Standard Code Library

Hao Yuan Department of Computer Science and Engineering Shanghai Jiaotong University

October 23, 2003

Contents

1	\mathbf{Alg}	orithms and Datastructures	3
	1.1	High Precision in C	3
	1.2	High Precision in C Plus Plus	4
	1.3	High Precision Floating-point Number	6
	1.4	Fraction Class	8
	1.5	Binary Heap	8
	1.6	Winner Tree	9
	1.7	Digital Tree	10
	1.8	Segment Tree	10
	1.9	Segment Tree in IOI'2001	11
	1.10	Union-Find Set	11
	1.11	Quick Sort	11
		Merge Sort	12
		Radix Sort	12
		Select K^{th} Smallest Element	12
	1.15	KMP	12
		Suffix Sort	13
2	Gra	ph Theory and Network Algorithms	14
	2.1	SSSP — Dijkstra + Binary Heap	14
	2.2	$SSSP — Bellman Ford + Queue \dots \dots$	15
	2.3	MST — Kruskal	15
	2.4	Minimum Directed Spanning Tree	16
	2.5	Maximum Matching on Bipartite Graph	16
	2.6	Maximum Cost Perfect Matching on Bipartite Graph	17
	2.7	Maximum Matching on General Graph	17
	2.8	Maximum Flow — Ford Fulkson in Matrix	18
	2.9	Maximum Flow — Ford Fulkson in Link	19
	2.10	Minimum Cost Maximum Flow in Matrix	20
	2.11	Minimum Cost Maximum Flow in Link	21
	2.12	Recognizing Chordal Graph	21
	2.13	DFS — Bridge	22
	2.14	DFS — Cutvertex	22
	2.15	DFS — Block	23
	2.16	DFS — Topological Sort	24
	2.17	Strongly Connected Component	24
3	Nur	mber Theory	25
	3.1	Greatest Common Divisor	25
	3.2	Chinese Remainder Theorem	25
	3.3	Prime Generator	26
	3.4	ϕ Generator	26
	3.5	Discrete Logarithm	27
	3.6	Square Roots in Z_p	28
4		ebraic Algorithms	29
	4.1	Linear Equations in Z_2	29
	4.2	Linear Equations in Z	30
	4.3	Linear Equations in Q	30
	4.4	Linear Equations in R	31
	15	Roots of Polynomial	21

	4.6	Roots of Cubic and Quartic	32
	4.7	Fast Fourier Transform	33
	4.8	FFT - Polynomial Multiplication	34
	4.9	FFT - Convolution	34
	4.10	FFT - Reverse Bits	34
		Linear Programming - Primal Simplex	36
		Zinear 110gramming 11mmar simplest 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	00
5	Con	nputational Geometry	38
•	5.1	Basic Operations	38
	5.2	Extended Operations	39
	5.3	Convex Hull	41
	5.4	Point Set Diameter	43
	5.4	Closest Pair	44
			44
	5.6	Circles	
	5.7	Largest Empty Convex Polygon	46
	5.8	Triangle Centers	47
	5.9	Polyhedron Volume	48
		Planar Graph Contour	49
		Rectangles Area	50
		Rectangles Perimeter	52
		Smallest Enclosing Circle	54
	5.14	Smallest Enclosing Ball	55
6	Clas	sic Problems	57
	6.1	Bernoulli Number Generator	57
	6.2	Baltic OI'99 Expressions	58
	6.3	Bead Coloring — Pólya Theory	58
	6.4	Binary Stirling Number	59
	6.5	Box Surface Distance	59
	6.6	Calculate Expression	59
	6.7	Cartesian Tree	60
	6.8	Catalan Number Generator	61
	6.9	Coloring Regular Polygon	62
	6.10	Counting Inverse Pairs	62
			63
		Counting Trees	63
	0.13	Extended Honai Tower	66
	6.14	High Precision Square Root	66
		Largest Empty Rectangle	67
		Last Non-Zero Digit of N!	69
		Least Common Ancestor	69
	6.18	Longest Common Substring	71
	6.19	Longest Non Descending Sub Sequence	73
	6.20	Join and Disjoin	73
	6.21	Magic Square	74
	6.22	Optimal Binary Search Tree	75
	6.23	Pack Rectangles — Cut Rectangles	75
	6.24	Pack Rectangles — $O(N^2)$	76
		Parliament	76
		π Generator	76
		Plant Trees — Iteration	77
		Plant Trees — Segment Tree	77
		Range Maximum Query	78
		Travelling Salesman Problem	79
			80
		Tree Heights	
		Minimum Cyclic Presentation	81
		Maximum Clique	82
		Maximal Non-Forbidden Submatrix	83
		Maximum Two Chain Problem	83
		N Queens Problem	85
		de Bruijn Sequence Generator	85
	6 20	70 I 1482 Partition	96

```
\mathbf{while}\,(\,c\,.\,s\,[\,i\,]\,)\  \, \{\  \, c\,.\,s\,[\,i\,]+1]=c\,.\,s\,[\,i\,]\,/\,1\,0\,;\  \, c\,.\,s\,[\,i\,]\,\%=10;\  \, i\,++;\,\,\}
     while (i > 1 \&\& !c.s[i]) i--; c.len=i;
     return c;
}
HP HP::operator+(const HP &b)
     int i; HP c; c.s[1]=0;
     for (i=1; i <= len || i <= b.len || c.s[i]; i++) {
          if(i<=len) c.s[i]+=s[i];
          if(i \le b.len) c.s[i] += b.s[i];
          c.s[i+1]=c.s[i]/10; c.s[i]\%=10;
     }
     c.len=i-1; if (c.len==0) c.len=1;
     return c;
}
HP HP::operator-(const HP &b)
{
     int i,j; HP c;
     for (i=1, j=0; i \le len ; i++) {
          c.s[i]=s[i]-j; if(i \le b.len) c.s[i]-=b.s[i];
          if(c.s[i]<0){ j=1 ; c.s[i]+=10; } else j=0;
     c.len=len; while (c.len > 1 && !c.s[c.len]) c.len --;
     return c;
}
int HP::Compare(const HP &y)
     if(len>y.len) return 1;
     if(len < y.len) return -1;
     int i=len;
     while ((i > 1) \& \& (s[i] = = y.s[i])) i = -;
     return s[i]-y.s[i];
}
HP HP::operator/(const HP &b)
     int i, j; HP d(0), c;
     for (i=len; i>0; i--) {
          if(!(d.len==1 \&\& d.s[1]==0))
               { for(j=d.len; j>0; j--) d.s[j+1]=d.s[j]; ++d.len; }
          d.s[1] = s[i]; c.s[i] = 0;
          while ((j=d.Compare(b))>=0)
               \{ d=d-b; c.s[i]++; if(j==0) break; \}
     c.len=len; while ((c.len > 1)\&\&(c.s[c.len] = = 0)) c.len --;
     return c;
}
HP HP::operator%(const HP &b)
{
     \quad \textbf{int} \quad i \ , j \ ; \ HP \ d \left( \ 0 \ \right); \\
     for (i=len; i>0; i--)
          if(!(d.len==1 \&\& d.s[1]==0))
               { for(j=d.len; j>0; j--) d.s[j+1]=d.s[j]; ++d.len; }
          d.s[1] = s[i];
          while ((j=d.Compare(b)) >= 0) \{ d=d-b; if(j==0) break; \}
     return d;
}
```

Chapter 1

Algorithms and Datastructures

1.1 High Precision in C

```
\#define maxlen 1000
struct HP { int len,s[maxlen];};
void PrintHP(HP x) { for (int i=x.len; i>=1; i--) cout << x.s[i]; }
void Str2HP(const char *s,HP &x)
     x.len=strlen(s);
     for (int i=1; i \le x. len; i++) x.s[i] = s[x.len-i]-'0';
}
void Int2HP(int inte,HP &x)
     if(inte==0) \{ x.len=1; x.s[1]=0; return; \};
     for (x.len=0; inte > 0;) { x.s[++x.len]=inte \%10; inte /=10;};
void Multi(const HP a, const HP b, HP &c)
     int i,j; c.len=a.len+b.len;
     for (i=1; i \le c. len; i++) c.s[i]=0;
     \mathbf{for} \ (\ i = 1; i <= a \ . \ len \ ; \ i + +) \ \mathbf{for} \ (\ j = 1; j <= b \ . \ len \ ; \ j + +) \ c \ . \ s \ [\ i + j - 1] + = a \ . \ s \ [\ i \ ] * b \ . \ s \ [\ j \ ] \ ;
     for (i=1;i < c.len;i++) { c.s[i+1]+=c.s[i]/10; c.s[i]\%=10; }
     while (c.s[i]) { c.s[i+1]=c.s[i]/10; c.s[i]\%=10; i++; }
     while (i > 1 \&\& !c.s[i]) i --; c.len=i;
}
void Plus (const HP a, const HP b, HP &c)
     int i; c.s[1]=0;
     for (i=1; i <= a.len || i <= b.len || c.s[i]; i++) {
          if(i \le a.len) c.s[i] += a.s[i];
          if(i \le b.len) c.s[i] += b.s[i];
          c.s[i+1]=c.s[i]/10; c.s[i]\%=10;
     c.len=i-1; if (c.len==0) c.len=1;
void Subtract (const HP a, const HP b, HP &c)
{
     for (int i=1, j=0; i \le a.len ; i++) {
          c.s[i]=a.s[i]-j; if(i \le b.len) c.s[i]-=b.s[i];
          if(c.s[i]<0){j=1}; c.s[i]+=10; else j=0;
     }
```

```
c.len=a.len; while (c.len > 1 && !c.s[c.len]) c.len --;
}
int HPCompare(const HP x, const HP y)
     if(x.len>y.len) return 1;
     if(x.len < y.len) return -1;
    int i=x.len;
    while ((i > 1) \& \& (x . s [i] = y . s [i])) i --;
    return x.s[i]-y.s[i];
}
void Divide (const HP a, const HP b, HP &c, HP &d)
     int i, j; d.len=1; d.s[1]=0;
    for (i=a.len; i>0; i--) {
         if(!(d.len==1 \&\& d.s[1]==0))
              { for (j=d. len; j>0; j--) d.s[j+1]=d.s[j]; ++d.len; }
         d.s[1] = a.s[i]; c.s[i] = 0;
         while ((j=HPCompare(d,b))>=0)
              { Subtract (d,b,d); c.s[i]++; if(j==0) break; }
                     while ((c.len > 1)\&\&(c.s[c.len] = = 0)) c.len --;
    c.len=a.len;
}
       High Precision in C Plus Plus
1.2
const int maxlen = 10000;
class HP { public:
    int len, s[maxlen]; HP() \{ (*this)=0; \};
    HP(int inte) \{ (*this)=inte; \}; HP(const char*str) \{ (*this)=str; \};
    friend ostream & operator << (ostream & cout, const HP &x);
    HP operator=(int inte);
                                    HP operator=(const char*str);
    HP operator*(const HP &b); HP operator+(const HP &b);
    \label{eq:hpoperator} \begin{split} \text{HP operator-}(\mathbf{const} \ \text{HP \&b}\,)\,; \quad \text{HP operator-}(\mathbf{const} \ \text{HP \&b}\,)\,; \end{split}
    HP operator%(const HP &b); int Compare(const HP &b);
};
ostream & operator << (ostream & cout, const HP &x)
{ for(int i=x.len; i>=1; i--) cout << x.s[i]; return cout; }
HP HP::operator=(const char *str)
{
    len=strlen(str);
    for (int i=1; i \le len; i++) s [i] = str[len-i] - '0';
    return *this;
}
HP HP::operator=(int inte)
     if(inte==0) \{ len=1; s[1]=0; return (*this); \};
    for (len=0; inte > 0;) { s[++len]=inte \%10; inte /=10; };
    return (*this);
}
HP HP::operator*(const HP &b)
{
    int i,j; HP c; c.len=len+b.len;
    for (i=1; i \le c. len; i++) c. s[i]=0;
    for (i=1;i \le len;i++) for (j=1;j \le b.len;j++) c.s[i+j-1]+=s[i]*b.s[j];
```

for (i=1;i < c.len;i++) { c.s[i+1]+=c.s[i]/10; c.s[i]%=10; }

1.3 High Precision Floating-point Number

```
const int fprec = 100; // floating-point precision
HP zero=0;
class FS{public:
    FS(); void SetZero();
    FS(int inte) \{ (*this)=inte; \}
    FS(\mathbf{char} * s) = \{ (*\mathbf{this}) = s ;
    FS operator=(char *s); FS operator=(int inte);
    FS  operator+(FS  b); FS  operator-(FS  b);
    FS operator*(FS b); FS operator/(FS b);
    friend ostream & operator << (ostream & cout, FS x);
    int sign, prec;
    HP num;
};
void FS:: SetZero() \{ sign=1; num=0; prec=0; \}
FS::FS() { SetZero(); }
ostream & operator << (ostream & cout, FS x)
     if(x.sign < 0) cout << "-";
    int i, k, low=1;
    for (i=x.num.len; i>x.prec; i--) cout << x.num.s[i];
    if ( x.num.len <= x.prec ) cout << "0";
    if ( x.num.Compare(zero)==0 ) { cout<<".0"; return cout; }</pre>
    while ( k>0 \&\& x.num.s[k]==0 ) k--;
    if(k==0) { cout << ".0"; return cout; }
    cout <<".";
    if(x.num.len < x.prec) for(int j=0; j < x.prec-x.num.len; j++) cout << 0; j
    while (x.num.s \lceil low \rceil = 0) low++;
    while (i \ge low) cout << x.num.s [i - -];
    return cout;
}
FS FS::operator=(int inte)
    prec = 0;
    if(inte>=0) \{ sign = 1; num = inte; \}
         else
                    \{ \operatorname{sign} = -1; \operatorname{num} = -\operatorname{inte}; \}
    return (*this);
}
FS FS::operator=(char *s)
    int p, i, j, l;
    SetZero();
    \label{eq:force_sign} \textbf{if} \; ( \ s[0] == \mbox{'-'} \; ) \; \; \{ \ sign \; = \; -1; \; s++; \; \};
    if(s[0]=='+') \{ sign = 1; s++; \};
    l = strlen(s);
    for (p=0; p<1; p++) if ( s[p]=='.') break;
    if(p=l) prec = 0; else prec = l-1-p;
    while (j > 1 \&\& num. s[j] = = 0) --j; num. len = j;
    return (*this);
}
```

```
void LShift (FS &a, int sl)
    a.prec+=sl; a.num.len+=sl; int i;
    for(i=a.num.len; i>sl; i--) a.num.s[i]=a.num.s[i-sl];
    while ( i > 0) a . num . s [ i - -] = 0;
}
void RShift (FS &a, int sl)
    a.prec-=sl; a.num.len-=sl; int i;
    for (i=1; i \le a.num.len; i++) a.num.s[i]=a.num.s[i+s1];
}
FS FS::operator+(FS b)
    FS c;
    if( prec>b.prec ) LShift(b,prec-b.prec); else
    if ( prec < b. prec ) LShift ((*this), b. prec - prec);</pre>
    if ( sign=b.sign ) {
        c.sign=sign; c.prec=prec; c.num=num+b.num;
        if ( c.num. Compare(zero)==0) c. SetZero();
        c.prec=prec;
        if ( num.Compare(b.num)==0) c.SetZero(); else
        if( num.Compare(b.num) > 0 ) { c.sign=sign; c.num=num-b.num; } else
        if(num.Compare(b.num) < 0) \{ c.sign=b.sign; c.num=b.num-num; \}
        if ( c.num.Compare(zero)==0 ) c.SetZero();
    if( c.prec > fprec ) RShift( c, c.prec - fprec );
    return c;
}
FS FS::operator-(FS b)
{
    b.sign = -b.sign;
    FS c = (*this) + b;
    b. sign = -b. sign;
    return c;
}
FS FS::operator*(FS b)
{
    FS c:
    c.sign = sign * b.sign ;
    c.prec = prec + b.prec;
    c.num = num * b.num
    if ( c.num.Compare(zero)==0 ) c.SetZero();
    if( c.prec > fprec ) RShift( c, c.prec - fprec );
    return c;
}
FS FS:: operator/(FS b) // 355/133 = 3.1415929203539823008849557522124
{
    FS c,d; //c = d/b
    d = (*this); LShift(d, fprec);
    c.sign = d.sign * b.sign;
    c.prec = d.prec;
    LShift (d , b.prec);
    c.num = d.num / b.num;
    if( c.prec > fprec ) RShift( c, c.prec - fprec );
    return c;
}
```

1.4 Fraction Class

```
int gcd(int a, int b){ if (b==0) return a; return gcd(b, a\%b); }
int lcm(int a, int b){ return a/gcd(a,b) * b; }
class Fraction { public:
    int a,b; // (a/b = numerator/denominator)
    int sign(int x) \{ return (x>0?1:-1); \}
    Fraction (): a(0), b(1) {}
    Fraction (int x): a(x), b(1) {}
    Fraction(int x, int y){
        int m = gcd(abs(x), abs(y));
        a = x/m * sign(y);
        if (a==0) b = 1; else b = abs(y/m);
    int get_denominator() { return b;}
    int get_numerator() { return a;}
    Fraction operator+(const Fraction &f) {
        int m = gcd(b, f.b);
        return Fraction (f.b/m * a + b/m * f.a, b/m * f.b);
    Fraction operator-(const Fraction &f) {
        int m = gcd(b, f.b);
        return Fraction (f.b/m * a - b/m * f.a, b/m * f.b);
    Fraction operator*(const Fraction &f) {
        int m1 = gcd(abs(a), f.b);
        int m2 = gcd(b, abs(f.a));
        return Fraction ( (a/m1)*(f.a/m2), (b/m2)*(f.b/m1));
    Fraction operator/(const Fraction &f)
        { return (*this)*Fraction(f.b,f.a); }
    friend ostream & operator << (ostream & out, const Fraction & f) {
        if (f.a==0) cout << 0; else
             if (f.b==1) cout << f.a; else cout << f.a << '/' << f.b;
        return out;
    }
};
1.5
      Binary Heap
#define MAXN 1048576
int n, HeapSize , Heap [MAXN+1];
void HeapUp(int p)
    int q=p>>1,a=Heap[p];
    \mathbf{while}(q)
        if(a<Heap[q]) Heap[p]=Heap[q]; else break;</pre>
        p=q; q=p >> 1;
    \text{Heap}[p]=a;
}
void AddToHeap(int a)
{
    Heap[++HeapSize]=a;
    HeapUp(HeapSize);
}
```

```
void HeapDown(int p)
    int q=p <<1,a=Heap[p];
    \mathbf{while}(\ q \le \mathrm{HeapSize}\ )\ \{
         if ( q < HeapSize \&\& Heap[q+1] < Heap[q] ) q++;
         if (\text{Heap}[q] < a) Heap[p] = \text{Heap}[q]; else break;
         p=q; q=p << 1;
    \text{Heap}[p] = a;
}
int GetTopFromHeap()
    int TopElement = Heap[1];
    \text{Heap}[1] = \text{Heap}[\text{HeapSize} - -];
    HeapDown(1);
    return TopElement;
}
void BuildHeap() // Remember to Let HeapSize = N
{ for (int i=HeapSize; i>0; i--) HeapDown(i); }
1.6
       Winner Tree
const int inf = 100000000;
const int maxsize=1048576; // 2^floor(log(n))
int heap[maxsize*2], pos[maxsize*2], n, base;
void Update(int i)
{
    int j=i <<1;
    \mathbf{if}(\text{heap}[j+1] < \text{heap}[j]) \quad j++;
    heap[i]=heap[j]; pos[i]=pos[j];
}
int GetTopFromHeap(int &ps)
{
    int ret=heap[1],p=pos[1];
             heap[p]=inf;
    ps=p;
    while (p>1) \{ p>>=1; Update(p); \}
    return ret;
}
int main()
    int i, j;
    cin >> n;
    for (base=1; base<n; base <<=1);
    for (i=base+1; i \le (base \le 1)+1; i++) {
         pos[i]=i;
         if (i \le base+n) cin >> heap[i]; else heap[i]=inf;
    for ( i=base; i >0; i --) Update( i );
    for (i=1;i<=n;i++) cout<<GetTopFromHeap(j)<<endl;
    return 0;
```

}

1.7 Digital Tree

```
#define maxlen 100
#define maxsize 1000000
#define DataType int
char tree [ maxsize ] , s [ maxlen ];
int son[maxsize], bro[maxsize], num, k, n;
DataType data[maxsize];
DataType find (const char*s)
     int i, j=0;
     for(i=0;s[i];i++)
         j=son[j];
         while ( j && tree [ j ]!=s [ i ] ) j=bro [ j ];
          if (!j) return -1;
     return data[j];
}
void add(const char*s, DataType x)
     int i, j=0,p;
     for (i = 0; s [i]; i++)
         p=j; j=son[j];
         while(j && tree[j]!=s[i]) j=bro[j];
          if(!j) {
              tree[++num]=s[i]; son[num]=0;
              bro[num] = son[p];
                                   son[p]=num;
              data[num] = -1;
                                    j=num;
          }
     }
     data[j]=x;
}
void init()
\{ \text{ num}=0; \text{ bro}[\text{num}]=0; \text{ son}[\text{num}]=0; \text{ data}[0]=-1; \}
       Segment Tree
1.8
int cc[1 << 22], m, n; // memset cc first
void update(int ii, int s, int t, int ss, int tt, bool insert) {
     if(ss>tt) return; int mid((s+t)/2);
     if(s=ss \&\& t=t) \{ if(insert) cc[ii]=t-s+1; else cc[ii]=0; return; \}
     if(cc[ii]==0) if (!insert) return; else cc[ii*2]=cc[ii*2+1]=0;
     else if (cc[ii]==t-s+1) if (insert) return;
         else { cc[ii*2]=mid-s+1; cc[ii*2+1]=t-mid; }
     update(ii *2, s, mid, ss, __min(mid, tt), insert);
     update(ii*2+1,mid+1,t, \_max(mid+1,ss),tt,insert);
     cc[ii] = cc[ii*2] + cc[ii*2+1];
}
int query(int ii, int s, int t, int ss, int tt) {
     if(ss>tt) return 0; int mid((s+t)/2);
     if(s=ss && t=tt) return cc[ii];
     if(cc[ii]==0) cc[ii*2] = cc[ii*2+1] = 0;
     if(cc[ii]==t-s+1) \{cc[ii*2]=mid-s+1; cc[ii*2+1]=t-mid;\}
     \textbf{return} \ \ query (\ \texttt{ii} *2 \ , \texttt{s} \ , \texttt{mid} \ , \texttt{ss} \ , \ \_\texttt{min} \ (\ \texttt{mid} \ , \ \texttt{tt} \ ))
            +query(ii*2+1,mid+1,t,\_max(mid+1,ss),tt);
}
```

1.9 Segment Tree in IOI'2001

```
// upper : maximum possible right point of intervals
int upper, tree[maxinterval+1];
void init()
{ upper=0; memset(tree,0,sizeof(tree)); }
void update ( int r, int x ) // sum[1..r] +=x
{ while (r \le upper) { tree [r] += x; r += (r \& (r (r-1))); } }
                                   // return sum[1..r]
int sum(int r)
     int res = 0;
      \mbox{while } ( \ r > 0 \ ) \ \{ \ res + = tree \, [ \, r \, ] \, ; \ r - = (r \, \& (r \, \hat{\ } (\, r \, - 1\, ) \, )) \, ; \ \} 
     return res;
}
         Union-Find Set
1.10
int rank[maxn], pnt[maxn];
void makeset(int x)
\{ \operatorname{rank} [\operatorname{pnt} [\mathbf{x}] = \mathbf{x}] = 0; \}
int find (int x)
     \mathbf{int} \  \  \mathrm{px}\!\!=\!\! \mathrm{x} \,,\, \mathrm{i} \,\,;
     while (px!=pnt[px]) px=pnt[px];
     while (x!=px) { i=pnt[x]; pnt[x]=px; x=i; };
     return px;
}
void merge (int x, int y) // or just pnt[find(x)]=find(y)
     if( rank[x=find(x)] > rank[y=find(y)]) pnt[y]=x;
          else { pnt[x]=y; rank[y]+=(rank[x]==rank[y]); };
1.11
         Quick Sort
void quicksort(int b, int e, int a[])
     int i=b, j=e, x=a[(b+e)/2];
     do{
       while (a[i] < x) i++;
       while (a[j]>x) j--;
       if(i \le j) std :: swap(a[i++],a[j--]);
     \mathbf{while}(i < j);
     if(i<e) quicksort(i,e,a);</pre>
     if (j>b) quicksort (b, j, a);
}
```

