Syntax Analysis (Part-1)

Role of Parser

- The parser obtains a string of tokens from the lexical analyzer and verifies that the string can be generated by the grammar for the source language to form a *parse tree*.
- ➤ The parser provides report for any **syntax errors** in an intelligible fashion. It should also recover from commonly occurring errors so that it can continue processing the remainder of its input.

Error Handling

- ➤ The programmers frequently write incorrect programs, and a good compiler should assist the programmer in identifying and locating errors.
- ➤ The programs can contain errors at many different levels. For example, errors can be:
 - lexical, such as misspelling an identifier, keyword, or operator
 - syntactic, such as an arithmetic expression with unbalanced parentheses
 - semantic, such as an operator applied to an incompatible operand
 - logical, such as an infinitely recursive call
- ➤ Often *much of the error detection* and recovery in a compiler is centered around the syntax analysis phase.
- ➤ One reason for this is that *many errors are syntactic in nature* or are exposed when the stream of tokens coming from the lexical analyzer disobeys the grammatical rules.

Context-free Grammars

A context free grammar (grammar for short) consists of terminals, non-terminals, a start symbol, and productions.

- ➤ Terminals are the basic symbols from which strings are formed. The word "token" is a synonym for "terminal" when we are talking about grammars for programming languages. Each of the keywords if, then and else is a terminal.
- ➤ **Non-terminals** are syntactic variables that denote sets of strings. The non-terminals define sets of strings that help to define the language generated by the grammar.
- In a grammar, one non-terminal is distinguished as the **start symbol**. And the set of strings it denotes is the language defined by the grammar.
- ➤ The **productions** of a grammar specify the manner in which the terminals and non-terminals can be combined to form strings. Each production consists of a non-terminal, followed by an arrow (sometimes the symbol := is used), followed by a string of non-terminals and terminals.

Grammar for Arithmetic Expression

```
expr -> expr op expr
  expr -> (expr)
  expr -> - expr
  expr-> id
  op -> +
  op -> -
  op -> *
  op -> /
In this grammar, the terminal symbols are id + - / ( )
and the non-terminal symbols are expr and op.
expr is the start symbol.
```

Derivation Tree/ Parse Tree

- ➤ The sequence of intermediary strings generated to expand the start symbol of the grammar to a desired string of terminals is called a derivation.
- The derivation can be represented by a tree is called parse tree.

Derivation for "2*(3+5*4)"

Leftmost and Rightmost Derivations

- The derivation in which the leftmost nonterminal is always replaced at each step is called *leftmost derivation*.
- The derivation in which the rightmost nonterminal is always replaced at each step is called *rightmost derivation*.
- ➤ In leftmost derivation, the intermediate strings are called *left* sentential forms.
- ➤ In rightmost derivation, the intermediate strings are called **right** sentential forms.
- > The rightmost derivation is also called *canonical representation*.

For example

```
expr -> expr op expr
expr -> ( expr )
```

Leftmost derivation

```
expr -> expr op expr
-> ( expr ) op expr
```

Rightmost derivation

Ambiguous Grammar

- A grammar is said to be ambiguous if there exists more than one parse tree for the same sentence.
- > An ambiguous grammar can have more than one leftmost and rightmost derivations.

$$E \rightarrow E + E | E - E | E * E | E / E | (E) | - E | id$$

The sentence **id + id * id** has the two distinct leftmost derivations.

Operator * having higher precedence than +.

Expression a+b*c should be considered as a+(b*c) rather than as (a+b)*c.

Ambiguous Grammar

stmt -> if expr then stmt | if expr then stmt else stmt | other Here "other" stands for any other statement.

