REFERENCES CITED

References

- [1] International Technology Roadmap for Semiconductor, 2007. http://www.itrs.net/.
- [2] K. Kinam and J. Gitae. Memory technologies for sub-40nm node. In *IEEE International Electron Devices Meeting (IEDM)*, pages 27–30, 2007.
- [3] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoty. Overview of candidate device technologies for storage-class memory. *IBM Journal Research and Device*, 52(4/5):449–464, 2008.
- [4] Ferdinando Bedeschi, Rich Fackenthal, Claudio Resta, Enzo Michele Donzand Meenatchi Jagasivamani, Egidio Cassiodoro Buda, Fabio Pellizzer, David W. Chow, Alessandro Cabrini, Giacomo Matteo Angelo Calvi, Roberto Faravelli, Andrea Fantini, Guido Torelli, Duane Mills, Roberto Gastaldi, and Giulio Casagrande. A bipolar-selected phase change memory featuring multi-level cell storage. *IEEE Journal of Solid-State Circuits*, 44(1):217–227, 2009.
- [5] J. H. Oh, J. H. Park, Y. S. Lim, H. S. Lim, Y. T. Oh, J. S. Kim, J. M. Shin, and et al. Full integration of highly manufacturable 512Mb PRAM based on 90nm technology. In *Proceedings of the IEEE International Electron Devices Meeting*, pages 2.6.1–2.6.4, 2006.
- [6] A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, , and R. Bez. Scaling analysis of phase-change memory technology. In *Proceedings of the IEEE International Electron Devices Meeting (IEDM)*, pages 29.6.1–29.6.4, 2003.
- [7] S. Lai. Current status of the phase change memory and its future. In *Proceedings of the IEEE International Electron Devices Meeting (IEDM)*, pages 10.1.1–10.1.4, 2003.
- [8] S. L. Cho et al. Highly scalable on-axis confined cell structure for high density PRAM beyond 256Mb. In Symposium on VLSI Technology Digest of Technical Papers, pages 96–97, 2005.
- [9] S. Kim and H.-S. P. Wong. Generalized phase change memory scaling rule analysis. In *Non-Volatile Semiconductor Memory Workshop*, 2006.
- [10] S. Lai and T. Lowrey. OUM A 180nm nonvolatile memory cell element technology for standalone and embedded applications. In *IEEE International Electron Devices Meeting* (*IEDM*), pages 36.5.1–36.5.4, 2001.
- [11] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C.Chen, R. M. Shelby, M. Salinga, and et al. Phase-change random access memory: A scalable technology. *IBM Journal Research and Device*, 52(4/5), 2008.
- [12] T. Nirschl and J. B. Philipp, T D. Happ, G. W Burrt, B. Rajendrant, M.-H. Lee, A. Schrottt, M. Yang T, M. Breitwischt, C.-F. Chen, E. Joseph T M Lamorey, R. Chee, S.-H. Chen, S. Zaidi, S. Raoux, Y.C. Chen, Y. Zhu, R.Bergmann, H.-L. Lunge, and C. Lamf. Write strategies for 2 and 4-bit multi-level phase-change memory. In *Proceedings of the IEEE International Electron Device Meeting Technology (IEDM)*, pages 461–464, 2007.

- [13] W. S. Chen, C. Lee, D. S. Chao, Y. C. Chen, F. Chen, C. W. Chen, R. Yen, M. J. Chen, W. H. Wang, T. C. Hsiao, J. T. Yeh, S. H. Chiou, M. Y. Liu, T. C. Wang, L. L. Chein, C. Huang, N. T. Shih, L. S. Tu, D. Huang, T. H. Yu, M. J. Kao, and M. J. Tsai. A novel cross-spacer phase change memory with ultra-small lithography independent contact area. In *IEEE International Electron Devices Meeting (IEDM)*, pages 319–322, 2007.
