09 日本国特許庁 (JP)

①特許出願公開

⑩公開特許公報(A)

昭55-12429

⑤Int. Cl.³G 01 T 1/10

識別記号

庁内整理番号 2122-2G ❸公開 昭和55年(1980)1月29日

発明の数 1 審査請求 未請求

(全 8 頁)

匈放射線画像読取方式

の特 願 昭53-84741

②出 願 昭53(1978)7月12日

70発 明 者 松本誠二

南足柄市中沼210番地富士写真 フイルム株式会社内

@発 明 者 宮原諄二

南足柄市中沼210番地富士写真 フイルム株式会社内

心分発明,者、加藤、人豊

南足柄市中沼210番地富士写真

フイルム株式会社内

@発 明 者 小寺昇

小田原市中町1-1-1-905

加発 明 者 江口周作

小田原市飯泉220-1

⑪出 願 人 富士写真フイルム株式会社

南足柄市中沼210番地

⑪出 願 人 大日本塗料株式会社

大阪市此花区西九条六丁目1番

124号

郊代 理 人 弁理士 柳田征史 外1名

明 細 警

発明の名称 放射線画像駅取方式
 2.特許請求の範囲

蓄積性盤光体材料を励起光で走査し、各点からの発光光を光検出器で検出することにより、蓄積性盤光体材料に記録されている放射線画像を観取る方式において、前記励起光として600~700 nm の波長域の光を用いて蓄積性盤光体材料を励起し、該蓄積性盤光体材料を励起し、該蓄積性盤光体材料を励起し、該蓄積性盤光体材料を励起し、該蓄積性盤光を対料を励起し、該蓄積性盤光でした。

3.発明の詳細な説明

本発明は、医療用診断に用いる放射観写真システムにおける画像説取方式に関し、さらに詳しくは中間條体として蓄積性盤光体材料(以下単に「盤光体」という)を用いて、これに放射線画像を記録し、この放射線画像を記録し、これを記録材料に最終画像として記録する放射線写真システムにおける画像説取方式に関するものである。

従来放射級画像を得るために銀塩を使用した、いわゆる放射級写真が利用されているが、近年等に地球規模における銀費源の枯渇等の問題から銀塩を使用しないで放射船像を画像化する方法が望まれるようになつた。

上述の放射観写真法にかわる方法として、
被写体を透過した放射線を發光体に吸収せし
め、しかる後との螢光体をある種のエネルギーで励起してとの螢光体が蓄積している放射
観エネルギーを螢光として放射せしめ、との、
螢光を検出して画像化する方法が考えられて

Best Available Copy

いる。具体的な方法として螢光体として熱盤 光性産光体を用い、励起エネルギーとして熱 エネルギーを用いて放射線像を変換する方法 が提唱されている(英国特許第 1,462,769 号かよび特開昭51-29889号)。この変換 方法は支持体上に熱愛光性螢光体層を形成し たパネルを用い、このパネルの熱螢光性螢光 体層に被写体を透過した放射線を吸収させて 放射銀の強弱に対応した放射線エネルギーを・ 蓄積させ、しかる後この熱發光性螢光体層を 加熱することによつて蓄積された放射線エネ ルギーを光の信号として収り出し、この光の 強弱によつて画像を得るものである。しかし ながらとの方法は蓄積された放射線エネルギ ーを光の信号に変える際に加熱するので、パ オルが耐熱性を有し、熱によつて変形、変質 しないことが絶対的に必要であり、従つてパ ネルを構成する熱質光性整光体層および支持 体の材料等に大きな制約がある。このように 登光体として熱螢光性螢光体を用い、励起エ

ネルギーとして熱エネルギーを用いる放射器 像変換方法は応用面で大きな難点がある。

(1) 励起光の液長によつて螢光体に蓄積されたエネルギーの衰退(Decay)量が大きく変化すること、これは記録された面像の保存期間を大きく左右するものである。

- (2) 励起光の波長によつて螢光体の励起スピートが大きく変化すること。これは螢光体に記録された面像の読取りスピートに顕著な差異をもたらすものである。
- (3) 繁光体の発光自体は微弱な光であるため、励起光の反射光、その他の周囲の光が光機出器に入るとS/N比が便路に低下すること。これに対しては励起光と登光体の発光との波長坡を隔離する方法で対処するのが有利である。

