- (a) पॉवर
- (b) हानियाँ
- (c) वोल्टेज
- (d) ऊपर के सभी प्राचल बदल जाते हैं

Ans: (a) एक स्टेप-अप ट्रांसफार्मर में प्राथमिक व द्वितीयक कुंडलियों में शक्ति एकसमान रहती है।

क्योंकि Transformer शक्ति को कम या ज्यादा नहीं कर सकता है इस वोल्टेज एवं धारा को परिवर्तित करते हैं।

157. विद्युत चुम्बक, ट्रांसफार्मर कोर और आर्मेचर बनाने के लिए सबसे उपयुक्त धातु कौन-सी है?

(CRPF Constable Tradesman Himachal Pradesh Electrician-30,12,2012)

- (a) नर्म लोहा
- (b) CRGO
- (c) तांबा
- (d) इस्पात

Ans: (a) विद्युत चुम्बक, ट्रांसफार्मर कोर और आर्मेचर बनाने के लिए सबसे उपयुक्त थातु नर्म लोहा होता है। कोर को पटलित बनाया जाता है तथा इस पर वार्निश की लेप की जाती है। क्रोड पटलित करने से भंवर थारा हानि को कम करता है।

158. द्वि-कुंडलन परिणामित की तुलना में स्वपरिणामित की है-

(ESIC Electrician-2016)

- (a) भंवर धारा हानि
- (b) उच्चतर लागत
- (c) कम क्रोड हानि
- (d) छोटी आकृति

Ans: (c) द्वि-कुण्डलन परिणामित्र की तुलना में एक स्वपरिणामित्र कम क्रोड हानि होती है। क्योंकि Auto transformer में कॉपर कम लगता है क्योंकि इसमें एक ही वाइंडिंग होती है और इस हिसाब से क्रोड हानि कम होता है।

159. विभव परिणामित्र के मामले में रुपांतरण अनुपात-

(Indian Ordnace Factory-07.12.2015)

- (a) द्वितीयक भार के शक्ति गुणक में वृद्धि के साथ घटता है
- (b) द्वितीयक भार के शक्ति गुणक का ध्यान किए बिना नियत रहता है
- (c) द्वितीयक भार के शक्ति गुणक में वृद्धि के साथ बढ़ता है
- (d) उपर्युक्त सभी

Ans: (b) विभव परिणामित्र के मामले में रुपांतरण अनुपात (Transformating Ratio) द्वितीयक भार के शक्ति गुणांक का थ्यान किये बिना नियत रहता है।

K का मान V2/V1 से पता लगता है। या

N₂/N₁ से लगता है।

Potential Transformer एक Instrument Transformer होता हैं। इसको परिपेथ में समान्तर में लगाते हैं।

160. एक 2000/200 V ट्रांसफार्मर का द्वितीयक कुंडलन में 66 फेरे हैं, तो प्राथमिक कुडलन में फेरों की संख्या होगी-

(THDC Electrician 2015)

- (a) 6600
- (b) 66000
- (c) 660
- (d) 6.6

Ans: (c) $V_2 = 200 \qquad V_1 = 2000$ $N_2 = 66 \qquad N_1 = ?$ $\frac{N_2}{N_1} = \frac{V_2}{V_1} = K \stackrel{?}{H}$ $\frac{V_2}{V_1} = K \stackrel{?}{H} \frac{200}{2000} = K$ $K = \frac{1}{10}$ $\frac{N_2}{N_1} = \frac{1}{20}$ $N_1 = 10 \times N_2 = 10 \times 66$ $N_1 = 660 \stackrel{?}{\text{qd}} \stackrel{?}{\text{rd}}$

161. एक स्टेप-अप ट्रांसफॉर्मर का रुपांतर (ट्रांसफॉर्मेशन) अनुपात 3:2 है। यदि प्राइमरी वोल्टेज 30 V है, तो सेकेंडरी वोल्टेज होगा-

(BMRC Electrician-2016), (IOF 2015)

- (a) 155 V
- (b) 45 V
- (c) 15·V
- (d) 90 V

Ans: (b) $\frac{N_2}{N_1} = \frac{3}{2} = K$ $K \approx 1.5$ $V_1 = 30$ $V_2 = ?$ $\frac{V_2}{V_1} = K \stackrel{?}{\forall}$ $V_2 = KV_1 = 1.5 \times 30$ $V_2 = 45 \text{ Volt}$

162. ट्रांसफार्मर की मुख्य कुंडली और द्वितीयक कुंडली में फेरों (टर्न) की संख्या क्रमश: 1000 तथा 3000 है। यदि मुख्य कुण्डली में 80 वोल्ट A.C. प्रयुक्त की जाती है, तो द्वितीय कुडली का प्रति फेरा विभवांतर होगा-

(JMRC Electrician 2016)

- (a) 240 V
- (b) 0.08 V
- (c) 2400 V
- (d) 0.4 V

Ans: (a) $N_1 = 1000$ $N_2 = 3000$ $V_1 = 80$ $V_2 = ?$ $\frac{N_2}{N_1} = K$ \overrightarrow{H} $\frac{3000}{1000} = K$ K = 3

 $\frac{V_2}{V_1} = K \dot{\vec{H}}$

 $V_2 = KV_1 = 3 \times 80 = 240 \text{ Volt}$

163. परिणामित्र में है।

(R.R.B. Trivendrum (L.P.)-2014)

- (a) तांबा हानि
- (b) वायु हानि
- (c) धर्षण हानि
- (d) उपर्युक्त सभी

Ans: (a) परिणामित्र में ताँबा हानि होती है। परिणामित्र में घर्षण एवं वायु घर्षण हानि नहीं होती है। क्योंकि इसमें कोई घूमने वाला भाग नहीं होता है। इसलिये घर्षण हानि नहीं होती है।

164. ट्रांसफार्मर में हिस्टैरिसिस हानियां कम की जा सकती हैं-

(R.R.B. Ahmedabad (L.P.)-2004)

- (a) आयरन कोर पटलनों की मोटाई कम करके
- (b) स्टील पटलनों सिलिकान अंश घटा कर
- (c) ट्रांसफॉर्मर पर लोड कम करके
- (d) उपर्युक्त सभी के द्वारा

Ans: (b) ट्रांसफॉर्मर में हिस्टेरेसिस हानियाँ स्टील पटलों में सिलिकॉन अंश घटा कर कम की जा सकती है। भंवर धारा हानि रोकने हेतु ठोस इस्पात के बजाय इसके पतले-पतले लैमिनेशन प्रयोग करते हैं।

165. स्थिर लोड पर यदि लोड का शक्ति गुणांक निम्न हो, तब यह-

(R.R.B. Siliguri (L.P.)-2012)

- (a) अधिक धारा लेगा
- (b) कम धारा लेगा
- (c) कम वोल्टता, लेकिन शक्ति गुणांक अधिक लेगा
- (d) धारा वहीं रहेगी, लेकिन शक्ति गुणांक कम लेगा

Ans: (a) स्थिर लोड पर यदि लोड का राक्ति गुणांक निम्न हो तब यह अधिक थारा लेगा। स्थिर लोड, थारा के व्युत्क्रमानुपाती होता है। लोड का शक्ति गुणांक जैसा होता है T/F उसी शक्ति गुणांक पर कार्य करता है।

166. किसी उपभोक्ता के लिए सर्वाधिक वचतकारी शक्ति गुणांक सामान्यतः होता है-

(R.R.B. Secunderabad (L.P.)-2003)

- (a) 0.95 अत्रगामी
- (b) 0.5 पश्चगामी
- (c) 0.95 पश्चगामी
- (d) 0.8 अग्रगामी

Ans: (c) किसी उपभोक्ता के लिए सर्वाधिक बचतकारी शक्ति गुणांक 0.95 lagging होता है, इस शक्ति गुणांक पर उपकरण की दक्षता अधिकतम होती है।

167. निम्न में से गलत कथन को चुनिए-

वितरण प्रणाली का शक्ति गुणांक निम्न होता है, क्योंकि-

(R.R.B. Secunderabad (L.P.)-2003)

- (a) आर्क लैंप का प्रयोग होता है
- (b) तुल्यकालिक मोटर का कम प्रयोग होता है
- (c) ट्रांसफॉर्मर द्वारा चुम्बकन धारा खींचने के कारण संपूर्ण धारा प्रेरित वि.वा.व. से पश्च हो जाती है, विशेष रूप से/हत्के भारों पर
- (d) उद्योगों में प्रेरणी मोटरों का व्यापक प्रयोग होता है, विशेष रूप से जब मोटरों को निम्न भार पर चलाया जाता है

Ans: (a) वितरण प्रणाली का शक्ति गुणांक निम्न होता है, क्योंिक उद्योगों में प्रेरणी मोटरों का व्यापक प्रयोग होता है विशेष रूप से जब मोटरों को निम्न भार पर चलाया जाता है। तुल्याकालिक मोटर का व्यापक प्रयोग होता है T/F द्वारा चुम्बकन थारा खींचने के कारण सम्पूर्ण थारा प्रेरित emf से पश्च होती है। विशेष रूप से हल्के भार पर।

168. यदि ट्रांसफॉर्मर के क्वायल मोटे तार के बने हों तो— (R.R.B. Malda (L.P.)-2007)

- (a) भंवर थारा क्षतियां अधिक होंगी
- (b) हिस्टेरिसिस क्षति कम होगी
- (c) ताम्र क्षति बढ़ेगी
- (d) चुम्बकीय फ्लक्स रिसाव कम होगा

Ans: (c) यदि T/F के तार मोटे तार के बने हों तो ताम्र क्षिति बढ़ जायेगी। क्योंकि इस मोटे तार में प्रतिरोध कम होगा और धारा अधिक आयेगी फलस्वरूप I²R हानि का मान बढ़ जाता है।

169. ट्रांसफॉर्मर कपलिंग का सबसे वांछित फीचर क्या है?

