CS 5112 Algorithms Applications Minimal Spanning Trees

WTS: Output is correct.

- 1. Lovest weight ("wining")
 - - 29. Connected
 - 26. No cycles V 3. Spanning Eury unde is connected V

For any SCV, every MST contains the lowest weight edge in extit a list have to be in every

Use the Cut Property (Kruskil's)

Suppose Kruskal's algorithm adds an edge e=(v,w). Right before we add e, book at the set S of all modes with a path to v.

Use the Cut Property (Prims)

Cut Property

Let e be the lowest weight edge in the cut of S. Let T be any spanning tree.

WTS: If ext, then T is not minimal. Idea 13 la There must be a exchange path from v tow in T. Pick a edge on the path in the cut,

	Let e Let T	be the labe any .	west weight	t edge in	Ke cut of	٠ς,		
ler is to	wts	: If e	∉T, t	hen T is	not minin	ual,		
change		e			There	must be c	,	
fore'.		,			path f	run v tow		
		-	Je'			. Przka flu path		
	,		· ·			cut,		
Let	TI	e T	with e	e reman	ed and	replaced	with e.	
	1. low	er weigh	+ /					
	2. tree							
	3. Spo							

Let e be the lowest weight edge in the cut of S. Let T be any spanning tree.
Iden is to
exchange There must be a
posth from v to w in T. Prek a edge on the path
in the cont,
Tree: 1. Connected Can cruste a path in Tusay the path from v to win T and e.
Z. No cyclig

There must be a path from v tow in T. Przka edge on the path Tree: 1. Connected Can cruste a path in Tusay the path fram v to win Toule. 2. No cycles Any cycle in T' must carlein e. So a similar argument gives a cycle in T.