Теория вероятностей. Лекция двадцать девятая Задача об оптимальной остановке

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

27.05.2019

Что разобрали:

- Марковские цепи с дискретным временем
- Марковские цепи с непрерывным временем
- Фильтрация и моменты остановки
- Мартингалы
- Задача об оптимальной остановке

Фильтрация, моменты остановки, мартингалы

Пусть время дискретно $T = \mathbb{N} \cup \{0\}$, задано вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$, неубывающая последовательность $(\mathcal{F}_t)_{t \in T}$ подалгебр алгебры \mathcal{F} называется фильтрацией.

Случайный процесс $(X_t)_{t\in T}$ согласован с $\{\mathcal{F}_t\}_{t\in T}$, если каждый X_t \mathcal{F}_{t} -измерим.

- $(X_t)_{t\in T}$ мартингал при $X_s = \mathbb{E}(X_t|\mathcal{F}_s)$ для $s\leq t$,
 - субмартингал при $X_s \leq \mathbb{E}(X_t|\mathcal{F}_s)$ для $s \leq t$,
 - супермартингал при $X_s \ge \mathbb{E}(X_t | \mathcal{F}_s)$ для $s \le t$.

Случайная величина $\tau:\Omega\to T$ называется моментом остановки, если $\{\tau(\omega)\le t\}\in\mathcal{F}_t$ для всех t.

Задача об оптимальной остановке

Пусть для каждого момента времени $n \in \mathcal{N} \stackrel{\triangle}{=} \{0,1,\dots,N\}$ задана \mathcal{F}_n -измеримая случайная величина $f_n:\Omega \to [0,+\infty)$. Пусть \mathfrak{W}_n обозначает семейство моментов остановки, принимающих значения из $\{n,\dots,N\}$. Требуется найти

$$V_n \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}_0} \mathbb{E} f_{\tau}, \quad \text{ess-sup}_{\tau \in \mathfrak{W}_0} \mathbb{E} (f_{\tau} | \mathcal{F}_0).$$

Пусть

$$v_N \stackrel{\triangle}{=} f_N, \quad v_n \stackrel{\triangle}{=} \max\{f_n, \mathbb{E}(v_{n+1}|\mathcal{F}_n)\}, \tau_n \stackrel{\triangle}{=} \min\{k \in \overline{n, N} : v_k = f_k\}.$$

Теорема об оптимальной остановке.

- lacktriangle моменты остановки au_n оптимальны в классе \mathfrak{W}_n : $\mathbb{E} f_{ au_n}$ = V_n ;
- $m{Q}$ "стохастические цены" совпадают с v_n , т.е. $\displaystyle \operatorname*{ess-sup}_{ au\in \mathfrak{W}_n}\mathbb{E}(f_{ au}|\mathcal{F}_n)$ = v_n .

Доказательство теоремы: $\mathbb{E}(f_{\tau}|\mathcal{F}_{k-1}) \leq v_{k-1}$ \mathbb{P} -п.н

Если n=N, то $v_N=f_N$, и все доказано. Пусть теперь теорема доказана для $n=N,N-1,\ldots,k$. Докажем её для n=k-1. Пусть $\tau\in\mathfrak{W}_{k-1}$ и $A\in\mathcal{F}_{k-1}$. Положим $\bar{\tau}\stackrel{\triangle}{=}\max\{\tau,k\}$. Заметим, что $\bar{\tau}\in\mathfrak{W}_k$. Также отметим, что событие $\{\tau\geq k\}$ лежит в \mathcal{F}_{k-1} . Имеем, что

$$\mathbb{E}(\mathbf{1}_{A}f_{\tau}) = \mathbb{E}[\mathbf{1}_{A\cap\{\tau=k-1\}}f_{\tau}] + \mathbb{E}[\mathbf{1}_{A\cap\{\tau\geq k\}}f_{\tau}]$$

$$= \mathbb{E}[\mathbf{1}_{A\cap\{\tau=k-1\}}f_{\tau}] + \mathbb{E}[\mathbf{1}_{A\cap\{\tau\geq k\}}\mathbb{E}(f_{\tau}|\mathcal{F}_{k-1})]$$

$$= \mathbb{E}[\mathbf{1}_{A\cap\{\tau=k-1\}}f_{\tau}] + \mathbb{E}[\mathbf{1}_{A\cap\{\tau\geq k\}}\mathbb{E}(\mathbb{E}(f_{\bar{\tau}}|\mathcal{F}_{k})|\mathcal{F}_{k-1})]$$

$$\leq \mathbb{E}[\mathbf{1}_{A\cap\{\tau=k-1\}}f_{\tau}] + \mathbb{E}[\mathbf{1}_{A\cap\{\tau\geq k\}}\mathbb{E}(v_{k}|\mathcal{F}_{k-1})]$$

$$\leq \mathbb{E}(\mathbf{1}_{A}v_{k-1}).$$

Это означает, что $\mathbb{E}(f_{\tau}|\mathcal{F}_{k-1}) \leq v_{k-1}$ для всех $\tau \in \mathfrak{W}_n$.

Доказательство теоремы: $\mathbb{E}(f_{\tau_{k-1}}|\mathcal{F}_{k-1}) = v_{k-1}$ \mathbb{P} -п.н.

Заметим, что на множестве $\{ au_{k-1} \ge k\}$ по предположению индукции $au_{k-1} = au_k$ и $\mathbb{E}(f_{ au_k}|\mathcal{F}_k) = v_k$ \mathbb{P} -п.н.

$$\mathbb{E}(\mathbf{1}_{A}f_{\tau_{k-1}}) = \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} = k-1\}} f_{k-1}] + \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} \ge k\}} f_{\tau_{k-1}}]$$

$$= \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} = k-1\}} f_{k-1}] + \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} \ge k\}} \mathbb{E}(f_{\tau_{k}} | \mathcal{F}_{k-1})]$$

$$= \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} = k-1\}} f_{k-1}] + \mathbb{E}[\mathbf{1}_{A \cap \{\tau_{k-1} \ge k\}} \mathbb{E}(v_{k} | \mathcal{F}_{k-1})]$$

$$= \mathbb{E}(\mathbf{1}_{A} v_{k-1}).$$

Последнее равенство выполнено в силу $v_{k-1} = \max\{f_{k-1}, \mathbb{E}(v_k|\mathcal{F}_{k-1})\}$ и равенств $v_{k-1} = f_{k-1}$ при $\tau_{k-1} = k-1$ и $v_{k-1} = \mathbb{E}(v_k|\mathcal{F}_{k-1})$ при $\tau_{k-1} \geq k$. Тем самым показано, что

$$\mathbb{E}(f_{ au_{k-1}}|\mathcal{F}_{k-1}) = v_{k-1}$$
 \mathbb{P} -п.н.

