Discovering conflicting groups in signed networks

Ruo-Chun Tzeng¹ Bruno Ordozgoiti² Aristides Gionis^{1,2}

¹KTH Royal Institute of Technology

²Aalto University

34th Conference on Neural Information Processing Systems

Motivation

 Given a signed network, e.g., social networks with edge sign indicating agree/disagree.

Motivation

Given a signed network, e.g., social networks with edge sign indicating agree/disagree.

People form groups with like-minded or those with common enemies.

Motivation

Given a signed network, e.g., social networks with edge sign indicating agree/disagree.

- People form groups with like-minded or those with common enemies.
- Our goal: find the conflicting groups with mostly + intra-group edges and mostly - inter-group edges.

Challenge: existence of neutral nodes

- ▶ Reason: e.g., not all people have strong opinions or firm stances.
- ▶ Neutral nodes might behave differently to both the conflicting groups or to themselves.

Challenge: existence of neutral nodes

- ▶ Reason: e.g., not all people have strong opinions or firm stances.
- Neutral nodes might behave differently to both the conflicting groups or to themselves.
- Methods partitioning the entire network such as signed clustering
 [5] and correlation clustering
 [1] are not efficient.

▶ Given a signed network $G = (V, E_+ \cup E_-)$, the goal is to find k = 2 conflicting groups

- ▶ Given a signed network $G = (V, E_+ \cup E_-)$, the goal is to find k = 2 conflicting groups
- ▶ Find $S_1, \dots, S_k \subset V$ that maximize

$$\frac{\sum_{h \in [k]} (|E_{+}(S_{h})| - |E_{-}(S_{h})|) + \sum_{h \neq l \in [k]} (|E_{-}(S_{h}, S_{\ell})| - |E_{+}(S_{h}, S_{\ell})|)}{|\bigcup_{h \in [k]} S_{h}|},$$
where $E(S_{h}, S_{\ell}) = \{(i, j) \in E : i \in S_{h}, j \in S_{\ell}\}$ and $E(S_{h}) = E(S_{h}, S_{h}).$
(1)

- Many balanced edges and few imbalanced edges.
- Normalized by the total group size.

- ▶ Given a signed network $G = (V, E_+ \cup E_-)$, the goal is to find k = 2 conflicting groups
- ▶ Find $S_1, \dots, S_k \subset V$ that maximize

$$\frac{\sum_{h \in [k]} (|E_{+}(S_{h})| - |E_{-}(S_{h})|) + \sum_{h \neq l \in [k]} (|E_{-}(S_{h}, S_{\ell})| - |E_{+}(S_{h}, S_{\ell})|)}{|\bigcup_{h \in [k]} S_{h}|},$$
where $E(S_{h}, S_{\ell}) = \{(i, j) \in E : i \in S_{h}, j \in S_{\ell}\}$ and $E(S_{h}) = E(S_{h}, S_{h}).$

- Many balanced edges and few imbalanced edges.
- Normalized by the total group size.
- Express Eq (1) as

$$\max_{S_1 \cap S_2 = \emptyset} \frac{\sum_{h \in [k]} \sum_{(i,j) \in E(S_h)} A_{i,j} + \sum_{h \neq \ell \in [k]} \sum_{(i,j) \in E(S_h,S_\ell)} (-A_{i,j})}{|\bigcup_{h \in [k]} S_h|}$$
(2)

► Then, rewrite Eq (2) as

$$\max_{x \in \{-1,0,1\}^n} \frac{x^T A x}{x^T x} \tag{3}$$

▶ APX-Hard [2] and best $\mathcal{O}(n^{1/3})$ -approx exists but less practical.

► Then, rewrite Eq (2) as

$$\max_{x \in \{-1,0,1\}^n} \frac{x^T A x}{x^T x} \tag{3}$$

- ▶ APX-Hard [2] and best $\mathcal{O}(n^{1/3})$ -approx exists but less practical.
- ▶ Provided with a $O(n^{1/2})$ -approx randomized algorithm.

