Оглавление

- 1. Определение функции комплексного переменного.
- 2. Определение производной функции комплексного переменного. Дифференцируемая функция. Необходимое и достаточное условие дифференцируемости функции комплексного переменного. Условия Коши-Римана. Формула нахождения производной.
- 3. Условия Коши-Римана в полярных координатах. Формула вычисления производной. Пример: степенная функция.
- 4. Свойства аналитических функций (5 св-в)
- 5. Геометрический смысл производной функции комплексного переменного. Свойства сохранения углов и постоянства растяжения.
- 6. Определение конформного отображения.
- 7. Круговое свойство дробно-линейной функции. Отображение верхней полуплоскости на единичный круг.
- 8. Отображения, осуществляемые элементарными функциями.
- 9. Основная задача конформных отображений. Теоремы Римана.
- 10. Определение интеграла от функции комплексного переменного. Теорема о вычислении интеграла.
- 11. Свойства интеграла от функции комплексного переменного.
- 12. Теорема Коши для односвязной и многосвязной областей.
- 13. Первообразная аналитической функции (теорема и определение).
- 14. Неопределенный интеграл. Теорема и определение. Формула Ньютона-Лейбница.
- 15. Формула Коши. Следствие. Формула среднего значения.
- 16. Аналитическая зависимость интеграла от параметра.
- 17. Существование производных всех порядков аналитической функции.
- 18. Теорема Морера. Теорема Лиувилля.
- 19. Ряды аналитических функций. 1 т-ма Вейерштрасса.
- 20. Определение степенного ряда. Теорема Абеля. Следствия.
- 21. Теорема Тейлора.
- 22. Нули аналитической функции. Единственность определения аналитической функции.
- 23. Определение аналитического продолжения. Продолжение соотношений с действительной оси. Полная аналитическая функция.
- 24. Ряд Лорана. Область сходимости РЛ, Трм о разложении анал.ф-ции в РЛ.
- 25. Разложение в ряд Лорана в окрестности бесконечно удаленной точки.
- 26. Разложение: $f(z) = \sum_{n=-\infty}^{+\infty} c_n z^n$, $R < |z| < \infty$
- 27. Классификация изолированных особых точек.
- 28. Предельные свойства изолированных особых точек. Связь полюсов и нулей.
- 29. Определение вычета. Вычисление вычетов.
- 30. Основная теорема теории вычетов. Теорема о сумме вычетов.
- 31. Вычисление интегралов, содержащих тригонометрические функции с помощью вычетов.
- 32. Вычисление несобственных интегралов с бесконечными пределами с помощью вычетов. Лемма и теорема.
- 33. Лемма Жордана. Пременение леммы Жордана к вычислению несобственных интегралов.

Определение функции комплексного переменного.

W = f(z) – комплексная функция комплексного переменного.

$$W=U+iV$$

z=x+iy.

$$(W = f(z)) \Leftrightarrow \begin{cases} U = U(x,y) \\ V = V(x,y) \end{cases}$$
 - отображение упорядоченной пары в упорядоченную же пару.

Если при
$$\left|z-z_{0}\right| \to 0$$
 $\left|f(z)-C\right| \to 0$, тогда С — предел функции $f(z)$ в точке z_{0} . С = A + i B,

$$|f(z) - C| = \sqrt{(U(x, y) + A)^2 + (V(x, y) + B)^2} \to 0$$

Определение: Для того чтобы функция W = f(z) была непрерывна в точке z_0 , необходимо и достаточно, чтобы как функция U=U(x,y), так и функция V=V(x,y) были непрерывными в точке (x_0,y_0) .

Определение производной функции комплексного переменного. Дифференцируемая функция. Необходимое и достаточное условие дифференцируемости функции комплексного переменного. Условия Коши-Римана. Формула нахождения производной.

Определение: По определению $f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta f(z_0)}{\Delta z}$, т.е. если есть конечный предел, то есть и производная.

Условие: Функция f(z) называется дифференцируемой в точке z_0 , если $\Delta f(z_0) = f(z_0 + \Delta z) - f(z_0) = C \Delta z + \Delta z \alpha(\Delta z)$, где $C = \text{const} \in \mathbb{C}$, $\alpha(\Delta z) \in \mathbb{C}$, a $\lim_{\Delta z \to 0} \alpha(\Delta z) = 0$.

Теорема.: (НДУ дифференцируемости функции)

Для того чтобы f(z) была дифференцируема в точке z_0 , необходимо и достаточно, чтобы в этой точке существовала конечная производная f'(z).

Док-во: 1)Необходимость:

Пусть f(z) дифференцируема в точке z_0 , тогда $f'(z) = \lim_{\Delta z \to 0} \frac{\Delta f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} (C + \alpha(\Delta z)) = C$, то есть доказали, что

$$C = f'(z_0): \Delta f(z_0) = f'(z_0) \Delta z + \Delta z \alpha(\Delta z).$$

2) Достаточность:

Теорема.: (Условия Коши - Римана / Даламбера-Эйлера)

Для того чтобы функция W = f(z) = U(x,y) + iV(x,y) была дифференцируема в точке $z_0 = x_0 + iy_0$, необходимо и достаточно, чтобы:

- 1) Функции U и V были дифференцируемы в точке (x_0,y_0) ;
- 2) В этой точке выполнялись условия:

$$\begin{cases} \frac{\partial U(x_0y_0)}{\partial x} = \frac{\partial V(x_0y_0)}{\partial y} \\ \frac{\partial U(x_0y_0)}{\partial y} = -\frac{\partial V(x_0y_0)}{\partial x} \end{cases} - y c no в u я Kowu-Pumaнa / Даламбера-Эйлера.(*)$$

Док-во: 1) Необходимость:

$$\Delta f(z_0) = f'(z_0)\Delta z + \alpha(\Delta z, z_0)\Delta z$$
, при этом $\lim_{\Delta z \to 0} \alpha(\Delta z, z_0) = 0$

$$f'(z_0) = a + i \, b$$
 , $\Delta z = \Delta x + i \, \Delta y$, $\alpha(\Delta z, z_0) = \alpha_1(\Delta x, \Delta y) + i \, \alpha_2(\Delta x, \Delta y)$, при этом $\Delta x \to 0$ $\Delta x \to 0$ $\Delta y \to 0$

$$\Delta f(z_0) = \Delta U(x_0, y_0) + i \, \Delta V(x_0, y_0) =$$

$$=(a+ib)(\Delta x+i\Delta y)+(\alpha_1+i\alpha_2)(\Delta x+i\Delta y)=$$

$$= a\Delta x - b\Delta y + \alpha_1 \Delta x - \alpha_2 \Delta y + i \left(b\Delta x + a\Delta y + \alpha_2 \Delta x + \alpha_1 \Delta y \right)$$

$$\Delta U(x_0,y_0) = a\Delta x - b\Delta y + \alpha_1 \Delta x - \alpha_2 \Delta y \; ; \; \alpha_1 \; \text{ и } \; \alpha_2 \; \text{- бесконечно малые, } U \; - \; \text{дифференцируема в } z_0.$$

$$a = \frac{\partial U(x_0y_0)}{\partial x} \; ; \; b = -\frac{\partial U(x_0y_0)}{\partial y} \; ; \; c_1 \; \text{ и } \; \alpha_2 \; \text{- бесконечно малые, } U \; - \; \text{дифференцируема в } z_0.$$

$$\Delta V(x_0,y_0) = b\Delta x + a\Delta y + \alpha_2 \Delta x + \alpha_1 \Delta y \; ; \; \alpha_1 \; \text{и} \; \; \alpha_2 \; \text{-} \; \text{бесконечно малые, V} - \text{дифференцируема в z}_0. \quad a = \frac{\partial V(x_0y_0)}{\partial y} \; ;$$

$$b = -\frac{\partial V(x_0 y_0)}{\partial x} \; ;$$

Итого доказали 1) и 2) \to W – дифференцируема в z_0 , ч.т.д.

2) Достаточность.

Пусть U и V – дифференцируемы в точке (x_0,y_0) и верна система (*).

$$\begin{split} &\Delta U(x_0,y_0) = \frac{\partial U(x_0y_0)}{\partial x} \Delta x + \frac{\partial U(x_0y_0)}{\partial y} \Delta y + \alpha_1(\Delta x, \Delta y) \Delta x + \\ &+ \alpha_2(\Delta x, \Delta y) \Delta y \\ &\Delta V(x_0,y_0) = \frac{\partial V(x_0y_0)}{\partial x} \Delta x + \frac{\partial V(x_0y_0)}{\partial y} \Delta y + \alpha_3(\Delta x, \Delta y) \Delta x + \\ &+ \alpha_4(\Delta x, \Delta y) \Delta y \\ &\Delta U(x_0,y_0) + i \Delta V(x_0,y_0) = \frac{\partial U}{\partial x} \Delta x + \frac{\partial U}{\partial y} \Delta y + \alpha_1 \Delta x + \alpha_2 \Delta y + \\ &+ i \bigg(\frac{\partial V}{\partial x} \Delta x + \frac{\partial V}{\partial y} \Delta y + \alpha_3 \Delta x + \alpha_4 \Delta y \bigg) = \bigg(\frac{\partial U}{\partial x} + i \frac{\partial V}{\partial x} \bigg) \Delta x + \\ &+ i \bigg(\frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} \bigg) \Delta y + (\alpha_1 + i \alpha_3) \Delta x + i (\alpha_4 - i \alpha_2) \Delta y \end{split}$$

Согласно системе (*) первые две скобки в последнем выражении равны. С учётом этого перепишем:

$$\begin{split} &\left(\frac{\partial U}{\partial x} + i\frac{\partial V}{\partial x}\right)\!\Delta z + \left((\alpha_1 + i\alpha_3)\frac{\Delta x}{\Delta z} + i(\alpha_4 - i\alpha_2)\frac{\Delta y}{\Delta z}\right)\!\Delta z = \Delta f(z_0) = \\ &= &\left(\frac{\partial U(x_0, y_0)}{\partial x} + i\frac{\partial V(x_0, y_0)}{\partial x}\right)\!\Delta z + \\ &+ &\left(\alpha_1\frac{\Delta x}{\Delta z} + i\alpha_3\frac{\Delta x}{\Delta z} + i\alpha_4\frac{\Delta y}{\Delta z} + i\alpha_2\frac{\Delta y}{\Delta z}\right)\!\Delta z \end{split}$$

Учитывая, что $\left|\frac{\Delta x}{\Delta z}\right| \le 1$; $\left|\frac{\Delta y}{\Delta z}\right| \le 1$, перепишем последнее выражение.

$$\left(\frac{\partial U(x_0, y_0)}{\partial x} + i \frac{\partial V(x_0, y_0)}{\partial x} \right) \Delta z + \left(\widetilde{\alpha}_1 \left(\Delta x \Delta y \right) + i \widetilde{\alpha}_2 \left(\Delta x \Delta y \right) \right) \Delta z =$$

$$\left(\frac{\partial U(x_0, y_0)}{\partial x} + i \frac{\partial V(x_0, y_0)}{\partial x} \right) \Delta z + \widetilde{\alpha} \left(... \right) \Delta z$$

$$f'(z_0) = \frac{\partial U(x_0, y_0)}{\partial x} + i \frac{\partial V(x_0, y_0)}{\partial x} = \frac{\partial U}{\partial x} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} =$$

$$= \frac{\partial V}{\partial y} + i \frac{\partial U}{\partial x}$$

Формула нахождения производной:

$$f'(z_0) = \frac{\partial U(x_0, y_0)}{\partial x} + i \frac{\partial V(x_0, y_0)}{\partial x} = \frac{\partial U}{\partial x} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial U}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} - i \frac{\partial V}{\partial y} = \frac{$$

