Note on Induced Norms

Thomas Maierhofer

May 3, 2019

1 Vector Norms

Introduce p norm with special cases $p = 0, 1, 2, \infty$.

2 Induced Vector Norms

3 Induced Matrix Norms

An induced matrix norm is a function of an arbitrary matrix $A \in \mathbb{R}^{n \times d}$ of the form

$$||A||_{p\to q} = \sup_{\{x\in \mathbb{R}^d: ||x||_p \le 1\}} ||Ax||_q.$$

Intuitively, the induced norm of a matrix A measures, or more precisely limits, how far it can distort a vector x. In order for this statement to make sense, we need to limit the size of applicable vectors x by limiting the q norm of x to be 1 (note that the limitation $||x||_p \le 1$ simplifies is in practice $||x||_p = 1$). The size of the "distorted x" Ax is measured using the q norm. A common notational shorthand when p = q is to write

$$||A||_p = ||A||_{p \to p}$$

For some pairs of p and q, the induced norm $||A||_{p\to q}$ is analytically directly accessible, see Table 1.

3.1 Example: Induced Norm of a 2×2 matrix

In order to get a better handle on this theoretical concept, consider the induced norm of the following matrix

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}.$$

The applicable input vectors $\{x \in \mathbb{R}^d : ||x||_p = 1\}$ for the $||\cdot||_p = 1, 2$ and ∞ norm, are depicted in Figure 1.

Table 1: Analytically accessible induced norms $||A||_{p\to q}$ for domain p and codomain q. NP hard stands for "non-deterministic polynomial-time hardness" which means not computable for our purposes.

q		
2		∞
norm of a max i	$\frac{1}{2}$ norm of a	$\max l_{\infty} \text{ norm of a}$
colum	n	column
max s	ingular value	$\max l_2 \text{ norm of a}$
		row
NP-ha	ırd	$\max l_1 \text{ norm of a}$
		row
10-	10	
0.5-	05-	
> 0.0-	> 40	
-10°	-10	-1.0 -0.5 0.0 0.5 1.0
	norm of a max decolum max s NP-ha	norm of a $\max_{l_2 \text{ norm of a}} l_2$ norm of a column $\max_{l_2 \text{ singular value}} l_2$ NP-hard

Figure 1: Applicable x on the unit circle of the l_1 (left), l_2 (center), an l_{∞} norm (right). All x on the unit circle have $||x||_p = 1$, for $p = 1, 2, \infty$ respectively. Note that the applicable input vectors x are **not** specific to the choice of A but only to the choice of the p.

In order to find the supremum over all applicable input vectors, all applicable x are multiplied by A. The points Ax are depicted in Figure 2. The induced norm is defined as the maximum q norm of all points $\{Ax\}$.

We can use Table 1 to compute $|||A||_{p\to q}$ for some combinations of p and q, see values reported in Table 2. Figure 3 shows Ax with q-norm circles of radius $||A||_{p\to q}$ around the origin. The intersection of the q norm circles with $Ax:||x||_p=1$ shows which Ax achieves the induced norm, i.e. the $\sup_x ||Ax||_q$.

Figure 2: Projection of the unit circles by A, i.e. Ax for every point $\{x \in \mathbb{R}^d : ||x||_p = 1\}$ for p = 1 (left), p = 2 (center), and $p = \infty$ (right).

Figure 3: The colored circles are unit circles of size $||A||_{p\to q}$ for every point $x, ||x||_p = 1$ with p = 1 (left), p = 2 (center), an $p = \infty$ (right). The 1 norm is depicted in red, the 2 norm in green, and the ∞ norm in blue. Induced norms that are hard to compute were omitted.

Table 2: Analytically accessible results $||A||_{p\to q}$ for our example. These values match up with the size of the colored circles in Figure 3.

		q		
		1	2	∞
р	1	$\max(1 + 3 , 1 +$	$\max(\sqrt{10}, \sqrt{5}) \approx$	$\max(3 , 2) = 3$
		2) = 4	3.16	
	2	$\max(1 + 3 , 1 + 2) = 4$ NP-hard	$\sigma_{\rm max} \approx 3.62$	$\max(\sqrt{10}, \sqrt{5}) \approx$
				3.16
	∞	NP-hard	NP-hard	$\max(1 + 3 , 1 +$
				2) = 4