DISTANT SUPERVISION FOR RELATION EXTRACTION WITHOUT LABELED DATA (2009)

MIKE MINTZ, STEVEN BILLS, RION SNOW, DAN JURAFSKY

RODERICK PEREZ, PH.D

APRIL, 22TH, 2021

OUTLINE

- Summary
- Introduction
 - Entities, relations and events
- Motivation
- Relation Extraction
- FreeBase
- Approaches
- Training and Testing
- Results
- Conclusions
- Discussion

ENTITIES, RELATIONS AND EVENTS

Entities: persons, organizations, locations, facilities, weapons, vehicles, and geo-political entities.

38 years old Roderick Perez study a Master in Data Science at

the University of Vienna is the father of Lea and Amy...

ENTITIES, RELATIONS AND EVENTS

Entities: persons, organizations, locations, facilities, weapons, vehicles, and geo-political entities.

Relations (between entities): an ordered, binary relation between entities. For example: role, part, located, near, and social.

38 years old Roderick Perez study a Master in Data Science at

the University of Vienna is the father of Lea and Amy...

X is the father of Y and Z

ENTITIES, RELATIONS AND EVENTS

Entities: persons, organizations, locations, facilities, weapons, vehicles, and geo-political entities.

Relations (between entities): an ordered, binary relation between entities. For example: role, part, located, near, and social.

Events: interaction, movement, transfer, creation and destruction.

38 years old Roderick Perez study a Master in Data Science at

the University of Vienna is the father of Lea and Amy...

X study at Y

MOTIVATION WHAT IS RELATION EXTRACTION?

Company Report Meeting [2013]

Apple Inc. 2013 Annual Meeting of Shareholders February 27, 2013 9:00 a.m. Pacific Standard Time 1 Infinite Loop, Building 4, Cupertino, California 95014 Upon arrival, please present this admission ticket and photo identification

at the registration desk.

Directions:

FROM SAN JOSE: Take 280 northbound Take the De Anza Rlvd, exit Make a left onto De Anza Blvd. (at signal). Make a left onto Mariani Avenue. Enter Infinite Loop Parking Lot at the end of Mariani Avenue

FROM SAN FRANCISCO: Take 280 southbound. Take the De Anza Blvd. exit. Make a right onto De Anza Blvd. (at signal). Make a left onto Mariani Avenue. Enter Infinite Loop Parking Lot at the end of Mariani Avenue Proceed to Building 4 (to Apple Town Hall). Proceed to Building 4 (to Apple Town Hall).

Attendance at the 2013 Annual Meeting of Shareholders is limited to shareholders. Admission to the meeting will be on a first-come, first-served basis. Apple Inc. has opted to provide the enclosed Annual Report on Form 10-K for the fiscal year ended September 29, 2012 in lieu of producing a glossy annual report.

▼ IF YOU HAVE NOT VOTED VIA THE INTERNET OR TELEPHONE. FOLD ALONG THE PERFORATION, DETACH AND RETURN THE BOTTOM PORTION IN THE ENCLOSED ENVELOPE. **

THIS PROXY IS SOLICITED ON BEHALF OF APPLE INC. FOR THE 2013 ANNUAL MEETING OF SHAREHOLDERS TO BE HELD ON FEBRUARY 27, 2013

The undersigned shareholder of Apple Inc., a California corporation, hereby acknowledges receipt of the Notice of 2013 Annual Meeting of Shareholders and Proxy Statement with respect to the 2013 Annual Meeting of Shareholders of Apple Inc. to be held at 1 Infinite Loop, Building 4, Cupertino, California 95014 on Wednesday, February 27, 2013 at 9:00 a.m. Pacific Standard Time, and hereby appoints Peter Oppenheimer and Bruce Sewell, and each of them, proxies and attorneys-in-fact, each with power of substitution and revocation, and each with all powers that the undersigned would possess if personally present, to vote the Apple Inc. Common Stock of the undersigned at such meeting and any postponement(s) or adjournment(s) of such meeting, as set forth on the reverse side, and in their discretion upon any other business that may properly come before the meeting (and any such postponement(s) or adjournment(s))

THIS PROXY WILL BE VOTED AS SPECIFIED OR. IF NO CHOICE IS SPECIFIED, FOR THE ELECTION OF THE NOMINEES, FOR PROPOSALS 2, 3 AND 4 AND AGAINST PROPOSALS 5 AND 6 AND AS SAID PROXIES DEEM ADVISABLE ON SUCH OTHER MATTERS AS MAY PROPERLY COME BEFORE THE MEETING AND ANY POSTPONEMENT(S) OR ADJOURNMENT(S) THEREOF.

