Answers to 1.2 exercises

1.2 Exercise 1

- 1. a) 0.10 b) 0.078 c) 5500 d) 0.16 e) 0.022
- 2. a) 3.6 g b) 14.9 g c) 5.6 g d) 39.9 kg e) 6.8 g
- 3. a) $28 (N_2)$ b) 40 (Ca) c) $160 (Br_2)$ d) $28 (N_2)$ e) $249.6 (CuSO_4.5H_2O)$
- 4. a) 1.51×10^{22} b) 3.42×10^{22} c) 1.45×10^{22} d) 2.15×10^{24}
- 5. a) 11.7 g b) 110 g c) 8.07 mg
- 6. 1.06 g 7. 729 g 8. 43.3 g, 11.0 g
- 9. 8.48 g, 9.81 g 10. 1000 tonnes, 527 tonnes
- 11. a) 51.7% b) 17.0 % c) 87.2 %
- 12. a) 51.7 % b) 67.4% c) 52.2 % so (b) most efficient

1.2 Exercise 2

Using molarities and concentrations:

- 1. 0.025 2. 5.0×10^{-3} 3. 0.079 g 4. 0.993 g
- 5. 0.043 moldm⁻³ 6. 0.24 moldm⁻³ 7. 30 cm³
- 8. 10 cm^3 9. 0.021

Reacting masses and volumes:

1. 0.05 moldm⁻³ 2. 0.092 moldm⁻³ 3. 1.76 gdm⁻³ 4. x = 3 5. 1.04 moldm⁻³ 6. 459 cm³ 7. 85.2, Rb 8. x = 10

1.2 Exercise 3

- 1. 24.4 dm³ 2. 48.7 kPa 3. 58.5 K 4. 35.8 g
- 5. 31.7 6. a) 149 K, b) 149 K
- 7. a) 5.80 dm³, b) 1.45 dm³, c) 7.25 dm³ 8. 37.2 cm³
- 9. a) 51.8 cm^3 , b) 43.3 g, c) 3.85 dm^3 10. $0.098 \text{ g, } 4.04 \text{ cm}^3$
- 11. a) 280 cm³, b) 0.22 moldm⁻³

1.2 Exercise 4

1. C₃H₆O 2. C₂H₅Br 3. C₄H₈ 4. C₈H₁₈ 5. C₆H₆ 6. Fe₂O₃ 7. 16.6 % Si, 83.4 % Cl 8. 327 kg

1.2 Exercise 5

A:

- 1. NaCl 2. AlCl₃ 3. (NH₄)₂SO₄ 4. Mg(NO₃)₂ 5. MgO 6. Cu(OH)₂ 7. Al₂O₃ 8. Na₂CO₃ 9. Cu₂O 10. CuO 11. Al₂(SO₄)₃ 12. PbS
- 13. PbO₂ 14. Ca₃N₂

B:

- 1. $MgCl_2(aq) + 2AgNO_3(aq) \rightarrow Mg(NO_3)_2(aq) + 2AgCl(s)$ $Ag^+(aq) + Cl^-(aq) \rightarrow AgCl(s)$
- 2. $Al_2(SO_4)_3(aq) + 6NaOH(aq) \rightarrow 2Al(OH)_3(s) + 3Na_2SO_4(aq)$ $Al^{3+}(aq) + 3OH^{-}(aq) \rightarrow Al(OH)_3(s)$
- 3. BaCl₂(aq) + Na₂SO₄(aq) \rightarrow BaSO₄(s) + 2NaCl(aq) Ba²⁺(aq) + SO₄²⁻(aq) \rightarrow BaSO₄(s)
- 4. $H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$ $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$
- 5. $\text{CuSO}_4(\text{aq}) + 2\text{KOH}(\text{aq}) \rightarrow \text{Cu(OH)}_2(\text{s}) + \text{K}_2\text{SO}_4(\text{aq})$ $\text{Cu}^{2+}(\text{aq}) + 2\text{OH}^-(\text{aq}) \rightarrow \text{Cu(OH)}_2(\text{s})$
- 6. $Pb(NO_3)_2(aq) + 2HCl(aq) \rightarrow PbCl_2(s) + 2HNO_3(aq)$ $Pb^{2+}(aq) + 2OH(aq) \rightarrow PbCl_2(s)$
- 7. $\operatorname{CaCl_2(aq)} + \operatorname{H_2SO_4(aq)} \rightarrow \operatorname{CaSO_4(s)} + 2\operatorname{HCl(aq)}$ $\operatorname{Ca}^{2+}(\operatorname{aq}) + \operatorname{SO_4}^{2-}(\operatorname{aq}) \rightarrow \operatorname{CaSO_4(s)}$
- 8. $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$ $CaCO_3(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + CO_2(g) + H_2O(l)$
- 9. $H_2SO_4(aq) + Na_2CO_3(aq) \rightarrow Na_2SO_4(aq) + CO_2(g) + H_2O(l)$ $2H^+(aq) + CO_3^{2-}(aq) \rightarrow CO_2(g) + H_2O(l)$
- 10. $\operatorname{CaCl}_{2}(\operatorname{aq}) + \operatorname{Na}_{2}\operatorname{CO}_{3}(\operatorname{aq}) \rightarrow 2\operatorname{NaCl}(\operatorname{aq}) + \operatorname{CaCO}_{3}(s)$ $\operatorname{Ca}^{2+}(\operatorname{aq}) + \operatorname{CO}_{3}^{2-}(\operatorname{aq}) \rightarrow \operatorname{CaCO}_{3}(s)$
- 11. $NH_3(g) + HNO_3(aq) \rightarrow NH_4NO_3(aq)$ $NH_3(g) + H^+(aq) \rightarrow NH_4^+(aq)$

1.2 Exercise 6

1. n = 2 2. x = 10 3. 1.80 moldm⁻³, 108 gdm⁻³ 4.73.9 % 5. 57.2 % 6. 66.3 % 7. x = 7