Sprawozdanie Lista 5

Paweł Krzyszczak

styczeń 2025

Wstęp: Przedstawienie problemu

Problemem jest rozwiązanie układu równań liniowych

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

dla danej macierzy współczynników $\mathbf{A} \in \mathbb{R}^{n \times n}$ i wektora prawych stron $\mathbf{b} \in \mathbb{R}^n$, gdzie $n \geq 4$, a $\mathbf{x} \in \mathbb{R}^n$ jest wektorem niewiadomych.

Macierz **A** jest macierzą rzadką (tzn. zawierającą dużą liczbę elementów zerowych) o strukturze blokowej, której układ przedstawia się następująco:

$$\mathbf{A} = \begin{pmatrix} A_1 & C_1 & 0 & 0 & 0 & \cdots & 0 \\ B_2 & A_2 & C_2 & 0 & 0 & \cdots & 0 \\ 0 & B_3 & A_3 & C_3 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & B_{v-2} & A_{v-2} & C_{v-2} & 0 \\ 0 & \cdots & 0 & 0 & B_{v-1} & A_{v-1} & C_{v-1} \\ 0 & \cdots & 0 & 0 & 0 & B_v & A_v \end{pmatrix},$$

gdzie $v=n/\ell$, zakładając że n jest podzielne przez ℓ , a $\ell \geq 2$ jest rozmiarem kwadratowych macierzy bloków: $\mathbf{A}_k, \mathbf{B}_k, \mathbf{C}_k$.

Macierze występujące w tym układzie mają następującą postać:

- $\mathbf{A}_k \in \mathbb{R}^{\ell \times \ell}$, dla $k = 1, \dots, v$ macierze geste,
- 0 macierze zerowe o wymiarze $\ell \times \ell$,
- $\mathbf{B}_k \in \mathbb{R}^{\ell \times \ell}$, dla $k=2,\ldots,v$ macierze, które mają tylko dwie ostatnie kolumny niezerowe:

$$\mathbf{B}_{k} = \begin{pmatrix} 0 & \cdots & 0 & b_{1,\ell-1}^{k} & b_{1,\ell}^{k} \\ 0 & \cdots & 0 & b_{2,\ell-1}^{k} & b_{2,\ell}^{k} \\ \vdots & & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & b_{\ell,\ell-1}^{k} & b_{\ell,\ell}^{k} \end{pmatrix},$$

• $\mathbf{C}_k \in \mathbb{R}^{\ell \times \ell}$, dla $k = 1, \dots, v - 1$ – macierze diagonalne:

$$\mathbf{C}_{k} = \begin{pmatrix} c_{1}^{k} & 0 & 0 & \cdots & 0 \\ 0 & c_{2}^{k} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & c_{\ell-1}^{k} & 0 \\ 0 & \cdots & 0 & 0 & c_{\ell}^{k} \end{pmatrix}.$$

W przypadku dużych rozmiarów macierzy, klasyczne przechowywanie macierzy $\bf A$ jako tablicy o wymiarach $n\times n$ oraz stosowanie standardowych algorytmów dla macierzy gęstych nie są efektywne. W związku z tym, konieczne jest zastosowanie specjalnej struktury danych, która przechowuje jedynie elementy niezerowe. Do tego celu została użyta biblioteka SparseArrays. Zakłada się, że dostęp do elementu macierzy następuje w czasie stałym – O(1), jednak w praktyce może to nie zawsze mieć miejsce.

Algorytmy zostały zmodyfikowane w taki sposób, aby uwzględniały specyficzną strukturę macierzy \mathbf{A} , czyli jej rzadkość i regularność rozkładu elementów zerowych i niezerowych. Wszystkie algorytmy zostały zaimplementowane w języku Julia.

Aby przyspieszyć działanie algorytmów, opracowano funkcje pomocnicze, które są kluczowe w pracy z macierzą o strukturze blokowej, gdzie każdy blok ma wymiary $\ell \times \ell$. Funkcje te mają na celu efektywne wyznaczanie indeksów granicznych wierszy i kolumn należących do poszczególnych bloków. Działanie tych funkcji zostało przedstawione poniżej.