For example: if E_1 then if E_2 then S_1 else S_2


```
if E1 then
if E2 then
S1
else
S2
```

Eliminating Ambiguity

- ➤ In all programming languages with conditional statements of this form, the first parse tree is preferred.
- The general rule is "Match each else with the closest previous unmatched then.
- So, we can rewrite the grammar to eliminate ambiguity.

```
stmt -> matched_stmt | unmatched_stmt
matched_stmt -> if expr then matched_stmt
else matched_stmt | other
unmatched_stmt -> if expr then stmt |
if expr then matched_stmt else unmatched_stmt
```

For example: if E_1 then if E_2 then S_1 else S_2 stmt -> unmatched_stmt -> if expr then stmt -> if E_1 then stmt

-> if E_1 then matched_stmt

-> if E_1 then if expr then matched_stmt else matched_stmt

-> if E_1 then if E_2 then S_1 else S_2

Eliminating Ambiguity

➤ To resolve the ambiguity we can add a matching *endif* with an if statement. So the grammar should be

```
stmt -> if expr then stmt endif |
    if expr then stmt else stmt endif | other
```

For example: if E_1 then if E_2 then S_1 else S_2 endif endif stmt-> if expr then stmt endif -> if E_1 then if expr then stmt else stmt endif endif -> if E_1 then if E_2 then S_1 else S_2 endif endif

For example: if E_1 then if E_2 then S_1 endif else S_2 endif stmt-> if expr then stmt else stmt endif

- -> if E_1 then stmt else stmt endif
- -> if E_1 then if expr then stmt endif else stmt endif
- -> if E_1 then if E_2 then S_1 endif else S_2 endif

Left Recursion

- \triangleright A grammar is left recursive if it has a nonterminal A such that there is a derivation $A \rightarrow A\alpha$ for some string α .
- ➤ Top-down parsing methods cannot handle left-recursive grammars, so a transformation that eliminates left recursion is needed.

Elimination of Immediate Left Recursion

 \succ The left-recursive pair of productions **A** -> **A**α | **β** could be replaced by the non-left-recursive productions as follows:

Thus, the rule $A \rightarrow A\alpha_1 | A\alpha_2 | \dots | A\alpha_m | \beta_1 | \beta_2 | \dots | \beta_n$ can be modified as,

A ->
$$\beta_1$$
 A' | β_2 A' | ... | β_n A'
A' -> α_1 A' | α_2 A' | ... | α_m A' | ϵ

Elimination of Left Recursion

Eliminate Immediate Left Recursion from the following grammar:

Solution:

Elimination of Left Recursion

For example, consider the grammar, S-> Aa, A->Sb | c

Here, S is left recursive, because S-> Aa -> Sba. This form of general recursion can be eliminated with the following algorithm.

Algorithm for elimination of left recursion

- 1. Arrange non terminals in some order, say A₁,A₂, ..., A_m.
- 2. For i = 1 to m do

For j = 1 to i-1 do

For each set of productions $A_i \rightarrow A_j \gamma$ and $A_j \rightarrow \delta_1 | \delta_2 | ... | \delta_k$ Replace $A_i \rightarrow A_i \gamma$ by $A_i \rightarrow \delta_1 \gamma | \delta_2 \gamma | ... | \delta_k \gamma$

3. Eliminate immediate left recursion from all productions

So, for the grammar S-> Aa, A->Sb | c

Step 1: Order of non-terminals are S, A.

Step 2: For i=1, S->Aa (there is no immediate left recursion)

For i=2, A->Sb | c is modified as, A->Aab|c

Step 3: Finally, S-> Aa, A->cA', A'->abA' | €

Elimination of Left Recursion

<u>Assignment No. 3</u>: Eliminate Left Recursion of the following grammars.

- a) A -> Ac | Aad | bd | ε
- b) E -> E + E | E * E | (E) | id

Left Factoring

- ➤ Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive parsing.
- The basic idea is that when it is not clear which of two alternative productions to use to expand a nonterminal *A*, we may be able to rewrite the A-productions to defer the decision until we have seen enough of the input to make the right choice.
- > For example, if we have the two productions

```
stmt -> if expr then stmt else stmt | if expr then stmt
```

- > On seeing the input token **if**, we cannot immediately tell which production to choose to expand *stmt*. Only after **then**, if token **else** is found, we can decide the first rule to be used.
- ➤ This necessitates backtracking if token **else** is absent in the input stream, that is, it is an if-then statement. To **eliminate** this problem, the grammar is **left-factored** to take out the common portion separately as follows:

```
stmt -> if expr then stmt else-clause else clause -> else stmt | ε
```

