FEUP/MIEIC MATEMÁTICA DISCRETA

RELAÇÕES BINÁRIAS E ORDENS PARCIAIS

- **1 Relação.** Considere a relação binária $R = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,2), (3,3), (4,4)\}$ definida em $A = \{1,2,3,4\}$.
- a) Represente a relação R por um diagrama e por uma matriz.
- b) Quais as propriedades das relações de que R goza (reflexiva, simétrica, antissimétrica, transitiva)?
- c) Como carateriza cada uma dessas propriedades em termos gráficos na figura?
- **2** Relação. Suponha que A é um subconjunto de N×N com as propriedades
 - $(1,1) \in A$
 - $(a,b) \in A \rightarrow (a+1,b)$ e (a+1,b+1) estão ambos em A.

Acha que $\{(m,n) \in \mathbb{N} \times \mathbb{N} \mid m \ge n \}$ é um subconjunto de A? Explique.

- **3 Relação.** Considere a relação $S = \{((x,y),(u,v)) \in \mathbb{R}^2 \times \mathbb{R}^2 \mid x^2 + y^2 = u^2 + v^2\}.$
- a) É antissimétrica?
- b) É uma relação de equivalência? Se sim, descreva $\overline{(a,b)}$ a classe de equivalência de (a,b).
- **4 Relação de equivalência.** Considere P, o conjunto dos naturais de Portugal e a relação S = {(x,y) ∈ P×P | x é natural do mesmo distrito que y}. Esta relação define uma partição em P? Com quantas células?
- **5 Diagrama de Hasse.** Desenhe o diagrama de Hasse para o seguinte conjunto parcialmente ordenado ($\{\{a\}, \{a,b\}, \{a,b,c\}, \{a,b,c,d\}, \{a,c\}, \{c,d\}\}, \subseteq$).
 - a) Qual o máximo?
 - b) Quais os maximais?
 - c) Qual o mínimo?
 - d) Quais os minimais?
 - e) Qual o supremo de {a,b} e {a,c}?
 - f) Qual o ínfimo de $\{a,b\}$ e $\{c,d\}$?
 - g) $\{a,b\} \land \{a,c\}$
 - h) $\{a\} \vee \{c,d\}$
- **6 Diagrama de Hasse.** Considere o cpo (\mathbf{B}, \leq) em que $\mathbf{B} = \{0,1\}$ é o conjunto dos dígitos binários e $0 \leq 1$. \mathbf{B}^n é o conjunto dos n-uplos com componentes binárias $\mathbf{B}^n = \{(a_1, a_2, ..., a_n) \mid a_i \in \mathbf{B}, \text{ para } i = 1, ..., n\}$ os quais, por simplicidade, podem ser escritos $a_1 a_2 ... a_n$. Define-se em \mathbf{B}^n a relação binária $a_1 a_2 ... a_n \leq b_1 b_2 ... b_n \leftrightarrow \forall i \in \{1, ..., n\}$ $a_i \leq b_i$.
 - a) Mostre que (\mathbf{B}^n, \leq) é um cpo.
 - b) Desenhe o diagrama de Hasse correspondente ao cpo (\mathbf{B}^3, \leq).

