Rudin: Translated

Nate Stemen & Kevin Yeh

February 17, 2018

Contents

Co	Contents					
Pr	eface	9	1			
1	Real and Complex Number System	3				
	1.1	Introduction	3			
	1.2	Ordered Sets	3			
	1.3	Fields	4			
	1.4	The Real Field	4			
	1.5	The Extended Real Number System	4			
	1.6	The Complex Field	4			
	1.7	Euclidean Spaces	4			
	1.8	Appendix	5			
2	Basi	ic Topology	7			
	2.1	Finite, Countable, and Uncountable Sets	7			
	2.2	Metric Spaces	7			
	2.3	Compact Sets	7			
	2.4	Perfect Sets	7			
	2.5	Connected Sets	7			

ii CONTENTS

3	Nur	nerical Sequences and Series	9
	3.1	Convergent Sequences	9
	3.2	Subsequences	9
	3.3	Cauchy Sequences	9
	3.4	Upper and Lower Limits	9
	3.5		9
	3.6	Series	9
	3.7	Series of Nonnegative Terms	9
	3.8	The Number e	0
	3.9	The Root and Ratio Tests	0
	3.10	Power Series	0
		Summations by Parts	0
		Absolute Convergence	0
		Addition and Multiplication of Series	0
		Rearrangements	0
4	Con	tinuity 1	1
•	4.1	Limits of Functions	
	4.2	Continuous Functions	
	4.3	Continuity and Compactness	
	$\frac{4.0}{4.4}$	Continuity and Connectedness	
	4.5	Discontinuities	
	4.6	Monotonic Functions	
	4.7	Infinite Limits and Limits at Infinity	
J	D.0		_
5		erentiation 1	
	5.1	The Derivative of a Real Function	
	5.2	Mean Value Theorem	
	5.3	The Continuity of Derivatives	
	5.4	L'Hospital's Rule	
	5.5	Derivatives of Higher Order	
	5.6	Taylor's Theorem	
	5.7	Differentiation of Vector-valued Functions	3
6	The	Riemann-Stieltjes Integral	5
	6.1	Definition and Existence of the Integral	5
	6.2	Properties of the Integral	5
	6.3	Integration and Differentiation	5
	6.4	Integration of Vector-valued Functions	5
	6.5	Rectifiable Curves	5
7	Sea	uences and Series of Functions 1'	7
	7.1	Discussion of Main Problem	
	7.2	Uniform Convergence	
	7.3	Uniform Convergence and Continuity 1'	
	7.4	Uniform Convergence and Integration	

CONTENTS	iii
ONTENTS	111

	7.5	Uniform Convergence and Differentiation	17
	7.6		17
	7.7	The Stone-Weierstrass Theorem	17
0	G	- C	10
8			19
	8.1		19
	8.2	1	19
	8.3	0	19
	8.4		19
	8.5		19
	8.6	The Gamma Function	19
9	Fun	ctions of Several Variables	21
	9.1	Linear Transformations	21
	9.2	Differentiation	21
	9.3		21
	9.4		21
	9.5		21
	9.6		21
	9.7		21
	9.8		22
	9.9	Differentiation of Integrals	22
10	T 4	ti thin tile	00
10			23
		0	23
		11 0	23
		· · · · · · · · · · · · · · · · · · ·	23
			23
			23
		1	23
			23
			24
	10.9	Vector Analysis	24
11	The	Lebesgue Theory	25
	11.1	Set Functions	25
			25
		· · · · · · · · · · · · · · · · · · ·	25
			25
			25
			$\frac{1}{25}$
			25
		-	26
			26
Вi	bliog	raphy	27

Todo list

who is this book intended for?
what are the real prereqs? just some basic set theory?
change bullets to match with rudin

Preface

This project is founded on the glorious book by Walter Rudin; Principle of Mathematical Analysis[1].

This book is intended for... who is this book intended for?

The prerequisites for this book are what are the real prereqs? just some basic set theory?

The Real and Complex Number System

1.1 Introduction

filler content...

1.2 Ordered Sets

Often when we talk about collections of things (people, cars, dogs, etc.) we talk about how they compare to each other (height, top speed, cuteness respectively). *But*, we can only do this because we have a way in which these objects relate to each other. My dog is *of course* cuter than yours, so I might say my dog is better than yours. Symbolically, I might write this as

your
$$dog < my dog$$

where "<" can be read as "is less cute than" in this particular scenario, but in others, it might mean "has a lower top speed" or really anything else you can think of. We could even take all dogs and compare them in lots of different ways, such as by weight, or tail length, or number of hairs, or...

There are a lot of ways, but the idea is that with a collection of objects we often like to talk about how they relate to each other and how we can compare objects of this underlying collection or set. The following definition puts this in terms we will use through the rest of the book.

Definition 1.2.1. If we let S be a set, then an *order* on S is a relation, often denoted <, with two extra properties.

• If x and y are in S, then only one of the following is true.

$$x < y,$$
 $x = y,$ $y < x$

• If x, y and z are in S and x < y and y < z, then x < z.

change bullets to mate with rudin

Note that we did not define what the symbol > means, but as is often done we will use it because mathematics is nothing without some abuses of notation. If we write x > y, take that to mean y < x, but instead you may read it as x is "greater than" y or x is "larger than" y. Along with this notation, we will use $x \le y$ to mean that x is either less than y or it is equal to y, but we don't know which. Similarly with \ge .

