ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA CAMPUS DI CESENA

Corso di Laurea triennale in Inge	gneria e Scienze Informatiche
-----------------------------------	-------------------------------

Image Denoising Technique with Neural Network

Relatore:
Prof. Lazzaro Damiana

Co/Contro Relatore

Dott. Ezio Greggio

Candidato:

Matteo Vanni

Matricola: 0000935584

Contents

1	\mathbf{Art}	icolanzio	5
	1.1	Panoramica sul problema	5
	1.2	Utilizzo di modelli di Deep Learning	5
	1.3	Dataset utilizzati	
2	Dec	esrizione delle reti	7
	2.1	Rumore	7
	2.2	Autoencoder	
	2.3	RIDNet	8
3	Ana	alisi ed ottimizzazione	13
	3.1	Prestazioni	13
	3.2	Prima run	13
		3.2.1 Autoencoder	13
		3.2.2 RIDNet	15
	3.3	Quantizzazione dei modelli	15
	3.4	Analisi dei modelli	15
		3.4.1 Performance su dataset sconosciuti	15
4	Bib	liografia	17

4 CONTENTS

Articolanzio 1

Panoramica sul problema 1.1

L'image denoising è il processo di rimozione di rumore da un'immagine.

Il rumore, che è causato da svariate fonti, quali foto fatte in condizioni di scarsa illuminazione o problemi che corrompono i file, causa perdita d'informazione sull'immagine.

Un aggiunta casuale di pixel che non appartengono all'immagine originale Cos è il rumore? e ce ne sono di varie tipologie:

Impulse Noise(IN) dove i pixel sono completamente diversi da quelli attorno. Esistono due categorie di IN: Salt and Pepper Noise(SPN) e Random Valued Impulse Noise(RVIN).

Additive White Gaussian Noise (AWGN) cambia ogni pixel dall'originale di una piccola quantità.

Utilizzo di modelli di Deep Learning 1.2

È essenziale rimuovere il rumore e ristabilire l'immagine originale dove riottenere l'immagine originale è importante per prestazioni robuste o ricostruire le informazioni mancanti è molto utile, come immagini astronomiche di oggetti molto lontani.

Le reti neurali convoluzionali lavorano bene con le immagini e ne utilizzeremo N, menzionate in alcuni paper di ricerca e compareremo i risultati di ogni modello.

1.3 Dataset utilizzati

11

Il primo dataset usato per addrestrare i modelli sarà Oxford-IIIT Pet da Tensorflow, in modo poi da testare i modelli con immagini che non conoscono da altri dataset(colonscopie)

```
def load_dataset(split='train', img_size=(256,256), batch_size=16):
      #Carica il dataset Oxford-IIIT Pet da tfds e applica il #preprocessam
      #Ritorna un dataset in batch.
      # as_supervised=False per mantenere dict
      dataset = tfds.load('oxford_iiit_pet', split=split, as_supervised=Fal
      # Preprocessing
      dataset = dataset.map(lambda sample: preprocess(sample, img_size))
9
      # Ottimizza il caricamento
      dataset = dataset.shuffle(1024).batch(batch_size).prefetch(tf.data.AU
```

```
return dataset
import numpy as np
def incmatrix(genl1,genl2):
   m = len(genl1)
   n = len(gen12)
   M = None #to become the incidence matrix
   VT = np.zeros((n*m,1), int) #dummy variable
   #compute the bitwise xor matrix
   M1 = bitxormatrix(genl1)
   M2 = np.triu(bitxormatrix(genl2),1)
   for i in range(m-1):
        for j in range(i+1, m):
            [r,c] = np.where(M2 == M1[i,j])
            for k in range(len(r)):
                VT[(i)*n + r[k]] = 1;
                VT[(i)*n + c[k]] = 1;
                VT[(j)*n + r[k]] = 1;
                VT[(j)*n + c[k]] = 1;
                if M is None:
                    M = np.copy(VT)
                else:
                    M = np.concatenate((M, VT), 1)
                VT = np.zeros((n*m,1), int)
   return M
```

Kvasir-seg: 1000(MILLEH) immagini di polipi, gli animali di arvard, le colonscopie

2 Decsrizione delle reti

2.1 Rumore

2.2 Autoencoder

Il primo approccio è stato quello di usare l'autencoder dell'articolo da cui sto copiando paro paro tutto.

