Python DeCal Week 4

Stitue

Announcements

- 2nd Hw was due just now!
- Office Hour
 - Thanks to those who showed up!!
- Attendance!
 - https://tinyurl.com/naitomea-akumu

Recap

- What is recursion?
- How are dictionaries different from lists?

How to make our code more POWERFUL?

- import statements:
 - math, random, numpy...
- You can import packages and libraries so that you don't have to write your own functions
 - How would you calculate the median of a list of a 10 unordered numbers?

How do you import?

- import package_name as alias:

- For example, let's talk about NUMPY today!
 - import numpy as np
- Generally put at the very beginning of your code

Numpy Arrays (1D)

- The most used tool in science
- This is a list

$$l = [0, 1, 2, 3, 4, 5, 6, 7]$$

- This is a numpy array

$$arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])$$

Same indexing rule as lists

IT IS SUPERIOR!!!!!!!!

Some review: What do the following commands do?

IT IS SUPERIOR!!!!!!!!

HOWEVER, THIS IS WHAT NUMPY ARRAY DOES!

```
arr1 = np.array([0, 1, 2, 3, 4, 5, 6, 7])
arr2 = np.array([0, 1, 2, 3, 4, 5, 6, 7])
```

Numpy arrays operate element-wise!

```
3*arr1 \rightarrow np.array([0, 3, 6, 9, 12, 15, 18, 21])
arr1 + arr2 \rightarray([0, 2, 4, 6, 8, 10, 12, 14])
```

Notice that the size of the two arrays have to be the same

What else can I do with 1D arrays?

Calculating the mean / average value:

```
sum(your_list)/len(your_list)
np.mean(your_array)
```

Calculating standard deviation (San Diego!!!)

Calculating median value:

```
np.median(your_arr)
```

2D Array!

You can think of it as a matrix, sometimes a table

You can store different information in a 2D-array

Many astronomical datasets are 2D arrays! (images, spectra)

Slicing & Indexing (you'll use this almost everyday)

Axis 1

Slicing & Indexing (you'll use this almost everyday)

Now I want the middle row....

"Axes-wise Operations"

```
>>> np.mean(arr, axis=0)
    np.array([2,1.67,2.33])
>>> np.median(arr,axis=1)
    np.array([2, 2, 2])
                                            Axis 1
```

Attendance Form: https://tinyurl.com/extragalactic-exoplanet

FRIDAY

Recap

- Numpy
 - What is it?
 - Numpy array

Breakout Room

- I have a 2D array

- How do I extract the everything along axis 0? Axis 1?

Numpy stats functions

Sometimes we want to directly know some information about the array we have.

- Order Statistics
- Averages and Variances

The Basics

Order Statistics for Higher Dimensional Arrays

These functions will give us some insight on the range and distribution of the data.

```
numpy.amin outputs the minimum along a specified axis numpy.amax outputs the maximum along a specified axis
```

Order Statistics Demo

Order Statistics Demo

Averages and Variances

```
numpy.median
numpy.mean (arithmetic mean)
numpy.std
numpy.var
```

Create array with specific range/number of items

```
numpy.arange([start], stop, [step])
numpy.linspace(start, stop, number of steps)
```

How do we get the Data?

Load data from a ASCII *.txt file

We can also import data to our jupyter notebook!

numpy.loadtxt("file_name", delimiter=None, skiprows=0,

usecols=None, unpack=False)