- [14] D. H. Im, J. I. Lee, S. L. Cho, H. G. An, D. H. Kim, I. S. Kim, H. Park, D. H. Ahn, H. Horii, S. O. Park, U. I. Chung, and J. T. Moon. A unified 7.5nm dash-type confined cell for high performance PRAM device. In *IEEE International Electron Devices Meeting (IEDM)*, pages 1–4, 2008.
- [15] D. Ielmini, S. Lavizzari, D. Sharma, and A. L. Lacaita. Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation. In *IEEE International Electron Devices Meeting (IEDM)*, pages 939–942, 2007.
- [16] P. Fantini, G. Betti Beneventi, A. Calderoni, L. Larcher, P. Pavan, and F. Pellizzer. Characterization and modelling of low-frequency noise in PCM devices. In *IEEE International Electron Devices Meeting (IEDM)*, pages 1–4, 2008.
- [17] D. Mantegazza, D. Ielmini, E. Varesi, A. Pirovano, and A. L. Lacaita. Statistical analysis and modeling of programming and retention in PCM arrays. In *IEEE International Electron Devices Meeting (IEDM)*, pages 311–314, 2007.
- [18] S. Hanzawa, N. Kitai, K. Osada, A. Kotabe, Y. Matsui, N. Matsuzaki, N. Takaura, M. Moniwa, and T. Kawahara. A 512KB embedded PRAM with 416KBs write throughput at 100μA cell write current. In *IEEE International Solid-State Circuits Conference (ISSCC)*, page 26.2, 2007.
- [19] K-J. Lee, B. Cho, W-Y. Cho, S. Kang, B-G. Choi, H-R. Oh, C-S. Lee, H-J. Kim, J-M. Park, Q. Wang, M-H. Park, Y-H. Ro, J-Y. Choi, K-S. Kim, Y-R. Kim, W-R. Chung, H-K. Cho, K-W. Lim, C-H. Choi, I-C. Shin, D-E. Kim, K-S. Yu, C-K. Kwak, and C-H. Kim. A 90nm 1.8V 512Mb diode-switch PRAM with 266MB/s read throughput. In *IEEE International Solid-State Circuits Conference (ISSCC)*, page 26.1, 2007.
- [20] F. Bedeschi, R. Fackenthal, C. Resta, E. Donze, M. Jagasivamani, E. Buda, F. Pellizzer, D. Chow, A. Fantini, A. Calibrini, G. Calvi, R. Faravelli, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande. A multi-level-cell bipolar-selected phase-change memory. In *IEEE International Solid-State Circuits Conference (ISSCC)*, page 23.5, 2008.
- [21] G. De Sandre, L. Bettini, A. Pirola, L. Marmonier, M. Pasotti, M. Borghi, P. Mattavelli, P. Zuliani, L. Scotti, G. Mastracchio, F. Bedeschi, R. Gastaldi, and R. Bez. A 90nm 4Mb embedded phase-change memory with 1.2V 12ns read access time and 1MB/s write throughput. In *IEEE International Solid-State Circuits Conference (ISSCC)*, page 14.7, 2010.
- [22] C. Villa, D. Mills, G. Barkley, H. Giduturi, S. Schippers, and D. Vimercati. A 45nm 1Gb 1.8V phase-change memory. In *IEEE International Solid-State Circuits Conference (ISSCC)*, page 14.8, 2010.
- [23] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. A novel nonvolatile mem-

- ory with spin torque transfer magnetization switching: Spin-RAM. In *Proceeding of IEEE International Electron Device Meeting (IEDM)*, pages 459–462, 2005.
- [24] Hiroaki Tanizaki, Takaharu Tsuji, Jun Otani, and et al. A high-density and high-speed 1T-4MTJ MRAM with Voltage Offset Self-Reference Sensing Scheme. In *IEEE Asian Solid-State Circuits Conference*, pages 303–306, 2006.
- [25] W. Zhao, E. Belhaire, Q. Mistral, C. Chappert, V. Javerliac, B. Dieny, and E. Nicolle. Macromodel of spin-transfer torque based magnetic tunnel junction device for hybrid magnetic-CMOS design. In *IEEE International Behavioral Modeling and Simulation Workshop*, pages 40–43, 2006.
