

MAT1161/MAT1181 Cálculo de Uma Variável P1 – 13 de abril de 2019

Nome Legível	:	
Assinatura	:	
		TT.
Matrícula	•	Turma ·

Questão	Valor	Grau	Revisão
1^a	1,8		
2^a	1,8		
3^a	1,4		

T1 (2,0)	P1 Maple (3,0)	P1 (5,0)	Total (10,0)	Revisão

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções. Não é permitido destacar folhas da prova.
- A prova é sem consulta a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.
- O aluno não poderá sair de sala enquanto estiver fazendo a prova.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara, rigorosa e de preferência sucinta. Respostas sem justificativas não serão consideradas.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Não é permitido o uso de calculadora ou qualquer dispositivo eletrônico.
- Esta prova possui 3 questões. Confira.

Questão 1

Considere a função $f:\mathbb{R}\to\mathbb{R}$ dada por:

$$f(x) = -3x^4 + 8x^3 - 6x^2 + 2$$

- (a) Determine, caso exista(m):
 - (a.1) O(s) intervalo(s) de crescimento e decrescimento de f.

(a.2) O(s) valor(es) de x para os quais a função possui máximo local e mínimo local. Atenção: só serão aceitas respostas com justificativas.

b) Determine, caso exista(m):
(b.1) $O(s)$ intervalo(s) onde o gráfico de f tem concavidade voltada para cima e onde tem concavidade voltada para baixo.
•
(b.2) A(s) abscissa(s) do(s) ponto(s) de inflexão do gráfico de f. Atenção: só serão aceitas respostas com justificativas.

(c) Faça abaixo um esboço do gráfico de f. Indique explicitamente em seu desenho as <u>abscissas</u> dos pontos de máximo, de mínimo e de inflexão determinados nos itens anteriores. Esboce também as retas tangentes ao gráfico de f nos pontos em que a derivada é zero e nos pontos de inflexão.

Questão 2

Seja $a \in \mathbb{R}$. Considere a função $f : \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} -x^2 + 1, & \text{se } x < a \\ \frac{2}{3}(x-1)(x-4), & \text{se } x \ge a \end{cases}$$

(a) Determine o valor de a para que a função f seja contínua e diferenciável em x=a.

- (b) Seja a o valor determinado no item anterior.
 - (b.1) Calcule $\int_{-1}^{2} f(x) dx.$

(b.2)	Seja	${\cal R}$ a reg	ião limi	tada pel	o gráfico	o de f e d	eixo x. Ca	llcule a área	a de \mathcal{R} .
(b.3)	Os re	esultado	s dos ite	ens (b.1)	e (b.2)	deverian	n ser iguais?	' Justifique	sua resposta

Questão 3

Considere a função

$$f(x) = \begin{cases} \sqrt{x+1}, & \text{se } -1 \le x < 0 \\ -x^2 + 2x + 1, & \text{se } x \ge 0 \end{cases}$$

(a) Esboce abaixo o gráfico da função f.

(b) Considere um retângulo ABCD satisfazendo as seguintes condições:

- ullet O vértice A está no eixo x negativo e possui abscissa a.
- $\bullet\,$ O vértice Bestá no eixo x positivo e possui abscissa b.
- \bullet O vértice C está no gráfico da função fe possui abscissa b.
- \bullet O vértice D está no gráfico da função fe possui abscissa a.

(b.1) Escreva as ordenadas dos vértices C e D em termos de b.

(b.2)	Determine o domínio e a expressão da fu em termos de b .	nção $P(b)$, q	que fornece o perímetro do	o retângulo