Class Conditional Variational Autoencoder on MNIST

Homework 7 for Deep Learning, Spring 2021

Deadline: 9 June, 2021

1 Introduction

In this homework, you are to imeplement a class-conditional VAE model using the ZhuSuan library¹, and test it on the MNIST dataset.

2 Class Conditional Variational Autoencoder

The model is defined as follows:

$$y \sim \text{Discrete}(\boldsymbol{\pi})$$

 $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ (1)
 $\mathbf{x} | \mathbf{z} \sim \text{Bernoulli}(\text{NN}_{\theta}(y, \mathbf{z}))$

where \mathbf{z}, y and \mathbf{x} are random variables. y denotes the class (label) of the digit, $\mathrm{Discrete}(\cdot)$ is a discrete distribution on $\{1, 2, \dots, 10\}$ such that for $1 \leq j \leq K$, $p(y=j) = \pi_j$. $\mathbf{z} \in \mathbb{R}^d$ is the latent representation as in the original VAE. $\mathbf{x} \in \{0, 1\}^{784}$ denotes the observed image. $\mathrm{NN}_{\theta}(\cdot)$ is a mapping from the concatenation of y (use the one-hot representation) and \mathbf{z} to \mathbf{x} , parameterized by a neural network.

In the problem we fix d=40 and set $\pi_j=1/K \ \forall j$. Given the training set of MNIST images $\mathcal{D}=(\mathbf{x}_i,y_i)_{i=1}^N$, you need to do maximum likelihood learning of the network parameters

$$\max_{\boldsymbol{\theta}} \log p(\mathcal{D}).$$

3 Requirements

- 1. Following the variational Bayes algorithm of the original VAE, derive the algorithm for this class-conditional variant. Specifically, you need to design the variational distribution $q(\mathbf{z}|\mathbf{x},y)$ and write down the variational lower bound.
- Implement the algorithm using ZhuSuan, and train the model on the whole training set of MNIST.
 - To get started with ZhuSuan, follow this tutorial on variational autoencoders. Then you can learn basic concepts here.
 - You can download the MNIST dataset here, and binarize it before use. You may use this script for this.
- 3. Visualize the generations of your learned model. Set y observed as $\{1, 2, \dots, K\}$, and generate multiple xs for each y using your learned model. Include a few samples in your report.

¹https://zhusuan.readthedocs.io/en/latest/

4 Attention

- You need to submit your code and a report (in **PDF format**).
- Plagiarism is not permitted.