

Engineering Fast Multilevel Support Vector Machines

Ehsan SadrFaridpour[†],
Talayeh Razzaghi[‡], and Ilya Safro[†]

† Clemson University ‡ New Mexico State University

Toy Example for Classification

Non-Linear Classifier

Soft Margin SVM

Classification Problem

- Data is represented by $(x_i, y_i) \in \mathbb{R}^n \times \{-1, 1\}$
 - $-x_i$: actual data
 - $-y_i$: corresponding label (binary case)
- Find classifier $f: \mathbb{R}^n \mapsto \{-1, 1\}$ to predict the labels y_i^{test} of a group of data samples x_i^{test}

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{m} \xi_i$$

s.t. $\forall i \quad y_i(w^T x_i - b) \ge 1 - \xi_i$,

- \bullet w and b are hyperplane's parameters
- Parameter C controls misclassification penalty

Kernel & Weighted SVM

- Embed data from **input space** to a higher dimension **feature space**
- For an embedding $\phi(x)$, denote $K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$
- We use Radial Basis Function (RBF) kernel
- RBF: $K(x_i, x_j) = \exp(-\gamma ||x_i x_j||^2)$

Weighted SVM for Imbalanced Classification

- |Class N| >> |Class P| (Number of data points)
- Class P is more important to classify correctly
- Penalize misclassification of each class with coefficients C^+/C^-

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C^+ \sum_{i=1}^{m^+} \xi_i + C^- \sum_{i=1}^{m^-} \xi_i$$
s.t. $y_i(w^T x_i - b) \ge 1 - \xi_i$, $i = 1, \dots, m$

What Makes the Nonlinear (W)SVM Slow?

• Complexity of SVM solver is between $O(n \times m^2)$ and $O(n \times m^3)$

m: number of points in both classes

n: number of features

• Parameter fitting (Model Selection)

C: Misclassification penalty

 γ : RBF Kernel parameter

Multilevel (W)SVM

Multilevel (W)SVM Graph P Data N Graph N Generate approximate k-NN Graph P Graph N **Finest level** Coarsening **Coarsest** level

Multilevel (W)SVM Data P Data Graph P Data N Graph N Generate approximate k-NN Graph P Graph N **Finest level** Refinement Coarsening Coarsest level

Types of Coarsening

1. Sampling independent sets

2. Strict coarsening (merging pairs)

3. AMG coarsening (Galerkin on Laplacian)

AMG: Coarse Variables

- \bullet Choose a dominating set $C\subset V$ s.t. all others from $F=V\setminus C$ are "strongly coupled" to C
- "Strongly coupled" = Kernel coupling + algebraic distances ρ_{ij} Safro, Chen "Algebraic distance on graphs", 2012
- Restriction matrix is sparsified by algebraic distances

AMG: Coarse Laplacian

 \uparrow_c^f - restriction operator

 L_f - weighted Laplacian at level f, where weights are kernel distances

Coarse graph Laplacian

$$L_c \leftarrow (\uparrow_c^f)^T L_f \uparrow_c^f$$

$$w_{IJ} = \sum_{l,k} (\uparrow_c^f)_{Il} \cdot w_{lk} \cdot (\uparrow_c^f)_{kJ}$$

Coarsening for Imbalance Classes

- Aggregate multiple points or their fractions
- For imbalance classes, stop coarsening for the smaller class (P)

Train a SVM on the Coarsest Data

- Apply complex parameter fitting
- Fast running time (small data)
- Balanced class sizes

Refinement

Distant Neighbors in Refinement

What If the Number of SVs is Too Big?

- Partition the graph
- Training is performed by pairs of data partitions
- Generate multiple classification models

The Benefits of a Multilevel Framework

- Multiple models at various scale
- Variety of classification qualities
- Use large validation data from finest level

Performance Measures

Ground T	ruth
----------	------

		Positive	Negative
Predicted	Positive	TP	FP
Class	Negative	FN	TN

• Accuracy =
$$\frac{TP+TN}{FP+TN+TP+FN}$$

- Sensitivity(recall) = $\frac{TP}{TP+FN}$
- Specificity = $\frac{TN}{TN+FP}$
- \mathbf{G} -mean = $\sqrt{\text{Sensitivity}} * \text{Specificity}$
- G-mean is the best performance measurement on both small and large classes using one value

Computational Results

- Multilevel SVM vs LIBSVM and DC-SVM
 - On small datasets
 - Validation of proposed framework
- Multilevel SVM vs LIBLINEAER
 - On large datasets
 - Benchmark the performance and quality
 - The state-of-the-art non-linear solver (LIBSVM) and DC-SVM are impractical

