Package 'MiscMetabar'

October 7, 2024

Type Package

Title Miscellaneous Functions for Metabarcoding Analysis

Version 0.10.1

Description Facilitate the description, transformation, exploration, and reproducibility of metabarcoding analyses. 'MiscMetabar' is mainly built on top of the 'phyloseq', 'dada2' and 'targets' R packages. It helps to build reproducible and robust bioinformatics pipelines in R. 'MiscMetabar' makes ecological analysis of alpha and beta-diversity easier, more reproducible and more powerful by integrating a large number of tools. Important features are described in Taudière A. (2023) <doi:10.21105/joss.06038>.

License AGPL-3 Encoding UTF-8 LazyData true

Depends R (>= 3.5.0), phyloseq, ggplot2 (>= 3.5.0), dada2, dplyr, purrr

Suggests adespatial, ANCOMBC, BiocManager, Biostrings, circlize, ComplexUpset, DECIPHER, DESeq2, devtools, DT, edgeR, formattable, ggalluvial, ggfittext, gghalves, ggh4x, ggstatsplot, ggridges, ggVennDiagram, glmulti, gtsummary, grDevices, grid, gridExtra, here, httr, iNEXT, indicspecies, jsonlite, knitr, magrittr, methods, mia, mixtools, multcompView, networkD3, pak, patchwork, permute, phangorn, phyloseqGraphTest, pbapply, plotly, plyr, reshape2, rmarkdown, rotl, Rtsne, scales, seqinr, SRS, stringr, SummarizedExperiment, testthat (>= 3.0.0), tibble, tidyr, treemapify, vegan, venneuler, vctrs, viridis, withr

RoxygenNote 7.3.2

URL https://github.com/adrientaudiere/MiscMetabar,
 https://adrientaudiere.github.io/MiscMetabar/

biocViews Sequencing, Microbiome, Metagenomics, Clustering, Classification, Visualization

BugReports https://github.com/adrientaudiere/MiscMetabar/issues

2 Contents

Imports ape, lifecycle, rlang, stats
Config/testthat/edition 3
Config/testthat/parallel true
VignetteBuilder knitr
Language en-US
NeedsCompilation no
Author Adrien Taudière [aut, cre, cph] (https://orcid.org/0000-0003-1088-1182)
Maintainer Adrien Taudière <adrien.taudiere@zaclys.net< td=""></adrien.taudiere@zaclys.net<>
Repository CRAN
Date/Publication 2024-10-07 21:40:01 UTC

Contents

r)
-1	5
accu_plot_balanced_modality	7
_ 1_	8
	9
add_dna_to_phyloseq	0
add_funguild_info	0
add_info_to_sam_data	1
add_new_taxonomy_pq	2
adonis_pq	3
adonis_rarperm_pq	4
all_object_size	6
ancombc_pq	6
are_modality_even_depth	7
as_binary_otu_table	8
biplot_pq	9
blast_pq	1
blast_to_derep	2
blast_to_phyloseq	24
build_phytree_pq	26
chimera_detection_vs	28
chimera_removal_vs	9
circle_pq	0
clean_pq	32
compare_pairs_pq	3
count_seq	4
cutadapt_remove_primers	5
data_fungi	7
	8
data_fungi_sp_known	9
diff fet diff class	9

Contents 3

distri_1_taxa dist_bycol												
dist_pos_control												
- - -												
fac2col												
filter_asv_blast												
filter_trim												
formattable_pq												
funguild_assign												
funky_color	 				 		 		 			,
get_file_extension	 				 		 		 			
get_funguild_db	 	 			 		 		 			
ggaluv_pq												
ggbetween_pq												
ggscatt_pq												
ggvenn_pq												
glmutli_pq												
graph_test_pq												
hill_pq												
hill_test_rarperm_pq												
hill_tuckey_pq	 				 		 					
$iNEXT_pq$,
is_cutadapt_installed	 	 			 		 		 			
is_falco_installed	 	 			 		 		 			
is_krona_installed	 	 			 		 		 			
is_mumu_installed												
is_swarm_installed												
is_vsearch_installed												
krona												
LCBD_pq												
list_fastq_files												
lulu												
lulu_pq												
merge_krona	 				 		 	•	 			
merge_samples2	 				 		 		 			
merge_taxa_vec	 				 		 		 			,
MiscMetabar-deprecated	 				 		 		 			
multipatt_pq												
multiplot												
multitax_bar_pq												
multi_biplot_pq												
mumu_pq												
normalize_prop_pq												
perc												
$phyloseq_to_edgeR \ . \ . \ .$												
$physeq_or_string_to_dna$	 				 		 		 			
$plot_ancombc_pq$,
plot_deseq2_pq	 	 			 		 		 			
plot edgeR pq												

4 Contents

plot_guild_pq	
plot_LCBD_pq	
plot_mt	
plot_SCBD_pq	104
plot_tax_pq	
plot_tsne_pq	
plot_var_part_pq	
postcluster_pq	111
psmelt_samples_pq	
rarefy_sample_count_by_modality	
read_pq	116
rename_samples	
rename_samples_otu_table	
reorder_taxa_pq	118
ridges_pq	119
rotl_pq	
sample_data_with_new_names	121
sankey_pq	122
save_pq	124
search_exact_seq_pq	125
select_one_sample	126
select_taxa	126
signif_ancombc	
simplify_taxo	129
SRS_curve_pq	129
subsample_fastq	130
subset_samples_pq	131
subset_taxa_pq	131
subset_taxa_tax_control	132
summary_plot_pq	
swarm_clustering	134
taxa_as_columns	136
taxa_as_rows	137
taxa_only_in_one_level	137
tax_bar_pq	
tax_datatable	140
tbl_sum_samdata	141
Tengeler2020_pq	
track_wkflow	
track_wkflow_samples	144
transp	145
treemap_pq	
tsne_pq	147
unique_or_na	
upset_pq	
upset_test_pq	
var_par_pq	153
var nar rarnerm ng	154

Misc	Metabar-package	Miso	cMet	ab	ar	pac	ckaş	ge											
Index																		1	164
	write_pq									 								. 1	161
	vs_search_global									 								. 1	160
	vsearch_clustering									 								. 1	158
	verify_pq									 								. 1	157
	venn_pq									 		 						. 1	156

Description

Functions to help analyze and visualize metabarcoding data. Mainly based on the phyloseq and dada2 packages.

accu_plot

Plot accumulation curves for phyloseq-class object

Description

Note that as most bioinformatic pipeline discard singleton, accumulation curves from metabarcoding cannot be interpreted in the same way as with conventional biodiversity sampling techniques.

```
accu_plot(
  physeq,
  fact = NULL,
  add_nb_seq = TRUE,
  step = NULL,
  by.fact = FALSE,
  ci_col = NULL,
  col = NULL,
  lwd = 3,
  leg = TRUE,
  print_sam_names = FALSE,
  ci = 2,
  ...
)
```

6 accu_plot

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.
fact	(required) Name of the factor in physeq@sam_data used to plot different lines
add_nb_seq	(default: TRUE, logical) Either plot accumulation curves using sequences or using samples
step	(Integer) distance among points calculated to plot lines. A low value give better plot but is more time consuming. Only used if add_nb_seq = TRUE.
by.fact	(default: FALSE, logical) First merge the OTU table by factor to plot only one line by factor
ci_col	Color vector for confidence interval. Only use if add_nb_seq = FALSE. If add_nb_seq = TRUE, you can use ggplot to modify the plot.
col	Color vector for lines. Only use if add_nb_seq = FALSE. If add_nb_seq = TRUE, you can use ggplot to modify the plot.
lwd	(default: 3) thickness for lines. Only use if add_nb_seq = FALSE.
leg	(default: TRUE, logical) Plot legend or not. Only use if add_nb_seq = FALSE.
print_sam_name	S
	(default: FALSE, logical) Print samples names or not? Only use if add_nb_seq = TRUE.
ci	(default: 2, integer) Confidence interval value used to multiply the standard error to plot confidence interval
•••	Additional arguments passed on to ggplot if add_nb_seq = TRUE or to plot if add_nb_seq = FALSE

Value

A ggplot2 plot representing the richness accumulation plot if add_nb_seq = TRUE, else, if add_nb_seq = FALSE return a base plot.

Author(s)

Adrien Taudière

See Also

specaccum accu_samp_threshold()

Examples

```
data("GlobalPatterns", package = "phyloseq")
GP <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
GP <- rarefy_even_depth(subset_samples_pq(GP, sample_sums(GP) > 3000))
p <- accu_plot(GP, "SampleType", add_nb_seq = TRUE, by.fact = TRUE, step = 10)
p <- accu_plot(GP, "SampleType", add_nb_seq = TRUE, step = 10)

p + theme(legend.position = "none")

p + xlim(c(0, 400))</pre>
```

```
accu_plot_balanced_modality
```

Plot accumulation curves with balanced modality and depth rarefaction

Description

This function (i) rarefy (equalize) the number of samples per modality of a factor and (ii) rarefy the number of sequences per sample (depth). The seed is set to 1:nperm. Thus, with exactly the same parameter, including nperm values, results must be identical.

Usage

```
accu_plot_balanced_modality(
   physeq,
   fact,
   nperm = 99,
   step = 2000,
   by.fact = TRUE,
   progress_bar = TRUE,
   quantile_prob = 0.975,
   rarefy_by_sample_before_merging = TRUE,
   sample.size = 1000,
   verbose = FALSE,
   ...
)
```

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.								
fact	(required) The variable to rarefy. Must be present in the sam_data slot of the physeq object.								
nperm	(int) The number of permutations to perform.								
step	(int) distance among points calculated to plot lines. A low value give better plot but is more time consuming.								
by.fact	(logical, default TRUE) First merge the OTU table by factor to plot only one line by factor								
progress_bar	(logical, default TRUE) Do we print progress during the calculation?								
quantile_prob	(float, $[0:1]$) the value to compute the quantile. Minimum quantile is compute using 1-quantile_prob.								
rarefy_by_sample_before_merging									
	(logical, default TRUE): rarefy_by_sample_before_merging = FALSE is buggy for the moment.Please only use rarefy_by_sample_before_merging = TRUE								
sample.size	(int) A single integer value equal to the number of reads being simulated, also known as the depth. See phyloseq::rarefy_even_depth().								

accu_samp_threshold

```
verbose (logical). If TRUE, print additional informations.
... Other params for be passed on to accu_plot() function
```

Value

8

A ggplot2 plot representing the richness accumulation plot

Author(s)

Adrien Taudière

See Also

```
accu_plot(), rarefy_sample_count_by_modality(), phyloseq::rarefy_even_depth()
```

Examples

```
data_fungi_woNA4Time <-
   subset_samples(data_fungi, !is.na(Time))
data_fungi_woNA4Time@sam_data$Time <- paste0("time-", data_fungi_woNA4Time@sam_data$Time)
accu_plot_balanced_modality(data_fungi_woNA4Time, "Time", nperm = 3)

data_fungi_woNA4Height <-
   subset_samples(data_fungi, !is.na(Height))
accu_plot_balanced_modality(data_fungi_woNA4Height, "Height", nperm = 3)</pre>
```

accu_samp_threshold

Compute the number of sequence to obtain a given proportion of ASV in accumulation curves

Description

Note that as most bioinformatic pipeline discard singleton, accumulation curves from metabarcoding cannot be interpreted in the same way as with conventional biodiversity sampling techniques.

Usage

```
accu_samp_threshold(res_accuplot, threshold = 0.95)
```

Arguments

res_accuplot the result of the function accu_plot()

threshold the proportion of ASV to obtain in each samples

Value

a value for each sample of the number of sequences needed to obtain threshold proportion of the ${\ensuremath{\mathsf{ASV}}}$

add_blast_info 9

Author(s)

Adrien Taudière

See Also

```
accu_plot()
```

Examples

```
data("GlobalPatterns", package = "phyloseq")
GP <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
GP <- rarefy_even_depth(subset_samples_pq(GP, sample_sums(GP) > 3000))
p <- accu_plot(GP, "SampleType", add_nb_seq = TRUE, by.fact = TRUE, step = 10)
val_threshold <- accu_samp_threshold(p)
summary(val_threshold)
##' Plot the number of sequences needed to accumulate 0.95% of ASV in 50%, 75%
##' and 100% of samples
p + geom_vline(xintercept = quantile(val_threshold, probs = c(0.50, 0.75, 1)))</pre>
```

add_blast_info

Add information from blast_pq() to the tax_table slot of a phyloseq object

Description

Basically a wrapper of blast_pq() with option unique_per_seq = TRUE and score_filter = FALSE.

Add the information to the taxtable

Usage

```
add_blast_info(physeq, fasta_for_db, silent = FALSE, ...)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

fasta_for_db path to a fasta file to make the blast database

silent (logical) If true, no message are printing.

Other arguments passed on to blast_pq() function.
```

Value

A new phyloseq-class object with more information in tax_table based on a blast on a given database

10 add_funguild_info

Author(s)

Adrien Taudière

```
add_dna_to_phyloseq Add dna in refseq slot of a physeq object using taxa names and renames taxa using prefix_taxa_names and number (default Taxa_1, Taxa_2 ...)
```

Description

Useful in targets bioinformatic pipeline.

Usage

```
add_dna_to_phyloseq(physeq, prefix_taxa_names = "Taxa_")
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package. prefix_taxa_names (default "Taxa_"): the prefix of taxa names (eg. "ASV_" or "OTU_")
```

Value

A new phyloseq-class object with refseq slot and new taxa names

```
add_funguild_info
```

Add information about Guild for FUNGI the FUNGuild databse

Description

```
Please cite Nguyen et al. 2016 (doi:10.1016/j.funeco.2015.06.006)
```

Usage

```
add_funguild_info(
   physeq,
   taxLevels = c("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.
taxLevels Name of the 7 columns in tax_table required by funguild
```

add_info_to_sam_data

Details

This function is mainly a wrapper of the work of others. Please make a reference to FUNGuildR package and the associate publication (doi:10.1016/j.funeco.2015.06.006) if you use this function.

11

Value

A new object of class physeq with Guild information added to tax_table slot

Author(s)

Adrien Taudière

See Also

```
plot_guild_pq()
```

Examples

```
if (requireNamespace("httr")) {
    d_fung_mini <- add_funguild_info(data_fungi_mini,
        taxLevels = c(
        "Domain",
        "Phylum",
        "Class",
        "Order",
        "Family",
        "Genus",
        "Species"
    )
    )
    sort(table(d_fung_mini@tax_table[, "guild"]), decreasing = TRUE)
}</pre>
```

Description

Warning: The value nb_seq and nb_otu may be outdated if you transform your phyloseq object, e.g. using the subset_taxa_pq() function

```
add_info_to_sam_data(
  physeq,
  df_info = NULL,
  add_nb_seq = TRUE,
  add_nb_otu = TRUE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

df_info : A dataframe with rownames matching for sample names of the phyloseq object add_nb_seq (Logical, default TRUE) Does we add a column nb_seq collecting the number of sequences per sample?

add_nb_otu (Logical, default TRUE) Does we add a column nb_otu collecting the number of OTUs per sample?

Value

A phyloseq object with an updated sam_data slot

Author(s)

Adrien Taudière

Examples

```
data_fungi <- add_info_to_sam_data(data_fungi)
boxplot(data_fungi@sam_data$nb_otu ~ data_fungi@sam_data$Time)

new_df <- data.frame(
   variable_1 = runif(n = nsamples(data_fungi), min = 1, max = 20),
   variable_2 = runif(n = nsamples(data_fungi), min = 1, max = 2)
)

rownames(new_df) <- sample_names(data_fungi)
data_fungi <- add_info_to_sam_data(data_fungi, new_df)
plot(data_fungi@sam_data$nb_otu ~ data_fungi@sam_data$variable_1)</pre>
```

add_new_taxonomy_pq

Add new taxonomic rank to a phyloseq object.

Description

One of main use of this function is to add taxonomic assignment from a new database.

Usage

```
add_new_taxonomy_pq(physeq, ref_fasta, suffix = NULL, ...)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

ref_fasta (required) A link to a database. Pass on to dada2::assignTaxonomy.

suffix (character) The suffix to name the new columns. If set to NULL (the default), the basename of the file reFasta is used.

Other arguments pass on to dada2::assignTaxonomy.
```

adonis_pq 13

Value

A new phyloseq-class object with a larger slot tax_table"

Author(s)

Adrien Taudière

adonis_pq

Permanova on a phyloseq object

Description

A wrapper for the vegan::adonis2() function in the case of physeq object.

Usage

```
adonis_pq(
  physeq,
  formula,
  dist_method = "bray",
  merge_sample_by = NULL,
  na_remove = FALSE,
  correction_for_sample_size = FALSE,
  rarefy_nb_seqs = FALSE,
  verbose = TRUE,
  ...
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package. formula (required) the right part of a formula for vegan::adonis2(). Variables must be present in the physeq@sam_data slot. dist_method (default "bray") the distance used. See phyloseq::distance() for all available distances or run phyloseq::distanceMethodList(). For aitchison and robust.aitchison distance, vegan::vegdist() function is directly used. merge_sample_by a vector to determine which samples to merge using the merge_samples2() function. Need to be in physeq@sam_data (logical, default FALSE) If set to TRUE, remove samples with NA in the varina_remove ables set in formula. correction_for_sample_size

(logical, default FALSE) If set to TRUE, the sample size (number of sequences by samples) is added to formula in the form y~Library_Size + Biological_Effect following recommendation of Weiss et al. 2017. correction_for_sample_size overcome rarefy_nb_seqs if both are TRUE.

14 adonis_rarperm_pq

```
rarefy_nb_seqs (logical, default FALSE) Rarefy each sample (before merging if merge_sample_by is set) using phyloseq::rarefy_even_depth(). if correction_for_sample_size is TRUE, rarefy_nb_seqs will have no effect.

verbose (logical, default TRUE) If TRUE, prompt some messages.

Other arguments passed on to vegan::adonis2() function.
```

Details

This function is mainly a wrapper of the work of others. Please make a reference to vegan::adonis2() if you use this function.

Value

The function returns an anova.cca result object with a new column for partial R^2. See help of vegan::adonis2() for more information.

Author(s)

Adrien Taudière

Examples

```
data(enterotype)
adonis_pq(enterotype, "SeqTech*Enterotype", na_remove = TRUE)
adonis_pq(enterotype, "SeqTech", dist_method = "jaccard")
adonis_pq(enterotype, "SeqTech", dist_method = "robust.aitchison")
```

adonis_rarperm_pq

Permanova (adonis) on permutations of rarefaction even depth

Description

Permanova are computed on a given number of rarefaction with different seed.number. This reduce the risk of a random drawing of a exceptional situation of an unique rarefaction.

```
adonis_rarperm_pq(
  physeq,
  formula,
  dist_method = "bray",
  merge_sample_by = NULL,
  na_remove = FALSE,
  rarefy_nb_seqs = FALSE,
  verbose = TRUE,
  nperm = 99,
```

15 adonis_rarperm_pq

```
progress_bar = TRUE,
 quantile_prob = 0.975,
  sample.size = min(sample_sums(physeq)),
)
```

Arguments

(required): a phyloseq-class object obtained using the phyloseq package. physeq formula (required) the right part of a formula for vegan::adonis2(). Variables must be present in the physeq@sam_data slot. dist_method (default "bray") the distance used. See phyloseg::distance() for all available distances or run phyloseq::distanceMethodList(). For aitchison and robust.aitchison distance, vegan::vegdist() function is directly used. merge_sample_by a vector to determine which samples to merge using the merge_samples2() function. Need to be in physeq@sam_data (logical, default FALSE) If set to TRUE, remove samples with NA in the varina_remove ables set in formula. rarefy_nb_seqs (logical, default FALSE) Rarefy each sample (before merging if merge_sample_by is set) using phyloseq::rarefy_even_depth(). if correction_for_sample_size is TRUE, rarefy_nb_seqs will have no effect. (logical, default TRUE) If TRUE, prompt some messages. verbose (int, default = 99) The number of permutations to perform. nperm (logical, default TRUE) Do we print progress during the calculation. progress_bar

quantile_prob

(float, [0:1]) the value to compute the quantile. Minimum quantile is computed

using 1-quantile_prob.

(int) A single integer value equal to the number of reads being simulated, also sample.size

known as the depth. See phyloseq::rarefy_even_depth().

Other params to be passed on to adonis_pq() function

Value

A list of three dataframe representing the mean, the minimum quantile and the maximum quantile value for adonis results. See adonis_pq().

Author(s)

Adrien Taudière

See Also

```
adonis_pq()
```

16 ancombc_pq

Examples

```
if (requireNamespace("vegan")) {
   data_fungi_woNA <-
     subset_samples(data_fungi, !is.na(Time) & !is.na(Height))
   adonis_rarperm_pq(data_fungi_woNA, "Time*Height", na_remove = TRUE, nperm = 3)
}</pre>
```

all_object_size

List the size of all objects of the GlobalEnv.

Description

Code from https://tolstoy.newcastle.edu.au/R/e6/help/09/01/1121.html

Usage

```
all_object_size()
```

Value

a list of size

ancombc_pq

Run ANCOMBC2 on phyloseq object

Description

A wrapper for the ANCOMBC::ancombc2() function

Usage

```
ancombc_pq(physeq, fact, levels_fact = NULL, tax_level = "Class", ...)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

fact (required) Name of the factor in physeq@sam_data used to plot different lines

levels_fact (default NULL) The order of the level in the factor. Used for reorder levels and
select levels (filter out levels not present en levels_fact)

tax_level The taxonomic level passed on to ANCOMBC::ancombc2()

Other arguments passed on to ANCOMBC::ancombc2() function.
```

Details

This function is mainly a wrapper of the work of others. Please make a reference to ANCOMBC::ancombc2() if you use this function.

Value

The result of ANCOMBC::ancombc2() function

Author(s)

Adrien Taudière

Examples

```
if (requireNamespace("mia")) {
 data_fungi_mini@tax_table <- phyloseq::tax_table(cbind(</pre>
    data_fungi_mini@tax_table,
    "taxon" = taxa_names(data_fungi_mini)
 ))
 res_height <- ancombc_pq(</pre>
   data_fungi_mini,
   fact = "Height",
   levels_fact = c("Low", "High"),
    verbose = TRUE
 ggplot(
   res_height$res,
   aes(
     y = reorder(taxon, lfc_HeightHigh),
     x = 1fc_{HeightHigh}
      color = diff_HeightHigh
   )
 ) +
    geom_vline(xintercept = 0) +
   geom_segment(aes(
      xend = 0, y = reorder(taxon, lfc_HeightHigh),
      yend = reorder(taxon, lfc_HeightHigh)
    ), color = "darkgrey") +
   geom_point()
 res_time <- ancombc_pq(</pre>
   data_fungi_mini,
    fact = "Time",
   levels_fact = c("0", "15"),
   tax_level = "Family",
    verbose = TRUE
}
```

are_modality_even_depth

Test if the mean number of sequences by samples is link to the modality of a factor

18 as_binary_otu_table

Description

The aim of this function is to provide a warnings if samples depth significantly vary among the modalities of a factor present in the sam_data slot.

This function apply a Kruskal-Wallis rank sum test to the number of sequences per samples in function of the factor fact.

Usage

```
are_modality_even_depth(physeq, fact, boxplot = FALSE)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package. fact (required): Name of the factor to cluster samples by modalities. Need to be in

physeq@sam_data.

boxplot (logical) Do you want to plot boxplot?

Value

The result of a Kruskal-Wallis rank sum test

Author(s)

Adrien Taudière

Examples

```
are_modality_even_depth(data_fungi_mini, "Time")$p.value
are_modality_even_depth(rarefy_even_depth(data_fungi_mini), "Time")$p.value
are_modality_even_depth(data_fungi_mini, "Height", boxplot = TRUE)
```

as_binary_otu_table

Transform the otu_table of a phyloseq-class object into a phyloseq-class object with a binary otu_table.

Description

Useful to test if the results are not biased by sequences bias that appended during PCR or NGS pipeline.

Usage

```
as_binary_otu_table(physeq, min_number = 1)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package. min_number (int) the minimum number of sequences to put a 1 in the OTU table. biplot_pq 19

Value

A physeq object with only 0/1 in the OTU table

Author(s)

Adrien Taudière

Examples

```
data(enterotype)
enterotype_bin <- as_binary_otu_table(enterotype)</pre>
```

biplot_pq

Visualization of two samples for comparison

Description

Graphical representation of distribution of taxa across two samples.

```
biplot_pq(
  physeq,
  fact = NULL,
 merge_sample_by = NULL,
  rarefy_after_merging = FALSE,
  inverse_side = FALSE,
  left_name = NULL,
  left_name_col = "#4B3E1E",
 left_fill = "#4B3E1E",
  left_col = "#f3f2d9",
  right_name = NULL,
  right_name_col = "#1d2949",
  right_fill = "#1d2949",
  right_col = "#1d2949",
  log10trans = TRUE,
  nudge_y = c(0.3, 0.3),
  geom_label = FALSE,
  text_size = 3,
  size_names = 5,
 y_names = NA,
 ylim_modif = c(1, 1),
 nb_samples_info = TRUE,
 plotly_version = FALSE,
)
```

20 biplot_pq

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package. fact (default: NULL) Name of the factor in physeq@sam_data. If left to NULL use

the left_name and right_name parameter as modality.

merge_sample_by

(default: NULL) if not NULL samples of physeq are merged using the vector set by merge_sample_by. This merging used the merge_samples2(). In the case of biplot_pq() this must be a factor with two levels only.

rarefy_after_merging

Rarefy each sample after merging by the modalities merge_sample_by

inverse_side Inverse the side (put the right modality in the left side).

left_name Name fo the left sample.
left_name_col Color for the left name
left_fill Fill fo the left sample.
left_col Color fo the left sample.
right_name Name fo the right sample.
right_name_col Color for the right name
right_fill Fill fo the right sample.
right_col Color fo the right sample.

log10trans (logical) Does abundancy is log10 transformed?

nudge_y A parameter to control the y position of abundancy values. If a vector of two

values are set. The first value is for the left side. and the second value for the

right one. If one value is set, this value is used for both side.

geom_label (default: FALSE, logical) if TRUE use the ggplot2::geom_label() function

instead of ggplot2::geom_text() to indicate the numbers of sequences.

text_size size for the number of sequences size_names size for the names of the 2 samples

y_names y position for the names of the 2 samples. If NA (default), computed using the

maximum abundances values.

ylim_modif vector of two values. Modificator (by a multiplication) of ylim. If one value is

set, this value is used for both limits.

nb_samples_info

(default: TRUE, logical) if TRUE and merge_sample_by is set, add the number

of samples merged for both levels.

plotly_version If TRUE, use plotly::ggplotly() to return a interactive ggplot.

Other arguments for the ggplot function

Value

A plot

blast_pq 21

Author(s)

Adrien Taudière

Examples

```
data_fungi_2Height <- subset_samples(data_fungi_mini, Height %in% c("Low", "High"))
biplot_pq(data_fungi_2Height, "Height", merge_sample_by = "Height")</pre>
```

blast_pq

Blast all sequence of refseq slot of a phyloseq-class object against a custom database.

Description

Use the blast software.

