

Estadística III para Ingenieros de Sistemas

Jose Daniel Ramirez Soto 2023 jdr2162@columbia.edu

Agenda

- anuncios varios
 - Tarea 2 entrega lunes 8 de Mayo 2023(Preguntas)
- modelos de analitica (machine learning-ML) Supervisado
 - Árboles
 - Árboles simples
 - Matemática de los árboles
 - **■** RandomForest
 - GBM

Supervisado, Árboles

Árboles, son modelos que separan los datos basados en la capacidad de una variable de dividir los datos. Funcionan muy bien con datos categóricos. Si la variable objetivo es:

- continúa: la predicción es el promedio de los vecinos.
- categórica: la predicción es la variable objetivo más común

Los parámetros a definir son la profundidad del árbol, numero mínimo de samples entre otros.

Ejemplo: utilizando datos históricos del año anterior. Predecir si un alumno pasará el curso este año.

^{*} A Course of Machine Learning http://ciml.info/

Entropía, Como funcionan los árboles

Information Entropy

For a Bernoulli trial (X = {0,1}) the graph of entropy vs.
Pr(X = 1). The highest H(X) = 1 = log(2)

$$H_{(S)} = \sum_{i=1}^{C} -p_i \log_2 p_i$$

$$H_{(T,X)} = \sum\nolimits_{c \in X} p_{(c)} H_{(c)}$$

$$Gain_{(T,X)} = H_{(T)} - H_{(T,X)}$$

^{*} A Course of Machine Learning http://ciml.info/

Calcular el árbol a mano para el siguiente dataset

Туре	DriveTrain	Cylinders	EnvFriendly
Sedan	All	6.0	0
SUV	All	6.0	0
Wagon	Front	4.0	1
Sedan	Rear	8.0	0
Sedan	Front	4.0	1
SUV	Front	4.0	1
SUV	All	6.0	0
Sedan	All	6.0	0
Sedan	All	6.0	0
Sedan	Front	4.0	1
Sports	Rear	6.0	0
Wagon	Rear	6.0	0
Wagon	All	6.0	0
Sedan	Front	6.0	1
Sedan	Rear	8.0	0
SUV	All	6.0	0
Wagon	All	4.0	1
Sports	Rear	4.0	1
SUV	All	8.0	0
Sedan	Front	6.0	0

$$H_{(S)} = \sum_{i=1}^{C} -p_i \log_2 p_i$$

$$H_{(T,X)} = \sum_{c \in X} p_{(c)} H_{(c)}$$

$$Gain_{(T,X)} = H_{(T)} - H_{(T,X)}$$

 $H(EnvFriendly) = -7/20 log_2(7/20) -13/20 log_2(13/20) = 0.9340680554$

Gain(EnvFrindly, DriveTrain) = 0.934068055 - 0.6456889529 = 0.2883791025

Gain DriveTrain es mayor que la ganancia de la variable Type

^{*} A Course of Machine Learning http://ciml.info/

Algoritmo árboles simples

Algorithm 8.1 Building a Regression Tree

- 1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .
 - Average the results for each value of α , and pick α to minimize the average error.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of α .

^{*} A Course of Machine Learning http://ciml.info/

^{*} Gareth James, An Introduction to Statistical Learning

Bootstrap y Árboles

"The bootstrap is a widely applicable and extremely powerful statistical tool bootstrap that can be used to quantify the uncertainty associated with a given estimator or statistical learning method" Taken from An Introduction to Statistical Learning

Consiste en crear muchos experimentos tomando pequeñas muestras y luego promediar los resultados para reducir la varianza.

Bagging y Árboles

"Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing the bagging variance of a statistical learning method; we introduce it here because it is particularly useful and frequently used in the context of decision trees" Taken from An Introduction to Statistical Learning

Uso: Entrenar muchos árboles y crear un promedio ponderado de cada predicción

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).$$

Random Forest (Árboles)

"Random forests provide an improvement over bagged trees by way of a random forest small tweak that decorrelates the trees. As in bagging, we build a number of decision trees on bootstrapped training samples. But when building these decision trees, each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates from the full set of p predictors" Taken from An Introduction to Statistical Learning

Entrenar muchos árboles en paralelo utilizando diferentes muestras y diferentes set de variables. Por último, promediar los resultados.

Boosting GBM(Árboles)

"Boosting works in a similar way, except that the trees are grown sequentially: each tree is grown using information from previously grown trees. Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version of the original data set" Taken from An Introduction to Statistical Learning

^{*} A Course of Machine Learning http://ciml.info/

Boosting GBM(Árboles)

Universidad Católica de Oriento

Algorithm 8.2 Boosting for Regression Trees

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree \hat{f}^b with d splits (d+1) terminal nodes to the training data (X, r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$
 (8.10)

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i). \tag{8.11}$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$
 (8.12)

^{*} A Course of Machine Learning http://ciml.info/