Bayesian Mixture Modeling and Inference based Thompson Sampling in Monte-Carlo Tree Search

Aijun Bai Oct. 11, 2013

Background

- Planning under Uncertainty
- Markov Decision Processes
- AND/OR Graph for MDPs
- Monte Carlo Tree Search
- Multi-Armed Bandits
- Upper Confidence Bound Heuristic
- UCB applied to Trees
- Bayesian Modeling and Inference
- Thompson Sampling

Planning under Uncertainty

- Sequential decision-making
- Action uncertainty
- Observation uncertainty

Markov Decision Processes

- Fully observable
- An MDP is a 4-tuple
 - State space: S
 - Action space: A
 - Transition function:T(s' | s, a)
 - Reward function:R(s, a)
- Policy
 - $-\pi(s): S -> A$
 - Optimal policy

- Algorithms
 - Offline
 - Linear Programming
 - Value Iteration
 - Policy Iteration
 - Online
 - AND/OR Graph Search
 - Real Time Dynamic Programming
 - Monte-Carlo Tree Search

Example: A Grid Environment

AND/OR Graph for MDPs

Monte-Carlo Tree Search

Monte-Carlo Tree Search (cont.)

- Advantages of MCTS
 - Highly selective best-first search
 - Works for black-box simulators
 - No need for explicit mathematical model (T or R)
 - Computationally efficient, anytime, parallelisable
 - Easily integrated with domain knowledge
 - Nodes initialization: Heuristics
 - Tree policy: Preferred actions
 - Rollout policy: Manually specified
- Applications
 - Game playing, MDP, POMDP, Bayes RL

Multi-Armed Bandits

- MAB
 - N slot machines
 - Unknown reward distributions
 - Policy
 - History -> Action
 - Optimal policy
 - Minimizes the cumulative regret
- Example
 - A, 1, B, 0, A, 0, ?

Upper Confidence Bound Heuristic

- UCB heuristic
 - Maximize

$$\hat{r}_i + \sqrt{\frac{2\log t}{n_i}},$$

- Convergence
- UCB applied to trees (UCT)
 - Treat each decision node in MCTS as an MAB
 - Maximize

$$\bar{Q}(s,a) + c\sqrt{\log N(s)/N(s,a)}$$

Convergence

Bayesian Modeling and Inference

$$p(\theta|\mathbf{X},\alpha) = \frac{p(\mathbf{X}|\theta)p(\theta|\alpha)}{p(\mathbf{X}|\alpha)} \propto p(\mathbf{X}|\theta)p(\theta|\alpha)$$

- θ , hidden parameter
- α , hyper-parameter of θ
- X, observed data points
- $p(\theta|\alpha)$, prior distribution
- $p(X|\theta)$, likelihood
- $p(\mathbf{X}|\alpha)$, marginal likelihood
- $p(\theta|\mathbf{X}, \alpha)$, posterior distribution
- Conjugate priors => closed form

Thompson Sampling

- Probability matching strategies
 - Select actions based on the probabilities of being optimal

$$P(a) = \int \mathbb{1}[a = \operatorname*{argmax}_{a'} E[X_{a'}|\theta_{a'}]] \prod_{a'} P_{a'}(\theta_{a'}|Z) d\boldsymbol{\theta},$$

- Example: 2 actions a and b, P(a) = 0.3, P(b) = 0.7
- Efficiently approached by sampling methods
 - Maintain posteriors of reward distributions for each action
 - Updated by Bayesian rules
 - Sample reward distributions according to posteriors
 - Select action with highest expectation $a^* = \operatorname{argmax}_a E[X_a | \theta_a]$
- TS applied to MABs
 - Converges faster and more robust

Thompson Sampling (cont.)

• TS v.s. UCB in MABs

Thompson Sampling (cont.)

- Example:
 - A, 1, B, 0, A, 0, ?
 - Bernoulli p_a and p_b
 - Uniform priors
 - $p_a \sim Uniform(0, 1)$
 - $p_b \sim Uniform(0, 1)$
 - Beta posteriors
 - p_a ~ Beta(2, 2)
 - $p_b \sim Beta(1, 2)$
 - Thompson sampling

Dirichlet-NormalGamma MCTS

- DNG-MCTS
 - Bayesian Mixture Modeling and Inference
 - Thompson Sampling
 - Monte-Carlo Tree Search
- Assumptions (according to CLT for MCs)
 - $-X_{s,\pi}$ => Normal distribution $-X_{s,a,\pi}$ => mixture of Normal distributions
- Bayesian modeling and inference
 - $-X_{s,\pi} \sim N(\mu, 1/\tau) \sim NormalGamma(\mu_0, \lambda, \alpha, \beta)$ $-T \sim Categorical(\mathbf{p}) \sim Dirichlet(\mathbf{p})$
- Action selection: Thompson sampling
- Monte-Carlo tree search