Usage

```
blast_pq(
  physeq,
  fasta_for_db = NULL,
  database = NULL,
 blastpath = NULL,
  id_cut = 90,
 bit_score_cut = 50,
 min_cover_cut = 50,
  e_value_cut = 1e-30,
  unique_per_seq = FALSE,
  score_filter = TRUE,
  nproc = 1,
  args_makedb = NULL,
  args_blastn = NULL,
  keep_temporary_files = FALSE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

fasta_for_db path to a fasta file to make the blast database

database path to a blast database blastpath path to blast program

id_cut (default: 90) cut of in identity percent to keep result

bit_score_cut (default: 50) cut of in bit score to keep result The higher the bit-score, the better

the sequence similarity. The bit-score is the requires size of a sequence database in which the current match could be found just by chance. The bit-score is a log2 scaled and normalized raw-score. Each increase by one doubles the required

database size (2bit-score).

22 blast_to_derep

min_cover_cut (default: 50) cut of in query cover (%) to keep result

e_value_cut (default: 1e-30) cut of in e-value (%) to keep result The BLAST E-value is the

number of expected hits of similar quality (score) that could be found just by

chance.

unique_per_seq (logical, default FALSE) if TRUE only return the better match (higher bit score)

for each sequence

score_filter (logical, default TRUE) does results are filter by score? If FALSE, id_cut,bit_score_cut,

e_value_cut and min_cover_cut are ignored

nproc (default: 1) Set to number of cpus/processors to use for blast (args -num threads

for blastn command)

args_makedb Additional parameters parse to makeblastdb command

args_blastn Additional parameters parse to blastn command

keep_temporary_files

(logical, default: FALSE) Do we keep temporary files

- db.fasta (refseq transformed into a database)
- dbase list of files (output of blastn)
- blast_result.txt the summary result of blastn using -outfmt "6 qseqid qlen sseqid slen length p

Value

a blast table

See Also

blast_to_phyloseq() to use refseq slot as a database

blast_to_derep

Blast some sequence against sequences from of a derep-class object.

Description

Use the blast software.

```
blast_to_derep(
  derep,
  seq2search,
  blastpath = NULL,
  id_cut = 90,
  bit_score_cut = 50,
  min_cover_cut = 50,
  e_value_cut = 1e-30,
  unique_per_seq = FALSE,
  score_filter = FALSE,
```

blast_to_derep 23

```
list_no_output_query = FALSE,
min_length_seq = 200,
args_makedb = NULL,
args_blastn = NULL,
nproc = 1,
keep_temporary_files = FALSE
)
```

Arguments

derep The result of dada2::derepFastq(). A list of derep-class object.

seq2search (required) path to a fasta file defining the sequences you want to blast against

the taxa (ASV, OTU) sequences from the physeq object.

blastpath path to blast program

id_cut (default: 90) cut of in identity percent to keep result

bit_score_cut (default: 50) cut of in bit score to keep result The higher the bit-score, the better

the sequence similarity. The bit-score is the requires size of a sequence database in which the current match could be found just by chance. The bit-score is a log2 scaled and normalized raw-score. Each increase by one doubles the required

database size (2bit-score).

min_cover_cut (default: 50) cut of in query cover (%) to keep result

e_value_cut (default: 1e-30) cut of in e-value (%) to keep result The BLAST E-value is the

number of expected hits of similar quality (score) that could be found just by

chance.

unique_per_seq (logical, default FALSE) if TRUE only return the better match (higher **bit score**)

for each sequence

score_filter (logical, default TRUE) does results are filter by score? If FALSE, id_cut,bit_score_cut,

e_value_cut and min_cover_cut are ignored

list_no_output_query

(logical) does the result table include query sequences for which blastn does

not find any correspondence?

min_length_seq (default: 200) Removed sequences with less than min_length_seq from derep

before blast. Set to 0 to discard filtering sequences by length.

args_makedb Additional parameters parse to makeblastdb command

args_blastn Additional parameters parse to blastn command

nproc (default: 1) Set to number of cpus/processors to use for blast (args -num_threads

for blastn command)

keep_temporary_files

(logical, default: FALSE) Do we keep temporary files:

- db.fasta (refseq transformed into a database)
- dbase list of files (output of blastn)
- blast_result.txt the summary result of blastn using -outfmt "6 qseqid qlen sseqid slen length p

24 blast_to_phyloseq

Value

A blast table

Author(s)

Adrien Taudière

See Also

blast_pq() to use refseq slot as query sequences against un custom database and blast_to_phyloseq()
to use refseq slot as a database

blast_to_phyloseq

Blast some sequence against refseq slot of a phyloseq-class object.

Description

Use the blast software.

Usage

```
blast_to_phyloseq(
  physeq,
  seq2search,
  blastpath = NULL,
  id_cut = 90,
  bit_score_cut = 50,
  min_cover_cut = 50,
  e_value_cut = 1e-30,
  unique_per_seq = FALSE,
  score_filter = TRUE,
  list_no_output_query = FALSE,
  args_makedb = NULL,
  args_blastn = NULL,
  nproc = 1,
  keep_temporary_files = FALSE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

seq2search (required) path to a fasta file defining the sequences you want to blast against the taxa (ASV, OTU) sequences from the physeq object.

blastpath path to blast program

id_cut (default: 90) cut of in identity percent to keep result

25 blast_to_phyloseq

bit_score_cut (default: 50) cut of in bit score to keep result The higher the bit-score, the better the sequence similarity. The bit-score is the requires size of a sequence database in which the current match could be found just by chance. The bit-score is a log2 scaled and normalized raw-score. Each increase by one doubles the required database size (2bit-score). (default: 50) cut of in query cover (%) to keep result min_cover_cut e_value_cut (default: 1e-30) cut of in e-value (%) to keep result The BLAST E-value is the number of expected hits of similar quality (score) that could be found just by chance. (logical, default FALSE) if TRUE only return the better match (higher **bit score**) unique_per_seq for each sequence score_filter (logical, default TRUE) does results are filter by score? If FALSE, id_cut,bit_score_cut, e_value_cut and min_cover_cut are ignored list_no_output_query (logical) does the result table include query sequences for which blastn does not find any correspondence? args_makedb Additional parameters parse to makeblastdb command args_blastn Additional parameters parse to blastn command nproc (default: 1) Set to number of cpus/processors to use for blast (args -num_threads for blastn command) keep_temporary_files (logical, default: FALSE) Do we keep temporary files

- db.fasta (refseq transformed into a database)
- dbase list of files (output of blastn)
- blast_result.txt the summary result of blastn using -outfmt "6 qseqid qlen sseqid slen length;

Value

the blast table

See Also

blast_pq() to use refseq slot as query sequences against un custom database.

Examples

```
## Not run:
blastpath <- "...YOUR_PATH_TO_BLAST..."</pre>
blast_to_phyloseq(data_fungi,
 seq2search = system.file("extdata", "ex.fasta",
    package = "MiscMetabar", mustWork = TRUE
 blastpath = blastpath
)
## End(Not run)
```

build_phytree_pq

build_phytree_pq Build phylogenetic trees from refseq slot of a phyloseq object

Description

This function build tree phylogenetic tree and if nb_bootstrap is set, it build also the 3 corresponding bootstrapped tree.

Default parameters are based on doi:10.12688/f1000research.8986.2 and phangorn vignette Estimating phylogenetic trees with phangorn. You should understand your data, especially the markers, before using this function.

Note that phylogenetic reconstruction with markers used for metabarcoding are not robust. You must verify the robustness of your phylogenetic tree using taxonomic classification (see vignette Tree visualization) and bootstrap or multi-tree visualization

Usage

```
build_phytree_pq(
   physeq,
   nb_bootstrap = 0,
   model = "GTR",
   optInv = TRUE,
   optGamma = TRUE,
   rearrangement = "NNI",
   control = phangorn::pml.control(trace = 0),
   optNni = TRUE,
   multicore = FALSE,
   ...
)
```

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.
nb_bootstrap	(default 0): If a positive number is set, the function also build 3 bootstrapped trees using nb_bootstrap bootstrap samples
model	allows to choose an amino acid models or nucleotide model, see phangorn::optim.pml() for more details
optInv	$Logical\ value\ indicating\ whether\ topology\ gets\ optimized\ (NNI).\ See\ phangorn:: optim.pml()$ for more details
optGamma	Logical value indicating whether gamma rate parameter gets optimized. See phangorn::optim.pml() for more details
rearrangement	type of tree tree rearrangements to perform, one of "NNI", "stochastic" or "ratchet" see phangorn::optim.pml() for more details
control	A list of parameters for controlling the fitting process. see phangorn::optim.pml() for more details

build_phytree_pq 27

optNni	Logical value indicating whether topology gets optimized (NNI). see phangorn::optim.pml() for more details
multicore	(logical) whether models should estimated in parallel. see phangorn::bootstrap.pml() for more details
	Other params for be passed on to phangorn::optim.pml() function

Details

This function is mainly a wrapper of the work of others. Please make a reference to phangorn package if you use this function.

Value

A list of phylogenetic tree

Author(s)

Adrien Taudière

Examples

```
if (requireNamespace("phangorn")) {
 set.seed(22)
 df <- subset_taxa_pq(data_fungi_mini, taxa_sums(data_fungi_mini) > 9000)
 df_tree <- build_phytree_pq(df, nb_bootstrap = 2)</pre>
 plot(df_tree$UPGMA)
 phangorn::plotBS(df_tree$UPGMA, df_tree$UPGMA_bs, main = "UPGMA")
 plot(df_tree$NJ, "unrooted")
 plot(df_tree$ML)
 phangorn::plotBS(df_tree$ML$tree, df_tree$ML_bs, p = 20, frame = "circle")
 phangorn::plotBS(
   df_tree$ML$tree,
   df_tree$ML_bs,
   p = 20,
   frame = "circle",
   method = "TBE"
 plot(phangorn::consensusNet(df_tree$ML_bs))
 plot(phangorn::consensusNet(df_tree$NJ_bs))
 ps_tree <- merge_phyloseq(df, df_tree$ML$tree)</pre>
}
```

28 chimera_detection_vs

Description

Use the VSEARCH software.

Usage

```
chimera_detection_vs(
   seq2search,
   nb_seq,
   vsearchpath = "vsearch",
   abskew = 2,
   min_seq_length = 100,
   vsearch_args = "--fasta_width 0",
   keep_temporary_files = FALSE
)
```

Arguments

seq2search (required) a list of DNA sequences coercible by function Biostrings::DNAStringSet()

nb_seq (required) a numeric vector giving the number of sequences for each DNA se-

quences

vsearchpath (default: vsearch) path to vsearch

abskew (int, default 2) The abundance skew is used to distinguish in a three way align-

ment which sequence is the chimera and which are the parents. The assumption is that chimeras appear later in the PCR amplification process and are therefore less abundant than their parents. The default value is 2.0, which means that the parents should be at least 2 times more abundant than their chimera. Any

positive value equal or greater than 1.0 can be used.

min_seq_length (int, default 100)) Minimum length of sequences to be part of the analysis

vsearch_args (default "-fasta_width 0") A list of other args for vsearch command

keep_temporary_files

(logical, default: FALSE) Do we keep temporary files?

- non_chimeras.fasta
- · chimeras.fasta
- · borderline.fasta

Details

This function is mainly a wrapper of the work of others. Please make vsearch.

chimera_removal_vs 29

Value

A list of 3 including non-chimera taxa (\$non_chimera), chimera taxa (\$chimera) and bordeline taxa (\$borderline)

Author(s)

Adrien Taudière

See Also

```
chimera_removal_vs(), dada2::removeBimeraDenovo()
```

Examples

```
chimera_detection_vs(
  seq2search = data_fungi@refseq,
  nb_seq = taxa_sums(data_fungi)
)
```

chimera_removal_vs

Search for a list of sequence in an object to remove chimera taxa using Rhrefhttps://github.com/torognes/vsearchvsearch

Description

Use the VSEARCH software.

Usage

```
chimera_removal_vs(object, type = "Discard_only_chim", clean_pq = FALSE, ...)
```

Arguments

object

(required) A phyloseq-class object or one of dada, derep, data.frame or list coercible to sequences table using the function dada2::makeSequenceTable() (default "Discard_only_chim"). The type define the type of filtering.

type

- "Discard_only_chim" will only discard taxa classify as chimera by vsearch
- "Select_only_non_chim" will only select taxa classify as non-chimera by vsearch(after filtering taxa based on their sequence length by the parameter min_seq_length from the chimera_detection_vs() function)
- "Select_only_chim" will only select taxa classify as chimera by vsearch (after filtering taxa based on their sequence length by the parameter min_seq_length from the chimera_detection_vs() function)

clean_pq

(logical; default FALSE) If TRUE, return the phyloseq object after cleaning using the default parameter of clean_pq() function.

. . .

Other arguments passed on to chimera_detection_vs() function

30 circle_pq

Details

This function is mainly a wrapper of the work of others. Please make vsearch.

Value

- I/ a sequences tables if object is of class dada, derep, data.frame or list.
- II/ a phyloseq object without (or with if type = 'Select_only_chim') chimeric taxa

Author(s)

Adrien Taudière

See Also

```
chimera_detection_vs(), dada2::removeBimeraDenovo()
```

Examples

```
data_fungi_nochim <- chimera_removal_vs(data_fungi)
data_fungi_nochim_16 <- chimera_removal_vs(data_fungi,
    abskew = 16,
    min_seq_length = 10
)
data_fungi_nochim2 <-
    chimera_removal_vs(data_fungi, type = "Select_only_non_chim")
data_fungi_chimera <-
    chimera_removal_vs(data_fungi, type = "Select_only_chim")</pre>
```

circle_pq

Plot OTU circle for phyloseq-class object

Description

Graphical representation of distribution of taxa across a factor.

```
circle_pq(
  physeq = NULL,
  fact = NULL,
  taxa = "Order",
  nproc = 1,
  add_nb_seq = TRUE,
  rarefy = FALSE,
  min_prop_tax = 0.01,
```

circle_pq 31

```
min_prop_mod = 0.1,
  gap_degree = NULL,
  start_degree = NULL,
  row_col = NULL,
  grid_col = NULL,
  log10trans = FALSE,
  ...
)
```

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.
fact	(required) Name of the factor to cluster samples by modalities. Need to be in $physeq@sam_data$.
taxa	(default: 'Order') Name of the taxonomic rank of interest
nproc	(default 1) Set to number of cpus/processors to use for parallelization
add_nb_seq	(default: TRUE) Represent the number of sequences or the number of OTUs (add_nb_seq = FALSE)
rarefy	(logical) Does each samples modalities need to be rarefy in order to compare them with the same amount of sequences?
min_prop_tax	(default: 0.01) The minimum proportion for taxa to be plotted
min_prop_mod	(default: 0.1) The minimum proportion for modalities to be plotted
gap_degree	Gap between two neighbour sectors. It can be a single value or a vector. If it is a vector, the first value corresponds to the gap after the first sector.
start_degree	The starting degree from which the circle begins to draw. Note this degree is measured in the standard polar coordinate which means it is always reverse-clockwise.
row_col	Color vector for row
grid_col	Grid colors which correspond to sectors. The length of the vector should be either 1 or the number of sectors. It's preferred that grid_col is a named vector of which names correspond to sectors. If it is not a named vector, the order of grid_col corresponds to order of sectors.
log10trans	$(logical) \ Should \ sequence \ be \ log 10 \ transformed \ (more \ precisely \ by \ log 10(1+x))?$
	Additional arguments passed on to chordDiagram or circos.par

Value

A chordDiagram plot representing the distribution of OTUs or sequences in the different modalities of the factor fact

Author(s)

Adrien Taudière

32 clean_pq

See Also

```
chordDiagram
circos.par
```

Examples

```
if (requireNamespace("pbapply")) {
  data("GlobalPatterns", package = "phyloseq")
  GP <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
  circle_pq(GP, "SampleType")
  circle_pq(GP, "SampleType", add_nb_seq = FALSE)
  circle_pq(GP, "SampleType", taxa = "Class")
}</pre>
```

clean_pq

Clean phyloseq object by removing empty samples and taxa

Description

In addition, this function check for discrepancy (and rename) between (i) taxa names in refseq, taxonomy table and otu_table and between (ii) sample names in sam_data and otu_table.

Usage

```
clean_pq(
   physeq,
   remove_empty_samples = TRUE,
   remove_empty_taxa = TRUE,
   clean_samples_names = TRUE,
   silent = FALSE,
   verbose = FALSE,
   force_taxa_as_columns = FALSE,
   force_taxa_as_rows = FALSE,
   reorder_taxa = FALSE,
   rename_taxa = FALSE,
   simplify_taxo = FALSE,
   prefix_taxa_names = "_Taxa"
)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package. remove_empty_samples
```

(logical) Do you want to remove samples without sequences (this is done after removing empty taxa)

compare_pairs_pq 33

```
remove_empty_taxa
                  (logical) Do you want to remove taxa without sequences (this is done before
                  removing empty samples)
clean_samples_names
                  (logical) Do you want to clean samples names?
                  (logical) If true, no message are printing.
silent
verbose
                  (logical) Additional informations in the message the verbose parameter over-
                  write the silent parameter.
force_taxa_as_columns
                  (logical) If true, if the taxa are rows transpose the otu table and set taxa are rows
                  to false
force_taxa_as_rows
                  (logical) If true, if the taxa are columns transpose the otu_table and set taxa_are_rows
                  (logical) if TRUE the otu_table is ordered by the number of sequences of taxa
reorder_taxa
                  (ASV, OTU) in descending order. Default to FALSE.
rename_taxa
                  (logical) if TRUE, taxa (ASV, OTU) are renamed by their position in the OTU_table
                  and prefix_taxa_names param (by default: Taxa_1, Taxa_2, ...). Default to
                  FALSE. If rename taxa (ASV, OTU) is true, the taxa (ASV, OTU) names in
                  verbose information can be misleading.
simplify_taxo
                  (logical) if TRUE, correct the taxonomy_table using the MiscMetabar::simplify_taxo()
                  function
prefix_taxa_names
                  (default "Taxa_"): the prefix of taxa names (eg. "ASV_" or "OTU_")
```

Value

A new phyloseq-class object

Description

For the moment refseq slot need to be not Null.

```
compare_pairs_pq(
  physeq = NULL,
  bifactor = NULL,
  modality = NULL,
  merge_sample_by = NULL,
  nb_min_seq = 0,
  veg_index = "shannon",
  na_remove = TRUE
)
```

34 count_seq

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package. bifactor (required) a factor (present in the sam_data slot of the physeq object) presenting the pair names the name of the column in the sam_data slot of the physeq object to split samples modality by pairs merge_sample_by a vector to determine which samples to merge using the merge_samples2() function. Need to be in physeq@sam_data nb_min_seq minimum number of sequences per sample to count the ASV/OTU veg_index (default: "shannon") index for the vegan::diversity function (logical, default TRUE) If set to TRUE, remove samples with NA in the varina_remove

ables set in bifactor, modality and merge_sample_by. NA in variables are well

managed even if na_remove = FALSE, so na_remove may be useless.

Value

A tibble with information about the number of shared ASV, shared number of sequences and diversity

Examples

```
data_fungi_low_high <- subset_samples(data_fungi, Height %in% c("Low", "High"))</pre>
compare_pairs_pq(data_fungi_low_high, bifactor = "Height", merge_sample_by = "Height")
compare_pairs_pq(data_fungi_low_high,
  bifactor = "Height",
  merge_sample_by = "Height", modality = "Time"
)
```

count_seq

Count sequences in fasta or fastq file

Description

Use grep to count the number of line with only one '+' (fastq, fastq.gz) or lines starting with a '>' (fasta) to count sequences.

Usage

```
count_seg(file_path = NULL, folder_path = NULL, pattern = NULL)
```

Arguments

The path to a fasta, fastq or fastq.gz file file_path

folder_path The path to a folder with fasta, fastq or fastq.gz files

A pattern to filter files in a folder. E.g. R2 pattern

Value

the number of sequences

Author(s)

Adrien Taudière

Examples

```
count_seq(file_path = system.file(
   "extdata",
   "ex.fasta",
   package = "MiscMetabar",
   mustWork = TRUE
))
count_seq(
  folder_path = system.file("extdata", package = "MiscMetabar"),
   pattern = "*.fasta"
)
```

cutadapt_remove_primers

Remove primers using Rhrefhttps://github.com/marcelm/cutadapt/cutadapt

Description

You need to install Cutadapt. See also https://github.com/VascoElbrecht/JAMP/blob/master/JAMP/R/Cutadapt.R for another call to cutadapt from R

```
cutadapt_remove_primers(
  path_to_fastq,
  primer_fw = NULL,
  primer_rev = NULL,
  folder_output = "wo_primers",
  nproc = 1,
  pattern = "fastq.gz",
  pattern_R1 = "_R1",
  pattern_R2 = "_R2",
  nb_files = Inf,
  cmd_is_run = TRUE,
  args_before_cutadapt =
    "source ~/miniconda3/etc/profile.d/conda.sh && conda activate cutadaptenv && ")
```

Arguments

path_to_fastq (Required) A path to a folder with fastq files. See list_fastq_files() for help. (Required, String) The forward primer DNA sequence. primer_fw (String) The reverse primer DNA sequence. primer_rev folder_output The path to a folder for output files (default 1) Set to number of cpus/processors to use for the clustering nproc a pattern to filter files (passed on to list.files function). pattern pattern_R1 a pattern to filter R1 files (default "R1") a pattern to filter R2 files (default "R2") pattern_R2 nb_files the number of fastq files to list (default FALSE) cmd_is_run (logical, default TRUE) Do the cutadapt command is run. If set to FALSE, the only effect of the function is to return a list of command to manually run in a terminal.

args_before_cutadapt

(String) A one line bash command to run before to run cutadapt. For examples, "source ~/miniconda3/etc/profile.d/conda.sh && conda activate cutadaptenv &&"

allow to bypass the conda init which asks to restart the shell

Details

This function is mainly a wrapper of the work of others. Please cite cutadapt (doi:10.14806/ ej.17.1.200).

Value

a list of command

Author(s)

Adrien Taudière

Examples

```
cutadapt_remove_primers("inst/extdata", "TTC", "GAA",
 folder_output = tempdir()
cutadapt_remove_primers(
 system.file("extdata",
   package = "dada2"
 pattern_R1 = "F.fastq.gz",
 pattern_R2 = "R.fastq.gz",
 primer_fw = "TTC",
 primer_rev = "GAA",
```

data_fungi 37

```
folder_output = tempdir()
)

cutadapt_remove_primers(
  system.file("extdata",
      package = "dada2"
),
  pattern_R1 = "F.fastq.gz",
  primer_fw = "TTC",
  folder_output = tempdir(),
  cmd_is_run = FALSE
)

unlink(tempdir(), recursive = TRUE)

## End(Not run)
```

data_fungi

Fungal OTU in phyloseq format

Description

Fungal OTU in phyloseq format

Usage

```
data(data_fungi)
```

Format

A physeq object containing 1420 taxa with references sequences described by 14 taxonomic ranks and 185 samples described by 7 sample variables:

- *X*: the name of the fastq-file
- Sample_names: the names of ... the samples
- Treename: the name of an tree
- Sample_id: identifier for each sample
- Height: height of the sample in the tree
- Diameter: diameter of the trunk
- *Time*: time since the dead of the tree

38 data_fungi_mini

data_fungi_mini

Fungal OTU in phyloseq format

Description

It is a subset of the data_fungi dataset including only Basidiomycota with more than 5000 sequences.

Usage

```
data(data_fungi_mini)
data(data_fungi_mini)
```

Format

A physeq object containing 45 taxa with references sequences described by 14 taxonomic ranks and 137 samples described by 7 sample variables:

- *X*: the name of the fastq-file
- Sample_names: the names of ... the samples
- Treename: the name of an tree
- Sample_id: identifier for each sample
- Height: height of the sample in the tree
- Diameter: diameter of the trunk
- *Time*: time since the dead of the tree

A physeq object containing 45 taxa with references sequences described by 14 taxonomic ranks and 137 samples described by 7 sample variables:

- *X*: the name of the fastq-file
- Sample_names: the names of ... the samples
- Treename: the name of an tree
- Sample_id: identifier for each sample
- Height: height of the sample in the tree
- Diameter: diameter of the trunk
- Time: time since the dead of the tree

Details

Obtain using data_fungi_mini <- subset_taxa(data_fungi, Phylum == "Basidiomycota") and then data_fungi_mini <- subset_taxa_pq(data_fungi_mini, colSums(data_fungi_mini@otu_table) > 5000)

data_fungi_sp_known 39

data_fungi_sp_known Fungal OTU in phyloseq format

Description

It is a subset of the data_fungi dataset including only taxa with information at the species level

Usage

```
data(data_fungi_sp_known)
```

Format

A physeq object containing 651 taxa with references sequences described by 14 taxonomic ranks and 185 samples described by 7 sample variables:

- *X*: the name of the fastq-file
- Sample_names: the names of ... the samples
- Treename: the name of an tree
- Sample_id: identifier for each sample
- Height: height of the sample in the tree
- Diameter: diameter of the trunk
- Time: time since the dead of the tree

Details

Obtain using data_fungi_sp_known <- subset_taxa(data_fungi, !is.na(data_fungi@tax_table[,"Species"]))

Description

Mainly an internal function useful in "sapply(..., tapply)" methods

Usage

```
diff_fct_diff_class(
    x,
    numeric_fonction = mean,
    logical_method = "TRUE_if_one",
    character_method = "unique_or_na",
    ...
)
```

40 diff_fct_diff_class

Arguments

Value

a single value

Author(s)

Adrien Taudière

```
diff_fct_diff_class(
  data_fungi@sam_data$Sample_id,
  numeric_fonction = sum,
  na.rm = TRUE
diff_fct_diff_class(
  data_fungi@sam_data$Time,
  numeric_fonction = mean,
  na.rm = TRUE
)
diff_fct_diff_class(
  data_fungi@sam_data$Height == "Low",
  logical_method = "TRUE_if_one"
)
diff_fct_diff_class(
  data_fungi@sam_data$Height == "Low",
  logical_method = "NA_if_not_all_TRUE"
diff_fct_diff_class(
  data_fungi@sam_data$Height == "Low",
  logical_method = "FALSE_if_not_all_TRUE"
)
diff_fct_diff_class(
  data_fungi@sam_data$Height,
```

distri_1_taxa 41

```
character_method = "unique_or_na"
)
diff_fct_diff_class(
   c("IE", "IE"),
   character_method = "unique_or_na"
)
diff_fct_diff_class(
   c("IE", "IE", "TE", "TE"),
   character_method = "more_frequent"
)
diff_fct_diff_class(
   c("IE", "IE", "TE", "TE"),
   character_method = "more_frequent_without_equality"
)
```

distri_1_taxa

Distribution of sequences across a factor for one taxon

Description

Focus on one taxon and one factor.

