Ch4. Bayesian Methods ST4240, 2014/2015 Version 0.2

Alexandre Thiéry

Department of Statistics and Applied Probability

Inverse Probabilities

- Thomas Bayes (18th century) $\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \mid B) \times \mathbb{P}(B)}{\mathbb{P}(A)}$
- Pierre-Simon Laplace (18th century)
 Bayes' Theroem, 11 years later
 Laplacian inference
 Laplace approximation

Frequentist Statistics

- Ronald A. Fisher (1890-1962)
- Jerzy Neyman (1894 -1981)

Revival of Bayesian Statistics

- Harold Jeffreys (1891 1989)
- Alan Turing (1912 1954)

Alan Turing's life

Monte Carlo methods: 1940's

- John Von Neuman (1903 1957)
- Stan Ulam (1909 1984)

- Valentin Fedorovich Turchin Invents the Gibbs algorithm (1971)
- Stuart and Donald Geman Rediscovery, 13 years later!

Outline

- 1 Bayes' rule
- 2 Gibbs Sampling
- 3 Bayesian ridge regression
- 4 Hierarchical modeling

Bayes' formula

 \blacksquare For two events A and B,

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \mid B) \times \mathbb{P}(B)}{\mathbb{P}(A)}$$

■ In Bayesian Statistics,

$$p(\theta \mid \text{data}) = \frac{p(\text{data} \mid \theta) \times \pi_0(\theta)}{p(\text{data})}$$

or equivalently

$$(posterior) \propto (likelihood) \times (prior)$$

Bayes' Law

Deadly disease!

- A doctor has a bad news for you:
- The test for this deadly disease that you have done last week is positive!
- The test is 99% accurate:
 - \blacksquare $\mathbb{P}\{(\text{test positive}) \mid (\text{sick})\} = 99\%$
 - \blacksquare \mathbb{P} {(test negative) | (non sick)} = 99%
- The disease is rare: 1/100000 of population!
- [Exercise] how worried should you be?

Noisy observation: Gaussian case

- $\mathbf{x} \in \mathbb{R}$ is an unknown quantity.
- \blacksquare A radar gives a noisy estimate x,

$$y = x + \mathbf{N}\left(0, \sigma_{(\mathrm{noise})}^2\right)$$

 \blacksquare Prior distribution on position of x,

$$\pi_0(x) \sim \mathbf{N}\left(0, \sigma_{(\mathrm{prior})}^2\right)$$

- **Exercise**] posterior for x?
- Leads to the Kalman Filter.

Gaussian setting: multivariate case

 \blacksquare Consider a prior distribution on $\beta \in \mathbb{R}^{p+1}$ given by

$$\pi_0(\beta) \sim \mathbf{N}\left(0, \tau^2 I_{p+1}\right)$$

lacksquare For a design matrix $X \in \mathbb{R}^{n,p+1}$ we observe

$$y \sim X \beta + \mathbf{N} (0, \sigma^2 I_n)$$

■ [Exercise] what is the posterior distribution π for β ? Write down the mean and covariance of π .

Outline

- 1 Bayes' rule
- 2 Gibbs Sampling
- 3 Bayesian ridge regression
- 4 Hierarchical modeling

Gibbs sampling: the setting

Suppose that one is interested in the target distribution

$$\pi\left(x^{(1)}, x^{(2)}, \dots, x^{(d)}\right)$$

■ To be able to use the Gibbs sampler, one needs to be able to simulate from the conditional distributions

$$X^{(i)} \mid X^{(-i)} = x^{(-i)}$$

where
$$x^{(-i)} = (x^{(1)}, \dots, x^{(i-1)}, x^{(i+1)}, \dots, x^{(d)})$$

Gibbs sampling: the algorithm

- Choose a coordinate *i* at random
- \blacksquare replace $x^{(i)}$ by a sample of the conditional law

$$X^{(i)} \mid X^{(-i)} = x^{(-i)}$$

■ Iterate!

Gaussian example

■ A bi-variate centred Gaussian random variable (X_1, X_2) with $\sigma_{X_1}^2 = \sigma_{X_2}^2 = 1$ and $\operatorname{Corr}(X_1, X_2) = \rho$ has density

$$\pi(x_1, x_2) \propto \exp\left\{-\frac{x_1^2 + x_2^2 - 2\rho x_1 x_2}{2(1 - \rho^2)}\right\}$$

Exercise Gibbs sampler for π ?

