

UNIVERSIDADE FEDERAL DE RORAIMA

Aritmética Computacional

Prof. Herbert Oliveira Rocha

UNIVERSIDADE FEDERAL DE RORAIMA

Aritmética Computacional

Baseado nas aulas do Prof. Dr. Mauricio Figueiredo - UFAM

Prof. Herbert Oliveira Rocha

Introdução

- Como representar números em memória?
 - Em computadores, tudo é binário

 Como representar números negativos e de ponto flutuante?

 Como o computador processa esses dados para realizar cálculos?

Conversão Binário-Decimal

- Humanos são acostumados a representar números em base 10 (decimais)
- Convertendo de binário para decimal:

Bits menos significativos

Com 32 bits:

Representando Caracteres

- Computadores também precisam representar caracteres, pois é comum manipular textos (strings)
 - Código ASCII (Americ. Standard Code for Inform Interchamge)
 - 1 byte é suficiente para representar um caracter em ASCII

Valor em ASCII	Caractere										
32	space	48	0	64	@	80	Р	96	,	112	р
33	!	49	1	65	Α	81	Q	97	а	113	q
34	**	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	s	99	С	115	s
36	\$	52	4	68	D	84	т	100	d	116	t
37	%	53	5	69	E	85	υ	101	е	117	u
38	&	54	6	70	F	86	٧	102	f	118	v
39	,	55	7	71	G	87	w	103	g	119	w
40	(56	8	72	н	88	×	104	h	120	x
41)	57	9	73	- 1	89	Υ	105	i	121	у
42	•	58	:	74	J	90	z	106	j	122	z
43	+	59	;	75	к	91]	107	k	123	{
44	,	60	<	76	L	92	١	108	- 1	124	I
45	-	61	=	77	М	93	1 .	109	m	125	}
46		62	>	78	N	94	^	110	n	126	~
47	/	63	?	79	0	95	-	111	0	127	DEL

Figura 3.15 Representação de caracteres em ASCII. Note que os mesmos caracteres, quando expressos em maiúsculas e em minúsculas, diferem exatamente de 32 unidades; esta observação pode cortar caminho na verificação e na troca da caixa de caracteres em geral. Os caracteres de formatação não estão nesta tabela. Por exemplo, 9 representa o caractere tabe e 13 o retorno de carro. Outros caracteres úteis são o 8, que representa o backspace, e o 0 para o null, valor este que é usado nos programas em C para marcar o fim de um string.

- Primeiros computadores representavam números através de caracteres expressando valores decimais
- Caracteres não são eficientes para números
 - Ex. Representando o número 1 bilhão
 - Em ASCII: 1000000000
 - 10 dígitos de 8 bits = 80 bits
 - Em binário:
 - Bastam 32 bits, como é a palavra básica do MIPS
 - 2,5 vezes mais bits no ASCII
 - O maior problema: Realizar operações com caracteres!!!
 - Como somar 1 + 2??

- Números possuem sinal e magnitude
- Sinal pode ser representado por 1 bit do número
 - bit de sinal é normalmente o mais significativo

 - Alguns inconvenientes:
 - HW de cálculo, como soma, deve considerar circuito para manipular sinal após a soma
 - Há representação de +0 e -0 (desperdício)
- Representação em Complemento de 2
 - Os à esquerda são números positivos
 - 1s à esquerda são números negativos
 - Simplifica HW de aritmética

- Em complemento de 2
 - Obs. Primeiro bit ainda mostra o sinal

```
1_{\text{dez}}
2_{dez}
1000\,0000\,0000\,0000\,0000\,0000\,0000\,0010_{dois} = -2,147,483,646_{dex}
                 -3<sub>dez</sub>
-2<sub>dez</sub>
111111111111111111111111111111111110<sub>dois</sub> =
-1<sub>dez</sub>
```

- Conversão

$$(x31\times-2^{31})+(x30\times2^{30})+(x29\times2^{29})+...+(x1\times2^{1})+(x0\times2^{0})$$