Условия Коши-Римана в полярных координатах. Формула вычисления производной. Пример: степенная функция.

$$f(z) = U(\rho, \varphi) + iV(\rho, \varphi) = U(\rho\cos\varphi, \rho\sin\varphi) + iV(\rho\cos\varphi, \rho\sin\varphi) \ , \ \text{где}$$

$$U(\rho, \varphi) = U(\rho \cos \varphi, \rho \sin \varphi); V(\rho, \varphi) = V(\rho \cos \varphi, \rho \sin \varphi)$$

Для дифф-ти функция f(z) в точке z_0 , необходимо и достаточно, чтобы

- 1) U и V были дифференцируемы в точке (ρ_0, ϕ_0)
- 2) в этой точке выполнялись условия:

$$\begin{cases} \frac{\partial U}{\partial \rho} = \frac{1}{\rho} \frac{\partial V}{\partial \varphi} \\ \frac{\partial V}{\partial \rho} = -\frac{1}{\rho} \frac{\partial U}{\partial \varphi} - y c no s u s Ko u u - P u m a h a d u \phi \phi - m u s no n s p h ы x ко o p d u h a m a x. \end{cases}$$

Трм.:(Формула вычисления производной)

Если функция $f(z) = U(\rho, \varphi) + iV(\rho, \varphi)$ дифференцируема в точке z_0 , то её производную можно вычислить

no формуле
$$f'(z) = \frac{\rho}{z} \left(\frac{\partial U}{\partial \rho} + i \frac{\partial V}{\partial \rho} \right)$$

Док-во: $\rho = \rho(\cos\varphi + i\sin\varphi)(\cos\varphi - i\sin\varphi)$

$$f'(z) = \left(\frac{\partial U}{\partial x} + i\frac{\partial V}{\partial x}\right) = U_{\rho}\cos\varphi + iV_{\rho}\cos\varphi - iU_{\rho}\sin s\varphi + V_{\rho}\sin\varphi = 0$$

$$=U_{\rho}(\cos\varphi-i\sin s\varphi)+iV_{\rho}(\cos\varphi-i\sin\varphi)=\frac{\rho(U_{\rho}+iV_{\rho})}{\rho}(\cos\varphi-i\sin\varphi)=$$

$$= \frac{\rho(U_{\rho} + iV_{\rho})}{\rho(\cos\varphi + i\sin\varphi)} = \frac{\rho}{z} \left(\frac{\partial U}{\partial \rho} + i\frac{\partial V}{\partial \rho} \right)$$

Пример: Степенная функция с произвольным показателем.

$$f(z) = z^{\alpha}$$

$$(z^{\alpha})' = (e^{\alpha \ln(z)})' = \alpha (\ln(z))' (e^{\alpha \ln(z)}) = \alpha \frac{1}{z} z^{\alpha} = \alpha z^{\alpha - 1}$$

Свойства аналитических функций (5 св-в)

Определение: Функция $f:(G \subset C) \to C$ - называется аналитической в области G, если она имеет конечную производную в каждой точке области G (область G – открытое множество, т.е. все точки его внутренние).

Определение: Функция f называется аналитической в точке z_0 , принадлежащей области G, если существует окрестность этой точки, в которой она является аналитической.

Св-ва:

1) Если функции $f_1(z)$, $f_2(z)$ являются аналитическими в области G, то функции $f_1(z) \pm f_2(z)$, $f_1(z) f_2(z)$, $f_2(z)$, $f_3(z)$ также является аналитической в области (в точке).

2) Если функция W = f(z) – аналитическая в области G, а функция $\xi = \varphi(W)$ – аналитическая в области G.

- **3)** Предположим, что в области G задана аналитическая функция $f: G \to f(G)$:
- 1) f аналитическая в области G;

2) f
$$f'(z) \neq \forall z \in C$$

Tогда $\exists \varphi : f(G) \to G$ И

1) ф – аналитическая функция

2)
$$\varphi'(W_0) = \frac{1}{f'(z_0)}, W_0 = f(z_0)$$
;

Док-во: $f'(z_0) = U_x(x_0, y_0) + iV_x(x_0, y_0) \neq 0$, значит $|f'(z_0)| = \sqrt{U_x^2 + V_x^2}(x_0, y_0) \neq 0$, $\forall (x_0, y_0) \in G \subset \mathbb{R}^2$; U = U(x, y) V = V(x, y) - дифференцируема во всей области G.

$$\text{Кроме того } \begin{cases} U_x = V_y \\ V_x = -U_y \end{cases} \text{. Рассмотрим якобиан: } \frac{D(U,V)}{D(x,y)} = \begin{vmatrix} \frac{\partial U}{\partial x} & \frac{\partial U}{\partial y} \\ \frac{\partial V}{\partial x} & \frac{\partial V}{\partial y} \end{vmatrix} = \frac{\partial U}{\partial x} \frac{\partial V}{\partial y} - \frac{\partial V}{\partial x} \frac{\partial U}{\partial y} = \left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial x}\right)^2 = \left|f'(z)\right|^2 \neq 0 \\ \rightarrow \end{cases}$$

якобиан этого преобразования не равен нулю \to существует и обратное преобразование: $\begin{cases} x = x(U,V) \\ y = y(U,V) \end{cases}$ - дифференцируема во всей области G.

а) Работаем с первым уравнением:

$$1 = \frac{\partial x}{\partial U} \frac{\partial U}{\partial x} + \frac{\partial x}{\partial V} \frac{\partial V}{\partial x} \left| * \frac{\partial V}{\partial y} \right| = \frac{\partial x}{\partial U} \frac{\partial U}{\partial y} + \frac{\partial x}{\partial V} \frac{\partial V}{\partial y} \left| * \frac{\partial V}{\partial x} \right| = \frac{\partial x}{\partial U} \left(\frac{\partial U}{\partial x} \frac{\partial V}{\partial y} - \frac{\partial V}{\partial x} \frac{\partial U}{\partial y} \right) = \frac{\partial x}{\partial U} \left| f'(z) \right|^2 \frac{\partial x}{\partial U} = \frac{1}{\left| f'(z) \right|^2} \frac{\partial V}{\partial y} = \frac{\partial x}{\partial U} \left| f'(z) \right|^2 \frac{\partial x}{\partial U} = \frac{1}{\left| f'(z) \right|^2} \frac{\partial V}{\partial y} = \frac{1}{\left| f'(z$$

Аналогично находим $\frac{\partial U}{\partial y} = \frac{\partial x}{\partial V} \left(\frac{\partial V}{\partial x} \frac{\partial U}{\partial y} - \frac{\partial U}{\partial x} \frac{\partial V}{\partial y} \right) = \frac{\partial x}{\partial V} \left| f'(z) \right|^2 \quad \frac{\partial x}{\partial V} = -\frac{1}{\left| f'(z) \right|^2} \frac{\partial U}{\partial y}$

б) Со вторым:
$$0 = \frac{\partial y}{\partial U} \frac{\partial U}{\partial x} + \frac{\partial y}{\partial V} \frac{\partial V}{\partial x} \left| * \frac{\partial V}{\partial y} \right| = \frac{\partial y}{\partial U} \frac{\partial U}{\partial y} + \frac{\partial y}{\partial V} \frac{\partial V}{\partial y} \left| * \frac{\partial V}{\partial x} \right| = \frac{\partial y}{\partial U} \left(\frac{\partial U}{\partial x} \frac{\partial V}{\partial y} - \frac{\partial V}{\partial x} \frac{\partial U}{\partial y} - \frac{\partial V}{\partial x} \frac{\partial U}{\partial y} \right) = \frac{\partial y}{\partial U} \left| f'(z) \right|^2$$

$$\frac{\partial y}{\partial U} = -\frac{1}{\left|f'(z)\right|^2} \frac{\partial V}{\partial x}$$

Аналогично находим $-\frac{\partial U}{\partial x} = \frac{\partial y}{\partial V} \left(\frac{\partial V}{\partial x} \frac{\partial U}{\partial y} - \frac{\partial U}{\partial x} \frac{\partial V}{\partial y} \right) = -\frac{\partial y}{\partial V} \left| f'(z) \right|^2 \quad \frac{\partial y}{\partial V} = -\frac{1}{\left| f'(z) \right|^2} \frac{\partial U}{\partial x}$

Получаем условие Коши-Римана для функции х + і у:

$$\begin{cases} \frac{\partial x}{\partial U} = \frac{\partial y}{\partial V} \\ \frac{\partial y}{\partial U} = -\frac{\partial x}{\partial V} \end{cases}$$
 - условие Коши-Римана для $\varphi(W) = x(U,V) + iy(U,V)$ - эта функция аналитическая.

Докажем второй пункт теоремы, для чего воспользуемся производной сложной функции: $z = \varphi(W) = \varphi(f(z))$;

$$z'=1=rac{\partial arphi}{\partial W}rac{\partial f}{\partial z} \Rightarrow arphi'(W)=rac{1}{f'(z)},$$
ч.т.д.

4) Пусть в области G задана f(z) = U(x,y) + iV(x,y) - аналитическая функция. Утверждается, что мнимая часть этой аналитической функции определяется до постоянного слагаемого

Док-во: $f_1(z) = U(x, y) + iV_1(x, y)$

$$f_2(z) = U(x, y) + iV_2(x, y)$$

$$dV_1(x,y) = \frac{\partial V_1}{\partial x} dx + \frac{\partial V_1}{\partial y} dy = -\frac{\partial U}{\partial y} dx + \frac{\partial U}{\partial x} dy$$

$$dV_2(x,y) = -\frac{\partial U}{\partial y}dx + \frac{\partial U}{\partial x}dy$$

$$d(V_1(x, y) - V_2(x, y)) = 0$$

$$V_1(x, y) - V_2(x, y) = const$$
, ч.т.д.

5) Пусть в области G задана аналитическая функция f(z) = U(x,y) + iV(x,y), $(x,y) \in G$. Тогда линии $U(x,y) = C_1$ и $V(x,y) = C_2$, называющиеся линиями уровня, ортогональны.

Док-во:

$$gradU = \left(\frac{\partial U}{\partial x}; \frac{\partial U}{\partial y}\right)$$

$$gradV = \left(\frac{\partial V}{\partial x}; \frac{\partial V}{\partial y}\right)$$

 $(gradU, gradV) = U_x V_y + U_y V_y = U_x V_x - U_x V_x = 0$, $gradU \perp gradV \rightarrow$ линии уровня ортогональны.

Геометрический смысл производной функции комплексного переменного. Свойства сохранения углов и постоянства растяжения.

Пусть задана аналитическая функция W=f(z). Имеются две системы координат:

В области G проводим гладкую кривую γ_1 и соответственно ей Γ_1 – в области f(G). Запишем производную: $f'(z_0) = ke^{i\alpha}$, где $k = \left| f'(z_0) \right|$, α – аргумент .

$$f'(z_0) = ke^{i\alpha} = \lim_{\Delta z \to 0} \frac{\Delta W(z_0)}{\Delta z}$$

$$\left| \frac{\Delta W(z_0)}{\Delta z} \right| = k \neq 0$$

$$\arg \frac{\Delta W(z_0)}{\Delta z} = \arg \Delta W - \arg \Delta z = \alpha$$

Если
$$\begin{cases} \arg \Delta W_1 = \Phi_1 \\ \arg \Delta z_1 = \varphi_1 \end{cases}$$
 то получаем $\Phi_l - \varphi_l = \alpha$.

