Question 1:

A.

1.
$$10011011_2$$

 $= 1 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 1 \times 2^3 + 1 \times 2^4 + 0 \times 2^5 + 0 \times 2^6 + 1 \times 2^7$
 $= 1 + 2 + 0 + 8 + 16 + 0 + 0 + 128$
 $= 155_{10}$
2. 456_7
 $= 6 \times 7^0 + 5 \times 7^1 + 4 \times 7^2$
 $= 6 + 35 + 196$
 $= 237_{10}$

3.
$$38A_{16}$$

= $10 \times 16^{0} + 8 \times 16^{1} + 3 \times 16^{2}$
= $10 + 128 + 768$
= 906_{10}

4.
$$2214_5$$

= $4 \times 5^0 + 1 \times 5^1 + 2 \times 5^2 + 2 \times 5^3$
= $4 + 5 + 50 + 250$
= 309_{10}

B.

1.
$$69 \div 2 = 34$$
 remainder 1
 $34 \div 2 = 17$ remainder 0
 $17 \div 2 = 8$ remainder 1
 $8 \div 2 = 4$ remainder 0
 $4 \div 2 = 2$ remainder 0
 $2 \div 2 = 1$ remainder 0
 $1 \div 2 = 0$ remainder 1
 $69_{10} = \frac{1000101_2}{1}$

2.
$$485 \div 2 = 242$$
 remainder 1
 $242 \div 2 = 121$ remainder 0
 $121 \div 2 = 60$ remainder 1
 $60 \div 2 = 30$ remainder 0
 $30 \div 2 = 15$ remainder 0
 $15 \div 2 = 7$ remainder 1
 $7 \div 2 = 3$ remainder 1
 $3 \div 2 = 1$ remainder 1
 $1 \div 2 = 0$ remainder 1
 $1 \div 2 = 0$ remainder 1
 $1 \div 2 = 0$ remainder 1

3.
$$6_{16} = 0110_2$$

 $D_{16} = 1101_2$
 $1_{16} = 0001_2$
 $A_{16} = 1010_2$
 $6D1A_{16} = 0110110100011010_2$

C.

1.
$$1101011_2 = 01101011_2$$

 $0110_2 = 6_{16}$
 $1011_2 = B_{16}$
 $1101011_2 = 6B_{16}$

Question 2:

$$10110011_2 + 1101_2 = 11000000_2$$

$$7A66_{16} + 45C5_{16} =$$
C02B₁₆

$$3022_5 - 2433_5 = 34_5$$

Question 3:

A.

```
    1. 124 ÷ 2 = 62 remainder 0
    62 ÷ 2 = 31 remainder 0
    31 ÷ 2 = 15 remainder 1
    15 ÷ 2 = 7 remainder 1
    7 ÷ 2 = 3 remainder 1
    3 ÷ 2 = 1 remainder 1
    1 ÷ 2 = 0 remainder 1
    124<sub>10</sub> = 1111100<sub>2</sub>
    124<sub>10</sub> = 01111100<sub>8 bit 2's comp</sub>
```

2. Step 1: convert 124₁₀ to binary:

124 ÷ 2 = 62 remainder 0 62 ÷ 2 = 31 remainder 0 31 ÷ 2 = 15 remainder 1 15 ÷ 2 = 7 remainder 1 7 ÷ 2 = 3 remainder 1 3 ÷ 2 = 1 remainder 1 1 ÷ 2 = 0 remainder 1 124₁₀ = 1111100₂ 124₁₀ = 01111100_{8 bit 2's comp}

Step 2: flip all the bits: 10000011

Step 3: add 1: 10000011 + 1 = 10000100Final answer: $-124_{10} = \frac{10000100_{8 \text{ bit 2's comp}}}{10000100}$

