Scotty Felch 21 January 2015 CSCI 305 HW #1

- 1. a. How many possible outcomes are there for rolling the three (6-sided, 10-sided, 20-sided) dice? 6*10*20=1200 possible outcomes
 - b. How many ways can the dice total 21 given a 1 rolled on the 6-sided die?

6 side	10 side	20 side
1	10	10
	9	11
	8	12
	7	13
	6	14
	5	15
	4	16
	3	17
	2	18
	1	19

There are 10 possible ways.

c. How many different ways to win with a 6 on the 6-sided die?

6 side	10 side	20 side
6	10	5
	9	6
	8	7
	7	8
	6	9
	5	10
	4	11
	3	12
	2	13
	1	14

d. What is the probability of getting 21 when rolling dice?

Probability = # ways to add to 21 / total # ways to roll =
$$(6 * 10) / (6 * 10 * 20) = 1/20$$

e. What is the expected value of the winnings for a person playing the game once?

$$E(X) = x*P(X)$$

X	Win	Lose
X	+\$20	-\$1
E(x)=x * P(X)	20 * 0.05 = 1	-1 * 0.95 = -0.95

$$E(X) = (0.95)(\$-1) + (0.05)(\$20) = \$0.05$$

f. What other totals of the three dice would result in the same expected winnings as rolling 21?

Minimum to maximum values you can achieve by setting the six-die and ten-die to 1 and 1, or 6 and 10.

$$(6 + 10 + 1)$$
 to $(1 + 1 + 20)$ => 17 to 22 min and max

2. a. What is the probability that the top three cards that you turned over appeared in increasing order?

1 st card	2 nd card	3 rd card
1	9/9	8/8
	8/9	7/8
	7/9	6/8
	•••	
	2/9	1/8
2	8/9	7/8
	7/9	6/8
	3/9	2/8
	2/9	1/8
3	7/9	6/8
	6/9	5/8
	•••	
	2/9	1/8
4	6/9	5/8
	5/9	4/8

2/9	1/8
•••	•••

Using this pattern and a summation formula I can tell how many possible ways there are to win.

For the 1st card being 1, I get (8(8+1))/2 = 36 possibilities. For the 1st card being 2, I get (7(7+1))/2 = 28 possibilities. For the 1st card being 2, I get (6(6+1))/2 = 21 possibilities. For the 1st card being 2, I get (5(5+1))/2 = 15 possibilities. For the 1st card being 2, I get (4(4+1))/2 = 10 possibilities. For the 1st card being 2, I get (3(3+1))/2 = 6 possibilities. For the 1st card being 2, I get (2(2+1))/2 = 3 possibilities. For the 1st card being 2, I get (1(1+1))/2 = 1 possibilities.

Or in other words,

$$\sum_{i=1}^{8} \frac{1}{2} i (i+1) = 120$$

Summing that up you get a total of 120 possible ways to win. Dividing by the total number of ways to draw, you get:

(120 ways to win) / (720 ways to draw) = (1/6) chance to win.

In a general format, you get

$$\sum_{i=1}^{\mathbf{n} \cdot \mathbf{k}} \frac{1}{2} i (i+1) = 120$$

where n = total cards and k = amount to draw.

3. Prove by induction that $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$.

Base case:

$$\begin{split} F_0 &= 0 \\ F_1 &= 1 \\ F_n &= F_{n\text{-}1} + F_{n\text{-}2} \end{split}$$

Assume for all $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$. Prove $F_{n+(k+1)} = F_{k+1} F_{n+1} + F_k F_n$

Inductive case:

$$\begin{array}{ll} F_{n+(k+1)} = F_{n+k} + F_{n+(k-1)} & \text{by Fibonacci definition} \\ = (F_k F_{n+1} + F_{k-1} F_n) + F_{n+(k-1)} & \text{by initial assumption} \\ = F_k F_{n+1} + F_{k-1} F_n + (F_{k-1} F_{n+1} + F_{k-2} F_n) & \text{by assumption} \\ = F_k F_{n+1} + F_{k-1} F_{n+1} + F_{k-1} F_n + F_{k-2} F_n & \text{commutative property} \\ = F_{n+1} (F_k + F_{k-1}) + F_n (F_{k-1} + F_{k-2}) & \text{factoring} \\ F_{n+(k+1)} = F_{k+1} F_{n+1} + F_k F_n & \text{QED!} \end{array}$$