Curly Arrows And Electron Flow

A. Introduction

B. Electron Flow

<u>double-headed</u> arrow.

<u>are</u>,

high electron density.

<u>never</u>

Effecting Only One Bond

heterolytic

$$CI \xrightarrow{CI} \longrightarrow CI_{\downarrow} + CI_{\downarrow}$$

$$D-D$$
 \longrightarrow $D^+ + D^-$

$$H_3C-CH_3 \longrightarrow CH_3 + CH_3$$

need not be possible

<u>does not</u>

<u>must</u> equal the number of anions.

2 e; this sometimes

$$H_2C = CH_2 \longrightarrow H_2C - CH_2$$

$$N \equiv N$$
 \longrightarrow $N^{\pm} N^{-}$

$$X \stackrel{\wedge}{-Y} \longrightarrow X^+ + Y^-$$

b
$$X - Y \longrightarrow X^- + Y^+$$

is <u>less</u> <u>towards</u> Y. pathway 1 pathway 2

$$H-CI \longrightarrow H^+ + CI^- \longrightarrow H-CI \longrightarrow \bar{H} + \bar{C}I$$

more favorable

less favorable

$$Me_2N^-CI$$
 \longrightarrow $Me_2N^+ + CI^ Me_2N^-CI$ \longrightarrow $Me_2N^- + CI$ Me_2N^-CI \longrightarrow $Me_2N^- + CI$ Me_2N^-CI \longrightarrow Me_2N^-CI \longrightarrow

Effecting Two Bonds

disfavored

pathway 1 pathway 2

less favorable

more favorable

Effecting Four Bonds

а

b
$$Y - H \longrightarrow Y - H \longrightarrow Y - H \longrightarrow X - H \longrightarrow X$$

favored if X is more basic than Y

C. Representations Of Charged Hydrocarbon Scaffolds

sp³ hybridized carbon the resulting anion is $\underline{sp^3}$ hybridized. electrons move *towards C* and the resulting anion is $\underline{sp^2}$ hybridized. \underline{sp} -Hybridized carbanions

A sp³-hybridized carbon has $__4$ ___ tend to be \underline{sp}^2 hybridized.

 $\underline{sp^2}$ hybridized, and carbanions C^-R_3 are $\underline{sp^3}$ -hybridized. Explain why this is so by considering the number of electrons around carbon in C^+H_3 and in C^-H_3 .

Carbon in C⁺R₃ has to accommodate *three atoms* containing *six* shared electrons around it.

Carbon in C⁻H₃ has to accommodate *three atoms and one lone pair* containing *eight* shared electrons around it.

D. Heteroatoms, Lone Pairs, And Moving Electrons

<u>is not</u> a change in the gives <u>sp³</u> hybridized protonated

 $\frac{sp^2}{}$ hybridized protonated heteroatoms become $\frac{sp}{}$ hybridized protonated heteroatoms. Conversely, there $\frac{can}{}$ be

$$\begin{array}{c} \text{Sp}^3 \text{ O}^- \\ \text{Put in} \\ \text{missing} \\ \text{arrows} \end{array}$$

$$Br-Br$$
 $\xrightarrow{-Br^+}$ $\xrightarrow{\cdot}$ Br

$$Br-Br$$
 Br
 Br

put in missing arrows

arrows

show all arrows