Comparando y asociando: relaciones y funciones Matemáticas Discretas (TC1003)

M.C. Xavier Sánchez Díaz sax@tec.mx

Outline

- Relaciones
 - Cuantificadores y operaciones
 - Propiedades de las relaciones
 - Partición, Órdenes y Cerraduras
- Punciones
 - Propiedades de las funciones
 - Equipotencia y el Principio del Palomar

Tuplas Relaciones

Una tupla es una estructura matemática de tamaño definido y donde el orden importa.

Ejemplo de tupla

¿Cuál es el conjunto de celdas de un tablero de Battleship si las casillas van de la A-J y del 1-10?

Tuplas Relaciones

Una tupla es una estructura matemática de tamaño definido y donde el orden importa.

Ejemplo de tupla

¿Cuál es el conjunto de celdas de un tablero de Battleship si las casillas van de la A-J y del 1-10?

Tuplas Relaciones

Una tupla es una estructura matemática de tamaño definido y donde el orden importa.

Ejemplo de tupla

¿Cuál es el conjunto de celdas de un tablero de Battleship si las casillas van de la A-J y del 1-10?

Producto Cartesiano

El producto Cartesiano es el **conjunto** de todos los posibles valores que se pueden formar a partir de la combinación de dos conjuntos, de la siguiente manera:

Producto Cartesiano

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

El conjunto de las casillas de un tablero de *Battleship* es claramente el producto Cartesiano del conjunto de sus renglones y sus columnas.

Producto Cartesiano

Relaciones

El producto Cartesiano es el **conjunto** de todos los posibles valores que se pueden formar a partir de la combinación de dos conjuntos, de la siguiente manera:

Producto Cartesiano

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

El conjunto de las casillas de un tablero de *Battleship* es claramente el producto Cartesiano del conjunto de sus renglones y sus columnas.

Producto Cartesiano Relaciones

El producto Cartesiano es el conjunto de todos los posibles valores que se pueden formar a partir de la combinación de dos conjuntos, de la siguiente manera:

Producto Cartesiano

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

El conjunto de las casillas de un tablero de *Battleship* es claramente el producto Cartesiano del conjunto de sus renglones y sus columnas.

- ullet Piensa en el conjunto de alumnos presentes en el salón como A
- ullet Piensa ahora en el conjunto de sillas disponibles en el salón como B
- ¿Cuál es el producto Cartesiano $A \times B$?
- ¿Qué relación R podemos formar sobre A y B?

- ullet Piensa en el conjunto de alumnos presentes en el salón como A
- ullet Piensa ahora en el conjunto de sillas disponibles en el salón como B
- ¿Cuál es el producto Cartesiano $A \times B$?
- ¿Qué relación R podemos formar sobre A y B?

- ullet Piensa en el conjunto de alumnos presentes en el salón como A
- ullet Piensa ahora en el conjunto de sillas disponibles en el salón como B
- ¿Cuál es el producto Cartesiano $A \times B$?
- ¿Qué relación R podemos formar sobre A y B?

- ullet Piensa en el conjunto de alumnos presentes en el salón como A
- ullet Piensa ahora en el conjunto de sillas disponibles en el salón como B
- ¿Cuál es el producto Cartesiano $A \times B$?
- ¿Qué relación R podemos formar sobre A y B?

- ullet Piensa en el conjunto de alumnos presentes en el salón como A
- ullet Piensa ahora en el conjunto de sillas disponibles en el salón como B
- ¿Cuál es el producto Cartesiano $A \times B$?
- ¿Qué relación R podemos formar sobre A y B?

- ullet Piensa en el conjunto de alumnos presentes en el salón como A
- ullet Piensa ahora en el conjunto de sillas disponibles en el salón como B
- ¿Cuál es el producto Cartesiano $A \times B$?
- ¿Qué relación R podemos formar sobre A y B?

Cuantificadores y operaciones

Claramente, las relaciones aplican para algunos Skywalker y no para todos.

Sin embargo, también tenemos relaciones que podrían aplicar a todos

Cuantificadores

- ∀ que significa para todos
- ∃ que significa *existe*
- ∃! que significa *existe un único*

Puedes agregarle negación frente a cada uno para cambiar el significado a lo contrario. ¿ Qué significa la negación de cada uno de ellos?

Cuantificadores y operaciones

Claramente, las relaciones aplican *para algunos Skywalker* y no para todos. Sin embargo, también tenemos relaciones que podrían aplicar *a todos*.

Cuantificadores

- ∀ que significa para todos
- ∃ que significa existe
- ∃! que significa existe un único

Puedes agregarle negación frente a cada uno para cambiar el significado a lo contrario. ¿Qué significa la negación de cada uno de ellos?

