

Fast Robust Classifiers for Data Streams

INFORMS 2022

Kartikey Sharma

16th October 2022

Fast Robust Classifiers for Data Streams

- 1. Introduction
- 2. Modeling
- 3. Numerical Experiments

1. Introduction

Data Streams

- Data comes in over time
- Distribution of data may change over time
- Classifier needs to adapt to changing distribution

1. Introduction

Data Streams

- Data comes in over time
- Distribution of data may change over time
- Classifier needs to adapt to changing distribution

- Data comes in over time
- Distribution of data may change over time
- Classifier needs to adapt to changing distribution

- Data comes in over time
- Distribution of data may change over time
- Classifier needs to adapt to changing distribution

Non parametric methods. Time-windows (Li et al. 2017; Nguyen, Woon, and Ng 2015; Žliobaitė et al. 2013), forgetting methods (Anagnostopoulos et al. 2012; Krawczyk and Woźniak 2015)

Parametric Methods. Time-series and Gaussian processes (Kumagai and Iwata 2016; Kumagai and Iwata 2017; Kumagai and Iwata 2018).

Neural Networks Architectures . LSTMs (Jia et al. 2017), Spiking NNs (Lobo et al. 2020), Limited data (Das et al. 2020; Ksieniewicz et al. 2019).

Non parametric methods. Time-windows (Li et al. 2017; Nguyen, Woon, and Ng 2015; Žliobaitė et al. 2013), forgetting methods (Anagnostopoulos et al. 2012; Krawczyk and Woźniak 2015)

Parametric Methods. Time-series and Gaussian processes (Kumagai and Iwata 2016; Kumagai and Iwata 2017; Kumagai and Iwata 2018).

Neural Networks Architectures . LSTMs (Jia et al. 2017), Spiking NNs (Lobo et al. 2020), Limited data (Das et al. 2020; Ksieniewicz et al. 2019).

Non parametric methods. Time-windows (Li et al. 2017; Nguyen, Woon, and Ng 2015; Žliobaitė et al. 2013), forgetting methods (Anagnostopoulos et al. 2012; Krawczyk and Woźniak 2015)

Parametric Methods. Time-series and Gaussian processes (Kumagai and Iwata 2016; Kumagai and Iwata 2017; Kumagai and Iwata 2018).

Neural Networks Architectures . LSTMs (Jia et al. 2017), Spiking NNs (Lobo et al. 2020), Limited data (Das et al. 2020; Ksieniewicz et al. 2019).

Fast Robust Classifiers for Data Streams

- 1. Introduction
- 2. Modeling
- 3. Numerical Experiments

Minimax Probability Machine

Minimax probability machine (Lanckriet, El Ghaoui, and Jordan 2003):

$$\begin{aligned} \max_{\alpha, \mathbf{a}, b} \alpha & \min_{r, \mathbf{u}, \mathbf{v}} r \\ \text{s.t.} & \inf_{\mathbb{P}_{\mathbf{x}} \in \mathcal{M}_{\mathbf{x}}} \mathbb{P}_{\mathbf{x}}[\mathbf{a}^{\top} \mathbf{x} \geq b] \geq \alpha \\ & \inf_{\mathbb{P}_{\mathbf{v}} \in \mathcal{M}_{\mathbf{v}}} \mathbb{P}_{\mathbf{y}}[\mathbf{a}^{\top} \mathbf{y} \leq b] \geq \alpha. \end{aligned} \qquad \begin{aligned} \min_{r, \mathbf{u}, \mathbf{v}} r \\ \text{s.t.} & \mu_{\mathbf{x}} + \Sigma_{\mathbf{x}}^{\frac{1}{2}} \mathbf{u} = \mu_{\mathbf{y}} + \Sigma_{\mathbf{y}}^{\frac{1}{2}} \mathbf{w} \\ & \|\mathbf{u}\|_{2} \leq r. \end{aligned}$$

Here, \mathcal{M}_i represents distributions with mean μ_i and covariance Σ_i .

Minimax Probability Machine

Minimax probability machine (Lanckriet, El Ghaoui, and Jordan 2003):

$$\begin{aligned} \max_{\alpha, \mathbf{a}, b} \alpha & \min_{\alpha, \mathbf{a}, b} r \\ \text{s.t.} & \inf_{\mathbb{P}_{x} \in \mathcal{M}_{x}} \mathbb{P}_{x}[\mathbf{a}^{\top} \mathbf{x} \geq b] \geq \alpha \\ & \inf_{\mathbb{P}_{y} \in \mathcal{M}_{y}} \mathbb{P}_{y}[\mathbf{a}^{\top} \mathbf{y} \leq b] \geq \alpha. \end{aligned} & \text{s.t. } \boldsymbol{\mu}_{x} + \boldsymbol{\Sigma}_{x}^{\frac{1}{2}} \mathbf{u} = \boldsymbol{\mu}_{y} + \boldsymbol{\Sigma}_{y}^{\frac{1}{2}} \mathbf{w} \\ & \|\mathbf{u}\|_{2} \leq r \\ & \|\mathbf{w}\|_{2} \leq r. \end{aligned}$$

Here, \mathcal{M}_i represents distributions with mean μ_i and covariance Σ_i .

