COM 5120 Communications Theory

Chapter 11 Multi-carrier Communications

Prof. Jen-Ming Wu
Inst. Of Communications Engineering
Dept. of Electrical Engineering
National Tsing Hua University
Email: jmwu@ee.nthu.edu.tw

Outline

- Lecture 1: Single carrier vs Multi-carrier
 Communications
- ✓ Multicarrier capacity
- ✓ Power allocation of multicarrier communications
- Lecture 2: Orthogonal Frequency Division Multiplexing(OFDM)
- ✓ OFDM architecture
- ✓ Implementation of OFDM with IDFT/DFT
- ✓ Channel effect for OFDM signaling
- ✓ PAPR problem in OFDM

The multicarrier communication approach divide the available channel bandwidth into *N* subchannels, such that each subchannel has nearly flat fading.

Motivation:

Complicated equalizer could be saved or replaced with simple (i.e. short-length)

equalizer.

Given that frequency-selective fading channel with bandwidth B.

Divide the bandwidth into N subchannels. $B = N\Delta f$ The capacity of each subchannel is

$$C_i = \Delta f \log_2 \left[1 + \frac{\Delta f P(f_i) |H(f_i)|^2}{\Delta f S_{nn}(f_i)}\right]$$

where $P(f_i)$ is the power spectral density of transmit signal. i.e. $\Delta fP(f_i)$ is the power at subchannel i, $H(f_i)$ is the channel fading gain at f_i $S_{nn}(f_i)$ is the PSD of noise. 4

The total capacity is

$$C = \sum_{i=1}^{N} C_i = \Delta f \sum_{i=1}^{N} \log_2 \left[1 + \frac{P(f_i) |H(f_i)|^2}{S_{nn}(f_i)}\right]$$

The transmit signal power is allocated over the subchannels subject to constraint $\sum_{i=P}^{N} P_i = P$, where $P_i = \Delta f P(f_i)$

With power allocation of $P(f_i)$, the total capacity C can be maximized.

Q: How to find $\{P(f_i), i = 1 \sim N\}$ to maximize C while satisfying the power constraint?

➤ With the help of Lagrange multiplier, joint consideration of the objective function and the constraint can be formulated as,

$$J = C + \lambda (P - \sum_{i=1}^{N} P_i)$$

$$= \Delta f \sum_{i=1}^{N} \log_2 \left[1 + \frac{P(f_i) |H(f_i)|^2}{S_{nn}(f_i)}\right] + \lambda [P - \Delta f \sum_{i=1}^{N} P(f_i)]$$

The *J* is maximized when $\frac{\partial J}{\partial P(f_i)} = 0, i = 1,...N$

Note that
$$\frac{d \ln x}{dx} = \frac{1}{x}$$
, $\frac{d \ln(1+ax)}{dx} = \frac{d \ln(1+ax)}{d(1+ax)} \frac{d(1+ax)}{dx} = \frac{1}{x+\frac{1}{a}}$
Let $x_i = P(f_i)$, $a_i = \frac{\left|H(f_i)\right|^2}{S_{nn}(f_i)}$
 $\Rightarrow J = \Delta f \sum_{i=1}^{N} \log_2 \left[1 + \frac{x_i \left|H(f_i)\right|^2}{S_{nn}(f_i)}\right] + \lambda \left[P - \Delta f \sum_{i=1}^{N} x_i\right]$
 $\frac{\partial J}{\partial P(f_i)} = \Delta f \cdot \frac{\log_2 e}{P(f_i) + \frac{S_{nn}(f_i)}{\left|H(f_i)\right|^2}} - \lambda \Delta f = 0$, $i = 1, ..., N$

$$\Rightarrow \lambda = \frac{\log_2 e}{P(f_i) + \frac{S_{nn}(f_i)}{|H(f_i)|^2}}$$

$$\Rightarrow \begin{cases} P(f_i) = \frac{1}{\lambda \ln 2} - \frac{S_{nn}(f_i)}{|H(f_i)|^2}, & i = 1, ...N \\ \Delta f \sum_{i=1}^{N} P(f_i) = P \end{cases}$$