Поскольку для всех моментов остановки au выполнено $\mathbb{E}(f_{ au}|\mathcal{F}_{k-1}) \leq v_{k-1}$ п.в., теорема доказана.

Банальные следствия из теоремы

Для

$$v_N \stackrel{\triangle}{=} f_N, \quad v_n \stackrel{\triangle}{=} \max\{f_n, \mathbb{E}(v_{n+1}|\mathcal{F}_n)\}, \tau_n \stackrel{\triangle}{=} \min\{k \in \overline{n,N} : v_k = f_k\}$$

также выполнены:

① $v_n \ge f_n$, то есть v — мажоранта для f;

Банальные следствия из теоремы

Для

$$v_N \stackrel{\triangle}{=} f_N, \quad v_n \stackrel{\triangle}{=} \max\{f_n, \mathbb{E}(v_{n+1}|\mathcal{F}_n)\}, \tau_n \stackrel{\triangle}{=} \min\{k \in \overline{n,N} : v_k = f_k\}$$

также выполнены:

- ① $v_n \ge f_n$, то есть v мажоранта для f;
- ② $v_n \ge \mathbb{E}(v_{n+1}|\mathcal{F}_n)$, т.е. v_n супермартингал;

Банальные следствия из теоремы

Для

$$v_N \stackrel{\triangle}{=} f_N, \quad v_n \stackrel{\triangle}{=} \max\{f_n, \mathbb{E}(v_{n+1}|\mathcal{F}_n)\}, \tau_n \stackrel{\triangle}{=} \min\{k \in \overline{n,N} : v_k = f_k\}$$

также выполнены:

- ① $v_n \ge f_n$, то есть v мажоранта для f;
- $v_n \geq \mathbb{E}(v_{n+1}|\mathcal{F}_n)$, т.е. v_n супермартингал;

$$v_n \ge \mathbb{E}(v_{n+1}|\mathcal{F}_n)$$

 $oldsymbol{0}$ v — наименьшая супермартингальная мажоранта для f, то есть наименьшая последовательность, обладающая предыдущими двумя свойствами.

Итак, v_n — наименьшее решение вариационного неравенства:

$$\gamma_n \ge \max\{f_n, \mathbb{E}(\gamma_{n+1}|\mathcal{F}_n)\}, \quad \gamma_n = f_n.$$

Введем
$$D_n \stackrel{\triangle}{=} \{\omega \,|\, v_n(\omega) = \mathbb{E}(v_{n+1}|\mathcal{F}_n)(\omega)\}$$
. Теперь,
$$D_0 \subset D_1 \subset \cdots \subset D_N = \Omega$$

и оптимальным моментом остановки станет

Введем
$$D_n \stackrel{\triangle}{=} \{\omega \,|\, v_n(\omega) = \mathbb{E}(v_{n+1}|\mathcal{F}_n)(\omega)\}.$$
 Теперь,

$$D_0 \subset D_1 \subset \cdots \subset D_N = \Omega$$

и оптимальным моментом остановки станет $\tau(\omega) = \min\{n \mid \omega \in D_n\}$. Если f_n — супермартингал, тогда оптимален τ =

Введем
$$D_n \stackrel{\triangle}{=} \{\omega \,|\, v_n(\omega) = \mathbb{E}(v_{n+1}|\mathcal{F}_n)(\omega)\}.$$
 Теперь,

$$D_0 \subset D_1 \subset \cdots \subset D_N = \Omega$$

и оптимальным моментом остановки станет $\tau(\omega) = \min\{n \mid \omega \in D_n\}$. Если f_n — супермартингал, тогда оптимален $\tau = 0$. Если f_n — субмартингал, тогда оптимален $\tau = 0$.

Введем
$$D_n \stackrel{\triangle}{=} \{\omega \,|\, v_n(\omega) = \mathbb{E}(v_{n+1}|\mathcal{F}_n)(\omega)\}$$
. Теперь,

$$D_0 \subset D_1 \subset \cdots \subset D_N = \Omega$$

Если f_n — супермартингал, тогда оптимален τ = 0.

Если f_n — субмартингал, тогда оптимален τ = N.

Если f_n — мартингал, тогда оптимален

Введем
$$D_n \stackrel{\triangle}{=} \{\omega \,|\, v_n(\omega) = \mathbb{E}(v_{n+1}|\mathcal{F}_n)(\omega)\}$$
. Теперь,

$$D_0 \subset D_1 \subset \cdots \subset D_N = \Omega$$

Если f_n — супермартингал, тогда оптимален τ = 0.

Если f_n — субмартингал, тогда оптимален τ = N.

Если f_n — мартингал, тогда оптимален любой момент остановки.

Введем
$$D_n \stackrel{\triangle}{=} \{\omega \,|\, v_n(\omega) = \mathbb{E}(v_{n+1}|\mathcal{F}_n)(\omega)\}$$
. Теперь,

$$D_0 \subset D_1 \subset \cdots \subset D_N = \Omega$$

Если f_n — супермартингал, тогда оптимален au = 0.

Если f_n — субмартингал, тогда оптимален τ = N.

Если f_n — мартингал, тогда оптимален любой момент остановки.

Пусть $f_n = f(X_n)$,

Введем
$$D_n \stackrel{\triangle}{=} \{\omega \,|\, v_n(\omega) = \mathbb{E}(v_{n+1}|\mathcal{F}_n)(\omega)\}$$
. Теперь,

$$D_0 \subset D_1 \subset \cdots \subset D_N = \Omega$$

Если f_n — супермартингал, тогда оптимален τ = 0.

Если f_n — субмартингал, тогда оптимален τ = N.

Если f_n — мартингал, тогда оптимален любой момент остановки.

Пусть $f_n = f(X_n)$,

и зависимость X_n от X_0, X_1, \dots, X_{n-1} сводится к X_{n-1} ? Что это даст для алгебр \mathcal{F}_n , для множеств D_n ...

