# Traitement des données sociodémographiques – EHCVM Sénégal 2018

#### 2025-05-21

## Table des matières

| 0.1  | Importation et préparation des données            |
|------|---------------------------------------------------|
| 0.2  | Taille des ménages                                |
| 0.3  | Graphique : Distribution de la taille des ménages |
| 0.4  | Répartition par sexe                              |
| 0.5  | Structure par âge                                 |
| 0.6  | Pyramide des âges                                 |
| 0.7  | Ratio de masculinité                              |
| 8.0  | Statut matrimonial                                |
| 0.9  | Ethnies                                           |
| 0.10 | Religion                                          |
| 0.11 | Possession de téléphone                           |

## 0.1 Importation et préparation des données

```
data <- read_dta("C:/Users/HP/Desktop/S4/COURS R/EXPOSE/s01_me_SEN2018.dta") %>%
   clean_names() %>%
   mutate(
    id_menage = paste(vague, grappe, menage, sep = "_"),
    id_individu = paste(id_menage, s01q00a, sep = "_")
)
```

### 0.2 Taille des ménages

```
taille_menage <- data %>%
  group_by(id_menage) %>%
  summarise(taille = n()) %>%
  ungroup()

taille_menage %>%
  summarise(
  moyenne = mean(taille),
  mediane = median(taille),
  min = min(taille),
```

```
max = max(taille)
)

## # A tibble: 1 x 4

## moyenne mediane min max

## <dbl> <dbl> <int> <int>
## 1 9.24 8 1 56
```

## 0.3 Graphique : Distribution de la taille des ménages

```
ggplot(taille_menage, aes(x = taille)) +
  geom_histogram(binwidth = 1, fill = "skyblue", color = "black") +
  labs(title = "Distribution de la taille des ménages", x = "Nombre de membres", y = "Fréquence")
```

## Distribution de la taille des ménages



# 0.4 Répartition par sexe

```
data %>%
  filter(!is.na(s01q01)) %>%
  mutate(sexe = case_when(
    s01q01 == 1 ~ "Homme",
    s01q01 == 2 ~ "Femme",
    TRUE ~ "Autre"
```

#### 0.5 Structure par âge

```
data <- data %>%
    distinct(id_individu, .keep_all = TRUE) %>%
    mutate(
        age = if_else(vague == 1, 2021 - s01q03c, 2022 - s01q03c),
        tranche_age = case_when(
        age < 5 ~ "0-4",
        age < 15 ~ "5-14",
        age < 25 ~ "15-24",
        age < 45 ~ "25-44",
        age < 65 ~ "45-64",
        TRUE ~ "65+"
        ),
        tranche_age = factor(tranche_age, levels = c("0-4", "5-14", "15-24", "25-44", "45-64", "65-14", "15-24", "25-44", "45-64", "65-14", "15-24", "25-44", "45-64", "65-14", "15-24", "25-44", "45-64", "65-14", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44", "25-44",
```

Table 1: Distribution des individus par tranche d'âge

| tranche_age | n     | pourcentage |
|-------------|-------|-------------|
| 0-4         | 10222 | 15.5        |
| 5-14        | 17532 | 26.5        |
| 15-24       | 13440 | 20.3        |
| 25-44       | 13936 | 21.1        |
| 45-64       | 7751  | 11.7        |
| 65+         | 3238  | 4.9         |

```
ggplot(data, aes(x = tranche_age)) +
  geom_bar(fill = "#009E73") +
  labs(title = "Structure par tranche d'âge", x = "Tranche d'âge", y = "Effectif") +
  theme_minimal()
```





### 0.6 Pyramide des âges

```
data <- data %>%
 mutate(
    sexe_label = case_when(
      s01q01 == 1 ~ "Homme",
      s01q01 == 2 ~ "Femme",
     TRUE ~ NA_character_
    )
  )
pyramide_data <- data %>%
  filter(!is.na(sexe_label)) %>%
  count(tranche_age, sexe_label) %>%
 mutate(effectif = if_else(sexe_label == "Homme", -n, n))
ggplot(pyramide_data, aes(x = tranche_age, y = effectif, fill = sexe_label)) +
  geom_bar(stat = "identity", width = 0.7) +
  coord_flip() +
  scale_y_continuous(labels = abs) +
  scale_fill_manual(values = c("Homme" = "#0072B2", "Femme" = "#D55E00")) +
 labs(title = "Pyramide des âges", x = "Tranche d'âge", y = "Effectif", fill = "Sexe") +
```

| tranche_age | Homme | Femme | sex_ratio |
|-------------|-------|-------|-----------|
| 0-4         | 4768  | 5454  | 0.87      |
| 5-14        | 8747  | 8785  | 1.00      |
| 15-24       | 6496  | 6944  | 0.94      |
| 25-44       | 5853  | 8083  | 0.72      |
| 45-64       | 3423  | 4328  | 0.79      |
| 65+         | 1515  | 1722  | 0.88      |





### 0.7 Ratio de masculinité

```
sexe_age <- data %>%
  filter(s01q01 %in% c(1, 2)) %>%
  count(tranche_age, sexe = s01q01) %>%
  pivot_wider(names_from = sexe, values_from = n, values_fill = 0) %>%
  rename(Homme = `1`, Femme = `2`) %>%
  mutate(sex_ratio = round(Homme / Femme, 2))

sexe_age %>% gt()
```

