Tutorial for

KEGG Online Database

DI Michael Kalkusch kalkusch@icg.tu-graz.ac.at

Version 1.2

September 20th, 2006

Acknowledgment:

Thanks to Dr. Peter Abuja for his expert knowledge in the area of metabolisms and pathways.

This document was created by Michael Kalkusch after a meeting on August 17th 2006 with Dr.Abuja and Marc Streit. Thanks to Marc Streit for his contribution during the initial creation of this document.

The document was update 20th September,2006 by Michael Kalkusch after a meeting with Dr. Abuja.

This document will be available at:

http://www.icg.tu-graz.ac.at/research/CGIS/GENVIEW/

Snapshots from KEGG web interface

http://www.genome.jp/kegg/pathway.html visited 17-08-2006

Example: Pathway "metionine metabolism - Reference pathway "

Figure 1:

Help

Entry

EC 2.5.1.48 Enzyme

Name cystathionine gamma-synthase;

O-succinyl-L-homoserine succinate-lyase (adding cysteine);

O-succinylhomoserine (thiol)-lyase; homoserine O-transsuccinylase; O-succinylhomoserine synthase; O-succinylhomoserine synthetase;

cystathionine synthase;
cystathionine synthetase;
homoserine transsuccinylase

Class Transferases

Transferring alkyl or aryl groups, other than methyl groups Transferring alkyl or aryl groups, other than methyl groups

Sysname 04-succinyl-L-homoserine:L-cysteine

 ${\tt S-(3-amino-3-carboxypropyl)\,transferase}$

Reaction O-succinyl-L-homoserine + L-cysteine = L-cystathionine + succinate

[RN:R00999 R01288 R02508 R03132 R03260 R04944 R04945 R04946]

Substrate O-Succinyl-L-homoserine [CPD:C01118];

L-Cysteine [CPD:<u>C00097</u>]

Product L-Cystathionine [CPD:C02291];

Succinate [CPD: C00042]

Cofactor Pyridoxal phosphate [CPD: C00018]

Comment A pyridoxal-phosphate protein. Also reacts with hydrogen sulfide and

methanethiol as replacing agents, producing homocysteine and methionine, respectively. In the absence of thiol, can also catalyse

beta, gamma-elimination to form 2-oxobutanoate, succinate and

ammonia.

Pathway PATH: map00271 Methionine metabolism

PATH: map00272 Cysteine metabolism

PATH: map00450 Selenoamino acid metabolism

PATH: map00920 Sulfur metabolism

Ortholog KO: K01739 cystathionine gamma-synthase

Genes XLA: <u>494673</u> (LOC494673)

XTR: <u>394634</u> (MGC75946)

ATH: <u>At3g01120</u> (T4P13.19)

CME: CMF156C

SCE: YJR130C (STR2) YML082W

AGO: <u>AER164C</u>(AER164Cp)

CAL: <u>orf19.1033</u>(STR2) <u>orf19.7297</u>

SPO: <u>SPBC15D4.09c</u> CNE: <u>CNC01220</u>

LMA: <u>LmjF35.3230</u>

EHI: <u>132.t00018</u> <u>389.t00003</u> <u>395.t00003</u>

ECO: <u>b3939</u> (metB)

ECJ: <u>JW3910</u> (metB)

 \ldots : reduced the list of 191 gene in total

Reference 1 [PMID: <u>5340123</u>]

Flavin M, Slaughter C.

