GRANICA FUNKCJI

DEFINICJA 1. • Sąsiedztwem o promieniu r > 0 punktu $x_0 \in \mathbb{R}$ nazywamy zbiór

$$S(x_0,r) \stackrel{def}{=} (x_0 - r, x_0 + r) \setminus \{x_0\}.$$

• Sąsiedztwem lewostronnym o promieniu r>0 punktu $x_0\in\mathbb{R}$ nazywamy zbiór

$$S^{-}(x_0,r) \stackrel{def}{=} (x_0 - r, x_0).$$

• Sąsiedztwem prawostronnym o promieniu r>0 punktu $x_0\in\mathbb{R}$ nazywamy zbiór

$$S^+(x_0,r) \stackrel{def}{=} (x_0, x_0 + r).$$

UWAGA 1. Jeżeli promień sąsiedztwa nie będzie istotny w rozważaniach, to $S(x_0, r)$, $S^-(x_0, r)$ oraz $S^+(x_0, r)$ będziemy oznaczali $S(x_0)$, $S^-(x_0)$ oraz $S^+(x_0)$ odpowiednio.

Niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona w pewnym sąsiedztwie $S(x_0)$.

DEFINICJA 2 (HEINEGO GRANICY WŁAŚCIWEJ FUNKCJI W PUNKCIE). Mówimy, że liczba g jest granicą właściwą funkcji f w punkcie x_0 i piszemy $\lim_{x\to x_0} f(x) = g$ wtedy i tylko wtedy, gdy dla każdego ciągu (x_n) takiego, że

- wyrazy $x_n \in S(x_0)$,
- $\bullet \lim_{n \to \infty} x_n = x_0,$

ciąg wartości funkcji $(f(x_n))$ jest zbieżny do g to znaczy $\lim_{n\to\infty} f(x_n) = g$.

Rys. 1. Granica Heinego funkcji f w punkcie x_0 .

Definicja 3 (Cauchy'ego granicy właściwej funkcji w punkcie). Liczba g jest granicą właściwą funkcji f w punkcie x_0 co zapisujemy

$$\lim_{x \to x_0} f(x) = g$$

wtedy i tylko wtedy, gdy

$$\bigwedge_{\varepsilon>0} \bigvee_{\delta>0} \bigwedge_{x\in S(x_0)} \left[(|x-x_0|<\delta) \Longrightarrow (|f(x)-g|<\varepsilon) \right].$$

UWAGA 2. Definicja Heinego i Cauchy'ego granicy funkcji f w punkcie x₀ są równoważne, tzn. funkcja posiada w punkcie x₀ granice q w sensie Heinego wtedy i tylko wtedy qdy posiada w tym punkcie granice q w sensie definicji Cauchy'ego.

Definicja 4. Mówimy, że funkcja f ma w punkcie x_0 granicę niewłaściwą $+\infty$ lub $-\infty$ i piszemy $\lim_{x \to \infty} f(x) = 0$ $+\infty$ lub $\lim_{x\to x_0} f(x) = -\infty$ wtedy i tylko wtedy, gdy dla każdego ciągu (x_n) takiego, że

- $wyrazy x_n \in S(x_0),$
- $\bullet \lim_{n\to\infty} x_n = x_0,$

 $ciag(f(x_n))$ jest rozbieżny odpowiednio do $+\infty$ lub $-\infty$.

UWAGA 3. (NIEISTNIENIE GRANICY FUNKCJI W PUNKCIE) Jeżeli istnieją ciągi (x'_n) i (x''_n) spełniające warunki:

- $\lim_{n\to\infty} x'_n = x_0$, $gdzie\ x'_n \neq x_0\ dla\ każdego\ n \in N\ oraz \lim_{n\to\infty} f(x'_n) = g'$,
- $\lim_{n\to\infty} x_n'' = x_0$, $gdzie\ x_n'' \neq x_0$ $dla\ każdego\ n \in N$ $oraz \lim_{n\to\infty} f(x_n'') = g''$,
- $g' \neq g''$,

to granica (właściwa lub niewłaściwa) $\lim_{x \to x_0} f(x)$ nie istnieje.

GRANICE JEDNOSTRONNE

Niech $x_0 \in \mathbb{R}$ oraz załóżmy, że funkcja f jest określona w pewnym lewostronnym sąsiedztwie $S^-(x_0)$. **Definicja 5.** Mówimy, że funkcja f ma w punkcie

- a) granicę lewostronną właściwą g
- b) granicę niewłaściwą $+\infty$ lub $-\infty$, wtedy i tylko wtedy, gdy dla każdego ciągu (x_n) takiego $\dot{z}e$
 - $wyrazy x_n \in S^-(x_0)$,
 - $\lim_{n \to \infty} x_n = x_0,$

 $ciag(f(x_n))$ jest odpowiednio

- a) zbieżny do g; piszemy wtedy $\lim f(x)$

Rys. 2. Granica lewostronna funkcji f w punkcie x_0 .

aktual. 6 stycznia 2020

Niech $x_0 \in \mathbb{R}$ oraz załóżmy, że funkcja f jest określona w pewnym prawostronnym sąsiedztwie $S^+(x_0)$.