► Then, rewrite Eq (2) as

$$\max_{x \in \{-1,0,1\}^n} \frac{x^T A x}{x^T x} \tag{3}$$

- ▶ APX-Hard [2] and best $\mathcal{O}(n^{1/3})$ -approx exists but less practical.
- ▶ Provided with a $O(n^{1/2})$ -approx randomized algorithm.
- ▶ Cons: $x \in \{-1, 0, 1\}^n$ can only represent k = 2 conflicting groups.

► Extend Eq (2) as

$$\max_{S_1, \cdots, S_k} \frac{\sum_{h \in [k]} \sum_{(i,j) \in E(S_h)} A_{i,j} + \frac{1}{k-1} \sum_{h \neq \ell \in [k]} \sum_{(i,j) \in E(S_h, S_\ell)} (-A_{i,j})}{|\bigcup_{h \in [k]} S_h|} \tag{4}$$

► The weighting is to prevent inter-group edges from dominating Eq (4).

Extend Eq (2) as

$$\max_{S_1, \dots, S_k} \frac{\sum_{h \in [k]} \sum_{(i,j) \in E(S_h)} A_{i,j} + \frac{1}{k-1} \sum_{h \neq \ell \in [k]} \sum_{(i,j) \in E(S_h, S_\ell)} (-A_{i,j})}{|\bigcup_{h \in [k]} S_h|}$$
(4)

- ► The weighting is to prevent inter-group edges from dominating Eq (4).
- ▶ Notice the numerator of Eq (4) can be rewritten as $\langle A, X L_k X^T \rangle_F$,
 - where $L_k = kI_k \mathbf{1}_{k \times k}$ is the Laplacian of a clique of size k and
 - ▶ $X \in \{0,1\}^{n \times k}$ is the group indicator with $X_{i,:} = (I_k)_{j,:}$ if $i \in S_j$.

Extend Eq (2) as

$$\max_{S_1, \dots, S_k} \frac{\sum_{h \in [k]} \sum_{(i,j) \in E(S_h)} A_{i,j} + \frac{1}{k-1} \sum_{h \neq \ell \in [k]} \sum_{(i,j) \in E(S_h, S_\ell)} (-A_{i,j})}{|\bigcup_{h \in [k]} S_h|}$$
(4)

- ► The weighting is to prevent inter-group edges from dominating Eq (4).
- ▶ Notice the numerator of Eq (4) can be rewritten as $\langle A, X L_k X^T \rangle_F$,
 - where $L_k = kI_k \mathbf{1}_{k \times k}$ is the Laplacian of a clique of size k and
 - ▶ $X \in \{0,1\}^{n \times k}$ is the group indicator with $X_{i,:} = (I_k)_{j,:}$ if $i \in S_j$.
- ▶ By expressing Eq (4) in terms of the eigendecomposition of L_k , ...

Rewrite Eq (4) as $\max_{Y \in \mathbb{R}^{n \times (k-1)} \setminus \{\mathbf{0}\}} \frac{Tr(Y^T A Y)}{Tr(Y^T Y)}$

subject to
$$Y_{i,j} = \begin{cases} c_j(k-j), & \text{if } i \in S_j \\ 0, & \text{if } i \in \cup_{h=1}^{j-1} S_h \text{ or } i \notin \cup_{h \in [k]} S_h \\ -c_j, & \text{if } i \in \cup_{h=j+1}^k S_h \end{cases}$$
 (5)

Rewrite Eq (4) as $\max_{Y \in \mathbb{R}^{n \times (k-1)} \setminus \{\mathbf{0}\}} \frac{Tr(Y^T A Y)}{Tr(Y^T Y)}$

subject to
$$Y_{i,j} = \begin{cases} c_j(k-j), & \text{if } i \in S_j \\ 0, & \text{if } i \in \cup_{h=1}^{j-1} S_h \text{ or } i \notin \cup_{h \in [k]} S_h \\ -c_j, & \text{if } i \in \cup_{h=j+1}^k S_h \end{cases}$$
 (5)

