Data Science do ZERO

Capítulo 06 - Machine Learning
Random Forest
(Floresta Aleatória)

- Algoritmo de Machine Learning Supervisionado utilizado para Classificação ou regressão.
- Combinação da simplicidade das árvores de decisão com a flexibilidade e aleatoriedade para melhorar a precisão

- Dezenas de árvores combinadas para predizer o melhor resultado.
- Aleatoriedade na seleção de atributos ao invés da seleção a partir do cálculo de impureza.

Primeiro passo, criação do bootstrap dataset.

Dor no peito	Boa Circulação Sanguínea	Arterias Bloqueada s	Peso	Doença Cardiaca
Sim	Não	Sim	125	Sim
Não	Sim	Não	180	Não
Não	Não	Sim	210	Não
Sim	Não	Sim	130	Sim

Dor no peito	Boa Circulação Sanguínea	Arterias Bloqueadas	Peso	Doença Cardiaca
Sim	Não	Sim	125	Sim
Não	Sim	Não	180	Não
Não	Não	Sim	210	Não
Sim	Não	Sim	130	Sim

Dor no peito	Boa circ Sanguínea	Arterias Bloq.	Peso	Doença Cardiaca
Não	Sim	Não	180	Não
Sim	Não	Sim	130	Sim
Sim	Não	Sim	130	Sim

A partir do conjunto original .. Selecione um número N de features aleatoriamente

Boa circ Sanguínea	Arterias Bloq.
Sim	Não
Não	Sim
Não	Sim

Dor no peito	Boa circ Sanguínea	Arterias Bloq.	Peso	Doença Cardiaca
Não	Sim	Não	180	Não
Sim	Não	Sim	130	Sim
Sim	Não	Sim	130	Sim

A partir do subconjunto selecionado é feita a verificação do atributo que melhor separa os dados..

Dor no peito	Boa circ Sanguínea	Arterias Bloq.	Peso	Doença Cardiaca
Não	Sim	Não	180	Não
Sin	Não	Sim	130	Sim
Sim	Não	Sim	130	Sim

Agora é preciso separar mais 2 atributos a partir dos três resultantes para separar os dados e construir a árvore.

As árvores são construídas considerando apenas os **subconjuntos de atributos** selecionados.

Dor no	Boa circ	Arterias	Peso	Doença
peito	Sanguínea	Bloq.		Cardiaca
Não	Sim	Não	180	

Doença Cardiaca			
SIM NÃO			
0	1		

Dor no	Boa circ	Arterias	Peso	Doença
peito	Sanguínea	Bloq.		Cardiaca
Não	Sim	Não	180	

Doença Cardiaca		
SIM NÃO		
1	3	

- 1. Criação do Bootstraped Dataset
- A cada passo é selecionado um número N de features para montar a arvore.
- 3. Diversas árvores são criadas a partir de subconjuntos diferentes.
- 4. A instância de teste deve percorrer cada árvore da floresta e a classe definida será a mais votada.

- Algumas vantagens
 - Maior robustez
 - Menos propenso a sofrer
 Overfitting em comparação
 com uma única Árvore de
 Decisão
 - Permite a descoberta de conhecimento.
 - Poucos parametros para ajustes.

- Desvantagens
 - Exige um maior poder de processamento.
 - Pode ser lento o processo de classificação de novas amostras.

Hands on!