Automatic Web Spreadsheet Data Extraction

Shirley Zhe Chen Michael Cafarella

Spreadsheets Are Everywhere

More than 400 million Excel users worldwide.

-Microsoft

50 to 80% of enterprises use standalone spreadsheets for critical applications.

-Forester

Spreadsheets Are Everywhere

Our Web crawl obtained 410,554 Microsoft Excel
 Files from 51,252 distinct Internet domains.

Domains	# of spreadsheets	% of total
www.bts.gov	12435	3.03%
www.census.gov	7862	1.91%
www.stat.co.jp	6633	1.62%
www.bankofengland.co.uk	5520	1.34%
www.ers.usda.gov	4328	1.05%
www.agr.gc.ca	4186	1.02%
www.wto.org	3863	0.94%
www.doh.wa.gov	3579	0.87%
www.nsf.gov	2770	0.67%
nces.ed.gov	2177	0.53%

OUR GOAL: Integration

- Spreadsheets often contain data that are roughly relational, but the schema is entirely implicit.
- **Example**: An analyst may want to combine a spreadsheet about **company sales** with a government produced spreadsheet about **economic performance** to predict future sales.

Relational Data Enables Integration

How to Extract Relational Data from Spreadsheets to Enable Integration?

Related Work

- Transform spreadsheets into relational format but require user specified rules, e.g.
 - Hung et al. (transformation languages)
- Automatic extraction on a simple and specific type of spreadsheets, e.g.
 - Cunha et al. (focus on the type of spreadsheets with relational tables)
 - Ahmad et al. (detect spreadsheet errors)

Challenges: Implicit Structures

5			
6	Sex, age, and race	1990 \1	2000
7			
19	Total smokers \3	25.5	23.2
20	Male, total	28.4	25.6
21	18 to 24 years	26.6	28.1
22	25 to 34 years	31.6	28.9
23	35 to 44 years	34.5	30.2
24	45 to 64 years	29.3	26.4
25	65 years and over	14.6	10.2
26	White, total	28.0	25.7
27	18 to 24 years	27.4	30.4
28	25 to 34 years	31.6	29.7
29	35 to 44 years	33.5	30.6
30	45 to 64 years	28.7	25.8
31	65 years and over	13.7	9.8
32	Black, total	32.5	26.2
33	18 to 24 years	21.3	20.9
34	25 to 34 years	33.8	23.2
35	35 to 44 years	42.0	30.7
36	45 to 64 years	36.7	32.2
37	65 years and over	21.5	14.2

Challenges: Implicit Structures

5 6 7	Sex, age, and race	1990 \1	2000
19	Total smokers \3	25.5	23.2
20	Male, total	28.4	25.6
21	18 to 24 years	26.6	28.1
22	25 to 34 years	31.6	28.9
23	35 to 44 years	34.5	30.2
24	45 to 64 years	29.3	26.4
25	65 years and over	14.6	10.2
26	White, total	28.0	25.7
27	18 t 4 24 years	27.4	30.4
28	25 to 34 years	31.6	29.7
29	35 to 44 years	33.5	30.6
30	45 to 64 years ◀	28.7	25.8
31	65 years and over	13.7	9.8
32	Black, total	32.5	26.2
33	18 to 24 years	21.3	20.9
34	25 to 34 years	33.8	23.2
35	35 to 44 years	42.0	30.7
36	45 to 64 years	36.7	32.2
37	65 years and over	21.5	14.2

Challenges: Implicit Structures

5			
6	Sex, age, and race	1990 \1	2000
7			
19	Total smokers \3	25.5	23.2
20	Male, total	28.4	25.6
21	18 to 24 years	26.6	28.1
22	25 to 34 years	31.6	28.9
23	35 to 44 years	34.5	30.2
24	45 to 64 years	29.3	26.4
25	65 years and over	14.6	10.2
26	White, total	28.0	25.7
27	18 to 24 years	27.4	30.4
28	25 to 34 years	31.6	29.7
29	35 to 44 years	33 5	30.6
30	45 to 64 years	28.7	25.8
31	65 years and over	13.7	9.8
32	Black, total	32.5	26.2
33	18 to 24 years	21.3	20.9
34	25 to 34 years	33.8	23.2
35	35 to 44 years	42.0	30.7
36	45 to 64 years	36.7	32.2
37	65 years and over	21.5	14.2

Relational Tuples:

1990	Male	White	45 to 64 years	28.7
1990	Male	White	65 years and over	13.7
2000	Male	White	45 to 64 years	25.8
2000	Male	Black	65 years and over	14.2

Outline

1. Introduction

2. System Framework

3. Experiments

4. Conclusion

Spreadsheet Terminologies

 A data frame is a threepart spreadsheet structure, consisting of attribute and value regions.