Пусть Ω состоит из всевозможных последовательностей $\omega=(x_0,x_1,\ldots,x_n,\ldots)$, где x_n — произвольные элементы некоторого измеримого пространства (E,\mathcal{E}) ,

Пусть Ω состоит из всевозможных последовательностей $\omega=(x_0,x_1,\ldots,x_n,\ldots)$, где x_n — произвольные элементы некоторого измеримого пространства (E,\mathcal{E}) , $X_n(\omega)-n$ -я координата у ω ,

Пусть Ω состоит из всевозможных последовательностей $\omega=(x_0,x_1,\ldots,x_n,\ldots)$, где x_n — произвольные элементы некоторого измеримого пространства (E,\mathcal{E}) ,

 $X_n(\omega)-n$ -я координата у ω , а \mathcal{F}_n = $\sigma(X_0,\ldots,X_n)$. Тогда $(X_n)_{n\in\mathbb{N}}$ — стационарная марковская цепь, если

Пусть Ω состоит из всевозможных последовательностей $\omega = (x_0, x_1, \ldots, x_n, \ldots)$, где x_n — произвольные элементы некоторого измеримого пространства (E, \mathcal{E}) ,

 $X_n(\omega)-n$ -я координата у ω , а \mathcal{F}_n = $\sigma(X_0,\ldots,X_n)$. Тогда $(X_n)_{n\in\mathbb{N}}$ — стационарная марковская цепь, если задана переходная вероятность $P(dy;X_n=x)$.

Подумать: переходная вероятность требует чуть больше, чем условная вероятность, но для хороших (E,\mathcal{E}) разницы нет.

Пусть Ω состоит из всевозможных последовательностей $\omega = (x_0, x_1, \ldots, x_n, \ldots)$, где x_n — произвольные элементы некоторого измеримого пространства (E, \mathcal{E}) ,

 $X_n(\omega)-n$ -я координата у ω , а $\mathcal{F}_n=\sigma(X_0,\ldots,X_n)$. Тогда $(X_n)_{n\in\mathbb{N}}-$ стационарная марковская цепь, если задана переходная вероятность $P(dy;X_n=x)$.

Подумать: переходная вероятность требует чуть больше, чем условная вероятность, но для хороших (E,\mathcal{E}) разницы нет.

Теперь для \mathcal{E} -измеримой функции $g:E o\mathbb{R}$

Пусть Ω состоит из всевозможных последовательностей $\omega = (x_0, x_1, \ldots, x_n, \ldots)$, где x_n — произвольные элементы некоторого измеримого пространства (E, \mathcal{E}) ,

 $X_n(\omega)-n$ -я координата у ω , а \mathcal{F}_n = $\sigma(X_0,\ldots,X_n)$. Тогда $(X_n)_{n\in\mathbb{N}}$ — стационарная марковская цепь, если задана переходная вероятность $P(dy;X_n=x)$.

Подумать: переходная вероятность требует чуть больше, чем условная вероятность, но для хороших (E,\mathcal{E}) разницы нет.

Теперь для \mathcal{E} -измеримой функции $g:E o\mathbb{R}$ можно рассмотреть

$$Tg(x) = \mathbb{E}_x g(X_1) =$$

Пусть Ω состоит из всевозможных последовательностей $\omega = (x_0, x_1, \ldots, x_n, \ldots)$, где x_n — произвольные элементы некоторого измеримого пространства (E, \mathcal{E}) ,

 $X_n(\omega)-n$ -я координата у ω , а $\mathcal{F}_n=\sigma(X_0,\ldots,X_n)$. Тогда $(X_n)_{n\in\mathbb{N}}-$ стационарная марковская цепь, если задана переходная вероятность $P(dy;X_n=x)$.

Подумать: переходная вероятность требует чуть больше, чем условная вероятность, но для хороших (E,\mathcal{E}) разницы нет.

Теперь для \mathcal{E} -измеримой функции $g:E o\mathbb{R}$ можно рассмотреть

$$Tg(x) = \mathbb{E}_x g(X_1) = \int_E g(y) P(dy; x);$$

для простоты будем считать, что все наши функции суммируемы для всех $x \in E$.

Пусть задана функция $g:E o\mathbb{R}$, требуется найти

$$s_n(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^n} \mathbb{E}_x g(X_\tau) = \operatorname{ess-sup}_{\tau \in \mathfrak{W}^n} \mathbb{E}(g(X_\tau)|X_0 = x),$$

где \mathfrak{W}^n — моменты остановки, принимающие значения из $\{0,\ldots,n\}$.

Пусть задана функция $g:E o\mathbb{R}$, требуется найти

$$s_n(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^n} \mathbb{E}_x g(X_\tau) = \underset{\tau \in \mathfrak{W}^n}{\text{ess-sup}} \mathbb{E}(g(X_\tau)|X_0 = x),$$

где \mathfrak{W}^n — моменты остановки, принимающие значения из $\{0,\dots,n\}$. Имея ввиду f_k =

Пусть задана функция $g:E o\mathbb{R}$, требуется найти

$$s_n(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^n} \mathbb{E}_x g(X_\tau) = \underset{\tau \in \mathfrak{W}^n}{\text{ess-sup}} \mathbb{E}(g(X_\tau)|X_0 = x),$$

где \mathfrak{W}^n — моменты остановки, принимающие значения из $\{0,\dots,n\}$. Имея ввиду f_k = $g(X_k), v_k^N$ =

Пусть задана функция $g:E o\mathbb{R}$, требуется найти

$$s_n(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^n} \mathbb{E}_x g(X_\tau) = \operatorname{ess-sup}_{\tau \in \mathfrak{W}^n} \mathbb{E}(g(X_\tau)|X_0 = x),$$

где \mathfrak{W}^n — моменты остановки, принимающие значения из $\{0,\dots,n\}$. Имея ввиду $f_k=g(X_k),v_k^N=s_{N-k}$, для $au^n\stackrel{\triangle}{=}\min\{k\in\overline{0,n}\,|\,$

Пусть задана функция $g:E o\mathbb{R}$, требуется найти

$$s_n(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^n} \mathbb{E}_x g(X_\tau) = \operatorname{ess-sup}_{\tau \in \mathfrak{W}^n} \mathbb{E}(g(X_\tau)|X_0 = x),$$

где \mathfrak{W}^n — моменты остановки, принимающие значения из $\{0,\dots,n\}$. Имея ввиду $f_k=g(X_k),v_k^N=s_{N-k}$, для $\tau^n\stackrel{\triangle}{=}\min\{k\in\overline{0,n}\,|\,s_{n-k}(X_k(\omega))=g(X_k(\omega))\}$ получаем:

Пусть задана функция $g:E o\mathbb{R}$, требуется найти

$$s_n(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^n} \mathbb{E}_x g(X_\tau) = \operatorname{ess-sup}_{\tau \in \mathfrak{W}^n} \mathbb{E}(g(X_\tau)|X_0 = x),$$

