Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture

David Eigen, Rob Fergus

Presented by: Rex Ying and Charles Qi

Input: A Single RGB Image

Estimate Depth

Estimate Surface Normals

(X, Y, Z) normal vector

Surface normal at point P is a vector that is perpendicular to the tangent plane to that surface at P.

Predict Per-pixel Semantic Labels

A label L is assigned to each pixel, indicating which category (bed, pillow, wall, floor etc.) this pixel belongs to.

3D Scene Representation = Geometry + Semantics

Physical Geometry

Predicting 3D Geometry is Hard: Multiple Ambiguities!

Predicting 3D Geometry is Hard: Multiple Ambiguities!

Predicting 3D Geometry is Hard: Multiple Ambiguities!

Bas-Relief Ambiguity

Belhumeur, Peter N., David J. Kriegman, and Alan L. Yuille. "The bas-relief ambiguity." International journal of computer vision 35.1 (1999): 33-44.

How to acquire 3D geometry of a scene?

Multi-view Stereo

Multi-View Stereo: A Tutorial - Carlos Hernandez, 2013

Multi-view Stereo

- + More deterministic than ConvNet
- Finding correspondence is challenging
- Require multiple images input
- (Usually) require well calibrated camera

Multi-View Stereo: A Tutorial - Carlos Hernandez, 2013

Shape from X

X = Shading

X = Multiple Light Sources (photometric stereo)

X =Texture

X =Focus/Defocus

X = Specularities

X =Shadows

Prados, Emmanuel, and Olivier Faugeras. "Shape from shading: a well-posed problem?." CVPR 2005

Shape from X

X = Shading

X = Multiple Light Sources (photometric stereo)

X =Texture

X =Focus/Defocus

X = Specularities

X =Shadows

Prados, Emmanuel, and Olivier Faugeras. "Shape from shading: a well-posed problem?." CVPR 2005

Lobay, Anthony, and David A. Forsyth. "Recovering shape and irradiance maps from rich dense texton fields." *CVPR 2004*

Shape from X

X = Shading

X =Multiple Light Sources (photometric stereo)

X =Texture

X =Focus/Defocus

X = Specularities

X = Shadows

- + Relatively accurate geometry
- Lots of assumptions
- Not generalizing well to scenes

Prados, Emmanuel, and Olivier Faugeras. "Shape from shading: a well-posed problem?." CVPR 2005

pny, and David A. Forsyth. "Recovering shape and irradiance maps from rich

dense texton fields." CVPR 2004

Specialized Hardware

- + Ground truth depth
- Cost of data acquisition and HW

Structured Light

Laser Scanner

Previous Methods

Make3D

Make3D: Learning 3-D Scene Structure from a Single Still Image, Ashutosh Saxena, Min Sun, Andrew Y. Ng, In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2008.

Fig. 1. (a) An original image. (b) Oversegmentation of the image to obtain "superpixels". (c) The 3-d model predicted by the algorithm. (d) A screenshot of the textured 3-d model.

Previous Methods

Make3D

Make3D: Learning 3-D Scene Structure from a Single Still Image, Ashutosh Saxena, Min Sun, Andrew Y. Ng, In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2008.

- + Flexible, input is a single image
- + Good pioneer work (showing the feasibility of the problem)
- Hand crafted pipeline

Fig. 1. (a) An original image. (b) Oversegmentation of the image to obtain "superpixels". (c) The 3-d model predicted by the algorithm. (d) A screenshot of the textured 3-d model.

This Paper

Three Tasks in a Uniform Framework End-to-End Learning

Coarse To Fine Multi-Scale ConvNet

Multiscale Architecture

- Networks corresponding to different scales are connected in series
- From low resolution to high resolution
- Can naturally be used to perform many different tasks

Scale 1

- Coarsest scale
- Full-image field of view at the coarsest scale (1/16 scale)
- AlexNet (smaller model size) and VGG
- Upsampling to be the same size as the input for the next scale
- Important for producing smooth output

Scale 2

- Prediction at scale 2 (¼ scale)
- 5 layers
- Concatenate the output of previous scale with those from a single layer of convolution and pooling
- Output has the same size, with the number of channel depending on the task

Scale 3

- Refines to higher resolution at scale 3 (½ scale)
- 4 layers
- Concatenate the output of scale 2
- Provides details while maintaining the spatially coherent structure from previous scales

Loss Function

(log) Depth
 Use a scale-invariant error

$$D(y, y^*) = \frac{1}{2n} \sum_{i=1}^{n} (\log y_i - \log y_i^* + \alpha(y, y^*))^2$$

Surface Normal

$$L_{depth}(D,D^*) = rac{1}{n}\sum_i d_i^2 - rac{1}{2n^2}\left(\sum_i d_i
ight)^2 \ + rac{1}{n}\sum_i [(
abla_x d_i)^2 + (
abla_y d_i)^2]$$
Regularization

$$L_{normals}(N, N^*) = -\frac{1}{n} \sum_{i} N_i \cdot N_i^* = -\frac{1}{n} N \cdot N^*$$

$$L_{semantic}(C, C^*) = -\frac{1}{n} \sum_{i} C_i^* \log(C_i)$$

Training

- Use SGD to train scale 1 and 2 jointly; then fix the parameters to train scale 3
- For scale 3, backprop with cropped images (increased stochasticity and efficiency)
- Data augmentation with random linear transformations, colors, contrast
- Parameter sharing in scale 1 for depth and normal networks
- Make use of depth and normal information by applying conv to each input separately

Metrics for evaluation

- Dataset: NYU Depth
- Depth:
 - abs/sqr relative difference
 - RMS (linear, log)
 - Scale invariant difference

Surface	normal.	angle	distance
Juliace	HUIIIIai.	andic	uistante

Semantic labelling: pixel-wise, per class accuracy; Jaccard Index

 $\delta < 1.25$ $\delta < 1.25^2$ $\delta < 1.25^3$ abs rel sqr rel RMS(lin) RMS(log) sc-inv.

