Chapitre 2 : Anneaux

L3-S5. Algèbre générale 1

Licence Mathématiques Université d'Avignon

Année 2018-2019

- 1. Structure d'anneaux
- 2. Règles de calcul
- 3. Anneaux intègr
- 4. Sous-anneaux

- I. Les anneaux
- 1. Structure d'anneaux

Définition: Anneau

Soit A un ensemble muni de deux lois de composition interne + et *. On dit que (A, +, *) est un anneau si :

- \bullet (A, +) est un groupe abélien;
- 2 la loi * est associative et possède un élément neutre;

Si, de plus, la loi * est commutative, on dit que (A, +, *) est un anneau commutatif.

Rappel. On dit que * est distributive par rapport à + si, pour tout $x, y, z \in A$, on a : x * (y + z) = x * y + x * z (distributivité à gauche), et (y + z) * x = y * x + z * x (distributivité à droite). Pour l'évaluation de x + y * z, on donne priorité à * (et les parenthèses deviennent inutiles).

- 1. Structure d'anneaux
- 2. Regies de calcui
- 4. Sous-anneaux
- . Anneau produit

- La loi + (resp. *) s'appelle l'addition (resp. la multiplication) de l'anneau (A, +, *).
- Le neutre de + est noté 0; -x désigne l'opposé de x.
- Le neutre de * se note 1, 1_A , e, I etc...selon les cas.

- 1. Structure d'anneaux
- 2. Régles de calcul
- 4. Cous appeaux
- 5 Anneau produit

- La loi + (resp. *) s'appelle l'addition (resp. la multiplication) de l'anneau (A, +, *).
- Le neutre de + est noté 0; -x désigne l'opposé de x.
- Le neutre de * se note 1, 1_A , e, I etc...selon les cas.

Remarques.

① Le seul anneau A pour lequel $1_A = 0$ est l'anneau nul $\{0\}$ dont les lois sont triviales.

- 1. Structure d'anneaux
- 2. Régles de calcul
- 4 Sous-anneaux
- . Anneau produit

- La loi + (resp. *) s'appelle l'addition (resp. la multiplication) de l'anneau (A, +, *).
- Le neutre de + est noté 0; -x désigne l'opposé de x.
- Le neutre de * se note 1, 1_A , e, I etc...selon les cas.

Remarques.

- ① Le seul anneau A pour lequel $1_A = 0$ est l'anneau nul $\{0\}$ dont les lois sont triviales.
- 2 On considérera souvent des anneaux commutatifs.

- 1. Structure d'anneaux
- 2. Regles de calcul
- . Anneaux integi
- 5 Anneau produit

- La loi + (resp. *) s'appelle l'addition (resp. la multiplication) de l'anneau (A, +, *).
- Le neutre de + est noté 0; -x désigne l'opposé de x.
- Le neutre de * se note 1, 1_A , e, I etc...selon les cas.

Remarques.

- ① Le seul anneau A pour lequel $1_A = 0$ est l'anneau nul $\{0\}$ dont les lois sont triviales.
- 2 On considérera souvent des anneaux commutatifs.
- ③ En pratique, on notera \times , ou . la deuxième loi "multiplicative", ou même, on l'omettra simplement, notant simplement xy le produit de deux éléments.

- 1. Structure d'anneaux
- 2. Regies de calcui
- 4. Sous-anneaux
- . Anneau produit

4 Anneaux de nombres. Les ensembles \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis des lois d'addition et multiplication usuelles sont des anneaux commutatifs.

- 1. Structure d'anneaux
- 2. Regles de calcul
- Anneaux integ
- 6. Anneau produit

- Anneaux de nombres. Les ensembles \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis des lois d'addition et multiplication usuelles sont des anneaux commutatifs.
- **2** Matrices. L'ensemble $\mathcal{M}_n(\mathbb{K})$ des matrices $n \times n$ à coefficients réels ou complexes muni des lois d'addition et multiplication usuelles des matrices est un anneau.
 - Le neutre pour + est 0 (matrice nulle) et le neutre pour \times est I_n (matrice identité $n \times n$).

- 1. Structure d'anneaux
- 2. Régles de calcul
- 4. Sous-anneaux
- . Anneau produit

- Anneaux de nombres. Les ensembles \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} munis des lois d'addition et multiplication usuelles sont des anneaux commutatifs.
- Matrices. L'ensemble \(M_n(\mathbb{K}) \) des matrices \(n \times n \) \(\text{à} \) coefficients r\(\text{e} \) les ou complexes muni des lois d'addition et multiplication usuelles des matrices est un anneau.
 Le neutre pour + est 0 (matrice nulle) et le neutre pour \(\times \)
 - Le neutre pour + est 0 (matrice nulle) et le neutre pour \times est I_n (matrice identité $n \times n$).

 $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau de neutres $\overline{0}$ et $\overline{1}$.

- 1. Structure d'anneaux
- 2. Regies de caicui
 - 4. Sous-anneaux
 - . Anneau produit

• Endomorphismes. Notons $\operatorname{End}(G)$ l'ensemble des endomorphismes du groupe commutatif (G, +). Alors $(\operatorname{End}(G), +, \circ)$ est un anneau (non commutatif). Le neutre pour + est 0 (fonction nulle) et le neutre pour \circ est l'application identité de G.

