

BECKHOFF

TwinCAT 3 IoT Communicator

Konfiguracja i uruchomienie TwinCAT 3 loT Communicator od strony sterownika i urządzenia mobilnego

Wersja dokumentacji 2.2

Aktualizacja: 05.01.2024

Kontakt: support@beckhoff.pl

Beckhoff Automation Sp. z o. o.

Spis treści

1	١	Wstęp)	5
	1.1	Wy	korzystana konfiguracja	5
	1.2	Opi	s technologii	5
2	F	Przygo	otowanie sterownika oraz programu PLC	6
	2.1	Uru	chomienie brokera MQTT	6
	2.2	Przy	ygotowanie sterownika	6
	2.3	Przy	ygotowanie struktury danych	7
	2.4	Przy	ygotowanie funkcji do komunikacji	7
	2.	4.1	Komunikacja bez podawania użytkownika i hasła	8
	2.	4.2	Komunikacja z podawaniem nazwy użytkownika i hasła	8
	2.5	Przy	ygotowanie struktury programu	9
3	A	٩plika	cja mobilna	11
	3.1	Uru	chomienie	11
	3.	1.1	Uruchomienie bez nazwy użytkownika i hasła	11
	3.	1.2	Uruchomienie chronione nazwą użytkownika i hasłem	12
	3.2	Doo	datkowe funkcje	12
	3.	2.1	Nadpisywanie wartości	12
	3.	2.2	Toggle booleans	12
	3.	2.3	Live graph	13
1	ı	nforn	nacie dodatkowe	1/1

© Beckhoff Automation Sp. z o.o.

Wszystkie obrazy są chronione prawem autorskim. Wykorzystywanie i przekazywanie osobom trzecim jest niedozwolone.

Beckhoff®, TwinCAT®, EtherCAT®, Safety over EtherCAT®, TwinSAFE®, XFC® i XTS® są zastrzeżonymi znakami towarowymi i licencjonowanymi przez Beckhoff Automation GmbH. Inne oznaczenia użyte w niniejszej prezentacji mogą być znakami towarowymi, których użycie przez osoby trzecie do własnych celów może naruszać prawa właścicieli.

Informacje przedstawione w tej prezentacji zawierają jedynie ogólne opisy lub cechy wydajności, które w przypadku rzeczywistego zastosowania nie zawsze mają zastosowanie zgodnie z opisem lub które mogą ulec zmianie w wyniku dalszego rozwoju produktów. Obowiązek przedstawienia odpowiednich cech istnieje tylko wtedy, gdy zostanie to wyraźnie uzgodnione w warunkach umowy.

Uwaga! Poniższy dokument zawiera przykładowe zastosowanie produktu oraz zbiór zaleceń i dobrych praktyk. Służy on wyłącznie celom szkoleniowym i wymaga szeregu dalszych modyfikacji przed zastosowaniem w rzeczywistej aplikacji. Autor dokumentu nie ponosi żadnej odpowiedzialności za niewłaściwe wykorzystanie produktu. Dany dokument w żadnym stopniu nie zastępuje dokumentacji technicznej dostępnej online na stronie infosys.beckhoff.com.

1 Wstęp

1.1 Wykorzystana konfiguracja

W celu opracowania instrukcji posłużono się następującą konfiguracją sprzętową:

- Sterownik C6015-0010 z systemem operacyjnym Windows 10 oraz TwinCAT 3.1.4024.53
- Telefon komórkowy z dostępem do Internetu oraz pobraną aplikacją TwinCAT IoT
- Komputer z uruchomionym brokerem MQTT

1.2 Opis technologii

Biblioteka Tc3_lotCommunicator pozwala na wymianę danych pomiędzy programem PLC a brokerem poprzez protokół komunikacyjny MQTT. Rozwiązanie takie pozwala np. na zdalne odczytywanie zmiennych statusowych procesu (subscribe mode) lub zadawanie parametrów (publish mode) bez konieczności fizycznego przebywania w pobliżu sterownika czy komputera, z którego sterownik był programowany. W przykładzie przedstawiona zostanie komunikacja dla dwóch pokojów, z czego jeden będzie zabezpieczony nazwą użytkownika i hasłem, a drugi nie.

2 Przygotowanie sterownika oraz programu PLC

2.1 Uruchomienie brokera MQTT

W tej instrukcji instalacja brokera MQTT zostanie przedstawiona w sposób skrócony. W celu otrzymania dokładnej instrukcji prosimy o kontakt poprzez skrzynkę mailową support@beckhoff.pl.

