Misinformation Detection with AIP

Tanish Tyagi

Cornell University

April 26, 2025

Problem Statement

- College students heavily rely on fast, unverified information from social media, messaging apps, and news feeds
- Rapid rumor spread about campus safety, health, or politics can heighten tensions, cause disruptions, and erode trust in leadership
- University administrators face growing risks and need a comprehensive, data-driven response to misinformation
- Centralizing social media feeds, official announcements, and threat intelligence enables early rumor detection and timely corrections
- Machine learning can identify patterns of false information and flag recurring sources for appropriate intervention

Demo Scenario

- In October 2023, violent antisemitic threats targeting Jewish students and locations at Cornell University caused widespread fear and disruption
- Cornell faced heavy criticism for delayed and limited communication—taking over three days to respond and failing to issue a university-wide alert
- A real-time monitoring system would have immediately flagged the threats, alerting administrators and security teams for faster action
- The system can also address other urgent campus issues (e.g., health hazards) and be scaled to other universities

Data Source 1 of 3*: Social Media Posts

- 3,000 Cornell-related posts from platforms like Twitter and Reddit during the last week of October 2023
- Preprocessed using a pipeline builder to clean text and extract relevant entities (e.g., sentiment, location)
- Cleaned data was input into a "Use LLM" block to identify posts making threats or related to threats

Figure: Social Media Post Ontology

^{*}All data for this project has been pro-grammatically generated based on real-world patterns

Data Source 2 of 3: Social Media Accounts

- 1000 Cornell-related accounts from social media websites that had posted in last week of October 2023
- Data was imputed and standardized using Code repository
- Logistic Regression classifier was regressed on features to identify whether an account should be flagged as propagating misinformation
- Model deployed to Foundry using Adapters so it could be integrated into Workshop application

ACCOUNT ID A	PRIMARY PLATFORM	ACCOUNT AGE DAY	S 🖟 VERIFIED FLAG 🚨	FOLLOWERS CNT A	BASE POST RATE	PRIOR FLAGS CNT A	STRIKE COUNT A	AVG DAILY LIKES A	AVG DAILY RESHARES	AVG DAILY COMMENTS
445	2	166	0	41	1.576586570233	0	0	18	5	4
895	2	317	1	251	0.681437142045	0	0	21	1	24
485	3	446	1	2,949	1.269867012615	0	1	128	3	10
210	3	1,644	1	180	1.132546619622	0	0	32	2	16
730	2	59	1	1,338	1.211329107388	0	0	37	10	6
734	2	697	0	537	1.557805172689	0	0	18	6	45
788	4	494	1	132	0.804191602449	0	0	14	3	3
109	0	67	1	65	2.711699976819	0	0	453	32	12
631	1	357	1	117	1.349115920597	1	0	17	2	4

Figure: Social Media Account Ontology

Data Source 3 of 3: Police Reports

- 150 police reports made to Cornell University Police Department (CUPD) in last week of October 2023
- Preprocessed using pipeline builder to clean text
- Cleaned data + output from LLM in Data Source 1 went into "Use LLM" block, which analyzed police reports to see if any threats made on social media could be corroborated

Figure: Police Report Ontology

Next Steps

- This platform serves as a proof-of-concept for a Misinformation
 Detection system that can provide university administrators with the
 ability to issue campus-wide corrections during situations that could
 impact university operations
- To further improve the accuracy of the system and the scope of issues to monitor, additional data sources can be incorporated. For example, Threat-intelligence OSINT feeds, student newspapers, and anonymous apps like Sidechat
- This system can be scaled for other universities and educational institutions, as well as for local towns and city administrators

Github:

https://github.com/anaconda121/Semester-In-Palantir