

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CENTRO DE TECNOLOGIA ESCOLA POLITÉCNICA

EEL891 - Introdução ao Aprendizado de Maquina

Trabalho 01

2024.2

Abraão Carvalho Gomes - 121066101

1. Introdução

Este relatório descreve o processo de modelagem preditiva realizado com o objetivo de prever a inadimplência de solicitantes. O trabalho incluiu a importação e pré-processamento de dados, seleção de atributos, balanceamento de classes, treinamento de modelo com ajuste de hiperparâmetros e avaliação dos resultados.

2. Pré-Processamento dos Dados

2.1. Importação de Dados

Os conjuntos de dados de treinamento e teste foram importados a partir de arquivos CSV.

2.2. Seleção e Codificação de Atributos

- A coluna id_solicitante foi excluída por não contribuir para a previsão do alvo.
- Colunas categóricas foram identificadas e codificadas utilizando LabelEncoder.

Foi feita uma análise de gráficos de densidade de inadimplentes para cada atributo na tentativa de identificar atributos com maior agrupamento de adimplentes e inadimplentes. Apesar de haver alguns atributos com uma distribuição levemente tendenciosa, nenhum deles era realmente desigual(facilitando a classificação). Assim, a filtragem com esses atributos piorou o score e o modelo final desconsidera essa seleção.

Além disso, esses gráficos revelaram uma característica importante: a distribuição de adimplentes e inadimplentes em cada atributo é bem iguaitária para cada faixa de valor. Desde que isso foi observado, soube-se que scores grandes seriam inalvejáveis.

Exemplo de gráficos:

2.3. Tratamento de Valores Ausentes

- Colunas com alta porcentagem de valores ausentes (profissao_companheiro e grau_instrucao_companheiro) foram excluídas. (Mais de 12 mil linhas com NaN)
- Valores nulos restantes nos dados de teste foram preenchidos utilizando a mediana dos valores das respectivas colunas.

2.4. Discretização de Variáveis Contínuas

Variáveis do tipo float foram convertidas para int para simplificar a análise e o treinamento do modelo.

2.5. Divisão e Normalização

- Os dados foram divididos em conjuntos de treino e validação utilizando train_test_split (80/20).
- A normalização foi realizada com o StandardScaler para padronizar os valores.

3. Treinamento do Modelo

3.1. Balanceamento de Classes

O conjunto de dados foi balanceado utilizando a técnica SMOTE para lidar com a desproporção de classes. Esse método de tratamento de dados mostrou resultado, aumentando a acurácia do modelo.

3.2. Modelo Selecionado

- O modelo XGBClassifier foi escolhido após testes o mesmo, além de RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier, KNeighborsClassifier e GaussianNB.
- Hiperparâmetros ajustados com GridSearch:

o learning_rate: 0.01

o max_depth: 4

o n_estimators: 850

3.3. Avaliação no Conjunto de Validação

• A matriz de confusão foi gerada para avaliar o desempenho do modelo.

 Relatório de classificação foi produzido para detalhar métricas como precisão, recall e F1-score.

Classificatio	n Report for precision			support	
0	0.62	0.57	0.60	1563	
1	0.60	0.64	0.62	1551	
accupacy			0.61	3114	
accuracy macro avg	0.61	0.61	0.61		
weighted avg	0.61	0.61		3114	
merbines avb	0.01	0.01	0.01	311.	
Cross-validat	ion scores:	[0.57795	591 0.58356	713 0.6040	0802 0.59398798 0.59262229]
Mean cross-validation score: 0.5904282663161127					

Validação cruzada foi realizada com 5 folds, resultando em um score de 0.5904

4. Predição e Resultados Finais

4.1. Reajuste do Modelo

- O modelo foi re-treinado com todo o conjunto de dados balanceado.
- O conjunto de teste foi normalizado com os mesmos parâmetros do StandardScaler aplicado aos dados de treinamento.

4.2. Resultados Finais

- As predições foram realizadas no conjunto de teste.
- Os resultados foram salvos em um novo dataframe contendo as colunas id_solicitante e inadimplente.

5. Conclusão

- O dataSet fornecido para essa tarefa tem uma distribuição igualitária entre adimplentes e inadimplentes em todos os atributos. Isso dificulta a formação de grupos e consequentemente a classificação de uma pessoa em adimplente e inadimplente, mostrando-se ser um desafio com acertividade baixa (seria impossível almejar um score alto, mesmo com melhores técnicas).
- O uso de SMOTE e normalização mostraram-se eficazes para melhorar o resultado geral do modelo
- O modelo XGBClassifier, com hiperparâmetros ajustados, foi o melhor modelo dentre os testados.

Repositório dos trabalhos:

https://github.com/AbraaoCG/EEL891_ML_projects