- 1. Structure d'anneaux
- 2. Regies de calcul
 - 4. Sous-anneaux
 - . Anneau produit

- Endomorphismes. Notons End(G) l'ensemble des endomorphismes du groupe commutatif (G, +). Alors (End(G), +, ∘) est un anneau (non commutatif).
 Le neutre pour + est 0 (fonction nulle) et le neutre pour ∘ est l'application identité de G.
- Fonctions. Notons \(\mathcal{F}(X, \mathbb{K}) \) l'ensemble des fonctions de l'ensemble \(X \) à valeurs r\(\text{éelles} \) ou complexes. Alors \((\mathcal{F}(X, \mathbb{K}), +, \times) \) est un anneau commutatif.
 Le neutre pour + est 0 (fonction nulle) et le neutre pour \(\times \) est l'application constante 1.

- 1. Structure d'anneaux
- 2. Régles de calcul
- 4 Sous-anneaux
- . Anneau produit

- Endomorphismes. Notons End(G) l'ensemble des endomorphismes du groupe commutatif (G, +). Alors (End(G), +, ∘) est un anneau (non commutatif).
 Le neutre pour + est 0 (fonction nulle) et le neutre pour ∘ est l'application identité de G.
- Fonctions. Notons \(\mathcal{F}(X, \mathbb{K}) \) l'ensemble des fonctions de l'ensemble \(X \) à valeurs réelles ou complexes. Alors \((\mathcal{F}(X, \mathbb{K}), +, \times) \) est un anneau commutatif.
 Le neutre pour + est 0 (fonction nulle) et le neutre pour \(\times \) est l'application constante 1.
 - Si $X = \mathbb{N}$, c'est l'anneau des suites réelles ou complexes.

- I. Structure d'anneaux
- 2. Règles de calcul
 - 4. Sous-anneaux
 - 5. Anneau produit

2. Règles de calcul

Proposition

Soit (A, +, .) un anneau. Alors, pour tout x, y, z dans A:

$$0 x.0 = 0.x = 0$$

$$2 x.(-y) = (-x).y = -(x.y)$$

3
$$x.(y-z) = x.y - x.z$$

$$\bullet$$
 si $x.y = y.x$, alors $(x.y)^n = x^n.y^n$ et

$$x^n - y^n = (x - y) \sum_{k=0}^{\infty} x^k y^{n-1-k}$$
 pour tout $n \in \mathbb{N}$,

Remarque. y + (-z) s'écrit y - z.

Exemple. Pour tout $x \in A$, on a $1_A - x^n = (1_A - x) \sum_{i=1}^{n-1} x^k$.

- I. Structure d'anneaux
- 2. Règles de calcul
 - 3. Anneaux intègre
 - 4. Sous-anneaux
 - 5. Anneau produit

Théorème : formule du binôme de Newton

Soit $(A, +, \times)$ un anneau. Alors, pour tout x, y dans A tels que xy = yx on a :

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

où
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 est le coefficient binômial.

La démonstration est "identique" à celle dans \mathbb{R} (on effectue une récurrence sur n).

Exemple. Pour tout
$$x \in A$$
, on a $(1_A + x)^n = \sum_{k=0}^n \binom{n}{k} x^k$.

- Structure d'anneaux
- Règles de
- 3. Anneaux intègres
- 4 Sous-anneaux
- 5. Anneau produit

Définition: Unité d'un anneau

Une unité d'un anneau $(A, +, \times)$ est un élément de A inversible pour la loi \times , c.-à-d. admettant un inverse.

On note U(A) l'ensemble des unités de A; il contient toujours 1_A .

- Structure d'anneaux
- . Règles de ca
- 3. Anneaux intègres
- 4. Sous-anneaux
 - 6. Anneau produit

Définition: Unité d'un anneau

Une $unit\acute{e}$ d'un anneau $(A,+,\times)$ est un élément de A inversible pour la loi \times , c.-à-d. admettant un inverse.

On note U(A) l'ensemble des unités de A; il contient toujours 1_A . Si A n'est pas l'anneau nul, $U(A) \subset A \setminus \{0\}$.

- 3. Anneaux intègres

Définition: Unité d'un anneau

Une unité d'un anneau $(A, +, \times)$ est un élément de A inversible pour la loi \times , c.-à-d. admettant un inverse.

On note U(A) l'ensemble des unités de A; il contient toujours 1_A . Si A n'est pas l'anneau nul, $U(A) \subset A \setminus \{0\}$.

${ m Th\'eor\`eme}$

L'ensemble $(U(A), \times)$ est un groupe (multiplicatif).

- Structure d'anneaux
- 3. Anneaux intègres
- 5. Anneaux integre
- 5. Anneau produit

Définition: Unité d'un anneau

Une $unit\acute{e}$ d'un anneau $(A,+,\times)$ est un élément de A inversible pour la loi \times , c.-à-d. admettant un inverse.

On note U(A) l'ensemble des unités de A; il contient toujours 1_A . Si A n'est pas l'anneau nul, $U(A) \subset A \setminus \{0\}$.

Théorème

L'ensemble $(U(A), \times)$ est un groupe (multiplicatif).

dém. Tout d'abord, U(A) est stable par \times : pour tout $x, y \in U(A)$, $xy \in U(A)$ avec $(xy)^{-1} = y^{-1}x^{-1}$. Donc, U(A) est muni de la loi induite \times par celle de A; elle est donc associative et possède un élément neutre 1_A . Par définition des unités, tout élément de U(A) est inversible. ■

- Deleg de anneaux
- . Règles de
- 3. Anneaux intègres
- 4. Sous-anneaux
- 5. Anneau produit

• Le groupe des unités de $(\mathbb{Z}, +, \times)$ est $\{-1, 1\}$.

- l. Structure d'anneaux
- 2. Regles de calci
- 3. Anneaux intègres
- 4. Sous-anneaux
- 5. Anneau produit

- Le groupe des unités de $(\mathbb{Z}, +, \times)$ est $\{-1, 1\}$.
- Le groupe des unités de $(\mathbb{K}, +, \times)$ est $\mathbb{K}\setminus\{0\}$.

