ПРАКТИЧЕСКОЕ ЗАНЯТИЕ

Тема: Исследование нейронных сетей в Deductor Academic

Выполнил(a):https://github.com/tispen

Практическое занятие

Задание 1. Повторить пример. Улучшить показатели получившейся нейронной сети. Первое множество цифр будет использоваться для обучения нейронной сети.

Второе множество содержит небольшие изменения в написании цифр и будет использоваться нами для тестирования сформированной нейросети.

Данные в тектовом формате в кодировке ANSI, символы разделяю TAB.

Далее необходимо загрузить текстовый файл. Нужно выполнить 9 шагов, чтобы все загрузилось правильно.

После всех пройдённых шагов таблица выглядит следующим образом.

Ť

1

20

Отмена

10 По возрастанию

Далее >

20

Количество строк (всего)

< Назад

50,00

100,00

✓ Тестовое

итого:

Анализ получившихся данных.

Граф нейросети:

Диаграмма рассеивания:

Что-если:

Таблица:

Задание 2. Создать и обучить новую нейронную сеть распознавания символов согласно варианту (Приложение А).

Вариант 3. (Ходырева). Обучить нейронную сеть распознаванию букв русского алфавита (буквы от Π до P).

0			1	1	0	0	1	1	0	O	
0	1	0	1	1	1	1	1	1	0	O	
0	1	0	1	1			1	1	0	O	
0	1	0	1	1	1	1	1	1	1	1	
0	1	0	1	1	0	0	1	1	0	O	
1	1	0	1	1	0	0	1	1	0	O	
1	0	0	1	1	0	0	1	1	0	0	1
1	1	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	0	0	1	1	0	0	
1	0	0	1	1	0	0	1	1	0	0	
1	0	0	1	1	0	0	1	1		1	1
1	0	0	1	1	0	0	1	1	0	0	C
1	0	0	1	1	0	0	1	1	0	0	C
			1	1	0	0	1	1	0	0	C

Второе множество содержит небольшие изменения в написании букв и будет использоваться нами для тестирования сформированной нейросети.

Данные в текстовом формате:

13	x14	x15	x16	x1 7	x18	x19	x20	x21	x22	x23	x24	x25	x26	x27	x28	Z
	1	0	1	0	1	0	1	1	1	0	1	1	0	0	1	Л
	1	1	1	1	1	0	0	1	0	0	1	1	0	0	1	M
	1	1	1	1	0	0	1	1	0	0	1	1	0	0	1	Н
	0	0	1	1	0	0	1	1	0	0	1	1	1	1	1	C
	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	Γ
	1	1	1	1	0	0	0	1	0	0	0	1	0	0	0	P
	1	0	1	0	1	0	1	1	0	0	1	0	0	0	1	J
	1	1	1	1	0	0	1	1	0	0	1	1	0	0	1	N
	1	1	1	1	0	0	1	1	0	0	1	1	0	0	1	H
	0	0	1	1	0	0	1	1	0	0	1	1	1	1	0	C
	0	0	1	1	0	0	1	1	0	0	1	0	0	0	0	Γ
	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	F

Загрузим данные из текстового документа:

Таблица после всех пройденных шагов:

Теперь создадим нейросеть.

Теперь перейдем к анализу:

Задание 3. Создать и обучить новую нейронную сеть прогнозирования согласно варианту (Приложение Б). Выделить из таблицы 3-5 случайных примеров для тестирования.

Вариант 3. Ходырева. Прогнозирование стоимости ПК

Вариант 3. Прогнозирование стоимости ПК.

