Technologie Sieciowe - Projekt Prowadzący: dr. inż Arkadiusz Grzybowski

Autorzy: Karol Baraniecki (252726)

Maciej Byczko(252747)

15 listopada 2021 PN 14:00 TP Politechnika Wrocławska Wydział Informatyki i Telekomunikacji

Spis treści

Spis tabel

1 Wstęp

Celem projektu jest zaprojektowanie lokalnej sieci komputerowej dla firmy programistycznej znajdującej się we Wrocławiu. Sieć musi zostać zaprojektowana zgodnie ze sprecyzowanymi wymaganiami firmy oraz uwzględniać jej przyszły rozwój.

1.1 Kadra firmy

Personel firmy składa się z następujących użytkowników:

- Programiści
- Testerzy
- Projektanci
- Marketing
- Księgowość

1.2 Opis siedziby firmy

Przedsiębiorstwo znajduje się przy ulicy Nowowiejskiej 69, składa się z dwóch budynków: dwupiętrowego oraz trzypiętrowego.

1.2.1 Lokalizacja firmy na mapie

1.3 Wymagania

Firma wymaga od nas aby:

- Użyta technologia była z rodziny Ethernet,
- na wskazanym piętrze każdego budynku ma być dostępna sieć bezprzewodowa (niezbędna instalacja kablowa jest przygotowana),
- należy zapewnić dodatkowe porty na przełącznikach (w liczbie 20% zajętych portów), w związku z przewidywanym wzrostem liczby pracowników (w pomieszczeniach są już zainstalowane dodatkowe gniazda sieciowe),
- ruch w ramach grup roboczych ma być separowany z wykorzystaniem sieci VLAN,
- należy zapewnić dwa podłączenia do Internetu: podstawowe oraz zapasowe, o przepustowości adekwatnej do potrzeb przedsiębiorstwa,

- podstawowe łącze internetowe ma zapewniać gwarancję minimalnej przepustowości równej co najmniej 40% średniego przewidywanego przepływu na tym łączu,
- kosztorys ma uwzględniać koszt wszystkich urządzeń, podłączenia do Internetu i koszt korzystania z łączy Internetowych w okresie 2 lat

2 Inwentaryzacja zasobów

Ilości posiadanych pracowników, oraz urządzeń.

2.1 Pracownicy

Pracowników można podzielić na 5 grup roboczych (Patrz <u>Kadra firmy</u>). Każdy z pracowników posiada dostęp do stanowiska pracy na którym znajduje się <u>urządzenie</u> wymagające podłączenia do sieci (w naszym przypadku każdy użytkownik posiada komputer)

2.1.1 Tabele podziału pracowników

Tabela 1: Podział użytkowników na grupy robocze, budynki oraz piętra

	Liczba użytkowników (komputerów)					
	Budy	nek 1	Budynek 2			
Grupa robocza	Piętro 1	Piętro 1 Piętro 2 Piętro 1 Piętro 2 Piętr				
Programiści	22	6	2	19	36	
Testerzy	21	31	6	13	33	
Projektanci	6	31	18	1	14	
Marketing	16	28	7	3	17	
Księgowość	32	14	32	21	15	

Tabela 2: Suma poszczególnych pracowników w firmie wraz z podziałem na grupy robocze

Grupa robocza	Suma
Programiści	85
Testerzy	104
Projektanci	70
Marketing	71
Księgowość	114
Liczba drukarek	12
Suma wszystkich pracowników	444

2.2 Sprzęt

Firma jest wyposażona w trzy rodzaje sprzętu:

- drukarki
- punkty dostępowe WiFi
- urządzenia bezprzewodowe

Sprzęty te będą używane w sieci lokalnej firmy.

2.2.1 Tabele podziału urządzeń wspólnych

Tabela 3: Podział urządzeń na budynki oraz piętra

	Liczba urządzeń				
	Budy	nek 1	Budynek 2		
Urządzenia	Piętro 1	Piętro 2	Piętro 1	Piętro 2	Piętro 3
Liczba drukarek	1	2	3	3	3
Liczba punktów dostępowych WiFi	0	0	1	0	3
Liczba urządzeń bezprzewodowych	0	0	6	0	17

Tabela 4: Suma poszczególnych urządzeń w firmie

Urządzenia	Suma
Liczba drukarek	12
Liczba punktów dostępowych WiFi	4
Liczba urządzeń bezprzewodowych	23
Suma wszystkich urządzeń	39

2.2.2 Wymagania przepływowe pomiędzy pracownikami a serwerami lokalnymi

2.2.3 Serwery

Firma posiada dwa serwery lokalne. Serwer lokalny 1 jest używany przez:

- Testerów,
- Marketing,
- WiFi

Serwer lokalny 2 jest używany przez każdą grupę roboczą z wyłączeniem zespołu Marketingu.

