

Lesson Preview

- Similarity and case-based reasoning
- Process of analogical reasoning
- _
- Design by analogy

A woman is climbing a ladder.

Which of the situations on the right is most similar to the situation above?

Rank them from 1 (most similar) to 7 (least similar)

- ² A woman climbing a set of stairs.
- An ant walking up the wall.
- ⁶ A woman painting a ladder.
- ⁴ A woman climbing the corporate ladder.
- 7 A water bottle sitting on a desk.
- ¹ A woman climbing a step ladder.
- ⁵ A plane taking off into the sky.

Finding the Nearest Neighbor

Given existing case at (x_c, y_c) and new problem at (x_n, y_n)

$$d = \sqrt{(y_c - y_n)^2 + (x_c - x_n)^2}$$

Block	x_c	y_c	x_n	y_n	d
Blue	0.5	2.0	1.1	1.6	0.72
Red	0.5	0.5	1.1	1.6	1.25
Black	1.0	1.5	1.1	1.6	0.14
Green	1.5	1.5	1.1	1.6	0.41
Orange	1.5	0.5	1.1	1.6	1.17
Purple	2.0	1.0	1.1	1.6	1.08

Height

Route	Destination _X	Destination _Y	
А	10 _E	8 _N	
В	1 _E	8 _N	
С	10 _E	4 _N	
D	2 _E	1 _N	
X	8 _E	2 _N	
Υ	8 _E	2 _N	
Z	1 _E	9 _N	

رتق

Target

Target Source

More similar

1		Relations?	Objects?	Features?	Values?
	e.g. Recording Cases	Similar	Similar	Similar	Similar
	e.g. { Configuration	Similar	Similar	Similar	Dissimilar
	e.g. Case-Based Reasoning	Similar	Similar	Dissimilar	Dissimilar
	e.g. Analogical Reasoning	Similar	Dissimilar	Dissimilar	Dissimilar

Less similar

Superficial Similarity

- Features
- Counts
- Objects

Deep Similarity

- Relationships between objects
- Relationships between relationships

Types of Similarity

Semantic

Conceptual similarity between the target problem and the source case.

Pragmatic

Similarity of external factors, such as goals.

Structural

Similarity between representational structures.

A woman is climbing a ladder.

Mark whether each situation has deep similarity, superficial similarity, both, or neither with the situation above.

Deep	Superficial
	A woman climbing a set of stairs.
	O An ant walking up the wall.
0	A woman painting a ladder.
	O A woman climbing the corporate ladder.
0	O A water bottle sitting on a desk.
	A woman climbing a step ladder.
	 A plane taking off into the sky.

objects.

other.

each have mass.

Target Source

Force between Nucleus & Electron What would be transferred into the atomic structure model? Electron revolves around Nucleus **Atomic Structure** o Electron revolves around nucleus

Planet attracts Sun Nucleus attracts Electron Electron Attracts

- Nucleus has mass
 Nucleus is a sun
 Nucleus attracts electron
 Electron's mass greater than nucleus's mass
- Electron has mass
 Electrons are planets
- Nucleus's mass greater than electron's mass

nucleus's mass

Nucleus has mass
 Nucleus is a sun
 Electron has mass
 Nucleus attracts electron
 Electron sare planets
 Electrons are planets
 Nucleus's mass greater than

electron's mass

Stealthy underwater Move underwater movement Stealthy underwater Move-stow, Move fast movement minimize (nonwake stealthy) (stealthy) Move fast Move slow. stealthily metachronal beating minimize Copepod → Move underwater Stealthy underwater Move fast, movement match wake Move fast, match wake__ Move slow, jet propulsion minimize jet propulsion Squid

Analogues

Advanced questions in analogical reasoning

Common vocabulary

Visuospatial analogies

- Abstraction and transformation
- Compound and compositional analogies

- Conceptual combination

<u>Assignment</u>

How would you use analogical reasoning to design an agent that could answer Raven's progressive matrices?

To recap...

- Similarity
- Analogical retrieval
- · Analogical mapping

Analogical transfer

- 1 .. 1 .
- Evaluation and storage
- · Design by analogy