The diagram model of linear dependent type theory

Martin Lundfall

Stockholm University martin@dapp.org

— Abstract

We present a type theory dealing with non-linear, "ordinary" dependent types (which we will call cartesian), and $linear\ types$, where both constructs may depend on terms of the former. In the interplay between these, we find the new type formers $\sqcap_{x:A}B$ and $\sqsubseteq_{x:A}B$, akin to Π and Σ , but where the dependent type B, (and therefore the resulting construct) is a linear type. These can be seen as internalizing universal and existential quantification over linear propositions, respectively. We also consider two modalities, M and L, transforming linear types into cartesian types and vice versa.

The theory is interpreted in a split comprehension category $\pi: \mathcal{T} \to \mathcal{C}^{\to}$ [2], accompanied by a split monoidal fibration, $q: \mathcal{L} \to \mathcal{C}$. We interpret \mathcal{C} as a category of contexts, which for any $\Gamma \in \mathcal{C}$, determines the fibers \mathcal{T}_{Γ} and \mathcal{L}_{Γ} . We interpret \mathcal{T}_{Γ} as category of the cartesian types over Γ , and \mathcal{L}_{Γ} as the monoidal category of linear types in Γ . In this setting, the type formers $\Gamma_{x:A}$ and $\Gamma_{x:A}$ are understood as right and left adjoints of the monoidal reindexing functor $\pi_A^*: \mathcal{L}_{\Gamma} \to \mathcal{L}_{\Gamma,A}$ corresponding to the weakening projection $\pi_A: \Gamma.A \to \Gamma$ in \mathcal{C} . The operators M and L give rise to a fiberwise adjunction $L \dashv M$ between \mathcal{L} and \mathcal{T} , where we understand the traditional exponential modality as the comonad ! = LM.

We provide a model of this theory called the $Diagram\ model$, which extends the groupoid model of dependent type theory [1] to accommodate linear types. Here, cartesian types over a context Γ are interpreted as a family of groupoids indexed over the groupoid Γ , while linear types are interpreted as diagrams over groupoids, $A:\Gamma\to \mathcal{V}$ in any symmetric monoidal category \mathcal{V} . We show that the $diagrams\ model$ can under certain conditions support a linear analogue of the univalence axiom, and provide some discussion on the higher-dimensional nature of linear dependent types.

2012 ACM Subject Classification Theory of computation \rightarrow Linear logic; Theory of computation \rightarrow Type theory

Keywords and phrases Dependent type theory, linear type theory, diagram model, monoidal categories, groupoid model

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Related Version http://kurser.math.su.se/pluginfile.php/16103/mod_folder/content/0/2017/2017 47 report.pdf

Acknowledgements I want to thank Peter Lumsdaine for his constant guidance and inspiration.

References

Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York, 1998.

23:2 Models of linear dependent type theory

Bart Jacobs. Comprehension categories and the semantics of type dependency. *Theoret. Comput. Sci.*, 107(2):169–207, 1993. URL: https://doi.org/10.1016/0304-3975(93) 90169-T.