Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	29 October 2022
Team ID	PNT2022TMID17560
Project Name	AI-Powered Nutrition Analyzer For Fitness Enthusiasts
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Numbe r	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As an biogeography, I can register for the application by entering my email, password, and confirming my password.		High	Suganya A Mathubala M Gomathi P Komathi G
Sprint-1	Login	USN-3	As an biogeography, I can log into the application by enteringemail & password	2	High	Suganya A Mathubala M Gomathi P Komathi G
Sprint-1	Data Collection	USN-1	Download the dataset used in Digital Naturalist – AI Enabled tools for Biodiversity Researchers		High	Suganya A Mathubala M Gomathi P Komathi G

Sprint-1	Image Preprocessing	USN-1	Improving the image data that suppresses unwilling distortions orenhances some image features important for further processing, although performing some geometric transformations of images like rotation, scaling, etc.	1	High	Suganya A Mathubala M Gomathi P Komathi G
Sprint-2	Getting started with Convolutional NeuralNetwork	USN-1	Neural network are integral for teaching computers to think andlearn by classifying information, similar to how we as humanslearn. With neural networks, thesoftware can learn to recognize images, for example. Machinescan also make predictions and decisions with a high level of accuracy based on data inputs.	2	High	Suganya A Mathubala M Gomathi P Komathi G
Sprint-2	Evaluation and modelsaving	USN-1	well a model behaves after eachiteration of optimization. An accuracy metric is used to measure the algorithm's performance in an interpretable way. The accuracy of a model isusually determined after the model parameters and is calculated in the form of a percentage. Saving The Modelget_weights, set weights.	1	Medium	Suganya A Mathubala M Gomathi P Komathi G
Sprint-3	Application Building	USN-2	After the model is built, we will be integrating it to a web application so that normal users can also use it. The users need togive the images of species	1	High	Suganya A Mathubala M Gomathi P Komathi G
Sprint-4	Train the Model on IBM	USN-3	Build Deep learning model and computer vision Using the IBMcloud.		High	Suganya A Mathubala M Gomathi P Komathi G

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date(Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	20	6 Days	2 Nov 2022	7 Nov 2022	20	9 Nov 2022
Sprint-2	20	6 Days	8 Nov 2022	13 Nov 2022	20	15 Nov 2022
Sprint-3	20	6 Days	14 Nov 2022	19 Nov 2022	20	22 Nov 2022
Sprint-4	20	6 Days	20 Nov 2022	25 Nov 2022	20	28 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$