PMIC Optimized For Multi-Core High-Performance System

AXP809

Datasheet

Revision 1.0

2014. 02. 26

版本历史

版本	日期	描述
1.0	2014. 02. 26	第一版

版权声明

版权所有,违法必究。

非经本公司书面同意,任何单位或个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式进行传播。任何单位或个人不得删除、修改或移除本文档版权及所有的权利声明。

本公司会不定期对本文档内容进行更新。除非另有说明,1)本文档不构成任何明示或暗示的担保;2)本公司不承担任何使用本文档产生的责任;3)本文档不构成任何明示或暗示的权利授予。

使用者应当承担全部责任去获取实现本文档方案可能需要的第三方授权,本公司对这些第三方授权不承担任何明示或暗示的保证、费用补偿或其他责任。

	\exists
ш	
	7 7 7

1	概述	
2	特性	5
3	典型应	用
4	管脚图	8
5	管脚定	义
6	功能框	图
7	极限参	数
8	电气特	性14
9	操作和	控制
	9. 1.	工作模式和复位 19
	9. 2.	电源通路管理 (IPS™) 21
	9. 3.	自适应 Flash Charger23
	9.4.	多路电源输出—
	9. 5.	E-Gauge ™电量计系统 28
	9. 6.	多功能管脚说明
	9. 7.	定时器28
	9.8.	中断机制 29
10 4	寄存器.	
	10. 1.	寄存器列表 31
	10. 2.	寄存器描述 33
附表	录 : 封装	52

概述

AXP809 是一款高度集成的电源系统管理芯片,针对单芯锂电池(锂离子或锂聚合物)且需要多路电源转换输出的应用,提供简单易用而又可以灵活配置的完整电源解决方案,充分满足多核应用处理器系统对于电源相对复杂而精确控制的要求。

AXP809 集成了一个效率高达 94% 的 USB3. 0-Compatible Flash Charger, 充电电流可达 2. 2A; 同时支持 20 路电源输出(包含 5 路大电流 DCDC, 最高效率可达 95%),包含电压/电流/温度监视等多路 12-Bit ADG,为保证电源系统安全稳定,AXP809 还整合了过/欠压(0VP/UVP)、过温(0TP)、过流(0CP)等保护电路;独有的 E-Gauge ™电量计系统在保证高精度计量的同时大幅度减少了电池参数测试流程。

AXP809 提供了一个快速接口,让系统可以动态调节输出电压,并配合应用处理器系统实现多种工作模式的转换,最大限度的延长电池续航时间。

AXP809 的智慧电能平衡 (Intelligent Power Select, IPS™) 电路可以在 USB 以及外部交流适配器、锂电池和应用系统负载之间安全透明的分配电能,并且在只有外部输入电源而没有电池(或者电池过放 / 损坏)的情况下也可以使应用系统正常工作。

AXP809 提供 8mm x 8mm x0.75 mm 68-pin QFN 封装。--

AXP809 可应用于:

- 平板电脑,智能手机,智能电视,数字摄像机
- 超便携移动电脑 UMPC and UMPC-like, 学习机

特性

APX809 特性如下表所示:

电源管理	• 宽输入电压范围: 2.9V~6.3V (AMR:-0.3V~11V)
(IPS™)	• 可配置的高效智慧电能平衡 "IPS™"系统
(115)	• 自适应 USB 或交流适配器限压限流 (4.0V/900mA/500mA)
	• 内置 MOSFET 最大充电电流可达 2.2A
	• 支持电池温度监测
	• 全面支持 USB 充电,符合规范要求
全集成	• 充电精度高,误差小于 ±0.5%
Flash Charger	• 支持 4. 1V/4. 2V/4. 24V/4. 35V 等多种电池
Trasii charger	• 自动进行充电流程控制
	• 可直接驱动 LED 指示充电状态
	• 根据系统负载情况自动调节充电电流
	• RTC LDO: 100mA, 始终有效
	• ALD01/2: 低噪声 LD0, 0.7V~3.3V 可调节, 100mV/step, 驱动能
	力 300mA
	• ALDO3: 低噪声 LDO, 0.7V~3.3V 可调节, 100mV/step, 驱动能力
	200mA
	• LDO ₁₀₀ /LDO ₁₀₁ : 低噪声 LDO, 0.7V~3.3V 可调节,100mV/step, 驱
19 败化州羟工思	こDO ₁₀₀ / LDO ₁₀₁ : 微噪声 LDO, 0.77 3.37 円 周 月 , 100 m/ step, 驱 动能力 100 mA
12 路线性稳压器	
(LDO)	• DLD01: 0.7V~3.3V 可调节, 100mV/step, 3.4V~4.2V 可调节,
	200mV/step 驱动能力 400mA
	• DLD02: 0.7V~3.3V 可调节, 100mV/step, 驱动能力 100mA
	• ELD01: 0.7V~3.3V 可调节, 100mV/step, 驱动能力 400mA
	• ELDO2/ELDO3: 0.7V~3.3V 可调节, 100mV/step, 驱动能力
	200mA
	• DC5LD0: 0.7V~1.4V 可调节,100mV/step, 驱动能力 200mA
	• DC1SW: 内阻 100mΩ, 供电来源于 DCDC1
2 時 で…: + -1-	• SWOUT:内阻 100mΩ,供电来源于独立的输入 SWIN
3路Switch	• CHGLED:内部集成 100mA 驱动能力的 NMOS,可用于驱动振动马
	达以及充电指示灯
	l .

	• DCDC1: 1.6V~3.4V 可调节,100mV/step, 驱动能力 1.4A				
	• DCDC2:可在 0.6V~1.54V 可调节,20mV/step,驱动能力 3A,支				
	持 VRC (电压斜率控制)				
5路同步降压转换器	• DCDC3:可在 0.6V~1.86V 可调节,20mV/step, 驱动能力 3A,支				
(DCDC)	持 VRC (电压斜率控制)				
	• DCDC4:可在 0.6V~1.54V 可调节,20mV/step,1.8V~2.6V 可调				
	节,100mV/step,驱动能力 0.6A				
	• DCDC5:可在 1.0V~2.55V 可调节,50mV/step, 驱动能力 2A				
	• 内建双模式高精度自动计量系统				
	• 简易模式下提供针对不同电池的高适应性				
	• 高精度模式下提供针对特定电池的高精度计量(2%)				
E-Gauge™	• 提供丰富的电源管理信息: 如瞬时耗电 (mA or mW), 剩余电池				
电量计系统	电量(% or mAh), 充电状态(%) 和剩余电池使用时间或充电时				
	间等				
	• 低电警告及保护				
	• 提供芯片温度信息				
	• Host 可以通过 RSB(Reduced Serial Bus) 接口进行数据交换				
	可以灵活配置的中断管理				
应用处理器接口	• 灵活的管脚功能设置,2路GPIO可分别设置为IO、LDO等功能				
	• 内置计时器				
	• 提供 12 组寄存器,可用于系统关机时的数据保存				
	• 可以软复位或硬复位				
	• 支持软关机或硬关机,支持外部唤醒开机				
	• PWROK 用于系统复位或关机指示				
系统管理	• 外部电源检测(插入/移除/驱动能力不足)				
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	• 所有输出电压都支持软启动				
	• 过 / 欠压保护 (OVP/UVP)				
	• 过流保护 (OCP)				
	• 过温保护 (OTP)				
高集成度	• 内部产生高精度参考电压(0.5%)				
1.4716/74/2	● 内置 MOSFET				

典型应用

[Reset GND]
29/44/45PIN pull high to RTC_VCC,10 PIN IF Connet to VINT,DCDC5 OutPut Voltage is 1.35V;10 PIN IF Connet to GND,DCDC5 OutPut Voltage is 1.5V;10 PIN IF Connet to GND,DCDC5 OutPut Voltage is 1.2V;

管脚图

管脚定义

序号	管脚名	类型	控制条件	描述	
1	ELDOIN	PI		ELDO Input source	
2	ELD02	0		Output Pin of ELDO2	
3	ELD03	0		Output Pin of ELDO3	
4	DC5LD0	0		Output Pin of DC5LDO	
5	DCDC5	I		DCDC5 feedback pin	
6	PGND5	G		NMOS Ground for DCDC5	
7,8	LX5	10		Inductor Pin for DCDC5	
9	VIN5	PI		DCDC5 input source	
10	DC5SET	I		Setting DCDC5 Output Voltage	
				VBUS to IPSOUT Selection	
			Input	GND: IPSOUT selects VBUS	
	AL ADDUCTOR			High: IPSOUT does not select VBUS	
11	N_VBUSEN	10		VBUS to IPSOUT Selection	
			Output -	IPSOUT selects VBUS : GND	
				IPSOUT does not select VBUS: High	
12	PWRON	I		Power On-Off key input, Internal 100k pull high to VINT	
13	VIN1	PI		DCDC1 Input Source	
14	LX1	10		Inductor Pin for DCDC1	
15	PGND1	G		NMOS GND for DCDC1	
16	DLD02	0		Output Pin of DLDO2	
17	DLD01	0		Output Pin of DLDO1	
18	DLDOIN	PI		DLDO Input Source	
19	DCDC1	0		DCDC1 feedback pin and Input Pin of DC1SW	
20	DC1SW	0		Output Pin of DC1SW	
21	SWOUT	0		Output Pin of SW	
22	SWIN	I		Input Pin of SW	
23	VIN2	PI		DCDC2 Input Source	
24, 25	LX2	10		Inductor Pin for DCDC2	
26, 27	PGND2	G		NMOS Ground for DCDC2	
28	DCDC2	I		DCDC2 Feedback Pin	
29	IRQ/WAKEUP	10		IRQ Output or Wakeup	

序号	管脚名	类型	控制条件	描述
30	TS	I		Battery Temperature Sensor Input or an External ADC Input
31	GPI01	10	REG 92H[2:0]	GPI01
	01101	10	TEC CENTES.C.	Low noise LDO
32	ALD01	0		Output Pin of ALDO1
33	DLDOIN	PI		ALDO Input Source
34	ALD02	0		Output Pin of ALDO2
35	VREF	0		Internal reference voltage
36	ALD03	0		Output pin of ALDO3
9.7	CDIOO	TO	DEC COULD O	GPI00
37	GPI00	10	REG 90H[2:0]	Low noise LDO
38	DCDC3	I		DCDC3 feedback pin
39	VIN3	PI		DCDC3 Input Source
40, 41	LX3	10		Inductor Pin for DCDC3
42	PGND2	G		NMOS Ground for DCDC2
43	PWROK	0		Power Good Indication Output
44	SCK	I		Clock pin for serial interface. Normally, it
45	SDA	10	+	connects a 2.2K resistor to 3.3V I/O power Data pin for serial interface. Normally, it connects a 2.2K resistor to 3.3V I/O power
46	VCC_RTC	0		Output Pin of VCC_RTC
47	VINT	P0		Internal logic power, 1.8V
48	VBUS	PI		VBUS Input
49	BATSENSE	I		PWM Charger Current Sense Resistance Positive Input
50	LOADSENSE	I		PWM Charger Current Sense Resistance Negative Input
51	N_BATDRV	0		BAT to PS extern PMOS driver
52	CHGLED	0		charger status indication
53, 54	IPSOUT	P0		System power source
55, 56	ACIN	PI		Adapter input
57	CHSENSEP	I		PWM Charger Current Limite Sense Resistance Positive Input
58	CHSENSEN	I		PWM Charger Current Limite Sense Resistance Negative Input
59	PGND_CHG	G		NMOS Ground for PWM Charger
60, 61	LX_CHG	10		Inductor Pin for PWM Charger
62, 63	VIN_CHG	I		Charger Input source
64	VIN4	I		DCDC4 input source
65	LX4	10		Inductor Pin for DCDC4
66	PGND4	G		NMOS Ground for DCDC4

