Математический анализ. Семинар 1

Затехал Айвазов Денис Семинар вёл Скубачевский Антон

10 сентября 2017

1 Семинар 1

Определение 1. Точка x_0 - точка локального минимума функции f, если $\exists U(x^{(0)})$, что $\forall x \in U(x^{(0)}) \to f(x^{(0)}) \leq f(x)$

Теорема 1. Если $x^{(0)}$ - точка экстремума функции а и $\exists \frac{\partial f}{\partial x_0}(x_0) \Rightarrow \frac{\partial f}{\partial x_i}(x_0) = 0$

Определение 2. x_0 - стационарная точка функции f, если функция f дифференцируема в этой точке $u\ df=0$

Теорема 2. Если x_0 - точка экстремума и функция f в ней дифференцируема в $U(x_0)$, тогда x_0 - стационарная точка.

Квадратичная форма:

$$A(\xi) = \sum_{i,j=0}^{n} a_{ij} \xi_i \xi_j$$

Квадратичная форма положительно определена, если $\forall \overline{\xi} \neq \overline{0}, A(\xi) > 0$

$$d^{2}f(x_{0}) = \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} dx_{i} dx_{j}$$

Теорема 3 (Достаточное условие экстремума). Пусть f дважды непрерывно дифференцируема в некоторой окрестности стационарной точки x_0 . Пусть d^2f а x_0 - положительно (отрицательно) определённая квадратичная форма. Тогда x_0 - точка минимума (максимума)

Критерий Сильвестра:

$$\begin{array}{l} \Delta_1 = \alpha_{11} \\ \Delta_2 = \begin{vmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{11} \end{vmatrix} \\ \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} \Pi \text{усть } f(x,y) \text{ дважды непрерывно-дифференцируема в окрестности стационарной точки } x_0 \text{ Тогда:} \end{array}$$

1. если в
$$(x_0, y_0)$$
 $f_{xx} \cdot f_{yy} - f_{x,y}^2$), тогда строгий экстремум $f_{xx} > 0 \to min$ $f_{xx} < 0 \to max$

- 2. если $f_{xx}f_{yy} f_{x,y}^2) < 0$ нет экстремума
- 3. если $f_{xx}f_{yy}-f_{x,y}^2)=0$ хз: $f(x,y)=x^4+y^4$ min $f(x,y)=x^4-y^4$ нет экстремума

1.1 §5#2(1)

$$4 = 3(x^2 + y^2) - x^3 + 4y; df = 0;$$

1.

$$\frac{du}{dx} = 6x - 3x^2 = 0; \to x = (0, 2)$$
$$\frac{du}{dy} = 6y + 4 = 0; \quad y = -\frac{2}{3}$$

Две стационарные точки: $(0, -\frac{2}{3}); (2, -\frac{2}{3})$

2.
$$u''_{xx} = 6 - 6x;$$

 $u''_{yy} = 6$
 $u_{xy} = 0$
 $d^2 f = u_{xx} dx^2 + u_{yy} dy^2 = (6 - 6x) dx^2 + 6dy^2$

(a)
$$(2; -\frac{2}{3})$$
 $u_{xx} = 6;$ $u_{yy} = 6$ $u_{xx}u_{yy} - u_{xy}^2 = 36 > 0$ и $u_{xx} = 6 > 0 \Rightarrow (0; -\frac{2}{3})$ $u(0, -\frac{2}{3}) = -\frac{4}{3}$

(b)
$$(2; -\frac{2}{3}): u_{xx} = -6;$$
 $u_{yy} = 6$ $u_{xx}u_{yy} - u_{xy}^2 = -36 < 0$ и $u_{xx} = -6 < 0 \Rightarrow (0; -\frac{2}{3}) \Rightarrow$

Otbet: min: $u(0, -\frac{2}{3}) = -\frac{4}{3} = -\frac{4}{3}$

Пусть на открытом множестве $G \in \mathbb{R}^n$ заданы функции $f, \phi_1, \phi_m \quad (1 \leq m \leq n);$ Уравнение связи:

$$\{\phi = 0\}_m^1 \tag{1}$$

$$E=\{x,x\in G,\phi(x)=0,1\leq j\leq n\}$$

Определение 3. Точка $x_0 \in E$ называется точкой условного минимума функции f при связях (1), если $\exists U(x_0) : \forall x \in U(x_0) \cap E \to f(x_0) \le (x)$;

Теорема 4 (Функция Лагранжа). x_0 - условная стационарная точка $\leftrightarrow \exists \lambda_1, \dots \lambda_m$ такие, что x_0 стационарная точка для

$$L = f(x) - \sum_{j=1}^{m} \lambda_j \phi_j(x)$$

где λ_i - множитель Лагранжа.

$$\begin{cases} \frac{\partial L}{\partial x_i} = 0\\ \phi_j(x) = 0; \end{cases} = x_0; \lambda_1 \dots \lambda_m$$

Теорема 5 (Достаточное условие условного экстремума). Пусть $f, \phi_1, \dots \phi_m$ дважеды непрерывно-дифференцируемой фукнции в некоторой окрестности стационарной точки x_0 функции L. Тогда:

- $1. \ d^2L(x_0)>0$ строгий условный тіп $d^2L(x_0)<0$ строгий условный тах
- 2. $\widetilde{d^2L}(x_0)$ $\lessgtr \Leftrightarrow \mathit{Ecnu}\ \widetilde{d^2L}$ неопределенной кв формы нет экстр
- $3. \ d^2L(x_0)$ неопределенной кв формы хз

План исследования на условный экстремум:

- 1. Составить функцию Лагранжа
- 2. Найти стационарные точки функции Лагранжа
- 3. для каждой стац точки исследовать $d^2L(x_0)$.
 - (a) Если d^2L положительная или отрицательная квадратичная форма, то ответ.
 - (b) Если же d^2L неопределенная квадратичная форма, то дифференцируем уравнения связи и в них выражаем dx, dy друг через друга и подставляем в d^2L . Это и будет называться $\widetilde{d^2L}$

1.2 §5#25.5

$$u = x - 2y + 2z;$$

u = x - 2y + 2z; $x^2 + y^2 + z^2 = 0$ - уравнение связи ϕ . Найти экстремумы

1.
$$L = \underbrace{x - 2y + 2z}_{x} + \lambda(x^2 + y^2 + z^2 - 9)$$

2.
$$\begin{cases} \frac{dL}{dx} = 1 + 2\lambda x = 0; \\ \frac{dL}{dy} = -2 + 2\lambda y = 0; \\ \frac{dL}{dz} = 2 + 2\lambda z = 0; \\ \frac{1}{4\lambda^2} + \frac{1}{\lambda^2} + \frac{1}{\lambda^2} = 9 \\ \frac{9}{4\lambda^2} = 9 \Rightarrow \lambda = \pm \frac{1}{2} \end{cases} \Rightarrow \begin{cases} x = \frac{-1}{2\lambda} \\ y = \frac{1}{\lambda} \\ z = \frac{-1}{\lambda} \end{cases} \Rightarrow \left(\frac{-1}{2\lambda}\right)^2 + \left(\frac{1}{\lambda}\right)^2 + \left(\frac{-1}{\lambda}\right)^2 = 9$$

(a)
$$\begin{cases} x = \frac{-1}{2\lambda} = -1 \\ y = 2 \\ z = -2 \end{cases} \to \text{Стационарная точка: (-1,2,-2)}$$

(b)
$$\begin{cases} x = 1 \\ y = -2 \\ z = 2 \end{cases}$$
 — Стационарная точка: (1,-2,2)

(c) Рассмотрим стац. точку (-1,2,-2) при
$$\lambda = \frac{1}{2}$$

$$L_{xx} = 2\lambda = 1;$$

$$L_{yy} = 2\lambda = 1;$$

$$L_{zz} = 2\lambda = 1;$$

Смешанные производные = 0

 $d^2L = dx^2 + dy^2 + dz^2$ - положит. опр. кв. ф. - условный min

(d) Рассмотрим стац. точку (1,-2,2) при
$$\lambda = -\frac{1}{2}$$

$$L_{xx} = 2\lambda = -1;$$

$$L_{uu}=2\lambda=-1;$$

$$L_{zz} = 2\lambda = -1;$$

Смешанные производные = 0

 $d^2L = -dx^2 - dy^2 - dz^2$ - отриц. опр. кв. ф. - условный min

Ответ: U(-1,2,-2)=-9 - строгий условный $\mathrm{Min},U(1,-2,2)=9$ - строгий условный Min.

1.3 # 2

u=ху+уz при
$$\begin{cases} x^2 + y^2 = 2 \\ y + z = 0 \end{cases}$$

1.
$$L = xy + yz + \lambda_1(x^2 + y^2 - 2) + \lambda(y + z - 2)$$

2. Стационарные точки

$$\begin{cases} \frac{dL}{dx} = y + 2x\lambda_1 = 0 \\ \frac{dL}{dy} = x + z + 2y\lambda_1 + \lambda_2 = 0 \\ \frac{dL}{dz} = y + \lambda_2 = 0 \\ x^2 + y^2 = 2y + z = 2 \end{cases}$$
 $x = y = z = 1; \quad \lambda_1 = -\frac{1}{2}; \lambda_2 = -1$ - стационарные точки

3. Рассмотрим стац. точку (-1,2,-2) при $\lambda = \frac{1}{2}$

$$L_{xx} = 2\lambda = -1;$$

$$L_{yy} = 2\lambda = -2;$$

$$L_{zz} = 0;$$

$$L_{xy} = 1$$

$$L_{yz} = 1$$

$$L_{yz}=1$$
 $L_{xz}=0\ d^2L=-dx^2-dy^2+2dxdy+2dydz$ - неопределённая кв форма

4. Исследуем $\widetilde{d^2L}$. Продифференцируем уравнение связи.

$$x^2+y^2=2 \to 2xdx+2ydy=0$$
(в стац точке $x=y=1$) $\Rightarrow dx+dy=0 \to dx=-dy$ $y+z=0 \to dz=-dy$ $\widetilde{d^2L}=-dy^2-dy^2-2dy^2-2dy^2=6dy^2$ отрицательно определённая кв форма.

Ответ: (1,1,1)=2, строгий условный максимум.