Procesamiento Cuántico de Datos

Miguel Arizmendi, Gustavo Zabaleta

6 de diciembre de 2016

Sitio web: www3.fi.mdp.edu.ar/fes/ProcQ.html

ALGORITMOS CUÁNTICOS AVANZADOS

Algoritmo de Bernstein-Vazirani

Algoritmo de Bernstein-Vazirani

Objetivo: Encontrar la cadena de n bits s

Se tiene una función de *n* bits

$$f: \{0,1\}^n \to \{0,1\}$$

Siendo: $f_s(x) = x.s$

- **s** es una cadena de *n* bits desconocida.
- $x.s = x_1s_1 + x_2s_2 + \cdots + x_ns_n.$

Algoritmo de Bernstein-Vazirani

¿Cuál es la complejidad de este problema considerado clásicamente?

Cálculo Exacto:

 Cada consulta a la función nos puede dar 1 solo bit de información sobre s.

El número de consultas debe ser como mínimo n.

¿Es posible identificar s usando una sola consulta cuántica?

Algoritmo de Bernstein-Vazirani

¿Es posible identificar s usando una sola consulta cuántica?

■ El circuito es el mismo que el del problema de Deutsch-Josza.

Problema recursivo de Bernstein-Varizani

- Un problema superpolinomial clásicamente.
- Cuánticamente se resuelve en n pasos, aplicando recursivamente n veces el algoritmo visto antes.

Nivel 1: Encontrar alguna función $g:\{0,1\}^n \to \{0,1\}$ sobre \mathbf{s} , $g(\mathbf{s})$.

- Es fácil de calcular teniendo s.
- Si tenemos acceso al oráculo $f_s(\mathbf{x}) = \mathbf{x}.\mathbf{s}$.
- Encontramos \mathbf{s} y luego $g(\mathbf{s})$

Problema recursivo de Bernstein-Varizani

Nivel 2: Encontrar alguna función $g:\{0,1\}^n \to \{0,1\}$ sobre s, g(s).

- No tenemos acceso al oráculo $f_s(\mathbf{x}) = \mathbf{x}.\mathbf{s}$.
- Tenemos dos cadenas de n bits: $\mathbf{x} \in \{0,1\}^n$ y $\mathbf{y} \in \{0,1\}^n$.
- La función que buscamos: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ y está dada por $f(\mathbf{x},\mathbf{y}) = \mathbf{s}_{\mathbf{x}}.\mathbf{y}$.
 - **s**_x representa 2^n cadenas diferentes de bits que satisfacen $g(\mathbf{s}_x) = \mathbf{s}.\mathbf{x}$ para algún **s**.

Éste fue el primer problema en el que se encontró una separación super-polinomial entre los algoritmos clásicos (BPP) y cuánticos(BQP).

Algoritmos de aceleración super-polinomial

Algoritmos de aceleración Super-polinomial

- Todos estos algoritmos hacen uso de la Transformada Cuántica de Fourier QFT.
- La estimación cuántica de la fase es importante porque conduce naturalmente a la QFT.
- Ej. Algoritmo de Shor

Compuerta de Hadamard

- En el algoritmo de Deutsch como en el de Deutsch-Jozsa era usada para obtener información codificada en las fases de los estados.
- Recordemos:

$$|H|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x}|1\rangle) = \frac{1}{\sqrt{2}}\sum_{z\in\{0,1\}}(-1)^{xz}|z\rangle.$$

La compuerta de Hadamard es auto-inversa:

$$H\frac{1}{\sqrt{2}}(|0\rangle+(-1)^x|1\rangle)=|x\rangle$$

La fase es un número complejo

En general es de la forma $e^{2\pi i\omega}$, con $\omega\in(0,1)$ número real.

