

Computer Security

Cunsheng DING, HKUST

COMP4631

Lecture 12: Several Key Distribution Protocols

Outline of this Lecture

- 1. Passive and active attacks
- 2. Merkel's protocol.
- 3. The Needham-Schröder protocol.
- 4. Shamir's three-pass protocol.

Passive and active attacks

Passive attacks: Any attack on a security system under the assumption that the attacker can only intercept messages exchanged over a communication channel is called a passive attack.

Active attacks: Any attack on a security system under the assumption that the attacker can stop, intercept, delete, modify, and replay messages exchanged over a communication channel or insert his/her messages into the channel is called a passive attack.

In such a scenario, we say that the attacker has **full control** over the communication channel.

Secret Key Distribution with a PKC

Comments:

Public key cryptosystems are usually not used for real encryption, as they are very slow. They are used for distributing secret keys of one-key ciphers and/or for signing messages.

Question: How to use a PKC for distributing a secret key?

Merkel's Key Distribution Protocol

Scenario: A and B want to establish a session key.

- 1. A generates a key pair $(k_e^{(A)}, k_d^{(A)})$, and sends $k_e^{(A)}||ID_A|$ to B, where ID_A is an identifier of A.
- 2. B generates a secret key k, and sends $E_{k_e^{(A)}}(k)$ to A.
- 3. A computes $D_{k_d^{(A)}}\left[E_{k_e^{(A)}}(k)\right]=k$.
- 4. A discards $(k_e^{(A)}, k_d^{(A)})$, and B discards $k_e^{(A)}$.

Remark: This is a variant of the digital envelop protocol.

Merkel Key Distribution Protocol: Pictorial

Remark: This is a variant of the **digital envelop protocol**, here we assume that A and B did not exchange their public keys before.

Comments: This protocol is vulnerable to an active attack. If an enemy E has control of the **intervening** communication channel, then E can "compromise" the communication without being detected.

Question: What is the active attack?

Active Attack on the Merkel Protocol

- 1. A generates a key pair $(k_e^{(A)}, k_d^{(A)})$, and sends $k_e^{(A)}||ID_A|$ intended for B, where ID_A is an identifier of A.
- 2. E intercepts the message, creates its own key pair $(k_e^{(E)}, k_d^{(E)})$, and sends $k_e^{(E)}||ID_A|$ to B.
- 3. B generates a secret key k, and sends $E_{k_e^{(E)}}(k)$ (intended for A).
- 4. E intercepts the message, decrypts it to get k; then he computes and sends $E_{k_{\varepsilon}^{(A)}}(k)$ to A.

Comment: A and B are unaware that E has got k.

The Intruder-in-the-Middle Attack: Pictorial

attacker in the middle

Active attack on the Merkel Protocol

Page 7 COMP4631

The Modified Needham-Schröder Protocol

For both confidentiality and authentication:

Assume that A and B have exchanged their public keys with some method.

Remarks: Nonce N_1 is to identify this transaction uniquely.

The Modified Needham-Schröder Protocol

- 1. A sends $E_{k_e^{(B)}}[N_1||ID_A]$ to B, where N_1 is a nonce used to identify this transaction uniquely, and is generated by A.
- 2. B generates a new nonce N_2 , and sends $E_{k_e^{(A)}}[N_1||N_2]$ to A. After decryption A gets N_1 , and is sure that the responder is B.
- 3. A selects a secret key k and sends $E_{k_e^{(B)}}[N_2||k]$ to B. (Encryption with B's public key ensures confidentiality)
- 4. After decryption B gets N_2 and k, and is sure that its correspondent is A.

Question: How does this protocol ensure both confidentiality and authenticity?

A Protocol Problem

- The box and locks are very strong.
- Alice and Bob can identify each other's lock.
- Alice and Bob's locks have a unique key.

Alice NY Every week Alice takes photos and wishes to send them to Bob using the box and locks In a secure way. Locked box may be delivered to the other side by a post office.

Bob HK

Design a secure protocol for Alice and Bob.

Page 10 COMP4631

Page 11 COMP4631

Shamir's Three-Pass Protocol

Objective: Alice wants to transfer a secret key k to Bob via a public communication channel.

System Parameters:

- A prime p is chosen so that the discrete logarithm problem mod p is hard. p is a public knowledge.
- Alice selects a random number a with gcd(a, p 1) = 1. a^{-1} denotes the inverse of $a \mod p 1$.
- Bob selects a random number b with gcd(b, p 1) = 1. b^{-1} denotes the inverse of $b \mod p 1$.

Page 12 COMP4631

**

Shamir's Three-Pass Protocol

First of all, Alice computes $k_1 = k^a \mod p$.

- 1. Alice sends $k_1 = k^a \mod p$ to Bob.
- 2. Bob sends $k_2 = k_1^b \mod p$ to Alice.
- 3. Alice sends $k_3 = k_2^{a^{-1}} \mod p$ to Bob.

Finally, Bob computes $k = k_3^{b^{-1}} \mod p$.

Question: Why $k = k_3^{b^{-1}} \mod p$?

$$\mathbf{Why} \ k = k_3^{b^{-1}} \bmod p$$

By the definition of multiplicative inverse,

$$a \cdot a^{-1} = u_1(p-1) + 1, \quad b \cdot b^{-1} = u_2(p-1) + 1$$

If k = 0, it is obvious. If $k \neq 0$, by Fermat's theorem

$$k_3^{b^{-1}} \bmod p = k^{aa^{-1}bb^{-1}} \bmod p$$

$$= k^{[u_1u_2(p-1)+u_1+u_2](p-1)+1} \bmod p$$

$$= \left((k^{[u_1u_2(p-1)+u_1+u_2]})^{p-1} \bmod p \right) k \bmod p$$

$$= k \bmod p$$

$$= k \bmod p$$

$$= k.$$

The Security of the Protocol

- 1. Alice sends $k_1 = k^a \mod p$ to Bob.
- 2. Bob sends $k_2 = k_1^b \mod p$ to Alice.
- 3. Alice sends $k_3 = k_2^{a^{-1}} \mod p$ to Bob.

Security: security w.r.t. to passive attacks depends on the difficulty of solving the discrete logarithm problem.

Not secure with respect to an active attack (the so-called intruder-in-the-middle attack).