Guaranteed performance under uncertainty

A quick overview of robust control

The title is an open problem!

Adriel Efendy

a.k.a. peka, ducky she/her

The University of Queensland

UQMSS Student Talks, August 2024

Contents

- Fundamentals and a taste of what's out there
- "Assumed":
 - MATH1051 calculus, polynomials
 - MATH1052 linear ODEs
 - Complex numbers
- Highly broad field!

$$r_1\theta_1 = r_2\theta_2$$

$$\theta_2 = \frac{r_1}{r_2}\theta_1$$

$$= H\theta_1$$

$$r_1\theta_1 = r_2\theta_2$$

$$\theta_2 = \frac{r_1}{r_2}\theta_1$$

$$= H\theta_1$$

Choose θ_1 so that $\theta_2 = \theta_r$.

Set
$$\theta_1 = \frac{1}{H}\theta_r$$
.

$$r_1\theta_1 = r_2\theta_2$$

$$\theta_2 = \frac{r_1}{r_2}\theta_1$$

$$= H\theta_1$$

Choose θ_1 so that $\theta_2 = \theta_r$.

Set
$$\theta_1 = \frac{1}{H}\theta_r$$
.

Set
$$\theta_1 = \frac{1}{H}\theta_r$$
. What if $\theta_2 = H^*\theta_1$?

$$\theta_2 = H^* \theta_1 = \frac{H^*}{H} \theta_r$$

 $\theta_2 = \theta_r$ only when $H^* = H$.

Need to account for error $\theta_r - \theta_2$.

peka 30/08/2024

Set
$$\theta_1 = \frac{1}{H}\theta_r + k_p(\theta_r - \theta_2)$$
. What if $\theta_2 = H^*\theta_1$?

$$\theta_2 = H^* \theta_1 = \frac{H^*}{H} \theta_r + H^* k_p (\theta_r - \theta_2)$$

$$\theta_2 = \frac{\frac{H^*}{H} + H^* k_p}{1 + H^* k_p} \theta_r$$

$$\frac{\theta_2}{\theta_r} = \frac{\frac{H^*}{H} + H^* k_p}{1 + H^* k_p}$$

$$\to 1 \text{ as } k_p \to \infty.$$

Set
$$\theta_1(t) = \frac{1}{H}\theta_r(t) + k_i \int_0^t (\theta_r(\tau) - \theta_2(\tau)) d\tau$$
.

What if $\theta_2(t) = H^*\theta_1(t)$?

Set
$$\theta_1(t) = \frac{1}{H}\theta_r(t) + k_i \int_0^t (\theta_r(\tau) - \theta_2(\tau)) d\tau$$
.

What if $\theta_2(t) = H^*\theta_1(t)$?

$$\theta_2(t) = H^* \left(\frac{1}{H} \theta_r(t) + k_i \int_0^t (\theta_r(\tau) - \theta_2(\tau)) d\tau \right)$$

$$\theta_2'(t) = H^* \left(\frac{1}{H} \theta_r'(t) + k_i(\theta_r(t) - \theta_2(t)) \right)$$

$$\theta_2'(t) + H^* k_i \theta_2(t) = H^* k_i \theta_r \xrightarrow{\theta_2(0) = 0} \theta_2(t) = \theta_r (1 - e^{-H^* k_i t})$$

peka 30/08/2024

Set
$$\theta_1(t) = \frac{1}{H}\theta_r(t) + k_i \int_0^t (\theta_r(\tau) - \theta_2(\tau)) d\tau$$
.

What if $\theta_2(t) = H^*\theta_1(t)$?

Arbitrary convergence rate!

$$heta_2(t) = heta_r(1 - e^{-H^*k_it})$$
 Independent of $heta_2(t) \to 1$ as $t \to \infty$. "prediction" $frac{1}{H} heta_r!$

Need feedback with accumulation of past errors.

...could calculate how long to hold *u* constant, then how long to decelerate?

Same issues with inaccurate measurements. Need u to be independent of m.

Try $u(t) = k_p(r(t) - y(t))$. No explicit estimate of m.

