ESTUDIO DE TÉCNICAS DE APRENDIZAJE AUTOMÁTICO PARA RECOMENDAR LOCALIZACIONES SEGÚN EL TIPO DE NEGOCIO

Daniel González Pascual

Escuela Politécnica Superior

Ingeniería Informática

Trabajo Fin de Grado

1. SISTEMAS DE RECOMENDACIÓN

Introducción

- Sugieren *items* que podrían ser interés del usuario.
- Se utilizan, por ejemplo, puntuaciones, compras o búsquedas.
- Los items son ropa, vídeos, personas, noticias...
 Cualquier cosa que tenga sentido ser buscada.

7.50 € - 18.47 €

Los clientes que compraron este producto también compraron

Estructura general

- Se necesitan datos de los usuarios y los *items*.
- Se requiere de una escala (rating) de cuánto le gusta el item a un usuario.
- Los ratings suele tenervalores entre los intervalos[1, 10], [1, 5] o [0.1, 1.0].

Tipos de sistemas

Filtrado colaborativo

Filtrado basado en contenido

Tipos de sistemas

Filtrado colaborativo

Filtrado colaborativo

- Basado en memoria.
- Basado en modelo:
 - O Factorización de matrices.

Factorización de matrices

Técnica matemática SVD

Factorización de matrices

Algoritmo de optimización descenso por gradiente

$$e(u,i) = r(u,i) - \hat{r}(u,i)$$

$$p_u = p_u + \alpha \cdot [e(u,i) \cdot q_i - \lambda \cdot p_u]$$

$$q_i = q_i + \alpha \cdot [e(u,i) \cdot p_u - \lambda \cdot q_i]$$
 Tasa de aprendizaje

$$b_{u} = b_{u} + \alpha \cdot [e(u, i) - \lambda \cdot b_{u}]$$

$$b_{i} = b_{i} + \alpha \cdot [e(u, i) - \lambda \cdot b_{i}]$$

Parámetro regularizador

2. MOTIVACIÓN

Location-Based Services (LBS)

- Nuevo dato con el que trabajar: las localizaciones.
- Características por cada Point Of Interest (POI).

Recomendación basada en la localización

Recomendación de tipos de tiendas

Recomendación de localizaciones

3. DISEÑO

Estructura general

> POIs:

Venue ID ▼	Latitude ▼	Longitude ▼	Venue category name ▼	Country code ▼
3fd66200f964a52000e71ee3	40.73	-74	Jazz Club	US
3fd66200f964a52000e81ee3	40.76	-73.98	Gym	US
3fd66200f964a52000ea1ee3	40.73	-74	Indian Restaurant	US
3fd66200f964a52000ee1ee3	39.93	-75.16	Sandwich Place	US
3fd66200f964a52000f11ee3	40.65	-74	Bowling Alley	US

> Checkins:

User ID ▼	Venue ID ▼	UTC time ▼	Timezone offset in minutes ▼
50756	4f5e3a72e4b053fd6a4313f6	Tue Apr 03 18:00:06 +0000 2012	240
190571	4b4b87b5f964a5204a9f26e3	Tue Apr 03 18:00:07 +0000 2012	180
221021	4a85b1b3f964a520eefe1fe3	Tue Apr 03 18:00:08 +0000 2012	-240
66981	4b4606f2f964a520751426e3	Tue Apr 03 18:00:08 +0000 2012	-300
21010	4c2b4e8a9a559c74832f0de2	Tue Apr 03 18:00:09 +0000 2012	240

City name ▼	Latitude of city center ▼	Longitude of city center ▼	Country code ▼ ▼	Country name ▼	City type ▼
New York	40.71	-73.91	US	United States	Other
Harrisburg	40.27	-76.9	US	United States	Provincial capital
Trenton	40.22	-74.78	US	United States	Provincial capital
Philadelphia	39.93	-75.22	US	United States	Other
Boston	42.37	-71.1	US	United States	Provincial capital

Categorías:

Level1_name ▼	Level2_name ▼	Level3_name ▼	Level4_name ▼
Food	Asian Restaurants	Japanese Restaurants	Donburi Restaurants
Food	Asian Restaurants	Japanese Restaurants	Japanese Curry Restaurants
Shops & Services	Food & Drink Shops	Cheese Shops	
Shops & Services	Food & Drink Shops	Fish Markets	
Shops & Services	Food & Drink Shops	Food Services	

Diferencia de datos

Conjuntos de datos	2015	2019	
Checkins	33 263 633	22 809 624	
POIs	3 680 126	11 180 160	

Transformación de las categorías

Level1_name ▼	Level2_name ▼	Level3_name ▼	Level4_name T
Food	Asian Restaurants	Japanese Restaurants	Donburi Restaurants
Food	Asian Restaurants	Japanese Restaurants	Japanese Curry Restaurants
Shops & Services	Food & Drink Shops	Cheese Shops	
Shops & Services	Food & Drink Shops	Fish Markets	
Shops & Services	Food & Drink Shops	Food Services	

Estructura de datos una vez procesados

Venue ID ▼	Latitude ▼	Longitude ▼	Venue category name ▼	Checkins ▼	Distance to city centre ▼
3fd66200f964a52008e81ee3	40.76	-73.97	Dessert Shop	139	7.85
3fd66200f964a52008e91ee3	40.74	-73.99	Cafe	87	7.61
3fd66200f964a52008eb1ee3	40.78	-73.95	Bar	30	9.25
3fd66200f964a52000e81ee3	40.76	-73.98	Athletic & Sport	24	8.16
3fd66200f964a52001e91ee3	40.73	-73.95	Asian Restaurant	0	4.88

$$rating = \frac{\log(num_checkins)}{\log(limit)} \cdot 10$$

Francis & St.

Características de localización

Distancia al centro de la ciudad:

$$DC = \frac{1}{\log(d)}$$

Distancia al centro de la ciudad

> Accesibilidad del tráfico:

$$AT = \sum_{t \in T} \frac{\log_2[n(t, r) + 1]}{\log_2[d(t)]}$$

Número de facilidades para acceder al transporte t en la zona con radio r

Distancia mínima al transporte t

Características de localización

Diversidad de tiendas:

$$DT = -\sum_{s \in S} \left[\frac{n(s,r)}{n(r)} \times \log \frac{n(s,r)}{n(r)} \right]$$

Número de tiendas de tipo s en la zona con radio r

Número total de tiendas en la zona con radio r

▶ Popularidad:

$$P = \log \sum_{s \in R} C(s)$$

Número de checkins de la tienda s

Conjunto de tiendas de la zona

Características de comercio

$$C_s = \frac{n(s,r)}{n(r)}$$

Número de tiendas del tipo s en la zona con radio r

Número total de tiendas en la zona con radio r

Complementariedad:

$$a_{s \to s^*} = \frac{2 \cdot n(s, s^*)}{n \cdot (n+1)}$$

Número de apariciones que tiene el par de tiendas s y s* en las distintas zonas

Número total de tiendas

Consult & Str.

Entrenamiento del recomendador

Sesgo global (valoración media)

Características de comercio

Características de localización

$$\hat{r}(t,l) = b + B(t,l)F(t,l) + P(t,l)C(t,l) + T_t^T L_l$$

Vectores de los sesgos para el tipo de tienda t y la localización l Vectores de los factores latentes del tipo de tienda t y la localización l

Evaluación del recomendador

```
input: Tipo de tienda t
       output: Ránking de localizaciones según el rating predicho
       muestras \leftarrow POIs del entrenamiento con rating > 0 y tipo de tienda t;
       for m in muestras do
           clase[m.rating] \leftarrow m;
       end
       foreach l in localizaciones do
            l[tipo\_tienda] \leftarrow t;
            C_1 \leftarrow DC_1, AT_1, DT_1, P_1;
            F_1 \leftarrow Compet_1, Complem_1:
            for r \leftarrow 1 to 10 do
                 dist[r] \leftarrow \sum_{c \in clase[r]} \frac{dist\_euclidea(C_l, C_c) + dist\_euclidea(F_l, F_c)}{long(clase[r])};
10
             end
11
            clase\_elegida \leftarrow clase[min(dist)];
12
           nuevos\_parametros \leftarrow \frac{clase\_elegida.parametros}{long(clase\_elegida)};
13
            rating\_predicho \leftarrow predecir\_rating(C_l, F_l, nuevos\_parametros);
            ranking \leftarrow añadir la localización l con su rating\_predicho;
15
        end
16
```


Recomendador MatrixFactorization

¿No sabes dónde montar tu tienda?

