An Imperative Language for Verified Exact Real-Number Computation

Andrej Bauer^{1,2}*, Sewon Park³†, Alex Simpson^{1,2}‡

¹Faculty of Mathematics and Physics, University of Ljubljana – Slovenia

²Institute for Mathematics, Physics and Mechanics – Slovenia

³Graduate School of Informatics, Kyoto University – Japan

Abstract

We introduce Clerical, a programming language for exact real-number computation that combines first-order imperative-style programming with a limit operator for computation of real numbers as limits of Cauchy sequences. We address the semidecidability of the linear ordering of the reals by incorporating nondeterministic guarded choice, through which decisions based on partial comparison operations on reals can be patched together to give total programs. The interplay between mutable state, nondeterminism, and computation of limits is controlled by the requirement that expressions computing limits and guards modify only local state. We devise a domain-theoretic denotational semantics that uses a variant of Plotkin powerdomain construction tailored to our specific version of nondeterminism. We formulate a Hoare-style specification logic, show that it is sound for the denotational semantics, and illustrate the setup by implementing and proving correct a program for computation of π as the least positive zero of sin. The modular character of Clerical allows us to compose the program

^{*}This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-21-1-0024.

[†]A preliminary version of this work is included in the authors' doctoral dissertation [Par21]. This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government(MSIT) (No. 2016K1A3A7A03950702) and by JSPS KAKENHI (Grant-in-Aid for JSPS Fellows) JP22F22071.

[‡]This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 731143.

from smaller parts, each of which is shown to be correct on its own. We provide a proof-of-concept OCaml implementation of Clerical, and formally verify parts of the development, notably the soundness of specification logic, in the Coq proof assistant.

Keywords: Verified exact real-number computation, Hoare-style specification logic, Programming language design, Denotational semantics, Nondeterminism

Contents

1	Introduction	4
2	Overview of Clerical	5
3	Syntax and type system 3.1 First-order functions	7
4	Denotational semantics 4.1 Semantics of first-order functions	14 23
5	Nondeterminism and parallelism	2 3
6	Specification logic6.1 Proof rules	
7	Example: computation of π	34
8	Implementation	37
9	Formalization	39
10	Future work	40

1. Introduction

In exact real-number computation, infinite representations are used to compute with real numbers precisely, without rounding errors. By representing reals as, e.g., infinite sequences of rational approximations, real-valued functions can be computed exactly, using stream algorithms or type-2 Turing machines [Wei00]. In many approaches to exact real-number computation [TZ99,TZ99,TZ15,Esc96,EE00,ES14,PBC+24] the concrete representation of real numbers is veiled by an abstract datatype or interface that exposes only a suite of primitive operations on reals. This way programmers can think of the real numbers in ordinary mathematical terms, as a structure closely related to the usual one [Her99, ES01]. Moreover, programs can be written and reasoned about intuitively, relying on familiarity with the traditional mathematics of real numbers, and without having to take rounding errors or representations into account. This approach has been substantiated in practice by several implementations [Mü00, Lam07, BCC+06, KTD+13].

Imperative programming is a natural and ubiquitous programming paradigm, supported by a well-established precondition/postcondition-based program verification methodology [AO19]. One would naturally like to incorporate exact real-number computation into the imperative programming style and its verification methodology. This desire has been previously addressed in [PBC+24], in which the authors introduce a simple imperative language with an abstract data type of reals, provide formal rules for proving correctness assertions, and present illustrative examples, such as a verified root-finding program.

The goal of the present paper is to extend the work of [PBC⁺24] to a richer programming language, extended with a limit-finding primitive that calculates limits of Cauchy sequences, a central feature of exact real-number computation that makes it more expressive than purely algebraic or symbolic computation [Bra03, NP18]. The key operation takes a Cauchy sequence $f: \mathbb{N} \to \mathbb{R}$ (with a fixed rate of convergence) and returns its limit $\lim_{n\to\infty} f(n)$ as a value of real number type. Such functionality is implemented in practice [Mü00]. However, it is not included in the imperative language of [PBC⁺24], in which limits can only be implemented indirectly as top-level programs that calculate approximations forming Cauchy sequences. Because the limit values are not themselves directly accessible, they cannot be returned or used in intermediate calculations, nor can calculations using limits be composed. A similar restriction can be found in the work of Tucker and Zucker [TZ99, TZ15].

In this paper, we present an imperative language called *Clerical* (Command-Like Expressions for Real Infinite-precision Calculations) that fully supports the

construction of real numbers as limits, and we provide a program verification framework for it.

The paper is organized as follows. In Section 2 we give an overview of the design challenges and the solutions employed in Clerical. A formal account of the syntax and the type system is given in Section 3. In Section 4 we introduce a modified Plotkin powerdomain and use it to define a denotational semantics of Clerical, including the relatively involved denotations of limits, guarded nondeterministic choice, and loops. In Section 5, we show that Clerical is expressive enough to support parallel evaluation and nondeterministic operations, including McCarthy's ambiguous choice. In Section 6 we define a specification logic and prove it to be sound for our denotational semantics. The capabilities of our setup are illustrated in Section 7, where we implement a Clerical program computing π as the least positive root of the sin function and show its correctness. In Section 8 we briefly address the operational aspects of Clerical and how one might implement a practical programming language based on it. We provide our own proof-of-concept implementation, with several minor extensions to the language. Finally, in Section 9 we comment on our formalization of soundness of specification logic and several other parts of Clerical in the proof assistant Coq [Tea22].

2. Overview of Clerical

Clerical is an imperative-style programming language with mutable variables, conditional statements, loops, equipped with an abstract datatype of real numbers that supports basic arithmetic, and crucially, computation of real numbers as limits of Cauchy sequences. As the strict linear order < on the reals is only semidecidable, conditional statements need to cope with possibly nonterminating comparison tests, leading to a necessarily nondeterministic language. The language is designed to exploit the programming potential of interactions between mutable state, computation of limits, nondeterminism, and nontermination. Its type system and specification logic can be used to ensure that such interactions are only utilised in error-free ways.

is guaranteed to evaluate to the real number that is the limit of the sequence. For the language to be rich enough to express interesting limits, it is important that the calculation of e can be an arbitrarily complex computation that may use the full set of programming features, including sequencing, loops and mutable state. In this sense, expressions in Clerical are command-like, going far beyond the simple algebraic expressions included in the imperative languages typically used as the basis of Hoare logic [AO19]. Nevertheless, as in such standard imperative languages, we do require the expression e in $\lim n \cdot e$ to be pure, meaning that it does not alter the global state. To ensure this, e is allowed to perform assignment only to its own $local\ variables$, with all other variables accessed in a read-only fashion. This purity condition is enforced via a typing discipline, as explained in Section 3.

Non-termination needs careful handling in exact real-number computation. Even a simple order comparison of two real numbers can give rise to non-termination when the numbers coincide [Wei00, Theorem 4.1.16]. That is, the test x < y does not terminate when x and y are equal. To safely deal with real number comparisons that may diverge, nondeterminism becomes essential [Luc77]. In Clerical, nondeterminism is provided by a Dijkstra-style guarded case statement:

case
$$e_1 \Rightarrow c_1 \mid e_2 \Rightarrow c_2 \mid \cdots \mid e_n \Rightarrow c_n$$
 end .

This construct proceeds with parallel or interleaved evaluation of the guards e_i , and selects one of the guarded expressions c_i whose guard e_i evaluated to true. If several guards are true, any one of the corresponding expressions may be selected nondeterministically, which allows non-termination to be bypassed: even if one of the guards fails to terminate, as long as there is some guarded expression that can be selected, the case expression safely selects such a branch. For example, soft comparison [BH98], a nondeterministic approximation to order comparison, is expressed in Clerical as follows:

case
$$x < y + 2^{-n} \Rightarrow \mathsf{true} \mid y < x + 2^{-n} \Rightarrow \mathsf{false} \ \mathsf{end} \ .$$

In the case $x = y + 2^{-n}$, the first guard fails to terminate, as does the second in the case $x = y - 2^{-n}$. The overall expression evaluates deterministically to true in the case that $x \le y - 2^{-n}$, to false in the case that $x \ge y + 2^{-n}$, and nondeterministically to either truth value in the case $y - 2^{-n} < x < y + 2^{-n}$.

The limit operator adds a further complication to Clerical. It is not clear how to devise a coherent evaluation strategy for $\lim n \cdot e$ when the expression e fails to generate a rapidly converging Cauchy sequence. For this reason, we consider any program that applies the limit operation to an expression e that does not define a rapidly converging Cauchy sequence as being erroneous. In the denotational

semantics of Clerical, such programs will assume a special error value, which we must be able to combine semantically with non-termination and nondeterminism. For this purpose we use a modified version of the Plotkin powerdomain [Plo76] in Section 4. We remark that the error value cannot be identified with non-termination, because, unlike non-termination, error values cannot be bypassed by guarded case statements.

A general (possibly impure) expression in Clerical has two main behaviours: it evaluates to a value and also, in the case that it is impure, alters the state. Accordingly, we use the following form of Hoare-style triples, whose postconditions can refer to return values as in [NMB08, HYB14, JKJ⁺18], for partial and total correctness specifications for expressions:

$$\{\phi\}\,e\,\{y{:}\tau\mid\psi\}^{\mathsf{t}}\qquad\text{and}\qquad\{\phi\}\,e\,\{y{:}\tau\mid\psi\}^{\mathsf{p}}\;.$$

The first triple expresses total correctness of the expression e and says that, in any state satisfying the precondition ϕ , every nondeterministic branch in the execution of e terminates without introducing any error, and each branch results in a state and a value y satisfying the postcondition ψ . The second triple for partial correctness still requires terminating nondeterministic branches to satisfy ψ and all branches to be error free, but permits the existence of nondeterministic branches that do not terminate. Although total correctness is the form of correctness that is usually desired in program verification, it turns out to be necessary to also consider partial correctness in order to provide the correct proof rules for total correctness. When we prove the total correctness of a guarded case expression, it is appropriate to assume that the guards are only partially correct, since the case expression can still terminate when some guards do not. Conversely, total correctness is required to formulate the correct proof rules for partial correctness. To prove a limit operation lim n. e partially correct, it is still necessary to ensure that e is totally correct, as any non-terminating behaviour in e will prevent it from defining a rapid Cauchy sequence, and hence $\lim n \cdot e$ to be erroneous, as discussed above. Accordingly, we provide proof rules for partial and total correctness that are intertwined and prove that they are sound with regard to the denotational semantics.

3. Syntax and type system

As just discussed, Clerical is an imperative language for exact real-number computation based on *command-like expressions*, that is, value-returning expressions built up using the usual constructs for forming imperative commands: while loops, case statements, sequential composition, variable assignment, etc. Variables and values

are typed. The types of Clerical are: a unit type, U, with only one value; booleans, B; integers, Z; and the abstract type of real numbers, R, whose very presence is the raison d'être of the language.

The well-typedness of expressions is ensured as usual by a type system that provides rules for establishing that an expression e has type τ in a context that assigns types to all the variables that appear in e. There is, however, one particular subtlety that we need to deal with. As adumbrated in Section 2, the programming language distinguishes between 'pure' and general ('impure') expressions. By a pure expression e, we understand one that can read from but not write to the variables in the context of the expression. That is, e must not contain within it any assignment operation x := e' to a variable x in the context of e. Since, in imperative programming, variable assignment is an essential component of almost any non-trivial computation, in order to permit a sufficiently expressive language of pure expressions in Clerical, we allow pure expressions to declare and assign values to local variables that do not appear in the context of e. This is formalized via a type system in which the general form of judgement for assigning an expression e the type e is

$$\Gamma; \Delta \Vdash c : \tau$$
,

where $\Gamma = (x_1:\tau_1, \ldots, x_m:\tau_m)$ is a list assigning types to variables that are readonly in c, and $\Delta = (y_1:\sigma_1, \ldots, y_n:\sigma_n)$ assigns types to read-write variables. Pure expressions arise by requiring the context Δ of read-write variables to be empty. For convenience in defining the semantics of Clerical in Section 4, we include a separate judgement form for pure expressions:

$$\Gamma \vdash e : \tau$$
,

in which Γ , as above, is a context of read-only variables. In general, we refer to sequences Γ as read-only contexts, and pairs

$$\Gamma; \Delta = (x_1:\tau_1, \dots, x_m:\tau_m; y_1:\sigma_1, \dots, y_n:\sigma_n)$$

as *read-write contexts*. The two judgement forms are connected by conversion rules in each direction:

$$\frac{\Gamma; \cdot \Vdash c : \tau}{\Gamma \vdash c : \tau} \qquad \frac{\Gamma, \Delta \vdash e : \tau}{\Gamma; \Delta \Vdash e : \tau}$$

The first explicitly recognises the purity of a general expression with an empty sequence of write variables. The second allows us to use a pure expression as a general expression, by choosing any partition of the read-only context Γ , Δ to identify the variables Δ that we allow the general expression to write to. The distinction

between c as the meta-notation for general expressions and e as the meta-notation for pure expressions reflects the fact that, in Clerical, we use general expressions c in syntactic positions in which 'commands' usually appear in traditional imperative languages, and we use pure expressions e in positions that are traditionally restricted to 'expressions' in imperative language nomenclature. Indeed, our general value-returning expressions generalise the traditional value-free 'commands' since we can consider the latter as being given by general expressions of unit type in read-write contexts in which all variables are writable:

$$\cdot ; \Delta \Vdash c : \mathsf{U}$$
.

