

Devoir de synthèse de Physique

2
ème année, 24 Janvier 2020 : Correction et barême

Partie 1 : Capteurs capacitifs et inductifs	Points	Total
		ques- tion
1- Symétries / Invariances :		
On se munit d'un repère cylindrique	0.5	
Tout point M appartient à un plan de type $(M, \vec{u}_r, \vec{u}_z)$ et à un plan de type	0.5	
$(M, \vec{u}_r, \vec{u}_\theta)$ tous les deux plans de symétrie de la distribution de charges		
Le champ $ec{E}$ est donc contenu dans chacun de ces plans, ce qui implique :	0.5	
$E_z = E_\theta = 0.$		
Invariance en z et θ	1 1	
Finalement: $\vec{E} = E_r(r) \vec{u_r}$	0.5	
On peut ensuite utiliser soit le théorème de Gauss, soit l'équation de Maxwell-Gauss		sous
pour trouver le champ.		total:
		3
(3 points pour le calcul du champ) Par le théorème de Gauss : On choisit une	0.5	
surface de Gauss cylindrique fermée par deux disques, rayon r , axe Oz , hauteur H .		
Le flux à travers disques sont nuls car les normales à ces surfaces sont	0.5	
perpendiculaires au champ $ec{E}$.		
Le flux à travers la surface cylindrique est égal à $2\pi r H E_r$ car \vec{E} est constant sur	0.5	
toute cette surface.		
Le théorème donne donc : $\oiint \vec{E}.\vec{dS} = \frac{Q}{\epsilon_0}$ $2\pi r H \epsilon_0 E_r = Q \Rightarrow E_r = \frac{Q}{2\pi \epsilon_0 H r}$	$\begin{bmatrix} 0.5 \end{bmatrix}$	
$\int_{O}^{2\pi} dt dt = \epsilon_0$		
$2\pi r H \epsilon_0 E_r = Q \Rightarrow E_r = \frac{Q}{2\pi \epsilon_0 H r}$	1	
Par Maxwell-Gauss : $\vec{\nabla} \cdot \epsilon_0 \vec{E} = \rho$	$\begin{bmatrix} 0.5 \end{bmatrix}$	
Ici : $\vec{\nabla} \cdot \vec{E} = 0$ car pas de charges volumiques (seulement des conducteurs chargés en	0.5	
surface).		
Ce qui donne $\frac{1}{r}\frac{\partial(rE_r)}{\partial r}=0 \Rightarrow E_r=\frac{A}{r}$ avec $A=$ cte.	0.5	
Le théorème de Coulomb (relations de passage) donne le champ en $r=R_1$:		
$E_r(R_1) = \frac{\sigma}{\epsilon_0}$ $E_r(R_1) = \frac{Q}{2\pi R_1 H \epsilon_0} = \frac{A}{R_1}$		
$E_r(R_1) = \frac{Q}{Q} = \frac{A}{R_1}$	0.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
D'où $A = \frac{Q}{2\pi H \epsilon_0}$ et $E_r = \frac{Q}{2\pi \epsilon_0 H r}$	1	sous
		total:
		6
Une fois qu'on a E_r on le fait circuler pour le relier à U_0		
$U_0 = \int_{R_1}^{R_2} \vec{E} \cdot d\vec{l} = \int_{R_1}^{R_2} E_r \vec{u}_r \cdot dr \vec{u}_r = \int_{R_1}^{R_2} \frac{Q}{2\pi\epsilon_0 H} \frac{dr}{r} = \frac{Q}{2\pi\epsilon_0 H} ln \frac{R_2}{R_1}$	$\begin{vmatrix} & & & \\ & & & \end{vmatrix}$	total:
J_{R_1} J_{R_1} J_{R_1} $2\pi\epsilon_0 H$ r $2\pi\epsilon_0 H$ R_1		8
2- La capacité se déduit de l'expression précédente et de $Q=CU_0$	0.5	

On a done : $C = \frac{2\pi c_0 H}{lR_R^2}$ 3. Par Maxwell-Gauss : $\nabla c_0 E = \rho$ $\frac{1}{\rho} \frac{\partial (rc_0 E_r)}{\partial r} = \rho \Rightarrow \frac{\partial (rc_0 E_r)}{\partial r} = \rho r \Rightarrow rc_0 E_r = \rho^2 + A \Rightarrow E_r = \rho \frac{r}{2c_0} + \frac{A}{c_0 r}$ 1. Les relations de passage rous donnent (avec une normale \vec{n} orientée le long de \vec{u}_r): 0.5 (normale) $\vec{n}.(c_0 E_r(R_1) = 0) = \sigma = \frac{Q}{2\pi R_1 H} \Rightarrow E_r(R_1) = \frac{Q}{2\pi c_0 R_1 H}$ 0.5 Ce qui donne : $\frac{R_1}{2c_0} = \frac{A}{c_0 R_1} = \frac{Q}{2\pi c_0 R_1 H}$ ot done $A = \frac{Q}{2\pi H} = \frac{\rho R_1^2}{2}$ 1. Finalement : $E_r = \frac{Q}{2c_0} + \frac{A}{r} = \frac{Q}{2\pi H c_0} = \frac{\rho H_2^2}{2c_0}$ 4. On fait à nouveau circuler \vec{v} entre les deux armatures : $U = \frac{R_0}{R_0} \vec{E}.\vec{d} = -\frac{R_0}{R_0} \frac{\rho r}{2c_0} + \frac{Q}{2\pi H c_0} - \frac{\rho R_1^2}{2c_0} dr$ $= \frac{\rho}{4c_0} (R_2^2 - R_1^2) + \frac{Q}{2\pi H c_0} \ln_1 \frac{R_2}{R_1}) - \frac{\rho R_2^2}{2c_0} dr$ $= \frac{\rho}{4c_0} (R_2^2 - R_1^2) + \frac{Q}{2\pi H c_0} \ln_1 \frac{R_2}{R_1})$ 2. $\frac{1}{4c_0} \vec{R} = \frac{\rho}{4c_0} (R_2^2 - R_1^2 - 2R_1^2 \ln_1 \frac{R_2}{R_1})$ 3. $\frac{1}{4c_0} \vec{R} = \frac{\rho}{4c_0} (R_2^2 - R_1^2 - 2R_1^2 \ln_1 \frac{R_2}{R_1})$ 2. $\frac{1}{4c_0} \vec{R} = \frac{\rho}{4c_0} (R_2^2 - R_1^2 - 2R_1^2 \ln_1 \frac{R_2}{R_1})$ 3. $\frac{1}{4c_0} \vec{R} = \frac{\rho}{4c_0} (R_2^2 - R_1^2 - 2R_1^2 \ln_1 \frac{R_2}{R_1})$ 3. $\frac{1}{4c_0} \vec{R} = \frac{\rho}{4c_0} (R_2^2 - R_1^2 - 2R_1^2 \ln_1 \frac{R_2}{R_1})$ 4. $\frac{1}{4c_0} \vec{R} = \frac{\rho}{4c_0} (R_2^2 - R_1^2 - 2R_1^2 \ln_1 \frac{R_2}{R_1})$ 3. $\frac{1}{4c_0} \vec{R} = \frac{\rho}{4c_0} (R_2^2 - R_1^2 - 2R_1^2 \ln_1 \frac{R_2}{R_1})$ 4. $\frac{1}{4c_0} \vec{R} = \frac{\rho}{4c_0} (R_2^2 - R_1^2 - 2R_1^2 \ln_1 \frac{R_2}{R_1})$ 5. $\frac{1}{4c_0} \vec{R} = \frac{1}{4c_0} \vec{R} = \frac{1}{4c_0$	$2\pi\epsilon_0 H$	II II	
$\begin{array}{c} \textbf{3. Par Maxwell-Gauss}: \nabla.\epsilon_0 \vec{E} = \rho \\ \frac{1}{O(re_0 E_r)} = \rho \Rightarrow \frac{\partial (re_0 E_r)}{\partial r} = \rho r \Rightarrow r\epsilon_0 E_r = \rho \frac{r^2}{2} + A \Rightarrow E_r = \rho \frac{r}{2\epsilon_0} + \frac{A}{\epsilon_0 r} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	On a donc: $C = \frac{2\pi\epsilon_0 H}{R_2}$	0.5	1
$ \begin{array}{c} \frac{1}{r}\frac{\partial(r\epsilon_0E_r)}{\partial r} = \rho \Rightarrow \frac{\partial(r\epsilon_0E_r)}{\partial r} = \rho r \Rightarrow r\epsilon_0E_r = \rho \frac{r^2}{2} + A \Rightarrow E_r = \rho \frac{r}{2\epsilon_0} + \frac{A}{\epsilon_0r} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domnent (avec une normale \vec{n} orientée le long de \vec{u}_r):} \\ \text{Les relations de passage nous domner les relations de les passages nous domner les relations males)} \\ Les relations de passage nous domner les relations nous nous nous nous nous nous nous n$	$ln\frac{\sigma_2}{R_1}$		