序号	管脚名	类型	控制条件	描述
67	DCDC4	Ι		Feed back to DCDC4
68	ELD01	0		Output Pin of ELDO1
69	EP	G		Exposed Pad, need to be connected to system ground

X-Powers

功能框图

极限参数

参数	描述	参数值	单位
ACIN	输入电压 Input Voltage	-0.3 [~] 11	V
VBUS	输入电压 Input Voltage	-0.3 [~] 11	V
T_J	结温 Junction Range	-20 [~] 130	° C
Ta	工作温度 Operating Range	-20 [~] 80	° C
Ts	储运温度 Storage Temperature Range	-40 ~150	° C
T_{LEAD}	锡焊温度 Maximum Soldering Temperature (at leads, 10sec)	300	° C
V_{ESD}	抗静电能力 Maximum ESD stress voltage, Human Body Model	>4000	V
P_{D}	内部功率消耗耐受 Internal Power Dissipation	2700	mW

电气特性

参数	描述	控制条件	最小值	典型值	最大值	单位
ACIN						·
V _{IN}	ACIN Input Voltage		4. 0		6. 3	V
$I_{ ext{OUT}}$	V _{OUT} Current Available Before Loading BAT	400mV Voltage Drop		3000		mA
V _{UVLO}	ACIN Under Voltage Lockout			4.0		V
V _{OUT}	IPS™ Output Voltage		2.9		5. 0	V
R _{ACIN}	Internal Ideal Resistance	PIN to PIN, ACIN to IPSOUT		125		mOhm
VBUS						
$V_{\rm IN}$	VBUS Input Voltage		4.0		6.3	V
$I_{ ext{OUT}}$	V _{OUT} Current Available Before Loading BAT	400mV Voltage Drop		500	900	mA
V_{UVLO}	VBUS Under Voltage Lockout			4. 0		V
V_{OUT}	IPS™ Output Voltage		2.9		5. 0	V
R _{VBUS}	Internal Ideal Resistance	PIN to PIN, VBUS to IPSOUT		175		mOhm Ω
Battery	Charger					· ·
V _{TRGT}	BAT Charge Target Voltage		-0.5%	4. 2	+0.5%	V
$I_{ ext{CHRG}}$	Charge Current			1200	2200	mA
I_{TRKL}	Trickle Charge Current			10%		I _{CHRG} mA
V _{TRKL}	Trickle Charge Threshold Voltage			3. 0		V
ΔV_{RECHG}	Recharge Battery Threshold Voltage	Threshold Voltage Relative to V _{TARGET}		-100		mV
T_{TIMER1}	Charger Safety Timer Termination Time	Trickle Mode		50		Min
T_{TIMER2}	Charger Safety Timer Termination Time	CC Mode		480		Min
$I_{ ext{END}}$	End of Charge Indication Current Ratio	CV Mode		10%	%	I _{CHRG} mA
NTC						
V _{TL}	Cold Temperature Fault Threshold Voltage	Charge Discharge	0	2. 112 3. 226	3. 264	V
V _{TH}	Hot Temperature Fault Threshold Voltage	Charge Discharge	0	0. 397	3. 264	V

AXP809

PMIC Optimized For Multi-Core High-Performance System

参数	描述	控制条件	最小值	典型值	最大值	单位
Off Mod	de Current					
I_{BATOFF}	OFF Mode Current	BAT=3.8V		35		μА
Logic						
V _{IL}	Logic Low Input Voltage			0.3		V
V _{IH}	Logic High Input Voltage			1.5		V
RSB						
V _{CC}	Input Supply Voltage			RTC-LDO		V
$f_{ ext{SCK}}$	Clock Operating Frequency				3000	kHZ
t_{f}	Clock Data Fall Time			60		ns
t _r	Clock Data Rise Time			100		ns
DCDC						
f_{OSC}	Oscillator Frequency	Default		3		MHz
DCDC1			-			
$I_{ m VIN1}$	Input Current	PFM Mode		50		μΑ
	-	I _{DC10UT} =0				
I_{LIM1}	PMOS Switch Current Limit	PWM Mode		2000		mA
$I_{ ext{DC10UT}}$	Available Output Current	PWM Mode		1400		mA
V _{DC10UT}	Output Voltage	Default	1.6	3. 0	3. 4	V
DCDC2						
т	I	PFM Mode		50		,, A
$I_{ m VIN2}$	Input Current	$I_{DC2OUT} = 0$		1 50		μА
I_{LIM2}	PMOS Switch Current Lim it	PWM Mode		3300		mA
$I_{ ext{DC2OUT}}$	Available Output Current	PWM Mode		3000		mA
V _{DC2OUT}	Output Voltage Range		0.6	0.9	1.54	V
DCDC3		1			•	,
т	Taranta Caranta	PFM Mode		T_0		
I_{VIN3}	Input Current	$I_{DC3OUT} = 0$		50		uA
I_{LIM3}	PMOS Switch Current Limit	PWM Mode		3300		mA
$I_{ ext{DC3OUT}}$	Available Output Current	PWM Mode		3000		mA
V _{DC3OUT}	Output Voltage Range		0.6	0.9	1.86	V
DCDC4		1				'
		PFM Mode				
$I_{v_{IN4}}$	Input Current	$I_{DC40UT} = 0$		45		uA
I_{LIM4}	PMOS Switch Current Limit	PWM Mode		1200		mA
$I_{ ext{DC4OUT}}$	Available Output Current	PWM Mode		600		mA
V _{DC4OUT}	Output Voltage Range		0.6	0.9	2.6	V
DCDC5						
		PFM Mode				
$I_{v_{\rm IN5}}$	Input Current	$I_{\text{DC50UT}} = 0$		45		uA
I_{LIM5}	PMOS Switch Current Limit	PWM Mode		2500		mA
I _{DC5OUT}	Available Output Current	PWM Mode		2000		mA
V _{DC50UT}	Output Voltage Range	I ma naode	1.0	1.5	2. 55	V
DC50UT	Jacque Foreage Range		1.0	1 0	2.00	'

参数	描述	控制条件	最小值	典型值	最大值	単位
RTC_LDO						,
V	Output	$I_{RTC_LDO} = 1 \text{mA}$	-1%	1.8	1%	V
V _{RTC_LDO}	Voltage	TRTC_LDO THUI	170	1.0	1/0	,
I_{RTC_LDO}	Output			100		mA
	Current			100		****
ALD01			1	1	1	I
V _{ALDO1}	Output	I ALDO1=1mA	-1%	3. 0	1%	V
	Voltage	1				
I ALDO1	Output			300		mA
	Current					
I_{Q}	Quiescent			60		μА
	Current Power Supply					
PSRR	Rejection	T -60m/ 1VUz		TBD		dB
LOW		I _{ALD01} =60mA, 1KHz		עמו		ub
	Ratio Output					
	Noise, 20-	Vo=3.3V , Io=20mA		31		μ V _{RMS}
e_{N}	80KHz	VO-3. 3V , 10-20IIIA		31		μ v _{RMS}
ALD02	OUKIIZ					
	Output					
V _{ALDO2}	Voltage	$I_{ALDO2}=1$ mA		OFF		V
_	Output			000		
I ALDO2	Current			300		mA
т	Quiescent			60		η, Λ
I_{Q}	Current			00		μА
	Power Supply					
PSRR	Rejection	I ALDO2=10mA, 1KHz		TBD		dB
	Ratio					
	Output					
e_{N}	Noise, 20-	Vo=3.3V , Io=20mA		31		μV_{RMS}
	80KHz					
ALD03						
V ALDO3	Output	I ALDO3=1mA	-1%	3.0	1%	V
ALDU3	Voltage	NLDUO				
I ALDO3	Output			200		mA
VEDOS	Current					
I_{Q}	Quiescent			60		μА
W	Current					

参数	描述	控制条件	最小值	典型值	最大值	单位
	Power Supply					
PSRR	Rejection	I ALDO3=10mA, 1KHz		TBD		dB
	Ratio					
	Output					
$e_{\scriptscriptstyle N}$	Noise, 20-	Vo=3.3V, Io=20mA		43		μ V _{RMS}
	80KHz					
DLD01			,	1		
	Output	Т —1А		OFF		77
V _{DLDO1}	Voltage	$I_{DLDO1}=1$ mA		OFF		V
т	Output			400		A
I DLDO1	Current			400		mA
т	Quiescent			60		,, A
I_{Q}	Current			00		μА
	Power Supply					
PSRR	Rejection	I DLDO1=10mA, 1KHz		TBD		dB
	Ratio					
	Output					
$e_{\scriptscriptstyle N}$	Noise, 20-	Vo=3.3V, Io=20mA		100		μ V _{RMS}
	80KHz		_			
DLD02			J	1		
V	Output	I _{DLDO2} =1mA	-1%	1.8	1%	V
V _{DLD02}	Voltage	1 DLDO2 TIMA	1 /0	1.0	1 /0	V .
I DLDO2	Output			100		mA
DEDOZ	Current Quiescent					
$\mathrm{I}_{\mathtt{Q}}$	Current			60		μА
	Power Supply					
PSRR	Rejection	I DLDO2=10mA, 1KHz		TBD		dB
	Ratio					
	Output					
$e_{\scriptscriptstyle N}$	Noise, 20-	Vo=3.3V, Io=20mA		100		μV_{RMS}
ELDO1	80KHz					
	Output					
V ELDO1	Voltage	$I_{ELDO1}=1$ mA		0FF		V
т	Output			400		A
I ELDO1	Current			400		mA
I_{Q}	Quiescent			60		μА
±Ų	Current					P- 11

