Context-Free Grammars

Context-Free Grammars

Definition

A context-free grammar G is defined by the 4-tuple

 $G = (V, \Sigma, R, S)$ where

- 1. V is a finite set, each element $v \in V$ is called a nonterminal character or a **variable**. Each variable defines a sub-language of the language defined by G
- 2. Σ is a finite set of **terminals**, disjoint from V. The set of terminals is the alphabet of the language defined by the grammar G
- 3. R is a finite relation from V to $(V \cup \Sigma)^*$, where the asterisk represents the Kleene star operation. The members of R are called the *(rewrite) rules* or **productions** of the grammar.
- 4. S is the start variable (or start symbol), used to present the whole sentence. It must be an element of V

A production has the form: variable (head) \rightarrow strings of variables and terminals (body)

Derivation

有两种应用 CFG 的产生式来推断某个特定 string 是否在某个特定 variable 定义的语言之中的方法

- Body to head: 选择 body 中各个 variable 的 language 中的串,将其与 body 中的 terminals 以正确的顺序连接,其结果在 head 中的 variable 定义的语言中。称为 recursive inference
- Head to body: 将开始符号用某个产生式展开,再将结果中的 variable 用其产生式展开,重复上述过程直至得到一个全部由 terminal 组成的串,所有这样的串组成了 CFG 定义的语言。这样的过程称为 **derivation**

为了定义 derivation,定义一个新的符号 \Rightarrow 。设 G=(V,T,P,S) 是 CFG,令 $\alpha A \beta$ 为一个由 terminal 与 variable 组成的串,其中 A 为 variable, $\alpha,\beta\in(V\cup T)^*$ 。令 $A\to\gamma$ 为一个产生式,则

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

可以递归定义零次或多次 derivation ⇒

Basis. $\alpha \stackrel{*}{\Rightarrow} \alpha$ for any string $\alpha \in (V \cup T)^*$

Induction. If $\alpha \stackrel{*}{\Rightarrow} \beta$ and $\beta \Rightarrow \gamma$, then $\alpha \stackrel{*}{\Rightarrow} \gamma$

为了限制 derivation 时的选择,引入 leftmost derivation 与 rightmost derivation

- leftmost derivation: at each step we replace the **leftmost variable** by one of its production bodies, \Rightarrow
- rightmost derivation: at each step we replace the **rightmost variable** by one of its production bodies, ⇒

The Language of a Grammar

If G = (V, T, P, S) , the language of G, denoted L(G) is

$$L(G) = \{w \in T^* : S \stackrel{*}{\Rightarrow} w\}$$

L(G) is a context-free language (CFL)

For a CFG G = (V, T, P, S)

sentential form: $\alpha \in (V \cup T), S \stackrel{*}{\Rightarrow} \alpha$

left-sentential form: $\alpha \in (V \cup T), S \overset{*}{\underset{\operatorname{lm}}{\Rightarrow}} \alpha$

CFG 定义的语言集合比 RE 定义的语言集合要广

BNF Notation

BNF (Backus-Naur Form) is a notation technique for CFG

- Variables are words in <>
- Terminals are multicharacter strings indecated by boldface or underline
- ::= is used for \rightarrow
- | is used for "or"
- ... is used for one or more. e. g. BNF: α ... CFG: $A \to A\alpha \mid \alpha$
- Symbols surrounded by [] is optional. e. g. BNF: [lpha] CFG: $A
 ightarrow lpha \mid \epsilon$
- Grouping: {}

Parse Trees

Definition

Given a grammar G=(V,T,P,S) , the parse trees for G are trees with the following conditions

- ullet Each interior node is labeled by a **variable** in V
- Each leaf is labeled by either a **variable**, a **terminal**, or ϵ . However, if the leaf is labeled ϵ , then it must be the **only child** of its parent
- If an interior node is labeled A, and its children are labeled X_1,X_2,\dots,X_k , then $A \to X_1 X_2 \dots X_k$ is a production in P