Берём аналогично γ_2 и Γ_2 :

$$\begin{cases} \arg \Delta W_2 = \Phi_2 \\ \arg \Delta z_2 = \varphi_2 & \text{M} \end{cases} \Phi_l - \varphi_l = \alpha \ .$$

Получаем $\Phi_2 - \Phi_1 = \varphi_2 - \varphi_1$. Т.е. при отображении аналитических функций с отличными от нуля производными углы между прямыми и их отображения равны по величине и направлению.

Отображение длин $\frac{\Delta W}{\Delta z}$ также сохраняется (растяжение / сжатие).

Т.е. получили, что отображение обладает свойствами.

- 1) сохранение углов
- 2) постоянство растяжения (|f'(z)| коэффициент растяжения / сжатия).

Определение конформного отображения.

Определение: Взаимно-однозначное отображение $f: G \xrightarrow{ha} f(G)$ называется конформным, если оно обладает свойствами:

- 1) сохранение углов
- 2) постоянство растяжения

Круговое свойство дробно-линейной функции. Отображение верхней полуплоскости на единичный круг.

Дробно-линейная функция $W = \frac{az+b}{cz+d}$, $\frac{a}{c} \neq \frac{b}{d}$

Трм.: Круговое свойство дробно линейного отображения.

При дробно-линейном отображении окружность и прямая переходят либо в окружность, либо в прямую: окр./прямая в плоскости (z) -> окр./прямая в плоскости (W).

Док-во: 1) Отображение W = Az + B представляет собой параллельный перенос / растяжение (+поворот). При нём окружность -> в окружность; прямая -> в прямую.

$$A = a_1 + ia_2 \qquad z = x + iy;$$

$$B = b_1 + ib_2 \qquad W = U + iV;$$

$$W_1 = Az$$
;

 $W_2 = W_1 + B - \underline{\text{параллельный перенос}}$

2)
$$W_1 = U_1 + \overline{V_1}$$
;

$$A = |A|e^{i\arg A}$$
 , $z = |z|e^{i\arg z}$, тогда $W_1 = |W_1|e^{i\arg W_1} = U_1 + iV_1 = |A||z|e^{i\arg A + i\arg z} = >$

$$|W_1| = |A||z|$$
 - растяжение; $\arg W_1 = \arg A + \arg z$ - поворот;

$$U_2+iV_2=U_1+iV_1+b_1+ib_2\ ; \qquad \begin{cases} U_2=U_1+b_2\\ V_2=V_1+b_2 \end{cases}$$

2)
$$W = \frac{az+b}{cz+d} = \frac{a}{c} + \frac{b-\frac{ad}{c}}{cz+d}$$
 $W_1 = cz+d$; $W_2 = \frac{1}{W_1}$; $W = \frac{a}{c} + \left(b-\frac{ad}{c}\right)W_1$

Рассмотрим W = 1/z.

(1)
$$A(x^2 + y^2) + Bx + Cy + D = 0$$
 - окружность в комплексной плоскости. (A,B,C,D \in **R**);

$$Az\overline{z} + B(z + \overline{z}) + \frac{C}{2i}(z - \overline{z}) + D = 0$$

$$A\frac{1}{WW} + \frac{B}{2}(\frac{1}{W} + \frac{1}{\overline{W}}) + \frac{C}{2i}(\frac{1}{W} - \frac{1}{\overline{W}}) + D = 0$$

$$A + \frac{B}{2}(W + \overline{W}) + \frac{C}{2i}(\overline{W} - W) + DW\overline{W} = 0$$

(2)
$$A + BU - CV + D(U^2 + V^2) = 0$$

Итого получили переход из (1) в (2) – окружность.

Пример 2: Отображение верхней полуплоскости на единичный круг.

Берём произвольное b (Imb > 0) и переводим её в ноль. Тогда $\bar{b} \mapsto \infty$, $W_1 = \frac{z-b}{z-\bar{b}}$; более общее:

$$W = e^{i\alpha} \frac{z-b}{z-\overline{b}}$$
, Im(b) > 0, α – любое.

Отображения, осуществляемые элементарными функциями.

1. $w=e^z$.

Найдем область однолистности: пусть $z_1 \neq z_2$ и z = x + iy, тогда из того, что $e^{z1} = e^{z2} \Rightarrow e^{x1} e^{iy1} = e^{x2} e^{iy2}$, следовательно $e^{x1} = e^{x2} \Rightarrow x_1 = x_2$ и $e^{iy1} = e^{iy2} = e^{iy1 + 2k\pi I}$ $\Rightarrow y_2 = y_1 + 2k\pi \Rightarrow y_2 - y_1 = 2k\pi$. Как видно полоса ограниченная прямыми y = 0 и $y = 2\pi$ перейдет в полную плоскость w, а сами эти прямые будут отображаться на положительную часть действительной оси плоскости w. Итак, показательная функция e^z производит взаимно однозначное отображение полосы $0 \leq y \leq 2\pi$ плоскости z на полную плоскость w, разрезанную по положительной части действительной оси.

Показательная функция $w=e^z$ производит отображение прямой $y=y_0$ плоскости z на луч $arg(w)=y_0$ плоскости w. Кроме того данная функция переводит прямую $x=x_0$ плоскости z в окружность $u^2+v^2=e^{2x_0}$ радиуса e^{x_0} плоскости w

2. $w=\text{Ln }z=\ln|z|+(\arg(z)+2k\pi)i$ – можно перевести в полосу шириной 2π .

3. $w=z^2$.

Найдем область однолистности: пусть $z_1 \neq z_2$, тогда $z_1^2 - z_2^2 = 0 \Rightarrow (z_1 - z_2)$ $(z_1 + z_2) = 0 \Rightarrow z_1 + z_2 = 0$, следовательно точкам z и –z, аргументы которых

отличаются на π , а модули равны соответствует одно и то же значение w. Если представить z и w в показательной форме, т.е. $z=|z|e^{i \arg(z)}, \ w=|z|^2e^{i2 \arg(z)}$, то видно, что верхняя полуплоскость (Im(z)>0) переходит в полную плоскость w. Но границы области, лучи $\phi=0$ и $\phi=\pi$ переходят в положительную часть действительной оси w. Следовательно при Im(z)>0 и $0\leq \phi\leq \pi$ полуплоскость z переходит в полную плоскость w в разрезом по действительной оси.

4. $w=z^{1/2}$. — аналогично 3). Т.е. первая ветвь функции $w=z^{1/2}$ (0<arg(w)< 2 π) производит отображение плоскости с разрезом на верхнюю полуплоскость z, а вторая (2 π <arg(w)<4 π) — на нижнюю полуплоскость.

5. Функция Жуковского: w=1/2(z+1/z).

Найдем область однолистности: $z_1+1/z_1=z_2+1/z_2\Rightarrow z_1z_2=1$, значит областями однолистности являются области внутри круга (|z|<1) и вне круга (|z|>1) единичного радиуса. Найдем отображение окружности $z=\rho e^{i\phi}$ осуществляемое функцией Жуковского. Для действительной части функции имеем:

 $u=1/2(\rho+1/\rho)\cos(\phi), \text{ а для мнимой} - v=1/2(\rho-1/\rho)\sin(\phi). \ \Pi \text{ри } \rho=\text{const}: \ \frac{u^2}{\left(1/2(\rho+1/\rho)\right)^2} + \frac{v^2}{\left(1/2(\rho-1/\rho)\right)^2} = 1 - \frac{u^2}{\left(1/2(\rho+1/\rho)\right)^2} + \frac{v^2}{\left(1/2(\rho+1/\rho)\right)^2} = 1 - \frac{u^2}{\left(1/2(\rho+1/\rho)\right)^2} = 1 - \frac{u^2}{\left$

это эллипс с фокусами c= ± 1 , при $\rho \to 1$ эллипс вырождается в отрезок [-1;1], проходимый дважды. При ϕ =const : $\frac{u^2}{\cos^2 \varphi} - \frac{v^2}{\sin^2 \varphi} = 1$ - гипербола с фокусами ± 1 .

6. $\cos(z) = \cos(x+iy) = \cos(x)\cos(iy) - \sin(x)\sin(iy) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)$. Прямую $x = \cosh(x)\cosh(y) - i\sin(x)\sinh(y)$

функция $\cos(z)$ отображает в ветвь гиперболы: $\frac{u^2}{\cos^2 x} - \frac{v^2}{\sin^2 x} = 1$. Функция $\cos(z)$ осуществляет взаимно однозначное отображение полосы $0 \le x \le 2\pi$ на полную плоскость w с разрезами по лучам

действительной оси $[1,\infty]$ и $[-\infty,-1]$. При y=const : $\frac{u^2}{ch^2y} + \frac{v^2}{sh^2y} = 1$ - эллипс с фокусами ± 1 .

Основная задача конформных отображений. Теоремы Римана.

Теорема Римана: заданы области G и G^* . Предполагается, что G и G^* односвязные и границы, каждой из областей, состоят более чем их одной точки. Точка $z_0 \in G$, $w_0 \in G^*$ и $\alpha \in \mathbf{R}$ – любое число. Тогда \exists ! конформное отображение w = f(z), которое отображает $G \rightarrow G^*$ и для которого: 1) $w_0 = f(z_0)$; 2) arg $f'(z_0) = \alpha$.

2-я формулировка: всякую односвязную область G в плоскости z, граница которой состоит более чем из одной точки может быть отображена конформно на внутренность круга R=1 с центром в начале координат, который расположен в области w.

Определение интеграла от функции комплексного переменного. Теорема о вычислении интеграла.

Определение: рассмотрим кривую c в плоскости (z). И пусть на c задана функция f(z) $\forall z \in \textbf{\textit{C}}.$ c: z=z(t), где $\alpha \le t \le \beta$. Произведем разбиение этой прямой $\alpha = t_0 < t_1 < \ldots < t_n = \beta$ и пусть $M_0 = z(t_0)$, $M_1 = z(t_1), \ldots, M_n = z(t_n)$. И через точки M_0, \ldots, M_n составим ломанную. Пусть ξ_k принадлежит отрезку $[z_{k-1}, z_k]$. И составим предел следующей суммы

$$\lim_{\lambda \to 0} \sum_{k=1}^n f(\xi_k) \cdot \Delta z_k$$
 , где $\Delta z_k = z_k - z_{k-1}$, $\lambda = \max(|\Delta z_k|)$ (k=1,...,n).

Х Если данный предел существует независимо от выбора
 ⇒ разбиения, то этот предел называют интегралом от f по

кривой $\mathbf{f}(\mathbf{z})$ $\lim_{\lambda \to 0} \sum_{k=1}^n f(\xi_k) \Delta z_k = \int\limits_{AB} f(z) dz$.

