、设 a_1 是任意一个非零的四维向量, $a_2=(2,1,0,0)$, $a_3 = (4, 1, 4, 0), a_4 = (1, 0, 2, 0)$,若向量组 b_1, b_2, b_3, b_4 可由向量组 a_1 , a_2 , a_3 , a_4 线性表示,试证明 b_1 , b_2 , b_3 , b_4 线性相关。 $ii: (d_2, d_3, d_4) = \begin{pmatrix} 2 & 4 & 1 \\ 1 & 1 & 0 \\ 0 & 4 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_3 - 2r_1} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 0 \end{pmatrix}$: R(d2, x3, x4) = 2. $\frac{|S-2|^{2}}{|S-2|^{2}} = \frac{|S-2|^{2}}{|S-2|^{2}} = \frac{|S-2|^{2}}{|S-$ "· b1, b2, b3, b4 能由公, 处, 03, 04 维性表示

·· R(b, b2, b3, b4) ≤3. ·· 矩阵 B=(b, b, b3, b4) 的株小于其所含何易个数

· , b, b2 , b3 , b4 幾性相关

3、在 R^3 中,已知向量组 $a_1 = (1,1,0)^T$, $a_2 = (0,1,1)^T$, $a_3 = (-1,2,1)^T$,

3、在 R^3 中,已知向量组 $a_1 = (1,1,0)^T, a_2 = (0,1,1)^T, a_3 = (-1,2,1)^T$,

证明 a_1, a_2, a_3 是 R^3 的一个基,并求向量 $b = (2, 0, 0)^T$ 在该基下的坐标。

7t:
$$(a_1, a_2, a_3, b) = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 1 & 1 & 2 & 0 \end{pmatrix} \xrightarrow{r_2 - r_3} \begin{pmatrix} 1 & 0 & +1 & 2 \\ 0 & 1 & 3 & -2 \end{pmatrix}$$

因 (a, a2, a3) 辽 I, 校 a, a2, a3为 R, m一组基

且从上式自和: b= a1+a2-a3 从而b在该落下生移为: (1,1,-1)。

第六章 特征值与特征向量

- 6.1 特征值与特征向量
- 6.2 相似矩阵与矩阵的对角化

6.1 特征值与特征向量

- 一、铸征值与铸征向量的定义
- 二、特征值与特征向量的性质
- 三、铸征值与铸征向量的计算

四、关于特征值的一些结论

一、定义

$$A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}, \ \alpha = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \beta = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \gamma = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

$$A \alpha = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2\alpha, \qquad = \begin{pmatrix} 4 \\ -4 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \lambda,$$

$$A \gamma = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \neq k\gamma.$$

定义 设 $A \in R^{n \times n}$, $\alpha \in R^n$, $\lambda \in R$. 若 $A\alpha = \lambda \alpha \ (\alpha \neq 0)$,

则称 λ 为A的一个特征值, α 为A对应于 λ 的一个特征向量.

二、「性质

- 1. 设 $A\alpha = \lambda\alpha (\alpha \neq 0)$,则 $A (k\alpha) = k(A\alpha) = k(\lambda\alpha) = \lambda(k\alpha).$
- 2. 设 α_1 , α_2 是矩阵A的属于特征值 λ 的特征向量,则当 $\alpha_1 + \alpha_2 \neq 0$ 时, $\alpha_1 + \alpha_2$ 也是矩阵A的属于特征值 λ 的特征向量.

注意: 设
$$A\alpha_i = \lambda \alpha_i (i = 1, 2, L, s)$$
,则
$$A(k_1\alpha_1 + k_2\alpha_2 + L + k_s\alpha_s)$$

$$= \lambda(k_1\alpha_1 + k_2\alpha_2 + L + k_s\alpha_s).$$

特征子空间

设
$$V_{\lambda} = \{ \alpha | A \alpha = \lambda \alpha, \alpha \in \mathbb{R}^n \}$$

则由特征值与特征向量的性质可知:

$$\forall \alpha, \beta \in V_{\lambda}, \quad \alpha + \beta \in V_{\lambda}$$
$$\forall \alpha \in V_{\lambda}, k \in \mathbb{R}, \quad k\alpha \in V_{\lambda}.$$

故 V_{λ} 是n维向量空间 \mathbb{R}^{n} 的子空间. V_{λ} 称为矩阵A的特征子空间.

思考: V_{λ} 的所有向量都是A的特征向量吗?