Cuantificadores y operaciones

Claramente, las relaciones aplican *para algunos Skywalker* y no para todos. Sin embargo, también tenemos relaciones que podrían aplicar *a todos*.

Cuantificadores

- ∀ que significa para todos
- ∃ que significa existe
- ∃! que significa existe un único

Puedes agregarle negación frente a cada uno para cambiar el significado a lo contrario. ¿Qué significa la negación de cada uno de ellos?

Cuantificadores y operaciones

Claramente, las relaciones aplican *para algunos Skywalker* y no para todos. Sin embargo, también tenemos relaciones que podrían aplicar *a todos*.

Cuantificadores

- ∀ que significa para todos
- ∃ que significa existe
- ∃! que significa *existe un único*

Puedes agregarle negación frente a cada uno para cambiar el significado a lo contrario. ¿ Qué significa la negación de cada uno de ellos?

Relaciones

La inversa R^{-1} de una relación R es ... R al revés.

Relación inversa

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

- Piensa en A como el conjunto de Los Skywalker
- ¿Puedes hacer una relación de parentezco R sobre A^2 ?
- ¿Cuál sería la relación inversa?

Relaciones

La inversa R^{-1} de una relación R es ... R al revés.

Relación inversa

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

- Piensa en A como el conjunto de Los Skywalker
- ¿Puedes hacer una relación de parentezco R sobre A^2 ?
- ¿Cuál sería la relación inversa?

Relaciones

La inversa R^{-1} de una relación R es . . . R al revés.

Relación inversa

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

- Piensa en A como el conjunto de Los Skywalker
- ¿Puedes hacer una relación de parentezco R sobre A^2 ?
- ¿Cuál sería la relación inversa?

Relaciones

La inversa R^-1 de una relación R es ...R al revés.

Relación inversa

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

- Piensa en A como el conjunto de Los Skywalker
- ¿Puedes hacer una relación de parentezco R sobre A^2 ?
- ¿Cuál sería la relación inversa?

Imagen de una relación Operaciones

La imagen de una relación R (usualmente denotada por I) es el conjunto de todos aquellos elementos b, es decir. . .

Imagen

$$I(R) = \{b : (a, b) \in R\}$$

¿Cuál es la imagen en la relación Padre en Los Skywalker?

Imagen de una relación Operaciones

La imagen de una relación R (usualmente denotada por I) es el conjunto de todos aquellos elementos b_i es decir. . .

Imagen

$$I(R) = \{b : (a, b) \in R\}$$

 ξ Cuál es la imagen en la relación Padre en $\it Los Skywalker$

Imagen de una relación Operaciones

La imagen de una relación R (usualmente denotada por I) es el conjunto de todos aquellos elementos b, es decir. . .

Imagen

$$I(R) = \{b : (a, b) \in R\}$$

¿Cuál es la imagen en la relación Padre en Los Skywalker?

Reflexividad

Propiedades de las relaciones

Reflexividad

R es reflexiva si y sólo si $\forall a \in A \, (\exists (a,a) \in R)$

- Piensa en un ejemplo de una relación reflexiva (Hint: piensa en números)
- Lo opuesto a la reflexividad es la irreflexividad: si para todos NO se cumple la condición
- Una relación puede no ser ni reflexiva ni irreflexiva

Reflexividad

Propiedades de las relaciones

Reflexividad

R es reflexiva si y sólo si $\forall a \in A (\exists (a, a) \in R)$

- Piensa en un ejemplo de una relación reflexiva (Hint: piensa en números)
- Lo opuesto a la reflexividad es la irreflexividad: si para todos NO se cumple la condición
- Una relación puede no ser ni reflexiva ni irreflexiva

Transitividad

Propiedades de las relaciones

Transitividad

R es transitiva si y sólo si

$$\forall (a,b) \in R ((a,b) \in R \land (b,c) \in R \implies (a,c) \in R)$$

- Piensa en un ejemplo de relación transitiva
- Lo opuesto a la transitividad es la intransitividad: si para todos NO se cumple la condición
- Una relación puede no ser ni transitiva ni intransitiva

Transitividad

Propiedades de las relaciones

Transitividad

R es transitiva si y sólo si

$$\forall (a,b) \in R ((a,b) \in R \land (b,c) \in R \implies (a,c) \in R)$$

- Piensa en un ejemplo de relación transitiva
- Lo opuesto a la transitividad es la intransitividad: si para todos NO se cumple la condición
- Una relación puede no ser ni transitiva ni intransitiva

