

# Búsqueda informada 1

Alfons Juan Albert Sanchis Jorge Civera

Departamento de Sistemas Informáticos y Computación

<sup>&</sup>lt;sup>1</sup>Para una correcta visualización, se requiere Acrobat Reader v. 7.0 o superior

## **Objetivos formativos**

■ Aplicar técnicas básicas de búsqueda informada.



# Índice

| 1 | Búsqueda en árbol y grafo                   | 3 |
|---|---------------------------------------------|---|
| 2 | Heurística                                  | 4 |
| 3 | Búsqueda voraz: $f(n) = h(n)$               | 5 |
| 4 | Búsqueda A: $f(n) = g(n) + h(n)$            | 6 |
| 5 | Propiedades                                 | 7 |
| 6 | Relación entre admisibilidad y consistencia | 8 |
| 7 | Conclusiones                                | g |



## 1. Búsqueda en árbol y grafo

```
EnÁrbolGrafo(n_0, L)
                        // nodo inicial y límite de profundidad
OPEN = \{n_0\}
                                // inicialización de la frontera
CLOSED = \emptyset
                       // inicialización del conjunto explorado
bucle
 si OPEN = \emptyset devuelve NULL // solución no encontrada
 s = \arg \min f(n) // selecciona un nodo de mínima. f
     n \in OPEN
 si Objetivo(s) devuelve s
                           // ¡solución encontrada!
 OPEN = OPEN - \{s\}
                         // elimínalo de la frontera
 CLOSED = CLOSED \cup \{s\} // añade al conjunto explorado
 si Profundidad(s) < L para todo n \in Hijos(s):
  SÍ n \notin CLOSED
   SÍ n \notin OPEN: OPEN = OPEN \cup \{n\}
   \mathbf{si} no deja en OPEN el de menor f
  si no si tiene menor f que el de CLOSED:
        borra el de CLOSED e inserta n en OPEN
```



#### 2. Heurística

h(n): coste estimado del camino óptimo desde n a una solución





3. Búsqueda voraz: f(n) = h(n)



4. Búsqueda A: f(n) = g(n) + h(n)



### 5. Propiedades

- *Admisibilidad:*  $h(n) \le h^*(n)$  para todo n
  - Algoritmo A\*: búsqueda A con heurística admisible
- Consistencia:  $h(n) \le c(n, n') + h(n')$  para todo n y n'
  - Consistencia implica admisibilidad [1, ex. 3.29]
- *Dominancia:*  $h_1(n)$  domina  $h_2(n)$  si  $h_1(n) \ge h_2(n)$  para todo n
  - Búsqueda A\* con  $h_1(n)$  genera menos nodos que  $h_2(n)$

#### Asumiendo acciones de coste positivo y $L=\infty$ :

- Completitud: voraz con búsqueda en grafo y A\*
- Optimalidad:
  - A\* con búsqueda en árbol o grafo, y h(n) admisible.
  - A\* con búsqueda en grafo sin re-expandir y h(n) consistente.
- Complejidad:  $O(b^d)$  temporal;  $O(b \cdot d)$  o  $O(b^d)$  espacial.



### 6. Relación entre admisibilidad y consistencia Consistencia ⇒ Admisibilidad

Para todo nodo objetivo  $\gamma$ , cumpliendo consistencia con  $n' = \gamma$ :

$$h(n) \le c(n,\gamma) + h(\gamma) = c(n,\gamma)$$

La admisibilidad de h se deriva de que, para algún objetivo  $\gamma^*$ :

$$c(n, \gamma^*) = h^*(n)$$

# Admisible y consistente



$$\begin{split} &h(A) \leq c(A,B) + h(B) \\ &h(A) \leq c(A,C) + h(C) \\ &h(B) \leq c(B,A) + h(A) \\ &h(B) \leq c(B,D) + h(D) \\ &h(C) \leq c(C,A) + h(A) \\ &h(C) \leq c(C,E) + h(E) \\ &h(D) \leq c(D,B) + h(B) \\ &h(D) \leq c(D,E) + h(E) \\ &h(E) \leq c(E,C) + h(C) \\ &h(E) \leq c(E,D) + h(D) \end{split}$$

# Admisible y no consistente



$$h(B) \not\leq c(B,D) + h(D)$$



#### 7. Conclusiones

- Hemos visto algunas técnicas usuales de búsqueda informada.
- Consultad [1, Cap. 3] para más detalles.

#### Referencias

[1] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.

