物理演習【4月23日】

番 氏名

- 1 水平な床から 30° 傾いた斜面上に,質量 m の物体 P があり,質量 M の小物体 Q と滑らかな滑車を介して糸で結ばれている。P と斜面の間の静止摩擦係数を $\frac{1}{3}$,動摩擦係数を $\frac{1}{2\sqrt{3}}$ とし,重力加速度を g とする。
- $\begin{array}{c} m \\ Q \\ M \\ h \\ \end{array}$

- (1) P と Q が静止しているための M の範囲を m を用いて表せ。
- (2) 床からの高さを h とし、 $M = \frac{3}{2}m$ として静かに放すと、Q が下がり始めた。P が滑車に衝突することはないものとする。
 - (r) Q の加速度の大きさ a と、Q が床に達するときの速さ v を求めよ。
 - (イ) Q が床に達した後、P がやがて斜面上で最高点に達して止まった。P が動き始めてから止まるまでに移動した距離 ℓ とかかった時間 t を求めよ。

- **2** 質量 M の気球 B (内部の気体も含む) が,質量 m の小物体 A を質量の無視できる糸でつるして,一定の速さ v で上昇している。重力加速度を g とし,空気の抵抗および物体 A にはたらく浮力は無視できるものとする。
 - (1) 糸の張力 T はいくらか。
 - (2) 気球 B にはたらく浮力 F はいくらか。また、外部の空気の密度を ρ とすると、気体の体積 V はいくらか。物体 A が地面から h の高さになったとき、糸を切断した。
 - (3) A が地面に到達するまでに要する時間 t_0 はいくらか。
 - (4) 糸が切断された後、気球がさらにhだけ上がったときの気球の速さ v_1 はいくらか。

- **3** 傾角 θ の斜面上を図 1 のような T 型の物体がすべる運動を考える。物体の質量を M, 動摩擦係数を μ , 重力加速度を g とする。速さが v のとき,空気の抵抗力 kv がはたらくものとする。
 - (1) 運動中の物体に作用する力の名称とその向きを、矢印で図の上に示せ。
 - (2) 物体が速さv, 加速度aで運動しているときの運動方程式を記せ。
 - (3) しばらくして、等速度運動になった場合の速さvを求めよ。

 $M=2.0[\mathrm{kg}],\; \theta=30^\circ$ のとき、図2の曲線のような結果が得られた。

なお、図2の斜めの破線は、時刻 t=0 のときの接線とし、 $g=10 ({\sf m/s^2})$ とする。

- (4) 動摩擦係数 μ を求めよ。
- (5) 空気の抵抗力の係数 k を求めよ。

4 なめらかな水平面 S_1 , S_2 と鉛直面 S_3 からなる段差のある固定台がある。面 S_2 上に,質量 M の直方体 A を面 S_3 に接するように置く。A の上面はあらく,その高さは S_1 の高さに等しい。質量 m の小物体 B と A の間の動摩擦係数を μ とし,重力加速度を g とする。いま,B を初速 v_0 で水平面 S_1 上から,A の上面中央を直進させたところ,A は運動をはじめ,ある時刻 t_0 以後,両物体の速さは等しくなった。

B が A 上に達した時刻を t=0 とする。時刻 t_0 より以前の時刻 t における B の速さは T で,A の速さは T である。 t_0 は D で,そのときの速さは D である。また,D が A 上を進んだ距離 ℓ は D である。

- **5** 滑らかな水平面上に質量 M,長さ L の板を置く。板上の上面はあらい水平面で,右端に質量 m の小物体 P が置かれている。重力加速度を g とする。
 - (1) 板に一定の大きさの力 F_1 を水平右向きに加え続けたところ,P と板は一体となって運動した。
- 板 M 力

- (ア) 板の加速度 α を求めよ。
- (1) P が板から受けている摩擦力の大きさ f を求めよ。
- (2) 板と P を静止させ,板に F_1 よりも大きい一定の力 F_2 を水平右向きに加え続けたところ,板は運動し,P は板の上を滑り続けた。P と板の間の静止摩擦係数を μ ,動摩擦係数を μ' とする。
 - (P) P が板上ですべるためには、 F_2 はある値 F_0 より大きくなければならない。 F_0 を求めよ。
 - (イ) F_2 の力を加えているときの板の加速度 A を求めよ。
 - (ウ) P が板の左端に達するまでの時間 t を求めよ。