I. Analiza topologică a unei mulțimi din $\mathbb R$

Definiția 1. Fie $A\subseteq\mathbb{R}$. Vom spune că A este **compactă** dacă A este închisă și mărginită.

Definiția 2. O mulțime este conexă într-un spațiu topologic dacă și numai dacă nu este reuniunea a doua mulțimi nevide, deschise, disjuncte.

Propoziție 3. O mulțime $A \subseteq \mathbb{R}$ este conexă dacă și numai dacă este interval.

II. Exerciții

- 1. Determinați $\mathring{A}, \bar{A}, A', FrA$ și decideți dacă A este închisă, deschisă, mărginită, compactă sau conexă:
 - (a) $A = \{1, 2, 3, 4\}$
 - (b) $A = (0, 5] \cup \{7\}$
 - (c) $A = \mathbb{Q}$
 - (d) $A = [1, 2) \cap \mathbb{Q}$
 - (e) $A = \{\frac{(-1)^n}{n} : n \in \mathbb{N}^*\}$
 - (f) $A = [0,1) \cup \{-\frac{1}{4^n} : n \in \mathbb{N}\}$
 - (g) $A = [-4,7) \cup \{10,11\} \cup [(-9,-8) \cap \mathbb{Q}]$
 - (h) $A = (-3, 0] \cup \{\frac{n+\sqrt{2}}{3n+\sqrt{3}} : n \in \mathbb{N}\}$