This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

7)

1111-

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 22. Februar 2001 (22.02.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/12827 A2

(51) Internationale Patentklassifikation7:

(21) Internationales Aktenzeichen:

PCT/EP00/07807

C12N 15/82

(22) Internationales Anmeldedatum:

10. August 2000 (10.08.2000)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

199 37 957.2

11. August 1999 (11.08.1999) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SUNGENE GMBH & CO. KGAA [DE/DE]; Corrensstrasse 3, D-06466 Gatersleben (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): EBNETH, Marcus [DE/DE]; Münzenberg 25, D-06484 Quedlinburg (DE). HERBERS, Karin [DE/DE]; Am Hange 6, D-06484 Quedlinburg (DE). GEIGER, Michael [DE/DE]; Neuer Weg 15, D-06484 Quedlinburg (DE). SAALBACH, Isolde [DE/DE]; Liebigweg 11, D-06484 Quedlinburg (DE).

- (74) Anwälte: KINZEBACH, Werner usw.; Reitstötter, Kinzebach & Partner, Postfach 86 06 49, D-81633 München (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: HOMOGENTISATE-DIOXYGENASE
- (54) Bezeichnung: HOMOGENTISAT-DIOXYGENASE
- (57) Abstract: The invention relates to a new type of expression cassettes which, under genetic control, contain regulating nucleic acid sequences a) nucleic acid sequence coding for 4-hydrophenylpyruvate dioxygenase (HPPD) or for one of its functional equivalents; and/or b) at least one nucleic acid sequence (anti-HGD), which can inhibit the homogentisate-dioxygenase (HGD) activity. The invention also relates to vectors which are suitable for the production of plants having an increased tocopherol content, to transgenic plants produced therewith, and to a method for the production of transgenic plants having an increased tocopherol content.
- (57) Zusammenfassung: Die Erfindung betrifft neuartige Expressionskassetten, enthaltend unter genetischer Kontrolle regulativer Nukleinsäuresequenzen a) die kodierende Nukleinsäuresequenz für 4-Hydroxyphenylpyruvat-Dioxygenase (HPPD) oder für ein funktionales Äquivalent davon; und/oder b) wenigstens eine Nukleinsäuresequenz (anti-HGD), welche zu einer Inhibition der Homogentisat-Dioxygenase (HGD)-Aktivität befähigt ist, sowie Vektoren, die zur Herstellung von Pflanzen mit erhöhtem Tocopherol-Gehalt geeignet sind, damit hergestellte transgene Pflanzen sowie Verfahren zur Herstellung transgener Pflanzen mit erhöhtem Tocopherol-Gehalt.

01/12827 A2

THIS PAGE BLAND (CPTO)

THIS PAGE B

Homog ntisat-Dioxygenase

Die vorli gende Erfindung betrifft neuartig genetische
5 Konstrukte, wie Expressionskassetten und Vektoren, zur
Herstellung von Pflanzen mit erhöhtem Tocopherol-Gehalt, damit
hergestellte transgene Pflanzen sowie Verfahren zur Herstellung
transgener Pflanzen mit erhöhtem Tocopherol-Gehalt.

10 Ein wichtiges Ziel pflanzenmolekulargenetischer Arbeiten ist die Erzeugung von Pflanzen mit erhöhtem Gehalt an Zuckern, Enzymen und Aminosäuren. Wirtschaftlich interessant ist jedoch auch die Entwicklung von Pflanzen mit erhöhtem Gehalt an Vitaminen, wie z.B. mit erhöhtem Tocopherol (Vitamin E)-Gehalt.

15

Die in der Natur vorkommenden acht Verbindungen mit Vitamin E-Aktivität sind Derivate des 6-Chromanols (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Verlagsgesellschaft, Chapter 4., 478-488, Vitamin E). Die erste Gruppe (la-d) umfaßt die Tocotrienole (II), die zweite Gruppe (2a-d) umfaßt die Tocotrienole (II):

30 la, α -Tocopherol: $R^1 = R^2 = R^3 = CH_3$,

1b, β -Tocopherol: $R^1 = R^3 = CH_3$, $R^2 = H$

1c, γ -Tocopherol: $R^1 = H$, $R^2 = R^3 = CH_3$

1d, δ -Tocopherol: $R^1 = R^2 = H$, $R^3 = CH_3$

40

2a, α -Tocotrienol: $R^1 = R^2 = R^3 = CH_3$,

2b, β -Tocotrienol: $R^1 = R^3 = CH_3$, $R^2 = H$

45 2c, γ -Tocotrienol: $R^1 = H$, $R^2 = R^3 = CH_3$

2d, δ -Tocotrienol: $R^1 = R^2 = H$, $R^3 = CH_3$

WO 01/12827 PCT/EP00/07807

wobei

 $\ensuremath{\mathsf{R}}^1$, $\ensuremath{\mathsf{R}}^2$ und $\ensuremath{\mathsf{R}}^3$ wie oben definiert sind.

Wirtschaftlich größte Bedeutung b sitzt derzeit alpha-Tocopherol.

Der Entwicklung von Kulturpflanzen mit erhöhtem Tocopherol-Gehalt durch Gewebekultur oder Samenmutagenese und natürliche Auswahl sind Grenzen gesetzt. So muß einerseits der Tocopherol-Gehalt bereits in Gewebekultur erfaßbar sein und andererseits können nur 10 diejenigen Pflanzen über Gewebekulturtechniken manipuliert werden, deren Regeneration zu ganzen Pflanzen aus Zellkulturen gelingt. Außerdem können Kulturpflanzen nach Mutagenese und Selektion unerwünschte Eigenschaften zeigen, die durch teilweise mehrmalige Rückkreuzungen wieder beseitigt werden müssen. Auch 15 wäre die Erhöhung des Tocopherol-Gehaltes durch Kreuzung auf

Aus diesen Gründen ist das gentechnische Vorgehen, die für die Tocopherol-Syntheseleistung kodierenden, essentiellen

20 Biosynthesegene zu isolieren und in Kulturpflanzen gezielt zu übertragen, dem klassischen Züchtungsverfahren überlegen. Dieses Verfahren setzt voraus, daß die Biosynthesewege und deren Regulation bekannt sind und daß Gene, die die Biosyntheseleistung beeinflussen, identifiziert werden.

25

Der Tocopherolsyntheseweg in Pflanzen ist schematisch in beiliegender Figur 1 dargestellt. Im Stand der Technik gibt es bisher keinen brauchbaren Ansatz, der eine gezielte Erhöhung der Tocopherol-Biosynthese in Pflanzen gestattet.

30

Kurze Beschreibung der Erfindung:

Pflanzen der selben Art beschränkt.

Es ist deshalb Aufgabe der Erfindung Mittel bereitzustellen, mit deren Hilfe eine verbesserte Tocopherol-Biosynthese erreicht 35 werden kann.

Diese Aufgabe konnte erfindungsgemäß überraschenderweise durch die Bereitstellung von genetischen Konstrukten gelöst werden, mit deren Hilfe die Biosynthese von Homogentisat, einem

40 Tocopherol-Vorläufer, und damit die Bildung von Tocopherol erhöht werden kann. Gleichzeitig kann erfindungsgemäß der unerwünschte Abfluß von Homogentisat zu Maleylacetoacetat unterbunden und damit die Tocopherolsynthese weiter verbessert werden.

35

Ein erst r Gegenstand der Erfindung betrifft daher ine Expr ssionskass tt , enthaltend unt r g netischer Kontrolle r gulativ r Nukleinsäuresequenzen

- 5 a) die kodierende Nukleinsäuresequenz für 4- Hydroxyphenylpyruvat-Dioxygenase (HPPD) oder für ein funktionales Äquivalent davon, wodurch bei Expression die Homogentisat-Biosyntheserate erhöht wird; und/oder
- b) wenigstens eine Nukleinsäuresequenz (anti-HGD), welche zu ei ner Inhibition der Homogentisat-Dioxygenase(HGD)-Aktivität befähigt ist.

"Inhibition" ist in diesem Zusammenhang weit auszulegen und umfaßt die teilweise oder im wesentlichen vollständige, auf 15 unterschiedliche zellbiologische Mechanismen beruhende Unterbindung oder Blockierung der HGD-Enzymaktivität in der mit einem erfindungsgemäßen anti-HGD-Konstrukt transformierten Pflanze oder dem Pflanzenteil oder Gewebe. Eine Inhibition im Sinne der Erfindung umfaßt auch eine mengenmäßige Verringerung von aktiver HGD in der Pflanze, bis hin zu einem im wesentlichen vollständigen Fehlen (d.h. fehlende Nachweisbarkeit von HGD-Enzymaktivität oder fehlende immunologische Nachweisbarkeit von HGD) von HGD-Protein.

