

Dokumentation XpressNet Version 4.0

Inhalt

1	Allgemeines	6
1.1	XpressNet-Hardware	6
1.2	Datenverkehr auf dem XpressNet-Bus	6
1.3	Kommunikation und Timing	7
1.4	Ungefragte Informationen	7
1.5	Nicht mehr unterstützte Befehle	8
2	Befehle von Zentrale an Gerät	9
2.1	Normale Anfrage	9
2.2	Quittierung	9
2.3	TBD	10
2.4	Broadcast	10
2.4.1	BC "Alles An"	10
2.4.2	BC "Alles Aus" (Notaus)	11
2.4.3	BC "Alle Loks Aus" (Nothalt)	11
2.4.4	BC "Programmiermode"	11
2.4.5	BC "Rückmeldung"	12
2.4.6	BC "Rückmeldung ab Weiche 1025"	12
2.4.7	Broadcast "Modellzeit"	13
2.5	Programmierinformationen	13
2.5.1	Programmierinfo "Kurzschluß"	14
2.5.2	Programmierinfo "Daten nicht gefunden"	14
2.5.3	Programmierinfo "Zentrale Busy"	14
2.5.4	Programmierinfo "Zentrale Bereit"	15
2.5.5	Programmierinfo "Daten 3-Byte-Format"	15
2.5.6	Programmierinfo "Daten 4-Byte-Format" CV 1-255 und CV1024 (neu ab Version 3.6; ersetzt gleichen Befehl bis Version 3)	15
2.5.7	Programmierinfo "Daten 4-Byte-Format" CV256 bis CV511 (neu ab Version 3.6)	16
2.5.8	Programmierinfo "Daten 4-Byte-Format" CV512 bis CV767 (neu ab Version 3.6)	16
2.5.9	Programmierinfo "Daten 4-Byte-Format" CV768 bis CV1023 (neu ab Version 3.6)	17
2.6	Service Variable melden	17
2.7	Softwareversion Zentrale	18
2.7.1	Softwareversion bis LZ-Version 2.3	18
2.7.2	Softwareversion ab LZ-Version 3.0	18
2.8	Status Zentrale	19
2.9	Erweiterte Versionsinformation melden	19
2.10	PoM Ergebnis melden	20
2.11	Modellzeit melden	20
2.12	Übertragungsfehler	21
2.13	Zentrale Busy	21

2.14	Befehl in Zentrale nicht vorhanden	22
2.15	Schaltinformation	22
2.16	Schaltinformation ab Weiche 1025	24
2.17	Lokinformationen bis LZ-Version 1.5	24
2.17.1	Lok frei bis LZ-Version 1.5	24
2.17.2	Lok besetzt bis LZ-Version 1.5	25
2.18	Lokinformationen bis LZ-Version 2.3	25
2.18.1	Lok frei bis LZ-Version 2.3	26
2.18.2	Lok besetzt bis LZ-Version 2.3	28
2.19	Lokinformationen ab Zentralen-Version 3.0	
2.19.1	Lokinformation normale Lok	
2.19.2	Funktionszustand F13 bis F28 der angefragten Lok (ab Version 3.6)	
2.19.3	Funktionszustand F29 bis F68 der angefragten Lok (ab Version 4.0)	30
2.19.4	Lokinformation Lok befindet sich in einer Mehrfachtraktion	31
2.19.5	Lokinformation Lokadresse ist die Basisadresse einer Mehrfachtraktion	31
2.19.6	Lokinformation Lok befindet sich in einer Doppeltraktion	32
2.19.7	Lok besetzt ab Zentralen-Version 3.0	32
2.19.8	Funktionsstatus F0 bis F12 der angefragten Lok (ab Version 3.0)	33
2.20	Funktionsstatus F13 bis F28 der angefragten Lok (ab Version 3.6)	33
2.21	Funktionsstatus F29 bis F68 der angefragten Lok (ab Version 4.0)	34
2.22	Lokinformation bei Adress-Suchanfragen ab Zentralen-Version 3.0	
2.22.1	Doppeltraktionsinformation bis LZ-Version 1.5	36
2.22.1.1	Doppeltraktion frei bis LZ-Version 1.5	
2.22.2	Doppeltraktion besetzt bis LZ-Version 1.5	36
2.23	Doppeltraktionsinformation bis LZ-Version 2.3	
2.23.1	Doppeltraktion frei bis LZ-Version 2.3	
2.23.2	Doppeltraktion besetzt bis LZ-Version 2.3	37
2.23.3	Doppeltraktionsfehler bis LZ-Version 2.3	38
2.24	Fehlermeldungen ab Zentralen-Version 3.0	38
3	Befehle von Gerät an Zentrale	40
3.1	Quittierung	40
3.2	Alles An	40
3.3	Alles Aus (Notaus)	41
3.4	Alle Loks anhalten (Nothalt)	41
3.5	Eine Lok anhalten (Nothalt für eine Lok)	41
3.6	Lok anhalten bis LZ-Version 2.3	41
3.7	Lok anhalten ab Zentralen-Version 3.0	42
3.8	Mehrere Loks anhalten bis LZ-Version 2.3	42

3.9	Leseanfrage Programmieren 3-Byte-Format (Registermode)	42
3.10	Leseanfrage Programmieren 4-Byte-Format (CV-Mode, CV 1-256)	43
3.11	Leseanfrage Programmieren 4-Byte-Format (CV 1-255 und CV1024) (neu ab V3.6)	43
3.12	Leseanfrage Programmieren 4-Byte-Format (CV 256-511) (neu ab V3.6)	44
3.13	Leseanfrage Programmieren 4-Byte-Format (CV 512-767) (neu ab V3.6)	44
3.14	Leseanfrage Programmieren 4-Byte-Format (CV 768-1023) (neu ab V3.6)	45
3.15	Leseanfrage Programmieren 3-Byte-Format (Pagemode)	45
3.16	Programmierergebnis anfordern	46
3.17	Schreibbefehl Programmieren 3-Byte-Format (Register-Mode)	46
3.18	Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 1-256)	47
3.19	Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 1-255 und CV1024) (ne Version 3.6)	
3.20	Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 256-511) (neu ab Versi 48	on 3.6)
3.21	Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 512-767) (neu ab Versi 48	on 3.6)
3.22	Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 768-1023) (neu ab Vers 49	sion 3.6)
3.23	Schreibbefehl Programmieren 3-Byte-Format (Page-Mode)	49
3.24	Softwareversion der Zentrale anfordern	50
3.25	Erweiterte Zentralen Versionsinformation abfragen (ab Version 3.8)	50
3.26	Status der Zentrale anfordern	50
3.27	Zentralen-Startmode setzen	51
3.28	Service Variable Lesebefehl (ab Version 3.8)	51
3.29	Service Variable Schreibbefehl (ab Version 3.8)	51
3.30	PoM Ergebnis holen (ab Version 3.8)	52
3.31	Zentralen Reset auslösen	52
3.32	Modellzeit anfordern	52
3.33	Modellzeit stellen	53
3.34	Modellzeit anhalten (ab Version 4.0)	53
3.35	Modellzeit starten (ab Version 4.0)	53
3.36	Schaltinformationen anfordern, Adresse 1 bis 1024 (bis Version 3.6)	54
3.37	Schaltinformation anfordern, Adresse 1 bis 2048 (ab Version >3.6)	55
3.38	Schaltbefehl bis Version 3.6 incl.	55
3.39	Schaltbefehl ab Version 3.8	56
3.40	Lokinformationen anfordern	
3.40.1	Lokinformationen anfordern bis LZ-Version 1.5	
3.40.2	Lokinformationen anfordern bis LZ-Version 2.3	
3.40.3	Lokinformationen anfordern ab Zentralen-Version 3.0	
3.40.4	Funktionsstatus anfordern ab Zentralen-Version 3.0	
3.40.5	Funktionsstatus anfordern F13 – F28 (neu ab Zentralen-Version 3.6)	58

3.40.6	Funktionsstatus anfordern F29 – F68 (ab Zentralen-Version 4.0)	59
3.40.7	Funktionszustand anfordern F13 – F28 (neu ab Zentralen-Version 3.6)	59
3.40.8	Funktionszustand anfordern F29 – F68 (ab Zentralen-Version 4.0)	60
3.41	Lok steuern	60
3.41.1	Fahrbefehl bis LZ-Version 1.5	60
3.41.2	Fahrbefehl bis LZ-Version 2.3	60
3.41.3	Fahrbefehl ab Zentralen-Version 3.0	61
3.41.4	Funktionsbefehle ab Zentralen-Version 3.0 / Version 3.6 / Version 4.0	62
3.41.5	Funktionsbefehle "binary states" ab Zentralen-Version 4.0	65
3.41.5.1	Funktionsbefehl binary state short form:	66
3.41.5.2	Funktionsbefehl binary state long form:	
3.41.6	Funktionsstatus setzen ab Zentralen-Version 3.0 / Version 3.6 / Version 4.0	66
3.41.7	Funktionsrefresh-Modus setzen ab Zentralen-Version 3.6	70
3.41.8	Doppeltraktionen bis LZ-Version 2.3	72
3.41.8.1	Doppeltraktion montieren	72
3.41.8.2	Doppeltraktion auflösen	72
3.41.9	Doppeltraktionen ab Zentralen-Version 3.0	73
3.41.9.1	Doppeltraktion montieren	73
3.41.9.2	Doppeltraktion auflösen	
3.41.10	Mehrfachtraktionen ab Zentralen-Version 3.0	74
3.41.10.1	Lok zu einer Mehrfachtraktion hinzufügen oder MTR erzeugen	
3.41.10.2	Lok aus einer Mehrfachtraktion entfernen oder MTR löschen	
3.42	Programming on Main ab Zentralen-Version 3.0	
3.42.1	Programming on Main Byte schreiben	75
3.42.2	Programming on Main Byte lesen (ab Version 3.6)	75
3.42.3	Programming on Main Bit schreiben	76
3.43	Adress-Suchbefehle ab Zentralen-Version 3.0	76
3.43.1	Adressanfrage Mitglied einer Mehrfachtraktion	76
3.43.2	Adressanfrage Mehrfachtraktion	77
3.43.3	Adressanfrage Lok in Zentralenstack	77
3.43.4	Lok aus Zentralenstack löschen	78
4	Zentralen und deren Eigenschaften	79
5	Befehlsübersicht Zentrale an Gerät	81
6	Befehlsübersicht Gerät an Zentrale	83

1 Allgemeines

Die vorliegende Beschreibung enthält neben der Hardwarebeschreibung des XpressNet auch die Befehle, die bis einschließlich Version 3.0 der Zentralen verwendet wurden, sowie zukünftige Erweiterungen, die zum Teil schon in Zentralen oder Busgeräten vorgesehen sind, jedoch erst bei späteren Versionen benutzt werden. Unterschieden wird bei den Zentralen nach Versionen bis einschließlich 1.5, von Version 1.5 bis einschließlich Version 2.3 und ab Version 3.0 oder höher. Für später geplante Versionen wird angestrebt, die Lok-Fahrbefehle sowie die Doppeltraktion bis einschließlich Version 2.3 nicht mehr zu unterstützen, um das tatsächlich in einer Zentrale verwendete Protokoll nicht unnötig groß werden zu lassen.

1.1 XpressNet-Hardware

Das XpressNet ist ein serieller Bus nach RS485-Standard im Half-Duplex-Betrieb mit differentieller Signalübertragung. Übertragen werden:

1 Startbit (0), 9 Datenbits, 1 Stopbit (1), kein Paritybit

Baudrate: 62,5 kbaud

Zur Zeit 32 Busteilnehmer (incl. Zentrale)

Ein Paritybit wird nur im Rufbyte von der Zentrale an ein Gerät eingefügt. Dies ist das Bit 7. Bit 7 wird so ergänzt, daß eine gerade Anzahl Einsen im Rufbyte steht (gerade Parität). Das 9. Bit wird hardwareseitig als Adressbit (1) oder Datenbit (0) hinzugefügt. Für 8051-Derivate: 9-Bit-UART, Mode 2 mit Adress-/Datenkennung der seriellen Schnittstelle. Die Datenübertragung eines XpressNet-Gerätes an die Zentrale erfolgt immer so, daß das 9. Datenbit vom Gerät auf "0" zu setzen ist. Eine Ausnahme besteht nur bei der Übertragung von Daten von einem Gerät an ein anderes.

Pinbelegung des XpressNet:

L – Versorgung der Busteilnehmer (12VDC)

M – Masse

A - Receive/Transmit nicht invertierend

B - Receive/Transmit invertierend

Es ist auf korrekten Anschluss der Geräte an die A- und B-Leitung zu achten. Ein Vertauschen führt dazu, dass keine Kommunikation zustande kommt. Aufgrund der niedrigen Datenübertragungsrate von 62,5 kBaud kann die Verbindung zwischen den Teilnehmern bis zu 1000m lang sein. Auch ist es nicht notwendig, eine bestimmte Busstruktur einzuhalten. So sind z.B. Stichleitungen, stern- und ringförmige Verdrahtungen möglich. Bei Übertragungsproblemen bei sehr weitläufigen Verdrahtungen oder unter ungünstigen Umgebungsbedingungen kann es nötig sein, den Bus verdrillt zu verlegen und mit einem Widerstand von 120Ω abzuschließen. Die Zentrale LZ100/LZV100/LZV200 enthält bereits einen Abschlusswiderstand. Der Querschnitt der Leitungen sollte 0,25qmm nicht unterschreiten, empfehlenswert sind 0,5qmm oder größer.

1.2 Datenverkehr auf dem XpressNet-Bus

Eine Kommunikation wird grundsätzlich von der Zentrale ausgelöst. Die Zentrale sendet hierzu ein Rufbyte, welches die Adresse des Slaves (oder aller Slaves) sowie die Kennung (den Inhalt der folgenden Byte) des Rufes beinhaltet. Das Rufbyte wird von der Zentrale mit einem Paritybit versehen, welches sich nur auf das Rufbyte bezieht. Wird an einem Slave mehr als ein Byte gesendet, so wird am Schluss ein X-Or-Byte mitgesendet, das zur Fehlerkontrolle der Übertragung dient. Das X-Or-Byte wird gebildet aus allen Datenbytes ohne das Rufbyte. Ebenso sendet jeder Slave bei einer Sendung an die Zentrale ein X-Or-Byte.

Ein Slave kann Informationen (z.B. über eine Lok) von der Zentrale erhalten, wenn er diese angefragt hat, aber auch, wenn sich z.B. am Zustand dieser Lok durch Aktionen eines anderen Slaves etwas geändert hat (ungefragte Info).

Grundsätzlich kann der Slave erst nach Ruf durch die Zentrale eine Aktion ausführen (z.B. Lokdaten anfordern). Nach Beendigung dieser Aktion wird von der Zentrale das nächste Gerät adressiert.

Es besteht auch die Möglichkeit, dass ein Gerät nach einer Zentralenadressierung nicht eine Anfrage oder einen Befehl an die Zentrale sendet, sondern dass aufgrund der Kennung des Befehls die Zentrale diesen nicht verarbeitet, sondern an ein anderes Gerät weiterleitet. Somit können XpressNet-Geräte auch untereinander Daten austauschen, indem z.B. ein Gerät, welches RailCom-Empfänger auswertet, deren Informationen als Broadcast "RailCom-Info" an alle XpressNet-Geräte sendet.

1.3 Kommunikation und Timing

Die Kommunikation auf dem XpressNet erfolgt so, dass die Zentrale als einziger Master-Teilnehmer alle angeschlossen Geräte (Slaves) zyklisch adressiert (z.B. mit "Normaler Anfrage") und diese dann Nachrichten mit der Zentrale austauschen können. Ist ein solcher Austausch abgeschlossen, wird der nächste Slave adressiert. Bevor das nächste Gerät adressiert wird, wird die aktuelle Befehlssequenz abgearbeitet. Hierzu gehört z.B. auch, dass die Zentrale einen Notaus-Befehl bearbeitet und dann einen Broadcast an alle Teilnehmer schickt und erst danach weiter adressiert. Dies kann u. U. lange dauern, je nach den vom Slave gewünschten Befehlen (z.B. Programmierung von Lokempfängern).

Abweichend von diesem Frage-Antwort-Verfahren sendet die Zentrale den Teilnehmern auch Informationen, die diese nicht explizit angefragt haben, auf die sie aber gegebenenfalls reagieren müssen (z.B. Anzeige, Lokübernahme etc.).

Zur Fehlerkontrolle wird jedem Datenpaket ein X-Or-Byte hinzugefügt, welches der Empfänger prüfen muss. Nachdem die Zentrale ein Gerät adressiert hat, muss dieses mit seiner Antwort nach spätestens 100 usec beginnen, jedoch nicht früher als 40 usec nach Eintreffen des letzten Bits. Der zeitliche Abstand zwischen zwei Adressierungen des gleichen XpressNet-Gerätes liegt, durch die Zentrale gewährleistet, zwischen 400usec und 500msec. Eine Ausnahme bildet die Situation wenn die Zentrale im Programmiermode ist. Entsprechend müssen XpressNet-Geräte mit diesen Adressierungsraten umgehen können. Die zeitliche Varianz ergibt sich aus der Tatsache, dass z.B. nur ein einziges Gerät am Bus angeschlossen ist, welches adressiert wird ohne zu antworten und der maximalen Zahl von 31 Geräten, die alle den längsten Befehl an die Zentrale senden sowie dazwischenliegende Broadcasts.

1.4 Ungefragte Informationen

Ungefragte Informationen an einen oder alle Slaves werden immer dann verschickt, wenn Anlagenzustände allen Geräten bekannt gemacht werden müssen, damit diese in ihrem Verhalten schnellstmöglich korrekt reagieren können. Ungefragte Infos werden entweder als Broadcast verschickt, wenn alle Slaves sie erhalten sollen, oder als Antwort formatiert, wenn es nur einen bestimmten Slave betrifft. Kennzeichnend ist immer, dass ein Slave diese Informationen nicht anfragt (also eigentlich nicht mit ihnen rechnet), sie trotzdem zu einem beliebigen Zeitpunkt erhält und richtig bei z.B. Eingaben (Lok-Fahrbefehle) reagieren muss. Der Slave muss also entscheiden, ob er, je nach seinem Programmkontext, die Antwort auswertet oder die Informationen gar nicht erst annimmt. Ungefragte Infos sind:

Broadcast "Alles An" (an alle Teilnehmer)
Broadcast "Alles Aus" (an alle Teilnehmer)
Broadcast "Alle Loks Aus" (an alle Teilnehmer)
Broadcast "Programmiermode" (an alle Teilnehmer)
Broadcast "Rückmeldung" (an alle Teilnehmer)
Broadcast "RailCom-Info" (an alle Teilnehmer)
Broadcast "Modellzeit" (an alle Teilnehmer)

Antwort "Lok besetzt" (an denjenigen Teilnehmer, der die Lok gerade im Zugriff hatte)

Antwort "Doppeltraktion besetzt" (an denjenigen Teilnehmer, der die Doppeltraktion gerade im

Zugriff hatte)

Die Antworten "Übertragungsfehler", "Zentrale Busy", "Doppeltraktionsfehler" und "Befehl nicht vorhanden" sind keine ungefragten Infos, da diese Antworten grundsätzlich auf Befehle eines Slaves an die Zentrale kommen können. Sie sind also zeitlich an den Befehl an die Zentrale gekoppelt.

1.5 Nicht mehr unterstützte Befehle

Aus Gründen der Übersichtlichkeit und Datenkonsistenz werden ab Zentralen-Version 3.0 nicht mehr alle XpressNet-Befehle unterstützt. Dies liegt zum einen daran, dass es verschiedene Zentralen gibt, die die Softwarekennung 3.0 haben, aber aufgrund ihres Hardwareaufbaues oder der Prozessorleistung nicht den gesamten Befehlsvorrat unterstützen können (gekennzeichnet durch eine Zentralen-ID) und zum anderen daran, dass aufgrund des technischen Fortschrittes (mehr Fahrstufen, mehr Funktionen) die bestehenden Befehle nicht erweitert werden können. Die Zentrale LZ100 V3.x beinhaltet noch den kompletten Befehlsvorrat, spätere Zentralen werden aber die "alten" Lokanfragen und Fahrbefehle nicht mehr unterstützen. Es sollen dann ausschließlich die umfassenderen "neuen" Befehle benutzt werden. Dies trifft für alle Befehle zu, die eine Lokadresse beinhalten, da diese grundsätzlich von 1 Byte Länge auf 2 Byte Länge erweitert wurde.

Betroffen hiervon sind folgende Befehle, die für Zentralen Version 4.0 und höher nicht mehr verwendet werden:

1.) XpressNet-Gerät an Zentrale:

Lok anhalten bis LZ-Version 2.3 (siehe 3.6)

Mehrere Loks anhalten (siehe 3.8)

Lokinformation anfordern (siehe 3.40.1 und 3.40.2)

Lok steuern (siehe 3.41.1 und 3.41.2)

Doppeltraktion (siehe 3.41.8)

2.) Zentrale an XpressNet-Gerät

Zentralen-Softwareversion (siehe 2.7.1)

Lokinformationen (siehe 2.17 und 2.18)

Doppeltraktionsinformationen (siehe 2.22.1, 2.23 und 2.23.3)

Verwendet ein XpressNet-Gerät dennoch einen "alten" Befehl, so wird die Zentrale darauf mit der Antwort "Befehl unbekannt" reagieren.

2 Befehle von Zentrale an Gerät

Befehlsaufbau:

Die Zentrale sendet ein Rufbyte mit der Slave-Adresskennung, ein Headerbyte, ein bis maximal 16 Datenbytes und ein X-Or-Byte.

Ausnahme: Die Rufe "Quittung", "TBD" und "Normale Anfrage" bestehen nur aus dem Ruf-byte.

Im Headerbyte wird im unteren Nibble die Anzahl der noch folgenden Datenbytes eingetragen.

Vereinbarungen für die folgenden Befehlsbeschreibungen:

P = Paritybit (inclusive P steht eine gerade Anzahl von Einsen im Rufbyte

A = Geräteadresse (5 Bit), wobei Slaves die Adressen 1 bis 31 haben dürfen.

N = Anzahl der noch folgenden Datenbytes (binär und hexadezimal)

GA = Geräteadresse

Das Befehlsformat wird sowohl binär als auch dezimal und hexadezimal angegeben.

