Kenneth Ireland Michael Rosen

A Classical Introduction to Modern Number Theory

Second Edition

Contents

Preface to the Second Edition Preface	v vii
CHAPTER 1	1
Unique Factorization	1
\$1 Unique Factorization in Z	1
§2 Unique Factorization in $k[x]$ §3 Unique Factorization in a Principal Ideal Domain	6
§4 The Rings $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$	12
CHAPTER 2	
Applications of Unique Factorization	17
§1 Infinitely Many Primes in ℤ	17
§2 Some Arithmetic Functions	18
§3 Σ 1/p Diverges	21
§4 The Growth of $\pi(x)$	22
CHAPTER 3	•
Congruence	28
§1 Elementary Observations	28
§2 Congruence in ℤ	29
§3 The Congruence $ax \equiv b(m)$	31
§4 The Chinese Remainder Theorem	34
CHAPTER 4	20
The Structure of $U(\mathbb{Z}/n\mathbb{Z})$	39
§1 Primitive Roots and the Group Structure of $U(\mathbb{Z}/n\mathbb{Z})$	39
§2 nth Power Residues	45
Chapter 5	
Quadratic Reciprocity .	50
§1 Quadratic Residues	50
§2 Law of Quadratic Reciprocity	53
§3 A Proof of the Law of Quadratic Reciprocity	58

Kii	Contents
KII	Contents

Chapter 6	
Quadratic Gauss Sums	66
\$1 Algebraic Numbers and Algebraic Integers	66
\$2 The Quadratic Character of 2	69
§3 Quadratic Gauss Sums	70
§4 The Sign of the Quadratic Gauss Sum	73
Chapter 7	
Finite Fields	79
§1 Basic Properties of Finite Fields	79
§2 The Existence of Finite Fields	83
§3 An Application to Quadratic Residues	85
C	
CHAPTER 8 Gauss and Jacobi Sums	88
§1 Multiplicative Characters §2 Gauss Sums	88 91
§3 Jacobi Sums	91
§4 The Equation $x^n + y^n = 1$ in F_p	97
§5 More on Jacobi Sums	98
§6 Applications	101
§7 A General Theorem	102
Chapter 9	
Cubic and Biquadratic Reciprocity	108
§1 The Ring ℤ[ω] §2 Residue Class Rings	109 111
§3 Cubic Residue Character	112
§4 Proof of the Law of Cubic Reciprocity	115
§5 Another Proof of the Law of Cubic Reciprocity	117
§6 The Cubic Character of 2	118
§7 Biquadratic Reciprocity: Preliminaries	119
§8 The Quartic Residue Symbol §9 The Law of Biquadratic Reciprocity	121 123
\$10 Rational Biquadratic Reciprocity	123
\$11 The Constructibility of Regular Polygons	130
§12 Cubic Gauss Sums and the Problem of Kummer	131
G	
CHAPTER 10 Equations over Finite Fields	120
Equations over Finite Fields	138
§1 Affine Space, Projective Space, and Polynomials	138
\$2 Chevalley's Theorem \$3 Gauss and Jacobi Sums over Finite Fields	143 145
33 Gauss and Jacobi Sums over finite fields	143

Contents	xiii
Chapter 11	
The Zeta Function	151
§1 The Zeta Function of a Projective Hypersurface	151
§2 Trace and Norm in Finite Fields	158
§3 The Rationality of the Zeta Function Associated to	
$a_0x_0^m + a_1x_1^m + \cdot \cdot \cdot + a_nx_n^m$	161
§4 A Proof of the Hasse–Davenport Relation	163
§5 The Last Entry	166
Chapter 12	
Algebraic Number Theory	172
§1 Algebraic Preliminaries	172
§2 Unique Factorization in Algebraic Number Fields	174 181
§3 Ramification and Degree	101
Chapter 13	
Quadratic and Cyclotomic Fields	188
§1 Quadratic Number Fields	188
§2 Cyclotomic Fields	193
§3 Quadratic Reciprocity Revisited	199
or Qualitatio reorphotoly no notice	
Chapter 14	
The Stickelberger Relation and the Eisenstein Reciprocity Law	203
§1 The Norm of an Ideal	203
§2 The Power Residue Symbol	204
§3 The Stickelberger Relation	207
§4 The Proof of the Stickelberger Relation	209
§5 The Proof of the Eisenstein Reciprocity Law	215
§6 Three Applications	220
Chapter 15	
Bernoulli Numbers	228
§1 Bernoulli Numbers; Definitions and Applications	228 234
§2 Congruences Involving Bernoulli Numbers §3 Herbrand's Theorem	234 241
35 Helofalid S Theolein	271
Chapter 16	
Dirichlet L-functions	249
§1 The Zeta Function	249
§2 A Special Case	251
§3 Dirichlet Characters	253
§4 Dirichlet <i>L</i> -functions	255
§5 The Key Step	257
§6 Evaluating $L(s, \chi)$ at Negative Integers	261

CHAPTER 17	
Diophantine Equations	269
§1 Generalities and First Examples	269
§2 The Method of Descent	271
§3 Legendre's Theorem	272
§4 Sophie Germain's Theorem	275
\$5 Pell's Equation \$6 Sums of Two Squares	276
§7 Sums of Four Squares	278 280
§8 The Fermat Equation: Exponent 3	284
§9 Cubic Curves with Infinitely Many Rational Points	287
§10 The Equation $y^2 = x^3 + k$	288
§11 The First Case of Fermat's Conjecture for Regular Exponent	290
§12 Diophantine Equations and Diophantine Approximation	292
Chapter 18	
Elliptic Curves	297
§1 Generalities	297
§2 Local and Global Zeta Functions of an Elliptic Curve	301
$\S 3 \ y^2 = x^3 + D$, the Local Case	304
$\S4 \ y^2 = x^3 - Dx$, the Local Case	306
§5 Hecke L-functions	307
$\$6 \ y^2 = x^3 - Dx$, the Global Case $\$7 \ y^2 = x^3 + D$, the Global Case	310
$\sqrt{y^2} = x^3 + D$, the Global Case §8 Final Remarks	312 314
so thia Remarks	314
CHAPTER 19	
The Mordell-Weil Theorem	319
§1 The Addition Law and Several Identities	320
2 The Group $E/2E$	323
§3 The Weak Dirichlet Unit Theorem	326
§4 The Weak Mordell–Weil Theorem	328
§5 The Descent Argument	330
Chapter 20	
New Progress in Arithmetic Geometry	339
§1 The Mordell Conjecture	340
§2 Elliptic Curves	343
§3 Modular Curves	345
§4 Heights and the Height Regulator	348
§5 New Results on the Birch-Swinnerton-Dyer Conjecture	353
§6 Applications to Gauss's Class Number Conjecture	358
Selected Hints for the Exercises	367
Bibliography	375
Index	385