Further mediation between the collections Γ of read-only variables and Δ of read-write variables is provided by the typing rule for local variables

$$\frac{\Gamma, \Delta \vdash e : \sigma \qquad \Gamma; \Delta, x \mathpunct{:}\! \sigma \Vdash c : \tau}{\Gamma; \Delta \Vdash (\mathsf{var} \ x \vcentcolon= e \ \mathsf{in} \ c) : \tau}$$

The expression $\operatorname{var} x := e \operatorname{in} c$ declares a fresh local variable x and initializes it by computing the value of the subexpression e, which is required to be pure. (This is an example of a syntactic position that would be occupied by an 'expression' in a traditional imperative language, and which accordingly requires a pure expression in Clerical.) The main expression then continues computation as the general expression c, which is at liberty to overwrite the variable x without affecting the status (read-only or read-write respectively) of the variables in Γ and Δ .

The abstract syntax of expressions is shown in Figure 3.1, where we indicate expressions with e and c according to whether they are intended to be pure or impure. However, as discussed above, the distinction between purity and impurity is in actuality implemented by the type system, and the two kinds of expression share the same grammar for their abstract syntax.

Among the pure expressions are variables x, of which we presume to have an unbounded supply, boolean constants false and true, integer numerals \overline{k} for $k \in \mathbb{Z}$, the trivial expression skip, coercion from integers to reals $\iota(e)$, exponentiation 2^e , arithmetical operations, integer comparisons $e_1 = e_2$ and $e_1 < e_2$, real comparison $e_1 < e_2$ (but not equality of reals), and the limit expression $\lim x \cdot e$. The (potentially) state-changing expressions are sequencing $c_1; c_2$, introduction of a local variable var x := e in c, variable assignment x := e, the conditional if e then e_1 else e_2 end, guarded case case $e_1 \Rightarrow e_1 \mid \cdots \mid e_n \Rightarrow e_n$ end, and the loop while e do e end. These syntactic constructions can also give rise to pure expressions in certain circumstances dictated by the type system, which is presented in Figure 3.2.

```
Expression e, c := x
                                                                               variable
                               \mid true \mid false \mid \overline{k} \mid skip
                                                                               constants
                               \iota(e)
                                                                               coercions from Z
                                                                                   to R
                                  2^e
                                                                               exponentiation by 2
                               e_1 \circledast e_2
                                                                                integer arithmetic
                                                                                   \circledast \in \{+, -, \times\}
                               | e_1 \otimes e_2 | e^{-1}
                                                                               real arithmetic
                                                                                   \mathbb{R} \in \{+, -, \times\}
                               | e_1 < e_2 | e_1 = e_2
                                                                                integer comparison
                               e_1 < e_2
                                                                               real comparison
                               | \lim x.e
                                                                               limit (x \text{ bound in } e)
                                                                               sequencing
                               c_1; c_2
                                \operatorname{var} x := e \operatorname{in} c
                                                                               local variable
                                                                                   (x \text{ bound in } c)
                               x := e
                                                                               assignment
                               \mid if e then c_1 else c_2 end
                                                                               conditional
                                \mid case e_1 \Rightarrow c_1 \mid \cdots \mid e_n \Rightarrow c_n end
                                                                               guarded cases
                               \mid while e do c end
                                                                               loop
              Type \tau, \sigma ::= \mathsf{U}
                                                                               unit
                                                                                boolean
                               | Z
                                                                               integer
                                  R
                                                                               real
Typing context \Gamma, \Delta ::= x_1:\tau_1, \ldots, x_m:\tau_m
  Read-only context := \Gamma
 Read-write context ::= \Gamma; \Delta
```

Figure 3.1: Abstract syntax

```
Ty-Rw-Ro
                                                        Ty-Ro-Rw
                                                                                                          Ty-Var
           \Gamma; \cdot \Vdash c : \tau \qquad \qquad \Gamma, \Delta \vdash e : \tau \qquad \qquad \Gamma(x) = \tau
                                                                                                                                                   Ty-False
            \overline{\Gamma \vdash c : \tau} \qquad \overline{\Gamma; \Delta \Vdash e : \tau} \qquad \overline{\Gamma \vdash x : \tau} \qquad \overline{\Gamma \vdash \mathsf{false} : \mathsf{B}}
                                                                                                                           Ty-Coerce
                                                                                                                                                                     Ty-Exp
                        Ty-Int Ty-Skip
Ty-True
                                                                                                                           \Gamma \vdash e : \mathsf{Z}
                                                                                                                                                                   \Gamma \vdash e : \mathsf{Z}
\overline{\Gamma \vdash \mathsf{true} : \mathsf{B}} \qquad \overline{\Gamma \vdash \overline{k} : \mathsf{Z}} \qquad \overline{\Gamma \vdash \mathsf{skip} : \mathsf{U}} \qquad \overline{\Gamma \vdash \iota(e) : \mathsf{R}} \qquad \overline{\Gamma \vdash 2^e : \mathsf{R}}
     Ty-Int-Op
                                                                                TY-REAL-OP
                                                                                                                                                            Ty-Recip
     \Gamma \vdash e_1 : \mathsf{Z} \qquad \Gamma \vdash e_2 : \mathsf{Z} \qquad \qquad \Gamma \vdash e_1 : \mathsf{R} \qquad \Gamma \vdash e_2 : \mathsf{R} \qquad \qquad \Gamma \vdash e : \mathsf{R}
                                                                  \frac{\phantom{a}}{\Gamma \vdash e_1 \otimes e_2 : \mathsf{R}} \qquad \frac{\phantom{a}}{\Gamma \vdash e^{-1} : \mathsf{R}}
                \Gamma \vdash e_1 \circledast e_2 : \mathsf{Z}
                                                                                                           Ty-Int-Eq
                       Ty-Int-Lt
                                                                                                           \Gamma \vdash e_1 : \mathsf{Z} \qquad \Gamma \vdash e_2 : \mathsf{Z}
                       \Gamma \vdash e_1 : \mathsf{Z} \qquad \Gamma \vdash e_2 : \mathsf{Z}
                                                                                                                      \Gamma \vdash e_1 = e_2 : \mathsf{B}
                                 \Gamma \vdash e_1 < e_2 : \mathsf{B}
                                                                                                                    Ty-Lim
                             Ty-Real-Lt
                             \Gamma \vdash e_1 : \mathsf{R} \qquad \Gamma \vdash e_2 : \mathsf{R}
                                                                                                                     \Gamma, x: \mathsf{Z} \vdash e : \mathsf{R}
                                       \Gamma \vdash e_1 < e_2 : \mathsf{B}
                                                                                                                    \Gamma \vdash (\mathtt{lim}\ x \cdot e) : \mathsf{R}
        Ty-Sequence
                                                                                                    Ty-New-Var
         \Gamma; \Delta \Vdash c_1 : \mathsf{U} \qquad \Gamma; \Delta \Vdash c_2 : \tau
                                                                                                   \Gamma, \Delta \vdash e : \sigma \Gamma; \Delta, x : \sigma \Vdash c : \tau
                                                                                                     \Gamma; \Delta \Vdash (\mathtt{var}\ x := e\ \mathtt{in}\ c) : \tau
                       \Gamma; \Delta \Vdash (c_1; c_2) : \tau
Ty-Assign
                                                                           Ty-Cond
\frac{\Delta \vdash x : \tau \qquad \Gamma, \Delta \vdash e : \tau}{\Gamma; \Delta \Vdash (x := e) : \mathsf{U}} \qquad \frac{\Gamma, \Delta \vdash e : \mathsf{B} \qquad \Gamma; \Delta \Vdash c_1 : \tau \qquad \Gamma; \Delta \Vdash c_2 : \tau}{\Gamma; \Delta \Vdash (\mathsf{if} \; e \; \mathsf{then} \; c_1 \; \mathsf{else} \; c_2 \; \mathsf{end}) : \tau}
                                    Ty-Case
                                    \frac{\Gamma, \Delta \vdash e_i : \mathsf{B} \qquad \Gamma; \Delta \Vdash c_i : \tau \qquad (i = 1, \dots, n)}{\Gamma; \Delta \Vdash (\mathsf{case} \; e_1 \Rightarrow c_1 \; | \; \cdots \; | \; e_n \Rightarrow c_n \; \mathsf{end}) : \tau}
                                                          Ty-While
                                                           \Gamma, \Delta \vdash e : \mathsf{B} \qquad \Gamma; \Delta \Vdash c : \mathsf{U}
                                                          \Gamma; \Delta \Vdash (\mathtt{while}\ e\ \mathtt{do}\ c\ \mathtt{end}): \mathsf{U}
```

Figure 3.2: Typing rules

Since the focus of Clerical is real-number computation, we briefly discuss some relevant aspects of the language and give an example program. A fully detailed semantic explanation of the language follows in Section 4, and many more examples appear in Sections 5 and 7.

The abstract datatype R of real numbers, includes constants $\iota(m)$ for every integer m coerced to a real number via the inclusion $\mathbb{Z} \subseteq \mathbb{R}$, and 2^m for an integer-exponent power of 2, which of course includes fractional values when mis negative. The latter construct is particularly useful for implementing bounds related to the limit operation lim x.e, which assumes that e defines a rapidly converging Cauchy sequence in its integer variable x: namely $(e_m)_{m\in\mathbb{Z}}$ is a Cauchy sequence whose limit $l = \lim_{m \to \infty} e_m$ satisfies $|l - e_m| < 2^{-m}$, for all $m \in \mathbb{Z}$, where we write e_m for the real-number computed by e when x takes value m. (Note that, for simplicity, and with no loss of generality, our sequences are indexed by all integers including negative indices.) As built-in arithmetic operations on the reals, we include addition, subtraction, multiplication and reciprocal. The strict comparison operator $e_1 < e_2$ is boolean-valued, and returns the expected truth value whenever e_1 and e_2 compute to distinct reals. In the case of equality, however, it diverges. As discussed in Section 2, such behaviour is an unavoidable feature of exact-real-number computation. We do not include an equality test on reals since, for essentially the same reason, the best one could achieve is divergence in the case of equality, meaning an equality test would never return true.

The behaviour of the guarded case construct and its relationship to such non-termination properties has been discussed in Section 2. To end this section, we present a short example program that demonstrates how this case construct interacts with the limit operator to define mathematically useful operations; albeit, in this case, a particularly simple one. The program below is a pure expression of type R, with a single read-only variable x also of type R. It calculates the absolute value of the real number assigned to the variable x. Because of the non-termination properties of exact-real-number comparison, this cannot be defined using a simple if-then-else conditional that tests whether the value of x is negative or not. Instead, we need to combine the limit operator with the guarded case construct:

$$\begin{array}{c} \text{lim } n. \\ \text{case} \\ x < 2^{-n-\overline{1}} \ \Rightarrow -x \\ | \ -2^{-n-\overline{1}} < x \ \Rightarrow x \\ \text{end} \end{array}$$

Here -e is an abbreviation for $\iota(\overline{0}) - e$. Given a real number x, to approximate its absolute value |x| up to accuracy 2^{-n} , for any integer n, we make a parallel test

if $x < 2^{-n-1}$ holds or $x > -2^{-n-1}$ holds; at least one of which is guaranteed to evaluate to true. If the first condition does, we return -x as the 2^{-n} approximating value. If the second condition does, we return x. In both cases, the returned value lies within 2^{-n} of |x|. Thus the sequence, as n tends to ∞ , has the required rapid rate of convergence to the limit value |x|.

One slightly subtle point with the above example, is that the 'sequence' defined by the case statement is actually nondeterministic. In the case that $-2^{-n-1} < x < 2^{-n-1}$, either of the values x or -x may arise as the 2^{-n} approximation. In the semantics of Clerical, we do not try to determinize this. In principle, two successive evaluations of the 2^{-n} approximation, may yield two different answers. In any case, the limit of the sequence is uniquely determined. In the next section, the semantics of the limit operator defines it in general for nondeterministic sequences.

3.1. First-order functions

In this section, we extend the core Clerical language presented above with first-order functions. This extension does not change the expressive power of Clerical, since all uses functions in programs can be eliminated by inlining their definitions. Nevertheless, functions play an essential role in practical programming, since they allow compositional programming, providing a convenient way of breaking up code into smaller, reusable pieces.