2.1 Normale Anfrage

Format:

Rufbyte

Binär :	P10A AAAA
Hex:	P+0x40+GA
Dez :	P+64+GA

Beschreibung:

Auf diese Anfrage kann ein Gerät Befehle an die Zentrale senden, um Informationen anzufordern oder Befehle zu erteilen. Hiermit beginnt der Slave eine Zentralenkommunikation.

Besonderheiten:

Keine.

2.2 Quittierung

Format:

Rufbyte

Binär :	P00A AAAA
Hex:	P+0x00+GA
Dez :	P+GA

Beschreibung:

Nach einer fehlerhaften Übertragung von einem Gerät zur Zentrale sendet diese den Ruf "Übertragungsfehler und dann den Ruf nach Quittierung. Ursache: Das X-Or-Byte hat nicht gestimmt.

Ablauf: Normaler Ruf von Zentrale an Gerät

XpressNet-Slave sendet Befehl

-> Fehler auf dem Übertragungsweg

Zentrale sendet "Übertragungsfehler"

Zentrale sendet Ruf nach "Quittierung"

XpressNet-Slave sendet Quittierung

Normaler Ruf von Zentrale

Besonderheiten:

Der Ruf nach Quittierung muss beantwortet werden. Ansonsten adressiert die Zentrale dieses Gerät so lange mit Quittierungsbefehlen, bis dieses quittiert hat.

2.3 TBD

Format:

Rufbyte

Binär :	P01A AAAA
Hex:	P+0x20+GA
Dez :	P+32+GA

Beschreibung:

Reserviert für spätere Erweiterungen.

Besonderheiten:

Keine

2.4 Broadcast

Die Rufgruppe "Broadcast" gibt der Zentrale die Möglichkeit, an alle Slaves gleichzeitig Informationen zu senden. Hierzu ist im Rufbyte die Geräteadresse binär b00000, auf die vereinbarungsgemäß jeder XpressNet-Teilnehmer hören muss. Ein Broadcast wird mehrmals (bis Zentrale V2.3 dreimal) hintereinander ausgesandt, um sicherzustellen, dass jeder Teilnehmer ihn empfangen kann. Einige Befehle von Geräten an die Zentrale lösen einen solchen Broadcast aus (z.B. "Notaus"). Ein Gerät, welches einen Broadcast auslöst, muss selbst dafür sorgen, dass es zu keinen internen Unstimmigkeiten kommt, wenn es sofort danach diesen Broadcast selbst wieder erhält (wenn z.B. die Zentrale in den Programmiermode gesetzt wurde).

2.4.1 BC "Alles An"

Format:

	Rufbyte	Headerbyte	Daten 1	X-Or-Byte
Binär :	0110 0000	0110 0001	0000 0001	0110 0000
Hex:	0x60	0x61	0x01	0x60
Dez :	96	97	1	96

Beschreibung:

Sendet ein XpressNet-Slave den Befehl "Alles An" (siehe Abschnitt Gerät an Zentrale), so wird zur Information für alle Teilnehmer der Broadcast "Alles An" gesendet. Dieser Broadcast entspricht dann dem tatsächlichen Anlagenzustand. Steht z.B. ein Notaus an, der nicht aufgehoben werden kann und ein Slave sendet "Alles An", so erfolgt die Broadcast "Alles Aus"!

Besonderheiten:

Dieser Ruf wird ohne Anfrage eines XpressNet-Slaves verschickt. Er ist eine ungefragte Info. Ein Slave darf seinen (Anzeige-)Zustand erst ändern, wenn die Broadcast eintrifft.

2.4.2 BC "Alles Aus" (Notaus)

Format:

	Rufbyte	Headerbyte	Daten 1	X-Or-Byte
Binär :	0110 0000	0110 0001	0000 0000	0110 0001
Hex:	0x60	0x61	0x00	0x61
Dez :	96	97	0	97

Beschreibung:

Die Zentrale sendet hiermit die Information, dass die Gleisspannung abgeschaltet wurde und deswegen kein Schalt- oder Fahrbefehl mehr verschickt werden kann.

Besonderheiten:

Dieser Ruf wird ohne Anfrage eines XpressNet-Slaves verschickt. Er ist eine ungefragte Info. Ein Slave darf seinen (Anzeige-)Zustand erst ändern, wenn die Broadcast eintrifft, nicht schon bei Versenden des Befehls.

Y Or Byto

2.4.3 BC "Alle Loks Aus" (Nothalt)

Format:

	Ruibyte	пеацегруге	Dateni	A-OI-Byte
Binär :	0110 0000	1000 0001	0000 0000	0110 0001
Hex:	0x60	0x81	0x00	0x81
Dez :	96	129	0	129

Headerbyte Daten 1

Beschreibung:

Dufhyto

Die Zentrale sendet hiermit die Information, dass alle Loks auf dem Gleis mittels eines Broadcast (gleisseitig) angehalten worden sind. Die Gleisspannung liegt weiterhin an, so dass Schaltbefehle verschickt werden können, jedoch wird keine Lok mehr adressiert, bis alles wieder eingeschaltet wurde.

Besonderheiten

Dieser Ruf wird ohne Anfrage eines XpressNet-Slaves verschickt. Er ist eine ungefragte Info. Ein Slave darf seinen (Anzeige-)Zustand erst ändern, wenn die Broadcast eintrifft, nicht schon bei Versenden des Befehls.

2.4.4 BC "Programmiermode"

	Rufbyte	Headerbyte	Daten 1	X-Or-Byte
Binär :	0110 0000	0110 0001	0000 0010	0110 0011

Hex:	0x60	0x61	0x02	0x63
Dez :	96	97	2	99

Wird dieser Ruf an alle Slaves geschickt, so stellt dies eine Information darüber dar, dass jetzt Programmieraktionen laufen. Es wird danach kein XpressNet-Slave mehr adressiert außer demjenigen, der die Programmieraktion (durch einen Programmier-Lesebefehl an die Zentrale) ausgelöst hat. Alle anderen Slaves müssen selbst dafür sorgen, dass ihr Programm korrekt arbeitet, wenn sie für relativ lange Zeit nicht angesprochen werden (Anzeige, Watchdog etc.). Derjenige Slave, der die Programmieraktion ausgelöst hat, darf jedoch nicht in diesen Wartemodus fallen, obwohl er auch die Broadcast erhält! Der Programmiermodus kann wieder aufgehoben werden, indem das auslösende Gerät den Befehl "Alles An" sendet.

Besonderheiten:

Dieser Ruf wird ohne Anfrage eines XpressNet-Slaves verschickt. Er ist eine ungefragte Info. Ein Slave darf seinen (Anzeige-)Zustand erst ändern, wenn die Broadcast eintrifft.

2.4.5 BC "Rückmeldung"

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	Daten 4	usw.	X-Or-Byte
Binär :	P010 0000	0100 NNNN	ADR_1	DAT_1	ADR_2	DAT2	usw.	X-Or-Byte
Hex:	0xa0	0x40 + N						X-Or-Byte
Dez :	160	64 + N						X-Or-Byte

Beschreibung:

Mit diesem Ruf teilt die Zentrale allen Slaves mit, dass sich ein oder mehrere Rückmeldezustände geändert haben. Nur bei Änderungen wird der Ruf verschickt. In einem Broadcast wird mindestens ein Adresszustand, maximal 8 Zustände übertragen (Je Adresse ein Datenbyte, insgesamt 16 Byte pro Ruf ohne Header und X-Or-Byte).

ADR x und DAT x haben das Format wie unter 2.15 beschrieben.

Ein Gerät muss für z.B. eine korrekte Anzeige des Zustandes eines Rückmeldebausteins den gesamten Inhalt der Broadcast auf die gewünschte Adresse untersuchen.

Besonderheiten:

Dieser Ruf wird ohne Anfrage eines XpressNet-Slaves verschickt. Er ist eine ungefragte Info, auf die ein Slave entsprechend seinem Programmkontext (z.B. Rückmelderanzeige) reagieren kann. Ein Slave muss sicherstellen, dass sein Programm nicht zu langsam wird, wenn durch viele Rückmeldungen eine hohe Buslast entsteht. Diese Broadcast wird auch dann ausgesendet, wenn ein Teilnehmer eine nicht rückmeldefähige Weiche schaltet, um allen anderen diese Änderung auch mitzuteilen. Dadurch wird sichergestellt, dass alle Eingabegeräte die gleiche Anzeige aufweisen können.

2.4.6 BC "Rückmeldung ab Weiche 1025"

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär:	1010 0000	0100 0011	ADRH	ADRL	DAT	X-Or-Byte

Hex:	0xa0	0x43		X-Or-Byte
Dez:	160	67		X-Or-Byte

Mit diesem Ruf teilt die Zentrale allen Slaves mit, dass sich ein Rückmeldezustand oberhalb Weiche 1024 geändert hat. Nur bei Änderungen wird der Ruf verschickt. In einem Broadcast wird hier nur ein Adresszustand übertragen (Adresse & Datenbyte, 3 Byte pro Broadcast ohne Header und X-Or-Byte).

ADR und DAT haben das Format wie unter 2.15 beschrieben.

Ein Gerät muss für z.B. eine korrekte Anzeige des Zustandes eines Rückmeldebausteins den gesamten Inhalt der Broadcast auf die gewünschte Adresse untersuchen.

Besonderheiten:

Dieser Ruf wird ohne Anfrage eines XpressNet-Slaves verschickt. Er ist eine ungefragte Info, auf die ein Slave entsprechend seinem Programmkontext (z.B. Rückmelderanzeige) reagieren kann. Ein Slave muss sicherstellen, dass sein Programm nicht zu langsam wird, wenn durch viele Rückmeldungen eine hohe Buslast entsteht. Diese Broadcast wird auch dann ausgesendet, wenn ein Teilnehmer eine nicht rückmeldefähige Weiche schaltet, um allen anderen diese Änderung auch mitzuteilen. Dadurch wird sichergestellt, dass alle Eingabegeräte die gleiche Anzeige aufweisen können.

2.4.7 Broadcast "Modellzeit"

Format:

	Rufbyte	Headerbyte	Kenn/D1	D2	D3	X-Or- Byte
Binär:	0110 0000	0110 0011	0000 0011	dddh hhhh	s0mm mmmm	
Hex:	0x60	0x63	0x03			
Dez :	96	99	3			

Beschreibung:

Wenn die Modellzeituhr in der Zentrale aktiv ist (SV50 der LZV200 hat einen Wert zwischen 1 und 31) wird dieser Broadcast einmal pro Modellminute auf dem XpressNet gesendet. Jedes angeschlossene Gerät kann so die aktuelle Modellzeit anzeigen oder anderweitig verwenden. Dieser Ruf kann also zur Synchronisation der Modellzeit von XpressNet Geräten dienen.

Daten 2:	dddh hhhh	d	Angabe des Wochentags: 0 – Montag bis 6 – Sonntag
		h	Angabe der aktuellen Stunde, 0 – 23
Daten 3:	s0mm mmmm	m	Angabe der Minuten, 0 – 59
		S	0 = Modelluhr steht. 1 = Modelluhr läuft

2.5 Programmierinformationen

Nach Erteilung eines Programmier-Lesebefehls wird die Zentrale in den Programmiermodus versetzt. Mit einem sich daran anschließenden Ergebnis-Lesebefehl antwortet die Zentrale mit einer der hier beschriebenen Antworten. Befindet sich die Zentrale nicht im Programmiermodus und ein Ergebnis-Lesebefehl wurde von einem Slave verschickt, so wird als Antwort von der Zentrale "Befehl nicht vorhanden" gesendet.

2.5.1 Programmierinfo "Kurzschluss"

Format:

	Ruibyte	пеацегруге	Daten i	A-Or-byte
Binär :	P11A AAAA	0110 0001	0001 0010	0111 0011
Hex:	P+0x60+GA	0x61	0x12	0x73
Dez :	P+96+GA	97	18	115

Handarbuta Datan 1

Beschreibung:

Dufbyto

Bei Auslesen oder Beschreiben eines Empfängers am Programmieranschluss der Zentrale ist ein Kurzschluss bzw. ein zu hoher Strom aufgetreten. Es ist davon auszugehen, dass bei einem Schreibbefehl an eine Speicherstelle des Empfängers diese nicht oder falsch beschrieben wurde. Ein Gerät sollte daraufhin das Programmieren mit einer Fehlermeldung abbrechen und falls intern Daten des Empfängers verwendet werden, diese auf ihre ursprünglichen Werte zurücksetzen.

V Or Duto

Besonderheiten:

Keine.

2.5.2 Programmierinfo "Daten nicht gefunden"

Format:

	Rutbyte	Headerbyte	Daten 1	X-Or-Byte
Binär :	P11A AAAA	0110 0001	0001 0011	0111 0010
Hex:	P+0x60+GA	0x61	0x13	0x72
Dez :	P+96+GA	97	19	114

Beschreibung:

Am Programmieranschluss der Zentrale befindet sich kein Empfänger oder der Empfänger antwortet nicht auf den Leseversuch der Zentrale. Das Programmieren dieses Empfängers sollte abgebrochen oder neu versucht werden.

Besonderheiten:

Keine

2.5.3 Programmierinfo "Zentrale Busy"

Format:

	Rufbyte	Headerbyte	Daten 1	X-Or-Byte
Binär :	P11A AAAA	0110 0001	0001 1111	0111 1110
Hex:	P+0x60+GA	0x61	0x1F	0x7E
Dez :	P+96+GA	97	31	126

Beschreibung:

Dieser Befehl wird bis einschließlich Zentralen-Version 3.0 noch nicht verwendet.

Besonderheiten:

Keine.

2.5.4 Programmierinfo "Zentrale Bereit"

Format:

	Rufbyte	Headerbyte	Daten 1	X-Or-Byte
Binär :	P11A AAAA	0110 0001	0001 0001	0111 0000
Hex:	P+0x60+GA	0x61	0x11	0x70
Dez :	P+96+GA	97	17	112

Beschreibung:

Dieser Befehl wird bis einschließlich Zentralen-Version 3.0 noch nicht verwendet.

Besonderheiten:

Keine.

2.5.5 Programmierinfo "Daten 3-Byte-Format"

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	P11A AAAA	0110 0011	0001 0000	EEEE EEEE	DDDD DDDD	X-Or-Byte
Hex:	P+0x60+GA	0x63	0x10	E	D	X-Or-Byte
Dez :	P+96+GA	99	16	E	D	X-Or-Byte

Beschreibung:

Diese Antwort wird nur auf Anfrage desjenigen Slaves gegeben, der die Zentrale in den Programmiermode versetzt hat. Zurückgeliefert wird die EEPROM-Adresse (E) und die darin gelesenen Daten (D). Nur bei Register- und Pagemode erfolgt diese Antwort!

Besonderheiten:

Die Antwort bezieht sich auf Programmieraktionen im Register- und Pagemode. Wurde ein Empfänger jedoch mit CV-Lesen angefragt und man erhält diese Antwort, dann kann der Empfänger mit der CV-Programmierung nicht umgehen (alter Empfänger). Für weitere Programmieraktionen muss der Slave nun Schreib- und Lesebefehle für Register- und Pagemode verwenden.

2.5.6 <u>Programmierinfo "Daten 4-Byte-Format" CV 1-255 und CV1024 (neu ab Version</u> 3.6; ersetzt gleichen Befehl bis Version 3)

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	P11A AAAA	0110 0011	0001 0100	CCCC CCCC	DDDD DDDD	X-Or-Byte
Hex:	P+0x60+GA	0x63	0x14	С	DAT	X-Or-Byte
Dez :	P+96+GA	99	20	С	DAT	X-Or-Byte

Diese Antwort wird nur auf Anfrage desjenigen Slaves gegeben, der die Zentrale in den Programmiermode versetzt hat. Zurückgeliefert wird die CV-Adresse (C) und die darin gelesenen Daten (D). Dies nur bei CV-Programmierung von Empfängern, die diesen Mode beherrschen.

Zuordnung Wert in C <=> CV – Adressen:

С	CV
0	1024
1 255	1 255

Besonderheiten:

Wurde ein Empfänger mit CV-Lesen angefragt und man bekommt diese Antwort, ist alles ok, denn der Empfänger kann damit umgehen. Diese Antwort muss aber nicht zwangsläufig bei CV-Anfrage zurückkommen. Ein Gerät muss dies beachten und dann den Empfänger in Register- oder Pagemode programmieren. Siehe dazu 2.5.5.

2.5.7 Programmierinfo "Daten 4-Byte-Format" CV256 bis CV511 (neu ab Version 3.6)

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	P11A AAAA	0110 0011	0001 0101	CCCC CCCC	DDDD DDDD	X-Or-Byte
Hex:	P+0x60+GA	0x63	0x15	С	DAT	X-Or-Byte
Dez :	P+96+GA	99	21	С	DAT	X-Or-Byte

Beschreibung:

Diese Antwort wird nur auf Anfrage desjenigen Slaves gegeben, der die Zentrale in den Programmiermode versetzt hat. Zurückgeliefert wird die CV-Adresse (C) und die darin gelesenen Daten (D). Dies nur bei CV-Programmierung von Empfängern, die diesen Mode beherrschen.

Zuordnung Wert in C <=> CV – Adressen:

С	CV
0 255	256 511

Besonderheiten:

Siehe 2.5.6

2.5.8 Programmierinfo "Daten 4-Byte-Format" CV512 bis CV767 (neu ab Version 3.6)

Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär : P11A AA	AA 0110 0011	0001 0110	cccc cccc	DDDD DDDD	X-Or-Byte

Hex:	P+0x60+GA	0x63	0x16	С	DAT	X-Or-Byte
Dez :	P+96+GA	99	22	С	DAT	X-Or-Byte

Diese Antwort wird nur auf Anfrage desjenigen Slaves gegeben, der die Zentrale in den Programmiermode versetzt hat. Zurückgeliefert wird die CV-Adresse (C) und die darin gelesenen Daten (D). Dies nur bei CV-Programmierung von Empfängern, die diesen Mode beherrschen.

Zuordnung Wert in C <=> CV – Adressen:

С	CV
0 255	512 767

Besonderheiten:

Siehe 2.5.6.

2.5.9 <u>Programmierinfo "Daten 4-Byte-Format" CV768 bis CV1023 (neu ab Version 3.6)</u>

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	P11A AAAA	0110 0011	0001 0111	cccc cccc	DDDD DDDD	X-Or-Byte
Hex:	P+0x60+GA	0x63	0x17	С	DAT	X-Or-Byte
Dez :	P+96+GA	99	23	С	DAT	X-Or-Byte

Beschreibung:

Diese Antwort wird nur auf Anfrage desjenigen Slaves gegeben, der die Zentrale in den Programmiermode versetzt hat. Zurückgeliefert wird die CV-Adresse (C) und die darin gelesenen Daten (D). Dies nur bei CV-Programmierung von Empfängern, die diesen Mode beherrschen.

Zuordnung Wert in C <=> CV – Adressen:

С	CV
0 255	768 1023

Besonderheiten:

Siehe 2.5.6.

2.6 Service Variable melden

		Headerbyte		D2		X-Or- Byte
Binär : P	11A AAAA	0110 0011	0010 0000	SSSS SSSS	VVVV VVVV	

Hex:	P+0x60+GA	0x63	0x20		
Dez:	P+96+GA	99	32		

Dies ist die Antwort auf den Befehl "Service Variable Lesebefehl" (=>S. 51) eines XpressNet-Slaves. Sie wird auch gesendet, wenn eine Service-Variable geschrieben wurde.

Daten 2: SSSS SSSS S Adresse der Service-Variablen (SV)

(0 = SV256)

Daten 3: VVVV VVVV V Inhalt der adressierten SV

2.7 Softwareversion Zentrale

Bis einschließlich Zentralenversion 2.3 wird auf die Anfrage des Slaves nach der Zentralen-Softwareversion ein Byte zurückgesendet. Ab Version 3.0 wird zusätzlich ein zweites Byte gesendet, welches die Zentralen-Kennung enthält. Damit kann ein Slave entscheiden, z.B. welche Fahrbefehle die Zentrale versteht, ob Mehrfachtraktionen möglich sind etc. Die Anforderung des Slave nach der Zentralen-Software ist in beiden Fällen der Antwort identisch.

2.7.1 Softwareversion bis LZ-Version 2.3

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	P11A AAAA	0110 0010	0010 0001	0000 UUUU	X-Or-Byte
Hex:	P+0x60+GA	0x62	0x21	O + U	X-Or-Byte
Dez :	P+96+GA	98	33	O + U	X-Or-Byte

Beschreibung:

Auf die Anfrage nach der Zentralen-Software-Version erhält man diese Antwort. Die Versionsnummer ist in oberes (OOOO) und unteres (UUUU) Nibble hexadezimal kodiert. Beispiel: Daten 2 = 0010 0011 = 0x23 : Version 2.3

Besonderheiten:

Keine.

2.7.2 Softwareversion ab LZ-Version 3.0

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	P11A AAAA	0110 0011	0010 0001	0000	IIII IIII	X-Or-Byte
				UUUU		
Hex :	P+0x60+GA	0x63	0x21	O + U	ID	X-Or-Byte
Dez :	P+96+GA	99	33	O + U	ID	X-Or-Byte

Beschreibung:

Auf die Anfrage nach der Zentralen-Software-Version erhält man diese Antwort. Die Versionsnummer ist in oberes (OOOO) und unteres (UUUU) Nibble hexadezimal kodiert. Beispiel: Daten 2 = 0011 0000 = 0x30 : Version 3.0.

Zusätzlich wird die Zentralen-Kennung gesendet, die folgende Bedeutung hat:

ID = 0x00: LZ 100 – Zentrale
ID = 0x01: LH 200 – Zentrale

ID = 0x02: DPC – Zentrale (Compact und Commander)

Besonderheiten:

Keine.

2.8 Status Zentrale

Format:

	Ruibyte	пеацегруге	Dateni	Datenz	A-OI-byte
Binär :	P11A AAAA	0110 0010	0010 0010	SSSS SSSS	X-Or-Byte
Hex:	P+0x60+GA	0x62	0x22	S	X-Or-Byte
Dez :	P+96+GA	98	34	S	X-Or-Byte

Beschreibung:

Auf die Anfrage nach dem Zentralenstatus bekommt man das Statusbyte zurück. Dieses Byte ist bitweise wie folgt kodiert:

Bit 0: wenn 1, Anlage in Nothalt
Bit 1: wenn 1, Anlage in Notaus

Bit 2: Zentralen-Startmode (0 = manueller Start, 1 = automatischer Start)

Auto-Start : Alle Loks fahren mit ihren Einstellungen sofort los

Manueller Start: Alle Loks haben Geschwindigkeit 0 und Funktionen aus.

