Unifikation

Definition: Gegeben sei Signatur

$$\Sigma = \langle \mathbb{T}, \mathit{Fz}, \mathit{Pz}, \mathtt{sign}_F, \mathtt{sign}_P, \mathcal{V}, \mathit{var} \rangle$$

 Σ -Substitution: endliche Menge von Paaren der Art

$$\sigma = \left\{ \langle x_1, t_1 \rangle, \cdots, \langle x_n, t_n \rangle \right\}.$$

mit

- 1. $x_i \in \mathcal{V}$ für alle $i \in \{1, \dots, n\}$ Die x_i sind Variablen.
- 2. $x_i \in var(\tau) \Rightarrow t_i \in \mathcal{T}_{\tau}$ für alle $i \in \{1, \dots, n\}$ Die Terme t_i haben den gleichen Typ wie x_i .
- 3. $i \neq j \Rightarrow x_i \neq x_j$ für alle $i, j \in \{1, \dots, n\}$ Die x_i sind paarweise verschieden.

Schreibweise:

$$\sigma = [x_1 \mapsto t_1, \cdots, x_n \mapsto t_n].$$

Definition: Domain von σ

$$dom(\sigma) := \{x_1, \cdots, x_n\}.$$

Substitutions—Anwendung

Gegeben:

1. *t*: Term

2.
$$\sigma = [x_1 \mapsto s_1, \dots, x_n \mapsto s_n]$$
: Substitution

Anwendung von σ auf t:

Ersetze x_i durch s_i .

Induktive Definition: $t\sigma$ (Anwendung von σ auf t)

- 1. t ist Variable:
 - (a) $x_i \sigma := s_i$.
 - (b) $y\sigma := y$, falls $y \in \mathcal{V}$, aber $y \notin \{x_1, \dots, x_n\}$.
- 2. $f(t_1, \dots, t_n)\sigma := f(t_1\sigma, \dots, t_n\sigma)$.

Sei $p(t_1, \dots, t_n)$ atomare Formel

$$p(t_1, \dots, t_n)\sigma := p(t_1\sigma, \dots, t_n\sigma).$$

Sei f quantorenfreie Formel.

Induktive Definition von $f\sigma$

- 1. $(\neg f)\sigma := \neg (f\sigma)$.
- 2. $(f_1 \wedge f_2)\sigma := f_1\sigma \wedge f_2\sigma$.
- 3. $(f_1 \vee f_2)\sigma := f_1\sigma \vee f_2\sigma$.

Komposition von Substitutionen

Gegeben:

1.
$$\sigma = [x_1 \mapsto s_1, \cdots, x_m \mapsto s_m]$$

$$2. \ \tau = [y_1 \mapsto t_1, \cdots, y_n \mapsto t_n]$$

3.
$$dom(\sigma) \cap dom(\tau) = \emptyset$$

Definition: $\sigma \tau$ (*Komposition* von σ und τ)

$$\sigma \tau := [x_1 \mapsto s_1 \tau, \cdots, x_m \mapsto s_m \tau, y_1 \mapsto t_1, \cdots, y_n \mapsto t_n]$$

Satz: Gegeben

- 1. *t*: Term
- 2. σ , τ : Substitutionen

Dann gilt: $(t\sigma)\tau = t(\sigma\tau)$

Definition: Gegeben

- 1. s, t: Terme vom selben Typ, oder
- 2. s, t: atomare Formeln.

Dann ist $s \doteq t$ eine syntaktische Gleichung.

$$E = \{s_1 \doteq t_1, \cdots, s_n \doteq t_n\}$$

heißt syntaktisches Gleichungssystem

Unifikator

Gegeben:

1. Syntaktisches Gleichungssystem

$$E = \{s_1 \doteq t_1, \cdots, s_n \doteq t_n\},\$$

2. Substitution σ .

Definition: σ ist *Unifikator* von E g.d.w.

$$s_i \sigma = t_i \sigma$$
 für alle $i = 1, \dots, n$.

Beobachtung: Sei

1. E: syntaktisches Gleichungssystem,

2. σ : Substitution

3. σ sei Unifikator von E,

4. τ : Substitution mit $dom(\tau) \cap dom(\sigma) = \emptyset$

Behauptung: $\sigma\tau$ Unifikator von E

Definition: Unifikator σ ist allgemeiner als Unifikator $\sigma\tau$.