Try $u(t) = k_p(r(t) - y(t))$. No explicit estimate of m.

$$my''(t) = u(t)$$

$$my''(t) = k_p r(t) - k_p y(t)$$

$$my''(t) + k_p y(t) = k_p r$$

Prescribing y(0) = y'(0) = 0,

$$y(t) = r \left(1 - \cos \left(\sqrt{\frac{k_p}{m}} t \right) \right)$$

Try
$$u(t) = k_p(r(t) - y(t)) + k_d \frac{d}{dt}(r(t) - y(t)).$$

Try
$$u(t) = k_p(r(t) - y(t)) + k_d \frac{d}{dt}(r(t) - y(t)).$$

$$my''(t) = u(t)$$

$$my''(t) = k_p r(t) - k_p y(t) + k_d r'(t) - k_d y'(t)$$

$$my''(t) + k_d y'(t) + k_p y(t) = k_p r$$

$$y(t) = r \left[1 - \left(\frac{1}{2} - \frac{k_d}{2\sqrt{k_d^2 - 4k_p m}} \right) \exp\left(\frac{-k_d - \sqrt{k_d^2 - 4k_p m}}{2m} t \right) \right]$$
 Converges to 0 as long
$$- \left(\frac{1}{2} + \frac{k_d}{2\sqrt{k_d^2 - 4k_p m}} \right) \exp\left(\frac{-k_d + \sqrt{k_d^2 - 4k_p m}}{2m} t \right) \right]$$
 as exponents negative.

peka 30/08/2024

$$y(t) = r \left[1 - \left(\frac{1}{2} - \frac{k_d}{2\sqrt{k_d^2 - 4k_p m}} \right) \exp \left(\frac{-k_d - \sqrt{k_d^2 - 4k_p m}}{2m} t \right) \right]$$
 Converges to 0 as long
$$- \left(\frac{1}{2} + \frac{k_d}{2\sqrt{k_d^2 - 4k_p m}} \right) \exp \left(\frac{-k_d + \sqrt{k_d^2 - 4k_p m}}{2m} t \right) \right]$$
 as exponents negative.

A useful tool

Theorem

Every linear const-coeff ODE (system) is identified by an impulse response $h: [0, \infty) \to \mathbb{R}$ such that for all inputs $u: [0, \infty) \to \mathbb{R}$, the solution y with zero I.C. is

$$y(t) = (u * h)(t) := \int_0^t u(\tau)h(t - \tau) d\tau.$$

(similar to Green's function, convolution kernel)

peka 30/08/2024

A useful tool

For $f:[0,\infty)\to\mathbb{C}$ satisfying some properties, the Laplace transform of f is

$$\mathcal{L}\lbrace f\rbrace(s) = \int_{0^{-}}^{\infty} f(t)e^{-st}\,\mathrm{d}t,$$

defined for $s \in \mathbb{C}$ where the improper integral converges.

By convention, we write $\mathcal{L}\{f\} = F$.

The *inverse Laplace transform* has a difficult explicit form, but is often confirmed by direct calculation.

A useful tool

Theorem (Properties of \mathcal{L})

1.
$$\mathcal{L}\{af + bg\} = aF + bG$$

2.
$$\mathcal{L}\{f * g\} = FG$$

Let *h* be the impulse response for some system. Then,

$$y = u * h$$

$$\mathcal{L}{y} = \mathcal{L}{u * h}$$

$$Y(s) = U(s)H(s)$$

$$H(s) = \frac{Y(s)}{U(s)}$$

The transfer function H completely describes the system, like h does.

Theorem (Properties of \mathcal{L})