Bit 3: wenn 1, dann Programmiermode aktiv

Bit 4: reserviert Bit 5: reserviert

Bit 6: wenn 1, dann Kaltstart in der Zentrale

Bit 7: wenn 1, dann RAM-Check-Fehler in der Zentrale

Besonderheiten:

Nicht alle Bits sind in allen Zentralen vorhanden. Sind Bit 6 und Bit 2 gesetzt, so legt die Zentrale noch keine Daten auf das Gleis. Erst wenn ein Gerät den Startmode auf manuell oder Automatik stellt, beginnt die Gleisausgabe. Zuvor wird von der Zentrale noch der Broadcast "Alles an" gesendet. Stellt ein Gerät also "Kaltstart" und "Startmode Auto" fest, so sollte es in seinem Kontext erst weitergehen (z.B. zum Steuern von Lokomotiven), wenn es den gewünschten Startmode an die Zentrale gesendet hat oder ein Broadcast "Alles an" empfangen wurde. Dann hat nämlich ein anderes XpressNet-Gerät den Startmode eingestellt. Es ist also sinnvoll, nach einem Gerätereset zunächst den Zentralenstatus zu erfragen und dann erst Lokdaten etc.

2.9 Erweiterte Versionsinformation melden

	Rufbyte	Headerbyte	Kenn/D1	D2	D3	D4	D5	D6	D7	X-Or- Byte
Binär :	P11A AAAA	0110 0111	0010 0011							

Hex:	P+0x60+GA	0x67	0x23	ZBldH	ZBldL	RMVer	RMBIdH	RMBldL	Blvers	
Dez :	P+96+GA	103	35							

Dies ist die Antwort auf den Befehl "Erweiterte Zentralen Versionsinformation abfragen" (=>S. 50) eines XpressNet Slaves.

Daten 2: ZBIdH Build-Nr. der Zentrale, high byte in hexDaten 3: ZBIdL Build-Nr. der Zentrale, low byte in hex

Daten 4: RMVer Versionsnummer des Rückmeldecontrollers in dez; eine Nachkommastelle

Daten 5 RMBIdH Build-Nr. des Rückmeldecontrollers, high byte in hex
 Daten 6 RMBIdL Build-Nr. des Rückmeldecontrollers, low byte in hex
 Daten 7 Blvers Version des Bootloaders in dez; eine Nachkommastelle

2.10 PoM Ergebnis melden

Format:

Rufbyte Headerbyte Kenn/D1 D2 D3 D4 X-Or-Byte

Binär:	P11A AAAA	0110 0100	0010 0100				
Hex:	P+0x60+GA	0x64	0x24	ADRH	ADRL	PoMVal	XOR
Dez:	P+96+GA	100	36				

Beschreibung:

Dies ist die Antwort auf den Befehl "PoM Ergebnis holen", Abschnitt 3.30, Seite 52

Daten 2: ADRH Lokadresse, high byte in hex Lokadresse, low byte in hex

Daten 4: PoMVal Inhalt der CV (0-255)

Wenn die Adresse 0 gemeldet wird bedeutet das "Lesefehler" bzw. "CV nicht vorhanden"

2.11 Modellzeit melden

Format:

Rufbyte Headerbyte Kenn/D1 D2 D3 D4 X-Or-Byte

Binär:	P11A AAAA	0110 0100	0010 0101	DDDh hhhh	00mm mmmm	000f ffff	
Hex:	P+0x60+GA	0x64	0x25	DOW+h	min	Faktor	XOR
Dez :	P+96+GA	100	37				

Beschreibung:

Mit dieser Antwort wird die Modellzeit an den XpressNet-Teilnehmer geliefert, der den Befehl "Modellzeit anfordern" (Abschnitt 3.32, Seite 52) zur Zentrale geschickt hat.

Daten 2: DDDh hhhh DDD: Wochentag (DOW): 0 = Montag

1 = Dienstag

...

6 = Sonntag 7 nicht erlaubt!

h hhhh: Stunde: 0 - 23

Daten 3 min Minuten: 0 - 59

Daten 4 Faktor Zeitfaktor Modellzeit 0-31, 0=Stopp (Uhr angehalten)

2.12 Übertragungsfehler

Format:

	Ruibyle	Headerbyle	Daten i	X-Or-Byle
Binär :	P11A AAAA	0110 0001	1000 0000	1110 0001
Hex:	P+0x60+GA	0x61	0x80	0xE1
Dez :	P+96+GA	97	128	225

Beschreibung:

Die Zentrale sendet "Übertragungsfehler", wenn der vom Slave empfangene Befehl nicht korrekt empfangen wurde. Die Zentrale adressiert den betreffenden Slave sofort wieder mit dem Ruf nach Quittierung, den dieser beantworten muss. Dann erfolgt eine erneute "Normale Anfrage" an diesen Slave damit die Aktion wiederholt werden kann. Erst dann wird der nächste Slave adressiert. Antwortet der Slave nicht auf den Ruf nach Quittung mit einer Quittierung, so wird dieser Slave immer wieder von der Zentrale mit dem Ruf nach Quittung adressiert. Antwortet ein Slave nicht korrekt auf den Ruf nach Quittung, so wird der nächste Slave adressiert.

Besonderheiten:

Keine.

2.13 Zentrale Busy

Format:

	Rufbyte	Headerbyte	Daten 1	X-Or-Byte
Binär :	P11A AAAA	0110 0001	1000 0001	1110 0000
Hex:	P+0x60+GA	0x61	0x81	0xE0
Dez :	P+96+GA	97	129	224

Beschreibung:

Die Zentrale sendet an einen Slave als Antwort auf einen Befehl "Busy", wenn dieser Befehl zur Zeit nicht ausgeführt werden kann. Der betreffende Slave wird dann erst später wieder adressiert. Der Slave muss entscheiden, ob er bei der nächsten Adressierung den Befehl, der auf "Zentrale-Busy" traf, wiederholt oder nicht.

Besonderheiten:

Keine.

2.14 Befehl in Zentrale nicht vorhanden

Format:

	Rufbyte	Headerbyte	Daten 1	X-Or-Byte
Binär :	P11A AAAA	0110 0001	1000 0010	1110 0011
Hex:	P+0x60+GA	0x61	0x82	0xE3
Dez :	P+96+GA	97	130	227

Beschreibung:

Wurde ein Befehl zwar korrekt übertragen, aber ist nicht im Befehlsvorrat der Zentrale enthalten, so sendet die Zentrale diese Antwort zurück. Ebenso, wenn Befehle aus dem aktuellen Kontext heraus nicht möglich sind (Programmierergebnis lesen, ohne dass die Zentrale im Programmiermode ist).

Besonderheiten:

Keine.

2.15 Schaltinformation

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	P11A AAAA	0100 0010	AAAA AAAA	ITTN ZZZZ	X-Or-Byte
Hex:	P+0x60+GA	0x42	ADR	ITNZ	X-Or-Byte
Dez :	P+96+GA	66	ADR	ITNZ	X-Or-Byte

Beschreibung:

Die Zentrale sendet als Antwort auf eine Anfrage nach Schalt-/Rückmeldeinformationen diese Info. Es kann als Information enthalten sein, der Zustand von rückmeldefähigen oder nicht rückmeldefähigen Weichen oder der Zustand eines Rückmeldeempfängers. Es bedeuten im Einzelnen:

Daten 1: AAAA AAAA

Für eine Weiche ist Daten 1 die durch 4 geteilte (Adresse-1) einer Weiche aus dem Wertebereich 0..255. Weiche 1 ist also Adresse 0

Daten 1 hat für Zentralen kleiner Version 3.0 den Wert 0 bis 63 = 6 Bit. Ist ADR z.B. = 0x00, so hat man eine Info über die Weichen 0, 1, 2 oder 3, d.h. über die Weichengruppe 0 (wenn die Kennungsbits TT einen Schaltempfänger kennzeichnen).

Für Zentralen ab Version 3.0 werden alle 8 Bit von Daten 1 als Gruppenadresse erlaubt. D.h. es können 256*4=1024 Weichen abgefragt und geschaltet werden.

Für einen Rückmeldebaustein kann die Adresse im Bereich 0..127 liegen (7 Bit Adresse). Dies ist direkt die Adresse des Bausteins. Die Adressinformation wird so in dieser Info zurückgeschickt, wie sie in der Anfrage nach Schaltinformationen der Zentrale gesendet wurde.

Daten 2:

Ist das Bit = 1, so bedeutet das, dass der Schaltbefehl noch in der Ausführung ist und die Weiche noch keine Endstellung erreicht hat. Nicht definiert für Rückmeldebausteine, da deren Eingänge ja immer 0 oder 1 sind und keinen Zwischenzustand annehmen können.

Daten 2: TT

Diese beiden Bits stellen die Kennung der angefragten Adresse dar. Es

TT = 0 0 Adresse ist Schaltempfänger ohne Rückmeldung

TT = 0.1Adresse ist Schaltempfänger mit Rückmeldung TT = 10Adresse ist ein Rückmeldebaustein TT = 11 Reserviert für zukünftige Anwendungen Daten 2: Ν Dies ist die Kennung, um welches Nibble einer Weiche oder eines Rückmeldebausteins es sich handelt. N = 0Entspricht dem unteren Nibble N = 1Entspricht dem oberen Nibble. Für z.B. Weichengruppe 0 bedeutet das untere Nibble den Zustand der Weichen 0 und 1 in den 4 Zustandsbits Z. Das obere Nibble bedeutet den Zustand der Weichen 2 und 3 in den 4 Zustandsbits Z. Für einen Rückmeldeempfänger bedeutet das untere Nibble den Zustand der unteren 4 Eingänge in den 4 Zustandsbits Z, das obere Nibble den Zustand der oberen 4 Eingänge in den 4 Zustandsbits Z. Um also alle 8 Eingänge eines Rückmeldebausteins zu erfassen, ist eine Anfrage an das untere Nibble und eine zweite Anfrage an das obere Nibble der Rückmeldeadresse zu richten. Achtung: Das Nibble-Bit stimmt nur dann, wenn die Weiche schon einmal geschaltet wurde! Daten 3: Z3 Z2 Z1 Z0 Für den Zustand eines Schaltempfängers gilt: stellen den Zustand der ersten Weiche (z.B. Weiche Nr. 0 in **Z1 und Z0** Weichengruppe 0, Nibble = 0) im Nibble dar. **Z3 und Z2** stellen den Zustand der zweiten Weiche im Nibble (Z.B Weiche Nr. 3 in Weichengruppe 0, Nibble = 1) dar. Mögliche Kombinationen: **Z**1 **Z**0 erste Weiche im Nibble 0 0 Weiche seit Zentralenstart noch nicht geschaltet oder bei rückmeldefähigen Weichen ist kein Eingang für Endstellung angeschlossen. 0 Der letzte Schaltbefehl war "0", die Weiche steht links (das ist natürlich 1 nur relativ). 1 0 Der letzte Schaltbefehl war "1", die Weiche steht in der anderen Endstellung (z.B. rechts, relativ).

Bei einem Rückmeldeempfänger stellen die 4 Bits Z3..Z0 den Zustand der 4 Eingänge des angefragten Nibble dar.

Weiche aktiv sind.->Verdrahtungsfehler?

Ungültige Kombination, wenn beide Endschalter einer rückmeldefähigen

zweite Weiche im Nibble. Gültigkeit der Bits wie bei der ersten Weiche im

Besonderheiten:

Keine.

1

Z3

1

Z2

Nibble

2.16 Schaltinformation ab Weiche 1025

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär:	P11A AAAA	0100 0011	0000 000A	AAAA AAAA	ITTN ZZZZ	X-Or-Byte
Hex:	P+0x60+GA	0x43	ADRH	ADRL	ITNZ	X-Or-Byte
Dez :	P+96+GA	67	ADRH	ADRL	ITNZ	X-Or-Byte

Beschreibung:

Diese Antwort der Zentrale entspricht funktionell der Antwort "Schaltinformation", es kommt ein zweites Adressbyte hinzu. Auch hier Adresse = (Weichenadresse-1)/4; Weiche 1 ist also Adresse 0

Daten 3 entspricht dem Byte "Daten 2" aus 2.15, "Schaltinformation"

2.17 Lokinformationen bis LZ-Version 1.5

Man erhält diese Lokinformation aufgrund einer Lokanfrage an die Zentrale wie unter 3.40.1 beschrieben. Bis einschließlich Version 1.5 der Zentrale LZ100 wurden nur 14 Fahrstufen verwendet (d.h. kein "ModSel"-Byte). Die Information "Lok besetzt" wird ungefragt an das Gerät gesendet, welches diese Lok eben noch fuhr, so dass bei diesem Gerät eine entsprechende Routine vorhanden sein sollte, um den Benutzer darauf aufmerksam zu machen, dass soeben diese Lok von einem anderen Gerät übernommen wurde.

2.17.1 Lok frei bis LZ-Version 1.5

Ist die Lok noch bei keinem anderen XpressNet-Gerät in Gebrauch, so erhält man auf die entsprechende Anfrage diese Lokinformationen mit dem Headerbyte "Lok frei".

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	P11A AAAA	1000 0011	Lokadresse	Lokdaten 1	Lokdaten 2	X-Or-Byte
Hex:	P+0x60+GA	0x83	Lokadresse	Lokdaten 1	Lokdaten 2	X-Or-Byte
Dez :	P+96+GA	131	Lokadresse	Lokdaten 1	Lokdaten 2	X-Or-Byte

Beschreibung:

Lokadresse: hat den Wertebereich 0..99 dez. = 0..0x63. Die Adresse 0

bezeichnet die konventionelle Lok.

Lokdaten 1: Bit 7 = 1: geplant: Lok ist von anderem Gerät aufgerufen

Bit 7 = 0: geplant: Lok ist nicht anderweitig aufgerufen.

Bit 7 wird zurzeit nicht verwendet, so dass nur am Headerbyte zu erkennen ist, ob die Lok frei oder von einem anderen Gerät

gefahren wird!

Bit 6 = 1 Fahrtrichtung vorwärts

Bit 6 = 0: Fahrtrichtung rückwärts
Bit 5 = 1: Funktion 0 ist eingeschaltet

Bit 5 = 0: Funktion 0 ist ausgeschaltet

Bit 4: nicht verwendet, wird immer als 0 zurückgesendet.

Bit 3 bis Bit 0 geben die Fahrstufe folgendermaßen kodiert an:

3	2	1	0	
0	0	0	0	Fahrstufe 0
0	0	0	1	Lokspezifischer Nothalt. Die Lok hält ohne die eingestellte Verzögerung sofort an.
0	0	1	0	Fahrstufe 1
				usw. bis
1	1	1	1	Fahrstufe 14

Lokdaten 2: Bit7 bis Bit4: nicht definierter Zustand

Bit3: Zustand von Funktion 4, "0" = Aus, "1" = Ein
Bit2: Zustand von Funktion 3, "0" = Aus, "1" = Ein
Bit1: Zustand von Funktion 2, "0" = Aus, "1" = Ein
Bit0: Zustand von Funktion 1, "0" = Aus, "1" = Ein

Besonderheiten:

Keine.

2.17.2 Lok besetzt bis LZ-Version 1.5

Ist die angefragte Lok bei einem anderen XpressNet-Gerät in Gebrauch, so erhält man die Lokinformationen mit dem Headerbyte "Lok besetzt". Man erhält diese Information allerdings auch ungefragt, wenn ein anderes XpressNet-Gerät diese Lok übernimmt.

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	P11A AAAA	1010 0011	Lokadresse	Lokdaten 1	Lokdaten 2	X-Or-Byte
Hex:	P+0x60+GA	0xA3	Lokadresse	Lokdaten 1	Lokdaten 2	X-Or-Byte
Dez :	P+96+GA	163	Lokadresse	Lokdaten 1	Lokdaten 2	X-Or-Byte

Beschreibung:

Lokadresse, Lokdaten 1 und Lokdaten 2 haben das Format wie unter 2.17.1 beschrieben.

Besonderheiten:

Die Information "Lok besetzt" kann ein XpressNet-Gerät auch ungefragt erhalten.

2.18 Lokinformationen bis LZ-Version 2.3

Man erhält diese Lokinformation aufgrund einer Lokanfrage an die Zentrale wie unter 3.40.2 beschrieben. Ab Version 2.0 der Zentrale wurden neben 14 auch 27 und 28 Fahrstufen einer Lok unterstützt. Hierfür wurde der bisherige Befehl der Lokanfrage um ein Byte "ModSel" (Mode-Select) erweitert. Diese Byte enthält nur die Codierung der Fahrstufenzahl der angefragten Lok.

Die Information "Lok besetzt" wird ungefragt an das Gerät gesendet, welches diese Lok eben noch fuhr, so dass bei diesem Gerät eine entsprechende Routine vorhanden sein sollte, um den Benutzer darauf aufmerksam zu machen, dass soeben diese Lok von einem anderen Gerät übernommen wurde.

2.18.1 Lok frei bis LZ-Version 2.3

Ist die Lok noch bei keinem anderen XpressNet-Gerät in Gebrauch, so erhält man auf die entsprechende Anfrage folgende Lokinformationen mit dem Headerbyte "Lok frei".

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	Daten 4	X-Or-Byte
Binär :	P11A AAAA	1000 0100	Lokadresse	Lokdaten 1	Lokdaten 2	ModSel	X-Or-Byte
Hex:	P+0x60+GA	0x84	Lokadresse	Lokdaten 1	Lokdaten 2	ModSel	X-Or-Byte
Dez :	P+96+GA	132	Lokadresse	Lokdaten 1	Lokdaten 2	ModSel	X-Or-Byte

Beschreibung:

Lokadresse: hat den Wertebereich 0..99 dez. = 0..0x63. Die Adresse 0

bezeichnet die konventionelle Lok.

ModSel: Enthält die Codierung der Fahrstufenzahl der Lok: Je nach Inhalt

von ModSel haben die Bytes Lokdaten 1 und Lokdaten 2 eine

unterschiedliche Bedeutung.

Bit/ bis Bit2:	nicht verwendet.

Bit1	Bit0	
0	0	14 Fahrstufen
0	1	27 Fahrstufen
1	0	28 Fahrstufen
1	1	reservierte Kombination

ModSel = xxxxxx00 14-Fahrstufen-Modus

Lokdaten 1 und Lokdaten 2 sind wie unter 2.17.1 beschrieben

codiert.

ModSel = xxxxxx01 27 Fahrstufen-Modus

Lokdaten 1: ist im 27-Fahrstufen-Modus wie folgt codiert:

Bit 7 = 1: geplant: Lok ist von anderem Gerät aufgerufen

Bit 7 = 0: geplant: Lok ist nicht anderweitig aufgerufen.

Bit 7 wird zurzeit nicht verwendet, so dass nur am Headerbyte zu erkennen ist, ob die Lok frei oder von einem anderen Gerät

gefahren wird!

Bit 6 = 1 Fahrtrichtung vorwärts

Bit 6 = 0: Fahrtrichtung rückwärts

Bit 5 = 1: Funktion 0 ist eingeschaltet

Bit 5 = 0: Funktion 0 ist ausgeschaltet

Bit4 bis Bit0 geben die Fahrstufe folgendermaßen codiert an: Man beachte,

dass das Bit4 das LSB der Fahrstufe ist.

	3	2	1	0	4!	
	0	0	0	0	0	Fahrstufe 0
ſ	0	0	0	0	1	nicht verwendet!
	0	0	0	1	0	Lokspezifischer Nothalt. Die Lok hält ohne die eingestellte Verzögerung sofort an.

0	0	0	1	1	nicht verwendet !
0	0	1	0	0	Fahrstufe 1
0	0	1	0	1	Fahrstufe 2
0	0	1	1	0	Fahrstufe 3
1	1	1	1	0	Fahrstufe 27

Lokdaten 2: Ist wie unter 2.17.1 beschreiben codiert.

ModSel = xxxxxx10 28 Fahrstufen-Modus

Lokdaten 1: ist im 28-Fahrstufen-Modus wie folgt codiert:

Bit 7 = 1: geplant: Lok ist von anderem Gerät aufgerufen

Bit 7 = 0: geplant: Lok ist nicht anderweitig aufgerufen.

Bit 7 wird zurzeit nicht verwendet, so daß nur am Headerbyte zu erkennen ist, ob die Lok frei oder von einem anderen Gerät

gefahren wird!

Bit 6 = 1 Fahrtrichtung vorwärts

Bit 6 = 0: Fahrtrichtung rückwärts

Bit 5 = 1: Funktion 0 ist eingeschaltet

Bit 5 = 0: Funktion 0 ist ausgeschaltet

Bit4 bis Bit0 geben die Fahrstufe folgendermaßen codiert an: Man beachte,

dass das Bit4 das LSB der Fahrstufe ist.

3	2	1	0	4!	
0	0	0	0	0	Fahrstufe 0
0	0	0	0	1	nicht verwendet !
0	0	0	1	0	Lokspezifischer Nothalt. Die Lok hält ohne die eingestellte Verzögerung sofort an.
0	0	0	1	1	nicht verwendet!
0	0	1	0	0	Fahrstufe 1
0	0	1	0	1	Fahrstufe 2
0	0	1	1	0	Fahrstufe 3
	•	•			
1	1	1	1	0	Fahrstufe 27
1	1	1	1	1	Fahrstufe 28

Lokdaten 2: Ist wie unter 2.17.1 beschreiben codiert.

Besonderheiten:

Keine.

2.18.2 Lok besetzt bis LZ-Version 2.3

Ist die angefragte Lok bei einem anderen XpressNet-Gerät in Gebrauch, so erhält man die Lokinformationen mit dem Headerbyte "Lok besetzt". Man erhält diese Information allerdings auch ungefragt, wenn ein anderes XpressNet-Gerät diese Lok übernimmt.

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	Daten 4	X-Or-Byte
Binär :	P11A AAAA	1010 0100	Lokadresse	Lokdaten 1	Lokdaten 2	ModSel	X-Or-Byte
Hex:	P+0x60+GA	0xA4	Lokadresse	Lokdaten 1	Lokdaten 2	ModSel	X-Or-Byte
Dez :	P+96+GA	164	Lokadresse	Lokdaten 1	Lokdatne 2	ModSel	X-Or-Byte

Beschreibung:

Lokadresse, Lokdaten 1 und Lokdaten 2 haben das Format wie unter 2.18.1 beschrieben.

