

Applied Generalized Linear Models (FS 20)

Binary outcomes: logistic regression and probit models

Viviana Amati

Course structure - schedule

Date	Topic	Assignment	
18.02	Introduction to the course	Ass. 1 released on 25.02 due to 19.03	
25.02	Introduction to R and review of the linear regression mode		
03.03	The general linear model: ANOVA and ANCOVA		
10.03	Practical: ANOVA and ANCOVA		
17.03	Binary outcomes: logistic regression and probit models	Ass. 2	
24.03	Practical: logistic regression and probit models	released on 17.03	
31.03	Nominal outcomes: multinomial logistic regression	due to 23.04	
07.04	Practical: multinomial logistic regression		
21.04	Ordinal outcomes: ordered logistic regression and probit models	Ass. 3 released on 21.04	
28.04	Practical: ordered logistic regression and probit models		
05.05	Count outcomes: Poisson and negative binomial models	due to 21.05	
12.05	Practical: Poisson and negative binomial models		
19.05	Survival models (lecture+practical)		
26.05	Regular lecture: panel data model		

A bit of (re-)organization

- ▶ Live streaming of the lecture
- ▶ Every Tuesday (but 14.04) at 17.15 via zoom
- ▶ No break during the lecture
- ▶ Join URL: https://ethz.zoom.us/j/765282314 Meeting ID: 765 282 314
- ▶ For questions: emails and skype/zoom meetings
- ► Exam: I will let you know how we will proceed once we have all the available options

ETH zürich

Today's agenda

▶ Models for binary outcomes

▶ Logistic regression model

▶ Probit models

▶ Latent variable models

An example: CHD and age

 \blacktriangleright Hypothetical study of risk factors for heart disease (Hosmer et al., 2013)

▶ Y: presence (1) absence (0) of a coronary heart disease CHD

 \triangleright X: age in years

▶ Developing a coronary heart disease as a function of age

An example: CHD and age

An example: CHD and age

Models for binary outcomes

▶ Binary dependent variable

$$Y = \begin{cases} 1 & \text{if an event occurs (success)} \\ 0 & \text{otherwise (failure)} \end{cases}$$

▶ Y has a Bernoulli distribution

$$P(Y = 1) = \pi$$
 $P(Y = 0) = 1 - \pi$

- ▶ Investigate the relation between Y and X_1, \ldots, X_p
- \triangleright Information on n entities independently sampled from a population

Linear probability model (LPM)

Model formulation

$$Y_i = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_p X_{ip} + \varepsilon_i$$

▶ If $E[\varepsilon_i] = 0$

$$E[Y|\mathbf{X}] = \pi(\mathbf{x}) = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_p X_{ip}$$

with

$$E[Y|\mathbf{X}] = P(Y=1|\mathbf{X}) .$$

- ▶ LPM is an LRM for the probability $\pi(\mathbf{x})$
- $\triangleright \beta_j$: expected change in $\pi(\mathbf{x})$ for a unit increase of X_j , controlling for all the other variables

Linear probability model

The LPM has three "structural defects":

1. Range

 $\pi(\mathbf{x})$ takes values in the unit interval [0, 1] The LPM can predict values of $\pi(\mathbf{x})$ greater than 1 or less than 0

2. Linearity

Typically, the relation between X_j and $\pi(\mathbf{x})$ is described by an s-shaped curve

Linear probability model - issues

- 3. Normality and homoschnedasticity of the error term are not met
 - Given

$$Y_i = E[Y | \mathbf{X}] + \varepsilon_i = \pi(\mathbf{x}_i) + \varepsilon_i$$
,

the error term can only take the two values

$$\varepsilon_i = \begin{cases} 1 - \pi(\mathbf{x}_i) & \text{if } y_i = 1\\ -\pi(\mathbf{x}_i) & \text{if } y_i = 0 \end{cases}$$

– the variance of ε_i is not constant across the observations

$$E[\varepsilon_i] = 0$$
 and $Var[\varepsilon_i] = \pi(\mathbf{x}_i)(1 - \pi(\mathbf{x}_i))$.

