《随机过程论》期末考试试卷

2013 年 6 月 20 日, 每题 10 分, 开卷

- 1. 试举一例: $T \in (\Omega, \mathcal{F}, P)$ 上遍历的保测变换, 但 T^2 不是遍历的。
- 2. 设 $X_n, n \ge 1$ 为独立同分布随机变量序列, $EX_1 = 0, var(X_1) = 1$,对于 $n \ge 1$,定义 $Y_n = \sum_{i=0}^{\infty} \alpha_i X_{n+i}$,其中 α_i 为常数,满足 $\sum \alpha_i^2 < \infty$. 证明:
 - (a) 定义 Y_n 的和式几乎处处收敛;
 - (b) $\lim_{n\to\infty} n^{-1} \sum_{i=1}^n Y_i = 0$ 在几乎处处收敛和 L^1 收敛的意义下成文。
- $3. X_n, n \geq 1$ 同上题, 试证

$$\frac{1}{n^{3/2}} \sum_{k=1}^{n} (n - k + 1) X_k \Rightarrow \eta,$$

其中 $\eta \sim N(0, 1/3)$.

- 4. 设 X_1, X_2, \cdots 独立同分布, $P(X_1 = 1) = p \ge 1/2.S_n = \sum_{k=1}^n X_k, R_n = |\{S_1, \cdots, S_n\}|$. 试求极限 $\lim_{n\to\infty} ER_n/n$. 若进一步假设 p = 1/2,证明 R_n/\sqrt{n} 依分布收敛。
- 5. 设 $\xi_k, k \in \mathbb{Z}$ 独立同分布, $P(\xi_1 = 1) = P(\xi_1 = 0) = 1/2$. 定义

$$\eta_n = \begin{cases} 1, & \text{if } \xi_n = 1, \xi_{n+1} = 0; \\ 0, & \text{otherwise.} \end{cases}$$

令 $S_n = \eta_1 + \cdots + \eta_n$ 证明存在常数 μ 和 σ 使得 $(S_n - n\mu)/(\sigma\sqrt{n})$ 渐 近服从正态分布。

在以下五题中, B_t 是一维(标准)布朗运动, $B_0 = 0$.

- 6. 设 C > 0 证明 $P(\sup_{0 < \mu < t} |B(\mu)| > C) \le t/C^2$.
- 7. 设 R 为正数,0 < x < R; $\tau = \inf\{t \ge 0; B_t = 0$ 或R}. 试求 $E_x \tau^2$
- 8. 设 a > 0, b > 0, 证明 $P(B(s) \neq 0, o < s < t | B(0) = a, B(t) = b) = 1 e^{-2ab/t}$.

9. 设 $x>0, A\subset [0,\infty)$ 是可测集,证明

$$P_x(B(s) \ge 0, 0 \le s \le t, B(t) \in A) = P_x(B(t) \in A) - P_{-x}(B(t) \in A).$$

10. 令 $M_t = \max_{0 \le s \le t} B_s$. 试证 M(t) - B(t) 与 M(t) 同分布。

(编辑: 伏贵荣 2017 年 2 月)