Besonderheiten:

Die Information "Lok besetzt" kann ein XpressNet-Gerät auch ungefragt erhalten.

2.19 Lokinformationen ab Zentralen-Version 3.0

Als Antwort auf eine allgemeine Lokanfrage im Format für Version 3.0 oder höher (siehe 3.40.3) kann eine der im Folgenden beschriebenen vier Antworten kommen. Im Gegensatz zu früheren Versionen ist die "Besetzt"-Information hier enthalten. D.h. die hier beschriebenen Antworten kommen nicht als ungefragte Info. Wird eine Lok von einem anderen XpressNet-Gerät übernommen, so wird dies jetzt über die ungefragte Info "Lok besetzt" mitgeteilt (siehe 2.5). Es wird weiterhin ein zusätzliches Kennungs-Byte nach dem Headerbyte eingefügt, welches zur Unterscheidung der verschiedenen Befehle ab Zentralen-Version 3.0 dient.

2.19.1 Lokinformation normale Lok

Diese Antwort wird immer dann gesendet, wenn sich die angefragte Lok nicht in einer Mehrfach-/Doppeltraktion befindet und auch nicht die Basisadresse einer Mehrfachtraktion ist.

Format:

	Rufbyte	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	P11A AAAA	1110 0100	0000 BFFF	RVVV VVVV	000F FFFF	FFFF FFFF	X-Or-Byte
Hex:	P+0x60+GA	0xE4	Kennung	Speed	F0	F1	X-Or-Byte
Dez :	P+96+GA	228	Kennung	Speed	F0	F1	X-Or-Byte

Beschreibung:

Kennung: Bit 3: B=0: Lok ist frei

Bit 3: B=1: Lok ist an anderem Gerät aufgerufen (besetzt)

Bit2 bis Bit0: Kennung der Fahrstufenzahl

Bit2	Bit1	Bit0	
0	0	0	14 Fahrstufen
0	0	1	27 Fahrstufen
0	1	0	28 Fahrstufen
1	0	0	128 Fahrstufen

Daten 1 Speed: Codierung der Geschwindigkeit und Richtung.

R=1: vorwärts R=0: rückwärts

VVVVVV

Bei 14 Fahrstufen: Codierung der Bits 3,2,1,0 für die Geschwindigkeit wie unter 2.17.1

beschrieben.

Bei 27 Fahrstufen: Codierung der Bits 4,3,2,1,0 für die Geschwindigkeit wie unter

2.18.1, ModSel = xxxxxxx01 beschrieben

Bei 28 Fahrstufen: Codierung der Bits 4,3,2,1,0 für die Geschwindigkeit wie unter

2.18.1, ModSel = xxxxxxx10 beschrieben.

Bei 128 Fahrstufen:

В6	B5	B4	В3	B2	B1	В0	
0	0	0	0	0	0	0	Fahrstufe 0
0	0	0	0	0	0	1	Nothalt
0	0	0	0	0	1	0	Fahrstufe 1
0	0	0	0	0	1	1	Fahrstufe 2
1	1	1	1	1	1	1	Fahrstufe 126

Daten 2: F0: Zustand der Funktionen 0 bis 4.

7	6	5	4	3	2	1	0	Bit
0	0	0	F0	F4	F3	F2	F1	

Eine 1 bedeutet jeweils "Funktion ist an".

Daten 3: F1: Zustand der Funktionen 5 bis 12.

7	6	5	4	3	2	1	0	Bit
F12	F11	F10	F9	F8	F7	F6	F5	

Eine 1 bedeutet jeweils "Funktion ist an".

Besonderheiten:

Keine.

2.19.2 Funktionszustand F13 bis F28 der angefragten Lok (ab Version 3.6)

	Rufbyte	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	P11A AAAA	1110 0011	0101 0010	FFFF FFFF	FFFF FFFF	X-Or-Byte
Hex:	P+0x60+GA	0xE3	0x52			X-Or-Byte
Dez :	P+96+GA	227	82			X-Or-Byte

Beschreibung:

Daten 1: F: Zustand der Funktionen 13 bis 20. Fx=1 bedeutet jeweils "Funktion ist an".

7	6	5	4	3	2	1	0	Bit
F20	F19	F18	F17	F16	F15	F14	F13	

Daten 2: F: Zustand der Funktionen 21 bis 28. Fx=1 bedeutet jeweils "Funktion ist an".

7	6	5	4	3	2	1	0	Bit
F28	F27	F26	F25	F24	F23	F22	F20	

Besonderheiten:

Keine.

2.19.3 Funktionszustand F29 bis F68 der angefragten Lok (ab Version 4.0)

	Ruibyte	neaderbyte	Remaining	Daten	Daten 2	Datens	Daten 4	Daten 5	A-OI-byte
Binär :	P11A AAAA	1110 0110	0101 0011	ffff ffff	X-Or-Byte				
Hex:	P+0x60+GA	0xE6	0x53						X-Or-Byte
Dez :	P+96+GA	230	83						X-Or-Byte

Beschreibung:

Daten 1: F: Zustand der Funktionen 29 bis 36. FX=1 bedeutet jeweils "Funktion ist an".

Ī	7	6	5	4	3	2	1	0	Bit
	F36	F35	F34	F33	F32	F31	F30	F29	

Daten 2: F: Zustand der Funktionen 37 bis 44. FX=1 bedeutet jeweils "Funktion ist an".

7	6	5	4	3	2	1	0	Bit
S44	S43	S42	S41	S40	S39	S38	S37	

Daten 3: F: Zustand der Funktionen 45 bis 52. FX=1 bedeutet jeweils "Funktion ist an".

7	6	5	4	3	2	1	0	Bit
S52	S51	S50	S49	S48	S47	S46	S45	

Daten 4: F: Zustand der Funktionen 53 bis 60. FX=1 bedeutet jeweils "Funktion ist an".

7	6	5	4	3	2	1	0	Bi
S60	S59	S58	S57	S56	S55	S54	S53	

Daten 5: F: Zustand der Funktionen 61 bis 68. FX=1 bedeutet jeweils "Funktion ist an".

7	6	5	4	3	2	1	0	Bit
S68	S67	S66	S65	S64	S63	S62	S63	

Besonderheiten:

Keine.

2.19.4 Lokinformation Lok befindet sich in einer Mehrfachtraktion

Format:

	Rufbyte	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	Daten 4	X-Or-Byte
Binär :	P11A AAAA	1110 0101	0001 BFFF	RVVV VVVV	000F FFFF	FFFF FFFF	MTR	X-Or-Byte
Hex:	P+0x60+GA	0xE5	Kennung	Speed	F0	F1	MTR	X-Or-Byte
Dez :	P+96+GA	229	Kennung	Speed	F0	F1	MTR	X-Or-Byte

Beschreibung:

Kennung: Bit 3 bis 0 sind wie unter 2.19.1 beschrieben codiert.

Die Fahrstufenzahl gibt die Fahrstufenzahl der angefragten Lok an! Diese kann anders sein als die Fahrstufenzahl der Mehrfachtraktion

(MTR), in der sich die Lok befindet.

Daten 1: Speed: Das Geschwindigkeits-Byte ist wie unter 2.19.1 beschrieben

codiert.

Die Geschwindigkeit gibt die Geschwindigkeit der angefragten Lok

an!

Daten 2: F0 Codiert wie unter 2.1.14.1. beschrieben.

Daten 3: F1 Codiert wie unter 2.1.14.1. beschrieben.

Besonderheiten:

Keine.

2.19.5 Lokinformation Lokadresse ist die Basisadresse einer Mehrfachtraktion

Format:

	Rufbyte	Headerbyte	Kennung	Daten 1	X-Or-Byte
Binär :	P11A AAAA	1110 0010	0010 BFFF	RVVV VVVV	X-Or-Byte
Hex:	P+0x60+GA	0xE2	Kennung	Speed	X-Or-Byte
Dez :	P+96+GA	226	Kennung	Speed	X-Or-Byte

Beschreibung:

Kennung: Bit 3 bis 0 sind wie unter 2.19.1 beschrieben codiert.

Die Fahrstufenzahl gibt die Fahrstufenzahl der Mehrfachtraktion an.

Daten 1: Speed: Das Geschwindigkeits-Byte ist wie unter 2.19.1 beschrieben

codiert.

Die Geschwindigkeit gibt die Geschwindigkeit der MTR an!

Besonderheiten:

Keine.

2.19.6 Lokinformation Lok befindet sich in einer Doppeltraktion

Format:

	Rutbyte	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	Daten 4	Daten 5	X-Or-Byte
Binär :	P11A AAAA	1110 0110	0110 BFFF	RVVV VVVV	000F FFFF	FFFF FFFF	Adr High	Adr Low	X-Or-Byte
Hex:	P+0x60+GA	0xE6	Kennung	Speed	F0	F1	AH	AL	X-Or-Byte
Dez :	P+96+GA	230	Kennung	Speed	F0	F1	AH	AL	X-Or-Byte

Beschreibung:

Kennung: Bit 3 bis 0 sind wie unter 2.19.1 beschrieben codiert.

Daten 1: Speed: Das Geschwindigkeits-Byte ist wie unter 2.19.1 beschrieben

codiert.

Daten 2 000F FFFF F0: Codiert wie unter 2.19.1 beschrieben.

Daten 3 FFFF FFFF F1: Codiert wie unter 2.19.1 beschrieben.

Daten 4 AH Highbyte der zweiten Lokadresse der Doppeltraktion.
 Daten 5 AL Lowbyte der zweiten Lokadresse der Doppeltraktion

Für Lokadressen < 100 gilt:

Highbyte der Lokadresse ist 0x00

Lowbyte der Lokadresse ist 0x00 bis 0x63

Für Lokadresse von 100 bis 9999 gilt:

Highbyte der Lokadresse ist: AH = (ADR&0xFF00)+0xC000

Lowbyte der Lokadresse ist: AL = (ADR&0x00FF)

Besonderheiten:

Diese Antwort kommt nur dann, wenn die Lok in der DTR mit dem "neuen" Lokanfragebefehl angefragt wurde (siehe 3.41.9).

2.19.7 Lok besetzt ab Zentralen-Version 3.0

Format:

	Rufbyte	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	P11A AAAA	1110 0011	0100 0000	Adresse High	Adresse Low	X-Or-Byte
Hex:	P+0x60+GA	0xE3	0x40	AH	AL	X-Or-Byte
Dez :	P+96+GA	227	64	AH	AL	X-Or-Byte

Beschreibung:

Daten 1 AH Highbyte der zweiten Lokadresse der Doppeltraktion.
 Daten 2 AL Lowbyte der zweiten Lokadresse der Doppeltraktion

Für Lokadressen < 100 gilt:

Highbyte der Lokadresse ist 0x00

Lowbyte der Lokadresse ist 0x00 bis 0x63

Für Lokadresse von 100 bis 9999 gilt:

Highbyte der Lokadresse ist: AH = (ADR&0xFF00)+0xC000

Lowbyte der Lokadresse ist: AL = (ADR&0x00FF)

Besonderheiten:

Diese Information kommt immer ungefragt, wenn ein anderes XpressNet-Gerät diese Lok übernommen hat.

2.19.8 Funktionsstatus F0 bis F12 der angefragten Lok (ab Version 3.0)

Ab Version 3.0 der LZ100-Zentrale speichert diese als zusätzliche Information zu einer Lok, ob deren Funktionen tastend oder nicht tastend sein sollen. Die Gleisausgabe hierfür ändert sich jedoch nicht. XpressNet-Geräte können aber ihre Funktionalität in der Bedieneroberfläche erweitern, so dass z.B. für Geräusche eine zugeordnete Funktion nur solange ausgeführt wird, wie eine Taste gedrückt ist. Der Befehl ist in der Zentrale vorgesehen, damit diese Eigenschaft auch bei der Übernahme einer Lok durch ein anderes XpressNet-Gerät genutzt werden kann.

Format:

	Rufbyte	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	P11A AAAA	1110 0011	0101 0000	000S SSSS	SSSS SSSS	X-Or-Byte
Hex:	P+0x60+GA	0xE3	0x50	S0	S1	X-Or-Byte
Dez :	P+96+GA	227	80	S0	S1	X-Or-Byte

Beschreibung:

Daten 1: S0: Beinhaltet den Status der Funktionen 0 bis 4.

7	6	5	4	3	2	1	0	Bit
0	0	0	S0	S4	S3	S2	S1	SX=1 heißt Funktion ist tastend.

Daten 2: S1: Beinhaltet den Status der Funktionen 5 bis 12. SX=1 heißt Funktion ist tastend.

7	6	5	4	3	2	1	0	Bit
S12	S11	S10	S9	S8	S7	S6	S5	SX=1 heißt Funktion ist tastend.

Besonderheiten:

Keine.

2.20 Funktionsstatus F13 bis F28 der angefragten Lok (ab Version 3.6)

	Rufbyte	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	P11A AAAA	1110 0100	0101 0001	SSSS SSSS	SSSS SSSS	RRRR RRRR	X-Or-Byte
Hex:	P+0x60+GA	0xE4	0x51	S0	S1	R	X-Or-Byte

Dez :	P+96+GA	228	81	S0	S1	R	X-Or-Byte

Daten 1: So: Beinhaltet den Status der Funktionen 13 bis 20.

7	6	5	4	3	2	1	0	Bit
S20	S19	S18	S17	S16	S15	S14	S13	SX=1 heißt Funktion ist tastend.

Daten 2: S1: Beinhaltet den Status der Funktionen 21 bis 28.

					2			
S2	S19	S18	S17	S16	S15	S14	S13	SX=1 heißt Funktion ist tastend.

Daten 3: R Refresh-Modus

Wert	Refresh für
0	F0 F4
1	F0 F8
3	F0 F12
7	F0 F20
0xF	F0 F28

Besonderheiten:

Keine.

2.21 Funktionsstatus F29 bis F68 der angefragten Lok (ab Version 4.0)

	Rufbyte	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	Daten 4	Daten 5	X-Or-Byte
Binär:	P11A AAAA	1110 0110	0101 0100	SSSS SSSS	X-Or-Byte				
Hex:	P+0x60+GA	0xE6	0x54	S0	S1	S2	S2	S2	X-Or-Byte
Dez:	P+96+GA	230	84	S0	S1	S2	S2	S2	X-Or-Byte

Beschreibung:

Daten 1: So: Beinhaltet den Status der Funktionen 29 bis 36.

7	6	5	4	3	2	1	0	Bit
S36	S35	S34	S33	S32	S31	S30	S29	SX=1 heißt Funktion ist tastend.

Daten 2: S1: Beinhaltet den Status der Funktionen 37 bis 44.

					2			
S44	S43	S42	S41	S40	S39	S38	S37	SX=1 heißt Funktion ist tastend.

Daten 3: S2: Beinhaltet den Status der Funktionen 45 bis 52.

					2			
S52	S51	S50	S49	S48	S47	S46	S45	SX=1 heißt Funktion ist tastend.

Daten 4: S3: Beinhaltet den Status der Funktionen 53 bis 60.

					2			
S60	S59	S58	S57	S56	S55	S54	S53	SX=1 heißt Funktion ist tastend.

Daten 5: S4: Beinhaltet den Status der Funktionen 61 bis 68.

7	6	5	4	3	2	1	0	Bit
S68	S67	S66	S65	S64	S63	S62	S63	SX=1 heißt Funktion ist tastend.

Besonderheiten:

Keine.

2.22 Lokinformation bei Adress-Suchanfragen ab Zentralen-Version 3.0

Format:

	Rufbyte	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	P11A AAAA	1110 0011	0011 KKKK	Adresse High	Adresse Low	X-Or-Byte
Hex:	P+0x60+GA	0xE3	0x30 + K	AH	AL	X-Or-Byte
Dez :	P+96+GA	227	48 + K	AH	AL	X-Or-Byte

Beschreibung:

Diese Antwort wird gesendet, wenn das XpressNet-Gerät eine der Suchanfragen aus 3.43 benutzt hat. Damit kann z.B. in dem Gerät eine Auswahlliste der gewünschten Loks gezeigt werden (nächste Lok einer Mehrfachtraktion etc.).

Kennung Die Kennung enthält den Typ der Lokadresse, die in Adresse High / Adresse Low steht.

KKKK = 0 Normale Lok in Daten 1/2

KKKK = 1 Doppeltraktionslok in Daten 1/2

KKKK = 2 Mehrfachtraktions-Basisadresse in Daten 1/2

KKKK = 3 Mitglied einer Mehrfachtraktion in Daten 1/2

KKKK = 4 Keine Adresse zur Suchanfrage mehr gefunden. Daten 1/2 = 0x00

AH Highbyte der zweiten Lokadresse der Doppeltraktion.

Daten 2 AL Lowbyte der zweiten Lokadresse der Doppeltraktion

AH/AL: Die Lokadresse wird berechnet, wie unter 2.19.7 beschrieben.

Besonderheiten:

Keine.

Daten 1

2.22.1 Doppeltraktionsinformation bis LZ-Version 1.5

Man erhält diese Lokinformation aufgrund einer Lokanfrage an die Zentrale wie unter 3.40.1 beschrieben. Bis einschließlich Version 1.5 der Zentrale LZ100 wurden nur 14 Fahrstufen verwendet (d.h. kein "ModSel"-Byte). Die Information "Doppeltraktion besetzt" wird <u>ungefragt</u> an das Gerät gesendet, welches diese Lok eben noch fuhr, so dass bei diesem Gerät eine entsprechende Routine vorhanden sein sollte, um den Benutzer darauf aufmerksam zu machen, dass soeben diese Lok von einem anderen Gerät übernommen wurde.

2.22.1.1 Doppeltraktion frei bis LZ-Version 1.5

Ist die Lok noch bei keinem anderen XpressNet-Gerät in Gebrauch, so erhält man auf die entsprechende Anfrage diese Lokinformationen mit dem Headerbyte "Lok frei".

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	Daten 4	Daten 5	X-Or-Byte
Binär :	P11A AAAA	1100 0101	0000 0100	Lokadresse 1	Lokdaten 1	Lokdaten 2	Lokadresse 2	X-Or-Byte
Hex:	P+0x60+GA	0xC5	0x04	Lokadresse 1	Lokdaten 1	Lokdaten 2	Lokadresse 2	X-Or-Byte
Dez :	P+96+GA	197	4	Lokadresse 1	Lokadresse 2	lokdaten 2	Lokadresse 2	X-Or-Byte

Beschreibung:

Lokadresse 1, Lokdaten 1, Lokdaten 2 und Lokadresse 2 sind wie unter 2.17.1 beschrieben codiert.

Besonderheiten:

Ab Zentralen-Version größer gleich 3.0 werden nur noch die Fahrbefehle mit dem "ModSel"-Byte unterstützt. Doppeltraktionsinfos werden nur noch an ein XpressNet-Gerät gesendet, das diese Infos in der Lokanfrage mit "ModSel" angefragt hat. Eine Lokanfrage im neuen Format hat zur Folge, dass diese Lok, die in einer "alten" Doppeltraktion ist, als normale Lok an das XpressNet-Gerät gemeldet wird und dort mit den neuen Fahrbefehlen benutzt werden kann.

2.22.2 Doppeltraktion besetzt bis LZ-Version 1.5

Format:

	Rufbyte	Headerbyte	Daten 1	Daten 2	Daten 3	Daten 4	Daten 5	X-Or-Byte
Binär :	P11A AAAA	1100 0101	0000 0101	Lokadresse 1	Lokdaten 1	Lokdaten 2	Lokadresse 2	X-Or-Byte
Hex:	P+0x60+GA	0xC5	0x05	Lokadresse 1	Lokdaten 1	Lokdaten 2	Lokadresse 2	X-Or-Byte
Dez :	P+96+GA	197	5	Lokadresse 1	Lokdaten 1	Lokdaten 2	Lokadresse 2	X-Or-Byte

Beschreibung:

Lokadresse 1, Lokdaten 1, Lokdaten 2 und Lokadresse 2 sind wie unter 2.17.1 beschrieben codiert.

Besonderheiten:

Die Information "Doppeltraktion besetzt" kann ein XpressNet-Gerät auch ungefragt erhalten.

2.23 Doppeltraktionsinformation bis LZ-Version 2.3

Man erhält diese Lokinformation aufgrund einer Lokanfrage an die Zentrale wie unter 3.40.2 beschrieben. Wegen der Möglichkeit 14, 27 und 28 Fahrstufen zu benutzen, kommt hier das "ModSel"-Byte hinzu. Die Information "Doppeltraktion besetzt" wird <u>ungefragt</u> an das Gerät gesendet, welches

diese Lok eben noch fuhr, so dass bei diesem Gerät eine entsprechende Routine vorhanden sein sollte, um den Benutzer darauf aufmerksam zu machen, dass soeben diese Lok von einem anderen Gerät übernommen wurde.

2.23.1 Doppeltraktion frei bis LZ-Version 2.3

Ist die Lok noch bei keinem anderen XpressNet-Gerät in Gebrauch, so erhält man auf die entsprechende Anfrage diese Lokinformationen mit dem Headerbyte "Lok frei".

Format:

	Rufbyte	Headerbyt e	Daten 1	Daten 2	Daten 3	Daten 4	Daten 5	Daten 5	X-Or-Byte
Binär :	P11A AAAA	1100 0110	0000 0100	Lokadr. 1	Lokdat 1	Lokdat 2	Lokadr. 2	Modsel	X-Or-Byte
Hex:	P+0x60+GA	0xC6	0x04	Adresse 1	Lokdat 1	Lokdat 2	Adresse 2	ModSel	X-Or-Byte
Dez :	P+96+GA	198	4	Adresse 1	Lokdat 1	Lokdat 2	Adresse 2	ModSel	X-Or-Byte

Beschreibung:

Lokadresse 1, Lokdaten 1, Lokdaten 2, Lokadresse 2 und ModSel sind wie unter 2.18.1 beschrieben codiert.

