A. Kapanowski

Fizyka - ćwiczenia nr 1

26 lutego 2024

Pochodna funkcji

Definicja 1 (F. Leja, Rachunek różniczkowy i całkowy, Warszawa 1978).

Niech f będzie funkcją odwzorowującą przedział (a, b) w zbiór $\subset \mathbb{R}$, x_0 i x będą dwoma różnymi punktami przedziału, a $h = x - x_0$. Wyrażenie

$$\frac{f(x_0+h)-f(x_0)}{h}\tag{1}$$

nazywamy ilorazem różnicowym funkcji f między punktami x i x_0 .

Przykład 1.

Weźmy funkcję liniową $f(x) = a_1 x + a_0$. Iloraz różnicowy przyjmie postać:

$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{[a_1(x_0+h)+a_0]-(a_1x_0+a_0)}{h} = \frac{a_1h}{h} = a_1.$$
 (2)

Dla funkcji stałej $(a_1 = 0)$ iloraz różnicowy wynosi zero.

Przykład 2.

Weźmy funkcję kwadratową $f(x) = a_2 x^2$. Obliczamy iloraz różnicowy

$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{a_2(x_0+h)^2 - a_2x_0^2}{h} = \frac{2a_2x_0h + a_2h^2}{h} = 2a_2x_0 + a_2h.$$
 (3)

W granicy $h \to 0$ otrzymujemy $2a_2x_0$.

Definicja 2.

Jeżeli iloraz różnicowy ma granicę dla $h \to 0$, to granicę oznaczamy $f'(x_0)$ i nazywamy pochodną funkcji f w punkcie x_0 .

Przykład 3.

Właściwości pochodnych.

f(x)	f'(x)
x^n	nx^{n-1}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$e^x = \exp(x)$	e^x
$\ln x$	$\frac{1}{x}$
a^x	$a^x \ln a$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

$$(u+v)' = u' + v',$$

$$(uv)' = u'v + v'u,$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}.$$

Zadanie 1.

Obliczyć pochodne funkcji:

a)
$$f(x) = x^3 + 2x$$
,

d)
$$f(x) = \operatorname{tg} x = \frac{\sin x}{\cos x}$$
,
e) $f(x) = \operatorname{ctg} x$.

b)
$$f(x) = x \sin x$$
,

e)
$$f(x) = \operatorname{ctg} x$$
.

c) $f(x) = \frac{x^2}{x-1}$,

Definicja 3.

Pochodna funkcji złożonej. Niech $f_1:X\to Y$ i $f_2:Y\to Z$ będą funkcjami na zbiorach $X, Y, Z \supset \mathbb{R}$ i f będzie ich złożeniem $f = f_2 \circ f_1$, tak że $f(x) = f_1$ $f_2[f_1(x)]$. Pochodna funkcji f dana jest wzorem

$$f'(x) = f_2'(y)f_1'(x), (4)$$

 $gdzie y = f_1(x).$

Zadanie 2.

Obliczyć pochodne funkcji złożonej:

a)
$$f(x) = (x^2 - 1)^5$$
, c) $f(x) = \sqrt{1 + x^2}$,
b) $f(x) = \sin(3x + 5)$, d) $f(x) = \ln(\sin x)$.

c)
$$f(x) = \sqrt{1 + x^2}$$

b)
$$f(x) = \sin(3x + 5)$$

d)
$$f(x) = \ln(\sin x)$$
.

Całki

Funkcja pierwotna

Definicja 4 (F. Leja, Rachunek różniczkowy i całkowy, Warszawa 1978).

Funkcję F nazywamy funkcją pierwotną funkcji f jeśli:

$$F'(x) = f(x). (5)$$

Inaczej mówimy o *całce nieoznaczonej* $F(x) = \int f(x)dx$. Obliczanie funkcji pierwotnej do f nazywamy całkowaniem funkcji f.

Przykład 4 (właściwości całek).

Funkcja pierwotna wyznaczona jest z dokładnością do stałej:

$$[F(x) + C]' = F'(x) + 0 = f(x).$$
(6)

Stałą C nazywamy stałq całkowania.

f(x)	$\int f(x)dx$
x^n	$\frac{1}{n+1}x^{n+1}$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$e^x = \exp(x)$	e^x
$\frac{1}{x}$	$\ln x$

$$\int (f(x) + g(x)) dx = \int f(x)dx + \int g(x)dx,$$
$$\int Af(x)dx = A \int f(x)dx.$$

Zadanie 3.

Oblicz:

a)
$$\int 3\cos x dx$$
,

b)
$$\int (x^3 - 5x + 2) dx$$
.

Związek całki z polem

Weźmy f - funkcję ciągłą i dodatnią w [a,b] i P=P(x) pole ograniczone krzywą, osią odciętych i rzędnymi w a i x (Rys. 1). Podzielmy powierzchnię P na wiele cienkich pasków o szerokości h. Zakładając, że zarówno x, jak i $x+h \in [a,b]$, różnica P(x+h)-P(x) równa jest powierzchni paska i spełnia nierówności

$$f(x_{min})h \leqslant P(x+h) - P(x) \leqslant f(x_{max})h, \tag{7}$$

gdzie $f(x_{min})$ to najmniejsza, a $f(x_{max})$ największa wartość funkcji f w przedziałe [x, x + h]. Dzieląc obustronnie przez h otrzymujemy

$$f(x_{min}) \leqslant \frac{P(x+h) - P(x)}{h} \leqslant f(x_{max}). \tag{8}$$

Dla $h \to 0$ mamy $f(x_{min}) \to f(x)$ i $f(x_{max}) \to f(x)$, a iloraz różnicowy przechodzi w pochodną, dostajemy więc równanie:

$$P'(x) = f(x). (9)$$

Rysunek 1. Pole ograniczone krzywą.

Tak zdefiniowane pole jest więc funkcją pierwotną funkcji f. Jak już wiemy, pierwotną zawsze otrzymujemy z dokładnością do stałej, tak więc

$$P(x) = F(x) + C. (10)$$

Stałą całkowania otrzymujemy z warunku P(a)=0 (skoro przez P oznaczyliśmy pole pomiedzy a a x). Stąd C=-F(a). Ostatecznie

$$P(x) = F(x) - F(a). \tag{11}$$

Pole zaciemnione jak na Rys. 1 przyjmuje więc wartość F(b)-F(a). Alternatywnie zapisujemy to w postaci

$$P = \int_{a}^{b} f(x)dx. \tag{12}$$

Zadanie 4. Oblicz:

a) $\int_0^{\pi} \sin x dx,$

b) $\int_0^1 x^2 dx$.

Rysunki

Rysunek 2. Wybrane funkcje elementarne. $\,$

Rysunek 3. Wybrane funkcje trygonometryczne.