Package 'SDRcausal'

November 30, 2020

140Velliber 50, 2020
Version 0.3.0
Date 2020-06-11
Title SDRcausal
Author Filip Edstrom [aut, cre]
Maintainer Mohammad Ghasempour < mohammad.ghasempour@umu.se>
Description Provides two semiparametric estimators, imp.ate and ipw.ate.
Encoding UTF-8
Imports stats, ggplot2
Suggests nloptr
LazyData true
License GPL (>= 2)
RoxygenNote 7.1.0
NeedsCompilation yes

R topics documented:

Index

aipw.ate .																					2
aipw.var .																					3
aipw2.ate																					2
b10_fun .																					4
b_fun																					(
cms.ps.sem	i.																				- 7
cms.semi																					8
example_da	ıta																				10
imp.ate .																					1
imp.val .																					13
imp.var .																					15
imp2.var .																					16
inf.ate																					18
ipw.ate																					
ipw.var																					23
nw_kernel_	reg	res	S																		25
plot.imp .																					20
plot.ipw .																					2
ps.semi .												•			•				•		28
																					3(

2 aipw.ate

aipw.ate

Combines IPW and IMP estimators to form the augmented IPW, AIPW

Description

Augmented IPW (AIPW) as in Ghosh, Ma, & De Luna (2020).

Usage

```
aipw.ate(y, treated, imp, ipw)
```

Arguments

У	Observed response
treated	A binary vetor indicating treatment
imp	imp output object from imp.ate
ipw	ipw output object from ipw.ate

Value

The AIPW estimation (AIPW) of the average treatment effect (ATE).

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 8,</pre>
           bwc_prop_score = 8)
# Calculate the Augmented IPW (AIPW)
aipw <- SDRcausal::aipw.ate(y, trt, imp, ipw)</pre>
```

aipw.var 3

aipw.var

Estimates Augmented Inverse Probability variance

Description

Variance of the Augmented IPW as in Ghosh, Ma, & De Luna (2020).

Usage

```
aipw.var(
   x,
   y,
   treated,
   imp,
   ipw,
   bandwidth_scale1 = imp$bw1,
   bandwidth_scale0 = imp$bw0,
   bandwidth_scale_pr = ipw$bw_dr,
   kernel = "EPAN",
   explicit_bandwidth = TRUE,
   gauss_cutoff = 0.001,
   num_deriv_h = 1e-08,
   verbose = FALSE
)
```

Arguments

x Covariate matrixy Response vectortreated Binary vetor indicating treatment

bandwidth_scale1

Scaling of the calculated bandwidth, or in case of explicit_bandwidth = TRUE, the actual bandwidth for the estimations of $E(\cdot|\beta_1^TX)$. The default value is imp\$bw1. If this default value is used, one should use the default value TRUE for explicit_bandwidth.

bandwidth_scale0

Scaling of the calculated bandwidth, or in case of explicit_bandwidth = TRUE, the actual bandwidth for the estimations of $E(\cdot|\beta_0^TX)$. The default value is imp\$bw0. If this default value is used, one should use the default value TRUE for explicit_bandwidth.

bandwidth_scale_pr

Scaling of the calculated bandwidth, or in case of explicit_bandwidth = TRUE, the actual bandwidth for the estimations of $E(\cdot|\alpha^TX)$. The default value is ipw\$bw_dr. If this default value is used, one should use the default value TRUE for explicit_bandwidth.

kernel Specifies which kernel function to be used. The default is "EPAN".

4 aipw2.ate

```
explicit_bandwidth
```

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bandwidth_scale * $sd(\beta^T x)$ * $n^{(1/5)}$. The default value is TRUE.

gauss_cutoff Cutoff value for Gaussian kernel. The default value is 1e-3.

num_deriv_h Step size of numerical derivative. The default value is 1e-6.

verbose Specifies if the program should print output while running. The default value is

FALSE.

Value

The variance of Augmented IPW estimator.

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes</pre>
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the Augmented IPW (AIPW)
var <- SDRcausal::aipw.var(x, y, trt, imp, ipw,</pre>
           bandwidth_scale1 = imp$bw1, bandwidth_scale0 = imp$bw0,
           bandwidth_scale_pr = ipw$bw_pr)
```

aipw2.ate

Improved Augmented IPW (AIPW2)

Description

Combines IPW and IMP estimators to form the improved augmented IPW, AIPW2 as in Ghosh, Ma, & De Luna (2020).

