ISO 19125 Simple Feature Access

GEO2311 H2015 - Sverre Stikbakke

ISO 19125 – Simple feature access

- Part I: Common architecture
 - Geometry object model
 - Well-known Text Representation for Geometry
 - Well-known Binary Representation for Geometry
 - Well-known Text Representations of Spatial Reference Systems
- Part 2: SQL option: Tre ulike db-skjema
 - Normalized Geometry Schema
 - Binary Geometry Schema
 - Geometry Type Schema

To standarder med ulikt fokus

- ▶ ISO 19107 Spatial Schema:
- "Spatial schema is an abstract and non-platform dependent specification"
- ISO 19125 Simple Features Access -- Part 1: Common architecture:
- "SFA-CA is an implementation and platform dependent specification"
 - Opprinnelig utviklet av OGC

Simple Features (officially Simple Feature Access) is both an Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO) standard ISO 19125 that specifies a common storage and access model of mostly two-dimensionalgeographical data (point, line, polygon, multi-point, multi-line, etc.)

The ISO 19125 standard comes in two parts. Part one, ISO 19125-1 (SFA-CA for "common architecture"), <u>defines a model for two-dimensional simple features, with linear interpolation between vertices</u>.

The data model defined in SFA-CA is a hierarchy of <u>classes</u>.

This part also defines representation using Well-Known Text (and Binary).

Part 2 of the standard, ISO 19125-2 (SFA-SQL), defines an implementation using <u>SQL</u>.[1]

https://en.wikipedia.org/wiki/Simple_Features

Litteratur

- OGC-spesifikasjonene er fritt tilgjengelige:
- Se www.opengeospatial.org/docs/is:
 - OpenGIS Implementation Specification for Geographic information - Simple feature access - Part 1: Common architecture
 - OpenGIS Implementation Specification for Geographic information - Simple feature access - Part 2: SQL option

Bygger på

- ► ISO/IEC CD 13249-3:2006(E) Text for FDIS Ballot Information technology – Database languages
 - SQL Multimedia and Application Packages
 - Part 3: Spatial, May 15, 2006.
- ▶ ISO 19107, Geographic information Spatial schema
- ISO 19111, Geographic information Spatial referencing by coordinates
- ISO 19133, Geographic information Location based services – Tracking and navigation
- ▶ Se ISO/TC211 <u>Standards Guide</u>

Dimensjoner

```
x
y
z
m – for measurement
```

Alle operasjoner foregår i kartplanet. Det vil si at z og m blir tatt vare på, men inngår ikke i beregninger. (se 6.1.2.5)

Fig. I: Geometry object model

Linestring er en spesialisering av Curve-klassen med lineær interpolering mellom punktene som inngår (6.1.7.1).

Dette tilsvarer KURVE i SOSI.

Denne standarden har ikke noe som tilsvarer SOSI-typene

BUEP – bue oppgitt med tre koordinatpar SIRKELP – sirkel oppgitt med tre koordinatpar KLOTOIDE – overgangskurve angitt som del av en spiralbue BEZIER

.BUEP I:

..OBJTYPE GangSykkelveg

..NØ

101000 602000

107500 601500

100500 600000

Metoder på alle geomtriobjekter

- Dimension()
- GeometryType()
- ▶ SRID() Spatial Reference System ID
- Envelope() minimum bounding box
- AsText()
- AsBinary()
- IsEmpty()
- IsSimple()
- ▶ Is3D()
- IsMeasured()

Metoder for å teste geografisk beliggenhet

- Equals()
- Disjoint()
- Intersects()
- Touches()
- Crosses()
- Within()
- Contains()
- Overlaps()
- ++

Metoder for geografisk analyse

- Distance(anotherGeometry: Geometry)
- Buffer()
- ConvexHull()
- Intersection()
- Union()
- Difference()
- SymDifference()

Metoder spesifikt for den enkelte geometritype

- **Eks. Point:**
 - **x**()
 - y()
- Eks. Curve:
 - Length()
 - IsClosed()
- **Eks.** Surface:
 - Area()

Geometry collections

- Kan referere til en samling av geometriske objekter
 - Point Multipoint
 - Linestring Multilinestring
 - Polygon Multipolygon

