Exercises - Set III

1. In the vector space \mathbb{R}^4 determine whether the following sets of vectors are linearly independent:

(a)
$$S: u_1 = \begin{pmatrix} 1 \\ -3 \\ 0 \\ 2 \end{pmatrix}, u_2 = \begin{pmatrix} -2 \\ 1 \\ 1 \\ 1 \end{pmatrix}, u_3 = \begin{pmatrix} -1 \\ -2 \\ 1 \\ 3 \end{pmatrix}$$

(b)
$$S: u_1 = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, u_2 = \begin{pmatrix} 2\\3\\4\\5 \end{pmatrix}, u_3 = \begin{pmatrix} 3\\4\\5\\6 \end{pmatrix}, u_4 = \begin{pmatrix} 4\\5\\6\\7 \end{pmatrix}$$

- 2. For the sets S in the above example find a basis for $\mathcal{L}[S]$ and the dimension of $\mathcal{L}[S]$
- 3. Let S = u, v, w be a linearly independent set in \mathbb{R}^3 . Determine whether the set S' = u', v', w' is linearly independent, where

$$u' = u + v, \ v' = v + w, \ w' = w + u$$

4. For what values of $\alpha \in \mathbb{R}$ are the following vectors in \mathbb{R}^3 linearly independent?

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ 3 \\ \alpha \end{pmatrix}$$

5. If u, v, w are linearly independent vectors in a vector space \mathcal{V} , for what value(s) of k are the vectors u', v', w' linearly independent where

$$u' = v - u, \ v' = kw - v, \ w' = u - w$$

- 6. Let u, v, w, z be vectors in \mathbb{R}^n such that u, v, w is a linearly dependent set and v, w, z is a linearly independent set. Prove the following:
 - (a) u is a linear combination of v, w and
 - (b) z is NOT a linear combination of u, v, w

7. Consider the set S in \mathbb{R}^4 defined below:

$$S: v_1 = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \end{pmatrix}, v_3 = \begin{pmatrix} 3 \\ 2 \\ 8 \\ -1 \end{pmatrix}, v_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} 1 \\ 1 \\ 3 \\ 2 \end{pmatrix}$$

Find a linearly independent subset \tilde{S} of S such that \tilde{S} is a basis for $\mathcal{L}[S]$.

8. Find a subset $\tilde{\mathcal{C}}$, of the set of the column vectors of the following matrix $A \in \mathbb{R}^{4\times 5}$, such that $\tilde{\mathcal{C}}$ is a basis for \mathcal{R}_{A} :

$$A = \begin{pmatrix} 1 & 2 & 4 & 8 & 0 \\ 0 & 1 & 2 & 3 & 0 \\ 1 & 0 & 2 & 2 & 1 \\ 1 & 0 & 2 & 2 & 0 \end{pmatrix}$$

9. Show that the following set of vectors form a basis for \mathbb{R}^3 :

$$\mathcal{B}: v_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \ v_3 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

10. Show that the following set of matrices form a basis for $\mathbb{R}^{2\times 2}$:

$$\mathcal{B}: A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \ A_2 = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \ A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \ A_4 = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$$

11. Consider the subspace W of \mathbb{R}^4 defined as follows:

$$W = \left\{ x = \begin{pmatrix} \alpha \\ \beta \\ 2\alpha + \beta \\ 0 \end{pmatrix} : \alpha, \ \beta \in \mathbb{R} \right\}$$

Answer the following:

- (a) Find a basis for W and hence the dimension of W
- (b) Extend the basis for $\mathcal W$ obtained above to a basis for $\mathbb R^4$

12. Consider the vector space $\mathcal{V} = \mathbb{C}^{2\times 2}$ over the field \mathbb{R} of real numbers. Let \mathcal{W} be the subspace of this vector space defined as follows:

$$\mathcal{W} = \left\{ A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} : \alpha, \ \beta, \ \gamma \in \mathbb{R} \right\}$$

Find a basis for W and hence the dimension of W.

