Regression Analysis

Multiple Regression Analysis

Linear Models

Deterministic model

$$y_i = \beta_0 + \beta_1 X_i$$
$$y_i = a + bX_i$$

Stochastic (Random) model

$$y_i = \beta_0 + \beta_1 X_i + e_i$$

$$y_i = \beta_0 + \beta_1 X_i + e_i$$
 $i = 1, ..., n$

$$y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{p}X_{pi} + e_{i}$$

$$y_{i} = \beta_{0} + \sum_{j=1}^{p} \beta_{j}X_{ji} + e_{i}$$

$$j = 1,, p \text{ and } i = 1,, n$$

No	Υ	X1	X2	Х3	Х4	No	Υ	X1	X2	Х3	X4
1	32	70	78	66	67	20	33	67	74	64	68
2	29	62	74	64	59	21	42	68	85	69	67
3	32	65	77	65	65	22	43	67	84	65	65
4	39	66	80	75	66	23	35	66	79	67	67
5	27	61	74	62	58	24	45	70	90	70	71
6	39	64	84	75	60	25	48	73	92	75	74
7	35	64	83	77	65	26	50	76	92	75	77
8	35	65	81	66	66	27	46	73	86	70	71
9	33	64	81	67	63	28	54	71	94	71	72
10	26	66	73	64	61	29	45	69	87	70	71
11	32	66	82	66	65	30	43	74	88	72	72
12	34	65	82	60	66	31	40	72	64	75	71
13	33	68	80	66	68	32	36	66	86	70	69
14	33	63	71	63	63	33	42	74	95	65	75
15	32	60	79	65	62	34	40	71	84	70	72
16	36	65	80	65	67	35	39	75	83	70	74
17	31	63	71	61	62	36	38	69	85	70	68
18	40	68	85	65	68	37	45	75	87	70	78
19	37	67	76	67	67	 38	48	73	85	78	70

No	Υ	X1	X2	Х3	X4	No	Υ	X1	X2	Х3	X4
1	32	70	78	66	67	20	33	67	74	64	68
2	29	62	74	64	59	21	42	68	85	69	67
3	32	65	77	65	65	22	43	67	84	65	65
4	39	66	80	75	66	23	35	66	79	67	67

- Y: Dependent variable
- Independent X variables
 - X1 independent variable
 - X2 independent variable
 - X3 independent variable
 - X4 independent variable

No	Υ	X1	X2	Х3	X4	No	Υ	X1	X2	Х3	X4
1	32	70	78	66	67	20	33	67	74	64	68
2	29	62	74	64	59	21	42	68	85	69	67
3	32	65	77	65	65	22	43	67	84	65	65
4	39	66	80	75	66	23	35	66	79	67	67

- Y: dependent variable
- X1, X2, X3 and X4 independent variables
- Four indepenent simple linear regression models

No	Υ	X1	X2	Х3	X4	No	Υ	X1	X2	Х3	X4
1	32	70	78	66	67	20	33	67	74	64	68
2	29	62	74	64	59	21	42	68	85	69	67

• Four indepenent simple linear regression models

Simple linear regression model with X1 variable

$$Y_i = \beta_0 + \beta_1 X 1_i + e_i$$
 $i = 1, ..., n$

Simple linear regression model with X2 variable

$$Y_i = \beta_0 + \beta_2 X 2_i + e_i$$
 $i = 1, ..., n$

Simple linear regression model with X3 variable

$$Y_i = \beta_0 + \frac{\beta_3 X 3_i}{1} + e_i$$
 $i = 1, ..., n$

Simple linear regression model with X4 variable

$$Y_i = \beta_0 + \beta_4 X A_i + e_i$$
 $i = 1, ..., n$

No	Υ	X1
1	32	70
2	29	62
3	32	65
4	39	66
5	27	61
6	39	64
7	35	64
8	35	65
9	33	64
10	26	66
11	32	66
12	34	65
13	33	68
14	33	63
15	32	60
16	36	65
17	31	63
18	40	68
19	37	67
20	33	67
21	42	68
22	43	67
23	35	66
24	45	70
25	48	73
26	50	76
27	46	73
28	54	71
29	45	69
30	43	74
31	40	72
32	36	66
33	42	74
34	40	71
35	39	75
36	38	69
37	45	75
38	48	73