Algorithm for Left Factoring

- Input: Grammar G.
- Output: An equivalent left-factored grammar.
- Method: For each nonterminal *A* find the longest prefix α common to two or more of its alternatives. If $\alpha \neq \epsilon$, i.e., there is a nontrivial common prefix, replace all the A productions **A->** $\alpha \beta_1 \mid \alpha \beta_2 \mid ... \mid \alpha \beta_n \mid \gamma$ where γ represents all alternatives that do not begin with α by

A ->
$$\alpha$$
A' | γ
A' -> β_1 | β_2 | ...| β_n

Here A' is a new nonterminal. Repeatedly apply this transformation until no two alternatives for a nonterminal have a common prefix.

```
For example: S->iEtS | iEtSeS | a
E->b
```

After Left Factoring:

Top-Down Parsing

- ➤ Top-down parsers get the name from the fact that they try to find a derivation of the input stream from the start symbol of the grammar.
- ➤ Equivalently, it can be viewed as an attempt to construct the parse tree rooted at the start symbol of the grammar for the input stream. There are two main approaches for top-down parsing.
 - Recursive descent parsing
 - Predictive parsing

Recursive Descent Parsing

- ➤ Top-down parsing can be viewed as an attempt to find a leftmost derivation for an input string.
- ➤ It can be viewed as an attempt to construct a parse tree for the input starting from the root and creating the nodes of the parse tree in preorder.
- ➤ A general form of top-down parsing, called recursive descent, that may involve backtracking, that is, making repeated scans of the input.
- ➤ However, backtracking parsers are not seen frequently due to inefficiency.

Recursive Descent Parsing

Example: Consider the grammar

S->abA, A->cd | c | ϵ

For the input stream **ab**:

- The parser starts by constructing a parse tree representing S->abA as shown in Fig. (a).
- ➤ The tree is expanded with the production A->cd as shown in Fig. (b).
- ➤ Since it does not match the string ab, the parser backtracks and then, tries the alternative A->c as shown in Fig. (c). However, the parse tree does not match the string ab.
- ➤ So, the parser backtracks and tries out the alternative A-> ∈ as shown in Fig. (d). This time it finds a match. Thus, the parsing is complete and successful.

Recursive Descent Parsing

- ➢ If the grammar is *left-recursive*, a recursive descent parser *may fall into an infinite loop* even in the presence of backtracking.
- This happens because of the fact that for a left-recursive rule, the parser has to expand without consuming any further input symbol.
- ➤ A parser construction strategy, known as *predictive parser* is developed to create a recursive descent parser that *does not need backtracking*.
- > The *predictive parser* can be constructed in both *recursive and non-recursive* manner.

- ➤ In many cases, by carefully writing a grammar, eliminating left recursion from it, and left factoring the resulting grammar, we can obtain a grammar that can be parsed by a recursive-descent parser that needs no backtracking, i.e., a predictive parser.
- To construct a predictive parser, we must know, given the current input symbol \boldsymbol{a} and the nonterminal \boldsymbol{A} to be expanded, which one of the alternatives of production $\boldsymbol{A->\alpha_1\mid\alpha_2\mid\ldots\mid\alpha_n}$ is the unique alternative that derives a string beginning with \boldsymbol{a} . That is, the proper alternative must be detectable by looking at only the first symbol it derives.
- Flow-of-control constructs in most programming languages, with their distinguishing keywords are usually detectable in this way.
- For example, if we have the productions

 stmt -> if expr then stmt else stmt | while expr do stmt

 then the keywords if and while tell us which alternative is the only
 one that could possibly succeed if we are to find a statement.