Tabela 5: Prognozowany ruch do internetu

	Transfer do\z Internetu na jedną sesję (internautę) $[kb/s]$							
Serwery internetowe	Do Internetu	Do Internetu Z Internetu Liczba jednoczesnych sesji						
Serwer WWW	50	15	49					
Serwer FTP	210	90	4					

2.3 Aplikacje

Dla każdej grupy użytkowników został zdefiniowany również przepływ do i z internetu z podziałem na poszczególne typy aplikacji, firma zapewnia również dostęp do sieci WiFi.

Transfer z/do Internetu (down \ up) [kb/s] Aplikacja Klient FTP Przeglądarka Wideokonferencja VoIP Komunikator Grupa rob. 0/0Programiści 0/020\20 77\18 $15 \ 15$ Testerzy 0/0 $40 \backslash 40$ 0/00/0 $15\backslash 15$ Projektanci $65 \ 10$ 0/0 $20 \backslash 20$ $45 \ 11$ $15 \backslash 15$ Marketing $60 \ 10$ $40 \ 40$ $20 \ 20$ 0/0 $15 \backslash 15$ Księgowość $35 \ 10$ $40 \ 40$ $20 \backslash 20$ 0/00/0WiFi 15\15 $78 \ 10$ $40 \ 40$ $20 \ 20$ $49 \ 14$

Tabela 6: Wymagania dotyczące przepływu przez aplikacje

3 Analiza potrzeb użytkowników

Wymagania potrzebne dla pracowników w celu sprawnej pracy w firmie.

3.1 Pracownicy oraz wykorzystywane oprogramowanie

W zależności od typu stanowiska wymagana jest różna jakość usług sieciowych. Jest to związane z tym że wykorzystywane jest różne oprogramowanie. Każda aplikacja działa w sposób indywidualny, niektóre wymagają bardzo stabilnego łącza, bądź bezpieczeństwa połączenia. Na podstawie <u>tabeli 7</u> można wywnioskować wymagania oraz zużycie każdej grupy roboczej, rozpatrzymy każde stanowisko z osobna:

- Programiści wymagają przede wszystkim szybkiego połączenia ze względu na znaczne użycie usługi FTP.
- Testerzy wymagają szybkiego i niezawodnego łącza ze względu na wideokonferencje.
- Projektanci wymagają bezpiecznego oraz szybkiego połączenia ze względu na usługę FTP oraz używanie przeglądarki.
- Marketing wymagają stabilnego łącza ze względu na wideokonferencję, bezpieczeństwo także się przyda ze względu na użycie przeglądarki.
- Księgowość głównie wymagają stabilnego łącza ze względu na wideokonferencje, używają także przeglądarki więc łącze musi być bezpieczne.

3.2 Łącza szkieletowe

TD 1 1 7	TT7 .	1 4	1 /	1111		1 .	.1 •1 \
Tabela (*	Wymagania	dotvezace	przepływów	lokalnych	(na. 1ea	dnego 117:	vtkownikal
Tabela I.	v v y iiia Saiiia	alou y ozagoo	pizopi, wow	1011ulli y Cli	(II G C	anogo az	y circo vv iiiiico j

	Transfer	Transfer do serwerów lokalnych i drukarek (down \backslash up) [kb/s]				
Serwer Grupa rob.	Serwer1	Serwer2	Drukarka			
Programiści	0\0	750\700	10\120			
Testerzy	700\350	450\100	10\130			
Projektanci	0\0	350\200	10\190			
Marketing	150\200	0\0	10\140			
Księgowość	0\0	450\250	10\130			
WiFi	50\250	100\250	10\120			

Aby uzyskać szacowane łącza według grup roboczych na jednego użytkownika należy zsumować cały ruch generowany przez jednego użytkownika danej grupy. Wyliczenia zostały wykonane na podstawie poprzednich tabel.