Data Stream Model

Time series model of data

Allows for correlation over time and cross class dependence

$$\begin{split} \mu_{x}(\hat{\mathbf{x}}, \hat{\mathbf{y}}) &= \mathsf{E}[\mathsf{x}|\mathsf{x}_{\tau_{x}(t)} = \hat{\mathbf{x}}, \mathsf{y}_{\tau_{y}(t)} = \hat{\mathbf{y}}] \\ &= \mathsf{a}_{x} + \mathsf{A}_{xx}\hat{\mathbf{x}} + \mathsf{A}_{xy}\hat{\mathbf{y}} \\ \mu_{y}(\hat{\mathbf{x}}, \hat{\mathbf{y}}) &= \mathsf{E}[\mathsf{y}|\mathsf{x}_{\tau_{x}(t)} = \hat{\mathbf{x}}, \mathsf{y}_{\tau_{y}(t)} = \hat{\mathbf{y}}] \\ &= \mathsf{a}_{y} + \mathsf{A}_{yx}\hat{\mathbf{x}} + \mathsf{A}_{yy}\hat{\mathbf{y}}. \end{split}$$

Data Stream Model

Time series model of data

Allows for correlation over time and cross class dependence

$$\begin{split} \mu_{x}(\hat{\mathbf{x}}, \hat{\mathbf{y}}) &= \mathsf{E}[\mathsf{x}|\mathsf{x}_{\tau_{x}(t)} = \hat{\mathbf{x}}, \mathsf{y}_{\tau_{y}(t)} = \hat{\mathbf{y}}] \\ &= \mathsf{a}_{x} + \mathsf{A}_{xx}\hat{\mathbf{x}} + \mathsf{A}_{xy}\hat{\mathbf{y}} \\ \mu_{y}(\hat{\mathbf{x}}, \hat{\mathbf{y}}) &= \mathsf{E}[\mathsf{y}|\mathsf{x}_{\tau_{x}(t)} = \hat{\mathbf{x}}, \mathsf{y}_{\tau_{y}(t)} = \hat{\mathbf{y}}] \\ &= \mathsf{a}_{y} + \mathsf{A}_{yx}\hat{\mathbf{x}} + \mathsf{A}_{yy}\hat{\mathbf{y}}. \end{split}$$

Data Stream Model

Time series model of data

Allows for correlation over time and cross class dependence

$$\begin{split} \boldsymbol{\mu}_{\boldsymbol{x}}(\hat{\mathbf{x}},\hat{\mathbf{y}}) &= \mathbf{E}[\mathbf{x}|\mathbf{x}_{\tau_{\boldsymbol{x}}(t)} = \hat{\mathbf{x}},\mathbf{y}_{\tau_{\boldsymbol{y}}(t)} = \hat{\mathbf{y}}] \\ &= \mathbf{a}_{\boldsymbol{x}} + \mathbf{A}_{\boldsymbol{x}\boldsymbol{x}}\hat{\mathbf{x}} + \mathbf{A}_{\boldsymbol{x}\boldsymbol{y}}\hat{\mathbf{y}} \\ \boldsymbol{\mu}_{\boldsymbol{y}}(\hat{\mathbf{x}},\hat{\mathbf{y}}) &= \mathbf{E}[\mathbf{y}|\mathbf{x}_{\tau_{\boldsymbol{x}}(t)} = \hat{\mathbf{x}},\mathbf{y}_{\tau_{\boldsymbol{y}}(t)} = \hat{\mathbf{y}}] \\ &= \mathbf{a}_{\boldsymbol{y}} + \mathbf{A}_{\boldsymbol{y}\boldsymbol{x}}\hat{\mathbf{x}} + \mathbf{A}_{\boldsymbol{y}\boldsymbol{y}}\hat{\mathbf{y}}. \end{split}$$