- ➤ After left factoring, the resultant rules can also be represented in the form of a set of transition diagrams. For this purpose we can create a diagram for each nonterminal A.
 - 1. Create an initial and final (return) state.
 - 2. For each production A -> $X_1 X_2 \dots X_n$, create a path from the initial state to the final state, with edge labeled X_1, X_2, \dots, X_n .
- The predictive parser begins in the start state **s** for the start symbol. If after some actions it moves to a state **t** with an edge label of terminal **a**, and if the next input symbol is **a**, then the parser moves the input cursor one position right and goes to state **t**.
- ➤ If the edge is labeled by a nonterminal **A**, the parser instead goes to the start state for **A**, without moving the input cursor. If it ever reaches the final state for **A**, it immediately goes to state **t**, in effect having "read" **A** from the input during the time it moved from state **s** to **t**.
- Finally, if there is an edge from **s** to **t** labeled **c**, then from state **s** the parser immediately goes to state **t**, without advancing the input.

For example: exp -> exp + term | term term -> term * factor | factor factor -> (exp) | id After removal of left-recursion we get **Transition Diagrams** exp -> term exp_tail term exp_tail_ exp: exp tail -> + term expr tail | ϵ term -> factor term tail term exp_tail: term_tail -> * factor term_tail | € factor -> (exp) | id factor term_tail term: factor term_tail term_tail: factor:

Simplification of diagrams may create a more compact and efficient parser.

exp_tail: 3 + 4 + 5 = 5 exp_tail ϵ

First, we eliminate self-recursion in the exp_tail transition diagram, substituting an iterative model.

exp_tail: 3 + 4 term - 5

Further simplification by removing the redundant ∈-edge.

If we substitute the exp_tail diagram in the exp one, replacing the exp_tail edge from 1 to 2, we get

By further simplification we get

Applying the same approach to term and term_tail, we get a reduced set of diagrams for arithmetic expressions as shown below.

Final Set of Transition diagrams for expression grammar

➤ It is possible to build a nonrecursive predictive parser by maintaining a stack explicitly, rather than implicitly via recursive calls. The key problem during predictive parsing is that of determining the production to be applied for a nonterminal. The nonrecursive parser looks up the production to be applied in a parsing table.

➤ This parser scan over the input stream using a prefix of tokens to identify the production applied. This parser is also called LL(k) parser, where k is the length of the prefix. "LL" stands for left-to-right scanning of the input stream and left-most derivation respectively.

- A table-driven predictive parser has an input buffer, a stack, a parsing table, and an output stream.
- ➤ The input buffer contains the string to be parsed, followed by \$, a symbol used as a right endmarker to indicate the end of the input string.
- ➤ The stack contains a sequence of grammar symbols with \$ on the bottom, indicating the bottom of the stack.
- > Initially, the stack contains the start symbol of the grammar on top of \$.
- The parsing table is a two dimensional array M[A, a], where A is a nonterminal, and a is a terminal or the symbol \$.

Why FIRST and FOLLOW in Compiler Design?

- ➤ The need of backtracking is really a complex process to implement a parser.
- ➤ If the compiler would have come to know in advance, that what is the "**first** character of the string produced when a production rule is applied", and comparing it to the current character or token in the input string, it can wisely take decision on which production rule to apply.

S -> cAd

A -> bc|a

And the input string is "cad".

➤ After reading character 'c' in the input string and applying S->cAd, next character in the input string is 'a', then it would directly use the production rule A->a.

Why FIRST and FOLLOW in Compiler Design?

➤ The parser faces one more problem. Let us consider below grammar to understand this problem.

A -> aBb B -> c $\mid \epsilon$

And suppose the input string is "ab" to parse.

- As the first character in the input is a, the parser applies the rule A->aBb. Now the parser checks for the second character of the input string which is b, and the Non-Terminal to derive is B, but the parser can't get any string derivable from B that contains b as first character.
- > But the Grammar does contain a production rule B -> ε, if that is applied then B will vanish. But the parser can apply it only when it knows that the character that follows B in the production rule is same as the current character in the input.

Rules to Calculate First(X)

To compute First(X) for all grammar symbols X, apply the following rules:

- 1. If X is a terminal, then First(X) is {X}.
- 2. If $X \rightarrow \epsilon$ is a production, then add ϵ to First(X).
- 3. If X is nonterminal and X->Y₁ Y₂ ... Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ϵ is in all of First(Y₁), . . . First(Y_{i-1}); that is, Y₁...Y_{i-1}≈ ϵ . If ϵ is in First(Y_j) for all j = 1, 2, ..., k, then add ϵ to First(X).