Usage

```
distri_1_taxa(physeq, fact, taxa_name, digits = 2)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

fact (required) Name of the factor in physeq@sam_data used to plot different lines
taxa_name (required): the name of the taxa

digits (default = 2) integer indicating the number of decimal places to be used (see
?round for more information)

Value

a dataframe with levels as rows and information as column:

- the number of sequences of the taxa (nb_seq)
- the number of samples of the taxa (nb_samp)
- the mean (mean_nb_seq) and standard deviation (sd_nb_seq) of the nb_seq
- the mean (mean_nb_seq_when_present) nb_seq excluding samples with zero
- the total number of samples (nb_total_samp)
- the proportion of samples with the taxa

42 dist_bycol

Author(s)

Adrien Taudière

Examples

```
distri_1_taxa(data_fungi, "Height", "ASV2")
distri_1_taxa(data_fungi, "Time", "ASV81", digits = 1)
```

dist_bycol

Compute paired distances among matrix (e.g. otu_table)

Description

May be used to verify ecological distance among samples.

Usage

```
dist_bycol(x, y, method = "bray", nperm = 99, ...)
```

Arguments

```
    x (required) A first matrix.
    y (required) A second matrix.
    method (default: 'bray') the method to use internally in the vegdist function.
    nperm (int) The number of permutations to perform.
    ... Others argument for vegan::vegdist function
```

Value

A list of length two: (i) a vector of observed distance (\$obs) and (ii) a matrix of the distance after randomization (\$null)

Note

the first column of the first matrix is compare to the first column of the second matrix, the second column of the first matrix is compare to the second column of the second matrix and so on.

Author(s)

Adrien Taudière

See Also

vegdist

dist_pos_control 43

_, _	alculate ecological distance among positive controls vs distance for l samples
------	--

Description

Compute distance among positive controls, i.e. samples which are duplicated to test for variation, for example in (i) a step in the sampling, (ii) a step in the extraction, (iii) a step in the sequencing.

Usage

```
dist_pos_control(physeq, samples_names, method = "bray")
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

samples_names (required) a vector of names for samples with positives controls of the same samples having the same name

method (default: "bray") a method to calculate the distance, parsed to vegan::vegdist().

See ?vegdist for a list of possible values.

Value

A list of two data-frames with (i) the distance among positive controls and (ii) the distance among all samples

Author(s)

Adrien Taudière

```
data("enterotype")
sam_name_factice <- gsub("TS1_V2", "TS10_V2", sample_names(enterotype))
res_dist_cont <- dist_pos_control(enterotype, sam_name_factice)
hist(unlist(res_dist_cont$distAllSamples))
abline(
    v = mean(unlist(res_dist_cont$dist_controlontrolSamples), na.rm = TRUE),
    col = "red", lwd = 3
)</pre>
```

filter_asv_blast

fac2col Translates a factor into colors.	
--	--

Description

Translates a factor into colors.

Usage

```
fac2col(x, col.pal = funky_color, na.col = "grey", seed = NULL)
```

Arguments

х	a numeric vector (for num2col) or a vector converted to a factor (for fac2col).
col.pal	(default funky_color) a function generating colors according to a given palette.
na.col	(default grey) the color to be used for missing values (NAs)
seed	(default NULL) a seed for R's random number generated, used to fix the random permutation of colors in the palette used; if NULL, no randomization is used and the colors are taken from the palette according to the ordering of the levels

Value

a color vector

Author(s)

Thibaut Jombart in adegenet package

See Also

The R package RColorBrewer, proposing a nice selection of color palettes. The viridis package, with many excellent palettes

filter_asv_blast Filter undesirable taxa using blast against a custom database.	
---	--

Description

Use the blast software.

filter_asv_blast 45

Usage

```
filter_asv_blast(
  physeq,
  fasta_for_db = NULL,
  database = NULL,
  clean_pq = TRUE,
  add_info_to_taxtable = TRUE,
  id_filter = 90,
  bit_score_filter = 50,
 min_cover_filter = 50,
  e_value_filter = 1e-30,
)
filter_taxa_blast(
  physeq,
  fasta_for_db = NULL,
  database = NULL,
  clean_pq = TRUE,
  add_info_to_taxtable = TRUE,
  id_filter = 90,
  bit_score_filter = 50,
 min_cover_filter = 50,
  e_value_filter = 1e-30,
)
```

Arguments

```
(required): a phyloseq-class object obtained using the phyloseq package.
physeq
fasta_for_db
                   path to a fasta file to make the blast database
database
                   path to a blast database
                   (logical) If set to TRUE, empty samples and empty taxa (ASV, OTU) are dis-
clean_pq
                  carded after filtering.
add_info_to_taxtable
                  (logical, default TRUE) Does the blast information are added to the taxtable?
id_filter
                   (default: 90) cut of in identity percent to keep result
bit_score_filter
                   (default: 50) cut of in bit score to keep result The higher the bit-score, the better
                   the sequence similarity. The bit-score is the requires size of a sequence database
                  in which the current match could be found just by chance. The bit-score is a log2
                   scaled and normalized raw-score. Each increase by one doubles the required
                   database size (2bit-score).
min_cover_filter
```

(default: 50) cut of in query cover (%) to keep result

46 filter_trim

e_value_filter (default: 1e-30) cut of in e-value (%) to keep result The BLAST E-value is the number of expected hits of similar quality (score) that could be found just by chance.
... Others options for the blast_pq() function. See ?blast_pq. Note that params unique_per_seq must be lft to TRUE and score_filter must be left to FALSE.

Value

A new phyloseq-class object.

filter_trim	A wrapper of the function dada2::filterAndTrim() to use in
	Rhrefhttps://books.ropensci.org/targets/targets pipeline

Description

This function filter and trim (with parameters passed on to dada2::filterAndTrim() function) forward sequences or paired end sequence if 'rev' parameter is set. It return the list of files to subsequent analysis in a targets pipeline.

Usage

```
filter_trim(
   fw = NULL,
   rev = NULL,
   output_fw = paste(getwd(), "/output/filterAndTrim_fwd", sep = ""),
   output_rev = paste(getwd(), "/output/filterAndTrim_rev", sep = ""),
   return_a_vector = FALSE,
   ...
)
```

Arguments

```
fw (required) a list of forward fastq files

rev a list of reverse fastq files for paired end trimming

output_fw Path to output folder for forward files. By default, this function will create a
folder "output/filterAndTrim_fwd" in the current working directory.

output_rev Path to output folder for reverse files. By default, this function will create a
folder "output/filterAndTrim_fwd" in the current working directory.

return_a_vector

(logical, default FALSE) If true, the return is a vector of path (usefull when used
with targets::tar_targets(..., format="file"))

... Other parameters passed on to dada2::filterAndTrim() function.
```

Value

A list of files. If rev is set, will return a list of two lists. The first list is a list of forward files, and the second one is a list of reverse files.

Author(s)

Adrien Taudière

See Also

```
dada2::filterAndTrim()
```

Examples

```
testFastqs_fw <- c(</pre>
 system.file("extdata", "sam1F.fastq.gz", package = "dada2"),
 system.file("extdata", "sam2F.fastq.gz", package = "dada2")
testFastqs_rev <- c(
 system.file("extdata", "sam1R.fastq.gz", package = "dada2"),
 system.file("extdata", "sam2R.fastq.gz", package = "dada2")
filt_fastq_fw <- filter_trim(testFastqs_fw, output_fw = tempdir())</pre>
derep_fw <- derepFastq(filt_fastq_fw[1])</pre>
derep_fw
filt_fastq_pe <- filter_trim(testFastqs_fw,</pre>
 testFastqs_rev,
 output_fw = tempdir("fw"),
 output_rev = tempdir("rev")
derep_fw_pe <- derepFastq(filt_fastq_pe[[1]])</pre>
derep_rv_pe <- derepFastq(filt_fastq_pe[[2]])</pre>
derep_fw_pe
derep_rv_pe
```

formattable_pq

Create a visualization table to describe taxa distribution across a modality

Description

Allow to visualize a table with graphical input.

Usage

```
formattable_pq(
  physeq,
  modality,
  taxonomic_levels = c("Phylum", "Order", "Family", "Genus"),
  min_nb_seq_taxa = 1000,
  log10trans = FALSE,
  void_style = FALSE,
  lev_col_taxa = "Phylum",
  arrange_by = "nb_seq",
  descending_order = TRUE,
  na_remove = TRUE,
  formattable_args = NULL
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

modality (required) The name of a column present in the @sam_data slot of the physeq

object. Must be a character vector or a factor.

taxonomic_levels

(default = c("Phylum", "Order", "Family", "Genus")) The taxonomic levels (must be present in the @sam_data slot) you want to see and/or used (for example to

compute a color) in the table.

min_nb_seq_taxa

(default = 1000) filter out taxa with less than min_nb_seq_taxa sequences

log10trans (logical, default TRUE) Do sequences count is log10 transformed (using log10(x

+ 1) to allow 0)

void_style (logical, default FALSE) Do the default style is discard?

lev_col_taxa Taxonomic level used to plot the background color of taxa names

arrange_by The column used to sort the table. Can take the values NULL, "proportion_samp",

"nb_seq" (default), , "nb_sam" "OTU", or a column names from the levels of

modality or from taxonomic levels

descending_order

(logical, default TRUE) Do we use descending order when sort the table (if

arrange_by is not NULL)?

na_remove (logical, default TRUE) if TRUE remove all the samples with NA in the split_by

variable of the physeq@sam_data slot

formattable_args

Other args to the formattable function. See examples and formattable::formattable()

Details

This function is mainly a wrapper of the work of others. Please make a reference to formattable::formattable() if you use this function.

Value

A datatable

Author(s)

Adrien Taudière

See Also

```
formattable::formattable()
```

```
if (requireNamespace("formattable")) {
 ## Distribution of the nb of sequences per OTU across Height
 ## modality (nb of sequences are log-transformed).
 ## Only OTU with more than 10000 sequences are taking into account
 ## The Phylum column is discarded
 formattable_pq(
   data_fungi,
   "Height",
   min_nb_seq_taxa = 10000,
   formattable_args = list("Phylum" = FALSE),
   log10trans = TRUE
 )
 ## Distribution of the nb of samples per OTU across Height modality
 ## Only OTU present in more than 50 samples are taking into account
 formattable_pq(
   as_binary_otu_table(data_fungi),
   "Height",
   min_nb_seq_taxa = 50,
   formattable_args = list("nb_seq" = FALSE),
 ## Distribution of the nb of sequences per OTU across Time modality
 ## arranged by Family Name in ascending order.
 ## Only OTU with more than 10000 sequences are taking into account
 ## The Phylum column is discarded
 formattable_pq(
   data_fungi,
   "Time",
   min_nb_seq_taxa = 10000,
   taxonomic_levels = c("Order", "Family", "Genus", "Species"),
   formattable_args = list(
     Order = FALSE,
     Species = formattable::formatter(
       "span",
       style = x ~ formattable::style(
         "font-style" = "italic",
         `color` = ifelse(is.na(x), "white", "grey")
       )
```

```
)
   ),
   arrange_by = "Family",
   descending_order = FALSE
 )
}
if (requireNamespace("formattable")) {
 ## Distribution of the nb of sequences per OTU across Height modality
 ## (nb of sequences are log-transformed).
 ## OTU name background is light gray for Basidiomycota
 ## and dark grey otherwise (Ascomycota)
 ## A different color is defined for each modality level
 formattable_pq(
    data_fungi,
    "Height",
    taxonomic_levels = c("Phylum", "Family", "Genus"),
    void_style = TRUE,
    formattable_args = list(
     OTU = formattable::formatter(
        "span",
        style = ~ formattable::style(
          "display" = "block",
          `border-radius` = "5px",
          `background-color` = ifelse(Phylum == "Basidiomycota", transp("gray"), "gray")
        `padding-right` = "2px"
     ),
     High = formattable::formatter(
        "span",
        style = x ~ formattable::style(
          "font-size" = "80%",
          "display" = "inline-block",
          direction = "rtl",
          `border-radius` = "0px",
          `padding-right` = "2px",
          `background-color` = formattable::csscolor(formattable::gradient(
            as.numeric(x), transp("#1a91ff"), "#1a91ff"
       width = formattable::percent(formattable::proportion(as.numeric(x), na.rm = TRUE))
       )
     ),
      Low = formattable::formatter(
        "span",
        style = x ~ formattable::style(
          "font-size" = "80%",
          "display" = "inline-block",
          direction = "rtl",
          `border-radius` = "0px",
          `padding-right` = "2px",
          `background-color` = formattable::csscolor(formattable::gradient(
            as.numeric(x),
            transp("green"), "green"
```

funguild_assign 51

```
)),
       width = formattable::percent(formattable::proportion(as.numeric(x), na.rm = TRUE))
       )
      ),
      Middle = formattable::formatter(
        "span",
        style = x ~ formattable::style(
          "font-size" = "80%",
          "display" = "inline-block",
          direction = "rtl",
          `border-radius` = "0px",
          `padding-right` = "2px",
          `background-color` = formattable::csscolor(formattable::gradient(
            as.numeric(x), transp("orange"), "orange"
          )),
       width = formattable::percent(formattable::proportion(as.numeric(x), na.rm = TRUE))
      )
   )
 )
}
```

funguild_assign

Assign Guilds to Organisms Based on Taxonomic Classification

Description

The original function and documentation was written by Brendan Furneaux in the FUNGuildR package.

These functions have identical behavior if supplied with a database; however they download the database corresponding to their name by default.

Taxa present in the database are matched to the taxa present in the supplied otu_table by exact name. In the case of multiple matches, the lowest (most specific) rank is chosen. No attempt is made to check or correct the classification in otu_table\$Taxonomy.

Usage

```
funguild_assign(
  otu_table,
  db_funguild = get_funguild_db(),
  tax_col = "Taxonomy"
)
```

Arguments

otu_table

A data. frame with a character column named "Taxonomy" (or another name as specified in tax_col), as well as any other columns. Each entry in "otu_table\$Taxonomy"

52 funky_color

> should be a comma-, colon-, underscore-, or semicolon-delimited classification of an organism. Rank indicators as given by Sintax ("k:", "p:"...) or Unite ("k__, "p__", ...) are also allowed. A character vector, representing only the

taxonomic classification, is also accepted.

db_funguild A data.frame representing the FUNGuild as returned by get_funguild_db()

If not supplied, the default database will be downloaded.

tax_col A character string, optionally giving an alternate column name in otu_table

to use instead of otu_table\$Taxonomy.

Value

A tibble::tibble containing all columns of otu_table, plus relevant columns of information from the FUNGuild

Author(s)

Brendan Furneaux (orcid: 0000-0003-3522-7363), modified by Adrien Taudière

References

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology 20:241-248.

funky_color

Funky palette color

Description

Funky palette color

Usage

funky_color(n)

Arguments

n

a number of colors

Value

a color palette

Author(s)

Thibaut Jombart in adegenet package

get_file_extension 53

See Also

The R package RColorBrewer, proposing a nice selection of color palettes. The viridis package, with many excellent palettes

get_file_extension

Get the extension of a file

Description

Internally used in count_seq().

Usage

```
get_file_extension(file_path)
```

Arguments

```
file_path (required): path to a file
```

Value

The extension of a file.

Author(s)

Adrien Taudière

get_funguild_db

Retrieve the FUNGuild database

Description

The original function and documentation was written by Brendan Furneaux in the FUNGuildR package.

Please cite this publication (doi:10.1016/j.funeco.2015.06.006).

Usage

```
get_funguild_db(db_url = "http://www.stbates.org/funguild_db_2.php")
```

Arguments

db_url

a length 1 character string giving the URL to retrieve the database from

54 ggaluv_pq

Value

a tibble::tibble containing the database, which can be passed to the db argument of funguild_assign()

Author(s)

Brendan Furneaux (orcid: 0000-0003-3522-7363), modified by Adrien Taudière

References

Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. *FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild.* Fungal Ecology 20:241-248.

ggaluv_pq

Alluvial plot for taxonomy and samples factor vizualisation

Description

Basically a wrapper of ggalluvial package

Usage

```
ggaluv_pq(
  physeq,
  taxa_ranks = c("Phylum", "Class", "Order", "Family"),
  wrap_factor = NULL,
  by_sample = FALSE,
  rarefy_by_sample = FALSE,
  fact = NULL,
  type = "nb_seq",
  width = 1.2,
  min.size = 3,
  na_remove = FALSE,
  use_ggfittext = FALSE,
  use_geom_label = FALSE,
  size_lab = 2,
  ...
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

A vector of taxonomic ranks. For examples c("Family", "Genus"). If taxa ranks is not set (default value = c("Phylum", "Class", "Order", "Family")).

Wrap_factor

A name to determine which samples to merge using merge_samples2() function. Need to be in physeq@sam_data. Need to be use when you want to wrap by factor the final plot with the number of taxa (type="nb_taxa")

ggaluv_pq 55

by_sample	(logical) If FALSE (default), sample information is not taking into account, so the taxonomy is studied globally. If fact is not NULL, by_sample is automatically set to TRUE.			
rarefy_by_sample				
	$(logical, defaultFALSE)IfTRUE, rarefysamplesusingphyloseq::rarefy_even_depth()function.$			
fact	(required) Name of the factor in physeq@sam_data used to plot the last column			
type	If "nb_seq" (default), the number of sequences is used in plot. If "nb_taxa", the number of ASV is plotted.			
width	(passed on to ggalluvial::geom_flow()) the width of each stratum, as a proportion of the distance between axes. Defaults to 1/3.			
min.size	(passed on to ggfittext::geom_fit_text()) Minimum font size, in points. Text that would need to be shrunk below this size to fit the box will be hidden. Defaults to 4 pt.			
na_remove	(logical, default FALSE) If set to TRUE, remove samples with NA in the variables set in formula.			
use_ggfittext	(logical, default FALSE) Do we use ggfittext to plot labels?			
use_geom_label	(logical, default FALSE) Do we use geom_label to plot labels?			
size_lab	Size for label if use_ggfittext is FALSE			

Details

This function is mainly a wrapper of the work of others. Please make a reference to ggalluvial package if you use this function.

Other arguments passed on to ggalluvial::geom_flow() function.

Value

A ggplot object

Author(s)

Adrien Taudière

See Also

```
sankey_pq()
```

```
if (requireNamespace("ggalluvial")) {
    ggaluv_pq(data_fungi_mini)
}

if (requireNamespace("ggalluvial")) {
    ggaluv_pq(data_fungi_mini, type = "nb_taxa")
```

56 ggbetween_pq

```
ggaluv_pq(data_fungi_mini, wrap_factor = "Height", by_sample = TRUE, type = "nb_taxa") +
    facet_wrap("Height")

ggaluv_pq(data_fungi_mini,
    width = 0.9, min.size = 10,
    type = "nb_taxa", taxa_ranks = c("Phylum", "Class", "Order", "Family", "Genus")
) +
    coord_flip() + scale_x_discrete(limits = rev)
}
```

ggbetween_pq

Box/Violin plots for between-subjects comparisons of Hill Number

Description

Note that contrary to hill_pq(), this function does not take into account for difference in the number of sequences per samples/modalities. You may use rarefy_by_sample = TRUE if the mean number of sequences per samples differs among modalities.

Basically a wrapper of function ggstatsplot::ggbetweenstats() for object of class phyloseq

Usage

```
ggbetween_pq(physeq, fact, one_plot = FALSE, rarefy_by_sample = FALSE, ...)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

fact (required): The variable to test. Must be present in the sam_data slot of the physeq object.

one_plot (logical, default FALSE) If TRUE, return a unique plot with the three plot inside using the patchwork package.

rarefy_by_sample (logical, default FALSE) If TRUE, rarefy samples using phyloseq::rarefy_even_depth() function

Other arguments passed on to ggstatsplot::ggbetweenstats() function.

Details

This function is mainly a wrapper of the work of others. Please make a reference to ggstatsplot::ggbetweenstats() if you use this function.

ggscatt_pq 57

Value

Either an unique ggplot2 object (if one_plot is TRUE) or a list of 3 ggplot2 plot:

- plot_Hill_0 : the ggbetweenstats of Hill number 0 (= species richness) against the variable fact
- plot_Hill_1: the ggbetweenstats of Hill number 1 (= Shannon index) against the variable fact
- plot_Hill_2: the ggbetweenstats of Hill number 2 (= Simpson index) against the variable fact

Author(s)

Adrien Taudière

Examples

```
if (requireNamespace("ggstatsplot")) {
  p <- ggbetween_pq(data_fungi, fact = "Time", p.adjust.method = "BH")
  p[[1]]
  ggbetween_pq(data_fungi, fact = "Height", one_plot = TRUE)
  ggbetween_pq(data_fungi, fact = "Height", one_plot = TRUE, rarefy_by_sample = TRUE)
}</pre>
```

ggscatt_pq

Scatterplot with marginal distributions and statistical results against Hill diversity of phyloseq object

Description

Basically a wrapper of function ggstatsplot::ggscatterstats() for object of class phyloseq and Hill number.

Usage

```
ggscatt_pq(
  physeq,
  num_modality,
  hill_scales = c(0, 1, 2),
  rarefy_by_sample = FALSE,
  one_plot = TRUE,
  ...
)
```

58 ggscatt_pq

Arguments

(required): a phyloseq-class object obtained using the phyloseq package. physeq num_modality (required) Name of the numeric column in physeq@sam_data to plot and test against hill numberk hill_scales (a vector of integer) The list of q values to compute the hill number H^{\(\gamma\)}q. If Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the Hill number 2 (inverse of Simpson Index). rarefy_by_sample (logical, default FALSE) If TRUE, rarefy samples using phyloseq::rarefy_even_depth() function. (logical, default FALSE) If TRUE, return a unique plot with the three plot inside one_plot using the patchwork package. Other arguments passed on to ggstatsplot::ggscatterstats() function.

Details

This function is mainly a wrapper of the work of others. Please make a reference to ggstatsplot::ggscatterstats() if you use this function.

Value

Either an unique ggplot2 object (if one_plot is TRUE) or a list of ggplot2 plot for each hill_scales.

Author(s)

Adrien Taudière

See Also

```
ggbetween_pq()
```

```
if (requireNamespace("ggstatsplot")) {
    ggscatt_pq(data_fungi_mini, "Time", type = "non-parametric")
    ggscatt_pq(data_fungi_mini, "Time", hill_scales = 1:4, type = "parametric")
    ggscatt_pq(data_fungi_mini, "Sample_id",
        hill_scales = c(0, 0.5),
        one_plot = FALSE
    )
}
```

ggvenn_pq 59

ggvenn_pq	Venn	diagram	of	phyloseq-class	object	using
ggVennDiagram::ggVennDiagramfunction						

Description

Note that you can use ggplot2 function to customize the plot for ex. + scale_fill_distiller(palette = "BuPu", direction = 1) and + scale_x_continuous(expand = expansion(mult = 0.5)). See examples.

Usage

```
ggvenn_pq(
  physeq = NULL,
  fact = NULL,
  min_nb_seq = 0,
  taxonomic_rank = NULL,
  split_by = NULL,
  add_nb_samples = TRUE,
  add_nb_seq = FALSE,
  rarefy_before_merging = FALSE,
  rarefy_after_merging = FALSE,
  return_data_for_venn = FALSE,
  ...
)
```

Arguments

(required): a phyloseq-class object obtained using the phyloseq package. physeq fact (required): Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data. minimum number of sequences by OTUs by samples to take into count this min_nb_seq OTUs in this sample. For example, if min_nb_seq=2,each value of 2 or less in the OTU table will not count in the venn diagram taxonomic_rank Name (or number) of a taxonomic rank to count. If set to Null (the default) the number of OTUs is counted. split_by Split into multiple plot using variable split_by. The name of a variable must be present in sam_data slot of the physeq object. add_nb_samples (logical, default TRUE) Add the number of samples to levels names (logical, default FALSE) Add the number of sequences to levels names add_nb_seq rarefy_before_merging Rarefy each sample before merging by the modalities of args fact. Use phyloseq::rarefy_even_depth function rarefy_after_merging

Rarefy each sample after merging by the modalities of args fact.

60 ggvenn_pq

return_data_for_venn

(logical, default FALSE) If TRUE, the plot is not returned, but the resulting dataframe to plot with ggVennDiagram package is returned.

... Other arguments for the ggVennDiagram::ggVennDiagram function for ex. category.names.

Value

A ggplot2 plot representing Venn diagram of modalities of the argument factor or if split_by is set a list of plots.

Author(s)

Adrien Taudière

See Also

```
upset_pq()
```

```
if (requireNamespace("ggVennDiagram")) {
 ggvenn_pq(data_fungi, fact = "Height")
}
if (requireNamespace("ggVennDiagram")) {
 ggvenn_pq(data_fungi, fact = "Height") +
   ggplot2::scale_fill_distiller(palette = "BuPu", direction = 1)
 pl <- ggvenn_pq(data_fungi, fact = "Height", split_by = "Time")</pre>
 for (i in seq_along(pl)) {
   p <- pl[[i]] +
      scale_fill_distiller(palette = "BuPu", direction = 1) +
      theme(plot.title = element_text(hjust = 0.5, size = 22))
   print(p)
 data_fungi2 <- subset_samples(data_fungi, data_fungi@sam_data$Tree_name == "A10-005" |</pre>
    data_fungi@sam_data$Height %in% c("Low", "High"))
 ggvenn_pq(data_fungi2, fact = "Height")
 ggvenn_pq(data_fungi, fact = "Height", add_nb_seq = TRUE, set_size = 4)
 ggvenn_pq(data_fungi, fact = "Height", rarefy_before_merging = TRUE)
 ggvenn_pq(data_fungi, fact = "Height", rarefy_after_merging = TRUE) +
   scale_x_continuous(expand = expansion(mult = 0.5))
 # For more flexibility, you can save the dataset for more precise construction
 # with ggplot2 and ggVennDiagramm
 # (https://gaospecial.github.io/ggVennDiagram/articles/fully-customed.html)
 res_venn <- ggvenn_pq(data_fungi, fact = "Height", return_data_for_venn = TRUE)</pre>
 ggplot() +
   # 1. region count layer
   geom_polygon(aes(X, Y, group = id, fill = name),
```

glmutli_pq 61

```
data = ggVennDiagram::venn_regionedge(res_venn)
   ) +
    # 2. set edge layer
    geom_path(aes(X, Y, color = id, group = id),
      data = ggVennDiagram::venn_setedge(res_venn),
      show.legend = FALSE, linewidth = 3
    ) +
    # 3. set label layer
   geom_text(aes(X, Y, label = name),
      data = ggVennDiagram::venn_setlabel(res_venn)
    ) +
    # 4. region label layer
    geom_label(
     aes(X, Y, label = paste0(
  count, " (",
        scales::percent(count / sum(count), accuracy = 2), ")"
      )),
      data = ggVennDiagram::venn_regionlabel(res_venn)
    ) +
    theme_void()
}
```

glmutli_pq

Automated model selection and multimodel inference with (G)LMs for phyloseq

Description

See glmulti::glmulti() for more information.

Usage

```
glmutli_pq(
   physeq,
   formula,
   fitfunction = "lm",
   hill_scales = c(0, 1, 2),
   aic_step = 2,
   confsetsize = 100,
   plotty = FALSE,
   level = 1,
   method = "h",
   crit = "aicc",
   ...
)
```

62 glmutli_pq

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

formula (required) a formula for glmulti::glmulti() Variables must be present in the

physeq@sam_data slot or be one of hill number defined in hill_scales or the

variable Abundance which refer to the number of sequences per sample.

fitfunction (default "lm")

hill_scales (a vector of integer) The list of q values to compute the hill number H^q. If

Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the

Hill number 2 (inverse of Simpson Index).

aic_step The value between AIC scores to cut for.

confsetsize The number of models to be looked for, i.e. the size of the returned confidence

set.

plotty (logical) Whether to plot the progress of the IC profile when running.

level If 1, only main effects (terms of order 1) are used to build the candidate set.

If 2, pairwise interactions are also used (higher order interactions are currently

ignored)

method The method to be used to explore the candidate set of models. If "h" (default)

an exhaustive screening is undertaken. If "g" the genetic algorithm is employed (recommended for large candidate sets). If "l", a very fast exhaustive branch-and-bound algorithm is used. Package leaps must then be loaded, and this can only be applied to linear models with covariates and no interactions. If "d", a simple summary of the candidate set is printed, including the number of candi-

date models.

crit The Information Criterion to be used. Default is the small-sample corrected

AIC (aicc). This should be a function that accepts a fitted model as first argument. Other provided functions are the classic AIC, the Bayes IC (bic), and

QAIC/QAICc (qaic and qaicc).

... Other arguments passed on to glmulti::glmulti() function

Details

This function is mainly a wrapper of the work of others. Please make a reference to glmulti::glmulti() if you use this function.

Value

A data.frame summarizing the glmulti results with columns

-estimates -unconditional_interval -nb_model" -importance -alpha

See Also