Regression model with X1 variable

$$Y_i = \beta_0 + \beta_1 X 1_i + e_i$$
 $i = 1, ..., n$

$$\hat{\beta}_1 = \frac{\sum X \mathbf{1}_i Y_i - \frac{(\sum X \mathbf{1}_i)(\sum Y_i)}{n}}{\sum X \mathbf{1}_i^2 - \frac{(\sum X \mathbf{1}_i)^2}{n}} = \frac{774.2368}{658.7632} = 1.175$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \overline{X1} = 38.080 - 1.175 * 67.921 = -41.727$$

No	Υ	X1
1	32	70
2	29	62
3	32	65
4	39	66
5	27	61
6	39	64
7	35	64
8	35	65
9	33	64
10	26	66
11	32	66
12	34	65
13	33	68
14	33	63
15	32	60
16	36	65
17	31	63
18	40	68
19	37	67
20	33	67
21	42	68
22	43	67
23	35	66
24	45	70
25	48	73
26	50	76
27	46	73
28	54	71
29	45	69
30	43	74
31	40	72
32	36	66
33	42	74
34	40	71
35	39	75
36	38	69
37	45	75
38	48	73

Regression equation with X1 variable

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} X 1_{i}
\hat{Y}_{i} = -41.727 + 1.175 X 1_{i}$$

Estimation of Residuals

$$\hat{e}_i = Y_i - \hat{Y}_i$$

Variation explained by X1 variable

Total Sum of Squares
$$(\Sigma d_Y^2)$$
 = 1598.763
Regression Model Sum of Squares $(\Sigma d_{\hat{Y}}^2)$ = 909.952
Residual Sum of Squares $(\Sigma d_{\hat{e}}^2)$ = 688.811

$$R ext{ (Correlation coefficient } r_{Y,X1} ext{)} = 0.754$$

 $R^2 ext{ (Coefficient of determination)} = 0.569$

No	Υ	X2
1	32	78
2	29	74
3	32	77
4	39	80
5	27	74
6	39	84
7	35	83
8	35	81
9	33	81
10	26	73
11	32	82
12	34	82
13	33	80
14	33	71
15	32	79
16	36	80
17	31	71
18	40	85
19	37	76
20	33	74
21	42	85
22	43	84
23	35	79
24	45	90
25	48	92
26	50	92
27	46	86
28	54	94
29	45	87
30	43	88
31	40	64
32	36	86
33	42	95
34	40	84
35	39	83
36	38	85
37	45	87
38	48	85

Regression model with X2 variable

$$Y_i = \beta_0 + \beta_2 X_{i}^2 + e_i$$
 $i = 1, ..., n$

$$\hat{\beta}_2 = \frac{\sum X 2_i Y_i - \frac{(\sum X 2_i)(\sum Y_i)}{n}}{\sum X 2_i^2 - \frac{(\sum X 2_i)^2}{n}} = \frac{1217.395}{1692.342} = 0.719$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_2 \overline{X2} = 38.080 - 0.719 * 81.868 = -20.814$$

No	Υ	X
1	32	78
2	29	78 74 73
3	32	7
4	39	80
5	27	74
6	39	84
7	35	83
8	35	83
9	33	83
10	26	73
11	32	82
12	34	82
13	33	80
14	33	7:
15	32	79
16	36	80
17	31	7:
18	40	8
19	37	76 74
20	33	74
21	42	8! 84
22	43	84
23	35	79
24	45	90
25	48	92
26	50	92
27	46	86
28	54	94
29	45	87
30	43	88
31	40	64
32	36	86
33	42	9!
34	40	84
35	39	83
36	38	8
37	45	87
38	48	8

Regression equation with X2 variable

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_2 X 2_i$$
 $\hat{Y}_i = -20.814 + 0.719 X 2_i$

