

Demetleme

- Demetleme işlemleri
 - Tanımı
 - Uygulamalar
- Demetleme yöntemleri
 - Bölünmeli
 - Hiyeraşik
 - Yoğunluk tabanlı
 - Model tabanlı

Veri Madenciliği

Gözetimli & Gözetimsiz Öğrenme

- Predictive Data Mining vs. Descriptive Data Mining
- Gözetimli (Supervised) öğrenme= sınıflandırma (clasification)
 - Öğrenme kümesindeki sınıfların sayısı ve hangi nesnenin hangi sınıfta olduğu biliniyor.
- Gözetimsiz (Unsupervised) öğrenme = <u>demetleme</u> (<u>clustering</u>)
 - Öğrenme kümesinde hangi nesnenin hangi sınıfta olduğu bilinmiyor. Genelde sınıf sayısı da bilinmiyor.

Veri Madenciliği Doc. Dr. Suat Özdemi 3/49

Demetleme nedir? Nesneleri demetlere (gruplara) ayırma - Karakteristiklerden yararlanarak veri içindeki benzerlikleri bulma ve benzer verileri demetler içinde gruplama Demet/Küme: birbirine benzeyen Demet ici nesnelerden oluşan grup Demetler arasi uzaklıklar uzaklıklar minimize edilir maksimize edilir Aynı demetteki nesneler birbirine daha cok benzer Farklı demetlerdeki nesneler birbirine daha az benzer 4/49

Demetleme uygulama alanları

- Genel uygulama alanları:
 - verinin dağılımını anlama
 - başka veri madenciliği uygulamaları için ön hazırlık- Veri azaltma demet içindeki nesnelerin temsil edilmesi için demet merkezlerinin kullanılması
- Uygulamalar
 - Örüntü tanıma
 - Görüntü işleme
 - Ekonomi Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
 - Aykırılıkları belirleme
 - WWW
 - Doküman demetleme
 - Kullanıcı davranışlarını demetleme
 - Kullanıcıları demetleme

Veri Madenciliği

Veri Madenciliğinde Demetlemenin Gereklilikleri

- Ölçeklenebilirlik
- Farklı tipteki ve niteliklerden oluşan nesneleri demetleme
- Farklı şekillerdeki demetleri oluşturabilme
- En az sayıda giriş parametresi gereksinimi
- Hatalı veriler ve aykırılıklardan en az etkilenme
- Çok boyutlu veriler üzerinde çalışma
- Sonucun yorumlanabilir ve anlaşılabilir olması

/eri Madenciliği Doç. Dr. Suat Özdemi 7/49

Kalite: İyi demetleme nedir?

- İyi bir demetleme yöntemiyle elde edilen demetlerin özellikleri
 - aynı demet içindeki nesneler arası benzerlik fazla
 - farklı demetlerde bulunan nesneler arası benzerlik az
- Oluşan demetlerin kalitesi seçilen benzerlik ölçütüne ve bu ölçütün gerçeklenmesine bağlı

eri Madenciligi oc. Dr. Suat Özdemii

Kalite: İyi demetleme nedir?

- Uzaklık / Benzerlik nesnelerin nitelik tipine göre değişir
 - Nesneler arası benzerlik: s(i,j)
 - Nesneler arası uzaklık: d(i,j) = 1 s(i,j)
- İyi bir demetleme yöntemi veri içinde gizlenmiş örüntüleri bulabilmeli
- Veriyi gruplama için uygun demetleme kriteri bulunmalı
 - demetleme = aynı demetteki nesneler arası benzerliği en büyüten, farklı demetlerdeki nesneler arası benzerliği en küçülten fonksiyon

Veri Madenciliği Doç. Dr. Suat Özdemi 9/49

Veri Yapıları

- Veri matrisin veri sayısıp nitelik sayısı
- Farklılık matrisi İki veri arasındaki Uzaklık (d(i,j))

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

Veri Madenciliği Doç. Dr. Suat Özdemi

Veriler arası benzerlik ve farklılık ölçme

 En çok kullanılarlar arasında: Minkowski uzaklığı:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

