กิจกรรมการสร้างวงจรบวกเลข 1 bit โดยใช้อุปกรณ์ IC

ในกิจกรรมนี้นิสิตจะมีโอกาสได้พดลองอุปกรณ์สิ่งที่ใช้ในการสร้าง Logic บวกเลข 1 bit โดยอุปกรณ์หลักที่ใช้ใน Laboratory นี้จะเป็น NAND Gate

เนื่องจากการใช้ NAND Gate สามารถที่จะสร้างวงจรใดๆก็ได้ดังนั้นในแลบนี้จึงเลือกที่จะให้ นิสิตใช้ NAND

กิจกรรมนี้จะให้ทำงานเป็นกลุ่ม กลุ่มละ 3-4 คนโดยนิสิตจะต้องสร้างวงจร ในโปรแกรม Digital ก่อนที่จะลงมือต่อวงจรจริงโดยวงจรจริงที่จะให้ต่อเป็น Half Adder หรือ Full Adder

Lab Safety

- 1. ไม่จ่ายกระแสไฟฟ้าให้วงจรขณะต่อวงจรโดยเด็ดขาดเนื่องจากการอาจต่อวงจรผิดพลาดทำให้อุปกรณ์มีสิทธิเสียได้และอุปกรณ์จ่ายไฟมีโอกาสเสียได้ด้วย ซึ่งในกรณีนี้เราจะให้ใช้การจ่ายไฟจาก USB ของคุณดังนั้นตรวจเช็คให้ทีก่อนว่าการต่ออุปกรณ์ของคุณนั้นถูกต้องก่อนที่จะต่อแหล่งจ่ายไฟ
- 2. ในกรณีที่ IC มีความร้อนหรือหรือมีกลิ่นไหม้ถอดแหล่งจ่ายไฟทันที

อุปกรณ์ที่ใช้

1. Dip Switch (DIP SWITCH 4 POSITION)

(a) Image of the component

(b) Equivalent Circuit

(https://www.es.co.th/Picture/EDS104SZ.jpg

2. 4 x 2 NAND gate - 74HC00N/74HC00P

3. สาย Jumper Cable หรือสายไฟ

แต่ละกลุ่มจะได้ Jumper Cable 1 ชุด หรือสามารถที่จะตัดสายไฟตามขนาดที่ต้องการเองได้

4. Resistor Network (RNLA05J0103B0E)

- 5. Resistor 10K สำหรับต่อ Pull up/ Pull down สัญญาณ
- Resistor 220 สำหรับต่อกับ LED
 ค่าความต้านทานสามารถอ่านจากที่ตัว Resistor ได้ตามสีที่ระบุ

7. LED

- 8. Breadboard
- 9. USB Serial (ใช้สำหรับจ่ายไฟให้วงจร)

- a. สายไฟสีแดง +
- b. สายไฟสีดำ -

การต่อวงจร

1. สัญญาณ Input สามารถเป็น DIP Switch หรือ Slide Switch ก็ได้โดยสามารถ ต่อ เป็นสัญญาณแบบ Pull-Up, Pull Down หรือ Push Pull ก็ได้ โดย ในตัวอย่างนี้ต่อเป็นแบบ Pull-Down

2. สัญญาณ Output ให้แสดงผลด้วย LED โดยต่อวงจรดังต่อไปนี้

การต่อ LED สามารถ ต่อได้ทั้งสองแบบซ้ายหรือขวาก็ได้ โดยที่ LED ที่ให้ไปมีสองขา ขายาวเป็นชั่วบวก LED มีลักษณะเป็น Diode ซึ่งจำเป็นต้องมี Resistor เพื่อ ทำให้กระแสที่ไหลผ่านไม่เกินการทำงานของ LED ใน Lab ให้ใช้ 220 Ohm resistors

3. การต่อสัญญาณไฟเข้า

เนื่องจาก IC ที่เราใช้สามารถทำงานได้ในช่วง 2-6V วิทีการหนึ่งที่ง่ายที่สุดคือใช้ไฟจาก USB

Half Adder / Full Adder

Half Adder มี Input สองค่า A, B และมี Output 2 ค่า คือ Sum (ผลรวม) และ Cout (ตัวทด)

Input		Output		
А	В	Sum	Cout	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Full Adder มี Input สามค่า A, B, Cin และมี Output 2 ค่าคือ Sum (ผลรวม) และ Cout (ตัวทด)

Input			Output	
А	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

การทดลอง

- 1. แปลงวงจร Half Adder กับ Full Adder ให้อยู่ในรูปที่สามารถใช้แต่ 2-Input NAND gates
 - สำหรับ Half Adder สามารถใช้ Gate น้อยที่สุดคือ 5 x 2-Input NAND gates แต่ถ้าทำแบบง่ายสุดจะใช้ 7 x 2-Input NAND gates
 - สำหรับ Full Adder สามารถใช้ Gate น้อยที่สุดคือ 9 x 2 Input NAND gates
- 2. สร้างวงจร Half Adder ในโปรแกรม Digital ดังตัวอย่างในรูป โดยนิสิตต้องวงจรให้ใช้แต่ NAND Gate ดังเช่นตัวอย่าง Half Adder ด้านล้างที่ใช้ 5×2 -Input NAND Gates (Input Gate ที่ไม่ใช้ให้ต่อลง GND หรือ Power)

3. ต่อวงจรจริง Half Adder (ตัวอย่างข้างล้าง)

- 4. สร้างวงจร Full Adder ในโปรแกรม Digital NAND Gate
- 5. ต่อวงจรจริง Full Adder

วิธีการส่ง และคะแนน

- 1 คะแนนสำหรับการทำงาน ของ Half Adder ที่ถูกต้อง โดยให้ TA หรืออาจารย์ ตรวจวงจร (ไม่มี Grader)
- 1 คะแนนสำหรับวงจร Half Adder จริงที่ทำงานถูกต้อง โดยให้ TA หรืออาจารย์ ตรวจวงจรที่ต่อทำงานถูกต้องหลังจากนั้นให้นิสิตส่งอัดวิดีโอของวงจรที่ ทำงานถูกต้องใน MCV
- คะแนนพิเศษสำหรับกลุ่มที่ส่ง Full Adder โดยต้องส่งทั้งใน Digital และวงจรจริง สามารถส่ง Full Adder ได้โดยไม่ต้องทำ Half Adder อีก
- กลุ่มที่ทำทั้ง Half Adder และ Full Adder ได้คะแนนเท่ากับ 2 คะแนน + คะแนนพิเศษ (i.e. เท่ากับ กลุ่มที่เลือกทำ Full Adder อย่างเดียว)