

1 Indoor Air Quality Monitoring System Simulation

This application simulates the Indoor Air Quality Monitoring System with Fuzzy Logic Control Based On IOT described in the research paper by Fadli Pradityo and Nico Surantha. It models CO2 and PM10 levels, applies a Mamdani fuzzy logic system to control an exhaust fan, and visualizes the air quality over time.

Simulation Parameters

Simulation Results

Simulation Summary (Duration: 30 minutes)

- Total time CO2 was within safe limits (<1000 PPM): 1514 seconds
- Total time PM10 was within safe limits (<150 μg/m³): 1773 seconds
- Total time both CO2 and PM10 were safe: 1514 seconds
- Total time exhaust fan was active: 387 seconds

Note: The paper's safe thresholds are $CO2 \le 1000$ PPM and PM10 $\le 150 \mu g/m^3$.

Air Quality Trends Over Time

CO2 Concentration Over Time

PM10 Concentration Over Time

Exhaust Fan Activity Over Time

Simulated AQI Over Time

Simulated AQI Values

Raw Simulation Data

	Time_Seconds	CO2_PPM	PM10_UG/M3	Fan_Active	CO2_AQI	PM10_AQI	Is_AQI_Safe
588	588	965.2	6.3	0	91.3	6.3	
589	589	965.7	6.75	0	91.425	6.75	~
590	590	966.2	7.2	0	91.55	7.2	~
591	591	966.7	7.65	0	91.675	7.65	\checkmark
592	592	967.2	8.1	0	91.8	8.1	~
593	593	967.7	8.55	0	91.925	8.55	\checkmark
594	594	968.2	9	0	92.05	9	\checkmark
595	595	968.7	9.45	0	92.175	9.45	~
596	596	969.2	9.9	0	92.3	9.9	~
597	597	969.7	10.35	0	92.425	10.35	~