Toy example of thick morphism

Let V be a vector space.

Let u^i be coordinates on V.

Let w_i be arbitrary coordinates on V^* .

Consider on vector space $N = V \oplus V^*$ canonical symplectic structure

$$dp_i \wedge du^i = dw_i \wedge dq^i \,. \tag{1a}$$

where p_i, q^j are coordinates on V^*, V dual to coordinates u^i, w_j .

Consider on $N \times N$ the symplectic structure

$$\Omega = \omega_1 - \omega_2 \tag{1b}$$

If (u, v) are coordinates on the first examplaire of N and (q, w) are coordinates on the second exemplaire of N then

$$\Omega = dp_i \wedge du^i - dw_i \wedge dq^i. \tag{1c}$$

Let S(u,q) be an arbitrary (smooth) function. It defines Lagrangian surface

$$\Lambda_S = \left\{ (u, p, q, w) : p_i = \frac{\partial S(u, q)}{\partial u^i}, w_i = \frac{\partial S(u, q)}{\partial q^i} \right\}$$
 (2a)

This is Lagrangian since its dimension is equal to n ($n = \dim V$) and due to the construction

$$\left(dS = p_i du^i + w_m dq^m\right)\big|_{\Lambda_S} \Rightarrow \left(d^2 S = 0 = d\left(p_i du^i + w_m dq^m\right) = dp_i \wedge du^i + dw_m \wedge dq^m = \Omega\right)\big|_{\Lambda_S}.$$
(2b)

This Lagrangian surface defines canonical relation \sim_S : on sympletic vector space $N = V \oplus V^*$:

$$(u, p) \sim_S (q, u) \text{ if } (u, p, q, w) \in \Lambda_S \text{ , i.e. } p_i = \partial S(u, q \partial u^i), w_i = \partial S(u, q \partial q^i)$$
 (3a)

For example bilinear form $S = u^i S_{ik} q^k$ defines canonical relation

$$(u,p) \sim_S (q,u) \text{ if } \begin{cases} p_i = S_{ik}q^k \\ w_i = u^m S_{mi} \end{cases}$$
 (3b)

This canonical relation may define canonical transformation if it defines bijection of N on N. E,g, if bikinear form S is non-degenerate, then canonical relation (3b) defines canonical transformation

$$\begin{cases} u^m = w_k S^{km} \\ p_i = S_{ik} q^k \end{cases}$$
 (3c)

Now define thick morphisms