Spiegazione del numero di layer usati e del tipo di mse loss fun, dam e learning rate di 1e-3

```
def build_autoencoder(input_shape):
13
      Costruisce un autoencoder convoluzionale per immagini a colori.
         input_shape: forma dell'immagine in input (es. (32,32,3))
17
      Ritorna:
18
         autoencoder: modello compilato
19
20
      input_img = Input(shape=input_shape)
22
      # Encoder
      x = Conv2D(64, (3,3), activation='relu', padding='same')(input_img)
24
      x = MaxPooling2D((2,2), padding='same')(x)
25
      x = Conv2D(64, (3,3), activation='relu', padding='same')(x)
26
      encoded = MaxPooling2D((2,2), padding='same')(x)
27
      # Decoder
      x = Conv2D(64, (3,3), activation = 'relu', padding = 'same')(encoded)
      x = UpSampling2D((2,2))(x)
31
      x = Conv2D(64, (3,3), activation='relu', padding='same')(x)
      x = UpSampling2D((2,2))(x)
33
      decoded = Conv2D(3, (3,3), activation='sigmoid', padding='same')(x)
34
      autoencoder = Model(input_img, decoded)
36
      autoencoder.compile(optimizer='adam', loss='binary_crossentropy', met
37
38
      return autoencoder
39
40
```

autoencoder = build_autoencoder(input_shape=(img_size[0], img_size[1], 3)

86

autoencoder.summary()

2.3**RIDNet**

```
stessa cosa dell'autencoder (vedere se aggiungere tutto il codice gigante del setup)
    # MeanShift: sottrae (o aggiunge) la media RGB
43
  @register_keras_serializable( MeanShift )
44
  class MeanShift(Layer):
      def __init__(self, rgb_mean, sign=-1, **kwargs):
46
           rgb_mean: tupla con la media dei canali R, G, B.
           sign: -1 per sottrarre la media, 1 per aggiungerla.
49
           super(MeanShift, self).__init__(**kwargs)
           self.rgb_mean = tf.constant(rgb_mean, dtype=tf.float32)
           self.sign = sign
      def call(self, x):
                  atteso in formato (batch, altezza, larghezza, 3)
           # Sfruttiamo Lambda per eseguire l'operazione per ogni elemento
           # Nota: non stiamo scalando per std in questo esempio
58
           return x + self.sign * self.rgb_mean
60
  # BasicBlock: Conv2D seguita da attivazione ReLU
61
  @register_keras_serializable( BasicBlock )
62
  class BasicBlock(Layer):
      def __init__(self, out_channels, kernel_size=3, stride=1, use_bias=Fa
64
           super(BasicBlock, self).__init__(**kwargs)
65
           self.conv = Conv2D(out_channels, kernel_size, strides=stride,
                               padding='same', use_bias=use_bias)
           self.relu = ReLU()
      def call(self, x):
70
           return self.relu(self.conv(x))
71
  # ResidualBlock: due convoluzioni con skip connection(come lavora cuda co
  @register_keras_serializable( ResidualBlock )
  class ResidualBlock(Layer):
      def __init__(self, out_channels, **kwargs):
76
           super(ResidualBlock, self).__init__(**kwargs)
           self.conv1 = Conv2D(out_channels, 3, strides=1, padding='same')
           self.relu = ReLU()
79
           self.conv2 = Conv2D(out_channels, 3, strides=1, padding='same')
81
      def call(self, x):
           residual = self.conv1(x)
83
           residual = self.relu(residual)
84
           residual = self.conv2(residual)
85
           out = Add()([x, residual])
```