将 parse tree 叶节点的 labels 从左向右连接起来,得到的串称为这颗树的 yield yield 是从 root variable 推导得到的。有一种特殊的 parse tree

- The yield is a terminal string
- The root is labeled by start symbol

这样的 parse tree, 其 yield 是属于该文法的串

Inference, Derivations, and Parse trees

Given a grammar G = (V, T, P, S), the following are equivalent

- $\bullet\,$ The recursive infererence procedure determines that terminal string w is in the language of A
- $A \stackrel{*}{\Rightarrow} w$
- $A \stackrel{*}{\Rightarrow} w$
- $A \stackrel{*}{\underset{\mathrm{rm}}{\Rightarrow}} w$
- ullet There is a parse tree with root A and yield w

等价性的证明将按照下图的箭头

From Inferences to Trees

Let G=(V,T,P,S) be a CFG. If the recursive inference procedure tells us that terminal string w is in the language of variable A, then there is a parse tree with root A and yield w

Proof. Induction on the number of step used to infer that \boldsymbol{w} is in the language of \boldsymbol{A}

Basis. 只用一步推断,故有生成式 $A\to w$,则必有一颗 parse tree 以 A 为根且所有 A 的子节点都为叶节点且组成 w 。特殊情况下 $w=\epsilon$,则 A 的唯一子节点为 ϵ ,仍为合法 parse tree

Induction. 假设经过 n+1 步推断得出 w 属于 A 的语言。考虑推断最后一步,使用的产生式为 $A\to X_1X_2\dots X_k$,其中每个 X_i 或是 variable 或是 terminal

令 $w = w_1 w_2 \dots w_k$ 满足

- 1. 如果 X_i 是 terminal, $w_i = X_i$
- 2. 如果 X_i 是 variable,则 w_i 是经过推断得出在 X_i 的语言中的一个 string。在 n+1 步推断出 w 在 A 的过程中这次推断最多有 n 步。故根据 I. H. ,存在一颗 parse tree 根为 X_i ,yield 为 w_i

故可以构造出一颗 parse tree 根为 A 且子节点为 X_1, X_2, \ldots, X_k ,对于每个子树 X_i ,若为 terminal,则只有其本身一个节点,若为 variable,则其为一颗 parse tree,根为 X_i ,yield 为 w_i

如此构造出的 parse tree 根为 A ,其 yield 为子树的 yields 从左到右连接,即 $w_1w_2\dots w_k=w$

From Trees to Derivations

Let G=(V,T,P,S) be a CFG, and suppose there is a parse tree with root labeled by variable A and with yield w, where w is in T^* . Then there is a leftmost derivation $A \overset{*}{\Rightarrow} w$ in grammar G

Proof. perform an induction on the height of tree.

Basis. 考虑高度为 1 的情况,则这棵树以 A 为根且所有 A 的子节点都为叶节点且组成 w 。根据 parse tree 的定义,存在产生式 $A\to w$,则最左推导为 $A\Rightarrow w$

Induction. 考虑高度为 n 时,则 A 必有子节点 $X_1, X_2, \ldots X_k$,其中每个 X_i 或是 variable 或是 terminal

- 1. X_i 为 terminal,定义 w_i 为只有 X_i 的 string
- 2. X_i 为 variable,则其一定为某颗子树的根,且有 yield w_i 。显然子树的高度小于 n ,根据 I. H. 有 $X_i \overset{*}{\underset{\mapsto}{\mapsto}} w_i$

则可以构造出一个最左推导,第一步是 $A \underset{\text{lm}}{\Rightarrow} X_1 X_2 \dots X_k$

对 i = 1, 2, ..., k 有

$$A \overset{*}{\underset{
m lm}{\Rightarrow}} w_1 w_2 \dots w_i X_{i+1} \dots X_k$$

Proof. Induction on i

Basis.
$$i=0, A \Rightarrow X_1 X_2 \dots X_k$$

I. H.
$$A \overset{*}{\Rightarrow} w_1 w_2 \dots w_{i-1} X_i \dots X_k$$

Induction.