N+1 linear equations for N+1 variables,

$$P(f_i), i = 1,...,N$$
, and λ

Besides, $P(f_i) \ge 0$, for all f_i

$$\Rightarrow P(f_i) = \left[\frac{1}{\lambda \ln 2} - \frac{S_{nn}(f_i)}{\left| H(f_i) \right|^2} \right]^+, i = 1 \sim N, \text{ where } [x]^+ \equiv \max\{x, 0\}$$

• Analogy to water-filling power allocation with water level= $\frac{1}{2 \ln 2}$

$$P(f_i) + \frac{S_{nn}(f_i)}{\left|H(f_i)\right|^2} = \frac{1}{\lambda \ln 2} = \text{constant}$$

$$\frac{S_{nn}(f_i)}{\left|H(f_i)\right|^2} \underset{\text{noise level with different channel}}{\Rightarrow \text{More power allocated for better subchannel}}$$

$$i \text{ a. as} \quad S_{nn}(f_i) = P(f_i) \uparrow$$

i.e. as
$$\frac{S_{nn}(f_i)}{\left|H(f_i)\right|^2} \downarrow$$
, $P(f_i) \uparrow$

- What if the $P(f_i) < 0$ in the calculation?
- > Iterative water-filling (IWF) power allocation is needed.
- Q: What happen to the water level when Iterative water-filling is needed?

Power Allocation Strategy Applications

 The power allocation strategy can be applied to many other daily life scenario, such as time management, resource management, and investment, etc.

Bit and Power Allocation in Multicarrier Modulation

- Assume N subcarriers and M_i points QAM modulation symbols on each subcarrier
- $\rightarrow M_i = 2^{b_i}$, and b_i bits transmitted on each subcarrier.

 The total bit rate $R_b = \frac{1}{T} \sum_{i=1}^{N} b_i$
- •The power allocated on subcarrie

- power allocated is $P = \sum_{i=1}^{N} P_i$ •The QAM error probability on subcarrier i is $P_e \cong 4Q \left(\sqrt{\frac{3P_i \left| c_i \right|^2}{N_0 (M_i 1)}} \right)$
- \rightarrow Given P_i and P_e requirement, the QAM modulation order M_i can be

determined by
$$Q\left(\sqrt{\frac{3P_i|c_i|^2}{N_0(M_i-1)}}\right) \leq \frac{P_e}{4}$$
. Hence $R_b = \sum_{i=1}^N \frac{\log_2 M_i}{T}$ is determined.

Outline

- Lecture 1: Single carrier vs Multi-carrier Communications
- ✓ Multicarrier capacity
- ✓ Power allocation of multicarrier communications

- Lecture 2: Orthogonal Frequency Division Multiplexing(OFDM)
- ✓ OFDM architecture
- ✓ Implementation of OFDM with IDFT/DFT
- ✓ Channel effect for OFDM signaling
- ✓ PAPR problem in OFDM

- The available channel bandwidth B_T is divided into N subchannels, each of bandwidth Δf , i.e, $B_T = N\Delta f$
- Assign a subcarrier signal for each subchannel.
 Suppose each subcarrier is modulated with M-ary
 QAM symbols. Then the signal on the kth subcarrier:

$$s_{k}(t) = \sqrt{\frac{2}{T}} A_{ki} \cos(2\pi f_{k}t) - \sqrt{\frac{2}{T}} A_{kq} \sin(2\pi f_{k}t), k = 0,1,...N - 1$$

$$= \text{Re}\{\sqrt{\frac{2}{T}} X_{k} e^{j2\pi f_{k}t}\}$$
where $X_{k} = A_{ki} + jA_{kq}, A_{ki}, A_{kq} \in \{\pm 1, \pm 3, ... \pm (M-1)\}$