- [26] T. M. Maffitt, J. K. DeBrosse, J. A. Gabric, E. T. Gow, M. C. Lamorey, J. S. Parenteau, D. R. Willmott, M. A. Wood, and W. J. Gallagher. Design considerations for MRAM. *IBM Journal of Research and Development*, 2006.
- [27] M. Motoyoshi, I. Yamamura, W. Ohtsuka, M. Shouji, H. Yamagishi, M. Nakamura, H. Yamada, K. Tai, T. Kikutani, T. Sagara, K. Moriyama, H. Mori, C. Fukamoto, M. Watanabe, R. Hachino, H. Kano, K. Bessho, H. Narisawa, M. Hosomi, and N. Okazaki. A study for 0.18μm high-density MRAM. In *IEEE VLSI Symposium on Technology*, pages 22–23, 2004.
- [28] Y.K. Ha, J.E. Lee, H.-J. Kim, J.S. Bae, S.C. Oh, K.T. Nam, S.O. Park, N.I. Lee, H.K. Kang, U.-I. Chung, and J.T. Moon. MRAM with novel shaped cell using synthetic anti-ferromagnetic free layer. In VLSI Symposium on Technology, pages 24–25, 2004.
- [29] T. Kawahara et al. 2Mb spin-transfer torque ram (SPRAM) with bit-by-bit bidirectional current write and parallelizing-direction current read. In *Proc. IEEE International Solid-State Circuits Conference*, Tech. Dig, pages 480–617, 2007.
- [30] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C. Wang, and Y. Huai. Spintransfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. *Journal of Physics: Condensed matter*, 19(16):165209, 2007.
- [31] S. Salahuddin, D. Datta, P. Srivastava, and S. Datta. Quantum transport simulation of tunneling based spin torque transfer (STT) devices: Design trade offs and torque efficiency. In *IEEE International Electron Devices Meeting (IEDM)*, pages 121–124, 2007.
- [32] R. Beach, T. Min, C. Horng, Q. Chen, P. Sherman, S. Le, S. Young, K. Yang, H. Yu, X. Lu, W. Kula, R. Xiao T. Zhong, A. Zhong, G. Liu, J. Kan, J. Yuan, J. Chen, R. Tong, J. Chien, T. Torng, D. Tang, P. Wang, M. Chen, S. Assefa, M. Qazi, J. DeBrosse, M. Gaidis, S. Kanakasabapathy, Y. Lu, J. Nowak, E. O'Sullivan, T. Maffitt, J. Z. Sun, and W. J. Gallagher. A statistical study of magnetic tunnel junctions for high-density spin torque transfer-MRAM (STT-MRAM). In *IEEE International Electron Devices Meeting (IEDM)*, pages 1–4, 2008.
- [33] T. Kishi, H. Yoda, T. Kai, T. Nagase, E. Kitagawa, M. Yoshikawa, K. Nishiyama, T. Daibou, M. Nagamine, M. Amano, S. Takahashi, M. Nakayama, N. Shimomura, H. Aikawa, S. Ikegawa, S. Yuasa, K. Yakushiji, H. Kubota, A. Fukushima, M. Oogane, T. Miyazaki, and K. Ando. Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM. In *IEEE International Electron Devices Meeting (IEDM)*, pages 1–4, 2008.

- [34] K. Miura, T. Kawahara, R. Takemura, J. Hayakawa, S. Ikeda, R. Sasaki, H. Takahashi, H. Matsuoka, and H. Ohno. A novel SPRAM (SPin-transfer torque RAM) with a synthetic ferrimagnetic free layer for higher immunity to read disturbance and reducing write-current dispersion. In *IEEE VLSI Symposium on Technology*, pages 234–235, 2007.