- 3. Anneaux intègres

- Le groupe des unités de $(\mathbb{Z}, +, \times)$ est $\{-1, 1\}$.
- Le groupe des unités de $(\mathbb{K}, +, \times)$ est $\mathbb{K}\setminus\{0\}$.
- Le groupe des unités de $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est $GL(n, \mathbb{K})$.

- Le groupe des unités de $(\mathbb{Z}, +, \times)$ est $\{-1, 1\}$.
- Le groupe des unités de $(\mathbb{K}, +, \times)$ est $\mathbb{K}\setminus\{0\}$.
- Le groupe des unités de $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est $GL(n, \mathbb{K})$.
- Le groupe des unités de $(\mathbb{Z}/2\mathbb{Z}, +, \times)$ est $\{\overline{1}\}.$

- 3. Anneaux intègres

- Le groupe des unités de $(\mathbb{Z}, +, \times)$ est $\{-1, 1\}$.
- Le groupe des unités de $(\mathbb{K}, +, \times)$ est $\mathbb{K}\setminus\{0\}$.
- Le groupe des unités de $(\mathcal{M}_n(\mathbb{K}), +, \times)$ est $GL(n, \mathbb{K})$.
- Le groupe des unités de $(\mathbb{Z}/2\mathbb{Z}, +, \times)$ est $\{\overline{1}\}.$
- Le groupe des unités de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est l'ensemble des \overline{x} , $x \in [1, n-1]$ premier avec n; c'est donc aussi l'ensemble des générateurs du groupe $(\mathbb{Z}/n\mathbb{Z},+)$.

En effet,
$$\overline{x} \in U(\mathbb{Z}/n\mathbb{Z}) \iff \exists y \in \mathbb{Z}, \ \overline{xy} = \overline{1} \iff \exists y, k \in \mathbb{Z}, \ xy + kn = 1 \iff x \wedge n = 1$$

d'après le théorème de Bezout.

- . Structure d'anneaux
- Règles d
- 3. Anneaux intègres
 - 5. Anneaux integres
- 5. Anneau produit

La fonction indicatrice d'Euler est l'application $\varphi: \mathbb{N}^{\star} \to \mathbb{N}^{\star}$ définie par

$$arphi(n) = \operatorname{Card}(U(\mathbb{Z}/n\mathbb{Z}))$$

autrement dit c'est le nombre d'éléments $\overline{x}, x \in [1, n-1]$ premier avec n.

- . Structure d'anneaux
- 2. Règles de
- 3. Anneaux intègres
- 4. Sous-anneaux
- 6. Anneau produit

La fonction indicatrice d'Euler est l'application $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ définie par

$$arphi(n) = \operatorname{Card}(U(\mathbb{Z}/n\mathbb{Z}))$$

autrement dit c'est le nombre d'éléments $\overline{x}, x \in [\![1,n-1]\!]$ premier avec n.

Exemples. $\varphi(1) = 1$, $\varphi(12) = Card(\{1, 5, 7, 11\}) = 4$.

- . Structure d'anneaux
- 2. Règles de
- 3. Anneaux intègres
- 1 Sous-anneaux
- 5. Anneau produit

La fonction indicatrice d'Euler est l'application $\varphi: \mathbb{N}^{\star} \to \mathbb{N}^{\star}$ définie par

$$arphi(n) = \operatorname{Card}(U(\mathbb{Z}/n\mathbb{Z}))$$

autrement dit c'est le nombre d'éléments $\overline{x}, x \in [\![1,n-1]\!]$ premier avec n.

Exemples. $\varphi(1) = 1$, $\varphi(12) = \text{Card}(\{1, 5, 7, 11\}) = 4$.

Si p est un nombre premier, $\varphi(p) = p - 1$.

- Structure d'anneaux
- 3. Anneaux intègres
- 4 Sous-anneaux
- . Anneau produit

La fonction indicatrice d'Euler est l'application $\varphi: \mathbb{N}^{\star} \to \mathbb{N}^{\star}$ définie par

$$arphi(n) = \operatorname{Card}(U(\mathbb{Z}/n\mathbb{Z}))$$

autrement dit c'est le nombre d'éléments $\overline{x}, x \in [1, n-1]$ premier avec n.

Exemples. $\varphi(1) = 1$, $\varphi(12) = \text{Card}(\{1, 5, 7, 11\}) = 4$.

Si p est un nombre premier, $\varphi(p) = p - 1$.

Théorème d'Euler

Soit $n \in \mathbb{N}^*$. Si a est un entier premier avec n alors $a^{\varphi(n)} \equiv 1[n]$.

En particulier, si n est premier, et a n'est pas divisible par n, alors $a^{n-1} \equiv 1[n]$, ce qui équivaut à :

Petit théorème de Fermat

Soit n un nombre premier. Pour tout entier a, on a : $a^n \equiv a[n]$.

- 3. Anneaux intègres

Définition: Diviseurs de zéro

Soit $(A, +, \times)$ un anneau (commutatif). Un diviseur de zéro est un élément x de A tel que :

- x est non nul : $x \neq 0$,
- il existe un élément non-nul y de A tel que xy = yx = 0.

- 3. Anneaux intègres

Définition: Diviseurs de zéro

Soit $(A, +, \times)$ un anneau (commutatif). Un diviseur de zéro est un élément x de A tel que :

- x est non nul : $x \neq 0$,
- il existe un élément non-nul y de A tel que xy = yx = 0.

Les unités ne sont pas des diviseurs de zéro.