1.
$$\mathcal{L}\{af + bg\} = aF + bG$$

2.
$$\mathcal{L}\{f * g\} = FG$$

3.
$$\mathcal{L}\{f'\}(s) = sF(s) - f(0^-)$$

4.
$$\mathcal{L}\{\int f\}(s) = \frac{F(s)}{s} + \frac{f'(0^-)}{s}$$

$$my''(t) = u(t)$$

$$m(s^{2}Y(s) - sy(0) - y'(0)) = U(s)$$

$$Y(s) = \frac{1}{ms^{2}}U(s) + \frac{m(sy(0) + y'(0))}{ms^{2}}$$

$$H(s) := \frac{Y(s)}{U(s)} = \frac{1}{ms^{2}}$$

$$u = \frac{1}{m} \iiint y$$

$$u(t) = k_p(r(t) - y(t)) + k_d(r'(t) - y'(t))$$

$$U(s) = k_p(R(s) - Y(s)) + k_d s(R(s) - Y(s))$$

$$U(s) = \underbrace{(k_p + k_d s)}_{C(s)} \underbrace{(R(s) - Y(s))}_{E(s)}$$

$$H(s) := \frac{Y(s)}{U(s)}$$

$$\implies Y = HU = HC(R - Y)$$

$$Y + CHY = CHR$$

$$\frac{Y}{R} = \frac{CH}{1 + CH}$$

Another transfer function, this time relating *reference* to output!

 $m(s-p_1)(s-p_2)$

$$Y = \frac{CH}{1 + CH}R$$
, $H(s) := \frac{Y(s)}{U(s)} = \frac{1}{ms^2}$, $C(s) = k_p + k_d s$
 $Y = \frac{k_p + k_d s}{2}$ $k_d s + k_p$

$$\frac{Y}{R} = \frac{\frac{k_p + k_d s}{m s^2}}{1 + \frac{k_p + k_d s}{m s^2}} = \frac{k_d s + k_p}{m s^2 + k_d s + k_p} \qquad r(t) = r \xrightarrow{\mathcal{L}} R(s) = \frac{r}{s}$$

$$Y = \frac{k_d s + k_p}{m s^2 + k_d s + k_p} \cdot \frac{r}{s} = r \left[\frac{A}{s} + \frac{B}{s - p_1} + \frac{C}{s - p_2} \right] \qquad \mathcal{L}\{e^{zt}\} = \frac{1}{s - z}$$

$$\mathcal{L}\{e^{zt}\} = \frac{1}{s-z}$$

$$y(t) = r \left[A + Be^{p_1 t} + Ce^{p_2 t} \right]$$

In general, with $m \leq n$ for causality*,

$$a_n y^{(n)}(t) + \cdots + a_0 y(t) = b_m u^{(m)}(t) + \cdots + b_0 u(t)$$

$$H(s) := \frac{Y(s)}{U(s)} = \frac{b_m s^m + \dots + b_0}{a_n s^n + \dots + a_0}$$
$$= \frac{\dots}{(s - p_1)^{k_1} (s - p_2)^{k_2} \dots}, \ p_i \in \mathbb{C}$$

$$\mathcal{L}\lbrace e^{at}e^{ibt}\rbrace = \frac{1}{s - (a + bi)}$$

Same result applies to closed system,

$$\frac{CH}{1+CH}=\frac{\cdots}{(s-p_1)^{k_1}(s-p_2)^{k_2}\cdots},\ p_i\in\mathbb{C}$$

A system (open or closed) is BIBO-stable iff $Re(p_i) < 0$.

$$y(t) = r \left[A + Be^{p_1 t} + Ce^{p_2 t} \right]$$

$$y(t) = r \left[1 - \left(\frac{1}{2} - \frac{k_d}{2\sqrt{k_d^2 - 4k_p m}} \right) \exp\left(\frac{-k_d - \sqrt{k_d^2 - 4k_p m}}{2m} t \right) - \left(\frac{1}{2} + \frac{k_d}{2\sqrt{k_d^2 - 4k_p m}} \right) \exp\left(\frac{-k_d + \sqrt{k_d^2 - 4k_p m}}{2m} t \right) \right]$$

Need Re (p_1) , Re (p_2) < 0 for convergence (stability). Need A = 1 for $y \to r$ as $t \to \infty$. What is A?

peka 30/08/2024

Theorem (Final Value)

If
$$Y(s)$$
 is stable, $\lim_{t\to\infty} y(t) = \lim_{s\to 0} sY(s)$.

$$r(t) = r$$
, $R(s) = r/s$

$$\lim_{s \to 0} sY(s) = \lim_{s \to 0} sR(s) \frac{CH}{1 + CH} = \lim_{s \to 0} s \frac{r}{s} \frac{CH}{1 + CH}$$

$$= r \lim_{s \to 0} \frac{CH}{1 + CH} \stackrel{?}{=} r$$

Let
$$L(s) = C(s)H(s) = \frac{N(s)}{D(s)}$$
.