Les relations de passage nous donnent (avec une normale \vec{n} orientée le long de \vec{u}_r):		0.5	
Les relations de passage nous donnent (avec une normale \vec{n} orientée le long de \vec{u}_r):	$\frac{1}{r} \frac{\partial (r\epsilon_0 E_r)}{\partial r} = \rho \Rightarrow \frac{\partial (r\epsilon_0 E_r)}{\partial r} = \rho r \Rightarrow r\epsilon_0 E_r = \rho \frac{r^2}{r} + A \Rightarrow E_r = \rho \frac{r}{r} + \frac{A}{r}$	1 1	
$\begin{array}{c} \vec{n}.(\epsilon_0 E_r(R_1) - 0) = \sigma = \frac{Q}{2\pi R_1 H} \Rightarrow E_r(R_1) = \frac{Q}{2\pi\epsilon_0 R_1 H} \\ \vec{n}.(\epsilon_0 E_r(R_1) - 0) = \sigma = \frac{Q}{2\pi R_1 H} \Rightarrow E_r(R_1) = \frac{Q}{2\pi\epsilon_0 R_1 H} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\epsilon_0} + \frac{Q}{\epsilon_0} \frac{Q}{2\pi\epsilon_0 R_1} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\epsilon_0} + \frac{Q}{\epsilon_0} \frac{Q}{2\pi\epsilon_0 R_1} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\pi\epsilon_0} + \frac{Q}{\epsilon_0} \frac{Q}{2\pi\epsilon_0} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\pi\epsilon_0} + \frac{Q}{\epsilon_0} \frac{Q}{2\pi\epsilon_0} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\pi\epsilon_0} + \frac{Q}{\epsilon_0} \frac{Q}{2\pi\epsilon_0} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\pi\epsilon_0} + \frac{Q}{\epsilon_0} \frac{Q}{2\pi\epsilon_0} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\pi\epsilon_0} + \frac{Q}{2\epsilon_0} \frac{Q}{2\pi\epsilon_0} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\epsilon_0} + \frac{Q}{2\epsilon_0} \frac{Q}{2\pi\epsilon_0} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\epsilon_0} + \frac{Q}{2\epsilon_0} \frac{Q}{2\epsilon_0} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\epsilon_0} + \frac{Q}{2\epsilon_0} \frac{Q}{2\epsilon_0} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\epsilon_0} + \frac{Q}{2\epsilon_0} \frac{Q}{2\epsilon_0} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\epsilon_0} + \frac{Q}{2\epsilon_0} \frac{Q}{2\epsilon_0} \\ \vec{n}.(\epsilon_0 E_r(R_1) - \epsilon_0) = \frac{Q}{2\epsilon_0} \frac{Q}{2\epsilon_0$	_ = 0 0.		
$\begin{array}{c} \vec{n}.(\epsilon_0E_r(R_1)-0)=\sigma=\frac{Q}{2\pi R_1H}\Rightarrow E_r(R_1)=\frac{Q}{2\pi\epsilon_0R_1H} & 0.5 \\ \text{Ce qui donne}: \rho\frac{R_1}{2\epsilon_0}+\frac{A}{\epsilon_0R_1}=\frac{Q}{2\pi\epsilon_0R_1H} & \text{et donc } A=\frac{Q}{2\pi H}-\frac{\rho R_1^2}{2} & 1 \\ \text{Finalement}: E_r=\frac{\rho r}{2\epsilon_0}+\frac{1}{r},\frac{Q}{2\pi H_0}-\frac{\rho R_1^2}{2\epsilon_0} & 0.5 \\ \text{4- On fait à nouveau circuler} \vec{E} & \text{ente les deux armatures}: \\ U=\int_{R_1}^{R_2}\vec{E}.\vec{dl}=\int_{R_1}^{R_2}(\frac{\rho r}{2\epsilon_0}+\frac{Q}{2\pi H_0\rho})-\frac{\rho R_1^2}{2\epsilon_0H}dr \\ =\frac{\rho}{4\epsilon_0}(R_2^2-R_1^2)+\frac{Q}{2\pi H_0}\ln(\frac{R_2}{R_1})-\frac{\rho R_1^2}{2\epsilon_0})dr \\ =\frac{\rho}{4\epsilon_0}(R_2^2-R_1^2)+\frac{Q}{2\pi H_0}\ln(\frac{R_2}{R_1})-\frac{\rho R_1^2}{2\epsilon_0}(\frac{R_2}{R_1}) \\ =U_0+\frac{\rho}{4\epsilon_0}\left(R_2^2-R_1^2-2R_1^2\ln(\frac{R_2}{R_1})\right) & 1 \\ 3 \\ \text{5- Si } R_2=R_1+e \text{ avec }e \text{ très petit, on a}: \\ R_2^2-R_1^2=(R_1+e)^2-R_1^2=2\epsilon R_1+e^2 \\ 2R_1^2\ln(\frac{R_2}{R_1})=2R_1^2\ln(\frac{R_2}{R_1}) \\ \approx 2R_1^2\ln(\frac{R_1}{R_1})=2R_1^2\ln(\frac{R_1}{R_1})=2R_1^2\ln(1+\frac{e}{R_1}) \\ \approx 2R_1^2(\frac{e}{R_1}-\frac{1}{2}\frac{e^2}{R_1^2})\approx 2eR_1-e^2 \\ \text{Et finalement}: \\ \Delta U \sim \frac{\rho^2}{2\epsilon_0}\left(\text{donner 1 sur 2 si facteur }1/4 \text{ quand tout n'est pas développé au même} \\ \text{1- }2 \\ \tau \rho = n C.m^{-3} \text{ et } v = m.s^{-1}, \text{ ce qui donne } j = n C.m^{-2}s^{-1} \\ \text{O. 5} \\ \text{2- }2 \\ \text{3- }2 \\ \text{4- }2 \\ \text{4- }2 \\ \text{5- }2 \\ \text{5- }2 \\ \text{5- }0 \\ \text{1- }2 \\ \text{5- }2 \\ \text{5- }2 \\ \text{5- }2 \\ \text{6- }2 \\ 6-$	Les relations de passage nous donnent (avec une normale \vec{n} orientée le long de \vec{u}_r):		
$\begin{array}{ll} \vec{n}.(\epsilon_0 E_r(R_1) - 0) = \sigma = \frac{Q}{2\pi R_1 H} \Rightarrow E_r(R_1) = \frac{Q}{2\pi\epsilon_0 R_1 H} \\ \text{Ce qui donne: } \rho \frac{R_1}{2\epsilon_0} + \frac{A}{\epsilon_0 R_1} = \frac{Q}{2\pi\epsilon_0 R_1 H} \text{ et donc } A = \frac{Q}{2\pi H} - \rho R_1^2 \\ \text{Finalement: } E_r = \frac{\rho r}{2\epsilon_0} + \frac{A}{r} \left(\frac{Q}{2\pi k_0} - \frac{\rho R_1^2}{2\epsilon_0} \right) \\ \text{4. On fait à nouveau circuler } \vec{E} \text{ entre les deux armatures:} \\ U = \int_{R_1}^{R_2} \vec{E}. \vec{d} = \int_{R_1}^{R_2} \left(\frac{Q}{2\epsilon_0} + \frac{Q}{2\pi k_0 r} - \frac{\rho R_1^2}{2\epsilon_0 r} \right) dr \\ = \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 \right) + \frac{Q}{2\pi k_0 r} \left(\frac{\rho R_1^2}{2\epsilon_0 r} + \frac{Q}{2\epsilon_0 r} \right) dr \\ = \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 \ln(\frac{R_1}{R_1}) - \frac{\rho R_1^2}{2\epsilon_0 r} \left(\frac{R_1}{R_1} \right) \right) \\ \text{4. On fait à nouveau circuler } \vec{E} \text{ entre les deux armatures:} \\ U = \int_{R_1}^{R_2} \vec{E}. \vec{d} = \int_{R_1}^{R_2} \left(\frac{\rho}{2\epsilon_0} + \frac{Q}{2\pi k_0 r} - \frac{\rho R_1^2}{2\epsilon_0 r} \right) dr \\ = \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 \ln(\frac{R_1}{R_1}) \right) \\ \text{2. } 2R_1 \left(\frac{R}{R_1} \right) + \frac{Q}{2\pi k_0} \left(\frac{R_1}{R_1} \right) - \frac{\rho R_1^2}{2\epsilon_0 r} \left(\frac{R_1}{R_1} \right) \\ \text{3. } \\ \text{4. } 0 + \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 \ln(\frac{R_1}{R_1}) \right) \\ \text{3. } \\ \text{5. } \text{SI } R_2 = R_1 + e \text{ avec e très petit, on a:} \\ R_2^2 - R_1^2 = 2R_1^2 \ln(\frac{R_1}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{2. } 2R_1^2 \ln(\frac{R_1}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{2. } 2R_1^2 \ln(\frac{R_1}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{2. } 2R_1^2 \ln(\frac{R_1}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{2. } 2R_1^2 \ln(\frac{R_1}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{2. } 2R_1^2 \ln(\frac{R_1}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{2. } 2R_1^2 \ln(\frac{R_1}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{2. } 2R_1^2 \ln(\frac{R_1}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{3. } 2R_1^2 \ln(1 + \frac{e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{3. } 2R_1^2 \ln(1 + \frac{e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{3. } 2R_1^2 \ln(1 + \frac{e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{3. } 2R_1^2 \ln(1 + \frac{e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{3. } 2R_1^2 \ln(1 + \frac{e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{3. } 2R_1^2 \ln(1 + \frac{e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{3. } 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \text{3. } 2R_1^2 \ln(1 + \frac{e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ 3.$		II ' . II	
Ce qui donne : $\rho \frac{R_1}{R_2} + \frac{A}{C_0} \frac{Q}{c_0 R_1} = \frac{Q}{2\pi c_0 R_1 R_1}$ et donc $A = \frac{Q}{2\pi H} - \frac{\rho R_1^2}{2}$ 1 Finalement : $E = \frac{\rho r}{2c_0} + \frac{1}{r} (\frac{Q}{2\pi H c_0} - \frac{\rho R_1^2}{2c_0})$ 0.5 4 On fait \(\text{\$\text{\$\text{\$a\$}} \) is ouveau circuler \(\text{\$\text{\$E\$}} \) et entre les deux armatures : \(U = \int_{R_1}^{R_2} \) \(\text{\$\text{\$E\$}} \) \(\text{\$\text{\$\text{\$\text{\$A\$}}} \) \(\text{\$\text{\$\text{\$\text{\$A\$}}} \) \(\$\text{\$\tex{	O	male $)$	
Ce qui donne : $\rho \frac{R_1}{R_2} + \frac{A}{C_0} \frac{Q}{c_0 R_1} = \frac{Q}{2\pi c_0 R_1 R_1}$ et donc $A = \frac{Q}{2\pi H} - \frac{\rho R_1^2}{2}$ 1 Finalement : $E = \frac{\rho r}{2c_0} + \frac{1}{r} (\frac{Q}{2\pi H c_0} - \frac{\rho R_1^2}{2c_0})$ 0.5 4 On fait \(\text{\$\text{\$\text{\$a\$}} \) is ouveau circuler \(\text{\$\text{\$E\$}} \) et entre les deux armatures : \(U = \int_{R_1}^{R_2} \) \(\text{\$\text{\$E\$}} \) \(\text{\$\text{\$\text{\$\text{\$A\$}}} \) \(\text{\$\text{\$\text{\$\text{\$A\$}}} \) \(\$\text{\$\tex{	$\vec{n}.(\epsilon_0 E_r(R_1) - 0) = \sigma = \frac{2}{2\pi R_1 H} \Rightarrow E_r(R_1) = \frac{2}{2\pi \epsilon_0 R_1 H}$	0.5	
Finalement : $E_r = \frac{\rho r}{2\epsilon_0} + \frac{1}{r} \left(\frac{Q}{2\pi h\epsilon_0} - \frac{\rho h_1^2}{2\epsilon_0} \right)$	R_1 R_2 R_3 R_4 R_4 R_5	1	
4- On fait à nouveau circuler \vec{E} entre les deux armatures : $U = \int_{R_1}^{R_2} \vec{E}.d\vec{l} = \int_{R_1}^{R_2} (\frac{\rho}{2\epsilon_0} + \frac{Q}{2\pi H \epsilon_0} r - \frac{\rho R_1^2}{2\epsilon_0 r}) dr$ $= \frac{\rho}{4\epsilon_0} (R_2^2 - R_1^2) + \frac{Q}{2\pi H \epsilon_0} \ln(\frac{R_1}{R_1}) - \frac{\rho R_1^2}{2\epsilon_0} \ln(\frac{R_2}{R_1})$ $= U_0 + \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 \ln(\frac{R_2}{R_1}) \right)$ 2 $Avec \Delta U = \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 \ln(\frac{R_2}{R_1}) \right)$ 1 3 $5- Si R_2 = R_1 + e \text{ avec } e \text{ três petit, on a :}$ $R_2^2 - R_1^2 = (R_1 + e)^2 - R_1^2 = 2eR_1 + e^2$ $2R_1^2 \ln(\frac{R_1}{R_1}) = 2R_1^2 \ln(\frac{R_1 + e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1})$ $\approx 2R_1^2 \left(\frac{e}{R_1} - \frac{1}{2} \frac{e^2}{R_1^2} \right) \approx 2eR_1 - e^2$ Et finalemen: $\Delta U \simeq \frac{\rho e^2}{2\epsilon_0} \text{ (donner 1 sur 2 si facteur } 1/4 \text{ quand tout n'est pas développé au même ordere}$ ordere) $6- A.N. \rho_{min} = 1, 8.10^{-8} C.m^{-3} \text{ avec } e=1 \text{ mm.}$ 2 $2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 $	Ce qui donne : $\rho \frac{1}{2\epsilon_0} + \frac{1}{\epsilon_0 R_1} = \frac{2\pi \epsilon_0 R_1 H}{2\pi R_1 R_2}$ et donc $A = \frac{1}{2\pi H} - \frac{1}{2}$	1	
4- On fait à nouveau circuler \vec{E} entre les deux armatures : $U = \int_{R_1}^{R_2} \vec{E}.d\vec{l} = \int_{R_1}^{R_2} (\frac{\rho}{2\epsilon_0} + \frac{Q}{2\pi H \epsilon_0} r - \frac{\rho R_1^2}{2\epsilon_0 r}) dr$ $= \frac{\rho}{4\epsilon_0} (R_2^2 - R_1^2) + \frac{Q}{2\pi H \epsilon_0} \ln(\frac{R_1}{R_1}) - \frac{\rho R_1^2}{2\epsilon_0} \ln(\frac{R_2}{R_1})$ $= U_0 + \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 \ln(\frac{R_2}{R_1}) \right)$ 2 $Avec \Delta U = \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 \ln(\frac{R_2}{R_1}) \right)$ 1 3 $5- Si R_2 = R_1 + e \text{ avec } e \text{ três petit, on a :}$ $R_2^2 - R_1^2 = (R_1 + e)^2 - R_1^2 = 2eR_1 + e^2$ $2R_1^2 \ln(\frac{R_1}{R_1}) = 2R_1^2 \ln(\frac{R_1 + e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1})$ $\approx 2R_1^2 \left(\frac{e}{R_1} - \frac{1}{2} \frac{e^2}{R_1^2} \right) \approx 2eR_1 - e^2$ Et finalemen: $\Delta U \simeq \frac{\rho e^2}{2\epsilon_0} \text{ (donner 1 sur 2 si facteur } 1/4 \text{ quand tout n'est pas développé au même ordere}$ ordere) $6- A.N. \rho_{min} = 1, 8.10^{-8} C.m^{-3} \text{ avec } e=1 \text{ mm.}$ 2 $2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 $	Finalement: $E_r = \frac{\rho r}{2} + \frac{1}{2} \left(\frac{Q}{2M} - \frac{\rho R_1^2}{2} \right)$	0.5	4
