

Notebook - Competitive Programming

Anões do TLE

ontents		4.7 Negative Cycle Floyd Warshall	6		5.11 Euler phi $\varphi(n)$	9
		4.8 Dijkstra Path	6			
	2	4.9 Dijkstra	7		5.13 Sum Divisors	10
	2	4.10 Floyd Warshall Path	7			
1.2 Union Find Disjoint Set (UFDS)	3		7			
D '		4.12 Graph	7	6	Problems	10
	4	4.13 Retrieve Path 2d	7		6.1 Kth Digit String (CSES)	10
	4	4.14 Retrieve Path	8			
2.2 Longest Increasing Subsequence (LIS)	4			7	Strings	10
Geometry	4	5 Math	8		7.1 Manacher	10
· ·	4	5.1 Binomial	8			
	4	5.2 Count Divisors	8	8	Trees	11
5.2 Tollie To beginene	-	5.3 Factorization With Sieve	8		8.1 LCA Binary Lifting (CP Algo)	11
Graphs	5	5.4 Factorization	8		8.2 LCA SegTree (CP Algo)	11
-	5	5.5 Fast Exp Iterative	8			
4.2 Bellman Ford Path	5	5.6 Fast Exp	8			
	5	5.7 GCD	9			
	5	5.8 Integer Mod	9	9	Settings and macros	13
4.5 Bridges	6	5.9 Is prime	9		9.1 macro.cpp	13
4.6 Negative Cycle Bellman Ford	6	5.10 LCM	9		9.2 short-macro.cpp	13
	~	Data structures 2 1.1 Matrix	Data structures 2 4.8 Dijkstra Path 1.1 Matrix 2 4.10 Floyd Warshall Path 1.2 Union Find Disjoint Set (UFDS) 3 4.11 Floyd Warshall Dynamic programming 4 4.12 Graph 2.1 Kadane 4 4.13 Retrieve Path 2d 2.2 Longest Increasing Subsequence (LIS) 4 4.14 Retrieve Path 3.1 Convex Hull 4 5.1 Binomial 3.2 Point To Segment 4 5.2 Count Divisors 5.3 Factorization With Sieve Graphs 5 5.4 Factorization 4.1 Articulation Points 5 5.5 Fast Exp Iterative 4.2 Bellman Ford Path 5 5.6 Fast Exp 4.3 Bellman Ford 5 5.7 GCD 4.4 BFS 0/1 5 5.8 Integer Mod 5.5 Bridges 6 5.9 Is prime	Data structures 2 4.8 Dijkstra Path 6 1.1 Matrix 2 4.9 Dijkstra 7 1.1 Matrix 2 4.10 Floyd Warshall Path 7 1.2 Union Find Disjoint Set (UFDS) 3 4.11 Floyd Warshall Path 7 Dynamic programming 4 4.12 Graph 7 2.1 Kadane 4.13 Retrieve Path 2d 7 4.13 Retrieve Path 8 3.1 Convex Hull 4 5.1 Binomial 8 3.1 Convex Hull 4 5.1 Binomial 8 3.2 Point To Segment 4 5.2 Count Divisors 8 8 5.3 Factorization With Sieve 8 6 5.5 Fast Exp Iterative 8 4.1 Articulation Points 5 5.6 Fast Exp 8 4.2 Bellman Ford 5 5.6 Fast Exp 8	Data structures 2 4.8 Dijkstra Path 6 1.1 Matrix 2 4.9 Dijkstra 7 1.1 Matrix 2 4.10 Floyd Warshall Path 7 1.2 Union Find Disjoint Set (UFDS) 3 4.11 Floyd Warshall 7 Dynamic programming 4 4.12 Graph 7 6 2.1 Kadane 4 4.13 Retrieve Path 2d 7 7 2.2 Longest Increasing Subsequence (LIS) 4 4.14 Retrieve Path 8 7 Geometry 4 5.1 Binomial 8 8 3.1 Convex Hull 4 5.1 Binomial 8 8 3.2 Point To Segment 4 5.2 Count Divisors 8 8 4.1 Articulation Points 5 5.4 Factorization With Sieve 8 4.1 Articulation Points 5 5.5 Fast Exp Iterative 8 4.2 Bellman Ford Path 5 5.6 Fast Exp 8 4.3 Bellman Ford 5 5.7 GCD 9 4.4 BFS 0/1 5 5.8 Integer Mod 9 <t< td=""><td>Data structures 2 4.8 Dijkstra Path 6 5.12 Sieve 1.1 Matrix 2 4.9 Dijkstra 7 5.13 Sum Divisors 1.2 Union Find Disjoint Set (UFDS) 3 4.11 Floyd Warshall Path 7 5.13 Sum Divisors 1.2 Union Find Disjoint Set (UFDS) 3 4.11 Floyd Warshall 7 6 Problems 2.1 Kadane 4 4.13 Retrieve Path 2d 7 6.1 Kth Digit String (CSES) 2.2 Longest Increasing Subsequence (LIS) 4 4.14 Retrieve Path 8 7 Strings 3.1 Convex Hull 4 5.1 Binomial 8 7.1 Manacher 3.2 Point To Segment 4 5.2 Count Divisors 8 8 Trees 3.2 Point To Segment 5 5.4 Factorization With Sieve 8 8.1 LCA Binary Lifting (CP Algo) 4.1 Articulation Points 5 5.5 Fast Exp Iterative 8 8.2 LCA SegTree (CP Algo) 4.2 Bellman Ford Path 5 5.5 Fast Exp Iterative <t< td=""></t<></td></t<>	Data structures 2 4.8 Dijkstra Path 6 5.12 Sieve 1.1 Matrix 2 4.9 Dijkstra 7 5.13 Sum Divisors 1.2 Union Find Disjoint Set (UFDS) 3 4.11 Floyd Warshall Path 7 5.13 Sum Divisors 1.2 Union Find Disjoint Set (UFDS) 3 4.11 Floyd Warshall 7 6 Problems 2.1 Kadane 4 4.13 Retrieve Path 2d 7 6.1 Kth Digit String (CSES) 2.2 Longest Increasing Subsequence (LIS) 4 4.14 Retrieve Path 8 7 Strings 3.1 Convex Hull 4 5.1 Binomial 8 7.1 Manacher 3.2 Point To Segment 4 5.2 Count Divisors 8 8 Trees 3.2 Point To Segment 5 5.4 Factorization With Sieve 8 8.1 LCA Binary Lifting (CP Algo) 4.1 Articulation Points 5 5.5 Fast Exp Iterative 8 8.2 LCA SegTree (CP Algo) 4.2 Bellman Ford Path 5 5.5 Fast Exp Iterative <t< td=""></t<>

