

Small islands, big ecological challenges

Small islands, big ecological challenges

Small islands, big ecological challenges

Many species

- > 3000 phanerogam species
- > 75 % endemism
- ≈ 1000 tree species

Few ecological knowledge

Demographic parameters
Environmental drivers
Ecosystems dynamics

Key approach Wood density

Species & diversity distribution patterns Environmental & functional drivers Conservation & management

Small islands, big ecological challenges

Many species

- > 3000 phanerogam species
- > 75 % endemism
- ≈ 1000 tree species

Few ecological knowledge

Demographic parameters
Environmental drivers
Ecosystems dynamics

Functional ecology

Key approach Wood density

Species & diversity distribution patterns Environmental & functional drivers Conservation & management

Wood density, from functions to patterns

Wood Functions

Mechanic

Hydraulic

Storage

Defence

Wood density Proxy

Growth-survival trade off

Maximum height

Drought tolerance

Ecological Patterns

Species
distribution along
environmental
gradients

Species distribution in forest dynamics

Wood density, from functions to patterns

Wood Functions

Mechanic

Hydraulic

Storage

Defence

Wood density Proxy

Growth-survival trade off

Maximum height

Drought tolerance

Ecological Patterns

Species
distribution along
environmental
gradients

Species distribution in forest dynamics

Wood density, from functions to patterns

Wood Functions

Mechanic

Hydraulic

Storage

Defence

Wood density Proxy

Growth-survival trade off

Maximum height

Drought tolerance

Ecological Patterns

Species
distribution along
environmental
gradients

Species distribution in forest dynamics

Does extensive measure of wood density may enhance our ecological knowledge?

- Australasia
 - → Taxonomic & environmental drivers
- New Caledonia (Northern Province)
 - → Dynamics & environmental drivers

Does extensive measure of wood density may enhance our ecological knowledge?

- Australasia
 - → Taxonomic & environmental drivers
- New Caledonia (Northern Province)
 - → Dynamics & environmental drivers

Plant Inventory and Permanent Plot Network

Wood density measurement

Wood density (g.cm⁻³) =
$$\frac{\text{Oven-dry mass (g)}}{\text{Green volume (cm}^3)}$$

ATA SET

6 fully mapped 1-ha plots (all species with n_i ≥ 5) 1226 trees cores (5 cores per species & per plot) 139 species / 86 genus / 47 families / 21 orders Are our data consistent with those observed at the Australasia scale?

Capricon

- Which taxonomic level does matter to study wood density variability?

Taxonomic & Large scale variability

Strong taxonomic signal at the **genus level**BUT
Wood density is drived by **environmental gradients**

Water availability

New Caledonia (Northern Province) Meso- to fine-scale variability

- How wood density vary between plots / communities ?
- Can we infer forest dynamics from wood density?

Meso- and fine-scale data

O Ferns and palms(DBH ≥ 10 cm)

Tropical rainforest

Trees (DBH ≥ 10 cm)

Meso- and fine-scale data

O Ferns and palms(DBH ≥ 10 cm)

Tropical rainforest

Trees (DBH ≥ 10 cm)

Meso- and fine-scale data

- O Ferns and palms(DBH ≥ 10 cm)
- Trees (DBH ≥ 10 cm)
- Sampled trees (cores)
- WD extrapolated at species or genus levels
 - → 94 % of inventoried trees

Inter-plot variation

No significant relationship between mean wood densities & annual rainfalls

BUT small ranges of variations

Inter-plot variation

No significant relationship between mean wood densities & annual rainfalls

BUT small ranges of variations

Inter-plot variation

No significant relationship between mean wood densities & annual rainfalls

BUT small ranges of variations

- Late successional area heavy wood

Dysoxylum rufescens

Dynamic hypothesis:

- Early successional area light wood
- Late successional area heavy wood

Dynamic hypothesis:

- Early successional area light wood
- Late successional area heavy wood

- (1) Dealing with ubiquist species!
- → Early successional species with heavy wood

(1) Dealing with ubiquist species!

→ Early successional species with heavy wood

(2) Dealing with different dynamics!

→ Fast growing vs. stress tolerant early successional species

(2) Dealing with different dynamics!

→ Fast growing vs. stress tolerant early successional species

Conclusions & perspectives

Preliminary results

Are our data consistent with those observed at the Australasia scale? Yes

Which taxonomic level does matter to study wood density variability? Strong taxonomic signal at GENUS LEVEL BUT wood density likely drive by environment (WATER AVAILABILITY)

How wood density vary between plots / communities? NEED to extend or environmental gradient

Can we infer forest dynamics from wood density? Inferring dynamic status from wood density threshold is tricky!

→ Focus on rainfall gradients and range of distribution of species / genus according to wood density