#### 0.8 Statut matrimonial

```
data %>%
 filter(!is.na(s01q07)) %>%
  count(statut = s01q07) %>%
 mutate(
    libelle = case_when(
      statut == 1 ~ "Célibataire",
      statut == 2 ~ "Marié(e) monogame",
      statut == 3 ~ "Marié(e) polygame",
      statut == 4 ~ "Union libre",
      statut == 5 ~ "Veuf(ve)",
      statut == 6 ~ "Divorcé(e)",
     statut == 7 ~ "Séparé(e)",
     statut == 11 ~ ".A"
   ),
   pourcentage = round(n / sum(n) * 100, 1)
  ) %>%
  ggplot(aes(x = reorder(libelle, -n), y = n, fill = libelle)) +
  geom_bar(stat = "identity") +
  labs(title = "Répartition du statut matrimonial", x = "Statut matrimonial", y = "Effectif")
  theme_minimal() +
  theme(legend.position = "none")
```

## Répartition du statut matrimonial



#### 0.9 Ethnies

```
data <- data %>%
 mutate(ethnie_lib = case_when(
    s01q16 == 1 ~ "Wolof/Lébou",
    s01q16 == 2 ~ "Sérère",
    s01q16 == 3 ~ "Poular",
    s01q16 == 4 ~ "Soninké",
    s01q16 == 5 ~ "Diola",
    s01q16 == 6 ~ "Mandingue/Socé",
    s01q16 == 7 ~ "Balante",
    s01q16 == 8 ~ "Bambara",
    s01q16 == 9 ~ "Malinké",
    s01q16 == 10 ~ "Autres ethnies",
    s01q16 == 11 ~ "Naturalisé",
    s01q16 == 12 ~ "Mandiack/Mankagne",
    s01q16 == 13 ~ "Maure",
    s01q16 == 101 ~ ".A"
  ))
ethnie_table <- data %>%
  filter(!is.na(ethnie_lib)) %>%
  count(ethnie = ethnie_lib, sort = TRUE) %>%
 mutate(pourcentage = round(n / sum(n) * 100, 1)) %>%
 head(10)
print(ethnie_table)
## # A tibble: 10 x 3
##
      ethnie
                            n pourcentage
##
      <chr>
                        <int>
                                    <dbl>
## 1 Wolof/Lébou
                        22098
                                     33.8
## 2 Poular
                                     32.9
                        21565
## 3 Sérère
                                     11.9
                         7808
                                      7
## 4 Mandingue/Socé
                         4555
## 5 Diola
                         3059
                                      4.7
## 6 Soninké
                         1281
                                      2
## 7 Autres ethnies
                         1253
                                      1.9
## 8 Bambara
                         1041
                                      1.6
## 9 Maure
                          902
                                      1.4
## 10 Mandiack/Mankagne
                          725
                                      1.1
ggplot(ethnie_table, aes(x = reorder(ethnie, n), y = n)) +
  geom_bar(stat = "identity", fill = "#56B4E9") +
  coord flip() +
 labs(title = "Top 10 des ethnies", x = "Ethnie", y = "Effectif") +
 theme_minimal()
```





## 0.10 Religion

```
data <- data %>%
  mutate(religion_lib = case_when(
    s01q14 == 1 ~ "Musulman",
    s01q14 == 2 ~ "Chrétien",
    s01q14 == 3 ~ "Animiste",
    s01q14 == 4 ~ "Autre religion",
    s01q14 == 5 ~ "Sans religion"
  ))
religion_table <- data %>%
  filter(!is.na(religion_lib)) %>%
  count(religion = religion_lib, sort = TRUE) %>%
  mutate(pourcentage = round(n / sum(n) * 100, 1))
print(religion_table)
## # A tibble: 5 x 3
     religion
##
                        n pourcentage
##
     <chr>
                    <int>
                                <dbl>
## 1 Musulman
                    63525
                                 96.1
```

```
3.6
## 2 Chrétien
                     2402
## 3 Animiste
                       74
                                  0.1
## 4 Autre religion
                       54
                                  0.1
## 5 Sans religion
                       54
                                  0.1
ggplot(religion_table, aes(x = reorder(religion, n), y = n)) +
 geom_bar(stat = "identity", fill = "#F0E442") +
  coord_flip() +
 labs(title = "Répartition selon la religion", x = "Religion", y = "Effectif") +
 theme_minimal()
```

## Répartition selon la religion



# 0.11 Possession de téléphone

```
data <- data %>%
  mutate(tel_possede = case_when(
    s01q36 == 1 ~ "Oui",
    s01q36 == 2 ~ "Non",
    TRUE ~ "Non renseigné"
))

tel_table <- data %>%
  filter(!is.na(tel_possede)) %>%
  count(tel_possede, sort = TRUE) %>%
```

```
mutate(pourcentage = round(n / sum(n) * 100, 1))
knitr::kable(tel_table, caption = "Distribution de la possession de téléphone")
```

Table 2: Distribution de la possession de téléphone

| n     | pourcentage |
|-------|-------------|
| 25701 | 38.9        |
| 20308 | 30.7        |
| 20110 | 30.4        |
|       | 20308       |

```
ggplot(tel_table, aes(x = reorder(tel_possede, n), y = n)) +
  geom_bar(stat = "identity", fill = "#D55E00") +
  coord_flip() +
  labs(title = "Possession de téléphone", x = "Possède un téléphone", y = "Effectif") +
  theme_minimal()
```