Funkcja last_row(k, 1, n)

Funkcja ta wyznacza ostatni wiersz dla bloku zawierającego wiersz k. Jest to istotne do określenia zakresu wierszy w danym bloku. Zwraca wartość:

$$last_row(k, \ell, n) = min\left(\ell + \ell \cdot \left\lfloor \frac{k+1}{\ell} \right\rfloor, n\right),$$

gdzie:

- ℓ rozmiar bloku (liczba wierszy w każdym bloku),
- n całkowita liczba wierszy w macierzy.

Funkcja ta pozwala na przesunięcie indeksu k w obrębie jego bloku, z uwzględnieniem ograniczenia wynikającego z całkowitego rozmiaru macierzy n.

Funkcja last_column(k, 1, n)

Funkcja ta wyznacza ostatnia kolumne dla bloku zawierającego kolumne k. Zwraca wartość:

last
$$\operatorname{column}(k, \ell, n) = \min(k + \ell, n),$$

gdzie:

- k indeks kolumny,
- ℓ rozmiar bloku (liczba kolumn w każdym bloku),
- \bullet n całkowita liczba kolumn w macierzy.

Funkcja ta zapewnia, że indeks ostatniej kolumny nie przekroczy rozmiaru macierzy.

Funkcja first_column(i, 1)

Funkcja ta wyznacza pierwszą kolumnę bloku, do którego należy kolumna i. Zwraca wartość:

$$\operatorname{first_column}(i, \ell) = \max \left(\ell \cdot \left| \frac{i-1}{\ell} \right| - 1, 1\right),$$

gdzie:

- i indeks kolumny,
- ℓ rozmiar bloku.

Funkcja ta oblicza początek bloku, w którym znajduje się kolumna i, i zapewnia, że indeks nie będzie mniejszy niż 1.

1 Metoda eliminacji Gaussa

Metoda eliminacji Gaussa jest jedną z technik rozwiązywania układów równań liniowych w postaci:

$$A\mathbf{x} = \mathbf{b}$$
,

gdzie $A \in \mathbb{R}^{n \times n}$ jest macierzą współczynników, $\mathbf{x} \in \mathbb{R}^n$ jest wektorem niewiadomych, a $\mathbf{b} \in \mathbb{R}^n$ jest wektorem prawych stron.

Metoda ta polega na przekształceniu macierzy A do postaci trójkatnej górnej U:

$$U\mathbf{x} = \mathbf{b}'$$
.

gdzie \mathbf{b}' jest przekształconym wektorem prawych stron. Operację tę wykonuje się za pomocą operacji elementarnych na wierszach, eliminując elementy poniżej głównej przekątnej, co umożliwia rozwiązanie układu za pomocą podstawienia wstecznego.

1.1 Wariant bez wyboru elementu głównego

1.1.1 Idea matematyczna

Proces eliminacji polega na zerowaniu elementów poniżej przekątnej. Dla każdej kolumny k, zerujemy elementy poniżej a_{kk} poprzez odjęcie odpowiednich wielokrotności wiersza k od kolejnych wierszy. Mnożnik m_{ik} obliczamy jako:

$$m_{ik} = \frac{A[i,k]}{A[k,k]}.$$

W kroku k, dla i > k, elementy macierzy są modyfikowane:

$$A[i,j] \leftarrow A[i,j] - m_{ik}A[k,j], \ \forall j \ge k,$$

a wektor prawych stron:

$$b[i] \leftarrow b[i] - m_{ik}b[k].$$

Po wykonaniu i - tych operacji wszystkie wartości poniżej przekątnej w i - tej kolumnie zostaną zerowe. Po n - 1 krokach układ sprowadza się do układu z macierzą trójkątną górną, który można rozwiązać przez podstawienie wstecz.

