

Designation

Acer saccharum

Typical uses

Lumber; veneer; sleepers; pulpwood; flooring; furniture; boxes; pallets & crates; shoe lasts; handles; woodenware; novelties; spools & bobbins.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O						
Material family	Natural					
Base material	Wood (ha	Wood (hardwood)				
Renewable content	100		%			
Composition detail (polymers and natur	ral materials)					
Wood	100			%		
Price						
Price	* 0.608	-	0.912	USD/lb		
Physical properties						
Density	0.0231	-	0.0282	lb/in^3		
Mechanical properties						
Young's modulus	* 0.306	-	0.341	10^6 psi		
Yield strength (elastic limit)	* 0.426	_	0.522	ksi		
Tensile strength	* 0.711	-	0.87	ksi		
Elongation	* 0.69	-	0.84	% strain		
Compressive strength	1.32	-	1.62	ksi		
Flexural modulus	0.278	-	0.31	10^6 psi		
Flexural strength (modulus of rupture)	* 0.711	-	0.87	ksi		
Shear modulus	* 0.0316	-	0.0434	10^6 psi		
Shear strength	* 6.3	-	7.71	ksi		
Rolling shear strength	* 0.234	-	0.701	ksi		
Bulk modulus	* 0.157	-	0.174	10^6 psi		
Poisson's ratio	* 0.02	-	0.04			
Shape factor	5.7					
Hardness - Vickers	5.8	-	7.09	HV		
Hardness - Brinell	* 3.81	-	4.67	ksi		
Hardness - Janka	1.3e3	-	1.59e3	lbf		

BEDUPACK				
Fatigue strength at 10^7 cycles	* 0.213	-	0.261	ksi
Mechanical loss coefficient (tan delta)	* 0.016	-	0.021	
Differential shrinkage (radial)	0.17	-	0.23	%
Differential shrinkage (tangential)	0.25	-	0.32	%
Radial shrinkage (green to oven-dry)	4.3	-	5.3	%
Tangential shrinkage (green to oven-dry)	8.9	-	10.9	%
Volumetric shrinkage (green to oven-dry)	13.2	-	16.2	%
Work to maximum strength	* 0.123	-	0.151	ft.lbf/in^3
Impact & fracture properties				
Fracture toughness	* 0.485	-	0.593	ksi.in^0.5
Thormal proportion				
Thermal properties Glass temperature	171		216	°F
Maximum service temperature	248		284	°F
Minimum service temperature	* -99.4		-9.4	°F
Thermal conductivity	0.0867	_	0.0982	BTU.ft/hr.ft^2.°F
Specific heat capacity	0.396	_	0.408	BTU/lb.°F
Thermal expansion coefficient	* 17.5	_	23.4	μstrain/°F
Thermal expansion coemicient	17.0		20.4	μοιιαπίν τ
Electrical properties				
Electrical resistivity	* 8.87e1	4 -	1.32e15	µohm.cm
Dielectric constant (relative permittivity)	* 3.93	-	4.8	
Dissipation factor (dielectric loss tangent)	* 0.054	-	0.067	
Dielectric strength (dielectric breakdown)	* 25.4	-	50.8	V/mil
Magnetic properties				
Magnetic type	Non-ma	agnetic	3	
Optical properties	Onogu			
Transparency	Opaque	;		
Bio-data				
Food contact	Yes			
Restricted substances risk indicators				
RoHS (EU) compliant grades?	√			
Durability				
Water (fresh)	Limited	use		
Water (salt)	Limited	use		
Weak acids	Limited	use		

Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb	
Sources					

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	nd and Jones, 2	2008)	; 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 262	-	290	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0458	-	0.0506	lb/lb
Fine machining energy (per unit wt removed)	* 786	-	869	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.137	-	0.152	lb/lb
Grinding energy (per unit wt removed)	* 1.37e3	-	1.51e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.239	-	0.264	lb/lb

Recycling and end of life

Recycle	×	
Recycle fraction in current supply	8.55 - 9.45 %	
Downcycle	✓	
Combust for energy recovery	✓	
Heat of combustion (net)	* 8.49e3 - 9.16e3 BTU/lb	
Combustion CO2	* 1.69 - 1.78 lb/lb	
Landfill	✓	
Biodegrade	✓	

Eco-indicators for principal component

Eco-indicator 95	2.99	millipoints/lb
EPS value	62.7	- 69.3

Notes

Maple (acer saccharum) (t)