Slice Sampling: the trick

- Goal: Gibbs sampling for $\pi(x) \propto f(x)$ for $x \in \mathbb{R}^d$
- Data augmentation trick: the density $\widetilde{\pi}$ on $\mathbb{R}^d \times \mathbb{R}$

$$\widetilde{\pi}(x,u) \propto \mathbb{I}\Big(0 \leq u \leq f(x)\Big)$$

has same marginal distribution as π

■ In other words

$$\int_{u=0}^{\infty} \widetilde{\pi}(x,u) \, du = \pi(x)$$

Slice sampling: the intuition

Slice sampling: the algorithm

■ Sample $u \mid x$:

$$u \sim \mathrm{Unif}\Big\{[0, f(x)]\Big\}$$

■ Sample $x \mid u$:

$$x \sim \mathrm{Unif}\Big\{S(u)\Big\}$$

where S(u) is the slice

$$S(u) = \left\{ x \in \mathbb{R}^d : f(x) \ge u \right\}$$

■ Iterate!

Slice sampling: example

■ [Exercise] use slice sampling for sampling from the distribution on $x \in (0, \infty)$ defined by

$$\pi(x) \propto e^{-\sqrt{x}}$$

Slice sampling: example

Outline

- 1 Bayes' rule
- 2 Gibbs Sampling
- 3 Bayesian ridge regression
- 4 Hierarchical modeling

The model

lacksquare Consider a prior distribution on $eta \in \mathbb{R}^{p+1}$ given by

$$\pi_0(\beta) \sim \mathbf{N}\left(0, \tau^2 I_{p+1}\right)$$

lacksquare For a design matrix $X \in \mathbb{R}^{n,p+1}$ we observe

$$y \sim X \beta + \mathbf{N} (0, \sigma^2 I_n)$$

■ We assume a (Jeffrey) prior on σ^2 ,

$$\pi_0(\sigma^2) \propto 1/\sigma^2$$

The model

- For clarity, let us set $v \equiv \sigma^2$
- **Exercise** Find the conditional distribution $\beta \mid y, v$.
- [Exercise] Prove that if $Z \sim \Gamma(\alpha, \beta) \propto z^{\alpha-1}e^{-\beta z}$ then

$$1/Z \equiv Y \sim \mathrm{IG}(\alpha, \beta) \propto \frac{e^{-\beta/y}}{y^{\alpha+1}}$$

- **Exercise** Find the conditional distribution $v \mid y, \beta$
- Deduce a Gibbs sampling algorithm for sampling from he Bayesian ridge regression model.

Bayesian regression: the data

Bayesian regression: fitting

Bayesian regression: uncertainty quantification

Bayesian prediction – predictive

■ Goal: estimate $\varphi(\theta)$ given some data $y = (y_1, \dots, y_n)$ and a probabilistic model describing how the data are generated,

$$p(y \mid \theta)$$

■ The posterior mean is the estimator that minimises the squared error

$$\mathbb{E}\left[\left.\varphi(\theta)\right|y\right]$$

■ In practice: a long MCMC simulation $(\theta_1, \ldots, \theta_N)$ from the posterior distribution π

$$\widehat{\varphi(\theta)} \equiv N^{-1} \sum_{i=1}^{N} \varphi(\theta_i)$$

Posterior mean

Outline

- 1 Bayes' rule
- 2 Gibbs Sampling
- 3 Bayesian ridge regression
- 4 Hierarchical modeling

Bayesian Toolbox I

■ Inverse Gaussian distribution $\operatorname{InvGauss}(\mu, \lambda)$ on $x \in (0, \infty)$,

$$\left[\frac{\lambda}{2\pi x^3}\right]^{1/2} \exp\left\{-\frac{\lambda (x-\mu)^2}{2 \mu^2 x}\right\}$$

has mean μ and variance μ^3/λ . The quantity $1/\lambda$ is sometimes called the dispersion parameter

Bayesian Toolbox II

■ Laplace distribution Laplace(λ) with rate λ on $x \in (-\infty, \infty)$,

$$\frac{\lambda}{2} e^{-\lambda |x|}$$

■ Laplace distribution $X \sim \text{Laplace}(\lambda)$ as scale mixture of Normal

$$au \sim \operatorname{Exp}(\lambda^2/2)$$

 $X \sim \mathbf{N}(0, au)$

Laplace = scale mixture of Gaussians

Generalized Double Pareto model

■ Data $y \in \mathbb{R}^n$ are collected and modelled by a linear model

$$y = X\beta + \mathbf{N}\left(0, \sigma^2 I_n\right)$$

for a known design matrix $X \in \mathbb{R}^{n,p}$.

