

Mechanizmy QoS Absolutnie zupełne podstawy (dla początkujących)

PLNOG, Kraków, wrzesień 2011

Zawartość (z grubsza)*

- Co to jest QoS?
- DiffServ i IntServ
- Markowanie
- Policing vs Shaping
- Profile dla PHB
- RED/WRED/MDWRR
- HQoS
- Q&A

* agenda może ulec zmianie bez ostrzeżenia, nawet w trakcie prezentacji

Co to jest QoS?

- Jakość Usługi ang. Quality of Service
- Zestaw mechanizmów starających się zapewnić nierówne traktowanie ruchu sieciowego
- Celem jest zapewnienie krytycznych paramentów ruchowych dla aplikacji, przy optymalnym wykorzystaniu zasobów.
- Myśląc o QoSie mówimy głównie o zarządzaniu KPI:

Opóźnieniem dla ruchu – (ang. delay)

Zmiennością opóźnień dla ruchu (ang. jitter)

Pasmem (ang. bandwidth)

Stopą utraty pakietów (ang. packet loss/drop)

Po co nam mechanizmy QoS?

- Aplikacje są wrażliwe na opóźnienia, jitter, utratę pakietów. Na szczęście niekonieczne na wszystkie na raz
- Aplikacje wrażliwe na jitter, kompensują go kosztem zwiększenia opóźnienia, poprzez de-jitter buffer po stronie odbiornika
- Przykłady:

	Delay	Jitter	Loss-rate
VoIP	sensitive	sensitive	moderate [<1%]
IPTV	not sensitive*	not sensitive	sensitive [10E-7]
Gaming	sensitive	moderate	moderate
Translational services (e.g. SAP)	moderate	not sensitive	moderate
WEB, e-mail, ftp	not sensitive	not sensitive	not sensitive

^{* &}quot;Not sensitive" – oznacza relatywnie niską wrażliwość - jednak w rozsądnych granicach ©

Czynniki wpływające na KPI

 Pewne składniki są niekontrolowane (opóźnienie propagacji, przełączania, błędy CRC, itp.)

Pasmo to nie wszystko: 10Mbps SAT != 10Mbps FO != 10Mbps 4G

Inne składniki możemy kontrolować

Długość buforowania

Kolejność obsługi buforów

- W większości sieci znajdują się miejsca narażone na przeciążenia
- 10Mbit/s -> 100Mbit/s -> 1GE -> 10GE -> 100GE (-> 400GE) ->?

Scenariusze stworzone dla mechanizmów QoS

Do czego dążymy z QoS?

oznaczanie

Klasyfikacja i Kolejkowanie i odrzucanie

Wysyłanie ruchu dalej

Architektury QoS

- Architektury QoS opisują sposób w jaki mechanizmy QoS działają w sieciach zapewniając gwarancje usług end-to-end
- Pierwsze architektury IP QoS nie wspominały wprost o SLA endto-end. Podejście hop-by-hop

IP Precedence (RFC 791), IP ToS (RFC 1349)

Dwa modele obecnie używane to:

Differentiated Services – Diffserv (RFC2475)

Integrated Services – Intserv (RFC1633)

- TEORETYCZNIE, w sieciach L3 dostawców usług oba modele mogą współistnieć i uzupełniać się, choć dla "prostych" polityk QoS stosuje się tradycyjnie architekturę Diffserv (mało aplikacji obsługuje RSVP wprost)
- W sieciach lokalnych L2 stosuje się architekturę Diffserv

Architektura IntServ

 Aplikacja końcowa żąda od sieci gwarancji zasobów dla indywidualnej sesji sieciowej

Wsparcie aplikacji dla RSVP

Sesja = Internet 5-typle

- Każdy element sieciowy musi znać stan każdej sesji przechodzącej przez niego. RSVP soft-state.
- Nie stosowane w sieciach SP/Telco

Skalowalność – ile sesji TCP mamy w Internecie? Jak je kontrolować?