Problema de Estimación de Fase

- Tenemos el estado $\frac{1}{\sqrt{2^n}} \sum_{y=0}^{2^n-1} e^{2\pi i \omega y} |y\rangle$.
- lacksquare El objetivo es estimar la fase ω .
 - $\omega = 0.x_1x_2x_3\dots$ lo que significa

$$x_1 \cdot 2^{-1} + x_2 \cdot 2^{-2} + x_3 \cdot 2^{-3} + \dots$$

La fase es un número complejo

Similarmente

$$2^k \omega = x_1 x_2 x_3 \dots x_k x_{k+1} x_{k+2} \dots$$

y como $e^{2\pi i k}=1$ para k entero, se tiene

$$e^{2\pi i 2^k(\omega)} = e^{2\pi i (0.x_{k+1}x_{k+2}...)}$$
.

El caso más sencillo: 1-qubit de entrada y $\omega=0.x_1$

El estado será:

$$\frac{1}{\sqrt{2}} \sum_{y=0}^{1} e^{2\pi i (0.x_1)y} |y\rangle = \frac{1}{\sqrt{2}} \sum_{y=0}^{1} e^{2\pi i (\frac{x_1}{2})y} |y\rangle
= \frac{1}{\sqrt{2}} \sum_{y=0}^{1} e^{\pi i (x_1 y)} |y\rangle
= \frac{1}{\sqrt{2}} \sum_{y=0}^{1} (-1)^{x_1 y} |y\rangle
= \frac{1}{\sqrt{2}} (|0\rangle + (-1)^{x_1} |1\rangle)$$

Podemos usar la compuerta de Hadamard de 1-qubit para determinar x_1 y por lo tanto ω .

$$H\frac{1}{\sqrt{2}}(|0\rangle+(-1)^x|1\rangle)=|x\rangle$$

Una identidad muy útil

$$\frac{1}{\sqrt{2^{n}}} \sum_{y=0}^{2^{n}-1} e^{2\pi i \omega y} |y\rangle =
= \frac{1}{2^{n/2}} (|0\rangle + e^{2\pi i (2^{n-1}\omega)} |1\rangle) \otimes (|0\rangle + e^{2\pi i (2^{n-2}\omega)} |1\rangle) \otimes \dots
\otimes (|0\rangle + e^{2\pi i (\omega)} |1\rangle)
= \frac{1}{2^{n/2}} (|0\rangle + e^{2\pi i (0.x_{n})} |1\rangle) \otimes (|0\rangle + e^{2\pi i (0.x_{n-1}x_{n})} |1\rangle) \otimes \dots
\dots \otimes (|0\rangle + e^{2\pi i (0.x_{1}x_{2}...x_{n})} |1\rangle)$$

Ejercicio: Demuestre la Identidad anterior Rta:

$$\frac{1}{2^{n/2}} \sum_{y=0}^{2^{n}-1} e^{2\pi i \omega y} |y\rangle =
\frac{1}{2^{n/2}} \sum_{y_1=0}^{1} \cdots \sum_{y_n=0}^{1} e^{2\pi i \omega (\sum_{l=1}^{n} y_l 2^{-l})} |y_1 \dots y_n\rangle
= \frac{1}{2^{n/2}} \sum_{y_1=0}^{1} \cdots \sum_{y_n=0}^{1} \bigotimes_{l=1}^{n} e^{2\pi i \omega y_l 2^{-l}} |y_l\rangle
= \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} \left[\sum_{y_l=0}^{1} e^{2\pi i \omega y_l 2^{-l}} |y_l\rangle \right] = \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} \left[|0\rangle + e^{2\pi i \omega 2^{-l}} |1\rangle \right]
= \frac{1}{2^{n/2}} (|0\rangle + e^{2\pi i (0.x_n)} |1\rangle) \otimes (|0\rangle + e^{2\pi i (0.x_{n-1}x_n)} |1\rangle) \otimes \dots
\cdots \otimes (|0\rangle + e^{2\pi i (0.x_1x_2...x_n)} |1\rangle)$$