- Goal: estimate coefficient $\beta \in \mathbb{R}^p$ and noise intensity $\sigma^2 > 0$.
- lacktriangle We assume a (Jeffrey) prior on $v\equiv\sigma^2$ so that $\pi_0(v)\propto 1/v$
- lacktriangle We assume the following sparsity inducing prior for $eta \in \mathbb{R}^p$

$$eta_j \sim \mathbf{N} \left(0, \sigma^2 \, au_j
ight)$$
 $au_j \sim \mathrm{Exp}(\lambda_j^2/2)$
 $\lambda_j \sim \Gamma(\alpha, \eta)$

for some fixed parameter $\alpha > 0$ and $\eta > 0$.

lacksquare Note that $\overline{ au}=(au_1,\ldots, au_p)\in\mathbb{R}^p$ and $\overline{\lambda}=(\lambda_1,\ldots,\lambda_p)\in\mathbb{R}^p$

Generalized Double Pareto prior

- To design a Gibbs sampler, one needs to find the conditional distributions
 - $\beta \mid (y, v, \overline{\tau}, \overline{\lambda})$ which also equals $\beta \mid (y, v, \overline{\tau})$
 - $\mathbf{v} \mid (y, \beta, \overline{\tau}, \overline{\lambda})$ which also equals $v \mid (y, \beta)$
 - $\blacksquare \ \overline{\tau} \mid (y, \beta, v, \overline{\lambda}) \ \text{and it suffices to study} \ \tau_j \mid (y, \beta_j, \lambda_j)$
 - lacksquare $\overline{\lambda} \mid (y, \beta, v, \overline{\tau})$ and it suffices to study $\lambda_j \mid (y, \tau_j)$
- If one can integrate out a variable, one should do it since this yields to a faster algorithm. In our case, it turns out that it is possible to write down an expression for $\overline{\lambda} \mid (y, \beta, v)$ instead of $\overline{\tau} \mid (y, \beta, v, \overline{\lambda})$.

- [Exercise] Prove that $\beta \mid (y, v, \overline{\tau})$ is a Gaussian and find its mean and variance.
- **Answer:** The conditional distribution is Gaussian with parameters

$$\Sigma = v (X^T X + T^{-1})^{-1}$$
 and $\mu = (X^T X + T^{-1})^{-1} X^T y$

where $T = \text{Diag}(\tau_1, \dots, \tau_p)$ is the square matrix $T \in \mathbb{R}^{p \times p}$ with (τ_1, \dots, τ_p) on the diagonal.

- [Exercise] Prove that $v \mid (y, \beta)$ is an inverse Gamma distribution and find its parameters.
- **Answer:** The conditional distribution is an inverse Gamma distribution with parameters

$$\operatorname{IG}\left(\left[n+p\right]/2,\left\|y-X\,\beta\right\|^{2}/2+\left\langle \beta,\,T^{-1}\,\beta\right\rangle /2\right)$$

- **Exercise**] Prove that $\tau_j^{-1} \mid (y, \beta_j, \lambda_j)$ has the law of an inverse Gaussian distribution and find its parameters.
- **Answer:** the conditional distribution of $\omega_j \equiv \tau_j^{-1}$ is an inverse Gaussian distribution with mean $\lambda_j \sqrt{v}/|\beta_j|$ and dispersion parameter $1/\lambda_i^2$.

- [Exercise] Prove that $\lambda_j \mid (y, \tau_j)$ has a Gamma distribution and find its parameters.
- **Answer:** the conditional distribution $\lambda_j \mid (y, \tau_j)$ is

$$\Gamma(\alpha+1,\eta+|\beta_j|/\sqrt{v})$$