Nosotros te ayudamos

4. PRUEBAS

Adaptación de los datos

Entorno de pruebas

Recursos	Características	
CPU	Intel(R) Xeon(R)	
GPU	NVIDIA Tesla K80/T4/P100	
RAM	13GB	
S.O.	Ubuntu 18.04.5 LTS	
Python	3.7.13	

Adaptación de los datos

Distribución original

Distribución aplicando límites

Adaptación de los datos

Datos de las ciudades

Ciudad	POIs	Checkins	
Nueva York	95 932	765 183	
Tokio	174 463	2 440 946	
Madrid	82 149	288 004	

Ciudad	POIs	Checkins		
Nueva York	13 558	532 085		
Tokio	20 000	812 177		
Madrid	4 434	151 410		

Originales

Tras adaptar los datos

Adaptación de los datos

Conjuntos seleccionados:

Primer conjunto: Bar, Cafe, Dessert Shop, Food & Drink Shop, Fast Food Restaurant.

Segundo conjunto: Office, Bank, Bar, Cafe, Fast Food Restaurant.

Tercer conjunto: Athletic & Sport, Hotel, Clothing Store, Food & Drink Shop, Bar.

Ajuste de hiperparámetros

- Pruebas con:
 - O Conjunto de datos de Nueva York.
 - O Primer conjunto de tipos de tiendas.
 - O Datos de entrenamiento (70%) y datos de test (30%).
- - O MAE y RMSE bajo.
 - O Predicción alta.

Sin sobreentrenamiento

Experimentos con el primer conjunto

Ciudad	Modelo	R-Precision	MAP	MRR	Tiempo de ejecución (seg.)
	Factorización de matrices	0.24	0.22	0.42	12 372.31
	SVM	0.27	0.24	0.39	9 932.84
	Random Forest	0.23	0.26	0.47	9 808.13
Nueva	Regresión logística	0.22	0.22	0.44	9 771.42
York	Naive Bayes	0.25	0.24	0.56	9 754.07
	KNN	0.16	0.21	0.63	9 755.51
	Perceptrón multicapa	0.23	0.23	0.45	10 529.22
	Aleatorio	0.15	0.22	0.38	9 753.69
	Factorización de matrices	0.22	0.21	0.34	27 284.38
Tokio	SVM	0.24	0.24	0.35	23 778.35
	Random Forest	0.23	0.24	0.14	23 182.84
	Regresión logística	0.21	0.23	0.45	23 134.42
	Naive Bayes	0.19	0.21	0.19	23 114.70
	KNN	0.20	0.21	0.39	23 114.84
	Perceptrón multicapa	0.20	0.20	0.52	24 045.01
	Aleatorio	0.19	0.21	0.31	23 114.82
	Factorización de matrices	0.20	0.27	0.52	1 229.66
	SVM	0.24	0.28	0.49	788.35
	Random Forest	0.27	0.28	0.54	777.26
Madrid	Regresión logística	0.29	0.28	0.49	772.84
	Naive Bayes	0.21	0.24	0.34	767.49
	KNN	0.19	0.22	0.36	767.47
	Perceptrón multicapa	0.26	0.30	0.42	1 050.42
	Aleatorio	0.18	0.23	0.27	767.46