- [35] M. Durlam, P. J. Naji, A. Omair, M. DeHerrera, J. Calder, J. M. Slaughter, B. N. Engel, N. D. Rizzo, G. Grynkewich, B. Butcher, C. Tracy, K. Smith, K. W. Kyler, J. J. Ren, J. A. Molla, W. A. Feil, R. G. Williams, and S. Tehrani. A 1-Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects. *IEEE Journal of Solid-State Circuits*, 38(5):769–773, 2003.
- [36] X. Lou, Z. Gao, D. V. Dimitrov, and M. X. Tang. Demonstration of multilevel cell spin transfer switching in MgO magnetic tunnel junctions. *Applied Physics Letter*, 93:242502, 2008.
- [37] R. Nebashi, N. Sakimura, H. Honjo, S. Saito, Y. Ito, S. Miura, Y. Kato, K. Mori, Y. Ozaki, Y. Kobayashi, N. Ohshima, K. Kinoshita, T. Suzuki, K. Nagahara, N. Ishiwata, K. Suemitsu, S. Fukami, H. Hada, T. Sugibayashi, and N. Kasai. A 90nm 12ns 32Mb 2T1MTJ MRAM. In *IEEE International Solid-State Circuits Conference (ISSCC)*, pages 462–463, 2009.
- [38] T. W. Andre, J. J. Nahas, C. K. Subramanian, B. J. Garni, H. S. Lin, A. Omair, and Jr. W. L. Martino. A 4-Mb 0.18-μm 1T1MTJ toggle MRAM with balanced three input sensing scheme and locally mirrored unidirectional write drivers. *IEEE Jour. Of Solid-State Circuits*, 40(1):301–309, 2005.
- [39] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y. M. Lee, R. Sasaki, Y. Goto, K. Ito, T. Meguro, F. Matsukura, H. Takahashi, H. Matsuoka, and H. Ohno. 2 Mb SPRAM (SPin-transfer torque RAM) with bit-by-bit bi-directional current write and parallelizing-direction current read. *IEEE Jour. of Solid-State Circuits*, 43(1):109–120, 2008.
- [40] Y. Chen, X. Wang, H. Li, H. Liu, and D. Dimitrov. Design margin exploration of spin-torque transfer RAM (SPRAM). In *International Symposium on Quality Electronic Design*, pages 684–690, 2008.
- [41] H. Li and Y. Chen. An overview of nonvolatile memory technology and the implication for tools and architectures. In *Design*, *Automation and Test in Europe Conference and Exhibition*, pages 731–736, 2009.
- [42] J. F. Gibbons and W. E. Beadle. Switching properties of thin NiO films. *Solid State Electronics*, 7:785–797, 1964.
- [43] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya. TiO₂ anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Applied Physics Letter, 89(22):223509, 2006.
- [44] R. Jung, M.-J. Lee, S. Seo, D. C. Kim, G.-S. Park, K. Kim, S. Ahn, Y. Park, I.-K. Yoo, J.-S. Kim, and B. H. Park. Decrease in switching voltage fluctuation of Pt/NiO_x/Pt structure by process control. Applied Physics Letter, 91(2):022112, 2007.
- [45] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson. Role of oxygen vacancies in Cr-doped SrTiO₃ for resistance-change memory. *Adv. Mater.*, 19(7):2232– 2235, 2007.

- [46] S. Q. Liu, N. J. Wu, and A. Ignatiev. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. *Applied Physics Letter*, 76(19):2749, 2000.
- [47] S. T. Hsu and T. Li. Resistance random access memory switching mechanism. *Journal of Applied Physics*, 101(2):024517, 2007.
- [48] M.N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and Mitkova. Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes. In *Non-Volatile Memory Technology Symposium*, pages 83–89, 2005.
- [49] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi. Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution. *Physical Review B*, 77(3):035105, 2008.
- [50] L. O. Chua. Memristor the missing circuit element. *IEEE Trans. Circuit Theory*, CT-18(5):507–519, 1971.
- [51] J. M. Tour and T. He. The fourth element. Nature, 453(7191):42-43, 2008.
- [52] Dmitri B. Strukov, Gregory S. Snider, Duncan R. Stewart, and R. StanleyWilliams. The missing memristor found. *Nature*, 453:80–83, 2008.
