Control, Optimization, and Diffusion Limits for Queuing Systems

Anat Lev-Ari

PhD Thesis Seminar, July 17

Advisor: Prof. Rami Atar

Department of Electrical Engineering

Table of Contents

- 1 The Multiclass Single Server Queue with Reneging
 - The Model and Control problem
 - The Brownian Control Problem (BCP)
 - Solving the BCP
 - The Bellman Equation
 - Optimal Control Derivation
 - Main Result
- $oldsymbol{2}$ The G/G/1 Queue with Retrials
 - The Model
 - First Result Diffusion Limits
 - Second Result Optimal Buffer Size
 - Simulation
- 3 Acknowledgments

The Multiclass Single Server Queue with Reneging The Model

 / customer classes and 1 server (processor sharing).

- / customer classes and 1 server (processor sharing).
- Arrivals renewal processes.

- / customer classes and 1 server (processor sharing).
- Arrivals renewal processes.
- Service times i.i.d.

- I customer classes and 1 server (processor sharing).
- Arrivals renewal processes.
- Service times i.i.d.
- Abandonments follow exponential clock.

- I customer classes and 1 server (processor sharing).
- Arrivals renewal processes.
- Service times i.i.d.
- Abandonments follow exponential clock.
- Cost holding cost + abandonments count.

- / customer classes and 1 server (processor sharing).
- Arrivals renewal processes.
- Service times i.i.d.
- Abandonments follow exponential clock.
- Cost holding cost + abandonments count.

Problem: Choose who to serve next to minimize the cost

The Model and Control Problem Mathematical Representation

• $X_i(t)$ = the number of customers in the i-th class at time t

$$=\underbrace{X_i(0)}_{\text{initial state}} + \underbrace{A_i(t)}_{\text{Arrivals}} - \underbrace{S_i(\int_0^t B_i(s)ds)}_{\text{Departures (service)}} - \underbrace{R_i(t)}_{\text{Reneging}}$$

The Model and Control Problem Mathematical Representation

• $X_i(t)$ = the number of customers in the i-th class at time t

$$=\underbrace{X_{i}(0)}_{\text{initial state}} + \underbrace{A_{i}(t)}_{\text{Arrivals}} - \underbrace{S_{i}(\int_{0}^{t} B_{i}(s)ds)}_{\text{Departures (service)}} - \underbrace{R_{i}(t)}_{\text{Reneging}}$$

Cost:

$$J(B) = \mathbb{E}\Big(\int_0^\infty e^{-\alpha t} b' dR(t)\Big) = \alpha \mathbb{E}\Big(\int_0^\infty e^{-\alpha t} c' X(t) dt\Big)$$

where $\alpha > 0$, b_i reneging cost for class i, c_i holding cost for class i ($c_i = \theta_i b_i$, where θ_i is abandonment rate).

• $X_i(t)$ = the number of customers in the i-th class at time t

$$=\underbrace{X_{i}(0)}_{\text{initial state}} + \underbrace{A_{i}(t)}_{\text{Arrivals}} - \underbrace{S_{i}(\int_{0}^{t} B_{i}(s)ds)}_{\text{Departures (service)}} - \underbrace{R_{i}(t)}_{\text{Reneging}}$$

Cost:

$$J(B) = \mathbb{E}\Big(\int_0^\infty e^{-\alpha t} b' dR(t)\Big) = \alpha \mathbb{E}\Big(\int_0^\infty e^{-\alpha t} c' X(t) dt\Big)$$

where $\alpha > 0$, b_i reneging cost for class i, c_i holding cost for class i ($c_i = \theta_i b_i$, where θ_i is abandonment rate).

• **Problem:** Find a control process B(t) that minimizes J(B).

• $X_i(t)$ = the number of customers in the i-th class at time t

$$=\underbrace{X_{i}(0)}_{\text{initial state}} + \underbrace{A_{i}(t)}_{\text{Arrivals}} - \underbrace{S_{i}(\int_{0}^{t} B_{i}(s)ds)}_{\text{Departures (service)}} - \underbrace{R_{i}(t)}_{\text{Reneging}}$$

Cost:

$$J(B) = \mathbb{E}\Big(\int_0^\infty e^{-\alpha t} b' dR(t)\Big) = \alpha \mathbb{E}\Big(\int_0^\infty e^{-\alpha t} c' X(t) dt\Big)$$

where $\alpha > 0$, b_i reneging cost for class i, c_i holding cost for class i $(c_i = \theta_i b_i)$, where θ_i is abandonment rate).

- **Problem:** Find a control process B(t) that minimizes J(B).
- Not solvable analytically.

The Model and Control Problem Mathematical Representation

• $X_i(t)$ = the number of customers in the i-th class at time t

$$=\underbrace{X_i(0)}_{\text{initial state}} + \underbrace{A_i(t)}_{\text{Arrivals}} - \underbrace{S_i(\int_0^t B_i(s)ds)}_{\text{Departures (service)}} - \underbrace{R_i(t)}_{\text{Reneging}}$$

Cost:

$$J(B) = \mathbb{E}\Big(\int_0^\infty e^{-\alpha t} b' dR(t)\Big) = \alpha \mathbb{E}\Big(\int_0^\infty e^{-\alpha t} c' X(t) dt\Big)$$

where $\alpha > 0$, b_i reneging cost for class i, c_i holding cost for class i ($c_i = \theta_i b_i$, where θ_i is abandonment rate).

