Predicting Car Prices Based on Certain Characteristics

DSCI310 Group 07: Harbor Zhang, Jiaying Liao, Ning Wang, Xiwen Wei

2023-04-06

Original Project Authors: Henry Zhang, Moira Renata, Ning Wang, Paige Wills, Xinrui Wang in STAT 301 Group 36.

1 Introduction

Over the past few decades, we have seen a rapid increase in demand for the car industry. The high market price of both brand new and used cars have created a large economic impact all over the world. Based on previous studies, it was found that there are multiple factors affecting the final price of a car (Balce 2016) and that while most factors do have a positive contribution or effect to the final price, there are still some factors that create a negative effect (Erdem and Şentürk 2009). Moreover, according to previous studies, the car price one of the most significant factor when people deciding whether to purchase a car(Armstrong 2022).

Therefore, in this project, we hope to create a model that allows us to predict the final price of a car given its characteristics.

2 Description

The sample we use is from the Automobile Data Set that was created by Jeffrey C. Schlimmer in 1987 (Schlimmer 1987). The author created a data set that consists of 26 columns with 205 rows, where each row refers to one car sample. Out of the 25 columns predictor variables, there are 9 categorical variables and 16 numerical variables. Our response variable is the 26th column, which represents the price of a car in USD(\$).

Variable	Type	Description
symboling	Categorical	Assigned insurance risk rating
normalized-losses	Numerical	Relative average loss payment per insured vehicle year in dollars (USD)
make	Categorical	Car manufacturer/model
fuel-type	Categorical	Type of fuel to power car
aspiration	Categorical	Engine aspiration (std, turbo)
num-of-doors	Numerical	Number of doors
body-style	Categorical	Car's style (sedan, convertible, etc.)
drive-wheels	Categorical	amount and location of wheels
engine-location	Categorical	Engine location (front, back)
wheel-base	Numerical	Horizontal distance between the front and rear wheel in inches.
length	Numerical	Length of car in inches
width	Numerical	Width of car in inches

Variable	Type	Description
height	Numerical	Height of car in inches
curb-weight	Numerical	Weight of car in pounds
engine-type	Categorical	Engine type (dohc, dohcv, etc.)
num-of-cylinders	Categorical	Number of cylinders in engine
Engine-size	Numerical	Engine size in cubic inches
fuel-system	Categorical	Fuel system in car (1bbl, mfi. etc.)
bore	Numerical	Diameter of each cylinder in inches
stroke	Numerical	Movement of piston in gigapascal
compression-ratio	Numerical	Ratio between the cylinder's
_		highest and lowest volumes at the
		bottom and top of the piston's
		stroke.
horsepower	Numerical	Engine horsepower (hp)
peak-rpm	Numerical	RPM at which engine delivers
		peak horsepower
city-mpg	Numerical	Mileage in the city in miles per
		gallon
highway-mpg	Numerical	Mileage in the highway in miles
		per gallon
price	Numerical	Price of car in USD (\$)

3 Preliminary Analysis

In this section, we load and clean the data. Note that the all? are replaced with NA.

From tables 2 and 3, we noticed that there are some NA values. Each row represents an observation, each column is a variable, and each cell is a value, which means there is not a lot of data tidying to do. We will first check the number of NA values in each column, the number of levels in columns that are categorical variables, and the summary statistics of each variable.

According to table 4, there are 46 rows that contain NA values. And the number of rows that have complete observations are 159.

4 Exploratory Data Analysis

Next, we will perform EDA to better understand the variables that we will be using in our analysis.

It would be beneficial to visualize the pairwise correlation coefficients of our dataset to check for multicollinearity. This can be done either by using the ggpairs function, or by creating a correlation heatmap.

