

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 102 29 778.9

Anmeldetag: 03. Juli 2002

Anmelder/Inhaber: BAYER AKTIENGESELLSCHAFT, Leverkusen/DE

Bezeichnung: Neue Verwendung von Imidazotriazinonen

IPC: A 61 K 31/53

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 12. Mai 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Wehner

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

Neue Verwendung von Imidazotriazinonen

Die vorliegende Erfindung betrifft die Verwendung von bekannten Imidazotriazinonen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von koronarer Herzkrankheit, Herzinsuffizienz, pulmonalem Bluthochdruck, Blasenerkrankungen, Prostatahyperplasie, Nitrat-induzierte Toleranz, Augenerkrankungen wie Glaucom, zur Behandlung oder Prophylaxe von zentraler retinaler oder posteriorer ciliarer Arterienokklusion, zentraler retinaler Venenokklusion, optischer Neuropathie wie anteriorer ischaemischer optischer Neuropathie und glaukomatoeser optischer Neuropathie, sowie von makulaerer Degeneration, Diabetes, insbesondere der diabetischen Gastroparese, zur Behandlung von Störungen der Peristaltik von Magen und Speiseröhre, weiblicher Infertilitaet, vorzeitigen Wehen, Praeeklampsie, Alopecia, Psoriasis dem renalen Syndrom, zystischer Fibrose, Krebs, zur Verbesserung der Wahrnehmung, zur Verbesserung der Konzentrationsleistung, zur Verbesserung der Lern- und/oder Gedächtnisleistung, insbesondere wenn die Störung eine Folge von Demenz ist.

Imidazotriazinone werden in der WO-A-01/64677 beschrieben, die dort offenbarten Verbindungen eignen sich für die Behandlung der erektilen Dysfunktion.

In der Offenlegungsschrift DE-OS 2811780 sind Imidazotriazine als Bronchodilatoren mit spasmolytischer Aktivität und Hemmaktivität gegen cyclisches Adenosinmonophosphat metabolisierende Phosphodiesterasen (cAMP-PDE's, gemäß der Nomenklatur nach Beavo auch als PDE III und PDE IV bezeichnet) beschrieben. Eine Hemmwirkung gegen cyclisches Guanosinmonophosphat metabolisierende Phosphodiesterasen [cGMP-PDE's, gemäß der Nomenklatur nach Beavo und Reifsnyder (Trends in Pharmacol. Sci. 11, 150-155, 1990) auch als PDE I, PDE II und PDE V bezeichnet] ist nicht beschrieben. Weiterhin werden Imidazotriazinone in der FR-22 13 058, der CH-59 46 71, der DE-22 55 172, der DE-23 64 076 und der EP-000 9384 beschrieben, die in der 2-Position keinen substituierten Arylrest

besitzen, und ebenfalls als Bronchodilatatoren mit cAMP-PDE inhibitorischer Wirkung beschrieben werden.

In der WO-A-99/24433 werden ebenfalls Imidazotriazinone als cGMP-metabolisierende Phosphodiesterase-Inhibitoren beschrieben, die jedoch in para-Position zur Alkoxygruppe im Phenylring zwingend eine Sulfonamidgruppe umfassen.

Ein Anstieg der cGMP-Konzentration kann zu heilsamen, antiaggregatorischen, antithrombotischen, antiproliferativen, antivasospastischen, vasodilatierenden, natriuretischen und diuretischen Effekten führen. Es kann die Kurz- oder Langzeitmodulation der vaskulären und kardialen Inotropie, den Herzrhythmus und die kardiale Erregungsleitung beeinflussen (J. C. Stoclet, T. Keravis, N. Komas and C. Kugnier, Exp. Opin. Invest. Drugs (1995), 4 (11), 1081-1100).

Die relaxierende Wirkung auf die glatte Muskulatur führt zu einer heilsamen Verbesserung der Microzirkulation in Geweben, die cGMP metabolisierende Phosphodiesterasen beinhalten.

Es wurde nun gefunden, dass sich die Verbindungen der allgemeinen Formel (I)

in welcher

R¹ für (C₁-C₆)-Alkyl steht,

R² für (C₃-C₈)-Cycloalkyl oder (C₁-C₁₂)-Alkyl steht,

R^3 für (C_1-C_6) -Alkyl steht,

R^4 für einen Rest der Formeln

5

worin

10

R^5 , R^6 und R^7 gleich oder verschieden sind und Vinyl oder (C_1-C_6) -Alkyl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Trifluormethyl, Halogen, (C_1-C_6) -Alkoxy oder durch Reste der Formeln

substituiert ist,

15

worin

R^8 Wasserstoff oder (C_1-C_4) -Alkyl bedeutet,

20

oder

R^5 , R^6 und/oder R^7 (C_6-C_{12}) -Aryl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Halogen, Trifluormethyl, Nitro, Cyano, Carboxyl, (C_1-C_6) -Alkyl oder (C_1-C_6) -Alkoxy substituiert ist

25

oder

5 R^5 Chinolyl oder einen 5- bis 6-gliedrigen, aromatischen oder gesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, der gegebenenfalls, im Fall einer N-Funktion auch über diese, bis zu 3-fach, gleich oder verschieden, durch Halogen oder (C_1-C_6)-Alkyl substituiert sein kann

oder

0 R^5 einen Rest der Formeln

15 oder $-NR^9R^{10}$ bedeutet,

worin

20 R^9 und R^{10} gleich oder verschieden sind und Wasserstoff, (C_1-C_6)-Alkyl oder Phenyl bedeuten,

oder

25 R^4 für Carboxyl oder für einen Rest der Formeln

-CO-R¹³ oder -O-R¹⁴ steht,

worin

5 R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten,

R¹³ (C₁-C₆)-Alkyl bedeutet,

10 R¹⁴ (C₁-C₆)-Alkyl bedeutet, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy, Phenyl oder durch einen Rest der Formel -NR¹⁵R¹⁶ substituiert ist,

worin

15

R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff, Phenyl oder (C₁-C₄)-Alkyl, das seinerseits durch Phenyl substituiert sein kann, bedeuten,

oder

20

R⁴ für einen Rest der Formel -NH-CO-NR¹⁷R¹⁸ steht,

worin

25 R¹⁷ und R¹⁸ gleich oder verschieden sind und Wasserstoff oder (C₁-C₆)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy oder durch einen Rest der Formeln

oder -NR¹⁹R²⁰ substituiert ist,

worin

5 R^{19} und R^{20} gleich oder verschiedene sind und Wasserstoff, Phenyl
oder (C_1-C_6)-Alkyl bedeuten

oder

10 R^{17} und R^{18} gemeinsam mit dem Stickstoffatom, an das sie gebunden sind,
einen heterocyclischen Ring der Formeln

worin

15 R^{21} Wasserstoff oder (C_1-C_6)-Alkyl bedeutet,

a entweder 1 oder 2 bedeutet,

20 R^{22} Hydroxy oder (C_1-C_6)-Alkyl bedeutet, das gegebenenfalls
durch Hydroxy substituiert ist,

oder

25 R^{17} und/oder R^{18} (C_6-C_{12})-Aryl bedeuten, das gegebenenfalls durch Halo-
gen, Trifluorethyl oder durch $-SCF_3$ substituiert ist

oder

27 R^{17} Wasserstoff bedeutet und

R¹⁸ einen Rest der Formel $-\text{SO}_2\text{-R}^{23}$ bedeutet,

worin

5 R²³ (C₁-C₆)-Alkyl oder (C₆-C₁₂)-Aryl bedeutet, das gegebenenfalls durch Halogen substituiert ist,

oder für einen Rest der Formeln

oder

R⁴ für einen Rest der Formel

15

-NH-CO-R²⁴ steht,

worin

20

R²⁴ einen Rest der Formel

worin

25

R²⁵ und R²⁶ gleich oder verschieden sind und Wasserstoff, (C₁-C₆)-Alkyl oder (C₁-C₆)-Alkoxy carbonyl bedeuten,

oder

5

R²⁴ (C₁-C₆)-Alkyl bedeutet, das gegebenenfalls durch (C₆-C₁₂)-Aryl substituiert ist, das seinerseits durch Hydroxy oder (C₁-C₆)-Alkoxy substituiert sein kann oder

10

(C₁-C₆)-Alkyl gegebenenfalls durch einen Rest der Formel -(SO₂)_b-R²⁷ substituiert ist,

worin

15

b entweder 0 oder 1 ist und

R²⁷ für einen Rest der Formeln

20

oder

25

R⁴ für (C₁-C₁₂)-Alkyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy, Azid, Phenyl oder durch Reste der Formeln -NR²⁸R²⁹, -O-CO-R³⁰ oder -P(O){O-[(C₁-C₆)-Alkyl]}₂ substituiert ist,

worin

R²⁸ und R²⁹ gleich oder verschieden sind, Wasserstoff, Phenyl oder (C₁-C₆)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy, (C₁-C₆)-Alkoxy oder Phenyl substituiert ist,