- 25 Erfindungsgemäß sind verschiedene Strategien zur Verringerung oder Inhibition der HGD-Aktivität umfasst. Der Fachmann erkennt, dass eine Reihe verschiedener Methoden zur Verfügung steht, um die HGD-Genexpression in gewünschter Weise zu beeinflussen.
- 30 Die erfindungsgemäß bevorzugte Strategie umfasst die Verwendung einer Nukleinsäuresequenz (anti-HGD), welche zu einer antisense-Nukleinsäuresequenz transkribierbar ist, die zur Inhibition der Homogentisat-Dioxygenase (HGD)-Aktivität befähigt ist, z. B. indem sie die Expression von endogener HGD inhibiert.

Weitere Methoden zur Inhibition der HGD-Expression umfassen die zu Kosuppression führende Überexpression homologer HGD-Nukleinsäuresequenzen (Jorgensen et al. (1996): "Chalcone synthase cosuppression phenotypes in petunia flowers: Comparison of sense

- 40 vs. antisense constructs and single copy vs. complex T-DNA sequences.", Plant Mol. Biol. 31 (5): 957-973.), die Induktion des spezifischen RNA-Abbaus durch die Pflanze mit Hilfe eines viralen Expressionssystems (Amplikon) (Ang ll, S. M., Baulcomb, D. C. (1999): "Technical advance: Potato virus x amplicon mediated si-
- 45 lencing of nuclear genes." Plant J. 20 (3): 357-362.), die Einführung von Nonsense-Mutationen in das Endog n mittels Einführung von RNA/DNA-Oligonukleotiden in die Pflanze (Zhu et al. (2000):

"Engine ring herbicide resistant maize using chimeric RNA/DNA oligonucleotides." Nat. Biotechnol. 18 (5): 555-558.) oder die Generierung von Knockout-Mutanten mit Hilfe von z. B. T-DNA-Mutagenese (Koncz et al. (1992): "T-DNA ins rtional mutagenesis in Arabidopsis." Plant Mol. Biol. 20 (5): 963-976.) oder homolger Rekombination (Hohn, B.; Puchta, H. (1999): "Gene therapy in plants." Proc. Natl. Acad. Sci. USA 96: 8321-8323.).

Auf die oben beschriebenen Druckschriften und die darin offenbar-10 ten Methoden zur Regulation der pflanzlichen Genexpression wird hiermit ausdrücklich Bezug genommen.

Eine anti-HGD-Sequenz im Sinne der vorliegenden Erfindung ist somit insbesondere ausgewählt unter:

- 15 a) antisense-Nukleinsäuresequenzen;
 - b) für homologe HGD kodierende und zu Kosuppression führende Nukleinsäuresequenzen
 - c) HGD-RNA-Abbau bewirkende virale Nukleinsäuresequenzen und Expressionskonstrukte;
- 20 d) Nonsense-Mutanten von endogenen HGD kodierenden Nukleinsäuresequenzen;
 - e) für Knockout-Mutanten kodierende Nukleinsäuresequenzen;
 - f) zu homologer Rekombination geeignete Nukleinsäuresequenzen; wobei die Expression jeder einzelner dieser Sequenzen eine "Inhi-
- 25 bition" der HGD-Aktivität im Sinne der Erfindung bewirken kann. Auch eine kombinierte Anwendung solcher Sequenzen ist denkbar.

Erfindungsgemäß bevorzugt wird die kodierende HPPD-Sequenz mit der kodierenden Sequenz eines Pflanzenorganell-spezifischen Transitpeptids funktional verknüpft. Das Transitpeptid besitzt

- 30 Transitpeptids funktional verknüpft. Das Transitpeptid besitzt dabei vorzugsweise Spezifität für die Samen oder die Plastiden, wie z.B. die Chloroplasten, Chromoplasten und/oder Leukoplasten, der Pflanze. Das Transitpeptid lenkt die exprimierte HPPD-Aktivität an den gewünschten Zielort in der Pflanze und wird
- 35 nach dessen Erreichen vom HPPD-Proteinteil vorzugsweise proteolytisch abgespalten. Die kodierende Transitpeptid-Sequenz befindet sich im erfindungsgemäßen Expressionskonstrukt vorzugsweise 5'-stromaufwärts von der kodierenden HPPD-Sequenz.
- 40 In einer weiteren bevorzugten Ausführungsform stehen die kodierende HPPD-Sequenz und die anti-HGD-Sequenz jeweils unter der genetischen Kontrolle eines pflanzenspezifischen Promotors.

Erfindungsgemäß besonders bevorzugte Expressionskassett n
45 umfassen eine kodierende HPPD-Nukleinsäur sequenz, welche für
ein Prot in, enthaltend eine Aminosäuresequenz gemäß SEQ ID NO:15
oder in funktionell s Äquivalent davon kodiert, oder die eine

WO 01/12827

5

Nukl insäur s quenz von inschlißlich Nukleotid in Position 8 bis einschließlich Nukleotid in Positi n 1153 gemäß SEQ ID NO:14 od r ein funktionelles Äquivalent davon umfaßt.

- 5 Die anti-HGD-Nukleinsäuresequenz kann gemäß einer bevorzugten Ausführungsform die in antisense-Orientierung insertierte kodierende Nukleinsäuresequenz von Homogentisat-Dioxygenase oder ein funktionales Fragment davon enthalten. Eine bevorzugte Ausführungsform der erfindungsgemäßen Expressionskassetten umfaßt
- 10 eine HGD-Sequenzmotiv gemäß SEQ ID NO:1 in antisense-Orientierung. Dies führt zur vermehrten Transkription von Nukeinsäuresequenzen in der transgenen Pfanze, welche komplementär zur endogenen kodierenden HGD-Sequenz oder einem Teil davon sind und mit dieser auf DNA- oder RNA-Ebene 15 hybridisieren.

Ein weiterer Gegenstand der Erfindung betrifft rekombinante Vektoren, umfassend wenigstens eine Expressionskassette gemäß obiger Definition. Beispiele erfindungsgemäßer Vektoren umfassen 20 wenigstens ein Expressionskonstrukt folgenden Typs:

5'-Pflanzenspezifischer Promotor/HPPD oder anti-HGD/ Terminator-3'. Hierbei kann die kodierende HPPD-Sequenz auch durch eine kodierende Sequenz für ein Fusionsprotein aus 25 Transitpeptid und HPPD ersetzt sein.

Bevorzugte Beispiele umfassen monomere Vektoren, enthaltend eines der folgenden Expressionskonstrukte:

- 30 a) 5'-35S-Promotor/anti-HGD/OCS-Terminator-3';
 - b1) 5'-LeguminB-Promotor/HPPD/NOS-Terminator-3';
 - b2) 5'-LeguminB-Promotor/Transitpeptid-HPPD/NOS-Terminator-3'.

Die Konstrukte a) und b) erfordern eine Kotransformation der 35 Pflanze mit beiden Vektoren, d.h. mit a) und bl) bzw. b2).

Bevorzugte Beispiel umfassen außerdem binäre Vektoren, enthaltend folgendes Konstrukt:

- 40 cl) 5'-35S-Promotor/anti-HGD/OCS-Terminator/LeguminB-Promotor/ HPPD/NOS-Terminator-3'; und
 - c2) 5'-35S-Promotor/anti-HGD/OCS-Terminator/LeguminB-Promotor/ Transitpeptid-HPPD/NOS-Terminator-3'.
- 45 Konstrukt cl) bzw. c2) erlaubt die gleichzeitige Transformation der Pflanze mit HPPD und anti-HGD.

Ein weit rer Geg nstand der Erfindung betrifft Mikroorganismen, enthaltend wenigstens einen erfindungsgemäßen rekombinant n Vektor. Bevorzugt sind solche Organismen, welche zur Infektion von Pflanzen und damit zur Übertragung der erfindungsgemäßen 5 Konstrukte befähigt sind.

Bevorzugte Mikroorganismus sind solche aus der Gattung Agrobacterium und insbesondere der Art Agrobacterium tumefaciens.

10 Ein weiterer Gegenstand der Erfindung betrifft die Verwendung eines erfindungsgemäßen Vektors oder Mikroorganismus zur Transformation von Pflanzen, Pflanzenzellen, -geweben oder -teilen insbesondere mit dem Ziel, diese zu einer verbesserten Tocopherol-Synthese zu befähigen.

15

Ein anderer Gegenstand der Erfindung betrifft transgene Pflanze, transformiert mit wenigstens einem erfindungsgemäßen Vektor oder Mikroorganismus und transgene Zellen, Gewebe, Teile oder transgenes Vermehrungsgut von solchen Pflanzen.

20

Die erfindungsgemäßen transgenen Pflanzen sind insbesondere ausgewählt unter Kulturpflanzen, wie Getreide, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat, wie Kresse, und den 25 verschiedenen Baum-, Nuß- und Weinspecies.

Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung von transgenen Pflanzen mit verbesserter Tocopherolproduktion, wobei man Pflanzen, die zur

- 30 Tocopherolproduktion befähigt sind, oder Pflanzenzellen, -gewebe oder -teile oder Protoplasten davon mit wenigstens einem erfindungsgemäßen Vektor oder wenigstens einem erfindungsgemäßen Mikroorganismus transformiert, die transformierten Zellen, Gewebe, Pflanzenteile oder Protoplasten in einem Wachstumsmedium 35 kultiviert und gegebenenfalls aus der Kultur Pflanzen regeneriert.
- Ein weiterer Gegenstand der Erfindung betrifft die Verwendung einer Expressionskassette, eines Vektors, eines Mikroorganismus 40 oder einer transgenen Pflanze gemäß obiger Definition zur Gewinnung von Pflanzenmetaboliten, insbesondere Tocopherolen.

Ein letzter Gegenstand der Erfindung betrifft schließlich ein Verfahren zur Herstellung von Tocopherol n, das dadurch gekenn-45 zeichnet ist, daß man aus einer Kultur einer erfindungsgemäß

transformierten Pflanze das gewünscht Tocopherol in an sich bekannter Weise isoliert.

Ausführlich B schreibung d r Erfindung:

Die erfindungsgemäße Transformation von Pflanzen mit einem HPPD kodierenden Konstrukt führt zur Überexpression dieses Proteins und damit zur Steigerung der Homogentisatbildung. Durch gleichzeitige Transformation mit anti-HGD, insbesondere dem 10 antisense-HGD Konstrukt wird ein unerwünschter Abfluß dieses Metaboliten zu Maleylacetoacetat vermieden. Eine erhöhte Homogentisatmenge steht in der transgenen Pflanze somit zur Bildung von Tocopherolen über die Intermediate

Unter einer Nukleotid- oder Nukleinsäure-Sequenz versteht man erfindungsgemäß beispielsweise eine genomische oder eine komplementäre DNA-Sequenz oder eine RNA-Sequenz sowie halb- oder 20 vollsynthetische Analoga davon.

Methyl-6-phytylquinol und 2,3-Dimethyl-phytylquinol (vgl. Figur

Die HPPD- oder anti-HGD-Nukleotidsequenzen der erfindungsgemäßen Konstrukte können synthetisch hergestellt oder natürlich gewonnen werden oder eine Mischung aus synthetischen und natürlichen

- 25 DNA-Bestandteilen enthalten, sowie aus verschiedenen heterologen HGD bzw. HPPD-Genabschnitten verschiedener Organismen bestehen. Die anti-HGD-Sequenz kann von einem oder mehreren Exons und/oder Introns, insbesondere Exons des HGD-Gens abgeleitet sein.
- 30 Beispielsweise können synthetische Nukleotid-Sequenzen mit Kodons erzeugt werden, die von den zu transformierenden Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können anhand der Kodonnutzung in üblicher Weise für die Pflanze bestimmt werden. Bei der Präparation einer Expressionskassette können ver-35 schiedene DNA-Fragmente so manipuliert werden, daß eine Nukleotid-Sequenz mit korrekter Leserichtung und korrektem Leseraster erhalten wird. Für die Verbindung der Nukleinsäure-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

Funktionale Äquivalente des HPPD-Gens sind solche Sequenzen, welche trotz abweichender Nukleotidsequenz noch für ein Protein mit der erfindungsgemäß gewünschten Funktion n kodieren, d.h für ein Enzym mit Homogentisat-bildender Aktivität.

40

5

15 1) zur Verfügung.

Funktionale Äquivalent von anti-HGD umfassen solche Nukleotidsequ nzen welche die HGD-Enzymfunktion in d r transg nen Pflanze
in ausreichendem Maße unterbinden. Dies kann z.B. durch
Behinderung oder Unterbindung der HGD-Proz ssierung, des

5 Transports von HGD oder deren mRNA, Hemmung der Ribosomenanlagerung, Hemmung des RNA-Spleißens, Induktion eines RNA-abbauenden
Enzyms und/oder Hemmung der Translationselongation oder -termination erfolgen.

- 10 Funktionale Äquivalente umfassen allgemein natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z.B. durch chemische Synthese erhaltene, an den Kodon-Gebrauch einer Pflanze angepaßte, künstliche Nukleotidsequenzen.
- 15 Unter einem funktionalen Äquivalent versteht man insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten für HGD oder HPPD kodierenden Sequenz, welche weiterhin die gewünschte Funktion zeigen. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder 20 Insertionen eines oder mehrerer Nukleotidreste. Somit werden
- beispielsweise auch solche Nukleotidsequenzen durch die vorliegende Erfindung mit umfaßt, welche man durch Modifikation der HGD- bzw. HPPD-Nukleotidsequenz erhält. Ziel einer solchen Modifikation kann z.B. die weitere Eingrenzung der darin
- 25 enthaltenen kodierenden Sequenz oder z.B. auch die Einfügung weiterer Restriktionsenzym-Schnittstellen sein.

Funktionale Äquivalente umfassen auch solche Varianten, deren Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment,
30 abgeschwächt oder verstärkt ist, also beispielsweise solche HPPD-Gene welche für eine HPPD-Variante mit niedrigerer oder höherer enzymatischer Aktivität als der des Ursprungsgens kodieren.

- 35 Außerdem sind artifizielle Nukleinsäuresequenzen geeignet, solange sie, wie oben beschrieben, die gewünschte Eigenschaft beispielsweise der Erhöhung des Tocopherol-Gehaltes in der Pflanze durch Überexpression des HPPD-Gens oder Expression einer anti-HGD-Sequenz in Kulturpflanzen vermitteln. Solche
- 40 artifiziellen Nukleotid-Sequenzen können beispielsweise durch Rückübersetzung mittels Molecular Modelling konstruierter Proteine, die HGD- bzw. HPPD-Aktivität aufweisen oder durch in vitro-Selektion ermittelt werden. Besonders ge ignet sind kodierende Nukleotid-Sequenzen, die durch Rückübersetzung einer
- 45 Polypeptidsequenz gemäß der für die Wirtspflanze spezifischen Kodon-Nutzung erhalten wurden. Die spezifisch Kodon-Nutzung kann ein mit pflanzengenetischen Methoden vertrauter Fachmann durch

40

Comput rauswertungen ander r, b kannt r Gene d r zu transformierenden Pflanz leicht ermitt ln. Um unerwünschte pflanzliche Regulationsmechanismen zu umg hen, kann man beispielsweise ausgeh nd von d r Aminosäures quenz einer 5 bakteriellen HPPD und unter Berücksichtigung der pflanzlichen Kodon-Nutzung DNA-Fragmente rückübersetzen und daraus die vollständige, für einen Einsatz in der Pflanze optimierte exogene HPPD-Sequenz herstellen. Daraus wird ein HPPD-Enzym exprimiert, welches der pflanzlichen Regulation nicht oder nur unzureichend 10 zugänglich ist, wodurch die Überexpression von Enzymaktivität voll zur Geltung gelangen kann.

Als weitere geeignete äquivalente Nukleinsäure-Sequenzen sind Sequenzen zu nennen, welche für Fusionsproteine kodieren, wobei 15 Bestandteil des Fusionsproteins z.B. ein HPPD-Polypeptid oder ein funktionell äquivalenter Teil davon ist. Der zweite Teil des Fusionsproteins kann z.B. ein weiteres Polypeptid mit enzymatischer Aktivität sein oder eine antigene Polypeptidsequenz, mit deren Hilfe ein Nachweis der HPPD-Expression möglich ist (z.B. 20 myc-tag oder his-tag). Bevorzugt handelt es sich dabei jedoch um eine regulative Proteinsequenz, wie z.B. ein Signal- oder Transitpeptid, das das HPPD-Protein an den gewünschten Wirkort leitet.

25 Eine Erhöhung des Tocopherol-Gehaltes in der Pflanze bedeutet im Rahmen der vorliegenden Erfindung die künstlich erworbene Fähigkeit einer erhöhten Biosyntheseleistung wenigstens einer Verbindung aus der Gruppe der Tocopherole und Tocotrienole gemäß obiger Definition in der Pflanze gegenüber der nicht gentechnisch modifizierten Pflanze für die Dauer mindestens einer Pflanzengeneration.

Der Biosyntheseort von Tocopherol ist im allgemeinen das Blattgewebe aber auch der Samen, so daß eine blattspezifische 35 und/oder samenspezifische Expression insbesondere des HPPD-Gens und gegebenenfalls von anti-HGD sinnvoll ist. Es ist jedoch naheliegend, daß die Tocopherol-Biosynthese nicht auf den Samen beschränkt sein muß, sondern auch in allen übrigen Teilen der Pflanze gewebespezifisch erfolgen kann.

