

Reference Tables for Physical Setting/CHEMISTRY 2011 Edition

Table A Standard Temperature and Pressure

Name	Value	Unit
Standard Pressure	101.3 kPa 1 atm	kilopascal atmosphere
Standard Temperature	273 K 0°C	kelvin degree Celsius

Table B Physical Constants for Water

Heat of Fusion	334 J/g
Heat of Vaporization	2260 J/g
Specific Heat Capacity of $\mathrm{H_2O}(\ell)$	4.18 J/g•K

Table C Selected Prefixes

Factor	Prefix	Symbol
10^{3}	kilo-	k
10^{-1}	deci-	d
10-2	centi-	c
10-3	milli-	m
10-6	micro-	μ
10-9	nano-	n
10^{-12}	pico-	p

Table D Selected Units

Symbol	Name	Quantity
m	meter	length
g	gram	mass
Pa	pascal	pressure
K	kelvin	temperature
mol	mole	amount of substance
J	joule	energy, work, quantity of heat
S	second	time
min	minute	time
h	hour	time
d	day	time
у	year	time
L	liter	volume
ppm	parts per million	concentration
M	molarity	solution concentration
u	atomic mass unit	atomic mass

Table E
Selected Polyatomic Ions

Formula	Name	Formula	Name
H ₃ O ⁺	hydronium	$\operatorname{CrO_4}^{2-}$	chromate
Hg ₂ ²⁺	mercury(I)	$\operatorname{Cr_2O_7}^{2-}$	dichromate
NH ₄ ⁺	ammonium	$\mathrm{MnO_4}^-$	permanganate
$\begin{bmatrix} \mathrm{C_2H_3O_2}^-\\ \mathrm{CH_3COO}^- \end{bmatrix}$	acetate	NO_2^-	nitrite
		NO ₃	nitrate
CN-	cyanide	O ₂ ²⁻	peroxide
CO ₃ ²⁻	carbonate	OH-	hydroxide
HCO ₃ ⁻	hydrogen carbonate	PO ₄ ³⁻	phosphate
$C_2O_4^{2-}$	oxalate	SCN-	thiocyanate
ClO-	hypochlorite	SO ₃ ²⁻	sulfite
ClO ₂ -	chlorite	$\mathrm{SO_4}^{2-}$	sulfate
ClO ₃	chlorate	HSO ₄	hydrogen sulfate
ClO ₄	perchlorate	S ₂ O ₃ ²⁻	thiosulfate

Ions That Form Soluble Compounds	Exceptions
Group 1 ions (Li ⁺ , Na ⁺ , etc.)	
ammonium (NH ₄ ⁺)	
nitrate (NO ₃ ⁻)	
acetate ($C_2H_3O_2^-$ or CH_3COO^-)	
hydrogen carbonate (HCO ₃ ⁻)	
chlorate (ClO ₃ ⁻)	
halides (Cl ⁻ , Br ⁻ , I ⁻)	when combined with Ag^+ , Pb^{2+} , or Hg_2^{2+}
sulfates (SO ₄ ² –)	when combined with Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , or Pb ²⁺

Ions That Form Insoluble Compounds*	Exceptions
carbonate (CO ₃ ²⁻)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
chromate $(\operatorname{Cr}\operatorname{O_4^{2-}})$	when combined with Group 1 ions, $\mathrm{Ca^{2+}}$, $\mathrm{Mg^{2+}}$, or ammonium $(\mathrm{NH_4^+})$
phosphate (PO ₄ ³ -)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
sulfide (S ² -)	when combined with Group 1 ions or ammonium $(\mathrm{NH_4}^+)$
hydroxide (OH ⁻)	when combined with Group 1 ions, $\operatorname{Ca^{2+}}$, $\operatorname{Ba^{2+}}$, $\operatorname{Sr^{2+}}$, or ammonium $(\operatorname{NH_4^+})$