5 oder

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

10

worin

15 R³¹ und R³² gleich oder verschieden sind und Wasserstoff oder (C₁-C₆)-Alkyl bedeuten

20

R³³ (C₁-C₆)-Alkyl, Benzyl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkylcarbonyl, Carboxyl, Pyridyl, Pyrimidyl oder Phenyl bedeutet, das gegebenenfalls durch (C₁-C₆)-Alkoxy substituiert ist,

und

25 R³⁰ (C₁-C₆)-Alkyl bedeutet,

oder

5

(C₁-C₁₂)-Alkyl gegebenenfalls durch Triazolyl substituiert ist, das seinerseits bis zu 2-fach, gleich oder verschieden, durch Halogen, Phenyl, Tetrahydrofuryl, Tetrahydropyanyl, (C₁-C₆)-Alkoxycarbonyl, Aminocarbonyl oder durch (C₁-C₆)-Alkyl substituiert sein kann, wobei letzteres gegebenenfalls durch Hydroxy, (C₁-C₆)-Alkoxy oder durch einen Rest der Formeln NR³⁴R³⁵ oder -O-CO-R³⁶ substituiert sein kann,

worin

10

R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder (C₁-C₆)-Alkyl bedeuten,

R³⁶ (C₁-C₆)-Alkyl bedeutet,

15

oder

R⁴ für einen Rest der Formel -CO-R³⁷ steht,

worin

20

R³⁷ für einen Rest der Formeln

25

-(CH₂)_c-NR³⁹R⁴⁰ oder -CH₂-P(O)(OR⁴¹)(OR⁴²) steht,

worin

R³⁸ Wasserstoff oder (C₁-C₆)-Alkyl bedeutet,

5 c entweder 0 oder 1 bedeutet,

R³⁹ und R⁴⁰ gleich oder verschieden sind und Wasserstoff oder (C₁-C₆)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

10 R⁴¹ und R⁴² gleich oder verschieden sind und (C₁-C₆)-Alkyl bedeuten,

oder

15

R⁴ für einen 5-gliedrigen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht, der im Falle einer N-Funktion auch über diese, gegebenenfalls insgesamt bis zu 3-fach, gleich oder verschieden, durch Halogen, Trifluormethyl oder durch Phenyl substituiert ist, das seinerseits ein- oder mehrfach durch Halogen oder Trifluormethyl substituiert sein kann,

20

und/oder gegebenenfalls durch (C₃-C₆)-Cycloalkyl, Pyrryl oder durch (C₁-C₁₂)-Alkyl substituiert ist, das seinerseits durch Cyano, Trifluormethyl, (C₁-C₆)-Alkoxy carbonyl, (C₁-C₆)-Alkoxy, Amino oder durch Phenyl oder Nitro-substituiertes Phenyl substituiert sein kann,

25

und/oder gegebenenfalls durch -NR⁴³R⁴⁴, -NH-CO-CO-R⁴⁵, -NH-CO-R⁴⁶, -NH-CO-CH₂-R⁴⁷, -CO-R⁴⁸ oder substituiert sein kann,

30

worin

R⁴³ und R⁴⁴ gleich oder verschieden sind und Wasserstoff, Benzyl, (C₁-C₆)-Alkyl oder Phenyl bedeuten, das gegebenenfalls durch Halogen oder Trifluormethyl substituiert ist,

5

R⁴⁵ (C₁-C₆)-Alkoxy bedeutet,

R⁴⁶ (C₁-C₆)-Alkyl oder Phenyl bedeutet,

10 R⁴⁷ Hydroxy, (C₁-C₆)-Alkoxy oder einen Rest der Formel -O-CO-R⁴⁹ bedeutet,

worin

15

R⁴⁹ (C₁-C₄)-Alkyl bedeutet

R⁴⁸ einen Rest der Formel -CH₂-CN oder Phenyl bedeutet, das gegebenenfalls durch Halogen, Trifluormethyl oder (C₁-C₆)-Alkoxy substituiert ist,

20

und deren Salze, Tautomeren, N-Oxide, Prodrugs und Hydrate sowie isomere Formen,

25

auch zur Herstellung von Arzneimitteln eignen, die zur Behandlung von und/oder Prophylaxe von koronarer Herzkrankheit, Herzinsuffizienz, pulmonalem Bluthochdruck, Blasenerkrankungen, Prostatahyperplasie, Nitrat-induzierte Toleranz, Augenerkrankungen wie Glaucom, zur Behandlung oder Prophylaxe von zentraler retinaler oder posteriorer ciliarer Arterienokklusion, zentraler retinaler Venenokklusion, optischer Neuropathie wie anteriorer ischaemischer optischer Neuropathie und glaukomatoeser optischer Neuropathie, sowie von makulaerer Degeneration, Diabetes, insbesondere der diabetischen Gastroparese, zur Behandlung von Stö-

30

rungen der Peristaltik von Magen und Speiseröhre, weiblicher Infertilität,
vorzeitigen Wehen, Präeklampsie, Alopecia, Psoriasis dem renalen Syndrom,
zystischer Fibrose, Krebs, zur Verbesserung der Wahrnehmung, zur Verbesserung
der Konzentrationsleistung, zur Verbesserung der Lern- und/oder Gedächtnisleistung,
5 insbesondere wenn die Stoerung eine Folge von Demenz ist, eingesetzt werden.

Die Verbindungen der allgemeinen Formel (I) können in Abhängigkeit von dem Substitutionsmuster in stereoisomeren Formen, die sich entweder wie Bild und Spiegelbild (Enantiomere) oder die sich nicht wie Bild und Spiegelbild (Diastereomere) verhalten, existieren. Die Erfahrung betrifft sowohl die Enantiomeren oder Diastereomeren als auch deren jeweilige Mischungen. Die Racemformen lassen sich ebenso wie die Diastereomeren in bekannter Weise in die stereoisomer einheitlichen Bestandteile trennen.

15 Weiterhin können bestimmte Verbindungen der allgemeinen Formel (I) in tautomeren Formen vorliegen. Dies ist dem Fachmann bekannt, und derartige Verbindungen sind ebenfalls vom Umfang der Erfahrung umfasst.

20 Physiologisch unbedenkliche, d. h. pharmazeutisch verträgliche Salze können Salze der erfundungsgemäßen Verbindungen mit anorganischen oder organischen Säuren sein. Bevorzugt werden Salze mit anorganischen Säuren wie beispielsweise Chlorwasserstoffsäure, Bromwasserstoffsäure, Phosphorsäure oder Schwefelsäure, oder Salze mit organischen Carbon- oder Sulfonsäuren wie beispielsweise Essigsäure, Propionsäure, Maleinsäure, Fumarsäure, Äpfelsäure, Zitronensäure, Weinsäure, Milchsäure, Benzoesäure, oder Methansulfonsäure, Ethansulfonsäure, Benzolsulfonsäure, Toluolsulfonsäure oder Naphthalindisulfonsäure.

25

30 Als pharmazeutisch verträgliche Salze können auch Salze mit üblichen Basen genannt werden, wie beispielsweise Alkalimetallsalze (z.B. Natrium- oder Kaliumsalze), Erdalkalisalze (z.B. Calcium- oder Magnesiumsalze) oder Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen wie beispielsweise Diethylamin, Triethyl-

amin, Ethyldiisopropylamin, Prokain, Dibenzylamin, N-Methylmorpholin, Dihydroabietylamin oder Methylpiperidin.

Als „Hydrate“ werden erfindungsgemäß solche Formen der Verbindungen der obigen

5 allgemeinen Formel (I) bezeichnet, welche in festem oder flüssigem Zustand durch Hydratation mit Wasser eine Molekül-Verbindung (Solvat) bilden. In den Hydraten sind die Wassermoleküle nebensätzlich durch zwischenmolekulare Kräfte, insbesondere Wasserstoff-Brückenbindungen angelagert. Feste Hydrate enthalten Wasser als sogenanntes Kristall-Wasser in stöchiometrischen Verhältnissen, wobei die Wassermoleküle hinsichtlich ihres Bindungszustands nicht gleichwertig sein müssen. Beispiele für Hydrate sind Sesquihydrate, Monohydrate, Dihydrate oder Trihydrate. Gleichermaßen kommen auch die Hydrate von Salzen der erfindungsgemäßen Verbindungen in Betracht.

15 Als „Prodrugs“ werden erfindungsgemäß solche Formen der Verbindungen der obigen allgemeinen Formel (I) bezeichnet, welche selbst biologisch aktiv oder inaktiv sein können, jedoch in die entsprechende biologisch aktive Form überführt werden können (beispielsweise metabolisch, solvolytisch oder auf andere Weise).

20 (C₁-C₁₂)-Alkyl steht für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 12 Kohlenstoffatomen. Beispielsweise seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, tert.-Butyl, n-Pentyl und n-Hexyl. Aus dieser Definition leiten sich analog die entsprechenden Alkylgruppen mit weniger Kohlenstoffatomen wie z.B. (C₁-C₆)-Alkyl und (C₁-C₄)-Alkyl ab. Im allgemeinen gilt, dass (C₁-C₄)-Alkyl bevorzugt ist.

25 (C₃-C₈)-Cycloalkyl steht für einen cyclischen Alkylrest mit 3 bis 8 Kohlenstoffatomen. Beispielsweise seien genannt: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl. Aus dieser Definition leiten sich analog die entsprechenden Cycloalkylgruppen mit weniger Kohlenstoffatomen wie z.B. (C₃-C₅)-Cycloalkyl ab. Bevorzugt sind Cyclopropyl, Cyclopentyl und Cyclohexyl.

(C₁-C₆)-Alkoxy steht für einen geradkettigen oder verzweigten Alkoxyrest mit 1 bis 6 Kohlenstoffatomen. Beispielsweise seien genannt: Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy, Isobutoxy, tert.-Butoxy, n-Pentoxy und n-Hexaoxy. Aus dieser Definition leiten sich analog die entsprechenden Alkoxygruppen mit weniger Kohlenstoffatomen wie z.B. (C₁-C₆)-Alkoxy und (C₁-C₄)-Alkoxy ab. Im allgemeinen gilt, dass (C₁-C₄)-Alkoxy bevorzugt ist.