- Exemplo

$$1111 \ 11111 \ 11111 \ 11111 \ 11111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 1111 \ 111$$

- Complemento de 2: Regra prática de conversão
 - Se o número é positivo, preceder normalmente
 - Se o número é negativo:
 - Faça a negação (negativo → positivo, positivo → negativo)
 - Converta para decimal normalmente
 - Acrescente o sinal
 - Regra prática de negação:
 - Troque todos os bits em 0 para 1, e os em 1 para 0.
 - Some 1 ao resultado
 - Exemplo
- Em binário: 1111 1111 1111 1111 1111 1111 1110 dois
- É negativo, então negue o número

Resultado: -2 (dec)

Extensão de Sinal

- Muitas vezes temos que manipular números representados em quantidades de bits diferentes
 - Ex. Colocar um valor de 16 bits em um registrador de 32 bits
 - Procedimento: Estender o último bit (mais significativo para todas as posições à esquerda
 - Exemplo: Convertendo -2 e 2, ambos em 16 bits, para 32 bits
 - 2:

• -2:

1111 1111 1111 1110 dois - 2 dez

Representação em hexadecimal

- Melhora legibilidade de binários longos
- Organiza bits em grupos de 4

Hex <u>ad</u> ecimal	Binário	Hexadecimal	Binário	Hexadecimal	Binário	Hexadecimal	Binário
O _{hoxa}	0000 _{dois}	4 _{hexa}	0100 _{dois}	8 _{hesa}	1000 _{dois}	C _{hexa}	1100 _{dois}
1 _{hexa}	0001 _{dois}	5 _{hexa}	0101 _{dois}	9 _{hexa}	1001 _{dois}	d_{hexa}	1101 _{dois}
2 _{hexa}	0010 _{dois}	6 _{hexp}	0110 _{dois}	a _{hexa}	1010 _{dois}	e _{heva}	1110 _{dok}
3 _{hexa}	0011 _{dois}	7 _{hexa}	0111 _{dois}	b _{hexa}	1011 _{clois}	f _{hexa}	1111 _{dois}

- Exemplos

Soma e Subtração

- Soma bit-a-bit, da direita para a esquerda, passando carries (vaium) ao bit mais à esquerda
- Subtração: Soma com o subtraendo negado (compl de 2)

Overflow

- Somas e subtrações podem gerar overflow
 - Acontece quando o resultado da operação não cabe no tamanho usado na representação de números pela máquina.
 - Ex. 32 bits no MIPs
 - Ex. 2 000 000 000 + 2 000 000 000 = 4 000 000 000
 - Não é possível representar com sinal em 32 bits
 - Como detectar:
 - Se houver vai-um ou empresta-1 no último bit (bit de sinal)
 - Ex. 2 000 000 000 + 2 000 000 000

0111011100110101100101000000000

Operações Lógicas

- Shift: Desloca bits à esquerda ou direita
 - Ex. Deslocar oito bits à esquerda

```
0000 0000 0000 0000 0000 0000 0000 0000 1101 dois 0000 0000 0000 0000 0000 0000 1101 0000 0000 dois
```

- AND (bit-a-bit): Resultado 1 se bits são iguais

- OR: (bit-a-bit): Resulta 1 se há 1 bit 1 no operando Ex.

Construção de uma ULA

- ULA = Unidade Lógica e Aritmética
 - Um componente fundamental dos processadores
- Blocos Básicos na construção ULAs

0	0	0
0	1	0
1	0	0
1	1	1

2. Porta OR
$$(c = a + b)$$

0	0	0
0	1	. 1
1	0	1
1	1	1

3. Inversor (c = \bar{a})

7	
0	a
1	b

Construção de uma ULA

- Operações lógicas AND e OR são simples e mapeadas diretamente para as portas lógicas respectivas

 Unidade de 1 bit, onde uma entrada no multiplexador define a operação (linha de controle)

Figura 4.9 Unidade lógica de 1 bit para executar as operações AND e OR.