1.12 Merge Sort

```
void sort(int b,int e)
     if(e-b \le 0) return;
    int mid=(b+e)/2, p1=b, p2=mid+1, i=b;
    sort(b, mid); sort(mid+1, e);
    while ( p1<=mid | | p2<=e )
         if ( p2>e | | (p1<=mid && a[p1]<=a[p2]) )
              t\;[\;i+\!+\!]\!\!=\!\!a\,[\;p1+\!+];\;\;\mathbf{else}\;\;t\;[\;i+\!+\!]\!\!=\!\!a\,[\;p2+\!+];
     for ( i=b; i<=e; i++)a[i]=t[i];
}
1.13
        Radix Sort
#define base (1 << 16)
int n, a[maxn], t[maxn], bucket[base + 2];
void RadixSort(int n, int a [], int t [], int bucket [])
    {f int} k, i, j;
    for (j=0; j<base; j++) bucket [j]=0;
    for (k=base-1, i=0; i<2; i++,k<<=16)
         for (j=0; j< n; j++)
                                 bucket [a[j]&k]++;
         for(j=1; j < base; j++) bucket [j]+=bucket[j-1];
         for (j=n-1; j>=0; j--) t[--bucket[a[j]&k]]=a[j];
         for (j=0; j< n; j++)
                                 a[j]=t[j];
    }
}
        Select K^{th} Smallest Element
1.14
int select(int*a, int b, int e, int k)
     if (b=e) return a[b];
    int x = a[b+rand()\%(e-b+1)], i = b, j = e;
    i - -; j + +;
    \mathbf{while}(i < j)  {
         while (a[++i] < x); while (a[--j] > x);
         if(i < j) std :: swap(a[i], a[j]);
    if(j=e) j--; i = j-b+1;
    if(k \le i) return select(a, b, j, k);
         else return select (a, j+1, e, k-i);
}
1.15
        KMP
int fail[maxlen];
void makefail( char *t, int lt )
{
    --t;
    for (int i=1, j=0; i \le lt; i++, j++)
         fail[i]=j;
         while (j > 0 && t [i]!=t [j]) j=fail [j];
    }
// start matching pattern T in S(i..)
// return match pos or longest match length with corresponding pos
```

```
int kmp(char *s, int ls, char *t, int lt, int i,int &longest,int &lp)
    longest = lp = 0; --s; --t;
    for (int j=1; i \le ls; i++, j++) {
         while (j>0 \&\& s[i]!=t[j]) j=fail[j];
         if(j) = longest ) { longest = j; lp = i-j; }
         if (j=lt) return i-lt;
    }
    return -1;
}
1.16
        Suffix Sort
SuffixSort : input s[0..n), output id[0..n)
                     // "new bucket" overlaid on "next"
#define nb next
#define head height // head is never used when computing height
                     // after SuffixSort, "rank" overlaid on "bucket"
char s[maxn]; int n, id[maxn], height[maxn], b[maxn], next[maxn];
bool cmp(const int &i, const int &j){ return s[i] < s[j]; }
void SuffixSort()
{
    int i, j, k, h;
    for (i = 0; i < n; i++) id [i]=i;
    std :: sort(id, id+n, cmp);
    for ( i = 0; i < n; i + +)
         if(i = 0 | | s[id[i]]! = s[id[i-1]]) b[id[i]] = i;
             else b[id[i]]=b[id[i-1]];
    for(h=1; h< n; h<<=1)
         for (i=0; i< n; i++) head [i]=next[i]=-1;
         for(i=n-1; i>=0; i--) if(id[i])
             j = id[i]-h; if(j < 0) j+=n;
             next[j] = head[b[j]]; head[b[j]] = j;
         j=n-h; next[j] = head[b[j]]; head[b[j]] = j;
         for (i=k=0; i < n; i++) if (head[i]>=0)
             for (j=head[i]; j>=0; j=next[j]) id[k++]=j;
         for (i = 0; i < n; i++) if (i > 0 && id [i]+h < n && id [i-1]+h < n
             && b[id[i]] == b[id[i-1]] && b[id[i]+h] == b[id[i-1]+h])
                  nb[id[i]] = nb[id[i-1]]; else nb[id[i]] = i;
         for (i = 0; i < n; i++) b[i] = nb[i];
    }
GetHeight: height[i] = LCP(s[id[i]], s[id[i] - 1]
void GetHeight()
    int i, j, h; height[0] = 0;
    for(i=0; i< n; i++) rank[id[i]] = i;
    for (h=0, i=0; i< n; i++) if (rank[i] > 0)
    {
         j = id [ rank[i] -1 ];
         while ( s[i+h] == s[j+h] ) ++h;
         height [ rank [ i ] ] = h;
         if(h>0) --h;
    }
}
```

Chapter 2

Graph Theory and Network Algorithms

2.1 SSSP — Dijkstra + Binary Heap

```
const int inf = 10000000000;
int n,m,num, len, next [maxm], ev [maxm], ew [maxm];
int value [maxn], mk[maxn], nbs [maxn], ps [maxn], heap [maxn];
void update(int r)
     int q=ps[r],p=q>>1;
     while(p && value [heap [p]] > value [r]) {
          ps[heap[p]] = q; heap[q] = heap[p];
          q=p; p=q>>1;
     heap[q]=r; ps[r]=q;
}
int getmin()
     int ret=heap [1], p=1, q=2, r=heap [len --];
     \mathbf{while} (\mathbf{q} \leq \mathbf{len})  {
          if (q < len \&\& value [heap [q+1]] < value [heap [q]]) q++;
          if ( value [heap [q]] < value [r]) {
               ps\left[\,heap\,[\,q\,]\right]\!=\!p\,;\ heap\left[\,p\right]\!=\!heap\,[\,q\,]\,;
               p=q; q=p << 1;
          } else break;
     heap[p]=r; ps[r]=p;
     return ret;
}
void dijkstra(int src,int dst)
     int i, j, u, v;
     for (i=1; i \le n; i++) {value [i]=inf; mk[i]=ps[i]=0; };
     value [\operatorname{src}] = 0; heap [\operatorname{len} = 1] = \operatorname{src}; ps [\operatorname{src}] = 1;
     \mathbf{while}(!mk[dst])  {
          if(len==0) return;
          u=getmin(); mk[u]=1;
          for ( j=nbs [ u ] ; j ; j=next [ j ] ) {
               v=ev[j]; if(!mk[v] && value[u]+ew[j] < value[v]) 
                     if(ps[v]==0)\{ heap[++len]=v; ps[v]=len; \}
                     value[v]=value[u]+ew[j]; update(v);
               }
          }
     }
}
```

```
void readdata()
     int i, u, v, w;
     cin >> n >> m; num = 0;
     for (i=1; i \le n; i++) nbs [i]=0;
     \mathbf{while} (\mathbf{m}--){
          cin>>u>>v>>w;
          next[++num] = nbs[u]; nbs[u] = num;
          ev[num] = v; ew[num] = w;
     dijkstra(1,n); // Minimum Distance saved at value[1..n]
}
2.2
        SSSP - Bellman Ford + Queue
const int maxn = maxm = 1000005
const int \inf = 1000000000
int nbs[maxn], next[maxm], value[maxn], open[maxn], open1[maxn];
int ev [maxm], ew [maxm], mk [maxn], n, m, num, cur, tail;
void BellmanFord(int src)
     int i, j, k, l, t, u, v, p=0;
     for (i=1; i \le n; i++) { value [i] = inf; mk[i] = 0; }
     value [\operatorname{src}] = \operatorname{tail} = 0; open [0] = \operatorname{src};
     \mathbf{while}(++p, \text{ tail} >=0){
          for(i=0; i \le tail; i++) open1[i] = open[i];
          for(cur=0,t=tail,tail=-1;cur <=t;cur++)
               for (u=open1 [cur], i=nbs [u]; i; i=next [i]) {
                    v=ev[i]; if ( value [u]+ew[i] < value [v]) {
                         value[v] = value[u] + ew[i];
                         if(mk[v]!=p) \{ open[++tail]=v; mk[v]=p; \}
                    }
               }
     }
}
        MST — Kruskal
2.3
#define maxn 1000005
#define maxm 1000005
int id [maxm], eu [maxm], ev [maxm], ew [maxm], n, m, pnt [maxn];
int cmp(const int &i,const int &j){ return ew[i]<ew[j]; }
int find(int x){ if(x!=pnt[x]) pnt[x]=find(pnt[x]); return pnt[x]; }
int Kruskal()
{
     \mathbf{int} \quad \mathtt{ret} = \! 0, \mathtt{i} \ , \mathtt{j} \ , \mathtt{p} \, ;
     for (i=1;i \le n;i++) pnt [i]=i; // node [1..n]
                                       // ew [0..m-1]
     for (i=0; i < m; i++) id [i]=i;
     std::sort(id,id+m,cmp);
     for (j=-1, i=1; i < n; i++){
          while (p=id[++j], find(eu[p])==find(ev[p]));
          ret + = ew[p]; pnt[find(ev[p])] = find(eu[p]);
     return ret;
```

}

2.4 Minimum Directed Spanning Tree

int n,g[maxn][maxn], used[maxn], pass[maxn], eg[maxn], more, queue[maxn];

```
void combine(int id, int& sum) {
    int tot = 0, from, i, j, k;
    for (; id!=0&&!pass[id]; id=eg[id]) { queue[tot++]=id; pass[id]=1;}
    for (from = 0; from < tot & queue [from]! = id; from ++);
    if (from==tot) return; more = 1;
    for(i=from; i < tot; i++)
        sum+=g[eg[queue[i]]][queue[i]];
         if ( i != from ) { used [ queue [ i ] ] = 1;
             for (j = 1; j \le n; j++) if (! used [j])
                  if(g[queue[i]][j]<g[id][j]) g[id][j]=g[queue[i]][j];
         }
    for (i=1; i<=n; i++) if (!used[i]&&i!=id) {
         for (j=from; j< tot; j++)\{k=queue[j];
         if(g[i][id]>g[i][k]-g[eg[k]][k]) g[i][id]=g[i][k]-g[eg[k]][k];
    }
}
int msdt(int root) { // return the total length of MDST
    int i, j, k, sum = 0;
    memset(used, 0, sizeof(used));
    for(more=1; more;) \{ more = 0;
        memset(eg, 0, sizeof(eg));
         for (i = 1; i \le n; i++) if (! used[i] \&\& i != root) {
             for (j = 1, k = 0; j \le n; j++) if (! used [j] \&\& i != j)
                  if (k == 0 || g[j][i] < g[k][i]) k = j;
             eg[i] = k;
         } memset(pass, 0, sizeof(pass));
         \mathbf{for}(i=1;i \leq n;i++) \mathbf{if}(! used[i]\&\&! pass[i]\&\&i!=root) combine(i,sum);
    for (i=1; i \le n; i++) if (! used [i] \&\& i!=root) sum+=g[eg[i]][i];
    return sum;
}
2.5
      Maximum Matching on Bipartite Graph
int nx, ny, m, g[MAXN][MAXN], sy[MAXN], cx[MAXN], cy[MAXN];
int path(int u)
{
    for (int v=1; v \leftarrow y; v++) if (g[u][v] \&\& !sy[v]) \{ sy[v]=1;
         if(!cy[v] \mid | path(cy[v])) \{ cx[u]=v; cy[v]=u; return 1; \}
    } return 0;
}
int MaximumMatch()
    int i, ret = 0;
    memset(cx, 0, sizeof(cx)); memset(cy, 0, sizeof(cy));
    \mathbf{for}(i=1;i\leq \mathbf{mx};i++)\mathbf{if}(!\mathbf{cx}[i]) { memset(sy,0,sizeof(sy)); ret+=path(i);}
    return ret;
}
```

2.6 Maximum Cost Perfect Matching on Bipartite Graph

```
int cx [maxn], cy [maxn], sx [maxn], sy [maxn], lx [maxn], ly [maxn];
int nx,ny,match,g[maxn][maxn];
int path(int u)
    sx[u]=1; for(int v=1;v \le ny;v++) if(g[u][v]==lx[u]+ly[v] &&!sy[v])
    \operatorname{sy}[v]=1; if (!\operatorname{cy}[v] \mid | \operatorname{path}(\operatorname{cy}[v])) { \operatorname{cx}[u]=v; \operatorname{cy}[v]=u; return 1;}
     } return 0;
}
void KuhnMunkres()
    int i, j, u, min;
    memset(lx, 0, sizeof(lx));
                                      memset(ly,0,sizeof(ly));
    memset(cx, 0, sizeof(cx));
                                     memset(cy, 0, sizeof(cy));
    for (i=1;i<=nx;i++) for (j=1;j<=ny;j++) if (lx[i]<g[i][j]) lx[i]=g[i][j];
    for (match=0, u=1; u \le nx; u++) if (!cx[u]) {
         memset(sx, 0, sizeof(sx)); memset(sy, 0, sizeof(sy));
         while (! path(u)) {
              \min=0 \times 3 fffffff;
              for ( i =1; i <=nx; i++) if (sx[i]) for ( j =1; j <=ny; j++) if (!sy[j])
                    if ( lx[i]+ly[j]-g[i][j]<min ) min=lx[i]+ly[j]-g[i][j];
              for (i=1;i<=nx;i++) if (sx[i]) { lx[i]-=min; sx[i]=0; }
               for (j=1; j \le y; j++) if (sy[j]) { ly[j] + min; sy[j] = 0; }
          };
    }
}
```

2.7 Maximum Matching on General Graph

```
// total is the maximum cardinality, p[1..n] means a match: i \leftarrow p[i]
int g[maxn][maxn],p[maxn],l[maxn][3],n,total,status[maxn],visited[maxn];
void solve()
    int i, j, k, pass;
    memset(p, 0, sizeof(p));
    do\{i=0;
        do\{if(p[++i]) pass=0; else \{
                 memset(1,0,sizeof(1));
                 1[i][2] = 0 xff; pass=path(i);
                 for(j=1; j \le n; j++) for(k=1; k \le n; k++)
                      if(g[j][k]<0) g[j][k]=-g[j][k];
         } while ( i!=n && ! pass);
         if(pass) total += 2;
    } while (i!=n && total!=n);
}
void upgrade(int r)
    int j=r, i=l[r][1];
    for (p[i]=j; l[i][2] < 0 x f f;)
        p[j]=i; j=l[i][2]; i=l[j][1]; p[i]=j;
        p[j]=i;
}
```

```
int path(int r)
    int i,j,k,v,t,quit;
    memset(status, 0, sizeof(status)); status[r]=2;
    \mathbf{do}\{ \text{ quit} = 1;
         for(i=1;i \le n;i++) if(status[i]>1)
             for (j=1;j<=n;j++) if (g[i][j]>0 && p[j]!=i)
                  if(status[j]==0) {
                       if(p[j]==0){ l[j][1]=i; upgrade(j); return 1;} else
                       if(p[j]>0) {
                           g[i][j]=g[j][i]=-1; status[j]=1;
                           1[j][1] = i; g[j][p[j]] = g[p[j]][j] = -1;
                           l[p[j]][2] = j;
                                           status[p[j]] = 2;
                           quit = 0;
                       }
                  } else
                  if(status[j]>1 && (status[i]+status[j]<6)){
                       quit = 0; g[i][j] = g[j][i] = -1;
                      memset(visited, 0, sizeof(visited));
                       visited[i]=1;
                                       k=i ; v=2;
                       while (1 [k] [v]! = 0 xff) \{k=1 [k] [v]; v=3-v; visited [k]=1;\}
                      k=i; v=2;
                       while (! visited[k]) \{ k=l[k][v]; v=3-v; \}
                       if (status [i]!=3) l[i][1]=j;
                       if(status[j]!=3) l[j][1]=i;
                       status[i]=status[j]=3; t=i; v=2;
                       \mathbf{while}(t!=k) {
                           if (status [1 [t] [v]]!=3) 1 [1 [t] [v]] [v]=t;
                           t=1[t][v]; status[t]=3; v=3-v;
                       }
                      t=j; v=2;
                      \mathbf{while}(t!=k) {
                           if (status [1 [t] [v]]!=3) 1 [1 [t] [v]] [v]=t;
                           t=1[t][v]; status[t]=3; v=3-v;
                       }
    }while(!quit);
    return 0;
}
```

2.8 Maximum Flow — Ford Fulkson in Matrix

2.9 Maximum Flow — Ford Fulkson in Link

```
#define maxn 1000
\#define maxm 2*maxn*maxn
int c [maxm], f [maxm], ev [maxm], be [maxm], next [maxm], num=0;
int nbs[maxn], pnt[maxn], open[maxn], d[maxn], mk[maxn];
void AddEdge(int u, int v, int cc) // Remember to set nbs[1..n]=num=0
                                    nbs[u]=num; be[num]=num+1;
      next[++num] = nbs[u];
     ev[num]=v; c[num]=cc;
                                     f[num] = 0;
     next[++num] = nbs[v];
                                    nbs[v]=num; be[num]=num-1;
     \operatorname{ev}[\operatorname{num}] = \mathbf{u}; \quad \operatorname{c}[\operatorname{num}] = 0;
                                    f[num] = 0;
}
int maxflow(int n,int s,int t)
     int cur, tail, i, j, u, v, flow = 0; // f has been set zero when AddEdge
     do\{ memset(mk, 0, sizeof(mk)); memset(d, 0, sizeof(d));
           open[0] = s; mk[s] = 1; d[s] = 0 \times 3 fffffff;
           for(pnt[s]=cur=tail=0; cur \le tail && !mk[t]; cur++)
                for (u=open [ cur ] , j=nbs [u ]; j; j=next [ j ]) { v=ev [ j ];
                      if (!mk[v]&&f[j]<c[j]) {
                           mk[v]=1; open[++tail]=v; pnt[v]=j;
                           if (d[u]<c[j]-f[j]) d[v]=d[u]; else d[v]=c[j]-f[j];
                      }
           if (!mk[t]) break; flow+=d[t];
           \mathbf{for}\,(\,u\!\!=\!\!t\;;u!\!=\!s\;;u\!\!=\!\!ev\,[\,be\,[\,j\,]\,]\,)\,\{\,j\!\!=\!\!pnt\,[\,u\,]\,;\,f\,[\,j]\!\!+\!\!=\!\!d\,[\,t\,]\,;\,f\,[\,be\,[\,j\,]]\!\!=\!\!-\,f\,[\,j\,]\,;\,\}
      } while (d[t] > 0); return flow;
}
```

2.10 Minimum Cost Maximum Flow in Matrix

```
const int inf=0x3fffffff;
int c[maxn][maxn], f[maxn][maxn], w[maxn][maxn], pnt[maxn];
int value [maxn], d[maxn], mk[maxn], open [maxn], oldque [maxn];
void mincost(int n, int s, int t, int &flow, int &cost)
      int cur, tail, tl, i, j, u, v;
      memset(f, 0, sizeof(f)); flow=0; cost=0;
      do\{ memset(d, 0, sizeof(d));
             for(i=1;i \le n;i++) value[i]=inf;
            open \hspace{0.1cm} [0] \hspace{0.1cm} = \hspace{0.1cm} s \hspace{0.1cm} ; \hspace{0.1cm} d\hspace{0.1cm} [\hspace{0.1cm} s \hspace{0.1cm}] \hspace{0.1cm} = \hspace{0.1cm} 0 \hspace{0.1cm} x \hspace{0.1cm} 3 \hspace{0.1cm} fffffff \hspace{0.1cm} ; \hspace{0.1cm} t \hspace{0.1cm} ail \hspace{0.1cm} = \hspace{0.1cm} v \hspace{0.1cm} alue \hspace{0.1cm} [\hspace{0.1cm} s \hspace{0.1cm}] \hspace{0.1cm} = \hspace{0.1cm} 0;
             \mathbf{while}(tail >= 0)
                   memset(mk, 0, sizeof(mk));
                   memcpy(oldque,open,sizeof(open));
                   {\bf for}\,(\,\,t\,l\!=\!t\,a\,i\,l\,\,,\,pnt\,[\,\,s\,]\!=\!c\,u\,r\!=\!0,\,t\,a\,i\,l\,=\!-1;\,\,c\,u\,r\!<\!=\!t\,l\,\,;\,\,\,c\,u\,r\,+\!+)
                   for (u=oldque [cur], v=1; v<=n; v++)
                          if(f[u][v] < c[u][v] && value[u] < inf
                                && value [u]+w[u][v]<value[v]){
                                if(!mk[v]) \{ mk[v]=1; open[++tail]=v; \};
                                pnt [v]=u; value [v]=value [u]+w[u] [v];
                                if(d[u] < c[u][v] - f[u][v]) d[v] = d[u];
                                       else d[v]=c[u][v]-f[u][v];
                          }
             if (value [t] == inf) return;
             flow+=d[t]; cost+=d[t]*value[t];
             for (u=t; u!=s;) {
                   v=u; u=pnt[v]; f[u][v]+=d[t]; f[v][u]=-f[u][v];
                   if (f[u][v] < 0) w[u][v] = -w[v][u]; else
                   if (f[v][u] < 0) w[v][u] = -w[u][v];
      \} while (d[t] > 0);
}
```

2.11 Minimum Cost Maximum Flow in Link

```
#define maxn 350
#define maxm 100000 // maxm*2
const int inf=0x3fffffff;
int c[maxm], f[maxm], w[maxm], ev[maxm], be[maxm], next[maxm], value[maxn];
int nbs[maxn], pnt[maxn], open[maxn], oldque[maxn], d[maxn], mk[maxn], num=0;
void AddEdge(int u, int v, int cc, int ww) // Remember to set nbs[1..n]=num=0
                                 nbs[u]=num; be[num]=num+1;
     next[++num] = nbs[u];
     ev[num] = v; c[num] = cc;
                                 f[num] = 0; w[num] = ww;
     next[++num] = nbs[v];
                                 nbs[v]=num; be[num]=num-1;
     \operatorname{ev}[\operatorname{num}] = \mathbf{u}; \quad \operatorname{c}[\operatorname{num}] = 0;
                                 f[num] = 0; w[num] = -ww;
}
void mincost(int n, int s, int t, int &flow, int &cost)
     int cur, tail, tl, i, j, u, v;
     memset(f, 0, sizeof(f)); flow = 0; cost = 0;
     do\{ memset(d, 0, sizeof(d));
          for(i=1;i \le n;i++) value[i] = inf;
          open [0] = s; d[s] = 0 \times 3 ffffffff; tail=value [s] = 0;
          \mathbf{while}(tail >= 0){
               memset(mk, 0, sizeof(mk));
              memcpy(oldque, open, sizeof(open));
               for (tl=tail, pnt[s]=cur=0, tail=-1; cur=tl; cur++)
               for (u=oldque [cur], j=nbs [u]; j; j=next [j]) { v=ev [j];
                    if(f[j]<c[j] && value[u]<inf && value[u]+w[j]<value[v]){
                         if(!mk[v]) \{ mk[v] = 1; open[++tail] = v; \};
                         pnt[v]=j; value[v]=value[u]+w[j];
                         i\,f\,(\,d\,[\,u]\!<\!c\,[\,j\,]\!-\!f\,[\,j\,]\,)\ d\,[\,v]\!=\!d\,[\,u\,]\,;\ \mathbf{else}\ d\,[\,v\,]\!=\!c\,[\,j\,]\!-\!f\,[\,j\,]\,;
                    }
               }
          if (value [t]==inf) return;
          flow+=d[t]; cost+=d[t]*value[t];
          for (u=t; u!=s; u=ev [be[j]]) { j=pnt [u]; f [j]+=d[t]; f [be[j]]=-f[j]; }
     } while (d[t] > 0);
}
2.12
         Recognizing Chordal Graph
int n,m,mk[maxn], degree[maxn],PEO[maxn],g[maxn][maxn];
int Chordal()
{
     memset(mk, 0, sizeof(mk)); memset(degree, 0, sizeof(degree));
     for (int j, k, u, v, i = 0; i < n; i++) {
          j = -1; u = -1;
          \mathbf{for}(k=0;k< n;k++) \mathbf{if}(!mk[k] \&\& (j<0) \mid degree[k]> degree[j])) j=k;
          mk[j]=1; PEO[i]=j;
          for(k=i-1;k>=0;k--) if(g[j][PEO[k]])
               if( u<0 ) u=PEO[k]; else if( !g[u][PEO[k]]) return 0;</pre>
          for(k=0;k< n;k++) if(!mk[k] && g[j][k]) degree[k]++;
     return 1;
}
```

