Modeling Phonetic Context with Non-random Forests for Speech Recognition

Hainan Xu

Center for Language and Speech Processing, Johns Hopkins University

September 4, 2015

Hainan Xu September 4, 2015 1 / 25

Outline

In this presentation, we will

- Give a very brief introduction of how decision trees are used in the standard automatic speech recognition frameworks.
- Present our method that generalizes from using one deision tree to multiple trees (the non-random forest) which is combined with ensemble methods to improve recognition accuracy.

Speech Recognition 101, HMMs

 Till this day, the Hidden Markov Model is still the most successful model for speech recognition.

- The 3-state *HMM* assumes there are "stages" of acoustic realization of phones.
- Its parameters include transition probabilities p(s'|s) and emission "probabilities" p(o|s).

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९○

HMM for Speech Recognition

- We have a 3-state HMM for each "phone".
- We concatenate the phone models as word models.
- Word models are connected according to the structure of a language model to form a decoding graph.
- In decoding, given the acoustic observation, we find the most likely sequence in the graph.

Hainan Xu September 4, 2015 4 / 25

• "It's simple then. We have a model for each IPA symbol, such as t, b, h, ay, etc... TA-DA!"

5 / 25

- "It's simple then. We have a model for each IPA symbol, such as t, b, h, ay, etc... TA-DA!"
- Not so easy!

Hainan Xu

5 / 25

- "It's simple then. We have a model for each IPA symbol, such as t, b, h, ay, etc... TA-DA!"
- Not so easy!
 - t in "better" and "return"

Hainan Xu September 4, 2015 5 / 25

- "It's simple then. We have a model for each IPA symbol, such as t, b, h, ay, etc... TA-DA!"
- Not so easy!
 - t in "better" and "return"
 - t in "teacher" and "mountain"

5 / 25

Hainan Xu September 4, 2015

- "It's simple then. We have a model for each IPA symbol, such as t, b, h, ay, etc... TA-DA!"
- Not so easy!
 - t in "better" and "return"
 - t in "teacher" and "mountain"
 - r in "car" and "ray"

- "It's simple then. We have a model for each IPA symbol, such as t, b, h, ay, etc... TA-DA!"
- Not so easy!
 - t in "better" and "return"
 - t in "teacher" and "mountain"
 - r in "car" and "ray"
- And then, linguistics came up with allophones.

- "It's simple then. We have a model for each IPA symbol, such as t, b, h, ay, etc... TA-DA!"
- Not so easy!
 - t in "better" and "return"
 - t in "teacher" and "mountain"
 - r in "car" and "ray"
- And then, linguistics came up with allophones.
- But that helped just a little bit. Same allophones might still look very different in spectrograms.

Hainan Xu September 4, 2015 5 / 25

Context Matters!

WE WERE AWAY WITH WILLIAM IN SEA WORLD

- The realizations of "w" varies but similar patterns occur with the same context.
- Instead of using phones regardless of their contexts (monophones), we usually consider the phone to the left and to the right.
- A phone in such context is called a triphone.

Hainan Xu September 4, 2015 6 / 25

- Triphones
 - trees: SIL-tr+ee tr-ee+z ee-z+SIL
 - better: SIL-b+eh b-eh+t eh-t+er t-er+SIL

Hainan Xu September 4, 2015 7 / 25

- Triphones
 - trees: SIL-tr+ee tr-ee+z ee-z+SIL
 - better: SIL-b+eh b-eh+t eh-t+er t-er+SIL
- There are around 50 phones in English.

Hainan Xu

7 / 25

- Triphones
 - trees: SIL-tr+ee tr-ee+z ee-z+SIL
 - better: SIL-b+eh b-eh+t eh-t+er t-er+SIL
- There are around 50 phones in English.
- Thus around 50³ triphones.
 - We need $50^3 * 3 HMM$ states
 - Some triphones are rarely, if at all, seen in training data, but still require a model, which is a problem.

Hainan Xu September 4, 2015 7 / 25

- Triphones
 - trees: SIL-tr+ee tr-ee+z ee-z+SIL
 - better: SIL-b+eh b-eh+t eh-t+er t-er+SIL
- There are around 50 phones in English.
- Thus around 50³ triphones.
 - We need $50^3 * 3 HMM$ states
 - Some triphones are rarely, if at all, seen in training data, but still require a model, which is a problem.
- Solution: use decisions tree to create equivalence classes as units for parameter sharing.

Decision Trees

picture from

http://speechlab.sjtu.edu.cn/kyu/sites/kyu/files/teaching/Lecture02.pdf ac 8 / 25

Hainan Xu September 4, 2015

Key Factors for Decision Tree Building

- A set of questions
- An objective function to maximize, $\mathcal{F}([partial] \text{ tree})$
 - Then we could define the "gain" of a split or the "cost" of a merge.
- A stopping criteria
- Algorithm for growing the tree
 - Getting the "optimal" decision tree is NP-hard.
 - Usually a greedy algorithm is used, i.e. keep splitting the tree with the "best question" until stopping criteria is met.