Darüberhinaus ist eine konstitutive Expression des exogenen Gens von Vorteil. Andererseits kann aber auch eine induzierbare Expression wünschenswert sein.

45 Die in den erfindungsgemäßen Expressionskassett n enthaltenen regulativen Nukleinsäuresequenzen steuern die Expression der kodierenden Sequenzen (wie der HPPD-Sequenz, g geb nenfalls

fusioniert mit einer Transitp ptid-Sequenz) und d r anti-HGD-Sequenz. Vorzugsweise umfassen die erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden S quenz einen Promotor und 3'-stromabwärts eine Terminator-

- 5 sequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz. Unter einer operativen Verknüpfung versteht man die sequentiellen Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, daß
- 10 jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz oder der antisense-Sequenz bestimmungsgemäß erfüllen kann. Beispiele für operativ verknüpfbare Sequenzen sind weitere, von den Transitpeptid kodierenden Sequenzen verschiedene, Targeting-Sequenzen zur Gewährleistung
- 15 der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten; sowie Translationsverstärker wie die 5'-Leadersequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 20 8693 -8711), und dergleichen.

Geeignete Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, 25 insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACHS entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente davon. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin-Synthase)-Terminator und der NOS (Nopalin-Synthase)-Ter-30 minator.

Als Promotoren für die Expressionskassetten ist grundsätzlich jeder Promotor geeignet, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen steuern kann. Vorzugsweise verwendet 35 man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der CaMV 35S-Promotor aus dem Blumenkohl-Mosaik-Virus (Franck et al., Cell 21 (1980), 285 - 294). Dieser Promotor enthält bekanntlich unterschiedliche Erkennungssequenzen für transkriptionale 40 Effektoren, die in ihrer Gesamtheit zu einer permanenten und konstitutiven Expression des eingeführten Gens führen (Benfey et al., EMBO J. 8 (1989), 2195-2202). Ein weiteres Beispiel eines geeigneten Promotors ist der der LeguminB-Promotor (Accessionnr. X03677).

Die Expressionskass tte kann auch inen chemisch induzierbaren Promotor enthalten, durch d n die Expression des exogenen Gens in der Pflanze zu einem bestimmten Zeitpunkt gest uert werden kann. D rartige Prom toren, wie z.B. der PRPlPromotor (Ward t al., 5 Plant. Mol. Biol. 22 (1993), 361-366), ein durch Salicylsäure induzierbarer (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer (EP-A-0388186), ein durch Tetrazyklin-induzierbarer (Gatz et al., (1992) Plant J. 2, 397404), ein durch Abscisinsäure-induzierbarer (EP-A 335528) bzw. ein durch Ethanol- oder 10 Cyclohexanon-induzierbarer (WO 93/21334) Promotor können ebenfalls verwendet werden.

Weiterhin sind insbesonders solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen die Biosynthese von Tocopherol bzw. dessen Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine blattspezifische Expression gewährleisten. Zu nennen sind der Promotor der cytosolischen FBPase aus Kartoffel oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al., EMBO J. 8 (1989), 2445 - 245).

20 Beispiele für samenspezifische Promotoren sind der Phaseolin-Promotor (US 5504200), der USP-Promotor (Baumlein, H. et al., Mol. Gen. Genet. (1991) 225 (3), 459 - 467) oder der LEB4-Promotor (Fiedler, U. et al., Biotechnology (NY) (1995), 13 (10) 1090) zusammen mit dem LEB4-Signalpeptid.

Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten anti-HDG- bzw.
HPPD-Nukleotidsequenz, gegebenenfalls einer für eine Transitpeptid kodierenden Sequenz, welche vorzugsweise zwischen dem
30 Promotor und der HPPD-Sequenz angeordnet ist, sowie einem

- Terminator oder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinations und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor
- 35 Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987)
- 40 beschrieben sind.

Wie bereits erwähnt, können auch Expressionskassetten verwendet werden, deren DNA-Sequenz für ein HPPD-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die 45 Translokation des Polyp ptides st uert. Als Beispi l können genannt werden: Chloroplasten-spezifische Transitpeptide, welche nach Translokation HPPD-Gens in die Chloroplasten vom HPPD-Teil enzymatisch abgespalten werden.

Insbesonder ist zu nenn n das Transitpeptid, das von der 5 plastidären Transketolase (TK) oder einem funktionellen Äquivalent dieses Transitpeptids (z.B. dem Transitpeptid der kleinen Untereinheit der RubisCO oder der Ferredoxin:NADP Oxidoreduktase) abgeleitet ist.

10 Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6

15 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp.

Promotor, Terminator sowie die anderen regulativen Elemente 20 können sowohl nativ (homolog) als auch fremdartig (heterolog) zur Wirtspflanze sein.

Ferner können genetische Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, im Rahmen der Erfindung eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen, wie z.B. Transitionen und Transversionen, in Frage kommen, können an sich bekannte Techniken, wie in vitro-Mutagenese, "primer repair", Restriktion oder Ligation verwendet werden. Durch Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "blunt ends" können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.

35 Die erfindngsgemäßen Expressionskassetten werden bevorzugt in geeignete Transformationsvektoren insertiert. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71 - 119 (1993) beschrieben.

Vorzugsweise werden sie in einen Vektor, wie beispielsweise pBin19, pBinAR, pPZP200 oder pPTV, kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformi ren. Die mit einem solchen Vektor transformierten Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie z.B. von Tabakpflanz n, verwendet werden, indem beispielsw ise verwundete Blätter oder Blattstücke in einer

Agrobakt ri nlösung gebad t und anschließend in geeigneten Medien kultiviert w rden. Die Transformation von Pflanzen durch Agrobakt rien ist unter anderem bekannt aus F.F. White, V ctors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, 5 Engin ering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15 - 38.

Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen 10 regeneriert werden.

Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet. Es werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus 15 Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone, die sogenannte particle bombardment Methode, die Elektroporation, die 20 Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von 25 S.D. Kung und R. Wu, Academic Press (1993), 128 - 143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205 - 225) beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise 30 pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711).

Mit einer Expressionskassette transformierte Agrobakterien können, ebenfalls in bekannter Weise, zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie Getreide, Mais, 35 Hafer, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Plachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies, verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien 40 kultiviert werden.

Gegenstand der Erfindung sind außerdem transgene Pflanzen, transformiert mit einer erfindungsgemäßen Expressionskassette, sowie transgene Zellen, Gewebe, Teile und Vermehrungsgut solcher 45 Pflanzen. Besonders bevorzugt sind dabei transgene Kulturpflanz n, wie z.B. G rste, Weiz n, Rogg n, Mais, Hafer, Soja, Reis, Baumwolle, Zuck rrübe, Canola, Sonn nblume, Flachs,

- 5 Die Erfindung wird nun in den folgenden Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Figuren n\u00e4her erl\u00e4utert.
 Dabei zeigt:
- Figur 1 eine schematische Darstellung des

 Tocopherolbiosyntheseweges in Pflanzen; PP steht dabei
 für Pyrophosphat; wird in der Pflanze Homogentisat mit
 Geranyl-geranyl-PP umgesetzt (nicht gezeigt) so werden in
 analoger Weise die entsprechenden Tocotrienole gebildet;
- 15 Figur 2 einen binären Transformations-Vektor, welcher die HPPDop
 in Samen transformierter Pflanzen exprimiert und gleichzeitig die Expression der endogenen HGD unterdrückt: A =
 35S-Promotor; B = HGD in antisense-Orientierung; C = OCS
 Terminator; D = Legumin B-Promotor; E = Transitpeptid der
 FNR; F = HPPDop; G = NOS-Terminator;
 - Figur 3 Konstruktionsschemata der HPPD kodierenden Plasmide pUC19HPPDop und pCRScriptHPPDop;
- 25 Figur 4 Konstruktionsschemata der antiHGD kodierenden Plasmide pBinARHGDanti und pCRScriptHGDanti; und
 - Figur 5 Konstruktionsschemata der Transformationsvektoren pPTVHGDanti und pPZP200HPPD.

30

Allgemeine Methoden:

- a) Allgemeine Klonierungsverfahren
- 35 Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungsschritte wie z.B. Restriktionsspaltungen, AgaroseGelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren
 auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien,
- 40 Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt.

b) Sequenzanalyse rekombinanter DNA

Die Sequenzi rung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequ nzierer der Firma Licor (Vertrieb durch 5 MWG Biot ch, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463 - 5467).

