Summer 2025 Operating Systems

CSSE 332 -- OPERATING SYSTEMS

Introduction to Memory Virtualization

Nε	ame:				
system.	e process can direct	tly access memo	ry without inter		
What are some	of the main challer	iges with this ap	proach?		
Question 2. (5 points addresses?	ints) In your own v	words, describe	what it means f	or a process to	o have <i>virtual</i>
Question 3. (5 points hardware) trans	ints) Address trans	_		e operating sys	stem (and the

Summer 2025 Operating Systems

Question 4. The questions below refer to the base and bounds memory translation approach.

(a) (5 points) Assume that process P_1 gets assigned a base register base_reg. Write down the formula used to calculate the *physical address* (PA) from a given *virtual address* (VA).

(b) (5 points) Assume that process P_1 gets assigned a base register 0x0048. When P_1 attempts to access address 0xff04, which physical address does it end up accessing?

Question 5. Assume we are running on an 8-bit architecture and we would like to implement memory segmentation. Each process should have the generic four sections: code, globals, stack, and heap.

(a) (5 points) Describe how an 8-bit address would be divided up to perform address translation. You may use the bit-box below.

7	6	5	4	3	2	1	0

(b) Assume now that when process P_1 is loaded into memory, it is assignmed the following segment table.

Segment	Base	Bounds	Growth
Code	0x40	0x0f	+
Globals	0x50	0x0A	+
Heap	0x60	0x10	+
Stack	0x7f	0x10	_

i. (5 points) Write down the formula used to translate a virtual address into a physical address using the segment table above.

ii. (5 points) Assume P_1 attempts to access the virtual address 0x04, what would be the corresponding physical address? (Write segmentation fault if the access is invalid).

Summer 2025 Operating Systems

(5 points) Assume P_1 attempts to access the virtual address $0x84$, what would be the corresponding physical address? (Write segmentation fault if the access is invalid).
(5 points) Assume P_1 attempts to access the virtual address $0xC8$, what would be the corresponding physical address? (Write segmentation fault if the access is invalid).
5 points) Assume P_1 attempts to access the virtual address $0xE4$, what would be the corresponding physical address? (Write segmentation fault if the access is invalid).