	Выход											
Nº	Процессор	Мат. плата	Опер. память	Видеокарта	ЖЕСТКИЙ ДИСК	SSD	Охлаждение	Рейтинг	Стоимости			
1	INTEL CORE I3- 10100F	GIGABYTE H410M S2	8GB KINGSTON HYPERX FURY BLACK	GEFORCE GT 730 LP	1 ТБ ЖЕСТКИЙ ДИСК WD Blue	120 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE	CORSAIR A500 DUAL FAN	5,2	45150			
2	INTEL CORE IS- 10400F OEM	GIGABYTE B460M AORUS PRO	8GB KINGSTON HYPERX PREDATOR RGB	GEFORCE GTX 1660 GAMING	2 ТБ ЖЕСТКИЙ ДИСК WD Purple	512 F6 SSD M.2 HAKOПИТЕЛЬ GIGABYTE AORUS RGB	CORSAIR H100X	6,2	85939			
3	INTEL CORE 17- 10700F	GIGABYTE Z490M	16GB KINGSTON HYPERX FURY RGB	GEFORCE RTX 3060 TI GAMING OC 8G	4 ТБ ЖЕСТКИЙ ДИСК WD BLUE	512 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE AORUS RGB AIC	CORSAIR H80I V2	6,4	142412			
4	INTEL CORE 19- 10900X	GIGABYTE X299 U D4 PRO	16GB KINGSTON HYPERX PREDATOR RGB	GEFORCE RTX 2080 TI XTREME 11G	6 ТБ ЖЕСТКИЙ ДИСК WD ULTRASTAR DC HC310	1000 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE AORUS RGB AIC	CORSAIR H100I RGB PLATINUM 240	8,1	259086			
5	INTEL CORE 19- 9900X	GIGABYTE X299 DESIGNARE 10G	32GB KINGSTON HYPERX FURY BLACK	GEFORCE RTX 3090 MASTER 24G	12 ТБ ЖЕСТКИЙ ДИСК WD RED	8000 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE AORUS GEN4 AIC	ASUS ROG RYUJIN 240	8,2	586650			
6	INTEL CORE 19- 9900X	GIGABYTE X299 DESIGNARE 10G	32GB KINGSTON HYPERX FURY BLACK	GEFORCE RTX 3090 MASTER 24G	1 ТБ ЖЕСТКИЙ ДИСК WD Blue	8000 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE AORUS GEN4 AIC	CORSAIR A500 DUAL FAN	8,2	538812			
7	INTEL CORE 19- 10900X	GIGABYTE X299 U D4 PRO	16GB KINGSTON HYPERX FURY RGB	GEFORCE RTX 2080 TI XTREME 11G	6 ТБ ЖЕСТКИЙ ДИСК WD ULTRASTAR DC HC310	120 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE	ASUS ROG RYUJIN 240	7,7	246190			
8	INTEL CORE I7- 10700F	GIGABYTE Z490M	8GB KINGSTON HYPERX FURY BLACK	GEFORCE GT 730 LP	4 ТБ ЖЕСТКИЙ ДИСК WD BLUE	1000 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE AORUS RGB AIC	CORSAIR H100X	6,4	100004			