```
glmulti::glmulti()
```

graph_test_pq 63

Examples

```
if (requireNamespace("glmulti")) {
   res_glmulti <-
      glmutli_pq(data_fungi, "Hill_0 ~ Hill_1 + Abundance + Time + Height", level = 1)
   res_glmulti
   res_glmulti_interaction <-
      glmutli_pq(data_fungi, "Hill_0 ~ Abundance + Time + Height", level = 2)
   res_glmulti
}</pre>
```

graph_test_pq

Performs graph-based permutation tests on phyloseq object

Description

A wrapper of phyloseqGraphTest::graph_perm_test() for quick plot with important statistics

Usage

```
graph_test_pq(
   physeq,
   fact,
   merge_sample_by = NULL,
   nperm = 999,
   return_plot = TRUE,
   title = "Graph Test",
   na_remove = FALSE,
   ...
)
```

Arguments

(required): a phyloseq-class object obtained using the phyloseq package. physeq fact (required) Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data. This should be a factor with two or more levels. merge_sample_by a vector to determine which samples to merge using merge_samples2() function. Need to be in physeq@sam_data nperm (int) The number of permutations to perform. return_plot (logical) Do we return only the result of the test, or do we plot the result? The title of the Graph. title (logical, default FALSE) If set to TRUE, remove samples with NA in the varina_remove ables set in formula. Other params for be passed on to phyloseqGraphTest::graph_perm_test() . . . function

64 hill_pq

Details

This function is mainly a wrapper of the work of others. Please cite phyloseqGraphTest package.

Value

A ggplot2 plot with a subtitle indicating the pvalue and the number of permutations

Author(s)

Adrien Taudière

Examples

```
if (requireNamespace("phyloseqGraphTest")) {
  data(enterotype)
  graph_test_pq(enterotype, fact = "SeqTech")
  graph_test_pq(enterotype, fact = "Enterotype", na_remove = TRUE)
}
```

hill_pq

Graphical representation of hill number 0, 1 and 2 across a factor

Description

Hill numbers are the number of equiprobable species giving the same diversity value as the observed distribution. The Hill number 0 correspond to Species richness), the Hill number 1 to the exponential of Shannon Index and the Hill number 2 to the inverse of Simpson Index)

Note that (if correction_for_sample_size is TRUE, default behavior) this function use a sqrt of the read numbers in the linear model in order to correct for uneven sampling depth. This correction is only done before tuckey HSD plot and do not change the hill number computed.

Usage

```
hill_pq(
  physeq,
  fact = NULL,
  variable = NULL,
  hill_scales = c(0, 1, 2),
  color_fac = NA,
  letters = FALSE,
  add_points = FALSE,
  add_info = TRUE,
  kruskal_test = TRUE,
  one_plot = FALSE,
  plot_with_tuckey = TRUE,
  correction_for_sample_size = TRUE,
```

hill_pq 65

```
na_remove = TRUE,
vioplot = FALSE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

fact (required): The variable to test. Must be present in the sam_data slot of the

physeq object.

variable : Alias for factor. Kept only for backward compatibility.

hill_scales (a vector of integer) The list of q values to compute the hill number H^q. If

Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the

Hill number 2 (inverse of Simpson Index).

color_fac (optional): The variable to color the barplot. For ex. same as fact. Not very

useful because ggplot2 plot colors can be change using scale_color_XXX()

function.

letters (optional, default FALSE): If set to TRUE, the plot show letters based on p-

values for comparison. Use the multcompLetters function from the package multcompLetters. BROKEN for the moment. Note that na values in The vari-

able param need to be removed (see examples) to use letters.

add_points (logical, default FALSE): add jitter point on boxplot

add_info (logical, default TRUE) Do we add a subtitle with information about the number

of samples per modality?

kruskal_test (logical, default TRUE) Do we test for global effect of our factor on each hill

scales values? When kruskal_test is TRUE, the resulting test value are add in each plot in subtitle (unless add_info is FALSE). Moreover, if at least one hill scales is not significantly link to fact (pval>0.05), a message is prompt saying that Tuckey HSD plot is not informative for those Hill scales and letters are not

printed.

one_plot (logical, default FALSE) If TRUE, return a unique plot with the four plot inside

using the patchwork package. Note that if letters and one_plot are both TRUE, tuckey HSD results are discarded from the unique plot. In that case, use one_plot = FALSE to see the tuckey HSD results in the fourth plot of the resulting list.

plot_with_tuckey

(logical, default TRUE). If one_plot is set to TRUE and letters to FALSE, allow

to discard the tuckey plot part with plot_with_tuckey = FALSE

correction_for_sample_size

(logical, default TRUE) This function use a sqrt of the read numbers in the linear model in order to correct for uneven sampling depth in the Tuckey TEST. This params do not change value of Hill number but only the test associated values (including the pvalues). To rarefy samples, you may use the function

phyloseq::rarefy_even_depth().

na_remove (logical, default TRUE) Do we remove samples with NA in the factor fact?

Note that na remove is always TRUE when using letters = TRUE

vioplot (logical, default FALSE) Do we plot violin plot instead of boxplot?

66 hill_pq

Value

Either an unique ggplot2 object (if one_plot is TRUE) or a list of n+1 ggplot2 plot (with n the number of hill scale value). For example, with the default scale value:

- plot_Hill_0: the boxplot of Hill number 0 (= species richness) against the variable
- plot_Hill_1 : the boxplot of Hill number 1 (= Shannon index) against the variable
- plot_Hill_2: the boxplot of Hill number 2 (= Simpson index) against the variable
- plot_tuckey : plot the result of the Tuckey HSD test

Author(s)

Adrien Taudière

See Also

```
psmelt_samples_pq() and ggbetween_pq()
```

```
p <- hill_pq(data_fungi_mini, "Height", hill_scales = 1:2)</pre>
p_h1 <- p[[1]] + theme(legend.position = "none")</pre>
p_h2 \leftarrow p[[2]] + theme(legend.position = "none")
multiplot(plotlist = list(p_h1, p_h2, p[[3]]), cols = 4)
 if (requireNamespace("multcompView")) {
      p2 <- hill_pq(data_fungi, "Time",</pre>
            correction_for_sample_size = FALSE,
            letters = TRUE, add_points = TRUE,
            plot_with_tuckey = FALSE
      if (requireNamespace("patchwork")) {
            patchwork::wrap_plots(p2, guides = "collect")
      # Artificially modify data_fungi to force alpha-diversity effect
    data_fungi_modif <- clean_pq(subset_samples_pq(data_fungi, !is.na(data_fungi@sam_data$Height)))</pre>
      \label{lem:data_fungi_modifesam_data} $$ data_fungi_modifesam_data$$ Height == "High", ] <- $$ and $$ data_fungi_modifesam_data$$ $$ data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_modifesam_data_fungi_m
            data_fungi_modif@otu_table[data_fungi_modif@sam_data$Height == "High", ] +
            sample(c(rep(0, ntaxa(data_fungi_modif) / 2), rep(100, ntaxa(data_fungi_modif) / 2)))
      p3 <- hill_pq(data_fungi_modif, "Height",
            letters = TRUE, vioplot = TRUE,
             add_points = TRUE
      )
}
```

hill_test_rarperm_pq 67

Description

This reduce the risk of a random drawing of a exceptional situation of an unique rarefaction.

Usage

```
hill_test_rarperm_pq(
   physeq,
   fact,
   hill_scales = c(0, 1, 2),
   nperm = 99,
   sample.size = min(sample_sums(physeq)),
   verbose = FALSE,
   progress_bar = TRUE,
   p_val_signif = 0.05,
   type = "non-parametrique",
   ...
)
```

Arguments

(required): a phyloseq-class object obtained using the phyloseq package. physeq fact (required) Name of the factor in physeq@sam_data used to plot different lines hill_scales (a vector of integer) The list of q values to compute the hill number H^q. If Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the Hill number 2 (inverse of Simpson Index). (int) The number of permutations to perform. nperm (int) A single integer value equal to the number of reads being simulated, also sample.size known as the depth. See phyloseg::rarefy_even_depth(). verbose (logical). If TRUE, print additional informations. progress_bar (logical, default TRUE) Do we print progress during the calculation? p_val_signif (float, [0:1]) The mimimum value of p-value to count a test as significant int the prop_signif result. A character specifying the type of statistical approach (See ggstatsplot::ggbetweenstats() type for more details): • "parametric" • "nonparametric" • "robust" • "bayes" Other arguments passed on to ggstatsplot::ggbetweenstats() function

68 hill_tuckey_pq

Value

A list of 6 components:

- method
- · expressions
- plots
- pvals
- prop_signif
- statistics

Author(s)

Adrien Taudière

See Also

```
ggstatsplot::ggbetweenstats(), hill_pq()
```

Examples

```
if (requireNamespace("ggstatsplot")) {
  hill_test_rarperm_pq(data_fungi, "Time", nperm = 2)
  res <- hill_test_rarperm_pq(data_fungi, "Height", nperm = 9, p.val = 0.9)
  patchwork::wrap_plots(res$plots[[1]])
  res$plots[[1]][[1]] + res$plots[[2]][[1]] + res$plots[[3]][[1]]
  res$prop_signif
  res_para <- hill_test_rarperm_pq(data_fungi, "Height", nperm = 9, type = "parametrique")
  res_para$plots[[1]][[1]] + res_para$plots[[2]][[1]] + res_para$plots[[3]][[1]]
  res_para$pvals
  res_para$method
  res_para$expressions[[1]]
}</pre>
```

hill_tuckey_pq

Calculate hill number and compute Tuckey post-hoc test

Description

Note that, by default, this function use a sqrt of the read numbers in the linear model in order to correct for uneven sampling depth.

iNEXT_pq 69

Usage

```
hill_tuckey_pq(
  physeq,
  modality,
  hill_scales = c(0, 1, 2),
  silent = TRUE,
  correction_for_sample_size = TRUE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

modality (required) the variable to test

 $hill_scales$ (a vector of integer) The list of q values to compute the hill number H^q . If

Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the

Hill number 2 (inverse of Simpson Index).

silent (logical) If TRUE, no message are printing.

correction_for_sample_size

(logical, default TRUE) This function use a sqrt of the read numbers in the linear

model in order to correct for uneven sampling depth.

Value

A ggplot2 object

Author(s)

Adrien Taudière

Examples

```
data("GlobalPatterns", package = "phyloseq")
GlobalPatterns@sam_data[, "Soil_logical"] <-
    ifelse(GlobalPatterns@sam_data[, "SampleType"] == "Soil", "Soil", "Not Soil")
hill_tuckey_pq(GlobalPatterns, "Soil_logical")
hill_tuckey_pq(GlobalPatterns, "Soil_logical", hill_scales = 1:2)</pre>
```

iNEXT_pq

iNterpolation and EXTrapolation of Hill numbers (with iNEXT)

Description

Note that this function is quite time-consuming due to high dimensionality in metabarcoding community matrix.

70 iNEXT_pq

Usage

```
iNEXT_pq(physeq, merge_sample_by = NULL, ...)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

merge_sample_by

(default: NULL) if not NULL samples of physeq are merged using the vector set by merge_sample_by. This merging used the merge_samples2(). In the case of biplot_pq() this must be a factor with two levels only.

Other arguments for the iNEXT::iNEXT() function
```

Value

```
see iNEXT::iNEXT() documentation
```

Author(s)

Adrien Taudière This function is mainly a wrapper of the work of others. Please make a reference to iNEXT::iNEXT() if you use this function.

```
if (requireNamespace("iNEXT")) {
 data("GlobalPatterns", package = "phyloseq")
 GPsubset <- subset_taxa(</pre>
    GlobalPatterns,
    GlobalPatterns@tax_table[, 1] == "Bacteria"
 GPsubset <- subset_taxa(</pre>
    GPsubset,
    rowSums(GPsubset@otu_table) > 20000
 GPsubset <- subset_taxa(</pre>
    GPsubset,
    rowSums(is.na(GPsubset@tax_table)) == 0
 GPsubset@sam_data$human <- GPsubset@sam_data$SampleType %in%</pre>
   c("Skin", "Feces", "Tong")
 res_iNEXT <- iNEXT_pq(</pre>
    GPsubset,
   merge_sample_by = "human",
   q = 1,
   datatype = "abundance",
   nboot = 2
 iNEXT::ggiNEXT(res_iNEXT)
 iNEXT::ggiNEXT(res_iNEXT, type = 2)
 iNEXT::ggiNEXT(res_iNEXT, type = 3)
}
```

is_cutadapt_installed 71

```
is_cutadapt_installed Test if cutadapt is installed.
```

Description

Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

```
is_cutadapt_installed(
  args_before_cutadapt =
   "source ~/miniconda3/etc/profile.d/conda.sh && conda activate cutadaptenv && ")
```

Arguments

```
args_before_cutadapt
```

: (String) A one line bash command to run before to run cutadapt. For examples, "source ~/miniconda3/etc/profile.d/conda.sh && conda activate cutadaptenv &&" allow to bypass the conda init which asks to restart the shell

Value

A logical that say if cutadapt is install in

Author(s)

Adrien Taudière

Examples

```
MiscMetabar::is_cutadapt_installed()
```

```
is\_falco\_installed
```

Test if falco is installed.

Description

Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

```
is_falco_installed(path = "falco")
```

Arguments

path

(default: falco) Path to falco

72 is_krona_installed

Value

A logical that say if falco is install in

Author(s)

Adrien Taudière

Examples

```
MiscMetabar::is_falco_installed()
```

is_krona_installed

Test if krona is installed.

Description

Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

```
is_krona_installed(path = "ktImportKrona")
```

Arguments

path

(default: krona) Path to krona

Value

A logical that say if krona is install in

Author(s)

Adrien Taudière

```
MiscMetabar::is_krona_installed()
```

is_mumu_installed 73

is_mumu_installed

Test if mumu is installed.

Description

Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

```
is_mumu_installed(path = "mumu")
```

Arguments

path

(default: mumu) Path to mumu

Value

A logical that say if mumu is install in

Author(s)

Adrien Taudière

Examples

```
MiscMetabar::is_mumu_installed()
```

is_swarm_installed

Test if swarm is installed.

Description

Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

```
is_swarm_installed(path = "swarm")
```

Arguments

path

(default: swarm) Path to falco

Value

A logical that say if swarm is install in

74 is_vsearch_installed

Author(s)

Adrien Taudière

Examples

```
MiscMetabar::is_swarm_installed()
```

Description

Useful for testthat and examples compilation for R CMD CHECK and test coverage

Usage

```
is_vsearch_installed(path = "vsearch")
```

Arguments

path (default: vsearch) Path to vsearch

Value

A logical that say if vsearch is install in

Author(s)

Adrien Taudière

Examples

```
MiscMetabar::is_vsearch_installed()
```

krona 75

krona

Make Krona files using Rhrefhttps://github.com/marbl/Krona/wikiKronaTools.

Description

Need the installation of kronatools on the computer (installation instruction).

Usage

```
krona(
   physeq,
   file = "krona.html",
   nb_seq = TRUE,
   ranks = "All",
   add_unassigned_rank = 0,
   name = NULL
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

file (required) the location of the html file to save

nb_seq (logical) If true, Krona set the distribution of sequences in the taxonomy. If False, Krona set the distribution of ASVs in the taxonomy.

Number of the taxonomic ranks to plot (num of the column in tax_table slot of your physeq object). Default setting plot all the ranks (argument 'All').

add_unassigned_rank

(int) Add unassigned for rank inferior to 'add_unassigned_rank' when necessary.

A name for intermediary files, Useful to name your krona result files before merging using merge_krona()

Details

name

This function is mainly a wrapper of the work of others. Please cite Krona if you use this function.

Value

A html file

Author(s)

Adrien Taudière

See Also

```
merge_krona
```

76 LCBD_pq

Examples

```
data("GlobalPatterns", package = "phyloseq")
GA <- subset_taxa(GlobalPatterns, Phylum == "Acidobacteria")
## Not run:
krona(GA, "Number.of.sequences.html")
krona(GA, "Number.of.ASVs.html", nb_seq = FALSE)
merge_krona(c("Number.of.sequences.html", "Number.of.ASVs.html"))
## End(Not run)</pre>
```

LCBD_pq

Compute and test local contributions to beta diversity (LCBD) of samples

Description

A wrapper for the adespatial::beta.div() function in the case of physeq object.

Usage

```
LCBD_pq(physeq, p_adjust_method = "BH", ...)
```

Arguments

Value

An object of class beta.div see adespatial::beta.div() function for more information

Author(s)

Adrien Taudière This function is mainly a wrapper of the work of others. Please make a reference to adespatial::beta.div() if you use this function.

See Also

```
plot_LCBD_pq, adespatial::beta.div()
```

list_fastq_files 77

Examples

```
if (requireNamespace("adespatial")) {
  res <- LCBD_pq(data_fungi_sp_known, nperm = 5)
    str(res)
  length(res$LCBD)
  length(res$SCBD)
}

if (requireNamespace("adespatial")) {
  LCBD_pq(data_fungi_sp_known, nperm = 5, method = "jaccard")
}</pre>
```

list_fastq_files

List fastq files

Description

Useful for targets bioinformatic pipeline.

Usage

```
list_fastq_files(
  path,
  paired_end = TRUE,
  pattern = "fastq",
  pattern_R1 = "_R1_",
  pattern_R2 = "_R2_",
  nb_files = Inf
)
```

Arguments

```
path path to files (required)

paired_end do you have paired_end files? (default TRUE)

pattern a pattern to filter files (passed on to list.files function).

pattern_R1 a pattern to filter R1 files (default "R1")

pattern_R2 a pattern to filter R2 files (default "R2")

nb_files the number of fastq files to list (default FALSE)
```

Value

a list of one (single end) or two (paired end) list of files files are sorted by names (default behavior of list.files())

78 lulu

Author(s)

Adrien Taudière

Examples

```
list_fastq_files("extdata")
list_fastq_files("extdata", paired_end = FALSE, pattern_R1 = "")
```

lulu

Post Clustering Curation of Amplicon Data.

Description

The original function and documentation was written by Tobias Guldberg Frøslev in the lulu package.

This algorithm lulu consumes an OTU table and a matchlist, and evaluates cooccurence of 'daughters' (potential analytical artefacts) and their 'parents' (~= real biological species/OTUs). The algorithm requires an OTU table (species/site matrix), and a match list. The OTU table can be made with various r-packages (e.g. DADA2) or external pipelines (VSEARCH, USEARCH, QIIME, etc.), and the match-list can be made with external bioinformatic tools like VSEARCH, USEARCH, BLASTN or another algorithm for pair-wise sequence matching.

Usage

```
lulu(
  otu_table,
  matchlist,
  minimum_ratio_type = "min",
  minimum_ratio = 1,
  minimum_match = 84,
  minimum_relative_cooccurence = 0.95,
  progress_bar = TRUE,
  log_conserved = FALSE
)
```

Arguments

otu_table

a data.frame with with an OTU table that has sites/samples as columns and OTUs (unique OTU id's) as rows, and observations as read counts.

matchlist

a data.frame containing three columns: (1) OTU id of potential child, (2) OTU id of potential parent, (3) match - % identiti between the sequences of the potential parent and potential child OTUs. NB: The matchlist is the product of a mapping of OTU sequences against each other. This is currently carried out by an external script in e.g. Blastn or VSEARCH, prior to running lulu!

lulu 79

minimum_ratio_type

sets whether a potential error must have lower abundance than the parent in all samples min (default), or if an error just needs to have lower abundance on average avg. Choosing lower abundance on average over globally lower abundance will greatly increase the number of designated errors. This option was introduced to make it possible to account for non-sufficiently clustered intraspecific variation, but is not generally recommended, as it will also increase the potential of cluster well-separated, but co-occurring, sequence similar species.

minimum_ratio

sets the minimim abundance ratio between a potential error and a potential parent to be identified as an error. If the minimum_ratio_type is set to min (default), the minimum_ratio applies to the lowest observed ration across the samples. If the minimum_ratio_type is set to avg (default), the minimum_ratio applies to the mean of observed ration across the samples.avg. (default is 1).

minimum_match

minimum threshold of sequence similarity for considering any OTU as an error of another can be set (default 84%).

minimum_relative_cooccurence

minimum co-occurrence rate, i.e. the lower rate of occurrence of the potential error explained by co-occurrence with the potential parent for considering error state

progress_bar

(Logical, default TRUE) print progress during the calculation or not.

log_conserved

(Logical, default FALSE) conserved log files writed in the disk

Details

Please cite the lulu original paper: https://www.nature.com/articles/s41467-017-01312-x

Value

Function lulu returns a list of results based on the input OTU table and match list.

- curated_table a curated OTU table with daughters merged with their matching parents.
- curated_count number of curated (parent) OTUs.
- curated_otus ids of the OTUs that were accepted as valid OTUs.
- discarded_count number of discarded (merged with parent) OTUs.
- discarded_otus ids of the OTUs that were identified as errors (daughters) and merged with respective parents.
- runtime time used by the script.
- minimum_match the id threshold (minimum match \ by user).
- minimum_relative_cooccurence minimum ratio of daughter-occurences explained by co-occurence with parent (set by user).
- otu_map information of which daughters were mapped to which parents.
- original_table original OTU table.

The matchlist is the product of a mapping of OTU sequences against each other. This is currently carried out by an external script in e.g. BLASTN or VSEARCH, prior to running lulu! Producing the match list requires a file with all the OTU sequences (centroids) - e.g. OTUcentroids.fasta.

80 lulu_pq

The matchlist can be produced by mapping all OTUs against each other with an external algorithm like VSEARCH or BLASTN. In VSEARCH a matchlist can be produced e.g. with the following command: vsearch --usearch_global OTUcentroids.fasta --db OTUcentroids.fasta --strand plus --self --id .80 --iddef 1 --userout matchlist.txt --userfields query+target+id --maxaccepts 0 --query_cov .9 --maxhits 10. In BLASTN a matchlist can be produces e.g. with the following commands. First we produce a blast-database from the fasta file: makeblastdb -in OTUcentroids.fasta --parse_seqids -dbtype nucl, then we match the centroids against that database: blastn -db OTUcentoids.fasta -num_threads 10 -outfmt'6 qseqid sseqid pident' -out matchlist.txt -qcov_hsp_perc .90 -perc_identity .84 -query OTUcentroids.fasta

Author(s)

Tobias Guldberg Frøslev (orcid: 0000-0002-3530-013X), modified by Adrien Taudière

lulu_pq

Lulu reclustering of class physeq

Description

See https://www.nature.com/articles/s41467-017-01312-x for more information on the method.

Usage

```
lulu_pq(
  physeq,
  nproc = 1,
  id = 0.84,
  vsearchpath = "vsearch",
  verbose = FALSE,
  clean_pq = FALSE,
  keep_temporary_files = FALSE,
  ...
)
```

Arguments

merge_krona 81

Details

The version of LULU is a fork of Adrien Taudière (https://github.com/adrientaudiere/lulu) from https://github.com/tobiasgf/lulu

Value

a list of for object

- "new_physeq": The new phyloseq object (class physeq)
- "discrepancy_vector": A vector of discrepancy showing for each taxonomic level the proportion of identic value before and after lulu reclustering. A value of 0.6 stands for 60% of ASV before re-clustering have identical value after re-clustering. In other word, 40% of ASV are assigned to a different taxonomic value. NA value are not counted as discrepancy.
- "res_lulu": A list of the result from the lulu function
- "merged_ASV": the data.frame used to merged ASV

Author(s)

Tobias Guldberg Frøslev <tobiasgf@snm.ku.dk> & Adrien Taudière <adrien.taudiere@zaclys.net>

References

- LULU: https://github.com/adrientaudiere/lulu forked from https://github.com/tobiasgf/lulu.
- VSEARCH can be downloaded from https://github.com/torognes/vsearch.

See Also

mumu_pq()

Examples

lulu_pq(data_fungi_sp_known)

merge_krona

Merge Krona files using Rhrefhttps://github.com/marbl/Krona/wikiKronaTools.

Description

Need the installation of kronatools on the computer (installation instruction).

Function merge_krona allows merging multiple html files in one interactive krona file

Note that you need to use the name args in krona() function before merge_krona() in order to give good name to each krona pie in the output.

82 merge_samples2

Usage

```
merge_krona(files = NULL, output = "mergeKrona.html")
```

Arguments

files (required) path to html files to merged

output path to the output file

Details

This function is mainly a wrapper of the work of others. Please cite Krona if you use this function.

Value

A html file

Author(s)

Adrien Taudière

See Also

krona

Examples

```
## Not run:
data("GlobalPatterns", package = "phyloseq")
GA <- subset_taxa(GlobalPatterns, Phylum == "Acidobacteria")
krona(GA, "Number.of.sequences.html", name = "Nb_seq_GP_acidobacteria")
krona(GA, "Number.of.ASVs.html", nb_seq = FALSE, name = "Nb_asv_GP_acidobacteria")
merge_krona(c("Number.of.sequences.html", "Number.of.ASVs.html"), "mergeKrona.html")
unlink(c("Number.of.sequences.html", "Number.of.ASVs.html", "mergeKrona.html"))
## End(Not run)</pre>
```

merge_samples2

Merge samples by a sample variable or factor

Description

Firstly release in the speedyseq R package by Michael R. McLaren.

This function provides an alternative to phyloseq::merge_samples() that better handles sample variables of different types, especially categorical sample variables. It combines the samples in x defined by the sample variable or factor group by summing the abundances in otu_table(x) and combines sample variables by the summary functions in funs. The default summary function, unique_or_na(), collapses the values within a group to a single unique value if it exists and otherwise returns NA. The new (merged) samples are named by the values in group.

merge_samples2

Usage

```
merge_samples2(
 х,
  group,
  fun_otu = sum,
  funs = list(),
  reorder = FALSE,
 default_fun = unique_or_na
)
## S4 method for signature 'phyloseq'
merge_samples2(
 х,
 group,
 fun_otu = sum,
  funs = list(),
  reorder = FALSE,
 default_fun = unique_or_na
)
## S4 method for signature 'otu_table'
merge_samples2(
 Х,
  group,
 fun_otu = sum,
  reorder = FALSE,
  default_fun = unique_or_na
)
## S4 method for signature 'sample_data'
merge_samples2(
 Х,
  group,
  funs = list(),
 reorder = FALSE,
  default_fun = unique_or_na
)
```

Arguments

X	A phyloseq, otu_table, or sample_data object
group	A sample variable or a vector of length nsamples(x) defining the sample grouping. A vector must be supplied if x is an otu_table
fun_otu	Function for combining abundances in the otu_table; default is sum. Can be a formula to be converted to a function by purrr::as_mapper()
funs	Named list of merge functions for sample variables; default is unique_or_na
reorder	Logical specifying whether to reorder the new (merged) samples by name

84 merge_taxa_vec

default_fun

Default functions if funs is not set. Per default the function unique_or_na is used. See diff_fct_diff_class() for a useful alternative.