1 Data structures

1.1 Matrix

```
template <typename T>
struct Matrix {
 vector < vector < T>> d:
 Matrix() : Matrix(0) {}
 Matrix(int n) : Matrix(n, n) {}
 Matrix(int n, int m) : Matrix(vector<vector<T>>(n, vector<T>(m))) {}
 Matrix(const vector<vector<T>> &v) : d(v) {}
 constexpr int n() const { return (int)d.size(); }
  constexpr int m() const { return n() ? (int)d[0].size() : 0; }
  void rotate() { *this = rotated(); }
 Matrix<T> rotated() const {
    Matrix < T > res(m(), n());
    for (int i = 0; i < m(); i++) {</pre>
      for (int j = 0; j < n(); j++) {
        res[i][j] = d[n() - j - 1][i];
    return res;
 Matrix <T> pow(int power) const {
    assert(n() == m());
    auto res = Matrix <T>::identity(n());
    auto b = *this;
    while (power) {
    if (power & 1) res *= b;
     b *= b;
      power >>= 1;
    return res;
 Matrix <T> submatrix(int start_i, int start_j, int rows = INT_MAX,
                      int cols = INT MAX) const {
    rows = min(rows, n() - start_i);
    cols = min(cols, m() - start_j);
    if (rows <= 0 or cols <= 0) return {};</pre>
    Matrix <T> res(rows, cols);
    for (int i = 0; i < rows; i++)</pre>
      for (int j = 0; j < cols; j++) res[i][j] = d[i + start_i][j + start_j];</pre>
    return res:
 }
 Matrix<T> translated(int x, int y) const {
    Matrix < T > res(n(), m());
    for (int i = 0; i < n(); i++) {
      for (int j = 0; j < m(); j++) {
        if (i + x < 0 \text{ or } i + x >= n() \text{ or } j + y < 0 \text{ or } j + y >= m()) \text{ continue};
```

```
res[i + x][j + y] = d[i][j];
 return res:
static Matrix<T> identity(int n) {
  Matrix<T> res(n);
 for (int i = 0: i < n: i++) res[i][i] = 1:
 return res:
}
vector <T> &operator[](int i) { return d[i]; }
const vector<T> &operator[](int i) const { return d[i]; }
Matrix <T> &operator += (T value) {
  for (auto &row : d) {
    for (auto &x : row) x += value:
  return *this;
}
Matrix<T> operator+(T value) const {
  auto res = *this:
 for (auto &row : res) {
    for (auto &x : row) x = x + value;
 return res:
Matrix <T> &operator -= (T value) {
 for (auto &row : d) {
   for (auto &x : row) x -= value;
  return *this;
}
Matrix<T> operator-(T value) const {
  auto res = *this:
 for (auto &row : res) {
    for (auto &x : row) x = x - value;
 return res:
Matrix <T> &operator *= (T value) {
 for (auto &row : d) {
   for (auto &x : row) x *= value;
  return *this;
Matrix<T> operator*(T value) const {
  auto res = *this:
  for (auto &row : res) {
    for (auto &x : row) x = x * value:
 return res:
Matrix <T> &operator/=(T value) {
  for (auto &row : d) {
   for (auto &x : row) x /= value;
  return *this:
```

```
Matrix<T> operator/(T value) const {
  auto res = *this;
  for (auto &row : res) {
    for (auto &x : row) x = x / value;
  return res;
Matrix <T> & operator += (const Matrix <T> &o) {
  assert(n() == o.n() and m() == o.m());
  for (int i = 0; i < n(); i++) {</pre>
    for (int j = 0; j < m(); j++) {</pre>
      d[i][i] += o[i][i];
  }
  return *this;
Matrix <T > operator + (const Matrix <T > &o) const {
  assert(n() == o.n() and m() == o.m());
  auto res = *this:
  for (int i = 0; i < n(); i++) {</pre>
    for (int j = 0; j < m(); j++) {
      res[i][i] = res[i][i] + o[i][i]:
  }
  return res:
Matrix <T > & operator -= (const Matrix <T > &o) {
  assert(n() == o.n() and m() == o.m());
  for (int i = 0; i < n(); i++) {</pre>
    for (int j = 0; j < m(); j++) {</pre>
      d[i][i] -= o[i][i];
    }
  return *this;
Matrix <T > operator - (const Matrix <T > &o) const {
  assert(n() == o.n() and m() == o.m());
  auto res = *this:
  for (int i = 0; i < n(); i++) {</pre>
    for (int j = 0; j < m(); j++) {</pre>
      res[i][j] = res[i][j] - o[i][j];
    }
  return res;
Matrix <T> &operator *= (const Matrix <T> &o) {
  *this = *this * o:
  return *this;
Matrix <T> operator*(const Matrix <T> &o) const {
  assert(m() == o.n()):
  Matrix < T > res(n(), o.m());
  for (int i = 0; i < res.n(); i++) {</pre>
    for (int j = 0; j < res.m(); j++) {</pre>
      auto &x = res[i][j];
      for (int k = 0: k < m(): k++) {
        x += (d[i][k] * o[k][i]);
```

```
return res:
  friend istream &operator>>(istream &is, Matrix<T> &mat) {
    for (auto &row : mat)
      for (auto &x : row) is >> x:
    return is:
  friend ostream &operator << (ostream &os, const Matrix <T> &mat) {
    bool frow = 1:
    for (auto &row : mat) {
      if (not frow) os << '\n':
      bool first = 1;
      for (auto &x : row) {
        if (not first) os << '';</pre>
        os << x;
        first = 0;
      frow = 0:
    return os;
  auto begin() { return d.begin(); }
  auto end() { return d.end(); }
  auto rbegin() { return d.rbegin(); }
  auto rend() { return d.rend(); }
  auto begin() const { return d.begin(); }
  auto end() const { return d.end(): }
  auto rbegin() const { return d.rbegin(); }
  auto rend() const { return d.rend(); }
};
     Union Find Disjoint Set (UFDS)
Uncomment the lines to recover which element belong to each set.
Time: \approx O(1) for everything.
class UFDS {
public:
 vi ps, size;
  // vector < unordered_set < int >> sts;
  UFDS(int N) : size(N + 1, 1), ps(N + 1), sts(N) {
    iota(ps.begin(), ps.end(), 0);
    // for (int i = 0: i < N: i++) sts[i].insert(i):</pre>
  int find_set(int x) { return x == ps[x] ? x : (ps[x] = find_set(ps[x])); }
  bool same_set(int x, int y) { return find_set(x) == find_set(y); }
  void union_set(int x, int y) {
    if (same_set(x, y)) return;
```

```
int px = find_set(x);
    int py = find_set(y);
    if (size[px] < size[py]) swap(px, py);</pre>
    ps[py] = px;
    size[px] += size[py];
    // sts[px].merge(sts[py]);
};
```

