CONTENTS

6	Mix	ted Model Analysis	2
	6.1	Normal-theory mixed model	4
	6.2	Analysis of Mixed Linear Models	19
	6.3	Generalized Least Squares (GLS) Estimation	20
	6.4	Variance component estimation	22
		6.4.1 Rules for Expected Mean Squares	22
		6.4.2 ANOVA method (Method of Moments)	29
		6.4.3 Properties of ANOVA methods for	
		variance component estimation	32
	6.5	Estimation of fixed effects	47
	6.6	Prediction of random effects	47

Mixed Model Analysis

$$y = X\beta + Zu + e$$

where

Basic model:

1

 $\mathbf X$ is a $n\times p$ model matrix of known constants

 $\boldsymbol{\beta}$ is a $p\times 1$ vector of "fixed" unknown parameter values

 ${f Z}$ is a $n \times q$ model matrix of known constants

 ${\bf u}$ is a $q\times 1$ random vector

e is a $n \times 1$ vector of random errors

with

$$E(\mathbf{e}) = \mathbf{0}$$
 $V(\mathbf{e}) = \mathbf{R}$

$$E(\mathbf{u}) = \mathbf{0}$$
 $V(\mathbf{u}) = \mathbf{M}$

$$Cov(\mathbf{e}, \mathbf{u}) = 0$$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Then

$$E(\mathbf{y})$$
 =

$$E(\mathbf{y}) = \\ V(\mathbf{y}) =$$

6.1 Normal-theory mixed model

$$\left[\begin{array}{c} \mathbf{u} \\ \mathbf{e} \end{array} \right] \sim N \left(\left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right], \left[\begin{array}{c} \mathbf{M} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{R} \end{array} \right] \right)$$

Then, $\mathbf{y} \sim$

MEME16203 Linear Models@Dr Yong Chin Khian

 ${\it MEME16203}$ Linear Models@Dr Yong Chin Khian

Example 1. Random Blocks

Comparison of four processes for producing penicillin

$$\begin{array}{c} Process \ A \\ Process \ B \\ Process \ C \\ Process \ D \end{array} \right) \qquad \text{Levels of a "fixed"}$$
 treatment factor

Blocks correspond to different batches of an important raw material, corn steep liquor

- Random sample of five batches
- Split each batch into four parts:
 - run each process on one part
 - randomize the order in which the processes are run within each batch

Here, batch effects are considered as random block effects.

- Batches are sampled from a population of many possible batches
- To repeat this experiment you would need to use a different set of batches of raw material

 $\operatorname{MEME16203}$ Linear Models@Dr Yong Chin Khian

Model:

202405

 $\mu + \alpha_i$ $+\beta_i$ $+e_{ij}$ $y_{ij} =$ \uparrow \uparrow Yield random random mean for the yield batch error i-th process for the effect applied i-th process, to the averaging where j-th batch across the entire population of possible batches

$$\beta_j \sim NID(0, \sigma_{\beta}^2)$$
 $e_{ij} \sim NID(0, \sigma_e^2)$

and any e_{ij} is independent of any β_j . Here $\mu_i =$

Restrict model with $\alpha_4 = 0$. Then

- $\mu =$
- $\alpha_i =$

In R we could use the "treatment" constraints where $\alpha_1 = 0$. Then

- $\mu =$
- $\alpha_i =$

Alternatively, we could choose the solution to the normal equations given by "sum" constraints.

$$\bullet \ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 =$$

- $\mu =$
- $\alpha_i =$

MEME16203 Linear Models@Dr Yong Chin Khian

Variance-covariance structure:

•
$$V(Y_{ij}) =$$

• Different runs on the same batch: $Cov(Y_{ij}, Y_{kj}) =$

• Correlation among yields for runs on the same batch: $\rho =$

MEME16203 Linear Models@Dr Yong Chin Khian

• Results for runs on different batches are uncorrelated (independent):

$$Cov(Y_{ij}, Y_{k\ell}) = 0$$
 for $j \neq \ell$

• Results from the four runs on a single batch:

This special type of covariance structure is called $com-pound\ symmetry$

MEME16203 Linear Models@Dr Yong Chin Khian

Write this model as $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \mathbf{e}$

202405

Here

 $\mathbf{M} =$

 $\mathbf{R} =$

 $V(\mathbf{y}) =$

MEME16203 Linear Models@Dr Yong Chin Khian

Example 2. Hierarchical Random Effects Model Analysis of sources of variation in a process used to monitor the production of a pigment paste.

Current Procedure:

- Sample barrels of pigment paste
- One sample from each barrel
- Send the sample to a lab for determination of moisture content

Measured Response: (Y) moisture content of the pigment paste (units of one tenth of 1%).

