

Figure 2



Figure 3



#### Figure 4



A = Universal sequence that is added to the 3' and 5' of probes and INVADER oligonucleotides, respectively.

From 5' to 3', the probe is composed of the 5'-flap, the miRNA complementary region, and the DNA universal sequence "A".

The INVADER oligonucleotide from 5' to 3', is composed of the DNA universal sequence "A" and an miRNA complementary region.

A' = 2'-O-methyl universal oligonucleotide that compliments the sequence "A" and is added to kits as a standard oligonucleotide.

| SEQ ID NO    | Target             | Oligo type                  | Sequence (5'-3')                           |
|--------------|--------------------|-----------------------------|--------------------------------------------|
| SEQ ID NO:1  | human let-7 miRNA  | Invader oligo               | ggcacuuuugugccAACTATACAACCG                |
| SEQ ID NO:2  | human let-7 miRNA  | probe oligo                 | CCGTCGCTGCGTTACTACCTCAcgacguuuucgucg       |
| SEQ ID NO:3  | human let-7 miRNA  | arrestor oligo              | cgacgaaaacgucgugagguaguaacgcag             |
| SEQ ID NO:4  | human let-7 miRNA  | miRNA                       | ndaaddnaddandnanadnn                       |
| SEQ ID NO:5  | human let-7 miRNA  | Invader oligo               | ggcacuuuugugccAACTATACAACT                 |
| SEQ ID NO:6  | human let-7 miRNA  | probe oligo                 | CCGTCGCTGCGTCTACCTCAcgacguuuucgucg         |
| SEQ ID NO:7  | human let-7 miRNA  | arrestor oligo              | cgacgaaaacgucgugagguaguagacgcag            |
| SEQ ID NO:8  | human let-7 miRNA  | Invader oligo               | ggcacuuuugugccAACTATACAAT                  |
| SEQ ID NO:9  | human let-7 miRNA  | probe oligo                 | AACGAGGCGCACCTACTACCTCAcgacguuuucgucg      |
| SEQ ID NO:10 | human let-7 miRNA  | arrestor oligo              | cgacgaaaacgucgugagguaggaaggaggugcgc        |
| SEQ ID NO:11 | human miR-1        | Invader oligo               | ggcagcuuuugcugccCTCCATACTTCTC              |
| SEQ ID NO:12 | human miR-1        | probe oligo                 | AACGAGGCGCACTTACATTCCAcgagccuuuuggcucg     |
| SEQ ID NO:13 | human miR-1        | arrestor oligo              | cgagccaaaaggcucguggaauguaagugcgc           |
| SEQ ID NO:14 | human miR-1        | miRNA                       | uggaauguaagaaguauggag                      |
| SEQ ID NO:15 | human miR-1        | Invader oligo               | ggcagcuuuugcugccCTCCATACTTCC               |
| SEQ ID NO:16 | human miR-1        | probe oligo                 | AACGAGCGCACTTTACATTCCAcgagccuuuuggcucg     |
| SEQ ID NO:17 | human miR-1        | arrestor oligo              | cgagccaaaaggcucguggaauguaaagugcgc          |
| SEQ ID NO:18 | human miR-1        | Invader oligo               | ggcagcuuuugcugccCTCCATACTTT                |
| SEQ ID NO:19 | human miR-1        | probe oligo                 | AACGAGGCGCACCTTTACATTCCAcgagccuuuuggcucg   |
| SEQ ID NO:20 | human miR-1        | arrestor oligo              | cgagccaaaaggcucguggaauguaaaggugcgc         |
| SEQ ID NO:21 | FAM FRET           | FRET probe                  | Yca-cXt-gct-tcg-tgg                        |
| SEQ ID NO:22 | SRT                | Secondary Reaction template | CCA GGA AGC AAG TGA CGC AGC GAC ggu        |
| SEQ ID NO:23 | human let-7 miRNA  | Invader oligo               | ggcacuuuugugccaaCTATACAAT                  |
| SEQ ID NO:24 | human let-7c miRNA | miRNA                       | nogangangangangangun                       |
| SEQ ID NO:25 | human let-7e miRNA | miRNA                       | nddnacdnnddanddadn                         |
| SEQ ID NO:26 | human let-7f miRNA | miRNA                       | nndanandnnadandaadn                        |
| SEQ ID NO:27 | human miR-135      | Invader oligo               | ccgagcgaaagcucggTTCACATAGGAATC             |
| SEQ ID NO:28 | human miR-135      | probe oligo                 | AACGAGGCGCACAAAAAGCCATAcgagccgaaaggcucg    |
| SEQ ID NO:29 | human miR-135      | arrestor oligo              | cgagccunucggcucguanggcunuuugugcgc          |
| SEQ ID NO:30 | human miR-135      | Invader oligo               | ccgagcgaaagcucggTTCACATAGGAAC              |
| SEQ ID NO:31 | human miR-135      | probe oligo                 | AACGAGGCGCACTAAAAGCCATAcgagccgaaaggcucg    |
| SEQ ID NO:32 | human miR-135      | arrestor oligo              | cgagccuuucggcucguanggcuuunuagugcgc         |
| SEQ ID NO:33 | human miR-135      | Invader oligo               | ccgagcgaaagcucggTTCACATAGGAC               |
| SEQ ID NO:34 | human miR-135      | probe oligo                 | AACGAGGCGCACATAAAAAGCCATAcgagccgaaaggcucg  |
| SEQ ID NO:35 | human miR-135      | arrestor oligo              | cgagccunucggcucguauggcununuaugugcgc        |
| SEQ ID NO:36 | human miR-135      | Invader oligo               | ccgagcgaaagcucggTTCACATAGGC                |
| SEQ ID NO:37 | human miR-135      | probe oligo                 | AACGAGGCGCACAATAAAAAGCCATAcgagccgaaaggcucg |
| SEQ ID NO:38 | human miR-135      | arrestor oligo              | cgagccuuucggcucguauggcuuuuuuuuugggc        |