- **Problem:** Find a control process B(t) that minimizes J(B).
- Not solvable analytically.
- Approach: Use diffusion approximation.

 c_i - holding cost of class i, μ_i - service rate, θ_i - abandonment rate

• $c\mu$ -rule: Prioritize according to the $c_i\mu_i$ index

 c_i - holding cost of class i, μ_i - service rate, θ_i - abandonment rate

• $c\mu$ -rule: Prioritize according to the $c_i\mu_i$ index

 \Rightarrow optimal without abandonments (Smith '56)

- $c\mu$ -rule: Prioritize according to the $c_i\mu_i$ index
 - ⇒ optimal without abandonments (Smith '56)
 - \Rightarrow asymptotically optimal without abandonments, including an extended (nonlinear) holding cost (special case of van Mieghem '95)

Related Work

- $c\mu$ -rule: Prioritize according to the $c_i\mu_i$ index
 - ⇒ optimal without abandonments (Smith '56)
 - \Rightarrow asymptotically optimal without abandonments, including an extended (nonlinear) holding cost (special case of van Mieghem '95)
- $c\mu/\theta$ -rule: Prioritize according to the $c_i\mu_i/\theta_i$ index

- $c\mu$ -rule: Prioritize according to the $c_i\mu_i$ index
 - ⇒ optimal without abandonments (Smith '56)
 - \Rightarrow asymptotically optimal without abandonments, including an extended (nonlinear) holding cost (special case of van Mieghem '95)
- $c\mu/\theta$ -rule: Prioritize according to the $c_i\mu_i/\theta_i$ index
 - \Rightarrow asymptotically optimal with abandonments under the fluid scale (Atar Giat Shimkin 11')

 c_i - holding cost of class i, μ_i - service rate, θ_i - abandonment rate

- $c\mu$ -rule: Prioritize according to the $c_i\mu_i$ index
 - ⇒ optimal without abandonments (Smith '56)
 - \Rightarrow asymptotically optimal without abandonments, including an extended (nonlinear) holding cost (special case of van Mieghem '95)
- $c\mu/\theta$ -rule: Prioritize according to the $c_i\mu_i/\theta_i$ index
 - \Rightarrow asymptotically optimal with abandonments under the fluid scale (Atar Giat Shimkin 11')

These results DO NOT apply in Diffusion scale.

More Related Work

- Samim Ghamami and Amy R. Ward. Dynamic scheduling of a two-server parallel server system with complete resource pooling and reneging in heavy traffic: asymptotic optimality of a two-threshold policy.
 - Math. Oper. Res., 38(4):761-824, 2013
- Jeunghyun Kim and Amy R. Ward. Dynamic scheduling of a GI/GI/1 + GI queue with multiple customer classes. Queueing Syst., 75(2-4):339–384, 2013
- Barış Ata and Mustafa H. Tongarlak. On scheduling a multiclass queue with abandonments under general delay costs. Queueing Syst., 74(1):65–104, 2013
- Melanie Rubino and Baris Ata. Dynamic control of a make-to-order, parallel-server system with cancellations.
 Operations Research, 57(1):94–108, 2009

Find Asymptotically Optimal Control - Solution Steps

• **Define BCP**: consider a sequence of systems, generated from the original system under the diffusion scale, to arrive at a Brownian Control Problem (BCP).

Find Asymptotically Optimal Control - Solution Steps

- Define BCP: consider a sequence of systems, generated from the original system under the diffusion scale, to arrive at a Brownian Control Problem (BCP).
- Solve BCP: compute the corresponding Bellman equation and deduce the control from it.
 (The Bellman equation characterize the value function)

Find Asymptotically Optimal Control - Solution Steps

- Define BCP: consider a sequence of systems, generated from the original system under the diffusion scale, to arrive at a Brownian Control Problem (BCP).
- Solve BCP: compute the corresponding Bellman equation and deduce the control from it. (The Bellman equation characterize the value function)
- **3 AO**: prove this control is Asymptotically Optimal.

Step 1 - Define BCP

•
$$X_t = x + \underbrace{W_t}_{\mathsf{BM}} - \int_0^t \underbrace{\Theta}_{\mathrm{diag}(\theta)} X_s ds + \underbrace{Y_t}_{\mathsf{Control}} \in \mathbb{R}_+^I$$

Step 1 - Define BCP

•
$$X_t = x + \underbrace{W_t}_{\mathsf{BM}} - \int_0^t \underbrace{\Theta}_{\mathrm{diag}(\theta)} X_s ds + \underbrace{Y_t}_{\mathsf{Control}} \in \mathbb{R}_+^I$$

• Heavy traffic condition: $\sum_{i=1}^{I} \lambda_i / \mu_i = 1$ λ , μ are first order approximations for the arrival rate and service rate

Step 1 - Define BCP

•
$$X_t = x + \underbrace{W_t}_{\mathsf{BM}} - \int_0^t \underbrace{\Theta}_{\mathrm{diag}(\theta)} X_s ds + \underbrace{Y_t}_{\mathsf{Control}} \in \mathbb{R}_+^I$$

- Heavy traffic condition: $\sum_{i=1}^{I} \lambda_i / \mu_i = 1$ λ , μ are first order approximations for the arrival rate and service rate
- Goal: To minimize the cost function

$$J(x,Y) = \mathbb{E}\Big(\int_0^\infty e^{-\alpha t} \underbrace{c'}_{\text{holding cost}} X_t dt\Big).$$

for Y being admissible

Definition

admissible control system with initial condition $x \in \mathbb{R}_+^I$ is a tuple $(\bar{\Sigma}, W_t, Y_t, X_t)$, where $\bar{\Sigma} = (\bar{\Omega}, \bar{\mathcal{F}}, \{\bar{\mathcal{F}}_t\}, \bar{P})$ is a filtered probability space, $\{W_t\}$ is an I-dimensional $\bar{\mathcal{F}}_t$ -adapted (y, σ) -BM, the processes $\{X_t\}$ and $\{Y_t\}$ have sample paths in $\mathbb{D}_{\mathbb{R}^I}(\mathbb{R}_+)$ and are $\bar{\mathcal{F}}_t$ -adapted, and the following hold:

- i. For all $t, s \geq 0$, $W_{t+s} W_t$ is independent of $\bar{\mathcal{F}}_t$ under $\bar{\mathcal{P}}$,
- ii. X_t satisfies $X_t \in \mathbb{R}^I_+$ for all t \bar{P} -a.s.,
- iii. The process m'Y, where $m=(1/\mu_1,...,1/\mu_I)$, is non-negative and non-decreasing.