Problem: Variation in moisture content is too large

- average moisture content is approximately 25 (or 2.5%)
- standard deviation of about 6

Examine sources of variation:

Data Collection: Hierarchical (or nested) Study Design

- \bullet Sample b barrels of pigment paste
- ullet s samples are taken from the content of each barrel
- \bullet Each sample is mixed and divided into r parts. Each part is sent to the lab.

There are

n = (b)(s)(r) observations.

MEME16203 Linear Models@Dr Yong Chin Khian

Model:

$$y_{ijk} = \mu + \beta_i + \delta_{ij} + e_{ijk}$$

where

- y_{ijk} is the moisture content determination for the k-th part of the j-th sample from the i-th barrel
- μ is the mean moisture content
- \bullet β_i is a random barrel effect:

$$\beta_i \sim NID(0, \sigma_\beta^2)$$

• δ_{ij} is a random sample effect:

$$\delta_{ij} \sim NID(0, \sigma_{\delta}^2)$$

• e_{ijk} corresponds to random measurement error:

$$e_i jk \sim NID(0, \sigma_e^2)$$

Covariance Structure:

• Homogeneous variances: $V(Y_{ijk}) =$

 $\operatorname{MEME16203}$ Linear Models@Dr Yong Chin Khian

- Two parts of one sample: $Cov(Y_{ijk}, Y_{ij\ell}) =$
- Observations on different samples taken from the same barrel: $Cov(Y_{ijk}, Y_{im\ell}) =$
- Observations from different barrels: $Cov(Y_{ijk}, Y_{cm\ell}) =$

 $\mathbf{R} =$

 $\mathbf{M} =$

Then $E(\mathbf{y}) =$

 $V(\mathbf{y}) =$

16

In this study

- b = 15 barrels were sampled
- \bullet s=2 samples were taken from each barrel
- \bullet r=2 sub-samples were analyzed from each sample taken from each barrel

Write this model in the form:

$$y = X\beta + Zu + e$$

MEME16203 Linear Models@Dr Yong Chin Khian

MEME16203 Linear Models©Dr Yong Chin Khian

Example 3.

Researchers investigated the effects of 12 different drugs on the level of a protein in the blood of mice. On each of 5 days, 12 mice were randomly assigned to the 12 drugs with one mouse for each drug. Each mouse was injected with its assigned drug, and then blood samples were taken from each mouse at 4 time points: 1, 2, 3, and 4 hours after injection. The same process was repeated each day with 12 different mice, so a total of 60 mice were used in the experiment. The level of the protein of interest was measured in each of the 240 blood samples. For $i=1,\ldots,5$, $j=1,\ldots,12$, and $k=1,\ldots,4$, let y_{ijk} be the protein level measurement on day i for chemical drug j at time k. For $i=1,\ldots,5$, $j=1,\ldots,12$, and $k=1,\ldots,4$, consider the model

$$y_{ijk} = \mu_{jk} + d_i + e_{ijk},$$

where μ_{jk} terms are unknown fixed parameters and the other terms are random effects defined as follows. Let $\mathbf{d} = [d_1, \dots, d_5]^T$. For $i = 1, \dots, 5$ and $j = 1, \dots, 12$, let $\mathbf{e}_{ij} = [e_{ij1}, \dots, e_{ij4}]^T$. Suppose

$$\mathbf{d} \sim N(\mathbf{0}, \sigma_d^2 \mathbf{I}_{5 \times 5}),$$

and

$$\mathbf{e}_{ij} \sim N(\mathbf{0}, \Sigma_e) \text{ for } i = 1, ..., 5 \text{ and } j = 1, ..., 12,$$

MEME16203 Linear Models@Dr Yong Chin Khian

where σ_d^2 is an unknown positive variance parameter and

$$\boldsymbol{\Sigma}_{e} = \begin{bmatrix} \sigma_{1}^{2} & \rho^{4}\sigma_{1}\sigma_{2} & \rho^{9}\sigma_{1}\sigma_{3} & \rho^{19}\sigma_{1}\sigma_{4} \\ \rho^{4}\sigma_{1}\sigma_{2} & \sigma_{2}^{2} & \rho^{5}\sigma_{2}\sigma_{3} & \rho^{15}\sigma_{2}\sigma_{4} \\ \rho^{9}\sigma_{1}\sigma_{3} & \rho^{5}\sigma_{2}\sigma_{3} & \sigma_{3}^{2} & \rho^{10}\sigma_{3}\sigma_{4} \\ \rho^{19}\sigma_{1}\sigma_{4} & \rho^{15}\sigma_{2}\sigma_{4} & \rho^{10}\sigma_{3}\sigma_{4} & \sigma_{4}^{2} \end{bmatrix}$$

for some unknown standard deviation parameter $\sigma_i > 0, i = 1, 2, 3, 4$ and some unknown correlation parameter ρ . Finally, suppose that \mathbf{d} and $\mathbf{e}_{11}, \ldots, \mathbf{e}_{5,12}$ are all independent. In terms of model parameters, give a simplified expression for the variance of the generalized least squares estimator of each of the following:

(a) μ_{43}

17

- (b) $\bar{\mu}_{4.}$
- (c) $\mu_{14} \mu_{24}$
- (d) $\mu_{41} \mu_{44}$

6.2Analysis of Mixed Linear Models

$$y = X\beta + Zu + e$$

where $\mathbf{X}_{n\times p}$ and $\mathbf{Z}_{n\times q}$ are known model matrices and

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{e} \end{bmatrix} \sim N \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{M} & 0 \\ 0 & \mathbf{R} \end{bmatrix} \right)$$

Then

$$Y \sim N(\mathbf{X}\boldsymbol{\beta}, \boldsymbol{\Sigma})$$

where

$$\Sigma = \mathbf{Z} \mathbf{M} \mathbf{Z}^T + \mathbf{R}$$

Some objectives

- (i) Inferences about estimable functions of fixed effects: Point estimates, Confidence intervals and Tests of hypotheses.
- (ii) Estimation of variance components (elements of ${\bf M}$ and
- (iii) Predictions of random effects (blup)
- (iv) Predictions of future observations

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

6.3 Generalized Least Squares (GLS) Estima-

Suppose

19

$$E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$$

and also suppose

$$\mathbf{\Sigma} = V(\mathbf{y}) = \mathbf{Z} \mathbf{M} \mathbf{Z}^T + \mathbf{R}$$

is known. Then a GLS estimator for β is any **b** that minimizes

$$Q(\mathbf{b}) = (\mathbf{y} - \mathbf{X}\mathbf{b})^T \mathbf{\Sigma}^{-1} (\mathbf{y} - \mathbf{X}\mathbf{b})$$

The estimating equations are:

$$(\mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{X}) \mathbf{b} = \mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{y}$$

and

$$\mathbf{b}_{GLS} = (\mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{X})^{-} (\mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{y})$$

is a solution. For any estimable function $\mathbf{C}^T \boldsymbol{\beta}$, the unique b.l.u.e. is

$$\mathbf{C}^T \mathbf{b}_{GLS} = \mathbf{C}^T (\mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{y}$$

with

$$V(\mathbf{C}^T \mathbf{b}_{GLS}) = \mathbf{C}^T (\mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{X})^{-} \mathbf{C}$$

If $Y \sim N(\mathbf{X}\boldsymbol{\beta}, \, \boldsymbol{\Sigma})$, then

$$\mathbf{C}^T \mathbf{b}_{GLS} \sim N \left(\mathbf{C}^T \boldsymbol{\beta}, \ \mathbf{C}^T (\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \mathbf{X})^- \mathbf{C} \right)$$

When \mathbf{M} and/or \mathbf{R} contain unknown parameters, you could obtain an "approximate BLUE" by replacing the unknown parameters with consistent estimators to obtain

$$\hat{\mathbf{\Sigma}} = \mathbf{Z}\hat{\mathbf{M}}\mathbf{Z}^T + \hat{\mathbf{R}}$$

and

202405

$$\mathbf{C}^T \mathbf{b}_{GLS}^* = \mathbf{C}^T (\mathbf{X}^T \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{X})^{-} \hat{\boldsymbol{\Sigma}}^{-1} \mathbf{y}$$

- $\mathbf{C}^T \mathbf{b}_{GLS}^*$ is not a linear function of \mathbf{y}
- $\mathbf{C}^T \mathbf{b}_{GLS}^*$ is not a best linear unbiased estimator (BLUE)
- $\mathbf{C}^T(\mathbf{X}^T\hat{\mathbf{\Sigma}}^{-1}\mathbf{X})^{-}\mathbf{C}$ tends to "underestimate" $V(\mathbf{C}^T\mathbf{b}_{GLS}^*)$
- For "large" samples

$$\mathbf{C}^T \mathbf{b}_{GLS}^* \dot{\sim} N(\mathbf{C}^T \boldsymbol{\beta}, \mathbf{C}^T (\mathbf{X}^T \boldsymbol{\Sigma}^{-1} \mathbf{X})^- \mathbf{C})$$

MEME16203 Linear Models@Dr Yong Chin Khian

6.4 Variance component estimation

- \bullet Estimation of parameters in M and R
- Crucial to the estimation of estimable functions of fixed effects (e.g. $E(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta}$)
- Of interest in its own right (sources of variation in the pigment paste production example)

Rules for Expected Mean Squares

- Rule 1. The error term in the model, $e_{(ij...)m}$, where the subscript m denotes the replication subscript.
- Rule 2. In addition to an μ and $e_{(ij...)m}$, the model contains all the main effects and any interactions that the experimenter assumes exist.
- Rule 3. For each term in the model, divide the subscripts into three classes:
 - 1. live-those subscripts that are present in the term and are not in the parentheses;
 - 2. dead-those subscripts that are present in the term and are in parentheses; and
 - 3. absent-those subscripts that are present in the model but not in that particular term.

