Class 5: Centre of Mass

Advanced Placement Physics C

Dr. Timothy Leung

Fall 2024

Meritus Academy

Centre of Mass

Finding an object's centre of mass is important, because

- The laws of motion are formulated by treating an objects as point masses (for real-life objects, we let the forces apply to the centre of mass)
- Objects can have rotational motion in addition to translational motion as well (we will examine that a bit more in a very-important topic later)

Start with a Definition

The **centre of mass** ("CM") is the weighted average of the masses in a system. The "system" may be:

- A collection of individual particles
- A continuous distribution of mass with constant density. In this case, CM is also the geometric centre (centroid) of the object
- A continuous distribution of mass with varying density
- If the masses are inside a uniform gravitational field, then the CM is also its centre of gravity ("CG")

Finding the Centre of Mass

Simple Example

Two equal masses m along the x-axis, located at x_1 and x_2 . Where is the centre of mass of the system?

The centre of mass is at the half-way point between the masses:

$$x_{cm} = \frac{x_1 + x_2}{2}$$
 or $x_{cm} = \frac{mx_1 + mx_2}{2m}$

4

Slightly More Challenging

What if one of the masses are increased to 2m? This is still not a difficult problem; you can still *guess* the right answer without knowing the equation for centre of mass.

The answer is still simple. The centre of mass is no longer half way between the two masses, but now $\frac{1}{3}$ the total distance from the larger masses. We can show using a weighted average:

$$x_{\rm cm} = \frac{mx_1 + (2m)x_2}{m + 2m}$$

5

Many Point Masses

The weighted average concept can now be applied to cases when there are masses in two or more dimensions:

6

Centre of Mass Equation

The centre of mass is defined for discrete number of masses with the weighted average:

$$\vec{x}_{cm} = \frac{\sum \vec{x}_i m_i}{\sum m_i}$$

Quantity	Symbol	SI Unit
Position of centre of mass (vector)	\vec{x}_{cm}	m
Position of point mass <i>i</i> (vector)	\vec{x}_i	m
Point mass i	m _i	kg

In components:

$$x_{\text{cm}} = rac{\sum x_i m_i}{\sum m_i}$$
 $y_{\text{cm}} = rac{\sum y_i m_i}{\sum m_i}$ $z_{\text{cm}} = rac{\sum z_i m_i}{\sum m_i}$

An Example

Example: Consider the following masses and their coordinates which make up a "discrete mass" rigid body"

$$m_1 = 5.0 \text{ kg}$$
 $\vec{x}_1 = 3.0\hat{\imath} - 2.0\hat{k}$
 $m_2 = 10.0 \text{ kg}$ $\vec{x}_2 = -4.0\hat{\imath} + 2.0\hat{\jmath} + 7.0\hat{k}$
 $m_3 = 1.0 \text{ kg}$ $\vec{x}_3 = 10.0\hat{\imath} - 17.0\hat{\jmath} + 10.0\hat{k}$

What are the coordinates for the centre of mass of this system?

Continuous Mass Distribution

When the number of masses approaches infinity, this becomes a continuous distribution of mass. Taking the limit of masses $N \to \infty$ gives the integral form of our equation:

$$\vec{x}_{cm} = \frac{\int \vec{x} dm}{\int dm}$$

What is the infinitesimal mass dm then?

Densities

Linear mass density (for 1D problems)

$$\gamma = \frac{\mathrm{d}m}{\mathrm{d}L} \quad o \quad \mathrm{d}m = \gamma \mathrm{d}L$$

Surface mass density (for 2D problems)

$$\sigma = \frac{dm}{dA} \rightarrow dm = \sigma dA$$

Volume density (for 3D problems)

$$\rho = \frac{dm}{dV} \rightarrow dm = \rho dV$$

The densities do not have to be constant

An Example with Integrals

Example: A triangular plate is placed in a Cartesian coordinate system with two of its edges along the x and y-axis. The length of the edges along the axes are a and b respectively. Assuming that the surface area density σ is uniform, determine the coordinate of its centre of mass.

