Protokoll Praktikum EBau Bipolartransistor, Johann du Opfer

Johann Becker Valentin Eder Marc Ostner

19. Juni 2025

Date Performed: 30. Mai 2025 Instructor: Prof. Dr. Alexandru Negut

A Einführung

A.1 Gegenstand des Versuchs

In diesem Versuch sollen Eigenschaften und Anwendungen des Bipolartransistors BD137-16 untersucht werden.

A.2 Notwendige Vorbereitungen

A.2.1 Versuchsablauf

Die dynamische Messung der Transistorkennlinien erfolgt ähnlich zu der Messung von Diodenkennlinien.

A.2.2 Datenblatt

Der BD137-16 ist ein NPN Silizium Transistor. Der 16Änhang steht für die dynamische Stromverstärkung β_{III} , in diesem Fall 100~250.

A.3 Fragen zum Verstärker

Hier nicht ausgeführte Fragen finden sich im Anhang.

a) Welche Aufgabe hat der Kondensator C_k und wie herum muss ein gepolter Elektrolytkondensator an dieser Stelle eingebaut werden?

Der Koppelkondensator C_k trennt den Gleichspannungsanteil vom Signal und lässt nur das Wechselspannungssignal durch. Hierdurch kann ein Transistor Arbeitspunkt unabhängig von der Signalquelle U_{sig} eingestellt werden. Als resultat bleibt der Großsignal Arbeitspunkt bestehen, während die Kleinsignaländerungen von U_{sig} weiterhin bestehen bleiben.

Ein gepolter Elektrolytkondensator muss so eingebaut werden, dass die positive Seite an die höhere Gleichspannung angeschlossen wird.

e) Auf welchen Wert sollte der ausgangsseitige Arbeitspunkt U_{CE} eines Verstärkers in Emitterschaltung sinnvollerweise eingestellt werden?

Der Arbeitspunkt sollte in der SSafe Operation Areaëingestellt werden, um die Verstärkung möglichst wenig zu Verzerren. Also sollte U_{CE} überhablb des Sättigungsbereichs liegen, aber unter der maximalen ableitbaren Leistung. Um eine maximale Verstärkungsamplitude zu gewährleisten, sollte $U_{CE\,AP}$ im Mittel dieser beiden Spannungen $U_{CE\,S\"{attigung}}$ und $U_{CE\,PMax}$ liegen.

B Versuchsdurchführung

B.1 Kennlinien

B.1.1 Ausgangskennlinienfeld

Abbildung 1: Messschaltung zur Aufnahme des Ausgangskennlinienfeldes des BD137-16.

Das Ausgangskennlinienfeld wird jeweils in Schritten von $\Delta I_B = 100 \,\mu\text{A}$ aufgenommen.

B.1.2 Eingangskennlinie

Für diese Messung ist wichtig, die Spannungsquelle direkt am Kollektor und Emitter anzulegen, um die Spannung so Konstant wie möglich zu halten. Um eine Zerstörung des Transistors bei fehlerhaften Versuchsdurchführung zu verhindern, muss die Strombegrenzung der Spannungsquelle auf 250 mA eingestellt werden. Der Basisstrom wird über den Spannungsabfall an R_B bestimmt.

Abbildung 2: Messschaltung zur Aufnahme der Eingangskennlinie des BD137-16.

- **B.1.3** Temperaturverhalten
- B.1.4 Übertragungskennlinie
- **B.2** Betrieb als Verstärker
- **B.2.1** Einführung

Abbildung 3: Emitterschaltung zur Spannungsverstärkung.

B.2.2 Spannungsverstärkung

Der Arbeitspunkt für die Spannungsverstärkung wird durch die Schaltung in Abbildung 3 dargestellt.

I_C	2mA	5mA	10mA	15mA	20mA
$\overline{U_{Eingang}}$	1	1	1	1	1
$\overline{U_{Ausgang}}$	1	1	1	1	1

Tabelle 1: Aus und Eingangsamplituden bei Verschiedenen Kollektorströmen-

B.2.3 Bandbreite

Die untere Grenzfrequenz f_{gu} und die obere Grenzfrequenz f_{go} bestimmen die Bandbreite des Verstärkers. Die Bandbreite B ergibt sich zu:

$$B = f_{go} - f_{gu}$$

Dabei ist f_{gu} die Frequenz, bei der die Verstärkung auf $\frac{1}{\sqrt{2}} = -3$ dB ihres Maximalwertes im unteren Frequenzbereich abfällt, und f_{go} entsprechend im oberen Frequenzbereich.