Estimation of Residuals

$$\hat{e}_i = Y_i - \hat{Y}_i$$

Variation explained by X2 variable

Total Sum of Squares
$$(\Sigma d_Y^2)$$
 = 1598.763
Regression Model Sum of Squares $(\Sigma d_{\hat{Y}}^2)$ = 875.739
Residual Sum of Squares $(\Sigma d_{\hat{e}}^2)$ = 723.024

$$R ext{ (Correlation coefficient } r_{Y,X2} ext{)} = 0.740$$

 $R^2 ext{ (Coefficient of determination)} = 0.548$

No	Y	X
1	32	66
2	29	64
3	32	65
4	39	75
5	27	64 65 75 62 75 75 66 67
6	39	75
7	35	77
8	35	66
9	33	67
10	26	64
11	32 34	66
12	34	60
13	33	66
14	33	63
15	32	65
16	36	65
17	31	63 65 65 65 67 67
18	40	65
19	37 33	67
20	33	64
21	42	69
22	43	65
23	35	67
24	45	70
25	48	75
26	50	75
27	46	70
28	54	71
29	45	70
30	43	72
31	40	75
32	36	70
33	42	65
34	40	75 75 70 71 70 72 75 70 65 70
35	39	70
36	38	70
37	45	70 78
38	48	78

Regression model with X3 variable

$$Y_i = \beta_0 + \beta_3 X_{i} + e_i$$
 $i = 1, ..., n$

$$\hat{\beta}_3 = \frac{\sum X3_i Y_i - \frac{(\sum X3_i)(\sum Y_i)}{n}}{\sum X3_i^2 - \frac{(\sum X3_i)^2}{n}} = \frac{720.132}{775.816} = 0.928$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \overline{X3} = 38.080 - 0.928 * 68.290 = -25.309$$

No	Υ	X
1	32	6
2	29	6
3	32	6
4 5 6	39	7.
5	27	6
6	39	7.
7	35	7
8	35 33 26 32	6
9	33	6
10	26	6
11 12	32	6
12	34 33	6
13	33	6
14	33	6
15	32	6
16	36	6
17	31	6
18	40	6.
19	40 37 33	6
20	33	6
21	42	6
22	43	6
23 24 25	35 45 48	6
24	45	7
25	48	7.
26	50	7.
26 27	50 46	7
28	54	7
29	45	7
30 31	43	7:
31	40	7.
32	36	7
32 33	36 42	6
34	40	7
35	39	7
36	38	7
37	45 48	7
38	48	X 66 66 66 66 66 66 66 67 77 77 77 77 77

Regression equation with X3 variable

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_3 X_{i}^{3}$$
 $\hat{Y}_i = -25.309 + 0.928 X_{i}^{3}$

Estimation of Residuals

$$\hat{e}_i = Y_i - \hat{Y}_i$$

Variation explained by X3 variable

Total Sum of Squares
$$(\Sigma d_Y^2)$$
 = 1598.763
Regression Model Sum of Squares $(\Sigma d_{\hat{\ell}}^2)$ = 668.444
Residual Sum of Squares $(\Sigma d_{\hat{\ell}}^2)$ = 930.319

$$R ext{ (Correlation coefficient } r_{Y,X3} ext{)} = 0.647$$

 $R^2 ext{ (Coefficient of determination)} = 0.418$

No	Y	X4
1	32	67
2	29	59
3	32	65
4	39	66
5	27	58
6	39	60
7	35	65
8	35	66
9	33	63
10	26	61
11	32	65
12	34	66
13	33	68
14	33	63
15	32	62
16	36	67
17	31	62
18	40	68
19	37	67
20	33	68
21	42	67
22	43	65
23	35	67
24	45	71
25	48	74
26	50	77
27	46	71
28	54	72
29	45	71
30	43	72
31	40	71
32	36	69
33	42	75
34	40	72
35	39	74
36	38	68
37	45	78
38	48	70

