Compilers and Formal Languages

Email: christian.urban at kcl.ac.uk

Slides & Progs: KEATS (also homework is there)

1 Introduction, Languages	6 While-Language
2 Regular Expressions, Derivatives	7 Compilation, JVM
3 Automata, Regular Languages	8 Compiling Functional Languages
4 Lexing, Tokenising	9 Optimisations
5 Grammars, Parsing	10 LLVM

Let's Implement an Efficient Regular Expression Matcher

In the handouts is a similar graph for $(a^*)^* \cdot b$ and Java 8, JavaScript and Python.

(Basic) Regular Expressions

Their inductive definition:

```
r ::= 0 nothing
\begin{array}{ccc}
 & 1 & \text{empty string } / \text{ "" } / \\
 & c & \text{character} \\
 & r_1 + r_2 & \text{alternative } / \text{choice} \\
 & r_1 \cdot r_2 & \text{sequence} \\
 & r^* & \text{star } / \text{ sequence} 
\end{array}
                                                                                                star (zero or more)
```

When Are Two Regular Expressions Equivalent?

Two regular expressions r_1 and r_2 are equivalent provided:

$$r_1 \equiv r_2 \stackrel{\text{def}}{=} L(r_1) = L(r_2)$$

Some Concrete Equivalences

$$(a+b)+c \equiv a+(b+c)$$

$$a+a \equiv a$$

$$a+b \equiv b+a$$

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

$$c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$$

Some Concrete Equivalences

$$(a+b)+c \equiv a+(b+c)$$

$$a+a \equiv a$$

$$a+b \equiv b+a$$

$$(a \cdot b) \cdot c \equiv a \cdot (b \cdot c)$$

$$c \cdot (a+b) \equiv (c \cdot a) + (c \cdot b)$$

$$a \cdot a \not\equiv a$$

 $a + (b \cdot c) \not\equiv (a + b) \cdot (a + c)$

Some Corner Cases

$$\begin{array}{cccc}
a \cdot \mathbf{0} & \not\equiv & a \\
a + \mathbf{1} & \not\equiv & a \\
\mathbf{1} & \equiv & \mathbf{0}^* \\
\mathbf{1}^* & \equiv & \mathbf{1} \\
\mathbf{0}^* & \not\equiv & \mathbf{0}
\end{array}$$

Some Simplification Rules

$$r+0 \equiv r$$

$$0+r \equiv r$$

$$r\cdot 1 \equiv r$$

$$1\cdot r \equiv r$$

$$r\cdot 0 \equiv 0$$

$$0\cdot r \equiv 0$$

$$r+r \equiv r$$

Simplification Example

$$((\mathbf{1} \cdot b) + \mathbf{0}) \cdot r \implies ((\underline{\mathbf{1}} \cdot \underline{b}) + \mathbf{0}) \cdot r$$
$$= (\underline{b} + \underline{\mathbf{0}}) \cdot r$$
$$= \underline{b} \cdot r$$

Simplification Example

$$((\mathbf{0} \cdot b) + \mathbf{0}) \cdot r \implies ((\underline{\mathbf{0}} \cdot \underline{b}) + \mathbf{0}) \cdot r$$

$$= (\underline{\mathbf{0}} + \underline{\mathbf{0}}) \cdot r$$

$$= \mathbf{0} \cdot r$$

$$= \mathbf{0}$$

Semantic Derivative

• The Semantic Derivative of a language w.r.t. to a character *c*:

```
Der c A \stackrel{\text{def}}{=} \{s \mid c :: s \in A\}
For A = \{foo, bar, frak\} \text{ then}
Der f A = \{oo, rak\}
Der b A = \{ar\}
Der a A = \{\}
```