B.3 Schaltanwendung

B.3.1 Grundlagen

Abbildung 4: Messschaltung für Charakterisierung des Transistor als Schalter.

C Auswertung

C.1 Parameter

C.1.1 Ausgangskennlinienfeld

a) Die einzelnen Kennlinien im Kennlinienfeld sind rechts schräg abgeschnitten. Verbinden Sie die Enden der Kennlinien mit einer Geraden und berechnen Sie aus deren Steigung einen Widerstandswert. Welcher Widerstand wird hier sichtbar?

Der Widerstand, der hier sichtbar wird, ist der sogenannte *Kollektor-Emitter-Sättigungswiderstand* r_{CE} . Er kann aus der Steigung der Geraden, die die Enden der Kennlinien verbindet, berechnet werden:

$$r_{CE} = \frac{\Delta U_{CE}}{\Delta I_C} = \frac{6.2 \,\mathrm{V}}{0.1 \,\mathrm{A}} = 62 \,\Omega$$

wobei ΔU_{CE} die Spannungsänderung und ΔI_C die Stromänderung im betrachteten Bereich ist.

b) Erstellen Sie aus dem Ausgangskennlinienfeld den Verlauf der statischen Stromverstärkung B im aktiven Vorwärtsbetrieb bei $U_{CE}=5\,\mathrm{V}.$

Die statische Stromverstärkung B (auch β genannt) berechnet sich zu $B = \frac{I_C}{I_B}$. Für jeden Messpunkt bei $U_{CE} = 5$ V wird I_C durch den zugehörigen I_B geteilt und der Verlauf von B über I_B bzw. I_C aufgetragen.

c) Vergleichen Sie die ermittelte Stromverstärkung mit dem Wert aus dem Datenblatt.

Die gemessene Stromverstärkung B sollte im Bereich des im Datenblatt angegebenen Wertes (hier $100 \sim 250$) liegen. Abweichungen können durch Messfehler oder Bauteiltoleranzen entstehen.

d) Verlängern Sie die erste Kennlinie, die über dem Kollektorstrom I_C von $100 \,\mathrm{mA}$ liegt, nach rechts bis $U_{CE} = 10 \,\mathrm{V}$. Bestimmen Sie damit näherungsweise die Early-Spannung U_A des Transistors.

Die Early-Spannung U_A ergibt sich als Schnittpunkt der verlängerten Kennlinie mit der U_{CE} -Achse. Dazu wird die Gerade durch die Kennlinie extrapoliert und der Schnittpunkt mit $I_C = 0$ bestimmt.

e) Zeichnen Sie in das Ausgangskennlinienfeld die Übersteuerungsgrenze $(U_{CB} = 0 \text{ V})$ ein.

Die Übersteuerungsgrenze ist die Linie, bei der $U_{CB} = 0$ V gilt. Sie kann als Gerade im Kennlinienfeld eingezeichnet werden, typischerweise parallel zur U_{CE} -Achse bei entsprechendem Wert.

D Formelzeichen

Symbol	Bedeutung
C_s	Sperrschichtkapazität
I_c	Fluß- oder Vorwärtestrom
I_a	Sperrstrom- oder Rückwärtestrom
I_{s}	Sperrsättigungsstrom
M	Stufenfaktor (grading coefficient)
m	Emissionskoeffizient
N_a	Akzeptordichte
N_0	Donatordichte
R_a	Bahnwiderstand
t_0	Injektionszeit
t_1	Anstiegszeit (Risetime)
t_1	Sperrverzögerungszeit (Reverse Recovery Time)
t_s	Speicherzeit
U_0	Diffusionsspannung
U_c	Fluß- oder Vorwärtsspannung
U_s	Sperr- oder Rückwärtsspannung
U_{s_5mk}	Durchbruchspannung an der Z-Diode bei $I_2 = 5\text{mA}$