Linear probability model - issues

▶ The simplest model: one explanatory variable

logit[
$$\pi(\mathbf{x})$$
] = log $\left[\underbrace{\frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})}}\right] = \beta_0 + \beta_1 X_1$

► The logistic distribution

$$\pi(\mathbf{x}) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

The logistic distribution

More than one explanatory variable

▶ The simplest model: one explanatory variable

$$\operatorname{logit}[\pi(\mathbf{x})] = \operatorname{log}\left[\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}\right] = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$$

► The logistic distribution

$$\pi(\mathbf{x}) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

Binary logistic regression model as a GLM

- 1. The random component $Y \mid \mathbf{X}$ has a binomial distribution
- 2. The systematic component is $\sum_{j=1}^{p} \beta_j X_j$

3. The link function is the logit function defined as the logarithm of the odds of a success conditional on ${\bf x}$

$$logit[\pi(\mathbf{x})] = log\left[\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}\right].$$

Parameter estimation

▶ Maximum likelihood estimation

$$\begin{split} \hat{\boldsymbol{\beta}} &= \max_{\boldsymbol{\beta}} L(\boldsymbol{\beta}, \mathbf{y}) \\ &= \prod_{i=1}^{n} P(Y_i = y_i | \mathbf{x}) \\ &= \prod_{i=1}^{n} \pi(\mathbf{x}_i)^{y_i} [1 - \pi(\mathbf{x}_i)]^{(1-y_i)} \end{split}$$

Maximum likelihood estimation

Log-likelihood

$$\hat{\boldsymbol{\beta}} = \max_{\boldsymbol{\beta}} \ell(\boldsymbol{\beta}, \mathbf{y})$$

$$= \sum_{i=1}^{n} \left[y_i \log \pi(\mathbf{x}_i) + (1 - y_i) \log[1 - \pi(\mathbf{x}_i)] \right]$$

▶ System non-linear in the parameters

$$\begin{cases} \sum_{i=1}^{n} [y_i - \pi(\mathbf{x}_i)] = 0 & \text{derivative w.r.t. } \beta_0 \\ \sum_{i=1}^{n} [y_i - \pi(\mathbf{x}_i)] x_{ij} = 0 & \text{derivative w.r.t. } \beta_j \end{cases}$$

► Approximation using iterative methods

Maximum likelihood estimator

► Asymptotic distribution

$$\mathbf{B} \sim N(\boldsymbol{\beta}, \mathbf{I}^{-1}(\boldsymbol{\beta}))$$

with
$$\mathbf{I}^{-1}(\boldsymbol{\beta}) = -\mathbf{E}\left[\frac{\partial^2 \ell(\boldsymbol{\beta}, \mathbf{y})}{\partial \beta_i, \partial \beta_j}\right]$$
 is the Fisher information matrix

 \blacktriangleright **B** is (asymptotically) the minimum variance unbiased estimator (MVUE)

Hypotheses testing: Wald test

One single parameter β_j

▶ Hypotheses

$$H_0: \beta_i = 0$$
 vs. $H_1: \beta_i \neq 0$

 H_0 : no association between Y and X_i

► Test statistic

$$W = \frac{B_j}{s.e.(B_j)} \sim Z$$

with $Z \sim N(0, 1)$

Rejection region

$$\left| \frac{\hat{\beta}_j}{s.e.(\hat{\beta}_j)} \right| \ge z_{1-\alpha/2}$$

with $z_{1-\alpha/2}$ the quantile of the standard normal that leaves on its left a probability of $1-\alpha/2$.

