Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе $N\!\!\!^{\circ}2$

по дисциплине «Математическая статистика»

Выполнил студент

группы 3630102/80401

Веденичев Дмитрий Александрович

Проверил

Доцент, к.ф.-м.н.

Баженов Александр Николаевич

Санкт-Петербург 2021

Содержание

Cı	писок таблиц	٠
1	Постановка задачи	4
2	Теория	4
	2.1 Распределения	4
	2.2 Вариационный ряд	4
	2.3 Выборочные числовые характеристики	٦
	2.3.1 Характеристики положения	
	2.3.2 Характеристики рассеяния	ţ
3	Программная реализация	ţ
4	Результаты	(
	4.1 Характеристики положения и рассеяния	(
5	Обсуждение	ę
6	Придожение	(

Список таблиц

1	Распределение Лапласа (5)
2	Равномерное распределение (7)
3	Нормальное распределение (3)
4	Распределение Коши (4)
5	Распределение Пуассона (6)

1 Постановка задачи

Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: \overline{x} , medx, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} \tag{3}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{4}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{5}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при}|x| \le \sqrt{3} \\ 0 & \text{при}|x| > \sqrt{3} \end{cases}$$
 (7)

2.2 Вариационный ряд

Вариационным рядом называется последовательность элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются. Запись вариационного ряда: $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$. Элементы вариационного ряда $x_{(i)} (i = 1, 2, \ldots, n)$ называются порядковыми статистиками.

2.3 Выборочные числовые характеристики

С помощью выборки образуются её числовые характеристики. Это числовые характеристики дискретной случайной величины X^* , принимающей выборочные значения $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$.

2.3.1 Характеристики положения

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$medx = \begin{cases} x_{(l+1)} & n = 2l+1\\ \frac{x_{(l)} + x_{(l+1)}}{2} & n = 2l \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

• Полусумма квартилей Выборочная квартиль z_p порядка p определяется формулой

$$z_p = \begin{cases} x_{([np]+1)} & np-\text{дробноe} \\ x_{(np)} & np-\text{целоe} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{12}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, r \approx \frac{n}{4}$$
 (13)

2.3.2 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (14)

3 Программная реализация

Лабораторная работа выполнена на языке Python вресии 3.7 в среде разработки PyCharm. Использовались дополнительные библиотеки:

1. scipy

- 2. numpy
- 3. math

В приложении находится ссылка на GitHub репозиторий с исходныи кодом.

4 Результаты

4.1 Характеристики положения и рассеяния

Как было проведено округление:

В оценке $x=\hat{E}$ вариации подлежит разные цифры после точки, в зависимости от распределения. Например в случае распределения Коши(4) вариации подлежат все цифры, так что ни одна не валидна.

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Laplace E(z) 10	-0.0009839	-0.0121517	-0.0197247	-0.0076936	-0.0039645
Laplace $D(z)$ 10	0.0978195	0.0683159	0.5134668	0.4949383	0.1625452
$E(z) \pm \sqrt{D(z)}$	[-0.313745;	[-0.2735248 ;	[-0.7362907;	[-0.7112121;	[-0.4071334;
	0.3117772]	0.2492214]	0.6968413]	0.6958249]	0.3992044]
$\hat{E}(\mathrm{z})$	0.0	0.0	0.0	0.0	0.0
Laplace E(z) 100	0.0034648	0.0033212	0.0245185	0.0027098	0.0056071
Laplace $D(z)$ 100	0.0104284	0.0062275	0.5568239	0.4740201	0.0208539
$E(z) \pm \sqrt{D(z)}$	[-0.0986547 ;	[-0.0755933 ;	[-0.7216878 ;	[-0.6857814 ;	[-0.1388017;
	0.1055843]	0.0822357]	0.7707248]	0.691201]	0.1500159]
$\hat{E}(\mathrm{z})$	0.0	0.0	0.0	0.0	0.0
Laplace E(z) 1000	-0.0010085	-0.0015766	-0.0068676	-0.0020746	0.0001261
Laplace $D(z)$ 1000	0.0011195	0.0005789	0.4895393	0.5319597	0.0020667
$E(z) \pm \sqrt{D(z)}$	[-0.0344674 ;	[-0.0256369;	[-0.7065385 ;	[-0.7314303 ;	[-0.0453349;
	0.0324504]	0.0224837]	0.6928033]	0.7272811]	0.0455871]
$\hat{E}(z)$	0.0	0.0	0.0	0.0	0.0

