INSTITUTO FEDERAL DO ESPÍRITO SANTO CAMPUS VITÓRIA CURSO DE LICENCIATURA EM MATEMÁTICA

ALBERSON DA SILVA MIRANDA

RELAÇÕES ESCOLARIDADE-RENDA NO ESPÍRITO SANTO

Vitória

ALBERSON DA SILVA MIRANDA

RELAÇÕES ESCOLARIDADE-RENDA NO ESPÍRITO SANTO

Monografia apresentada à coordenadoria do curso de Licenciatura em Matemática do Instituto Federal do Espírito Santo, Campus Vitória, como requisito parcial para a obtenção do título de Licenciado em Matemática.

Orientador: Prof. Me. Diogo Oliveira

Vitória

2022

ALBERSON DA SILVA MIRANDA

RELAÇÕES ESCOLARIDADE-RENDA NO ESPÍRITO SANTO

Monografia apresentada à coordenadoria do curso de Licenciatura em Matemática do Instituto Federal do Espírito Santo, Campus Vitória, como requisito parcial para a obtenção do título de Licenciado em Matemática.

BANCA EXAMINADORA

Prof. Me. Diogo Oliveira Instituto Federal do Espírito Santo

Prof. Dr. Componente Banca Instituto Federal do Espírito Santo

Prof. Dr. Componente Banca Instituto Federal do Espírito Santo

Vitória, xx de dezembro de 2022.

MIRANDA, Alberson da Silva. **Relações Escolaridade-Renda no Espírito Santo**. 2022. xx folhas. Monografia (Licenciatura em Matemática) — Instituto Federal do Espírito Santo, Vitória, 2022.

RESUMO

No máximo 500 palavras em espaço simples e sem parágrafos. Deve apresentar de forma concisa os objetivos, metodologia e os resultado alcançados, utilizar o verbo na voz ativa. Espaçamento simples, sem recuo de parágrafos.

Palavras-chave: Palavra 1. Palavra 2. Palavra 3. Palavra 4. Palavra 5.

MIRANDA, Alberson da Silva. **Education-Income Relations in Espírito Santo**. 2022. xx folhas. Monografía (Licenciatura em Matemática) — Instituto Federal do Espírito Santo, Vitória, 2022.

ABSTRACT

Tradução do resumo.

Keywords: Tradução das palavras chave.

SUMÁRIO

INTRODUÇÃO	9
1 PROCEDIMENTOS METODOLÓGICOS	9
1.1 ANÁLISE EXPLORATÓRIA DOS DADOS	10
1.2 MODELAGEM	15
2 RESULTADOS	16
REFERÊNCIAS	16
APÊNDICE	18
A ESCOLA COMO INSTITUIÇÃO PANÓPTICA	18
DERIVAÇÃO DOS ESTIMADORES DE MOO	22

LISTA DE FIGURAS

1	Entradas por ano	11
2	Comparativo 2006-2020 por sexo	11
3	Comparativo 2006-2020 por sexo/raça/cor	12
4	Entradas por sexo/escolaridade	13
5	Entradas por sexo/escolaridade/raça/cor	14
6	Resíduo de ajuste	22

LISTA DE TABELAS

1	Possíveis valores para as variáveis selecionadas da Rais	10
2	Entradas por ano	11
3	Comparativo 2006-2020 por sexo/raça/cor	12
4	Comparativo 2006-2020 por sexo/escolaridade	13
5	Comparativo 2006-2020 por sexo/raca/escolaridade	14
6	Comparativo 2006-2020 proporção de pretos e pardos por nível de escolaridade	15
7	Estimação	16

INTRODUÇÃO

. . .

