Complex Analysis Qualifying Exam, January, 2001 Burckel & Poggi-Corradini

Instructions: Below you will find 8 problems. Do as many as you can.

Notations: \mathbb{R} = set of all real numbers; \mathbb{C} = set of all complex numbers; \mathbb{D} = $\{z \in \mathbb{C} : |z| < 1\}$ (the unit disk); \mathbb{T} = $\{z \in \mathbb{C} : |z| = 1\}$ (the unit circle); for U open in \mathbb{C} , H(U) is the set of holomorphic functions in U.

1. Let f be a holomorphic function on the open unit disk \mathbb{D} , and suppose that $|f(z)| \leq M$ for all $z \in \mathbb{D}$. Prove that the number of zeros of f in $\{|z| \leq 1/4\}$ does not exceed

$$\frac{\log\left|\frac{M}{f(0)}\right|}{\log 4}.$$

Hint: Consider the Blaschke factors $\frac{z-z_j}{1-\overline{z_j}z}$, where z_j are the zeros of f.

2. Let f be entire, r > 0, and f(0) = 1. Show that there is z with |z| = r such that

$$e^{-z}f(z) \in [1,\infty).$$

Hint: Use the Argument Principle.

3. Recall that a normal family on \mathbb{D} is a set \mathcal{F} of functions $f: \mathbb{D} \to \mathbb{C}$ such that any sequence in \mathcal{F} has a subsequence that converges uniformly on compact subsets (here we take the usual metric on \mathbb{C}). Let \mathcal{F} be the family of all the analytic functions on \mathbb{D} with the property that f(0) = 1 and $f(z) \notin (-\infty, 0]$ for all $z \in \mathbb{D}$. Show that \mathcal{F} is a normal family. Give a counter-example if the condition f(0) = 1 is omitted.

4. Find an explicit formula for a function u harmonic in the half-disk $D = \mathbb{D} \cap \{ \text{Re } z > 0 \}$ such that $\lim_{z \to \zeta} u(z) = 0$ when $\zeta = it, -1 < t < 1$ and $\lim_{z \to \zeta} u(z) = 1$ when $\zeta \in \mathbb{T} \cap \{ \text{Re } z > 0 \}$. Hint: Use the fact that the angle subtended by the diameter from a point on the half-circle is always equal to $\pi/2$ and the fact that Arg = Im log is harmonic whenever it is well-defined.

5. Let $f \in H(U)$ for some open set U. Suppose $f = e^g$ for some continuous function g. Prove that g is holomorphic in U.

6. Let f be holomorphic in $\{z \in \mathbb{C} : 0 < r < |z| < R\}$, and suppose Re f is constant on each circle $\{z \in \mathbb{C} : |z| = \rho\}$ with $r < \rho < R$. Show that f is constant. Hint: Consider $F(z) = f(e^z)$.

7. Suppose f is meromorphic in \mathbb{C} and vanishes at infinity. Show that if r > 0 is large enough

$$\int_0^{2\pi} \frac{f(re^{it})}{1 - (z/r)e^{-it}} \frac{dt}{2\pi}$$

equals 0 for |z| < r and equals -f(z) for |z| > r. Hint: Consider f(1/z).

8. Recall that $\sin \theta = (e^{i\theta} - e^{-i\theta})/(2i)$ and compute

$$\int_0^{2\pi} \frac{d\theta}{2 - \sin \theta}.$$