$U = \int_{R_1}^{R_2} \vec{E}.\vec{dl} = \int_{R_1}^{R_2} (\frac{\rho r}{2\epsilon_0} + \frac{Q}{2\pi H \epsilon_0 r} - \frac{\rho R_1^2}{2\epsilon_0}) dr$ $= \frac{\rho}{4\epsilon_0} (R_2^2 - R_1^2) + \frac{Q}{2\pi H \epsilon_0} \ln(\frac{R_2}{R_1}) - \frac{\rho R_1^2}{2\epsilon_0} \ln(\frac{R_2}{R_1})$ $= U_0 + \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 \ln(\frac{R_2}{R_1}) \right)$ $Avec \Delta U = \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 \ln(\frac{R_2}{R_1}) \right)$ $5 - \text{Si } R_2 = R_1 + e \text{ avec } e \text{ très petit, on a : } R_2^2 - R_1^2 = (R_1 + e)^2 - R_1^2 = 2R_1^2 \ln(\frac{R_2}{R_1})$ $2R_1^2 \ln(\frac{R_2}{R_1}) = 2R_1^2 \ln(\frac{R_1 + e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1})$ $\simeq 2R_1^2 \left(\frac{e}{R_1} - \frac{1}{2} \frac{e^2}{R_1^2} \right) \simeq 2eR_1 - e^2$ Et finalement : $\Delta U \simeq \frac{\rho e^2}{2\epsilon_0} \left(\text{domer 1 sur 2 si facteur } 1/4 \text{ quand tout n'est pas développé au même ordre} \right)$ $6 - \text{A.N. } p_{min} = 1, 8.10^{-8} \text{ C.m}^{-3} \text{ avec } e=1 \text{ mm.}$ $2 - 2 - \frac{1}{2} \ln(\frac{e}{R_1}) = \frac{1}{2} \ln(\frac{e}{R_1}) = \frac{1}{2} \ln(\frac{e}{R_1})$ $- \frac{1}{2} \ln(\frac{e}{R_1}) = \frac{1}{2} \ln($	$2\epsilon_0 - r \cdot 2\pi H \epsilon_0 - 2\epsilon_0$		
$ \begin{array}{c} = \frac{\rho}{4c_0}(R_2^2 - R_1^2) + \frac{Q}{2\pi Hc_0} ln(\frac{R_2}{R_1}) - \frac{\rho R_1^2}{2c_0} ln(\frac{R_2}{R_1}) \\ = U_0 + \frac{\rho}{4c_0} \left(R_2^2 - R_1^2 - 2R_1^2 ln(\frac{R_2}{R_1}) \right) & 2 \\ \\ \text{Avec } \Delta U = \frac{\rho}{4c_0} \left(R_2^2 - R_1^2 - 2R_1^2 ln(\frac{R_2}{R_1}) \right) & 1 \\ \text{3} \\ \text{5- Si } R_2 = R_1 + e \text{ avec } e \text{ très petit, on a} : \\ R_2^2 - R_1^2 = (R_1 + e)^2 - R_1^2 = 2eR_1 + e^2 \\ 2R_1^2 ln(\frac{R_1}{R_1}) = 2R_1^2 ln(\frac{R_1 + e}{R_1}) = 2R_1^2 ln(1 + \frac{e}{R_1}) \\ \approx 2R_1^2 ln(\frac{R_1}{R_1}) = 2R_1^2 ln(\frac{R_1 + e}{R_1}) = 2R_1^2 ln(1 + \frac{e}{R_1}) \\ \approx 2R_1^2 (\frac{e}{R_1} - \frac{1}{2} \frac{e^2}{R_1^2}) \approx 2eR_1 - e^2 \\ \text{Et finalement}: \\ \Delta U \simeq \frac{\rho e^2}{2c_0} \text{ (donner 1 sur 2 si facteur } 1/4 \text{ quand tout n'est pas développé au même} \\ \text{ordre} \\ \text{6- A.N. } \rho_{min} = 1,8.10^{-8} C.m^{-3} \text{ avec } e=1 \text{ mm.} \\ \text{2} \\ \text{7-} \rho \text{ en } C.m^{-3} \text{ et } v \text{ en } m.s^{-1}, \text{ ce qui donne } j \text{ en } C.m^{-2} s^{-1} \\ \text{Ce qui est bien homogène à une densité de courant } \vec{j} = nq\vec{v} \text{ avec } n \text{ en } m^{-3}, q \text{ en } C \\ \text{1} \\ \text{et } v \text{ en } m.s^{-1}. \\ \text{On a alors } I = \iint \vec{j}.d\vec{S} = \rho vS \\ \text{8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé a un cylindre parcouru par un courant I, et en se dotant d'un repère cylindrique, alors tout plan de type (M, \vec{u}_r, \vec{u}_z) (M \text{ quelconque)} est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc \vec{B} = B_\theta(r, \theta, z) \vec{u}_\theta (0.5 + 1) (\text{compter juste si les étudiants ne voient pas l'absence d'invariance en } z, \text{ et compter un bonus } de 1 \text{ point s'ils justifient la non-invariance en } z \text{ par la non-invariance des milieux } (0.5 + 0.5) \\ \text{On choisit un contour } d'Ampère circulaire, axe (Oz), rayon r, qu'on parcourt dans le sens de \vec{u}_\theta. Sur ce contour, le courant I est compté positivement. (S_0, S_0)$			
$ \begin{array}{c} = \frac{\rho}{4c_0}(R_2^2 - R_1^2) + \frac{Q}{2\pi Hc_0} ln(\frac{R_2}{R_1}) - \frac{\rho R_1^2}{2c_0} ln(\frac{R_2}{R_1}) \\ = U_0 + \frac{\rho}{4c_0} \left(R_2^2 - R_1^2 - 2R_1^2 ln(\frac{R_2}{R_1}) \right) & 2 \\ \\ \text{Avec } \Delta U = \frac{\rho}{4c_0} \left(R_2^2 - R_1^2 - 2R_1^2 ln(\frac{R_2}{R_1}) \right) & 1 \\ \text{3} \\ \text{5- Si } R_2 = R_1 + e \text{ avec } e \text{ très petit, on a} : \\ R_2^2 - R_1^2 = (R_1 + e)^2 - R_1^2 = 2eR_1 + e^2 \\ 2R_1^2 ln(\frac{R_1}{R_1}) = 2R_1^2 ln(\frac{R_1 + e}{R_1}) = 2R_1^2 ln(1 + \frac{e}{R_1}) \\ \approx 2R_1^2 ln(\frac{R_1}{R_1}) = 2R_1^2 ln(\frac{R_1 + e}{R_1}) = 2R_1^2 ln(1 + \frac{e}{R_1}) \\ \approx 2R_1^2 (\frac{e}{R_1} - \frac{1}{2} \frac{e^2}{R_1^2}) \approx 2eR_1 - e^2 \\ \text{Et finalement}: \\ \Delta U \simeq \frac{\rho e^2}{2c_0} \text{ (donner 1 sur 2 si facteur } 1/4 \text{ quand tout n'est pas développé au même} \\ \text{ordre} \\ \text{6- A.N. } \rho_{min} = 1,8.10^{-8} C.m^{-3} \text{ avec } e=1 \text{ mm.} \\ \text{2} \\ \text{7-} \rho \text{ en } C.m^{-3} \text{ et } v \text{ en } m.s^{-1}, \text{ ce qui donne } j \text{ en } C.m^{-2} s^{-1} \\ \text{Ce qui est bien homogène à une densité de courant } \vec{j} = nq\vec{v} \text{ avec } n \text{ en } m^{-3}, q \text{ en } C \\ \text{1} \\ \text{et } v \text{ en } m.s^{-1}. \\ \text{On a alors } I = \iint \vec{j}.d\vec{S} = \rho vS \\ \text{8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé a un cylindre parcouru par un courant I, et en se dotant d'un repère cylindrique, alors tout plan de type (M, \vec{u}_r, \vec{u}_z) (M \text{ quelconque)} est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc \vec{B} = B_\theta(r, \theta, z) \vec{u}_\theta (0.5 + 1) (\text{compter juste si les étudiants ne voient pas l'absence d'invariance en } z, \text{ et compter un bonus } de 1 \text{ point s'ils justifient la non-invariance en } z \text{ par la non-invariance des milieux } (0.5 + 0.5) \\ \text{On choisit un contour } d'Ampère circulaire, axe (Oz), rayon r, qu'on parcourt dans le sens de \vec{u}_\theta. Sur ce contour, le courant I est compté positivement. (S_0, S_0)$	$U = \int_{R} \vec{E} \cdot d\vec{l} = \int_{R} \left(\frac{\rho r}{2\epsilon_0} + \frac{Q}{2\pi H \epsilon_0 r} - \frac{\rho r \ell_1}{2\epsilon_0 r} \right) dr$		
