Assignment Project Exam Help COMP9020 Foundations of Computer Science UNSWittps://tutorcs.com

Topic 2: Recursion

Assignment Project Exam Help

https://tutorcs.com

**	(- (1) ()	[LLM]	[RW]	[Rosen]
Week 6	ecursionat:	cstutor	Ch. 4, 7	Ch. 5
Week 7	Induction;	Ch. 5, 6.5	Ch. 4, 7	Ch. 5
	Algorithmic Ana	lysis	Ch. 7	Ch. 3.3

Recursion in Computer Science

Fundamental concept in Computer Science

Assigning complex to be the front eight resum Help

Reculsive Data Styuctures Orce Spectom

- Natural numbers
- a Wards
- : WeChat: cstutorcs
- Formulas
- Binary trees

Recursion in Computer Science

Recursive Algorithms:

Assignment Project Exam Help

- Euclidean gcd algorithm
- Towers of Hanoi
- · https://ktutorcs.com

Analysis of Recursion:

Reason of the Cut requestre object utorcs

- Induction, Structural Induction
- Recursive sequences (e.g. Fibonacci sequence)
- Asymptotic analysis of recursive functions

Outline

Assignment Project Exam Help

Recursive Data Structures

Recultive promotive utores.com

Solving Recurrences

WeChat: cstutorcs

5

Assignment Project Exam Help

Recursive Data Structures

Reculting://tutorcs.com

Solving Recurrences

Recursion

A SS19 nment Project Exam Help A sequence/object/algorithm is recursively defined when (typically)

- (B) some initial terms are specified, perhaps only the first one;
- Attements street to functional expressions of the earlier terms.

(R) a Care redurance formula les ned ally Swhen dealing with sequences)

Example: Factorial

Assignment Project Exam Help

(B) 0! = 1

https://tutorcs.com

fact(n):

WeChat: Estutores

Example: Euclid's gcd algorithm

Assignment Project Exam Help

```
https://tuttor.cs..coif m = n
gcd(m, n - m) if m < n
```

Assignment Project Exam Help

- n disks of decreasing size placed on the first tower
- Julier 5 moverall districtions the list to the last
- Larger disks cannot be placed on top of smaller disks
- The hird tower can be used to temporarily hold disks

Assignment Project Exam Help

Questions

- Pastribe ageneral polition for Sdisks Om
 How many moves does it take?

Assignment Project Exam Help

https://tutorcs.com

Wechat: cstutorcs

Assignment Project Exam Help

Questions

- Post-the general relation for sdisks 0 How many moves does it take? $M(n) \le 2M(n-1) + 1$

Assignment Project Exam Help

Recursive Data Structures

Recultures://tutores.com

Solving Recurrences

Example: Natural numbers

Assignment Project Exam Help

A natural number is either 0 (B) or one more than a natural

https://tutorcs.com

Formal definition of N:

- (B) 0 ∈ N
- · Wechat: cstutorcs

Example: Odd/Even numbers

Assignment Project Exam Help

Example

- The set of even numbers can be defined as:

 (B) Gip Seven number CS.COM
 - (R) If n is an even number then n+2 is an even number

Example: Odd/Even numbers

Assignment Project Exam Help

Example

- The set of odd numbers can be defined as:

 (B) III D Sodd number OTCS. COM
 - (R) If n is an odd number then n+2 is an odd number

Example: Fibonacci numbers

Example

Assignificant the projectofterns Xam Help

Formally, the sequence of Fibonacci numbers: F_0, F_1, F_2, \ldots where the nth Fibosci / where Forces and the second

- (B) $F_1 = 1$,
- WeChat: cstutorcs

NB

Could also define the Fibonacci sequence as a function Fib: $\mathbb{N} \to \mathbb{F}$.

Example: Linked lists

Example: Linked lists

Assignment Project Exam Help Example

We can view the linked list structure abstractly. A linked list is eitherhttps://tutorcs.com

- (B) an empty list, or

• (R) an ordered pair (Data, List).

WeChat: cstutorcs

Example: Words over Σ

SSUSUMMENTE Project Exame Help followed by a word (R).