Rules to Calculate First(X)

To compute First(X) for all grammar symbols X, apply the following rules:

- 1. If X is a terminal, then First(X) is {X}.
- 2. If X-> ϵ is a production, then add ϵ to First(X).
- 3. If X is nonterminal and X->Y₁ Y₂ ... Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ϵ is in all of First(Y₁), . . . First(Y_{i-1}); that is, Y₁...Y_{i-1}≈ ϵ . If ϵ is in First(Y_j) for all j = 1, 2, ..., k, then add ϵ to First(X).

Example:

	First
Е	{(,id}
E'	{+,ε}
Т	{(,id}
T'	{*,e}
F	{(,id}

Rules to Calculate First(X)

To compute First(X) for all grammar symbols X, apply the following rules:

- 1. If X is a terminal, then First(X) is {X}.
- 2. If X-> ϵ is a production, then add ϵ to First(X).
- 3. If X is nonterminal and X->Y₁ Y₂ ... Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ϵ is in all of First(Y₁), . . . First(Y_{i-1}); that is, Y₁...Y_{i-1}≈ ϵ . If ϵ is in First(Y_j) for all j = 1, 2, ..., k, then add ϵ to First(X).

Consider the grammar

$$S \rightarrow aABe \quad A \rightarrow Abc \mid b \quad B \rightarrow d$$

Show the First sets for each nonterminal symbol.

$$First(B) = \{First(d)\} = \{d\}$$

$$First(A) = \{First(Abc), First(b)\} = \{First(A), b\} = \{b\}$$

$$First(S) = {First(aABe)} = {a}$$

	First
S	{a}
A	{b}
В	{d}

Rules to Calculate First(X)

To compute First(X) for all grammar symbols X, apply the following rules:

- 1. If X is a terminal, then First(X) is {X}.
- 2. If X-> ϵ is a production, then add ϵ to First(X).
- 3. If X is nonterminal and X->Y₁ Y₂ ... Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ϵ is in all of First(Y₁), . . . First(Y_{i-1}); that is, Y₁...Y_{i-1}≈ ϵ . If ϵ is in First(Y_j) for all j = 1, 2, ..., k, then add ϵ to First(X).

Consider the grammar

$$S -> A \mid B$$
, $A -> cA + b \mid a$, $B -> cB + a \mid b$

Show the First sets for each nonterminal symbol.

$$First(B)=\{c, b\}$$

$$First(A) = \{c, a\}$$

$$First(S) = {First(A), First(B)} = {a, b, c}$$

	First
S	{a,b,c}
A	{a, c}
В	{b, c}

Rules to Calculate First(X)

To compute First(X) for all grammar symbols X, apply the following rules:

- 1. If X is a terminal, then First(X) is {X}.
- 2. If X-> ϵ is a production, then add ϵ to First(X).
- 3. If X is nonterminal and X->Y₁ Y₂ ... Y_k is a production, then place a in First(X) if for some i, a is in First(Y_i), and ϵ is in all of First(Y₁), . . . First(Y_{i-1}); that is, Y₁...Y_{i-1}≈ ϵ . If ϵ is in First(Y_j) for all j = 1, 2, ..., k, then add ϵ to First(X).

Consider the grammar
$$S \rightarrow iEiSS' \mid a$$

$$S \rightarrow iEiSS' \mid a$$

$$S' \rightarrow eS \mid \epsilon$$

$$E \rightarrow b$$

Show the First sets for each nonterminal symbol.

	First
S	{i, a}
S'	{e, ε}
E	{b}

Rules to Calculate Follow(A)

To compute Follow(X) for all grammar symbols X, apply the following rules:

- 1. Place \$ in Follow(S), where S is the start symbol and \$ is the input right endmarker.
- 2. If there is a production, A-> α B β , then everything in First(β) except for ϵ is placed in Follow(B).
- 3. If there is a production, A-> α B, or a production A-> α B β where First(β) contains ϵ (i.e. $\beta \approx \epsilon$), then everything in Follow(A) is in Follow(B).

