$f,g\in C_b(G)$ $f\otimes g(x,y)=f(x)g(y)$ 2nd countable S= L(A group $G=Hom_{cont}(G,T)$ Ch(G) & Ch(G) Pontryagin top. on (5. $\Im(\chi) = \Im(\chi d) = \langle 0, \chi \rangle$ $\gamma \in M(G)$ $\gamma : G \rightarrow Q$ 1 = Cb(G), ||V|| = ||V||. $\mathcal{F} = \mathcal{F} : \mathcal{M}(G) \to \mathcal{C}(G)$ Marin M pad (in man) Fourier transform

Example. $\delta_{s} = Dir. mean concentrated at x ∈ G.$ $\hat{S}_{x}(x) = \chi(x)$ that is, $\hat{S}_{x} = \mathcal{E}_{x}$ (eval. at x) $\hat{S}_{y}(x) = \mathcal{E}_{y}(x)$ In part, $\delta_e = 1$ Prop. $\mathcal{F}: M(G) \rightarrow C_b(\hat{G})$ is a unital *-alg. hom. Proof $(v_1 * v_2)(x) = \langle v_1 * v_2, \chi \rangle = \langle v_1 \otimes v_2, \Delta \chi \rangle$ $= \langle v_1 \otimes v_2, \chi \otimes \chi \rangle = \langle v_1, \chi \rangle \langle v_2, \chi \rangle = \hat{v}_1(\chi) \hat{v}_2(\chi)$ $(v^*)^{\wedge}(\chi) \geq \langle v^*, \chi \rangle = \langle v, \overline{S\chi} \rangle = \overline{\langle v, \chi \rangle} = \hat{v}(\chi).$

M = Haar meas on G L¹(G)=L¹(G,M) C> M(G), $f \mapsto f \cdot M$. Def The Fourier transform of $f \in L^1(G)$ is $\hat{f} = (f \cdot M)$. $\hat{\beta}(\chi) = \int_{C} \hat{\beta} \chi d\mu.$ Construction. XEG. Define $\tilde{\chi}:M(G)\rightarrow \mathbb{C}$, $\tilde{\chi}(v)=\tilde{v}(\chi)$. X 1s a unital *-character of M(G)

Observe: χ [1(G) \neq 0 (because χ [1) χ). Notation. $\chi: \hat{G} \to L^1(G), \chi \mapsto \tilde{\chi} |_{L^1(G)}$ Thm1. y is bijective. Lemma 1. $G = lc \text{ group}, J \in L^{2}(G)$ The map $G \to L^{2}(G), x \in G \mapsto Lxf$, is cont. Prost. True if fe Cc(G) (exer) (Hint: we proved this before

Let $f \in L^1(G)$, $\epsilon > 0$ Choose $g \in C_c(G)$ s.t. $||f-g||_1 < \epsilon$ $\forall x \in G \exists a nbhd V \ni x s.t. y \in V ||Lxg-Lyg|| < \epsilon$. $=) \| L_{x}f - L_{y}f \| \leq \| L_{x}(f - g) \| + \| L_{x}g - L_{y}g \| + \| L_{y}(g - f) \|_{1} < 3\varepsilon.$ Lemma 2. A = comm Born. alg, ICA closed ideal. $\hat{A}_{-} = \{ x \in \hat{A} : x|_{\underline{I}} \neq 0 \}$. Then $\hat{A}_{\underline{I}}$ is an open subset of $\hat{A}_{\underline{I}}$ and $\hat{A}_{-} \stackrel{\wedge}{\rightarrow} \hat{I}$, $\chi \mapsto \chi \mid_{-}$, is a homeomorphism

Proof. Let $x \in \hat{A}_{I}$. Then $\forall b \in I$ $\chi(a) = \frac{\varphi(ab)}{\varphi(b)}$ $\chi|_{I} = \varphi$ whenever $\varphi(b) \neq 0$ (X) whenever $\psi(b) \neq 0$. (x) =)disin()Let veî. Choose be I s.t. $\psi(b) = 1$. Define $\chi: A \to \mathbb{C}$ by $\chi(a) = \varphi(ab)$ $\chi(a_1)\chi(a_2) = \varphi(a_1b)\varphi(a_2b) - \varphi(a_1ba_2b) = \varphi(a_1a_2b)\psi(b) = \chi(a_1a_2b)$ => χ is a char of A, and $\chi|_{I} = \varphi$ => χ is bijective. Exer. Show that A_{I} is open, χ and χ' are work, η

G=LCA group,
$$A=M(G)$$
, $I=L^{1}(G)$.
 \widehat{G} \widehat{F} \widehat{A}_{I} \widehat{A} \widehat{T} $\widehat{F}(x)=\widehat{\chi}$. $d\widehat{B}=\widehat{Y}$.
Lemma 3 \widehat{F} is bijective. $d(\widehat{Y})=\widehat{Y}I$. $\widehat{\chi}(\widehat{Y})=\widehat{V}(\widehat{\chi})$
Proof. \widehat{Y} \widehat{X} \widehat{G} \widehat{X} \widehat{X} \widehat{X} \widehat{X} \widehat{X} \widehat{X} is injective.
Take \widehat{Y} \widehat{F} \widehat{A} . Define \widehat{X} : \widehat{G} \widehat{U} , \widehat{X} \widehat{X} \widehat{Y} \widehat