DEFINICJA 6. Mówimy, że funkcja f ma w punkcie x_0

- a) granicę prawostronną właściwą g albo
- b) granicę niewłaściwą $+\infty$ lub $-\infty$, wtedy i tylko wtedy, gdy dla każdego ciągu (x_n) takiego, że
 - $wyrazy x_n \in S^+(x_0)$,
 - $\bullet \lim_{n \to \infty} x_n = x_0.$

 $ciag (f(x_n)) jest odpowiednio$

- a) zbieżny do g; piszemy wtedy $\lim_{x \to x_0^+} f(x) = g$,
- b) rozbieżny do $+\infty$ lub $-\infty$ i piszemy wtedy $\lim_{x \to x_0^+} f(x) = +\infty$, lub $\lim_{x \to x_0^+} f(x) = -\infty$.

Rys. 3. Granica prawostronna funkcji f w punkcie x_0 .

Definicja 7. Granice lewostronne i prawostronne funkcji f w punkcie x_0 nazywamy granicami jednostronnymi.

TWIERDZENIE 1. Funkcja f ma w punkcie x_0 granicę właściwą albo niewłaściwą wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x).$$

Wspólna wartość granic jednostronnych jest wtedy granicą funkcji.

Niech f będzie określona w (a, ∞) .

DEFINICJA 8. Mówimy, ze funkcja f ma $w + \infty$

- a) granicę właściwą g, albo
- b) granicę niewłaściwą $+\infty$ lub $-\infty$

wtedy i tylko wtedy, gdy dla każdego ciągu (x_n) takiego, że

- $wyrazy x_n \in (a, \infty),$
- $\bullet \lim_{n \to \infty} x_n = +\infty$

 $ciag(f(x_n))$ jest odpowiednio

- a) zbieżny do g; piszemy wtedy $\lim_{x\to\infty} f(x) = g$,
- b) rozbieżny do $+\infty$ lub $-\infty$ i piszemy wtedy $\lim_{x\to\infty} f(x) = +\infty$, lub $\lim_{x\to\infty} f(x) = -\infty$.

UWAGA 4. Definicja Heinego granicy właściwej i niewłaściwej funkcji $w - \infty$ jest analogiczna do definicji podanej wyżej.

TWIERDZENIA O GRANICACH WŁAŚCIWYCH

TWIERDZENIE 2. Jeżeli funkcje f i h mają granice właściwe w punkcie x_0 tzn. $\lim_{x\to x_0} f(x) = g$ $i\lim_{x\to x_0} h(x) = p$ to

•
$$\lim_{x \to x_0} (f(x) + h(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} h(x) = g + p;$$

•
$$\lim_{x \to x_0} (f(x) - h(x)) = \lim_{x \to x_0} f(x) - \lim_{x \to x_0} h(x) = g - p;$$

•
$$\lim_{x \to x_0} (f(x) \cdot h(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} h(x) = g \cdot p;$$

$$\bullet \ \lim_{x\to x_0}(cf(x))=c\cdot \lim_{x\to x_0}f(x)=c\cdot g, \ \ c\in R;$$

•
$$\lim_{x \to x_0} \frac{f(x)}{h(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} h(x)} = \frac{g}{p}, \ p \neq 0;$$

• $\lim_{x \to x_0} f(x)^{h(x)} = (\lim_{x \to x_0} f(x))^{\lim_{x \to x_0} h(x)} = g^p$; (o ile działania po obu stronach mają sens.)

TWIERDZENIE 3 (O GRANICY FUNKCJI ZŁOŻONEJ). Jeżeli funkcje f i g spełniają warunki:

1.
$$\lim_{x \to x_0} f(x) = y_0,$$

2.
$$f(x) \neq y_0$$
 dla każdego $x \in S(x_0)$,

3.
$$\lim_{y \to y_0} g(y) = p,$$

to
$$\lim_{x \to x_0} g(f(x)) = p$$
.

TWIERDZENIE 4 (O TRZECH FUNKCJACH). Jeżeli funkcje f, g, h spełniają warunki:

1.
$$f(x) \le g(x) \le h(x)$$
 dla każdego $x \in S(x_0)$,

2.
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = g$$
,

$$to \lim_{x \to x_0} g(x) = g$$

Uwaga 5. Powyższe twierdzenia są także prawdziwe dla granic jednostronnych oraz granic w nieskończoności.

Poniższa tabelka zawiera twierdzenia dotyczące niewłaściwych granic funkcji.

