Homework Assignment 6

- Read through page 98 the book. However, the material on pages 70 through 76 is optional.
- Problem 1.51 page 90.
- Use the procedure shown in class to Minimize the following Deterministic Finite Automata: In all cases $\Sigma = \{a, b\}$ and the start state is the one on the first row of the table and F indicates accept state. (from Kozen)

		a	b			a	b
	1	6	3		1	2	3
	$\overline{2}$	5	6		$\overline{2}$	5	6
A.	3F	4	5	В.	$\overline{3}$ F	1	4
11.	4F	3	2	2.	4F	6	3
	5	2	1		5	2	1
	6	1	$\overline{4}$		6	5	$\overline{4}$
				!			
		a	b			a	b
	0F	3	2		0	3	5
	1F	3	5		1	2	4
α	2	2	6	D	2	6	3
С.	3	2	1	D.	3	6	6
	4	5	4		4F	0	2
	5	5	3		5F	1	6
	6	5	0		6	2	6
				l			

1 1.51

To prove that \equiv_L is an equivalency relation, we need to show that it is reflexive, symmetric and transitive.

Proof that \equiv_L is reflexive: Assuming that x is a string and L a language, then for any string z, the string xz will either be in the language L or not, so $x \equiv_L x$, so \equiv_L is reflexive.

Proof that \equiv_L **is symmetric**: Assuming that x and y are strings and L a language such that $x \equiv y$, then for all strings z, $xz \in L$ whenever $yz \in L$. Therefore $yz \in L$ whenever $xz \in L$, which implies $y \equiv_L x$, so \equiv_L is symmetric.

Proof that \equiv_L **is transitive**: Assuming that x_1 , x_2 and x_3 are strings and L a language such that $x_1 \equiv x_2$ and $x_2 \equiv x_3$. For a string z such that $x_1z \in L$, it follows that $x_2z \in L$ which further implies that $x_3z \in L$. Similarly, if $x_1z \notin L$ then $x_2z \notin L$ and thereby $x_3z \notin L$. Combined, this implies that $x_1 \equiv_L x_3$, so \equiv_L is transitive.

2 Minimization

2.1 A.

δ				eq	1	2	3	4	5	6			
1	6 5		•	1	= ≠						δ	a	b
3F					<i>∓</i> ≠							1,6	
4F	3	2		4	<i>≠</i>	\neq	=				$\substack{2,5\\3,4\text{F}}$		
	2				\neq						5,41	J 5,±	2,0
б	1	4		6	=	#	\neq	#	#	=			

2.2 B.

δ	a	b	eq	1	2	3	4	5	6			
1			_	=						δ	a	b
	5			,	=					1,6	2,5	3,4
3F					\neq					,	2,5	,
4F					\neq					$3{,}4F$		
5					=					,	l ′	,
6	5	4	6	=	\neq	\neq	\neq	\neq	=			

2.3 C.

	a			eq	0	1	2	3	4	5	6			
0F	3	2	•	0	=									
1F	3	5		1	=	=						δ	a	b
2	2	6		2	\neq	\neq	=					0.1F	3,6	2,5
3	2	1		3	\neq	\neq	\neq	=				2,5	2,5	3,6
4	5	4		4	\neq	\neq	\neq	\neq	=			3,6	2,5	0,1
5	5	3		5	\neq	\neq	=	\neq	\neq	=			•	
6	5	0		6	\neq	\neq	\neq	=	\neq	\neq	=			

2.4 D.

δ	a			eq	0	1	2	3	4	5	6				
0	3	5	•	0	=										
1	2	4		1	=	=							δ	a	b
2	6	3		2	\neq	\neq	=						0,1	2,3,6	4,5
3	6	6		3	\neq	\neq	=	=					2,3,6	2,3,6	2,3,6
4F								\neq	=					0,1	
5F	1	6						<i>;</i>		=			•		
6	2	6							\neq	\neq	_				