Definition

admissible control system with initial condition $x \in \mathbb{R}^I_+$ is a tuple $(\bar{\Sigma}, W_t, Y_t, X_t)$, where $\bar{\Sigma} = (\bar{\Omega}, \bar{\mathcal{F}}, \{\bar{\mathcal{F}}_t\}, \bar{P})$ is a filtered probability space, $\{W_t\}$ is an I-dimensional $\bar{\mathcal{F}}_t$ -adapted (y, σ) -BM, the processes $\{X_t\}$ and $\{Y_t\}$ have sample paths in $\mathbb{D}_{\mathbb{R}^I}(\mathbb{R}_+)$ and are $\bar{\mathcal{F}}_t$ -adapted, and the following hold:

- i. For all $t,s\geq 0$, $W_{t+s}-W_t$ is independent of $\bar{\mathcal{F}}_t$ under $\bar{\mathcal{P}}$,
- ii. X_t satisfies $X_t \in \mathbb{R}^I_+$ for all t \bar{P} -a.s.,
- iii. The process m'Y, where $m=(1/\mu_1,...,1/\mu_I)$, is non-negative and non-decreasing.

Definition

admissible control system with initial condition $x \in \mathbb{R}_+^I$ is a tuple $(\bar{\Sigma}, W_t, Y_t, X_t)$, where $\bar{\Sigma} = (\bar{\Omega}, \bar{\mathcal{F}}, \{\bar{\mathcal{F}}_t\}, \bar{P})$ is a filtered probability space, $\{W_t\}$ is an I-dimensional $\bar{\mathcal{F}}_t$ -adapted (y, σ) -BM, the processes $\{X_t\}$ and $\{Y_t\}$ have sample paths in $\mathbb{D}_{\mathbb{R}^I}(\mathbb{R}_+)$ and are $\bar{\mathcal{F}}_t$ -adapted, and the following hold:

- i. For all $t,s\geq 0$, $W_{t+s}-W_t$ is independent of $\bar{\mathcal{F}}_t$ under $\bar{\mathcal{P}}$,
- ii. X_t satisfies $X_t \in \mathbb{R}_+^I$ for all t \bar{P} -a.s.,
- iii. The process m'Y, where $m=(1/\mu_1,...,1/\mu_I)$, is non-negative and non-decreasing.
 - $\mathcal{A}(x)$ the set of all admissible control systems with initial condition $x \in \mathbb{R}^I_+$.
 - The value function

$$V(x) = \inf_{A(x)} J(x, Y), \qquad x \in \mathbb{R}_+^I.$$

I-th dimensional equation.

I-th dimensional equation.

• Problem: hard to solve.

I-th dimensional equation.

- Problem: hard to solve.
- Solution: Reduction to 1-dimension Reduced Brownian Control Problem (RBCP).
 - Often occurs and is called State Space Collapse property (SSC)

I-th dimensional equation.

• Problem: hard to solve.

• **Solution:** Reduction to 1-dimension - Reduced Brownian Control Problem (RBCP).

Often occurs and is called State Space Collapse property (SSC)

The two problems are equivalent

Step 2- Solve BCP The RBCP

• Projection to the workload vector $m = (1/\mu_1, ..., 1/\mu_I)$.

- Projection to the workload vector $m = (1/\mu_1, ..., 1/\mu_I)$.
- Workload process

$$ilde{X}_t = m'X(t) = ilde{x} + ilde{W}_t - \int_0^t heta' U_s ilde{X}_s ds + ilde{Y}_t.$$

- Projection to the workload vector $m = (1/\mu_1, ..., 1/\mu_I)$.
- Workload process

$$ilde{X}_t = m'X(t) = ilde{x} + ilde{W}_t - \int_0^t heta' U_s ilde{X}_s ds + ilde{Y}_t.$$

• Control: the pair (U, \tilde{Y}) .

- Projection to the workload vector $m = (1/\mu_1, ..., 1/\mu_I)$.
- Workload process

$$ilde{X}_t = m'X(t) = ilde{x} + ilde{W}_t - \int_0^t heta' U_s ilde{X}_s ds + ilde{Y}_t.$$

- Control: the pair (U, \tilde{Y}) .
 - $\tilde{Y} = m'Y$

- Projection to the workload vector $m = (1/\mu_1, ..., 1/\mu_I)$.
- Workload process

$$ilde{X}_t = m'X(t) = ilde{x} + ilde{W}_t - \int_0^t heta' U_s ilde{X}_s ds + ilde{Y}_t.$$

- Control: the pair (U, \tilde{Y}) .
 - $\tilde{Y} = m'Y$
 - U is an I-dimensional process corresponds to the division of the workload between the classes $\rightarrow U_i$ is the fraction of workload dedicated to class i.

- Projection to the workload vector $m = (1/\mu_1, ..., 1/\mu_I)$.
- Workload process

$$ilde{X}_t = m'X(t) = ilde{x} + ilde{W}_t - \int_0^t heta' U_s ilde{X}_s ds + ilde{Y}_t.$$

- Control: the pair (U, \tilde{Y}) .
 - $\tilde{Y} = m'Y$
 - U is an I-dimensional process corresponds to the division of the workload between the classes $\rightarrow U_i$ is the fraction of workload dedicated to class i.
- Cost:

$$\widetilde{J}(\widetilde{x},(U,\widetilde{Y})) = \mathbb{E}\Big(\int_0^\infty e^{-\alpha t} q' U_t \widetilde{X}_t dt\Big).$$