Pełna implementacja – kolejka per sesja. Ten sam problem który zabił ATM

Elementy IntServ są wykorzystywane w MPLS-TE

Aggregacja

Gwarancje tylko w control-plane

Nie jest to IntServ as per RFC 1633

Architektura Diffserv – RFC2475

- Mały poziom złożoności – brak utrzymania stanów czy sygnalizacji
- Usługi tworzone są przez kombinację:
 - Złożonej klasyfikacji, oznaczania, ewentualnie przycinania ruchu na brzegu sieci
 - Prostej klasyfikacji wewnątrz sieci w oparciu o DSCP
 - Konfiguracji sposobu obsługi ruchu (PHB)

Bloki funkcjonajne DS-węzła (1)

Classifier

Identyfikuje strumienie pakietów, które powinny być jednakowo traktowane – **Behavior Aggregate**. Pakiety nie mogą zmienić kolejności

Rodzaje:

Behavior Aggregate (BA) – sprawdza wyłącznie DSCP

Multi-field Classifiers (**MF**) – sprawdza wiele pól w nagłówku. Stosowany na wejściowym DS-węźle. Z reguły bezstanowy, ale może być stanowy/aplikacyjny

Ordered Aggregate (OA) – zbiór BA, dla których wszystkie pakiety muszą być wysłane w tej samej kolejności w jakiej zostały otrzymane

Dany BA może należeć do tylko jednego OA

Bloki funkcjonajne DS-węzła (2)

- Meter Mierzy poziom ruchu dla strumienia pakietów wybranych przez classifier (BA). Meter przekazuje informację o stanie in- lub out-of-profile pakietu do innych elementów Traffic Conditioner w celu wykonania operacji
- Marker wpisuje wartość DSCP w odpowiednie pole nagłówka.
- Dropper/shaper odrzuca/buforuje pakiety w taki sposób, aby przyciąć ruch do założonego poziomu
- PHB

PHB i PSC

PHB = Jak zasoby są alokowane dla danego strumienia
 BA

Rozmiar Bufora FIFO/kolejki

Pasmo na interfejsie wyjściowym

Gwarantowane

Maksymalne

Proporcja

Która kolejka kiedy - scheduler

 PHB Scheduling Class (PSC) = Jak zasoby są alokowane dla danego strumienia OA

Zbiór PHB, dla których pakiety nie mogą się "przeskakiwać"

Aby zagwarantować kolejność – jeden bufor FIFO (kolejka)

Markowanie – IP DSCP

- Pole składa się z 6 bitów Jedna wartość dla jednego BA/PHB
- Pierwsze 3 bity DSCP Definiują OA/PSC
- Ostatnie 3 bity DSCP Definiują zależność między zajętością kolejki, a priorytetem (prawdopodobieństwem) odrzucenia (drop) pakietu
- RFC 3168 definiuje dodatkowo wykorzystanie dwóch bitów z pola ECN (Explicit Congestion Notification)
- Jeśli ostatnie 3 bity DSCP to 000b i ECN to 00b, to Pierwsze 3 bity są selektorem clasy (CS) – funkcjonalnie odpowiednie i wstecznie kompatybilne z IP Precedence

MPLS i Diffserv

Domena MPLS

- Do "sygnalizacji" QoS używamy 3-bitowego pola TC w nagłówku pakietu MPLS
 Kopia lub mapowanie z wartości pola DSCP oryginalnego pakietu IP
- Decyzja o trafieniu pakietu do konkretnej klasy usługowej może odbywać się na podstawie wartości pola TC, lub IP Precedence/DSCP oryginalnego pakietu
- Wsparcie dla architektury DiffServ w MPLS opisano w RFC 3270 (choć bez żadnych propozycji)

Markowanie - CoS - 802.1p

- 802.1p pole 'priorytet użytkownika' zwane również Class of Service (CoS)
- Różnym typom ruchu przypisane są różne wartości CoS.
- Wartości CoS 6 i 7 są zarezerwowane dla ruchu sieciowego
- Formalnie nie związany z DiffServ

