Отчет по лабораторной работе №5

Дисциплина: Математическое моделирование

Лобанова Полина Иннокентьевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	12
Список литературы		13

Список иллюстраций

3.1	Код на языке Julia	7
3.2	График изменения численности хищников и численности жертв	8
3.3	График зависимости численности хищников от численности жертв	8
3.4	Код на языке OpenModelica	9
3.5	График изменения численности хищников и численности жертв	9
3.6	График зависимости численности хищников от численности жертв	10
3.7	Стаиионарное состояние системы	11

Список таблиц

1 Цель работы

Реализация модели «хищник-жертва».

2 Задание

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: x0=8, y0=16. Найдите стационарное состояние системы.

$$\begin{cases} \frac{dx}{dt} = -0.83x(t) + 0.083x(t)y(t) \\ \frac{dy}{dt} = 0.82y(t) - 0.082x(t)y(t) \end{cases}$$

3 Выполнение лабораторной работы

1. Построила график изменения численности хищников и численности жертв на языке Julia.

Рис. 3.1: Код на языке Julia

Рис. 3.2: График изменения численности хищников и численности жертв

2. Построила график зависимости численности хищников от численности жертв на языке Julia.

Рис. 3.3: График зависимости численности хищников от численности жертв

3. Построила график изменения численности хищников и численности жертв на языке OpenModelica.

```
1
    model mathmod5
 2
      parameter Real a = -0.83;
      parameter Real b = -0.083;
 3
      parameter Real c = -0.82;
 4
 5
      parameter Real d = -0.082;
 6
      parameter Real x_0 = 8;
7
      parameter Real y 0 =16;
8
9
10
      Real x(start=x 0);
      Real y(start=y 0);
11
12
    equation
      der(x) = a*x - b*x*y;
13
      der(y) = -c*y + d*x*y;
14
15
    end mathmod5;
```

Рис. 3.4: Код на языке OpenModelica

Рис. 3.5: График изменения численности хищников и численности жертв

4. Построила график зависимости численности хищников от численности

жертв на языке OpenModelica.

Рис. 3.6: График зависимости численности хищников от численности жертв

5. Нашла стационарное состояние системы.

Стационарное состояние системы (1) (положение равновесия, не зависящее от времени решение) будет в точке: $x_0 = \frac{c}{d}, y_0 = \frac{a}{b}$.

Рис. 3.7: Стационарное состояние системы

4 Выводы

Я реализовала модель «хищник-жертва».

Список литературы