Table 2: Row 1 to 6.	Column 1 to 13 i	in Automobile Dataset

symboling	normalized-losses	make	fuel-type	aspiration	num-of-doors	body-style	drive-wheels	engine
3	NA	alfa-romero	gas	std	two	convertible	rwd	front
3	NA	alfa-romero	gas	std	two	convertible	rwd	front
1	NA	alfa-romero	gas	std	two	hatchback	rwd	front
2	164	audi	gas	std	four	sedan	fwd	front
2	164	audi	gas	std	four	sedan	4wd	front
2	NA	audi	gas	std	two	sedan	fwd	front

Table 3: Row 1 to 6, Column 14 to 26 in Automobile Dataset

2548 dohc four 130 mpfi 3.47 2.68 9.0 2548 dohc four 130 mpfi 3.47 2.68 9.0									
2548 dohc four 130 mpfi 3.47 2.68 9.0	curb-weight	eight engine-typ	e num-of-cylinders	engine-size	fuel-system	bore	stroke	compression-ratio	horsepowe
	2548	2548 dohc	four	130	mpfi	3.47	2.68	9.0	11
2823 ohey six 152 mpfi 2.68 3.47 9.0	2548	2548 dohc	four	130	mpfi	3.47	2.68	9.0	11:
	2823	2823 ohcv	six	152	mpfi	2.68	3.47	9.0	15
2337 ohc four 109 mpfi 3.19 3.40 10.0	2337	2337 ohc	four	109	mpfi	3.19	3.40	10.0	10:
2824 ohc five 136 mpfi 3.19 3.40 8.0	2824	2824 ohc	five	136	mpfi	3.19	3.40	8.0	11.
2507 ohc five 136 mpfi 3.19 3.40 8.5	2507	2507 ohc	five	136	mpfi	3.19	3.40	8.5	110

Table 4: Summary of Automobile Dataset

symboling	3:27	1:54	2:32	0:67	-1:22	-2: 3	
normalized-losses	Min. : 65	1st Qu.: 94	Median :115	Mean :122	3rd Qu.:150	Max. :256	N
make	toyota: 32	nissan: 18	mazda: 17	honda: 13	mitsubishi: 13	subaru: 12	(
fuel-type	gas :185	diesel: 20					
aspiration	std :168	turbo: 37					
num-of-doors	two: 89	four:114	NA's: 2				
body-style	convertible: 6	hatchback :70	sedan :96	wagon :25	hardtop: 8		
drive-wheels	rwd: 76	fwd:120	4wd: 9				
engine-location	front:202	rear: 3					
wheel-base	Min.: 86.60	1st Qu.: 94.50	Median : 97.00	Mean: 98.76	3rd Qu.:102.40	Max. :120.90	
length	Min. :141.1	1st Qu.:166.3	Median :173.2	Mean :174.0	3rd Qu.:183.1	Max. :208.1	
width	Min. :60.30	1st Qu.:64.10	Median :65.50	Mean :65.91	3rd Qu.:66.90	Max. :72.30	
height	Min. :47.80	1st Qu.:52.00	Median :54.10	Mean :53.72	3rd Qu.:55.50	Max. :59.80	
curb-weight	Min. :1488	1st Qu.:2145	Median :2414	Mean :2556	3rd Qu.:2935	Max. :4066	
engine-type	dohc: 12	ohcv: 13	ohc :148	1: 12	rotor: 4	ohcf: 15	d
num-of-cylinders	four :159	six: 24	five: 11	three: 1	twelve: 1	two: 4	e
engine-size	Min.: 61.0	1st Qu.: 97.0	Median :120.0	Mean :126.9	3rd Qu.:141.0	Max. :326.0	
fuel-system	mpfi :94	2bbl :66	idi :20	1bbl :11	spdi: 9	4bbl : 3	(
bore	Min. :2.54	1st Qu.:3.15	Median :3.31	Mean :3.33	3rd Qu.:3.59	Max. :3.94	N
stroke	Min. :2.070	1st Qu.:3.110	Median :3.290	Mean :3.255	3rd Qu.:3.410	Max. :4.170	N
compression-ratio	Min.: 7.00	1st Qu.: 8.60	Median: 9.00	Mean :10.14	3rd Qu.: 9.40	Max. :23.00	
horsepower	Min.: 48.0	1st Qu.: 70.0	Median: 95.0	Mean :104.3	3rd Qu.:116.0	Max. :288.0	N
peak-rpm	Min. :4150	1st Qu.:4800	Median :5200	Mean :5125	3rd Qu.:5500	Max. :6600	N
city-mpg	Min. :13.00	1st Qu.:19.00	Median :24.00	Mean :25.22	3rd Qu.:30.00	Max. :49.00	
highway-mpg	Min. :16.00	1st Qu.:25.00	Median :30.00	Mean :30.75	3rd Qu.:34.00	Max. :54.00	П
price	Min.: 5118	1st Qu.: 7775	Median :10295	Mean :13207	3rd Qu.:16500	Max. :45400	N
							\neg