- 3. Anneaux intègres

Définition: Diviseurs de zéro

Soit $(A, +, \times)$ un anneau (commutatif). Un diviseur de zéro est un élément x de A tel que :

- x est non nul : $x \neq 0$,
- il existe un élément non-nul y de A tel que xy = yx = 0.

- Dans $(\mathcal{M}_2(\mathbb{R}), +, \times)$, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ sont des diviseurs de zéros.
- Dans $(\mathbb{Z}^2, +, \times)$, (1,0) et (0,1) sont des diviseurs de zéro.
- Dans $(\mathbb{Z}/6\mathbb{Z}, +, \times)$, $\overline{2}$ et $\overline{3}$ sont des diviseurs de zéro.

- 3. Anneaux intègres

Définition: Anneau intègre

Un anneau $(A, +, \times)$ (commutatif) est *intègre* si

- A n'est pas l'anneau nul
- A n'admet aucun diviseur de zéro, c.-à-d.

$$\forall x, y \in A, \ xy = 0 \Rightarrow x = 0 \text{ ou } y = 0$$

Ainsi, un anneau intègre est "sans diviseur de zéro".

- 3. Anneaux intègres

Définition: Anneau intègre

Un anneau $(A, +, \times)$ (commutatif) est intègre si

- A n'est pas l'anneau nul
- A n'admet aucun diviseur de zéro, c.-à-d.

$$\forall x, y \in A, \ xy = 0 \Rightarrow x = 0 \text{ ou } y = 0$$

Ainsi, un anneau intègre est "sans diviseur de zéro".

- Les anneaux $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$ sont tous intègres.
- Les anneaux $(\mathbb{Z}^2, +, \times)$ et $(\mathbb{Z}/6\mathbb{Z}, +, \times)$ ne sont pas intègres.
- $\mathbb{Z}/n\mathbb{Z}$ est intègre si et seulement si n=0 ou n premier.

- . Structure d'anneaux
- 3. Anneaux intègres
- 4. Sous appeaux
- . Anneau produit

Dans un anneau intègre A, l'équation $x^2 = 1_A$ a pour solution solutions 1_A et -1_A , ce qui n'est pas le cas lorsque A n'est pas intègre.

Exemples. Dans $(\mathbb{R}^2, +, \times)$, $(x, y)^2 = (1, 1)$ a pour solutions (1, 1), (-1, 1), (1, -1) et (-1, -1).

- Structure d'anneaux
- 3. Anneaux intègres
- 3. Anneaux integr
- 4. Sous-anneaux

Dans un anneau intègre A, l'équation $x^2 = 1_A$ a pour solution solutions 1_A et -1_A , ce qui n'est pas le cas lorsque A n'est pas intègre.

Exemples. Dans $(\mathbb{R}^2, +, \times)$, $(x, y)^2 = (1, 1)$ a pour solutions (1, 1), (-1, 1), (1, -1) et (-1, -1).

Dans
$$(\mathcal{M}_2(\mathbb{R}), +, \times)$$
, $A^2 = I$ a pour solutions $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$, $\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$, $\begin{pmatrix} 3 & 4 \\ -2 & -3 \end{pmatrix}$, etc

- . Structure d'anneaux
- 3. Anneaux integre
- 4. Sous-anneaux
- 5. Anneau produit

4. Sous-anneaux

Définition: Sous-anneaux

Soit $(A, +, \times)$ un anneau (commutatif). Un sous-ensemble B de A est un sous-anneau de A si :

- B est un sous-groupe de (A, +),
- B est stable pour la loi \times ,
- B contient 1_A .

- Structure d'anneaux
- 2. Regies de calcui
- 3. Anneaux intègres
- 4. Sous-anneaux
 - . Anneau produit

4. Sous-anneaux

Définition: Sous-anneaux

Soit $(A, +, \times)$ un anneau (commutatif). Un sous-ensemble B de A est un sous-anneau de A si :

- B est un sous-groupe de (A, +),
- B est stable pour la loi \times ,
- B contient 1_A .

Bien vérifier $1_A \in B$ et non $0 \in B$ ou seulement $B \neq \emptyset$.

Par exemple $B = \{\overline{0}, \overline{2}, \overline{4}\}$ n'est pas un sous-anneau de $\mathbb{Z}/6\mathbb{Z}$. Pourtant c'est un anneau de neutre $\overline{4}$.

- Structure d'anneaux
- . Regies de calcui
- 6. Anneaux intègre
- 4. Sous-anneaux
 - 5. Anneau produit

Exemples

- A est un sous-anneau de l'anneau $(A, +, \times)$.
- \mathbb{Z} est un sous-anneau de $(\mathbb{R}, +, \times)$, mais $2\mathbb{Z}$ n'est pas un sous-anneau de $(\mathbb{R}, +, \times)$.
- Soit I un intervalle de \mathbb{R} non réduit à un point. L'ensemble $\mathcal{C}^k(I,\mathbb{K}), k \in \mathbb{N} \cup \{+\infty\}$, est un sous-anneau de $(\mathcal{F}(I,\mathbb{K}),+,\times)$.

- Structure d'anneaux
- 2. Regies de calcul
- 4. Sous-anneaux
 - . Anneau produit

Exemples

- A est un sous-anneau de l'anneau $(A, +, \times)$.
- \mathbb{Z} est un sous-anneau de $(\mathbb{R}, +, \times)$, mais $2\mathbb{Z}$ n'est pas un sous-anneau de $(\mathbb{R}, +, \times)$.
- Soit I un intervalle de \mathbb{R} non réduit à un point. L'ensemble $\mathcal{C}^k(I,\mathbb{K}), k \in \mathbb{N} \cup \{+\infty\}$, est un sous-anneau de $(\mathcal{F}(I,\mathbb{K}),+,\times)$.

