Computational Senantics for Natural language Processing

Alexis Tabin 16-851-803

Hosignment 1

1. Skip-Gran w∈ Vw, a word, Vw word vocabulary, w → w∈ Rd
c∈ Vc, a context, Vc context vocabulary, c → 2 ∈ Rd D, collection of observed word and context prives * (W,c), numbers of time (w,c) appears in D $1. P(D=1|w,c) = \sigma(\vec{w}.\vec{c}) = \frac{1}{1 + \exp(-\vec{w}.\vec{c})}$ P= Z Z * (w, c) log (T(w. ?))

= Z Z * (w,c)

Answers 1.1

Answers 1.1

An objective functions tries to aprimite something. Here, we want to Maximize P(D=1/w,c) for an observed (w,c) pairs, white maintings We can see that we could use this leg likelihood function as the objective function, it would work, but it is really heavy on computation It is heavy because for each time we need to compute I, we need to go through every word, and for each word, we go though every context.

.... CN, randomly drawn negative samples for (w, c) we want 1. maximire P(D=1/w,c) 2. While maximizing P(D=0 | W(C) for negative samples h = * of samples $\frac{C_N N}{|D|} = \frac{P_D(c)}{|D|}$ Answers 1.2 $P(D=1|\omega,c) = \sigma(\vec{\omega}\cdot\vec{z}) = \frac{1}{1+\exp(-\vec{\omega}\cdot\vec{c})}$ =) P(D=0|W,C) = 1-P(D=1|W,C) = 1 - 0 (w. E') L(W, c) = P(D=1/W, c) T/P(D=0/w, c) by 1: We calculate the log $\log h(\omega,c) = \log \left(P(D=1|\omega,c)\prod P(D=0|\omega,c)\right) = \log \left(\tau(\vec{\omega}\cdot\vec{c})\right) + \log \left(\prod \omega \cdot \vec{c}\right)$ $= \log(\sigma(\vec{\omega}.\vec{c}')) + \sum_{i=1}^{q} \log(1-\sigma(\vec{\omega}.\vec{c}'))$ $= \log(\sigma(\vec{\omega}.\vec{c}')) + \sum_{i=1}^{q} \log(1-\sigma(\vec{\omega}.\vec{c}'))$ $= \log(\sigma(\vec{\omega}.\vec{c}')) + \sum_{i=1}^{q} \log(1-\sigma(\vec{\omega}.\vec{c}'))$ $a \cdot \bar{a} = \mathbb{E}_{c_N r P_D} \left(l_{yy} (1 - \sigma(\bar{\omega}', \bar{c}')) \right)$ 4- +(w.c) = 1-1+ew. $1-o(x) = 1 - \frac{1}{1+e^{x}} = \frac{1+e^{x}-1}{1+e^{x}} = \frac{e^{-x}}{1+e^{-x}} = \frac{1}{e^{x}(1+e^{-x})} = \frac{1}{e^{x}+1}$

Star Following of 1.2 with ii, we have log h(w,c) = |g(+(3,2)) + & h. F. $\left(\log\left(\sigma(-\overline{\omega},\overline{c})\right)\right)$ So we have for each pair the objective function we want to Divinize h(w, i) = log(+(w, i) + h Enrp (log(+(w, i)) For all pairs, it gives $l = \sum_{w \in V_w} \sum_{c \in V_c} \#(w,c)(\log \sigma(\bar{w},\bar{c}') + h \cdot \mathbb{E}_{w \sim P_0}[\log (-\bar{w},\bar{c}')]$ 3. Assuming $\tilde{\omega} \cdot \tilde{c}$ independent, $l(\omega, c) = ?$, let's rewrite l1= ZZ *(ω,c)(log σ(ω·c)) + ZZ *(ω,c)(h. Ε [lg σ(-ω·c)]) = \(\bar{\bar{\pi}} \bar{\pi} \bar{ recall the expectation term: [E CNAP (leg(o-(iii).(N))] = = = = # (Cn) (090(-iii.cn) $= \frac{\#(c)}{|D|} \log \sigma(-\bar{\omega}.\bar{c}) + \sum_{c, b \in V_{c}(c)} \frac{\#(c_{b})}{|D|} \log(-\bar{\omega}'.c_{b})$ Is we then plug that back in the coss function: 1= ZZ *(W,4) (og (o(u.c))) + Z #w.h. (---)