9	INTEL CORE IS- 10400F OEM	GIGABYTE B460M AORUS PRO	16GB KINGSTON HYPERX PREDATOR RGB	GEFORCE GTX 1660 GAMING	12 ТБ ЖЕСТКИЙ ДИСК WD RED	512 F6 SSD M.2 HAKOПИТЕЛЬ GIGABYTE AORUS RGB	CORSAIR H100I RGB PLATINUM 240	6,3	124587
10	INTEL CORE I3- 10100F	GIGABYTE H410M S2	8GB KINGSTON HYPERX PREDATOR RGB	GEFORCE RTX 3060 TI GAMING OC 8G	2 ТБ ЖЕСТКИЙ ДИСК WD Purple	512 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE AORUS RGB AIC	CORSAIR H80I V2	5,4	111439
11	INTEL CORE I3- 10100F	GIGABYTE H410M S2	8GB KINGSTON HYPERX FURY BLACK	GEFORCE GTX 1660 GAMING	2 ТБ ЖЕСТКИЙ ДИСК WD Purple	8000 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE AORUS GEN4 AIC	CORSAIR H80I V2	5,9	224069
12	INTEL CORE IS- 10400F OEM	GIGABYTE Z490M	16GB KINGSTON HYPERX PREDATOR RGB	GEFORCE RTX 3060 TI GAMING OC 8G	12 ТБ ЖЕСТКИЙ ДИСК WD RED	1000 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE AORUS RGB AIC	ASUS ROG RYUJIN 240	6,4	176626
13	INTEL CORE I7- 10700F	GIGABYTE Z490M	16GB KINGSTON HYPERX FURY RGB	GEFORCE RTX 3090 MASTER 24G	4 ТБ ЖЕСТКИЙ ДИСК WD BLUE	120 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE	CORSAIR H100X	7,1	258225
14	INTEL CORE 19- 10900X	GIGABYTE X299 U D4 PRO	8GB KINGSTON HYPERX PREDATOR RGB	GEFORCE RTX 2080 TI XTREME 11G	6 ТБ ЖЕСТКИЙ ДИСК WD ULTRASTAR DC HC310	512 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE AORUS RGB AIC	CORSAIR H100I RGB PLATINUM 240	8,1	248091
15	INTEL CORE 19- 9900X	GIGABYTE X299 DESIGNARE 10G	32GB KINGSTON HYPERX FURY BLACK	GEFORCE GT 730 LP	1 ТБ ЖЕСТКИЙ ДИСК WD Blue	512 FE SSD M.2 HAKOПИТЕЛЬ GIGABYTE AORUS RGB	CORSAIR A500 DUAL FAN	7,3	216331
16	INTEL CORE 19- 10900X	GIGABYTE X299 UD4 PRO	8GB KINGSTON HYPERX PREDATOR RGB	GEFORCE RTX 3090 MASTER 24G	2 ТБ ЖЕСТКИЙ ДИСК WD Purple	8000 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE AORUS GEN4 AIC	ASUS ROG RYUJIN 240	8,2	457226
17	INTEL CORE IS- 10400F OEM	GIGABYTE H410M S2	32GB KINGSTON HYPERX FURY BLACK	GEFORCE RTX 2080 TI XTREME 11G	12 ТБ ЖЕСТКИЙ ДИСК WD RED	120 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE	CORSAIR H100X	6,1	201640
18	INTEL CORE I7- 10700F	GIGABYTE B460M AORUS PRO	16GB KINGSTON HYPERX PREDATOR RGB	GEFORCE RTX 3060 TI GAMING OC 8G	1 ТБ ЖЕСТКИЙ ДИСК WD Blue	1000 FE SSD- HAKOПИТЕЛЬ GIGABYTE AORUS RGB AIC	CORSAIR H80I V2	5,7	145776
19	INTEL CORE 19- 9900X	GIGABYTE X299 DESIGNARE 10G	16GB KINGSTON HYPERX FURY RGB	GEFORCE GTX 1660 GAMING	6 ТБ ЖЕСТКИЙ ДИСК WD ULTRASTAR DC HC310	512 F6 SSD M.2 HAKOПИТЕЛЬ GIGABYTE AORUS RGB	CORSAIR H100X	7,6	242934
20	INTEL CORE IS- 10100F	GIGABYTE Z490M	8GB KINGSTON HYPERX FURY BLACK	GEFORCE GT 730 LP	4 ТБ ЖЕСТКИЙ ДИСК WD BLUE	512 FE SSD- HAKOПИТЕЛЬ GIGABYTE AORUS RGB AIC	CORSAIR H100I RGB PLATINUM 240	6,3	75882
21	INTEL CORE 19- 9900X	GIGABYTE X299 UD4 PRO	32GB KINGSTON HYPERX FURY BLACK	GEFORCE GT 730 LP	1 ТБ ЖЕСТКИЙ ДИСК WD Blue	120 ГБ SSD- НАКОПИТЕЛЬ GIGABYTE	CORSAIR A500 DUAL FAN	6,9	157868
22	INTEL CORE 19- 10900X	GIGABYTE X299 DESIGNARE 10G	16GB KINGSTON HYPERX FURY RGB	GEFORCE GTX 1660 GAMING	6 ТБ ЖЕСТКИЙ ДИСК WD ULTRASTAR DC HC310	512 F6 SSD M.2 HAKOПИТЕЛЬ GIGABYTE AORUS RGB	ASUS ROG RYUJIN 240	7,8	214779
23	INTEL CORE I7- 10700F	GIGABYTE Z490M	8GB KINGSTON HYPERX FURY BLACK	GEFORCE RTX 3060 TI GAMING OC 8G	4 ТБ ЖЕСТКИЙ ДИСК WD BLUE	512 F6 SSD- HAKOПИТЕЛЬ GIGABYTE AORUS RGB AIC	CORSAIR H100X	6,2	139901
24	INTEL CORE IS- 10400F OEM	GIGABYTE H410M S2	16GB KINGSTON HYPERX PREDATOR RGB	GEFORCE RTX 2080 TI XTREME 11G	12 ТБ ЖЕСТКИЙ ДИСК WD RED	1000 TE SSD- HAKOTIUTE/Ib GIGABYTE AORUS RGB AIC	CORSAIR H100I RGB PLATINUM 240	6,7	220938
25	INTEL CORE IS- 10100F	GIGABYTE B460M AORUS PRO	8GB KINGSTON HYPERX PREDATOR RGB	GEFORCE RTX 3090 MASTER 24G	2 ТБ ЖЕСТКИЙ ДИСК WD Purple	8000 TE SSD- HAKOПИТЕЛЬ GIGABYTE AORUS GEN4 AIC	CORSAIR H80I V2	6,6	387546