2.3. RIDNET 9

```
return ReLU()(out)
87
88
   # EResidualBlock: versione estesa con convoluzioni a gruppi
89
   @register_keras_serializable( EResidualBlock )
90
   class EResidualBlock(Layer):
91
       def __init__(self, out_channels, groups=1, **kwargs):
92
           super(EResidualBlock, self).__init__(**kwargs)
           self.conv1 = Conv2D(out_channels, 3, strides=1, padding='same', g
           self.relu = ReLU()
95
           self.conv2 = Conv2D(out_channels, 3, strides=1, padding='same', g
96
           self.conv3 = Conv2D(out_channels, 1, strides=1, padding='valid')
97
98
       def call(self, x):
99
           residual = self.conv1(x)
100
           residual = self.relu(residual)
           residual = self.conv2(residual)
           residual = self.relu(residual)
103
           residual = self.conv3(residual)
104
           out = Add()([x, residual])
           return ReLU()(out)
106
    Merge_Run_dual: due rami convoluzionali con dilatazioni diverse, poi fu
   @register_keras_serializable( MergeRunDual )
109
   class MergeRunDual(Layer):
110
       def __init__(self, out_channels, **kwargs):
           super(MergeRunDual, self).__init__(**kwargs)
           # Primo ramo
           self.conv1a = Conv2D(out_channels, 3, strides=1, padding='same')
           self.relu1a = ReLU()
           self.conv1b = Conv2D(out_channels, 3, strides=1, padding='same',
           self.relu1b = ReLU()
117
           # Secondo ramo
118
           self.conv2a = Conv2D(out_channels, 3, strides=1, padding='same',
119
           self.relu2a = ReLU()
           self.conv2b = Conv2D(out_channels, 3, strides=1, padding='same',
           self.relu2b = ReLU()
           # Gogeta
           self.conv3 = Conv2D(out_channels, 3, strides=1, padding='same')
           self.relu3 = ReLU()
126
       def call(self, x):
           branch1 = self.relu1a(self.conv1a(x))
128
           branch1 = self.relu1b(self.conv1b(branch1))
130
           branch2 = self.relu2a(self.conv2a(x))
           branch2 = self.relu2b(self.conv2b(branch2))
           merged = Concatenate()([branch1, branch2])
           merged = self.relu3(self.conv3(merged))
           return Add()([merged, x])
```

```
# CALayer: Channel Attention Layer
138
   @register_keras_serializable( CALayer )
   class CALayer(Layer):
140
       def __init__(self, channel, reduction=16, **kwargs):
141
           super(CALayer, self).__init__(**kwargs)
142
           self.channel = channel
           self.reduction = reduction
           self.conv1 = Conv2D(channel // reduction, 1, strides=1, padding='
145
           self.relu = ReLU()
146
           self.conv2 = Conv2D(channel, 1, strides=1, padding='same', activa
147
148
       def call(self, x):
149
           # Calcolo della media globale per canale
           y = tf.reduce_mean(x, axis=[1, 2], keepdims=True)
           y = self.relu(self.conv1(y))
           y = self.conv2(y)
           return Multiply()([x, y])
154
   # Block: combinazione di MergeRunDual, ResidualBlock, EResidualBlock e CA
156
   @register_keras_serializable( Block )
   class Block(Layer):
       def __init__(self, out_channels, **kwargs):
           super(Block, self).__init__(**kwargs)
           self.merge_run_dual = MergeRunDual(out_channels)
161
           self.residual_block = ResidualBlock(out_channels)
           self.e_residual_block = EResidualBlock(out_channels)
           self.ca = CALayer(out_channels)
164
       def call(self, x):
           r1 = self.merge_run_dual(x)
167
           r2 = self.residual_block(r1)
168
           r3 = self.e_residual_block(r2)
169
           out = self.ca(r3)
           return out
171
172
   # RIDNET: il modello final
   @register_keras_serializable( RIDNET )
   def RIDNET(n_feats=64, rgb_range=1.0):
       n_feats: numero di feature channels usate all'interno del modello. <br
                                                                     normalizzat
       rgb_range: scala dei valori RGB (ad es. 1.0 se l'input
178
       rgb_mean = (0.4488, 0.4371, 0.4040)
180
181
       input_layer = Input(shape=(None, None, 3))
182
183
       # Sottosottrai la media (MeanShift con sign=-1)
       sub_mean = MeanShift(rgb_mean, sign=-1)
185
       x = sub_mean(input_layer)
186
```