Regression model with X4 variable

$$Y_i = \beta_0 + \beta_4 X A_i + e_i$$
 $i = 1, ..., n$

$$\hat{\beta}_4 = \frac{\sum X 4_i Y_i - \frac{(\sum X 4_i)(\sum Y_i)}{n}}{\sum X 4_i^2 - \frac{(\sum X 4_i)^2}{n}} = \frac{900.105}{854.842} = 1.053$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_4 \overline{X4} = 38.080 - 1.053 * 67.632 = -33.134$$

No	Υ	X4
1	32	67
2	29	59
3	32	65
4	39	66
5	27	58
6 7	39	60
	35	65
8	35	66
9	33	63
10	26	61
11	32	65
12	34	66
13	33	68
14	33	63
15	32	62
16	36	67
17	31	62
18	40	68
19	37	67
20	33	68
21	42	67
22	43	65
23	35	67
24	45	71
25	48	74
26	50	77
27	46	71
28	54	72
29	45	71
30	43	72
31	40	71
32	36	69
33	42	75
34	40	72
35	39	74
36	38	68
37	45	78
38	48	70

Regression equation with X4 variable

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{4} X 4_{i}$$

$$\hat{Y}_{i} = -33.134 + 1.053 X 4_{i}$$

Estimation of Residuals

$$\hat{e}_i = Y_i - \hat{Y}_i$$

Variation explained by X4 variable

Total Sum of Squares
$$(\Sigma d_Y^2)$$
 = 1598.763
Regression Model Sum of Squares $(\Sigma d_{\hat{Y}}^2)$ = 947.765
Residual Sum of Squares $(\Sigma d_{\hat{e}}^2)$ = 650.998

$$R ext{ (Correlation coefficient } r_{Y,X4} ext{)} = 0.770$$

 $R^2 ext{ (Coefficient of determination)} = 0.593$

Regression Equation		TSS	<i>RMSS</i>	RSS	R^2	
\widehat{Y}_i	=	$-41.727 + 1.175 \frac{X1_i}{}$	1598.763	909.952	688.811	0.569
\widehat{Y}_i	=	$-20.814 + 0.719 \frac{X2_i}{}$	1598.763	875.739	723.024	0.548
\widehat{Y}_i	=	$-25.309 + 0.928 \frac{X3_{i}}{}$	1598.763	668.444	930.319	0.418
\widehat{Y}_i	=	$-33.134 + 1.053 \times 4_{i}$	1598.763	947.765	650.998	0.593

$$Y_{i} = \beta_{0} + \beta_{1}X1_{i} + \beta_{2}X2_{i} + \beta_{3}X3_{i} + \beta_{4}X4_{i} + e_{i}$$

$$Y_i = \beta_0 + \sum_{j=1}^{p-4} \beta_j X_{ji} + e_i$$

j = 1,, p = 4 and i = 1,, n

$$Y = X\beta + e$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{21} & x_{31} & x_{41} \\ 1 & x_{12} & x_{22} & x_{32} & x_{42} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1n} & x_{2n} & x_{3n} & x_{4n} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ \vdots \\ e_n \end{pmatrix}$$

$$\begin{pmatrix} 32 \\ 29 \\ \vdots \\ \vdots \\ 48 \end{pmatrix} = \begin{pmatrix} 1 & 70 & 78 & 66 & 67 \\ 1 & 62 & 74 & 64 & 59 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 73 & 85 & 78 & 70 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ \vdots \\ e_n \end{pmatrix}$$

$$\boldsymbol{Y}_{n\times 1} = \boldsymbol{X}_{n\times 5}\boldsymbol{\beta}_{5\times 1}$$

$$\boldsymbol{X}_{5\times n}^T\boldsymbol{Y}_{n\times 1} = \boldsymbol{X}_{5\times n}^T\boldsymbol{X}_{n\times 5}\boldsymbol{\beta}_{5\times 1}$$

$$\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5} \boldsymbol{\beta}_{5\times 1} = \boldsymbol{X}_{5\times n}^T \boldsymbol{Y}_{n\times 1}$$

$$\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5} \boldsymbol{\beta}_{5\times 1} = \boldsymbol{X}_{5\times n}^T \boldsymbol{Y}_{n\times 1}$$

