

Traccia:

Durante la lezione teorica, abbiamo affrontato gli argomenti riguardanti la business continuity e disaster recovery.

Nell'esempio pratico di oggi, ipotizziamo di essere stati assunti per valutare **quantitativamente** l'impatto di un determinato disastro su un asset di una compagnia.

Con il supporto dei dati presenti nelle tabelle che seguono, calcolare la **perdita annuale** che subirebbe la compagnia nel caso di:

_				
П	Inondazione	tasse'llus a	"Aditicio	secondario»
ш.	IIIOIIGAZIOIIC	. Juli assct	"CUITICIO	3CCOHGGHO"

- ☐ Terremoto sull'asset «datacenter»
- ☐ Incendio sull'asset «edificio primario»
- ☐ Incendio sull'asset «edificio secondario»
- ☐ Inondazione sull'asset «edificio primario»
- ☐ Terremoto sull'asset «edificio primario»

Dati:

ASSET	VALORE
Edificio primario	350.000€
Edificio secondario	150.000€
Datacenter	100.000€

EVENTO	ARO
Terremoto	1 volta ogni 30 anni
Incendio	1 volta ogni 20 anni
Inondazione	1 volta ogni 50 anni

EXPOSURE FACTOR	Terremoto	Incendio	Inondazione
Edificio primario	80%	60%	55%
Edificio secondario	80%	50%	40%
Datacenter	95%	60%	35%

Parametri addizionali W18/D5: uguali per tutti gli asset.

	Terremoto	Incendio	Inondazione
ACS	40.000€	25.000€	10.000€
Mitigation ratio	60%	85%	30%
V	40%	60%	88%

Svolgimento:

Per svolgere le richieste contenute nella traccia dobbiamo calcolare prima lo SLE (quindi il valore dell'impatto di un dato evento) e poi l' ALE (quindi l'impatto annuale rispetto alla possibilità che si verifichi quel dato evento)

Per un ampliamento dell'esercizio andiamo a calcolare l'indicatore ROSI per ogni soluzione

Inondazione edificio secondario

```
SLE = 150.000 * 0,40 = 60.000 €

ALE = 60.000 * 0,02 = 1.200,00 € / anno

ROSI = ((1.200,00 € * 30\%) - 10.000,00 €) / 10.000,00 € = 2,6 %

ROSI = ((1.200,00 € * 30\%) - (10.000,00 € / 30 anni)) / (10.000 / 30 anni) = 107 %

d = 150.000 * 0,02 * 0,88 = 2.640

Invest = 0,37 * 2.640,00 = 976,80 € / anno
```

Terremoto su Data Center

```
SLE = 100.000 * 0,95 = 95.000 €
ALE = 95.000 * 0,03 = 2.850 € / anno
```

Incendio edificio primario

```
SLE = 350.000 * 0,60 = 210.000 €
ALE = 210.000 * 0,05 = 10.500 € / anno
```

Incendio edificio secondario

```
SLE = 150.000 * 0,50 = 75.000 €
ALE = 75.000 * 0,05 = 3.750,00 € / anno
```

Inondazione su edificio primario

```
SLE = 350.000 * 0,55 = 192.500 €
ALE = 192.500 * 0,02 = 3.850,00 € / anno
```

Terremoto su Edificio Primario

```
SLE = 350.000 * 0.8 = 280.000,00 €
ALE = 280.000 * 0.03 = 8.400,00 € / anno
```