Tabela 8: Szacowane wykorzystywanie łącza przez pojedynczego użytkownika z danych grup roboczych

	Loka	alnie	Inte	rnet	Suma	
Użytkownik	$\frac{\mathrm{down}}{[\mathrm{kb/s}]}$	$ m up \ [kb/s]$	$rac{ m down}{ m [kb/s]}$	$ m up \ [kb/s]$	$\frac{\mathrm{down}}{[\mathrm{kb/s}]}$	$\begin{array}{c} \text{up} \\ [\text{kb/s}] \end{array}$
Programiści	760	820	112	53	872	873
Testerzy	1160	580	55	55	1215	635
Projektanci	360	390	145	56	505	446
Marketing	160	340	135	85	295	425
Księgowość	460	380	95	70	555	450
WiFi	160	620	202	99	362	719

Przykład obliczeń:

Wyliczenia na podstawie grupy roboczej *Programiści* z <u>tabeli 7</u>:

- Pobieranie z Internetu: 0 + 0 + 20 + 77 + 15 = 112[kb/s]
- Wysyłanie do Internetu: 0 + 0 + 20 + 18 + 15 = 53[kb/s]
- Pobieranie lokalne: 0 + 750 + 10 = 760[kb/s]
- Wysyłanie lokalne:0 + 700 + 120 = 820[kb/s]
- Suma pobierania: 112 + 760 = 872[kb/s]
- Suma wysyłania: 53 + 820 = 873[kb/s]

Grupy o największym korzystaniu z sieci to:

- Testerzy (Pobieranie) $1215[kb/s] \approx 1.19[Mb/s]$
- Programiści (Wysyłanie) $873[kb/s] \approx 0.85[Mb/s]$

Aby uzyskać szacowany ruch generowany przez pracowników danego piętra, należy pomnożyć ruch przypadający na jednego pracownika z <u>tabeli 8</u> przez liczbę pracowników danej grupy roboczej na określonym piętrze (<u>tabela 1</u>)

Budynek 1 Budynek 2 Użytkownik Pietro 1 Piętro 2 Pietro 1 Pietro 2 Pietro 3 Programiści 5232 1744 31392 19184 16568 25515 7290 Testerzy 37665 15795 40095 Projektanci 3030 156559090 505 7070 Marketing 4720 8260 2065885 5015 Księgowość 8325 17760 7770 17760 11655 Suma 70209 74582 37949 45408 91897

Tabela 9: Szacowany pobór danych

Tabela 10: Szacowany przesył danych

TT: 41 '1	Budynek 1		Budynek 2			
Użytkownik	Piętro 1	Piętro 2	Piętro 1	Piętro 2	Piętro 3	
Programiści	19206	5238	1746	16587	31428	
Testerzy	13335	19685	3810	8255	20955	
Projektanci	2676	13826	8028	446	6244	
Marketing	6800	11900	2975	1275	7225	
Księgowość	14400	6300	14400	9450	6750	
Suma	56417	56949	30959	36013	72602	

Przykład obliczeń:

Wyliczenia na podstawie grupy roboczej *Programiści* z <u>tabeli 8</u> oraz <u>tabeli 1</u>: Dla piętra 1:

- Pobieranie: $872 * 22 = 19184[kb/s] \approx 18.74[Mb/s]$
- Wysyłanie: $873 * 22 = 19206[kb/s] \approx 18.76[Mb/s]$

Według przeprowadzonych obliczeń najbardziej wymagające jest Piętro 3 w budynku 2.

- Pobieranie: $91897[kb/s] \approx 89.75[Mb/s]$
- Wysyłanie: $72602[kb/s] \approx 70.90[Mb/s]$

3.3 Obciążenie poszczególnych punktów dystrybucyjnych

Tabela 11: Punkty dystrybucyjne i ich obciążenie

Punkty dystrybucyjne			Transmisja		
Oznaczenie	Lokalizacja	Podłączone punkty abonenckie	Pobór danych [Mb/s]	Przesył danych [Mb/s]	
MDF	Bud. 2, Piętro 2	Bud. 2, Piętro 2,1,	312.54	247.01	
IDF1	Bud. 2, Piętro 3	Bud. 2, Piętro 3,	89.74	70.90	
IDF2	Bud. 1, Piętro 1	Bud. 1	141.40	110.71	

Na podstawie powyższej tabeli możemy określić że największe obciążenie sieci będzie wynosić kolejno: Pobór w wysokości 312.54[Mb/s] oraz Przesył w wysokości 247.01[Mb/s], zatem te wartości uznajemy za wymagania naszej sieci.