Rules to Calculate Follow(A)

To compute Follow(X) for all grammar symbols X, apply the following rules:

- 1. Place \$ in Follow(S), where S is the start symbol and \$ is the input right endmarker.
- 2. If there is a production, A->αBβ, then everything in First(β) except for ε is placed in Follow(B).
- 3. If there is a production, A-> α B, or a production A-> α B β where First(β) contains ϵ (i.e. $\beta \approx \epsilon$), then everything in Follow(A) is in Follow(B).

Example:

Follow(E)={\$, First())}
Follow(E')={Follow(E)}
Follow(T)={First(E'), Follow(E)}
Follow(T')={Follow(T)}
Follow(F)={First(T'), Follow(T))

	First	Follow
E	{(,id}	{), \$}
E'	{+,ε}	{), \$}
т	{(,id}	{+ ,) , \$ }
T'	{*,ε}	{+ ,) , \$ }
F	{(,id}	{+, *,), \$}

Rules to Calculate Follow(A)

To compute Follow(X) for all grammar symbols X, apply the following rules:

- 1. Place \$ in Follow(S), where S is the start symbol and \$ is the input right endmarker.
- If there is a production, A-> α B β , then everything in First(β) except for ϵ is placed in Follow(B).
- If there is a production, A-> α B, or a production A-> α B β where First(β) contains ϵ (i.e. $\beta \approx \epsilon$), then everything in Follow(A) is in Follow(B).

Consider the grammar S -> aABe A -> Abc | b

 $B \rightarrow d$

Show the First and Follow sets for each nonterminal symbol.

$$Follow(S) = \{\$\}$$

$$Follow(A) = \{First(B), First(b)\} = \{d, b\}$$

$$Follow(B) = {First(e)} = {e}$$

	First	Follow
S	{a}	{\$}
A	{b}	{b, d}
В	{d}	{e}

Rules to Calculate Follow(A)

To compute Follow(X) for all grammar symbols X, apply the following rules:

- 1. Place \$ in Follow(S), where S is the start symbol and \$ is the input right endmarker.
- If there is a production, A->αBβ, then everything in First(β) except for ε is placed in Follow(B).
- 3. If there is a production, A-> α B, or a production A-> α B β where First(β) contains ϵ (i.e. $\beta \approx \epsilon$), then everything in Follow(A) is in Follow(B).

Consider the grammar S -> A | B, A -> cA+b | a, B -> cB + a | b

Show the First and Follow sets for each nonterminal symbol.

	First	Follow
S	{a,b,c}	{\$}
A	{a, c}	{+, \$}
В	{b, c}	{+, \$}

LL(1) Grammar

A grammar is an LL(1) if all productions conform to the following LL(1) conditions:

- 1. For each production A-> $\alpha_1 | \alpha_2 | \ldots | \alpha_n$, First(α_i) \cap First(α_i)= Φ , $\forall i \neq j$
- 2. If nonterminal X can derive ϵ , then First(X) \cap Follow(X) = Φ

Check the grammar $S \rightarrow A \mid B$, $A \rightarrow cA+b \mid a$, $B \rightarrow cB+a \mid b$ is LL(1) or not.

$$First(B)=\{c, b\}$$

$$First(A) = \{c, a\}$$

$$First(S) = {First(A), First(B)} = {a, b, c}$$

$$Follow(S)=\{\$\}$$

	First	Follow
S	{a, b, c}	{\$}
A	{a, c}	{+, \$}
В	{b, c}	{+, \$}

First(A) \cap First(B) = {c} So, this is not LL(1).

Assignment No. 04

Consider the grammar

Where {A, B, C} is the set of nonterminal symbols, A is the start symbol, (x, y) is the set of terminal symbols.

- 1. Show the First and Follow sets for each nonterminal symbol.
- 2. Check the grammar is in LL(1) or not.

