Non-Vertical Cultural Transmission, Assortment, and the Evolution of Cooperation

Dor Cohen¹, Ohad Lewin-Epstein², Marcus W. Feldman³, and Yoav Ram^{1,4,5,*}

¹School of Computer Science, Interdisciplinary Center Herzliya, Herzliya, Israel
²School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
³Department of Biology, Stanford University, Stanford, CA
⁴School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
⁵Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
*Corresponding author: yoav@yoavram.com

June 8, 2021

Supplementary material

2

10

Figure S1: Reduction principle for interaction-transmission association. Consecutive fixation of modifier alleles that reduce interaction-transmission association α in numerical simulations of evolution with two modifier alleles (Eq. D1). When an invading modifier allele is established in the population (frequency > 99.95%), a new modifier allele that reduces interaction-transmission association by 5% is introduced (at initial frequency 0.5%). (a) The frequency of the cooperative phenotype A over time. (b) The frequency of the invading modifier allele m over time. (c) The population mean fitness (\bar{w}) over time. Here, c = 0.05, b = 1.3, $T_A = 0.4 < T_B = 0.7$, initial interaction-transmission association $\alpha_1 = 0.7$, lower interaction-transmission association threshold $a_2 = 0.605$.

Figure S2: Evolution of cooperation in a structured population with local selection. The expected frequency of cooperators in a structured population after 10,000 generations is shown (red for 0%, green for 100%) as a function of both the cost of cooperation (c) on the y-axis, and the symmetric horizontal transmission rate ($T = T_A = T_B$) on the x-axis of panel (\mathbf{a}), or the transmission bias $T_A - T_B$ on the x-axis of panel (\mathbf{b}). Cooperation and horizontal transmission are both local between neighbouring sites, and each site had 8 neighbours. Selection operates locally (see Figure 4 for results from a model with global selection). The black curves represent the cost thresholds for the evolution of cooperation in a well-mixed population with interaction-transmission association, where $\alpha = 1/8$ in inequality 14 for panel (\mathbf{a}) and in Eqs. 12 for panel (\mathbf{b}). The population evolves on a 100-by-100 grid. Simulations were stopped at generation 10,000 or if one of the phenotypes fixed. 50 simulations were executed for each parameter set. Here, benefit of cooperation, b = 1.3; perfect vertical transmission v = 1. (\mathbf{a}) Symmetric horizontal transmission, $v = T_A = T_B$. ($v = T_A = T_B$) ($v = T_A = T_B$) ($v = T_A = T_A = T_B$) ($v = T_A =$