 $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ p-boyutlu iki veri. q pozitif bir tamsayı

■ Eğer *q* = 1 ise *d'ye* **Manhattan** uzaklığı denir

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Veri Madenciliği Doç. Dr. Suat Özdemir 11/49

Veriler arası benzerlik ve farklılık ölçme (devam)

■ Eğer *q* = 2, *d'ye* Öklid (*Euclidean*) uzaklığı denir

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- Öklid uzaklığı
 - $d(i,j) \geq 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$

Veri Madenciliği Doç. Dr. Suat Özdemi

Demetler arası uzaklık ölçme

- Tek (Single) link: farklı demetlerdeki herhangi iki eleman arasındaki en küçük uzaklık, i.e., $dis(K_i, K_i) = min(t_{ip}, t_{iq})$
- Tam (Complete) link: farklı demetlerdeki herhangi iki eleman arasındaki en büyük uzaklık, i.e., $dis(K_i, K_j) = max(t_{ip}, t_{iq})$
- Ortalama (Average): farklı demetlerdeki elemanlar arasındaki ortalama uzaklık, i.e., $dis(K_i, K_j) = avg(t_{ip}, t_{jq})$
- Centroid: iki demetin centroid'lerinin arasındaki uzaklık,

i.e.,
$$dis(K_i, K_i) = dis(C_i, C_i)$$

Medoid: iki demetin medoid'lerinin arasındaki uzaklık,

i.e.,
$$dis(K_i, K_i) = dis(M_i, M_i)$$

• Medoid: one chosen, centrally located object in the cluster

Veri Madenciliği Doc. Dr. Suat Özdemi 13/49

Centroid, Radius and Diameter

• Centroid: kümenin merkezi

$$C_m = \frac{\sum_{i=1}^{N} (t_{ip})}{N}$$

 Radius/yarıçap: square root of average squared distance from any point of the cluster to its centroid

$$R_{m} = \sqrt{\frac{\sum_{i=1}^{N} (t_{ip} - c_{m})^{2}}{N}}$$

 Diameter/çap: square root of average mean squared distance between all pairs of points in the cluster

$$D_{m} = \sqrt{\frac{\sum_{i=1}^{N} \sum_{i=1}^{N} (t_{ip} - t_{iq})^{2}}{N(N-1)}}$$

Veri Madenciliği

Temel Demetleme Yaklaşımları

- Bölünmeli yöntemler: Veriyi bölerek, her grubu belirlenmiş bir kritere göre değerlendirir
- Hiyerarşik yöntemler: Veri kümelerini (ya da nesneleri) önceden belirlenmiş bir kritere göre hiyerarşik olarak ayırır
- Yoğunluk tabanlı yöntemler: Nesnelerin yoğunluğuna göre demetleri oluşturur
- Model tabanlı yöntemler: Her demetin bir modele uyduğu varsayılır. Amaç bu modellere uyan verileri gruplamak

Veri Madenciliği Doc. Dr. Suat Özdemir 15/49

Bölünmeli yöntemler

- Amaç: n nesneden oluşan bir veri kümesini (D) k (k≤n) demete ayırmak
 - her demette en az bir nesne bulunmalı
 - her nesne sadece bir demette bulunmalı
- Yöntem: Demetleme kriterini en çok büyütecek şekilde D veri kümesi k gruba ayırma
 - Global çözüm: Mümkün olan tüm gruplamaları yaparak en iyisini seçmek (NP karmaşık)
 - Sezgisel çözüm: k-means ve k-medoids
 - k-means (MacQueen'67): Her demet kendi merkezi ile temsil edilir
 - k-medoids veya PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Her demet, demette bulunan bir nesne ile temsil edilir

veri Madenciligi Doc. Dr. Suat Özdemi

K-means Demetleme

- Bilinen bir k değeri için k-means demetleme algoritmasının 4 aşaması vardır:
 - Veri kümesi k altkümeye ayrılır (her demet bir altküme)
 - Her demetin ortalaması hesaplanır: merkez nokta (demetteki nesnelerin niteliklerinin ortalaması)
 - Her nesne en yakın merkez noktanın olduğu demete dahil edilir
 - Nesnelerin demetlenmesinde değişiklik olmayana kadar adım 2'ye geri dönülür.

