# 353: Computing A Near-Maximum Independent Set In Dynamic Graphs

Weiguo Zheng<sup>1,2</sup> Chengzhi Piao<sup>1</sup> Hong Cheng<sup>1</sup> Jeffrey Xu Yu<sup>1</sup>

<sup>1</sup>The Chinese University of Hong Kong, HK SAR, China <sup>2</sup>Fudan University, China







## **Background**

#### **Independent Set**

Given a set of vertices in graph G, we call it an independent set of G if and only if there are no neighborhoods among them.

#### Maximal independent set

Can not add more vertices into it.

#### **Maximum independent set(MIS)**

A MIS has the largest size among all independent sets. Maybe not unique.

#### **Problem Definition**

Target: maintain a Near-MIS in dynamic graphs

#### Input

An undirected graph  $G_0$  and the initial  $NearMIS_0$ A sequence of updates on the graph structure:  $update_i$ 

Output online maintain the Near-MIS after each update:  $NearMIS_i$ 

## Dependency Graph based Framework

#### **Reduction Rule**



**Reducing-Peeling Framework** 



## **Brute Force Search: Move Out a Node from the MIS**

To maintain a MIS, we must choose a neighbor to replace u.



**Two Ways of Pruning** 



# **Definition of Dependency Graph**

We call the nodes in the independent set reducing nodes.

Others are called dependent nodes.

- 1. Contain all edges between reducing and dependent nodes.
- 2. Each edge is directed.
- 3. Each reducing node has at most two out-neighbors.
- 4. Each dependent node has at most one in-neighbor.

## **DG:** Construction

The reducing-peeling framework does not merely output a Near-MIS, but also implies a topological order of the graph.

- 1. For each reducing node, its out-neighbors are decided when a reduction rule works.
- 2. Then, the others become its in-neighbors.

## **DG:** Dealing with Updates

We mainly focus on the following three operations.

- 1. Delete a node u: If u is a reducing node, try to move out u.
- 2. Add an edge (u, v): If both u and v are reducing nodes, try to move out u or v. Simply abandon either if it fails.
- 3. Delete an edge (u, v): Try to move in the dependent node.

## DG: Maintenance(e.g. add an edge)



### **Batch Update**

- Ga: affected subgraph G<sub>r</sub>: the remaining graph
- Crossing Edge: an edge between G<sub>a</sub> and G<sub>r</sub>
- For each crossing edge (u, v)
- u is in G<sub>a</sub> and v is in G<sub>r.</sub>

• Then u is called an active node.

- v is a reducing node(v is in Near-MIS).
- Delete all crossing edges which contains active nodes as few as possible Construct DGOracle<sub>a</sub> on Ga with the help of MISa Add crossing edges back

Delete a node **not in** Near-MIS<sub>0</sub> with the largest degree from G. **DGOracle** 

#### **DGO**racle

Use  $NearMIS_0$  to guide the inexact reduction.

## Results



## **Conclusions**

(a) RGap vs. k

In this paper, we study the problem of computing the high-quality(may not be the maximum) independent sets over the graphs that are dynamically changing.

(b) Response time vs. k

Fig. 6. Effect of the batch size

Brightkite Slashdot

Based on the two widely used degree-one and degree-two reduction rules, we devise a very effective index, i.e., dependency graph, that can facilitate the computation of independent sets. The time complexity of searching on a dependency graph is merely O(d) in average case.

Extensive experiments over a wide range of graphs confirm that the proposed methods are both effective and efficient to find high-quality independent sets.