- Adição

- A soma em 1 bit deve considerar Carry-out (vai-um) e Carry-in (vem um)
- Especificação de entradas e saídas do somador de 1 bit (Tab. Verdade)

	Entrada	S	Saí	das	
a	b	Carryin	CarryOut	Soma	Comentários
0	0	0	0	0	$0 + 0 + 0 = 00_{dois}$
0	0	1	0	1	0 + 0 + 1 = 01 _{dois}
0	1	0	0	1	0 + 1 + 0 = 01 _{dois}
0	1	1	1	0	0 + 1 + 1 = 10 _{dois}
1	0	. 0	0	1	1 + 0 + 0 = 01 _{dois}
1 -	0	1	1	0	1 + 0 + 1 = 10 _{dois}
1.	1	0	1	0	1 + 1 + 0 = 10 _{dois}
1	1	1	1	1	1 + 1 + 1 = 11 _{dois}

Figura 4.11 Especificação das entradas e saídas de um somador de 1 bit.

- Lógica para Carry-out

$$CarryOut = (b \cdot CarryIn) + (a \cdot CarryIn) + (a \cdot b) + (a \cdot b \cdot CarryIn) + (a \cdot b \cdot CarryIn) + (a \cdot b) + (a \cdot b)$$

- Lógica para Soma

Soma =
$$(a \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot b \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot \overline{CarryIn})$$

- Adição
 - Circuito Carry-out

Figura 4.13 Hardware do somador para geração do sinal CarryOut. O restante do hardware do somador é composto pelos circuitos para geração da saída Soma, especificada pelas equações dadas anteriormente.

- Circuito Soma?

- Circuito Soma?

- Circuito Soma?

- Adição em 32 bits
 - Basta interligar 32 unidades de 1 bit

Combinação dos circuitos (linha Operação com 2 bits)

21

- Subtração de A B
 - Basta usar o complemento de 2 de B
 - Determinado por Binvertido
 - inverte operando bita-bit
 - Soma 1
 - Para somar 1, basta colocar carry-in= 1 no bit menos significativo do somador
 - Pode ser a mesma ligação do Binvertido

- Instrução stl (set on less than) do MIPS
 - Resultado 1 se A < B
 - Quando executada coloca 0 em todos os bits, exceto no menos significativo, que depende da comparação
 - Para a comparação basta verificar se A-B < 0, que o caso que causa bit menos significativo como 1. Caso A-B >= 0, o resultado é positivo
 - Então basta olhar o bit de sinal gerado da subtração (bit mais signif.)
 - Bit mais significativo também serve para verificar overflow

- Suporte a branches (saltos)
 - Sempre se dá comparando a igualdade de dois valores
 - Se executarmos A-B, com A=B, o resultado será 0.
 - Mais simples: o OR de todos os bit tem que dar zero, bastando negar esse resultado para determinar o salto
 - Então basta acrescentar circuito para essa verificação

- Controle para as operações:
 - Formado por Bnegado (interligado ao Carry-in) e as 2 linhas de Operação

Linhas de controle da unidade aritmética lógica	Função
000	and
001	or
010	soma
110	subtração
111	set on less than

Figura 4.20 Valores das três linhas de controle da UAL e as operações correspondentes na UAL.

Figura 4.21 Símbolo comumente usado em diagramas lógicos para representar a UAL da Figura 4.19. Este símbolo também pode ser usado para representar um somador, de maneira que ele deve ser identificado explicitamente como sendo uma UAL ou um Somador.

