Chapitre 3

Division de front d'onde

A - Principe de l'expérience des trous de Young

A.1 Diffraction de la lumière par un trou

A.2 Schéma expérimental de l'expérience des trous de Young

Dans le repère Oxyz, on a :

$$M(x, y, 0)$$
; $T_1(\frac{a}{2}, 0, -D)$; $T_2(-\frac{a}{2}, 0, -D)$

Montrer que

$$\delta_{2/1}(M) = \frac{ax}{D}$$
 et $\Delta \varphi_{2/1}(M) = \frac{2\pi}{\lambda_0} \frac{ax}{D}$

A.3 Figure d'interférences

 δ ne dépend que de x donc la figure est invariante par translation parallèle à Oy

Les franges d'interférences sont des droites parallèles à Oy

Expérimentalement, au phénomène d'interférences vient s'ajouter le phénomène de diffraction

Franges brillantes

$$\delta_{2/1}(M) = m\lambda_0$$
$$x_m = m\frac{\lambda_0 D}{a}$$

La frange d'ordre m=0 est en x=0

Franges sombres

$$\delta_{2/1}(M) = \left(m + \frac{1}{2}\right)\lambda_0$$

$$x_{m+\frac{1}{2}} = \left(m + \frac{1}{2}\right)\frac{\lambda_0 D}{a}$$

On appelle **interfrange** 条纹间距, notée *i*, la distance entre deux franges <u>consécutives</u> de <u>même</u> nature

Question 3.1

Quelle serait la valeur de l'interfrange i si l'expérience était réalisée dans l'eau (n=1,33)?

Eclairement pour
$$I_1 = I_2 = I_0$$

Montrer que

$$I(M) = 2I_0 \left(1 + \cos \left(\frac{2\pi ax}{\lambda_0} \frac{ax}{D} \right) \right)$$

L'éclairement est une fonction périodique (sinusoïdale superposée à un terme constant)

Le phénomène d'interférences conduit à une redistribution de la puissance lumineuse dans l'espace

$$\langle \mathcal{P} \rangle = \iint I(M) \, \mathrm{d}S_M$$

Question 3.2

Quelle serait la valeur du contraste si la surface de T_1 était le double de celle de T_2 ?

B - Variations sur l'expérience des trous de Young

B.1 Observation à l'infini

L'observateur est à l'infini.

$$\delta_{2/1}(M) = a \sin \alpha$$

$$\tan \alpha = \frac{x}{f'}$$

Pour des petits angles

$$\delta_{2/1}(M) = a \frac{x}{f'}$$

L'interfrange $i = \frac{\lambda_0 f'}{a}$

Rappel

$$\delta_{2/1}(M) = a \frac{x}{D}$$

B.2 Elargissement incohérent de la source

B.2.1 Déplacement de la source

$$\delta_{2/1}(M) = \frac{aX}{D'} + \frac{aX}{D}$$

$$x_0 = -X\frac{D}{D'}$$

$$i = \frac{\lambda_0 D}{a}$$

B.2.2 Fente incohérente éclairée

Tous les éléments de source sont incohérents entre eux : leurs éclairements s'ajoutent

On note $dI_0 = K \times dX \times dY$ l'éclairement donné par un élément de source

En un point M de l'écran, cet élément donne un éclairement

$$dI = 2dI_0 \left(1 + \cos \left(k_0 \left(\frac{aX}{D'} + \frac{ax}{D} \right) \right) \right)$$

Tous les éléments de la fente source sont incohérents entre eux, leurs éclairements s'additionnent.

Montrer que

$$I(M) = \iint dI$$

$$=2I_0\left[1+sinc\left(k_0\frac{aL}{2D'}\right)\cos\left(k_0\frac{ax}{D}\right)\right]$$

Fonction sinus cardinal

$$sinc(x) = \frac{\sin x}{x} \text{ si } x \neq 0 \text{ et } sinc(0) = 1$$

B.2.3 Etude de la figure d'interférences

On pose
$$L_b = \frac{\lambda_0 D'}{a}$$

Par définition, on note

$$v = sinc\left(\frac{\pi L}{L_b}\right) = sinc\left(\frac{\pi L a}{\lambda_0 D'}\right)$$

le paramètre de visibilité

$$I(M) = 2I_0 \left[1 + v \cos \left(k_0 \frac{ax}{D} \right) \right]$$

L'éclairement ne dépend que de x, la figure d'interférences est invariante par translation selon Oy: les franges sont rectilignes.

