Abstract Algebra: Theory and Applications

Xi Tan (tan19@purdue.edu)

February 11, 2016

Contents

Ι	Integers and Equivalence Relations	7
1	Preliminaries	ę

4 CONTENTS

Preface

TBD

6 CONTENTS

Part I Integers and Equivalence Relations

Chapter 1

Preliminaries

Theorem 1.0.1 Well Ordering Principle. Every nonempty set of positive integers contains a smallest member.

Theorem 1.0.2 Division Algorithm. Let a and b be integers with b > 0. Then there exist unique integers q and r with the property that a = bq + r, where $0 \le r < b$. (Note: a and q could be negative.)

Theorem 1.0.3 GCD (Greatest Common Divisor) is a Linear Combination. For any nonzero integers a and b, there exist integers s and t such that gcd(a,b) = as + bt. Moreover, gcd(a,d) is the smallest positive integer of the form as + bt.

Corollary 1.0.1 If a and b are relatively prime, then there exist integers s and t such that as + bt = 1.

Theorem 1.0.4 If $a \mod n = a'$ and $b \mod n = b'$, then $(a + b) \mod n = (a' + b') \mod n$ and $(ab) \mod n = (a'b') \mod n$.

Bibliography

[1] Joseph A. Gallian Contemporary Abstract Algebra (7th Edition). Cengage Learning, 2010.