Simetría

Propiedades de las relaciones

Simetría

R es simétrica si y solo si

$$\forall (a,b) \in R ((a,b) \in R \implies (b,a) \in R)$$

- Piensa en un ejemplo de relación simétrica
- Lo opuesto a la simetría es la asimetría: si para todos NO se cumple la condición
- Una relación puede no ser ni simétrica ni asimétrica

Simetría

Propiedades de las relaciones

Simetría

R es simétrica si y solo si

$$\forall (a,b) \in R ((a,b) \in R \implies (b,a) \in R)$$

- Piensa en un ejemplo de relación simétrica
- Lo opuesto a la simetría es la asimetría: si para todos NO se cumple la condición
- Una relación puede no ser ni simétrica ni asimétrica

Relaciones de equivalencia

Propiedades de las relaciones

Equivalencia

Una relación R es equivalente si es reflexiva, transitiva y simétrica.

¿Habías pensado que el = es un operador que relaciona dos números de manera equivalente?

Relaciones de equivalencia

Propiedades de las relaciones

Equivalencia

Una relación R es equivalente si es reflexiva, transitiva y simétrica.

¿Habías pensado que el = es un operador que relaciona dos números de manera equivalente?

Partición Partición, Órdenes y Cerraduras

Una partición de A es cualquier conjunto $B_{i\in I}$ de subconjuntos de A que:

- No están vacíos
- Son disjuntos entre sí
- ullet La unión generalizada de ellos cubre totalmente a A

Una *repartición* de dulces a un conjunto de bolsas es justamente una partición del conjunto de dulces.

Partición Partición, Órdenes y Cerraduras

Una partición de A es cualquier conjunto $B_{i \in I}$ de subconjuntos de A que:

- No están vacíos
- Son disjuntos entre sí
- ullet La unión generalizada de ellos cubre totalmente a A

Una *repartición* de dulces a un conjunto de bolsas es justamente una partición del conjunto de dulces.

Antisimetría Partición, Órdenes y Cerraduras

Antisimetría

Una relación es antisimétrica si y solo si

$$\forall (a,b) \in R ((a,b) \in R \implies (b,a) \notin R)$$

A una relación que es reflexiva, transitiva y antisimétrica se le conoce como orden parcial, o *poset*.

Antisimetría

Partición, Órdenes y Cerraduras

Antisimetría

Una relación es antisimétrica si y solo si

$$\forall (a,b) \in R ((a,b) \in R \implies (b,a) \notin R)$$

A una relación que es **reflexiva**, **transitiva** y **antisimétrica** se le conoce como orden parcial, o *poset*.

Orden total Partición, Órdenes y Cerraduras

Completez en una reflexión

Una relación reflexiva es completa si y solo si

$$\forall (a,b) \in A ((a,b) \in R \lor (b,a) \in R)$$

Cuando un poset es completo (o lineal), se le conoce como orden total.

Orden total

Partición, Órdenes y Cerraduras

Completez en una reflexión

Una relación reflexiva es completa si y solo si

$$\forall (a,b) \in A ((a,b) \in R \lor (b,a) \in R)$$

Cuando un poset es completo (o lineal), se le conoce como orden total.

Orden total

Partición, Órdenes y Cerraduras

Completez en una reflexión

Una relación reflexiva es completa si y solo si

$$\forall (a,b) \in A ((a,b) \in R \lor (b,a) \in R)$$

Cuando un poset es completo (o lineal), se le conoce como orden total.

$$\leq$$
 vs $<$

Cerraduras

Partición, Órdenes y Cerraduras

La cerradura (closure en inglés) de A bajo la relación R (denotada por R[A]) es un conjunto del tamaño mínimo necesario para cumplir con la aplicación de R a cada elemento de A, y tal que $A\subseteq R[A]$. . .

Ejemplo de cerradura

- Q: ¿Cuál es la cerradura transitiva de $A = \{(2,3), (3,4), (1,2), (3,1), (1,7), (7,8)\}$?
- A:

$$A = \{(2,3), (3,4), (1,2), (3,1), (1,7), (7,8), (2,4), (1,3), (3,2), (1,8), (1,4), (1,1), (3,3)\}$$

Cerraduras

Partición, Órdenes y Cerraduras

La cerradura (closure en inglés) de A bajo la relación R (denotada por R[A]) es un conjunto del tamaño mínimo necesario para cumplir con la aplicación de R a cada elemento de A, y tal que $A\subseteq R[A]$. . .