North Ameri United State	3/1/20	69	3	4.857	1	1	0.143	0.208	0.009	0.015
North Ameri United State	3/2/20	89	20	7.714	2	1	0.286	0.269	0.06	0.023
North Ameri United State	3/3/20	103	14	7.143	6	4	0.857	0.311	0.042	0.022
North Ameri United State	3/4/20	125	22	10.286	9	3	1.286	0.378	0.066	0.031
North Ameri United State	3/5/20	159	34	14.286	11	2	1.571	0.48	0.103	0.043
North Ameri United State	3/6/20	233	74	24.714	12	1	1.714	0.704	0.224	0.075
North Ameri United State	3/7/20	338	105	38.857	14	2	2	1.021	0.317	0.117
North Ameri United State	3/8/20	433	95	52	17	3	2.286	1.308	0.287	0.157
North Ameri United State	3/9/20	554	121	66.429	21	4	2.714	1.674	0.366	0.201
North Ameri United State	3/10/20	754	200	93	26	5	2.857	2.278	0.604	0.281
North Ameri United State	3/11/20	1025	271	128.571	28	2	2.714	3.097	0.819	0.388
North Ameri United State	3/12/20	1312	287	164.714	30	2	2.714	3.964	0.867	0.498
North Ameri United State	3/13/20	1663	351	204.286	40	10	4	5.024	1.06	0.617
North Ameri United State	3/14/20	2174	511	262.286	47	7	4.714	6.568	1.544	0.792
North Ameri United State	3/15/20	2951	777	359.714	57	10	5.714	8.915	2.347	1.087
North Ameri United State	3/16/20	3774	823	460	69	12	6.857	11.402	2.486	1.39
North Ameri United State	3/17/20	4661	887	558.143	85	16	8.429	14.081	2.68	1.686
North Ameri United State	3/18/20	6427	1766	771.714	108	23	11.429	19.417	5.335	2.331
North Ameri United State	3/19/20	9415	2988	1157.571	150	42	17.143	28.444	9.027	3.497
North Ameri United State	3/20/20	14250	4835	1798.143	150	0	15.714	43.051	14.607	5.432
North Ameri United State	3/21/20	19624	5374	2492.857	260	110	30.429	59.287	16.236	7.531
North Ameri United State	3/22/20	26747	7123	3399.429	340	80	40.429	80.806	21.519	10.27
North Ameri United State	3/23/20	35206	8459	4490.286	471	131	57.429	106.362	25.556	13.566
North Ameri United State	3/24/20	46442	11236	5968.714	590	119	72.143	140.307	33.945	18.032
North Ameri United State	3/25/20	55231	8789	6972	801	211	99	166.86	26.553	21.063
North Ameri United State	3/26/20	69194	13963	8539.857	1050	249	128.571	209.044	42.184	25.8
North Ameri United State	3/27/20	85991	16797	10248.714	1296	246	163.714	259.789	50.746	30.963
North Ameri United State	3/28/20	104686	18695	12151.714	1707	411	206.714	316.269	56.48	36.712
North Ameri United State	3/29/20	124665	19979	13988.286	2191	484	264.429	376.628	60.359	42.26
North Ameri United State	3/30/20	143025	18360	15402.714	2509	318	291.143	432.096	55.468	46.534
North Ameri United State	3/31/20	164620	21595	16882.571	3170	661	368.571	497.337	65.241	51.004
North Ameri United State	4/1/20	189618	24998	19198.143	4079	909	468.286	572.859	75.522	58
North Ameri United State	4/2/20	216721	27103	21075.286	5138	1059	584	654.741	81.882	63.671

Load data from a txt file-Example

```
>>> data = np.loadtxt("sample_data.txt", skiprows = 1)
>>> print(data) → numpy array with data
```

Looking for the data?

We can ask numpy to find indexes of specific data using numpy.where

```
numpy.where(condition)
```

Example:

Looking for the data?-Example

```
>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.where(a < 5, a, 10*a)
array([ 0,  1,  2,  3,  4, 50, 60, 70, 80, 90])</pre>
```

Homework Time

Correlating

These functions will give us some insight on the correlations

numpy.amin

numpy.amax

Do you want the correlations?

Idk what they are but they are on the numpy stat functions

Histograms

These functions will compute the histogram of a given set of data

```
numpy.histogram
numpy.histogram2d
numpy.histogramdd
numpy.bincount
numpy.histogram_bin_edges
numpy.digitize
```