- 1. 如果 X_i 是 terminal,则 $w_i=X_i$,显然有 $A\stackrel{*}{\Rightarrow} w_1w_2\dots w_iX_{i+1}\dots X_k$
- 2. 如果 X_i 是 variable,根据之前的 I. H. 有 $X_i \stackrel{*}{\underset{
 m lm}{\Rightarrow}} w_i$,令其为

$$X_i \underset{lm}{\Rightarrow} lpha_1 \underset{lm}{\Rightarrow} lpha_2 \cdots \underset{lm}{\Rightarrow} w_i$$
,则有 $w_1 w_2 \cdots w_{i-1} X_i X_{i+1} \cdots X_k \underset{lm}{\Rightarrow} w_1 w_2 \cdots w_{i-1} lpha_1 X_{i+1} \cdots X_k \underset{lm}{\Rightarrow} w_1 w_2 \cdots w_{i-1} lpha_2 X_{i+1} \cdots X_k \underset{lm}{\Rightarrow} \cdots w_1 w_2 \cdots w_i X_{i+1} X_{i+2} \cdots X_k$

可得
$$A \stackrel{*}{\mathop{\Rightarrow}} w_1 w_2 \dots w_i X_{i+1} \dots X_k$$

根据上述证明,在 i=k 时有 $A\overset{*}{\underset{\mathrm{lm}}{\Rightarrow}}w$

Let G=(V,T,P,S) be a CFG, and suppose there is a parse tree with root labeled by variable A and with yield w, where w is in T^* . Then there is a rightmost derivation $A \overset{*}{\Rightarrow} w$ in grammar G

证明同 leftmost derivation,事实上对于一般的 derivation 也有上述结论

From Derivations to Recursive Inference

Let G=(V,T,P,S) be a CFG, and suppose there is a derivation $A\stackrel{*}{\Rightarrow} w$, where w is in T^* . Then the recursive inference procedure applied to G determines that w is in the language of variable A

Proof. Induction on the length of the derivation $A\stackrel{*}{\Rightarrow} w$

Basis. 推导仅有一步时必有产生式 $A \to w$,则根据 recursive inference 的 basis 即可得出 w 在 A 的语言中

Induction. 假设推导有 n+1 步,则 $A\Rightarrow X_1X_2\cdots X_k\stackrel{*}{\Rightarrow} w$,可令 $w=w_1w_2\dots w_k$,其中 $X_i\stackrel{*}{\Rightarrow} w_i$

- 1. 如果 X_i 是 terminal, $X_i = w_i$
- 2. 如果 X_i 是 variable,则 $X_i \stackrel{*}{\Rightarrow} w_i$ 的推导肯定小于 n+1 步,则根据 I. H. ,recursive inference 得出 w_i 在 X_i 的语言中

根据以上结论,易得根据 recursive inference 有 $w_1w_2 \dots w_k = w$ 在 A 的语言中

Ambiguity in Grammars and Languages

Ambiguous Grammars

对于同一个串可以得到一颗以上 parse tree 的文法就是 ambiguous 的,显然根据不同的 parse tree 可以得到不同的最左/最右推导

ambiguous 是 **grammar** 而非 **language** 的属性。有些 ambiguous 的文法在修改 后可以得到定义同样语言但 unambiguous 的文法

LL(1) grammars are unambiguous

消歧:结合性/优先级/修改文法

Inherent Ambiguity

Certain CFLs are **inherently ambiguous**, meaning that every grammar for the language is ambiguous

e. g.
$$L = \{0^i 1^j 2^k : i = j \text{ or } j = k\}$$

Normal Forms for CFGs

Eliminating Useless Symbols

A symbol X is **useful** for a grammar G=(V,T,P,S) if there is some derivation of the form $S\stackrel{*}{\Rightarrow} \alpha X\beta \stackrel{*}{\Rightarrow} w$, where w is in T^*

从文法中删去 useless 的 symbol 并不会改变 CFG 定义的语言。一个 useful 的 symbol 具有以下两种属性

ullet generating: $X\stackrel{*}{\Rightarrow} w$ for some terminal string w. Every terminal is generating

