

▶ 学习笔记

- 1. 己知 $2 \tan \theta \tan(\theta + \frac{\pi}{4}) = 7$, 则 $\tan \theta = \underline{\hspace{1cm}}$.
- 2. 设 O 为坐标原点,直线 x=2 与抛物线 $C:y^2=2px(p>0)$ 相交于 D,E 两点, 若 $OD \perp OE$ 则 C 的焦点坐标为 _____.
- 3. 已知向量 a, b 满足 $|a| = 5, |b| = 6, a \cdot b = -6$,则 $\cos(a, a + b) =$ ______.
- 4. 在 $\triangle ABC$ 中, $\cos C = \frac{2}{3}, AC = 4, BC = 3$,则 $\cos B =$ ______.
- 5. 若直线 l 与曲线 $y = \sqrt{x}$ 和圆 $x^2 + y^2 = \frac{1}{5}$ 都相切, 则 l 的方程为 ______.

- 1. 求解微分方程 $y'' + x^{2019}y' x^{2020} = 0$.
- 2. 求解微分方程 $y'' + x^{2019}y' x^{2020} = 0$.
- 3. 求解微分方程 $y'' + x^{2019}y' x^{2020} = 0$.
- 4. 求解微分方程 $y'' + x^{2019}y' x^{2020} = 0$.

♬ 休闲一刻

▶ 学习笔记

- 1. 求解微分方程 $y'' + x^{2019}y' x^{2020} = 0$.
- 2. 求解微分方程 $y'' + x^{2019}y' x^{2020} = 0$.
- 3. 求解微分方程 $y'' + x^{2019}y' x^{2020} = 0$.
- 4. 求解微分方程 $y'' + x^{2019}y' x^{2020} = 0$.

- 1. 己知 $2\tan\theta \tan(\theta + \frac{\pi}{4}) = 7$, 则 $\tan\theta = \underline{\hspace{1cm}}$.
- 2. 设 O 为坐标原点,直线 x=2 与抛物线 $C: y^2 = 2px(p>0)$ 相交于 D, E 两点,若 $OD \perp OE$ 则 C 的焦点坐标为 ______.
- 3. 已知向量 a, b 满足 $|a| = 5, |b| = 6, a \cdot b = -6$,则 $\cos(a, a + b) =$ _____.
- 4. 在 $\triangle ABC$ 中, $\cos C = \frac{2}{3}, AC = 4, BC = 3$,则 $\cos B =$ _____.
- 5. 若直线 l 与曲线 $y = \sqrt{x}$ 和圆 $x^2 + y^2 = \frac{1}{5}$ 都相切, 则 l 的方程为 ______.

♬ 休闲一刻