Determinacy in and out second order arithmetic An introduction to the proof theoretic strength of the determinacy scale

Thibaut Kouptchinsky

Proof Theory Conference UCLouvain

December 20, 2022

Program

- 1 Who am I?
- 2 Introduction
- 3 Inside second order arithmetic

- 4 Back in ZFC set theory
- 5 Perspectives and Material

Who am I?

■ Master student at Catholic University of Louvain-la-Neuve (Belgium).

Who am I?

- Master student at Catholic University of Louvain-la-Neuve (Belgium).
- Exchange program in Japan at Tohoku University.

Academic me

Who am I?

- Master student at Catholic University of Louvain-la-Neuve (Belgium).
- Exchange program in Japan at Tohoku University.

Inside second order arithmetic

COLABS program with Professor Takeshi Yamazaki.

Academic me

- Master student at Catholic University of Louvain-la-Neuve (Belgium).
- Exchange program in Japan at Tohoku University.
- COLABS program with Professor Takeshi Yamazaki.
- Master Thesis with Profs. J.P. Aguilera (TU Wien) and T. Van der Linden (UCLouvain).

Who am I?

- Master student at Catholic University of Louvain-la-Neuve (Belgium).
- Exchange program in Japan at Tohoku University.

- COLABS program with Professor Takeshi Yamazaki.
- Master Thesis with Profs. J.P. Aguilera (TU Wien) and T. Van der Linden (UCLouvain).
- \blacksquare Foundations of mathematics, reverse mathematics, β -models, determinacy, model theory, set theory, surreal numbers, topos theory etc.

Hobbies

What is determinacy?

Consider a set A and a payoff set $X \subseteq A^{\omega}$.

Inside second order arithmetic

I:
$$a_0$$
 a_2 a_{2n} \cdots $(a_i)_{i<\omega} \stackrel{?}{\in} X$
II: a_1 a_3 a_{2n+1}

Player I wins if yes. Otherwise player II wins.

Axiom of determinacy (AD): "All these games are determined". (False in ZF + C.)

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

Inside second order arithmetic

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

 \blacksquare Study these properties for projective Σ_n^1 sets in ω^{ω} (Blackwell, 1967).

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

Inside second order arithmetic

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

- \blacksquare Study these properties for projective Σ_n^1 sets in ω^ω (Blackwell, 1967).
- \blacksquare Are Σ_2^1 , Σ_3^1 , etc sets Lebesgue measurable?

Theorem (Mycielski-Swierczkowski; Mazur, Banach; Davis)

Inside second order arithmetic

ZF + AD proves that every set of real numbers is Lebesgue measurable (M1), has the Baire property (M2), and has the perfect set property (M3).

- \blacksquare Study these properties for projective Σ_n^1 sets in ω^{ω} (Blackwell, 1967).
- \blacksquare Are Σ_2^1 , Σ_3^1 , etc sets Lebesgue measurable?
- Applications in measure theory, descriptive set theory, harmonic analysis, ergodic theory, dynamical systems etc.

Borel Determinacy

■ First best result (1964): $Det(\Sigma_3^0)$ by Davis.

Borel Determinacy

■ First best result (1964): $Det(\Sigma_3^0)$ by Davis.

Inside second order arithmetic

The proof can be carried out in $ZC^- + \Sigma_1$ Replacement (Martin).

■ First best result (1964): $Det(\Sigma_3^0)$ by Davis.

- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement (Martin).
- Friedman (1968): Borel determinacy requires existence of V_{ω_1} .

Borel Determinacy

■ First best result (1964): $Det(\Sigma_3^0)$ by Davis.

Inside second order arithmetic

- The proof can be carried out in $ZC^- + \Sigma_1$ Replacement (Martin).
- Friedman (1968): Borel determinacy requires existence of V_{ω_1} .

Theorem (Martin, ZFC)

All Borel games are determined.

Theorem

 ZFC^- is a Π^1_4 conservative extension of Z_2 .

Theorem

 ZFC^- is a Π^1_4 conservative extension of Z_2 .

 \blacksquare For any $X \subset \mathbb{N}$, we can construct L(X) in \mathbb{Z}_2 ;

Theorem

 ZFC^- is a Π^1_4 conservative extension of Z_2 .

- \blacksquare For any $X \subset \mathbb{N}$, we can construct L(X) in \mathbb{Z}_2 ;
- We can show in Z_2 that $L(X) \models ZFC^-$ (Simpson);

$\mathsf{Theorem}$

 ZFC^- is a Π^1_4 conservative extension of Z_2 .

 \blacksquare For any $X \subset \mathbb{N}$, we can construct L(X) in \mathbb{Z}_2 ;

- We can show in Z_2 that $L(X) \models ZFC^-$ (Simpson);
- We use Shoenfield Absoluteness theorem $(\Pi_1^1 CA_0)$.

Some right axioms systems

Theorem (Steel, Simpson)

Over RCA₀, Det(Σ_1^0) is equivalent to ATR₀.

Theorem (Tanaka)

 $\operatorname{Det}(\Sigma_2^0)$ is equivalent to $\Sigma_1^1 - \operatorname{MI}$.

How much determinacy can we prove in \mathbb{Z}_2 ?

Theorem (Montalbán and Shore)

$$\forall n \in \omega$$
, Π_{n+2}^1 -CA₀ \vdash Det $(n - \Pi_3^0)$ but Δ_{n+2}^1 -CA₀ $\not\vdash$ Det $(n - \Pi_3^0)$.