Aus dieser Definition leitet sich auch die Bedeutung des entsprechenden Bestandteils anderer komplexerer Substituenten ab wie z. B. Alkoxycarbonyl.

(C₆-C₁₂)-Aryl steht für einen aromatischen Rest mit 6 bis 12 Kohlenstoffatomen. Beispielsweise seien genannt: Phenyl und Naphthyl.

5- bis 6-gliedriger, aromatischer oder gesättigter Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht entweder für einen Heteroaromat, der über ein Ringkohlenstoffatom des Heteroaromatens, gegebenenfalls auch über ein Ringstickstoffatom des Heteroaromatens, verknüpft ist; beispielsweise seien genannt: Pyridyl, Pyrimidyl, Pyridazinyl, Pyrazinyl, Thienyl, Furyl, Pyrrolyl, Pyrazolyl, Imidazolyl, Thiazolyl, Oxazolyl oder Isoxazolyl, wobei Pyridyl, Pyrimidyl, Pyridazinyl, Furyl und Thienyl bevorzugt sind, oder für einen gesättigten Heterocyclus, der über ein Ringkohlenstoffatom oder ein Ringstickstoffatom verknüpft ist, oder für einen (C₅-C₆)-Cycloalkylrest, wie oben definiert; beispielsweise seien genannt: Tetrahydrofuryl, Pyrrolidinyl, Piperidinyl, Piperazinyl, Morpholinyl, Thiomorpholinyl, Cyclopentyl und Cyclohexyl wobei Piperidinyl, Morpholinyl und Pyrrolidinyl bevorzugt sind.

Bevorzugt ist die erfindungsgemäße Verwendung von Verbindungen der allgemeinen Formel (I),

R¹ für (C₁-C₄)-Alkyl steht,

R² für Cyclopentyl, Cycloheptyl oder (C₁-C₁₀)-Alkyl steht,

5

R³ für (C₁-C₄)-Alkyl steht,

R⁴ für einen Rest der Formeln

10

worin

R⁵, R⁶ und R⁷ gleich oder verschieden sind und Vinyl oder (C₁-C₄)-Alkyl
bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden,
durch Trifluormethyl, Chlor, (C₁-C₄)-Alkoxy oder durch Reste der
Formeln

substituiert ist,

20

worin

R⁸ Wasserstoff, Methyl oder Ethyl bedeutet,

oder

25

R^5 , R^6 und/oder R^7 Phenyl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Halogen, Trifluormethyl, Nitro, Cyano, Carboxyl, (C_1 - C_4)-Alkyl oder (C_1 - C_4)-Alkoxy substituiert ist

5

oder

R^5 Chinolyl oder einen Rest der Formeln

bedeutet,

10

der gegebenenfalls bis zu 2-fach, gleich oder verschieden, durch Chlor oder (C_1 - C_4)-Alkyl substituiert sein kann

oder

15

R^5 einen Rest der Formeln

20

worin

R⁹ und R¹⁰ gleich oder verschieden sind und Wasserstoff, (C₁-C₆)-Alkyl oder Phenyl bedeuten,

oder

5

R⁴ für Carboxyl oder für einen Rest der Formeln

10

-CO-R¹³ oder -O-R¹⁴ steht,

worin

15

R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten,

R¹³ (C₁-C₄)-Alkyl bedeutet,

20

R¹⁴ (C₁-C₄)-Alkyl bedeutet, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy, Phenyl oder durch einen Rest der Formel -NR¹⁵R¹⁶ substituiert ist,

worin

25

R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff, Phenyl oder (C₁-C₄)-Alkyl, das seinerseits durch Phenyl substituiert sein kann, bedeuten,

oder

10 R⁴ für einen Rest der Formel -NH-CO-NR¹⁷R¹⁸ steht,

worin

5

R¹⁷ und R¹⁸ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy oder durch einen Rest der Formeln

10 oder -NR¹⁹R²⁰ substituiert ist,

worin

15

R¹⁹ und R²⁰ gleich oder verschiedene sind und Wasserstoff, Phenyl oder (C₁-C₄)-Alkyl bedeuten

oder

20 R¹⁷ und R¹⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

worin

25

R²¹ Wasserstoff oder (C₁-C₄)-Alkyl bedeutet,

a entweder 1 oder 2 bedeutet,

R²² Hydroxy oder (C₁-C₄)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

oder

5

R¹⁷ und/oder R¹⁸ Phenyl bedeuten, das gegebenenfalls durch Chlor, Trifluorethyl oder durch -SCF₃ substituiert ist

oder

0

R¹⁷ Wasserstoff bedeutet und

R¹⁸ einen Rest der Formel -SO₂-R²³ bedeutet,

15

worin

R²³ (C₁-C₄)-Alkyl oder Phenyl bedeutet, das gegebenenfalls durch Halogen substituiert ist,

20

oder für einen Rest der Formeln

steht,

oder

25

R⁴ für einen Rest der Formel

-NH-CO-R²⁴ steht,

worin

R²⁴ einen Rest der Formel

5

bedeutet,

worin

10

R²⁵ und R²⁶ gleich oder verschieden sind und Wasserstoff, (C₁-C₄)-Alkyl oder (C₁-C₄)-Alkoxycarbonyl bedeuten,

oder

15

R²⁴ (C₁-C₄)-Alkyl bedeutet, das gegebenenfalls durch Phenyl substituiert ist, das seinerseits durch Hydroxy oder (C₁-C₄)-Alkoxy substituiert sein kann oder

(C₁-C₄)-Alkyl gegebenenfalls durch einen Rest der Formel -(SO₂)_b-R²⁷ substituiert ist,

20

worin

b entweder 0 oder 1 ist und

R²⁷ für einen Rest der Formeln

5 oder

R⁴ für (C₁-C₁₁)-Alkyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy, Azid, Phenyl oder durch Reste der Formeln -NR²⁸R²⁹, -O-CO-R³⁰ oder -P(O){O-[(C₁-C₆)-Alkyl]}₂ substituiert ist,

10

worin

15

R²⁸ und R²⁹ gleich oder verschieden sind, Wasserstoff, Phenyl oder (C₁-C₄)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy, (C₁-C₄)-Alkoxy oder Phenyl substituiert ist,

oder

20 R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

25 worin

R³¹ und R³² gleich oder verschieden sind und Wasserstoff oder
(C₁-C₄)-Alkyl bedeuten

5 R³³ (C₁-C₄)-Alkyl, Benzyl, (C₁-C₄)-Alkoxycarbonyl, (C₁-C₄)-
Alkylcarbonyl, Carboxyl, Pyridyl, Pyrimidyl oder Phenyl
bedeutet, das gegebenenfalls durch (C₁-C₄)-Alkoxy
substituiert ist,

und

10 R³⁰ (C₁-C₆)-Alkyl bedeutet,

oder

15 (C₁-C₁₁)-Alkyl gegebenenfalls durch Triazolyl substituiert ist, das seinerseits
bis zu 2-fach, gleich oder verschieden, durch Halogen, Phenyl, Tetrahydro-
furanyl, Tetrahydropyranyl, (C₁-C₄)-Alkoxycarbonyl, Aminocarbonyl oder
durch (C₁-C₄)-Alkyl substituiert sein kann, wobei letzteres gegebenenfalls
durch Hydroxy, (C₁-C₄)-Alkoxy oder durch einen Rest der Formeln NR³⁴R³⁵
20 oder -O-CO-R³⁶ substituiert sein kann,

worin

25 R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-
Alkyl bedeuten,

R³⁶ (C₁-C₄)-Alkyl bedeutet,

oder

30 R⁴ für einen Rest der Formel -CO-R³⁷ steht,

worin

R³⁷ für einen Rest der Formeln

5

-(CH₂)_c-NR³⁹R⁴⁰ oder -CH₂-P(O)(OR⁴¹)(OR⁴²) steht,

10

worin

R³⁸ Wasserstoff oder (C₁-C₄)-Alkyl bedeutet,

c entweder 0 oder 1 bedeutet,

15

R³⁹ und R⁴⁰ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

20

R⁴¹ und R⁴² gleich oder verschieden sind und (C₁-C₄)-Alkyl bedeuten,

oder

25 R⁴ für einen Rest der Formel

der, im Falle des Pyrazols, auch über die N-Funktion, gegebenenfalls insgesamt bis zu 3-fach, gleich oder verschieden, durch Chlor, Trifluormethyl oder durch Phenyl substituiert ist, das seinerseits ein- oder mehrfach durch Chlor oder Trifluormethyl substituiert sein kann,

und/oder gegebenenfalls durch Cyclopentyl, Cyclohexyl, Pyrryl oder durch (C₁-C₁₂)-Alkyl substituiert ist, das seinerseits durch Cyano, Trifluormethyl,

10 (C₁-C₄)-Alkoxykarbonyl, (C₁-C₄)-Alkoxy, Amino oder durch Phenyl oder Nitro-substituiertes Phenyl substituiert sein kann,

und/oder gegebenenfalls durch -NR⁴³R⁴⁴, -NH-CO-CO-R⁴⁵, -NH-CO-R⁴⁶,

-NH-CO-CH₂-R⁴⁷, -CO-R⁴⁸ oder
 substituiert sein kann,

15

worin

20 R⁴³ und R⁴⁴ gleich oder verschieden sind und Wasserstoff, Benzyl, (C₁-C₄)-Alkyl oder Phenyl bedeuten, das gegebenenfalls durch Halogen oder Trifluormethyl substituiert ist,

R⁴⁵ (C₁-C₅)-Alkoxy bedeutet,

R⁴⁶ (C₁-C₅)-Alkyl oder Phenyl bedeutet,

25

R⁴⁷ Hydroxy, (C₁-C₄)-Alkoxy oder einen Rest der Formel -O-CO-R⁴⁹ bedeutet,

worin

R⁴⁹ (C₁-C₃)-Alkyl bedeutet

5 R⁴⁸ einen Rest der Formel -CH₂-CN oder Phenyl bedeutet, das gegebenenfalls durch Chlor, Trifluormethyl oder (C₁-C₄)-Alkoxy substituiert ist,

10 und ihre N-Oxide und/oder Tautomeren sowie ihre pharmazeutisch verträglichen Salze, Hydrate und Prodrugs.