参数	描述	控制条件	最小值	典型值	最大值	单位
PSRR	Power Supply Rejection Ratio	I _{ELDO1} =10mA, 1KHz		TBD		dB
e_{N}	Output Noise, 20- 80KHz	Vo=3.3V, Io=20mA		100		μ V _{RMS}
ELD02						
V ELDO2	Output Voltage	I ELDO2=1mA		0FF		V
$\mathrm{I}_{\mathrm{ELD02}}$	Output Current			200		mA
I_{Q}	Quiescent Current			60		μА
PSRR	Power Supply Rejection Ratio	I _{ELDO2} =10mA, 1KHz		TBD		dB
e_N	Output Noise, 20- 80KHz	Vo=3.3V, Io=20mA		100		μ V _{RMS}
ELD03			,	J		Į.
V ELDO3	Output Voltage	I _{ELDO3} =1mA	-1%	1.8	1%	V
I ELDO3	Output Current			200		mA
I_{Q}	Quiescent Current			60		μА
PSRR	Power Supply Rejection Ratio	I _{ELDO3} =10mA, 1KHz		TBD		dB
e_N	Output Noise, 20- 80KHz	Vo=3.3V, Io=20mA		100		μ V _{RMS}
DC5LD0						
V_{DC5LD0}	Output Voltage	I DC5LDO=1mA	-1%	0.9	1%	V
I DC5LDO	Output Current			200		mA
I_{Q}	Quiescent Current			40		μА
PSRR	Power Supply Rejection Ratio	I _{DC5LD0} =10mA, 1KHz		TBD		dB
e_{N}	Output Noise, 20- 80KHz	Vo=3.3V, Io=20mA		100		μ V _{RMs}

AXP809

PMIC Optimized For Multi-Core High-Performance System

参数	描述	控制条件	最小值	典型值	最大值	单位
LD0io0		J	Į.	1		I
V LDOio0	Output Voltage	I LDOio0=1mA	-1%	OFF	1%	V
I LD0io0	Output Current			100		mA
I_{Q}	Quiescent Current			60		μА
PSRR	Power Supply Rejection Ratio	I LDOio0=10mA, 1KHz		TBD		dB
e_N	Output Noise, 20- 80KHz	Vo=3.3V, Io=20mA		40		μ V _{RMS}
LD0io1						
V LDOio1	Output Voltage	I LDOio0=1mA	-1%	0FF	1%	V
I LDOio1	Output Current			100		mA
I_{Q}	Quiescent Current			60		μА
PSRR	Power Supply Rejection Ratio	I LDOio1=10mA, 1KHz		TBD		dB
e_{N}	Output Noise, 20- 80KHz	Vo=3.3V, To=20mA		40		μ V _{RMS}
DC1SW						
R _{DC1SW}	Internal Ideal Resistance	PIN to PIN, DCDC1, DC1SW		100		mOhm
CHGLED				·		
R _{CHGLED}	Internal Ideal Resistance	Vin =0.3V		2		Ohm
SWOUT						
R _{SWOUT}	Internal Ideal Resistance	PIN to PIN, SWIN, SWOUT		100		mOhm

操作和控制

当 AXP809 工作时,RSB 接口 SCK/SDA 管脚上拉到系统 IO 电源,则 Host (应用系统的主处理器)可以通过此接口对 AXP809 的工作状态进行灵活的调整和监视,并可获得丰富的信息。

注:如下所指"外部电源"包含 ACIN 及 VBUS 输入。

9.1. 工作模式和复位

9.1.1. 工作模式按键 (PEK)

AXP809 的 PWRON 管脚到 GND 之间可以连接一个按键,作为独立的开关机键 Power Enable Key (PEK) 或休眠 / 唤醒按键。AXP809 可以自动识别这个按键的"长按"和"短按"并做出相应的反应。

9.1.2. 开机 (Power On)

开机源 (Power on Source)

- ACIN 及 VBUS
- PEK
- IRQ 低电平

AXP809 可以由 PEK(按键时间超过"ONLEVEL")开机。在实际应用中,定时闹钟(Alarm)输出信号也可以连接到 IRQ, Alarm 信号有效(低电平)时,也可以将 AXP809 开机。

开机后, DCDC 和 LDO 将按照设定的时序顺序软启动。

9.1.3. 关机 (Power Off)

PEK"长按"时间大于 IRQLEVEL 时,在 PEK 中断服务程序中,Host 可将"寄存器 REG32H[7]"写入"1"来通知 AXP809 进入关机状态。AXP809 进入关机状态时会关掉除 RTC LDO 之外的所有电源输出。

在下列情况下, AXP809 会自动关机:

- 输入电压过低, 低电保护;
- 负载过大引起电源的输出电压过低,过负载保护;
- 输入电压过高,过压保护(具体细节参见"电源通路管理"章节);
- PEK 大于 OFFLEVEL 时 (默认 6s) 系统自动关闭除 LD01 以外的其它输出:

AXP809 的自动保护机制,可以避免应用系统异常时发生被供电器件的不可逆转损坏,从而保护整个系统。

9.1.4. 休眠和唤醒 (Sleep and Wakeup)

在开机的情况下,如果系统需要进入Sleep模式,并将其中某一路或几路电源输出关闭,则可由REG31H[3]控制,决定是否由以下触发信号触发wakeup:

- ACIN 插拔 (REG40H[6:5] 必须设置为 1)
- VBUS 插拔 (REG40H[3:2] 必须设置为 1)
- PEK 长按键 (REG44H[3] 必须设置为 1)
- PEK 下降沿 (REG44H[5] 必须设置为 1)
- 电池电量两级低电报警 (REG43H[1:0] 必须设置为 1)
- GPIO[1:0] 作为通用输入功能时检测到上升下降沿(REG44H[1:0] 必须设置为1,同时REG90H[7:6]、REF92H[7:6] 也必须设置为1)
- 软件唤醒, 即往 REG31H[5] 写 1。
- IRQ 唤醒 (REG8FH[7] 必须设置为 1)

以上任意触发源都可以让 PMU 将各路输出电源电压恢复到默认状态,同时各路被关闭的电源依次按照规定的上电时序进行恢复。

如下为 Sleep 和 Wakeup 模式下其控制流程:

9.1.5. 系统复位功能和输出监控功能 (PWROK)

AXP809 的 PWROK 可以作为应用系统的复位信号。在 AXP809 的开机过程中,PWROK 输出低电平,当各路电源的输出电压稳定达到预设值后,PWROK 会被拉高,从而实现应用系统的上电复位。

在应用系统正常工作过程中,AXP809一直监视各路输出的电压和负载状况,并且在过负载或是欠电压的情况下,PWROK立刻输出低电平,复位应用系统,防止误动作以及可能的数据错误。

在应用系统正常工作过程中,通过按键将 PWROK 拉低,则 AXP809 将关机并重新开机,各路输出电源 上电时序按照设定的时序开启

9.2. 电源通路管理 (IPS™)

AXP809的电源输入可以来自锂电池BAT、USB VBUS输入、外部电源ACIN(比如交流适配器AC Adapter), IPS™根据外部电源和锂电池的状态来选择适合的电能分配方式。

- 当仅接入锂电池, 无外部电源输入时, 使用锂电池供电;
- 当接入外部电源时 (VBUS 或 ACIN), 优先使用外部电源供电;
- 电池连接的情况下,外部电源移除时,立刻"无缝"转用锂电池供电;
- 当 VBUS 和 ACIN 两者同时接入时,优先使用 ACIN 供电,并且对锂电池充电;
- 若此时 ACIN 驱动能力不足够时,将适时打开 VBUS 通路,实现 ACIN/VBUS 共同供电;
- 如果驱动能力仍然不足,则将减小充电电流直至 0,继而用电池补充供电;

Host 可以通过 RSB 访问 AXP809 的内部寄存器来设置 IPS ™的参数和读取其反馈的信息。

9.2.1. 限压/限流模式和直通模式

为了不影响 USB 通讯,VBUS 通路默认工作在"VBUS 限压模式"。在此模式下,AXP809 会将 VBUS 电压维持在一个可设置的参考电压 VHOLD 之上,以满足 USB 规范。VHOLD 默认为 4.0V,可在寄存器 REG30H[5:3] 调整。

如果系统对从 USB VBUS 吸取的电流大小有限制需求,则提供一个限流模式可供选择,限流值可选 900mA/500mA/ 不限流(寄存器 REG30H[1:0])。

如果系统只是使用 USB 供电而不介意 USB 通讯,或者使用 USB 电源适配器,可以通过修改寄存器 REG30H[6] 将 AXP809 设置成 "VBUS 直通模式",此时 AXP809 会优先满足应用系统的用电需求。当 USB Host 驱动能力太弱或系统耗电太强而使 VBUS 电压低于 VHOLD, AXP809 将发出 IRQ,告知 Host VBUS 供电能力弱,指示 USB 通信可能会受到影响,后续动作可由 Host 软件决定。

9.2.2. 外部电源插入时 AXP809 的反应

AXP809 可以自动检测外部电源的插入动作。当 AXP809 检测到外部电源插入后,会自动判断外部电源

是否可用,并将结果设置在相应的寄存器中,同时发出 IRQ,通知 Host。

关于外部电源的寄存器状态位及含义如下表所示:

寄存器的状态位	含义
寄存器 REGOOH[7]	指示外部适配器电源 ACIN 是否存在
寄存器 REGOOH[6]	指示外部适配器电源 ACIN 是否可用
寄存器 REGOOH[5]	指示外部电源 VBUS 是否存在
寄存器 REG00H[4]	指示外部电源 VBUS 是否可用
寄存器 REGOOH[3]	指示接入外部电源 VBUS 时,VBUS 的电压是否高于 V _{HOLD}
寄存器 REGOOH[1]	指示外部电源 ACIN/VBUS 是否在 PCB 上短接
寄存器 REGOOH[0]	指示系统是否由 ACIN/VBUS 触发开机

[&]quot;指示接入外部电源 VBUS 时,VBUS 的电压是否高于 V_{HOLD} " 这个标志位,可以让 Host 在收到 IRQ7 时(指 VBUS 供电能力弱),判断 VBUS 是因为系统负载接入而被拉低还是因为外部电源本身电压就低于 V_{HOLD} ,从而方便 Host 软件决定是继续工作在限压模式还是改为直通模式。

9.2.3. 是否选用 VBUS 作为输入电源

AXP809 是否选用 VBUS 作为输入电源,将由 N_VBUSEN 和寄存器 REG30H[7]、REG30H[2]、REG8FH[4]来决定:

REG30H[7]	REG8FH[4]	N_VBUSEN	REG30H[2]	是否选用
0	0	Low	0	Yes
0	0	High	1	No
0	1	High	X	No
0	1	Low	X	Yes
1	X	X	X	Yes

注: X表示任意状态和任意值

9.2.4. 低电保护(自动关机)

AXP809 可以设置自动关机电压 V_{OFF} ,并将 ALDOIN 与其比较。如果 ALDOIN 低于 V_{OFF} ,AXP809 自动进入 关机模式,关闭除 RTC-LDO 之外的所有输出。