Besonderheiten:

Ab Zentralen-Version größer gleich 3.0 werden nur noch die Fahrbefehle mit dem "ModSel"-Byte unterstützt. Doppeltraktionsinfos werden nur noch an ein XpressNet-Gerät gesendet, das diese Infos in der Lokanfrage mit "ModSel" angefragt hat. Eine Lokanfrage im neuen Format hat zur Folge, dass diese Lok, die in einer "alten" Doppeltraktion ist, als normale Lok an das XpressNet-Gerät gemeldet wird und dort mit den neuen Fahrbefehlen benutzt werden kann. Für Zentralen ab Version 4.0 ist vorgesehen, dass keine "alten" Fahrbefehle mehr unterstützt werden.

2.23.2 Doppeltraktion besetzt bis LZ-Version 2.3

Format:

	Rufbyte	Headerbyt e	Daten 1	Daten 2	Daten 3	Daten 4	Daten 5	Daten 5	X-Or-Byte
Binär :	P11A AAAA	1100 0110	0000 0101	Lokadr. 1	Lokdat 1	Lokdat 2	Lokadr. 2	Modsel	X-Or-Byte
Hex:	P+0x60+GA	0xC6	0x05	Adresse 1	Lokdat 1	Lokdat 2	Adresse 2	ModSel	X-Or-Byte
Dez :	P+96+GA	198	5	Adresse 1	Lokdat 1	Lokdat 2	Adresse 2	ModSel	X-Or-Byte

Beschreibung:

Lokadresse 1, Lokdaten 1, Lokdaten 2, Lokadresse 2 und ModSel sind wie unter 2.18.1 beschrieben codiert.

Besonderheiten:

Die Information "Doppeltraktion besetzt" kann ein XpressNet-Gerät auch ungefragt erhalten.

2.23.3 <u>Doppeltraktionsfehler bis LZ-Version 2.3</u>

Eine Doppeltraktion kann nur montiert oder aufgelöst werden, wenn bestimmte Randbedingungen eingehalten sind. Dies kann also auch zu Fehlern führen, die im folgenden beschrieben sind.

Format:

	Rufbyte	Headerbyte	Daten 1	X-Or-Byte
Binär :	P11A AAAA	0110 0001	1000 0FFF	X-Or-Byte
Hex:	P+0x60+GA	0x61	0x80 + F	X-Or-Byte
Dez :	P+96+GA	97	128 + F	X-Or-Byte

Beschreibung:

Die 3 Fehlerbits sind wie folgt codiert:

FFF = 011: Eine der Loks ist bei Montage der Doppeltraktion nicht durch das montierende Gerät

aufgerufen oder die Lok 0 ist gewählt.

FFF = 100: Eine der Loks der Doppeltraktion ist bei einem anderen Gerät aufgerufen.

FFF = 101: Eine der Loks ist schon in einer anderen Doppeltraktion eingebunden.

FFF = 110: Die Geschwindigkeit einer der Loks ist nicht Null.

Besonderheiten:

Normalerweise hat der Befehl "Doppeltraktion montieren" oder "Doppeltraktion auflösen" keine Antwort der Zentrale zur Folge, wenn die Aktion gelungen ist. Bei Misslingen allerdings sendet die Zentrale die beschriebenen Fehlermeldungen. Ein XpressNet-Gerät muss also darauf eingerichtet sein, diese Fehlermeldungen auch abzufangen, bevor es in seinem Programmablauf weitergeht. Um festzustellen, dass die Aktion gelungen ist, kann z.B. auf die nächste normale Adressierung durch die Zentrale gewartet werden. Trat ein Fehler auf, so erhält man nämlich sofort die Antwort, bevor die Zentrale das nächste Gerät adressiert.

2.24 Fehlermeldungen ab Zentralen-Version 3.0

Ab Zentralen-Version 3.0 sind verschiedene Fehler in einer Fehlerantwort zusammengefasst. Der Zusammenhang ergibt sich aus dem vorausgehend erteilten Befehl an die Zentrale.

Format:

	Rufbyte	Headerbyte	Kennung	X-Or-Byte
Binär :	P11A AAAA	1110 0001	1000 FFFF	X-Or-Byte
Hex:	P+0x60+GA	0xE1	0x80 + F	X-Or-Byte
Dez :	P+96+GA	225	128 + F	X-Or-Byte

Beschreibung:

Die 4 Fehlerbits sind wie folgt codiert:

FFFF = 0001: Eine Lok ist bei Montage einer Mehrfachtraktion nicht durch das montierende Gerät

aufgerufen oder die Lok 0 ist gewählt.

FFFF = 0010: Eine der Loks der Mehrfachtraktion ist bei einem anderen Gerät aufgerufen.

FFFF = 0011: Eine der Loks ist schon in einer anderen Mehrfachtraktion oder Doppeltraktion

eingebunden.

FFFF = 0100: Die Geschwindigkeit einer der Loks der Mehrfachtraktion ist nicht Null.

FFFF = 0101: Die Lok ist nicht in einer Mehrfachtraktion.

FFFF = 0110 Die Lokadresse ist keine Mehrfachtraktions-Basisadresse.

FFFF = 0111: Lok löschen ist nicht möglich FFFF = 1000: Der Zentralenstack ist voll

FFFF = 1001: MTR-Adresse beim Löschversuch nicht gefunden

FFFF = 1010: Die verlangte MTR-Adresse ist eine benutzte Lokadresse

Besonderheiten:

Keine.

3 Befehle von Gerät an Zentrale

Nachdem die Zentrale ein XpressNet-Gerät mit dem Ruf "Normale Geräteanfrage" adressiert hat, kann dieses Gerät eine Kommunikation mit der Zentrale beginnen und z.B. Daten anfordern, Loks steuern oder Programmieraktionen durchführen. Je nach gewünschter Aktion gibt die Zentrale dem Gerät dann die entsprechende Antwort. Es ist nach dem Zentralenruf immer nur eine Aktion des Slave möglich. D.h. ein XpressNet-Gerät kann nicht einen Fahrbefehl an die Zentrale senden und sofort danach eine Lok anfragen. Die Zentrale adressiert in diesem Fall zunächst andere Geräte. Damit wird sichergestellt, dass ein Gerät den Bus nicht blockieren kann.

3.1 Quittierung

Format:

Headerbyte X-Or-Byte

Binär :	0010 0000	0010 0000
Hex:	0x20	0x20
Dez :	32	32

Beschreibung:

Wird ein Gerät mit dem Ruf nach Quittierung adressiert, so muss es mit diesem Kommando antworten. Ansonsten wird es immer wieder mit der Quittung adressiert.

Besonderheiten:

Keine.

3.2 Alles An

Format:

Headerbyte Daten 1 X-Or-Byte

Binär :	0010 0001	1000 0001	1010 0000
Hex:	0x21	0x81	0xA0
Dez :	33	129	160

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, die Spannung am Gleis wieder einzuschalten, wenn sie abgeschaltet war und mit der Aussendung von Gleisbefehlen wieder zu beginnen. Damit wird ein Nothalt, ein Notaus oder der Programmierbetrieb auf dem Programmiergleis beendet. Die Zentrale sendet nach erfolgreichem Einschalten die Broadcast "Alles An". Siehe 2.1.4.1.

Besonderheiten:

Keine.

3.3 Alles Aus (Notaus)

Format:

Binär :	0010 0001	1000 0000	1010 0001
Hex:	0x21	0x80	0xA1
Dez :	33	128	161

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, die Spannung am Gleis abzuschalten. Danach sendet die Zentrale die Broadcast "Alles Aus" an alle Busteilnehmer. Auch an denjenigen, der dieses Kommando gegeben hat.

Besonderheiten:

Keine.

3.4 Alle Loks anhalten (Nothalt)

Format:

Headerbyte X-Or-Byte

Binär :	1000 0000	1000 0000
Hex:	0x80	0x80
Dez :	128	128

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, alle Loks auf dem Gleis ohne deren eingestellte Verzögerung sofort anzuhalten. Die Spannung am Gleis bleibt jedoch eingeschaltet, so dass z.B. Weichen weiterhin geschaltet werden können.

Besonderheiten:

Keine.

3.5 Eine Lok anhalten (Nothalt für eine Lok)

3.6 Lok anhalten bis LZ-Version 2.3

Format:

Headerbyte Daten 1 X-Or-Byte

Binär :	1001 0001	Lokadresse	X-Or-Byte
Hex:	0x91	Lokadresse	X-Or-Byte
Dez :	145	Lokadresse	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, nur die gewünschte Lok auf dem Gleis ohne deren eingestellte Verzögerung sofort anzuhalten. Die Spannung am Gleis bleibt eingeschaltet, so daß z.B. Weichen weiterhin geschaltet werden können und auch alle anderen Loks normal weiterfahren.

Besonderheiten:

Als Lokadresse ist der Bereich von 0 bis 99 zulässig.

3.7 Lok anhalten ab Zentralen-Version 3.0

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	1001 0010	Adresse High	Adresse Low	X-Or-Byte
Hex:	0x92	AH	AL	X-Or-Byte
Dez :	146	AH	AL	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, nur die gewünschte Lok auf dem Gleis ohne deren eingestellte Verzögerung sofort anzuhalten. Die Spannung am Gleis bleibt eingeschaltet, so dass z.B. Weichen weiterhin geschaltet werden können und auch alle anderen Loks normal weiterfahren.

Besonderheiten:

Es können die Loks 0 bis 9999 angehalten werden.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

3.8 Mehrere Loks anhalten bis LZ-Version 2.3

Format:

	Headerbyte	Daten 1	 Daten N	X-Or-Byte
Binär :	1001 NNNN	Lokadresse 1	 Lokadresse N	X-Or-Byte
Hex:	0x90 + N	Lokadresse 1	 Lokadresse N	X-Or-Byte
Dez :	144 + N	Lokadresse 1	 Lokadresse N	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, nur die gewünschten Loks auf dem Gleis ohne deren eingestellte Verzögerung sofort anzuhalten. Die Spannung am Gleis bleibt eingeschaltet, so dass z.B. Weichen weiterhin geschaltet werden können und auch alle anderen Loks normal weiterfahren.

Besonderheiten:

Es sind nur die Loks 0 bis 99 erlaubt. Der Befehl wird in Version 3.0 nicht mehr unterstützt und sollte ersetzt werden durch eine Folge von Befehlen "Eine Lok anhalten".

3.9 Leseanfrage Programmieren 3-Byte-Format (Registermode)

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	0010 0010	0001 0001	0000 RRRR	X-Or-Byte
Hex:	0x22	0x11	R	X-Or-Byte

Dez:	34	17	R	X-Or-Byte

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im Registermode zu lesen. Es wird versucht, das Register, welches mit 0000 RRRR angegeben ist, zu lesen. Zulässig ist Register 1..8.

Besonderheiten:

Die Leseanforderung hat keine Antwort der Zentrale zur Folge! Diese muss explizit mit dem Befehl "Programmierergebnis anfordern" geholt werden. Erst dann kann erkannt werden, ob der Lesebefehl erfolgreich war oder nicht und ob das Ergebnis in der gewünschten Form (Registermode) vorliegt.

Nach dem Erteilen eines Lesebefehls sendet die Zentrale an alle Busteilnehmer die Broadcast "Programmiermode" und adressiert ab dann nur noch das Gerät, welches den Programmiermode ausgelöst hat.

3.10 Leseanfrage Programmieren 4-Byte-Format (CV-Mode, CV 1-256)

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	0010 0010	0001 0101	cccc cccc	X-Or-Byte
Hex:	0x22	0x15	CV	X-Or-Byte
Dez :	34	21	CV	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen.

Der Bereich ist von 1 bis 256, wobei CV256 als 00 zu senden ist.

Besonderheiten:

Dieser Befehl existiert zusätzlich zum Befehl wie in 3.11 beschrieben. Wird eine Zentrale ab Version 3.6 verwendet, so liefert der Befehl den Wert der CV1024 statt der CV256 zurück. Daher empfehlen wir die Verwendung des in 3.11 beschriebenen Befehls.

Die Leseanforderung hat keine Antwort der Zentrale zur Folge! Diese muss explizit mit dem Befehl "Programmierergebnis anfordern" geholt werden. Erst dann kann erkannt werden, ob der Lesebefehl erfolgreich war oder nicht und ob das Ergebnis in der gewünschten Form (CV-Mode) vorliegt. Konnte der Empfänger nicht im CV-Mode gelesen werden, so versucht es die Zentrale im Registermode. Gelingt diese Leseaktionen, so liegt ein Ergebnis zum Abholen in der Zentrale bereit und das XpressNet-Gerät muss dieses Ergebnis daraufhin prüfen, ob es ein CV-, oder Registerergebnis ist und sein Display entsprechend anpassen, damit folgende Schreibbefehle an diesen Empfänger auch nur in dem Mode ausgeführt werden, den der Empfänger versteht.

Nach dem Erteilen eines Lesebefehls sendet die Zentrale an alle Busteilnehmer die Broadcast "Programmiermode" und adressiert ab dann nur noch das Gerät, welches den Programmier-mode ausgelöst hat.

3.11 Leseanfrage Programmieren 4-Byte-Format (CV 1-255 und CV1024) (neu ab V3.6)

Format:

Headerbyte Daten 1 Daten 2 X-Or-Byte

Binär :	0010 0010	0001 1000	CCCC CCCC	X-Or-Byte
Hex:	0x22	0x18	CV	X-Or-Byte
Dez :	34	24	CV	X-Or-Byte

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

Daten 2	CV
0	1024
1 255	1 255

Besonderheiten:

Dieser Befehl sollte an einer Zentrale ab Version 3.6 immer verwendet werden, weitere Besonderheiten gelten wie unter 3.10 beschrieben.

3.12 Leseanfrage Programmieren 4-Byte-Format (CV 256-511) (neu ab V3.6)

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	0010 0010	0001 1001	CCCC CCCC	X-Or-Byte
Hex:	0x22	0x19	CV	X-Or-Byte
Dez :	34	25	CV	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

Daten 2	CV
0 255	256 511

Besonderheiten:

Wie unter 3.10 beschrieben.

3.13 Leseanfrage Programmieren 4-Byte-Format (CV 512-767) (neu ab V3.6)

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	0010 0010	0001 1010	CCCC CCCC	X-Or-Byte
Hex:	0x22	0x1A	CV	X-Or-Byte
Dez :	34	26	CV	X-Or-Byte

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

Daten 2	CV
0 255	512 767

Besonderheiten:

Wie unter 3.10 beschrieben.

3.14 Leseanfrage Programmieren 4-Byte-Format (CV 768-1023) (neu ab V3.6)

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	0010 0010	0001 1011	CCCC CCCC	X-Or-Byte
Hex:	0x22	0x1B	CV	X-Or-Byte
Dez :	34	27	CV	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu lesen. Es wird versucht, die CV, welche mit CCCC CCCC angegeben ist, zu lesen.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

Daten 2	CV
0 255	768 1023

Besonderheiten:

Wie unter 3.10 beschrieben.

3.15 Leseanfrage Programmieren 3-Byte-Format (Pagemode)

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	0010 0010	0001 0100	CCCC	X-Or-Byte
Hex:	0x22	0x14	CV	X-Or-Byte
Dez :	34	20	CV	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im Pagemode zu lesen. Es wird versucht, die CV, welche mit CCCC

CCCC angegeben ist, zu lesen. Die Zentrale setzt die Pageangaben auf Register um (gleisseitig) und versucht, den Empfänger im Registermode auszulesen.

Der Bereich ist von 1 bis 256, wobei CV256 als 00 zu senden ist.

Besonderheiten:

Die Leseanforderung hat keine Antwort der Zentrale zur Folge! Diese muss explizit mit dem Befehl "Programmierergebnis anfordern" geholt werden. Erst dann kann erkannt werden, ob der Lesebefehl erfolgreich war oder nicht und ob das Ergebnis in der gewünschten Form (Pagemode) vorliegt. Gelingt eine Leseaktionen, so liegt ein Ergebnis zum Abholen in der Zentrale bereit und das XpressNet-Gerät muss dieses Ergebnis auf seinen Inhalt hin untersuchen.

Nach dem Erteilen eines Lesebefehls sendet die Zentrale an alle Busteilnehmer die Broadcast "Programmiermode" und adressiert ab dann nur noch das Gerät, welches den Programmiermode ausgelöst hat.

3.16 Programmierergebnis anfordern

Format:

	Headerbyte	Daten 1	X-Or-Byte
Binär :	0010 0001	0001 0000	0011 0001
Hex:	0x21	0x10	0x31
Dez :	33	16	49

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, das Ergebnis einer vorangegangenen Leseaktion an das XpressNet-Gerät zu senden. Die Antwort ist eine der unter 2.5 beschriebenen Möglichkeiten.

Besonderheiten:

Keine.

3.17 Schreibbefehl Programmieren 3-Byte-Format (Register-Mode)

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	0010 0011	0001 0010	0000 RRRR	Daten	X-Or-Byte
Hex:	0x23	0x12	R	Daten	X-Or-Byte
Dez :	35	18	R	Daten	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im Register-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die Register-Adresse in Daten 2 zu schreiben.

Der Bereich ist Register 1 bis 8.

Besonderheiten:

Bevor ein Schreibbefehl benutzt wird, sollte die Zentrale durch einen Lesebefehl in den Programmiermode versetzt werden. Es gibt keine Kontrolle seitens des XpressNet-Gerätes darüber, ob der Empfänger die Programmiersequenz auch verstanden hat, außer durch nochmaliges Auslesen.

3.18 Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 1-256)

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär	: 0010 0011	0001 0110	CCCC	Daten	X-Or-Byte
Hex :	0x23	0x16	CV	Daten	X-Or-Byte
Dez :	35	22	CV	Daten	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben.

Der Bereich ist CV 1 bis 256, wobei CV256 als 0x00 gesendet werden muss.

Besonderheiten:

Dieser Befehl existiert zusätzlich zum Befehl wie in 3.19 beschrieben. Wird eine Zentrale ab Version 3.6 verwendet, so wird die CV1024 statt der CV256 beschrieben. Daher empfehlen wir die Verwendung des in 3.19 beschriebenen Befehls.

Bevor ein Schreibbefehl benutzt wird, sollte die Zentrale durch einen Lesebefehl in den Programmiermode versetzt und geprüft werden, ob der Empfänger sich im CV-Mode programmieren lässt. Es gibt keine Kontrolle seitens des XpressNet-Gerätes darüber, ob der Empfänger die Programmiersequenz auch verstanden hat, außer durch nochmaliges Auslesen.

3.19 Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 1-255 und CV1024) (neu ab Version 3.6)

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	0010 0011	0001 1100	CCCC CCCC	Daten	X-Or-Byte
Hex:	0x23	0x1C	CV	Daten	X-Or-Byte
Dez :	35	28	CV	Daten	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

Daten 2	CV
0	1024
1 255	1 255

Besonderheiten:

Bevor ein Schreibbefehl benutzt wird, sollte die Zentrale durch einen Lesebefehl in den Programmiermode versetzt und geprüft werden, ob der Empfänger sich im CV-Mode programmieren lässt. Es gibt keine Kontrolle seitens des XpressNet-Gerätes darüber, ob der Empfänger die Programmiersequenz auch verstanden hat, außer durch nochmaliges Auslesen.

3.20 Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 256-511) (neu ab Version 3.6)

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	0010 0011	0001 1101	CCCC CCCC	Daten	X-Or-Byte
Hex:	0x23	0x1D	CV	Daten	X-Or-Byte
Dez :	35	29	CV	Daten	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

Daten 2	CV
0 255	256 511

Besonderheiten:

wie 3.19.

3.21 Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 512-767) (neu ab Version 3.6)

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	0010 0011	0001 1110	CCCC CCCC	Daten	X-Or-Byte
Hex:	0x23	0x1E	CV	Daten	X-Or-Byte
Dez :	35	30	CV	Daten	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

Daten 2	CV
0 255	512 767

Besonderheiten:

wie 3.19.

3.22 Schreibbefehl Programmieren 4-Byte-Format (CV-Mode, CV 768-1023) (neu ab Version 3.6)

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	0010 0011	0001 1111	CCCC CCCC	Daten	X-Or-Byte
Hex:	0x23	0x1F	CV	Daten	X-Or-Byte
Dez :	35	31	CV	Daten	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im CV-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben.

Zuordnung Wert in "Daten 2" <=> CV – Adressen:

Daten 2	CV
0 255	768 1023

Besonderheiten:

wie 3.19.

3.23 Schreibbefehl Programmieren 3-Byte-Format (Page-Mode)

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	0010 0011	0001 0111	CCCC	Daten	X-Or-Byte
Hex:	0x23	0x17	CV	Daten	X-Or-Byte
Dez :	35	23	CV	Daten	X-Or-Byte

Beschreibung:

Der Befehl veranlasst die Zentrale dazu, in den Programmiermode zu schalten und den Empfänger, der auf dem Programmiergleis steht, im Page-Mode zu schreiben. Es wird versucht, den Wert, der in Daten 3 steht, in die CV-Adresse in Daten 2 zu schreiben, wobei die Zentrale eine entsprechende Umrechnung der CV auf die zu verwendende Page macht und den Empfänger im Registermode programmiert.

Der Bereich ist CV 1 bis 256, wobei CV256 als 0x00 gesendet werden muss.

Besonderheiten:

Bevor ein Schreibbefehl benutzt wird, sollte die Zentrale durch einen Lesebefehl in den Programmiermode versetzt und geprüft werden, ob der Empfänger sich im Page-Mode programmieren

lässt. Es gibt keine Kontrolle seitens des XpressNet-Gerätes darüber, ob der Empfänger die Programmiersequenz auch verstanden hat, außer durch nochmaliges Auslesen.

3.24 Softwareversion der Zentrale anfordern

X-Or-Byte

Format:

Dez:

	, , , , , , , , , , , , , , , , , , ,		· · · · - , · ·
		0010 0001	0000 0000
Hex:	0x21	0x21	0x00

33

Headerbyte Daten 1

Beschreibung:

33

Mit diesem Befehl wird die Zentrale veranlasst, ihre Softwareversion dem XpressNet-Gerät mitzuteilen. Je nach Zentralenversion sind die Antworten wie unter 2.7 beschrieben möglich.

Besonderheiten:

Keine.

3.25 Erweiterte Zentralen Versionsinformation abfragen (ab Version 3.8)

Format:

Headerbyte Kenn/D1 X-Or-Byte

Binär :	0010 0001	0010 0011	0000 0010
Hex:	0x21	0x23	0x02
Dez :	33	35	2

Beschreibung:

Mit diesem Befehl wird die Zentrale veranlasst, mit den der erweiterten Versionsinformation zu antworten, siehe "Erweiterte Versionsinformation melden", (=>S. 19).

