L	Hits	Search Text	DB	Time stamp
Number				
1	0	silicon and (germanium with "%") and	EPO; JPO;	2004/09/23
·		(threading adj dislocation)	DERWENT;	15:31
			IBM_TDB	
2	5	silicon and (germanium with "%") and	USPAT;	2004/09/23
		(threading adj dislocation)	US-PGPUB	15:34
3	24	silicon and (Ge with "%") and (threading	USPAT;	2004/09/23
		adj dislocation)	US-PGPUB	15:44
4	22	(silicon and (Ge with "%") and (threading	USPAT;	2004/09/23
		adj dislocation)) not (silicon and	US-PGPUB	15:35
		(germanium with "%") and (threading adj]
		dislocation))		
5	13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	USPAT;	2004/09/23
		(threading adj dislocation)) not (silicon	US-PGPUB	15:35
		and (germanium with "%") and (threading		l i
		adj dislocation))) and @ad<20020823		1
6	0	silicon and (Ge with "%") and (threading	EPO; JPO;	2004/09/23
		adj dislocation)	DERWENT;	15:44
			IBM_TDB	

L	Hits	Search Text	DB	Time stamp
Number				
6	3	(hetero adj (structure or junction)) and	USPAT;	2004/09/23
		silicon and (germanium with graded)	US-PGPUB	13:56
		silicon and germanium and graded	USPAT;	2004/09/23
			US-PGPUB	13:56
8	238	silicon and (germanium with graded)	USPAT;	2004/09/23
			US-PGPUB	14:11
9	173	(silicon and (germanium with graded))	USPAT;	2004/09/23
		and (epitaxial\$2)	US-PGPUB	13:56
10	127	((silicon and (germanium with graded))	USPAT;	2004/09/23
		and (epitaxial\$2)) and @ad<20020823	US-PGPUB	13:58
11	41	(((silicon and (germanium with graded))	USPAT;	2004/09/23
		and (epitaxial\$2)) and @ad<20020823) and	US-PGPUB	14:12
		dislocation		
12	35	((((silicon and (germanium with graded))	USPAT;	2004/09/23
1		and (epitaxial\$2)) and @ad<20020823) and	US-PGPUB	13:58
		dislocation) and density	ļ	
13	30	((((silicon and (germanium with graded))	USPAT;	2004/09/23
		and (epitaxial\$2)) and @ad<20020823) and	US-PGPUB	13:59
		dislocation) and (dislocation with		
		density)		
14	45	silicon and (germanium with graded)	EPO; JPO;	2004/09/23
			DERWENT;	14:12
			IBM TDB	
15	7	(silicon and (germanium with graded))	EPO; JPO;	2004/09/23
		and dislocation	DERWENT;	14:12
		<u> </u>	IBM TDB	

PUB-NO:

EP000514018A2

DOCUMENT-IDENTIFIER:

EP 514018 A2

TITLE:

Method for making low defect density

semiconductor

heterostructure and devices made

thereby.

PUBN-DATE:

November 19, 1992

INVENTOR - INFORMATION:

NAME COUNTRY

BRASEN, DANIEL US
FITZGERALD, EUGENE ARTHUR JR US
GREEN, MARTIN LAURENCE US
XIE, YA-HONG US

ASSIGNEE-INFORMATION:

NAME COUNTRY

AMERICAN TELEPHONE & TELEGRAPH US

APPL-NO: EP92303475

APPL-DATE: April 16, 1992

PRIORITY-DATA: US69042991A (April 24, 1991)

INT-CL (IPC): H01L021/20, H01L021/335, H01L033/00

EUR-CL (EPC): H01L021/335; H01L027/15, H01L033/00,

H01L033/00 , H01L021/20

, H01L021/8258

US-CL-CURRENT: 117/89, 117/105 , 117/108

ABSTRACT:

germanium-silicon alloy at high temperatures in excess of about 850 DEG C and

increasing the **germanium** content at a gradient of less than about 25% per

micrometer, one can grow on **silicon** large area heterostructures of **graded**

