Метод Монте-Карло по схеме марковской цепи для оценки вероятности редких событий в задачах биоинформатики

Абрамова Анастасия Николаевна, гр. 15.М03-мм

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., д. Коробейников А. И. Рецензент: разработчик ПО Тарасов А. Л.

Методы масс-спектрометрии

Модель масс-спектра пептида (Mohimani et al., 2013)

Пептид P с массой M, состоящий из k аминокислот

- вектором масс аминокислот $m = (m_1, \dots, m_k)$
- ullet матрицей структуры ${\mathbb H}$ размера k imes r.

Ожидаемый масс-спектр пептида P имеет вид $S=\mathbb{H}m.$

Определим множество \mathcal{M} :

$$\mathcal{M} = \{ m = (m_1, \dots, m_k) \mid m_i > 0, \sum_{i=1}^k m_i = M \}.$$

Тогда $\mathcal M$ и фиксированная матрица $\mathbb H$ описывают множество пептидов одинаковой массы и химической структуры.

Оценка статистической значимости

Рассмотрим экспериментальный спектр:

$$\tilde{S} = (\tilde{s}_1, \dots, \tilde{s}_\ell), \quad \tilde{s}_i > 0.$$

Мерой похожести экспериментального спектра \tilde{S} и масс-спектра $\mathbb{H}m^*$ назовем значение $t=\overline{\mathrm{Score}}(\tilde{S},\mathbb{H}m^*).$

Определение

Статистической значимостью значения t будем называть вероятность

$$p = \mathbb{P}(\overline{\operatorname{Score}}(\tilde{S}, \mathbb{H}m) \geq t) = \mathbb{P}(\operatorname{Score}(m) \geq t) = \mathbb{P}(m \in \mathcal{S}),$$

предполагая что m имеет равномерное распределение на $\mathcal{M}.$

В приложениях $p \approx 10^{-20}$.

Алгоритм MS-DPR

В работе (Mohimani *et al.*, 2013) предложен алгоритм MS-DPR, вычисляющий оценку статистической значимости.

Недостатки данного алгоритма состоят в том, что

- его точность неизвестна,
- размер выборки, используемой для построения оценки, задается заранее,
- оценки являются смещенными вниз.

Цели работы

Таким образом, целью работы является:

- ullet построение оценки \widehat{p} ,
- вычисление ее дисперсии $\sigma_{\widehat{p}}^2$ и построение доверительного интервала для \widehat{p} ,
- ullet оценка достаточного размера выборки для получения \widehat{p} заданной точности.

Оценка по методу существенной выборки

Рассмотрим выборку $m_1,\dots,m_N\sim f$, где f — плотность $U(\mathcal{M})$. Пусть g — плотность некоторого распределения \mathcal{G} . Оценка по методу существенной выборки для вероятности $p=\mathbb{P}(m\in\mathcal{S})$:

$$\widehat{p}_{IS} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(m_i)}{g(m_i)} \mathbb{I}_{\mathcal{S}}(m_i).$$

Пусть $g(m) \propto w(\operatorname{Score}(m))f(m)$, тогда:

$$\widehat{p}_{IS} = \frac{\sum_{i=1}^{N} \mathbb{I}_{\mathcal{S}}(m_i) / w(\operatorname{Score}(m_i))}{\sum_{i=1}^{N} 1 / w(\operatorname{Score}(m_i))}.$$

Метод Монте-Карло на марковских цепях

Для построения \widehat{p}_{IS} необходимо уметь моделировать случайные величины из распределения \mathcal{G} .

Алгоритм Метрополиса-Гастингса позволяет построить марковскую цепь m_1, \ldots, m_N со стационарным распределением \mathcal{G} .

Предложение

Если для марковской цепи выполняется закон больших чисел, то оценка \widehat{p}_{IS} является состоятельной оценкой p.

Алгоритм Ванга-Ландау

Выбор весов w

Когда $g(m) \propto w(\mathrm{Score}(m))f(m)$, выбор плотности g сводится к выбору весов w.

Если значения функции Score дискретны, то выбор

$$w(x) \propto \frac{1}{\mathbb{P}(\operatorname{Score}(m) = x)}$$

уменьшит дисперсию \widehat{p} .

Алгоритм Ванга-Ландау (Iba *et al.*, 2014) является модификацией метода Метрополиса-Гастингса: в процессе моделирования цепи строится оценка весов.

Построение оценки \widehat{p}

- f 0 Построение оценки $\widehat w$ алгоритмом Ванга–Ландау.
- ② Построение марковской цепи со стационарным распределением $g(m) \propto \widehat{w}(\mathrm{Score}(m))f(m)$ алгоритмом Метрополиса—Гастингса.
- Построение оценки

$$\widehat{p}_{IS} = \frac{\sum_{i=1}^{N} \mathbb{I}_{\mathcal{S}}(m_i) / \widehat{w}(\operatorname{Score}(m_i))}{\sum_{i=1}^{N} 1 / \widehat{w}(\operatorname{Score}(m_i))}.$$

Теоретические результаты

На практике, вместо множества $\mathcal M$ можно рассматривать его дискретное подмножество: зафиксируем некоторое $m\in \mathcal M$ и рассмотрим вектора

$$\mathcal{M}_{d,m} = \{ \tilde{m} = m + dv \mid \tilde{m} \in \mathcal{M}, \sum_{i=1}^{k} v_i = 0, v_i \in \mathbb{Z} \}.$$

Теорема

- ① Марковская цепь, построенная методом Метрополиса-Гастингса на множестве $\mathcal{M}_{d,m}$, является эргодической.
- Марковская цепь, построенная методом Метрополиса-Гастингса на множестве М, является Харрис-эргодической.