Теорема: пусть c — кусочно-гладкая кривая, а f(z)=u(x,y)+iv(x,y) — кусочно-непрерывная на этой кривой функция, то $\exists \int f(z)dz = \int udx - vdy + i \int vdx + udy = \int udx - vdy + i \int vdx + udx = \int udx - vdy + i \int vdx + udx = \int udx - vdy + i \int vdx + udx = \int udx - vdy + i \int vdx + udx = \int udx - vdy + i \int vdx + udx = \int udx - vdy + i \int vdx + udx = \int udx - vdy + i \int vdx + udx = \int udx - vdy + i \int vdx + udx = \int udx - vdy + i \int vdx + udx = \int udx - vdx + udx =$

$$\sum_{k=1}^{n} f(\xi_k) \Delta z_k = \sum_{k=1}^{n} (u(\xi_k) + iv(\xi_k))(\Delta x_k + i\Delta y_k) =$$

Доказательство: $= \sum_{k=1}^{n} \underbrace{u(\xi_{k})\Delta x_{k} - v(\xi_{k})\Delta y_{k}}_{(1)} + i \sum_{k=1}^{n} \underbrace{v(\xi_{k})\Delta x_{k} + u(\xi_{k})\Delta y_{k}}_{(2)}$ где $\xi_{k} = \eta_{k} + i \zeta_{k}$, $u(\xi_{k}) = u(\eta k, \zeta_{k})$, и (1) –

интегральная сумма для первого криволинейного интеграла, (2) — для второго интеграла. $\int\limits_{AB} f(z)dz = \int\limits_{AB} (u(x,y)+iv(x,y))(dx+idy) = \int\limits_{AB} udx-vdy+i\int\limits_{AB} vdx+udy$

Свойства интеграла от функции комплексного переменного.

 c^{+} - обход контура в прямом направлении, c^{-} - в противоположном.

1°.
$$\int_{c^{-}}^{\int f(z)dz = -\int_{c^{+}}^{\int f(z)dz}$$

$$2^{\circ}.\forall c_1,c_2: \ \underset{c_1+c_2}{\lceil f(z)dz=\lceil f(z)dz+\lceil f(z)dz}$$

3°.
$$\forall \alpha \in \mathbf{C}$$
: $\int_{c}^{\alpha} \alpha f(z) dz = \alpha \int_{c}^{\alpha} f(z) dz$

$$4^{\circ}. \int_{c}^{\int} (f_{1}(z) \pm f_{2}(z))dz = \int_{c}^{\int} f_{1}(z)dz \pm \int_{c}^{\int} f_{2}(z)dz$$

5°. Если функция ограничена на кривой, т.е. |f(z)|≤M ($\forall z$ ∈C) и l – длина кривой, то $\begin{vmatrix} \int f(z)dz \\ c \end{vmatrix}$ ≤Ml , т.к.

$$\left| \sum_{k=1}^{n} f(\xi_k) \Delta z_k \right| \le M \sum_{k=1}^{n} \left| \Delta z_k \right| \le Ml$$

6°.
$$\int_{z_0}^{z} dz = z - z_0$$

7°. Если c – гладкая, т.е. z=z(t) имеет непрерывную производную, то $\int_{AB}^{\int f(z)dz} \int_{\alpha}^{\beta} f(z(t))z'(t)dt$, где $\alpha \le t \le \beta$, $z(\alpha)=A$, $z(\beta)=B$.

Теорема Коши для односвязной и многосвязной областей.

Теорема Коши для односвязной области: если f(z) является аналитической функцией в односвязной

области G ограниченной кусочно-гладким контуром c и f(z) непрерывна в замкнутой области G, то $\oint f(z)dz = 0$

Доказательство:

$$\begin{split} &\oint f(z)dz = \oint u dx - v dy + i \oint v dx + u dy = \iint (-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}) dx dy + \\ &+ i \iint (\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}) dx dy = 0 \end{split}$$

т.к.
$$\left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = 0$$
 и $\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) = 0$ по условию Коши-

Римана.

Теорема Коши для многосвязной области: пусть f(z) аналитическая функция в многосвязной области G ограниченной кусочно-гладким контуром c и f(z) непрерывна в замкнутой области, тогда $\oint f(z)dz = 0$

Доказательство: проведем гладкие кривые $l_1,...,l_n$, соединяющие внешний контур C_0 с контурами $C_1,...C_n$, тогда область ограниченная кривыми и $C_0,...C_n$ кривыми $l_1,...,l_n$, проходимыми дважды в противоположных направлениях, оказывается односвязной. Тогда по первой теореме $\int_{C_0^+}^{f(z)dz+\int_{C_1^-}^{f(z)dz+...+\int_{C_n^-}^{f(z)dz=0}}$ (интегралы по вспомогательным кривым $l_1,...,l_n$ не влияют на конечный интеграл).

Следствие: $\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$

Первообразная аналитической функции (теорема и определение).

Трм.: Пусть f(z) определена и непрерывна в односвязной области G, и интеграл по любому замкнутому контуру от этой функции f(z) равен нулю.

Тогда функция от z: $\Phi(z) = \int_{z_0}^{z} f(\xi)d\xi$ является аналитической в области G, и её производная $\Phi'(z) = f(z)$ (когда ставят значение верхнего предела).

Док-во: Дадим приращение: $z, z+\Delta z$, и вычислим

$$\begin{split} &\frac{\Phi(z+\Delta z)-\Phi(z)}{\Delta z} = \frac{1}{\Delta z} \int\limits_{z_0}^{z+\Delta z} \int\limits_{z_0}^{z} f(\xi) d\xi - \frac{1}{\Delta z} \int\limits_{z_0}^{z} f(\xi) d\xi = \\ &= \frac{1}{\Delta z} \int\limits_{z_0}^{z} f(\xi) d\xi + \frac{1}{\Delta z} \int\limits_{z}^{z+\Delta z} \int\limits_{z}^{z+\Delta z} \int\limits_{z_0}^{z} f(\xi) d\xi - \frac{1}{\Delta z} \int\limits_{z_0}^{z} f(\xi) d\xi = \frac{1}{\Delta z} \int\limits_{z}^{z+\Delta z} \int\limits_{z}^{z+\Delta z} f(\xi) d\xi \end{split}$$

$$\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(\xi) d\xi = \frac{f(z)}{\Delta z} \int_{z}^{z+\Delta z} d\xi = f(z)$$

Оценим разность:

$$\begin{split} &\left|\frac{\varPhi(z+\Delta z)-\varPhi(z)}{\Delta z}-f(z)\right| = \left|\frac{1}{\Delta z}\int\limits_{z}^{z+\Delta z}(\xi)-f(z)d\xi\right| = \\ &=\frac{1}{\left|\Delta z\right|}\int\limits_{z}^{z+\Delta z}(\xi)-f(z)d\xi\right| \leq \frac{1}{\left|\Delta z\right|}\max_{\xi\in[z,z+\Delta z]}\left|f(\xi)-f(z)\right|\!\!\left|\Delta z\right| = 0, \\ &\text{при }\!\!\left|\Delta z\right| \to 0 \end{split}$$

A это значит, что $\exists \lim_{\Delta z \to 0} \left| \frac{\Phi(z + \Delta z) - \Phi(z)}{\Delta z} \right| = f(z)$, т.е. доказали существование производной.

Def.: Аналитическая функция F(z) называется первообразной (или неопределённым интегралом) для функции f(z) в области G, если в этой области имеет место равенство: F'(z)=f(z).

Неопределенный интеграл. Теорема и определение. Формула Ньютона-Лейбница.

Трм.: Пусть f(z) определена и непрерывна в односвязной области G, и интеграл по любому замкнутому контуру от этой функции f(z) равен нулю. Тогда функция от z: $\Phi(z) = \int\limits_{z_0}^{z} f(\xi) d\xi$ является аналитической в области G, и её производная

 $\Phi'(z) = f(z)$ (когда ставят значение верхнего предела).

Док-во: Дадим приращение: $z, z+\Delta z$, и вычислим

$$\begin{split} &\frac{\varPhi(z+\Delta z)-\varPhi(z)}{\Delta z} = \frac{1}{\Delta z} \int\limits_{z_0}^{z+\Delta z} f(\xi) d\xi - \frac{1}{\Delta z} \int\limits_{z_0}^z f(\xi) d\xi = \\ &= \frac{1}{\Delta z} \int\limits_{z_0}^z f(\xi) d\xi + \frac{1}{\Delta z} \int\limits_{z}^{z+\Delta z} f(\xi) d\xi - \frac{1}{\Delta z} \int\limits_{z_0}^z f(\xi) d\xi = \frac{1}{\Delta z} \int\limits_{z}^{z+\Delta z} f(\xi) d\xi \end{split}$$

$$\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(\xi) d\xi = \frac{f(z)}{\Delta z} \int_{z}^{z+\Delta z} d\xi = f(z)$$

Оценим разность

$$\begin{split} &\left|\frac{\varPhi(z+\Delta z)-\varPhi(z)}{\Delta z}-f(z)\right|=\left|\frac{1}{\Delta z}\int\limits_{z}^{z+\Delta z}(f(\xi)-f(z)d\xi\right|=\\ &=\frac{1}{\left|\Delta z\right|}\int\limits_{z}^{z+\Delta z}(f(\xi)-f(z)d\xi\right|\leq\frac{1}{\left|\Delta z\right|}\max_{\xi\in\left[z,z+\Delta z\right]}\left|f(\xi)-f(z)\right|\!\!\left|\Delta z\right|=0,\\ &\text{при }\!\!\left|\Delta z\right|\to0 \end{split}$$

A это значит, что $\frac{\exists \lim_{\Delta z \to 0} \left| \frac{\Phi(z + \Delta z) - \Phi(z)}{\Delta z} \right| = f(z)$, т.е. доказали существование производной.

Определение: Аналитическая функция F(z) называется первообразной (или неопределённым интегралом) для функции f(z) в области G, если в этой области имеет место равенство: F'(z)=f(z). **Трм. (Формула Ньютона-Лейбница):** Если функция f(z) — односвязная в аналитической области G, то у неё в этой области существует первообразная, и для любых точек z_1 и $z_2 \in G$ имеет место формула: $\int_{z_1}^{z_2} f(\xi) d\xi = \Phi(z_2) - \Phi(z_1)$, $z \partial e \Phi(z)$ — одна из первообразных f(z).

Док-во: По трм. интеграл по любому замкнутому контуру в G равен 0, значит $F(z) = \int_{z_0}^z f(\xi) d\xi$ - является первообразной. Если $F_1(z)$ и $F_2(z)$ - различные первообразные для функции f(z), то $F_2(z)$ - $F_1(z)$ = const в G. Если рассмотреть функцию $\varphi(z) = F_2(z) - F_1(z)$, то $\varphi'(z) = 0$ в G. Пусть $\varphi = U(x,y) + iV(x,y)$, тогда $\varphi' = U_x + iV_x \equiv 0 \Rightarrow U_x \equiv V_x \equiv 0$, но тогда $U_y = -V_x \equiv 0$ и $V_y \equiv 0$.

$$dU(x, y) \equiv 0 \Rightarrow U = C_1 = const$$

 $dV(x, y) \equiv 0 \Rightarrow V = C_2 = const$

$$\int\limits_{z_{1}}^{z}f(\xi)d\xi=\int\limits_{z_{0}}^{z_{2}}f(\xi)d\xi-\int\limits_{z_{0}}^{z_{1}}f(\xi)d\xi=F(z_{2})-F(z_{1})\text{ . Любая другая первообразная отличается на константу C.}$$

$$\Phi(z)=F(z)+C_1$$
;

$$\Phi(z_2)$$
- $\Phi(z_1)$ = $F(z_2)$ + C_1 - $F(z_1)$ - C_1 = $F(z_2)$ - $F(z_1)$

Формула Коши. Следствие. Формула среднего значения.

Предположим, что функция f(x) задана в некоторой области G, ограниченной кусочногладким контуром Γ .

$$\overline{G} = G + \Gamma$$
 - замкнутая область.