Semantic Derivative

• The **Semantic Derivative** of a <u>language</u> w.r.t. to a character *c*:

$$Der c A \stackrel{\text{def}}{=} \{s \mid c :: s \in A\}$$

$$For A = \{foo, bar, frak\} \text{ then}$$

$$Der f A = \{oo, rak\}$$

$$Der b A = \{ar\}$$

$$Der a A = \{\}$$

We can extend this definition to strings

Ders
$$sA = \{s' \mid s@s' \in A\}$$

The Specification for Matching

A regular expression *r* matches a string *s* provided:

$$s \in L(r)$$

...and the point of the this lecture is to decide this problem as fast as possible (unlike Python, Ruby, Java etc)

Brzozowski's Algorithm (1)

...whether a regular expression can match the empty string:

```
\begin{array}{ll} nullable(\mathbf{0}) & \stackrel{\text{def}}{=} false \\ nullable(\mathbf{1}) & \stackrel{\text{def}}{=} true \\ nullable(c) & \stackrel{\text{def}}{=} false \\ nullable(r_1 + r_2) & \stackrel{\text{def}}{=} nullable(r_1) \vee nullable(r_2) \\ nullable(r_1 \cdot r_2) & \stackrel{\text{def}}{=} nullable(r_1) \wedge nullable(r_2) \\ nullable(r^*) & \stackrel{\text{def}}{=} true \end{array}
```

The Derivative of a Rexp

If r matches the string c::s, what is a regular expression that matches just s?

der c r gives the answer, Brzozowski 1964

The Derivative of a Rexp

```
\stackrel{\text{def}}{=} \mathbf{0}
der c (0)
der c (1) \stackrel{\text{def}}{=} 0
der c (d) \stackrel{\text{def}}{=} if c = d then 1 else 0
derc(r_1+r_2) \stackrel{\text{def}}{=} dercr_1 + dercr_2
der c (r_1 \cdot r_2) \stackrel{\text{def}}{=} if nullable (r_1)
                                then (der c r_1) \cdot r_2 + der c r_2
                                else (der c r_1) \cdot r_2
der c (r^*) \stackrel{\text{def}}{=} (der c r) \cdot (r^*)
```

The Derivative of a Rexp

```
\stackrel{\text{def}}{=} \mathbf{0}
derc(\mathbf{0})
der c (1) \stackrel{\text{def}}{=} 0
der c (d) \stackrel{\text{def}}{=} if c = d then 1 else 0
derc(r_1+r_2) \stackrel{\text{def}}{=} dercr_1 + dercr_2
der c (r_1 \cdot r_2) \stackrel{\text{def}}{=} if nullable (r_1)
                                then (der c r_1) \cdot r_2 + der c r_2
                                else (der c r_1) \cdot r_2
der c (r^*) \stackrel{\text{def}}{=} (der c r) \cdot (r^*)
ders [] r
ders(c::s)r \stackrel{\text{def}}{=} ders s(der c r)
```

Examples

```
Given r \stackrel{\text{def}}{=} ((a \cdot b) + b)^* what is der a r = ? der b r = ? der c r = ?
```

Derivative Example

Given $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ what is

$$der a ((a \cdot b) + b)^* \Rightarrow der a \underline{((a \cdot b) + b)^*}$$

$$= (der a (\underline{(a \cdot b) + b})) \cdot r$$

$$= ((der a (\underline{a \cdot b})) + (der a b)) \cdot r$$

$$= (((der a \underline{a}) \cdot b) + (der a \underline{b})) \cdot r$$

$$= ((1 \cdot b) + (der a \underline{b})) \cdot r$$

$$= ((1 \cdot b) + 0) \cdot r$$

The Brzozowski Algorithm

 $matcherrs \stackrel{\text{def}}{=} nullable(ders s r)$

Brzozowski: An Example

Does r_1 match abc?

```
Step 1: build derivative of a and r_1 (r_2 = der a r_1)
 Step 2: build derivative of b and r_2 (r_3 = der b r_2)
 Step 3: build derivative of c and r_3 (r_4 = der c r_3)
                                          (nullable(r_4))
 Step 4: the string is exhausted:
           test whether r_4 can recognise
           the empty string
          result of the test
Output:
           \Rightarrow true or false
```

