Unsupervised Latent Tree Induction with Deep Inside Outside Recursive Autoencoders

Wang Ge
Group Meeting
2019/10/23

Drozdov et al. NAACL 2019

Unsupervised Constituent Parsing

Under the current circumstances he says their scenario no longer seems unrealistic

- A task long been dominated by classic methods like CCM
- Recent researches focus on downstream works
- This work tries to integrate traditional methods with deep learning

Inside-Outside Algorithm

The key point of this work is to construct a neuralized inside-outside chart

Neural Inside Outside Pass

Neural representation required for score computation

Inside Pass

$$\begin{bmatrix} x \\ o \\ u \end{bmatrix} = \begin{bmatrix} \sigma \\ \sigma \\ \tanh \end{bmatrix} (U_{\psi}v_k + b)$$

$$\bar{a}(k) = o + \tanh(x \odot u)$$

$$\bar{e}(k) = 0$$

$$\bar{a}(k) = \sum_{i,j \in \{k\}} e(i,j) \ a(i,j)$$

$$\bar{e}(k) = \sum_{i,j \in \{k\}} e(i,j) \ \hat{e}(i,j)$$

$$e(i,j) = \frac{\exp(\hat{e}(i,j))}{\sum\limits_{\hat{i},\hat{j}\in\{k\}}}$$

$$\hat{e}(i,j) = \phi(\bar{a}(i), \bar{a}(j); S_{\alpha}) + \bar{e}(i) + \bar{e}(j)$$

$$a(i,j) = \text{Compose}_{\alpha}(\bar{a}(i), \bar{a}(j))$$

where Compose is TreeLSTM or 2-layer MLP

Outside Pass

$$\bar{b}(k) = \sum_{i,j \in \{k\}} f(i,j) b(i,j)$$

$$\bar{f}(k) = \sum_{i,j \in \{k\}} f(i,j) \hat{f}(i,j)$$

$$b(i,j) = \text{Compose}_{\beta}(\bar{a}(i), \bar{b}(j))$$

$$\hat{f}(i,j) = \phi(\bar{a}(i), \bar{b}(j); S_{\beta}) + \bar{e}(i) + \bar{f}(j)$$

- The representation for root is learned as a bias vector
- Some parameters are shared with that of the inside pass

Training and Parsing

- Training use an auto encoding objective
- Aiming to maximize the inside-outside scores for basic spans, negative sampling is used

$$L_{x} = \sum_{i=0}^{T-1} \sum_{i^{*}=0}^{N-1} \max(0, 1 - \bar{b}(i) \cdot \bar{a}(i))$$

$$= \sum_{i=0}^{T-1} \sum_{i^{*}=0}^{N-1} \exp(\bar{b}(i) \cdot \bar{a}(i^{*}))$$

$$= \sum_{i=0}^{T-1} \log \frac{\exp(\bar{b}(i) \cdot \bar{a}(i))}{\exp(\bar{b}(i) \cdot \bar{a}(i)) + Z^{*}}$$

The parse tree is extracted by Viterbi decoding from the inside table

Banalized WSJ and NLI Data Results

Model	$\mathbf{F1}_{\mu}$	$\mathbf{F1}_{max}$	δ
LB	13.1	13.1	12.4
RB	16.5	16.5	12.4
Random	21.4	21.4	5.3
Balanced	21.3	21.3	4.6
RL-SPINN†	13.2	13.2	-
ST-Gumbel - GRU†	22.8 ± 1.6	25.0	-
PRPN-UP	38.3 ±0.5	39.8	5.9
PRPN-LM	35.0 ± 5.4	42.8	6.2
ON-LSTM	47.7 ±1.5	49.4	5.6
DIORA	48.9 ± 0.5	49.6	8.0
PRPN-UP ^{+PP}	_	45.2	6.7
$PRPN-LM^{+PP}$	_	42.4	6.3
DIORA ^{+PP}	55.7 ±0.4	56.2	8.5

Model	$ \mathbf{F1}_{median} $	$\mathbf{F1}_{max}$	δ
Random	27.0	27.0	4.4
Balanced	21.3	21.3	3.9
PRPN-UP	48.6	_	4.9
PRPN-LM	50.4	-	5.1
DIORA	51.2	53.3	6.4
PRPN-UP ^{+PP}	_	54.8	5.2
PRPN-LM ^{+PP}	_	50.4	5.1
DIORA ^{+PP}	59.0	59.1	6.7

WSJ-10,40 Parsing Results; Full WSJ Segmentation Results

	WSJ	-10	WSJ-40		
Model	$ \mathbf{F1}_{\mu} $	$\mathbf{F1}_{max}$	$ {f F1}_{\mu} $	$\mathbf{F1}_{max}$	
UB	87.8	87.8	85.7	85.7	
LB	28.7	28.7	12.0	12.0	
RB	61.7	61.7	40.7	40.7	
CCM†	-	63.2	-	-	
$\text{CCM}_{gold}\dagger$	-	71.9	-	33.7	
PRLG †	-	72.1	-	54.6	
$\overline{ ext{PRPN}_{NLI}}$	66.3 ±0.8	68.5	-	-	
PRPN‡	$70.5_{\pm 0.4}$	71.3	-	52.4	
ON-LSTM‡	65.1 ± 1.7	66.8	_	-	
DIORA	67.7 ± 0.7	68.5	60.6 ± 0.2	60.9	

Label	Count	DIORA	P-UP	P-LM	
NP	297,872	0.767	0.687	0.598	
VP	168,605	0.628	0.393	0.316	
PP	116,338	0.595	0.497	0.602	
S	87,714	0.798	0.639	0.657	
SBAR	24,743	0.613	0.403	0.554	
ADJP	12,263	0.604	0.342	0.360	
QP	11,441	0.801	0.336	0.545	
ADVP	5,817	0.693	0.392	0.500	
PRN	2,971	0.546	0.127	0.144	
SINV	2,563	0.926	0.904	0.932	

Phrase Similarity Results

		CoNLL 2000			CoNLL 2012		
Model	Dim	P@1	P@10	P@100	P@1	P@10	P@100
Random	800	0.684	0.683	0.680	0.137	0.133	0.135
$ELMo_{CI}$	1024	0.962	0.955	0.957	0.708	0.643	0.544
$ELMo_{SI}$	4096	0.970	0.964	0.955	0.660	0.624	0.533
ELMo	4096	0.987	0.983	0.974	0.896	0.847	0.716
$DIORA_{In/Out}$	800	0.990	0.985	0.979	0.860	0.796	0.646