DYNAMIC PROGRAMMING: LCS

Instructor: Dr Tarunpreet Bhatia Assistant Professor, CSED TIET

Subsequence

- A subsequence of a given sequence is just the given sequence with some elements left out.
- Formally, a given sequence $X = (x_1 \ x_2x_m)$, another sequence $Z = (z_1 \ z_2z_k)$ is a subsequence of X if there exists a strictly increasing sequence $(i_1 \ i_2i_k)$ of indexes such that for all j = 1, 2, ...k we have $x_{i_i} = z_j$.
- Eg. Z = <B,C,D,B> is a subsequence of X = <A,B,C,B,D,A,B> with corresponding index sequence <2,3,5,7>
- Given two sequences X and Y, we say that the sequence Z is a common sequence of X and Y if Z is a subsequence of both X and Y.

Longest Common Subsequence (LCS)

Application: comparison of two DNA strings

Ex: $X = \{A B C B D A B \}, Y = \{B D C A B A\}$

Longest Common Subsequence:

$$X = A B C B D A B$$

$$Y = BDCABA$$

Brute force algorithm would compare each subsequence of X with the symbols in Y

Longest Common Subsequence

How similar are these two species?

DNA:

GACAGCCTACAAGCGTTAGCTTG

DNA:
AGCCCTAAGGGCTACCTAGCTT

Longest Common Subsequence

How similar are these two species?

AGCCCTAAGGGCTACCTAGCTT

DNA:

GACAGCCTACAAGCGTTAGCTTG

Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

LCS Algorithm

- if |X| = m, |Y| = n, then there are 2^m subsequences of X; we must compare each with Y (n comparisons)
- So the running time of the brute-force algorithm is $O(n2^m)$
- Notice that the LCS problem has *optimal* substructure: Solutions of subproblems are parts of the final solution.
- Subproblems: "Find LCS of pairs of prefixes of X and Y"

LCS Algorithm

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define X_i , Y_j to be the prefixes of X and Y of length i and j respectively.
- Given a sequence $X = (x_1 x_2....x_m)$ we define the ith prefix of X for i=0, 1, and 2...m as X_i = $(x_1 x_2....x_i)$. For example: if X = (A, B, C, B, C, A, B, C) then X_4 = (A, B, C, B)
- Define c[i,j] to be the length of LCS of X_i and Y_j
- Then the length of LCS of X and Y will be c[m,n]

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- We start with i = j = 0 (empty substrings of x and y)
- Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0] = 0)
- LCS of empty string and any other string is empty, so for every i and j: c[0, j] = c[i, 0] = 0

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- When we calculate c[i,j], we consider two cases:
- First case: x[i]=y[j]: one more symbol in strings X and Y matches, so the length of LCS X_i and Y_j equals to the length of LCS of smaller strings X_{i-1} and Y_{j-1} , plus 1

LCS recursive solution

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

- Second case: x[i] != y[j]
- As symbols don't match, our solution is not improved, and the length of LCS(X_i, Y_j) is the same as before (i.e. maximum of LCS(X_i, Y_{j-1}) and LCS(X_{i-1},Y_j)

Why not just take the length of LCS(X_{i-1} , Y_{j-1})?

Two cases

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let C[i,j] = length_of_LCS(X_i, Y_j)

Case 1:
$$X[i] = Y[j]$$

- Then C[i,j] = 1 + C[i-1,j-1].
 - because $LCS(X_i,Y_j) = LCS(X_{i-1},Y_{j-1})$ followed by

Two cases

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let C[i,j] = length_of_LCS(X_i, Y_i)

Then $C[i,j] = max\{ C[i-1,j], C[i,j-1] \}.$

- either $LCS(X_i,Y_j) = LCS(X_{i-1},Y_j)$ and \top is not involved,
- or $LCS(X_i,Y_j) = LCS(X_i,Y_{j-1})$ and A is not involved,
- (maybe both are not involved, that's covered by the "or")

Recursive formulation of the optimal solution

Computing the length of an LCS

```
LCS-LENGTH (X, Y)
   m = length[X]
  n = length[Y]
3. for i = 1 to m
       do c[i, 0] = 0
   for j = 0 to n
       do c[0, j] = 0
6.
7. for i = 1 to m
        do for j = 1 to n
8.
            do if x_i == y_i
9.
                   then c[i, j] = c[i-1, j-1] + 1
10.
                          b[i, j] = " \setminus "
11.
                   else if c[i-1, j] \ge c[i, j-1]
12.
                        then c[i, j] = c[i-1, j]
13.
                               b[i, j] = "\uparrow"
14.
                         else c[i, j] = c[i, j-1]
15.
                               b[i, j] = "\leftarrow"
16.
17. return c and b
```

b[i, j] points to table entry whose subproblem we used in solving LCS of X_i and Y_i .

c[m,n] contains the length of an LCS of X and Y.

Time: O(mn)

Aux. Space: O(mn)

Constructing an LCS

```
PRINT-LCS (b, X, i, j)
   if i == 0 or j == 0
      then return
   if b[i, j] == " \setminus "
      then PRINT-LCS(b, X, i–1, j–1)
            print x_i
      elseif b[i, j ] == "↑"
             then PRINT-LCS(b, X, i-1, j)
   else PRINT-LCS(b, X, i, j-1)
```

- •Initial call is PRINT-LCS (b, X, m, n).
- Time: O(m+n)

We'll see how LCS algorithm works on the following example:

- $\mathbf{X} = \mathbf{ABCBDAB}$
- $\mathbf{Y} = \mathbf{BDCABA}$

What is the Longest Common Subsequence of X and Y?