3.4 Łącza do serwerów i drukarek

Aby uzyskać przepustowości połączeń do serwerów lokalnych oraz drukarek (zakładając, że są dostępne dla dużej ilości użytkowników jednocześnie) należy pomnożyć ilość pracowników każdej z grup roboczych (Tabela 2) przez wymaganą szybkość połączenia z danym serwerem (<u>Tabela 7</u>). Tak uzyskane wyniki przedstawiamy w tabeli reprezentującej przepustowości dla każdej z grup roboczych oraz ich łączną sumę:

Tabela 12: Szacowane przepustowości połączeń poboru danych z serwerów i drukarek

Serwer Grupa rob.	Serwer 1	Serwer 2	Drukarka	suma
Programiści	0	63750	850	64600
Testerzy	72800	46800	1040	120640
Projektanci	0	24500	700	25200
Marketing	10650	0	710	11360
Księgowość	0	51300	1140	52440
WiFi	200	400	40	640

Tabela 13: Szacowane przepustowości przesyłu danych do serwerów i drukarek

Serwer Grupa rob.	Serwer 1	Serwer 2	Drukarka	suma
Programiści	0	59500	10200	69700
Testerzy	36400	10400	13520	60320
Projektanci	0	14000	13300	27300
Marketing	14200	0	9940	24140
Księgowość	0	28500	14820	43320
WiFi	1000	1000	480	2480

3.5 Łącza do internetu

Łącze internetowe w firmie będzie wykorzystywane przez aplikacje pracowników oraz z zewnątrz do dostępu do Serwera WWW oraz Serwera Pocztowego. Aby obliczyć wykorzystanie łącza internetowego należy pomnożyć przepustowości wymagane dla danych aplikacji (Tabela $\underline{\text{Tabela 6}}$) przez ilość pracowników w każdej z grup roboczych ($\underline{\text{Tabela 2}}$ i $\underline{\text{Tabela 4}}$):

Tabela 14: Pobór danych przez aplikacje [kb/s]

Grupa rob./Serwer	Przeglądarka	Wideokonferencja		1 0 1	Komunikator	
Programiści	0	0	1700	6545	1275	
Testerzy	0	4160	0	0	1560	
Projektanci	4550	0	1400	3150	1050	
Marketing	4260	2840	1420	0	1065	
Księgowość	3990	4560	2280	0	0	
WiFi	312	160	80	196	60	Suma końcowa
Suma	13112	11720	6880	9891	5010	46613

Tabela 15: Przesył danych przez aplikacje [kb/s]

Grupa rob./Serwer	Przeglądarka	Wideokonferencja	VoIP	Klient FTP	Komunikator	
Programiści	0	0	1700	1530	1275	
Testerzy	0	4160	0	0	1560	
Projektanci	700	0	1400	770	1050	
Marketing	710	2840	1420	0	1065	
Księgowość	1140	4560	2280	0	0	
WiFi	40	160	80	56	60	Suma końcowa
Suma	2590	11720	6880	2356	5010	28556

10. Shadowalle ligene invertible we set were w						
Transfer Serwery internetowe	Download [kb/s]	Upload [kb/s]				
Serwer WWW	735	2450				
Serwer FTP	360	840				
Suma	1095	3290				

Tabela 16: Szacowane łącze internetowe serwerów

Podsumowując łącze potrzebne firmie wynosi:

- Pobór danych $46613 + 1095 = 47708 \text{ [kb/s]} \approx 46.59 \text{ [Mb/s]}$
- Wysył danych $28556 + 3290 = 31846 \text{ [kb/s]} \approx 31.10 \text{ [Mb/s]}$

4 Założenia projektowe

Założenia na podstawie których wybierzemy dostawców oraz zaplanujemy wstępne zabezpieczenia.

4.1 Sieć LAN

W projekcie wyróżniamy podział na bezprzewodową sieć LAN (technologia 802.11n) oraz przewodową w technologii Fast Ethernet oraz Gigabit Ethernet. Zakładamy, że sieć bezprzewodowa ma obsłużyć jednocześnie 23 urządzenia. Zasięg sieci bezprzewodowej ma obejmować wszystkie budynki firmy. Serwery zostaną umieszczone na tym samym piętrze co MDF.

4.2 Łącze do internetu

Na podstawie wcześniejszych obliczeń i wzięcia pod uwagę ewentualnego rozwoju sieci* wymagane łącze musi mieć następujące parametry:

Upload 32 Mb/s i Download 47 Mb/s.

Oczywistym jest, że stacje robocze nie wykorzystują przez cały czas wcześniej oszacowanej przepustowości, ale ważne jest aby uwzględnić taką możliwość.