(R.R.B. Ranchi (L.P.)-2006)

- (a) अलग-अलग स्टेजों पर मेचिंग इंपीडेंस देने की क्षमता
- (b) चौड़ी आवृत्ति सीमा
- (c) उच्च धारा वृद्धि
- (d) उपर्युक्त में से कोई नहीं

Ans: (b) ट्रांसफॉर्मर कपिलंग का सबसे अच्छा गुण चौड़ी आवृत्ति सीमा होता है। अर्थात् जब दो T/F को एक साथ जोड़ते हैं तो आवृति सीमा चौड़ी हो जाती हैं।

170. चलशीन अवयवों वाली कुछ मशीनों में 'लिमिट स्विच' क्यों लगाए जाते हैं?

(R.R.B. Ahmedabad (L.P.)-2005)

- (a) मशीन की दक्षता बढ़ाने के लिए
- (b) मशीन की शक्ति खपत को वीमाबद्ध करने के लिए
- (c) मशीन की एक लघुतम दक्षता सुनिश्चित करने के लिए
- (d) एक सुरक्षा के भीतर गति नियंत्रित करने के लिए

Ans: (c) चलशील अवयवों वाली कुछ मशीनों में limit switch मशीन की एक लघुतम दक्षता सुनिश्चित करने हेतु प्रयोग किया जाता है। इससे मशीन में एक मानक दक्षता से कम दक्षता नहीं होने का प्रमाण मिलता है।

171. रेलवे ट्रैक बाइंडिंग प्रदान करता है-

(R.R.B. Guwahati (L.P.)-2003)

- (a) अर्थ और भू-दोष के विरुद्ध संरक्षण
- (b) प्रतिमान धारा के लिए निम्न प्रतिरोध पथ
- (c) केवल B
- (d) दोनों 'A' और 'B'

Ans: (d) रेलवे ट्रैकिंग वाइंडिंग प्रतिगमन धारा के लिये निम्न प्रतिरोध पथ तथा अर्थ और भू-दोष के विरुद्ध संरक्षण के लिये होता है। रेलवे का ट्रैंक रिटर्न वायर की तरह कार्य करता है। रेलवे में 25 KV A.C. Supply की आवश्यकता होती है। 172. अभिवर्धक रूपांतरक (बूस्टर ट्रांसफॉर्मर) निम्न में से स्थित होता है-

(R.R.B. Guwahati (L.P.)-2003)

- (a) संचरण रेखा के ग्राही छोर पर
- (b) संचरण रेखा के प्रेषक छोर पर
- (c) संचरण रेखा के मध्यस्थ बिंदु पर
- (d) उपर्युक्त सभी

Ans: (c) बूस्टर ट्रांसफॉर्मर संचरण लाइन में मध्यस्थ बिन्दु पर स्थित है। बूस्टर ट्रांसफॉर्मर वोल्टेज बूस्ट करने हेतु प्रयोग होता है अर्थात् जब संचरण लाइन में वोल्टेज ड्राप के Voltage में कमी आ जाती है तो उसे इसी Transformer की सहायता से बूस्ट किया जाता है।

173. 250/3000V, 50c/s फेज कोर टाइप ट्रांसफॉर्मर के लिए प्रतिचक्र प्रेरित वि.वा.ब. 10 V है। प्राथमिक और द्वितीयक कुंडली के चक्करों की संख्या क्रमशः होगी-

(a) 25,300

(R.R.B. Secunderabad (L.P.)-2005) (b) 20,250

(c) 250,300

(d) 150,1500 Ans : (a) $E_1 = KN_1\phi_1$ $10 = K\phi_1$ $\phi_{1} = \frac{10}{K} E_{2} = K\phi_{1}$ $\begin{cases} \because \frac{V_{2}}{V_{1}} = K \\ \frac{N_{2}}{N_{1}} = K \end{cases}$ $\begin{cases} \frac{N_{2}}{N_{1}} = K \\ \frac{N_{2}}{N_{1}} = K \end{cases}$ \therefore प्रारम्भिक चक्करों की संख्या $=\frac{250}{10}=25$ तथा द्वितीय चक्करों की संख्याएं $=\frac{3000}{10} = 300$

174. वोल्टता नियमन (Voltage regulation) निम्न रूपांकन का एक मानदंड होता है-

(R.R.B. Guwahati (L.P.)-2003)

(a) डिस्ट्रीब्यूटर

. (b) संचरण रेखा

(c) प्रत्यावर्तित

(d) रूपांतरक

Ans: (d) वोल्टता नियमन रूपांकन रूपान्तरक का एक मानदण्ड होता है।

जब ट्रांसफॉर्मर पर लोड दिया जाता है तो ट्रांसफॉर्मर की द्वितीयक टर्मिनल वोल्टता उसके आन्तरिक प्रतिरोध तथा क्षरण प्रतिरोध के कारण कम होने लगती है जिसे वोल्टता नियमन कहते हैं।

वोल्टता पात % वोल्टता नियमन = शून्य लोड पर द्वितीयक वोल्टता

175. ट्रांसफार्मर कार्यवाही के लिए की जरूरत होती है। (UPRVUNL TG-II Electrician-2016)

- (a) बढ़ते चुंबकीय फ्लक्स
- (b) स्थिर चुंबकीय फ्लक्स
- (c) अल्टरनेटिंग चुंबकीय फ्लक्स
- (d) बदलते विद्युतीय फ्लक्स

Ans: (c) ट्रान्सफार्मर एक स्थैतिक मशीन है जो समान आवृत्ति पर एक सर्किट से दूसरे सर्किट को पावर प्रदान करती है। ट्रान्सफार्मर अन्योन प्रेरण (Mutual Induction) के सिद्धान्त पर कार्य करता है। ट्रान्सफार्मर में उत्पन्न फ्लक्स अल्टरनेटिंग चुम्बकीय फ्लक्स हाता है जो हमेशा एक समान रहता है। $E = 4.44 \phi_m fN$

176. किसी ट्रांसफार्मर की कार्यकुशलता तब उच्चतम होगी

(UPRVUNL TG-II Electrician-2016), (IOF 2014)

- (a) उसकी आयरन क्षतियां, काँपर क्षतियों के बराबर होगी।
- (b) आयरन क्षतियां, कॉपर झतियां से कम होंगी।
- (c) लोड का पावर फैक्टर इकाई हो।
- (d) उस ट्रांसफार्मर पर पूर्ण लोड लगेगा।

Ans: (a) अधिकतम दक्षता के लिए ताम्र हानियाँ, स्थिर लौह हानियाँ के तुल्य होती है। लौह हानियाँ $(W_i) = \pi I \mu E | F | F | F |$

लौह हानियाँ (Wi) = हिस्टेरिसिस हानियाँ (Wh)+ भॅवर धारा हानियाँ (W.)