где \mathfrak{W}^n — моменты остановки, принимающие значения из $\{0,\dots,n\}$. Имея ввиду $f_k=g(X_k),v_k^N=s_{N-k}$, для $au^n\stackrel{\triangle}{=}\min\{k\in\overline{0,n}\,|\,s_{n-k}(X_k(\omega))=g(X_k(\omega))\}$ получаем:

- моменты остановки τ^n оптимальны в \mathfrak{W}^n : $\mathbb{E}_x g(X_{\tau^n}) = s_n(x)$;
- $oldsymbol{arrho}$ "цены" s_n могут быть найдены по формуле

Пусть задана функция $g:E o\mathbb{R}$, требуется найти

$$s_n(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^n} \mathbb{E}_x g(X_\tau) = \operatorname{ess-sup}_{\tau \in \mathfrak{W}^n} \mathbb{E}(g(X_\tau)|X_0 = x),$$

где \mathfrak{W}^n — моменты остановки, принимающие значения из $\{0,\dots,n\}$. Имея ввиду $f_k=g(X_k),v_k^N=s_{N-k}$, для $\tau^n\stackrel{\triangle}{=}\min\{k\in\overline{0,n}\,|\,s_{n-k}(X_k(\omega))=g(X_k(\omega))\}$ получаем:

- lacktriangle моменты остановки au^n оптимальны в \mathfrak{W}^n : $\mathbb{E}_x g(X_{ au^n})$ = $s_n(x)$;
- $oldsymbol{2}$ "цены" s_n могут быть найдены по формуле

$$s_n(x) = \max\{g(x), \mathbb{E}_x s_{n-1}(x)\} = \max\{g(x), T s_{n-1}(x)\};$$

Пусть задана функция $g:E o\mathbb{R}$, требуется найти

$$s_n(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^n} \mathbb{E}_x g(X_\tau) = \operatorname{ess-sup}_{\tau \in \mathfrak{W}^n} \mathbb{E}(g(X_\tau)|X_0 = x),$$

где \mathfrak{W}^n — моменты остановки, принимающие значения из $\{0,\dots,n\}$. Имея ввиду $f_k=g(X_k),v_k^N=s_{N-k}$, для $\tau^n\stackrel{\triangle}{=}\min\{k\in\overline{0,n}\,|\,s_{n-k}(X_k(\omega))=g(X_k(\omega))\}$ получаем:

- моменты остановки τ^n оптимальны в \mathfrak{W}^n : $\mathbb{E}_x g(X_{\tau^n}) = s_n(x)$;
- $oldsymbol{2}$ "цены" s_n могут быть найдены по формуле

$$s_n(x) = \max\{g(x), \mathbb{E}_x s_{n-1}(x)\} = \max\{g(x), T s_{n-1}(x)\};$$

3 для $Q(x) \stackrel{\triangle}{=} \max\{g(x),$

Пусть задана функция $g:E o\mathbb{R}$, требуется найти

$$s_n(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^n} \mathbb{E}_x g(X_\tau) = \operatorname{ess-sup}_{\tau \in \mathfrak{W}^n} \mathbb{E}(g(X_\tau)|X_0 = x),$$

где \mathfrak{W}^n — моменты остановки, принимающие значения из $\{0,\dots,n\}$. Имея ввиду $f_k=g(X_k),v_k^N=s_{N-k}$, для $\tau^n\stackrel{\triangle}{=}\min\{k\in\overline{0,n}\,|\,s_{n-k}(X_k(\omega))=g(X_k(\omega))\}$ получаем:

- $lacksymbol{0}$ моменты остановки au^n оптимальны в \mathfrak{W}^n : $\mathbb{E}_x q(X_{\tau^n}) = s_n(x)$;
- $oldsymbol{2}$ "цены" s_n могут быть найдены по формуле

$$s_n(x) = \max\{g(x), \mathbb{E}_x s_{n-1}(x)\} = \max\{g(x), T s_{n-1}(x)\};$$

 $oldsymbol{3}$ для $Q(x)\stackrel{ riangle}{=} \max\{g(x),\mathbb{E}_xg(X)\}=\max\{g(x),Tg(x)\}$ имеем $s_n(x)$

Пусть задана функция $g:E o\mathbb{R}$, требуется найти

$$s_n(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^n} \mathbb{E}_x g(X_\tau) = \operatorname{ess-sup}_{\tau \in \mathfrak{W}^n} \mathbb{E}(g(X_\tau)|X_0 = x),$$

где \mathfrak{W}^n — моменты остановки, принимающие значения из $\{0,\dots,n\}$. Имея ввиду $f_k=g(X_k), v_k^N=s_{N-k}$, для $\tau^n\stackrel{\triangle}{=}\min\{k\in\overline{0,n}\,|\,s_{n-k}(X_k(\omega))=g(X_k(\omega))\}$ получаем:

- моменты остановки τ^n оптимальны в \mathfrak{W}^n : $\mathbb{E}_x g(X_{\tau^n}) = s_n(x)$;
- $oldsymbol{2}$ "цены" s_n могут быть найдены по формуле

$$s_n(x) = \max\{g(x), \mathbb{E}_x s_{n-1}(x)\} = \max\{g(x), T s_{n-1}(x)\};$$

 $lack {o}$ для $Q(x) \stackrel{ riangle}{=} \max\{g(x), \mathbb{E}_x g(X)\} = \max\{g(x), Tg(x)\}$ имеем $s_n(x) = Q(s_{n-1}(x)) = Q^{(n)}(g(x)).$

Оптимальная остановка с неограниченным au

Найти $s(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^{\infty}} \mathbb{E}_{x} g(X_{\tau}) = \text{ess-sup} \mathbb{E}(g(X_{\tau})|X_{0} = x),$ где \mathfrak{W}^{∞} — моменты остановки, принимающие значения из $\mathbb{N} \cup \{0\}$. Тогда,

$$s(x) =$$

Оптимальная остановка с неограниченным au

Найти $s(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^{\infty}} \mathbb{E}_{x} g(X_{\tau}) = \operatorname{ess-sup}_{\tau \in \mathfrak{W}^{\infty}} \mathbb{E}(g(X_{\tau})|X_{0} = x),$ где \mathfrak{W}^{∞} — моменты остановки, принимающие значения из $\mathbb{N} \cup \{0\}$. Тогда,

