Wilbur Shapiro
Mechanical Technology Incorporated
Latham, New York

N95- 13585

07/72

GFACE Capabilities

- Varying Geometries-Rayleigh-step, Tapered Land, Hydrostatic
- Variable Grid
- Z, X-X, Y-Y, Degrees of Freedom
- Can determine position as a function of load
- **■** English or SI Units

GFACE Configurations

GFACE Configurations

GFACE Output

- **Clearance Distribution**
- **Pressure Distribution**
- Leakage along specified flow paths
- **■** Interface load
- **Righting Moments**
- **Viscous Dissipation**
- Frequency dependent stiffness and Damping
- **Plotting Routines**

GFACE Examples

- Rayleigh-step seal with Misalignment
- Tapered Land Seal, Option 2
- **Hydrostatic Recess**
- Hydrostatic Recess, Periodic Pads
- Inherently Compensated Hydrostatic Seal
- Radial Tapered Seal

Rayleigh Step Seal Input

	···
Number of pads, NPAD	8
Outer diameter	4.0 inch
Inner diameter	2.5 inch
Angular extent of pad	35 degrees
Starting angle of first pad	5 degrees
Given displacement, find load. OPTION	1
Compute stiffness at synchronous frequency	5000
Apply variable grid	
Clearance	0.0002 inch
Misalignment angle about the X-axis	-0.001 degree
Number of steps in grid	1
Step depth	0.0004 inch
Location of step	
Lower left corner	I=5, J=1
Upper right corner	I=8, J=8
Specific heat ratio	1.4
Gas constant	246,900 in. ² /s ² /°R
Absolute temperature	1460°R
Viscosity	5.35 x 10 ⁻⁹ lbs-s/in ²
Speed	5000 rpm
Convergence tolerance	0.01
Ambient (reference) pressure	14.7 psi

Rayleigh-Step Seal Clearance Distribution

Rayleigh-Step Seal Pressure Distribution

Rayleigh-Step Seal Pressure Distribution

Tapered-Land Seal Grid Geometry

Tapered-Land Seal Input

OPTION

LOAD STIFFNESS

NPAD

OUTER INNER CLEARANCE

START PADANGLE GRIDN

GRIDM

CTAPER

2 Signifies that the load will be supplied and the axial position determined.13 lbs is the load to be balanced

0.0001 A non synchronous, frequency independent stiffness is desired.

1 One of the 16 pads is modeled, with periodic conditions along the radial boundaries.

4.5 = the outer diameter, in. 3.793 = the inner diameter, in.

= 0.0002 in. = Initial guess at the axial clearance to support the given load.

= 67.5 degrees = start angle of pad = 22.5 degrees = angular extent of pad = 37 = number of grid points in the θ

= 37 = number of grid points in the o

= 15 = Number of grid points in the radial direction

= 1 = Number of circumferential tapers in the grid

Slope of taper = 0.05209

Lower left corner of taper, I = 8, J=21 Upper right corner of taper, I=14, J=35

Tapered-Land Seal Input

VISCOSITY
GASCONST
JOINED
ITERATION

TOLERANCE

SPEED PO

PLEFT

PRITE

PTOP

PBOT

 $1.75 \times 10^{-9} \text{ lb-s/in}^2$

= gas constant = 423,184 in²/s²/°F

Periodic boundaries apply

= 15, 15 = maximum iterations for pressure and load convergence

.020, .020 = tolerances on pressure and load convergence

50,000 rpm

= 14.7 = reference or ambient pressure,

= 0. = Pressure on left radial boundary. Since periodic boundary conditions apply PLEFT has no consequence.

= 0. = Pressure on right radial boundary. Since periodic boundary conditions apply

PRITE has no consequence.

= 50 psig = pressure boundary at outer

radius, I=M

= 0 psig = pressure boundary at inner

radius, I=1

Tapered-Land Seal Clearance Distribution

Tapered-Land Seal Pressure Distribution

Hydrostatic Recess Seal

Hydrostatic Recess Seal Clearance Distribution

Hydrostatic Recess Seal Pressure Distribution

Hydrostatic Recess Seal Pressure Distribution

Hydrostatic Source Seal Pressure Distribution

Hydrostatic Source Seal Pressure Distribution

Tilted Slider Comparison

	(Comparisons of	Table 6-1 GFACE with Load Capac	Etsion and I	Fleming	
۸	ε	ζ degrees	N rpm	W' GFACE	W Etsion & Fleming	Δ%
1	2.5	.0143	133.69	0.00476	0.0047	1.27
10	2.5	.0143	1,336.9	0.0466	0.0460	1.30
25	3.0	.0172	3,342.25	0.1086	0.1080	0.56
50	3.5	.0201	6,684.5	0.1897	0.1850	2.5
100	4.5	.0258	13,369	0.3014	0.2950	2.17