In the extended Clerical, a function is simply an abbreviation of an expression that depends on parameters. Functions are defined using the syntax

let
$$f(x_1:\tau_1,\ldots,x_n:\tau_n):\sigma:=e.$$

Informally, f takes n parameters of types τ_1, \ldots, τ_n are returns a value of type σ , computed by the function body e. It is a *first-order function* because the types τ_1, \ldots, τ_n and σ are just the primitive Clerical types, as opposed to function types (that do not exist in Clerical anyhow).

Functions are used through function call expressions:

Expression
$$e, c ::= \cdots \mid f(e_1, \ldots, e_n) \mid \cdots$$

To keep track of the defined functions, we introduce a top-level environment

$$T = [\text{let } f_1(x_1 : \tau_{1,1}, \dots, x_{n_1} : \tau_{1,n_1}) : \sigma_1 := e_1),$$

$$\vdots$$

$$\text{let } f_k(x_1 : \tau_{k,1}, \dots, x_{n_1} : \tau_{k,n_k}) : \sigma_k := e_k)],$$

which is just a list of function definitions. Typing judgements are extended with T (it would suffice to keep just the signatures of the defined functions, without their bodies):

$$T; \Gamma \vdash e : \tau$$
 and $T; \Gamma; \Delta \Vdash e : \tau$

The previously given inference rules just pass T from conclusions to premises. There is one new inference rule governing function calls:

TY-RO-CALL
$$(\text{let } f(x_1:\tau_1,\ldots,x_n:\tau_n):\sigma:=e)\in T$$

$$\frac{T;\Gamma\vdash e_i:\tau_i \quad \text{for } i=1,\ldots,n}{T;\Gamma\vdash f(e_1,\ldots,e_n):\sigma}$$

Note that function calls are pure expressions.

We also need a custom judgement for checking top-level environments:

$$\frac{\text{Env-Extend}}{\text{[] env}} \qquad \frac{T \text{ env } \quad f \not\in T \qquad T; x_1 : \tau_1, \ldots, x_n : \tau_n \vdash e : \sigma}{[T, (\text{let } f(x_1 : \tau_1, \ldots, x_n : \tau_n) : \sigma := e)] \text{ env}}$$

The rule Env-Empty validates the empty environment, while Env-Extend extends an environment with a function definition, so long as the function body is a pure expression of return type when given read-only access to the arguments. Note that each function may call previously defined functions, but may not call itself. We discuss the lack of recursion in Section 10.

4. Denotational semantics

In this section we assign mathematical meaning to the constituent parts of Clerical. The types are interpreted by the expected sets:

$$[\![Z]\!] := \mathbb{Z} \qquad \qquad [\![B]\!] := \{\mathsf{ff},\mathsf{tt}\} \qquad \qquad [\![R]\!] := \mathbb{R} \qquad \qquad [\![U]\!] := \{\star\} \enspace .$$

Typing contexts are interpreted by cartesian product:

$$\llbracket x_1 : \tau_1, \dots, x_m : \tau_m \rrbracket := \llbracket \tau_1 \rrbracket \times \dots \times \llbracket \tau_m \rrbracket .$$

The denotation $\llbracket \Gamma \rrbracket$ of a read-only context Γ is thought of as an *environment* specifying values of variables, whereas the denotation of a read-write context Γ ; Δ has two components, the environment $\llbracket \Gamma \rrbracket$ and the *state* $\llbracket \Delta \rrbracket$.

The meaning of a well-typed pure expression $\Gamma \vdash e : \tau$ and general expression $\Gamma; \Delta \Vdash c : \tau$ will be maps:

$$\llbracket\Gamma \vdash e : \tau\rrbracket : \llbracket\Gamma\rrbracket \to \mathcal{P}_{\star}(\llbracket\tau\rrbracket),$$
$$\llbracket\Gamma; \Delta \Vdash c : \tau\rrbracket : \llbracket\Gamma\rrbracket \to (\llbracket\Delta\rrbracket \to \mathcal{P}_{\star}(\llbracket\Delta\rrbracket \times \llbracket\tau\rrbracket)),$$

where $\mathcal{P}_{\star}(S)$ is a *powerdomain*, a collection of sets representing the possible sets of outcomes of nondeterministic computations that return values from S. Due to the distinction between error and non-termination, already mentioned in Section 2, Clerical requires a rather specific form of powerdomain. In order to motivate it, we discuss the distinction between error and non-termination in more detail.

Mathematically, we would like to consider a well-behaved (deterministic) expression e of type R as defining a real number value r. Computationally, however, the best that e will be able to do is to produce, on demand, an approximation of r to within any specified precision. In the ideal case, given precision $\epsilon > 0$, the evaluation of e will determine in finite time some rational approximation q such that $|q-r| < \epsilon$. In Clerical, not every deterministic expression of type R achieves this ideal.

Some expressions simply give rise to non-terminating computations that never provide any approximating information. Others, may appear to provide approximating information, but do so in a way that is either incomplete or inconsistent. Our semantics of Clerical distinguishes between these two eventualities. Expressions that produce incomplete or inconsistent approximating information are considered erroneous, and the semantics for Clerical will ensure that no such expression is ever executed within a program with valid semantics. The motivation for this is to avoid any situation in which faulty approximations can provide misleading information. In contrast, non-terminating expressions are considered harmless in the sense that they cannot be a source of incorrect information. As is standard in denotational semantics, such expressions are assigned the special denotation \bot . These need to be distinguished from erroneous ones, because, as discussed in Section 2, non-terminating expressions have an essential role to play when programming in Clerical.

For any set S, define $S_{\perp} := S + \{\bot\}$, where \bot represents non-termination, as discussed above. Although $S + \{\bot\}$ is strictly speaking a coproduct (sum) of two sets, in practice we shall only use it in instances in which $\bot \notin S$. This allows us to

¹Incompleteness may arise, for example, if approximating values are only computed for ϵ that are not too small. Similarly, inconsistency can occur if two different ϵ_1, ϵ_2 result in putative approximations q_1, q_2 with $|q_1 - q_2| \ge \epsilon_1 + \epsilon_2$.

represent S_{\perp} as the (disjoint) union $S \cup \{\perp\}$. Define:

$$\mathcal{P}_{\star}(S) := \{ X \subseteq S_{\perp} \mid X \text{ infinite } \Rightarrow \bot \in X \},$$

A set $X \in \mathcal{P}_{\star}(S)$ represents the results of a nondeterministic Clerical computation in the following way. Firstly, $X = \emptyset$ in the case that the computation is *erroneous* (see the discussion above), in which case no result value is relevant. The case $\bot \in X$ applies if the nondeterministic computation has at least one non-terminating branch, in which case $X \setminus \{\bot\}$ is the set of all result values returned by terminating nondeterministic branches. If instead $\bot \notin X$ then X represents the set of possible results of a necessarily terminating nondeterministic computation. Since Clerical has only finite nondeterministic branching, such a set is necessarily finite.

We shall implicitly make use of the fact that powerdomain \mathcal{P}_{\star} carries the structure of a monad on the category of sets. For the purposes of this paper, we never need to directly refer to the abstract structure of the monad. However, the following maps associated with this structure will be useful. Firstly, for any S, there is a map $x \mapsto \{x\} : S \to \mathcal{P}_{\star}(S)$, that maps any $x \in S$ to the singleton $\{x\}$ representing the deterministic computation that returns x as its result. Secondly, for any function $f: S \to \mathcal{P}_{\star}(T)$ we define $f^{\dagger}: \mathcal{P}_{\star}(S) \to \mathcal{P}_{\star}(T)$ by:

$$f^{\dagger}(X) = \begin{cases} \emptyset & \text{if } \exists x \in X . \ f(x) = \emptyset, \\ \{\bot \mid \bot \in X\} \cup \bigcup_{x \in X \setminus \{\bot\}} f(x) & \text{otherwise.} \end{cases}$$

It is easily checked that this indeed defines a set in $\mathcal{P}_{\star}(T)$. The idea behind the definition is that $f^{\dagger}(X)$ models a sequencing of nondeterministic computations: first execute the nondeterministic computation whose result is represented by X, then for each potential value $x \in X$ run the nondeterministic computation modelled by f(x) to obtain potential return values. This idea motivates the alternative notation

let
$$x \leftarrow X$$
 in $f(x)$

for $f^{\dagger}(X)$, which we shall often use.

The reason behind the first clause in the definition of $f^{\dagger}(X)$ is that a computation is considered illegitimate if an error occurs along any possible nondeterministic branch. In such a case the entire computation is given the error denotation \emptyset .

Figure 4.1 assigns denotational semantics to pure expressions. One point that deserves explanation is the denotation of e^{-1} , when e is a real expression representing 0. Since there is no appropriate real value to be given, the denotation could be chosen to be either \emptyset or $\{\bot\}$. We choose the latter, as it reflects the fact that an algorithm for calculating reciprocal will run forever, given a representation

Figure 4.1: Denotational semantics of pure expressions

Figure 4.2: Denotational semantics of general expressions, excluding case and while

of the real number 0, without ever returning any erroneous approximation to a result value. Similarly, $\{\bot\}$ is given as the denotation of $e_1 < e_2$ when e_1, e_2 are two real expressions representing equal numbers, reflecting the fact that an algorithm trying to distinguish between the two numbers will run forever when given equal inputs.

The most complex definition in Figure 4.1 is the semantics of the limit operation $\lim x \cdot e$. In this definition, note that there is at most one $t \in \mathbb{R}$ satisfying the first condition. Its existence places strong requirements on the expression e, which must represent a sequence of sets of real numbers, such that every real number u in the k-th set lies within a distance of 2^{-k} of t. That is, every choice of a real number from every set furnishes a Cauchy sequence rapidly converging to a common limit t. The use of a sequence of sets allows the behaviour of e to be nondeterministic, but this nondeterminism is highly constrained by the common limit requirement. Furthermore, e is neither allowed to diverge nor be erroneous. If any of the conditions required for t to exist fails, then the $\lim x \cdot e$ computation is declared erroneous. This is appropriate because, in an algorithmic implementation of the limit operation, the source of error may occur deep in the computation (e.g., only at some high value for the integer k) meaning that the algorithm may, before the error transpires, return erroneous information in the form of approximating values to a non-existent limit.

Figure 4.2 assigns semantics to several of the general expression constructors: sequencing c_1 ; c_2 , local variable declarations $\operatorname{var} x := e \operatorname{in} c$, assignments $x_i := e$, conditionals if e then c_1 else c_2 end, and expressions e qua commands.

Next, let us define the semantics of guarded choice

$$\Gamma; \Delta \Vdash (\mathtt{case}\ e_1 \Rightarrow c_1 \mid \cdots \mid e_n \Rightarrow c_n \ \mathtt{end}) : \tau.$$

Using the abbreviations $\llbracket e_i \rrbracket = \llbracket \Gamma, \Delta \vdash e_i : \mathsf{B} \rrbracket$ and $\llbracket c_i \rrbracket = \llbracket \Gamma; \Delta \Vdash c_i : \tau \rrbracket$ we set

$$\begin{split} & \llbracket \Gamma ; \Delta \Vdash (\mathsf{case} \; e_1 \Rightarrow c_1 \mid \cdots \mid e_n \Rightarrow c_n \; \mathsf{end}) : \tau \rrbracket \; \gamma \, \delta = \\ & \left\{ \begin{matrix} \emptyset & \text{if} \; \exists i \, . \, \llbracket e_i \rrbracket \left(\gamma, \delta \right) = \emptyset \lor (\mathsf{tt} \in \llbracket e_i \rrbracket \left(\gamma, \delta \right) \land \llbracket c_i \rrbracket \; \gamma \, \delta = \emptyset \right) \\ S \cup \left\{ \bot \mid \forall i \, . \, \llbracket e_i \rrbracket \left(\gamma, \delta \right) \neq \{\mathsf{tt}\} \right\} & \text{otherwise} \\ & \text{where} \; S = \bigcup \left\{ \begin{matrix} \llbracket c_i \rrbracket \; \gamma \, \delta \mid 1 \leq i \leq n \land \mathsf{tt} \in \llbracket e_i \rrbracket \left(\gamma, \delta \right) \right\}. \end{matrix} \end{split}$$

The idea behind this definition is as follows. The n (potentially nondeterministic) guard expressions e_1, \ldots, e_n are evaluated in parallel. Ignoring, for the moment, the possibility that one of these expressions might be erroneous, suppose that one of them, e_i say, evaluates to tt. If this occurs, then the parallel evaluation of the other guards is terminated and the continuation c_i is executed. Note that the choice of i

here is potentially nondeterministic. If instead none of the guards evaluates to tt, then none of the continuations is triggered and we consider this as amounting to nontermination (no error is caused), so we include \bot in the denotation of the case expression. Note that this \bot can arise as a result of bona fide nontermination (none of the guards terminates) or of deadlock (all guards terminate with ff). In the case that any of the e_i guards causes an error (i.e., has denotation \emptyset), or if some e_i has a possible evaluation to tt that triggers the execution of an erroneous continuation command c_i , then the case statement is itself given the error denotation \emptyset . Some of the subtleties of guarded choice are illustrated through the examples in Section 5 below.