1

$$s(x) = \lim_{n \to \infty} s_n(x)$$

Оптимальная остановка с неограниченным au

Найти $s(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^{\infty}} \mathbb{E}_{x} g(X_{\tau}) = \text{ess-sup} \mathbb{E}(g(X_{\tau})|X_{0} = x),$ где \mathfrak{W}^{∞} — моменты остановки, принимающие значения из $\mathbb{N} \cup \{0\}$. Тогда,

1

$$s(x) = \lim_{n \to \infty} s_n(x) = \sup_{n \to \infty} Q^n g(x);$$

2 выполнено уравнение Вальда-Беллмана

Найти $s(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^{\infty}} \mathbb{E}_{x} g(X_{\tau}) = \text{ess-sup} \mathbb{E}(g(X_{\tau})|X_{0} = x),$ где \mathfrak{W}^{∞} — моменты остановки, принимающие значения из $\mathbb{N} \cup \{0\}$. Тогда,

$$s(x) = \lim_{n \to \infty} s_n(x) = \sup_{n \to \infty} Q^n g(x);$$

- $oldsymbol{Q}$ выполнено уравнение Вальда-Беллмана $s(x) = \max\{g(x), Ts(x)\};$
- $oldsymbol{0}$ $s(X_n)$ наименьший супермартингал среди не меньших g;
- $\bullet \quad \tau_0^{\infty} \stackrel{\triangle}{=} \min\{k \in \overline{n, N} \mid$

Найти $s(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^{\infty}} \mathbb{E}_{x} g(X_{\tau}) = \text{ess-sup} \mathbb{E}(g(X_{\tau})|X_{0} = x),$ где \mathfrak{W}^{∞} — моменты остановки, принимающие значения из $\mathbb{N} \cup \{0\}$. Тогда,

$$s(x) = \lim_{n \to \infty} s_n(x) = \sup_{n \to \infty} Q^n g(x);$$

- $oldsymbol{0}$ выполнено уравнение Вальда-Беллмана $s(x) = \max\{g(x), Ts(x)\};$
- $oldsymbol{0}$ $s(X_n)$ наименьший супермартингал среди не меньших g;
- lacktriangledown $au_0^\infty\stackrel{\triangle}{=}\min\{k\in\overline{n,N}\,|\,s_\infty(X_k(\omega))=g(X_k(\omega))\}$ оптимален в \mathfrak{W}^∞

Найти $s(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^{\infty}} \mathbb{E}_{x} g(X_{\tau}) = \operatorname{ess-sup}_{\tau \in \mathfrak{W}^{\infty}} \mathbb{E}(g(X_{\tau})|X_{0} = x),$ где \mathfrak{W}^{∞} — моменты остановки, принимающие значения из $\mathbb{N} \cup \{0\}$. Тогда,

$$s(x) = \lim_{n \to \infty} s_n(x) = \sup_{n \to \infty} Q^n g(x);$$

- $oldsymbol{0}$ выполнено уравнение Вальда-Беллмана $s(x) = \max\{g(x), Ts(x)\};$
- $oldsymbol{0}$ $s(X_n)$ наименьший супермартингал среди не меньших g;
- \bullet $\tau_0^{\infty} \stackrel{\triangle}{=} \min\{k \in \overline{n,N} \mid s_{\infty}(X_k(\omega)) = g(X_k(\omega))\}$ оптимален в \mathfrak{W}^{∞} при конечном E;
- $footnote{\bullet}$ момент остановки $au_{arepsilon}^{\infty}\stackrel{\triangle}{=}\min\{k\in\overline{n,N}\,|\,$

Найти $s(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^{\infty}} \mathbb{E}_{x} g(X_{\tau}) = \text{ess-sup} \mathbb{E}(g(X_{\tau})|X_{0} = x),$ где \mathfrak{W}^{∞} — моменты остановки, принимающие значения из $\mathbb{N} \cup \{0\}$. Тогда,

$$s(x) = \lim_{n \to \infty} s_n(x) = \sup_{n \to \infty} Q^n g(x);$$

- $oldsymbol{0}$ выполнено уравнение Вальда-Беллмана $s(x) = \max\{g(x), Ts(x)\};$
- \bullet $s(X_n)$ наименьший супермартингал среди не меньших g;
- \bullet $\tau_0^{\infty} \stackrel{\triangle}{=} \min\{k \in \overline{n,N} \mid s_{\infty}(X_k(\omega)) = g(X_k(\omega))\}$ оптимален в \mathfrak{W}^{∞} при конечном E;
- \bullet момент остановки $au_{arepsilon}^{\infty} \stackrel{\triangle}{=} \min\{k \in \overline{n,N} \,|\, s_{\infty}(X_k(\omega)) \leq g(X_k(\omega) + arepsilon)\}$ arepsilon-оптимален в классе \mathfrak{W}^{∞} , то есть

Найти $s(x) \stackrel{\triangle}{=} \sup_{\tau \in \mathfrak{W}^{\infty}} \mathbb{E}_{x} g(X_{\tau}) = \text{ess-sup} \, \mathbb{E}(g(X_{\tau})|X_{0} = x),$ где \mathfrak{W}^{∞} — моменты остановки, принимающие значения из $\mathbb{N} \cup \{0\}$. Тогда,

$$s(x) = \lim_{n \to \infty} s_n(x) = \sup_{n \to \infty} Q^n g(x);$$

- $oldsymbol{0}$ выполнено уравнение Вальда-Беллмана $s(x) = \max\{g(x), Ts(x)\};$
- \bullet $s(X_n)$ наименьший супермартингал среди не меньших g;
- \bullet $\tau_0^{\infty} \stackrel{\triangle}{=} \min\{k \in \overline{n,N} \mid s_{\infty}(X_k(\omega)) = g(X_k(\omega))\}$ оптимален в \mathfrak{W}^{∞} при конечном E;
- \bullet момент остановки $au_{arepsilon}^{\infty}\stackrel{\triangle}{=} \min\{k\in\overline{n,N}\,|\,s_{\infty}(X_k(\omega))\leq g(X_k(\omega)+arepsilon)\}$ arepsilon-оптимален в классе \mathfrak{W}^{∞} , то есть $\mathbb{E}_x g(X_{ au_{\varepsilon}^{\infty}})+arepsilon\geq s_{\infty}(x)$.

Задача о разборчивой невесте (о выборе наилучшего объекта, о выборе секретаря)

Имеется *а priori* известное число N кандидатов *а priori* неизвестного качества; предполагается, что приходят на смотрины кандидаты в случайном порядке, не зависящем от свойств каждого кандидата. Качество каждого кандидата измеряется точно, хочется найти наилучшего из них, но поскольку кандидаты обидчивые, решение брать/не брать надо дать сразу после измерения, ну и хотя бы одного кандидата выбрать необходимо.

