Exercise _ Text Classification_ Naïve Bayes_ big data

1.- Queremos entender si un comentario pertenece a la clase China o no (Análisis de sentimiento consite en la asiganción de un nuevo comentario a las clases positivas o negativas).

Anteriormente hemos entrenado nuestro sistema, y sabemos qué expresiones se consideran referidas a China o no. Nuestro léxico se muestra en la siguiente tabla

► Table 13.1 Data for parameter estimation examples.

	docID	words in document	in <i>c</i> :	= China?	-9 of
training set	1	Chinese Beijing Chinese	yes	1	P(yes) = noyes
	2	Chinese Chinese Shanghai	yes	Z	1
	3	Chinese Macao	yes	3	له 3 ₁₄
	4	Tokyo Japan Chinese	no	4	P(NO) = no no
test set	5	Chinese Chinese Tokyo Japan	?		notokal
		-			4 114

Queremos saber si el conjunto test es positivo o negativo. Para eso, vamos a utilizar el claificador denominado Naïve Bayes binomial

$$\hat{c} = \max_{c \in C} \Pr(c) \prod_{i=1}^{n} \Pr(f_i \mid c)$$

2.- Calcularlas probabilidades a priori

$$\begin{aligned} \Pr(c_i) &= \frac{\text{number of docs of class } c}{\text{total number of docs in training dataset}} \\ &= \frac{N_c}{N_{docs}} \end{aligned}$$

3.- Calculamos las probabilidades condicionales

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{\underbrace{\sum_{t' \in V} T_{ct'}) + B'}} \underbrace{\begin{array}{c} \text{N° vecas termso en} \\ \text{el supo de entenamients} \end{array}}_{\text{N° total de termsos}} \underbrace{\begin{array}{c} \text{N° total de termsos} \\ \text{en to do el grupo de entenamients} \end{array}}_{\text{en to do el grupo de entenamients}}$$

- T_{ct}= número de ocurrencias del termino t en el grupo de entrenamiento de los documentos clase c c
- T 'ct= número total de términos en cada clase

B= número total de términos diferentes en todo el grupo de entrenamiento (vocabulario)

- P(Chinese/yes) = (5+1)/(8+6) = 3/7
- P(Tokyo/yes)=P(Japan/yes)= (0 +1)/(8 + 6)=1/14
- P(Chinese/no)=(1+1)/(3+6)=2/9

4.- Multiplicamos la probabilidad a priori de los documentos de cada clasepor las probabilidades condicionales de las palabras incluidas en la consulta de test

P(yes/ test document)= 3/4 * (3/7)^3 *1/14 *1/14= 0.0003

P(no/test document)=
$$\frac{1/4}{9} \cdot (\frac{2}{9})^3 \cdot \frac{2}{9} \cdot \frac{2}{9} = 0^{1}0001$$

Entonces, ¿el clasificador asigna el documento 5 a ? Chunex yes