*b*10_fun 5

Usage

```
aipw2.ate(y, treated, imp, ipw)
```

Arguments

У	Observed response
treated	A binary vetor indicating treatment
imp	imp output object from imp.ate
ipw	ipw output object from ipw.ate

Value

The improved augmented IPW estimation (AIPW2) of the average treatment effect (ATE).

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the Improved Augmented IPW (AIPW2)
aipw2 <- SDRcausal::aipw2.ate(y, trt, imp, ipw)</pre>
```

b10_fun

Calculates B1/0

Description

Calculates Eq 2.8 or 2.10 in Ghosh, Ma, & De Luna (2020).

6 b_fun

Usage

b10_fun(x, treated, dm, beta, kernel, bandwidth, gauss_cutoff)

Arguments

x Projection of covariate matrix on CMStreated Binary vector indicating treatment.

dm Derivative of imputed values

beta CMS

kernel Specifies which kernel function to be used bandwidth Specifies if bandwidth_scale will be used as the

gauss_cutoff Cutoff value for Gaussian kernel

Value

B1/0 matrix

b_fun Calculates B1/0

Description

Calculates Eq 2.8 or 2.10 in Ghosh, Ma, & De Luna (2020).

Usage

b_fun(x, treated, alpha_hat, h, kernel, bandwidth, bandwidth_pr, verbose)

Arguments

x Projection of covariate matrix on CMS

treated Treated

alpha_hat Derivative of imputed values

h CMS

kernel Specifies which kernel function to be used

bandwidth Kernel bandwidth

bandwidth_pr Kernel bandwidth for probability

verbose Specifies if the program should print output while running.

Value

B1/0 matrix

cms.ps.semi 7

cms.ps.semi

Estimates the Central Mean Space (CMS)

Description

Semiparametric estimation of the Central Mean Space (CMS) as in Ghosh, Ma, & De Luna (2020). To be used with SDRcausal::ps.semi().

Usage

```
cms.ps.semi(
    x,
    treated,
    alpha_initial,
    solver = "optim",
    kernel = "EPAN",
    explicit_bandwidth = FALSE,
    bandwidth_scale = 1,
    gauss_cutoff = 0.001,
    penalty = 10,
    n_before_pen = 5,
    root_tol = 0.001,
    n_threads = 1,
    verbose = FALSE,
    ...
)
```

Arguments

X	Covariate matrix	ĸ

treated Binary vetor indicating treatment

alpha_initial Initial guess of CMS

solver Specifies which solver to be used. Current options optim and cobyla (from nloptr

package).

kernel Specifies which kernel function to be used, current options are: "EPAN", "QUAR-

TIC", and "GAUSSIAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used explicitly as the bandwidth.

bandwidth_scale

Scaling of the calculated bandwidth, or in case of explicit_bandwidth = TRUE

the bandwidth.

gauss_cutoff cutoff value for Gaussian kernel

penalty Penalty for the optimizer if a probability is outside (0, 1). Added to the function

value in optim as: penalty^(n), where n is the number of probabilities outside

(0, 1).

n_before_pen Number of probabilities outside the range (0, 1) to accept during dimension

reduction.

root_tol Tolerance which makes the program warn if optim stops at at a value higher than

root_tol.

8 cms.semi

 $n_threads \hspace{1cm} Sets \hspace{0.1cm} number \hspace{0.1cm} of \hspace{0.1cm} threads \hspace{0.1cm} for \hspace{0.1cm} parallel \hspace{0.1cm} run. \hspace{0.1cm} Set \hspace{0.1cm} to \hspace{0.1cm} 0 \hspace{0.1cm} serial. \hspace{0.1cm} If \hspace{0.1cm} n_threads \hspace{0.1cm} exceeds \hspace{0.1cm} max-$

imum number of threads, sets n_threads to max_threads - 1. To use max_threads,

set to n_threads to max_threads of system.

verbose Specifies if the program should print output while running.

... Additional parameters passed to solver.

Value

A list containing the final alpha, bandwwidth used, and the output of optim

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

```
[stats::optim]
```

Examples

cms.semi

Estimates the Central Mean Space (CMS)

Description

Semiparametric estimation of the Central Mean Space (CMS) as in Ghosh, Ma, & De Luna (2020). To be used with SDRcausal::imp.val().

Usage

```
cms.semi(
   x,
   y,
   treated,
   beta_initial,
   solver = "optim",
   kernel = "EPAN",
```

cms.semi 9