Таблица 1: Распределение Лапласа (5)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Uniform E(z) 10	0.000659	-0.0037344	0.0087508	0.0014502	-0.0009534
Uniform $D(z)$ 10	0.1036965	0.2388555	0.4878255	0.4958455	0.1611513
$E(z) \pm \sqrt{D(z)}$	[-0.3213604 ;	[-0.4924629 ;	[-0.6896943 ;	[-0.7027128;	[-0.4023899;
	0.3226784]	0.4849941]	0.7071959]	0.7056132]	0.4004831]
$\hat{E}(\mathrm{z})$	0.0	0.0	0.0	0.0	0.0
Uniform E(z) 100	0.003774	0.0071305	0.0032768	0.0214441	-0.0007186
Uniform $D(z)$ 100	0.009722	0.0292367	0.4905364	0.5358395	0.0204128
$E(z) \pm \sqrt{D(z)}$	[-0.0948262;	[-0.1638569;	[-0.6971062;	[-0.7105665 ;	[-0.143592;
	0.1023742]	0.1781179]	0.7036598]	0.7534547]	0.1421548]
$\hat{E}(\mathrm{z})$	0.0	0.0	0.0	0.0	0.0
Uniform E(z) 1000	0.0004006	0.0011303	0.0075157	0.0083656	-0.0002115
Uniform $D(z)$ 1000	0.0009215	0.0026702	0.5022606	0.4949788	0.0018109
$E(z) \pm \sqrt{D(z)}$	[-0.0299556 ;	[-0.0505437;	[-0.7011878 ;	[-0.6951817 ;	[-0.0427662;
	0.0307568]	0.0528043]	0.7162192]	0.7119129]	0.0423432]
$\hat{E}(\mathrm{z})$	0.0	0.0	0.0	0.0	0.0

Таблица 2: Равномерное распределение (7)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Normal $E(z)$ 10	0.0048043	0.0035738	-0.0158131	0.029832	0.0076417
Normal $D(z)$ 10	0.093454	0.0806334	0.4759391	0.5494387	0.1552688
$E(z) \pm \sqrt{D(z)}$	[-0.3008982;	[-0.2803864;	[-0.7056965 ;	[-0.7114093;	[-0.3863999 ;
	0.3105068]	0.287534]	0.6740703]	0.7710733]	0.4016833]
$\hat{E}(\mathrm{z})$	0.0	0.0	0.0	0.0	0.0
Normal E(z) 100	0.0014876	-0.004149	-0.0337122	0.0379003	0.0061809
Normal D(z) 100	0.0095173	0.0093478	0.512915	0.4902777	0.0180784
$E(z) \pm \sqrt{D(z)}$	[-0.0960691;	[-0.100833;	[-0.749893 ;	[-0.662298;	[-0.128275;
	0.0990443]	0.092535]	0.6824686]	0.7380986]	0.1406368]
$\hat{E}(\mathrm{z})$	0.0	0.0	0.0	0.0	0.0
Normal E(z) 1000	7.13e-05	-0.0002033	-0.002519	-0.0178714	-0.0012642
Normal D(z) 1000	0.0009921	0.0009216	0.4910093	0.5370306	0.0020388
$E(z) \pm \sqrt{D(z)}$	[-0.0314263;	[-0.0305612;	[-0.7032396;	[-0.7506951 ;	[-0.0464173 ;
	0.0315689]	0.0301546]	0.6982016]	0.7149523]	0.0438889]
$\hat{E}({ m z})$	0.0	0.0	0.0	0.0	0.0

Таблица 3: Нормальное распределение (3)