• reachable: $S \stackrel{*}{\Rightarrow} \alpha X \beta$ for some α and β

先删去所有非 generating 的 symbol,再删去所有 unreachable 的 symbol 即可使 其余的 symbol 均为 useful

Let G=(V,T,P,S) be a CFG, and assume that $L(G)\neq\varnothing$. Let $G_1=(V_1,T_1,P_1,S)$ be the grammar we obtain by the following steps:

- 1. First eliminate nongenerating symbols and all productions involving one or more of those symbols. Let $G_2=(V_2,T_2,P_2,S)$ be this new grammar. S must be generating, since $L(G)\neq\varnothing$
- 2. Second, eliminate all symbols that are not reachable in the grammar G_2

Then G_1 has no useless symbols, and $L(G_1) = L(G)$

Proof. 考虑 X 是未被消除的 symbol,即 $X\in V_1\cup T_1$,显然 $X\overset{*}{\underset{G}{\Rightarrow}}w$,且在此推导过程中的所有 symbol 都是 generating 的,即 $X\overset{*}{\underset{G_2}{\Rightarrow}}w$

同样的,可以知道 $S \overset{*}{\underset{G_2}{\Rightarrow}} \alpha X \beta$,且在此推导过程中每个 symbol 都是 reachable 的,即 $S \overset{*}{\underset{G_1}{\Rightarrow}} \alpha X \beta$ 。易得 $\alpha X \beta$ 中的符号都是 reachable ,且在 G_2 中都是 generating 。故 $\alpha X \beta \overset{*}{\underset{G_2}{\Rightarrow}} xwy$,显然这个过程中的 symbol 都是 reachable,因此

$$S \overset{*}{\underset{G_{1}}{\Rightarrow}} lpha X eta \overset{*}{\underset{G_{1}}{\Rightarrow}} xwy$$

即任意取 G_1 中的 symbolX,X是 useful

只需证明 $L(G_1) = L(G)$

- $L(G_1) \subseteq L(G)$: trivial,我们通过消除产生式和符号得到 G_1
- $L(G)\subseteq L(G_1)$: 若 $w\in L(G)$,存在一个推导 $S\overset{*}{\underset{G}{\Rightarrow}}w$,显然这个推导路径上所有符号都是 generating 且 reachable。故 $S\overset{*}{\underset{G_1}{\Rightarrow}}w,w\in L(G_1)$

Computing the Generating and Reachable Symbols

Let G = (V, T, P, S) be a grammar

Generating

找出所有的 generating symbol 是一个递归的过程

Basis. 所有 T 中的 symbol 都是 generating

Induction. 考虑 $A \to \alpha$,若 α 中所有符号都是 generating,则 A 也是 generating

上述算法可以找出 G 中所有的 generating symbol,i. e. 没被找出的都是 nongenerating

Proof. 显然可以得出所有算法找出的 symbol 都是 generating。只需证明所有 generating symbol 都会被算法找出。考虑 $X \overset{*}{\underset{G}{\mapsto}} w$,根据推导长度归纳

Basis. 0 步的推导,则 X 是 terminal,根据 basis,其是 generating

Induction. 考虑推导 n 步的情况,则 X 是 variable,有 $X \Rightarrow \alpha \stackrel{*}{\Rightarrow} w$,其中 α 的每个 symbol 都经过少于 n 步推导出 w 的一部分,根据 I. H. , α 中所有的 symbol 都是 generating,则根据算法的 induction 部分,X 也是 generating

Reachable

找出 reachable symbol 的过程同样是一个递归的过程

Basis. S is reachable

Induction. 若 A 是 reachable,则 A 的所有产生式体中的 symbol 都是 reachable 上述算法可以找出 G 中所有 reachable symbol,证明类似。