本発明は上記知見を利用して、愛光体に記録された幽像の衰退が小さく、画像の銃取りスピードが速く、かつS/N比の充分高い実用的な放射線画像の銃取方式を提供することを目的とするものである。

本発明のからる目的は、盤光体を励起光で 走登し、各点からの発光光を光検出器で検出 することにより、盤光体に記録されている放 射線通像を観取る方式において、前記励起光 として600~700mm の改長級の光を用 いて盤光体を励起し、該盤光体の発光光のり 5300~500 nm の波長娘の光を光検出 器で受光するようにすることによつて達成される。

本発明において登光体とは、最初の光もしくは高エネルギー放射線が照射された後気の光もに、発力の光もしくは高エネルは気が成り、最初の光もしくは高エネルせった動物の照射量に対応した光を再発光いますしめる、いわゆる輝尽性を示す変光体を引きない。ここで光とは電磁放射線のりち可視光、系外光を含み、高エネルギー放射線とは、水外光を含み、高エネルギー放射線、中性子線等を含む。

600~700 nm の波及の励起光は、との 放長 W の光を放出する励起光源を選択することにより、あるいは上記波長 W にピークを 有する励起光源と、600~700 nm の波 長 W 以外の光をカットするフィルターとを組合せて使用することにより得ることができる。

特開昭55-12429(3)

上配波長坂の光を放出することができる跡 起光源としては K・ レーザ (6 4 7 nm)、 発光ダイオード (6 4 0 nm)、 H・ - N・レ ーザ (6 3 3 nm)、 ロータミン B ダイレー ザ (6 1 0 ~ 6 8 0 nm) 等がある。またタ ングステンヨーソランブは、波長坂が近紫外、 可視から赤外まで及ぶため、6 0 0 ~ 7 0 0 nm の波長坂の光を透過するフイルターと組 合わせれば使用することができる。

しかし、CO: レーザ(10600 nm)、 YAG レーザ(1160 nm)は波長が長い ために発光効率が悪く、しかも走査中に螢光 体が温度上昇して走査点以外を発光させてし まうから使用することができない。

前述した励起光の波長によつて登光体に蓄積されたエネルギーの衰退速度が異る様子を具体的に示すと第1図および第2図に示す如くである。とうで第1図はX線照射してから、その直後に励起して発光させた光を基準とし、照射2時間後に発光させたときの蓄積エネル

ギーの衰退する様子を示すものである。助起光として600~700 nm の波長娘の光を用いると驚くべきことに750~800 nm の波長娘の光を用いたときよりも、蓄積エネルギーの衰退が少なくなる。したがつて螢光体上の記録を長期間保存することができる。

第2図は同じ現象を照射2時間後の発光量を励起波長との関連が明確になるように示したグラフである。この図から分るように、700mm以上の長波長では、蓄積エネルギーの衰退が大きくなつている。

第3回は点線で示すように矩形破状に強度 が変化する励起光を照射したときの応答性を 示すものである。実線で示す曲線 A は、

H・ー N・レーザ光(波長633 mm)で励起したときの発光輝度である。曲線 B は Co・レーザ光(波長10600 mm)で励起したときの発光輝度を示す。 とのグラフから分るように、H・ーN・レーザ光は、応答性が良いので、それだけ観取速度が早くなる。

なお CO、レーザ光を 1 0 0 4 スポットで走査したところ、優光体が温度上昇し、それにより走査の終りの方では、発光が初分だけ波少してしまつた。

励起エネルギーと発光エネルギーの比は · 104:1~105:1程度であることが普通で あるため、光検出器に励起光が入ると、

S / N 比が極度に低下する。発光を短波長側にとり、励起光を長波長側にとつてできるだけ両者を難し、光後出器に励起光が入らないようにすると、上述の S / N 比の低下を防止することができる。

発光光の波長300~500 nm は、この 放長 域の 光を放出する 登光体を 選択する ことにより 得られる。 じん 登光体を 使用する ことにより 得られる。 じかし 登光体が上記 放長 域の 光を 放出しても、 光検出器が その 放長 域以外の 光をも 測定して しまえば、 S / N 比を 改善することが できない。 したがつて、 螢光体が 300~500 nm