- Importante às ULAs, mas complexo.
- Exemplo como conhecemos:
 - m x n bits = produto com m+n bits
 - No MIPs: 32×32 bits = 64 bits, usando regs **hi** e **lo**.

```
Multiplicando 1000 8
Multiplicador x1001 9
```

```
1000
0000
0000
+1000
01001000
```

- Algoritmo:

- Produto inicializado em zero
- Deslocamento para a esquerda do multiplicando.
- Soma, ou não soma, dependendo do bit do multiplicador.
- Repete para cada bit do multiplicador deslocando-o à direita

- Exemplo: $2 \times 3 (4 \text{ bits}) = 0010 \times 0011$

Iteração	Passo	Multiplicador	Multiplicando	Produto
0	Valores iniciais	0011	0000 0010	0000 0000
1	1a: 1 ⇒ Prod = Prod + Mcand	0011	0000 0010	0000 0010
	2: Deslocamento à esquerda do Multiplicando	0011	0000 0100	0000 0010
	3: Deslocamento à direita do Multiplicador	000()	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Deslocamento à esquerda do multiplicando	0001	0000 1000	0000 0110
	3: Deslocamento à direita do Multiplicador	0000	0000 1000	0000 0110
3	1: 0 ⇒ nenhuma operação	0000	0000 1000	0000 0110
	2: Deslocamento à esquerda do Multiplicando	0000	0001 0000	0000 0110
	3: Deslocamento à direita do Multiplicador	0000	0001 0000	0000 0110
4	1: 0 ⇒ nenhuma operação	0000	0001 0000	0000 0110
	2: Deslocamento à esquerda do Multiplicando	0000	0010 0000	0000 0110
	3: Deslocamento à direita do Multiplicador	0000	0010 0000	0000 0110

- Algoritmo de Booth

- Observação antiga, mas ainda verdadeira, de que deslocar bits é mais rápido do que somar
- _ 00: Meio de um string de 0s, portanto não há nenhuma operação aritmética a ser realizada.
 - 01: Fim de um string de 1s, portanto some o multiplicando à metade esquerda do produto.
 - Início de um string de 1s, portanto subtraia o multiplicando da metade esquerda do produto.
 - Meio de um string de 1s, portanto não há operação aritmética a ser realizada.

- Algoritmo de Booth: Exemplo

		Algoritmo original		Algoritmo de Booth		
Iteração	Multiplicando	Passo	Produto	Passo	Produto	
0	0010	Valores iniciais	0000 01 1Q	Valores iniciais	0000 0110 0	
1	0010	1: 0 => nenhuma operação	0000 0110	1a: 00 ⇒ nenhuma operação	0000 0110 0	
	0010	2: Deslocamento à direita do Produto	0000 001①	2: Deslocamento à direita do Produto	0000 00110	
2	0010	1a: 1 => Prod = Prod + Mcand	0010 0011	1c: 10 ⇒ Prod = Prod - Mcand	1110 0011 0	
	0010	2: Deslocamento à direita do Produto	0001 000D	2: Deslocamento à direita do Produto	1111 00011	
3	0010	1a: 1 => Prod = Prod + Mcand	0011 0001	1d: 11 ⇒ nenhuma operação	1111 0001 1	
	0010	2: Deslocamento à direita do Produto	0001 1000	2: Deslocamento à direita do Produto	1111 1000 1	
4	0010	1: 0 => nenhuma operação	0001 1000	1b: 01 ⇒ Prod = Prod + Mcand	0001 1000 1	
	0010	2: Deslocamento à direita do Produto	0000 1100	2: Deslocamento à direita do Produto	0000 1100 0	

- Algoritmo de Booth funciona com sinal
- Exemplo: $2 \times -3 = 0010 \times 1101 = 111111010$

lteração .	Passo III	Multiplicando	Produte
0	Valores iniciais	0010	0000 1101 0
1	1c: 10 ⇒ Prod = Prod – Mcand	0010	1110 1101 0
	2: Deslocamento à direita do Produto	0010	1111 0110 7
2	1b: 01 ⇒ Prod = Prod + Mcand	0010	0001 0110 1
	2: Deslocamento à direita do Produto	0010	0000 101(10)
3	1c: 10 ⇒ Prod = Prod - Mcand	0010	1110 1011 0
	2: Deslocamento à direita do Produto	0010	1111 010(1)
4	1d: 11 ⇒ nenhuma operação	0010	1111 0101 1
	2: Deslocamento à direita do produto	0010	1111 1010 1