2.13 DFS — Bridge

```
int n, g[maxn][maxn], mk[maxn], d[maxn], low[maxn];
int color, ti, bridgenum, bridgeu[maxn], bridgev[maxn];
void dfsvisit(int u,int p)
    int v, s=0, bBridge=0; low[u]=d[u]=++ti; mk[u]=-color;
    for (v=1; v \le n; v++) if (g[u][v] \&\& v!=p)
         if(mk[v]==0){dfsvisit(v,u); s++;}
             if(low[v] < low[u]) low[u] = low[v];
             \mathbf{if}(\operatorname{low}[v] = \operatorname{d}[v]) {
                  bridgeu [bridgenum ]=u;
                  bridgev [bridgenum++]=v;
         } else if (d[v] < low[u]) low [u] = d[v];
    mk[u] = color;
}
void dfs()
    int i, j, k; memset(mk, 0, sizeof(mk));
    color=ti=bridgenum=0;
    for (i=1; i \le n; i++) if (!mk[i]) \{ ++ color; dfsvisit(i,0); \}
    cout << bridgenum << endl;
}
        DFS — Cutvertex
2.14
int n,g[maxn][maxn],mk[maxn],d[maxn],low[maxn];
int color, ti, cutvertexnum, cutvertexlist[maxn];
void dfsvisit(int u,int p)
{
    int v, s=0, bVertex=0; low[u]=d[u]=++ti; mk[u]=-color;
    for (v=1; v \le n; v++) if (g[u][v] \&\& v!=p)
         if(mk[v]==0){dfsvisit(v,u); s++;}
             if(low[v] < low[u]) low[u] = low[v];
             if(low[v]>=d[u]) bVertex=1;
         else if(d[v]<low[u]) low[u]=d[v];
    if ((p && bVertex) | | (!p && s>1)) cutvertexlist [cutvertexnum++]=u;
    mk[u] = color;
}
void dfs()
    int i,j,k; memset(mk,0,sizeof(mk));
    color=ti=cutvertexnum=0;
    for(i=1; i \le n; i++) if(!mk[i]) \{ ++color; dfsvisit(i,0); \}
    cout << cutvertexnum << endl;
    for (i=0;i<cutvertexnum;i++) cout<<cutvertexlist[i]<<""; cout<<endl;
}
```

2.15 DFS — Block

```
int n,g[maxn][maxn],mk[maxn],d[maxn],low[maxn],len,que[maxn];
int color, ti, cutvertexnum, cutvertexlist[maxn], blocknum;
void dvsvisit(int u,int p)
    int v, s=0, bCutvertex=0; low[u]=d[u]=++ti; mk[u]=-color; que[++len]=u;
    for(v=1; v \le n; v++) if(g[u][v] \&\& v!=p)
         if(mk[v]==0)\{dvsvisit(v,u); s++;
             if(low[v] < low[u]) low[u] = low[v];
             if(low[v]>=d[u])
                  while (que[len]!=v) cout \ll que[len--] \ll ";
                  cout << que [len --]<<" " "<< u<< endl;
                  bCutvertex=1; blocknum++;
         } else if (d[v] < low[u]) low [u] = d[v];
    if((p \&\& bCutvertex) \mid | (!p \&\& s>1)) cutvertexlist[cutvertexnum++]=u;
    mk[u] = color;
}
void dfs()
    int i, j, k; memset(mk, 0, sizeof(mk));
    color=ti=cutvertexnum=blocknum=0;
    for ( i = 1; i <=n; i++) if (!mk[i]) {
        ++color; len=0; dvsvisit(i,0);
         if(len > 1 | | d[i] = ti)
             while (len >1) cout << que [len --] << "";
             cout << i << endl; blocknum++;
         }
    }
    cout << "Block _Number _: _ "<< blocknum << endl;
    cout << "Cutvertex_Number:_" << cutvertexnum << endl;
    for (i=0;i<cutvertexnum;i++) cout<<cutvertexlist[i]<<"";
    cout << endl << endl;
}
```

2.16 DFS — Topological Sort

```
int n,mk[maxn],topo[maxn],g[maxn][maxn],ps,topook;
void dfs(int u)
{
    if(mk[u]<0)\{topook=0; return;\}; if(mk[u]>0) return; else mk[u]=-1;
    for (int v=1; topook && v \le n; v++) if (g[u][v]) dfs (v);
    topo [ps--]=u; mk[u]=1;
}
void toposort()
    int i, j, k; topook=1; ps=n; memset(mk, 0, sizeof(mk));
    for (i=1;topook && i<=n;i++) if (!mk[i]) dfs(i);
}
int main()
    int i, m, u, v;
    while (cin>>n>>m, n &&!cin.fail()) {
        memset(g, 0, sizeof(g));
        while (m--)\{ cin >> u >> v ; g[u][v]=1; \}; toposort();
        for(i=1;i< n;i++) cout << topo[i] << ""; cout << topo[n] << endl;
    }
    return 0;
}
2.17
        Strongly Connected Component
int g[maxn][maxn],n, mk[maxn], list[maxn],num;
void back(int v)
{
    mk[v] = 1; cout << v << "_";
    for (int u=1; u <= n; u++) if (!mk[u] && g[u][v]) back(u);
}
```

Chapter 3

Number Theory

3.1 Greatest Common Divisor

```
void gcd(int a,int b,int &d,int &x,int &y)
{
    if( b==0){ d=a; x=1; y=0; return; }
    gcd( b, a%b, d, y, x );
    y -= x * (a/b);
}
```

3.2 Chinese Remainder Theorem

```
extended\_euclid(a, b) = ax + by
int extended_euclid(int a,int b,int &x,int &y)
     if (b==0){ x=1,y=0; return a; } else {
          int res=extended_euclid(b,a%b,x,y);
          {\bf int} \ t\!=\!\!x\,; \ x\!\!=\!\!y\,; \ y\!\!=\!\!t\,-\!(a/b)\!*\!y\,;
          return res;
}
   ax \equiv b \pmod{n}, n > 0
void modular_linear_equation_solver(int a, int b, int n)
     int d, x, y, e, i;
     d=extended_euclid(a,n,x,y);
     if (b%d!=0) cout << "No_answer!"; else {</pre>
          e=x*(b/d)%n;
                            // x=e is a basic solution
          for(i=0;i< d;i++) cout << (e+i*(n/d))%n << endl;
     }
}
   Given b_i, w_i, i = 0 \cdots len - 1 which w_i > 0, i = 0 \cdots len - 1 and (w_i, w_j) = 1, i \neq j
Find an x which satisfies: x \equiv b_i \pmod{w_i}, i = 0 \cdots len - 1
int china(int b[], int w[], int len)
     int i, d, x, y, x, m, n;
     x=0; n=1; for(i=0;i<len;i++) n*=w[i];
     for (i = 0; i < len; i++){
         m=n/w[i];
          d=extended_euclid(w[i],m,x,y);
          x = (x+y*m*b[i])%n;
     return (n+x\%n)\%n;
}
```

3.3 Prime Generator

```
#define maxn 10000000
#define maxp 1000000
\mathbf{char} \ \mathrm{mk} [\, \mathrm{maxn} \,] ;
int prime[maxp], pnum;
void GenPrime(int n)
{
     int i, j, k; pnum = 0; memset(mk, 0, n+1);
     for(i=2,k=4; i \le n; i++,k+=i+i-1) if(!mk[i])
         prime[pnum++] = i;
          if(k \le n) for(j=i+i; j \le n; j+=i) mk[j] = 1;
}
3.4
       \phi Generator
\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}), where p is a prime.
\phi(846720) = 193536
int Phi(int n) // O( Sqrt(N) )
{
     int i, j, ret=n;
     for (i=2, j=4; j \le n; i++, j+=i+i-1) if (!(n\%i))
          ret = ret / i * (i-1);
         while ( !(n\%i) ) n/=i;
     if(n>1) ret = ret / n * (n-1);
     return ret;
}
\#define maxn 10000000
#define maxp 1000000
int phi[maxn], prime[maxp], pnum;
void GenPhi(int n) // O( N loglog N )
{
     int i, j, k; pnum = 0;
     memset(phi, 0, (n+1)*sizeof(phi[0]));
     phi[1] = 1;
     for ( i = 2; i <=n; i++) if (!phi[i])
         prime[pnum++] = i;
         for ( j=i ; j<=n ; j+=i )
              if (! phi [ j ] ) phi [ j ]= j;
              phi[j] = phi[j]/i*(i-1);
          }
     }
}
```

3.5 Discrete Logarithm

```
#define llong __int64
inline int mod(int x, int n) {return (x%n+n)%n;}
   // ax \equiv 1 \pmod{n}
int Inv(int a, int n)
    int d, x, y; Gcd(a, n, d, x, y);
     if (d==1) return mod(x,n); else return -1;
}
   // x \equiv a^b \pmod{n}, a, b >= 0
int ModPow(int a, int b, int n)
{
    llong d(1), i(0); while b=((llong)1 << i) i++;
    for(--i; i >= 0; --i) \{ d=d*d\%n; if(b&(1 << i)) d=d*a\%n; \}
    return d;
}
  // a^x \equiv b \pmod{n}, n is prime!
int mexp[50000], id [50000];
bool logcmp(const int &a, const int &b) {return mexp[a]<mexp[b];}
int ModLog(int a,int b,int n)
    int i, j, m = (int) ceil(sqrt(n)), inv = Inv(ModPow(a, m, n), n);
    for (id[0]=0, mexp[0]=i=1; i < m; i++)
         \{ id[i]=i; mexp[i] = (mexp[i-1]*(llong)a)\%n; \}
    std::stable_sort(id,id+m,logcmp);
    std :: sort (mexp, mexp+m);
                                // i*m < n
    for (i=0; i < m; i++) {
         j = std :: lower_bound(mexp, mexp+m, b) - mexp;
         if (j < m && mexp[j] == b) return i *m+id[j];
         b = (b*(llong)inv)%n;
    return -1;
}
```

3.6 Square Roots in Z_p

```
#define llong __int64
\mathbf{int} \hspace{0.2cm} \mathbf{ModPow(\hspace{0.1cm} int} \hspace{0.2cm} \mathtt{a}\hspace{0.1cm}, \mathbf{int} \hspace{0.2cm} \mathtt{b}\hspace{0.1cm}, \mathbf{int} \hspace{0.2cm} \mathtt{n}\hspace{0.1cm}) \hspace{0.2cm} /\!/ \hspace{0.2cm} a\hspace{0.1cm} \, {}^{\hspace{0.1cm} b} \hspace{0.1cm} \hspace{0.1cm} mod \hspace{0.1cm} n \hspace{0.1cm} a\hspace{0.1cm}, b\hspace{0.1cm} > =\hspace{0.1cm} 0
      llong d(1), i(0);
      while (b)=((llong)1 << i)) i++;
      return d;
}
// x*x = a \pmod{n} n should be a prime and gcd(a,n)==1
int ModSqrt(int a, int n)
      int b, k, i, x;
      if (n==2) return a\%n;
      if (ModPow(a, (n-1)/2, n) = = 1)  {
            if (n\%4==3) x = ModPow(a,(n+1)/4,n); else {
                  for (b=1; ModPow(b, (n-1)/2, n)==1; b++);
                  i = (n-1)/2; k=0; do{ i/=2; k/=2;
                        if((ModPow(a,i,n)*(llong)ModPow(b,k,n)+1)\%n==0) k+=(n-1)/2;
                  } while (i\%2==0);
                 x = (ModPow(a, (i+1)/2, n) * (llong)ModPow(b, k/2, n)) % n;
                 if(x*2>n) x=n-x; return x;
      \} return -1;
}
int main()
      int a, n, casec, x; cin >> casec;
      while (casec --) {
            cin >> a >> n; x = ModSqrt(a, n);
            if (x<0) cout << "No_root" << endl;
            else if (x*2==n) cout << x << endl;
            else cout << x << ' ' ' << n-x << endl;
      return 0;
}
```

Chapter 4

Algebraic Algorithms

4.1 Linear Equations in Z_2

```
// Gauss Elimination : \bigoplus_{0 < j < nn} a_{i,j} x_{i,j} = a_{i,nn}
int m, nn, num, list [maxn]; char a [maxn] [maxn];
int reduce()
     \mathbf{int} \quad i \ , j \ , k \ , r \ ;
     for (i=r=0; i < nn; i++){
          for ( j=r; j <m && !a[j][i]; j++); if (j>=m) continue;
          if (j>r) for (k=0; k=nn; k++) std::swap(a[r][k],a[j][k]);
          for (num=0,k=i; k<=nn; k++) if ( a[r][k] ) list [num++]=k;
          for ( j=0; j<m; j++) if ( j!=r && a[j][i])
               for (k=0; k \le num; k++) a [j][list[k]]^=1;
          ++r;
     \mathbf{for} (i=0; i \le m; i++)
          if (a [ i ] [ nn ] ) {
               for (j=0; j < nn \&\& !a[i][j]; j++);
               if(j=nn) return 0; // else x[j]=a[i][nn]/a[i][j];
     return 1;
}
```

4.2 Linear Equations in Z

```
// Gauss Elimination : \sum_{0 < i < nn} a_{i,j} x_{i,j} = a_{i,nn}
int m, nn, a [maxn] [maxn];
int gcd(int x,int y)
{ if (y==0) return x; else return gcd(y,x\%y); }
void yuefen(int b[], int ct)
    int i, j=0,k;
    for (i=0;i<ct;i++) if (b[i]) if (j) k=gcd(b[i],k); else {k=b[i]; j=1;}
    if(k!=0) for(i=0; i < ct; i++) b[i]/=k;
}
int reduce() // return 0 means no solution!
    int i, j, k, r, tmp;
    for (i=r=0; i < nn; i++)
         for (j=r; j \le \& \& !a[j][i]; j++); if (j>=m) continue;
         if(j>r) for(k=0; k=nn; k++) std :: swap(a[r][k], a[j][k]);
         for ( j=0; j <m; j++) if ( j!=r && a[j][i]) {
             tmp=a [ j ] [ i ];
             for (k=0;k<=nn;k++) a[j][k]=a[j][k]*a[r][i]-tmp*a[r][k];
             yuefen (a[j], nn+1);
         ++r;
    for (i=0;i<m;i++) if (a[i][nn]) {
         for (j=0; j < nn \&\& !a[i][j]; j++);
         if (j=nn) return 0; // else x[j]=a[i][nn]/a[i][j];
    return 1;
}
```

4.3 Linear Equations in Q

```
Note: fraction.h contains a Fraction Class (Section 1.4 on Page 8)
#include < fraction.h>
int m, nn; Fraction a [maxn] [maxn];
int dcmp(Fraction x){return x.a;}
int reduce()
    int i,j,k,r; double tmp;
     for (i=r=0; i < nn; i++)
         for(j=r; j <m &&!dcmp(a[j][i]); j++); if(j>=m) continue;
         if(j>r) for(k=0; k \le nn; k++) std :: swap(a[r][k], a[j][k]);
         for (j=0; j \le m; j++) if (j!=r \&\& dcmp(a[j][i]))
              tmp=a[j][i]/a[r][i];
              for (k=0;k<=nn;k++) a[j][k]=a[j][k]-tmp*a[r][k];
         ++r;
    \mathbf{for}(i=0;i \le m;i++) \mathbf{if}(\mathrm{dcmp}(a[i][nn]))
         for (j=0; j < nn \&\& !dcmp(a[i][j]); j++);
         if (j=nn) return 0; // else x[j]=a[i][nn]/a[i][j];
         return 1;
}
```

4.4 Linear Equations in R

```
const double eps=1e-8;
\mathbf{int}\ m,nn\,;\ \mathbf{double}\ a\,[\,\mathrm{max}n\,]\,[\,\mathrm{max}n\,]\,;
int dcmp(double x){ if (x>eps) return 1; if (x<-eps) return -1; return 0;}
int reduce() // r is rank
     int i,j,k,r; double tmp;
     for (i=r=0; i < nn; i++)
          for (j=r; j \le k ! dcmp(a[j][i]); j++); if(j>=m) continue;
          if(j>r) for(k=0;k<=nn;k++) std::swap(a[r][k],a[j][k]);
          for (j=0;j<m;j++) if (j!=r && dcmp(a[j][i])) {
              tmp=a [ j ] [ i ] / a [ r ] [ i ];
              \mathbf{for}\,(\,k\!=\!0;k\!<\!\!=\!\!nn\,;k\!+\!+)\,\,a\,[\,j\,]\,[\,k]\!-\!\!=\!\!tmp\!*\!a\,[\,r\,]\,[\,k\,]\,;
     for(i=0;i \le m;i++) if(dcmp(a[i][nn]))
          for (j=0; j < nn \&\& !dcmp(a[i][j]); j++);
          if(j=nn) return 0; // else x[j]=a[i][nn]/a[i][j];
         return 1;
}
4.5
       Roots of Polynomial
Find the roots of f_a(x) = \sum_{i=0}^n a_i x^i using Newton Iterations, f_b(x) = f_a(x) \frac{d}{dx}
const double eps=1e-5;
#define genx (rand()%1000)/100.0
int dcmp(double x)
{ if(x>eps) return 1; else if(x<-eps) return -1; else return 0;}
double f (double a [], int n, double x)
     double ret=0,xx=1;
     for (int i=0; i \le n; i++){ ret+=a[i]*xx; xx*=x; }
     return ret;
}
double newton (double a [], double b [], int n)
     double dy, y, x=genx, lastx=x-1;
     while (y=f(a,n,x), dcmp(lastx-x))
          lastx=x; dy=f(b,n-1,x);
          if(!dcmp(dy)) x=genx; else x=x-y/dy;
     }
     return x;
}
void solve (double a [], double x [], int n)
     int i,j; double b[maxn];
     for (j=n; j>0; j--)
          for (i=0; i < j; i++) b [i]=a[i+1]*(i+1);
         x[j-1]=newton(a,b,j);
          for (b[j]=0, i=j-1; i>=0; i--) b[i]=a[i+1]+b[i+1]*x[j-1];
          for (i=0; i < j; i++) a [i]=b[i];
     }
}
```

4.6 Roots of Cubic and Quartic

```
c_0 + c_1 * x + c_2 * x^2 + c_3 * x^3 + c_4 * x^4 = 0
```

The functions return the number of distinct non-complex roots and put the values into the s array.

```
const double pi = acos(-1.0); // 3.14159265358979323846
double cbrt (double x)
{
     if (x > eps) return pow(x, 1/3.0);
     if ( x < -eps ) return -pow(-x, 1/3.0);
     return 0;
}
int SolveQuadric(double c[3], double s[2])
{
     double p, q, d; // normal form: x^2 + px + q = 0
     p \, = \, c \, [\, 1\, ] \, / \, (\, 2 * c \, [\, 2\, ]\,) \, ; \  \, q \, = \, c \, [\, 0\, ] \, / \, c \, [\, 2\, ] \, ; \  \, d \, = \, p * p - q \, ;
     if ( dcmp(d) == 0 ) { s[0] = -p; return 1; }
     if(dcmp(d) < 0) return 0;
     d = sqrt(d);
     s\,[\,0\,] \;=\; -\; p\; +\; d\,;
     s[1] = - p - d;
     return 2;
}
int SolveCubic (double c[4], double s[3])
               i, num; // normal\ form:\ x^3 + Ax^2 + Bx + C = 0
     \mbox{\bf double} \quad \mbox{sub}\;,\;\; \mbox{A},\;\; \mbox{B},\;\; \mbox{C}\;,\;\; \mbox{sqa}\;,\;\; \mbox{p}\;,\;\; \mbox{q}\;,\;\; \mbox{cbp}\;,\;\; \mbox{d}\;;
     A = c[2]/c[3]; B = c[1]/c[3]; C = c[0]/c[3];
                       // x = y - A/3 \implies x^3 + px + q = 0
     sqa = A * A;
    p = 1.0/3 * (-1.0/3 * sqa + B);
     q = 1.0/2 * (2.0/27 * A * sqa - 1.0/3 * A * B + C);
     cbp = p * p * p; // use Cardano's formula
     d = q * q + cbp;
     \mathbf{if} (\operatorname{dcmp}(d) = 0) 
          if (\operatorname{dcmp}(q) = = 0) { \operatorname{s}[0] = 0; \operatorname{num} = 1; } // one triple solution
          {f else} { // one single and one double solution
               double u = cbrt(-q);
               s\,[\,0\,] \;=\; 2\; *\; u\,; \quad s\,[\,1\,] \;=\; -\; u\,; \quad num \;=\; 2\,;
     \} else if (dcmp(d) < 0) \{ // Casus irreducibilis: three real solutions
          double phi = 1.0/3 * acos(-q / sqrt(-cbp));
          double t = 2 * sqrt(-p);
          s[0] = t * cos(phi);
          s[1] = -t * cos(phi + pi / 3);
          s[2] = -t * cos(phi - pi / 3);
          num = 3;
     } else { /* one real solution */
          d = sqrt(d); double u = cbrt(d-q), v = - cbrt(d+q);
          s[0] = u + v; num = 1;
     /* resubstitute */
     sub = 1.0/3 * A; for (i=0; i < num; ++i) s[i] -= sub;
     return num;
}
```

```
int SolveQuartic (double c[5], double s[4])
   double e[4], z, u, v, sub, A, B, C, d, sqa, p, q, r;
                             // x^4 + Ax^3 + Bx^2 + Cx + D = 0
           i, num;
   A = c[3]/c[4]; B = c[2]/c[4]; C = c[1]/c[4]; d = c[0]/c[4];
                             // x = y - A/4 \implies x^4 + px^2 + qx + r = 0
   sqa = A * A;
   p = -3.0/8 * sqa + B;
   q = 1.0/8 * sqa * A - 1.0/2 * A * B + C;
   r = -3.0/256*sqa*sqa + 1.0/16*sqa*B - 1.0/4*A*C + d;
   if(demp(r)==0)
                             // no absolute term: y(y^3 + py + q) = 0
       e[0] = q; \quad e[1] = p; \quad e[2] = 0; \quad e[3] = 1;
       num = SolveCubic(e, s); s[num++] = 0;
                            // solve the resolvent cubic ...
       e[0] = 1.0/2 * r * p - 1.0/8 * q * q; e[1] = -r;
       e[2] = -1.0/2 * p;
                                             e[3] = 1;
       SolveCubic(e, s);
       if(dcmp(v)==0) v=0; else if(dcmp(v)>0) v=sqrt(v); else return 0;
       e[0] = z-u; e[1] = dcmp(q) < 0 ? -v : v; e[2] = 1;
       num = SolveQuadric(e, s);
       e[0] = z+u; e[1] = dcmp(q) < 0 ? v : -v; e[2] = 1;
       num += SolveQuadric(e, s + num);
   sub = 1.0/4*A; for (i=0; i \le num; ++i) s[i] -= sub; // resubstitute
   return num;
}
```

