B2: Sequences

Text Reference (Epp)

```
3ed: Sections 4.1-4, 8.1-3 (Sequences and induction), 9.3,5 (Sorting)
4ed: Sections 5.1-4,6-8, (Sequences and induction), 11.3,5 (Sorting)
5ed: Sections 5.1-4,6-7, (Sequences and induction), 11.3,5 (Sorting)
```

Sequences

Let S be a set and $I \subseteq \mathbb{Z}$. A function $a: I \to S$ is called a **sequence in** S. Special **sequence notation** is often used:

Function notation	Sequence notation
$a:I\to S$	$(a_n)_{n\in I}\subseteq S$
$n \mapsto a(n)$.	

The notation $(a_n)_{n\in I}$ indicates that the function can be represented as an *ordered* -tuple or, more simply, as a *list*.

(Unlike a *set*, a list has an order, and can have repeated entries.)

- $I = \{1, 2, 3\} : (a_n)_{n \in I} = (a_1, a_2, a_3).$
- $\blacksquare I = \mathbb{N} : (a_n)_{n \in I} = (a_1, a_2, a_3, \ldots).$
- $\blacksquare I = \mathbb{Z}_{\geq 0} : (a_n)_{n \in I} = (a_0, a_1, a_2, \ldots).$

In practice we usually leave out the parentheses and speak of "the sequence a_1, a_2, a_3 " or "the sequence a_0, a_1, a_2, \ldots "

An agreed upon abuse of notation

The " $\subseteq S$ " part of the sequence notation $(a_n)_{n\in I}\subseteq S$ indicates that the sequence members belong to S; *i.e.* that the range of the sequence function $a:I\to S$ is a subset of its codomain S.

The sequence *itself* is **not** a subset of S, since it is not a *set*.

1. Suppose n represents time (in months since January 1, 2000) and a_n is the standard savings account interest rate offered by bank X at time n. Then $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{Q}$ is a sequence of interests rates since 2000 and into the future!

For example, a_{17} is the standard savings account interest rate offered by bank X on 1 June, 2001.

2. Suppose n represents time (in months since January 1, 2000) and a_n , f_n , z_n represent the populations of amphibians, fish and zooplankton in a particular lake ecosystem at time n. Let $p_n = (a_n, f_n, z_n)$. Then $(p_n)_{n \in \mathbb{N}} \subseteq \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ is a sequence of states of the ecosystem since 2000 and into the future!

- 3. For each $n \in \mathbb{N}$, let a_n denote the amplitude of the harmonic of frequency $n \times f$ (where f is the fundamental frequency). Then $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{Z}_{\geq 0}$ is a sequence of amplitudes.
- 4. Let U be a set of users, then $(u_n)_{n \in \{1,2,3,4,5\}} \subseteq U$ is a list of 5 users.

In examples 1, 2, 3 the indexing variable n had some intuitive meaning; in example 4 the indexing variable did not necessary have an intuitive meaning other than we have ordered the 5 interesting users into the first, second, third, fourth and fifth user.

Describing sequences: explicit definitions

An **explicit definition** of a sequence is a formula for a_n .

Examples:

1. For all $n \in \mathbb{N}$, let $a_n = 2^n$. Then

$$(a_n)_{n\in\mathbb{N}}=2,4,8,16,\dots$$

2. Let a_1 = Pierre, a_2 = Julie, a_3 = Paul. Then $(a_n)_{n \in \{1,2,3\}}$ = Pierre, Julie, Paul.

Describing sequences: implicit definitions

An **implicit definition** of a sequence comprises starting value(s) and a relationship between the a_n 's.