Beispiel 1: Klonierung einer Hydroxyphenylpyruvat-Dioxygenase (HPPD) mit für Expression in *Brassica napus* optimierter 10 DNA-Sequenz

Die Aminosäuresequenz der Hydroxyphenylpyruvat-Dioxygenase (HPPD) aus Streptomyces avermitilis (Accessionnr. Ul1864) wurde unter Berücksichtigung der Codonverwendung in Brassica napus (Raps) in eine DNA-Sequenz zurück übersetzt. Die Codonusage wurde mittels der Datenbank http://www.dna.affrc.go.jp/ -nakamura/index.html bestimmt. Die abgeleitete Sequenz wurde unter Anheftung von Sall Schnittstellen durch Ligation überlappender Oligonukleotide mit anschließender PCR-Amplifikation (Rouwendal, GJA; et al, (1997) PMB 33: 989-999) synthetisiert (SEQ ID NO:14). Die Richtigkeit der Sequenz des synthetischen Gens wurde durch Sequenzierung überprüft. Das synthetische Gen wurde in den Vektor pBluescript II SK+ (Stratagene) kloniert.

- 25 Beispiel 2: Klonierung einer Homogentisat-Dioxygenase (HGD) aus Brassica napus
 - a) Isolierung von gesamt-RNA aus Blüten von Brassica napus
- 30 Von Brassica napus var. Westa wurden offene Blüten geerntet und in flüssigem Stickstoff eingefroren. Das Material wurde anschliessend im Mörser pulverisiert und in Z6-Puffer (8 M Guanidinium-Hydrochlorid, 20 mM MES, 20 mM EDTA, auf pH 7,0 mit NaOH eingestellt; versetzt mit 400 µl Mercaptoethanol/100 ml
- 35 Puffer unmittelbar vor Gebrauch) aufgenommen. Die Suspension wurde dann in Reaktionsgefässe überführt und mit einem Volumen Phenol/Chloroform/Isoamylalkohol 25:24:1 ausgeschüttelt. Nach 10 minütiger Zentrifugation bei 15000 U wurde der Überstand in ein neues Reaktionsgefäß überführt und mit 1/20 Volumen 1N Essigsäure
- 40 und 0,7 Volumen Ethanol (absolut) die RNA gefällt. Nach erneuter Zentrifugation wurde das Pellet zunächst in 3M Natriumacetatlösung und nach einer weiteren Zentrifugation in 70 % Ethanol gewaschen. Anschliessend wurde das Pellet in DEPC (Diethylpyrocarbonat) Wasser gelöst und die RNA-Konzentration
- 45 photometrisch bestimmt.

b) Herstellung von cDNA aus gesamt RNA aus Blüten von Brassica napus

20 μ g Gesamt-RNA wurden zunächst mit 3,3 μ l 3M

- 5 Natriumacetatlösung, 2 μl 1M Magnesiumsulfatlösung versetzt und auf 10 μl Endvolumen mit DEPC Wasser aufgefüllt. Dazu wurde 1 μl RNase-freie DNase (Boehringer Mannheim) gegeben und 45 min bei 37 Grad inkubiert. Nach Entfernen des Enzyms durch Ausschütteln mit Phenol/Chloroform/Isoamylalkohol wurde die RNA mit Ethanol
- 10 gefällt und das Pellet in 100 μ l DEPC Wasser aufgenommen. 2,5 μ g RNA aus dieser Lösung wurden mittels eines cDNA-Kits (Gibco BRL) nach Herstellerangaben in cDNA umgeschrieben.
- c) PCR-Amplifikation eines Teilfragments der HGD aus *Brassica*15 napus

Durch Vergleich der DNA-Sequenzen der bekannten Homogentisat-Dioxygenasen (HGD) aus Arabidopsis thaliana (Accessionnr. U80668), Homo sapiens (Accessionnr. U63008) und Mus

- 20 musculus (Accessionnr. U58988) wurden für eine PCR Oligonukleotide abgeleitet, denen am 5'-Ende eine Sall und am 3'-Ende eine Asp718 Restriktionsschnittstelle angefügt worden war. Das Oligonukleotid am 5'-Ende umfaßt die Sequenz:
- 25 GTCGACGGNCCNATNGGNGCNAANGG (SEQ ID NO:2),

beginnend mit der Base 661 des Arabidopsis-Gens. Das Oligonukleotid am 3'-Ende umfaßt die Sequenz:

30 GGTACCTCRAACATRAANGCCATNGTNCC (SEQ ID NO:3),

beginnend mit der Base 1223 des Arabidopsis-Gens, wobei N jeweils Inosin bedeutet und R für den Einbau von A oder G in das Oligonukleotid steht.

Die PCR-Reaktion wurde mit der Taq-Polymerase von TAKARA nach Herstellerangaben durchgeführt. Als Template wurden 0,3 μg der cDNA eingesetzt. Das PCR-Programm lautete:

40 1 Zyklus: 94 Grad 1 min 5 Zyklen: 94 Grad 4 sec 50 Grad 30 sec 72 Grad 1 min 5 Zyklen: 94 Grad 4 sec 45 48 Grad 30 sec 72 Grad 1 min 25 Zyklen: 94 Grad 4 sec

17

46 Grad 30 sec

72 Grad 1 min

1 Zyklus: 72 Grad 30 min

5 Das Fragment wurde mittels NucleoSpin Extract (Machery und Nagel) gereinigt und nach Herstellerangaben in den Vektor pGEMT (Promega) kloniert.

Die Richtigkeit des Fragments wurde durch Sequenzierung 10 überprüft.

Beispiel 3:Herstellung eines Pflanzentransformations-Konstrukts zur Überexpression der HPPD mit optimierter DNA-Sequenz (HPPDop) und Ausschaltung der HGD

15

Zur Herstellung von Pflanzen, welche die HPPDop in Samen exprimieren und in denen die Expression der endogenen HGD mittels antisense-Technik unterdrückt ist, wurde ein binärer Vektor angefertigt, der beide Gensequenzen enthält (Figur 2, Konstrukt 20 VI).

a) Herstellung einer HPPDop-Expressionskassette

Dazu wurden zunächst die Komponenten der Kassette zur Expression 25 der HPPDop, bestehend aus dem LeguminB-Promotor (Accessionnr. X03677), dem Transitpeptid der Ferredoxin:NADP+ Oxidoreduktase aus Spinat (FNR; Jansen, T, et al (1988) Current Genetics 13, 517-522) und dem NOS-Terminator (enthalten im pBI101 Accessionnr. U12668) mittels PCR mit den benötigten Restriktionsschnittstellen 30 versehen.

Der Legumin-Promotor wurde aus dem Plasmid plePOCS (Bäumlein, H, et al.(1986) Plant J. 24, 233-239) mit dem stromaufwärts-Oligonukleotid:

35

GAATTCGATCTGTCGTCTCAAACTC (SEQ ID NO: 4)

und dem stromabwärts-Oligonukleotid:

40 GGTACCGTGATAGTAAACAACTAATG (SEQ ID NO: 5)

mittels PCR amplifiziert und in den Vektor PCR-Script (Stratagene) nach Herstellerangaben kloniert.

Das Transitpeptid wurde aus dem Plasmid pSK-FNR (Andrea Babette Regierer "Molekulargenetische Ansätze zur Veränderung der Phosphat-Nutzungseffizienz von höheren Pflanzen", P+H Wissenschaftlicher V rlag, Berlin 1998 ISBN: 3-9805474-9-3) mittels PCR 5 mit dem 5'-Oligonukleotid:

ATGGTACCTTTTTTGCATAAACTTATCTTCATAG (SEQ ID NO: 6)

und dem 3'-Oligonukleotid:

10

ATGTCGACCCGGGATCCAGGGCCCTGATGGGTCCCATTTTCCC (SEQ ID NO: 7)

amplifiziert.

15 Der NOS-Terminator wurde aus dem Plasmid pBI101 (Jefferson, R.A., et al (1987) EMBO J. 6 (13), 3901-3907) mittels PCR mit dem 5'-Oligonukleotid:

GTCGACGAATTTCCCCGAATCGTTC: (SEQ ID NO: 8)

20

und dem 3'-Oligonukleotid

AAGCTTCCGATCTAGTAACATAGA (SEQ ID NO: 9)

25 amplifiziert.

Das Amplikon wurde jeweils in den Vektor pCR-Script (Stratagene) nach Herstellerangaben kloniert.