PLEASE VOTE, SIGN, DATE AND RETURN THIS PROXY CARD PROMPTLY USING THE ENCLOSED ENVELOPE OR VOTE THROUGH THE TELEPHONE OR BY THE INTERNET.

If you vote by telephone or the Internet, please DO NOT mail back this proxy card, THANK YOU FOR YOUR VOTE.

IF VOTING BY MAIL, YOU MUST COMPLETE SECTIONS A - D ON BOTH SIDES OF THIS CARD.

"The undersigned shareholder of Apple Inc., a California corporation, hereby acknowledges receipt of the Notice 2013 Annual Meeting of Shareholders and Proxy Statement with respect to 2013 Annual Meeting Shareholders of Apple Inc. to be held at Infinite Loop, Building 4, Cupertino, California 95014 on Wednesday, February 27, 2013 at 9:00a.m. Pacific Standard Time...

Extracted Complex Relation:

- Company Meeting Invitation
 - Company: Apple Inc.
 - Location: Infinite Loop, ..., California 95014
 - Date: February 27, 2013
 - Time: 9:00a.m. Pacific Standard Time

Relation triples:

- meeting location (Apple, California)
- meeting year (Apple, 2013)
- meeting time (Apple, 9:00a.m.)

ABSTRACT

Distant supervision for relation extraction without labeled data (2009)

Authors: Mike Mintz, Steven Bills, Rion Snow, Dan Jurafsky

- Alternative that does not require labeled corpora
- Avoid domain dependence of Automatic Content Extraction (ACE) -> Supervised Learning
- Allowing the use of corpora of any size

- Data Source:
 - FreeBase

- Results:
 - Extract 10,000 instances
 - Precision: 67.6%
 - Syntactic parse features are helpful for relations that are ambiguous or lexically distant

Freebase*

FREEBASE

Freebase only contains NODES and LINKS

Relation name	Size	Example
/people/person/nationality	281,107	John Dugard, South Africa
/location/location/contains	253,223	Belgium, Nijlen
/people/person/profession	208,888	Dusa McDuff, Mathematician
/people/person/place_of_birth	105,799	Edwin Hubble, Marshfield
/dining/restaurant/cuisine	86,213	MacAyo's Mexican Kitchen, Mexican
/business/business_chain/location	66,529	Apple Inc., Apple Inc., South Park, NC
/biology/organism_classification_rank	42,806	Scorpaeniformes, Order
/film/film/genre	40,658	Where the Sidewalk Ends, Film noir
/film/film/language	31,103	Enter the Phoenix, Cantonese
/biology/organism_higher_classification	30,052	Calopteryx, Calopterygidae
/film/film/country	27,217	Turtle Diary, United States
/film/writer/film	23,856	Irving Shulman, Rebel Without a Cause
/film/director/film	23,539	Michael Mann, Collateral
/film/producer/film	22,079	Diane Eskenazi, Aladdin
/people/deceased_person/place_of_death	18,814	John W. Kern, Asheville
/music/artist/origin	18,619	The Octopus Project, Austin
/people/person/religion	17,582	Joseph Chartrand, Catholicism
/book/author/works_written	17,278	Paul Auster, Travels in the Scriptorium
/soccer/football_position/players	17,244	Midfielder, Chen Tao
/people/deceased_person/cause_of_death	16,709	Richard Daintree, Tuberculosis
/book/book/genre	16,431	Pony Soldiers, Science fiction
/film/film/music	14,070	Stavisky, Stephen Sondheim
/business/company/industry	13,805	ATS Medical, Health care

The 23 largest Freebase relations we use, with their size and an instance of each relation

[Source: Mintz et al., 2009, Distant supervision for relation extraction without labeled data

HOW TO BUILD RELATION EXTRACTORS? APPROACHES

- Manual
- Supervised (ACE)
- Unsupervised

RELATION EXTRACTION

PER GPE

Roderick Perez was in Colombia

Person - Located

ORG ORG

Alphabet, the parent company of Google ===

Organization - Organization

ORG **PER**

Bill Gates, co-founder of Microsoft

Person - Organization

APPROACHES

MANUAL

PER GPE

Roderick Perez was in Colombia

Person - Located

Positive	Negative
High-precisionTailored to specific domains	 Low-recall A lot of work for all possible patterns! Don't want to have to do this for every relation! We'd like better accuracy