हिस्टेरेसिस हानियाँ $(W_h) = \eta B_{max}^{1.6} f.V$ watt भंवर धारा हानियाँ $(W_e) = \lambda B_{max}^2 f^2 t^2 V$ watt ताम्र हानियाँ परिवर्तित हानियाँ होती है।

अधिकतम दक्षता के लिए लोड = पूर्ण लोड $\sqrt{\frac{\text{लीह हानियाँ}}{\text{ताम्र हानियाँ}}}$

177. ट्रांसफार्मर में लीकेज फ्लक्स पर निर्भर करता है। (UPRVUNL TG-II Electrician-2016)

- (a) द्वितीयक वोल्टेज तथा सप्लाई आवृत्ति
- (b) लोड करेंट तथा द्वितीयक वोल्टेज
- (c) लोड करेंट
- (d) लोड करेंट व पावर फैक्टर

Ans: (c) ट्रांसफार्मर कोड में फ्लक्स तीन भागों में विभाजित होता है। $\phi_{L1},\,\phi_{L2}$ तथा $\phi,\,\phi_{L1}$ तथा ϕ_{L2} को क्षरण फ्लक्स (Leakage Flux) कहते है। जो क्रमशः प्राथमिक तथा द्वितीयक कुण्डलन में होता है। फ्लक्स φ हमेशा स्थिर बना रहता है। इसे ही उपयोगी फ्लक्स कहा जाता है।

जब ट्रांसफार्मर पर लोड नहीं होता है तो ट्रान्सफार्मर में बहुत कम थारा प्रवाहित होती है जिसके कारण क्षरण फ्लक्स नगण्ड होता है। लोड की स्थिति में धारा का मान बढ़ाने से क्षरण फ्लक्स का मान बढ़ जाता है।

178. स्टेप अप ट्रांसफार्मर ____ बढ़ाता है।

(UPRVUNL TG-II Electrician-2016)

- (a) वोल्टेज
- (b) करेंट
- (c) बिजली
- (d) आवृत्ति

Ans: (a) ट्रान्सफार्मर दो प्रकार का होता है उच्चायी (Stepuptransformer) ट्रान्सफार्मर, अपचायी ट्रांसफार्मर (Stepdown transformer)।

स्टेप डाउन ट्रांसफार्मर में प्राथिमक कुण्डली की संख्या द्वितीयक कुण्डली से अधिक होती है जिसके कारण द्वितीयक वोल्टेज प्राथिमक वोल्टेज से कम होता है।

स्टेप अप ट्रांसफार्मर में प्राथमिक कुण्डलन की अपेक्षा द्वितीयक कुण्डलन के फेरों की संख्या अधिक होती है, जिसके कारण द्वितीयक का वोल्टेज प्राथमिक वोल्टेज से उच्च होता है।

179. ट्रांसफार्मर ____ के सिद्धांत पर काम करता है।

(UPRVUNL TG-II Electrician-2016)

- (a) म्यूचुअल इंडक्शन
- (b) किरचाँफ के नियम
- (c) लेंज के नियम
- (d) फ्लेमिंग के बाए हाथ के नियम

Ans: (a) ट्रांसफार्मर म्युचुअल इंडक्शन (अन्योन-प्रेरण) के सिद्धान्त पर कार्य करता है।

ट्रांसफार्मर की दोनो कुण्डलन एक दूसरे से high Insulated होती है। प्राथमिक कुण्डल में धारा प्रवाहित करने पर कोर के माध्यम से फ्लक्स द्वितीयक से लिंक करके सेकेण्डरी में emf उत्पन्न करता है। यह घटना म्युचुअल इंडक्शन कहलाती है।

180. किसी ट्रांसफार्मर का कोर ____ के लिए लैमिनेट किया जाता है।

(UPRVUNL TG-II Electrician-2016)

- (a) चुंबकीय सर्किट के रिलक्टेंस को कम करने
- (b) कार्यकुशलता बढ़ाने
- (c) कॉपर क्षतिया कम करने
- (d) आयरन क्षतियों को कम करने

Ains: (a) किसी ट्रांसफार्मर की कोर भॅदुर थारा हानि (आयरन हानि) को कम करने के लिए किया जाता है क्योंकि यह मोटाई पर निर्भर करता है।

भॅवर धारा हानि (W_e) = $\lambda B_{max}^2 f^2 vt^2$

W_a ∝ t²

t = मोटाई

जबिक आयोग द्वारा चुम्बकीय सर्किट के रिलेक्टेंस को कम करने के लिए दिया है।

181. ट्रांसफार्मर में प्राथमिक व द्वितीयक वाइंडिंग में प्रति चक्कर वोल्टेज _____होगा।

(UPRVUNL TG-II Electrician-2016)

- (a) ट्रांसफार्मर के चक्कर अनुपात पर निर्भर
- (b) उच्च वोल्टेज साइड पर उच्च
- (c) हमेशा भिन्न
- (d) समान मूल्य का

Ans: (d) ट्रान्सफार्मर में प्राथमिक व द्वितीयक वाइडिंग में प्रित चक्कर वोल्टेज समान मूल्य का होगा। क्योंकि इससे उपयोगी फ्लक्स हमेशा नियत बना रहता है।

ट्रान्सफार्मर अन्योन प्रेरण (Mutual Induction) के सिद्धाना पर कार्य करता है।

182. ट्रांसफार्मर में प्राथमिक व द्विवितीयक प्रक्षों में निम्नलिखित में से क्या स्थिर रहता है?

(UPRVUNL TG-II Electrician-2016)

- (a) फ्लक्स व वोल्टेज 🖊 (b) वोल्टेज व करेंट
- (c) आवृत्ति
- (d) आवृत्ति व करेंट

Ans: (c) ट्रांसफार्मर एक ऐसी डिवाइस है जो समान आवृत्ति पर एक सर्किट से दूसरे सर्किट को पावर प्रदान करती है। ट्रांसफार्मर एक स्थैतिक मशीन है जो अन्योन प्रेरण (metual Induction) के सिद्धान्त पर कार्य करती है।

183. एक 25 kVA, एकल फेज ट्रांसफार्मर के प्राथमिक पर 250 चक्कर व द्वितीयक पर 40 चक्कर है। प्राथमिक को 1500 V, 50 Hz सप्लाई से जोड़ा गया है। द्वितीयक के वोल्टेज और करेंट क्या है?

(UPRVUNL TG-II Electrician-2016), (IOF 2013)

- (a) 240 V, 104 Amps
- (b) 120 V, 16.67 Amps
- (c) 240 V, 16.67 Amps
- (d) 120 V, 104 Amps

Ans: (a)
$$\frac{V_2}{V_1} = \frac{N_2}{N_1} = \frac{I_1}{I_2}$$

$$\frac{V_2}{1500} = \frac{40}{250}$$

$$V_2 = \frac{1500 \times 40}{250} = 240 \text{ V}$$

धारा
$$I = \frac{VA}{V} = \frac{25000}{1500} = 16.67A$$

formula -
$$\frac{V_2}{V_1} = \frac{I_1}{I_2}$$

$$\frac{240}{1500} = \frac{16.67}{I_2}$$

$$I_2 = \frac{16.67 \times 1500}{240} = 104.16 \text{ Amps.}$$

द्वितीयक प्रेरित e.m.f. E1 और E2 हमेशा होते है।

(UPRVUNL TG-II Electrician-2016)

- (a) एक दूसरे से समान फेज में
- (b) लोड पर निर्भर
- (c) एक दूसरे से विपरीत फेज में
- (d) परिमाप में बराबर

टांसफार्मर के दोनो वाइडिंग में प्रेरित emf E1 व E2 सदैव समान फेज में होता है।

The potential transformer used for measurement of high voltages:

(UPRVUNL TG-II Electrician-2016)

- (a) has large number of turns on the secondary side
- (b) is a step up transformer
- (c) is connected in series with the line
- (d) has large number of turns on the primary side

Ans: (d) वोल्टेज ट्रान्सफार्मर (P.T) का प्रयोग उच्च वोल्टता का मापन करने में प्रयोग किया जाता हैं इसमें प्राइमरी वाइडिंग अधिक टर्न की तथा द्वितीयक वाइडिंग कम टर्न की जाती है। इसलिए इसे स्टेप डाउन ट्रान्सफार्मर भी कहा जाता है।

करेंट ट्रान्सफार्मर (C.T) का प्रयोग उच्च धारा मापने में किया जाता है इसके प्राइमरी की वाइडिंग कम टर्न की होती है।

186. 200 V, 10:1 टर्न अनुपात ट्रांसफार्मर को गलती से 200 D.C. सप्लाई से जोड़ दिया जाता है। परिणामस्वरूप

(UPRVUNL TG-II Electrician-2016)

- (a) प्राथमिक वाइंडिंग क्षतिग्रस्त हो जाएगी।
- (b) 20 V D.C. द्वितीयक पर उपलब्ध होगः।
- (c) 200 V D.C. द्वितीयक पर उपलब्ध होगा।
- (d) प्राथमिक व द्वितीयक दोनों वाइंडिंग क्षतिग्रस्त हो जाएंगी।

Ans: (a) ट्रांसफार्मर केवल A.C पर कार्य करता है यदि D.C स्रोत से जोड़ दिया जाय तो उसमें परिवर्तित फ्लक्स नहीं होता है जिससे उसमे बहुत अधिक हानि होने के कारण प्राइमरी वाइडिंग जल जायेगी।

- किसी दो वाइडिंग ट्रांसफार्मर के प्राथमिक व 187. ट्रांसफार्मर के प्राथमिक व द्वितीयक सर्किटों के बीच चुंबकीय कपलिंग को ____ से बढ़ाया जा सकता है। (UPRVUNL TG-II Electrician-2016)
 - (a) उच्च रिलक्टेंस सामग्री का कोर उपयोग करने
 - (b) दोनों वाइंडिंग में चक्करों की संख्या को घटाने
 - (c) निम्न रिलक्टेंस सामग्री का कोर उपयोग करने
 - (d) दोनों वाइडिंग में चक्करों की संख्या को बढ़ाने

Ans : (c) निम्न रिलक्टेंस सामाग्री का कोर उपयोग करके ट्रांसफार्मर के प्राथमिक व द्वितीयक सर्किटो के बीच चुम्बकीय कपलिंग को बढ़ाया जा सकता है।

188. यदि सीटी (CT) की रेटिंग 100A/5A हो, तो गुणन घटक K होगा।

(Noida Metro Technician Grade-II-2017)

- (a) 15
- (b) 20
- (c) 10
- (d) 25

प्राथमिक धारा Ans: (b) गुणन घटक (K) = द्वितीयक धारा

the Burden of an 189. How transformer expressed?

