Dimensionality Reduction

Sunita Sarawagi CS 725 Fall 2023

f-Sne

Dimensional Reduction

- where k << d
- Often original data in raw form might have a very high dimensionality (e.g. an image), but the information in each instance can be expressed compactly in smaller dimensions.

Applications

* Visualization continues to be relevant. Eg: visualizing high-dimensional embedding between the first tearning to be a series of the first tearning to be a series of the first tearning to the first tearning to be a series of the first tearning to be a series of the first tearning to be a series of the first tearning tearning to be a series of the first tearning tearnin

Dimension reduction

- Assumption: data (approximately) lies on a lower dimensional space
- Examples:

Example (from Bishop)

 Suppose we have a dataset of digits ("3") perturbed in various ways:

- What operations did I perform? What is the data's intrinsic dimensionality?
- Here the underlying manifold is nonlinear

Random displacement and rotation

Linear projections Given: N data points

• Each original high-dimensional $x \in \mathbb{R}^d$ is projected to a lower dimensional space $z \in \mathbb{R}^m$ using just a linear projection matrix.

$$Z = W \times W = \begin{bmatrix} W_1 \\ W_2 \\ W_3 \end{bmatrix} \quad X = \begin{bmatrix} N_1 \\ W_2 \\ W_3 \end{bmatrix}$$

$$Z_3 = W_3 \times W = \begin{bmatrix} W_{11} & W_{12} & \cdots & W_{1d} \\ W_{11} & W_{12} & \cdots & W_{1d} \\ W_{31} & W_{32} & \cdots & W_{3d} \end{bmatrix} \quad X = \begin{bmatrix} N_1 \\ N_2 \\ W_3 \end{bmatrix}$$

$$= \langle W_3 \\ W_3 \\ W_{31} \\ W_{32} \\ W_{32} \\ W_{33} \\ W_{34} \\ W_{35} \\ W_{36} \\ W_$$

No labelled supervision on the desired z. How do we choose the best z?

Which projection is better?

Principal Component Analysis (PCA)

- Reading material: Chapter 12 of Bishop book
- Simple and widely used linear projection
- Projection basis are orthogonal
 - $w_i \perp w_r$ j, $r \leq m$
- Objectives
 - Maximize the variance (spread) of the projected points --- green points
 - Equivalently, minimizing the sum of squares of the projection error --- blue lines.

Consider single dimensional projection m=1, to minimize variance of projected points

Assume
$$\|W_1\| = 1$$
.

Given x' , $x^2 - \cdots x^N$ $x' \in \mathbb{R}$

find W_1 s.t

Variance of $\{2^i, 2^2 - \cdots 2^N\}$ is minimized maximized where $2^i = W_1^T x$
 $W_1 = \operatorname{argmax} \sum_{i=1}^{N} (2^i - 2^i)^2$ where

 $Z_1 = W_1^T x^i$
 $Z_2 = W_1^T x^i$
 $Z_3 = W_1^T x^i$
 $Z_4 = W_1^T x^$

Two

Solving for the optimal projection

$$W' = \operatorname{argmax}_{\lambda} \sum_{i=1}^{N} (w_{i}^{x}x^{i} - w_{i}^{x} \times x^{2})^{2}$$

$$= w_{i}^{y} \sum_{i=1}^{N} (w_{i}^{y}x^{i} - w_{i}^{y}x^{2})^{2} = w_{i}^{y} \sum_{i=1}^{N} (w_{i}^{y}x^{i} - w_{i}^$$

maja wisw, - X(wiw,-1) Lagrangian multiplier. SW, = NW, = is a scaleur ER. Sis a squere materix Equating gradient w.r.t W, to O => W, = is an Eigen vector of S Left multiply by w, $\left| \begin{array}{ccc} w_1^T S w_1 &=& \sqrt{1} \lambda w_1 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{array} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{aligned} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{aligned} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{aligned} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{aligned} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{aligned} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_2 \\ \end{aligned} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_1 \\ \end{aligned} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_1 \\ \end{aligned} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_1 \\ \end{aligned} \right| = \left| \begin{array}{ccc} \sqrt{1} w_1^T w_1 \\$ W, = Eigen-vietor corresponding to which Eigen value is man innun-

In general..

- The best m dimensional linear projection of a d-dimensional dataset for maximizing variance of the projected points are
 - The first m eigen vectors of the covariance matrix S of the given data points.

Principal components x₂1

- Compute covariance matrix Σ = 5
 - covariance of dimensions x₁ and x₂:
 - do x₁ and x₂ tend to increase together?
 - or does x₂ decrease as x₁ increases?
 - covariance: measure of variability

λ₁ [0.26]

- Find the basis of Σ= S
 - find vectors e_i which aren't turned by Σ
 - Σ e_i = λ_i e_i: eigenvalue / eigenvector
 - 1st PC: "longest" e_i (has largest λ_i), 2nd PC: next longest, ∴

= (0.9) + (0.4) = (0.9) + (0.4)

N=8

PCA in a nutshell

3. compute covariance matrix

4. eigenvectors + eigenvalues

5. pick m<d eigenvectors

$$\begin{pmatrix}
2.0 & 0.8 \\
0.8 & 0.6
\end{pmatrix} \begin{pmatrix} e_h \\ e_u \end{pmatrix} = \lambda_e \begin{pmatrix} e_h \\ e_u \end{pmatrix}$$

$$\begin{pmatrix}
2.0 & 0.8 \\
0.8 & 0.6
\end{pmatrix} \begin{pmatrix} f_h \\ f_u \end{pmatrix} = \lambda_f \begin{pmatrix} f_h \\ f_u \end{pmatrix}$$
eig (cov (data))

7. uncorrelated low-d data

height [inches]

6. project data points to those eigenvectors

want dimension of

highest variance

Eigen faces demo

PCA example: Eigen Faces

Eigen Faces: Projection

- Project new face to space of eigen-faces
- Represent vector as a linear combination of principal components.
- How many do we need?

(Eigen) Face Recognition

- Face similarity
 - in the reduced space
 - insensitive to lighting expression, orientation
- Projecting new "faces"

everything is a face

new face (not in training)

projected to eigenfaces

Non-linear dimensionality reduction

- Also called manifold learning
- Manifold is a topological space that is locally Euclidean
 - Example: surface of the earth is a curved 2d surface embedded in a high-dimensional space by at each point on the surface, the earth seems flat
- Manifold hypothesis:
 - Most "naturally occurring" high-dimensional dataset lie on a low-dimensional manifold, also called the intrinsic dimensionality of the data
- Many methods exist for learning manifolds: main idea is to preserve local neighborhood of each point in the given dataset.

Examples

Stochastic Neighborhood Embedding (SNE)

 Convert high-dimensional Euclidean distances into conditional probabilities that represent similarities