Warning

ProcessUniverse	
Reference	
Shape	

Designation

Acer saccharinum

Typical uses

Lumber; veneer; sleepers; pulpwood; flooring; furniture; boxes; pallets & crates; shoe lasts; handles; woodenware; novelties; spools & bobbins.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O					
Material family	Natural				
Base material	Wood (hardwood)				
Renewable content	100		%		
Composition detail (polymers and natura	al materials)				
Wood	100			%	
Price					
Price	* 0.608	-	0.912	USD/lb	
Physical properties					
Density	0.017	-	0.021	lb/in^3	
Mechanical properties					
Young's modulus	* 0.128	-	0.142	10^6 psi	
Yield strength (elastic limit)	* 0.27	-	0.331	ksi	
Tensile strength	0.45	-	0.551	ksi	
Elongation	* 1.04	-	1.28	% strain	
Compressive strength	0.666	-	0.814	ksi	
Flexural modulus	0.116	-	0.129	10^6 psi	
Flexural strength (modulus of rupture)	* 0.45	-	0.551	ksi	
Shear modulus	* 0.0132	-	0.0181	10^6 psi	
Shear strength	* 3.99	-	4.89	ksi	
Rolling shear strength	* 0.148	-	0.445	ksi	
Bulk modulus	* 0.0653	-	0.0725	10^6 psi	
Poisson's ratio	* 0.02	-	0.04		
Shape factor	5.6				
Hardness - Vickers	2.8	-	3.43	HV	
Hardness - Brinell	* 2.41	-	2.94	ksi	
Hardness - Janka	629	-	771	lbf	

Maple (acer saccharinum) (t)

* 0.135 * 0.025 0.17 0.25 2.7 6.5 10.8 * 0.0616		0.165 0.032 0.23 0.32 3.3 7.9 13.2 0.0761	ksi % % % % ft.lbf/in^3
0.17 0.25 2.7 6.5 10.8 * 0.0616	- - - -	0.23 0.32 3.3 7.9 13.2	% % %
0.25 2.7 6.5 10.8 * 0.0616	- - -	0.32 3.3 7.9 13.2	% % %
2.7 6.5 10.8 * 0.0616		3.3 7.9 13.2	% % %
6.5 10.8 * 0.0616	-	7.9 13.2	%
10.8 * 0.0616	-	13.2	%
* 0.0616			
	-	0.0761	ft.lbf/in^3
* 0.313			
* 0.313			
	-	0.382	ksi.in^0.5
474		04.0	°F
			°F
			°F
			BTU.ft/hr.ft^2.°F
			BTU/lb.°F
* 14.9	-	20.4	µstrain/°F
* 2.1e14	-	7e14	µohm.cm
* 3.12	-	3.81	•
* 0.04	-	0.049	
* 25.4	-	50.8	V/mil
Non-magr	netic		
Opaque			
Yes			
✓			
Limited us	se		
Limited us	se		
Limited us	se		
	171 248 * -99.4 0.0809 0.396 * 14.9 * 2.1e14 * 3.12 * 0.04 * 25.4 Non-magr Opaque Yes Limited us	171 - 248 - * -99.4 - 0.0809 - 0.396 - * 14.9 - * 2.1e14 - * 3.12 - * 0.04 - * 25.4 - Non-magnetic Opaque Yes	171 - 216 248 - 284 * -99.49.4 0.0809 - 0.0924 0.396 - 0.408 * 14.9 - 20.4 * 2.1e14 - 7e14 * 3.12 - 3.81 * 0.04 - 0.049 * 25.4 - 50.8 Non-magnetic Opaque Yes Limited use Limited use Limited use

Maple (acer saccharinum) (t)

Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb	

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	nd and Jones, 2	2008)	; 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 244	-	270	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0425	-	0.047	lb/lb
Fine machining energy (per unit wt removed)	* 601	-	664	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.105	-	0.116	lb/lb
Grinding energy (per unit wt removed)	* 998	-	1.1e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.174	-	0.192	lb/lb

Recycling and end of life

Recycle	×	
Recycle fraction in current supply	8.55 - 9.45 %	
Downcycle	✓	
Combust for energy recovery	✓	
Heat of combustion (net)	* 8.49e3 - 9.16e3 BTU/lb	
Combustion CO2	* 1.69 - 1.78 lb/lb	
Landfill	✓	
Biodegrade	✓	

Eco-indicators for principal component

Eco-indicator 95	2.99	millipoints/lb
EPS value	62.7	- 69.3

Notes

Maple (acer saccharinum) (t)

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture content.