Definition

An admissible control system with initial condition $\tilde{x} \in \mathbb{R}_+$ is a tuple $(\tilde{\Sigma}, \tilde{W}, U, \tilde{Y}, \tilde{X})$, where $\tilde{\Sigma} = (\tilde{\Omega}, \tilde{\mathcal{F}}, \{\tilde{\mathcal{F}}_t\}, \tilde{P})$ is a filtered probability space, $\{\tilde{W}_t\}$ is a 1-dimensional $\tilde{\mathcal{F}}_t$ -adapted $(\tilde{y}, \tilde{\sigma})$ -BM, and the processes $\{U_t\}$, $\{\tilde{Y}_t\}$, $\{\tilde{X}_t\}$ have sample paths in $\mathbb{D}_{\mathcal{S}_1}(\mathbb{R}_+)$, $\mathbb{D}_{\mathbb{R}^l}(\mathbb{R}_+)$ and $\mathbb{D}_{\mathbb{R}}(\mathbb{R}_+)$, resp., are $\tilde{\mathcal{F}}_t$ -adapted and the following hold:

- i. For all $t,s\geq 0$, $\tilde{W}_{t+s}-\tilde{W}_t$ is independent of $\tilde{\mathcal{F}}_t$ under $\tilde{\mathcal{P}}$,
- ii. \tilde{X}_t satisfies $\tilde{X}_t \geq 0$ for all t \tilde{P} -a.s.,
- iii. The process \tilde{Y} is non-negative and non-decreasing.

Definition

An admissible control system with initial condition $\tilde{x} \in \mathbb{R}_+$ is a tuple $(\tilde{\Sigma}, \tilde{W}, U, \tilde{Y}, \tilde{X})$, where $\tilde{\Sigma} = (\tilde{\Omega}, \tilde{\mathcal{F}}, \{\tilde{\mathcal{F}}_t\}, \tilde{P})$ is a filtered probability space, $\{\tilde{W}_t\}$ is a 1-dimensional $\tilde{\mathcal{F}}_t$ -adapted $(\tilde{y}, \tilde{\sigma})$ -BM, and the processes $\{U_t\}$, $\{\tilde{Y}_t\}$, $\{\tilde{X}_t\}$ have sample paths in $\mathbb{D}_{\mathcal{S}_1}(\mathbb{R}_+)$, $\mathbb{D}_{\mathbb{R}^l}(\mathbb{R}_+)$ and $\mathbb{D}_{\mathbb{R}}(\mathbb{R}_+)$, resp., are $\tilde{\mathcal{F}}_t$ -adapted and the following hold:

- i. For all $t,s\geq 0$, $\tilde{W}_{t+s}-\tilde{W}_{t}$ is independent of $\tilde{\mathcal{F}}_{t}$ under $\tilde{\mathcal{P}}_{t}$
- ii. \tilde{X}_t satisfies $\tilde{X}_t \geq 0$ for all t \tilde{P} -a.s.,
- iii. The process \tilde{Y} is non-negative and non-decreasing.

Definition

An admissible control system with initial condition $\tilde{x} \in \mathbb{R}_+$ is a tuple $(\tilde{\Sigma}, \tilde{W}, U, \tilde{Y}, \tilde{X})$, where $\tilde{\Sigma} = (\tilde{\Omega}, \tilde{\mathcal{F}}, \{\tilde{\mathcal{F}}_t\}, \tilde{P})$ is a filtered probability space, $\{\tilde{W}_t\}$ is a 1-dimensional $\tilde{\mathcal{F}}_t$ -adapted $(\tilde{y}, \tilde{\sigma})$ -BM, and the processes $\{U_t\}$, $\{\tilde{Y}_t\}$, $\{\tilde{X}_t\}$ have sample paths in $\mathbb{D}_{\mathcal{S}_1}(\mathbb{R}_+)$, $\mathbb{D}_{\mathbb{R}^l}(\mathbb{R}_+)$ and $\mathbb{D}_{\mathbb{R}}(\mathbb{R}_+)$, resp., are $\tilde{\mathcal{F}}_t$ -adapted and the following hold:

- i. For all $t,s\geq 0$, $\tilde{W}_{t+s}-\tilde{W}_{t}$ is independent of $\tilde{\mathcal{F}}_{t}$ under \tilde{P} ,
- ii. \tilde{X}_t satisfies $\tilde{X}_t \geq 0$ for all t \tilde{P} -a.s.,
- iii. The process \tilde{Y} is non-negative and non-decreasing.
 - $\tilde{\mathcal{A}}(\tilde{x})$ the set of all the admissible controls for the initial condition \tilde{x} .
 - Value function:

$$ilde{V}(ilde{x}) = \inf_{\substack{(U, ilde{Y}) \in ilde{\mathcal{A}}(ilde{x})}} ilde{J}(ilde{x}, (U, ilde{Y})), \qquad ilde{x} \in \mathbb{R}_+.$$

$$\begin{cases} -\frac{\tilde{\sigma}^2}{2}\frac{d^2v}{dx^2} - \tilde{y}\frac{dv}{dx} + xF\left(\frac{dv}{dx}\right) + \alpha v = 0, & 0 < x < \infty, \\ \frac{dv}{dx}(0) = 0, & |v(x)| \le C(1+x)^C, & x \in [0,\infty). \end{cases}$$

$$\begin{cases} -\frac{\tilde{\sigma}^2}{2}\frac{d^2v}{dx^2} - \tilde{y}\frac{dv}{dx} + xF\left(\frac{dv}{dx}\right) + \alpha v = 0, & 0 < x < \infty, \\ \frac{dv}{dx}(0) = 0, & |v(x)| \le C(1+x)^C, & x \in [0,\infty). \end{cases}$$

where

• $F(y) = \max_{u} g(u, y)$, u corresponds to the original control.

$$\begin{cases} -\frac{\tilde{\sigma}^2}{2}\frac{d^2v}{dx^2} - \tilde{y}\frac{dv}{dx} + xF\left(\frac{dv}{dx}\right) + \alpha v = 0, & 0 < x < \infty, \\ \frac{dv}{dx}(0) = 0, & |v(x)| \le C(1+x)^C, & x \in [0,\infty). \end{cases}$$

- $F(y) = \max_{u} g(u, y)$, u corresponds to the original control.
- \tilde{y} , $\tilde{\sigma}$ system parameters.