4.7 Fast Fourier Transform

```
const double eps=1e-8;
const double pi=acos(-1.0);
#define cp complex<double>
inline int max(int a, int b) { if (a>b) return a; else return b; }
inline int dcmp(double a) \{ if(a <-eps) return -1; return (a > eps); \}
void fft (cp *x, int n, cp *y, int bInv) // y=Wx, w[j, k]=e^{ijk}
{
      if(n==1) \{ y[0] = x[0]; return; \}
      \operatorname{cp} * \operatorname{xeven} = \operatorname{new} \operatorname{cp} [n/2], * \operatorname{xodd} = \operatorname{new} \operatorname{cp} [n/2], \operatorname{w}(1,0),
          *yeven = new cp[n/2], *yodd = new cp[n/2], wn; int i;
      if(bInv) wn=cp(cos(-2*pi/n), sin(-2*pi/n));
           else wn=cp(\cos(2*pi/n), \sin(2*pi/n));
      for (i = 0; i < n/2; i++)
           xeven[i] = x[i*2];
           xodd [i] = x[i*2+1];
      \label{eq:fft} \texttt{fft} \; (\, \texttt{xeven} \; , \; \; \texttt{n} \, / \, 2 \; , \; \; \texttt{yeven} \; , \; \; \texttt{bInv} \, ) \, ;
      fft (xodd , n/2, yodd , bInv);
      for (i=0; i< n/2; i++)
                  ] = yeven[i] + w*yodd[i];
           y[i+n/2] = yeven[i] - w*yodd[i];
      delete xeven; delete yeven; delete xodd; delete yodd;
}
```

4.8 FFT - Polynomial Multiplication

```
void PolyMulti(double *a, int na, double *b, int nb, double *c, int &nc)
    int i, j, n=(na>nb)? na:nb;
    n=1 << ((int) ceil (log (2*n) / log (2) - eps));
    cp *x = new cp[n], *ya = new cp[n], *yb = new cp[n], *yc = new cp[n];
    for (i=0; i < n; i++) \times [i] = (i < na)? a[i] : 0;
                                                   fft(x,n,ya,0);
    for (i=0; i < n; i++) \times [i] = (i < nb)?b[i]:0;
                                                   fft(x,n,yb,0);
    for ( i =0; i <n; i++) yc [ i ]=ya [ i ]*yb [ i ];
                                                   fft (yc, n, x, 1);
    for (i=0; i < n; i++) c[i]=x[i]. real ()/n;
    for (nc=n; nc>0 \&\& dcmp(c[nc-1])==0; nc--);
     delete x; delete ya; delete yb; delete yc;
}
4.9
       FFT - Convolution
r_k = \sum_{i=0}^{n-1} a[i] * b[i-k]
void Convolution1(int *a,int *b,int *c,int n)
    int m, i , j ,* rb=new int [n]; rb[0]=b[0];
    for (i=1; i < n; i++) rb [i]=b[n-i];
    PolyMulti1 (a,n,rb,n,c,m);
    for (i=0; i < n; i++) c [i]+=c[i+n];
     delete [] rb;
}
void Convolution2 (int *a, int *b, int *c, int n)
{
    int i, j;
    cp *x = new cp[n], *ya = new cp[n], *yb = new cp[n], *yc = new cp[n];
    x[0] = b[0];
    for (i=1; i < n; i++) \times [i] = (i < n)? b [n-i] : 0;
                                                   fft(x,n,yb,0);
    for (i=0; i < n; i++) \times [i] = (i < n)? a [i] : 0;
                                                   fft(x,n,ya,0);
    for (i=0; i < n; i++) yc [i] = ya[i] * yb[i];
                                                   fft (yc, n, x, 1);
    for (i=0; i < n; i++) c[i]=int(x[i].real()/n+0.5);
     delete x; delete ya; delete yb; delete yc;
}
        FFT - Reverse Bits
4.10
#define for if (0); else for
const double pi = acos(-1.0);
const int MFB = 16;
int **bt = 0;
struct cp { double re, im; };
inline int ReverseBits(int index, int bitnum) {
```

int ret = 0;

return ret;

}

for(int i=0; i<bitnum; ++i, index >>= 1)
 ret = (ret << 1) | (index & 1);</pre>

```
void InitFFT() {
    bt = new int *[MFB]; int i, j, length;
    for (i=1, length = 2; i \le MFB; ++i, length < <=1) {
        bt[i-1] = new int[length];
        for (j=0; j < length; ++j) bt [i-1][j] = ReverseBits(j, i);
    }
}
inline int FRB(int i, int bitnum) {
    return bitnum <= MFB ? bt[bitnum - 1][i] : ReverseBits(i, bitnum);
void FFT(cp *in , cp *out , int n , bool bInv)
    int i, j, k, ed, len, bitnum=0; if(!bt) InitFFT();
    while (!((1 << bitnum)\&n)) bitnum++;
    for(i=0; i< n; ++i) out[FRB(i, bitnum)] = in[i];
    double basicangle = pi * (bInv ? -2 : 2);
    cp a0, a1, a2, a, b;
    for (ed = 1, len = 2; len <= n; len <<= 1) {
        double delta_angle = basicangle / len;
        double \sin 1 = \sin(-\det a_{\text{angle}}), \sin 2 = \sin(-\det a_{\text{angle}} * 2);
        double \cos 1 = \cos(-\det a_{\text{angle}}), \cos 2 = \cos(-\det a_{\text{angle}} * 2);
        for(i=0; i< n; i+=len) {
             a1.re=cos1; a1.im=sin1; a2.re=cos2; a2.im=sin2;
             for(j=i, k=0; k<ed; ++j, ++k) {
                 a0.re=2*cos1*a1.re-a2.re; a0.im=2*cos1*a1.im-a2.im;
                 a2 = a1; a1 = a0; b=out[j+ed];
                 a.re = a0.re*b.re - a0.im*b.im;
                 a.im = a0.im*b.re + a0.re*b.im;
                 out [j+ed].re=out [j].re-a.re;
                 out [j+ed].im=out[j].im-a.im;
                 out [ j ] . re+=a . re;
                 out[j].im+=a.im;
             }
        }
        ed = len;
    if (bInv) for (int i = 0; i < n; ++i) { out[i].re/= n; out[i].im/=n; }
}
// n must be power of 2
void convolution(double *a, double *b, double *r, int n) {
    int i;
    cp * s = new cp[n], * d1 = new cp[n], * d2 = new cp[n], * y = new cp[n];
    s[0].im=b[0]; s[0].re=0;
    for (i=1; i < n; ++i) s [i]. re=b [n-i], s [i]. im=0;
                                                        FFT(s, d2, n, false);
    for (i = 0; i < n; ++i) s [i]. re=a [i], s [i]. im=0;
                                                        FFT(s, d1, n, false);
    for (i=0; i< n; ++i)
        y[i].re = d1[i].re*d2[i].re - d1[i].im*d2[i].im;
        y[i].im = d1[i].re*d2[i].im + d1[i].im*d2[i].re;
    FFT(y, s, n, true);
    for (i=0; i< n; ++i) r [i] = s[i]. re;
    delete s; delete d1; delete d2; delete y;
}
```

4.11 Linear Programming - Primal Simplex

Primal Simplex Method for solving Linear Programming problem in Standard Form

maximize $c_1x_1 + c_2x_2 + \cdots + c_nx_n +$ ans subject to $a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \leq rhs_1$ $a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \le rhs_2$ $a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \le rhs_m$ const double eps = 1e-8; const double inf = 1e15; #define OPTIMAL -1#define UNBOUNDED -2#define FEASIBLE -3 #define INFEASIBLE -4 #define PIVOT_OK 1 int basic [maxn], row [maxm], col [maxn]; **double** c0 [maxn];**double** dcmp(**double** x) if(x > eps) return 1;if (x < -eps) return -1; return 0; } int Pivot(int n, int m, double *c, double a[maxn][maxn],double *rhs, int &i, int &j) { **double** min = inf; **int** k = -1; for $(j=0; j \le n; j++)$ if (!basic[j] && dcmp(c[j]) > 0)**if** ($k < 0 \mid | dcmp(c[j]-c[k]) > 0) k=j;$ j=k; if(k < 0) return OPTIMAL;for $(k=-1, i=1; i \le m; i++)$ if (dcmp(a[i][j]) > 0) $if(demp(rhs[i]/a[i][j]-min) < 0) { min = rhs[i]/a[i][j]; k=i; }$ i=k; if (k < 0) return UNBOUNDED; else return PIVOT_OK; } int PhaseII(int n, int m, double *c, double a[maxn][maxn], double *rhs, double &ans, int PivotIndex) { int i, j, k, l; double tmp; { if (PivotIndex) { j=0; i=PivotIndex; PivotIndex=0; } basic[row[i]] = 0; col[row[i]] = 0; basic[j] = 1; col[j] = i; row[i] = j; $tmp=a[i][j]; for(k=0;k\leq n;k++) a[i][k]/=tmp; rhs[i]/=tmp;$ for (k=1;k<=m;k++) if (k!=i && dcmp(a[k][j])) $tmp = -a[k][j]; for(l=0; l \le n; l++) a[k][l] + = tmp*a[i][l];$ rhs[k] += tmp*rhs[i];tmp=-c[j]; for(l=0;l<=n;l++) c[l]+=a[i][l]*tmp; ans-=tmp*rhs[i];return k; }

```
int PhaseI (int n, int m, double *c, double a [maxn] [maxn], double *rhs, double & ans)
    int i, j, k = -1; double tmp, min = 0, ans0 = 0;
    \mathbf{for}(i=1; i \leq m; i++) \mathbf{if}(\operatorname{dcmp}(\operatorname{rhs}[i]-\min) < 0) \{ \min=\operatorname{rhs}[i]; k=i; \}
     if ( k < 0 ) return FEASIBLE;
    for (i = 1; i \le m; i + +) a[i][0] = -1;
    for (j=1; j \le n; j++) c0[j]=0; c0[0] = -1;
    PhaseII(n, m, c0, a, rhs, ans0, k);
     if ( dcmp(ans0) < 0 ) return INFEASIBLE;</pre>
     for (i=1; i \le m; i++) a[i][0] = 0;
    \mathbf{for}(j=1; j \le n; j++) \mathbf{if}(\operatorname{demp}(c[j]) \&\& \operatorname{basic}[j])
         tmp = c[j]; ans += rhs[col[j]]*tmp;
         for (i = 0; i \le n; i + +) c[i] -= tmp*a[col[j]][i];
    }
    return FEASIBLE;
}
int simplex(int n, int m, double *c, double a[maxn][maxn],
    double *rhs, double &ans, double *x) // standard form
{
    int i,j,k;
    for (i = 1; i < m; i + +)
         for (j=n+1; j \le m+m; j++) a[i][j]=0;
         a[i][n+i] = 1; a[i][0] = 0;
         row[i] = n+i; col[n+i] = i;
    }
    k = PhaseI (n+m, m, c, a, rhs, ans);
    if ( k == INFEASIBLE ) return k;
    k = PhaseII(n+m, m, c, a, rhs, ans, 0);
    for (j=0; j \le m+m; j++) \times [j]=0;
    for (i=1; i \le m; i++) \times [row[i]] = rhs[i];
    return k;
}
int n, m; double c[maxn], ans, a[maxm][maxn], rhs[maxm], x[maxn];
int main()
{
     ifstream cin("lp.in");
    int i, j;
    while ( cin>>n>>m &&!cin.fail() )
         for (j=1; j \le n; j++) cin >> c[j]; cin >> ans; c[0]=0;
         for(i=1; i \le m; i++) \{ for(j=1; j \le n; j++) cin >> a[i][j]; cin >> rhs[i]; \}
         switch (simplex(n, m, c, a, rhs, ans, x))
         {
              case OPTIMAL :
                   printf("OPTIMAL \setminus n\%10lf \setminus n", ans);
                   for (j=1; j \le n; j++) printf (x[-\%2d_-]=-\%10 lf n, j, x[j]);
                   break;
              case UNBOUNDED:
                   printf("UNBOUNDED\n");
              case INFEASIBLE :
                   printf("INFEASIBLE\n"); break;
              printf(" \ n");
          }
    }
    return 0;
}
```

Chapter 5

Computational Geometry

5.1 Basic Operations

```
const double eps = 1e-8;
const double pi = acos(-1.0);
struct CPoint{ double x,y; };
double min(double x,double y){ if( x<y ) return x; else return y; }</pre>
double max(double x,double y){ if( x>y ) return x; else return y; }
double sqr(double x){ return x*x; }
int dcmp(double x)
     if(x < -eps) return -1; else return (x > eps);
double cross (CPoint p0, CPoint p1, CPoint p2)
    return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
double dot (CPoint p0, CPoint p1, CPoint p2)
    return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y);
double dissgr (CPoint p1, CPoint p2)
    return \operatorname{sqr}(p1.x-p2.x)+\operatorname{sqr}(p1.y-p2.y);
double dis (CPoint p1, CPoint p2)
    return \operatorname{sqrt}(\operatorname{sqr}(\operatorname{p1.x-p2.x})+\operatorname{sqr}(\operatorname{p1.y-p2.y}));
int PointEqual(const CPoint &p1,const CPoint &p2)
    return dcmp(p1.x-p2.x)==0 \&\& dcmp(p1.y-p2.y)==0;
}
```

5.2 Extended Operations

```
// Crossing Angle of POP1 \rightarrow POP2, range in (-pi, pi]
double angle (CPoint p0, CPoint p1, CPoint p2)
     double cr = cross(p0, p1, p2);
     double dt = dot (p0, p1, p2);
     if(demp(cr) == 0) cr = 0.0;
     if(dcmp(dt)==0) dt=0.0;
     return atan2(cr,dt);
}
int PointOnLine (CPoint p0, CPoint p1, CPoint p2)
     return dcmp(cross(p0, p1, p2))==0;
}
int PointOnSegment (CPoint p0, CPoint p1, CPoint p2)
     return dcmp(cross(p0, p1, p2)) == 0 \&\& dcmp(dot(p0, p1, p2)) <= 0;
// 1 = cross;
                     0 = parallel;
                                          -1 = overlap
int LineIntersection (CPoint p1, CPoint p2, CPoint p3, CPoint p4, CPoint &cp)
     double u=cross(p1, p2, p3), v=cross(p2, p1, p4);
     \mathbf{i} \mathbf{f} ( \operatorname{dcmp}(\mathbf{u} + \mathbf{v}) )
          c\,p\,.\,x{=}(p\,3\,.\,x{*}v\ +\ p\,4\,.\,x{*}u\,)\ /\ (\,v{+}u\,)\,;
          cp.y=(p3.y*v + p4.y*u) / (v+u);
          return 1;
     if ( dcmp(u) ) return 0; // else u=v=0;
     \textbf{if} \left( \ \operatorname{dcmp} \left( \ \operatorname{cross} \left( \ \operatorname{p3} \,, \operatorname{p4} \,, \operatorname{p1} \, \right) \right) \ \ \textbf{)} \ \ \textbf{return} \ \ 0 \,;
     return -1;
}
int SegmentIntersection (CPoint p1, CPoint p2, CPoint p3, CPoint p4, CPoint &cp)
     int ret=LineIntersection(p1,p2,p3,p4,cp);
     \mathbf{if}\,(\,\mathrm{re}\,t\,{=}{=}1)\,\,\mathbf{return}\  \, \mathrm{PointOnSegment}\,(\,\mathrm{cp}\,,\mathrm{p1}\,,\mathrm{p2})\,\,\&\&\,\,\,\mathrm{PointOnSegment}\,(\,\mathrm{cp}\,,\mathrm{p3}\,,\mathrm{p4}\,)\,;
     if(ret = -1 \&\& (PointOnSegment(p1, p3, p4)) | PointOnSegment(p2, p3, p4)
                      | PointOnSegment (p3, p1, p2) | PointOnSegment (p4, p1, p2) ))
          return -1;
     return 0;
}
int SegmentIntersecTest(CPoint p1, CPoint p2, CPoint p3, CPoint p4)
{
           \max(p1.x, p2.x) + eps < \min(p3.x, p4.x)
           \max(p3.x, p4.x) + eps < \min(p1.x, p2.x)
           \max(p1.y, p2.y) + eps < \min(p3.y, p4.y)
           \max(p3.y, p4.y) + eps < \min(p1.y, p2.y)) return 0;
     int d1=dcmp(cross(p3,p4,p2));
     int d2=dcmp(cross(p3,p4,p1));
     int d3=dcmp(cross(p1,p2,p4));
     int d4=dcmp(cross(p1,p2,p3));
     if ( d1*d2==1 || d3*d4==1 ) return 0;
     if (d1==0 \&\& d2==0 \&\& d3==0 \&\& d4==0) return -1;
     return 1;
}
```

```
// 0 = outside; 1 = inside;
                                 2 = boundary
int PointInPolygon(CPoint cp, CPoint p[], int n)
   int i, k, d1, d2, wn=0;
   double sum=0;
   p[n]=p[0];
   for (i=0; i< n; i++)
       if ( PointOnSegment(cp,p[i],p[i+1]) ) return 2;
       k = dcmp(cross(p[i], p[i+1], cp));
       d1 = dcmp(p[i+0].y - cp.y);
       d2 = dcmp(p[i+1].y - cp.y);
       if(k>0 \&\& d1 \le 0 \&\& d2 > 0) wn++;
       if(k<0 \&\& d2<=0 \&\& d1>0) wn--;
   }
   return wn! = 0;
}
double PointToLine(CPoint p0, CPoint p1, CPoint p2, CPoint &cp)
{
   double d=dis(p1,p2);
   double s = cross(p1, p2, p0)/d;
   cp.x = p0.x + s*(p2.y-p1.y)/d;
   }
void PointProjLine (CPoint p0, CPoint p1, CPoint p2, CPoint &cp)
   double t = dot(p1, p2, p0)/dot(p1, p2, p2);
   cp.x = p1.x + t*(p2.x-p1.x);
   cp.y = p1.y + t*(p2.y-p1.y);
}
```

5.3 Convex Hull

```
Graham Scan, O(N \log N)
CPoint bp; // for polar sorting
int PolarCmp(const CPoint &p1, const CPoint &p2)
{
    int u=dcmp(cross(bp,p1,p2));
    return u > 0 | (u==0 \&\& dcmp(dissqr(bp,p1)-dissqr(bp,p2)) < 0);
}
void GrahamScan(CPoint pin[], int n, CPoint ch[], int &m)
    int i, j, k, u, v;
    memcpy(ch, pin, n*sizeof(CPoint));
    for (i=k=0; i < n; i++)
         u = dcmp(ch[i].x - ch[k].x);
         v = dcmp(ch[i].y - ch[k].y);
         if ( v < 0 | | (v = 0 \&\& u < 0) | k = i;
    bp = ch[k];
    std::sort(ch, ch+n, PolarCmp);
    n = std::unique(ch, ch+n, PointEqual)-ch;
    if(n \le 1) \{ m = n; return; \}
    \mathbf{if} \left( \operatorname{demp} \left( \operatorname{cross} \left( \operatorname{ch} [0], \operatorname{ch} [1], \operatorname{ch} [n-1] \right) \right) = 0 \right)
         \{ m=2; ch[1]=ch[n-1]; return; \}
    ch[n++]=ch[0];
    for (i=1, j=2; j < n; j++)
         while (i > 0 \&\& dcmp(cross(ch[i-1], ch[i], ch[j])) <= 0) i--;
         ch[++i] = ch[j];
    m=i;
}
void GrahamScanReserved (CPoint pin [], int n, CPoint ch [], int &m)
    int i, j, k, u, v;
    memcpy(ch, pin, n*sizeof(CPoint));
    for (i=k=0; i < n; i++)
         u = dcmp(ch[i].x - ch[k].x);
         v = dcmp(ch[i].y - ch[k].y);
         if(v < 0 \mid | (v = 0 \&\& u < 0)) k = i;
    bp = ch[k];
    std::sort(ch, ch+n, PolarCmp);
    n = std::unique(ch, ch+n, PointEqual)-ch;
    if (n>0 \&\& dcmp(cross(ch[0], ch[1], ch[n-1])))
         for (i=n-1; dcmp(cross(ch[0], ch[n-1], ch[i])) = 0; i--);
         std :: reverse(ch+i+1,ch+n);
    for (m=0, i=0; i < n; i++)
```

while $(m \ge 2 \&\& dcmp(cross(ch[m-2], ch[m-1], ch[i])) < 0)$ m—-;

 $\operatorname{ch}[m++] = \operatorname{ch}[i];$

}

}

Montone Chain, $O(N \log N)$

```
int VerticalCmp (const CPoint &p1, const CPoint &p2)
{
    return p1.y+eps<p2.y || (p1.y<p2.y+eps && p1.x+eps<p2.x);
}
void MontoneChain(CPoint pin[], int n, CPoint ch[], int &m)
    int i,k; CPoint *p = new CPoint[n];
    memcpy(p, pin, n*sizeof(CPoint));
    std::sort(p,p+n,VerticalCmp);
    n = std::unique(p,p+n,PointEqual)-p;
    for (m=i=0; i < n; i++)
        while (m>1 \&\& dcmp(cross(ch[m-2], ch[m-1], p[i])) <= 0) m--;
        ch[m++]=p[i];
    k=m;
    for (i=n-2; i>=0; i--)
        while (m>k \&\& dcmp(cross(ch[m-2], ch[m-1], p[i])) <= 0) m--;
        ch[m++]=p[i];
    if (n>1) m--;
    delete p;
}
void MontoneChainReserved (CPoint pin[], int n, CPoint ch[], int &m)
    int i,k;
    CPoint *p = new CPoint[n]; memcpy(p, pin, n*sizeof(CPoint));
    std::sort(p,p+n,VerticalCmp);
    n = std::unique(p,p+n,PointEqual)-p;
    for (m=i=0; i < n; i++)
    {
        while (m>1 \&\& dcmp(cross(ch[m-2], ch[m-1], p[i])) < 0) m--;
        ch[m++]=p[i];
    if( n==m ) return;
    k=m;
    for (i=n-2; i>=0; i--)
        while (m>k \&\& dcmp(cross(ch[m-2], ch[m-1], p[i])) < 0) m--;
        ch [m++]=p[i];
    if (n>1) m--;
    delete p;
}
```

```
Javis March, O(NH)
```

```
int ConvexJavisMarchCmp(CPoint p0, CPoint p1, CPoint pnew)
{
     int u=dcmp(cross(p0, p1, pnew));
     return (u < 0 \mid | (u == 0 \&\& dcmp(dissqr(pnew, p0) - dissqr(p1, p0)) > 0));
}
void ConvexJavisMarch (CPoint pin [], int n, CPoint ch [], int &m)
{
     \mathbf{int} \quad i \ , j \ , k \ , u \ , v \ ;
     \mathbf{char} * \mathbf{mk} = \mathbf{new} \ \mathbf{char} [n];
     CPoint *p = new CPoint[n];
     memcpy(p,pin,n*sizeof(CPoint));
     memset(mk, 0, n);
     for(i=k=0;i< n;i++)
         u=dcmp(p[i].x-p[k].x);
         v=dcmp(p[i].y-p[k].y);
          if(v < 0 \mid | (v = 0 \&\& u < 0)) k = i;
     for (m=0; !mk[k]; m++)
         mk[k] = 1; ch[m] = p[k];
         for(j=k=0; j < n; j++) if(ConvexJavisMarchCmp(ch[m], p[k], p[j])) k=j;
     delete p;
     delete mk;
}
```

5.4 Point Set Diameter

P must be convex in ccw order and no trhee points on an edge and will be changed after computing it's convex hull

```
double Diameter (CPoint *p, int n)
{
    Convex(p, n, p, n);
    if (n==1) return 0;
    if (n==2) return dis (p[0], p[1]);
    int u, nu, v, nv, k; double ret = 0;
    p[n] = p[0];
    for (u=0,v=1; u< n; u=nu)
        nu = u+1;
        \mathbf{while}(1) {
            nv = (v+1)\%n;
            k = dcmp( (p[nu].x-p[u].x) * (p[nv].y-p[v].y)
                      -(p[nv].x-p[v].x) * (p[nu].y-p[u].y);
            if(k \le 0) break;
            v=nv;
        ret = max(ret, dis(p[u], p[v]));
        if(k==0) ret = max(ret, dis(p[u],p[nv]));
    }
    return ret;
}
```