3. $109 \div 2 = 54$ remainder 1

 $54 \div 2 = 27$ remainder 0

27 ÷ 2 = 13 remainder 1

 $13 \div 2 = 6$ remainder 1 $6 \div 2 = 3$ remainder 0

 $3 \div 2 = 1$ remainder 1

1 ÷ 2 = 0 remainder 1

 $109_{10} = 1101101_2$

 $109_{10} =$ **01101101** $_{8 \text{ bit 2's comp}}$

4. Step 1: convert 79₁₀ to binary:

 $79 \div 2 = 39 \text{ remainder } 1$

 $39 \div 2 = 19 \text{ remainder } 1$

 $19 \div 2 = 9$ remainder 1 $9 \div 2 = 4$ remainder 1

 $4 \div 2 = 2$ remainder 0

 $2 \div 2 = 1$ remainder 0

```
1 ÷ 2 = 0 remainder 1

79_{10} = 1001111_2

79_{10} = 01001111_{8 \text{ bit 2's comp}}
```

Step 2: flip all the bits: 10110000

Step 3: add 1: 10110000 + 1 = 10110001Final answer: $-79_{10} = \frac{10110001_{8 \text{ bit 2's comp}}}{10110001_{8 \text{ bit 2's comp}}}$

B.

1.
$$000111108 \text{ bit } 2\text{'s comp}$$

= $0 \times 2^0 + 1 \times 2^1 + 1 \times 2^2 + 1 \times 2^3 + 1 \times 2^4$
= $0 + 2 + 4 + 8 + 16$

= <mark>30₁₀</mark>

Step 1: add 1: 00011010

Step 3: convert: $00011010_2 = 0 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 1 \times 2^3 + 1 \times 2^4 = 26_{10}$

Final answer: $111001108 \text{ bit 2's comp} = -26_{10}$

Quick way is:

$$= 0 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} + 0 \times 2^{3} + 0 \times 2^{4} + 1 \times 2^{5} + 1 \times 2^{6} + (-1) \times 2^{7}$$

$$= 0 + 2 + 4 + 0 + 0 + 32 + 64 - 128$$

= <mark>-26₁₀</mark>

3. 001011018 bit 2's comp

$$= 1 \times 2^{0} + 0 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3} + 0 \times 2^{4} + 1 \times 2^{5}$$

= 45₁₀

4. Step 1: flip all the bits: 01100001

Step 1: add 1: 01100010

Step 3: convert: $01100010_2 = 0 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + 0 \times 2^3 + 0 \times 2^4 + 1 \times 2^5 + 1 \times 2^6 = 98_{10}$

Final answer: $100111108 \text{ bit } 2's \text{ comp} = -98_{10}$

Quick way is:

$$= 0 \times 2^{0} + 1 \times 2^{1} + 1 \times 2^{2} + 1 \times 2^{3} + 1 \times 2^{4} + 0 \times 2^{5} + 0 \times 2^{6} + (-1) \times 2^{7}$$

= <mark>-98₁₀</mark>

Question 4:

1. (b)

р	q	рVq	¬(p ∨ q)
Т	Т	Т	F
Т	F	Т	F
F	Т	Т	F
F	F	F	Т

(c)

р	q	r	¬q	p ∧ ¬q	r ∨ (p ∧ ¬q)
Т	Т	Т	F	F	Т
Т	Т	F	F	F	F
Т	F	Т	Т	Т	Т
Т	F	F	Т	Т	Т
F	Т	Т	F	F	Т
F	Т	F	F	F	F
F	F	Т	Т	F	Т
F	F	F	Т	F	F

2. (b)

р	q	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \to (q \to p)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

р	q	¬q	$p \leftrightarrow q$	p ↔ ¬q	$(p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$
Т	Т	F	Т	F	Т
Т	F	Т	F	Т	Т
F	Т	F	F	Т	Т
F	F	Т	Т	F	Т

Question 5:

- 1. (b) $(\mathbf{B} \wedge \mathbf{D}) \vee (\mathbf{B} \wedge \mathbf{M}) \vee (\mathbf{D} \wedge \mathbf{M})$
 - (c) $\mathbf{B} \vee (\mathbf{D} \wedge \mathbf{M})$
- 2. (b) means if s or y, then p: $(s \lor y) \rightarrow p$
 - (c) means y is necessary for p : $\mathbf{p} \rightarrow \mathbf{y}$
 - (d) mean p if and only if s and y: $\mathbf{p} \leftrightarrow (\mathbf{s} \land \mathbf{y})$
 - (e) means p implies either s or y: $\mathbf{p} \rightarrow (\mathbf{s} \lor \mathbf{y})$
- 3. (c) means c only if p: $\mathbf{c} \to \mathbf{p}$
 - (d) means p is necessary for c: $\mathbf{c} \to \mathbf{p}$

