Nonlinear Optimization Cheatsheet

Preliminaries

Theorems

Th.L1.1 Weierstrass. Let $f: \Omega \to \mathbb{R}$ be a continuous function defined on a nonempty and compact (i.e., closed and bounded) set Ω . Then, there exists a minimizer $x^* \in \Omega$ of f on Ω , that is,

$$f(x^*) \le f(x)$$
 for all $x \in \Omega$

Th.L1.2 Weierstrass for Compact Sublevel **Sets.** Let *f* be a continuous function defined on a set *S*. If *f* has a nonempty and compact sublevel set, that is, there exists $\alpha \in \mathbb{R}$ such that

$${x \in S : f(x) \le \alpha}$$

is nonempty, bounded, and closed, then f has a minimizing point in S.

Def.L2.1 Star-convexity at x. A set $\Omega \subseteq \mathbb{R}^n$ is said to be star-convex at a point $x \in \Omega$ if, for all $y \in \Omega$, the entire segment from x to y is contained in Ω . In symbols, if

$$x + t \cdot (y - x) \in \Omega \quad \forall t \in [0, 1]$$

(Note that the condition is equivalent to $t \cdot y + (1-t) \cdot x \in \Omega \ \forall \ y \in \Omega, \ t \in [0,1]$ ", or also " $t \cdot x + (1 - t) \cdot y \in \Omega \ \forall \ y \in \Omega, \ t \in [0, 1]$ ".)

Def.L2.2 Convex set. A set Ω is convex if it is star-convex at all of its points $x \in \Omega$. In other words, Ω is convex if all segments formed between any two points $x, y \in \Omega$ are entirely contained in Ω . In symbols, if

$$t \cdot x + (1 - t) \cdot y \in \Omega \quad \forall x, y \in \Omega \text{ and } t \in [0, 1].$$

Th.L2.1 First-order necessary condition for **a convex feasible set** Let $\Omega \subseteq \mathbb{R}^n$ be convex and $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. For a point $x \in \Omega$ to be a minimizer of f over Ω it is necessary that

$$\langle \nabla f(x), y - x \rangle \ge 0 \quad \forall y \in \Omega$$

Def.L2.3 Normal cone. Let $\Omega \subseteq \mathbb{R}^n$ be convex, and let $x \in \Omega$. The normal cone to Ω at x, denoted $\mathcal{N}_{\Omega}(x)$, is defined as the set

$$\mathcal{N}_{\Omega}(x) := \{ d \in \mathbb{R}^n : \langle d, y - x \rangle \le 0 \quad \forall y \in \Omega \}.$$

With this definition, the first-order necessary optimality condition for x, given in Th L2.1, can be equivalently written as

$$-\nabla f(x) \in \mathcal{N}_{\Omega}(x)$$

Th.L2.2 Normal cone to a hyperplane. Consider a hyperplane

$$\Omega := \{ y \in \mathbb{R}^n : \langle a, y \rangle = 0 \},$$

where $a \in \mathbb{R}^n$, $a \neq 0$, and a point $x \in \Omega$. The normal cone

at x is given by

$$\mathcal{N}_{\Omega}(x) = \operatorname{span}\{a\} = \{\lambda a : \lambda \in \mathbb{R}\}.$$

Th.L3.1,L5.3 Normal cone to the intersec**tion of m halfspaces.** Let $\Omega \subseteq \mathbb{R}^n$ be given as the intersection of m linear inequalities $\langle a_i, x \rangle \leq b_i$. Then, the normal cone at any point $x \in \Omega$ is obtained by taking nonnegative combinations of all those a_i 's for which $\langle a_i, x \rangle = b_i.$

$$\mathcal{N}_{\Omega}(x) = \left\{ \sum_{j \in I(x)} \lambda_j \cdot a_j : \lambda_j \in \mathbb{R}_{\geq 0} \right\},\,$$

where
$$I(x) = \{j \in \{1, \dots, m\} : \langle a_j, x \rangle = b_j \}.$$

The constraints i in I(x) are often called the "active constraints" at $x \in \Omega$. Alternatively in vectorial form let $Ax \leq b$, then with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$:

$$\mathcal{N}_{\Omega}(x) = \left\{ A^{\top} \lambda : \lambda^{\top} (b - Ax) = 0, \lambda \in \mathbb{R}^{m}_{\geq 0} \right\},$$

$$A = \begin{pmatrix} -a_1^\top - \\ \vdots \\ -a_m^\top - \end{pmatrix},$$

rewriting the condition $j \in I(x)$ (via **comple**mentary slackness).