LCS(X, Y) = BCBA

do if $x_i == y_j$ then c[i, j] = c[i-1, j-1] + 1 $b[i, j] = " \setminus "$ else if $c[i-1, j] \ge c[i, j-1]$ then c[i, j] = c[i-1, j] $b[i, j] = " \uparrow "$ else c[i, j] = c[i, j-1] $b[i, j] = " \leftarrow "$

							b[i, j] = "←"
	0	1	2	3	4	5	6
		В	D	C	A	В	A
0							
1 A							
2 B							
3 C							
4 B							
5 D							
6 A							
7 B							

LCS Example 1 Given X=ABCBDAB and Y=BDCABA

Length of the LCS: c [7, 6] = 4

LCS: <B, C, B, A>

Try this!!

Consider two strings A="qpqrr" and B="pqprqrp". Let X be the length of the longest common subsequence between A and B and let Y be the number of such longest common subsequences between A and B. Then X+10Y=

Question

What are the values stored in the cells (A1, A2, A3, A4) for finding LCS using dynamic programming for strings DFGHP & DGUHP?

LCS	0	D	F	G	н	Р
0	0	0	0	0	0	0
D	0	1	1	1	1	1
G	0	1	1	2	2	2
U	0	1	1	2	2	2
Н	0	1	1	2	A1	3
Р	0	1	1	A2	A3	A4

We'll see how LCS algorithm works on the following example:

- $\mathbf{X} = \mathbf{ABCB}$
- $\mathbf{Y} = \mathbf{BDCAB}$

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$

 $X = A B C B$
 $Y = B D C A B$

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	В
0	Xi						
1	A						
2	В						
3	C						
4	В						

$$X = ABCB$$
; $m = |X| = 4$
 $Y = BDCAB$; $n = |Y| = 5$
Allocate array c[5,4]

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0					
2	В	0					
3	C	0					
4	В	0					

for
$$i = 1$$
 to m $c[i,0] = 0$
for $j = 1$ to n $c[0,j] = 0$

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0		
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	В
0	Xi	0	0	0	0 、	0	0
1	(A)	0	0	0	0	1	
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	(B)
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1 -	1
2	В	0					
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB BDCAR

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB BDC A B

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB RDCAR

					_		R
	j	0	1	2	3	4	50
i		Yj	В	D	C	A	(B)
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1 .	1
2	B	0	1	1	1	1	2
3	C	0					
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

RDC A R

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5 ^L
i		Yj	В	D	(C)	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1,	1	1	2
3	\bigcirc	0	1	1	2		
4	В	0					

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

Yj B \mathbf{D} \mathbf{B} Xi B

 \mathbf{B}

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

ABCB BDCAR

	j	0	1	2	3	4	5
i		Yj	B	D	C	A	В
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0 🔪	1	1	2	2	2
4	B	0	1				

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	5
i		Yj	В	D	C	A	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2	2
4	\bigcirc B	0	1 -	1	[†] ₂ -	2	

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

	j	0	1	2	3	4	<u>5</u> D
i		Yj	В	D	C	A	B
0	Xi	0	0	0	0	0	0
1	A	0	0	0	0	1	1
2	В	0	1	1	1	1	2
3	C	0	1	1	2	2 \	2
4	(B)	0	1	1	2	2	3

if
$$(X_i == Y_j)$$

 $c[i,j] = c[i-1,j-1] + 1$
else $c[i,j] = max(c[i-1,j],c[i,j-1])$

Try this!

How will you find a longest palindromic subsequence in a given string using dynamic programming. Example: String A = "AABCDEBAZ"; Longest Palindromic subsequence: ABCBA or ABDBA or ABEBA

Take a string and its reverse as another string and then apply same LCS.

Solution

String A = " AABCDEBAZ"

Try this!

Space optimized LCS

Approach 1: Using two arrays

- If we observe the previous 2-D solution of the problem, we are only using the adjacent indexes in the table to build the solution in a bottom-up manner. In other words, we are using LCS[i-1][j-1], LCS[i][j-1] and LCS[i-1][j] to fill the position LCS[i][j]. So there are two basic observations:
 - We are filling the entries of the table in a row-wise fashion.
 - To fill the current row, we only need the value stored in the previous row.
- So there is no need to store all rows in our DP matrix and we can just store two rows at a time. The time complexity of the above solution is O(m.n), where m and n are the length of given strings X and Y, respectively. The auxiliary space required by the program is O(n), which is independent of the length of the first string m.
- However, if the second string's length is much larger than the first string's length, then the space complexity would be huge. We can optimize the space complexity to O(min(m, n)) by passing a smaller string as a second argument to the LCSLength function.

```
//LCS of substring `X[0..m-1]` and `Y[0..n-1]`
int LCSLength(string X, string Y)
    int m = X.length(), n = Y.length();
    int curr[n + 1], prev[n + 1];
    for (int i = 0; i <= m; i++)
        for (int j = 0; j <= n; j++)
            if (i == 0 || j == 0) {
                curr[i] = 0;}
            else {
                // if the current character of `X` and `Y` matches
                if (X[i-1] == Y[j-1]) {
                    curr[j] = prev[j - 1] + 1;
                // otherwise, if the current character of 'X' and 'Y' don't match
                else {
                    curr[j] = max(prev[j], curr[j - 1]);
                111
        // replace contents of the previous array with the current array
        for (int i = 0; i <= n; i++) {
           prev[i] = curr[i];
    return curr[n];
```

Approach 2: (Using one array)

We can further optimize the code to use only a single array and a temporary variable.