FAWAZ MALLICK

BIOMEDICAL ENGINEERING | ROWAN UNIVERSITY

856-652-4171

ROBOTIC PATH PLANNING & HAPTIC FEEDBACK FOR FRACTURE REDUCTION

Research Project | August 2023 - May 2024

What?

- algorithm for calculating optimal path for femur fracture reduction surgery
- · Integrate the path with haptic feedback & visual fixtures for robot assisted . Model haptic feedback force as spring surgery system

How?

- Create & implement novel path finding Create novel algorithm based on A* search in Matlab
 - Implement Bezier curves generate smooth path
 - mass damper system

Results

- Successful realignment with maximal deviation of 3.0 mm translationally,
- and 1.5 deg rotationally

BIOMECHANICAL SIMULATION OF HUMAN-EXOSKELETON INTERACTION

Research Project | August 2024 - May 2025

Results

- Plotted force patterns for various motions such as walking, sideststepping, squatting, and stepping from FSRs
- · Retrieved force patterns from model motion using
- · Overlaped both plots for data analysis

What?

• Use Opensim for biomechanical modeling of interaction between human subject and lower limb exoskeleton device

Research Project | August 2024 - May 2025

How?

- · Modelled device as simple geometry using CAD (Solidworks)
- Defined model joints and attached it to human model
- · Modeled interaction force using springs at points of contact
- Appended motion from IMUs to model, used arduino for reading IMU data
- Experimental verification, using FSRs

EXOSKELETON DESIGN FOR GAIT STABILIZATION

What?

- Collaborated to create exoskeleton device.
- Led the team through iterative risk analysis, and change design to comply with ISO, ASTM and other relevant standards.
- · Led the design of test procedures to ensure user compatability and ergonomics
- Used Solidworks, and machines (laser cutting, 3D Printing, Drill Press) to fabricate mechanical parts
- . Benchtop and human testing to ensure part reliability
- · List possible hazards and score them based on severity and likelihood.
- · Re-design hazardous parts for safety
- Used published studies and predicate devices to design test procedures and ergonomics questionnaires

FAWAZ MALLICK

BIOMEDICAL ENGINEERING | ROWAN UNIVERSITY

fawazmallick9@gmail.com

856-652-4171

AI-BASED FRACTURE DETECTION

Course Project | August 2024 - May 2025

What?

 Use AI to determine point of fracture and optimal location for surgery

How?

- Used ResNet 50 model in Matlab
- Manually annotated fracture dataset
- Trained Al model using dataset
- · Gave un-annotated data to model, to verify model effectiveness

Results

· Al predictions closely matched human prediction

FEA & MECHANICAL DESIGN

Technical Coursework | January 2025 - May 2025

How?

- · Matlab for cost estimation of parts depending properties such as density, volume, and number
- · Soliworks for design of parts, implementing meshes, and deformation, and stresses in different location of parts.

What?

- Used SolidWorks to design mechanical components for various applications, and applied FEA principles to evaluate their performance.
- Developed MATLAB scripts to test parts under different material properties and cost constraints, guiding final design decisions based on stress and deformation analysis.

MEDICAL DEVICE DEVELOPMENT (COURSEWORK) Bootcamp | January 2025 - May 2025

		Paler Salvant Ware (rig)						See Selvert Free (red						Non-Police Solvent Mass (reg)					
ы	Cycle	teur	Particulate	-	1	Date	200	Edut	Participa	-	5700	Date	25	Educt	Common	-	Street	Date	ĸ
_	_	504	Tache				-	- 100	Toolin	61 N B 1			_	- 100	Tools	F 7 18 1			-
	_	1404	Tables.					100	Contra.	ALCOHOL: AN		100		100	Junton.				
	_	1000	Tanks.			114		100	Continu.		ALK A	226	100	100	Contra.				
в																			
	-	100	London.	2000	1000		_	-	- min	-	-			-	Contra-		-	-	
-	-		2950	MALE N	200.0	-	1,000		12901	100.0	2000.0	120	100		12850	10,554,0		-	_
	_	100	Parks.		-			100	Section 1	17 10 10	0.00	110	100	100	Toronto.				

What?

Simulated the FDA approval process for a hip implant as part of a mock medical device company. How?

- · Rotated through roles including COO, Engineering Lead, and Audit Coordinator to oversee regulatory, technical, and quality operations
- Trained team members on SOPs and interpreted ISO standards for compliance
- · Conducted mechanical, chemical, and toxicological risk assessments following ISO guidelines
- · Responded to mock FDA communications and prepared documentation for device approval

FAWAZ MALLICK

BIOMEDICAL ENGINEERING | ROWAN UNIVERSITY fawazmallick9@gmail.com

BIOMECHANICS - RELEVANT COURSEWORK

Technical Coursework | January 2025 - May 2025

What?

Learned to apply mechanical engineering principles to human movement, injury analysis, and safety systems. Studied human gait, posture, and crash biomechanics, including the **Head Injury Criterion (HIC)**—a metric used to assess head injury risk in impacts.

How?

- Used anthropometric data to calculate joint forces, torques, and loading
- Analyzed gait abnormalities and corrective strategies
- Reviewed crash testing methods and injury thresholds based on HIC scores

INTRODUCTION TO ROBOTICS - RELEVANT COURSEWORK

Technical Coursework | August 2024 - December 2024

What?

- · Gained foundational understanding of robotic systems, including inverse and forward kinematics, Denavit-Hartenberg (D-H) conventions, robot pose estimation, and workspace analysis.
- Explored the effects of joint configurations and singularities on endeffector behavior.
- · Also covered basic concepts in computer vision and image processing.

How?

- Used the Peter Corke Robotics Toolbox in MATLAB to model robotic manipulators and simulate motion
- · Programmed and visualized forward and inverse kinematics across various joint configurations.
- Generated workspace plots and animated robot motion to evaluate pose behavior under different kinematic conditions
- · Analyzed the effects of singularities on robot manipulability and task-space accuracy