GABRIEL DAVID FUNÇÕES - 1/3

FEUP/MIEIC MATEMÁTICA DISCRETA

- c) Qual o supremo de {001,110}? E o ínfimo de {011,110}?
- d) Qual o significado do supremo e do ínfimo neste cpo, em termos de lógica binária?
- **7 Diagrama de Hasse**. Considere o conjunto de todos os divisores positivos de 36, D₃₆={1,2,3,4,6,9,12,18,36} e a relação de divisibilidade a|b se a for um divisor inteiro de b.
 - a) Desenhe o diagrama de Hasse do cpo (D₃₆,|).
 - b) Determine o sup $A = \{1, 2, 3, 4, 6\}$
 - c) Determine o inf A
 - d) Determine o sup $B = \{2,6,12,18\}$
 - e) Determine inf B
 - f) Qual o conjunto dos minorantes de {12,18}? O que significa esse conjunto?
 - g) Qual o significado de $12 \land 18$ e de $12 \lor 18$?
- 8 Seja S um conjunto não vazio e A e B dois elementos do power set de S. Para o cpo $(\wp(S), \subseteq)$ prove que $A \land B = A \cap B$.
- 9 Suponha que $(A_1, \leq_1)e$ (A_2, \leq_2) são conjuntos parcialmente ordenados.
 - a) Mostre que a definição

$$(x_1, x_2) \le (y_1, y_2) \leftrightarrow x_1 \le_1 y_1 e x_2 \le_2 y_2$$

para $(x_1, x_2), (y_1, y_2) \in A_1 \times A_2$ faz de $(A_1 \times A_2, \le)$ um cpo.

- b) Seja $A_1 = A_2 = \{2,3,4\}$. Atribua a A_1 a ordem parcial \le e a A_2 a ordem parcial |. Ordene parcialmente $A_1 \times A_2$ tal como definido em a). Mostre todos os relacionamentos da forma $(x_1, x_2) < (y_1, y_2)$.
- c) Desenhe o diagrama de Hasse para o cpo de b).
- d) Determine todos os elementos maximais, minimais, máximo e mínimo que existirem no cpo de b).
- e) Com A_1 e A_2 tal como em b), obtenha os ínfimos e supremos que existirem para cada um dos seguintes pares de elementos
 - i. (2,2), (3,3)
 - ii. (4,2), (3,4)
 - iii. (3,2), (2,4)
 - iv. (3,2), (3,4)
- f) Mostre, com um exemplo, que se (A_1, \leq_1) e (A_2, \leq_2) forem cpo com ordens totais, $(A_1 \times A_2, \leq)$ não é necessariamente um cpo com uma ordem total.
- **10** Seja $S = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \dots \right\}$ o conjunto de todas as matrizes 2x2 binárias.
 - a) Sendo A e B elementos de S, define-se a ordem parcial $A \le B$ sse $a_{ij} \le b_{ij}$ para todo o i e j. Desenhe o diagrama de Hasse do cpo (S, \le) , assinalando o elemento

Gabriel David Funções - 2/3

FEUP/MIEIC MATEMÁTICA DISCRETA

$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \vee \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

- b) Se redefinisse a relação binária para A ≤ B sse det(A) ≤ det(B), o resultado seria: uma relação de ordem total; uma relação de ordem parcial correspondendo a um diagrama de Hasse só com três níveis; não é ordem parcial.
- 11 Seja S={a+bi | a,b $\in \mathbb{N} \land |a+bi| = \sqrt{(a2+b2)} \le 4$ } o conjunto dos números complexos de coeficientes inteiros e módulo inferior ou igual a 4.
 - a) Define-se neste conjunto a seguinte ordem parcial: $a+bi \le c+di$ sse $a \le c \land b \le d$. Desenhe o diagrama de Hasse do cpo (S, \le) , assinalando o elemento $1+3i \lor 3+i$.
 - b) Se redefinisse a relação binária para a+bi ≤ c+di sse |a+bi| ≤ |c+di|, o resultado seria: uma relação de ordem total; uma relação de ordem parcial correspondendo a um diagrama de Hasse com quatro níveis; não é ordem parcial.
- 12 Dada uma relação binária R, define-se a relação inversa $R^{-1} = \{(b,a) \mid (a,b) \in R\}$.
 - a) Suponha que R é uma relação transitiva em S×S. Será que R⁻¹ tem que ser também transitiva? Prove a afirmação ou construa um contraexemplo.
 - b) Suponha que R é uma ordem total num conjunto S. Mostre que $R \cup R^{-1} = S \times S$.

Gabriel David Funções - 3/3