

Integrity ★ Service ★ Excellence

Unmanned Systems Autonomy Services: Use Cases

Dr. Derek Kingston
Control Science Center of Excellence
Aerospace Systems Directorate
Air Force Research Laboratory

- A single instance of UxAS controls all vehicles
- Easiest use case to setup, configure, and simulate
 - Simple, consistent AMASE interaction
- Centralized examples:
 - Waterway Search
 - Assign Tasks
- Research applications
 - Play calling

Human Operator Integration: Play Calling

- Human-autonomy systems to maximize system agility
- Human as coach; manage teams of autonomous agents

AGENT: SUGGESTED SURVEILLANCE PLAY

- Tri-Service effort with shared Virtual Lab
- Explore increases in agility through:
 - Dynamic & adaptive task allocation
 - Joint human-automation problem solving

- Configuration for 'Hello World'
 - Two copies of the same service
 - Single instance of UxAS

```
*** RECEIVED:: Received Id[49] Sent Id[48] Message[Hello from #1] ***

*** RECEIVED:: Received Id[48] Sent Id[49] Message[Hello from #2] ***

*** RECEIVED:: Received Id[49] Sent Id[48] Message[Hello from #1] ***

*** RECEIVED:: Received Id[49] Sent Id[48] Message[Hello from #1] ***

*** RECEIVED:: Received Id[49] Sent Id[48] Message[Hello from #1] ***

*** RECEIVED:: Received Id[49] Sent Id[48] Message[Hello from #1] ***

*** RECEIVED:: Received Id[49] Sent Id[48] Message[Hello from #1] ***

*** RECEIVED:: Received Id[48] Sent Id[49] Message[Hello from #2] ***

*** RECEIVED:: Received Id[49] Sent Id[48] Message[Hello from #1] ***

*** RECEIVED:: Received Id[49] Sent Id[48] Message[Hello from #1] ***
```


- Waterways example
 - Complete "task assignment pipeline"
 - Waypoint manager services for each vehicle

```
<Bridge Type="LmcpObjectNetworkTcpBridge" TcpAddress="tcp://127.0.0.1:5555"</pre>
Server="FALSE">
                                                                                  AMASE
    <SubscribeToMessage MessageType="afrl.cmasi.MissionCommand" />
                                                                                   Connection
    <SubscribeToMessage MessageType="afrl.cmasi.LineSearchTask" />
    <SubscribeToMessage MessageType="afrl.cmasi.VehicleActionCommand" />
</Bridge>
<Service Type="TaskManagerService"/>
<Service Type="AutomationRequestValidatorService"/>
                                                                                  Task
<Service Type="RoutePlannerVisibilityService" />
                                                                                  Assignment
<Service Type="RouteAggregatorService" />
<Service Type="AssignmentTreeBranchBoundService" CostFunction="MINMAX" />
                                                                                   Pipeline
<Service Type="PlanBuilderService"/>
<Service Type="AutomationDiagramDataService"/>
                                                                                   Per Vehicle
<Service Type="WaypointPlanManagerService" VehicleID="400" />
<Service Type="WaypointPlanManagerService" VehicleID="500" />
                                                                                   Waypoint
<Service Type="MessageLoggerDataService">
    <LogMessage MessageType="uxas" NumberMessagesToSkip="0"/>
                                                                                  Data Logger
    <LogMessage MessageType="afrl" NumberMessagesToSkip="0"/>
</Service>
```


- An instance of UxAS runs locally on each vehicle in the system; assumes a connected network
- Multiple instances run simultaneously
 - Careful configuration and network setup
 - Can be challenging to properly configure each to be compatible (i.e. changes in one need may need to be carried to the others)
 - Simulation is more complex: each needs to connect to its own simulated vehicle (AMASE supports this through EntityNetworkModule for specific vehicle IDs)
- Distributed examples:
 - Distributed Cooperation
- Research areas: first step toward decentralized