V_{OFF} 默认值可在寄存器 REG31H[2:0] 设置。

9.2.5. 过压保护

当外部电源电压超过 6.3V 时,AXP809 发出 IRQ1/4,提示外部电源过压。当外部电源超过 7V,AXP809 自动关机。

9.3. 自适应 Flash Charger

AXP809 集成了一个自适应充电器,可以自动控制充电周期,内置的安全时钟可以自动停止充电而无需处理器的干预。此充电器可以根据系统的功耗自动调整充电电流,还带有电池检测、涓流充电和激活功能,内置的温度检测电路可以在温度过高或过低时自动减小充电电流。

9.3.1. 自适应充电过程的启动

充电器默认处于使能状态(可以通过设置寄存器来关闭,参见"寄存器 REG33H")。当外部电源接入

后,AXP809 首先判断外部电源是否可用于充电,当符合外部电源可用的条件,且此时充电功能被打开,则 AXP809 自动开始充电过程,向 Host 发出 IRQ,表示充电过程开始。同时,CHGLED 管脚输出低电平,可以驱动外部发光二极管指示充电状态。

如右是充电过程电压电流示意图:

9.3.2. 两个标志电压

 V_{TRGT} ,充电目标电压。 V_{TRGT} 可由寄存器设置,默认为 4. 2V(参见"寄存器 REG33H[6:5]")。同时,在外部电源电压较低时,AXP809 会自动调节充电目标电压。

V_{RCH}, 自动再充电电压。V_{RCH}=V_{TRGT}-0.1V。

9.3.3. 充电电流

充电电流可以通过寄存器 REG33H[3:0] 设置,默认值为 450mA 或者 1200mA。

9.3.4. 充电流程

如果电池电压低于 3.0V,充电器自动进入预充电模式,充电电流为预设值的 1/10。如果 50 分钟内(这个时间可调整,参见"寄存器 REG34H"),电池电压仍不能达到 3.0V,充电器自动进入电池激活模式。具体细节参见"电池激活模式"。

当电池电压达到目标电压 V_{TRGT} 后, 充电器从恒流模式进入恒压模式, 充电电流减小。

当充电电流低于预设值的 10% 或 20% 时(可设,参见"寄存器 REG33H"),充电周期结束,充电停止,充电结束时,AXP809 会发出 IRQ13,CHGLED 管脚停止指示充电状态。当电池电压重新低于 V_{RCH} 时,会自动开始再充电,同时发出 IRQ12。

9.3.5. 电池激活模式

无论从预充电模式还是从恒流充电模式进入电池激活模式(计时器超时的情况下), AXP809 发出 IRQ10。

在电池激活模式,Charger 始终以较小的电流给电池充电,如果能够使电池电压达到 V_{RCH} ,则退出激活模式,同时发出 IRQ11。

AXP809 在寄存器 REG01H 中指示充电器是否处于电池激活模式。

9. 3. 6. CHGLED

CHGLED 管脚用来指示充电状态和报警。CHGLED 是 NMOS Open Drain(漏极开路型)输出,可以通过一个限流电阻来直接驱动一个发光二极管来显示四种状态。可配置成两种指示类型:

类型 A

状态	表现	注释
正在充电	低电平	
不在充电	高阻	
电池异常	25% duty 1Hz 跳变	充电器进入电池激活模式,或者电池温度过高、过低
过压	25% duty 4Hz 跳变	外部电源输入电压过高

类型 B

状态	表现	注释
正在充电	25% duty 1Hz 跳变	
不在充电	高阻	
电池异常及输入过 压	25% duty 4Hz 跳变	充电器进入电池激活模式,或者电池温度过高、过低以及 输出电压过高
无电池电池	低电平	无电池接入

9.3.7. 电池温度检测

在充电 / 使用过程中, AXP809 可以通过在 TS 管脚外接一个温敏电阻来监视电池的温度。电路示意如下图:

在上图中,VTH/VTL 分别为高温和低温的门限设置,可分别通过寄存器 REG38H/39H/3CH/3DH 设置。建议温敏电阻选用 25℃时为 10K0hm、精度 1%的 NTC 温敏电阻。AXP809 将在 TS 管脚上送出恒定电流,此电流可设置为 20uA、40uA、60uA、80uA 四种(参见寄存器 REG84H),以适应不同的 NTC 电阻。此电流流过温敏电阻,得到一个检测电压,AXP809 通过 ADC 测出电压值并与设置值进行比较,从而发出相应的 IRQ 或是暂停充电。

如果温敏电阻阻值过大或过小,可以在其通路上并联或是串联上额外的电阻,以便扩大其检测范围。

如果电池没有温敏电阻,可以把 TS ADC disable(参见寄存器 REG82H),此时 AXP809 自动禁止电池 温度监测功能。

9.3.8. 电池检测

AXP809 会自动检测电池是否存在,并在寄存器中标识(参见寄存器 REG01H)和发出 IRQ8、IRQ9。电池检测功能可由 Host 控制打开或者关闭(参见寄存器 REG32H)。

9.4. 多路电源输出

AXP809 的提供的多路输出电压及功能列表如下:

输出通路	类型	默认电压	启动步骤	应用举例	最大驱动能力
DCDC1	BUCK	3. 0V	1	3.0V I/O	1400mA
DCDC2	BUCK	0.9V	1	0.9V GPU	3000mA
DCDC3	BUCK	0.9V	1	0.9V CPU	3000mA
DCDC4	BUCK	0. 9V	1	0. 9V SYS	600mA
DCDC5	BUCK	1.5/DC5SET 设定	1	1.5V DDR3	2000mA
RTC-LDO	LDO	1.8V	1	RTC	100mA
ALD01	LDO	3. 0	1		300mA
ALD02	LDO	0FF	0FF		300mA
ALD03	LDO	3. 0V	1		200mA

LDO_{100}	LD0	0FF	0FF	100mA
LDO_{101}	LDO	0FF	OFF	100mA
DLD01	LDO	0FF	0FF	400mA
DLD02	LDO	1.8V	1	100mA
ELD01	LDO	0FF	0FF	400mA
ELD02	LDO	0FF	0FF	200mA
ELD03	LDO	1.8V	1	200mA
DC5LD0	LDO	0.9V	1	200mA
DC1SW	Switch	0FF	OFF	400mA
SWOUT	Switch	0FF	0FF	400mA

AXP809 包含 5 路同步降压型 DCDC、12 路 LDO、3 路 Switch,多种启动时序及控制方式。DCDC 的工作 频率默认为 3MHz,可以通过设置寄存器来调整,外围可使用小型电感和电容元件。5 个 DCDC 都可以设置成 PWM 模式或自动模式(由 AXP809 根据负载的大小自动切换),参见"寄存器 REG80H"。

9. 4. 1. DCDC1/2/3/4/5

DCDC1 输出电压范围为 1. 6V-3. 4V, DCDC2 输出电压为 0. 6V-1. 54V, DCDC3 输出电压为 0. 6V-1. 86V, DCDC4 输出电压为 0. 6V-2. 6V, DCDC5 输出电压为 1. 0V-2. 55V, 可由寄存器设置。其中 DCDC5 电压设置依赖于 DC5SET 引脚电平,如下表所示:

DC5SET Status	Low	Floating	High
DCDC5 Voltage	1.5V	1. 2V	1.35V

DCDC 输出电容推荐使用 10uF X7R 以上小 ESR 陶瓷电容;推荐使用 1.5uH 电感,其中电感饱和电流需大于此电源通路最大需求电流的 50% 以上。

9. 4. 2. RTC-LDO

RTC-LDO 永远开启,可以为应用系统的实时时钟电路(RTC)提供不间断的电源,其驱动能力为100mA。

9. 4. 3. ALD01/2/3

ALD01/2/3 采用了低噪声设计,可以为应用系统的模拟电路提供电源,其驱动能力分别为 300mA/300mA/200mA。

9. 4. 4. LDO_{100} / LDO_{101}

LDO_{TOO}/LDO_{TOI} 也采用了低噪声的设计,输出驱动能力都为 100mA。

9. 4. 5. DLD01/DLD02/

DLD01/DLD02 为普通低压差线性稳压器, 其驱动能力分别为 400mA /200mA。

9. 4. 6. ELD01/ELD02/ELD03/

ELD01/ELD02/ELD03/为普通低压差线性稳压器,其驱动能力分别为 400mA /200mA /200mA/。

9. 4. 7. DC5LD0

DC5LD0的供电输入为 DCDC5, 驱动能力为 200mA。

9. 4. 8. DC1SW

DC1SW的供电输入为DCDC1,等效电阻100m0hm。

9. 4. 9. SWOUT

SWOUT 的供电输入为 SWIN, 等效电阻 100m0hm。

9.4.10. 软启动 (Soft Start)

所有 DCDC 和 LDO 都支持软启动的输出建立方式,避免启动时电流的突然变化对输入通路的冲击。

所有 DCDC 不需要外部的肖特基二极管和电阻分压反馈电路。如果应用中不需要用到某个 DCDC,只需要将对应的 LX 管脚悬空即可。

9.5. E-Gauge™电量计系统

AXP809 的多路 12Bit ADC 可以测量电池电压以及电流,同时内部集成了电池充放电库仑计。基于此,AXP809 集成了双模式的电量计系统。在简易模式下,节省了对电池参数精确初始化的需求,实现对大量电池的较高兼容性;而在高精度模式下,针对特定电池的参数优化,实现高达 2% 精度的计量。

各路 ADC 的使能控制和采样速度可以通过寄存器 REG84H 来设置,采样结果存储在相应的寄存器中,参见寄存器说明之 ADC 数据类。电池电流方向是充电还是放电由寄存器 REG00H[2] 来指示。

Channel	000Н	STEP	FFFH
Battery Voltage	OmV	1. 1mV	4. 5045V
Bat discharge current	OmA	1mA	4. 095A

Channel	000Н	STEP	FFFH
Bat charge current	OmA	1mA	4. 095A
Internal temperature	−267. 7°C	0.1℃	165.8℃
TS pin input	OmV	0.8mV	3. 276V

9.6. 多功能管脚说明

GPIO[1:0]

可作为 GPIO[1:0]、LDO 等, 具体参见 REG90H-92H 说明。

CHGLED

充电状态指示、过温过压等报警功能以及 Motor-drive 功能, 当 REG32H[3]=0 时,该 PIN 为驱动能力 100mA,将微型振动马达连接至 3.3V 电源并串接限流电阻,可以直接驱动振动马达。当 REG32H[3]=1,该 PIN 为充电状态、过压过温等报警功能指示。

9.7. 定时器

AXP809 包含一个内部定时器,通过设置寄存器_REG8AH[6:0] 可改变计时器值,其最低分辨率为分钟 (Minute),计时器超时后将置位 REG8AH[7]。