Etsion I, D. P. Fleming, An Accurate Solution of the Gas Lubricated Flat Sector Thrust Bearing, Trans. ASME, J. Lubr. Technology, 99:, 82-88

Tilted Slider Power Loss

Table 6-2 Comparison of GFACE with Etsion and Fleming Power Loss				
۸ .	ε	PLC GFACE	PLC Etsion	
1	2.5	49.4	12	
10	2.5	12.86	12	
25	3.0	12.987	13	
50	3.5	14.193	15	
100	4.5	16.15	17	

$$PLC = \frac{F}{W \omega h_2}$$
 where:
 $F = Power Loss, in-lbs/s$

Etsion I, D. P. Fleming, An Accurate Solution of the Gas Lubricated Flat Sector Thrust Bearing, Trans. ASME, J. Lubr. Technology, 99:, 82-88

Rayleigh Step References

- Ausman, J. S. An Approximate Analytical Solution for Self-Acting Gas Lubrication of Stepped Sector thrust Bearings, ASLE Transactions 4: 304-314
- Gross, W. A., et. al *Fluid-Film Lubrication*, John Wiley & Sons, copyright 1980

GFACE Comparison with Ausman

		GFACE Comp	ible 6-3 arison with Aus gh-step Pad	стал	
٨	n	W	W GFACE	W' Ausman	Δ%
10	8	0.7539	0.0456	0.046	87
10	-	1.821	0.0957	0.103	-7
20			0.1946	0.219	-11
40	7	3.701		0.397	-12
80	6	7.766	0.3479		-8
160	6	11.71	0.5246	0.572	

$$A = \frac{6\mu \alpha r_1^2}{P_a h_1^2}, \quad n = number \ of \ pads, \quad \frac{r_1}{r_2} = 0.5$$

Load vs. Step height

Step Validation, Gross

Load/Power vs. Step Height

Step Validation, Gross

Automatic and Manual Stiffness Comparison

	Table 6-5 omparisons Between Automati Rayleigh-step $z = 0.0001$ in, $\delta \alpha = 0.0001$ de	
Kzz	$K_{\alpha z}$	Kβz
34,570	27,930	-48,980
33,000	26,700	-46,700
K _{zα}	Καα	Κ _{βα}
39,900	31,750	-57,150
40,107	34,377	-57296
Κ _{zβ}	Καβ	κ _{ββ}
-44,200	-35,840	62,710
-45.836	-34,337	63,025

Hydrostatic Flow Comparisons

Calculated Flow	Computer Flow
$f = 386.4 \text{ A. } C_{D} G_{1} P_{3} \left\{ \left(\frac{P_{r}}{P_{s}} \right)^{\frac{2}{r}} \left[1 - \left(\frac{P_{r}}{P_{s}} \right)^{\frac{r-1}{r}} \right] \right\}^{\frac{1}{2}}$	2.0022 x 10 ⁻⁴ lb/s
$A_{\bullet} = orifice \ area = \frac{\pi d_{\bullet}^{2}}{4} = \frac{\pi 0.010^{2}}{4} = 7.854 \times 10^{-5}$	
C_D = Coefficient of Discharge = 0.9	
$\frac{P_r}{P_s} = \frac{recess\ pressure}{supply\ pressure} = \frac{131 + 14.7}{200 + 14.7} = 0.678621$	
$G_1 = \sqrt{\frac{2\gamma}{G_e \Theta(\gamma - 1)}}$	
where y = ratio of specific heats = 1.4	
$G_e = gas\ constant = 246,900 \frac{in^2}{s^2 - R}$	
Θ = absolute temperature= 1460° R	
$f = 386.4x7.854x10^{-5}x0.9x1.3935x10^{-4}x214.7$	
$x\left\{\left(0.678621\right)^{\frac{2}{14}}\left[1-\left(0.678621\right)^{\frac{64}{14}}\right]\right\}^{\frac{1}{2}}=2.006x10^{-4}\frac{lbs}{s}$	