W pierwszej kolejności należy zainstalować broker MQTT https://mosquitto.org/download/ (w naszym przypadku będzie to Eclipse Mosquitto), a następnie odblokować port firewall 1883 na urządzeniu serwera oraz klienta.

Dla wersji 2.0.0 oraz nowszych, wymagana jest zmiana domyślnej konfiguracji, aby zezwolić na dostęp innych urządzeń do brokera. W tym celu należy edytować plik konfiguracyjny, znajdujący się w folderze instalacyjnym, o nazwie **mosquitto.conf**. Potrzebne parametry:

- listener 1883 0.0.0.0 deklarujemy port oraz adres po których będzie przebiegała komunikacja (0.0.0.0 oznacza dostęp z dowolnego adresu)
- allow_anonymous true zezwalamy na połączenia z innych urządzeń

```
# 233 # listener port-number [ip address/host name/unix socket path]
234 listener 1883 0.0.0.0
```

```
# Defaults to false, unless there are no listeners defined in the configuration
# file, in which case it is set to true, but connections are only allowed from
# the local machine.
allow_anonymous true
```

Aby załadować nową konfigurację, należy zapisać edytowany plik oraz w linii poleceń cmd uruchomić broker: mosquitto -v -c mosquitto.config

```
C:\Users\Administrator>cd C:\Program Files\mosquitto
C:\Program Files\mosquitto>\mosquitto -v -c mosquitto.conf
```

Należy pamiętać, aby broker był cały czas uruchomiony podczas komunikacji!

Pełna dokumentacja pliku konfiguracyjnego dostępna na stronie mosquitto.org/man/mosquitto-conf-5.

2.2 Przygotowanie sterownika

W pierwszej kolejności należy połączyć się ze sterownikiem, a następnie odblokować w firewall port 1883 dla połączeń przychodzących i wychodzących. Dodatkowa instalacja biblioteki nie jest konieczna, ponieważ biblioteka Tc3_lotCommunicator jest domyślnie zainstalowana w wersji TwinCAT 3.1.4022 oraz wyższych. W przypadku uruchamiania brokera MQTT na urządzeniu posiadającym adres IP przydzielany przy pomocy serwera DHCP należy się upewnić, czy urządzenie mobilne, sterownik i urządzenie na którym uruchomiony jest broker znajdują się w tej samej podsieci.

2.3 Przygotowanie struktury danych

Należy uruchomić środowisko TwinCAT XAE, a następnie dołączyć do programu PLC biblioteki Tc3_lotCommunicator oraz Tc3_Module. W następnej kolejności należy utworzyć strukturę danych, która przesyłana będzie przy pomocy protokołu MQTT, np. jak poniżej:

```
TYPE ST_ProcessData:

STRUCT

{attribute 'iot.DisplayName' := 'Kitchen Lights'}

bLamp1 : BOOL;

{attribute 'iot.DisplayName' := 'Living Room Lights'}

bLamp2 : BOOL;

{attribute 'iot.DisplayName' := 'Outside Temperature'}

{attribute 'iot.ReadOnly' := 'false'}

{attribute 'iot.Unit' := 'Celsius'}

{attribute 'iot.MinValue' := '5'}

{attribute 'iot.MaxValue' := '30'}

nTemp : REAL;

END_STRUCT

END_TYPE
```

Atrybut iot.DisplayName odpowiada za wyświetlanie nazwy zmiennej w urządzeniu klienta, atrybut ReadOnly pozwala na ustawienie braku możliwości zmiany wartości zmiennej, atrybut Unit określa jednostkę w jakiej wyświetlana jest wartość, a atrybut MinValue i MaxValue pozwala określić zakres wyświetlania zmiennej w urządzeniu klienta.

