D-MATH
Prof. M. Struwe

Exercise 3.1 Let $(X, \|\cdot\|)$ be an infinite-dimensional normed vector space an let $Z \subset X$ be a bounded subset with compact boundary. Prove that Z has empty interior.

Exercise 3.2 We consider the space $X = C^0([-1,1],\mathbb{R})$ with its usual norm $\|\cdot\|_{C^0([-1,1])}$ and let $\varphi: X \to \mathbb{R}$ be given by

$$\varphi(f) \mapsto \int_0^1 f(t) dt - \int_{-1}^0 f(t) dt.$$

- (i) Show that φ is a linear and continuous map with $\|\varphi\|_{L(X,\mathbb{R})} \leq 2$.
- (ii) Prove that the norm of φ is exactly 2 by finding a sequence $(f_n)_{n\in\mathbb{N}}$ in X such that $||f_n||_{C^0([-1,1])} = 1$ for every $n \in \mathbb{N}$ and such that $\varphi(f_n) \to 2$ as $n \to \infty$.
- (iii) Prove that there does not exist $f \in X$ with $||f||_{C^0([-1,1])} = 1$ and $|\varphi(f)| = 2$.

Exercise 3.3 Let

$$c_c := \{ (x_n)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \ \forall n \ge N : \ x_n = 0 \}$$

be the space of compactly supported sequences endowed with the sup-norm $\|\cdot\|_{\ell^{\infty}}$. Consider the map $T: c_c \to c_c$ given by

$$T\left((x_n)_{n\in\mathbb{N}}\right) = (nx_n)_{n\in\mathbb{N}}.$$

- (i) Show that T is not continuous.
- (ii) Construct continuous linear maps $T_m: c_c \to c_c$ such that

$$\forall x \in c_c: \quad T_m x \xrightarrow{m \to \infty} Tx.$$

Exercise 3.4 Let $k: [0,1] \times [0,1] \to \mathbb{R}$ be continuous. Show that for every $g \in C^0([0,1])$ there exists a unique $f \in C^0([0,1])$ satisfying

$$\forall t \in [0, 1]: f(t) + \int_0^t k(t, s) f(s) \, ds = g(t).$$

Last modified: 1 October 2019

Hints to Exercises.

- **3.1** Assume that $Z^{\circ} \neq \emptyset$. Find a continuous functional that projects the boundary ∂Z to the boundary of a ball inside Z. This will contradict the fact that the unit sphere in an infinite-dimensional normed space is non-compact.
- **3.4** Begin by choosing a space $(X, \|\cdot\|_X)$ and show that the operator $T: X \to X$ given by $(Tf)(t) = \int_0^t k(t,s)f(s) ds$ has spectral radius $r_T = 0$.