Math 395: Homework 6 Due: November 5, 2024 Name: Avinash Iyer

Collaborators: Carly Venenciano, Gianluca Crescenzo, Noah Smith, Ben Langer Weida, Chris Swanson

Problem 4

Problem: Let $t : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $t(v, w) = v \times w$. Let \mathcal{E}_3 be the standard basis of \mathbb{R}^3 , and let $\mathcal{B} = \{e_i \otimes e_j\}_{i,j=1}^3$. Let $T \in \text{Hom}_F\left(\mathbb{R}^3 \otimes \mathbb{R}^3 \to \mathbb{R}^3\right)$ be the linear map associated to t.

Calculate $[T]_{\mathcal{B}}^{\mathcal{E}_3}$.

Solution: Evaluating T at each element of \mathcal{B} , we get

- $e_1 \otimes e_1 \stackrel{\mathsf{T}}{\mapsto} 0$
- $e_1 \otimes e_2 \xrightarrow{\mathsf{T}} e_3$
- $e_1 \otimes e_3 \xrightarrow{\mathsf{T}} -e_2$
- $e_2 \otimes e_1 \xrightarrow{\mathsf{T}} -e_3$
- $e_2 \otimes e_2 \stackrel{\mathsf{T}}{\mapsto} 0$
- $e_2 \otimes e_3 \stackrel{\mathsf{T}}{\mapsto} e_1$
- $e_3 \otimes e_1 \xrightarrow{\mathsf{T}} e_2$
- $e_3 \otimes e_2 \xrightarrow{\mathsf{T}} -e_1$
- $e_3 \otimes e_3 \stackrel{\mathsf{T}}{\mapsto} 0$

Thus, the transformation matrix is

$$[\mathsf{T}]_{\mathcal{B}}^{\mathcal{E}_3} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Problem 5

Problem: Let V and W be F-vector spaces. Prove that $V \otimes_F W \cong W \otimes_F V$.

Solution: Define $t: W \times V \to V \otimes_F W$ by $t(w, v) = v \otimes w$.

By the definition of $v \otimes w$, t is necessarily a bilinear map, so the universal property gives a unique $T : W \otimes_F V \to V \otimes_F W$ by $T(w \otimes v) = v \otimes w$.

Let $s: V \times W \to W \otimes_F V$ be defined by $s(v, w) = w \otimes v$. By the definition of $w \otimes v$, it is the case that s is a bilinear map, so there is a unique map $S: V \otimes_F W \to W \otimes_F V$ given by $S(v \otimes w) = w \otimes v$.

Since $S \circ T(w \otimes v) = w \otimes v$ and $T \circ S(v \otimes w) = v \otimes w$, it is the case that T is an isomorphism, so $V \otimes_F W \cong W \otimes_F V$.

Problem 9

Problem: Let V_1 , W_1 , V_2 , W_2 be F-vector spaces, with $T_1 \in \text{Hom}_F(V_1, W_1)$ and $T_2 \in \text{Hom}_F(V_2, W_2)$. Prove that there is a unique F-linear map $T_1 \otimes T_2$ from $V_1 \otimes_F V_2$ to $W_1 \otimes_F W_2$ satisfying $(T_1 \otimes T_2)(v_1 \otimes v_2) = T_1(v_1) \otimes T_2(v_2)$.

Solution: Let $T_1: V_1 \rightarrow W_1$ and $T_2: V_2 \otimes W_2$ be fixed linear maps.

Define $t : V_1 \times V_2 \to W_1 \otimes_F W_2$ by $t(v_1, v_2) = T_1(v_1) \otimes T_2(v_2)$.

Since T_1 and T_2 are linear, t is a bilinear map, so by the universal property of tensor products, there is a unique $T_1 \otimes T_2$: $V_1 \otimes_F V_2 \to W_1 \otimes_F W_2$.

Problem 12

Problem:

(a) Let $\varphi \in V'$ and $\psi \in W'$. Define a map

$$B_{\varphi,\psi}: V \times W \to F$$

 $(v,w) \mapsto \varphi(v)\psi(w).$

Show that $B_{\varphi,\psi}$ is a bilinear form.

(b) Prove that there is a natural isomorphism between $(V \otimes W)'$ and $V' \otimes W'$.

