Zadanie 1. Niech $F: \mathbb{R}^{100} \to \mathbb{R}^7$ będzie przekształceniem liniowym. Jaki może być wymiar $\ker(F)$? Jaki może być wymiar im(F)? A jak będzie dla $F: \mathbb{R}^7 \to \mathbb{R}^{100}$?

Zadanie 2. Z twierdzenia Bezout wywnioskuj, że jeśli wielomian stopnia ≤ 13 zeruje się w 1,2,3,...,14, to musi on być wielomianem zerowym. Używając tw. o indeksie wywnioskuj stąd, że dla dowolnych liczb a_1,a_2,\dots,a_{14} istnieje (jedyny) wielomian Pstopnia ≤ 13 taki że $P(1) = a_1, P(2) = a_2..., P(14) = a_{14}$. [Zdefiniuj odpowiednie przekształcenie liniowe z $\mathbf{R}_{13}[X]$ w

Zadanie 3. Wyznacz bazę i wymiar Lin(*A*) dla:

a)
$$A = \{(1,0,0,-1)^{\mathsf{T}}, (2,1,1,0)^{\mathsf{T}}, (1,1,1,1)^{\mathsf{T}}, (1,2,3,4)^{\mathsf{T}}, (0,1,2,3)^{\mathsf{T}}\}$$

b)
$$A = \{(1, 1, 1, 1, 0)^{\mathsf{T}}, (1, 1, -1, -1, -1)^{\mathsf{T}}, (2, 2, 0, 0, -1)^{\mathsf{T}}, (1, 1, 5, 5, 2)^{\mathsf{T}}, (1, -1, -1, 0, 0)^{\mathsf{T}}\}.$$

Zadanie 4. Wskaż bazę $\mathbf{R}_3[X]$ do której należą wielomiany $1 + X^2, 1 + 2X + X^3$.

Zadanie 5. Udowodnij, że

- a) przekształcenie identycznościowe jest izomorfizmem liniowym;
- b) przekształcenie odwrotne do izomorfizmu liniowego jest izomorfizmem liniowym;
- c) złożenie izomorfizmów liniowych jest izomorfizmem liniowym.

Sformułuj konkluzję tego zadania używając słowa "relacja".

Zadanie 6. Załóżmy, że $\varphi: V \to W$ jest izomorfizmem liniowym. Pokaż, że

- a) U jest k-wymiarową podprzestrzenią $V \iff \varphi[U]$ jest k-wymiarową podprzestrzenią W.
- b) v_1, \ldots, v_k są lnz $\iff \varphi(v_1), \ldots, \varphi(v_k)$ są lnz.
- c) $\text{Lin}(v_1, \dots, v_k) = U \iff \text{Lin}(\varphi(v_1), \dots, \varphi(v_k)) = \varphi[U].$ d) zachodzą inne podobne własnosci aż Ci się znudzi.

Zadanie 7. Stosując algorytm Steinitza dokonaj wymiany dla bazy $(1,0,0)^{T}$, $(1,1,0)^{T}$, $(1,1,1)^{T}$ i liniowo niezależnego podzbioru $(0,0,1)^{\mathsf{T}}$, $(0,1,1)^{\mathsf{T}}$ przestrzeni \mathbb{R}^3 .

Zadanie 8. Uzasadnij, że jeśli (b_1, \ldots, b_n) jest bazą V zaś $a = 0 \cdot b_1 + \sum_{i=2}^n t_i b_i$, to (a, b_2, \ldots, b_n) nie jest bazą V.

Zadanie 9. Dla dowolnych podzbiorów W_1, W_2 przestrzeni liniowej V, uzasadnij że:

- a) jeżeli $W_2 \le V$ i $W_1 \le W_2$, to $W_1 \le V$,
- b) jeżeli $W_1, W_2 \le V$ i $W_1 \subseteq W_2$, to $W_1 \le W_2$.

Zadanie 10. Sprawdź że złożenie przekształceń liniowych jest przekształceniem liniowym.

Zadanie 11. Sprawdź ze jeżeli $A, B \subseteq V$ są rozłączne i $A \cup B$ jest lnz, to $\text{Lin} A \cap \text{Lin} B = \{0\}$.

Zadanie 12. Wyznacz (pewną) bazę i wymiar następujących podprzestrzeni \mathbb{R}^3 :

a)
$$\operatorname{Lin} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$
b) $\operatorname{Lin} \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix} \right\}$
c) $\operatorname{Lin} \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$
d) $\operatorname{Lin} \left\{ \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \right\}$
e) $\operatorname{Lin} \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -6 \\ 0 \\ 3 \end{pmatrix} \right\}$
f) $\operatorname{Lin} \left\{ \begin{pmatrix} 1 \\ n \\ 0 \end{pmatrix} \middle| n \in \mathbb{N} \right\}$
g) $\operatorname{Lin} \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\} \cap \operatorname{Lin} \left\{ \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$
h) $\operatorname{Lin} \left\{ \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\} + \operatorname{Lin} \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$

i)
$$\operatorname{Lin}\left\{\begin{pmatrix}1\\0\\1\end{pmatrix}\right\} + \operatorname{Lin}\left\{\begin{pmatrix}0\\1\\1\end{pmatrix}\right\} + \operatorname{Lin}\left\{\begin{pmatrix}1\\-1\\0\end{pmatrix}\right\}$$
 j) $\operatorname{Lin}\left\{\begin{pmatrix}1\\2\\0\end{pmatrix}, \begin{pmatrix}0\\3\\1\end{pmatrix}\right\} \cap \operatorname{Lin}\left\{\begin{pmatrix}1\\5\\1\end{pmatrix}, \begin{pmatrix}1\\-1\\-1\end{pmatrix}\right\}$

Zadanie 13. *Flagą* w przestrzeni liniowej V nazywamy ciąg (V_0, V_1, \ldots, V_k) podprzestrzeni V, taki że $V_i \leq V_{i+1}$. Udowodnij, że wymiar V jest o 1 mniejszy od maksymalnej możliwej długości flagi w V. (Zakładamy, że wymiar V jest skończony.)

