Max-flow and min-cut problems

Edmonds

Generic reduction to

Edmonds Karp alg

- 1 Edmonds Karp alg
- 2 Generic reduction to MaxFlow

Dinic and Edmonds-Karp algorithm

Edmonds Karp alg

Generic reduction to MaxFlow

J.Edmonds, R. Karp: Theoretical improvements in algorithmic efficiency for network flow problems. Journal ACM 1972.

Yefim Dinic: Algorithm for solution of a problem of maximum flow in a network with power estimation. Doklady Ak.N. 1970

Choosing a good augmenting path can lead to a faster algorithm. Use BFS to find an augmenting paths in G_f .

Edmonds-Karp algorithm

Edmonds Karp alg

Generic reduction to MaxFlow FF algorithm but using BFS: choose the augmenting path in G_f with the smallest length (number of edges).

```
Edmonds-Karp(G, c, s, t)

For all e = (u, v) \in E let f(u, v) = 0

G_f = G

while there is an s \rightsquigarrow t path in G_f

do

P = \mathsf{BFS}(G_f, s, t)

f = \mathsf{Augment}(f, P)

Compute G_f

return f
```


The BFS in EK will choose: → or →

BFS paths on G_f

Edmonds Karp alg

Generic reduction to MaxFlow For $\mathcal{N} = (V, E, c, s, t)$ and a flow f in \mathcal{N} , assuming that G_f has an augmenting path, let f' be the next flow after executing one step of the EK algorithm.

- The path from s to t in a BFS traversal starting at s, is a path s \to t with minimum number of edges, i.e., a shortest length path.
- For $\in V$, let $\delta_f(s, v)$ denote length of a shortest length path from s to v in G_f .

Some properties of G_f and $G_{f'}$

Edmonds Karp alg

Generic reduction to MaxFlow How can we have $(u, v) \in E_{f'}$ but $(u, v) \notin E_f$?

- (u, v) is a forward edge saturated in f and not in f''.
- (u, v) is a backward edge in G_f and f(v, u) = 0

In any of the two cases, the augmentation must have modified the flow from v to u, so (u, v) must form part of the augmenting path.

EK and the shortest length distances

Edmonds Karp alg

Generic reduction to MaxFlow

Lemma

If the EK-algorithm runs on $\mathcal{N}=(V,E,c,s,t)$, for all vertices $v\neq s$, $\delta_f(s,v)$ increases monotonically with each flow augmentation.

Proof. By contradiction.

Let f be the first flow such that, for some $u \neq s$,

$$\delta_{f'}(s,u) < \delta_f(s,u).$$

EK and the shortest length distances

Edmonds Karp alg

Generic reduction to MaxFlow

Proof (cont)

Let v be the vertex with the minimum $\delta_{f'}(s, v)$ whose distance was decreased.

- Let $P: s \leadsto u \to v$ be a shortest length path from s to v in $G_{f'}$
- Then, $\delta_{f'}(s, v) = \delta_{f'}(s, u) + 1$ and $\delta_{f'}(s, u) \geq \delta_{f}(s, u)$.
- $\text{If } (u,v) \in E_f, \\ \delta_f(s,v) \le \delta_f(s,u) + 1 \le \delta_{f'}(s,u) + 1 = \delta_{f'}(s,v)$
- So, $(u, v) \notin E_f$

EK and the shortest length distances

Edmonds Karp alg

Generic reduction to MaxFlow

Proof (cont)

How can we have ?

- $(u, v) \in E_{f'}$ but $(u, v) \notin E_f$
- If so, (v, u) appears in the augmenting path.
- Then, the shortest length path from s to u in G_f has (v, u) as it last edge.

$$\delta_f(s,v) \leq \delta_f(s,u) - 1 \leq \delta_{f'}(s,u) - 1 = \delta_{f'}(s,v) - 1 - 1$$

• which contradicts $\delta_{f'}(s,v) < \delta_f(u,v)$.

