1 Lezione del 07-04-25

1.1 Interpolazione di funzioni

Poniamo di avere una qualche funzione $f(x): \mathbb{C} \to \mathbb{C}$ che non conosciamo esplicitamente ma di cui possiamo solo calcolare il valore $y_0,...,y_k$ in determinati punti $x_0,...,x_k$ non necessariamente equspaziati fra di loro. Chiamiamo questi punti **nodi**. Il problema sarà allora trovare un'*approssimazione* di f(x) **interpolando** i punti dati.

- Un approccio valido quando si hanno pochi punti (*k*) è considerare un polinomio di grado *k* che passi per tutti questi, sperando che si raggiunga un'approssimazione sufficientemente precisa nei punti esterni ai nodi.
- Un'altro approccio, quando si hanno molti punti, è trovare una funzione particolarmente semplice (solitamente una retta) che minimizzi la distanza da questi. E' questo ad esempio il caso della *regressione lineare*.

1.1.1 Interpolazione polinomiale

Vogliamo quindi trovare un polinomio p(x) tale che:

$$p(x_i) = y_i, \quad \forall i \in \{0, ..., k\}$$

Quello che facciamo è porre il polinomio come:

$$p(x) = a_0 + a_1 x + \dots a_k x^k$$

e impostare il sistema:

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_k x_0^k = y_0 \\ \vdots \\ a_0 + a_1 x_k + \dots + a_k x_k^k = y_k \end{cases}$$

che è lineare e ha come incognita il vettore dei coefficienti del polinomio cercato.

Notiamo di aver scelto come base la base canonica dei polinomi:

$$B_{\text{canonica}} = \left\{1, x, x^2, ..., x^k\right\}$$

Avremmo potuto scegliere qualsiasi altra base dello spazio dei polinomi $\mathbb{R}[x]$, e vedremo infatti anche questo caso.

Riscrivendo quindi il sistema di cui sopra in forma matriciale si ha:

$$\underbrace{\begin{pmatrix} 1 & x_0 & \dots & x_0^k \\ \vdots & & & \vdots \\ 1 & x_k & \dots & x_k^k \end{pmatrix}}_{V} \underbrace{\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_k \end{pmatrix}}_{a} = \underbrace{\begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_k \end{pmatrix}}_{a}$$

dove la matrice *V* viene detta **matrice di Vandermonde**.

Potrebe interessarci capire quando questo sistema ammette soluzione. Ad esempio, è impossibile che esista $i \neq j$ tali che $x_i = x_j$, in quanto questo renderebbe il sistema singolare (due righe uguali $\implies \det(V) = 0$). Questo caso non è desiderabile in quanto potrebbero esserci più soluzioni (se anche $y_i = y_j$) o nessuna (se $y_i \neq y_j$).

Possiamo allora enunciare il teorema:

Teorema 1.1: Determinante della matrice di Vandermonde

Il determinante della matrice di Vandermonde è:

$$\det(V) = \prod_{0 \le i < j \le k} (x_j - x_i)$$

Da questo deriva che se $x_i \neq x_j \ \forall i \neq j$, allora $\det(V) \neq 0$, cioè V non è singolare. Per trovare p(x) risolviamo quindi:

$$Va = y$$

e poniamo:

$$p(x) = \sum_{i=0}^{k} a_i x^i$$

da cui come avevamo detto si ottiene un polinomio con $deg(p(x)) \le k$ (\le perchè si potrebbe avere il coefficiente $a_k = 0$, e così via, cioè il grad è al più k).

Risolvere il sistema costa quindi, come avevamo visto, un qualcosa che è $\sim O(n^3)$, con particolare interesse al numero di condizionamento:

$$\mu(V) = |V| \cdot |V^{-1}|$$

che solitamente per la matrice di Vandermonde è particolarmente grande.

