Elettronica

Richiami di teoria dei circuiti

Bipoli lineari

Nome	Ideale	Reale
Generatore di tensione	φ.	- Priceon
Generatore di corrente	♦ †	T R GROUPE
Resistore	W	W

Legge di Ohm

Legge di Ohm

$$V_{AB} = V_A - V_B = R \times I$$

Legge di Ohm generalizzata

$$\begin{array}{c|c}
A \\
V_A \\
V_A
\end{array}$$

$$\begin{array}{c|c}
I \\
V_A
\end{array}$$

$$\begin{array}{c|c}
I \\
R_2
\end{array}$$

$$\begin{array}{c|c}
I \\
R_3
\end{array}$$

$$\begin{array}{c|c}
I \\
R_4
\end{array}$$

$$\begin{array}{c|c}
I \\
V_B
\end{array}$$

$$\begin{array}{c|c}
(V_A - V_B) + \overset{\circ}{\mathbf{A}} & \overset{\bullet}{\mathbf{A}} & \overset{\circ}{\mathbf{A}} & \overset{\circ}{\mathbf{A}} & \overset{\circ}{\mathbf{A}} & \overset{\circ}{\mathbf{A}} & \overset{\bullet}{$$

Leggi di Kirchoff

Prima legge di Kirchoff o legge di Kirchoff delle correnti

La somma algebrica delle correnti entranti in un nodo è identicamente nulla in ogni istante di tempo, ossia la somma delle correnti entranti in un nodo è sempre uguale alla somma delle correnti uscenti:

$$\mathring{\mathbf{a}} I_i = 0$$

Seconda legge di Kirchoff o legge di Kirchoff delle tensioni

La somma algebrica delle tensioni lungo qualsiasi percorso chiuso è identicamente nulla in ogni istante di tempo, ossia la somma delle forze elettromotrici presenti nella maglia devono equilibrare le varie cadute di tensione nelle resistenze costituenti i rami della maglia stessa:

$$\mathring{\mathbf{a}} f_i = \mathring{\mathbf{a}} R_i \times I_i$$

Esempi di applicazione leggi di Kirchoff

$$I_1$$
 - I_2 - I_3 - I_4 + I_5 = 0

$$I_1 + I_5 = I_2 + I_3 + I_4$$

$$V_{01} - V_{02} + V_{04} = (R_1 + R_{01})I_1 + (R_{02} + R_2)I_2 - R_3I_3 + (R_4 + R_{04})I_4$$

Teorema di Thevenin

Il teorema di Thevenin permette di rappresentare una parte di una qualsiasi rete elettrica con un generatore di tensione V_t e con una impedenza in serie Z_t (generatore reale di tensione)

Per determinare V_t si aprono i due terminali della rete e se ne misura (o calcola) la tensione

Per determinare Z_t si annullano tutti i generatori indipendenti che si trovano nella rete A (si mettono in cc tutti i generatori di tensione e in ca tutti i generatori di corrente) e si misura (o calcola) il valore dell'impedenza d'ingresso della rete

Teorema di Norton

Il teorema di Norton permette di rappresentare una parte di una qualsiasi rete elettrica con un generatore di corrente I_n e con una impedenza in parallelo Z_n (generatore reale di corrente)

Per determinare I_n si chiudono in cc i terminali della rete e se ne misura (o calcola) la corrente

Per determinare Z_t si annullano tutti i generatori indipendenti che si trovano nella rete A (si mettono in cc tutti i generatori di tensione e in ca tutti i generatori di corrente) e si misura (o calcola) il valore dell'impedenza d'ingresso della rete

Regola del partitore di tensione

$$V_2 = V_0 \frac{R_2}{R_0 + R_1 + R_2}$$

Regola del partitore di corrente

$$I_2 = I_0 \frac{R_1}{R_1 + R_2}$$

Rappresentazione grafica I-V

Generatore di tensione

Rappresentazione grafica I-V

Generatore di corrente

Rappresentazione grafica I-V

Teorema di sovrapposizione degli effetti

Il teorema di sovrapposizione degli effetti afferma che in una rete lineare la corrente in un elemento circuitale o la tensione ai suoi capi è uguale alla somma algebrica delle correnti o delle tensioni prodotte indipendentemente da ciascun generatore. Per calcolare l'effetto di ciascuno dei generatori, gli altri generatori indipendenti devono essere disattivati, cortocircuitando i generatori di tensione e lasciando aperti quelli di corrente. Devono tuttavia essere considerate le resistenze dei generatori disattivati.

Principio di sovrapposizione

Un qualunque circuito composto di elementi lineari può essere analizzato facendo uso del *principio di sovrapposizione*.

la risposta di un circuito lineare a una somma di ingressi applicati simultaneamente è uguale alla somma delle risposte dello stesso circuito ai vari ingressi considerati separatamente.

Esempio:

$$i_1 = f(v_1)$$

$$i_2 = f(v_2)$$

$$i_3 = f(v_1 + v_2)$$

$$= f(v_1) + f(v_2) = i_1 + i_2$$

Principio di sovrapposizione (esempio)

R1=50W, R2=300W, R3=1kW, R4=20W, I=3A, V=10V Possiamo applicare il principio di sovrapposizione considerando prima gli effetti del generatore di tensione, poi gli effetti del generatore di corrente ed infine sommando algebricamente i due risultati per ottenere i valori delle correnti e delle tensioni del circuito.

Generatori controllati

Nei generatori di tensione e di corrente controllati i valori delle grandezze elettriche generate è legato analiticamente al valore assunto da un'altra grandezza elettrica presente nel circuito. I generatori controllati usati sono:

generatore di tensione controllato in tensione

generatore di corrente controllato in corrente

generatore di tensione controllato in corrente

generatore di corrente controllato in tensione

OB

Generatori controllati esempio

Calcolare la tensione ai nodi A e B e le correnti I₁, I₂ e I₃

R1=1 kW, R2=2 kW, R3=5kW,

b=99, Vcc=12V

Elementi reattivi

$$I = C \frac{dV}{dt}$$

$$V = L \frac{dI}{dt}$$

Elementi reattivi

Risposta in frequenza

Elementi reattivi

Risposta a gradino

- · Valore iniziale
- · Valore finale
- · costante di tempo