Propriété

Un sous-ensemble $B \subset A$ est un sous-anneau si et seulement si :

- $1_A \in B$,
- $\bullet \ \forall x, y \in B, \ x y \in B,$
- $\bullet \ \forall x, y \in B, \ xy \in B.$

- Structure d'anneaux
- 2. Regles de calc
- 3. Anneaux integr
- 4. Sous-anneaux
- 5. Anneau produit

Si B est un sous-anneau de $(A, +, \times)$, B peut être muni des lois + et \times définies par restriction des lois sur A et alors $(B, +, \times)$ est un anneau de même neutres que A.

- . Structure d'anneaux
- 2. Regies de calcui
- 6. Anneaux intègres
- 4. Sous-anneaux
- 5. Anneau produit

Si B est un sous-anneau de $(A, +, \times)$, B peut être muni des lois + et \times définies par restriction des lois sur A et alors $(B, +, \times)$ est un anneau de même neutres que A.

Propriétés

Si B_1 et B_2 sont des sous-anneaux de $(A, +, \times)$, alors $B_1 \cap B_2$ est aussi un sous-anneau de A.

Ce résultat se généralise à : l'intersection d'une famille quelconque de sous-anneaux est encore un sous-anneau.

- . Structure d'anneaux
- 2. Regies de carcu
 - 3. Anneaux intègres
- 4. Sous-anneaux
- 5. Anneau produit

5. Anneau produit

Théorème

Soit $(A_i)_{i\in I}$ une famille d'anneaux. Alors, le produit $\prod_{i\in I} A_i$ muni des lois produits est un anneau.

Les lois produits:

$$(x_i)_{\in I} + (y_i)_{i\in I} \stackrel{\text{def.}}{=} (x_i + y_i)_{i\in I}$$

 $(x_i)_{\in I} \times (y_i)_{i\in I} \stackrel{\text{def.}}{=} (x_i \times y_i)_{i\in I}$

- 5. Anneau produit

5. Anneau produit

Théorème

Soit $(A_i)_{i\in I}$ une famille d'anneaux. Alors, le produit $\prod_{i\in I} A_i$ muni des lois produits est un anneau.

Les lois produits :

$$(x_i)_{\in I} + (y_i)_{i\in I} \stackrel{\text{def.}}{=} (x_i + y_i)_{i\in I}$$
$$(x_i)_{\in I} \times (y_i)_{i\in I} \stackrel{\text{def.}}{=} (x_i \times y_i)_{i\in I}$$

Cas particulier : si les A_i sont tous égaux, alors $\prod_{i \in I} A_i$ est l'ensemble A^I des applications de I vers A.

$$\forall f, g \in A^I, \quad \forall i \in I, \quad (f+g)(i) \stackrel{\text{def.}}{=} f(i) + g(i)$$

$$\forall f, g \in A^I, \quad \forall i \in I, \quad f.g(i) \stackrel{\text{def.}}{=} f(i) \times g(i)$$

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
- 3. Idéal engendré par un élément

II. Idéaux

1. Idéaux d'un anneau commutatif

Soit $(A, +, \times)$ un anneau **commutatif**.

Définition : Idéal

Un sous-ensemble I de A est un $id\acute{e}al$ si :

- (I, +) est un sous-groupe de (A, +),
- $\bullet \ \forall a \in A, \ \forall x \in I, \ xa \in I.$

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
- 3. Idéal engendré par un élément

II. Idéaux

1. Idéaux d'un anneau commutatif

Soit $(A, +, \times)$ un anneau **commutatif**.

Définition: Idéal

Un sous-ensemble I de A est un $id\acute{e}al$ si :

- (I, +) est un sous-groupe de (A, +),
- $\forall a \in A, \ \forall x \in I, \ xa \in I.$

Proposition

Une partie $I \subset A$ est un idéal de A si et seulement si :

- \bullet $0 \in I$,
- $\bullet \ \forall x, y \in I, \ x + y \in I,$
- $\bullet \ \forall a \in A, \ \forall x \in I, \ xa \in I.$

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
 - 3. Idéal engendré par un élément

① Soit I un idéal de $(A, +, \times)$. Alors :

$$I = A \iff 1_A \in I \iff I \cap U(A) \neq \emptyset.$$

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
 - 3. Idéal engendré par un élément

9 Soit I un idéal de $(A, +, \times)$. Alors :

$$I = A \iff 1_A \in I \iff I \cap U(A) \neq \emptyset.$$

2 Les idéaux triviaux de A sont $\{0\}$ et A.

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
 - 3. Idéal engendré par un élément

• Soit I un idéal de $(A, +, \times)$. Alors :

$$I = A \iff 1_A \in I \iff I \cap U(A) \neq \emptyset.$$

- 2 Les idéaux triviaux de A sont $\{0\}$ et A.

Par exemple, $\mathbb Z$ est un sous-anneau de $\mathbb Q$ mais pas un idéal. $\{\overline{0},\overline{2},\overline{4}\}$ est un idéal de $\mathbb Z/6\mathbb Z$ mais pas un sous-anneau.

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
 - 3. Idéal engendré par un élément

• Soit I un idéal de $(A, +, \times)$. Alors :

$$I = A \iff 1_A \in I \iff I \cap U(A) \neq \emptyset.$$

- ② Les idéaux triviaux de A sont $\{0\}$ et A.

Par exemple, $\mathbb Z$ est un sous-anneau de $\mathbb Q$ mais pas un idéal. $\{\overline{0},\overline{2},\overline{4}\}$ est un idéal de $\mathbb Z/6\mathbb Z$ mais pas un sous-anneau.

