

planetmath.org

Math for the people, by the people.

Cayley's theorem for semigroups

Canonical name CayleysTheoremForSemigroups

 Date of creation
 2013-03-22 19:04:37

 Last modified on
 2013-03-22 19:04:37

 Owner
 Ziosilvio (18733)

 Last modified by
 Ziosilvio (18733)

Numerical id 8

Author Ziosilvio (18733)

Entry type Theorem
Classification msc 20M20
Classification msc 20M15

Related topic CayleysTheorem

Let X be a set. We can define on X^X , the set of functions from X to itself, a structure of semigroup by putting $f \otimes g = g \circ f$. Such semigroup is actually a monoid, whose identity element is the identity function of X.

Theorem 1 (Cayley's theorem for semigroups) For every semigroup (S, \cdot) there exist a set X and an injective map $\phi: S \to X^X$ which is a morphism of semigroups from (S, \cdot) to (X^X, \otimes) .

In other words, every semigroup is isomorphic to a semigroup of transformations of some set. This is an extension of Cayley's theorem on groups, which states that every group is isomorphic to a group of *invertible* transformations of some set.

Proof of Theorem ??. The argument is similar to the one for Cayley's theorem on groups. Let X = S, the set of elements of the semigroup.

First, suppose (S, \cdot) is a monoid with unit e. For $s \in S$ define $f_s : S \to S$ as

$$f_s(x) = x \cdot s \ \forall x \in S \,. \tag{1}$$

Then for every $s, t, x \in S$ we have

$$f_{s \cdot t}(x) = x \cdot (s \cdot t)$$

$$= (x \cdot s) \cdot t$$

$$= f_t(x \cdot s)$$

$$= f_t(f_s(x))$$

$$= (f_t \circ f_s)(x)$$

$$= (f_s \otimes f_t)(x),$$

so $\phi(s) = f_s$ is a homomorphism of monoids, with $f_e = \mathrm{id}_S$. This homomorphism is injective, because if $f_s = f_t$, then $s = f_s(e) = f_t(e) = t$.

Next, suppose (S, \cdot) is a semigroup but not a monoid. Let $e \notin S$. Construct a monoid (M, *) by putting $M = S \cup \{e\}$ and defining

$$s * t = \begin{cases} s \cdot t & \text{if } s, t \in S, \\ s & \text{if } s \in S, t = e, \\ t & \text{if } s = e, t \in S, \\ e & \text{if } s = t = e. \end{cases}$$

Then (M,*) is isomorphic to a submonoid of (M^M,\otimes) as by $(\ref{eq:spin})$. For $s \in S$ put $g_s = f_s|_S$: then $g_s \in S^S$ for every s, $g_{s\cdot t} = f_{s*t}|_S$, and (S,\cdot) is isomorphic to (Σ,\otimes) with $\Sigma = \{g_s \mid s \in S\}$. \square

Observe that the theorem remains valid if $f \otimes g$ is defined as $f \circ g$. In this case, the morphism ϕ is defined by $f_s(x) = s \cdot x \, \forall x \in S$.