1 PROCEDIMENTOS METODOLÓGICOS

Neste trabalho, de ordem quantitativa, utilizo os dados da Relação Anual de Informações Sociais (Rais) de 2006 a 2020 para estimar os efeitos da escolaridade sobre a renda dos trabalhadores do estado do Espírito Santo. Para tanto, utilizo o *datalake* tratado e disponibilizado gratuitamente pelo projeto Base dos Dados (Cavalcante, 2022). O acesso, manipulação dos dados e a análise foram realizados com o *software* R (R Core Team, 2021) e o repositório com todo o código realizado aqui está disponível publicamente e pode ser reproduzido em sua totalidade¹.

As variáveis de interesse extraídas da Rais foram:

- 1. renda média nominal naquele ano
- 2. ciclo de escolaridade
- 3. idade
- 4. raça/cor
- 5. sexo

Importante destacar que, embora a profissão e a indústria na qual o trabalhador esteja inserido sejam importantes para determinar sua renda, essas variáveis não devem ser incluídas no modelo exatamente porque um dos objetivos da escolaridade é permitir aos trabalhadores moverem-se para indústrias de melhor remuneração². Incluí-las significaria estimar os efeitos da escolaridade na mesma indústria/ocupação (eg., o quanto que um engenheiro com mestrado recebe em média a mais que um apenas graduado). Fosse o objetivo do trabalho prever com a maior precisão o possível a renda de um determinado indivíduo dadas suas características, essas variáveis deveriam

¹https://github.com/albersonmiranda/monografia.

²"the whole point of getting an education is to help people move to better industries, not to move from assistant burger-flipper to chief burger-flipper" (Cochrane, 2005).

ser inseridas. Entretanto, espera-se estimar isoladamente os efeitos da educação e das condições sociais escolhidas.

Após selecionadas, apliquei condições às variáveis para obter amostra completa, ou seja, sem valores faltantes, e coerente. Essas condições estão resumidas na tabela a seguir. Elas implicam na restrição às entradas com renda média positiva não nula; na exclusão de menores aprendizes; na exclusão de entradas sem quaisquer dos campos escolaridade, raça/cor ou sexo preenchidos.

Tabela 1 – Possíveis valores para as variáveis selecionadas da Rais

Variável	Valores
Sigla UF	ES
Renda Média Nominal	Núméricos, não negativos
Ciclo de Escolaridade	Analfabeto, Ensino Fundamental (I/II, completo/incompleto), Ensino
	Médio (completo/incompleto), Ensino Superior (completo/incompleto),
	Mestrado ou Doutorado
Idade	> 18
Raça/Cor	Branco, Preto, Pardo, Indígena ou Amarelo
Sexo	Masculino ou Feminino

Além das condições de interesse do pesquisador, é necessário atentar que a Rais trata do mercado de trabalho formal, o que exclui trabalhadores informais e profissionais autônomos. Portanto, o presente trabalho mira estimar as relações escolaridade-renda no mercado de trabalho formal do Espírito Santo, destacando o impacto de substratos marginalizados da sociedade na determinação da renda do trabalhador.

1.1 ANÁLISE EXPLORATÓRIA DOS DADOS

Nesta seção,

A primeira camada de entendimento em uma pesquisa deste tipo é a exploratória. Após a aplicação das condições mencionadas, a base de dados conta com expressivos 8,483,726 de entradas, de 2006 a 2020, e cobre todos os 4 municípios do Espírito Santo.

Tabela 2 – Entradas por ano

2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
463.720	494.032	561.745	558.485	602.333	641.051	653.132	666.516	665.686	608.625	534.759	511.136	519.516	505.253	497.737

Figura 1 – Entradas por ano

Em termos de gênero no mercado de trabalho formal capixaba, as mulheres consquistaram espaço. Enquanto que em 2006 os homens ocupavam 116% a mais das vagas, em 2020 essa diferença caiu para 63%.

Figura 2 – Comparativo 2006-2020 por sexo

Adicionando a dimensão da raça/cor, vemos que a mulher preta é o substrato social mais empurrado à informalidade. Dos declarados pretos, apenas 32% são mulheres.