CoS	Aplikacja	
7	Zarezerwowane	
6	Routing	
5	Głos	
4	Video	
3	Sygnalizacja połączeń	
2	Dane krytyczne	
1	Dane masowe	
0	Dane "Best Effort"	

IETF DiffServ a implementacje

MF Classifier	Access-list, stateless Firewall Filter, stateful firewall, IDP, etc
Meter	Policer, rate-limit profile, token bucket
Marker	Operacja ustawienia wartości
Dropper	Operacja w Policerze , Operacja w filtrze
PSC	Jedna kolejka i jej parametry
PHB	Kombinacja kolejki i profilu odrzucania pakietów

Elementy: Policing vs Shaping

Zarządzanie przeciążeniem

- Z obsługą zbyt dużej ilości ruchu związana jest konieczność odrzucania ruchu nadmiarowego
- Jeśli jednak przeciążenie jest krótkookresowe, można obyć się bez strat. Dwa podejścia:

policing – token bucket

shaping – buforujemy ruch przez określoną ilość czasu

Policer – Token Bucket

- Żetony do wiaderka są dostarczane w stałym tempie
- Żetony mogą być pobrane z wiaderka w dowolnej ilości (z nieskończoną prędkością)
- Aby przesłać pakiet, dla każdego bajtu, trzeba pobrać odpowiednią ilość żetonów z wiaderka
- Jeśli żetonów brakuje, to pakiet jest odrzucany/oznaczany
- Brak opóźnień
- Po przejściu policera, ruch nadal ma charakter niestały (bursty)
- Po przejściu policera, średnia wartość ruchu odpowiada zadanej prędkości

Shaper – Leaky Bucket

- Żetony wyciekają z wiaderka i są dostarczane w stałym tempie
- Aby przesłać pakiet, dla każdego bajtu, trzeba poczekać aż z wiaderka wycieknie dostateczna ilość żetonów
- W oczekiwaniu na żetony pakiety są składowane w buforze pamięci typu FIFO (kolejka)
- Pakiety są opóźniane w buforze
- Jak zabraknie bufora, pakiet trzeba odrzucić
 Head drop najstarszy pakiet jest wyrzucany, aby zrobić miejsce nowemu
 Tail drop najnowszy pakiet jest odrzucany, bo się nie mieści
- Po przejściu shapera, ruch nadal ma charakter stały
- Po przejściu shapera, średnia wartość ruchu odpowiada zadanej prędkości

Policing vs shaping

PHB Scheduling Profiles – parametry kolejki

Kolejki

Kolejka ma konfigurowalne atrybuty:

Rozmiar – wielkość pamięci, wyrażana w Bajtach, milisekundach, %, pakietach

Kolejka ma priorytet

Kolejka ma przypisane pasmo

CIR (udział w paśmie interfejsu). Minimalne gwarantowane pasmo dla strumienia **OA** wyrażone w % lub kbps

PIR Maksymalne pasmo dla strumienia **OA** wyrażone w % lub kbps

Wagę lub udział w paśmie interfejsu – relatywny udział wzgledem innych kolejek

- Dynamiczny stan kolejki pozytywne/negatywne saldo
- Na interfejsie jest wiele kolejek typowo 4 lub 8
- Scheduler process decydujący która kolejka bedzie obsługiwana

Scheduler

Wiele algorytmów

WFQ

WRR

PQ

. . .

 MDWRR Najbardziej popularny na urządzeniach operatorskich i high-end

wszystkie routery Junipera

CRS, ASR, 7600

MDWRR (1)

2 token bucket dla każdej kolejki

Pierwszy – napełniany w tempie odpowiadającym CIR

Drugi – napełniany w tempie odpowiadającym PIR

 Jeśli interfejs nie jest przeciążony, ruch z kolejki może być nadawany szybciej niż CIR

Ujemne żetony w pierwszym TB (Deficyt)