- 30 Für die Expressionskassette wurde zunächst der NOS-Terminator als Sall/HindIII-Fragment in einen entsprechend geschnittenen pUC19-Vektor (Yanisch-Perron, C., et al (1985) Gene 33, 103-119) umkloniert. In dieses Plasmid wurde anschließend das Transitpeptid als Asp718/Sall-Fragment eingeführt. Der
- 35 Legumin-Promotor wurde dann als EcoRI/Asp718 Fragment einkloniert. Das Gen HPPDop wurde als SalI-Fragment in dieses Konstrukt eingeführt (Figur 3, Konstrukt III).
- Die fertige Kassette in pUC19 wurde als Template für eine PCR 40 verwendet, wozu für den Leguminpromotor das Oligonukleotid:

AAGCTTGATCTGTCGTCTCAAACTC (SEQ ID NO: 10)

und für den Nos-Terminator das Oligonukleotid:

45

AAGCTTCCGATCTAGTAACATAGA (SEQ ID NO: 11)

verwend t wurden. Das Amplikon wurde in pCR-Script kloniert und pCR-ScriptHPPDop genannt (Figur 3, Konstrukt IV).

b) Herstellung einer antiHGD-Expressionskassett

Für die Ausschaltung der HGD mit antisense-Technik wurde das Genfragment als Sall/Asp718-Fragment in den Vektor pBinAR (Höfgen, R. und Willmitzer, L., (1990) Plant Sci. 66: 221-230) kloniert, in dem der 35S-Promotor und der OCS-Terminator 10 vorliegen (Figur 4, Konstrukt I). Das Konstrukt diente als

ATTCTAGACATGGAGTCAAAGATTCAAATAGA (SEQ ID NO: 12),

Vorlage für eine PCR Reaktion mit dem Oligonukleotid:

15 spezifisch für die 35S-Promotor-Sequenz;
 und dem Oligonukleotid:

ATTCTAGAGGACAATCAGTAAATTGAACGGAG (SEQ ID NO: 13).

20 spezifisch für OCS-Terminator-Sequenz

Das Amplikon wurde in den Vektor PCR-Script (Stratagene) kloniert und HGDanti genannt (Figur 3, Konstrukt II).

25 c) Herstellung des binären Vektors

Zur Erstellung eines binären Vektors zur Raps-Transformation wurde zunächst das Konstrukt HGDanti aus pCRScriptHGDanti als XbaI-Fragment in den Vektor pPTV (Becker, D.,(1992) PMB 20, 30 1195-1197) kloniert (Abbildung 5, Konstrukt V). In dieses Plasmid wurde das Konstrukt LegHPPDop aus pCRScriptHPPDop als

wurde das Konstrukt LegHPPDop aus pCRScriptHPPDop als HindIII-Fragment eingefügt. Dieses Plasmid wurde mit pPTVHPPD/HGDanti bezeichnet (Figur 2, Konstrukt VI).

35 Beispiel 4: Herstellung von Konstrukten zur Kotransformation zur Überexpression von HPPDop und Ausschaltung von HGD in Brassica napus Pflanzen

Zur Kotransformation von Pflanzen mit HPPDop und antiHGD wurde 40 das Konstrukt LeguminB-Promotor/Tansitpeptid/HPPDop/NOS aus dem Vektor pCRScriptHPPDop (Figur 3, Konstrukt IV) als HindIII-Fragment herausgeschnitten und in den entsprechend geschnittenen Vektor pPZP200 (Hajdukiewicz, P., et al., (1994) PMB 25(6): 989-94) eingefügt (Figur 5, Konstrukt VII). Dieses 45 Plasmid diente später zur Kotransformation von Pflanzen zusammen 20

mit dem Vektor pPTVHGDanti (Figur 5, Konstrukt V) aus Beispiel 3 c).

Beispiel 5: Herstellung transgener Brassica napus Pflanzen 5

Die Herstellung transgener Raps Pflanzen orientierte sich an einem Protokoll von Bade, J.B. und Damm, B. (in Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., Hrsg., Springer Lab Manual, Springer Verlag, 1995, 30-38), in welchem auch die 10 Zusammensetzung der verwendeten Medien und Puffer angegeben ist.

Die Transformation erfolgte mit dem Agrobacterium tumefaciens Stamm EHA105 (Li, X.Q., et al., PMB (1992) 20, 1037). Zur Transformation wurde entweder das oben genannte Plasmid 15 pPTVHPPDopHGDanti (Figur 2) oder nach Anzucht gemischte Kulturen von Agrobakterien mit den Plasmiden pPTVHGDanti und pPZP200HPPDop (Figur 5) verwendet.

Samen von Brassica napus var. Westar wurden mit 70% Ethanol (v/v)

20 oberflächensteril gemacht, 10 Minuten bei 55°C in Wasser
gewaschen, in 1%iger Hypochlorit-Lösung (25% v/v Teepol, 0,1% v/v
Tween 20) 20 Minuten inkubiert und sechsmal mit sterilem Wasser
jeweils 20 Minuten gewaschen. Die Samen wurden drei Tage auf
Filterpapier getrocknet und 10-15 Samen in einem Glaskolben mit

25 15 ml Keimungsmedium zur Keimung gebracht. Von mehreren
Keimlingen (ca. 10 cm groß) wurden die Wurzeln und Apices
entfernt und die verbleibenden Hypokotyle in ca. 6 mm lange
Stücke geschnitten. Die so gewonnenen ca. 600 Explantate wurden
30 Minuten mit 50 ml Basalmedium gewaschen und in einem 300 ml

30 Kolben überführt. Nach Zugabe von 100 ml Kallusinduktionsmedium
wurden die Kulturen für 24 Stunden bei 100 U/min inkubiert.

Von den Agrobacterium Stämmen wurden Übernachtkulturen bei 29°C in Luria Broth-Medium mit Kanamycin (20mg/l) angesetzt, davon 2ml in 35 50 ml Luria Broth-Medium ohne Kanamycin für 4 Stunden bei 29°C bis zu einer OD600 von 0,4-0,5 inkubiert. Nach der Pelletierung der Kultur bei 2000 U/min für 25 min wurde das Zellpellet in 25 ml Basalmedium resuspendiert. Die Konzentration der Bakterien in der Lösung wurde durch Zugabe von weiterem Basalmedium auf eine OD600 von 0,3 eingestellt. Zur Kotransformation wurde die Lösung der beiden Stämme zu gleichen Teilen vermischt.

Aus den Raps-Explanten wurde das Kallus-Induktionsmedium mit sterilen Pipetten entfernt, 50 ml Agrobacterium-Lösung 45 hinzugefügt, vorsichtig gemischt und 20 min inkubiert. Die Agrobacterien-Suspension wurde entfernt, die Raps-Explantate 1 min mit 50 ml Kallus-Induktionsmedium gewaschen und anschließend

21

100 ml Kallus-Induktionsmedium hinzugefügt. Die Co-Kultivierung wurde 24 h auf inem Rotationsschüttler bei 100 U/min durchg führt. Die Co-Kultivierung wurde durch Wegnahme des Kallus-Induktionsmediums gestoppt und die Explantate zweimal für 5 jeweils 1 min mit 25 ml und zweimal für 60 min mit jeweils 100 ml Waschmedium bei 100 U/min gewaschen. Das Waschmedium mit den Explantaten wurde in 15 cm Petrischalen überführt und das Medium mit sterilen Pipetten entfernt.

- 10 Zur Regeneration wurden jeweils 20-30 Explantate in 90 mm Petrischalen überführt, welche 25 ml Sproß-Induktionsmedium mit Phosphinotricin enthielten. Die Petrischalen wurden mit 2 Lagen Leukopor verschlossen und bei 25 °C und 2000 lux bei Photoperioden von 16 Stunden Licht/ 8 Stunden Dunkelheit inkubiert. Alle 12
 15 Tage wurden die sich entwickelnden Kalli auf frische Petrischalen mit Sproß-Induktionsmedium umgesetzt. Alle weiteren Schritte zur
- mit Sproß-Induktionsmedium umgesetzt. Alle weiteren Schritte zur Regeneration ganzer Pflanzen wurde wie von Bade, J.B und Damm, B. (in: Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., Hrsg., Springer Lab Manual, Springer Verlag, 1995, 30-38)
- 20 beschrieben durchgeführt.