$$\boldsymbol{X}_{n \times 5} = \begin{pmatrix} 1 & x_{11} & x_{21} & x_{31} & x_{41} \\ 1 & x_{12} & x_{22} & x_{32} & x_{42} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1n} & x_{2n} & x_{3n} & x_{4n} \end{pmatrix}_{n \times 5} = \begin{pmatrix} 1 & 70 & 78 & 66 & 67 \\ 1 & 62 & 74 & 64 & 59 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 73 & 85 & 78 & 70 \end{pmatrix}_{n \times 5}$$

$$\boldsymbol{X}_{5\times n}^{T} = \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ x_{11} & x_{12} & \cdots & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & \cdots & x_{2n} \\ x_{31} & x_{32} & \cdots & \cdots & x_{3n} \\ x_{41} & x_{42} & \cdots & \cdots & x_{4n} \end{pmatrix}_{5\times n} = \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 70 & 62 & \cdots & \cdots & 73 \\ 78 & 74 & \cdots & \cdots & 85 \\ 66 & 64 & \cdots & \cdots & 78 \\ 67 & 59 & \cdots & \cdots & 70 \end{pmatrix}_{5\times n}$$

$$\boldsymbol{X}_{5\times n}^T\boldsymbol{X}_{n\times 5}\boldsymbol{\beta}_{5\times 1} = \boldsymbol{X}_{5\times n}^T\boldsymbol{Y}_{n\times 1}$$

$$\boldsymbol{X}_{5 \times n}^{T} \boldsymbol{X}_{n \times 5} = \begin{pmatrix} n & \Sigma X_{1} & \Sigma X_{2} & \Sigma X_{3} & \Sigma X_{4} \\ \Sigma X_{1} & \Sigma X_{1}^{2} & \Sigma X_{1} X_{2} & \Sigma X_{1} X_{3} & \Sigma X_{1} X_{4} \\ \Sigma X_{2} & \Sigma X_{2} X_{1} & \Sigma X_{2}^{2} & \Sigma X_{2} X_{3} & \Sigma X_{2} X_{4} \\ \Sigma X_{3} & \Sigma X_{3} X_{1} & \Sigma X_{3} X_{2} & \Sigma X_{3}^{2} & \Sigma X_{3} X_{4} \\ \Sigma X_{4} & \Sigma X_{4} X_{1} & \Sigma X_{4} X_{2} & \Sigma X_{4} X_{3} & \Sigma X_{4}^{2} \end{pmatrix}$$

$$\boldsymbol{X}_{5 \times n}^T \boldsymbol{X}_{n \times 5} = \begin{pmatrix} 38 & 2581 & 3111 & 2595 & 2570 \\ 2581 & 175963 & 211895 & 176630 & 175247 \\ 31111 & 211895 & 256385 & 212910 & 211151 \\ 2595 & 176630 & 212910 & 177987 & 175888 \\ 2570 & 175247 & 211151 & 175888 & 174668 \end{pmatrix}$$

$$\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5} \boldsymbol{\beta}_{5\times 1} = \boldsymbol{X}_{5\times n}^T \boldsymbol{Y}_{n\times 1}$$

$$\boldsymbol{X}_{5\times n}^{T}\boldsymbol{Y}_{n\times 1} = \begin{pmatrix} \Sigma Y \\ \Sigma X_{1}Y \\ \Sigma X_{2}Y \\ \Sigma X_{3}Y \end{pmatrix} = \begin{pmatrix} 1447 \\ 99056 \\ 119681 \\ 99535 \\ 98763 \end{pmatrix}$$

$$(\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5})^{-1} (\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5}) \boldsymbol{\beta}_{5\times 1} = (\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5})^{-1} \boldsymbol{X}_{5\times n}^T \boldsymbol{Y}_{n\times 1}$$

$$I_{5 imes 5} = \left(X_{5 imes n}^T X_{n imes 5}\right)^{-1} \left(X_{5 imes n}^T X_{n imes 5}\right) = egin{pmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Least Square Estimates

$$\widehat{\boldsymbol{\beta}}_{5\times 1} = \left(\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5}\right)^{-1} \boldsymbol{X}_{5\times n}^T \boldsymbol{Y}_{n\times 1}$$

