Modulo 06 Amostragem

Processamento Digital de Sinais analógicos

Exemplo comum do processamento de áudio em computadores

Controle digital

Amostragem de sinais de tempo contínuo

Placas de som, interfaces USB, etc.

7.1.1 Amostragem de sinais de tempo contínuo

Amostragem por trem de impulsos

X(e^{jω}): Réplicas do espectro original deslocadas em freqüência e superpostas

Teorema da amostragem (Nyquist)

Espectro original preservado se $F_s > 2F_M$

Teorema da amostragem

Pré-filtragem (analógica) anti-aliasing

Filtro passa-baixas: garante que o sinal amostrado é limitado em faixa

Recuperando $X(j\omega)$

X(jω) amostrado por impulsos:→
 recuperação com filtragem passa-baixas ideal (interpolação)

Idealmente, $X_r(j\omega) = X(j\omega)$

Recuperando x(t)

$$X_r(j\omega) = H(j\omega) \cdot X_p(j\omega)$$
$$x_r(t) = h(t) * x_p(t)$$

$$x_{r}(t) = \sum_{n=-\infty}^{+\infty} x(nT) \frac{\omega_{c}T}{\pi} \frac{\operatorname{sen}(\omega_{c}(t-nT))}{\omega_{c}(t-nT)}$$

h(t): não causal e com duração
 infinita (não realizável na prática)
 → truncamento (aproximação)

7.1.2 Amostragem com pulsos retangulares

- Impulsos podem ser difíceis de ser aproximados/transmitidos
- Utilização do segurador (retentor) de ordem zero (reta horizontal)

Interpretação:

$$x_{o}(t) = x_{p}(t) * h_{0}(t)$$

$$X_{o}(j\omega) = X_{p}(j\omega) \bullet H_{0}(j\omega)$$

$$|H_{0}(j\omega)| = T \cdot \operatorname{sinc}(\omega T/2)$$

$$T t$$

Espectro amostrado é multiplicado (distorcido) por $H_0(j\omega)$...

Segurador de ordem zero: importante em sistemas de controle digital

Interpolação linear

- Sinal x(t) aproximado por segmentos de reta:
- Precisão melhora com aumento da taxa de amostragem

- Compromissos: tempo de cálculo na interpolação x memória para armazenar amostras, etc.
- É possível fazer uma análise em freqüência semelhante à feita para o segurador de ordem zero (Ver fig. 7.4 do livro-texto).

7.3 Efeito da subamostragem: aliasing

Aliasing = "falseamento" de freqüência: sinal reconstruído com freqüência incorreta se o sinal original é subamostrado

Aliasing: interpretação no espectro (1/3)

Relembrando:

Teorema da Amostragem $\omega_s > 2\omega_0$: para não haver *aliasing*

Aliasing: interpretação no espectro (2/3)

Freqüência no sinal reconstruído é diferente (menor) que no sinal original

Teorema da Amostragem requer $\omega_s > 2\omega_0$: há aliasing

Subamostragem de sinais de banda larga 3/3

 $-\omega_z/2$

0

 $\omega_{\nu}/2$

 ω_{z}

Subamostragem pode causar:

- Distorção pela sobreposição de partes das réplicas do espectro original
- Perdas em altas freqüências

7.5 Amostragem de sinais de tempo discreto 1/2

 Análogo à amostragem de sinais de tempo contínuo

$$x_{p}[n] = \begin{cases} x[n], & \text{se } n = \text{ um inteiro múltiplo de } N \\ 0, & \text{caso contrário} \end{cases}$$

Amostragem de sinais de tempo discreto

$$x_p[n] = x[n] \cdot p[n]$$

Interpretação espectral

Teorema da amostragem: $\omega_s > 2\omega_M$ para não ocorrer aliasing

x(t) deve estar sobreamostrado

Dizimação (decimação)

- Amostragem de tempo discreto → amostras nulas
- Armazenamento e/ou transmissão ineficientes
- "Descarte" de amostras nulas: Dizimação

$$x[n] \longrightarrow \downarrow N \longrightarrow x_b[n]$$

Redução de taxa (downsampling)

$$x_b[n] = x_p[nN] = x[nN]$$

Qual a relação entre $X_b(e^{j\omega})$ e $X(e^{j\omega})$?

