Roll N	o:						Name	
				Nationa	l Institute of Technolog	şy (Calicut	
			Dep	artment	of Computer Science 8	έE	Engineering	
				CS3002	Database Management	t S	ystems	
			End	l Semest	er Exam (Monsoon Sei	me	ester 2016)	
Max.	Marks: 50						Ti	ime: 3hr
1.	Match the fo	ollowing	g					[2.5
	a. Immediate	e Update	2		1. READ WRITE			
	b. Lost upda	te probl	em		2. NO UNDO/RED	Ю	ı	
	c. Deferred U	Jpdate			3. WRITE WRITE			
	d. Unrepeata	ıble Rea	d probl	em	4. UNDO/ REDO			
	e. Dirty Read	d Proble	em		5. WRITE READ			
2.	Consider a d	latabase	that is	read-on	lly. Suppose serializa	bil	lity needs to be supported. Please	list(all)
	correct states	ments fr	om the	given				[1]
	a. No	locking	g is nece	essary.				
	b. On	ıly read	locks a	re neces	ssary and they need to	o b	oe held until the end of transaction	n.
	c. On	ly read	locks a	re neces	ssary but they can be	re]	leased as soon as the read is comp	olete.
	d. Bo	th read	and wri	te locks	s are necessary and lo	ock	king must be done in two phases.	
	e. No	ne of th	e above	2.				
3.	Define the fo	ollowing	g terms	in one s	sentence:			[6]
	a) ind	dexing f	ield		b) primary key field	d	c) clustering field	
	d) sed	condary	key fie	ld	e) dense index		f) nondense (sparse) index.	
4.	List four DM	1L com	nands.					[1]
5.	Draw the thr	ee schei	ma arch	itecture	of the database syste	em	1.	[1]
6.	What is the s	star prop	erty of	Bell La	a Padula Model?			[1]
7.	State and pro	ove pseu	ıdo tran	sitive r	ule of FDs			[1.5]
8.	Given the tal	ble belo	w, whe	re A, B,	C, D and E represen	ıt tl	he attributes of the table. Find the	<u>,</u>
	functional de	ependen	cies F t	hat holo	d over this relation.			[2]
	A	В	C	D	E			
	al al	b1 b2	c1 c2	d1 d1	el e2			
	a1	b3	c1	d1	e3			
	a2 a2	b1 b2	c1 c2	d2 d2	e4 e5			
9.						פת	nrticipation and cardinality constra	aints
٥.	_1u,, uic 11/1				databases with	ru		

a) Design a database for a bank, including information about customer and their accounts.

Information about a customer includes their name, address, phone, and Social Security number. Accounts have numbers, types (e.g., saving, current) and balances. Also record the customer(s) who own an account. [2]

- [1] b) Change your diagram so an account can have only one customer.
- c) Change your original diagram so that a customer can have a set of addresses (with street-citystate triples) and a set of phone numbers (with area code and number). [1]
- 10. How do optimistic concurrency control techniques differ from the other concurrency control techniques? Why are they also called validation or certification techniques? [2]
- 11. Consider the two tables T1 and T2. Show the results of the following operations: [3]

Table T1			<u>Table T2</u>				
A	В	C	J	K	\mathbf{L}		
d	S	3	h	t	9		
d	t	1	f	S	3		
e	S	5	g	X	2		
f	u	7	d	\mathbf{v}	8		

- Select A, J, K from T1, T2 where A=J or B=K;
- b) T1 \bowtie A=J AND C<L T2
- $\{a.B, a.C, b.L \mid T1(a) \cdot T2(b) \cdot a.A = e' \cdot a.B \neq b.K\}$
- 12. For each of the following schedules determine which properties this schedule has. E.g., a schedule may be recoverable and cascade-less. Draw and fill the table in your answer sheet, and write the justification (Without proper justification answers won't consider.)

$$S1 = r1(C), w1(C), r1(A), w1(A), r2(B), r2(A), w2(B), c2, w1(C), c1$$

$$S2 = w1(A), r1(B), r3(B), w2(A), r2(B), w1(C), c1, w3(B), c2, c3$$

$$S3 = r1(A), w1(A), r2(A), w2(A), r2(B), w2(B), c2, r1(B), w1(B), c1, c3$$

S3 = r1(A), w1(A), r2(A), w2(A), r3(A), w3(A), r2(B), w2(B), c2, r1(B), w1(B), c1, c3

Schedules	recoverable	cascade-less	conflict-serializable	2PL
S1				
S2				
S3				

13. Consider the following relation R(A, B, C, D, E) and functional dependencies F that hold over this $F = A, B \rightarrow C$ relation.

$$A, C \rightarrow D, E$$

 $A, B, D \rightarrow E$

- a) Determine all candidate keys of R.
- b) In which normal form is relation R (recall that a relation can be in multiple normal forms). [1.5]

[1.5]

In a DBMS using the two-phase locking algorithm, the transactions will cause deadlocks depends on how they are executed. If the above two transactions are executed concurrently, under what situations can a deadlock occur?

18. Consider the following database schema and example instance for a flight information system: [6]

propersy								
<u>pId</u>	price	owner	sqrFeet	managedBy	location			
1	1 100,000 Alice		560	Property Pete	Lake View			
2	3,400,000	Bob	2,000	Hyde Park Prop	Hyde Park			
3	1,200,000	Bob	1,200	Property Pete	Hyde Park			
4	5,000,000	Martha	800	Fancy Rentals	Evanston			

management

mgmName	Location	yearlyProfit	
Property Pete	Lincoln Park	34,000,000	
Hyde Park Prop	Downtown	3,000,000	
Fancy Rental	Lake View	25,000,000	

maintenance

- Indifferenties							
<u>cmpName</u>	<u>empName</u>	salary	Location				
SuperPlumbing	George	10,000	Lake View				
SuperPlumbing	Dave	30,000	Lake View				
Carpeting	Keith	15,000	South Chicago				

repairs

<u>cmpName</u>	<u>empName</u>	<u>pId</u>	<u>date</u>	<u>type</u>
SuperPlumbing	George	1	2013-12-12	sink
SuperPlumbing	George	1	2013-12-13	toilet
Carpeting	Keith	4	2012-01-01	paining

- *a)* Write a relational algebra expression that returns the names of maintenance personal (empName) that did repair a property in '*Hyde Park*'.
- b) Write a relational algebra expression that returns the number of repairs for property managed by property management company '*Property Pete*'(cmpName) per location. E.g.,this should return (2, HydePark) if there is a property managed by '*Property Pete*' in *Hyde Park* that has been repaired twice.
- *c)* Write an SQL query that returns all owners whose sink's have been repaired, i.e., that own a property where the sink has been repaired.
- *d*) Write an SQL query that returns average price of properties in *Lake View* that are between 500 and 800 square feet large.
- *e)* Write a TRC & DRC expression that returns the pId, owner, and location of all properties that are larger than 600 square feet (sqrFeet).