

第1节 标准模型

本节简单介绍电动力学在物理学中的位置.

一. 标准宇宙学模型

1. 微波背景辐射

宇宙均匀地充斥着微波背景辐射—— 混沌初开时留下的电磁波

光子气温度: 2.72548±0.00057 K (相对涨落仅10⁻⁵)

波长峰值: 1.063mm; 频率峰值: 160.23 GHz

图1. 普朗克望远镜 Space in Images - 2013 - 03 Planck

图2.宇宙微波背景辐射的温度涨落图 (图片引自:www.esa.int/planck)

2. 物质组成

v (km/s)

observed

expected from luminous disk

5 10 R (kpc)

M33 rotation curve

图4.

星系旋转曲线偏离基于普通物质分布和开普勒公式的预言 (图片采自百度网页)

暗物质:不参与电磁相互作用和强相互作用

暗能量:给出宇宙加速膨胀的一种可能模型

3. 恒星能源

图6. 猎户座马头星云中形成中的原恒星 (哈伯望远镜)

图7. 太阳 E = mc²

4. 宇宙学原理

- 1. 宇宙物质均匀分布、各向同性
- 2. 时空几何和物质相互影响,服从广义相对论

二. 基本粒子标准模型

1. 基本粒子

基本粒子=相对论量子场.

表 I.基本粒子表

https://commons.wikimedia.org/w/index.php?curid=4286964, 637353, 637381

图9.光子、电子、质子、中子(中微子也很多,但看不见)

表II. 带电粒子性质 (e = $1.6027165 \times 10^{-19}$ 库仑; eV= $1.6027165 \times 10^{-19}$ 焦耳)

3. 基本相互作用

表III. 四种基本相互作用

	强作用	弱电作用		司士佐田
		弱作用	电磁作用	引力作用
参与物质	夸克、胶子	轻子、夸克、 中间玻色子 +希格斯	带电粒子、 电磁场	任何物质
媒介场	胶子 (短程力)	中间玻色子 (短程力)	光子 (长程力)	引力子? (长程力)

● 强作用:把中子、质子中的夸克束缚在一起

● 弱作用:导致中子衰变(电荷守恒、能量守恒)

图8. 中子衰变

4. 电力/引力

● 电离氢原子需要作功: 13.6eV=2.18×10⁻¹⁸J 引力势能: 1.3×10⁻³⁸ eV=2.1×10⁻⁵⁷J

图10.

9

把一个电子从地球表面拿到太空需克服引力势能作功: 0.00035eV=5.6×10⁻²⁴J

可见, 电力比引力强很多

三. 作业

- 1. 计算处于氢原子基态的电子由于原子核的重力作用所具有的势能(取电子离开原子核无穷远处的势能为零.
- 2.计算将一个电子从地球表面移到无穷远处需要对电子作的最小的功.

小结

- 电磁相互作用是发生在电荷之间的长程相互作用
- 质子、中子、电子分别带电荷 +e, 0, -e
- 光子传递电磁相互作用
- \bullet E=mc²

(第1课 完)