		1		. 1	,	
ano	sexo	branca	amarela	indigena	parda	preta
2006	masculino	132.447	2.226	1.196	148.098	24.523
2020	masculino	85.013	1.966	594	182.100	27.926
2006	feminino	77.294	1.099	814	67.793	8.230
2020	feminino	67.046	1.582	522	115.805	15.183

Tabela 3 – Comparativo 2006-2020 por sexo/raça/cor

Figura 3 – Comparativo 2006-2020 por sexo/raça/cor

Em relação à escolaridade, seja por uma mudança do perfil da população ou por requerimentos do mercado de trabalho, o fato é que a maior parte das vagas eram ocupadas por trabalhadores com até o ensino fundamental. Agora, a maior parte das vagas são ocupadas por trabalhadores com ensino médio. Destaca-se também que a maior fatia das vagas ocupadas por trabalhadores de escolaridade

até o ensino fundamental são preenchidas por homens, implicando que as trabalhadores da mesma escolaridade estão na informalidade.

ano	sexo	nenhum	fund_I	fund_II	medio	superior	mestrado	doutorado
2006	masculino	12.540	55.070	102.279	119.303	18.927	304	67
2020	masculino	6.387	20.726	50.114	186.569	32.194	1.221	388
2006	feminino	2.254	14.361	35.675	83.778	18.782	330	50
2020	feminino	1.713	7.272	23.017	125.564	41.108	1.115	349

Tabela 4 – Comparativo 2006-2020 por sexo/escolaridade

Figura 4 – Entradas por sexo/escolaridade

Adicionando a dimensão da raça/cor, percebemos que a ocupação de postos de trabalho de nível superior deixa de ser quase exclusividade de brancos. Entretanto, pardos e pretos ainda ocupam majoritariamente as vagas de trabalho de nível inferiores de escolaridade, além de, tanto proporcionalmente quanto absolutamente, ainda ocuparem menos vagas de ensino superior.

Tabela 5 –	Comparativo	2006-2020 t	por sexo/raca/	escolaridade/
------------	-------------	-------------	----------------	---------------

ano	sexo	raca_cor	nenhum	fund_I	fund_II	medio	superior	mestrado	doutorado
2006	masculino	branca	4.026	18.456	39.256	57.824	12.621	209	55
2020	masculino	branca	1.125	4.200	11.295	51.026	16.264	815	288
2006	feminino	branca	837	4.639	15.353	43.270	12.926	229	40
2020	feminino	branca	366	1.446	5.778	38.130	20.305	772	249
2006	masculino	parda	6.551	29.552	52.966	53.094	5.848	78	9
2020	masculino	parda	4.208	13.432	32.357	117.498	14.158	359	88
2006	feminino	parda	1.111	8.322	17.427	35.452	5.387	84	10
2020	feminino	parda	1.089	4.758	14.530	76.483	18.575	281	89
2006	masculino	preta	1.831	6.341	8.723	7.288	324	14	2
2020	masculino	preta	977	2.886	5.899	16.578	1.549	32	5
2006	feminino	preta	265	1.241	2.347	4.030	333	14	0
2020	feminino	preta	239	997	2.388	9.636	1.874	42	7

Figura 5 – Entradas por sexo/escolaridade/raça/cor

A tabela a seguir evidencia mais explicitamente um ponto alarmante: quanto menor o nível de escolaridade da vaga, maior é a proporção de pretos e pardos que a ocupa.

