CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 3

Posted Wednesday 28, January 2015. Due 5pm Wednesday 4, February 2015.

Please write your name and instructor on your homework.

- 1. [20 points: 10 each]
 - (a) Suppose that $f: \mathbb{R}^2 \to \mathbb{R}^2$ is linear. Prove there exists a matrix $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ such that f is given by $f(\mathbf{u}) = \mathbf{A}\mathbf{u}$. Hint: Each $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2$ can be written as $\mathbf{u} = u_1\mathbf{e}_1 + u_2\mathbf{e}_2$, where

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Since f is linear, we have $f(\mathbf{u}) = u_1 f(\mathbf{e}_1) + u_2 f(\mathbf{e}_2)$. Your formula for the matrix **A** may include the vectors $f(\mathbf{e}_1)$ and $f(\mathbf{e}_2)$.

(b) Now we want to generalize the result in part (a): Show that if $f: \mathbb{R}^n \to \mathbb{R}^m$ is linear, then there exists a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ such that $f(\mathbf{u}) = \mathbf{A}\mathbf{u}$ for all $\mathbf{u} \in \mathbb{R}^n$.

(Thus any linear function that maps \mathbb{R}^n to \mathbb{R}^m can be written as a matrix-vector product.)

2. [30 points: 5 each]

Recall that a function $f: \mathcal{V} \to \mathcal{W}$ that maps a vector space \mathcal{V} to a vector space \mathcal{W} is a linear operator provided (1) f(u+v) = f(u) + f(v) for all u, v in \mathcal{V} , and (2) $f(\alpha v) = \alpha f(v)$ for all $\alpha \in \mathbb{R}$ and $v \in \mathcal{V}$.

Demonstrate whether each of the following functions is a linear operator.

(Show that both properties hold, or give an example showing that one of the properties must fail.)

- (a) $f: \mathbb{R}^n \to \mathbb{R}^m$, $f(\mathbf{u}) = \mathbf{A}\mathbf{u}$ for a fixed matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- (b) $f: \mathbb{R}^n \to \mathbb{R}^m$, $f(\mathbf{u}) = \mathbf{A}\mathbf{u} + \mathbf{b}$ for a fixed matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and fixed nonzero vector $\mathbf{b} \in \mathbb{R}^m$.
- (c) $f: \mathbb{R}^2 \to \mathbb{R}, f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}.$
- (d) $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $f(\mathbf{X}) = \mathbf{A}\mathbf{X} + \mathbf{X}\mathbf{B}$ for fixed matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$.
- (e) $L: C^1[0,1] \to C[0,1], Lu = u \frac{du}{dx}$
- (f) $L: C^2[0,1] \to C[0,1], Lu = \frac{\mathrm{d}^2 u}{\mathrm{d}x^2} \sin(x)\frac{\mathrm{d}u}{\mathrm{d}x} + \cos(x)u.$

3. [25 points: 5 points for (a), 10 points each for (b)-(c)]

In this problem we'll consider a linear operator mapping to and from a very specific vector space, and use it to explore what an operator inverse can look like.

Consider the V defined as

$$V = \left\{ u(x) = \sum_{j=1}^{N} c_j \sin(j\pi x), \quad c_j \in \mathbb{R} \right\}.$$

In other words, V is the set of all functions that are linear combinations of a finite number of different sine functions. This means that, for each $u \in V$, there is a set of coefficients c_1, \ldots, c_N that is also associated with u.

(a) Show that V is a subspace of the vector space $C_D^2[0,1]$, where

$$C_D^2[0,1] = \{u(x) \in C^2[0,1], \quad u(0) = u(1) = 0\}.$$

(b) Let the operator L be defined as

$$Lu = -\frac{\partial^2 u}{\partial x^2}$$

Show that, for $u \in V$, $Lu \in V$. This shows that L can be viewed as

$$L: V \to V$$

a map from V to V.

(c) We can define the operator $\tilde{L}: V \to V$ as

$$\tilde{L}u = \sum_{j=1}^{N} \frac{c_j}{(j\pi)^2} \sin(j\pi x).$$

Show that both $L\tilde{L}u = u$ and $\tilde{L}Lu = u$ for any $u \in V$.

Since both $L\tilde{L}u = u$ and $\tilde{L}Lu = u$ for any $u \in V$, we can refer to \tilde{L} as the inverse L^{-1} of $L: V \to V$.

4. [25 points: 5 each]

Determine whether or not each of the following mappings is an inner product on the real vector space \mathcal{V} . If not, show all the properties of the inner product that are violated.

(a)
$$(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $(u,v) = \int_0^1 u(x)v'(x) dx$ where $\mathcal{V} = C^1[0,1]$.

(b)
$$(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $(u,v) = \int_0^1 |u(x)| |v(x)| \, dx$ where $\mathcal{V} = C[0,1]$.

(c)
$$(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $(u,v) = \int_0^1 u(x)v(x)e^{-x} dx$ where $\mathcal{V} = C[0,1]$.

$$(\mathrm{d}) \ (\cdot,\cdot): \ \mathcal{V}\times\mathcal{V}\to\mathbb{R} \ \mathrm{defined \ by} \ (u,v)=\int_0^1 (u(x)+v(x)) \, dx \ \mathrm{where} \ \mathcal{V}=C[0,1].$$

(e)
$$(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $(u,v) = \int_{-1}^{1} xu(x)v(x) dx$ where $\mathcal{V} = C[-1,1]$.