Th.L3.2 Strong linear programming duality. If (P) admits an optimal solution x^* , then (D) admits an optimal solution λ^* , such that:

- the values of the two problems coincide: $c^{\top}x^* = b^{\top}\lambda^*$, and
- λ^* satisfies the complementary slackness condition $(\lambda^*)^{\top}(b-Ax^*)=0$.

Def.L4.1 Convex function.

Let $\Omega \subseteq \mathbb{R}^n$ be convex. A function $f: \Omega \to \mathbb{R}$ is convex if, for any two points $x, y \in \Omega$ and $t \in [0, 1]$,

$$f((1-t)\cdot x + t\cdot y) \le (1-t)\cdot f(x) + t\cdot f(y)$$

Th.L4.1 Let $f: \Omega \to \mathbb{R}$ be a convex and differentiable function defined on a convex domain Ω . Then, at all $x \in \Omega$,

$$f(y) \geq \underbrace{f(x) + \langle \nabla f(x), y - x \rangle}_{} \qquad \forall y \in \Omega.$$

linearization of f around x

Th.L4.2 Sufficiency of first-order optimal**ity condition.** Let $\Omega \subseteq \mathbb{R}^n$ be convex and $f: \Omega \to \mathbb{R}$ be a convex differentiable function.

$$-\nabla f(x) \in \mathcal{N}_{\Omega}(x) \iff x \text{ is a minimizer of}$$

$$f \text{ on } \Omega$$

Th.L4.3 Equivalent definitions of convexity. Let $\Omega \subseteq \mathbb{R}^n$ be a convex set, and $f:\Omega \to \mathbb{R}$ be a function. The following are equivalent definitions of convexity for f:

- 1. $f((1-t)x + ty) \le (1-t)f(x) + tf(y)$ for all $x, y \in \Omega, t \in [0, 1].$
- 2. $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$ for all $x, y \in \Omega$ [If *f* is differentiable]
- 3. $\langle \nabla f(y) \nabla f(x), y x \rangle \ge 0$ for all $x, y \in \Omega$ [If f is differentiable]
- 4. $\nabla^2 f(x) \ge 0$ for all $x \in \Omega$ [If f is twice differentiable and Ω is open]

Th.L4.4 Operations preserving convexity.

- Multiplication of a convex function f(x) by a nonnegative scalar $c \ge 0$;
- Addition of two convex functions f(x), g(x);
- Pointwise supremum of a collection I of convex functions $\{f_j(x): j \in J\}$:

$$f_{\max}(x) := \max_{j \in J} f_j(x);$$

- Pre-composition f(Ax + b) of a convex function f with an affine function Ax + b.
- Post-composition g(f(x)) of a convex function with an increasing convex function g;
- Infimal convolution $f \pm g$ of two convex functions $f,g:\mathbb{R}^n\to\mathbb{R}$, defined as

$$\inf\{f(y) + g(x - y) : y \in \mathbb{R}^n\}$$

Def.L4.2 Strict and strong convexity. Let $\Omega \subseteq \mathbb{R}^n$ be convex.

• A function $f: \Omega \to \mathbb{R}$ is strictly convex if. for any two distinct points $x, y \in \Omega$ and $t \in (0,1),$

$$f((1-t)\cdot x + t\cdot y) < (1-t)\cdot f(x) + t\cdot f(y)$$

A function $f: \Omega \to \mathbb{R}$ is strongly convex with modulus $\mu > 0$ if the function

$$f(x) - \frac{\mu}{2} ||x||_2^2$$

is convex. Note that strong convexity implies strict convexity, and strict convexity implies convexity. Neither of the reverse implications holds.

Th.L4.5 Strict convexity and uniqueness of **minimizer.** Let $\Omega \subseteq \mathbb{R}^n$ be convex, and $f:\Omega\to\mathbb{R}$ be a strictly convex function. Then, f has at most one minimizer.

Corollary (Projection onto convex set): Since the function $||x-y||_2^2$ is strongly convex, and hence strictly convex, it follows that any projection onto a convex set Ω , if it exists, is unique.