Question 6:

- 1. (b) If Joe is eligible for the honors program, then he maintains a B average.
 - (c) If Rajiv can go on the roller coaster, then he is at least four feet tall.
 - (d) If Rajiv is at least four feet tall, then he can go on the roller coaster.
- 2. (c) $(p \lor r) \leftrightarrow (q \land r)$ $(T \lor r) \leftrightarrow (F \land r)$ $T \leftrightarrow F$
 - (d) $(p \land r) \leftrightarrow (q \land r)$ $(T \land r) \leftrightarrow (F \land r)$ $r \leftrightarrow F$ Unknow
 - (e) $p \rightarrow (r \lor q)$ $T \rightarrow (r \lor F)$ $T \rightarrow r$ Unknow
 - (f) $(p \land q) \rightarrow r$ $(T \land F) \rightarrow r$ $F \rightarrow r$ T

Question 7:

Truth table:

	Tuti tubio.											
j	Ι	r	٦j	٦	¬r	l ∨ ¬r	r∧¬l	¬j → (I V ¬r)	$(r \land \neg l) \rightarrow$ j	j → ¬l	¬j → l	$j \rightarrow (r \ \land \ \neg l)$
Т	Т	Т	F	F	F	Т	F	Т	Т	F	Т	F
Т	Т	F	F	F	Т	Т	F	Т	Т	F	T	F
Т	F	Т	F	Т	F	F	Т	Т	Т	Т	T	Т
Т	F	F	F	Т	Т	Т	F	Т	Т	Т	Т	F
F	Т	Т	Т	F	F	Т	F	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	Т	F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	F	F	Т	F	F	Т	F	Т
F	F	F	Т	Т	Т	Т	F	Т	Т	Т	F	Т

(b)
$$\neg j \rightarrow (l \lor \neg r)$$

 $(r \land \neg l) \rightarrow j$
Logically equivalent (Because they have the same truth values for all values.)

- (c) $j \rightarrow \neg l$ $\neg j \rightarrow l$ Not logically equivalent (Because when j = T, l = T, r = T, $j \rightarrow \neg l$ is F, while $\neg j \rightarrow l$ is T.)
- (d) $(r \lor \neg l) \rightarrow j$ $j \rightarrow (r \land \neg l)$ Not logically equivalent (Because when j = T, l = T, r = T, $(r \land \neg l) \rightarrow j$ is T, while $j \rightarrow (r \land \neg l)$ is F.)

Question 8:

1. (c)
$$(p \rightarrow q) \land (p \rightarrow r)$$

 $\equiv (\neg p \lor q) \land (\neg p \lor r)$ [Conditional identities]
 $\equiv \neg p \lor (q \land r)$ [Distributive laws]
 $\equiv p \rightarrow (q \land r)$ [Conditional identities]

(f)
$$\neg (p \lor (\neg p \land q))$$

 $\equiv \neg ((p \lor \neg p) \land (p \lor q))$ [Distributive identities]
 $\equiv \neg (T \land (p \lor q))$ [Complement laws]
 $\equiv \neg ((p \lor q) \land T)$ [Commutative laws]
 $\equiv \neg (p \lor q)$ [Identity laws]
 $\equiv \neg p \land \neg q$ [De Morgan's laws]

(i)
$$(p \land q) \rightarrow r$$

 $\equiv \neg(p \land q) \lor r$ [Conditional identities]
 $\equiv \neg p \lor \neg q \lor r$ [De Morgan's laws]
 $\equiv \neg p \lor (\neg q \lor r)$ [Associative laws]
 $\equiv \neg p \lor (r \lor \neg q)$ [Commutative laws]
 $\equiv (\neg p \lor r) \lor \neg q$ [Associative laws]
 $\equiv \neg(p \lor \neg r) \lor \neg q$ [De Morgan's laws]
 $\equiv (p \lor \neg r) \rightarrow \neg q$ [Conditional identities]