Tabela 6 – Comparativo 2006-2020 proporção de pretos e pardos por nível de escolaridade

ano	prop
2006	0.6595917
2006	0.6546931
2006	0.5905084
2006	0.4917447
2006	0.3153624
2006	0.2996845
2006	0.1794872
2020	0.8040741
2020	0.7883777
2020	0.7544543
2020	0.7054525
2020	0.4932471
2020	0.3056507
2020	0.2564450
	2006 2006 2006 2006 2006 2006 2020 2020

1.2 MODELAGEM

O primeiro modelo

No segundo modelo, analiso os efeitos da educação superior, restringindo a escolaridade a uma variável binária

$$\text{superior} = \begin{cases} = 1 & \text{se possui ao menos ensino superior} \\ = 0 & \text{se não possui ao menos ensino superior} \end{cases}$$

2 RESULTADOS

Tabela 7 – Estimação

log(remune 2020 (1) 0.054*** (0.007) 0.084*** (0.006) 0.289*** (0.006) 0.966*** (0.006) 1.288*** (0.013)	2006 (2) 0.081*** (0.005) 0.135*** (0.005) 0.393*** (0.005) 1.225*** (0.005)
(1) 0.054*** (0.007) 0.084*** (0.006) 0.289*** (0.006) 0.966*** (0.006) 1.288*** (0.013)	(2) 0.081*** (0.005) 0.135*** (0.005) 0.393*** (0.005)
$0.054^{***} (0.007) \ 0.084^{***} (0.006) \ 0.289^{***} (0.006) \ 0.966^{***} (0.006) \ 1.288^{***} (0.013)$	0.081*** (0.005) 0.135*** (0.005) 0.393*** (0.005)
$0.084^{***} (0.006) \\ 0.289^{***} (0.006) \\ 0.966^{***} (0.006) \\ 1.288^{***} (0.013)$	$0.135^{***} (0.005) \\ 0.393^{***} (0.005)$
$0.289^{***} (0.006) 0.966^{***} (0.006) 1.288^{***} (0.013)$	$0.393^{***} (0.005)$
$0.289^{***} (0.006) 0.966^{***} (0.006) 1.288^{***} (0.013)$	
$1.288^{***} (0.013)$	$1.225^{***} (0.005)$
	$1.457^{***} (0.023)$
$1.450^{***} (0.021)$	$1.554^{***} (0.052)$
$-0.303^{***} (0.003)$	-0.305^{***} (0.003)
-0.099***(0.012)	$-0.114^{***}(0.012)$
$-0.047^{**} (0.022)$	$-0.046^{***} (0.016)$
-0.106***(0.002)	$-0.039^{***}(0.002)$
$-0.122^{***} (0.004)$	$-0.061^{***} (0.004)$
$0.014^{***} (0.0001)$	$0.016^{***} (0.0001)$
0.089*** (0.018)	0.083*** (0.021)
$-0.031\ (0.033)$	0.024(0.025)
$0.048^{***} (0.003)$	$-0.029^{***} (0.004)$
$0.052^{***} (0.006)$	-0.023^{***} (0.008)
6.801*** (0.007)	$5.777^{***} (0.006)$
497,737	463,720
0.293	0.302
0.293	0.302
0.541 (df = 497720)	0.555 (df = 463703)
12,878.400*** (df = 16; 497720)	12,532.380*** (df = 16; 463703)
	$\begin{array}{c} -0.099^{***} \ (0.012) \\ -0.047^{**} \ (0.022) \\ -0.106^{***} \ (0.002) \\ -0.122^{***} \ (0.004) \\ 0.014^{***} \ (0.0001) \\ 0.089^{***} \ (0.018) \\ -0.031 \ (0.033) \\ 0.048^{***} \ (0.003) \\ 0.052^{***} \ (0.006) \\ 6.801^{***} \ (0.007) \\ \hline \\ 497,737 \\ 0.293 \\ 0.293 \\ 0.541 \ (df = 497720) \end{array}$

Note:

*p<0.1; **p<0.05; ***p<0.01

REFERÊNCIAS

Bourdieu, P. (2015). Sistemas de Ensino e Sistemas de Pensamento. In *A Economia das Trocas Simbólicas*. Perspectiva, São Paulo, 8 edition.