Dynamic programming

2.1 Kadane

```
int kadane(const vi& xs) {
 vi s(xs.size()):
 s[0] = xs[0]:
 for (size t i = 1: i < xs.size(): ++i) s[i] = max(xs[i], s[i - 1] + xs[i]):
 return *max_element(all(s));
```

Longest Increasing Subsequence (LIS)

```
Time: O(N \cdot \log N).
int lis(vi const& a) {
  int n = a.size();
  const int INF = 1e9;
  vi d(n + 1, INF):
  d[0] = -INF;
  for (int i = 0: i < n: i++) {
    int 1 = upper_bound(d.begin(), d.end(), a[i]) - d.begin();
    if (d[l - 1] < a[i] && a[i] < d[l]) d[l] = a[i];</pre>
  int ans = 0:
  for (int 1 = 0; 1 <= n; 1++) {</pre>
    if (d[1] < INF) ans = 1:
  return ans:
```

Geometry

3.1 Convex Hull

Given a set of points find the smallest convex polygon that contains all the given points. Time: $O(N \cdot \log N)$

By default it removes the collinear points, set the boolean to true if you don't want that

```
struct pt {
  double x, y;
int orientation(pt a, pt b, pt c) {
  double v = a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y);
  if (v < 0) return -1; // clockwise
  if (v > 0) return +1; // counter-clockwise
  return 0:
bool cw(pt a, pt b, pt c, bool include_collinear) {
 int o = orientation(a, b, c);
 return o < 0 || (include_collinear && o == 0);</pre>
bool collinear(pt a, pt b, pt c) { return orientation(a, b, c) == 0; }
void convex_hull(vector<pt>& a, bool include_collinear = false) {
  pt p0 = *min_element(a.begin(), a.end(), [](pt a, pt b) {
    return make_pair(a.y, a.x) < make_pair(b.y, b.x);</pre>
  sort(a.begin(), a.end(), [&p0](const pt& a, const pt& b) {
    int o = orientation(p0, a, b);
    if (o == 0)
      return (p0.x - a.x) * (p0.x - a.x) + (p0.y - a.y) * (p0.y - a.y) <
             (p0.x - b.x) * (p0.x - b.x) + (p0.y - b.y) * (p0.y - b.y);
    return o < 0;</pre>
  }):
  if (include_collinear) {
    int i = (int)a.size() - 1;
    while (i >= 0 && collinear(p0, a[i], a.back())) i--;
    reverse(a.begin() + i + 1, a.end());
  }
  vector <pt> st;
  for (int i = 0; i < (int)a.size(); i++) {</pre>
    while (st.size() > 1 &&
           !cw(st[st.size() - 2], st.back(), a[i], include_collinear))
      st.pop_back();
    st.push_back(a[i]);
  }
  a = st;
3.2 Point To Segment
typedef pair <double, double > pdb;
#define fst first
#define snd second
double pt2segment(pdb A, pdb B, pdb E) {
  pdb AB = {B.fst - A.fst, B.snd - A.snd};
  pdb BE = {E.fst - B.fst, E.snd - B.snd}:
```

```
pdb AE = {E.fst - A.fst, E.snd - A.snd};
```

```
double AB_BE = AB.fst * BE.fst + AB.snd * BE.snd;
double AB_AE = AB.fst * AE.fst + AB.snd * AE.snd;
double ans:
if (AB_BE > 0) {
  double y = E.snd - B.snd;
  double x = E.fst - B.fst;
  ans = sqrt(x * x + y * y);
} else if (AB_AE < 0) {</pre>
  double v = E.snd - A.snd:
  double x = E.fst - A.fst;
  ans = sqrt(x * x + y * y);
} else {
  auto [x1, y1] = AB;
  auto [x2, y2] = AE;
 double mod = sqrt(x1 * x1 + y1 * y1);
  ans = abs(x1 * y2 - y1 * x2) / mod;
return ans;
```