- [53] L. O. Chua. Memristive devices and systems. Proc. IEEE, 64:209–223, 1976.
- [54] Yu. V. Pershin and M. Di Ventra. Spin memristive systems: Spin memory effects in semi-conductor spintronics. *Phys. Rev. B, Condens. Matter*, 78(11):113309, 2008.
- [55] X. Wang et al. Spin memristor through spin-torque-induced magnetization motion. *IEEE Electron Device Lett.*, 30(3):294–297, 2009.
- [56] Y. Chen and X. Wang. Compact modeling and corner analysis of spintronic memristor. In IEEE/ACM International Symposium on Nanoscale Architectures 2009 (Nanoarch09), pages 7–12, 2009.
- [57] R. C. Johnson. Superlattices enable small, fast, low-power rram.
- [58] Rabindranath Balasubramanian and Gregory Bakker. Programmable system on a chip for power-supply voltage and current monitoring and control, 2009. US Patent pending, application number 12/350,419.
- [59] Jongtae Kwak. Delay line circuit, 2009. US Patent US 2009/0243689 A1.
- [60] Mark LaPedus. Unity rolls 'storageclass' memory technology, 2009. http://www.eetimes.eu/217500737.
- [61] R. Colin Johnson. Memristors ready for prime time, 2008. http://www.eetimes.com/showArticle.jhtml?articleID=208803176.
- [62] R. Hoding. NEC develops 32 Megabit MRAM for embedded SoCs, 2009. EETimes, Feb. 12.
- [63] F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistretti, M. Scaravaggi, and et al. Novel μTrench Phase-Change Memory Cell for Embedded and Stand-Alone Non-Volatile Memory Applications. In *IEEE Symposium on VLSI Technology 2004*, pages 18–19, 2004.

- [64] Y. Xie, G. Loh, B. Black, and K. Bernstein. Design space exploration for 3D architectures. *ACM Journal of Emerging Technologies in Computing Systems*, 2(2):65–103, 2006.
- [65] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Hai Li, and Yiran Chen. Circuit and microarchitecture evaluation of 3D stacking magnetic RAM (MRAM) as a universal memory replacement. In 45th ACM/IEEE Design Automation Conference (DAC), pages 554–559, 2008.
- [66] http://www.synopsys.com.
- [67] http://www.cadence.com.
- [68] Spintronic memristors, March 2009. http://www.spectrum.ieee.org/semiconductors/devices/spintronic-memristors/0.
- [69] Yuh-Fang Tsai, Yuan Xie, N. Vijaykrishnan, and M. J. Irwin. Three-dimensional cache design exploration using 3DCacti. In *International Conference on Computer Design (ICCD)*, pages 519–524, 2005.
- [70] Yuh-Fang Tsai, Feng Wang, Yuan Xie, N. Vijaykrishnan, and M. J. Irwin. Design space exploration for 3-D cache. *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, 16(4):444–455, 2008.
- [71] Guangyu Sun, Xiangyu Dong, Yuan Xie, Jian Li, and Yiran Chen. A novel architecture of the 3D stacked MRAM L2 cache for CMPs. In *IEEE 15th International Symposium on High Performance Computer Architecture*, 2009., pages 239–249, 2009.
- [72] Xiangyu Dong, Norm Jouppi, and Yuan Xie. PCRAMsim: System-level performance, energy, and area modeling for phase-change RAM. In *Proceedings of International Conference on Computer-Aided Design (ICCAD)*, pages 269–275, 2009.
- [73] Benjamin Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change memory as a scalable DRAM alternative. In *The 36th International Symposium on Computer Architecture (ISCA)*, 2009.
- [74] Moinuddin K. Qureshi, Viji Srinivasan, and Jude A. Rivers. Scalable High Performance Main Memory System Using Phase-Change Memory Technology. In 36th International Symposium on Computer Architecture (ISCA), 2009.