```
explicit_bandwidth = FALSE,
bandwidth_scale = 1,
gauss_cutoff = 0.001,
penalty = 10,
n_before_pen = 1,
root_tol = 0.001,
n_threads = 1,
verbose = FALSE,
...
)
```

Arguments

x Covariate matrixy Response vector

treated Binary vetor indicating treatment

beta_initial Initial guess of CMS

solver Specifies which solver to be used. Current options optim and cobyla (from nloptr

package).

kernel Specifies which kernel function to be used, current options are: "EPAN", "QUAR-

TIC", and "GAUSSIAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/5)}$

bandwidth_scale

Scaling of the bandwidth or the actual bandwidth if explicit bandwidth.

gauss_cutoff cutoff value for Gaussian kernel

penalty Penalty for the optimizer if local linear regression fails. Added to the function

value in solver as: penalty^(n - n before pen), where n is the number of llr fails.

n_before_pen Number of probabilities outside the range (0, 1) to accept during dimension

reduction.

root_tol Tolerance which makes the program warn if optim stops at at a value higher than

root tol.

n_threads Sets number of threads for parallel run. Set to 0 serial. If n_threads exceeds max-

imum number of threads, sets n_threads to max_threads - 1. To use max_threads,

set to n_threads to max_threads of system.

verbose Specifies if the program should print output while running.

... Additional parameters passed to optim.

Value

A list containing the final beta, the bandwidth used, a warning if optim does not converge or converges to a value that is larger than root_tol, and the output of optim.

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

10 example_data

See Also

```
[stats::optim]
```

Examples

example_data

Example data

Description

Data generated as in paper, study 1. Using the betas in betas data. Use beta1/0 for imputation as the initial guess of the central mean space (CMS) and alpha as the initial guess of the CMS for IPW.

Format

Data used in examples of the SDRcausal package

covariates covariate matrix

outcomes observed outcome vector

treated binary treatment vector

beta1_guess Starting guess for CMS for treated

beta0_guess Starting guess for CMS for untreated

alpha_guess Starting guess for CMS for propensity score

imp.ate 11

imp.ate

Estimates Average Treatment Effect (ATE) by imputation (IMP)

Description

Semiparametric estimation of the average treatment effect based on the imputation method described in Ghosh, Ma, & De Luna (2020).

Usage

```
imp.ate(
 х,
 у,
  treated1,
 beta_guess1,
 beta_guess0,
  solver = "optim",
  kernel = "EPAN",
  explicit_bandwidth = FALSE,
  recalc_bandwidth = TRUE,
 bwc_dim_red1 = 1,
 bwc_impute1 = 1.25,
 bwc_dim_red0 = 1,
 bwc_impute0 = 1.25,
 gauss_cutoff = 0.001,
 penalty = 10,
 n_before_pen = 5,
  to_extrapolate = TRUE,
  to_truncate = TRUE,
 extrapolation_basis = 5,
 n_{threads} = 1,
 verbose = TRUE,
)
```

Covariate matrix

Arguments

Χ

y Response vector treated1 A binary vector indicating treatment. beta_guess1 Initial guess for β_1 beta_guess0 Initial guess for β_0 solver Specifies which solver is to be used. Current options are optim and cobyla (from nloptr package). The diffault value is "optim". kernel Specifies which kernel function is to be used, current options are: "EPAN",

"QUARTIC", and "GAUSSIAN". The default value is "EPAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bandwidth_scale * $\operatorname{sd}(\beta^T x)$ * $n^{(1/5)}$. The default value is FALSE.

12 imp.ate

recalc_bandwidth

Specifies whether the bandwidth should be recalculated after the first stage (the estimations of dimension reduction step). If explicit_bandwidth is TRUE, recalc_bandwidth is not used, but if explicit_bandwidth is FALSE, then if recalc_bandwidth is TRUE, bandwidths are recalculated at the beginning of the second step based on bwc_impute0 and bwc_impute1. If recalc_bandwidth is FALSE, the first step bandwidths are used. The default value is FALSE.

bwc_dim_red1

Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the bandwidth. It is used in the dimension reduction step for $\hat{m}_1(\beta_1^T x)$. The default value is 1

bwc_impute1

Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the bandwidth. It is used in the imputation step for $\hat{m}_1(\beta_1^T x)$. The default value is 1.25.

bwc_dim_red0

Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the bandwidth. It is used in the dimension reduction step for $\hat{m}_0(\beta_0^T x)$. The default value is 1.

bwc_impute0

Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the bandwidth. It is used in the imputation step for $\hat{m}_0(\beta_0^T x)$. The default value is 1.25.

gauss_cutoff

The cutoff value for Gaussian kernel. The default value is 1e-3.

penalty

Penalty for the optimizer if local linear regression fails. Added to the function value in solver as penalty $^(n - n_before_pen)$, where n is the number of times local linear regression fails. The default value is 10.

n_before_pen

The number of acceptable local linear regression failures during the estimation of β_0 and β_1 phase. The default value is 5.

to_extrapolate

Specifies whether to extrapolate or not. Since in $\hat{m}_0(\beta_0^Tx)$ and $\hat{m}_1(\beta_1^Tx)$ estimates in terms of β_0 and β_1 , local linear regression at the boundaries of β_0^Tx and β_1^Tx can be very volatile, it is recommended to use extrapolation on those points instead of local linear regression. The default value is TRUE.

to_truncate

Specifies whether to truncate $\hat{m}_0(\beta_0^T x)$ and $\hat{m}_1(\beta_1^T x)$ or not. After estimating $\hat{m}_0(\beta_0^T x)$ and $\hat{m}_1(\beta_1^T x)$, if they are outside the range of observed outputs, they are replaced with the minimum and maximum observed outputs. The default value is TRUE.

extrapolation_basis

The number of data points to base extrapolation on. Extrapolation at border points can be done based on a different number of neighborhood points. extrapolation_basis is how many neighborhood points are used. The default value is 5.

n_threads

Sets the number of threads for parallel computing. Set to 1 serial. If n_threads exceeds the maximum number of threads, sets n_threads to max_threads - 1. To use max_threads, set to n_threads to max_threads of system. The default value is 1.

verbose

Specifies if the program should print output while running. The default value is TRUE.

1110

. Additional parameters passed to optim or cobyla.

Value

A list containing the average treatment effect of the combination of observed and imputed values (ate), the average treatment effect based on the imputed values only (ate2), the imputed values for treated (m1) and untreated treated (m0), the and the output from optim (op).

imp.val

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