Po zakończeniu eliminacji, macierz A jest przekształcona w macierz trójkątną górną U, którą rozwiązujemy poprzez podstawienie wstecz (zaczynając od ostatniego wiersza):

$$x_n = \frac{b_n}{u_{nn}}, \quad x_i = \frac{b'_i - \sum_{j=i+1}^n u_{ij} x_j}{u_{ii}}, \ i = n-1, \dots, 1.$$

Warto wspomnieć o problemach związanych z tym algorytmem. Gdy wartości na diagonali są bliskie zeru, może dojść do dzielenia przez zero i błędów numerycznych. Rozwiązaniem tego problemu jest wariant algorytmu z częściowym wyborem elementu głównego, który będzie opisany poniżej.

1.1.2 Pseudokod

Algorithm 1 Eliminacja Gaussa bez wyboru elementu głównego

```
Input: macierz rzadka A w formacie SparseMatrixCSC, wektor b, rozmiar bloku \ell
    Output: wektor \mathbf{x}, rozwiązanie układu \mathbf{A}\mathbf{x} = \mathbf{b}
 1 n \leftarrow \text{rozmiar macierzy } \mathbf{A}
 \mathbf{z} \times \leftarrow wektor zer o rozmiarze n
 3 for k \leftarrow 1 to n-1 do
         lr \leftarrow \text{last row}(k, \ell, n)
         lc \leftarrow \text{last\_column}(k, \ell, n)
 5
         for i \leftarrow k+1 to lr do
 6
              if |A[k,k]| < 1 \times 10^{-12} then
               error: Element na przekątnej A jest zbyt bliski zeru
 8
 9
              m \leftarrow \tfrac{A[i,k]}{A[k,k]} \ A[i,k] \leftarrow 0
10
              for j \leftarrow k+1 to lc do
11
               A[i,j] \leftarrow A[i,j] - m \cdot A[k,j]
12
13
              b[i] \leftarrow b[i] - m \cdot b[k]
14
         end
15
16 end
17 for i \leftarrow n down to 1 do
         lc \leftarrow \text{last\_column}(i, \ell, n) \quad sum \leftarrow 0
18
         for j \leftarrow i + 1 to lc do
19
20
             sum \leftarrow sum + A[i,j] \cdot x[j]
         \mathbf{end}
21
         x[i] \leftarrow \tfrac{b[i] - sum}{A[i,i]}
22
23 end
24 return x
```

1.1.3 Analiza złożoności

• Złożoność czasowa:

Funkcja wykonuje eliminację Gaussa, która wymaga zagnieżdżonych pętli iterujących po wierszach i kolumnach macierzy, prowadząc do złożoności $O(n^3)$.

• Złożoność pamięciowa:

Wymagania pamięciowe wynoszą O(n). ponieważ macierz **A** jest przechowywana za pomocą **Sparse Arrays**, co zapewnia dostęp w czasie stałym do elementów macierzy. Wektor **b** również zajmuje pamięć w rozmiarze O(n).

1.1.4 Wyniki eksperymentu

Wykres z danych z pliku: Result_100000_1_1/gauss_elimination_error

Rysunek 1: Wykres z wartościa błędem względnym dla danych n=500000

1.2 Wariant z częściowym wyborem elementu głównego

1.2.1 Idea matematyczna

Wariant ten rozwiązuje problem wartości bliskich zeru na przekątnej macierzy \mathbf{A} przez częściowy wybór elementu głównego, czyli elementu macierzy znajdującego się na diagonali, którego w k-tym kroku używamy do wyzerowania pozostałych elementów w k-tej kolumnie. Jest to element, przez który dzielimy, chcąc uzyskać mnożnik (A[k,k]).

