REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Affington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)				
15 Aug 05	Journal Article POSTPRINT	2004 - 2005				
4. TITLE AND SUBTITLE The importance of network a	structure in high- k dielectrics:	5a. CONTRACT NUMBER				
$LaAlO_3$, Pr_2O_3 , and Ta_2O_5	<u>-</u>	5b. GRANT NUMBER				
		5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)		5d. PROJECT NUMBER				
T. Busani, R.A.B. Devine		2305				
		5e. TASK NUMBER RP				
		5f. WORK UNIT NUMBER AA				
7. PERFORMING ORGANIZATION NAME(S AND ADDRESS(ES)	S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER				
Air Force Research Laborato	ory					
Space Vehicles		AFRL-VS-PS-JA-2006-1004				
3550 Aberdeen Ave SE						
Kirtland AFB, NM 87117-5770	5					
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)				
		11. SPONSOR/MONITOR'S REPORT				
		NUMBER(S)				

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited. (VS05-0383)

13. SUPPLEMENTARY NOTES

Published in Journal of Applied Physics; 15 Aug 2005; vol.98, no.4, p.44102-1-5 Government Purpose Rights

14 ABSTRACT

Measurements of the dielectric constant of amorphous and crystalline Pr_2O_3 are reported. The high value ~25 for the polycrystalline phase is discussed in terms of the network structure and comparison is made with heavy rare-earth oxide values. The specific cases of LaAlO $_3$ and Ta_2O_5 are also discussed and the role of network structure evidenced and elucidated. A potential route to finding high k materials suitable for microelectronics applications is suggested.

15. SUBJECT TERMS

Amorphous State; Dielectric Materials; Dielectric Thin Films; Lanthanum Compounds; Permittivity; Praseodymium Compounds; Tantalum Compounds; Network Structure; High k Dielectrics; Dielectric Constant; Amorphous Material; Polycrystalline Phase; Space Vehicles

16. SECURITY CLASSIFICATION OF:			17. LIMITATION 18. NUMBER OF ABSTRACT OF PAGES		19a. NAME OF RESPONSIBLE PERSON Arthur Edwards			
a.REPORT Unclassified	b. ABSTRACT Unclassified	c.THIS PAGE Unclassified	Unlimited	6	19b. TELEPHONE NUMBER (include area code) 505-853-6042			

The importance of network structure in high-k dielectrics: LaAlO₃, Pr₂O₃, and Ta₂O₅

T. Busani

Air Force Research Laboratories-Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland Air Force Base (AFB), New Mexico 87117 and Laboratoire d'Electrostatique et des Materiaux Dielectriques, Centre National de la Recherche Scientifique (CNRS), BP 166X, 38042 Grenoble Cedex, France

R. A. B. Devine^{a)}

Air Force Research Laboratories-Space Vehicles Directorate, 3550 Aberdeen Avenue, Kirtland Air Force Base (AFB), New Mexico 87117

(Received 14 April 2005; accepted 7 July 2005; published online 19 August 2005)

Measurements of the dielectric constant of amorphous and crystalline Pr_2O_3 are reported. The high value ~ 25 for the polycrystalline phase is discussed in terms of the network structure and comparison is made with heavy rare-earth oxide values. The specific cases of LaAlO₃ and Ta_2O_5 are also discussed and the role of network structure evidenced and elucidated. A potential route to finding high k materials suitable for microelectronics applications is suggested. © 2005 American Institute of Physics. [DOI: 10.1063/1.2012513]

I. INTRODUCTION

Thin-film high dielectric insulators remain a potential "show stopper" for the evolution of silicon-based microelectronics in the generations to come as outlined in the semiconductor industries roadmap. Specifically, a dielectric constant $(k) \sim 25$ is required to satisfy the requirements for metal-oxide-semiconductor field-effect transistor (MOSFET) gate dielectrics leading out to years beyond 2010. Similar or larger values are required for dielectrics used in embedded dynamic random access memory (DRAM) cells and radiofrequency (RF) coupling capacitors. The material must also respond positively to a series of other demands relating to such effects as lack of interactivity with the Si substrate, low leakage currents, low interface state density, high electrical barriers against charge injection, etc.² To date, no suitable material has been proposed although a host of different mixed oxides has been examined.