```
[stats::optim]
```

Examples

imp.val

Estimates imputed values based on CMS

Description

Performs semiparametric imputation based on the CMS calculated by cms.semi, as in Ghosh, Ma, & De Luna (2020).

Usage

```
imp.val(
    x,
    y,
    treated,
    beta_hat,
    kernel = "EPAN",
    explicit_bandwidth = FALSE,
    bandwidth_scale = 1,
    gauss_cutoff = 0.001,
    to_extrapolate = TRUE,
    to_truncate = TRUE,
    extrapolation_basis = as.integer(5),
    verbose = FALSE
)
```

14 imp.val

Arguments

x Covariate matrixy Response vector

treated Binary vetor indicating treatment

beta_hat Locally efficient CMS

kernel Specifies which kernel function to be used

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$

bandwidth_scale

Kernel bandwidth

gauss_cutoff Cutoff value for Gaussian kernel
to_extrapolate Specifies wheter to extrapolate or not
to_truncate Specifies wheter to extrapolate or not
extrapolation_basis

Number of data point to base extrapolation on.

verbose Specifies if the program should print output while running

Value

A list containing the reduced space xb, the imputed values and their derivatives.

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes</pre>
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes</pre>
trt1 <- SDRcausal::treated</pre>
n <- as.integer(dim(x)[1])</pre>
trt0 <- as.integer(rep(1, times = n) - trt1)</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
```

imp.var

imp.var

Estimates IMP variance

Description

Variance of the IMP as in Ghosh, Ma, & De Luna (2020).

Usage

```
imp.var(
    x,
    y,
    treated,
    imp,
    ipw,
    bandwidth_scale1 = imp$bw1,
    bandwidth_scale0 = imp$bw0,
    kernel = "EPAN",
    explicit_bandwidth = TRUE,
    gauss_cutoff = 0.001
)
```

Arguments

x Covariate matrix
y Response vector
treated A binary vetor indicating treatment
imp imp output object from imp.ate
ipw ipw output object from ipw.ate
bandwidth_scale1

Scaling of the calculated bandwidth, or in case of explicit_bandwidth = TRUE, the actual bandwidth for the estimation of $E(\cdot|\beta_1^TX)$. The default value is imp\$bw1. If this default value is used, one should use the default value TRUE for explicit_bandwidth.

