Entrega 8

Andoni Latorre Galarraga

Definiciones

Campo vectorial sobre una curva

Si $\alpha:I\subseteq\mathbb{R}^2\longrightarrow\mathcal{S}\subseteq\mathbb{R}^3$ es una curva sobre una superficie \mathcal{S} , un campo vectorial sobre α es una aplicación $w:I\longrightarrow\mathbb{R}^3$. Este campo se dice diferenciable si w es diferenciable y se dice tangente si satisface $w(t)\in T_{\alpha(t)}(\mathcal{S})$ para todo $t\in I$.

Derivada covariante de un campo sobre un curva

Si $w: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}^3$ es un campo vectorial diferenciable sobre $\alpha: I \subseteq \mathbb{R}^2 \longrightarrow \mathcal{S} \subseteq \mathbb{R}^3$, con \mathcal{S} superficie regular. Entonces, la derivada covariante de w es la componente tangencial de w'. Se escribe $\frac{Dw}{dt}$. Ademas, si N es un campo normal unitario de \mathcal{S} , la componente normal de w' es $w' \cdot N(\alpha)$ y se tiene que

$$\frac{Dw}{dt}(t) = w'(t) - \langle w', N(\alpha(t)) \rangle N(\alpha(t))$$

Valor algebraico de la derivada covariante

Si $w: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}^3$ es un campo vectorial diferenciable, tangente y unitario a lo largo de una curva $\alpha: I \subseteq \mathbb{R}^2 \longrightarrow \mathcal{S} \subseteq \mathbb{R}^3$ sobre una superficie orientada \mathcal{S} . Observamos que $\frac{Dw}{dt} \cdot N(\alpha(t)) = 0$ y $w(t) \cdot w'(t) = 0$, por ser la derivada covariante parte de $T_{\alpha(t)}(\mathcal{S})$ y por ser w unitario. Deducimos

$$\frac{Dw}{dt}(t) = \lambda(t)(N(\alpha(t)) \wedge w(t))$$

Llamamos valor algebraico de la derivada covariante a $\lambda(t)$ y escribimos $\lambda(t) = \left[\frac{Dw}{dt}(t)\right]$.

Curvatura geodésica

Si $\alpha: I \subseteq \mathbb{R}^2 \longrightarrow \mathcal{S} \subseteq \mathbb{R}^3$ es una curva parametrizada por longitud de arco sobre una superficie regular orientada \mathcal{S} . Llamamos curvatura geodésica de α a $\left\lceil \frac{D\alpha'}{dt} \right\rceil$. Escribimos

$$\left[\frac{D\alpha'}{dt}(t)\right] = k_g(t)$$

Geodésica

Si $\alpha: I \subseteq \mathbb{R}^2 \longrightarrow \mathcal{S} \subseteq \mathbb{R}^3$ es una curva regular sobre una superficie regular orientada \mathcal{S} . Se dice que α es geodésica si

$$\frac{D\alpha'}{dt}(t) = 0 \quad \forall t$$

Es decir α' es paralelo a lo largo de α .

Proposición:

Las geodésicas están parametrizadas por parámetro proporcional a la longitud de arco. Es decir, Si $\alpha: I \subseteq \mathbb{R}^2 \longrightarrow \mathcal{S} \subseteq \mathbb{R}^3$ es una geodésica. Entonces, $\|\alpha'\|$ es constante.

Dem:

Si no es constante $\|\alpha'(t)\|^2 = 2n(t)$. Derivando, $\alpha'\alpha'' = n'(t)$. Entonces, para algún t_0 se tiene $\alpha'\alpha'' \neq 0$. Como α' está en el espacio tangente, ahora es imposible que α'' tenga derivada covariante nula ya que tiene componente tangencial. Esto contradice que α sea geodésica y queda probada la proposición.

Proposición:

Si $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ es una isometría y α es geodésica en \mathcal{S} . Entonces, $f(\alpha)$ es geodésica sobre $f(\mathcal{S})$.

Dem:

Si $\alpha = \mathbb{X}(u, v)$ entonces $f(\alpha) = (f \circ \mathbb{X})(u, v)$ y se tiene

$$f(\alpha)' = (f \circ \mathbb{X})_u u' + (f \circ \mathbb{X})_v v'$$

$$f(\alpha)'' = (f \circ \mathbb{X})_{uu}(u')^2 + (f \circ \mathbb{X})_{uv}u'v' + (f \circ \mathbb{X})_{u}u'' + (f \circ \mathbb{X})_{vu}u'v' + (f \circ \mathbb{X})_{vv}(v')^2 + (f \circ \mathbb{X})_{v}v''$$

Por definición de los símbolos de Christoffel,

$$f(\alpha)'' = (f \circ \mathbb{X})_{uu}(u')^{2} + (f \circ \mathbb{X})_{uv}u'v' + (f \circ \mathbb{X})_{uv}u'v' + (f \circ \mathbb{X})_{vu}u'v' + (f \circ \mathbb{X})_{vu}u'v' + (f \circ \mathbb{X})_{vv}u'v' + (f \circ \mathbb{X})_{vv}(v')^{2} + (f \circ \mathbb{X})_{vv}(v')^{2} + (f \circ \mathbb{X})_{v}v'' = (f \circ \mathbb{X})_{v}v'' + (f \circ \mathbb{X})_{v}v'' = (f \circ \mathbb{X})_{v}v'' + (f \circ \mathbb{X})_{v}v'' = (f \circ \mathbb{X})_{v}v'' + (f \circ \mathbb{$$

$$\frac{Df(\alpha)'}{dt} = (f \circ \mathbb{X})_u \left(\Gamma^1_{11}(u')^2 + 2\Gamma^1_{12}u'v' + u'' + \Gamma^1_{22}(v')^2\right) + (f \circ \mathbb{X})_v \left(\Gamma^2_{11}(u')^2 + 2\Gamma^2_{12}u'v' + \Gamma^2_{22}(v')^2 + v''\right)$$

Como u y v satisfacen las ecuaciones diferenciales de las geodésicas, la derivada covariante es nula y $f(\alpha)$ es geodésica.

Proposición

Si $\alpha: I \subseteq \mathbb{R}^2 \longrightarrow \mathcal{S} \subseteq \mathbb{R}^3$ es una curva regular parametrizada por longitud de arco sobre una superficie regular orientada \mathcal{S} Entonces, $k(s)^2 = k_n(s)^2 + k_g(s)^2$.

Dem:

Por definición de curvatura normal, $k_n = k(\mathbb{N} \cdot N)$ donde N es el vector normal a la superficie y \mathbb{N} es el vector normal a la curva. Por ser α parametrizada por longitud de arco, $k\mathbb{N} = \alpha''$. Se tiene que $k_n = \alpha'' \cdot N$. Ahora, como α' es unitario $\frac{D\alpha'}{dt} = k_g(N \wedge \alpha')$.

$$\alpha'' = (\alpha'' \cdot N)N + k_g(N \wedge \alpha')$$
$$k\mathbb{N} = k_n N + k_g(N \wedge \alpha')$$

Tomado $\|\cdot\|^2$ a ambos lados se tiene $k^2 = k_n^2 + k_q^2$.