Form hetros. com

(R) If $w \in \Sigma^*$ then $aw \in \Sigma^*$ for all $a \in \Sigma$ We Chat: CSTUTORS

NB

This matches the recursive definition of a **Linked List** data type.

Example: Expressions in the Proof Assistant

Assignment Project Exam Help

- (B) \emptyset and \mathcal{U} are expressions
- (R) If E_1 and E_2 are expressions then:
- - \bullet $(E_1 \cup E_2),$

Shat: cstutorcs

 $(E_1 \oplus E_2)$ are expressions.

Example: Propositional formulas

Example

Asweldscriped formula (with presidence to the positional partial deliped as:

- (B) ⊤ is a wff
- Bttipaswff//tutorcs.com
- (R) If φ is a wff then $\neg \varphi$ is a wff
- We hat: Cstutorcs
 - $(\varphi \vee \psi)$,
 - \bullet $(\varphi \to \psi)$, and
 - $(\varphi \leftrightarrow \psi)$ are wffs.

Exercises

Exercises

Assignment Project Exam Help

https://tutorcs.com

(b) Give a recursive definition for the sequence CSTUTORCS
(2, 4, 16, 65536, ...)

Assignment Project Exam Help

Recursive Data Structures

Recultive Program/i/tutores.com

Solving Recurrences

Assignment ke Periode Catan Francis Help

```
Example
```

```
The factorial function: https://tutorcs.com
```

(B) if (n = 0): 1

WeChat: $\operatorname{else:}_{n * \operatorname{fact}(n-1)}^{(R)}$

Assignment keroje come my mms Help

Example

Summing the first n natural numbers: https://tutorcs.com

(B)
$$if(n = 0): 0$$

WeChat: else: n + sum(n-1) CStutorcs

A SEI PROJECT Exam Help

Summing elements of a linked list:

```
https://tutorcs.com

if(L.isEmpty()):
return 0
```

We Chart CStutor (Snext)

Recursive datatypes make recursive programming/functions easy.

Assignment Project Exam Help Sorting elements of a linked list (insertion sort):

https://tutores.ycom

else:

WeChat: Lastuttores SL2

Assignment Project Exams Help

Example

```
Concatenation of words (defining wv): https://tutorcs.com
For all w, v \in \Sigma^* and a \in \Sigma:

(B) \lambda v = v
```

WeChat: estutores

Assignment Peroject Exams Help

```
Example
Length of words: //tutorcs.com
(B) length(\lambda) = 0
```

(R) length(aw) = 1 + length(w)

Assignment Project Exam Help

Recursive datatypes make recursive programming/functions easy.

Example to propositional formula

Example to propositional formula

Exercise

Exercise

Stignment Project Exam Help

https://tutorcs.com Give a (direct) definition of append [i.e. only concatenates symbols on the left].

Pitfall: Correctness of Recursive Definition

A recurrence formula is correct if the computation of any later term can be reduced to the initial values given in (B).

Assignment of Project Exam Help Function g(n) is defined recursively by

https://tutorcs.com

The definition of g(n) is incomplete — the recursion may not terminate:

Wechat. cstutorcs

$$g(1) = g(g(0) - 1) + 1 = g(1) + 1 = \dots = g(1) + 1 + 1 + 1 + \dots$$

When implemented, it leads to an overflow; most static analyses cannot detect this kind of ill-defined recursion.

Pitfall: Correctness of Recursive Definition

Assignment Project Exam Help

However, the definition could be repaired. For example, we can add the specification specify g(1)=2.

Then
$$g(3) = g(g(2) - 1) + 1 = g(3 - 1) + 1 = 4$$
,

In fact by each at: (nestutores

Pitfall: Correctness of Recursive Definition

Check your base cases!

Assignment Project Exam Help

We Chat: c Stutores This one can also be repaired. For example, one could specify that

This one can also be repaired. For example, one could specify that f(1) = 1.

This would lead to a constant function f(n) = 1 for all $n \ge 0$.