- Find policy for changing the classifying surface
- Classifying surface dependent upon point of contact

$$\begin{aligned} & \min_{\substack{r,\mathbf{u}\\\mathbf{w}}} r\\ & \text{s.t. } \mu_{\mathbf{x}} + \Sigma_{\mathbf{x}}^{1/2} \mathbf{u} = \mu_{\mathbf{y}} + \Sigma_{\mathbf{y}}^{1/2} \mathbf{w}\\ & \|\mathbf{u}\|_2 \leq r\\ & \|\mathbf{w}\|_2 \leq r. \end{aligned}$$

- Find policy for changing the classifying surface
- Classifying surface dependent upon point of contact

$$\begin{split} \min_{\substack{r,\mathbf{u}\\\mathbf{w}}} r\\ \text{s.t.} \ \mu_{\mathbf{x}} + \Sigma_{\mathbf{x}}^{1/2} \mathbf{u} &= \mu_{\mathbf{y}} + \Sigma_{\mathbf{y}}^{1/2} \mathbf{w}\\ \|\mathbf{u}\|_2 \leq r\\ \|\mathbf{w}\|_2 \leq r. \end{split}$$

- Find policy for changing the classifying surface
- Classifying surface dependent upon point of contact

$$\begin{split} \min_{\substack{r,\mathbf{u}\\\mathbf{w}}} r\\ \text{s.t. } \mu_{\scriptscriptstyle X} + \Sigma_{\scriptscriptstyle X}^{1/2}\mathbf{u} &= \mu_{\scriptscriptstyle Y} + \Sigma_{\scriptscriptstyle Y}^{1/2}\mathbf{w}\\ \|\mathbf{u}\|_2 \leq r\\ \|\mathbf{w}\|_2 \leq r. \end{split}$$

- Find policy for changing the classifying surface
- Classifying surface dependent upon point of contact

$$egin{aligned} \min_{\substack{r(\mathbf{x},\mathbf{y}),\mathbf{u}(\mathbf{x},\mathbf{y}) \ \mathbf{w}(\mathbf{x},\mathbf{y})}} r(\mathbf{x},\mathbf{y}) \ & ext{s.t.} \ \mu_{\mathbf{x}}(\mathbf{x},\mathbf{y}) + \Sigma_{\mathbf{x}}^{1/2}\mathbf{u}(\mathbf{x},\mathbf{y}) = \mu_{\mathbf{y}}(\mathbf{x},\mathbf{y}) + \Sigma_{\mathbf{y}}^{1/2}\mathbf{w}(\mathbf{x},\mathbf{y}) \ & \|\mathbf{u}(\mathbf{x},\mathbf{y})\|_2 \leq r(\mathbf{x},\mathbf{y}) \ & \|\mathbf{w}(\mathbf{x},\mathbf{y})\|_2 \leq r(\mathbf{x},\mathbf{y}). \end{aligned}$$

- Find policy for changing the classifying surface
- Classifying surface dependent upon point of contact

$$\begin{split} & \min_{\substack{r(\mathbf{x},\mathbf{y}),\mathbf{u}(\mathbf{x},\mathbf{y})\\\mathbf{w}(\mathbf{x},\mathbf{y})}} \max_{\substack{\mathbf{x}\in \mathbf{U}_{\mathbf{x}}\\\mathbf{y}\in \mathbf{U}_{\mathbf{y}}}} r(\mathbf{x},\mathbf{y}) \\ \text{s.t.} & \mu_{x}(\mathbf{x},\mathbf{y}) + \Sigma_{x}^{1/2}\mathbf{u} = \mu_{y}(\mathbf{x},\mathbf{y}) + \Sigma_{y}^{1/2}\mathbf{w}(\mathbf{x},\mathbf{y}) & \forall \mathbf{x}\in \mathbf{U}_{x} \ \forall \mathbf{y}\in \mathbf{U}_{y} \\ & \|\mathbf{u}(\mathbf{x},\mathbf{y})\|_{2} \leq r(\mathbf{x},\mathbf{y}) & \forall \mathbf{x}\in \mathbf{U}_{x}, \ \mathbf{y}\in \mathbf{U}_{y} \\ & \|\mathbf{w}(\mathbf{x},\mathbf{y})\|_{2} \leq r(\mathbf{x},\mathbf{y}) & \forall \mathbf{x}\in \mathbf{U}_{x}, \ \mathbf{y}\in \mathbf{U}_{y}. \end{split}$$