$ \begin{array}{c c} \operatorname{Jeżeli} & \operatorname{to} \\ \lim_{x \to x_0} f(x) = 0^+ & \lim_{x \to x_0} \frac{1}{f(x)} = +\infty \\ \\ \lim_{x \to x_0} f(x) = 0^- & \lim_{x \to x_0} \frac{1}{f(x)} = -\infty \\ \\ (\lim_{x \to x_0} f(x) = 0^+ \wedge \lim_{x \to x_0} g(x) = b > 0) \\ \text{albo} & \lim_{x \to x_0} \frac{g(x)}{f(x)} = +\infty \\ (\lim_{x \to x_0} f(x) = 0^- \wedge \lim_{x \to x_0} g(x) = b < 0) \\ (\lim_{x \to x_0} f(x) = 0^+ \wedge \lim_{x \to x_0} g(x) = b < 0) \\ \text{albo} & \lim_{x \to x_0} \frac{g(x)}{f(x)} = -\infty \\ (\lim_{x \to x_0} f(x) = 0^- \wedge \lim_{x \to x_0} g(x) = b > 0) \\ \lim_{x \to x_0} f(x) = \pm \infty & \lim_{x \to x_0} \frac{1}{f(x)} = 0 \\ \lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b > 0 & \lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty \\ \lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b < 0 & \lim_{x \to x_0} f(x) \cdot g(x) = \mp \infty \\ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty & \lim_{x \to x_0} f(x) \cdot g(x) = +\infty \\ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty & \lim_{x \to x_0} (f(x) + g(x)) = +\infty \\ \lim_{x \to x_0} (f(x) - g(x)) = [\infty - \infty] = 0 \end{array}$
$\lim_{x \to x_0} f(x) = 0^- \qquad \lim_{x \to x_0} \frac{1}{f(x)} = -\infty$ $(\lim_{x \to x_0} f(x) = 0^+ \land \lim_{x \to x_0} g(x) = b > 0)$ $\text{albo} \qquad \lim_{x \to x_0} \frac{g(x)}{f(x)} = +\infty$ $(\lim_{x \to x_0} f(x) = 0^- \land \lim_{x \to x_0} g(x) = b < 0)$ $(\lim_{x \to x_0} f(x) = 0^+ \land \lim_{x \to x_0} g(x) = b < 0)$ $\text{albo} \qquad \lim_{x \to x_0} \frac{g(x)}{f(x)} = -\infty$ $(\lim_{x \to x_0} f(x) = 0^- \land \lim_{x \to x_0} g(x) = b > 0)$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = 0$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \infty$
$\lim_{x \to x_0} f(x) = 0^+ \wedge \lim_{x \to x_0} g(x) = b > 0)$ albo $\lim_{x \to x_0} f(x) = 0^- \wedge \lim_{x \to x_0} g(x) = b < 0)$ $\lim_{x \to x_0} f(x) = 0^+ \wedge \lim_{x \to x_0} g(x) = b < 0)$ $\lim_{x \to x_0} f(x) = 0^+ \wedge \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = 0^- \wedge \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \qquad \lim_{x \to x_0} \frac{1}{f(x)} = 0$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = 0$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = 0$
$\lim_{x \to x_0} f(x) = 0^+ \wedge \lim_{x \to x_0} g(x) = b > 0)$ albo $\lim_{x \to x_0} f(x) = 0^- \wedge \lim_{x \to x_0} g(x) = b < 0)$ $\lim_{x \to x_0} f(x) = 0^+ \wedge \lim_{x \to x_0} g(x) = b < 0)$ $\lim_{x \to x_0} f(x) = 0^+ \wedge \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = 0^- \wedge \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \qquad \lim_{x \to x_0} \frac{1}{f(x)} = 0$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = 0$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = 0$
$ (\lim_{x \to x_0} f(x) = 0^- \land \lim_{x \to x_0} g(x) = b < 0) $ $ (\lim_{x \to x_0} f(x) = 0^+ \land \lim_{x \to x_0} g(x) = b < 0) $ $ albo $ $ (\lim_{x \to x_0} f(x) = 0^- \land \lim_{x \to x_0} g(x) = b > 0) $ $ \lim_{x \to x_0} f(x) = \pm \infty $ $ \lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b > 0 $ $ \lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b > 0 $ $ \lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0 $ $ \lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0 $ $ \lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = 0 $ $ \lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty $ $ \lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = 0 $ $ \lim_{x \to x_0} f(x) \cdot g(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = + \infty $ $ \lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = + \infty $
albo $\lim_{x \to x_0} \frac{g(x)}{f(x)} = -\infty$ $(\lim_{x \to x_0} f(x) = 0^- \land \lim_{x \to x_0} g(x) = b > 0)$ $\lim_{x \to x_0} f(x) = \pm \infty$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = 0$ $\lim_{x \to x_0} f(x) \cdot g(x) = +\infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = +\infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = +\infty$
albo $\lim_{x \to x_0} f(x) = 0^- \wedge \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = 0^- \wedge \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \qquad \lim_{x \to x_0} \frac{1}{f(x)} = 0$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b > 0 \qquad \lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b < 0 \qquad \lim_{x \to x_0} f(x) \cdot g(x) = \mp \infty$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = 0 \qquad \lim_{x \to x_0} f(x) \cdot g(x) = ?$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$
albo $\lim_{x \to x_0} f(x) = 0^- \wedge \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = 0^- \wedge \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \qquad \lim_{x \to x_0} \frac{1}{f(x)} = 0$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b > 0 \qquad \lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = b < 0 \qquad \lim_{x \to x_0} f(x) \cdot g(x) = \mp \infty$ $\lim_{x \to x_0} f(x) = \pm \infty \wedge \lim_{x \to x_0} g(x) = 0 \qquad \lim_{x \to x_0} f(x) \cdot g(x) = ?$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$
$\lim_{x \to x_0} f(x) = \pm \infty$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = 0$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = 0$
$\lim_{x \to x_0} f(x) = \pm \infty$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = 0$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = 0$
$\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b > 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = 0$
$\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = b < 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = 0$ $\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = 0$ $\lim_{x \to x_0} f(x) \cdot g(x) = \mp \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = \pm \infty$
$\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = 0$ $\lim_{x \to x_0} f(x) \cdot g(x) = ?$ $\lim_{x \to x_0} f(x) \cdot g(x) = +\infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = +\infty$ $\lim_{x \to x_0} f(x) \cdot g(x) = +\infty$
$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$ $\lim_{x \to x_0} (f(x) \cdot g(x)) = +\infty$ $\lim_{x \to x_0} (f(x) + g(x)) = +\infty$
$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = +\infty$ $\lim_{x \to x_0} (f(x) + g(x)) = +\infty$
$\lim_{x \to \infty} f(x) - g(x) = \infty - \infty =$
$x \rightarrow x_0$
$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \left[\frac{\infty}{\infty}\right] = ?$
$\lim_{x \to x_0} (f(x) \cdot g(x)) = +\infty$
$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = -\infty$ $\lim_{x \to x_0} (f(x) + g(x)) = -\infty$
$\lim_{x \to x_0} (f(x) - g(x)) = [\infty - \infty] =$
$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \left[\frac{\infty}{\infty}\right] = ?$
$\bigwedge_{x} f(x) \le M, \lim_{x \to x_0} g(x) = \pm \infty \qquad \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$
$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0 \qquad \qquad \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{0}{0} = ?$
$\lim_{x \to \infty} f(x) = a, \ 0 < a < 1, \ \lim_{x \to \infty} g(x) = +\infty \qquad \lim_{x \to \infty} [f(x)]^{g(x)} = 0$
$\lim_{x \to a} f(x) = a, \ a > 1, \ \lim_{x \to a} g(x) = +\infty$ $\lim_{x \to a} [f(x)]^{g(x)} = +\infty$
$\lim_{x \to \infty} f(x) = a, \ 0 < a < 1, \ \lim_{x \to \infty} g(x) = -\infty \qquad \lim_{x \to \infty} [f(x)]^{g(x)} = +\infty$
$\lim_{x \to x_0} f(x) = a, \ a > 1, \lim_{x \to x_0} g(x) = -\infty \qquad \lim_{x \to x_0} [f(x)]^{g(x)} = 0$
$\lim_{x \to \infty} f(x) = 1, \lim_{x \to \infty} g(x) = \pm \infty$ $\lim_{x \to \infty} [f(x)]^{g(x)} = [1^{\infty}] = ?$
$\lim_{x \to a} f(x) = \infty$, $\lim_{x \to a} g(x) = a$, $0 < a \le +\infty$ $\lim_{x \to a} [f(x)]^{g(x)} = +\infty$
$\lim_{x \to x_0} f(x) = \infty, \lim_{x \to x_0} g(x) = a, -\infty \le a < 0$ $\lim_{x \to x_0} [f(x)]^{g(x)} = 0$
$\lim_{x \to 0} f(x) = \infty$, $\lim_{x \to 0} g(x) = 0$, $\lim_{x \to 0} [f(x)]^{g(x)} = [\infty^0] = ?$
$\lim_{x \to x_0} f(x) = 0, \lim_{x \to x_0} g(x) = 0, \qquad \lim_{x \to x_0} [f(x)]^{g(x)} = [0^0] = ?$