定理1. 设 $\lambda_1, \lambda_2, ..., \lambda_m$ 是n 阶方阵A 的m个特征值, $p_1, p_2, ..., p_m$ 依次是与之对应的特征向量. 如果 $\lambda_1, \lambda_2, ..., \lambda_m$ 各不相等,则向量组 $p_1, p_2, ..., p_m$ 线性无关.

证: 设有常数 $k_1, k_2, ..., k_m$ 使

$$k_1 p_1 + k_2 p_2 + \dots + k_m p_m = 0 \tag{1}$$

则

$$A(k_1p_1 + k_2p_2 + ... + k_mp_m) = 0$$

 $\mathbb{P} \qquad \lambda_1 k_1 p_1 + \lambda_2 k_2 p_2 + \dots + \lambda_m k_m p_m = 0 \qquad (2)$

继推之,有:

$$\lambda_{1}^{n}k_{1}p_{1} + \lambda_{2}^{n}k_{2}p_{2} + ... + \lambda_{m}^{n}k_{m}p_{m} = 0 \qquad (n)$$

$$(n = 1, 2, ..., m - 1)$$

把上面各式合并成矩阵形式,得

$$(k_{1}p_{1}, k_{2}p_{2}, ..., k_{m}p_{m})\begin{pmatrix} 1 & \lambda_{1} & ... & \lambda_{1}^{m-1} \\ 1 & \lambda_{2} & ... & \lambda_{2}^{m-1} \\ ... & ... & ... & ... \\ 1 & \lambda_{m} & ... & \lambda_{m}^{m-1} \end{pmatrix} = (0, 0, ..., 0)_{n \times m}$$

上式等号左端第二个矩阵的行列式是范德蒙行列式, 由 λ_i 互不相等, 所以行列式不等于0, 故而该矩阵可逆。 于是有

$$(k_1p_1, k_2p_2, ..., k_mp_m) = (0,0,...,0)$$
即 $k_jp_j = 0$ $(j = 1,2,...,m)$ 但 $p_j \neq 0$, 故 $k_j = 0$ $(j = 1,2,...m)$. 所以向量组 $p_1, p_2, ..., p_m$ 线性无关。

定理1. 设 $\lambda_1, \lambda_2, ..., \lambda_m$ 是n 阶方阵A 的m个特征值, $p_1, p_2, ..., p_m$ 依次是与之对应的特征向量. 如果 $\lambda_1, \lambda_2, ..., \lambda_m$ 各不相等,则向量组 $p_1, p_2, ..., p_m$ 线性无关.

推论 设 λ_1 , λ_2 , L, λ_s 是 n 阶矩阵A 的互不相同的特征值, 如果 x_{i1} , x_{i2} , L, x_{ir_i} 是 A 的属于特征值 $\lambda_i(i=1,L,s)$ 的线性无关的特征向量, 那么向量组 x_{11} , x_{12} , L, x_{1r_i} , L, x_{s1} , x_{s2} , L, x_{sr_s}

线性无关.

思考:设 λ_1, λ_2 是n阶方阵A的两个不同特征值, x_1, x_2 分别是它们对应的特征向量。证明: x_1, x_3 线性无关。

证: 考虑
$$k_1x_1 + k_2x_2 = 0$$
. (*)

(*)两边左乘A,得
$$\lambda_1 k_1 x_1 + k_2 \lambda_2 x_2 = 0$$
. (1)

(*)两边左乘
$$\lambda_1$$
, 得 $\lambda_1 k_1 x_1 + k_2 \lambda_1 x_2 = 0$. (2)

两式相减,得
$$k_2(\lambda_2 - \lambda_1)x_2 = 0$$
. (3)

 x_2 为特征向量,即有 $x_2 \neq 0$,且 $\lambda_1 \neq \lambda_2$,

∴
$$k_2 = 0$$
. 代入(*)式得 $k_1 = 0$.

故 x_1, x_2 线性无关.

三、计算

分析 设
$$A\alpha = \lambda\alpha (\alpha \neq 0)$$
,则 $(\lambda I - A)\alpha = 0$, $\Rightarrow |\lambda I - A| = 0$, 且 $\alpha \neq (\lambda I - A)x = 0$ 的非零解.

定义
$$f(\lambda) = |\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{1n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

称为矩阵A 的特征多项式。

 $|\lambda I - A| = 0$ 称为矩阵A 的特征方程.