One of the materials which appeared to potentially have great promise as high-k dielectric replacement for SiO₂ was LaAlO₃. It has a wide electronic band gap of ~6 eV, an acceptable band offset³ (\sim 1 eV), dielectric constant of \sim 26 in the crystalline state, and projected thermodynamic stability⁴ in the presence of Si. However, it turns out that LaAlO₃ is not stable at high temperature in contact with Si (Ref. 5) and that the amorphous phase produced during a deposition sequence⁶ has a dielectric constant of only 13. As a consequence of the high-temperature reactivity, the crystalline phase with its higher k value cannot be attained by recrystallization of the amorphous material, at least, when the film is deposited on Si. Though the use of LaAlO₃ in advanced Si technology is unlikely on the basis of the information advanced, the significantly different dielectric constant values between the amorphous and crystalline phases are intriguing. They lead us to suggest that one might, perhaps, learn something significant from the dielectric constant measurements which have been made. The focus of this paper will therefore be an understanding of the intimate relationship between the dielectric constant and the atomic structure of the dielectric network. The need to integrate this understanding into any considerations used when trying to determine which alloyed oxide systems will potentially resolve the "high-*k* dilemma" is assumed to be essential.

The generalized importance of the atomic network in determining the dielectric constant in simple binary and multiple oxide systems will be discussed in the following for the rare-earth (RE) oxide system RE_2O_3 , Ta_2O_5 , and $LaAlO_3$. In order to include the RE_2O_3 system, we have performed measurements on Pr_2O_3 alloys, these will be described in the first instance.

II. EXPERIMENT

In order to resolve apparent inconsistencies in the published data on Pr₂O₃ we have manufactured thin films of this material and performed electrical and optical measurements on it. The 4" Si (100) wafers were deoxidized in HF acid and blown dry to leave a passivated, native oxide-free surface prior to deposition of the Pr₂O₃. Using an electron-beam evaporator together with Pr₆O₁₁ as the source and a partial pressure of 2.5×10^{-5} torr of O_2 films of ~ 110 nm of Pr_2O_3 were deposited at room temperature. Single wavelength ellipsometry (λ =632.8 nm) indicated that the refractive index of the deposited film was 1.80±0.005. Some films were annealed in flowing O₂ at 400 °C following deposition and for these the refractive index was 2.025 ± 0.005 . Al dots, 1 mm in diameter, were evaporated onto the surface of the oxide films through a shadow mask to form metal-oxidesemiconductor (MOS) capacitors. The capacitance/voltage curves for these capacitors were then measured at a frequency of 100 kHz using a Keithley 590 system. From the

a) Author to whom correspondence should be addressed; present address: CHTM, 1313 Goddard SE, Albuquerque, NM 87106; FAX: 505 272 7801; electronic mail: devine@chtm.unm.edu

FIG. 1. The x-ray-diffraction plot for the recrystallized samples of Pr_2O_3 annealed in O_2 at 400 °C. The plots have been smoothed to accentuate the diffraction peaks.

capacitance plots in strong accumulation we determined the dielectric constant of the films to be 16 ± 1 (as-deposited samples) and 25.4 ± 0.7 (annealed samples).

Standard x-ray-diffraction measurements were made using Cu K α radiation, the diffraction intensity versus 2θ curve is shown in Fig. 1 for the annealed sample. The curve for the as-deposited sample showed no sharp peaks consistent with it being amorphous. The recrystallized sample peaks at 29.2°, 47.55°, and 56.55° concur with those obtained by other authors⁷ and identified as due to the hexagonal phase of Pr₂O₃. Glancing incidence x-ray reflectivity was used to ascertain the density of the as-deposited and recrystallized films. The reflectivity was measured using a Philips X'pert double crystal diffractometer with $Cu\ K\alpha$ radiation and a 0.45-mm receiving slit. The experimental data is shown in Figs. 2(a) (amorphous, as deposited) and 2(b) (recrystallized at 400 °C in flowing O₂) together with the fits obtained using the WINGIXA software supplied by the PANanalytical company. Note that the fit curves are displaced vertically with respect to the experimental curves in order to facilitate judgement of the quality of the fits. The fits yield the values of 6.42 ± 0.2 and 7.08 ± 0.2 g cm⁻³ for the densities in the as-deposited and annealed samples, respectively.