- [75] I.G. Baek, D.C. Kim, M.J. Lee, H.J. Kim, E.K. Yim, M.S. Lee, J.E. Lee, S.E. Ahn, S. Seo, J.H. Lee, J.C. Park, Y.K. Cha, S.O. Park, H.S. Kim, I.K. Yoo, U.In Chung, J.T. Moon, and B.I. Ryu. Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application. In *IEEE International Electron Devices Meeting (IEDM)*, pages 750–753, 2005.
- [76] A. Asenov, S. Kaya, and A.R. Brown. Intrinsic parameter fluctuations in decananometer mosfets introduced by gate line edge roughness. *IEEE Transactions on Electron Devices*, 50(5):1254–1260, 2003.
- [77] S. Tehrani et al. Recent developments in magnetic tunnel junction MRAM. In *IEEE Trans.* Magn., volume 36, pages 2752–2757, 2000.

- [78] Gitae Jeong, Wooyoung Cho, S. Ahn, Hongsik Jeong, Gwanhyeob Koh, Youngnam Hwang, and K. Kim. A 0.24μm 2.0-V 1T1MTJ 16-kb nonvolatile magnetoresistance RAM with self-reference sensing scheme. *IEEE Jour. of Solid-State Circuits*, 38(11):1906–1910, 2003.
- [79] H. Li, Y. Chen, H. Liu, K. Kim, and H. Huang. Spin-transfer torque memory self-reference read scheme. US Patent pending, application number 12/147,723.
- [80] A. Pirovano, A. L. Lacaita, S. A. Kostylev, A. Benvenuti, and R. Bez. Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. *IEEE Transactions on Electron Devices*, 51:714–719, 2004.
- [81] Y. Ho, G. M. Huang, and P. Li. Nonvolatile memristor memory: device characteristics and design implications. In IEEE/ACM 2009 International Conference on Computer-Aided Design (ICCAD), pages 482–490, 2009.
- [82] W. Xu and T. Zhang. Using time-aware memory sensing to address resistance drift issue in multi-level phase change memory. In *IEEE International Symposium on Quality Electronic Design (ISQED)*, 2010.
- [83] Chih-Yuan Lu, Kuang-Yeu Hsieh, and Rich Liu. Future challenges of flash memory technologies. *Microelectronic Engineering*, 86(3):283–286, 2009.
- [84] Man F. Yan. Non-ohmic device using TiO_2 . US Patent number 4430255.
- [85] Ihun Song, Sunil Kim, Huaxiang Yin, Chang Jung Kim, Jaechul Park, Sangwook Kim, Hyuk Soon Choi, Eunha Lee, and Youngsoo Park. Short channel characteristics of Gallium-Indium-Zinc-Oxide thin film transistors for three-dimensional stacking memory. *IEEE Elec*tron Device Letters, 29:549–552, 2008.
- [86] Agarwal, H. Li, and K. Roy. Drg-cache: A data retention gated-ground cache for low power. In 39th Design Automation Conference (DAC), pages 473–478, 2002.
- [87] Agarwal, H. Li, and K. Roy. A single-vt low-leakage gated-ground cache for deep submicron. *IEEE Jour. Of Solid-State Circuits*, 35(2):319–328, 2003.
- [88] S. Bhunia, H. Li, and K. Roy. A high performance iddq testable cache for scaled cmos technologies. In *IEEE Proceedings of the 11th Asian Test Symposium (ATS'02)*, pages 157–162, 2002.
- [89] Y. Chen, H. Li, H. Liu, Y. Lu, and S. Xue. Data devices including multiple error correction codes and methods of utilizing. US Patent pending, application number 112/198,516.
- [90] H. Li, Y. Chen, D. Setiadi, H. Liu, and B. Lee. Defective bit scheme for multi-layer integrated memory device. US Patent pending, application number 12/502,194.
- [91] Y. Chen, H. Li, H. Liu, R. Wang, and D. Dimitrov. Spin-transfer torque memory non-destructive self-reference read. US Patent pending, application number 112/147,727.