Table 5: The 8 variables with highest R^2

R^2	names
0.796	make
0.761	engine-size
0.696	curb-weight
0.657	horsepower
0.63	num-of-cylinders
0.564	width
0.497	highway-mpg
0.477	length

However, since our data contains mulitple categorical variables with a large number of levels, this is not possible to do at this point. Therefore, our EDA is limited to checking the Coefficient of Determination of all the predictor variables and visualizing the relationship of the top 8 predictor variables based on their R^2 value.

Firstly, we want to calculate the coefficient of determination of all of our predicted variables.

Based on the result in table 5, the variable that has the highest R^2 value is make with a value of 0.796. This can be interpreted as 79.6% of the variation observed in price is explained by the model with make as the explanatory variable.

Then, we created plots for the top 8 predictor variables. For the numerical variables, we created both a histogram to see the distribution, and a scatter plot to see the relationship between the variable and the car price. For the categorical variables, we created a bar graph to compare the count of each category in a variable. Analysis of the plots created are written after the code.

Analysis on the plots:

Figure 1: Distribution of make

- For the variable make (see Figure 1), we can see that Japanese brands, such as Toyota, Nissan and Mazada have the top 3 counts, which means they produce the most cars.
- For the variable length (see Figure 2), we can see the distribution is approximately normal and has a

Figure 2: Distribution of length and price vs length

positive linear relationship with price.

Figure 3: Distribution of width and price vs width

- For the variable width (see Figure 3), we can see the distribution is approximately normal and has a positive linear relationship with price.
- For the variable curb-weight (see Figure 4), we can see the distribution is skewed to right and has a positive linear relationship with price.
- For the variable num-of-cylinders (see Figure 5), we can see that most cars have 4-cylinders.
- For the variable engine-size (see Figure 6), we can see the distribution is skewed to right and has a positive linear relationship with price.
- For the variable horse-power (see Figure 7), we can see the distribution is skewed to right and has a positive linear relationship with price.
- For the variable highway-mpg (see Figure 8), we can see the distribution is approximately normal and has a negative linear relationship with price.

Figure 4: Distribution of car weight and price vs weight

Figure 5: Distribution of number of cylinders

Figure 6: Distribution of engine size and price vs engine size

Figure 7: Distribution of horse power and price vs horse power

Figure 8: Distribution of highway mpg and Price vs highway mpg

Table 6: Levels of all variables

num_unique	type
6	factor
51	numeric
18	factor
2	factor
2	factor
2	factor
5	factor
3	factor
1	factor
40	numeric
56	numeric
33	numeric
39	numeric
136	numeric
5	factor
5	factor
32	numeric
6	factor
33	numeric
31	numeric
29	numeric
48	numeric
20	numeric
25	numeric
28	numeric
145	numeric
-	

5 Methods

Based on table 6, we noticed that the variables:symboling, make, body-style, drive-wheels, engine-type, num-of-cylinders, fuel-system have more than 2 levels. Since the shrinkage methods we are planning to use to perform model selection (LASSO and Ridge) is not possible when there are more than 2 levels in a categorical variable, the variables listed above are all dropped because of their high levels.