PolyhedralSurface

- ► TIN Triangular Irregular Network
 - Nettverk av trekanter
 - ▶ Brukes ofte til å representere terrengoverflate (3D)
- PolyhedralSurface
 - Sammenhengende overflate av polygoner
 - Kan brukes til å modellere objekter i 3D

Table 6: Example Well-known Text Representation of Geometry

Geometry Type	Text Literal Representation	Comment
Point	Point (10 10)	a Point
LineString	LineString (10 10, 20 20, 30 40)	a LineString with 3 points
Polygon	Polygon ((10 10, 10 20, 20 20, 20 15, 10 10))	a Polygon with 1 exteriorRing and 0 interiorRings
Multipoint	MultiPoint ((10 10), (20 20))	a MultiPoint with 2 points
MultiLineString	MultiLineString ((10 10, 20 20), (15 15, 30 15)	a MultiLineString with 2 linestrings
MultiPolygon	MultiPolygon (((10 10, 10 20, 20 20, 20 15, 10 10)), ((60 60, 70 70, 80 60, 60 60))	a MultiPolygon with 2 polygons

Se flere eksempler under 7.2.6, eventuelt <u>en.wikipedia.org/wiki/Well-known_text</u>

Well-known Binary Representation for Geometry

```
// Basic Type definitions
// byte : 1 byte
// uint32 : 32 bit unsigned integer (4 bytes)
// double : double precision number (8 bytes)
// Building Blocks : Coordinate, LinearRing
Point {
 double x:
 double y}
PointZ {
 double x;
 double y;
 double z}
```

Dette er eksempel på programkode i programmeringsspråket C++. Flere eksempler under 8.2.8.

Well-known Text Representation of Spatial Reference Systems

- Geografisk (, breddegrad, lengdegrad)
- Projisert (x, y)
- ▶ Geosentrisk (x, y, z) (brukes bl.a. ved GNSS-målinger)

```
PROJCS["NAD_1983_UTM_Zone_10N",
GEOGCS["GCS_North_American_1983",
DATUM[
"D_North_American_1983",ELLIPSOID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],UNIT["Degree",0.0174532925199433]],
PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],
PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-123.0],
PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_of_Origin",0.0],
UNIT["Meter",1.0]]
```

Simple Feature access- Part 2: SQL Option (ISO 19125 - 2)

- Bygger på
 - ISO 19125 og det som den bygger på
 - I tillegg:
 - ISO/IEC 9075-1, Information technology Database languages —
 SQL Part I − Part 5
 - ▶ ISO 19109, Geographic information Rules for application schema
 - ▶ ISO 19119, Geographic information Services

Simple features: Tre ulike db-skjema

- Normalized Geometry Schema
- Binary Geometry Schema
- Geometry Type Schema

Figure 1: Schema for feature tables using predefined data types

GID 1	ESEQ	ETYPE	SEQ	ΧO	Y0	X1	Y1	X2	Y2	Х3	Y3	X4	Y4
1	1	3	1	0	0	0	30	30	30	30	0	0	0
1	2	3	1	10	10	10	20	20	20	20	10	10	10
2	1	3	1	30	0	30	30	60	30	60	0	30	0
2	2	3	1	40	5	40	20	45	20	45	15	50	15
2	2	3	1	50	15	50	5	40	5	Nil	Nil	Nil	Nil
3	1	3	1	0	30	0	60	30	60	30	30	0	30
4	1	3	1	30	30	30	60	60	60	60	30	30	30

Figure 2: Example of geometry table for Polygon Geometry using SQL

Figure 3: Schema for feature tables using SQL with Geometry Types

- ▶ UDT User defined Data Types
 - Noen (de fleste?) DBMS har støtte for dette

Figure 3: Schema for feature tables using SQL with Geometry Types

Egenskaper for skjematypene

Normalized Geometry Schema

Kan lagres i alle DBMS.
 Kan leses av «alle», dvs. alle som kan skrive SQL
 Ingen (?) GIS-program støtter dette direkte
 Men: dette er et standard skjema med de fordeler det gir
 Eks. på implementasjon: ArcSDE for Oracle – opp til v. xx.