4 Graphs

4.1 Articulation Points

```
int dfs_num[MAX], dfs_low[MAX];
vi adj[MAX];
int dfs_articulation_points(int u, int p, int& next, set<int>& points) {
 int children = 0:
 dfs_low[u] = dfs_num[u] = next++;
 for (auto v : adj[u])
    if (not dfs_num[v]) {
      ++children:
      dfs_articulation_points(v, u, next, points);
      if (dfs_low[v] >= dfs_num[u]) points.insert(u);
      dfs low[u] = min(dfs low[u], dfs low[v]):
   } else if (v != p)
      dfs_low[u] = min(dfs_low[u], dfs_num[v]);
 return children:
set < int > articulation_points(int N) {
 memset(dfs num, 0, (N + 1) * sizeof(int));
 memset(dfs_low, 0, (N + 1) * sizeof(int));
 set < int > points;
 for (int u = 1, next = 1; u \le N; ++u)
    if (not dfs_num[u]) {
      auto children = dfs_articulation_points(u, u, next, points);
```

```
if (children == 1) points.erase(u);
  return points;
     Bellman Ford Path
using edge = tuple<int, int, int>;
pair < vi , vi > bellman_ford(int s, int N, const vector < edge > & edges) {
  vi dist(N + 1, oo), pred(N + 1, oo);
  dist[s] = 0;
  pred[s] = s:
  for (int i = 1; i <= N - 1; i++)
   for (auto [u, v, w] : edges)
      if (dist[u] < oo and dist[v] > dist[u] + w) {
        dist[v] = dist[u] + w;
        pred[v] = u;
  return {dist, pred};
     Bellman Ford
Time: O(VE). Returns the shortest path from s to all other nodes.
using edge = tuple<int, int, int>;
vi bellman_ford(int s, int N, const vector < edge > & edges) {
  vi dist(N + 1, oo);
  dist[s] = 0:
  for (int i = 1; i <= N - 1; i++)</pre>
   for (auto [u, v, w] : edges)
      if (dist[u] < oo and dist[v] > dist[u] + w) dist[v] = dist[u] + w;
  return dist;
4.4 BFS 0/1
Time: O(V+E).
vii adj[MAX];
vi bfs 01(int s. int N) {
 vi dist(N + 1, oo);
  dist[s] = 0;
  deque < int > q;
  q.emplace_back(s);
  while (not q.empty()) {
```

```
auto u = q.front();
    q.pop_front();
    for (auto [v. w] : adi[u])
      if (dist[v] > dist[u] + w) {
        dist[v] = dist[u] + w;
        w == 0 ? q.emplace_front(v) : q.emplace_back(v);
  }
  return dist;
     Bridges
int dfs_num[MAX], dfs_low[MAX];
vi adj[MAX];
void dfs_bridge(int u, int p, int& next, vector<ii>& bridges) {
  dfs low[u] = dfs num[u] = next++:
  for (auto v : adi[u])
    if (not dfs_num[v]) {
      dfs_bridge(v, u, next, bridges);
      if (dfs_low[v] > dfs_num[u]) bridges.emplace_back(u, v);
      dfs low[u] = min(dfs low[u], dfs low[v]):
    } else if (v != p)
      dfs_low[u] = min(dfs_low[u], dfs_num[v]);
}
vector<ii> bridges(int N) {
  memset(dfs_num, 0, (N + 1) * sizeof(int));
  memset(dfs_low, 0, (N + 1) * sizeof(int));
  vector < ii> bridges;
  for (int u = 1, next = 1; u \le N; ++u)
    if (not dfs_num[u]) dfs_bridge(u, u, next, bridges);
  return bridges;
     Negative Cycle Bellman Ford
Time: O(VE). Detects whether there is a negative cycle in the graph using Bellman Ford.
using edge = tuple<int, int, int>;
bool has_negative_cycle(int s, int N, const vector<edge>& edges) {
  const int oo{1000000010};
  vi dist(N + 1, oo);
  dist[s] = 0:
  for (int i = 1: i \le N - 1: i++)
```

```
for (auto [u, v, w] : edges)
      if (dist[u] < oo and dist[v] > dist[u] + w) dist[v] = dist[u] + w;
  for (auto [u, v, w] : edges)
    if (dist[u] < oo and dist[v] > dist[u] + w) return true;
  return false;
4.7 Negative Cycle Floyd Warshall
Time: O(n^3). Detects whether there is a negative cycle in the graph using Floyd Warshall.
int dist[MAX][MAX];
vector < ii > adj[MAX];
bool has_negative_cycle(int N) {
  for (int u = 1; u <= N; ++u)</pre>
    for (int v = 1: v \le N: ++v) dist[u][v] = u == v ? 0 : oo:
  for (int u = 1; u <= N; ++u)</pre>
    for (auto [v, w] : adj[u]) dist[u][v] = w;
  for (int k = 1; k \le N; ++k)
    for (int u = 1: u <= N: ++u)
      for (int v = 1; v \le N; ++v)
        if (dist[u][k] < oo and dist[k][v] < oo)</pre>
          dist[u][v] = min(dist[u][v], dist[u][k] + dist[k][v]);
  for (int i = 1; i <= N; ++i)</pre>
    if (dist[i][i] < 0) return true;</pre>
  return false:
}
    Dijkstra Path
pair < vl, vl > Graph::dijkstra_path(ll src) {
  vl pd(this->N, LLONG_MAX), ds(this->N, LLONG_MAX);
  pd[src] = src:
  ds[src] = 0:
  set <pll> st:
  st.emplace(0, src);
  while (!st.empty()) {
    11 u = st.begin()->snd;
    ll wu = st.begin()->fst;
    st.erase(st.begin()):
    if (wu != ds[u]) continue;
    for (auto& [v, w] : adj[u]) {
      if (ds[v] > ds[u] + w) {
        ds[v] = ds[u] + w:
        pd[v] = u;
        st.emplace(ds[v], v);
```

```
return {ds, pd};
     Dijkstra
vl Graph::dijkstra(ll src) {
  vl ds(this->N, LLONG_MAX);
  ds[src] = 0;
  set <pll> st;
  st.emplace(0, src);
  while (!st.empty()) {
    11 u = st.begin() -> snd;
    11 wu = st.begin()->fst;
    st.erase(st.begin());
    if (wu != ds[u]) continue;
    for (auto& [v, w] : adj[u]) {
      if (ds[v] > ds[u] + w) {
        ds[v] = ds[u] + w;
        st.emplace(ds[v], v);
   }
  return ds;
      Floyd Warshall Path
vii adi[MAX];
pair < vector < vi >, vector < vi >> floyd_warshall(int N) {
  vector < vi > dist(N + 1, vi(N + 1, oo));
  vector < vi > pred(N + 1, vi(N + 1, oo));
  for (int u = 1; u <= N; ++u) {
    dist[u][u] = 0:
   pred[u][u] = u;
  for (int u = 1; u <= N; ++u)
    for (auto [v, w] : adj[u]) {
      dist[u][v] = w;
      pred[u][v] = u;
  for (int k = 1; k <= N; ++k) {</pre>
    for (int u = 1; u <= N; ++u) {</pre>
      for (int v = 1; v \le N; ++v) {
        if (dist[u][k] < oo and dist[k][v] < oo and
            dist[u][v] > dist[u][k] + dist[k][v]) {
          dist[u][v] = dist[u][k] + dist[k][v]:
```

```
pred[u][v] = pred[k][v];
  return {dist, pred};
4.11 Floyd Warshall
int dist[MAX][MAX];
vector < ii > adj[MAX];
vector < vi > floyd_warshall(int N) {
  vector < vi > dist(N + 1, vi(N + 1, oo));
  for (int u = 1; u <= N; ++u) dist[u][u] = 0;</pre>
  for (int u = 1; u <= N; ++u)</pre>
    for (auto [v, w] : adj[u]) dist[u][v] = w;
  for (int k = 1; k \le N; ++k)
    for (int u = 1; u <= N; ++u)</pre>
      for (int v = 1; v <= N; ++v)</pre>
        if (dist[u][k] < oo and dist[k][v] < oo)</pre>
          dist[u][v] = min(dist[u][v], dist[u][k] + dist[k][v]);
  return dist;
4.12 Graph
class Graph {
private:
 11 N;
  bool undirected:
  vector < vll > adj;
 public:
  Graph(ll N, bool is_undirected = true) {
    this -> N = N:
    adj.resize(N);
    undirected = is_undirected;
  void add(ll u, ll v, ll w) {
    adj[u].emplace_back(v, w);
    if (undirected) adj[v].emplace_back(u, w);
 }
};
4.13 Retrieve Path 2d
vll Graph::retrieve_path_2d(ll src, ll trg, const vector < vl > & pred) {
  vll p;
```

```
do {
    p.emplace_back(pred[src][trg], trg);
    trg = pred[src][trg];
  } while (trg != src);
  reverse(all(p));
  return p;
4.14 Retrieve Path
vll Graph::retrieve_path(ll src, ll trg, const vl& pred) {
  vll p;
  do {
    p.emplace_back(pred[trg], trg);
    trg = pred[trg];
  } while (trg != src);
  reverse(all(p));
  return p;
    Math
     Binomial
11 binom(ll n, ll k) {
  if (k > n) return 0;
  vll dp(k + 1, 0);
  dp[0] = 1;
  for (ll i = 1; i <= n; i++)</pre>
    for (11 j = k; j > 0; j--) dp[j] = dp[j] + dp[j - 1];
  return dp[k];
     Count Divisors
11 count_divisors(11 num) {
  11 count = 1:
  for (int i = 2; (11)i * i <= num; i++) {
   if (num % i == 0) {
     int e = 0;
      do {
       e++;
        num /= i;
     } while (num % i == 0);
      count *= e + 1:
    }
  if (num > 1) {
    count *= 2;
  return count;
```

```
5.3 Factorization With Sieve
map<11, 11> factorization_with_sieve(11 n, const vl& primes) {
  map<11, 11> fact;
  for (ll d : primes) {
   if (d * d > n) break;
   11 k = 0:
    while (n \% d == 0) {
     k++:
     n /= d;
   if (k) fact[d] = k;
 }
  if (n > 1) fact[n] = 1;
  return fact:
5.4 Factorization
map<ll, ll> factorization(ll n) {
  map<11, 11> ans;
  for (11 i = 2; i * i <= n; i++) {
   11 count = 0;
   for (; n % i == 0; count++, n /= i)
   if (count) ans[i] = count:
 if (n > 1) ans[n]++;
  return ans;
5.5 Fast Exp Iterative
long long fast_exp_it(long long a, int n) {
 long long res = 1, base = a;
  while (n) {
   if (n & 1) res *= base;
   base *= base;
   n >>= 1;
  return res;
5.6 Fast Exp
long long fast_exp(long long a, int n) {
 if (n == 1) return a;
  auto x = fast_exp(a, n / 2);
```

```
return x * x * (n % 2 ? a : 1);
```

