Chapter 7: Reinforcement Learning

Hankui Zhuo

March 29, 2019

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards

Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
 - A discount factor γ (could be 1)
 - Still looking for a policy $\pi(s)$
 - New twist: don't know T or R
 - i.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Passive Learning

Simplified task

- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- You are given a policy $\pi(s)$
- Goal: learn the state values

In this case:

- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world and see what happens...

Model-Based Learning

• Idea:

- 经验
- Learn the model empirically through experience
- Solve for values as if the learned model were correct
- Simple empirical model learning
 - Count outcomes for each s,a
 - Normalize to give estimate of T(s,a,s')
 - Discover R(s,a,s') when we experience (s,a,s')
- Solving the MDP with the learned model
 - Iterative policy evaluation, for example

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

Sample-Based Policy Evaluation?

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Approximate the expectation with samples (drawn from T!)

$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma V_{i}^{\pi}(s'_{1})$$

$$sample_{2} = R(s, \pi(s), s'_{2}) + \gamma V_{i}^{\pi}(s'_{2})$$
...
$$sample_{k} = R(s, \pi(s), s'_{k}) + \gamma V_{i}^{\pi}(s'_{k})$$

$$V_{i+1}^{\pi}(s) \leftarrow \frac{1}{k} \sum_{i} sample_{i}$$

Temporal-Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often

- Policy still fixed!
- Move values toward value of whatever successor occurs: running average!

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

Decreasing learning rate can give converging averages

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \arg\max_{a} Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

- Idea: learn Q-values directly
- Makes action selection model-free too!

Active Learning

- Full reinforcement learning
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You can choose any actions you like
 - Goal: learn the optimal policy

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Q-Learning

- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^{*}(s', a') \right]$$

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

– Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Basically doesn't matter how you select actions (!)

Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1- ε , act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time

Q-Learning

Q-learning produces tables of q-values:

The Story So Far: MDPs and RL

Things we know how to do:

- If we know the MDP
 - Compute V*, Q*, π * exactly
 - Evaluate a fixed policy π
- If we don't know the MDP
 - We can estimate the MDP then solve
 - We can estimate V for a fixed policy π
 - We can estimate Q*(s,a) for the optimal policy while executing an exploration policy

Techniques:

- Model-based DPs
 - Value and policy Iteration
 - Policy evaluation
- Model-based RL
- Model-free RL:
 - Value learning
 - Q-learning

Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning

Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Feature Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!

Function Approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear q-functions:

$$Q(s, a) \leftarrow Q(s, a) + \alpha [error]$$

 $w_i \leftarrow w_i + \alpha [error] f_i(s, a)$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state's features

Linear regression

Given examples

 $(x_i, y_i)_{i=1...n}$

Predict y_{n+1} given a new point x_{n+1}

Linear regression

Prediction

$$\hat{y}_i = w_0 + w_1 x_i$$

Prediction

$$\hat{y}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2}$$

The End!