9.8. 中断机制

Host 可以通过 RSB 接口访问 AXP809 的寄存器,最高速度可达 3MHz,同时支持连读/写操作。

在某些特定事件发生时,AXP809 通过拉低 IRQ 的中断机制来提醒 Host,并将中断状态保存在中断状态寄存器中(参见寄存器 REG48H、寄存器 REG49H、寄存器 REG4AH、寄存器 REG4BH、寄存器 REG4CH),向相应的状态寄存器位写 1 则清除相应的中断,当无中断事件时,IRQ 输出拉高(通过外部上拉 51K 电阻)。每个中断都可以通过中断控制寄存器来屏蔽(参见寄存器 REG40H、寄存器 REG41H、寄存器 REG42H、寄存器 REG43H、寄存器 REG44H)。

位置	中断号	含义	位置	中断号	含义
寄存器 48_[7]	IRQ1	电源 ACIN 超压	寄存器 4B_[7]	IRQ22	IC 内部过温
寄存器 48_[6]	IRQ2	电源 ACIN 插入	寄存器 4B_[6]	保留	
寄存器 48_[5]	IRQ3	电源 ACIN 移除	寄存器 4B_[5]	保留	
寄存器 48_[4]	IRQ4	电源 VBUS 超压	寄存器 4B_[4]	保留	
寄存器 48_[3]	IRQ5	电源 VBUS 插入	寄存器 4B_[3]	保留	
寄存器 48_[2]	IRQ6	电源 VBUS 移除	寄存器 4B_[2]	保留	
寄存器 48_[1]	IRQ7	VBUS 电压小于 V _{HOLD}	寄存器 4B_[1]	IRQ23	电池低电报警1
寄存器 48_[0]	保留		寄存器 4B_[0]	IRQ24	电池低电报警 2
寄存器 49_[7]	IRQ8	电池接入	寄存器 4C_[7]	IRQ25	定时器计时完成
寄存器 49_[6]	IRQ9	电池移除	寄存器 4C_[6]	IRQ26	PEK 上升沿
寄存器 49_[5]	IRQ10	进入电池激活模式	寄存器 4C_[5]	IRQ27	PEK 下降沿
寄存器 49_[4]	IRQ11	退出电池激活模式	寄存器 4C_[4]	IRQ28	PEK 短按
寄存器 49_[3]	IRQ12	正在充电	寄存器 4C_[3]	IRQ29	PEK 长按
寄存器 49_[2]	IRQ13	充电完成	寄存器 4C_[2]	IRQ30	PEK 超过 OFFLEVEL
寄存器 49_[1]	保留		寄存器 4C_[1]	IRQ31	GPI01 沿触发
寄存器 49_[0]	保留		寄存器 4C_[0]	IRQ32	GPI00 沿触发
寄存器 4A_[7]	IRQ14	充电时电池过温			
寄存器 4A_[6]	IRQ16	充电时退出电过池			
寄存器 4A_[5]	IRQ16	充电时电池低温			
寄存器 4A_[4	IRQ17	充电时退出电池低温			
寄存器 4A_[3]	IRQ18	影响正常工作的电池过温			
寄存器 4A_[2]	IRQ19	退出影响正常工作的电 池过温			
寄存器 4A_[1]	IRQ20	影响正常工作的电池低 温			
寄存器 4A_[0]	IRQ21	退出影响正常工作的电 池低温			

寄存器

10.1. 寄存器列表

10.1.1. 电源控制类寄存器列表

地址	寄存器描述	R/W	默认值
00	电源状态寄存器	R	
01	电源模式 / 充电状态寄存器	R	
04-0F	数据缓存寄存器	R/W	00Н
10	DCDC1/2/3/4/5&ALD01/2&DC5LD0 开关控制寄存器	R/W	7FH
12	ELD01/2/3&DLD01/2/&DC1SW&SW&ALD03 开关控制寄存器	R/W	34H
15	DLD01 电压设置寄存器	R/W	1BH
16	DLD02 电压设置寄存器	R/W	OBH
19	ELD01 电压设置寄存器	R/W	17H
1A	ELDO2 电压设置寄存器	R/W	17H
1B	ELDO3 电压设置寄存器	R/W	OBH
1C	DC5LD0 电压设置寄存器	R/W	02H
21	DCDC1 电压设置寄存器	R/W	0EH
22	DCDC2 电压设置寄存器	R/W	8FH
23	DCDC3 电压设置寄存器	R/W	8FH
24	DCDC4 电压设置寄存器	R/W	0FH
25	DCDC5 电压设置寄存器	R/W	04H
27	DCDC2/3 电压斜率控制寄存器	R/W	00Н
28	ALD01 电压设置寄存器	R/W	17H
29	ALDO2 电压设置寄存器	R/W	15H
2A	ALD03 电压设置寄存器	R/W	17H
30	VBUS-IPSOUT 通路设置寄存器	R/W	40H
31	唤醒控制及Voff关机电压设置寄存器	R/W	03H
32	关机、电池检测、CHGLED 控制寄存器	R/W	43H
33	充电控制寄存器 1	R/W	А6Н
34	充电控制寄存器 2	R/W	45H
35	充电控制寄存器 3	R/W	0EH
36	PEK 参数设置寄存器	R/W	59Н
37	OFFLEVEL 关机延时设置	R/W	00Н
38	电池充电低温报警设置寄存器	R/W	А5Н
39	电池充电高温报警设置寄存器	R/W	1FH
3B	DCDC 频率设置寄存器	R/W	08H

地址	寄存器描述	R/W	默认值
3C	电池放电低温报警设置寄存器	R/W	FCH
3D	电池放电高温报警设置寄存器	R/W	16H
80	DCDC 工作模式设置寄存器	R/W	80H
82	ADC 使能设置寄存器	R/W	ЕОН
84	ADC 采样率设置, TS pin 控制寄存器	R/W	36H
85	TS ADC 采样率设置寄存器	R/W	00Н
8A	定时器控制寄存器	R/W	00Н
8F	过温关机控制寄存器	R/W	01H

10.1.2. GPIO 控制类寄存器列表

地址	寄存器描述	R/W	默认值
90	GPI00 控制寄存器	R/W	07H
91	GPI00 LDO 模式输出电压设置寄存器	R/W	1FH
92	GPI01 控制寄存器	R/W	07H
93	GPI01 LDO 模式输出电压设置寄存器	R/W	1FH
94	GPI0[1:0] 信号状态寄存器	R/W	00Н
97	GPI0[1:0] 下拉控制寄存器	R/W	00Н

10.1.3. 中断控制类寄存器列表 __

地址	寄存器描述	R/W	默认值
40	IRQ 使能控制寄存器 1	R/W	D8H
41	IRQ 使能控制寄存器 2	R/W	FFH
42	IRQ 使能控制寄存器 3	R/W	FFH
43	IRQ 使能控制寄存器 4	R/W	03H
44	IRQ 使能控制寄存器 5	R/W	18H
48	IRQ 状态寄存器 1	R/W	00Н
49	IRQ 状态寄存器 2	R/W	00Н
4A	IRQ 状态寄存器 3	R/W	00Н
4B	IRQ 状态寄存器 4	R/W	00Н
4C	IRQ 状态寄存器 5	R/W	00Н

10.1.4. ADC 数据类寄存器列表

地址	寄存器描述	R/W
56[7:0]	AXP809 内部温度监测 ADC 数据高 8 位	R
57[3:0]	AXP809 内部温度监测 ADC 数据低 4 位	R
58[7:0]	TS 输入 ADC 数据高 8 位,默认监测电池温度	R
59[4:0]	TS 输入 ADC 数据低 4 位,默认监测电池温度	R

地址	寄存器描述	R/W	
78[7:0]	电池电压高 8 位	R	
79[3:0]	电池电压低 4 位	R	
7A[7:0]	电池充电电流高 8 位	R	
7B[3:0]	电池充电电流低 4 位	R	
7C[7:0]	电池放电电流高 8 位	R	
7D[3:0]	电池放电电流低 4 位	R	
地址	寄存器描述	R/W	默认值
B8	电量计控制寄存器	R/W	СОН
В9	电量计量结果	R	64H
E0[6:0]	电池总容量 bit[14:8]	R/W	00Н
E1[7:0]	电池总容量 bit[7:0]	R/W	00Н
E6	电池低电报警门限设置寄存器	R/W	AOH

注: 电池总容量单位为 1.456mAH

10.2. 寄存器描述

10.2.1. REG 00H: 输入电源状态

Bit	描述	R/W
7	ACIN 存在指示	R
_ '	0:ACIN 不存在; 1:ACIN 存在	
6	指示 ACIN 是否可用	R
5	VBUS 存在指示	R
l o	0:VBUS 不存在; 1:VBUS 存在	K
4	指示 VBUS 是否可用	R
3	指示 VBUS 接入在使用之前是否大于 V _{HOLD}	R
2	指示电池电流方向	R
4	0: 电池在放电; 1: 电池被充电	K
1	指示 ACIN 和 VBUS 输入是否在 PCB 被短接	R
0	指示启动源是否为 ACIN 或 VBUS	R
U	0: 启动源非 ACIN/VBUS; 1: 启动源为 ACIN/VBUS	IV

10.2.2. REG 01H: 电源工作模式以及充电状态指示

Bit	描述	R/W
7	指示 AXP809 是否过温 0: 未过温; 1: 过温	R
6	充电指示 0:未充电或充电已完成; 1:正在充电	R

Bit	描述	R/W
5	电池存在状态指示 0: 无电池连接到 AXP809; 1: 电池已经连接到 AXP809	R
4	保留,不可更改	R
3	指示电池是否进入激活模式 0:未进入电池激活模式; 1:已进入电池激活模式	R
2-0	保留,不可更改	

10.2.3. REG 04-0FH: 数据缓存

注:只要外部电源、电池某一路电源存在,此数据就会一直保存,不受开关机影响。

10.2.4. REG 10H: DCDC1/2/3/4/5&ALD01/2&DC5LD0 输出控制

Bit	描述		R/W	默认值
7	ALD02 开关控制		RW	0
6	ALD01 开关控制		RW	1
5	DCDC5 开关控制		RW	1
4	DCDC4 开关控制	0: 关闭: 1: 打开	RW	1
3	DCDC3 开关控制		RW	1
2	DCDC2 开关控制		RW	1
1	DCDC1 开关控制		RW	1
0	DC5LDO 开关控制		RW	1

10.2.5. REG 12H: 电源输出控制

Bit	描述		R/W	默认值
7	DC1SW 开关控制		RW	0
6	SWOUT 开关控制		RW	0
5	ALDO3 开关控制		RW	1
4	DLD02 开关控制	0 75 1 477	RW	1
3	DLD01 开关控制	0: 关闭; 1: 打开	RW	0
2	ELDO3 开关控制		RW	1
1	ELDO2 开关控制		RW	0
0	ELD01 开关控制		RW	0