Pour v > 0

$$I_{max} = 2I_0(1+v)$$
$$x = m\frac{\lambda_0 D}{a}$$

Pour v < 0

$$I_{max} = 2I_0(1 - v)$$
$$x = \left(m + \frac{1}{2}\right) \frac{\lambda_0 D}{a}$$

Il y a inversion de contraste

Montrer que dans tous les cas, le contraste de la figure d'interférences est donné par

$$\gamma = \left| sinc\left(\frac{\pi L}{L_b}\right) \right|$$

Evolution de la figure d'interférences lors de l'ouverture de la fente source

Le contraste est indépendant de la dimension selon Oy: on peut élargir le fente source dans cette direction.

Trous de Young / Fentes de Young

C - Interférences à N-ondes / Réseaux

C.1 Interférences à N-ondes

Le dispositif est constitué d'un nombre quelconque N de fentes ou de trous de Young. Les fentes sont réparties périodiquement avec une période α appelée « pas du réseau ».

Configuration de Fraunhofer :

source S et observateur M sont à l'infini

équivalent à :

Déphasage entre deux ondes adjacentes

Montrer que

$$\Delta \varphi_{n/n+1} = k_0 a(\sin \theta_{obs} - \sin i)$$

C.2 Caractéristiques générales de l'éclairement

 I_{max} lorsque toutes les ondes sont en phase $\Delta \varphi = m \times 2\pi$

Les maximas <u>principaux</u> sont observés dans les directions θ_{obs} vérifiant

$$a(\sin\theta_{obs} - \sin i) = m\lambda_0$$

$$a(\sin\theta_{obs} - \sin i) = m\lambda_0$$

Cette relation est appelée relation des réseaux. m est appelé ordre de diffraction.

Remarque : si m=0, on a $\theta_{obs}=i$, le rayon diffracté est de même direction que l'onde incidente. Cette direction est donc toujours un maximum d'éclairement.

Question 3.4

Vérifier que la relation des réseaux donne bien les directions des maxima des expériences de fentes d'Young (N=2)

On note $I_0 = \left| \underline{A}_1(M_\infty) \right|^2$ l'éclairement donné par la fente n°1.

Toutes les fentes étant identiques, on relie l'amplitude de l'onde N à l'amplitude de l'onde 1.

$$\underline{A}_{n}(M_{\infty}) = \underline{A}_{1}(M_{\infty}) \exp(-j\Delta\varphi_{n/1})$$

$$\underline{A}_n(M_{\infty}) = \underline{A}_1(M_{\infty}) \exp(-j(n-1)\Delta\varphi)$$

Démontrer ce résultat par récurrence.

Lorsque la direction d'observation vérifie la loi des réseaux, on a $\Delta \varphi = m \times 2\pi$ et toutes les amplitudes sont égales :

$$\underline{A}_n(M_\infty) = \underline{A}_1(M_\infty)$$

Montrer que l'éclairement maximal obtenu est $I_{max} = N^2 I_0$

Vérifier ce résultat directement pour N=2.

Eclairement en dehors des maxima

$$\underline{A}_{tot} = \sum_{i=1}^{N} \underline{A}_i = \underline{A}_1 \sum_{i=1}^{N} \exp(j(i-1)\Delta\varphi)$$

Somme d'une série géométrique de $1^{\rm er}$ terme \underline{A}_1 et de raison $\exp(j\Delta\varphi)$

Montrer que

$$I_{tot} = I_0 \times \frac{\sin^2(N\Delta\varphi/2)}{\sin^2(\Delta\varphi/2)}$$

Etude du dénominateur : $sin^2(\Delta \varphi/2)$

Etude du numérateur : $sin^2(N\Delta\varphi/2)$

Question 3.7

Montrer qu'il y a N-1 zéros d'éclairement entre deux maxima principaux successifs.

Pouvez-vous dire avec quelle valeur de N le dessin ci-dessous a été réalisé ?

C.3 Conséquence de la relation des réseaux

Pour l'ordre m observé, on a

$$a(\sin \theta_m - \sin i) = m\lambda_0$$

Nombre d'ordres observables

La contrainte $-1 \le \sin \theta_m \le 1$ limite le nombre de valeurs de m possibles.

En incidence normale i=0 le nombre d'observables est $2E\left(\frac{a}{\lambda_0}\right)+1$.

Déviation dans un ordre donné

On appelle déviation pour l'ordre m la quantité

$$D_m = \theta_m - i$$

Montrer que la déviation minimale vérifie

$$\sin\left(\frac{D_{m,min}}{2}\right) = m\frac{\lambda_0}{2a}$$

Fin du chapitre 3