$5.7 \quad GCD$

The Euclidean algorithm allows to find the greatest common divisor of two numbers a and b in $O(\log \cdot \min(a,b))$.

```
11 gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
```

5.8 Integer Mod

```
const ll INF = 1e18;
const 11 mod = 998244353;
template <11 MOD = mod>
struct Modular {
 ll value:
 static const 11 MOD_value = MOD;
 Modular(11 v = 0) {
   value = v % MOD;
   if (value < 0) value += MOD:
 Modular(ll a, ll b) : value(0) {
   *this += a:
   *this /= b;
 Modular& operator+=(Modular const& b) {
   value += b.value:
   if (value >= MOD) value -= MOD:
   return *this:
  Modular& operator -= (Modular const& b) {
   value -= b.value:
   if (value < 0) value += MOD;</pre>
   return *this;
 Modular& operator*=(Modular const& b) {
   value = (11)value * b.value % MOD:
   return *this:
 }
 friend Modular mexp(Modular a, ll e) {
   Modular res = 1:
   while (e) {
      if (e & 1) res *= a;
     a *= a:
     e >>= 1:
   }
   return res;
 friend Modular inverse (Modular a) { return mexp(a, MOD - 2); }
 Modular& operator/=(Modular const& b) { return *this *= inverse(b); }
 friend Modular operator+(Modular a. Modular const b) { return a += b: }
```

```
Modular operator++(int) { return this->value = (this->value + 1) % MOD; }
  Modular operator++() { return this->value = (this->value + 1) % MOD; }
  friend Modular operator-(Modular a, Modular const b) { return a -= b; }
  friend Modular operator-(Modular const a) { return 0 - a; }
  Modular operator --(int) {
    return this->value = (this->value - 1 + MOD) % MOD;
  }
  Modular operator -- () { return this -> value = (this -> value - 1 + MOD) % MOD; }
  friend Modular operator*(Modular a. Modular const b) { return a *= b: }
  friend Modular operator/(Modular a, Modular const b) { return a /= b; }
  friend std::ostream& operator<<(std::ostream& os, Modular const& a) {</pre>
    return os << a.value:
  friend bool operator == (Modular const& a. Modular const& b) {
    return a.value == b.value;
  friend bool operator!=(Modular const& a, Modular const& b) {
    return a.value != b.value;
  }
};
5.9 Is prime
O(\sqrt{N})
bool isprime(ll n) {
 if (n < 2) return false:
  if (n == 2) return true;
  if (n % 2 == 0) return false;
  for (11 i = 3: i * i < n: i += 2)
    if (n % i == 0) return false;
  return true:
5.10 LCM
Calculating the least common multiple (commonly denoted LCM) can be reduced to calculating the GCD
with the following simple formula: lcm(a, b) = (a \cdot b)/gcd(a, b)
Thus, LCM can be calculated using the Euclidean algorithm with the same time complexity:
11 lcm(ll a, ll b) { return a / gcd(a, b) * b; }
5.11 Euler phi \varphi(n)
Computes the number of positive integers less than n that are coprimes with n, in O(\sqrt{N}).
11 phi(11 n) {
  if (n == 1) return 1;
  auto fs = factorization(n):
  auto res = n;
```

}

for (auto [p, k] : fs) {

res /= p; res *= (p - 1);

```
return res;
5.12 Sieve
vl sieve(ll N) {
  bitset < MAX + 1> sieve;
  vl ps{2, 3};
  sieve.set();
  for (11 i = 5, step = 2; i <= N; i += step, step = 6 - step) {</pre>
    if (sieve[i]) {
      ps.push_back(i);
      for (11 j = i * i; j <= N; j += 2 * i) sieve[j] = false;
    }
  }
  return ps;
       Sum Divisors
11 sum_divisors(ll num) {
  11 result = 1;
  for (int i = 2: (11)i * i <= num: i++) {
    if (num % i == 0) {
      int e = 0;
      do {
         e++;
        num /= i:
      } while (num % i == 0);
      11 \text{ sum} = 0, \text{ pow} = 1;
       do {
         sum += pow;
         pow *= i;
      } while (e-- > 0);
      result *= sum:
    }
  if (num > 1) {
    result *= (1 + num);
  return result;
5.14 Sum of difference
Function to calculate sum of absolute difference of all pairs in array: \frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}|A_i-A_j|
ll sum_of_diference(vl& arr, ll n) {
  sort(all(arr)):
```