5.5 Closest Pair

```
\#define sqr(z)((z)*(z))
struct point { double x,y; } pt[maxn]; // [1..n]
int n,o[maxn],on;
int dcmp(double a, double b) {
     if (a - b < 1e-10 \&\& b - a < 1e-10) return 0;
     if (a > b) return 1; return -1;
}
bool cmp(const point& a, const point& b)
{ return dcmp(a.x,b.x) < 0; }
bool cmp2(const int& a, const int& b)
{ return dcmp(pt[a].y,pt[b].y) < 0; }
double dis(point a, point b)
{ return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y)); }
double min(double a, double b) { return a < b ? a : b; }
double search (int s, int t) {
     int mid = (s + t) / 2, i, j; double ret(1e300);
     if (s >= t) return ret;
     for (i=mid; i>=s && !dcmp(pt[i].x,pt[mid].x); i--); ret=search(s,i);
     for ( i=mid; i<=t && !dcmp(pt[i].x,pt[mid].x); i++);
     ret=min(ret, search(i,t)); on=0;
     for (i=mid; i)=s \&\& dcmp(pt[mid].x-pt[i].x,ret)<=0; i--)o[++on]=i;
     for (i=mid+1; i<=t && dcmp(pt[i].x-pt[mid].x,ret)<=0; i++)o[++on]=i;
     std :: sort (o+1,o+on+1,cmp2);
     for(i=1; i \le on; i++) for(j=1; j \le 10; j++) if(i+j \le on)
         {\rm re} \, t \; = \; \min \left( \, {\rm re} \, t \; , \, {\rm dis} \left( \, {\rm pt} \left[ \, o \left[ \, i \, \, \right] \, \right] \, , \, {\rm pt} \left[ \, o \left[ \, i + j \, \, \right] \, \right] \, \right) \, \right);
     return ret;
}
double solve() { std::sort(pt+1,pt+1+n,cmp); return search(1,n); }
       Circles
5.6
Crossing of |P - P_0| = r and ax + by + c = 0
int CircleCrossLine_1 ( CPoint p0, double r,
     \textbf{double} \ a\,, \ \textbf{double} \ b\,, \ \textbf{double} \ c\,, \ CPoint \ \&cp1\,, \ CPoint \ \&cp2)
{
     double aa = a * a, bb = b * b, s = aa + bb;
     double d = r*r*s - sqr(a*p0.x+b*p0.y+c);
     if ( d+eps < 0 ) return 0;
     if(d < eps) d = 0; else d = sqrt(d);
     double ab = a * b, bd = b * d, ad = a * d;
     double xx = bb * p0.x - ab * p0.y - a * c;
     double yy = aa * p0.y - ab * p0.x - b * c;
     cp2.x = (xx + bd) / s; cp2.y = (yy - ad) / s;
     cp1.x = (xx - bd) / s; cp1.y = (yy + ad) / s;
     if ( d>eps ) return 2; else return 1;
}
```

```
Crossing of |P - P_0| = r and \overrightarrow{P_1P_2}
int CircleCrossLine_2 ( CPoint p0, double r,
                 CPoint p1, CPoint p2, CPoint &cp1, CPoint &cp2)
{
    double d, d12, dx, dy;
    d = fabs(PointToLine(p0, p1, p2, cp1));
    if (\operatorname{dcmp}(\operatorname{d-r}) > 0) return 0;
    if ( dcmp(d-r)==0 ) { cp2 = cp1; return 1; }
    d = sqrt(r*r - d*d) / dis(p1, p2);
    dx = (p2.x - p1.x) * d;
    dy = (p2.y - p1.y) * d;
    cp2.x = cp1.x + dx; cp2.y = cp1.y + dy;
    cp1.x = cp1.x - dx; cp1.y = cp1.y - dy;
    return 2;
Crossing of |P - P_1| = r_1 and |P - P_2| = r_2
int CircleCrossCircle_1 ( CPoint p1, double r1, CPoint p2, double r2,
        CPoint &cp1, CPoint &cp2)
{
    double mx = p2.x-p1.x, sx = p2.x+p1.x, mx2 = mx*mx;
    double my = p2.y-p1.y, sy = p2.y+p1.y, my2 = my*my;
    double sq = mx2 + my2, d = -(sq-sqr(r1-r2))*(sq-sqr(r1+r2));
    if(d+eps<0) return 0; if(d<eps) d = 0; else d = sqrt(d);
    double x = mx*((r1+r2)*(r1-r2) + mx*sx) + sx*my2;
    double y = my*((r1+r2)*(r1-r2) + my*sy) + sy*mx2;
    \mathbf{double} \ dx = mx*d\,, \ dy = my*d\,; \quad sq \ *= 2\,;
    cp1.x = (x - dy) / sq; cp1.y = (y + dx) / sq;
    cp2.x = (x + dy) / sq; cp2.y = (y - dx) / sq;
    if (d>eps ) return 2; else return 1;
}
Crossing of |P - P_1| = r_1 and |P - P_2| = r_2
int CircleCrossCircle_2 (CPoint p1, double r1, CPoint p2, double r2,
        CPoint &cp1, CPoint &cp2)
{
    double a, b, c; CommonAxis( p1, r1, p2, r2, a, b, c);
    return CircleCrossLine_1 ( p1, r1, a, b, c, cp1, cp2);
Common Axis of |P-P_1|=r_1 and |P-P_2|=r_2 of the ax+by+c=0 form
void CommonAxis (CPoint p1, double r1, CPoint p2, double r2,
                            double &a, double &b, double &c)
{
    double sx = p2.x + p1.x, mx = p2.x - p1.x;
    double sy = p2.y + p1.y, my = p2.y - p1.y;
    a = 2*mx; b = 2*my; c = -sx*mx - sy*my - (r1+r2)*(r1-r2);
}
```

5.7 Largest Empty Convex Polygon

```
#define ABS(x)
                                      ((x)>=0 ? (x) : -(x))
#define CROSS(x1, y1, x2, y2)
                                      ((x1)*(y2)-(x2)*(y1))
const double eps = 1e-8;
struct CPoint { int x, y; };
int n; CPoint p[maxn]; double ans;
bool cmp(const CPoint &a, const CPoint &b) {
     int v = CROSS(a.x, a.y, b.x, b.y);
     if (v>0) return true; if (v<0) return false;
     return ( a.x*a.x + a.y*a.y < b.x*b.x + b.y*b.y );
}
CPoint c[maxn]; int nc; double fm[maxn][maxn];
void sweep(int x, int y) {
     int i, j, k, m; double v, best = 0;
     for (nc=i=0; i<n; ++i ) if ( p[i].y<y || p[i].y=y && p[i].x<x )
          \{c[nc].x=p[i].x-x; c[nc++].y=p[i].y-y; \}
     if (nc < 2) return;
     std::sort(c, c + nc, cmp);
     memset(fm, 0, sizeof(fm));
     for (i=1; i < nc; ++i)
         j=i-1; while (j>=0 \&\& CROSS(c[i].x, c[i].y, c[j].x, c[j].y)==0) --j;
         int nev = 0, ev[maxn];
         while (j>=0) {
              v = CROSS(c[j].x, c[j].y, c[i].x, c[i].y)/2.0; k=j-1;
              while (k \ge 0 \&\& CROSS(c[j].x-c[i].x,c[j].y-c[i].y,
                                        c[k].x-c[i].x, c[k].y-c[i].y > 0 - k;
              if (k>=0) v += fm[j][k];
              if(v-best>eps) best = v;
              \mathbf{if} \; (\; CROSS(\, c \, [\, i \, ] \, .\, x \, , \; \, c \, [\, i \, ] \, .\, y \, , \; \, c \, [\, i \, -1] \, .\, x \, , \; \, c \, [\, i \, -1] \, .\, y \, ) \; \; )
                   \mathbf{i}\,\mathbf{f}\,(\ v\text{-}\mathrm{fm}\,[\,i\,\,]\,[\,j\,]\!>\!\mathrm{eps}\ )\ \mathrm{fm}\,[\,i\,\,]\,[\,j\,]\!=\!v\,;
              ev[nev++]=j; j=k;
         if ( CROSS(c[i].x, c[i].y, c[i-1].x, c[i-1].y)
              for(j=nev-2; j>=0; --j) if (fm[i][ev[j+1]]-fm[i][ev[j]]>eps)
                   fm[i][ev[j]] = fm[i][ev[j+1]];
     if (best-ans>eps) ans = best;
}
void main() {
     int t, i; for ( scanf("%d", &t); t; --t ) \{ scanf("%d", &n); 
         for (i=0; i< n; ++i) scanf ("%d_%d", &p[i].x, &p[i].y);
         for (ans=i=0; i< n; ++i) sweep (p[i].x, p[i].y); // main procedure
         printf("\%.1lf\n", ans);
     }
}
```

5.8 Triangle Centers

```
// INPUT: (242, 89), (212, 185), (71, 128), OUTPUT: (158.0885, 115.4652)
void Circumcenter (CPoint p0, CPoint p1, CPoint p2, CPoint &cp)
    double a1=p1.x-p0.x, b1=p1.y-p0.y, c1=(sqr(a1)+sqr(b1))/2;
    double a2=p2.x-p0.x, b2=p2.y-p0.y, c2=(sqr(a2)+sqr(b2))/2;
    double d = a1 * b2 - a2 * b1;
    cp.x = p0.x + (c1*b2 - c2*b1) / d;
    cp.y = p0.y + (a1*c2 - a2*c1) / d;
}
// INPUT: (242, 89), (212, 185), (71, 128), OUTPUT: (189.5286, 137.4987)
double Incenter (CPoint A, CPoint B, CPoint C, CPoint &cp)
{
    double s, p, r, a, b, c;
    a = dis(B, C), b = dis(C, A), c = dis(A, B); p = (a + b + c) / 2;
                                           r = s / p;
    s = sqrt(p-a) * (p-b) * (p-c);
    cp.x = (a*A.x + b*B.x + c*C.x) / (a + b + c);
    cp.y = (a*A.y + b*B.y + c*C.y) / (a + b + c);
    return r;
}
// INPUT: (242, 89), (212, 185), (71, 128), OUTPUT: (208.8229, 171.0697)
void Orthocenter (CPoint A, CPoint B, CPoint C, CPoint &cp)
    Circumcenter (A, B, C, cp);
    cp.x = A.x + B.x + C.x - 2 * cp.x;
    cp.y = A.y + B.y + C.y - 2 * cp.y;
Find three numbers r, s, t which make P = rA + sB + tC and r + s + t = 1
void Parametric ( CPoint P, CPoint A, CPoint B, CPoint C,
                           double &r, double &s, double &t)
{
    double d;
    d = cross(A, B, C);
    r = cross(P, B, C) / d;
    s = cross(A, P, C) / d;
    t = cross(A, B, P) / d;
}
void PolygonCentroids (CPoint p[], int n, CPoint &cp)
    double sum=0, s=0; cp.x=0; cp.y=0;
    for ( int i=1; i< n-1; i++, sum+=s )
        s = cross(p[0], p[i], p[i+1]);
       cp.x += s*(p[0].x + p[i].x + p[i+1].x);
       cp.y += s*(p[0].y + p[i].y + p[i+1].y);
    cp.x/=sum*3; cp.y/=sum*3;
}
```

5.9 Polyhedron Volume

Remark: All faces are assumed oriented **counterclockwise** from the outside; Volume6 returns six times the volume of the tetrahedron determined by abc and the origin d. Volume6 is positive iff d is on the negative side of abc, where the positive side is determined by the rh-rule. So the volume is positive if the ccw normal to abc points outside the tetrahedron.

```
struct TPoint { double x, y, z; };
typedef int TFace [3];
double Volume6 ( TPoint a, TPoint b, TPoint c, TPoint d ) // d = origin
    \label{eq:double_vol} \textbf{double} \quad \text{vol} \;,\;\; \text{bdx} \;,\;\; \text{bdy} \;,\;\; \text{bdz} \;,\;\; \text{cdx} \;,\;\; \text{cdy} \;,\;\; \text{cdz} \;;
    bdx = b.x-d.x; bdy = b.y-d.y; bdz = b.z-d.z;
    cdx = c.x-d.x; cdy = c.y-d.y; cdz = c.z-d.z;
    vol = (a.z - d.z) * (bdx * cdy - bdy * cdx)
          + (a.y - d.y) * (bdz * cdx - bdx * cdz)
          + (a.x - d.x) * (bdy * cdz - bdz * cdy);
    return vol;
}
void main()
  int n, F, i, j; double vol;
  TPoint p[maxn]; TFace face [maxn*2-4];
  cin>>n; for (i=0; i< n; i++) cin>> p[i].x>> p[i].y>> p[i].z;
  cin>>F; for (i=0; i< F; i++) for (j=0; j<3; j++) cin>> face [i][j];
  if(F!= 2 * n - 4) { printf("Not_a_simple_polyhedron!\n"); return;}
  for ( vol = i = 0; i < F; i++)
    vol += Volume6 ( p[face[i][0]], p[face[i][1]], p[face[i][2]], p[0]);
  vol /= 6.0; cout << vol << endl;
}
```

5.10 Planar Graph Contour

```
int x[maxn],y[maxn],g[maxn][maxn],num[maxn],base,n,size,mk[maxn][maxn];
int s[maxn], used[maxn], ans; double angle[maxn];
bool cmp(const int &i, const int&j){ return angle[i] < angle[j]; }
void dfs(int d,int u,int v)
    int i, j, w; s[d] = u; used[u]++;
     \mathbf{if} ( mk[u][v] ) 
         if (d = size)  {
              used[u]--;
              for(j=1;j \le n; j++) if(used[j]>1) break; if(j \le n) return;
              if(j>n) ++ans;
         return;
    }
    mk[\,u\,]\,[\,v\,]\!=\!1\,;
    for(j=0; j<num[v]; j++) if(g[v][j]==u) break;
    j = (j+1)\%num[v]; w = g[v][j]; dfs(d+1, v, w);
}
void solve()
    int i, j, k, l, u, v;
    for (i = 1; i \le n; i ++)
         base=i;
         for(j=1; j \le n; j++) angle[j] = atan2(y[j]-y[i],x[j]-x[i]);
         std::sort(g[i], g[i]+num[i], cmp);
    u = 1; memset(mk, 0, sizeof(mk));
    \mathbf{for} \ (\ i = 2; \ i <= n; \ i ++) \ \mathbf{if} \ (\ y \ [\ i \ ] < y \ [\ u \ ] \ |\ | \ (\ y \ [\ i \ ] == y \ [\ u \ ] \ \&\& \ x \ [\ i \ ] < x \ [\ u \ ])) \ u = i;
    for (v=-1, i=0; i < num[u]; i++) {
         j = g[u][i]; if(j=u | | j=v) continue;
         if (v < 0) \{ v=j; continue; \}
         k \; = \; (\,x\,[\,j\,] - x\,[\,u\,]\,) * (\,y\,[\,v\,] - y\,[\,u\,]\,) - (\,y\,[\,j\,] - y\,[\,u\,]\,) * (\,x\,[\,v\,] - x\,[\,u\,]\,)\,;
         if(k<0) v=j; else
         }
    dfs(0, v, u); ans = 0; // outer contour
    for(i=1; i \le n; i++) for(j=0; j \le num[i]; j++)
         if (!mk[i][g[i][j]])
         {
              memset(used,0,sizeof(used));
              dfs(0,i,g[i][j]);
         }
}
int main()
    int t, i, j, k, l;
    cin>>t; while (t-->0) {
         cin >> n;
         for(k=0; k< n; k++)
              cin >> i ; cin >> x[i] >> y[i]; cin >> num[i];
              for (j=0; j < num[i]; j++) cin>>g[i][j];
         cin \gg size; ans = 0; if (size < 3) size = 3;
         solve(); cout << ans << endl;
     } return 0;
}
```

5.11 Rectangles Area

```
struct TSegNode {
    TSegNode(int x, int y):L(x),R(y),Lch(-1),Rch(-1),count(0),len(0){}
    TSegNode() \{ TSegNode(-1,-1); \}
    int L, R, Lch, Rch, count, len;
};
struct Tevent {
    int L, R, x;
    bool style;
    friend const bool operator < (Tevent a, Tevent b) { return a.x<b.x; }
};
int nlist , list [MAXN*4] , total , n , nevent;
TSegNode node [MAXN*4]; Tevent event [MAXN*4];
void CreateTree(int r) {
    if ( node[r].R-node[r].L>1 ) {
        int mid = (node[r].L+node[r].R)>>1;
        node [total] = TSegNode(node[r].L, mid);
        node[r].Lch = total; CreateTree(total++);
        node [total] = TSegNode(mid, node[r].R);
        node[r].Rch = total; CreateTree(total++);
    }
}
void Update(int r, int L, int R, int v) {
    if (L>=node[r].R || R<=node[r].L ) return;
    if ( L<=node[r].L && R>=node[r].R ) {
        node[r].count+=v;
        if (v>0 \&\& v=node[r].count) node[r].len = node[r].R-node[r].L;
        if (v<0 \&\& node[r].count==0) if (node[r].Lch<0) node[r].len = 0;
        else node[r].len = node[node[r].Lch].len + node[node[r].Rch].len;
        Update(node[r].Lch, L, R, v); Update(node[r].Rch, L, R, v);
        if (node[r].count==0) node[r].len =
            node [node [r]. Lch]. len + node [node [r]. Rch]. len;
    }
}
```

```
int main() {
    int i , j , res , last;
    \operatorname{scanf}("%d", \&n);
    nevent = 0; nlist = 0;
    for (i=0; i< n; ++i) {
         int lx, ly, ux, uy;
         scanf("%d_%d_%d_%d", &lx, &ly, &ux, &uy);
         if ( lx < ux && ly < uy ) {
             event [nevent].x = lx; event [nevent].L = ly;
             event [nevent].R = uy;
                                       event [nevent++]. style = true;
             event[nevent].x = ux; event[nevent].L = ly;
             event [nevent].R = uy; event [nevent++].style = false;
         list[nlist++] = ly; list[nlist++] = uy;
    }
    std::sort(event, event+nevent);
    std::sort(list , list+nlist);
    nlist = std :: unique(list, list+nlist)-list;
    node[total=0, total++] = TSegNode(0, nlist-1);
    CreateTree (0);
    for (i=0; i< total; ++i)
          \{ \ node [\,i\,].L = \, list \, [\,node \, [\,i\,].L\,]\,; \ node \, [\,i\,].R = \, list \, [\,node \, [\,i\,].R\,]\,; \ \} 
    res = i = 0;
    while ( i<nevent ) {</pre>
         for (last=event[i].x; event[i].x==last; ++i)
             Update(0, event[i].L, event[i].R, event[i].style ? 1 : -1);
         if (i < nevent) res += (event[i].x - last) * node[0].len;
    }
    printf("%d\n", res);
    return 0;
}
```

5.12 Rectangles Perimeter

```
#define ABS(x) ( (x)>=0 ? (x) : -(x) )
struct TSegNode {
    TSegNode(int x, int y):L(x),R(y),Lch(-1),Rch(-1),count(0),len(0){}
    TSegNode() \{ TSegNode(-1,-1); \}
    int L, R, Lch, Rch, count, len;
};
struct Tevent {
    int L, R, x; bool style;
    friend const bool operator < (Tevent a, Tevent b)
     { if ( a.x!=b.x ) return a.x<b.x; return ( a.style && !b.style ); }
};
int n, lx [MAXN], ly [MAXN], ux [MAXN], uy [MAXN], total, nevent, res;
TSegNode node [MAXN*4]; Tevent event [MAXN*4];
void CreateTree(int r) {
    if ( node[r].R-node[r].L>1 ) {
         int mid = (node[r].L+node[r].R)>>1;
         node [total] = TSegNode(node[r].L, mid);
         node[r].Lch = total; CreateTree(total++);
         node [total] = TSegNode(mid, node[r].R);
         node[r].Rch = total; CreateTree(total++);
    }
}
void Update(int r, int L, int R, int v) {
    if (L>=node[r].R | R<=node[r].L ) return;
     if ( L<=node[r].L && R>=node[r].R ) {
         node[r].count+=v;
          if \quad (v>0 \&\& v=node[r].count \quad ) \quad node[r].len = node[r].R-node[r].L; \\
         \mathbf{if} ( v < 0 \&\& node[r].count == 0) \mathbf{if} ( node[r].Lch < 0 ) node[r].len = 0;
         else node [r]. len = node [node [r]. Lch]. len + node [node [r]. Rch]. len;
         Update(node[r].Lch, L, R, v); Update(node[r].Rch, L, R, v);
         if (\text{node}[r].\text{count}==0) node[r].\text{len}=
             node [node [r]. Lch]. len + node [node [r]. Rch]. len;
    }
}
```

```
void process() {
    int nlist , list [MAXN*2] , last , i , now;
    nevent = 0; \quad nlist = 0;
    for (i=0; i< n; ++i) {
        event \left[\, nevent \,\right].\, x \;=\; lx \left[\, i\,\,\right];
                                      event [nevent].L
                                                            = ly[i];
        event [nevent].R = uy[i];
                                      event[nevent++].style = true;
        event[nevent].x = ux[i];
                                      event [nevent].L
                                                             = ly[i];
        event [nevent].R = uy[i];
                                      event[nevent++].style = false;
        list[nlist++] = ly[i];
                                      list[nlist++]
                                                              = uy[i];
    }
    std::sort(event, event+nevent);
    std::sort(list , list+nlist);
    nlist = int(std::unique(list, list+nlist)-list);
    node[total=0, total++] = TSegNode(0, nlist-1);
    CreateTree (0);
    for(i=0; i< total; ++i)
         \{ node[i].L = list[node[i].L]; node[i].R = list[node[i].R]; \}
    last = i = 0;
    while( i < nevent ) {</pre>
        now = event[i].x;
        while ( i < nevent && event [i].x=now && event [i].style )
             { Update(0, event[i].L, event[i].R, 1); ++i; }
        res += ABS(node[0].len-last); last = node[0].len;
        while ( i < nevent && event [i].x=now )
             { Update (0, \text{ event} [i].L, \text{ event} [i].R, -1); ++i; }
         res += ABS(node[0].len-last); last = node[0].len;
    }
}
int main() {
    int i:
    scanf("%d", &n);
    for(i=0; i< n; ++i) scanf("%d_%d_%d_%d", &lx[i], &ly[i], &ux[i], &uy[i]);
    res = 0; process();
    for(i=0; i< n; ++i) \{ std :: swap(lx[i], ly[i]); std :: swap(ux[i], uy[i]); \}
    process(); printf("%d\n", res);
    return 0;
}
```