Задача о разборчивой невесте (о выборе наилучшего объекта, о выборе секретаря)

Имеется *а priori* известное число N кандидатов *а priori* неизвестного качества; предполагается, что приходят на смотрины кандидаты в случайном порядке, не зависящем от свойств каждого кандидата. Качество каждого кандидата измеряется точно, хочется найти наилучшего из них, но поскольку кандидаты обидчивые, решение брать/не брать надо дать сразу после измерения, ну и хотя бы одного кандидата выбрать необходимо.

Нужно подобрать марковскую цепь так, чтобы для каждого состояния мы знали вероятность каждого другого состояния быть следующим.

• Какая информация наблюдаема?

- Какая информация наблюдаема? Когда приходит новая информация?
- Какую, пусть и наблюдаемую, информацию можно заведомо не рассматривать,

- Какая информация наблюдаема? Когда приходит новая информация?
- Какую, пусть и наблюдаемую, информацию можно заведомо не рассматривать, и напротив, какой наблюдаемой информации достаточно для принятия решений?
- В момент прихода новой информации какую часть старой информации можно забыть?
- Что назвать переходом,

- Какая информация наблюдаема? Когда приходит новая информация?
- Какую, пусть и наблюдаемую, информацию можно заведомо не рассматривать, и напротив, какой наблюдаемой информации достаточно для принятия решений?
- В момент прихода новой информации какую часть старой информации можно забыть?
- Что назвать переходом, из каких состояний в какие?

Базовая **информация**: какой номер у обладателя титула "пока лучший".

Берем марковскую цепь, в которой состояний

Базовая информация: какой номер у обладателя титула "пока лучший".

Берем марковскую цепь, в которой состояний N

Базовая **информация**: какой номер у обладателя титула "пока лучший".

Берем марковскую цепь, в которой состояний N+1, от 0 до N; где состояние k (от 1 до N) —

Базовая информация: какой номер у обладателя титула "пока лучший".

Берем марковскую цепь, в которой состояний N+1, от 0 до N; где состояние k (от 1 до N) — «k-й был "пока лучшим"», состояние 0^* означает, что самый лучший уже ушел.

Tеперь X_1 =

Базовая **информация**: какой номер у обладателя титула "пока лучший".

Берем марковскую цепь, в которой состояний N+1, от 0 до N; где состояние k (от 1 до N) — «k-й был "пока лучшим"», состояние 0^* означает, что самый лучший уже ушел.

Теперь X_1 = 1, X_{0^*} =

Базовая информация: какой номер у обладателя титула "пока лучший".

Берем марковскую цепь, в которой состояний N+1, от 0 до N; где состояние k (от 1 до N) — «k-й был "пока лучшим"», состояние 0^* означает, что самый лучший уже ушел.

Теперь X_1 = 1, X_{0^*} = 0 и $p_{0^*,0^*}$ =

Базовая информация: какой номер у обладателя титула "пока лучший".

Берем марковскую цепь, в которой состояний N+1, от 0 до N; где состояние k (от 1 до N) — «k-й был "пока лучшим"», состояние 0^* означает, что самый лучший уже ушел.

Теперь X_1 = 1, X_{0^*} = 0 и $p_{0^*,0^*}$ = 1, $p_{i,0^*}$ =

Базовая **информация**: какой номер у обладателя титула "пока лучший".

Берем марковскую цепь, в которой состояний N+1, от 0 до N; где состояние k (от 1 до N) — «k-й был "пока лучшим"», состояние 0^* означает, что самый лучший уже ушел.

Теперь $X_1 = 1$, $X_{0^*} = 0$ и $p_{0^*,0^*} = 1$, $p_{i,0^*} = i/N$, (состояние 0^* поглощающее, 0^* — устоявшееся обозначение для таких состояний)

 $p_{i,j} =$

Базовая **информация**: какой номер у обладателя титула "пока лучший".

Берем марковскую цепь, в которой состояний N+1, от 0 до N; где состояние k (от 1 до N) — «k-й был "пока лучшим"», состояние 0^* означает, что самый лучший уже ушел.

Теперь $X_1=1$, $X_{0^*}=0$ и $p_{0^*,0^*}=1$, $p_{i,0^*}=i/N$, (состояние 0^* поглощающее, 0^* — устоявшееся обозначение для таких

состояний)

 $p_{i,j} = \frac{i}{j(j-1)}$ при 0 < i < j, $p_{i,j} = 0$ — в остальных случаях. Мы ищем

 $\sup_{\tau} \mathbb{P}("выбран наилучший")$

Базовая **информация**: какой номер у обладателя титула "пока лучший".

Берем марковскую цепь, в которой состояний N+1, от 0 до N; где состояние k (от 1 до N) — «k-й был "пока лучшим"», состояние 0^* означает, что самый лучший уже ушел.

Теперь $X_1 = 1$, $X_{0^*} = 0$ и $p_{0^*,0^*} = 1$, $p_{i,0^*} = i/N$,

(состояние 0^* поглощающее, 0^* — устоявшееся обозначение для таких состояний)

 $p_{i,j} = \frac{i}{j(j-1)}$ при 0 < i < j, $p_{i,j} = 0$ — в остальных случаях. Мы ищем

$$\sup_{\tau} \mathbb{P}(\text{"выбран наилучший"}) = \sup_{\tau} \mathbb{E} p_{X_{\tau},0^*} = \sup_{\tau} \frac{\mathbb{E} X_{\tau}}{N} = \sup_{\tau} \mathbb{E} g(X_{\tau}),$$

где
$$g(i) = i/N$$
.