25

30

35

Patentansprüche

- Expressionskassette, enthaltend unter genetischer Kontrolle regulativer Nukleinsäuresequenzen
 - a) die kodierende Nukleinsäuresequenz für 4- Hydroxyphenylpyruvat-Dioxygenase (HPPD) oder für ein funktionales Äquivalent davon; und/oder

- b) wenigstens eine Nukleinsäuresequenz (anti-HGD), welche zu einer Inhibition der Homogentisat-Dioxygenase(HGD)-Aktivität befähigt ist.
- 15 2. Expressionskassette nach Anspruch 1, dadurch gekennzeichnet, dass die anti-HGD-Sequenz zu einer antisense-Nukleinsäurese-quenz transkribierbar ist, die zur Inhibition der HGD-Aktivität befähigt ist.
- 20 3. Expressionskassette nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die kodierende HPPD-Sequenz mit der kodierenden Sequenz eines Pflanzenorganell-spezifischen Transitpeptids funktional verknüpft ist.
- 25 4. Expressionskassette nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die kodierende HPPD-Sequenz und die anti-HGD-Sequenz jeweils unter der genetischen Kontrolle eines pflanzenspezifischen Promotors stehen.
- 30 5. Expressionskassette nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die kodierende HPPD-Nukleinsäuresequenz für ein Protein enthaltend eine Aminosäuresequenz gemäß SEQ ID NO:15 oder ein funktionales Äquivalent davon kodiert oder eine Nukleinsäuresequenz von
- Rest 8 bis Rest 1153 gemäß SEQ ID NO:14 oder ein funktionales Äquivalent davon umfaßt.
- Expressionskassette nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie ein HGD-Sequenzmotiv gemäß
 SEQ ID NO:1 in antisense-Orientierung umfaßt.
 - Rekombinanter Vektor, umfassend wenigstens eine Expressionskassette nach einem der Ansprüche 1 bis 6.
- 45 8. Vektor nach Anspruch 7, umfassend wenigstens ein Expressionskonstrukt des Typs:

WO 01/12827 PCT/EP00/07807

5'-Pflanzenspezifisch r Promotor/HPPD oder anti-HGD/ Terminator-3',

- wobei die Einzelelemente mit inander funktional verknüpft 5 sind und wobei HPPD gegebenenfalls für ein Fusionsprotein, umfassend ein abspaltbares Transitpeptid und ein Polypeptid mit HPPD-Aktivität, kodiert.
- 9. Vektor nach Anspruch 8, umfassend eines der folgenden Expres-10 sionskonstrukte:
 - a) 35S-Promotor/anti-HGD/OCS-Terminator
 - b) LeguminB-Promotor/HPPD/NOS-Terminator

15

- c) 35S-Promotor/anti-HGD/OCS-Terminator/LeguminB-Promotor/ HPPD/NOS-Terminator
- 10. Mikroorganismus, enthaltend einen rekombinanten Vektor nach20 einem der Ansprüche 7 bis 9.
 - 11. Mikroorganismus nach Anspruch 10 aus der Gattung Agrobacterium und insbesondere der Art Agrobacterium tumefaciens.

25

12. Verwendung eines Vektors nach einem der Ansprüche 7 bis 9 oder eines Mikroorganismus nach einem der Ansprüche 10 und 11 zur Transformation von Pflanzen, Pflanzenzellen, -geweben oder -teilen.

30

- 13. Verwendung nach Anspruch 12, wobei die Pflanzen, Pflanzenzellen, -gewebe oder -teile zu einer verbesserten Tocopherol-Synthese befähigt werden.
- 35 14. Transgene Pflanze, transformiert mit einem Vektor gemäß einem der Ansprüche 7 bis 9 oder mit einem Mikroorganismus gemäß einem der Ansprüche 10 und 11, oder transgene Zellen, Gewebe, Teile oder transgenes Vermehrungsgut davon.
- 40 15. Transgene Pflanze nach Anspruch 14, ausgewählt unter Kulturpflanzen, wie Getreide, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat, wie Kresse, und den verschiedenen Baum-, Nuß- und W inspecies.

16. Verfahren zur Herstellung von transgenen Pflanzen nach einem der Ansprüche 14 und 15, dadurch gekennzeichnet, daß man Pflanz nzellen, -gewebe oder -teile oder Protoplasten mit einem Vektor gemäß einem der Ansprüch 7 bis 9 oder mit einem Mikroorganismus gemäß einem der Ansprüche 10 und 11 transformiert, die transformierten Zellen, Gewebe, Pflanzenteile oder Protoplasten in einem Wachstumsmedium kultiviert und gegebenenfalls aus der Kultur Pflanzen regeneriert.

- 17. Verwendung einer Expressionskassette nach einem der Ansprüche 1 bis 6, eines Vektors nach einem der Ansprüche 7 bis 9, eines Mikroorganismus nach einem der Ansprüche 10 oder 11 oder einer transgenen Pflanze nach einem der Ansprüche 14 und 15 zur Gewinnung von Pflanzenmetaboliten, insbesondere Tocopherolen.
- 18. Verfahren zur Herstellung von Tocopherolen, dadurch gekennzeichnet, daß man aus einer Kultur einer
 20 transformierten Pflanze nach einem der Ansprüche 14 und 15 das Tocopherol isoliert.

Tocopherolsynthese

Fig.1

Fig.2

Fig.3

Fig.

<110> BASF Aktiengesellschaft

SEQUENCE LISTING

```
<120> Homogentisat-Dioxygenase
<130> M/40226
<140> 19937957.2
<141> 1999-08-11
<160> 15
<170> PatentIn Ver. 2.1
<210> 1
<211> 575
<212> DNA
<213> Brassica napus
<220>
<221> misc feature
<222> (1)..(6)
<223> /function= "Restriktionsschnittstelle
<220>
<221> misc_feature
<222> (570)..(575)
<223> /function = "Restriktionsschnittstelle"
gtcgacgggc cgatgggggc gaagggtctt gctgcaccaa gagattttct tgcaccaacg 60
gcatggtttg aggaagggct acggcctgac tacactattg ttcagaagtt tggcggtgaa 120
ctctttactg ctaaacaaga tttctctccg ttcaatgtgg ttgcctggca tggcaattac 180
gtgccttata agtatgacct gcacaagttc tgtccataca acactgtcct tgtagaccat 240
ggagatccat ctgtaaatac agttctgaca gcaccaacgg ataaacctgg tgtggccttg 300
cttgattttg tcatattccc tcctcgttgg ttggttgctg agcatacctt tcgacctcct 360
tactaccatc gtaactgcat gagtgaattt atgggcctaa tctatggtgc ttacgaggcc 420
aaaqctqatq qatttctacc tgqtqqcqca agtcttcaca gttgtatgac acctcatggt 480
ccagatacaa ccacatacga ggcgacgatt gctcgtgtaa atgcaatggc tccttataag 540
ctcacaggca ccatggcctt catgtttgag gtacc
                                                                   575
<210> 2
<211> 26
<212> DNA
<213> Künstliche Sequenz
<223> Beschreibung der künstlichen Sequenz: /desc =
       "Oligonukleotid"
 <220>
 <221> misc feature
 <222> (9)
 <223> /mod base = i
```

```
<220>
<221> misc_feature
<222> (12)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (15)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (18)
<223> /mod_base = i
<220>
<221> misc feature
<222> (21)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (24)
<223> /mod_base = i
<400> 2
gtcgacggnc cnatnggngc naangg
<210> 3
<211> 29
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
      "Oligonukleotid"
<220>
<221> misc_feature
<222> (18)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (24)
<223> /mod_base = i
<220>
<221> misc_feature
<222> (27)
<223> /mod_base = i
<400> 3
```

ggtacctcra acatraangc catngtncc

29

26

<210><211><211><212><213>	25	
	Beschreibung der künstlichen Sequenz: /desc = "Oligonukleotid"	
<400>	4	
gaatto	gatc tgtcgtctca aactc	25
<210>		
<211>		
<212>		
<213>	Künstliche Sequenz	
<220>		
	Beschreibung der künstlichen Sequenz: /desc =	
	"Oligonukleotid"	
	-	
<400>	5	
ggtacc	gtga tagtaaacaa ctaatg	26
<210>	£	
<211>		
<212>		
	Künstliche Sequenz	
<220>		
<223>	Beschreibung der künstlichen Sequenz: /desc = "Oligonukleotid"	
<400>	6	
atggta	acctt ttttgcataa acttatcttc atag	34
J210+	7	
<210><211>		
<211 <i>></i>		
	Künstliche Sequenz	
\213 /	Runstiiche Sequenz	
<220>		
<223>	Beschreibung der künstlichen Sequenz: /desc = "Oligonukleotid"	
<400>	7	
	gaccc gggatccagg gccctgatgg gtcccatttt ccc	43
-		
<210>		
<211>	25	