APPROACHES SUPERVISED

Astronomer

Edwin Hubble

was

born

in

Marshfield

Missouri

APPROACHES SUPERVISED

entity1verbverbprepositionentity2entity3AstronomerEdwin HubblewasborninMarshfield,Missouri

1. Find all pairs of named entities

APPROACHES SUPERVISED

entity1verbverbprepositionentity2entity3AstronomerEdwin HubblewasborninMarshfield,Missouri

- 1. Find all pairs of named entities
- 2. Decide if 2 entities are related

APPROACHES SUPERVISED

Astronomer

Edwin Hubble

entity1

was

verb

verb

born

preposition

Marshfield

entity2

entity3

Missouri

- 1. Find all pairs of named entities
- 2. Decide if 2 entities are related
- 3. If yes, classify the relation

Automated Content Extraction (ACE)

APPROACHES SUPERVISED

Astronomer

Edwin Hubble

entity1

verb

was

verb

born

preposition

in

Marshfield

entity2

entity3 Missouri

Positive

 High accuracies (large handlabeled training data)

- Labeling is expensive
- Supervised models are brittle
- Use only annotated data to train a model.

1. Start with 5 seeds:

Tuple: <author, book>

Author	Book
Isaac Asimov	The Robots of Dawn
David Grin	Startide Rising
James Gleick	Chaos: Making a New Science
Charles Dickems	Great Expectations
William Shakespeare	The Comedy of Errors

Brin, Sergei. 1998. Extracting Patterns and Relations from the World Wide Web

1. Start with 5 seeds:

2. Find Instances:

- The Comedy of Error, by William Shakespeare, was...
- The Comedy of Error, by William Shakespeare, is...
- The Comedy of Error, one of William Shakespeare's earliest attempts...
- The Comedy of Error, one of William Shakespeare's most...

Tuple: <author, book>

Author	Book
Isaac Asimov	The Robots of Dawn
David Grin	Startide Rising
James Gleick	Chaos: Making a New Science
Charles Dickems	Great Expectations
William Shakespeare	The Comedy of Errors

Brin, Sergei. 1998. Extracting Patterns and Relations from the World Wide Web

1. Start with 5 seeds:

Tuple: <author, book>

Author	Book
Isaac Asimov	The Robots of Dawn
David Grin	Startide Rising
James Gleick	Chaos: Making a New Science
Charles Dickems	Great Expectations
William Shakespeare	The Comedy of Errors

Brin, Sergei. 1998. Extracting Patterns and Relations from the World Wide Web

2. Find Instances:

- The Comedy of Error, by William Shakespeare, was...
- The Comedy of Error, by William Shakespeare, is...
- The Comedy of Error, one of William Shakespeare's earliest attempts...
- The Comedy of Error, one of William Shakespeare's most...

3. Extract patterns (group by middle, take longest common prefix/suffix)

- ?x, by ?y, was...
- ?x, by ?y, is...
- ?x, one of ?y's earliest attempts...
- ?x, one of ?y's most...

1. Start with 5 seeds:

Tuple: <author, book>

Author	Book
Isaac Asimov	The Robots of Dawn
David Grin	Startide Rising
James Gleick	Chaos: Making a New Science
Charles Dickems	Great Expectations
William Shakespeare	The Comedy of Errors

Brin, Sergei. 1998. Extracting Patterns and Relations from the World Wide Web

2. Find Instances:

- The Comedy of Error, by William Shakespeare, was...
- The Comedy of Error, by William Shakespeare, is...
- The Comedy of Error, one of William Shakespeare's earliest attempts...
- The Comedy of Error, one of William Shakespeare's most...
- 3. Extract patterns (group by middle, take longest common prefix/suffix)
 - ?x, by ?y, was...
 - ?x, by ?y, is...
 - ?x, one of ?y's earliest attempts...
 - ?x, one of ?y's most...
- 4. Iterate, finding new seeds that match the pattern

INTUITION

... if two entities participate in a relation, any sentence that contains a <u>pair</u> of **entities** that participate in a known Freebase relation is likely to express that relation in <u>some way</u>.

...extract very large numbers of features that are combined in a <u>logistic regression classifier</u>.

More text, more relations, and more instances.