3.26 Status der Zentrale anfordern

Format:

Headerbyte Daten 1 X-Or-Byte

Binär :	0010 0001	0010 0100	0000 0101
Hex:	0x21	0x24	0x05
Dez :	33	36	5

Beschreibung:

Die Anfrage nach dem Zentralenstatus ergibt die unter 2.8 beschriebene Antwort.

Besonderheiten:

Keine.

3.27 Zentralen-Startmode setzen

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	0010 0010	0010 0010	0000 0M00	X-Or-Byte
Hex:	0x22	0x22	M	X-Or-Byte
Dez :	34	34	M	X-Or-Byte

Beschreibung:

Setzt den Startmode der Zentrale nach Reset. M=0: Manueller Start aller Loks, M=1: automatischer Start aller Loks mit den letzten Geschwindigkeits- und Funktionseinstellungen.

Besonderheiten:

Nicht alle Zentralen unterstützen die Betriebsart "automatischer Start".

3.28 Service Variable Lesebefehl (ab Version 3.8)

Format:

	Headerbyte	Kenn/D1	D2	X-Or- Byte
Binär :	0010 0010	0010 0101	AAAA AAAA	
Hex:	0x22	0x25		
Dez :	34	37		

Beschreibung:

Mit diesem Befehl wird die Zentrale veranlasst, mit dem Inhalt der adressierten Service-Variable zu antworten, siehe "Service Variable melden", (=>S. 19).

Daten 2: AAAA AAAA S Adresse der Service-Variablen (SV); 0=SV256

3.29 Service Variable Schreibbefehl (ab Version 3.8)

Format:

	Headerbyte	Kenn/D1	D2	D3	X-Or- Byte
Binär:	0010 0011	0010 0110	AAAA AAAA	VVVV VVVV	
Hex:	0x23	0x26			
Dez :	35	38			

Beschreibung:

Mit diesem Befehl wird die Zentrale veranlasst, die adressierte Service-Variable aus D2 mit dem in D3 stehenden Wert zu beschreiben.

Auf diesen Befehl folgt automatisch die Antwort "Service Variable melden", (S. 17); so dass der Vollzug des Befehls kontrolliert werden kann.

Adressiert werden können die SVs 1 bis 256, Adresse der SV256 ist "0"

Daten 2: AAAA AAAA S Adresse der Service-Variablen (SV), 0=SV256

Daten 3: VVVV VVVV V zu schreibender Wert

3.30 PoM Ergebnis holen (ab Version 3.8)

Format:

Headerbyte Kenn/D1 X-Or-Byte

		0010 0111	0000 0110
Hex:	0x21	0x27	0x06
Dez:	33	39	6

Beschreibung:

Mit diesem Befehl wird das Ergebnis eines zuvor geschickten PoM Lesebefehls bei der Zentrale abgeholt. Die Zentrale antwortet mit "PoM Ergebnis melden", Abschnitt 2.10, Seite 20. Man sollte der Zentrale etwas Zeit lassen bevor man das Ergebnis holt da das Lesen aus den Decodern auch Zeit braucht; ca. 0,5 bis 1 Sekunde scheint ok.

3.31 Zentralen Reset auslösen

Format:

Headerbyte Kenn/D1 X-Or-Byte

Binär :	0010 0001	0010 1000	0000 1001
Hex:	0x21	0x28	0x09
Dez:	33	40	9

Beschreibung:

Dieser Befehl erzeugt einen Reset der Zentrale. Bei diesem Reset werden alle Daten und Einstellungen auf Werkswerte zurückgesetzt:

- alle Funktionsstati werden auf "Dauer" gesetzt
- Mehrfach- und Doppeltraktion werden gelöscht
- Der Lokspeicher wird gelöscht (damit auch alle gespeicherten Fahrstufen und Funktionszustände)
- alle Rückmeldeinformationen werden gelöscht
- alle Weicheninformationen werden gelöscht

Achtung; es erfolgt keine Nachfrage ;-)

3.32 Modellzeit anfordern

Format:

Headerbyte Kenn/D1 X-Or-Byte

Binär :	0010 0001	0010 1010	0000 1011
Hex:	0x21	0x2A	0x0B

Dez:	33	42	11

Mit diesem Befehl wird die aktuelle Modellzeit bei der Zentrale angefordert.

Die Antwort auf diesen Befehl ist in Abschnitt 2.11, "Modellzeit melden", Seite 20 beschrieben.

3.33 Modellzeit stellen

Format:

	Headerbyte	Kenn/D1	D2	D3	D4	X-Or- Byte
Binär:	0010 0100	0010 1100	DDDh hhhh			
Hex:	0x24	0x2B	DOW+h	min	Faktor	XOR
Dez:	36	43				

Beschreibung:

Mit diesem Befehl wird die Modellzeit in der Zentrale eingestellt und gestartet. Gestartet wird die Uhr immer dann, wenn ein Faktor größer 0 gesendet wird.

Daten 2: DDDh hhh DDD: Tage der Woche: 0 = Montag

1 = Dienstag

- - -

6 = Sonntag 7 nicht erlaubt!

h hhhh: Stunde: 0 - 23

Daten 3 min Minuten: 0 - 59

Daten 4 Faktor Zeitfaktor Modellzeit 0-31, 0=Stopp (Uhr angehalten)

Besonderheiten:

Ist die Modellzeit in der Zentrale aktiv (Faktor 1-31), so wird bei jeder Änderung der Modellminute der Broadcast "Modellzeit", Abschnitt 2.4.7, Seite 13 gesendet. Außerdem wird der in RCN-212 definierte Gleisbefehl zur Modellzeit auf das Gleis gesendet, ebenfalls bei jeder Modellminutenänderung.

3.34 Modellzeit anhalten (ab Version 4.0)

Format:

	Headerbyte	Kenn/D1	X-Or-Byte
Binär:	0010 0001	0010 1101	0000 1100
Hex:	0x21	0x2D	0x0C
Dez :	33	45	12

Beschreibung:

Mit diesem Befehl wird die aktuelle Modellzeit angehalten ohne das deren Faktor verlorengeht.

3.35 Modellzeit starten (ab Version 4.0)

Format:

Headerbyte Kenn/D1 X-Or-Byte

Binär :	0010 0001	0010 1100	0000 1101
Hex:	0x21	0x2C	0x0D
Dez:	33	44	13

Beschreibung:

Mit diesem Befehl wird die aktuelle Modellzeit wieder mit dem voreingestellten Faktor gestartet.

3.36 Schaltinformationen anfordern, Adresse 1 bis 1024 (bis Version 3.6)

Dieser Befehl wird bis einschließlich Version 3.6 verwendet.

Zentralen einer höheren Version sollten aus Gründen der Abwärtskompatibilität diesen Befehl zusätzlich verarbeiten können. So können auch "ältere" Geräte an "neueren" Zentralen verwendet werden.

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	0100 0010	AAAA AAAA	1000 000N	X-Or-Byte
Hex:	0x42	Adresse	0x80 + N	X-Or-Byte
Dez :	66	Adresse	128 + N	X-Or-Byte

Beschreibung:

Aufgrund dieses Kommandos sendet die Zentrale die unter 2.15 beschriebene Antwort.

Daten 1:	Adresse	Für einen Schaltempfäng
Daleii I.	Aultoot	i di cilicii ocilalicilibialid

Für einen Schaltempfänger ist dies die durch 4 geteilte Adresse des gewünschten (Schaltausganges –1) (=Weichengruppe). Damit ergibt sich für die Adresse ein Bereich von 0 bis 63 = 6 Bit für alle Versionen kleiner 3.0.

Ab der Version 3.0 werden für die Weichengruppe alle 8 Bit erlaubt. Damit ergibt sich ein Bereich von 256 (0..255) Weichengruppen. Es können also 1024 Weichen geschaltet werden, wobei die Weichen Nr. 1..512 rückmeldefähig sind, die Weichen Nr. 513 bis 1024 jedoch nicht.

Für einen Rückmeldebaustein ist die Adresse im Bereich 0 bis 127 (=7Bit) und gibt direkt den gewünschten Baustein an.

Daten 2: N Kennzeichnung für das gewünschte Nibble

N = 0 ist das untere NibbleN = 1 ist das obere Nibble

Für Schaltempfänger ist es so, dass in einer Weichengruppe 4 Weichen enthalten sind und das untere Nibble die Weichen 0 und 1 der Weichengruppe bezeichnet und das obere Nibble die Weichen Nr. 2 und 3 der Weichengruppe.

Für einen Rückmeldebaustein bezeichnet das untere Nibble den Zustand der ersten 4 Eingänge des Rückmeldebausteins und das obere Nibble den Zustand der oberen 4 Eingänge.

Besonderheiten:

Beispiel 1: Weichenbereich der Zustand der Weiche Nr. 21 ist gewünscht.

0..255 Adresse: (21-1) mod 4 = 5, d.h. Weiche 21 liegt in

Weichengruppe 5. In Weichengruppe 5 liegen die Weichen 20,

21, 22, 23. Damit ist das Nibblebit 0 (unteres Nibble).

Beispiel 2: Weichenbereich der Zustand der Weiche Nr. 623 ist gewünscht.

0..1023 Adresse: (623-1) mod 4 = 155, d.h. Weiche 623 liegt in

Weichengruppe 155. In Weichengruppe 155 liegen die

Weichen 620, 621, 622, 623. Damit ist das Nibblebit 1 (oberes

Nibble).

3.37 Schaltinformation anfordern, Adresse 1 bis 2048 (ab Version >3.6)

XpressNet-Geräte die an Zentralen ab Version 3.8 betrieben werden verwenden diesen Befehl für den vollständigen Weichen-Adressbereich von 1 bis 2048.

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär:	0100 0011	0000 000A	AAAA AAAA	1000 000N	X-Or-Byte
Hex:	0x43	Adresse H/4	Adresse L/4	0x80 + N	X-Or-Byte
Dez :	67	Adresse		128 + N	X-Or-Byte

Beschreibung:

Daten 1: Adresse, high Byte Für einen Schaltempfänger ist dies die durch 4 geteilte

Adresse des gewünschten (Schaltausganges – 1) (=Weichengruppe). Weiche 1 ist also Adresse 0

Daten 2: Adresse, low Byte

N Kennzeichnung für das gewünschte Nibble

N = 0 ist das untere NibbleN = 1 ist das obere Nibble

Für Schaltempfänger ist es so, dass in einer Weichengruppe 4 Weichen enthalten sind und das untere Nibble die Weichen 0 und 1 der Weichengruppe bezeichnet und das obere Nibble

die Weichen Nr. 2 und 3 der Weichengruppe.

Für einen Rückmeldebaustein bezeichnet das untere Nibble den Zustand der ersten 4 Eingänge des Rückmeldebausteins und das obere Nibble den Zustand der oberen 4 Eingänge.

3.38 Schaltbefehl bis Version 3.6 incl.

Dieser Befehl wird bis einschließlich Version 3.6 verwendet.

Zentralen einer höheren Version sollten aus Gründen der Abwärtskompatibilität diesen Befehl zusätzlich verarbeiten können. So können auch "ältere" Geräte an "neueren" Zentralen verwendet werden.

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	0101 0010	AAAA AAAA	1000 DBBD	X-Or-Byte
Hex:	0x52	Adresse	0x80 + DBBD	X-Or-Byte
Dez :	82	Adresse	128 + DBBD	X-Or-Byte

Beschreibung:

Schaltbefehle können nur an Schaltempfänger erteilt werden. Die Adresse ist damit die (Weichennummer-1) / 4 (=Weichengruppe). Es bleibt noch die Definition des Offsets in der Weichengruppe, um die gewünschte Weiche exakt zu definieren, sowie die Auswahl, welcher der beiden Ausgänge dieser Weiche gewünscht ist und ob dieser Ausgang zu aktivieren oder zu deaktivieren ist. Dies geschieht über die 4 Bits D1 B1 B0 D2 in Daten 2.

Daten 2: 1000 D1 B1 B0 D2

B1 B0: Dies sind die beiden LSBs der Weichenadresse, die bei der

Division durch 4 weggefallen sind.

D1: D1 = 0 bedeutet Ausgang deaktivieren.

D1 = 1 bedeutet Ausgang aktivieren.

D2: D2 = 0 bedeutet Ausgang 1 der Weiche gewählt.

D2 = 1 bedeutet Ausgang 2 der Weiche gewählt.

Besonderheiten:

Für die Bedienung des Schaltempfängers ist stets ein Aktivierungs- und ein Deaktivierungsbefehl nötig. Nach einem Aktivierungsbefehl wird solange der Schaltbefehl auf dem Gleis ausgegeben bis die Zentrale den Deaktivierungsbefehl erhält. Somit kann man den Schaltempfänger mit beliebiger Länge ansteuern, z.B. mit einer Drehscheibe solange fahren bis der gewünschte Gleisabgang erreicht ist. Ein steuernder Busteilnehmer muss also z.B. bei einer Schalttastenbedienung beim Drücken (einmalig) einen Aktivierungsbefehl und beim Loslassen (einmalig) einen Deaktivierungsbefehl absenden.

Für Zentralen kleiner Version 3.0 ist ein Bereich von 0..63 für die Weichengruppe definiert. Damit ist die Gruppenadresse 6 Bit lang. Ab Version 3.0 können auch die Gruppen bis 255 benutzt werden. Siehe auch 3.28.

3.39 Schaltbefehl ab Version 3.8

XpressNet-Geräte die an Zentralen ab Version 3.8 betrieben werden verwenden diesen Befehl für den vollständigen Weichen-Adressbereich von 1 bis 2048.

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär:	0101 0011	0000 000A	AAAA AAAA	1000 DBBD	X-Or-Byte
Hex:	0x53	Adresse H	Adresse L	0x80 + DBBD	X-Or-Byte
Dez :	83	Adresse H	Adresse L	128 + DBBD	X-Or-Byte

Beschreibung:

Daten 1: Adresse, high Byte Für einen Schaltempfänger ist dies die durch 4 geteilte

Adresse des gewünschten (Schaltausganges –1) (=Weichengruppe). Weiche 1 ist also Adresse 0

Daten 2: Adresse, low Byte

Daten 3: Definition wie 3.38, "Schaltbefehl", Seite 55

Besonderheiten:

Für die Bedienung bzgl. Aktivierungs- und Deaktivierungsbefehl siehe unter 3.38

3.40 Lokinformationen anfordern

3.40.1 <u>Lokinformationen anfordern bis LZ-Version 1.5</u>

Format:

	Headerbyte	Daten 1	X-Or-Byte
Binär :	1010 0001	Lokadresse	X-Or-Byte
Hex:	0xA1	Lokadresse	X-Or-Byte
Dez :	161	Lokadresse	X-Or-Byte

Beschreibung:

Bis einschließlich Version 1.5 der Zentrale wurden nur 14 Fahrstufen verwendet, so dass kein zusätzliches Unterscheidungsbyte (ModSel) nötig war. Eine Lokanfrage mit diesem Befehl bewirkt, dass die Zentrale auch nur mit den Lokinfos bis LZ-Version 1.5 antwortet, da sie davon ausgeht, dass das XpressNet-Gerät auch nur diese Kommunikation versteht.

Lokadresse ist im Bereich 0 bis 99. Die Antwort ist unter 2.17 beschrieben.

Besonderheiten:

Keine.

3.40.2 Lokinformationen anfordern bis LZ-Version 2.3

Format:

	Headerbyte	Daten 1	Daten 2	X-Or-Byte
Binär :	1010 0010	Lokadresse	ModSel	X-Or-Byte
Hex:	0xA2	Lokadresse	ModSel	X-Or-Byte
Dez :	162	Lokadresse	ModSel	X-Or-Byte

Beschreibung:

Hier wird zusätzlich das ModSel-Byte gesendet, damit die Zentrale veranlasst wird, auch mit der Antwort inclusive ModSel-Byte zu antworten, damit das XpressNet-Gerät die Fahrstufenzahl der angefragten Lok feststellen kann.

Lokadresse ist im Bereich 0 bis 99. Die Antwort ist unter 2.18 beschrieben.

Besonderheiten:

Keine.

3.40.3 Lokinformationen anfordern ab Zentralen-Version 3.0

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	1110 0011	0000 0000	Adresse High	Adresse Low	X-Or-Byte
Hex:	0xE3	0x00	AH	AL	X-Or-Byte
Dez :	227	0	AH	AL	X-Or-Byte

Beschreibung:

Es können die Loks 0 bis 9999 angefragt werden.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Die möglichen Antworten sind unter 2.19 beschrieben.

Besonderheiten:

Keine.

3.40.4 Funktionsstatus anfordern ab Zentralen-Version 3.0

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	1110 0011	0000 0111	Adresse High	Adresse Low	X-Or-Byte
Hex:	0xE3	0x07	AH	AL	X-Or-Byte
Dez :	227	7	AH	AL	X-Or-Byte

Beschreibung:

Holt den Funktionszustand F0 bis F12 als tastend oder nicht tastend.

Es können die Loks 0 bis 9999 angefragt werden.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Die möglichen Antworten sind unter 2.19 beschrieben.

Besonderheiten:

Keine.

3.40.5 Funktionsstatus anfordern F13 – F28 (neu ab Zentralen-Version 3.6)

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	1110 0011	0000 1000	Adresse High	Adresse Low	X-Or-Byte
Hex:	0xE3	0x08	AH	AL	X-Or-Byte
Dez :	227	8	AH	AL	X-Or-Byte

Beschreibung:

Holt den Funktionsstatus F13 bis F28 als tastend oder nicht tastend.

Es können die Loks 0 bis 9999 angefragt werden.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Die möglichen Antworten sind unter 2.20 beschrieben.

Besonderheiten:

Keine.

3.40.6 Funktionsstatus anfordern F29 – F68 (ab Zentralen-Version 4.0)

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	1110 0011	0000 1010	Adresse High	Adresse Low	X-Or-Byte
Hex:	0xE3	0x0A	AH	AL	X-Or-Byte
Dez:	227	12	AH	AL	X-Or-Byte

Beschreibung:

Holt den Funktionsstatus F29 bis F68 als tastend oder nicht tastend.

Es können die Loks 0 bis 9999 angefragt werden.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Die möglichen Antworten sind unter 2.20 beschrieben.

Besonderheiten:

Keine.

3.40.7 Funktionszustand anfordern F13 – F28 (neu ab Zentralen-Version 3.6)

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	1110 0011	0000 1001	Adresse High	Adresse Low	X-Or-Byte
Hex:	0xE3	0x09	AH	AL	X-Or-Byte
Dez :	227	9	AH	AL	X-Or-Byte

Beschreibung:

Holt den Funktionszustand der Funktionen F13 bis F28.

Es können die Loks 0 bis 9999 angefragt werden.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Die möglichen Antworten sind unter 2.19.2 beschrieben.

Besonderheiten:

Keine.

3.40.8 Funktionszustand anfordern F29 – F68 (ab Zentralen-Version 4.0)

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	1110 0011	0000 1011	Adresse High	Adresse Low	X-Or-Byte
Hex:	0xE3	0x0B	AH	AL	X-Or-Byte
Dez :	227	11	AH	AL	X-Or-Byte

Beschreibung:

Holt den Funktionszustand der Funktionen F29 bis F68.

Es können die Loks 0 bis 9999 angefragt werden.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Die möglichen Antworten sind unter 2.19.2 beschrieben.

Besonderheiten:

Keine.

3.41 Lok steuern

3.41.1 Fahrbefehl bis LZ-Version 1.5

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1011 0011	Lokadresse	Lokdaten 1	Lokdaten 2	X-Or-Byte
Hex:	0xB3	Lokadresse	Lokdaten 1	Lokdaten 2	X-Or-Byte
Dez :	179	Lokadresse	Lokdaten 1	Lokdaten 2	X-Or-Byte

Beschreibung:

Bis einschließlich Version 1.5 der Zentrale wurden nur 14 Fahrstufen verwendet, so daß kein zusätzliches Unterscheidungsbyte (ModSel) nötig war.

Lokadresse ist im Bereich 0 bis 99.

Lokdaten 1 und Lokdaten 2 sind wie unter 2.17.1 beschrieben codiert.

Besonderheiten:

Keine.

3.41.2 Fahrbefehl bis LZ-Version 2.3

Format:

	Headerbyte	Daten 1	Daten 2	Daten 3	Daten 4	X-Or-Byte
Binär :	1011 0100	Lokadresse	Lokdaten 1	Lokdaten 2	ModSel	X-Or-Byte
Hex:	0xB4	Lokadresse	Lokdaten 1	Lokdaten 2	ModSel	X-Or-Byte
Dez :	180	Lokadresse	Lokdaten 1	Lokdaten 2	ModSel	X-Or-Byte

Beschreibung:

Aufgrund der möglichen Fahrstufenzahl von 14, 27 oder 28 wird hier das ModSel-Byte mitgeschickt, damit die Zentrale ein entsprechendes Gleissignal modulieren kann.

Lokadresse ist im Bereich 0 bis 99.

Lokdaten 1, Lokdaten 2 und ModSel sind wie unter 2.18.1 beschrieben codiert.

Besonderheiten:

Keine.

3.41.3 Fahrbefehl ab Zentralen-Version 3.0

Der neue Fahrbefehl für eine Lok gliedert sich in 4 verschieden Möglichkeiten auf, die der Fahrstufenzahl 14, 27, 28 und 128 zugeordnet sind. Dies wird durch die unterschiedliche Kennung erreicht. Die Geschwindigkeit selbst ist für 14, 27 und 28 Fahrstufen wie unter 2.18.1 beschrieben codiert. Die Geschwindigkeit für 128 Fahrstufen wie unter 2.19.1.

Fahrbefehl 14 Fahrstufen:

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0001 0000	Adresse High	Adresse Low	R000 VVVV	X-Or-Byte
Hex:	0xE4	0x10	AH	AL	RV	X-Or-Byte
Dez :	228	16	AH	AL	RV	X-Or-Byte

Fahrbefehl 27 Fahrstufen:

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0001 0001	Adresse High	Adresse Low	R00V VVVV	X-Or-Byte
Hex:	0xE4	0x11	AH	AL	RV	X-Or-Byte
Dez :	228	17	AH	AL	RV	X-Or-Byte

Fahrbefehl 28 Fahrstufen:

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0001 0010	Adresse High	Adresse Low	R00V VVVV	X-Or-Byte
Hex:	0xE4	0x12	AH	AL	RV	X-Or-Byte
Dez :	228	18	AH	AL	RV	X-Or-Byte

Fahrbefehl 128 Fahrstufen:

Format:

Headerbyte Kennung Daten 1 Daten 2 Daten 3 X-Or-Byte

Binär :	1110 0100	0001 0011	Adresse High	Adresse Low	RVVV VVVV	X-Or-Byte
Hex:	0xE4	0x13	AH	AL	RV	X-Or-Byte
Dez :	228	19	AH	AL	RV	X-Or-Byte

Der Fahrbefehl für Version 3-Zentralen enthält nur noch die Geschwindigkeits- und Richtungsinformation. Die Funktionen werden separat gesetzt.