Hypotheses testing: Likelihood ratio test

All β_j

Hypotheses

$$H_0: \beta_1 = \ldots = \beta_p = 0$$
 vs. $H_1:$ at least one $\beta_j \neq 0, \ j = 1, \ldots, p$
 $H_0:$ the model does not explain the variability of Y

► Reduced and full model

$$logit[\pi(\mathbf{x})] = \beta_0 \qquad (under \ H_0)$$
$$logit[\pi(\mathbf{x})] = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p \quad (under \ H_1)$$

Test statistic

$$G = -2\log\left[\frac{L(\hat{\beta}, \mathbf{y}|H_0)}{L(\hat{\beta}, \mathbf{y}|H_1)}\right] = -2\ell(\hat{\beta}, \mathbf{y}|H_0) + 2\ell(\hat{\beta}, \mathbf{y}|H_1)$$

Rejection region

$$G > \chi^2_{p,1-\alpha}$$

 $\chi^2_{p,1-\alpha}$ is the quantile of a χ^2_p leaving on its left a probability of $1-\alpha$.

Parameter interpretation

▶ Odds ratio

$$OR = \frac{\pi(\mathbf{x} + \delta)/[1 - \pi(\mathbf{x} + \delta)]}{\pi(\mathbf{x})/[1 - \pi(\mathbf{x})]} = e^{\delta\beta_j}$$

with

$$- \mathbf{x} = (x_1, \dots, x_j, \dots, x_p)$$
$$- \mathbf{x} + \delta = (x_1, \dots, x_j + \delta, \dots, x_p)$$

▶ Percentage changes in the odds:

$$OR_{\%} = 100 \cdot \left[\frac{\text{odds}(\mathbf{x} + 1) - \text{odds}(\mathbf{x})}{\text{odds}(\mathbf{x})} \right] = 100 \cdot [e^{\beta_j} - 1]$$

Example

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-5.309	1.134	-4.683	0.000
age	0.111	0.024	4.610	0.000

- Significant association between age and CHD
- ▶ $OR = e^{0.111}$ =1.117: For a one year increase in age, the odds of a CHD are increased by a factor of 1.117, holding all other variables constant
- ▶ $OR_{\%} = 100 \cdot [e^{0.111} 1] = 11.7\%$: For each additional year in age, the odds of being admitted are increased 11.7%, holding all other variables constant constant

Probit model

A GLM

- 1. The random component $Y | \mathbf{X}$ has a binomial distribution
- 2. The systematic component is $\sum_{j=1}^{p} \beta_j X_j$
- 3. The link function is the inverse of the cumulative distribution function of a standard normal distribution:

$$\phi^{-1}[\pi(\mathbf{x})] = \beta_0 + \sum_{j=1}^p \beta_j X_j$$

with ϕ denotes the cumulative distribution function of a standard normal distribution

Probit vs. logit model

▶ Usually lead to the same results

- ▶ Logit transformation is preferred to the probit because
 - the logit allows to write $\pi(\mathbf{x})$ in a closed form
 - the logit can be easily interpreted using the OR
 - the probit model is more difficult to estimate

Latent variable model

- ightharpoonup Y binary variable
- ▶ Y^* latent continuous variable ranging from $-\infty$ to ∞
- \triangleright Y* is assumed to be linearly related to X through the model

$$y_i^* = \beta_0 + \beta_1 X + \varepsilon_i$$

▶ The variable y_i^* is linked to the observed binary variable y_i by the equation

$$y_i = \begin{cases} 1 & \text{if } y_i^* \ge \tau \\ 0 & \text{if } y_i^* < \tau \end{cases}$$

where τ is a threshold

Latent variable model

▶ To estimate the parameters of

$$y_i^* = \beta_0 + \beta_1 X + \varepsilon_i$$

we use the MLE

- ▶ Assumptions on the distribution of the error terms
 - $-\varepsilon_i$ has the logistic distribution \rightarrow binary logistic regression model
 - $-\varepsilon_i$ has the normal distribution \rightarrow probit model

Latent variable model

ETH zürich

References

Hosmer, D. W., Lemeshow, S., and Sturdivant, R. X. (2013). Applied logistic regression, volume 398. John Wiley & Sons.