(Noida Metro Technician Grade-II-2017)

- (a) Reactive power (b) Apparent power
- (c) True power
- (d) Ohms/volt

Ans: (b) "वोल्टता अथवा धारा पर" रिले सर्किट द्वारा खपत की गयी वैद्युत शक्ति को शक्ति उपभेग कहते है। इसे ए.सी. के लिए वोल्ट एम्पियर (VA) तथा डी.सी. के लिए वाट में व्यक्त करते हैं। इसे बोझ या बर्डेन (Burden) कहते है। Burden, Apperant Power है।

190. बोल्टेज रेगुलेशन की प्रतिशत गणना कैसे की जाती है? $[E_0=$ शून्य लोड पर वोल्टेज, V= पूर्ण लोड पर वोल्टेज।

(R.R.B. Ranchi (L.P.)-2005), (IOF 2012)

- (a) $\frac{E_0 V}{V} \times 100$ (b) $\frac{E_0 V}{E_0} \times 100$
- (c) $\frac{V E_0}{V} \times 100$ (d) $\frac{-V + E_0}{E_0} \times 100$

Ans: (a) Voltage Regulation की प्रतिशत गणना निम्न सूत्र से ज्ञात की जाती है।

$$\%VR = \frac{E_0 - V}{V} \times 100$$

V = Full load वोल्टेज

 E_0 = No load वोल्टेज

	EX	KAM F
-	ट्रांसफार्मर बदलता है- निम्न वोल्टता वाली प्रव	बल प्रत्यावर्ती
	विद्युत धारा को उच्च वोल्टता की नि	नर्बल धारा में
	■ एक आदर्श ट्रांसफार्मर (T/F) में-	· 0:
	कुण्डलनों में प्रतिरे ट्रांसफार्मर का मूल अवयव नहीं है-	ाध नहा हाता
	परस्पर ओ	भवाह (flux)
	को एक "घूर्णी परिणामित्र'' माना जा सकता है-	प्रेरण मोटर
		The Real Property of the Control
	परिणमन अनुपात होता है-	$\frac{\mathbf{E_2}}{\mathbf{E_1}} = \frac{\mathbf{N_2}}{\mathbf{N_1}}$
	छोटे ट्रांसफार्मरों के लिये क्रोड मुख्यतः बनाया जा	ता है-
		आयताकार
	बड़े ट्रांसफार्मरों के लिए क्रोड का अनुप्रस्थ काट व जाता है क्योंकि- इसमें ताँबे की व	वृत्ताकार बनाया बचत होती है
8	शक्ति ट्रांसफार्मरों में लैमिनेशन प्रयोग किये जाते ह	
****	कोल्ड रोल्ड ग्रेन ओरिया	
	कोश या शैल प्रारूपी आन्तरिक अंग के लिये प लायी जाती है– E तथा	ाटल प्रयाग म I, T तथा U
_	वैद्युत शक्ति प्रणाली की अधिक लम्बी संचर	Control of the state of the
	वोल्टतापात की आपूर्ति करने हेतु प्रयुक्त ट्रांसफार्मर अभिवर्धक या बूस्ट	को कहते हैं-
		$\mathbf{N_1I_1} = \mathbf{N_2I_2}$
	ट्रांसफार्मर का E.M.F. मान निर्भर करता है-	N ₁ 1 ₁ - N ₂ 1 ₂
	टर्नों की संख्या, आवृत्ति	और फ्लक्स
8	एक यंत्र ट्रांसफार्मर प्रचालित किया जा सकता है-	
		कों यंत्रों को
	बुखोल्ज रिले का प्रयोग होता है-आयल कूलित	ट्रांसफार्मर में
	ट्रांसफार्मर की दक्षता कम होगी यदि-	
	लौह हानियां और कॉपर हानिय	
	स्टेप डाउन ट्रांसफार्मर के प्राइमरी में वाइंडिंग	
		क वर्तन की
1	्ट्रांसफार्मर पर लगे ब्रीदर में प्रयुक्त रसायन है-	
	्ट्रांसफार्मर में अधिकतम भार की सीमा निर्धारित हो	
		अनुपात द्वारा
=	C.T. की द्वितीयक कुण्डली की क्षमता सदैव होती	है− 5A
	धारा ट्रांसफार्मर (C.T.) की प्राथमिक, उस परिपथ, मापनी होती है, के- श्रेणी में संयोजित	की जाती है
×	वोल्टता ट्रांसफार्मर (P.T.) की द्वितीयक कुण्डल	ी की क्षमता
		10V होती है
=	132 KV स्टार की वोल्टता मापने के लिये उपयु क्षमता-	क्त P.T. का 32,000/110
	आवृत्ति बढ़ने पर ट्रांसफार्मर में निर्गत वोल्टता-	बढ़ती है
	प्राथमिक एवं द्वितीयक कुण्डलन के मध्य दूरी बढ़ाने	
_	निर्गत वोल्टता कम	
-	वितरण ट्रांसफार्मर सदैव- 🦠 स्टेप-डाउन ट्रांसप	नामर हात ह
	शैल टाइप ट्रांसफार्मर में प्रायः होते हैं-	
7	चुम्बकीय फ्लक्स लीकेज व	कम हाता ह,

	जब बाहर से हवा ट्रांसफार्मर में प्रवेश करे तब हवा से नमी के सोखना कार्य कहलाता है— बीदर का
•	ट्रांसफार्मर की दक्षता का प्रतिशत मान होगा-
	KW
	KW + copper losses + Ironlosses × 100%
•	ट्रांसफार्मर रेगुलेशन (Regulation) है-
	$\frac{\mathbf{V_o} - \mathbf{V}}{\mathbf{V_o}} \times 100\%$
=	कोर टाइप ट्रांसफार्मर में कितने चुम्बकीय पथ होते हैं-
•	ट्रांसफार्मर का ट्रांसफार्मेशन अनुपात है- N2/N
•	ट्रांसफार्मर की रेटिंग की जाती है- KV
•	ट्रांसफार्मर में कौन-सी हानियाँ लोड के साथ परिवर्तित होती हैं कॉपर हानिय
•	ट्रांसफार्मर के किस भाग में सबसे अधिक ऊष्मा उत्पन्न होते है– वाइंडिंग
•	ट्रांसफार्मर की दक्षता अधिक होगी-
	कॉपर और लौह हानियाँ बराबर होने प
•	विभव ट्रांसफार्मर (P.T.) की प्राइमरी वाइंडिंग होती है-
	अधिक फेरे तथा पतल
•	धारा ट्रांसफार्मर (C.T.) की प्राइमरी वाइंडिंग होती है-
	मोटी तथा कम फेरों क
	यंत्र ट्रांसफार्मर प्रायः होते हैं- धारा को कम करने के लि
	यंत्र ट्रांसफार्मर (C.T. व P.T.) A.C. पद्धति में मूल राशियों ह
	मापन में वे राशियाँ हैं- धारा, बोल्टेज, पाव
	यंत्र ट्रांसफार्मर कितने प्रकार के होते हैं- C.T. तथा P.T
	5A के अमीटर को धारा ट्रांसफार्मर (C.T.) के साथ प्रयुर करके कितने एम्पियर की धारा को नापा जा सकता है-
	מוארו ווי ווי וויו ווי אוד אוד אוד אוד אודוי ווארו אודי ארוייב

ट्रांसफार्मर निष्पत्ति तथा कला कोण

■ विभव ट्रांसफार्मर (P.T.) को सर्किट में लगाया जाता है। क्रम समान्तर क्रम में

ट्रांसफार्मर स्टेप-अप होता है यदि गुणांक K होगा-

प्रयोग के पावर ट्रांसफार्मर के प्राइमरी साइड में ट्रांसफार्मर में-सेकण्डरी साइड पावर के बराबर