It remains to define the semantics of while loops. As usual, the meaning of a while loop is required to be invariant under unrolling; i.e.,

$$\llbracket \Gamma ; \Delta \Vdash \mathtt{while} \ e \ \mathtt{do} \ c \ \mathtt{end} : \mathsf{U} \rrbracket \ \gamma \ \delta = \\ \llbracket \Gamma ; \Delta \Vdash \mathtt{if} \ e \ \mathtt{then} \ (c \ ; \ \mathtt{while} \ e \ \mathtt{do} \ c \ \mathtt{end}) \ \mathtt{else} \ \mathtt{skip} \ \mathtt{end} : \mathsf{U} \rrbracket \ \gamma \ \delta$$

That is, we want the value $\llbracket \Gamma; \Delta \Vdash (\mathtt{while}\ e\ \mathtt{do}\ c\ \mathtt{end}) : \mathsf{U} \rrbracket \gamma$ to be a fixed point of the map

$$W_{\gamma}: \mathcal{P}_{\star}(\llbracket \Delta \rrbracket \times \{\star\})^{\llbracket \Delta \rrbracket} \to \mathcal{P}_{\star}(\llbracket \Delta \rrbracket \times \{\star\})^{\llbracket \Delta \rrbracket}$$

$$W_{\gamma}(h) \, \delta := \text{let } b \leftarrow \llbracket e \rrbracket \, (\gamma, \delta) \text{ in } \begin{cases} (h \circ \pi_{1})^{\dagger}(\llbracket \Gamma; \Delta \Vdash c : \mathsf{U} \rrbracket \, \gamma \, \delta) & \text{if } b = \mathsf{tt} \\ \{(\delta, \star)\} & \text{if } b = \mathsf{ff} \end{cases} \tag{1}$$

where π_1 is the projecting isomorphism from $\llbracket \Delta \rrbracket \times \{\star\}$ to $\llbracket \Delta \rrbracket$.

As is standard, we find the appropriate fixed point by showing that $\mathcal{P}_{\star}(S)$ carries the structure of a domain (ω -complete partial order with least element) and that W_{γ} is an ω -continuous function with respect to the induced pointwise order on the function space $\mathcal{P}_{\star}(\llbracket \Delta \rrbracket \times \{\star\})^{\llbracket \Delta \rrbracket}$. This allows the definition of $\llbracket \Gamma; \Delta \Vdash (\mathsf{while} \ e \ \mathsf{do} \ c \ \mathsf{end}) : \mathsf{U} \rrbracket \gamma$ as the least fixed point $\mathsf{LFP}(W_{\gamma})$ of W_{γ} :

$$\llbracket \Gamma; \Delta \Vdash (\mathtt{while} \ e \ \mathsf{do} \ c \ \mathsf{end}) : \mathsf{U} \rrbracket \gamma := \mathsf{LFP}(W_{\gamma}) \ . \tag{2}$$

The required partial order on $\mathcal{P}_{\star}(S)$ is that of the Plotkin powerdomain [Plo76] modified to take account of our use of the error set \emptyset :

$$X \sqsubseteq Y \ :\Leftrightarrow \ X = Y \ \lor \ (\bot \in X \ \land \ (Y = \emptyset \lor (X \backslash \{\bot\} \subseteq Y))).$$

For X, Y other than the error set \emptyset , the above coincides with the usual Egli-Milner order of the Plotkin powerdomain. The positioning of \emptyset within the partial order is motivated by the following considerations. The denotational semantics of

while e do c end in environment γ is approximated by applying W_{γ} iteratively to the constantly-bottom function $\delta \mapsto \{\bot\}$, yielding an ω -chain

$$(\delta \mapsto \{\bot\}) \sqsubseteq W_{\gamma}(\delta \mapsto \{\bot\}) \sqsubseteq W_{\gamma}^{2}(\delta \mapsto \{\bot\}) \sqsubseteq \dots$$

with each new approximation corresponding to one further level of unrolling of the loop. The presence of \bot in any $W^n_\gamma(\delta \mapsto \{\bot\})$ δ_0 can indicate that further unfoldings are needed to determine $\llbracket \Gamma; \Delta \Vdash (\mathtt{while}\ e\ \mathtt{do}\ c\ \mathtt{end}) : \mathsf{U} \rrbracket \gamma \delta_0$. It is possible that some such further unfolding will result in an erroneous computation, at which point the denotational semantics will assume the value \emptyset . For this reason it is necessary to have $X \sqsubseteq \emptyset$, whenever $\bot \in X$. In the case that $\{\bot\} \notin W^n_\gamma(\delta \mapsto \{\bot\}) \delta_0$, it holds that $\llbracket \Gamma; \Delta \Vdash (\mathtt{while}\ e\ \mathtt{do}\ c\ \mathtt{end}) : \mathsf{U} \rrbracket \gamma \delta_0 = W^n_\gamma(\delta \mapsto \{\bot\}) \delta_0$, i.e., the semantics is fully determined at iteration n, and does not change under further iterations. Thus nonempty sets X with $\bot \notin X$ do not approximate \emptyset , i.e., $X \not\sqsubseteq \emptyset$.

Proposition 4.1. For any set S, it holds that $(\mathcal{P}_{\star}(S), \sqsubseteq)$ is an ω -complete partial order with least element.

Proof. The least element is $\{\bot\}$. For ω -completeness, suppose that

$$X_0 \sqsubseteq X_1 \sqsubseteq X_2 \sqsubseteq \dots$$

is an ω -chain. In the case that every X_n contains \bot , it is easy to check that the supremum is $\bigsqcup_i X_i := \bigcup_i X_i$. If instead there exists n such that $\bot \notin X_n$ then necessarily $X_m = X_n$ for all $m \ge n$, so the supremum is $\bigsqcup_i X_i := X_n$. (In the case that no X_n is \emptyset , the above coincides with the Plotkin powerdomain.)

In the proof of the following proposition we use the *strict union* operation on $\mathcal{P}_{\star}(S)$, which models nondeterministic choice:

$$X \uplus Y = \begin{cases} \emptyset & \text{if } X = \emptyset \text{ or } Y = \emptyset, \\ X \cup Y & \text{otherwise.} \end{cases}$$

Proposition 4.2. The function W_{γ} defined by (1) is continuous with respect to the pointwise partial order on $\mathcal{P}_{\star}(\llbracket \Delta \rrbracket \times \{\star\})^{\llbracket \Delta \rrbracket}$.

Proof. The function W_{γ} is the composition of several maps, two of which need their continuity checked. The first one is monadic evaluation

$$\mathcal{P}_{\star}(T)^{S} \times \mathcal{P}_{\star}(S) \to \mathcal{P}_{\star}(T)$$
$$(g, X) \mapsto g^{\dagger}(X)$$

Monotonicity is straightforward. To establish continuity in X, consider an ω -chain $X_0 \sqsubseteq X_1 \sqsubseteq X_2 \sqsubseteq \ldots$ If every X_n contains \bot , then

$$g^{\dagger}(\bigsqcup_{i} X_{i}) = g^{\dagger}(\bigcup_{i} X_{i}) = \{\bot\} \cup \bigcup \{g(x) \mid x \in (\bigcup_{i} X_{i}) - \{\bot\}\}$$

= $\{\bot\} \cup \bigcup_{i} \{g(x) \mid x \in X_{i} - \{\bot\}\} = \bigsqcup_{i} g^{\dagger}(X_{i}).$

Otherwise the chain is eventually constant and g preserves its supremum because it is monotone.

To establish continuity in g, consider an ω -chain $g_0 \sqsubseteq g_1 \sqsubseteq g_2 \sqsubseteq \ldots$ with respect to the pointwise order on $\mathcal{P}_{\star}(T)^S$. If there are $k \in \mathbb{N}$ and $x \in X$ such that $g_k(x) = \emptyset$ then $(\bigsqcup_i g_i)^{\dagger}(X) = \emptyset = \bigsqcup_i g_i^{\dagger}(X)$. Thus it remains to prove that the sets

$$(\bigsqcup_i g_i)^{\dagger}(X) = \{\bot \mid \bot \in X\} \cup \bigcup_{x \in X \setminus \{\bot\}} \bigsqcup_i g_i(x) =: A$$

and

$$\bigsqcup_{i} g_{i}^{\dagger}(X) = \bigsqcup_{i} \left(\{ \bot \mid \bot \in X \} \cup \bigcup_{x \in X \setminus \{\bot\}} g_{i}(x) \right) =: B.$$

are equal, assuming $g_i(x) \neq \emptyset$ for all $i \in \mathbb{N}$ and $x \in X$. Clearly, $\bot \in A \Leftrightarrow \bot \in B$. To show that $A \setminus \{\bot\} = B \setminus \{\bot\}$, we first note that, for all $k \in \mathbb{N}$, $x \in X$ and $y \neq \bot$,

$$y \in \coprod_i g_i(x) \iff \exists i \in \mathbb{N} . y \in g_i(x) \setminus \{\bot\},\$$

thanks to the standing assumption that \emptyset does not appear in the supremum. Now, if $y \in A \setminus \{\bot\}$ then $y \in \bigsqcup_i g_i(x)$ for some $x \in X \setminus \{\bot\}$, hence $y \in g_j(x)$ for some $j \in \mathbb{N}$, and so $y \in B$. Conversely, if $y \in B \setminus \{\bot\}$ then $y \in g_j(x)$ for some $j \in \mathbb{N}$ and $x \in X \setminus \{\bot\}$, hence $y \in \bigsqcup_i g_i(x)$, and so $y \in A$.

The other function partaking in W_{γ} is

$$\begin{split} C: \mathcal{P}_{\star}(\{\mathsf{ff},\mathsf{tt}\}) \times \mathcal{P}_{\star}(S) \times \mathcal{P}_{\star}(S) &\to \mathcal{P}_{\star}(S) \\ C: (X,Y,Z) &\mapsto \mathsf{let}\ b \leftarrow X \ \mathsf{in} \ \begin{cases} Y & \mathsf{if}\ b = \mathsf{tt} \\ Z & \mathsf{if}\ b = \mathsf{ff} \end{cases} \end{split}$$

We only verify continuity in Y, which is done by case analysis on X:

- If $\mathsf{tt} \notin X$ then, C is constant in Y.
- If $X = \{\mathsf{tt}\}$ then $C(\{\mathsf{tt}\}, Y, Z) = Y$ is a projection.
- If $X = \{\mathsf{tt}, \mathsf{ff}\}$ then $C(Y) = Y \uplus Z$.
- If $X = \{\mathsf{tt}, \bot\}$ then $C(Y) = Y \cup \{\bot \mid Y \neq \emptyset\}$.
- If $X = \{\mathsf{tt}, \mathsf{ff}, \bot\}$ then $C(Y) = (Y \uplus Z) \cup \{\bot \mid (Y \uplus Z) \neq \emptyset\}.$

In each case, continuity in Y is easy to show.

It follows from Propositions 4.1 and 4.2 that the semantic definition of while commands in (2) is well-defined.

4.1. Semantics of first-order functions

We briefly address the denotational semantics of first-order functions from Section 3.1. The denotation of a function

let
$$f(x_1:\tau_1,\ldots,x_n:\tau_n):\sigma:=e$$

is just the denotation of its body,

$$\llbracket f \rrbracket := \llbracket x_1 : \tau_1, \dots, x_n : \tau_n \vdash e : \sigma \rrbracket : \llbracket \tau_1 \rrbracket \times \dots \times \llbracket \tau_n \rrbracket \to \mathcal{P}_{\star}(\llbracket \sigma \rrbracket).$$

We need to be a bit careful about the denotation of a function call $f(e_1, \ldots, e_n)$ because the arguments e_1, \ldots, e_n may diverge or yield nondeterministic values, so it matters if and when they are evaluated. We opt for the call-by-value evaluation strategy that is most commonly seen in imperative languages.

Given sets S and T, define the monadic pairing $\langle -, - \rangle_{\star} : \mathcal{P}_{\star}(S) \times \mathcal{P}_{\star}(T) \to \mathcal{P}_{\star}(S \times T)$ by

$$\langle X, Y \rangle_{\star} := (\text{let } x \leftarrow X \text{ in let } y \leftarrow Y \text{ in } \{(x, y)\}).$$

Note that the binding order does not matter, i.e., (let $x \leftarrow X$ in let $y \leftarrow Y$ in \cdots) = (let $y \leftarrow Y$ in let $x \leftarrow X$ in \cdots)}) because \mathcal{P}_{\star} is a commutative monad. Monadic pairing is easily extended from pairs to n-tuples for arbitrary n.