Some properties of G_f and $G_{f'}$

Edmonds Karp alg

Generic reduction to MaxFlow Let P be an augmenting path in G_f .

$$(u, v) \in P$$
 is critical if $b(P) = c_f(u, v)$.

Critical edges do not appear in $G_{f'}$.

- (u, v) forward, f'(u, v) = c(u, v)
- (u, v) backward, f'(v, u) = 0

EK and critical edges

Lemma

In the EK algorithm, each one of the edges can become critical at most |V|/2 times.

Proof:

- Let $(u, v) \in E$, when (u, v) is critical for the first time, $\delta_f(s, v) = \delta_f(s, u) + 1$
- After this step (u, v) disappears from the residual graph until after the flow in (u, v) changes.
- At this point, (v, u) forms part of the augmenting path in $G_{f'}$, and $\delta_{f'}(s, u) = \delta_{f'}(s, v) + 1$,

$$\delta_{f'}(s, u) = \delta_{f'}(s, v) + 1 \ge \delta_{f}(s, v) + 1 \ge \delta_{f}(s, u) + 2$$

■ So, the distance has increased by at least 2.

Edmonds Karp alg

Complexity of Edmonds-Karp algorithm

Edmonds Karp alg

Generic reduction to MaxFlow

Theorem

The EK algorithms runs in O(mn(n+m)) steps. Therefore it is a polynomial time algorithm.

Proof:

- Need time O(m+n) to find the augmenting path using BFS.
- By the previous Lemma, there are O(mn) augmentations.

Finding a min-cut

Edmonds Karp alg

Generic reduction to MaxFlow

Given (G, s, t, c) to find a min-cut:

- 1 Compute the max-flow f^* in G.
- 2 Obtain G_{f^*} .
- **3** Find the set $S = \{v \in V | s \leadsto v\}$ in G_{f^*} .
- Output the cut $(S, V \{S\}) = \{(v, u) | v \in S \text{ and } u \in V \{S\}\} \text{ in } G.$

The running time is the same than the algorithm to find the max-flow.

The max-flow problems: History

Edmonds Karp alg

Generic reduction to MaxFlow

- Ford-Fulkerson (1956) O(mC), where C is the max flow.
- Dinic (1970) (blocking flow) $O(n^2m)$
- Edmond-Karp (1972) (shortest augmenting path) $O(nm^2)$
- Karzanov (1974), $O(n^2m)$ Goldberg-Tarjant (1986) (push re-label preflow + dynamic trees) $O(nm \lg(n^2/m))$ (uses parallel implementation)
- King-Rao-Tarjan (1998) $O(nm \log_{m/n \lg n} n)$.
- J. Orlin (2013) O(nm) (clever follow up to KRT-98)

So: Maximum flows can be computed in O(nm) time!

Edmonds Karp alg

- 1 Edmonds Karp alg
- 2 Generic reduction to MaxFlow

Applications: Generalized assignment problems

Edmonds Karp alg

- Consider a generalized assignment problem \mathcal{GP} where, we have as input d finite sets X_1, \ldots, X_d , each representing a different set of resources.
- Our goal is to chose the "largest" number of d-tuples, each d-tuple containing exactly one element from each X_i, subject to the constrains:
 - For each $i \in [d]$, each $x \in X_i$ can appears in at most c(x) selected tuples.
 - For each $i \in [d]$, any two $x \in X_i$ and $y \in X_{i+1}$ can appear in at most c(x, y) selected tuples.
 - The values for c(x) and c(x,y) are either in \mathbb{Z}^+ or ∞ .
- Notice that only pairs of objects between adjacent X_i and X_{i+1} are constrained.

