# \* Try again once you are ready.

Required to pass: 80% or higher

You can retake this quiz up to 3 times every 8 hours.

Back to Week 3

Retake



**1.** For which of the following situations would a quadratic loss function make the most sense?

1/1 points

A doctor's estimate for the life expectancy of a terminally ill patient.



#### Correct

Correct Answer. Large mistakes in estimating life expectancy would particularly painful for both the patient and their family.

This question refers to the following learning objective(s):

- Understand the concept of loss functions and how they relate to Bayesian decision making.
- Your prediction for the number of bikes sold this year by a local bike shop.
- Your prediction as to whether it will rain tomorrow.
- Your answer choice on a Coursera multiple choice quiz.

|   | 4 |  |
|---|---|--|
|   | _ |  |
| - |   |  |

1/1 points

2. Fill in the blank: Under a **quadratic loss function**, the summary statistic that minimizes the posterior expected loss is the \_\_\_\_\_\_\_ of the posterior.

Median

Mode

Mean

#### Correct

Correct Answer. The mean is the summary statistic that minimizes the posterior expected loss under the quadratic loss function.

This question refers to the following learning objective(s):

 Understand the concept of loss functions and how they relate to Bayesian decision making



0/1 points

3. You are employed in the Human Resources department of a company and are asked to predict the number of employees that will quit their jobs in the coming year. Based on a Bayesian analysis of historical data, you determine the posterior predictive distribution of the number of quitters to follow a Poisson( $\lambda=10$ ) distribution. Given a **0/1** loss function, what is the prediction that minimizes posterior expected loss?



a. 9



b. 10

This should not be selected

10 is a mode of Poisson( $\lambda=10$ ), but not the only one. Since the loss function is 0/1, the mode of the posterior distribution minimizes posterior expected loss.

This question refers to the following learning objective(s):

- Make optimal decisions given a posterior distribution and a loss function.
- c. 11
- d. Either a or b



0/1

points

4.

Suppose you are testing a new drug to determine whether it is more effective than an existing drug. Let  $H_0$  denote the hypothesis that the new drug is no more effective than the existing drug and  $H_1$ denote the hypothesis that the new drug is more effective than the existing drug. If you accept  $H_1$ when in fact  $H_0$  is true, the loss is 100. If you accept  $H_0$  when in fact  $H_1$  is true, the loss is 40. Assume that no loss is incurred if you accept a true hypothesis. At what posterior probability of  $H_0$  will you be indifferent between the two hypotheses?



#### This should not be selected

If p is the posterior probability that  $H_0$  is true, then the expected loss under  $H_0$  is 40(1-p) and the expected loss under  $H_1$ is 100p. Set the two equal and solve for p.

This question refers to the following learning objective(s):

 Decide between hypotheses given a loss function: Make optimal decisions given a posterior distribution and a loss function.

|                    |        |    | $\frac{2}{5}$                                                                                          |                      |
|--------------------|--------|----|--------------------------------------------------------------------------------------------------------|----------------------|
|                    |        |    |                                                                                                        |                      |
|                    |        |    | $\frac{2}{7}$                                                                                          |                      |
|                    |        |    | $\frac{1}{3}$                                                                                          |                      |
|                    |        |    |                                                                                                        |                      |
|                    |        | 5. | You are testing a hypothesis $H_1$ against an alternative hypothesis $H_2$ using Bayes Factors. You    |                      |
|                    | 1/1    |    | calculate $BF[H_1:H_2]$ to be 0.427. According to guidelines first given by Jeffreys (and presented in |                      |
|                    | points |    | the lecture), what conclusion can be drawn from the data?                                              |                      |
|                    |        |    | $igcup H_2.$                                                                                           |                      |
|                    |        |    | The data provides strong evidence against $H_1.$                                                       |                      |
|                    |        |    | $igcup_{}^{}$ The data provides little to no evidence against $H_1.$                                   |                      |
|                    |        |    | Comment                                                                                                |                      |
|                    |        |    | Correct Refer to lecture "Posterior probabilities of                                                   |                      |
|                    |        |    | hypotheses and Bayes factors" to review                                                                |                      |
|                    |        |    | interpretation of Bayes Factors. The greater $BF[H_1:H_2]$ , the stronger the evidence                 |                      |
|                    |        |    | against $H_2.$                                                                                         |                      |
| Week 3 Qu          | i7     |    | This question refers to the following learning objective(s):                                           | 7/40 (70.000/)       |
| Quiz, 10 questions |        |    | <ul> <li>Compare multiple hypotheses using Bayes<br/>Factors.</li> </ul>                               | 7/10 points (70.00%) |
|                    |        |    | The data provides significant evidence                                                                 |                      |

against  $\dot{H_1}$ .



0/1 points

Suppose that you are trying to estimate the true proportion p of male births in the United States. Starting with a strong prior (Beta(500,500)) on the proportion, you randomly sample 10,000 birth certificates, observing 5029 males and 4971 females. What is the posterior probability that p is less than or equal to 0.5? (Hint: use function(s) in R to answer this question)

0.27

0.28

## This should not be selected

Recall the conjugacy of the Beta-Binomial model. Use the pbeta function in R to calculate the posterior probability that p is less than 0.5.

This question refers to the following learning objective(s):

- Conceptualize Lindley's paradox and how the Bayes Factor depends on prior elicitation
- Make inferences about a proportion using a conjugate Beta prior.

0.29

0.30



7. Suppose that you are trying to estimate the true proportion p of male births in the United States. You want to evaluate two hypotheses against each other: first the null hypothesis  $(H_0)$  that p=0.5 and an alternative hypothesis  $(H_1)$  that  $p\neq 0.5$ . To do this,

1/1 points you assign a point-null prior to p=0.5 under  $H_0$  and a uniform Beta(1,1) prior to p under  $H_1$ . Then, if we define k to be the number of male births out of a total sample of n birth certificates,

$$P(k|H_0) = \binom{n}{k} 0.5^k (1 - 0.5)^{n-k}$$

$$P(k|H_1) = \int_0^1 \binom{n}{k} p^k (1-p)^{n-k} dp = rac{1}{n+1}$$

Using the dbinom function in R calculate the Bayes Factor  $BF[H_1:H_0]$  if you observed 5029 male births out of 10,000 birth certificates.

$$BF[H_1:H_0]=67.44$$

$$BF[H_1:H_0]=8.33$$

$$igcap BF[H_1:H_0] = 0.12$$

$$\bigcirc \quad BF[H_1:H_0] = 0.015$$

### Correct

This question refers to the following learning objective(s):

- Conceptualize Lindley's paradox and how the Bayes Factor depends on prior elicitation
- Compare multiple hypotheses using Bayes Factors.



1/1

points

Suppose you are trying to infer the difference in the proportion of yellow M&Ms between two bags of M&Ms. Each bag is estimated to contain roughly 30 M&Ms. To make inferences about the proportion, you draw 10 M&Ms from each bag without replacement and record the number of yellow M&Ms in each bag.



Make optimal decisions given a posterior

0.6

**/** 

1/1 points

**10.** True or False: The use of the reference prior Beta(1/2,1/2) has little bearing on the posterior distribution of a proportion p, provided that the sample size is sufficiently large.



True

#### Correct

This question refers to the following learning objective(s):

 Conceptualize Lindley's paradox and how the Bayes Factor depends on prior elicitation.



**False** 