Данные в текстовом формате:

Загрузим данные из текстового документа: ✓ Мастер импорта - Text (2 из 9) X Импорт текстового файла Укажите имя текстового файла для импорта D:\polytech\интеллект системы и технологии\d.txt Имя файла Кодировка ANSI (Windows) Первая строка является заголовком Просмотр выбранного файла Начать импорт со строки: **‡** Intel CORE I3
Intel CORE I5
Intel CORE I7
Intel CORE I7 Mam.nлama GIGABYTE H410M Onep.naмяmь 8GB KINGSTON Bugec GEFOF 123456789 GIGADYTE B460M 8GB KINGSTON GEFOF GIGABYTE Z490M 1 GIGABYTE X299 UD4 16GB KINGSTON **GEFOF** 16GB KINGSTON 32GB KINGSTON Intel CORE 19 GIGABYTE X299 **GEFOF** Intel CORE Intel CORE Intel CORE GIGABYTE X299 32GB KINGSTON GEFOF I9 I7 GIGABYTE X299 UD4 16GB GIGABYTE Z490M 8GB KINGSTON 16GB KINGSTON **GEFOF** GIGABYTE B460M 16GB KINGSTON Intel CORE IS **GEFOF** < Назад Далее > Отмена ✓ Мастер импорта - Text (4 из 9) X Параметры импорта файла с разделителями Укажите символ-разделитель столбцов и другие вспомогательные параметры импорта Символом-разделителем является Символ табуляции Пробел ○ Точка Другой О Точка с запятой Запятая Считать последовательные разделители одним Процессор Мат.плата Опер.память Видеокарта 1 Intel CORE 13 GIGABYTE H410M 8GB KINGSTON GEFORCE GT 730 2 Intel CORE I5 GIGADYTE B460M | 8GB KINGSTON GEFORCE GTX 166 2 3 Intel CORE 17 GIGABYTE Z490M 16GB KINGSTON GEFORCE RTX 306 4 GIGABYTE X299 UT 16GB KINGSTON GEFORCE RTX 208 € 4 Intel CORE 19 5 Intel CORE 19 GIGABYTE X299 32GB KINGSTON GEFORCE RTX 309 GEFORCE RTX 309 6 Intel CORE 19 GIGABYTE X299 32GB KINGSTON < Назад Далее > Отмена ✓ Мастер импорта - Text (6 из 9) Импорт текстового файла Укажите параметры столбцов 9.0 N COL10 Имя столбца ав Процессор Стоимость Метка столбца **а** Мат.плата **ab** Опер.память Тип данных 9.0 Вещественный **ab** Видеокарта ав Жесткий диск Вид данных Непрерывный ab SSD ав Охлаждение Назначение 🤏 Выходное ав Рейтинг 9.8 Стоимость

< Назад

Далее >

Отмена

Получаем таблицу с загруженными данными:

Следующий шаг – создание нейросети, например, для стоимости. Т.е рейтинг ставим как неучитываемое.

Далее представлены:

Что-если:

Граф нейросети и диаграмма рессеивания:

