```
# data analysis
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
# visualization
import seaborn as sns
import\ matplotlib.pyplot\ as\ plt
%matplotlib inline
# scaling and train test split
from sklearn.model_selection import train_test_split
{\tt from \ sklearn.preprocessing \ import \ MinMaxScaler}
# creating a model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.optimizers import Adam
# evaluation on test data
from sklearn.metrics import mean_squared_error,mean_absolute_error,r2_score
from sklearn.metrics import classification_report,confusion_matrix
from google.colab import drive
drive.mount('/content/drive')
     Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
```

df=pd.read_csv('/content/drive/MyDrive/house prediction/kc_house_data.csv')
df.head()

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	• • •
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	0	
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	0	
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.0	0	0	
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.0	0	0	
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.0	0	0	

5 rows × 21 columns


```
# No missing values
df.isnull().sum()
```

date 0 price bedrooms 0 bathrooms sqft_living 0 sqft_lot 0 floors waterfront view condition grade sqft_above 0 sqft_basement 0 yr_built 0 yr_renovated 0 0 zipcode lat 0 long sqft_living15 0 sqft_lot15 0 dtype: int64

What are the data types for various features?

Five features are floats, fifteen are integers and one is an object.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):
```

#	Column	Non-Null Count	Dtype		
0	id	21613 non-null	int64		
1	date	21613 non-null	object		
2	price	21613 non-null	float64		
3	bedrooms	21613 non-null	int64		
4	bathrooms	21613 non-null	float64		
5	sqft_living	21613 non-null	int64		
6	sqft_lot	21613 non-null	int64		
7	floors	21613 non-null	float64		
8	waterfront	21613 non-null	int64		
9	view	21613 non-null	int64		
10	condition	21613 non-null	int64		
11	grade	21613 non-null	int64		
12	sqft_above	21613 non-null	int64		
13	sqft_basement	21613 non-null	int64		
14	yr_built	21613 non-null	int64		
15	yr_renovated	21613 non-null	int64		
16	zipcode	21613 non-null	int64		
17	lat	21613 non-null	float64		
18	long	21613 non-null	float64		
19	sqft_living15	21613 non-null	int64		
20	sqft_lot15	21613 non-null	int64		
dtyp	es: float64(5),	int64(15), obje	ct(1)		
memory usage: 3.5+ MB					

What is the distribution of numerical feature values across the samples?

df.describe().T

	count	mean	std	min	25%	50%	75%	
id	21613.0	4.580302e+09	2.876566e+09	1.000102e+06	2.123049e+09	3.904930e+09	7.308900e+09	9.90000
price	21613.0	5.400881e+05	3.671272e+05	7.500000e+04	3.219500e+05	4.500000e+05	6.450000e+05	7.70000
bedrooms	21613.0	3.370842e+00	9.300618e-01	0.000000e+00	3.000000e+00	3.000000e+00	4.000000e+00	3.30000
bathrooms	21613.0	2.114757e+00	7.701632e-01	0.000000e+00	1.750000e+00	2.250000e+00	2.500000e+00	8.00000
sqft_living	21613.0	2.079900e+03	9.184409e+02	2.900000e+02	1.427000e+03	1.910000e+03	2.550000e+03	1.35400
sqft_lot	21613.0	1.510697e+04	4.142051e+04	5.200000e+02	5.040000e+03	7.618000e+03	1.068800e+04	1.65135
floors	21613.0	1.494309e+00	5.399889e-01	1.000000e+00	1.000000e+00	1.500000e+00	2.000000e+00	3.50000
waterfront	21613.0	7.541757e-03	8.651720e-02	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	1.00000
view	21613.0	2.343034e-01	7.663176e-01	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	4.00000
condition	21613.0	3.409430e+00	6.507430e-01	1.000000e+00	3.000000e+00	3.000000e+00	4.000000e+00	5.00000
grade	21613.0	7.656873e+00	1.175459e+00	1.000000e+00	7.000000e+00	7.000000e+00	8.000000e+00	1.30000
sqft_above	21613.0	1.788391e+03	8.280910e+02	2.900000e+02	1.190000e+03	1.560000e+03	2.210000e+03	9.41000
sqft_basement	21613.0	2.915090e+02	4.425750e+02	0.000000e+00	0.000000e+00	0.000000e+00	5.600000e+02	4.82000
yr_built	21613.0	1.971005e+03	2.937341e+01	1.900000e+03	1.951000e+03	1.975000e+03	1.997000e+03	2.01500
yr_renovated	21613.0	8.440226e+01	4.016792e+02	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00	2.01500
zipcode	21613.0	9.807794e+04	5.350503e+01	9.800100e+04	9.803300e+04	9.806500e+04	9.811800e+04	9.81990
lat	21613.0	4.756005e+01	1.385637e-01	4.715590e+01	4.747100e+01	4.757180e+01	4.767800e+01	4.77776
long	21613.0	-1.222139e+02	1.408283e-01	-1.225190e+02	-1.223280e+02	-1.222300e+02	-1.221250e+02	-1.21315
sqft_living15	21613.0	1.986552e+03	6.853913e+02	3.990000e+02	1.490000e+03	1.840000e+03	2.360000e+03	6.21000
sqft_lot15	21613.0	1.276846e+04	2.730418e+04	6.510000e+02	5.100000e+03	7.620000e+03	1.008300e+04	8.71200

Correlation Matrix

Price correlation

- This allow us to explore labels that are highly correlated to the price.
- sqft_living looks like a highly correlated label to the price, as well as grade, sqft_above, sqft_living15 and bathrooms

