## AES (Advanced Encryption Standard) Algorithm:

AES is an itterative rather than Feistel ciphon. It is based on 'Substitution - permutation network'. AES performs all its computations on bytes rather than bits thence AES treats the 128 bits of plaintext block as 16 bytes. These 16 bytes are awanged in a 4 rows and 4 columns matrix.

The number of rounds in AES is variable and depends on the length of the key. AES uses 10 rounds for 128 - bit key, 12 rounds for 192 - bit keys and 14 rounds for 256 - bit keys.

The Schematic of AES structure is given as follows:



## Schematic of each round of AES:



### Substitute Bytes Transformation:

The substitute bytes transformation called Substitute is a simple lookup table. AES defines a 16x16 matrix of byte values called cm S-box, that contains permutation of all possiable 256 8 bit values.

Each individual byte is mapped into a new byte in the following ways:

The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits of the byte are used as a Column value. These rows and columns values serve as indexes into the S-box to select an unique 8 bit output value.

#### tor example:

The hexadecimal value 95 references row 9 and Column 5.

### Shift Rows Transformation:

The shift row Transformation is known as shifthows. In this the first row is not altered for the second row, a I byte circular left shift is performed for the third row a 2 byte circular left shift is performed. For the fourth row a 3 byte circular left shift is performed. For the fourth row a 3 byte circular left shift is performed.

Too example,

| - |     |    |    |    |  |  |
|---|-----|----|----|----|--|--|
|   | 87  | F2 | 4D | FP |  |  |
|   | EC  | 6E | 40 | 90 |  |  |
|   | 4A  | 03 | 46 | E7 |  |  |
| • | 8°C | D8 | 95 | A6 |  |  |

| ١ | 87 | F2 | 4D | 97 |  |
|---|----|----|----|----|--|
|   | 6E | 4C | 90 | EC |  |
|   | 46 | E7 | 4A | c3 |  |
|   | AG | 80 | D8 | 95 |  |

## Mix Columns Transformation:

The mix columns transformation also known en MixColumns, operates on each column individually. Each byte of a column is mapped into a new value that is a function of all four bytes in that column. The transformation can be defined by the following matrix multiplication.

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \\ \end{bmatrix} \begin{bmatrix} 5_{00} & 5_{01} & 5_{02} & 5_{03} \\ 5_{10} & 5_{11} & 5_{12} & 5_{13} \\ 5_{20} & 5_{21} & 5_{22} & 5_{23} \\ 5_{30} & 5_{31} & 5_{32} & 5_{33} \\ \end{bmatrix} \begin{bmatrix} 5_{00} & 5_{01} & 5_{02} & 5_{03} \\ 5_{10} & 5_{11} & 5_{12} & 5_{13} \\ 5_{20} & 5_{21} & 5_{22} & 5_{23} \\ 5_{30} & 5_{31} & 5_{32} & 5_{33} \\ \end{bmatrix}$$

The Mix Column transformation on a single column com be expressed as,

$$S'_{0,j} = (2.S_{0,j}) \oplus (3.S_{1,j}) \oplus S_{2,j} \oplus S_{3,j}$$
  
 $S'_{1,j} = \{S_{0,j} \oplus (2.S_{1,j}) \oplus (3.S_{2,j}) \oplus S_{3,j}$   
 $S'_{2,j} = S_{0,j} \oplus S_{1,j} \oplus (2.S_{2,j}) \oplus (3.S_{3,j})$   
 $S'_{3,j} = (3.S_{0,j}) \oplus S_{1,j} \oplus S_{2,j} \oplus (2.S_{3,j})$ 

For example,

|    |    | •  | ·          |  |  |
|----|----|----|------------|--|--|
| 84 | F2 | 4D | 97         |  |  |
| 6E | 40 | 90 | EC         |  |  |
| 46 | E7 | YA | <b>C</b> 3 |  |  |
| A6 | 8C | D8 | 95         |  |  |

| 47 | 40 | <b>A</b> 3 | 40 |
|----|----|------------|----|
| 47 |    |            | 06 |
| 37 | D4 | 70         | 45 |
| 94 | E4 | 3A         | 42 |
| ED | AS | A6         | BC |

# Add Round Key Transformation:

In the Add Round key Transformation also Known as AddRoundkey, the 128 bits area bitwise XORed with the 128 bits of the Round key. The operation is viewed as a Columnwise operation between the 4 bytes of a Column and one wood of the round key. It can be viewed as a byte-level operation.

For example:

| 04 FP | A3 | 40 |                  | AC | 19 | 28 | 57 | Ì | EB | 59 | 88 | 18 |
|-------|----|----|------------------|----|----|----|----|---|----|----|----|----|
| 37 D4 | 70 | 75 | ( <del>1</del> ) | 77 | FA | DI | 5c |   | 40 | 2E | AI | c3 |
| 94/84 | 3A | 42 |                  | 66 | DC | 29 | 00 |   | F2 | 38 | 13 | 42 |
| ED A5 | A6 | BC |                  | F3 | 21 | 41 | 6A |   | IE | 84 | E7 | De |

128 bits value

round key

Application of AES Algorithm:

AES is widely used in many applications.

- i) Wireless Security: AES is used in securing wireless network such as wifi network, to ensure data confidentiality
- ii) Database Encryption: AES can be applied to encrypt Sensitive data stored in database.
- in Securce Communication: AFS is widely used in profocols like internet communications, emails, instant messaging and voice video calls.
- VPN protocols to secure the communication between a user's device and a remote server.