Bytecode Based Vulnerability Detection Techniques

21700331 배재호 21800637 장주영

Backgrounds

- Vulnerability
- Bytecode
- Vulnerability Detection

Tools

- Elysium
- SpotBug
- DexBERT
- ByteBERT

Evaluation

- Metrics
- RQs

Results

- Effectiveness
- RQs Analysis

Conclusion & Discussion

- $\hbox{-} \ \mathsf{Findings}$
- Contribution
- Future Work

목차 Index

1. Backgrounds

- Vulnerability
- Bytecode
- Vulnerability Detection

2. Tools

- Elysium
- SpotBug
- DexBERT
- ByteBERT

3. Evaluation

- Metrics
- RQs

4. Results

- RQs Analysis

5. Conclusion

- Findings
- Future Work

1. Backgrounds

- Vulnerability
- Bytecode
- Vulnerability Detection

Vulnerability?

Software Bug:

"A software bug is an error, flaw or fault in a computer program or system that causes it to **produce an incorrect or unexpected result**, or **to behave in unintended ways**."

Vulnerability?


```
SQLCommand = "SELECT Username FROM Users WHERE Username = '"
SOLCommand = SOLComand & strUsername
SQLCommand = SQLComand & "' AND Password = '"
SQLCommand = SQLComand & strPassword
SQLCommand = SQLComand & "'"
strAuthCheck = GetQueryResult(SQLQuery)
            Username: foo
            Password: bar' OR ''='
SELECT Username FROM Users WHERE Username = 'foo'
AND Password = 'bar' OR ''=''
```

Bytecode?

Vulnerability Detection?

- Static Analysis
 - Code Review
 - Static Code Analyzer

- Dynamic Analysis
 - Posting Scanner
 - Fuzzing

2. Tools

- Elysium
- SpotBug
- DexBERT
- ByteBERT

Elysium

ELYSIUM: Automagically Healing Vulnerable Smart Contracts Using Context-Aware Patching

Christof Ferreira Torres SnT, University of Luxembourg Luxembourg, Luxembourg christof.torres@uni.lu Hugo Jonker

Open University of the Netherlands

Heerlen, Netherlands
hugo.jonker@ou.nl

Radu State
SnT, University of Luxembourg
Luxembourg, Luxembourg
radu.state@uni.lu

Spotbug

DexBERT

DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Tiezhu Sun ¹⁰, Kevin Allix ¹⁰, Kisub Kim ¹⁰, Xin Zhou ¹⁰, Dongsun Kim ¹⁰, David Lo ¹⁰, Fellow, IEEE, Tegawendé F. Bissyandé ¹⁰, and Jacques Klein ¹⁰, Member, IEEE

ByteBERT

3. Evaluation

- RQs
- Metrics

Research Questions

RQ1: Is Elysium able to detect real world bugs?

RQ2: How effective is DexBERT against other tools?

RQ3: How effective is ByteBERT against existing static analyzers?

Metrics

RQ1

Number of detected bugs

Metrics

RQ2, RQ3

- False Positive Rate (FPR)
- True Positive Rate (TRP)
- F1 score
- Precision
- Recall

Metrics

WEKA: machine learning algorithms for data mining tasks

4. Results - RQs Analysis

RQ1: Is Elysium able to detect real world bugs?

Vulnerability	Bugs	SMARTSHIELD	sGuard	ELYSIUM
Reentrancy	28	7	28	28
Access Control	12	_	2	12
Integer Overflow	16	16	3	16
Unhandled Exception	23	22	_	23
Total	79	45	33	79

RQ2: How effective is DexBERT against other tools?

TABLE II
PERFORMANCE OF MALICIOUS CODE LOCALIZATION ON THE MYST
DATASET

Approach	F1 Score	Precision	Recall	FNR	FPR
MKLDroid	0.2488	0.1434	0.9400	0.0500	0.1700
smali2vec	0.9916	0.9880	0.9954	0.0046	0.0046
DexBERT-m	0.5749	0.4034	1.0000	0.0000	0.4847
DexBERT	0.9981	0.9983	0.9979	0.0021	0.0006

RQ3: How effective is ByteBERT against current static analyzers?

Туре	TP Rate	FP Rate	Precision	Recall	F-Measure
ByteBERT:BayesNet (5 folds)	0.82	0.46	0.641	0.82	0.719
ByteBERT:Logistic (5 folds)	0.8	0.14	0.851	0.8	0.825
ByteBERT:J48 (5 folds)	0.68	0.48	0.586	0.68	0.63
ByteBERT:RandomForest (5 folds)	0.76	0.38	0.667	0.76	0.71
SpotBugs	1	0.62	0.61	1	0.76

5. Conclusion

- Findings
- Future Work