Examples: Let $(a_n)_{n\in\mathbb{N}}$ be the sequence such that:

$$\begin{cases} a_1 = 2, \text{ and} \\ \forall n \in \mathbb{N} \ a_{n+1} = 2a_n. \end{cases}$$

This defines the sequence

$$(a_n)_{n\in\mathbb{N}} = 2, 4, 8, 16, \dots,$$

Let $(a_n)_{n\in\mathbb{N}}$ be the sequence such that:

$$\begin{cases} a_1 = 0, \\ a_2 = 1, \text{ and} \\ \forall n \in \{2, 3, 4, \dots\} \ a_{n+1} = -a_n + a_{n-1}. \end{cases}$$

Defines the sequence

$$a_1 = 0$$
 $a_2 = 1$
 $a_3 = -1+0=-1$
 $a_4 = -(-1)+1=2$
 $a_5 = -2+(-1)=-3$
 \vdots

Proofs about sequences

Mathematical induction

Let P(n) be a predicate with variable $n \in \mathbb{N}$. How to prove that $\forall n \in \mathbb{N} \ P(n)$?

METHOD 1:

Introduce a fixed but arbitrary variable: Let $n \in \mathbb{N}$. you are now working with a fixed but arbitrary value of n.

Deduce P(n) **from what you know:** *Insert mathemagic here.*

Victory lap: Since P(n) holds for a fixed but arbitrary choice $n \in \mathbb{N}$, P(n) holds for all $n \in \mathbb{N}$. No one write this, but this is why the method works.

Method 2:

The basis step Prove P(1).

The inductive step Prove

$$\forall n \in \mathbb{N} \quad \Big((P(1) \land P(2) \land P(3) \land \dots \land P(n)) \Rightarrow P(n+1) \Big)$$

Let $n \in \mathbb{N}$. Suppose that all of the statements P(1), P(2), ..., P(n) are true. Now deduce P(n+1) making use somewhere of one or more of the facts $P(1), \ldots, P(n)$.

The victory lap By the Principle of Mathematical Induction, P(n) is true for all $n \in \mathbb{N}$.

(This is also known as *strong* mathematical induction.)

From implicit to explicit definitions; Example 1

A sequence is defined implicitly by

$$egin{cases} a_1=3,\ orall n\in\mathbb{N}\ a_{n+1}=3a_n \end{cases}$$

Find an explicit definition.

From implicit to explicit definitions; Example 1

A sequence is defined implicitly by

$$egin{cases} a_1=3,\ orall n\in\mathbb{N}\ a_{n+1}=3a_n \end{cases}$$

Find an explicit definition.

First generate some values:

$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 81$,...

Now we make a claim/hypothesis/informed guess: $\forall n \in \mathbb{N} \ a_n = 3^n$.

Proof that the claim is correct

We shall prove the claim using mathematical induction. Let

$$P(n): a_n = 3^n$$

Basis step: We compute

LHS of $P(1) = a_1 = 3$ (by the definition of the sequence); RHS of $P(1) = 3^1 = 3$.

Hence P(1) is true.

(LHS is an abbreviation for "left-hand side", and RHS is an abbreviation for "right-hand side.")

Inductive step: Let $n \in \mathbb{N}$. Suppose that P(1), P(2), ..., P(n) are all true. Then

LHS of
$$P(n+1)$$

= a_{n+1}
= $3a_n$ (from the implicit definition)
= $3(3^n)$ (using $P(n)$)
= 3^{n+1}
= RHS of $P(n+1)$

Hence P(n+1) is true.

By the Principle of Mathematical Induction, P(n) holds for all $n \in \mathbb{N}$.

Geometric sequences

Given a set of integers $K = \{n \in \mathbb{Z} \mid n \geq k\}$, a sequence $(a_n)_{n \in K} \subseteq \mathbb{R}$ is a **geometric sequence** when there exist $a, r \in \mathbb{R}$ such that

$$\begin{cases} a_k = a, \text{ and} \\ \forall k \in K \quad a_{k+1} = ra_k \end{cases}$$

We call a the **first term** and r the **common ratio** of the geometric sequence.

A geometric sequence can also be defined explicitly:

$$\forall n \in K \quad a_n = ar^{n-k}.$$

A sequence is defined implicitly by

$$\begin{cases} b_1 = 0, \\ \forall n \in \mathbb{N} \ b_{n+1} = b_n + 5. \end{cases}$$

Can we get an explicit definition?