Kolejka jest w stanie negatywnego salda

MDWRR (2) - przykłady

- 1. Obsługa kolejek, które mają **wysoki** priorytet, i równocześnie **pozytywne** saldo. WRR wagą jest CIR/waga.
 - Strict-High priority kolejka o wysokim priorytecie, która zawsze ma pozytywne saldo
- Obsługa kolejek, które mają średni priorytet, i równocześnie pozytywne saldo. WRR – wagą jest CIR/waga
- Obsługa kolejek, które mają niski priorytet, i równocześnie pozytywne saldo. WRR – wagą jest CIR/waga
- 4. Obsługa kolejek, które mają **wysoki** priorytet, i równocześnie **negatywne** saldo. WRR wagą jest CIR/waga
- Obsługa kolejek, które mają średni lub niski priorytet, i równocześnie negatywne saldo. WRR – wagą jest CIR/waga

MDWRR a standardowe **PSC**

MDWRR – niestandardowe **PSC**

Policing lub przeciążenie – efekt synchronizacji TCP

Wiele sesji TCP startuje w różnym czasie

Rozmiary okien TCP zwiększają się

Bufory/kolejki wypełniają się

Odrzucanie ruchu powoduje zmniejszenie okna TCP w tym samym momencie – a następnie ponowne zwiększanie go...

Opóźnienia, jitter i "umieranie" pakietów

Stałe ciągłe wykorzystanie buforów powoduje opóźnienia

Zmieniające się obciążenie buforów może powodować jitter

Bardziej agresywne aplikacje generujące ruch mogą powodować "umieranie" bardziej spokojnych aplikacji

Mechanizm REDRandom Early Detection

Tail RED

- Nie wpływa na opóźnienie
- Preferuje dostarczenie pakietów pomarańczowych (np. ruch kontrolny sieci + klientów sieci)
- Pakiety niebieskie to TCP informacja o przeciążeniu w postaci brakujących pakietów jest dostarczana z opóźnieniem D2

Head RED

- Zmniejsza opóźnienie pakietów pomarańczowych
- Preferuje dostarczenie pakietów pomarańczowych
- Pakiety niebieskie to TCP informacja o przeciążeniu w postaci brakujących pakietów jest dostarczana bez opóźnienia

Mechanizm RED a PHB

Wymagania aplikacji a możliwosci konfiguracji

KPI

- Delay
- Jitter
- Loss-rate

Konfiguracja

- Priorytet kolejki
- Rozmiar kolejki
- CIR/PIR/Waga kolejki
- Profil RED

■ Upgrade łącza ☺

Zależności – rozmiar kolejki

Ups... Albo małe starty, albo mały jitter...

Zależności – priorytet kolejki

Zależności – CIR/Waga kolejki

Zwiększenie CIR/Wagi – zawsze kosztem innej kolejki

Ale tak praktycznie...

- CIR/PIR/Waga wynika z przewidywanego ruchu
- RED profile max. drop probability 10%-20%. Powyżej i tak wszystkie okna TCP są resetowane
- Rozmiar kolejki

Zależy od tego jaki jitter jest akceptowalny

Dla TCP – przepływność * opóźnienie propagacji. (LFN – Elephant) dla optymalizacji wypełnienia łacza

Hierarchiczny QoS – gdzie i w jakim celu

- Spotykany w środowisku masowego klienta BNG
- Wielu abonentów, każdy z kilkoma klasami QoS
- Trzeba zapewnić każdemu abonentowi minimalne zasoby, niezależnie of klasy ruchu

Abonent musi mieć zapewnioną możliwość realizacji kontraktu (20Mbps) w klasie BE, nawet jeśli inni abonenci są przeciążają łącze ruchem EF

 Potrzebujemy zapewnić minimalne pasmo dla każdego z urządzeń dostepowych, nawet jeśli są połączone w szeregu, tzw. łańcuszek (ang. daisy chain)

HQoS

Outer VLAN = Access NodeCIR

- Inner VLAN = subscriber wagaPIR
- Per VLAN queues

Real-time – CIR=PIR, S-HP, maly bufor

Video – CIR, MP, wielki bufor

Internet – CIR, LP, średni bufor, RED

Pytania?