 $\mathbf{r}(\mathbf{x}, \mathbf{y}) = r$

2. Modeling

Affine Approximation

Affine policy to approximate point of contact

$$u(x, y) = u_0 + U_x x + U_y y$$

$$= u(\xi) = [u_0 \mid U_x \mid U_y] \xi = \overline{U} \xi$$

$$w(x, y) = w_0 + W_x x + W_y y$$

$$= w(\xi) = [w_0 \mid W_x \mid W_y] \xi = \overline{W} \xi$$

$$\begin{split} \min_{r,\overline{\mathbf{U}},\overline{\mathbf{V}}} r \\ \text{s.t. } \overline{\mathbf{X}} \boldsymbol{\xi} + \boldsymbol{\Sigma}_{\mathbf{X}}^{\frac{1}{2}} \overline{\mathbf{U}} \boldsymbol{\xi} &= \overline{\mathbf{Y}} \boldsymbol{\xi} + \boldsymbol{\Sigma}_{\mathbf{Y}}^{\frac{1}{2}} \overline{\mathbf{W}} \boldsymbol{\xi} \quad \forall \boldsymbol{\xi} \in \boldsymbol{U} \\ \| \overline{\mathbf{U}} \boldsymbol{\xi} \|_{2} &\leq r & \forall \boldsymbol{\xi} \in \boldsymbol{U} \\ \| \overline{\mathbf{W}} \boldsymbol{\xi} \|_{2} &\leq r & \forall \boldsymbol{\xi} \in \boldsymbol{U}. \end{split}$$

 $\mathbf{u}(\mathbf{x},\mathbf{y}) = \mathbf{u}_0 + \mathbf{U}_{\mathbf{x}}\mathbf{x} + \mathbf{U}_{\mathbf{y}}\mathbf{y}$

 $\mathbf{r}(\mathbf{x}, \mathbf{y}) = r$

Affine Approximation

Affine policy to approximate point of contact

$$= \mathbf{u}(\boldsymbol{\xi}) = [\mathbf{u}_0 \mid \mathbf{U}_x \mid \mathbf{U}_y]\boldsymbol{\xi} = \overline{\mathbf{U}}\boldsymbol{\xi}$$

$$\mathbf{w}(\mathbf{x}, \mathbf{y}) = \mathbf{w}_0 + \mathbf{W}_x \mathbf{x} + \mathbf{W}_y \mathbf{y}$$

$$= \mathbf{w}(\boldsymbol{\xi}) = [\mathbf{w}_0 \mid \mathbf{W}_x \mid \mathbf{W}_y]\boldsymbol{\xi} = \overline{\mathbf{W}}\boldsymbol{\xi}$$

$$\begin{split} \min_{r,\overline{\mathbf{U}},\overline{\mathbf{V}}} r \\ \text{s.t. } \overline{\mathbf{X}} \boldsymbol{\xi} + \boldsymbol{\Sigma}_{x}^{\frac{1}{2}} \overline{\mathbf{U}} \boldsymbol{\xi} &= \overline{\mathbf{Y}} \boldsymbol{\xi} + \boldsymbol{\Sigma}_{y}^{\frac{1}{2}} \overline{\mathbf{W}} \boldsymbol{\xi} \quad \forall \boldsymbol{\xi} \in \boldsymbol{U} \\ \| \overline{\mathbf{U}} \boldsymbol{\xi} \|_{2} &\leq r \qquad \qquad \forall \boldsymbol{\xi} \in \boldsymbol{U} \\ \| \overline{\mathbf{W}} \boldsymbol{\xi} \|_{2} &\leq r \qquad \qquad \forall \boldsymbol{\xi} \in \boldsymbol{U}. \end{split}$$

 $\mathbf{r}(\mathbf{x}, \mathbf{y}) = r,$

2. Modeling

Affine Approximation

Affine policy to approximate point of contact

$$\begin{split} \mathbf{u}(\mathbf{x},\mathbf{y}) &= \mathbf{u}_0 + \mathbf{U}_{x}\mathbf{x} + \mathbf{U}_{y}\mathbf{y} \\ &= \mathbf{u}(\boldsymbol{\xi}) = [\mathbf{u}_0 \mid \mathbf{U}_{x} \mid \mathbf{U}_{y}]\boldsymbol{\xi} = \overline{\mathbf{U}}\boldsymbol{\xi} \\ \mathbf{w}(\mathbf{x},\mathbf{y}) &= \mathbf{w}_0 + \mathbf{W}_{x}\mathbf{x} + \mathbf{W}_{y}\mathbf{y} \\ &= \mathbf{w}(\boldsymbol{\xi}) = [\mathbf{w}_0 \mid \mathbf{W}_{x} \mid \mathbf{W}_{y}]\boldsymbol{\xi} = \overline{\mathbf{W}}\boldsymbol{\xi} \end{split} \qquad \begin{aligned} &\min_{r,\overline{\mathbf{U}},\overline{\mathbf{V}}} r \\ \text{s.t. } \overline{\mathbf{X}}\boldsymbol{\xi} + \Sigma_{x}^{\frac{1}{2}}\overline{\mathbf{U}}\boldsymbol{\xi} &= \overline{\mathbf{Y}}\boldsymbol{\xi} + \Sigma_{y}^{\frac{1}{2}}\overline{\mathbf{W}}\boldsymbol{\xi} & \forall \boldsymbol{\xi} \in \boldsymbol{U} \\ &\|\overline{\mathbf{U}}\boldsymbol{\xi}\|_{2} \leq r & \forall \boldsymbol{\xi} \in \boldsymbol{U}. \end{aligned}$$

