Fermatov poslednji izrek za n=4 in sorodni problemi

Jimmy Zakeršnik

Oddelek za Matematiko Fakulteta za matematiko in fiziko Univerza v Ljubljani

Predstavitev seminarske naloge, 16. maj 2019, Ljubljana

Motivacija

Slika: Skica modela, ki ga želimo sestaviti. a,b in c so pozitivna cela števila, S pa površina kvadrata.

Izrek (Fermatov poslednji izrek)

Naj bo n celo število, ki je (strogo) večje od 2 (n>2). Tedaj enačba $x^n+y^n=z^n$ nima netrivialnih celoštevilskih rešitev $x,y,z\in\mathbb{Z}$

Izrek (Fermatov poslednji izrek)

Naj bo n celo število, ki je (strogo) večje od 2 (n>2). Tedaj enačba $x^n+y^n=z^n$ nima netrivialnih celoštevilskih rešitev $x,y,z\in\mathbb{Z}$

Nas zanima poseben primer n=4

Pomnimo:

Po Peanovih aksiomih, ima množica pozitivnih celih števil \mathbb{Z}^+ (oz. naravnih števil \mathbb{N}) najmanjši element. Drugače povedano, \mathbb{Z}^+ je navzdol omejena množica.

Najpogosteje jo uporabljamo da dokažemo, da neka enačba nima celoštevilskih rešitev:

ullet Predpostavimo, da obstaja neka celoštevilska rešitev a_1 ,

- Predpostavimo, da obstaja neka celoštevilska rešitev a_1 ,
- pokažemo, da za predpostavljeno rešitev obstaja še ena celoštevilska rešitev a_2 ,

- ullet Predpostavimo, da obstaja neka celoštevilska rešitev a_1 ,
- pokažemo, da za predpostavljeno rešitev obstaja še ena celoštevilska rešitev a_2 ,
- postopek ponavljamo in pridobljene rešitve razvrstimo po velikosti s pomočjo preslikave $f: \mathbb{Z} \to \mathbb{Z}^+$ (npr. $f: x \mapsto |x|$),

- ullet Predpostavimo, da obstaja neka celoštevilska rešitev a_1 ,
- pokažemo, da za predpostavljeno rešitev obstaja še ena celoštevilska rešitev a_2 ,
- postopek ponavljamo in pridobljene rešitve razvrstimo po velikosti s pomočjo preslikave $f: \mathbb{Z} \to \mathbb{Z}^+$ (npr. $f: x \mapsto |x|$),
- dobimo neskončno padajočo verigo,

- ullet Predpostavimo, da obstaja neka celoštevilska rešitev a_1 ,
- pokažemo, da za predpostavljeno rešitev obstaja še ena celoštevilska rešitev a2,
- postopek ponavljamo in pridobljene rešitve razvrstimo po velikosti s pomočjo preslikave $f: \mathbb{Z} \to \mathbb{Z}^+$ (npr. $f: x \mapsto |x|$),
- dobimo neskončno padajočo verigo,

$$f(a_1) > f(a_2) > f(a_3) > f(a_4) > \dots$$

Najpogosteje jo uporabljamo da dokažemo, da neka enačba nima celoštevilskih rešitev:

- ullet Predpostavimo, da obstaja neka celoštevilska rešitev a_1 ,
- pokažemo, da za predpostavljeno rešitev obstaja še ena celoštevilska rešitev a_2 ,
- postopek ponavljamo in pridobljene rešitve razvrstimo po velikosti s pomočjo preslikave $f: \mathbb{Z} \to \mathbb{Z}^+$ (npr. $f: x \mapsto |x|$),
- dobimo neskončno padajočo verigo,

$$f(a_1) > f(a_2) > f(a_3) > f(a_4) > \dots$$

• protislovje z dejstvom, da so \mathbb{Z}^+ navzdol omejena.

Primeri uporabe metode

Izrek:

Ne obstajajo takšna cela števila x,y in z, ki netrivialno rešijo enačbo $x^3+py^3+p^2z^3=0$, kjer je p poljubno praštevilo.

Primeri uporabe metode

Izrek:

Ne obstajajo takšna cela števila x,y in z, ki netrivialno rešijo enačbo $x^3+py^3+p^2z^3=0$, kjer je p poljubno praštevilo.