Eliminating ϵ -Productions

 ϵ -production: $A o \epsilon$

If language L has a CFG, then $L-\{\epsilon\}$ has a CFG without ϵ -production

Nullable: A variable A is nullable if $A\overset{*}{\Rightarrow}\epsilon$

寻找 nullable symbol 的算法是一个递归的过程

Basis. If $A
ightarrow \epsilon$ is a production of G, A is nullable

Induction. 考虑 $A \to \alpha$,若 α 中所有符号都是 nullable,则 A 是 nullable, α 中所有 symbol 都是 variable,因为 nullable 是针对 variable 而言的

上述算法可以找到 G 中所有 nullable symbol

Proof. 根据算法的归纳过程易得所有算法找出的 variable 都是 nullable,只需证明 所有 nullable variable 都会被算法找出。证明的过程是对 $A\stackrel{*}{\Rightarrow}\epsilon$ 的最短推导长度的 归纳

Basis. 仅有一步推导,则 $A \to \epsilon$,从算法的 basis 即可发现 A 是 nullable

Induction. 考虑推导 n 步的情况,即 $A \Rightarrow C_1C_2 \dots C_k \stackrel{*}{\Rightarrow} \epsilon$,其中每个 C_i 都经过少于 n 步推导得出 ϵ ,则根据 I. H. ,它们均为 nullable,则根据算法的 induction 部分,A 也是 nullable

找出所有 nullable variable 后即可构造没有 ϵ -production 的 CFG。考虑产生式 $A \to X_1 X_2 \dots X_k$,考虑其中有 m 个 nullable symbol,则在新 CFG 中加入 2^m 个产生式(每个 nullable symbol 都有可能出现/不出现),例外是当 m=k 时,不加入所有 X_i 都不出现的产生式(即不加入 $A \to \epsilon$)。若有产生式 $A \to \epsilon$,则新 CFG 不加入该产生式

设经过上述过程后生成的新文法为 G_1 ,则 $L(G_1) = L(G) - \{\epsilon\}$

Proof. 只需证明对于任意 G 中的 variable A 有

$$A \overset{*}{\underset{G_{1}}{\Rightarrow}} w \iff A \overset{*}{\underset{G}{\Rightarrow}} w \text{ and } w \neq \epsilon$$

(⇒): 考虑 $A \overset{*}{\underset{G_1}{\Rightarrow}} w$,显然 $w \neq \epsilon$,因为 G_1 中没有 ϵ -production。对推导长度归纳以证明 $A \overset{*}{\underset{G}{\Rightarrow}} w$

Basis. 一步推导,则 $A\to w$ 是 G_1 中的产生式。根据 G_1 的构造过程,G 中存在产生式 $A\to \alpha$ 满足 α 为 w 其中加上 0 个或多个 nullable variable,则 $A\Rightarrow \alpha \overset{*}{\underset{G}{\Rightarrow}} w$,其中 nullable 的产生式都推导出了 ϵ

Induction. 考虑 n 步推导,则 $A\underset{G_1}{\Rightarrow} X_1X_2\dots X_k \overset{*}{\underset{G_1}{\Rightarrow}} w$ 。显然在 G 中有产生式 $A\to \alpha$,满足 α 为 $X_1X_2\dots X_k$ 其中加上 0 个或多个 nullable variable。同样,可以将 w 分为 $w_1w_2\dots w_k$ 其中 $X_i\overset{*}{\underset{G_1}{\Rightarrow}} w_i$,由于推导步数小于 n ,根据 I. H. 可以 得到 $X_i\overset{*}{\underset{G}{\Rightarrow}} w_i$,则存在推导

$$A \overset{*}{\underset{G}{\Rightarrow}} lpha \overset{*}{\underset{G}{\Rightarrow}} X_1 X_2 \dots X_k \overset{*}{\underset{G}{\Rightarrow}} w$$

(⇐): 同样是根据推导长度归纳

一般情况的 variable 可证,令 S=A 即可证明上述结论

Eliminating Unit Productions

Unit production: $A \to B$, both A, B are variables

Unit pair: (A,B) such that $A\overset{*}{\Rightarrow}B$ using only unit productions