2.3. *RIDNET* 11

```
187
       # Testa: BasicBlock (conv + ReLU)
188
       head = Conv2D(n_feats, 3, strides=1, padding='same', activation='relu
189
190
       # Serie di blocchi
191
       b1 = Block(n_feats)(head)
       b2 = Block(n_feats)(b1)
193
       b3 = Block(n_feats)(b2)
194
       b4 = Block(n_feats)(b3)
195
196
       # Coda: convoluzione finale per ottenere 3 canali
197
       tail = Conv2D(3, 3, strides=1, padding='same')(b4)
198
199
       # Aggiungi la media (MeanShift con sign=+1)
200
       add_mean = MeanShift(rgb_mean, sign=1)
201
       res = add_mean(tail)
202
203
       # Connessione residua a livello di immagine: somma con l'input origin
204
       output = Add()([res, input_layer])
205
       model = Model(inputs=input_layer, outputs=output)
       return model
208
209
   model = RIDNET(n_feats=32, rgb_range=1.0)
210
   model.compile(optimizer='adam', loss='mse', metrics=['accuracy'] )
   model.summary()
```

3 Analisi ed ottimizzazione

3.1 Prestazioni

PSNR è il metodo più comune per misurare la qualità delle immagini.

Il PSNR è definito come il rapporto tra il massimo valore possibile di un segnale e il valore del rumore che disturba la qualità della sua rappresentazione.

Normalmente misurato in una scala logaritmica in decibel(dB).

Data l'immagine originale(g) e l'immagine rumorosa(f), il PSNR è definito come:

$$PSNR = 20log_{10}(\frac{MAX_f}{\sqrt{MSE}})$$

dove MAX_f è il valore massimo del pixel dell'immagine e si calcola come

$$MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} ||f(i,j) - g(i,j)||^{2}$$

mentre $MSE(Mean\ Square\ Error)$ è l'errore quadratico medio tra l'immagine originale e quella rumorosa.

3.2 Prima run

3.2.1 Autoencoder

Model: "functional"

Layer (type)	Output Shape	Param #
input_layer	(None, 112, 112, 3)	0
conv2d	(None, 112, 112, 64)	1,792
max_pooling2d	(None, 56, 56, 64)	0
$conv2d_{-}1$	(None, 56, 56, 64)	36,928
max_pooling2d_1	(None, 28, 28, 64)	0
conv2d_2	(None, 28, 28, 64)	36,928
up_sampling2d	(None, 56, 56, 64)	0
conv2d_3	(None, 56, 56, 64)	36,928
up_sampling2d_1	(None, 112, 112, 64)	0
conv2d_4	(None, 112, 112, 3)	1,731

Total params: 114,307 (446.51 KB) Trainable params: 114,307 (446.51 KB)

Non-trainable params: 0 (0.00 B)

Figure 3.1: First training of the autoencoder

Figure 3.2: First psnr of the autoencoder

3.2.2 RIDNet

Model: "functional_5"

Layer (type)	Output Shape	Param #	Connected to
input_layer_5	(None, None, None, 3)	0	-
mean_shift_10	(None, None, None, 3)	0	$input_layer_5[0][0]$
conv2d_250 (Conv2D)	(None, None, None, 32)	896	$mean_shift_10[0][0]$
block_20 (Block)	(None, None, None, 32)	93,666	$conv2d_250[0][0]$
block_21 (Block)	(None, None, None, 32)	93,666	block_20[0][0]
block_22 (Block)	(None, None, None, 32)	93,666	block_21[0][0]
block_23 (Block)	(None, None, None, 32)	93,666	block_22[0][0]
conv2d_299 (Conv2D)	(None, None, None, 3)	867	block_23[0][0]
mean_shift_11	(None, None, None, 3)	0	conv2d_299[0][0]
add_413 (Add)	(None, None, None, 3)	0	$mean_shift_11[0][0]$

Total params: 376,427 (1.44 MB)
Trainable params: 376,427 (1.44 MB)
Non-trainable params: 0 (0.00 B)

3.3 Quantizzazione dei modelli

3.4 Analisi dei modelli

3.4.1 Performance su dataset sconosciuti

Figure 3.3: First training of the autoencoder

Figure 3.4: First psnr of the autoencoder

4 Bibliografia

• ¡nome¿