आटोट्रांसफार्मर में होती है-एक वाइंडिंग

ट्रांसफार्मर की दक्षता प्रतिशत में होती है-98.9%

स्कॉट कनेक्शनों में टीजर ट्रांसफार्मर 0.866 पर कार्य करता है-

ट्रांसफार्मर में टेपिंग प्रायः लगायी जाती है-

अधिक वोल्टेज साइड में

किसी ट्रांसफार्मर में ट्रांसफार्मर आयल का कार्य-इन्शूलेशन और कूलिंग करना

एक ट्रांसफार्मर में प्राइमरी और सेकण्डरी वोल्टेज के मध्य फेउ अन्तर होता है-

दो चुम्बकीय पथ होते हैं

विद्युत वितरण लाइन में प्रयोग किये जाने वाले ट्रांसफार्मर 🔳 आउटपुट वोल्टता के आधार पर ट्रांसफार्मर होते हैं-डेल्टा/स्टार प्रकार के होते हैं क्योंकि-

इस प्रकार के ट्रांसफार्मर से एकल फेज लाइन प्राप्त

की जा सकती है ट्रांसफार्मर की क्रोड पत्तियों को मिलाकर बनायी जाती है जिससे भंवर धारा का मान निम्न हो

 आटो ट्रांसफार्मर का कार्य सिद्धान्त है— स्व प्रेरण

विद्युत शक्ति उत्पादन केन्द्र से विद्युत शक्ति का पारेषण अत्यधिक उच्च A.C. वोल्टता पर किया जाता है क्योंकि-

उच्च वोल्टता पर धारा का मान कम होने के कारण

शक्ति हास कम होता है

निम्न प्रत्यावर्ती वोल्टता को उच्च प्रत्यावर्ती वोल्टता में परिवर्तित करने वाली युक्ति कहलाती है-उच्चायी ट्रांसफार्मर

कौन-सा क्रोड के आधार पर वर्गीकृत ट्रांसफार्मर नहीं है- मेन्स

ट्रांसफार्मर में प्राथमिक एवं द्वितीयक कुण्डलियों के प्रतिघातों का अनुपात कहलाता है-प्रतिघात अनुपात

एक उच्चायी ट्रांसफार्मर की प्राथमिक कुण्डली में N1 लपेट तथा द्वितीयक कुण्डली में N_2 लपेट हो तो निम्नलिखित में से कौन-सा कथन सत्य होगा-

 विद्युत शक्ति स्थानान्तरण कार्य में ट्रांसफार्मर प्रयोग करने का ्मख्य लाभ है-स्थैतिक उपकरण होना

यदि ट्रांसफार्मर का प्राथमिक अपघात 100 ओम हो और उसकी लपेट निष्पत्ति 2:1 हो तो उसका द्वितीयक अपघात होगा-25Ω

कौन-सी ट्रांसफार्मर क्षति नहीं है-घर्षण क्षति

ट्रांसफार्मर की द्वितीयक कुण्डलन में प्रेरित वि. वा. बल का मान निर्भर करता है-चुम्बकीय फ्लक्स के मान पर

ट्रांसफार्मर के समान्तर प्रचालन के लिए आवश्यक है-

अपघात की प्रतिशतता समान होनी चाहिए

ट्रांसफार्मर में लौह क्षति (wi) होती है-भँवर धारा क्षति

टांसफार्मर में ओपन-सर्किट परीक्षण में कौन-सी क्षति का पता लगाया जाता है-लोंह क्षति

शार्ट-सर्किट परीक्षण में कौन-सी क्षति का पता लगाया जाता है-कॉपर क्षति

उच्च वोल्टता ट्रांसफार्मर में प्रयुक्त कनेक्शन होता है-डेल्टा-डेल्टा

वोल्टता उच्चायी ट्रांसफार्मर में प्रयुक्त कनेक्शन है-स्टार-डेल्टा

वोल्टता अपचायी ट्रांसफार्मर में प्रयुक्त कनेक्शन होता है-डेल्टा-स्टार

वोल्टता ट्रांसफार्मर में प्रयुक्त कनेक्शन है-स्टार-इन्टरस्टार

पर्वतीय क्षेत्रों में ट्रांसफार्मरों में प्रयोग होने वाला कनेक्शन है-

स्टार-इन्टरस्टार

स्थापना के आधार पर ट्रांसफार्मर होते हैं-इन्डोर प्रकार के, आउटडोर प्रकार के

आउटपुट क्षमता के आधार पर ट्रांसफार्मर होते हैं-आटो ट्रांसफार्मर, इन्स्ट्रमेंट ट्रांसफार्मर

फेज संख्या के आधार पर ट्रांसफार्मर होते हैं-

एकल फेज, 6 फेज, 12 फेज

उच्चायी प्रकार, अपचायी प्रकार

क्रोड संरचना के आधार पर ट्रांसफार्मर होते हैं-

क्रोड प्रकार का, शैल प्रकार का, बैरी प्रकार का

 ट्रांसफार्मर में प्राथमिक कुण्डली संयोजित होती है-विद्युत स्रोत से

ट्रांसफार्मर में द्वितीय कुण्डली संयोजित होती है-लोड से

ट्रांसफार्मर के लाभ होते हैं- दक्षता 90% से 98% तक होती है

ट्रांसफार्मर में प्राकृतिक कूलिंग पर प्राप्त अधिकतम क्षमता के ट्रांसफार्मर प्रयोग किये जाते हैं-

ट्रांसफार्मर में Oil immersed cooling प्रायः उपयोग की जाती **10 KVA तक**

ट्रांसफार्मर में Oil Natural Cooling प्रायः प्रयोग की जाती है-

ट्रांसफार्मर में Immersed water cooling प्रायः प्रयोग की above 20 MVA

ट्रांसफार्मर की आवृत्ति प्राथमिक का द्वितीयक वाइंडिंग में होती

ट्रांसफार्मर के दोनों वाइंडिंगों का प्रयोग किया जा सकता है-प्राथमिक वाइंडिंग के तरीके, द्वितीयक के तरीके

ट्रांसफार्मर का भार (weight) कम करने के लिए-आवृत्ति बढ़ाते हैं

गर्म रोल्ड स्टील की अधिकतम फ्लक्स घनत्व हैं- 1.2 wb/m2

CRGO का भार बराबर होता है-

.75 भार गर्म रोल्ड स्टील के

CRGO तथा गर्म रोल्ड स्टील के भार (weight) का अनुपात होता है-.75

लम्बाई पर ताम्र का भार ट्रांसफार्मर में निर्भर करता है-

ट्रांसफार्मर में L.V. वाइंडिंग दी जाती है-कोर के पास

ट्रांसफार्मर में H.V. वाइंडिंग की जाती है-

L.V. के बाद, कोर से दूर

ट्रांसफार्मर वाइंडिंग में L.V. वाइंडिंग को कोर के पास करने के कम इन्सूलेशन की आवश्यकता पड़ती है

ट्रांसफार्मर वाइंडिंग का इम्प्रीगेशन कहलाता है-

वाइंडिंग को इन्सूलेशन तेल में डूबा कर सुखाना

 ट्रांसफार्मर का लीकेज फ्लक्स-प्राथमिक लीकेज फ्लक्स तथा द्वितीयक लीकेज फ्लक्स दोनों जुड़ जाते हैं

शैल टाइप ट्रांसफार्मर में होता है-

दो समान्तर पाथ फ्लक्स का

शैल टाइप ट्रांसफार्मर में वाइंडिंग की जाती है-

सैण्डविच वाइंडिंग

ट्रांसफार्मर में हिस्टेरिसिस हानियाँ निर्भर करती है- मटेरियल पर

ट्रांसफार्मर में भँवर धारा हानियाँ निर्भर करती है-

लेमिनेशन की मोटाई पर

अगर वोल्टेज नियत कर दें और आवृत्ति बढ़ाये तो हिस्टेरिसिस हानियाँ-घट जायेगी

हिस्टेरिसिस हानि होती है-

 $W_h = \eta B_{max}^{1.6} f.v$

भँवर धारा हानि होती है-

 $W_c = \lambda B_{max}^2 f^2 t^2 V$

जब voltage को समान रखते हुए आवृत्ति बदलते हैं तो भँवर कोई प्रभाव नहीं पडता धारा हानि पर-हिस्टेरिसिस हानि में आवृत्ति बढ़ेगी तो वोल्टेज बढ़ेगा और बढेगी हिस्टेरिसिस हानियाँ-भँवर धारा समानुपाती होती है-भँवर धारा हानि α प्रयुक्त वोल्टता, भँवर धारा हानि α थिकनेश लेमिनेश की शून्य भार पर ट्रांसफार्मर के कला कोण होते हैं- $75-80^{\circ}$ शून्य भार पर ट्रांसफार्मर का शक्तिगुणक होता है-.5 से .55 तक ■ श्रुन्य भार पर प्रेरण मोटर का शक्तिगुणक होता है-■ ट्रांसफार्मर रेटेड करेन्ट होता है - No load पर 3 से 5% ■ ट्रांसफार्मर में Load के switch को on करने पर Load में जो करेन्ट बढ़ेगी वह Matual flux का-■ पूर्ण लोड ट्रांसफार्मर का P.F. शून्य लोड ट्रांसफार्मर के P.F. से 🗼 होता है– ■ ्टांसफार्मर में High voltage का per unit impedance low voltage का per unit impedance होता है-■ ट्रांसफार्मर का Per unit Resistance होता है-Per unit copper loss ■ ट्रांसफार्मर में प्रतिशत रेगुलेशन अप होता है-% Regulation up = $\frac{V_1 - V_2}{V} \times 100$ ■ ट्रांसफार्मर में प्रतिशत वोल्टेज रेगुलेशन डाउन होता है- $\frac{\mathbf{V_1} - \mathbf{V_2}}{\mathbf{V_1}} \times 100$