Es können die Loks 0 bis 9999 gesteuert werden. Die Lokadresse berechnet sich wie folgt:

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Besonderheiten:

Keine.

3.41.4 Funktionsbefehle ab Zentralen-Version 3.0 / Version 3.6 / Version 4.0

Die Funktionsbefehle für eine Lok gliedern sich in 3 verschieden Möglichkeiten auf, die den Funktionen der Gruppe 1 (F0..F4), Gruppe 2 (F5..F8), Gruppe 3 (F9..F12), Gruppe 4 (F13...F20) (ab V3.6), der Gruppe 5 (F21...F28) (ab V3.6) sowie ab Version 4.0 Gruppe 6 (F29-F36) bis Gruppe 10 (F61 bis F68) zugeordnet sind. Dies wird durch die unterschiedliche Kennung erreicht.

Funktionsbefehl Gruppe 1:

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 0000	Adresse High	Adresse Low	000F FFFF	X-Or-Byte
Hex:	0xE4	0x20	AH	AL	Gruppe 1	X-Or-Byte
Dez :	228	32	AH	AL	Gruppe 1	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 1:

7	6	5	4	3	2	1	0	Bit
0	0	0	F0	F4	F3	F2	F1	FX=1 bedeutet "Funktion ist an".

Funktionsbefehl Gruppe 2:

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 0001	Adresse High	Adresse Low	0000 FFFF	X-Or-Byte
Hex:	0xE4	0x21	AH	AL	Gruppe 2	X-Or-Byte
Dez :	228	33	AH	AL	Gruppe 2	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 2:

7	6	5	4	3	2	1	0	Bit
0	0	0	0	F8	F7	F6	F5	FX=1 bedeutet "Funktion ist an".

Funktionsbefehl Gruppe 3:

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 0010	Adresse High	Adresse Low	0000 FFFF	X-Or-Byte
Hex:	0xE4	0x22	AH	AL	Gruppe 3	X-Or-Byte
Dez :	228	34	AH	AL	Gruppe 3	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 2:

7	6	5	4	3	2	1	0	Bit
0	0	0	0	F12	F11	F10	F9	FX =1 bedeutet "Funktion ist an".

Funktionsbefehl Gruppe 4 (neu ab Version 3.6):

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 0011	Adresse High	Adresse Low	FFFF FFFF	X-Or-Byte
Hex:	0xE4	0x23	AH	AL	Gruppe 4	X-Or-Byte
Dez :	228	35	AH	AL	Gruppe 4	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 4:

7	6	5	4	3	2	1	0	Bit
F20	F19	F18	F17	F16	F15	F14	F13	FX =1 bedeutet "Funktion ist an".

Funktionsbefehl Gruppe 5 (neu ab Version 3.6):

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 1000	Adresse High	Adresse Low	FFFF FFFF	X-Or-Byte
Hex:	0xE4	0x28	AH	AL	Gruppe 5	X-Or-Byte
Dez :	228	40	AH	AL	Gruppe 5	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 5:

7	6	5	4	3	2	1	0	Bit
F28	F27	F26	F25	F24	F23	F22	F21	FX =1 bedeutet "Funktion ist an".

Funktionsbefehl Gruppe 6: F29-F36 (ab Version 4.0)

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 1001	Adresse High	Adresse Low	0000 FFFF	X-Or-Byte
Hex:	0xE4	0x29	AH	AL	Gruppe 6	X-Or-Byte
Dez :	228	41	AH	AL	Gruppe 6	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 6:

					2			
F36	F35	F34	F33	F32	F31	F30	F29	FX =1 bedeutet "Funktion ist an".

Funktionsbefehl Gruppe 7: F37-F44 (ab Version 4.0)

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 1010	Adresse High	Adresse Low	0000 FFFF	X-Or-Byte
Hex:	0xE4	0x2A	AH	AL	Gruppe 7	X-Or-Byte
Dez:	228	42	AH	AL	Gruppe 7	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 7:

					2			
F44	F43	F42	F41	F40	F39	F38	F37	FX =1 bedeutet "Funktion ist an".

Funktionsbefehl Gruppe 8: F45-F52 (ab Version 4.0)

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 1011	Adresse High	Adresse Low	0000 FFFF	X-Or-Byte
Hex:	0xE4	0x2B	AH	AL	Gruppe 8	X-Or-Byte
Dez :	228	43	AH	AL	Gruppe 8	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 8:

					2			
F52	F51	F50	F49	F48	F47	F46	F45	FX =1 bedeutet "Funktion ist an".

Funktionsbefehl Gruppe 9: F53-F60 (ab Version 4.0)

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0101 0000	Adresse High	Adresse Low	0000 FFFF	X-Or-Byte
Hex:	0xE4	0x50	AH	AL	Gruppe 9	X-Or-Byte
Dez :	228	80	AH	AL	Gruppe 9	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 9:

7	6	5	4	3	2	1	0	Bit
F60	F59	F58	F57	F56	F55	F54	F53	FX =1 bedeutet "Funktion ist an".

Funktionsbefehl Gruppe 10: F61-F68 (ab Version 4.0)

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0101 0001	Adresse High	Adresse Low	0000 FFFF	X-Or-Byte
Hex:	0xE4	0x51	AH	AL	Gruppe 10	X-Or-Byte
Dez:	228	81	AH	AL	Gruppe 10	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 10:

					2			
F68	F67	F66	F65	F64	F63	F62	F61	FX =1 bedeutet "Funktion ist an".

Beschreibung:

Es können die Loks 0 bis 9999 angesprochen werden.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Besonderheiten:

Keine.

3.41.5 Funktionsbefehle "binary states" ab Zentralen-Version 4.0

Die Funktionsbefehle der Form "binary states" für eine Lok sind eine Erweiterung in der RCN-212 auf Schaltbefehle pro Lokadresse mit bis zu 32738 Funktionen. Diese werden aber nicht "refreshed"

Jede Funktion wird einzeln angesprochen also nicht in Gruppen wie die sonstigen Funktionsbefehle. Zusätzlich gibt es die Möglichkeit alle "short" oder alle binary states gemeinsam zu setzen oder zu löschen.

Binary states 0 bis 28 sind nicht erlaubt. Binary states kleiner 128 müssen in der short form gesendet werden.

Binary states werden von manchen Decodern parallel oder anstatt der Funktionen F29 bis F68 benutzt.

3.41.5.1 Funktionsbefehl binary state short form:

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0101 1110	Adresse High	Adresse Low	cbbb bbbb	X-Or-Byte
Hex:	0xE4	0x5E	AH	AL	bbbbbbb= binstate- nummer, c=0: löschen c=1: setzen	X-Or-Byte
Dez :	228	94	AH	AL		X-Or-Byte

Mit bbbbbbb=0 werden alle binstates short angesprochen; Daten 3 = 00000000 löscht also die binstates 29-127, 10000000 setzt die binstates 29-127

3.41.5.2 <u>Funktionsbefehl binary state long form:</u>

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	Daten 4	X-Or-Byte
Binär :	1110 0100	0101 1111	Adresse High	Adresse Low	cbbb bbbb	bbbb bbbb	X-Or-Byte
Hex:	0xE4	0x5F	AH	AL	bbbbbbb= binstate- nummer L, c=0: löschen c=1: setzen	Binstate- nummer H	X-Or-Byte
Dez :	228	95	AH	AL			X-Or-Byte

Mit bbbbbbbb bbbbbbb=0 werden alle binstates (long & short) angesprochen; Daten 3 = 00000000 mit Daten 4=0 löscht also alle binstates 29-32767, Daten 3 = 10000000 und Daten 4=0 setzt alle binstates 29-32767; binstates H darf nur 0 sein wenn alle binstates angesprochen werden sollen; ansonsten ist die short form zu benutzen.

3.41.6 Funktionsstatus setzen ab Zentralen-Version 3.0 / Version 3.6 / Version 4.0

Die LZ100-Zentrale ab Version 3.0 speichert für jede Lokadresse den Zustand ihrer Funktionen als tastend oder nicht tastend. XpressNet-Geräte können diesen Zustand abfragen und ihre Bedienoberfläche entsprechend gestalten. Diese Funktionalität ist vor allem für Geräusche gedacht.

Wie bei den Funktionen werden auch hier die Gruppen 1 bis 10 durch die Kennung unterschieden.

In Version 3.6 sind neu hinzugekommen die Gruppe 4 (F13...20) und Gruppe 5 (F21...F28).

In Version 4 zusätzlich die Gruppe 6 (F29-F36) bis Gruppe 10 (F61-F68).

Funktionsstatus setzen Gruppe 1:

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 0100	Adresse High	Adresse Low	000S SSSS	X-Or-Byte
Hex:	0xE4	0x24	AH	AL	Gruppe 1	X-Or-Byte
Dez :	228	36	AH	AL	Gruppe 1	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 1:

7	6	5	4	3	2	1	0	Bit
0	0	0	S0	S4	S3	S2	S1	SX =1 bedeutet Funktion ist tastend

Funktionsstatus setzen Gruppe 2:

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 0101	Adresse High	Adresse Low	0000 SSSS	X-Or-Byte
Hex:	0xE4	0x25	AH	AL	Gruppe 2	X-Or-Byte
Dez :	228	37	AH	AL	Gruppe 2	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 2:

7	6	5	4	3	2	1	0	Bit
0	0	0	0	S8	S7	S6	S5	SX =1 bedeutet Funktion ist tastend

Funktionsstatus setzen Gruppe 3:

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 0110	Adresse High	Adresse Low	0000 SSSS	X-Or-Byte
Hex:	0xE4	0x26	AH	AL	Gruppe 3	X-Or-Byte
Dez :	228	38	AH	AL	Gruppe 3	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 3:

					2			
0	0	0	0	S12	S11	S10	S9	SX=1 bedeutet Funktion ist tastend

Funktionsstatus setzen Gruppe 4 (ab Version 3.6):

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 0111	Adresse High	Adresse Low	SSSS SSSS	X-Or-Byte
Hex:	0xE4	0x27	AH	AL	Gruppe 4	X-Or-Byte
Dez :	228	39	AH	AL	Gruppe 4	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 4:

	7	6	5	4	3	2	1	0	Bit
Ī	S20	S19	S18	S17	S16	S15	S14	S13	SX=1 bedeutet Funktion ist tastend

Funktionsstatus setzen Gruppe 5 (ab Version 3.6):

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 1100	Adresse High	Adresse Low	SSSS SSSS	X-Or-Byte
Hex:	0xE4	0x2C	AH	AL	Gruppe 5	X-Or-Byte
Dez :	228	44	AH	AL	Gruppe 5	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 5:

7	6	5	4	3	2	1	0	Bit
S28	S27	S26	S25	S24	S23	S22	S21	SX=1 bedeutet Funktion ist tastend

Funktionsstatus setzen Gruppe 6; F29-F36 (ab Version 4.0):

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 1101	Adresse High	Adresse Low	SSSS SSSS	X-Or-Byte
Hex:	0xE4	0x2D	AH	AL	Gruppe 6	X-Or-Byte
Dez:	228	45	AH	AL	Gruppe 6	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 6:

L						2			
	S36	S35	S34	S33	S32	S31	S30	S29	SX=1 bedeutet Funktion ist tastend

Funktionsstatus setzen Gruppe 7: F37-F44 (ab Version 4.0):

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0010 1110	Adresse High	Adresse Low	SSSS SSSS	X-Or-Byte
Hex:	0xE4	0x2E	AH	AL	Gruppe 7	X-Or-Byte
Dez:	228	46	AH	AL	Gruppe 7	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 7:

					2			
S44	S43	S42	S41	S40	S39	S38	S37	SX=1 bedeutet Funktion ist tastend

Funktionsstatus setzen Gruppe 8; F45-F52 (ab Version 4.0):

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0101 0010	Adresse High	Adresse Low	SSSS SSSS	X-Or-Byte
Hex:	0xE4	0x52	AH	AL	Gruppe 8	X-Or-Byte
Dez :	228	82	AH	AL	Gruppe 8	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 8:

					2			
S52	S51	S50	S49	S48	S47	S46	S45	SX=1 bedeutet Funktion ist tastend

Funktionsstatus setzen Gruppe 9: F53-F60 (ab Version 4.0):

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0101 0011	Adresse High	Adresse Low	SSSS SSSS	X-Or-Byte
Hex:	0xE4	0x53	AH	AL	Gruppe 9	X-Or-Byte
Dez :	228	83	AH	AL	Gruppe 9	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 9:

					2			
S60	S59	S58	S57	S56	S55	S54	S53	SX=1 bedeutet Funktion ist tastend

Funktionsstatus setzen Gruppe 10: F61-F68 (ab Version 4.0):

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0101 0100	Adresse High	Adresse Low	SSSS SSSS	X-Or-Byte
Hex:	0xE4	0x54	AH	AL	Gruppe 10	X-Or-Byte
Dez:	228	84	AH	AL	Gruppe 10	X-Or-Byte

Für die Funktionen gilt:

Daten 3: Gruppe 10:

7	6	5	4	3	2	1	0	Bit
S68	S67	S66	S65	S64	S63	S62	S61	SX=1 bedeutet Funktion ist tastend

Beschreibung:

Es können die Loks 0 bis 9999 angesprochen werden.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Besonderheiten:

Keine.

3.41.7 Funktionsrefresh-Modus setzen ab Zentralen-Version 3.6

Unter Funktionsrefresh versteht man das zyklische Wiederholen von Funktionsdaten auf dem Gleis. Ab der Zentralenversion 3.6 ist einstellbar, welche Funktionsdaten refreshed werden. Werkseinstellung ist der Refresh der Funktionen 0 bis 8.

Funktionen ab F29 werden nicht "refreshed".

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0101	0010 1111	Adresse High	Adresse Low	Refresh- Modus	X-Or-Byte
Hex:	0xE4	0x2F	AH	AL	RF	X-Or-Byte
Dez :	228	47	AH	AL	RF	X-Or-Byte

Daten 3: R Refresh-Modus

Wert	Refresh für
0	F0 F4
1	F0 F8
3	F0 F12
7	F0 F20
0xF	F0 F28

Dokumentation XpressNet Version 4.0	
Änderungen und Irrtümer vorhehalten	

3.41.8 Doppeltraktion bis LZ-Version 2.3

3.41.8.1 <u>Doppeltraktion montieren</u>

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	1100 0011	0000 0101	Adresse 1	Adresse 2	X-Or-Byte
Hex:	0xC3	0x05	Adresse 1	Adresse 2	X-Or-Byte
Dez :	195	5	Adresse 1	Adresse 2	X-Or-Byte

Beschreibung:

Die Loks in Daten 1 und Daten 2 werden in der Zentrale zu einer Doppeltraktion zusammengefügt, was bedeutet, dass ein Fahrbefehl an eine der Loks durch die Zentrale auch an die andere gesendet wird.

Es können die Loks 1 bis 99 zusammenmontiert werden.

Gelingt die Montage nicht, so sendet die Zentrale eine der unter 2.23.3 beschriebenen Fehlermeldungen.

Besonderheiten:

Keine.

3.41.8.2 Doppeltraktion auflösen

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	1100 0011	0000 0100	Adresse 1	Adresse 2	X-Or-Byte
Hex:	0xC3	0x04	Adresse 1	Adresse 2	X-Or-Byte
Dez :	195	4	Adresse 1	Adresse 2	X-Or-Byte

Beschreibung:

Die Doppeltraktion der Loks in Daten 1 und Daten 2 wird in der Zentrale aufgelöst.

Gelingt das Auflösen nicht, so sendet die Zentrale eine der unter 2.23.3 beschriebenen Fehlermeldungen.

Besonderheiten:

Keine.

V O- D-4-

3.41.9 <u>Doppeltraktion ab Zentralen-Version 3.0</u>

3.41.9.1 <u>Doppeltraktion montieren</u>

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	Daten 4	X-Or-Byte
Binär :	1110 0101	0100 0011	Adr High 1	Adr Low 1	Adr. High 2	Adr Low 2	X-Or-Byte
Hex:	0xE5	0x43	AH1	AL1	AH 2	AL 2	X-Or-Byte
Dez :	229	67	AH1	AL1	AH 2	AL 2	X-Or-Byte

Beschreibung:

Die Loks in Daten 1/2 und Daten 3/4 werden in der Zentrale zu einer Doppeltraktion zusammengefügt, was bedeutet, dass ein Fahrbefehl an eine der Loks durch die Zentrale auch an die andere gesendet wird.

Die Lokadressen AH/AL berechnen sich wie unter 2.19.7 angegeben.

Gelingt die Montage nicht, so sendet die Zentrale eine der unter 2.24 beschriebenen Fehlermeldungen.

Besonderheiten:

Der Befehl ersetzt die alten Doppeltraktionsbefehle, die in späteren Zentralenversionen nicht mehr unterstützt werden.

3.41.9.2 Doppeltraktion auflösen

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	Daten 3	Daten 4	X-Or-Byte
Binär :	1110 0101	0100 0011	Adr High 1	Adr Low 1	0000 0000	0000 0000	X-Or-Byte
Hex:	0xE5	0x43	AH1	AL1	0x00	0x00	X-Or-Byte
Dez :	229	67	AH1	AL1	0x00	0x00	X-Or-Byte

Beschreibung:

Die Lok in Daten 1/2 wird aus der Doppeltraktion, in der sie eingebunden ist, entfernt. Damit wird auch die Doppeltraktion in der Zentrale aufgelöst.

Dass es sich um das Auflösen einer DTR handelt, kann die Zentrale an der zweiten Lokadresse erkennen, die hier 0 ist.

Die Lokadresse AH/AL berechnet sich wie unter 2.1.15. angegeben.

Gelingt die Montage nicht, so sendet die Zentrale eine der unter 2.24 beschriebenen Fehlermeldungen.

Besonderheiten:

Der Befehl ersetzt die alten Doppeltraktionsbefehle, die in späteren Zentralenversionen nicht mehr unterstützt werden.

3.41.10 <u>Mehrfachtraktionen ab Zentralen-Version 3.0</u>

3.41.10.1 Lok zu einer Mehrfachtraktion hinzufügen oder MTR erzeugen

Eine Lok kann zu einer Mehrfachtraktion (MTR) hinzugefügt werden, wenn sie noch in keiner anderen MTR enthalten ist. Ist diese Lok die erste Lok, so wird automatisch eine MTR erzeugt.

Zusätzlich kann die Einfügerichtung definiert werden, so dass eine Lok auch "falsch" herum in einer MTR sitzen kann, aber dennoch in die korrekte Richtung fährt. Dies wird durch ein Bit in der Kennung (R) entschieden.

Format:

	Headerbyt e	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0100 000R	Adresse High	Adresse Low	MTR	X-Or-Byte
Hex:	0xE4	0x40 + R	AH	AL	MTR	X-Or-Byte
Dez :	228	64 + R	AH	AL	MTR	X-Or-Byte

Beschreibung:

R: R = 0 bedeutet, dass die Lok nicht invertiert in die MTR eingefügt wird. D.h. fährt die MTR vorwärts, fährt auch die Lok vorwärts.

R =1 bedeutet, dass die Fahrtrichtung der Lok invertiert wird.

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, die in die MTR eingefügt werden soll. Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

MTR: Dies ist die MTR-Basisadresse im Bereich von 1 bis 99.

Besonderheiten:

Per Definition kann eine Lok nicht in eine Mehrfachtraktion eingefügt werden, die die gleiche Adresse hat.

3.41.10.2 Lok aus einer Mehrfachtraktion entfernen oder MTR löschen

Eine Lok kann aus einer MTR entfernt werden, wenn sie Mitglied dieser MTR ist. Mit Entfernen der letzten Lok einer MTR wird auch die MTR in der Zentrale gelöscht.

Daten 2

Format:

	е					
Binär :	1110 0100	0100 0010	Adresse High	Adresse Low	MTR	X-Or-Byte
Hex:	0xE4	0x42	AH	AL	MTR	X-Or-Byte
Dez :	228	66	AH	AL	MTR	X-Or-Byte

Beschreibung:

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an die aus der MTR entfernt werden soll.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

MTR: Dies ist die Basisadresse oder MTR-Adresse im Bereich von 1 bis 99, unter der die Mehrfachtraktion gefahren werden kann.

Headerbyt Kennung Daten 1

Daten 3

X-Or-Byte

Besonderheiten:

Keine.

3.42 Programming on Main ab Zentralen-Version 3.0

Programming on Main bedeutet, dass CVs eines Empfängers geändert werden können, während die Lok auf dem normalen Gleis steht. Ein Programmiergleis ist in diesem Fall nicht nötig. Allerdings kann hiermit nicht die Adresse eines Empfängers geändert werden, da diese im Programmierbefehl benutzt werden muss.

Zentralen, die Programming on Main nicht unterstützen, senden "Befehl nicht vorhanden" an das XpressNet-Gerät.

Im Gegensatz zum Programmieren auf dem Programmiergleis sind hier die CVs 1..1024 möglich, allerdings sollten XpressNet-Geräte keine CVs zulassen, die eine Adressänderung zur Folge haben, denn dann würde ein Empfänger nicht mehr auf später ausgesandte Datenpakete hören können, falls er die Sendung auswertet (was allerdings nicht erlaubt ist).

3.42.1 Programming on Main Byte schreiben

Format:

	Header	Kennung	Daten 1	Daten 2	Daten 3	Daten 4	Daten 5	X-Or-Byte
Binär :	1110 0110	0011 0000	Adresse High	Adresse Low	1110 11CC	CCCC CCCC	DDDD DDDD	X-Or-Byte
Hex:	0xE6	0x30	AH	AL	0xEC + C	CV	D	X-Or-Byte
Dez :	230	48	AH	AL	236 + C	CV	D	X-Or-Byte

Beschreibung:

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, auf die sich das Byte-Programmieren bezieht.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Da die CVs von 0..1023 möglich sind (=10Bit), werden die oberen 2 Bits (MSBs) nach Daten 3 geschrieben. Der Rest der CV-Adresse (die 8 LSBs) stehen in Daten 4.