Besonders bevorzugt sind erfindungsgemäße Verbindungen der allgemeinen Formel (I),

15 in welcher

R¹ für (C₁-C₄)-Alkyl steht,

20 R² für Cyclopentyl, Cyclohexyl, Cycloheptyl oder (C₁-C₁₀)-Alkyl steht,

R³ für (C₁-C₄)-Alkyl steht,

R⁴ für einen Rest der Formeln

worin

R⁵, R⁶ und R⁷ gleich oder verschieden sind und Vinyl oder (C₁-C₄)-Alkyl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Trifluormethyl, Chlor, (C₁-C₄)-Alkoxy oder durch Reste der Formeln

5

substituiert ist,

worin

10

R⁸ Wasserstoff, Methyl oder Ethyl bedeutet,

oder

15

R⁵, R⁶ und/oder R⁷ Phenyl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Halogen, Cyano, (C₁-C₄)-Alkyl oder (C₁-C₄)-Alkoxy substituiert ist

oder

20

R⁵ einen Rest der Formeln

bedeutet,

der gegebenenfalls bis zu 2-fach, gleich oder verschieden, durch Chlor oder (C₁-C₄)-Alkyl substituiert sein kann

25

oder

R⁵ einen Rest der Formel -NR⁹R¹⁰ bedeutet,

5

worin

R⁹ und R¹⁰ gleich oder verschieden sind und Wasserstoff, (C₁-C₄)-Alkyl oder Phenyl bedeuten,

10

oder

R⁴ für Carboxyl oder für einen Rest der Formeln

oder

15

-CO-R¹³ oder -O-R¹⁴ steht,

worin

R¹³ (C₁-C₄)-Alkyl bedeutet,

20

R¹⁴ (C₁-C₄)-Alkyl bedeutet, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy oder durch einen Rest der Formel -NR¹⁵R¹⁶ substituiert ist,

25

worin

R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl, das seinerseits durch Phenyl substituiert sein kann, bedeuten,

30

oder

R⁴ für einen Rest der Formel -NH-CO-NR¹⁷R¹⁸ steht,

worin

5

R¹⁷ und R¹⁸ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

oder

10

R¹⁷ und R¹⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

oder

bilden,

15

worin

R²¹ Wasserstoff oder (C₁-C₄)-Alkyl bedeutet,

20

oder

R¹⁷ und/oder R¹⁸ Phenyl bedeuten, das gegebenenfalls durch Chlor, Trifluorethyl oder durch -SCF₃ substituiert ist

25

oder

R¹⁷ Wasserstoff bedeutet und

R¹⁸ einen Rest der Formel -SO₂-R²³ bedeutet,

worin

5

R²³ (C₁-C₄)-Alkyl oder Phenyl bedeutet, das gegebenenfalls durch Halogen substituiert ist,

oder für einen Rest der Formeln

10

steht,

oder

R⁴ für einen Rest der Formel

15

-NH-CO-R²⁴ steht,

worin

20

R²⁴ (C₁-C₄)-Alkyl bedeutet, das gegebenenfalls durch Phenyl substituiert ist, das seinerseits durch Hydroxy oder (C₁-C₄)-Alkoxy substituiert sein kann oder

25

(C₁-C₄)-Alkyl gegebenenfalls durch einen Rest der Formel -(SO₂)_b-R²⁷ substituiert ist,

worin

b entweder 0 oder 1 ist und

R^{27} für einen Rest der Formeln

5 oder

R^4 für (C_1-C_6)-Alkyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy, Phenyl oder durch Reste der Formeln $-NR^{28}R^{29}$ oder $-O-CO-R^{30}$ substituiert ist,

10

worin

R^{28} und R^{29} gleich oder verschieden sind, Wasserstoff, Phenyl oder (C_1-C_4)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy, (C_1-C_4)-Alkoxy oder Phenyl substituiert ist,

15

oder

R^{28} und R^{29} gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

worin

25

R³¹ und R³² gleich oder verschieden sind und Wasserstoff oder
(C₁-C₄)-Alkyl bedeuten

5

R³³ (C₁-C₄)-Alkyl, Benzyl, (C₁-C₄)-Alkoxycarbonyl, (C₁-C₄)-
Alkylcarbonyl, Carboxyl, Pyridyl, Pyrimidyl oder Phenyl
bedeutet, das gegebenenfalls durch (C₁-C₄)-Alkoxy substi-
tuiert ist,

und

10

R³⁰ (C₁-C₆)-Alkyl bedeutet,

oder

15

(C₁-C₆)-Alkyl gegebenenfalls durch Triazolyl substituiert ist, das seinerseits
bis zu 2-fach, gleich oder verschieden, durch (C₁-C₄)-Alkyl substituiert sein
kann, wobei letzteres gegebenenfalls durch Hydroxy oder (C₁-C₄)-Alkoxy
substituiert sein kann,

20

worin

oder

R⁴ für einen Rest der Formel -CO-R³⁷ steht,

25

worin

R³⁷ für einen Rest der Formeln

oder $-(\text{CH}_2)_c\text{---NR}^{39}\text{R}^{40}$ steht,

5

worin

R^{38} Wasserstoff oder ($\text{C}_1\text{-C}_4$)-Alkyl bedeutet,

c entweder 0 oder 1 bedeutet,

10

R^{39} und R^{40} gleich oder verschieden sind und Wasserstoff oder ($\text{C}_1\text{-C}_4$)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

15

oder

R^4 für einen Rest der Formel

oder steht,

20

der, im Falle des Pyrazols, auch über die N-Funktion, gegebenenfalls insgesamt bis zu 3-fach, gleich oder verschieden, durch Trifluormethyl oder durch Phenyl substituiert ist, das seinerseits ein- oder mehrfach durch Chlor oder Trifluormethyl substituiert sein kann,

und/oder gegebenenfalls durch Cyclopentyl, Cyclohexyl oder durch (C₁-C₆)-Alkyl substituiert ist, das seinerseits durch (C₁-C₄)-Alkoxy, Amino oder durch Phenyl substituiert sein kann,

5

und/oder gegebenenfalls durch -NR⁴³R⁴⁴, -NH-CO-R⁴⁶, -NH-CO-CH₂-R⁴⁷ oder -CO-R⁴⁸ substituiert sein kann,

worin

10

R⁴³ und R⁴⁴ gleich oder verschieden sind und Wasserstoff, Benzyl, (C₁-C₄)-Alkyl oder Phenyl bedeuten, das gegebenenfalls durch Halogen oder Trifluormethyl substituiert ist,

15

R⁴⁶ (C₁-C₄)-Alkyl oder Phenyl bedeutet,

R⁴⁷ Hydroxy oder (C₁-C₄)-Alkoxy bedeutet,

R⁴⁸ Phenyl bedeutet, das gegebenenfalls durch Chlor, Trifluormethyl oder (C₁-C₄)-Alkoxy substituiert ist,

20

und ihre N-Oxide und/oder Tautomeren sowie ihre pharmazeutisch verträglichen Salze, Hydrate und Prodrugs.

25

Ganz besonders bevorzugt sind die erfindungsgemäßen Verbindungen mit den folgenden Strukturen:

- 37 -

und ihre Tautomeren und/oder N-Oxide sowie ihre pharmazeutisch verträglichen Salze, Hydrate und Prodrugs.

5 Die erfindungsgemaess verwendeten Verbindungen und ihre Herstellung sind in der WO-A-01/64677 beschrieben. Auf die Offenbarung der WO-A-01/64677 wird ausdruecklich Bezug genommen.

Die erfindungsgemäß verwendeten Verbindungen der allgemeine Formel (I) sind geeignet zur Prophylaxe und/oder Behandlung von Erkrankungen, bei denen ein Anstieg der cGMP-Konzentration heilsam ist, d.h. Erkrankungen, die im Zusammenhang mit cGMP-regulierten Vorgängen stehen (im Englischen meist einfach als 'cGMP-related diseases' bezeichnet). Sie inhibieren entweder eine oder mehrere der cGMP-metabolisierenden Phosphodiesterasen (PDE I, PDE II und PDE V). Dies führt zu einem Anstieg von cGMP. Die differenzierte Expression der Phosphodiesterasen in verschiedenen Zellen, Geweben und Organen ebenso wie die differenzierte subzelluläre Lokalisation dieser Enzyme, ermöglichen in Verbindung mit den erfindungsgemäßen selektiven Inhibitoren eine selektive Adressierung der verschiedenen von cGMP regulierten Vorgänge.

Die relaxierende Wirkung auf glatte Muskulatur macht sie geeignet für die Behandlung von Erkrankungen bei denen durch die Verbesserung der Microzirkulation eines Gewebes, das eine cGMP metabolisierende Phosphodiesterase enthält, eine Verbesserung und/oder Heilung einer Krankheitsbildes erreicht werden kann.