10 / 21

Algorithm 1 The steps of AjRC for classifying streaming data.

- 1: Initialize: t=1 and previous data points \mathbf{x}_0 and \mathbf{y}_0
- 2: Solve the SDP formulation and obtain policy matrices $\overline{\mathbf{U}}$ and $\overline{\mathbf{W}}$.
- 3: **while** New streaming data point z_t is available **do**
- 4: Let $\boldsymbol{\xi}_t = (1, \mathbf{x}_{\tau_x(t)}, \mathbf{y}_{\tau_y(t)})$.
- 5: Estimate contact point $\mathbf{v} = \overline{\mathbf{X}}\boldsymbol{\xi} + \mathbf{L}_{x}\overline{\mathbf{U}}\boldsymbol{\xi}$.
- 6: Calculate classifiers $\mathbf{g}_1 = 2\Sigma_x^{-1} \mathbf{L}_x \overline{\mathbf{U}} \boldsymbol{\xi}$ and $\mathbf{g}_2 = 2\Sigma_y^{-1} \mathbf{L}_y \overline{\mathbf{W}} \boldsymbol{\xi}$ with $c_i = \mathbf{g}_i^{\top} \mathbf{v}$.
- 7: Evaluate probabilities $\mathbb{P}(\mathbf{g}_i) = p \cdot \mathbb{P}(\mathbf{g}_i^{\top} \mathbf{x} \geq c_i) + (1-p) \cdot \mathbb{P}(\mathbf{g}_i^{\top} \mathbf{y} \leq c_i)$.
- 8: Use surface with higher probability to classify \mathbf{z}_t .
- 9: Record the observed true class of \mathbf{z}_t .
- 10: t = t + 1
- 11: end while

Algorithm 2 The steps of AjRC for classifying streaming data.

- 1: Initialize: t = 1 and previous data points \mathbf{x}_0 and \mathbf{v}_0
- 2: Solve the SDP formulation and obtain policy matrices $\overline{\mathbf{U}}$ and $\overline{\mathbf{W}}$.
- 3: **while** New streaming data point \mathbf{z}_t is available **do**
- 4: Let $\boldsymbol{\xi}_t = (1, \mathbf{x}_{\tau_x(t)}, \mathbf{y}_{\tau_y(t)})$.
- 5: Estimate contact point $\mathbf{v} = \overline{\mathbf{X}}\boldsymbol{\xi} + \mathbf{L}_{x}\overline{\mathbf{U}}\boldsymbol{\xi}$.
- 6: Calculate classifiers $\mathbf{g}_1 = 2\Sigma_x^{-1} \mathbf{L}_x \overline{\mathbf{U}} \boldsymbol{\xi}$ and $\mathbf{g}_2 = 2\Sigma_y^{-1} \mathbf{L}_y \overline{\mathbf{W}} \boldsymbol{\xi}$ with $c_i = \mathbf{g}_i^{\mathsf{T}} \mathbf{v}$.
- 7: Evaluate probabilities $\mathbb{P}(\mathbf{g}_i) = p \cdot \mathbb{P}(\mathbf{g}_i^\top \mathbf{x} \ge c_i) + (1-p) \cdot \mathbb{P}(\mathbf{g}_i^\top \mathbf{y} \le c_i)$.
- 8: Use surface with higher probability to classify \mathbf{z}_t .
- 9: Record the observed true class of \mathbf{z}_t .
- 10: t = t + 1
- 11: end while

Algorithm 3 The steps of AjRC for classifying streaming data.

