EWU CSCD445 Project

Conway games of life on a cubes surface

Table of Content

- EWU CSCD445 Project
 - o Table of Content
 - o <u>Team:</u>
 - o Conway games of life on a cubes surface
 - Functions
 - Min Goal
 - o World Start (Test data)
 - Example
 - Report
 - How to run/use
 - Sample runNote: text output set up to world size 12
 - Speed Up
 - <u>Video</u>
 - Making the program
 - For the program
 - For Makefile
 - Notes

Team:

- Timbre Freeman: Email tfreeman3@ewu.edu
- Nicholas Gainer: Email ngainer@ewu.edu
- Jeremy Munson: Email jmunson3@ewu.edu
- Johnathan Smith: Email jsmith245@ewu.edu

Conway games of life on a cubes surface

Each face of a cube will have a 2d grid of Conway games of life and their edges will interact with the connected face's

Functions

- 1. OpenGL Cube
- 2. CPU Conway games of life but for cube surface

Min Goal

At min, a cube with each face running Conway games of life on CUDA that has the edges interact with some start state to see it run (Ex have some Glider's)

World Start (Test data)

In void GameOfLifeCube::cpuCreate(int size) (file <u>GameOfLifeCube.cpp</u>) for the CPU Code and in __host__ void cudaMainInitialize(int size_set) (file <u>cudaMain.cu</u>) for the GPU Code

```
for (int i = 0; i < column; ++i) {
   board[(3 * column) + i] = 1;
}</pre>
```

Making a Line 3 from the top of all faces of the cube

Example

World size of 12

Cube

Data of all faces (front, right, back, left, top, bottom)

Report

How to run/use

Start

Need the <u>project</u> executable (TODO: is dll's needed?) and <u>res</u> folder to run

Take no arguments

The program will log to console and log files in logs folder using spdlog

A <u>imgui state</u> file will also be made to remember somethings about GUI last state (Ex where within the window GUI is at)

Recommend using a game pad (Microsoft Xbox Series S | X Controller) to look that the game of life cube

Note: avoid using left stick


```
| Part |
```

Using GUI

Using ImGUI give you menus to control the program from.

Camera

Gives control over the camera.

- Check box Stop Rotate Camera Autorotate the camera (camera rotate angle value)
- Check box Top view camera when in default values move the camera to look from the top
- Slider camera rotate angle value rotate the camera around the Eye Center + Eye Hight at the Eye Radias
- Slider Field of view the "extent of the observable world seen at any given moment"
- Slider Eye Hight the hight of the eye above the Eye Center
- Slider Eye Radias the diastase the camera is from Eye Center
- Drag Eye Center where the camera looking at

Note: a cube (not game of life cube) exist at light Eye Center

Light Settings

No need to use from the project (Leave at defaults)

Note: a cube (not game of life cube) exist at light position

Window Settings

Gives control and info over the window

- Show info about the window and displays
- Check box vsync (frame limit) let you trune on and off the frame limit to the frame rate of your display.
- Check box Full Screen set the screen full screen
- Color Edit clear color set the background color

ImGui Settings

No need to use from the project (Leave at defaults)

Graphics

Gives control over the graphics settings

- Check box Show lines No need to use from the project (Leave at defaults)
- Check box CL_CULL_FACE No need to use from the project (Leave at defaults)
 - Check box CL_CULL_FACE back No need to use from the project (Leave at defaults)
- Check box Scale is all the same value Has the Model Scale be the same value for all axis
- Drag Model Scale scale of the model
 - o Drag 3 Model Scale scale of the model x, y, z

Note: when change the scale using game pad will have all (x, y, z) be the same value

- Slider Model rotate angle the angle the model is rotated about (Model rotate vector)
- Slider 3 Model rotate vector the vector used when rotating the model
- Combo Model No need to use from the project (Leave at defaults of GameOfLifeCube)
- Slider Sphere Steps No need to use from the project (Leave at defaults) (used for the sphere model)
- Button Reload Shaders No need to use from the project (Leave at defaults)

Game Pad

```
▼ Game Pad

Joy pad name: Microsoft Xbox Series S|X Controller, axesCount: 6, buttonsCount: 15

- Hold Right Bumper to invert input

- Left Thumb Stick up and down for forward and backwards movement

- Hold A Button and Left Thumb Stick up and down to move up and down instead

- Left Thumb Stick left and right for left and right movement

- Right Thumb Stick up and down for camera up and down

- Hold Left Bumper and Right Thumb Stick up and down for zoom (fov) instead

- Right Thumb Stick left and right for rotate camera

- Hold Left Bumper and Right Thumb Stick left and right for cam rad instead

- Start to close program

- D Pad up and down for scaling model

- Y button to show help image
```

Give info about use the game pad and how to use it

Note: avoid using left thumb stick

Note: only test with Xbox Series Controller over usb c cable on Linux

Game Of Life

Gives control and info over the Game Of Life

- Reset Menu
 - New world size
 - Reset button
- Slider Speed of Game of Life (sec) how much time need to pass before next state of current game of life (run update)
- Check box Run game of life if the game of life is ruining or not (Use to stop the game of life and look at it without changing)
- Check box Use help image (f, l, r, b, t, b) to use the help image to know what face we are looking at
- Check box Use CUDA instead of CPU to use CUDA or CPU code
 - Text Warring, Using Help Image when using the help image
 - Text Cuda not available when no Nvidia CUDA device found
- Button Console Print CPU State to print all 6 sides of Game Of Life from CPU to console and log files
- Text
 - World size
 - o CPU Board
 - Note: text output set up to world size 12
 - o GPU Board

- Time info
 - Time need to run last update
 - The speed up of the last update in cpu and gpu
 - o Continuous average of time need to run update
 - The speed up of the Continuous average time in cpu and gpu
 - What state each are at (number of time update is called)

Sample runNote: text output set up to world size 12

World size of 12

Speed Up

World size of 163

```
CPU Time 32.443047 (ms)
GPU (CUDA) Time 1.406908 (ms)
The speedup(SerialTimeCost / CudaTimeCost) when using GPU is 23.059820
CPU Avg Time 15.266601 (ms)
GPU (CUDA) Avg Time 1.401716 (ms)
The avg speedup(SerialTimeCost / CudaTimeCost) when using GPU is 10.891367
CPU State: 162
CUDA/GPU State: 162
```

Video

https://drive.google.com/file/d/16g-Gnnah8pfelmU87dxCpXrcnlp3tsaQ/view?usp=sharing

Making the program

We only test on Linux

For the program

Need OpenGL lib and dev

Need GLEW lib and dev

Need GLU lib and dev

Need GLM dev

Need git clone sub modules

Note: If altered cloned use git submodule update --init --recursive

For Makefile

```
Need CMake

Need pandoc and wkhtmltopdf

Need nvcc

Wants clang

May Need gcc
```

Fedora install commands

```
sudo dnf group install "C Development Tools and Libraries" "Development Tools" sudo dnf install cmake sudo dnf install libXi libXi-devel sudo dnf install glew glew-devel libGLEW sudo dnf install clang clang-devel clang-libs clang-tools-extra sudo dnf install glew glew-devel glfw glfw-devel glm-devel sudo dnf install pandoc wkhtmltopdf
```

Notes

• OpenGL Code base off