Linearising Flows and a Cohomological Interpretation of Lax Equations - Unpacking the Paper

Linden Disney-Hogg

November 2020

Contents

1	Intr	oduction	1
2	The	Preliminaries	1
	2.1	Divisors	1
	2.2	Abel-Jacobi	2
	2.3	Bundles and Sheaves	3
	2.4	Lax Pairs and Spectral Curves	4

1 Introduction

The purpose of this document is to facilitate the understanding of [1] by discussing the terms and how they fit into the wider picture of algebraic geometry.

2 The Preliminaries

2.1 Divisors

Definition 2.1. A divisor on C is a formal finite sum of points, i.e. $D = \sum_i n_i p_i$ for $n_i \in \mathbb{Z}$, $p_i \in C$. The group of divisors under addition is denoted Div(C).

Definition 2.2. The **degree** of a divisor $D = \sum_i n_i p_i \operatorname{deg} D = \sum_i n_i$

Definition 2.3. Given a meromorphic function $f: C \to \mathbb{C}$ we define $(f) \in \text{Div}(C)$ by

$$(f) = \sum_{p \in X} \operatorname{ord}_p(f) \cdot p$$

For $D \in Div(C)$, if $\exists f \ s.t. \ D = (f)$ we say D is a **principal divisor**.

Lemma 2.4. (fg) = (f) + (g)

Corollary 2.5. Principal divisors form a subgroup $Lin(C) \leq Div(C)$.

Lemma 2.6. If X is a compact Riemann surface and $f: X \to \mathbb{C}$ meromorphic then $\deg(f) = 0$.

Proposition 2.7. Let C be compact. Then $Lin(C) = \{D \in Div(C) \mid deg(D) = 0\}.$

Definition 2.8. The divisor class group of C is $Cl(C) = \frac{Div(C)}{Lin(C)}$.

Remark. deg : Div(C) $\to \mathbb{Z}$ is a group homomorphism and as the kernel is Lin(C) we see Cl(C) \cong Im deg

Corollary 2.9. $Cl(\mathbb{CP}^n) \cong \mathbb{Z}$.

Definition 2.10. Two divisors D, E are linearly equivalent if D - E is a principal.

Lemma 2.11. Linear equivalence of divisors is an equivalence relation.

Lemma 2.12. $f: X \to Y$ induces a group morphism $f: Div(X) \to Div(Y)$ by

$$f\left(\sum_{i} n_{i} p_{i}\right) = \sum_{i} n_{i} f(p_{i})$$

Proposition 2.13. If $f: X \to Y$ is a map of Riemann surfaces and $D \in Div(X)$, then $\deg(f(D)) = \deg f \cdot \deg D$.

Definition 2.14. A divisor $D = \sum_{i} n_i p_i$ is **effective** if each $n_i \geq 0$.

Proposition 2.15. We have a partial ordering on Div(C) by saying $D \geq D'$ id D - D' is effective.

2.2 Abel-Jacobi

Suppose C has genus g, then we know that $H_1(C,\mathbb{Z}) \cong \mathbb{Z}^{2g}$ where the generators are the loops $\{\gamma_i\}_{i=1}^{2g}$. There is an alternative way to say this condition:

Definition 2.16. The canonical bundle on a space X with $\dim X = n$ is the line bundle of exterior n-forms on X.

Remark. Note we know the canonical bundle is a line bundle as there is only 1 basis element of n-forms on an n-dimensional space.

Proposition 2.17. If X = C is a Riemann surface of genus g then $H^0(C, K) \cong \mathbb{C}^g$.

Corollary 2.18. We can take a basis $\{\omega_i\}_{i=1}^g$ of 1-forms on C.

Definition 2.19. The **Jacobian** of C is defined to be

$$J(C) = {\mathbb{C}}^g /_{\Lambda}$$

where Λ is the lattice generated over \mathbb{R} by the vectors

$$\Omega_j = \left(\int_{\gamma_j} \omega_1, \dots, \int_{\gamma_j} \omega_g\right), \quad 1 \leq j \leq 2g$$

Definition 2.20. The Abel-Jacobi map for $p_0 \in C$ is

$$u: C \to J(C)$$

$$p \mapsto \left(\int_{p_0}^p \omega_1, \dots, \int_{p_0}^p \omega_g\right) \mod \Lambda$$

This is independent of the path of integration as we have quotiented by Λ .

Theorem 2.21 (Abel's Theorem). Let u be the Abel-Jacobi map and D, E effective divisors. Then $u(D) = u(E) \Leftrightarrow D \sim E$.

Theorem 2.22 (Jacobi's Theorem). The map Abel-Jacobi map is surjective.

Corollary 2.23. There is an isomorphism from the space of degree-0 divisors to the Jacobian.

2.3 Bundles and Sheaves

We recall a few necessary bundle definitions and results:

Definition 2.24. The tensor product of vector bundles $E, F \to M$ is $E \otimes F \to M$ s.t. $(E \otimes F)_m = E_m \otimes F_m$ for $m \in M$.

Lemma 2.25. If O is the trivial line bundle then $E \otimes O = E$.

Definition 2.26. The dual bundle of a vector bundle $E \to M$ is $E^* \to M$ where the fibres of E^* are the dual spaces of the fibres of E, with the transition functions $g_{ij}^* = (g_{ij}^T)^{-1}$.