Links

ProcessUniverse	
Reference	
Shape	

Designation

Acer rubrum

Typical uses

Lumber; veneer; sleepers; pulpwood; flooring; furniture; boxes; pallets & crates; shoe lasts; handles; woodenware; novelties; spools & bobbins.

Composition overview

Compositional summary

Hardness - Janka

Cellulose/Hemicellulose/Lignin/12%H2O							
Material family	Natural	Natural					
Base material	Wood (ha	ardwo	ood)				
Renewable content	100			%			
Composition detail (polymers and natura	al materials)						
Wood	100			%			
Price							
Price	* 0.608	-	0.912	USD/lb			
Physical properties							
Density	0.0195	-	0.0242	lb/in^3			
Mechanical properties							
Young's modulus	* 0.193	-	0.215	10^6 psi			
Yield strength (elastic limit)	* 0.365	-	0.444	ksi			
Tensile strength	* 0.609	-	0.74	ksi			
Elongation	* 0.93	-	1.14	% strain			
Compressive strength	0.901	-	1.1	ksi			
Flexural modulus	0.175	-	0.196	10^6 psi			
Flexural strength (modulus of rupture)	* 0.609	-	0.74	ksi			
Shear modulus	* 0.0199	-	0.0273	10^6 psi			
Shear strength	* 4.98	-	6.12	ksi			
Rolling shear strength	* 0.186	-	0.555	ksi			
Bulk modulus	* 0.0986	-	0.11	10^6 psi			
Poisson's ratio	* 0.02	-	0.04				
Shape factor	5.6						
Hardness - Vickers	3.8	-	4.65	HV			
Hardness - Brinell	* 3.06	-	3.76	ksi			

854

lbf

1.05e3

Maple (acer rubrum) (t)

BEDUPICK							
Fatigue strength at 10^7 cycles	* 0.183	-	0.222	ksi			
Mechanical loss coefficient (tan delta)	* 0.021	-	0.026				
Differential shrinkage (radial)	0.17	-	0.23	%			
Differential shrinkage (tangential)	0.25	-	0.32	%			
Radial shrinkage (green to oven-dry)	3.6	-	4.4	%			
Tangential shrinkage (green to oven-dry)	7.4	-	9	%			
Volumetric shrinkage (green to oven-dry)	11.3	-	13.9	%			
Work to maximum strength	* 0.0943	-	0.115	ft.lbf/in^3			
Impact & fracture properties							
Fracture toughness	* 0.385	-	0.47	ksi.in^0.5			
Thermal properties							
Glass temperature	171	_	216	°F			
Maximum service temperature	248	_	284	 °F			
Minimum service temperature	* -99.4	_	-9.4	 °F			
Thermal conductivity	* 0.0532	_	0.0647	BTU.ft/hr.ft^2.°F			
Specific heat capacity	0.396	_	0.408	BTU/lb.°F			
Thermal expansion coefficient	* 16	_	21.7	μstrain/°F			
				1			
Electrical properties							
Electrical resistivity	* 2.1e14	-	7e14	µohm.cm			
Dielectric constant (relative permittivity)	* 3.47	-	4.24				
Dissipation factor (dielectric loss tangent)	* 0.046	-	0.057				
Dielectric strength (dielectric breakdown)	* 25.4	-	50.8	V/mil			
Magnetic properties							
Magnetic type	Non-mag	netio	;				
Optical properties							
Transparency	Opaque						
Bio-data							
Food contact	Yes						
Restricted substances risk indicators							
RoHS (EU) compliant grades?	✓						
(20) compliant grades.	V						
Durability							
Water (fresh)	Limited u	ıse					
Water (salt)	Limited u	ıse					
Weak acids	Limited u	Limited use					

Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb	
Sources					

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	nd and Jones, 2	2008)	; 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	_	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 251	-	277	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0438	-	0.0484	lb/lb
Fine machining energy (per unit wt removed)	* 670	-	741	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.117	-	0.129	lb/lb
Grinding energy (per unit wt removed)	* 1.14e3	-	1.26e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.198	-	0.219	lb/lb