 23

202405

Thus, in $(\alpha\beta)_{ij}$, i and j are live and k is absent, and in $e_{(ij)k}$, k is live and i and j are dead.

- Rule 4. Degrees of freedom. The number of DF for any term in the model is the product of the number of levels associated with each dead subscript and the number of levels minus 1 associated with each live subscript. For example, the number of DF associated with $(\alpha\beta)_{ij}$ is (a-1)(b-1), and the number of DF associated with $e_{(ij)k}$ is ab(n-1).
- Rule 5. Each term in the model has either a variance component (random effect) or a fixed factor (fixed effect) associated with it. If an interaction contains at least one random effect, the entire interaction is considered random. A variance component has Greek letters as subscripts to identify the particular random effect. Thus, in a two-factor mixed model with factor A fixed and factor B random, the variance component for B is σ_b^2 , and the variance component for AB is σ_{ab}^2 . A fixed effect is always represented by the sum of squares of the model components associated with the factor divided by its degrees of freedom. For example, the effect of A is

$$\frac{\sum_{i=1}^{a} \alpha_i^2}{a-1}$$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

- Rule 6. Expected mean squares. To obtain EMS, prepare the following table. There is a row for each model component (mean square) and a column for each subscript. Over each subscript, write the number of levels of the factor associated with that subscript and whether the factor is fixed (F) or random (R). Replicates are always considered to be random.
 - 1. In each row, write 1 if one of the dead subscripts in the row component matches the subscript in the column:

	F	F	R	
	a	b	n	
Factor	i	j	k	
α_i				
β_i				
$(\alpha\beta)_{ij}$				
$(\alpha\beta)_{ij}$ $e_{(ij)k}$	1	1		

25

2. In each row, if any of the subscripts on the row component match the subscript in the column, write 0 if the column is headed by a fixed factor and 1 if the column is headed by a random factor:

	I	T.	T.	I
	F	F	R	
	a	b	n	
Factor	i	j	k	
α_i	0			
β_i		0		
$(\alpha\beta)_{ij}$	0	0		
$\begin{pmatrix} (\alpha\beta)_{ij} \\ e_{(ij)k} \end{pmatrix}$	1	1	1	

3. In the remaining empty row positions, write the number of levels shown above the column heading:

	F	F	R	
	a	b	n	
Factor	i	j	k	
α_i	0	b	n	
β_j	a	0	n	
$(\alpha\beta)_{ij}$	0	0	n	
$(\alpha\beta)_{ij}$ $e_{(ij)k}$	1	1	1	

MEME16203 Linear Models@Dr Yong Chin Khian

4. To obtain the EMS for any model component. First cover all column headed by live subscripts on that component. Then, in each row that contains at least the same subscripts as those on the component being considered, take the product of the visible numbers and multiply by the appropriate fixed or random factor from rule 5. The sum of these quantities is the EMS of the model component being considered.

	F	F	R	
	a	b	n	
Factor	i	j	k	
α_i	0	b	n	$\sigma^2 + bn \sum \alpha_i^2/(a-1)$
β_j	a	0	n	$\sigma^2 + an \sum \beta_i^2/(b-1)$
$(\alpha\beta)_{ij}$	0	0	n	$\sigma^2 + \frac{n \sum \sum (\alpha \beta)_{ij}^2}{(a-1)(b-1)}$
$e_{(ij)k}$	1	1	1	σ^2

Example 4.

Use the rules for expected mean squares to derive the expected mean squares for the following models, and propose appropriate test statistics for all effects:

(a)
$$y_{ijk} = \mu + a_i + b_j + (ab)_{ij} + e_{ijk}$$

 $i = 1, 2, \dots, a$
 $j = 1, 2, \dots, b$
 $k = 1, 2, \dots, n$

Assuming that all the factors are random.

 ${\tt MEME16203}$ Linear Models@Dr Yong Chin Khian

(b)
$$y_{ijk} = \mu + \alpha_i + b_j + (ab)_{ij} + e_{ijk}$$

$$i = 1, 2, \dots, a$$

$$j = 1, 2, \dots, b$$

$$k = 1, 2, \dots, n$$

Assuming that factor A is fixed and facor B is random.