Théorème

Les idéaux de $(\mathbb{Z}, +, \times)$ sont de la forme $n\mathbb{Z}$ avec $n \in \mathbb{N}$.

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
- 3. Idéal engendré par un élément

2. Opérations

Théorème: intersection

Si I et J sont deux idéaux de $(A,+,\times),$ alors $I\cap J$ est un idéal de A.

 $I\cap J$ est le plus grand idéal inclus dans I et J. Le résultat se généralise à une intersection d'une famille d'idéaux.

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
 - 3. Idéal engendré par un élément

2. Opérations

Théorème: intersection

Si I et J sont deux idéaux de $(A, +, \times)$, alors $I \cap J$ est un idéal de A.

 $I\cap J$ est le plus grand idéal inclus dans I et J. Le résultat se généralise à une intersection d'une famille d'idéaux.

Théorème : somme

Si I et J sont deux idéaux de $(A, +, \times)$, alors

$$I + J \stackrel{\text{def.}}{=} \{x + y/x \in I, y \in J\}$$
 est un idéal de A .

I+J est le plus petit idéal contenant I et J.

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
- 3. Idéal engendré par un élément

3. Idéal engendré par un élément

Définition : Idéal engendré par un élément

On appelle $id\acute{e}al$ $engendr\acute{e}$ par $x\in A$ l'ensemble

$$xA \stackrel{\text{déf.}}{=} \{xu/u \in A\}.$$

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
 - 3. Idéal engendré par un élément

3. Idéal engendré par un élément

Définition : Idéal engendré par un élément

On appelle $id\acute{e}al$ $engendr\acute{e}$ par $x\in A$ l'ensemble

$$xA \stackrel{\text{déf.}}{=} \{xu/u \in A\}.$$

Théorème

xA est un idéal contenant l'élément x et inclus dans tout idéal contenant x.

Autrement dit c'est le plus petit (pour l'inclusion) idéal de A contenant x.

- 1. Idéaux d'un anneau commutatif
- 2. Opérations
 - 3. Idéal engendré par un élément

3. Idéal engendré par un élément

Définition : Idéal engendré par un élément

On appelle $id\acute{e}al$ $engendr\acute{e}$ par $x\in A$ l'ensemble

$$xA \stackrel{\text{def.}}{=} \{xu/u \in A\}.$$

Théorème

xA est un idéal contenant l'élément x et inclus dans tout idéal contenant x.

Autrement dit c'est le plus petit (pour l'inclusion) idéal de A contenant x.

Exemple

L'idéal de \mathbb{Z} engendré par n est $n\mathbb{Z}$.

- 1. Morphismes d'anneaux
 - . Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

III. Morphismes d'anneaux

1. Morphismes d'anneaux

Définition

Soit $(A, +, \times)$ et $(A', +, \times)$ deux anneaux. On appelle morphisme d'anneaux toute application $f: A \to A'$ vérifiant

- $(1_A) = 1_{A'}.$

En particulier, $f: A \to A'$ est un morphisme de groupes additifs.

- 1. Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
 - 5. Caractéristique d'un anneau

III. Morphismes d'anneaux

1. Morphismes d'anneaux

Définition

Soit $(A, +, \times)$ et $(A', +, \times)$ deux anneaux. On appelle morphisme d'anneaux toute application $f: A \to A'$ vérifiant

- $f(1_A) = 1_{A'}.$

En particulier, $f:A\to A'$ est un morphisme de groupes additifs. Aussi,

- ullet Un morphisme de A vers A est un endomorphisme de A.
- Un morphisme bijectif de A vers A' est un isomorphisme de A vers A'.
- Un endomorphisme bijectif de A vers A est un automorphisme de A.

- 1. Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

Exemples

- L'application identité $\mathrm{Id}_A:A\to A$ est un automorphisme de $(A,+,\times).$
- **2** L'application $\varphi_A : \mathbb{Z} \to A$ définie par $\varphi_A(k) = k.1_A$ est un morphisme de $(\mathbb{Z}, +, \times)$ vers $(A, +, \times)$.
- Soit $a \in U(A)$. L'application $\tau_a : A \to A$ définie par $\tau_a(x) = axa^{-1}$ est un automorphisme de $(A, +, \times)$

- 1. Morphismes d'anneaux
 - Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

Exemples

- L'application identité $\mathrm{Id}_A:A\to A$ est un automorphisme de $(A,+,\times).$
- **2** L'application $\varphi_A : \mathbb{Z} \to A$ définie par $\varphi_A(k) = k.1_A$ est un morphisme de $(\mathbb{Z}, +, \times)$ vers $(A, +, \times)$.
- Soit $a \in U(A)$. L'application $\tau_a : A \to A$ définie par $\tau_a(x) = axa^{-1}$ est un automorphisme de $(A, +, \times)$

Propriétés

Si $f: A \to A'$ est un morphisme d'anneaux,

- $\forall x \in A, f(-x) = -f(x),$
- **3** $\forall x \in U(A), f(x^{-1}) = (f(x))^{-1}.$

- Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 6. Caractéristique d'un anneau

2. Image et noyau d'un morphisme

Théorème

Soit $f: A \to A'$ un morphisme d'anneaux commutatifs.

- Si B est un sous-anneau de A, alors f(B) est un sous-anneau de A'.
- ② Si B' est un sous-anneau de A', alors $f^{-1}(B')$ est un sous-anneau de A.
- \bullet Si I est un idéal de A', alors $f^{-1}(I)$ est un idéal de A.

- Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 6. Caractéristique d'un anneau

2. Image et noyau d'un morphisme

Théorème

Soit $f:A\to A'$ un morphisme d'anneaux commutatifs.

