

2023-2024

Classe: **Bac Maths**

Série 28: Intégrale(2)

Nom du Prof : Lahbib Ghaleb

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

5 pts

Montrer que F est dérivable sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et que pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $F'(x) = \frac{1}{4}\sin^2(2x).$

Montrer que pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $F(x) = \frac{x}{8} - \frac{1}{32}\sin(4x)$.

 \subseteq En déduire que $\int_{1}^{1} t^2 \sqrt{1 - t^2} dt = \frac{\pi}{2}$.

3 Soient f et g les fonctions définies sur IR par :

$$f(x) = x \sqrt{1 - x^2}$$
 et $g(x) = x^2 \sqrt{1 - x^2}$.

On a représenté ci-contre les courbes représentatives de f et g dans un repère orthonormé. Calculer ,en unité d'aire, l'aire de la partie hachurée.

Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_0^1 x^n \sqrt{1-x^2} dx$.

 \bigcirc Montrer que la suite (I_n) est décroissante.

Montrer, à l'aide d'une intégration par partie que, pour tout $n \in \mathbb{N}^*$, $(n+4)I_{n+2} = (n+1)I_n.$

△ Montrer que pour tout $n \in \mathbb{N}^*$, $1 \leqslant \frac{I_n}{I_{n+1}} \leqslant \frac{n+4}{n+1}$. En déduire $\lim_{n \to +\infty} \frac{I_n}{I_{n+1}}$.

Montrer, par récurrence, que pour tout $n \in \mathbb{N}^*$, $I_{2n} = \frac{\pi \cdot (2n)!}{2^{2n+2} \cdot n! \cdot (n+1)!}$

5 pts

On considère la fonction f définie sur [-1,1] par : $f(x) = \sqrt{1 - x^2} - x$.

Ci-contre est représentée la courbe $\mathscr C$ de fdans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$. Soit \mathscr{A} la partie du plan limitée par \mathscr{C} et les droites d'équations y = -x, x = -1 et x = 1.

🚹 🙉 Exprimer 🛭 à l'aide d'une intégrale.

Soit Γ l'ensemble des points M(x, y) tels que : $x \in [-1, 1]$ et $y = \sqrt{1 - x^2}$. Montrer que Γ est un demi-cercle que l'on placera sur la figure .

 \bigcirc En déduire que $\mathscr{A} = \frac{\pi}{2}$.

2 Soit F la primitive de f qui s'annule en -1.

Soit g la fonction définie sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ par $g(x) = F(\sin x)$.

Montrer que g est dérivable sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et calculer g'(x).

En déduire que pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $g(x) = \frac{1}{2}x + \frac{1}{4}\sin(2x) + \frac{1}{4}\cos(2x) + \frac{\pi}{4} + \frac{1}{4}$.

 \bigcirc Retrouver alors \mathscr{A} .

Pour tout entier naturel non nul n , on considère la suite $u_n = \int_{-1}^{1} x^n \sqrt{1-x^2} dx$.

 \square Calculer u_2 par une intégration par parties .

 \bigcirc Montrer que pour tout entier naturel n, $u_{2n+1} = 0$.

Montrer que pour tout $n \in \mathbb{N}^*$, on a : $u_{2n} = 2 \int_0^1 x^{2n} \sqrt{1 - x^2} dx$.

En déduire que pour tout $n \in \mathbb{N}^*$, on a : $0 \leqslant u_{2n} \leqslant \frac{2}{2n+1}$.

 $\underbrace{\text{Calculer alors } \lim_{n \to +\infty} u_n}$

Exercice 3

Q 30 min

5 pts

On pose pour tout $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^{2n+1}(x)} dx = \int_0^{\frac{\pi}{4}} \frac{\sin^2(x)}{\cos^{2n+1}(x)} dx$.

- - \bigcirc En déduire la monotonie de la suite (I_n).

- $\stackrel{\bullet}{2}$ a Montrer que pour tout $n \in \mathbb{N}$, $I_n = \frac{2^n}{\sqrt{2}} (2n-1)J_n$.
 - En déduire que pour tout $n \in \mathbb{N}^*$, $2nI_n = (2n-1)I_{n-1} + \frac{2^n}{\sqrt{n}}$.
 - commontrer que pour tout $n \in \mathbb{N}^*$, $I_n \geqslant \frac{2^{n-1}}{\sqrt{s}}$.
 - Montrer que pour tout entier $n \ge 4$, $2^n \ge n^2$. En déduire $\lim_{n \to +\infty} I_n$.

Exercice 4

Q 30 min

5 pts

Soit f la fonction définie sur $[0, +\infty[$ par $f(x) = \frac{x \sin x}{1 + x^2}$.

Pour tout $n \in \mathbb{N}$ on pose $g_n(x) = x^n \sin x$ pour tout $x \geqslant 0$.

Soit $I = \int_0^1 f(x)dx$ et $u_n = \int_0^1 x^n \sin x dx$ pour tout $n \in \mathbb{N}$.

 \uparrow Montrer que pour tout $n \in \mathbb{N}$ on a : $0 \leqslant u_n \leqslant \frac{1}{n+1}$.

 \bigcirc Montrer que pour tout réel t , on a :

$$\frac{1}{1+t^2}=1-t^2+t^4+\ldots+(-1)^nt^{2n}+(-1)^{n+1}\frac{t^{2(n+1)}}{1+t^2}.$$

Montrer alors que pour tout réel t, on a :

$$f(t) = g_1(t) - g_3(t) + g_5(t) + \ldots + (-1)^n g_{2n+1}(t) + \frac{(-1)^{n+1}}{1+t^2} g_{2n+3}(t).$$

En déduire que $I = u_1 - u_3 + u_5 + \ldots + (-1)^n u_{2n+1} + (-1)^{n+1} \int_0^1 \frac{g_{2n+3}(t)}{1+t^2} dt$.

- 3 On pose $S_n = u_1 u_3 + u_5 + \ldots + (-1)^n u_{2n+1}$ pour tout $n \in \mathbb{N}$.
 - $ilde{a}$ Montrer que pour tout $n \in \mathbb{N}$ on a : $\left|I S_n\right| \leqslant u_{2n+3}$.
 - déduire que $\lim_{n\to+\infty} S_n = I$.