MEME16203 Linear Models©Dr Yong Chin Khian

6.4.2 ANOVA method (Method of Moments)

- Compute an ANOVA table
- Equate mean squares to their expected values
- Solve the resulting equations

Example 5. Penicillin production

$$Y_{ij} = \mu + \alpha_i + \beta_j + e_{ij}$$

where
$$\boldsymbol{\beta}_j \sim NID(0, \sigma_{\beta}^2)$$
 and $e_{ij} \sim NID(0, \sigma_e^2)$

Source of

<u>Variation</u> <u>d.f.</u> Sums of Squares

Blocks
$$4 \quad \overline{a \sum_{j=1}^{b} (\bar{Y}_{.j} - \bar{Y}_{.})^2} = SS_{blocks}$$

Processes 3
$$b \sum_{i=1}^{3} (\bar{Y}_{1.} - \bar{Y}_{..})^2 = SS_{processes}$$

error 12
$$\sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \bar{Y}_{1.} - \bar{Y}_{.j} + \bar{Y}_{..})^2 = SSE$$

C. total 19
$$\sum_{i=1}^{a} \sum_{j=1}^{b} (Y_{ij} - \bar{Y}_{..})^2$$

Start at the bottom:

$$MS_{error} = \frac{SSE}{(a-1)(b-1)}$$

$$E(MS_{error}) = \sigma_e^2$$

Then an unbiased estimator for σ_e is

$$\hat{\sigma}_e^2 = MS_{error}$$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Next, consider the mean square for the random block effects:

$$MS_{blocks} = \frac{SS_{blocks}}{b-1}$$

$$E(MS_{blocks}) = \sigma_e^2 + a\sigma_\beta^2$$

Then,

202405

$$\sigma_{\beta}^{2} = \frac{E(MS_{blocks}) - \sigma_{e}^{2}}{a}$$
$$= \frac{E(MS_{blocks}) - E(MS_{error})}{a}$$

An unbiased estimator for σ_{β}^2 is

$$\hat{\sigma}_{\beta}^2 = \frac{MS_{blocks} - MS_{error}}{a}$$

For the penicillin data

 $\hat{\sigma}_{\beta} =$

$$\widehat{V(Y_{ij})} =$$

MEME16203 Linear Models@Dr Yong Chin Khian

6.4.3 Properties of ANOVA methods for variance component estimation

- (i) Broad applicability
 - easy to compute in balanced cases
 - ANOVA is widely known
 - \bullet not required to completely specify distributions for random effects
- (ii) Unbiased estimators
- (iii) Sampling distribution is not exactly known, even under the usual normality assumptions (except for $\hat{\sigma}_e^2 = MS_{error}$)
- (iv) May produce negative estimates of variances
- (vi) For unbalanced studies, there may be no "natural" way to choose

$$\hat{\sigma}^2 = \sum_{i=1}^k a_i M S_i$$

Result 1. If MS_1, MS_2, \ldots, MS_k are distributed independently with

$$\frac{(df_i)MS_i}{E(MS_i)} \sim \chi^2_{df_i}$$

and constants $a_i > 0$, i = 1, 2, ..., k are selected so that

$$\hat{\sigma}^2 = \sum_{i=1}^k a_i M S_i$$

has expectation σ^2 , then

$$V(\hat{\sigma}^2) = 2 \sum_{i=1}^{k} \frac{a_i^2 [E(MS_i)]^2}{df_i}$$

and an unbiased estimator of this variance is

$$\widehat{V}(\widehat{\sigma}^2) = \frac{2\sum a_i^2 M S_i^2}{(df_i + 2)}$$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Furthermore,

202405

$$E(MS_i^2) = V(MS_i) + [E(MS_i)]^2$$

$$= \frac{2[E(MS_i)]^2}{df_i} + [E(MS_i)]^2$$

$$= \left(\frac{df_i + 2}{df_i}\right) [E(MS_i)]^2$$

Consequently,

$$E\left[2\sum_{i=1}^{k} \frac{a_{i}^{2}MS_{i}^{2}}{(df_{i}+2)}\right] = V(\hat{\sigma}^{2})$$

A "standard error" for

$$\hat{\sigma}^2 = \sum_{i=1}^k a_i M S_i$$

could be reported as

$$S_{\hat{\sigma}^2} = \sqrt{2\sum_{i=1}^k \frac{a_i^2 M S_i^2}{(df_i + 2)}}$$

Using the Cochran-Satterthwaite approximation, an approximate $(1 - \alpha) \times 100\%$ confidence interval for σ^2 could be constructed as:

$$1 - \alpha \doteq Pr \left\{ \chi_{\nu, 1 - \alpha/2}^2 \le \frac{v\hat{\sigma}^2}{\sigma^2} \le \chi_{\nu, \alpha/2}^2 \right\}$$
$$= Pr \left\{ \frac{v\hat{\sigma}^2}{\chi_{\nu, \alpha/2}^2} \le \sigma^2 \le \frac{v\hat{\sigma}^2}{\chi_{\nu, 1 - \alpha/2}} \right\}$$

where
$$\hat{\sigma}^2 = \sum_{i=1}^k a_i M S_i$$
 and

$$v = \frac{\left[\sum_{i=1}^{k} a_i M S_i\right]^2}{\sum_{i=1}^{k} \frac{[a_i M S_i]^2}{df_i}}$$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Example 6. Pigment production

