Branch: CSE & IT

WEEKLY TEST - 03

Subject: Database Management System

Maximum Marks 12

Batch: Hinglish

Q.1 to 4 Carry ONE Mark Each

[MCQ]

1. Consider the relation R(ABCDE) with the following set of functional dependencies (FD's)

 $F: \{AB \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow A, D \rightarrow B\}$

The which of the following Highest Normal form satisfied by the above relation R?

- (a) BCNF
- (b) 3NF
- (c) 2NF
- (d) 1NF

[MSQ]

2. Consider the following relation with given functional dependencies.

A(R, S, T, U, V)

FD's: $\{RS \rightarrow T, RS \rightarrow U, U \rightarrow R, ST \rightarrow U, ST \rightarrow V\}$

Then Relation is in which Normal Form?

- (a) 1NF
- (b) 2NF
- (c) 3NF
- (d) BCNF

3. [NAT]

Consider 3 transactions T_1 , T_2 and T_3 having 2, 3 and 4 operations respectively.

The total number of non-serial schedule is_____.

[MSQ]

4. Consider the following schedule:

S1: $r_1(x)$ $w_2(x)$ $w_1(x)$ $w_3(x)$ $r_3(x)$

S2: $r_1(x)$ $w_2(x)$ $w_3(x)$ $w_1(x)$ $r_3(x)$

Which of the following is correct about the Schedule S?

- (a) S₁ is conflict serializable.
- (b) S₁ is not conflict serializable.
- (c) S₂ is conflict serializable.
- (d) S₂ is not conflict serializable.

Q.5 to 8 Carry TWO Mark Each

5. [NAT]

Consider the following Relation:

R(ABCDEFGH) with FD set of Relation R $\{A\rightarrow B, C\rightarrow D, E\rightarrow FGH\}$ what is the minimum number of relations required to decompose into BCNF which satisfy lossless join and Dependency preserving decomposition _____.

6. [MSQ]

Consider the following two schedules S_1 and S_2 involving three transactions T_1 , T_2 and T_3 as:

S₁: $R_2(x)W_1(y)W_1(z)$ $R_1(w)$ $R_3(y)$ $R_2(y)$ $R_1(x)$ $R_3(w)$ $R_2(z)$ $W_3(x)$ $R_2(w)$ $W_1(x)$

S₂: $R_1(x) R_3(w) W_1(y) W_1(z) R_1(w) W_3(y) R_3(y) R_2(y)$ $R_2(x) R_2(z) R_2(w)$

Which of the following options is/are correct regarding the above two schedules S_1 and S_2 ?

- (a) S_1 is conflict serializable.
- (b) S_1 is not conflict serializable.
- (c) S₂ is conflict serializable.
- (d) S₂ is not conflict serializable.

7. [NAT]

Consider the following relational schema with given FD's

Schema I: R(ABCD) and FD's are [AB \rightarrow C, C \rightarrow D, D \rightarrow A]

Schema II: R(ABCDE) and FD's are $[AB \rightarrow C,$

$$C \rightarrow D, D \rightarrow B, D \rightarrow E]$$

Schema III: R(ABCDE) and FD's are $[A \rightarrow B]$

$$B \rightarrow C, C \rightarrow D, D \rightarrow E, D \rightarrow A$$

Schema IV: R(ABCDE) and FD's are $[B \rightarrow C,$

$$B \rightarrow D, D \rightarrow E$$

How many above schema satisfy the third normal form (3NF) is_____?

8. [MSQ]

Consider the relation R(ABCDE) with the following set of functional dependencies

F:
$$[A \rightarrow D, AB \rightarrow C, AD \rightarrow CE, B \rightarrow C, D \rightarrow A, D \rightarrow B]$$

Then which of the following is/are True for R?

- (a) R is in 1NF
- (b) R is in 2NF
- (c) R is in 3NF
- (d) R is Not is 3NF & Not in BCNF

Answer Key

1. (b)

2. (a, b, c)

3. (1254)

4. (b, d)

5. (4)

6. (b, c)

7. (2)

8. (a, b, d)

Hints and Solutions

1. (b)

 $F:\{AB \rightarrow C, C \rightarrow D, D \rightarrow E, E \rightarrow A, D \rightarrow B\}$

Candidate keys = [AB, EB, C, D]

Prime / key Attribute = [A, B, C, D, E]

Here all attribute of relation R is key/prime attribute.

So R is in 3NF

Here R is not in BCNF because in FD

 $E \rightarrow A$: E is not super key.

So R is in 1NF, 2NF and 3NF.

So highest normal form satisfy is 3NF.

(a, b, c)

FD's: $\{RS \rightarrow T, RS \rightarrow U, U \rightarrow R, ST \rightarrow U, ST \rightarrow V\}$

In this question candidate keys = [RS, SU, ST]

In the FD $U\rightarrow R$, U is not a super key.

So Relation is Not in BCNF but in 3NF.

So, this relation is in 1NF, 2NF & 3NF also.