The Idea of the Algorithm

If we want to recognise the string *abc* with regular expression r_1 then

• Der a $(L(r_1))$

The Idea of the Algorithm

If we want to recognise the string abc with regular expression r_1 then

- Der a $(L(r_1))$
- \bigcirc Der b (Der a (L(r_1)))

The Idea of the Algorithm

If we want to recognise the string abc with regular expression r_1 then

- Der a $(L(r_1))$
- \bigcirc Der b (Der a (L(r_1)))
- lacktriangledown Der c (Der b (Der a (L(r_1))))
- finally we test whether the empty string is in this set; same for *Ders abc* $(L(r_1))$.

The matching algorithm works similarly, just over regular expressions instead of sets.

The Idea with Derivatives

Input: string *abc* and regular expression *r*

- der a r
- der b (der a r)
- der c (der b (der a r))

The Idea with Derivatives

Input: string *abc* and regular expression *r*

- der a r
- der b (der a r)
- der c (der b (der a r))
- finally check whether the last regular expression can match the empty string

Oops... $a^{?\{n\}} \cdot a^{\{n\}}$

A Problem

We represented the "n-times" $a^{\{n\}}$ as a sequence regular expression:

```
0: 1
2: a · a
3: a \cdot a \cdot a
20:
```

This problem is aggravated with $a^?$ being represented as a + 1.

Solving the Problem

What happens if we extend our regular expressions with explicit constructors

What is their meaning?
What are the cases for *nullable* and *der*?

der for n-times

```
Case n = 2 and r \cdot r:
der c(r \cdot r) \stackrel{\text{def}}{=} if \quad nullable(r)
then \quad (der c r) \cdot r + der c r
else \quad (der c r) \cdot r
```

der for n-times

```
Case n = 2 and r \cdot r:
der c(r \cdot r) \stackrel{\text{def}}{=} \text{ if } nullable(r)
\text{then } (der cr) \cdot r + der cr
\text{else } (der cr) \cdot r
my claim
(in this case) <math display="block">\equiv (der cr) \cdot r
```

der for n-times

```
Case n = 2 and r \cdot r:
der c(r \cdot r) \stackrel{\text{def}}{=} \text{ if } nullable(r)
\text{then } (der cr) \cdot r + der cr
\text{else } (der cr) \cdot r
\text{my claim}
(\text{in this case}) \equiv (der cr) \cdot r
```

We know nullable(r) holds!

We know nullable(r) holds!

 $(der c r) \cdot r + der c r$

We know nullable(r) holds!

$$(dercr) \cdot r + dercr \equiv (dercr) \cdot r + (dercr) \cdot \mathbf{1}$$

$$(dercr) \cdot r + dercr \equiv (dercr) \cdot r + (dercr) \cdot \mathbf{1}$$

$$\equiv (dercr) \cdot (r + \mathbf{1})$$

```
(der\,c\,r) \cdot r + der\,c\,r \equiv (der\,c\,r) \cdot r + (der\,c\,r) \cdot \mathbf{1}
\equiv (der\,c\,r) \cdot (r+\mathbf{1})
\equiv (der\,c\,r) \cdot r
(remember\,r\,is\,nullable)
```

```
(dercr) \cdot r + dercr \equiv (dercr) \cdot r + (dercr) \cdot \mathbf{1}
\equiv (dercr) \cdot (r+\mathbf{1})
\equiv (dercr) \cdot r
(remember r is nullable)
```

$$derc(r \cdot r) \stackrel{\text{def}}{=} if nullable(r)$$

then $(dercr) \cdot r + dercr$
else $(dercr) \cdot r$

```
(dercr) \cdot r + dercr \equiv (dercr) \cdot r + (dercr) \cdot \mathbf{1}
\equiv (dercr) \cdot (r+\mathbf{1})
\equiv (dercr) \cdot r
(remember r is nullable)
```

```
derc(r \cdot r) \stackrel{\text{def}}{=} if nullable(r)
then (dercr) \cdot r
else (dercr) \cdot r
```

