

Introduction to HPCC Systems

Dan S. Camper, Sr. Architect, HPCC Solutions Lab Lili Xu, Software Engineer III, HPCC Solutions Lab

February 9, 2019

By Year 2020

1.7 Megabytes of data /
 second for every human
 being

Our accumulated universe
 of data will grow from 4.4

Zettabytes today to 44

Zettabytes by 2020

Data Scientists need in 2018

- 500,000 Jobs available
- Only 200,000 available Data Scientists to fill these positions

Anatomy of a Big Data processing system

Big Data Workflow

HPCC Systems Intro

High Performance Computing Cluster (HPCC)

ECL: What is it?

- Declarative Programming Language
 - "... a programming paradigm ... that expresses the logic of a computation without describing its control flow." Wikipedia
- Designed For Big Data Scenarios
- Any Cluster Size
- Source-to-source compiler
 - ECL code translated to C++ that is compiled to shared libraries and executed within a custom framework
- Useful Documentation (these links are in the #general Slack channel)
 - Language Reference
 - https://hpccsystems.com/training/documentation/ecl-language-reference/html
 - Standard Library
 - https://hpccsystems.com/training/documentation/standard-library-reference/html

ECL: Basic, But Important, Stuff

- Two Statement Types
 - Definition
 - Assign an expression to an attribute
 - Action
 - Actually do something that affects the outside world
- Plot Twist
 - You can define an attribute as an action

ECL: Common Data Types

- Character
 - STRING[n]
 - UTF8
 - UNICODE[_locale][n]
- Numeric
 - INTEGER[n]
 - UNSIGNED[n]
 - REAL[n]
 - DECIMAL<n>[_y]
 - UDECIMAL<n>[_y]

- Other
 - BOOLEAN
 - SET OF <type>
 - RECORD
 - DATASET

ECL: Important Minutia

- Case-insensitive
- Whitespace insensitive (within reason)
- String literals are quoted with apostrophes
- Semicolon terminator
- C++/Java style commenting
- Definition (assignment) operator is :=
- Equality test operator is =
- Attributes can be defined only once
- Single-pass code parser
 - Only previously-defined attributes can be referenced
- Only those definitions that contribute to a result are actually compiled and used
- There are no loops

ECL and SQL

```
CREATE TABLE

new_data

SELECT

fname,

mname,

lname,

age + 1 AS age,

2019 AS current_year

FROM

input_data;
```

ECL and SQL

```
TABLE
{
    input_data,
    {
       make,
       model,
       DECIMAL8_2 ave_price := AVE(GROUP, sale_price)
    },
    make, model
};
```

```
SELECT
   make, model, AVE(sale_price) AS ave_price
FROM
   input_data
GROUP BY
   make, model
ORDER BY
   make, model;
```

Machine Learning on HPCC Systems Platform

Prediction

NYC Taxi Data

48 GB
241M RECORDS
JAN 2015 – JUN 2016
16 MONTH
W/ WEATHER INFO

HPCC Systems Machine Learning

Step 1: Setup the model

Model := LogisticRegression(100, 0.001);

Step 2: Train the model

Training := Model.Fit(Training Data)

Step 3: Test the model

Testing := Model.Predict(Testing Data)

Feature Engineer

wi	Classifier	Class	Precision	Recall	FPR
1	1	1	0.428571429	0.486486486	0.533333333
1	1	0	0.525	0.46666667	0.513513514

wi	Classifier	Class	Precision	Recall	FPR
1	1	0	0.333	0.031	0.040
1	1	1	0.608	0.960	0.969

HPCC Systems Workshop Cluster

http://18.224.252.139:8010

Workshop Codebase

https://github.com/lilyclemson/Train

ECL-Watch -- A Big Data Application Monitor

ECL Playground -- Online IDE

Easy Test on HPCC Systems Platform

ECL Playground Cont.,

NYC Taxi Data

vendo	tpep_pickup_datetime	tpep_dropoff_datetime	passe	trip_	pickup_longitude	pi	ickup	p_latitude		rate_	store	dropoff_longitude	dropo	ff_latitude	
2	2016-06-09 21:06:36	2016-06-09 21:13:08	2	.79	.79 -73.983360290527		40.760936737060547		1	N	-73.9774627685546	88 40.75	3978729248047		
2	2016-06-09 21:06:36	2016-06-09 21:35:11	1	5.22	-73.981719970703	125 40	736	6667633056641		1	N	-73.9816360473632	81 40.67	0242309570313	
2	2016-06-09 21:06:36	2016-06-09 21:13:10	1	1.26	-73.994316101074	219 40	751	1071929931641		1	N	-74.0042343139648	44 40.74	2168426513672	
2	2016-06-09 21:06:36	2016-06-09 21:36:10	1	7.39	-73.982360839843	75 40	773	3891448974609		1	N	-73.9294662475585	94 40.85	1539611816406	
2	2016-06-09 21:06:36	2016-06-09 21:23:23 date	1	3 10	-73 987106323242			2173370361328	D.110.5	1 dodata	N t ensi t	-73 9859085083007	windspe	5445159912109	v cloudcover
2	2016-06-09 21:06:36	2016-06-09 21:		ites_a	fter_midnight	_				•	renst				-
2	2016-06-09 21:06:36	20150103	720			Clear			0.00			rain	8.39	3.03	0
1	2016-06-09 21:06:37	2016-06-09 21: 20150103	780			Overca	. 36	5.25	0.00	8		rain	7.4	3.25	1
1	2016-06-09 21:06:37	2016-06-09 21: 20150103	840			Light	0		34.69			0.028	0	7.04	1.59
1	2016-06-09 21:06:37	2016-06-09 21: 20150103	900			Light			34.86			0.036	0	5.75	1.61
1		2016-06-09 21: 20150103	960	960		Light	t 0		35.49			0.044	0	7.44	1.58
2	2016-06-09 21:06:37	2016-06-09 21: 20150103	1026	9		Light	0		36.38			0.038	0	7.46	2.61
2	2016-06-09 21:06:37	2016-06-09 21:(20150103	1086	9		Light	0		37.7	'5		0.043	0	7.32	2.66
2	2016-06-09 21:06:37	2016-06-09 21: 20150103	1146	9		Rain	39	9.04	0.06	9		rain	7.31	3	1
		20150103	1200	9		Rain	39	9.97	0.06	5		rain	8.47	2.31	0
	NYC Taxi Tri	n Data 20150103	1266	9		Light	0		40.7	9		0.031	0	8.31	2.43
		20150103	1326	9		Light	0		40.7	8		0.03	0	8.24	2.16
		20150103	1386	9		Light	0		40.9	1		0.028	0	8.36	1.98

