Spanning Tree

Spanning tree

A spanning tree is a sub-graph of an undirected connected graph, which includes all the vertices of the graph with a minimum possible number of edges.

The edges may or may not have weights assigned to them.

Example of a Spanning Tree

Minimum Spanning Tree

• A minimum spanning tree is a spanning tree in which the sum of the weight of the edges is as minimum as possible.

Minimum Spanning Tree

- The minimum spanning tree from a graph is found using the following algorithms:
 - Prim's Algorithm
 - Kruskal's Algorithm

Kruskal's algorithm

- Kruskal's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the subset of the edges of that graph which
 - form a tree that includes every vertex
 - has the minimum sum of weights among all the trees that can be formed from the graph

Spanning Tree Cost = 13

Minimum Spanning Tree, Cost = 7

Kruskal's algorithm

- We start from the edges with the lowest weight and keep adding edges until we reach our goal.
- The steps for implementing Kruskal's algorithm are as follows:
 - Sort all the edges from low weight to high
 - Take the edge with the lowest weight and add it to the spanning tree. If adding the edge created a cycle, then reject this edge.
 - Keep adding edges until we reach all vertices.

Prim's algorithm

- We start from one vertex and keep adding edges with the lowest weight until we reach our goal.
- The steps for implementing Prim's algorithm are as follows:
 - Initialize the minimum spanning tree with a vertex chosen at random.
 - Find all the edges that connect the tree to new vertices, find the minimum and add it to the tree
 - Keep repeating step 2 until we get a minimum spanning tree