2.4 Przygotowanie funkcji do komunikacji

W celu zapewnienia komunikacji przy pomocy protokołu MQTT używa się bloku funkcyjnego FB_lotCommunicator dostępnego w bibliotece Tc3_lotCommunicator. Blok ten posiada następujące wejścia:

- sHostName adres IP lub Hostname brokera MQTT
- nPort port wykorzystywany do komunikacji (w naszym przypadku port 1883)
- sClientID opcjonalne wejście dla ustawienia unikalnej nazwy klienta
- sMainTopic nazwa głównego tematu
- sDeviceName nazwa pokoju
- sUser nazwa użytkownika (gdy skonfigurowane w brokerze)
- sPassword hasło (gdy skonfigurowane w brokerze)
- stTLS struktura dla komunikacji zabezpieczanej przy pomocy TLS
- bRetain zmienna dla ustalenia, czy broker ma przechowywać poprzednie wiadomości
- eQoS zmienna dla "Quality of Service"

Wyjścia:

- bError gdy wystąpi błąd
- hrErrorCode kod błędu
- eConnectionState stan komunikacji między klientem I brokerem
- bConnected TRUE jeśli jest poprawna komunikacja między klientem i brokerem
- fbCommand wyjscie do ewaluacji otrzymanych danych ("komend")

Oraz metody:

- Execute wywoływana cyklicznie dla utrzymania komunikacji
- SendData metoda do wysłania danych do brokera
- SendMessage metoda do wysłania wiadomości do brokera

2.4.1 Komunikacja bez podawania użytkownika i hasła

W celu zapewnienia podstawowej komunikacji (bez zabezpieczenia przy pomocy podawania nazwy użytkownika i hasła), konfiguracja wygląda jak na obrazku poniżej (deklarujemy tylko 4 zmienne wejściowe):

```
fbloT : FB_lotCommunicator := (

sHostName := '10.24.2.38',
nPort := 1883,
sMainTopic := 'MyMainTopic',
sDeviceName := 'Room One');
```

W aplikacji mobilnej w zakładce Settings odznaczamy opcję "Authentication":

Należy pamiętać, że broker MQTT również powinien być uruchomiony bez opcji zakładającej nazwę użytkownika i hasło dla komunikacji.

2.4.2 Komunikacja z podawaniem nazwy użytkownika i hasła

W celu zapewnienia komunikacji bezpieczniejszej (zabezpieczonej nazwą użytkownika i hasłem) poza zmiennymi zadeklarowanymi w przykładzie powyżej należy zadeklarować również w bloku zmienne sUser oraz sPassword, jak na przykładzie poniżej (muszą być one zgodne z użytkownikiem i hasłem skonfigurowanymi dla brokera):

W aplikacji mobilnej należy zaznaczyć opcję "Authentication", a następnie wpisać nazwę użytkownika i hasło w oknie, które się pojawi:

Należy pamiętać, że broker MQTT również powinien być uruchomiony z opcją zakładającą nazwę użytkownika i hasło dla komunikacji.

2.5 Przygotowanie struktury programu

W celu zapewnienia cyklicznej komunikacji klienta z brokerem należy co cykl wywoływać metodę Execute dla funkcji FB_lotCommunicator:

```
fbloT.Execute(TRUE); //keep communication alive
fbloT2.Execute(TRUE); //keep communication alive
```

Przesyłanie danych realizowane będzie co 500 ms przy pomocy timera TON, w przypadku gdy wyjście bConnected bloku będzie w stanie TRUE (komunikacja będzie poprawna):

```
stData
                                   : ST_ProcessData;
    stData2
                                   : ST_ProcessData2;
timer(IN := NOT timer.Q, PT := T#500MS);
                                                                                                 //cyclic message sending
                                                                                                 //if TRUE
IF bSendMessage THEN
    bSendMessage := FALSE;
                                                                                                 //set to FALSE
    fbIoT.SendMessage(sMessage);
                                                                                                  //send message
IF fbIoT.bConnected AND timer.Q THEN
                                                                                                 //if 500 ms passed and communication ok
 fbIoT.SendData(ADR(stData), SIZEOF(stData));
                                                                                                 //send data
END IF
IF fbIoT2.bConnected AND timer.Q THEN
                                                                                                  //if 500 ms passed and communication ok
 fbIoT2.SendData(ADR(stData2), SIZEOF(stData2));
                                                                                                 //send data
```