FIG 5

| SEQ ID NO    | Target             | Oligo type                  | Sequence (5'-3')                            |
|--------------|--------------------|-----------------------------|---------------------------------------------|
| SEQ ID NO:39 | human miR-16       | miRNA                       | uagcagcacgtaaauauuggcg                      |
| SEQ ID NO:40 | SRT                | Secondary Reaction template | CCAGGAAGCAAGTGGAGGGGCGTGACGgu               |
| SEQ ID NO:41 | human GAPDH        | Invader oligo               | ggaaucauauuGGAACATGTAAACCATC                |
| SEQ ID NO:42 | human GAPDH        | probe oligo                 | CCGCCGAGATCACGTAGGTTGAGGTC-NH2              |
| SEQ ID NO:43 | human GAPDH        | arrestor oligo              | gaccncaacuacguganc                          |
| SEQ ID NO:44 | human miR-125b     | miRNA                       | ncccngagacccuaacuuguga                      |
| SEQ ID NO:45 | U6 RNA             | Invader oligo               | GGCCATGCTAATCTTCA                           |
| SEQ ID NO:46 | U6 RNA             | probe oligo                 | CCGCCGAGATCACTCTGTATCGTTC-NH2               |
| SEQ ID NO:47 | U6 RNA             | arrestor oligo              | gaacganacagaguganc                          |
| SEQ ID NO:48 | RED FRET           |                             | Yct-cXt-tct-cag-tgc-g                       |
| SEQ ID NO:49 | SRT                | Secondary Reaction template | CCAGCAAGCAAGTGGTGATCTCGGCggu                |
| SEQ ID NO:50 | human let-7a miRNA | probe oligo                 | CCGTCGCTGCGTCTACTACCTCA-NH2                 |
| SEQ ID NO:51 | human let-7a miRNA | Invader oligo               | AACTATACAACT                                |
| SEQ ID NO:52 | human let-7a miRNA | probe oligo                 | CCGTCGCTGCGTTACTACCTCA-NH2                  |
| SEQ ID NO:53 | human let-7a miRNA | Invader oligo               | AACTATACAACCG                               |
| SEQ ID NO:54 | human let-7a miRNA | arrestor oligo              | ngagguaguagacgcag                           |
| SEQ ID NO:55 | human miR-15       | probe oligo                 | AACGAGGCGCACATGTGCTGCTAcgagccuuuuggcucg     |
| SEQ ID NO:56 | human miR-15       | Invader oligo               | ggcagcuuuugcugccCACAAACCATTC                |
| SEQ ID NO:57 | human miR-15       | arrestor oligo              | cgagccaaaaggcucguagcagcacaugugcgc           |
| SEQ ID NO:58 | human miR-15       | probe oligo                 | AACGAGGCGCACATGTGCTGCTAGCTCGCCACGCCG-NH2    |
| SEQ ID NO:59 | human miR-15       | Invader oligo               | GCTCGCCACGCCGCACAAACCATTC                   |
| SEQ ID NO:60 | human miR-15       | stacker oligo               | cdacandacaac                                |
| SEQ ID NO:61 | human miR-15       | arrestor oligo              | cggcguggcgagcuagcacaugugcgc                 |
| SEQ ID NO:62 | human miR-15       | miRNA                       | bnbnnnbbneenesesbesben                      |
| SEQ ID NO:63 | human miR-135      | probe oligo                 | AACGAGGCGCACAATAAAAAGCCATAGCTCGCCACGCCG-NH2 |
| SEQ ID NO:64 | human miR-135      | Invader oligo               | GCTCGCCACGCCGTTCACATAGGC                    |
| SEO ID NO:65 | human miR-135      | arrestor oligo              | cggcguggcgagcuauggcuununaugggcgc            |
| SEQ ID NO:66 | human miR-15       | arrestor oligo              | nagcagcacaugugcgc                           |
| SEQ ID NO:67 | human miR-15       | probe oligo                 | AACGAGGCGCACATGTGCTGCTAGGCGAAGCC            |
| SEQ ID NO:68 | human miR-15       | Invader oligo               | GGCGAAGCCACATTC                             |
| SEQ ID NO:69 | human miR-15       | probe oligo                 | AACGAGGCGCACATGTGCTAGGCGAAgcc               |
| SEQ ID NO:70 | human miR-15       | Invader oligo               | ggcGAAGCCCACAAACCATTC                       |
| SEQ ID NO:71 | human miR-15       | probe oligo                 | AACGAGGCGCACATGTGCTGCTAggcuucggcc           |
| SEQ ID NO:72 | human miR-15       | Invader oligo               | ggcuucggccCACAAACCATTC                      |
| SEQ ID NO:73 | human let-7a miRNA | Invader oligo               | GGCACTTTTGTGCCAACTATACAACT                  |
| SEQ ID NO:74 | human let-7a miRNA | probe oligo                 | CCGTCGCTGCGTCTACCTCACGACGTTTTCGTCG          |
| SEQ ID NO:75 | human let-7a miRNA | Invader oligo               | ggcacTTTGTGCCAACTACAACT                     |
| SEQ ID NO:76 | human let-7a miRNA | probe oligo                 | CCGTCGCTGCGTCTACTACCTCACGACGTTTTcgucg       |
|              |                    |                             |                                             |