Remark. We can check the cocycle condition here as

$$g_{kj}^{*}g_{ji}^{*} = \left(g_{kj}^{T}\right)^{-1}\left(g_{ji}^{T}\right)^{-1} = \left(g_{ji}^{T}g_{kj}^{T}\right)^{-1} = \left(\left[g_{kj}g_{ji}\right]^{T}\right)^{-1} = \left(g_{ki}^{T}\right)^{-1} = g_{ki}^{*}$$

Example 2.27. The dual bundle to the tangent bundle is the cotangent bundle, i.e. $(TM)^* = T^*M$

Lemma 2.28. $E \otimes E^* \cong \operatorname{End}(E)$.

Lemma 2.29. Line bundles have tensor inverses, i.e given L, $\exists L^{-1}$ s.t. $L \otimes L^{-1} \cong O$ the trivial bundle.

Proof. We will show this by showing $L^{-1} = L^*$. To trivialise $\operatorname{End}(L)$ we note here the transition maps are $g_{ij} \otimes g_{ij}^{-1} = 1 \otimes 1$ as $g_{ij}, g_{ij}^* \in \mathbb{F}$. Hence any section is globally defined.

Remark. Why is the identity section not global on any other vector bundle.

These results motivate the definition of the **Picard group** which we will cover now:

Definition 2.30. A ringed space is a pair (X, O_X) where X is a topological space and O_X is a sheaf of rings on X. O_X is called the **structure sheaf**.

Example 2.31. Given a topological space X, if we take O_X to be \mathbb{R} -valued continuous functions on open subsets of X then (X, O_X) is a ringed space.

Definition 2.32. The **Picard group** of a locally ringed space X is Pic(X) the group of isomorphism classes of line bundles on X with the group operation being \otimes .

Remark. In place of line bundles we can actually say invertible sheaves

Theorem 2.33. $Cl(C) \cong Pic(C)$ naturally.

Corollary 2.34. We get a group homomorphism $\deg : \operatorname{Pic}(C) \to \mathbb{Z}$ giving the degree of the corresponding divisor in $\operatorname{Cl}(C)$.

Corollary 2.35. $\operatorname{Pic}(\mathbb{CP}^1) \cong \mathbb{Z}$.

Notation. We denote the isomorphism class of line bundles degree d as $Pic^d(C)$

Remark. With this new notation we may rephrase the corollary of the Abel-Jacobi theorem to say $J(C) \cong \operatorname{Pic}^0(C)$.

Proposition 2.36. There is a canonical isomorphism $Pic(X) \cong H^1(X, O_X^{\times})$.

Corollary 2.37. $T_L(\operatorname{Pic}^d(X)) \cong H^1(X, O_X)$

Proof. You need to use the exponential sheaf sequence.

Let us now consider a specific class of bundles:

Definition 2.38. The hyperplane bundle on \mathbb{CP}^n is the bundle $\mathbb{C}^{n+1} \to \mathbb{CP}^n$ given by the standard projection $(z_0, \ldots, z_n) \to [z_0 : \cdots : z_n]$. It is often denoted $\mathcal{O}(1)$. We denote $\mathcal{O}(n) = \mathcal{O}(1)^{\otimes n}$.

Definition 2.39. The tautological line bundle on projective space is $\mathcal{O}(-1) = \mathcal{O}(1)^*$. We denote $\mathcal{O}(-n) = \mathcal{O}(-1)^{\otimes n}$.

Proposition 2.40. The canonical bundle on the projective space is $K = \mathcal{O}(-n-1)$.

Proposition 2.41. $Pic(\mathbb{CP}^n)$ is generated by $\mathcal{O}(\pm 1)$.

We make a few more useful definitions.

2.4 Lax Pairs and Spectral Curves

Definition 2.42. A Lax pair is a pair of $\mathfrak{g} \subset \mathfrak{gl}_n$ -valued matrices A, B, functions of a spectral parameter ξ and time t satisfying $\dot{A} = [A, B]$.

Proposition 2.43. The Lax equation is invariant under the substitution

$$B \mapsto B + P(A, \xi)$$

for polynomial $P(x,\xi) \in \mathbb{C}[x,\xi]$.

Definition 2.44. The spectral curve is C given by the solution in \mathbb{P}^1 of

$$\det \left[\eta I - A(\xi, t) \right] = 0$$

Proposition 2.45. The flow $t \mapsto A(\xi, t)$ is isospectral.

It will be the understanding of this isospectral flow that we want to gain. We formulate this flow as the family of holomorphic map gained by the eigenvectors

$$f_t: C \to \mathbb{CP}^{n-1}$$

Suppose that C has degree d, then we know we can define

$$L_t = f_t^* \left(\mathcal{O}(1) \right) \in \operatorname{Pic}^d(C)$$

Lets choose a reference bundle $L_0 \in \operatorname{Pic}^d(X)$

Lemma 2.46. The map

$$\operatorname{Pic}^{d}(C) \to J(C)$$

 $L \mapsto L \otimes L_{0}^{-1}$

is an isomorphism.

Now knowing our result about the tangent space to the Picard group we can say $\frac{dL_t}{dt} \in H^1(C, O_C)$.

References

[1] Phillip A. Griffiths. Linearizing flows and a cohomological interpretation of lax equations. *American Journal of Mathematics*, 107(6):pp. 1445–1484, 1985. ISSN 00029327, 10806377. doi: 10.2307/2374412.