COSC 600

Class Exercises #3

1. For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) milliseconds (ms).

	1 second	1 minute	1 hour	1 day	1 month	1 year
log n						
\sqrt{n}						
n						
n^2						
n ³						
2 ⁿ						
n!						

2. Indicate, for each pair of expressions (A, B) in the table below, whether A is O, Ω , Θ of B.

Assume that $k \ge 1$, and c > 1 are constants.

Your answer should be in the form of the table with "yes" or "no" written in each box.

A	В	0	Ω	θ	0
n^k	c^n				
\sqrt{n}	n				
logn ⁵	n^2				

- 3. Let f(n) and g(n) be asymptotically **positive** functions. Is it true or false each of the following conjectures?
 - a. f(n) = O(g(n)) implies g(n) = O(f(n)).
 - b. $f(n) + g(n) = \Theta (max(f(n), g(n))).$
 - c. f(n) = O(g(n)) implies log(f(n)) = O(log(g(n))), where $log(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.
 - d. $f(n) = O((f(n))^2)$ where f(n) is an increasing function and f(n) >= 1.
 - e. F(n) = O(g(n)) implies $g(n) = \Omega(f(n))$.
- 4. Rank the following functions by order of growth where $\log n$ is $\log_2 n$

$$(\sqrt{n}\),\ n^3\,,\ n!,\ (\log n)^5,\ 1,\ n\,,\sqrt{\log n},\ 2^{\log n},\ 2^n,\ nlogn,\ n+logn$$

5. Give a tight asymptotic bounds for the following recurrence.

a.
$$T(n) = 2T(n/4) + 1$$

b.
$$T(n) = 2T(n/4) + \sqrt{n}$$

c.
$$T(n) = 2T(n/4) + n$$

d.
$$T(n) = 2T(n/4) + n^2$$

e.
$$T(n) = 2T(n/2) + n^4$$

f.
$$T(n) = T(n-2) + n^2$$

g.
$$T(n) = 2T(n/2) + 1$$

6. Suppose $T_1(N) = O(f(N))$ and $T_2(N) = O(f(N))$.

a. Is
$$T_1(N) + T_2(N) = O(f(N))$$
 true?

b. Is
$$T_1(N) - T_2(N) = o(f(N))$$
 true?

c. Is
$$T_1(N) / T_2(N) = O(1)$$
 true?

- 7. In a recent court case, a judge cited a city for contempt and ordered a fine of \$1 for the first day. Each subsequent day, until the city followed the judge's order, the fine was squared (that is, the fine progressed as follows: \$1, \$2, \$4, \$16, \$256, \$65,536,).
 - a. What would be the fine on day N?
 - b. How many days would it take the fine to reach D dollars? (A Big-Oh answer will do.)
- 8. An algorithm takes 0.1 second for input size 50. How long will it take for input size 800 if the running time is the following (assume low-order terms are negligible):
 - a. linear
 - b. O(logN)
 - c. quadratic
 - d. cubic
- 9. An algorithm takes 1 second for input size 100. How large a problem can be solved in 8 seconds if the running time is the following (assume low-order terms are negligible):

- a. linear
- b. O(logN)
- c. quadratic
- d. cubic
- 10. For each of the following program fragments,
 - a. What is run time function, T(n)?
 - b. Give an analysis of the running time in Θ notation.

$$sum++;\\ 5) \quad sum = 0;\\ for(i = 1; i <= n, i++)\\ sum++;\\ for(j = 1; j <= n * n; j++)\\ sum ++;$$