1 MEX on infinite hypothesis set

Given an infinity hypothesis set \mathcal{H}_{inf} , how to run MEX algorithm on it? In this case, we can get a regret

$$\operatorname{Reg}(K) \lesssim \sqrt{HK} + K\varepsilon_{\psi}$$

by running MEX on a random set \mathcal{H} where

$$\varepsilon_{\psi} \triangleq \min_{\pi \in \mathcal{H}} |V(\psi(\pi), \pi) - V(\psi(\pi^*), \pi^*)|.$$

We also denote

$$\pi_{\text{det}}^* \triangleq \operatorname{argmin}_{\pi \in \mathcal{H}} |V(\psi(\pi), \pi) - V(\psi(\pi^*), \pi^*)|$$

Lemma 1. If $\pi^* \in \mathcal{H}$, $\operatorname{Reg}(K) \lesssim \sqrt{HK}$.

2 Proof of the regret bound

Proof. We decompose the regret into two terms,

$$\operatorname{Regret}(K) \triangleq \sum_{k=1}^{K} V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^*)$$

$$= \underbrace{\sum_{k=1}^{K} V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^k)}_{\text{Term (i)}} + \underbrace{\sum_{k=1}^{K} V(\psi(\pi^k), \pi^k) - V(\psi(\pi^k), \pi^*)}_{\text{Term (ii)}}.$$

Term (i). By the choice of π^k , we have

$$V(\psi(\pi_{\mathrm{det}}^*), \pi_{\mathrm{det}}^*) - \eta \! \sum_{h=1}^H L_h^{k-1}(\pi_{\mathrm{det}}^*) \leq V(\mu^k, \pi^k) - \eta \! \sum_{h=1}^H L_h^{k-1}(\pi^k)$$

for all $k \in [K]$. By definition

$$V(\psi(\pi_{\mathrm{det}}^*), \pi_{\mathrm{det}}^*) \ge V(\psi(\pi^*), \pi^*) - \varepsilon_{\psi}.$$

Thus,

$$V(\psi(\pi^*), \pi^*) - V(\mu^k, \pi^k) \le \eta \sum_{h=1}^{H} L_h^{k-1}(\pi_{\text{det}}^*) - \eta \sum_{h=1}^{H} L_h^{k-1}(\pi^k) + \varepsilon_{\psi}. \tag{1}$$

for any $\pi^k \stackrel{\psi}{\sim} \pi^{k'}$, we have

$$V(\psi(\pi^k),\pi^k) = V(\psi(\pi^{k'}),\pi^{k'}).$$

Thus, an upper bound for $V(\psi(\pi^*), \pi^*) - V(\mu^k, \pi^k)$ is also an upper bound for $V(\psi(\pi^*), \pi^*) - V(\mu^{k'}, \pi^{k'})$. Applying Lemma 2, we have that with probability at least $1 - \delta$, for any $(h, k) \in [H] \times [K]$, $\mu^s = \psi(\pi^s)$ and $\pi^k \in \mathcal{H}$,

$$L_h^{k-1}(\pi_{\det}^*) - L_h^{k-1}(\pi^k) \le -2 \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s}[\ell_{\pi^s}(\pi; \xi_h)] + 2 \log(H n_{\mathrm{type}}^{\psi}(\mathcal{H}) / \delta).$$

Substituting the above equation into (1) gives us that with probability at least $1 - \delta$, for any $k \in [K]$, $\mu^s = \psi(\pi^s)$ and $\pi^k \in \mathcal{H}$

$$V(\psi(\pi^*), \pi^*) - V(\mu^k, \pi^k) \le -2\eta \sum_{h=1}^{H} \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s} [\ell_{\pi^s}(\pi; \xi_h)] + 2H\eta \log(Hn_{\text{type}}^{\psi}(\mathcal{H})/\delta) + \varepsilon_{\psi}.$$

Summing over [K] gives us

Term (i)
$$\leq -2\eta \sum_{k=1}^K \sum_{h=1}^H \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s}[\ell_{\pi^s}(\pi; \xi_h)] + 2\eta K H \log(H n_{\text{type}}^{\psi}(\mathcal{H})/\delta) + K \varepsilon_{\psi}.$$

Term (ii). Follow the proof of Theorem 4.4 in [1], we have that for all $\mu^s = \psi(\pi^s)$

Term (ii)
$$\leq 2\eta \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s} [\ell_{\pi^s}(\pi; \xi_h)] + \frac{d_{\text{GEC}}(\varepsilon_{\text{conf}})}{8\eta} + \sqrt{d_{\text{GEC}}(\varepsilon_{\text{conf}})HK} + \varepsilon_{\text{conf}}HK.$$

Combining Term (i) and Term (ii).

$$\begin{split} \operatorname{Regret}(K) &= \operatorname{Term} \ (\mathrm{i}) + \operatorname{Term} \ (\mathrm{ii}) \\ &\leq 2\eta K H \log(H n_{\mathrm{type}}^{\psi}(\mathcal{H}) / \delta) + \frac{d_{\mathrm{GEC}}(\varepsilon_{\mathrm{conf}})}{8\eta} + \sqrt{d_{\mathrm{GEC}}(\varepsilon_{\mathrm{conf}}) H K} + \varepsilon_{\mathrm{conf}} H K + K \varepsilon_{\psi}. \end{split}$$

Set $\varepsilon_{\text{conf}} = \frac{1}{\sqrt{HK}} - \frac{\varepsilon_{\psi}}{H}$. For $\varepsilon_{\text{conf}} > 0$, we need

$$\varepsilon_{\psi} \leq \sqrt{\frac{H}{K}}$$

3 Appendix

Lemma 2. With probability at least $1 - \delta$, for any $(h, k) \in [H] \times [K]$, $\mu^s \in BR(\pi^s)$, and $\pi \in \Pi$

$$L_h^{k-1}(\pi^*) - L_h^{k-1}(\pi) \le -2\sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s}[\ell_{\pi^s}(\pi; \xi_h)] + 2\log(H|\Pi|/\delta).$$

Proof. Given $\pi \in \mathcal{H}$, we denote the random variable $X_{h,\pi}^k$ as

$$X_{h,\pi}^{k} = \log \left(\frac{\mathbb{P}_{h,\pi^{*}}(s_{h+1}^{k} | s_{h}^{k}, a_{h}^{k})}{\mathbb{P}_{h,\pi}(s_{h+1}^{k} | s_{h}^{k}, a_{h}^{k})} \right).$$

Now we define a filtration $\{\mathcal{F}_{h,k}\}_{k=1}^K$ as (B.25) in [1]. Thus we have $X_{h,\pi}^k \in \mathcal{F}_{h,k}$. Therefore, by applying Lemma D.1 in [1], we have that with probability at least $1-\delta$, for any $(h,k) \in [H] \times [K]$, and $\pi \in \Pi$, we have

$$-\frac{1}{2}\sum_{s=1}^{k-1} X_{h,\pi}^s \le \sum_{s=1}^{k-1} \log \mathbb{E}\left[\exp\left\{-\frac{1}{2}X_{h,\pi}^s\right\} | \mathcal{F}_{h,s-1}\right] + \log(H|\Pi|/\delta). \tag{2}$$

Meanwhile, by (B.27) in [1], for any $\mu^s \in BR(\pi^s)$, the conditional expectation equals to

$$\mathbb{E}\left[\exp\left\{-\frac{1}{2}X_{h,\pi}^{s}\right\} | \mathcal{F}_{h,s-1}\right] = 1 - \mathbb{E}_{(s_{h}^{s}, a_{h}^{s}) \sim \mu^{s}} [D_{H}(\mathbb{P}_{h,\pi^{*}}(\cdot | s_{h}^{s}, a_{h}^{s}) | | \mathbb{P}_{h,\pi}(\cdot | s_{h}^{s}, a_{h}^{s}))]. \tag{3}$$

Denote $\mathbb{E}_{(s_h^s, a_h^s) \sim \mu^s}[D_H(\mathbb{P}_{h, \pi^*}(\cdot s_h^s, a_h^s) \mathbb{P}_{h, \pi^s}(\cdot s_h^s, a_h^s))]$ as $\mathbb{E}_{\xi_h \sim \mu^s}[\ell_{\pi^s}(\pi; \xi_h)]$. Using the fact log	$g(x) \le$
x-1 and substituting (3) into (2) finishes the proof.	

Bibliography

[1] Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang, and Zhaoran Wang. One Objective to Rule Them All: A Maximization Objective Fusing Estimation and Planning for Exploration. may 2023.