III. DISCUSSION

In order to discuss the importance of the network in determining the dielectric constant we will throughout appeal to the classical Clausius-Mosotti formula which relates the dielectric constant to the molecular polarizability α_D and the molecular volume V_m ,

$$(k-1)/(k+2) = (4\pi/3)\alpha_D/V_m.$$
 (1)

For the purposes of the discussion here we will not make use of the oxide additivity rule form of Eq. (1) appropriate to mixed oxide systems.⁸

A. The RE₂O₃ system

Though the RE_2O_3 compounds are in general hygroscopic and therefore of little use in standard technological applications, a study of the variation of the dielectric constant with RE ion is informative. Various authors have measured the dielectric constants in RE_2O_3 binary oxides and

FIG. 2. Glancing incidence x-ray scattering data for Pr_2O_3 films (a) amorphous and (b) recrystallized. In both plots the fit curves are shown simply displaced vertically in order to give a clearer indication of the quality of the overall fit to the experimental curves.

their values are given in Table I. There is sometimes a wide disparity which may arise perhaps due to uncertainty as to the state of the material (amorphous or crystalline) or because during the experiments an SiO2 layer has formed at the dielectric/semiconductor interface which has a net effect of lowering the overall effective dielectric constant. The most reliable data appears to be that on the crystalline RE₂O₃ films grown on Si since here it is most likely that an amorphous SiO₂ barrier layer has not formed. As a general rule the higher dielectric constant values are associated with the crystalline phases and this is because the molecular volume is usually smaller for these denser polymorphs. The particularly interesting example in point is the case of Pr₂O₃ where we have found that $k \sim 16$ for the amorphous state and 25.4 for the crystallized, hexagonal phase. The latter value is consistent with that obtained by other workers for recrystallized films, ¹³ the structure of these films is polycrystalline hexagonal. An even higher value for Pr₂O₃ of 31 has been observed for epitaxially grown film on the Si (100) face. Note, however, that in this case the structure is cubic, not the more usual hexagonal.

What might seem at first inconsistent is that the dielectric constants measured for the crystalline, lighter rare-earth oxides La_2O_3 , and Pr_2O_3 are significantly larger than in the heavier, crystalline rare-earth case (as evidenced in Table I). It is important to note from Eq. (1) that the two parameters are of importance in determining k, the molecular volume V_m and the molecular polarizability α_D . In Fig. 3 we show the molecular volume values as a function of rare-earth ion for the rare-earth oxide series as determined from the published

^fReference 17.

TABLE I. Measured values of the dielectric constant k molecular volume (in units of 10^{-24} cm³) and molecular polarizability (in units of 10^{-24} cm³) in RE₂O₃ compounds.

	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
k value	22 ^a 20 ^d 27 ⁱ	21.2 ^b	15.5 ^b 25 ^e 16 ^j 25.4 ^j 31 ^k 15 ^c	13.9 ^b 12.9 ^f		11.4° 46 ^g	13.7 ^b	12.9 ^b 13.9 ^c 14 ^f	12.9 ^b	12.5 ^b 14.3 ^c	12.5 ^b	12.5 ^b	12.6 ^b	13.4 ^b	12.5 ^b 12 ^h
Molecular							79.8	78.7	76.6	75.7	74.3	72.9	72.4	70.6	69.6
volume	83.1		79.4	77.2		76.2	78.6	81.2	76.8	79.3	74.6	73.5	74.5	70.7	70.2
α_D	17.1		16.85			17.1	15.29	15.5	14.6	14.9	14.1	13.9	13.9	13.6	13.2
aReference bReference cReference dReference eReference	2 12. 2 15. 2 10. 2 13.		^g Reference 16. ^h Reference 18. ⁱ Reference 11. ^j Present work. ^k Reference 14.												