Izrek:

Naj bo d celo število, ki ni popolni kvadrat (torej ne obstaja takšno celo število k, da bi veljalo $d=k^2$. Potem je \sqrt{d} iracionalno število.

Fermatov poslednji izrek za n=4

Definicija:

Pitagorejska trojica je sestavljena iz treh celih števil $a,b,c\in\mathbb{Z}$, za katera velja $a^2+b^2=c^2$. Če so a,b in c paroma tuja si števila, pravimo, da je trojica **primitivna**. Pitagorejsko torjico števil a,b in c označimo z (a,b,c).

Fermatov poslednji izrek za n=4

Definicija:

Pitagorejska trojica je sestavljena iz treh celih števil $a,b,c\in\mathbb{Z}$, za katera velja $a^2+b^2=c^2$. Če so a,b in c paroma tuja si števila, pravimo, da je trojica **primitivna**. Pitagorejsko torjico števil a,b in c označimo z (a,b,c).

Izrek:

Naj bo (a,b,c) Pitagorejska trojica in d neko pozitivno celo število. Potem je ploščina trojici pripadajočega pravokotnega trikotnika enaka dvakratniku ploščine kvadrata s stranico dolžine d natanko tedaj, ko obstaja netrivialna celoštevilska rešitev enačbe $x^4+y^4=z^2$

Definicija:

Primitivna rešitev, za enačbo $a^2+b^2=c^2$, kjer so a,b in c pozitivna cela števila in b sodo (brez škode za splošnost) se glasi:

$$a = k^2 - l^2, b = 2kl, c = k^2 + l^2,$$

kjer je k večji od l ter sta si k in l tuji števili različnih parnosti $(gcd(k,l)=1, k\not\equiv l \bmod 2)$

Definicija:

Primitivna rešitev, za enačbo $a^2 + b^2 = c^2$, kjer so a, b in c pozitivna cela števila in b sodo (brez škode za splošnost) se glasi:

$$a = k^2 - l^2, b = 2kl, c = k^2 + l^2,$$

kjer je k večji od l ter sta si k in l tuji števili različnih parnosti $(gcd(k,l)=1, k\not\equiv l \bmod 2)$

Izrek:

Enačba $x^4 + y^4 = z^2$ ni rešljiva v pozitivnih celih številih.

Posledica:

Za vsako trojico racionalnih števil (x,y,z), ki rešijo enačbo $x^4+y^4=z^2$ velja, da je bodisi x, bodisi y enak 0.

Posledica:

Za vsako trojico racionalnih števil (x,y,z), ki rešijo enačbo $x^4+y^4=z^2$ velja, da je bodisi x, bodisi y enak 0.

Posledica:

Edini racionalni rešitve enačbe $y^2=x^4+1$ sta $(0,\pm 1)$.

Posledica:

Za vsako trojico racionalnih števil (x,y,z), ki rešijo enačbo $x^4+y^4=z^2$ velja, da je bodisi x, bodisi y enak 0.

Posledica:

Edini racionalni rešitve enačbe $y^2=x^4+1$ sta $(0,\pm 1)$.

Posledica

Edini racionalni rešitvi enačbe $2y^2 = x^4 - 1$ sta $(\pm 1; 0)$.

Posledica:

Za vsako trojico racionalnih števil (x,y,z), ki rešijo enačbo $x^4+y^4=z^2$ velja, da je bodisi x, bodisi y enak 0.

Posledica:

Edini racionalni rešitve enačbe $y^2=x^4+1$ sta $(0,\pm 1)$.

Posledica

Edini racionalni rešitvi enačbe $2y^2 = x^4 - 1$ sta $(\pm 1; 0)$.

Posledica

Edina racionalna rešitev enačbe $y^2 = x^3 + x$ je (0,0).

Viri

- K. Conrad, *Proofs by Descent*, http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/descent.pdf
- Pythagorean triple, https://en.wikipedia.org/wiki/Pythagorean_triple
- Proof by infinite descent, https://en.wikipedia.org/wiki/ Proof_by_infinite_descent
- Well-ordering principle, https: //en.wikipedia.org/wiki/Well-ordering_principle
- Peano axioms, https://en.wikipedia.org/wiki/Peano_axioms