^{*}compounds having very low solubility in H_2O

Table G Solubility Curves at Standard Pressure

Table H Vapor Pressure of Four Liquids

Table I Heats of Reaction at 101.3 kPa and 298 K

Reaction	$\Delta H (kJ)*$
$\text{CH}_4(\mathbf{g}) + 2\text{O}_2(\mathbf{g}) \longrightarrow \text{CO}_2(\mathbf{g}) + 2\text{H}_2\text{O}(\boldsymbol{\ell})$	-890.4
$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(\ell)$	-2219.2
$2\mathrm{C_8H_{18}}(\ell) + 25\mathrm{O_2}(\mathrm{g}) \longrightarrow 16\mathrm{CO_2}(\mathrm{g}) + 18\mathrm{H_2O}(\ell)$	-10943
$2\mathrm{CH_3OH}(\ell) + 3\mathrm{O_2(g)} \longrightarrow 2\mathrm{CO_2(g)} + 4\mathrm{H_2O}(\ell)$	-1452
$\boxed{ \text{C}_2\text{H}_5\text{OH}(\ell) + 3\text{O}_2(\text{g}) \longrightarrow 2\text{CO}_2(\text{g}) + 3\text{H}_2\text{O}(\ell) }$	-1367
	-2804
$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$	-566.0
$C(s) + O_2(g) \longrightarrow CO_2(g)$	-393.5
$4Al(s) + 3O_2(g) \longrightarrow 2Al_2O_3(s)$	-3351
$N_2(g) + O_2(g) \longrightarrow 2NO(g)$	+182.6
$N_2(g) + 2O_2(g) \longrightarrow 2NO_2(g)$	+66.4
$2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$	-483.6
$2H_2(g) + O_2(g) \longrightarrow 2H_2O(\ell)$	-571.6
$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$	-91.8
$2C(s) + 3H_2(g) \longrightarrow C_2H_6(g)$	-84.0
$2C(s) + 2H_2(g) \longrightarrow C_2H_4(g)$	+52.4
$2C(s) + H_2(g) \longrightarrow C_2H_2(g)$	+227.4
$H_2(g) + I_2(g) \longrightarrow 2HI(g)$	+53.0
$KNO_3(s) \xrightarrow{H_2O} K^+(aq) + NO_3^-(aq)$	+34.89
$NaOH(s) \xrightarrow{H_2O} Na^+(aq) + OH^-(aq)$	-44.51
$NH_4Cl(s) \xrightarrow{H_2O} NH_4^+(aq) + Cl^-(aq)$	+14.78
$NH_4NO_3(s) \xrightarrow{H_2O} NH_4^+(aq) + NO_3^-(aq)$	+25.69
$NaCl(s) \xrightarrow{H_2O} Na^+(aq) + Cl^-(aq)$	+3.88
$LiBr(s) \xrightarrow{H_2O} Li^+(aq) + Br^-(aq)$	-48.83
$H^+(aq) + OH^-(aq) \longrightarrow H_2O(\ell)$	-55.8

^{*}The ΔH values are based on molar quantities represented in the equations. A minus sign indicates an exothermic reaction.

Table J
Activity Series**

Most Active	Metals	Nonmetals	Most Active
	Li	F_2	Active
	Rb	Cl_2	
	K	Br_2	
	Cs	I_2	
	Ва		
	Sr		
	Ca		
	Na		
	Mg		
	Al		
	Ti		
	Mn		
	Zn		
	Cr		
	Fe		
	Со		
	Ni		
	Sn		
	Pb		
	H_2		
	Cu		
	Ag		
¥ Least Active	Au		Least Active

^{**}Activity Series is based on the hydrogen standard. ${\rm H_2}$ is not a metal.