3. (1254)

3 Transaction T_1 : 2 operation (n_1)

 T_2 : 3 operation (n_2)

 T_3 : 4 operation (n_3)

Total number of Concurrent Schedule

$$= \frac{(n_1 + n_2 + n_3)!}{(n_1!)(n_2!)(n_3!)}$$

$$= \frac{(2+3+4)!}{(2!)(3!)(4!)} = \frac{9!}{2 \times 6 \times 4!}$$

$$=\frac{9\times8\times7\times6\times5\times4!}{2\times6\times4!}$$

Total No. of Concurrent Schedule = 1260

Total No. of serial schedule = 3! = 6 Serial Schedule.

Total Number of = 1260 - 6

Non-Serial Schedule = 1254

4. (b, d)

Schedule: S1

T_1	T_2	T_3
r(x)		
	w(x)	
w(x)		
		w(x)
		r(x)

Cycle exists, therefore S1 not conflict serializable. Schedule S2: S2 is also not conflict serializable as precedence graph contains cycle.

5. (4)

R (ABCDEFG) $\{A \rightarrow B, C \rightarrow D, E \rightarrow FGH\}$

Candidate key = [ACE]

Check BCNF = ?

 $A \rightarrow B$, $C \rightarrow D$, $E \rightarrow FGH$ } violates BCNF

Because $x \rightarrow y : x$ is Not super key

So, R Not in BCNF.

BCNF Deconposition

 $R_1(AB) R_2 (CD) R_3 (EFGH) R_4 (ACE)$

Now its in BCNF + losseless join + Dependency Preserving.

6. (b, c)

Sol.

 $\begin{aligned} \textbf{S_1:} & \ R_2(x)W_1(y)W_1(z) \ R_1(w) \ R_3(y) \ R_2(y) \ R_1(x) \ R_3(w) \\ & \ R_2(z) \ W_3(x) \ R_2(w) \ W_1(x) \end{aligned}$

S₂: $R_1(x)$ $R_3(w)$ $W_1(y)$ $W_1(z)$ $R_1(w)$ $W_3(y)$ $R_3(y)$ $R_2(y)$ $R_2(x)$ $R_2(z)$ $R_2(w)$

T_1	T_2	T_3	T_1	T_2	T ₃
	R(x)		R(x)		
W(y)					R(w)
W(z)			W(y)		
R(w)			W(z)		
		R(y)	R(w)		
	R(y)				W(y)
R(x)					R(y)
		R(w)		R(y)	
	R(z)			R(x)	
		W(x)		R(z)	
	R(w)			R(w)	
W(x)					
$\left(T_{i}\right)^{2}$		T_2	$\overline{\left(T_{i}\right)}$		T_2
4	\		\forall		
\			\	\	
Cycle					
S_1 T_3 S_2 T_3					
Not conflict Serializable Conflict Serializable					alizable
	<t<sub>1 T₃ T₂></t<sub>				

7. **(2)**

Schema I: R(ABCD) and FD's are $[AB \rightarrow C, C \rightarrow D,$ $D \rightarrow A$

Candidate keys = [AB, DB, CB]

Relation R is in INF, 2NF & 3NF But Not in BCNF because $C \rightarrow D$, $D \rightarrow A$ violate BCNF definition.

Schema II: R(ABCDE) and FD's are $[AB \rightarrow C, C \rightarrow$

 $D, D \rightarrow B, D \rightarrow E$ Candidate keys = [AB, AD, AC]

Here $D \rightarrow E$ is a Partial Dependency so R Not in 2NF.

Schema III: R(ABCDE) and FD's are $[A \rightarrow B, B \rightarrow C,$

 $C \rightarrow D, D \rightarrow E, D \rightarrow A$

Candidate key = [A, B, C, B]

Here in every Non Trivial FD $x \rightarrow y$, x [determinant] is a supper key so R is in BCNF & 3NF.

Schema IV: R(ABCDE) and FD's are $[B \rightarrow C, B \rightarrow D]$

 $D \rightarrow E$

Candidate key = [AB]

Here $B \to C \& B \to D$ is a Partial Dependency. So R

Not in 2NF.

So, Schema I & Schema III Satisfy 3NF.

8. (a, b, d)

 $R(ABCDE) \{A \rightarrow D, AB \rightarrow C, AD \rightarrow CE, B \rightarrow C, D\}$ \rightarrow A, D \rightarrow B}

 $(A)^+ = (ADBCE)$

A is Candidate key(1)

 $D \rightarrow A$

 $(D)^+ = (ABCDE)$

D is candidate key(2)

Candidate keys = [A, D]

Check 2NF? No Partial Dependency, ∴ R is in 2NF

Voilate Check 3NF? $B \rightarrow C$; Non key/— Non key 3NF Non Prime Attribute Attribute

OR

B→C B is Not super key or C is Non key Attribute

So, R is in 2NF But Not in 3NF & Not in BCNF

For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if