Avec $\Delta U = \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 ln(\frac{R_2}{R_1})\right)$ 5- Si $R_2 = R_1 + e$ avec e très petit, on a : $R_2^2 - R_1^2 = (R_1 + e)^2 - R_1^2 = 2eR_1 + e^2$ $2R_1^2 ln(\frac{R_2}{R_1}) = 2R_1^2 ln(\frac{R_1 + e}{R_1}) = 2R_1^2 ln(1 + \frac{e}{R_1})$ $\simeq 2R_1^2 (\frac{e}{R_1} - \frac{1}{2} \frac{e^2}{R_1^2}) \simeq 2eR_1 - e^2$ Et finalement : $\Delta U \simeq \frac{\rho e^2}{2\epsilon_0}$ (donner 1 sur 2 si facteur $1/4$ quand tout n'est pas développé au même ordre) 6- A.N. $\rho_{min} = 1, 8.10^{-8} \ C.m^{-3}$ avec $e=1$ mm. 2 2 7- ρ en $C.m^{-3}$ et v en $m.s^{-1}$, ce qui donne j en $C.m^{-2}s^{-1}$ et v en $m.s^{-1}$. On a alors $I = \iint \vec{j}.d\vec{S} = \rho vS$ 8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I , et en se dotant d'un repère cylindrique, alors tout plan de type $(M, \vec{u_r}, \vec{u_z})$ $(M$ quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B} = B_\theta(r, \theta, z) \vec{u_\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_\theta(r, z) \vec{u_\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de $\vec{u_\theta}$. Sur ce contour, le courant I est compté positivement.	$= \frac{1}{4\epsilon_0} (R_2^2 - R_1^2) + \frac{1}{2\pi H \epsilon_0} ln(\frac{1}{R_1}) - \frac{1}{2\epsilon_0} ln(\frac{1}{R_1})$		
Avec $\Delta U = \frac{\rho}{4\epsilon_0} \left(R_2^2 - R_1^2 - 2R_1^2 ln(\frac{R_2}{R_1})\right)$ 5- Si $R_2 = R_1 + e$ avec e très petit, on a : $R_2^2 - R_1^2 = (R_1 + e)^2 - R_1^2 = 2eR_1 + e^2$ $2R_1^2 ln(\frac{R_2}{R_1}) = 2R_1^2 ln(\frac{R_1 + e}{R_1}) = 2R_1^2 ln(1 + \frac{e}{R_1})$ $\simeq 2R_1^2 (\frac{e}{R_1} - \frac{1}{2} \frac{e^2}{R_1^2}) \simeq 2eR_1 - e^2$ Et finalement : $\Delta U \simeq \frac{\rho e^2}{2\epsilon_0}$ (donner 1 sur 2 si facteur $1/4$ quand tout n'est pas développé au même ordre) 6- A.N. $\rho_{min} = 1, 8.10^{-8} \ C.m^{-3}$ avec $e=1$ mm. 2 2 7- ρ en $C.m^{-3}$ et v en $m.s^{-1}$, ce qui donne j en $C.m^{-2}s^{-1}$ et v en $m.s^{-1}$. On a alors $I = \iint \vec{j}.d\vec{S} = \rho vS$ 8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I , et en se dotant d'un repère cylindrique, alors tout plan de type $(M, \vec{u_r}, \vec{u_z})$ $(M$ quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B} = B_\theta(r, \theta, z) \vec{u_\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_\theta(r, z) \vec{u_\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de $\vec{u_\theta}$. Sur ce contour, le courant I est compté positivement.	$=U_0 + \frac{\rho}{R_0^2 - R_1^2 - 2R_1^2 ln(R_2)}$	$\parallel \ \ _{2} \ \ \parallel$	
$\begin{array}{c} \textbf{5} \cdot \textbf{Si} \ R_2 = R_1 + e \ \text{avec} \ e \ \text{très} \ \text{petit, on a} : \\ R_2^2 - R_1^2 = (R_1 + e)^2 - R_1^2 = 2eR_1 + e^2 \\ 2R_1^2 \ln(\frac{R_2}{R_1}) = 2R_1^2 \ln(\frac{R_1 + e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \simeq 2R_1^2 (\frac{e}{R_1} - \frac{1}{2} \frac{e^2}{R_1^2}) \simeq 2eR_1 - e^2 \\ \text{Et finalement} : \\ \Delta U \simeq \frac{\rho e^2}{2e_0} \ \text{(donner 1 sur 2 si facteur 1/4 quand tout n'est pas développé au même} \\ \textbf{1} \qquad 2 \\ \text{ordre}) \\ \textbf{6} \cdot \textbf{A.N.} \ \rho_{min} = 1, 8.10^{-8} \ C.m^{-3} \ \text{avec} \ e=1 \ \text{mm.} \\ \textbf{7} \cdot \rho \ \text{en} \ C.m^{-3} \ \text{et v en} \ m.s^{-1}, \text{ce qui donne } j \ \text{en} \ C.m^{-2} s^{-1} \\ \text{Ce qui est bien homogène à une densité de courant } \vec{j} = nq\vec{v} \ \text{avec} \ n \ \text{en} \ m^{-3}, q \ \text{en} \ C \\ \textbf{1} \\ \text{et } v \ \text{en} \ m.s^{-1}. \\ \textbf{On a alors} \ I = \iint \vec{j} . \vec{dS} = \rho vS \\ \textbf{8} \cdot \textbf{On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I, et en se dotant d'un repère cylindrique, alors tout plan de type (M, \vec{u}_r, \vec{u}_z) \ (M \ \text{quelconque}) \ \text{est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan.} \\ \textbf{On a donc} \ \vec{B} = B_{\theta}(r, \theta, z) \ \vec{u}_{\theta} \\ \textbf{Invariance en } \theta, \ \text{mais pas en } z \ (\text{car par d'invariance des milieux en } z) \\ \textbf{On a donc} \ \vec{B} = B_{\theta}(r, z) \ \vec{u}_{\theta} \\ \textbf{On choisit un contour d'Ampère circulaire, axe} \ (Oz), \ \text{rayon } r, \ \text{qu'on parcourt dans} \\ \textbf{0.5} + 0.5 \\ \textbf{le sens de } \ \vec{u}_{\theta}. \ \text{Sur ce contour, le courant I est compté positivement.} \\ \textbf{0.5} \\$	101 /		
$\begin{array}{c} \textbf{5} \cdot \textbf{Si} \ R_2 = R_1 + e \ \text{avec} \ e \ \text{très} \ \text{petit, on a} : \\ R_2^2 - R_1^2 = (R_1 + e)^2 - R_1^2 = 2eR_1 + e^2 \\ 2R_1^2 \ln(\frac{R_2}{R_1}) = 2R_1^2 \ln(\frac{R_1 + e}{R_1}) = 2R_1^2 \ln(1 + \frac{e}{R_1}) \\ \simeq 2R_1^2 (\frac{e}{R_1} - \frac{1}{2} \frac{e^2}{R_1^2}) \simeq 2eR_1 - e^2 \\ \text{Et finalement} : \\ \Delta U \simeq \frac{\rho e^2}{2e_0} \ \text{(donner 1 sur 2 si facteur 1/4 quand tout n'est pas développé au même} \\ \textbf{1} \qquad 2 \\ \text{ordre}) \\ \textbf{6} \cdot \textbf{A.N.} \ \rho_{min} = 1, 8.10^{-8} \ C.m^{-3} \ \text{avec} \ e=1 \ \text{mm.} \\ \textbf{7} \cdot \rho \ \text{en} \ C.m^{-3} \ \text{et v en} \ m.s^{-1}, \text{ce qui donne } j \ \text{en} \ C.m^{-2} s^{-1} \\ \text{Ce qui est bien homogène à une densité de courant } \vec{j} = nq\vec{v} \ \text{avec} \ n \ \text{en} \ m^{-3}, q \ \text{en} \ C \\ \textbf{1} \\ \text{et } v \ \text{en} \ m.s^{-1}. \\ \textbf{On a alors} \ I = \iint \vec{j} . \vec{dS} = \rho vS \\ \textbf{8} \cdot \textbf{On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I, et en se dotant d'un repère cylindrique, alors tout plan de type (M, \vec{u}_r, \vec{u}_z) \ (M \ \text{quelconque}) \ \text{est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan.} \\ \textbf{On a donc} \ \vec{B} = B_{\theta}(r, \theta, z) \ \vec{u}_{\theta} \\ \textbf{Invariance en } \theta, \ \text{mais pas en } z \ (\text{car par d'invariance des milieux en } z) \\ \textbf{On a donc} \ \vec{B} = B_{\theta}(r, z) \ \vec{u}_{\theta} \\ \textbf{On choisit un contour d'Ampère circulaire, axe} \ (Oz), \ \text{rayon } r, \ \text{qu'on parcourt dans} \\ \textbf{0.5} + 0.5 \\ \textbf{le sens de } \ \vec{u}_{\theta}. \ \text{Sur ce contour, le courant I est compté positivement.} \\ \textbf{0.5} \\$	Avec $\Delta U = \frac{\rho}{4c_0} \left(R_2^2 - R_1^2 - 2R_1^2 ln(\frac{R_2}{R_1}) \right)$	1	3
