Übungsblatt 5 Kontextfreie Sprachen, Syntaxbaum, Rechtsableitung / Linksableitung

HTWG-Konstanz
Gesundheitsinformatik / Angewandte Informatik - WS24/25
Theoretische (Grundlagen der) Informatik

Prof. Dr. Renato Dambe 13/14.11.2023

Gegeben ist der hier aufgeführte Kellerautomat

$$K = (Z, \Sigma, \Gamma, \delta, A)$$
 mit

$$Z = \{A, B\}$$

$$\Sigma = \{ (', '), '+', '*', 'z' \}$$

$$\Gamma = \{S, O, ')'\}$$

$$\delta =$$
 siehe oben

Prüfen Sie, ob die folgenden Wörter vom Kellerautomaten erkannt werden

1) ((z+z)*z)

2) (z*z+z)+(z) 3) z

4) z*z

5) ((z+z)+(z*z))

Nein

Nein Nein

ein Nein

Nein

Gehen Sie davon aus, dass am Anfang ein S auf dem Keller liegt. Das Wort ist dann als korrekt erkannt, wenn

- der Keller leer ist,
- das Wort komplett abgearbeitet ist, und
- Sie sich in einem Endzustand befinden.

Sie können Ihre Ergebnisse über das (kostenlose) Java-Programm http://www.jflap.org/testen.

Gegeben ist eine Grammatik, die eine einfache IF-Anweisung einer fiktiven Sprache beschreibt. (I = If-Anweisung, B = Bedingung, A = Anweisung, E = Else-Block, V = Variable, Z = Zahl)

- 1. I \rightarrow 'if' B 'then' A 'end'
- 2. $B \rightarrow V '=' Z \mid V '<' Z \mid V '>' Z$
- 3. A \rightarrow V ':=' Z ';' A | ϵ
- 4. $V \rightarrow 'a' \mid 'b' \mid 'c'$
- 5. $Z \rightarrow '1' \mid '2' \mid '3'$
- a) Notieren Sie die Ableitungsschritte, die nötig sind, um den unten stehenden Satz in einer Linksableitung abzuleiten. Notieren Sie zu jedem Ableitungsschritt, welche Regel Sie zur Ableitung angewandt haben. (Hinweis: Sie können auch mehrere Ableitungsschritte auf einmal nehmen, um Schreibarbeit zu sparen. Achten sie dann aber darauf, die Regeln in der richtigen Reihenfolge zu notieren) if b < 3 then a := 1; c := 2; end
- b) Zeichnen Sie den Syntaxbaum für den oben stehenden Ausdruck.

Aufgabe 3

Gegeben ist die folgende Grammatik

- 1. A \rightarrow aBa | bBb
- 2. B \rightarrow cDe | eCc
- 3. $C \rightarrow Ad \mid Be$
- 4. $D \rightarrow fg$
- a) Entwickeln Sie die Rechtsableitung für das Wort aebefgebdea.
- b) Notieren Sie den Syntaxbaum für die in a) gefundene Rechtsableitung.

3

if h <	3 then	a :=	3· c	:= 2	end
י טוו	Juich	a	ح, ر	~	, Criu

I	=> if B then A end	1-1
	=> if V < Z then A end	2-2
	=> if b < Z then A end	4-2
	=> if b < 3 then A end	5-3
	=> if b < 3 then V := Z; A end	3-1
	=> if b < 3 then a := Z; A end	4-1
	=> if b < 3 then a := 3; A end	5-3
	=> if b < 3 then a := 3; V:= Z; A end	3-1
	=> if b < 3 then a := 3; c := Z; A end	4-3
	=> if b < 3 then a := 3; c := 2; A end	5-2
	=> if h < 3 then a '= 3' c '= 2' end	3-2

Gegeben ist die folgende kontextfreie Grammatik (G) mit $S = \{A, B, C\}$, $\Sigma = \{a, b, c\}$, $s_0 = A$, Übergangsrelationen δ siehe Grammatik.

- 1) $A \rightarrow bAb|cCc$
- 2) $B \to aC|Ca$
- 3) $C \to AB|BA|cb$

Gegeben ist außerdem das Wort $\omega \in L(G), \omega = \mathbf{bcacbccbccb}$.

- a) Entwickeln Sie die Linksableitung für das oben genannte Wort und geben Sie für jeden Ableitungsschritt an, welche Regel für die Ableitung verwendet wurde.
- b) Erstellen Sie den Syntaxbaum für das oben genannte Wort.