UWAGA 6. Zapis:

$$\lim_{x \to x_0} f(x) = 0^-$$

będziemy stosować gdy $\lim_{x\to x_0}f(x)=0$ oraz f(x)<0 w pewnym sąsiedztwie punktu x_0 . Podobnie, zapis:

$$\lim_{x \to x_0} f(x) = 0^+$$

będziemy stosować gdy $\lim_{x\to x_0} f(x) = 0$ oraz f(x) > 0 w pewnym sąsiedztwie punktu x_0 .

Uwaga 7. Analogiczne relacje zachodzą dla granic właściwych w punktach niewłaściwych oraz dla granic jednostronnych.

Należy zapamiętać granice pewnych funkcji specjalnych

$$\bullet \lim_{x \to \pm \infty} \frac{\sin x}{x} = 0,$$

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} = 1,$$

$$\bullet \lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1,$$

•
$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$
,

•
$$\lim_{x \to 0} \frac{\operatorname{arc} \operatorname{tg} x}{x} = 1$$
,

•
$$\lim_{x \to \pm \infty} \left(1 + \frac{a}{x}\right)^x = e^a, a \in R,$$

•
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$
,

•
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a, \ a > 0,$$

$$\bullet \lim_{x \to 0} \frac{\ln(x+1)}{x} = 1.$$

Z twierdzenia o granicy funkcji złożonej wynika, że:

$$\lim_{x \to x_0} \frac{\sin f(x)}{f(x)} = 1,$$

$$\lim_{x \to x_0} (1 + f(x))^{\frac{1}{f(x)}} = e$$

$$\lim_{x \to x_0} \left(1 + \frac{1}{f(x)} \right)^{f(x)} = e$$

o ile
$$\lim_{x \to x_0} f(x) = 0$$
,

o ile
$$\lim_{x \to x_0} f(x) = 0$$
,

o ile
$$\lim_{x \to x_0} f(x) = \pm \infty$$
.

