

Estimation of Actuation Configuration for a Multi-Actuated Blimp

Final Presentation (Semester Thesis)

Students: Matthias Krebs

Simon Laube

Advisors:

Kostas Alexis

Markus Achtelik

Motivation: Control Arbitrary Blimp

Motivation: Improve Usability & Control

Problem Formulation

Problem Formulation

Problem Formulation: System

Problem Formulation: System

Control

Problem Formulation

Problem Formulation: System Model

Angular Acceleration

$$\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) = \hat{\boldsymbol{\alpha}}_b = \mathbf{J}_b^{-1}(\mathbf{M}_b - \boldsymbol{\omega}_b \times \mathbf{J}_b \boldsymbol{\omega}_b)$$

with

$$\mathbf{M}_{b} = \underbrace{\sum_{k=1}^{N} \left[\mathbf{C}_{b,m_{k}} \left(\mathbf{p}_{m_{k}}^{m_{k},cog} \times \mathbf{F}_{m_{k}} \right) \right] - \underbrace{\left(\mathbf{p}_{b}^{cob,cog} \times \left(\mathbf{C}_{b,w} m \mathbf{g}_{w} \right) \right)}_{\mathbf{M}^{gravity}}$$

Aerodynamic effects on rotation neglected (${f M}^{aero}$ << ${f M}^{actuation}$)

Problem Formulation

Problem Formulation: Parameters

Full Parameter set is only jointly observable

Problem Formulation: Parameters

Assume jointly observable parameters as known

Problem Formulation: System Model

Angular Acceleration

$$\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) = \hat{\boldsymbol{\alpha}}_b = \mathbf{J}_b^{-1}(\mathbf{M}_b - \boldsymbol{\omega}_b \times \mathbf{J}_b \boldsymbol{\omega}_b)$$

with

$$\mathbf{M}_{b} = \underbrace{\sum_{k=1}^{N} \left[\mathbf{C}_{b,m_{k}} \left(\mathbf{p}_{m_{k}}^{m_{k},cog} \times \mathbf{F}_{m_{k}} \right) \right] - \underbrace{\left(\mathbf{p}_{b}^{cob,cog} \times \left(\mathbf{C}_{b,w} m \mathbf{g}_{w} \right) \right)}_{\mathbf{M}^{gravity}}$$

Problem Formulation: System Model

Angular Acceleration

$$\mathbf{f}(\mathbf{x}, \mathbf{u}, \boldsymbol{\theta}) = \hat{\boldsymbol{\alpha}}_b = \mathbf{J}_b^{-1} (\mathbf{M}_b - \boldsymbol{\omega}_b \times \mathbf{J}_b \boldsymbol{\omega}_b)$$

Parameter Constant (known) State (known)

$$\mathbf{M}_b = \sum_{k=1}^{N} \begin{bmatrix} \mathbf{C}_{b,m_k} & \begin{bmatrix} 0 \\ 0 \\ -r \end{bmatrix} \times \begin{bmatrix} F_x^{m_k} \\ F_y^{m_k} \end{bmatrix} \end{bmatrix} - \underbrace{\begin{bmatrix} \mathbf{p}_{b}^{cob,cog} \times (\mathbf{C}_{b,w} \mathbf{mg}_w) \\ \mathbf{M}^{gravity}} \end{bmatrix}$$

Problem Formulation

Problem Formulation: Optimization

Nonlinear Least Squares

$$S(\boldsymbol{\theta}) = \sum_{i=1}^{N} \|\mathbf{y}_i - \mathbf{f}(\mathbf{x}_i, \boldsymbol{\theta})\|^2$$

- Levenberg-Marquardt
 - Gradient based minimization
 - Robust and fast convergence

$$(\mathbf{J}^{\mathsf{T}}\mathbf{J} + \lambda \operatorname{diag}(\mathbf{J}^{\mathsf{T}}\mathbf{J}))\boldsymbol{\delta} = \mathbf{J}^{\mathsf{T}}[\mathbf{y} - \mathbf{f}(\boldsymbol{\theta})]$$

Problem Formulation

Problem Formulation: Input Pattern

- Inputs must be applicable and sufficiently excited
 - Forward/backward
 - Varying directions
 - Steady state motor dynamics

Simulator

- Object oriented simulator in MATLAB
- Modular concept for (almost) arbitrary blimps

Results

Simulation Results

Experimental Results

Groundtruth with Leica

Results

Simulation: Casestudies

16 simulations à 1000 datapoints

Simulation: Convergence Region

Initial Parameters can be about 1m or 120° apart of the true value

Data Acquisition

Data Acquisition

Results: Real Data vs. Simulation Data

Results: Real Data vs. Simulation Data

16 simulations à 1000 datapoints

Experiment: Convergence Region

Very similar to simulation data.

Results: "Ground Truth" (Leica)

- 3 AU's visible at once
- Use different views
- Fit data to get tetrahedral's edge length
 - Residual below 0.01m

Results: Compare Leica and Batch Solution

Relative tetrahedral edge length error			
%	AU2	AU3	AU4
AU1	1.68	0.86	2.76
AU2		0.67	2.47
AU3			3.78

Conclusion

- What did we do?
 - Showed applicable method to estimate actuator configuration
- How accurate?
 - Actuator positions can be estimated within centimeters
- Where to use?
 - Automatically update parameters before flight within minutes

Thanks

