Plan de Verificación (Testplan)

Barrantes Sebastian - Ruiz Tayron Verificación funcional de circuitos integrados/EL5811 Profesor: Dr.-Ing. Ronny García Ramírez

Índice

1.	\mathbf{Set}	de pruebas funcionales	2
	1.1.	Pruebas funcionales básicas	2
	1.2.	Pruebas de estrés	2
	1.3.	Pruebas de error	2
	1.4.	Pruebas de interrupciones	3
	1.5.	Pruebas de configuración (APB)	3

1. Set de pruebas funcionales

1.1 Pruebas funcionales básicas

- Objetivo: Verificar alineación correcta para combinaciones válidas de CTRL.SIZE y CTRL.OFFSET.
- Estímulos aleatorios: num_txns en rango[50..100]; size ∈ {1,2,4, W/8}; offset ∈ [0,1,2,3] restringido a ((W/8)+offset) %size==0; tiempo entre transacciones en rango[0..5] ciclos.
- Checks: Scoreboard de referencia (corrimiento por bytes) debe igualar md_tx_{data,offset,size no debe subir md rx err; CNT DROP permanece constante; pslverr==0.
- Cobertura: Cruzar legal SIZE con legal OFFSET; cobertura de primeras y últimas palabras de ráfaga.
- **Métricas**: tasa de alineación correcta, latencia media TX; throughput (palabras/ciclo).

1.2 Pruebas de estrés

- Objetivo: Forzar límites de FIFO y temporización.
- Estímulos aleatorios: ráfagas largas num_txns en rango[500..1000]; tiempo entre transacciones (picos y valles): brechas con alta actividad en rango[0-1]ciclos y brechas con baja actividad[50..100] ciclos; md_tx_ready con pausas en 0 durante tiempos en rango [10..100] ciclos. Tamaños con sesgo a máximos definidos en size=4 y offset = 0.
- Checks: STATUS. {RX_LVL, TX_LVL} alcanzan niveles de 0, 1, MAX-1, MAX; no hay pérdidas ni duplicados de datos; IRQs de FULL/EMPTY se setean y se limpian correctamente; no hay deadlocks.
- Cobertura: bins para niveles FIFO críticos; verificar la correcta distribución de tiempos.
- Métricas: utilización promedio de FIFO; throughput sostenido; tiempo de recuperación tras pausa en md_tx_ready; cero desalineaciones.

1.3 Pruebas de error

• Objetivo: Validar manejo de errores de RX y contador de drops.

- Estímulos aleatorios: inyectar proporción p_illegal ∈ [50%] de transacciones con size==0 o ((W/8)+offset)%size =! 0; número de transacciones = 600.
- Checks: cada transacción ilegal aceptada (valid&ready) produce md_rx_err=1, no genera salida en TX, e incrementa STATUS.CNT_DROP con saturación a MAX; transacciones legales siguen correctas; IRQ de MAX_DROP solo cuando corresponde; verificar la funcionalidad de CLR del registro de control.
- Cobertura: tipos de ilegalidad con size=0 vs desalineado ilegal; saturación de CNT DROP en {MAX-1→MAX}; secuencias legales e ilegales mezcladas.
- Métricas: porcentaje de errores detectados tiene que ser igual a 100 % teniendo en cuenta que se calcula como los errores_reportados entre errores_inyectados; tasa de falsos positivos tiene que ser 0; tiempo de propagación de md_rx_err.

1.4 Pruebas de interrupciones

- Objetivo: Verificar procesos IRQ y registros IRQEN y IRQ.
- Estímulos aleatorios: habilitar aleatoriamente subconjuntos de IRQs; generar escenarios que detonen RX_EMPTY/FULL, TX_EMPTY/FULL, MAX_DROP; alternar md_tx_ready para forzar EMPTY/FULL.
- Checks: bits en IRQ se ponen solo cuando el evento ocurre y IRQEN lo permite; lectura/limpieza W1C funciona, 1 limpia y 0 preserva; irq refleja OR de bits activos; los bits de estado del IRQ no se limpien solos ni por causas ajenas a una acción válida del software.
- Cobertura: Para cada fuente de IRQ se va a estimular IRQEN={0,1} y W1C={limpia, no limpia}; coincidencia de múltiples IRQs simultáneos.
- Métricas: latencia IRQ; tasa de limpieza exitosa; ausencia de IRQ fantasma.

1.5 Pruebas de configuración (APB)

- Objetivo: Robustez de mapa de registros y políticas de error.
- Estímulos aleatorios: escrituras y lecturas a CTRL/STATUS con orden aleatorio; cambios de CTRL.SIZE y CTRL.OFFSET durante tráfico; accesos ilegales como direcciones fuera de mapa, escribir STATUS, combinaciones inválidas.
- Checks: pready correcto; pslverr=1 en accesos ilegales; CTRL altera comportamiento en la siguiente transacción con reglas claras; STATUS refleja niveles de FIFO y contador DROP.

- Cobertura: todas las direcciones válidas; corroborar patrones de acceso inválido; cambios de CTRL en distintas fases de actividad RX/TX.
- Métricas: tasa de APB errores detectados sobre inyectados; tiempo de aplicación efectiva de nueva config (ciclos); consistencia de registro STATUS y FIFOs/CNT DROP