- 1: Initialize: t=1 and previous data points \mathbf{x}_0 and \mathbf{y}_0
- 2: Solve the SDP formulation and obtain policy matrices $\overline{\mathbf{U}}$ and $\overline{\mathbf{W}}$.
- 3: **while** New streaming data point \mathbf{z}_t is available **do**
- 4: Let $\boldsymbol{\xi}_t = (1, \mathbf{x}_{\tau_x(t)}, \mathbf{y}_{\tau_y(t)})$.
- 5: Estimate contact point $\mathbf{v} = \overline{\mathbf{X}}\boldsymbol{\xi} + \mathbf{L}_{x}\overline{\mathbf{U}}\boldsymbol{\xi}$.
- 6: Calculate classifiers $\mathbf{g}_1 = 2\Sigma_x^{-1} \mathbf{L}_x \overline{\mathbf{U}} \boldsymbol{\xi}$ and $\mathbf{g}_2 = 2\Sigma_y^{-1} \mathbf{L}_y \overline{\mathbf{W}} \boldsymbol{\xi}$ with $c_i = \mathbf{g}_i^{\mathsf{T}} \mathbf{v}$.
- 7: Evaluate probabilities $\mathbb{P}(\mathbf{g}_i) = p \cdot \mathbb{P}(\mathbf{g}_i^{\top} \mathbf{x} \geq c_i) + (1-p) \cdot \mathbb{P}(\mathbf{g}_i^{\top} \mathbf{y} \leq c_i)$.
- 8: Use surface with higher probability to classify \mathbf{z}_t .
- 9: Record the observed true class of \mathbf{z}_t .
- 10: t = t + 1
- 11: end while

Algorithm 4 The steps of AjRC for classifying streaming data.

- 1: Initialize: t=1 and previous data points \mathbf{x}_0 and \mathbf{y}_0
- 2: Solve the SDP formulation and obtain policy matrices $\overline{\mathbf{U}}$ and $\overline{\mathbf{W}}$.
- 3: **while** New streaming data point \mathbf{z}_t is available **do**
- 4: Let $\boldsymbol{\xi}_t = (1, \mathbf{x}_{\tau_x(t)}, \mathbf{y}_{\tau_y(t)})$.
- 5: Estimate contact point $\mathbf{v} = \overline{\mathbf{X}}\boldsymbol{\xi} + \mathbf{L}_{x}\overline{\mathbf{U}}\boldsymbol{\xi}$.
- 6: Calculate classifiers $\mathbf{g}_1 = 2\Sigma_x^{-1} \mathbf{L}_x \overline{\mathbf{U}} \boldsymbol{\xi}$ and $\mathbf{g}_2 = 2\Sigma_y^{-1} \mathbf{L}_y \overline{\mathbf{W}} \boldsymbol{\xi}$ with $c_i = \mathbf{g}_i^{\top} \mathbf{v}$.
- 7: Evaluate probabilities $\mathbb{P}(\mathbf{g}_i) = p \cdot \mathbb{P}(\mathbf{g}_i^{\top} \mathbf{x} \geq c_i) + (1-p) \cdot \mathbb{P}(\mathbf{g}_i^{\top} \mathbf{y} \leq c_i)$.
- 8: Use surface with higher probability to classify z_t .
- 9: Record the observed true class of \mathbf{z}_t .
- 10: t = t + 1
- 11: end while

AjRC Algorithm

Algorithm 5 The steps of AjRC for classifying streaming data.

- 1: Initialize: t=1 and previous data points \mathbf{x}_0 and \mathbf{y}_0
- 2: Solve the SDP formulation and obtain policy matrices $\overline{\mathbf{U}}$ and $\overline{\mathbf{W}}$.
- 3: **while** New streaming data point \mathbf{z}_t is available **do**
- 4: Let $\boldsymbol{\xi}_t = (1, \mathbf{x}_{\tau_x(t)}, \mathbf{y}_{\tau_y(t)})$.
- 5: Estimate contact point $\mathbf{v} = \overline{\mathbf{X}}\boldsymbol{\xi} + \mathbf{L}_{x}\overline{\mathbf{U}}\boldsymbol{\xi}$.
- 6: Calculate classifiers $\mathbf{g}_1 = 2\Sigma_x^{-1} \mathbf{L}_x \overline{\mathbf{U}} \boldsymbol{\xi}$ and $\mathbf{g}_2 = 2\Sigma_y^{-1} \mathbf{L}_y \overline{\mathbf{W}} \boldsymbol{\xi}$ with $c_i = \mathbf{g}_i^{\top} \mathbf{v}$.
- 7: Evaluate probabilities $\mathbb{P}(\mathbf{g}_i) = p \cdot \mathbb{P}(\mathbf{g}_i^{\top} \mathbf{x} \geq c_i) + (1 p) \cdot \mathbb{P}(\mathbf{g}_i^{\top} \mathbf{y} \leq c_i)$.
- 8: Use surface with higher probability to classify \mathbf{z}_t .
- 9: Record the observed true class of \mathbf{z}_t .
- 10: t = t + 1
- 11: end while

AjRC Algorithm

Algorithm 6 The steps of AjRC for classifying streaming data.

