

第4章 组合逻辑电路

- 4.1 概述
- 4.2组合逻辑电路分析方法和设计方法
- 4.3 若干常用的组合逻辑电路
 - 4.3.1 编码器
 - 4.3.2 译码器
 - 一、二进制译码器
 - 二、二-十进制译码器
 - 三、显示译码器
 - 四、用译码器设计组合逻辑电路
 - 4.3.3 数据选择器
 - 4.3.4 加法器
 - 4.3.5 数值比较器

4.1 概述

一、组合逻辑电路的特点 任何时刻的输出,仅仅取决于该时刻的 输入,与电路原来状态无关

电路结构:由逻辑门电路组成。

电路特点:没有记忆单元

无状态反馈

组合逻辑电路举例

$$CO = \overline{AB + (A \oplus B)CI}$$
$$= AB + (A \oplus B)CI$$

无论任何时刻,只要A、B、CI的取值确定,则S、CO的取值也随之而定,与电路过去的工作状态无关

二、逻辑功能的描述

对于多输入、多输出的组合逻辑电路

输出与输入的逻辑关系可以用一组逻辑函数表示

$$\begin{cases} y_1 = f_1 (a_1, a_2, ..., a_n) \\ y_2 = f_2 (a_1, a_2, ..., a_n) \\ \vdots \\ y_m = f_m (a_1, a_2, ..., a_n) \end{cases}$$

或者写成向量函数的形式为: Y=F(A)

4.2 组合逻辑电路的分析方法和设计方法

4.2.1 组合逻辑电路的分析方法

通过分析电路图,找出电路的逻辑功能

[例4.2.1] 试分析下图电路的逻辑功能,指出该电路的用途

解.	由上	图可写	出逻辑	关系式
万十 •			ш~т	ノノノハンナリ

$$Y_{2} = \overline{DC} \cdot \overline{DBA}$$

$$= DC + DBA$$

$$Y_{1} = \overline{DCB} \cdot \overline{DCB} \cdot \overline{DCA}$$

$$= \overline{DCB} + D\overline{CB} + D\overline{CA}$$

$$Y_{0} = \overline{DC} \cdot \overline{DB} = \overline{DC} + \overline{DB}$$

因此,该电路用来判别4位二进制数的范围

输入				输出		
D	C	В	Α	Y2	Y1	1
0	0	0	0	0	0	
0	0	0	1	0	0	
0	0	1	0	0	0	
0	0	1	1	0	0	
0	1	0	0	0	0	
0 0 0 0 1 1	1	0	1	0	0	
0	1	1	0	0 0 0	1	
0	1	1	1	0	1	
1	0	0	0	0	1	
1	0	0	1	0	1	
1	0	1	0	0	1	
1	0	1	1	0 0 1	0	
1	1	0	0	1	0	
1	1	0	1	1	0	
1	1	1	0	1	0	
1	1	1	1	1	0	7

[例4.2.2] 试分析下图所示组合逻辑电路的逻辑功能。

解: 1、根据逻辑电路写出各输出端的逻辑表达式,并进行化简和变换。

2、列写真值表

$$X = A$$

$$Y = \overline{AB} \cdot \overline{BB} = AB + \overline{AB}$$

$$= A \oplus B$$

$$Z = \overline{\overline{A}\overline{\overline{C}} \cdot \overline{\overline{A}C}} = A\overline{C} + \overline{A}C$$

$$=A \oplus C$$

真值表

\boldsymbol{A}	В	C	X	Y	Z
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	1	1
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	0	0

3、确定电路逻辑功能 这个电路逻辑功能是对输入 的二进制码求反码。最高位为 符号位,0表示正数,1表示负 数,正数的反码与原码相同; 负数的数值部分是在原码的基 础上逐位求反。

真值表

\boldsymbol{A}	В	C	X	Y	Z
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	1	1
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	0	0

• 练习:

分析下图电路的逻辑功能