Критерий остановки

Teopeмa (Flegal et al., 2013)

Пусть $\widehat{\lambda}_N$ — оценка дисперсии вдоль траектории λ_n : $\widehat{\lambda}_N \xrightarrow{\Pi. \ H.} \lambda_p, \ \widehat{\sigma}_N^2 \xrightarrow{\Pi. \ H.} \sigma_n^2.$ Предположим, что $\sqrt{N}(\widehat{p}_N - p) \xrightarrow{d} \mathcal{N}(0, \sigma_n^2), N \to \infty.$

Обозначим

$$\bullet \ N_{\epsilon} = \inf \left\{ N > 0 : 2z_{\delta/2} \widehat{\sigma}_N / \sqrt{N} \le \epsilon \widehat{\lambda}_N \right\}$$

•
$$C_N = (\widehat{p}_N - z_{\delta/2}\widehat{\sigma}_p^2/\sqrt{N}; \widehat{p}_N + z_{\delta/2}\widehat{\sigma}_p^2/\sqrt{N})$$

Тогда при $N o \infty$ и $\epsilon o 0$ моделирование прекратится с вероятностью 1 и $\mathbb{P}(p \in C_{N_{\epsilon}}) \to 1 - \delta$ при $N \to \infty$.

Оценка дисперсии: методы

Оценка \widehat{p}_{IS} , полученная по траектории марковской цепи m_1,\dots,m_N , имеет вид

$$\widehat{p}_{IS} = \frac{1}{N} \sum_{i=1}^{N} h(m_i).$$

Дисперсия такой оценки вычисляется как

$$\sigma_p^2 = \frac{1}{N} \sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N}\right) \operatorname{cov}(h(m_i), h(m_{i+k})).$$

Методы оценки дисперсии: метод перекрывающихся средних (Jones *et al.*, 2006), спектральные оценки (Hobert *et al.*, 2002).

Оценка дисперсии: рекурсивные методы

В предложенном алгоритме длина траектории N марковской цепи увеличивается последовательно, поэтому при использовании классических методов возникают проблемы

- хранения траектории,
- высокая трудоемкость.

Используется рекурсивная оценка по «правилу выбора трапеции» (Chan and Yau, 2014).

Свойства:

- ullet вычислительная сложность рекурсивного пересчета O(1),
- ullet затрачивает O(1) памяти.

Схема проведения экспериментов

Были построены:

- ullet полученные оценки \widehat{p}_{IS} ,
- ullet оценки по методу Монте-Карло \widehat{p}_{MC} ,
- ullet оценки по алгоритму MS-DPR \widehat{p}_{DPR} ,

для пептидов:

- простой структуры: линейных и циклических (Mohimani *et al.*, 2013),
- сложной, циклической с разветвлениями структуры (*Surfactin*).

Также для оценок \widehat{p}_{IS} и \widehat{p}_{MC} были сосчитаны оценки дисперсий $\widehat{\sigma}_{IS}^2$, $\widehat{\sigma}_{MC}^2$ и построены 95% доверительные интервалы.

Численные результаты: точность оценок

Для оценок по методу Монте-Карло, построенных с достаточно большим N:

- $oldsymbol{0}$ оценки \widehat{p}_{IS} лежат в доверительных границах оценок по методу Монте-Карло.
- $oldsymbol{Q}$ оценки \widehat{p}_{DPR} в большинстве случаев выходят за границы доверительного интервала по методу Монте-Карло.

Численные результаты: сравнение дисперсий

Для оценок, построенных по одинаковому размеру выборки:

Пептид	\widehat{p}_{IS}	$\hat{\sigma}_{IS}^2$	$\hat{\sigma}_{MC}^2$	$\hat{\sigma}_{MC}^2/\hat{\sigma}_{IS}^2$
PPAEDSQK	$4.87 \cdot 10^{-7}$	$2.09 \cdot 10^{-10}$	$4.94 \cdot 10^{-7}$	2358.98
GQGDPGSNPNK	$4.70 \cdot 10^{-7}$	$2.33 \cdot 10^{-10}$	$1.49 \cdot 10^{-7}$	639.49
GEEEPSQGQK	$1.03 \cdot 10^{-6}$	$1.23 \cdot 10^{-9}$	$7.89 \cdot 10^{-7}$	642.19
Surfactin	$1.18 \cdot 10^{-5}$	$1.15 \cdot 10^{-7}$	$1.00 \cdot 10^{-5}$	86.96
(10, 20, 40)	$1.84 \cdot 10^{-3}$	$5.47 \cdot 10^{-4}$	$1.88 \cdot 10^{-3}$	3.43

Результаты демонстрируют, что отношение $\hat{\sigma}_{MC}^2/\hat{\sigma}_{IS}^2$ увеличивается с уменьшением значения оцениваемой вероятности p.

Выводы

- Был предложен способ оценки статистической значимости меры похожести двух спектров.
- ② Проведено сравнение полученного алгоритма с MS-DPR.
- Его код был написан на C++ и интегрирован в Dereplicator
 метод идентификации пептидных спектров.
- Написана статья и подана на конференцию по алгоритмической биоинформатике (WABI, 2017).