► Rewrite Eq (4) as $\max_{Y \in \mathbb{R}^{n \times (k-1)} \setminus \{\mathbf{0}\}} \frac{Tr(Y^T A Y)}{Tr(Y^T Y)}$

subject to
$$Y_{i,j} = \begin{cases} c_j(k-j), & \text{if } i \in S_j \\ 0, & \text{if } i \in \cup_{h=1}^{j-1} S_h \text{ or } i \notin \cup_{h \in [k]} S_h \\ -c_j, & \text{if } i \in \cup_{h=j+1}^k S_h \end{cases}$$
 (5)

Rewrite Eq (4) as $\max_{Y \in \mathbb{R}^{n \times (k-1)} \setminus \{\mathbf{0}\}} \frac{Tr(Y^T A Y)}{Tr(Y^T Y)}$

subject to
$$Y_{i,j} = \begin{cases} c_j(k-j), & \text{if } i \in S_j \\ 0, & \text{if } i \in \cup_{h=1}^{j-1} S_h \text{ or } i \notin \cup_{h \in [k]} S_h \\ -c_j, & \text{if } i \in \cup_{h=j+1}^k S_h \end{cases}$$
 (5)

► Rewrite Eq (4) as $\max_{Y \in \mathbb{R}^{n \times (k-1)} \setminus \{\mathbf{0}\}} \frac{Tr(Y^T A Y)}{Tr(Y^T Y)}$

subject to
$$Y_{i,j} = \begin{cases} c_j(k-j), & \text{if } i \in S_j \\ 0, & \text{if } i \in \cup_{h=1}^{j-1} S_h \text{ or } i \notin \cup_{h \in [k]} S_h \\ -c_j, & \text{if } i \in \cup_{h=j+1}^k S_h \end{cases}$$
 (5)

$$x^* = \underset{x \in \{k-j,0,-1\}^n}{\operatorname{argmax}} \frac{x^T A^{(j-1)} x}{x^T x}.$$
 (6)

- ▶ Let $A^{(0)} = A$ and $A^{(j-1)}$ results from removing $\bigcup_{h \in [i-1]} S_h$ from G.
- After equation (6) is solved, we know $S_j = \{i : x_i^* = k j\}$.
- Repeat the same process to decide the remaining S_{j+1}, \cdots, S_k .

► Rewrite Eq (4) as $\max_{Y \in \mathbb{R}^{n \times (k-1)} \setminus \{\mathbf{0}\}} \frac{Tr(Y^T A Y)}{Tr(Y^T Y)}$

subject to
$$Y_{i,j} = \begin{cases} c_j(k-j), & \text{if } i \in S_j \\ 0, & \text{if } i \in \cup_{h=1}^{j-1} S_h \text{ or } i \notin \cup_{h \in [k]} S_h \\ -c_j, & \text{if } i \in \cup_{h=j+1}^k S_h \end{cases}$$
 (5)

$$x^* = \underset{x \in \{k-j,0,-1\}^n}{\operatorname{argmax}} \frac{x^T A^{(j-1)} x}{x^T x}.$$
 (6)

- ▶ Let $A^{(0)} = A$ and $A^{(j-1)}$ results from removing $\bigcup_{h \in [i-1]} S_h$ from G.
- ▶ After equation (6) is solved, we know $S_j = \{i : x_i^* = k j\}$.
- ightharpoonup Repeat the same process to decide the remaining S_{j+1},\cdots,S_k .

