

Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- \bullet 45V,85A,R_{DS(ON).max}=5.5m Ω @V_{GS}=10V
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- ◆ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 45V \\ R_{DS(on).max} @\ V_{GS} {=} 10V & 5.5 m\Omega \\ I_D & 85A \end{array}$

Pin Configuration

Absolute Maximum Ratings Tc = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	45	V
Continuous drain current (T _C = 25°C)		85	А
Continuous drain current (T _C = 100°C)	I _D	59	A
Pulsed drain current ¹⁾	Ірм	340	A
Gate-Source voltage	Vess	±20	V
Avalanche energy ²⁾	E _{AS}	156	mJ
Power Dissipation (T _C = 25°C)	P _D	100	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	1.25	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VSM85N04-T1	TO-251	VSM85N04-T1
VSM85N04-T2	TO-252	VSM85N04-T2

Electrical Characteristics T_J = 25°C unless otherwise noted

Electrical Characteristics	1	ss otherwise noted				1
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	45			V
Gate threshold voltage	$V_{GS(th)}$	V _{DS} =V _{GS} , I _D =250uA	0.9		1.8	V
Drain-source leakage current	I _{DSS}	V _{DS} =45 V, V _{GS} =0 V, T _J = 25°C			1	μΑ
		V _{DS} =36 V, V _{GS} =0 V, T _J = 125°C			30	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Dunin course ou state unaistance		V _{GS} =10 V, I _D =30 A		4.3	5.5	mΩ
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =4.5 V, I _D =20 A		5.3	7	mΩ
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =30A		76		S
Dynamic characteristics						
Input capacitance	C _{iss}			3963		pF
Output capacitance	Coss	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		344		
Reverse transfer capacitance	Crss	- F = 1MHz		311		
Turn-on delay time	t _{d(on)}			18		ns
Rise time	t _r	V_{DD} =25V, V_{GS} =10V, I_{D} =30A, R_{G} =10 Ω		216.4		
Turn-off delay time	t _{d(off)}			209.2		
Fall time	t _f			88		
Gate resistance	Rg	V _{GS} =0V, V _{DS} =0V, F=1MHz		2.1		Ω
Gate charge characteristics				•		
Gate to source charge	Q _{gs}	.,		10.8		nC
Gate to drain charge	Q_{gd}	V _{DS} =25 V, I _D =25A,		20.2		
Gate charge total	Qg	- V _{GS} = 10 V		88.6		
Drain-Source diode characteristic	cs and Maxii	num Ratings		•	-	
Continuous Source Current	Is				85	А
Pulsed Source Current	I _{SM}]			340	А
Diode Forward Voltage ³⁾	V _{SD}	V _{GS} =0V, I _S =30A, T _J =25°C			1.2	V
Reverse Recovery Time	t _{rr}	I _s =20A,di/dt=100A/us, T _J =25℃		35.6		ns
Reverse Recovery Charge	Qrr			16		nC

Notes

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =25V, V_{GS} =10V, L=0.5mH, I_{AS} =25A, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leq 300 \, \mu \, \text{s}$, Duty Cycle $\leq 2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 2. Transfer Characteristics 45 40 35 _D-Drain Current(A) 30 25 125°¢ 20 25°C 15 10 5 0.0 0.5 2.0 2.5 3.0 3.5 4.5 1.5 5.0 V_{GS} Gate-Source Voltage(V)

Figure 3. Capacitance Characteristics

Figure 4. Gate Charge Waveform

Figure 5. Body-Diode Characteristics

Figure 6. Rdson-Drain Current

Figure 6. Normalized Maximum Transient Thermal Impedance

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