求A的特征值与特征向量的步骤:

$$f(\lambda) = |\lambda I - A|;$$

$$|\lambda I - A| = 0$$
, 得到全部特征值:

$$\lambda_1, \lambda_2, L, \lambda_k;$$

(3) 对每个特征值 λ_i , 求 $(\lambda_i I - A)x = 0$ 的

$$\alpha_{i_1}, \alpha_{i_2}, L, \alpha_{i_{r_i}},$$

则A对应于 λ 的特征向量为:

$$k_1\alpha_{i_1} + k_2\alpha_{i_2} + \mathbf{L} + k_{r_i}\alpha_{r_i} \quad ($$

例
$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{pmatrix}$$
,求 A 的特征值与特征向量.

$$\begin{vmatrix} \lambda I - A | = \begin{vmatrix} \lambda - 1 & 2 & -2 \\ 2 & \lambda + 2 & -4 \\ -2 & -4 & \lambda + 2 \end{vmatrix} = \begin{vmatrix} \lambda - 1 & 2 & -2 \\ 2 & \lambda + 2 & -4 \\ 0 & \lambda - 2 & \lambda - 2 \end{vmatrix}$$

$$= \begin{vmatrix} \lambda - 1 & 4 & -2 \\ 2 & \lambda + 6 & -4 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2) \begin{vmatrix} \lambda - 1 & 4 \\ 2 & \lambda + 6 \end{vmatrix}$$

$$=\cdots=\left(\lambda-2\right)^2\left(\lambda+7\right)$$

$$\lambda_1 = 2$$
 (二重) , $\lambda_2 = -7$.

求 $\lambda_1 = 2$ 的特征向量, $(\lambda_1 I - A)x = 0$ 即

$$\begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

$$\begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$x_1 = -2x_2 + 2x_3$$

基础解系为: $\alpha_1 = \begin{pmatrix} -2, & 1, & 0 \end{pmatrix}^T$, $\alpha_2 = \begin{pmatrix} 2, & 0, & 1 \end{pmatrix}^T$. 特征向量为: $k_1\alpha_1 + k_2\alpha_2$ (k_1, k_2, T) 不全为零).

求 $\lambda_2 = -7$ 的特征向量. $(\lambda_2 I - A)x = 0$ 即

$$\lambda_{2}I - A = \begin{pmatrix} -8 & 2 & -2 \\ 2 & -5 & -4 \\ -2 & -4 & -5 \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\begin{cases} x_{1} = -\frac{1}{2}x_{3} \\ x_{2} = -x_{3} \end{cases},$$

基础解系为: $\alpha_3 = (1,2,-2)^T$,

特征向量为: $k_3\alpha_3(k_3\neq 0)$.

例2 求矩阵A的特征值与特征向量

$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)(\lambda - 1)^{2}$$

$$\lambda_1 = 2$$
, $\lambda_2 = 1$ (二重).

求 $\lambda_1 = 2$ 的特征向量,

$$\lambda_1 I - A = \begin{pmatrix} 3 & -1 & 0 \\ 4 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 1 \end{cases}$$

基础解系为: $\alpha_1 = (0,0,1)^T$,

特征向量为: $k_1\alpha_1(k_1\neq 0)$.

求 $\lambda_2 = 1$ 的特征向量:

$$\lambda_{2}I - A = \begin{pmatrix} 2 & -1 & 0 \\ 4 & -2 & 0 \\ 0 & 0 & -1 \end{pmatrix} \rightarrow \cdots \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\begin{cases} x_{1} = -x_{3} \\ x_{2} = -2x_{3} \end{cases}$$

基础解系为: $\alpha_2 = (1,2,-1)^T$,

特征向量为: $k_2\alpha_2(k_2\neq 0)$.

注意:比较例1,例2,能得什么结论?

特征值的重数与其对应的线性无关特征向量 个数的关系:

设 λ_0 是矩阵A的k重特征值,则 λ_0 所对应的 线性无关特征向量的个数 .

即,齐次方程组 $(\lambda_0 I - A)x = 0$ 的基础解系所含解向量个数不超过k.

 $\mathbb{P} \frac{\operatorname{dim} V_{\lambda_0} \leq k}{}.$

几何重数 < 代数重数

四、关于特征值的一些结论

$$f(\lambda) = |\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{1n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= \lambda^{n-1} + \cdots + (-1)^{n} / A / .$$

设A的特征值是: $\lambda_1, \lambda_2, \dots, \lambda_n$,则

$$f(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

$$= \lambda^n - \lambda^{n-1} + \cdots + (-1)^n \lambda_1 \lambda_2 \cdots \lambda_n$$

结论1 设n 阶矩阵 $A = (a_{ij})$ 有n个特征值: λ_1 , λ_2 , L, λ_n (重根按重数计算), 则

$$\lambda_1 + \lambda_2 + \mathbf{L} + \lambda_n = a_{11} + a_{22} + \mathbf{L} + a_{nn}$$
$$= \operatorname{tr}(A)$$

 $\lambda_1 \lambda_2 \cdots \lambda_n = |A|$.

