EE3731C Tutorial - Statistical Signal 3

Department of Electrical and Computer Engineering

- 1. Let x_1, \dots, x_N be independent samples from a Gaussian distribution. The Gaussian distribution has a known mean of μ and an unknown variance σ^2 . Find the ML estimate of σ^2 .
- 2. Give examples of Markov chain where the conditions of the Fundamental Theorem of Markov Chain does not hold.
- 3. Let x_n be a random walk defined as

$$x_0 = 0$$

$$x_N = x_0 + \sum_{n=1}^{N} z_n,$$

where z_n is an i.i.d. process with $p(z_n = -1) = p(z_n = 1) = 1/2$. Define the absolute value random process $y_n = |x_n|$. Find $p(\max_{1 \le n \le 20} y_n = 10|y_{20} = 0)$.

4. Let x_n be a random walk defined as

$$p(x_0) = \begin{cases} \frac{1}{5} & x_0 \in \{-2, -1, 0, 1, 2\} \\ 0 & \text{otherwise} \end{cases}$$

$$x_N = x_0 + \sum_{n=1}^{N} z_n,$$

where z_n is an i.i.d. process with $p(z_n = -1) = p(z_n = 1) = 1/2$. What is $p(x_0|x_{11} = 2)$?

5. Let x_n be a random walk defined as

$$x_0 = 0$$

$$x_N = x_0 + \sum_{n=1}^{N} z_n,$$

where $z_n, n \ge 0$ is a discrete time white Gaussian noise process, i.e., z_1, z_2, \cdots are i.i.d $\mathcal{N}(0,1)$. Given $x_1 = 4, x_2 = 2$ and $0 \le x_3 \le 4$, find the MMSE estimate of x_4