$$(dercr) \cdot r + dercr \equiv (dercr) \cdot r + (dercr) \cdot \mathbf{1}$$

$$\equiv (dercr) \cdot (r+\mathbf{1})$$

$$\equiv (dercr) \cdot r$$

$$(remember r is nullable)$$

$$derc(r \cdot r) \stackrel{\text{def}}{=} (dercr) \cdot r$$

```
r\{n\} der

n = 0: 1 0

n = 1: r (der c r)

n = 2: r \cdot r (der c r) · r

n = 3: r \cdot r \cdot r ????

:
```

```
r\{n\} der

n = 0: 1 0

n = 1: r (der c r)

n = 2: r \cdot r (der c r) \cdot r

n = 3: r \cdot r \cdot r (der c r) \cdot r \cdot r

\vdots
```

```
r\{n\}
                                     der
         n = 0: 1
         n = 1: r
                                     (der c r)
         n=2: r \cdot r (der c r) \cdot r
         n = 3: r \cdot r \cdot r (der cr) \cdot r \cdot r
nullable(r\{n\}) \stackrel{\text{def}}{=} \text{ if } n = 0 \text{ then } true \text{ else } nullable(r)
   derc(r\{n\}) \stackrel{\text{def}}{=} if n = 0 then 0 else (dercr) \cdot r\{n-1\}
```

```
derc(r \cdot r \cdot r) \stackrel{\text{def}}{=} if nullable(r)
then (dercr) \cdot r \cdot r + derc(r \cdot r)
else (dercr) \cdot r \cdot r
```

```
derc(r \cdot r \cdot r) \stackrel{\text{def}}{=} if nullable(r)
then (dercr) \cdot r \cdot r + (dercr) \cdot r
else (dercr) \cdot r \cdot r
```

```
derc(r \cdot r \cdot r) \stackrel{\text{def}}{=} if nullable(r)
then (dercr) \cdot (r \cdot r + r)
else (dercr) \cdot r \cdot r
```

```
derc(r \cdot r \cdot r) \stackrel{\text{def}}{=} if nullable(r)
then (dercr) \cdot (r \cdot (r+1))
else (dercr) \cdot r \cdot r
```

```
derc(r \cdot r \cdot r) \stackrel{\text{def}}{=} if nullable(r)
then (dercr) \cdot (r \cdot r)
else (dercr) \cdot r \cdot r
```

```
derc(r \cdot r \cdot r) \stackrel{\text{def}}{=} if nullable(r)
then (dercr) \cdot r \cdot r
else (dercr) \cdot r \cdot r
```

$$derc(r \cdot r \cdot r) \stackrel{\text{def}}{=} (dercr) \cdot r \cdot r$$

Brzozowski: $a^{\{n\}} \cdot a^{\{n\}}$

Examples

Recall the example of $r \stackrel{\text{def}}{=} ((a \cdot b) + b)^*$ with

$$der a r = ((\mathbf{1} \cdot b) + \mathbf{0}) \cdot r$$
$$der b r = ((\mathbf{0} \cdot b) + \mathbf{1}) \cdot r$$
$$der c r = ((\mathbf{0} \cdot b) + \mathbf{0}) \cdot r$$

What are these regular expressions equivalent to?