density measurements.¹⁹ We see that for ions lighter than Eu there appears to be a finite decrease in molecular volume and this step correlates directly with a structural change. In fact the heavier rare-earth oxides are cubic whereas the lighter ones are hexagonal.²⁰ Straightforward inspection of Eq. (1) indicates that a reduction in molecular volume will lead directly to an increase in k if the molecular polarizability remains constant or indeed increases. It is important to determine the molecular polarizabilities in these compounds and to observe the consequences, if any, of the steplike volume modification. Using the crystalline k data and molecular volumes from Table I, we calculate, using Eq. (1), the molecular polarizabilities which are also presented in Table I and shown graphically in Fig. 4(a). In Fig. 4(a) we include the data on rare-earth garnets, RE₃Ga₅O₁₂ is taken from Ref. 21 a monotonic decrease in α occurs as one crosses the periodic table from light to heavy REs. There appears to be no discontinuity in the variation of α as one crosses the series. If the large increase in dielectric constant in the lighter REs as compared to the heavier ones would have been attributed to a variation in α_D alone, then a nonmonotonic variation would have resulted rather similar to the nonmonotonic variation of the molecular volume shown in Fig. 3. The comparatively

FIG. 3. A plot of the molecular volume as a function of rare-earth ion in the series RE_2O_3 . The lighter RE's below Eu are expected to form the hexagonal close-packed phase while the heavier RE's form the cubic phase.

similar behavior of α_D in the oxide and garnet series shown in Fig. 4(a) confirms our interpretation of the variation of k with ion in the RE series, namely, that the jump in dielectric constant results primarily from a change in the volume of the RE₂O₃ network due to a phase change.

The data for RE_2O_3 and RE garnet compounds shown in Fig. 4(a) suggest a monotonic decrease in α_D with RE ion. We shall approximate

FIG. 4. (a) The variation of the molecular polarizability in (\bigcirc) the RE_2O_3 compounds deduced from the crystalline phase dielectric constant values shown in Table I, left-hand scale and (\triangle) for the RE garnets and right-hand scale for the $RE_3Ga_5O_{12}$. (b) Variation of the optical polarizability α_{opt} for the crystalline RE_2O_3 compounds, from Ref. 23 (\bigcirc) (left-hand scale) and the low-frequency molecular polarizability calculated from the measured dielectric constant (\triangle) (right-hand scale).

$$(3V_m/4\pi)(k-1)/(k+2) = \alpha_D$$

$$= 2\alpha_{\rm RE^{3+}} + 3\alpha_{\rm O^{2-}} + F_{\rm o}^{-1}(Z-Z')^2,$$
(2)

where the term $F_o^{-1}(Z-Z')^2$ is defined in Ref. 22 and is related to the relative displacement of the RE and O ions in the network. We have assumed an additivity model for the ionic polarizabilities and that they are related to the material refractive indices n through

$$(3V_m/4\pi)(n-1)/(n+2) = \alpha_{\text{opt}} = 2\alpha_{\text{RE}^{3+}} + 3\alpha_{\text{O}^{2-}}.$$
 (3)

Values for the optical frequency polarizability in the RE_2O_3 series have been determined²³ and they are shown in Fig. 4(b) together with the values of the low-frequency polarizability determined from the dielectric constant using Eq. (2). There is clearly a reduction in polarizability as one crosses the RE₂O₃ series from light to heavy rare earths although the variation in the optical polarizability component is a factor of 2 smaller than that of the low-frequency polarizability. Comparing Eqs. (2) and (3) this suggests that some variation in the term related to the relative displacement of the composite ions may also be occurring. The observed monotonic decrease of the effective polarizability across the RE series is apparently, however, supported both on the basis of the optical and low-frequency measurements. Calculations of $\alpha_{\rm ont}$ may be made using the published individual ionic components²⁴ ($\alpha_{RE^{3+}}$ and $\alpha_{O^{2-}}$) for the closed-shell configurations of the individual ions. Though the absolute magnitude is in disagreement with experiment, again the general trend of a decrease in polarizability across the series is anticipated.

