2 - Univariate statistics

Central Tendency and Dispersion

Measure of Central Tendency

What value is representative of entire group?

Mean vs average

• Arithmic mean \overline{x} = sum of all values divided by number of values

$$\overline{x} = \sum_{i=1}^n x_i$$

- Median = middle number of all values sorted
- **Mode** = value that appears most often in dataset

Measures of Dispersion

How large are differences within group?

• Range = absolute value of difference between highest & lowest value

$$abs(x_{\min} - x_{\max})$$

- ullet Quartiles of sorted set of numbers = 3 values Q_1,Q_2 and Q_3 that divide set into 4 equally large subsets
 - Calculation:

When n is odd.

- The median (Q_2) is the middle value (as before). Leave out the median. Q_1 is the median of the first half, Q_3 is the median of the second half.

When n is even.

- The median (Q_2) is the average of the two middle values. Q_1 is the median of the first half, Q_3 is the median of the second half.
- Interquartile Range (IQR) = difference between third & first quartile

$$|Q_3 - Q_1|$$

• Variance (s^2 or σ^2) = mean squared diffference between values of a data set and arithmic mean

$$s^2=rac{1}{n-1}\sum_{i=1}^n\left(x_i-\overline{x}
ight)^2.$$

• Standard deviation (s or σ) is square root of variance

Properties of standard deviation σ

Property	Reason
$\sigma \geq 0$	$\sigma = \sqrt{\sigma^2}$ and number under $\sqrt{\ }$ is never < 0

Property	Reason
Smallest possible value is 0	If all values are equal to eachother. It means that there is no spread.
Outliers affect σ more	their difference with the mean is squared
The unit of standard deviation σ is the same as the unit of the original variable \boldsymbol{x}	because \boldsymbol{x} is squared and then the root is taken

When you're working with a sample (not the whole population), you use n-1 in the denominator to get an unbiased estimate of the population variance. This is called *Bessel's correction*.

The variance formula involves squaring the differences from the mean. When you use the sample mean, you're essentially using a statistic that's already tailored to the data. That costs you 1 degree of freedom; you've used one piece of information (the mean) to calculate the rest.

That's why we divide by n-1:

- n data points
- 1 constraint (the mean is fixed once you pick the rest)
- $\implies n-1$ degrees of freedom

Summary

Central tendency & dispersion

Measurement level	Center	Spred Distribution
Qualitative	Mode	1
Quantitative	Average/Mean	Variance, Standard Deviation
	Median	Range, IQR

Symbols

	Population	Sample
# of elements	N	n
average / mean	μ	\overline{x}
variance	$\sigma^2 = rac{1}{N} \sum \left(x_i - \mu ight)^2$	$s^2 = rac{1}{n-1} \sum \left(x_i - \overline{x} ight)^2$
standard deviation	σ	s

Data visualisation

Simple Graphs

Chart type overview

Measurement level	Chart type
Qualitative	Bar chart
Quantitative	Boxplot Histogram Density plot

Pie chart

Disadvantages:

- Comparing angles << comparing length
- unusable fir data with many categories

Interpretation of Charts

Tips:

- Label the axes
- Clear title
- Name the unit (and, if necessary, order of magnitude)
- · Add a label that clarifies the chart
- · Avoid bells & whistles
- Minimize "ink to data" ratio

Data distortion

= misrepresenting data so that invalid conclusions are drawn

Importance of visualization

Anscombe's Quartet are four completely different datasets with the same measurements of central tendency and dispersion.