の放長娘の光を発光し、かつ光検出器でこの 放長娘の光だけを検出するようにしなければ ならない。

このためには、300~500 am の波長 域に感度を有する光検出器を用い、かつその 前面にこの波長域の光だけを通すフィルターを配することが必要である。

上記300~500 nm の波長域の光を発 光する螢光体としては、

LaOBr: Ce, Tb (380~420 nm)、
SrS: Ce, Sm (480~500 nm)、
SrS: Ce, Bi (480~500 nm)、
BaO·SiOz: Ce (400~460 nm)、
BaO·6ALzOz: Eu (420~450 nm)、
(0.92n,0.1cd) S: Ag (460~470 nm)、
BaFBr: Eu (390~420 nm)、
BaFCL: Eu (390~420 nm)、

上記波長坡の光を放出しない螢光体、例えば ZnS:Pb(500~530nm)、 ZnS:Mn, Cu(580~600nm)、

(0.3 2m,0.7 cd) 2:Ap (610~620 nm)、
" ZmS."KCL:Mm (580~610 mm)、
CaS:Ca, Bi(570~580 nm)は、励
起光との分離が困難であるから使用することができない。

第4図は螢光体として、BaPBo、2nS:Pb、2nS:Pb、2nS:MnRCL の3種類についてHo-No レーザ光を用いて励起したときのS/N比を示すものである。(a)はそれぞれの螢光体の発光放長を示すものであり、(b)はフォトマルの分光感度と、フォトマルの前面に設けられるフィルターの透過率を示すグラフである。

5分るように、波長が500 nm を越えて長 皮長になると、励起光の皮長に接近するから、 両者の分離が困難になり、S/N比が衝端に 低下する。

以下、本発明をその実施態様に基いて詳細に説明する。

第5図は放射部写真の作画過程を示すものである。放射級原例をはX級管から放射級を放出して人体に照射する。人体を透過した放射線は、登光体板に入射する。この登光体板は、登光体のトラップレベルに、放射級画像のエネルギーを蓄積する。

放射線面像の撮影後、600~700 nm の波長の励起光で後光体板を走査して、蓄積されたエネルギーをトラップから励起し、 300~500 nm の波長域の光を発光させる。この発光光は、この波長域の光だけを受けるようにした光検出器例えば、光電子増倍管、フォトダイオートで測定される。

放射線面像の読取後に、光検出器の出力信

母は増幅、フィルタリングされてから、画像の地域のためにレベル変換される。前記フィルタリングは、雑音を除去するものであり、所留の解像力を得るために、所定の帯域以上ののでは、100元をかって、からのでは、から、増幅器の帯域は50KHs あれば十かである。したがつてこれ以上の周波数はカットされる。

また雑音を減らすために、画素毎に光検出器の出力信号を積分し、この積分値を出力信号とすることができる。さらに、光検出器の出力信号を対数変換すれば、信号のレンジが減少するから、S/N比が改善される。

増幅された電気信号は、観察したい部分が 良好なコントラストになるように、あるいは 各部の境界が明瞭になるようにレベル変換さ れる。 1

との画像処理後、電気信号が C R T 、光走 登袋量に送られる。ととで放射線画像が再生 され、この画像を観察して診断が行なわれる。

あるいは、再生された放射線画像が写真記 録材料に記録され、保存、診断に用いられる。

第6図は螢光体板を示すものである。螢光体板10は支持体11と、その上に層設された螢光体層12から構成されている。

支持体としては、厚さ100~2500 #のポリエチレンシート、ブラスチックフィルム、0.5~1 mmのアルミニウム板、1~3 mmのガラス板等が通常用いられる。支持体11は、透明、不透明いずれであつてもよい。不透明のものは、励起光を当てる倒から発光を検出する。透明なものは、裏面もしくは両面から発光を測定することができる。

整光体としては、発光の波長域が300~ 500 mm の LaOBャ: Ce, Tb.、SiS: Ce, Sm. SrS: Ce, Bi、 BaO·SiO,: Ce.