| SEG ID NO     | larget                 | Oligo type               | Sequence (5'-3')                                 |
|---------------|------------------------|--------------------------|--------------------------------------------------|
| SEQ ID NO:77  | human miR-16 miRNA     | Invader oligo            | ggcagcuuuugcugccCGCCAATATTG                      |
| SEQ ID NO:78  | human miR-16 miRNA     | probe oligo              | AACGAGGGCACTACGTGCTAcgagccuuuuggcucg             |
| SEQ ID NO:79  | human miR-16 miRNA     | arrestor oligo           | cgagccaaaaaggcucguagcagcacguagugcgc              |
| SEQ ID NO:80  | human miR-125b miRNA   | Invader oligo            | ggcagcuuuugctgccTCACAGTTAGA                      |
| :81           | human miR-125b miRNA   | probe oligo              | AACGAGGCGCACGGTCTCAGGGAcgagccuuuuggcucg          |
| SEQ ID NO:82  | human miR-125b miRNA   | arrestor oligo           | cgagccaaaaggcucgucccugagaccgugcgc                |
| SEQ ID NO:83  | human let-7a miRNA     | probe oligo              | CCGTCGCTCTACTACCTCAcgacguuuucgucgu               |
| SEQ ID NO:84  | human let-7a miRNA     | Invader oligo            | uggcacuuuugugccAACTATACAACT                      |
| SEQ ID NO:85  | human let-7a miRNA     | probe oligo              | CCGTCGCTGCGTCTACTACCTCAcgacguuuucguc             |
| SEQ ID NO:86  | human let-7a miRNA     | Invader oligo            | gcacuuuugugccAACTATACAACT                        |
|               |                        |                          | nenoeeönööocoocoocoocoocoocoocoocoocoocoocoocooc |
| SEQ ID NO:87  | precursor human let-7a | miRNA                    | dcaannnncnaccnnnccndaadnccc                      |
| SEQ ID NO:88  | miR-124a 21nt          | miRNA                    | uaaggcacgcggugaaugcca                            |
| SEQ ID NO:89  | miR-124a 22nt          | miRNA                    | nnaaggcacgcggugaangcca                           |
| SEQ ID NO:90  | miR-124a miRNA         | probe oligo              | CCGTCGCTGCGTGCCTTAcgagccuuuuggcucg               |
| SEQ ID NO:91  | miR-124a miRNA         | arrestor oligo           | naaggcacgcgacgcag                                |
| SEQ ID NO:92  | miR-124a miRNA         | Invader oligo            | ggcagcuuuugcugccTGGCATTCACA                      |
| SEQ ID NO:93  | U6 RNA                 | probe oligo              | CCGCCGAGATCACCTTCTCTGTAT-NH2                     |
| SEQ ID NO:94  | U6 RNA                 | Invader oligo            | CATCCTTGCGCAGGGCCATGA                            |
| SEQ ID NO:95  | U6 RNA                 | arrestor oligo           | auacagagaauuaggugauc                             |
| SEQ ID NO:96  | human miR-135          | miRNA                    | nanddennnnannecnandndaa                          |
| 0:97          | human miR-1d           | miRNA                    | nddaandnaaadaadnandnan                           |
| SEQ ID NO:98  | human miR-1d           | probe oligo              | AACGAGGCGCACTTTACATTCCAcgagccuuuuggcucg          |
| SEQ ID NO:99  | human miR-1d           | Invader oligo            | ggcagcuuuugcugccATACATACTTCC                     |
| SEQ ID NO:100 | human miR-1d           | arrestor oligo           | cgagccaaaaggcucguggaauguaaagugcgc                |
| SEQ ID NO:101 | human beta actin siRNA | probe oligo-antisense    | AACGAGGCGCACAAGATCATTGCggcuucggcc                |
| SEQ ID NO:102 | human beta actin siRNA | Invader oligo-antisense  | ggcuucggccAATGAAGATCC                            |
| SEQ ID NO:103 | human beta actin siRNA | arrestor oligo-antisense | gcaangancungugcgc                                |
| SEQ ID NO:104 | human beta actin siRNA | probe oligo-sense        | AACGAGGCGCACCTTGATCTTCAggcuucggcc                |
| SEQ ID NO:105 | human beta actin siRNA | Invader oligo-sense      | ggcuucggccAAGCAATGATA                            |
| SEQ ID NO:106 | human beta actin siRNA | arrestor oligo-sense     | וומששמשוומנמנ                                    |

