Published as a conference paper at ICLR 2017

# A BASELINE FOR DETECTING MISCLASSIFIED AND OUT-OF-DISTRIBUTION EXAMPLES IN NEURAL NETWORKS

Dan Hendrycks\*
University of California, Berkeley
hendrycks@berkeley.edu

**Kevin Gimpel Toyota Technological Institute at Chicago**kgimpel@ttic.edu

- Motivation
- Contribution
- Background
- Concept
- Experiment
- Conclusion

#### Intro.

기존 Discrimitive Model(classifier)의 문제 - Overconfidence

https://mnist-demo.herokuapp.com/

#### Intro.

- ◆ 기존 DL based Discriminative Model(classifier)의 문제
  - ✓ Overconfidence
- ◆ Out-of-Distribution(Abnormal) Sample Inference

Miss-classification = error



#### **Papers (Anomaly Detection)**

- A Baseline For Detecting Misclassified and Out-of-Distribution Examples in Neural Networks (Hendrycks et. al., ICLR 2017)
- Enhancing The Reliability of Out-of-Distribution Image Detection in Neural Networks (Liang et. al., ICLR 2018)
- Training Confidence-Calibrated Classifiers for Detecting Out-of-Distribution Samples (Lee et. al., ICLR 2018)
- A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks (Lee el. al., NeurIPS 2018)
- Learning Confidence for Out-of-Distribution Detection in Neural Networks (DeVries et., al., arXiv 2018)
- Deep Anomaly Detection with Outlier Exposure (Hendrycks et. al., ICLR 2019)

- ◆ Anomaly Detection 용어 구분
  - ✓ Normal Sample Class 개수와 Abnormal Sample 성격

|                                                                              | Anomaly Detection                                                                 |                                                                                         |  |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
|                                                                              | Goal: Test-time Abnormal-sample 찾기                                                |                                                                                         |  |
|                                                                              | Abnormal 성격<br>(=Unknown=Unseen)                                                  |                                                                                         |  |
| 보유한 학습세트에<br>Normal Sample(In-distribution sample) 개수<br>(Normal Class = 1개) | Open-set에서 충분히 등장<br>-> <b>Novelty Detection</b> 문제<br>(Novel class=Normal class) | Open-set에서 등장 가능성 X<br>-> <b>Outlier Detection</b> 문제<br>(Outlier class=Abnormal class) |  |
| 보유한 학습세트에<br>Normal Sample(In-distribution sample) 개수<br>(Normal Class > 1개) | OoD(Out-of-Distribution) 문제                                                       |                                                                                         |  |



#### **Anomaly Detection**

**Novelty Detection** 

**Outlier Detection** 

## ◆ Anomaly Detection 용어 구분

✓ 학습데이터의 레이블링 유무와 Normal/Abnormal Sample 학습 시 사용 유무

|                                                                      | 학습데이터에<br>레이블링 | Normal Sample<br>(In-distribution)             | Abnormal Sample<br>(Out-of-distribution) | 장점                                     | 단점                                                                                    |
|----------------------------------------------------------------------|----------------|------------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------|
| Supervised<br>Anomaly Detection([1])                                 | 0              | 학습 사용 O                                        | 학습 사용 O                                  | Acc 높음                                 | 수집시 Cost 발생, Class-<br>imbalance 문제                                                   |
| Semi-supervised Anomaly Detection([2]) = One-Class Anomaly Detection | O<br>(필터링)     | 학습 사용 O                                        | 학습 사용 X                                  | 정상이미지만 가지고 학<br>습하므로 불량이미지 수<br>집 비용 X | [1] 대비 Acc 낮다,<br>여전히<br>정상이미지에 대한 label<br>작업이 필요하다(필터링)                             |
| Un-supervised<br>Anomaly Detection([3])                              | Х              | 대다수 사용 〇<br>( <b>대다수 Normal</b><br><b>가정</b> ) | 극소수 사용 O                                 | 데이터에 대한 레이블링<br>작업이 필요없다.              | [1] 대비 Acc 낮다,<br>[1] 에 비해 하이퍼파리미<br>터에 의한 모델 성능에 대<br>한 일관성이 없다(성능에<br>영향을 주는 요소 많다) |

1]

Discrimitive Model(Traditional Softmax based Classifier)

[2]

ML-based : Energy-based Generative, Model based(GMM), One-Class SVM

DL-based : Generative Model(GAN), Deep-SVDD

[3]

ML-based : PCA DL-based : AE

# **Background - Overconfidence in DL**



## Logit

: Exponential -> Output is Sensitivity!

-> Over confidence in NN





## **Background - Overconfidence in DL**

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks



Figure 2. **Model Scaling.** (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

## **Background - Overconfidence in DL**

On Calibration of Modern Neural Networks

\* ECE = Expected Calibration Error



- ① Depth ↑
- ② Filters ↑
- ③ Batch Normalization 有
- ④ Weight Decay ↓

It remains future work to understand why these trends affect calibration while improving accuracy.

