WHAT IS CLAIMED IS:

1	 A method to create and acoustically manipulate a microbubble
2	within a volume of material, the method comprising:
3	propagating at least one laser pulse through the material to create a
4	microbubble within the material; and
5	propagating at least one acoustic wave through the material to a
6	surface of the microbubble to controllably manipulate the microbubble within the
7	material without destroying the microbubble.
1	2. The method as claimed in claim 1, wherein the at least one
2	laser pulse is an ultrafast laser pulse and wherein the microbubble is created via
3	laser induced optical breakdown (LIOB) with little or no change to material
4	immediately adjacent to the microbubble.
1	3. The method as claimed in claim 1, wherein the volume of
2	material includes a liquid or semi-liquid material.
i	4. The method as claimed in claim 1, wherein the at least one
2	acoustic wave includes an ultrasound wave.
1	5. The method as claimed in claim 4, wherein the ultrasound
2	wave exerts a substantially continuous force at the surface of the microbubble.
1	6. The method as claimed in claim 4, wherein the ultrasound
2	wave exerts a pulsed force at the surface of the microbubble.
1	7. The method as claimed in claim 1, wherein the at least one
2	acoustic wave exerts a force in the nano-Newton to micro-Newton level at the
3	surface of the microbubble.

1	8. The method as claimed in claim 1, wherein the at least one
2	acoustic wave exerts a force in the pico-Newton to femto-Newton level at the
3	surface of the microbubble.
1	9. The method as claimed in claim 1, wherein the step of
2	propagating the at least one acoustic wave causes the microbubble to exert a
3	mechanical force on at least one structure in contact with the microbubble.
1	10. The method as claimed in claim 9, wherein the at least one
2	structure is a biological structure.
1	11. The method as claimed in claim 1, wherein the step of
2	propagating the at least one acoustic wave causes the microbubble to move within
3	the volume of material.
1	12. The method as claimed in claim 11 further comprising
2	measuring elasticity of material in contact with the microbubble based on movement
3	of the microbubble.
1	13. The method as claimed in claim 11, wherein the step of
2	propagating the at least one acoustic wave causes the microbubble to mix the
3	material.
1	14. The method as claimed in claim 1, wherein the microbubble
2	is a nanobubble.
1	15. The method as claimed in claim 1, wherein the step of
2	propagating the at least one acoustic wave causes the microbubble to manipulate at
3	least one structure in contact with the microbubble.
1	16. The method as claimed in claim 1, wherein the volume of

2 material is a cell culture or intact tissue.

1	17. The method as claimed in claim 1, wherein the volume of				
2	material is an extracellular medium of a diffuse cell culture and wherein the step of				
3	propagating the at least one acoustic wave causes the microbubble to manipulate at				
4	least one cell for patterning.				
1	18. The method as claimed in claim 1, wherein the at least one				
2	laser pulse is a femtosecond laser pulse.				
1	19. The method as claimed in claim 1, wherein the microbubble				
2	has an optical refractive index different from an optical refractive index of the				
3	material and wherein the method further comprises propagating a beam of light				
4	through the microbubble.				
1	20. The method as claimed in claim 2, wherein the step of				
2	propagating the at least one laser pulse also creates at least one acoustic shock wave				
3	via LIOB wherein the at least one acoustic shock wave operates as a high frequency,				
4	high precision acoustic source.				
1	21. A system to create and acoustically manipulate a microbubble				
2	within a volume of material, the system comprising:				
3	a pulsed laser for generating at least one laser pulse;				
4	an optical subsystem for directing the at least one laser pulse to the				
5	material wherein the at least one laser pulse propagates through the material to				
6	create a microbubble within the volume of material; and				
7	an acoustic source for directing acoustic energy to the material				
8	wherein at least one acoustic wave propagates through the material to a surface of				
9	the microbubble to controllably manipulate the microbubble within the volume o				
10	material without destroying the microbubble.				
1	The system as claimed in claim 21, wherein the microbubble				
2	is created via laser induced optical breakdown (LIOB) with little or no damage to				
3	material immediately adjacent to the microbubble.				

1	23. The system as claimed in claim 21, wherein the source is an			
2	ultrasound source and wherein an ultrasound wave is propagated in a direction			
3	through the material and wherein the microbubble moves in the direction of the			
4	ultrasound wave.			
1	24. The system as claimed in claim 21, further comprising a			
2	modulated acoustic source for directing modulated acoustic energy to the material			
3	wherein at least one modulated acoustic wave propagates through the material to the			
4	microbubble to cause the microbubble to mix material in a neighborhood of the			
5	microbubble.			
1	25. The system as claimed in claim 21, wherein the at least one			
2	laser pulse is an ultrafast laser pulse.			
1	26. The system as claimed in claim 21, wherein the volume of			
2	material includes a liquid or semi-liquid material.			
1	27. The system as claimed in claim 21, wherein the at least one			
2	acoustic wave includes an ultrasound wave.			
1	28. The system as claimed in claim 27, wherein the ultrasound			
2	wave exerts a substantially continuous force at the surface of the microbubble.			
1	29. The system as claimed in claim 27, wherein the ultrasound			
2	wave exerts a pulsed force at the surface of the microbubble.			
1	30. The system as claimed in claim 21, wherein the at least one			
2	acoustic wave exerts a force in the nano-Newton to micro-Newton level at the			
3	surface of the microbubble.			
1	31. The system as claimed in claim 21, wherein the at least one			
2	acoustic wave exerts a force in the pico-Newton to femto-Newton level at the			
3	surface of the microbubble.			

1

32.

2	acoustic wave cau	ses the microbubble to exert a mechanical force on at least one
3	structure in contac	et with the microbubble.
1	33.	The system as claimed in claim 32, wherein the at least one
2	structure is a biolo	ogical structure.
1	34.	The system as claimed in claim 21, wherein the at least one
2	acoustic wave cau	ses the microbubble to move within the volume of material.
1	35.	The system as claimed in claim 34, wherein the at least one
2	acoustic wave cau	ses the microbubble to mix the material.
1	36.	The system as claimed in claim 21, wherein the microbubble
2	is a nanobubble.	
1	37.	The system as claimed in claim 21, wherein the at least one
2	acoustic wave caus	es the microbubble to manipulate at least one structure in contact
3	with the microbub	ble.
1	38.	The system as claimed in claim 21, wherein the volume of
2	material is a cell c	ulture or intact tissue.
1	39.	The system as claimed in claim 21, wherein the volume of
2	material is an extra	acellular medium of a diffuse cell culture and wherein the at leas
3	one acoustic way	e causes the microbubble to manipulate at least one cell for
4	patterning.	•
1	40.	The system as claimed in claim 21, wherein the at least one
2		ntosecond laser pulse.

The system as claimed in claim 21, wherein the at least one

1	41. The system as claimed in claim 21, wherein the microbubble
2	has an optical refractive index different from an optical refractive index of the
3	material and wherein the system further comprises means for propagating a beam
4	of light through the microbubble.
1	42. The system as claimed in claim 22, wherein the at least one
2	laser pulse also creates at least one acoustic shock wave via LIOB wherein the at
3	least one acoustic shock wave operates as a high frequency, high precision acoustic
1	source.
	·
l	43. The system as claimed in claim 34 further comprising means
2	for measuring elasticity of material in contact with the microbubble based on
3	movement of the microbubble.