■ ट्रांसफार्मर के open circuit test में Ameter धारा का मापन करता है— Low range में

 ट्रांसफार्मर के open circuit test में voltmeter वोल्टता का मापन करता है- High range में

द्रांसफार्मर के open circuit test में watt meter current मापता हैLow current

्रांसफार्मर के open circuit test में watt meter वोल्टेज का मापन करता है- High voltage

■ ट्रांसफार्मर के शार्ट सर्किट टेस्ट में Ameter धारा का मापन करता है— High range में

 ट्रांसफार्मर के शार्ट सर्किट टेस्ट में volt meter वोल्टता का मापन करता है Low range में

ट्रांसफार्मर के शार्ट सर्किट टेस्ट में watt meter current मापता
 है- High range में

ziसफार्मर के शार्ट सर्किट टेस्ट में watt meter वोल्टता मापता है- Low range में

 ट्रांसफार्मर के शार्ट सर्किट टेस्ट में watt meter P.F. मापता है-Normal P.F. को

आयरन लोसेस होता है-

Core loss, Constant loss, Magnetic loss

■ Open circuit में I_C बराबर होता है— I_C = I₀ cos φ

 यदि Transformer में फेज ऐंगल इम्पीडेन्स ऐंगल के बराबर होता है तो वोल्टेज रेगुलेशन होगा—
 Highest ■ ट्रांसफार्मर के कैपेसिटर लोड पर Voltage Regulation होता है – ऋणात्मक

Open circuit test में ट्रांसफार्मर के core loss को प्राप्त किया
 जाता है
 रेटेज वोल्टेज तथा रेटेड आवृत्ति पर

■ पूर्ण लोड copper loss होता है-

Ohmic loss, Resistive loss, Variable 1088

किस दशा में T/F की दक्षता अधिकतम होती है−

Variable loss = Constan loss बुखोज रिले (Buchholz's relay) कार्य करता है-

द्रांसफार्मर के तेल दाब एर

ट्रांसफार्मर में लगी वेन्ट पाइप कार्य करती है-

गैस दाब पर ज (वेन्ट पाइप) में लगे काँच के पतले पर्दे का

■ निकास निका (वेन्ट पाइप) में लगे काँच के पतले पर्दे का कार्य होता है – द्रांसफार्मर में तेल के रिसने को रोकना

तेल पूरत बुिशंग का कार्य होता है-

33 KV से उच्च वोल्टता पर

■ ठोस बुशिंग का कार्य होता है— 33 KV से उच्च वोल्टता पर

ट्रांसफार्मर में बुशिंग के अंदर की छड़ किसकी बनी होती है—
 कॉपर की

■ ट्रांसफार्मर के श्वाँसक या ब्रीदर में पदार्थ भरा होता है-सिलिका जेल, कैल्शियम क्लोराइड (CaCl₂)

■ संरक्षक पात्र conservator tank है-.

यह एक छोटा बेलनाकार सहायक आयल टैंक है

संरक्षक पात्र का कार्य होता है-

यह मुख्य आयल टैंक को सदैव तेल से परिपूर्ण रखता है

थ्री-फेज ट्रांसफार्मर के लाभ होते हैं-

इसका आकार लघु होता है, इसमें पदार्थ की मात्रा कम लगती है, यह वरिम (space) कम घेरता है

 ट्रांसफार्मर तेल होता है- इंसुलेटिंग आयल, हाइड्रोकार्बनिक आयल, केमिकल आयल

 ट्रांसफार्मर आयल से प्रभाव पड़ता है- दक्षता पर, जीवनकाल पर, क्षमता पर

अच्छे ट्रांसफार्मर तेल की अधिकतम अम्लीयता होती है-0.05 mg KOH/g

ट्रांसफार्मर में कीच या स्लज का मान अधिकतम हो सकता है—
 1.2%

■ ट्रांसफार्मर तेल का अधिकतम बहाव बिन्दु होता है- 99°C

■ ट्रांसफार्मर का न्यूनतम कौंथ बिन्दु (flash point) होता है-140°C

■ तेल की आपेक्षिक घनत्व लगभग होता है— 0.85 से 1.88 तक

्रांसफार्मर के तेल का परावैद्युत सामर्थ्य 60 सेकण्ड के लिये-40 KV (r.m.s.) 4 mm के अन्तराल पर

ट्रांसफार्मर तेल में पानी की अधिकतम मात्रा होती है-

50 P.P.M. 27°C

अधिकतम श्यानता होती है-

यदि ट्रांसफार्मर में तेल के स्थान पर पानी का प्रयोग शीतलन के लिये किया जाय तो-यह विद्युत रोधन नष्ट कर देगी

ट्रांसफार्मर के टैप चेन्जर द्वारा वोल्टता में परिवर्तन किया जा ±5 प्रतिशत

ट्रांसफार्मर में लगे टैप चेन्जर का कार्य होता है-इससे निर्गत वोल्टता को नियन्त्रित किया जाता है

ट्रांसफार्मर आर्कन हार्न का प्रयोग किया जाता है-

अत्यधिक उच्च वोल्टता से बचाने के लिये

सम्पूर्ण दिवस क्षमता होती है-

निर्गत किलोवाट घण्टा में पूर्ण दिवस क्षमता = निविष्ट किलोवाट घण्टा में

सम्पनर परीक्षण (बैक टू बैक परीक्षण) में ज्ञात की जाती है-ताप वृद्धि

सम्पनर परीक्षण में दक्षता तथा नियमन ज्ञात किया जाता है-खुले परिपथ परीक्षण में, लघु परिपथ परीक्षण में

सम्पनर परीक्षण में पूर्ण लोड स्थिति में अधिकतम ताप वृद्धि के पूर्ण लोड परीक्षण आवश्यक है लिए-

ट्रांसफार्मर का शीतलीकरण घूमने वाली मशीनों की अपेक्षा-कठिन है

ट्रांसफार्मर में क्रोड का कार्य है-चुम्बकीय फ्लक्स के लिये कम प्रतिष्टम्भ का पथ प्रदान करना

शून्य लोड पर- $I_0 = \overline{I}_u + \overline{I}\omega$

यदि ट्रांसफार्मर में $I_2 > I_1$ तब- $V_1 > V_2$

भँवर धारा हानियों को कम करने के लिए क्रोड में प्रयुक्त लेमिनेशन की प्रतिरोधकता एवं मोटाई क्रमशः -

उच्च, कम होनी चाहिए

शून्य लोड पर $I_0 \cos \phi_0$ एवं V_1 के मध्य कलान्तर-

शून्य लोड पर भँवर धारा एवं हिस्टेरिसिस हानियों को सप्लाई करने वाली धारा-Lo cos do

शून्य लोड धारा-प्राथमिक वोल्टता से लगभग 90° पश्चगामी होती है

■ किस परीक्षण द्वारा ट्रांसफार्मर का नियमन एवं दक्षता बिना भार दिये ज्ञात की जाती है-

ट्रांसफार्मर, क्रोड के लिए कौन-सा गुण होना आवश्यक नहीं उच्च ऊष्मीय चालकता

्ट्रांसफार्मर में होने वाले शोर (Noise) का एक कारण-

फ्लक्स घनत्व

्ट्रांसफार्मर तेल कौन-सा कार्य नहीं करता-

चुम्बकीय युग्म प्रदान करना

ट्रांसफार्मर में क्षरण फ्लक्स निर्भर करता है-भार धारा पर

ट्रांसफार्मर में प्रयुक्त खनिज तेल का रंग प्रारम्भ में-पीला

उच्च आवृत्ति ट्रांसफार्मर में क्रोड का पदार्थ-फैराइट

एक स्टेप-अप ट्रांसफार्मर कम करता है-धारा

बुखोल्ज रिले ट्रांसफार्मर में तब प्रचलित होती है जब ट्रांसफार्मर तीक्ष्ण आन्तरिक दोष उत्पन्न होते हैं

बुखोल्ज रिले का उपयोग किया जाता है-

ट्रांसफार्मर में चुम्बकीय फ्लक्स के पथ का-

प्रतिष्टम्भ निम्न होना चाहिए

ट्रांसफार्मर के समान्तर प्रचालन के लिए आवश्यक प्रतिबन्ध-दोनों का प्रचालन समान आवृत्ति पर होना चाहिए