#### Contribution

이 논문은 Anomaly Detection 태스크의 최초의 논문

"OOD Detection" 문제를 해결하기 위한 Baseline 논문

- -> Anomaly detection 최초 논문
- -> CNN based
- -> Classifier 기반에서 해결하고자 함 (인퍼런스타임에 집중=이미 학습이 끝난 logit을 재활용) -> loss 재설계 맥락 X
- -> 기존 Discrimitive Model"에서 사용 가능

기존 Classifier가 발생시키는 Over-confidence 문제를 별다른 가정 없이(기존 모델 변경 없이) Anomaly Detection 을 하는 Solution을 Baseline으로써 제시

이 논문 이후의 Anomaly Detection 연구에 Scheme 표준(모델평가과 실험설계)을 제시

논문에서 제시한 Baseline method는 다양한 태스크NLP, Vision, Speech Recognition)에서 효과가 있었음

Prediction<sub>OK SAMPLE</sub> > Prediction<sub>NG SAMPLE</sub>, Prediction<sub>OOD SAMPLE</sub>

-> 모두 overconfident. Overconfidence 정도가 차이가 있는 대체적인 경향이 있음을 확인. 따라서 Maximum Softmax Probability를 이용한 Anomaly Sample 판단은 가능함.

- Anomaly Detection 용어
  - Anomaly Detection, Novelty Detection, Out-of-Detection(OOD)
- Anomaly Detection의 평가지표
  - AUROC, AUPR, Pred. Prob(mean)
    - -> TH 무관하게 measure.
    - -> Open-set-dataset is imbalanced sample.





#### Confusion Matrix with imbalanced data distribution e.g. binary classification

|      |    | GT |    |  |
|------|----|----|----|--|
|      |    | NG | ОК |  |
| Pred | NG | 0  | 0  |  |
|      | ОК | 1  | 99 |  |

- OK(In-distribution) 입장에서 NG는 Out-of-distribution
- 모델은 realworld특성상 학습셋은 Imbalaced
- OOD sample(Unseen)에 대해 잘 예측 못함.
- 모델성능평가지표
  - -> If Accuracy = 99%
- 실데이터는 Imbalaced 되었다
  - -> Anormaly 태스크에 적합X



$$ACC = 85/100 = 0.85$$



| 5  | 10 |
|----|----|
| TP | FP |
| 5  | 80 |
| FN | TN |

| 5  | 10 |
|----|----|
| TP | FP |
| 5  | 80 |
| FN | TN |

| 5  | 10 |
|----|----|
| TP | FP |
| 5  | 80 |
| FN | TN |

| 5  | 10 |
|----|----|
| TP | FP |
| 5  | 80 |
| FN | TN |

| 5  | 10 |
|----|----|
| TP | FP |
| 5  | 80 |
| FN | TN |

| 5  | 10 |
|----|----|
| TP | FP |
| 5  | 80 |
| FN | TN |

| 5  | 10 |
|----|----|
| TP | FP |
| 5  | 80 |
| FN | TN |

| 5  | 10 |
|----|----|
| TP | FP |
| 5  | 80 |
| FN | TN |

precision = 
$$5/15 = 0.3$$
 recall =  $5/10 = 0.5$  FP-R =  $10/90 = 0.1$  TP-R =  $5/10 = 0.5$ 

$$FP-R = 10/90 = 0.7$$

$$TP-R = 5/10 = 0.5$$

#### EXP-1

**Miss-classified** 

5

0.81, 6(5)

7

0.91, 3(7)

0.84, 6(4)

0.91, 6(3)

9

0.86, 3(9)

5

0.75, 3(5)

3

0.90, 3(8)

7

0.88, 2(7)

Correct

Mean: 0.86

Mean: 0.91

5

0.90

જ

0.95

9

0.85



0.95



0.92



0.88



0.95



0.86

| Dataset   | AUROC | AUPR      | AUPR     | Pred. Prob  | Test Set |
|-----------|-------|-----------|----------|-------------|----------|
|           | /Base | Succ/Base | Err/Base | Wrong(mean) | Error    |
| MNIST     | 97/50 | 100/98    | 48/1.7   | 86          | 1.69     |
| CIFAR-10  | 93/50 | 100/95    | 43/5     | 80          | 4.96     |
| CIFAR-100 | 87/50 | 96/79     | 62/21    | 66          | 20.7     |

#### EXP-2



Table 2: Distinguishing in- and out-of-distribution test set data for image classification. CIFAR-10/All is the same as CIFAR-10/(SUN, Gaussian). All values are percentages.