Enzymatic synthesis of homocysteine or methionine directly from

```
O-succinyl-homoserine.
          Biochim. Biophys. Acta. 132 (1967) 400-5.
          2 [PMID: <u>5922970</u>]
          Kaplan MM, Flavin M.
          Cystathionine gamma-synthetase of Salmonella. Catalytic properties
          of a new enzyme in bacterial methionine biosynthesis.
          J. Biol. Chem. 241 (1966) 4463-71.
             [PMID: 6016326]
          Wiebers JL, Garner HR.
          Homocysteine and cysteine synthetases of Neurospora crassa.
          Purification, properties, and feedback control of activity. J. Biol. Chem. 242 (1967) 12-23.
          Wiebers, J.L. and Garner, H.R. Acyl derivatives of homoserine as
          substrates for homocysteine synthesis in Neurospora crassa, yeast,
          and Escherichia coli. J. Biol. Chem. 242 (1967) 5644-5649.
          5 [PMID: 9843488]
          Clausen T, Huber R, Prade L, Wahl MC, Messerschmidt A.
          Crystal structure of Escherichia coli cystathionine gamma-synthase
          at 1.5 A resolution.
          EMBO. J. 17 (1998) 6827-38.
          6 [PMID: 9531508]
          Ravanel S, Gakiere B, Job D, Douce R.
          Cystathionine gamma-synthase from Arabidopsis thaliana: purification
          and biochemical characterization of the recombinant enzyme
          overexpressed in Escherichia coli.
          Biochem. J. 331 ( Pt 2) (1998) 639-48.
Other DBs IUBMB Enzyme Nomenclature: 2.5.1.48
          ExPASy - ENZYME nomenclature database: 2.5.1.48
          ERGO genome analysis and discovery system: 2.5.1.48
          BRENDA, the Enzyme Database: 2.5.1.48
          CAS: 9030-70-0
LinkDB
           All DBs
```

=> Original format

DBGET integrated database retrieval system, GenomeNet

Table 1

Klick on pathway "PATH: map00271 metionine metabolism" shows this:

Figure 2:

Klick on Cystathionine opens this page:

<u>DBGET</u> integrated database retrieval system, <u>GenomeNet</u>

Table 2

Example for a reaction:

Help

Entry Reaction R00999

Name O-Succinyl-L-homoserine succinate-lyase (adding cysteine)

Definition O-Succinyl-L-homoserine + H2O <=> 2-Oxobutanoate + Succinate + NH3

<u>C01118</u> + <u>C00001</u> <=> <u>C00109</u> + <u>C00042</u> + <u>C00014</u> Equation

RP: <u>A00132</u> RP: <u>A01229</u> RPair C00042 C01118 main

C00109_C01118 main

Pathway PATH: rn00271 Methionine metabolism

2.5.1.48 Enzyme

Ortholog KO: K01739 cystathionine gamma-synthase

LinkDB All DBs

=> Original format

DBGET integrated database retrieval system, **GenomeNet**

Table 3

Flow Charts:

Figure 3: Basic graph with metabilite and enzyme regulated by cofactor

Regulation of enzymes and metabolites

Figure 5: Exdented model of pathway

Figure 6: Interrelationship of mRNA, protein, enzyme and metabolism

Figure 7: Two metabolits and two enzymes form a switch, that consumes energy

Concepts:

- Inside pathway: 2 step, 3 step relations inside the graph fram a given Protein or metabolit
- Take connectivity of metabolit into account (i.e. google principle)
- Use connectivity of metabolit as wight for its importance inside pathways (Spring mass modell / Graviation modell)
- Interrelations/ interaction:
 - Kinase ==> Protein
 - Protein <==> Protein interrelations
- Visualize flows from:

```
Substrate ==>
(Enzyme/ Protein) <-- using cofactor ==>
metabolit A ==>
(Enyzm / Protein) ==>
metabolit B
```

A possibility here could be the application of Petri-Nets (http://en.wikipedia.org/wiki/Petri-net)

- Semantic Zooming:
 - hide / show metabolits
 - o collapse protein chains
 - o collapse pathway inside another pathway
 - magic lense for sematic zooming
- Messure activity of metabolids: required for detailed analysis, but not done within Micro Array analysis
- Position of enzyme inside cell
- Compartments the enzyme is present in
- Handle enzyme casscades ==> if top element of enzyme-casscade is active, the casscade might be active to. Thus only the result of the casscade is active, but not its intermediate enzyms.

• Important fields of "Enzymes" in KEEG (see table 1):

Entry: unique international standardized identifyier Name: known names for this molecule and aliases for it

Reaction: chemical reaction Substrate: Input to the Enzyme Product: Output of the Enzyme

Cofactor: if set, it is nesseccary to activate the Enzyme

Pathway: shows only active pathways linked to one Enzyme but not pathways influenced by this

enzyme!