Value

A new phyloseq-class, otu_table or sam_data object depending on the class of the x param

Author(s)

Michael R. McLaren (orcid: 0000-0003-1575-473X) modified by Adrien Taudiere

Examples

```
data(enterotype)

# Merge samples with the same project and clinical status
ps <- enterotype
sample_data(ps) <- sample_data(ps) %>%
    transform(Project.ClinicalStatus = Project:ClinicalStatus)
sample_data(ps) %>% head()
ps0 <- merge_samples2(ps, "Project.ClinicalStatus",
    fun_otu = mean,
    funs = list(Age = mean)
)
sample_data(ps0) %>% head()
```

merge_taxa_vec

Merge taxa in groups (vectorized version)

Description

Firstly release in the speedyseq R package by Michael R. McLaren.

Merge taxa in x into a smaller set of taxa defined by the vector group. Taxa whose value in group is NA will be dropped. New taxa will be named according to the most abundant taxon in each group (phyloseq and otu_table objects) or the first taxon in each group (all other phyloseq component objects).

If x is a phyloseq object with a phylogenetic tree, then the new taxa will be ordered as they are in the tree. Otherwise, the taxa order can be controlled by the reorder argument, which behaves like the reorder argument in base::rowsum(). reorder = FALSE will keep taxa in the original order determined by when the member of each group first appears in taxa_names(x); reorder = TRUE will order new taxa according to their corresponding value in group.

The tax_adjust argument controls the handling of taxonomic disagreements within groups. Setting tax_adjust == 0 causes no adjustment; the taxonomy of the new group is set to the archetype taxon (see below). Otherwise, disagreements within a group at a given rank cause the values at lower ranks to be set to NA. If tax_adjust == 1 (the default), then a rank where all taxa in the group are already NA is not counted as a disagreement, and lower ranks may be kept if the taxa agree. This corresponds to the original phyloseq behavior. If tax_adjust == 2, then these NAs are treated as a disagreement; all ranks are set to NA after the first disagreement or NA.

merge_taxa_vec 85

Usage

```
merge_taxa_vec(x, group, reorder = FALSE, tax_adjust = 1L)
## S4 method for signature 'phyloseq'
merge_taxa_vec(x, group, reorder = FALSE, tax_adjust = 1L)
## S4 method for signature 'otu_table'
merge_taxa_vec(x, group, reorder = FALSE)
## S4 method for signature 'taxonomyTable'
merge_taxa_vec(x, group, reorder = FALSE, tax_adjust = 1L)
## S4 method for signature 'phylo'
merge_taxa_vec(x, group)
## S4 method for signature 'XStringSet'
merge_taxa_vec(x, group, reorder = FALSE)
```

Arguments

х	A phyloseq object or component object
group	A vector with one element for each taxon in physeq that defines the new groups. see base::rowsum().
roordor	Logical specifying whether to reorder the taxa by their group values. Ignored if

reorder Logical specifying whether to reorder the taxa by their group values. Ignored if

x has (or is) a phylogenetic tree.

tax_adjust 0: no adjustment; 1: phyloseq-compatible adjustment; 2: conservative adjust-

ment

Value

A new phyloseq-class, otu_table, tax_table, XStringset or sam_data object depending on the class of the x param

Author(s)

```
Michael R. McLaren (orcid: 0000-0003-1575-473X) modified by Adrien Taudiere
```

See Also

Function in MiscMetabar that use this function: postcluster_pq()

```
base::rowsum()
phyloseq::merge_taxa()
```

MiscMetabar-deprecated

Deprecated function(s) in the MiscMetabar package

Description

These functions are provided for compatibility with older version of the MiscMetabar package. They may eventually be completely removed.

Usage

```
physeq_graph_test(...)
```

Arguments

Parameters to be passed on to the modern version of the function

Value

Depend on the functions.

Details

```
graph_test_pq
                  now a synonym for physeq_graph_test
       adonis_pq
                  now a synonym for adonis_phyloseq
        clean pq
                  now a synonym for clean_physeq
         lulu_pq
                  now a synonym for lulu_phyloseq
       circle_pq
                  now a synonym for otu_circle
       biplot_pq
                  now a synonym for biplot_physeq
        read_pq
                  now a synonym for read_phyloseq
        write_pq
                  now a synonym for write_phyloseq
      sankey_pq
                  now a synonym for sankey_phyloseq
summary_plot_pq
                  now a synonym for summary_plot_phyloseq
  plot_edgeR_pq
                  now a synonym for plot_edgeR_phyloseq
  plot_deseq2_pq
                  now a synonym for plot_deseq2_phyloseq
                  now a synonym for venn_phyloseq
        venn_pq
                  now a synonym for ggVenn_phyloseq
      ggvenn_pq
  hill_tuckey_pq
                  now a synonym for hill_tuckey_phyloseq
                  now a synonym for hill_phyloseq
         hill_pq
    heat_tree_pq
                  now a synonym for physeq_heat_tree
compare_pairs_pq
                  now a synonym for multiple_share_bisamples
```

multipatt_pq 87

multipatt_pq

Test and plot multipatt result

Description

A wrapper for the indicspecies::multipatt() function in the case of physeq object.

Usage

```
multipatt_pq(
   physeq,
   fact,
   p_adjust_method = "BH",
   pval = 0.05,
   control = permute::how(nperm = 999),
   ...
)
```

Arguments

Details

This function is mainly a wrapper of the work of others. Please make a reference to indicspecies::multipatt() if you use this function.

Value

A ggplot2 object

Author(s)

Adrien Taudière

88 multiplot

Examples

```
if (requireNamespace("indicspecies")) {
   data(data_fungi)
   data_fungi_ab <- subset_taxa_pq(data_fungi, taxa_sums(data_fungi) > 10000)
   multipatt_pq(subset_samples(data_fungi_ab, !is.na(Time)), fact = "Time")
}

if (requireNamespace("indicspecies")) {
   multipatt_pq(subset_samples(data_fungi_ab, !is.na(Time)),
     fact = "Time",
     max.order = 1, control = permute::how(nperm = 99)
   )
}
```

multiplot

Multiple plot function

Description

ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)

If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), then plot 1 will go in the upper left, 2 will go in the upper right, and 3 will go all the way across the bottom.

Usage

```
multiplot(..., plotlist = NULL, cols = 1, layout = NULL)
```

Arguments

list of ggplot objectsplotlist list of ggplot objectscols number of columns

layout A matrix specifying the layout. If present, 'cols' is ignored.

Value

Nothing. Print the list of ggplot objects

multitax_bar_pq 89

multitax_bar_pq	Plot taxonomic distribution across 3 taxonomic levels and optionally one sample factor

Description

Note that lvl3 need to be nested in lvl2 which need to be nested in lvl1

Usage

```
multitax_bar_pq(
  physeq,
  lvl1,
  lvl2,
  lvl3,
  fact = NULL,
  nb_seq = TRUE,
  log10trans = TRUE
)
```

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.
lvl1	(required) Name of the first (higher) taxonomic rank of interest
lv12	(required) Name of the second (middle) taxonomic rank of interest
lv13	(required) Name of the first (lower) taxonomic rank of interest
fact	Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data. If not set, the taxonomic distribution is plot for all samples together.
nb_seq	(logical; default TRUE) If set to FALSE, only the number of ASV is count. Concretely, physeq otu_table is transformed in a binary otu_table (each value different from zero is set to one)
log10trans	(logical, default TRUE) If TRUE, the number of sequences (or ASV if nb_seq = FALSE) is log10 transformed.

Value

A ggplot2 graphic

Author(s)

Adrien Taudière

90 multi_biplot_pq

Examples

multi_biplot_pq

Visualization of a collection of couples of samples for comparison

Description

This allow to plot all the possible biplot_pq() combination using one factor.

Usage

```
multi_biplot_pq(physeq, split_by = NULL, pairs = NULL, na_remove = TRUE, ...)
```

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.
split_by	(required if pairs is NULL) the name of the factor to make all combination of couples of values
pairs	(required if pairs is NULL) the name of the factor in physeq@sam_data' slot to make plot by pairs of samples. Each level must be present only two times. Note that if you set pairs, you also must set fact arguments to pass on to biplot_pq().
na_remove	(logical, default TRUE) if TRUE remove all the samples with NA in the split_by variable of the physeq@sam_data slot
	Other parameters passed on to biplot_pq()

Value

a list of ggplot object

Author(s)

Adrien Taudière

Examples

```
data_fungi_abun <- subset_taxa_pq(data_fungi, taxa_sums(data_fungi) > 10000)
p <- multi_biplot_pq(data_fungi_abun, "Height")
lapply(p, print)</pre>
```

mumu_pq 91

mumu_pq

MUMU reclustering of class physeq

Description

See https://www.nature.com/articles/s41467-017-01312-x for more information on the original method LULU. This is a wrapper of mumu a C++ re-implementation of LULU by Frédéric Mahé

Usage

```
mumu_pq(
   physeq,
   nproc = 1,
   id = 0.84,
   vsearchpath = "vsearch",
   mumupath = "mumu",
   verbose = FALSE,
   clean_pq = TRUE,
   keep_temporary_files = FALSE
)
```

Arguments

```
(required): a phyloseq-class object obtained using the phyloseq package.
physeq
                  (default 1) Set to number of cpus/processors to use for the clustering
nproc
id
                  (default: 0.84) id for -usearch_global.
vsearchpath
                  (default: vsearch) path to vsearch.
                  path to mumu. See mumu for installation instruction
mumupath
                  (logical) if true, print some additional messages.
verbose
                  (logical) if true, empty samples and empty ASV are discarded before clustering.
clean_pq
keep_temporary_files
                  (logical, default: FALSE) Do we keep temporary files
```

Details

This function is mainly a wrapper of the work of others. Please cite mumu and lulu if you use this function for your work.

Value

a list of for object

- "new_physeq": The new phyloseq object (class physeq)
- "mumu_results": The log file of the mumu software. Run man mumu into bash to obtain details about columns' signification.

92 normalize_prop_pq

Author(s)

Frédéric Mahé & Adrien Taudière <adrien.taudiere@zaclys.net>

References

- MUMU: https://github.com/frederic-mahe/mumu
- VSEARCH can be downloaded from https://github.com/torognes/vsearch.

See Also

```
lulu_pq()
```

Examples

```
## Not run:
mumu_pq(data_fungi_sp_known)
## End(Not run)
```

normalize_prop_pq

Normalize OTU table using samples depth

Description

This function implement the method proposed by McKnight et al. 2018 (doi:10.5061/dryad.tn8qs35)

Usage

```
normalize_prop_pq(physeq, base_log = 2, constante = 10000, digits = 4)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

base_log (integer, default 2) the base for log-transformation. If set to NULL or NA, no log-transformation is compute after normalization.

constante a constante to multiply the otu_table values

(default = 2) integer indicating the number of decimal places to be used (see ?round for more information)

Value

A new phyloseq-class object with otu_table count normalize and log transformed (if base_log is an integer)

Author(s)

Adrien Taudière

perc 93

Examples

```
taxa_sums(data_fungi_mini)
data_f_norm <- normalize_prop_pq(data_fungi_mini)
taxa_sums(data_f_norm)
ggplot(data.frame(
   "norm" = scale(taxa_sums(data_f_norm)),
   "raw" = scale(taxa_sums(data_fungi_mini)),
   "name_otu" = taxa_names(data_f_norm)
)) +
   geom_point(aes(x = raw, y = norm))

data_f_norm <- normalize_prop_pq(data_fungi_mini, base_log = NULL)</pre>
```

perc

Convert a value (or a fraction x/y) in percentage

Description

Mostly for internal use.

Usage

```
perc(x, y = NULL, accuracy = 0, add_symbol = FALSE)
```

Arguments

```
x (required): value

y if y is set, compute the division of x by y

accuracy number of digits (number of digits after zero)

add_symbol if set to TRUE add the % symbol to the value
```

Value

The percentage value (number or character if add_symbol is set to TRUE)

Author(s)

Adrien Taudière

phyloseq_to_edgeR

Convert phyloseq OTU count data into DGEList for edgeR package

Description

Convert phyloseq OTU count data into DGEList for edgeR package

Usage

```
phyloseq_to_edgeR(physeq, group, method = "RLE", ...)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

group (required) A character vector or factor giving the experimental group/condition

for each sample/library. Alternatively, you may provide the name of a sample variable. This name should be among the output of sample_variables(physeq), in which case get_variable(physeq, group) would return either a character vector or factor. This is passed on to DGEList, and you may find further details

or examples in its documentation.

method The label of the edgeR-implemented normalization to use. See calcNormFactors

for supported options and details. The default option is "RLE", which is a scaling factor method proposed by Anders and Huber (2010). At time of writing, the edgeR package supported the following options to the method argument:

c("TMM", "RLE", "upperquartile", "none").

... Additional arguments passed on to DGEList

Value

A DGEList object. See edgeR::estimateTagwiseDisp() for more details.

```
physeq_or_string_to_dna
```

Return a DNAStringSet object from either a character vector of DNA sequences or the refseq slot of a phyloseq-class object

Description

Internally used in vsearch_clustering(), swarm_clustering() and postcluster_pq().

Usage

```
physeq_or_string_to_dna(physeq = NULL, dna_seq = NULL)
```

plot_ancombc_pq 95

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

dna_seq You may directly use a character vector of DNA sequences in place of physeq args. When physeq is set, dna sequences take the value of physeq@refseq

Value

An object of class DNAStringSet (see the Biostrings::DNAStringSet() function)

Author(s)

Adrien Taudière

See Also

```
Biostrings::DNAStringSet()
```

Examples

```
dna <- physeq_or_string_to_dna(data_fungi)
dna

sequences_ex <- c(
    "TACCTATGTTGCCTTGGCGGCTAAACCTACCCGGGATTTGATGGGGCGAATTAATAACGAATTCATTGAATCA",
    "TACCTATGTTGCCTTGGCGGCTAAACCTACCCGGGATTTGATGGGGCGAATTACCTGGTAAGGCCCACTT",
    "TACCTATGTTGCCTTGGCGGCTAAACCTACCCGGGATTTGATGGGGCGAATTACCTGGTAGAGGTG",
    "TACCTATGTTGCCTTGGCGGCTAAACCTACC",
    "CGGGATTTGATGGCGAATTACCTGGTATTTTAGCCCACTTACCCGGTACCATGAGGTG",
    "GCGGCTAAACCTACCCGGGATTTGATGGCGAATTACCTGG",
    "GCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG",
    "GCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG",
    "GCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG",
    "GCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG",
    "GCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG"
)
dna2 <- physeq_or_string_to_dna(dna_seq = sequences_ex)
dna2</pre>
```

plot_ancombc_pq

Plot ANCOMBC2 result for phyloseg object

Description

Graphical representation of ANCOMBC2 result.

96 plot_ancombc_pq

Usage

```
plot_ancombc_pq(
   physeq,
   ancombc_res,
   filter_passed = TRUE,
   filter_diff = TRUE,
   min_abs_lfc = 0,
   tax_col = "Genus",
   tax_label = "Species",
   add_marginal_vioplot = TRUE,
   add_label = TRUE,
   add_hline_cut_lfc = NULL
)
```

Arguments

(required): a phyloseq-class object obtained using the phyloseq package.		
(required) the result of the ancombc_pq function For the moment only bimodal factors are possible.		
(logical, default TRUE) Do we filter using the column passed_ss? The passed_ss value is TRUE if the taxon passed the sensitivity analysis, i.e., adding different pseudo-counts to 0s would not change the results.		
(logical, default TRUE) Do we filter using the column diff? The diff value is TRUE if the taxon is significant (has q less than alpha)		
(integer, default 0) Minimum absolute value to filter results based on Log Fold Change. For ex. a value of 1 filter out taxa for which the abundance in a given level of the modalty is not at least the double of the abundance in the other level.		
The taxonomic level (must be present in tax_table slot) to color the points		
The taxonomic level (must be present in tax_table slot) to add label		
add_marginal_vioplot		
(logical, default TRUE) Do we add a marginal vioplot representing all the taxa lfc from ancombc_res.		
(logical, default TRUE) Do we add a label?		
add_hline_cut_lfc		
(logical, default NULL) Do we add two horizontal lines when min_abs_lfc is set (different from zero)?		

Details

This function is mainly a wrapper of the work of others. Please make a reference to ANCOMBC::ancombc2() if you use this function.

Value

A ggplot2 object. If add_marginal_vioplot is TRUE, this is a patchworks of plot made using patchwork::plot_layout().

plot_deseq2_pq 97

Author(s)

Adrien Taudière

Examples

```
if (requireNamespace("mia")) {
 data_fungi_mini@tax_table <- phyloseq::tax_table(cbind(</pre>
   data_fungi_mini@tax_table,
    "taxon" = taxa_names(data_fungi_mini)
 ))
 res_time <- ancombc_pq(</pre>
   data_fungi_mini,
   fact = "Time",
   levels_fact = c("0", "15"),
   tax_level = "taxon",
   verbose = TRUE
 plot_ancombc_pq(data_fungi_mini, res_time,
    filter_passed = FALSE,
   tax_label = "Genus", tax_col = "Order"
 plot_ancombc_pq(data_fungi_mini, res_time, tax_col = "Genus")
 plot_ancombc_pq(data_fungi_mini, res_time,
   filter_passed = FALSE,
    filter_diff = FALSE, tax_col = "Family", add_label = FALSE
 )
}
```

plot_deseq2_pq

Plot DESeq2 results for a phyloseq or a DESeq2 object.

Description

Graphical representation of DESeq2 analysis.

Usage

```
plot_deseq2_pq(
  data,
  contrast = NULL,
  tax_table = NULL,
  pval = 0.05,
  taxolev = "Genus",
  select_taxa = NULL,
  color_tax = "Phylum",
  tax_depth = NULL,
```

98 plot_deseq2_pq

```
verbose = TRUE,
jitter_width = 0.1,
...
)
```

Arguments

data (required) a phyloseq-class or a DESeqDataSet-class object.

contrast (required) contrast specifies what comparison to extract from the object to build

a results table. See results man page for more details.

tax_table Required if data is a DESeqDataSet-class object. The taxonomic table used to

find the taxa and color_taxa arguments. If data is a phyloseq-class object,

data@tax_table is used.

pval (default: 0.05) the significance cutoff used for optimizing the independent fil-

tering. If the adjusted p-value cutoff (FDR) will be a value other than 0.05, pval

should be set to that value.

taxolev taxonomic level of interest

select_taxa Either the name of the taxa (in the form of DESeq2::results()) or a logical

 $vector \ (length \ of \ the \ results \ from \ DESeq2::results()) \ to \ select \ taxa \ to \ plot.$

color_tax taxonomic level used for color or a color vector.

tax_depth Taxonomic depth to test for differential distribution among contrast. If Null the

analysis is done at the OTU (i.e. Species) level. If not Null, data need to be a

column name in the tax_table slot of the phyloseq-class object.

verbose whether the function print some information during the computation

jitter_width width for the jitter positioning

... Additional arguments passed on to DESeq or ggplot

Details

Please cite DESeq2 package if you use chis function.

Value

```
A ggplot2 plot representing DESeq2 results
```

Author(s)

Adrien Taudière

See Also

```
DESeq
results
plot_edgeR_pq
```

plot_edgeR_pq 99

Examples

```
data("GlobalPatterns", package = "phyloseq")
GP <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
GP <- subset_samples(GP, SampleType %in% c("Soil", "Skin"))
if (requireNamespace("DESeq2")) {
    res <- DESeq2::DESeq(phyloseq_to_deseq2(GP, ~SampleType),
        test = "Wald", fitType = "local"
    )
    plot_deseq2_pq(res, c("SampleType", "Soil", "Skin"),
        tax_table = GP@tax_table, color_tax = "Kingdom"
    )
    plot_deseq2_pq(res, c("SampleType", "Soil", "Skin"),
        tax_table = GP@tax_table, color_tax = "Kingdom",
        pval = 0.7
    )
    plot_deseq2_pq(res, c("SampleType", "Soil", "Skin"),
        tax_table = GP@tax_table, color_tax = "Class",
        select_taxa = c("522457", "271582")
    )
}</pre>
```

plot_edgeR_pq

Plot edgeR results for a phyloseq or a edgeR object.

Description

Graphical representation of edgeR result.

Usage

```
plot_edgeR_pq(
   physeq,
   contrast = NULL,
   pval = 0.05,
   taxolev = "Genus",
   color_tax = "Phylum",
   verbose = TRUE,
   ...
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

contrast (required): This argument specifies what comparison to extract from the object to build a results table. See results man page for more details.

100 plot_guild_pq

pval (default: 0.05): the significance cutoff used for optimizing the independent filtering. If the adjusted p-value cutoff (FDR) will be a value other than 0.05, pval should be set to that value.

taxolev taxonomic level of interest

color_tax taxonomic level used for color assignation

verbose (logical): whether the function print some information during the computation

Additional arguments passed on to exactTest or ggplot

Value

A ggplot2 plot representing edgeR results

Author(s)

Adrien Taudière

See Also

```
exactTest
plot_deseq2_pq
```

Examples

```
data("GlobalPatterns", package = "phyloseq")
GP_archae <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
if (requireNamespace("edgeR")) {
    plot_edgeR_pq(GP_archae, c("SampleType", "Soil", "Feces"),
        color_tax = "Kingdom"
    )

    plot_edgeR_pq(GP_archae, c("SampleType", "Soil", "Feces"),
        taxolev = "Class", color_tax = "Kingdom"
    )
}</pre>
```

plot_guild_pq

Plot information about Guild from tax_table slot previously created with add_funguild_info()

Description

Graphical function.

plot_guild_pq 101

Usage

```
plot_guild_pq(physeq, levels_order = NULL, clean_pq = TRUE, ...)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

levels_order (Default NULL) A character vector to reorder the levels of guild. See examples.

clean_pq (logical, default TRUE): Does the phyloseq object is cleaned using the clean_pq() function?

... Other params for be passed on to clean_pq() function

Value

A ggplot2 object

Author(s)

Adrien Taudière

See Also

```
add_funguild_info()
```

Examples

```
if (requireNamespace("httr")) {
 d_fung_mini <- add_funguild_info(data_fungi_mini,</pre>
    taxLevels = c(
      "Domain",
      "Phylum",
      "Class",
      "Order",
      "Family",
      "Genus",
      "Species"
   )
 )
 sort(table(d_fung_mini@tax_table[, "guild"]), decreasing = TRUE)
 p <- plot_guild_pq(d_fung_mini)</pre>
 if (requireNamespace("patchwork")) {
    (plot_guild_pq(subset_samples(d_fung_mini, Height == "Low"),
      levels_order = p$data$Guild[order(p$data$nb_seq)]
    ) + theme(legend.position = "none")) +
      (plot_guild_pq(subset_samples(d_fung_mini, Height == "High"),
        levels_order = p$data$Guild[order(p$data$nb_seq)]
      ) + ylab("") + theme(axis.text.y = element_blank()))
}
```

plot_LCBD_pq

plot_LCBD_pq

Plot and test local contributions to beta diversity (LCBD) of samples

Description

A wrapper for the adespatial::beta.div() function in the case of physeq object.

Usage

```
plot_LCBD_pq(
   physeq,
   p_adjust_method = "BH",
   pval = 0.05,
   sam_variables = NULL,
   only_plot_significant = TRUE,
   ...
)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

p_adjust_method (chr, default "BH"): the method used to adjust p-value

pval (int, default 0.05): the value to determine the significance of LCBD

sam_variables A vector of variable names present in the sam_data slot to plot alongside the LCBD value

only_plot_significant (logical, default TRUE) Do we plot all LCBD values or only the significant ones

Other arguments passed on to adespatial::beta.div() function
```

Details

This function is mainly a wrapper of the work of others. Please make a reference to vegan::beta.div() if you use this function.

Value

A ggplot2 object build with the package patchwork

Author(s)

Adrien Taudière

See Also

```
LCBD_pq, adespatial::beta.div()
```

plot_mt 103

Examples

```
data(data_fungi)
if (requireNamespace("adespatial")) {
 plot_LCBD_pq(data_fungi_mini,
   nperm = 100, only_plot_significant = FALSE,
   pval = 0.2
 )
}
if (requireNamespace("adespatial")) {
 plot_LCBD_pq(data_fungi_mini,
   nperm = 100, only_plot_significant = TRUE,
   pval = 0.2
 if (requireNamespace("patchwork")) {
   plot_LCBD_pq(data_fungi_mini,
     nperm = 100, only_plot_significant = FALSE,
     sam_variables = c("Time", "Height")
   plot_LCBD_pq(data_fungi_mini,
     nperm = 100, only_plot_significant = TRUE, pval = 0.2,
      sam_variables = c("Time", "Height", "Tree_name")
      theme(
        legend.key.size = unit(0.4, "cm"),
        legend.text = element_text(size = 10),
        axis.title.x = element_text(size = 6)
 }
}
```

plot_mt

Plot the result of a mt test phyloseq::mt()

Description

Graphical representation of mt test.

Usage

```
plot_mt(mt = NULL, alpha = 0.05, color_tax = "Class", taxa = "Species")
```

Arguments

```
mt (required) Result of a mt test from the function phyloseq::mt().

alpha (default: 0.05) Choose the cut off p-value to plot taxa.

color_tax (default: "Class") A taxonomic level to color the points.

taxa (default: "Species") The taxonomic level you choose for x-positioning.
```

plot_SCBD_pq

Value

```
a ggplot2 plot of result of a mt test
```

Author(s)

Adrien Taudière

See Also

```
phyloseq::mt()
```

Examples

```
data_fungi_mini2 <- subset_samples(data_fungi_mini, !is.na(Time))
res <- mt(data_fungi_mini2, "Time", method = "fdr", test = "f", B = 300)
plot_mt(res)
plot_mt(res, taxa = "Genus", color_tax = "Order")</pre>
```

plot_SCBD_pq

Plot species contributions to beta diversity (SCBD) of samples

Description

A wrapper for the adespatial::beta.div() function in the case of physeq object.

Usage

```
plot_SCBD_pq(
   physeq,
   tax_level = "Taxa",
   tax_col = "Order",
   min_SCBD = 0.01,
   ...
)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

tax_level Taxonomic level to used in y axis

tax_col Taxonomic level to colored points

min_SCBD (default 0.01) the minimum SCBD value to plot the taxa

... Other arguments passed on to adespatial::beta.div() function
```

Details

This function is mainly a wrapper of the work of others. Please make a reference to vegan::beta.div() if you use this function.

plot_tax_pq 105

Value

A ggplot2 object build with the package patchwork

Author(s)

Adrien Taudière

See Also

```
LCBD_pq, adespatial::beta.div()
```

Examples

```
data(data_fungi)
if (requireNamespace("adespatial")) {
  plot_SCBD_pq(data_fungi) +
     geom_text(aes(label = paste(Genus, Species)), hjust = 1, vjust = 2) +
     xlim(c(0, NA))
}

if (requireNamespace("adespatial")) {
  plot_SCBD_pq(data_fungi, tax_level = "Class", tax_col = "Phylum", min_SCBD = 0) +
     geom_jitter()
}
```

plot_tax_pq

Plot taxonomic distribution in function of a factor with stacked bar in %

Description

An alternative to phyloseq::plot_bar() function.

