Student ID Name Instructor Jang Soo Kim

Problem 1 (10 points). Find the coefficient of x^3y^4 in the expansion of $(x+\sqrt{xy}+y)(x-\sqrt{xy}+y)(x+y)^5.$

Problem 3 (15 points). Let $\{a_n\}_{n\geq 0}$ be the sequence given by $a_0=0$, $a_1=1$ and for $n\geq 2$,

$$a_n = 2a_{n-1} + a_{n-2}.$$

Find a general formula for a_n .

Problem 2 (10 points). Find the number of $n \times n$ matrices A satisfying the following three conditions:

- For all $1 \le i, j \le n$, we have $A_{i,j} \in \{0, 1, 2\}$.
- For all $1 \leq i \leq n$, we have $A_{i,i} \neq 0$.
- For all $1 \le i, j \le n$, if $A_{i,j} \ne 0$ and $A_{j,i} \ne 0$, then i = j.

Problem 4 (15 points). Let G be the simple graph with vertices v_1, v_2, \ldots, v_{18} such that for $1 \le i < j \le 18$, v_i and v_j are adjacent if and only if j is a multiple of i.

- 1. Find the number of edges of G.
- 2. Show that G contains a subgraph isomorphic to K_5 .
- 3. Show that G contains a subgraph isomorphic to $K_{3,3}$.

A, B, C, D, E, F, G, H, I, J, K, L such that

- ullet the preorder listing of the vertices of T is DCAHGEFIBJLK,
- \bullet the inorder listing of the vertices of T is ACGHFEDIJKLB.

What is the postorder listing of the vertices of T?

Problem 6 (10 points). Decode each bit string using the following Huffman code:

- 1. 0110000
- $2.\ \, 100011111100$
- 3. 10100001111

Problem 5 (10 points). Suppose that T is a binary tree with vertices | **Problem 7** (15 points). For a simple graph G, the complement \overline{G} of G is the graph with the same vertex set such that (u, v) is an edge of \overline{G} if and only if (u, v) is not an edge of G. Prove or disprove the following statement.

> • If G is a simple graph with at least 9 vertices, then either G is non-bipartite or \overline{G} is non-planar.

Problem 8 (15 points). Suppose that $b_1, b_2, \ldots, b_{1060}$ are positive integers satisfying $b_1 + b_2 + \cdots + b_{1060} = 2019$. Prove that there are consecutive integers $i, i + 1, \dots, j$ such that $b_i + b_{i+1} + \dots + b_j = 100$.

2019-1 Discrete Math Final Exam Solutions

Prob 1 Since (2+1/2y+y)(2-1/2y+y)(2+y)) is equal to $((x+y)^2 - xy)(x+y)^5 = (x+y)^7 - xy(x+y)^5$ (\$\tag{\$\psi\$} pts) the deficient of x^3y^4 is $\binom{7}{2} - \binom{5}{5} = 25$ (5 pts) Dub 2 For each i, there are two choices for Air. (2 pts) For each $1 \le i < j \le n$, there are 5 Choices for Aij, Aii. (5 pts) $((A_{ij}, A_{ji}) = (0,0), (0,1), (0,2), (1,0), (2,0))$ Therefore the number of such matrices is 2n5(2) (3 pts) PWb3 The characteristic polynomial is 2-201-1. (5 pts) The solutions to $\chi^2 - 2x - 1 = 0$ are $\chi = 1 \pm \sqrt{2}$. Thus $a_n = \alpha (1+\sqrt{2})^n + \beta (1-\sqrt{2})^n$ (5 pts) Since $a_0 = a+B=0$ and $a_1 = a(HVZ)+b(I-VZ)=1$, $\alpha = \frac{1}{42}$, $\beta = -\frac{1}{242}$ (5 pts). Thus an= = (1+1/2)" - = (1-1/2)". Prob 4 1. Let $a_i = \# edges (v_i, v_j)$ s.t. i < j. Then $a_1 = 18 - 1 = 19$ $a_2 = \frac{18}{2} - 1 = 8$ 93 = [13/3] -1 = 5 $a_4 = 18/4 - 1 = 3$ 95= L18/5/-1=2 a6 = U8/6]-1=2 $a_7 = a_8 = a_9 = 1$ a₁₀ = ... = a₁₀ = 0. Thus e = a₁+... + a₁₈ = 38. (5pts) 2. $V_1, V_2, V_4, V_8, V_{16}$ are all connected $\Rightarrow K_5$. (5 pts) 3. V_1, V_2, V_3 are connected to $V_6, V_{12}, V_{18} \Rightarrow K_{3,3}$ (5 pts) (or V1, V2, V4 and Vp, V12, V16)

Prob5 The tree is

C I (5 pts)

A H B

G E J

> postorda = AGFEHCKLJBID. (5 pts)

Prob6 1. ACE (3 pts)
2. CAFE (4 pts)

3. BEEF (4 pts)

Publy It is enough to show that if G is bipartite, then G is nonplanar. (5 pts)

If G is bipartite we can divide the set of vertices of G into two sets.

A and B such that no vertices in A or in B are connected.

By the pigeonhole principle A or B contains at least 5 vertices. (5 pts)
Then G contains Ks since the vertices in A and in B are all
Connected in G. (5 pts).

Prob8 Let $S_i = b_i + \cdots + b_i$. Then $1 \le S_i \le 2019$. Consider the sequence $S_i \ne 100$, ..., $S_{100} \ne 100$. Then $1 \le S_i \ne 100 \le 2119$. (spts)

Since {si |15 i 51060} and {si+100 (15 i 5106)} one 2120 numbers in

 $\{1,\dots,2119\}$, by the pigeonhole principle, we must have $S_j = S_i + (100)$. (5 pts) Then j > i and $b_{i+1} + \dots + b_j = S_j - S_i = (50)$. (5 pts).