W każdym kroku wybierany jest element o największej wartości bezwzględnej w bieżącej kolumnie jako element główny:

$$|a_{m,k}| = \max_{k \le i \le n} |a_{i,k}|.$$

Następnie musimy zamienić wiersze, aby ten element stał się elementem głównym. Zwykła zamiana jest dosyć kosztowna, dlatego zamiast tego stosujemy wektor permutacji wierszy p. Przechowujemy w nim informacje o aktualnej pozycji danego wiersza. W związku z tym, zamiast odwoływać się do danego wiersza bezpośrednio, będziemy odwoływać się do jego pozycji zapisanej w wektorze permutacji. Zmieniając wiersze w macierzy $\bf A$, musimy również zaktualizować współrzędne w wektorze prawych stron $\bf b$.

Reszta algorytmu, czyli eliminacja Gaussa i podstawienie wsteczne, jest analogiczna do wersji bez wyboru elementu głównego.

1.2.2 Pseudokod

Algorithm 2 Eliminacja Gaussa z częściowym wyborem elementu głównego

```
Input: macierz rzadka A w formacie SparseMatrixCSC, wektor b, rozmiar bloku \ell
    Output: wektor \mathbf{x}, rozwiązanie układu \mathbf{A}\mathbf{x} = \mathbf{b}
 1 n \leftarrow \text{rozmiar macierzy } \mathbf{A}
 \mathbf{p} \leftarrow [1, 2, \dots, n] // \text{ Tablica permutacji wierszy}
 \mathbf{x} \leftarrow \text{wektor zer o rozmiarze } n
 4 for k \leftarrow 1 to n-1 do
         lr \leftarrow \text{last\_row}(k, \ell, n)
 5
         lc \leftarrow \text{last\_column}(k, 2\ell, n)
 6
         max index \leftarrow k
         max\_element \leftarrow 0.0
 8
         for i \leftarrow k to lr do
 9
             current \leftarrow |A[p[i], k]|
10
             if current > max element then
11
                  max \ element \leftarrow current
12
                  max \quad index \leftarrow i
13
             end
14
15
         end
         Zamień p[k] z p[max index] // Aktualizacja permutacji wierszy
16
         for i \leftarrow k+1 to lr do
17
             if |A[p[k], k]| < 1 \times 10^{-12} then
18
              error: Element na przekątnej A jest zbyt bliski zeru
19
              end
20
             m \leftarrow \frac{A[p[i],k]}{A[p[k],k]}
21
             A[p[i], k] \leftarrow 0
22
             for j \leftarrow k+1 to lc do
23
              A[p[i], j] \leftarrow A[p[i], j] - m \cdot A[p[k], j]
24
25
             b[p[i]] \leftarrow b[p[i]] - m \cdot b[p[k]]
26
         end
27
28 end
29 for i \leftarrow n down to 1 do
        lc \leftarrow \text{last column}(p[i], 2\ell, n)
30
         sum \leftarrow 0
31
         for j \leftarrow i + 1 to lc do
32
             sum \leftarrow sum + A[p[i], j] \cdot x[j]
33
         end
34
        x[i] \leftarrow \tfrac{b[p[i]] - sum}{A[p[i],i]}
35
36 end
37 return x
```

1.2.3 Analiza złożoności

• Złożoność czasowa

Dodanie wyboru elementu głównego (maksymalny element w kolumnie) zwiększa czas wykonywania, ale nadal jest to złożoność $O(n^3)$.

Złożoność pamięciowa

Wymagania pamięciowe wynoszą O(n), ponieważ macierz $\bf A$ jest przechowywana z użyciem Sparse Arrays, co zapewnia dostęp w czasie stałym do elementów macierzy, a wektor $\bf b$, podobnie jak tablica permutacji $\bf p$, zajmuje także O(n) pamięci.