ट्रांसफार्मर में प्रतिघात की मात्रा निर्मर करती है-

क्षरण फ्लक्स पर

अत्यधिक ताप वृद्धि के कारण ट्रांसफार्मर का सबसे अधिक क्षतिग्रस्त होने वाला भाग-कुण्डली का विसंवाहन

ट्रांसफार्मर में हमिंग का मुख्य कारण-मैग्नेटोस्ट्रीक्शन

त्रिफेज से दो फेज एवं दो फेज से त्रिफेज प्रणाली में परिवर्तन के लिए उचित ट्रांसफार्मर संयोजन है-स्काट कनेक्शन

टीजर ट्रांसफार्मर अपनी किस राशि के 86.6% पर प्रचलित होता सामान्य वोल्टता

ट्रांसफार्मर के स्काट संयोजन में मुख्य ट्रांसफार्मर में मध्य टेप (centre-tap) की व्यवस्था होती है-

प्राथमिक एवं द्वितीयक दोनों में

सप्लाई आवृत्ति बढ़ने पर सबसे अधिक प्रमावित होने वाली भँवर धारा हानियाँ हानियाँ-

एक स्टेप-अप (step-up) ट्रांसफार्मर E.M.F./turn (E/N)-

ऑटो ट्रांसफॉर्मर में ताम्र बचत उच्चतम एवं ताम्र हानि निम्नतम होगी। जब रूपान्तरण अनुपात (K)-

ट्रांसफॉर्मर की वि.वा. बल समीकरण में प्रयुक्त फ्लक्स का मान होता है-उच्चतम

धारा ट्रांसफॉर्मर (C.T.) का उपयोग किस यंत्र के साथ सहायक उपकरण की भाँति किया जा सकता है-वाटमीटर, वाट-घण्टा मीटर

समानान्तर प्रचालन हेतु त्रिकलीय ट्रांसफॉमरों में संयोजन की स्टार डेल्टा ट्रांसफार्मर को डेल्टा स्टार ट्रांसफॉर्मर के साथ

वोल्टेज रेगुलेटर की भाँति प्रयोग में आने वाला ट्रांसफार्मर-ऑटो ट्रांसफार्मर

ट्रांसफार्मर की द्वितीयक में प्रेरित वोल्टता, फ्लक्स से-

90° अग्रगामी होती है

ट्रांसफार्मर में पोर्सिलीन बुशिंग का प्रयोग किस वोल्टेज तक किया जाता है-

कुण्डलियों में ताम्र-हानि समानुपाती होती है-

कौन-सी परीक्षण तीन माह में एक बार होना आवश्यक है-शीतलक पंखों, तेल पम्प की जाँच

वायु द्वारा शीतिलत (air-cooled) ट्रांसफॉर्मर में कौन-सा भाग नहीं होता-कंजरवेटर

शून्य भार प्राथमिक कुण्डलन में प्रवाह होने वाली धारा है-

I2/3

ट्रांसफार्मर में अधिकतम भार की सीमा निर्धारित होती है—

वोल्टता अनुपात द्वारा

धारा ट्रांसफार्मर की द्वितीयक कुण्डली की क्षमता सदैव होती है—

तेल कूलित ट्रांसफार्मर में ■ धारा ट्रांसफार्मर का मुख्य- А.С. उच्च धारा मापन

■ कॉमर्शियल दृष्टि से सबसे उपयुक्त ट्रांसफार्मर-

ऑटो ट्रांसफार्मर

■ ट्रांसफार्मर में कुण्डलियों के मध्य चुम्बकीय युग्मन (Megnetic caupling) बढ़ने से आउटपुट वोल्टेज- कम होती है

एम्लीफायर की तुलना करने पर ट्रांसफार्मर-

आउटपुट शक्ति नहीं बढ़ा सकता

 समान शक्ति के इलेक्ट्रिक मोटर की तुलना में ट्रांसफार्मर की दक्षता सें बहुत अधिक होती है

■ पावर ट्रांसफार्मर में टेपिंग (tapping)-

उच्च वोल्टेज साइड में होती है

■ वितरण (distribution) ट्रांसफार्मर में उच्चतम दक्षता (maximum efficiency) होती है—

अर्ध पूर्ण भार $\left(\frac{1}{2} \text{ full load}\right)$ पर

ट्रांसफार्मर में चुम्बकीय फ्लक्स के पथ (path) की-

रिलक्टैन्स कम (low) होती है

■ ट्रांसफार्मर सदा-पर निर्भर पावर फैक्टर पर ऑपरेट होता है

■ भंवर धाराओं (eddy currents) के सम्बन्ध में सत्य है-

भंवर धाराएँ धात्विक भागों (Metal parts) को गर्म करती है

एक साइनुसायडल (Sinusaidal) वोल्टेज- इसको प्रेरित
 करने वाले फ्लक्स से 90° अग्रवामी (leading) होती है

■ शून्य लोड पर धारा (no load current) पूर्ण धारा (full load current) का लगभग होती हैं— 1 to 3%

एक ट्रांसफॉर्मर में यदि सेकेन्डरी फेरों (turns) की संख्या आधी
 कर दी जाये तब सेकेन्डरी वोल्टेज की संख्या रह जायेगी

■ उच्च आवृत्ति ट्रांसफॉर्मर में किस प्रकार का कोर प्रयुक्त किया जाता है— वायु कोर (air core)

■ ट्रांसफॉर्मर के डिजाइन में फ्लक्स घनत्व का मान उच्च प्रयुक्त करने पर- भार / KVA (weight per KVA) घटता है

ऑटो ट्रांसफार्मर के लिए सत्य है-

इसमें केवल एक वाइन्डिंग होती है

■ किसी कुण्डली में `self induced emf पर निर्भर करता है— कुण्डली में टर्न संख्या

समान्तर में आपरेट होने पर ट्रांसफॉर्मर्स, लोड का शेयरिंग प्रित यूनिट इम्पीडैन्स के अनुसार करते हैं

ट्रांसफॉर्मर की सेकेन्डरी में प्रेरित cmf निर्भर करता है –
 केवल सप्लाई फ्रीक्वेन्सी पर

■ एक शार्ट-सर्किट पावर ट्रांसफॉर्मर— शार्ट-सर्किट धारा इसमें बिना कोई हानि पहुँचाए प्रवाहित हो सकती है

 एक छोटे ट्रांसफॉर्मर पर लगी नेम-प्लेट (name plate) के अनुसार नॉर्मल सेकेन्डरी वोल्टेज 220V है इसका अर्थ है कि-इसकी शून्य लोड पर वोल्टेज 220V से अधिक है

ट्रांसफॉर्मर में प्राइमरी तथा सेकेन्डरी में वोल्टेज/टर्न सदा-

एक समान रहती है
सिंगल फेज ट्रांसफार्मर में प्राइमरी तथा सेकेण्डरी में प्रेरित
वोल्टेज के मध्य कलान्तर होता है-

 दो सिंगल फेज ट्रांसफॉर्मर्स के समान्तर ऑपरेशन में यिद ट्रांसफॉर्मर्स के इम्पीडेन्स त्रिभुज आकार में एक समान हो तब-

पावर फैक्टर्स जिस पर ट्रांसफॉर्मर्स ऑपरेट होते हैं परस्पर अलग-अलग होंगे तथा कॉमन लोड

के p.f. से भी अलग होंगे फार्मर में शून्य लोड पर धारा तथ

एक वास्तविक (actual) ट्रांसफार्मर में शून्य लोड पर धारा तथा एप्लाईड वोल्टेज के मध्य कोण होता है लगभग- 80°

■ आदर्श (ideal) ट्रांसफार्मर में-

हानियाँ नहीं होती तथा मैगनेटिक लीकेज भी नहीं होती

 क्रॉस-ओवर वाइन्डिंग का उपयोग- उच्च रेटिंग (high rating) के ट्रांसफॉर्मर में कम (low) वोल्टेज वाइन्डिंग के लिए किया जाता है

ा पावर में टैपिंग (tapping)-उच्च वोल्टेज साइड (HT side) पर होती है

■ वर्ग A इन्सुलेशन के लिए अनुमन्य (Permissible) ताप है-105°C

ट्रांसफार्मर में लिकेज फ्लक्स- वह फ्लक्स है जो केवल
 प्राइमरी अथवा केवल सेकेन्डरी से लिंक होता है

ट्रांसफॉर्मर कोर का आकार (size) पर निर्भर करता है— कोर के पदार्थ में पत्नक्स घनत्व, फ्रीक्वेन्सी

ट्रांसफार्मर में शून्य लोड से पूर्ण लोड तक लौह हानियाँ लगभग
 स्थिर रहती हैं क्योंकि
 कोर फ्लक्स लगभग स्थिर रहती है

