Introduction to Informatics

Piroska Biró

MIDTERM

5th November 2014

Tuesday

10:00-12:00

F01

- conversion of the numbers (including repeating decimal)
- addition and subtraction of different base numbers
- representation of the numbers
 - fixed-point & floating point representation
- encoding characters, Unicode, UTF-8
- logical operations
- logical gates

Convert the following different base representations to decimal form:

- 3415.482₍₉
- AC34.F2₍₁₆

Calculate the following arithmetical operations!

Convert the following ten base representation to six base form:

• 13251.75₍₁₀

• Convert the following numbers to decimal system. (calculate separately the integer and the fraction part)

2123.23'201'201'...₍₅

- Convert the following binary representation to hexadecimal form, and the hexadecimal representation to binary form:
 - 1111111010101101010011₍₂
 - 75DA94C (16)
- Convert the following binary representation to octal form, and the octal representation to binary form:
 - 11111100101011100010011₍₂
 - 6234745₍₈

- Represent -76 in 8 bits with the following fixed-pointed methods.
 - sign-and-magnitude
 - 1's complement
 - 2's complement
 - excess 127
 - excess 128
- Convert the result to hexadecimal.
- Represent +1895 in 16 bits with the following fixed-pointed methods.
 - sign-and-magnitude
 - 1's complement
 - 2's complement
 - excess 2¹⁵ -1
 - excess 2¹⁵
- Convert the result to hexadecimal.

- Which number was represented with the IEEE 754 floating point standard?
- Represent the following decimal number in 32 bits using the IEEE 754 floating point standard. Convert the result to hexadecimal.
 - -10432.75

- Represent $+85.14_{(10)}$ number in octal system.
 - starting with sign bit
 - the exponent will be 1 digit (3 bits), excess-4
 - the fraction part 4 digits
- ▶ Represent −187.24 (10) number in hexadecimal system.
 - starting with sign bit
 - the exponent will be 1 nibble (4 bits), excess-8
 - the fraction part 4 digits

• Give the Unicode value of the BMP plane's given character and the encoding of UTF-8 in the hexadecimal form.

	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F
0x2300	Ø	4	Δ	٨	V	⊼	₹	}	Γ	٦	L		i=	-1	1_	_1
0x2310	L)	Q	♦	Q	+	#	*		1	X	Г	٦	L	L
0x2320		J))	<u>\</u>	4	\boxtimes	\boxtimes		(>	\boxtimes	0	M	ø	#
0x2330	<u> </u>	ф	Δ	1]	>	I			÷	\Diamond	0	O	Ф	0	+
0x2340	+			M		+	+	\leftarrow	\rightarrow	Ø	<u> </u>	4	☑	Δ	<u></u>	†
0x2350		₹	V				+	Ţ	- 1	Δ	<u> </u>	01	0	<u></u>	•	€
0x2360		Ϋ	Ÿ	*	ö	Ö	Ψ	Ф	:	ÿ	7	₹	0	+	;	≢

Which characters were encoded in this hexadecimal UTF-8 form?

▶ E2 8F B0

- Calculate the following logical operations.
- 1. NOT(10000110) NOR (10110111 AND 11001010)
- 2. (10110101 XOR 11110011) OR (10001011 NAND 11001110)

Describe the following circuit with logic expression. According to this give the mathematical equivalents. What is the value of expression, if A=B=1, C=D=0?

Logical gate

Inputs:

A=B=1C=D=0 Outputs:

x, y, z