ABSTRACT

A charging method of a nonaqueous electrolyte secondary battery which comprises a positive electrode plate including a lithium-manganese composite oxide with spinel structure; a negative electrode plate including graphite capable of storing and discharging lithium; and nonaqueous electrolyte. When the ratio of a theoretical capacity of the negative electrode plate to a theoretical capacity of the positive electrode plate is set as $R_{N/S}$ and the graphite which has stored lithium by charging is represented by Li_xC_6 , the nonaqueous electrolyte secondary battery is characteristically charged so that the maximum value Xmax X can have satisfies the following Conditions (1) and (2):

Condition (1) $Xmax \le 0.75$

Condition (2) $Xmax \le -0.70R_{N/S}+1.31$

The life performance is remarkably improved by charging the nonaqueous electrolyte secondary battery while satisfying the Conditions.

10

5