Angle Distance		Within t° Deg.			
Mean	Median	11.25°	22.5°	30°	

Pix.	Acc.	Per-Cls Acc.	Freq. Jaccard	Av. Jaccard

Results (Depth)

Outperforms all prior works (Ladicky et al., Karsh et al. [18], Baig et al. [1], Liu et al. [23] and Eigen et al. [8])

VGG outperforms AlexNet due to larger model size

Results (Surface Normal)

- Results using the AlexNet version for scale 1 are comparable to the prior works (specialized in finding normals)
- Outperforms 3DP, Ladicky et al., Fouhey et al., Wang et al.
- VGG version achieves the best results

Surface Normal Estimation (GT [21])								
1	Angle	Distance	Within t° Deg.					
	Mean	Median	11.25°	22.5°	30°			
3DP [10]	35.3	31.2	16.4	36.6	48.2			
Ladicky &al. [21]	33.5	23.1	27.5	49.0	58.7			
Fouhey & al. [11]	35.2	17.9	40.5	54.1	58.9			
Wang &al. [38]	26.9	14.8	42.0	61.2	68.2			
Ours (AlexNet)	23.7	15.5	39.2	62.0	71.1			
Ours (VGG)	20.9	13.2	44.4	67.2	75.9			

Results (Semantic Labelling)

40-Class Semantic Segmentation							
	Pix. Acc.	Per-Cls Acc.	Freq. Jaccard	Av. Jaccard			
Gupta&al.'13 [13]	59.1	28.4	45.6	27.4			
Gupta&al.'14 [14]	60.3	35.1	47.0	28.6			
Long&al. [24]	65.4	46.1	49.5	34.0			
Ours (AlexNet)	62.9	41.3	47.6	30.8			
Ours (VGG)	65.6	45.1	51.4	34.1			

Generalizability

- Applied to the Sift Flow and Pascal VOC dataset
- No need to adjust convolutional kernel size and learning rate

Pascal VOC Semantic Segmentation									
		2011 Val	idation		2011 Test	2012 Test			
	Pix. Acc.	Per-Cls Acc	. Freq.Jaco	Av.Jacc	Av.Jacc	Av.Jacc			
Dai&al.[7]	_	a — a	_	_	_	61.8			
Long&al.[24]	90.3	75.9	83.2	62.7	62.7	62.2			
Chen&al.[5]	-	a—a	_	-	_	71.6			
Ours (VGG)	90.3	72.4	82.9	62.2	62.5	62.6			

Experiments on architecture

- Scale 1: significant contribution for estimation of all three tasks
- Scale 2: important to semantic labelling; it integrates depth and normal info
- Information provided by scale 2 could be redundant given the predicted D&N

Contributions of Scales								
	Depth Normals			4-Class		SS		
			RGB+D+N	RGB	RGB+D+N	RGB		
	Pixelv	vise Error	Pixelwise Accuracy					
	lower is better		higher is better					
Scale 1 only	0.218	29.7	71.5	71.5	58.1	58.1		
Scale 2 only	0.290	31.8	77.4	67.2	65.1	53.1		
Scales 1 + 2	0.216	26.1	80.1	74.4	69.8	63.2		
Scales 1 + 2 + 3	0.198	25.9	80.6	75.3	70.5	64.0		

Effect of Depth/Normals Inputs							
	Scale	2 only	Scales 1 + 2				
	Pix. Acc.	Per-class	Pix. Acc.	Per-class			
RGB only	53.1	38.3	63.2	50.6			
RGB + pred. D&N	58.7	43.8	65.0	49.5			
RGB + g.t. D&N	65.1	52.3	69.8	58.9			

Summary

- Depth, surface normals, semantic segmentation from a single image
- Uniform framework
- Multi-scale architecture
- Coarse to fine prediction

Following Works

Semantic Segmentation with ConvNets

Chen, Liang-Chieh, et al. "Semantic image segmentation with deep convolutional nets and fully connected crfs." arXiv preprint arXiv:1412.7062 (2014).

Lin, Guosheng, Chunhua Shen, and Ian Reid. "Efficient piecewise training of deep structured models for semantic segmentation." arXiv preprint arXiv:1504.01013 (2015).

Instance Segmentation with ConvNets

Physical Property Estimation from A Single Image, e.g. intrinsics

Narihira, Takuya, Michael Maire, and Stella X. Yu. "Direct intrinsics: Learning albedo-shading decomposition by convolutional regression." Proceedings of the IEEE International Conference on Computer Vision. 2015.