Class 2: Stochastic volatility models and heteroskedasticity

Andrew Parnell andrew.parnell@ucd.ie

Learning outcomes

- ▶ Learn how to model changing variance in a time series
- Understand how to fit ARCH, GARCH and SVM models in JAGS
- ▶ Know how to compare and plot the output from these models

General principles of models for changing variance

► So far we have looked at models where the mean changes but the variance is constant:

$$y_t \sim N(\mu_t, \sigma^2)$$

▶ In this module we look at methods where instead:

$$y_t \sim N(\alpha, \sigma_t^2)$$

- These are:
 - Autoregressive Conditional Heteroskedasticity (ARCH)
 - Generalised Autoregressive Conditional Heteroskedasticity (GARCH)
 - Stochastic Volatility Models (SVM)
- ► They follow the same principles as ARIMA, but work on the standard deviations or variances instead of the mean
- forecast doesn't include any of these models so we'll use JAGS. There are other R packages to fit these models

Extension 1: ARCH

► An ARCH(1) Model has the form:

$$\sigma_t^2 = \gamma_1 + \gamma_2 \epsilon_{t-1}^2$$

where ϵ_t is the residual, just like an MA model

▶ Note that $\epsilon_t = y_t - \alpha$ so the above can be re-written as:

$$\sigma_t^2 = \gamma_1 + \gamma_2 (y_{t-1} - \alpha)^2$$

- ► The variance at time *t* thus depends on the previous value of the series (hence the autoregressive in the name)
- ▶ The residual needs to be squared to keep the variance positive.
- ▶ The parameters γ_1 and γ_2 also need to be positive, and usually $\gamma_1 \sim \textit{U}(0,1)$

JAGS code for ARCH models

```
model_code =
model
  # Likelihood
  for (t in 1:T) {
    y[t] ~ dnorm(alpha, sigma[t]^-2)
  sigma[1] ~ dunif(0, 3)
  for(t in 2:T) {
    sigma[t] \leftarrow sqrt(gamma_1 + gamma_2 * pow(y[t-1] - alpha, 2))
  }
  # Priors
  alpha \sim dnorm(0.0, 0.01)
  gamma 1 ~ dunif(0, 100)
  gamma 2 ~ dunif(0, 100)
```

Reminder: forest fires data

ARCH(1) applied to forest fires data

plot(ff_run)

Bugs model at "5", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

-100	80% into 0	erval for ea 100	ch chain 200	300	1	R-hat 1.5	2+
alpha deviance gamma_1 gamma_2			-				
-100	0	100	200	300	1	1.5	2+

medians and 80% intervals

Plot the ARCH parameters

```
par(mfrow=c(1,2))
hist(ff_run$BUGSoutput$sims.list$gamma_1, breaks=30)
hist(ff_run$BUGSoutput$sims.list$gamma_2, breaks=30)
```

Histogram of ff_run\$BUGSoutput\$sims.list\$gamma_ Histogram of ff_run\$BUGSoutput\$sims.list\$gamma_

Plot the posterior standard deviations

Posterior standard deviation

From ARCH to GARCH

- ► The Generalised ARCH model works by simply adding the previous value of the variance, as well as the previous value of the observation
- ► The GARCH(1,1) model thus has:

$$\sigma_t^2 = \gamma_1 + \gamma_2 (y_{t-1} - \alpha)^2 + \gamma_3 \sigma_{t-1}^2$$

- ▶ Strictly speaking $\gamma_1 + \gamma_2 < 1$ though like the stationarity conditions in ARIMA models we can relax this assumption and see if the data support it
- ▶ It's conceptually easy to extend to general GARCH(p,q) models which add in extra previous lags

Example of using the GARCH(1,1) model

```
model code = '
model
  # Likelihood
  for (t in 1:T) {
    y[t] ~ dnorm(alpha, sigma[t]^-2)
  sigma[1] ~ dunif(0,10)
  for(t in 2:T) {
    sigma[t] \leftarrow sqrt(gamma_1 + gamma_2 * pow(y[t-1] - alpha, 2)
                          + gamma_3 * pow(sigma[t-1], 2))
  # Priors
  alpha \sim dnorm(0, 10^-2)
  gamma 1 ~ dunif(0, 10)
  gamma 2 ~ dunif(0, 10)
  gamma 3 \sim dunif(0, 10)
```

Using the forest fire data again

plot(ff_run_2)

Bugs model at "6", fit using jags, 3 chains, each with 2000 iterations (first 1000 discarded)

	80% int	erval for ea	ch chain			R-hat	
-100	0	100	200	300	1	1.5	2+
alpha	•			_	-		_
deviance			-				
gamma_1							
gamma_2							
gamma_3					•		
-100	0	100	200	300	1	1.5	2+

Looking at the GARCH parameters

listogram of ff_run_2\$BUGSoutput\$sims.list\$gamrlistogram of ff_run_2\$BUG

Posterior standard deviations over time

Posterior standard deviation

Compare with DIC

```
with(r_1, print(c(DIC, pD)))
## [1] 201.368302  4.035933
with(r_2, print(c(DIC, pD)))
## [1] 201.555766  4.896507
```

 Suggests full GARCH model is best, despite the extra parameters

Stochastic Volatility Modelling

- ► Both ARCH and GARCH propose a deterministic relationship for the current variance parameter
- By contrast a Stochastic Volatility Model (SVM) models the variance as its own stochastic process
- SVMs, ARCH and GARCH are all closely linked if you go into the bowels of the theory
- ▶ The general model structure is often written as:

$$y_t \sim N(\alpha, \exp(h_t))$$
 $h_t \sim N(\mu + \phi(h_{t-1} - \mu), \sigma^2)$

You can think of an SVM being like a GLM but with a log link on the variance parameter

JAGS code for the SVM model

```
model code = '
model
  # Likelihood
  for (t in 1:T) {
    v[t] ~ dnorm(alpha, sigma h[t]^-2)
    sigma h[t] <- sqrt(exp(h[t]))</pre>
  h[1] <- mu
  for(t in 2:T) {
    h[t] \sim dnorm(mu + phi * (h[t-1] - mu), sigma^{-2})
  }
  # Priors
  alpha \sim dnorm(0, 0.01)
  mu \sim dnorm(0, 0.01)
  phi \sim dunif(-1, 1)
  sigma ~ dunif(0,100)
```

Example of SVMs and comparison of DIC

plot(ff_run_3)

Look at all the parameters

Histogram of ff_run_3\$BUGSoutput\$sims.list\$mu

$Histogram\ of\ ff_run_3\$BUGSoutput\$sims.list\$phi$

Histogram of ff_run_3\$BUGSoutput\$sims.list\$sigma

Plot of h

Comparison with previous models

```
with(r 1, print(c(DIC, pD)))
## [1] 201.368302 4.035933
with(r 2, print(c(DIC, pD)))
## [1] 201.555766 4.896507
with(r_3, print(c(DIC, pD)))
## [1] 180.20517 49.50493
```

Even better again, despite many extra parameters due to h!

Summary

- We know that ARCH extends the ARIMA idea into the variance using the previous values of the series
- We know that GARCH extends ARCH with previous values of the variance too
- We know that SVMs give the variance its own stochastic process
- We can combine these new models with all the techniques we have previously learnt