2. **IDENTIFY** and **SET UP:** Apply Eq. (27.2) to calculate \vec{F} . Use the cross products of unit vectors from Section 1.10.

EXECUTE:
$$\vec{v} = (+4.19 \times 10^4 \text{ m/s})\hat{i} + (-3.85 \times 10^4 \text{ m/s})\hat{j}$$

(a)
$$\vec{B} = (1.40 \text{ T})\hat{i}$$

$$\vec{F} = q\vec{v} \times \vec{B} = (-1.24 \times 10^{-8} \text{ C})(1.40 \text{ T})[(4.19 \times 10^{4} \text{ m/s})\hat{i} \times \hat{i} - (3.85 \times 10^{4} \text{ m/s})\hat{j} \times \hat{i}]$$

$$\hat{i} \times \hat{i} = 0$$
, $\hat{j} \times \hat{i} = -\hat{k}$

$$\vec{F} = (-1.24 \times 10^{-8} \text{ C})(1.40 \text{ T})(-3.85 \times 10^{4} \text{ m/s})(-\hat{k}) = (-6.68 \times 10^{-4} \text{ N})\hat{k}$$

EVALUATE: The directions of \vec{v} and \vec{B} are shown in Figure.

The right-hand rule gives that $\vec{v} \times \vec{B}$ is directed out of the paper (+z-direction).

The charge is negative so \vec{F} is opposite to $\vec{v} \times \vec{R}$

 \vec{F} is in the -z-direction. This agrees with the direction calculated with unit vectors.

(b) EXECUTE:
$$\vec{B} = (1.40 \text{ T})\hat{k}$$

$$\vec{F} = q\vec{v} \times \vec{B} = (-1.24 \times 10^{-8} \text{ C})(1.40 \text{ T})[(+4.19 \times 10^{4} \text{ m/s})\hat{i} \times \hat{k} - (3.85 \times 10^{4} \text{ m/s})\hat{j} \times \hat{k}]$$

$$\hat{i} \times \hat{k} = -\hat{j}, \ \hat{j} \times \hat{k} = \hat{i}$$

$$\vec{F} = (-7.27 \times 10^{-4} \text{ N})(-\hat{j}) + (6.68 \times 10^{-4} \text{ N})\hat{i} = [(6.68 \times 10^{-4} \text{ N})\hat{i} + (7.27 \times 10^{-4} \text{ N})\hat{j}]$$

EVALUATE: The directions of \vec{v} and \vec{B} are shown in Figure.

The direction of \vec{F} is opposite to $\vec{v} \times \vec{B}$ since q is negative. The direction of \vec{F} computed from the right-hand rule agrees qualitatively with the direction calculated with unit vectors.

3. **IDENTIFY:** Apply $\vec{F} = q\vec{v} \times \vec{B}$.

SET UP:
$$\vec{v} = v_y \hat{j}$$
, with $v_y = -3.80 \times 10^3$ m/s. $F_x = +7.60 \times 10^{-3}$ N, $F_y = 0$, and $F_z = -5.20 \times 10^{-3}$ N.

EXECUTE: (a)
$$F_x = q(v_y B_z - v_z B_y) = qv_y B_z$$
.

$$B_z = F_x/qv_y = (7.60 \times 10^{-3} \text{ N})/[(7.80 \times 10^{-6} \text{ C})(-3.80 \times 10^3 \text{ m/s})] = -0.256 \text{ T}$$

 $F_y = q(v_z B_x - v_x B_z) = 0$, which is consistent with \vec{F} as given in the problem. There is no force component along the direction of the velocity.

$$F_z = q(v_x B_y - v_y B_x) = -qv_y B_x$$
. $B_x = -F_z/qv_y = -0.175 \text{ T}$.

(b) B_y is not determined. No force due to this component of \vec{B} along \vec{v} ; measurement of the force tells us nothing about B_y .

(c)
$$\vec{B} \cdot \vec{F} = B_x F_x + B_y F_y + B_z F_z = (-0.175 \text{ T})(+7.60 \times 10^{-3} \text{ N}) + (-0.256 \text{ T})(-5.20 \times 10^{-3} \text{ N})$$

$$\vec{B} \cdot \vec{F} = 0$$
. \vec{B} and \vec{F} are perpendicular (angle is 90°).

Evaluate: The force is perpendicular to both \vec{v} and \vec{B} , so $\vec{v} \cdot \vec{F}$ is also zero.

4. **IDENTIFY:** When a particle of charge -e is accelerated through a potential difference of magnitude V, it gains kinetic energy eV. When it moves in a circular path of radius R, its acceleration is $\frac{v^2}{R}$.

SET UP: An electron has charge $q = -e = -1.60 \times 10^{-19} \text{ C}$ and mass $9.11 \times 10^{-31} \text{ kg}$.