Die vorliegende Erfindung betrifft die Verwendung von Imidazotiazinonen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von koronarer Herzkrankheit, Herzinsuffizienz, pulmonalem Bluthochdruck, Blasenerkrankungen, Prostatahyperplasie, Nitrat-induzierte Toleranz, Augenerkrankungen wie Glaucom, zur Behandlung oder Prophylaxe von zentraler retinaler oder posteriorer ciliarer Arterienokklusion, zentraler retinaler Venenokklusion, optischer Neuropathie wie anteriorer ischaemischer optischer Neuropathie und glaukomatoeser optischer Neuropathie, sowie von makulaerer Degeneration, Diabetes, insbesondere der diabetischen Gastroparese, zur Behandlung von Stoerungen der Peristaltik von Magen und Speiseröhre, weiblicher Infertilitaet, vorzeitigen Wehen, Praeklampsie, Alopecia, Psoriasis dem renalen Syndrom,zystischer Fibrose, Krebs, zur Verbesserung der Wahrnehmung, zur Verbesserung der Konzentrationsleistung, zur Verbesserung der Lern- und/oder Gedaechtnisleistung, insbesondere wenn die Stoerung eine Folge von Demenz ist.

Außerdem verstärken die erfundungsgemäßen Verbindungen die Wirkung von Substanzen, wie beispielsweise EDRF (Endothelium derived relaxing factor), ANP (atrial natriuretic peptide), von Nitrovasodilatoren und allen anderen Substanzen, die auf eine
5 andere Art als Phosphodiesterase-Inhibitoren die cGMP-Konzentration erhöhen.

Aktivität der Phosphodiesterasen (PDE's)

Die cGMP-stimulierbare PDE II, die cGMP-hemmbar PDE III und die cAMP-spezifische PDE IV wurden entweder aus Schweine- oder Rinderherzmyokard isoliert. Die Ca²⁺-Calmodulin stimulierbare PDE I wurde aus Schweineaorta, Schweinehirn oder bevorzugt aus Rinderaorta isoliert. Die cGMP spezifische PDE V wurde aus Schweinedünndarm, Schweineaorta, humanen Blutplättchen und bevorzugt aus Rinderaorta gewonnen. Die Reinigung erfolgte durch Anionenaustauschchromatographie an
10 MonoQ^R Pharmacia im wesentlichen nach der Methode von M. Hoey and Miles D. Houslay, Biochemical Pharmacology, Vol. 40, 193-202 (1990) und C. Lugman et al. Biochemical Pharmacology Vol. 35 1743-1751 (1986).

Die Bestimmung der Enzymaktivität erfolgt in einem Testansatz von 100 µl in 20 mM Tris/HCl-Puffer pH 7,5 der 5 mM MgCl₂, 0,1 mg/ml Rinderserumalbumin und entweder 800 Bq ³HcAMP oder ³HcGMP enthält. Die Endkonzentration der entsprechenden Nucleotide ist 10⁻⁶ mol/l. Die Reaktion wird durch Zugabe des Enzyms gestartet, die Enzymmenge ist so bemessen, dass während der Inkubationszeit von 30 min ca. 50% des Substrates umgesetzt werden. Um die cGMP stimulierbare PDE II zu testen, wird als Substrat ³HcAMP verwendet und dem Ansatz 10⁻⁶ mol/l nicht markiertes cGMP zugesetzt. Um die Ca²⁺-Calmodulinabhängige PDE I zu testen, werden dem Reaktionsansatz noch 1 µM CaCl₂ und 0,1 µM Calmodulin zugesetzt. Die Reaktion wird durch Zugabe von 100 µl Acetonitril, das 1 mM cAMP und 1 mM AMP enthält, gestoppt. 100 µl des Reaktionsansatzes werden mittels HPLC getrennt und die Spaltprodukte "Online" mit einem Durchflussscantillationszähler quantitativ bestimmt.
20
25
30 Es wird die Substanzkonzentration gemessen, bei der die Reaktionsgeschwindigkeit um

50 % vermindert ist. Zusätzlich wurde zur Testung der "Phosphodiesterase [³H] cAMP-SPA enzyme assay" und der "Phosphodiesterase [³H] cGMP-SPA enzyme assay" der Firma Amersham Life Science verwendet. Der Test wurde nach dem vom Hersteller angegebenen Versuchsprotokoll durchgeführt. Für die Aktivitätsbestimmung der PDE II wurde der [³H] cAMP SPA assay verwendet, wobei dem Reaktionsansatz 10⁻⁶ M cGMP zur Aktivierung des Enzyms zugegeben wurde. Für die Messung der PDE I wurden 10⁻⁷ M Calmodulin und 1 µM CaCl₂ zum Reaktionsansatz zugegeben. Die PDE V wurde mit dem [³H] cGMP SPA assay gemessen.

10

Objekt-Wiedererkennungstest

Der Objekt-Wiedererkennungstest ist ein Gedächtnistest. Er misst die Fähigkeit von Ratten (und Mäusen), zwischen bekannten und unbekannten Objekten zu unterscheiden.

15

Der Test wurde wie beschrieben durchgeführt: Blokland et al, *NeuroReport* 1998, 9, 4205; Ennaceur et al, *Behav. Brain Res.* 1988, 31, 47-59; Ennaceur et al, *Psychopharmacology* 1992, 109, 321-330; Prickaerts et al, *Eur. J. Pharmacol.* 1997, 337, 125-136.

20

Grundsätzlich führt die Inhibition einer oder mehrerer Phosphodiesterasen dieses Typs zu einer Erhöhung der cGMP-Konzentration. Dadurch sind die Verbindungen interessant für alle Therapien, in denen eine Erhöhung der cGMP-Konzentration als heilsam angenommen werden kann.

25

Die Untersuchung der kardiovaskulären Wirkungen wurden an normotonen und an SH-Ratten und an Hunden durchgeführt. Die Substanzen wurden intravenös oder oral appliziert.

30

Die neuen Wirkstoffe sowie ihre physiologisch unbedenklichen Salze (z. B. Hydrochloride, Maleinate oder Lactate) können in bekannter Weise in die üblichen Formulierungen überführt werden, wie Tabletten, Dragees, Pillen, Granulate, Aerosole,

Sirupe, Emulsionen, Suspensionen und Lösungen, unter Verwendung inerter, nicht toxischer, pharmazeutisch geeigneter Trägerstoffe oder Lösungsmittel. Hierbei soll die therapeutisch wirksame Verbindung jeweils in einer Konzentration von etwa 0,5 bis 90 Gew.-% der Gesamtmischung vorhanden sein, d. h. in Mengen, die ausreichend sind, um den angegebenen Dosierungsspielraum zu erreichen.

Die Formulierungen werden beispielsweise hergestellt durch Verstrecken der Wirkstoffe mit Lösungsmitteln und/oder Trägerstoffen, gegebenenfalls unter Verwendung von Emulgiermitteln und/oder Dispergiermitteln, wobei z. B. im Fall der Benutzung von Wasser als Verdünnungsmittel gegebenenfalls organische Lösungsmittel als Hilfslösungsmittel verwendet werden können.

Die Applikation erfolgt in üblicher Weise, vorzugsweise oral, transdermal oder parenteral, z.B. perlingual, sublingual, conjunctival, otisch, buccal, intravenös, nasal, rektal, inhalativ oder als Implantat.

Für die Anwendung beim Menschen werden bei oraler Administration im allgemeinen Dosierungen von 0,001 bis 50 mg/kg vorzugsweise 0,01 mg/kg - 20 mg/kg verabreicht. Bei parenteraler Administration, wie z. B. über Schleimhäute nasal, buccal, inhalativ, ist eine Dosierung von 0,001 mg/kg - 0,5 mg/kg sinnvoll.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit vom Körpergewicht bzw. der Art des Applikationsweges, vom individuellen Verhalten gegenüber dem Medikament, der Art von dessen Formulierung und dem Zeitpunkt bzw. Intervall, zu welchen die Verabreichung erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der oben genannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

5

Die erfindungsgemäßen Verbindungen sind auch zur Anwendung in der Tiermedizin geeignet. Für Anwendungen in der Tiermedizin können die Verbindungen oder ihre nicht toxischen Salze in einer geeigneten Formulierung in Übereinstimmung mit den allgemeinen tiermedizinischen Praxen verabreicht werden. Der Tierarzt kann die Art der Anwendung und die Dosierung nach Art des zu behandelnden Tieres festlegen.

Die vorliegende Erfindung wird durch die folgenden Beispiele veranschaulicht, die die Erfindung jedoch keineswegs beschränken sollen.

