

信息技术导论

-传感器基础知识

华中科技大学电信学院 2021级

PART 1 传感器介绍

常用传感器

- 全球定位系统(GPS)
- 激光雷达 (LIDAR)
- 视频摄像头
- 超声波传感器
- •雷达传感器(Radar)

The Economist, "How does a self-driving car work?"

常用传感器

常用传感器

检测、判别物体

- 发光二极管发射光束(可见光或红外光束),光电接收管用于检测目标反射的光束。
- 非接触式探测

红外反射式光电对管

- ➤ 发射波长为780nm-1mm
- ▶ 检测反射光线的光强变化
- ▶ 检测效果受发射光强、距离影响
- ▶ 安装在没有强光直接照射 处

華中科技大學 Hugzhong University of Science and Tachnology

红外对射式光电对管

探测距离远, 灵敏度高, 安装需要防干扰

红外反射式光电对管

如果为红色 线,会是什 么结果?

華中科技大學 Huazhong University of Science and Technology

信号采集

AD检测

ADC采样, 检测电压值,

灵敏度高,易受自然光干扰

电压比较 电压与设定的门限电压对比, 距离可调,易受自然光干扰

華中科技大學

PART 3 本周任务

传感器数据采集实验

```
void Reflectance_Init(void){
    P5->SEL0&= ~0xFF;
    P5->SEL1&= ~0xFF;
    P5->DIR|= 0x08;
    P5->OUT&= ~0x08;
    P7->SEL0&= ~0xFF;
    P7->SEL1&= ~0xFF;
    P7->DIR&= ~0xFF;
}
```


思考:如何使用函数实现

传感器数据采集实验

操作流程:

- 1) 设P5.3为高电平 (点亮红外LED)
- 2) 设P7.7 –P7.0为输出,并置为高电平 (给8 个电容充电)
- 3) 等待
- 4) 设P7.7 -P7.0为输入
- 5) 等待
- 6) 读取P7.7 -P7.0 输入 (将电压转化为二进制)
- 7) 将P5.3置为低电平 (关闭红外LED, 节省电力)

传感器数据采集实验

```
uint8_t Reflectance_Read(uint32_t time){
   uint8 t result;
   P5->OUT = 0x08; // Turn on IR light
   P7->DIR = 0xFF; // P7.0-7.7 output
   P7->OUT = 0xFF; // Set P7.0-7.7 high
   for(i=100; i>0; i--); // loop delay
   P7->DIR&= ~0xFF; // P7.0-7.7 input
   P7->REN&= \sim 0xFF;
   for(i=time; i>0; i--); // loop delay
   result = P7->IN;
   P5->OUT&= ~0x08; // Turn off IR light
   return result;
```


传感器数据采集实验

```
void main(void)
   uint8_t Data;
   Reflectance_Init();
   while(1){
       Data = Reflectance_Read(1000);
       printf("%02x\n",Data);
       for(int i=10000; i>0; i--); // loop delay
```


Thank You !