Experimentos con el segundo conjunto

Ciudad	Modelo	R-Precision	MAP	MRR	Tiempo de ejecución (seg.)
	Factorización de matrices	0.23	0.23	0.38	13 637.90
	SVM	0.22	0.24	0.44	12 132.58
	Random Forest	0.23	0.24	0.64	12 006.91
Nueva York	Regresión logística	0.24	0.23	0.52	11 971.15
	Naive Bayes	0.25	0.26	0.51	11 953.96
	KNN	0.21	0.21	0.38	11 953.94
	Perceptrón multicapa	0.21	0.23	0.37	12 739.49
	Aleatorio	0.17	0.23	0.33	11 953.68
	Factorización de matrices	0.20	0.21	0.31	21 186.69
Tokio	SVM	0.24	0.24	0.31	20 286.18
	Random Forest	0.25	0.25	0.47	19 697.19
	Regresión logística	0.27	0.25	0.29	19 638.62
	Naive Bayes	0.21	0.23	0.34	19 629.19
	KNN	0.20	0.22	0.35	19 629.07
	Perceptrón multicapa	0.21	0.22	0.48	20 447.97
	Aleatorio	0.20	0.21	0.30	19 629.20
	Factorización de matrices	0.28	0.33	0.71	1 427.60
Madrid	SVM	0.28	0.29	0.42	1 308.21
	Random Forest	0.28	0.28	0.30	1 297.75
	Regresión logística	0.30	0.30	0.53	1 292.17
	Naive Bayes	0.21	0.24	0.43	1 287.00
	KNN	0.17	0.22	0.26	1 287.02
	Perceptrón multicapa	0.27	0.28	0.50	1 564.01
	Aleatorio	0.20	0.23	0.24	1 286.91

Experimentos con el tercer conjunto

Ciudad	Modelo	R-Precision	MAP	MRR	Tiempo de ejecución (seg.)
	Factorización de matrices	0.23	0.22	0.48	11 578.03
	SVM	0.16	0.17	0.13	10 531.94
	Random Forest	0.13	0.17	0.35	10 401.55
Nueva	Regresión logística	0.20	0.20	0.17	10 360.07
York	Naive Bayes	0.16	0.19	0.32	10 353.23
	KNN	0.18	0.21	0.28	10 354.23
	Perceptrón multicapa	0.13	0.17	0.36	10 950.18
	Aleatorio	0.14	0.23	0.32	10 353.42
	Factorización de matrices	0.22	0.23	0.24	19 456.92
Tokio	SVM	0.20	0.21	0.35	18 907.40
	Random Forest	0.19	0.22	0.10	18 310.64
	Regresión logística	0.20	0.25	0.38	18 260.46
	Naive Bayes	0.23	0.25	0.34	18 242.00
	KNN	0.22	0.21	0.27	18 242.88
	Perceptrón multicapa	0.20	0.23	0.19	19 247.50
	Aleatorio	0.22	0.23	0.24	18 241.54
	Factorización de matrices	0.23	0.24	0.25	1 347.90
Madrid	SVM	0.33	0.29	0.53	1 225.04
	Random Forest	0.26	0.29	0.27	1 214.78
	Regresión logística	0.29	0.30	0.65	1 209.32
	Naive Bayes	0.31	0.29	0.24	1 204.05
	KNN	0.23	0.26	0.66	1 203.96
	Perceptrón multicapa	0.29	0.29	0.54	1 487.81
	Aleatorio	0.19	0.25	0.23	1 204.03

5. CONCLUSIONES

Análisis de los resultados

- Métricas muy similares a otros algoritmos de Scikit-learn u otros estudios con diferentes implementaciones.
- Alto coste en tiempo de ejecución.
- La eficacia del recomendador ha estado condicionada por:
 - O Número de datos disponible de cada ciudad.
 - O Tiempo limitado de las sesiones del entorno.

6. TRABAJO FUTURO

Propuestas

- Realizar más pruebas.
- Utilizar otros datos.
- Doptimizar el algoritmo.
- Permitir al experto decidir si utilizar la recomendación.
- > Ampliar las características:
 - O Iluminación.
 - O Contaminación.

Muchas gracias Turno de preguntas

Daniel González Pascual Ingeniería Informática Escuela Politécnica Superior