Usage

```
plot_tax_pq(
   physeq,
   fact = NULL,
   merge_sample_by = NULL,
   type = "nb_seq",
   taxa_fill = "Order",
   print_values = TRUE,
   color_border = "lightgrey",
   linewidth = 0.1,
   prop_print_value = 0.01,
   nb_print_value = NULL,
```

106 plot_tax_pq

```
add_info = TRUE,
na_remove = TRUE,
clean_pq = TRUE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

fact (required) Name of the factor to cluster samples by modalities. Need to be in

physeq@sam_data.

merge_sample_by

a vector to determine which samples to merge using the merge_samples2()

function. Need to be in physeq@sam_data

type If "nb_seq" (default), the number of sequences is used in plot. If "nb_taxa", the

number of ASV is plotted. If both, return a list of two plots, one for nbSeq and

one for ASV.

taxa_fill (default: 'Order'): Name of the taxonomic rank of interest

print_values (logical, default TRUE): Do we print some values on plot?

color_border color for the border

linewidth The line width of geom_bar

prop_print_value

minimal proportion to print value (default 0.01)

nb_print_value number of higher values to print (replace prop_print_value if both are set).

add_info (logical, default TRUE) Do we add title and subtitle with information about the

total number of sequences and the number of samples per modality.

na_remove (logical, default TRUE) if TRUE remove all the samples with NA in the split_by

variable of the physeq@sam_data slot

clean_pq (logical) If set to TRUE, empty samples are discarded after subsetting ASV

Value

A ggplot2 graphic

Author(s)

Adrien Taudière

See Also

```
tax_bar_pq() and multitax_bar_pq()
```

plot_tsne_pq 107

Examples

```
data(data_fungi_sp_known)
plot_tax_pq(data_fungi_sp_known,
  "Time",
  merge_sample_by = "Time",
  taxa_fill = "Class"
)
plot_tax_pq(data_fungi_sp_known,
  "Height",
  merge_sample_by = "Height",
  taxa_fill = "Class",
  na_remove = TRUE,
  color\_border = rgb(0, 0, 0, 0)
plot_tax_pq(data_fungi_sp_known,
  "Height",
  merge_sample_by = "Height",
  taxa_fill = "Class",
  na_remove = FALSE,
  clean_pq = FALSE
)
```

plot_tsne_pq

Plot a tsne low dimensional representation of a phyloseq object

Description

Partially inspired by phylosmith::tsne_phyloseq() function developed by Schuyler D. Smith.

Usage

```
plot_tsne_pq(
   physeq,
   method = "bray",
   dims = 2,
   theta = 0,
   perplexity = 30,
   fact = NA,
   ellipse_level = 0.95,
   plot_dims = c(1, 2),
   na_remove = TRUE,
   force_factor = TRUE,
   ...
)
```

plot_tsne_pq

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.
method	A method to calculate distance using vegan::vegdist() function (default: "bray")
dims	(Int) Output dimensionality (default: 2)
theta	(Numeric) Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for exact TSNE (default: 0.0 see details in the man page of Rtsne::Rtsne).
perplexity	(Numeric) Perplexity parameter (should not be bigger than 3 * perplexity < $nrow(X)$ - 1, see details in the man page of Rtsne::Rtsne)
fact	Name of the column in physeq@sam_data used to color points and compute ellipses.
ellipse_level	The level used in stat_ellipse. Set to NULL to discard ellipse (default = 0.95)
plot_dims	A vector of 2 values defining the rank of dimension to plot (default: $c(1,2)$)
na_remove	(logical, default TRUE) Does the samples with NA values in fact are removed? (default: true)
force_factor	(logical, default TRUE) Force the fact column to be a factor.
	Other arguments passed on to Rtsne::Rtsne()

Value

A ggplot object

Author(s)

Adrien Taudière

Examples

```
data(data_fungi)
if (requireNamespace("Rtsne")) {
    plot_tsne_pq(data_fungi, fact = "Height", perplexity = 15)
}

if (requireNamespace("Rtsne")) {
    plot_tsne_pq(data_fungi, fact = "Time") + geom_label(aes(label = Sample_id, fill = Time))
    plot_tsne_pq(data_fungi, fact = "Time", na_remove = FALSE, force_factor = FALSE)
}
```

plot_var_part_pq 109

plot_var_part_pq

Plot the partition the variation of a phyloseq object

Description

Graphical representation of the partition of variation obtain with var_par_pq().

Usage

```
plot_var_part_pq(
    res_varpart,
    cutoff = 0,
    digits = 1,
    digits_quantile = 2,
    fill_bg = c("seagreen3", "mediumpurple", "blue", "orange"),
    show_quantiles = FALSE,
    filter_quantile_zero = TRUE,
    show_dbrda_signif = FALSE,
    show_dbrda_signif_pval = 0.05,
    alpha = 63,
    id.size = 1.2,
    min_prop_pval_signif_dbrda = 0.95
)
```

Arguments

```
(required) the result of the functions var_par_pq() or var_par_rarperm_pq()
res_varpart
                  The values below cutoff will not be displayed.
cutoff
digits
                  The number of significant digits.
digits_quantile
                  The number of significant digits for quantile.
                  Fill colours of ellipses.
fill_bg
show_quantiles Do quantiles are printed?
filter_quantile_zero
                  Do we filter out value with quantile encompassing the zero value?
show_dbrda_signif
                  Do dbrda significance for each component is printed using *?
show_dbrda_signif_pval
                  (float, [0:1]) The value under which the dbrda is considered significant.
                  (int, [0:255]) Transparency of the fill colour.
alpha
id.size
                  A numerical value giving the character expansion factor for the names of circles
                  or ellipses.
min_prop_pval_signif_dbrda
                  (float, [0:1]) Only used if using the result of var_par_rarperm_pq() function.
                  The * for dbrda_signif is only add if at least min_prop_pval_signif_dbrda of
                  permutations show significance.
```

plot_var_part_pq

Details

This function is mainly a wrapper of the work of others. Please make a reference to vegan::varpart() if you use this function.

Value

A plot

Author(s)

Adrien Taudière

See Also

```
var_par_rarperm_pq(), var_par_pq()
```

```
if (requireNamespace("vegan")) {
 data_fungi_woNA <- subset_samples(data_fungi, !is.na(Time) & !is.na(Height))</pre>
 res_var_9 <- var_par_rarperm_pq(</pre>
    data_fungi_woNA,
   list_component = list(
      "Time" = c("Time"),
      "Size" = c("Height", "Diameter")
   ),
   nperm = 9,
    dbrda_computation = TRUE
 res_var_2 <- var_par_rarperm_pq(</pre>
   data_fungi_woNA,
   list_component = list(
      "Time" = c("Time"),
      "Size" = c("Height", "Diameter")
   ),
   nperm = 2,
   dbrda_computation = TRUE
 res_var0 <- var_par_pq(data_fungi_woNA,</pre>
   list_component = list(
      "Time" = c("Time"),
      "Size" = c("Height", "Diameter")
   ),
   dbrda\_computation = TRUE
 plot_var_part_pq(res_var0, digits_quantile = 2, show_dbrda_signif = TRUE)
 plot_var_part_pq(res_var_9,
   digits_quantile = 2, show_quantiles = TRUE,
    show_dbrda_signif = TRUE
 plot_var_part_pq(
   res_var_2,
```

postcluster_pq 111

```
digits = 5,
  digits_quantile = 2,
  cutoff = 0,
  show_quantiles = TRUE
)
}
```

postcluster_pq

Recluster sequences of an object of class physeq or a list of DNA sequences

Description

This function use the merge_taxa_vec function to merge taxa into clusters.

Usage

```
postcluster_pq(
  physeq = NULL,
  dna_seq = NULL,
  nproc = 1,
 method = "clusterize",
  id = 0.97,
  vsearchpath = "vsearch",
  tax_adjust = 0,
  vsearch_cluster_method = "--cluster_size",
  vsearch_args = "--strand both",
  keep_temporary_files = FALSE,
  swarmpath = "swarm",
  d = 1,
  swarm_args = "--fastidious",
 method_clusterize = "overlap",
)
asv2otu(
  physeq = NULL,
  dna_seq = NULL,
  nproc = 1,
 method = "clusterize",
  id = 0.97,
  vsearchpath = "vsearch",
  tax_adjust = 0,
  vsearch_cluster_method = "--cluster_size",
  vsearch_args = "--strand both",
  keep_temporary_files = FALSE,
```

112 postcluster_pq

```
swarmpath = "swarm",
d = 1,
swarm_args = "--fastidious",
method_clusterize = "overlap",
...
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

dna_seq You may directly use a character vector of DNA sequences in place of physeq

args. When physeq is set, dna sequences take the value of physeq@refseq

nproc (default: 1) Set to number of cpus/processors to use for the clustering

method (default: clusterize) Set the clustering method.

• clusterize use the DECIPHER::Clusterize() fonction,

- vsearch use the vsearch software (https://github.com/torognes/vsearch) with arguments --cluster_size by default (see args vsearch_cluster_method) and -strand both (see args vsearch_args)
- swarm use the swarm

id (default: 0.97) level of identity to cluster

vsearchpath (default: vsearch) path to vsearch

(default: viscaren) paul to viscaren

(Default 0) See the man page of merge_taxa_vec() for more details. To conserved the taxonomic rank of the most abundant taxa (ASV, OTU,...), set tax_adjust to 0 (default). For the moment only tax_adjust = 0 is robust

vsearch_cluster_method

tax_adjust

(default: "-cluster_size) See other possible methods in the vsearch manual (e.g. --cluster_size or --cluster_smallmem)

- --cluster_fast : Clusterize the fasta sequences in filename, automatically sort by decreasing sequence length beforehand.
- --cluster_size : Clusterize the fasta sequences in filename, automatically sort by decreasing sequence abundance beforehand.
- --cluster_smallmem: Clusterize the fasta sequences in filename without automatically modifying their order beforehand. Sequence are expected to be sorted by decreasing sequence length, unless *-usersort* is used. In that case you may set vsearch_args to vsearch_args = "-strand both -usersort"

vsearch_args

(default: "-strand both") a one length character element defining other parameters to passed on to vsearch.

keep_temporary_files

(logical, default: FALSE) Do we keep temporary files

- temp.fasta (refseq in fasta or dna_seq sequences)
- cluster.fasta (centroid if method = "vsearch")
- temp.uc (clusters if method = "vsearch")

swarmpath (default: swarm) path to swarm

postcluster_pq 113

```
d (default: 1) maximum number of differences allowed between two amplicons, meaning that two amplicons will be grouped if they have d (or less) differences swarm_args (default: "-fastidious") a one length character element defining other parameters to passed on to swarm See other possible methods in the SWARM pdf manual

method_clusterize (default "overlap") the method for the DECIPHER::Clusterize() method

Other arguments passed on to DECIPHER::Clusterize()
```

Details

This function use the $merge_taxa_vec$ function to merge taxa into clusters. By default $tax_adjust = 0$. See the man page of $merge_taxa_vec()$.

Value

A new object of class physeq or a list of cluster if dna_seq args was used.

Author(s)

Adrien Taudière

References

VSEARCH can be downloaded from https://github.com/torognes/vsearch. More information in the associated publication https://pubmed.ncbi.nlm.nih.gov/27781170.

See Also

```
vsearch_clustering() and swarm_clustering()
```

```
if (requireNamespace("DECIPHER")) {
   postcluster_pq(data_fungi_mini)
}

if (requireNamespace("DECIPHER")) {
   postcluster_pq(data_fungi_mini, method_clusterize = "longest")

   if (MiscMetabar::is_swarm_installed()) {
      d_swarm <- postcluster_pq(data_fungi_mini, method = "swarm")
   }
   if (MiscMetabar::is_vsearch_installed()) {
      d_vs <- postcluster_pq(data_fungi_mini, method = "vsearch")
   }
}</pre>
```

psmelt_samples_pq

psmelt_samples_pq

Build a sample information tibble from physeq object

Description

Hill numbers are the number of equiprobable species giving the same diversity value as the observed distribution.

Note that contrary to hill_pq(), this function does not take into account for difference in the number of sequences per samples/modalities. You may use rarefy_by_sample = TRUE if the mean number of sequences per samples differs among modalities.

Usage

```
psmelt_samples_pq(
  physeq,
  hill_scales = c(0, 1, 2),
  filter_zero = TRUE,
  rarefy_by_sample = FALSE,
  taxa_ranks = NULL
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

hill_scales (a vector of integer) The list of q values to compute the hill number H^q. If

Null, no hill number are computed. Default value compute the Hill number 0 (Species richness), the Hill number 1 (exponential of Shannon Index) and the

Hill number 2 (inverse of Simpson Index).

filter_zero (logical, default TRUE) Do we filter non present OTU from samples? For the

moment, this has no effect on the result because the dataframe is grouped by

samples with abundance summed across OTU.

rarefy_by_sample

(logical, default FALSE) If TRUE, rarefy samples using phyloseq::rarefy_even_depth()

function.

taxa_ranks A vector of taxonomic ranks. For examples c("Family", "Genus"). If taxa ranks

is not set (default value = NULL), taxonomic information are not present in the

resulting tibble.

Value

A tibble with a row for each sample. Columns provide information from sam_data slot as well as hill numbers, Abundance (nb of sequences), and Abundance_log10 (log10(1+Abundance)).

Author(s)

Adrien Taudière

Examples

```
if (requireNamespace("ggstatsplot")) {
 psm_tib <- psmelt_samples_pq(data_fungi_mini, hill_scales = c(0, 2, 7))</pre>
 ggstatsplot::ggbetweenstats(psm_tib, Height, Hill_0)
 ggstatsplot::ggbetweenstats(psm_tib, Height, Hill_7)
 psm_tib_tax <- psmelt_samples_pq(data_fungi_mini, taxa_ranks = c("Class", "Family"))</pre>
 ggplot(filter(psm_tib_tax, Abundance > 2000), aes(y = Family, x = Abundance, fill = Time)) +
    geom_bar(stat = "identity") +
    facet_wrap(~Height)
}
```

rarefy_sample_count_by_modality

Rarefy (equalize) the number of samples per modality of a factor

Description

This function randomly draw the same number of samples for each modality of factor. It is usefull to dissentangle the effect of different number of samples per modality on diversity. Internally used in accu_plot_balanced_modality().

Usage

```
rarefy_sample_count_by_modality(physeq, fact, rngseed = FALSE, verbose = TRUE)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package. fact

(required): The variable to rarefy. Must be present in the sam_data slot of the

physeq object.

rngseed (Optional). A single integer value passed to set.seed, which is used to fix a seed

> for reproducibly random number generation (in this case, reproducibly random subsampling). If set to FALSE, then no iddling with the RNG seed is performed,

and it is up to the user to appropriately call

(logical). If TRUE, print additional informations. verbose

Value

A new phyloseq-class object.

Author(s)

Adrien Taudière

See Also

```
accu_plot_balanced_modality()
```

read_pq

Examples

```
table(data_fungi_mini@sam_data$Height)
data_fungi_mini2 <- rarefy_sample_count_by_modality(data_fungi_mini, "Height")
table(data_fungi_mini2@sam_data$Height)
if (requireNamespace("patchwork")) {
   ggvenn_pq(data_fungi_mini, "Height") + ggvenn_pq(data_fungi_mini2, "Height")
}</pre>
```

read_pq

Read phyloseq object from multiple csv tables and a phylogenetic tree in Newick format.

Description

This is the reverse function of write_pq().

Usage

```
read_pq(
  path = NULL,
  taxa_are_rows = FALSE,
  sam_names = NULL,
  sep_csv = "\t",
  ...
)
```

Arguments

```
path (required) a path to the folder to read the phyloseq object

taxa_are_rows (default to FALSE) see ?phyloseq for details

sam_names The name of the variable (column) in sam_data.csv to rename samples. Note that if you use write_phyloseq() function to save your physeq object, you may use sam_names = "X" to rename the samples names as before.

sep_csv (default tabulation) separator for column

Other arguments passed on to utils::write.table() function.
```

Value

One to four csv tables (refseq.csv, otu_table.csv, tax_table.csv, sam_data.csv) and if present a phy_tree in Newick format. At least the otu_table.csv need to be present.

```
write_pq(data_fungi, path = paste0(tempdir(), "/phyloseq"))
read_pq(path = paste0(tempdir(), "/phyloseq"))
unlink(paste0(tempdir(), "/phyloseq"), recursive = TRUE)
```

rename_samples 117

rename_samples

Rename the samples of a phyloseq slot

Description

Useful for targets bioinformatic pipeline.

Usage

```
rename_samples(phyloseq_component, names_of_samples, taxa_are_rows = FALSE)
```

Arguments

Value

The otu_table or the sam_data slot with new samples names

Author(s)

Adrien Taudière

```
otutab <- rename_samples(
  data_fungi@otu_table,
  paste0("data_f", sample_names(data_fungi))
)
otutab2 <- rename_samples(
  clean_pq(data_fungi,
    force_taxa_as_rows = TRUE
  )@otu_table,
  paste0("data_f", sample_names(data_fungi))
)
samda <- rename_samples(
  data_fungi@sam_data,
  paste0("data_f", sample_names(data_fungi))
)</pre>
```

118 reorder_taxa_pq

```
rename_samples_otu_table

Rename samples of an otu_table
```

Description

Useful for targets bioinformatic pipeline.

Usage

```
rename_samples_otu_table(physeq, names_of_samples)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

names_of_samples

(required) The new names of the samples
```

Value

the matrix with new colnames (or rownames if taxa_are_rows is true)

Author(s)

Adrien Taudière

Examples

```
rename\_samples\_otu\_table(data\_fungi, as.character(seq\_along(sample\_names(data\_fungi))))
```

reorder_taxa_pq

Reorder taxa in otu_table/tax_table/refseq slot of a phyloseq object

Description

Note that the taxa order in a physeq object with a tree is locked by the order of leaf in the phylogenetic tree.

Usage

```
reorder_taxa_pq(physeq, names_ordered, remove_phy_tree = FALSE)
```

ridges_pq 119

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

names_ordered (required): Names of the taxa (must be the same as taxa in taxa_names(physeq)) in a given order

remove_phy_tree (logical, default FALSE) If TRUE, the phylogenetic tree is removed. It is
```

Value

A phyloseq object

Author(s)

Adrien Taudière

Examples

```
data_fungi_ordered_by_genus <- reorder_taxa_pq(
  data_fungi,
  taxa_names(data_fungi)[order(as.vector(data_fungi@tax_table[, "Genus"]))]
)
data_fungi_mini_asc_ordered_by_abundance <- reorder_taxa_pq(
  data_fungi_mini,
  taxa_names(data_fungi_mini)[order(taxa_sums(data_fungi_mini))]
)</pre>
```

ridges_pq

Ridge plot of a phyloseq object

Description

Graphical representation of distribution of taxa across a factor using ridges.

Usage

```
ridges_pq(
  physeq,
  fact,
  nb_seq = TRUE,
  log10trans = TRUE,
  tax_level = "Class",
  ...
)
```

120 rotl_pq

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.
fact	(required) Name of the factor in physeq@sam_data used to plot different lines
nb_seq	(logical; default TRUE) If set to FALSE, only the number of ASV is count. Concretely, physeq otu_table is transformed in a binary otu_table (each value different from zero is set to one)
log10trans	(logical, default TRUE) If TRUE, the number of sequences (or ASV if nb_seq = FALSE) is log10 transformed.
tax_level	The taxonomic level to fill ridges
	Other params passed on to ggridges::geom_density_ridges()

Value

A ggplot2 plot with bar representing the number of sequence en each taxonomic groups

Author(s)

Adrien Taudière

Examples

```
if (requireNamespace("ggridges")) {
    ridges_pq(data_fungi_mini, "Time", alpha = 0.5, log10trans = FALSE) + xlim(c(0, 1000))
}

if (requireNamespace("ggridges")) {
    ridges_pq(data_fungi_mini, "Time", alpha = 0.5, scale = 0.9)
    ridges_pq(data_fungi_mini, "Sample_names", log10trans = TRUE) + facet_wrap("~Height")

    ridges_pq(data_fungi_mini,
        "Time",
        jittered_points = TRUE,
        position = ggridges::position_points_jitter(width = 0.05, height = 0),
        point_shape = "|", point_size = 3, point_alpha = 1, alpha = 0.7,
        scale = 0.8
    )
}
```

rotl_pq

rotl wrapper for phyloseq data

Description

Make a phylogenetic tree using the ASV names of a physeq object and the Open Tree of Life tree.

Usage

```
rotl_pq(physeq, species_colnames = "Genus_species", context_name = "All life")
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

species_colnames

(default: "Genus_species"): the name of the column where the species binominal name is stored in @tax_table slot. Can also be a vector of two columns names e.g. c("Genus", "Species")

context_name : can bue used to select only a part of the Open Tree of Life. See ?rotl::tnrs_contexts() for available values
```

Details

This function is mainly a wrapper of the work of others. Please make a reference to rotl package if you use this function.

Value

A plot

Author(s)

Adrien Taudière

Examples

```
if (requireNamespace("rotl")) {
   tr <- rotl_pq(data_fungi_mini, species_colnames = "Genus_species")
   plot(tr)

  tr_Asco <- rotl_pq(data_fungi, species_colnames = "Genus_species", context_name = "Ascomycetes")
   plot(tr_Asco)
}</pre>
```

```
sample_data_with_new_names
```

Load sample data from file and rename samples using names of samples and an optional order

Description

Useful for targets bioinformatic pipeline.

sankey_pq

Usage

```
sample_data_with_new_names(
  file_path,
  names_of_samples,
  samples_order = NULL,
   ...
)
```

Arguments

```
file_path (required) a path to the sample_data file

names_of_samples

(required) a vector of sample names

samples_order Optional numeric vector to sort sample names

Other arguments passed on to utils::read.delim() function.
```

Value

A data.frame from file_path and new names

Author(s)

Adrien Taudière

See Also

```
rename_samples()
```

Examples

```
sam_file <- system.file("extdata", "sam_data.csv", package = "MiscMetabar")
sample_data_with_new_names(sam_file, paste0("Samples_", seq(1, 185)))</pre>
```

sankey_pq

Sankey plot of phyloseq-class object

Description

Graphical representation of distribution of taxa across Taxonomy and (optionnaly a factor).

sankey_pq 123

Usage

```
sankey_pq(
  physeq = NULL,
  fact = NULL,
  taxa = 1:4,
  add_nb_seq = FALSE,
  min_prop_tax = 0,
  tax2remove = NULL,
  units = NULL,
  symbol2sub = c("\\.", "-"),
  ...
)
```

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.
fact	Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data.
taxa	a vector of taxonomic rank to plot
add_nb_seq	Represent the number of sequences or the number of OTUs (add_nb_seq = FALSE). Note that plotting the number of sequences is slower.
min_prop_tax	(default: 0) The minimum proportion for taxa to be plotted. EXPERIMENTAL. For the moment each links below the min.prop. tax is discard from the sankey network resulting in sometimes weird plot.
tax2remove	a vector of taxonomic groups to remove from the analysis (e.g. $c('Incertae sedis', 'unidentified'))$
units	character string describing physical units (if any) for Value
symbol2sub	(default: c('\.', '-')) vector of symbol to delete in the taxonomy

Value

A sankeyNetwork plot representing the taxonomic distribution of OTUs or sequences. If fact is set, represent the distribution of the last taxonomic level in the modalities of fact

Additional arguments passed on to sankeyNetwork

Author(s)

Adrien Taudière

See Also

```
sankeyNetwork, ggaluv_pq()
```

save_pq

Examples

```
data("GlobalPatterns", package = "phyloseq")
GP <- subset_taxa(GlobalPatterns, GlobalPatterns@tax_table[, 1] == "Archaea")
if (requireNamespace("networkD3")) {
    sankey_pq(GP, fact = "SampleType")
}

if (requireNamespace("networkD3")) {
    sankey_pq(GP, taxa = 1:4, min_prop_tax = 0.01)
    sankey_pq(GP, taxa = 1:4, min_prop_tax = 0.01, add_nb_seq = TRUE)
}</pre>
```

save_pq

A wrapper of write_pq to save in all three possible formats

Description

A wrapper of write_pq to save in all three possible formats

Usage

```
save_pq(physeq, path = NULL, ...)
```

Arguments

Details

Write:

- 4 separate tables
- 1 table version
- 1 RData file

Value

Build a folder (in path) with four csv tables (refseq.csv, otu_table.csv, tax_table.csv, sam_data.csv) + one table with all tables together + a rdata file (physeq.RData) that can be loaded using base::load() function + if present a phylogenetic tree in Newick format (phy_tree.txt)

Author(s)

Adrien Taudière

search_exact_seq_pq 125

See Also

```
write_pq()
```

Examples

```
save_pq(data_fungi, path = paste0(tempdir(), "/phyloseq"))
unlink(paste0(tempdir(), "/phyloseq"), recursive = TRUE)
```

search_exact_seq_pq

Search for exact matching of sequences

Description

Search for exact matching of sequences using complement, reverse and reverse-complement

Usage

```
search_exact_seq_pq(physeq, seq2search)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

seq2search A DNAStringSet object of sequences to search for.

Value

A list of data-frames for each input sequences with the name, the sequences and the number of occurrences of the original sequence, the complement sequence, the reverse sequence and the reverse-complement sequence.

Author(s)

Adrien Taudière

```
data("data_fungi")
search_primers <- search_exact_seq_pq(data_fungi,
    seq2search = Biostrings::DNAStringSet(c("TTGAACGCACATTGCGCC", "ATCCCTACCTGATCCGAG"))
)</pre>
```

126 select_taxa

select_one_sample

Select one sample from a physeq object

Description

Mostly for internal used, for example in function track_wkflow_samples().

