

Lecture 16: Introduction to Diodes

- Diode IV characteristics
- Connecting diode to a linear circuit
- Piecewise linear models of diodes

Recommended: https://learn.sparkfun.com/tutorials/diodes

■ IV characteristics

■ Major applications: lighting, electronics

Made of *semiconductor* materials like Si, Ge, GaN with some additives called *dopants*.

■ Date sheet

$$I \approx I_S(e^{V/nV_{therm}}-1)$$

$$V_{therm} = \frac{k_B T}{q}$$
 (thermal voltage)

$$\frac{k_B}{q} = 8.617 \times 10^{-5} eV \cdot K^{-1}$$
 (Boltzmann's constant)

T = temperature (Kelvin)

$$\frac{k_B T}{q} = 25.85 mV$$
 at 300K

n = ideal factor (depends on device fabrication parameters)

Circuit model

Working principle – Supplementary Note

depletion layer
PN junction

Internal electric field

Case 1: forward bias (conductive)

Case 2: reverse bias (cut-off)

L16Q1: Based on the exponential equation for IV, can the diode supply power?

Case 1: forward bias (V > 0)

$$e^{V/nV_{therm}} > 1$$

$$I \approx I_S(e^{V/nV_{therm}}-1)>0$$

$$P = IV > 0$$

Case 2: reverse bias (V < 0)

$$e^{V/nV_{therm}} < 1$$

$$I \approx I_S(e^{V/nV_{therm}}-1)<0$$

$$I \approx -I_S$$
 (for large enough $|V|$)

$$P = IV > 0$$

Connecting diode to a linear circuit

L16Q2: What is the current flowing through the diode if $V_T < 0$?

Instead of looking for graphical solutions, we can approximate the diode with two linear segments, corresponding to diode's regimes of operation.

Case 1: forward bias $(V > V_{ON})$

Case 2: reverse bias $(V < V_{ON})$

$$I = 0$$

L16Q3: What is the minimum V_T of the connected linear circuit which causes current to flow through the diode if the piecewise linear model above is used?

For the resistor R_T , the IV characteristic is,

$$I = \frac{V_T - V}{R_T} = \frac{V_T}{R_T} - \frac{V}{R_T}$$

$$I > 0 \implies V_T > V_{on}$$

Different diode types have different V_{ON}

Diode Type	V _{ON} (V)	Applications
Silicon	0.6-0.7	General; integrated circuits; switching, circuit protection, logic, rectification, etc.
Germanium	~0.3	Low-power, RF signal detectors
Schottky	0.15- 0.4	Power-sensitive, high-speed switching, RF
Red LED (GaAs)	~2	Indicators, signs, color-changing lighting
Blue LED (GaN)	~3	Lighting, flashlights, indicators
"Ideal"	0	Can neglect V _{ON} for high voltage applications

L16Q4: What is the power dissipated by a Ge diode if 30 mA is flowing through it?

Germanium:

$$V_{on} \sim 0.3V$$

$$P = V_{on} \times I$$
$$= 0.3 \times 30mA$$
$$= 9mW$$

Q4:

A. 3 *mW*

B. 9 *mW*

C. 30 *mW*

D. 90 mW

E. 900 *mW*

Diode circuit examples (offset ideal model)

Assume offset-ideal model with $V_{ON} = 0.7$ (common Si diodes)

L16Q5: What is the current through the diode in the top left circuit?

L16Q6: What is the current through the diode in the top right circuit?

L16Q5: What is the current through the diode?

Assume offset-ideal model with $V_{ON} = 0.7$ (common Si diodes)

0.7V

FORWARD BIAS

$$I_O = I_{SC} - \frac{V_{ON}}{R} = 0.015 - \frac{0.7}{200} = 11.5 mA$$

 $V_T = V_{oc} = 3V$

L16Q6: What is the current through the diode?

Assume offset-ideal model with $V_{ON} = 0.7$ (common Si diodes)

REVERSE BIAS

$$I_D = \frac{3-V}{200}$$

L16Q6: What is the current through the diode?

Assume offset-ideal model with $V_{ON} = 0.7$ (common Si diodes)

REVERSE BIAS

$$I_D = \frac{-3 - V}{200}$$

Diode circuit examples (offset ideal model)

Assume offset-ideal model with $V_{ON} = 0.7V$ (common Si diodes)

L16Q7: What is the current through the diode in the circuit?

$$I_D =$$
 $A. -11.5 mA$
 $B. -2.5 mA$
 $C. 0 mA$
 $D. +2.5 mA$
 $E. +11.5 mA$

L16Q7: What is the current through the diode in the circuit?

Assume offset-ideal model with $V_{ON} = 0.7V$

Assume diode is conducting:

$$I_1 = \frac{(3-0.7)}{200} = \frac{2.3}{200} = 11.5 mA$$

$$I_2 = \frac{0.7}{50} = 14mA$$

From KCL

$$I_D = I_1 - I_2 = -2.5 mA$$

NOT PHYSICAL → diode does not conduct

L16Q7: What is the current through the diode in the circuit?

Assume offset-ideal model with $V_{ON} = 0.7V$

Assume diode is reverse biased:

$$I_D = 0A$$
 $I_1 = I_2 = \frac{3}{250} = 12mA$
 $V_D = I_2 \times 50 = 0.6V$

$$I_D = A.$$
 $-11.5 mA$
 $B.$ $-2.5 mA$
 $C.$ $0 mA$
 $D.$ $+2.5 mA$
 $E.$ $+11.5 mA$

I-V operating point of the diode is (0A,0.6V)

Back-to-back diodes in series are modeled by OIM as an open circuit

L16Q8: Assume OIM with $V_{ON} = 0.7 \text{ V (Si)}$ What is the current through the left-most diode?

- A. 0 Amps
- *B.* 0.2 *Amps*
- *C.* 0.33 *Amps*
- *D.* 0.4 *Amps*
- *E.* 3.3 *Amps*

L16Q8: Assume OIM with $V_{ON} = 0.7 \text{ V (Si)}$ What is the current through the left-most diode?

- A. 0 Amps
- *B.* 0.2 *Amps*
- *C.* 0.33 *Amps*
- *D.* 0.4 *Amps*
- *E.* 3.3 *Amps*

L13Q8: Assume OIM with $V_{ON} = 0.7 \text{ V (Si)}$ What is the current through the left-most diode?

- A. 0 Amps
- B. 0.2 Amps
- *C.* 0.33 *Amps*
- *D.* 0.4 *Amps*
- E. 3.3 Amps

L16 Learning Objectives

- a. Draw a "typical" diode IV curve and describe its shape
- Explain how to use graphical analysis to find the operating point of a diode connected to a linear circuit
- c. Describe the offset ideal diode model (open, V-source)
- d. Solve simple circuit problems with one diode, given V_{ON}