A sequence is defined implicitly by

$$\begin{cases} b_1 = 0, \\ \forall n \in \mathbb{N} \ b_{n+1} = b_n + 5. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$b_1 = 0$$
, $b_2 = 5$, $b_3 = 10$, $b_4 = 15$,...

A sequence is defined implicitly by

$$\begin{cases} b_1 = 0, \\ \forall n \in \mathbb{N} \ b_{n+1} = b_n + 5. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$b_1 = 0$$
, $b_2 = 5$, $b_3 = 10$, $b_4 = 15$,...

Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1)$.

A sequence is defined implicitly by

$$\begin{cases} b_1 = 0, \\ \forall n \in \mathbb{N} \ b_{n+1} = b_n + 5. \end{cases}$$

Can we get an explicit definition? First generate some values:

$$b_1 = 0$$
, $b_2 = 5$, $b_3 = 10$, $b_4 = 15$,...

Claim: $\forall n \in \mathbb{N} \ b_n = 5(n-1)$.

We shall use mathematical induction to prove the claim...

Let

$$P(n): b_n = 5(n-1).$$

Basis step:

LHS of $P(1) = b_1 = 0$ (by the definition of the sequence); RHS of $P(1) = 5(1-1) = 1 \times 0 = 0$.

Hence P(1) is true.

Inductive step: Let $n \in \mathbb{N}$. Suppose that P(1), P(2), ..., P(n) are all true. Then

LHS of
$$P(n+1)$$

= b_{n+1}
= $b_n + 5$ (from the implicit definition)
= $5(n-1) + 5$ (using $P(n)$)
= $5n - 5 + 5$
= $5n$
= RHS of $P(n+1)$

Hence P(n+1) is true.

By the Principle of Mathematical Induction, P(n) holds for all $n \in \mathbb{N}.$

Sum and products of terms

Terms of a sequence can be summed: $a_1+a_2+a_3+...$ or multiplied: $a_1 \times a_2 \times a_3 \times ...$ We use the special notation

$$\sum_{n=1}^{k} a_n = a_1 + a_2 + a_3 + \dots + a_k,$$

$$\prod_{n=1}^{k} a_n = a_1 \times a_2 \times a_3 \times \dots \times a_k.$$

1.
$$\sum_{n=1}^{10} n = 1 + 2 + 3 + 4 + \dots + 9 + 10 = 55.$$

2.
$$\sum_{n=0}^{7} 2^n = 1 + 2 + 4 + 8 + \dots + 128 = 255.$$

3.
$$\prod_{n=1}^{5} n = 1 \times 2 \times 3 \times 4 \times 5 = 5! = 120.$$

4.
$$\prod_{n=1}^{8} n^2 = 4 \times 9 \times 16 \times ... \times 64 = 1625702400.$$

Prove the following:

$$\forall n \in \mathbb{N} \quad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Let

$$P(n): \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Basis step:

LHS of
$$P(1) = \sum_{i=1}^{1} i = 1$$
 (by the defn of \sum); RHS of $P(1) = \frac{1(1+1)}{2} = \frac{1 \times 2}{2} = 1$

Hence P(1) is true.

Inductive step: Let $n \in \mathbb{N}$. Suppose that P(1), P(2), ..., P(n) are all true. Then

LHS of
$$P(n+1) = \sum_{i=1}^{n+1} i$$

$$= \left(\sum_{i=1}^{n} i\right) + (n+1) \text{ (by the defn of } \sum)$$

$$= \frac{n(n+1)}{2} + (n+1) \text{ (using } P(n))$$

$$= \frac{n(n+1) + 2(n+1)}{2} = \frac{n^2 + n + 2n + 2}{2}$$

$$= \frac{n^2 + 3n + 2}{2} = \frac{(n+1)(n+2)}{2}$$

$$= \frac{(n+1)((n+1)+1)}{2} = \text{RHS of } P(n+1)$$

Hence P(n+1) is true.

By the Principle of Mathematical Induction, P(n) holds for all $n \in \mathbb{N}$. \square