Тогда для любой точки $z \in G$ имеет место формула Коши:

$$f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi$$

Доказательство: Выберем произвольную точку $z \in G$ и окружим ее окружностью радиуса р

$$\oint_{\Gamma_{\rho}C_{\rho}} \frac{f(\xi)}{\xi - z} d\xi = 0$$

$$\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi = \begin{vmatrix} \xi - z = \rho e^{i\varphi} \\ 0 \le \varphi \le 2\pi \end{vmatrix} = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z + \rho e^{i\varphi})}{\rho e^{i\varphi}} \rho i e^{i\varphi} d\varphi = \frac{1}{2\pi} \lim_{\rho \to 0} \int_{0}^{2\pi} f(z + e^{i\varphi}) d\varphi = \frac{1}{2\pi} \int_{0}^{2\pi} f(z) d\varphi = f(z)$$

Принцип максимума модуля

Пусть G- связная область, ограниченная кусочногладким контуром Γ . f(z)- аналитическая в обл. G. Тогда максимум модуля f(z) либо принимается на границе, либо ϕ -я константа во всей области.

Доказательство:

$$\left| f(z) \right| \le M, M = \max \left| f(z) \right| = \left| f(z_0) \right|, z_0 \in G$$

$$f(z_0) = \frac{1}{2\pi i} \oint_{C_0^+} \frac{f(\xi)}{\xi - z_0} d\xi, \ \xi = z + \rho e^{i\varphi}$$

$$f(z_0) = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + \rho e^{i\varphi})}{\rho e^{i\varphi}} i\rho e^{i\varphi} d\varphi \left| f(z_0 + \rho e^{i\varphi}) \right| \le M.$$

$$(\forall \varphi : x - \delta \le \varphi \le x + \delta): \left(\left| f(z_0 + \rho e^{i\varphi}) \right| \le M - \varepsilon \right)$$

Возьмем точку $z_{0i}:|f(z_{0i})|=M$ и проведем окружность с центром в этой точке, целиком принадлежащую обл. G. Тогда за конечное число шагов окр-ть коснется границы, т.е. максимум фунии достигается на границе.

Аналитическая зависимость интеграла от параметра.

Пусть дана функция $f:G\subset C\times C\to C$, и $f(x,y,\xi,\eta)$. Или f(z,t), где z=x+iy, $t=\xi+i\eta$ $t\in F$ -кусочногладкая кривая.

1) Пусть f(z,t) -аналитическая в обл. G для $\forall t \in \Gamma$.

 $\frac{\partial f(z,t)}{\partial z}$ - непрерывная по совокупности двух аргументов- $(z,t) \in G_{t \in \Gamma}$

 $F(z) = \int_{\Gamma} f(z,t)dt$ является аналитической функцией от z в обл. G

2)
$$F'(z) = \int_{\Gamma} \frac{\partial f(z,t)}{\partial z} dt$$

Доказательство:

Пусть $f(z,t) = u(x,y,\xi,\eta) + iv(x,y,\xi,\eta)$, F(z) = U(x,y) + iV(x,y) $F(z) = \int_{\Gamma} (u+iv)(d\xi+id\eta) = \int_{\Gamma} (ud\xi-vd\eta) + i(vd\xi+ud\eta)$ $U(x,y) = \int_{\Gamma} ud\xi-vd\eta$ $V(x,y) = \int_{\Gamma} vd\xi+ud\eta$

Продифференцируем по х и у:

$$U_x' = \int_{\Gamma} u_x' d\xi - v_x' d\eta \qquad V_x' = \int_{\Gamma} v_x' d\xi + u_x' d\eta$$

$$U_y' = \int_{\Gamma} u_y' d\xi - v_y' d\eta \quad V_y' = \int_{\Gamma} v_y' d\xi + u_y' d\eta$$

Из условия Коши-Римана : $U_x' = V_y', U_y' = -V_x'$

Найдем производную: $F'(z) = \frac{\partial U}{\partial x} + i \frac{\partial V}{\partial x} = \int\limits_{\Gamma} \left(u_x' d\xi - v_x' d\eta \right) + i \int\limits_{\Gamma} \left(v_x' d\xi + u_x' d\eta \right) = 0$

$$= \int_{\Gamma} \left(u_{X}^{\prime} + i v_{X}^{\prime} \right) d\xi + i d\eta = \int_{\Gamma} \frac{\partial F(z, t)}{\partial z} dt$$

Существование производных всех порядков аналитической функции.

1) f(x)- непрерывная в замкнутой области G, и аналитическая.

2)
$$f(x)$$
 непрерывна в $\overline{G} = G + \Gamma$

Тогда
$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

Причем
$$|\xi - z| \ge d > 0$$

$$\frac{f(\xi)}{\xi-z}$$
 -непрерывна по совокупности аргументов.

Также можно написать, что
$$\left(\frac{f(\xi)}{\xi-z}\right)^{(n)} = \frac{n!f(\xi)}{(\xi-z)^{n+1}}$$
.

Доказательство: По формуле Коши Можно записать:

$$f(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi$$

Докажем, что имеет место равенство
$$f'(z) = \frac{1}{2\pi i} \oint \frac{f(\xi)}{\Gamma(\xi-z)^2} d\xi$$

$$f'(z) = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f'(\xi)}{(\xi - z)} d\xi = \begin{vmatrix} u = 1/(\xi - z), du = -d\xi/(\xi - z)^2 \\ v = f(\xi), dv = f'(\xi)d\xi \end{vmatrix} = = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{(\xi - z)^2} d\xi$$

$$\oint_{\Gamma} \frac{f'(\xi)}{(\xi - z)} d\xi = \int_{0}^{2\pi} \frac{f'(z + \rho e^{i\varphi})}{\rho e^{i\varphi}} \rho i e^{i\varphi} d\varphi = i \int_{0}^{2\pi} f'(z + \rho e^{i\varphi}) d\varphi$$

$$f''(z) = \frac{2!}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{(\xi - z)^3} d\xi$$
 - по аналогии с предыдущим.

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

Из существования первой производной в некоторой окрестности точки, следует существование n-й производной!!!!

Следствие:

$$\frac{1}{2\pi i} \oint_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi = \begin{cases} f(z), ecnu & z \in G \\ 0, ecnu & z \notin G \end{cases}$$

Теорема Морера. Теорема Лиувилля.

Теорема Морера.

1) Пусть f(z) – непрерывная в однозначной области G.

2) $\exists \oint f(z)$ по любому замкнутому контуру.

Тогда f(z) является аналитической в области G.

Доказательство:

Пусть $F(z) = \int_{z_0}^{z} f(t) dt$. Тогда получим, что F'(z) = f(z) .

В свою очередь можно взять вторую производную. Получим:

 $\exists F^{//}(z) = f^{/}(z)$, т.е. функция дифференцируема во всей области G. Тогда функция является аналитической.

Ч.т.д.

Теорема Лиувилля.

Дано, что f(z)- аналитическая функция на всей области G.

2) f(z) ограниченная, т.е. $(\exists M > 0)(\forall z \in C)$: $(f(z)) \leq M$ Тогда f(z)=const.

Доказательство:

Оценим по модулю:

$$\left| f'(z) \right| = \left| \frac{1}{2\pi i} \oint_{C_k} \frac{f(t)dt}{(t-z)^2} \right| \le \frac{1}{2\pi} M \int_0^{2\pi} \frac{\left| \operatorname{Re} e^{it} \right|}{\left| R^2 e^{2it} \right|} dt = \frac{1}{2\pi} M \frac{R}{R^2} 2\pi = \frac{M}{R}$$

Такой переход возможен, если принять: $C_k - o\kappa p - m_b$, $t = z + \mathrm{Re}^{i\varphi}$

Теперь устремим R к бесконечности. Тогда $\left|f^{/}(z)\right|=0 \Rightarrow f(z)=const.$

Ряды аналитических функций. 1 т-ма Вейерштрасса.

 $1)U_n(z)$ – аналитическая в односвязной области G(n=1,2...)

2)
Ряд
$$\sum\limits_{n=1}^{\infty} U_n(z) \stackrel{\longrightarrow}{\longrightarrow}$$
 в любой замкнутой подобласти области G

Тогда: 1)
$$\sum_{n=1}^{\infty} U_n(z) = f(z)$$
 – аналитическая в области G

2)
$$f^{(m)}(z) = \sum_{n=1}^{\infty} U_n^{(m)}(z)$$

$$_{n=1}^{\infty}U_{n}^{(m)}(z)\longrightarrow_{\rightarrow}$$
в любой замкнутой подобласти области G

Доказательство:

1)в любой замкнутой области ряд сходится равномерно, то f(z) – непрерывна, и, кроме того, т.к. сходится равномерно по любой замкнутой кривой Г, тогда ряд можно интегрировать

$$\oint f(z)dz = \oint \sum_{\Gamma n=1}^{\infty} U_n(z)dz = \sum_{n=1}^{\infty} \oint U_n(z)dz = 0 \quad \text{,T.K} \quad \oint U_n(z)dz = 0$$

По теореме Moppa f(z) – аналитическая.

2)Возьмём точку г.€ С

d – расстояние (конечно) z_°€G2€G2'€G1, тогда

$$\sum_{t=0}^{\infty} IU_t(t) = f(t)$$

$$\sum\limits_{n=1}^{\infty}U_{n}(t)$$
 = $f(t)$ $\longrightarrow_{\rightarrow}$ на $G1$
Теперь поделим на $(t-z)^{m+1}$, $|t-z|$ \geq d

$$\sum\limits_{n=1}^{\infty} rac{U_n(t)}{(t-z)^{m+1}} = rac{f(t)}{(t-z)^{m+1}}$$
 - ряд сходится равномерно на Γ , тогда его можно

интегрировать почленно:

$$\frac{m!}{2\pi i} \oint_{\Gamma} \frac{f(t)}{(t-z)^{m+1}} dt = \sum_{n=1}^{\infty} \frac{m!}{2\pi i} \oint_{\Gamma} \frac{U_n(t)}{(t-z)^{m+1}} dt$$

$$f^{m}(z) = \sum_{n=1}^{\infty} U_{n}^{(m)}(z)$$

Тогда получим предыдущий случай, т.к. между двумя областями G и G2 можно провести кривую G1 и разбить на 2 области

Определение степенного ряда. Теорема Абеля. Следствия.

Определение:

$$\sum_{k=0}^{\infty} C_k (z-z_{\circ})^k = C_{\circ} + C_1 (z-z_{\circ}) + C_2 (z-z_{\circ})^2 + \dots$$

Теорема Абеля: Если степенной ряд сходится в некоторой точке z_∘, то этот ряд сходится абсолютно для любого z, удовлетворяющего неравенству:

 $|z-z_{\circ}| \le |z1-z_{\circ}|$, более того $|z-z_{\circ}| \le p \le |z1-z_{\circ}|$

Доказательство:

$$|C_n(z-z\circ)^n| = |C_n(z_1-z\circ)^n| * |\frac{z-z\circ}{z_1-z\circ}|^n \le Mq^n$$
 (1) - сходится

т.к. в точке z1 ряд сходится, то

$$|C_n(z-z\circ)^n| < \mathbf{M}$$

$$\left|\frac{z-z_{\circ}}{z_{1}-z_{\circ}}\right|$$
 =q<1, таким образом, неравенство (1) выполняется

Если $|z-z_{\circ}| \leq p|z1-z_{\circ}|$, тогда

$$\frac{z-z_{\circ}}{z_{1}-z_{\circ}} \leq q_{1} < q_{1}; \quad q_{1} = \frac{p}{|z_{1}-z_{\circ}|} < q$$
; Тогда (для любого z: |z-z_{\circ}| \leq p)

 $|C_n(z-z_\circ)^n| \le Mq_1^n$ - сходится. Значит, ряд сходится равномерно.