El estado de 2-qubits

$$\frac{1}{\sqrt{2^2}} \sum_{y=0}^{2^2-1} e^{2\pi i \omega y} |y\rangle$$

$$\omega = 0.x_1x_2$$

Usando la identidad anterior

$$\frac{1}{\sqrt{2^2}}\sum_{y=0}^{2^2-1}e^{2\pi i(0.x_1x_2)y}|y\rangle =$$

$$\tfrac{1}{2}(|0\rangle+e^{2\pi i(0.x_2)}|1\rangle)\otimes(|0\rangle+e^{2\pi i(0.x_1x_2)}|1\rangle).$$

- x_2 se puede determinar del primer qubit usando una compuerta de Hadamard.
- Pero *x*1...

Determinación de x1

Consideraciones:

- Si $x_2 = 0 \Rightarrow \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i(0.x_1)}|1\rangle)$
- Pero si $x_2 = 1$...

Operador rotación de fase de 1-qubit R₂

$$R_2 = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{2\pi i}{2^2}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{2\pi i(0,01)} \end{bmatrix},$$

 \bullet 0,01 en el exponente está escrito en base 2 o sea que es 2^{-2}

Determinación de x1

La inversa de *R*₂ es

$$R_2^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-2\pi i(0,01)} \end{bmatrix}.$$

• Si $x_2 = 1$ y aplicamos R_2^{-1} al segundo bit:

$$\begin{array}{lcl} R_2^{-1} \Big(\frac{|0\rangle + e^{2\pi i (0.x_1 1)} |1\rangle}{\sqrt{2}} \Big) & = & \frac{|0\rangle + e^{2\pi i (0.x_1 1 - 0.01)} |1\rangle}{\sqrt{2}} \\ & = & \frac{|0\rangle + e^{2\pi i (0.x_1 1)} |1\rangle}{\sqrt{2}}. \end{array}$$

■ Después de aplicar R_2^{-1} se puede obtener x_1 con una compuerta de Hadamard.

compuerta controlada R_2^{-1}

■ Sólo es necesario aplicar R_2^{-1} si $x_2 = 1$

Estimación de Fase para un estado de 2-qubits con $\omega=0.x_1x_2$.

Estimación de Fase para un estado de 3-qubits con $\omega = 0.x_1x_2x_3$

De acuerdo al desarrollo demostrado antes este estado se puede expresar como:

$$\begin{pmatrix} \frac{\left(|0\rangle + e^{2\pi i(0.x_3)}|1\rangle\right)}{\sqrt{2}} \end{pmatrix} \otimes \left(\frac{\left(|0\rangle + e^{2\pi i(0.x_2x_3)}|1\rangle\right)}{\sqrt{2}}\right) \\ \otimes \left(\frac{\left(|0\rangle + e^{2\pi i(0.x_1x_2x_3)}|1\rangle\right)}{\sqrt{2}}\right).$$

Definimos una compuerta general de rotación de fase de 1-qubit R_k

$$R_k = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{2\pi i}{2^k}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{2\pi i(0,0...1)} \end{bmatrix},$$

donde el 1 en el exponente está en la posición k.

Últimas consideraciones

- Vimos estimación de fase para $\omega = 0.x_1x_2...x_n$ o, dicho de otra forma, cuando ω es de la forma $\frac{x}{2^n}$ para algún entero n.
- Para ω arbitrario se usa el mismo circuito de estimación de fase que resultará en una **aproximación** x tal que $\frac{x}{2^n}$ es cercano a ω con alta probabilidad dada por n.
- El circuito que estima una fase de la forma $0.x_1x_2...x_n$ realiza la transformación

$$\frac{1}{2^{n/2}}\sum_{y=0}^{2^{n}-1}e^{2\pi i\frac{x}{2^{n}}y}|y\rangle\rightarrow|x\rangle.$$

lacksquare siendo la salida el estado $|x\rangle = |x_n \dots x_2 x_1\rangle$

Transformada cuántica de Fourier

■ La inversa de esta transformación es:

$$|x\rangle \rightarrow \frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} e^{2\pi i \frac{x}{2^n} y} |y\rangle.$$