An Example with Integrals

Example: A triangular plate is placed in a Cartesian coordinate system with two of its edges along the x and y-axis. The length of the edges along the axes are a and b respectively. Assuming that the surface area density σ is uniform, determine the coordinate of its centre of mass.

Centroid

For an object with a uniform mass distribution (i.e. constant density), the centre of mass is also its geometric centre, called the **centroid**. The locations of centroids can be found in most physics and math textbooks.

Compound Shapes

For compound shapes, the centre of mass is the weighted average of the centre of mass of each component. For example, for the T-beam below:

Symmetric Configurations

- Any plane of symmetry, mirror line, axis of rotation, point of inversion *must* contain the centre of mass.
- Caveat: only works if the density distribution is also symmetric
- Again: if density is uniform, CM is also geometric centre (centroid)

"Negative Mass"

- Where there is a "hole" in the geometry, treat it as having negative mass density $-\sigma$ in that region.
- Negative masses don't exist, so this is really just a trick.
- **Example:** What is the centre of mass of this shape?

Negative Mass Example

• This is how we would think of it:

- Let the origin of the coordinate system to located at the centre of A
- Based on symmetry: $x_{cm} = 0$; only have to find y-coordinate.

$$y_{cm} = \frac{\sum y_{i} m_{i}}{\sum m_{i}} = \frac{m_{A}(0) + m_{B}(r/2)}{m_{A} + m_{B}} = \frac{-\sigma\pi \left(r/2\right)^{2} \left(r/2\right)}{\sigma\pi r^{2} - \sigma\pi \left(r/2\right)^{2}} = \frac{-r}{6}$$

Momentum and Centre of Mass

Velocity of the Centre of Mass

Take time derivative of the equation for \vec{x}_{cm} to get the velocity at the centre of mass:

$$\vec{v}_{cm} = \frac{d\vec{x}_{cm}}{dt} = \frac{1}{m} \frac{d}{dt} \left(\int \vec{x} dm \right) = \frac{1}{m} \int \frac{d\vec{x}}{dt} dm = \frac{\int \vec{v} dm}{m}$$

Or, in the form that is familiar, the velocity of the CM is the weighted sum of the velocities of the distribution of mass:

$$\vec{\mathsf{v}}_{\mathsf{cm}} = \frac{\int \vec{\mathsf{v}} \mathsf{d} m}{m}$$

Velocity and Momentum

We can also rearrange the equation for the velocity of the centre of mass to relate it to momentum, because the term $\int \vec{v} dm$ is the net momentum of the mass distribution p_{net} :

$$\vec{\mathrm{v}}_{\mathrm{cm}} = \frac{\int \vec{\mathrm{v}} \mathrm{d}m}{m} \longrightarrow \vec{p}_{\mathrm{net}} = m\vec{\mathrm{v}}_{\mathrm{cm}}$$

During a collision, there is no change in the net momentum¹, the centre of mass will continue to move at the same velocity before/after the collision, as if the collision never occurred.

¹Because there are no external forces

Centre of Mass During Collision

During a collision², there are no external forces, therefore the velocity of the CM remains constant. Consider this 1D inelastic collision in between two masses:

²As we have studied in conservation of momentum in Physics 12 and in our previous class

Acceleration of the Centre of Mass

The rate of change of the net momentum³:

$$\frac{\mathrm{d}\vec{p}_{\mathrm{net}}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(m\vec{\mathrm{v}}_{\mathrm{cm}})$$

If the system mass is constant, then this equation reduces to:

$$\frac{\mathrm{d}\vec{p}_{\mathrm{net}}}{\mathrm{d}t} = m \frac{\mathrm{d}\vec{v}_{\mathrm{cm}}}{\mathrm{d}t} \longrightarrow \vec{\mathsf{F}}_{\mathrm{net}} = m \vec{a}_{\mathrm{cm}}$$

We can see that when a net force is applied to an object (or a system of objects), the object's (or the system's) acceleration is evaluated at the CM.

³i.e applying the 2nd law of motion to this distribution of masses