

Number Base Notation

Why

In our definition of natural number notation, the notation (η_1, η_2, η_3) , which we agreed to denote $\eta_3 \eta_2 \eta_1$ has the corresponding number

$$\eta_1 + \eta_2 \cdot 10 + \eta_3 \cdot (10^2)$$

In general for the notation $\eta_k \cdots \eta_1$, we had the number

$$\sum_{i=1}^{k} \eta_k \cdot (10)^{k-1}$$

What if we replace ten in the above expression?