GexSi1-x alloy having a low level of threading <u>dislocation</u> defects. With low

concentrations of germanium (.10</=x</=.50), the heterolayer can be used as a

substrate for growing strained layer silicon devices such as MODFETS. With

high concentrations of Ge (.65 </= x </= 1.00) the heterolayer can be used on

<u>silicon</u> substrates as a buffer layer for indium gallium phosphide devices such

as light emitting diodes and lasers. At concentrations of pure germanium

(X=1.00), the heterolayer can be used for GaAs or GaAs/AlGaAs devices. <IMAGE>

DERWENT-ACC-NO: 2002-241247

DERWENT-WEEK: 200402

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE: Monocrystalline etch-stop layer

system for use on

monocrystalline **silicon** substrate,

comprises relaxed

graded layer of silicon-germanium

INVENTOR: BORENSTEIN, J T; FITZGERALD, E A ; TARASCHI, G ;
WU, K C

PATENT-ASSIGNEE: MASSACHUSETTS INST TECHNOLOGY [MASI]

PRIORITY-DATA: 2000US-0599260 (June 22, 2000)

PATENT-FAMILY:

PUE	3 - NO		PUB-DATE	
LAN	IGUAGE	PAGES	MAIN-IPC	
WO	200199169	A2	December 27, 2001	E
	048	H01L	021/306	
ΑU	200168577	A	January 2, 2002	N/A
	000	H01L	021/306	
ΕP	1295319 A	2	March 26, 2003	E
	000	H01L	021/306	
JP	2003536273	3 W	December 2, 2003	N/A
	064	H01T	021/306 ·	

DESIGNATED-STATES: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI
GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG
MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW
AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD
SE SL SZ TR TZ UG ZW AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC
MK NL PT RO SE SI TR

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO

APPL-DATE WO 200199169A2 N/A 2001WO-US19613 June 20, 2001 AU 200168577A N/A 2001AU-0068577 June 20, 2001 Based on AU 200168577A WO 200199169 N/A EP 1295319A2 N/A 2001EP-0946546 June 20, 2001 EP 1295319A2 N/A 2001WO-US19613 June 20, 2001 EP 1295319A2 Based on WO 200199169 N/AJP2003536273W N/A2001WO-US19613 June 20, 2001 JP2003536273W N/A 2002JP-0503924 June 20, 2001 Based on WO 200199169 JP2003536273W N/A

INT-CL (IPC): B81C001/00, H01L021/306, H01L029/165

RELATED-ACC-NO: 1999-611440

ABSTRACTED-PUB-NO: WO 200199169A

BASIC-ABSTRACT:

NOVELTY - A monocrystalline etch-stop layer system comprises a relaxed <u>graded</u> layer of <u>silicon-germanium</u> and a uniform etch-stop layer of relaxed <u>silicon-germanium</u>.

DETAILED DESCRIPTION - An INDEPENDENT CLAIM is also included for a method of integrating a device or layer by:

- (i) depositing a relaxed <u>graded</u> layer of <u>silicon-germanium</u> on a <u>silicon</u> substrate;
- (ii) depositing a uniform etch-stop layer of relaxed silicon-germanium on the
 graded buffer; and
- (iii) etching portions of the substrate and the graded

buffer to release the etch-stop layer.

USE - For use on monocrystalline silicon substrate.

ADVANTAGE - The use of a graded layer suppresses the threading <u>dislocation</u> density (TDD) in the top etch-stop layer, which leads to a uniform, nearly defect-free Sil-xGex etch stop.

CHOSEN-DRAWING: Dwg.0/15

TITLE-TERMS: MONOCRYSTAL ETCH STOP LAYER SYSTEM MONOCRYSTAL SILICON SUBSTRATE

COMPRISE RELAX GRADE LAYER SILICON GERMANIUM

DERWENT-CLASS: L03 Q68 U11

CPI-CODES: L04-A01C; L04-C07;

EPI-CODES: U11-C01J4A; U11-C05B9A;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C2002-072471
Non-CPI Secondary Accession Numbers: N2002-186348

DERWENT-ACC-NO:

1999-081518

DERWENT-WEEK:

200437

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE: Use of graded germanium-silicon

layers for mismatched

layers - on a silicon substrate,

enabling the threading

dislocation density to be controlled

INVENTOR: FITZGERALD, E A

PATENT-ASSIGNEE: MASSACHUSETTS INST TECHNOLOGY[MASI] , FITZGERALD E A[FITZI]

FIIZGERALD E A[FIIZI]