Следствия:

- 1) Если степенной ряд расходится в точке z1, то он расходится для любого z: $|z-z_{\circ}| > |z1-z_{\circ}|$.
- 2)Для любого степенного ряда существует такое число R, что при $|z-z_{\circ}| < R$ ряд сходится, а при $|z-z_{\circ}| > R$ расходится; R радиус сходимости, $|z-z_{\circ}|$ круг сходимости.
- 3)Внутри круга сходимости степенной ряд сходится к аналитической функции.
- 4)степенной ряд внутри круга сходимости можно интегрировать и дифференцировать любое число раз.

5) коэффициенты степенного ряда C_k вычисляются по формуле: $C_k = \frac{f^{(k)}(z_\circ)}{k!}(*)$

Доказательство: Продифференцировать ряд k раз:

$$f^{(k)}(z_{\circ})=k!C_k+(k+1)!C_{k+1}(z-z_{\circ})+...|_{z=z_{\circ}}=k!C_k\rightarrow(*)$$

6)радиус сходимости R определяется по формуле:

$$R = \frac{1}{l}$$
, где $l = \overline{\lim}_{n} \sqrt[n]{|C_n|}$ при $n \to \infty$

Доказательство:

$$\overline{\lim}_{n} \sqrt[n]{|C_n(z-z\circ)^n|} = |z-z\circ|*\overline{\lim}_{n} \sqrt[n]{|C_n|} = l |z-z\circ|<1$$

 $|z-z_0|<\frac{1}{l}$, тогда будет сходится, т.е. это круг сходимости, т.е. это его радиус.

Теорема Тейлора.

f(z) — аналитическая внутри круга $|z-z_{\circ}| < R$ может быть представлена в этом круге, как сумма сходящегося степенного ряда

$$f(z) = \sum_{n=0}^{\infty} C_n (z - z_{\circ})^n$$

И этот ряд определён однозначно!

$$f(z) = \frac{1}{2\pi i} \oint_{C_p} \frac{f(z)dt}{t - z}$$
 (1)

$$\frac{1}{t-z} = \frac{1}{t-z \circ - (z-z \circ)} = \frac{1}{t-z \circ} * \frac{1}{1-\frac{z-z \circ}{t-z \circ}} = \frac{1}{t-z \circ} \sum_{k=0}^{\infty} \left(\frac{z-z \circ}{t-z \circ}\right)^k =$$

$$=\sum_{k=0}^{\infty} \frac{(z-z\circ)^k}{(t-z\circ)^{k+1}}$$

$$(1) = \frac{1}{2\pi i} \oint_{C_p} \sum_{k=0}^{\infty} (z - z \circ)^k * \frac{f(t)dt}{(t - z \circ)^{k+1}} = \sum_{k=0}^{\infty} \frac{f^{(k)}(z \circ)}{k!} (z - z \circ)^k$$

Нули аналитической функции. Единственность определения аналитической функции.

Если f(z)= $(z-z_\circ)^k \phi(z)$ и $\phi(z_\circ)$ #0, то z_\circ - называется нулём функции f(z) к порядка. Если f(z) – аналитическая, то f(z)= C_\circ + $C_1(z-z_\circ)$ +...+ $C_{k-1}(z-z_\circ)^{k-1}$ + $C_k(z-z_\circ)^k$ +...

Теорема (о нулях):

Если функция f(z) — аналитическая в G и имеет нули в точках z1, z2...zn... и f(zk)=0, $z_i\#z_j$ и существует предельная точка: $\lim z_k=a \in G$ при $k \longrightarrow \kappa$ бесконечности (область G — связная), тогда f(z)=0 в G.

Доказательство:

 $\lim_{x \to a} f(zk) = f(a) = 0 \longrightarrow f(z) = (z-a)f(z)$

f1(z)=0 во всех точках кроме, может быть, одной – а, тогда f1(zk)=0, и следовательно lim f1(zk)=0. Таким образом, C = 0

 $f(z)=(z-a)^2f(z)\to C_1=0$

Для f2(z) аналогично, как и для f1(z)

Все коэффициенты обратятся в нуль.

Теорема (о единственности):

Пусть f(z) и g(z) — две аналитические в линейно связной и ограниченной области G функции. Если существует последовательность различных точек $\{z_n\} \in G$ и таких, что $\lim z_n = a \in G$ при $n \to \infty$ и $f(z_k) = g(z_k)$ в области G. Тогда f(z) тождественно равна g(z).

Доказательство:

 $\phi(z)=f(z)-g(z)$ имеет в G последовательность $\{z_n\}=0$ и а \in G, тогда $\phi(z)=0$ по теореме о нулях $\to f(z)=g(z)$. Следствия:

Определение аналитического продолжения. Продолжение соотношений с действительной оси. Полная аналитическая функция.

Пусть f1(z) – аналитическая в области G1; f2(z) – аналитическая в области G2

 $G1 \cap G2 = G\#0$; f1(z) = f2(z) в G

f1(z) B G1

Тогда F(z) = f2(z) в G2

f1(z)=f2(z) B G

F(z) – аналитическая в G1 объединение G2

F(z) – аналитическое продолжение f1(z) в область G2 или f2(z) в область G1

Определение:

Пусть:

1)f: $[a,b] \rightarrow R$

2)в GCC существует аналитическая функция f(z): G→C

3)f(z) на [a,b] совпадает с f(x)

Тогда f(z) называется аналитическим продолжением функции f(x)c[a,b] в области G.

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$
; $e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}$, e^{z} – продолжение e^{x} в С плоскость

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \; ; \quad \sin z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} \; , \; \sin z - \text{продолжение sinx в C плоскость}$$

Теорема: Пусть F(W1,W2...Wn) — функция по n комплексным переменным и F является аналитическим продолжением по каждой переменной Wi в области Di с C (i=1,n). Кроме того, $\frac{\partial F}{\partial W_i}$ — непрерывно по совокупности переменных W1,W2...Wn в области D=D1*D2*...*Dn; $[a,b] \in D$, тогда из соотношения F(W1(x),W2(x)...Wn(x))=0 на $[a,b] \rightarrow F(W1(z),W2(z)...Wn(z))=0$ в области D.

Ряд Лорана. Область сходимости РЛ, Трм о разложении анал.ф-ции в РЛ.

Ряд $\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$ (**P1**), где z_0 — фикс. Точка компл. пл-ти, c_n — нек. компл.числа, а суммир ведется по полож и по отриц числам индекса n, наз-ся рядом Лорана.

Установим **обл. сх-ти Р1**, предст: **Р1**= $\sum_{n=0}^{\infty} c_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}$ (**Р2**) Очев, что обл сх-ти **Р1** – общ. часть обл-й сх-ти каждого из сл-х $\mathbf{P2}$. $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ это $\left|z-z_0\right| < R_1, R_1 = 1 \setminus l_1, l_1 = \overline{\lim_{n\to\infty}} \sqrt[n]{|c_n|};$ внутри этого круга, ряд сх-ся к нек. анал.ф-ции к.п. $f_1(z)$. для опр-я ОС ряда $\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}$ сделаем замену $\zeta = 1/(z-z_0)$. Т.о. этот ряд примет вид $\sum_{n=1}^{\infty} c_{-n} \zeta^n$ т.о. это обыч. степ ряд, сх-ся внутри своего круга схти к ф-ции $\phi(\zeta)$. Обозн-м РадиусС (РС) получ степ. ряда как $1/R_2$ тогда $\phi(\zeta) = \sum\limits_{n=1}^{\infty} c_{-n} \zeta^n, |\zeta| < 1 \setminus R_2$. Возврсь к старой перем. и полагая $\phi(\zeta(z)) = f_2(z)$ получим $f_2(z) = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}, |z-z_0| > R_2$ Значит ОС $\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}$ - внешняя обл. окр-ти $|z-z_0|=R_2$. Т.о. каждый из степ. рядов **P2** сх-ся в ОС к соот. анал.ф-ции, если $R_2 < R_1$ то сущ общ ОС этих рядов – кольцо $R_2 < |z-z_0| < R_1$ в к-ром **P1** сх-ся к ан.в данн. кольце ф. $f(z)=f_1(z)+f_2(z)$; если $R_2 > R_1$ то нет общ ОС и **P1** нигде не схся к ан.ф. **Трм о разложении анал.ф-ции в РЛ.** Ф-ция f(z), анал в $R_2 < |z-z_0| < R_1$ однозн предст в этом кольце сх-**Д-во:** Фикс. произв. точку z внутри кольца и постр окр-ти $C_{R'1}$ и $C_{R'2}$, c центр в z_0 и $R_2 < R'_2 < R'_1 < R_1$ и $R'_2 < |z-z_0| < R'_1$ согл фор. Коши для многосв обл: $f(z) = \frac{1}{2\pi i} \int\limits_{CR'_1} \frac{f(\varsigma)}{\varsigma - z} d\varsigma + \frac{1}{2\pi i} \int\limits_{CR'_2} \frac{f(\varsigma)}{\varsigma - z} d\varsigma$; на $C_{R'_1}$ вып-ся нерво $\left| \frac{z-z_0}{\zeta-z_0} \right| \le q < 1$ поэтому предст-в $\frac{1}{\zeta-z}$ как $\frac{1}{\zeta-z} = \frac{1}{(\zeta-z_0)-(z-z_0)} = \frac{1}{(\zeta-z_0)} * \frac{1}{1-(z-z_0)\setminus(\zeta-z_0)} = \frac{1}{\zeta-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{\zeta-z_0}\right)^n$ и $f_1(z) = \frac{1}{2\pi i} \int\limits_{CR^1} \frac{f(\varsigma)}{\varsigma - z} d\varsigma = \sum\limits_{n=0}^{\infty} c_n (z - z_0)^n; \ _{\Gamma}\text{Де} \ c_n = \frac{1}{2\pi i} \int\limits_{CR^2} \frac{f(\varsigma)}{(\varsigma - z_0)^{n+1}} d\varsigma, n \ge 0 \ _{\text{T.K.}} \ \text{ на } \ C_{\text{R}^2} \text{2 вып-ся} \ \left| \frac{\varsigma - z_0}{z - z_0} \right| < 1$ то анал-но имеем $\frac{1}{\zeta-z} = -\frac{1}{z-z_0} \sum_{n=0}^{\infty} \left(\frac{\zeta-z_0}{z-z_0}\right)^n \quad \text{после} \quad \text{почл} \quad \text{интегрир} \quad \text{получим} \quad f_2(z) = \frac{1}{2\pi i} \int_{\mathbb{R}^{n/2}} \frac{f(\zeta)}{\zeta-z} d\zeta = \sum_{n=1}^{\infty} c_{-n} \setminus (z-z_0)^n$ $c_{-n} = -\frac{1}{2\pi i} \int_{CR'2}^{1} f(\varsigma)(\varsigma - z_0)^{n-1} d\varsigma, n \ge 0 \text{ изм-в} \quad \text{напр.} \quad \text{инт.} \quad \text{в посл. форм имеем} \quad c_{-n} = \frac{1}{2\pi i} \int_{CR'2}^{1} \frac{f(\varsigma)}{(\varsigma - z_0)^{-n+1}} d\varsigma, n > 0 \quad ;$ заметим, что подинт ф-ции в выр для n и -n анал. в $R_2 \le |z-z_0| \le R_1$ поэтому в силу трм Коши знач соотв интегр не изм-ся при произв деформ контуров инт в обл анал-ти подинт ф-ций, тогда объединим $c_n = \frac{1}{2\pi i} \int \frac{f(\zeta)}{C(\zeta - z_0)^{n+1}} d\zeta, n = \pm 1, \pm 2...$ где С – произв замк конт, леж в $R_2 < |z-z_0| < R_1$ и сод z_0 внутри. Итак, тогда мы имеем $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n + \sum_{n=1}^{\infty} c_{-n} \setminus (z-z_0)^n = f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ т.к. z-произв точка внутри кольца $R_2 < |z-z_0|^n$ $z_0|< R_1$ имеем что этот ряд сх-ся к f(z) всюду внутри данн кольца, причем в замк кольце $R_2<\overline{R_2}\le |z-z_0|$ $\leq \overline{R_1} < R_1$ ряд сх-ся равном. остается док-ть **единст-ть разл-я.** Предп-м есть другое разл $f(z) = \sum_{n=0}^{\infty} c'_n (z - z_0)^n$ где хотя бы один с'_п≠с_п тогда всюду имеем