$R_2^2 - R_1^2 = (R_1 + e)^2 - R_1^2 = 2eR_1 + e^2$ $2R_1^2 ln(\frac{R_2}{R_1}) = 2R_1^2 ln(\frac{R_1 + e}{R_1}) = 2R_1^2 ln(1 + \frac{e}{R_1})$ $ = 2R_1^2(\frac{e}{R_1} - \frac{1}{2} \frac{e^2}{R_1^2}) \simeq 2eR_1 - e^2$ Et finalement : $\Delta U \simeq \frac{\rho e^2}{2\epsilon_0} \text{ (donner 1 sur 2 si facteur } 1/4 \text{ quand tout n'est pas développé au même} \qquad 1 \qquad 2 $ ordre)	10 \		
$\begin{array}{c} 2R_1^2ln(\frac{R_2}{R_1}) = 2R_1^2ln(\frac{R_1+e}{R_1}) = 2R_1^2ln(1+\frac{e}{R_1}) \\ \simeq 2R_1^2(\frac{e}{R_1}-\frac{1}{2}\frac{e^2}{R_1^2}) \simeq 2eR_1-e^2 \\ \text{Et finalement:} \\ \Delta U \simeq \frac{\rho e^2}{2e_0} \text{ (donner 1 sur 2 si facteur } 1/4 \text{ quand tout n'est pas développé au même} \\ \text{ordre)} \\ \textbf{6-A.N.} \ \rho_{min} = 1,8.10^{-8} \ C.m^{-3} \ \text{ avec } e=1 \ \text{mm.} \\ \textbf{2} \\ \textbf{7-} \ \rho \ \text{en } C.m^{-3} \ \text{et } v \ \text{en } m.s^{-1}, \ \text{ce qui donne } j \ \text{en } C.m^{-2}s^{-1} \\ \text{et } v \ \text{en } m.s^{-1}. \\ \textbf{On a alors } I = \iint \vec{j}.\vec{dS} = \rho vS \\ \textbf{8-On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé au cylindre parcouru par un courant I, et en se dotant d'un repère cylindrique, alors tout plan de type (M, \vec{u_r}, \vec{u_z}) (M quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. \\ \textbf{On a donc } \vec{B} = B_{\theta}(r, \theta, z) \vec{u_{\theta}} \\ \textbf{Invariance en } \theta$, mais pas en z (car par d'invariance des milieux en z) (0.5 + 1) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) $\textbf{On a donc } \vec{B} = B_{\theta}(r, z) \vec{u_{\theta}} \\ \textbf{On choisit un contour d'Ampère circulaire, axe } (Oz), \text{ rayon } r, \text{ qu'on parcourt dans} \\ \textbf{le sens de } \vec{u_{\theta}}. \text{ Sur ce contour, le courant I est compté positivement.} \\ \textbf{0.5} \\ \textbf$		0.5	
$ 2R_1^2(\frac{e}{R_1} - \frac{1}{2}\frac{e^2}{R_1^2}) \simeq 2eR_1 - e^2 $ Et finalement : $ \Delta U \simeq \frac{\rho e^2}{2\epsilon_0} \text{ (donner 1 sur 2 si facteur 1/4 quand tout n'est pas développé au même } 1 \qquad 2 $ ordre)			
Et finalement : $\Delta U \simeq \frac{\rho e^2}{2\epsilon_0} \text{ (donner 1 sur 2 si facteur } 1/4 \text{ quand tout n'est pas développé au même} \qquad 1 \qquad 2$ ordre) $ \begin{array}{c} \textbf{6-A.N. } \rho_{min} = 1,8.10^{-8} \ C.m^{-3} \text{ avec } e=1 \text{ mm.} \qquad 2 \qquad 2 \\ \textbf{7-} \rho \text{ en } C.m^{-3} \text{ et } v \text{ en } m.s^{-1}, \text{ ce qui donne } j \text{ en } C.m^{-2}s^{-1} \qquad 0.5 \\ \text{Ce qui est bien homogène à une densité de courant } \vec{j} = nq\vec{v} \text{ avec } n \text{ en } m^{-3}, q \text{ en } C \qquad 1 \\ \text{et } v \text{ en } m.s^{-1}. \qquad 0.5 \qquad 2 \\ \textbf{8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I, et en se dotant d'un repère cylindrique, alors tout plan de type (M, \vec{u}_r, \vec{u}_z) (M quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc \vec{B} = B_\theta(r, \theta, z) \vec{u}_\theta Invariance en \theta, mais pas en z (car par d'invariance des milieux en z) 0.5 + 1 (compter juste si les étudiants ne voient pas l'absence d'invariance en z, et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) 0.5$	$2R_1^2 ln(\frac{1}{R_1}) = 2R_1^2 ln(\frac{1}{R_1}) = 2R_1^2 ln(1 + \frac{1}{R_1})$	0.5	
Et finalement : $\Delta U \simeq \frac{\rho e^2}{2\epsilon_0} \text{ (donner 1 sur 2 si facteur } 1/4 \text{ quand tout n'est pas développé au même} \qquad 1 \qquad 2$ ordre) $ \begin{array}{c} \textbf{6-A.N. } \rho_{min} = 1,8.10^{-8} \ C.m^{-3} \text{ avec } e=1 \text{ mm.} \qquad 2 \qquad 2 \\ \textbf{7-} \rho \text{ en } C.m^{-3} \text{ et } v \text{ en } m.s^{-1}, \text{ ce qui donne } j \text{ en } C.m^{-2}s^{-1} \qquad 0.5 \\ \text{Ce qui est bien homogène à une densité de courant } \vec{j} = nq\vec{v} \text{ avec } n \text{ en } m^{-3}, q \text{ en } C \qquad 1 \\ \text{et } v \text{ en } m.s^{-1}. \qquad 0.5 \qquad 2 \\ \textbf{8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I, et en se dotant d'un repère cylindrique, alors tout plan de type (M, \vec{u}_r, \vec{u}_z) (M quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc \vec{B} = B_\theta(r, \theta, z) \vec{u}_\theta Invariance en \theta, mais pas en z (car par d'invariance des milieux en z) 0.5 + 1 (compter juste si les étudiants ne voient pas l'absence d'invariance en z, et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) 0.5$	$\simeq 2R_1^2(\frac{e}{-1}-\frac{1}{2}\frac{e^2}{2})\simeq 2eR_1-e^2$		
	101 210		
ordre) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
