Fall 2023: CSE 221	Discrete Mathematics 1	Akdeniz University
10/01/2024	Final Exam	Duration: 90 minutes
Name:	Studen	nt No:
P1 [15pts] How many positive int	tegers n less than 600 satisfy gcd(n,600) = 1? Show your calculation.
P2 [15pts] In how many ways can and 3 white balls. Show your calcu	9	that contains 3 red, 3 blue, 3 green al formula.
P3 [15nts] Alice Rob and Char	·lie each create a random permut	ation of the numbers from 1 to 20.
Then, they examine these permuta	ations and find that there are no i	indices containing the same number ne number three in the second index
in $[15,3,11,]$ and $[17,3,5,]$.	-	and for the probability of this occur-
ring. Explain your calculation and	l reasoning.	
(b) Why is this not an exact so	olution but just an upper bound?	
P4 [15pts] Find the rook polynom	ial for the board below. Clearly w	rite it in the format $1+ax+bx^2+\cdots$.

P5 [20 points] A florist needs

to prepare a bouquet that contains 20 flowers with

- at least 4 roses
- positive even number of tulips
- odd number of daisies
- zero or one orchid
- zero or one lily
- a positive multiple of five of jasmines

In how many ways can the florist do this? Make your calculations in the space above $\uparrow\uparrow$, write your final answer clearly.

P6 [20 points] Let the series $\{a_n\}$ be defined with the recursive definition: $a_0 = 0, a_1 = 1$ and $\forall n \geq 2 : a_n = 5a_{n-1} - 6a_{n-2}$. By using generating functions, find a closed formula for a_n (A formula that depends only on n, so that if we need a_{10000} we can just substitute n with 10000 and calculate the result.) Make your calculations below and clearly write the final result.

Table 1: Some generating functions that can be useful. For all $m, n \in \mathbb{Z}^+$, $a \in \mathbb{R}$

1)
$$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n$$

2)
$$(1+ax)^n = \binom{n}{0} + \binom{n}{1}ax + \binom{n}{2}a^2x^2 + \dots + \binom{n}{n}a^nx^n$$

3)
$$(1+x^m)^n = \binom{n}{0} + \binom{n}{1}x^m + \binom{n}{2}x^{2m} + \dots + \binom{n}{n}x^{nm}$$

4)
$$(1-x^{n+1})/(1-x) = 1 + x + x^2 + x^3 + \dots + x^n$$

5)
$$1/(1-x) = 1 + x + x^2 + x^3 + \cdots$$

6)
$$1/(1-ax) = 1 + ax + a^2x^2 + a^3x^3 + \cdots$$