GRANICE FUNKCJI - ZADANIA

ZADANIE 1. Korzystając z definicji Heinego granicy funkcji w punkcie pokazać, że

1.
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = 3$$
, 2. $\lim_{x \to -2} \frac{1}{x} = -\frac{1}{2}$, 3. $\lim_{x \to 0} x \cos \frac{1}{x} = 0$.

2.
$$\lim_{x \to -2} \frac{1}{x} = -\frac{1}{2}$$
,

3.
$$\lim_{x \to 0} x \cos \frac{1}{x} = 0$$

ZADANIE 2. Korzystając z definicji Heinego granicy funkcji w punkcie pokazać, że nie istnieją granice funkcji

$$1. \lim_{x \to 0} \cos \frac{1}{x},$$

$$2. \lim_{x \to \infty} \sin \sqrt{x},$$

3.
$$\lim_{x \to 2} 2^{\frac{1}{x-2}}$$
.

ZADANIE 3. Dana jest funkcja

$$f(x) = \begin{cases} \frac{\sin 2x}{x}, & x \in (-\frac{\pi}{2}, 0), \\ \frac{2x}{|x|}, & x \in (0, \frac{\pi}{2}). \end{cases}$$

Obliczyć granicę tej funkcji w punkcie $x_0 = 0$.

Zadanie 4. Obliczyć granice (granice jednostronne) o ile istnieją

1.
$$\lim_{x \to -\frac{1}{3}} \frac{9x^2 - 1}{3x + 1}$$
,

2.
$$\lim_{x \to \infty} \frac{x^5 - x^4 + 3x - 2 - 8}{-2x^5 + x^3 + x^2 - 12}$$
, 4. $\lim_{x \to 25} \frac{\sqrt{x} - 5}{x - 25}$

4.
$$\lim_{x \to 25} \frac{\sqrt{x} - 5}{x - 25}$$

3.
$$\lim_{x \to 4} \frac{x^2 - 2x - 8}{x^2 - 9x + 20}$$

5.
$$\lim_{x \to 2} \left(\frac{1}{x-2} - \frac{1}{x^2 - 3x + 2} \right)$$
,

17.
$$\lim_{x \to \infty} \frac{2^x + 3^x}{3^x + 1},$$

29.
$$\lim_{x\to 0} \frac{1-\sqrt{1-x}}{\sin 4x}$$
,

$$6. \lim_{x \to 0} \frac{\sin 3x}{4x},$$

18.
$$\lim_{x \to 0^-} \frac{1}{2 - 2^{\frac{1}{x}}}$$
,

30.
$$\lim_{x\to 0} \frac{\operatorname{tg} x}{1-\sqrt{\operatorname{tg} x+1}}$$
,