- 940K entities
- 1.8 instances

DISTANT SUPERVISIONSUMMARY

For each relation

born - in

DISTANT SUPERVISIONSUMMARY

- For each relation
- For each tuple in big database

study - in

<Edwin Hubble - Marshfield> <Albert Einstein - Ulm>

DISTANT SUPERVISION SUMMARY

- For each relation
- For each tuple in big database

- born in
- <Edwin Hubble Marshfield> <Albert Einstein Ulm>
- Find sentences in large corpus with both entities

Edwin Hubble was born in Marshfield Einstein, born (1879), Ulm

DISTANT SUPERVISION **SUMMARY**

- For each relation
- For each tuple in big database
- Find sentences in large corpus with both entities

Extract frequent features

born - in

<Edwin Hubble - Marshfield> <Albert Einstein – Ulm>

Edwin Hubble was born in Marshfield Einstein, born (1879), Ulm

> PER was born in LOC PER, born (1879), LOC

DISTANT SUPERVISION SUMMARY

- For each relation
- For each tuple in big database

Extract frequent features

born - in

<Edwin Hubble - Marshfield>
<Albert Einstein- Ulm>

Find sentences in large corpus with both entities

Edwin Hubble was born in Marshfield Einstein, born (1879), Ulm

PER was born in LOC PER, born (1879), LOC

Train classifier

FEATURES LEXICAL

Astronomer

Edwin Hubble

verb

was

verb

born

preposition

in

entity2

Marshfield

entity3

Missouri

https://parts-of-speech.info/

Feature type	Left window	NE1	Middle	NE2	Right window
Lexical	0	PER	[was/VERB born/VERB in/CLOSED]	LOC	[]
Lexical	[Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[,]
Lexical	[#PAD#, Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[, Missouri]
Syntactic	U	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	
Syntactic	[Edwin Hubble $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	[]
Syntactic	[Astronomer $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	
Syntactic	1 0	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{lex-mod},]$
Syntactic	[Edwin Hubble $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{lex-mod},]$
Syntactic	[Astronomer $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{lex-mod},]$
Syntactic	1 0	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	[↓inside Missouri]
Syntactic	[Edwin Hubble $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{inside}$ Missouri]
Syntactic	[Astronomer $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{inside}$ Missouri]

entity1

Variations*:

 omitting all words that are not verbs,

omitting all function words.

increment, but
not large enough
to justify the
computational
effort.

Precision

^{*}attempt to approximate syntactic features

FEATURES SYNTACTIC

Astronomer

entity2	
Marshfield	

entity3

Missouri

Feature type	Left window	NE1	Middle	NE2	Right window
Lexical	0	PER	[was/VERB born/VERB in/CLOSED]	LOC	[]
Lexical	[Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[,]
Lexical	[#PAD#, Astronomer]	PER	[was/VERB born/VERB in/CLOSED]	LOC	[, Missouri]
Syntactic	[]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	[]
Syntactic	[Edwin Hubble $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	[]
Syntactic	[Astronomer $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	0
Syntactic		PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{lex-mod},]$
Syntactic	[Edwin Hubble $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{lex-mod},]$
Syntactic	[Astronomer $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	$[\downarrow_{lex-mod},]$
Syntactic		PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	[↓inside Missouri]
Syntactic	[Edwin Hubble $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	[↓ _{inside} Missouri]
Syntactic	[Astronomer $\downarrow_{lex-mod}$]	PER	$[\uparrow_s \text{ was } \downarrow_{pred} \text{born } \downarrow_{mod} \text{ in } \downarrow_{pcomp-n}]$	LOC	[↓ _{inside} Missouri]

Grammatical Relationships

Symbol	Description
inv-aux	inverted auxiliary
mod	relationship between a word and its adjunct modifier
pnmod	post nominal modifier
p-spec	specifier of prepositional phrases
pcomp-c	clausal complement of prepositions
pcomp-n	nominal complement of prepositions
post	post determiner
pre	pre determiner
S	surface subjec

https://gate.ac.uk/releases/gate-7.0-build4195-ALL/doc/tao/splitch17.html

FEATURES

NAMED ENTITY TAGS - STANFORD NAMED ENTITY TAGGER

Stanford Named Entity Tagger Classifier: english.muc.7class.distsim.crf.ser.gz Output Format: highlighted Preserve Spacing: yes Please enter your text here: Submit Clear

