Topaklandırma

Dr. Öğr. Üyesi Işık İlber Sırmatel

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Kontrol Anabilim Dalı Kaynak (source)

Lecture Slides for Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. Stephen Boyd, Lieven Vandenberghe

Konu listesi

1. Tanım ve örnekler

2. Algoritma (topaklandırma)

3. Örnek (çalışma şekli)

Tanım ve örnekler

Bölüm 1

Topaklandırma (clustering)

- ► N adet n-vektör $x_1, x_2 \dots, x_N$ verilsin
- ▶ amaç: vektörleri k adet grup olarak ayır
- ▶ not: ayırma, topaklandırma ve bölüntüleme (partitioning) kavramlarını burada eş anlamlı kullanıyoruz
- ▶ aynı gruptaki vektörlerin birbirine yakın olmasını isteriz

Uygulama alanları

- konu keşfi (topic discovery) ve belge sınıflandırma (classification)
 - $-x_i$ belge i'nin sözcük sayısı histogramı
- ► hasta topaklandırma
 - $-x_i$ hasta i'nin özellikleri, tahlil sonuçları, semptomlar
- ▶ müsteri piyasa bölümlendirmesi (market segmentation)
 - $-\ x_i$ müşteri i'nın alışveriş geçmişi ve diğer özellikleri
- ▶ görüntü renk sıkıştırma (compression)
 - x_i RGB piksel değerleri
- ekonomik sektörler
 - x_i şirket i'nin finansal özellikleri

Topaklandırma amaç fonksiyonu

- ▶ grup j, $G_j \subset \{1, ..., N\}$ ile gösterilir (j = 1, ..., k)
- $lacktriangleq x_i$ 'in dahil olduğu grup c_i ile gösterilir: $i \in G_{c_i}$
- grup temsilcileri: n-vektörler z_1, \ldots, z_k
- ► topaklandırma amaç fonksiyonu (objective function):

$$J^{\mathsf{topak}} = \frac{1}{N} \sum_{i=1}^{N} \|x_i - z_{c_i}\|^2$$

(ilgili temsilcilerle vektörler arasındaki mesafenin ortalama-karesel değeri)

- lacktriangle $J^{ ext{topak}}$ 'nin küçük olması iyi topaklandırma anlamına gelir
- ▶ amaç: J^{topak} 'yi minimize edecek şekilde topaklandırmayı (c_i) ve temsilcileri (z_j) seç

Algoritma (topaklandırma)

Bölüm 2

Algoritma (topaklandırma)

verilen temsilciler için vektörleri bölüntüleme (partitioning)

- \blacktriangleright temsilcilerin (z_1,\ldots,z_k) verildiğini farz edelim
- ightharpoonup vektörler gruplara nasıl atanır? (yani, c_1, \ldots, c_N nasıl seçilir?)
- $ightharpoonup c_i J^{\text{topak}}$ 'de sadece $||x_i z_{c_i}||^2$ teriminde mevcuttur
- ▶ c_i üzerinden minimize etmek için, $\|x_i z_{c_i}\|^2 = \min_j \|x_i z_j\|^2$ 'yi sağlayacak şekilde c_i seçilir (yani, her x_i vektörü kendisine en yakın temsilci z_j 'ye atanır)

Algoritma (topaklandırma)

verilen bölüntü için temsilcileri seçme

- ightharpoonup verilen bölüntü G_1, G_2, \ldots, G_k için, $J^{\text{topak'}}$ yi minimize edecek şekilde temsilciler z_1, z_2, \ldots, z_k nasıl seçilir?
- ▶ J^{topak} k adet toplamın (her z_j için bir tane) toplamı olarak ayrılabilir:

$$J^{\text{topak}} = J_1 + J_2 + \dots + J_k, \qquad J_j = \frac{1}{N} \sum_{i \in G} \|x_i - z_j\|^2$$

- ightharpoonup dolayısıyla, z_j 'yi kendi grubundaki noktalara olan ortalama-karesel uzaklığı minimize edecek şekilde seçeriz
- **b** bu z_j noktası, j grubundaki noktaların ortalamasıdır (yani, geometrik merkezidir (centroid))

$$z_j = \frac{1}{|G_j|} \sum_{i \in G_j} x_i$$

(not: $|G_j|$, G_j bölüntüsündeki nokta sayısıdır)

k-ortalamalar (k-means) algoritması

- bölüntü ve temsilciler sırayla güncellenir
- ightharpoonup amaç fonksiyonu J^{topak} her adımda azalır

verilenler: $x_1, x_2, \dots, x_n \in \mathbb{R}^n; z_1, z_2, \dots, z_n \in \mathbb{R}^n$ tekrarla:

- 1) bölüntüyü güncelle: i'yi G_j 'ye ata, $j = \operatorname*{argmin}_{j'} \|x_i z_{j'}\|^2$
- 2) geometrik merkezleri güncelle: $z_j = \frac{1}{|G_j|} \sum_{i \in G_j} x_i$

 $|z_1,z_2,\dots,z_n|$ değişmeyi bıraktığında **dur**

k-ortalamalar algoritmasının yakınsaması

- $ightharpoonup J^{ ext{topak}}$ her adımda $(z_1, z_2, \dots, z_n$ değişmeyi bırakana kadar) azalır
- lacktriangle ancak (genel olarak) k-ortalamalar algoritması J^{topak} 'yi minimize eden bölüntüyü bulmaz
- ightharpoonup k-ortalamalar algoritması buluşsal (heuristic) bir yöntemdir: $J^{\mathrm{topak'}}$ nin mümkün olan en küçük değerini bulma garantisi yoktur
- ightharpoonup sonuçta elde edilen bölüntü (ve karşılık gelen $J^{ ext{topak}}$ değeri) başlangıç temsilcilerine bağlı olarak değişebilir
- yaygın yaklaşım:
 - k-ortalamalar algoritmasını farklı (genellikle rastgele seçilmiş) başlangıç temsilcileriyle 10 defa çalıştır
 - en küçük J^{topak} değerini veren bölüntüyü seç

Bölüm 3

Örnek (çalışma şekli)

veri (N adet n-vektör $x_1, x_2 \dots, x_N$)

$k\text{-}\mathrm{ortalamalar}$ algoritması - Örnek

$k\text{-}\mathrm{ortalamalar}$ algoritması - Örnek

$k\text{-}\mathrm{ortalamalar}$ algoritması - Örnek

sonuç (yineleme 15)