Решение задачи о разборчивой невесте Раз уж au

Раз уж au можно считать неограниченным, достаточно для g(i) = i/N решить

$$s(x) = \max(g(x), Tv(x)) = \max\left(\frac{x}{N}, \sum_{k=x+1}^{N} \frac{x}{k(k-1)}s(k)\right),$$

Раз уж au можно считать неограниченным, достаточно для g(i) = i/N решить

$$s(x) = \max(g(x), Tv(x)) = \max\left(\frac{x}{N}, \sum_{k=x+1}^{N} \frac{x}{k(k-1)}s(k)\right),$$

или

$$Ns(x)/x = \max\left(1, \sum_{k=x+1}^{N} \frac{Ns(k)/k}{k-1}\right), \quad s(N) = 1 \qquad \forall x \in \{1, \dots, N-1\},$$

Раз уж au можно считать неограниченным, достаточно для g(i) = i/N решить

$$s(x) = \max(g(x), Tv(x)) = \max\left(\frac{x}{N}, \sum_{k=x+1}^{N} \frac{x}{k(k-1)}s(k)\right),$$

или

$$Ns(x)/x = \max \left(1, \sum_{k=r+1}^{N} \frac{Ns(k)/k}{k-1}\right), \quad s(N) = 1 \qquad \forall x \in \{1, \dots, N-1\},$$

или

$$\bar{s}(x) = \max\left(1, \sum_{k=x+1}^{N} \frac{\bar{s}(k)}{k-1}\right), \quad \bar{s}(N) = 1 \qquad \forall x \in \{1, \dots, N-1\}.$$

Раз уж au можно считать неограниченным, достаточно для g(i) = i/N решить

$$s(x) = \max(g(x), Tv(x)) = \max\left(\frac{x}{N}, \sum_{k=x+1}^{N} \frac{x}{k(k-1)}s(k)\right),$$

или

$$Ns(x)/x = \max \left(1, \sum_{k=r+1}^{N} \frac{Ns(k)/k}{k-1}\right), \quad s(N) = 1 \qquad \forall x \in \{1, \dots, N-1\},$$

или

$$\bar{s}(x) = \max\left(1, \sum_{k=x+1}^{N} \frac{\bar{s}(k)}{k-1}\right), \quad \bar{s}(N) = 1 \qquad \forall x \in \{1, \dots, N-1\}.$$

Поскольку \bar{s}

Раз уж au можно считать неограниченным, достаточно для g(i) = i/N решить

$$s(x) = \max(g(x), Tv(x)) = \max\left(\frac{x}{N}, \sum_{k=r+1}^{N} \frac{x}{k(k-1)}s(k)\right),$$

или

$$Ns(x)/x = \max\left(1, \sum_{k=x+1}^{N} \frac{Ns(k)/k}{k-1}\right), \quad s(N) = 1 \qquad \forall x \in \{1, \dots, N-1\},$$

или

$$\bar{s}(x) = \max\left(1, \sum_{k=x+1}^{N} \frac{\bar{s}(k)}{k-1}\right), \quad \bar{s}(N) = 1 \qquad \forall x \in \{1, \dots, N-1\}.$$

Поскольку \bar{s} не возрастает, то au_0^{∞} —

Раз уж au можно считать неограниченным, достаточно для g(i) = i/N решить

$$s(x) = \max(g(x), Tv(x)) = \max\left(\frac{x}{N}, \sum_{k=x+1}^{N} \frac{x}{k(k-1)}s(k)\right),$$

или

$$Ns(x)/x = \max\left(1, \sum_{k=x+1}^{N} \frac{Ns(k)/k}{k-1}\right), \quad s(N) = 1 \qquad \forall x \in \{1, \dots, N-1\},$$

или

$$\bar{s}(x) = \max\left(1, \sum_{k=x+1}^{N} \frac{\bar{s}(k)}{k-1}\right), \quad \bar{s}(N) = 1 \qquad \forall x \in \{1, \dots, N-1\}.$$

Поскольку \bar{s} не возрастает, то τ_0^∞ — последний момент, когда \bar{s} = 1:

$$\tau_0^{\infty} \stackrel{\triangle}{=} \max \left\{ k \mid \frac{1}{X_k - 1} + \dots + \frac{1}{N - 1} \le 1 \right\}$$

Раз уж au можно считать неограниченным, достаточно для g(i) = i/N решить

$$s(x) = \max(g(x), Tv(x)) = \max\left(\frac{x}{N}, \sum_{k=x+1}^{N} \frac{x}{k(k-1)}s(k)\right),$$

или

$$Ns(x)/x = \max\left(1, \sum_{k=x+1}^{N} \frac{Ns(k)/k}{k-1}\right), \quad s(N) = 1 \qquad \forall x \in \{1, \dots, N-1\},$$

или

$$\bar{s}(x) = \max\left(1, \sum_{k=x+1}^{N} \frac{\bar{s}(k)}{k-1}\right), \quad \bar{s}(N) = 1 \qquad \forall x \in \{1, \dots, N-1\}.$$

Поскольку \bar{s} не возрастает, то τ_0^∞ — последний момент, когда \bar{s} = 1:

$$\tau_0^{\infty} \stackrel{\triangle}{=} \max \left\{ k \mid \frac{1}{X_{k-1}} + \dots + \frac{1}{N-1} \le 1 \right\} \qquad P_{best} = \frac{\tau_0^{\infty}}{N}$$

Раз уж au можно считать неограниченным, достаточно для g(i) = i/N решить

$$s(x) = \max(g(x), Tv(x)) = \max\left(\frac{x}{N}, \sum_{k=r+1}^{N} \frac{x}{k(k-1)}s(k)\right),$$

или

$$Ns(x)/x = \max\left(1, \sum_{k=x+1}^{N} \frac{Ns(k)/k}{k-1}\right), \quad s(N) = 1 \qquad \forall x \in \{1, \dots, N-1\},$$

или

$$\bar{s}(x) = \max\left(1, \sum_{k=x+1}^{N} \frac{\bar{s}(k)}{k-1}\right), \quad \bar{s}(N) = 1 \qquad \forall x \in \{1, \dots, N-1\}.$$

Поскольку \bar{s} не возрастает, то τ_0^{∞} — последний момент, когда \bar{s} = 1:

$$\tau_0^{\infty} \stackrel{\triangle}{=} \max \left\{ k \, \Big| \, \frac{1}{X_{k-1}} + \dots + \frac{1}{N-1} \le 1 \right\} \qquad P_{best} = \frac{\tau_0^{\infty}}{N} \to \xrightarrow{n \to \infty} e^{-1}.$$

Задача о разорении страховой компании

Пусть u — начальный капитал страховой компании, пусть страховые поступления идут постоянно, со скоростью c>0, а в случайные моменты времени $T_i \in \mathbb{R}_{\geq 0}$ (T_i возрастают) происходят выплаты страховки ξ_i . Тогда $(X_t)_{t\geq 0}$ — эволюция капитала страховой компании — случайный процесс:

$$X_t = u + ct - S_t, \qquad S_t = \sum_{i \in \mathbb{N}} \xi_i 1_{T_i \le t}.$$

Как обычно, \mathcal{F}_s — всё события, что произошли к моменту s. Нас интересуют $T\stackrel{\triangle}{=}\inf\{t\geq 0\,|\, X_t\leq 0\}\cup\{+\infty\}$ и $\mathbb{P}(T<+\infty)$

Модель Крамера- Лундеберга

Предположим, что

- $T_i T_{i-1}$ независимые случайные величины, распределенные по закону $Exp(\lambda)$;
- ② ξ_i независимые неотрицательные случайные величины с общей функцией распределения F_{ξ} и $\mathbb{E}\xi_i = \mu$;
- $lacksymbol{3}$ последовательности $(T_i)_{i\in\mathbb{N}}$, $(\xi_i)_{i\in\mathbb{N}}$ независимы.