Signatur Σ_{Stack} für Stacks

 $\Sigma_{Stack} := \langle \mathbb{T}, \mathit{Fz}, \mathit{Pz}, \mathtt{sign}_F, \mathtt{sign}_P, \mathcal{V}, \mathit{var} \rangle$

- 1. $\mathbb{T} := \{\mathbb{B}, \mathbb{N}, Stack\}$
- 2. $Fz := \{0, s, nil, push, pop, top\}$
- 3. $Pz := \{empty, =_O, =_S\}$ Typ-Spezifikationen:
 - (a) $0: \mathbb{N}$
 - (b) $s: \mathbb{N} \to \mathbb{N}$ Interpretation: s(n) = n + 1
 - (c) nil: Stack
 - (d) $push : \mathbb{N} \times Stack \rightarrow Stack$
 - (e) pop: Stack → Stack
 - (f) $top : Stack \rightarrow \mathbb{N}$
 - (g) $empty : Stack \rightarrow \mathbb{B}$
 - (h) $=_{O}: \mathbb{N} \times \mathbb{N} \to \mathbb{B}$
 - (i) $=_S$: $Stack \times Stack \rightarrow \mathbb{B}$
- 4. $V := \{x_i | i \in \mathbb{N}\} \cup \{s_i | i \in \mathbb{N}\}.$
- 5. $var(\mathbb{N}) := \{x_i | i \in \mathbb{N}\}.$
- 6. $var(Stack) := \{s_i | i \in \mathbb{N}\}.$

Lösung syntaktischer Gleichungen

Definition: Ein Gleichungssystem der Form

$$\{x_1 \doteq t_1, \cdots, x_n \doteq t_n\}$$

ist trivial g.d.w.

- 1. $x_i \in \mathcal{V}$ für alle $i \in \{1, \dots, n\}$,
- 2. $x_i \notin var(t_j)$ für alle $i, j \in \{1, \dots, n\}$ und
- 3. $i \neq j \Rightarrow x_i \neq x_j$ für alle $i, j \in \{1, \dots, n\}$.

Satz: Sei $E := \{x_1 \stackrel{.}{=} t_1, \cdots, x_n \stackrel{.}{=} t_n\}$ trivial.

Dann ist $\sigma := [x_1 \mapsto t_1, \cdots, x_n \mapsto t_n]$ Lösung von E.

Dann **definiere**: $Subst(E) := \sigma$

Definition: Eine syntaktische Gleichung e ist offensichlich unlösbar

falls einer der folgenden Fälle vorliegt:

- 1. $e = (x \doteq t)$ mit $t \neq x$ und $x \in Var(t)$
- 2. $e = (g(s_1, \dots, s_m) = f(t_1, \dots, t_n))$ mit $f \neq g$.

Satz: Sei

- 1. $s \doteq t$ offensichlich unlösbar und
- 2. σ beliebige Substitution.

Dann gilt: $s\sigma \neq t\sigma$.

Martelli-Montanari-Regeln

1. Falls $y \in \mathcal{V}$ mit $y \notin Var(t)$:

$$\langle E \cup \{y \doteq t\}, \sigma \rangle \quad \leadsto \quad \langle E[y \mapsto t], \sigma[y \mapsto t] \rangle$$

2. Falls $y \in \mathcal{V}$ mit $y \in Var(t)$:

$$\langle E \cup \{y \doteq t\}, \ \sigma \rangle \ \leadsto \ \Omega.$$

3. Falls $y \in \mathcal{V}$ und $t \notin \mathcal{V}$:

$$\langle E \cup \{t \doteq y\}, \sigma \rangle \quad \leadsto \quad \langle E \cup \{y \doteq t\}, \sigma \rangle.$$

4. Falls $x \in \mathcal{V}$:

$$\langle E \cup \{x \doteq x\}, \sigma \rangle \quad \leadsto \quad \langle E, \sigma \rangle.$$

5. Falls f n-stelliges Funktions-Zeichen:

$$\langle E \cup \{ f(s_1, \dots, s_n) \doteq f(t_1, \dots, t_n) \}, \sigma \rangle$$

$$\langle E \cup \{ s_1 \doteq t_1, \dots, s_n \doteq t_n \}, \sigma \rangle.$$

6. Falls $f \neq g$;

$$\langle E \cup \{f(s_1, \dots, s_m) \doteq g(t_1, \dots, t_n)\}, \sigma \rangle \rightsquigarrow \Omega.$$

Eigenschaften der Martelli-Montanari-Regeln

Satz: Invariante

Vor.: $\langle E_1, F_2 \rangle \rightsquigarrow \langle E_2, F_2 \rangle$

Beh: σ löst $E_1 \cup F_1$ g.d.w. σ löst $E_2 \cup F_2$.

Satz: Terminierung

Beh.: Es gibt keine unendliche Folge $\langle E_n, F_n \rangle$ mit $\langle E_n, F_n \rangle \leadsto \langle E_{n+1}, F_{n+1} \rangle$ für alle $n \in \mathbb{N}$.

Definition: $\langle E_1, F_1 \rangle$ ist maximal reduziert g.d.w. es gibt kein $\langle E_2, F_2 \rangle$ mit $\langle E_1, F_1 \rangle \rightsquigarrow \langle E_2, F_2 \rangle$

Satz: Sei $E_1 := E$, $F_1 := \emptyset$

- 1. $\langle E_1, F_1 \rangle \rightsquigarrow \langle E_2, F_2 \rangle \rightsquigarrow \cdots \rightsquigarrow \langle E_n, F_n \rangle$
- 2. $\langle E_n, F_n \rangle$ maximal reduziert

Dann gilt $E_n = \emptyset$ und entweder

- 1. F_n trivial und $Subst(F_n)$ Lösung von E oder
- 2. F_n offensichlich unlösbar und E unlösbar.

Unifikation Seite 8