Reference:

http://nlp.stanford.edu:8080/ner/

FEATURES

NAMED ENTITY TAGS - STANFORD NAMED ENTITY TAGGER

Stanford Named Entity Tagger Classifier: english.muc.7class.distsim.crf.ser.gz Output Format: highlighted Preserve Spacing: yes Please enter your text here: Submit Clear

Reference:

http://nlp.stanford.edu:8080/ner/

FEATURESFEATURE CONJUNCTIONS

Example

Reference:

http://corenlp.run/

FEATURES

FEATURE CONJUNCTIONS

Named Entity Tags

Large dataset

IMPLEMENTATION

MULTI-CLASS LOGISTIC CLASSIFIER OPTIMIZED USING L-BFGS WITH GAUSSIAN REGULARIZATION

EVALUATION AUTOMATIC - HELD-OUT

Precision =

- The combination of syntactic and lexical features offers a substantial improvement in precision over either of these feature sets on its own.
- At the 100,000-recall level, we classify most of the instances into three relations:
 - 60% as location-contains
 - 13% as person-place-of-birth
 - 10% as person-nationality

Real Label

Positive

Negative

Automatic evaluation with 50% of Freebase relation data held out and 50% used in training on the 102 largest relations we use.

[Source: Mintz et al., 2009, Distant supervision for relation extraction without labeled data

EVALUATION HUMAN

Manually

Syntactic features

Lexical features

Syntactic + Lexical features

Relation name		100 instances			1000 instances		
Relation hame	Syn	Lex	Both	Syn	Lex	Both	
/film/director/film	0.49	0.43	0.44	0.49	0.41	0.46	
/film/writer/film	0.70	0.60	0.65	0.71	0.61	0.69	
/geography/river/basin_countries	0.65	0.64	0.67	0.73	0.71	0.64	
/location/country/administrative_divisions	0.68	0.59	0.70	0.72	0.68	0.72	
/location/location/contains	0.81	0.89	0.84	0.85	0.83	0.84	
/location/us_county/county_seat	0.51	0.51	0.53	0.47	0.57	0.42	
/music/artist/origin	0.64	0.66	0.71	0.61	0.63	0.60	
/people/deceased_person/place_of_death	0.80	0.79	0.81	0.80	0.81	0.78	
/people/person/nationality	0.61	0.70	0.72	0.56	0.61	0.63	
/people/person/place_of_birth	0.78	0.77	0.78	0.88	0.85	0.91	
Average	0.67	0.66	0.69	0.68	0.67	0.67	

Estimated precision on human-evaluation experiments of the highest-ranked 100 and 1000 results per relation, using stratified samples..

[Source: Mintz et al., 2009, Distant supervision for relation extraction without labeled data

RESULTS DISCUSSION noun verb determiner Saving Private Ryan preposition adverb Example 1 Chunking entity1 entity2 Saving Private Ryan Steven Spielberg brother's is 'S film loosely based the story. on **Relations:** film-director film-writer

film-producer

RESULTS DISCUSSION

Example 2

Allison co-produced the Academy Award winning

???

Relation name		100 instances			1000 instances		
Relation name	Syn	Lex	Both	Syn	Lex	Both	
/film/director/film	0.49	0.43	0.44	0.49	0.41	0.46	
/film/writer/film		0.60	0.65	0.71	0.61	0.69	
/geography/river/basin_countries	0.65	0.64	0.67	0.73	0.71	0.64	
/location/country/administrative_divisions	0.68	0.59	0.70	0.72	0.68	0.72	
/location/location/contains	0.81	0.89	0.84	0.85	0.83	0.84	
/location/us_county/county_seat	0.51	0.51	0.53	0.47	0.57	0.42	
/music/artist/origin	0.64	0.66	0.71	0.61	0.63	0.60	
/people/deceased_person/place_of_death	0.80	0.79	0.81	0.80	0.81	0.78	
/people/person/nationality	0.61	0.70	0.72	0.56	0.61	0.63	
/people/person/place_of_birth	0.78	0.77	0.78	0.88	0.85	0.91	
Average	0.67	0.66	0.69	0.68	0.67	0.67	

Estimated precision on human-evaluation experiments of the highest-ranked 100 and 1000 results per relation, using stratified samples..

noun

In case of ambiguous relations, syntactic features are important.

CONCLUSIONS

Distant supervision for relation extraction without labeled data (2009)

Authors: Mike Mintz, Steven Bills, Rion Snow, Dan Jurafsky

- Extract relations from unlabeled text
- Using database, the label is suit for the current database
- Extracted relations has a 67% of accuracy.