► Rewrite Eq (4) as $\max_{Y \in \mathbb{R}^{n \times (k-1)} \setminus \{\mathbf{0}\}} \frac{Tr(Y^T A Y)}{Tr(Y^T Y)}$

subject to
$$Y_{i,j} = \begin{cases} c_j(k-j), & \text{if } i \in S_j \\ 0, & \text{if } i \in \cup_{h=1}^{j-1} S_h \text{ or } i \notin \cup_{h \in [k]} S_h \\ -c_j, & \text{if } i \in \cup_{h=j+1}^k S_h \end{cases}$$
 (5)

$$x^* = \underset{x \in \{k-j, 0, -1\}^n}{\operatorname{argmax}} \frac{x^T A^{(j-1)} x}{x^T x}.$$
 (6)

- ▶ Let $A^{(0)} = A$ and $A^{(j-1)}$ results from removing $\bigcup_{h \in [i-1]} S_h$ from G.
- ▶ After equation (6) is solved, we know $S_j = \{i : x_i^* = k j\}$.
- Repeat the same process to decide the remaining S_{j+1}, \cdots, S_k .

Rewrite Eq (4) as $\max_{Y \in \mathbb{R}^{n \times (k-1)} \setminus \{\mathbf{0}\}} \frac{Tr(Y^T A Y)}{Tr(Y^T Y)}$

subject to
$$Y_{i,j} = \begin{cases} c_j(k-j), & \text{if } i \in S_j \\ 0, & \text{if } i \in \cup_{h=1}^{j-1} S_h \text{ or } i \notin \cup_{h \in [k]} S_h \\ -c_j, & \text{if } i \in \cup_{h=j+1}^k S_h \end{cases}$$
 (5)

$$x^* = \underset{x \in \{k-j,0,-1\}^n}{\operatorname{argmax}} \frac{x^T A^{(j-1)} x}{x^T x}.$$
 (6)

- ▶ Let $A^{(0)} = A$ and $A^{(j-1)}$ results from removing $\bigcup_{h \in [i-1]} S_h$ from G.
- ▶ After equation (6) is solved, we know $S_i = \{i : x_i^* = k j\}$.
- ▶ Repeat the same process to decide the remaining S_{i+1}, \dots, S_k .

Our approach: Spectral Conflicting Groups

Algorithm 1: SCG(A, k)

return S_1, \ldots, S_{ν} :

Our approach: Solve-Max-DRQ

$$x^* = \underset{x \in \{k-j, 0, -1\}^n}{\operatorname{argmax}} \frac{x^T A^{(j-1)} x}{x^T x}.$$
 (6)

Our approach: Solve-Max-DRQ

$$x^* = \underset{x \in \{k-j,0,-1\}^n}{\operatorname{argmax}} \frac{x^T A^{(j-1)} x}{x^T x}.$$
 (6)

▶ APX-Hard [2] for k = 2 and practical $\mathcal{O}(n^{1/2})$ -approx by 2PC [3].

Our approach: Solve-Max-DRQ

$$x^* = \underset{x \in \{k-j, 0, -1\}^n}{\operatorname{argmax}} \frac{x^T A^{(j-1)} x}{x^T x}.$$
 (6)

- ▶ APX-Hard [2] for k = 2 and practical $\mathcal{O}(n^{1/2})$ -approx by 2PC [3].
- ▶ Our approach is based on rounding the leading eigenvector of $A^{(j-1)}$ to a vector in $\{k-j,0,-1\}^n$.

```
Algorithm 1: Solve-Max-DRQ(A, q)Input : Square and symmetric matrix A, and positive integer q.Output: The rounded vector r \in \{0, -1, q\}^n.v \leftarrow the leading eigenvector of A;(d_1, r_1) \leftarrow \operatorname{Round}(v, q);// d_1 = \sin \theta(v, r_1)(d_2, r_2) \leftarrow \operatorname{Round}(-v, q);// d_2 = \sin \theta(v, r_2)if d_1 \leq d_2 then r \leftarrow r_1;else r \leftarrow r_2;return r;
```

Deterministic Rounding: Minimum Angle (MA)