16 imp2.var

bandwidth_scale0

Scaling of the calculated bandwidth, or in case of explicit_bandwidth = TRUE, the actual bandwidth for the estimation of $E(\cdot|\beta_0^TX)$. The default value is imp\$bw0. If this default value is used, one should use the default value TRUE for explicit_bandwidth.

kernel

Specifies which kernel function to be used. The default is "EPAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bandwidth_scale * $\operatorname{sd}(\beta_t^T x)$ * $n^{(1/5)}$. The default value is TRUE.

gauss_cutoff

The cutoff value for Gaussian kernel. The default value is 1e-3.

Value

Variance of IMP estimator

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the IMP estimator.
var <- SDRcausal::imp.var(x, y, trt, imp, ipw,</pre>
           bandwidth_scale1 = imp$bw1, bandwidth_scale0 = imp$bw0)
```

imp2.var

Estimates IMP2 variance

Description

Variance of IMP2 as in Ghosh, Ma, & De Luna (2020).

imp2.var

Usage

```
imp2.var(
    x,
    y,
    treated,
    imp,
    ipw,
    bandwidth_scale1 = imp$bw1,
    bandwidth_scale0 = imp$bw0,
    kernel = "EPAN",
    explicit_bandwidth = TRUE,
    gauss_cutoff = 0.001
)
```

Arguments

x Covariate matrixy Response vector

treated A binary vetor indicating treatment imp imp output object from imp.ate ipw output object from ipw.ate

bandwidth_scale1

Scaling of the calculated bandwidth, or in case of explicit_bandwidth = TRUE, the actual bandwidth for the estimation of $E(.|\beta_1^TX)$. The default value is imp\$bw1. If this default value is used, one should use the default value TRUE for explicit_bandwidth.

bandwidth_scale0

Scaling of the calculated bandwidth, or in case of explicit_bandwidth = TRUE, the actual bandwidth for the estimation of $E(.|\beta_0^TX)$. The default value is imp\$bw0. If this default value is used, one should use the default value TRUE for explicit_bandwidth.

kernel Specifies which kernel function to be used. The default is "EPAN". explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bandwidth_scale * $\operatorname{sd}(\beta_t^T x)$ * $n^{(1/5)}$. The default value is TRUE.

gauss_cutoff The cutoff value for Gaussian kernel. The default value is 1e-3.

Value

Variance of IMP2

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

```
# Using example data from package SDRcausal
library(SDRcausal)
```

inf.ate

```
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes</pre>
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the IMP2 estimator.
var <- SDRcausal::imp2.var(x, y, trt, imp, ipw,</pre>
           bandwidth_scale1 = imp$bw1, bandwidth_scale0 = imp$bw0)
```

inf.ate

Performs Estimations of Average Treatment Effect and Infrences

Description

Semiparametric estimation of the average treatment effect based on the all methods described in Ghosh, Ma, & De Luna (2020) and all infrences.

Usage

```
inf.ate(
 Х,
 у,
  treated.
 beta_guess1,
 beta_guess0,
  imp.solver = "optim",
  imp.kernel = "EPAN",
  imp.explicit_bandwidth = FALSE,
  imp.recalc_bandwidth = TRUE,
 bwc_dim_red1 = 1,
 bwc_impute1 = 1.25,
 bwc_dim_red0 = 1,
 bwc_impute0 = 1.25,
  imp.gauss_cutoff = 0.001,
  imp.penalty = 10,
  imp.n_before_pen = 5,
  imp.to_extrapolate = TRUE,
  imp.to_truncate = TRUE,
  imp.extrapolation_basis = 5,
  alpha_initial,
```

inf.ate 19