Usage

```
select_one_sample(physeq, sam_name, silent = FALSE)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

sam_name (required) The sample name to select

silent (logical) If true, no message are printing.

Value

A new phyloseq-class object with one sample

Author(s)

Adrien Taudière

Examples

```
\label{eq:A8_005} $$A8_005 < - select_one_sample(data_fungi, "A8-005_S4_MERGED.fastq.gz") $$A8_005$
```

select_taxa

Select a subset of taxa in a specified order where possible

Description

Select (a subset of) taxa; if x allows taxa to be reordered, then taxa are given in the specified order.

signif_ancombc 127

Usage

```
select_taxa(x, taxa, reorder = TRUE)
## S4 method for signature 'sample_data,character'
select_taxa(x, taxa)
## S4 method for signature 'otu_table,character'
select_taxa(x, taxa, reorder = TRUE)
## S4 method for signature 'taxonomyTable,character'
select_taxa(x, taxa, reorder = TRUE)
## S4 method for signature 'XStringSet,character'
select_taxa(x, taxa, reorder = TRUE)
## S4 method for signature 'phylo,character'
select_taxa(x, taxa)
## S4 method for signature 'phyloseq,character'
select_taxa(x, taxa, reorder = TRUE)
```

Arguments

x A phyloseq object or phyloseq component objecttaxa Character vector of taxa to select, in requested order

reorder Logical specifying whether to use the order in taxa (TRUE) or keep the order

in taxa_names(x) (FALSE)

Details

This is a simple selector function that is like prune_taxa(taxa, x) when taxa is a character vector but always gives the taxa in the order taxa if possible (that is, except for phy_tree's and phyloseq objects that contain phy_tree's).

Author(s)

Michael R. McLaren (orcid: 0000-0003-1575-473X)

signif_ancombc Filter ancombc_pq results

Description

Internally used in plot_ancombc_pq().

128 signif_ancombc

Usage

```
signif_ancombc(
  ancombc_res,
  filter_passed = TRUE,
  filter_diff = TRUE,
  min_abs_lfc = 0
)
```

Arguments

ancombc_res	(required) the result of the ancombc_pq function For the moment only bimodal factors are possible.
filter_passed	(logical, default TRUE) Do we filter using the column passed_ss? The passed_ss value is TRUE if the taxon passed the sensitivity analysis, i.e., adding different pseudo-counts to 0s would not change the results.
filter_diff	(logical, default TRUE) Do we filter using the column diff? The diff value is TRUE if the taxon is significant (has q less than alpha)
min_abs_lfc	(integer, default0) Minimum absolute value to filter results based on Log Fold Change. For ex. a value of 1 filter out taxa for which the abundance in a given level of the modality is not at least the double of the abundance in the other level.

Details

This function is mainly a wrapper of the work of others. Please make a reference to ANCOMBC::ancombc2() if you use this function.

Value

A data.frame with the same number of columns than the ancombc_res param but with less (or equal) numbers of rows

See Also

```
ancombc_pq(), plot_ancombc_pq()
```

```
if (requireNamespace("mia")) {
   data_fungi_mini@tax_table <- phyloseq::tax_table(cbind(
        data_fungi_mini@tax_table,
        "taxon" = taxa_names(data_fungi_mini)
))

res_time <- ancombc_pq(
   data_fungi_mini,
   fact = "Time",
   levels_fact = c("0", "15"),
   tax_level = "taxon",
   verbose = TRUE</pre>
```

```
simplify_taxo 129
```

```
)
signif_ancombc(res_time)
}
```

simplify_taxo

Simplify taxonomy by removing some unused characters such as "k__"

Description

```
Internally used in clean_pq()
```

Usage

```
simplify_taxo(physeq, remove_space = TRUE)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package. remove_space (logical; default TRUE): do we remove space?
```

Value

A phyloseq-class object with simplified taxonomy

Author(s)

Adrien Taudière

SRS_curve_pq

Scaling with ranked subsampling (SRS) curve of phyloseq object

Description

```
A wraper of SRS::SRScurve() function.
```

Usage

```
SRS_curve_pq(physeq, clean_pq = FALSE, ...)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

clean_pq (logical): Does the phyloseq object is cleaned using the clean_pq() function?
```

... Other arguments passed on to SRS::SRScurve()

subsample_fastq

Value

A plot

Examples

```
if (requireNamespace("SRS")) {
   SRS_curve_pq(data_fungi_mini,
    max.sample.size = 200,
    rarefy.comparison = TRUE, rarefy.repeats = 3
   )
   SRS_curve_pq(data_fungi_mini, max.sample.size = 500, metric = "shannon")
}
```

subsample_fastq

Subsample a fastq file copying the n_seq first sequences in a given folder

Description

Useful to test a pipeline on small fastq files.

Usage

```
subsample_fastq(fastq_files, folder_output = "subsample", nb_seq = 1000)
```

Arguments

```
fastq_files The path to one fastq file or a list of fastq files (see examples)

folder_output The path to a folder for output files

nb_seq (int; default 1000) : Number of sequences kept (every sequence spread across 4 lines)
```

Value

Nothing, create subsampled fastq files in a folder

Author(s)

Adrien Taudière

```
ex_file <- system.file("extdata", "ex_R1_001.fastq.gz",
    package = "MiscMetabar",
    mustWork = TRUE
)
subsample_fastq(ex_file, paste0(tempdir(), "/output_fastq"))
subsample_fastq(list_fastq_files("extdata"), paste0(tempdir(), "/output_fastq"), n = 10)
unlink(paste0(tempdir(), "/output_fastq"), recursive = TRUE)</pre>
```

subset_samples_pq 131

subset_samples_pq

Subset samples using a conditional boolean vector.

Description

The main objective of this function is to complete the phyloseq::subset_samples() function by propose a more easy (but more prone to error) way of subset_samples. It replace the subsetting expression which used the name of the variable in the sam_data by a boolean vector.

Warnings: you must verify the result of this function as the boolean condition must match the order of samples in the sam_data slot.

This function is robust when you use the sam_data slot of the phyloseq object used in physeq (see examples)

Usage

```
subset_samples_pq(physeq, condition)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

condition A boolean vector to subset samples. Length must fit the number of samples

Value

```
a new phyloseq object
```

Examples

```
cond_samp <- grepl("A1", data_fungi@sam_data[["Sample_names"]])
subset_samples_pq(data_fungi, cond_samp)
subset_samples_pq(data_fungi, data_fungi@sam_data[["Height"]] == "Low")</pre>
```

subset_taxa_pq

Subset taxa using a conditional named boolean vector.

Description

The main objective of this function is to complete the phyloseq::subset_taxa() function by propose a more easy way of subset_taxa using a named boolean vector. Names must match taxa_names.

Usage

```
subset_taxa_pq(
  physeq,
  condition,
  verbose = TRUE,
  clean_pq = TRUE,
  taxa_names_from_physeq = FALSE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

condition A named boolean vector to subset taxa. Length must fit the number of taxa

and names must match taxa_names. Can also be a condition using a column of the tax_table slot (see examples). If the order of condition is the same as taxa_names(physeq), you can use the parameter taxa_names_from_physeq =

TRUE.

verbose (logical) Informations are printed

clean_pq (logical) If set to TRUE, empty samples are discarded after subsetting ASV

taxa_names_from_physeq

(logical) If set to TRUE, rename the condition vector using taxa_names(physeq). Carefully check the result of this function if you use this parameter. No effect if

the condition is of class tax_table.

Value

a new phyloseq object

Examples

```
subset_taxa_pq(data_fungi, data_fungi@tax_table[, "Phylum"] == "Ascomycota")

cond_taxa <- grepl("Endophyte", data_fungi@tax_table[, "Guild"])
names(cond_taxa) <- taxa_names(data_fungi)
subset_taxa_pq(data_fungi, cond_taxa)

subset_taxa_pq(data_fungi, grepl("mycor", data_fungi@tax_table[, "Guild"]),
    taxa_names_from_physeq = TRUE
)</pre>
```

subset_taxa_tax_control

Subset taxa using a taxa control or distribution based method

133

Description

There is 3 main methods: discard taxa (i) using a control taxa (e.g. truffle root tips), (ii) using a mixture models to detect bimodality in pseudo-abundance distribution or (iii) using a minimum difference threshold pseudo-abundance. Each cutoff is defined at the sample level.

Usage

```
subset_taxa_tax_control(
  physeq,
  taxa_distri,
  method = "mean",
  min_diff_for_cutoff = NULL
)
```

Arguments

physeq

(required): a phyloseq-class object obtained using the phyloseq package.

taxa_distri

(required) a vector of length equal to the number of samples with the number of sequences per sample for the taxa control

method

(default: "mean") a method to calculate the cut-off value. There are 6 available methods:

- cutoff_seq: discard taxa with less than the number of sequence than taxa control
- 2. cutoff_mixt: using mixture models,
- 3. cutoff_diff: using a minimum difference threshold (need the argument min_diff_for_cutoff)
- 4. min: the minimum of the three firsts methods
- 5. max: the maximum of the three firsts methods
- 6. mean: the mean of the three firsts methods

min_diff_for_cutoff

(int) argument for method ${\tt cutoff_diff}$. Required if method is ${\tt cutoff_diff}$, ${\tt min}$, ${\tt max}$ or ${\tt mean}$

Value

A new phyloseq-class object.

Author(s)

Adrien Taudière

```
subset_taxa_tax_control(data_fungi,
  as.numeric(data_fungi@otu_table[, 300]),
  min_diff_for_cutoff = 2
)
```

swarm_clustering

summary_plot_pq

Summarize a phyloseq-class object using a plot.

Description

Graphical representation of a phyloseq object.

Usage

```
summary_plot_pq(
  physeq,
  add_info = TRUE,
  min_seq_samples = 500,
  clean_pq = TRUE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

add_info Does the bottom down corner contain extra informations?

min_seq_samples

(int): Used only when add_info is set to true to print the number of samples with

less sequences than this number.

clean_pq (logical): Does the phyloseq object is cleaned using the clean_pq() function?

Value

A ggplot2 object

Examples

```
summary_plot_pq(data_fungi)
summary_plot_pq(data_fungi, add_info = FALSE) + scale_fill_viridis_d()
```

swarm_clustering

Re-cluster sequences of an object of class physeq or cluster a list of DNA sequences using SWARM

Description

A wrapper of SWARM software.

swarm_clustering 135

Usage

```
swarm_clustering(
  physeq = NULL,
  dna_seq = NULL,
  d = 1,
  swarmpath = "swarm",
  vsearch_path = "vsearch",
  nproc = 1,
  swarm_args = "--fastidious",
  tax_adjust = 0,
  keep_temporary_files = FALSE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package. NOT WORKING FOR THE MOMENT You may directly use a character vector dna_seq of DNA sequences in place of physeq args. When physeq is set, dna sequences take the value of physeq@refseq d (default: 1) maximum number of differences allowed between two amplicons, meaning that two amplicons will be grouped if they have d (or less) differences swarmpath (default: swarm) path to swarm (default: vsearch) path to vsearch, used only if physeq is NULL and dna_seq is vsearch_path provided. (default: 1) Set to number of cpus/processors to use for the clustering nproc (default: "-fastidious") a one length character element defining other paramswarm_args eters to passed on to swarm See other possible methods in the SWARM pdf manual (Default 0) See the man page of merge_taxa_vec() for more details. To contax_adjust served the taxonomic rank of the most abundant ASV. keep_temporary_files (logical, default: FALSE) Do we keep temporary files? • temp.fasta (refseq in fasta or dna_seq sequences)

Details

This function use the merge_taxa_vec function to merge taxa into clusters. By default tax_adjust = 0. See the man page of merge_taxa_vec().

temp_output (classical output of SWARM)temp_uclust (clusters output of SWARM)

This function is mainly a wrapper of the work of others. Please cite SWARM.

Value

A new object of class physeq or a list of cluster if dna_seq args was used.

taxa_as_columns

References

SWARM can be downloaded from https://github.com/torognes/swarm/.

SWARM can be downloaded from https://github.com/torognes/swarm. More information in the associated publications doi:10.1093/bioinformatics/btab493 and doi:10.7717/peerj.593

See Also

```
postcluster_pq(), vsearch_clustering()
```

Examples

```
summary_plot_pq(data_fungi)
system2("swarm", "-h")
data_fungi_swarm <- swarm_clustering(data_fungi)</pre>
summary_plot_pq(data_fungi_swarm)
sequences_ex <- c(</pre>
  "TACCTATGTTGCCTTGGCGGCTAAACCTACCCGGGATTTGATGGGGCGAATTAATAACGAATTCATTGAATCA",
  \verb"TACCTATGTTGCCTTGGCGGCTAAACCTACCCGGGATTTGATGGGGCGAATTACCTGGTAAGGCCCACTT",\\
  \verb"TACCTATGTTGCCTTGGCGGCTAAACCTACCCGGGATTTGATGGGGCGAATTACCTGGTAGAGGTG",\\
  "TACCTATGTTGCCTTGGCGGCTAAACCTACC",
  "CGGGATTTGATGGCGAATTACCTGGTATTTTAGCCCACTTACCCGGTACCATGAGGTG",
  "GCGGCTAAACCTACCCGGGATTTGATGGCGAATTACCTGG",
  "GCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG".
  "GCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG",
  "GCGGCTAAACCTACCCGGGATTTGATGGCGAATTACAAAG"
)
sequences_ex_swarm <- swarm_clustering(</pre>
 dna_seq = sequences_ex
```

taxa_as_columns

Force taxa to be in columns in the otu_table of a physeq object

Description

Mainly for internal use. It is a special case of clean_pq function.

Usage

```
taxa_as_columns(physeq)
```

Arguments

physeq

(required): a phyloseq-class object obtained using the phyloseq package.

taxa_as_rows 137

Value

A new phyloseq-class object

Author(s)

Adrien Taudière

taxa_as_rows

Force taxa to be in columns in the otu_table of a physeq object

Description

Mainly for internal use. It is a special case of clean_pq function.

Usage

```
taxa_as_rows(physeq)
```

Arguments

physeq

(required): a phyloseq-class object obtained using the phyloseq package.

Value

A new phyloseq-class object

Author(s)

Adrien Taudière

taxa_only_in_one_level

Show taxa which are present in only one given level of a modality

Description

Given one modality name in sam_data and one level of the modality, return the taxa strictly specific of this level.

Usage

```
taxa_only_in_one_level(
  physeq,
  modality,
  level,
  min_nb_seq_taxa = 0,
  min_nb_samples_taxa = 0
)

taxa_only_in_one_level(
  physeq,
  modality,
  level,
  min_nb_seq_taxa = 0,
  min_nb_samples_taxa = 0
)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

modality (required) The name of a column present in the @sam_data slot of the physeq object. Must be a character vector or a factor.

level (required) The level (must be present in modality) of interest min_nb_seq_taxa (default 0 = no filter) The minimum number of sequences per taxa min_nb_samples_taxa (default 0 = no filter) The minimum number of samples per taxa
```

Value

A vector of taxa names

A vector of taxa names

Author(s)

Adrien Taudière

See Also

```
ggvenn_pq() and upset_pq()
```

```
data_fungi_mini_woNA4height <- subset_samples(
  data_fungi_mini,
  !is.na(data_fungi_mini@sam_data$Height)
)
taxa_only_in_one_level(data_fungi_mini_woNA4height, "Height", "High")</pre>
```

tax_bar_pq 139

```
# Taxa present only in low height samples
suppressMessages(suppressWarnings(taxa_only_in_one_level(data_fungi, "Height", "Low")))
# Number of taxa present only in sample of time equal to 15
suppressMessages(suppressWarnings(length(taxa_only_in_one_level(data_fungi, "Time", "15"))))
```

tax_bar_pq

Plot the distribution of sequences or ASV in one taxonomic levels

Description

Graphical representation of distribution of taxonomy, optionnaly across a factor.

Usage

```
tax_bar_pq(
  physeq,
  fact = "Sample",
  taxa = "Order",
  percent_bar = FALSE,
  nb_seq = TRUE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

fact Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data.

taxa (default: 'Order') Name of the taxonomic rank of interest

percent_bar (default FALSE) If TRUE, the stacked bar fill all the space between 0 and 1. It

just set position = "fill" in the ggplot2::geom_bar() function

nb_seq (logical; default TRUE) If set to FALSE, only the number of ASV is count.

Concretely, physeq otu_table is transformed in a binary otu_table (each value

different from zero is set to one)

Value

A ggplot2 plot with bar representing the number of sequence en each taxonomic groups

Author(s)

Adrien Taudière

See Also

```
plot_tax_pq() and multitax_bar_pq()
```

140 tax_datatable

Examples

```
data_fungi_ab <- subset_taxa_pq(data_fungi, taxa_sums(data_fungi) > 10000)
tax_bar_pq(data_fungi_ab) + theme(legend.position = "none")

tax_bar_pq(data_fungi_ab, taxa = "Class")
tax_bar_pq(data_fungi_ab, taxa = "Class", percent_bar = TRUE)
tax_bar_pq(data_fungi_ab, taxa = "Class", fact = "Time")
```

tax_datatable

Make a datatable with the taxonomy of a phyloseq-class object

Description

An interactive table for phyloseq taxonomy.

Usage

```
tax_datatable(
  physeq,
  abundance = TRUE,
  taxonomic_level = NULL,
  modality = NULL,
  ...
)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

abundance (default: TRUE) Does the number of sequences is print

taxonomic_level

(default: NULL) a vector of selected taxonomic level using their column numbers (e.g. taxonomic_level = 1:7)

modality (default: NULL) A sample modality to split OTU abundancy by level of the modality

Other argument for the datatable function
```

Value

A datatable

Author(s)

Adrien Taudière

tbl_sum_samdata 141

Examples

```
data("GlobalPatterns", package = "phyloseq")
if (requireNamespace("DT")) {
  tax_datatable(subset_taxa(
    GlobalPatterns,
    rowSums(GlobalPatterns@otu_table) > 10000
  ))

# Using modality
  tax_datatable(GlobalPatterns,
    modality = GlobalPatterns@sam_data$SampleType
  )
}
```

tbl_sum_samdata

Summarize information from sample data in a table

Description

A wrapper for the gtsummary::tbl_summary() function in the case of physeq object.

Usage

```
tbl_sum_samdata(physeq, remove_col_unique_value = TRUE, ...)
```

Arguments

Details

This function is mainly a wrapper of the work of others. Please make a reference to gtsummary::tbl_summary() if you use this function.

Value

A new phyloseq-class object with a larger slot tax_table

Author(s)

Adrien Taudière

Tengeler2020_pq

Examples

```
if (requireNamespace("gtsummary")) {
  tbl_sum_samdata(data_fungi) %>%
    gtsummary::as_kable()

summary_samdata <- tbl_sum_samdata(data_fungi,
    include = c("Time", "Height"),
    type = list(Time ~ "continuous2", Height ~ "categorical"),
    statistic = list(Time ~ c("{median} ({p25}, {p75})", "{min}, {max}"))
  )
}

data(enterotype)
if (requireNamespace("gtsummary")) {
    summary_samdata <- tbl_sum_samdata(enterotype)
    summary_samdata <- tbl_sum_samdata(enterotype, include = !contains("SampleId"))
}</pre>
```

Tengeler2020_pq

This tutorial explores the dataset from Tengeler et al. (2020) available in the mia package. obtained using mia::makePhyloseqFromTreeSE(Tengeler2020)

Description

This is a phyloseq version of the Tengeler2020 dataset.

Usage

```
data(Tengeler2020_pq)
```

Format

A phyloseq object

Details

Tengeler2020 includes gut microbiota profiles of 27 persons with ADHD. A standard bioinformatic and statistical analysis done to demonstrate that altered microbial composition could be a driver of altered brain structure and function and concomitant changes in the animals behavior. This was investigated by colonizing young, male, germ-free C57BL/6JOlaHsd mice with microbiota from individuals with and without ADHD.

Tengeler, A.C., Dam, S.A., Wiesmann, M. et al. Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome 8, 44 (2020). https://microbiomejournal.biomedcentral.cc/020-00816-x

track_wkflow 143

track_wkflow	Track the number of reads (= sequences), samples and cluster (e.g. ASV) from various objects including dada-class and derep-class.

Description

- List of fastq and fastg.gz files -> nb of reads and samples
- List of dada-class -> nb of reads, clusters (ASV) and samples
- List of derep-class -> nb of reads, clusters (unique sequences) and samples
- Matrix of samples x clusters (e.g. otu_table) -> nb of reads, clusters and samples
- Phyloseq-class -> nb of reads, clusters and samples

Usage

```
track_wkflow(
  list_of_objects,
  obj_names = NULL,
  clean_pq = FALSE,
  taxonomy_rank = NULL,
  ...
)
```

Arguments

Value

The number of sequences, clusters (e.g. OTUs, ASVs) and samples for each object.

See Also

```
track_wkflow_samples()
```

Examples

```
data(enterotype)
if (requireNamespace("pbapply")) {
  track_wkflow(list(data_fungi, enterotype), taxonomy_rank = c(3, 5))
}
```

 $track_wkflow_samples$ Track the number of reads (= sequences), samples and cluster (e.g. ASV) for each sample

Description

Contrary to track_wkflow(), only phyloseq object are possible. More information are available in the manual of the function track_wkflow()

Usage

```
track_wkflow_samples(list_pq_obj, ...)
```

Arguments

```
list_pq_obj (required): a list of object passed on to track_wkflow() Only phyloseq object will return value because information of sample is needed... Other args passed on to track_wkflow()
```

Value

A list of dataframe. cf track_wkflow() for more information

Author(s)

Adrien Taudière

```
tree_A10_005 <- subset_samples(data_fungi, Tree_name == "A10-005")
if (requireNamespace("pbapply")) {
  track_wkflow_samples(tree_A10_005)
}</pre>
```

transp 145

transp

Adds transparency to a vector of colors

Description

Adds transparency to a vector of colors

Usage

```
transp(col, alpha = 0.5)
```

Arguments

col a vector of colors

alpha (default 0.5) a numeric value between 0 and 1 representing the alpha coefficient;

0: total transparency; 1: no transparency.

Value

a color vector

Author(s)

Thibaut Jombart in adegenet package

See Also

The R package RColorBrewer, proposing a nice selection of color palettes. The viridis package, with many excellent palettes

treemap_pq

Plot treemap of 2 taxonomic levels

Description

Note that lvl2need to be nested in lvl1

Usage

```
treemap_pq(
  physeq,
  lvl1,
  lvl2,
  nb_seq = TRUE,
  log10trans = TRUE,
  plot_legend = FALSE,
  ...
)
```

treemap_pq

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.
lv11	(required) Name of the first (higher) taxonomic rank of interest
lv12	(required) Name of the second (lower) taxonomic rank of interest
nb_seq	(logical; default TRUE) If set to FALSE, only the number of ASV is count. Concretely, physeq otu_table is transformed in a binary otu_table (each value different from zero is set to one)
log10trans	(logical, default TRUE) If TRUE, the number of sequences (or ASV if nb_seq = FALSE) is log10 transformed.
plot_legend	(logical, default FALSE) If TRUE, plot che legend of color for lvl 1
	Other arguments passed on to treemapify::geom_treemap() function.

Value

A ggplot2 graphic

Author(s)

Adrien Taudière

```
data(data_fungi_sp_known)
if (requireNamespace("treemapify")) {
  treemap_pq(
   clean_pq(subset_taxa(
      data_fungi_sp_known,
      Phylum == "Basidiomycota"
    "Order", "Class",
   plot_legend = TRUE
 )
}
if (requireNamespace("treemapify")) {
  treemap_pq(
   clean_pq(subset_taxa(
      data_fungi_sp_known,
      Phylum == "Basidiomycota"
   )),
    "Order", "Class",
   log10trans = FALSE
  treemap_pq(
   clean_pq(subset_taxa(
      data_fungi_sp_known,
     Phylum == "Basidiomycota"
    "Order", "Class",
```

tsne_pq

```
nb_seq = FALSE, log10trans = FALSE
)
}
```

tsne_pq

Compute tSNE position of samples from a phyloseq object

Description

Compute tSNE position of samples from a phyloseq object

Usage

```
tsne_pq(physeq, method = "bray", dims = 2, theta = 0, perplexity = 30, ...)
```

Arguments

physeq	(required): a phyloseq-class object obtained using the phyloseq package.
method	A method to calculate distance using vegan::vegdist() function
dims	(Int) Output dimensionality (default: 2)
theta	(Numeric) Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for exact TSNE (default: 0.0 see details in the man page of Rtsne::Rtsne).
perplexity	(Numeric) Perplexity parameter (should not be bigger than 3 * perplexity < $nrow(X)$ - 1, see details in the man page of Rtsne::Rtsne)
	Other arguments passed on to Rtsne::Rtsne()

Value

A list of element including the matrix Y containing the new representations for the objects. See ?Rtsne::Rtsne() for more information

```
if (requireNamespace("Rtsne")) {
  res_tsne <- tsne_pq(data_fungi)
}</pre>
```

unique_or_na

Get the unique value in x or NA if none

Description

If unique(x) is a single value, return it; otherwise, return an NA of the same type as x. If x is a factor, then the levels and ordered status will be kept in either case. If x is a non-atomic vector (i.e. a list), then the logical NA will be used.

Usage

```
unique_or_na(x)
```

Arguments

Χ

A vector

Value

Either a single value (if unique(x) return a single value) or a NA

Author(s)

```
Michael R. McLaren (orcid: 0000-0003-1575-473X)
```

Examples

```
f <- factor(c("a", "a", "b", "c"), ordered = TRUE)
unique_or_na(f)
unique_or_na(f[1:2])

x <- c("a", "b", "a")
unique_or_na(x[c(1, 3)])
unique_or_na(x)
unique_or_na(x)</pre>
```

upset_pq

Make upset plot for phyloseq object.

Description

Alternative to venn plot.