- Si B est un sous-anneau de A, alors f(B) est un sous-anneau de A'.
- ② Si B' est un sous-anneau de A', alors $f^{-1}(B')$ est un sous-anneau de A.
- \bullet Si I est un idéal de A', alors $f^{-1}(I)$ est un idéal de A.

En particulier,

- Im $f \stackrel{\text{def.}}{=} f(A)$ est un sous-anneau de A'.
- Ker $f \stackrel{\text{def.}}{=} f^{-1}(0)$ est un idéal de A (et ce n'est pas un sous-anneau sauf si A' est l'anneau nul).

- . Morphismes d'anneaux
- . Image et noyau d'un morphisme
- 3. Anneaux isomorphismes
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

3. Anneaux isomorphismes

Définition: anneaux isomorphes

On dit que deux anneaux A et A' sont isomorphes s'il existe un isomorphisme d'anneaux de l'un vers l'autre : ces deux anneaux possèdent alors les mêmes propriétés calculatoires.

- . Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 3. Anneaux isomorphismes
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

3. Anneaux isomorphismes

Définition: anneaux isomorphes

On dit que deux anneaux A et A' sont isomorphes s'il existe un isomorphisme d'anneaux de l'un vers l'autre : ces deux anneaux possèdent alors les mêmes propriétés calculatoires.

Exemple

$$(\mathbb{Z}, +, \times)$$
 et $(\text{End}(\mathbb{Z}), +, \circ)$ sont isomorphes.

- Morphismes d'anneaux
- . Image et noyau d'un morphisme
- 3. Anneaux isomorphismes
- 5. Caractéristique d'un anneau

3. Anneaux isomorphismes

Définition: anneaux isomorphes

On dit que deux anneaux A et A' sont isomorphes s'il existe un isomorphisme d'anneaux de l'un vers l'autre : ces deux anneaux possèdent alors les mêmes propriétés calculatoires.

Exemple

 $(\mathbb{Z}, +, \times)$ et $(\text{End}(\mathbb{Z}), +, \circ)$ sont isomorphes.

Théorème des restes chinois

Si m et n sont deux entiers premiers entre eux, les anneaux $\mathbb{Z}/mn\mathbb{Z}$ et $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ sont isomorphes.

- . Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
 - 6. Caractéristique d'un anneau

4. Quotient par un idéal

Soit $(A, +, \times)$ un aneau commutatif et I un idéal de A. On définit la relation d'équivalence sur A suivante

$$x\mathcal{R}y \stackrel{\text{déf.}}{\Longleftrightarrow} y - x \in I.$$

On dit que x est congru à y modulo I. La relation \mathcal{R} est une congruence à gauche.

- Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

4. Quotient par un idéal

Soit $(A, +, \times)$ un aneau commutatif et I un idéal de A. On définit la relation d'équivalence sur A suivante

$$x\mathcal{R}y \stackrel{\text{déf.}}{\Longleftrightarrow} y - x \in I.$$

On dit que x est congru à y modulo I. La relation \mathcal{R} est une congruence à gauche.

La classe d'équivalence de x modulo I est

$$\bar{x} = \{y \in A : y - x \in I\} = I + x.$$

On note $A/I = \{I + x : x \in A\}$ l'espace quotient et $p_I : A \to A/I$ la surjection canonique $(p_I(x) = I + x)$.

- . Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

Il existe une unique structure d'anneau sur A/I telle que $p_I:A\to A/I$ soit un morphisme d'anneaux.

Le noyau de p_I est I.

- Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

Il existe une unique structure d'anneau sur A/I telle que $p_I:A\to A/I$ soit un morphisme d'anneaux.

Le noyau de p_I est I.

Exemples

Pour I = A, A/A est l'anneau trivial $\{A\}$.

Pour $A = \mathbb{Z}$ et $I = n\mathbb{Z}$, A/I est l'anneau quotient $\mathbb{Z}/n\mathbb{Z}$.

- Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 6. Caractéristique d'un anneau

Il existe une unique structure d'anneau sur A/I telle que $p_I:A\to A/I$ soit un morphisme d'anneaux.

Le noyau de p_I est I.

Exemples

Pour I = A, A/A est l'anneau trivial $\{A\}$.

Pour $A = \mathbb{Z}$ et $I = n\mathbb{Z}$, A/I est l'anneau quotient $\mathbb{Z}/n\mathbb{Z}$.

Théorème

Soit $f: A \to B$ un morphisme d'anneaux. Alors f(A) est isomorphe à $A/\operatorname{Ker} f$.

- . Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

5. Caractéristique d'un anneau

Soit $(A, +, \times)$ un anneau non réduit à $\{0\}$ et $\varphi_A : \mathbb{Z} \to A$ le morphisme d'anneaux défini par

$$\varphi_A(n) = n.1_A$$

où
$$n.1_A \stackrel{\text{def.}}{=} \underbrace{1_A + \dots + 1_A}_{n \text{ fois}} \text{ si } n \in \mathbb{N},$$

et $n.1_A = -(|n|.1_A) \text{ si } -n \in \mathbb{N}.$

 φ_A est le seul morphisme d'anneaux de $\mathbb Z$ dans A.

Le noyau de φ_A est un idéal de \mathbb{Z} , donc de la forme $p\mathbb{Z}$, $p \in \mathbb{N}$.

- Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

5. Caractéristique d'un anneau

Soit $(A, +, \times)$ un anneau non réduit à $\{0\}$ et $\varphi_A : \mathbb{Z} \to A$ le morphisme d'anneaux défini par

$$\varphi_A(n) = n.1_A$$

où
$$n.1_A \stackrel{\text{déf.}}{=} \underbrace{1_A + \dots + 1_A}_{n \text{ fois}} \text{ si } n \in \mathbb{N},$$

et $n.1_A = -(|n|.1_A) \text{ si } -n \in \mathbb{N}.$

 φ_A est le seul morphisme d'anneaux de \mathbb{Z} dans A. Le noyau de φ_A est un idéal de \mathbb{Z} , donc de la forme $p\mathbb{Z}$, $p \in \mathbb{N}$.