13. Let \mathcal{V} and \mathcal{U} be any two vector spaces over a field \mathcal{F} . The addition and scalar multiplication in these two spaces are denoted respectively by, $x \oplus_{\mathcal{V}} y$, $\alpha \odot_{\mathcal{V}} x$, and $x \oplus_{\mathcal{U}} y$ and $\alpha \odot_{\mathcal{U}} x$. Let \mathcal{W} be defined as follows:

$$\mathcal{W} = \{(v, u) : v \in \mathcal{V}, \ u \in \mathcal{U}\}$$

Define addition on \mathcal{W} as follows:

$$x \oplus_{\mathcal{W}} y = (v_1 \oplus_{\mathcal{V}} v_2, u_1 \oplus_{\mathcal{U}} u_2)$$
 for any $x = (v_1, u_1), \ y = (v_2, u_2) \in \mathcal{W}$
 $\alpha \odot_{\mathcal{W}} x = (\alpha \odot_{\mathcal{V}} v, \alpha \odot_{\mathcal{U}} u)$ for any $x = (v, u) \in \mathcal{W}$ and any $\alpha \in \mathcal{F}$

Answer the following:

- (a) Show that, with these operations, $\mathcal W$ is vector space over $\mathcal F$
- (b) If $\mathcal{B}_{\mathcal{V}} = v_1, v_2, \dots, v_m$ is a basis for \mathcal{V} and $\mathcal{B}_{\mathcal{U}} = u_1, u_2, \dots, u_n$ is a basis for \mathcal{U} , find a basis for \mathcal{W}
- (c) True or False :?

$$\mathit{dimension}\ \mathit{of}\ \mathcal{W}\ =\ \mathit{dimension}\ \mathit{of}\ \mathcal{V}\ + \mathit{dimension}\ \mathit{of}\ \mathcal{U}$$

14. For the subspace \mathbb{R}^3 consider the ordered basis given below:

$$\mathcal{B}: v_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \ v_3 = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \text{ and }$$
$$\mathcal{B}': v_1' = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \ v_2' = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \ v_3' = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

Answer the following:

- (a) For any $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$ find $[x]_{\mathcal{B}}$ and $[x]_{\mathcal{B}'}$
- (b) Find invertible matrices $\mathcal{M}_{_{\mathcal{BB}'}}$ and $\mathcal{M}_{_{\mathcal{B}'\mathcal{B}}}$ such that

i.
$$[x]_{\mathcal{B}'} = \mathcal{M}_{\mathcal{B}\mathcal{B}'}[x]_{\mathcal{B}}$$
 and $[x]_{\mathcal{B}} = \mathcal{M}_{\mathcal{B}'\mathcal{B}}[x]_{\mathcal{B}'}$, and

ii.
$$\mathcal{M}_{\mathfrak{p}\mathfrak{p}'}\mathcal{B}_{\mathfrak{p}'\mathfrak{p}}=I_{3\times 3}$$

15. Let \mathcal{V} be the vector space $\mathbb{R}^{2\times 2}$ over the field \mathbb{R} . Consider the subspace,

$$\mathcal{W} = \left\{ A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix} : \alpha, \ \beta, \ \gamma \in \mathbb{R} \right\}$$

Answer the following:

(a) Show that the following are basis for W:

$$\mathcal{B} = v_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ v_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\mathcal{B}' = v'_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ v'_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ v'_3 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

(b) For the matrix

$$A = \left(\begin{array}{cc} 2 & -3 \\ -3 & 4 \end{array}\right)$$

find $[A]_{\mathcal{B}}$ and $[A]_{\mathcal{B}'}$

(c) If $M \in \mathcal{W}$ is the such that,

$$[M]_{\mathcal{B}'} = \begin{pmatrix} 2\\-1\\4 \end{pmatrix}$$

find the matrix M

- 16. Let $\mathcal{V} = \mathbb{R}_2[x]$ be the vector space of all polynomials in x of degree less than or equal to two. Answer the following:
 - (a) Show that the following set is a basis for \mathcal{V} :

$$\mathcal{B}$$
: p_1, p_2, p_3 where $p_1(x) = 1, p_2(x) = x, p_3(x) = x^2$

- (b) What is the dimension of \mathcal{V} ?
- (c) Show that the following set is also a basis for \mathcal{V} :

$$\mathcal{B}'$$
: p'_1, p'_2, p'_3 where $p'_1(x) = 1$, $p'_2(x) = (x-1)$, $p'_3(x) = (x-1)^2$

- (d) For any polynomial $p(x) = a_0 + a_1 x + a_2 x^2$ find $[p]_{\mathcal{B}}$ and $[p]_{\mathcal{B}'}$
- (e) Find $\mathcal{M}_{_{\mathcal{BB}'}}$ and $\mathcal{B}_{_{\mathcal{B}'\mathcal{B}}}$ in $\mathbb{R}^{3\times3}$ such that

$$[p]_{\mathcal{B}'} = \mathcal{M}_{\mathcal{B}\mathcal{B}'}[p]_{\mathcal{B}}$$
 and $[p]_{\mathcal{B}} = \mathcal{M}_{\mathcal{B}'\mathcal{B}}[p]_{\mathcal{B}'}$