In this example the main objective is the estimation of the variance components

Source of

 $\frac{\text{d.f.}}{15\text{-}1\text{=}14} \quad \frac{\text{MS}}{86.495} \quad \frac{\text{E(MS)}}{\sigma_e^2 + 2\sigma_\delta^2 + 4\sigma_\beta^2}$ Variation Batches Samples

in Batches 15(2-1)=15 57.983 $\sigma_e^2 + 2\sigma_\delta^2$

Tests in

(30)(2-1)=30 0.917 σ_e^2 Samples

(a) Estimates of variance components.

(b) Find a 95% confidence interval for μ .

Example 7.

A study was conducted on human subjects to measure the effects of 3 foods on serum glucose levels. Each of the 3 foods was randomly assigned to 5 subjects. The serum glucose was measured for each of the subjects at 7 different time points starting at 15 minutes and every 15 minutes after food was ingested. Consider the model

$$Y_{ijk} = \mu + \alpha_i + S_{ij} + \tau_k + \gamma_{ik} + e_{ijk}$$

where y_{ijk} is the serum glucose levels at the k^{th} time point for the j^{th} subject with the i^{th} food, α_i is the fixed diet effect, τ_k is the fixed time effect and γ_{ik} is the fixed diet \times time effect, $S_{ij} \sim NID(0, \sigma_S^2)$ and is independent of $e_{ijk} \sim NID(0, \sigma_e^2)$.

(a) Find $V(\mathbf{Y_{ij}})$, for this model?

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

MEME16203 Linear Models@Dr Yong Chin Khian

202405 Chapter 6 Mixed Model Analysis	39	202405	Chapter 6 Mixed Model Analysis	40
(b) Provide the formulas for the estimator of σ_e^2 and σ_S^2 .		(d) Find th	ne estimator of $V(\bar{Y}_{ij.})$ and provide it's degrees of fi	reedom.
(c) What is the correlation between observations taken on the satisfact?	me			
MEME16203 Linear Models@Dr Yong Chin Khian		MEME16	3203 Linear Models©Dr Yong Chin Khl	AN
ALEMENTO DINEMA MODELS (SER 1010 CHIA TIMA)			200 22.m 1105223@2.k 10.10 Olim 11.112	
	1 1			

(e) Find the estimator of $V(\bar{Y}_{i,k})$ and provide it's Satterthwaith degrees of freedom.

MEME16203 Linear Models@Dr Yong Chin Khian

Example 8.

An experiment was conducted to compare the effectiveness of two diets (denoted D_1 and D_2). The subjects included 60 men between the ages of 18 to 35. Each subject lifts the dumbbells until his muscles were depleted of energy, rested for two hours, and lifts the dumbbells again until exhaustion. During the rest period, each subject eat one of the two diets as assigned by the researchers. Each subject's performance on the second round of lifting dumbbells following the rest period was assigned a score between 0 and 100 based on the energy expended prior to exhaustion. Higher scores indicate of better performance. 20 of the 60 subjects repeated the lift rest lift trial on a second occasion separated from the first by approximately three weeks. These subjects eat one diet during the first trial and the other during the second trial. The diet order was randomized for each subject by the researchers. The other 40 subjects performed the trial only a single time, eating a randomly assigned diet during the rest period. 20.0 of these subjects received diet 1, and the other 20.0 received diet 2. A portion of the entire data set is provided in the following table.

Subject	Diet 1	Diet 2
1	40	50
2	35	38
:	:	:
20	28	55
21	35	_
22	80	-
÷	:	:
40.0	55	-
41.0	-	17
42.0	-	54
:	÷	÷
60	-	60

Subjects 1 through 20 in the table above represent the 20 subjects who performed the trial separately for each of the diets. Note that the data set contains no information about which diet was received in the first trial and which drink was received in the second trial. Suppose the following model is appropriate for the data.

$$y_{ij} = \mu_i + u_j + e_{ij}, (1)$$

where y_{ij} is the score for diet i and subject j μ_i is the unknown mean score for diet i, u_j is a random effect corresponding to subject j, and e_{ij} is a random error corresponding to the score for diet i and subject j (i=1,2 and $j=1,2,\ldots,60$). Here u_1,u_2,\ldots,u_{60} are assumed to MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

be independent and identically distributed as $N(0, \sigma_u^2)$ and independent of the e_{ij} 's, which are assumed to be independent and identically distributed as $N(0, \sigma_e^2)$.