```
ipw.solver = "optim",
ipw.kernel = "EPAN",
ipw.explicit_bandwidth = FALSE,
ipw.recalc_bandwidth = TRUE,
bwc_dim_red = 1,
bwc_prop_score = 10,
ipw.gauss_cutoff = 0.001,
ipw.penalty = 10,
ipw.n_before_pen = 1,
n_threads = 1,
verbose = TRUE,
imp.solver.options = NA,
ipw.solver.options = NA
```

Arguments

x Covariate matrixy Response vector

treated A binary vector indicating treatment status

beta_guess1 Initial guess for β_1 beta_guess0 Initial guess for β_0

imp.solver Specifies which solver is to be used. Current options are optim and cobyla

(from nloptr package). The diffault value is "optim".

imp.kernel Specifies which kernel function is to be used, current options are: "EPAN",

"QUARTIC", and "GAUSSIAN". The default value is "EPAN".

imp.explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bandwidth_scale * $sd(\beta^T x)$ * $n^{(1/5)}$. The default value is FALSE.

imp.recalc_bandwidth

Specifies whether the bandwidth should be recalculated after the first stage (the estimations of dimension reduction step). If explicit_bandwidth is TRUE, recalc_bandwidth is not used, but if explicit_bandwidth is FALSE, then if recalc_bandwidth is TRUE, bandwidths are recalculated at the beginning of the second step based on bwc_impute0 and bwc_impute1. If recalc_bandwidth is FALSE, the first step bandwidths are used. The default value is FALSE.

bwc_dim_red1 Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the bandwidth. It is used in the dimension reduction step for $\hat{m}_1(\beta_1^T x)$. The default

value is 1.

bwc_impute1 Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

bandwidth. It is used in the imputation step for $\hat{m}_1(\beta_1^T x)$. The default value is

1.25.

bwc_dim_red0 Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

bandwidth. It is used in the dimension reduction step for $\hat{m}_0(\beta_0^T x)$. The default

value is 1.

 $\label{eq:bwc_impute0} \textbf{Scaling of calculated bandwidth, or if explicit_bandwidth} = \textbf{TRUE used as the}$

bandwidth. It is used in the imputation step for $\hat{m}_0(\beta_0^T x)$. The default value is

1.25.

imp.gauss_cutoff

The cutoff value for Gaussian kernel. The default value is 1e-3.

20 inf.ate

Penalty Penalty Penalty for the optimizer if local linear regression fails. Added to the function value in solver as penalty^(n - n_before_pen), where n is the number of times

local linear regression fails. The default value is 10.

imp.n_before_pen

The number of acceptable local linear regression failures during the estimation of β_0 and β_1 phase. The default value is 5.

imp.to_extrapolate

Specifies whether to extrapolate or not. Since in $\hat{m}_0(\beta_0^T x)$ and $\hat{m}_1(\beta_1^T x)$ estimates in terms of β_0 and β_1 , local linear regression at the boundaries of $\beta_0^T x$ and $\beta_1^T x$ can be very volatile, it is recommended to use extrapolation on those points instead of local linear regression. The default value is TRUE.

imp.to_truncate

Specifies whether to truncate $\hat{m}_0(\beta_0^T x)$ and $\hat{m}_1(\beta_1^T x)$ or not. After estimating $\hat{m}_0(\beta_0^T x)$ and $\hat{m}_1(\beta_1^T x)$, if they are outside the range of observed outputs, they are replaced with the minimum and maximum observed outputs. The default value is TRUE.

imp.extrapolation_basis

The number of data points to base extrapolation on. Extrapolation at border points can be done based on a different number of neighborhood points. extrapolation_basis is how many neighborhood points are used. The default value is 5.

alpha_initial Initial guess for α

ipw.solver Specifies which solver is to be used. Current options are optim and cobyla (from nloptr package). The diffault value is "optim".

ipw.kernel Specifies which kernel function is to be used, current options are: "EPAN", "QUARTIC", and "GAUSSIAN". The default value is "EPAN".

ipw.explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bandwidth_scale * $\operatorname{sd}(\alpha^T x)$ * $n^{(1/5)}$. The default value is FALSE.

ipw.recalc_bandwidth

Specifies whether the bandwidth should be recalculated after the estimations of α . If explicit_bandwidth is TRUE, recalc_bandwidth is not used, but if explicit_bandwidth is FALSE, then if recalc_bandwidth is TRUE, bandwidths are recalculated at the beginning of the second step based on bwc_prop_score. If recalc_bandwidth is FALSE, the first step bandwidths are used. The default value is FALSE.

bwc_dim_red Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the bandwidth. It is used in the dimension reduction step for $\alpha^T x$. The default value is 1

bwc_prop_score Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the bandwidth. It is used for the estimation of the propensity score. The default value is 10.

ipw.gauss_cutoff

The cutoff value for Gaussian kernel. The default value is 1e-3.

ipw.penalty Penalty for the optimizer if a probability is outside (0, 1) during the estimation of α phase. Added to the function value in solver as penalty^(n - n_before_pen), where n is the number of probabilities outside (0, 1). The default value is 10.

ipw.n_before_pen

The number of probabilities outside the range (0, 1) to accept during the estimation of α phase. The default value is 1.

ipw.ate 21

n_threads Sets the number of threads for parallel computing. Set to 1 serial. If n_threads

exceeds the maximum number of threads, sets $n_{threads}$ to $max_{threads}$ - 1. To use $max_{threads}$, set to $n_{threads}$ to $max_{threads}$ of system. The default

value is 1.

verbose Specifies if the program should print output while running. The default value is

TRUE.

imp.solver.options

Additional parameters passed to optim or cobyla for imp.ate.

ipw.solver.options

Additional parameters passed to optim or cobyla for ipw.ate.

Value

A list containing the average treatment effect of the combination of observed and imputed values (ate), the average treatment effect based on the imputed values only (ate2), the imputed values for treated (m1) and untreated treated (m0), the and the output from optim (op).

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

[stats::optim]

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)

# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated
b1 <- SDRcausal::beta1_guess
b0 <- SDRcausal::beta0_guess
a <- SDRcausal::alpha_guess
# Perform semiparametric imputation
inf.ate <- SDRcausal::inf.ate(x, y, trt, b1, b0, alpha_initial = a)</pre>
```