(d)
$$\neg(p \rightarrow q) \rightarrow \neg q$$

 $\equiv \neg(\neg p \lor q) \rightarrow \neg q$ [Conditional identities]
 $\equiv \neg \neg(\neg p \lor q) \lor \neg q$ [Conditional identities]
 $\equiv (\neg p \lor q) \lor \neg q$ [Double negation law]
 $\equiv \neg p \lor (q \lor \neg q)$ [Associative laws]
 $\equiv \neg p \lor T$ [Complement laws]
 $\equiv T$ [Domination laws]

Question 9:

- 1. (c) $\exists x(x = x^2)$
 - (d) $\forall x(x \leq x^2 + 1)$

2. (b) $\forall x (\neg S(x) \land W(x))$

For everyone: ∀x

Was well means not sick: $\neg S(x)$

Was well and went to work: $\neg S(x) \land W(x)$

Everyone was well and went to work yesterday: $\forall x (\neg S(x) \land W(x))$

(c) $\forall x(S(x) \rightarrow \neg W(x))$

For everyone: ∀x

Did not go to work: $\neg W(x)$

If sick then not go to work: $S(x) \rightarrow \neg W(x)$

Everyone who was sick yesterday did not go to work: $\forall x(S(x) \rightarrow \neg W(x))$

(d) $\exists x(S(x) \land W(x))$

Someone: ∃x

Was sick and went to work: $S(x) \wedge W(x)$

Yesterday someone was sick and went to work: $\exists x(S(x) \land W(x))$

Question 10:

- 1. (c) **True.** When x = a, b, d, e, P(x) = T, makes $(x = c) \rightarrow P(x)$ true, because $F \rightarrow T$ is T, there exists one value in the domain set. So the quantified expression $\exists x((x = c) \rightarrow P(x))$ evaluates to true.
 - (d) **True.** When x = e, Q(e) = T, R(e) = T, makes $Q(x) \land R(x)$ true, there exists one value in the domain. So the quantified expression $\exists x(Q(x) \land R(x))$ evaluates true.
 - (e) **True.** Q(a) = T, P(d) = T, $T \land T$ is T, so the quantified expression $Q(a) \land P(d)$ evaluates true.
 - (f) **True.** When x = b, Q(x) = F, when x = a, c, d, e, Q(x) = T. So, for all $x \ne b$, Q(x) = T. $\forall x((x \ne b) \rightarrow Q(x))$ evaluates true T.
 - (g) **False.** When x = c, P(x) = F, R(x) = F, makes $P(x) \lor R(x)$ false. So the quantified expression $\forall x(P(x) \lor R(x))$ evaluates false.
 - (h) **True.** For all x in the domain set, make $R(x) \to P(x)$ true. So the quantified expression $\forall x(R(x) \to P(x))$ evaluates true. See the truth below:

	P(x)	R(x)	$R(x) \rightarrow P(x)$
а	Т	F	Т
b	Т	F	Т
С	F	F	Т
d	Т	F	Т
е	Т	Т	Т

- (i) **True.** When x = a for example, makes $Q(x) \vee R(x)$ true, because $T \vee F$ is true, there exists one value in the domain. So the quantified expression $\exists x(Q(x) \vee R(x))$ evaluates true.
- 2. (b) True. When x = 2, Q(2,1) = T, Q(2,2) = T, Q(2,3) = T, there exists one x for all y that works, so $\exists x \forall y Q(x,y)$ true.
 - (c) **True.** When y = 1, P(1,1) = T, P(2,1) = T, P(3,1) = T, there exists one y for all x that works, so $\exists y \forall x P(x,y)$ true.
 - (d) **False.** All values in S(x,y) are false, so $\exists x \exists y S(x,y)$ false.

- (e) **False.** When x=1, Q(1,y) are all false, there doesn't exist one y for all x making Q(x,y) evaluate true, so $\forall x \exists y Q(x,y)$ false.
- (f) **True.** When y=1, P(1,1) = T, P(2,1) = T, P(3,1) = T, there exists one y for all x that works, so $\forall x \exists y P(x,y)$ true.
- (g) **False.** When x=1, y=2, P(1,2) = F, not for every x and every y works, so $\forall x \forall y P(x,y)$ false.
- (h) **True.** When x=2, y=1, Q(2,1) = T, there exists at least one x one y that works, so $\exists x \exists y Q(x,y)$ true.
- (i) **True.** All values in S(x,y) are false, so $\neg S(x,y)$ is true, therefore $\forall x \forall y \neg S(x,y)$ true.