Define
$$\phi_k(t) = \sqrt{\frac{2}{T}} e^{j2\pi f_k t}, 0 \le t \le T$$

$$\Rightarrow \int_{0}^{T} \varphi_{k}(t) \varphi_{j}^{*}(t) dt = \begin{cases} 1, k = j \\ 0, k \neq j \end{cases}$$

 X_k represents the modulated symbols at sample rate of f_s , where $f_s = 1/T_s = B_T$ and $T = NT_s$

Time domain
$$\varphi_k(t) = \sqrt{\frac{2}{T}} e^{j2\pi f_k t}, \ 0 \le t \le T$$

Freq domain:
$$\phi_k(f) = \sqrt{2T} \operatorname{sinc} \left[2\pi (f - f_k)T \right]$$

Orthogonally spaced overlapping subcarriers

Subcarrier Orthogonality of OFDM

The subcarrier spacing
$$\Delta f = \frac{B_T}{N} = \frac{1}{NT_s} \equiv \frac{1}{T}$$

 T_s = sampling period

 $T = NT_s$ = Period of N modulation symbols X_k = 1 OFDM symbol time

• Let $c(f_k)=c_k=$ complex channel frequency response at f_k , symbols $X_k=A_k e^{j\theta_k}=A_{ki}+jA_{kq}$, and A_{ki} $A_{kq} \in \{\pm 1, \pm 3, ... \pm (M-1)\}$

Each subchannel is nearly flat with $c_k = c_{ki} + jc_{kq} = |c_k|e^{j\phi_k}$. The received signal

$$r_{k}(t) = \sqrt{\frac{2}{T}} |c_{k}| A_{ki} \cos(2\pi f_{k} t + \phi_{k}) - \sqrt{\frac{2}{T}} |c_{k}| A_{ki} \sin(2\pi f_{k} t + \phi_{k}) + n_{k}(t)$$

$$= \operatorname{Re} \left\{ \sqrt{\frac{2}{T}} c_{k} X_{k} e^{j2\pi f_{k} t} \right\} + n_{k}(t)$$

The correlation receiver basis are

$$\varphi_1(t) = \sqrt{\frac{2}{T}}\cos(2\pi f_k t), \quad 0 \le t \le T$$

$$\varphi_2(t) = -\sqrt{\frac{2}{T}}\sin(2\pi f_k t), \quad 0 \le t \le T$$

After correlation receiver filter,

$$\Rightarrow y_k = \int_0^T r_k(t)\varphi_1(t)dt + j\int_0^T r_k(t)\varphi_2(t)dt$$
$$= (c_{ki}A_{ki} + n_{ki}) + j(c_{ki}A_{kq} + n_{kq})$$

- The correlator outpu y_k can be detected by simple linear equalization.
- The detection of X_k can be realized by the Linear Equalizer.

Ex: 1-tap ZF:
$$\hat{X}_k = \frac{y_{ki}}{c_{ki}} + j \frac{y_{kq}}{c_{kq}} = X_k + \frac{n_k}{c_k}$$

- Direct implementation requires N analog RF frontends!
- ✓ The cost is too expensive and prevents the OFDM realization for 20 years since the birth of concept of OFDM.
- It can be shown that the OFDM processing is mathematically equivalent to the IDFT/DFT.
- ✓ The IDFT/DFT processing can be realized in digital baseband with low cost.
- The OFDM transmit signal is $s(t) = \sum_{k=0}^{N-1} s_k(t)$

$$s_{k}(t) = \sqrt{\frac{2}{T}} A_{ki} \cos(2\pi f_{k}t) - \sqrt{\frac{2}{T}} A_{kq} \sin(2\pi f_{k}t), \quad k = 0, 1, ... N - 1$$

$$= \text{Re} \{ \sqrt{\frac{2}{T}} X_{k} e^{j2\pi f_{k}t} \} = \text{Re} \{ \sqrt{\frac{2}{T}} X_{k} e^{j2\pi k\Delta ft} e^{j2\pi f_{c}t} \}$$
where $f_{k} = f_{c} + k\Delta f$, $k = 0, ..., N - 1$