DISCUSSION

Distant supervision for relation extraction without labeled data (2009)

Authors: Mike Mintz, Steven Bills, Rion Snow, Dan Jurafsky

- Distantly supervision can be useful for other taks.
- It is necessary to have a large database.

THANKS

QUESTIONS?

APPROACHES

MANUAL

PER GPE

Roderick Perez was in Colombia

Person - Located

SUMMARY AND KEY POINTS

Distant supervision for relation extraction without labeled data (2009)

Authors: Mike Mintz, Steven Bills, Rion Snow, Dan Jurafsky

New sentence (using NER):

 Check for sentences which Named Entity Tagged exist in a known Freebase relation.

- Since there is a large dataset, many sentence might cover such relation (larger text, more potential features).
- Use a Logistic classifier to map the relation

If two entities have a known relation in a knowledge base, all sentences that mention these two entities will probably express the same relation.

DISTANT SUPERVISION SUMMARY

Supervised Classification

- Uses a classifier with lots of features
- Supervised by detailed hand-created knowledge
- Doesn't require iteratively expanding patterns

Unsupervised Classification

- Uses very large amounts of unlabeled data
- Not sensitive to genre issues in training corpus

IMPLEMENTATION TEXT

Unstructured

Wikipedia*

Articles: 1.8 M

Sentence per article: 14.3 / article

Words: 601,600,703

Training

800 K

Testing

400 K

*not including discussion or user pages.

Freebase Wikipedia Extraction

https://github.com/saleiro/Freebase-to-Wikipedia

Training: 900 K Instance relations**

Relation 2 X study at Y

Relation n-1 Relation n

NEW relation

≛ Download

22 GB gzip 250 GB uncompressed

https://developers.google.com/freebase/

Structured

Relation 1

Feature 1 Feature 2 Feature 3

Freebase Triples

Total triples: 1.9 billion

Updated: Weekly

every fact Data Format: N-Triples

This

contains

Freebase.

...

Feature n-1 Feature n

Entity 1 Entity 2 Entity 3

...

Entity n-1 Entity n

extract relation instances that do not appear in our training data (not already in Freebase).

** originally 1.8 M (only used for human evaluation experiments during training).

FREEBASE-WIKIPEDIA

Wikipedia

Wikipedia Infobox

Relations

ORG GPE UniWien location Vienna

Organization - Located

CLASSIFICATION RESULTS

Relation	Feature type	Left window	NE1	Middle	NE2	Right window
/architecture/structure/architect	LEX←		ORG	, the designer of the	PER	
	SYN	designed \uparrow_s	ORG	\uparrow_s designed $\downarrow_{by-subj}$ by \downarrow_{pcn}	PER	\uparrow_s designed
/book/author/works_written	LEX		PER	s novel	ORG	
	SYN		PER	\uparrow_{pcn} by \uparrow_{mod} story \uparrow_{pred} is \downarrow_s	ORG	
/book/book_edition/author_editor	LEX←		ORG	s novel	PER	
	SYN		PER	\uparrow_{nn} series \downarrow_{gen}	PER	
/business/company/founders	LEX		ORG	co - founder	PER	
	SYN		ORG	\uparrow_{nn} owner \downarrow_{person}	PER	
/business/company/place_founded	LEX←		ORG	- based	LOC	
	SYN		ORG	\uparrow_s founded \downarrow_{mod} in \downarrow_{pcn}	LOC	
/film/film/country	LEX		PER	, released in	LOC	
,	SYN	opened ↑s	ORG	\uparrow_s opened \downarrow_{mod} in \downarrow_{pen}	LOC	↑s opened
/geography/river/mouth	LEX		LOC	, which flows into the	LOC	
	SYN	the \Downarrow_{det}	LOC	\Uparrow_s is \Downarrow_{pred} tributary \Downarrow_{mod} of \Downarrow_{pen}	LOC	ψ_{det} the
/government/political_party/country	LEX←		ORG	politician of the	LOC	
	SYN	candidate $\uparrow nn$	ORG	\uparrow_{nn} candidate \downarrow_{mod} for \downarrow_{pcn}	LOC	\uparrow_{nn} candidate
/influence/influence_node/influenced	LEX←		PER	, a student of	PER	
	SYN	of ↑pcn	PER	\uparrow_{pcn} of \uparrow_{mod} student \uparrow_{appo}	PER	\uparrow_{pcn} of
/language/human_language/region	LEX		LOC	- speaking areas of	LOC	
	SYN		LOC	$\uparrow_{lex-mod}$ speaking areas \downarrow_{mod} of \downarrow_{pen}	LOC	
/music/artist/origin	LEX←		ORG	based band	LOC	
	SYN	is ↑s	ORG	\uparrow_s is \downarrow_{pred} band \downarrow_{mod} from \downarrow_{pcn}	LOC	↑s is
/people/deceased_person/place_of_death	LEX	,,	PER	died in	LOC	
	SYN	hanged ↑s	PER	\uparrow_s hanged \downarrow_{mod} in \downarrow_{pen}	LOC	↑s hanged
/people/person/nationality	LEX		PER	is a citizen of	LOC	
	SYN		PER	\downarrow_{mod} from \downarrow_{pcn}	LOC	
/people/person/parents	LEX		PER	, son of	PER	
	SYN	father \uparrow_{gen}	PER	\uparrow_{gen} father \downarrow_{person}	PER	\uparrow_{gen} father
/people/person/place_of_birth	LEX←	ngen	PER	is the birthplace of	PER	n gene
	SYN		PER	\uparrow_s born \downarrow_{mod} in \downarrow_{pcn}	LOC	
/people/person/religion	LEX		PER	embraced	LOC	
	SYN	convert \downarrow_{appo}	PER	\Downarrow_{appo} convert \Downarrow_{mod} to \Downarrow_{pcn}	LOC	ψ_{appo} convert