PRIORITY-DATA: 1997US-059765P (September 16, 1997),

1997US-050602P (June 24,

1997) , 1998US-0103672 (June 23, 1998) , 1999US-0265016 (March 9, 1999)

, 2000US-0712604 (November 14, 2000) , 2001US-0022689 (December 17, 2001)

PATENT-FAMILY:

PUB	-NO		PUB-DATE	
LAN	IGUAGE PA	GES	MAIN-IPC	
JP	3535527 B2		June 7, 2004	N/A
	011	H01L	021/20	
WO	9859365 A1		December 30, 1998	E
	023	H01L	021/20	
ΕP	1016129 A1		July 5, 2000	E
	000	H01L	021/20	
US	6107653 A		August 22, 2000	N/A
	000	H01L	031/0256	
JP	2000513507 W		October 10, 2000	N/A
	023			
KR	2001014201 A		February 26, 2001	N/A
	000	H01L	021/20	
US	6291321 B1		September 18, 2001	N/A
	000	H01L	021/20	
US	20020084000 A1		July 4, 2002	N/A
	000	H01L	021/20	
KR	400808 B		October 8, 2003	N/A
	000	H01L	021/36	

H01L 021/20

DESIGNATED-STATES: CA JP KR AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

APPLICATION-DATA:			
PUB-NO	APPL-DESCRIPTOR	APPL-NO	
, APPL-DATE			
JP 3535527B2	N/A		
1998WO-US13076	June 23, 1998		
JP 3535527B2	N/A		
1999JP-0505004	June 23, 1998		
JP 3535527B2	Previous Publ.	JP 200013507	
N/A			
JP 3535527B2	Based on	WO 9859365	
N/A			
WO 9859365A1	N/A		
1998WO-US13076	June 23, 1998		
EP 1016129A1	N/A		
1998EP-0931529	June 23, 1998		
EP 1016129A1	N/A		
1998WO-US13076	June 23, 1998		
EP 1016129A1	Based on	WO 9859365	
N/A			
US 6107653A	Provisional		
1997US-050602P	June 24, 1997		
US 6107653A	Provisional		
1997US-059765P	September 16, 1997		
US 6107653A	N/A		
1998US-0103672	June 23, 1998		
JP2000513507W	N/A	•	
1998WO-US13076	June 23, 1998		
JP2000513507W	N/A		
1999JP-0505004	June 23, 1998		
JP2000513507W	Based on	WO 9859365	
N/A			
KR2001014201A	N/A		
1999KR-0712279	December 24, 1999		
US 6291321B1	Provisional		
1997US-050602P	June 24, 1997		
US 6291321B1	Provisional		
1997US-059765P	September 16, 1997		
US 6291321B1	Div ex		
1998US-0103672	June 23, 1998		
US 6291321B1	N/A		
1999US-0265016	March 9, 1999		

US 6291321B1 Div ex US 6107653 N/A US20020084000A1 Provisional 1997US-050602P June 24, 1997 Provisional US20020084000A1 1997US-059765P September 16, 1997 US20020084000A1 Div ex 1998US-0103672 June 23, 1998 US20020084000A1 Cont of 1999US-0265016 March 9, 1999 US20020084000A1 Cont of 2000US-0712604 November 14, 2000 US20020084000A1 N/A 2001US-0022689 December 17, 2001 US20020084000A1 Div ex US 6107653 N/ACont of US 6291321 US20020084000A1 N/A KR 400808B N/A 1998WO-US13076 June 23, 1998 KR 400808B N/A 1999KR-0712279 December 24, 1999 Previous Publ. KR2001014201 KR 400808B N/AKR 400808B Based on WO 9859365 N/A

INT-CL (IPC): C30B001/00, H01L021/20, H01L021/36, H01L029/04, H01L029/30, H01L031/0256, H01L031/36

ABSTRACTED-PUB-NO: US 6107653A

BASIC-ABSTRACT:

A semiconductor structure comprises: a) a semiconductor substrate; b) at least one first crystalline epitaxial layer, having a planarised surface, on the semiconductor substrate; and c) at least one second crystalline epitaxial layer on the first crystalline epitaxial layer. More specifically, the semiconductor structure comprises a Si substrate on which is grown a GeSi graded region. The graded region incorporates compressive strain to offset the tensile strain that

is incorporated during thermal processing.