A可逆的充要条件是 $\lambda_i \neq 0$ $(i=1,2,\dots,n)$.

矩阵的迹

方阵A可逆的充分必要条件

$$A_n$$
可逆 \Leftrightarrow (1) 存在 B , $AB = I(或 BA = I)$

$$\Leftrightarrow$$
 (2) $AX = 0$ 只有零解

$$\Leftrightarrow$$
 (3) $A: I_n$

- \Leftrightarrow (4) $A=E_1E_2L_2E_3$
- \Leftrightarrow (5) det $A \neq 0$
- ⇔ (6) A 非奇异
- ⇔ (7) A 为满秩矩阵
- \Leftrightarrow (8) A 的列 (行) 向量组线性无关
- \Leftrightarrow (9) A 的所有特征值全部不为零

结论2 设 λ 为n 阶矩阵 $A=(a_{ij})$ 的特征值,

- (1) λ 也是 A^{T} 的特征值 ($A = A^{T}$ 有相同的特征值);
- (2) 当A可逆时, $\frac{1}{\lambda}$ 是 A^{-1} 的特征值, 是 的特征值;
- (3) 设P可逆,则 $P^{-1}AP$ 与A有相同的特征值;
- (4) 设f(x)为x的多项式,则 $f(\lambda)$ 是矩阵f(A) 的特征值;特别的, 是 的特征值($k \in N$).

P 证明: $A 与 A^{T}$ 有相同的特征值. $A 与 P^{-1}AP$ 有相同的特征值.

证:
$$\left| \lambda I - A^{\mathrm{T}} \right| = \left| \lambda I^{\mathrm{T}} - A^{\mathrm{T}} \right| = \left| (\lambda I - A)^{\mathrm{T}} \right| = \left| \lambda I - A \right|$$

即A与 A^{T} 有相同的特征多项式,

故 $A 与 A^{T}$ 有相同的特征值.

类似可证: $A 与 P^{-1}AP$ 有相同的特征值.

- 例4 设矩阵 A 可逆且 $A\alpha = \lambda\alpha (\alpha \neq 0)$, 求 A^{-1} 与 A^* 的特征值与特征向量.
- 若 $\lambda = 0$,则 $A\alpha = 0 \Rightarrow \alpha = 0$,矛盾.
 - $\therefore \lambda \neq 0$.
 - $A\alpha = \lambda \alpha$
 - $\therefore \quad \alpha = A^{-1}(A\alpha) = A^{-1}(\lambda\alpha) = \lambda(A^{-1}\alpha)$
 - $\therefore A^{-1}\alpha = \frac{1}{\lambda}\alpha \quad (\because \lambda \neq 0)$
 - $X AA^* = |A|I, A^* = |A|A^{-1},$
 - $\therefore A^*\alpha = |A|A^{-1}\alpha = \frac{|A|}{A}\alpha.$

f 设 α 是矩阵 A 的特征向量, f(x) 是 x 的多项式,证明: $f(\lambda)$ 是 f(A) 的特征值, α 是 f(A) 的特征向量.

分析:
$$f(x) = a_n x^n + \dots + a_1 x + a_0$$

 $f(A) = a_n A^n + \dots + a_1 A + a_0 I$
 $f(A) \alpha = (a_n A^n + \dots + a_1 A + a_0 I) \alpha$? $f(\lambda) \alpha$
 $A\alpha = \lambda \alpha \quad (\alpha \neq 0)$
 $\Rightarrow A^2 \alpha = A(A\alpha) = A(\lambda \alpha) = \lambda (A\alpha) = \lambda^2 \alpha$
 $\Rightarrow A^3 \alpha = A(A^2 \alpha) = A(\lambda^2 \alpha) = \lambda^3 \alpha$
 $\Rightarrow A^n \alpha = \lambda^n \alpha$,

思考: 设 $\lambda_0 = 2$ 是矩阵A的一个特征值,确定 $A^3 - 3A^2 + 2I - 4A^{-1}$ 的一个特征值.