Th.L5.1 Separation Let $\Omega \subseteq \mathbb{R}^n$ be a nonempty, closed, and convex set, and let $v \in \mathbb{R}^n$ be a point. If $v \notin \Omega$, then there exist $u \in \mathbb{R}^n$, $v \in \mathbb{R}$ such that

$$\langle u, y \rangle < v$$
, and $\langle u, x \rangle \ge v \quad \forall x \in \Omega$.

Note: Also works for strict inequalities if we choose v so that the havspace passes through midpoint of line connecting y and x^* .

Def.L5.1 Cone A set *S* is a cone if, for any $x \in S$ and $\lambda \in \mathbb{R}_{>0}$, the point $\lambda \cdot x \in S$.

Th.L5.2 Separation of a point from a cone. Let $S \subseteq \mathbb{R}^n$ be a nonempty closed convex cone, and $y \notin S$ be a point in \mathbb{R}^n . Then, there exists a hyperplane passing through the origin that separates y from S; formally, there exists $u \in \mathbb{R}^n$ such that

$$\langle u, v \rangle < 0$$
 and $\langle u, x \rangle \ge 0 \quad \forall x \in S$

Def.L5.2 (Strong) separation oracle Let $\Omega \subseteq$ \mathbb{R}^n be convex and closed. A strong separation oracle for Ω is an algorithm that, given any point $y \in \mathbb{R}^n$, correctly outputs one of the following:

- " $y \in \Omega$ ", or
- $(y \notin \Omega, u)$ ", where the vector $u \in \mathbb{R}^n$ is such $\langle u, v \rangle < \langle u, x \rangle \quad \forall x \in \Omega$

Th.L5.4 Ellipsoid method for convex opti**mization.** Theorem L5.4. Let R and r be as above, and let the range of the function f on Ω be bounded by [-B,B]. Then, the ellipsoid method described above run for $T \ge$ $2n^2 \log(R/r)$ steps either correctly reports that $\Omega = \emptyset$, or produces a point x^* such that

$$f(x^*) \le f(x) + \frac{2BR}{r} \exp\left(-\frac{T}{2n(n+1)}\right) \quad \forall x \in \Omega.$$

Th.L6.1 Farkas lemma. Let $Ax \le b$ be a system of inequalities where $A \in \mathbb{R}^{m \times n}$. Then, exactly one of the following options is true:

- either $Ax \le b$ has a solution; or
- there exists a vector $y \ge 0$ such that $A^{\top}y = 0$ and $b^{\top}v < 0$.

Th.L7.1 Normal cone to the intersection of linear inequalities. (rewriting L3.1,L5.3) Let $\Omega \subseteq \mathbb{R}^n$ be defined as the intersection of m linear inequalities

$$\Omega := \left\{ x \in \mathbb{R}^n : \begin{array}{ll} a_i^\top x = b_i & \forall i = 1, \dots, r \\ c_j^\top x \le d_j & \forall j = 1, \dots, s \end{array} \right\}$$

Given a point $x \in \Omega$, define the index set of the "active" inequality constraints

$$I(x) := \left\{ j \in \{1, \dots, s\} : c_j^\top x = d_j \right\}.$$

Then, the normal cone at any $x \in \Omega$ is given by $\mathcal{N}_{\Omega}(x) =$

$$= \left\{ \sum_{i=1}^{r} \mu_{i} a_{i} + \sum_{j \in I(x)} \lambda_{j} c_{j} : \mu_{i} \in \mathbb{R}, \lambda_{j} \in \mathbb{R}_{\geq 0} \right\}$$

$$= \left\{ \sum_{i=1}^{r} \mu_{i} a_{i} + \sum_{j=1}^{s} \lambda_{j} c_{j} : \mu_{i} \in \mathbb{R}, \lambda_{j} \in \mathbb{R}_{\geq 0}, \right.$$

$$\left. \mu_{i} \in \mathbb{R}, \lambda_{j} \in \mathbb{R}_{\geq 0}, \right.$$

$$\left. \lambda_{j} \left(d_{j} - c_{j}^{\top} x \right) = 0 \,\,\forall j = 1, \dots, s \right\},$$
where the second equality simply rewrites the

where the second equality simply rewrites the condition $j \in I(x)$ via complementary slackness (see Lecture 3).