- AMASE: multiple vehicle setup: OpenAMASE/OpenAMASE/config/amase/EntityControl.xml
 - Note: an additional vehicle ID will require a specified "single vehicle" connection

Connection to UxAS instances on other vehicles (across network)

```
<Bridge Type="LmcpObjectNetworkZeroMqZyreBridge" NetworkDevice="en0">
    <SubscribeToExternalMessage MessageType="afrl.cmasi.AirVehicleState"/>
    <SubscribeToExternalMessage</pre>
    MessageType="uxas.messages.task.AssignmentCoordination"/>
</Bridge>
<!-- Connect to AMASE on a single vehicle port (see config folder in OpenAMASE) -->
<Bridge Type="LmcpObjectNetworkTcpBridge" TcpAddress="tcp://127.0.0.1:9800"</pre>
Server="FALSE" ConsiderSelfGenerated="TRUE">
    <SubscribeToMestage MessageType="afrl.cmasi.MissionCommand" />
    <SubscribeToMessage MessageType="afrl.cmasi.LineSearchTask" />
    <SubscribeToMessage MessageType="afrl.impact.ImpactLineSearchTask" />
    <SubscribeToMessage MessageType="afrl.impact.AngledAreaSearchTask" />
    <SubscribeToMessage MessageType="afrl.cmasi.AreaSearchTask" />
    <SubscribeToMessage MessageType="afrl.cmasi.VehicleActionCommand" />
    <SubscribeToMessage MessageType="afrl.cmasi.KeepInZone" />
    <SubscribeToMessage MessageType="afrl.cmasi.KeepOutZone" />
</Bridge>
```

Connection to AMASE


```
<Service Type="Test_SimulationTime"/>
<Service Type="TaskManagerService"/>
<Service Type="AutomationRequestValidatorService"/>
<Service Type="SensorManagerService"/>
<Service Type="RouteAggregatorService"/>
<Service Type="RoutePlannerVisibilityService"/>
<Service Type="AssignmentTreeBranchBoundService" CostFunction="MINMAX" />
<Service Type="PlanBuilderService"/>
<Service Type="AutomationDiagramDataService"/>
<Service Type="WaypointPlanManagerService" VehicleID="1000"/>
<Service Type="MessageLoggerDataService">
    <LogMessage MessageType="uxas" NumberMessagesToSkip="0"/>
    <LogMessage MessageType="afrl" NumberMessagesToSkip="0"/>
</Service>
```


Decentralized

- An instance of UxAS runs locally on each vehicle in the system; vehicles dynamically connect when able; vehicles must be able to operate completely independently
- Multiple instances run simultaneously
 - Careful configuration and connection setup
 - Can be challenging to properly configure each to be compatible (i.e. changes in one need may need to be carried to the others)
 - Simulation requires radio simulation (not supported in OpenAMASE)
- Decentralized example
 - Distributed Cooperation, see use of Zyre for connection
- Research areas
 - Cooperative control

Multi-Vehicle Architecture

UAV 1

Running on same computer or wired network. Assumed msg delivery and ordering.

Assumed lossy; 'joined' notification is a hint only.

UAV 2

Decentralized

Decentralized

Talisman Sabre 2017

 Joint US-AUS military training exercise conducted biennially in Australia

 Largest combined air, land and sea military training exercise regularly undertaken by the ADF/US forces

 Purpose is to improve combat training, readiness and interporability

interoperability

Over 28,000 participants

 Opportunities for testing and demonstration of technologies relevant to the warfighter (white cell)

Algorithm Development for TS17: Persistent ISR

- Collect ISR products using multiple aircraft when tasks are:
 - Arbitrary (from known sets)
 - Prioritized
 - Re-occurringwhile adhering to ATO and in "near optimal" patterns
- Deliver collected ISR (video, ground sensor traffic, etc) on demand or when necessary

- Tasks utilize database of environmental features to plan (e.g. roads)
- Automated interpretation of ISR data (e.g. density maps)

Questions?