$$\begin{cases} -\frac{\tilde{\sigma}^2}{2}\frac{d^2v}{dx^2} - \tilde{y}\frac{dv}{dx} + xF\left(\frac{dv}{dx}\right) + \alpha v = 0, & 0 < x < \infty, \\ \frac{dv}{dx}(0) = 0, & |v(x)| \le C(1+x)^C, & x \in [0,\infty). \end{cases}$$

- $F(y) = \max_{u} g(u, y)$, u corresponds to the original control.
- \tilde{y} , $\tilde{\sigma}$ system parameters.
- \bullet The Bellman equation admits a unique classical solution the value function $\tilde{\mathcal{V}}$.

$$\begin{cases} -\frac{\tilde{\sigma}^2}{2}\frac{d^2v}{dx^2} - \tilde{y}\frac{dv}{dx} + xF\left(\frac{dv}{dx}\right) + \alpha v = 0, & 0 < x < \infty, \\ \frac{dv}{dx}(0) = 0, & |v(x)| \le C(1+x)^C, & x \in [0,\infty). \end{cases}$$

- $F(y) = \max_{u} g(u, y)$, u corresponds to the original control.
- \tilde{y} , $\tilde{\sigma}$ system parameters.
- ullet The Bellman equation admits a unique classical solution the value function $ilde{V}$.
- The optimal control is deduced from finding the maximum in $F(y) = \max_{u} g(u, y)$.

$$\begin{cases} & -\frac{\tilde{\sigma}^2}{2}\frac{d^2v}{dx^2} - \tilde{y}\frac{dv}{dx} + xF\left(\frac{dv}{dx}\right) + \alpha v = 0, & \quad 0 < x < \infty, \\ & \frac{dv}{dx}(0) = 0, & \quad |v(x)| \le C(1+x)^C, & \quad x \in [0,\infty). \end{cases}$$

- $F(y) = \max_{u} g(u, y)$, u corresponds to the original control.
- \tilde{y} , $\tilde{\sigma}$ system parameters.
- ullet The Bellman equation admits a unique classical solution the value function $ilde{V}$.
- The optimal control is deduced from finding the maximum in $F(y) = \max_{u} g(u, y)$.
- Can be solved numerically (equation in one variable).

Step 2- Solve BCP Optimal Control Derivation

•
$$g(u, y) = \theta \cdot uy - q \cdot u$$

Step 2- Solve BCP Optimal Control Derivation

•
$$g(u, y) = \theta \cdot uy - q \cdot u$$

•
$$u \in \{a \in \mathbb{R}^I_+ | \sum_i a_i = 1\}$$

Step 2- Solve BCP Optimal Control Derivation

•
$$g(u, y) = \theta \cdot uy - q \cdot u$$

•
$$u \in \{a \in \mathbb{R}^I_+ | \sum_i a_i = 1\}$$

 \Rightarrow The maximal solution is one of the extreme points:

$$u \in \{e_1, ..., e_I\}$$
- the standard basis

Step 2- Solve BCP Optimal Control Derivation

•
$$g(u, y) = \theta \cdot uy - q \cdot u$$

•
$$u \in \{a \in \mathbb{R}_+^I | \sum_i a_i = 1\}$$

⇒ The maximal solution is one of the extreme points:

$$u \in \{e_1, ..., e_I\}$$
- the standard basis

$$\Rightarrow F(y) = \max_{u} g(u, y) = \max_{i} \varphi_{i}(y), \qquad \varphi_{i}(y) = \theta_{i} y - c_{i} \mu_{i}, \quad y \in \mathbb{R}_{+}$$

• 3 different intervals for v': $[0,1),[1,3),[3,\infty)$

- 3 different intervals for v': $[0,1),[1,3),[3,\infty)$
- On each interval the control process satisfy $U = e_i$

- 3 different intervals for v': $[0,1),[1,3),[3,\infty)$
- On each interval the control process satisfy $U = e_i$ \rightarrow all the workload remains in the *i*-th class.

• v is nondecreasing and convex

- v is nondecreasing and convex
- The intervals for v' correspond to interval for \tilde{X} $[0,w_1),[w_1,w_2),[w_2,\infty)$

Ex. Below w_1 ([0, t_1), [t_2 , t_3),...): $U = e_1 \rightarrow$ least priority to class 1.

Step 2- Solve BCP The Optimal Control B^{n,*} - Definition

 \mathcal{K} is a minimal subset of \mathcal{I} such that $\max_{k \in \mathcal{K}} \varphi_k(y) = \max_{i \in \mathcal{I}} \varphi_i(y)$

The Optimal Control $B^{n,*}$ - Definition

 \mathcal{K} is a minimal subset of \mathcal{I} such that $\max_{k \in \mathcal{K}} \varphi_k(y) = \max_{i \in \mathcal{I}} \varphi_i(y)$ Assumptions:

$$c_1\mu_1 \leq c_2\mu_2 \leq \cdots \leq c_K\mu_K.$$

The Optimal Control $B^{n,*}$ - Definition

 \mathcal{K} is a minimal subset of \mathcal{I} such that $\max_{k \in \mathcal{K}} \varphi_k(y) = \max_{i \in \mathcal{I}} \varphi_i(y)$ Assumptions:

- $\{L_k\}_{k\in\mathcal{K}}$ a partition of $[0,\infty)$.

The Optimal Control $B^{n,*}$ - Definition

 \mathcal{K} is a minimal subset of \mathcal{I} such that $\max_{k \in \mathcal{K}} \varphi_k(y) = \max_{i \in \mathcal{I}} \varphi_i(y)$ Assumptions:

- **2** $\{L_k\}_{k\in\mathcal{K}}$ a partition of $[0,\infty)$.

The optimal policy:

The Optimal Control $B^{n,*}$ - Definition

 \mathcal{K} is a minimal subset of \mathcal{I} such that $\max_{k \in \mathcal{K}} \varphi_k(y) = \max_{i \in \mathcal{I}} \varphi_i(y)$ Assumptions:

- $\{L_k\}_{k\in\mathcal{K}}$ a partition of $[0,\infty)$.