We can see how to express
$$\ell(\omega, c)$$
:

$$\ell(\omega, c) = \#(\omega, c) \log(\omega \cdot c') + \ell \cdot \#\omega \cdot \frac{\#(c)}{|D|} \log(-\omega \cdot c')$$

$$\ell(\omega, c) = \#(\omega, c) \log(\omega \cdot c') + \ell \cdot \#\omega \cdot \frac{\#(c)}{|D|} \log(-\omega \cdot c')$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \#(\omega) \cdot \ell \cdot \frac{\#(c)}{|D|} \log(\sigma(x))$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \#(\omega) \cdot \ell \cdot \frac{\#(c)}{|D|} \log(\sigma(x))$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \#(\omega) \cdot \ell \cdot \frac{\#(c)}{|D|} \log(\sigma(x))$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \#(\omega) \cdot \ell \cdot \frac{\#(c)}{|D|} \log(\sigma(x))$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \#(\omega) \cdot \ell \cdot \frac{\#(c)}{|D|} \log(\sigma(x))$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \#(\omega) \cdot \ell \cdot \frac{\#(c)}{|D|} \log(\sigma(x))$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega) \cdot \ell \cdot \frac{\#(\omega, c)}{|D|} \log(\sigma(x))$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega) \cdot \ell \cdot \frac{\#(\omega, c)}{|D|} \log(\sigma(x))$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega) \cdot \ell \cdot \frac{\#(\omega, c)}{|D|} \log(\sigma(x))$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \log(\sigma(x)) + \ell \cdot \#(\omega, c)$$

$$\ell(x) = \#(\omega, c) \cdot \#(\omega, c)$$

$$\ell(x) =$$

following of 1.4

$$e^{2x} - \left(\frac{*(w_{1}c)}{h*(w)} \frac{*(c)}{|D|} - 1\right) e^{x} - \frac{*(w_{1}c)}{h*(w)} \frac{*(c)}{|D|} = 0$$

let's define $y = e^{x}$

$$= y^{2} - by - c = 0$$

Lothis equation has 2 solutions:
$$y_{1} = -1 = 1 e^{x} = -1 = 1 \text{ not possible}$$

$$y_1 = -1 = 0 \text{ ex} = -1 = 0 \text{ not possible}$$

$$y_2 = \frac{\#(W,C)}{\#(W) \cdot \frac{\#C}{|D|}}$$
Reurember, we have $y = e^{\times} = e^{\times}$

$$=) \overrightarrow{w} \cdot \overrightarrow{c} = \log(y) =$$

$$=) \overrightarrow{w} \cdot \overrightarrow{c} = \log(y) = \operatorname{argmax}(y) =$$

$$x^{*} = \log \left(\frac{*(w,c) \cdot D}{*(w) \cdot *(c)} \cdot \frac{2}{4} \right)$$

$$= \operatorname{Poy}\left(\frac{\mathcal{H}(\omega,C)}{|\mathcal{D}|} \cdot \frac{|\mathcal{D}|}{|\mathcal{M}(\omega)|} \cdot \frac{|\mathcal{D}|}{|\mathcal{M}(C)|}\right)$$

$$= \log\left(\frac{P_D(\omega,c)}{P_D(c)P(\omega)}\right) = PMI(\omega,c)$$

$$= PMI(\omega,c)$$
Afinition

$$M_{ij} = W_i \cdot C_j = \overline{w}_i \cdot \overline{c}_i = PMI(w_i, c_i) - \log h$$

Computational Seventics For Westernal language forcessing

Meris labour 16 - 821 - 863

Hosignment 1

2. Multi-prototype Word Eurbeddings

o (wic), pair of a word and a context

· Nw , word senses (protofynes

· WEIRIVWIX NWXd

· hw + { 1, ..., Nw }, hw=h means if w means if h probabype

· II we = P (hw = le | w)

We rodel P(D=1/w,c) = Z P(hw=h/w/P(D=1/w,hw=h,c)

1.1. P(D), C(D) = 7No. P(D=1 | W, hw=h, c)

$$P(D) = \prod_{(w,c) \in D} P_r[D=1][w,c]$$

$$|L(D)| = \log(P(D)) = \log(w_{i}(w_{i}(x))) = \log(w_{i}(x)) = \log(p(D)) =$$

$$= \sum_{\{w_{i}c\}\in\mathcal{D}} \log\left(\frac{N_{w}}{\sum_{k=1}^{\infty} \mathbb{I}_{w_{k}} P(D=1|w,h_{w}=h,c)}\right)$$

Mwh, € 90,13 :- 11 { hw = h} $P(D, \Pi)$, $l_q(P(D, \Pi)) = l_q(D, \Pi)$ $DP(D, G) = P(\Pi | D)P(D)$ (P(M1D) = P(M=0 1D)P(N=0) + P(M=11D)P(N=1) The \mathbb{Z} The $P_{n}(\mathbb{Q}=1|w,h_{w}-k,k\omega_{n})$ or $P(\Pi | \mathbb{D})$ (ω,c) Q D h=1 w_{n} $P_{n}(\mathbb{Q}=1|w,h_{w}-k,k\omega_{n})$ = The PD=1/W, hw=h, e) Mwac L(J,M)= D(og (P(D,M))= log II T Twh P(D=1|w,hw=h,c) Munac