10.2.6. REG 13H: 电源输出控制

默认值:81H

Bit	描述	R/W	默认值
7-0	保留,不可更改		

10.2.7. REG 15H:DLD01 输出电压设置

默认值:1BH

Bit	描述	描述		默认值
7-5	保留,不可更改			
4	DLD01 输出电压设置 Bit4		RW	1
3	DLD01 输出电压设置 Bit3		RW	1
2	DLD01 输出电压设置 Bit2	0.7-3.3V,100mV/step	RW	0
1	DLD01 输出电压设置 Bit1		RW	1
0	DLD01 输出电压设置 Bit0		RW	1

10.2.8. REG 16H:DLD02 输出电压设置

默认值:0BH

Bit	描述		R/W	默认 值
7-5	保留,不可更改			
4	DLDO2 输出电压设置 Bit4		RW	0
3	DLDO2 输出电压设置 Bit3	0.7-3.3V,100mV/step	RW	1
2	DLDO2 输出电压设置 Bit2		RW	0
1	DLDO2 输出电压设置 Bit1		RW	1
0	DLDO2 输出电压设置 Bit0		RW	1

10.2.9. REG 19H:ELD01 输出电压设置

默认值:17H

Bit	描述	描述		默认值
7-5	保留,不可更改			
4	ELD01 输出电压设置 Bit4	0.7-3.3V,100mV/step	RW	1
3	ELD01 输出电压设置 Bit3		RW	0
2	ELD01 输出电压设置 Bit2		RW	1
1	ELD01 输出电压设置 Bit1		RW	1
0	ELD01 输出电压设置 Bit0		RW	1

10.2.10. REG 1AH: ELDO2 输出电压设置

默认值:17H

Bit	描述	R/W	默认值
7-5	保留,不可更改		

Bit	描述		R/W	默认值
4	ELDO2 输出电压设置 Bit4		RW	1
3	ELDO2 输出电压设置 Bit3	0.7-3.3V,100mV/step	RW	0
2	ELDO2 输出电压设置 Bit2		RW	1
1	ELDO2 输出电压设置 Bit1		RW	1
0	ELDO2 输出电压设置 Bit0		RW	1

10.2.11. REG 1BH: ELDO3 输出电压设置

默认值:0BH

Bit	描述		R/W	默认值
7-5	保留,不可更改			
4	ELDO3 输出电压设置 Bit4	0.7-3.3V,100mV/step	RW	0
3	ELDO3 输出电压设置 Bit3		RW	1
2	ELDO3 输出电压设置 Bit2		RW	0
1	ELDO3 输出电压设置 Bit1		RW	1
0	ELDO3 输出电压设置 Bit0		RW	1

10.2.12. REG 1CH: DC5LDO 输出电压设置

默认值:02H

Bit	描述		R/W	默认值	
7-3	保留,不可更改				
2	DC5LDO 输出电压设置 Bit2		RW	0	
1	DC5LDO 输出电压设置 Bit1	0.7-1.4V,100mV/step	RW	1	
0	DC5LDO 输出电压设置 Bit0		RW	0	

10.2.13. REG 21H: DCDC1 输出电压设置

默认值:0EH

Bit	描述	描述		默认值
7-5	保留,不可更改			
4	DCDC1 输出电压设置 Bit4		RW	0
3	DCDC1 输出电压设置 Bit3	1.6-3.4V, 100mV/step	RW	1
2	DCDC2 输出电压设置 Bit2		RW	1
1	DCDC2 输出电压设置 Bit1		RW	1
0	DCDC2 输出电压设置 Bit0		RW	0

10.2.14. REG 22H: DCDC2 输出电压设置

默认值:8FH

Bit	描述		R/W	默认值
7	VRC 转换完成指示 0- 转换中 1- 转换完成		R	1
6	保留,不可更改			
5	DCDC2 输出电压设置 Bit5		RW	0
4	DCDC2 输出电压设置 Bit4		RW	0
3	DCDC2 输出电压设置 Bit3	0.6-1.54V, 20mV/step	RW	1
2	DCDC2 输出电压设置 Bit2		RW	1
1	DCDC2 输出电压设置 Bit1		RW	1
0	DCDC2 输出电压设置 Bit0		RW	1

10.2.15. REG 23H: DCDC3 输出电压设置

默认值:8FH

Bit	描述		R/W	默认值
7	VRC 转换完成指示 0- 转换中 1- 转换完成			
7-6	保留,不可更改			
5	DCDC3 输出电压设置 Bit5		RW	0
4	DCDC3 输出电压设置 Bit4		RW	0
3	DCDC3 输出电压设置 Bit3	0.6-1.86V,_20mV/step	RW	1
2	DCDC3 输出电压设置 Bit2		RW	1
1	DCDC3 输出电压设置 Bit1		RW	1
0	DCDC3 输出电压设置 Bit0		RW	1

10.2.16. REG 24H: DCDC4 输出电压设置

默认值:0FH

Bit	描述		R/W	默认值
7-6	保留,不可更改			
5	DCDC4 输出电压设置 Bit5		RW	0
4	DCDC4 输出电压设置 Bit4		RW	0
3	DCDC4 输出电压设置 Bit3	0.6-1.54V, 20mV/step	RW	1
2	DCDC4 输出电压设置 Bit2	1.8-2.6V, 100mV/step	RW	1
1	DCDC4 输出电压设置 Bit1		RW	1
0	DCDC4 输出电压设置 Bit0		RW	1

10.2.17. REG 25H: DCDC5 输出电压设置

默认值:0AH

Bit	描述		R/W	默认值
7-5	保留,不可更改			
4	DCDC5 输出电压设置 Bit4		RW	0
3	DCDC5 输出电压设置 Bit3	1 0 0 554 50 4/	RW	1
2	DCDC5 输出电压设置 Bit2	1.0-2.55V, 50mV/step	RW	0
1	DCDC5 输出电压设置 Bit1		RW	1
0	DCDC5 输出电压设置 Bit0		RW	0

10.2.18. REG 27H: DCDC2/3 动态电压调节参数设置

默认值:00H

Bit	描述		R/W	默认值
7-4	保留,不可更改			
3	DCDC3 VRC 使能控制 0: 打开; 1: 关闭		RW	0
2	DCDC2 VRC 使能控制 0: 打开; 1: 关闭		RW	0
1	DCDC3 VRC 电压上升斜率控制	0: 20mV/15.625us=1.6mV/us 1: 20mV/31.250us=0.8mV/us	RW	0
0	DCDC2 VRC 电压上升斜率控制 _	0: 20mV/15.625us=1.6mV/us 1: 20mV/31.250us=0.8mV/us	RW	0

10.2.19. REG 28H: ALDO1 输出电压设置

默认值:17H

Bit	描述		R/W	默认值
7-5	保留,不可更改			
4	ALDO1 输出电压设置 Bit4		RW	1
3	ALDO1 输出电压设置 Bit3	0.7-3.3V,100mV/step	RW	0
2	ALDO1 输出电压设置 Bit2		RW	1
1	ALDO1 输出电压设置 Bit1		RW	1
0	ALDO1 输出电压设置 Bit0		RW	1

10.2.20. REG 29H: ALDO2 输出电压设置

默认值:15H

Bit	描述	R/W	默认值
7-5	保留,不可更改		

Bit	描述		R/W	默认值
4	ALDO2 输出电压设置 Bit4	0.7-3.3V,100mV/step	RW	1
3	ALDO2 输出电压设置 Bit3		RW	0
2	ALDO2 输出电压设置 Bit2		RW	1
1	ALDO2 输出电压设置 Bit1		RW	0
0	ALDO2 输出电压设置 Bit0		RW	1

10.2.21. REG 2AH: ALDO3 输出电压设置

默认值:17H

Bit	描述	描述		默认值
7-5	保留,不可更改			
4	ALDO3 输出电压设置 Bit4		RW	1
3	ALDO3 输出电压设置 Bit3	0.7-3.3V,100mV/step	RW	0
2	ALDO3 输出电压设置 Bit2		RW	1
1	ALDO3 输出电压设置 Bit1		RW	1
0	ALDO3 输出电压设置 Bit0		RW	1

10. 2. 22. REG 30H: VBUS-IPSOUT 通路管理

默认值:40H

	. 1011				1	
Bit	描述				R/W	默认值
7	VBUS 可用时 VBUS-IPSOUT 通路选择控制信号 0:由 N_VBUSEN pin 决定是否打开此通路 1:VBUS-IPSOUT 通路可以被选择打开,不管 N_VBUSEN 的状态		RW	0		
6	VBUS V _{HOLD} 限压控制 0: 不限压; 1: 限压			RW	1	
5	V _{HOLD} 设置 Bit 2	000: 4.0V;	001 · 4 1V ·	010 · 4 2V	RW	0
4	V _{HOLD} 设置 Bit 1	011: 4.3V;			RW	0
3	V _{HOLD} 设置 Bit 0	110: 4.6V;	111: 4.7V		RW	0
2	DRIVEVBUS 作为输出时输出状态控制 0:输出低电平 1:输出高电平(IPSOUT)			RW	0	
1-0	VBUS 限流控制设置 00 -900mA; 01-500mA; 1x-不限流				RW	X

10. 2. 23. REG 31H: 唤醒控制及 VOFF 关机电压设置

默认值:03H

Bit	描述	R/W	默认值
7	PWROK 在唤醒过程中是否被拉低 0: 不拉低 1: 拉低	RW	0
6	软重启控制,对该bit写1后PMU将重启,该bit自动清零	RW	0
5	软件唤醒控制,对该 bit 写 1 后各路输出将恢复,该 bit 自动清零	RW	0
4	当唤醒功能使能时,IRQ 是否触发唤醒,唤醒过程中是否被屏蔽 0: IRQ 能触发唤醒,唤醒时,IRQ 被屏蔽 1: IRQ 正常工作,但不能触发唤醒	RW	0
3	Sleep 模式下唤醒功能使能设置: 0: 唤醒功能关闭 1: 唤醒功能打开 此 bit 写完后自动清 0, 因此每次进 Sleep 模式前需再次写 1	RW	0
2	V _{OFF} 设置 Bit2	RW	0
1	V _{OFF} 设置 Bit1 011-2.9V; 100-3.0V; 101-	RW	1
0	V _{OFF} 设置 Bit0 3.1V; 110-3.2V; 111-3.3V	RW	1