Patentansprüche

1. Verwendung von Verbindungen der allgemeinen Formel (I)

5

in welcher

R¹ für (C₁-C₆)-Alkyl steht,

10 R² für (C₃-C₈)-Cycloalkyl oder (C₁-C₁₂)-Alkyl steht,

R³ für (C₁-C₆)-Alkyl steht,

15 R⁴ für einen Rest der Formeln

$\text{---NH---SO}_2\text{---R}^5$ oder $\text{-N}(\text{---SO}_2\text{---R}^6)\text{---SO}_2\text{---R}^7$ steht,

worin

20 R⁵, R⁶ und R⁷ gleich oder verschieden sind und Vinyl oder (C₁-C₆)-Alkyl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Trifluormethyl, Halogen, (C₁-C₆)-Alkoxy oder durch Reste der Formeln

substituiert ist,

worin

R^8 Wasserstoff oder ($\text{C}_1\text{-C}_4$)-Alkyl bedeutet,

5

oder

R^5 , R^6 und/oder R^7 ($\text{C}_6\text{-C}_{12}$)-Aryl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Halogen, Trifluormethyl, Nitro, Cyano, Carboxyl, ($\text{C}_1\text{-C}_6$)-Alkyl oder ($\text{C}_1\text{-C}_6$)-Alkoxy substituiert ist

10

oder

R^5 Chinolyl oder einen 5- bis 6-gliedrigen, aromatischen oder gesättigten Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O bedeutet, der gegebenenfalls, im Fall einer N-Funktion auch über diese, bis zu 3-fach, gleich oder verschieden, durch Halogen oder ($\text{C}_1\text{-C}_6$)-Alkyl substituiert sein kann

15

oder

R^5 einen Rest der Formeln

20

bedeutet, worin

5 R^9 und R^{10} gleich oder verschieden sind und Wasserstoff, ($\text{C}_1\text{-}\text{C}_6$)-Alkyl oder Phenyl bedeuten,

oder

10 R^4 für Carboxyl oder für einen Rest der Formeln

-CO-R¹³ oder -O-R¹⁴ steht,

15 worin

R^{11} und R^{12} gleich oder verschieden sind und Wasserstoff oder ($\text{C}_1\text{-}\text{C}_4$)-Alkyl bedeuten,

20 R^{13} ($\text{C}_1\text{-}\text{C}_6$)-Alkyl bedeutet,

R^{14} ($\text{C}_1\text{-}\text{C}_6$)-Alkyl bedeutet, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy, Phenyl oder durch einen Rest der Formel $-\text{NR}^{15}\text{R}^{16}$ substituiert ist,

worin

5

R^{15} und R^{16} gleich oder verschieden sind und Wasserstoff, Phenyl oder (C_1 - C_4)-Alkyl, das seinerseits durch Phenyl substituiert sein kann, bedeuten,

oder

10

R^4 für einen Rest der Formel $-\text{NH}-\text{CO}-\text{NR}^{17}\text{R}^{18}$ steht,

worin

15

R^{17} und R^{18} gleich oder verschieden sind und Wasserstoff oder (C_1 - C_6)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy oder durch einen Rest der Formeln

oder $-\text{NR}^{19}\text{R}^{20}$ substituiert ist,

worin

20

R^{19} und R^{20} gleich oder verschiedene sind und Wasserstoff, Phenyl oder (C_1 - C_6)-Alkyl bedeuten

oder

25

R^{17} und R^{18} gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

worin

5 R²¹ Wasserstoff oder (C₁-C₆)-Alkyl bedeutet,

a entweder 1 oder 2 bedeutet,

10 R²² Hydroxy oder (C₁-C₆)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

oder

R¹⁷ und/oder R¹⁸ (C₆-C₁₂)-Aryl bedeuten, das gegebenenfalls durch Halogen, Trifluorethyl oder durch -SCF₃ substituiert ist

15

oder

R¹⁷ Wasserstoff bedeutet und

20

R¹⁸ einen Rest der Formel -SO₂-R²³ bedeutet,

worin

25 R²³ (C₁-C₆)-Alkyl oder (C₆-C₁₂)-Aryl bedeutet, das gegebenenfalls durch Halogen substituiert ist,

oder für einen Rest der Formeln

oder

5 R⁴ für einen Rest der Formel

-NH-CO-R²⁴ steht,

worin

10

R²⁴ einen Rest der Formel

15

worin

R²⁵ und R²⁶ gleich oder verschieden sind und Wasserstoff, (C₁-C₆)-Alkyl oder (C₁-C₆)-Alkoxycarbonyl bedeuten,

20

oder

R²⁴ (C₁-C₆)-Alkyl bedeutet, das gegebenenfalls durch (C₆-C₁₂)-Aryl substituiert ist, das seinerseits durch Hydroxy oder (C₁-C₆)-Alkoxy substituiert sein kann oder

25

(C₁-C₆)-Alkyl gegebenenfalls durch einen Rest der Formel -(SO₂)_b-R²⁷ substituiert ist,

worin

5

b entweder 0 oder 1 ist und

R²⁷ für einen Rest der Formeln

10

15

R⁴ für (C₁-C₁₂)-Alkyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy, Azid, Phenyl oder durch Reste der Formeln -NR²⁸R²⁹, -O-CO-R³⁰ oder -P(O){O-[(C₁-C₆)-Alkyl]}₂ substituiert ist,

20

worin

R²⁸ und R²⁹ gleich oder verschieden sind, Wasserstoff, Phenyl oder (C₁-C₆)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy, (C₁-C₆)-Alkoxy oder Phenyl substituiert ist,

25

oder

R²⁸ und R²⁹ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

worin

5 R³¹ und R³² gleich oder verschieden sind und Wasserstoff oder
 (C₁-C₆)-Alkyl bedeuten

10 R³³ (C₁-C₆)-Alkyl, Benzyl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-
 Alkylcarbonyl, Carboxyl, Pyridyl, Pyrimidyl oder Phenyl

bedeutet, das gegebenenfalls durch (C₁-C₆)-Alkoxy substituiert ist,

und

15 R³⁰ (C₁-C₆)-Alkyl bedeutet,

oder

20 (C₁-C₁₂)-Alkyl gegebenenfalls durch Triazolyl substituiert ist, das
 seinerseits bis zu 2-fach, gleich oder verschieden, durch Halogen,

Phenyl, Tetrahydrofuryl, Tetrahydropyran, (C₁-C₆)-Alkoxy-carbonyl, Aminocarbonyl oder durch (C₁-C₆)-Alkyl substituiert sein kann, wobei letzteres gegebenenfalls durch Hydroxy, (C₁-C₆)-Alkoxy oder durch einen Rest der Formeln NR³⁴R³⁵ oder -O-CO-R³⁶ substituiert sein kann,

25

worin

R³⁴ und R³⁵ gleich oder verschieden sind und Wasserstoff oder (C₁-C₆)-Alkyl bedeuten,

5 R³⁶ (C₁-C₆)-Alkyl bedeutet,

oder

R⁴ für einen Rest der Formel -CO-R³⁷ steht,

worin

R³⁷ für einen Rest der Formeln

15 -(CH₂)_c-NR³⁹R⁴⁰ oder -CH₂-P(O)(OR⁴¹)(OR⁴²) steht,

worin

20

R³⁸ Wasserstoff oder (C₁-C₆)-Alkyl bedeutet,

c entweder 0 oder 1 bedeutet,

R^{39} und R^{40} gleich oder verschieden sind und Wasserstoff oder (C_1-C_6)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

5 R^{41} und R^{42} gleich oder verschieden sind und (C_1-C_6)-Alkyl bedeuten,

oder

10 R^4 für einen 5-gliedrigen Heterocyclus mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht, der im Falle einer N-Funktion auch über diese, gegebenenfalls insgesamt bis zu 3-fach, gleich oder verschieden, durch Halogen, Trifluormethyl oder durch Phenyl substituiert ist, das seinerseits ein- oder mehrfach durch Halogen oder 15 Trifluormethyl substituiert sein kann,

und/oder gegebenenfalls durch (C_3-C_6)-Cycloalkyl, Pyrryl oder durch (C_1-C_{12})-Alkyl substituiert ist, das seinerseits durch Cyano, Trifluormethyl, (C_1-C_6)-Alkoxy carbonyl, (C_1-C_6)-Alkoxy, Amino oder durch Phenyl oder 20 Nitro-substituiertes Phenyl substituiert sein kann,

und/oder gegebenenfalls durch $-NR^{43}R^{44}$, $-NH-CO-CO-R^{45}$, $-NH-CO-R^{46}$,
 $-NH-CO-CH_2-R^{47}$, $-CO-R^{48}$ oder substituiert sein kann,

25 worin

R^{43} und R^{44} gleich oder verschieden sind und Wasserstoff, Benzyl, (C_1-C_6)-Alkyl oder Phenyl bedeuten, das gegebenenfalls durch Halogen oder Trifluormethyl substituiert ist,

30

R⁴⁵ (C₁-C₆)-Alkoxy bedeutet,

R⁴⁶ (C₁-C₆)-Alkyl oder Phenyl bedeutet,

5 R⁴⁷ Hydroxy, (C₁-C₆)-Alkoxy oder einen Rest der Formel -O-CO-R⁴⁹ bedeutet,

worin

10 R⁴⁹ (C₁-C₄)-Alkyl bedeutet

R⁴⁸ einen Rest der Formel -CH₂-CN oder Phenyl bedeutet, das gegebenenfalls durch Halogen, Trifluormethyl oder (C₁-C₆)-Alkoxy substituiert ist,

15

und deren Salze, Tautomeren, N-Oxide, Prodrugs und Hydrate sowie isomere Formen,

20 zur Prophylaxe und/oder Behandlung von Erkrankungen, die im Zusammenhang mit cGMP-regulierten Vorgängen stehen ('cGMP-related diseases').