Define the baseband signal in subcarrier *k*

$$X_{k}(t) = \sqrt{\frac{2}{T}} X_{k} e^{j2\pi k\Delta ft}, k = 0,..., N-1$$

The passband signal is $s_k(t) = \text{Re}\{X_k(t)e^{j2\pi f_c t}\}, k = 0,...,N-1$

The baseband transmitted signal becomes

$$x(t) = \sum_{k=0}^{N-1} X_k(t) = \sum_{k=0}^{N-1} \sqrt{\frac{2}{T}} X_k e^{j2\pi k \Delta ft}$$

The passband transmitted signal is

$$s(t) = \sum_{k=0}^{N-1} s_k(t) = \text{Re}\left\{\sum_{k=0}^{N-1} X_k(t)e^{j2\pi f_c t}\right\} = \text{Re}\left\{x(t)e^{j2\pi f_c t}\right\}$$

The discrete-time representation of x(t) at $t=nT_s$ is

$$x(nT_s) \equiv x[n] = \sum_{k=0}^{N-1} \sqrt{\frac{2}{T}} X_k e^{j2\pi k\Delta f \cdot nT_s} \quad \text{Recall:} \Delta f = \frac{1}{NT_s}$$

$$= \sum_{k=0}^{N-1} \sqrt{\frac{2}{T}} X_k e^{j2\pi k(\frac{1}{NT_s}) \cdot nT_s}$$

$$= \sqrt{\frac{2}{T}} \sum_{k=0}^{N-1} X_k e^{j2\pi kn/N} \quad \text{The transmit signal } x[n] \text{ is IDFT of the modulated symbols, } X_k$$

• The baseband signal relation is equivalent to DFTpairs,

$$x[n] \stackrel{\text{DFT}}{\rightleftharpoons} X_k$$

where k is index of subcarriers, and n is index of time.

• $X_k \leftrightarrow x[n]$ becomes IDFT / DFT pairs The OFDM Tx can be represented by IDFT The OFDM Rx can be represented by DFT

Frequency-Time Representation of OFDM Signal

OFDM Symbols

- Each OFDM symbol has N frequency carriers
 - D data carriers transmit information (D<=N)</p>
 - (N-D) free carriers
- Choose encoding scheme for carriers
 - 1,2,4 or 6 bits/carrier -> points c_i in complex plane

- Symbol representations
 - Frequency-domain constellation c=[c₁ c₂ ... c_N]
 - Time-domain waveform x = IFFT(c)

OFDM Guard Interval to remove ISI

OFDM Symbol duration = Tg+T

Guard interval (using cyclic prefix extension) is used in OFDM systems to combat against multipath fading, Tg > Tdelay_spread

If Tg > T dely-spread

T dely-spread

Cyclic Prefix for OFDM symbol Guard

Multipath Problem in Time and Frequency Domains

Time domain: Impulse response

OFDM Signaling over Multipath Channel

Peak to Average Power Ratio (PAPR) Problem in OFDM Transmitter

- PAPR = Peak-to-Average Power Ratio (PAPR)
- Distortion occurs when the transmitting power run into saturating region of the Power Amplifier
- PAPR gets worse as the number of OFDM subcarriers N increases.

Peak-to-Average Power Ratio (PAPR) of OFDM

PAPR of OFDM Signal

PAPR

Peak Power:
$$P_{peak} = \max_{n} |x[n]|^2$$

Average Power:
$$P_{av} = \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$$

$$PAPR = \frac{P_{peak}}{P_{av}}$$

The Peak-to-Average Power Ratio (PAPR) Problem

- High PAPR signals are more likely to enter the saturation region.
- Need larger backoff to avoid signal distortion.
- How to alleviate the PAPR problem?
- If the Tx decrease P_{av} to avoid distortion, then the system may not be able to deliver enough SNR at the Rx.