Table K Common Acids

Formula	Name
HCl(aq)	hydrochloric acid
$\mathrm{HNO}_2(\mathrm{aq})$	nitrous acid
HNO ₃ (aq)	nitric acid
$\mathrm{H_2SO_3(aq)}$	sulfurous acid
$\mathrm{H_2SO_4(aq)}$	sulfuric acid
$H_3PO_4(aq)$	phosphoric acid
$\begin{array}{c} \operatorname{H_2CO_3(aq)} \\ \operatorname{or} \\ \operatorname{CO_2(aq)} \end{array}$	carbonic acid
$\begin{array}{c} \operatorname{CH_3COOH(aq)} \\ \operatorname{or} \\ \operatorname{HC_2H_3O_2(aq)} \end{array}$	ethanoic acid (acetic acid)

Table L Common Bases

Formula	Name
NaOH(aq)	sodium hydroxide
KOH(aq)	potassium hydroxide
Ca(OH) ₂ (aq)	calcium hydroxide
NH ₃ (aq)	aqueous ammonia

Table M Common Acid-Base Indicators

Indicator	Approximate pH Range for Color Change	Color Change
methyl orange	3.1–4.4	red to yellow
bromthymol blue	6.0-7.6	yellow to blue
phenolphthalein	8–9	colorless to pink
litmus	4.5-8.3	red to blue
bromeresol green	3.8-5.4	yellow to blue
thymol blue	8.0-9.6	yellow to blue

Source: The Merck Index, 14th ed., 2006, Merck Publishing Group

Table N
Selected Radioisotopes

Nuclide	Half-Life	Decay Mode	Nuclide Name
¹⁹⁸ Au	2.695 d	β-	gold-198
¹⁴ C	5715 y	β-	carbon-14
³⁷ Ca	182 ms	β+	calcium-37
⁶⁰ Co	5.271 y	β-	cobalt-60
¹³⁷ Cs	30.2 y	β-	cesium-137
⁵³ Fe	8.51 min	β+	iron-53
$^{220}\mathrm{Fr}$	27.4 s	α	francium-220
$^{3}\mathrm{H}$	12.31 y	β-	hydrogen-3
$^{131}{ m I}$	8.021 d	β-	iodine-131
$^{37}\mathrm{K}$	1.23 s	β+	potassium-37
$^{42}\mathrm{K}$	12.36 h	β-	potassium-42
$^{85}\mathrm{Kr}$	10.73 y	β-	krypton-85
^{16}N	7.13 s	β-	nitrogen-16
¹⁹ Ne	17.22 s	β+	neon-19
^{32}P	14.28 d	β-	phosphorus-32
²³⁹ Pu	$2.410 \times 10^4 \mathrm{y}$	α	plutonium-239
²²⁶ Ra	1599 y	α	radium-226
222 Rn	3.823 d	α	radon-222
⁹⁰ Sr	29.1 y	β-	strontium-90
⁹⁹ Tc	$2.13 \times 10^5 \mathrm{y}$	β-	technetium-99
²³² Th	$1.40 \times 10^{10} \mathrm{y}$	α	thorium-232
²³³ U	$1.592 \times 10^5 \mathrm{y}$	α	uranium-233
$^{235}\mathrm{U}$	$7.04 \times 10^{8} \mathrm{y}$	α	uranium-235
$^{238}\mathrm{U}$	$4.47 \times 10^9 \mathrm{y}$	α	uranium-238

Source: CRC Handbook of Chemistry and Physics, 91st ed., 2010–2011, CRC Press

Table O
Symbols Used in Nuclear Chemistry

Name	Notation	Symbol
alpha particle	${}^4_2\mathrm{He}$ or ${}^4_2\alpha$	α
beta particle	$_{-1}^{0}e \text{ or }_{-1}^{0}\beta$	β-
gamma radiation	0	γ
neutron	$_{0}^{1}$ n	n
proton	¹ ₁ H or ¹ ₁ p	p
positron	$^{0}_{+1}e \text{ or } ^{0}_{+1}\beta$	β+

Table P Organic Prefixes

Prefix	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hept-	7
oct-	8
non-	9
dec-	10