Small and Large Imbalanced Datasets

Dataset	r_{imb}	features	Size	Class P	Class N
Advertisement	0.86	1558	3279	459	2820
Buzz	0.80	77	140707	27775	112932
Clean (Musk)	0.85	166	6598	1017	5581
Cod-rna	0.67	8	59535	19845	39690
Forest (Class 5)	0.98	54	581012	9493	571519
Letter	0.96	16	20000	734	19266
Nursery	0.67	8	12960	4320	8640
Ringnorm	0.50	20	7400	3664	3736
Twonorm	0.50	20	7400	3703	3697

Dataset	r_{imb}	features	Size	Class P	Class N
SUSY	0.54	18	5M	2.29M	2.71M
MNIST	0.90	784	4M	0.4M	3.65M
HIGGS	0.53	28	11M	5.17M	5.83M

Imbalance ratio between size of classes $(r_{imb} = \frac{|ClassN|}{|ClassN| + |ClassP|})$ Size: Number of data points in both classes |Class P|: Number of data points in class P

Running Time on Small Datasets

MLSVM has significant improvement on performance

Dataset	LIBSVM	DC-SVM	MLSVM (AMG)
Advertisement	231	610	213
Buzz	26026	2524	31
Clean (Musk)	82	95	94
$\operatorname{Cod-RNA}$	1857	420	13
Forest	353210	19970	948
Letter	139	38	30
Nursery	192	49	2
Ringnorm	26	38	2
Twonorm	28	30	1

G-mean on Small Datasets

Multilevel WSVM (MLSVM) produces higher G-mean than the state-of-the-art WSVM (LIBSVM) and DC-SVM almost on all datasets

Datasets	LIBSVM	DC-SVM	MLSVM (AMG)
Advertisement	0.67	0.90	0.91
Buzz	0.89	0.92	$\boldsymbol{0.95}$
Clean (Musk)	0.99	0.94	$\boldsymbol{0.99}$
$\operatorname{Cod-RNA}$	0.96	0.93	0.94
Forest	0.92	$\boldsymbol{0.94}$	0.88
Letter	0.99	1.00	0.99
Nursery	1.00	1.00	1.00
Ringnorm	0.98	0.95	0.98
Twonorm	0.98	0.97	0.98

Running Time on Large Datasets

- MLSVM is faster of normal large dataset
- LIBLINEAR is faster over high dimensional datasets

Dataset	LIBLINEAR	LIBSVM or	MLSVM (AMG)
		DC-SVM	` ,
SUSY	1300	No	1116
MNIST	1840	results	14724
HIGGS	4406	in 3 days	3283

G-mean on Large Datasets

• MLSVM produces higher G-mean

Dataset	LIBLINEAR	LIBSVM&	MLSVM (AMG)
		DC-SVM	
SUSY	0.68	No	0.74
MNIST	0.85	results	0.90
HIGGS	0.54	in 3 days	$\boldsymbol{0.62}$

Interpolation Order vs Performance Time and G-mean

- The performance dropped on larger interpolation orders
- The G-mean is not significantly improved

Scalability: Size vs Time

- Scalability on growing training size
- Better than linear scalability

Statistics of G-mean Variability

• Low G-mean variance confirms the robustness of MLSVM

Why We Used PETSc?

- Fast linear algebra operation for vectors and sparse matrices
- Variety of methods for constructing, slicing and summarizing matrices
- Convenient integration of other libraries such as Metis,
 LIBSVM, and FLANN with PETSc
- Allow us to make a parallel and distributed version using PETSc data structures and methods
- Compatible with other scientific packages like HYPRE which we can use to try other multigrid methods

Future Direction

 Looking for collaboration in scientific computing Machine learning

Build a parallel and distributed version of MLSVM

Leverage other multigrid methods for coarsening

Source Code: https://github.com/esadr/mlsvm

References

- Sadrfaridpour, Razzaghi, Safro "Engineering fast multilevel support vector machines", 2019
- Sadrfaridpour, et al. "Algebraic multigrid support vector machines.", 2017
- Razzaghi, Roderick, Safro, Marko "Multilevel Weighted Support Vector Machine for Classification on Healthcare Data with Missing Values", 2016
- Razzaghi, Safro "Scalable Multilevel Support Vector Machines", 2015
- Ron, Safro, Brandt "Relaxation-based Coarsening and Multiscale Graph Organization", 2011

esadrfa@g.clesmon.edu