25 2. Verwendung gemäß Anspruch 1, wobei in den Verbindungen der allgemeinen Formel (I),

R¹ für (C₁-C₄)-Alkyl steht,

R² für Cyclopentyl, Cycloheptyl oder (C₁-C₁₀)-Alkyl steht,

30 R³ für (C₁-C₄)-Alkyl steht,

R^4 für einen Rest der Formeln

5

worin

R^5 , R^6 und R^7 gleich oder verschieden sind und Vinyl oder (C_1 - C_4)-Alkyl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Trifluormethyl, Chlor, (C_1 - C_4)-Alkoxy oder durch Reste der Formeln

10

substituiert ist,

worin

15

 R^8 Wasserstoff, Methyl oder Ethyl bedeutet,

oder

20

R^5 , R^6 und/oder R^7 Phenyl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Halogen, Trifluormethyl, Nitro, Cyano, Carboxyl, (C_1 - C_4)-Alkyl oder (C_1 - C_4)-Alkoxy substituiert ist

oder

25

 R^5 Chinolyl oder einen Rest der Formeln

bedeutet,

der gegebenenfalls bis zu 2-fach, gleich oder verschieden, durch Chlor oder (C_1-C_4)-Alkyl substituiert sein kann

5

oder

10 R^5 einen Rest der Formeln

oder $-NR^9R^{10}$

bedeutet,

worin

15 R^9 und R^{10} gleich oder verschieden sind und Wasserstoff, (C_1-C_6)-Alkyl oder Phenyl bedeuten,

oder

R⁴ für Carboxyl oder für einen Rest der Formeln

5 -CO-R¹³ oder -O-R¹⁴ steht,

worin

10 R¹¹ und R¹² gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten,

R¹³ (C₁-C₄)-Alkyl bedeutet,

15 R¹⁴ (C₁-C₄)-Alkyl bedeutet, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy, Phenyl oder durch einen Rest der Formel -NR¹⁵R¹⁶ substituiert ist,

worin

20 R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff, Phenyl oder (C₁-C₄)-Alkyl, das seinerseits durch Phenyl substituiert sein kann, bedeuten,

oder

25 R⁴ für einen Rest der Formel -NH-CO-NR¹⁷R¹⁸ steht,

worin

R¹⁷ und R¹⁸ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy oder durch einen Rest der Formeln

5

oder -NR¹⁹R²⁰ substituiert ist,

worin

10

R¹⁹ und R²⁰ gleich oder verschiedene sind und Wasserstoff, Phenyl oder (C₁-C₄)-Alkyl bedeuten

oder

15

R¹⁷ und R¹⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

worin

20

R²¹ Wasserstoff oder (C₁-C₄)-Alkyl bedeutet,

a entweder 1 oder 2 bedeutet,

25

R²² Hydroxy oder (C₁-C₄)-Alkyl bedeutet, das gegebenenfalls durch Hydroxy substituiert ist,

oder

R¹⁷ und/oder R¹⁸ Phenyl bedeuten, das gegebenenfalls durch Chlor,
Trifluorethyl oder durch -SCF₃ substituiert ist

oder

5

R¹⁷ Wasserstoff bedeutet und

R¹⁸ einen Rest der Formel -SO₂-R²³ bedeutet,

10

worin

R²³ (C₁-C₄)-Alkyl oder Phenyl bedeutet, das gegebenenfalls durch
Halogen substituiert ist,

15

oder für einen Rest der Formeln

oder

20

R⁴ für einen Rest der Formel

-NH-CO-R²⁴ steht,

25

worin

R²⁴ einen Rest der Formel

worin

5

R²⁵ und R²⁶ gleich oder verschieden sind und Wasserstoff, (C₁-C₄)-Alkyl oder (C₁-C₄)-Alkoxycarbonyl bedeuten,

oder

10

R²⁴ (C₁-C₄)-Alkyl bedeutet, das gegebenenfalls durch Phenyl substituiert ist, das seinerseits durch Hydroxy oder (C₁-C₄)-Alkoxy substituiert sein kann oder

15

(C₁-C₄)-Alkyl gegebenenfalls durch einen Rest der Formel -(SO₂)_b-R²⁷ substituiert ist,

worin

20

b entweder 0 oder 1 ist und

R<sup>27</sup> für einen Rest der Formeln

25

oder

5

R^4 für (C_1-C_{11})-Alkyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy, Azid, Phenyl oder durch Reste der Formeln $-NR^{28}R^{29}$, $-O-CO-R^{30}$ oder $-P(O)\{O-[C_1-C_6]-Alkyl\}_2$ substituiert ist,

worin

10

R^{28} und R^{29} gleich oder verschieden sind, Wasserstoff, Phenyl oder (C_1-C_4)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy, (C_1-C_4)-Alkoxy oder Phenyl substituiert ist,

oder

15

R^{28} und R^{29} gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

20

worin

R^{31} und R^{32} gleich oder verschieden sind und Wasserstoff oder (C_1-C_4)-Alkyl bedeuten

25

R^{33} (C_1-C_4)-Alkyl, Benzyl, (C_1-C_4)-Alkoxy carbonyl, (C_1-C_4)-Alkyl carbonyl, Carboxyl, Pyridyl, Pyrimidyl oder Phenyl

bedeutet, das gegebenenfalls durch (C_1-C_4)-Alkoxy substituiert ist,

und

5

R^{30} (C_1-C_6)-Alkyl bedeutet,

oder

10

(C_1-C_{11})-Alkyl gegebenenfalls durch Triazolyl substituiert ist, das seinerseits bis zu 2-fach, gleich oder verschieden, durch Halogen, Phenyl, Tetrahydrofuryl, Tetrahydropyran, (C_1-C_4)-Alkoxy-carbonyl, Aminocarbonyl oder durch (C_1-C_4)-Alkyl substituiert sein kann, wobei letzteres gegebenenfalls durch Hydroxy, (C_1-C_4)-Alkoxy oder durch einen Rest der Formeln $NR^{34}R^{35}$ oder $-O-CO-R^{36}$ substituiert sein kann,

15

worin

20

R^{34} und R^{35} gleich oder verschieden sind und Wasserstoff oder (C_1-C_4)-Alkyl bedeuten,

25

R^{36} (C_1-C_4)-Alkyl bedeutet,

oder

R^4 für einen Rest der Formel $-CO-R^{37}$ steht,

worin

30

R^{37} für einen Rest der Formeln

5 $-(\text{CH}_2)_c\text{-NR}^{39}\text{R}^{40}$ oder $-\text{CH}_2\text{-P(O)(OR}^{41}\text{)(OR}^{42})$ steht,

worin

10 R^{38} Wasserstoff oder ($\text{C}_1\text{-C}_4$)-Alkyl bedeutet,

c entweder 0 oder 1 bedeutet,

15 R^{39} und R^{40} gleich oder verschieden sind und Wasserstoff oder ($\text{C}_1\text{-C}_4$)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

15 R^{41} und R^{42} gleich oder verschieden sind und ($\text{C}_1\text{-C}_4$)-Alkyl bedeuten,

oder

20

R^4 für einen Rest der Formel

der, im Falle des Pyrazols, auch über die N-Funktion, gegebenenfalls insgesamt bis zu 3-fach, gleich oder verschieden, durch Chlor, Trifluormethyl oder durch Phenyl substituiert ist, das seinerseits ein- oder mehrfach durch Chlor oder Trifluormethyl substituiert sein kann,

5

und/oder gegebenenfalls durch Cyclopentyl, Cyclohexyl, Pyrryl oder durch (C_1-C_{12})-Alkyl substituiert ist, das seinerseits durch Cyano, Trifluormethyl, (C_1-C_4)-Alkoxy carbonyl, (C_1-C_4)-Alkoxy, Amino oder durch Phenyl oder Nitro-substituiertes Phenyl substituiert sein kann,

10

und/oder gegebenenfalls durch $-NR^{43}R^{44}$, $-NH-CO-CO-R^{45}$, $-NH-CO-R^{46}$, $-NH-CO-CH_2-R^{47}$, $-CO-R^{48}$ oder substituiert sein kann,

worin

15

R^{43} und R^{44} gleich oder verschieden sind und Wasserstoff, Benzyl, (C_1-C_4)-Alkyl oder Phenyl bedeuten, das gegebenenfalls durch Halogen oder Trifluormethyl substituiert ist,

20

R^{45} (C_1-C_5)-Alkoxy bedeutet,

R^{46} (C_1-C_5)-Alkyl oder Phenyl bedeutet,

25

R^{47} Hydroxy, (C_1-C_4)-Alkoxy oder einen Rest der Formel $-O-CO-R^{49}$ bedeutet,

worin

R^{49} (C_1-C_3)-Alkyl bedeutet

R^{48} einen Rest der Formel $-CH_2-CN$ oder Phenyl bedeutet, das gegebenenfalls durch Chlor, Trifluormethyl oder (C_1-C_4)-Alkoxy substituiert ist,

5

und ihre Tautomeren sowie deren pharmazeutisch verträgliche Salze, Hydrate und Prodrugs.