The denotation of a function call is application adorned with the monad structure:

$$\llbracket \Gamma \vdash f(e_1, \dots, e_n) : \sigma \rrbracket \gamma := \llbracket f \rrbracket^{\dagger} \langle \llbracket e_1 \rrbracket \gamma, \dots, \llbracket e_n \rrbracket \gamma \rangle_{\star}.$$

5. Nondeterminism and parallelism

The guarded case construct of Clerical requires parallel evaluation of the guards leading to potential nondeterminism. As a result, several basic operations involving nondeterminism and parallel evaluation are definable in Clerical.

A simple binary nondeterministic choice between two pure expressions $\Gamma \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau$ is implemented by

$$\Gamma \vdash (\mathtt{case} \; \mathsf{true} \Rightarrow e_1 \; | \; \mathsf{true} \Rightarrow e_2 \; \mathtt{end}) : \tau$$

This has the derived semantics

$$\llbracket \Gamma \vdash (\mathsf{case} \; \mathsf{true} \Rightarrow e_1 \; | \; \mathsf{true} \Rightarrow e_2 \; \mathsf{end}) : \tau \rrbracket \gamma = \llbracket \Gamma \vdash e_1 : \tau \rrbracket \gamma \uplus \llbracket \Gamma \vdash e_2 : \tau \rrbracket \gamma$$
 using the strict union operation defined above Proposition 4.2.

It is also possible to implement McCarthy's ambiguous choice between $\Gamma \vdash e_1 : \tau$ and $\Gamma \vdash e_2 : \tau$, by:

$$\Gamma \vdash (\mathtt{case} \ (\mathtt{var} \ x := e_1 \ \mathtt{in} \ \mathtt{true}) \Rightarrow e_1 \mid (\mathtt{var} \ x := e_2 \ \mathtt{in} \ \mathtt{true}) \Rightarrow e_2 \ \mathtt{end}) : \tau$$

Writing $\Gamma \vdash e_1$ amb $e_2 : \tau$ for the above, we have

```
\begin{split} & \llbracket \Gamma \vdash e_1 \text{ amb } e_2 : \tau \rrbracket \, \gamma = \\ & (\llbracket \Gamma \vdash e_1 : \tau \rrbracket \, \gamma \, \uplus \, \llbracket \Gamma \vdash e_2 : \tau \rrbracket \, \gamma) \setminus \{ \bot \mid \bot \notin (\llbracket \Gamma \vdash e_1 : \tau \rrbracket \, \gamma \, \cap \, \llbracket \Gamma \vdash e_2 : \tau \rrbracket \, \gamma) \} \; . \end{split}
```

A well-known issue with ambiguous choice is that it is not monotonic with respect to any reasonable powerdomain partial ordering [Lev07], meaning that it does not have a domain-theoretic semantics. Indeed, such a failure of monotonicity holds with respect to the ordering \sqsubseteq we have defined on our powerdomain $\mathcal{P}_{\star}(-)$. It follows that the denotational semantics of Clerical expressions does not, in general, act monotonically in the semantics of subexpressions. We present a simple example of this phenomen.

Consider the expression below, which is parametric in the subexpression $\vdash e$: B:

```
case | e \Rightarrow while true do skip end | true \Rightarrow skip end
```

In the case that $\llbracket e \rrbracket = \{\bot\}$, the denotation of the whole expression is $\{\star\}$. If instead $\llbracket e \rrbracket = \{\mathsf{tt}\}$, then the denotation of the expression is $\{\star, \bot\}$. This breaks monotonicity because $\{\bot\} \sqsubseteq \{\mathsf{tt}\}$ in $\mathcal{P}_{\star}(\{\mathsf{ff},\mathsf{tt}\})$, but $\{\star\} \not\sqsubseteq \{\star, \bot\}$ in $\mathcal{P}_{\star}(\{\star\})$. Similarly, considering the case in which e is an erroneous expression (i.e., $\llbracket e \rrbracket = \emptyset$), we have $\{\bot\} \sqsubseteq \emptyset$, but $\{\star\} \not\sqsubseteq \emptyset$.

Given the non-monotonicity properties illustrated above, it is perhaps surprising that it is possible to give Clerical a denotational semantics involving a domain-theoretic fixed-point argument to establish the semantics of while loops. The reason for this is that the operator W_{γ} , used in defining the semantics of while loops, is defined purely as a combination of conditional statements and sequencing, and does not involve the problematic non-monotonic aspects of Clerical. Indeed, as Proposition 4.2 establishes, the particular operator W_{γ} is always continuous, hence a fortiori monotone.

Clerical, as we have defined it, does not include any primitive operator for manipulating booleans. This does not limit expressivity since logical operations are definable using the conditional construct. For example, negation of a boolean expression b is defined by

$$\neg b := (\text{if } b \text{ then false else true end})$$

The most concise way of defining the disjunction of two boolean typed expressions b_1 and b_2 is by if b_1 then true else b_2 end. This is asymmetric: if $\llbracket b_1 \rrbracket = \{ tt \}$ and $\llbracket b_2 \rrbracket = \{ tt \}$ then the disjunction has denotation $\{ tt \}$, whereas if $\llbracket b_1 \rrbracket = \{ tt \}$ and $\llbracket b_2 \rrbracket = \{ tt \}$ then the resulting denotation is $\{ tt \}$. It is similarly possible to define a symmetric strict disjunction by

if
$$b_1$$
 then (if b_2 then true else true end) else b_2 end

More interestingly, the guarded case construct can be used to define Plotkin's parallel or [Plo77], another symmetric version of disjunction which requires parallel evaluation, by

$$b_1 \ \bar{\lor} \ b_2 := (\mathtt{case} \ b_1 \Rightarrow \mathtt{true} \ | \ b_2 \Rightarrow \mathtt{true} \ | \ \neg b_1 \Rightarrow \neg b_2 \ \mathtt{end})$$

From a logical perspective, when applied to deterministic expressions, $b_1 \vee b_2$ computes the disjunction of b_1 and b_2 from Kleene (and Priest) 3-valued logic.

Since Clerical is a nondeterministic language, the defined logical operators all have an induced effect on nondeterministic and erroneous expressions. For example, the derived full semantics for parallel or is:

$$\llbracket\Gamma \vdash b_1 \bar{\vee} b_2 : \mathsf{B}\rrbracket(\gamma) = \bigcup_{\substack{v_1 \in \llbracket\Gamma \vdash b_1 : \mathsf{B}\rrbracket(\gamma) \\ v_2 \in \llbracket\Gamma \vdash b_2 : \mathsf{B}\rrbracket(\gamma)}} \begin{cases} \{\mathsf{tt}\} & \text{if } v_1 = \mathsf{tt} \vee v_2 = \mathsf{tt}, \\ \{\mathsf{ff}\} & \text{if } v_1 = \mathsf{ff} \wedge v_2 = \mathsf{ff}, \\ \{\bot\} & \text{otherwise.} \end{cases}$$

6. Specification logic

We devise a Hoare-style specification logic for proving the correctness of Clerical expressions. As briefly discussed in Section 2, it is necessary to have both forms of correctness: partial and total. While both types of correctness guarantee the avoidance of erroneous execution, the difference between them is that partial correctness allows non-termination and total correctness forbids it. Having both forms of correctness is necessary for the logic's correctness and expressivity, as will become clear when we present the proof rules in Section 6.1.

First, we formulate the correctness specifications we will use, which are written in the style of Hoare-style triples. For each pure expression and general expression, we define the notions of partial and total correctness, yielding four variants, as follows.

Given a context $\Gamma = (x_1:\tau_1, \ldots, x_n:\tau_n)$, a pure expression $\Gamma \vdash e : \tau$, a precondition $A \subseteq \llbracket \Gamma \rrbracket$ and a postcondition $B \subseteq \llbracket \Gamma \rrbracket \times \llbracket \tau \rrbracket$, we define the partial and total (readonly) correctness triples respectively as

$$\Gamma \vdash \{A\} \ e \ \{B\}^\mathsf{p} \iff \forall \gamma \in A \ . \ (\llbracket e \rrbracket \ \gamma \neq \emptyset \ \land \ \forall v \in \llbracket e \rrbracket \ \gamma \ . \ (v \neq \bot \Rightarrow (\gamma, v) \in B)),$$

$$\Gamma \vdash \{A\} \ e \ \{B\}^\mathsf{t} \iff \forall \gamma \in A \ . \ (\llbracket e \rrbracket \ \gamma \neq \emptyset \ \land \ \forall v \in \llbracket e \rrbracket \ \gamma \ . \ (v \neq \bot \land (\gamma, v) \in B)).$$

Here, $\llbracket e \rrbracket$ is an abbreviation for $\llbracket \Gamma \vdash e : \tau \rrbracket$. Both forms of correctness state that the error state is not reached and that any value computed by e satisfies the postcondition. Note that partial correctness does not require termination, whereas total correctness guarantees it.

Given a logical formula ϕ in variables $\vec{x} = (x_1, \dots, x_n) \in \llbracket \Gamma \rrbracket$ and a formula ψ in variables $(\vec{x}, y) \in \llbracket \Gamma \rrbracket \times \llbracket \tau \rrbracket$, the triple

$$\Gamma \vdash \{\{\vec{x} \in \llbracket \Gamma \rrbracket \mid \phi\}\} e \{\{(\vec{x}, y) \in \llbracket \Gamma \rrbracket \times \llbracket \tau \rrbracket \mid \psi\}\}^{\mathsf{p}}$$

can be written more concisely as

$$\Gamma \vdash \{\phi\} \, e \, \{y : \tau \mid \psi\}^{\mathsf{p}}.\tag{3}$$

Read the above as: if ϕ holds then e does not err, and if it terminates then every value y computed by e satisfies ψ . By replacing the symbol \mathbf{p} with \mathbf{t} we obtain the analogous notation for total correctness: if ϕ holds then e does not err, it terminates and every value y computed by e satisfies ψ .

The analogous triples for general expressions are more complicated because they need to take state-change into account. Let Γ ; $\Delta \Vdash c : \tau$ be a general expression, $A \subseteq \llbracket \Gamma \rrbracket \times \llbracket \Delta \rrbracket$ and $B \subseteq \llbracket \Gamma \rrbracket \times \llbracket \Delta \rrbracket \times \llbracket \tau \rrbracket$. Then we define the *partial* and *total* (read-write) correctness triples respectively as

$$\Gamma; \Delta \Vdash \{A\} \ c \ \{B\}^{\mathsf{p}} \iff \forall (\gamma, \delta) \in A \ . \ (\llbracket c \rrbracket \ \gamma \ \delta \neq \emptyset \ \land \ \forall w \in \llbracket c \rrbracket \ \gamma \ \delta \ . \ (w \neq \bot \Rightarrow (\gamma, \delta_w, v_w) \in B),$$

and

$$\Gamma; \Delta \Vdash \{A\} \ c \ \{B\}^{\mathsf{t}} \iff \\ \forall (\gamma, \delta) \in A \ . \ (\llbracket c \rrbracket \ \gamma \ \delta \neq \emptyset \ \land \ \forall w \in \llbracket c \rrbracket \ \gamma \ \delta \ . \ (w \neq \bot \land (\gamma, \delta_w, v_w) \in B),$$

where $\llbracket c \rrbracket$ is an abbreviation for $\llbracket \Gamma; \Delta \Vdash c : \tau \rrbracket$, and we use the fact that any element $w \in \llbracket c \rrbracket \gamma \delta$ which is not \bot is of the form $w = (\delta_w, v_w)$, so the conclusion $(\gamma, \delta_w, v_w) \in B$ states that, in the new read-write state (γ, δ_w) , the return value v_w satisfies the postcondition B.

Given a formula ϕ in variables $(\vec{x}, \vec{y}) \in \llbracket \Gamma \rrbracket \times \llbracket \Delta \rrbracket$ and a formula ψ in variables $(\vec{x}, \vec{y}, z) \in \llbracket \Gamma \rrbracket \times \llbracket \Delta \rrbracket \times \llbracket \tau \rrbracket$, the triple

$$\Gamma; \Delta \Vdash \{\{(\vec{x}, \vec{y}) \in \llbracket \Gamma \rrbracket \times \llbracket \Delta \rrbracket \mid \phi\}\} \ c \ \{\{(\vec{x}, \vec{y}, z) \in \llbracket \Gamma \rrbracket \times \llbracket \Delta \rrbracket \times \llbracket \tau \rrbracket \mid \psi\}\}^{\mathsf{p}}.$$

can again be written more concisely as

$$\Gamma; \Delta \Vdash \{\phi\} c \{z:\tau \mid \psi\}^{\mathsf{p}}. \tag{4}$$

Read the above as: if ϕ holds then c does not err, and if it terminates then it computes a value satisfying ψ in the new state. By replacing \mathbf{p} with \mathbf{t} we get analogous notation for total correctness: if ϕ holds then c does not err, it terminates and computes a value satisfying ψ in the new state.

We introduce one further notational convention that streamlines reasoning about expressions of the trivial type U: if ψ is a formula in which the variable y does not appear freely, then we write $\{\psi\}$ instead of $\{y: \mathsf{U} \mid \psi\}$.