6- A.N. $\rho_{min}=1, 8.10^{-8} \ C.m^{-3}$ avec $e=1$ mm. 7- ρ en $C.m^{-3}$ et v en $m.s^{-1}$, ce qui donne j en $C.m^{-2}s^{-1}$ Ce qui est bien homogène à une densité de courant $\vec{j}=nq\vec{v}$ avec n en m^{-3} , q en C et v en $m.s^{-1}$. On a alors $I=\iint \vec{j}.d\vec{S}=\rho vS$ 8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I , et en se dotant d'un repère cylindrique, alors tout plan de type $(M, \vec{u}_r, \vec{u}_z)$ $(M$ quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B} = B_{\theta}(r, \theta, z) \vec{u}_{\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant \vec{l} est compté positivement.	$\Delta U \simeq \frac{\rho c}{2\epsilon_0}$ (donner 1 sur 2 si facteur 1/4 quand tout n'est pas développé au même	1	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Ce qui est bien homogène à une densité de courant $\vec{j}=nq\vec{v}$ avec n en m^{-3} , q en C et v en $m.s^{-1}$. On a alors $I=\iint \vec{j}.d\vec{S}=\rho vS$ 8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I , et en se dotant d'un repère cylindrique, alors tout plan de type (M,\vec{u}_r,\vec{u}_z) $(M$ quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B}=B_{\theta}(r,\theta,z)\vec{u}_{\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B}=B_{\theta}(r,z)\vec{u}_{\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement. (sens)	6- A.N. $\rho_{min} = 1, 8.10^{-8} \ C.m^{-3} \text{ avec } e=1 \text{ mm.}$	2	2
et v en $m.s^{-1}$. On a alors $I = \iint \vec{j}.\vec{dS} = \rho vS$ 8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I , et en se dotant d'un repère cylindrique, alors tout plan de type $(M, \vec{u}_r, \vec{u}_z)$ $(M$ quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B} = B_{\theta}(r, \theta, z) \vec{u}_{\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement. (sens)	7- ρ en $C.m^{-3}$ et v en $m.s^{-1}$, ce qui donne j en $C.m^{-2}s^{-1}$	0.5	
On a alors $I = \int\!\!\!\int \vec{j}.d\vec{S} = \rho vS$ 8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I , et en se dotant d'un repère cylindrique, alors tout plan de type $(M, \vec{u}_r, \vec{u}_z)$ $(M$ quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B} = B_{\theta}(r, \theta, z)$ \vec{u}_{θ} Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z)$ \vec{u}_{θ} On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement.	Ce qui est bien homogène à une densité de courant $\vec{j} = nq\vec{v}$ avec n en m^{-3} , q en C	1	
8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I , et en se dotant d'un repère cylindrique, alors tout plan de type $(M, \vec{u}_r, \vec{u}_z)$ $(M$ quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B} = B_{\theta}(r, \theta, z) \vec{u}_{\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) $0.5 + 1$ (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ 0.5 On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement. (sens)			
8- On passe obligatoirement par le théorème d'Ampère. Si le flux chargé est assimilé à un cylindre parcouru par un courant I , et en se dotant d'un repère cylindrique, alors tout plan de type $(M, \vec{u}_r, \vec{u}_z)$ $(M$ quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B} = B_{\theta}(r, \theta, z) \vec{u}_{\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) $0.5 + 1$ (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ 0.5 On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement. (sens)	On a alors $I = \iint \vec{j} \cdot d\vec{S} = \rho v S$	$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	2
à un cylindre parcouru par un courant I , et en se dotant d'un repère cylindrique, alors tout plan de type $(M, \vec{u}_r, \vec{u}_z)$ $(M$ quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B} = B_{\theta}(r, \theta, z) \vec{u}_{\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement.	JJ	GTIMO I	
alors tout plan de type $(M, \vec{u}_r, \vec{u}_z)$ $(M$ quelconque) est un plan de symétrie de la distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B} = B_{\theta}(r, \theta, z) \vec{u}_{\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ 0.5 On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement. (sens)			
distribution de courant. Le champ magnétique est perpendiculaire à ce plan. On a donc $\vec{B} = B_{\theta}(r, \theta, z) \vec{u}_{\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ 0.5 On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement. (sens)		0.5	
On a donc $\vec{B} = B_{\theta}(r, \theta, z) \vec{u}_{\theta}$ Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement.			
Invariance en θ , mais pas en z (car par d'invariance des milieux en z) (compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de $\vec{u_{\theta}}$. Sur ce contour, le courant I est compté positivement.			
(compter juste si les étudiants ne voient pas l'absence d'invariance en z , et compter un bonus de 1 point s'ils justifient la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement.		$\left\ \begin{array}{cc} 0.5 \pm 1 \end{array} \right\ $	
un bonus de 1 point s'ils <u>justifient</u> la non-invariance en z par la non-invariance des milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement.			
milieux (donner alors un point bonus) On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement.			
On a donc $\vec{B} = B_{\theta}(r, z) \vec{u}_{\theta}$ 0.5 On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de \vec{u}_{θ} . Sur ce contour, le courant I est compté positivement. (sens)			
On choisit un contour d'Ampère circulaire, axe (Oz) , rayon r , qu'on parcourt dans le sens de $\vec{u_{\theta}}$. Sur ce contour, le courant I est compté positivement.		$\parallel _{0.5} \parallel$	
le sens de $\vec{u_{\theta}}$. Sur ce contour, le courant I est compté positivement.			
→			
$ \mathcal{G}_{\mu}^{dl} = \Sigma_i I_i = 2\pi r \frac{1}{\mu} $ $ 0.5 $	→		
	$\mathcal{G} = \frac{1}{\mu} \cdot dt = \sum_{i} I_{i} = 2\pi r \frac{1}{\mu}$	\parallel 0.5 \parallel	

	Total	29(+1)
la variation de la densité de charges si le flux est régulier (v constant).		
Ce dispositif permet donc en théorie de mesurer l'accélération des particules à ρ constant, ou		
fluide par ce biais.		
