

S.E. Computer (Semester - IV) (Revised Course) Examination, November/December 2015 DATA STRUCTURES

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer any five questions by selecting atleast one from each Module.

2) Make suitable assumptions wherever required. Clearly state any such assumptions made.

		MODULE – I	
1,	A)	Write a recursive function in C for i) N-disk problem in Tower of Hanoi. ii) Fibonacci series	6
	Β\	ny riboriador series.	
	B)	Write a C program to append the contents of one file to another.	6
	C)	Define the following:	4
		a) Macros	
		b) Strings	
		Write a C program to interchange the m th and n th elements of a linked list.	4
2.	A)	Write a C function to accept a string and convert the characters from uppercase to lowercase.	4
	B)	There are 2 linked lists A and B containing some data. Write a program to create:	
		a) A linked list C that contains only those elements that are common in linked list A and B.	
		b) A linked list D that contains all elements of A as well as B ensuring that there is no repetition of elements.	8

	C) E	xplain the use of the following string handling functions:	
	a	a) strncmp	
	k	o) strstr	
	(c) strncpy	
	(d) strncat.	4
	D) V	Vrite an algorithm to insert an element at the front of a linked list.	4
		MODULE – II	
3.	A) (Create a BST if the nodes visited in inorder and postorder traversals are GBADFCHE and ABGDCFEG respectively. Show stepwise construction.	6
	B) [Draw the binary search tree whose pre-order traversal is given by :	
		30, 20, 10, 15, 25, 23, 39, 35, 42.	6
		i) For the above given sequence, is the search tree unique? Why or Why not?	
		ii) List the post order traversal sequence of the tree.	
	C) \	Write an algorithm for inserting an item into a double ended queue.	4
	D) \	What are threaded trees? Explain with suitable examples.	4
4.	A) I	Explain the following with suitable examples:	4
		i) Height balanced binary tree	
		ii) Almost complete binary tree.	
	B)	Suppose the following alphabets are inserted in order on the empty list.	6
	ai l	B, A, H, I, K, L, O, Y, X, J, C, S	
		Draw a Binary Search tree for the above list.	
	C)	Compare the following:	4
		i) Circular Queue	
		ii) Linear Queue	
		Write functions to insert and delete from a linear queue. (Use linked list implementation).	6

MODULE - III

5. A) Is the following directed graph strongly connected? List all the simple paths. 4

B) For the above digraph, obtain

- i) The indegree and outdegree of each vertex.
- ii) Adjacency matrix
- iii) Adjacency list
- iv) Strongly connected components.
- C) Write a short notes on:

8

- i) Reference count method
- ii) Garbage Collection.
- 6. A) What is a spanning tree? List the properties of spanning tree. Find the minimum spanning tree for the following graph using Kruskals algorithm.

B) Write an algorithm to traverse a graph using DFS. Traverse the following graph using DFS and BFS.

7

C) Explain the best-fit, first-fit and worst-fit methods.

5

MODULE-IV

7. A) Write an algorithm to evaluate a postfix expression. Evaluate the following postfix expression using stack. (Show steps).

8

B) Write a program to implement binary search (recursive) and validate it with an example.

6

C) Sort the list 415, 213, 700, 515, 712, 715 using Radix Sort method.

6

8. A) Out of 100 letters 40 letters are 'e', 20 letters are 'n', 20 letters are 'g', 10 letters are 'i' and 10 letters are 'r'. Create a Huffman for the above set of letters and code the word "engineer".

6

B) Write a C program to implement selection sort.

Ω

C) Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 59, 88 into a hash table with m = 11 slots using open addressing with primary hash function h₁ (k) = k mod m. Illustrate the result of inserting these keys using linear probing.

2