การระบุตำแหน่งของผู้ขอความช่วยเหลือโดยใช้เครื่อข่ายเซ็นเซอร์ไร้สายแบบเฉพาะกิจ Indoor localization of a wireless ad hoc sensor networks.

อรจิรา เกษ โกวิท (Onchira Katekowit)¹ และนวพร วิสิฐพงศ์พันธ์ (Nawaporn Wisitpongphan)²
ภาควิชาเทค โน โลยีสารสนเทศ คณะเทค โน โลยีสารสนเทศ
มหาวิทยาลัยเทค โน โลยีพระจอมเกล้าพระนครเหนือ
¹katekowit@hotmail.com, ²nawapornn@kmutnb.ac.th

บทคัดย่อ

บทความนี้นำเสนอการศึกษาและทคสอบการหาขีค ความสามารถการระบุตำแหน่งของระบบขอความช่วยเหลือ ภายในอาคาร โคยใช้เทคนิคลายนิ้วมือ (Fingerprint) ซึ่งผู้วิจัย ได้พัฒนาระบบ-เครือข่ายเซ็นเซอร์ไร้สายแบบเฉพาะกิจที่ ครอบคลุมภายในอาคาร 2 ชั้น โคยใช้อุปกรณ์ Zigbee Pro Series 2 จากผลการทคลองทางผู้วิจัยพบว่า หากใช้อุปกรณ์ Zigbee Router จำนวน 6 ตัว ในการสร้างระบบเครือข่ายแล้ว แม้ว่าสัญญาณจะครอบคลุมพื้นที่ทั้งหมค แต่ประสิทธิภาพใน การระบุตำแหน่งจะอยู่ที่ประมาณ 73% เท่านั้น เนื่องมาจาก อุปกรณ์ขอความช่วยเหลือจะสามารถเชื่อมต่อกับ router ได้ เพียง 3-4 ตัวเท่านั้นในบางพื้นที่ คังนั้นหากสามารถเพิ่มจำนวน router ในงานวิจัยนี้ให้มีมากขึ้นได้ ประสิทธิภาพในการระบุ ตำแหน่งก็จะดีขึ้น

คำสำคัญ: เครื่อง่ายไร้สายแบบเฉพาะกิจ การระบุตำแหน่ง เทคบิคลายบิ้วมื้อ ซิกที

Abstract

This article presents a feasibility study of the fingerprint location algorithm in an in-door wireless sensor networks using Zigbee Pro Series 2. The target location spans two-storey of the building. According to the results obtained from the developed hardware/software testbed, we found that using 6 routers to relay the massage provides only 73% accuracy in identifying the room at which the users or end-devices transmit a distress signals. The uncertainty in the obtained results is due to the fact that end-device can only communicate to 3-4 routers in some areas. Hence,

we expect that had we have used more routers in the system, the performance in terms of accuracy would be better.

Keyword: ad-hoc networks, localization, fingerprint, Zigbee

1. บทนำ

ในปัจจุบันมีการนำเทคโนโลยีเข้ามาช่วยให้เกิดความ สะควกสบายในการดำเนินกิจกรรมต่าง ๆ อาทิเช่น โรงงาน อุตสาหกรรม มีการนำเทคโนโลยี Zigbee เข้ามาช่วยในการส่ง สัญญาณเพื่อระบุตำแหน่งสินค้าที่อยู่ภายในห้าง [1] ด้าน เกษตรกรรมก็นำ Zigbee มาช่วยในการส่งข้อมูลตรวจจับ ความชื้น [2] และเมื่อปลายปี พ.ศ. 2554 หลังจากเกิดเหตุการณ์ น้ำท่วมในกรุงเทพมหานครได้มีผู้นำ Zigbee มาประยุกต์ใช้งาน เพื่อช่วยวัคระดับน้ำและประเมินเหตุการณ์ของระดับน้ำที่อาจ เพิ่มมากขึ้นจนอาจก่อให้เกิดความเสียหายได้ ซึ่งจะเห็นได้ว่า วิวัฒนาการของเทคโนโลยีสามารถเพิ่มความสะควกสบายใน การทำงานด้านต่าง ๆ ได้มากมาย