Recycling and end of life

Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 8.49e3 - 9.16e3 BTU/lb
Combustion CO2	* 1.69 - 1.78 lb/lb
Landfill	✓
Biodegrade	✓

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	- 69.3	

Notes

Maple (acer rubrum) (t)

Warning

ProcessUniverse	
Reference	
Shape	

Designation

Acer nigrum

Typical uses

Furniture; boxes; pallets; venetian blinds; sash; doors; veneer;

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

Material family	Natural
Base material	Wood (hardwood)
Renewable content	100 %

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 0.608	-	0.912	USD/lb	
-------	---------	---	-------	--------	--

Physical properties

Mechanical properties

Mechanical properties				
Young's modulus	* 0.226	-	0.252	10^6 psi
Yield strength (elastic limit)	* 0.365	-	0.444	ksi
Tensile strength	0.609	-	0.74	ksi
Elongation	* 0.8	-	0.97	% strain
Compressive strength	0.918	-	1.12	ksi
Flexural modulus	0.206	-	0.229	10^6 psi
Flexural strength (modulus of rupture)	* 0.609	-	0.74	ksi
Shear modulus	* 0.0234	-	0.0321	10^6 psi
Shear strength	* 4.91	-	6.01	ksi
Rolling shear strength	* 0.183	-	0.547	ksi
Bulk modulus	* 0.116	-	0.129	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	4.72	-	5.77	HV
Hardness - Brinell	* 3.18	-	3.87	ksi
Hardness - Janka	1.06e3	-	1.3e3	lbf
Fatigue strength at 10^7 cycles	* 0.183	-	0.222	ksi

Maple (acer nigrum) (t)

iEDUPACK					
Mechanical loss coefficient (tan delta)	* 0.019	-	0.024		
Differential shrinkage (radial)	0.17	-	0.23	%	
Differential shrinkage (tangential)	0.25	-	0.32	%	
Radial shrinkage (green to oven-dry)	4.3	-	5.3	%	
Tangential shrinkage (green to oven-dry)	8.4	-	10.2	%	
Volumetric shrinkage (green to oven-dry)	12.6	-	15.4	%	
Work to maximum strength	* 0.0943	-	0.115	ft.lbf/in^3	
Impact & fracture properties					
Fracture toughness	* 0.418	-	0.511	ksi.in^0.5	
Thermal properties					
Glass temperature	171	-	216	°F	
Maximum service temperature	248	-	284	°F	
Minimum service temperature	* -99.4	-	-9.4	°F	
Thermal conductivity	* 0.0566	-	0.0693	BTU.ft/hr.ft^2.°F	
Specific heat capacity	0.396	-	0.408	BTU/lb.°F	
Thermal expansion coefficient	* 16.5	-	22.3	µstrain/°F	
Electrical properties					
Electrical properties Electrical resistivity	* 2.1e14	_	7e14	µohm.cm	
Dielectric constant (relative permittivity)	* 3.62	_	4.42	porm.om	
Dissipation factor (dielectric loss tangent)	* 0.049	_	0.06		
Dielectric strength (dielectric breakdown)	* 25.4	_	50.8	V/mil	
z.o.como enengan (a.o.como z.o.como,			00.0		
Magnetic properties					
Magnetic type	Non-mag	Non-magnetic			
Optical properties					
Transparency	Opaque				
Bio-data Food contact	Yes				
. 000 00.1100	100				
Restricted substances risk indicators					
RoHS (EU) compliant grades?	✓				
Durability					
Water (fresh)	Limited u	ıse			
Water (salt)	Limited u	ıse			
Weak acids	Limited (Limited use			
Strong acids	Unacceptable				

Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied ener	rgy, primary prod	uction		4.99e3	-	5.5e3	В	TU/lb	
Sources									

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	and Jones,	2008); 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 249	-	276	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0435	-	0.0481	lb/lb
Fine machining energy (per unit wt removed)	* 657	-	726	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.115	-	0.127	lb/lb
Grinding energy (per unit wt removed)	* 1.11e3	-	1.23e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.194	-	0.214	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	-	69.3

Notes

Warning

Maple (acer nigrum) (t)

_inks	
ProcessUniverse	
Reference	
Shape	

Designation

Acer macrophyllum (T)

Typical uses

Furniture; boxes; pallets; venetian blinds; sash; doors; veneer;

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

-		
Material family	Natural	
Base material	Wood (hardwood)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Wood	100	%