$$\widehat{\boldsymbol{\beta}}_{5\times 1} = \begin{pmatrix} n & \Sigma X_1 & \Sigma X_2 & \Sigma X_3 & \Sigma X_4 \\ \Sigma X_1 & \Sigma X_1^2 & \Sigma X_1 X_2 & \Sigma X_1 X_3 & \Sigma X_1 X_4 \\ \Sigma X_2 & \Sigma X_2 X_1 & \Sigma X_2^2 & \Sigma X_2 X_3 & \Sigma X_2 X_4 \\ \Sigma X_3 & \Sigma X_3 X_1 & \Sigma X_3 X_2 & \Sigma X_3^2 & \Sigma X_3 X_4 \\ \Sigma X_4 & \Sigma X_4 X_1 & \Sigma X_4 X_2 & \Sigma X_4 X_3 & \Sigma X_4^2 \end{pmatrix}^{-1} \begin{pmatrix} \Sigma Y \\ \Sigma X_1 Y \\ \Sigma X_2 Y \\ \Sigma X_3 Y \\ \Sigma X_4 Y \end{pmatrix}$$

$$\widehat{\boldsymbol{\beta}}_{5\times 1} = (\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5})^{-1} \boldsymbol{X}_{5\times n}^T \boldsymbol{Y}_{n\times 1}$$

$$(\boldsymbol{X}_{5\times n}^{T}\boldsymbol{X}_{n\times 5})^{-1} = \begin{pmatrix} n & \Sigma X_{1} & \Sigma X_{2} & \Sigma X_{3} & \Sigma X_{4} \\ \Sigma X_{1} & \Sigma X_{1}^{2} & \Sigma X_{1}X_{2} & \Sigma X_{1}X_{3} & \Sigma X_{1}X_{4} \\ \Sigma X_{2} & \Sigma X_{2}X_{1} & \Sigma X_{2}^{2} & \Sigma X_{2}X_{3} & \Sigma X_{2}X_{4} \\ \Sigma X_{3} & \Sigma X_{3}X_{1} & \Sigma X_{3}X_{2} & \Sigma X_{3}^{2} & \Sigma X_{3}X_{4} \\ \Sigma X_{4} & \Sigma X_{4}X_{1} & \Sigma X_{4}X_{2} & \Sigma X_{4}X_{3} & \Sigma X_{4}^{2} \end{pmatrix}^{-1}$$

$$\widehat{\boldsymbol{\beta}}_{5\times 1} = \left(\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5}\right)^{-1} \boldsymbol{X}_{5\times n}^T \boldsymbol{Y}_{n\times 1}$$

$$\left(\boldsymbol{X}_{5 \times n}^T \boldsymbol{X}_{n \times 5} \right)^{-1} = \begin{pmatrix} 38 & 2581 & 3111 & 2595 & 2570 \\ 2581 & 175963 & 211895 & 176630 & 175247 \\ 31111 & 211895 & 256385 & 212910 & 211151 \\ 2595 & 176630 & 212910 & 177987 & 175888 \\ 2570 & 175247 & 211151 & 175888 & 174668 \end{pmatrix}^{-1}$$

$$\widehat{\boldsymbol{\beta}}_{5\times 1} = \left(\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5}\right)^{-1} \boldsymbol{X}_{5\times n}^T \boldsymbol{Y}_{n\times 1}$$

$$\widehat{\boldsymbol{\beta}}_{5\times 1} = \begin{pmatrix} 8.95731883 & -0.1020743696 & -0.0171773919 & -0.0482915112 & 0.0400121284 \\ -0.1020743696 & 0.0105975989 & 0.0002669055 & -0.0011957086 & -0.0082494381 \\ -0.0171773919 & 0.0002669055 & 0.0009968662 & -0.0002350703 & -0.0009834185 \\ -0.0482915112 & -0.0011957086 & -0.0002350703 & 0.0018349577 & 0.0003466108 \\ 0.0400121284 & -0.0082494381 & -0.0009834185 & 0.0003466108 & 0.0085335792 \end{pmatrix} \begin{pmatrix} 1447 \\ 99056 \\ 119681 \\ 99535 \\ 98763 \end{pmatrix}$$