Cavalcante, P. (2022). basedosdados: 'Base Dos Dados' R Client. R package version 0.2.1.

Cochrane, J. (2005). Writing Tips for Ph. D. Students. https://www.johnhcochrane.com/research-all/writing-tips-for-phd-studentsnbsp. Accessado em 29/08/2022.

Foucault, M. (2002). A Verdade e as Formas Jurídicas. NAU Editora, 3 edition.

Lins, R. C. (2020). Os PCN e a Educação Matemática no Brasil. In *O Modelo dos Campos Semânticos na Educação Básica*. Appris, Curitiba, PR, 1 edition.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

APÊNDICE

A ESCOLA COMO INSTITUIÇÃO PANÓPTICA

Em seu texto acerca dos Parâmetros Curriculares Nacionais — PCN, o professor Rômulo Lins abre da seguinte forma:

Provavelmente o maior problema da educação matemática dos brasileiros não esteja nas atuais deficiências apontadas diversas vezes, tais como, por exemplo, formação inadequada de professores e abordagens inadequadas sendo levadas para as salas de aula. Parece-me que o maior problema é a resistência do sistema em mudar. (Lins, 2020)

Para ele, a pesquisa relacionada às técnicas e abordagens em sala de aula, o que ele chamou de *micro*, não é suficiente para colocar o sistema educacional em rota de mudança. Paralelamente, deve ser realizado um trabalho estrutural na esfera *macro* — aqui, principalmente, o MEC — que possibilite uma mudança do educar *pela* matemática para o educar *para* a matemática. Essa diferença é ilustrada por Lins da seguinte forma:

A diferença fica bastante mais clara se pensamos no caso da Educação Física. Será que alguém concebe que o papel das aulas de Educação Física é preparar todas as crianças (todas, eu disse) para o esporte competitivo? Claro que não. Se assim fosse as aulas de Educação Física não representariam, na formação das crianças, a educação para a saúde, para o desenvolvimento motor, para a socialização e o respeito a regras, para a colaboração. E os que quiserem ser atletas e jogadores vão buscar esta formação específica em outros espaços (possivelmente dentro dos times competitivos de suas escolas ou em clubes). Podemos dizer que a Educação Física escolar se concentra em modos de ser, promovendo aquela educação POR MEIO de esportes e exercícios físicos, enquanto o Treinamento Esportivo se concentra em potencializar habilidades, fazendo isso por meio da aquisição de técnicas específicas. (Lins, 2020)

A mudança, então, deixa de ter como meio apenas a sala de aula; o problema norteador da educação matemática como disciplina deixa de ser apenas, por exemplo, se o aluno deve ou não estudar geometrias não euclidianas no ensino médio, ou seja, unicamente conteúdos, e se expande para questionar o próprio objetivo do ensino da matemática, ou melhor, *através* da matemática.

Quando o autor propõe uma educação "formativa e com o objetivo de permitir que todos que passem por ela participem de forma plena em suas sociedades", podemos nos perguntar: o que é essa

participação plena? Ou ainda, por que é tão difícil realizar mudanças estruturais na educação ou, como Lins diz, fazer com que o sistema se coloque em rota de mudança? Podemos analisar essas perguntas sob a ótica da Sociologia da Educação.

Em Sistemas de Ensino e Sistemas de Pensamento, Pierre Bourdieu coloca o sistema educacional como um dos instrumentos mais eficazes de integração moral e lógica da sociedade, que tem como produto o indivíduo "programado" — homogêneo em percepção, pensamento e ação:

Caso se admita que a cultura e, neste caso particular, a cultura erudita em sua qualidade de código comum é o que permite a todos os detentores deste código associar o mesmo sentido às mesmas obras e, de maneira recíproca, de exprimir a mesma intenção significante por intermédio das mesmas palavras, dos mesmos comportamentos e das mesmas obras, pode-se compreender por que a Escola, incumbida de transmitir esta cultura, constitui o fator fundamental do consenso cultural nos termos de uma participação de um senso comum entendido como condição da comunicação. (Bourdieu, 2015)