syntactic feature LEX lexical feature reversed NE# named entity tag of entity

SYN

IMPLEMENTATION PARSING AND CHUNKING

PreProcessing

RECENT WORK

GAN Driven Semi-distant Supervision for Relation Extraction

<u>Author</u>: Shanghai Jiao Tong University

RECENT WORK

GAN Driven Semi-distant Supervision for Relation Extraction

<u>Author</u>: Shanghai Jiao Tong University

RECENT WORK

GAN Driven Semi-distant Supervision for Relation Extraction

<u>Author</u>: Shanghai Jiao Tong University

Datasets

Dataset	Positive	Negative	Unlabeled	Classes
NYT	163,108	579,428	-	53
A-NYT	163,108	240,453	338,975	53
Books	1,000	1,000	2,000	2
Electronics	1,000	998	2,000	2
DVD	1,000	1,000	2,000	2
Kitchen	1,000	1,000	2,000	2
Apparel	1,000	1,000	2,000	2
Camera	999	998	2,000	2
Health	1,000	1,000	2,000	2
Music	1,000	1,000	2,000	2
Toys	1,000	1,000	2,000	2
Video	1,000	1,000	2,000	2
Baby	1,000	900	2,000	2
Magazine	1,000	970	2,000	2
Software	1,000	915	475	2
Sports	1,000	1,000	2,000	2
IMDB	994	1,006	2,000	2
MR	986	1,014	2,000	2
			,	

Results

P@N	100	200	300	Mean	PR
Zeng et al. (2015)	72.3	69.7	64.1	68.7	0.33
Lin et al. (2016)	76.2	73.1	67.4	72.2	0.35
Wu et al. (2017)	81.0	74.5	71.7	75.7	0.34
Liu et al. (2017b)	87.0	84.5	77.0	82.8	0.34
Qin et al. (2018a)	78.0	75.5	72.3	75.3	0.35
Liu et al. (2018)	87.0	83.0	78.0	82.7	0.39
Our Method	96.0	93.5	93.0	94.2	0.56

DISTANT SUPERVISION

HYPERNYM (IS – A)

RELATION EXTRACTION

Relation name	New instance
/location/location/contains	Paris, Montmartre
/location/location/contains	Ontario, Fort Erie
/music/artist/origin	Mighty Wagon, Cincinnati
/people/deceased_person/place_of_death	Fyodor Kamensky, Clearwater
/people/person/nationality	Marianne Yvonne Heemskerk, Netherlands
/people/person/place_of_birth	Wavell Wayne Hinds, Kingston
/book/author/works_written	Upton Sinclair, Lanny Budd
/business/company/founders	WWE, Vince McMahon
/people/person/profession	Thomas Mellon, judge

Ten relation instances extracted by the system that did not appear in Freebase

[Source: Mintz et al., 2009, Distant supervision for relation extraction without labeled data