10- Si la le fluide est homogène (ρ constant), alors on peut mesurer l'accélération du		
	1	1
Donc $ e = \frac{\mu \rho N S S_c}{2\pi R} \frac{dv}{dt} + \frac{\mu v N S S_c}{2\pi R} \frac{d\rho}{dt}$	1	2
$ \psi = B_{\theta}S_{c} = \frac{1}{2\pi R} $ $ \psi_{0}NSS da \qquad \psi_{0}NSS da $	0.5	
$A_{ci} \cdot \phi = B_{c}S_{c} = \mu N \rho v S S_{c}$	0.5	
$\mathbf{9-}\ e = -\frac{d\phi}{dt}N$	0.5	
Soit: $B_{\theta} = \frac{\mu I}{2\pi R} = \frac{\mu \rho v S}{2\pi R}$ $\mathbf{9-} e = -\frac{d\phi}{dt} N$ Ici: $\phi = B_{\theta} S_c = \frac{\mu N \rho v S S_c}{2\pi R}$ Donc $ e = \frac{\mu \rho N S S_c}{2\pi R} \frac{dv}{dt} + \frac{\mu v N S S_c}{2\pi R} \frac{d\rho}{dt}$	0.5	4
Si on se place à une distance R de l'axe, on a $2\pi R \frac{B_{\theta}}{\mu} = I$	0.5	

Partie 2 : Ballon sonde	Points	Total ques- tion
11- $\lambda = cT = \frac{c}{f} = \frac{3.10^8}{10^8} = 3 \ m$	0.5+0.5 (A.N.)	1
12- La longueur d'onde est très inférieure à la distance entre le ballon sonde et le	0.5	0.5
récepteur, il faut donc tenir compte de la propagation		
13- L'air est assimilé à du vide, donc propagation sans pertes	0.5	0.5
14- L'expression de l'onde est sinusoïdale : c'est une onde harmonique	0.5	0.5
15- Les surfaces équiphases sont données par l'équation $y = cte$ qui est l'équation d'un plan perpendiculaire à l'axe (Oy) : l'onde est plane .	1	1
16- l'onde est uniforme car son amplitude dans un plan d'onde ($y=$ cte) ne dépend pas des variables x et/ou z	0.5	0.5
17- Le champ électrique est polarisé dans la direction (Oz) d'après son équation (vecteur \vec{u}_z).	0.5	0.5
18- L'onde se propage dans la direction (Oy) dans le sens des y croissants. L'onde est transversale	$0.5 \! + \! 0.5$	1
19- On a une propagation dans un milieu isolant et non chargé. L'onde est plane , progressive et uniforme , ce qui autorise l'utilisation de la formule $\vec{B} = \frac{\vec{u}_y}{c} \wedge \vec{E}$.	1	1
20- E ₀ y=0 T t	3	3
21- $t_D = \frac{D}{c}$ A.N.: $t_D = 66.7 \mu s$	0.5 0.5	1

22- (Pour la notation des graphes : -2 si t_D n'est pas indiqué, -2 si $t_D + 2T$ n'est pas indiqué, -2 si pas de E_0 , -2 si phase	3	3
†		
E ₀ y=D		
t_{D} $t_{D}+2T$ t		
incorrecte)		
23- (Pour la notation des graphes : -2 si pas de graduation indiquant la valeur de la	4	4
longueur d'onde de 3 m), -2 si pas de graduation de la position de la fin/début du		
train d'onde, -1 si phase incorrecte et/ou incohérente avec les questions précédentes, -2 si pas le bon nombre de périodes)		
A		
E_0 λ λ λ		
9988		
O O = D/2		
24-	0.5	0.5
24-	0.5	0.5
0, 22		
V		
n		
x' ♥ `		
E_0	-1	
$\mathbf{25-} \vec{B}(M) = \frac{E_0}{c} \cos(\omega t - ky) \vec{u}_x$	1	
Il faut que l'onde ait parcouru une distance supérieure à $D + a\cos(\theta)$ pour que tout le cadre reçoive le signal lorsque la normale fait un angle θ avec (Ox) , ce qui	1	$\frac{2}{2}$
correspond à un temps $t \ge \frac{D + a\cos(\theta)}{c}$. L'onde est donc contenue entre		
correspond a unitemps $t \geq \frac{c}{c}$. If onde est donc contende entre c $D - a\cos(\theta)$ et $D + a\cos(\theta)$.		
i+		
26-	0.5	0.5
27- $d\phi = \vec{B}.\vec{dS} = \frac{E_0}{c}\cos(\omega t - ky)\vec{u}_x.dS\vec{n}$	1	
$= \frac{E_0}{c} \cos(\omega t - ky) dS \cos(\theta)$	1	
c $d\phi$ est maximal pour $\theta=0$ (compter juste si N est pris en compte)	1	3

j+		
$\begin{array}{c c} u_z & \\ O' & \\ \hline & n, u_x \\ \end{array}$	1	1
29- Avec $dS = 2a du$	0.5	
$\phi = N \frac{2aE_0}{c} \int_{D-a}^{D+a} \cos(\omega t - ky) dy$	$\begin{vmatrix} & & & & & & & & & & & & & & & & & & &$	
$= -\frac{2aNE_0}{l} \left[\sin(\omega t - ky) \right]_{D-a}^{D+a}$		
$= \frac{2aNE_0}{(-\sin(\omega t - kD - ka) + \sin(\omega t - kD + ka))}$		
$= -\frac{2aNE_0}{kc} \left[sin(\omega t - ky) \right]_{D-a}^{D+a}$ $= \frac{2aNE_0}{kc} \left(-sin(\omega t - kD - ka) + sin(\omega t - kD + ka) \right)$ $= \frac{4aNE_0}{kc} sin(ka)cos(\omega t - kD)$ $30 - e = -\frac{d\phi}{dt}$	$\begin{vmatrix} & & & \\ & & 2 & & \end{vmatrix}$	3,5
$30 - e = -\frac{d\phi}{}$	2	2
$= -\frac{4aNE_0^{dt}}{hc} \sin(ka)(-\omega\sin(\omega t - kD))$		
$= -\frac{4aNE_0^{at}}{kc}\sin(ka)(-\omega\sin(\omega t - kD))$ $= +\frac{4aNE_0\omega}{kc}\sin(ka)(\sin(\omega t - kD))$		
31- Si $a = \lambda$ alors $ka = k\lambda = 2\pi$ donc $sin(ka) = 0$	1	
$\theta = 0$	2	3
La longueur d'onde étant multiple de la taille du cadre, on est dans le cas de la figure c-dessus. Dans ce cas précis l'intégrale correspondant au flux sur la partie hachurée vient compenser exactement l'autre partie (rester souple sur la notation et accepter toute formulation équivalente).		
32 - Fonction de type $a \sin(ka)$ à étudier	1	
e est maximale si $\frac{d}{da}(a\sin(ka)) = 0$		
Ce qui arrive si $tan(ka) = ka$ $33- \text{ Si } a \ll \lambda \text{ alors } sin(ka) = sin(\frac{2\pi a}{\lambda}) \simeq \frac{2\pi a}{\lambda}$ $4aNF_{0}(a) = sin(\frac{2\pi a}{\lambda}) \simeq \frac{2\pi a}{\lambda}$	2	3
33- Si $a \ll \lambda$ alors $sin(ka) = sin(\frac{2\pi a}{\lambda}) \simeq \frac{2\pi a}{\lambda}$	1	
$\begin{vmatrix} +\frac{4aNE_0\omega}{kc}\sin(ka)(\sin(\omega t - kD)) & \times +\frac{8\pi a^2NE_0\omega}{k\lambda c}(\sin(\omega t - kD)) \\ & \times \frac{8\pi a^2NE_0\omega}{2\pi c}(\sin(\omega t - kD)) & \times \frac{4a^2NE_0\omega}{c}(\sin(\omega t - kD)) \\ & \times \frac{4a^2N\omega}{B_0}(\sin(\omega t - kD)) \end{vmatrix}$	1	
On retrouve le flux d'un champ uniforme $\vec{B} = B_0 cos(\omega t - ky)\vec{u}_x$ sur un cadre de côté 2a, la dimension du cadre étant trop petite pour que le champ varie significativement sur la surface du cadre.	1	3
Total		39

Partie 3 : réception des données		
34- Il s'agit d'un pont diviseur de tension :	2	
$\underline{s} = \frac{\frac{1}{jC\omega}}{R + jL\omega + \frac{1}{jC\omega}} \underline{e} \text{ d'où } \underline{H} = \frac{\frac{1}{jC\omega}}{R + j(L\omega - \frac{1}{C\omega})}$		
On mutiplie en haut en bas par $jC\omega$:	2	4
$\underline{H} = \frac{1}{jRC\omega + (-LC\omega^2 + 1)} = \frac{1}{(1 - LC\omega^2) + jRC\omega}$		
On a donc $X = (1 - LC\omega^2)$ et $Y = RC\omega$		
$35- \underline{H} = \frac{1}{2}$	$\parallel 1 \parallel$	1
On a donc $X = (1 - LC\omega^2)$ et $Y = RC\omega$ $35 - \underline{H} = \frac{1}{(1 - \frac{\omega^2}{\omega_0^2}) + jRC\omega}$		
36- Quand $\omega \to 0$ alors $\underline{H} \to 1$	1	
Quand $\omega \to \infty$ alors $\underline{H} \to 0$	$\parallel 1 \parallel$	2
37 - Quand $f = 10^8$ Hz, alors on se trouve au maximum du gain de réception de	1	
l'antenne.		
Le signal d'entrée est donc multiplié par 200.	2	3
38- Pour $\omega = \omega_0$ alors $\underline{H} = \frac{1}{jRC\omega}$	1	
$\underline{s} = \frac{1}{jRC\omega}\underline{e} \text{ donc } \arg(\underline{s}) = \arg(\underline{e}) + \arg(\frac{1}{jRC\omega})$	1	
Le déphasage de \underline{s} par rapport à \underline{e} est donc de $-\frac{\pi}{2}$	2	4
39- On veut $ \underline{H} = \frac{1}{RC\omega} = 100$ Ce qui impose $R = \frac{1}{100C\omega} = 6.3 \Omega$		
Ce qui impose $R = \frac{1}{100C\omega} = 6.3 \Omega$	3	3
Total partie 3:		17
Total général :		85