▶ If the Tx increase P_{av} to to improve SNR then the system needs higher P_{sat} and larger linear region (expensive PA if available). Besides, it consumes more power.

Peak-to-Average Power Ratio (PAPR) of OFDM

Basic waveforms of OFDM signal with 4-DFT and BPSK modulation

$$x[n] = \sqrt{\frac{2}{T}} \sum_{k=0}^{N-1} X_k e^{j2\pi kn/N}$$

Maximum PAPR case

$$X = [1, 1, 1, 1] \rightarrow x = [4,0,0,0]$$

$$\mathbf{X} = [-1, -1, -1, -1] \rightarrow \mathbf{x} = [-4, 0, 0, 0]$$

$$X = [1, -1, 1, -1] \rightarrow x = [0, 0, 4, 0]$$

$$X = [-1, 1, -1, 1] \rightarrow x = [0, 0, -4, 0]$$

Peak-to-Average Power Ratio (PAPR) of OFDM

• MPSK case: Let $X_k \in \{\exp(j2\pi/m), m = 0,..., M-1\}$

$$P_{peak} = \max_{n} |x[n]|^2 = N \rightarrow \text{occurs when } X_0 = ... = X_{N-1}$$

$$P_{av} = \frac{1}{N} \sum_{n=0}^{N-1} ||x[n]||^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X_k|^2 = 1$$

PAPR_{max} =
$$10 \log_{10} \frac{P_{peak}}{P_{av}} = 10 \log_{10} N$$
 (dB)

N=64, PAPR
$$\{x[n]\} \le 18dB$$

$$N = 8192, \text{ PAPR } \{x[n]\} \le 39dB$$

PAPR Example: QPSK on N=4 OFDM

$$x[n] = \sum_{k=0}^{N-1} X_k e^{j2\pi kn/N} \qquad \mathbf{X} = [X_0 \ X_1 \ X_2 \ X_3] \\ \mathbf{x} = [x[0] \ x[1] \ x[2] \ x[3]]$$