 अपेक्षाकृत कम लोड (light loads) पर ट्रांसफार्मर की दक्षता कम होती है क्योंकि स्थिर हानियाँ अधिक होती हैं

 दो बाइन्डिंग वाले ट्रांसफार्मर को ऑटो ट्रांसफार्मर में बदलने पर फॉपर में सेविंग (saving in copper) निर्भर करती है-

वोल्टेज ट्रांसफार्मेशन अनुपात

 एक आइसोलंशन ट्रांसफार्मर को एक आटोट्रांसफॉर्मर के साथ कनेक्ट करने पर आइसोलंशन ट्रांसफॉर्मर की KVA रेटिंग बढ़ती है क्योंकि- प्राइमरी एवं सेकेन्डरी के मध्य

एक चालकीय लिंक (canducting link) स्थापित होता है

ऑपरेशन के समय CT (current transformer) की सेकेन्डरी सदा शॉर्ट-सर्किट की जाती है

> इससे कोर का सेचुरेशन तथा उच्च वोल्टेज प्रेरण (high voltage induction) नहीं होता

डिस्ट्रीब्यूशन ट्रांसफॉमर्स का डिजाइन न्यूनतम लौह हानियों के लिए किया जाता है क्योंकि - डिस्ट्रिब्यूशन ट्रांसफार्मर की प्राइमरी समस्त 24 घण्टे कार्य करने के लिए अर्जित (energize) की जाती है

■ सिलिकॉन स्टील क्रिस्टल के चुम्बकीय गुण-क्रिस्टल के किनारे के अनुदिश (a long the

surface of cube) उत्तम होते हैं

CRGO सिलिकॉन स्टील के चुम्बकीय गुण-

रोलिंग की दिशा के अनुदिश उत्तम होते हैं

ट्रांसफार्मर का 5 लिम्ब में निर्माण (5 limb construction) 3 लिम्ब में निर्माण की तुलना में उत्तम है क्योंकि इससे-

तीनों फेजों की चुम्बकीय रिलक्टैन्स संतुलित की जा सकती है

3-Phase शैल टाइप ट्रांसफार्मर में सेन्ट्रल फेज की वाइन्डिंग अन्य फेज के सापेक्ष रिवर्स कर दी जाती है इससे-

कोर मेटीरियल की काफी बचत होती है

स्मिरल वाइन्डिंग केवल के लिए उपयुक्त है-

अत्यन्त उच्च धारा वाली वाइन्डिंग

हेलीकल वाइंडिंग उपयुक्त है-बड़े ट्रांसफार्मर की कम वोल्टेज वाइन्डिंग के लिए

कन्टीनुअस डिस्क वाइन्डिंग उपयुक्त है- बड़े ट्रांसफार्मर की उच्च (high) वोल्टेज वाइन्डिंग के लिए

ट्रांसफार्मर में मुख्य (major) इनसुलेशन-

LV वाइन्डिंग एवं कोर के मध्य होता है

ट्रांसफॉर्मर में गौण (minor) इनसुलेशन-वाइन्डिंग की परतों (layers) एवं वाइन्डिंग के फेरों के मध्य होता है

ऑफ-लोड टैप चेंजिंग की उपयुक्त विधि-

बाह्य सलैक्टर स्विच द्वारा प्रचालित टैप चेन्जर टैक के अन्दर प्रयुक्त करना है

ऑन-लोड टैप चेन्जिंग की उपयुक्त विधि-

बाह्य सलैक्टर स्विच द्वारा प्रचालित टैप चेन्जर के बाहर प्रयुक्त करना है

्ट्रांसफॉर्मर में टैपिंग सामान्यतः HV बाइन्डिंग पर होती है-क्योंकि इस तक सरलता से पहुँचा जा सकता है

50KVA क्षमता से कम वितरण (distribution) ट्रांसफार्मर के लिए- प्लेनशीट के स्टील टैंक, कोरोगेटड टैंक उपयुक्त होते हैं

■ बुखोल्ज रिले (Buchhadz relay)-

कंजरवेटर एवं टैंक के मध्य लगायी जाती है

बड़े तथा छोटे दोनों प्रकार के दोषों बुखोल्ज रिले-पर एलार्म देती है

ट्रांसफार्मर का वोल्टेज ट्रांसफार्मेशन अनुपात (K)-

E, ट्रांसफार्मर की All day Efficiency मुख्यतः निर्भर करती है-भार पर, भार की संयोजन अवधि पर

द्वितीय साइड की ओर देखने पर ट्रांसफार्मर का सम्पूर्ण प्रतिरोध- $R_2 + K^2 R_1$

 $I_1^2 R_1 + I_2^2 R_2$ ट्रांसफार्मर में सम्पूर्ण ताम्र हानियाँ-

ट्रांसफार्मर में शून्य भार धारा पूर्ण भार धारा का लगमग- 50%

ट्रांसफार्मर में उच्च नियमन का तात्पर्य है-

शून्य लोड से पूर्ण लोड तक वोल्टता परिवर्तन न्यूनतम

ऑटो ट्रांसफार्मर तथा अन्य साधारण ट्रांसफार्मर में मुख्य अन्तर-ताम्र में बचत

ट्रांसफार्मर पर शार्ट-सर्किट तथा ओपिन सर्किट टेस्ट करने के लिए इन्स्ट्रमेन्ट्स कहाँ लगाये जाते हैं-HV साइड तथा LV साइड क्रमशः

एक डेल्टा Zigzag, 3-Phase ट्रांसफार्मर का संकेत हो सकता

ट्रांसफार्मर्स की सर्ज से सुरक्षा के लिए कौन-सी विधि प्रयुक्त नहीं की जा सकती-End-turn insulation में वृद्धि

दो समान ट्रांसफार्मर्स के back-to-back परीक्षण में-प्राइमरी को फ्रीक्वेन्सी की वोल्टेज तथा आक्जिलियरी टांसफार्मर के रेटेड से अलग फ्रीक्वेन्सी की वोल्टेज दी जा सकती है

दो समान्तर में ऑपरेट हो रहे ट्रांसफार्मर्स की लीकेज इम्पीडैन्स की क्वालिटी अलग-अलग है। 0.8 लोड P.f. के लिए-

दोनों समान P.f. पर ऑपरेट होंगे

एक सिंगल फेज इन्डक्शन रेगुलेटर में आउटपुट वोल्टेज-परिवर्तित की जा सकती है-केवल मान (Magnitude) में

स्थिर लोड (constant load) धारा पर टांसफार्मर की अधिकतम इकाई (unity) पावर फैक्टर पर होती है

वायु ब्लास्ट कुलिंग किस क्षमता के टांसफार्मर में प्रयक्त की जाती है-10000 kVA

10 MVA क्षमता के ट्रांसफार्मर्स के उपयुक्त कृलिंग (cooling) विधि है- आयल नेचुरल कूलिंग (Oil natural cooling)

3-to-3 Phase कनवर्जन के लिए उपयुक्त पॉलीफेज कनेक्शन Joeltu-interconnected-star

एक एमीटर को CT के साथ कनेक्ट करने से पहले CT की-सेकेण्डरी शार्ट-सर्किट (open) कर देनी चाहिए

मीटर्स एवं रिले के लिए प्रयोग किये जाने वाले CT-

की सेकेण्डरी 5A की होनी चाहिए

ड्राइ-टाइप (dry-type) ट्रांसफार्मर्स की वाइंडिंग पर धल (dust) कभी भी एकत्र नहीं होनी चाहिए क्योंकि इससे-

ऊष्मा (heat) के क्षय (dissipation) में कमी होती है

ट्रांसफार्मर की ध्रुवता द्वारा ज्ञात की जा सकती है-फेजिंग आउट परीक्षण

यदि ट्रांसफार्मर में साइनवेब के स्थान पर पीक्ड (Peaked) वोल्टेज प्राइमरी में सप्लाई की जाय तब-

लौह हानियाँ कम होंगी

वर्ग-A (class A) इन्सुलेशन-

150°C ताप अधिकतम सह सकता है

ट्रांसफार्मर की सेकेण्डरी वाइन्डिंग शार्ट-सर्किट करने पर प्राइमरी का पावर फैक्टर होता है-

शून्य लोड (no load) पर ट्रांसफार्मर का पावर फैक्टर होता है-लगभग 0.4 lagging

उत्तम प्रकार से डिजाइन किये गये ट्रांसफार्मर का वोल्टेज रेगुलेशन लगभग होता है-

वोल्टेज अनुपात V_1/V_2 जहाँ $V_1 > V_2$ के ऑटो ट्रांसफार्मर में प्रेरकीय (inductively) ट्रांसफर हुई पावर का मान होगा-

जेनरेटिंग स्टेशन के समीप स्थित ट्रांसफार्मर्स के बारम्बार स्विचिंग (frequent switching) के कारण हो सकता वाइंडिंग का मेकेनिकल डिस्टॉशन तथा turn-to turm इन्सुलेशन का बेक डाउन