ด้วยหลักการประยุกต์ใช้งานข้างต้น คณะผู้วิจัยจึงมีแนวคิด จะนำ Zigbee มาพัฒนารูปแบบการขอความช่วยเหลือของผู้ป่วย ในโรงพยาบาล ซึ่งในปัจจุบันนี้จะใช้อุปกรณ์ขอความช่วยเหลือ ที่ส่วนใหญ่จะติดตั้งอยู่บริเวณหัวเตียงของผู้ป่วยและตามจุด ต่าง ๆ เช่น ห้องน้ำ เป็นต้น ในกรณีที่ผู้ป่วยไม่ได้อยู่ใกล้บริเวณ ที่มีการติดตั้งอุปกรณ์ขอความช่วยเหลือ ผู้ป่วยอาจได้รับการ ช่วยเหลือล่าช้า เนื่องจากเหตุผลดังกล่าวหากมีอุปกรณ์ที่ สามารถติดตัวผู้ป่วยไปได้ทุกที่ สามารถกดปุ่มขอความ ช่วยเหลือได้ตลอดเวลาที่ต้องการ จะช่วยทำให้การดูแลผู้ป่วย เป็นไปได้อย่างทั่วถึงและมีประสิทธิภาพมากขึ้น

2. ทฤษฎีที่เกี่ยวข้อง

2.1 เทคโนโลยีสื่อสารแบบไร้สาย

Zigbee เป็นมาตรฐานสากล ที่ถูกกำหนดโดย Zigbee Alliance เป็นการสื่อสารแบบไร้สาย ที่มีอัตราการรับส่งข้อมูล ต่ำ ใช้พลังงานต่ำ และราคาถูก โดยจุดประสงค์เพื่อให้สามารถ สร้างระบบที่เรียกว่าเครือข่ายเซ็นเซอร์ไร้สาย (Wireless Sensor Network) ซึ่งระบบนี้จะสามารถทำงานภายในอาการและ ภายนอกอาการได้ด้วยแบตเตอรี่ 3.3 VDC

Zigbee มีลักษณะการทำงาน 3 รูปแบบ คือ Coordinator, Router และ End Device ดังแสดงในภาพที่ 1 ซึ่ง Coordinator มีหน้าที่เลือกช่องความถี่ที่จะใช้ในการสื่อสาร ขณะที่ Router จะมีหน้าที่ส่งต่อข้อความจากโหนดหนึ่งไปยังอีกโหนดหนึ่ง และอนุญาตให้โหนดลูกหรือ End Device เข้ามาเชื่อมต่อได้ ส่วน End Device มีหน้าที่ในการรับ-ส่งข้อมูลแต่หากไม่มีข้อมูลต้องส่งจะอยู่ในโหมดประหยัดพลังงาน (Sleep Mode) [3-4]

ภาพที่ 1: ลักษณะการทำงานของ Zigbee [4]

2.2 โมดูล PIC16F88

PIC เป็นชื่อเรียกของไมโครคอนโทรลเลอร์ ซึ่งในงานวิจัย นี้จะนำมาใช้ควบคุมการทำงานของ Zigbee Pro Series 2 เพื่อให้ สามารถทำงานตามคำสั่งที่ระบุเอาไว้ อาทิเช่น การร้องขอค่า RSSI จากตัวอุปกรณ์ End Device การตรวจเช็คพลังงาน คงเหลือ และปัจจัยหลักคือ การระบุตำแหน่งเมื่อมีการกดปุ่ม ร้องขอความช่วยเหลือ

ในการโปรแกรมคำสั่งต่าง ๆ เพื่อบันทึกลงไปใน PIC16F88 นั้น จะต้องมีอุปกรณ์ในการเชื่อมต่อกับเครื่องคอมพิวเตอร์ดัง แสดงในภาพที่ 2 และต้องมี Hex File Format (*.hex) ซึ่งเป็น ไฟล์รหัส ASCII ที่ใช้สื่อสารระหว่างอุปกรณ์กับเครื่อง คอมพิวเตอร์และเป็นเอ้าต์พุตไฟล์ของโปรแกรม Compiler (ในงานวิจัยนี้ใช้โปรแกรม PIC C Compiler ในการ Compiler)