Spreadsheet Terminologies

• A hierarchical spreadsheet is a data frame spreadsheet with either a hierarchical left or top attribute region.

5				
6	Sex, age, and race	19	90 \1	2000
7				
19	Total smokers \3		25.5	23.2
20	Male, total		28.4	25.6
21	18 to 24 years		26.6	28.1
22	25 to 34 years		31.6	28.9
23	35 to 44 years		34.5	30.2
24	45 to 64 years		29.3	26.4
25	65 years and over		14.6	10.2
26	White, total		28.0	25.7
27	18 to 24 years		27.4	30.4
28	25 to 34 years		31.6	29.7
29	35 to 44 years		33.5	30.6
30	45 to 64 years		28.7	25.8
31	65 years and over		13.7	9.8
32	Black, total		32.5	26.2
33	18 to 24 years		21.3	20.9
34	25 to 34 years		33.8	23.2
35	35 to 44 years		42.0	30.7
36	45 to 64 years		36.7	32.2
37	65 years and over		21.5	14.2

Web Spreadsheets Observations

Strongly skewed distribution

Web Spreadsheets Observations

- Strongly skewed distribution.
- 32.5% of the Web spreadsheets are hierarchical.
- More than 60% spreadsheets in the top 10 Internet domains are hierarchical.

Our system requirements

- The system has to process data frame spreadsheets, especially the hierarchical ones.
- The system has to be automatic.

Problem Formulation

We present the first automatic, domain-independent spreadsheet extractor, the first step in building a spreadsheet integration tool.

- Input: A data frame spreadsheet
- Output: The relational tuples for the spreadsheet

Three-Stage Pipeline

- 1. Frame Finder
- 2. Hierarchy Extractor
- 3. Tuple Builder

Frame Finder

Three-Stage Pipeline

- 1. Frame Finder
- 2. Hierarchy Extractor
- 3. Tuple Builder

Hierarchy Extractor

Three-Stage Pipeline

- 1. Frame Finder
- 2. Hierarchy Extractor
- 3. Tuple Builder

Tuple Builder

- The frame finder detects the three semantic regions in a spreadsheet.
- Simplify the task as a row labeler task: For each row in a spreadsheet, assign a label in {title, header, data, footnote}.

- The row labeler is based on a CRF to encode two types of observations:
 - The properties of each row indicate its semantic label.
 - The labels assigned to adjacent rows are highly related.

_				
title	1	Table 199. Current Cigare	tte Smoking	
	2			
footnote	3	See notes.		
	4			
	5			
header	6	Sex, age, and race	1990 \1	2000
	7			
data	19	Total smokers \3	25.5	23.2
data	20	Male, total	28.4	25.6
data	21	18 to 24 years	26.6	28.1
data	22	25 to 34 years	31.6	28.9
data	23	35 to 44 years	34.5	30.2
data	24	45 to 64 years	29.3	26.4
data	25	65 years and over	14.6	10.2
data	26	White, total	28.0	25.7
data	27	18 to 24 years	27.4	30.4
data	28	25 to 34 years	31.6	29.7
data	29	35 to 44 years	33.5	30.6
data	30	45 to 64 years	28.7	25.8
data	31	65 years and over	13.7	9.8

title	1	Table 199. Current Cigare	ette S	moking	
	2				
footnote	3	See notes.			
	4				
	5				
header	6	Sex, Top Attribute	e Re	aion	2000
	7	TOP Attribut		gion	
data	19	Total smokers \3		25.5	23.2
data	20	Male, total		28.4	25.6
data	21	18 to 24 years		26.6	28.1
data	22	25 L oft		31.6	28.9
data	23	Left Left		Val	IIE
data	24	45 Attribute			_
data	25	65 — -		Reg	lion
data	26	Region		28.0	25.7
data	27	18 to 24 years		27.4	30.4
data	28	25 to 34 years		31.6	29.7
data	29	35 to 44 years		33.5	30.6
data	30	45 to 64 years		28.7	25.8
data	31	65 years and over		13.7	9.8

- The *hierarchy extractor* recovers the attribute hierarchy for the left or top attribute region.
- It identifies all the annotation attribute pairs in the attribute region, thus recovering the attribute hierarchy.

- Algorithm 1: Classification
 - We enumerate all the attribute pairs in an attribute region as the annotation attribute pair candidates, and each of the candidate takes a label from {true, false}.
 - E.g. (White, Male) = true and (White, Black) = false.

```
19
       Total smokers \3
20
   Male, total
21
     18 to 24 years
22
     25 to
23
     35
        to
24
     45 to
25
     65 years and over
26
     White, total
27
       18 to 24 years
28
       25 to 34 years
29
       35 to 44 years
30
       45 to 64 years
31
       65 years and over
32
     Black, total
33
       18 to 24 years
34
       25 to 34 years
35
       35 to 44 years
36
       45 to 64 years
37
       65 years and over
```

- Algorithm 1: Classification
 - We enumerate all the attribute pairs in an attribute region as the annotation attribute pair candidates, and each of the candidate takes a label from {true, false}.
 - E.g. (White, Male) = true and (White, Black) = false.

