НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

Лабораторная работа 1

По дисциплине:

«Операционные системы»

Выполнил:

Студент группы Р33122

Савин Георгий Евгеньевич

Преподаватель:

Покид Александр Владимирович

г. Санкт-Петербург

Разработать программу на языке С, которая осуществляет следующие действия

- Создает область памяти размером 120 мегабайт, начинающихся с адреса 0x9B97188D (невозможно) при помощи C=malloc заполненную случайными числами /dev/urandom в 73 потоков. Используя системные средства мониторинга определите адрес начала в адресном пространстве процесса и характеристики выделенных участков памяти. Замеры виртуальной/физической памяти необходимо снять:
- 1. До аллокации
- 2. После аллокации
- 3. После заполнения участка данными
- 4. После деаллокации
- Записывает область памяти в файлы одинакового размера 150 мегабайт с использованием F=некешируемого обращения к диску. Размер блока ввода-вывода 136 байт. Преподаватель выдает в качестве задания последовательность записи/чтения блоков H=последовательный
- Генерацию данных и запись осуществлять в бесконечном цикле.
- В отдельных 147 потоках осуществлять чтение данных из файлов и подсчитывать агрегированные характеристики данных J=сумму.
- Чтение и запись данных в/из файла должна быть защищена примитивами синхронизации K=futex.
- По заданию преподавателя изменить приоритеты потоков и описать изменения в характеристиках программы.

Для запуска программы возможно использовать операционную систему Windows 10 или Debian/Ubuntu в виртуальном окружении.

Измерить значения затраченного процессорного времени на выполнение программы и на операции ввода-вывода используя системные утилиты.

Отследить трассу системных вызовов.

Используя stap построить графики системных характеристик.

https://github.com/Delta145/lab_c [pid] = ps -C lab1

Адрес начала в адресном пространстве и характеристики выделенных участков памяти: sudo cat /proc/[pid]/maps или pmap -x [pid]

Замеры виртуальной/физической памяти: ps -eo pid,vsz,rss,comm | grep lab1 До аллокации

```
pid
        VSZ
                rss
gosha@pi:~/CLionProjects
23055 6692
                880 lab1
После аллокации
gosha@pi:~/CLionProjects
23055 129576
                880 la
После заполнения данными
gosna@pl:~/CLlonProjects/
23055 2749856 238760 la
После деаллокации
gosha@pi:~/CLionProjects
23055 956980
```

Измерить значения затраченного процессорного времени на выполнение программы: **time** ./lab1

real 0m10,421s
user 0m8,109s
sys 0m21,262s

и на операции ввода-вывода используя системные утилиты: sudo strace -c -fp [pid]

% time	seconds	usecs/call	calls	errors	syscall
98.10	473.829206	7309	64829	10281	futex
0.97	4.702242		20019	10201	read
0.61	2.931354	2	1237715		pread64
0.30	1.433212	37	38400		pwrite64
0.01	0.029216	132	221		clone
0.01	0.027792	124	225		mprotect
0.01	0.026906	118	228		mmap
0.00	0.006673	18	380		write
0.00	0.003078	14	221		set_robust_list
0.00	0.000138	15	9		munmap
0.00	0.000120	40	3		openat
0.00	0.000051	51	1	1	ioctl
0.00	0.000035	9	4		stat
0.00	0.000022	22	1		fstat
0.00	0.000013	7	2		close
100.00	402 000050		4363350	40202	4.4.1
100.00	482.990058		1362258	10282	to <u>t</u> al

Отследить трассу системных вызовов: sudo strace -fp [pid]

Используя stap построить графики системных характеристик: sudo stap -x [pid] script

```
gosha@pi:~/CLionProjects/lab1mine/cmake-build-debug$ sudo stap -x 15999 script
starting probe
      name
                       reads
                               MB tot
                                          B avg
                                                  writes
                                                           MB tot
                                                                      B avg
              opens
                                120
    lab1
                    925215
                                          135
                                                 24197
                                                             94
                                                                     4096
                2
```

Вывод: узнал несколько новых утилит для измерения производительности в линуксах, а также много чего узнал о си

- 1. атрибуты регионов памяти
- 2. tty?
- 3. malloc() как выделяет память?
- 4. С использованием fork() как запустить другое приложение?
- 5. флаги y clone()
- 6. параметры запуска у потока 'schedparams'
- 7. механизм системных вызовов