```
price_corr = df.corr()['price'].sort_values(ascending=False)
print(price_corr)
```

price 1,000000 sqft_living 0.702035 grade 0.667434 0.605567 sqft above sqft_living15 0.585379 bathrooms 0.525138 0.397293 view saft basement 0.323816 bedrooms 0.308350 0.307003 waterfront 0.266369 floors 0.256794 yr_renovated 0.126434 0.089661 sqft_lot 0.082447 sqft_lot15 yr_built 0.054012 condition 0.036362 0.021626 long id -0.016762 zipcode -0.053203 Name: price, dtype: float64

▼ Price feature

- Most of the house prices are between 0 and 1,500,000.
- The average house price is \$540,000.
- Keep in mind that it may be a good idea to drop extreme values. For instance, we could focus on house from 0to3,000,000 and drop the other ones
- It seems that there is a positive linear relationship between the price and sqft_living.
- An increase in living space generally corresponds to an increase in house price.

```
f, axes = plt.subplots(1, 2,figsize=(15,5))
sns.distplot(df['price'], ax=axes[0])
sns.scatterplot(x='price',y='sqft_living', data=df, ax=axes[1])
sns.despine(bottom=True, left=True)
axes[0].set(xlabel='Price in millions [USD]', ylabel='', title='Price Distribuition')
axes[1].set(xlabel='Price', ylabel='Sqft Living', title='Price vs Sqft Living')
axes[1].yaxis.set_label_position("right")
axes[1].yaxis.tick_right()
```


Bedrooms and floors box plots

- We can see outliers plotted as individual points; this probably are the more expensive houses.
- We can see that the price tends to go up when the house has more bedrooms.

```
sns.set(style="whitegrid", font_scale=1)
f, axes = plt.subplots(1, 2,figsize=(15,5))
sns.boxplot(x=df['bedrooms'],y=df['price'], ax=axes[0])
sns.boxplot(x=df['floors'],y=df['price'], ax=axes[1])
axes[0].set(xlabel='Bedrooms', ylabel='Price', title='Bedrooms vs Price Box Plot')
axes[1].set(xlabel='Floors', ylabel='Price', title='Floors vs Price Box Plot')
```


Waterfront, view and grade box plots

- Waterfront houses tends to have a better price value.
- The price of waterfront houses tends to be more disperse and the price of houses without waterfront tend to be more concentrated.
- Grade and waterfront effect price. View seem to effect less but it also has an effect on price