В рамках такой модели, например через характеристические функции, легко показывается, что для всякого $t \ge 0, \ k \in \mathbb{N} \cup \{0\}$

$$\mathbb{P}(T_k < t, T_{k+1} > t) =$$

Модель Крамера- Лундеберга

Предположим, что

- **1** $T_i T_{i-1}$ независимые случайные величины, распределенные по закону $Exp(\lambda)$;
- ② ξ_i независимые неотрицательные случайные величины с общей функцией распределения $F_{\mathcal{E}}$ и $\mathbb{E}\xi_i = \mu$;
- $lacksymbol{3}$ последовательности $(T_i)_{i\in\mathbb{N}}, \ (\xi_i)_{i\in\mathbb{N}}$ независимы.

В рамках такой модели, например через характеристические функции, легко показывается, что для всякого $t \ge 0, \ k \in \mathbb{N} \cup \{0\}$

$$\mathbb{P}(T_k < t, T_{k+1} > t) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}.$$

В силу

$$\mathbb{E}(X_t - X_0) = ct - \sum_{i \in \mathbb{N}} \mathbb{E}(\xi_i 1_{T_i \le t}) = ct - \mu \sum_{i \in \mathbb{N}} \mathbb{P}(T_i \le t) = t(c - \lambda \mu),$$

далее считаем, что $c > \lambda \mu$ (средняя прибыль компании положительна)

Теорема Крамера-Лундберга

Введем $h(z) \stackrel{\triangle}{=} \int_0^\infty (e^{zx}-1)dF_\xi(x)$ и $g(z) = \lambda h(z) - cz$ для всех неотрицательных z.

Теорема. В модели Крамера–Лундберга при $\lambda \mu < c$ вероятность разорения не превосходит e^{-Ru} , где R — единственный корень уравнения $\lambda g(R)=0$.

Пока матожидания

Для
$$h(z) \stackrel{\triangle}{=} \int_0^\infty (e^{zx}-1)dF_\xi(x)$$
 и $g(z) = \lambda h(z) - cz$ при $z \ge 0$ имеем $\mathbb{E}e^{r\xi_1} = 1 + h(r)$ и
$$\mathbb{E}(e^{-r(X_t-X_0)}) = e^{-rct}\mathbb{E}e^{r\sum_{i\le t}\xi_i}$$

$$= e^{-rct}\sum_{k\in\mathbb{N}}\mathbb{E}e^{r\sum_{i=1}^k\xi_i}\mathbb{P}(T_k < t, T_{k+1} > t)$$

$$= e^{-rct}\sum_{k\in\mathbb{N}}\mathbb{E}(1+h(r))^k\frac{e^{-\lambda t}(\lambda t)^k}{k!}$$

$$= e^{-rct}e^{-\lambda t}$$

Пока матожидания

Для
$$h(z)\stackrel{\triangle}{=} \int_0^\infty (e^{zx}-1)dF_\xi(x)$$
 и $g(z)=\lambda h(z)-cz$ при $z\ge 0$ имеем $\mathbb{E}e^{r\xi_1}=1+h(r)$ и

$$\mathbb{E}(e^{-r(X_t - X_0)}) = e^{-rct} \mathbb{E}e^{r\sum_{i \le t} \xi_i}$$

$$= e^{-rct} \sum_{k \in \mathbb{N}} \mathbb{E}e^{r\sum_{i=1}^k \xi_i} \mathbb{P}(T_k < t, T_{k+1} > t)$$

$$= e^{-rct} \sum_{k \in \mathbb{N}} \mathbb{E}(1 + h(r))^k \frac{e^{-\lambda t}(\lambda t)^k}{k!}$$

$$= e^{-rct}e^{-\lambda t}e^{\lambda t(1 + h(r))} = e^{tg(r)}.$$

Ну тогда
$$\mathbb{E}(e^{-r(X_t-X_s)})=\mathbb{E}(e^{-r(X_t-X_s)}|\mathcal{F}_s)=e^{(t-s)g(r)}$$

А теперь — мартингалы

 $e^{-rX_t-tg(r)}$ — мартингал, поскольку при s < t

$$\mathbb{E}(e^{-rX_t - tg(r)} | \mathcal{F}_s) = e^{-tg(r)} \mathbb{E}(e^{-r(X_t - X_s)} e^{rX_s} | \mathcal{F}_s)$$

$$= e^{-tg(r)} e^{(t-s)g(r)} e^{rX_s} = e^{-rX_t - sg(r)},$$

следовательно для момента остановки $au = \min(t,T)$

$$e^{-ru} = \mathbb{E}e^{-rX_t - tg(r)} = \mathbb{E}e^{-rX_\tau - \tau g(r)} \ge \mathbb{E}(e^{-rX_\tau - \tau g(r)}|T \le t)\mathbb{P}(T \le t)$$

$$= \mathbb{E}(e^{-rX_T - Tg(r)}|T \le t)\mathbb{P}(T \le t)$$

$$\ge \mathbb{E}(e^{-Tg(r)}|T \le t)\mathbb{P}(T \le t)$$

$$\ge \min_{s \in [0,T]} \mathbb{E}(e^{-sg(r)}|s \le t)\mathbb{P}(T \le t)$$

$$\mathbb{P}(T \le t) \le \max_{s \in [0,T]} e^{sg(r) - ru}.$$

Если взять r=R такое, что g(R)=0, то $\mathbb{P}(T\leq t)\leq e^{-Ru}$.

На пять минут...

- 1. Пусть X_n, Y_n мартингалы относительно некоторой фильтрации. Когда и при каких условиях мартингалами будут $X_n \wedge Y_n, X_n + Y_n, X_n Y_n$.
- 2. Докажите или опровергните, что в "важном примере" средний выигрыш $\frac{\omega_1 + \cdots + \omega_n}{n}$ является мартингалом, субмартингалом, супермартингалом.

Пятиминутка не состоялась. Эти вопросы ушли в теоретические задачи.

Торопитесь, акция РЕШИ ЗАДАЧУ — ПОЛУЧИ +50% уже началась!