<212> <213>	DNA Künstlich Sequenz	
	Beschreibung der künstlichen Sequenz: /desc = Oligonukleotid"	
<400>	8	
gtcgac	gaat ttccccgaat cgttc	25
<210>	q	
<211>		
<212>		
<213>	Künstliche Sequenz	
<220>		
<223>	Beschreibung der künstlichen Sequenz: /desc = "Oligonukleotid"	
<400>	q	
	ccga tctagtaaca taga	24
•		
<210> <211>		
<211>		
	Künstliche Sequenz	
~213/	Municipal Deguenz	
<220>		
<223>	Beschreibung der künstlichen Sequenz: /desc = "Oligonukleotid"	
<400>	10	
aagctt	gatc tgtcgtctca aactc	25
<210>	11	
<211>		
<212>		
	Künstliche Sequenz	
	-	
<220>		
<223>	Beschreibung der künstlichen Sequenz: /desc = "Oligonukleotid"	
<400>		
aagcti	teega tetagtaaca taga	24
<210>		
<211>	32	
<212>		
<213>	Künstliche Sequenz	
<220×		

```
<223> Beschreibung der künstlichen Sequenz: /desc =
      "Oligonukleotid"
<400> 12
attctagaca tggagtcaaa gattcaaata ga
                                                                   32
<210> 13
<211> 32
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
      "Oligonukleotid"
<400> 13
attctagagg acaatcagta aattgaacgg ag
                                                                   32
<210> 14
<211> 1159
<212> DNA
<213> Künstliche Sequenz
<223> Beschreibung der künstlichen Sequenz: /desc =
      "DNA"
<220>
<221> misc_feature
<222> (1)..(6)
<223> /function = "Restriktionsschnittstelle"
<220>
<221> CDS
<222> (8)..(1153)
<220>
<221> misc_feature
<222> (1154)..(1159)
<223> /function = "Restriktionsschnittstelle"
<400> 14
gtogact atg act caa act act cat act cca gat act gct aga caa
                                                                   49
         Met Thr Gln Thr Thr His His Thr Pro Asp Thr Ala Arg Gln
gct gat cct ttt cca gtt aag gga atg gat gct gtt ttc gct gtt
                                                                   97
Ala Asp Pro Phe Pro Val Lys Gly Met Asp Ala Val Val Phe Ala Val
 15
                     20
gga aac gct aag caa gct gct cat tac tac tct act gct ttc gga atg
Gly Asn Ala Lys Gln Ala Ala His Tyr Tyr Ser Thr Ala Phe Gly Met
                                                          45
                  35
                                      40
```

caa Gln	ctt Leu	gtt Val	gct Ala 50	tac Tyr	tct Ser	gga Gly	cca Pro	gaa Glu 55	aac Asn	gga Gly	tct Ser	aga Arg	gaa Glu 60	act Thr	gct Ala	193
														tct Ser		241
														gtt Val		289
														gat Asp		337
														gtt Val 125		385
														gct Ala		433
														act Thr		481
														att Ile		529
														gtt Val		577
Asn	Val	Glu	Leu	Gly 195	Arg	Met	Asn	Glu	Trp 200	Val	Gly	Phe	Tyr	aac Asn 205	Lys	625
Val	Met	Gly	Phe 210	Thr	Asn	Met	Lys	Glu 215	Phe	Val	Gly	Asp	Asp 220	att Ile	Ala	673
Thr	Glu	Tyr 225	Ser	Ala	Leu	Met	Ser 230	Lys	Val	Val	Ala	Asp 235	Gly	act Thr	Leu	721
Lys	Val 240	Lys	Phe	Pro	Ile	Asn 245	Glu	Pro	Ala	Leu	Ala 250	Lys	Lys	aag Lys	Ser	769
	Ile					Glu					Ala			caa Gln		817

att gct Ile Ala	ctt Leu	aac Asn	act Thr 275	gga Gly	gat Asp	atc Ile	gtg Val	gaa Glu 280	act Thr	gtt Val	aga Arg	act Thr	atg Met 285	aga Arg	865
gct gca Ala Ala	gga Gly	gtt Val 290	caa Gln	ttc Phe	ctt Leu	gat Asp	act Thr 295	cca Pro	gat Asp	tct Ser	tac Tyr	tac Tyr 300	gat Asp	act Thr	913
ctt ggt Leu Gly	gaa Glu 305	tgg Trp	gtt Val	gga Gly	gat Asp	act Thr 310	aga Arg	gtt Val	cca Pro	gtt Val	gat Asp 315	act Thr	ctt Leu	aga Arg	961
gaa ctt Glu Leu 320	aag Lys	att Ile	ctt Leu	gct Ala	gat Asp 325	aga Arg	gat Asp	gaa Glu	gat Asp	gga Gly 330	tac Tyr	ctt Leu	ctt Leu	caa Gln	1009
atc ttc Ile Phe 335	act Thr	aag Lys	cca Pro	gtt Val 340	caa Gln	gat Asp	aga Arg	cca Pro	act Thr 345	gtg Val	ttc Phe	ttc Phe	gaa Glu	atc Ile 350	1057
att gaa Ile Glu	aga Arg	cat His	gga Gly 355	tct Ser	atg Met	gga Gly	ttc Phe	gga Gly 360	aag Lys	ggt Gly	aac Asn	ttc Phe	aag Lys 365	gct Ala	1105
ctt ttc Leu Phe	gaa Glu	gct Ala 370	att Ile	gaa Glu	aga Arg	gaa Glu	caa Gln 375	gag Glu	aag Lys	aga Arg	gga Gly	aac Asn 380	ctt Leu	tag	1153
gtcgac															1159
<210> 15 <211> 38 <212> PR <213> Kü <223> Be	l T inst]					tlich	nen :	Seque	enz:	/des	3C =				1159
<210> 15 <211> 38 <212> PR <213> Kü <223> Be	Il RT inst] eschi ONA"	eibu	ang d	der 1	cünst							Gln	Ala 15	Asp	1159
<210> 15 <211> 38 <212> PR <213> Kü <223> Be "" <400> 15 Met Thr	Il RT instl eschi DNA" Gln	eibu Thr	ng o	der)	cünst His	Thr	Pro	Asp 10	Thr	Ala	Arg		15		1159
<210> 15 <211> 38 <212> PR <213> Kü <223> Be "D <400> 15 Met Thr 1	RT instleschi DNA" Gln	Thr Val	Thr 5	His	His Met	Thr Asp	Pro Ala 25	Asp 10 Val	Thr	Ala Phe	Arg Ala	Val 30	15 Gly	Asn	1159
<210> 15 <211> 38 <212> PR <213> Kü <223> Be "E <400> 15 Met Thr 1 Pro Phe	RT instleschr DNA" Gln Pro Gln 35	Thr Val 20	Thr 5 Lys	His Gly	His Met Tyr	Thr Asp Tyr 40	Pro Ala 25 Ser	Asp 10 Val	Thr Val Ala	Ala Phe Phe	Arg Ala Gly 45	Val 30 Met	15 Gly Gln	Asn Leu	1159
<210> 15 <211> 38 <212> PR <213> Ki <223> Be "I <400> 15 Met Thr 1 Pro Phe Ala Lys Val Ala	RT instleschi DNA" Gln Pro Gln 35	Thr Val 20 Ala Ser	Thr 5 Lys Ala	His Gly His	His Met Tyr Glu 55	Thr Asp Tyr 40 Asn	Pro Ala 25 Ser Gly	Asp 10 Val Thr	Thr Val Ala Arg	Ala Phe Phe Glu 60	Arg Ala Gly 45	Val 30 Met	15 Gly Gln Ser	Asn Leu Tyr	1159

Gly Asp Gly Val Val Asp Leu Ala Ile Glu Val Pro Asp Ala Arg Ala 100 105 110

Ala His Ala Tyr Ala Ile Glu His Gly Ala Arg Ser Val Ala Glu Pro 115 120 125

Tyr Glu Leu Lys Asp Glu His Gly Thr Val Val Leu Ala Ala Ile Ala 130 135 140

Thr Tyr Gly Lys Thr Arg His Thr Leu Val Asp Arg Thr Gly Tyr Asp 145 150 155 160

Gly Pro Tyr Leu Pro Gly Tyr Val Ala Ala Ala Pro Ile Val Glu Pro 165 170 175

Pro Ala His Arg Thr Phe Gln Ala Ile Asp His Cys Val Gly Asn Val 180 185 190

Glu Leu Gly Arg Met Asn Glu Trp Val Gly Phe Tyr Asn Lys Val Met 195 200 205

Gly Phe Thr Asn Met Lys Glu Phe Val Gly Asp Asp Ile Ala Thr Glu 210 215 220

Tyr Ser Ala Leu Met Ser Lys Val Val Ala Asp Gly Thr Leu Lys Val 225 230 235 240

Lys Phe Pro Ile Asn Glu Pro Ala Leu Ala Lys Lys Lys Ser Gln Ile 245 250 255

Asp Glu Tyr Leu Glu Phe Tyr Gly Gly Ala Gly Val Gln His Ile Ala 260 265 270

Leu Asn Thr Gly Asp Ile Val Glu Thr Val Arg Thr Met Arg Ala Ala 275 280 285

Gly Val Gln Phe Leu Asp Thr Pro Asp Ser Tyr Tyr Asp Thr Leu Gly 290 295 300

Glu Trp Val Gly Asp Thr Arg Val Pro Val Asp Thr Leu Arg Glu Leu 305 310 315

Lys Ile Leu Ala Asp Arg Asp Glu Asp Gly Tyr Leu Leu Gln Ile Phe 325 330 335

Thr Lys Pro Val Gln Asp Arg Pro Thr Val Phe Phe Glu Ile Ile Glu 340 345 350

Arg His Gly Ser Met Gly Phe Gly Lys Gly Asn Phe Lys Ala Leu Phe 355 360 365

Glu Ala Ile Glu Arg Glu Gln Glu Lys Arg Gly Asn Leu 370 375 380