10.2.24. REG 32H: 关机设置、电池检测以及 CHGLED 管脚控制 默认值:43H

Bit	描述		R/W	默认值
\bigcirc	方式 A 下关机控制 — 此位写 1 会关闭 AXP809 的输出,除开 RTC 以及充电模块		RW	0
6	电池检测功能设置位: 0: 关闭;	1: 打开	RW	1
5-4	CHGLED 管脚功能设置	00: 高阻 01: 25% 0.5Hz 闪烁 10: 25% 2Hz 闪烁 11: 输出低电平	RW	00
3	CHGLED 管脚控制设置	0: 由寄存器 REG 32HBit[5:4] 控制 1: 由充电功能控制	RW	0
2	各组电源输出关闭时序控制 0: 所有电源输出同时关闭 1: 和开机启动时序相反		RW	0
1-0	PWROK 相对最后一路电源输出启动 延迟时间	00: 8ms; 01: 16ms; 10: 32ms; 11:64ms	RW	10

10.2.25. REG 33H: 充电控制 1

默认值:A6H

Bit	描述	R/W	默认值
7	充电功能使能控制位,包含内部通道和外部通道 0: 关闭, 1: 打开	RW	1
6-5	充电目标电压设置 00:4.1V; 01:4.2V; 10:4.24V; 11:4.35V	RW	01
4	充电结束电流设置 0: 充电电流小于 10% 设置值时结束充电 1: 充电电流小于 20% 设置值时结束充电	RW	0
3-0	内部通路充电电流设置 0000:300mA; 0001:450mA; 0010:600mA; 0011:750mA; 0100:900mA; 0101:1050mA; 0110:1200mA; 0111:1350mA; 1000:1500mA; 1001:1650mA; 1010:1800mA; 1011:1950mA; 1100:2100mA;	RW	0110

10.2.26. REG 34H: 充电控制 2

默认值:45H

Bit	描述		R/W	默认值
7	预充电超时设置 Bit1	00: 40 min; 01: 50min;	RW	0
6	预充电超时设置 Bit0 ————	10:-60min; -11: 70min	RW	1
5	充电完成后,充电输出是否关闭 0:关闭; 1:打开		RW	000
4	CHGLED 类型选择 0: 类型 A 1: 类型 B		RW	0
3	保留			
2	充电恒压值是否跟随充电电流变化 0:不跟随 1:跟随		RW	0
1	恒流模式下超时设置 Bit1	00: 6Hours; 01: 8Hours;	RW	0
0	恒流模式下超时设置 Bit0	10: 10Hours; 11: 12Hours	RW	1

注:类型 A/B 详细说明请查阅 "自适应 Flash Charger"部分。

10.2.27. REG 35H: 充电控制 3

默认值:0EH

Bit	描述				R/W	默认值
7-4	保留,不可更改	攵				
3-0	充电环路限流电 0000:300mA; 0100:900mA; 1000:1500mA; 1100:2100mA;	电流设置 0001:450mA; 0101:1050mA; 1001:1650mA;	0010:600mA; 0110:1200mA; 1010:1800mA;	0011:750mA; 0111:1350mA; 1011:1950mA;	RW	1110

10.2.28. REG 36H: PEK 按键参数设置

默认值:59H

Bit	描述		R/W	默认值
7	开机时间设置 Bit1	00: 128mS; 01: 1S;	RW	0
6	开机时间设置 Bit0	10: 2S; 11: 3S.	RW	1
5	长按键时间设置 Bit1	00: 1S; 01: 1.5S;	RW	0
4	长按键时间设置 Bit0	10: 2S; 11: 2.5S.	RW	1
3	按键时长大于关机时长时自动关机工 0:关闭; 1:打开	功能设置	RW	1
2	按键时长大于关机时长时自动关机后是否自动启动 0:不自动启动; 1:自动启动		RW	0
1	关机时长设置 Bit1	00: 4S; 01: 6S;	RW	0
0	关机时长设置 Bit0	10: 8S; 11: 10S	RW	1

10.2.29. REG 37H: OFFLEVEL 关机延时设置

默认值:00H

Bit	描述	R/W	默认值
7-3	保留,不可更改		
2-0	0FFLEVEL 关机延时设置 0s/10s/20s/30s/40s/50s/60s/70s	RW	0

10.2.30. REG 38H: VLTF-charge 电池充电低温门限设置

默认值:A5H

Bit	描述		R/W	默认值
7-0	充电时电池低温门限设置, M	M*10H, 当 M=A5H 时对应 2.112V; 可 对应电压 0V~3.264V	RW	А5Н

 $V_{LTF-charge} = M *10H * 0.0008V$

10.2.31. REG 39H: VHTF-charge 电池充电高温门限设置

默认值:1FH

Bit	描述		R/W	默认值
7-0	充电时电池高温门限设置, N	N*10H, 当 N=1FH, 对应 0.397V; 可对 应电压 0V~3.264V	RW	1FH

 $V_{\text{HTF-charge}} = N *10H * 0.0008V$

10.2.32. REG 3BH: DCDC 工作频率设置

默认值:00H

Bit	描述		R/W	默认值
7	DCDC 及 PWM charger 展频功能设置 0: 关闭 1: 打开		RW	0
6	DCDC 及 PWM charger 展频频率设置 0: 50KHz 1: 100KHz		RW	0
5	保留,不可更改		RW	
4	DCDC 2&3 Poly-phase 功能设置 0: 关闭 1: 打开		RW	0
3	DCDC 开关频率设置 Bit 3		RW	0
2	DCDC 开关频率设置 Bit 2] - 每一级改变 5%,默认值 3MHz	RW	0
1	DCDC 开关频率设置 Bit 1	马 级以文 J/n,	RW	0
0	DCDC 开关频率设置 Bit 0		RW	0

10.2.33. REG 3CH: VLTF-discharge 电池放电低温门限设置 默认值:FCH

Bit	描述		R/W	默认值
7-0	放电时电池低温门限设置,M	M*10H, 当 M=FCH 时对应 3. 226V; 可 对应电压 0V~3. 264V	RW	FCH

 $V_{LTF-discharge} = M *10H* 0.0008V$

10.2.34. REG 3DH: VHTF-discharge 电池放电高温门限设置

默认值:16H

Bit	描述		R/W	默认值
7-0	放电时电池高温门限设置,N	N*10H, 当 N=16H, 对应 0. 282V; 可对应电压 0V~3. 264V	RW	16H

 $V_{LTF-discharge} = N *10H* 0.0008V$

10.2.35. REG 80H: DCDC 工作模式选择

默认值:80H

Bit	描述	R/W	默认值
7-5	保留,不可更改		

Bit	描述		R/W	默认值
4	DCDC5 工作模式控制		RW	0
3	DCDC4 工作模式控制	O. DEM /DWM 白 Shariff		
2	DCDC3 工作模式控制	0:PFM/PWM 自动切换 1:固定 PWM	RW	0
1	DCDC2 工作模式控制	1: 回足 FWM	RW	0
0	DCDC1 工作模式控制			

10.2.36. REG 81H: DCDC2/5 输出电压低压保护控制

默认值:BDH

Bit	描述	R/W	默认值
7	保留,不可更改		
6	PWROK 持续为低电平 6S 后,是否关机控制 0- 不关机 1- 关机	RW	0
5	保留,不可更改		
4	DCDC2 低压保护 0-低压后不关机 1-低压后关机	RW	1
3	DCDC5 低压保护 0-低压后不关机 1-低压后关机	RW	1
2-0	保留,不可更改		

10.2.37. REG 82H:ADC 使能

默认值:EOH

Bit	描述		R/W	默认值
7	电池电压 ADC 使能		RW	1
6	电池电流 ADC 使能	0: 关闭, 1: 打开	RW	1
5	内部温度 ADC 使能	I	RW	1
4-1	保留,不可更改			
0	TS 管脚 ADC 功能使能	0: 关闭, 1: 打开	RW	0

10.2.38. REG 84H: ADC 采样速率设置, TS 管脚控制

默认值:36H

Bit	描述	R/W	默认值
7	ADC 采样速率设置 Bit 1	RW	0
6	ADC 采样速率设置 Bit 0 采样率分别为 100, 200, 400, 800Hz	RW	0
5-4	TS 管脚输出电流设置: 00:20uA; 01:40uA; 10:60uA; 11:80uA	RW	11
3	保留,不可更改		
2	TS 管脚功能选择 0:电池温度监测功能, 1: 外部独立的 ADC 输入通路	RW	1

Bit	描述		R/W	默认值
		00: 美闭	RW	1
1-0	TS 管脚电流输出方式设置	01: 充电时输出电流 10:ADC 采样时输入,可以省电 11: 一直打开	RW	0

10.2.39. REG 85H:TS ADC 采样速率设置

默认值:00H

Bit	描述		R/W	默认值
7	TS ADC 采样速率设置 1	10×2^{n}	RW	0
6	TS ADC 采样速率设置 0	采样率分别为 100, 200, 400, 800Hz	RW	0
5-0	保留,不可更改			

10.2.40. REG 8AH: 定时器控制

默认值:00H

Bit	描述	R/W	默认值
7	定时器超时 写 1 清除此状态	RW	0
6-0	设置定时时间,单位为分 写全 0 则关闭此定时器	RW	0000000

10.2.41. REG 8CH: PWREN 控制设置 1

默认值:00H

Bit	描述		R/W	默认值
7	DCDC1 是否受控于 PWREN		RW	0
6	DCDC2 是否受控于 PWREN	1: 受控于 0: 不受控于	RW	0
5	DCDC3 是否受控于 PWREN		RW	0
4	DCDC4 是否受控于 PWREN		RW	0
3	DCDC5 是否受控于 PWREN		RW	0
2	ALDO1 是否受控于 PWREN		RW	0
1	ALDO2 是否受控于 PWREN		RW	0
0	ALDO3 是否受控于 PWREN		RW	0

10.2.42. REG 8DH: PWREN 控制设置 2

默认值:00H

Bit	描述		R/W	默认值
7	DLD01 是否受控于 PWREN		RW	0
6	DLD02 是否受控于 PWREN		RW	0
5	DLD03 是否受控于 PWREN		RW	0
4	DLDO4 是否受控于 PWREN		RW	0
3	ELD01 是否受控于 PWREN	1: 受控于 0: 不受控于	RW	0
2	ELD02 是否受控于 PWREN		RW	0
1	ELD03 是否受控于 PWREN		RW	0
0	DC5LDO 是否受控于 PWREN		RW	0

10.2.43. REG 8FH: 过温关机等功能设置

默认值:01H

Bit	描述	R/W	默认值
7	IRQ PIN 触发开机或者唤醒功能设置 0: 关闭 1: 打开	RW	0
6	ACIN/VBUS In-short 功能设置 0: 自动检测 1: 受控于 REG8F_[5]	RW	0
5	ACIN/VBUS 是否 In-short 设置 0:不处于 In-short 状态 1:处于 In-short 状态	RW	0
4	N_VBUSEN PIN 功能控制 0: 输出管脚,作 DRIVEVBUS 功能(输出驱动外部 0TG 升压模块) 1: 输入管脚,作为 N_VBUSEN 功能(输入控制 VBUS 通路)	RW	X
3	长按键 16 秒是否复位 IC 使能 0: 不复位 1: 复位		
2	AXP809 内部过温关机功能设置 0: 不关机; 1: 关机	RW	0
1-0	保留,不可更改		

