Gergely Daróczi

Looong report

Sat Jun 2 23:20:57 2012

Contents

Dataset	2
Descriptives	5
In details	5
$\operatorname{mpg} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	5
cyl	7
$\operatorname{disp} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	7
hp	10
$\operatorname{drat} \ \ldots \ldots \ldots \ldots \ldots \ldots$	10
wt	12
qsec	13
VS	15
am	15
${ m gear}$	18
carb	20
Correlation	20
ome models	22
mpg	22
cyl	22
disp	24

hp .	•					•			•										24
drat																			24
qsec																			25
vs .																			25
am .																			25
gear																			25
carb																			26

I have written the below report in 10 mins:

Dataset

Here I will do a pretty fast report on mtcars which is:

	mpg	cyl	disp	hp	drat	wt
Mazda RX4	21	6	160	110	3.9	2.6
Mazda RX4 Wag	21	6	160	110	3.9	2.9
Datsun 710	23	4	108	93	3.9	2.3
Hornet 4 Drive	21	6	258	110	3.1	3.2
Hornet Sportabout	19	8	360	175	3.1	3.4
Valiant	18	6	225	105	2.8	3.5
Duster 360	14	8	360	245	3.2	3.6
Merc 240D	24	4	147	62	3.7	3.2
Merc 230	23	4	141	95	3.9	3.1
Merc 280	19	6	168	123	3.9	3.4
Merc 280C	18	6	168	123	3.9	3.4
Merc 450SE	16	8	276	180	3.1	4.1
Merc 450SL	17	8	276	180	3.1	3.7
$\rm Merc~450SLC$	15	8	276	180	3.1	3.8
Cadillac Fleetwood	10	8	472	205	2.9	5.2
Lincoln Continental	10	8	460	215	3.0	5.4
Chrysler Imperial	15	8	440	230	3.2	5.3
Fiat 128	32	4	79	66	4.1	2.2
Honda Civic	30	4	76	52	4.9	1.6
Toyota Corolla	34	4	71	65	4.2	1.8
Toyota Corona	22	4	120	97	3.7	2.5
Dodge Challenger	16	8	318	150	2.8	3.5
AMC Javelin	15	8	304	150	3.1	3.4
Camaro Z28	13	8	350	245	3.7	3.8
Pontiac Firebird	19	8	400	175	3.1	3.8
Fiat X1-9	27	4	79	66	4.1	1.9
Porsche 914-2	26	4	120	91	4.4	2.1
Lotus Europa	30	4	95	113	3.8	1.5
Ford Pantera L	16	8	351	264	4.2	3.2
Ferrari Dino	20	6	145	175	3.6	2.8
Maserati Bora	15	8	301	335	3.5	3.6
Volvo 142E	21	4 3	121	109	4.1	2.8

	qsec	VS	am	gear	carb
Mazda RX4	16	0	1	4	4
Mazda RX4 Wag	17	0	1	4	4
Datsun 710	19	1	1	4	1
Hornet 4 Drive	19	1	0	3	1
Hornet Sportabout	17	0	0	3	2
Valiant	20	1	0	3	1
Duster 360	16	0	0	3	4
Merc 240D	20	1	0	4	2
Merc 230	23	1	0	4	2
Merc 280	18	1	0	4	4
Merc 280C	19	1	0	4	4
${\rm Merc}~450{\rm SE}$	17	0	0	3	3
$\rm Merc~450SL$	18	0	0	3	3
Merc 450SLC	18	0	0	3	3
Cadillac Fleetwood	18	0	0	3	4
Lincoln Continental	18	0	0	3	4
Chrysler Imperial	17	0	0	3	4
Fiat 128	19	1	1	4	1
Honda Civic	19	1	1	4	2
Toyota Corolla	20	1	1	4	1
Toyota Corona	20	1	0	3	1
Dodge Challenger	17	0	0	3	2
AMC Javelin	17	0	0	3	2
Camaro Z28	15	0	0	3	4
Pontiac Firebird	17	0	0	3	2
Fiat X1-9	19	1	1	4	1
Porsche 914-2	17	0	1	5	2
Lotus Europa	17	1	1	5	2
Ford Pantera L	14	0	1	5	4
Ferrari Dino	16	0	1	5	6
Maserati Bora	15	0	1	5	8
Volvo 142E	19	$\overset{4}{1}$	1	4	2