Main Algorithm

```
ThompsonSampling (s: state, h: horizon,
OnlinePlanning (s: state, T: tree,
                                                         sampling:boolean)
H: max\ horizon)
                                                         foreach a \in A do
Initialize (\mu_{s,0}, \lambda_s, \alpha_s, \beta_s) for each s \in S
                                                          q_a \leftarrow \text{QValue}(s, a, h, sampling)
Initialize \rho_{s,a} for each s \in S and a \in A
                                                         return \operatorname{argmax}_a q_a
repeat
   DNG-MCTS (s, T, H)
until resource budgets reached
                                                         QValue (s: state, a: action, h: horizon,
return ThompsonSampling (s, H, False)
                                                         sampling:boolean)
                                                         r \leftarrow 0
                                                         foreach s' \in S do
DNG-MCTS (s: state, T: tree, h: horizon)
                                                             if sampling = True then
if h = 0 or s is terminal then
                                                                 Sample w_{s'} according to Dir(\rho_{s,a})
 return 0
                                                             else
else if node(s, h) is not in tree T then
                                                              w_{s'} \leftarrow \rho_{s,a,s'} / \sum_{n \in S} \rho_{s,a,n}
    Add node (s, h) to T
                                                          r \leftarrow r + w_{s'} Value (s', h-1, sampling)
    Play rollout policy by simulation for h steps
    Observe the outcome r
                                                         return R(s,a) + \gamma r
   return r
else
                                                         Value (s: state, h: horizon,
    a \leftarrow \texttt{ThompsonSampling}(s, h, True)
                                                         sampling:boolean)
    Execute a by simulation
                                                         if h = 0 or s is terminal then
    Observe next state s' and reward R(s, a)
                                                          return 0
    r \leftarrow R(s, a) + \gamma \text{DNG-MCTS}(s', T, h - 1)
                                                         else
    \alpha_s \leftarrow \alpha_s + 0.5
                                                             if sampling = True then
    \beta_s \leftarrow \beta_s + (\lambda_s(r - \mu_{s,0})^2/(\lambda_s + 1))/2
                                                                  Sample (\mu, \tau) according to
    \mu_{s,0} \leftarrow (\lambda_s \mu_{s,0} + r)/(\lambda_s + 1)
                                                                 NormalGamma(\mu_{s,0}, \lambda_s, \alpha_s, \beta_s)
    \lambda_s \leftarrow \lambda_s + 1
                                                                 return \mu
    \rho_{s,a,s'} \leftarrow \rho_{s,a,s'} + 1
                                                             else
    return r
                                                                 return \mu_{s,0}
```

Experiments

- MDP benchmark problems (cost based)
 - Canadian Traveler Problem
 - Race Track Problem
 - Sailing Problem
- Experiments
 - Run from current state for a quantity of iterations
 - Apply the best action according to the returned values
 - Repeat the loop until terminating conditions
 - Report the total discounted cost/reward

Canadian Traveler Problem

CTP

- A path finding problem
- Imperfect information over a graph
- Edges may be blocked with given prior probabilities
- Modeled as a deterministic POMDP
- Transformed to an MDP
- Belief size: n × 3^m

Canadian Traveler Problem (cont.)

Table 1: CTP problems with 20 nodes. The second column indicates the belief size of the transformed MDP for each problem instance. UCTB and UCTO are the two domain-specific UCT implementations [18]. DNG-MCTS and UCT run for 10,000 iterations. Two groups of rollout policy are tested: random policy and optimistic policy. Boldface fonts are best in whole table; gray cells show best among domain-independent implementations for each group. The data of UCTB, UCTO and UCT are taken form [16].

prob.	belief	domain-specific UCT		random rollout policy		optimistic rollout policy	
		UCTB	UCTO	UCT	DNG	UCT	DNG
20-1	20×3^{49}	210.7±7	169.0±6	216.4±3	223.9±4	180.7±3	177.1±3
20-2	20×3^{49}	176.4 ± 4	148.9 ± 3	178.5±2	178.1±2	160.8±2	155.2±2
20-3	20×3^{51}	150.7 ± 7	132.5 ± 6	169.7 ± 4	159.5±4	144.3±3	140.1±3
20-4	20×3^{49}	264.8 ± 9	235.2 ± 7	264.1±4	266.8±4	238.3±3	242.7 ± 4
20-5	20×3^{52}	123.2 ± 7	111.3 ± 5	139.8±4	133.4±4	123.9±3	122.1±3
20-6	20×3^{49}	165.4 ± 6	133.1 ± 3	178.0 ± 3	169.8±3	167.8±2	141.9±2
20-7	20×3^{50}	191.6 ± 6	148.2 ± 4	211.8±3	214.9±4	174.1±2	166.1±3
20-8	20×3^{51}	160.1 ± 7	134.5 ± 5	218.5±4	202.3±4	152.3±3	151.4±3
20-9	20×3^{50}	235.2 ± 6	173.9 ± 4	251.9 ± 3	246.0±3	185.2±2	180.4±2
20-10	20×3^{49}	180.8 ± 7	167.0 ± 5	185.7±3	188.9±4	178.5±3	170.5±3
total		1858.9	1553.6	2014.4	1983.68	1705.9	1647.4

Race Track Problem

- RaceTrack
 - A car starts in a set of initial states
 - Moves towards the goal
 - Choose to accelerate to one of the eight directions
 - Probability of 0.9 to succeed
 - Probability 0.1 to fail on its acceleration
 - State space size:22534

Race Track Problem (cont.)

Sailing Problem

Sailing

- A sailboat navigates to a destination
- Direction of the wind changes over time
- Choose at each grid location a neighbour location to move to
- The goal is to reach the destination as quickly as possible
- State space size: 80000

Sailing Problem (cont.)

Conclusion & Future Work

- DNG-MCTS
 - Bayesian Approach
 - Thompson Sampling
 - Monte-Carlo Tree Search
 - Competitive results comparing to UCT
- Future Work
 - Test in POMDP and Bayes RL domain
 - Motion planning problem in robotics
 - Physical simulator
 - Monte-Carlo method
 - Bayesian approach