6.1. Proof rules

The notation (3) is general in the sense that it can be used to express any correctness triple $\Gamma \vdash \{A\} \ e \ \{B\}^p$ by taking ϕ to be the formula $\vec{x} \in A$ and ψ to be $(\vec{x}, y) \in B$. A similar observation holds for (4), therefore, notations (3) and (4) may be used freely in rules about correctness triples.

Many rules come in pairs differing only in the use of symbols p and t. To avoid pointless duplication in such cases, we use the symbol \star to indicate that either p or t can be inserted in its place, consistently throughout a rule. For example, the rule Ro-Conj in Figure 6.1 decompresses to the rules

Ro-Part-Conj
$$\frac{\Gamma \vdash \{\phi\} e \{y : \tau \mid \psi_1\}^{\mathsf{p}} \qquad \Gamma \vdash \{\phi\} e \{y : \tau \mid \psi_2\}^{\mathsf{p}}}{\Gamma \vdash \{\phi\} e \{y : \tau \mid \psi_1 \land \psi_2\}^{\mathsf{p}}}$$
Ro-Tot-Conj
$$\frac{\Gamma \vdash \{\phi\} e \{y : \tau \mid \psi_1\}^{\mathsf{t}} \qquad \Gamma \vdash \{\phi\} e \{y : \tau \mid \psi_2\}^{\mathsf{t}}}{\Gamma \vdash \{\phi\} e \{y : \tau \mid \psi_1 \land \psi_2\}^{\mathsf{t}}}$$

We partition the rules into three groups: the *general rules* in Figure 6.1, the arithmetical rules in Figure 6.2, and the operational rules in Figure 6.3. In all

of them, it is presupposed that the expressions appearing are well-typed in the indicated contexts and with the indicated type and that all the formulas are well-scoped in the given contexts. Many rules have a logical side-condition for the rule to apply, written as an additional premise. When a formula ϕ in variables $\vec{x} = (x_1, \ldots, x_n) \in \llbracket \Gamma \rrbracket$ is written as a premise, it means that the rule only applies in the case that ϕ holds for all $\vec{x} \in \llbracket \Gamma \rrbracket$.

The general rules in Figure 6.1 postulate logical principles and govern variables and constants. The rules Ro-Rw and Rw-Ro allow passage between reasoning about pure and general expressions.

Among the arithmetical rules in Figure 6.2 we point out the difference between the partial reciprocal rule RO-PART-RECIP and its total variant RO-TOT-RECIP. In the former, we may assume the argument to be non-zero, while in the latter we have to prove it. A similar phenomenon happens with the strict comparison x < y on the reals, where the partial rule RO-PART-REAL-LT provides the assumption $x \neq y$, whereas its total variant RO-TOT-REAL-LT requires a proof of $x \neq y$. The condition $x \neq y$ appears in these rules because x < y diverges when x = y.

The limit rule RO-LIM states that $\lim x \cdot e$ computes $y \in \mathbb{R}$ when e denotes a sequence rapidly converging to t, i.e., any value computed by e is within distance 2^{-x} of y. Note that the first premise imposes total correctness, even in the partial version of the rule. This is necessary because the denotation of $\lim x \cdot e$ is \emptyset (rather than $\{\bot\}$) as soon e fails to be total.

The first three operational rules in Figure 6.3, which regulate sequencing, new variables and assignment, require no comment. The remaining rules all handle the conditions and guards in a similar fashion, so we only look at the rule for conditional Rw-Cond, keeping in mind that the boolean expression e is nondeterministic. The postcondition θ describes the possible values b of e. The preconditions $\theta[tt/b]$ and $\theta[ff/b]$ of c_1 and c_2 should respectively be read as "if e evaluates to true" and "if e evaluates to false". To see this formally, consider the triple in the premise

$$\Gamma, \Delta \vdash \{\phi\} \, e \, \{b \mathpunct{:}\mathsf{B} \mid \theta\}^\star$$

and a state $\gamma \in \llbracket \Gamma \rrbracket$ that satisfies the precondition ϕ . If $\mathsf{tt} \in \llbracket \Gamma \vdash e : \mathsf{B} \rrbracket \gamma$, by the definition of triples, γ satisfies $\theta[\mathsf{tt}/b]$. Hence, $\theta[\mathsf{tt}/b]$ is a necessary condition of the states satisfying ϕ to let e admit a nondeterministic branch leading to tt , allowing a possibility of having some branches fail to terminate when $\star = \mathsf{p}$. Due to nondeterminism, the conditions $\theta[\mathsf{tt}/b]$ and $\theta[\mathsf{ff}/b]$ need not exclude each other, even when θ is as informative as it can be. Incidentally, if desired the original precondition ϕ may be incorporated into θ using the admissible rule Ro-Refine; see Section 6.2.

Figure 6.1: General proof rules

Coercion and exponentiation:

RO-COERCE

$$\frac{\Gamma \vdash \{\phi\} e \{y: \mathsf{Z} \mid \psi[\iota_{\mathbb{Z}}(y)/y]\}^{\star}}{\Gamma \vdash \{\phi\} \iota(e) \{y: \mathsf{R} \mid \psi\}^{\star}}$$

RO-EXP

$$\frac{\Gamma \vdash \{\phi\} e \{x: \mathsf{Z} \mid \psi[2^x/y]\}^*}{\Gamma \vdash \{\phi\} 2^e \{y: \mathsf{R} \mid \psi\}^*}$$

Integer arithmetic:

RO-INT-OP

$$\Gamma \vdash \{\phi\} e_1 \{y_1: \mathsf{Z} \mid \psi_1\}^* \qquad \Gamma \vdash \{\phi\} e_2 \{y_2: \mathsf{Z} \mid \psi_2\}^*$$

$$\frac{\psi_1 \land \psi_2 \Rightarrow \psi[(y_1 * y_2)/y]}{\Gamma \vdash \{\phi\} e_1 \circledast e_2 \{y: \mathsf{Z} \mid \psi\}^*}$$

Real arithmetic:

RO-REAL-OP

$$\Gamma \vdash \{\phi\} e_1 \{y_1: \mathsf{R} \mid \psi_1\}^* \qquad \Gamma \vdash \{\phi\} e_2 \{y_2: \mathsf{R} \mid \psi_2\}^*$$

$$\frac{\psi_1 \land \psi_2 \Rightarrow \psi[(y_1 * y_2)/y]}{\Gamma \vdash \{\phi\} e_1 \boxtimes e_2 \{y: \mathsf{R} \mid \psi\}^*}$$

Reciprocal:

$$\begin{array}{ll} \text{Ro-Part-Recip} & \text{Ro-Tot-Recip} \\ \Gamma \vdash \{\phi\} \, e \, \{x : \mathsf{R} \mid \theta\}^\mathsf{p} & \Gamma \vdash \{\phi\} \, e \, \{x : \mathsf{R} \mid \theta\}^\mathsf{t} \\ \frac{\theta \land x \neq 0 \Rightarrow \psi[x^{-1}/y]}{\Gamma \vdash \{\phi\} \, e^{-1} \, \{y : \mathsf{R} \mid \psi\}^\mathsf{p}} & \frac{\theta \Rightarrow x \neq 0 \land \psi[x^{-1}/y]}{\Gamma \vdash \{\phi\} \, e^{-1} \, \{y : \mathsf{R} \mid \psi\}^\mathsf{t}} \end{array}$$

Integer comparison $\sim \in \{=, <\}$:

RO-INT-COMP

$$\Gamma \vdash \{\phi\} e_1 \{y_1: \mathsf{Z} \mid \psi_1\}^* \qquad \Gamma \vdash \{\phi\} e_2 \{y_2: \mathsf{Z} \mid \psi_2\}^*$$

$$\frac{\psi_1 \land \psi_2 \Rightarrow \psi[(y_1 \sim y_2)/b]}{\Gamma \vdash \{\phi\} e_1 \sim e_2 \{b: \mathsf{B} \mid \psi\}^*}$$

Real comparison:

RO-PART-REAL-LT
$$\Gamma \vdash \{\phi\} e_{1} \{y_{1}:R \mid \psi_{1}\}^{p} \qquad \Gamma \vdash \{\phi\} e_{2} \{y_{2}:R \mid \psi_{2}\}^{p}$$

$$\frac{\psi_{1} \land \psi_{2} \land y_{1} \neq y_{2} \Rightarrow \psi[(y_{1} < y_{2})/b]}{\Gamma \vdash \{\phi\} e_{1} < e_{2} \{b:B \mid \psi\}^{p}}$$

$$\frac{\text{RO-TOT-REAL-LT}}{\Gamma \vdash \{\phi\} e_{1} \{y_{1}:R \mid \psi_{1}\}^{t}} \qquad \Gamma \vdash \{\phi\} e_{2} \{y_{2}:R \mid \psi_{2}\}^{t}$$

$$\frac{\psi_{1} \land \psi_{2} \Rightarrow y_{1} \neq y_{2} \land \psi[(y_{1} < y_{2})/b]}{\Gamma \vdash \{\phi\} e_{1} < e_{2} \{b:B \mid \psi\}^{t}}$$

Limit:

$$\frac{\Gamma, x: \mathbf{Z} \vdash \{\phi\} \, e \, \{z: \mathbf{R} \mid \theta\}^t \qquad \phi \Rightarrow \exists y \in \mathbb{R} \, . \, \psi \land \forall x \in \mathbb{Z} \, . \, \forall z \in \mathbb{R} \, . \, \theta \Rightarrow |z - y| < 2^{-x}}{\Gamma \vdash \{\phi\} \, \lim \, \mathfrak{F0e} \, \{y: \mathbf{R} \mid \psi\}^*}$$

Figure 6.3: Operational proof rules

The rules for nondeterministic guarded cases employ a similar technique. The possible values of the guards e_i are described by the corresponding postconditions θ_i , after which each case is considered under the precondition $\theta_i[\mathsf{tt}/b]$. Again, $\theta_i[\mathsf{tt}/b]$ need not preclude $\theta_i[\mathsf{ff}/b]$, nor any of the other preconditions $\theta_j[\mathsf{tt}/b]$ with $j \neq i$. One notable point in the total variant Rw-Tot-Case is that it is not obtained from Rw-Part-Case by changing p to p. In Rw-Tot-Case, each guard is required to be equipped with one partial correctness triple and one total correctness triple:

$$\Gamma, \Delta \vdash \{\phi\} e_i \{b: \mathsf{B} \mid \theta_i\}^\mathsf{p} \quad \text{and} \quad \Gamma, \Delta \vdash \{\phi_i\} e_i \{b: \mathsf{B} \mid b = \mathsf{tt}\}^\mathsf{t}$$

The triple for capturing the values of e_i is allowed to stay partial, though the guarded case requires to be total. The reason is that the total correctness of the overall case expression does not require each of the guards to be total and we only need to make sure that there is a guard that can be chosen. The extra implication in the premise $\phi \Rightarrow \phi_1 \lor \cdots \lor \phi_n$ ensures that. The precondition ϕ_i of the total correctness triple stands for the condition in which e_i terminates and evaluates to and only to tt.

Lastly, we explain the rules for the loop while e do c end. A superficial reading of RW-PART-WHILE looks suspect because c seemingly need not satisfy an invariant. One has to read both premises together: the invariant ϕ starts as the precondition for b passes to c via an intermediate statement θ , and emerges as the postcondition for c.

The total rule RW-TOT-WHILE establishes an invariant the same way, and ensures termination by means of a well-founded relation, as follows. The formula ψ involves the read-only variables Γ , the mutable variables $\vec{y}:\Delta$, and a read-only copy $\vec{z}:\Delta'$ of the mutable variables. Given a read-only state $\gamma \in [\Gamma]$, an infinite ψ -chain is a sequence $s:\mathbb{N} \to [\![\Delta]\!]$ of states such that $\psi[s_i/\vec{z},\gamma/\vec{x},s_{i+1}/\vec{y}]$ holds for all $i\in\mathbb{N}$. Say that ψ is well-founded under condition ϕ when, for every $\gamma \in [\![\Gamma]\!]$ and $\delta \in [\![\Delta]\!]$ satisfying $\phi[\gamma/\vec{x},\delta/\vec{y}]$, there is no infinite ψ -chain starting from δ . In the rule RW-TOT-WHILE, the precondition $\vec{z}=\vec{y}$ and the postcondition ψ together express the fact that the state just before the execution of c and the state just after forms a link in a ψ -chain. The loop must therefore terminate, or else it would yield an infinite ψ -chain.

Theorem 6.1. The proof rules given in Figures 6.1 to 6.3 are sound: a derivable correctness triple is valid.

Proof. The proof proceeds by induction on the derivation of a triple, which amounts to checking for each rule that its conclusion is valid if the premises are. Establishing the soundness of general rules in Figure 6.1 is just an easy exercise in logic.

