Early Detection of Myocardial Infarction Using WBAN

IEEE Healthcom 2013

Medina Hadjem, Osman Salem, Farid Naït Abdesselam and Ahmed Mehaoua LIPADE Laboratory, University of Paris Descartes, France

Group Members Uzair Akbar

Uzair Akbar Asfandyar Hassan Shah Mahnoor Haneef Ryshum Ali Saad Qureshi

Overview

Facts and Figures

- 25 % of ALL deaths^[1]
- 326,200 die of out-of-hospital cardiac arrests^[2]
 - 10.6 % survival rate^[2]

Techniques	Accuracy	Specificity	Sensitivity
Hidden Markov Model (HMM) and Gaussian Mixture Models (GMM).	82.5%	79.82%	85.71%
K-Nearest Neighbor (KNN) Classifier	98.3%	99.6%	97%
Discrete Wavelet Transform (DWT).	95%	Not Specified	Not Specified
Bayesian ANN Classifier	94% for MI cases 93.3% for normal cases	Not Specified	Not Specified
SVM Naïve Bayes (NB) Random Forecast (RF)	82.8% for SVM 81.9% for NB 84.5% for RF	Not Specified	Not Specified

What This Paper Proposes

- A Real-time method for early detection of MI
- Autonomy of patients and remote capture of ECG using WBAN
- A low power consumption algorithm adapted to WBAN using CUSUM Method

• Detection rate 73 % and False alarm rate 5 %.

ECG Signal Processing & Feature Extraction

Implementation of the code

Myocardial Infarction is one of the fatal heart diseases. It is essential that a patient is monitored for the early detection of MI. Owing to the newer technology such as wearable sensors which are capable of transmitting wirelessly, this can be done easily. However, there is a need for real-time applications that are able to accurately detect M... — Edit

What Is Myocardial Infarction?

- Commonly referred to as "Heart Attack".
- Occurs when heart's supply of blood is stopped.
- Not fatal if proper medical treatment is given on timely diagnosis.

The ECG (Electrocardiogram)

(a) One-cycle ECG tracing

(b) ST Elevation ECG

Experimental Setup

Wavelet Decomposition

Wavelet Decomposition

(a) MI ECG signal from the edb database

(b) MI ECG signal after Wavelet Decomposition

(c) ECG after filtering and base line correction

Baseline Wander Removal

Peak Detection

- Extract Detail Coefficients
- Detect R-peaks
- Detect other peaks relative to R-peaks

ST Elevation Time Series Extraction

- MI can be detected by the STsegment elevation. MI patients have a significantly raised ST segment.
- Concerned with mostly the positive amplitudes of ST in our signal.
- Change Detection Algorithm is used to detect abnormality in ST Elevation of ECG.

ST Elevation Time Series

CUmulative SUM (CUSUM) Algorithm

```
Initialization
   if necessary
end
while algorithm running
   measure x[k]
   decide between H_0 and H_1
   if H_1
      n_d = k
      estimate n_c
      stop or reset
   end if
end while
```

Max. Likelihood Estimates

• Log-Likelihood Ratio:
$$s[n] = \ln\left(\frac{p_{x|H_1}}{p_{x|H_0}}\right) = \frac{\mu_1 - \mu_0}{\sigma}\left(x[n] - \frac{\mu_1 + \mu_2}{2}\right)$$

• Decision Function:
$$G[n] = \{G[n-1] + s[n]\}^+$$

• Cumulative Sum:
$$S[n] = S[n-1] + s[n]$$

• Change Point:
$$n_c = \operatorname*{arg\,min}_{1 < n_c < k} S[n_c - 1].$$

As in practical cases, certain parameters cannot be known prior to the experiment, maximum likelihood estimates are used instead of unknowns.

Max. Likelihood Estimates

CUmulative SUM (CUSUM) Algorithm

initialization

```
set \tilde{\delta} to the most likely change magnitude set the detection threshold h>0 S[-1]=G_{\mathfrak{X}}[-1]=0 initialize the estimators \widehat{\mu_{\mathfrak{X}0}} and \widehat{\sigma_{\mathfrak{X}}^2} k=0
```

end

while the algorithm is not stopped do

measure the current sample x[k]

calculate the current estimates $\widehat{\mu_{\mathfrak{X}0}}[k]$ and $\widehat{\sigma_{\mathfrak{X}}^2}[k]$

$$s[k] = \frac{\tilde{\delta}}{\widehat{\sigma_{\mathfrak{X}}^2}[k]} \left(x[k] - \widehat{\mu_{\mathfrak{X}}}_0[k] - \frac{\tilde{\delta}}{2} \right)$$

$$S[k] = S[k-1] + s[k]$$

$$G_{\mathfrak{X}}[k] = \{G_{\mathfrak{X}}[k-1] + s[k]\}^{+}$$

if $G_{\mathfrak{X}}[k] > h > 0$ then

$$n_d \leftarrow k$$

$$\widehat{n_c} = \arg\min_{1 \le n_c \le k} S[n_c - 1]$$
stop or reset the algorithm

end

$$k = k + 1$$

CUSUM Alarms in the ST-Elevation Time Series

Receiver Operating Characteristics and Results

Detection Rate = TP/(TP + FN) = 73%False Alarm Rate = FP/(FP + TN) = 5%