Applications: Generic reduction to Max-Flow

Make the reduction from \mathcal{GP} to the following network \mathcal{N} :

- V contains a vertex x, for each element x in each X_i , and a copy x', for each element $x \in X_i$ for $1 \le i \le d$.
- We add vertex s and vertex t.
- Add an edge $s \to x$ for each $x \in X_1$ and add an edge $y \to t$ for every $y \in X_d$. Give capacities c(s, x) = c(x) and c(y, t) = c(y).
- Add an edge $x' \to y$ for every pair $x \in X_i$ and $y \in X_{i+1}$. Give a capacity c(x, y). Omit the edges with capacity 0.
- For every $x \in X_i$ for $1 \le i < d$, add an edge $x \to x'$ with c(x,x') = c(x).

Every path $s \rightsquigarrow t$ in $\mathcal N$ identifies a feasible d-tuple, conversely every d-tuple determines a path $s \rightsquigarrow t$.

Edmonds Karn alg

Flow Network: The reduction

Edmonds Karp alg

- To solve \mathcal{GP} , we construct \mathcal{N} , and then we find an integer maximum flow f^* .
- In the subgraph formed by edges with $f^*(e) > 0$, we find a (s,t) path P (a d-tuple), decrease in 1 the flow in each edge of P, remove edges with 0 flow.
- We repeat the procedure for $|f^*|$ times. In this way we obtain a set of d-tuples with maximum size verifying all the restrictions.

FINAL'S SCHEDULING

We have as input:

- n courses, each one with a final. Each exam must be given in one room. Each course c_i has E[i] students.
- ightharpoonup r rooms. Each r_j has a capacity S[j],
- au time slots. For each room and time slot, we only can schedule one final.
- **p** professors to watch exams. Each exam needs one professor in each class and time. Each professor has its own restrictions of availability and no professor can oversee more than 6 finals. For each p_ℓ and τ_k define a Boolean variable $A[k,\ell] = T$ if p_ℓ is available at τ_k .

Design an efficient algorithm that correctly schedules a room, a time slot and a professor to every final, or report that not such schedule is possible.

Edmonds Karp alg

Construction of the network

Edmonds Karp alg

Generic reduction to MaxFlow Construct the network \mathcal{N} with vertices $\{s, t, \{c_i\}, \{r_i\}, \{r_k\}, \{p_\ell\}\}$. Edges and capacities:

- (s, c_i) with capacity 1 (each course has one final)
- (c_i, r_j) , if $E[i] \leq S[j]$, with capacity ∞
- $\forall j, k, (r_j, \tau_k)$, with capacity 1 (one final per room and time slot).
- (τ_k, p_ℓ) , if $A[k, \ell] = T$, capacity 1 $(p \text{ can watch one final, if } p \text{ is available at } \tau_k)$.
- (p_{ℓ}, t) , capacity 6 (each p can watch \leq 6 finals)

Notice that neither rooms nor time slots have individual restrictions.

FINAL'S SCHEDULING: Flow Network

Edmonds Karp alg

FINAL'S SCHEDULING

Edmonds Karp alg

- Notice the input size to the problem is $N = n + r + \tau + p + 2$. and size of the network is O(N) vertices and $O(N^2)$ edges, why?
- Every path $s \leadsto t$ is an assignment of room-time-professor to a final, and any assignment room-time-professor to a final can be represented by a path $s \leadsto t$.
- Every integral flow identifies a collection of |f| (s, t)-paths leading to a valid assignment for |f| finals and viceversa.

FINAL'S SCHEDULING

Edmonds Karp alg

- To maximize the number of finals to be given, we compute the max-flow f^* from s to t.
- If $|f^*| = n$, then we can schedule all finals, otherwise we can not.
- To recover the assignment we have to consider the edges with positive flow and extract assignment from the n (s,t)-paths
- Complexity:
 - To construct \mathcal{N} , we need $O(N^2)$.
 - As $|f^*| \le n$ integral, we can use Ford-Fulkerson to compute f^* , with cost $O(nN^2)$.
 - The second part requires $O(N^2)$ time.
 - So, the cost of the algorithm is $O(nN^2) = O(n(n+r+\tau+p)^2)$.