- [92] H. Li, Y. Chen, H. Liu, and X. Wang. Static source line in stat-ram. US Patent pending, application number 12/242,331.
- [93] Y. Chen, H. Li, H. Liu, Y. Lu, and Y. Li. Transmission gate-based spin-transfer torque memory unit. US Patent pending, application number 112/170,549.

- [94] H. Li, Y. Chen, H. Liu, and H. Huang. Non-volatile resistive sense memory on-chip cache. US Patent pending, application number 12/250,027.
- [95] H. Li, Y. Chen, H. Liu, H. Huang, and R. Wang. Write current compensation using word line boosting circuitry. US Patent pending, application number 12/426,098.
- [96] M. Mutyam, Feng Wang, R. Krishnan, V. Narayanan, M. Kandemir, and Y. Xieand M. J. Irwin. Process-variation-aware adaptive cache architecture and management. *IEEE Transactions on Computers*, 58(7):865–877, 2009.
- [97] B. Vaidyanathan, Yu Wang, and Yuan Xie. Cost-aware lifetime yield analysis of heterogeneous 3D on-chip cache. In *IEEE International Workshop on Memory Technology, Design, and Testing*, pages 65–70, 2009.
- [98] Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan Xie. Hybrid cache architecture with disparate memory technologies. In *International Conference on Computer Architecture (ISCA)*, pages 34–45, 2009.
- [99] Prasanth Mangalagiri, Karthik Sarpatwari, Aditya Yanamandra, VijayKrishnan Narayanan, Yuan Xie, Mary Jane Irwin, and Osama AwadelKarim. A low-power phase change memory based hybrid cache architecture. In *Proceedings of the 18th ACM Great Lakes symposium on* VLSI, pages 395–398, 2008.
- [100] http://www.cse.psu.edu/~yuanxie/.
- [101] S. Sridharan, M. DeBole, Guangyu Sun, Yuan Xie, and V. Narayanan. A criticality-driven microarchitectural three dimensional (3d) floorplanner. In Asia and South Pacific Design Automation Conference, pages 763–768, 2009.
- [102] Dongkook Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie, N. Vijaykrishnan, and C. R. Das. MIRA: A multi-layered on-chip interconnect router architecture. In 35th International Symposium on Computer Architecture (ISCA), pages 251–261, 2008.
- [103] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, N. Vijaykrishnan, and M. Kandemir. Design and management of 3D chip multiprocessors using network-in-memory. In *International Symposium on Computer Architecture (ISCA '06)*, 2006.
- [104] Gabriel H. Loh, Yuan Xie, and Bryan Black. Processor design in 3D die-stacking technologies. *IEEE Micro*, 27(3):31–48, 2007.
- [105] Y. Xie, G. Loh, B. Black, and K. Bernstein. Tutorial: 3D integration for microarchitecture. In The 39th Annual IEEE/ACM International Symposium on Microarchitecture, 2006.
- [106] Xiangyu Dong and Yuan Xie. System-level cost analysis and design exploration for three-dimensional integrated circuits (3D ICs). In *Asia and South Pacific Design Automation Conference (ASP-DAC 2009)*, pages 234–241, 2009.
- [107] Xiaoxia Wu, Paul Frankstein, and Yuan Xie. Scan chain design for three-dimentional (3D) ICs. In *International Conference on Computer Design*, 2007.
- [108] Xiaoxia Wu, Yibo Chen, Yuan Xie, and Krish Chakrabarty. Test-access mechanism optimization for core-based three-dimensional SOCs. In *International Conference on Computer Design*, 2008.

- [109] W. L. Hung, G. M. Link, Y. Xie, N. Vijaykrishnan, and M. J. Irwin. Interconnect and thermal-aware floorplanning for 3D microprocessors. In *International Symposium on Quality Electronic Device*, pages 98–104, 2006.
- [110] O. Ozturk, Feng Wang, M. Kandemir, and Yuan Xie. Optimal topology exploration for application-specific 3D architectures. In *Asia and South Pacific Design Automation Conference*, page 6, 2006.