$$\chi(x)\chi(x') = \chi(e) = \Delta = \chi(x) \neq 0 \forall x. = 1$$

$$\chi(x) = \chi(e) = \Delta = \chi(x) \neq 0 \forall x. = 1$$

$$\chi(x) \leq \|S_x\| = 1 \quad \forall x = 1 \quad |\chi(x)| = |\chi(x')| \leq 1 = 1 \quad |\chi(x)| = 1.$$

$$\chi(x) = \chi(x) = \chi(x) = \chi(x) = \chi(x) = \chi(x) = \chi(x) = 1.$$

$$\chi(x) = \chi(x) = \chi(x) = \chi(x) = \chi(x) = 1.$$

$$\chi(x) = \chi(x) = \chi(x) = \chi(x) = 1.$$

$$\chi(x) = \chi(x) = \chi(x) = \chi(x) = 1.$$

$$\chi(x) = \chi(x)$$

We want i $\tilde{\chi} = \varphi$. L2 => if suff to show that $\tilde{\chi}(f) = \varphi(f) \times \varphi(G)$

 $\exists g \in L^{\infty}(G)$ s.t. $\varphi(f) = \int f g d\mu \quad \forall f \in L^{1}(G)$ $\varphi(f) = \varphi(f)\varphi(h) = \varphi(f*h) = \int (f*h) g d\mu =$ $= \int \int f(y)h(y^{T}x) g(x) d\mu(y) d\mu(x) = \int f(y) \Big((L_yh)(x)g(x)d\mu(x) d\mu(y) \Big) d\mu(y) d\mu(y)$ $= \int f(y)\chi(y)d\mu(y) = \chi(f).$ => B 1s bliective. Thm 1 Follows from L2&L3,

 $\varphi(L_yh) = \varphi(\delta_y * h) =$ $= \varphi(\delta_y) \varphi(h) = \chi(i)$

Cor. L'(G) is hermitian. Provide VXEG X is a *-char of L'(G) \Rightarrow all chars of L'(G) are *-chars =) L'(G) is herm. \square . Thm2. $\gamma: \hat{G} \rightarrow L'(G)^{\prime}$ is a homeomorphism. Lemma I X is cont. Proof It suff to show that $\chi \mapsto \chi(f)$ is cont $\forall f \in L'$ This is true Ω

Lemma 2. E=normed space, BCE* bounded. Then $(B, WK) \times E \rightarrow (f, X) \mapsto f(x), \text{ is cont.}$ Proof Let C= sup ||f||. Let f, f. EB, x, x, EE. $|f(x)-f_o(x_o)| \le |f(x-x_o)|+|f(x_o)-f_o(x_o)| \le C||x-x_o||+||f-f_o||_{X_o}$ Notation $\hat{G}_{W} = (\hat{G}; Gelf.top.induced from L^2(G))$

Lemma3 $\hat{G}_{\mathbf{w}}(\mathbf{S} \to \mathbf{I}), (\mathbf{x}, \mathbf{x}) \mapsto \mathbf{x}(\mathbf{x}), \text{ is cont.}$ Proof. $\forall x \in \hat{G}, f \in L^{1}(G), x \in G$. $\tilde{\chi}(L_{x}f) = \tilde{\chi}(\delta_{x}*f) = \chi(x)\tilde{\chi}(f) \implies \chi(x) = \frac{\tilde{\chi}(L_{x}f)}{\tilde{\chi}(f)}$ if $\tilde{\chi}(f) \neq 0$. Let $\chi_0 \in G$. Choose $f \in L(G)$ s.t. $\chi_0(f) \neq 0$. Fambha Versoin Gwst. Vxev & (4) +0.

By (x), it suff to show that $V \times G \to \mathbb{C}$, $(x, x) \mapsto \widetilde{\chi}(L_{x}f)$, is cont. $U \times G \xrightarrow{\text{cont}} L^1(G) \times L^1(G) \xrightarrow{\text{cont}(L2)} \mathbb{C}$ $(\chi, \chi) \mapsto (\chi, L_{\chi}f) \qquad (\varphi, f) \mapsto (\varphi, f)$

Lemma 4. X,Y,Z top spaces, $F:X\times Y \to Z$ cont. $Z_0 \subset Z$ open, $Y_0 \subset Y$ compact. Then $\{x \in X: F(x,y) \in Z_0 \ \forall y \in Y_0 \}$ is open in X

lemma5. Y is open. Proof. $\chi \in \hat{G}$, $K \subset G$ wwp, $\varepsilon > 0$ $V_{K,\varepsilon}(\chi) = \{ \varphi \in \hat{G} : |\varphi(\chi) - \chi(\chi)| < \varepsilon \ \forall \chi \in K \}$ (a basic open nbhd of x) We want: Ux e(x) is open in Gw. L3: $(y, x) \mapsto |\varphi(x) - \chi(x)|$ is cont on $G_w \times G_w$ L2 =) UKE is Ozen in GW.

Thm2 follows from L1&L5. Cor. \hat{G} is locally compact. Thm3: $\pm (L^1(G)) \subset C_0(\hat{G})$, and the foll diag commutes:

 $\sum_{i=1}^{n} C_{i}(G)^{n}$

Proof:
$$\forall f \in L^{1}(G)$$
 $x \in G$
 $(\gamma \cdot (\Gamma f))(x) = (\Gamma f \cdot \chi)(x) = (\Gamma f)(\chi) = (\Gamma f)(\chi) = (\Gamma f)(\chi) = (\Upsilon f)(\chi)$

Cor. (density thm) $f(L^2(G))$ is dense in $G(\widehat{G})$ Proof $L^2(G)$ is hermitian \square .