Ricordiamo che questo è un problema non da poco. Infatti, avevamo che il numero di condizionamento dava un limite alla variazione del resto del sistema in funzione della perturbazione delle soluzioni, cioè presa una \tilde{x} perturbata da una x soluzione di Ax=b si aveva:

$$|x - \tilde{x}| \le \mu(A) \cdot |A\tilde{x} - b|$$

Ad esempio, preso il sistema:

$$\underbrace{\begin{pmatrix} 1 & 0 \\ 0 & \epsilon \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} 1 \\ 1 \end{pmatrix}}_{x} = \underbrace{\begin{pmatrix} 1 \\ \epsilon \end{pmatrix}}_{b}$$

potremmo pensare di considerare la soluzione perturbata:

$$\tilde{x} = \begin{pmatrix} 1 \\ 1 + \delta \end{pmatrix}$$

Avremo quindi l'errore sulla soluzione:

$$|x - \tilde{x}|_2 = |\delta|$$

e l'errore sul resto:

$$|A\tilde{x} - b|_2 = \left| \begin{pmatrix} 0 \\ \delta \epsilon \end{pmatrix} \right|_2 = |\delta| \cdot \epsilon$$

che chiaramente cresce al crescere di ϵ .

Questo ci è problematico in quanto l'*errore sulla soluzione* può essere considerato come l'**errore sui coefficienti** del polinomio, e l'*errore sul resto* può essere considerato come l'**errore di approssimazione** della funzione, cioè:

$$|A\tilde{x} - b| = |p(x_i) - y_i|$$

Vediamo che in verità la situazione è sotto controllo se:

$$\mu(A) \le \frac{1}{u}$$

per u precisione macchina, in quanto l'errore dato dal cattivo condizionamento diventa comparabile con la precisione macchina, comunque piuttosto piccola. Un altro caso di interesse è quello in cui i punti x_i sono equispaziati sulla circonferenza unitaria sul piano di Argand-Gauss. Vediamo che anche qui l'errore è mantenuto sotto controllo, e questo sarà infatti il caso che considereremo per la trasformata (discreta) veloce di Fourier.

Un'idea potrebbe essere quindi quella di cambiare la base dei monomi in:

$$B' = \{\phi_0(x), \phi_1(x), ..., \phi_k(x)\}\$$

e porre quindi:

$$p(x) = a_0 \phi_0(x) + a_1 \phi_1(x) + \dots + a_k \phi_k(x)$$

Il sistema alla sostituzione dei nodi continuerà ad essere lineare, in quanto:

$$p(x_i) = a_0 \phi_0(x_i) + a_1 \phi_1(x_i) + \dots + a_k \phi_k(x_i), \quad \forall i \in \{0, \dots, k\}$$

Potremo quindi impostare un altro sistema lineare:

$$\begin{pmatrix} \phi_0(x_0) & \phi_1(x_0) & \dots & \phi_k(x_0) \\ \vdots & & & \vdots \\ \phi_0(x_k) & \phi_1(x_k) & \dots & \phi_k(x_k) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_k \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_k \end{pmatrix}$$

Abbiamo quindi definito la matrice di Vandermonde "generalizzata" a:

Definizione 1.1: Matrice di Vandermonde

La matrice di Vandermonde su una certa base polinomiale $\{\phi_0(x),...,\phi_k(x)\}$ è definita come:

$$V_{ij} = \phi_j(x_i), \quad \forall i, j \in \{0, 1, ..., k\}$$

Finora avevamo preso il caso della base canonica, cioè $\{1, x, ..., x^k\}$, ma nessuno ci nega di prendere altre basi. Basi che ci saranno di particolare interesse, vedremo, sono la base di **Lagrange** e la base di **Newton**.

1.1.2 Base di Lagrange

Presi sempre i nostri nodi di interpolazione, decidiamo di scegliere la base guardando proprio tali nodi (anziché prenderla a priori, come avevamo fatto per Vandermonde).