Dizimação – Interpretação espectral

Qual a relação entre $X_b(e^{j\omega})$ e $X(e^{j\omega})$?

$$X_{b}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x_{b}[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x_{p}[nN]e^{-j\omega n}$$

$$= \sum_{k=\infty}^{\infty} x_{p}[k]e^{-j\omega k/N} = X_{p}(e^{j\omega/N})$$

$$X(e^{j\omega})$$

$$X_{p}(e^{j\omega})$$

$$X_{p}(e^{j\omega})$$

$$X_{p}(e^{j\omega})$$

$$X_{p}(e^{j\omega})$$

$$X_{p}(e^{j\omega})$$

$$X_{p}(e^{j\omega})$$
fator de escala

Dizimação: espalha o espectro do sinal

Lembrete: mudanças de escala (cap. 1)

Exercícios (básicos) sugeridos

7.1, 7.2, 7.3, 7.4

P16.2

Consider the system in Figure P16.2.

- (a) Sketch $X_p(\omega)$ for $-9\pi \le \omega \le 9\pi$ for the following values of ω_0 .
 - (i) $\omega_0 = \pi$
 - (ii) $\omega_0 = 2\pi$
 - (iii) $\omega_0 = 3\pi$
 - (iv) $\omega_0 = 5\pi$
- (b) For which of the preceding values of ω_0 is $x_p(t)$ identical?

The sampling function

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT), \qquad T = \frac{1}{3},$$

has a spectrum given by

$$P(\omega) = \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta \left(\omega - \frac{2\pi k}{T} \right)$$
$$= 6\pi \sum_{n=-\infty}^{\infty} \delta(\omega - 6\pi k),$$

shown in Figure S16.2-1.

 $\cos(\omega_0 t)$ has a spectrum given by $\pi\delta(\omega-\omega_0)+\pi\delta(\omega+\omega_0)$, shown in Figure S16.2-2.

$$X_p(\omega) = \frac{1}{2\pi} P(\omega) * [\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0)]$$

Hence, it is straightforward to find $X_p(\omega)$.

(a) (i) For $\omega_0 = \pi$:

(ii) For $\omega_0 = 2\pi$:

(iii) For $\omega_0 = 3\pi$:

(iv) For $\omega_0 = 5\pi$:

Consider the system in Figure P16.5-1.

Figures P16.5-2 and P16.5-3 contain several Fourier transforms of x(t) and $x_r(t)$. For each input spectrum $X(\omega)$ in Figure P16.5-2, identify the correct output spectrum $X_r(\omega)$ from Figure P16.5-3.

S16.5

(a) The transform of the sampled function appears as in Figure S16.5-1.

Hence, (a) matches (i).

(b)

Hence, (b) does not match any.

- (c) Matches (ii).
- (d)

Hence, (d) does not match any.

(a) If $X(\omega) = 0$ for $|\omega| > W$, find the maximum value of T, W_c , and A such that $x_r(t) = x(t)$.

(a) From the sampling theorem, $2\pi/T \ge 2W$. Hence,

$$T \leq \frac{\pi}{W} \to T_{\max} = \frac{\pi}{W}$$

Since

$$X_p(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X \left(\omega - k \frac{2\pi}{T}\right),$$

we require A = T for $x_r(t) = x(t)$.

The minimum value of W_c is W so that we do not lose any information, and the maximum value of W_c is $(2\pi/T)-W$ to avoid periodic spectral contribution.

In the system in Figure P16.3, x(t) is sampled with a periodic impulse train, and a reconstructed signal $x_r(t)$ is obtained from the samples by lowpass filtering.

The sampling period T is 1 ms, and x(t) is a sinusoidal signal of the form $x(t) = \cos(2\pi f_0 t + \theta)$. For each of the following choices of f_0 and θ , determine $x_r(t)$.