5.13 Smallest Enclosing Circle

 $O(N^3)$, compute Convex Hull first! or it will be quite slow!

```
\mathbf{double} \;\; \mathrm{GetCos} \left( \, \mathrm{CPoint} \;\; \mathrm{p0} \,, \mathrm{CPoint} \;\; \mathrm{p1} \,, \mathrm{CPoint} \;\; \mathrm{p2} \right)
{ return dot(p0, p1, p2)/dis(p0, p1)/dis(p0, p2); }
int allin (CPoint p[], int n, int i, int j, int k)
     for (int l=0; l<n; l++) if (l!=i && l!=j && l!=k) {
          if ( (cross(p[i],p[j],p[k])>0)^(cross(p[i],p[j],p[l])>0) &&
            \operatorname{dcmp}(\operatorname{GetCos}(p[k],p[i],p[j]) + \operatorname{GetCos}(p[l],p[i],p[j])) > 0) \text{ } \mathbf{return} \text{ } 0;
          if ( (cross(p[j],p[k],p[i])>0)^(cross(p[j],p[k],p[1])>0) &&
            \operatorname{dcmp}(\operatorname{GetCos}(p[i],p[k],p[j]) + \operatorname{GetCos}(p[l],p[k],p[j])) > 0) \text{ return } 0;
          if ( (cross(p[i],p[j],p[k])>0)^(cross(p[i],p[l],p[k])>0) &&
            dcmp(GetCos(p[j],p[k],p[i])+GetCos(p[l],p[k],p[i]))>0) return 0;
     return 1;
}
double Smallest Enclosing Circle (CPoint p[], int n, CPoint &cp)
     int i, j, k; double di, \cos 1, \cos 2, \cos, \sin, r=0;
     if(n == 1) \{ cp = p[0]; return 0; \}
     if (n == 2)
         cp.x = (p[0].x + p[1].x)/2;
         cp.y = (p[0].y + p[1].y)/2;
         return \operatorname{dis}(p[0], p[1])/2;
     for (i=0; i< n; i++) for (j=i+1; j< n; j++)
          di = dis(p[i], p[j]); cos1 = cos2 = -2;
          if ( dcmp(di-r*2)>0 ) r = di/2;
          for(k=0; k< n; k++) if(k!=i \&\& k!=j)
               co = GetCos(p[k], p[i], p[j]);
               if ( dcmp(cross(p[i],p[j],p[k]))>0 )
                    { if ( co>cos1 ) cos1=co; }
               else if (co>cos2) cos2=co;
          if (\text{dcmp}(\cos 1) \le 0 \&\& \text{dcmp}(\cos 2) \le 0)
               cp.x = (p[i].x + p[j].x)/2;
               cp.y = (p[i].y + p[j].y)/2;
               return di/2;
          }
     }
     r = 1e30;
     for(i=0; i< n; i++) for(j=i+1; j< n; j++) {
          di = dis(p[i], p[j]);
          for(k=j+1; k< n; k++) 
               co = GetCos(p[k], p[j], p[i]);
               si = sqrt(1-sqr(co));
               if ( demp(di/si/2-r)<0 \&\& allin(p,n,i,j,k) ) {
                    r=di/si/2;
                    GetCircleCenter(p[i], p[j], p[k], cp);
               }
          }
     return r;
}
```

5.14 Smallest Enclosing Ball

```
const double eps = 1e-10;
struct point_type { double x, y, z; };
int npoint, nouter;
point_type point[10000], outer[4], res;
double radius, tmp;
inline double dist(point_type p1, point_type p2)
     {\bf double} \ dx{=}p1.\,x{-}p2.\,x\;,\;\; dy{=}p1.\,y{-}p2.\,y\;,\;\; dz{=}p1.\,z{-}p2.\,z\;;
     return ( dx*dx + dy*dy + dz*dz );
}
inline double dot(point_type p1, point_type p2)
     {\bf return} \ \ p1. \ x*p2. \ x \ + \ p1. \ y*p2. \ y \ + \ p1. \ z*p2. \ z \ ;
}
void minball(int n)
     ball();
     if (nouter < 4)
         for (int i=0; i < n; ++i)
              if ( dist(res, point[i])-radius>eps )
                   outer [nouter] = point [i];
                   ++nouter;
                   minball(i);
                   --nouter;
                   \mathbf{if} (i > 0)
                        point_type Tt = point[i];
                        memmove(&point[1], &point[0], sizeof(point_type)*i);
                        point[0] = Tt;
                   }
              }
}
```

```
void ball() {
     point_type q[3]; double m[3][3], sol[3], L[3], det; int i, j;
     res.x = res.y = res.z = radius = 0;
    switch ( nouter ) {
         case 1: res=outer[0]; break;
         case 2:
              res.x=(outer[0].x+outer[1].x)/2;
              res.y = (outer[0].y + outer[1].y)/2;
              res.z=(outer[0].z+outer[1].z)/2;
              radius=dist(res, outer[0]);
              break:
         case 3:
              for (i = 0; i < 2; ++i)
                   q[i].x=outer[i+1].x-outer[0].x;
                   q[i].y=outer[i+1].y-outer[0].y;
                   q[i].z=outer[i+1].z-outer[0].z;
              for (i=0; i<2; ++i) for (j=0; j<2; ++j)
                   m[i][j] = dot(q[i], q[j]) * 2;
              for (i=0; i<2; ++i) sol[i]=dot(q[i], q[i]);
              if ( fabs (det=m[0][0]*m[1][1]-m[0][1]*m[1][0]) < eps ) return;
              L[0] = (sol[0]*m[1][1] - sol[1]*m[0][1]) / det;
              L[1] = (sol[1]*m[0][0] - sol[0]*m[1][0]) / det;
              res. x=outer[0]. x+q[0]. x*L[0]+q[1]. x*L[1];
              res.y=outer[0].y+q[0].y*L[0]+q[1].y*L[1];
              res.z=outer[0].z+q[0].z*L[0]+q[1].z*L[1];
              radius=dist(res, outer[0]);
              break:
         case 4:
              for (i = 0; i < 3; ++i)
                   q[i].x=outer[i+1].x-outer[0].x;
                   q[i].y=outer[i+1].y-outer[0].y;
                   q[i].z=outer[i+1].z-outer[0].z;
                   sol[i] = dot(q[i], q[i]);
              for (i=0; i<3;++i) for (j=0; j<3;++j) m[i][j]=dot(q[i],q[j])*2;
              det = m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0]
                   + m[0][2]*m[2][1]*m[1][0] - m[0][2]*m[1][1]*m[2][0]
                   - \, m \lceil \, 0 \, \rceil \, \lceil \, 1 \, \rceil \, * m \lceil \, 1 \, \rceil \, \lceil \, 0 \, \rceil \, * m \lceil \, 2 \, \rceil \, \lceil \, 2 \, \rceil \, - \, m \lceil \, 0 \, \rceil \, \lceil \, 0 \, \rceil \, * m \lceil \, 1 \, \rceil \, \lceil \, 2 \, \rceil \, * m \lceil \, 2 \, \rceil \, \lceil \, 1 \, \rceil \, ;
              if ( fabs(det)<eps ) return;</pre>
              for (j=0; j<3; ++j)
                   for (i = 0; i < 3; ++i) m[i][j]=sol[i];
                   L[j] = (m[0][0]*m[1][1]*m[2][2] + m[0][1]*m[1][2]*m[2][0]
                          )/ det;
                   for (i=0; i<3; ++i) m[i][j]=dot(q[i], q[j])*2;
              res=outer [0];
              for (i=0; i<3; ++i) {
                   res.x += q[i].x * L[i];
                   res.y += q[i].y * L[i];
                   res.z += q[i].z * L[i];
              radius=dist(res, outer[0]);
    }
```

}

Chapter 6

Classic Problems

6.1 Bernoulli Number Generator

```
Note: fraction.h contains a Fraction Class (Section 1.4 on Page 8)
#include<fraction.h>
Fraction a[22];
int c[22][22];
int main()
      \mathbf{int} \quad i\ , j\ , k\ , m;
      c[0][0] = 1;
      for (i=1;i \le 21;i++) {
           c[i][0] = 1; c[i][i] = 1;
            \mbox{ for } (j\!=\!1; j\!<\!i\;; j\!+\!+)\; c\,[\;i\;][\;j\;] \;=\; c\,[\;i\;-\!1][\;j\;] \;+\; c\,[\;i\;-\!1][\;j\;-\!1]; 
     a[0] = 0;
      \mathbf{while} ( \operatorname{cin} >> k )  {
           a[k+1] = Fraction(1,k+1); m = k+1;
           for (i=k; i>=1; i--) {
                a[i] = 0;
                 \quad \mathbf{for} \ (j \!=\! i \!+\! 1; j \!<\!\!=\! k \!+\! 1; j \!+\!+)
                      if ((j-i+1)\%2==0) a[i] = a[i]+a[j]*c[j][j-i+1];
                            else a[i] = a[i]-a[j]*c[j][j-i+1];
                a[i] = a[i] * Fraction(1,i);
                m = lcm(m, a[i].get\_denominator());
           }
           cout << m << '.';
           for (i=k+1;i>0;i--) cout << a[i] * m<< '_';
           cout << 0 << endl;
      return 0;
}
```

6.2 Baltic OI'99 Expressions

6.3 Bead Coloring — Pólya Theory

Use C colors to color L-bead necklace , the non-isomorphic number of the necklaces is :

If L is odd,

$$f(C,L) = \frac{1}{2L} \left(LC^{\frac{L+1}{2}} + \sum_{K=1}^{L} C^{(K,L)} \right)$$

If L is even,

$$f(C,L) = \frac{1}{2L} \left(\frac{L}{2} \left(C^{\frac{L}{2}} + C^{\frac{L}{2}+1} \right) + \sum_{K=1}^{L} C^{(K,L)} \right)$$

```
int ans, n, m, mk[maxn], id[maxn], num;
int main()
{
     int i, j, k, l, d, u, p [maxn];
     while (cin>>n>>m && n && m) {
          for (p[0] = i = 1; i \le m; i++) p[i] = p[i-1]*n;
          for (ans=num=i=0; i < m; i++) id [i]=i;
          for(1=0;1<2;1++){
               for (i = 0; i < m; i + +)
                    memset(mk, 0, sizeof(mk));
                    \mathbf{for}(k=j=0; j \le m; j++) \mathbf{if}(!mk[id[j]])
                         for(k++, u=id[j]; !mk[u]; u=id[(u+i)\%m]) mk[u]=1;
                   num++; ans+=p[k];
               std::reverse(id,id+m);
          }
               cout << ans / num << end l;
     return 0;
}
```

6.4 Binary Stirling Number

Parity of the Stirling number of the second kind

```
#define int long long
int calc(int n,int k)
{
    if( k==0 ) if( n==0 ) return 1; else return 0;
        else if( k==1 ) return 1; else
    {
        int p = 0, p2 = 1;
        while( k>p2*2 || n-k/2>p2 ) { p++; p2<<=1; }
        if( k>p2) return calc(n-p2,k-p2);
        if( n-k>=p2/2 ) return calc(n-p2/2,k);
        return 0;
}
```

6.5 Box Surface Distance

```
int r, L, H, W, x1, y1, z1, x2, y2, z2;
void turn(int i,int j,int x,int y,int z,int x0,int y0,int L,int W,int H){
      if(z==0){ int R=x*x+y*y; if(R<r) r=R; }else{
            \mathbf{i}\,\mathbf{f}\,(\,i\,{>}{=}0\;\&\&\;i\,{<}\;2)\;\;turn\,(\,i\,{+}1,j\;,\;\;x0{+}L{+}z\;,y\;,x0{+}L{-}x\;,\;\;x0{+}L\;,y0\;,\;\;H,W,L\,)\,;
            \mathbf{if}\,(\,\mathrm{j}\!>=\!\!0\;\&\&\;\mathrm{j}<\,2\,)\;\;\mathrm{turn}\,(\,\mathrm{i}\;,\,\mathrm{j}+\!1\,,\;\mathrm{x}\,,\,\mathrm{y}0\!+\!\!W\!\!+\!\!\mathrm{z}\,,\,\mathrm{y}0\!+\!\!W\!\!-\!\!\mathrm{y}\,,\;\;\mathrm{x}0\,,\,\mathrm{y}0\!+\!\!W\!,\;\;\mathrm{L}\,,\mathrm{H},\!W)\,;
            if(i \le 0 \&\& i > -2) turn(i-1,j, x0-z,y,x-x0,
                                                                                   x0-H, y0, H,W,L);
            if(j \le 0 \&\& j > -2) turn(i, j-1, x, y0-z, y-y0,
                                                                                   x0, y0-H, L, H, W);
      }
}
int main(){
      while (cin >> L >> W >> H >> x1 >> y1 >> z1 >> x2 >> y2 >> z2)
            if(z1!=0 \&\& z1!=H) if(y1==0 || y1=W)
                   \{ std::swap(y1,z1); std::swap(y2,z2); std::swap(W,H); \}  else
                   \{ std :: swap(x1, z1); std :: swap(x2, z2); std :: swap(L,H); \}
            if(z1=H) z1=0, z2=H-z2;
            r=0 \times 3 fffffff; turn (0,0,x2-x1,y2-y1,z2,-x1,-y1,L,W,H);
            cout << r << endl;
      return 0;
}
```

6.6 Calculate Expression

```
char expr [MAX+1]; int next [MAX], stack [MAX], top;
double calc(int L, int R);

void prefix() {
   int i; top=-1;
   for ( i=0; expr[i]; ++i ) {
       next[i]=-1;
       if ( expr[i]=='(' ) stack[++top]=i;
       else if ( expr[i]==')' ) next[stack[top--]]=i;
   }
}
```

```
double getnum(int &L) {
    double res = 0;
    if \ (\ expr[L] == \ '(\ '\ ) \ \{\ res = calc(L+1,\ next[L]-1);\ L = next[L]+1;\ \}
         else while ( isdigit(expr[L]) ) res=res*10+expr[L++]-'0';
    return res;
}
void process (double &a, double b, char op) {
    switch ( op ) {
         case '+': a += b; break;
        \mathbf{case} \ '-'\colon \ a \ -= \ b \ ; \ \mathbf{break} \ ;
         case '*': a *= b; break;
         default : a /= b;
    }
}
double calc(int L, int R) {
    double a, b, c;
    char op1, op2;
    if (\text{next}[L] == R) return \text{calc}(L+1, R-1);
    a = 0; op1 = (expr[L] = '-', ?', '-', : '+');
    L = (expr[L] == '+' || expr[L] == '-' ? L+1 : L );
    for (b = getnum(L); L < R;) 
        op2=expr[L++]; c=getnum(L);
         if ( op2='+' || op2='-' || op1='*' || op1='/' ) {
             process(a, b, op1); b=c; op1=op2;
         \} else process(b, c, op2);
    }
    process(a, b, op1);
    return a:
}
void main() {
    scanf("%s", expr); prefix();
    printf("\%.10lf\n", calc(0, strlen(expr)));
}
```

6.7 Cartesian Tree

```
int lson [maxn], rson [maxn], pnt [maxn], root, n;

void BuildCartesianTree(int a[], int n)
{
    int i, j;
    for (i = 0; i < n; j = i + +) {
        pnt [i] = i - 1; lson [i] = rson [i] = -1; j = i;
        while ( pnt [j] > = 0 && a [i] > a [pnt [j]] ) j = pnt [j];
        if ( j! = i ) { pnt [i] = pnt [j]; lson [i] = j; pnt [j] = i; };
        if (pnt [i] > = 0) rson [pnt [i]] = i;
    }
    for (i = 0; i < n; i + +) if (pnt [i] < 0) root = i;
}</pre>
```

6.8 Catalan Number Generator

```
< 2^31
#define maxn 1000
#define maxlen 700
#define maxpnum 400
int prime[maxpnum], primepos[maxn*2], num[maxpnum], pnum;
struct HP{ int len; int s[maxlen]; };
void PrintHP(HP x) { for(int i=x.len; i>0; i--) cout << x.s[i]; }
void Multi(HP &x, int k)
{
    int i; for (i=1;i \le x.len;i++)x.s[i]*=k;
    x.len+=8; // log(10, maxn*2);
    for (i=1;i \le x. len; i++) { x.s[i+1] + = x.s[i]/10; x.s[i]\% = 10; }
    while ( x. len > 1 \&\& !x. s [x. len ]) x. len --;
}
void Factorize(int x,int flag)
    for (int i=0; prime [i] * prime [i] <= x; i++)
        while (x\%prime[i]==0) \{x/=prime[i]; num[i]+=flag; \}
    if(x>1) num[primepos[x]] += flag;
}
HP Catalan(int n)
    HP x; memset(&x,0,sizeof(x)); x.len=1; x.s[1]=1;
    memset(num,0, sizeof(num)); int i, j;
    for (i=1;i \le n;i++) { Factorize (2*n+1-i, 1); Factorize (i,-1); }
    Factorize (n+1,-1);
    for(i=0;i < pnum;i++) while (num[i]-->0) Multi(x, prime[i]);
    return x;
}
void InitPrimes()
    int i,j; pnum=0; memset(primepos,0,sizeof(primepos));
    for ( i =2; i <= maxn * 2; i++) if (! primepos [ i ]) {
        primepos [i]=pnum; prime [pnum++]=i;
        for (j=i+i; j \le \max *2; j+=i) primepos [j]=-1;
    }
}
void main()
    InitPrimes(); int n;
    while (cin>>n) { PrintHP (Catalan (n)); cout << endl; }
}
```

6.9 Coloring Regular Polygon

```
Coloring regular n-vertex polygon with m white and n-m black. When n=17 and m=8 OUTPUT: 750
int c[maxn][maxn], ans, n, m;
int gcd(int i,int j){ if(j==0) return i; else return gcd(j,i%j); }
int main()
                 cin >> n >> m;
                 int i, j, k, l, d;
                 c[0][0] = 1;
                 for (i = 1; i < maxn; i + +) {
                                  c[i][0] = 1;
                                   \begin{tabular}{ll} \be
                 for(k=0;k\le m;k++) {
                                 d=\gcd(m,k);
                                  if ( n*d \% m == 0 ) { l=n*d/m; ans+=c[l-1][d-1]; }
                 if(m\%2==0) {
                                  if (n\%2==0) ans+=(m/2)*c[n/2-1][m/2-1];
                                  if(m==2) ans+=(m/2)*(n-1); else
                                                   for (i=2-n\%2; i \le n-(m-2); i+=2)
                                                                     ans+=(m/2)*(i-1)*c[(n-i)/2-1][(m-2)/2-1];
                  } else for (i=2-n\%2; i \le n-(m-1); i+2) ans +=m*c[(n-i)/2-1][(m-1)/2-1];
                 cout << ans/(2*m) << endl;
                 return 0;
}
```

6.10 Counting Inverse Pairs

```
#include < iostream.h>
#include < fstream . h>
#include<algorithm>
#define maxn 10000
int a [maxn], t [maxn], n, ans;
void sort(int b,int e)
     if(e-b \le 0) return;
    int mid=(b+e)/2, p1=b, p2=mid+1, i=b;
     sort(b, mid); sort(mid+1, e);
    while ( p1<=mid | | p2<=e )
         if ( p2>e | | (p1<=mid && a[p1]<=a[p2]) ) t[i++]=a[p1++];
              else { t[i++]=a[p2++]; ans+=mid-p1+1; }
     for (i=b; i \le e; i++)a[i]=t[i];
}
int main()
    ifstream cin("input.txt");
    int i, j;
    while ( cin >> n )  {
         for (i=0; i< n; i++) cin>>a[i];
         ans = 0; sort (0, n-1); // Counting Inverse Number
         cout << "Minimum_exchange_operations _: _ "<< ans << endl;
    return 0;
}
```

6.11 Counting Trees

```
// Rooted
              \{1, 5, 11, 20, 30\} = \{1, 9, 1842, 12826228, 354426847597\}
// Non-Rooted \{1, 3, 10, 25, 30\} = \{1, 1, 106, 104636890, 14830871802\}
void main()
{
    ifstream cin("input.txt");
    int i, j, n;
    memset(s, 0, sizeof(s)); a[0] = 0; a[1] = 1;
    for (i=1; i < maxn-1; i++)
        a[i+1] = 0;
        for (j=1; j \le i; j++)
            s[i][j] = s[i-j][j] + a[i+1-j];
            a[i+1] += j*a[j]*s[i][j];
        a[i+1] /= i;
    while (cin >> n) // a / n = Rooted; ans = Non-Rooted
        int ans = a[n];
        for (i=1; 2*i \le n; i++) ans -= a[i] * a[n-i];
        if (n\%2==0) ans +=(a[n/2]+1)*a[n/2]/2;
        cout << a[n] << "_" << ans << endl;
    }
}
```

6.12 Eight Puzzle Problem

Input: 012345678 123456780 Output: STEP = 22

Common Part

```
#define maxlen 10
#define size 362880+1
const int [9][5] = \{ \{2,1,3\}, \{3,0,2,4\}, \{2,1,5\}, \{3,0,4,6\}, 
     \{4,1,3,5,7\}, \{3,2,4,8\}, \{2,3,7\}, \{3,4,6,8\}, \{2,5,6\} };
int s[maxlen], p[maxlen], mk[size], open[size], cur, tail;
void encode(int *s,int len,int &x)
    int i, j, k, l; for (x=0, i=len-1; i>=0; x+=k*p[i--])
    for (k=s[i], j=i+1; j< len; j++) if (s[j]< s[i]) k--;
}
void decode(int *s,int len,int x)
    int i, j, k, l; for (i=len-1; i>=0; i--)\{s[i]=x/p[i]; x/=p[i]; \}
     for(i=0; i< len; i++) for(j=0; j< i; j++) if(s[j]>=s[i]) s[j]++;
}
void print(int *s,int len)
{
         for (int i=0; i < len; i++)
                  cout << s [ i ];
         cout << endl;
}
```

```
int main()
    ifstream cin("input.txt");
    char ch; int i, src, dst;
    \label{eq:formula} \mbox{\bf for} \, (\, p \, [\, 0\, ] \, = \, i \, = \, 1 \, ; \ i \, < \, maxlen \; ; \ i \, + \, + \, ) \, \, p \, [\, i \, ] \, = \, p \, [\, i \, - \, 1\, ] \, * \, i \; ;
    for (i=0;i<9;i++) \{ cin>>ch; s[i]=ch-'0'; \} encode(s,9,src);
    for (i=0; i<9; i++) { cin>>ch; s[i]=ch-'0'; } encode (s,9,dst);
    solve(src,dst); cout<<cur<<""=""<<tail<<endl;</pre>
    return 0;
}
Simple Breadth First Search
void output(int pos,int num)
{
     if (pos==1) cout <<" Total_number_of_steps_=_"<<num<<endl;
          else output(mk[open[pos]],num+1);
     decode(s,9,open[pos]); print(s,9);
}
void solve(int src,int dst)
{
    int i, j, k, x, l, ps;
     if(src=dst){ cout<<"SRC_DST_is_the_same!"<<endl; return; }</pre>
    cur = 0; tail = 1; open[1] = src; mk[src] = 1;
    \mathbf{while}(++\mathbf{cur} \leq \mathbf{tail})
          decode(s, 9, open[cur]); for (ps=0; s[ps]; ps++);
         for (k=1; k<=link[ps][0]; k++) {
              std::swap(s[ps],s[link[ps][k]]); encode(s,9,x);
              if (!mk[x]) {
                   mk[x] = cur; open[++tail] = x;
                   if(x=dst) { output(tail,0); return; }
              std::swap(s[ps],s[link[ps][k]]);
          }
    }
    cout << "No_solution!" << endl;
}
Heuristic Breadth First Search
int d[size], heap[size], hlen, h[size], dsts[maxlen];
int cmp(const int &i, const int &j){ return h[i]>h[j]; }
void calch (int pos)
    int i, j, k; h[pos]=d[pos];
     for (i=0;i<9;i++) if (s[i]!=dsts[i]) h[pos]++;
}
void output(int pos,int num)
     if (pos==1) cout << "Total_number_of_steps_=_" << num << endl;
          else output(mk[open[pos]],num+1);
     decode(s, 9, open[pos]); print(s, 9);
}
```

```
void solve(int src,int dst)
    int i, j, k, x, l, ps;
     if(src=dst){ cout<<"SRC_DST_is_the_same!"<<endl; return; }</pre>
     tail=1; open[1]=src; mk[src]=1; hlen=1; heap[0]=1; d[1]=0;
    decode(s,9,src); decode(dsts,9,dst); calch(1);
    while (hlen >0){
         cur=heap[0]; std::pop\_heap(heap,heap+(hlen--),cmp);
         decode(s, 9, open[cur]); for (ps=0; s[ps]; ps++);
         for (k=1; k<=link[ps][0]; k++) {
              std::swap(s[ps],s[link[ps][k]]); encode(s,9,x);
              if (!mk[x]) {
                  mk[x]=cur; open[++tail]=x; d[tail]=d[cur]+1; calch(tail);
                  heap [hlen++]=tail; std::push_heap(heap,heap+hlen,cmp);
                   if(x=dst) { output(tail,0); return; }
              }
              std::swap(s[ps],s[link[ps][k]]);
         }
    cout << "No_solution!" << endl;
}
Double Breadth First Search
int step , di [ size ];
void out1(int pos)
{
     if(pos>2) out1(mk[open[pos]]); step++;
    decode(s, 9, open[pos]); print(s, 9);
}
void out2(int pos)
    decode(s, 9, open[pos]); print(s, 9);
     if(pos>2) out2(mk[open[pos]]); step++;
}
void solve(int src,int dst)
    int i, j, k, x, l, ps;
     if(src=dst){ cout<<"SRC_DST_is_the_same!"<<endl; return; }</pre>
    open [1] = src; mk[src] = 1; di[src] = 1; cur = 0;
    open[2] = dst; mk[dst] = 2; di[dst] = 2; tail = 2;
    \mathbf{while}(++\mathbf{cur} \leq \mathbf{tail})
         decode(s, 9, open[cur]); for (ps=0; s[ps]; ps++);
         for (k=1; k<=link[ps][0]; k++) {
              std::swap(s[ps],s[link[ps][k]]); encode(s,9,x);
              if (!mk[x]) { mk[x]=cur; open[++tail]=x; di[x]=di[open[cur]]; }
                   else if (\operatorname{di}[x]! = \operatorname{di}[\operatorname{open}[\operatorname{cur}]]) {
                       step=0;
                       if(di[x]==1) \{ out1(mk[x]); out2(cur); \}
                                       { out1(cur);
                                                        \operatorname{out2}\left(\operatorname{mk}[x]\right); \}
                       cout << "Total_number_of_steps_=_"<< step << endl;
                       return;
              std::swap(s[ps],s[link[ps][k]]);
         }
    cout << "No_solution!" << endl;
}
```