Usage

```
upset_pq(
  physeq,
  fact,
  taxa_fill = NULL,
 min_nb_seq = 0,
 na_remove = TRUE,
 numeric_fonction = sum,
  rarefy_after_merging = FALSE,
)
```

Arguments

(required): a phyloseq-class object obtained using the phyloseq package. physeq fact (required): Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data. taxa_fill (default NULL) fill the ASV upset using a column in tax_table slot. minimum number of sequences by OTUs by samples to take into count this min_nb_seq OTUs in this sample. For example, if min_nb_seq=2,each value of 2 or less in the OTU table will not count in the venn diagram na_remove : if TRUE (the default), NA values in fact are removed if FALSE, NA values are set to "NA" numeric_fonction (default : sum) the function for numeric vector useful only for complex plot (see examples) rarefy_after_merging

Rarefy each sample after merging by the modalities of fact parameter

Other arguments passed on to the ComplexUpset::upset()

Value

```
A ggplot2 plot
```

Author(s)

Adrien Taudière

See Also

```
ggvenn_pq()
```

```
if (requireNamespace("ComplexUpset")) {
 upset_pq(data_fungi_mini,
   fact = "Height", width_ratio = 0.2,
```

```
taxa_fill = "Class"
 )
}
if (requireNamespace("ComplexUpset")) {
 upset_pq(data_fungi_mini, fact = "Height", min_nb_seq = 1000)
 upset_pq(data_fungi_mini, fact = "Height", na_remove = FALSE)
 upset_pq(data_fungi_mini, fact = "Time", width_ratio = 0.2, rarefy_after_merging = TRUE)
 upset_pq(
   data_fungi_mini,
    fact = "Time",
   width_ratio = 0.2,
   annotations = list(
      "Sequences per ASV \n (log10)" = (
        ggplot(mapping = aes(y = log10(Abundance)))
          geom_jitter(aes(
            color =
             Abundance
          ), na.rm = TRUE)
          geom_violin(alpha = 0.5, na.rm = TRUE) +
          theme(legend.key.size = unit(0.2, "cm")) +
          theme(axis.text = element_text(size = 12))
      "ASV per phylum" = (
        ggplot(mapping = aes(fill = Phylum))
          geom_bar() +
          ylab("ASV per phylum") +
          theme(legend.key.size = unit(0.2, "cm")) +
          theme(axis.text = element_text(size = 12))
   )
 )
 upset_pq(
   data_fungi_mini,
    fact = "Time",
   width_ratio = 0.2,
   numeric_fonction = mean,
   annotations = list(
      "Sequences per ASV \n (log10)" = (
        ggplot(mapping = aes(y = log10(Abundance)))
          geom_jitter(aes(
            color =
             Abundance
          ), na.rm = TRUE)
          geom_violin(alpha = 0.5, na.rm = TRUE) +
```

```
theme(legend.key.size = unit(0.2, "cm")) +
          theme(axis.text = element_text(size = 12))
      ),
      "ASV per phylum" = (
        ggplot(mapping = aes(fill = Phylum))
          geom_bar() +
         ylab("ASV per phylum") +
          theme(legend.key.size = unit(0.2, "cm")) +
          theme(axis.text = element_text(size = 12))
      )
   )
 )
 upset_pq(
    subset_taxa(data_fungi_mini, Phylum == "Basidiomycota"),
    fact = "Time",
   width_ratio = 0.2,
   base_annotations = list(),
    annotations = list(
      "Sequences per ASV \n (log10)" = (
        ggplot(mapping = aes(y = log10(Abundance)))
          geom_jitter(aes(
            color =
              Abundance
          ), na.rm = TRUE)
          geom_violin(alpha = 0.5, na.rm = TRUE) +
          theme(legend.key.size = unit(0.2, "cm")) +
          theme(axis.text = element_text(size = 12))
      "ASV per phylum" = (
        ggplot(mapping = aes(fill = Class))
          geom_bar() +
         ylab("ASV per Class") +
          theme(legend.key.size = unit(0.2, "cm")) +
          theme(axis.text = element_text(size = 12))
      )
   )
 )
 data_fungi2 <- data_fungi_mini</pre>
 data_fungi2@sam_data[["Time_0"]] <- data_fungi2@sam_data$Time == 0</pre>
 data_fungi2@sam_data[["Height__Time_0"]] <-</pre>
   paste0(data_fungi2@sam_data[["Height"]], "__", data_fungi2@sam_data[["Time_0"]])
 data_fungi2@sam_data[["Height__Time_0"]][grepl("NA", data_fungi2@sam_data[["Height__Time_0"]])] <-
 upset_pq(data_fungi2, fact = "Height__Time_0", width_ratio = 0.2, min_size = 2)
}
```

upset_test_pq

upset_test_pq

Test for differences between intersections

Description

```
See upset_pq() to plot upset.
```

Usage

```
upset_test_pq(
   physeq,
   fact,
   var_to_test = "OTU",
   min_nb_seq = 0,
   na_remove = TRUE,
   numeric_fonction = sum,
   ...
)
```

Arguments

(required): a phyloseq-class object obtained using the phyloseq package. physeq fact (required): Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data. (default c("OTU")): a vector of column present in the tax_table slot from the var_to_test physeq object minimum number of sequences by OTUs by samples to take into count this min_nb_seq OTUs in this sample. For example, if min_nb_seq=2,each value of 2 or less in the OTU table will not count in the venn diagram : if TRUE (the default), NA values in fact are removed if FALSE, NA values are na_remove set to "NA" numeric_fonction (default: sum) the function for numeric vector useful only for complex plot (see examples) Other arguments passed on to the ComplexUpset::upset_test()

Value

```
A ggplot2 plot
```

Author(s)

Adrien Taudière

See Also

```
upset_pq()
```

var_par_pq 153

Examples

```
data(data_fungi)
if (requireNamespace("ComplexUpset")) {
   upset_test_pq(data_fungi, "Height", var_to_test = c("OTU", "Class", "Guild"))
   upset_test_pq(data_fungi, "Time")
}
```

var_par_pq

Partition the Variation of a phyloseq object by 2, 3, or 4 Explanatory Matrices

Description

The function partitions the variation in otu_table using distance (Bray per default) with respect to two, three, or four explanatory tables, using adjusted R² in redundancy analysis ordination (RDA) or distance-based redundancy analysis. If response is a single vector, partitioning is by partial regression. Collinear variables in the explanatory tables do NOT have to be removed prior to partitioning. See vegan::varpart() for more information.

Usage

```
var_par_pq(
  physeq,
  list_component,
  dist_method = "bray",
  dbrda_computation = TRUE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

list_component (required) A named list of 2, 3 or four vectors with names from the @sam_data slot.

dist_method (default "bray") the distance used. See phyloseq::distance() for all available distances or run phyloseq::distanceMethodList(). For "aitchison" and "robust.aitchison" distance, vegan::vegdist() function is directly used.

dbrda_computation

(logical) Do dbrda computations are runned for each individual component (each name of the list component) ?

Details

This function is mainly a wrapper of the work of others. Please make a reference to vegan::varpart() if you use this function.

Value

```
an object of class "varpart", see vegan::varpart()
```

var_par_rarperm_pq

Author(s)

Adrien Taudière

See Also

```
var_par_rarperm_pq(), vegan::varpart(), plot_var_part_pq()
```

Examples

```
if (requireNamespace("vegan")) {
   data_fungi_woNA <-
      subset_samples(data_fungi, !is.na(Time) & !is.na(Height))
   res_var <- var_par_pq(data_fungi_woNA,
      list_component = list(
      "Time" = c("Time"),
      "Size" = c("Height", "Diameter")
    ),
    dbrda_computation = TRUE
   )
}</pre>
```

var_par_rarperm_pq

Partition the Variation of a phyloseq object with rarefaction permutations

Description

This is an extension of the function var_par_pq(). The main addition is the computation of nperm permutations with rarefaction even depth by sample. The return object

Usage

```
var_par_rarperm_pq(
  physeq,
  list_component,
  dist_method = "bray",
  nperm = 99,
  quantile_prob = 0.975,
  dbrda_computation = FALSE,
  dbrda_signif_pval = 0.05,
  sample.size = min(sample_sums(physeq)),
  verbose = FALSE,
  progress_bar = TRUE
)
```

var_par_rarperm_pq 155

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package. (required) A named list of 2, 3 or four vectors with names from the @sam_data list_component slot. (default "bray") the distance used. See phyloseq::distance() for all available dist_method distances or run phyloseq::distanceMethodList(). For aitchison and robust.aitchison distance, vegan::vegdist() function is directly used.#' @param fill_bg (int) The number of permutations to perform. nperm quantile_prob (float, [0:1]) the value to compute the quantile. Minimum quantile is compute using 1-quantile_prob. dbrda_computation (logical) Do dbrda computations are runned for each individual component (each name of the list component)? dbrda_signif_pval (float, [0:1]) The value under which the dbrda is considered significant. sample.size (int) A single integer value equal to the number of reads being simulated, also known as the depth. See phyloseq::rarefy_even_depth(). verbose (logical). If TRUE, print additional informations. progress_bar (logical, default TRUE) Do we print progress during the calculation?

Details

This function is mainly a wrapper of the work of others. Please make a reference to vegan::varpart() if you use this function.

Value

A list of class varpart with additional information in the \$part\$indfract part. Adj.R.square is the mean across permutation. Adj.R.squared_quantil_min and Adj.R.squared_quantil_max represent the quantile values of adjuste R squared

Author(s)

Adrien Taudière

See Also

```
var_par_pq(), vegan::varpart(), plot_var_part_pq()
```

```
if (requireNamespace("vegan")) {
  data_fungi_woNA <- subset_samples(data_fungi, !is.na(Time) & !is.na(Height))
  res_var_9 <- var_par_rarperm_pq(
   data_fungi_woNA,
   list_component = list(</pre>
```

venn_pq

```
"Time" = c("Time"),
    "Size" = c("Height", "Diameter")
),
    nperm = 9,
    dbrda_computation = TRUE
)

res_var_2 <- var_par_rarperm_pq(
    data_fungi_woNA,
    list_component = list(
        "Time" = c("Time"),
        "Size" = c("Height", "Diameter")
),
    nperm = 2,
    dbrda_computation = TRUE
)
}</pre>
```

venn_pq

Venn diagram of phyloseq-class object

Description

Graphical representation of distribution of taxa across combined modality of a factor.

Usage

```
venn_pq(physeq, fact, min_nb_seq = 0, print_values = TRUE)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

fact (required): Name of the factor to cluster samples by modalities. Need to be in physeq@sam_data.

min_nb_seq (default: 0)): minimum number of sequences by OTUs by samples to take into count this OTUs in this sample. For example, if min_nb_seq=2,each value of 2 or less in the OTU table will be change into 0 for the analysis

print_values (logical) Print (or not) the table of number of OTUs for each combination. If print_values is TRUE the object is not a ggplot object. Please use print_values = FALSE if you want to add ggplot function (cf example).

Value

A ggplot2 plot representing Venn diagram of modalities of the argument factor

Author(s)

Adrien Taudière

verify_pq 157

See Also

venneuler

Examples

```
if (requireNamespace("venneuler")) {
  data("enterotype")
  venn_pq(enterotype, fact = "SeqTech")
}

if (requireNamespace("venneuler")) {
  venn_pq(enterotype, fact = "ClinicalStatus")
  venn_pq(enterotype, fact = "Nationality", print_values = FALSE)
  venn_pq(enterotype, fact = "ClinicalStatus", print_values = FALSE) +
    scale_fill_hue()
  venn_pq(enterotype, fact = "ClinicalStatus", print_values = FALSE) +
    scale_fill_hue()
}
```

verify_pq

Verify the validity of a phyloseq object

Description

Mostly for internal use in MiscMetabar functions.

Usage

```
verify_pq(
  physeq,
  verbose = FALSE,
  min_nb_seq_sample = 500,
  min_nb_seq_taxa = 1
)
```

Arguments

```
physeq (required): a phyloseq-class object obtained using the phyloseq package.

verbose (logical, default FALSE) If TRUE, prompt some warnings.

min_nb_seq_sample (numeric) Only used if verbose = TRUE. Minimum number of sequences per samples to not show warning.

min_nb_seq_taxa (numeric) Only used if verbose = TRUE. Minimum number of sequences per taxa to not show warning.
```

158 vsearch_clustering

Value

Nothing if the phyloseq object is valid. An error in the other case. Warnings if verbose = TRUE

vsearch_clustering

Recluster sequences of an object of class physeq or cluster a list of DNA sequences using vsearch software

Description

A wrapper of VSEARCH software.

Usage

```
vsearch_clustering(
  physeq = NULL,
  dna_seq = NULL,
  nproc = 1,
  id = 0.97,
  vsearchpath = "vsearch",
  tax_adjust = 0,
  vsearch_cluster_method = "--cluster_size",
  vsearch_args = "--strand both",
  keep_temporary_files = FALSE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

You may directly use a character vector of DNA sequences in place of physeq args. When physeq is set, dna sequences take the value of physeq@refseq

nproc (default: 1) Set to number of cpus/processors to use for the clustering

id (default: 0.97) level of identity to cluster

vsearchpath (default: vsearch) path to vsearch

tax_adjust (Default 0) See the man page of merge_taxa_vec() for more details. To conserved the taxonomic rank of the most abundant ASV, set tax_adjust to 0 (default). For the moment only tax_adjust = 0 is robust

 ${\tt vsearch_cluster_method}$

(default: "-cluster_size) See other possible methods in the vsearch manual (e.g. --cluster_size or --cluster_smallmem)

- --cluster_fast : Clusterize the fasta sequences in filename, automatically sort by decreasing sequence length beforehand.
- --cluster_size : Clusterize the fasta sequences in filename, automatically sort by decreasing sequence abundance beforehand.

vsearch_clustering 159

--cluster_smallmem: Clusterize the fasta sequences in filename without
automatically modifying their order beforehand. Sequence are expected to
be sorted by decreasing sequence length, unless -usersort is used. In that
case you may set vsearch_args to vsearch_args = "-strand both -usersort"

vsearch_args

(default: "-strand both") a one length character element defining other parameters to passed on to vsearch.

keep_temporary_files

(logical, default: FALSE) Do we keep temporary files?

- temp.fasta (refseq in fasta or dna_seq sequences)
- cluster.fasta (centroid if method = "vsearch")
- temp.uc (clusters if method = "vsearch")

Details

This function use the merge_taxa_vec() function to merge taxa into clusters. By default tax_adjust = 0. See the man page of merge_taxa_vec().

This function is mainly a wrapper of the work of others. Please cite vsearch.

Value

A new object of class physeq or a list of cluster if dna_seq args was used.

Author(s)

Adrien Taudière

References

VSEARCH can be downloaded from https://github.com/torognes/vsearch. More information in the associated publication https://pubmed.ncbi.nlm.nih.gov/27781170.

See Also

```
postcluster_pq(), swarm_clustering()
```

```
summary_plot_pq(data_fungi)
d_vs <- vsearch_clustering(data_fungi)
summary_plot_pq(d_vs)</pre>
```

vs_search_global

vs_search_global Search for a list of sequence in a fasta file against physeq reference sequences using Rhrefhttps://github.com/torognes/vsearchvsearch

Description

Use of VSEARCH software.

Usage

```
vs_search_global(
  physeq,
  seq2search = NULL,
  path_to_fasta = NULL,
  vsearchpath = "vsearch",
  id = 0.8,
  iddef = 0,
  keep_temporary_files = FALSE
)
```

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package. seq2search (required if path_to_fasta is NULL) Either (i) a DNAstringSet object or (ii) a character vector that will be convert to DNAstringSet using Biostrings::DNAStringSet() path_to_fasta (required if seq2search is NULL) a path to fasta file if seq2search is est to NULL. vsearchpath (default: vsearch) path to vsearch id (default: 0.8) id for the option --usearch_global of the vsearch software iddef (default: 0) iddef for the option --usearch_global of the vsearch software keep_temporary_files (logical, default: FALSE) Do we keep temporary files • temp.fasta (refseq in fasta) • cluster.fasta (centroid) • temp.uc (clusters)

Details

This function is mainly a wrapper of the work of others. Please cite vsearch.

Value

A dataframe with uc results (invisible)

Author(s)

Adrien Taudière

write_pq 161

Examples

```
if (requireNamespace("seqinr")) {
  file_dna <- tempfile("dna.fa")
  seqinr::write.fasta("GCCCATTAGTATTCTAGTGGGCATGCCTGTTCGAGCGTCATTTTCAACC",
    file = file_dna, names = "seq1"
)

res <- vs_search_global(data_fungi, path_to_fasta = file_dna)
  unlink(file_dna)

res[res$identity != "*", ]

clean_pq(subset_taxa(data_fungi, res$identity != "*"))
}</pre>
```

write_pq

Save phyloseq object in the form of multiple csv tables.

Description

This is the reverse function of read_pq().

Usage

```
write_pq(
  physeq,
  path = NULL,
  rdata = FALSE,
  one_file = FALSE,
 write_sam_data = TRUE,
  sam_data_first = FALSE,
  clean_pq = TRUE,
  reorder_taxa = FALSE,
  rename_taxa = FALSE,
  remove_empty_samples = TRUE,
  remove_empty_taxa = TRUE,
  clean_samples_names = TRUE,
  silent = FALSE,
  verbose = FALSE,
  quote = FALSE,
  sep_csv = "\t",
)
```

162 write_pq

Arguments

physeq (required): a phyloseq-class object obtained using the phyloseq package.

path a path to the folder to save the phyloseq object

rdata (logical) does the phyloseq object is also saved in Rdata format?

one_file (logical) if TRUE, combine all data in one file only

write_sam_data (logical) does the samples data are add to the file. Only used if one_file is

TRUE. Note that these option result in a lot of NA values.

sam_data_first (logical) if TRUE, put the sample data at the top of the table Only used if

one_file and write_sam_data are both TRUE.

clean_pq (logical) If set to TRUE, empty samples are discarded after subsetting taxa

(ASV, OTU, ...)

reorder_taxa (logical) if TRUE the otu table is ordered by the number of sequences of taxa

(ASV, OTU, ...) (descending order). Default to TRUE. Only possible if clean_pq

is set to TRUE.

rename_taxa reorder_taxa (logical) if TRUE, taxa (ASV, OTU, ...) are renamed by their po-

sition in the OTU_table (asv_1, asv_2, ...). Default to FALSE. Only possible if

clean_pq is set to TRUE.

remove_empty_samples

(logical) Do you want to remove samples without sequences (this is done after

removing empty taxa)

remove_empty_taxa

(logical) Do you want to remove taxa without sequences (this is done before

removing empty samples)

clean_samples_names

(logical) Do you want to clean samples names?

silent (logical) If true, no message are printing.

verbose (logical) Additional informations in the message the verbose parameter over-

write the silent parameter.

quote a logical value (default FALSE) or a numeric vector. If TRUE, any character

or factor columns will be surrounded by double quotes. If a numeric vector, its elements are taken as the indices of columns to quote. In both cases, row and

column names are quoted if they are written. If FALSE nothing is quoted.

sep_csv (default tabulation) separator for column

... Other arguments passed on to utils::write.table() function.

Value

Build a folder (path) containing one to four csv tables (refseq.csv, otu_table.csv, tax_table.csv, sam_data.csv) and if present a phy_tree in Newick format

Author(s)

Adrien Taudière

write_pq 163

See Also

```
save_pq()
```

```
write_pq(data_fungi, path = paste0(tempdir(), "/phyloseq"))
write_pq(data_fungi, path = paste0(tempdir(), "/phyloseq"), one_file = TRUE)
unlink(paste0(tempdir(), "/phyloseq"), recursive = TRUE)
```

Index

* datasets data_fungi, 37 data_fungi_mini, 38 data_fungi_sp_known, 39 Tengeler2020 pg 142	blast_pq(), 9, 24, 25 blast_to_derep, 22 blast_to_phyloseq, 24 blast_to_phyloseq(), 22, 24 build_phytree_pq_26
rengerer 2020_pq, 142	bullu_pinythee_pq, 20
Tengeler2020_pq, 142 accu_plot, 5 accu_plot(), 8, 9 accu_plot_balanced_modality, 7 accu_plot_balanced_modality(), 115 accu_samp_threshold, 8 accu_samp_threshold(), 6 add_blast_info, 9 add_dna_to_phyloseq, 10 add_funguild_info, 10 add_funguild_info(), 100, 101 add_info_to_sam_data, 11 add_new_taxonomy_pq, 12 adespatial::beta.div(), 76, 102, 104, 105 adonis_phyloseq	<pre>build_phytree_pq, 26 calcNormFactors, 94 chimera_detection_vs, 28 chimera_detection_vs(), 29, 30 chimera_removal_vs, 29 chimera_removal_vs(), 29 chordDiagram, 31, 32 circle_pq, 30, 86 circos.par, 31, 32 clean_physeq (MiscMetabar-deprecated),</pre>
Biostrings::DNAStringSet(), 28, 95, 160 biplot_physeq (MiscMetabar-deprecated),	DESeq2::results(), 98 DGEList, 94
86	diff_fct_diff_class, 39
biplot_pq, 19, 86	dist_bycol, 42
biplot_pq(), 20, 70, 90	dist_pos_control, 43
blast_pq, 21	distri_1_taxa, 41

INDEX 165

edgeR, 94	iNEXT::iNEXT(), 70
edgeR::estimateTagwiseDisp(), 94	iNEXT_pq, 69
exactTest, 100	is_cutadapt_installed, 71
	is_falco_installed, 71
fac2col, 44	is_krona_installed, 72
filter_asv_blast, 44	is_mumu_installed, 73
filter_taxa_blast (filter_asv_blast), 44	is_swarm_installed, 73
filter_trim, 46	is_vsearch_installed, 74
formattable_pq, 47	
funguild_assign, 51	krona, 75, 82
<pre>funguild_assign(), 54</pre>	,,
funky_color, 52	LCBD_pq, 76, 102, 105
	list_fastq_files,77
get_file_extension, 53	list_fastq_files(), 36
<pre>get_funguild_db, 53</pre>	lulu, 78
<pre>get_funguild_db(), 52</pre>	lulu(), 80
<pre>ggalluvial::geom_flow(), 55</pre>	lulu_phyloseq(MiscMetabar-deprecated)
ggaluv_pq, 54	86
ggaluv_pq(), <i>123</i>	lulu_pq, 80, 86
ggbetween_pq, 56	lulu_pq(), 92
ggbetween_pq(), <i>58</i> , <i>66</i>	1u1u_pq(), 92
<pre>ggfittext::geom_fit_text(), 55</pre>	merge_krona, 75, 81
ggplot, 6, 60, 64, 98, 100, 104, 120, 139, 149,	merge_krona(), 75
152, 156	merge_samples2, 82
<pre>ggplot2::geom_label(), 20</pre>	
ggplot2::geom_text(), 20	merge_samples2(), 13, 15, 20, 34, 54, 63, 70
ggridges::geom_density_ridges(), 120	
ggscatt_pq, 57	merge_samples2,otu_table-method
ggstatsplot::ggbetweenstats(), 56, 67,	(merge_samples2), 82
68	merge_samples2,phyloseq-method
<pre>ggstatsplot::ggscatterstats(), 57, 58</pre>	(merge_samples2), 82
ggVenn_phyloseq	merge_samples2,sample_data-method
(MiscMetabar-deprecated), 86	(merge_samples2), 82
ggvenn_pq, 59, 86	merge_taxa_vec,84
ggvenn_pq(), 138, 149	merge_taxa_vec(), 112, 113, 135, 158, 159
	<pre>merge_taxa_vec,otu_table-method</pre>
glmulti::glmulti(), 61, 62	(merge_taxa_vec), 84
glmutli_pq, 61	<pre>merge_taxa_vec,phylo-method</pre>
graph_test_pq, 63, 86	(merge_taxa_vec), 84
<pre>gtsummary::tbl_summary(), 141</pre>	<pre>merge_taxa_vec,phyloseq-method</pre>
hill_phyloseq (MiscMetabar-deprecated),	(merge_taxa_vec), 84
86	<pre>merge_taxa_vec,taxonomyTable-method</pre>
hill_pq, 64, 86	(merge_taxa_vec), 84
hill_pq(), 56, 68, 114	<pre>merge_taxa_vec,XStringSet-method</pre>
hill_test_rarperm_pq, 67	(merge_taxa_vec), 84
hill_tuckey_phyloseq	MiscMetabar-deprecated, 86
	MiscMetabar-package, 5
(MiscMetabar-deprecated), 86	multcompLetters, 65
hill_tuckey_pq, 68, 86	multi_biplot_pq, 90
<pre>indicspecies::multipatt(), 87</pre>	multipatt_pq, 87
· · · · · · · · · · · · · · · · · · ·	

166 INDEX

multiplot, 88	plotly::ggplotly(), 20
multitax_bar_pq,89	<pre>postcluster_pq, 111</pre>
multitax_bar_pq(), <i>106</i> , <i>139</i>	postcluster_pq(), 85, 94, 136, 159
mumu_pq, 91	<pre>psmelt_samples_pq, 114</pre>
mumu_pq(), <i>81</i>	<pre>psmelt_samples_pq(), 66</pre>
	purrr::as_mapper(), 83
normalize_prop_pq,92	
	<pre>rarefy_sample_count_by_modality, 115</pre>
otu_circle(MiscMetabar-deprecated),86	rarefy_sample_count_by_modality(), 8
	<pre>read_phyloseq (MiscMetabar-deprecated),</pre>
perc, 93	86
phangorn::bootstrap.pml(),27	read_pq, <i>86</i> , 116
phangorn::optim.pml(), 26, 27	read_pq(), <i>161</i>
phyloseq-class, 5, 18, 21, 24, 30, 59, 122,	rename_samples, 117
134, 140, 156	rename_samples(), 122
phyloseq::distance(), <i>13</i> , <i>15</i> , <i>153</i> , <i>155</i>	rename_samples_otu_table, 118
<pre>phyloseq::distanceMethodList(), 13, 15,</pre>	reorder_taxa_pq, 118
153, 155	results, 98, 99
phyloseq::merge_taxa(),85	ridges_pq, 119
phyloseq::mt(), <i>103</i> , <i>104</i>	rotl_pq, 120
phyloseq::rarefy_even_depth(), 7, 8, 15,	
55, 56, 58, 65, 67, 114, 155	<pre>sample_data_with_new_names, 121</pre>
<pre>phyloseq::subset_samples(), 131</pre>	sankey_phyloseq
phyloseq::subset_taxa(), <i>131</i>	(MiscMetabar-deprecated), 86
phyloseq_to_edgeR, 94	sankey_pq, <i>86</i> , 122
phyloseqGraphTest::graph_perm_test(),	sankey_pq(), <i>55</i>
63	sankeyNetwork, 123
physeq_graph_test	save_pq, 124
(MiscMetabar-deprecated), 86	save_pq(), 163
physeq_or_string_to_dna,94	search_exact_seq_pq, 125
plot, <i>6</i>	select_one_sample, 126
plot_ancombc_pq, 95	select_taxa, 126
plot_ancombc_pq(), <i>127</i> , <i>128</i>	<pre>select_taxa,otu_table,character-method</pre>
plot_deseq2_phyloseq	(select_taxa), 126
(MiscMetabar-deprecated), 86	select_taxa,phylo,character-method
plot_deseq2_pq, <i>86</i> , <i>97</i> , <i>100</i>	(select_taxa), 126
plot_edgeR_phyloseq	<pre>select_taxa,phyloseq,character-method</pre>
(MiscMetabar-deprecated), 86	(select_taxa), 126
plot_edgeR_pq, 86, 98, 99	<pre>select_taxa,sample_data,character-method</pre>
plot_guild_pq, 100	(select_taxa), 126
plot_guild_pq(), 11	<pre>select_taxa,taxonomyTable,character-method</pre>
plot_LCBD_pq, 76, 102	(select_taxa), 126
plot_mt, 103	<pre>select_taxa,XStringSet,character-method</pre>
plot_SCBD_pq, 104	(select_taxa), 126
plot_tax_pq, 105	signif_ancombc, 127
plot_tax_pq(), <i>139</i>	simplify_taxo, 129
plot_tsne_pq, 107	specaccum, 6
plot_var_part_pq, 109	SRS::SRScurve(), <i>129</i>
plot_var_part_pq(), <i>154</i> , <i>155</i>	SRS_curve_pq, 129

INDEX 167

<pre>subsample_fastq, 130</pre>	vs_search_global, 160
<pre>subset_samples_pq, 131</pre>	vsearch_clustering, 158
subset_taxa_pq, 131	vsearch_clustering(), 94, 113, 136
<pre>subset_taxa_pq(), 11</pre>	
<pre>subset_taxa_tax_control, 132</pre>	write_phyloseq
<pre>summary_plot_phyloseq</pre>	(MiscMetabar-deprecated), 86
(MiscMetabar-deprecated), 86	write_phyloseq(), <i>116</i>
summary_plot_pq, 86, 134	write_pq, <i>86</i> , <i>161</i>
swarm_clustering, 134	write_pq(), <i>116</i> , <i>124</i> , <i>125</i>
swarm_clustering(), <i>94</i> , <i>113</i> , <i>159</i>	
tax_bar_pq, 139	
tax_bar_pq(), <i>106</i>	
tax_datatable, 140	
taxa_as_columns, 136	
taxa_as_rows, 137	
taxa_only_in_one_level, 137	
tbl_sum_samdata, 141	
Tengeler2020_pq, 142	
tibble::tibble, 52, 54	
track_wkflow, 143	
track_wkflow(), 144	
track_wkflow_samples, 144	
<pre>track_wkflow_samples(), 126, 143</pre>	
transp, 145	
treemap_pq, 145	
<pre>treemapify::geom_treemap(), 146</pre>	
tsne_pq, 147	
unique_or_na, 148	
upset_pq, 148	
upset_pq(), 60, 138, 152	
upset_test_pq, 152	
utils::read.delim(), 122	
utils::write.table(), 116, 124, 162	
var_par_pq, 153	
var_par_pq(), 109, 110, 154, 155	
var_par_rarperm_pq, 154	
var_par_rarperm_pq(), 109, 110, 154	
vegan::adonis2(), <i>13–15</i>	
vegan::varpart(), 153-155	
vegan::vegdist(), 13, 15, 43, 153, 155	
vegdist, 42	
venn_phyloseq (MiscMetabar-deprecated),	
86	
venn_pq, 86, 156	
venneuler, 157	
verify_pq, 157	