The behavior of the experimentally observed dielectric constant across the crystalline RE $_2$ O $_3$ series can therefore be entirely expected in terms of the structure of the oxide network and the variation of the ionic contributions with closed-shell configuration of the RE ions. Before leaving this section we return to our single point data on amorphous Pr $_2$ O $_3$ where we found that $k \sim 16$ and the density $\rho \sim 6.4$ g cm $^{-3}$. Using these values we calculate $V_m = 85.6 \times 10^{-24}$ cm 3 and $\alpha_{amorphous} = 17 \times 10^{-24}$ cm 3 to be compared with $V_m = 78.1 \times 10^{-24}$ cm 3 and $\alpha_{hexagonal} = 16.6 \times 10^{-24}$ cm 3 for the hexagonal crystalline phase. These results lead us to conclude that the polarizability is relatively network insensitive for Pr $_2$ O $_3$ and that the primary driver in varying the dielectric constant is the density of the network through its atomic structure.

B. The Ta₂O₅ system

The success in understanding the behavior of the dielectric constant in the RE₂O₃ series in terms of variation in the structure of the network leads us to examine another material where potentially surprising results are obtained, specifically Ta₂O₅. In amorphous Ta₂O₅ the measured²⁵ dielectric constant is typically 25. At relatively low annealing temperatures (>700 °C) orthorhombic²⁶ and hexagonal²⁶ crystalline phases have been stabilized. In the former case increased dielectric constants varying from 30 to 50 have been reported^{27–29} whereas in the latter (hexagonal) the dielectric constant is reported between 55 and 64.³⁰ Note that the

TABLE II. Density, molecular volume, measured dielectric constant, and molecular polarizability for various phases of Ta₂O₅.

Phase	Density g cm ⁻³	Molecular volume $\times 10^{-24} \text{ cm}^3$	Dielectric constant	Molecular polarizability ×10 ⁻²⁴ cm ³
Amorphous	8.10	90.60	25	19.2
Orthorhombic	8.24	89.03	45-52	19.9-20.1
Hexagonal	8.32	88.18	55-64	19.9-20.1
Monoclinic	8.48	86.51	126–189	20.2–20.3

orthorhombic phase appears to be the most stable form. Of particular note is the data 31,32 concerning the effect of substitution of Ta_2O_5 by small quantities of TiO_2 [particularly $0.92(Ta_2O_5)$ $0.08(TiO_2)$]—k values of 126 and 189 have been reported for these mixed oxide compositions. We note that the structure of the Ta_2O_5 network in the titania stabilized network is monoclinic as it is with other stabilizing binary oxides. However, not all binary oxide additions stabilize the monoclinic form, many stabilize the orthorhombic phase 28,34 where significantly lower dielectric constants are observed as expected.

In Table II we summarize the relevant parameters for the different phases of Ta_2O_5 which enable us to calculate the molecular polarizabilities and molecular volumes. Equation (1) has been used together with the measured dielectric constants and known molecular volumes to deduce the molecular polarizability for each phase and we remark that over the range of phases studied, whereas the molecular volume decreases by 4.5%, the molecular polarizability increases by 5.7%. The sense of these changes is such that α/V_m increases by $\sim 10\%$. The effect of this change is best seen pictorially in Fig. 5 where we plot k as a function of α/V_m as calculated from Eq. (1). The dramatic increase in k with α/V_m clearly explains why such large k values are observed.

We apply the additivity rule $\alpha_{\rm opt} = 2\alpha_{\rm RE^{3+}} + 3\alpha_{\rm O^{2-}}$ together with the ionic polarizabilities for Ta and O from Ref. 24 $\alpha_{\rm opt}({\rm Ta^{5+}}) = 4.73 \times 10^{-24}~{\rm cm^3}$, $\alpha_{\rm opt}({\rm O^{2-}}) = 2.01 \times 10^{-24}~{\rm cm^3}$, and determine $\alpha_{\rm opt}({\rm Ta_2O_5}) = 19.51 \times 10^{-24}~{\rm cm^3}$. This value is actually within 1.6% of the value of α_D determined for amorphous Ta₂O₅ as shown in Table II. However,

FIG. 5. Variation of the dielectric constant as a function of the ratio of the molecular polarizability to the molecular volume (α/V_m) as anticipated from Eq. (1). (\triangle) the values of k measured experimentally which enable deduction of the respective α/V_m values.

using Eq. (3) together with the measured refractive index of 2.1 we obtain $\alpha_{\rm opt}({\rm Ta_2O_5}) = 11.3 \times 10^{-24}~{\rm cm^3}$, this discrepancy is in the same sense and of similar magnitude (almost a factor of 2) as that observed when treating the case of RE₂O₃ compounds above. It would appear that the calculated ionic polarizabilities²⁴ are almost a factor of 2 too large.