- Algorithm 2: Enforced-tree
 Classification
 - Obtain the probability associated with each annotation pair during the classification.

```
19
       Total smokers \3
20
   Male, total
            24 years
            34 years
           44 years
23
     35
        to
24
     45
        to
25
26
     White, total
27
       18 to 24 years
28
       25 to 34 years
29
       35 to 44 years
30
       45 to 64 years
31
       65 years and over
32
     Black, total
33
       18 to 24 years
34
       25 to 34 years
35
       35 to 44 years
36
       45 to 64 years
37
       65 years and over
```

- Algorithm 2: Enforced-tree
 Classification
 - Obtain the probability associated with each annotation pair during the classification.
 - For a child, find the parent with the highest probability.

```
19
       Total smokers \3
20
   Male, total
            24 years
            34 years
23
            44 years
     35
        to
24
     45
        to
25
26
     White, total
27
       18 to 24 years
28
       25 to 34 years
29
       35 to 44 years
30
       45 to 64 years
31
       65 years and over
32
     Black, total
33
       18 to 24 years
34
       25 to 34 years
35
       35 to 44 years
36
       45 to 64 years
37
        65 years and over
```

- Algorithm 2: Enforced-tree
 Classification
 - Obtain the probability associated with each annotation pair during the classification.
 - For a child, find the parent with the highest probability.

```
19
       Total smokers \3
   Male, total
           24 years
           34 years
23
        to
           44 years
24
     45 to 64 years
25
     65 years and over
26
     White, total
27
       18 to 24 years
28
       25 to 34 years
29
       35 to 44 years
30
       45 to 64 years
31
       65 years and over
32
     Black, total
33
       18 to 24 years
34
       25 to 34 years
35
       35 to 44 years
36
       45 to 64 years
37
       65 years and over
```

Step 3: Tuple Builder

• The tuple builder generates relational tuples for each value in the value region.

1990 Total smokers Male, total White, total 45 to 64 years 28.7

Outline

1. Introduction

2. System Framework

3. Experiments

4. Conclusion

Experiment Setup

- Our WEB dataset has 410,554 Excel files from 51,252 distinct Internet domains.
 - We randomly selected 100 random *hierarchical* spreadsheets (with hierarchical top or left attributes).
 - Average depth of the top hierarchy is 2.14 with the maximum 5.
 - Average depth of the *left* hierarchy is 2.61 with the maximum 9.

Experiment Setup

- For all the experiments, we split the 100 spreadsheets into 50 training and 50 testing for 10 times. conducted equal-sized training and testing for 10 times and obtained the average value for the following metrics:
 - o Precision and Recall
 - Error per sheet = (false positive + false negative)/N
 where N is the # of sheets.

Frame Finder

- The row labeler assigns a label in {title, header, data, footnote} for each non-empty row in a spreadsheet.
- Comparison methods:
 - Base-CRF: textual features
 - Full-CRF: textual features and layout features

Frame Finder

Metric	Methods	title	header	data	footnote
F 4	Base-CRF	0.582	0.615	0.982	0.647
F1	Full-CRF	0.774	0.774	0.994	0.834
Error per	Base-CRF	3.534	2.348	6.526	4.208
sheet	Full-CRF	0.872	1.316	1.528	1.208

Frame Finder

Metric	Methods	title	header	data	footnote
F4	Base-CRF	0.582	0.615	0.982	0.647
F1	Full-CRF	0.774	0.774	0.994	0.834
Error per	Base-CRF	3.534	2.348	6.526	4.208
sheet	Full-CRF	0.872	1.316	1.528	1.208
				•	

Hierarchy Extractor

- The hierarchy extractor detects all the annotation attribute pairs in an attribute region.
- Comparison methods:
 - Human
 - SVM: classification method
 - EN-SVM: tree-enforced classification method

Hierarchy Extractor

Metric	Methods	Тор	Left
- 4	SVM	0.919	0.769
F1	EN-SVM	0.920	0.811

Metric	Methods	Тор	Left
	Human	22.469	58.598
Error per sheet	SVM	1.834	19.554
	EN-SVM	1.829	16.154

Outline

1. Introduction

2. System Framework

3. Experiments

4. Conclusion

Conclusion

- We present a novel system to extract spreadsheet relational data automatically, which makes it possible for downstream integration applications.
- The system parses spreadsheets to detect different semantic regions, recognizes the implicit hierarchical structures of the attributes and then constructs relational tuples.

Questions?