3. Verwendung gemäß Anspruch 1, wobei in der allgemeinen Formel (I)

10

R^1 für (C_1-C_4)-Alkyl steht,

R^2 für Cyclopentyl, Cyclohexyl, Cycloheptyl oder (C_1-C_{10})-Alkyl steht,

15

R^3 für (C_1-C_4)-Alkyl steht,

R^4 für einen Rest der Formeln

20

worin

R^5 , R^6 und R^7 gleich oder verschieden sind und Vinyl oder (C_1-C_4)-Alkyl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Trifluormethyl, Chlor, (C_1-C_4)-Alkoxy oder durch Reste der Formeln

25

worin

R⁸ Wasserstoff, Methyl oder Ethyl bedeutet,

5 oder

R⁵, R⁶ und/oder R⁷ Phenyl bedeuten, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Halogen, Cyano, (C₁-C₄)-Alkyl oder (C₁-C₄)-Alkoxy substituiert ist

10

oder

R⁵ einen Rest der Formeln

bedeutet,

der gegebenenfalls bis zu 2-fach, gleich oder verschieden, durch Chlor oder (C₁-C₄)-Alkyl substituiert sein kann

20 oder

R⁵ einen Rest der Formel -NR⁹R¹⁰ bedeutet,

worin

25

R⁹ und R¹⁰ gleich oder verschieden sind und Wasserstoff, (C₁-C₄)-Alkyl oder Phenyl bedeuten,

oder

5 R⁴ für Carboxyl oder für einen Rest der Formeln

oder

-CO-R¹³ oder -O-R¹⁴ steht,

worin

10

R¹³ (C₁-C₄)-Alkyl bedeutet,

15 R¹⁴ (C₁-C₄)-Alkyl bedeutet, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy oder durch einen Rest der Formel -NR¹⁵R¹⁶ substituiert ist,

worin

20

R¹⁵ und R¹⁶ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl, das seinerseits durch Phenyl substituiert sein kann, bedeuten,

oder

25 R⁴ für einen Rest der Formel -NH-CO-NR¹⁷R¹⁸ steht,

worin

30

R¹⁷ und R¹⁸ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

oder

R¹⁷ und R¹⁸ gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

5

10

worin

R²¹ Wasserstoff oder (C₁-C₄)-Alkyl bedeutet,

oder

15

R¹⁷ und/oder R¹⁸ Phenyl bedeuten, das gegebenenfalls durch Chlor, Trifluorethyl oder durch -SCF₃ substituiert ist

oder

20

R¹⁷ Wasserstoff bedeutet und

R¹⁸ einen Rest der Formel -SO₂-R²³ bedeutet,

worin

25

R²³ (C₁-C₄)-Alkyl oder Phenyl bedeutet, das gegebenenfalls durch Halogen substituiert ist,

oder für einen Rest der Formeln

oder

5

R^4 für einen Rest der Formel

$-NH-CO-R^{24}$ steht,

10

worin

R^{24} (C_1-C_4)-Alkyl bedeutet, das gegebenenfalls durch Phenyl substituiert ist, das seinerseits durch Hydroxy oder (C_1-C_4)-Alkoxy substituiert sein kann oder

15

(C_1-C_4)-Alkyl gegebenenfalls durch einen Rest der Formel $-(SO_2)_b-R^{27}$ substituiert ist,

worin

20

b entweder 0 oder 1 ist und

R^{27} für einen Rest der Formeln

oder

steht,

25

oder

R^4 für (C_1-C_6)-Alkyl steht, das gegebenenfalls bis zu 3-fach, gleich oder verschieden, durch Hydroxy, Phenyl oder durch Reste der Formeln $-NR^{28}R^{29}$ oder $-O-CO-R^{30}$ substituiert ist,

5

worin

R^{28} und R^{29} gleich oder verschieden sind, Wasserstoff, Phenyl oder (C_1-C_4)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy, (C_1-C_4)-Alkoxy oder Phenyl substituiert ist,

10

oder

R^{28} und R^{29} gemeinsam mit dem Stickstoffatom, an das sie gebunden sind, einen heterocyclischen Ring der Formeln

15

worin

20

R^{31} und R^{32} gleich oder verschieden sind und Wasserstoff oder (C_1-C_4)-Alkyl bedeuten

25

R^{33} (C_1-C_4)-Alkyl, Benzyl, (C_1-C_4)-Alkoxy carbonyl, (C_1-C_4)-Alkyl carbonyl, Carboxyl, Pyridyl, Pyrimidyl oder Phenyl bedeutet, das gegebenenfalls durch (C_1-C_4)-Alkoxy substituiert ist,

und

5 R^{30} (C_1-C_6)-Alkyl bedeutet,

oder

10 (C_1-C_6)-Alkyl gegebenenfalls durch Triazolyl substituiert ist, das seinerseits bis zu 2-fach, gleich oder verschieden, durch (C_1-C_4)-Alkyl substituiert sein kann, wobei letzteres gegebenenfalls durch Hydroxy oder (C_1-C_4)-Alkoxy substituiert sein kann,

worin

15

oder

20 R^4 für einen Rest der Formel $-CO-R^{37}$ steht,

worin

25 R^{37} für einen Rest der Formeln

25

oder $-(CH_2)_c-NR^{39}R^{40}$ steht,

worin

R³⁸ Wasserstoff oder (C₁-C₄)-Alkyl bedeutet,

5 c entweder 0 oder 1 bedeutet,

R³⁹ und R⁴⁰ gleich oder verschieden sind und Wasserstoff oder (C₁-C₄)-Alkyl bedeuten, das gegebenenfalls durch Hydroxy substituiert ist,

10

oder

R⁴ für einen Rest der Formel

15

20

der, im Falle des Pyrazols, auch über die N-Funktion, gegebenenfalls insgesamt bis zu 3-fach, gleich oder verschieden, durch Trifluormethyl oder durch Phenyl substituiert ist, das seinerseits ein- oder mehrfach durch Chlor oder Trifluormethyl substituiert sein kann,

und/oder gegebenenfalls durch Cyclopentyl, Cyclohexyl oder durch (C₁-C₆)-Alkyl substituiert ist, das seinerseits durch (C₁-C₄)-Alkoxy, Amino oder durch Phenyl substituiert sein kann,

25

und/oder gegebenenfalls durch -NR⁴³R⁴⁴, -NH-CO-R⁴⁶, -NH-CO-CH₂-R⁴⁷ oder -CO-R⁴⁸ substituiert sein kann,

worin

R⁴³ und R⁴⁴ gleich oder verschieden sind und Wasserstoff, Benzyl, (C₁-C₄)-Alkyl oder Phenyl bedeuten, das gegebenenfalls durch Halogen oder Trifluormethyl substituiert ist,

5

R⁴⁶ (C₁-C₄)-Alkyl oder Phenyl bedeutet,

R⁴⁷ Hydroxy oder (C₁-C₄)-Alkoxy bedeutet,

10

R⁴⁸ Phenyl bedeutet, das gegebenenfalls durch Chlor, Trifluormethyl oder (C₁-C₄)-Alkoxy substituiert ist,

und ihre Tautomeren sowie deren pharmazeutisch verträgliche Salze, Hydrate und Prodrugs.

15

4. Verwendung gemäß Anspruch 1 von Verbindungen mit den folgenden Strukturen:

und ihre Tautomeren sowie deren pharmazeutisch verträgliche Salze, Hydrate und Prodrugs.

5. Verwendung von Verbindungen wie in den Ansprüchen 1 bis 4 definiert zur Herstellung von Arzneimitteln zur Prophylaxe und/oder Behandlung von

Erkrankungen, die im Zusammenhang mit cGMP-regulierten Vorgängen stehen ('cGMP-related diseases').

6. Verwendung von Verbindungen wie in den Ansprüchen 1 bis 4 definiert zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten, bei denen durch eine Verbesserung der Microzirkulation eines Gewebes, das eine cGMP metabolisierende Phosphodiesterase enthaelt, eine Verbesserung und/oder Heilung des Krankheitsbildes erreicht werden kann.

10 7. Verwendung von Verbindungen wie in den Ansprüchen 1 bis 4 definiert zur Herstellung von Arzneimitteln zur Behandlung von und/oder Prophylaxe von koronarer Herzkrankheit, Herzinsuffizienz, pulmonalem Bluthochdruck, Blasenerkrankungen, Prostatahyperplasie, Nitrat-induzierte Toleranz, Augenerkrankungen wie Glaucom, zur Behandlung oder Prophylaxe von zentraler retinaler oder posteriorer ciliarer Arterienokklusion, zentraler retinaler Venenokklusion, optischer Neuropathie wie anteriorer ischaemischer optischer Neuropathie und glaukomatoeser optischer Neuropathie, sowie von makulaerer Degeneration, Diabetes, zur Behandlung von Stoerungen der Peristaltik von Magen und Speiseröhre, weiblicher Infertilitaet, vorzeitigen Wehen, Praeklampsie, Alopecia, Psoriasis dem renalen Syndrom,zystischer Fibrose, Krebs, zur Verbesserung der Wahrnehmung, zur Verbesserung der Konzentrationsleistung, zur Verbesserung der Lern- und/oder Gedaechtnisleistung.

Neue Verwendung von Imidazotriazinonen

Z u s a m m e n f a s s u n g

Die Anmeldung betrifft neue Verwendungen von Imidazo[1,3,5]triazinonen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von koronarer Herzkrankheit, Herzinsuffizienz, pulmonalem Bluthochdruck, Blasenerkrankungen, Prostatahyperplasie, Nitrat-induzierte Toleranz, Augenerkrankungen wie Glaucom, zur Behandlung oder Prophylaxe von zentraler retinaler oder posteriorer ciliarer Arterienokklusion, zentraler retinaler Venenokklusion, optischer Neuropathie wie anteriorer ischaemischer optischer Neuropathie und glaukomatoeser optischer Neuropathie, sowie von makulaerer Degeneration, Diabetes, insbesondere der diabetischen Gastroparese, zur Behandlung von Stoerungen der Peristaltik von Magen und Speiseröhre, weiblicher Infertilitaet, vorzeitigen Wehen, Praeeklampsie, Alopecia, Psoriasis dem renalen Syndrom, zystischer Fibrose, Krebs, zur Verbesserung der Wahrnehmung, zur Verbesserung der Konzentrationsleistung, zur Verbesserung der Lern- und/oder Gedaechtnisleistung, insbesondere wenn die Stoerung eine Folge von Demenz ist.