Hainan Xu September 4, 2015 9 / 25

Phonetic Decision Trees

- Questions are in the form of "is the previous phone in the set {m, n, ng}?"
 Usually we want the questions to be "complete", meaning there is a single element set for each phone which you could use in a question.
- The objective function is usually the Gaussian likelihood of all data, assuming data mapped to the same leaf is generated from a Gaussian distribution.
- We predefine the number of leaves we want in the tree as the stopping criteria.
- In speech recognition, the most used tree-building algorithm is from Steve Young's paper "Tree-based state tying for high accuracy acoustic modelling".

Hainan Xu September 4, 2015 10 / 25

Building Single Phonetic Decision Tree - Algorithm

Single-tree Building Algorithm, Steve Young et al.

- 1: initialize a monophone state tree
- 2: n = number of leaves we want
- 3: **while** we have < n leaves **do**
- 4: s =the best split on the current tree
- 5: apply split *s*
- 6: end while

11 / 25

Hainan Xu September 4, 2015

Building Single Phonetic Decision Tree - Algorithm

Single-tree Building Algorithm, Steve Young et al.

- 1: initialize a monophone state tree
- 2: n = number of leaves we want
- 3: **while** we have < n leaves **do**
- 4: s =the best split on the current tree
- 5: apply split *s*
- 6: end while
- 7: while true do
- 8: c = the smallest cost of a merge between any leaves in the current tree
- 9: **if** c < merge threshold **then**
- 10: apply the merge corresponding to c
- 11: **else**
- 12: terminate and return the tree
- 13: end if
- 14: end while

Hainan Xu September 4, 2015

11 / 25

Models on Top of the Tree

- The tree provides a mapping from a triphone state to one of its leaves.
- Based on the mapping, we train an acoustic model that could compute

 $\log p(\text{observation}|\text{triphone state}) = \log p(\text{observation}|\text{leaf in the tree})$

Now with number of leaves << number of all possible triphones, acoustic model training is possible.

 We build a graph which incorporates the information of leaves in the tree for decoding.

Hainan Xu September 4, 2015 12 / 25

• However, a single decision tree might be biased.

13 / 25

Hainan Xu September 4, 2015

- However, a single decision tree might be biased.
 - Not optimal since we use a greedy algorithm.
 - The objective function for growing the tree might not be the ground truth goodness function (remember we used Gaussian).

• ...

Hainan Xu

13 / 25

- However, a single decision tree might be biased.
 - Not optimal since we use a greedy algorithm.
 - The objective function for growing the tree might not be the ground truth goodness function (remember we used Gaussian).
 - ...
- We want to build different trees, and (hopefully) compensate for the bias by somehow combining the trees.

Hainan Xu

13 / 25

- However, a single decision tree might be biased.
 - Not optimal since we use a greedy algorithm.
 - The objective function for growing the tree might not be the ground truth goodness function (remember we used Gaussian).
 - ...
- We want to build different trees, and (hopefully) compensate for the bias by somehow combining the trees.
- Questions, stopping criteria: no change required.
- Objective function, algorithm: there is a problem since they're deterministic, and will build exactly same trees.

- However, a single decision tree might be biased.
 - Not optimal since we use a greedy algorithm.
 - The objective function for growing the tree might not be the ground truth goodness function (remember we used Gaussian).
 - ...
- We want to build different trees, and (hopefully) compensate for the bias by somehow combining the trees.
- Questions, stopping criteria: no change required.
- Objective function, algorithm: there is a problem since they're deterministic, and will build exactly same trees.
- Our solution: to include an "entropy term" in the objective function for tree-building.

Entropy of a Decision Tree

• A decision tree defines a "distribution" / partition on the data.

• In the example above, the entropy is

Entropy of a Decision Tree

• A decision tree defines a "distribution" /partition on the data.

• In the example above, the entropy is

$$-0.3\log 0.3 - 0.3\log 0.3 - 0.4\log 0.4$$

(Joint-)Entropy of Multiple Decision Trees

• Multiple (n) decision trees split the data into an n-dimension grid.

- Note: not all combinations are possible.
- Also, not all possible combinations exist in data.
- The entropy of the above example is

(Joint-)Entropy of Multiple Decision Trees

• Multiple (n) decision trees split the data into an n-dimension grid.

- Note: not all combinations are possible.
- Also, not all possible combinations exist in data.
- The entropy of the above example is

$$-0.2 \log 0.2 - 0.2 \log 0.2 - 0.2 \log 0.2 - 0.2 \log 0.2 - 0.2 \log 0.2$$

Multiple Tree - the New Objective Function

- We have an objective function defined on single tree as $\mathcal{G}(\text{tree})$.
- We have introduced entropy of tree[s], noted as $\mathcal{H}(\text{tree}[s])$.

Multiple Tree - the New Objective Function

- We have an objective function defined on single tree as $\mathcal{G}(\text{tree})$.
- We have introduced entropy of tree[s], noted as $\mathcal{H}(\text{tree}[s])$.
- For multiple trees, we define the new objective function as,

$$\lambda \left(\mathcal{H}(\mathsf{all\ trees}) - \frac{\sum_{i} \mathcal{H}(i\mathsf{th\ tree})}{n} \right) + \sum_{i} \mathcal{G}(i\mathsf{th\ tree})$$

 The first 2 terms could push the joint-entropy to grow larger, while keeping the single tree entropies smaller, making sure the trees are different.