Question 11:

1. (c) $\exists x \exists y(x + y = xy)$

There are two numbers:

Exist two numbers:

$$\exists x \exists y$$

Whose sum is equal to their product:

$$x + y = xy$$

So, there exist two numbers whose sum is equal to their product:

$$\exists x \exists y(x + y = xy)$$

(d) $\forall x \forall y(((x > 0) \land (y > 0)) \rightarrow (\frac{x}{y} > 0))$

Two numbers:

Two positive numbers, x > 0 and y > 0:

$$(x > 0) \land (y > 0)$$

Every two positive numbers, means for all x,y:

$$\forall x \forall y((x > 0) \land (y > 0))$$

The ratio is positive:

$$\frac{x}{y} > 0$$

So, the ratio of every two positive numbers is also positive:

$$\forall x \forall y(((x > 0) \land (y > 0)) \rightarrow (\frac{x}{y} > 0))$$

(e) $\forall x((0 < x < 1) \rightarrow (\frac{1}{x} > 1))$

Positive number less than one:

Every positive number less than one:

$$\forall x(0 < x < 1)$$

The reciprocal is greater than one:

$$\frac{1}{x} > 1$$

The reciprocal of every positive number less than one is greater than one:

$$\forall x((0 \le x \le 1) \to (\frac{1}{x} \ge 1))$$

(f) $\forall x \exists y(y < x)$

There is no smallest number means: at least one number y smaller than every \boldsymbol{x} .

y smaller than x:

At least one number y smaller than every x:

$$\forall x \exists y(y < x)$$

(g) $\forall x((x \neq 0) \rightarrow \exists y(xy = 1))$

Number other than:

 $x \neq 0$

Every number other than 0:

 $\forall x(x \neq 0)$

Has a multiplicative inverse, means exists one number y that their product is 1:

$$\exists y(xy = 1)$$

Every number other than 0 has a multiplicative inverse:

$$\forall x((x \neq 0) \rightarrow \exists y(xy = 1))$$

2. (c) $\exists x(N(x) \land D(x))$

At least one:

Зχ

The one is a new employee and missed the deadline:

 $N(x) \wedge D(x)$

At least one new employee missed the deadline:

$$\exists x(N(x) \land D(x))$$

(d) $\forall x(D(x) \rightarrow P(Sam,x))$

Sam knows the phone number of everyone x:

 $\forall xP(Sam,x)$

Who missed the deadline:

$$\forall x(D(x) \rightarrow P(Sam,x))$$

(e) $\exists x \forall y (N(x) \land (P(x,y))$

There is someone:

Зχ

Who is new employee:

 $\exists xN(x)$

One knows everyone's phone number:

$$\exists x \forall y(P(x,y)))$$

There is a new employee who knows everyone's phone number:

$$\exists x \forall y (N(x) \land P(x,y))$$

(f) $\exists x \forall y (N(x) \land D(x) \land ((x \neq y) \land (N(y) \rightarrow \neg D(y))))$

One new employee missed the deadline:

$$\exists x(N(x) \land D(x))$$

Exactly one means other new employees don't miss, for all others:

Уy

New employees except x don't miss the deadline:

$$(x \neq y) \land (N(y) \rightarrow \neg D(y))$$

```
Exactly one new employee missed the deadline:
              \exists x \forall y (N(x) \land D(x) \land ((x \neq y) \land (N(y) \rightarrow \neg D(y))))
3. (c) \forall x \exists y((y \neq Math 101) \land T(x,y))
        Every student:
              ΥX
        At least one class:
              Jγ
        Student x has taken class y, and y is not Math 101:
             (y \neq Math 101) \land T(x,y)
        Every student has taken at least one class other than Math 101:
              \forall x \exists y((y \neq Math 101) \land T(x,y))
    (d) \exists x \forall y((y \neq Math 101) \rightarrow T(x, y))
        There is a student:
              \exists x
        Every math class:
              \forall V
        Other than Math 101:
             v ≠ Math 101
        There is a student x who has taken every math class y other than Math 101:
              \exists x \forall y((y \neq Math 101) \rightarrow T(x, y))
    (e) \forall x \exists y \exists z ((x \neq Sam) \rightarrow ((y \neq z) \land T(x,y) \land T(x,z)))
        Everyone student:
              ΥX
        Other than Sam:
             x ≠ Sam
        At least two classes y, z:
              ∃у∃z
        Two different math classes:
             V \neq Z
        Students x has taken at least two different math classes y, z:
              (y \neq z) \wedge T(x,y) \wedge T(x,z)
        Everyone other than Sam has taken at least two different math classes:
              \forall x \exists y \exists z ((x \neq Sam) \rightarrow ((y \neq z) \land T(x,y) \land T(x,z)))
    (f) \exists x \exists y \forall z ((x \neq y) \land T(Sam,x) \land T(Sam,y) \land (T(Sam,z) \rightarrow ((z = x) \lor (z = y))))
       Two math classes x, y:
              ∃х∃у
       Two different math classes:
             x \neq v
```

Sam has taken two math classes:

 $(x \neq y) \land T(Sam,x) \land T(Sam,y)$

Exactly two math classes means if Sam take any class z, then z = x or z = y:

$$T(Sam,z) \rightarrow ((z = x) \lor (z = y)$$

Sam has taken exactly two math classes:

$$\exists\,x\,\exists\,y\,\forall\,z((x\neq y)\,\wedge\,T(Sam,x)\,\wedge\,T(Sam,y)\,\wedge\,(T(Sam,z)\to((z=x)\,\vee\,(z=y))))$$

Question 12:

1. (b)

For every patient:

 $\forall x$

Who was given the medication or the placebo or both:

$$D(x) \vee P(x) \vee (D(x) \wedge P(x))$$

Or both meaning is include OR logic, so the logical expression:

$$\forall x(D(x) \lor P(x))$$

Negation:

$$\neg \forall x(D(x) \lor P(x))$$

Applying De Morgan's law:

$$\neg \forall x(D(x) \lor P(x)) \equiv \exists x \neg (D(x) \lor P(x)) \equiv \exists x(\neg (D(x) \land \neg P(x)))$$

Final answer:

- $\bullet \quad \forall x(D(x) \lor P(x))$
- Negation: $\neg \forall x(D(x) \lor P(x))$
- Applying De Morgan's law: $\exists x(\neg(D(x) \land \neg P(x)))$
- English: There exists one patient who was not given the medication and was not given the placebo.

(c)

For one patient:

ЯE

Who took the medication and had migraines:

$$D(x) \wedge M(x)$$

The logical expression:

$$\exists x(D(x) \land M(x))$$

Negation:

$$\neg \exists x(D(x) \land M(x))$$

Applying De Morgan's law:

$$\neg \exists x (D(x) \land M(x)) \equiv \forall x \neg (D(x) \land M(x)) \equiv \forall x (\neg D(x) \lor \neg M(x))$$

Final answer:

- \bullet $\exists x(D(x) \land M(x))$
- Negation: $\neg \exists x(D(x) \land M(x))$
- Applying De Morgan's law: ∀x(¬D(x) ∨ ¬M(x))
- English: Every patient either did not take the medication or did not have the migraines (or both).

(d)

For every patient:

$$\forall$$

Who took the placebo had migraines:

$$P(x) \rightarrow M(x)$$

The logical expression:

$$\forall x(P(x) \rightarrow M(x))$$

Apply the conditional identity:

$$\forall x(P(x) \rightarrow M(x)) \equiv \forall x(\neg P(x) \lor M(x))$$

Negation:

$$\neg \forall x(\neg P(x) \lor M(x))$$

Applying De Morgan's law:

- $\neg \forall x (\neg P(x) \lor M(x))$
- $\equiv \exists x \neg (\neg P(x) \lor M(x))$
- $\equiv \exists x(\neg \neg P(x) \land \neg M(x))$
- $\equiv \exists x(P(x) \land \neg M(x))$

Final answer:

- $\bullet \quad \forall \ \mathsf{x}(\mathsf{P}(\mathsf{x}) \to \mathsf{M}(\mathsf{x}))$
- Negation: $\neg \forall x (\neg P(x) \lor M(x))$
- Applying De Morgan's law: $\exists x(P(x) \land \neg M(x))$
- English: There exists a patient who took the placebo and did not have the migraines.

