

Time Series: Autocorrelation

Lecture 18

STA 371G

Predicting oil prices

Date	Oil price (\$)
1/1/2013	112.98
1/1/2014	107.94
1/1/2015	55.38
1/1/2016	36.85
1/1/2017	55.05
1/1/2018	?

Predicting oil prices

Date	Oil price (\$)
1/1/2013	112.98
1/1/2014	107.94
1/1/2015	55.38
1/1/2016	36.85
1/1/2017	55.05
1/1/2018	?

• What's the best prediction of the price of oil on January 1?

Predicting oil prices

Date	Oil price (\$)
1/1/2013	112.98
1/1/2014	107.94
1/1/2015	55.38
1/1/2016	36.85
1/1/2017	55.05
1/1/2018	?

- What's the best prediction of the price of oil on January 1?
- Does next year's price depend on this year's?

Time series

In a time series, data are not necessarily independent. (Often it is not!)

Time series

In a time series, data are not necessarily independent. (Often it is not!)

Time series:

- A sequence of measurements of the same variable collected over time.
- The measurements are made at regular time intervals (most commonly daily, weekly, monthly, quarterly, or yearly).
- The variances are not necessarily constant over time either.

Some examples

- S&P 500 index (or any stock price)
- iPhone sales worldwide
- U.S. unemployment rate
- U.S. inflation rate
- Crime rate in Austin

Some examples

- S&P 500 index (or any stock price)
- iPhone sales worldwide
- U.S. unemployment rate
- U.S. inflation rate
- Crime rate in Austin

Any of these could be measured at weekly, monthly, yearly etc. intervals; and each would be a different time series.

```
# Convert the data into a time series object
price <- ts(oil$price, start=1979, frequency=1)
# Frequency: # of data points per year
plot(price)</pre>
```


We argued that oil prices are not independent year-over-year.

We argued that oil prices are not independent year-over-year. To predict the oil price in a given year, can we use the previous year's price?

We argued that oil prices are not independent year-over-year. To predict the oil price in a given year, can we use the previous year's price?

 y_t : The oil price at the end of the year t

We argued that oil prices are not independent year-over-year. To predict the oil price in a given year, can we use the previous year's price?

 y_t : The oil price at the end of the year t

Уt	Уt—1
16.56	11.91
27.39	16.56
23	27.39
22.81	23
	 16.56 27.39 23

We argued that oil prices are not independent year-over-year. To predict the oil price in a given year, can we use the previous year's price?

 y_t : The oil price at the end of the year t

t	Уt	Уt—1
1999	16.56	11.91
2000	27.39	16.56
2001	23	27.39
2002	22.81	23

 y_{t-1} column is obtained by shifting y_t by 1.

We argued that oil prices are not independent year-over-year. To predict the oil price in a given year, can we use the previous year's price?

 y_t : The oil price at the end of the year t

t	Уt	Уt—1
1999	16.56	11.91
2000	27.39	16.56
2001	23	27.39
2002	22.81	23

 y_{t-1} column is obtained by shifting y_t by 1. The lag between y_t and y_{t-1} is one time-step.

Compute one-lag time series

```
# Create lag 1 time series.
priceL1 <- lag(price, k=-1)</pre>
# Put them together
price all <- cbind(price=price, priceL1=priceL1)</pre>
price all[1:5,]
     price priceL1
[1,] 25.10
                NA
[2,] 37.42 25.10
[3,] 35.75 37.42
[4,] 31.83 35.75
[5,] 29.08 31.83
```

Compute one-lag time series

```
# Create lag 1 time series.
priceL1 <- lag(price, k=-1)</pre>
# Put them together
price all <- cbind(price=price, priceL1=priceL1)</pre>
price all[1:5,]
     price priceL1
[1,] 25.10
                NA
[2,] 37.42 25.10
[3,] 35.75 37.42
[4,] 31.83 35.75
[5,] 29.08 31.83
```

priceL1 in the first row is NA because we did not have data from 1978 to put under y_{t-1} column of 1979.

Linear regression model

The simple linear regression model is:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t$$

Linear regression model

The simple linear regression model is:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t$$

Note that we obtained our predictor from the response itself, lagged 1 time step!

The oil prices seem to be correlated with its first lag!

The oil prices seem to be correlated with its first lag! This is called autocorrelation.

```
model <- lm(price ~ priceL1, data=price all)</pre>
summary(model)
Call:
lm(formula = price ~ priceL1, data = price all)
Residuals:
    Min
            10 Median
                               30
                                       Max
-11.9046 -2.9505 -0.8162 1.6303 12.4595
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.8724 3.8389 1.530 0.139722
priceL1 0.7605 0.1642 4.632 0.000116 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.454 on 23 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared: 0.4827, Adjusted R-squared: 0.4602
F-statistic: 21.46 on 1 and 23 DF, p-value: 0.0001164
```



```
model <- lm(price ~ priceL1, data=price all)</pre>
summary(model)
Call:
lm(formula = price ~ priceL1, data = price all)
Residuals:
    Min
            10 Median
                               30
                                       Max
-11.9046 -2.9505 -0.8162 1.6303 12.4595
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.8724 3.8389 1.530 0.139722
priceL1 0.7605 0.1642 4.632 0.000116 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.454 on 23 degrees of freedom
  (2 observations deleted due to missingness)
Multiple R-squared: 0.4827, Adjusted R-squared: 0.4602
F-statistic: 21.46 on 1 and 23 DF, p-value: 0.0001164
```


This is a first-order autoregressive, AR(1), model.

Let's try to add one more lag.

Let's try to add one more lag.

```
# Create lag 2 time series.

priceL2 <- lag(price, k=-2)

# Put them together

price_all <- cbind(price=price, priceL1=priceL1, priceL2=priceL2)

price_all[1:5,]

price priceL1 priceL2

[1,] 25.10 NA NA

[2,] 37.42 25.10 NA

[3,] 35.75 37.42 25.10

[4,] 31.83 35.75 37.42

[5,] 29.08 31.83 35.75
```

The model then becomes:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \epsilon_t$$

```
model <- lm(price ~ priceL1 + priceL2, data=price all)</pre>
  summary(model)
Call:
lm(formula = price ~ priceL1 + priceL2, data = price all)
Residuals:
          10 Median 30
    Min
                                      Max
-10.6861 -3.0937 0.7269 2.3375 10.9071
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.1749 3.7363 1.920 0.068505 .
priceL1 0.8427 0.2073 4.064 0.000557 ***
priceL2 -0.1646 0.2094 -0.786 0.440530
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.911 on 21 degrees of freedom
  (4 observations deleted due to missingness)
Multiple R-squared: 0.5411, Adjusted R-squared: 0.4974
F-statistic: 12.38 on 2 and 21 DF, p-value: 0.0002807
```

• priceL2 is not statistically significant, if we include priceL1.

- priceL2 is not statistically significant, if we include priceL1.
- This indicates that if we know last year's price, knowing the price from two years ago does not have a significant effect on our predictions!

- priceL2 is not statistically significant, if we include priceL1.
- This indicates that if we know last year's price, knowing the price from two years ago does not have a significant effect on our predictions!
- On its own, priceL2 was significant, and still had a positive correlation with price... but that correlation was smaller than the correlation between priceL1 and price.

Autocorrelation Function

The Autocorrelation Function (ACF) plots the correlation between the series and each of its lags, to help determine how many lags to include in our model.

acf(price)

Series price