Figure 6
Design Optimization



Figure 7
Design Optimization



Figure 8 LOD let-7 (1496-78-01R)







Figure 9 cross reactivity let-7



### Figure 10 LOD mir-1



Figure 11 LOD let-7 (1496-78-01R) using CLEAVASE XII enzyme





## FIGURE 12

| 110  |                                                                                                        |                                                                                                           |                                                                                                                    |                                                                                                             |                                                                                                               |                                                                                                             |                                                                                                               |                                                                                                           |
|------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| H —  | TTTT                                                                                                   | TTTT.                                                                                                     | TTTT.                                                                                                              | TLT.                                                                                                        | TTTT.                                                                                                         | TLL-                                                                                                        | TTTT.                                                                                                         | 'TTT-                                                                                                     |
| 0    | CAAAT                                                                                                  | CAAAT                                                                                                     | CATAT                                                                                                              | CATAT                                                                                                       | CATAT                                                                                                         | CATAT                                                                                                       | CACAT                                                                                                         | CAAAT                                                                                                     |
| 100  | CGTTC                                                                                                  | SCGTTC                                                                                                    | SCGTTC                                                                                                             | SCGTTC                                                                                                      | SCGTTC                                                                                                        | CGTTC                                                                                                       | CGLIC                                                                                                         | ATGGTC                                                                                                    |
| 06 — | STGAAC                                                                                                 | STGAAC                                                                                                    | STGAAC                                                                                                             | STGAAC                                                                                                      | STGAAG                                                                                                        | STGAAC                                                                                                      | STGAAG                                                                                                        | SAGAAZ                                                                                                    |
|      | AATTC                                                                                                  | AATTC                                                                                                     | AATTC                                                                                                              | AATTC                                                                                                       | AATTC                                                                                                         | AATTC                                                                                                       | AAATC                                                                                                         | AAATC                                                                                                     |
| o    | GITCTTCCG-AGAACATATACTAAAATTGGAACAATACAGAGAATTAGCATGGCCCCTGCGCAAGGATGACACGCA-AATTCGTGAAGCGTTCCAAATTTTT | GTTCTTCCG-AGAACATATACTAAAATTGGAACAATACAGAGAAGATTAGCATGGCCCCTGCGCGAAGGATGACACGCA-AATTCGTGAAGCGTTCCAAATTTTT | <b>GTGCTCGCTTCGGCAGCACATATACTAAAATTGGAACGATACAGAGAAGATTAGCATGGCCCCTGCGCAAGGATGACACGCA-AATTCGTGAAGCGTTCCATATTTT</b> | GTGCTCGCTTCGGCAGCACATATACTAAAATTGGAACGATACAGAGAAGATTAGCATGGCCCCTGCGCAAGGATGACACGCA-AATTCGTGAAGCGTTCCATATTT- | GTGCTTGCTTCGGCAGCACATATACTAAAATTTGGAACGATACAGAGAAGATTAGCATGGCCCCTGCGCAAGGATGACACGCA-AATTCGTGAAGCGTTCCATATTTTT | GFGCCTGCTTCGGCAGCACATATACTAAAATTGGAACGATACAGAGAAGATTAGCATGGCCCCTGCGCAAGGATGACACGCA-AATTCGTGAAGCGTTCCATATTT- | IGTTCTTGCTTCGGCAGAACATATACTAAAATTGGAACGATACAGAGAAGATTAGCATGGCCCCAGCGCAAGGATGACACGCA-AAATCGTGAAGCGTTCCACATTTTT | GTCCCTTCGGGGACATCCGATAAAATTGGAACGATACAGAGAAAGATTAGCATGGCCCCTGCGCAAGGATGACGACGCATAAATCGAGAAATGGTCCAAATTTT- |
| ~    | ATGAC!                                                                                                 | ATGAC!                                                                                                    | ATGAC!                                                                                                             | ATGAC!                                                                                                      | ATGAC!                                                                                                        | ATGAC!                                                                                                      | ATGAC!                                                                                                        | ATGACI                                                                                                    |
| 70   | SCAAGG                                                                                                 | SCAAGG                                                                                                    | CAAGG                                                                                                              | CAAGG                                                                                                       | CAAGG                                                                                                         | CAAGG                                                                                                       | SCAAGG                                                                                                        | SCAAGG                                                                                                    |
|      | CCTGCG                                                                                                 | CCTGC                                                                                                     | CTGC                                                                                                               | CCTGCC                                                                                                      | CTGC                                                                                                          | CTGC                                                                                                        | CCAGCG                                                                                                        | CCTGCC                                                                                                    |
| 9    | TGGCC                                                                                                  | TGGCC                                                                                                     | TGGCC                                                                                                              | TGGCC                                                                                                       | TGGCC                                                                                                         | TGGCC                                                                                                       | TGGCC                                                                                                         | TGGCC                                                                                                     |
|      | TTAGCA                                                                                                 | <b>LTAGCA</b>                                                                                             | <b>LTAGCA</b>                                                                                                      | <b>LTAGCA</b>                                                                                               | LTAGCA                                                                                                        | <b>LTAGCA</b>                                                                                               | FTAGCA                                                                                                        | FTAGCA                                                                                                    |