■ Esta transformación se llama *Transformada Cuántica de Fourier* (QFT_{2^n}) o directamente QFT

Es importante señalar que la QFT_{2^n} se realiza simplemente aplicando el circuito de estimación de fase a la inversa (orden y compuertas inversas)

Transformada cuántica de Fourier

Transformada cuántica de Fourier

Estados Periódicos

Una superposición de estados periódicos es de la forma:

$$|\phi_{r,b}\rangle = \frac{1}{\sqrt{m}} \sum_{z=0}^{m-1} |zr+b\rangle.$$

 Decimos que este estado es periódico con período r, desplazamiento b y m repeticiones del período.

Transformada cuántica de Fourier

Problema: Hallar el Período r de un Estado Periódico, Dado mr

Entrada:

- Entero *mr*
- Oráculo generador de estados cuánticos

$$|\phi_{r,b}\rangle = \frac{1}{\sqrt{m}} \sum_{r=0}^{m-1} |zr+b\rangle,$$

■ donde $b \in \{0, 1, ..., r - 1\}$ es elegido aleatoriamente con distribución uniforme.

Transformada cuántica de Fourier: Estados Periódicos

Problema: Encontrar r.

- **•** ¿Qué sucede Si se mide directamente $|\phi_{r,b}\rangle$ en la base computacional?
- $P(x \in \{0, 1, ..., mr 1\}) = \frac{1}{mr}$

En cambio si usamos QFT^{-1} a $|\phi_{r,b}\rangle$ se obtiene:

$$QFT_{mr}^{-1}|\phi_{r,b}\rangle = \frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}e^{-2\pi i\frac{b}{r}k}|mk\rangle$$

- Medimos este estado y obtenemos un valor x = mk con k entre 0 y r 1.
- Sabemos mr, entonces podemos calcular $\frac{x}{mr} = \frac{k}{r}$.

Transformada cuántica de Fourier: Estados Periódicos

Expresando $\frac{x}{mr}$ como fracción reducida podemos obtener r.

Tenemos un problem si k y r tienen algún factor común

- El denominador no será r sino algún divisor de r.
- Ejemplo: Supongamos m=3, r=20, x=24.
 Inicialmente conocemos mr=60 y midiendo $QFT_{60}^{-1}|\phi_{r,b}\rangle$ nos dió el número x=24
 - $\frac{24}{60} = \frac{8}{20}$ y k = 8
 - Al reducir la fracción obtendremos $\frac{24}{60} = \frac{2}{5}$
 - Perdimos el factor 4 porque es también factor de 24

Transformada cuántica de Fourier: Estados Periódicos

Para resolver este problema

- I Se repite el procedimiento para obtener dos resultados x_1 y x_2 , que cumplen $\frac{x_1}{mr} = \frac{k_1}{r}$ y $\frac{x_2}{mr} = \frac{k_2}{r}$, con k_1 y k_2 enteros entre 0 y r-1.
- 2 Por medio del Algoritmo Extendido de Euclides se puede encontrar los enteros c_1, c_2, r_1, r_2 tal que $MCD(c_1, r_1) = MCD(c_2, r_2) = 1$ y $\frac{k_1}{r} = \frac{c_1}{r_1}$ y $\frac{k_2}{r} = \frac{c_2}{r_2}$.

Ésto significa que r_1 y r_2 son divisores de r, o sea que es múltiplo común de r_1 y r_2 . De hecho, es el mínimo común múltiplo de ambos con probabilidad $\frac{6}{\pi^2}$.

Transformada cuántica de Fourier: Otras aplicaciones

- Estimación de autovalores
- Logaritmo discreto
- Encontrar orden
- Factorización