Table Q Homologous Series of Hydrocarbons

Name	General		Examples
	Formula	Name	Structural Formula
alkanes	C_nH_{2n+2}	ethane	H H H-C-C-H H H H
alkenes	C_nH_{2n}	ethene	C=C H H
alkynes	C_nH_{2n-2}	ethyne	H−С≡С−Н

Note: n = number of carbon atoms

Table R
Organic Functional Groups

Class of Compound	Functional Group	General Formula	Example
halide (halocarbon)	-F (fluoro-) -Cl (chloro-) -Br (bromo-) -I (iodo-)	R—X (X represents any halogen)	CH ₃ CHClCH ₃ 2-chloropropane
alcohol	-он	<i>R</i> —ОН	CH ₃ CH ₂ CH ₂ OH 1-propanol
ether	-0-	R $-$ O $ R'$	$\mathrm{CH_3OCH_2CH_3}$ methyl ethyl ether
aldehyde	O -C-H	О R-С-Н	O II CH ₃ CH ₂ C—H propanal
ketone	-C-	O R-C-R'	$\begin{array}{c} \text{O} \\ \text{II} \\ \text{CH}_3\text{CCH}_2\text{CH}_2\text{CH}_3 \\ \text{2-pentanone} \end{array}$
organic acid	O -C-OH	О R-С-ОН	O II CH ₃ CH ₂ C—OH propanoic acid
ester	O -C-O-	$\begin{bmatrix} O \\ II \\ R-C-O-R' \end{bmatrix}$	O II CH ₃ CH ₂ COCH ₃ methyl propanoate
amine	-N-	R' R-N-R''	$\begin{array}{c} \mathrm{CH_{3}CH_{2}CH_{2}NH_{2}} \\ \mathrm{1\text{-}propanamine} \end{array}$
amide	O II I -C-NH	O R' 	O II CH ₃ CH ₂ C—NH ₂ propanamide

Note: *R* represents a bonded atom or group of atoms.

