Linear Algebra Spring 2023

Lecture 1: The Geometry of Linear Equations

Lecturer: Prof. Gilbert Strang Scribes: Chanho Jung

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes are based on the freely available online lectures by Prof. Gilbert Strang.

1.1 Linear Equations

The fundamental problem of linear algebra is to solve n linear equations in n. unknowns.

$$2x - y = 0$$
$$-x + 2y = 3$$
$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$
$$A\mathbf{x} = \mathbf{b}$$

The linear equations are Ax=b and the idea now is to solve this particular example, and then step back to see the bigger picture.

1.1.1 Row picture

Plot all the points that satisfy that equations.

(1,2) is the all-important point that lies on both lines. because this solves both equations. Seeing the row picture, first of all, for n=2, two equations and two unknowns.

1.1.2 Column picture

Look at the columns of the matrix.

$$x \begin{bmatrix} 2 \\ -1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

and now what is the equation asking for? It's asking us to find somehow to combine that vector.

It's asking us to find the right **linear combination**. And it's the most fundamental operation in the whole course.

Multiply by some numbers and add. That's a linear combination. This is Algebra. Then what's the geometry (what's the picture that goes with it)?

$$1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

Combine first column vector and second column vector to get vector **b**.

Then, what are all the combinations? If I took all the x and all the y, all the combinations, What would be all the results? The results would be that I could get any right-hand side at all.

1.1.3 Extend dimension

Let's do 3x3

$$2x - y = 0$$
$$-x + 2y - z = -1$$
$$-3y + 4z = 4$$

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}$$
$$A\mathbf{x} = \mathbf{b}$$

In this case, the points that satisfy all equations make a plane. Each row gives us a plane in three dimensions. those three things meet a point. The main point is that the three planes, because they're not parallel, they're not special.

This row picture getting a little hard to see. When we look at three planes meeting, it's not clear and in four dimensions probably a little less clear.

How about the column picture?

$$x \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} + y \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} + z \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}$$

The left-side is a linear combination of three vectors, so we want to know what combination of those three vectors produces that one. If x=0,y=0,z=1, the combinations make **b**.

1.1.4 Linear Independence

It's the next lecture, which is about elimination, which is the systematic way that every body would solve the equations.

Can I solve these equations for every right-hand side? that's the algebra question.

Can I solve Ax=b for every b?

Do the linear combinations of the columns fill three dimensional space?

Every b means all the b in three dimensional space. Elimination will give me a way to find it.

For this matrix A, answer is YES. because I choose good matrix. non-singular matrix, An invertible matrix.

If these three columns all lie in the same plane, then their combinations will lie in that same plane.

It's can solve If b is in the same plane, but most b would be out of the plane and unreachable. So that would be a **singular** case. the matrix is not invertible. there would not be a solution for every b.

If I choose those columns so that they're not independent,

A times x when I multiply a matrix by a vector. It's multiply that Matrix times vector. then how do you multiply a matrix by a vector?

There is two way.

First is columns again!

$$A\mathbf{x} = \mathbf{b}$$

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = ?$$

$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 12 \\ 7 \end{bmatrix}$$

Second is the idea of a dot product. Do it by rows and each row times x that call a dot product. The point is Ax is a combination of the columns of A.