- 1: Initialize: t=1 and previous data points \mathbf{x}_0 and \mathbf{y}_0
- 2: Solve the SDP formulation and obtain policy matrices $\overline{\mathbf{U}}$ and $\overline{\mathbf{W}}$.
- 3: **while** New streaming data point \mathbf{z}_t is available **do**
- 4: Let $\boldsymbol{\xi}_t = (1, \mathbf{x}_{\tau_x(t)}, \mathbf{y}_{\tau_y(t)})$.
- 5: Estimate contact point $\mathbf{v} = \overline{\mathbf{X}}\boldsymbol{\xi} + \mathbf{L}_{x}\overline{\mathbf{U}}\boldsymbol{\xi}$.
- 6: Calculate classifiers $\mathbf{g}_1 = 2\Sigma_x^{-1} \mathbf{L}_x \overline{\mathbf{U}} \boldsymbol{\xi}$ and $\mathbf{g}_2 = 2\Sigma_y^{-1} \mathbf{L}_y \overline{\mathbf{W}} \boldsymbol{\xi}$ with $c_i = \mathbf{g}_i^{\top} \mathbf{v}$.
- 7: Evaluate probabilities $\mathbb{P}(\mathbf{g}_i) = p \cdot \mathbb{P}(\mathbf{g}_i^{\top} \mathbf{x} \geq c_i) + (1-p) \cdot \mathbb{P}(\mathbf{g}_i^{\top} \mathbf{y} \leq c_i)$.
- 8: Use surface with higher probability to classify \mathbf{z}_t .
- 9: Record the observed true class of \mathbf{z}_t .
- 10: t = t + 1
- 11: end while

Fast Robust Classifiers for Data Streams

- 1. Introduction
- 2. Modeling
- 3. Numerical Experiments

Visualization

$$\mathbf{x}_{t} = [-0.4, -0.4] + 0.2 \ \mathbf{x}_{\tau_{x}(t)} + 0.05 \ \mathbf{y}_{\tau_{y}(t)} + \epsilon_{x,t}$$
$$\mathbf{y}_{t} = [0, 0.15] + 0.05 \ \mathbf{x}_{\tau_{x}(t)} + 0.2 \ \mathbf{y}_{\tau_{y}(t)} + \epsilon_{y,t}.$$

Synthetic Data. 2 randomly generated time series with Gaussian errors at increasing distances.

Visualization

$$\mathbf{x}_{t} = [-0.4, -0.4] + 0.2 \ \mathbf{x}_{\tau_{x}(t)} + 0.05 \ \mathbf{y}_{\tau_{y}(t)} + \epsilon_{x,t}$$
$$\mathbf{y}_{t} = [0, 0.15] + 0.05 \ \mathbf{x}_{\tau_{x}(t)} + 0.2 \ \mathbf{y}_{\tau_{y}(t)} + \epsilon_{y,t}.$$

Synthetic Data. 2 randomly generated time series with Gaussian errors at increasing distances.

Table: Comparison of the three data stream classifiers on randomly generated time series.

distance	AdRC	Time	AjRC	Time	SAMkNN	Time
	Accuracy	[ms]	Accuracy	[ms]	Accuracy	[ms]
2	76.45	10.3	76.6	0.09	97.3	1.017
2.25	74.65	7.93	74.3	0.05	95.05	0.888
2.5	73.1	8.47	73.05	0.08	96.85	1.177
2.75	72.7	7.65	72.95	0.12	96.2	1.044
3	75.85	8.12	75.3	0.02	95.8	0.884
3.25	94.8	8.23	94.4	0.04	99.05	1.485
3.5	88.65	8.6	88.8	0.03	98.5	1.545
3.75	92.85	8.35	91.85	0.07	99.25	1.287
4	89.65	7.87	90.45	0.02	99.4	1.

Table: Comparison of the three data stream classifiers on randomly generated time series.

distance	AdRC	Time	AjRC	Time	SAMkNN	Time
	Accuracy	[ms]	Accuracy	[ms]	Accuracy	[ms]
2	76.45	10.3	76.6	0.09	97.3	1.017
2.25	74.65	7.93	74.3	0.05	95.05	0.888
2.5	73.1	8.47	73.05	0.08	96.85	1.177
2.75	72.7	7.65	72.95	0.12	96.2	1.044
3	75.85	8.12	75.3	0.02	95.8	0.884
3.25	94.8	8.23	94.4	0.04	99.05	1.485
3.5	88.65	8.6	88.8	0.03	98.5	1.545
3.75	92.85	8.35	91.85	0.07	99.25	1.287
4	89.65	7.87	90.45	0.02	99.4	1.