 $\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=-\infty}^{\infty} c'_n (z-z_0)^n \text{ проведем } C_R \text{ с центром в } z_0 \text{ b } R_2 < R < R_1 \text{ ряды сх-ся на } C_R \text{ равн. Умножим их на}$ $(z-z_0)^{-m-1} \text{ где } m \text{ фикс цел и проинт почл. } \int_{CR}^{\lceil (z-z_0)^{n-m-1} dz} dz = \{z-z_0 = Re^{i\phi}\} = R^{n-m} i \int_0^{2\pi} e^{i(n-m)\phi} d\phi = \begin{cases} 0, n \neq m \\ 2\pi i, n = m \end{cases} \text{ с}$ учетом этого видно, что после указ интегр этих рядов, отл от нуля будут по одн. слаг в лев и прав частях, отсюда $c'_m = c_m$, а т.к. m- произв, это доказ единств. разл-я. Трм. док!

Разложение в ряд Лорана в окрестности бесконечно удаленной точки.

Бесконечно удаленная точка комплексной плоскости является изолированной особой точкой однозначной аналитической функции f(z), если можно указать такое значение R,что вне круга |z| > R функция f(z) не имеет особых точек, находящихся на конечном расстоянии от точки z=0.

Разложение:
$$f(z) = \sum_{n=-\infty}^{+\infty} c_n z^n$$
, $R < |z| < \infty$

Классификация:

- 1. точка $z=\infty$ называется устранимой особой точкой функции f(z), если разложение не содержит членов с положительными степенями.
- 2. точка $z=\infty$ называется полюсом порядка m функции f(z), если разложение содержит конечное число m членов с положительными степенями.
- 3. точка $z=\infty$ называется существенно особой точкой функции f(z), если разложение содержит бесконечное число членов с положительными степенями.

Классификация изолированных особых точек.

Определение: Точка z_0 называется изолированной особой точкой функции f(z), если f(z)—однозначная и аналитическая в круговом кольце $0 < |z-z_0| < R$, а точка z_0 является особой точкой функции f(z).

Классификация:

- 1. точка $z=z_0$ называется устранимой особой точкой функции f(z), если разложение не содержит членов с отрицательными степенями.
- 2. точка $z=z_0$ называется полюсом порядка m функции f(z), если разложение содержит конечное число m членов c отрицательными степенями.
- 3. точка $z=z_0$ называется существенно особой точкой функции f(z), если разложение содержит бесконечное число членов с отрицательными степенями.

Теорема. Если точка z_0 является устранимой особой точкой аналитической функции f(z), то сущ. предельное значение $\lim_{z\to z_0} f(z) = c_0$, причем $|c_0| < \infty$.

Д-во. Т. к. z_0 является устранимой особой точка, то $f(z) = \sum\limits_{n=0}^{\infty} c_n (z-z_0)^n$. Следовательно $\lim\limits_{z \to z_0} f(z) = c_0$.

Теорема. Если точка z_0 является полюсом аналитической функции f(z), то при $z \rightarrow z_0$ модуль функции f(z) неограниченно возрастает независимо от способа стремления.

Д-во. Пусть z_0 полюс порядка m, тогда

$$f(z) = \frac{c_{-m}}{(z-z_0)^m} + \dots + \frac{c_{-1}}{z-z_0} + \sum_{n=0}^{\infty} c_n (z-z_0)^n = (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^n = (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^n = (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^n = (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^n = (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^n = (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-m+1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-m+1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-m+1} (z-z_0) + \dots + c_{-m+1} (z-z_0)^{m-1} \right\} + \dots + \sum_{n=0}^{\infty} c_n (z-z_0)^{-m} \left\{ c_{-m} + c_{-m+1} (z-z_0) + \dots + c_{-m+1} (z-z_0) + \dots + c_{-m+1} (z-z_0)$$

$$+\sum_{n=0}^{\infty} c_n (z-z_0)^n = (z-z_0)^{-m} \varphi(z) + \sum_{n=0}^{\infty} c_n (z-z_0)^n$$
 (1)

 $\phi(z)$, очевидно, является ограниченной аналитической функцией в окрестности точки z_0 . Из представления (1) следует, что при $z \rightarrow z_0$ модуль функции f(z) неограниченно возрастает независимо от способа стремления.

Теорема. Каково бы ни было ϵ >0, в любой окрестности существенно особой точки z_0 функции f(z) найдется хотя бы одна точка z_1 , в которой значение функции f(z) отличается от произвольного заданного комплексного числа В меньше чем на ϵ

Д-во. Предположим, что теорема неверна, т.е. найдется такое $\eta > 0$, что

$$|f(z)-B| > \varepsilon$$
, при $|z-z_0| < \eta$.(1)

Рассмотрим вспомогательную функцию $\phi(z) = \frac{1}{f(z) - B}$. В силу (1) функция $\phi(z)$ определена и ограничена в η -окрестности точки z_0 . Следовательно, точка z_0 является устранимой особой точкой функции $\phi(z)$. Это означает, что

$$\phi(z) = (z - z_0)^{-m} \varphi(z), \quad \varphi(z_0) \neq 0.$$

Тогда в силу определения функции ϕ (z), в данной окрестности точки z_0 имеет место следующие разложение функции f(z):

$$f(z) = (z - z_0)^{-m} \varphi(z) + B$$
, (2)

где аналитическая функция $\phi(z) = \frac{1}{\overline{\phi}(z)}$ ограничена в η -окрестности точки z_0 . Но разложение (2) означает, что точка z_0 является полюсом порядка m, или при m=0 правильной точкой функции f(z), что противоречит условию теоремы.

Предельные свойства изолированных особых точек. Связь полюсов и нулей.

Teop: Если z_0 – устранимая особая точка то $\exists \lim f(z) = c_0$ при $z \rightarrow z_0$ и наобарот

Лок-во

Пусть f(z) – ограничена

$$C_n = \frac{1}{2\pi i} \oint_{cR'} \frac{f(t)dt}{(t-z_0)^{n+1}} = \frac{1}{2\pi i} \oint_0^{2\pi} \frac{f(z_0 + \rho e^{i\varphi})i\rho e^{i\varphi}}{\rho^{n+1} e^{i(n+1)\varphi}} d\varphi = (*)$$

сделаем замену t- z_0 = $\rho e^{i\phi} |f(z)| \le M$

$$\mid c_n \mid \leq \frac{1}{2\pi} iM 2\pi = \frac{M}{\rho^n}$$

Если n- отрицательное то ρ переходит в числитель, то все отрицательные коэффициенты $|C_n|$ =0 при n=-1. -2. . . .

Второй случай:

$$f(z) = \sum_{k=-n}^{+\infty} C_k (z - z_0)^k$$

 $|C_{-n}| \neq 0$ в этом случае точка — полюс n-го порядка.

Теор(О связи нулей и полюсов)

Для того, чтобы функция f(z) имела в точке $z=z_0$ полюс n-го порядка необходимо и достаточно чтобы функция 1/f(z) имела в точке z_0 ноль n-го порядка.

<u>Док-во: Heoбxod:</u> Предположим что в точке z_0 полюс n-го порядка тогда

$$f(z) = \frac{1}{(z - z_0)} (C_{-n} + C_{-n+1}(z - z_0) + \dots) = \frac{\varphi(z)}{(z - z_0)^n}$$

$$\varphi(z_0) \neq 0$$
 тогда $\frac{1}{f(z)} = (z - z_0)^n \psi(z)$ где $\psi(z) = 1/\varphi(z)$

так как $\phi(z_0) \neq 0 \rightarrow \psi(z_0) \neq 0$ и $\psi(z)$ – аналитическая в окрестности точки (z_0)

<u>Достати:</u> Если 1/f(z) имеет ноль n-го порядка то она представима в виде $\frac{\varphi(z)}{(z-z_0)^n}$. Где $\varphi(z) \neq 0$ и аналитична, тогда z_0 полюс n-го порядка.

Определение вычета. Вычисление вычетов.

Определение: Пусть ф-ция f(z) имеет изолированную особую точку z_0 тогда поместим z_0 внутрь контура γ тогда

$$\frac{1}{2\pi i}\oint_{\gamma}f(z)dz$$
 - вычет функции f(z) в точке z₀ и обозначается

Выч $[f(z),z_0]$ =res $[f(z),z_0]$

<u>Теор:</u> Вычет функции $res[f(z),z_0]$ = C_{-1} в разложении этой функции в окрестности этой точки z_0 т.е

$$f(z) = \sum_{n = -\infty}^{+\infty} C_n (z - z_0)^n$$

Док-во: Интеграл по любому замкнутому контуру – одинаков. Выбираем окрестность радиуса р тогда

$$res[f(z), z_0] = \frac{1}{2\pi i} \oint_{C_\rho} f(z) dz = \frac{1}{2\pi i} \sum_{n=-\infty}^{+\infty} C_n (z - z_0)^n dt =$$

$$=\frac{1}{2\pi i}\sum_{n=-\infty}^{+\infty}C_n \int_{\gamma_0} (z-z_0)^n dz$$

$$\oint (z-z_0)^n dz = \int\limits_0^{2\pi} \rho^n e^{i\varphi n} i e^{i\varphi} \rho d\varphi = i \rho^{n+1} \int\limits_0^{2\pi} e^{i\varphi(n+1)} d\varphi =$$

$$=i\rho^{n+1} \begin{cases} \frac{e^{i(n+1)\varphi}}{i(n+1)} \Big|_{0}^{2\pi} = \begin{cases} 0, npu. n \neq -1\\ 2\pi i, npu. n = -1 \end{cases}$$

Формулы:

1) полюс первого порядка:

$$f(z) = \frac{C_{-1}}{z - z_0} + C_0 + C_1(z - z_0) + \dots$$

 $\lim f(z)(z-z_0)=C_{-1}$ при $z\to z_0$

Если f(z)= $\phi(z)/\psi(z)$ при этом $\phi(z_0) \neq 0 \;\; \phi(z)$ =(z- $z_0)\psi_1(z)$

$$\psi(z)=\psi'(z_0)(z-z_0)+\psi''(z_0)(z-z_0)^2/2!+...$$

$$\lim_{z \to z_0} \frac{\varphi(z)(z - z_0)}{\psi(z)} = \lim_{z \to z_0} \frac{\varphi(z)}{\psi'(z_0) + \psi'' \frac{z - z_0}{2!} + \dots} = \frac{\varphi(z_0)}{\psi'(z_0)}$$

2)полюс п-го порядка

$$f(z) = \frac{C_{-n}}{(z-z_0)} + \dots + \frac{C_{-1}}{z-z_0} + C_0 + \dots$$

$$f(z)(z-z_0) = C_{-n} + \dots + C_{-2}(z-z_0)^{n-2} + C_{-1}(z-z_0)^{n-1} + \dots$$

$$\lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} [f(z), (z-z_0)^n] = (n-1)! C_{-1}$$

$$res[f(z), z_0] = \frac{1}{(n-1)!} \lim_{z \to 0} \frac{d^{n-1}}{dz^{z-1}} [f(z)(z-z_0)^n]$$

Основная теорема теории вычетов. Теорема о сумме вычетов.