1.2.4 Wyniki eksperymentu

es z danych z pliku: Result_100000_1_1/gauss_elimination_with_main_eleme

Rysunek 2: Wykres z wartościa błędem względnym dla danych n=500000

2 Rozkład LU

Rozkład LU polega na rozkładzie macierzy $A \in \mathbb{R}^{n \times n}$ na iloczyn dwóch macierzy:

$$A = LU$$

gdzie \mathbf{L} (lower) jest macierzą dolnotrójkątną, w której zapisywane są mnożniki, a \mathbf{U} (upper) jest macierzą górnotrójkątną, jak w metodzie eliminacji Gaussa. Jedna z macierzy, w tym przypadku macierz \mathbf{L} , ma na diagonali same jedynki, co zapewnia jednoznaczność rozkładu. Następnie układ równań $A\mathbf{x} = \mathbf{b}$ można rozwiązać w dwóch krokach:

- 1. Rozwiązanie $L\mathbf{y} = \mathbf{b}$ za pomocą podstawienia w przód.
- 2. Rozwiązanie $U\mathbf{x} = \mathbf{y}$ za pomocą podstawienia wstecz.

Mając raz wyznaczony rozkład $\mathbf{L}\mathbf{U}$ macierzy \mathbf{A} , można łatwo i mniejszym kosztem rozwiązywać układ równań dla różnych wektorów prawych stron.

2.1 Wariant bez wyboru elementu głównego

${\bf 2.1.1} \quad {\bf Idea} \ {\bf matematyczna}$

Na podstawie wcześniejszych rozważań, można zauważyć, że metoda eliminacji Gaussa tak właściwie tworzy macierz \mathbf{U} , a po dodaniu zapisu mnożników, zamiast zerowania, tworzy również macierz \mathbf{L} .

Macierze ${\bf L}$ i ${\bf U}$ są przechowywane w jednym obiekcie ${\bf A}$, co oszczędza pamięć. Po zakończeniu algorytmu macierz ${\bf A}$ przyjmuje postać:

$$A = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ l_{21} & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \dots & u_{nn} \end{bmatrix},$$

gdzie elementy poniżej przekątnej reprezentują L, a powyżej U.

2.1.2 Pseudokod

```
Algorithm 3 Rozkład LU macierzy A bez wyboru elementu głównego
```

```
Input: macierz rzadka \bf A w formacie SparseMatrixCSC, rozmiar bloku \ell
   Output: macierz A po dekompozycji LU
 1 n \leftarrow \text{rozmiar pierwszego wymiaru } \mathbf{A}
 2 for k \leftarrow 1 to n-1 do
        lr \leftarrow \text{last row}(k, \ell, n)
 3
        lc \leftarrow \text{last\_column}(k, \ell, n)
 4
        for i \leftarrow k+1 to lr do
 5
            if |A[k,k]| < 1 \times 10^{-12} then
 6
             error: Element na przekątnej A jest zbyt bliski zeru
 7
            \mathbf{end}
 8
            m \leftarrow \frac{A[i,k]}{A[k,k]}
 9
             A[i,k] \leftarrow m
10
            for j \leftarrow k+1 to lc do
11
             A[i,j] \leftarrow A[i,j] - m \cdot A[k,j]
12
13
        end
14
15
   end
   return A
```

2.1.3 Analiza złożoności

Złożoność czasowa

Wyznaczanie rozkładu LU (bez wyboru elementu głównego) również wymaga zagnieżdzonych pętli, co daje złożoność $O(n^3)$.

• Złożoność pamięciowa

Wymagania pamięciowe wynoszą O(n). ponieważ macierz **A** jest przechowywana za pomocą **Sparse Arrays**, co zapewnia dostęp w czasie stałym do elementów macierzy. Wektor **b** również zajmuje pamięć w rozmiarze O(n).

2.2 Wariant z częściowym wyborem elementu głównego

2.2.1 Idea matematyczna

Wariant ten jest analogiczny do odpowiadającego mu wariantu z metody eliminacji Gaussa. On także rozwiązuje problem wartości bliskich zeru na przekątnej macierzy \mathbf{A} , przez częściowy wybór elementu głównego.

Zatem jako element główny wybieramy:

$$|a_{m,k}| = \max_{k \le i \le n} |a_{i,k}|.$$

Do zamiany wierszy w tym przypadku również używamy tablicy permutacji.

Reszta algorytmu jest analogiczna jak w wersji bez wyboru elementu głównego.