The PAPR occurs when

$$\mathbf{X} = [1, 1, 1, 1] \to \mathbf{x} = [4,0,0,0] \qquad \mathbf{X} = [1, i,-1,-i] \to \mathbf{x} = [0,4,0,0] \\
\mathbf{X} = [-1,-1,-1,-1] \to \mathbf{x} = [-4,0,0,0] \qquad \mathbf{X} = [-1,-i,1,i] \to \mathbf{x} = [0,-4,0,0] \\
\mathbf{X} = [i, i, i, i] \to \mathbf{x} = [4i,0,0,0] \qquad \mathbf{X} = [i,-1,-i,1] \to \mathbf{x} = [0,4i,0,0] \\
\mathbf{X} = [-i,-i,-i,-i] \to \mathbf{x} = [-4i,0,0,0] \qquad \mathbf{X} = [-i,1,i,-1] \to \mathbf{x} = [0,-4i,0,0] \\
\mathbf{X} = [1,-1,1,-1] \to \mathbf{x} = [0,0,4,0] \qquad \mathbf{X} = [1,-i,-1,i] \to \mathbf{x} = [0,0,0,4] \\
\mathbf{X} = [-1,1,-1,1] \to \mathbf{x} = [0,0,-4,0] \qquad \mathbf{X} = [-1,i,1,-i] \to \mathbf{x} = [0,0,0,-4] \\
\mathbf{X} = [i,-i,i,-i] \to \mathbf{x} = [0,0,0,4i] \qquad \mathbf{X} = [-i,i,-i,-1] \to \mathbf{x} = [0,0,0,4i] \\
\mathbf{X} = [-i,i,-i,i] \to \mathbf{x} = [0,0,0,-4i] \qquad \mathbf{X} = [-i,-1,i,1] \to \mathbf{x} = [0,0,0,-4i] \\
\mathbf{X} = [-i,i,-i,-1,i] \to \mathbf{x} = [0,0,0,-4i] \qquad \mathbf{X} = [-i,-1,i,1] \to \mathbf{x} = [0,0,0,-4i] \\
\mathbf{X} = [-i,-1,-1,i] \to \mathbf{x} = [0,0,0,-4i] \qquad \mathbf{X} = [-i,-1,i,1] \to \mathbf{x} = [0,0,0,-4i] \\
\mathbf{X} = [-i,-1,-1,i] \to \mathbf{x} = [0,0,0,-4i] \qquad \mathbf{X} = [-i,-1,i,1] \to \mathbf{x} = [0,0,0,-4i] \\
\mathbf{X} = [-i,-1,-1,i] \to \mathbf{x} = [0,0,0,-4i] \qquad \mathbf{X} = [-i,-1,i,1] \to \mathbf{x} = [0,0,0,-4i] \\
\mathbf{X} = [-i,-1,-1,i] \to \mathbf{x} = [0,0,0,-4i] \qquad \mathbf{X} = [-i,-1,i] \to \mathbf{x} = [0,0,0,-4i] \\
\mathbf{X} = [-i,-1,-i,1] \to \mathbf{x} = [0,0,0,-4i] \qquad \mathbf{X} = [-i,-1,i] \to \mathbf{x} = [0,0,0,-4i] \\
\mathbf{X} = [-i,-1,-i,1] \to \mathbf{x} = [0,0,0,-4i] \qquad \mathbf{X} = [-i,-1,i] \to \mathbf{x} = [0,0,0,-4i] \\
\mathbf{X} = [-i,-1,-i,1] \to \mathbf{x} = [0,0,0,-4i] \qquad \mathbf{X} = [-i,-1,i] \to \mathbf{x} = [0,0,0,-4i] \\
\mathbf{X} = [-i,-1,-i,1] \to \mathbf{x} = [0,0,0,-4i] \qquad \mathbf{X} = [-i,-1,-i,1] \to \mathbf{x} = [0,0,0,-4i]$$

→ Total of MN cases that the PAPR occurs.

Peak-to-Average Power Ratio (PAPR) of OFDM

- How serious is the PAPR problem?
- ✓ The occurrence of PAPR problem.
- It can be shown that for an M-ary PSK N-point OFDM system, there are at most MN cases that yield the max PAPR (= N)
- The probability of observing the max PAPR is $\frac{MN}{M^N} = NM^{1-N}$
- For N = 32 and M = 4, the probability of max PAPR is 8.7×10^{-19}
- For OFDM with T = 100 μ s, the max PAPR occurs once every 3.7×10^6 years.
- What matters is the probability of signals fall into the saturation region.
- What is the PAPR for a single carrier M-ary PSK modulation system?

Cumulative Distribution of the PAPR

 PAPR distribution of Random transmission at number of subcarriers N =16/32/64/128 /256 /1024

Cumulative Distribution of the PAPR

- Analytical PAPR distribution Pr(PAPR > PAPR₀)
 - √ # subcarriers N = 256 /512/1024
 - ✓ Modulation order M= 16-QAM

- ✓ # subcarriers N=128
- ✓ Modulation order M=4/8/16/32/64

Summary

- Single carrier vs multi-carrier communications
- Power allocation for multi-carrier communications
- OFDM architecture for multi-carrier communication
- Implementation OFDM with IDFT/DFT
- Multipath fading channel and OFDM
- PAPR problem in OFDM communications

Announcement

HW#6

Due: 1/11/2022 (Tue) 18:00 @EECS611

Final Exam

Time: Jan. 13, 2022 18:30pm - 21:00pm

Place: Delta 215 & 217

Coverage: Ch9 and Ch11