 $= \sum_{(w,c)} \frac{N_w}{N_w} + \log(P(D=1|w,h_w=h,c) + \log(T_{we})$

V 7

Solveno Dane (Tuli) de = 1

24 write place as [Twei] k'=1 and P(D) w, hw=h', () $D \neq whc = E = 1.P(M=0)$ $1 = 1 \text{ if } h_w = h(2.2)$ $= P(h_w = h \mid D_w) = P(D \mid w, h_w = h) P(h_w = h \mid w)$ P (D/w) Twh = Twe P(DIW, hw=h) P(2/w) Tiwn P(D(w, hw=le) For D=1, we have : fuhc = Nw Z P (D=1 | w, hw=h, c)

2-5 / 17-8hep

D The := avgran ((O) $Q(O) = \sum_{(w,c) \in D} \sum_{\alpha=1}^{Nw} \left(\int w_{\alpha} \left(\log \left(\frac{P(D-1)w}{D-1} \right) w_{\alpha} h_{\alpha} + h_{\alpha} c \right) \right) + \log \left(\frac{\pi_{w}}{L} \right)$ $A \otimes \pi_{w} e c$

=) angrax Q(O) = angrax (\(\frac{\text{\infty} \text{\log} \text{\infty} \text{\log} \text{\infty} \text{\log} \text{\infty} \text{\infty} \text{\log} \text{\infty} \text

lagrangian constraint: Z Turc = 1

=) L (Twhe; X) = Z Z Mwhe log (Twhe) + X (1-Z Thum,

NOW we derive the legrangian

c=) and with a few adautations, we have

Twac = C. E puhe where c is just a scaling est

Computational Sementics for Watural Language Processing	Alexis Tabin
ASSIGNMENT 1 Hierarchical Softmax	16-821-803
Hufmann Coding	l times w
The following coaling $(appendix)$, document $(appendix)$, we appendix $(appendix)$, we $(appendix)$, where $(appendix)$ $(appendix)$, we $(appendix)$, where $(appendix)$ $(appendix)$, we appendix $(appendix)$, where $(appendix)$ $(appendix)$, we $(appendix)$, where $(appendix)$ $(appendix)$, we $(appendix)$ $(appendix)$, where $(appendix)$ $(appendix)$ $(appendix)$, we $(appendix)$ $(append$	ord frequency
$P_{\omega}(c) = \frac{\exp\{(s(\omega,c))\}}{\sum_{c \in V} \exp\{(s(\omega,c))\}}$ $\frac{\sum_{c \in V} \exp\{(s(\omega,c))\}}{\sup_{c \in V} \sup\{(s(\omega,c))\}}$	pair (w,c)
approximated by slepth of rode c in tree $\frac{1}{3}$ $f(c) = \frac{C(c) - 1}{C(c) - 1}$ rode of appth j on road to loaf c $f(c) = \frac{C(c) - 1}{C(c) - 1}$	A
$J=(V(C_1)) \rightarrow (C_1)+1)$ * inedes S. I binary tree, $ V =2^0=1024$ & \$ To compute $P_{uv}(c)$, we need to go all the way down to the leaf the real $V(C_1)$ and $V(C_2)$ and $V(C_1)$ has nodes: $V(C_2)$	222
is composed of 9 edges here. => \frac{1}{\times inner wades} = 10 General case: Total \times node> = inner w	023
$= O(\log V ^{\frac{1}{2}}-1)$ $= O(\log V)$ $= O(\log V)$	3 + 1024 = 2047 16

= 4 Intuitively, we have:

$$\mathbb{E}[L(a)] = 3.0.1 + 3.0.1 + 2.0.3 + 1.0.5 = 1,7$$

10 due

worst case: Let take the last example.

the worst can is this one

general case: \E[L(c)] = O(log/V/)

Computation | Seventics
Jahwal Language Processing

Alexis Tabin 16 - 821 - 803

doesn't depend on to,

Assignment 1

4. FASTText Embeddings

b) 2e6

$$\frac{1}{2} \left(\frac{1}{2} \left$$

$$\frac{a)}{\partial u_{n}} = \frac{\partial}{\partial u_{n}} - \frac{\log(--)}{\partial u_{n}} - \frac{2\log(\sqrt{t} - s(w_{+}, w_{n}))}{u \in W}$$

$$= 0$$

$$= \frac{\partial L}{\partial u_n} - \frac{1}{2} \log \left(\frac{1}{2} \left(- \frac{1}{2} \left(w_t, w_n \right) \right) \right)$$

Solote as i) but with a regardle sign

$$=) \frac{\partial L}{\partial u_n} = (1 - \sigma(-s(w_+, w_n))) \sum_{q \neq q} z_q$$

=
$$\frac{2}{u \in N_e} \left(1 - \tau \left(-3(\omega_{+}, \omega_{u}) \right) u_{u} \right)$$

+ $\left(\tau \left(s(\omega_{+}, \omega_{c}) - 1 \right) u_{c} \right)$