Intervallum lefedés

Adott a számegyenesen egy szakasz az A és B egész értékű végpontjával (A<B), és adottak a $[k_1, v_1], ..., [k_n, v_n]$ ($k_i < v_i$, i = 1, ..., N) zárt intervallumok egész értékű kezdő és végpontjaikkal. Kiválasztandó az intervallumoknak egy olyan halmaza, amely lefedi az [A, B] szakaszt, azaz minden x egész számra, amely eleme az [A, B] szakasznak (A \leq x \leq B) van olyan kiválasztott $[k_i, v_i]$ intervallum, amelynek x eleme, azaz $k_i \leq$ x \leq v_i. A lefedés költsége a kiválasztott intervallumok hosszainak összege. Egy [k, v] intervallum hosszán a v-k értéket értjük.

Írj programot, amely megad egy minimális költségű lefedést!

Bemenet

A standard bemenet első sora a lefedendő szakasz kezdő- és végpontját tartalmazza (1≤A< B≤10 000). A második sorban a lefedésre használható intervallumok száma van (1≤N≤1000). A következő N sor mindegyike egy lefedésre használható intervallum kezdő és végpontját tartalmazza (A≤K_i<V_i≤B), a végpontjuk szerint nemcsökkenő sorrendben.

Kimenet

A standard kimenet első sorába a minimális lefedési költséget kell írni! A második sorba egy minimális lefedést adó intervallumok sorszámait kell kiírni, tetszőleges sorrendben! Több megoldás esetén bármelyik megadható. Ha az [A,B] szakasz nem fedhető le a megadott intervallumokkal, akkor az első és egyetlen sor a -1 értéket tartalmazza!

Példa

Bemenet	Kimenet	
2 50	68	
6 2 4	6 4 2 1	
3 18		
15 19		I
10 33		
20 45		
22 50		

Korlátok

Időlimit: 0.1 mp.

Memórialimit: 16 MB