Periodic Table of the Elements

Period

8

	20.180 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	39.948 0 Ar	18 2-8-8	83.798 0	36 2-8-18-8	131.29 0 A +2 +4 +4 +6	54 2-8-18-18-8	B 200	86 -18-32-18-8	5 0 5 1 1 1 1 1 1 1 1 1 1	
[4 M ⁰]	18.9984 -1 -18.9984 -1	35.453	2-8-7	79.904 1 S	35 2-8-18-7	126.904 –1 +1 +5 +7	53 2-8-18-18-7	(210) At	85 -18-32-18-7	Uus †	
Group	15.99942 8 8	32.065 -2 +4 +6	16 2-8-6	78.96 S	34 2-8-18-6	127.60 -2 -2 -4 -4 -6 -6	52 2-8-18-18-6	(209) +2 Po +4	84 -18-32-18-6	Uuh 15	
P. Gr	14.0067 7 7 14.22 14.22 14.23 15.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23 16.23	30.97376	15 2-8-5	74.9216 -3 +3 +3 +5	33 2-8-18-5	121.760 -3 -3 -3 -5 -5 -5 -3	51 2-8-18-18-5	208.980 +3	83 -18-32-18-5	Jup	
7	12.011 +2 +2 +2 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4	28.0855 44 44 44	14 2-8-4	t3 72.64 t4	32 2-8-18-4	-3 118.71 +2 SD +4	50 2-8-18-18-4	+1 207.2 +2 +3 Pb +4	82 -18-32-18-4	D	
ć	10.81 T	45	13 2-8-3	-2 69.723 -2 69.723		114.818	49 2-8-18-18-3	+1 204.383 + + +2	81 -18-32-18-3	13.* 5.* 5.* 5.* 5.* 5.* 5.* 5.* 5.* 5.* 5	
p			12	4-1 65.409 +2 Z	30 2-8-18-2	Ŧ	48 2-8-18-18-2	+1 200.59	80 -18-32-18-2	(E)	
Selected Oxidation States Relative atomic masses are based on $^{12}\mathrm{C} = 12$ (exact)	of the most sotope.		7	-2 63.546 +3 Q	29 2-8-18-1	+4 107.868 A	47 2-8-18-18-1	+2 196.967 AU	-	B	
 Selected Oxidation States Relative atomic masses are on ¹²C = 12 (exact) 	Note: Numbers in parentheses are mass numbers of the most stable or common isotope.		10	F+5 28.693	28 2-8-16-2	2	46 1 2-8-18-18	+3 195.08 +4 Q	- 	15 Set 1	_
<u></u>	Note: are ma stable		6	\$\frac{1}{2}\$	27 2-8-15-2	102.906 2	45 1 2-8-18-16-1	+3 192.217 +4			_
4 4 4		Group	∞	1-4-2 55.845 1-4-4 The	26 2-8-14-2	+4 101.07 +6 P	44 2-8-18-15-1	(e + 6 190.23 6 + 7 0 5	.2 -18-32-14-2	£ §	
12.011	6 2-4		7	+2 54.9380 +3 +6	25 2-8-13-2	9	-1 2-8-18-13-2	+6 186.207 B6	$\neg \uparrow$	D	_
Atomic Mass -> Symbol	Atomic Number →		9	2 2 2 1.996 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	24 2-8-13-1	2 +3 95.94	42 2-1 2-8-18-13-1	+5 183.84 W	•	် လွ ^{န်} လွ ^{န်}	_
KEY Ato	Atomic Number Electron Configuration		5	+2 50.9415 +3 +4	23 2-8-11-2	2 4 55:3064	0-2 2-8-18-12-1	4 180.948 Tal		4 4 6 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	_
_			4	C +3 47.867		£	40 9-2 2-8-18-10-2	055 +3 178.49 T		္နီ က ္ကို က်န္	8-8-5 8
,	2 Be +2		3	24.9559 SO	21 2-8-9-2	+5	39 8-2 2-8-18-9-2	2 + 2 138.9			
Group	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ੂ ਹ	12 2-8-2	+1 40.08	20 2-8-8-2	Ŧ _	38 -8-1 2-8-18-8-2	137	55 2-8-18-18-8-1 2-8-18-	**************************************	- 1
Tables for Physical	C/ 6.941	ო		4		5	37 2-8-18-8-1	132.905	2.8-18-	7 87 78	-18-32-

+2 174.9668 +3 +3 T1 74.9668 +3 T1	(262) +3 Lr 103
70 VB +3 173.04 +5 70 VB +3 70	102 (259) +2 102
-3 168.934 +3 CONTRACT	+3 (258) +2 Md +3 101
68 HG7.259 +5	(257) H 100
F4 164.930 +3 67 e3 e3 e3 e4 e3 e4 e3 e5	(252) +3 99
e6 by +3 162.500 +3 e6 by +3 e6	(251) 98
158.925 Tb 65	+3 (247) +3 BK +4 97
64 Gd +2 157.25 +3 Gd +3 64 64 64 64 64 64 64 64 64 64 64 64 64	6
Д Д Д	Am 95
S 150.36 +2 15	Pu +5
(145) Pm 61	(237) +3 ND +4 +6 93
144.24 +3 Nd 60	238.029 +3 +4 +4 +5 +6 +6
140.908 +3 Pf 59	231.036 +4 91 92 +5
140.116 Ce +4 58	232.038 +4 Th

^{*}denotes the presence of (2-8-) for elements 72 and above

^{**}The systematic names and symbols for elements of atomic numbers 113 and above will be used until the approval of trivial names by IUPAC.

