Übungsblatt 2

(komplexe Zahlen)

Hinweis:

Winkel φ im Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
$\sin(\varphi)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\cos(\varphi)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1

Winkel φ im Bogenmaß	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$
$\sin(\varphi)$	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$
$\cos(\varphi)$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$

Aufgabe 1

Veranschaulichen Sie nachfolgende Mengen in der komplexen Zahlenebene:

(a)
$$H := \{ z \in \mathbb{C} : 1 < |z - 2i| < 2 \}$$

(b)
$$B := \{ z \in \mathbb{C} : |z + 1 - i| > 1 \}$$

(c)
$$C := \{ z \in \mathbb{C} : |z| = |z - 1| \}$$

Aufgabe 2

Bestimmen Sie die folgenden Beträge:

(a)
$$\left| \left(\frac{2+2i}{1-i} \right)^6 \right|$$
, (b) $\left| (6+2i)(2+i) \right|$, (c) $\left| \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i \right)^{15} \right|$.

Hinweis: Denken Sie an die Rechenregeln von Seite 10 der Vorlesung.

Aufgabe 3

Skizzieren Sie die folgenden Zahlen zunächst in der Gaußschen Zahlenebene. Bestimmen Sie dann die Polardarstellung der jeweiligen Zahl.

(a)
$$z_1 = -2 - 2i$$
 (b) $z_2 = -3i$ (c) $z_3 = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ (d) $z_4 = 1 - \sqrt{3}i$

Aufgabe 4

Skizzieren Sie die folgenden Zahlen zunächst in der Gaußschen Zahlenebene. Bestimmen Sie dann die kartesische Darstellung x+yi (mit $x,y\in\mathbb{R}$) der jeweiligen Zahl.

(a)
$$z_1 = e^{i\frac{\pi}{2}}$$
 (b) $z_2 = 2e^{2\pi i}$ (c) $z_3 = e^{i\frac{15\pi}{4}}$ (d) $z_4 = 3e^{-i\frac{7\pi}{2}}$

Aufgabe 5

Führen Sie folgende Multiplikationen komplexer Zahlen durch.

- (a) $3e^{i\frac{\pi}{3}} \cdot 2e^{i\frac{5\pi}{6}}$,
- (b) $e^{i\pi} \cdot e^{3\pi i}$,
- (c) $2e^{i\frac{\pi}{9}} \cdot 4e^{-i\frac{\pi}{9}}$.

Aufgabe 6

- (a) Geben Sie sämtliche komplexe Lösungen der Gleichung $z^4=16$ an und skizzieren Sie die Lösungen in der komplexen Zahlenebene.
- (b) Geben Sie sämtliche $z \in \mathbb{C}$ an mit $z^2 = i$.

Aufgabe 7 (Wenn noch Zeit ist ...)

- (a) Sei $\varphi \in [0, 2\pi)$. Was passiert anschaulich bei der Multiplikation einer komplexen Zahl z mit der komplexen Zahl $e^{i\varphi}$ bzw. $e^{-i\varphi}$, also wo liegen dann $e^{i\varphi}z$ und $e^{-i\varphi}z$ in der komplexen Zahlenebene verglichen mit z?
- (b) Drehen Sie unter Verwendung Ihrer Überlegungen aus Teil (a) die komplexe Zahl $z=-1+2\,\mathrm{i}$ um $\frac{\pi}{2}$ gegen den Uhrzeigersinn und im Uhrzeigersinn um 0 in der komplexen Zahlenebene und schreiben Sie Ihr Ergebnis jeweils wieder in der Form $x+y\,\mathrm{i}$.