ภาพที่ 2: โมคูล PIC16F88 [5]

ภาพที่ 3: อุปกรณ์ในการเขียนคำสั่งลงใน PIC16F88

2.3 Receive Signal Strength Indicator (RSSI)

Receive Signal Strength Indicator (RSSI) เป็นค่าความแรง ของสัญญาณวิทยุ ตามหลักการแล้ว เมื่อระยะทางไกลออกไป สัญญาณก็จะอ่อนลง ดังนั้น ค่า RSSI จึงสามารถนำมาใช้ในการ ประมาณระยะทางระหว่างตัวรับ-ส่ง สัญญาณได้ โดยค่า RSSI มีหน่วยเป็น เดซิเบลมิลลิวัตต์ (dBm) อย่างไรก็ตาม ค่านี้มักไม่ นิยมใช้ในงานที่ต้องการความแม่นยำสูง เนื่องจากมีความ แปรปรวนและลดทอนของสัญญาณตามสภาพแวดล้อมซึ่ง ขึ้นอยู่กับปัจจัยต่าง ๆ เช่น โครงสร้างอาคารซึ่งใช้วัสดุแตกต่าง กัน ปริมาณผู้คนภายในอาคาร และสิ่งกีดขวางอื่น ๆ เป็นต้น ดังนั้น ในการนำค่า RSSI มาใช้เพื่อการคำนวณหาระยะทางนั้น จึงจำเป็นต้องเก็บข้อมูลไว้หลาย ๆ ครั้ง เพื่อนำมาวิเคราะห์ ภายหลัง ซึ่งจะทำให้เกิดความผิดพลาดน้อยลง [4]

2.4 การคำนวณหาตำแหน่งโดยใช้เทคนิคลายนิ้วมือ

เทคนิคลายนิ้วมือ หรือ fingerprint นั้น เป็นเทคนิคหนึ่งที่ใช้ ในการระบุตำแหน่ง ซึ่งมีลักษณะการทำงานแบ่งออกเป็น 2 ขั้นตอน คือ ระยะออฟไลน์ (Offline Phase) และระยะออนไลน์ (Online Phase) [6]

ในระยะออฟไลน์ (Offline phase) ผู้วิจัยต้องทำการเก็บ รวบรวมค่า RSSI ที่สามารถวัดได้จากตัวอุปกรณ์ Zigbee แต่ละ ตัวในตำแหน่งต่าง ๆ ซึ่งค่า RSSI ที่เก็บได้นั้นจะเป็นข้อมูลที่ใช้ อ้างอิงเพื่อระบุตำแหน่งของผู้ใช้ ในการเก็บข้อมูลในแต่ละ ตำแหน่งจะต้องทำการวัดหลายครั้ง เพื่อให้ได้มาซึ่งข้อมูลที่ น่าเชื่อถือและมีความเสถียร

ระยะออนไลน์ (Online phase) เป็นระยะการใช้งาน กล่าวคือ เมื่อต้องการทราบตำแหน่งของอุปกรณ์ Zigbee ที่ เคลื่อนที่ จะต้องทำการวัดค่า RSSI จากตัวอุปกรณ์มา เปรียบเทียบกับค่า RSSI Fingerprint ที่วัดได้ในระยะออฟไลน์ โดยค่า RSSI fingerprint ตำแหน่งใดมีความใกล้เคียงกับค่าที่วัด ได้มากที่สุดก็จะประมาณตำแหน่งนั้นให้เป็นตำแหน่งปัจจุบัน [7-8]

ในการคำนวณหา Fingerprint ที่ใกล้เคียงนั้น จะหาจาก Euclidean Distance ดังแสดงในสมการต่อไปนี้

$$d_{ij} = \sqrt{\sum_{n=1}^{N} (RSSI_i^{(n)} - RSSI_j^{(n)})^2}$$
 (1)

โดยที่

 d_{ij} คือ ค่าความต่างของสัญญาณ 2 จุด i และ j ในที่นี้ เป็นความต่างของค่าความแรงสัญญาณระหว่างค่าในฐานข้อมูล และค่าที่รับมาจากการกดปุ่มร้องขอความช่วยเหลือ ณ เวลานั้น