Divisão

- Menos comum que multiplicação, mas mais complexa
 - Ainda temos o resto
- No MIPS, o resto fica do reg HI e quociente no LO
- Exemplo

	1001_{dez}	Quociente
Divisor 1000_{dez}	$\overline{1001010_{\text{dez}}}$	Dividendo
	-1000	
	10	
	101	
	1010	
	<u>-1000</u>	
	$10_{ m dez}$	Resto

Aritmética no MIPS

Categoria	Instrução	Exemplo	Significado	Comentário
	add	add \$s1, \$s2, \$s3	\$s1 = \$s2 + \$s3	Três operandos; detecção de overflow
	subtract	sub \$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3	Três operandos; detecção de overflow
	add immediate	addi \$s1, \$s2, 100	\$s1 = \$s2 + \$ s3	+ constante: detecção de overflow
Aritmética	add unsigned	addu \$s1, \$s2, \$s3	\$s1 - \$s2 + \$s3	Três operandos: sem detecção de overflow
	subtract unsigned	subu \$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3	Três operandos: sem detecção de overflow
	add immediate unsigned	addiu \$s1, \$s2, 100	\$s1 = \$s2 + \$ s3	+ constante: sem detecção de overflow
	move from coprocessor register	mfc0 \$s1, \$epc	\$s1 = \$epc	Usado para fazer cópia do EPC (Exception PC) e de outros registradores especiais
	multiply	mult \$s2, \$s3	Hi, Lo = \$s2 × \$s3	Produto de 64 bits com sinal em Hi e Lo
	multiply unsigned	multu \$s2, \$s3	Hi, Lo = \$s2 × \$s3	Produto de 64 bits sem sinal em Hi e Lo
	divide	div \$s2, \$s3	Lo = \$s2 / \$s3, Hi = \$s2 mod \$s3	Lo = quociente; Hi = Resto
	divide unsigned	divu \$s2, \$s3	Lo = \$s2 / \$s3, Hi = \$s2 mod \$s3	Quociente e Resto sem sinal
	move from Hi	mfhi \$sl	\$s1 = H i	Usado para obter cópia de Hi
	move from Lo	mflo \$sl	\$s1 = Lo	Usado para obter cópia de Lo
	and	and \$s1, \$s2, \$s3	\$s1 = \$s2 & \$s3	Operandos em três registradores: AND lógico
	or	or \$s1, \$s2, \$s3	\$s1 = \$s2 \$s3	Operandos em três registradores: OR lógico
	and immediate	andi \$s1, \$s2, 100	\$s1 - \$s2 & 100	AND lógico do conteúdo de um registrador com uma constante
Lógica	or immediate	ori \$s1, \$s2, 100	\$s1 - \$s2 100	OR lógico do conteúdo de um registrador com uma constante
	shift left logical	sll \$s1, \$s2, 10	\$s1 = \$s2 << 10	Deslocamento à esquerda (número de bits deslocados armazenado em uma constante)
	shift right logical	srl \$s1, \$s2, 10	\$s1 = \$s2 >> 10	Deslocamento à direita (número de bits deslocados armazenado em uma constante)

- Além dos números inteiros com e sem sinal, como representar os números reais?
 - Números muito grandes? (segundos/século)
 - 3.155.760.00010 (3,1557610 x 109)
 - Números muito pequenos? (diâmetro atômico)
 - 0,0000000110 (1,010 x 10-8) cm
 - Racionais (padrão repetitivo)
 - 2/3 (0,666666666...)
 - Irracionais
 - 21/2 (1,414213562373...)
 - e (2,718...), Pi(3,141...)
- Todos são representados em notação científica.