(a) For each of the subjects who received both diets, the difference between the scores $(D_1-D_2 \text{ score})$ was computed. This yielded 20 score differences denoted d_1, d_2, \ldots, d_{20} Describe the distribution of these differences considering the assumptions about the distribution of the original scores in model (1).

MEME16203 Linear Models@Dr Yong Chin Khian

(b) Suppose you were given only the differences from part (a). Provide a formula for a test statistic (as a function of d_1, d_2, \ldots, d_{20}) that could be used to test $H_0: \mu_1 - \mu_2$.

(c) Let $a_1, a_2, \ldots, a_{20.0}$ be the scores of the subjects who received only diet 1. Let $b_1, b_2, \ldots, b_{20.0}$ be the scores of the subjects who received only diet 2. Suppose you were given only these 20.0 scores. Determine the BLUE of $\mu_1 - \mu_2$ and the variance of this estimator.

MEME16203 Linear Models@Dr Yong Chin Khian

6.5 Estimation of fixed effects

Denote the resulting REML estimators as

$$\hat{\mathbf{M}}$$
 $\hat{\mathbf{R}}$ and $\hat{\mathbf{\Sigma}} = \mathbf{Z}\hat{\mathbf{M}}\mathbf{Z}^T + \hat{\mathbf{R}}$

For any estimable function $\mathbf{C}\boldsymbol{\beta}$, the **blue** is the generalized least squares estimator

$$\mathbf{C}\mathbf{b}_{GLS} = \mathbf{C}(\mathbf{X}^{T}\mathbf{\Sigma}^{-1}\mathbf{X})^{-}\mathbf{X}^{T}\mathbf{\Sigma}^{-1}\mathbf{y}$$

Using the REML estimator for

$$\mathbf{\Sigma} = \mathbf{Z}\mathbf{M}\mathbf{Z}^T + R$$

an approximation is

$$\mathbf{C}\hat{\boldsymbol{\beta}} = \mathbf{C}(\mathbf{X}^T\hat{\boldsymbol{\Sigma}}^{-1}\mathbf{X})^{-1}\mathbf{X}^T\hat{\boldsymbol{\Sigma}}^{-1}\mathbf{y}$$

and for "large" samples:

$$\hat{\mathbf{C}}\hat{\boldsymbol{\beta}} \sim N(\hat{\mathbf{C}}\boldsymbol{\beta}, \hat{\mathbf{C}}(\hat{\mathbf{X}}^T \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mathbf{X}})^{-} \hat{\mathbf{C}}^T)$$

6.6 Prediction of random effects

Given the observed responses \mathbf{y} , predict the value of \mathbf{u} . For our model,

$$\left[\begin{array}{c} \mathbf{u} \\ \mathbf{e} \end{array} \right] \sim N \left(\left[\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right], \left[\begin{array}{cc} \mathbf{M} & 0 \\ 0 & R \end{array} \right] \right) \ .$$

MEME16203 LINEAR MODELS©DR YONG CHIN KHIAN

Then

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{u} \\ \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u} + \mathbf{e} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{0} \\ \mathbf{X}\boldsymbol{\beta} \end{bmatrix} + \begin{bmatrix} \mathbf{I} & 0 \\ \mathbf{Z} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{e} \end{bmatrix}$$
$$\sim N\left(\begin{bmatrix} \mathbf{0} \\ \mathbf{X}\boldsymbol{\beta} \end{bmatrix}, \begin{bmatrix} \mathbf{M} & \mathbf{M}\mathbf{Z}^T \\ \mathbf{Z}\mathbf{M} & \mathbf{Z}\mathbf{M}\mathbf{Z}^T + R \end{bmatrix} \right)$$

The Best Linear Unbiased Predictor (BLUP) is the b.l.u.e. for

$$E(\mathbf{u}|\mathbf{y})$$
= $E(\mathbf{u}) + (\mathbf{M}\mathbf{Z}^T)(\mathbf{Z}\mathbf{M}\mathbf{Z}^T + R)^{-1}(\mathbf{y} - E(\mathbf{y}))$
= $\mathbf{0} + \mathbf{M}\mathbf{Z}^T(\mathbf{Z}\mathbf{M}\mathbf{Z}^T + R)^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$

Substitute the b.l.u.e. for $X\beta$,

$$\mathbf{X}\mathbf{b}_{GLS} = \mathbf{X}(\mathbf{X}^{T}\mathbf{\Sigma}^{-1}\mathbf{X})^{-}\mathbf{X}^{T}\mathbf{\Sigma}^{-1}\mathbf{y}$$