#### -> Maximum Softmax Prob as OOD score! (Various task)

~ Vision, NLP(Sentiment Classification, Text Categorization, Autoimatic Speech Recognition)

#### **Pipeline**

#### **Abnormality Module**



#### **Experiments**

| In-Distribution /   | stribution / AUROC |        | AUPR AUPR |         | AUPR     | AUPR     |  |
|---------------------|--------------------|--------|-----------|---------|----------|----------|--|
| Out-of-Distribution | /Base              | /Base  | In/Base   | In/Base | Out/Base | Out/Base |  |
|                     | Softmax            | AbMod  | Softmax   | AbMod   | Softmax  | AbMod    |  |
| MNIST/Omniglot      | 95/50              | 100/50 | 95/52     | 100/52  | 95/48    | 100/48   |  |
| MNIST/notMNIST      | 87/50              | 100/50 | 88/50     | 100/50  | 90/50    | 100/50   |  |
| MNIST/CIFAR-10bw    | 98/50              | 100/50 | 98/50     | 100/50  | 98/50    | 100/50   |  |
| MNIST/Gaussian      | 88/50              | 100/50 | 88/50     | 100/50  | 90/50    | 100/50   |  |
| MNIST/Uniform       | 99/50              | 100/50 | 99/50     | 100/50  | 99/50    | 100/50   |  |
| Average             | 93                 | 100    | 94        | 100     | 94       | 100      |  |

Table 11: Improved detection using the abnormality module. All values are percentages.



#### Conclusion and Follow-ups

- Demonstrated a softmax prediction probability baseline for error, out-of-distribution detect
- Presented the abnormality module (+ gain)
- Presented Evaluation Metric in OOD task(property)

#### Deep Anomaly Detection with Outlier Exposure, 2019 ICLR

|                    | FPR95 ↓ |      | AUR  | OC ↑  | AUPR ↑ |      |  |
|--------------------|---------|------|------|-------|--------|------|--|
| $\mathcal{D}_{in}$ | MSP     | +OE  | MSP  | +OE   | MSP    | +OE  |  |
| SVHN               | 6.3     | 0.1  | 98.0 | 100.0 | 91.1   | 99.9 |  |
| CIFAR-10           | 34.9    | 9.5  | 89.3 | 97.8  | 59.2   | 90.5 |  |
| CIFAR-100          | 62.7    | 38.5 | 73.1 | 87.9  | 30.1   | 58.2 |  |
| Tiny ImageNet      | 66.3    | 14.0 | 64.9 | 92.2  | 27.2   | 79.3 |  |
| Places365          | 63.5    | 28.2 | 66.5 | 90.6  | 33.1   | 71.0 |  |

Table 1: Out-of-distribution image detection for the maximum softmax probability (MSP) baseline detector and the MSP detector after fine-tuning with Outlier Exposure (OE). Results are percentages and also an average of 10 runs. Expanded results are in Appendix A.

|                    | FPR95 ↓ |      |      | AUROC ↑ |      |      | AUPR ↑ |      |      |
|--------------------|---------|------|------|---------|------|------|--------|------|------|
| $\mathcal{D}_{in}$ | MSP     | +GAN | +OE  | MSP     | +GAN | +OE  | MSP    | +GAN | +OE  |
| CIFAR-10           | 32.3    | 37.3 | 11.8 | 88.1    | 89.6 | 97.2 | 51.1   | 59.0 | 88.5 |
| CIFAR-100          | 66.6    | 66.2 | 49.0 | 67.2    | 69.3 | 77.9 | 27.4   | 33.0 | 44.7 |

Table 4: Comparison among the maximum softmax probability (MSP), MSP + GAN, and MSP + GAN + OE OOD detectors. The same network architecture is used for all three detectors. All results are percentages and averaged across all  $\mathcal{D}_{out}^{test}$  datasets.

- Outlier Exposure는 기존 방법들에 독립적으로 추가가 가능한 아이디어
- 기존 detector들에 Outlier Exposure를 추가하였을 때 얼마나 성능이 향상되는지를 논문에서 결과로 제시
- 다만 Outlier Exposure로 **어떤 데이터 셋**을 사용하는지에 따라 성능이 크게 달라질 수 있다는 점이 풀어야 할 문 제(Future work)
- Gaussian noise나 GAN으로 생성한 sample 등을 활용하는 것은 크게 효과적이지 않음
- 반면, Outlier Exposure로 사용하는 데이터 셋을 최대한 realistic 하면서 size도 크고, 다양하게 구축하는 것이 좋은 성능을 달성하는 데 도움을 준다고 가이드를 제시해주고 있습니다.
- 기존에 존재하던 Out-of-distribution Detection 알고리즘들에 추가로 적용이 가능하면서도 손쉽게 구현이 가능한 방법론을 제안하였고, 실제로 효과적인 성능 향상다.

감사합니다