XINHUI ZHAO (001560851)

Program Structures & Algorithms Fall 2021

Assignment No. 3

o Task (List down the tasks performed in the Assignment)

- Step 1:
 - (a) Implement height-weighted Quick Union with Path Compression. For this, you will flesh out the class UF_HWQUPC. All you have to do is to fill in the sections marked with // TO BE IMPLEMENTED ... // ...END IMPLEMENTATION.
 - (b) Check that the unit tests for this class all work. You must show "green" test results in your submission (screenshot is OK).
- Step 2:
 - Using your implementation of UF_HWQUPC, develop a UF ("union-find") client that takes an integer value n from the command line to determine the number of "sites." Then generates random pairs of integers between 0 and n-1, calling connected() to determine if they are connected and union() if not. Loop until all sites are connected then print the number of connections generated. Package your program as a static method count() that takes n as the argument and returns the number of connections; and a main() that takes n from the command line, calls count() and prints the returned value. If you prefer, you can create a main program that doesn't require any input and runs the experiment for a fixed set of n values. Show evidence of your run(s).
- Step 3:

Determine the relationship between the number of objects (n) and the number of pairs (m) generated to accomplish this (i.e. to reduce the number of components from n to 1). Justify your conclusion in terms of your observations and what you think might be going on.

⊙ Relationship Conclusion: (For ex : z = a * b)

F(n)=1.2*n*log10(n)

- Evidence to support the conclusion:
- 1. Output (Snapshot of Code output in the terminal)

2. Graphical Representation(Observations from experiments should be tabulated and analyzed by plotting graphs(usually in excel) to arrive on the relationship conclusion)

Unit tests result:(Snapshot of successful unit test run)

Step1 unit test