(f) Show that,

$$\mathcal{W} = \{ p \in \mathcal{V} : p(1) = 0 \}$$

is a subspace of \mathcal{V} . Find a basis for \mathcal{W} and hence dimension of \mathcal{W}

17. Let $\lambda_1, \lambda_2, \lambda_3$ be three distinct complex numbers and define the polynomials $m(\lambda), m_1(\lambda), m_2(\lambda), m_3(\lambda), l_1(\lambda), l_2(\lambda), l_3(\lambda)$ as follows:

$$m(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3)$$

$$m_1(\lambda) = (\lambda - \lambda_2)(\lambda - \lambda_3) = \frac{m(\lambda)}{(\lambda - \lambda_1)}$$

$$m_2(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_3) = \frac{m(\lambda)}{(\lambda - \lambda_2)}$$

$$m_3(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) = \frac{m(\lambda)}{(\lambda - \lambda_3)}$$

$$l_1(\lambda) = \frac{m_1(\lambda)}{m_1(\lambda_1)}$$

$$l_2(\lambda) = \frac{m_2(\lambda)}{m_2(\lambda_2)}$$

$$l_3(\lambda) = \frac{m_3(\lambda)}{m_2(\lambda_2)}$$

Answer the following:

(a) Show that

$$l_i(\lambda_j) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

- (b) Using the above result show that l_1, l_2, l_3 are linearly independent in the vector space $\mathbb{C}_2[\lambda]$, of all polynomials in λ of degree less than or equal to 2
- (c) Do l_1, l_2, l_3 form a basis for $\mathbb{C}_3[\lambda]$?
- 18. Let V be an n dimensional vector space over a field \mathcal{F} . TRUE or FALSE?
 - (a) Every nonempty subset of a linearly dependent subset in $\mathcal V$ must be linearly dependent
 - (b) Every superset of a linearly dependent subset in \mathcal{V} must be linearly dependent
 - (c) Every nonempty subset of a linearly independent subset in $\mathcal V$ must be linearly independent
 - (d) Every superset of a linearly independent subset in \mathcal{V} must be linearly independent
 - (e) There exists a basis \mathcal{B} for \mathcal{V} such that we can find a linearly independent superset of \mathcal{B}
 - (f) Every proper sub space of \mathcal{V} must have dimension < n
 - (g) For every $k, 1 \le k \le n$, there exists a k dimensional subspace
 - (h) If u_1, u_2, \dots, u_r is a linearly independent set in \mathcal{V} and $u_{(r+1)} \in \mathcal{V}$ is not a linear combination of u_1, u_2, \dots, u_r then $u_1, u_2, \dots, u_r, u_{(r+1)}$ is linearly independent
 - (i) If $S = u_1, u_2, \dots, u_r$ is a linearly independent set then none of the u_i is a linear combination of the remaining vectors in S
 - (j) If $S = u_1, u_2, \dots, u_r$ is a set of vectors in \mathcal{V} such that none of the u_j is a linear combination of the remaining vectors in S, then S must be linearly independent
 - (k) If $x \in \mathcal{V}$ is a linear combination vectors

$$u_1, u_2, \cdots, u_r$$

and each of the u_j is a linear combination of the vectors

$$v_1, v_2, \cdots, v_k$$

then x is a linear combination of the vectors v_1, v_2, \dots, v_k

- (l) If u_1, u_2, \dots, u_r is a linearly dependent set then every one of the u_j is a linear combination of the remaining
- (m) If $S = u_1, u_2, \dots, u_r$ is any set of vectors in \mathcal{V} and $x \notin \mathcal{L}[S]$ then $S_1 = u_1, u_2, \dots, u_r, x$ is a linearly independent set
- (n) If $S = u_1, u_2, \dots, u_r$ is a set of vectors such that, every subset of S having (r-1) vectors is linearly independent, then S must be linearly independent
- 19. For any $A \in \mathcal{F}^{m \times n}$ prove that

Nullity of
$$A^T A = Nullity$$
 of A

and

$$Rank \ of \ A^TA = Rank \ of \ A$$

(Hint: Use Exercise 18(d) of Exercises - Set II)