Ortholog: special genes (see glossary)

Genes: ???

• Important fields of "Compounds" in KEGG (see table 2):

Entry: unique code (used by KEGG? Only or also international unique?)

Name: known names for this molecule and aliases for it

Mass: mass of this molecule (mass unit?) Structur: chemical structure of thie molecule

Reaction: chemical reaction, were this compound is part of

Pathway: list of active pathways, were this compound can be found

Enzyme: list of enzymes capeable of handling this compound, either as input or as output; also

know as "Substrate" and "Product"

• Important fields of "Reaction" in KEGG (see table 3):

Entry: unique name (probably only in KEGG)

Name: name that defines this reaction

Definition: define this reaction

Equation: link to compunds of this reaction

Rpair: ??

Pathway: list of pathways were this reaction is part of

Enzyme: list of enzymes that do this reaction

Ortholog: special genes (see glossary)

Other databases aside from KEGG:

(suggested by Dr. Abuja)

Biomodal DB: http://www.ebi.ac.uk/biomodals/

Reactome "A curated knowledgebase of biological pathways" http://www.reactome.org/

Brookhaven Protein Database http://cds.dl.ac.uk/cds/pdb.html for structure of enzymes

EMBL "European Molecular Biology Laboratoy" http://www.embl.org/

EMBO "European Molecular Biology Organization" http://www.embo.org/

SMBL "Systems Biology Markup Language" http://sbml.org/

Other important websites:

RCSB "Research Collaboratory for Structural Bioinformatics" http://home.rcsb.org/

RCSB PDB Protein Data Base http://www.rcsb.org/pdb/

Software we should look at:

- "Panther" (Applied Biosoftware)google: "Pathway" as well as "Pathway Heatmap"

Books:

David Fell, "Regulation of Metabolism" ("Kinetische Regulation")

Homepage of David Fell:

http://www.brookes.ac.uk/bms/research/fell.html

Glossary:

Term	Description	Link
Substrate	a molecule upon which an enzyme acts. Enzymes catalyze chemical reactions involving the substrate(s).	http://en.wikipedia.org/wiki/Substrate_(biochemistry)
Kinase	a type of <u>enzyme</u> that transfers <u>phosphate</u> groups from <u>high-energy</u> donor molecules, such as <u>ATP</u> , to specific target molecules (<u>substrates</u>); the process is termed <u>phosphorylation</u> .	http://en.wikipedia.org/wiki/Kinase
Inhibitor	???	
Effektor	???	
Kinetische Regulation	???	
EC-Number	Enzyme Commission number (EC number)	http://en.wikipedia.org/wiki/EC_number
Homocysteine		http://en.wikipedia.org/wiki/Homocysteine
Ortholog	Orthologs are genes in different species which evolved from a common ancestral gene.	http://en.wikipedia.org/wiki/Ortholog
Proteomics		http://en.wikipedia.org/wiki/Proteomics
Metabolomics		http://en.wikipedia.org/wiki/Metabolomics
mRNA	Messenger RNA, transcribed DNA that leaves the cell core.	http://en.wikipedia.org/wiki/MRNA
	A ribosom transcribed the mRNA to a Protein.	
Nucleotide	A,G,T,C (U=T)	http://en.wikipedia.org/wiki/Nucleotide
	Adenosine	
	Guanin	
	Thymidine (DNA only)	
	Cytidne	
	Urdine (RNA only) = T	

Term	Description	Link
Codon	Group of three Nucleotides. A ribosom translates Codons of the mRNA to amino acids, that are linked to gethe to form a protein.	http://en.wikipedia.org/wiki/Codon
Amino acids	Amino acids build a Protein.	http://en.wikipedia.org/wiki/List_of_standard_amino_acids
Ribosom	Translates the mRNA to a Protein by reading Codons and translating them to amion acids, that are linked together forming the protein	http://en.wikipedia.org/wiki/Ribosome