 $RSSI_i^{(n)}$ คือ ค่าความแรงสัญญาณที่วัดได้จาก Router ตัว ที่ n ณ ตำแหน่ง i

 $RSSI_{j}^{(n)}$ คือ ค่าความแรงสัญญาณที่วัดได้จาก Router ตัว ที่ n ณ ตำแหน่ง j

2.5 งานวิจัยที่เกี่ยวข้อง

เครือข่ายไร้สายแบบเฉพาะกิจ เป็นเครือข่ายที่มีการ เปลี่ยนแปลงของโครงข่ายตลอดเวลา โดยไม่มีการควบคุมจาก ส่วนกลาง ซึ่งส่งผลให้ไม่สามารถกำหนดโครงสร้างของ
เครือข่ายไว้ล่วงหน้าได้ และในการมุ่งเน้นของงานวิจัยนี้
ต้องการจะนำเสนอการใช้งานเครือข่ายไร้สายแบบเฉพาะกิจ
เพื่อระบุตำแหน่งพื้นที่ของอุปกรณ์ภายในอาคาร จากการศึกษา
พบว่า เทคนิคการระบุตำแหน่งมีหลายรูปแบบ ได้แก่
fingerprint, tracking ฯลฯ โดยสามารถสรุปประเด็นที่เกี่ยวข้อง
หลักฯ ได้ดังต่อไปนี้

การวัดความแรงของสัญญาณเพื่อให้สามารถระบุตำแหน่ง ของอุปกรณ์ ได้อย่างแม่นยำนั้น มีวิธีการเทียบตำแหน่งจากการ วัดความแรงของสัญญาณของอุปกรณ์ไร้สายที่มีอยู่ในระบบซึ่ง เรียกว่าเทคนิค fingerprint โดยหลักการทำงานของ fingerprint จะเป็นการนำค่าความแรงสัญญาณที่วัดได้มาเปรียบเทียบกับ ฐานข้อมูลที่มีการวัดค่าไว้แล้วเพื่อระบุตำแหน่งให้กับโหนด เป้าหมายได้อย่างถูกต้องและคลาดเกลื่อนน้อยที่สุด [8]

เทคนิกการระบุตำแหน่งของเครือไร้สายแบบเฉพาะกิจ มี
การนำเวลาที่โหนดเข้ามาในเน็ตเวิร์ก (time-of-arrival (TOA))
และทิศทางที่โหนดเข้ามาในเน็ตเวิร์ก (direction-of-arrival
(DOA)) เข้ามาช่วยในการคำนวณเพื่อปรับปรุงความแม่นยำของ
การระบุตำแหน่ง [9,10] และในกรณีที่โหนดมีการเคลื่อนที่ การ
ดิดตามการเคลื่อนที่ของโหนดเป็นสิ่งสำคัญในการระบุ
ตำแหน่งที่แน่นอนด้วยเช่นกัน จึงมีการศึกษาเกี่ยวกับอัลกอริทึม
ของการจัดการวางโหนดแบบคงที่เพื่อใช้เป็นแกนหลักในการ
วัดความแรงของสัญญาณ ที่สามารถระบุระยะทางจากสถานี
ฐานไปยังตำแหน่งที่โหนดเป้าหมายตั้งอยู่ [11,12] นอกจาก
เทคนิกที่กล่าวมาข้างต้นแล้วก็ยังมีเทคนิกของการเลือกใช้
พลังงานที่เหมาะสมเพื่อช่วยเพิ่มประสิทธิภาพด้านความถูกต้อง
ในการระบุตำแหน่งของโหนดเป้าหมาย โดยสามารถเลือกปรับ
ใช้พลังงานที่เหมาะสมในการติดตามระบุตำแหน่งสำหรับ
โหนดที่มีการเคลื่อนที่ในระบบ [13,14]

3. วิธีการดำเนินการวิจัย

3.1 อุปกรณ์ในการดำเนินการวิจัย

งานวิจัยนี้ได้มีการใช้ Zigbee Pro Series 2 ทั้งหมด 9 ตัว โดยแต่ละตัวจะถูกตั้งค่าการทำงานที่แตกต่างกันดังนี้