Solution:

(a) Letting $v, v_1, v_2 \in V$, $w, w_1, w_2 \in W$, and $\alpha \in F$, we have

$$\begin{split} \mathbf{B}_{\varphi,\psi}\left(v,w_{1}+\alpha w_{2}\right) &= \varphi\left(v\right)\psi\left(w_{1}+\alpha w_{2}\right) \\ &= \varphi\left(v\right)\left(\psi\left(w_{1}\right)+\alpha\psi\left(w_{2}\right)\right) \\ &= \varphi\left(v\right)\psi\left(w_{1}\right)+\alpha\varphi\left(v\right)\psi\left(w_{2}\right) \\ &= \mathbf{B}_{\varphi,\psi}\left(v,w_{1}\right)+\alpha\mathbf{B}_{\varphi,\psi}\left(v,w_{2}\right) \end{split}$$

$$\begin{split} B_{\varphi,\psi} \left(\nu_{1} + \alpha \nu_{2}, w \right) &= \varphi \left(\nu_{1} + \alpha \nu_{2} \right) \psi \left(w \right) \\ &= \left(\varphi \left(\nu_{1} \right) + \alpha \varphi \left(\nu_{2} \right) \right) \psi \left(w \right) \\ &= \varphi \left(\nu_{1} \right) \psi \left(w \right) + \alpha \varphi \left(\nu_{2} \right) \psi \left(w \right) \\ &= B_{\varphi,\psi} \left(\nu_{1}, w \right) + \alpha B_{\varphi,\psi} \left(\nu_{2}, w \right). \end{split}$$

(b) Since $B_{\varphi,\psi}$ is bilinear, we get a unique linear map, which we will call $\varphi \times \psi : V \otimes W \to F$ defined by $\varphi \times \psi (v \otimes w) = \varphi(v)\psi(w)$. Hence, $\varphi \times \psi \in (V \otimes W)'$.

Define

$$t: V' \times W' \to (V \otimes W)'$$

by $t(\varphi, \psi) = \varphi \times \psi$. We claim that t is bilinear. Let $\varphi, \varphi_1, \varphi_2 \in V', \psi, \psi_1, \psi_2 \in W'$, and $\alpha \in F$. Then, for arbitrary $x \otimes y \in V \otimes W$, we have

$$\begin{split} t\left(\phi,\psi_{1}+\alpha\psi_{2}\right)\left(x\otimes y\right) &=\left(\phi\times\left(\psi_{1}+\alpha\psi_{2}\right)\right)\left(x\otimes y\right)\\ &=\phi\left(x\right)\left(\psi_{1}+\alpha\psi_{2}\right)\left(y\right)\\ &=\phi\left(x\right)\psi_{1}\left(y\right)+\alpha\phi\left(x\right)\psi_{2}\left(y\right)\\ &=t\left(\phi,\psi_{1}\right)\left(x\otimes y\right)+\alpha t\left(\phi,\psi_{2}\right)\left(x\otimes y\right) \end{split}$$

$$\begin{split} t\left(\phi_{1}+\alpha\phi_{2},\psi\right)\left(x\otimes y\right) &=\left(\left(\phi_{1}+\alpha\phi_{2}\right)\times\psi\right)\left(x\otimes y\right) \\ &=\left(\phi_{1}+\alpha\phi_{2}\right)\left(x\right)\psi\left(y\right) \\ &=\phi_{1}\left(x\right)\psi\left(y\right)+\alpha\phi_{2}\left(x\right)\psi\left(y\right) \\ &=t\left(\phi_{1},\psi\right)\left(x\otimes y\right)+\alpha t\left(\phi_{2},\psi\right)\left(x\otimes y\right). \end{split}$$

Since t is bilinear, we have a unique linear map $T: V' \otimes W' \to (V \otimes W)'$ defined by $T(\phi \otimes \psi) = \phi \times \psi$.

We claim that T is an isomorphism. To see this, we define $S:(V\otimes W)'\to V'\otimes W'$ by $\phi\times\psi\mapsto\phi\otimes\psi$.

Since for any $\phi \times \psi \in (V \otimes W)'$, we must have $B_{\phi,\psi} : V \times W \to F$ such that $B_{\phi,\psi} (\nu,w) = (\phi \times \psi)(\nu \otimes w)$, it is the case that S is necessarily well-defined.

We must have

$$S \circ T (\varphi \otimes \psi) = \varphi \otimes w$$
$$T \circ S (\varphi \times \psi) = \varphi \times \psi,$$

so T is an isomorphism, hence $(V \otimes W)' = V' \otimes W'$.