PROJETO INTERDISCIPLINAR - CÁLCULO II - MÁXIMOS E MÍNIMOS

Objetivo do Projeto:

Ajuda os usuários a otimizarem seus gastos e a planejar o pagamento de dívidas, utilizando os conceitos matemáticos de máximos e mínimos abordados em Cálculo 2. A ideia é integrar essas ferramentas ao site, oferecendo uma abordagem baseada em cálculos matemáticos para melhorar a vida financeira dos usuários.

Conceito Central: Máximos e Mínimos

O site tem como objetivo auxiliar os usuários a resolver dois problemas financeiros principais:

Maximização da Utilidade Financeira

O objetivo é ajudar os usuários a alocar seu orçamento mensal entre diferentes categorias de despesas (como alimentação, lazer e transporte) para **maximizar** sua satisfação. Os **máximos** são os pontos onde a função de utilidade atinge seu valor mais alto.

Minimizando Custos

O site também visa **minimizar** o custo total das dívidas, permitindo que os usuários paguem menos em juros. Os **mínimos** são os pontos onde a função de custo atinge seu valor mais baixo

- **1. Otimização de Gastos:** Utiliza máximos e mínimos para ajudar o usuário a otimizar seus gastos. Por exemplo, você pode criar planilhas que identifiquem os limites de consumo ideais para determinadas categorias (alimentos, lazer, transporte) com base em fórmulas de custo-benefício, ajudando o usuário a maximizar a economia e minimizar desperdícios.
- 2. Redução de Dívidas: Usa a análise de mínimos para mostrar estratégias de pagamento de dívidas que minimizam juros ao longo do tempo. O site pode fornecer planilhas que ajudem os usuários a encontrarem a melhor forma de organizar seus pagamentos mensais para pagar menos juros.

I. Otimização de Gastos

Como funcionaria:

O usuário insere seu orçamento total mensal, assim como as despesas fixas (aluguel, contas, etc.) e variáveis.

Cálculo do orçamento ideal: Usando funções de otimização, a planilha calcula os valores mínimos e máximos recomendados que o usuário deve gastar em cada categoria de despesa. Por exemplo:

- Para alimentação, o sistema pode sugerir um valor mínimo necessário para manter uma dieta saudável e um valor máximo, acima do qual o gasto se torna excessivo.
- Para lazer, pode haver um valor máximo recomendado para evitar que o lazer consuma uma parte desproporcional do orçamento.

A ideia é maximizar o benefício para o usuário, ou seja, garantir que ele esteja gastando o suficiente para atender às suas necessidades, mas sem ultrapassar os limites de um orçamento equilibrado.

Exemplo de uso prático:

Um usuário com um salário de R\$ 4.000,00 insere suas despesas fixas (R\$ 2.000,00 de aluguel e contas). O sistema então distribui os R\$ 2.000,00 restantes em diferentes categorias, sugerindo limites baseados em critérios de otimização, como:

Alimentação: Mínimo de R\$ 800,00 e máximo de R\$ 1.000,00.

• Transporte: Máximo de R\$ 500,00.

Lazer: Máximo de R\$ 300,00.

1. Exemplo de Alimentação:

Suponha que a função de satisfação para alimentação seja uma função quadrática que atinge seu valor máximo quando a pessoa gasta de forma ideal, sem gastar muito ou pouco demais. A função pode ser modelada como:

$$S_{alimenta \circ \tilde{a}o(x) = -0.02x^2 + 16x - 300}$$

Onde x é o valor gasto em alimentação e $S_{alimenta$ ção(x) é a satisfação associada ao gasto.

2. Exemplo de Transporte:

Vamos supor que o gasto ideal em transporte minimize o custo sem gastar em excesso. Isso pode ser modelado como uma função quadrática:

$$C_{transporte(x)=0,05x^2-12x+500}$$

Onde x é o gasto com transporte e $C_{transporte(x)}$ é o custo associado.

3. Exemplo de Lazer:

O lazer também pode ser modelado como uma função de satisfação, mas com um máximo local que indica o gasto ideal para evitar excessos:

$$S_{lazer(x)=-0.01x^2+8x-100}$$

Vamos criar os gráficos dessas funções e indicar os máximos e mínimos relevantes para otimizar os gastos em cada categoria.