7.
$$\lim_{x \to 0} \frac{\operatorname{tg} 4x}{2x},$$

19.
$$\lim_{x \to 0} (1+x)^{\frac{2}{x}}$$

31.
$$\lim_{x \to 2} \frac{\sin(x-2)}{x^2 - 2x},$$

$$8. \lim_{x \to \infty} \frac{\sqrt[4]{x^4 + 1}}{x},$$

20.
$$\lim_{x \to \infty} \left(1 + \frac{1}{x+2} \right)^{2x-1}$$
,

32.
$$\lim_{x \to 1} \frac{\sin(1-x)}{\sqrt{x}-1}$$
,

9.
$$\lim_{x \to \infty} (\sqrt{x^2 + 1} - x),$$

21.
$$\lim_{x \to \infty} \left(\frac{3x+5}{3x+7} \right)^{x+1}$$
,

$$33. \lim_{x \to 0} \frac{\sin(\sin x)}{2x},$$

10.
$$\lim_{x \to -\infty} \frac{\sqrt[4]{x^4 + 1}}{x}$$
,

22.
$$\lim_{x \to \infty} x[\ln(x+4) - \ln(x+1)],$$

34.
$$\lim_{x\to 0} (1+2 \operatorname{tg}^2 x)^{\operatorname{ctg}^2 x}$$
,

11.
$$\lim_{x \to 0} \left(\frac{2}{x\sqrt{x+4}} - \frac{1}{x} \right),$$

23.
$$\lim_{x \to \infty} \left(\frac{3x - 1}{3x + 2} \right)^{2x + 1}$$
,

$$35. \lim_{x \to 0} (\cos x)^{\frac{1}{\sin x}},$$

12.
$$\lim_{x \to 4} \frac{3 - \sqrt{1 + 2x}}{2 - \sqrt{x}}$$
,

24.
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$
,

36.
$$\lim_{x \to \infty} \frac{(3x-2)\sin(x^2+1)}{2x^3+4x+5},$$

13.
$$\lim_{x \to 0} \frac{\sin 5x}{\sin 3x},$$

$$25. \lim_{x \to \frac{\pi}{4}} \frac{\cos 2x}{\sin x - \cos x},$$

37.
$$\lim_{x \to 1} \frac{\arcsin(x-1)}{x^2 - 1}$$
,

14.
$$\lim_{x \to -\infty} (\sqrt{x^2 + x + 2} + x),$$

26.
$$\lim_{x \to 1} (1 - x) \operatorname{tg} \frac{\pi x}{2}$$
,

38.
$$\lim_{x \to -2} \frac{x^3 + 8}{\arcsin(x+2)}$$
,

15.
$$\lim_{x \to -\infty} \frac{x}{2} (\sqrt{4x^2 + 1} + 2x),$$

$$27. \lim_{x \to 1} \frac{\sin \pi x}{x - 1},$$

39.
$$\lim_{x\to 0} \frac{7^x - 1}{x}$$
,

16.
$$\lim_{x \to 0^{-}} \frac{\operatorname{tg} 3x}{x^3}$$
,

28.
$$\lim_{x \to \infty} \frac{4x^2 + 3}{\sqrt{16 + x^4}}$$
,

40.
$$\lim_{x \to 1} \frac{5^{x-1} - 1}{x^2 - 1}$$
.

ZADANIE 5. Obliczając granice jednostronne, zbadać, czy istnieją granice funkcji:

1.
$$\lim_{x \to 2} \frac{x+2}{x-2}$$
,

4.
$$\lim_{x \to 1} e^{\frac{1}{1-x^2}}$$
,

7.
$$\lim_{x \to 2} \frac{|x-2|}{x^2-4}$$
,

2.
$$\lim_{x \to 3} \left(\frac{1}{x-3} - \frac{9}{x^3 - 27} \right)$$
,

5.
$$\lim_{x \to 1} \frac{|x-1|^5}{x^5 - x^3}$$
,

$$8. \lim_{x \to 0} \frac{1}{\lg x},$$

3.
$$\lim_{x \to 4} 2^{\frac{1}{x-4}}$$
,

6.
$$\lim_{x \to 3} \frac{1}{1 + 2^{\frac{1}{3-x}}}$$
,

9.
$$\lim_{x\to 0} 3^{-\frac{1}{x^2}}$$

ZADANIE 6. Obliczyć granice jednostronne w punkcie $x_0 = \frac{\pi}{2}$ funkcji $f(x) = \left(x - \operatorname{arcctg} \frac{1}{2\pi - 4x}\right)$.

Ciągłość Funkcji

DEFINICJA 1. • Otoczeniem o promieniu r > 0 punktu $x_0 \in \mathbb{R}$ nazywamy zbiór

$$O(x_0, r) \stackrel{def}{=} (x_0 - r, x_0 + r).$$

• Otoczeniem lewostronnym o promieniu r > 0 punktu $x_0 \in \mathbb{R}$ nazywamy zbiór

$$O^-(x_0,r) \stackrel{def}{=} (x_0 - r, x_0).$$

• Otoczeniem prawostronnym o promieniu r > 0 punktu $x_0 \in \mathbb{R}$ nazywamy zbiór

$$O^+(x_0,r) \stackrel{def}{=} \langle x_0, x_0 + r \rangle.$$

UWAGA 1. Jeżeli promień otoczenia nie będzie istotny w rozważaniach, to $O(x_0, r)$, $O^-(x_0, r)$ oraz $O^+(x_0, r)$ będziemy oznaczali $O(x_0)$, $O^-(x_0)$ oraz $O^+(x_0)$ odpowiednio.

Niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona w otoczeniu $O(x_0)$.

Definicja 2. Funkcja f jest ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0} f(x) = f(x_0).$$

UWAGA 2. Inaczej mówiąc: funkcja f jest ciągła w punkcie x_0 , jeżeli:

- $funkcja jest określona w pewnym otoczeniu O(x_0);$
- istnieje skończona granica $\lim_{x \to x_0} f(x) = g$ to znaczy $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = g$;
- $f(x_0) = g$.

DEFINICJA 3 (HEINEGO CIĄGŁOŚCI FUNKCJI). Mówimy, że funkcja f określona w pewnym otoczeniu $O(x_0)$, jest ciągła w punkcie x_0 wtedy i tylko, gdy dla każdego ciągu (x_n) o wyrazach $x_n \in O(x_0)$, zbieżnego do x_0 , ciąg wartości funkcji $(f(x_n))$ jest zbieżny do $f(x_0)$

Nieciągłość funkcji

Definicja 4. Punktem nieciągłości funkcji f nazywamy taki punkt x_0 , w którym funkcja nie jest ciągła.

DEFINICJA 5. Jeżeli x_0 jest punktem nieciągłości funkcji f ciągłej w pewnym sąsiedztwie $S(x_0)$, to nazywamy go odosobnionym.