ipw.ate

Estimates average treatment effect through IPW

Description

Semiparametric estimation of the average treatment effect based on the IPW method described in Ghosh, Ma, & De Luna (2020).

ipw.ate

Usage

```
ipw.ate(
 Х,
 у,
  treated,
  alpha_initial,
  solver = "optim",
  kernel = "EPAN",
  explicit_bandwidth = FALSE,
  recalc_bandwidth = TRUE,
  bwc_dim_red = 1,
  bwc_prop_score = 10,
  gauss_cutoff = 0.001,
  penalty = 10,
 n_before_pen = 1,
 n_{threads} = 1,
 verbose = TRUE,
)
```

Arguments

x Covariate matrixy Response vector

treated A binary vector indicating treatment.

alpha_initial Initial guess for α

solver Specifies which solver is to be used. Current options are optim and cobyla

(from nloptr package). The diffault value is "optim".

kernel Specifies which kernel function is to be used, current options are: "EPAN",

"QUARTIC", and "GAUSSIAN". The default value is "EPAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bandwidth_scale * $\operatorname{sd}(\alpha^T x)$ * $n^{(1/5)}$. The default value is FALSE.

recalc_bandwidth

Specifies whether the bandwidth should be recalculated after the estimations of α . If explicit_bandwidth is TRUE, recalc_bandwidth is not used, but if explicit_bandwidth is FALSE, then if recalc_bandwidth is TRUE, bandwidths are recalculated at the beginning of the second step based on bwc_prop_score. If recalc_bandwidth is FALSE, the first step bandwidth is used. The default value is TRUE.

bwc_dim_red

Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the bandwidth. It is used in the dimension reduction step for $\alpha^T x$. The default value is 1.

bwc_prop_score

Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the bandwidth. It is used for the estimation of the propensity score. The default value is 10.

gauss_cutoff

The cutoff value for Gaussian kernel. The default value is 1e-3.

penalty

Penalty for the optimizer if a probability is outside (0, 1) during the estimation of α phase. Added to the function value in solver as penalty^(n - n_before_pen), where n is the number of probabilities outside (0, 1). The default value is 10.

ipw.var 23

n_before_pen	The number of probabilities outside the range $(0, 1)$ to accept during the estimation of α phase. The default value is 1.
n_threads	Sets the number of threads for parallel computing. Set to 1 serial. If n_threads exceeds the maximum number of threads, sets n_threads to max_threads - 1. To use max_threads, set to n_threads to max_threads of system. The default value is 1.
verbose	Specifies if the program should print output while running. The default value is FALSE.
	Additional parameters passed to optim or cobyla.

Value

A list containing the average treatment effect (ate), the propensity score (pr), the final alpha (fa), and the output from optim (op).

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

```
[stats::optim]
```

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)

# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated
alp <- SDRcausal::alpha_guess

# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp)</pre>
```

ipw.var

Estimates IPW variance

Description

Variance of the IPW as in Ghosh, Ma, & De Luna (2020).

24 ipw.var

Usage

```
ipw.var(
    x,
    y,
    treated,
    imp,
    ipw,
    bandwidth_scale = ipw$bw_dr,
    kernel = "EPAN",
    explicit_bandwidth = TRUE,
    gauss_cutoff = 0.001,
    num_deriv_h = 1e-06,
    verbose = FALSE
)
```

Arguments

x Covariate matrix y Response vector

treated A binary vetor indicating treatment imp imp output object from imp.ate ipw output object from ipw.ate

bandwidth_scale

Scaling of the calculated bandwidth, or in case of explicit_bandwidth = TRUE, the actual bandwidth for the estimation of $E(\cdot|\alpha^TX)$. The default value is ipw\$bw_dr. If this default value is used, one should use the default value TRUE

for explicit_bandwidth.

kernel Specifies which kernel function to be used. The default is "EPAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bandwidth_scale * $sd(\alpha^T x)$ * $n^{(1/5)}$. The default value is TRUE.

gauss_cutoff The cutoff value for Gaussian kernel. The default value is 1e-3.

num_deriv_h Step size of numerical derivative. The default value is 1e-6.

verbose Specifies if the program should print output while running. The default value if

FALSE.

Value

The variance of IPW

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