```
f, axes = plt.subplots(1, 2,figsize=(15,5))
sns.boxplot(x=df['waterfront'],y=df['price'], ax=axes[0])
sns.boxplot(x=df['view'],y=df['price'], ax=axes[1])
axes[0].set(xlabel='Waterfront', ylabel='Price', title='Waterfront vs Price Box Plot')
axes[1].set(xlabel='View', ylabel='Price', title='View vs Price Box Plot')

f, axe = plt.subplots(1, 1,figsize=(15,5))
sns.boxplot(x=df['grade'],y=df['price'], ax=axe)
axe.set(xlabel='Grade', ylabel='Price', title='Grade vs Price Box Plot')
```


one = plt.hist(df[(df.floors == 1) | (df.floors ==1.5)].price ,bins =15 ,label = "one floor") two = plt.hist(df[(df.floors == 2) | (df.floors == 2.5)].price ,bins =15 ,label = "two floors") three = plt.hist(df[(df.floors ==3) | (df.floors == 3.5)].price ,bins =15 ,label = "three floor") plt.legend()

<matplotlib.legend.Legend at 0x7fb6280b7460>

waterfront

sns.countplot(x='condition', data=df, palette='magma')
plt.xlabel('Condition', fontsize=13)
plt.title("Condition's count", fontsize=16)

Text(0.5, 1.0, "Condition's count")

▼ House price trends

- Looking the box plots we notice that there is not a big difference between 2014 and 2015.
- The number of houses sold by month tends to be similar every month.
- The line plot show that around April there is an increase in house prices.

```
X = df.drop('price',axis=1)
# Label
y = df['price']
# Split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=101)
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
     (15129, 19)
     (6484, 19)
     (15129,)
     (6484,)
scaler = MinMaxScaler()
# fit and transfrom
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
model = Sequential()
y_size, x_size = X_train.shape
model.add(Dense(x_size,activation='relu')) # x_size - 64 - 64 - 128 - 64 - 64 - x_size
model.add(Dense(64,activation='relu'))
model.add(Dense(64,activation='relu'))
model.add(Dense(128,activation='relu'))
model.add(Dense(64,activation='relu'))
model.add(Dense(64,activation='relu'))
model.add(Dense(x_size,activation='relu'))
model.add(Dense(1)) # since we want only one feature as outcome (price) I added 1 as last dense
model.compile(optimizer='adam',loss='mae')
history = model.fit(
    x= X_train,
    y= y_train,
    batch_size=128,
    epochs=400,
    validation_data=(X_test, y_test))
```

```
Epoch 392/400
Epoch 393/400
119/119 [===========] - 1s 4ms/step - loss: 62987.6992 - val_loss: 68243.4766
Epoch 394/400
    119/119 [=====
Epoch 395/400
119/119 [======
    Epoch 396/400
Epoch 397/400
    119/119 [=====
Epoch 398/400
Epoch 399/400
   119/119 [======
Epoch 400/400
```

pd.DataFrame(history.history)

	loss	val_loss
0	477793.062500	206515.953125
1	183283.031250	177072.343750
2	167162.265625	158134.875000
3	145236.718750	135565.812500
4	129024.015625	125616.851562
395	63796.031250	70100.312500
396	62828.839844	67862.062500
397	62888.441406	67653.515625
398	63058.425781	66761.625000
399	63954.625000	69320.867188
400		

400 rows × 2 columns

pd.DataFrame(history.history).plot(figsize=(10,6))

plt.scatter(y_test,predictions)
plt.plot(y_test,y_test,'r')

 $\verb|pd.DataFrame({"Actual value":y_test.astype(int),"predicted value":predictions.flatten().astype(int)}|)|$

	Actual value	predicted value	7
3834	349950	256503	
1348	450000	434910	
20366	635000	795017	
16617	355500	336544	
20925	246950	258052	
1398	465000	421664	
3364	418000	368092	
18958	394250	350360	
17845	249500	201135	
16335	1350000	1213212	

6484 rows × 2 columns