LES FONCTIONS EXPONENTIELLES E05

EXERCICE N°1 (Le corrigé)

Une entreprise fabrique des vaccins contre la grippe. Le 1^{er} janvier 2019, elle en produit 2 000. Sa production journalière P, en milliers d'unités, augmente de façon continue de 3 % chaque mois à partir de cette date.

Au bout de n mois écoulés, on a donc la suite (P_n) définie pour tout entier naturel n par : $P_n = 2 \times 1,03^n$.

Si le nombre de mois n'est pas un entier, on a la fonction P définie pour tout réel x par : $P(x)=2\times1,03^x$.

On considère qu'un mois dure 30 jours.

Au bout de 6 jours, la production sera ainsi de P(0,2) et au bout de 15 jours P(0,5).

1) Quelle est la nature de la suite (P_n) . Préciser ses éléments caractéristiques.

Pour $n \in \mathbb{N}$, on a $P_n = 2 \times 1.03^n$

On reconnaît une suite géométrique de raison q = 1,03 et de premier terme $P_0 = 2$

2) Si on veut calculer la production au bout d'un an et demi, peut-on utiliser la suite? Un an et demi représente 18 mois et 18 est un nombre entier, il suffit alors de calculer P_{18} . Le réponse est donc OUI.

3) Calculer la production le 1^{er} février 2020, le 15 mars 2021 et le 5 janvier 2024.

On décide que le jour mentionné n'est pas écoulé.

Le 1^{er} février 2020 :

Il se sera écoulé 13 mois, il s'agît donc de calculer P_{13} .

$$P_{13} = 2 \times 1,03^{13} \approx 2,937$$

La production sera alors d' environ 2937 vaccins par jour .

• Le 15 mars 2021 :

Il se sera écoulé 26 mois et 14 jours soit $26 + \frac{14}{30} = \frac{397}{15}$ mois , il s'agît donc de calculer

$$P\left(\frac{397}{15}\right) = 2 \times 1,03^{\frac{397}{15}} \approx 4,373 .$$

La production sera alors d' environ 4373 vaccins par jour .

• Le 5 janvier 2024 :

Il se sera écoulé 60 mois et 4 jours soit $60 + \frac{4}{30} = \frac{902}{15}$ mois , il s'agît donc de calculer

$$P\left(\frac{902}{15}\right) = 2 \times 1,03^{\frac{902}{15}} \approx 11,830$$
 (le dernier zéro n'a pas à apparaître sur votre copie, il a été

laissé pour vous rappeler qu'on a fait un arrondi au millième)

La production sera alors d' environ 11830 vaccins par jour .

4) À l'aide de la calculatrice, préciser la date à partir de laquelle le nombre de vaccins dépassera 4500 par jour.

Voici les tutoriels : <u>pour la TI</u> et <u>pour la CASIO</u>

La calculatrice nous indique environ 27,4344 mois soit 27 mois et $0,4344 \times 30 \approx 13$ jours. La date est donc le 14 mars 2021.

Le 13^e jour est écoulé.