Ejemplo de cerradura

- Q: ¿Cuál es la cerradura transitiva de $A = \{(2,3), (3,4), (1,2), (3,1), (1,7), (7,8)\}$?
- A:

$$A = \{(2,3), (3,4), (1,2), (3,1), (1,7), (7,8), (2,4), (1,3), (3,2), (1,8), (1,4), (1,1), (3,3)\}$$

Unión e intersección generalizada

Cerraduras

¿Cómo hacemos la cerradura transitiva de una relación R si empezamos desde A?

Unión generalizada

$$\bigcup_{i=1}^{n} A_i = A_0 \cup A_1 \cup \dots A_n$$

Intersección generalizada

$$\bigcap_{i=1}^{n} A_i = A_0 \cap A_1 \cap \dots A_n$$

Story time: intro a recursión

Unión e intersección generalizada

Cerraduras

¿Cómo hacemos la cerradura transitiva de una relación R si empezamos desde A?

Unión generalizada

$$\bigcup_{i=1}^{n} A_i = A_0 \cup A_1 \cup \dots A_n$$

Intersección generalizada

$$\bigcap_{i=1}^{n} A_i = A_0 \cap A_1 \cap \dots A_n$$

Story time: intro a recursión

Unión e intersección generalizada

Cerraduras

¿Cómo hacemos la cerradura transitiva de una relación R si empezamos desde A?

Unión generalizada

$$\bigcup_{i=1}^{n} A_i = A_0 \cup A_1 \cup \dots A_n$$

Intersección generalizada

$$\bigcap_{i=1}^{n} A_i = A_0 \cap A_1 \cap \dots A_n$$

Story time: intro a recursión

Función

Una función f de A a B (la podemos denotar como $f:A\to B$ es una relación sobre $A\times B$ de tal manera que

$$\forall a \in A(\exists!b \in B)$$

Llamamos dominio al conjunto A de donde salen los *inputs*, y rango al conjunto B de donde salen los *outputs*.

Función

Una función f de A a B (la podemos denotar como $f:A\to B$ es una relación sobre $A\times B$ de tal manera que

$$\forall a \in A(\exists!b \in B)$$

Llamamos dominio al conjunto A de donde salen los *inputs*, y rango al conjunto B de donde salen los *outputs*.

Las funciones también suelen ser conocidas como *mapeos*, y la idea es *asociar* una cosa con la otra.

- ¿Qué ejemplos de funciones se te ocurren?
- ullet Piensa en A como Los Skywalker y B como los lightsabers de cada uno.
- ¿Puedes hacer una asociación entre ellos?
- ¿Es esto una función?

Las funciones también suelen ser conocidas como *mapeos*, y la idea es *asociar* una cosa con la otra.

- ¿Qué ejemplos de funciones se te ocurren?
- ullet Piensa en A como Los Skywalker y B como los lightsabers de cada uno.
- ¿Puedes hacer una asociación entre ellos?
- ¿Es esto una función?

Las funciones también suelen ser conocidas como *mapeos*, y la idea es *asociar* una cosa con la otra.

- ¿Qué ejemplos de funciones se te ocurren?
- ullet Piensa en A como Los Skywalker y B como los lightsabers de cada uno.
- ¿Puedes hacer una asociación entre ellos?
- ¿Es esto una función?

Las funciones también suelen ser conocidas como *mapeos*, y la idea es *asociar* una cosa con la otra.

- ¿Qué ejemplos de funciones se te ocurren?
- ullet Piensa en A como Los Skywalker y B como los lightsabers de cada uno.
- ¿Puedes hacer una asociación entre ellos?
- ¿Es esto una función?

Las funciones también suelen ser conocidas como *mapeos*, y la idea es *asociar* una cosa con la otra.

- ¿Qué ejemplos de funciones se te ocurren?
- ullet Piensa en A como Los Skywalker y B como los lightsabers de cada uno.
- ¿Puedes hacer una asociación entre ellos?
- ¿Es esto una función?

Las funciones también suelen ser conocidas como *mapeos*, y la idea es *asociar* una cosa con la otra.

- ¿Qué ejemplos de funciones se te ocurren?
- ullet Piensa en A como Los Skywalker y B como los lightsabers de cada uno.
- ¿Puedes hacer una asociación entre ellos?
- ¿Es esto una función?

Composición Operaciones

Composición

Sean f y g dos funciones sobre X, donde $x \in X$. La composición de funciones se denota

$$f \circ g$$

que significa que f compone a g, y es un sinónimo de

Story time: S-expressions

Funciones Inyectivas

Propiedades de las funciones

Funciones Sobreyectivas

Propiedades de las funciones

Funciones Biyectivas

Propiedades de las funciones

Equipotencia Funciones

NotImplemented

El principio del palomar Funciones