Aufgabe 5

Gegeben ist die folgende kontextfreie Grammatik (G) mit $S = \{A, B, C\}$, $\Sigma = \{a, b, c\}$, $s_0 = A$, Übergangsrelationen δ siehe Grammatik.

- 1) $A \rightarrow bAcBb|aCa|cb$
- 2) $B \to cC|Caa|bc$
- 3) $C \to AbB|BaA|ab$

Gegeben ist außerdem das Wort $\omega \in L(G), \omega = \mathbf{baabaccbbbcaab}.$

- a) Entwickeln Sie die Rechtssableitung für das oben genannte Wort und geben Sie für jeden Ableitungsschritt an, welche Regel für die Ableitung verwendet wurde.
- b) Erstellen Sie den Syntaxbaum für das oben genannte Wort.

Aufgabe 6

Gegeben ist die folgende kontextfreie Grammatik (G) mit $S = \{A, B, C\}$, $\Sigma = \{a, b, c, d\}$, $s_0 = A$, Übergangsrelationen δ siehe Grammatik.

1) $A \rightarrow bCa|cAb$

4.

bcacbccbccb

Α	=> bAb	1-1
	=> bcCcb	1-2
	=> bcBAcb	3-2
	=> bcaCAcb	2-1
	=> bcacbAcb	3-3
	=> bcacbcCccb	1-2
	=> bcacbccbccb	3-3

5. baabaccbbbcaab

Α	=> bAcBb	1-1
	=> bAcCaab	2-2
	=> bAcAbBaab	3-1
	=> bAcAbbcaab	2-3
	=> bAccbbbcaab	1-3
	=> baCaccbbbcaab	1-2
	=> baabaccbbbcaab	3-3

- 2) $B \to BCb|BBc|d$
- 3) $C \rightarrow aCB|c$

Gegeben ist außerdem das Wort $\omega \in L(G), \omega = \mathbf{cbacdacdbab}.$

a) Entwickeln Sie die Rechtsableitung für das oben genannte Wort und geben Sie für jeden Ableitungsschritt an, welche Regel für die Ableitung verwendet wurde.

	Ableitung	Angewandte Regel
F	$A \Rightarrow cAb$	1-2

b) Erstellen Sie den Syntaxbaum für das oben genannte Wort.

Aufgabe 7

Gegeben ist die folgende kontextfreie Grammatik (G) mit $S = \{A, B, C\}$, $\Sigma = \{a, b, c, d\}$, $s_0 = A$, Übergangsrelationen δ siehe Grammatik.

- 1) $A \rightarrow bbA|Bac|c$
- 2) $B \to BB|Ca|b$
- 3) $C \rightarrow CA|AbC|d$

Gegeben ist außerdem das Wort $\omega \in L(G), \omega = \mathbf{bbcbdcabac}$.

a) Entwickeln Sie die Rechtsableitung für das oben genannte Wort und geben Sie für jeden Ableitungsschritt an, welche Regel für die Ableitung verwendet wurde.

Ableitung	Angewandte Regel
$A \Rightarrow$	

b) Erstellen Sie den Syntaxbaum für das oben genannte Wort.

Aufgabe 7 habe ich leider zeitlich nicht geschafft. Ich werde sie als Klausurvorbereitung nutzen.

6, cbacdacdbab

Α	=> cAb	1-2
	=> cbCab	1-1
	=> cbaCBab	3-1
	=> cbaCBCbab	2-1
	=> cbaCBaCBbab	3-2
	=> cbaCBaCdbab	2-3
	=> cbaCBacdbab	3-2
	=> cbaCdacdbab	2-2
	=> cbacdacdbab	3-2

Geben Sie an, von welcher Art von Automat die folgenden Grammatiken erkannt werden können (Endlicher Automat, Deterministischer Kellerautomat, Nichtdeterministischer Kellerautomat) Es können auch mehrere Automaten richtig sein.

1)
$$S \to aBa|bAb$$
 2) $S \to aSa|bSb|c$ 3) $S \to aA|bB$ 4) $S \to aB|Ab$ $A \to aBa|aa$ $A \to bA|a$ $A \to aB|b$ $B \to aB|b$ $B \to Bb|a$

Diese Aufgabe wurde von der Webseite http://www.informatikseite.de/theorie/node61.php entliehen.

- 1) Nicht-deterministischer Kellerautomat, Endlicher Automat
- 2) Deterministischer Kellerautomat, Endlicher Automat
- 3) Endlicher Automat
- 4) Endlicher Automat