Gasto (R\$)

Aqui estão os exemplos de gráficos baseados nas funções de gastos para as categorias de alimentação, transporte e lazer:

- 1. **Alimentação**: O gráfico mostra que a satisfação atinge o valor máximo com um gasto ideal em torno de R\$ 400,00 a R\$ 500,00. A partir desse ponto, gastar mais em alimentação diminui a satisfação.
- 2. **Transporte**: O custo aumenta exponencialmente após um determinado valor de gasto, mostrando que gastos moderados são mais eficientes.
- 3. **Lazer**: A satisfação atinge o seu pico com gastos em torno de R\$ 400,00. Gastar mais do que isso resulta em uma queda na satisfação, indicando que há um valor ideal para maximizar o lazer sem excessos.

Esses exemplos demonstram como otimizar os gastos e evitar tanto insuficiências quanto exageros em cada categoria.

II. Redução de Dívidas

Neste caso, a proposta é criar uma ferramenta que ajude os usuários a minimizar os juros pagos ao longo do tempo, aplicando a análise de mínimos. A ideia é que o usuário possa usar planilhas ou simuladores que calculam a melhor forma de organizar seus pagamentos mensais, de modo a reduzir o total de juros pagos em dívidas como empréstimos, financiamentos ou cartões de crédito.

Como funcionaria:

O usuário insere as informações das suas dívidas, como valor total, taxa de juros e prazo de pagamento.

Simulação de pagamentos: O sistema simula diferentes cenários de pagamento, sugerindo estratégias que minimizam os juros. Uma abordagem possível seria o

cálculo de pagamentos extras em períodos específicos para acelerar a quitação da dívida e reduzir o impacto dos juros acumulados.

Exemplo de uso prático:

Se o usuário tem uma dívida de R\$ 10.000,00 com juros de 5% ao mês, o sistema pode calcular que, se ele fizer um pagamento adicional de R\$ 500,00 em determinado mês, ele poderá economizar R\$ 2.000,00 em juros ao longo do tempo.

Dados da Dívida:

- Dívida total (D): R\$ 10.000,00
- Taxa de juros (i): 5% ao mês
- Prazo de pagamento (n): 12 meses
- Pagamento adicional (PA): R\$ 500,00

Cálculo do Pagamento Mensal (PM):

$$PM = \frac{D \cdot i}{1 - (1 + i)^{-n}} = \frac{10.000 \cdot 0.05}{1 - (1 + 0.05)^{-12}} \approx 1.051,60$$

Total Pago e Total de Juros Sem Pagamento Adicional:

• Total Pago Sem PA:

$$Total\ Pago = PM \cdot n \approx 1.051,60 \cdot 12 \approx 12.619,20$$

• Total de Juros Sem PA:

$$Total\ de\ Juros = Total\ Pago - D \approx 12.619,20 - 10.000 = 2.619,20$$

Novo Saldo Após Pagamento Adicional:

$$Novo\ Saldo = D - PA = 10.000 - 500 = 9.500$$

Cálculo do Novo Pagamento Mensal (PM) Com Pagamento Adicional:

Prazo restante (n - 1): 11 meses

$$PMcom_{PA} = \frac{9.500 \cdot 0.05}{1 - (1 + 0.05)^{-11}} = 1.044,62$$

Total Pago e Total de Juros Com Pagamento Adicional:

Total Pago Com PA:

$$Total\ Pago = PMcom_{PA} \cdot (n-1) + PA \approx 1.044,62 \cdot 11 + 500 = 11.991,82$$

Total de Juros Com PA:

 $Total\ de\ Juros = Total\ Pago - D \approx 11.991,82 - 10.000 = 1.991,82$

Sem Pagamento Adicional:

Total de Juros: R\$ 2.619,20

Com Pagamento Adicional:

• Total de Juros: R\$ 1.991,82

O gráfico mostrará a evolução dos juros ao longo dos meses. Para isso, vamos traçar uma linha para cada cenário de pagamento (com e sem pagamento adicional) ao longo dos 12 meses.

Eixo X: Meses (1 a 12)

Eixo Y: Total de Juros acumulados

Linhas do Gráfico:

 Linha Azul (Sem Pagamento Adicional): Esta linha mostra um aumento contínuo dos juros ao longo do tempo, refletindo como os juros se acumulam conforme os meses passam. • Linha Laranja (Com Pagamento Adicional): Esta linha inicia em um valor mais baixo devido ao pagamento adicional, resultando em um crescimento menos acentuado dos juros ao longo do tempo.

Nome completo	RA
Flavia da Costa Rodrigues Faria	20021548
Guilhermy Mariano Lisboa Garcia	23025371
Gustavo Bernardi Rodrigues	24026339
Kamila da Silva Santos	24026235
Lavínia de Lima Pires	24026315