Construction of Predictive Parsing Table

- 1. For each production A -> α of the grammar
 - For each terminal a in First(α), add A -> α to M[A, a].
 - If ε is in First(α), add A->α to M[A, b] for each terminal b in Follow(A).
 - If ε is in First(α) and \$ is in Follow(A), add A->α to M[A, \$].
- 2. Make each undefined entry of *M* be error.

	First	Follow
Е	{(,id}	{), \$}
E'	{+,ε}	{), \$}
Т	{(,id}	{+,), \$}
T'	{*,ε}	{+ ,), \$ }
F	{(,id}	{+, *,), \$}

E -> T E '	E'->+TE' €	T -> F T '	T'->*FT' ε	F -> (E) id
				
NONTED.		IMPUT SVA	ABOL	

NONTER- MINAL id	INPUT SYMBOL					
	id	+	*)	S
E	E→TE'			E→TE'		
E'		E'→+TE'			E'→e	E'→e
T	T→FT′		1	T→FT"		
Ť		<i>T'</i> →€	T'→*FT'		T~→e	7'→€
F	F→id			F →(E)	*****	

Construction of Predictive Table

$$S \rightarrow iEiSS' \mid a$$

$$S' \rightarrow eS \mid \epsilon$$

$$E \rightarrow b$$

Follow(S')={Follow(S)}	
Follow(E)={t}	

	First	Follow
S	{i, a}	{\$, e}
S'	{e, ε}	{\$, e}
E	{b}	{t}

NONTER- MINAL	INPUT SYMBOL					
	u u	b	e	i	t	5
<u></u>	S→a			S →iEiSS'		
s'			S'→e S'→eS			S' → €
E		E→b				

Nonrecursive predictive parsing

Set ip to point to the first symbol of w\$

Repeat

Let X be the top stack symbol and **a** the symbol pointed to by *ip*If X is a terminal or \$ Then

If X = a Then

pop X from the stack and advance ip

Else parsing error

Elseif M[X, a] = $X -> Y_1 Y_2 ... Y_k$ **Then** /* X is a nonterminal */ pop X from the stack and

push Y_k , Y_{k-1} ,..., Y_1 onto the stack, with Y_1 on top; output the production $X \rightarrow Y_1$, $Y_2 \dots Y_k$

Else parsing error

Until X = \$ /* stack is empty */

Nonter-	INPUT SYMBOL					
MINAL id	id	+	*)	\$
E	E→TE'			E→TE'	•	
E'		E'→+TE'			E'→€	E'→
T	T→FT'			T→FT'		
Ť		T'→€	T'→*FT'		Τ⁺→ε	T'-4
F	F→id	1000		F →(E)	****	

	STACK	INPUT	Оптрит
Set <i>ip</i> to point to the first symbol of w \$	\$E	id + id * id\$	
Repeat	\$E'T	id + id * id\$	$E \rightarrow TE'$
•	\$E'T'F	id + id * idS	$T \rightarrow FT'$
Let X = top stack symbol and a is pointed by <i>ip</i>	\$E'T'id	id + id * id\$	F → id
If X is a terminal or \$ Then	\$E'T'	+ id * id\$	
If $X = a$ Then	\$E'	+ id * id\$	7' → €
	\$ <i>E'T</i> +	+ id * id\$	$E' \rightarrow +TE'$
pop X from the stack and advance <i>ip</i>	\$E'T	ld * id\$	
Else parsing error	\$E'T'F	id * id\$	$T \to FT'$
Elseif $M[X, a] = X -> Y_1 Y_2 Y_k$ Then	\$E'T'id	id * id\$	F → id
	\$E'T'	* id\$	
pop X from the stack and	\$E'T'F*	* id\$	$T' \rightarrow *FT'$
push Y_k , Y_{k-1} ,, Y_1 onto the stack Y_1 on top;	\$ E'T'F	id\$	
output the production $X \rightarrow Y_1 Y_2 \dots Y_k$	\$E'T'id	id\$	F → id
	\$E'T'	\$	1
Else parsing error	\$ <i>E</i> '	s	$T' \rightarrow \epsilon$
Until X = \$ /* stack is empty */	\$	\$	Ε' → ε

THANK YOU