- ▶ Rounded $r = \operatorname{argmin}_{u \in \{q,0,-1\}^n} \sin \theta(v, u)$.
- ▶ Guaranteed to finish in $\mathcal{O}(n^2)$.
- ▶ For practical consideration, implement an $\mathcal{O}(n)$ algorithm.

```
Algorithm 2: MA(v, q)
\{i_k\}_{k=1}^n \leftarrow \text{Sort } v \text{ and return the indexes such that } v_{i_1} \geq \cdots \geq v_{i_n};
(d, u^*) \leftarrow (\infty, 0):
(k_1, k_2) \leftarrow (0, n+1);
while k_1 < k_2 do
      u_1 \leftarrow \text{set the } i_{k_1+1}\text{-th element of } u^* \text{ to } q;
     u_2 \leftarrow \text{set the } i_{k_2-1}\text{-th element of } u^* \text{ to } -1;
     if \min\{\sin\theta(v, u_1), \sin\theta(v, u_2)\} \ge d then break;
     if \sin \theta(v, u_1) < \sin \theta(v, u_2) then
       (k_1, d, u^*) \leftarrow (k_1 + 1, \sin \theta(v, u_1), u_1;
     else (k_2, d, u^*) \leftarrow (k_2 - 1, \sin \theta(v, u_2), u_2);
end
return (d, u^*);
```

Randomized Rounding (R)

- ▶ Generalize the randomized approach of 2PC [3].
- ► Round v to r by setting $r_i = \begin{cases} q, & \text{w.p. } |v_i|/q \\ -1, & \text{w.p. } |v_i| \end{cases}$.
- ▶ It gives a $\mathcal{O}(qn^{1/2})$ -approx to the Max-DRQ problem, which is tight upto a factor of q.

Experiment Results

Real-world networks:

	Bitcoin	WikiVote	Referendum	Slashdot	WikiConflict	Epinions	Wikipolitics
V	5 881	7 115	10 884	82 140	116 717	131 580	138 587
E	21 492	100 693	251 406	500 481	2 026 646	711 210	715 883
$ E_{-} / E $	0.2	0.2	0.1	0.2	0.6	0.2	0.1
SCG-MA	14.6	45.5	84.9	37.8	102.6	88.8	57.5
SCG-R	5.0	9.7	39.8	7.3	16.2	39.4	5.5
KOCG [4]	4.4	5.5	8.8	2.6	4.5	8.7	4.8
SPONGE-k [5]	5.0	15.8	41.5	_	_	_	_
SPONGE-(k+1) [5]	0.8	1.0	1.0	_	_	_	_

Synthetic:

Summary

- ► An efficient optimization framework to find conflicting groups.
 - By rewriting the objective and analyzing the eigenspaces of the Laplacian of a clique of size k, finding each conflicting group reduces to solving a discrete optimization problem.
 - Present approximation algorithms with provable guarantee.
- Future works:
 - ▶ Is it possible to improve $\mathcal{O}(n^{1/2})$ -approx by other approach?
 - What causes the empirical difference in real and synthetic graphs?

Reference I

Nikhil Bansal, Avrim Blum, and Shuchi Chawla.

Correlation clustering.

Machine learning, 2004.

Aditya Bhaskara, Moses Charikar, Rajsekar Manokaran, and Aravindan Vijayaraghavan.

On quadratic programming with a ratio objective.

In Proc. of ICALP. Springer, 2012.

Francesco Bonchi, Edoardo Galimberti, Aristides Gionis, Bruno Ordozgoiti, and Giancarlo Ruffo.

Discovering polarized communities in signed networks.

In Proc. of CIKM, 2019.

Lingyang Chu, Zhefeng Wang, Jian Pei, Jiannan Wang, Zijin Zhao, and Enhong Chen.

Finding gangs in war from signed networks.

In Proc. of KDD, 2016.

Reference II

Mihai Cucuringu, Peter Davies, Aldo Glielmo, and Hemant Tyagi. Sponge: A generalized eigenproblem for clustering signed networks. In *Proc. of AISTATS*. 2019.