Algorithm K-Means

- 1: K tane rasgele noktayı demet merkezi (centroid) olarak seç.
- 2: Repeat:
- 3: Her bir veriyi kendine en yakın centroide atayarak K demet oluştur.
- 4: Olușan demetlerin centroidlerini hesapla.
- 5: Until: Centroidler değişmeyene kadar.

Veri Madenciliği

K-means Demetleme

- Demet sayısının belirlenmesi gerekir
- Başlangıçta demet merkezleri rasgele belirlenir bu nedenle her uygulamada farklı demetler oluşabilir
- Benzerlik Öklid uzaklığı gibi yöntemlerle ölçülebilir
- Az sayıda tekrarda demetler oluşur
 - Yakınsama koşulu çoğunlukla az sayıda nesnenin demet değiştirmesi şekline dönüştürülür
- Karmaşıklığı:
 - Yer karmaşıklığı O((n+k) d)
 - Zaman karmaşıklığı O(ktnd)
 - k: demet sayısı, t: tekrar sayısı, n: nesne sayısı, d: nitelik sayısı

Veri Madenciliği Doc. Dr. Suat Özdemiı

K-means Demetleme Değerlendirme

- Birden çok sonuç oluşur.
- Yaygın olarak kullanılan yöntem hataların karelerinin toplamı (Sum of Squared Error SSE)

$$\Sigma_{m=1}^k \Sigma_{t_{mi} \in Km} (C_m - t_{mi})^2$$

- Nesnelerin bulundukları demetin merkez noktalarına olan uzaklıklarının karelerinin toplamı
- Hataların karelerinin toplamını azaltmak için k demet sayısı artırılabilir
- Başlangıç için farklı merkez noktaları seçerek farklı demetlemeler oluşturulur
- En az SSE değerini sahip olan demetleme seçilir

Veri Madenciliği Doc. Dr. Suat Özdemir

Avantaj - Dezavantaj

- Gerçeklemesi kolay
- Karmaşıklığı diğer demetleme yöntemlerine göre az
- K-Means algoritması bazı durumlarda iyi sonuç vermeyebilir
 - Veri grupları farklı boyutlarda ise
 - Veri gruplarının yoğunlukları farklı ise
 - Veri gruplarının şekli küresel değilse
 - Veri içinde aykırılıklar (outliers) varsa

/eri Madenciligi Doc. Dr. Suat Özdemii

Outlier sorunu

- k-means algoritması sapan verilerden (outlier) etkileniyor!
 - Çok büyük ya da çok küçük bir veri dağılımını etkileyebilir
- Çözüm
 - K-Medoids: Veri ortalamasını kullanmak yerine medoid kullanılabilir.
 - Medoid demet içerisinde en merkezi pozisyondaki veridir.

Veri Madenciliği Doc. Dr. Suat Özdemi 25/49

Örnek

- Her demeti temsil etmek için demet içinde orta nokta olan nesne seçilir.
 - 1, 3, 5, 7, 9 ortalama: 5
 - 1, 3, 5, 7, 1009 ortalama: 205
 - 1, 3, 5, 7, 1009 orta nokta: 5

/eri Madenciliği Doç. Dr. Suat Özdemiı

K-Medoids Demetleme

- PAM (Partitioning Around Medoids, 1987)
 - 1. Başlangıçta k adet nesne demetleri temsil etmek üzere rasgele seçilir \mathbf{x}_{ik}
 - 2. Kalan nesneler en yakın merkez nesnenin bulunduğu demete dahil edilir
 - 3. Merkez nesne olmayan rasgele bir nesne seçilir x_{rk}
 - 4. x_{rk} merkez nesne olursa toplam karesel hatanın ne kadar değiştiğini bulunur
 - 5. Eğer değişim negatifse yanı hata da azalmaya sebep oluyorsa, \mathbf{x}_{rk} merkez nesne olarak atanır.
 - 6. Demetlerde değişiklik oluşmayana kadar 3. adıma geri gidilir.

Veri Madenciliği Doc. Dr. Suat Özdemi

PAM'daki sorunlar

- Pam k-means ile karşılaştırıldığında daha güvenilir bir algoritma
 - Medoid sapan verilerden (outliers) ortalamaya göre daha az etkilenir
- Küçük veri kümeleri için iyi sonuç verebilir, ancak büyük veri kümeleri için uygun değil
 - Her iterasyon için karmaşıklık : O(k(n-k)²)
- CLARA(Clustering LARge Applications)
- CLARANS (Ng & Han, 1994)

Veri Madenciliği Doc. Dr. Suat Özdemi 29/49

Temel Demetleme Yaklaşımları

- **Bölünmeli yöntemler**: Veriyi bölerek, her grubu belirlenmiş bir kritere göre değerlendirir
- Hiyerarşik yöntemler: Veri kümelerini (ya da nesneleri) önceden belirlenmiş bir kritere göre hiyerarşik olarak ayırır
- Yoğunluk tabanlı yöntemler: Nesnelerin yoğunluğuna göre demetleri oluşturur
- Model tabanlı yöntemler: Her demetin bir modele uyduğu varsayılır. Amaç bu modellere uyan verileri gruplamak

Veri Madenciligi Doc. Dr. Suat Özdemi

Hiyerarşik Demetleme

- İki genel metod
 - Agglomerative:
 - Her veriyi ayrı olarak düşün
 - Her aşamada yakın verileri birleştir
 - Divisive:
 - Tüm verileri bir olarak düşün
 - Her aşamada uzak olanları ayır
- Benzerlik ya da uzaklık matrisi kullanılır
 - Merge or split one cluster at a time
- Demet sayısının belirlenmesine gerek yok
 - Sonlanma kriteri belirlenmesi gerekiyor

eri Madenciliği

Hiyerarşik Demetleme

- Dendogram: Demetler hiyerarşik olarak ağaç yapısı şeklinde görüntülenebilir
- Ara düğümler çocuk düğümlerdeki demetlerin birleşmesiyle elde edilir
 - Kök: bütün nesnelerden oluşan tek demet
 - Yapraklar: bir nesneden oluşan demetler
- Dendogram istenen seviyede kesilerek demetler elde edilir

Veri Madenciligi Doç. Dr. Suat Özdem

Agglomerative Demetleme Algoritması

- En çok kullanılan hiyeraşik demetleme algoritması
 - Oldukça basit

Algorithm Agglomerative Demetleme

- 1: Yakınlık (proximity) matrisini hesapla.
- 2: Her veri noktası bir demet olsun.
- 3: Repeat:
- 4: En yakın iki demeti birleştir.
- 5: Yakınlık (proximity) matrisini güncelle.
- 6: Until: Sadece tek bir demet oluşana kadar.
- En önemli işlem iki demet arasındaki yakınlığın bulunması

/eri Madenciliği Doc. Dr. Suat Özdemi

Örnek							
		p1	p2	рЗ	p4	р5	p6
	р1	0	0,24	0,22	0,37	0,34	0,23
	p2	0,24	0	0,15	0,2	0,14	0,25
	р3	0,22	0,15	0	0,15	0,28	0,11
	p4	0,37	0,2	0,15	0	0,29	0,22
	р5	0,34	0,14	0,28	0,29	0	0,39
	p6	0,23	0,25	0,11	0,22	0,39	0
Uzaklık matrisi (Öklid)							
Madanali X							
eri Madenciliği oç. Dr. Suat Özdemir							

Hierarchical Clustering: Group Average

- Compromise between Single (min) and Complete (max) Link
- Strengths
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards globular clusters

ri Madenciliği c. Dr. Suat Özdemi