Pod naszym <u>adresem</u> mamy kilka dostawców internetu i w celu zapewnienia niezawodności wykorzystane zostaną usługi internetowe dwóch z nich: **UPC** oraz **Netia**. W momencie kiedy nie ma awarii sieci można rozdzielić ruch internetowy na dwa łącza. W ten sposób maksymalizujemy dostępną przepustowość. Jeżeli dojdzie do awarii sieci to wykorzystujemy pozostałe dostępne łącze. W przypadku awarii jednego z dostawców całe obciążenie łącza zostanie przekazane na działające połączenie.

4.3 Zabezpieczenia sieci

Dla zabezpieczenia sieci nakładamy na nią następujące ograniczenia:

- Serwer lokalny 1 jest używany wyłącznie przez Testerów, Dział Marketingu oraz poprzez WiFi.
- Serwer lokalny 2 może być użyty przez wszystkich, poza Działem Marketingu.

- Testerzy z protokołu SSH, który szyfruje przesyłane dane.
- Sieć będzie zawierała firewall ustawiony na routerze łączącym z internetem, który pozwoli na monitorowanie i filtrowanie pakietów sieciowych.
- Serwery WWW i FTP będą umieszczone w strefie zdemilitaryzowanej ze względów bezpieczeństwa.
- W sieci będzie stosowana filtracja adresów MAC w celu dodatkowego zabezpieczenia przed niepowołanym dostępem.
- Sieć WiFi będzie zabezpieczona hasłem oraz protokołem WPA2, aby szyfrować przesyłane dane.
- Kable zostaną położone w podłodze technicznej w celu uniemożliwienia dostępu z zewnątrz.

5 Projekt sieci

5.1 Projekt logiczny sieci wraz z opisem koncepcji rozwiązania i uzasadnieniem

5.1.1 Podział na sieci VLAN

- 1. VLAN 1 Programiści
- 2. VLAN 2 Testerzy
- 3. VLAN 3 Projektanci
- 4. VLAN 4 Marketing
- 5. VLAN 5 Księgowość
- 6. VLAN 6 WiFi
- 7. VLAN 7 Drukarki
- 8. VLAN 8 Serwery FTP oraz WWW

5.1.2 Opis oznaczeń urządzeń sieciowych

DF/BXPY/T/N

- DF Punkt dystrybucyjny
- BXPY Budynek X i piętro Y
- T typ urządzenia
 - R Router
 - S2 Switch warstwy drugiej
 - S3 Switch warstwy trzeciej
 - A Access point (punkt dostępu WiFi)
- N Numer urządzenia sieciowego

5.1.3 Przykładowy odczyt kodu

(Kod czytamy od tyłu)

 $\mathrm{MDF/B2P2/S2/1}$ - Switch nr.1 warstwy drugiej znajdujący się na piętrze drugim w budynku drugim podłączony do punktu dystrybucyjnego MDF.

5.1.4 Opis oznaczeń urządzeń końcowych

XXX/BXPY/N

- XXX
 - ITE komputer Programisty
 - TES komputer Testera
 - PRO komputer Projektanta
 - MAR komputer Działu Marketingu
 - KSI komputer Księgowości
 - DRU Drukarka
- BXPY budynek nr X i piętro nr Y
- N numer urządzenia końcowego

5.2 Wybór urządzeń sieciowych

5.2.1 Urządzenia aktywne

- Router Cisco ISR4221/K9
- Przełącznik warstwy 3 (MDF) Cisco Catalyst 2960X-24TS-LL
- przełącznik warstwy 3 (IDF-y) Cisco SF350-48
- Przełącznik warstwy 2 Cisco SF220-48
- Punkt dostępu TP-LINK EAP265 HD

W naszym projekcie wybraliśmy **router Cisco ISR4221/K9** ze względu na dobry stosunek ceny do jakości.

Do obsługi ruchu pomiędzy budynkami oraz połączenia routera do reszty sieci zostaną użyte przełącznik Cisco WS-C2960X-24TS-LL do głównego połączenia oraz przełączniki Cisco SF350-48. Wybrane przełączniki będą używane jako przełączniki warstwy 3, główny przełącznik posiada porty Gigabitowe. Dodatkowo są one w pełni zarządzalne i dysponują możliwością tworzenia wirtualnych sieci.

Do obsługi ruchu w budynkach zostaną użyte **przełączniki Cisco Cisco SF220-48**. Wybrane przełączniki mają 48 portów Fast Ethernet.

Wybrane przez nas **access pointy TP-LINK EAP265 HD** charakteryzują się dobrym stosunkiem ceny do jakości oraz działają na częstotliwościach 5 GHz i 2,4 GHz.