3. Pruebe que los subgrupos parabólicos de el sistema de Coxeer $(S_n, \{s_1, ..., s_{n-1}\})$ son subgrupos de Young del grupo simétrico S_n . En la otra dirección, pruebe que cada subgrupo de Young de S_n es un subgrupo parabólico para alquna escogencia de los generadores.

Sea $J=\{s_1,...,\hat{s_{i_1}},...,\hat{s_{i_k}},...,s_{n-1}\}$. Entonces $(S_n)_J$ es el subgrupo de Young asociado a la partición $A=\{1,...,i_1-1\}\cup\{i_1\}\cup...\cup\{i_k+1,...,n\}$. Sea $D_j=\{s_{i_{j-1}+1},...,s_{i_{j}-1}\}$, entonces ya que para $k\neq j$, cada elemento de D_k conmuta con cada elemento de D_j , entonces cada elemento de $(S_n)_J$ puede escribirse de manera única cómo un elemento de S_A .

Por otro lado, sea $A = \{j_1, ..., j_k\} \cup \{j_{k+1}, ..., j_s\} \cup ... \cup \{j_{l+1}, ..., j_n\}$ una partición de [n]. Entonces los elementos $\{(j_i, j_{i+1})\}$ forman un sistema de generadores de Coxeter, pues forman un camino que conecta todos los vertices del grafo completo K_n y entonces el ejercico (7) de la tarea 1 aplica. Claramente en este sistema de generadores el subgrupo de Young S_A corresponde al subgrupo parabólico $(S_n)_J$ con

$$J = \{(j_1, j_2), ..., (j_{k-1}, j_k), (j_{k+1}, j_{k+2}), ..., (j_{s-1}, j_s), (j_{s+1}, j_{s+2}), ..., (j_{n-1}, j_n)\}.$$