C. The LaAIO₃ system

As mentioned above, the dielectric constant of amorphous LaAlO₃ is ~13 while it is 26 for the crystalline phase.⁶ It has been determined that $V_m \sim 84.5 \pm 6 \times 10^{-24}$ cm³ for the amorphous phase and 54.5×10^{-24} cm³ for the state. We note that V_m (crystalline)/ V_m (amorphous) is 64.5% whereas for the Pr_2O_3 and Ta_2O_5 cases we obtained V_m (hexagonal)/ V_m (amorphous)=91.6% and V_m (monoclinic)/ V_m (amorphous)=95.5%, respectively, the latter variations are substantially less than that observed for LaAlO₃. It has been underlined⁶ that there is evidence in LaAlO₃ for a significant change in atomic coordination number when comparing the amorphous and crystalline states and this would account for dramatic changes in apparent

The resultant molecular polarizability values are $\alpha_D(\text{amorphous}) = 16.1 \pm 1.1 \times 10^{-24} \text{ cm}^3$ and $\alpha_D(\text{crystalline}) = 11.6 \times 10^{-24} \text{ cm}^3$. Again using the ionic polarizabilities determined in Ref. 24 we predict $\alpha_{\text{opt}}(\text{LaAlO}_3) = 12.9 \times 10^{-24} \text{ cm}^3$. This value is "relatively" close to the crystalline α_D value but substantially different from the amorphous value. Furthermore, using the experimental value³⁴ for n we deduce $\alpha_{\text{opt}}(\text{LaAlO}_3) = 6.54 \times 10^{-24} \text{ cm}^3$ which yet again differs from the calculated value²⁴ by a factor of nearly 2.

If we compare the variation of α_D with V_m for the various materials we have studied, no systematic behavior emerges. In the case of LaAlO₃, α_D increases with V_m which is the opposite of what is found for Ta₂O₅ (Table II). However, in the case of Pr_2O_3 , α_D again increases with increasing V_m although the variation is small. Comparison of the values of $\alpha_{\rm opt}$ calculated from the published ion polarizability data and the values of α_D deduced from the experiment give a guide as to the behavior of the polarizability in the RE₂O₃ system and, surprisingly, the absolute values are similar. This is, however, inconsistent with the fact that such calculations neglect the ion displacement polarizability term. Furthermore, the actual $\alpha_{\rm opt}$ values determined from optical experiments are overestimated by the calculation. More detailed measurement and analysis are required to elucidate this behavior.

IV. CONCLUSIONS

We have endeavored to analyze the behavior of the dielectric constant in the amorphous and crystalline alloys of LaAlO₃, Ta₂O₅, and RE₂O₃. Though the behavior of the molecular polarizability turns out to be complicated, the overall importance of the network structure in determining the dielectric constant is clearly underlined. Specifically, very large values observed in the case of ${\rm Ta_2O_5}$ can be directly related to the formation of a dense crystalline phase which is, interestingly, stabilized by the addition of relatively small quantities of secondary binary oxides. This observation strongly suggests an approach which might be exploited in the dilemma to find alternative high-k materials for microelectronics applications. Namely, to look for metastable, high-density phases of dielectrics which already have relatively high dielectric constant values in their equilibrium phases.

¹ITRS roadmap available on: http://public.itrs.net/Files/2001ITRS

²H. Iwai and S. Ohmi, Microelectron. Reliab. **42**, 465 (2002).

³P. W. Peacock and J. Robertson, J. Appl. Phys. **92**, 412 (2002).

⁴D. G. Schlom and J. H. Haeni, MRS Bull. **27**, 198 (2002).