Apart from that, after we omit NA, the levels of engine-location appears to be 1. This will cause contrasts since we need a categorical variables to be factors with 2 or more levels. Thus we need to remove engine-location.

Then, the data set is split into two data sets - training and testing using a 70-30% basis and the ID variables are removed.

We then create new training and testing datasets that excludes the variables listed. We call them: 1. training df_sub 2. testing df_sub

This code prepares the dataset(s) for glmnet() which only takes matrices (hence model.matrix). The glmnet() function has an argument object, which is the formula of the model and therefore needs clear x and y variables, explaining why the training and testing datasets are split into subsets of x and y.

Now our data is prepared for the glmnet() function, we will use cv.glmnet to obtain the optimal value of lambda using the training set. Since this is a LASSO model, we will use the argument alpha=1 and n.folds=10 to find the optimal value of lambda using cross-validation by defining a sequence of values.

Then the plot function will be used to visualise the MSE of different lambdas.

lasso_mod provides the $\hat{\lambda}_{min}$ for LASSO (explained below) and lasso_mod_1se provides the $\hat{\lambda}_{1SE}$ for LASSO (explained below).

MSE of LASSO estimated by CV for different lambdas

Figure 9: Lasso Regression

Figure 9 shows the estimated test MSE on the y-axis for a grid of values of λ on the x-axis (on a natural log-

scale). The two vertical dotted lines show us where lambda is minimized, in other words, how many variables are needed for the best model. The numbers on the top x-axis indicate the number of input variables whose estimated coefficients are different for 0 for different values of lambda. The error bars represent the variation across the different sets of the CV folds. The left line shows $\hat{\lambda}_{\min}$ - which is the minimum MSE in the grind and the right line represents $\hat{\lambda}_{1SE}$ - which is the largest values of lambda such that the corresponding MSE is still within 1 standard error of that of the minimum (more penalization at low cost).

A similar method is followed for Ridge, except alpha = 0. ridge_mod provides the $\hat{\lambda}_{\min}$ for Ridge and ridge_mod_1se provides the $\hat{\lambda}_{1SE}$ value for Ridge (explained above).

Figure 10: Ridge Regression

Figure 10 for Ridge regression shows the estimated test MSE for each value of lambda, just like that of LASSO. However the main difference here is that the top x-axis is all the same value - 17. This is because the Ridge estimator never shrinks estimates to 0, unlike LASSO. The two vertical lines represent $\hat{\lambda}_{\min}$ and $\hat{\lambda}_{1SE}$ with the x and y axis being the same as LASSO.

For explanatory analysis purposes, we will be using both $\hat{\lambda}_{\min}$ and $\hat{\lambda}_{1SE}$ for both LASSO and Ridge to create four different regression models. Additionally, we also be creating an OLS model for comparison. The 5 models we will be creating are listed below: 1. mod_lasso: LASSO regression using $\lambda = \hat{\lambda}_{\min}$ from LASSO 2. mod_lasso_1se: LASSO regression using $\lambda = \hat{\lambda}_{1SE}$ from LASSO 3. ridge_mod: Ridge regression using $\lambda = \hat{\lambda}_{\min}$ from Ridge 4. ridge_mod_1se: Ridge regression using $\lambda = \hat{\lambda}_{1SE}$ from Ridge 5. ols_fs: Ordinary least squares full regression using $\lambda = 0$

After creating the 5 models, we will then obtain the out-of-sample predictions for the test sets of all five different models above, shown by preds_1, preds_2, preds_3, preds_4 and preds_5.

Finally, we are able to compute the RMSE (root mean squared error) to evaluate the predicted models, which is clearly summarised in the tibble below.