Sample 1: READ Data

Step 1: Define Dataframe

Step2: Import Data

```
//Define data directory
Path := '~yellow_tripdata_2016-06.csv';
Read_data := DATASET( PATH, Layout, CSV(HEADING(1) ));
```

Sample 2: Transform Data

Step 1: Define Dataframe

```
Layout := RECORD

Date.Date_t date;
Date.Time_t time;
UNSIGNED2 minutes_after_midnight;
END;
```

Step2: Transform Data

```
Reform_data := PROJECT( data, TRANSFORM( Layout,

SELF.date := Std.Date.FromStringToDate(LEFT.tpep_pickup_datetime[..10], '%Y-%m-%d'),

SELF.time := Std.Date.FromStringToTime(LEFT.tpep_pickup_datetime[12..], '%H:%M:%S'),

SELF.minutes_after_midnight:= Std.Date.Hour(SELF.pickup_time)* 60 ....)
);
```

Sample 3: Combine Data

```
A join B := JOIN( A, B, LEFT.date = RIGHT.date,
TRANSFORM
   Layout of A JOIN B,
   SELF.date := LEFT.date,
   SELF.minutes_after_midnight := RIGHT.minutes_after_midnight,
   SELF.summary := RIGHT.summary,
   SELF.temperature := RIGHT.temperature,
   SELF.windSpeed := RIGHT.windSpeed,
   SELF.visibility := RIGHT.visibility,
   SELF.cloudCover := RIGHT.cloudCover,
   SELF := LEFT
 LEFT OUTER
```

Sample 4: Validate Data

Sample 5: Profile Data

IMPORT DataPatterns;

//Profile data

Data_Profiling:= DataPatterns.Profile(Data);

ttr	ibute g	iven_attrib	ute_type	best_attrib	ute_type	rec_count	fill_count	fill_rate cardinality cardinality_breakdo n		o modes		min_length		ax_length			
											value	rec_coun	t value	rec_count			
emp	erature de	ecimal6_3		decimal6_3		2843404	34954	1.229301		3	79.03	18205	79.03	18205	5	5	
I	popular_patt	erns		rare_pattern	terns		is_numeric nume		ric_min	ic_min numeric_max n		n numeri	c_std_dev	numeric_lower	_quartile	numer	ic_median
(data_patterr	rec_count	example	data_pattern	rec_coun	t example											
9	99.99	34954	66.87				true	66.8	7	79.03	73.7058	5.6317		66.87		79.03	3
	numeric_lower_quartile numeric_median			numeric_upper_quartile			ile		numeric_c	,							
								attribute							corr		
	66.87			79.	.03				79.03				windspeed	ı			0.9680
													id				0.1215
													visibilit	:y			0.0547
													date				0.0263
													minutes_a	fter_midnight			-0.149
													precipint	ensity			-0.542
													cloudcove	er			-0.542

Sample 6: Analyze Data

```
//Aggregate the total taxi trips per day
```

trips_per_day := TA	ABLE(taxi_data,	{date, INTEGER trips	:= COUNT(GROUP	<mark>')</mark> }, date)	•
---------------------	-----------------	----------------------	----------------	--------------------------	---

##	date	trips
1	20160601	107307
2	20160602	87887
3	20160603	61900
4	20160604	156190
5	20160605	81823
6	20160606	187326
7	20160607	108800
8	20160608	104989
9	20160609	8973
10	20160610	32548
11	20160611	263528
12	20160612	4778

Useful Links

- Open Source HPCC Systems Platform: Home Page
- Internship Program
- Online Training
- Download Page
- Our GitHub portal
- Community Forums
- Getting Started with ECL
- Advanced ECL
- Latest Release and Documentation
- Supported plugins, connectors, third party modules and bundles
- Machine Learning on HPCC Systems
- VS Code and HPCC Systems Installation Cheat Sheet

Join our Community

better. Register on our community portal.