To check the soundness of the arithmetical rules in Figure 6.2 one has to unwind the semantics of the premises and conclusions, and compare them to the denotational semantics of expressions involved. We spell out just the total version of the limit rule Ro-Lim. Consider any $\gamma \in \llbracket \Gamma \rrbracket$ and $k \in \mathbb{Z}$ such that $\phi(\gamma, k)$. The first premise guarantees that $\llbracket e \rrbracket(\gamma, k) \subseteq \mathbb{R}$, as well as $\theta(\gamma, k, u)$ for all $u \in \llbracket e \rrbracket(\gamma, k)$. The second premise further ensures the existence of $t \in \mathbb{R}$ such that $\psi(\gamma, k, t)$ and $\forall u \in \llbracket e \rrbracket(\gamma, k) \cdot | u - t | \leq 2^{-k}$. Thus, the conditions of the first clause in the semantics of $\lim x \cdot e$ in Figure 4.1 are met, hence $\llbracket \lim x \cdot e \rrbracket \gamma = \{t\}$, yielding the desired conclusion.

6.2. Admissible rules

Some useful admissible rules are collected in Figure 6.4. There are verified by structural induction on the derivation of the premises, see Section 9. The rules RO-TOT-PART and RW-TOT-PART allow us to pass from total to partial correctness. The rules RO-REFINE and RW-REFINE are useful for eliding an statement θ that does not play any role in a proof, where the latter rule requires on the side that θ not mention the read-write variables.

$$\frac{\Gamma \vdash \{\phi\} e \{y:\tau \mid \psi\}^{t}}{\Gamma \vdash \{\phi\} e \{y:\tau \mid \psi\}^{p}} \qquad \frac{\Gamma; \Delta \Vdash \{\phi\} c \{z:\tau \mid \psi\}^{t}}{\Gamma; \Delta \Vdash \{\phi\} c \{z:\tau \mid \psi\}^{p}} \\
\frac{\Gamma; \Delta \vdash \{\phi\} e \{y:\tau \mid \psi\}^{p}}{\Gamma; \Delta \vdash \{\phi\} e \{y:\tau \mid \psi\}^{*}} \qquad \frac{\Gamma; \Delta \vdash \{\phi\} e \{y:\tau \mid \psi\}^{p}}{\Gamma; \Delta \vdash \{\phi\} e \{y:\tau \mid \psi\}^{*}} \qquad \frac{\Gamma; \Delta \vdash \{\phi\} e \{y:\tau \mid \psi\}^{*}}{\Gamma; \Delta \vdash \{\phi \land \theta\} e \{y:\tau \mid \psi \land \theta\}^{*}}$$

Figure 6.4: Admissible rules

6.3. Specification of functions and function calls

Given a function definition

let
$$f(x_1:\tau_1,\ldots,x_n:\tau_n):\sigma:=e$$

the rule governing function calls to f is

RO-CALL
$$\Gamma \vdash \{\phi\} e_i \{x_i : \tau_i \mid \theta_i\}^* \quad \text{for } i = 1, \dots, n$$

$$\Gamma, x_1 : \tau_1, \dots, x_n : \tau_n \vdash \{\theta_1 \land \dots \land \theta_n\} e \{y : \sigma \mid \psi\}^*$$

$$\Gamma \vdash \{\phi\} f(e_1, \dots, e_n) \{y : \sigma \mid \psi\}^*$$

It is typically used indirectly, as follows. Upon defining f, we prove an assertion

$$x_1:\tau_1,\ldots,x_n:\tau_n \vdash \{\phi_f\} e \{y:\sigma \mid \psi_f\}^*$$
 (5)

that is deemed to usefully characterize the body of the definition e. Then, to establish

$$\Gamma \vdash \{\phi\} f(e_1, \dots, e_n) \{y : \sigma \mid \psi\}^*$$
(6)

we prove for each i = 1, ..., n an assertion $\Gamma \vdash \{\phi\} e_i \{x_i : \tau_i \mid \theta_i\}^*$ such that the implication $\theta_1 \land \cdots \land \theta_n \Rightarrow \phi_f$ holds, we verify $\psi_f \Rightarrow \psi$, and appeal to Ro-CALL and (5) to conclude (6). The method is demonstrated in the next section.

7. Example: computation of π

To showcase Clerical and its specification logic, we construct a program that computes π and prove that it really does so. We carry out the task in three steps: the definition of absolute value, the definition of sin, and a computation of π by a zero-finding procedure. Because the definition of sin uses absolute values, and computation of π uses sin, we first define functions abs and sin, using the function notation of Section 3.1.

Absolute value As a warm-up exercise we prove that the function **abs** defined in Figure 7.1, whose body we already discussed in Section 3, computes absolute values.

```
let abs(x:R):R:= lim n. case x < 2^{-n-\overline{1}} \ \Rightarrow -x |\ -2^{-n-\overline{1}} < x \ \Rightarrow x end
```

Figure 7.1: Implementation of absolute value.

The specification and proof of correctness of the body of **abs** is shown in Figure 7.2. As is customary, we interleaved code and assertions to give a sequence of reasoning steps leading from the initial precondition to the final postcondition. That is, each line of code is preceded by a precondition and succeeded by a postcondition, which doubles as the precondition for the next line code.

Figure 7.2: Specification of abs.

The outer assertion in Figure 7.2 states that any value y : R computed by the limit equals |x|. This is established by an application of Ro-Lim, which creates the obligation that the any value z : R computed by the case expression is within 2^{-n} of |x|. This in turn is proved by an applying Rw-Tot-Case, which generates obligations not shown in Figure 7.2, namely:

- $\top \Rightarrow x < 2^{-n-1} \lor -2^{-n-1} < x$,
- $\{x < 2^{-n-1}\}\ x < 2^{-n-\overline{1}}\ \{b : \mathsf{B} \mid b\}^{\mathsf{t}},$
- $\{-2^{-n-1} < x\} 2^{-n-\overline{1}} < x \{b : \mathsf{B} \mid b\}^{\mathsf{t}}.$

These obviously hold. Finally, there is an additional obligation due to Ro-Lim,

$$\top \Rightarrow \exists y \in \mathbb{R} \, . \, y = |x| \land \forall n \in \mathbb{Z}, z \in \mathbb{R} \, . \, |z - |x|| < 2^{-n} \Rightarrow |z - y| < 2^{-n},$$

which holds because we may take y = |x|.

Sine function We compute the sine function by employing its Taylor expansion at 0:

$$\sin(x) = \sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i+1)!}.$$

The method is inefficient for large x, but is good enough for 3 < x < 4, which is what we need. Define the terms of the expansion and the partial sums

$$\mathbf{t}(i,x) := \frac{(-1)^i x^{2i+1}}{(2i+1)!}$$
 and $\mathbf{S}(j,x) := \sum_{i=0}^{j} \mathbf{t}(i,x),$

```
let \sin(x:R):R:=
\lim n.
\operatorname{var} j:=\overline{0} \text{ in}
\operatorname{var} S:=x \text{ in}
\operatorname{var} t:=-x\times x\times x/\iota(\overline{0}) \text{ in}
\operatorname{while}
(\operatorname{case} 2^{-n-\overline{1}}<\operatorname{abs}(t)\Rightarrow\operatorname{true} \mid \operatorname{abs}(t)<2^{-n}\Rightarrow\operatorname{false})
\operatorname{do}
j:=j+\overline{1} ;
S:=S+t ;
t:=-t\times x\times x/\iota(\overline{2}\times j+\overline{3})
\operatorname{end} ;
S
```

Figure 7.3: The definition of sin

and recall the error bound for the j-th partial sum

$$|\sin(x) - \mathbf{S}(j, x)| \le |\mathbf{t}(j+1, x)|. \tag{7}$$

The recursive relations

$$\mathbf{t}(j+1,x) = -\mathbf{t}(j,x) \cdot x^2 / ((2j+2)(2j+3)),$$

$$\mathbf{S}(j+1,x) = \mathbf{S}(j,x) + \mathbf{t}(j+1,x)$$

with initial conditions $\mathbf{t}(0,x) = x$ and $\mathbf{S}(0,x) = x$ can be converted to computation by while loops. We do so in the definition of \sin , shown in Figure 7.3. Notice how the stopping condition for the while loop uses nondeterminism to ensure totality. It may stop if the error bound abs(t) is smaller than 2^{-n} , or continue if it is larger than 2^{-n-1} .

The correctness of the implementation is outlined in Figure 7.4. The loop invariant, abbreviated as ϕ , is $j \geq 0 \land S = \mathbf{S}(j,x) \land t = \mathbf{t}(j+1,x)$. Upon exit from the loop, the invariant ensures that S is the j-th partial sum, and the exit condition $|t| < 2^{-n}$ that the error is sufficiently small. Together they imply that S is within 2^{-n} of $\sin(x)$, as required by RO-LIM. We elide several side conditions, such us those imposed by RO-LIM and RW-TOT-CASE. The complete details of the formal proof are available in the Coq formalization, see Section 9.

Computation of π We compute π by using a root-finding algorithm to find the unique root of sin in the closed interval [3, 4]. For this, we could use the general

root-finding algorithm in [PBC⁺24], which repeatedly narrows the search interval by splitting it into two overlapping intervals each 2/3 the width of the original interval. However, the fact that we are computing a root that is known to be irrational, allows us to instead use a more efficient bisection-based search. Once again, we proceed by computing a limit whose n-th term approximates the root within 2^{-n} . The code is shown in Figure 7.5. The bisection method is initialized with the lower bound l=3 and the upper bound u=4. At each step of the iteration, we compute the midpoint $m=\frac{l+u}{2}$ and narrow the search interval to either [m,u] or [l,m], depending on the sign of $\sin(m)$. The irrationality of the root guarantees that the comparison $0 < \sin(m)$ always terminates, because m is rational and so $\sin(m) \neq 0$. The above considerations are incorporated into the loop invariant

$$l \in \mathbb{Q} \land u \in \mathbb{Q} \land 3 \le l < \pi < u \le 4 \land u - l = 2^{-k}$$
.

We leave detailed verification of correctness as exercise for the reader, who can also avoid doing it by consulting the formalized proof [PB].

8. Implementation

We turn attention to how Clerical, or a language based on it, might be implemented in practice. A sensible implementation ought to work in such a way that an error-free well-typed program (a closed expression) e of type τ evaluates to one of its denotations, i.e., if $[\![\cdot \vdash e : \tau]\!]$ () $\neq \emptyset$ then e evaluates to any $v \in [\![\cdot \vdash e : \tau]\!]$ (). More precisely, e ought to evaluate to a representation of v, with the proviso that \bot corresponds to a non-terminating evaluation.

An implementation is certainly possible in principle. To see this, we can follow the approach of [PBC⁺24] to show that Clerical programs are computable in the sense of Type Two Effectivity [Wei00]. We first endow each datatype τ with a standard Baire space representation. In particular, reals are encoded by rapidly converging sequences of (encoded) rationals. We claim that whenever $\Gamma \vdash e : \tau$ there is a type two Turing machine M which takes as input a representation of $\gamma \in \llbracket \Gamma \rrbracket$ and

- either $\llbracket \Gamma \vdash e : \tau \rrbracket \gamma = \emptyset$, or
- M diverges and $\bot \in \llbracket \Gamma \vdash e : \tau \rrbracket \gamma$, or
- M outputs a representation of an element of $\llbracket \Gamma \vdash e : \tau \rrbracket \gamma$.

The construction of M proceeds recursively on the structure of e. The most interesting is the case statement, which is implemented by combining the machines that compute the guards into a single machine that interleaves the guard computations and proceeds with the case whose guard first evaluates to true.

More interesting and relevant is the question of an actual implementation of Clerical. We implemented a proof-of-concept interpreter in OCaml, available at [BP]. The connoisseurs will recognize the strong influence of the iRRAM package for exact-real arithmetic [Mü00], which we gladly acknowledge.

We use the GNU MPFR library [MPF] to compute with large integers and multiple-precision floating-point numbers. During evaluation, real numbers are approximated by intervals whose endpoints are represented by multiple-precision floating-point numbers, rounded at the current working precision. As the computation progresses, rounding, interval arithmetic, and limit approximations contribute to making the intervals ever wider. If the intervals approximating x and y in a comparison x < y overlap, its Boolean value cannot be computed and evaluation is aborted due to loss of precision. The control returns to the top level, where the entire computation is restarted with higher working precision. The computation of a reciprocal x^{-1} behaves analogously in case the interval approximating x overlaps with 0. If the top level needs to output the result of a computation at a given precision, it keeps restarting it with ever higher working precision until the desired output precision is achieved.

The most interesting part of the interpreter is the implementation of guarded case

case
$$e_1 \Rightarrow c_1 \mid \cdots \mid e_n \Rightarrow c_n$$
 end.