Price

Price	* 0.608	- 0.912	USD/lb	
-------	---------	---------	--------	--

Physical properties

Density	0.0173	-	0.0213	lb/in^3
---------	--------	---	--------	---------

Mechanical properties

Mechanical properties				
Young's modulus	* 0.135	-	0.151	10^6 psi
Yield strength (elastic limit)	* 0.296	-	0.357	ksi
Tensile strength	0.493	-	0.595	ksi
Elongation	* 1.08	-	1.32	% strain
Compressive strength	0.674	-	0.825	ksi
Flexural modulus	0.123	-	0.138	10^6 psi
Flexural strength (modulus of rupture)	* 0.493	-	0.609	ksi
Shear modulus	* 0.0139	-	0.0191	10^6 psi
Shear strength	* 4.66	-	5.69	ksi
Rolling shear strength	* 0.173	-	0.518	ksi
Bulk modulus	* 0.0696	-	0.0783	10^6 psi
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.6			
Hardness - Vickers	3.4	-	4.16	HV
Hardness - Brinell	* 2.76	-	3.35	ksi
Hardness - Janka	764	-	935	lbf
Fatigue strength at 10^7 cycles	* 0.148	-	0.183	ksi

Maple (acer macrophyllum) (t)

Mechanical loss coefficient (tan delta)	k	0.025	-	0.031			
Differential shrinkage (radial)		0.17	-	0.23	%		
Differential shrinkage (tangential)		0.25	-	0.32	%		
Radial shrinkage (green to oven-dry)		3.3	-	4.1	%		
Tangential shrinkage (green to oven-dry)		6.4	-	7.8	%		
Volumetric shrinkage (green to oven-dry)		10.4	-	12.8	%		
Work to maximum strength	ł	0.058	-	0.0713	ft.lbf/in^3		
Impact & fracture properties							
Fracture toughness	k	0.323	-	0.395	ksi.in^0.5		
Thermal properties							
Glass temperature		171	-	216	°F		
Maximum service temperature		248	-	284	°F		
Minimum service temperature	4	-99.4	-	-9.4	°F		
Thermal conductivity		0.0867	-	0.104	BTU.ft/hr.ft^2.°F		
Specific heat capacity		0.396	-	0.408	BTU/lb.°F		
Thermal expansion coefficient	ł	15.1	-	20.6	μstrain/°F		
Electrical properties							
Electrical resistivity	t,	2.1e14	-	7e14	µohm.cm		
Dielectric constant (relative permittivity)	,	3.17	-	3.87			
Dissipation factor (dielectric loss tangent)	,	0.041	-	0.05			
Dielectric strength (dielectric breakdown)	ę.	25.4	-	50.8	V/mil		
Magnetic properties							
Magnetic type		Non-mag	netic	;			
Optical properties		0					
Transparency		Opaque					
Bio-data							
Food contact		Yes					
Restricted substances risk indicators							
RoHS (EU) compliant grades?		✓					
Durability							
Water (fresh)		Limited use					
Water (salt)		Limited use					
Weak acids		Limited use					
Strong acids		Unacceptable					

Maple (acer macrophyllum) (t)

Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	4.99e3	-	5.5e3	BTU/lb
Sources				

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	lb/lb
Sources 0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammo	nd and Jones, 2	2008)); 0.909 kg/kg	(Hubbard and Bowe,
NOx creation	0.00257	-	0.00284	lb/lb
SOx creation	0.00656	-	0.00725	lb/lb
Water usage	* 1.84e4	-	2.03e4	in^3/lb

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 244	-	269	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0425	-	0.047	lb/lb
Fine machining energy (per unit wt removed)	* 599	-	662	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.104	-	0.115	lb/lb
Grinding energy (per unit wt removed)	* 994	-	1.1e3	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.173	-	0.192	lb/lb

Recycling and end of life

Recycle	×			
Recycle fraction in current supply	8.55	-	9.45	%
Downcycle	✓			
Combust for energy recovery	✓			
Heat of combustion (net)	* 8.49e3	-	9.16e3	BTU/lb
Combustion CO2	* 1.69	-	1.78	lb/lb
Landfill	✓			
Biodegrade	✓			

Eco-indicators for principal component

Eco-indicator 95	2.99		millipoints/lb
EPS value	62.7	-	69.3

Notes

Warning

Maple (acer macrophyllum) (t)

_inks	
ProcessUniverse	
Reference	
Shape	