Mutual Recursion

Sometimes recursive definitions use more than one function, with each calling each other.

Assignment Project Exam Help

- (B) f(0) = 0; f(1) = 1,
- https://tutores.com

Alternative, mutually recursive definition:

- (B) f(1) = 1; g(1) = 0
- · We Chat: estutores
- (R) g(n) = f(n-1)

$$\left(\begin{array}{c} f(n) \\ g(n) \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{c} f(n-1) \\ g(n-1) \end{array}\right)$$

Assignment Project Exam Help

Recursive Data Structures

Reculting://tutorcs.com

Solving Recurrences

Solving recurrences

A SSI gramentically rope cturive x and Help functions?

Some practical approaches:

- · https://tutercs.com
- Approximating with big-O
- The Master Theorem

WeChat: cstutorcs

Each approach gives an informal "solution": ideally one should prove a solution is correct (using e.g. induction).

Examples

Example (Unwinding)

```
Assignment Project Exam Help

Unwinding:

f(0) = 1

f(n) = 2f(n-1)

Exam Help
```

```
https://\overline{t}u_{Q}^{f(n)}/\overline{t}u_{Q}^{2f(n-1)}com)
= 4(2f(n-3)) = 8f(n-3)
WeChat: cstutorcs
= 2^{i}f(n-i)
:::
```

 $= 2^n f(0) = 2^n$

Examples

Example (Unwinding)

Assignment Project Exam Help

```
https://tutor.cs, com(_{n/4})
= 2+(1+f(n/8))
```

```
\vdots \quad \vdots
= \log(n) + f(0) = \log(n)
```

Examples

Example (Approximating with big-0)

Assignment Project Exam Help Assuming f(n) is increasing:

https://tutorcs.com

SO:

so (by hat:
$$\underset{f(n) < 2^n}{\text{Cstutores}}$$

so:

$$f(n) \in O(2^n)$$

Master Theorem

The following result covers many recurrences that arise in practice

(e.g. divide-and-conquer algorithms) Assignment Project Exam Help

Suppose

where $f(n) \in \Theta(n^c(\log n)^k)$.

Let de l'est controlle l'est d'unen controlle l'est d'unen controlle l'est d'unen controlle l'est d'une l'est d'un

Case 2: If c = d then $T(n) = \Theta(n^c(\log n)^{k+1})$

Case 3: If c > d then $T(n) = \Theta(f(n))$

Master Theorem: Examples

Assignment Project Exam Help

$$T(n) = T(\frac{n}{2}) + n^2$$
, $T(1) = 1$
Here https://tutorcs/.come have Case 3 and the solution is

Master Theorem: Examples

Assignment Project Exam Help

$$T(n) = 2T\left(\frac{n}{2}\right) + (n-1)$$

for the theorem of computation of the solution is C = 1, C = 1, C = 1, C = 1. So we have Case 2, and the solution is

WeChat! (Cstutores)

Master Theorem: Examples

Assignment Project Exam Help

https://tutorcs.com

Here a=1, b=2, c=0, k=0, and d=0. So we have Case 2, and the solution is

The Master Theorem: Pitfalls

NB

• a, b, c, k have to be constants (not dependent on n).

Assignment throject Exam Help

- Solution is only an asymptotic bound.
- https://tutorcs.com

The Master theorem does not apply to any of these:

WeChat?"ostutorcs

$$T(n) = T(n/5) + T(7n/10) + n$$

$$T(n) = 2T(n-1)$$

The Master Theorem: Linear differences

NB

Sthe Master Theorem applies to recurrences where Junis defined p

However, the following is a consequence of the Master Theorem:

The https://tutorcs.com

Suppose

Then WeChat:
$$Cstutorcs$$

$$T(n) = a \cdot T(n-1) + bn^{k}$$

$$T(n) = \begin{cases} O(n^{k+1}) & \text{if } a = 1 \\ O(a^{n}) & \text{if } a > 1 \end{cases}$$

Assignment Project Exam Help

Solve $T(n) = 3^n T(\frac{n}{2})$ with T(1) = 1

https://tutorcs.com