Graph T Shirstest Path Algorithm

Minimum cost spanning Trees.

Algorithm strategy -

- 1. Greedy Technique
- 2. Dynamic Programming

Greedy Algorithm

- A class of algorithm that makes locally optional choices at each step, hopeing to get the final optimal solution.
- World when the problem enhibits-
 - 1. Greedy Choice Property-
 - Maling the best local choice leads to the global Optimal Solution.

2. Optimal substancture -

- The optimal solutions can be constructed from the optimal solutions of its subproblems.

Steps for Coexting a Greedy Algorithm -

1. Define the problem -

- clearly star fle objectives of the problem to be optimized.

2. Identify the Greedy Choice -

- Find the locally optimal choice at each skp.

3. Malco fee Greedy Choice -

- Select the best option based on the Cursent state

4. Repeat the process-

- Continu making greedy choices until a Solution is reached.

Characteristics of Greedy Algorithms -

- 1. Simple to implement
- 2. fast & Efficient in solving problem
- 3. Locally optimal choice made at each step
- 4. Decisions aux based on cursent information, past choices comnot be considered

Examples:

1. Dijletsa's Algorithm-finds shorter path

- 2. Kouelcalis Algorithme Find the minimum Spanning tree
- 3. Huffman Coding Compresse dats by assigning shocker code to more frequent symbols.

Applications -

- 1. Task scheduling min. wating time
- 2. Résource allocation
- 3. Data Compression
- 4. Newsk Designs

Dynamic Programming

- A method for solving complex problems by breaking them into Simplex supporablems.
 - Key concepts -
 - 1. Overlapping Subproblem -
 - Repeated calculation for the same problem
 - 2. Optimal Substructure -
 - The optimal solution to a problem can be constructed from the optimal solutions of its subproblem

Steps in Dynamic Programing (DP) - (westing)

- 1. Identify the porroblem
- 2. Solve each subproblem & store He result
- 3. Build the solution to the main problem Wing stored result
- 4. Avoid se dundant Computations by leving stored solutions

Approaches fro Dynamic Posquemmins

1. Top Down Approach (Memoization) Submoblems eg. Recursive fibonacei

d. Bottom Up Approach (Tabulation) small of problem

eg. Iterative fibonacci wing Table

Frample -

- 1. Fibonacci Sequence
- 2. Longest Common Subsequest (LCS)
- 3. Knapsack Problem
- 4. Shortest Paths.

Greedy Algorithm	DP
Locally ophino soln	Solve Emproblem & builds up to global Solution
Not alway queranted Optimal sola	Guarntee globally

Soln

optimal

TC: linear or poly
o(n)
o(n)

eg kmehak eg.

TC: overlappins

eg. Shortest Path

spanning Tree: G(V, E) - undirected

undisected graph

Total cost= 74

SPF2

Total cost = 71

Minimum cost Spanning Trec

Minimum Spanning Tock: (MST)

- MST 18 a subset of edges from a connected weighted graph that connects are the vertices without any cycles and with minimum possible total edge weight.

Conditions -

- 1. Graph connected
- 2. Graph undrected
- 3. Weight an Unique

To identify minimum spanning Tree

1. Knichkals Algorithm

2. Prinés Algosithm

2 Greedy Algorithm

Knushkal's Algorithm

(Shretest cost first)

Total Cost = 14

Time complexity = $0 (E \log E)$ E = bnumberSpace Complexity = 0 (E + v)

trimis Algorithm

Total Cost = 14

Time Complexity = O[V]
Space Complexity = O (V)

Dijlestra: Algorithm - Shrster Path in Weighted Graph

- Type weighted graph with non-negative
- Method-Greedy Algorithm that expand the node with the smallest distance at each step.

Ex

_ 3 => No direct path felaxation if (a[u] + c[u,v] × d[v]) distance, d[v] = d[u] +c[u,v] → Ex! d[v] O Time Complexity 2 3 n = |1/1 x (1/1 45 Nertico Selanc 1 $\approx O(n^2)$ space - OIVI $\rightarrow O(n)$ visited nods

- Negative weighted edge => Bellman Ford

Time (amplexity => 0 (V+E)

Space Complexity) O(IVI)