The optimal policy:

Non-interruptible, non-idling policy that allows no processor sharing.

Step 2- Solve BCP The Optimal Control B^{n,*} - Definition

The Optimal Control B - - Definition

 \mathcal{K} is a minimal subset of \mathcal{I} such that $\max_{k \in \mathcal{K}} \varphi_k(y) = \max_{i \in \mathcal{I}} \varphi_i(y)$ Assumptions:

- **2** $\{L_k\}_{k\in\mathcal{K}}$ a partition of $[0,\infty)$.

The optimal policy:

- Non-interruptible, non-idling policy that allows no processor sharing.
- ② At time t, the server becomes available and some of the buffers are non-empty, the current value of the scaled workload \tilde{X}^n_t is computed and the **least priority class** k is set to be the unique i for which $\tilde{X}^n_t \in L_i$.

 \mathcal{K} is a minimal subset of \mathcal{I} such that $\max_{k \in \mathcal{K}} \varphi_k(y) = \max_{i \in \mathcal{I}} \varphi_i(y)$ Assumptions:

- $\{L_k\}_{k\in\mathcal{K}}$ a partition of $[0,\infty)$.

The optimal policy:

- Non-interruptible, non-idling policy that allows no processor sharing.
- ② At time t, the server becomes available and some of the buffers are non-empty, the current value of the scaled workload \tilde{X}^n_t is computed and the **least priority class** k is set to be the unique i for which $\tilde{X}^n_t \in L_i$.
- The customer to be served is then picked according to the ordering

$$(k+1, k+2, \ldots, l, 1, 2, \ldots, k).$$

Step 2- Solve BCP The Optimal Control - Example

$$\mathcal{I} = \{1, 2, 3, 4\}$$
, $\mathcal{K} = \{1, 2, 3\}$, $c_1\mu_1 \le c_2\mu_2 \le c_3\mu_3$

Step 2- Solve BCP The Optimal Control

• Dynamic index rule. Not static index rule as $c\mu$ or $c\mu/\theta$.

Step 2- Solve BCP The Optimal Control

• Dynamic index rule. **Not static index rule as** $c\mu$ **or** $c\mu/\theta$.

• When workload is low the server gives least priority to class with lowest $c\mu$ index.

Step 2- Solve BCP The Optimal Control

• Dynamic index rule. **Not static index rule as** $c\mu$ **or** $c\mu/\theta$.

• When workload is low the server gives least priority to class with lowest $c\mu$ index.

• When workload is high the server gives least priority to class with highest θ index.

Theorem

Let v denote the solution of the Bellman equation. Then i. The limit value is determined by the function v. In particular,

$$\lim_{n\to\infty} \hat{V}^n = v(m'x_0).$$

ii. The control process $B^{n,*}$ described above is AO, that is,

$$\lim_{n\to\infty}\hat{J}^n(B^{n,*})=v(m'x_0).$$

Step 3 - AO Main Result - Proof Steps

Two parts:

Step 3 - AO Main Result - Proof Steps

Two parts:

Lower bound:

For any sequence of admissible controls

$$\liminf_{n\to\infty} \hat{J}^n(B^n) \ge v(m'x_0).$$

Two parts:

Lower bound:

For any sequence of admissible controls

$$\liminf_{n\to\infty} \hat{J}^n(B^n) \ge v(m'x_0).$$

Upper bound:

Under the control process $B^{n,*}$ described earlier

$$\limsup_{n\to\infty} \hat{J}^n(B^{n,*}) \le v(m'x_0).$$

Step 3 - AO Main Result - Proof of the Upper Bound

• **Problem:** The process X is discontinuous with K-1 discontinuity points $w_1, ..., w_{K-1}$.

Step 3 - AO Main Result - Proof of the Upper Bound

• **Problem:** The process X is discontinuous with K-1 discontinuity points $w_1, ..., w_{K-1}$.

Solution:

• **Problem:** The process X is discontinuous with K-1 discontinuity points $w_1, ..., w_{K-1}$.

Solution:

• Show that in the interior of each interval $[w_i, w_{i+1})$ where the policy is fixed and gives least priority to class i, all the other classes (not the i-th class) empties. State Space Collapse property (SSC).

• **Problem:** The process X is discontinuous with K-1 discontinuity points $w_1, ..., w_{K-1}$.

Solution:

- **3** Show that in the interior of each interval $[w_i, w_{i+1})$ where the policy is fixed and gives least priority to class i, all the other classes (not the i-th class) empties. State Space Collapse property (SSC).
- ② Show that the time spent around the discontinuity points w_i is small \rightarrow can be neglected.

The G/G/1 Queue with Retrials The Model

2 stations: main and retrial.

- 2 stations: main and retrial.
 - Main station:
 - *G/G/*1 queue, finite buffer size b.

- 2 stations: main and retrial.
 - Main station:
 - *G/G/*1 queue, finite buffer size b.
 - Reject incoming customers when buffer full.

- 2 stations: main and retrial.
 - Main station:
 - *G*/*G*/1 queue, finite buffer size b.
 - Reject incoming customers when buffer full.
 - Each rejected customer move to the retrial station w.p. q.

- 2 stations: main and retrial.
 - Main station:
 - G/G/1 queue, finite buffer size b.
 - Reject incoming customers when buffer full.
 - Each rejected customer move to the retrial station w.p. q.
 - Retrial station:
 - Infinite number of exponential servers.

- 2 stations: main and retrial.
 - Main station:
 - *G/G/*1 queue, finite buffer size b.
 - Reject incoming customers when buffer full.
 - Each rejected customer move to the retrial station w.p. q.
 - Retrial station:
 - Infinite number of exponential servers.
 - Service rate μ .

