• NMOS Cascode:

ac Schematic

ac Midand Equivalent

- > CS, followed by CG
- ightharpoonup Generally, both M_1 and M_2 are biased with the same I_D
- $\rightarrow M_1$ does not have body effect, but M_2 has

- $ightharpoonup A_v$ gets affected a little if r_{01} and r_{02} were included
- Since r_{01} comes in parallel with $(g_{m2} + g_{mb2})^{-1}$, its effect on A_v is less pronounced than that of r_{02}
- > By inspection:

$$R_{01} \approx (g_{m2} + g_{mb2})r_{01}r_{02} (Show!)$$

Note that if either of r_{01} or $r_{02} \rightarrow \infty$, $R_{01} \rightarrow \infty$ (Why?)

- Differential Amplifier (DA)/Differential Pair (DP):
 - ➤ Most versatile analog building block
 - ➤ Immensely useful and
 widely used (particularly
 for sensing/telemetry/
 instrumentation applications)

Symbol for DA

- \succ Two inputs $(V_{i1}, V_{i2})/$ Two outputs (V_{o1}, V_{o2})
- \gt Dual Supply $(V_{CC}/V_{DD}, V_{EE}/V_{SS})$

> Unique Property:

- Amplifies the difference between V_{i1} and V_{i2} , while rejecting/suppressing signals common to both V_{i1} and V_{i2}
- Very efficient noise suppressor
- The stage can be direct coupled to the next stage without the need for any coupling capacitor
- ➤ In *BJT technology*, known as *Emitter-Coupled Pair* (*ECP*)
- ➤ In *MOS technology*, known as *Source-Coupled Pair (SCP)*

• *npn DA (ECP)*:

- ➤ Q₁-Q₂ constitute a

 a *matched pair*, and have their *emitters connected*together, hence, the name
- > I_{EE}: *DC bias current source*
- ➤ All voltages and currents

 (apart from those used for biasing) are instantaneous

 (DC + ac)

npn DA Topology

$$V_{be1} = V_{i1} - V_{e}$$
, and $V_{be2} = V_{i2} - V_{e}$

 \succ KVL around Q_1 - Q_2 BE loop:

$$V_{i1} - V_{be1} + V_{be2} - V_{i2} = 0$$

 $\Rightarrow V_{be1} - V_{be2} = V_{i1} - V_{i2} = V_{id}$

V_{id}: *Differential-Mode Input Voltage*

> Neglecting Early effect:

$$V_{id} = V_T \ln(I_{c1}/I_{c2})$$

$$\Rightarrow I_{c1}/I_{c2} = \exp(V_{id}/V_T)$$
 (1)

> Neglecting base currents:

$$I_{c1} + I_{c2} = I_{EE} (always!)$$
 (2)

This is because I_{EE} is an ideal current source

> Solving Eqs.(1) and (2):

$$I_{c1} = I_{EE}/[1 + exp(-V_{id}/V_T)]$$

 $I_{c2} = I_{EE}/[1 + exp(V_{id}/V_T)]$

- > Extremely interesting results:
 - For $V_{id} = 0$, $I_{c1} = I_{c2} = I_{EE}/2$ I_{EE} shared equally between Q_1 and Q_2
 - For positive V_{id} , I_{c1} ↑ and I_{c2} ↓
 For negative V_{id} , I_{c1} ↓ and I_{c2} ↑
 But for both cases, their sum is constant and equal to I_{EE}
 - For $V_{id} > 4V_T$, $I_{c1} \rightarrow I_{EE}$ For negative V_{id} , with $|V_{id}| > 4V_T$, $I_{c2} \rightarrow I_{EE}$