Der zu programmierende Wert dieser CV steht in Daten 5.

Die CV-Adresse wird so gesendet, wie sie auf dem Gleis erscheint, d.h. um eins decrementiert.

Besonderheiten:

Es sollten keine CVs verwendet werden, die sich auf Empfängeradressen beziehen.

3.42.2 Programming on Main Byte lesen (ab Version 3.6)

Format:

	Header	Kennung	Daten 1	Daten 2	Daten 3	Daten 4	Daten 5	X-Or-Byte
Binär :	1110 0110	0011 0000	Adresse High	Adresse Low	1110 01CC	CCCC CCCC	0000 0000	X-Or-Byte
Hex:	0xE6	0x30	AH	AL	0xE4 + C	CV	0x00	X-Or-Byte
Dez :	230	48	AH	AL	228 + C	CV	0	X-Or-Byte

Beschreibung:

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, auf die sich das Byte-Lesen bezieht.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Da die CVs von 0..1023 möglich sind (=10Bit), werden die oberen 2 Bits (MSBs) nach Daten 3 geschrieben. Der Rest der CV-Adresse (die 8 LSBs) stehen in Daten 4.

Historisch handelt es sich hier eigentlich um den Byte verify Befehl. Deshalb gibt es noch das Byte ,Daten 5', das aber jetzt keine Bedeutung mehr hat. Deswegen wird hier der Wert 0 eingetragen.

Die CV-Adresse wird so gesendet, wie sie auf dem Gleis erscheint, d.h. um eins dekrementiert.

Besonderheiten:

Keine.

3.42.3 Programming on Main Bit schreiben

Format:

	Header	Kennung	Daten 1	Daten 2	Daten 3	Daten 4	Daten 5	X-Or-Byte
Binär :	1110 0110	0011 0000	Adresse High	Adresse Low	0111 11CC	CCCC CCCC	1111 WBBB	X-Or-Byte
Hex:	0xE6	0x30	AH	AL	0x7C + C	CV	0xF0 + WB	X-Or-Byte
Dez :	230	48	AH	AL	124 + C	CV	240 + WB	X-Or-Byte

Beschreibung:

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, auf die sich das Bit-Programmieren bezieht.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Da die CVs von 0..1023 möglich sind (=10Bit), werden die oberen 2 Bits (MSBs) nach Daten 3 geschrieben. Der Rest der CV-Adresse (die 8 LSBs) stehen in Daten 4.

Der zu programmierende Bitwert steht in Daten 5 und berechnet sich wie folgt:

W ist der Bitwert 0 oder 1.

Die Bits B2, B1, B0 geben die Position des Bits in der CV an (Bitposition 0 bis Bitposition 7).

Die CV-Adresse wird so gesendet, wie sie auf dem Gleis erscheint, d.h. um eins dekrementiert.

Besonderheiten:

Es sollten keine CVs verwendet werden, die sich auf Empfängeradressen beziehen.

3.43 Adress-Suchbefehle ab Zentralen-Version 3.0

Durch die Einführung von Mehrfachtraktionen und einem erweiterten Stack-Handling in den Zentralen ist es nötig geworden, dass XpressNet-Geräte auch Lokadressen suchen müssen, um eine komfortable Bedieneroberfläche zu erzielen.

3.43.1 Adressanfrage Mitglied einer Mehrfachtraktion

Die Unterscheidung zwischen Vorwärts- und Rückwärtssuche wird über die Kennung gemacht.

Format:

	Headerbyt e	Kennung	Daten 1	Daten 2	Daten 3	X-Or-Byte
Binär :	1110 0100	0000 00RR	MTR	Adresse High	Adresse Low	X-Or-Byte

Hex:	0xE4	0x01 + R	MTR	AH	AL	X-Or-Byte
Dez :	228	1 + R	MTR	AH	AL	X-Or-Byte

Beschreibung:

Um einen schnellen Zugriff auf die Loks in einer MTR zu haben, um z.B. Funktionen schalten zu können, liefert die Zentrale aufgrund dieser Anfrage die nächste Adresse, die der angefragten folgt (Vorwärtssuche) bzw. vorausgeht (Rückwärtssuche).

Für Zentralen einschließlich Version 3.8 ist nur die Vorwärtssuche definiert.

Kennung = 0x01: (RR=01) bedeutet Vorwärtssuche Kennung = 0x02: (RR=10) bedeutet Rückwärtssuche

Daten 1 gibt die MTR-Basisadresse im Bereich von 1..99 an, auf die sich die Suche bezieht.

Daten 2 und Daten 3 geben die Lokadresse von 1..9999 an, zu der die folgende bzw. vorausgehende Adresse gesucht werden soll.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

MTR: Dies ist die Basisadresse oder MTR-Adresse im Bereich von 1 bis 99, unter der

die Mehrfachtraktion gefahren werden kann.

Das Ergebnis der Suche wird an das Gerät in der Antwort wie unter 2.20 beschrieben gesendet.

Besonderheiten:

Keine.

3.43.2 Adressanfrage Mehrfachtraktion

Headerbyt Kennung

Die Unterscheidung zwischen Vorwärts- und Rückwärtssuche wird über die Kennung gemacht.

X-Or-Byte

Format:

	е			
Binär :	1110 0010	0000 0RRR	MTR	X-Or-Byte

Daten 1

Bınär :	1110 0010	0000 0RRR	MIR	X-Or-Byte
Hex :	0xE2	0x03 + R	MTR	X-Or-Byte
Dez :	226	3 + R	MTR	X-Or-Byte

Beschreibung:

Dieser Befehl veranlasst die Zentrale dazu, dem XpressNet-Gerät die nächste Basisadresse einer MTR zu senden, die der angefragten MTR folgt (Vorwärtssuche) bzw. vorausgeht (Rückwärtssuche).

Für Zentralen einschließlich Version 3.8 ist nur die Vorwärtssuche definiert.

Kennung = 0x03: (RRR=011) bedeutet Vorwärtssuche Kennung = 0x04: (RRR=100) bedeutet Rückwärtssuche

MTR: Dies ist die Basisadresse oder MTR-Adresse im Bereich von 1 bis 99,unter der

die Mehrfachtraktion gefahren werden kann.

Das Ergebnis der Suche wird an das Gerät in der Antwort wie unter 2.22 beschrieben gesendet.

Besonderheiten:

Keine.

3.43.3 Adressanfrage Lok in Zentralenstack

Die Unterscheidung zwischen Vorwärts- und Rückwärtssuche wird über die Kennung gemacht.

Format:

	Headerbyte	Kennung	Daten 1	Daten 2	X-Or-Byte
Binär :	1110 0011	0000 01RR	Adresse High	Adresse Low	X-Or-Byte
Hex:	0xE3	0x05 + R	AH	AL	X-Or-Byte
Dez :	227	5 + R	AH	AL	X-Or-Byte

Beschreibung:

Es wird dem XpressNet-Gerät die Lokadresse gesendet, die im Zentralenstack hinter (Vorwärtssuche) bzw. vor der Lokadresse (Rückwärtssuche) in Daten 1/2 abgelegt ist.

Für Zentralen einschließlich Version 3.8 ist nur die Vorwärtssuche definiert.

Ab LZV200 Version 4 kann auch rückwärts gesucht werden.

Kennung = 0x05: (RR=01) bedeutet Vorwärtssuche

Kennung = 0x06: (RR=10) bedeutet Rückwärtssuche

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, zu der die folgende bzw. vorausgehende Adresse gesucht werden soll. Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Mit Adresse 0 wird die erste im Stack eingetragene Lok gemeldet.

Das Ergebnis der Suche wird an das Gerät in der Antwort wie unter 2.20 beschrieben gesendet.

Daten 2

X-Or-Byte

Besonderheiten:

Keine.

3.43.4 Lok aus Zentralenstack löschen

Headerbyt Kennung

Format:

	е				
Binär :	1110 0011	0100 0100	Adresse High	Adresse Low	X-Or-Byte
Hex:	0xE3	0x44	AH	AL	X-Or-Byte
Dez :	227	68	AH	AL	X-Or-Byte

Daten 1

Beschreibung:

Daten 1 und Daten 2 geben die Lokadresse von 1..9999 an, die im Zentralenstack zu löschen ist.

Die Lokadresse AH/AL berechnet sich wie unter 2.19.7 angegeben.

Besonderheiten:

Das Problem, dass der Zentralenstack voll ist, stellt sich vor allem bei Zentralen mit geringer Hardwareausstattung, die dann nicht alle jemals aufgerufenen Loks mit allen Daten speichern können. Der Zentralenstack dient dazu, die Daten dieser Loks auf das Gleis zu senden.

Das XpressNet-Gerät welches die Lok im Stack gelöscht hat, sollte dafür sorgen, daß es mit einer anderen Lok weiterarbeiten kann, so dass das Löschen auch von Erfolg gekrönt wird. Ansonsten würde man die Lok, die man gerade gelöscht hat, sofort wieder aufnehmen.

4 Zentralen und deren Eigenschaften

Da nicht alle Zentralen alle Eigenschaften unterstützen, sollte ein XpressNet-Gerät anhand der Versionsnummer und gegebenenfalls der Zentralen-ID feststellen, an welcher Zentrale es arbeitet, welche Befehle diese versteht und bei einer vorhandenen Menüstruktur hierauf eingehen.

Die Tabelle ist aus der Sicht eines XpressNet-Gerätes dargestellt.

	Lok's	F-Status	DTR	MTR	Schalten	Rückm.	РоМ	Prog.
LZ100V2.3	099	nein	ja	nein	ja	ja	nein	ja
LZ100V3.0	09999	ja	ja	ja	ja	ja	ja	ja
LH200	09999	nein	nein	nein	ja	nein	ja	nein
Compact	0.99	nein	ja	nein	ja	nein	nein	ja
LZV200	09999	ja	ja	ja	ja	ja	ja	ja

Bei der Angabe z.B. von MTR bei Zentrale LH200 bedeutet nein, das vom XpressNet-Gerät aus keine Mehrfachtraktionen eingerichtet werden können. Der LH200 als Zentrale kann dies jedoch. Trifft eine Lokanfrage eines XpressNet-Gerätes auf eine solche Mehrfachtraktion, so kann diese zwar gefahren werden, jedoch nicht aufgelöst. Ebenso können vom XpressNet-Gerät keine weiteren Loks hinzugefügt werden.

5 Befehlsübersicht Zentrale an Gerät

Es bedeuten: P: Paritybit, GA: XpressNet-Geräteadresse

Die Bedeutung der jeweiligen Datenbytes ist in den entsprechenden Kapiteln beschrieben.

Kapitel	V3	Befehl	Ruf	Header	Daten1	Daten2	Daten3	Daten4	Daten5	Daten6	Daten7
2.1	V3	Normale Anfrage	P+0x40+								
2.2	V3	Quittierung	P+0x00+								
2.3	V3	TBD	P+0x20+								
2.4.1	V3	BC Alles An	0x60	0x61	0x01	0x60					
2.4.2	V3	BC Alles Aus	0x60	0x61	0x00	0x61					
2.4.3	V3	BC Alle Loks Aus	0x60	0x81	0x00	0x81					
2.4.4	V3	BC Programmiermode	0x60	0x61	0x02	0x63					
2.4.5	V3	BC Rückmeldung	0xA0	0x40 + N	ADR_1	DAT_1	ADR_2	DAT2	usw.	usw.	X-Or
2.4.6	3.8	BC Rückmeldung ab W1025	0xA0	0x43	ADRH	ADRL	DAT	X-Or			
2.4.7	3.8	BC Modellzeit	0x60	0x63	0x03	dddhhhhh	Min&stop	X-Or			
2.5.1	V3	P-Info Kurzschluß	P+0x60+	0x61	0x12	X-Or					
2.5.2	V3	P-Info Keine Daten	P+0x60+	0x61	0x13	X-Or					
2.5.3	V3	P-Info Busy	P+0x60+	0x61	0x1f	X-Or					
2.5.4	V3	P-Info bereit	P+0x60+	0x61	0x11	X-Or					
2.5.5	V3	P-Info Daten 3 Byte	P+0x60+	0x63	0x10	EE	DAT	X-Or			
2.5.6	V3.6	P-Info CV1-255 u. 1024	P+0x60+	0x63	0x14	CV	DAT	X-Or			
2.5.7	V3.6	P-Info CV256 - 511	P+0x60+	0x63	0x15	CV	DAT	X-Or			
2.5.8	V3.6	P-Info CV512 - 767	P+0x60+	0x63	0x16	CV	DAT	X-Or			
2.5.9	V3.6	P-Info CV768 - 1023	P+0x60+	0x63	0x17	CV	DAT	X-Or			
2.6	3.8	Service Variable melden	P+0x60+	0x63	0x20	SV#	SVval	X-Or			
2.7.2	V3	Software LZ ab 3.0	P+0x60+	0x63	0x21	DAT1	DAT2	X-Or			
2.8	V3	Status Zentrale	P+0x60+	0x62	0x22	DAT	X-Or				
2.9	3.8	Erw. Versionsinfo	P+0x60+	0x67	0x23	ZBldH	ZBldL	RMver	RMBldH	RMBldL	RMver
2.10	3.8	PoM Ergebnis melden	P+0x60+	0x64	0x24	ADRH	ADRL	PoMval	X-Or		

2.11	3.8	Modellzeit melden	P+0x60+	0x64	0x25	H&DOW	min	Faktor	X-Or		
2.12	V3	Übertragungsfehler	P+0x60+	0x61	0x80	X-Or					
2.13	V3	Zentrale Busy	P+0x60+	0x61	0x81	X-Or					
2.14	V3	Befehl nicht vorhanden	P+0x60+	0x61	0x82	X-Or					
2.15	V3	Schaltinformation	P+0x60+	0x42	ADR	DAT	X-Or				
2.16	V3.8	Schaltinformation ab W1025	P+0x60+	0x4	ADRH	ADRL	DAT	X-Or			
2.19.1	V3	Normale Lokinfo ab V3	P+0x60+	0xE4	Kennung	Speed	FKT0	FKT1	X-Or		
2.19.2	V3.6	F-Zustand F13 F28	P+0x60+	0xE3	0x52	F 13-20	F 21-28	X-Or			
2.19.3	V4.0	F-Zustand F29 F68	P+0x60+	0xE6	0x53	F 29-36	F 37-44	F 45-52	F 56-63	F 64-68	X-Or
2.19.4	V3	MTR-Mitglied ab V3	P+0x60+	0xE5	Kennung	Speed	FKT0	FKT1	MTR	X-Or	
2.19.5	V3	MTR-Basisadresse ab V3	P+0x60+	0xE2	Kennung	Speed	X-Or				
2.19.6	V3	Lok ist in DTR ab V3	P+0x60+	0xE6	Kennung	Speed	FKT0	FKT1	ADR High	ADR Low	X-Or
2.19.7	V3	Lok besetzt ab V3	P+0x60+	0xE3	0x40	ADR High	ADR Low	X-Or			
2.19.8	V3	Funktionsstatus ab V3	P+0x60+	0xE3	0x50	STAT 0	STAT 1	X-Or			
2.20	V3.6	F-status F13 bis F28	P+0x60+	0xE4	0x51	STAT 2	STAT 3	RSTAT	X-Or		
2.21	V4	F-status F29 bis F68	P+0x60+	0xE6	0x54	STAT6	STAT7	STAT8	STAT9	STAT10	X-Or
2.22	V3	Lok-Suchergebnis ab V3	P+0x60+	0xE3	0x30 + K	ADR High	ADR Low	X-Or			
2.24	V3	Fehlermeldung ab V3	P+0x60+	0xE1	0x80 + F	X-Or					

6 Befehlsübersicht Gerät an Zentrale

Die Bedeutung der jeweiligen Datenbytes ist in den entsprechenden Kapiteln beschrieben.

Kapitel	V3	Befehl	Header	Kennung	Daten1	Daten2	Daten3	Daten4	Daten5	Daten6
3.1	V3	Quittierung	0x20	0x20						
3.2	V3	Alles An	0x21	0x81	0xA0					
3.3	V3	Alles Aus	0x21	0x80	0xA1					
3.4	V3	Alle Loks anhalten	0x80	0x80						
3.7	V3	Eine Lok anhalten ab V3	0x92	ADR High	ADR Low	X-Or				
3.9	V3	ProgLesen Register	0x22	0x11	REG	X-Or				
3.11	V3.6	ProgLesen CV1-255; 1024	0x22	0x18	CV low	X-Or				
3.12	V3.6	ProgLesen CV256-511	0x22	0x19	CV low	X-Or				
3.13	V3.6	ProgLesen CV512-767	0x22	0x1A	CV low	X-Or				
3.14	V3.6	ProgLesen CV768-1023	0x22	0x1B	CV low	X-Or				
3.15	V3	ProgLesen Paging	0x22	0x14	CV	X-Or				
3.16	V3	ProgErgebnis anfordern	0x21	0x10	0x31					
3.17	V3	ProgSchreiben Register	0x23	0x12	REG	DAT	X-Or			
3.19	V3.6	ProgSchr. CV1-255; 1024	0x23	0x1C	CV low	DAT	X-Or			
3.20	V3.6	ProgSchr. CV256-511	0x23	0x1D	CV low	DAT	X-Or			
3.21	V3.6	ProgSchr. CV512-767	0x23	0x1E	CV low	DAT	X-Or			
3.22	V3.6	ProgSchr. CV768-1023	0x23	0x1F	CV low	DAT	X-Or			
3.23	V3	ProgSchreiben Paging	0x23	0x17	CV	DAT	X-Or			
3.24	V3	Softwareversion anfordern	0x21	0x21	0x00					
3.25	V3.8	Erweitere Zentralenversion	0x21	0x23	0x02					
3.26	V3	Status Zentrale anfordern	0x21	0x24	0x05					
3.27		Startmode setzen	0x22	0x22	00000M0	X-Or				
3.28	V3.8	SV lesen	0x22	0x25	SV#	X-Or				
3.29	V3.8	SV schreiben	0x23	0x26	SV#	SVwert	X-Or			
3.30	V3.8	PoM-Ergebnis anfordern	0x21	0x27	0x06					

Dokumentation XpressNet Version 4.0

Befehlsübersicht

3.31	V3.8	Zentralenreset auslösen	0x21	0x28	0x09					
3.32	V3.8	Modellzeit anfordern	0x21	0x2A	0x0B					
3.33	V3.8	Modellzeit stellen	0x24	0x2B	DOW&d	min	Faktor	X-Or		
3.34	V4.0	Modellzeit anhalten	0x21	0x2D	0x0C					
3.35	V4.0	Modellzeit starten	0x21	0x2C	0x0D					
3.36	V3	Schaltinformation anfordern	0x42	ADR	Nibble	X-Or				
3.37	V3.8	Schaltinfo anfordern bis W2048	0x43	ADRH	ADRL	DAT	X-Or			
3.38	V3	Schaltbefehl bis W1024	0x52	ADR	DAT	X-Or				
3.39	V3.8	Schaltbefehl bis W2048	0x53	ADRH	ADRL	DAT	X-Or			
3.40.3	V3	Lokdaten anfordern ab V3	0xE3	0x00	ADR High	ADR Low	X-Or			
3.40.4	V3	Fkt-Status anfordern ab V3	0xE3	0x07	ADR High	ADR Low	X-Or			
3.40.5	V3.6	Fkt-Status anf. F13-F28	0xE3	0x08	ADR High	ADR Low	X-Or			
3.40.6	V4.0	Fkt-Status anf. F29-F68	0xE3	0x0A	ADR High	ADR Low	X-Or			
3.40.7	V3.6	Fkt-Zustand anf. F13-F28	0xE3	0x09	ADR High	ADR Low	X-Or			
3.40.8	V4.0	Fkt-Zustand anf. F29-F68	0xE3	0x09	ADR High	ADR Low	X-Or			
3.41.3	V3	Lok Fahrbefehl ab V3	0xE4	Kennung	ADR High	ADR Low	Speed	X-Or		
3.41.4	V3-V4	Lok Funktionsbefehl	0xE4	Kennung	ADR High	ADR Low	Gruppe	X-Or		
3.41.5.1	V4	Binary states short setzen	0xE4	0x5E	ADR	ADR	D&FKT	X-Or		
3.41.5.2	V4	Binary states long setzen	0xE5	0x5F	ADR	ADR	D&FKTL	FKTH	X-Or	
3.41.6	V3-4	Funktionsstatus setzen	0xE4	Kennung	ADR High	ADR Low	Gruppe	X-Or		
3.41.7	V3.6	Func.refresh-Modus setzen	0xE4	0x2F	ADR High	ADR Low	Modus	X-Or		
3.41.9	V3	DTR-Befehle	0xE5	0x43	ADR1 H	ADR1 L	ADR2 H	ADR2 L	X-Or	
3.41.10.1	V3	Lok zu MTR hinzufügen ab V3	0xE4	0x40 + R	ADR High	ADR Low	MTR	X-Or		
3.41.10.2	V3	Lok aus MTR entfernen ab V3	0xE4	0x42	ADR High	ADR Low	MTR	X-Or		
3.42.1	V3	Prog. on Main Byte schreiben	0xE6	0x30	ADR High	ADR Low	0xEC + C	CV	DAT	X-Or
3.42.2	V3.6	Prog. on Main Byte lesen	0xE6	0x30	ADR High	ADR Low	0xEA + C	CV	DAT	X-Or
3.42.3	V3	Prog. on Main Bit ab V3	0xE6	0x30	ADR High	ADR Low	0x7C + C	CV	DAT	X-Or
3.43.1	V3	Adresssuche Lok in Mtr ab V3	0xE4	0x01 + R	MTR	ADR High	ADR Low	X-Or		
3.43.2	V3	Adresssuche MTR ab V3	0xE2	0x03 + R	MTR	X-Or				
3.43.3	V3	Stacksuche Lok ab V3	0xE3	0x05 + R	ADR High	ADR Low	X-Or			

Befehlsübersicht

3.43.4	V3	Lok aus Stack löschen ab V3	0xE3	0x44	ADR High	ADR Low	X-Or		
0			071-0	• * * * * * * * * * * * * * * * * * * *	, . <u> </u>		, · • .		