While in english (and many other languages) we rely on context to understand what set and order people are using when they talk, in mathematics we have to be very pedantic. Hence the following definition.

Definition 1.2.2. An *ordered set* is a set, together with an order defined on said set.

Going back to the dogs, people often say "Nate, you're dog is the cutest" which would imply, if taken literally, that there is no dog that is cuter than mine. People love these kind of extremes. We have a whole book dedicated to people who are the most at something (The Guiness World Records) and it comes out every year. We also have the olympics to find more of the most people. The fastest person on land, the fastest person in water, the fastest person on land/water/wheel (triathlon). We love this kind of thing, and of course some people are also intersested in the slowest.::

1.3 Fields

filler content...

1.4 The Real Field

filler content...

1.5 The Extended Real Number System

filler content...

1.6 The Complex Field

filler content...

1.7 Euclidean Spaces

1.8. APPENDIX 5

1.8 Appendix

 ${\it filler\ content...}$

Basic Topology

2.1 Finite, Countable, and Uncountable Sets

filler content...

2.2 Metric Spaces

filler content...

2.3 Compact Sets

filler content...

2.4 Perfect Sets

filler content...

2.5 Connected Sets

3.1

Numerical Sequences and Series

filler o	content
3.2	Subsequences
filler o	content
3.3	Cauchy Sequences
filler o	content
3.4	Upper and Lower Limits
filler o	content
3.5	Some Special Sequences
filler o	content
3.6	Series
filler o	content
3.7	Series of Nonnegative Term
filler o	content

Convergent Sequences

3.8 The Number e

filler content...

3.9 The Root and Ratio Tests

filler content...

3.10 Power Series

filler content...

3.11 Summations by Parts

filler content...

3.12 Absolute Convergence

 $filler\ content...$

3.13 Addition and Multiplication of Series

filler content...

3.14 Rearrangements

Continuity

4.1 Limits of Functions

 ${\it filler\ content...}$

4.2 Continuous Functions

filler content...

4.3 Continuity and Compactness

filler content...

4.4 Continuity and Connectedness

filler content...

4.5 Discontinuities

filler content...

4.6 Monotonic Functions

filler content...

4.7 Infinite Limits and Limits at Infinity

Differentiation

5.1	The	Derivativ	e of a	Real	Function

filler content...

5.2 Mean Value Theorem

 ${\it filler\ content...}$

5.3 The Continuity of Derivatives

filler content...

5.4 L'Hospital's Rule

filler content...

5.5 Derivatives of Higher Order

filler content...

5.6 Taylor's Theorem

filler content...

5.7 Differentiation of Vector-valued Functions

The Riemann-Stieltjes Integral

6.1	Definition	and	Existence	of	\mathbf{the}	Integral	ĺ

filler content...

6.2 Properties of the Integral

filler content...

6.3 Integration and Differentiation

filler content...

6.4 Integration of Vector-valued Functions

 ${\it filler\ content...}$

6.5 Rectifiable Curves

Sequences and Series of Functions

7.1 Discussion of Main Problem

filler content...

7.2 Uniform Convergence

filler content...

7.3 Uniform Convergence and Continuity

filler content...

7.4 Uniform Convergence and Integration

filler content...

7.5 Uniform Convergence and Differentiation

filler content...

7.6 Equicontinuous Families of Functions

filler content...

7.7 The Stone-Weierstrass Theorem

8.1 Power Series

Some Special Functions

filler content
8.2 The Exponentiation and Logarithmic Functions
filler content
8.3 The Trigonometric Functions
filler content
8.4 The Algebraic Completeness of the Complex Field
filler content
8.5 Fourier Series
filler content
8.6 The Gamma Function
filler content

 $filler\ content...$

Functions of Several Variables

filler o	content
9.2	Differentiation
filler o	content
9.3	The Contraction Principle
filler o	content
9.4	The Inverse Function Theorem
filler o	content
9.5	The Implicit Function Theorem
filler o	content
9.6	The Rank Theorem
filler o	content
9.7	Determinants

9.1 Linear Transformations

9.8 Derivatives of Higher Order

 $filler\ content...$

9.9 Differentiation of Integrals

10.1

10.2

filler content...

filler content...

 $filler\ content...$

Integration

Primitive Mappings

Integration of Differential Forms

10.3	Partitions of Unity
filler co	ntent
10.4	Change of Variables
filler co	ntent
10.5	Differential Forms
filler co	ntent
10.6	Simplexes and Chains
filler co	ntent
10.7	Stokes' Theorem

10.8 Closed Forms and Exact Forms

 $filler\ content...$

10.9 Vector Analysis

The Lebesgue Theory

11.1 Set Functions

filler content...

11.2 Constructions of the Lebesgue Measure

filler content...

11.3 Measure Spaces

 ${\it filler\ content...}$

11.4 Measurable Functions

filler content...

11.5 Simple Functions

 ${\it filler\ content...}$

11.6 Integration

filler content...

11.7 Comparison with the Riemann Integral

11.8 Integration of Complex Functions

 $filler\ content...$

11.9 Functions of Class \mathcal{L}^2

Bibliography

[1] Walter Rudin. $Principles\ of\ Mathematical\ Analysis.$ 3rd ed. McGraw Hill, 1976.