

deeplearning.ai

Mode Collapse

Outline

- Modes in distributions
- Mode collapse in GANs
- Intuition behind it during training

Lesser than 10 modes -> 8 Mode Collapse **Fakes**

The discriminator misclassifies fake handwritten digits 1 and 7. Thus generator will produce more of 1s and 7s to fool the discriminator

Discriminator

Fakes that fooled the discriminator

Generator will create more of such fakes (1s and 7s) that can fool the discriminator.

Mode collapsing into 2 modes due to cost function minima

Discriminator learns to identify fake handwritten digit 7. Thus generator will produce more of 1s now

Hence the mode now collapses to single mode. Now the generator would either learn to get out of this, otherwise it will fail to do so. In other words the mode will get out of this local minima and may get into some other cost function minima

Summary

- Modes are peaks in the distribution of features
- Typical with real-world datasets
- Mode collapse happens when the generator gets stuck in one mode

deeplearning.ai

Problem with BCE Loss

Outline

- BCE Loss and the end objective in GANs
- Problem with BCE Loss

Objective in GANs

Make the generated and real distributions look similar

BCE Loss in GANs

Criticizing is more straightforward

Single output

Easier to train than the generator

Complex output

Difficult to train

Often, the discriminator gets better than the generator

Problems with BCE Loss

Initially disc is also poor in classification

Difference between distributions

Problems with BCE Loss

Later disc will outperform generator i.e. gradient approaches zero at this minima. Hence generator will not learn anything now. This is k/a problem of vanishing gradients in GANs

Summary

- GANs try to make the real and generated distributions look similar
- When the discriminator improves too much, the function approximated by BCE Loss will contain flat regions
- Flat regions on the cost function = vanishing gradients

deeplearning.ai

Earth Mover's Distance

Outline

- Earth Mover's Distance (EMD)
- Why it solves the vanishing gradient problem of BCE Loss

Earth Mover's Distance

Effort to make the generated distribution equal to the real distribution

Earth Mover's Distance

Summary

- Earth mover's distance (EMD) is a function of amount and distance
- Doesn't have flat regions when the distributions are very different
- Approximating EMD solves the problems associated with BCE

deeplearning.ai

Wasserstein Loss

Outline

- BCE Loss Simplified
- W-Loss and its comparison with BCE Loss

BCE Loss Simplified

$$J(\theta) = \underbrace{-\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + \underbrace{(1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta))}_{d} \right]}_{\mathbf{g}} - \underbrace{\left[\mathbb{E}(\log \left(d(x) \right)) + \mathbb{E}(1 - \log \left(d(g(z)) \right)) \right]}_{\mathbf{g}}$$

Discriminator

Minimize cost

Maximize cost

No log in W-Loss function and hence it is not bounded between 0 and 1

W-Loss

W-Loss approximates the Earth Mover's Distance

Minimize the distance

Maximize the distance

Discriminator Output

Discriminator output

BCE Loss between 0 and 1 i.e discrimates class into 0 and 1

W Loss can be any real value. This solves the problem of vanishing gradients

W-Loss vs BCE Loss

BCE Loss

W-Loss

Discriminator outputs between 0 and 1

$$-\left[\mathbb{E}(\log\left(d(x)\right)) + \mathbb{E}(1 - \log\left(d(g(z))\right))\right]$$

Critic outputs any number

$$\mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

distance b/e real and fake from ground truth distance b/w real and fake distributions

W-Loss helps with mode collapse and vanishing gradient problems

Summary

- W-Loss looks very similar to BCE Loss
- W-Loss prevents mode collapse and vanishing gradient problems

deeplearning.ai

Condition on Wasserstein Critic

Outline

- Continuity condition on the critic's neural network
- Why this condition matters

Condition on W-Loss

Needs to be 1-Lipschitz Continuous

Condition on W-Loss

The function growth should be less than linear growth. This is crucial to avoid excess growth of W-Loss. This also ensures the loss to be in a valid range.

Condition on W-Loss

Critic needs to be 1-L Continuous

The norm of the gradient should be at most 1 for every point

Summary

- Critic's neural network needs to be 1-L Continuous when using W-Loss
- This condition ensures that W-Loss is validly approximating Earth

Mover's Distance

Next up, we will look some methods to ensure that this condition is satisfied

deeplearning.ai

1-Lipschitz Continuity Enforcement

Outline

- Weight clipping and gradient penalty
- Advantages of gradient penalty

1-L Enforcement

Critic needs to be 1-L Continuous

Norm of the gradient at most 1

$$||\nabla f(x)||_2 \le 1$$

Slope of the function at most 1

1-L Enforcement: Weight Clipping

Weight clipping forces the weights of the critic to a fixed interval

Limits the learning ability of the critic

1-L Enforcement: Gradient Penalty

$$\min_{g} \max_{c} \ \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \operatorname{reg}$$

Regularization of the critic's gradient

1-L Enforcement: Gradient Penalty

1-L Enforcement: Gradient Penalty

$$(||\nabla c(\hat{x})||_2 - 1)^2$$

$$\epsilon x + (1 - \epsilon)g(z)$$

Real

Regularization term

Interpolation

Generated

Putting It All Together

$$\min_{\boldsymbol{g}} \max_{\boldsymbol{c}} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2$$

Makes the GAN less prone to mode collapse and vanishing gradient

Tries to make the critic be 1-L Continuous, for the loss function to be continuous and differentiable

Summary

- Weight clipping and gradient penalty are ways to enforce 1-L continuity
- Gradient penalty tends to work better