Coordinator คั้งแสดงในภาพที่ 4 (ก) จำนวน 1 ตัว ทำหน้าที่ เชื่อมต่อกับเครื่องแม่ข่ายเพื่อสั่งงานจากโปรแกรมที่พัฒนาขึ้น และรับค่าที่ส่งต่อมาจากอุปกรณ์ตัวอื่น ๆ จะถูกติดตั้งไว้บริเวณ ส่วนค้านหน้าของชั้น 4 ดังแสดงในภาพที่ 5 (ก)

Router ดังแสดงในภาพที่ 4 (ข) จำนวน 6 ตัว จะวางตามจุด ต่าง ๆ ภายในอาคารครอบคลุมพื้นที่ 2 ชั้น (ชั้น 4 และ ชั้น 5) เพื่อให้ End Device สามารถติดต่อสื่อสารกับ Coordinator ได้ แสดงดังภาพที่ 5

End Device ดังแสดงในภาพที่ 4 (ก) จำนวน 2 ตัว ใช้ในการ ทคสอบกดปุ่มร้องขอความช่วยเหลือจากจุดต่าง ๆ ภายใน อาคาร 2 ชั้น

ภาพที่ 4: อุปกรณ์ในการดำเนินการวิจัย

3.2 ตำแหน่งการวางอุปกรณ์เพื่อทำการวัดค่าสัญญาณ

การคำเนินการวิจัยจะต้องทำการวัดค่าความแรงสัญญาณแต่ ละจุด จุคละ 20 ครั้ง ดังภาพที่ 5 แล้วนำมาคำนวณค่าเฉลี่ย พร้อมระบุตำแหน่งของห้องเพื่อเก็บลงในฐานข้อมูล

3.3 โปรแกรม Zigbee Network Detection

โปรแกรม Zigbee Network Detection ที่พัฒนาขึ้นมานี้ จะ สามารถเพิ่มข้อมูลของอุปกรณ์ที่มีอยู่ในระบบ แสดง สถานะการเชื่อมต่อพอร์ตคอม วันที่ มีปุ่มสอบถามตำแหน่ง ของ End Device และสามารถแสดงค่าความแรงของสัญญาณที่ Router แต่ละตัวได้รับจาก End Device ดังแสดงในภาพที่ 6

ขั้นตอนการทำงานของโปรแกรม Zigbee Network Detection ที่พัฒนาขึ้นมีดังนี้ ก่อนการเปิดโปรแกรมจะต้อง เชื่อมต่อ Coordinator เข้ากับเครื่องแม่ข่ายให้เรียบร้อย เมื่อทำ การเปิดโปรแกรมขึ้นมา โปรแกรมจะทำการเชื่อมต่อกับพอร์ต กอมอัตโนมัติ เมื่อต้องการตรวจเช็กอุปกรณ์ที่มีอยู่จะใช้ หน้าต่าง Overview Network ซึ่งเป็นส่วนของการ Monitor ระบบทั้งหมด โดยสามารถกดถาม End Device ว่าอยู่ ณ ตำแหน่งห้องใหน และเมื่อมีการกดปุ่มร้องขอความช่วยเหลือ ระบบจะทำงานดังแสดงในภาพที่ 7

(ก) พื้นที่การทคลองบริเวณอาคารนวมินทรราชินีชั้น 4 มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

(ข) พื้นที่การทดลองบริเวณอาคารนวมินทรราชินีชั้น 5 มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ภาพที่ 5: ตำแหน่งการวางอุปกรณ์ภายในอาคาร 2 ชั้น