Through the 10 fold cross validation error (root mean squared error) in table 7, we see that lasso model with $\hat{\lambda}_{1SE}$ has the lowest value. Thus we decide to use the LASSO Regression model with 1se MSE for our final

Table 7: Cross-Validation Result

Model	R_MSE
LASSO Regression with minimum MSE	812.004
LASSO Regression with 1SE MSE	709.054
Ridge Regression with minimum MSE	808.459
LASSO Regression with 1SE MSE	855.771
OLS Full Regression	782.862

Table 8: Kept variables

kept_variables	coefficient
(Intercept)	-15273.682
width	113.379
'curb-weight'	7.310
horsepower	13.261

predictions.

Beside that, we obtained a root mean squared prediction error of 65.427 when using the LASSO Regression model on the test set.

Taking a look at the coefficients of our model in table 8, we noticed that the LASSO model had selected only three variables, which are width, curb-weight, and horsepower, while all the coefficients of other input variables were reduced to 0.

6 Discussion

Our goal requires generating a prediction model with potential independent variables that can predict the price of the car. Based on our exploratory data analysis and regression model comparisons, we chose the LASSO model with $\hat{\lambda}_{\rm ISE}$, which we expect to have good prediction performance.

6.1 Summary

Based on the results above, the variables width,curb-weight, and horsepower were chosen by the LASSO model. With lasso_mod_1se (more penalization at a low cost) to penalize, all of the other regression coefficients of the input variables were shrunk to 0. If we refer back to our EDA, we notice that the three variables selected by LASSO are included in the list of top 8 variables with the highest coefficient of determination. However, it was surprising to see that there were only 3 predictor variables in our final LASSO model, which means all the other variables were shrunk to 0. Some variables that we thought were going to be important, like city-mpg, length, and height were surprisingly not included in the final model.

We also noticed that the LASSO model with $\hat{\lambda}_{1\text{SE}}$ yielded the smallest RMSE value compared to the other models, which means that it provides higher accuracy. LASSO penalizes the RSS with an L_1 penalty, and the penalty parameter $\hat{\lambda}_{1\text{SE}}$ that we chose was selected through a process called tuning in order to avoid using the test set when creating our model. Although this shrinkage method (LASSO) might lead to bias of the estimated coefficients, we sacrifice this for a lower variance to gain better prediction performance in our model.

We hope that this fitted LASSO model will allow users to predict the price of a car in USD based on the 3 variables that were selected. Although we initially expected to have more predictor variables, we believe that the 3 predictor variables can give a rough prediction of the price of a car (USD). Moreover, we believe such a model could not only provide the expected price of a new car to customers, but also help sellers of second-hand cars set ideal prices.

6.2 Further Questions and Improvements

There are two main problems that need to be improved:

- 1. Using high-level (N > 2) categorical variables in the LASSO model. The LASSO model interprets N-1 dummy variables as its own separate variable, which may exclude certain levels. To deal with this issue, we dropped the variables with high levels. However by doing so, we might have dropped a statistically significant variable. In future research, maybe by using another regression model, including those categorical variables with more than 2 levels, we can improve our model's performance.
- 2. Another problem involves LASSO's biased estimators. In the future, if we want to generate an inference model, we can apply post-lasso. This is done by fitting a regular least squares model to the variables selected by LASSO.

References

Armstrong, M. 2022. "Most Important Factors When Buying a Car." Digital image. https://www.statista.com/chart/13075/most-important-factors-when-buying-a-car/.

Balce, Andım Oben. 2016. "Factors Affecting Prices in an Used Car e-Market." Journal of Internet Applications and Management 7 (2): 5–20. https://doi.org/10.5505/iuyd.2016.30974.

Erdem, Cumhur, and İsmail Şentürk. 2009. "A Hedonic Analysis of Used Car Prices in Turkey." *International Journal of Economic Perspectives* 3 (January): 141–49.

Schlimmer, Jeffrey C. 1987. "Automobile Data Set." Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Automobile.