Descriptives

	Average	Median	Standard.deviation	Variance
mpg	20.09	19.2	6.03	3.6e+01
cyl	6.19	6.0	1.79	3.2e + 00
disp	230.72	196.3	123.94	1.5e + 04
hp	146.69	123.0	68.56	4.7e + 03
drat	3.60	3.7	0.53	2.9e-01
wt	3.22	3.3	0.98	9.6e-01
qsec	17.85	17.7	1.79	3.2e + 00
vs	0.44	0.0	0.50	2.5e-01
am	0.41	0.0	0.50	2.5e-01
gear	3.69	4.0	0.74	5.4e-01
carb	2.81	2.0	1.62	2.6e+00

In details

\mathbf{mpg}

We found the folloing values here:

 $21,\ 21,\ 22.8,\ 21.4,\ 18.7,\ 18.1,\ 14.3,\ 24.4,\ 22.8,\ 19.2,\ 17.8,\ 16.4,\ 17.3,\ 15.2,\ 10.4,$ $10.4,\ 14.7,\ 32.4,\ 30.4,\ 33.9,\ 21.5,\ 15.5,\ 15.2,\ 13.3,\ 19.2,\ 27.3,\ 26,\ 30.4,\ 15.8,$ $19.7,\ 15\ \mathrm{and}\ 21.4$

The mean of mpg is 20.090625 while the standard deviation is: 6.0269480520891. The most frequent value in mpg is 10.4, but let us check out the frequency table too:

10.4	13.3	14.3	14.7	15	15.2	15.5	15.8
2	1	1	1	1	2	1	1

16.4	17.3	17.8	18.1	18.7	19.2	19.7	21
1	1	1	1	1	2	1	2

21.4	21.5	22.8	24.4	26	27.3	30.4
2	1	2	1	1	1	2

32.4	33.9
1	1

Tables are boring, let us show the same with a histogram:

Figure 1:

cyl

We found the folloing values here:

6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 8, 6, 8 and 4

The mean of cyl is 6.1875 while the standard deviation is: 1.78592164694654. The most frequent value in cyl is 8, but let us check out the frequency table too:

4	6	8
11	7	14

Tables are boring, let us show the same with a histogram:

disp

We found the folloing values here:

 $160,\ 160,\ 108,\ 258,\ 360,\ 225,\ 360,\ 146.7,\ 140.8,\ 167.6,\ 167.6,\ 275.8,\ 275.8,\ 275.8,\ 472,\ 460,\ 440,\ 78.7,\ 75.7,\ 71.1,\ 120.1,\ 318,\ 304,\ 350,\ 400,\ 79,\ 120.3,\ 95.1,\ 351,\ 145,\ 301\ \mathrm{and}\ 121$

The mean of disp is 230.721875 while the standard deviation is: 123.938693831382. The most frequent value in disp is 275.8, but let us check out the frequency table too:

71.1	75.7	78.7	79	95.1	108	120.1	120.3
1	1	1	1	1	1	1	1

121	140.8	145	146.7	160	167.6	225	258
1	1	1	1	2	2	1	1

275.8	301	304	318	350	351	360	400	
3	1	1	1	1	1	2	1	

440	460	472
1	1	1

Tables are boring, let us show the same with a histogram:

Figure 2:

Figure 3:

hp

We found the folloing values here:

110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180, 205, 215, 230, 66, 52, 65, 97, 150, 150, 245, 175, 66, 91, 113, 264, 175, 335 and 109

The mean of hp is 146.6875 while the standard deviation is: 68.5628684893206. The most frequent value in hp is 110, but let us check out the frequency table too:

52	62	65	66	91	93	95	97	105
1	1	1	2	1	1	1	1	1
109	110	113	123	1.	50	175	180	205
1	3	1	2	2		3	3	1

215	230	245	264	335	
1	1	2	1	1	

Tables are boring, let us show the same with a histogram:

\mathbf{drat}

We found the folloing values here:

 $3.9,\ 3.9,\ 3.85,\ 3.08,\ 3.15,\ 2.76,\ 3.21,\ 3.69,\ 3.92,\ 3.92,\ 3.92,\ 3.07,\ 3.07,\ 3.07,\ 2.93,\ 3,\ 3.23,\ 4.08,\ 4.22,\ 3.7,\ 2.76,\ 3.15,\ 3.73,\ 3.08,\ 4.08,\ 4.43,\ 3.77,\ 4.22,\ 3.62,\ 3.54$ and 4.11

The mean of drat is 3.5965625 while the standard deviation is: 0.534678736070971. The most frequent value in drat is 3.07, but let us check out the frequency table too:

2.76	2.93	3	3.07	3.08	3.15	3.21	3.23	
2	1	1	3	2	2	1	1	

3.54	3.62	3.69	3.7	3.73	3.77	3.85	3.9	
1	1	1	1	1	1	1	2	

Figure 4:

3.92	4.08	4.11	4.22	4.43	4.93
3	2	1	2	1	1

Tables are boring, let us show the same with a histogram:

Figure 5:

\mathbf{wt}

We found the folloing values here:

The mean of wt is 3.21725 while the standard deviation is: 0.978457442989697. The most frequent value in wt is 3.44, but let us check out the frequency table too:

1.51	3 1	.615	1.835	1.935	2.1	4 2.	2.32
1	1		1	1	1	1	1
2.465	2.	62	2.77	2.78	2.875	3.15	3.17
1	1		1	1	1	1	1
3.19	3.2	215	3.435	3.44	3.46	3.52	3.57
1	1		1	3	1	1	2
_	3.73	3.78	3.84	3.8	345 4	1.07	5.25
_	1	1	1	1	1	L	1
_							
			5.345	5.4	124		

Tables are boring, let us show the same with a histogram:

1

\mathbf{qsec}

We found the folloing values here:

 $16.46,\ 17.02,\ 18.61,\ 19.44,\ 17.02,\ 20.22,\ 15.84,\ 20,\ 22.9,\ 18.3,\ 18.9,\ 17.4,\ 17.6,\\ 18,\ 17.98,\ 17.82,\ 17.42,\ 19.47,\ 18.52,\ 19.9,\ 20.01,\ 16.87,\ 17.3,\ 15.41,\ 17.05,\\ 18.9,\ 16.7,\ 16.9,\ 14.5,\ 15.5,\ 14.6\ \text{and}\ 18.6$

1

The mean of qsec is 17.84875 while the standard deviation is: 1.78694323609684. The most frequent value in qsec is 17.02, but let us check out the frequency table too:

14.5	14.6	15.41	15.5	15.84	16.46	16.7	
1	1	1	1	1	1	1	

Figure 6:

16.87	16.9	17.02	17.05	17.3	17.4	17.42
1	1	2	1	1	1	1
17.6	17.82	17.98	18	18.3	18.52	18.6
1	1	1	1	1	1	1
18.61	18.9	19.44	19.47	19.9	20	20.01
1	2	1	1	1	1	1

20.22	22.9
1	1

Tables are boring, let us show the same with a histogram:

\mathbf{vs}

We found the folloing values here:

 $0,\ 0,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0$ and 1

The mean of vs is 0.4375 while the standard deviation is: 0.504016128774185. The most frequent value in vs is 0, but let us check out the frequency table too:

0	1
18	14

Tables are boring, let us show the same with a histogram:

am

We found the folloing values here:

Figure 7:

Figure 8:

The mean of am is 0.40625 while the standard deviation is: 0.498990917235846. The most frequent value in am is 0, but let us check out the frequency table too:

0	1
19	13

Tables are boring, let us show the same with a histogram:

Figure 9:

gear

We found the folloing values here:

4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 5, 5, 5, 5 and 4

The mean of gear is 3.6875 while the standard deviation is: 0.737804065256947. The most frequent value in gear is 3, but let us check out the frequency table too:

3	4	5	
15	12	5	

Tables are boring, let us show the same with a histogram:

Figure 10:

carb

We found the folloing values here:

4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2, 2, 4, 2, 1, 2, 2, 4, 6, 8 and 2

The mean of carb is 2.8125 while the standard deviation is: 1.61519997763185. The most frequent value in carb is 2, but let us check out the frequency table too:

1	2	3	4	6	8	
7	10	3	10	1	1	_

Tables are boring, let us show the same with a histogram:

Correlation

And here goes a correlation table:

	mpg	cyl	disp	hp	drat	wt	qsec
mpg	1.000	-0.852	-0.848	-0.776	0.681	-0.868	0.419
cyl	-0.852	1.000	0.902	0.832	-0.700	0.782	-0.591
disp	-0.848	0.902	1.000	0.791	-0.710	0.888	-0.434
hp	-0.776	0.832	0.791	1.000	-0.449	0.659	-0.708
drat	0.681	-0.700	-0.710	-0.449	1.000	-0.712	0.091
wt	-0.868	0.782	0.888	0.659	-0.712	1.000	-0.175
qsec	0.419	-0.591	-0.434	-0.708	0.091	-0.175	1.000
vs	0.664	-0.811	-0.710	-0.723	0.440	-0.555	0.745
am	0.600	-0.523	-0.591	-0.243	0.713	-0.692	-0.230
gear	0.480	-0.493	-0.556	-0.126	0.700	-0.583	-0.213
carb	-0.551	0.527	0.395	0.750	-0.091	0.428	-0.656

Figure 11:

	vs	am	gear	carb
mpg	0.664	0.600	0.480	-0.551
cyl	-0.811	-0.523	-0.493	0.527
disp	-0.710	-0.591	-0.556	0.395
hp	-0.723	-0.243	-0.126	0.750
drat	0.440	0.713	0.700	-0.091
wt	-0.555	-0.692	-0.583	0.428
qsec	0.745	-0.230	-0.213	-0.656
vs	1.000	0.168	0.206	-0.570
am	0.168	1.000	0.794	0.058
gear	0.206	0.794	1.000	0.274
carb	-0.570	0.058	0.274	1.000

And the same on a graph:

Yeah, that latter took a while to render in an image file :)

That's not a pander issue.

Some models

Okay, let us find out how weight affects other variables:

\mathbf{mpg}

A simple linear model: mtcars\$wt ~ mtcars\$mpg

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	6.0e + 00	3.1e-01	2.0e+01	1.2e-18
Independent	-1.4e-01	1.5e-02	-9.6e + 00	1.3e-10

Table 1: Fitting linear model: mtcars\$wt $\tilde{\ }$ Independent

\mathbf{cyl}

A simple linear model: mtcars\$wt ~ mtcars\$cyl

Figure 12:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	5.6e-01	4.0e-01	1.4e+00	1.7e-01
Independent	4.3e-01	6.2e-02	6.9e + 00	1.2e-07

Table 2: Fitting linear model: mtcars\$wt $\tilde{\ }$ Independent

disp

A simple linear model: mtcars\$wt ~ mtcars\$disp

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.6e+00	1.7e-01	9.2e+00	2.7e-10
Independent	7.0e-03	6.6e-04	1.1e+01	1.2e-11

Table 3: Fitting linear model: mtcars\$wt $\tilde{\ }$ Independent

hp

A simple linear model: mtcars\$wt ~ mtcars\$hp

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.8e+00	3.2e-01	5.8e + 00	2.4e-06
Independent	9.4e-03	2.0e-03	4.8e+00	4.1e-05

Table 4: Fitting linear model: mtcars\$wt ~ Independent

\mathbf{drat}

A simple linear model: mtcars\$wt ~ mtcars\$drat

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	7.9e+00	8.5e-01	9.3e+00	2.5e-10
Independent	-1.3e+00	2.3e-01	-5.6e + 00	4.8e-06

Table 5: Fitting linear model: mtcars\$wt $\tilde{\ }$ Independent

\mathbf{qsec}

A simple linear model: mtcars\$wt ~ mtcars\$qsec

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	4.9248	1.7654	2.7896	0.0091
Independent	-0.0957	0.0984	-0.9719	0.3389

Table 6: Fitting linear model: mtcars\$wt $\tilde{\ }$ Independent

$\mathbf{v}\mathbf{s}$

A simple linear model: mtcars\$wt ~ mtcars\$vs

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	3.7e + 00	2.0e-01	1.9e + 01	3.2e-18
Independent	-1.1e+00	2.9e-01	-3.7e + 00	9.8e-04

Table 7: Fitting linear model: mtcars\$wt $\tilde{\ }$ Independent

am

A simple linear model: mtcars\$wt ~ mtcars\$am

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	3.8e + 00	1.6e-01	2.3e+01	1.5e-20
Independent	-1.4e+00	2.6e-01	-5.3e+00	1.1e-05

Table 8: Fitting linear model: mtcars\$wt $\tilde{\ }$ Independent

gear

A simple linear model: mtcars\$wt ~ mtcars\$gear

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	6.1e+00	7.4e-01	8.2e+00	3.6e-09
Independent	-7.7e-01	2.0e-01	-3.9e+00	4.6e-04

Table 9: Fitting linear model: mtcars\$wt $\tilde{\ }$ Independent

carb

A simple linear model: mtcars\$wt ~ mtcars\$carb

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	2.5e+00	3.2e-01	7.7e+00	1.4e-08
Independent	2.6e-01	1.0e-01	2.6e+00	1.5 e-02

Table 10: Fitting linear model: mtcars\$wt $\tilde{\ }$ Independent

This report was generated with R (2.15.0) and pander (0.1) in 17.425 sec on x86_64-unknown-linux-gnu platform.