10.2.44. REG 90H:GPI00 功能设置

默认值:07H

Bit	描述	R/W	默认值
7	GPI00 作为输入功能时,上升沿是否触发 IRQ 或者触发唤醒 0: 不触发 1: 触发	RW	0
6	GPI00 作为输入功能时,下降沿是否触发 IRQ 或者触发唤醒 0: 不触发 1: 触发	RW	0
5-3	保留,不可更改		

Bit	描述		R/W	默认值
2	GPI00 管脚功能设置 Bit 2	000: 输出低 001: 输出高	RW	1
1	GPI00 管脚功能设置 Bit 1	010: 通用输入功能 011: 打开低噪声 LDO 功能	RW	1
0	GPI00 管脚功能设置 Bit 0	100: 关闭低噪声 LD0 功能 101-111: 浮空	RW	1

10. 2. 45. REG 91H:GPI00 为 LDO 模式及输出高电平设置

默认值:1FH

Bit	描述		R/W	默认值
7-5	保留,不可更改			
4	GPI00 LDO 输出电压设置 Bit4		RW	0
3	GPI00 LDO 输出电压设置 Bit3		RW	0
2	GPI00 LDO 输出电压设置 Bit2] 0.7-3.3V,100mV/step	RW	0
1	GPI00 LDO 输出电压设置 Bit1		RW	0
0	GPI00 LDO 输出电压设置 Bit0		RW	0

10.2.46. REG 92H:GPI01 功能设置

默认值:07H

Bit	描述		R/W	默认值
7	GPI01 作为输入功能时,上升沿是否 0: 不触发 1: 触发	触发 IRQ 或者触发唤醒	RW	0
6	GPI01 作为输入功能时,下降沿是否 0: 不触发 1: 触发	触发 IRQ 或者触发唤醒	RW	0
5-3	保留,不可更改			
2	GPI01 管脚功能设置 Bit 2	000: 输出低 001: 输出高 010: 通用输入功能	RW	1
1	GPI01 管脚功能设置 Bit 1	011: 打开低噪声 LDO 功能 100: 关闭低噪声 LDO 功能	RW	1
0	GPI01 管脚功能设置 Bit 0	101-111: 浮空	RW	1

10.2.47. REG 93H:GPI01 为 LDO 模式及输出高电平设置 默认值:1FH

Bit	描述	R/W	默认值
7-5	保留,不可更改		

Bit	描述		R/W	默认值
4	GPI01 LDO 输出电压设置 Bit4		RW	0
3	GPI01 LDO 输出电压设置 Bit3		RW	0
2	GPI01 LDO 输出电压设置 Bit2	0.7-3.3V,100mV/step	RW	0
1	GPI01 LDO 输出电压设置 Bit1		RW	0
0	GPI01 LDO 输出电压设置 Bit0		RW	0

10.2.48. REG 94H:GPIO[1:0] 输入信号状态监测

默认值:00H

Bit	描述		R/W	默认值
7-2	保留,不可更改			
1	GPI01 输入状态	0: 输入低电平	R	
0	GPI00 输入状态	1: 输入高电平	R	

10.2.49. REG 97H:GPIO[1:0] 作为输入时的下拉设置

默认值:00H

Bit	描述		R/W	默认值
7-2	保留,不可更改			
1	GPI01 作为输入时的下拉 <u>电阻控制</u>	0: 关闭下拉电阻	RW	0
0	GPI00 作为输入时的下拉电阻控制	1:使用下拉电阻	RW	0

10.2.50. REG 40H: IRQ 使能 1

默认值:D8H

Bit	描述	R/W	默认值
7	ACIN 过压 IRQ 使能	RW	1
6	ACIN 接入 IRQ 使能	RW	1
5	ACIN 移出 IRQ 使能	RW	0
4	VBUS 过压 IRQ 使能	RW	1
3	VBUS 接入 IRQ 使能	RW	1
2	VBUS 移出 IRQ 使能	RW	0
1	VBUS 可用但小于 V _{HOLD} IRQ 使能	RW	0
0	保留,不可更改		

10.2.51. REG 41H: IRQ 使能 2

默认值:FFH

Bit	描述	R/W	默认值
7	电池接入 IRQ 使能	RW	1
6	电池移出 IRQ 使能	RW	1
5	电池激活模式 IRQ 使能	RW	1
4	退出电池激活模式 IRQ 使能	RW	1
3	正在充电 IRQ 使能	RW	1
2	充电完成 IRQ 使能	RW	1
1	保留,不可更改		
0	保留,不可更改		

10.2.52. REG 42H: IRQ 使能 3

默认值:FFH

Bit	描述	R/W	默认值
7	充电时电池过温使能	RW	1
6	充电时退出电过池使能	RW	1
5	充电时电池低温使能	RW	1
4	充电时退出电池低温使能	RW	1
3	影响正常工作的电池过使能		
2	退出影响正常工作的电池过温使能		
1	影响正常工作的电池低温使能		
0	退出影响正常工作的电池低温使能		

10.2.53. REG 43H: IRQ 使能 4

默认值:03H

Bit	描述	R/W	默认值
7-2	保留,不可更改		
1	电池电量达到报警门限 1 IRQ 使能(提示)	RW	1
0	电池电量达到报警门限 2 IRQ 使能 (关机)	RW	1

10.2.54. REG 44H: IRQ 使能 5

默认值:18H

Bit	描述	R/W	默认值
7	计时器超时 IRQ 使能	RW	0
6	PEK 上升沿触发 IRQ 使能	RW	0
5	PEK 下降沿触发 IRQ 使能	RW	0

Bit	描述	R/W	默认值
4	PEK 短按键 IRQ 使能	RW	1
3	PEK 长按键 IRQ 使能	RW	1
2	PEK 超过 OFFLEVELIRQ 使能	RW	0
1	GPI01 输入边沿触发 IRQ 使能	RW	0
0	GPI00 输入边沿触发 IRQ 使能	RW	0

10.2.55. REG 48H: IRQ 状态 1

Bit	描述	R/W	默认值
7	ACIN 过压 IRQ 状态	RW	0
6	ACIN 接入 IRQ 状态	RW	0
5	ACIN 移出 IRQ 状态	RW	0
4	VBUS 过压 IRQ 状态	RW	0
3	VBUS 接入 IRQ 状态	RW	0
2	VBUS 移出 IRQ 状态	RW	0
1	VBUS 可用但小于 V _{HOLD} IRQ 状态	RW	0
0	保留,不可更改		

10.2.56. REG 49H: IRQ 状态 2 - -- --

Bit	描述	R/W	默认值
7	电池接入 IRQ 状态	RW	0
6	电池移出 IRQ 状态	RW	0
5	电池激活模式 IRQ 状态	RW	0
4	退出电池激活模式 IRQ 状态	RW	0
3	正在充电 IRQ 状态	RW	0
2	充电完成 IRQ 状态	RW	0
1	保留,不可更改		
0	保留,不可更改		

10.2.57. REG 4AH: IRQ 状态 3

Bit	描述	R/W	默认值
7	充电时电池过温状态	RW	0
6	充电时退出电过池使能状态	RW	0
5	充电时电池低温使能状态	RW	0
4	充电时退出电池低温状态	RW	0
3	影响正常工作的电池过状态	RW	0
2	退出影响正常工作的电池过温状态	RW	0

Bit	描述	R/W	默认值
1	影响正常工作的电池低温状态	RW	0
0	退出影响正常工作的电池低温状态	RW	0

10.2.58. REG 4BH: IRQ 状态 4

Bit	描述	R/W	默认值
7-2	保留,不可更改		
1	电池电量低于报警门限 1 IRQ 状态	RW	0
0	电池电量低于报警门限 2 IRQ 状态	RW	0

10.2.59. REG 4CH: IRQ 状态 5

Bit	描述	R/W	默认值
7	计时器超时 IRQ 状态	RW	0
6	PEK 上升沿触发 IRQ 状态	RW	0
5	PEK 下降沿触发 IRQ 状态	RW	0
4	PEK 短按键 IRQ 状态	RW	0
3	PEK 长按键 IRQ 状态	RW	0
2	PEK 超过 OFFLEVELIRQ	RW	0
1	GPI01 输入边沿触发 IRQ 状态	RW	0
0	GPI00 输入边沿触发 IRQ 状态	RW	0

注:所有 IRQ 状态寄存器对应位写 1 将清除相应状态。

10.2.60. REG B8H: 电量计控制

默认值 COH

Bit	描述	R/W	默认值
7	电量计使能控制 0: 关闭 1: 打开	RW	1
6	库仑计使能控制 0: 关闭 1: 打开	RW	1
5	电池总容量校正功能使能 0: 关闭 1: 打开	RW	0
4	电池总容量校正状态 0:没有校正 1:正在校正	RW	0
3-0	保留,不可更改	RW	0

10.2.61. REG B9H: 电池电量指示

默认值 64H

Bit	描述		R/W	默认值
7	电池电量是否正确计算 0:没正确计算 1:正确计算		R	0
6-0	电池电量指示	0%~100%	R	64

10.2.62. REG EOH: 电池总容量设置 1

默认值 00H

Bit	描述	R/W	默认值
7	电池总容量是否配置 0: 未配置 1: 已配置	RW	0
6-0	电池总容量配置 bit[14:8]	RW	64

电池总容量 = Value * 1.456mAh

10.2.63. REG E1H: 电池总容量设置 2

默认值 00H

Bit	描述	R/W	默认值
7-0	电池总容量配置 bit[7:0]	RW	64

10.2.64. REG E6H: 电池电量低电报警门限设置

默认值 AOH

Bit	描述	R/W	默认值
7-4	电池电量低电报警门限 1 设置 0000-1111: 5%-20%	RW	1010
3-0	电池电量低电报警门限 2 设置 0000-1111: 0%-15%	RW	0000

附录: 封装

	MI	LLIMET	ER
SYMBOL	MIN	NOM	MAX
A	0.70	0.75	0.80
A1	_	0.02	0.05
b	0. 15	0. 20	0. 25
с	0.18	0. 20	0. 25
D	7. 90	8.00	8. 10
D2	5. 39	5. 49	5. 59
e	(). 40BSC	
Nd	6	6. 40BSC	
Е	7. 90	8.00	8. 10
E2	5. 39	5. 49	5. 59
Ne	6	6. 40BSC	
L	0.35	0.40	0.45
K	0. 20		
h	0.30	0. 35	0.40
L/F载体尺寸 (mil)	240*240		