Binary Geometry Schema

Kan lagres i alle DBMS. Data må leses av et program som forstår Well Known Binary Representation for Geometry Eks. på implementasjon: ArcSDE/ArcGIS for Server

Geometry Type Schema

- Krever at DBMS har støtte for UDT, eventuelt har innebygd Geometry Type.
- ▶ Eks. på implementasjon: ArcGIS for server (Oracle, ...), PostGIS

Fra PostgreSQL til PostGIS

- Legger til datatyper
- Legger til predikater/ operasjoner/ funksjoner
- (Legger til indekser)

PostGIS

Geometry Type definert ved hjelp av SQL

```
CREATE TYPE geometry (
         internallength = variable,
         input = geometry_in,
         output = geometry out,
         send = geometry_send,
         receive = geometry recv,
         typmod_in = geometry_typmod_in,
         typmod_out = geometry_typmod_out,
         delimiter = ':',
         alignment = double,
         analyze = geometry_analyze,
         storage = main
);
```

PostGIS

- Funksjoner definert ved hjelp av SQL
 - Oppretter link til eksternt programbibliotek

```
CREATE OR REPLACE FUNCTION ST_Union(geom I geometry, geom2 geometry)
RETURNS geometry
AS '$libdir/postgis-2. I','geomunion'
LANGUAGE 'c' IMMUTABLE STRICT;
```

- Noen funksjoner kommer fra GEOS
 - Geometry Engine, Open Source
 - http://trac.osgeo.org/geos/
- Som igjen kommer fra JTS Topology Suite
 - http://tsusiatsoftware.net/jts/main.html

Gode grunner for å lære om geografiske databaser

- GeoDB er anbefalt lagringsmetode for større datasett
 - Sentral lagring:
 - Bedre rutiner for
 - □ Tilgangskontroll
 - Versjonshåndtering
 - □ Backup
 - Standard IKT-verktøy kan brukes
- GeoDB har stor utbredelse
 - Viktig på svært mange arbeidsplasser
- GeoDB og SQL fungererer bra sammen på websider
- SQL kan lagres i tekstfiler (menyvalg og museklikk kan ikke) – kan dermed lagre arbeidsflyten i SQL

Evolution of GIS Architectures

First-Generation GIS:

Geometry, indexes, and attributes stored in file system

Second-Generation GIS:

Third-Generation GIS:

Hvorfor lære om PostGIS?

- PostGIS' kvalitet som geoDB er udiskutabel
 - Brukes over hele verden
 - Se f.eks. innlegg om PostGIS på FOSS4G-konferansene
 - ▶ Innlegg på Teknologiforum, 12. november 2014:

Ingvild Nystuen og Lars Opsahl (Skog og landskap):

PostGIS som navet i dataforvaltningen ved Skog og landskap. Muligheter, utfordringer og erfaringer.

- God ytelse:
 - ☐ Brukes av Kartverket som DBMS i WMS-tjenestene
- Fri programvare åpen kildekode

PostGIS is open source software, released under the <u>GNU General Public License</u>, that implements the <u>Open Geospatial Consortium's</u> "<u>Simple Features for SQL Specification</u>".

PostGIS also works well as a data source for GeoServer, which provides services like <u>WMS,WFS,WCS</u>, and <u>WPS</u>.

Hvorfor lære om OpenGeo Suite

- QGIS fungerer godt sammen med PostGIS og er også fri programvare som kan dekke en lang rekke behov for GIS programvare
- OpenGeo Suite inneholder også Geoserver som skal brukes i vår-emnet: Infrastrukturer for stedfestet informasjon (som WMS og WFS-server)

Hvordan lære å bruke PostGIS?

- Gå igjennom oppgaven i PostGIS Workshop fra FOSS4G 2011:
 - Introduction to PostGIS
 - http://workshops.boundlessgeo.com/postgis-intro/
 - Teoristoff
 - Praktiske oppgaver (med fasit)
 - ▶ Gå igjennom Section I-14 + 23
 - Oppgaver knyttet til GLT-databasen fra ukeoppgave (kommer)
 - Se nærmere informasjon i Fronter