11 sum = 0:

for (11 i = 0; i < n; i++) {</pre>

sum += i * arr[i] - (n - 1 - i) * arr[i]:

6 Problems

return sum;

6.1 Kth Digit String (CSES)

```
Time: O(\log_{10} K).
Space: O(1).
ll kth_digit_string(ll k) {
  if (k < 10) return k;</pre>
  11 c = 180, i = 2, u = 10, r = 0, ans = -1, m;
  for (k -= 9; k > c; i++, u *= 10) {
    k -= c;
    c /= i;
    c *= 10 * (i + 1);
  if ((m = k % i))
    r++;
  else
  11 \text{ tmp} = (k / i) + r + u - 1;
  for (m = i + 1 - m; m--; tmp /= 10) ans = tmp % 10;
  return ans;
}
```

7 Strings

7.1 Manacher

Given string s with length n. Find all the pairs (i, j) such that substring $s[i \dots j]$ is a palindrome. String t is a palindrome when $t = t_{rev}$ (t_{rev} is a reversed string for t). Time: O(N)

```
vi manacher(string s) {
   string t;
   for (auto c : s) t += string("#") + c;
   t = t + '#';

int n = t.size();
   t = "$" + t + "^";

vi p(n + 2);
   int l = 1, r = 1;
   for (int i = 1; i <= n; i++) {
      p[i] = max(0, min(r - i, p[l + (r - i)]));
      while (t[i - p[i]] == t[i + p[i]]) p[i]++;
      if (i + p[i] > r) {
            l = i - p[i], r = i + p[i];
      }
```

```
}
  p[i]--;
}
return vi(begin(p) + 1, end(p) - 1);
}
```

8 Trees

8.1 LCA Binary Lifting (CP Algo)

The algorithm described will need $O(N \cdot \log N)$ for preprocessing the tree, and then $O(\log N)$ for each LCA query.

```
11 n. 1:
vector<ll> adj[MAX];
ll timer:
vector<ll> tin, tout;
vector < vector < 11 >> up;
void dfs(ll v, ll p) {
  tin[v] = ++timer:
  up[v][0] = p;
  for (ll i = 1; i <= 1; ++i) up[v][i] = up[up[v][i - 1]][i - 1];
  for (ll u : adj[v]) {
    if (u != p) dfs(u, v);
  tout[v] = ++timer;
bool is ancestor(ll u. ll v) { return tin[u] <= tin[v] && tout[u] >= tout[v]:
    }
11 1ca(11 u, 11 v) {
 if (is_ancestor(u, v)) return u;
  if (is_ancestor(v, u)) return v;
  for (11 i = 1; i >= 0; --i) {
    if (!is_ancestor(up[u][i], v)) u = up[u][i];
  return up[u][0];
void preprocess(ll root) {
  tin.resize(n):
  tout.resize(n);
  timer = 0:
  1 = ceil(log2(n));
  up.assign(n, vector<ll>(1 + 1));
  dfs(root, root):
```

8.2 LCA SegTree (CP Algo)

The algorithm can answer each query in $O(\log N)$ with preprocessing in O(N) time.

```
struct LCA {
  vector<ll> height, euler, first, segtree;
  vector < bool > visited;
  11 n:
  LCA(vector < vector < 11 >> & adj, 11 root = 0) {
    n = adj.size();
   height.resize(n);
   first.resize(n);
    euler.reserve(n * 2):
    visited.assign(n, false);
    dfs(adj, root);
   ll m = euler.size();
    segtree.resize(m * 4);
    build(1, 0, m - 1);
 }
  void dfs(vector<vector<ll>>& adj, ll node, ll h = 0) {
    visited[node] = true;
    height[node] = h;
    first[node] = euler.size();
    euler.push_back(node);
    for (auto to : adi[node]) {
     if (!visited[to]) {
        dfs(adj, to, h + 1);
        euler.push_back(node);
   }
  }
  void build(ll node, ll b, ll e) {
   if (b == e) {
      segtree[node] = euler[b];
   } else {
      11 \text{ mid} = (b + e) / 2;
      build(node << 1, b, mid);</pre>
      build(node << 1 | 1, mid + 1, e);
      11 1 = segtree[node << 1], r = segtree[node << 1 | 1];</pre>
      segtree[node] = (height[1] < height[r]) ? 1 : r;</pre>
  }
  11 query(11 node, 11 b, 11 e, 11 L, 11 R) {
   if (b > R || e < L) return -1;
   if (b >= L && e <= R) return segtree[node];
   11 \text{ mid} = (b + e) >> 1;
   ll left = query(node << 1, b, mid, L, R);</pre>
   ll right = query(node << 1 | 1, mid + 1, e, L, R);</pre>
   if (left == -1) return right;
   if (right == -1) return left;
    return height[left] < height[right] ? left : right;</pre>
 11 lca(11 u, 11 v) {
   ll left = first[u], right = first[v];
   if (left > right) swap(left, right);
    return query(1, 0, euler.size() - 1, left, right);
```

```
}
};
```