Теорема (Основная теорема теории вычетов):

Пусть f(z) — аналитическая всюду в замкнутой области G за исключением конечного числа изолированных особых точек, лежащих внутри этой области, тогда

$$\oint_{\Gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} res[f(z), z_{k}]$$

<u>Док-во:</u>

$$\oint_{\Gamma} f(z)dz = \oint_{\gamma_{1}} f(z)dz + \dots + \oint_{\gamma_{n}} f(z)dz = 0$$

$$\oint_{\Gamma} f(z)dz = \oint_{\gamma_1^+} f(z)dz + \dots + \oint_{\gamma_n^+} f(z)dz = 2\pi i res[f(z), z_n]$$

предположим, что кроме |z| > R других особых точек в ∞ больше нет res[f(z),- ∞]=-C-1

$$\oint C_n z^n dz$$

$$C_R^+$$

Предположим что функция f(z) аналитическая на полной комплексной плоскости за исключением конечного числа особых точек включая ∞ тогда сумма всех вычетов во всех особых точках, включая ∞ равна нулю.

Δοκ-Βο
$$f(z)dz = 2\pi i \sum res[f, z_k]$$
$$f(z)dz = 2\pi i res[f, z_k]$$
$$f(z)dz = 2\pi i res[f(z), \infty]$$
$$C_R^-$$

Вычисление интегралов, содержащих тригонометрические функции с помощью вычетов.

Это инт вида $I = \int\limits_0^{2\pi} R(\cos\varphi,\sin\varphi)d\varphi$, где R-рац ф-ция своих арг. Инт такого типа легко могут быть сведены к интегр от ан.функции компл.перем по замкн.контуру. Для этого сделаем замену перем. интегр, введя компл. перем. $z=e^{i\varphi}$. Очев, что $d\varphi=dz/iz$, $\cos\varphi=1/2(e^{i\varphi}+e^{-i\varphi})=1/2(z+1/z))$, $\sin\varphi=1/2i(z-1/z))$. При изм φ от 0 до 2π , z пробег окр-ть |z|=1 в пол. напр-ии. Т.о. I=1 I=1

Пример: выч инт $I = \int_0^{2\pi} \frac{d\varphi}{1 + a\cos\varphi}$, |a| < 1 реш: $z = e^{i\varphi}$ т.о. $I = I = 1 \setminus i \int_{|z| = 1}^{1} \frac{1}{1 + a \setminus 2(z + 1 \setminus z)} \frac{dz}{z} = 2 \setminus i \int_{|z| = 1}^{2\pi} \frac{dz}{az^2 + 2z + a}$. особ точкми явл нули знам $z_{1,2} = -1 \setminus a \pm \sqrt{(1 \setminus a^2) - 1}$. Это полюсы первого порядка. Так как $z_1 z_2 = 1$ то ясно что лишь одна из этих точек лежит внутри круга |z| = 1 как легко видеть, это точка $z_1 = -1 \setminus a + \sqrt{(1 \setminus a^2) - 1}$ поэтому в силу осн.трм.теор.выч $I = 4\pi B_{bl} u \Big[1 \setminus (az^2 + 2z + a), z_1 \Big] = 4\pi * 1 \setminus a(z - z_2) |_{z=z1} = 2\pi \setminus \sqrt{1 - a^2}$

Вычисление несобственных интегралов с бесконечными пределами с помощью вычетов. Лемма и теорема.

Лемма. Пусть ф-ция f(z) явля-ся анал. в верхн. полупл Im(z)>0 всюду за искл. конечн. числа изолир особых точек и существ. такие полож чила R_0 , M и δ что для всех точек верх полупл, удовл услов

|z|> R_0 имеет метсо $|f(z)| < M \setminus |z|^{1+\delta}$ тогда $\lim_{R \to \infty} \int f(\zeta) d\zeta = 0$ (*) где C'_R –полуокр-ть |z|>R, Imz>0; действит,

т.к. $\int_C |f(\zeta)d\zeta| \leq \int_C |f(\zeta)ds|$ где ds — дифф-л длины дуги кривой, и в силу усл леммы при R>R $_0$ имеем

$$|\int\limits_{C'R} f(\varsigma) d\varsigma | \leq \int\limits_{C'R} |f(\varsigma) ds| < \frac{M2\pi R}{R^{1+\delta}} = \frac{2\pi M}{R^{\delta}} \xrightarrow{R \to \infty} 0$$
 что и доказывает лемму.

Зам1 если усл леммы вып в сект ф1<z<ф2 то форм (*) имеет метсо при интегр по дуге С'_R окр-ти, леж в дан сект.

Зам2 Усл леммы очев будут вып, если f(z) явл-ся аналит в окр-ти беск удал точки и $z=\infty$ - нуль не ниже 2 пор ф-ции f(z). Тогда $f(z)=C_{-2}/z^2+C_{-3}/z^3+...=\phi(z)/z^2$ причем $|\phi(z)|< M$ откуда и след $|f(z)| < M \setminus |z|^{1+\delta}$ при $\delta = 1$

Трм Пусть ф-ция f(x) заданная на всей действ оси м.б. аналит продолж на $Imz \ge 0$ причем ее анал прод f(z) удовл всем усл леммы и не имеет ос точек на дкйств оси. Тогда сущ несобст инт перв рода и

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \sum_{k=1}^{N} \operatorname{Bouv}[f(z), z_k]$$

$$= \infty \qquad (**)$$

Д-во По усл трм функция f(z) в верхн полупл имеет кон чило осб точек z_k причем $|z_k| < R_0$. рассм замк конт сост из отр оси [-R,R] ($R > R_0$) и полуокр C'_R |z| = R в верх полупл. В силу осн трм теор выч.

$$\int\limits_{-R}^{R} f(x)dx + \int\limits_{C'R} f(z)dz = 2\pi i \sum_{k=1}^{N} B \omega v[f(z), z_k]$$
 т.к вып условия леммы то предел второго слаг при $R \longrightarrow \infty$ равен

нулю а прав часть при R>R₀ от R не зав. Отсюда след, что пред перв слаг сущ и его знач опр-ся форм (**) Трм док! Трм имеет место когда f(x) анал прод, как в верх, так и в нижн полупл, главное, чтоб ан прод удовл усл леммы.

Лемма Жордана. Пременение леммы Жордана к вычислению несобственных интегралов.

Лемма Пусть функция f(z) явл-ся анал в верх полупл Imz>0 за искл кончен числа изолир особ точек и равном отн-но argz $(0 \le z \le \pi)$ стрем-ся к 0 при $|z| \to \infty$ тогда при a > 0 $\lim_{R \to \infty} \int_{C'R}^{e^{ia\zeta}} f(\zeta) d\zeta = 0$ (*) где C'_R — дуга полуокр |z| = R в вех полупл.

Док-во: Условие равном стремл f(z) к нулю означ что |z|=R имеет место $|f(z)|<\mu_R$ где $\mu_R\to 0$ при $R\to \infty$ с пом этого оч=ценим иссл интегр. сделаем замену $\zeta=Re^{i\phi}$ и восп очев соотн $\sin\phi \ge 2\phi/\pi$ при $0\le \phi \le \pi/2$

тогда получим $\left| \int\limits_{C'R} e^{ia\varsigma} f(\varsigma) d\varsigma \right| \leq \mu_R * R \int\limits_{0}^{\pi} e^{ia\varsigma} \mid d\varphi \qquad = \qquad \mu_R * R \int\limits_{0}^{\pi} e^{-aR\sin\varphi} d\varphi = 2\mu_R R \int\limits_{0}^{\pi/2} e^{-aR\sin\varphi} d\varphi \qquad < \infty$

 $2\mu_R R \int_0^{\pi/2} e^{\frac{-2aR\varphi}{\pi}} d\varphi = \frac{\pi}{a} \mu_R (1 - e^{-aR}) \xrightarrow{R \to \infty} 0$ что и доказ лемму. **Зам** Если а>0 а ф-ция f(z) удовл усл леммы Ж в ниж полупл то формула (*) имеет место при интегр по дуге полуокр C'_R в ниж полупл. Аналог утв имеют место (при а=±i α , α >0) при инт соотв в прав (Rez \geq 0) и лев (Rez \leq 0) полупл. док-ва пров-ся сов аналогично. форма леммы Жорд при инт в прав. $\lim_{R \to \infty} \int_{C'R}^{e^{-a\zeta}} f(\zeta) d\zeta = 0$ α >0;

Трм Пусть f(z) зад-я на всей действ оси м.б. продолж на верх полупл $Imz \ge 0$ а ее анал продолж f(z) в верх полупл удовл усл леммы Жорд и не имеет ос точ на деств оси. Тогда сущ инт $\int_{-\infty}^{\infty} e^{iax} f(x) dx = 2\pi i \sum_{k=1}^{n} B_{bl} v[e^{iaz} f(z), z_k], \text{ а>0}; \text{ где } z_k - \text{особ точки } f(z)$ в верх полупл.

Д-во По усл трм z_k удовл усл $|z_k| < R_0$ рассм в верх полупл замк контур сост из отр [-R, R] R>R₀ и дуги С'_R окр-ти |z| = R в верх полупл. По ос трм теор выч $\int\limits_{-R}^{R} e^{iax} f(x) dx + \int\limits_{C'R} e^{iax} f(\zeta) d\zeta = 2\pi i \sum_{k=1}^{n} B \omega v [e^{iax} f(z), z_k]$ по лемме Ж предел второг слаг в лев части при $R \to \infty$ равен 0 отсюда и след утв трм.

Зам Если f(x) чет (нечет) и удовл усл трм и a>0 то $\int_0^\infty f(x)\cos axdx = \pi \operatorname{Re} i \sum_{k=1}^n B_{bl} u[e^{iaz} f(z), z_k] = -\pi \operatorname{Im} \sum_{k=1}^n B_{bl} u[e^{iaz} f(z), z_k] \begin{pmatrix} \int_0^\infty f(x)\sin axdx = \pi \operatorname{Re} \sum_{k=1}^n B_{bl} u[e^{iaz} f(z), z_k] \end{pmatrix}$

Пример Выч инт $I = \int_{-\infty}^{\infty} \frac{\cos \alpha x}{x^2 + a^2} dx, a > 0, \alpha > 0$ чтобы иметь возм восп лемЖ, заметим что $I = \text{Re}I_1 = \text{Re}I_2 = \text{Re}I_3 = \text{R$

точку z_1 =ia, явл полсом 1 пор. Знач, I_1 = $2\pi i \sum\limits_{k=1}^n B \omega \nu [\frac{e^{iaz}}{z^2+a^2},ia] = 2\pi i \frac{e^{-a\alpha}}{2ia} = \frac{\pi}{a} e^{-a\alpha}$ отсюда $I = ReI_1 = (\pi/a)e^{-a\alpha}$;