- 2 stations: main and retrial.
 - Main station:
 - *G/G/*1 queue, finite buffer size b.
 - Reject incoming customers when buffer full.
 - Each rejected customer move to the retrial station w.p. q.
 - Retrial station:
 - Infinite number of exponential servers.
 - Service rate μ.
- First Problem: Diffusion limits.
- Second Problem: Optimizing b with cost

Related Work

- Avi Mandelbaum, William A Massey, and Martin I Reiman. Strong approximations for markovian service networks. Queueing Systems, 30(1):149–201, 1998
- ② GI Falin and JR Artalejo. Approximations for multiserver queues with balking/retrial discipline.
 OR G
 17(4) 222 244 1005

• As before, use diffusion scale to arrive to the diffusion model.

• As before, use diffusion scale to arrive to the diffusion model.

• The diffusion model consists of:

- As before, use diffusion scale to arrive to the diffusion model.
- The diffusion model consists of:
 - X(t)- number of customers in the main station (at time t).

- As before, use diffusion scale to arrive to the diffusion model.
- The diffusion model consists of:
 - X(t)- number of customers in the main station (at time t).
 - R(t)- number of customers in the retrial station (at time t).

- As before, use diffusion scale to arrive to the diffusion model.
- The diffusion model consists of:
 - X(t)- number of customers in the main station (at time t).
 - R(t)- number of customers in the retrial station (at time t).
 - C(t) rejections count, L(t) idle time. Keep the process X in [0,b].

First Problem - The Diffusion Limits

- As before, use diffusion scale to arrive to the diffusion model.
- The diffusion model consists of:
 - X(t)- number of customers in the main station (at time t).
 - R(t)- number of customers in the retrial station (at time t).
 - C(t) rejections count, L(t) idle time. Keep the process X in [0,b].
- The diffusion model is characterize using the Skorokhod Map on [0, b].

Definition

The Skorokhod Problem on [0, b] (Tanaka '79)

Given $\psi \in \mathcal{D}[0,\infty)$, find $(\phi,\eta_I,\eta_u) \in (\mathcal{D}[0,\infty))^3$, such that

- 2 η_I, η_u are non negative and non decreasing and one has

$$\int_{[0,\infty)} \mathbb{I}_{\{\phi(t)>0\}} d\eta_I(t) = 0, \qquad \int_{[0,\infty)} \mathbb{I}_{\{\phi(t)< b\}} d\eta_U(t) = 0.$$

Definition

The Skorokhod Problem on [0, b] (Tanaka '79)

Given $\psi \in \mathcal{D}[0,\infty)$, find $(\phi,\eta_I,\eta_u) \in (\mathcal{D}[0,\infty))^3$, such that

- 2 η_I, η_u are non negative and non decreasing and one has

$$\int_{[0,\infty)} \mathbb{I}_{\{\phi(t)>0\}} d\eta_I(t) = 0, \qquad \int_{[0,\infty)} \mathbb{I}_{\{\phi(t)< b\}} d\eta_u(t) = 0.$$

• Has a unique solution.

Definition

The Skorokhod Problem on [0, b] (Tanaka '79)

Given $\psi \in \mathcal{D}[0,\infty)$, find $(\phi,\eta_I,\eta_{II}) \in (\mathcal{D}[0,\infty))^3$, such that

- 2 η_I, η_u are non negative and non decreasing and one has

$$\int_{[0,\infty)} \mathbb{I}_{\{\phi(t)>0\}} d\eta_I(t) = 0, \qquad \int_{[0,\infty)} \mathbb{I}_{\{\phi(t)< b\}} d\eta_U(t) = 0.$$

- Has a unique solution.
- The solution is called the *Skorohod map* and is denoted by $\Gamma_{0,b}$.

Definition

The Skorokhod Problem on [0, b] (Tanaka '79)

Given $\psi \in \mathcal{D}[0,\infty)$, find $(\phi,\eta_I,\eta_u) \in (\mathcal{D}[0,\infty))^3$, such that

- 2 η_I, η_u are non negative and non decreasing and one has

$$\int_{[0,\infty)} \mathbb{I}_{\{\phi(t)>0\}} d\eta_I(t) = 0, \qquad \int_{[0,\infty)} \mathbb{I}_{\{\phi(t)< b\}} d\eta_U(t) = 0.$$

- Has a unique solution.
- The solution is called the *Skorohod map* and is denoted by $\Gamma_{0,b}$.
- Thus $(\phi, \eta_I, \eta_u) = \Gamma_{0,b}(\psi)$.

$$\begin{cases} (X, L, C) = \Gamma_{0,b}(Z) \\ Z(t) = x + \underbrace{W(t)}_{\text{BM}} + \int_0^t \mu R(s) ds \\ R(t) = r + qC(t) - \int_0^t \mu R(s) ds. \end{cases}$$

$$\begin{cases} (X, L, C) = \Gamma_{0,b}(Z) \\ Z(t) = x + \underbrace{W(t)}_{BM} + \int_0^t \mu R(s) ds \\ R(t) = r + qC(t) - \int_0^t \mu R(s) ds. \end{cases}$$

Reflection vector field:

$$\begin{cases} (X, L, C) = \Gamma_{0,b}(Z) \\ Z(t) = x + \underbrace{W(t)}_{\mathsf{BM}} + \int_0^t \mu R(s) ds \\ R(t) = r + qC(t) - \int_0^t \mu R(s) ds. \end{cases}$$

Reflection vector field:

Two dimensional reflected diffusion process which is degenerate in the second diffusion coefficient

First Problem - The Diffusion Limits

Theorem

As
$$n \to \infty$$
,

$$(\hat{X}^n, \hat{R}^n, \hat{L}^n, \hat{C}^n) \Rightarrow (X, R, L, C).$$

Second Result - The Diffusion Optimization Problem Definition

Cost:

$$\mathbb{E}\Big(\int_0^\infty e^{-lpha t}(c_1X(t)dt+c_2dC(t))\Big)$$

Second Result - The Diffusion Optimization Problem Definition

Cost:

$$\mathbb{E}\Big(\int_0^\infty e^{-lpha t}(c_1X(t)dt+c_2dC(t))\Big)$$

Not solvable as before:

Second Result - The Diffusion Optimization Problem Definition

Cost:

$$\mathbb{E}\Big(\int_0^\infty e^{-\alpha t}(c_1X(t)dt+c_2dC(t))\Big)$$

- Not solvable as before:
 - 1 Not solvable explicitly the Bellman equation is in two dimensions (correspond to (X, R))

Cost:

$$\mathbb{E}\Big(\int_0^\infty e^{-\alpha t}(c_1X(t)dt+c_2dC(t))\Big)$$

- Not solvable as before:
 - Not solvable explicitly the Bellman equation is in two dimensions (correspond to (X, R))
 - Not applicable the solution require knowledge of the number of customers in retrial (not observable).