8.3 LCA Sparse Table

The algorithm described will need O(N) for preprocessing, and then O(1) for each LCA query. 0 indexed!

```
#define len(__x) (int)__x.size()
using ll = long long;
using pll = pair<11, 11>;
using vi = vector<int>;
using vi2d = vector < vi>;
#define all(a) a.begin(), a.end()
#define pb(___x) push_back(___x)
#define mp(__a, __b) make_pair(__a, __b)
#define eb(___x) emplace_back(___x)
template <typename T>
struct SparseTable {
  vector <T> v;
  11 n;
  static const 11 b = 30;
  vi mask, t;
  11 op(11 x, 11 y) { return v[x] < v[y] ? x : y; }</pre>
  11 msb(ll x) { return __builtin_clz(1) - __builtin_clz(x); }
  SparseTable() {}
  SparseTable(const vector \langle T \rangle \& v_{-} \rangle: v(v_{-}), n(v.size()), mask(n), t(n) {
    for (11 i = 0, at = 0; i < n; mask[i++] = at |= 1) {
      at = (at << 1) & ((1 << b) - 1):
      while (at and op(i, i - msb(at & -at)) == i) at ^= at & -at;
    for (11 i = 0; i < n / b; i++)
      t[i] = b * i + b - 1 - msb(mask[b * i + b - 1]);
    for (ll j = 1; (1 << j) <= n / b; j++)
      for (11 i = 0; i + (1 << j) <= n / b; i++)
        t[n / b * j + i] =
          op(t[n / b * (j - 1) + i], t[n / b * (j - 1) + i + (1 << (j - 1))]);
  ll small(ll r, ll sz = b) { return r - msb(mask[r] & ((1 << sz) - 1)); }
  T querv(11 1, 11 r) {
    if (r - l + 1 <= b) return small(r, r - l + 1);</pre>
    ll ans = op(small(l + b - 1), small(r));
    11 x = 1 / b + 1, y = r / b - 1;
    if (x <= y) {
      ll j = msb(y - x + 1);
      ans = op(ans, op(t[n / b * j + x], t[n / b * j + y - (1 << j) + 1]));
    return ans:
};
struct LCA {
  SparseTable < 11 > st;
  11 n;
  vi v, pos, dep;
```

```
LCA(const vi2d& g, ll root) : n(len(g)), pos(n) {
    dfs(root, 0, -1, g);
    st = SparseTable < 11 > (vector < 11 > (all (dep)));
  void dfs(ll i, ll d, ll p, const vi2d& g) {
    v.eb(len(dep)) = i, pos[i] = len(dep), dep.eb(d);
   for (auto j : g[i])
      if (j != p) {
        dfs(j, d + 1, i, g);
        v.eb(len(dep)) = i, dep.eb(d);
 }
 11 lca(ll a, ll b) {
   11 1 = min(pos[a], pos[b]);
   11 r = max(pos[a], pos[b]);
    return v[st.query(1, r)];
 ll dist(ll a, ll b) {
    return dep[pos[a]] + dep[pos[b]] - 2 * dep[pos[lca(a, b)]];
};
```

8.4 Tree Isomorph

Checks whether two tree are isomorph. The function thash() returns the hash of the tree (using centroids as special vertices). Two trees are isomorph if their hash are the same.

```
map < vector < int > , int > mphash;
struct tree {
  int n:
  vector < vector < int >> g;
  vector < int > sz, cs;
  tree(int n_{-}): n(n_{-}), g(n_{-}), sz(n_{-}) {}
  void dfs_centroid(int v, int p) {
    sz[v] = 1:
    bool cent = true:
    for (int u : g[v])
      if (u != p) {
        dfs_centroid(u, v), sz[v] += sz[u];
        if (sz[u] > n / 2) cent = false;
    if (cent and n - sz[v] <= n / 2) cs.push_back(v);</pre>
  int fhash(int v, int p) {
    vector < int > h:
    for (int u : g[v])
      if (u != p) h.push_back(fhash(u, v));
    sort(h.begin(), h.end());
    if (!mphash.count(h)) mphash[h] = mphash.size();
    return mphash[h];
  11 thash() {
```

```
cs.clear();
  dfs_centroid(0, -1);
  if (cs.size() == 1) return fhash(cs[0], -1);
  ll h1 = fhash(cs[0], cs[1]), h2 = fhash(cs[1], cs[0]);
  return (min(h1, h2) << 30) + max(h1, h2);
}
void add(int a, int b) {
  g[a].emplace_back(b);
  g[b].emplace_back(a);
}
};</pre>
```

9 Settings and macros

9.1 macro.cpp

```
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
#define ordered_set tree<int, null_type, less<int>, rb_tree_tag,
    tree_order_statistics_node_update>
using namespace std;
typedef long long 11;
typedef pair<int, int> pii;
typedef pair<11, 11> pll;
typedef vector<int> vi;
typedef vector<1l> v1;
typedef vector<pii> vii;
typedef vector<pll> vll;
#define fst first
#define snd second
#define all(x) x.begin(), x.end()
#define vin(vt) for (auto &e : vt) cin >> e
#define LSOne(S) ((S) & -(S))
#define MSOne(S) (1ull << (63 - __builtin_clzll(S)))</pre>
#define fastio ios_base::sync_with_stdio(0); \
               cin.tie(0): \
```

```
cout.tie(0)
const vii dir4 {{1,0},{-1,0},{0,1},{0,-1}};
auto solve() { }
int main() {
    fastio;
    ll t = 1:
    //cin >> t;
    while (t--) solve();
    return 0;
9.2 short-macro.cpp
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef pair<int, int> ii;
#define all(x) x.begin(), x.end()
#define vin(vt) for (auto &e : vt) cin >> e
auto solve() { }
int main() {
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    11 t = 1:
    //cin >> t;
    while (t--) solve();
    return 0;
```