ภาพที่ 6: หน้าจอโปรแกรม Zigbee Network Detection

ภาพที่ 7: ขั้นตอนของระบบในการร้องขอการช่วยเหลือ

จากภาพที่ 7 เมื่อมีการกดปุ่มร้องขอความช่วยเหลือ อุปกรณ์ End Device จะส่ง Packet ทุก ๆ 3 วินาทีมายัง Coordinator และ จะหยุคส่งเมื่อได้รับการตอบกลับจาก Coordinator ดังแสดงใน เส้นลูกศรสีแดง จากนั้นระบบจะสั่งงานให้ Coordinator ส่ง Packet ไปสั่งให้ Router ทุก ๆ ตัว ร้องขอค่า RSSI จาก End Device ตัวที่กดปุ่มร้องขอความช่วยเหลือ ดังแสดงในเส้น ลูกศรสีดำ เมื่อ End Device ได้รับ Packet ร้องขอค่า RSSI ก็จะ ตอบกลับไปที่ Router แต่ละตัวตามลำคับ ดังแสดงในเส้นลูกศร สีม่วง ซึ่งในการส่ง Packet เพื่อร้องขอหรือตอบกลับนั้นจะ สามารถส่งโดยตรงไปยัง Coordinator หรือส่งแบบ multi-hop ผ่าน router เพียงตัวเดียวหรือหลายตัวก็ได้ เมื่อโปรแกรม Zigbee Network Detection ได้รับค่า RSSI มาจาก router ครบ ทุกตัวแล้ว จะทำการคำนวณค่า Euclidean Distance ไปยัง RSSI fingerprint แต่ละชุดที่อยู่ในฐานข้อมูล แล้วแสดงผลออกมา เป็นตำแหน่งห้องที่มี fingerprint ใกล้เคียงกับสัญญาณที่วัดได้

มากที่สุด ซึ่งระยะเวลาที่ใช้ในการระบุตำแหน่งนั้นจะไม่เกิน 30 วินาที

4. ผลของการวิจัย

การทดสอบในการหาชีดความสามารถในการระบุตำแหน่ง
ของระบบขอความช่วยเหลือที่ผู้วิจัยพัฒนาขึ้น จะต้องมีการ
ทดสอบการวางเครือข่ายของอุปกรณ์ Router เพื่อให้สัญญาณ
ครอบคลุมพื้นที่ภายในอาคาร 2 ชั้นและทดสอบความแม่นยำ
ของการระบตำแหน่ง โดยมีผลของการทดสอบดังต่อไปนี้

ตารางที่ 1: ผลการสุ่มกดปุ่มร้องขอความช่วยเหลือ 10 ตำแหน่ง

จุดที่สุ่ม	แสดงผลตำแหน่งถูกต้อง จาก 10 ครั้ง (ครั้ง)	คิดเป็นเปอร์เซ็นต์
4A02 (X1)	8	80
4A03 (X2)	7	70
4A04 (X5)	8	80
4A05 (X5)	8	80
4A07 (X8)	8	80
4A08 (X2)	7	70
5A03 (X1)	6	60
5A07 (X1)	8	80
5A08 (X2)	6	60
5A09 (X5)	7	70
	ค่าเฉลี่ยเปอร์เซ็นต์	73

จากตารางที่ 1 เป็นผลจากการสุ่มตำแหน่งกดปุ่มร้องขอ กวามช่วยเหลือ 10 ตำแหน่ง ตำแหน่งละ 10 ครั้ง โดยในการวัด ประสิทธิภาพนี้จะกำหนดให้การระบุตำแหน่งประสบ ความสำเร็จหากระบบสามารถแสดงตำแหน่งห้องได้ถูกต้อง หรือกลาดเคลื่อนได้ไม่เกิน 3 ห้อง ยกตัวอย่างเช่น จากการ ทดลองกดปุ่มร้องขอความช่วยเหลือที่ห้อง 4A02 ตำแหน่ง X1 10 ครั้ง ระบบสามารถระบุตำแหน่งได้ถูกต้อง 8 ครั้ง

จากการทดลองระบุตำแหน่งด้วยเทคนิค Fingerprint พบว่า ระบบที่พัฒนาขึ้นมานี้ สามารถระบุตำแหน่งได้แม่นยำ 73% ทั้งนี้ความคลาดเคลื่อนที่เกิดขึ้น 27% อาจมีปัจจัยมาจากปัญหา การลดทอนของสัญญาณอันสืบเนื่องมาจากการจัดวางตำแหน่ง router ที่ไม่เหมาะสม จำนวน router ที่มีน้อยเกินไป และการ เคลื่อนที่ของคนภายในตึกที่เปลี่ยนแปลงอยู่ตลอดเวลา