Zadanie 14.

- a) Znajdź $P \in \mathbf{R}_5[X]$, takie że $P'(-1) \neq 0$.
- b) Znajdź $P \in \mathbf{R}_5[X]$, takie że P'(-1) = 0, ale $P(2) \neq 0$.
- c) Znajdź $P \in \mathbf{R}_5[X]$, takie że P'(-1) = P(2) = 0, ale $P'''(0) \neq 0$.
- d) Wywnioskuj, że dim $\{P \in \mathbb{R}_5[X] \mid P'(-1) = P(2) = P'''(0) = 0\} \le 3$.

Zadanie 15. Znajdź wymiar przestrzeni $\{P \in \mathbf{R}_3[X] \mid P(1) = P(-1) = 2P(0) + P''(0) = 0\}.$

Zadanie 16. Napisz jawnym wzorem izomorfizm $F: \mathbb{R}^3 \to V$, dla

- a) $V = \{(x, y, z, t)^{\top} \in \mathbb{R}^4 \mid x + 2y + z + 3t = 0\};$
- b) $V = \{ P \in \mathbf{R}_4[X] \mid P''(0) = P(1) = 0 \}.$

W przypadku b) oblicz $F^{-1}(X - X^3)$.

Zadanie 17. Załóżmy, że dim(V) = n, $W \le V$, dim(W) = k. Uzasadnij, że istnieje izomorfizm $F: V \to K^n$, taki że $F[W] = \{(x_1, \dots, x_k, 0, \dots, 0)^\top \mid x_1, \dots, x_k \in K\}$. Napisz taki izomorfizm wzorem dla $V = \mathbf{R}_3[X]$, $W = \{P \in V \mid P'(1) + P(0) = 0\}$.

Zadanie 18. Podaj przykład 4-elementowego podzbioru **R**³, w którym zawarte są jedynie 3 bazy **R**³.

Zadanie 19. Podaj przykład dwóch baz (a_1, a_2, a_3) i (b_1, b_2, b_3) przestrzeni \mathbb{R}^3 , takich że (a_1, b_2, b_3) jest bazą \mathbb{R}^3 , ale (b_1, a_2, a_3) nie jest bazą \mathbb{R}^3 .

Zadanie 20. Czy prawdą jest, że jeśli $B = (b, b_2, b_3)$ i $C = (c, b_2, b_3)$ są bazami $\mathbf{R}_2[X]$, to dla dowolnego $P \in \mathbf{R}_2[X]$ wektory $[P]_B$ i $[P]_C$ mogą się różnić tylko pierwszą współrzędną?

Zadanie 21. Sprawdź, że $B = \{1, X-2, (X-2)^2, \dots, (X-2)^n\}$ jest bazą przestrzeni $\mathbf{R}_n[X]$; znajdź wzór na $[P]_B$.

Zadanie 22. Uzasadnij, że dim Lin(B) $\leq |B|$. Czy prawdą jest, że równość zachodzi wtedy i tylko wtedy, gdy B jest lnz?

Zadanie 23. Niech $F: V \to W$ bedzie funkcja. Udowodnij, że F jest liniowa $\iff F \leq V \times W$.

Zadanie 24. Czy jest prawdą, że w dowolnej przestrzeni liniowej, dla dowolnych jej podprzestrzeni liniowych U, V, W zachodzi $U \cap (V + W) = U \cap V + U \cap W$?

Zadanie 25. Nie używając całkowania sprawdź, czy są liniowo niezależne następujące podzbiory przestrzeni funkcji z \mathbb{R} w \mathbb{R} : a) $\{\sin x, \cos x\}$; b) $\{1, \cos(2x), \cos^2 x\}$; c) $\{1, \sin x, \cos x, \sin(2x), \cos(2x)\}$.

Zadanie 26. Oblicz dim $\{(a_n)_{n=0}^{\infty} \in \mathbb{R}^{\mathbb{N}} \mid (\forall n \ge 0)(a_{n+3} = 3a_{n+1} + 2a_n)\}.$

Zadanie 27. Uzasadnij, że jeśli V i W są podprzestrzeniami pewnej (skończenie wymiarowej) przestrzeni liniowej, to $\dim(V+W)=\dim(V)+\dim(W)-\dim(V\cap W)$. (wsk. Wybierz bazę $V\cap W$; uzupełnij ją do bazy ...). (Ta własność nazywa się *modularnością*.)

Zadanie 28. Ile *k*-wymiarowych podprzestrzeni ma *n*-wymiarowa przestrzeń liniowa nad ciałem *q*-elementowym?