

Partial Least Squares (O-/PLS/-DA) modeling of metabolomic sample processing methods

Goal:

Use PLS to identify metabolites which best discriminate (most different between) sample processing methods (Used DATA: Pumpkin data 1.csv)

Topics:

- 1. Model Selection
- 2. Results visualization
- 3. Feature Selection
- 4. Validation

PCA

PLS-DA

Partial Least Squares Modeling Discriminant Analysis (PLS-DA)

Used DATA: Pumpkin data 1.csv

Steps

- 1.Calculate a PLS model to discriminate between extraction_treatment methods
- 2. Select optimal scaling and model latent variable (LV) number
- 3. Overview PLS scores and loadings plots
- 4. Validate model
- 5.Repeat steps 1-4 for an O-PLS model

Visualize:

- 1. Sample scores annotated by extraction and treatment
- 2. Variable loadings plot

Exercise:

- 1. How are scores different between PLS and O-PLS?
- 2. Are there any moderate or extreme outliers?
- 3. What variables contribute most to the differences between treatments?

-10

Model Scores (extraction_treatment)

Comp. 1 (18%)

Extraction Treatment

- 100% MeOH _ fresh frozen
- ACN:IPA:H2O (3:3:2) _ fresh frozen
- MeOH:CHCl3:H2O (5:2:2) _ fresh frozen
- MeOH:CHCl3:H2O (5:2:2) _ lyophilized

Variance in extraction dominates model

Model Validation

\$statistics			
	Xvar	Q2	RMSEP
intercept	0.0	-0.0888	1.167
LV 1	17.8	0.7042	0.603
LV 2	37.4	0.8034	0.494

single model performance estimates

```
Dependent Variables (LVs) (1)Extraction_Treatment
Latent variables (LVs) 2
Orthogonal latent variables (OLVs) 0
model cross-validation L00
method oscorespls
Internal train/test index 20 repetitions generated by random
```

Model properties and validation settings

```
$`Validated Model Performance (Y1)`

Xvar Q2 RMSEP

model 37.16 ± 7.28 0.8772 ± 0.0388 0.5826 ± 0.155

permuted model 30.28 ± 6.41 0.2561 ± 0.265 1.38 ± 0.215

p-value 0.003044 1.904e-09 2.818e-15
```

Based on training/test splitting

Based on training/test splitting and permuted Y

Significance of difference between model performance and permuted NULL distributions

Model Scores Comparison

Extraction Treatment

- 100% MeOH _ fresh frozen
- ACN:IPA:H2O (3:3:2) _ fresh frozen
- MeOH:CHCl3:H2O (5:2:2) _ fresh frozen
- MeOH:CHCl3:H2O (5:2:2) _ lyophilized

2-Y O-PLS

Sugar phosphates, polyols

Feature Selection

Steps

- 1.Identify top 10% of discriminants for extraction_treatment based on metabolite
 - correlation with model scores
 - importance (loading, coeffcient, VIP)

Visualize:

1. Feature selection diagnostics

Feature Selection for Extraction

Summary

Modeling Strategy (advanced)

- 1. Fit preliminary model
- 2. Evaluate of scores/loadings
- 3. Remove outliers
- 4. split data into test and train set (optional)
- 5. model selection (LV, OLV, etc)
- 6. internal (training set) model validation (permutation testing, training/testing)
- 7. Feature selection (optional)
 - Comparison of selected to excluded feature models
- 8. External model validation (test set)