```
# Using example data from package SDRcausal
library(SDRcausal)
```

nw_kernel_regress 25

```
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes</pre>
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::imp.ate(x, y, trt, b1, b0,</pre>
            explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
            bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::ipw.ate(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the Augmented IPW (AIPW)
var <- SDRcausal::ipw.var(x, y, trt, imp, ipw,</pre>
            bandwidth_scale = ipw$bw_dr)
```

nw_kernel_regress

The Nadaraya-Watson kernel estimator

Description

Gives the expected value of Y given X = x by kernel regression according to the Nadaraya-Watson kernel estimator to get E(Y|X). Note that y and x may be vectors or matrices, as long as dim(x)[1] = dim(y)[1].

Usage

```
nw_kernel_regress(
   y,
   x,
   bandwidth = 1,
   kernel = "EPAN",
   gauss_cutoff = 0.001,
   verbose = FALSE
)
```

Arguments

 $\begin{array}{ll} y & Y \text{ in } E(Y|X) \\ x & X \text{ in } E(Y|X) \\ \text{bandwidth} & \text{Kernel bandwidth} \end{array}$

kernel Indicates which kernel function to be used

gauss_cutoff Cutoff value for Gaussian kernel

verbose Specifies if the program should print output while running.

26 plot.imp

Value

Value of kernel regression

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)

# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes

# Extimating y given x, E(y | x)
k <- nw_kernel_regress(y, x, bandwidth = 1)</pre>
```

plot.imp

Plots imputation output

Description

Plot function for visualisation of imputation output from imp.ate. Note: The function requires ggplot2.

Usage

```
## S3 method for class 'imp'
plot(x, ..., covariates, y, treated)
```

Arguments

x imp_output object from imp.ate()

Other parameterscovariatesCovariate matrixResponse vector

treated Binary vetor indicating treatment

Value

A list of ggplot plots of observed and imputed values (pl_imp), imputed treated values vs CMS (pl_m1), and imputed untreated values vs CMS (pl_m0).

plot.ipw 27

Examples

plot.ipw

Plots IPW output

Description

Plot function for visualisation of IPW output from ipw.ate. Note: The function requires ggplot2.

Usage

```
## S3 method for class 'ipw'
plot(x, ..., treated, covariates)
```

Arguments

x ipw_output object from ipw.ate()
... Other parameters

treated Binary vetor indicating treatment

covariates Covariate matrix

Value

ggplot plot of the propensity score vs CMS.

```
# Using example data from package SDRcausal
library(SDRcausal)

# Import example data
covariates <- SDRcausal::covariates
y <- SDRcausal::outcomes</pre>
```

28 ps.semi

ps.semi

Estimates propensity score

Description

Semiparametric estimation of the propensity score as in Ghosh, Ma, & De Luna (2020). To be used with SDRcausal::cms.ps.semi().

Usage

```
ps.semi(
    x,
    treated,
    alpha_hat,
    kernel = "EPAN",
    explicit_bandwidth = FALSE,
    bandwidth_scale = 1,
    verbose = FALSE
)
```

Arguments

x Covariate matrix

treated Binary vetor indicating treatment

alpha_hat Locally efficient CMS kernel Kernel specification explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as $bw = bandwidth_scale * sd(x * beta) * n^(1/3)$.

bandwidth_scale

Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

banddwidth.

verbose Specifies if the program should print output while running.

Value

A list containing the estimated propensity scores values and their derivatives, and the bandwidth used.

ps.semi 29

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Index

```
*Topic data
      example_data, 10
aipw.ate, 2
aipw.var, 3
aipw2.ate, 4
b10_fun, 5
b_fun, 6
{\sf cms.ps.semi}, 7
{\sf cms.semi}, 8
\verb|example_data|, 10
imp.ate, 11
\texttt{imp.val}, \textcolor{red}{13}
imp.var, 15
imp2.var, 16
\quad \text{inf.ate, } 18 \\
\texttt{ipw.ate}, \textcolor{red}{21}
ipw.var, 23
nw_kernel_regress, 25
plot.imp, 26
plot.ipw, 27
\texttt{ps.semi}, \textcolor{red}{28}
```