2.2.2 Pseudokod

Algorithm 4 Rozkład LU macierzy A z częściowym wyborem elementu głównego Input: macierz rzadka A w formacie SparseMatrixCSC, rozmiar bloku ℓ Output: macierz A po dekompozycji LU oraz tablica permutacji p $n \leftarrow \text{rozmiar pierwszego wymiaru } \mathbf{A}$ 2 $p \leftarrow [1, 2, ..., n]$ // Tablica permutacji wierszy з for $k \leftarrow 1$ to n-1 do $lr \leftarrow \text{last row}(k, \ell, n)$ $lc \leftarrow \text{last column}(k, \ell, n)$ 5 $max \quad index \leftarrow k$ 6 $max \ element \leftarrow 0.0$ 7 for $i \leftarrow k$ to lr do $current \leftarrow |A[p[i], k]|$ 9 $\mathbf{if}\ current > max_element\ \mathbf{then}$ 10 $max_element \leftarrow current$ 11 $max_index \leftarrow i$ 12 end 13 end 14 Zamień p[k] z p[max index] // Aktualizacja permutacji wierszy 15 for $i \leftarrow k+1$ to lr do 16 if $|A[p[k], k]| < 1 \times 10^{-12}$ then 17 error: Element na przekątnej A jest zbyt bliski zeru 18 end 19 $m \leftarrow \tfrac{A[p[i],k]}{A[p[k],k]}$ 20 $A[p[i], k] \leftarrow m$ 21 22 for $j \leftarrow k+1$ to lc do

2.2.3 Analiza złożoności

end

end

27 return A, p

23

24

25 | 6 26 end $A[p[i], j] \leftarrow A[p[i], j] - m \cdot A[p[k], j]$

Złożoność czasowa

Rozkład LU z wyborem elementu głównego (w przypadku macierzy rzadkiej) ma podobną złożoność do klasycznego rozkładu LU, czyli $O(n^3)$.

Złożoność pamięciowa

Wymagania pamięciowe wynoszą O(n). ponieważ macierz **A** jest przechowywana za pomocą **Sparse Arrays**, co zapewnia dostęp w czasie stałym do elementów macierzy. Wektor **b** również zajmuje pamięć w rozmiarze O(n).

3 Rozwiązanie układu równań $A\mathbf{x} = \mathbf{b}$ z wykorzystaniem rozkładu LU

3.1 Idea matematyczna

Mając rozkład $\mathbf{L}\mathbf{U}$ macierzy \mathbf{A} można rozbić układ równań $\mathbf{A}\mathbf{x}=\mathbf{b}$ na dwa podukłady z macierzami trójkątnymi:

• $\mathbf{L}\mathbf{y} = \mathbf{b}$, gdzie rozwiązanie to podstawienie w przód (analogicznie jak przekształcenia wykonywane przy tworzeniu macierzy \mathbf{U} z macierzy \mathbf{A}):

$$y_i = b_i - \sum_{j=1}^{i-1} l_{ij} y_j, \quad i = 1, \dots, n.$$

 \bullet Ux = y, gdzie rozwiązanie to podstawienie wstecz (jak w eliminacji Gaussa):

$$x_i = \frac{y_i - \sum_{j=i+1}^n u_{ij} x_j}{u_{ii}}, \quad i = n, \dots, 1.$$

3.2 Pseudokod

Algorithm 5 Rozwiązanie układu równań $\mathbf{A}\mathbf{x} = \mathbf{b}$ z wykorzystaniem rozkładu LU bez wyboru elementu głównego Input: macierz rzadka \mathbf{A} w formacie SparseMatrixCSC, wektor \mathbf{b} , rozmiar bloku ℓ