| 50   | GAAGAT                                                                                                 | GAAGA.                                                                                                    | GAAGAT                                                                                                             | GAAGAT                                                                                                      | GAAGAT                                                                                                        | GAAGAT                                                                                                      | GAAGAT                                                                                                        | GAAGAT                                                                                                    |
|      | ACAGA                                                                                                  | 'ACAGA                                                                                                    | 'ACAGA                                                                                                             | 'ACAGA                                                                                                      | 'ACAGA                                                                                                        | ACAGA                                                                                                       | ACAGA                                                                                                         | ACAGA                                                                                                     |
| 4    | AACAAT                                                                                                 | AACAAT                                                                                                    | AACGAT                                                                                                             | ACGAT                                                                                                       | ACGAT                                                                                                         | ACGAT                                                                                                       | ACGAT                                                                                                         | AACGAT                                                                                                    |
| 0    | ATTGG                                                                                                  | ATTGG                                                                                                     | ATTGG2                                                                                                             | ATTGG2                                                                                                      | ATTGG7                                                                                                        | ATTGG                                                                                                       | ATTGG2                                                                                                        | ATTGG2                                                                                                    |
| 30   | CTAAA                                                                                                  | CTAAA                                                                                                     | CTAAA                                                                                                              | CTAAA                                                                                                       | CTAAA                                                                                                         | CTAAA                                                                                                       | CTAAA                                                                                                         | ATAAA                                                                                                     |
| 0    | CATATA                                                                                                 | CATATA                                                                                                    | CATATA                                                                                                             | CATATA                                                                                                      | CATATA                                                                                                        | CATATA                                                                                                      | SATATA                                                                                                        | PATCCG                                                                                                    |
| .,   | -AGAA                                                                                                  | -AGAA(                                                                                                    | CAGCAC                                                                                                             | CAGCAC                                                                                                      | CAGCAC                                                                                                        | CAGCAC                                                                                                      | CAGAAC                                                                                                        | GGA(                                                                                                      |
| 10   | TTCCG                                                                                                  | TICCG                                                                                                     | TTCGG                                                                                                              | TTCGG                                                                                                       | TTCGG                                                                                                         | TTCGG                                                                                                       | TTCGG                                                                                                         | TTCGG                                                                                                     |
|      | GTTC                                                                                                   | GTIC                                                                                                      | SCTCGC                                                                                                             | SCTCGC                                                                                                      | CTTGC                                                                                                         | CCTGC                                                                                                       | ICTIGO                                                                                                        | -GICCC                                                                                                    |
| н —  | 1 1                                                                                                    |                                                                                                           | ĽĎ-                                                                                                                | -GT                                                                                                         | ĬĎ-                                                                                                           | NGT                                                                                                         | NGT                                                                                                           | 1                                                                                                         |
|      |                                                                                                        | a)                                                                                                        |                                                                                                                    |                                                                                                             |                                                                                                               |                                                                                                             | æ                                                                                                             | is                                                                                                        |
|      | C.elegans                                                                                              | C.briggsae                                                                                                | ម្ព                                                                                                                | ě                                                                                                           | Xenopus                                                                                                       |                                                                                                             | Drosophila                                                                                                    | Arabidopsis                                                                                               |
|      | C.e.                                                                                                   | C.b                                                                                                       | human                                                                                                              | monse                                                                                                       | Xenc                                                                                                          | Rat                                                                                                         | Dros                                                                                                          | Arak                                                                                                      |