Our semantics demands that one of the branches c_j must evaluate so long as one of the guards necessarily evaluates to true. Therefore, we cannot evaluate the guards e_1, \ldots, e_n sequentially one after the other, lest the evaluation get stuck in a non-terminating guard. We employed algebraic effects and handlers [PP09, BP15], which are supported in OCaml 5, to implement cooperative threads that interleave the computations of the guards. The threads periodically yield control to the main scheduler, which enforces a round-robing evaluation strategy. As soon as one of the threads e_i evaluates to true, the other ones are aborted and the computation proceeds with the corresponding case c_i . We are looking forward to future experimentation with parallel execution of guards, which can be implemented using OCaml 5 multi-core features [Siv22].

9. Formalization

We formalized Clerical in the Coq proof assistant, and proved important properties presented in this paper. The formalization can also be used to formally type-check and verify Clerical expressions with respect to given specifications. This has been done for the examples from Section 7, their correctness proofs included. Here we outline the organization of the formalization, which is freely available at [PB]:

BaseAxioms

Coq's type of propositions Prop is intuitionistic, but we work in a classical metatheory. Thus we assume excluded middle for Prop, dependent choice, as well as function extensionality and propositional extensionality.

Powerdomain

This part formalizes the domain-theoretic aspects of the powerdomain, as well as auxiliary constructions required in the formalization of the denotational semantics.

Syntax, Typing, TypingProperties

These parts formalize the syntax and typing rules of Clerical from Section 3. We use de Bruijn indices to implement variables. We also prove several properties of the type system, such as uniqueness of typing (an expression has at most one type).

Semantics, SemanticProperties

The formalization of the denotational semantics relies on the formalization of the powerdomain and uses the real numbers from Coq's standard library as the denotation of the type of reals. The denotation of a term proceeds by induction of its typing derivation. We prove that the denotation does not depend on the derivation, but only on the term.

Specification, ReasoningRules, ReasoningSoundness, ReasoningAdmissible These modules formalize Hoare triples, their reasoning rules, and show them to be sound with respect to the denotational semantics. We also show that the rules given in Section 6.2 are admissible.

examples, Mathematics, Arith

We formalized the examples from Section 7, where we assumed several familiar facts about π in Mathematics, for example that if 3 < x < 4 and $\sin x = 0$ then $x = \pi$.

Arith

In the formalized syntax of Clerical, every expression must be well-typed, and consequently equipped with a formal typing derivation. Constructing these is straightforward, but creating them by hand is time-consuming. We therefore provided automation for constructing well-typed arithmetical expressions involving variables, constants, arithmetical operations, comparisons, and coercions. We additionally automated proofs showing that such expressions satisfy the expected partial and total correctness specifications. The automation is used extensively in the formalized examples.

10. Future work

In conclusion we discuss several directions for further work.

One is to explore how Clerical could be extended to include higher-order functions and general recursion. Incorporating higher-order function without recursion should be straightforward from a language-design viewpoint. However, generalising the denotational semantics to cover higher-order functions may not be so straightforward, since the powerdomain $\mathcal{P}_{\star}(S)$ from Section 4 will have to be generalised to allow S to range over denotations of arbitrary types. With regards to general recursion, the non-monotonicity phenomena associated with the guarded case construct are likely to make it very challenging to define denotational semantics; see [Lev07] for a discussion of related issues.

Second, in this paper we have not presented any formal operational semantics for Clerical. Having one would provide an alternative and direct account of the computability of the language, as well as a framework within which implementation-relevant information, such as the scope for parallelism in the execution strategy, could be studied in a mathematical setting. Also, a formally specified operational semantics could guide implementations of Clerical and Clerical-like languages, and help estaliblish their correctness.

Third, we could further experiment with our implementation, which is good enough to evaluate the π program but cannot compete with the mature libraries for exact-real numbers. To speed it up, we should at least implement parallel execution of threads, which is supported by the latest OCaml version. A more substantive improvements would explore better evaluation strategies for nondeterminism, and compilation to a more efficient low-level language.

Fourth, there is significant room for improvement in the Coq formalization. By implementing better automation and tactics for proving correctness assertions, we would obtain a workable environment for formal verification of exact real computation, supported by the formidable machinery of Coq.

References

- [AO19] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Fifty Years of Hoare's Logic. Formal Aspects of Computing, 31(6):751–807, December 2019.
- [BCC⁺06] A. Balluchi, A. Casagrande, P. Collins, A. Ferrari, T. Villa, and A.L. Sangiovanni-Vincentelli. Ariadne: a framework for reachability analysis of hybrid automata. In 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, 2006.
- [BH98] Vasco Brattka and Peter Hertling. Feasible real random access machines. Journal of Complexity, 14(4):490–526, 1998.
- [BMR18] Franz Brauße, Norbert Müller, and Robert Rettinger. Intensionality and multi-valued limits. In *Proceedings of 15th International Conference on Computability and Complexity in Analysis (CCA)*, page 11, 2018.
- [BP] Andrej Bauer and Sewon Park. An implementation of Clerical in OCaml. Available at https://github.com/andrejbauer/clerical.
- [BP15] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. *Journal of Logical and Algebraic Methods Programming*, 84(1):108–123, 2015.
- [Bra03] Vasco Brattka. The Emperor's New Recursiveness: The Epigraph of the Exponential Function in Two Models of Computability. In Masami Ito and Teruo Imaoka, editors, Words, Languages & Combinatorics III, pages 63–72, Singapore, 2003. World Scientific Publishing.
- [EE00] Abbas Edalat and Martín Hötzel Escardó. Integration in real PCF. Information and Computation, 160(1–2):128–166, 2000.
- [ES01] Martín Hötzel Escardó and Alex Simpson. A universal characterization of the closed euclidean interval. In *Proceedings 16th Annual IEEE Symposium on Logic in Computer Science*, pages 115–125, 2001.
- [ES14] Martín Hötzel Escardó and Alex Simpson. Abstract Datatypes for Real Numbers in Type Theory. In Gilles Dowek, editor, *Rewriting and Typed Lambda Calculi*, pages 208–223. Springer International Publishing, 2014.

- [Esc96] Martín Hötzel Escardó. PCF extended with real numbers. *Theoretical Computer Science*, 162(1):79–115, 1996.
- [Her99] Peter Hertling. A Real Number Structure that is Effectively Categorical.

 *Mathematical Logic Quarterly, 45:147–182, 1999.
- [HYB14] Kohei Honda, Nobuko Yoshida, and Martin Berger. An observationally complete program logic for imperative higher-order functions. *Theoretical Computer Science*, 517:75–101, 2014.
- [JKJ⁺18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation logic. *Journal of Functional Programming*, 28:73, 2018.
- [KTD+13] Michal Konečný, Walid Taha, Jan Duracz, Adam Duracz, and Aaron Ames. Enclosing the Behavior of a Hybrid System up to and Beyond a Zeno Point. In *IEEE International Conference on Cyber-Physical* Systems, Networks, and Applications (CPSNA), pages 120–125, New York, NY, United States, 2013. Association for Computing Machinery.
- [Lam07] Branimir Lambov. RealLib: An efficient implementation of exact real arithmetic. *Mathematical Structures in Computer Science*, 17(1):81–98, 2007.
- [Lev07] Paul Blain Levy. Amb Breaks Well-Pointedness, Ground Amb Doesn't. Electronic Notes in Theoretical Computer Science, 173:221–239, 2007. Proceedings of the 23rd Conference on the Mathematical Foundations of Programming Semantics (MFPS XXIII).
- [Luc77] Horst Luckhardt. A fundamental effect in computations on real numbers. Theoretical Computer Science, 5(3):321–324, 1977.
- [MPF] The GNU MPFR library. Available at https://www.mpfr.org.
- [Mü00] Norbert T. Müller. The iRRAM: Exact arithmetic in C++. In *International Workshop on Computability and Complexity in Analysis*, pages 222–252. Springer, 2000.
- [NMB08] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Hoare type theory, polymorphism and separation. *Journal of Functional Programming*, 18(5-6):865–911, 2008.

- [NP18] Eike Neumann and Arno Pauly. A topological view on algebraic computation models. *Journal of Complexity*, 44:1–22, 2018.
- [Par21] Sewon Park. Continuous Abstract Data Types for Verified Computation. PhD thesis, KAIST, School of Computing, Daejeon, South Korea, 2021.
- [Par23] Sewon Park. Verified Exact Real Computation with Nondeterministic Functions and Limits. In Henning Fernau and Klaus Jansen, editors, Fundamentals of Computation Theory, pages 363–377. Springer, 2023.
- [PB] Sewon Park and Andrej Bauer. A formalization of Clerical in Coq. Available at https://github.com/park-sewon/coq-clerical.
- [PBC⁺24] Sewon Park, Franz Brauße, Pieter Collins, SunYoung Kim, Michal Konečný, Gyesik Lee, Norbert Müller, Eike Neumann, Norbert Preining, and Martin Ziegler. Semantics, Specification Logic, and Hoare Logic of Exact Real Computation. *Logical Methods in Computer Science*, Volume 20, Issue 2, June 2024.
- [Plo76] Gordon D Plotkin. A powerdomain construction. SIAM Journal on Computing, 5(3):452–487, 1976.
- [Plo77] Gordon D. Plotkin. LCF considered as a programming language. *Theoretical computer science*, 5(3):223–255, 1977.
- [PP09] Gordon D. Plotkin and Matija Pretnar. Handlers of Algebraic Effects. In Giuseppe Castagna, editor, *Programming Languages and Systems*, 18th European Symposium on Programming, ESOP 2009, volume 5502 of Lecture Notes in Computer Science, pages 80–94. Springer, 2009.
- [Siv22] KC Sivaramakrishnan. Retrofitting concurrency lessons from the engine room. In 27th ACM SIGPLAN International Conference on Functional Programming (ICFP 2022), September 2022.
- [Tea22] Coq Development Team. The Coq proof assistant. Available at https://coq.inria.fr/, 2022.
- [TZ99] John V Tucker and Jeffery I Zucker. Computation by while programs on topological partial algebras. *Theoretical Computer Science*, 219(1-2):379–420, 1999.
- [TZ15] JV Tucker and JI Zucker. Generalizing computability theory to abstract algebras. In *Turing's Revolution*, pages 127–160. Springer, 2015.

 $[Wei00] \qquad \hbox{Klaus Weihrauch. } \textit{Coputable analysis: an introduction. } \textbf{Springer, 2000.}$

```
\{\top\}^{t}
\lim n.
     \{\top\}^{t}
     \operatorname{var}\ j := \overline{0}\ \operatorname{in}
     \operatorname{var}\ S\ :=\ x\ \operatorname{in}
     \operatorname{var} \ t := -x \times x \times x/\iota(\overline{6}) \ \operatorname{in}
                             where \phi is j \geq 0 \land S = \mathbf{S}(j, x) \land t = \mathbf{t}(j + 1, x)
     \{\phi\}^{\mathsf{t}}
     while
          \{\phi\}^{\mathsf{t}}
           (\, \mathtt{case} \ 2^{-n-\overline{1}} < \mathtt{abs}(t) \Rightarrow \mathtt{true} \ | \ \mathtt{abs}(t) < 2^{-n} \Rightarrow \mathtt{false} \,)
          \{b : B \mid \phi \land (b \Rightarrow 2^{-n-1} < |t|) \land (\neg b \Rightarrow |t| < 2^{-n})\}^{t}
     do
          \{\phi \wedge 2^{-n-1} < |t|\}^{\mathsf{t}}
          \{j \geq 0 \land S = \mathbf{S}(j,x) \land t = \mathbf{t}(j+1,x)\}^{\mathsf{t}}
           j := j + \overline{1} ;
          \{j-1 \ge 0 \land S = \mathbf{S}(j-1,x) \land t = \mathbf{t}(j,x)\}^{\mathsf{t}}
           S := S + t ;
          \{j-1 \geq 0 \land S = \mathbf{S}(j,x) \land t = \mathbf{t}(j,x)\}^{\mathsf{t}}
           t := -t \times x \times x/\iota(\overline{2} \times j + \overline{3})
          \{j-1 \ge 0 \land S = \mathbf{S}(j,x) \land t = \mathbf{t}(j+1,x)\}^{\mathsf{t}}
          \{\phi\}^{\mathsf{t}}
     end ;
     \{\phi \wedge |t| < 2^{-n}\}^{t}
     \{S = \mathbf{S}(j,x) \land |\mathbf{t}(j+1,x)| < 2^{-n}\}^{\mathsf{t}}
     S
     \{z : R \mid |z - \sin(x)| < 2^{-n}\}^{t}
\{y : \mathsf{R} \mid y = \sin(x)\}^{\mathsf{t}}
```

Figure 7.4: Specification of sin.

```
lim p.

var k := 0 in

var l := \iota(\overline{3}) in

var u := \iota(\overline{4}) in

while k < n do

var m := (l + u) \times 2^{-\overline{1}} in

if \iota(\overline{0}) < \sin(m) then

l := m

else

u := m

end ;

k := k + \overline{1}

end ;

(l + u) \times 2^{-\overline{1}}
```

Figure 7.5: Computation of π .