Ba 0 . 6 A L 1 0 : E w , (0.9 Z m, 0.1 cd) S: Ag,

特別昭55-12429 (5)

第7 図は放射線面像既取装置を示すものである。励起光源としては、 He-Ne レーザ (633 nm)が用いられている。 とのレーザ光源 1 4 から放出した 633 nm の励起光は、ハーフミラー 15を透過して盛光体板 10 に入射する。 との励起光は、スポット径が50 μφ 以下までは扱ることが困難であり、また*300 μφ のスポット径になっては から、50~300 μφ のスポット径になって かり、光走査装置で偏向され、四切もしくは 半切の大きさの敬光体板 10を走査する。

この励起光で励起された螢光体は、蓄積されているエネルギーを放出して300~ 500 nm の波長坂の光を発光する。この発光光は、ハーフミラー15で反射され、レンズ16に入射する。このレンズ16で集めら れた光は、300~500 nm の波長娘の光を透過するフイルタ17に入る。 このフイルタ17を透過した300~500 nm の波長娘の光が光検出器18で測定される。

登光体層12は、励起光の一部を反射する。 この励起光のエネルギーは発光のエネルギー よりも相当大きいから、そのまま光検出器 18で敵定すると、S/Nが悪くなる。しか し本発明では励起光と発光光の波長を離した から、フィルター17を使用することにより、 励起光を除去している。

第8図は、光検出器の前に配されるフィル ター17の特性の一例を示すものである。

第9図はドラム走査式既取装置を示すものである。励起光源としては、タングステンランプ20が用いられている。このタングステンランプ20からの光は、近紫外~赤外級までも含むから、その前方に第10図に示すような特性のフィルター21を使用する。..

タングステンランプ20から出た光は、ピ

ンホール 2 2 を通り、前記フイルター 2 1 化入る。 ここで 6 0 0 ~ 7 0 0 nm の放長域の光だけが透過し、集光レンズ 2 3、ハーフミラー 2 4 を経て登光体板 1 0 に入り、これをスポット 照射する。

登光体板10は、回転自在なドラム25に 装着されている。 この登光体板10で発光し た光は、ハーフミラー24で反射され、集光 レンズ26、フィルター27を順次通つて光 検出器28に入る。

前記タングステンランプから光検出器 2 8 化至る光学系は、ヘッド 2 9 に取り付けられており、ドラム 2 5 の回転時にこれに沿つて横方向に移動する。なかヘッド 2 9 を固定とし、ドラム 2 5 を回転させるとともに横方向に移動させてもよい。

第11図はタングステンランブを使用した 励起光源の別の実施例である。この実施例で は、タングステンランブ 30の後方に第12 図に示す反射率を有し、球形をしたダイクロ 1 ツクミラー3 1 が配される。またタングステンランプ3 0 の前方には、第 1 3 図の特性 曲級 C に示す透過率を有する球形をしたダイクロインクミラー3 2 が配されている。この タイクロインクミラー3 2 を透過した励起光は、第 1 3 図の特性曲線 D で示すフィルター3 3 に達し、6 0 0 ~ 7 0 0 nm の 破長 収の光だけがこれを透過する。この透過光は、集

以上説明した如く、本発明においては 効起光として 6 0 0 ~ 7 0 0 mm の波長坡 を用いることにより、つぎの効果がある。

- (1) 経時による蓄積エネルギーの自然衰退が 少なくなり、螢光体板上の配象画像を長時 間保存することができる。
- (2) 蓄積エネルギーの観出しスピードが向上する。
- (3) 可視光であるから、通常の可視光用光学 素子を使用することができ、また装置の調整が容易である。このため装置の調整不具

合に起因する励起光光点の「ポケ」を完全に防止"することができる。

さらに300~500 mm の発光光との組合わせにより、励起光と発光光の分離を確実に行なうことができるから、S/N比が良好になる等の効果がある。

4. 図面の簡単な説明

グラフである。

10……蓄積性盛光体板

11……支持体

12 …… 蓄積性螢光体層

1 4 … … H . - N . レーザ光原

15 ハーフミラー

17……フィルター 18……光検出器

20 メングステンランブ

2 1 フィルター

2 4 … … ハーフミラー 2・5 … … ドラム

2 7 … … フィルター 2 8 … … 光検出器

30……タングステンランプ

31, 32 9 1 2 0 1 2 2 5 -

3 3 フィルター

特許出顧人 富士写真フィルム株式会社 大日本 強料株式会社

代理人 弁理士 物田征火

外1名

12

5 🙇