Characteristic	Mean	Median	z_R	z_{O}	z_{tr}
Cauchy E(z) 10	-0.9015205	-0.0102798	1.5506815	2.0303134	-1.3998546
* ()					
Cauchy $D(z)$ 10	887.5172201	0.3256897	7785.2477732	1676.7961675	1337.2031198
$E(z) \pm \sqrt{D(z)}$	[-30.6927477;	[-0.5809721;	[-86.6833696;	[-38.9183883 ;	[-37.9676426 ;
	28.8897067]	0.5604125]	89.7847326]	42.9790151]	35.1679334]
$\hat{E}(\mathrm{z})$	-	-	-	-	-
Cauchy E(z) 100	-0.4475114	-0.0059119	-0.4265913	2.0329197	0.5847918
Cauchy $D(z)$ 100	151.9747356	0.025389	550.5545438	1026.1692437	423.7994764
$E(z) \pm \sqrt{D(z)}$	[-12.7753148 ;	[-0.1652512 ;	[-23.89049;	[-30.0009568 ;	[-20.0015988;
	11.880292]	0.1534274]	23.0373074]	34.0667962]	21.1711824]
$\hat{E}(\mathrm{z})$	-	-	-	-	-
Cauchy E(z) 1000	0.0604925	0.0014351	0.1957455	-0.3087999	-0.5480516
Cauchy D(z) 1000	1063.4570552	0.0023946	384.7296859	139.1980079	3363.2160612
$E(z) \pm \sqrt{D(z)}$	[-32.5501968;	[-0.0474996 ;	[-19.4187819;	[-12.1070204 ;	[-58.5412931;
	32.6711818]	0.0503698]	19.8102729]	11.4894206]	57.4451899]
$\hat{E}(\mathrm{z})$	-	-	-	-	-

Таблица 4: Распределение Коши (4)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Poisson E(z) 10	10.0151	9.8985	9.934	10.0265	10.0538333
Poisson D(z) 10	0.996602	1.3839478	5.290144	4.8850478	1.5409631
$E(z) \pm \sqrt{D(z)}$	[9.0168004 ;	[8.7220869;	[7.6339687;	[7.8162856;	[8.812478 ;
	11.0133996]	11.0749131]	12.2340313]	12.2367144]	11.2951886]
$\hat{E}(\mathrm{z})$	-	-	-	-	-
Poisson E(z) 100	9.98215	9.82	10.113	10.094	9.9692
Poisson D(z) 100	0.1006763	0.1961	5.311731	4.826664	0.1995538
$E(z) \pm \sqrt{D(z)}$	[9.6648547;	[9.3771682;	[7.8082807;	[7.897033;	[9.5224855;
	10.2994453]	10.2628318]	12.4177193]	12.290967]	10.4159145]
$\hat{E}(\mathrm{z})$	-	-	-	-	-
Poisson E(z) 1000	9.995908	9.995	9.952	10.0135	9.99356
Poisson D(z) 1000	0.009907	0.004475	4.938196	4.3005678	0.0205054
$E(z) \pm \sqrt{D(z)}$	[9.8963741;	[9.9281046 ;	[7.7297948;	[7.939719;	[9.8503629;
	10.0954419]	10.0618954]	12.1742052]	12.087281]	10.1367571]
$\hat{E}(\mathrm{z})$	-	-	-	-	-

Таблица 5: Распределение Пуассона (6)

5 Обсуждение

Из полученных нами данных сильно выделяется распределение Коши. Так, даже для больших выборок, дисперсия принимает огромные значения. Кроме того, нет какой-то очевидной закономерности между увеличением выборки и изменением значения дисперсии: у mean дисперсия от выборки из 10 k 100 падает, от 100 k 1000 растет, у z_R все время убывает. Данные аномалии являются результами выбросов, которые наблюдались в распределении Коши еще в первой лабораторной.

6 Приложение

Код программы GitHub URL:

https://github.com/PopeyeTheSailorsCat/math_stat_2021/blob/main/lab2/src/lab2.py