Output: Wektor \mathbf{x} , rozwiązanie układu $\mathbf{A}\mathbf{x} = \mathbf{b}$

```
1 n \leftarrow \text{rozmiar macierzy } \mathbf{A}
    y \leftarrow \text{wektor zer o rozmiarze } n
 x \leftarrow \text{wektor zer o rozmiarze } n
 4 for i \leftarrow 1 to n do
          sum \leftarrow 0.0
          fc \leftarrow \text{first column}(i, \ell)
 6
          for j \leftarrow fc to i-1 do
 7
            | sum \leftarrow sum + A[i,j] \cdot y[j] 
 8
         y[i] \leftarrow b[i] - sum
10
11 end
12 for i \leftarrow n down to 1 do
          sum \leftarrow 0.0
13
          lc \leftarrow \text{last column}(i, \ell, n)
14
          for j \leftarrow i + 1 to lc do
15
           sum \leftarrow sum + A[i,j] \cdot x[j]
16
17
         x[i] \leftarrow \frac{y[i] - sum}{A[i,i]}
18
19 end
```

20 return x

 $\overline{\mathbf{Algorithm}}$ 6 Rozwiązanie układu równań $\mathbf{Ax} = \mathbf{b}$ z wykorzystaniem rozkładu LU z częściowym wyborem elementu głównego

Input: macierz rzadka $\bf A$ w formacie SparseMatrixCSC, wektor $\bf b$, tablica permutacji $\bf p$, rozmiar bloku ℓ **Output:** Wektor $\bf x$, rozwiązanie układu $\bf A x = \bf b$

```
1 n \leftarrow \text{rozmiar macierzy } \mathbf{A}
 x \leftarrow \text{wektor zer o rozmiarze } n
 з y \leftarrow wektor zer o rozmiarze n
 4 for i \leftarrow 1 to n do
         sum \leftarrow 0.0
 5
          fc \leftarrow \text{first column}(p[i], \ell)
 6
         for j \leftarrow fc to i-1 do
 7
             sum \leftarrow sum + A[p[i], j] \cdot y[j]
 8
         \mathbf{end}
 9
         y[i] \leftarrow b[p[i]] - sum
10
11 end
12 for i \leftarrow n down to 1 do
         sum \leftarrow 0.0
13
          lc \leftarrow \text{last\_column}(p[i], \ell, n)
14
         for j \leftarrow i + 1 to lc do
15
           sum \leftarrow sum + A[p[i], j] \cdot x[j]
16
         end
17
         x[i] \leftarrow \frac{y[i] - sum}{A[p[i], i]}
18
19 end
20 return x
```

3.3 Analiza złożoności

• Złożoność czasowa

Rozwiązywanie układu równań z rozkładem LU zarówno z wyborem elementu głównego i nie ma złożoność $\mathcal{O}(n^2).$

• Złożoność pamięciowa

Wymagania pamięciowe wynoszą O(n). ponieważ macierz **A** jest przechowywana za pomocą Sparse Arrays, co zapewnia dostęp w czasie stałym do elementów macierzy. Wektor **b** również zajmuje pamięć w rozmiarze O(n).

3.4 Wyniki eksperymentu

Rysunek 3: Wykres z wartościa błędem względnym Ax=b rozkładu LU dla danych n=500000

Rysunek 4: Wykres z wartościa błędem względnym Ax=b rozkładu LU z wyborem elementu głównym dla danych $n\!=\!500000$

4 Wnioski i obserwacje

W przypadku rozwiązywania układu równań z macierzą blokową o określonej strukturze, korzystniejsze będzie zastosowanie jednej z metod wykorzystujących częściowy wybór elementu głównego. Choć te metody są nieco wolniejsze, osiągają znacznie mniejsze błędy względne, co ma dla nas istotne znaczenie.

Metoda Gaussa z częściowym wyborem elementu głównego zazwyczaj działa szybciej, dlatego może być odpowiednia, gdy zależy nam na czasie, nawet jeśli różnica w czasie obliczeń nie jest znaczna.

Jeśli natomiast musimy wielokrotnie rozwiązywać układ równań dla tej samej macierzy A, ale różnych wektorów b, bardziej opłacalnym rozwiązaniem będzie metoda z rozkładem LU z częściowym wyborem elementu głównego, ponieważ w tej sytuacji jest bardziej efektywna.