Na conferência V de *A Verdade e as Formas Jurídicas*, Foucault coloca a escola como um exemplo de instituição panóptica (ou de sequestro). Esse tipo de instituição exerce poder sobre os indivíduos em uma sociedade de três formas características: *vigilância* individual e contínua; *controle* através de punição e recompensa e; formação e transformação dos indivíduos em função de certas normas, o que Foucault chamou de *correção*. Podemos associar esse consenso cultural que Bourdieu trata ao tríplice aspecto das instituições panópticas na definição de Foucault, especificamente a *correção*.

Na época atual, todas essas instituições — fábrica, escola, hospital psiquiátrico, hospital, prisão — têm por finalidade não excluir, mas, ao contrário, fixar os indivíduos. A fábrica não exclui os indivíduos; liga-os a um aparelho de produção. A escola não exclui os indivíduos; mesmo fechando-os; ela os fixa a um aparelho de transmissão do saber. O hospital psiquiátrico não exclui os indivíduos; liga-os a um aparelho de correção, a um aparelho de normalização dos indivíduos. O mesmo acontece com a casa de correção ou com a prisão. Mesmo se os efeitos dessas instituições são a exclusão do indivíduo, elas têm como finalidade primeira fixar os indivíduos em um aparelho de normalização dos homens. A fábrica, a escola, a prisão ou os hospitais têm por objetivo ligar o indivíduo a um processo de produção, de formação ou de correção dos produtores. Trata-se de garantir a produção ou os produtores em função de uma determinada norma. (Foucault, 2002, p. 114)

A primeira função da instituição panóptica é a extração da totalidade do tempo do indivíduo. É preciso que todo o tempo da existência humana esteja disponível ao trabalho, suas exigências ou sua preparação — aí incluindo a educação, que os economistas chamam frequentemente de capital

humano. Ao sequestrar o tempo do homem, ela transforma seu tempo de vida em tempo de trabalho. A segunda função é controlar seus corpos, fazendo com que o corpo do indivíduo se torne força de trabalho. Aqui o corpo humano deve ser formado, reformado, corrigido. Deve "adquirir aptidões, receber um certo número de qualidades, qualificar-se como um corpo capaz de trabalhar".

A terceira função é a criação de um micro-poder político, econômico e judiciário. A instituição panóptica se outorga o direito de decidir, comandar, punir, recompensar e julgar. E a escola não passa desapercebida:

O sistema escolar também é inteiramente baseado em uma espécie de poder judiciário. A todo poder se pune e recompensa, se avalia, se classifica, se diz quem é o melhor, quem é o pior. [...] Por que, para ensinar alguma coisa a alguém, se deve punir e recompensar? Esse sistema parece evidente, mas, se refletirmos, vemos que a evidência se dissolve. (Foucault, 2002, p. 120)

Por fim, a quarta função é a extração do saber, tanto a partir da apropriação do conhecimento técnico e tecnológico produzido durante o labor, quanto da observação do comportamento dos indivíduos vigiados e controlados. Da mesma forma que as anteriores, essa função não é restrita às relações sociais do capitalismo moderno:

A pedagogia se formou a partir das próprias adaptações da criança às tarefas escolares, adaptações observadas e extraídas do seu comportamento para tornarem-se em seguida leis de funcionamento das instituições e forma de poder exercido sobre a criança. (Foucault, 2002, p. 122)

Esse conjunto de características tem como objetivo principal a *transformação dos homens em força produtiva*. É através desse micro-poder entranhado nas relações sociais de uma sociedade panóptica que o indivíduo é fixado ao aparelho de produção, e a escola é um instrumento essencial para a formação desse micro-poder.