5. บทสรุป

เมื่อทำการวิเคราะห์ผลการวัดสัญญาณในการระบุตำแหน่ง
สามารถสรุปได้ว่า การวางอุปกรณ์ Router เพื่อให้ครอบคลุม
พื้นที่ภายในอาการ 2 ชั้น โดยมุ่งเน้นการระบุตำแหน่งนั้น
ตำแหน่งในการจัดวาง router มีผลต่อความแม่นยำในการระบุ
ตำแหน่งเป็นอย่างมาก ดังจะเห็นได้จากผลการทดลองใน
บทความนี้ ซึ่งใช้ router จำนวน 6 ตัวในระบบว่ามีความถูกต้อง
เพียง 73% เท่านั้น ดังนั้นในอนาคต ผู้วิจัยจะทดสอบเพื่อหา
รูปแบบการจัดวางและจำนวน router ที่เหมาะสมเพื่อเพิ่มค่า

6. ข้อเสนอแนะ

ในการเลือกใช้อุปกรณ์ Zigbee ควรเลือกใช้ให้เป็น Series เคียวกันและหากศึกษาเพิ่มเติมจากงานวิจัยนี้และสามารถจัดทำ ตัวอุปกรณ์ให้เล็กลงได้ จะช่วยเพิ่มความสะควกในการพกพา มากขึ้น

เอกสารอ้างอิง

- [1] Coxworth, B. LED lighting could guide shoppers to products in stores. [Online] 2012. Availablefrom: http://www.gizmag.com/led-rf-product-location-system/ 21247/ [2012,Auguest 14].
- [2] เทพพิทัย กำเพ็ชร และวิริยะ กองรัตน์. "เครื่องวัดอุณหภูมิแบบไร้ สาย." *วารสารวิทยาศาสตร์ลาดกระบัง ปีที่ 21*. (มกราคม-มิถุนายน 2555)
- [3] Wireless Mesh Networking. [Online] 2009. Available from: http://www.digi.com/support/supportype?type=do cumentation [2012,Sebtember 14].
- [4] Product Manual: Xbee/Xbee PRO ZB RF Modules. [Online] 2012. Available from: http://www.digi.com/support/productdetail?pid=4549&ty pe=documentation [2012, September 14].
- [5] ProductManual: PIC16F87/88. [Online] 2013.Availablefrom: http://www.microchip.com/wwwproduct

- s/Devices.aspx?dDocName=en010243 [2012, September 14].
- [6] Awad, A. et al."Adaptive Distance Estimation and Localization in WSN using RSSI Measures." 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools. (August 2007): 471-478.
- [7] Kaemarungsi, K. and Krishnamurthy, P. "Properties of Indoor Received Signal Strength for WLAN Location Fingerprinting." *The First Annual International Conference on Mobile and Ubiquitous Systems:*Networking and Services. (August 2004): 14-23.
- [8] Hossain, S. et al. "Accuracy Enhancement of Fingerprint Indoor Positioning System." Third International Conference on Intelligent Systems, Modeling and Simulation. (February 2012): 600-605.
- [9] Wang, Z. and Zekavat, S. R. "A New TOA-DOA Node Localization for Mobile Ad-hoc Networks: Achieving High Performance and Low Complexity." 17th International Conference on Telecommunications. (April 2010): 836-842.
- [10] Koutsonikolas, D. et al. "CoCoA: Coordinated Cooperative Localization for Mobile Multi-Robot Ad Hoc Networks" 26th IEEE International Conference on Distributed Computing Systems Workshops. (July 2006): 9.
- [11] Kjærgaard, M. B. "Indoor location fingerprinting with heterogeneous clients." *Pervasive and Mobile Computing, Volume 7.* (February 2011): 31-43.
- [12] Dana, A. et al. "Localization in Ad-Hoc Networks" IEEE International Conference on Telecommunications and Malaysia International. (May 2007): 313-317.
- [13] You, C. et al. "Sensor-Enhanced Mobility Prediction for Energy-Efficient Localization" 3rd Annual IEEE Communications Society, Sensor and Ad Hoc Communications and Networks. (September 2006): 565-574.
- [14] Xiao, L. and Ouksel, A. M. "Scalable Self-Configuring Integration of Localization and Indexing in Wireless Ad-Hoc Sensor Networks" 7th International Mobile Data Management. (May 2006): 151.