6.13 Extended Honai Tower

```
int P[ML][ML], D[ML][ML], T[ML][ML];
void init()
{
     \mathbf{int} \hspace{0.1in} i\hspace{0.1in}, j\hspace{0.1in}, x\hspace{0.1in}, k\hspace{0.1in}, l\hspace{0.1in};
     \mathbf{for}(P[0][0] = l = 1; l < ML; l ++) \{
          P[0][1] = P[1][0] = 1;
          \mathbf{for} \, (\,\, i = 1; i < l \,\,; \, i + +) \,\, P \, [\,\, i \,\,] \,\, [\,\, l - i \,\,] \,\, = \,\, P \, [\,\, i \,\, -1] \, [\,\, l - i \,\,] + P \, [\,\, i \,\,] \,\, [\,\, l - i \,\, -1] \, ;
     for(i=0;i<ML;i++) for(k=j=0;j<ML-i && k!=ML;j++)
          for(x=0;x<P[i][j];x++) \{ if (k=ML) break; D[i][k++] = 1<< j; \}
     for(i=0; i \le ML; i++) T[i][0] = 0;
     for(j=1; j \le ML; j++) for(i=0; i < 20; i++) T[i][j] = T[i][j-1] + D[i][j-1];
}
int main()
     init();
     for (int a,b,casec=1; cin>>a>>b && (a||b); casec++)
          cout << "Case_" << casec << ":_" << T[b-3][a] << endl;
     return 0;
}
6.14
         High Precision Square Root
int x[maxlen],y[maxlen],z[maxlen],bck[maxlen],lx,ly,lz;
int IsSmaller() // is z \le y?
{int i=ly; while (i > 1 && z[i]==y[i]) i --; return (z[i]<=y[i]); }
void Solve() // y^2=x
{
     int i, j, k;
     lx = (ly + 1)/2; ly = lx * 2;
     memset(x,0,sizeof(x)); memset(z,0,sizeof(z));
     for ( i=lx ; i>0; i--) {
          for (j=1; j<10; x[i]=j++)
               memcpy(bck, z, sizeof(z));
               z[2*i-1]++; for(k=i;k<=lx;k++)
                \{z[i-1+k]+=2*x[k]; z[i+k]+=z[i-1+k]/10; z[i-1+k]\%=10; \}
               for (k=lx+i; k \le ly; k++) \{ z [k+1] + = z [k]/10; z [k]\% = 10; \}
               if (!IsSmaller()) break;
          if(j<10) memcpy(z,bck,sizeof(bck));</pre>
     };
     for(i=lx;i>0;i--) cout << x[i]; cout << endl;
}
int main()
     char ch, s [maxlen]; int i, j;
     memset(y, 0, sizeof(y));
     cin >> s; ly = strlen(s);
     for(i=0;i< ly;i++)y[i+1]=s[ly-1-i]-'0';
     Solve();
     return 0;
}
```

6.15 Largest Empty Rectangle

```
O(N^2)
int n, wx, wy, x [maxn], y [maxn], id [maxn];
int xx[maxn], yy[maxn], ans;
bool cmp(const int&i,const int&j)
{
    return x[i] < x[j];
}
void calc(int i,int px,int py)
    int ret, j, low = 0, high=wy;
    for(; i < n; i++) if(x[i] > px)
          j\!=\!\!(\mathop{\rm high}\nolimits\!-\!\mathop{\rm low}\nolimits)\!*\!(\mathop{x}\!\left[\:i\:\right]\!-\!\mathop{px}\nolimits\right);\;\;\mathbf{i}\,\mathbf{f}\left(\:j\!>\!\!\mathrm{ans}\right)\;\;\mathrm{ans}\!=\!j\;;
         if(y[i] < py && y[i] > = low) low = y[i];
          if(y[i])=py \&\& y[i]<=high) high = y[i];
     }
}
int main()
{
    int i, j, k;
    cin>>wx>>wy>>n; for (i=0;i< n;i++) cin>>x[i]>>y[i];
    x[n]=y[n]=0; n++; x[n]=wx; y[n]=wy; n++;
    for (i=0; i < n; i++) id [i]=i; std::sort(id, id+n, cmp);
    for (i=0;i<n;i++) { xx[i]=x[id[i]]; yy[i]=y[id[i]]; }
    for (i=0;i< n;i++) \{ x[i]=xx[i]; y[i]=yy[i]; \}
    std :: sort(yy, yy+n); k=std :: unique(yy, yy+n)-yy;
    ans=0;
    for(i=0;i < n;i++) calc(i,x[i],y[i]);
    for (j=0; j < k; j++) calc (0,0,yy[j]);
    cout << ans << endl;
    return 0;
}
O(D^2)
int x[maxn],y[maxn], xlist[maxn], ylist[maxn], nx, ny, ans, n, wx, wy;
char g[maxd][maxd]; int u[maxd],d[maxd],l[maxd];
int main()
{
    int i, j, px, py, up, down, tmp; ans=0;
    cin>>wx>>wy>>n; for (i=0;i< n;i++) cin>>x[i]>>y[i];
    nx=ny=n; for (i=0;i< n;i++) { x list[i]=x[i]; y list[i]=y[i]; }
     x list [nx++]=y list [ny++]=0; x list [nx++]=wx; y list [ny++]=wy;
    std::sort(xlist,xlist+nx); nx=std::unique(xlist,xlist+nx)-xlist;
    std::sort(ylist, ylist+ny); ny=std::unique(ylist, ylist+ny)-ylist;
    for (i = 0; i < nx; i++) memset (g, 0, n);
    for (i = 0; i < n; i++)
         px = std::lower\_bound(xlist,xlist+nx,x[i]) - xlist;
         py = std::lower\_bound(ylist, ylist+ny, y[i]) - ylist;
         g[px][py]=1;
    }
```

```
for (j=0; j< ny-1; j++)
         tmp = wx * (ylist[j+1] - ylist[j]);
         if (tmp > ans) ans = tmp;
    for (i = 1; i < nx; i++)
         down = 0; up=ny-1;
         \mathbf{for} \, (\,\, j = 0 \,; \  \, j < \!\! ny \,; \  \, j + +) \, \, \mathbf{i} \, \mathbf{f} \, ( \  \, i = = 1 \, \, |\, | \, *(*(\,g + i - 1) + j \,\,) \,\, )
              \{ l[j]=i-1; d[j]=0; down=j; \} else
                   if(down > d[j]) d[j] = down;
         for (j=ny-1; j>=0; j--)
              if(i == 1 \mid | *(*(g+i-1)+j))  { u[j]=ny-1; up=j;  } else
                       if(up < u[j]) u[j] = up;
              tmp = (xlist[i] - xlist[l[j]]) * (ylist[u[j]] - ylist[d[j]]);
              if (tmp>ans) ans=tmp;
         }
    }
    cout << ans << endl;
    return 0;
}
O(N^2)
int n, wx, wy, id [maxn], x [maxn], y [maxn], ans, xx [maxn], yy [maxn];
bool xcmp(const int&i,const int &j) { return x[i]<x[j]; }
bool ycmp(const int&i,const int &j) { return y[i]<y[j]; }
int main()
{
    int i, j, k, l, tmp, low, high, last;
    cin>>wx>>wy>>n; for (i=0;i< n;i++) cin>>x[i]>>y[i];
    x[n]=y[n]=0; n++; x[n]=wx; y[n]=wy; n++;
    for (i=0; i< n; i++) id [i]=i;
    std :: sort(id, id+n, xcmp);
    for(i=0;i< n;i++) \{ xx[i]=x[id[i]]; yy[i]=y[id[i]]; \}
    for (i=0;i<n;i++) { x[i]=xx[i]; y[i]=yy[i]; }
    std::sort(id,id+n,ycmp);
    for (i = 0; i < n; i++)
         l = 0: last = 0:
         for (j=0; j< n; j++) if (x[id[j]] < x[i] && y[id[j]] > last)
              if(y[id[j]] - last > l) l=y[id[j]] - last;
              last=y[id[j]];
         if (wy-last>l) l=wy-last;
         if(l*x[i] > ans) ans = l*x[i];
         low = 0; high=wy; for(j=i+1; j < n; j++)
         {
              tmp = (high-low)*(x[j]-x[i]);
              if (tmp> ans ) ans=tmp;
              if ( y[j]>=y[i] && y[j]<high ) high = y[j];
              if(y[j] \le y[i] \&\& y[j] > low = y[j];
    cout << ans << endl;
    return 0;
}
```

6.16 Last Non-Zero Digit of N!

Smart Edition

```
\mathbf{const} \ \mathbf{int} \ \mathbf{ff} \, [\, 10\, ] \ = \ \{\, 1 \,\,, \,\, 1 \,\,, \,\, 2 \,\,, \,\, 6 \,\,, \,\, 4 \,\,, \,\, 4 \,\,, \,\, 8 \,\,, \,\, 4 \,\,, \,\, 6 \,\,\,\}\,;
int fact (int n)
{
    int i,x;
    if(n < 5) return ff[n];
    x = (ff[n\%10] * 6) \%10;
    for (i=1; i <= (n/5)\%4; i++)
         if ( x==6 || x==2 ) x=(x+10)/2; else x/=2;
    return ( fact (n/5) * x ) \% 10;
}
High Precision Edition
int a[10] = \{6, 1, 2, 6, 4, 4, 4, 8, 4, 6\};
int b[ 4] = \{1,8,4,2\};
void divide (char s[], int &len)
{
    int i;
    char temp [200];
    for (i=0; i< len; i++) temp[i] = s[i]*2; temp[len] = 0;
    for (i = 0; i < len; i++) if (temp[i] > 9) \{temp[i] - = 10; temp[i+1] + +; \}
    for (i=0; i< len; i++) s[i] = temp[i+1];
     \mathbf{if} (\text{temp} [\text{len}] = = 0) \text{len} = -;
}
int fact (char s [])
    int resulent=1,power=0,len=strlen(s),i;
    char temp;
    if (len=1\&\&s[0]=='0') return 1;
    for (i=0; i < len; i++) s[i]-='0';
    for(i=0;i<len/2;i++)\{temp=s[i]; s[i]=s[len-1-i]; s[len-1-i]=temp; \}
    while (len) {
         resulent=resulent*a[s[0]\%10]\%10;
         divide (s, len);
         power+=(s[1]*10+s[0])\%4;
    resulent=resulent*b[power%4]%10;
    return resulent;
}
6.17
         Least Common Ancestor
int n, h, root; // maxh-1 = h = floor(log(2, n-1))
int pnt[maxn][maxh], son[maxn], next[maxn], depth[maxn];
int stack[maxn], mylog[maxn];
int GetParent(int x,int len)
{
    while ( len > 0 ) {
         x = pnt[x][mylog[len]];
         len = (1 << mylog[len]);
    return x;
}
```

```
int LCA(int x, int y) // O( log N )
    int nx, ny, px, py, low, mid, high;
    low = 0; high = depth[x] < depth[y]? depth[x] : depth[y];
    px = GetParent(x, depth[x]-high);
    py = GetParent(y, depth[y] - high);
    if (px == py) return px;
    while (high-low>1)
         mid = mylog[high-low-1];
         nx = pnt[px][mid];
         ny = pnt[py][mid];
         mid = high - (1 << mid);
         if(nx == ny) low = mid; else { high = mid; px = nx; py = ny; }
    return pnt [px] [mylog[high-low]];
}
int LCA_2(int x, int y) // O( log^2 N)
    int low, mid, high;
    low = 0; mid = high = depth[x] < depth[y] ? depth[x] : depth[y];
    if ( GetParent(x, depth[x]-mid) != GetParent(y, depth[y]-mid) )
    while (low+1<high)
    {
         mid = (low + high) / 2;
         if ( GetParent(x, depth[x]-mid) != GetParent(y, depth[y]-mid) )
             high = mid; else low = mid;
    else\ low = high;
    return GetParent(x, depth[x]-low);
}
void dfs(int d,int cur)
    int i, j; stack[d] = cur; depth[cur] = d;
    for (j=1, i=2; i \le d; j++, i = 2) pnt [cur][j] = stack[d-i];
    for (j=son[cur]; j; j=next[j]) dfs (d+1, j);
}
void main()
    {f int} i, j, k, l;
    for (i=0, j=1; j < maxn; i++)
         k = j * 2; if ( k > maxn ) k = maxn;
         \mathbf{while} \, ( \ j \! < \! k \ ) \ \mathrm{mylog} \, [ \, j \! + \! + ] \, = \, i \; ;
    }
    cin >> n;
    for (i=1; i \le n; i++)
         son[i] = next[i] = 0;
         for (j=0; j \le h; j++) pnt [i][j] = 0;
    for (i=1; i < n; i++)
         cin >> j >> k; pnt[j][0] = k;
         next\left[\,j\,\right]\!=\!son\left[\,k\,\right]\,;\ son\left[\,k\right]\!=\!j\,\,;
    for (i=1; i <=n; i++) if (pnt[i][0]==0) { root=i; break; };
    dfs (0, root); // Preprocess Parent Array
    for (cin >> k; k; k--) \{ cin >> i >> j; cout << LCA(i,j) << endl; \}
}
```

6.18 Longest Common Substring

}

 $O(N \log N)$, using Suffix Sort with LCP information int LCS(char *s1, int l1, char *s2, int l2, int &i1, int &i2) { strcpy(s, s1); s[11] = '\$';strcpy(s+11+1, s2); n=11+12+1;SuffixSort(); GetHeight(); // s[l1]=0;**int** i, j, l=0; i1 = i2 = 0; **for** (i = 1; i < n; i + +) **if** (height [i] >= 1 && id [i-1] < 11 && id [i] > 11) $\{ 1 = height[i]; i1 = id[i-1]; i2 = id[i]-11-1; \}$ **if** (height [i]>=1 && id [i]<11 && id [i-1]>11) $\{ l = height[i]; i1 = id[i]; i2 = id[i-1]-l1-1; \}$ return 1; } $O(N^2)$, using KMP int LCS(char *s1, int l1, char *s2, int l2, int & ansi, int & ansj) int i, j, k, l, ans = 0; ans i = 0; ans j = 0;for (i=0; i<11-ans; i++)makefail (s1+i, 11-i);kmp(s2, 12, s1+i, 11-i, 0, 1, j);**if**(l>ans) { ans=l; ansi=i; ansj=j; } return ans; } Example Part **char** s1 [maxlen], s2 [maxlen]; **int** l1, l2; int main() ifstream cin("input.txt"); cin>>s1>>s2; l1=strlen(s1); l2=strlen(s2); **int** i1, i2, i, l = LCS(s1, l1, s2, l2, i1, i2);for(i=0;i<1;i++) cout << s1[i1+i]; cout << endl;for(i=0;i<1;i++) cout << s2[i2+i]; cout << endl;return 0: } Mth Longest Common Substring #define h next //h[i] = Longest Common Substring of s1+0 and s2+iint mk[maxn]; // already found a common substring = s2[i..mk[i])struct CAnswer{ int pos,len; } ans[maxn]; bool newcmp(const CAnswer &a, const CAnswer &b) { if(a.len != b.len) return a.len>b.len; return a.pos
b.pos;

```
void LCS(char *s1, int 11, char *s2, int 12, int m)
    strcpy(s, s1);
                            s[11] = "",";
    \operatorname{strcpy}(s+l1+1, s2);
                            n=11+12+1;
                                             // s [l1] = 0;
    SuffixSort();
                            GetHeight();
    int i, j, k, p, u, v;
    // computing longest common prefix between s1+0 and s2+i
    memset(h, 0, sizeof(h));
    for (i=0; i< n; i++) if (i< n-1 && id[i]< 11 && id[i+1]> 11) {
         k=maxlen;
         for (j=i+1; j < n; j++)
              { if(id[j]<11) break; if(height[j]<k) k=height[j]; h[j]=k; }
    for (i=n-1; i>0; i--) if (id[i]<11 && id[i-1]>11) {
         k=maxlen;
         for (j=i-1; j>=0; j--) {
             if(id[j]<l1) break; if(height[j+1]<k) k=height[j+1];
             \mathbf{i}\mathbf{f}(\mathbf{k}>\mathbf{h}[\mathbf{j}]) \mathbf{h}[\mathbf{j}]=\mathbf{k};
         }
         i = j + 1;
    }
    num=0; // Collect Non-Position-Covering Answer
    for (i = 0; i < n; i++)
         if(h[rank[i]]!=0 \&\& (i==0 || h[rank[i-1]] <= h[rank[i]]))
              \{ k=rank[i]; ans[num].pos=id[k]; ans[num].len=h[k]; num++; \}
    std::sort(ans,ans+num,newcmp);
    memset(mk, 0, sizeof(mk));
    for (i=j=0; i < num &  j < m; i++) 
         k=rank[ans[i].pos]; // Check Non-Substring-Covering
         if (mk[k]>=h[k]) continue;
         int ok=1;
         for (u=maxlen, p=k+1; p<n; p++)
             if (height[p] < u) u = height[p];
             if(u < h[k]) break;
             if(mk[p]>=h[k]) \{ ok=0; break; \}
         if (!ok) continue;
         for (u=maxlen, p=k-1; p>=0; p--) {
              \mathbf{if} ( height [p+1] < \mathbf{u} ) \mathbf{u} = \mathbf{height} [p+1];
             if(u < h[k]) break;
             if(mk[p]>=h[k]) \{ ok=0; break; \}
         if (!ok) continue;
         j++; // Check Passed, Set Already Found Substring
         for(v=0; v<h[k]; v++)
              if (mk[rank[id[k]+v]] < h[k]-v) mk[rank[id[k]+v]] = h[k]-v;
         // LENGTH h[rank[ans[i].pos]] POSITION ans[i].pos-l1-1
         char ch = s[ans[i].pos + h[rank[ans[i].pos]]];
         s[ans[i].pos + h[rank[ans[i].pos]]] = 0;
         cout << s+ans[i].pos << endl;
         s[ans[i].pos + h[rank[ans[i].pos]]] = ch;
    }
```

}

6.19 Longest Non Descending Sub Sequence

```
int LNDSS(int a[], int n) // Longest Non-descending Sub Sequence
       \mathbf{int} \hspace{0.2cm} i\hspace{0.1cm}, j\hspace{0.1cm}, k\hspace{0.1cm}, *\hspace{0.1cm} b\!\!=\!\!\!\mathbf{new} \hspace{0.2cm} \mathbf{int}\hspace{0.1cm} \left[\hspace{0.1cm} n\hspace{-0.1cm}+\hspace{-0.1cm} 1\right], ans \hspace{-0.1cm} =\hspace{-0.1cm} 0;
       b[ans] = -0x3f3f3f3f;
       \textbf{for} \hspace{0.1cm} (\hspace{0.1cm} i\hspace{-0.1cm}=\hspace{-0.1cm} 0; i\hspace{-0.1cm} <\hspace{-0.1cm} n\hspace{0.1cm}; \hspace{0.1cm} i\hspace{-0.1cm}+\hspace{-0.1cm} +\hspace{-0.1cm} ) \{ \hspace{0.5cm} // \hspace{0.1cm} \textit{lower\_bound for Asending Sub Squence} \hspace{0.1cm} \\
              j=std::upper\_bound(b,b+ans+1,a[i])-b;
              if(j>ans) b[++ans]=a[i]; else if(a[i]<b[j]) b[j]=a[i];
       delete b; return ans;
}
6.20
             Join and Disjoin
Note: UnionFind.h contains a Union-Find Set (Section 1.10 on Page 11)
#include < union find . h >
int Gather(int x, int y)
       if(!x && !y) return 0;
       if(!x) return find(y);
       if(!y) return find(x);
       Merge(x,y);
       return find(x);
}
void Join(int x,int y)
       int a=Gather(x,y); // x,y nerver be zero
       int b=Gather(vs[x], vs[y]);
       vs[a]=b; vs[b]=a;
}
void Disjoin(int x,int y)
       int a=Gather(x, vs[y]);
       int b=Gather(y, vs[x]);
       vs[a]=b; vs[b]=a;
}
```

6.21 Magic Square

```
#define maxn 1000
int a [maxn] [maxn], n;
void build (int n, int a [] [maxn]) // No solutions when n=2!
    int i, j, k, n2=n*n, m=n/2, m2=m*m;
    for (i=0;i< n;i++) for (j=0;j< n;j++) a [i][j]=0;
                                    // No solutions
    if (n==2) return;
    if (n%2==1)
         for (i=0, j=n/2, k=1; k \le n2; k++) {
             a[i][j] = k;
             if(!a[(i+n-1)\%n][(j+1)\%n])
                  \{i=(i+n-1)\%n; j=(j+1)\%n; \} else i=(i+1)\%n;
    else if (n\%4==0)
         for (k=0, i=0; i< n; i++) for (j=0; j< n; j++) {
             a[i][j] = ++k;
              if (i%4==j%4||i%4+j%4==3) a[i][j] = n2+1-a[i][j];
    else if (n\%4==2)
         for (i=0, j=m/2, k=0; k< m2; k++) {
              if ((i<=m/2 &&!(i==m/2&&j==m/2))||(i==m/2+1&&j==m/2)){ // L
                  a[i*2][j*2+1]=k*4+1; a[i*2+1][j*2]=k*4+2;
                  a[i*2+1][j*2+1]=k*4+3;
                                             a[i*2][j*2]=k*4+4;
              } else if (i>m/2+1) { // X
                         [j *2] = k *4 + 1;
                                             a[i*2+1][j*2+1]=k*4+2;
                  a [ i * 2
                  a[i*2+1][j*2]=k*4+3;
                                             a[i*2][j*2+1]=k*4+4;
              \} else \{ // U
                  a[i*2][j*2]=k*4+1; a[i*2+1][j*2]=k*4+2;
                  a[i*2+1][j*2+1]=k*4+3; a[i*2][j*2+1]=k*4+4;
             if (!a[(i+m-1)\%m*2][(j+1)\%m*2]) i=(i+m-1)\%m, j=(j+1)\%m;
                  else i = (i+1)\%m;
         }
}
int main()
    while (cin>>n) {
         \operatorname{build}(n,a); \operatorname{cout}<<"Order\operatorname{\_}"<<n<<":"<<endl;
         for (int j, i=0; i< n; i++)
              { for (j=0; j< n; j++) cout << a[i][j] << '-'; cout << endl;}
    return 0;
}
```