Simplification Rules

```
\begin{array}{ccc}
r+0 & \Rightarrow & r \\
0+r & \Rightarrow & r \\
r\cdot 1 & \Rightarrow & r \\
1\cdot r & \Rightarrow & r \\
r\cdot 0 & \Rightarrow & 0 \\
0\cdot r & \Rightarrow & 0 \\
r+r & \Rightarrow & r
\end{array}
```

```
def ders(s: List[Char], r: Rexp) : Rexp = s match {
  case Nil => r
  case c::s => ders(s, simp(der(c, r)))
}
```

```
def simp(r: Rexp) : Rexp = r match {
  case ALT(r1, r2) => {
    (simp(r1), simp(r2)) match {
      case (ZERO, r2s) => r2s
      case (r1s, ZERO) \Rightarrow r1s
      case (r1s, r2s) =>
        if (r1s == r2s) r1s else ALT(r1s, r2s)
  case SEO(r1, r2) \Rightarrow {
    (simp(r1), simp(r2)) match {
      case (ZERO, ) => ZERO
      case (_, ZERO) => ZERO
      case (ONE, r2s) => r2s
      case (r1s, ONE) \Rightarrow r1s
      case (r1s, r2s) \Rightarrow SEQ(r1s, r2s)
  case r \Rightarrow r
```

Brzozowski: $a^{?\{n\}} \cdot a^{\{n\}}$

Another Example $(a^*)^* \cdot b$

Regex:
$$(a^*)^* \cdot b$$

Strings of the form $\underbrace{a \dots a}_{a}$

Same Example in Java 9+

Regex:
$$(a^*)^* \cdot b$$

Strings of the form $\underbrace{a \dots a}_{a}$

...and with Brzozowski

Regex:
$$(a^*)^* \cdot b$$

Strings of the form $\underbrace{a \dots a}_{n}$

What is good about this Alg.

- extends to most regular expressions, for example $\sim r$ (next slide)
- is easy to implement in a functional language
- the algorithm is already quite old; there is still work to be done to use it as a tokenizer (that is relatively new work)
- we can prove its correctness...(another video)

Negation of Regular Expr's

- $\sim r$ (everything that r cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=} UNIV L(r)$
- $nullable(\sim r) \stackrel{\text{def}}{=} not (nullable(r))$
- $derc(\sim r) \stackrel{\text{def}}{=} \sim (dercr)$

Negation of Regular Expr's

- $\sim r$ (everything that r cannot recognise)
- $L(\sim r) \stackrel{\text{def}}{=} UNIV L(r)$
- $nullable(\sim r) \stackrel{\text{def}}{=} not (nullable(r))$
- $derc(\sim r) \stackrel{\text{def}}{=} \sim (dercr)$

Used often for recognising comments:

$$/\cdot *\cdot (\sim ([a-z]^*\cdot *\cdot /\cdot [a-z]^*))\cdot *\cdot /$$

The Specification for Matching

A regular expression *r* matches a string *s* provided:

$$s \in L(r)$$

matchers r if and only if $s \in L(r)$

The Specification for Matching

A regular expression *r* matches a string *s* provided:

$$s \in L(r)$$

 $\forall r$ s. matcher s r if and only if $s \in L(r)$

nullable and der

The central properties:

nullable(r) if and only if $[] \in L(r)$

nullable and der

The central properties:

$$nullable(r)$$
 if and only if $[] \in L(r)$

$$L(dercr) = Derc(L(r))$$

nullable and der

The central properties:

$$\forall r$$
. $nullable(r)$ if and only if $[] \in L(r)$

$$\forall rc. L(dercr) = Derc(L(r))$$

Proofs about Rexps

Remember their inductive definition:

$$r ::= 0$$
 $| 1$
 $| c$
 $| r_1 \cdot r_2$
 $| r_1 + r_2$
 $| r^*$

If we want to prove something, say a property P(r), for all regular expressions r then ...

Proofs about Rexp (2)

- P holds for 0, 1 and c
- P holds for $r_1 + r_2$ under the assumption that P already holds for r_1 and r_2 .
- P holds for $r_1 \cdot r_2$ under the assumption that P already holds for r_1 and r_2 .
- P holds for r* under the assumption that P already holds for r.

Proofs about Rexp

Assume P(r) is the property:

nullable(r) if and only if $[] \in L(r)$