⁵R. A. B. Devine, J. Appl. Phys. **93**, 9938 (2003).

⁶T. Busani and R. A. B. Devine, J. Appl. Phys. **96**, 6642 (2004).

⁷R. L. Nigro, V. Raineri, C. Bongiorno, R. Toro, G. Malandrino, and I. L. Fragalà, Appl. Phys. Lett. **83**, 129 (2003).

⁸R. A. B. Devine and A. G. Revesz, J. Appl. Phys. **90**, 389 (2001).

⁹S. Ohmi, C. Kobayashi, I. Kashiwagi, C. Ohshima, H. Ishiwara, and H. Iwai, J. Electrochem. Soc. **150**, F134 (2003).

¹⁰S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, Appl. Phys. Lett. 77, 2710 (2000).

¹¹Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, IEEE Electron Device Lett. **21**, 341 (2000).

¹²E. V. Dulepov, S. S. Barsonov, and G. N. Kustova, Zh. Strukt. Khim. 13, 935 (1972).

¹³R. L. Nigro, V. Raineri, C. Bongiorno, R. Toro, G. Malandrino, and I. G. Fragala, Appl. Phys. Lett. 83, 129 (2003).

¹⁴H. J. Osten, E. Bugiel, and A. Fissel, Solid-State Electron. 47, 2161 (2003).

¹⁵S. Jeon, K. Im, H. Yang, H. Lee, H. Sim, S. Choi, T. Jang, and H. Hwang, Proceedings IEDM, 2001 (unpublished), p. 20.6.01.

¹⁶M. K. Jayaraj and C. P. G. Vallabhan, Thin Solid Films **197**, 15 (1991).

¹⁷J. Kwo *et al.*, J. Cryst. Growth **251**, 645 (2003).

¹⁸G. Scarel *et al.*, Appl. Phys. Lett. **85**, 630 (2004).

¹⁹Y. Yokogawa, M. Yoshimura, and S. Somiya, J. Mater. Sci. Lett. **10**, 509 (1991).

²⁰À lanthanide lanthology Part 1, A-L (Molycorp Inc., Mountain View, California, 1993), p. 18; also www.matweb.com

²¹R. D. Shannon, J. Appl. Phys. **73**, 348 (1993).

²²M. J. L. Sangster and A. M. Stoneham, Philos. Mag. B **43**, 597 (1981).

²³O. Medenbach, D. Dettmar, R. D. Shannon, R. X. Fischer, and W. M. Yen, J. Opt. A, Pure Appl. Opt. 3, 174 (2001).

²⁴N. W. Grimes and R. W. Grimes, J. Phys.: Condens. Matter **10**, 3029 (1998).

²⁵D. Laviale, J-C. Oberlina, and R. A. B. Devine, Appl. Phys. Lett. **65**, 2021

²⁶B. R. Sahu and L. Kleinman, Phys. Rev. B **69**, 165202 (2004).

²⁷J. Westlinder, Y. Zhang, F. Englemark, G. Possnert, H. O. Blom, J. Olsson, and S. Berg, J. Vac. Sci. Technol. B 20, 855 (2002).

²⁸R. J. Cava, J. J. Krajewski, W. F. Peck, and G. L. Roberts, J. Appl. Phys. 80, 2346 (1996).

²⁹S. Ezhilvalavan and T.-Y. Tseng, Jpn. J. Appl. Phys., Part 1 39, 2756 (2000).

³⁰C. Chanelière, S. Four, J-L. Autran, and R. A. B. Devine, Electrochem. Solid-State Lett. 2, 291 (1999).

³¹R. F. Cava, W. F. Peck, Jr., and J. J. Krajewski, Nature (London) 377, 215 (1995)

³²D. A. Payne and S. Hemjinda, www.engr.uiuc.edu/communications/ engineering_research/2000/MATSE.summary

³³R. S. Roth, J. L. Waring, and W. S. Brower, J. Res. Natl. Bur. Stand., Sect. A **74A**, 477 (1970).

³⁴M. Yin, M. Wang, and X. Yao, J. Zhejiang Univ. SCI 5, 696 (2004).