(ロ) (個) (E) (E) (E) のQで

Building Multiple Trees - Algorithm

Multi-tree Building Algorithm

- 1: initialize a set of monophone state trees
- 2: n = number of leaves per tree that we want
- 3: while not all trees have *n* leaves do
- 4: s = the best split on trees having < n leaves
- 5: apply split s
- 6: end while

Building Multiple Trees - Algorithm

Multi-tree Building Algorithm

```
1: initialize a set of monophone state trees
2: n = number of leaves per tree that we want
 3: while not all trees have n leaves do
      s = the best split on trees having < n leaves
      apply split s
 5:
 6: end while
7: while true do
      c = the smallest cost of a merge between any leaves in a same tree
8.
      if c < merge threshold then
9:
        apply the merge corresponding to c
10.
      else
11:
12.
        terminate and return the trees
      end if
13.
```

14: end while

Multi-tree Model Training and Decoding

- Acoustic models are independently trained on top of each tree.
- The independent trainings ensure that the multi-tree methods could work regardless the type of acoustic model used (GMM or DNN or LSTM).
- There are different ways to combine the dependently trained acoustic models.
 - Merge decoded lattices Minimum Bayes Risk decoding.
 - Our method: to merge acoustic likelihoods.

Method to Combine Models

- Our method tries to combine p(observation|triphone state).
- For the same p(o|s), each model would give a different likelihood score, in log-likelihoods $\{l_i\}$.
- We use a "weighted" average that favors the larger likelihood scores (larger probabilities).

$$ilde{l} = rac{\sum_{i} l_{i} \exp(C \cdot l_{i})}{\sum_{i} \exp(C \cdot l_{i})}, C = ext{acoustic scale} = 0.1$$

• Transition probabilities in HMM are relatively much less important and we simply use the arithmetic means of the transition probabilities from each model.

Model Combination Implementation

 A "virtual tree" is built such that each leaf in the virtual tree corresponds to a unique and valid combination of leaves from individual trees.

might have \geq 5 leaves in the virtual tree.

- The virtual tree leaves correspond to the de facto parameter sharing units
- The virtual tree will be used in building decoding graphs.

Impact of the added Entropy Term

- This table shows that the added entropy term creates much finer paramater sharing units, i.e. having large number of virtual leaves.
- The stopping criteria is when each tree reaches 5000 leaves. The average number is smaller because of merging.

# trees	λ	avg # leaves	# virtual-leaves
1	-	3973	3973
2	0.1	4030	8173
2	0.25	4115	12969
2	0.5	4204	21138
2	1	4237.5	36828
3	1	4123	97999
4	1	4078.5	164811

Table: Number of leaves in multi-trees (TED-LIUM)

Hainan Xu September 4, 2015 21 / 25

Impact of the added Entropy Term, cont'ed

 This table shows that the added entropy term does increase the joint-entropy while not increasing single tree entropies too much.

# trees	λ	avg-entropy	joint-entropy
1	-	7.63	7.63
2	0.1	7.67	7.85
2	0.25	7.72	8.11
2	0.5	7.76	8.41
2	1	7.78	8.78
3	1	7.74	9.00
4	1	7.72	9.07

Table: Entropy of multi-trees (TED-LIUM)

Performance of Multi-tree Decoding

 Here we compare the recognition results by decoding each individual model, the MBR decoding and our "joint"-decoding method.

	d	ev	test		
# trees	clean	other	clean	other	
baseline	5.93	20.42	6.59	22.47	
tree 1	6.20	20.67	6.75	22.68	
tree 2	6.27	21.07	6.87	22.84	
MBR	6.00	20.87	6.59	22.84	
joint	5.82	19.86	6.46	21.62	

Table: WER of individual and combined DNN models on Librispeech ($\lambda = 1$)

Hainan Xu September 4, 2015 23 / 25

More results

	WSJ		SWBD		TED-LIUM	
# trees	eval92	dev93	swbd	eval2000	dev	test
1	7.07	4.06	13.4	19.2	21.7	19.4
2	6.55	4.08	13.0	18.8	21.2	18.6
3	6.46	3.72	12.8	18.7	21.2	18.5

Table: WER of DNN models on WSJ, SWBD and TED-LIUM ($\lambda=1$)

	d	ev	test	
# trees	clean	other	clean	other
1	5.93	20.42	6.59	22.47
2	5.82	19.86	6.46	21.62
3	5.80	19.77	6.27	21.68

Table: WER of DNN models on Librispeech ($\lambda = 1$)

Conclusion

- Multi-tree systems could consistently give better results than single tree systems.
- Multi-tree systems are especially helpful for speech recordings with noisy backgrounds.
- The more trees we use, the more it helps; though the gain becomes much smaller for larger numbers.

25 / 25

Hainan Xu September 4, 2015