Odosobnione punkty nieciągłości dzielimy na dwa rodzaje:

- punkty nieciągłości pierwszego rodzaju to znaczy takie, w których istnieją jednostronne granice właściwe; $\lim_{x\to x_0^-} f(x)$, $\lim_{x\to x_0^+} f(x)$
- punkty nieciągłości drugiego rodzaju to znaczy takie, w których nie istnieją granice lub granice jednostronne są niewłaściwe lub jedna z granic jednostronnych jest właściwa a druga niewłaściwa.

UWAGA 3. Jeżeli funkcja f jest nieciągła w punkcie x_0 i istnieje $\lim_{x\to x_0} f(x)$, to można tę nieciągłość usunąć.

Niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona w otoczeniu $O^-(x_0)$.

DEFINICJA 6. Funkcja f jest lewostronnie ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0^-} f(x) = f(x_0)$$

Rys. 4. Funkcja lewostronnie ciągła w punkcie x_0

Analogicznie niech $x_0 \in \mathbb{R}$ oraz niech funkcja f będzie określona w otoczeniu $O^+(x_0)$.

DEFINICJA 7. Funkcja f jest prawostronnie ciągła w punkcie x_0 wtedy i tylko wtedy, gdy

$$\lim_{x \to x_0^+} f(x) = f(x_0)$$

Rys. 5. Funkcja prawostronnie ciągła w punkcie x_0 .

TWIERDZENIE 1. Funkcja jest ciągła w punkcie wtedy i tylko wtedy, gdy jest ciągła lewostronnie i prawostronnie.

TWIERDZENIE 2. Jeżeli funkcje f i g są ciągłe w punkcie x_0 to:

- $funkcja \ f + g \ jest \ ciągła \ w \ punkcie \ x_0;$
- $funkcja \ f g \ jest \ ciągła \ w \ punkcie \ x_0;$
- $funkcja \ f \cdot g \ jest \ ciągła \ w \ punkcie \ x_0;$
- $funkcja \frac{f}{g} jest ciągła w punkcie x_0, o ile g(x_0) \neq 0.$

UWAGA 4. Powyższe twierdzenie jest prawdziwe dla funkcji ciągłych jednostronnie.

- **DEFINICJA 8.** Funkcja jest ciągła w przedziałe otwartym (a,b), $gdzie -\infty \le a < b \le +\infty$, jeżeli jest ciągła w każdym punkcie tego przedziału
 - Funkcja jest ciągła w przedziałe domkniętym < a, b>, gdzie $-\infty < a < b < +\infty$, jeżeli jest ciągła w każdym punkcie tego przedziału (a,b) oraz prawostronnie ciągła w punkcie a i lewostronnie ciągła w punkcie b.

TWIERDZENIE 3. Funkcje elementarne są ciągłe na swoich dziedzinach.

TWIERDZENIE 4. Funkcja odwrotna do funkcji ciągłej i malejącej (rosnącej) jest ciągła i malejąca (rosnąca).

TWIERDZENIE 5 (O CIĄGŁOŚCI FUNKCJI ZŁOŻONEJ). Jeżeli funkcja f jest ciągła w punkcie x_0 oraz funkcja g jest ciągła w punkcie $y_0 = f(x_0)$ to funkcja złożona $g \circ f$ jest ciągła w punkcie x_0 .

TWIERDZENIE 6 (O WPROWADZANIU GRANICY DO ARGUMENTU FUNKCJI CIĄGŁEJ). Jeżeli istnieje granica $\lim_{x\to x_0} f(x) = a$ i funkcja g jest ciągła w punkcie $y_0 = a$, to

$$\lim_{x \to x_0} g[f(x)] = g[\lim_{x \to x_0} f(x)] = g(a).$$

UWAGA 5. Twierdzenie powyższe pozostaje prawdziwe dla granic jednostronnych oraz dla granic właściwych funkcji y = f(x), $gdy \ x \to \infty$ oraz $gdy \ x \to -\infty$.

TWIERDZENIE 7 (TWIERDZENIE WEIERSTRASSA). Jeżeli funkcja f jest ciągła na przedziale domkniętym $\langle a,b \rangle$, to

- 1. f jest ograniczona na przedziale $\langle a, b \rangle$,
- 2. istnieją takie liczby u, v, że

$$f(v) = \inf_{a \le x \le b} f(x),$$
 $f(u) = \sup_{a \le x \le b} f(x),$

tzn. funkcja ciągła na przedziale domkniętym osiąga na tym przedziale kres dolny i kres górny zbioru swoich wartości.

Rys. 6. Ilustracja graficzna twierdzenie Weierstrassa.

UWAGA 6. • Funkcja ciągła na przedziale otwartym może nie być ograniczona, a więc kresy zbioru jej wartości na tym przedziale mogą w ogóle nie istnieć.

• Jeżeli funkcja ciągła na przedziale otwartym jest ograniczona, to może nie osiągać na tym przedziale kresu dolnego i kresu górnego zbioru swych wartości.

TWIERDZENIE 8 (DARBOUX O PRZYJMOWANIU WARTO-ŚCI POŚREDNICH). Jeżeli funkcja f jest ciągła na przedziale domkniętym $\langle a,b \rangle$, $f(a) \neq f(b)$ oraz liczba u jest zawarta między f(a) i f(b), to istnieje taki punkt $z \in (a,b)$, że f(z) = u.

