

Fachrichtung Mathematik • Institut für Algebra • Prof. Dr. Ulrike Baumann

Mathematische Methoden für Informatiker INF-120 Sommersemester 2019

0. Übungsblatt für die Woche 01.04. - 07.04.2019 Grundlagen zur Analysis

A1 Es wird die Funktion $f(x) = x^2 - 4$ betrachtet. Bestimmen Sie die folgenden Funktionen und skizzieren Sie ihre Funktionskurven (achten Sie dabei auf die Lage der Nullstellen):

(a)
$$y = f(-x)$$
,

(b)
$$y = -f(x)$$
,

$$(c) \quad y = 2f(x),$$

(d)
$$y = f(2x)$$
,

(e)
$$y = f(x+2)$$
,

(a)
$$y = f(-x)$$
, (b) $y = -f(x)$, (c) $y = 2f(x)$, (d) $y = f(2x)$, (e) $y = f(x+2)$, (f) $y = f(x) + 2$.

A2 Skizzieren Sie die Bilder folgender reeller Funktionen y = f(x):

(a)
$$y = e^{x-1} - 1$$
,

(b)
$$y = |x - 1|$$

(b)
$$y = |x - 1|$$
, (c) $y = \ln |x - 1|$,

(d)
$$y = (x+2)(x-1)$$
.

A3 Berechnen Sie alle Werte $x \in \mathbb{R}$, die folgende Gleichungen erfüllen:

(a)
$$\frac{\frac{5}{3x}}{3} + \frac{1}{\frac{25}{14} + \frac{1}{21}} = 1$$
, (b) $(x+1)(\sqrt{x}-1)^{-2} = 1$, (c) $\sqrt{x^2 - 2} - \sqrt{1 - 2x} = 0$.

(b)
$$(x+1)(\sqrt{x}-1)^{-2} = 1$$
,

(c)
$$\sqrt{x^2 - 2} - \sqrt{1 - 2x} = 0$$

A4 Ermitteln Sie alle reellen Lösungen der folgenden Gleichungen bzw. Ungleichungen:

(a)
$$\ln(e^x - 1) > \ln(2)$$
, (b) $x + \frac{1}{x} \ge 2$,

(b)
$$x + \frac{1}{x} \ge 2$$
,

(c)
$$|x-1| < 5$$
.

Verwenden Sie (b), um zu zeigen, dass unter allen Rechtecken mit festem Flächeninhalt von 1 Flächeneinheit das Quadrat den kleinsten Umfang hat.

Weitere Aufgaben zur Wiederholung im Selbststudium:

A5 (a) Ermitteln Sie alle reellen Lösungen der folgenden Gleichungen bzw. Ungleichungen:

(i)
$$2\ln(x) \cdot \ln(x+6) - \ln^2(x+6) = 0$$
, (ii) $\frac{x-2}{x+3} < 2x$,

(ii)
$$\frac{x-2}{x+3} < 2x$$

(iii)
$$|1 + x| \ge 4$$
,

$$(iv) \quad \left| \frac{x-3}{2x+4} \right| < 1.$$

(b) Vereinfachen Sie die folgenden Terme (in (i) bedeutet das, den Term so umzuformen, dass keine Wurzeln im Nenner stehen):

$$(i) \quad \frac{\sqrt{10}}{\sqrt{5} + \sqrt{2}} \ ,$$

(ii)
$$\frac{\frac{1}{a} + \frac{1}{b}}{\frac{a-b}{ab}} - \frac{4}{\frac{a}{b} - \frac{b}{a}}, \quad a > b > 0.$$

(Tipp: Mit Differenz der Wurzeln des Nenners erweitern)

A6 Gegeben sind die reellen Polynome $p(x) = x^4 + x^3 - 3x^2 - x + 2$ und $q(x) = x^2 + x - 2$.

- (a) Berechnen Sie die Funktion $f(x) = \frac{p(x)}{q(x)}$ für x > 1 durch Polynomdivision. Untersuchen Sie, ob $f:(1,\infty)\to\mathbb{R}$ injektiv bzw. surjektiv ist.
- (b) Bestimmen Sie alle reellen Nullstellen von p(x), und zerlegen Sie p(x) in Linearfak-

A7 Betrachtet wird der Vektorraum V aller reellen Polynome vom Grad kleiner 3 mit der üblichen Polynomaddition und Skalierung mit einem Skalar aus \mathbb{R} . Untersuchen Sie, ob die Menge

$$U = \left\{ p(x) = ax^2 + bx + c \mid 2a + 3b + 4c = 0, a, b, c \in \mathbb{R} \right\}$$

einen Untervektorraum von V bildet.

A8 Berechnen Sie $z_1+z_2,\ z_1-z_2,\ z_1\cdot z_2,\ \frac{z_1}{z_2},\ \overline{z_2}\cdot z_1,\ \overline{z_2}\cdot z_2$ von:

(a)
$$z_1 = 1 + i\sqrt{3}, \ z_2 = 1 - i$$

(a)
$$z_1 = 1 + i\sqrt{3}$$
, $z_2 = 1 - i$, (b) $z_1 = 2 + 3i$, $z_2 = 3 - 5i$, (c) $z_1 = 4 - 5i$, $z_2 = 4 + 5i$, (d) $z_1 = i$, $z_2 = -2 - 4i$.

(c)
$$z_1 = 4 - 5i$$
, $z_2 = 4 + 5i$,

(d)
$$z_1 = i$$
, $z_2 = -2 - 4i$

A9 Welche komplexe Zahl ist das Spiegelbild von $z \neq 0$ bei Spiegelung

- (a) an der reellen Achse,
- (b) an der imaginären Achse,
- (c) an der Winkelhalbierenden des II. und IV. Quadranten?

A10 (a) Bestimmen Sie Real- und Imaginärteil der komplexen Zahlen:

(i)
$$z = \frac{3+2i}{1+i}$$
,

(ii)
$$z = (\sqrt{2 + \sqrt{3}} + i\sqrt{2 - \sqrt{3}})^2$$
.

(b) Stellen Sie die komplexen Zahlen in trigonometrischer und kartesischer Form dar:

(i)
$$z = (1 - i)^6$$
,

(ii)
$$z = e^{2+3\pi i}$$

(c) Lösen Sie die folgenden Gleichungen:

(i)
$$z^4 = \frac{1}{2}(\sqrt{3}i - 1),$$
 (ii) $z^2(1+i) = 2z.$

(ii)
$$z^2(1+i) = 2z$$

Literaturempfehlungen zu den Grundlagen der Analysis, um Lücken aus dem Schulstoff zu schließen:

• Rießinger, Thomas:

Mathematik für Ingenieure - Eine anschauliche Einführung für das praxisorientierte Studium, Springer, 2005. (Lehrbuchsammlung SLUB) dazu das Buch der Übungsaufgaben nebst Lösungen (Lehrbuchsammlung SLUB)

- Bosch, Karl: Brückenkurs Mathematik, Oldenbourg, 2010. (DrePunct)
- Gehrke, Jan: Brückenkurs für Wirtschafts- und Naturwissenschaften, Oldenbourg, 2012. (DrePunct)
- Scheid, Harald: Abiturwissen Analysis, Klett-Verlag, 1994. (SLUB)
- weitere Literatur zum Abiturwissen in der SLUB unter SM 900 910.