可以递归地构造 unit pair

Basis. (A, A) is a unit pair

Induction. 若 (A,B) 是 unit pair, $B \to C$ 是产生式且 C 是 variable,则 (A,C) 是 unit pair

上述算法可以找出所有 unit pair

Proof. 只用证明文法中所有 unit pair 都被算法找到。根据 $A\stackrel{*}{\Rightarrow} B$ 推导长度归纳 Basis. 0 步,则 A=B,显然在算法的 basis 阶段就找到

Induction. 考虑 n 步推导,则有 $A\stackrel{*}{\Rightarrow}C\Rightarrow B$,考虑 $A\stackrel{*}{\Rightarrow}C$,这个推导只用了 n-1 步,根据 I. H. , (A,C) 被找到,则根据算法的 induction 部分, (A,B) 被找到

找到所有 unit pair 之后,可以构造没有 unit pair 的文法

对于每个 (A,B) ,若 $B \to \alpha$ 是个 nonunit production,则将 $A \to \alpha$ 加入新文法。

可以证明通过上述过程得到的新文法 G_1 ,有 $L(G_1)=L(G)$

Proof. 只需证明

$$w \in L(G_1) \iff w \in L(G)$$

 (\Rightarrow) : 考虑 $S \underset{G_1}{\overset{*}{\Rightarrow}} w$,由于 G_1 中每个产生式都等价于一个产生式序列,包含 0 个或多个 unit production 和一个 nonunit production,其中每个产生式都是 G 的产生式,即 $\alpha \underset{G_1}{\Rightarrow} \beta$ 可以得出 $\alpha \underset{G}{\overset{*}{\Rightarrow}} \beta$,则每一步 G_1 中的推导都可以替换为多步 G 中的推导,即 $S \underset{G}{\overset{*}{\Rightarrow}} w$

(⇒): 考虑 $S \underset{G}{\overset{*}{\Rightarrow}} w$,则必有一个对应的最左推导,在最左推导中,每个 unit production 在被替换后其 body 成为最左的 variable,然后被替换,则推导的产生式应用的序列可以看作 0 个或多个 unit production 接着一个 nonunit production,这其中每一步(unit production* + nonunit production)都是 G_1 中的一个 production,则有 $S \underset{G_1}{\overset{*}{\Rightarrow}} w$

Chomsky Normal Form

简化一个 CFG 只要按顺序

- 1. Eliminate ϵ -production
- 2. Eliminate unit production
- 3. Eliminate useless symbols

即可得到没有 ϵ -production, unit production, useless symbol 的等价的 CFG

可以证明任何没有 ϵ 的非空 CFL 都有一个文法 G ,其中任意产生式都是以下两种形式之一

- 1. $A \rightarrow BC$,其中 A, B, C 都是 variable
- 2. A
 ightarrow a , 其中 A 是 variable, a 是 terminal

且 G 中没有 useless symbols,这样的文法称为 Chomsky Normal Form, CNF 将文法按照上述步骤简化后,产生式只有两种可能

- 1. A o a ,已经满足 CNF
- 2. A
 ightarrow lpha , 其中 $|lpha| \geqslant 2$

对于第二种情况,可以按照以下步骤处理

- 将 body 转变为只含 variable
- 将长度大于 2 的 body 拆成一个链

对于第一步,考虑一个长度大于等于 2 的 body 其中的 terminal a_i ,为每个 a_i 引入一个 variable A_i 以及产生式 $A_i \to a_i$,然后将 body 中所有 a_i 替换为 A_i 即可

对于第二步,考虑产生式 $A \to B_1B_2 \dots B_k$,引入 k-2 个 variable C_1,C_2,\dots,C_{k-2} ,将产生式替换为

$$A o B_1C_1, C_1 o B_2C_2, \dots, C_{k-3} o B_{k-2}C_{k-2}, C_{k-2} o B_{k-1}B_k$$

若 G 是 CFG 且其中除 ϵ 外至少有一个 string,则有一个 CNF 文法 G_1 满足 $L(G_1) = L(G) - \{\epsilon\}$

证明见课本 P.245