Rys. 7. Ilustracja graficzna twierdzenie Darboux.

TWIERDZENIE 9. Jeżeli funkcja f jest ciągła na przedziale < a, b >, a ponadto $f(a) \cdot f(b) < 0$, to istnieje punkt $c \in (a, b)$, że f(c) = 0.

Rys. 8. Ilustracja graficzna powyższego twierdzenie.

CIAGŁOŚĆ FUNKCJI - ZADANIA

ZADANIE 1. Zbadać ciągłość funkcji określonych poniższymi wzorami:

1.
$$f(x) = \begin{cases} x^2 + 2x, & x \le 1, \\ 4 - x, & 1 < x < 2, \\ x^2 + 2x, & x \ge 2, \end{cases}$$
2.
$$f(x) = \begin{cases} \frac{x}{|x|}, & x \ne 0, \\ 0, & x = 0, \end{cases}$$
3.
$$f(x) = \begin{cases} x, & x \le 0, \\ \frac{x}{x-1}, & 0 < x < 1, \\ x^2 - 4, & x \ge 1, \end{cases}$$
4.
$$f(x) = \begin{cases} \sin x, & |x| \le \frac{\pi}{2}, \\ 4\left(\frac{x}{\pi}\right)^2, & |x| > \frac{\pi}{2}, \end{cases}$$
5.
$$f(x) = \begin{cases} \cos \frac{\pi x}{2}, & |x| \le 1, \\ |x - 1|, & |x| > 1, \end{cases}$$

ZADANIE 2. Dobrać tak wartość parametru k i b, aby podane funkcje $f: \mathbb{R} \to \mathbb{R}$ były ciągłe.

$$1. f(x) = \begin{cases} -x^2 + 6, & x \le 1, \\ x + 2k, & x > 1, \end{cases}$$

$$2. f(x) = \begin{cases} \ln(x^2 + 1) - e^x, & x < 0, \\ x^2 + x + k, & 0 \le x < 2, \\ b \cos(x - 2) & x \ge 2, \end{cases}$$

$$3. f(x) = \begin{cases} 3 + e^{\frac{2}{x}}, & x < 0, \\ 3, & x = 0, \\ \frac{\sin kx}{3x}, & x > 0, \end{cases}$$

$$4. f(x) = \begin{cases} \frac{\sin ax}{x^3 - 1}, & x < 0, \\ \frac{x^3 - 1}{x^2 + x - 2}, & 0 \le x < 1, \\ c, & x = 1, \\ \frac{x^2 + (b - 1)x - b}{x - 1}, & x > 1, \end{cases}$$

ZADANIE 3. Dobrać wartości parametrów a, b, c i p tak, aby podane funkcje były ciągłe we wskazanych punktach.

1.
$$f(x) = \begin{cases} \frac{x^3 - 27}{x - 3}, & x \neq 3, \\ p, & x = 3, \end{cases}$$
2.
$$f(x) = \begin{cases} \frac{\sqrt{1 + x} - 1}{x}, & x \neq 0, \\ a, & x = 0, \end{cases}$$
3.
$$f(x) = \begin{cases} \frac{\sin ax}{x}, & x < 0, \\ \frac{x^4 - 1}{x^2 - 4x + 3}, & 0 \le x < 1, \\ c, & x = 1, \\ 2 - 2^{bx}, & x > 1. \end{cases}$$
4.
$$f(x) = \begin{cases} \frac{\sqrt{x^2 + 5} - 3}{x^2 - 4}, & x \in \mathbb{R} \setminus \{-2, 2\}, \\ \frac{1}{3} \sin b, & x = 2, \\ \frac{1}{3} \sin b, & x = -2, \end{cases}$$

$$x_0 = 0, x'_0 = 1$$

ZADANIE 4. Wykorzystując twierdzenie Darboux, uzasadnić, że:

- 1. $f(x) = \sin x + \cos x$ w przedziale $[0, \pi]$ przyjmuje wartość $\frac{1}{3}$.
- 2. $f(x)=\frac{2}{\pi}x-\sin x$ w przedziale $[\frac{\pi}{4},\frac{3\pi}{4}]$ przyjmuje wartość 0.
- 3. $f(x) = \ln x + x^2 1$ w przedziale [1,e] przyjmuje wartość $\pi.$

ZADANIE 5. Uzasadnić, że

- 1. funkcja $f(x) = e^{2x^2+x} \frac{2}{x}$ ma co najmniej jeden pierwiastek na przedziałe $\left\langle \frac{1}{2}, 1 \right\rangle$;
- 2. równanie $\log_{\sqrt{2}} \frac{x+1}{x-2} = \sqrt{x}$ ma co najmniej jedno rozwiązanie należące do przedziału $\langle 3, 5 \rangle$;
- 3. równanie $4^x=rac{2}{x}$ ma dokładnie jedno rozwiązanie należące do przedziału $\left\langle rac{1}{2},1
 ight
 angle$.