Table S roperties of Selected Elements

Atomic Number	Symbol	Name IC	First Ionization Energy (kJ/mol)	Electro- negativity	Melting Point (K)	Boiling* Point (K)	Density** (g/cm^3)	Atomic Radius (pm)
1 67	H He	hydrogen helium	1312 2372	2.2	14 —	20. 4	$\begin{array}{c} 0.000082 \\ 0.000164 \end{array}$	32 37
დ 4	Li Be	lithium bervllium	520. 900.	1.0	$454 \\ 1560.$	1615 2744	$0.534 \\ 1.85$	130. 99
ΣC	B	boron	801	2.0	2348	4273	2.34	84
9	C	carbon	1086	2.6	:	}		75
≻ ∝	zc	nitrogen	1402 1314	0.0 4.0	63 77	<u> </u>	$0.001145 \\ 0.001308$	71
6 01	N F (S	fluorine neon	1681 2081	4.0	25.2 25.42	855. 27.	0.001553 0.000825	60.29
11	Na	sodium	496	6.0	371	1156	0.97	160.
27.5	$_{\rm g}^{ m M}$	magnesium	738	1.3	923	1363	1.74	140.
1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S: A	aluminum silicon	787	1.9	933 1687	2792 3538	2.70 2.3296	114
15	Ь	phosphorus (white)	1012	2.5	317	554	1.823	109
16	\sim 7	sulfur (monoclinic)	1000.	2.6	388	718	2.00	104
18	Ą.	eniorine argon	1231 1521	5.5	172 84	852 87	0.002595 0.001633	101
19	M Ç	potassium calcium	419	0.8	337	$\frac{1032}{1757}$	0.89	200.
	3) (J.			101	0015	40.4	1 1
21 23 1 24 24	S: Li	scandium titanium	633 659	4.1 5.1	$\begin{array}{c} 1814 \\ 1941 \end{array}$	3109 3560.	2.99 4.506	159 148
23	> <	vanadium	651	1.6	2183	3680.	6.0	144
4 6 4 16	ğ.	chromium manganese	653 717	1.7	2180. 1519	2944 2334	7.15 7.3	130. 129
26	Fe	iron	762	1.8	1811	3134	7.87	124
61 6 7 0	°Z	cobalt	760. 737	1.9	1768	3200. 3186	8.86	118
6 6 6	Z Cn Z	copper zinc	745 906	1.9	1358 693	2835 1180	8.96 7.134	122
31	Ga	gallium	579	1.8	303	2477	5.91	123
32	Ge	germanium	762	0.0	1211	3106	5.3234	120.
8 8 4	As Se	arsenic (gray) selenium (orav)	944 941	2 <u>.</u> 2. 2. 6.	1090. 494	858 858	5.75 4.809	120. 118.
35	Br	bromine	1140.	3.0	266	332	3.1028	117
$\tilde{9}\tilde{\epsilon}$	Kr	krypton	1351	(116	120.	0.003425	116
3.7 2.8	С.	rubidium	403 640	8.0	312	961 16դդ	1.53 9.64	215
39	7 X 5	yttrium	049 600.	5 67 6	1795 1795	3618	4.47 7.47 6.73	176
40	77	ZIICOIIIUIII	040.	1.0	7170	4007	0.02	104