$$\frac{CH}{1+CH} = \frac{L}{1+L} = \frac{N/D}{1+N/D} = \frac{N}{N+D}$$

$$a \lim_{s \to 0} \frac{CH}{1 + CH} = a \lim_{s \to 0} \frac{N(s)}{N(s) + D(s)} = a \frac{N(0)}{N(0) + D(0)}$$

If $N(0) \neq 0$, this is a iff D(0) = 0. Thus, $\lim_{t \to \infty} y = r$ if s is a pole of L.

peka 30/08/2024

Summary of fundamentals

System:
$$a_n y^{(n)}(t) + \cdots + a_0 y(t) = b_m u^{(m)}(t) + \cdots + b_0 u(t)$$

Control law: $u(t) = \text{scaled } \int \text{ and } \frac{d}{dt} \text{ of error } r(t) - y(t).$

$$\int \mathcal{L}$$

$$H(s) := \frac{Y(s)}{U(s)} = \frac{b_m s^m + \dots + b_0}{a_n s^n + \dots + a_0} \qquad U(s) = C(s) \underbrace{(R(s) - Y(s))}_{E(s)}$$

$$\frac{Y}{R} = \frac{CH}{1 + CH} = \frac{\cdots}{(s - p_1)^{k_1}(s - p_2)^{k_2} \cdots}, \ p_i \in \mathbb{C}$$

Summary of fundamentals

$$\frac{Y}{R} = \frac{CH}{1 + CH} = \frac{\cdots}{(s - p_1)^{k_1}(s - p_2)^{k_2} \cdots}, \ p_i \in \mathbb{C}$$

 $\lim_{t\to\infty}y(t)=r$ if $\forall i$, $\operatorname{Re}(p_i)<0$, and \exists a pole of CH at s=0.

Summary of fundamentals

$$\frac{Y}{R} = \frac{CH}{1 + CH} = \frac{\cdots}{(s - p_1)^{k_1}(s - p_2)^{k_2} \cdots}, \ p_i \in \mathbb{C}$$

$$\lim_{t\to\infty}y(t)=r$$
 if $\forall i$, $\operatorname{Re}(p_i)<0$, and \exists a pole of CH at $s=0$.

Requires us to compute closed-loop transfer function.

A better stability test

Want to find whether any zeros of 1 + L are in the right half-plane $\mathbb{C}_{>}$.

A better stability test

Theorem (Nyquist Stability Criterion)

Define a Nyquist contour γ . Then,

Only need to evaluate $L(i\omega)$, $\omega \in \mathbb{R}$, to check stability.

Where to from here?

Robust control

Some systems are naturally unstable.

How much can we "vary" H^* from H while maintaining *stability*?

e.g.
$$\Delta = \{kH \mid k \in [0, k^*)\}$$

All $H \in \Delta$ are stabilised by a fixed C.

Where to from here?

Robust control

Some systems are naturally unstable.

How much can we "vary" H^* from H while maintaining *stability*?

e.g.
$$\Delta = \{kH \mid k \in [0, k^*)\}$$

All $H \in \Delta$ are stabilised by a fixed C.

Where to from here?

Optimal control (MATH3404?)

Arbitrary convergence rate!

$$\theta_2(t) = \theta_r (1 - e^{-H^* k_i t})$$

In general, if we specify *performance* requirements, can we meet them?

Reference tracking, disturbance rejection.

Find **K** such that $\mathbf{u} = -\mathbf{K}\mathbf{x}$ minimises objective fn.

$$J = \int_0^\infty \mathbf{x}^\mathsf{T} \mathbf{Q} \mathbf{x} + \mathbf{u}^\mathsf{T} \mathbf{R} \mathbf{u} \, \mathrm{d} t$$

Thank you for listening! 💖

Nonlinear control

Realisation theory

State estimation

Geometric control

(e.g. over SO(3))

Reinforcement learning

Motion planning

References

Scherer, Carsten. Theory of Robust Control (2018). https://www.imng.uni-stuttgart.de/mst/files/RC.pdf Aström and Murray. Feedback Systems: An Introduction for Scientists and Engineers (2008).

metr4201 course notes I guess