Powyższy fragment kodu służy do odczytu informacji z programu PLC np. za pomocą urządzenia mobilnego. Aby możliwe było nadpisywanie wartości zmiennych z poziomu urządzenia klienta należy zaimplementować fragment kodu jak poniżej:

```
IF fbloT.fbCommand.bAvailable THEN

IF fbloT.fbCommand.sVarName = 'bLamp1' THEN

(//if Lamp 1

fbloT.fbCommand.GetValue(ADR(stData.bLamp1), SIZEOF(stData.bLamp1), E_lotCommunicatorDatatype.type_BOOL);

(//set new value ELSIF fbloT.fbCommand.SvarName = 'bLamp2' THEN

(//if Lamp 2

fbloT.fbCommand.GetValue(ADR(stData.bLamp2), SIZEOF(stData.bLamp2), E_lotCommunicatorDatatype.type_BOOL);

(//set new value ELSIF fbloT.fbCommand.sVarName = 'nTemp' THEN

(//if Temp

fbloT.fbCommand.GetValue(ADR(stData.nTemp), SIZEOF(stData.nTemp), E_lotCommunicatorDatatype.type_REAL);

(//set new value END_IF
```


fb Io T. fb Command. Remove ();

//discard command

END IF

Kod ten pozwala na nadpisanie wartości zmiennej w przypadku gdy dostępna jest możliwość wysłania nowej komendy do brokera (fbIoT.fbCommand.bAvailable).

3 Aplikacja mobilna

W celu odczytu i zapisywania danych w programie PLC z poziomu telefonu komórkowego należy pobrać i zainstalować aplikację TwinCAT IoT (dostępna w sklepie Google Play oraz AppStore). Następnie w aplikacji należy przejść do zakładki Settings, gdzie dokonujemy konfiguracji urządzenia klienta. W polu Broker Address wpisujemy adres IP lub Hostname brokera, w polu Port wpisujemy port komunikacyjny, w polu Client ID ID klienta (o ile zadeklarowane w programie PLC), w polu Topic nazwę tematu, a opcję Authentication zaznaczamy w zależności od rodzaju komunikacji (opisane wcześniej). Pole Encryption pozwala na wybranie kodowania, o ile zostało zaimplementowane w brokerze.

3.1 Uruchomienie

Po uruchomieniu programu PLC na sterowniku oraz aplikacji mobilnej otrzymujemy możliwość odczytywania i zmiany wartości parametrów programu PLC przy pomocy aplikacji mobilnej, jak przedstawiono to na poniższym obrazku:

3.1.1 Uruchomienie bez nazwy użytkownika i hasła

W pierwszej kolejności uruchomiono komunikację niechronioną nazwą użytkownika i hasłem. Widok działającej aplikacji przedstawiono na obrazkach poniżej:

Jak można zauważyć, oba pokoje są w trybie online, mimo że drugi z nich został zadeklarowany jako chroniony nazwą użytkownika i hasłem. Spowodowane jest to uruchomieniem brokera bez opcji logowania użytkowników.

3.1.2 Uruchomienie chronione nazwą użytkownika i hasłem

Następnie uruchomiono komunikację wymagającą zalogowania się przy pomocy nazwy użytkownika i hasła. Konfiguracja i widok działającej aplikacji przedstawiono na obrazkach poniżej:

Jak można zauważyć, w zakładce Devices widoczny jest tylko Room 2. Spowodowane jest to uruchomieniem brokera z opcją logowania użytkowników, a niezaimplementowaniem tej opcji przy deklaracji bloku funkcyjnego do komunikacji dla pokoju 1.

3.2 Dodatkowe funkcje

3.2.1 Nadpisywanie wartości

Opcja nadpisywania wartości dostępna jest po kliknięciu na daną wartość, a następnie pojawi się możliwość wpisania żądanej wartości.

3.2.2 Toggle booleans

Opcja "Toggle booleans" pozwala na zmianę wartości zmiennej bool na przeciwną od razu po kliknięciu na nią. W przypadku odznaczenia opcji pojawia się okno wyboru wartości zmiennej.

BECKHOFF New Automation Technology

3.2.3 Live graph

Opcja "Live graph" pozwala na monitorowanie wartości zmiennych na wykresie. Aby ją uruchomić, należy kliknąć ikonę w prawym górnym rogu ekranu, a nastepnie wybrać zmienne które chcemy monitorować i w tym samym miejscu uruchomić rysowanie wykresu.

4 Informacje dodatkowe

Dodatkowe informacje na temat samej biblioteki Tc3_lotCommunicator dostępne są pod linkiem https://infosys.beckhoff.com/english.php?content=../content/1033/tf6730 tc3 iot communicator/index.html

Dodatkowe informacje na temat działania protokołu MQTT dostępne są pod linkiem https://infosys.beckhoff.com/english.php?content=../content/1033/tf6701 tc3 iot communication mqtt/27021 601282764171.html