Cost:

$$\mathbb{E}\Big(\int_0^\infty e^{-lpha t}(c_1X(t)dt+c_2dC(t))\Big)$$

- Not solvable as before:
 - ① Not solvable explicitly the Bellman equation is in two dimensions (correspond to (X, R))
 - Not applicable the solution require knowledge of the number of customers in retrial (not observable).
- New Goal: Optimize over buffer size b (using the diffusion model).

Cost:

$$\mathbb{E}\Big(\int_0^\infty e^{-\alpha t}(c_1X(t)dt+c_2dC(t))\Big)$$

- Not solvable as before:
 - ① Not solvable explicitly the Bellman equation is in two dimensions (correspond to (X, R))
 - Not applicable the solution require knowledge of the number of customers in retrial (not observable).
- New Goal: Optimize over buffer size b (using the diffusion model).
- Value:

$$V(x) = \inf_b \mathbb{E} \Big(\int_0^\infty e^{-\alpha t} (c_1 X(t) dt + c_2 dC(t)) \Big)$$

• Reduction to a 1-dimensional problem (SSC) for:

• Reduction to a 1-dimensional problem (SSC) for:

- Reduction to a 1-dimensional problem (SSC) for:

- Reduction to a 1-dimensional problem (SSC) for:

 - $\mu \to \infty$

• For general $\mu \in (0, \infty)$ - simulation.

Harrison Taksar '83.

Harrison Taksar '83.

• 1-dimensional problem.

Harrison Taksar '83.

• 1-dimensional problem.

• One server, infinite queue. No retrials.

Harrison Taksar '83.

• 1-dimensional problem.

- One server, infinite queue. No retrials.
- Controls the buffer size to minimize the same cost.

$$\begin{cases} (\tilde{X}, \tilde{L}, \tilde{C}) = \Gamma_{0,b}(x+W), & \text{where } W \text{ is a BM} \\ J^b_{\mathrm{HT}}[x; c_1, c_2] = \mathbb{E} \int_0^\infty e^{-\alpha t} [c_1 \tilde{X}_t + c_2 \tilde{C}_t] dt, \end{cases}$$

$$\begin{cases} (\tilde{X}, \tilde{L}, \tilde{C}) = \Gamma_{0,b}(x+W), & \text{where } W \text{ is a BM} \\ J^b_{\mathrm{HT}}[x; c_1, c_2] = \mathbb{E} \int_0^\infty e^{-\alpha t} [c_1 \tilde{X}_t + c_2 \tilde{C}_t] dt, \end{cases}$$

• Has a unique optimal buffer size: $b_{\mathrm{HT}}[c_1,c_2]$.

$$\begin{cases} (\tilde{X}, \tilde{L}, \tilde{C}) = \Gamma_{0,b}(x+W), & \text{where } W \text{ is a BM} \\ J^b_{\mathrm{HT}}[x; c_1, c_2] = \mathbb{E} \int_0^\infty e^{-\alpha t} [c_1 \tilde{X}_t + c_2 \tilde{C}_t] dt, \end{cases}$$

- Has a unique optimal buffer size: $b_{\text{HT}}[c_1, c_2]$.
- The value function

$$v[x; c_1, c_2] = \inf_{b \in (0, \infty)} J_{\mathrm{HT}}^b[x; c_1, c_2].$$

is the unique solution to a 1-dimensional Bellman equation:

$$\begin{cases} \frac{1}{2}\sigma^2 f'' + \hat{y}f' - \alpha f + c_1 = 0, & \text{in } (0, b_0), \\ f'(0) = 0, & f'(b_0) = \frac{c_2}{\alpha}. \end{cases}$$

(unknowns: f and b_0)

Second Result - The Diffusion Optimization Problem The Case $\mu \to 0$

Theorem

One has

$$\liminf_{\mu \to 0} \liminf_{n \to \infty} V^{n,\mu} = \limsup_{\mu \to 0} \limsup_{n \to \infty} V^{n,\mu} = v[x;c_1,c_2],$$

and $b_{\mathrm{HT}}[c_1,c_2]$ is an AO scaled buffer size, namely, with $b=b_{\mathrm{HT}}[c_1,c_2]$,

$$\liminf_{\mu \to 0} \liminf_{n \to \infty} J^{n,\mu,b} = \limsup_{\mu \to 0} \limsup_{n \to \infty} J^{n,\mu,b} = v[x;c_1,c_2].$$

Theorem

One has

$$\liminf_{\mu \to \infty} \liminf_{n \to \infty} V^{n,\mu} = \limsup_{\mu \to \infty} \limsup_{n \to \infty} V^{n,\mu} = v[x; c_1, \frac{c_2}{p}].$$

Moreover, $b_{\rm HT}[c_1,\frac{c_2}{p}]$ is an AO scaled buffer size, in the sense that, with $b=b_{\rm HT}[c_1,\frac{c_2}{p}]$,

$$\liminf_{\mu \to \infty} \liminf_{n \to \infty} J^{n,\mu,b} = \limsup_{\mu \to \infty} \limsup_{n \to \infty} J^{n,\mu,b} = v[x; c_1, \frac{c_2}{p}].$$

Acknowledgments

• Advisor: Prof. Rami Atar

Probability group members

• Administration: Orly Babad-Tamir and Danit Cohen

Andrew and Erna Viterbi Faculty of Electrical Engineering

Acknowledgments

Acknowledgments

Thank You!