Comparison to other methods

Evaluation of synthetic data on different classifiers.

Table: Comparison to Scikit Multiflow package.

distance	method	accuracy	kappa	time [ms]
3.5	AdRC	90.1	82.3	1.38
3.5	AjRC	88.8	77.4	0.026
3.5	KNN	95.7	91.4	0.378
3.5	HoeffdingTree	91.4	82.8	0.578
3.5	NaiveBayes	83.7	68.0	0.43
3.5	HATT	93.3	86.5	23.8

Comparison to other methods

Evaluation of synthetic data on different classifiers.

Table: Comparison to Scikit Multiflow package.

method	accuracy	kappa	time [ms]
AdRC	90.1	82.3	1.38
AjRC	88.8	77.4	0.026
KNN	95.7	91.4	0.378
HoeffdingTree	91.4	82.8	0.578
NaiveBayes	83.7	68.0	0.43
HATT	93.3	86.5	23.8
	AdRC AjRC KNN HoeffdingTree NaiveBayes	AdRC 90.1 AjRC 88.8 KNN 95.7 HoeffdingTree 91.4 NaiveBayes 83.7	AdRC 90.1 82.3 AjRC 88.8 77.4 KNN 95.7 91.4 HoeffdingTree 91.4 82.8 NaiveBayes 83.7 68.0

- 1. We present an extension of the MPM model to classify streaming observations.
- 2. The affinely adjustable classifier directly embeds the time series into the optimization problem and leverages decision rules for adjusting the classifier to new observations.
- 3. We evaluate the performance of these models on numerical experiments and illustrate their benefits on synthetic data.

References

- Anagnostopoulos, Christoforos et al. (2012). "Online linear and quadratic discriminant analysis with adaptive forgetting for streaming classification". In: *Statistical Analysis and Data Mining: The ASA Data Science Journal* 5.2, pp. 139–166.
 - Das, Monidipa et al. (2020). "A Skip-Connected Evolving Recurrent Neural Network for Data Stream Classification under Label Latency Scenario". In: *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 34, 04, pp. 3717–3724.
 - Jia, Xiaowei et al. (2017). "Incremental dual-memory Istm in land cover prediction". In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 867–876.
 - Krawczyk, Bartosz and Michał Woźniak (2015). "One-class classifiers with incremental learning and forgetting for data streams with concept drift". In: *Soft Computing* 19.12, pp. 3387–3400.
 - Ksieniewicz, Paweł et al. (2019). "Data stream classification using active learned neural networks". In: *Neurocomputing* 353, pp. 74–82.

References

- (2017). "Learning Non-Linear Dynamics of Decision Boundaries for Maintaining Classification Performance.". In: AAAI, pp. 2117–2123.
- (2018). "Learning Dynamics of Decision Boundaries without Additional Labeled Data". In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, pp. 1627–1636.
 - Lanckriet, Gert RG, Laurent El Ghaoui, and Michael I Jordan (2003). "Robust novelty detection with single-class MPM". In: *Advances in neural information processing systems*, pp. 929–936.
- Li, Hu et al. (2017). "Multi-window based ensemble learning for classification of imbalanced streaming data". In: World Wide Web 20.6, pp. 1507–1525.
 - Lobo, Jesus L et al. (2020). "Spiking neural networks and online learning: An overview and perspectives". In: *Neural Networks* 121, pp. 88–100.

Nguyen, Hai-Long, Yew-Kwong Woon, and Wee-Keong Ng (2015). "A survey on data stream clustering and classification". In: *Knowledge and information systems* 45.3, pp. 535–569.

Žliobaitė, Indrė et al. (2013). "Active learning with drifting streaming data". In: *IEEE transactions on neural networks and learning systems* 25.1, pp. 27–39.

Wind Speed Classification

Table: Accuracy of meteorology data stream classification for wind speeds.

AutoCorr	AdRC	Time	AjRC	Time	SAMkNN	Time
	Accuracy	[ms]	Accuracy	[ms]	Accuracy	[ms]
1	58.3878	0.253	76.07843	0.0349	88.061	2.399
2	58.91068	0.236	73.20261	0.0453	88.061	2.816
3	63.44227	0.257	71.15468	0.0418	88.061	1.846
4	64.18301	0.231	61.04575	0.0453	88.061	1.929
5	66.05664	0.248	74.16122	0.0440	88.061	1.483
6	67.40741	0.278	73.24619	0.0684	88.061	1.834
7	68.49673	0.298	68.23529	0.0697	88.061	1.829