6.22 Optimal Binary Search Tree

```
int n,a[maxn],s[maxn][maxn],h[maxn][maxn],kk[maxn][maxn];
int solve()
{
    int i, j, k, l; memset(h, 0, sizeof(h));
    for (i=1;i \le n;i++) { s[i][i]=a[i]; h[i][i]=0; kk[i][i]=i;
        for (j=i+1; j \le n; j++) s [i][j]=s[i][j-1]+a[j];
    for (l=1; l< n; l++) {
        for (i=1; i < n; i++) { j=i+1; h[i][j]=0 \times 0 fffffff;
             for (k=kk[i][j-1]; k \le kk[i+1][j]; k++)
                 if(h[i][k-1]+h[k+1][j]-a[k]+s[i][j] < h[i][j])
                     h[i][j] = h[i][k-1] + h[k+1][j] + s[i][j] - a[k];
                     kk[i][j] = k;
                 }
        }
    }
    return h[1][n];
}
        Pack Rectangles — Cut Rectangles
6.23
```

```
struct rect { int x1, y1, x2, y2; } r[maxm];
int mk[maxm];
int intersect (rect a, const rect &b, rect out [4]) // b cut a
    if ( b.x2<=a.x1 || b.x1>=a.x2 || b.y2<=a.y1 || b.y1>=a.y2) return 0;
    if ( b.x1<=a.x1 && b.x2>=a.x2 && b.y1<=a.y1 && b.y2>=a.y2) return −1;
    rect t; int nout=0;
    if(b.x1>a.x1) { t=a;
                             t.x2=b.x1;
                                         a.x1=b.x1;
                                                       out [nout++]=t; }
    if ( b.x2 < a.x2 ) { t=a;
                             t . x1 = b . x2;
                                         a.x2=b.x2;
                                                       out [nout++]=t; }
    if (b.y1>a.y1) t=a;
                             t.y2=b.y1;
                                         a.y1=b.y1;
                                                       out [nout++]=t; }
    if (b.y2 < a.y2) \{ t=a;
                             t.y1=b.y2;
                                         a.y2=b.y2;
                                                       out [nout++]=t; }
    return nout;
}
int main()
{
    rect curr, t[4]; int i,j,k,nn,nr,ans,rr,n;
    cin >> n; rr = 0;
    for (i = 0; i < n; i++){
        cin >> curr.x1 >> curr.y1 >> curr.x2 >> curr.y2;
        nr=rr; mk[rr]=1; r[rr++]=curr;
        for (j=0; j< nr; j++) {
            mk[j]=1; nn=intersect(r[j], curr, t); if(!nn) continue;
             if(nn < 0) mk[j] = 0; else \{r[j] = t[--nn];
                 while (nn) { mk[rr] = 1; r[rr++] = t[--nn]; }
             }
        for(k=j=0; j<rr; j++) if(mk[j]) r[k++]=r[j]; rr=k;
    for (ans=i=0; i < rr; i++) ans+=(r[i].x2-r[i].x1)*(r[i].y2-r[i].y1);
    cout << ans << endl;
    return 0;
}
```

6.24 Pack Rectangles — $O(N^2)$

```
int x1 [maxn], y1 [maxn], x2 [maxn], y2 [maxn];
int ylist [maxn*2], id [maxn], n, ny;
bool cmp(const int&i,const int&j){ return x1[i]<x1[j]; }
int GetAreaUnion()
     int i, j, k, rx, l, ans = 0;
     \mathbf{for} \, (\, ny = 0 \,, \, i = 0 \,; \ i < n \,; \ i + + ) \, \left\{ \, y \, li \, st \, [\, ny + +] = y \, 1 \, [\, i \, ] \,; \ y \, li \, st \, [\, ny + +] = y \, 2 \, [\, i \, ] \,; \, \right\}
     std::sort(ylist,ylist+ny); ny=std::unique(ylist,ylist+ny)-ylist;
     for (i=0; i< n; i++) id[i]=i; std::sort(id,id+n,cmp);
     for (j=0; j< ny-1; j++)
           rx = -0x3f3f3f; l=0;
           for(k=0;k< n;k++)\{i = id[k];
                if ( y1[i] <= ylist[j] && y2[i] >= ylist[j+1] && x2[i] > rx ) {
                      if(x1[i]>rx) l=x2[i]-x1[i]; else l=x2[i]-rx;
                      rx = x2[i];
                }
          }
           ans += 1 * (ylist[j+1]-ylist[j]);
     }
     return ans;
}
6.25
          Parliament
Given n > 0, find distinct positive numbers a_1 + a_2 + ... + a_k = n that maximize a_1 \cdot a_2 \cdot ... \cdot a_k.
int main()
{
     int n, k, p, i, caseno;
     for(cin>>caseno; caseno--;){cin>>n;}
           for (p=n, k=2; p>=k; k++) p==k; k--;
           for(i=2+(p=-k-1);i \le k;i++) if(i!=k-p+1) cout \le i \le "";
                      cout << k+1 << endl;}
           if(caseno) cout<<endl;</pre>
     }
     return 0;
}
6.26
          \pi Generator
\mathbf{int} \ a\!=\!10000, b, c\!=\!2800, d, e, f\left[2801\right], g;
void GenPI() {
     for (; b-c;) f [b++]=a/5;
     for (; d=0, g=c*2; c=14, printf("\%.4d", e+d/a), e=d\%a)
            \mathbf{for} \, (\, b \! = \! c \, ; \, d \! + \! = \! f \, [\, b \,] * a \, , \, f \, [\, b \,] \! = \! d\% \!\! - \!\! - \!\! g \, , d / \!\! = \!\! g \! - \!\! - \!\! - \!\! - \!\! b \, ; \, d * \!\! = \!\! b \, ) \, ; \\
}
```

6.27 Plant Trees — Iteration

```
const int maxlen = 50005;
                     = 50000;
const int maxn
int n, st [maxlen], a [maxn], b [maxn], c [maxn], up;
int main(){
     int i, more;
     \mathbf{while}(\sin\gg n){
          for (i = 0; i < n; i++){
               cin >> a[i] >> b[i] >> c[i];
               if(++b[i]>up) up=b[i];
          memset(st, 0, sizeof(st));
          for (more = 1; more; ) {
               more = 0;
               for(i=0; i< n; i++) if (st[a[i]]+c[i]>st[b[i]])
                    \{ st[b[i]] = st[a[i]] + c[i]; more = 1; \}
               for (i=1; i \le up; i++) {
                    if(st[i-1]+1 < st[i]) \{ st[i-1] = st[i]-1; more = 1; \}
                    if(st[i-1] > st[i]) \{ st[i] = st[i-1]; more=1; \}
               for (i=up; i>0; i--)
                    if(st[i]-1>st[i-1]) \{ st[i-1]=st[i]-1; more=1; \}
                    \mathbf{if}(\mathbf{st}[\mathbf{i}-1]>\mathbf{st}[\mathbf{i}]) { \mathbf{st}[\mathbf{i}]=\mathbf{st}[\mathbf{i}-1]; \mathbf{more}=1; }
               }
          cout \ll st[up] \ll endl;
     return 0;
}
6.28
         Plant Trees — Segment Tree
\#define maxn 50000
#define maxup 50006
int nspan, span[maxn][3], up, tree[maxup];
```

```
int iteam [maxup], next[maxup], num;
int funt_comp(const void *a, const void *b)
{ return ((const int *)b)[0] - ((const int *)a)[0]; }
void add(int r)
{ for(; r \le up; r = r\&(r^(r-1))) + tree[r]; }
int sum(int r)
{ int ans = 0; for (; r > 0; r - = r\&(r^(r - 1))) ans + = tree[r]; return ans; }
void go()
    int j, k, i, ans = 0; up = 0;
    for (i = 0; i < nspan; ++i)
        scanf("%d_%d_%d", &span[i][0], &span[i][1], &span[i][2]);
        ++ span[i][0]; ++ span[i][1];
        if (span[i][1]>up) up=span[i][1];
    qsort(span, nspan, sizeof(int)*3, funt_comp);
    for (j=0; j \le up; j++) next [j]=j+1;
    next[up]=0; memset(tree, 0, (up+1)*sizeof(int));
    for (i = 0; i < nspan; i++){
```

```
k=sum(span[i][1]) - sum(span[i][0] - 1);
         if(k > span[i][2]) continue; else k = span[i][2] - k;
         j=span[i][0]; if(next[j-1]!=j) j=next[j];
         \mathbf{while}(k--)
             next[span[i][0]] = next[span[i][0] - 1] = next[j];
             ans++; add(j); j=next[j];
         }
    }
    printf("%d\n", ans);
}
int main() {
    while (1 = s canf("%d", \& nspan)) go();
    return 0;
6.29
        Range Maximum Query
O(N \log N) Preprocess, O(1) Query
int n, L, q, a [\max ], h [\max ] [\max L]; //\max L = sqrt\{N\} + 3
void PreProcess()
    int i, j, l;
    for (i = 0; i < n; i++) h[i][0] = a[i];
    for (j=1, l=1; l*2 <= n; j++, l*=2) for (i=0; i <= n-l*2; i++)
        h[i][j] = (h[i][j-1] > h[i+1][j-1]) ? h[i][j-1] : h[i+1][j-1];
}
int Query(int be,int ed) // return max{a/op..ed/}
    int j=0, l=1; while (2*l \le ed-be+1) \{ j++; l*=2; \}
    return (h[be][j]>h[ed+1-1][j]) ? h[be][j] : h[ed+1-1][j];
O(N) Preprocess, O(\sqrt{N}) Query
int a[maxn], b[maxL], n, L, q;
void PreProcess()
    int i, j, up, k; L = (int) sqrt(n);
    for(i=k=0; i< n; k++)
        up=i+L; if ( up>n ) up = n;
         for (j=i+1; j < up; j++) if (a[j]>a[i]) i=j;
        b[k] = i; i = up;
    }
}
int Query(int be,int ed) // return max{a/op..ed/}
    int i, up, u, v, k;
    u = be / L; \quad v = ed / L; \quad k = be;
    if ( u<v ) {
        k\!\!=\!\!be\,;\quad up\!=\!\!(u\!+\!1)\!*\!L\,;
         for (i=u+1; i < v ; i++) if (a[b[i]] > a[k]) k = b[i];
         for ( i=be; i<up; i++)
                                     if(a[i]>a[k]) k = i;
         for (i=v*L; i \le ed; i++)
                                     if ( a [ i ]>a [ k ]
                                                    k = i;
    } else for ( i=be; i \le ed; i++) if ( a[i] > a[k] ) k = i;
    return k;
}
```

6.30 Travelling Salesman Problem

```
int n,x[maxn],y[maxn],id[maxn];
double g[maxn][maxn];
double dis(int x1, int y1, int x2, int y2)
{ return \ sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); \ }
double solve()
    int i, j, k, l, loop;
    double cur, ans=1e30;
    for (i=0; i < n; i++)
         for (j=0; j< n; j++)
             g[i][j] = dis(x[i], y[i], x[j], y[j]);
    for(k=0;k< n;k++)
         for (1=0; 1<50; 1++)
             for(i=0;i< n;i++) id[i]=i;
             std::swap(id[0],id[k]);
             std::random\_shuffle(id+1,id+n);
             loop=1;
             while (loop) {
                 loop = 0;
                  for(i=1;i< n;i++) for(j=i+1;j< n-1;j++)
                      if(g[id[i-1]][id[i]] + g[id[j]][id[j+1]]
                        > g[id[i-1]][id[j]] + g[id[i]][id[j+1]] + 1e-8)
                      {
                           loop=1;
                           std :: reverse(id+i,id+j+1);
                      }
             };
             for (cur = 0, i = 0; i < n-1; i++)
                  cur + = g[id[i]][id[i+1]];
             if(cur<ans) ans=cur;</pre>
        }
    return ans;
}
```

6.31 Tree Heights

```
#define maxn 5003*4
int n,num,nbs[maxn],next[maxn*2],h[maxn];
int out1 [maxn], out2 [maxn], son1 [maxn], in [maxn], value [maxn];
int son[maxn], pnt[maxn], bro[maxn], weight[maxn], id[maxn];
void solve()
{
     int i, j, k(1), l;
     id[1] = 1; weight[1] = in[1] = 0;
     for ( i =1; i <=k; i++) for ( j=son [ id [ i ] ]; j; j=bro [ j ] ) id[++k]=j;
     for (i=2; i \le n; i++) weight [i]=1;
     for(k=n;k>0;k--)\{i=id[k];
         for ( j=son [ i ]; j; j=bro [ j ] )
              if (out1 [j]+weight [j]>=out1 [i])
              { out2[i]=out1[i]; out1[i]=out1[j]+weight[j]; son1[i]=j; }
              else if (out1[j]+weight[j]>out2[i]) out2[i]=out1[j]+weight[j];
     for (k=2; k \le n; k++) \{ i=id[k]; in[i]=0; \}
         if (in [pnt [i]] > in [i]) in [i] = in [pnt [i]];
         if (1>in [i]) in [i]=1; in [i]+=weight [i];
     }
}
void dfs(int node)
     for (int j, i=nbs [node]; i; i=next[i]) {
         j=value[i]; if (j==pnt[node]) continue;
         pnt[j] = node; bro[j] = son[node]; son[node] = j; dfs(j);
     }
}
void out()
{
     int maxh=-1, minh=n+1, i;
     for (i=1; i \le n; i++)
         if (in [i] < out1 [i]) h[i] = out1 [i]; else h[i] = in [i];
         if(h[i]>maxh) maxh=h[i]; if(h[i]<minh) minh=h[i];
     }
     cout << "Best_Roots_:";
     for (i=1;i<=n;i++) if (h[i]==minh) cout<<"">"<<ii;
     cout << endl << "Worst_Roots_:";
     for (i=1;i<=n;i++) if (h[i]==maxh) cout<<"">"<<ii;
     cout << endl;
}
int main()
     \mathbf{int} \quad i \ , j \ , k \ , l \ ;
     \mathbf{while}(\sin\gg n){
         for (i=1; i \le n; i++)
              out1[i] = out2[i] = son1[i] = son[i] = bro[i] = prt[i] = next[i] = nbs[i] = 0;
         for(num=1, i=1; i \le n; i++) \{ cin >> l; for(k=0; k < l; k++) \}
              \{ cin >> j; value [num] = j; next [num] = nbs [i]; nbs [i] = num + +; \} \}
         dfs(1); solve(); out();
     return 0;
}
```

6.32 Minimum Cyclic Presentation

```
int MinimumCyclicPresentation(char *s,int n)
{
    int i,j,x,y,u,v;
    for(x=0,y=1; y<n; y++) if( s[y]<=s[x] )
    {
        i=u=x; j=v=y;
        while( s[i]==s[j] )
        {
             ++u; if(++i==n ) i=0;
             ++v; if(++j==n ) j=0;
             if( i==x ) break;
        }
        if( s[i]<=s[j] ) y = v; else
             { x = y; if( u>y ) y = u; }
        }
    return x;
}
```

6.33 Maximum Clique

```
int list[maxn][maxn],g[maxn][maxn],s[maxn],degree[maxn],behide[maxn];
int found,n,curmax,curobj;
void sortdegree()
     for(int j, k, l, i=1; i \le n; i++) 
          \mathbf{for}(k=i, j=i+1; j \le n; j++) \mathbf{if}(\operatorname{degree}[j] < \operatorname{degree}[k]) k=j;
          if (k!=i) {
               std::swap(degree[i],degree[k]);
               for (l=1;l<=n;l++) std::swap(g[i][l],g[k][l]);
               for (l=1; l<=n; l++) std::swap(g[l][i],g[l][k]);
          }
     }
}
void dfs(int d)
     if(d-1>curmax) \{ found=1; return; \};
     int i,j;
     for (i=1; i < list [d-1][0] - curmax+d; i++)
          if (!found && d+behide [list [d-1][i]+1]>curmax &&
              (\operatorname{list} [d-1][0] == i \mid | d + \operatorname{behide} [\operatorname{list} [d-1][i+1]] > \operatorname{curmax})) {
               for (j=i+1, list [d][0]=0; j \le list [d-1][0]; j++)
                     if (g[list[d-1][j]][list[d-1][i]])
                          list[d][++list[d][0]] = list[d-1][j];
               if (\operatorname{list} [d][0] = 0 \mid | d + \operatorname{behide} [\operatorname{list} [d][1]] > \operatorname{curmax}) \operatorname{dfs} (d+1);
          }
}
void solve()
     sortdegree(); behide[n+1]=0; behide[n]=1;
     for(int j, i=n-1; i>0; i--) {
          curmax=behide[i+1]; found=list[1][0]=0;
          for (j=i+1; j \le n; j++) if (g[j][i]) list [1][++list[1][0]] = j;
          dfs(2); behide[i]=curmax+found;
     \} cout < behide [1] < end |;
}
int main()
{
     int i,j;
     \mathbf{while}(\sin\gg n, n) {
          for(i=1;i \le n;i++) for(j=1,degree[i]=0; j \le n; j++) 
               cin >> g[i][j];
               degree[i]+=(g[i][j]!=0);
          } solve();
     return 0;
}
```

6.34 Maximal Non-Forbidden Submatrix

```
#define forbidden 1
int wx, wy, g [maxn] [maxn], h [maxn], r [maxn], l [maxn];
int solve()
     int i,j,k,ans,left,right;
     ans = 0; memset (h, 0, sizeof(h));
     for(i=0;i<wx;i++) {
         \mathbf{for}(j=0;j<\mathbf{wy};j++) \mathbf{if}(g[i][j]!=\mathbf{forbidden}) h[j]++; \mathbf{else} h[j]=0;
         for ( j =0; j < wy; j ++) if (h[j]) {
              if(j==0 \mid | h[j-1]==0) left=j;
              if(i==0 \mid |g[i-1][j]==forbidden) l[j]=left;
              if(left > l[j]) l[j] = left;
         for(j=wy-1; j>=0; j--) if(h[j])
              if(j=wy-1 \mid | h[j+1]==0) right=j;
              if(i==0 \mid \mid g[i-1][j]==forbidden) r[j]=right;
              if(right < r[j]) r[j] = right;
         for (j=0; j < wy; j++)
              if((r[j]-l[j]+1)*h[j] > ans) ans = (r[j]-l[j]+1)*h[j];
     }
     return ans;
}
         Maximum Two Chain Problem
typedef struct { int x, y; } point;
   const point * p1 = (const point *) e1;
   const point * p2 = (const point *) e2;
```

6.35

```
int cmp(const void* e1, const void* e2) {
   if (p1->x != p2->x) return p1->x - p2->x;
   return p1->y - p2->y;
}
int n;
point p[MAX];
void initialize() {
   int i;
   for (scanf("%d", &n), i = 1; i <= n; i++)
      scanf("%d%d", &p[i].x, &p[i].y);
   qsort(&p[1], n, sizeof(point), cmp);
   p[0].x = p[0].y = 0;
}
int deg[MAX] = \{0\}, queue[MAX];
int maxlevel, level[MAX] = \{0\};
int left [MAX] = \{0\}, right [MAX] = \{0\}, mark [MAX] = \{0\};
```

```
void local_chain() {
   int i, j;
   for (i = 1; i \le n; i++)
       for (j = i + 1; j \le n; j++)
           if (p[i].y \le p[j].y)
              deg[i]++;
   for (queue [0] = 0, i = 1; i <= n; i++)
       \mathbf{if} (\deg[i] == 0)
           queue[++queue[0]] = i;
   \mathbf{for} \ (\ \mathbf{i} \ = \ \mathbf{1} \ , \ \mathbf{maxlevel} \ = \ -\mathbf{1}; \ \mathbf{i} \ <= \ \mathbf{queue} \ [\ \mathbf{0} \ ] \ ; \ \ \mathbf{i} \ ++)
       for (j = 1; j < queue[i]; j++)
           if (p[j].y <= p[queue[i]].y)
              if (--deg[j] == 0) 
                  queue[++queue[0]] = j, level[j] = level[queue[i]] + 1;
                  if (level[j] > maxlevel) maxlevel = level[j];
   for (maxlevel++, i = 1; i <= n; i++)
       level[i] = maxlevel - level[i];
   for (\max[0] = n + 1, i = 1; i \le n; i++)
       for (j = 0; j < i; j++)
           if (mark[j] \&\& level[j] == level[i] - 1 \&\& p[j].y <= p[i].y)
              break;
       if (j < i)
           if (left[level[i]] == 0) left[level[i]] = i, mark[i] = n + 1;
           \max[\operatorname{right}[\operatorname{level}[i]]] - -;
           mark[right[level[i]] = i]++;
   }
}
int index [MAX], value [MAX] = \{0\}, levvalue [MAX];
int index_cmp(const void* e1, const void* e2) {
   \mathbf{return} \ \operatorname{level} \left[ *(\mathbf{const} \ \mathbf{int} *) e1 \right] - \operatorname{level} \left[ *(\mathbf{const} \ \mathbf{int} *) e2 \right];
}
void calc_value() {
   \mathbf{int} \ q\,,\ i\ ,\ j\ ,\ lev\;;
   for (i = 1; i \le n; i++)
       index[i] = i;
   qsort(index, n, sizeof(int), index_cmp);
   for (q = 1; q \le n; q++) {
       lev = level[i = index[q]];
       if (left[lev] == i \&\& right[lev] == i)
           value[i] = levvalue[lev - 1] + 1;
       else if (left[lev] == i || right[lev] == i)
           value[i] = levvalue[lev - 1] + 2;
       else
           for (j = 0; j < i; j++)
               if (mark[j]) value[j] = levvalue[level[j]];
               if (p[j].y <= p[i].y && value[j] + level[i] - level[j] + 1 > value[i])
                  value[i] = value[j] + level[i] - level[j] + 1;
           }
       if (value[i] > levvalue[lev])
           levvalue [lev] = value [i];
   }
}
```

```
void put_answer() {
   int i, max = 0;
   for (i = 1; i <= n; i++)
       if (value[i] > max)
            max = value[i];
   printf("%d\n", max);
}

void main() {
   initialize();
   local_chain();
   calc_value();
   put_answer();
}
```

6.36 N Queens Problem

```
int main() {
    int n, i, odd;
    while (cin>>n) {
          if(n<4) cout<<"Impossible"; else</pre>
          if((n/2)\%3!=1){
              cout << 2;
              for (i=4; i \le n; i+=2) cout << "\" << i;
              for (i=1; i \le n; i+=2) cout \le "-" \le i;
          } else {
               if(n\&1) \{ n--; odd = 1; \} else odd=0;
              cout \ll n/2;
               for (i=n/2+1; i!=n/2-1; i=(i+2)\%n) cout <<" =" <<i+1;
               \mathbf{for} (i = (i+n-2)\%n; i!=n/2-1; i=(i+n-2)\%n) \text{ cout} << "-" << n-i;
              cout << "\_" << n-i; if (odd) cout << "\_" << n+1;
         }
         cout << endl;
    }
    return 0;
}
```

6.37 de Bruijn Sequence Generator

```
int go[1 << maxn], start, now, n, k, a[(1 << maxn) + maxn], i, ans, caseno;
int main()
{
    ifstream cin("input.txt");
    for(cin>>caseno; caseno--;){cin>>n>>k;
         memset(go, 0, sizeof(go));
                                     memset(a, 0, sizeof(a));
         now = s t a r t = (1 < < (n-1)) - 1;
                                       i = 0;
         do { if(go[now]) \{ a[i++]=1; now=(now*2+1)\&start; \}
          else { go[now]=1; a[i++]=0; now=(now*2)\&start; }
         } while ( now!=start );
         for (i=0; i< n; i++) a[i+(1<< n)]=a[i];
         for (ans=i=0; i < n; i++) ans=ans *2+a[k+i];
         cout << ans << endl;
    return 0;
}
```

6.38 ZOJ 1482 Partition

```
\#define \max 3010
int n, pnt [maxn], rank [maxn];
int find(int x)
{
     if(x!=pnt[x]) pnt[x]=find(pnt[x]);
     return pnt[x];
}
int main() {
     \quad \textbf{int} \quad i \ , j \ , ans \left( 0 \right) , x \, ;
     cin >> n;
     memset(pnt,0,sizeof(pnt));
     for(i=1; i \le n; i++) for(j=1; j \le n; j++){
         cin>>x;
          if(!x){
              if(pnt[j])pnt[find(j)]=j;
              if (pnt [j-1]) pnt [j-1]=j;
              pnt[j]=j;
          else \{ if(pnt[j]==j) ans++; pnt[j] = 0; \}
     for(i=1; i \le n; i++) if(pnt[i]==i) ans++;
     cout << endl;
     return 0;
}
```