimination ordering
 - Two variables are connected in this graph if they both appear in some factor ψ .

- (b): cliques in induced graph
- (c): Clique tree from (b)
 - •Each node corresponds to a clique in the original graph
 - •Links if nodes contain common variables; this set is called *sepset*
 - •Formal def: 4.17

Induced Graph Properties

- Scope of every factor generated in elimination process is a clique in $I_{\Phi,\prec}$
- Every maximal clique in $I_{\Phi,\prec}$ is in scope of some intermediate factor.
- For the given example, $\{G, L, S, J\}$ corresponds to ψ_5 in step 5
- Every induced graph is chordal (triangulated)
- Eliminating edges in a chordal graph does not add *fill* edges
- Sizes of maximal cliques in induced graph depend on elimination ordering
- Define *width* of induced graph to be size of largest clique 1
- Tree width of a graph (original) is the minimal induced width by any ordering.
 - Minimal induced width gives a bound on best case performance for VE.
- Finding optimal elimination ordering is NP-hard.

Choosing Elimination Order

- Chordal graph:
 - Eliminate nodes that are in a leaf clique first
 - New leaf cliques after elimination of some variables
- Heuristic cost of a variable:
 - Min-neighbors: number of neighbors
 - Min-Weight: product of weights (cardinality) of its neighbors
 - Min-Fill: Number of edges to be added due to elimination
 - Weighted-min-fill: Sum of weights of fill edges, weight of an edge is the product of weights of its constituent vertices
 - The last two reported to work best (empirically)
- Search may be conducted deterministically or stochastically (sample from the cost distribution)

Conditioning

- Early algorithms applied only to polytrees (only one path between any pair of nodes) and could not work in graphs with loops.
- Solution was to take one or more nodes in the loop (to constitute a *cutset*) and *condition* them (assign them fixed values), effectively cutting them out of the graph (set of such nodes is also called *cutset*). Repeat the inference for all possible assignments of the nodes in the cutset and sum them.
- Condition on A_k (choose a value)
 - Inference over A_1 thru A_{k-1} would be repeated
- Condition on B
 - Inference over A₁ thru A_k would be repeated

Conditioning

- VE algorithm can work with graphs containing loops
 - However, the scope of intermediate factors can become large
 - Storage and computation requirements can grow
- Conditioning can reduce the size of the resulting factors.
 - However, it can be shown that computation is not reduced; in fact, may be increased as some computations have to be repeated.
- Conditioning may be considered to offer a space-time trade-off
- Naïve algorithm for making inferences, by computing the joint probability distribution entries, is essentially one of conditioning all nodes, except the one whose probability is to be inferred.
- VE and conditioning steps can be mixed and applied alternately
 - Condition a variable, eliminate some, condition some more etc
- We omit details of conditioning (9.5) and section 9.6

VE with Structured CPDs

- One approach would be to convert Structured CPDs (tree, rules) to the usual, table based CPDs
- However, as structured CPDs may contain fewer parameters, it is preferable to work with them directly.
- KF book describes a modified version of VE for rule CPDs (sec 9.6)
- We skip this section

Available Packages

- Survey by Kevin Murphy
 - http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
- MSBNx
 - Interactive BN inference software from Microsoft
 - Has a graphical interface to enter nodes, arcs, CPDs
 - Seems easy to use but no support is available from TA or Professor
 - May use to verify your numerical answers
- GeNIe: from U. of Pittsburg
- LIBDAI: free library for C++
- BNT (Kevin Murphy), widely used, MATLAB only
- HUGIN: powerful and popular commercial software package

Inference using Clique Trees

- Variable elimination algorithm provides distribution of one variable at a time. We can re-run multiple times to get distribution of all variables but much of the computation would be repeated.
- Working with *clique trees* will allow us to get distribution of all variables efficiently
- Topics:
 - How to convert original networks to clique trees?
 - Inference algorithm for clique trees
 - Generalization to cluster (clique) graphs

Cluster Graph

- U: graph over a set of factors Φ , X is set of nodes
- A *node* in this graph is a "cluster" (subset of) variables, say C_i
- Family preserving: Each factor ϕ must be associated with some cluster, say C_i , called $\alpha(\phi)$. scope $[\phi] \subseteq C_i$
- Each *edge* between two nodes, say C_i and C_j , is associated with a set of nodes, called a *sepset*, $S_{i,j}$, $S_{i,j} \subseteq C_i \cap C_j$.
- Variable elimination algorithm generates a cluster graph
 - Cluster for each factor ψ_i .
 - Edge between C_i and C_j when τ_i is used in computation of τ_j .
- Example Fig 10.1

Cluster Graph from VE Steps

Step	Variable eliminated	Factors used	Variables involved	New factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C, D	$ au_1(D)$
2	D	$\phi_G(G,I,D), au_1(D)$	G, I, D	$ au_2(G,I)$
3	1	$\phi_I(I), \phi_S(S,I), \tau_2(G,I)$	G, S, I	$ au_3(G,S)$
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	G	$\tau_4(G,J), \tau_3(G,S), \phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$
6	S	$\tau_5(J,L,S),\phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

Table 9.1 A run of variable elimination for the query P(J)

Simplify the Cluster Graph

Eliminate cliques that are not maximal (results in a tree for this example)

Next Class

• Read sections 10.2 and 10.3 of the KF book