Tendemos, por conta da brevidade de nossas vidas, a limitar nossa ousadia em relação a essas estruturas. É fácil internalizar, inconscientemente, que essas instituições sempre existiram e sempre existirão da mesma forma que o são hoje. E talvez essa seja uma razão que contribua para que, como aponta Lins, a produção na educação matemática seja tão limitada à sala de aula — aliás, essa visão

é incentivada aqui mesmo no IFES, onde somos direcionados a "trazer para a sala de aula" nossa pesquisa do TCC.

Enquanto a educação exercer esse papel na sociedade, a sua estrutura é inalterada na essência. Portanto, além de pensar no que Lins define como micro e macro, devemos avançar acerca da própria posição da educação na sociedade. Apenas no momento em que a escola não mais existir para normalizar o indivíduo é que ela perderá sua razão de ser numa sociedade panóptica capitalista e será livre para se tornar algo diferente — e de fato libertadora.

DERIVAÇÃO DOS ESTIMADORES DE MQO

Partindo de um modelo de regressão linear simples, $Y_i=\beta_0+\beta_1X_i+e_i$, em que e_i é o termo de erro estocástico, em uma amostra, a relação Y e X é dada por:

1. Função de regressão amostral

$$Y_i = \hat{\beta}_0 + \hat{\beta}_i X_i + \hat{e}_i \tag{1}$$

2. O valor Y_i previsto pelo ajuste

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_i X_i \tag{2}$$

3. O resíduo \hat{e}_i não previsto pelo ajuste

$$\hat{e}_i = Y_i - \hat{Y}_i \tag{3}$$

Figura 6 – Resíduo de ajuste

O objetivo é, portanto, estimar os coeficientes linear e angular que representam a reta que minimiza

os resíduos. Para essa função a ser minimizada, posso utilizar tanto o erro absoluto $\mid \hat{e}_i \mid$ quanto o erro quadrático \hat{e}_i^2 . Por simplicidade, opto pelo erro quadrático total.

$$\begin{split} \mathrm{EQT} &= \hat{e}_1^2 + \hat{e}_2^2 + \ldots + \hat{e}_n^2 \\ &= (Y_1 - \hat{Y}_1)^2 + (Y_2 - \hat{Y}_2)^2 + \ldots + (Y_n - \hat{Y}_1)^2 \\ &= \sum_{i=1}^n (Y_i - \hat{Y}_i)^2 \\ &= \sum_{i=1}^n [Y_i - (\hat{\beta}_0 + \hat{\beta}_i X_i)]^2 \end{split} \tag{4}$$

De posse da função, posso minimizar os coeficientes β_i . Considerando um modelo de regressão simples, posso estimar β_0 e β_1 igualando as derivadas parciais à zero.

$$\frac{\partial \text{EQT}}{\partial \beta_0} = 2 \sum_{i=1}^n [Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)](-1) = 0$$

$$= -2(\sum_{i=1}^n Y_i - \sum_{i=1}^n \hat{\beta}_0 - \sum_{i=1}^n \hat{\beta}_1 X_i) = 0$$

$$= \sum_{i=1}^n Y_i - n\hat{\beta}_0 - \hat{\beta}_1 \sum_{i=1}^n X_i = 0$$

$$n\hat{\beta}_0 = \sum_{i=1}^n Y_i - \hat{\beta}_1 \sum_{i=1}^n X_i$$

$$\hat{\beta}_0 = \frac{\sum_{i=1}^n Y_i - \hat{\beta}_1 \sum_{i=1}^n X_i}{n}$$
(5)

$$\begin{split} \frac{\partial \text{EQT}}{\partial \beta_1} &= 2 \sum_{i=1}^n [Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i)](-X_i) \\ &= -2 X_i (\sum_{i=1}^n Y_i - \hat{\beta}_0 \sum_{i=1}^n -\hat{\beta}_1 \sum_{i=1}^n X_i^2) \\ &= 0 \end{split} \tag{6}$$