Also claimed is a method of fabricating a semiconductor structure as above.

USE - Useful in the fabrication of semiconductor devices, especially III-V devices on a Si substrate.

ADVANTAGE - Allows controlled relaxation of mix-matched semiconductor layers.

Provides for a chemical-mechanical planarisation method in conjunction with the

growth of relaxed graded buffers to 100% Ge without a concomitant increase in

threading <u>dislocation</u> density. Provides modifications to UHV-CVD procedures

which eliminate surface cracks due to the thermal mismatch between Si and Ge,

and particulate defects due to gas-phase nucleation.

ABSTRACTED-PUB-NO: US 6291321B

EQUIVALENT-ABSTRACTS:

A semiconductor structure comprises: a) a semiconductor substrate; b) at least one first crystalline epitaxial layer, having a planarised surface, on the semiconductor substrate; and c) at least one second crystalline epitaxial layer on the first crystalline epitaxial layer. More specifically, the semiconductor structure comprises a Si substrate on which is grown a GeSi graded region. The graded region incorporates compressive strain to offset the tensile strain that is incorporated during thermal processing.

Also claimed is a method of fabricating a semiconductor structure as above.

USE - Useful in the fabrication of semiconductor devices, especially III-V devices on a Si substrate.

ADVANTAGE - Allows controlled relaxation of mix-matched semiconductor layers.

Provides for a chemical-mechanical planarisation method in conjunction with the growth of relaxed graded buffers to 100% Ge without a concomitant increase in threading <u>dislocation</u> density. Provides modifications to UHV-CVD procedures

which eliminate surface cracks due to the thermal mismatch between Si and Ge,

and particulate defects due to gas-phase nucleation.

A semiconductor structure comprises: a) a semiconductor substrate; b) at least one first crystalline epitaxial layer, having a planarised surface, on the semiconductor substrate; and c) at least one second crystalline epitaxial layer on the first crystalline epitaxial layer. More specifically, the semiconductor structure comprises a Si substrate on which is grown a GeSi graded region. The graded region incorporates compressive strain to offset the

tensile strain that

is incorporated during thermal processing.

Also claimed is a method of fabricating a semiconductor structure as above.

USE - Useful in the fabrication of semiconductor devices, especially III-V devices on a Si substrate.

ADVANTAGE - Allows controlled relaxation of mix-matched semiconductor layers.

Provides for a chemical-mechanical planarisation method in conjunction with the

growth of relaxed graded buffers to 100% Ge without a concomitant increase in

threading <u>dislocation</u> density. Provides modifications to UHV-CVD procedures

which eliminate surface cracks due to the thermal mismatch between Si and Ge,

and particulate defects due to gas-phase nucleation.

US20020084000A

A semiconductor structure comprises: a) a semiconductor substrate; b) at least one first crystalline epitaxial layer, having a planarised

surface, on the

semiconductor substrate; and c) at least one second crystalline epitaxial layer

on the first crystalline epitaxial layer. More

specifically, the semiconductor

structure comprises a Si substrate on which is grown a GeSi graded region. The

graded region incorporates compressive strain to offset the tensile strain that

is incorporated during thermal processing.

Also claimed is a method of fabricating a semiconductor structure as above.

USE - Useful in the fabrication of semiconductor devices, especially III-V devices on a Si substrate.

ADVANTAGE - Allows controlled relaxation of mix-matched semiconductor layers.

Provides for a chemical-mechanical planarisation method in conjunction with the

growth of relaxed graded buffers to 100% Ge without a concomitant increase in

threading <u>dislocation</u> density. Provides modifications to UHV-CVD procedures

which eliminate surface cracks due to the thermal mismatch between Si and Ge,

and particulate defects due to gas-phase nucleation.

WO 9859365A

CHOSEN-DRAWING: Dwg.3/5

TITLE-TERMS: GRADE GERMANIUM SILICON LAYER MISMATCH LAYER SILICON SUBSTRATE

ENABLE THREAD DISLOCATE DENSITY CONTROL

DERWENT-CLASS: L03 U11

CPI-CODES: L04-C01;

EPI-CODES: U11-C01J1; U11-C01J8B;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1999-024589 Non-CPI Secondary Accession Numbers: N1999-058603