$$\widehat{\boldsymbol{\beta}}_{5\times 1} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} = \begin{pmatrix} -60.6235715 \\ 0.2435507 \\ 0.3657660 \\ 0.4214622 \\ 0.3464976 \end{pmatrix}$$

$$\widehat{\boldsymbol{\beta}}_{5\times 1} = \left(\boldsymbol{X}_{5\times n}^T \boldsymbol{X}_{n\times 5}\right)^{-1} \boldsymbol{X}_{5\times n}^T \boldsymbol{Y}_{n\times 1}$$

$$\widehat{\boldsymbol{\beta}}_{5\times 1} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{pmatrix} = \begin{pmatrix} -60.6235715 \\ 0.2435507 \\ 0.3657660 \\ 0.4214622 \\ 0.3464976 \end{pmatrix}$$

Regression Equation

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X1_{i} + \hat{\beta}_{2}X2_{i} + \hat{\beta}_{3}X3_{i} + \hat{\beta}_{4}X4_{i}$$

$$\widehat{Y}_i = -60.62 + 0.24X1_i + 0.37X2_i + 0.42X3_i + 0.35X4_i$$

Y	Ŷ	ê
32	35,98657	-3,98657
29	28,96020	0,03980
32	33,28860	-1,28860
39	39,19056	-0,19056
27	27,52722	-0,52722
39	38,08754	0,91246
35	40,29719	-5,29719
35	35,51962	-0,51962
33	34,65804	-1,65804
26	30,26163	-4,26163
32	35,78244	-3,78244
34	33,35661	0,64339
33	36,57750	-3,57750
33	29,07098	3,92902
32	31,76288	0,23712
36	35,07889	0,92111
31	27,88156	3,11844
40	37,98487	2,01513
37	34,94585	2,05415
33	33,29643	-0,29643
42	39,32422	2,67578
43	36,33606	6,66394
35	35,79960	-0,79960
45	43,44760	1,55240
48	48,05659	-0,05659
50	49,82674	0,17326
46	42,71519	3,28481
54	45,92218	8,07782
45	42,10676	2,89324
43	44,87970	-1,87970
40	36,53210	3,46790
36	40,31734	-4,31734
42	45,52932	-3,52932
40	41,84306	-1,84306
39	43,14449	-4,14449
38	40,33573	-2,33573
45	45,99354	-0,99354
48	45,37463	2,62537

Regression Equation

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X1_{i} + \hat{\beta}_{2}X2_{i} + \hat{\beta}_{3}X3_{i} + \hat{\beta}_{4}X4_{i}$$

$$\hat{Y}_i = -60.62 + 0.24X1_i + 0.37X2_i + 0.42X3_i + 0.35X4_i$$

Estimation of Residuals

$$\hat{e}_i = Y_i - \hat{Y}_i$$

Analysis of Variance for Dependent Variable

ê

35,98657

28,96020

33,28860

39,19056

27,52722

38,08754 40,29719

35,51962

34,65804

30,26163

35,78244

33,35661

36,57750

29,07098

31,76288

35,07889 27,88156

37,98487

34,94585

33,29643

39,32422 36,33606

35,79960

43,44760

48,05659

49,82674

42,71519

45,92218

42,10676

44,87970

36,53210

40,31734

45,52932

41,84306

43,14449

40,33573

45,99354

45,37463

-3,98657

0,03980

-1,28860

-0,19056

-0,52722

0,91246

-5,29719

-0,51962

-1,65804

-4,26163 -3,78244

0,64339

-3,57750 3,92902

0,23712 0,92111

3,11844

2,01513

2,05415 -0,29643

2,67578

6,66394

-0,79960

1,55240

-0,05659

0,17326

3,28481

8,07782

2,89324

-1,87970 3,46790

-4,31734

-3,52932

-1,84306

-4,14449

-2,33573

-0,99354

2,62537

Y

32

29

32

39

27

39

35 35

33

26

32

34 33

33

32

36

31 40

37

33

42

43 35

45

48

50

46

54

45

43

40

36

42

40

39

38

45

48

2 4 3 4 9	Dependent Variable Y _i	=	Regression Model \widehat{Y}_i	++	Residual ê _i
2 2 1	TSS	=	RMSS	+	RSS
4 3 5 3 4	$\frac{TSS}{TSS}$	=	$\frac{RMSS}{TSS}$	+	$\frac{RSS}{TSS}$
)) 6	1	=	R^2	+	E^2