Chiamiamo i polinomi di base $l_0(x), ..., l_k(x)$, con:

$$l_i(x) = (x - x_0)...(x - x_{i-1})(x - x_{i+1})...(x - x_k) = \prod_{j \neq i}^{n} (x - x_j)$$

cioè il prodotto dei fattori che si annullano in x_j per tutti gli $j \neq i$. Spesso poi decidiamo di normalizzare i polinomi di base, indicandoli come:

$$l_i(x) = \frac{(x - x_0)...(x - x_{i-1})(x - x_{i+1})...(x - x_k)}{(x_i - x_0)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_k)} = \prod_{i \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

Otterremo quindi la base, diversa da quella canonica:

$$B_{\text{Lagrange}} = \{l_0(x), l_1(x), ..., l_k(x)\}$$

Proviamo quindi ad imporre le condizione, con:

$$p(x) = a_0 l_0(x) + a_1 l_1(x) + \dots + a_k l_k(x)$$

valutando il polinomio in un punto x_i :

$$p(x_i) = y_i = a_0 l_0(x_i) + \dots + a_{i-1} l_{i-1}(x_i) + a_i l_i(x_i) + a_{i+1} l_{i+1}(x_i) + \dots + a_k l_k(x_i)$$

dove vediamo che, normalizzando, si conserva solo il termine in a_i , da cui immediatamente:

$$a_i = y_i$$

e:

$$p(x) = y_0 l_0(x) + y_1 l_1(x) + \dots + y_k l_k(x)$$

Possiamo quindi costruire il polinomio interpolante senza fare nessun conto, semplicemente prendendo la combinazione lineare a coefficienti y_i della base di lagrange l_i costruita sui nodi.

Vediamo quindi la forma della matrice di Vandermonde:

$$V_{l} = \begin{pmatrix} l_{0}(x_{0}) & l_{1}(x_{0}) & \dots & l_{k}(x_{0}) \\ \vdots & & & \vdots \\ l_{0}(x_{k}) & l_{1}(x_{l}) & \dots & l_{k}(x_{k}) \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

da cui abbiamo quindi che si ricava direttamente l'identità e quindi Va=y diventa $Ia=y \implies a=y$.

Ad esempio, vediamo la seguente interpolazione di Lagrange, coi nodi nella tabella a sinistra:

1.1.3 Base di Newton

Vediamo quindi la base di Newton, che costruiamo come:

$$\begin{cases} n_0(x) = 1\\ n_1(x) = x - x_0\\ n_2(x) = (x - x_0)(x - x_1)\\ \vdots\\ n_k(x) = (x - x_0)...(x - x_{k+1}) \end{cases}$$

cioè ogni n_i dipende solo dai $\{x_0, ..., x_{i-1}\}$ precedenti. Questo rende più facile l'aggiornamento se si aggiunge un nuovo nodo in x_{k+1} , per cui basterà dire:

$$n_{k+1}(x) = (x - x_0)...(x - x_k) = n_k(x)(x - x_k)$$

Otterremo quindi la base:

$$B_{\text{Newton}} = \{n_0(x) = 1, n_1(x), ..., n_k(x)\}$$

e la matrice di Vandermonde:

$$V_n = \begin{pmatrix} n_0(x_0) & n_1(x_0) & \dots & n_k(x_0) \\ \vdots & & & \vdots \\ n_0(x_k) & n_1(x_k) & \dots & n_k(x_k) \end{pmatrix}$$

con:

$$p(x) = a_0 n_0(x) + a_1 n_1(x) + \dots + a_k n_k(x)$$

e nel nodo:

$$p(x_i) = y_i \Leftrightarrow Va = y$$

dallo svolgimento della matrice di Vandermonde si ha che la prima colonna è tutta di 1, e il resto della matrice è triangolare inferiore:

$$V_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 1 & ? & \dots & 0 \\ \vdots & & & \vdots \\ 1 & ? & \dots & ? \end{pmatrix}$$

e quindi ogni a_i dipende solo dagli $\{y_0, ... y_i\}$. Infine, notiamo di poter scrivere ogni a_i come le **differenze divise**:

$$a_i = f[x_0, ..., x_i]$$

indicate con le parentesi quadre, che definiamo come:

$$f[x_0,...,x_n,x] = \begin{cases} f(x) & n = -1 \\ \frac{f(x) - f(x_0)}{x - x_0} & n = 0 \\ \frac{f[x_0,...,x_{n-2},x] - f[x_0,...,x_{n-1},x]}{x - x_{n-1}}, & \text{altrimenti} \end{cases}$$

cioè la serie:

$$f[x] = f(x), \quad f[x_0, x] = \frac{f(x) - f(x_0)}{x - x_0}, \quad \dots$$