Erasmus School of Economics

MOOC Econometrics

Lecture 5.5 on Binary Choice: Application

Richard Paap

Erasmus University Rotterdam

Data characteristics

Average values of the explanatory variables

<u> </u>			<i>J</i>
Variable	resp = 0	resp = 1	all observations
Gender	0.624	0.823	0.725
Active	0.114	0.260	0.188
Age	50.813	50.553	50.681

Response to direct mailing

Sample:

• 925 observations

Dependent variable:

• Resp: Response to direct mailing with 1 = yes and 0 = no

Potential explanatory variables:

- Male: 1 = Male and 0 = Female
- Age: Age of the customer in years
- Active: 1 = Active customer and 0 = Inactive customer

Lecture 5.5, Slide 2 of 15, Erasmus School of Economics

Data characteristics

Average values of the explanatory variables

		1 3	
Variable	resp = 0	resp = 1	all observations
Gender	0.624	0.823	0.725
Active	0.114	0.260	0.188
Age	50.813	50.553	50.681

Model specification

Proposed logit model specification:

$$\begin{split} \Pr[\mathsf{resp}_i = 1] = & \frac{\exp(\beta_0 + \beta_1 \mathsf{male}_i + \beta_2 \mathsf{active}_i + \beta_3 \mathsf{age}_i + \beta_4 (\mathsf{age}_i / 10)^2)}{1 + \exp(\beta_0 + \beta_1 \mathsf{male}_i + \beta_2 \mathsf{active}_i + \beta_3 \mathsf{age}_i + \beta_4 (\mathsf{age}_i / 10)^2)} \\ \text{for } i = 1, \dots, 925. \end{split}$$

Leafus,

Lecture 5.5, Slide 5 of 15, Erasmus School of Economics

Odds ratio

$$\begin{split} &\frac{\text{Pr}[\text{resp}_{i} = 1]}{\text{Pr}[\text{resp}_{i} = 0]} \\ &= \exp(\beta_{0} + \beta_{1} \text{male}_{i} + \beta_{2} \text{active}_{i} + \beta_{3} \text{age}_{i} + \beta_{4} (\text{age}_{i}/10)^{2}) \\ &\approx \exp(-2.49 + 0.95 \text{male}_{i} + 0.91 \text{active}_{i} + 0.07 \text{age}_{i} - 0.07 (\text{age}_{i}/10)^{2}) \\ &= 0.08 \times 2.57^{\text{male}_{i}} \times 2.50^{\text{active}_{i}} \times \exp(0.07 \text{age}_{i} - 0.07 (\text{age}_{i}/10)^{2}) \end{split}$$

Estimation results logit model

Variable	Coefficient	Std. Error	t-value	<i>p</i> -value.
Intercept	-2.488	0.890	-2.796	0.005
Male	0.954	0.158	6.029	0.000
Active	0.914	0.185	4.945	0.000
Age	0.070	0.036	1.964	0.050
$(Age/10)^2$	-0.069	0.034	-2.015	0.044
McFadden R ²	0.061			
Nagelkerke R^2	0.105			
Log-likelihood	-601.862			

Ezafus.

Lecture 5.5, Slide 6 of 15, Erasmus School of Economics

Odds ratio

$$\begin{split} &\frac{\text{Pr}[\text{resp}_{i} = 1]}{\text{Pr}[\text{resp}_{i} = 0]} \\ &= \exp(\beta_{0} + \beta_{1} \text{male}_{i} + \beta_{2} \text{active}_{i} + \beta_{3} \text{age}_{i} + \beta_{4} (\text{age}_{i}/10)^{2}) \\ &\approx \exp(-2.49 + 0.95 \text{male}_{i} + 0.91 \text{active}_{i} + 0.07 \text{age}_{i} - 0.07 (\text{age}_{i}/10)^{2}) \\ &= 0.08 \times 2.57^{\text{male}_{i}} \times 2.50^{\text{active}_{i}} \times \exp(0.07 \text{age}_{i} - 0.07 (\text{age}_{i}/10)^{2}) \end{split}$$

Odds ratio

$$\begin{split} &\frac{\text{Pr}[\text{resp}_{i} = 1]}{\text{Pr}[\text{resp}_{i} = 0]} \\ &= \exp(\beta_{0} + \beta_{1} \text{male}_{i} + \beta_{2} \text{active}_{i} + \beta_{3} \text{age}_{i} + \beta_{4} (\text{age}_{i}/10)^{2}) \\ &\approx \exp(-2.49 + 0.95 \text{male}_{i} + 0.91 \text{active}_{i} + 0.07 \text{age}_{i} - 0.07 (\text{age}_{i}/10)^{2}) \\ &= 0.08 \times 2.57^{\text{male}_{i}} \times 2.50^{\text{active}_{i}} \times \exp(0.07 \text{age}_{i} - 0.07 (\text{age}_{i}/10)^{2}) \end{split}$$

Erofus,

Lecture 5.5, Slide 9 of 15, Erasmus School of Economics

Odds ratio versus age

Test question

Test

For which value of age do we have the highest value of the odds ratio

$$0.08 \times 2.57^{\text{male}_i} \times 2.50^{\text{active}_i} \times \exp(0.07 \text{age}_i - 0.07 (\text{age}_i / 10)^2)$$
?

The first-order condition is

$$[0.08 \times 2.57^{\mathsf{male}_i} \times 2.50^{\mathsf{active}_i} \times \mathsf{exp}(0.07\mathsf{age}_i - 0.07(\mathsf{age}_i/10)^2)] \times (0.07 - 2 \times 0.07(\mathsf{age}_i/100)) = 0$$

The solution to this first-order condition is 50 years.

Erafus

Lecture 5.5, Slide 10 of 15, Erasmus School of Economics

Marginal effect of age

$$\frac{\partial \Pr[\mathsf{resp}_i = 1]}{\partial \mathsf{age}_i} = \Pr[\mathsf{resp}_i = 1] \Pr[\mathsf{resp}_i = 0] (\beta_3 + 2\beta_4 \mathsf{age}_i/100)$$

$$\approx \Pr[\mathsf{resp}_i = 1] \Pr[\mathsf{resp}_i = 0] (0.07 - 2 \times 0.07 \mathsf{age}_i/100)$$

Marginal effect depends on

- age;
- $Pr[resp_i = 1]$ and $Pr[resp_i = 0]$ and hence also on male and active dummy.

Ezafus,

Marginal effect of age

Lecture 5.5, Slide 13 of 15, Erasmus School of Economics

Training Exercise 5.5

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lecture 5.5, Slide 15 of 15, Erasmus School of Economics

In-sample prediction-realisation table

Cut-off value: 0.5

	pred		
observed	$\hat{y} = 0$	$\hat{y} = 1$	sum
y = 0	0.212	0.280	0.492
y = 1	0.104	0.404	0.508
sum	0.316	0.684	1

Hit rate: 0.212+0.404=0.616.

Ezafus

Lecture 5.5, Slide 14 of 15, Erasmus School of Economics