(a)
$$f_0 = 250 \text{ Hz}, \theta = \pi/4$$

(b)
$$f_0 = 750 \text{ Hz}, \theta = \pi/2$$

(c)
$$f_0 = 500 \text{ Hz}, \theta = \pi/2$$

The signal $x(t) = \cos(\omega_0 t + \theta)$, where $\omega_0 = 2\pi f_0$, can be written as

$$x(t) = \frac{1}{2}e^{j\theta}e^{j\omega_0 t} + \frac{1}{2}e^{-j\theta}e^{-j\omega_0 t}$$

and the spectrum of x(t) is given by

$$X(\omega) = \pi e^{j\theta} \delta(\omega - \omega_0) + \pi e^{-j\theta} \delta(\omega + \omega_0)$$

The spectrum of p(t) is given by

$$P(\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta \left(\omega - \frac{2\pi k}{T} \right)$$

Therefore, the spectrum of $x_p(t)$ is

$$X_p(\omega) = rac{1}{2\pi} \left(rac{2\pi^2}{T}
ight) \left[\sum_{k=-\infty}^{\infty} e^{j\theta} \delta\left(\omega - rac{2\pi k}{T} - \omega_0
ight) + e^{-j\theta} \delta\left(\omega - rac{2\pi k}{T} + \omega_0
ight)
ight]$$

and the spectrum of $X_r(\omega)$ is given by

$$X_r(\omega) = H(\omega)X_p(\omega)$$

(a)
$$\omega_0 = 2\pi \times 250$$
, $\theta = \frac{\pi}{4}$, $T = 10^{-3}$, $X_p(\omega) = \frac{\pi}{T} \sum_{k=-\infty}^{\infty} \left[e^{j\theta} \delta(\omega - 2\pi \times 10^3 k - 2\pi \times 250) + e^{-j\theta} \delta(\omega - 2\pi \times 10^3 k + 2\pi \times 250) \right]$

Hence, only the k = 0 term is passed by the filter:

$$X_{r}(\omega) = \pi [e^{j\theta}\delta(\omega - 2\pi \times 250) + e^{-j\theta}\delta(\omega + 2\pi \times 250)]$$

and

$$x_r(t) = \frac{1}{2} e^{j\theta} e^{j2\pi \times 250t} + \frac{1}{2} e^{-j\theta} e^{-j2\pi \times 250t}$$

$$= \cos(2\pi \times 250t + \theta)$$

$$= \cos\left(2\pi \times 250t + \frac{\pi}{4}\right)$$

(b)
$$\omega_0 = 2\pi \times 750 \text{ Hz}, \qquad T = 10^{-3},$$

$$X_p(\omega) = \frac{\pi}{T} \sum_{k=-\infty}^{\infty} \left[e^{j\theta} \delta(\omega - 2\pi \times 10^3 k - 2\pi \times 750) + e^{-j\theta} \delta(\omega - 2\pi \times 10^3 k + 2\pi \times 750) \right]$$

Only the $k = \pm 1$ term has nonzero contribution:

$$X_r(\omega) = \frac{\pi}{T} [e^{j\theta} \delta(\omega + 2\pi \times 250) + e^{-j\theta} \delta(\omega - 2\pi \times 250)]$$

Hence,

$$x_r(t) = \cos(2\pi \times 250t - \theta)$$
$$= \cos\left(2\pi \times 250t - \frac{\pi}{2}\right)$$

(c)
$$\omega_0 = 2\pi \times 500, \quad \theta = \frac{\pi}{2}, \quad T = 10^{-3},$$

$$X_p(\omega) = \frac{\pi}{T} \sum_{k=-\infty}^{\infty} \left[e^{j\theta} \delta(\omega - 2\pi \times 10^3 k - 2\pi \times 500) + e^{-j\theta} \delta(\omega - 2\pi \times 10^3 k + 2\pi \times 500) \right]$$

Since $H(\omega) = 0$ at $\omega = 2\pi \times 500$, the output is zero: $x_r(t) = 0$.