- Notação Científica

- Forma Normalizada: sem zeros à frente.
 - Exatamente um dígito à esquerda do ponto decimal
- Alternativas para se representar 1/1.000.000.000:
 - Normalizada: 1,0 x 10⁻⁹
 - Não normalizada: 0,1 x 10⁻⁸ ou 10,0 x 10⁻¹⁰

- Notação Binária

- A aritmética do computador que suporta isto é chamada de ponto flutuante, porque ela representa números onde o ponto binário não é fixo, como é o caso dos inteiros.
- Declaramos tais variáveis como float em C.

- Formato Normal:

- No MIPS, Múltiplo do Tamanho da Palavra (32 bits):

- S representa o Sinal do número
- Expoente representa y's
- Significando representa x's, parte fracionária!
- O Primeito bit, à esquerda do ponto, fica implícito quando normalizado!
- Representa números tão pequenos quanto 2.0×10^{-38} até tão grande quanto 2.0×10^{38} .

Representação:

Sinal, expoente e mantissa:

 $(-1)^{Sinal} \times mantissa \times 2^{expoente}$

Quanto mais bits a mantissa tiver, maior a precisão.

Quanto mais bits o expoente tiver, maior é a faixa representável.

- No MIPS, usa 2 palavras (64 bits)
 - Segue IEEE 754 (padrão para interoperabilidade)
 - Aumenta o expoente e o significando

- Precisão Dupla (vs. Precisão Simples)
 - Variável C declarada como double.
 - Representa números quase tão pequenos quanto 2.0×10^{-308} e quase tão grandes como 2.0×10^{308} .
 - Mas a vantagem principal é a maior precisão devido a um significando maior.

PF no MIPS

Categoria	Instrução		Exemplo	Significado	Comentários
Aritmética	FP add single	add.s	\$f2. \$f4, \$f6	\$f2 = \$f4 + \$f6	Soma em PF (precisão simples)
	FP subtract single	sub.s	\$f2, \$f4, \$f6	\$f2 = \$f4 - \$f6	Subtração em PF (precisão simples)
	FP multiply single	mul.s	\$f2, \$f4, \$f6	\$f2 - \$f4 × \$f6	Multiplicação em PF (precisão simples)
	FP divide single	div.s	\$f2, \$f4, \$f6	\$f2 - \$f4 / \$f6	Divisão em PF (precisão simples)
	FP add double	add.d	\$f2, \$f4, \$f6	\$f2 = \$f4 + \$f6	Soma em PF (precisão dupla)
	FP subtract double	sub.d	\$f2, \$f4, \$f6	\$f2 - \$f4 - \$f6	Subtração em PF (precisão dupla)
	FP multiply double	mul.d	\$f2, \$f4, \$f6	\$f2 = \$f4 × \$f6	Multiplicação em PF (precisão dupla)
	FP divide double	div.d	\$f2, \$f4, \$f6	\$f2 - \$f4 / \$f6	Divisão em PF (precisão dupla)
Transferência de dados	load word copr. 1	1wc1	\$f1.100(\$s2)	\$f1 = Memória(\$s2 + 100)	Dados de 32 bits para os registradores de PF
	store word copr. 1	swc1	\$s1, 100(\$s2)	Memória[\$s2 + 100] = \$f1	Dados de 32 bits para a memória
Desvio condicional	branch on FP true	bclt	25	se(cond == 1) vá para PC + 4 + 100	Desvio relativo ao PC Se Condição (em PF)
	branch on FP false	bclf	25	se(cond == 0) vá para PC + 4 + 100	Desvio relativo ao PC Se não Condição (em PF
	FP compare single (eq,ne,lt,le,gt,ge)	c.1t.2	\$f2, \$f4	se(\$f2 < \$f4) cond = 1; senão cond = 0	Comparação de menor que de valores em PF, precisão simples
	FP compare double (eq,ne,lt,le,gt,ge)	c.lt.d	\$f2, \$f4	se(\$f2 < \$f4) cond = 1; senão cond = 0	Comparação de menor que de valores em PF, precisão dupla