Analysis of Variance for Dependent Variable

Y

32

29

32

39

27

39

35

35

33

26

32

34 33

33

32

36

31

40

37

33

42

43

35

45

48

50

46

54 45

43

40

36

42

40

39

38

45

48

ê

35,98657

28,96020

33,28860

39,19056

27,52722

38,08754

40,29719

35,51962

34,65804

30,26163

35,78244

33,35661

36,57750

29,07098

31,76288

35,07889

27,88156

37,98487

34,94585

33,29643

39,32422 36,33606

35,79960

43,44760

48,05659

49,82674

42,71519 45,92218

42,10676

44,87970

36,53210

40,31734

45,52932

41,84306

43,14449

40,33573

45,99354

45,37463

-4,31734

-3,52932

-1,84306

-4,14449

-2,33573

-0,99354

2,62537

-3,98657

0,03980 -1.28860

-0,19056

-0,52722

Regression Equation		TSS	<i>RMSS</i>	RSS	R^2	
\widehat{Y}_i	=	$-41.727 + 1.175 \frac{X1_i}{}$	1598.763	909.952	688.811	0.569
\widehat{Y}_i	=	$-20.814 + 0.719 \frac{X2_{i}}{}$	1598.763	875.739	723.024	0.548
\widehat{Y}_i	=	$-25.309 + 0.928 \frac{X3_{i}}{}$	1598.763	668.444	930.319	0.418
\widehat{Y}_i	=	$-33.134 + 1.053 \frac{X4_i}{}$	1598.763	947.765	650.998	0.593

Regression Equation

$$\hat{Y}_i = -60.62 + 0.24X1_i + 0.37X2_i + 0.42X3_i + 0.35X4_i$$

TSS	<i>RMSS</i>	RSS	R^2
1598.763	1249.24	349.523	0.781

Models with one independent variable

$$Y_{i} = \beta_{0} + \beta_{1}X1_{i} + e_{i}$$

$$Y_{i} = \beta_{0} + \beta_{2}X2_{i} + e_{i}$$

$$Y_{i} = \beta_{0} + \beta_{3}X3_{i} + e_{i}$$

$$Y_{i} = \beta_{0} + \beta_{4}X4_{i} + e_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1}X1_{i} + \beta_{2}X2_{i} + \beta_{3}X3_{i} + e_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1}X1_{i} + \beta_{2}X2_{i} + \beta_{4}X4_{i} + e_{i}$$

Models with two independent variables

$$Y_i = \beta_0 + \beta_1 X 1_i + \beta_3 X 3_i + \beta_4 X 4_i + e_i$$

$$Y_{i} = \beta_{0} + \beta_{1}X1_{i} + \beta_{2}X2_{i} + e_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1}X1_{i} + \beta_{3}X3_{i} + e_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1}X1_{i} + \beta_{4}X4_{i} + e_{i}$$

$$Y_i = \beta_0 + \beta_2 X 2_i + \beta_3 X 3_i + \beta_4 X 4_i + e_i$$

$$Y_{i} = \beta_{0} + \beta_{2}X2_{i} + \beta_{3}X3_{i} + e_{i}$$

$$Y_{i} = \beta_{0} + \beta_{2}X2_{i} + \beta_{4}X4_{i} + e_{i}$$

Models with four independent variables

$$Y_i = \beta_0 + \beta_1 X 1_i + \beta_2 X 2_i + \beta_3 X 3_i + \beta_4 X 4_i + e_i$$

$$Y_i = \beta_0 + \beta_3 X 3_i + \beta_4 X 4_i + e_i$$