例6 设 $A^2 = A$, 证明: A 的特征值为 0 或 1.

证 设
$$A\alpha = \lambda\alpha \quad (\alpha \neq 0)$$

则
$$A^2\alpha = A(A\alpha) = A(\lambda\alpha) = \lambda(A\alpha) = \lambda^2\alpha$$

$$\therefore \lambda^2 \alpha = \lambda \alpha, (\lambda^2 - \lambda) \alpha = 0$$

$$\therefore \lambda = 0$$
 或 $\lambda = 1$.

练习:

$$(1) 设A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}, A 的特征值是 1, 2, 3$$

A 是 可逆 (可逆性), $A^2 - I$ 的特征值是 0,3,8

 $A^2 - I$ 是 不可逆 (可逆性).

(2) 设n 阶方阵A 满足 $A^2 = I$,则A 的特征值只能是 1 或 -1 .

 例7 设A是n阶方阵,各行元素之和都是1. 证明: A必有特征值1.

$$oldsymbol{\mathcal{H}}$$
 $oldsymbol{\mathcal{H}}$
 $oldsymbol{\mathcal{$

由题意知
$$\begin{cases} a_{11} + a_{12} + ... + a_{1n} = 1 \\ a_{21} + a_{22} + ... + a_{2n} = 1 \\ \mathbf{M} \\ a_{n1} + a_{n2} + ... + a_{nn} = 1 \end{cases}$$

用矩阵表示即为 $\begin{pmatrix} a_{11} & a_{12} & L & a_{1n} \\ a_{21} & a_{22} & L & a_{2n} \\ M & M & M & M \\ a_{n1} & a_{n2} & L & a_{nn} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ M \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ M \\ 1 \end{pmatrix}$

可见 $\lambda = 1$ 是矩阵 A 的特征值,相应特征向量为 $(1,1,...,1)^{T}$.

例8 设A是n 阶实矩阵,且 $A^{T}A = I$,A < 0,

证明: $\lambda = -1$ 是 A 的特征值.

分析:
$$A\alpha = -\alpha$$
? $|-I-A| = 0$?

 $A^{T}A = I \Rightarrow |A^{T}A| = |A^{T}||A| = |A|^{2} = 1$ $\Rightarrow |A| = -1$

$$\therefore |-I-A|=0.$$

- 例9 设A是n阶方阵, 2, 4, 6, ..., 2n 是A的n个特征值, I 是 n 阶单位阵, 求行列式 det(A-3I).
- 解: 设 λ 为矩阵 A 的任一特征值,

则 $\lambda - 3$ 为 A - 3I 的特征值.

因此A-3I 的全部特征值为:

-1, 1, 3, ..., 2n-3.

故
$$\det(A-3I) = -1 \times 1 \times 3 \times ... \times (2n-3)$$

= $-(2n-3)!!$

总结: 怎样判断数 A 是否矩阵 A 的特征值?

- (1) 是否存在非零向量 α 使 $A\alpha = \lambda_0 \alpha$.
- $(2) |\lambda_0 I A| = 0 ?$

练习:

练习册第34页填空题(1)—(6)

思考题: 设
$$A = \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & -2 \\ 2 & -2 & -1 \end{pmatrix}$$

求 A^{-1} 与 $I + A^{-1}$ 的特征值.

$$|\lambda I - A| = \cdots = (\lambda + 5)(\lambda - 1)^2$$
,
 $\lambda_1 = -5$, $\lambda_2 = 1$ (二重).

$$A^{-1}$$
的特征值为: $\mu_1 = -\frac{1}{5}$, $\mu_2 = 1$ (二重)

$$A^{-1}$$
的特征值为: $\mu_1 = -\frac{1}{5}$, $\mu_2 = 1$ (二重) 设 $A^{-1}\alpha = \mu_1\alpha = -\frac{1}{5}\alpha$, 其中 $\alpha \neq 0$,则
$$(I + A^{-1})\alpha = \alpha + \mu_1\alpha = (1 + \mu_1)\alpha = \frac{4}{5}\alpha .$$

$$\therefore I + A^{-1}$$
的一个特征值是: $\frac{4}{5}$.

或
$$\left|-\frac{1}{5}I-A^{-1}\right|=0$$
, $\left|\frac{4}{5}I-\left(I+A^{-1}\right)\right|=0$,

$$\therefore \frac{4}{5}$$
 是 $I + A^{-1}$ 的一个特征值.

同样可得 $I + A^{-1}$ 的另一个特征值: 2(二重).