(e)

For one patient:

ЯE

Who had migraines and was given the placebo:

$$M(x) \wedge P(x)$$

The logical expression:

$$\exists x(M(x) \land P(x))$$

Negation:

$$\neg \exists x(M(x) \land P(x))$$

Applying De Morgan's law:

$$\neg \exists x(M(x) \land P(x)) \equiv \forall x \neg (M(x) \land P(x)) \equiv \forall x(\neg M(x) \lor \neg P(x))$$

Final answer:

- \bullet $\exists x(M(x) \land P(x))$
- Negation: $\neg \exists x(M(x) \land P(x))$
- Applying De Morgan's law: $\forall x(\neg M(x) \lor \neg P(x))$
- English: Every patient either did not have migraines or was not given the placebo (or both).
- 2. (c)

Negate the expression:

$$\neg \exists x \forall y (P(x,y) \rightarrow Q(x,y))$$

$$\exists \forall x \exists y \neg (P(x,y) \rightarrow Q(x,y))$$
 [De Morgan's law]

$$\equiv \forall x \exists y \neg (\neg P(x,y) \lor Q(x,y))$$
 [Conditional identities]

$$\equiv \forall x \exists y (\neg \neg P(x,y) \land \neg Q(x,y))$$
 [De Morgan's law]

$$\equiv \forall x \exists y (P(x,y) \land \neg Q(x,y))$$
 [Double negation law]

Final answer: $\forall x \exists y (P(x,y) \land \neg Q(x,y))$

(d)

Negate the expression:

```
\neg\exists\,x\,\forall\,y(P(x,y)\leftrightarrow P(y,x)) \equiv\,\forall\,x\,\exists\,y\,\neg(P(x,y)\leftrightarrow P(y,x))\,\,[\text{De Morgan's law}] \equiv\,\forall\,x\,\exists\,y\,\neg((P(x,y)\to P(y,x))\,\,\wedge\,\,(P(y,x)\to P(x,y)))\,\,[\text{Conditional identities}] \equiv\,\forall\,x\,\exists\,y\,\neg((\neg P(x,y)\,\vee\,P(y,x))\,\,\wedge\,\,(\neg P(y,x)\,\vee\,P(x,y)))\,\,[\text{Conditional identities}] \equiv\,\forall\,x\,\exists\,y\,\neg((\neg P(x,y)\,\vee\,P(y,x))\,\,\vee\,\,\neg(\neg P(y,x)\,\vee\,P(x,y)))\,\,[\text{De Morgan's law}] \equiv\,\forall\,x\,\exists\,y\,((\neg\neg P(x,y)\,\,\wedge\,\,\neg P(y,x))\,\,\vee\,\,(\neg\neg P(y,x)\,\,\wedge\,\,\neg P(x,y)))\,\,[\text{De Morgan's law}] \equiv\,\forall\,x\,\exists\,y\,((P(x,y)\,\,\wedge\,\,\neg P(y,x))\,\,\vee\,\,(P(y,x)\,\,\wedge\,\,\neg P(x,y)))\,\,[\text{Double negation law}]
```

Final answer: $\forall x \exists y((P(x,y) \land \neg P(y,x)) \lor (P(y,x) \land \neg P(x,y)))$

(e)

Negate the expression:

```
\neg (\exists x \exists y P(x,y) \land \forall x \forall y Q(x,y))

\equiv \neg \exists x \exists y P(x,y) \lor \neg \forall x \forall y Q(x,y) [De Morgan's law]

\equiv \forall x \forall y \neg P(x,y) \lor \exists x \exists y \neg Q(x,y) [De Morgan's law]
```

Final answer: $\forall x \forall y \neg P(x,y) \lor \exists x \exists y \neg Q(x,y)$