EXECUTE:
$$\frac{1}{2}mv^2 = eV$$
 and $v = \sqrt{\frac{2eV}{m}} = \sqrt{\frac{2(1.60 \times 10^{-19} \text{ C})(2.00 \times 10^3 \text{ V})}{9.11 \times 10^{-31} \text{ kg}}} = 2.65 \times 10^7 \text{ m/s}. \vec{F} = m\vec{a}$

gives
$$|q|vB\sin\phi = m\frac{v^2}{R}$$
. $\phi = 90^{\circ}$ and $B = \frac{mv}{|q|R} = \frac{(9.11 \times 10^{-31} \text{ kg})(2.65 \times 10^7 \text{ m/s})}{(1.60 \times 10^{-19} \text{ C})(0.180 \text{ m})} = 8.38 \times 10^{-4} \text{ T}.$

EVALUATE: The smaller the radius of the circular path, the larger the magnitude of the magnetic field that is required.

5. **IDENTIFY:** After being accelerated through a potential difference V the ion has kinetic energy qV. The acceleration in the circular path is v^2/R .

SET UP: The ion has charge q = +e.

EXECUTE:
$$K = qV = +eV$$
. $\frac{1}{2}mv^2 = eV$ and $v = \sqrt{\frac{2eV}{m}} = \sqrt{\frac{2(1.60 \times 10^{-19} \text{ C})(220 \text{ V})}{1.16 \times 10^{-26} \text{ kg}}} = 7.79 \times 10^4 \text{ m/s}.$

$$F_B = |q| v B \sin \phi$$
. $\phi = 90^\circ$. $\vec{F} = m\vec{a}$ gives $|q| v B = m \frac{v^2}{R}$.

$$R = \frac{mv}{|q|B} = \frac{(1.16 \times 10^{-26} \text{ kg})(7.79 \times 10^4 \text{ m/s})}{(1.60 \times 10^{-19} \text{ C})(0.723 \text{ T})} = 7.81 \times 10^{-3} \text{ m} = 7.81 \text{ mm}.$$

EVALUATE: The larger the accelerating voltage, the larger the speed of the particle and the larger the radius of its path in the magnetic field.

6. **IDENTIFY:** For no deflection the magnetic and electric forces must be equal in magnitude and opposite in direction

SET UP: v = E/B for no deflection. With only the magnetic force, $|q|vB = mv^2/R$.

EXECUTE: (a)
$$v = E/B = (1.56 \times 10^4 \text{ V/m})/(4.62 \times 10^{-3} \text{ T}) = 3.38 \times 10^6 \text{ m/s}.$$

(b) The directions of the three vectors \vec{v} , \vec{E} and \vec{B} are sketched in Figure.

(c)
$$R = \frac{mv}{|q|B} = \frac{(9.11 \times 10^{-31} \text{ kg})(3.38 \times 10^6 \text{ m/s})}{(1.60 \times 10^{-19} \text{ C})(4.62 \times 10^{-3} \text{ T})} = 4.17 \times 10^{-3} \text{ m}.$$

$$T = \frac{2\pi m}{|q|B} = \frac{2\pi R}{v} = \frac{2\pi (4.17 \times 10^{-3} \text{ m})}{(3.38 \times 10^6 \text{ m/s})} = 7.74 \times 10^{-9} \text{ s}.$$

EVALUATE: For the field directions shown in Figure, the electric force is toward the top of the page and the magnetic force is toward the bottom of the page.

7. **IDENTIFY:** The velocity selector eliminates all ions not having the desired velocity. Then the magnetic field bends the ions in a circular arc.

SET UP: In a velocity selector, E = vB. For motion in a circular arc in a magnetic field of magnitude B,

$$R = \frac{mv}{|q|B}$$
. The ion has charge $+e$.

EXECUTE: (a)
$$v = \frac{E}{B} = \frac{155 \text{ V/m}}{0.0315 \text{ T}} = 4.92 \times 10^3 \text{ m/s}.$$

(b)
$$m = \frac{R|q|B}{v} = \frac{(0.175 \text{ m})(1.60 \times 10^{-19} \text{ C})(0.0175 \text{ T})}{4.92 \times 10^3 \text{ m/s}} = 9.96 \times 10^{-26} \text{ kg}.$$

EVALUATE: Ions with larger ratio $\frac{m}{|q|}$ will move in a path of larger radius.

10. **IDENTIFY** and **SET UP:** The magnetic force is given by Eq. (27.19). $F_I = mg$ when the bar is just ready to levitate. When I becomes larger, $F_I > mg$ and $F_I - mg$ is the net force that accelerates the bar upward. Use Newton's second law to find the acceleration.

(a) EXECUTE:
$$llB = mg$$
, $I = \frac{mg}{lB} = \frac{(0.750 \text{ kg})(9.80 \text{ m/s}^2)}{(0.500 \text{ m})(0.450 \text{ T})} = 32.67 \text{ A}$

$$\mathcal{E} = IR = (32.67 \text{ A})(25.0 \Omega) = 817 \text{ V}$$

(b)
$$R = 2.0 \Omega$$
, $I = \mathcal{E}/R = (816.7 \text{ V})/(2.0 \Omega) = 408 \text{ A}$

$$F_I = IlB = 92 \text{ N}$$

$$a = (F_I - mg)/m = 113 \text{ m/s}^2$$

EVALUATE: I increases by over an order of magnitude when R changes to $F_I >> mg$ and a is an order of magnitude larger than g.

Answers

- 8. a) 3.96×10^{-2} N b) 7.87 N
- 9. 0.210 m