How much determinacy can we prove in \mathbb{Z}_2 ?

Theorem (Montalbán and Shore)

$$\forall n \in \omega \text{, } \Pi^1_{n+2}\text{-}\mathsf{CA}_0 \vdash \mathsf{Det}(n\text{-}\Pi^0_3) \text{ } \textit{but } \Delta^1_{n+2}\text{-}\mathsf{CA}_0 \not\vdash \mathsf{Det}(n\text{-}\Pi^0_3).$$

However, Π_{n+2}^1 -CA₀ is not the right set of axioms for Det $(n-\Pi_3^0)$.

How much determinacy can we prove in Z_2 ?

Theorem (Montalbán and Shore)

$$\forall n \in \omega \text{, } \Pi^1_{n+2}\text{-}\mathsf{CA}_0 \vdash \mathsf{Det}(n\text{-}\Pi^0_3) \text{ } \textit{but } \Delta^1_{n+2}\text{-}\mathsf{CA}_0 \not\vdash \mathsf{Det}(n\text{-}\Pi^0_3).$$

However, Π^1_{n+2} -CA $_0$ is not the right set of axioms for $\mathrm{Det}(n\text{-}\Pi^0_3)$.

Theorem (MedSalem and Tanaka)

Borel determinacy does not imply Δ_2^1 -CA₀.

Theorem (Hachtman)

Over Π_1^1 -CA₀, Det(Σ_3^0) (lightface) is equivalent to the existence of a β -model satisfying Π_2^1 – MI.

Reversals

Theorem (Hachtman)

Over Π_1^1 -CA₀, Det(Σ_3^0) (lightface) is equivalent to the existence of a β -model satisfying Π_2^1 – MI.

Theorem (Aguilera and Welch)

Over Π_1^1 -CA₀, for each $m \in \mathbb{N}$ we have an equivalence between

- **1** $Det(m-\Pi_3^0)$,
- **2** Every real belongs to a β -model of Π^1_{m+1} -MI.

Game encoding models

Theorem (Friedman < Martin < M. and S.)

We cannot prove $\operatorname{Det}(\Sigma_5^0) < \operatorname{Det}(\Sigma_4^0) < \operatorname{Det}(\omega - \Pi_3^0)$ in ZFC^-

Game encoding models

Theorem (Friedman < Martin < M. and S.)

We cannot prove $\operatorname{Det}(\Sigma_5^0) < \operatorname{Det}(\Sigma_4^0) < \operatorname{Det}(\omega - \Pi_3^0)$ in ZFC^-

■ Same technique as for the limitative result of Friedman for Borel determinacy.

Game encoding models

Theorem (Friedman < Martin < M. and S.)

We cannot prove $\mathsf{Det}(\Sigma^0_5) < \mathsf{Det}(\Sigma^0_4) < \mathsf{Det}(\omega - \Pi^0_3)$ in ZFC^-

- Same technique as for the limitative result of Friedman for Borel determinacy.
- The games are deemed to encode fragments of set theory using Gödel numbering.

Ingretients of the proof for $Det(\Sigma_0^4)$

 \blacksquare I and II are playing S_I and S_{II} with

$$S_{I,II} \vdash \mathsf{ZFC}^- + "V = L_{\beta_0}";$$

- Fact: $M_{I,II}$ well founded iff $M_{I,II} \cong L_{\beta_0}$;
- \blacksquare I wins if she plays L_{β_0} but looses if he doesn't byt II does;
- The models are countable and characterised by the subsets of ω they contain;
- Gödel-Tarski undefinability of truth.

Measurability properties

Theorem (Kechris, Martin)

In ZF + AC $_{\omega}(\omega^{\omega})$, Det (Π_{n}^{1}) proves that every Σ_{n+1}^{1} sets of reals satisfies M1. M2 and M3.

Inside second order arithmetic

Theorem (Shelah-Woodin)

Given $n \in \omega$, if there are n Woodin cardinals with a measurable cardinal above them, then every $\sum_{n=2}^{1}$ sets of reals satisfies M1, M2 and M3.

Determinacy and high cardinal hypotheses

$\mathsf{Theorem}$

Given $n \in \omega$, if there are n Woodin cardinals with a measurable cardinal above them, then $Det(\Pi_{n+1}^1)$.

Remark

This is a corollary from a theorem of Martin-Steel, which is out of the scope of the present talk.

■ What happens in higher order arithmetic?

- What happens in higher order arithmetic?
- Set theoretic reversals?

- What happens in higher order arithmetic?
- Set theoretic reversals?
- Set Theory (Jech), Descriptive Set Theory (Kechris, Moschovakis);

■ What happens in higher order arithmetic?

- Set theoretic reversals?
- Set Theory (Jech), Descriptive Set Theory (Kechris, Moschovakis);
- Determinacy of Infinitely Long Games (Martin), The Higher Infinite (Martin);

- What happens in higher order arithmetic?

- Set theoretic reversals?
- Set Theory (Jech), Descriptive Set Theory (Kechris, Moschovakis);
- Determinacy of Infinitely Long Games (Martin), The Higher Infinite (Martin);
- SoSOA (Simpson);

- What happens in higher order arithmetic?
- Set theoretic reversals?
- Set Theory (Jech), Descriptive Set Theory (Kechris, Moschovakis);
- Determinacy of Infinitely Long Games (Martin), The Higher Infinite (Martin);
- SoSOA (Simpson);
- The limits of determinacy in second-order arithmetic (MS).