Atomic Number	Symbol	Name	First Ionization Energy (kJ/mol)	Electro- negativity	Melting Point (K)	Boiling* Point (K)	$\mathbf{Density}^{**}$ $(\mathrm{g/cm}^3)$	Atomic Radius (pm)
41	$^{ m QN}$	niobium	652	1.6	2750.	5017	8.57	156
42	Mo	molybdenum	684	2.2	2896	4912	10.2	146
43	Tc	technetium	702	2.1	2430.	4538	11	138
44	$\mathbf{R}\mathbf{u}$	ruthenium	710.	2.2	2606	4423	12.1	136
45	Rh	rhodium	720.	2.3	2237	3968	12.4	134
46	Pd	palladium	804	2.2	1828	3236	12.0	130.
47	Āg	silver	731	1.9	1235	2435	10.5	136
48	Cq	cadmium	898	1.7	594	1040.	8.69	140.
$\frac{49}{2}$	In	indium	558	1.8	430.	$\frac{2345}{23}$	7.31	142
20	Sn	tin (white)	400	2.0	505	2875	7.287	140.
51	$^{\mathrm{cp}}$	antimony (gray)	831	2.1	904	1860.	89.9	140.
52	Te	tellurium	698	2.1	723	1261	6.232	137
53	Ι	iodine	1008	2.7	387	457	4.933	136
54	Xe	xenon	1170.	2.6	161	165	0.005366	136
55	Cs	cesium	376	8.0	302	944	1.873	238
56	Ba	barium	503	6.0	1000.	2170.	3.62	206
57	La	lanthanum	538	1.1	1193	3737	6.15	194
			Elements 58–71		have been omitted.			
72	Нf	hafninm	659	1.3	2506	4876	13.3	164
73	Ta	tantalum	728	1.5	3290.	5731	16.4	158
74	A	tungsten	759	1.7	3695	5828	19.3	150.
75	Re	rhenium	756	1.9	3458	5869	20.8	141
92	Os	osmium	814	2.2	3306	5285	22.587	136
11	Ir	iridium	865	2.2	2719	4701	22.562	132
28	Pt	platinum	864	2.5	2041	4098	21.5	130.
62	Au	gold	890.	4.2.	1337	3129_{630}	19.3	130.
	$^{ m Hg}$	mercury	1007	1.9	234	020.	15.5530	132
81	E	thallium	589	1.8	277	1746	11.8	144
%	Pb	lead	$\frac{716}{20}$	1.8		2022	11.3	145
£ 5	. P	bismuth	703	0.1 0.0	544 445	1837	9.79	150.
δ 4 ο	Fo *	polonium	812	0.0 0.0	0 7 7 7	1235	9.20	142
82	At	astatine		2.7	6/6			148
$\frac{1}{98}$	Rn	radon	1037]	$\frac{202}{\hat{\epsilon}\hat{\epsilon}\hat{\epsilon}}$	211	0.009074	146
8 2	ų.	trancium 1.	393 190	0.7	300. 969		1	242
8 6 8 8 8 8	Ra Ac	radium actinium	509 499	9. – 1. d	969 1323	3471	10	211
				,		ı		1
		E	lements 90 an	Elements 90 and above have been omitted	been omitte	d.		

** density of solids and liquids at room temperature and density of gases at 298 K and 101.3 kPa *boiling point at standard pressure

— no data available Source: *CRC Handbook for Chemistry and Physics*, 91st ed., 2010–2011, CRC Press

Table T Important Formulas and Equations

Density	$d = \frac{m}{V}$ $d = \text{density}$ $m = \text{mass}$ $V = \text{volume}$			
Mole Calculations	number of moles = $\frac{\text{given mass}}{\text{gram-formula mass}}$	ass		
Percent Error	$%$ error = $\frac{\text{measured value - accepted}}{\text{accepted value}}$	$\frac{d \text{ value}}{d \text{ value}} \times 100$		
Percent Composition	% composition by mass = $\frac{\text{mass of part}}{\text{mass of wh}}$	art vole × 100		
	parts per million = $\frac{\text{mass of solute}}{\text{mass of solution}}$	× 1000000		
Concentration	$molarity = \frac{moles of solute}{liter of solution}$			
Combined Gas Law	$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \qquad \begin{array}{c} P = \text{pressure} \\ V = \text{volume} \\ T = \text{temperature} \end{array}$			
Titration	$M \cdot V \cdot = M \cdot V \cdot \cdot$	of H ⁺ M_B = molarity of OH ⁻ of acid V_B = volume of base		
Heat	$q = mC\Delta T$ $q = \text{heat}$ $q = mH_f$ $m = \text{mass}$ $C = \text{specific he}$ $\Delta T = \text{change in}$			
Temperature	$K = {}^{\circ}C + 273$ $K = \text{kelvin}$ ${}^{\circ}C = \text{degree Co}$	elsius		