Then, the BLUP for \mathbf{u} is

$$BLUP(\mathbf{u}) = \mathbf{M}\mathbf{Z}^{T}\mathbf{\Sigma}^{-1}(\mathbf{y} - \mathbf{X}\mathbf{b}_{GLS}) = \mathbf{M}\mathbf{Z}^{T}\mathbf{\Sigma}^{-1}(\mathbf{I} - \mathbf{X}(\mathbf{X}^{T}\mathbf{\Sigma}^{-1}\mathbf{X})^{-}\mathbf{X}^{T}\mathbf{\Sigma}^{-1})\mathbf{y}$$

When \mathbf{M} and $\mathbf{\Sigma} = \mathbf{Z}\mathbf{M}\mathbf{Z}^T + R$ are known. Substituting REML estimators $\hat{\mathbf{M}}$ and $\hat{\mathbf{R}}$ for \mathbf{M} and \mathbf{R} , an approximate BLUP for \mathbf{u} is

$$\begin{split} \hat{\mathbf{u}} &= \hat{\mathbf{M}} \mathbf{Z}^T \hat{\mathbf{\Sigma}}^{-1} (\mathbf{I} - \mathbf{X} (\mathbf{X}^T \hat{\mathbf{\Sigma}}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \hat{\mathbf{\Sigma}}^{-1}) \mathbf{y} \\ &= \hat{\mathbf{M}} \mathbf{Z}^T \hat{\mathbf{\Sigma}}^{-1} (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}}) \end{split}$$

For "large" samples, the distribution of $\hat{\mathbf{u}}$ is approximately multivariate normal with mean vector $\mathbf{0}$ and covariance matrix

$$\mathbf{M}\mathbf{Z}^{T}\mathbf{\Sigma}^{-1}(\mathbf{I}-P)\mathbf{\Sigma}(\mathbf{I}-P)\mathbf{\Sigma}^{-1}\mathbf{Z}\mathbf{M}$$

where

$$P = \mathbf{X}(\mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{\Sigma}^{-1}$$

Given estimates $\hat{\mathbf{M}}$, $\hat{\mathbf{R}}$ and $\hat{\mathbf{\Sigma}} = \mathbf{Z}\hat{\mathbf{M}}\mathbf{Z}^T + \hat{\mathbf{R}}$, $\hat{\boldsymbol{\beta}}$ and $\hat{\mathbf{u}}$ provide a solution to the mixed model equations:

$$\begin{bmatrix} \mathbf{X}^T\hat{\mathbf{R}}^{-1}\mathbf{X} & \mathbf{X}^T\hat{\mathbf{R}}^{-1}\mathbf{Z} \\ \mathbf{Z}^T\hat{\mathbf{R}}^{-1} & \mathbf{Z}^T\hat{\mathbf{R}}^{-1}\mathbf{Z} + \hat{\mathbf{M}}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}^T\hat{\mathbf{R}}^{-1}\mathbf{y} \\ \mathbf{Z}^T\hat{\mathbf{R}}^{-1}\mathbf{y} \end{bmatrix}$$

A generalized inverse of

$$\begin{bmatrix} \mathbf{X}^T \hat{\mathbf{R}}^{-1} \mathbf{X} & \mathbf{X}^T \hat{\mathbf{R}}^{-1} \mathbf{Z} \\ \mathbf{Z}^T \hat{\mathbf{R}}^{-1} & \mathbf{Z}^T \hat{\mathbf{R}}^{-1} \mathbf{Z} + \hat{\mathbf{M}}^{-1} \end{bmatrix}$$

is used to approximate the covariance matrix for $\left[\begin{matrix} \hat{\pmb{\beta}} \\ \hat{\mathbf{u}} \end{matrix} \right]$

MEME16203 Linear Models@Dr Yong Chin Khian

Example 9.

49

Suppose 2 maize genotypes were assigned to 6 plots in a field using an unbalanced completely randomized design. Plots were planted with seed from their assigned genotypes (Genotype 1 and 2 were assigned to 4 and 2 plots respectively), and yield in bushels per acre was recorded for each plot at the end of the growing season. Consider the model

$$y_{ij} = \mu + g_i + e_{ij},$$

where $\mu + g_i$ is the mean yield for the i^{th} genotype, and $e_{ij} \stackrel{iid}{\sim} N(0, \sigma_e^2)$ for all i and j. Assume $g_1, g_2 \stackrel{iid}{\sim} N(0, \sigma_g^2)$ and $e_{ij} \stackrel{iid}{\sim} N(0, \sigma_e^2)$. Find the BLUP of $\mu + g_1$.