

Kinetics of Glucose Transport

Chemical strategy for C-C cleavage

$$-CH_{2} \cdot CH_{2} - CH_{2} - CH_{2} \cdot CH_{2} - CH_{2} - CH_{2} \cdot CH_{2} - CH_{2} -$$

General Decarboxylation

$$\beta \qquad -C - CH_2 - CO_2 \longrightarrow -C - CH_2 + CO_2$$

$$\alpha \qquad CH_3 - C - CO_2 \longrightarrow CH_3 - C - CO_2 \longrightarrow CH_3 - C - CO_2$$

$$pyruvate \qquad + CO_2$$

Thiamine Pyrophosphate

2. Combination with O

- Removal of e⁻'s by O which "pulls" e-'s away from the C or H nucleus. C or H becomes oxidized; O becomes reduced.

- These reactions are catalyzed by <u>oxidases</u>

$$CH_4$$
 CH_3 $H-CH$ $H-CH$ OH $O=C=O$

8 6 4 2 0

Mechanism

HH H+ H+ H

$$H \rightarrow C \rightarrow O$$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow C \rightarrow O$
 $H \rightarrow H \rightarrow H$
 $H \rightarrow H$

Phosphofructokinase

Logic of TCA cycle

High NADH favors Gluconeogenesis

TABLE 16-4 Standard Reduction Potentials of Some Biochemically Important Half-reactions Half-Reaction $\frac{1}{2}O_2 + 2H^+ + 2e^- \Longrightarrow H_2O$ $SO_4^{2-} + 2H^+ + 2e^- \Longrightarrow SO_3^{2-} + H_2O$ $NO_3^{-} + 2H^+ + 2e^- \Longrightarrow NO_2^{-} + H_2O$ Cytochrome a_3 (Fe³⁺) + $e^- \Longrightarrow$ cytochrome a_3 (Fe²⁺) $O_2(g) + 2H^+ + 2e^- \Longrightarrow H_2O_2$ Cytochrome a (Fe³⁺) + $e^- \Longrightarrow$ cytochrome a (Fe²⁺)

Cytochrome b (Fe³⁺) + $e^- \rightleftharpoons$ cytochrome b (Fe²⁺) (mitochondrial)

Cytochrome c (Fe³⁺) + $e^- \rightleftharpoons$ cytochrome c (Fe²⁺)

 $FAD + 2H^{+} + 2e^{-} \Longrightarrow FADH_{2}$ (in flavoproteins)

 $FAD + 2H^+ + 2e^- \Longrightarrow FADH_2$ (free coenzyme)

Lipoic acid $+ 2H^+ + 2e^- \rightleftharpoons$ dihydrolipoic acid

Acetoacetate⁻ + 2H⁺ + 2e⁻ \Longrightarrow β -hydroxybutyrate⁻

Acetate⁻ + $3H^+$ + $2e^- \rightleftharpoons$ acetaldehyde + H_2O

Ubiquinone $+ 2H^+ + 2e^- \rightleftharpoons$ ubiquinol

Fumarate⁻ + $2H^+ + 2e^- \Longrightarrow succinate^-$

Oxaloacetate $^{-} + 2H^{+} + 2e^{-} \Longrightarrow malate^{-}$

Acetaldehyde + $2H^+ + 2e^- \rightleftharpoons$ ethanol

Pyruvate⁻ + $2H^+ + 2e^- \rightleftharpoons$ lactate⁻

 $S + 2H^+ + 2e^- \Longrightarrow H_2S$

 $H^+ + e^- \rightleftharpoons \frac{1}{2}H_2$

 $NAD^+ + H^+ + 2e^- \Longrightarrow NADH$

 $NADP^{+} + H^{+} + 2e^{-} \Longrightarrow NADPH$

Cystine $+ 2H^+ + 2e^- \rightleftharpoons 2$ cysteine

Cytochrome c_1 (Fe³⁺) + $e^- \rightleftharpoons$ cytochrome c_1 (Fe²⁺)

%°′(V)

0.815

0.48

0.42

0.385

0.295

0.29

0.235

0.22

0.077

0.045

0.031

-0.040

-0.166

-0.185

-0.197

-0.219

-0.23

-0.29

-0.315

-0.320

-0.340

-0.346

-0.421

-0.581

O₂ Consumption as a function of ADP P'n

Conditions: Isolated mitochondria in buffer containing excess PO₄. Reaction is initiated by addition of ADP and e- donor.

Complex III

Inhibitors of Oxidative Phosphorylation

- 1. Inhibitors of Complexes I, III, & IV.
- 2. Oligomycin antibiotic which binds to ATP synthase and blocks H⁺ translocation.
- 3. Uncouplers:
 - a) Dinitrophenol (DNP).

b) Ionophores

- i) Valinomycin carries charge but not H+'s. Dissipates electrical gradient.
 - ii) Nigericin carries protons but not charge.
 - Dissipates chemical gradient. (due to H⁺)

Glucose-6-phosphatase activity relies on multiple components.

