CS & IT FINE ENGINE

Operating System

Memory Management

DPP Discussion Notes

Consider a fixed partition contiguous memory management technique, where there are 5 partitions of size 100MB, 250MB, 200MB, 500MB and 300MB. All Partitions are initially empty. The following process requests

are made in the given order:

The following 2 answers are calculated for First fit, Best fit and Worst Fit policies

1. Maximum degree of multiprogramming?

2. What is the total internal fragmentation size?

For which of the following partition allocation policy the above two calculations are not exactly same as other 2 policies?

Process		Size	
→P1.		150 MB	
	P2 ·	400 MB	
	P3 .	270MB	
	P4 ·	180MB	
₽ 5 ·		80MB	

A

Best fit

В

First fit __

Worst fit

None of the above

	P4 1 80	P5 120	P ₁ , 350	P3 1 30
LOD MB	250 MB	ZMMB	500MB	BODMB

Pi	l50
P2	400
Pz	270
P4	130
Ps	<u>80</u>

I.	F.	F

2.
$$T.I.F=$$
) 20+100+20+100 +30 = $\sqrt{270}$.

II. B. F

2.
$$T \cdot I \cdot F = 20 + 40 + 50 + 100 + 30 = 270$$

2.
$$T.J.F =)80+120+350+30 =)(570MB)$$

#Q. Consider a paged memory system where the logical address is 25 bits and physical address is 33 bits. The page size is 4KB. The approximate size of

page table size is
$$21$$
 (k bytes $1k = 2^{10}$)?

P.T.S => No. of pages * P.T.E.

of pages
$$\Rightarrow$$
 $\frac{2^{25}}{2^{12}} \Rightarrow \frac{13}{2} = 8K$.

of frames =)
$$\frac{2}{2^{12}}$$
 =) $2 = \log_2 2$ = $21bit$

$$log_{2}2^{12} = 2B$$
 $log_{2}2^{12} = 2bits$

$$2^{\frac{13}{3}} \times 21 =) 21 \times 2 = 21 \times B$$

Consider a paged memory system where the page number is 12 bits and physical address is 33 bits. The page size is 2KB. The approximate size of page table size is $\frac{\parallel}{\parallel}$ k bytes (1k = 2^{10})?

P.T.S = # of pages * P.T.E
of pages => 2 33
of frames =>
$$\frac{2}{2^{11}} = 2 => 4M$$

P.T.S => $\frac{2}{2} \times 22 \text{ bits} = 11 \times B$

Consider a paged memory system which has 4k pages each with 8kbytes size. The system maintains page table of 12k bytes. Each page table entry contains frame number, 1 valid bit, 1 modified bit and 1 replacement bit. The number of frames in the main memory is $2 \cdot 2^{20}$?

$$P.T.S = \#of pages * P.T.E.$$

$$12 kB = 4k * (F+1+1+1) bits$$

$$3 12 k * 8 bits = 4k (F+3) bits$$

$$24 bits = F+3 bits$$

$$F = 21 bits. \Rightarrow 2^{1} \Rightarrow 2^{*20}$$

[MCQ]

#Q. A system has 43-bit logical addresses and 51-bit physical addresses. If the pages are 8 kB in size the number of bits required for logical page number and physical frame number will be?

A

43 bits, 51 bits

30 bits, 51 bits

43 bits, 38 bits

30 bits, 38 bits

[NAT]

#Q. Consider a logical-address space of 8 pages, with page size 1024 bytes. The physical memory contains 32 frames. The page table size is _____ bits?

P.T.S = # of pages * P.T.E.

$$= 8 * 5 \text{ bits} \qquad \log_{2} 32 = 5 \text{ bits}.$$

$$= 40 \text{ bits}$$
P.T.E = 5 bits

Consider a system using TLB for paging with TLB access time of 40ns. The hit ratio is to be used for TLB to reduce the effective memory access time from 400ns without using TLB to 280ns with using TLB, is 80 %??

without
$$TLB = 2 * M \cdot M$$

 $400 ms = 2 * M \cdot M$
 $M \cdot M = 200 ms$
With $TLB = M (TLB + MM) + (I-M) (TLB + 2 M \cdot M)$
 $280 = M (40 + 200) + (I-M) (40 + 400)$
 $280 = 240 M + 440 - 440 M / M = 0.8$

A computer system implements a 42- bit virtual address, 512GB physical address space, page size of 2KB, and an 8KB look-aside buffer (TLB) organized as direct mapped. Each page table entry contains a valid bit, a dirty bit and 2 protection bits along with the translation. The minimum length of the TLB tag in bits is 20.?

I. Frame bits:

$$\frac{51203}{2kB} =) 256M = 2$$

 $leg_2^{28} = 28 \text{ bits.}$

11.

THANK - YOU