Fig. 15



Figure 16



Figure 17



#### FIGURE 18





Fig. 19



Fig. 20



## Figure 21



Figure 22





let-7a copy number

miR-15 expression per ng total RNA

elosum lateleda

selivery gland

Thyrold gland

miR-125b expression per ng total RNA

emetU

Trachea

Thymus

Bung

Liver Kideny

Heart

Fetal liver

Retal brain



ueejds

euretU

Traches

трутив

siteet

Kideny

Fetal liver

skeletal muecle

ealivary gland

Dasig bionydT





Fig. 23

## Fig. 24

| 5'-CCC~                            |                      |
|------------------------------------|----------------------|
| tgtgccaactatacaact-3'              |                      |
| CI.CC.                             |                      |
| CTACTACCT                          | CAcgacg t            |
| <sub>t</sub> tgtgccAACTATACAACT-3' |                      |
|                                    |                      |
| t      <br>taacaa                  | gctgc <sup>t t</sup> |
| t                                  | AGII                 |

| * CCGTCGCTGCGT<br>CTACT<br>t gtgccAACTATACAACT-3, |                          |
|---------------------------------------------------|--------------------------|
| CTACT                                             | ACCTCAcgacg <sub>t</sub> |
| t gtgccAACTATACAACT-3,                            |                          |
| t                                                 | Tgctgc t °               |

| 5'-CCGTCGCC                              |                                            |
|------------------------------------------|--------------------------------------------|
| t gtgccAACTATACAAC  t            t cacg- | CTACTACCTCAcgacgt<br>CT-3'     <br>-ctgc t |

UUGAUAUGUUGGAUGAUGAGU

# Figure 25



27/27

1796-58-03 (arrestor)

ugaagancaaggugcgc

1796-58-06 (arrestor)

gcaaugaucuugugcgc