Définition : caractéristique d'un anneau

L'entier positif (ou nul) p tel que $\operatorname{Ker} \varphi_A = p\mathbb{Z}$ est appelé la caractéristique de $(A, +, \times)$.

- . Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

Autrement dit, la caractéristique de A est le plus petit entier > 0, s'il existe, tel que $p.1_A = 0$; et 0 sinon.

Soit encore, si l'ordre de 1_A (élément neutre pour la loi multiplicative) est fini, la caractéristique de A est l'ordre de 1_A pour la loi additive ; si l'ordre de 1_A est infini, la caractéristique de A est 0.

Exemples

- \bullet \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} sont de caractéristique 0.
- ② Si $p \neq 1$, $\mathbb{Z}/p\mathbb{Z}$ est de caractéristique p.

- Morphismes d'anneaux
- 2. Image et noyau d'un morphisme
- 4. Quotient par un idéal
- 5. Caractéristique d'un anneau

Autrement dit, la caractéristique de A est le plus petit entier > 0, s'il existe, tel que $p.1_A = 0$; et 0 sinon.

Soit encore, si l'ordre de 1_A (élément neutre pour la loi multiplicative) est fini, la caractéristique de A est l'ordre de 1_A pour la loi additive ; si l'ordre de 1_A est infini, la caractéristique de A est 0.

Exemples

- \bullet \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} sont de caractéristique 0.

Proposition

Si A est intègre, sa caractéristique est nulle ou un nombre premier.

- 1. Structure de corps
- 2. Sous-corps

1. Structure de corps

Définition : Corps

On appelle *corps* tout anneau $(K, +, \times)$ vérifiant

- \bullet $(K, +, \times)$ est commutatif
- 2 K n'est pas réduit à $\{0\}$
- \odot tous les éléments non nuls de K sont des unités.

- 1. Structure de corps
- 2. Sous-corps

1. Structure de corps

Définition : Corps

On appelle *corps* tout anneau $(K, +, \times)$ vérifiant

- \bullet $(K, +, \times)$ est commutatif
- 2 K n'est pas réduit à $\{0\}$
- \odot tous les éléments non nuls de K sont des unités.

Les corps usuels sont $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$. $(\mathbb{Z}, +, \times)$ n'est pas un corps.

- 1. Structure de corps
- 2. Sous-corps

1. Structure de corps

Définition : Corps

On appelle *corps* tout anneau $(K, +, \times)$ vérifiant

- \bullet $(K, +, \times)$ est commutatif
- 2 K n'est pas réduit à $\{0\}$
- \odot tous les éléments non nuls de K sont des unités.

Les corps usuels sont $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$. $(\mathbb{Z}, +, \times)$ n'est pas un corps.

Proposition

1 Tout corps est intègre, c.-à-d. "sans diviseur de zéro".

- 1. Structure de corps
- 2. Sous-corps

1. Structure de corps

Définition : Corps

On appelle *corps* tout anneau $(K, +, \times)$ vérifiant

- \bullet $(K, +, \times)$ est commutatif
- 2 K n'est pas réduit à $\{0\}$
- \odot tous les éléments non nuls de K sont des unités.

Les corps usuels sont $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$. $(\mathbb{Z}, +, \times)$ n'est pas un corps.

Proposition

- 1 Tout corps est intègre, c.-à-d. "sans diviseur de zéro".
- 2 Les seuls idéaux d'un corps sont $\{0\}$ et lui-même.

- 1. Structure de corps
- 2. Sous-corps

1. Structure de corps

Définition : Corps

On appelle *corps* tout anneau $(K, +, \times)$ vérifiant

- \bullet $(K, +, \times)$ est commutatif
- 2 K n'est pas réduit à $\{0\}$
- \odot tous les éléments non nuls de K sont des unités.

Les corps usuels sont $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$. $(\mathbb{Z}, +, \times)$ n'est pas un corps.

Proposition

- 1 Tout corps est intègre, c.-à-d. "sans diviseur de zéro".
- 2 Les seuls idéaux d'un corps sont $\{0\}$ et lui-même.
- $\mathfrak{g} \mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est un nombre premier.

- 1. Structure de corps
- 2. Sous-corps

2. Sous-corps

Définition : Sous-corps

On appelle sous-corps d'un corps $(K,+,\times)$ toute partie L de K vérifiant

- lacksquare L est un sous-anneau de $(K,+,\times)$

- 1. Structure de corps
- 2. Sous-corps

2. Sous-corps

Définition: Sous-corps

On appelle sous-corps d'un corps $(K,+,\times)$ toute partie L de K vérifiant

- lacksquare L est un sous-anneau de $(K,+,\times)$

Exemple

 $(\mathbb{Q}, +, \times)$ est un sous corps de $(\mathbb{R}, +, \times)$.

- 1. Structure de corps
- 2. Sous-corps

2. Sous-corps

Définition: Sous-corps

On appelle sous-corps d'un corps $(K, +, \times)$ toute partie L de K vérifiant

- lacksquare L est un sous-anneau de $(K,+,\times)$

Exemple

 $(\mathbb{Q}, +, \times)$ est un sous corps de $(\mathbb{R}, +, \times)$.

Théorème

Si L est un sous-corps de $(K, +, \times)$, alors $(L, +, \times)$ est un corps.