데이터베이스 강의 노트

제 8 회차 관계 DB 구축 단계

❖ 학습목표

- DB의 라이프 사이클 5 단계를 나열할 수 있다.
- 관계 DB 구축의 6 단계를 나열할 수 있다.
- DB 구축 시 고려사항을 설명할 수 있다.
- 요구 수집 및 분석 절차에 대해 설명할 수 있다.
- 개념적 설계의 2가지 주요 업무를 나열할 수 있다.
- 논리적 설계의 3가지 주요 업무를 나열할 수 있다.

❖ 학습내용

- 관계 DB 구축의 6 단계
- 관계 DB 구축 단계별 세부 내용

관계 DB 구축의 6단계

- 1. DB 라이프사이클
- 2. DB 구축의 6 단계
- 3. DB 구축 시 고려사항

1. DB 라이프사이클

1) DB 라이프사이클

DB 라이프사이클(Life Cycle)란?

DB가 생성되어 사용되는 동안 반복적으로 거치게 되는 일련의 과정을 의미하며, 요구사항 분석, 설계, 구현, 운영, 감시 및 개선의 5 단계를 포함

2. DB 구축의 6 단계

1) DB 구축 단계 및 수행 업무

2. DB 구축의 6 단계

2) DB 설계 전략

데이터 중심(Data-driven) DB 설계

DB의 내용과 구조에 치중해서 설계하는 방법

처리 중심(Processing-driven) DB 설계

데이터의 처리와 응용에 치중해서 설계하는 방법

두 가지를 병행해서 진행하는 것이 일반적

99

3. DB 구축 시 고려사항

1) DB 구축 시 고려사항

무결성 (Integrity) DB에 저장된 데이터가 제약조건을 만족해야 함 (갱신, 삽입, 삭제 등의 연산 후에도 데이터 값이 정확해야 함)

일관성 (Consistency)

저장된 데이터들 간에, 또는 특정 질의에 대한 응답들 간에 모순이 없어야 함

회복 (Recovery) 시스템에 장애가 발생한 경우, 장애 발생 이전의 일관된 DB 상태로 복구 가능해야 함

보안 (Security)

불법적인 접근(데이터의 변경, 손실, 노출 등)에 대해 보호 가능해야 함

효율성 (Efficiency) 응답시간 단축, 저장 공간 최적화, 시스템의 생산성(처리도) 등을 고려해야 함

확장 (Growth) 시스템에 영향을 주지 않고 새로운 응용 프로그램이나 데이터를 추가할 수 있어야 함

관계 DB 구축 단계별 세부 내용

- 1. 요구수집 및 분석 단계
- 2. 개념적 설계 단계
- 3. DBMS 선정 단계
- 4. 논리적 설계 단계
- 5. 물리적 설계 단계
- 6. 구현 및 테스트 단계

1. 요구수집 및 분석 단계

요구수집 및 분석이란?

DB가 제공해야 할 정보 내역을 수집하고 분석해서, 개념적 설계의 기초가 되는 요구 분석 명세서를 작성하는 것

요구 수집 및 분석의 주요 업무

사용자 그룹 및 담당자 식별

DB를 사용할 사용자 그룹과 요구 수집 및 분석에 참여할 업무 담당자를 식별함

범 기관적 제약조건 파악

DB를 사용할 조직의 경영 정책이나 규정, 조직 관리와 기획 정보 등을 파악해서 요구사항에 어떻게 반영할 지 결정함

1. 요구수집 및 분석 단계

요구 수집 및 분석의 주요 업무

업무 영역 분할

전체 업무를 상세 업무 분석의 기본 단위가 되는 소단위의 업무 영역으로 분할하고, 업무 영역 분할도를 작성함

요구 분석 명세서 작성

각 업무별로 요구되는 데이터 요구분석 명세서와 트랜잭션 요구분석 명세서를 각각 작성함

사용자의 요구사항 수집

주요 사용자 및 업무 담당자와의 대화, 인터뷰, 회의 등과 같은 직접적인 방법이나, 설문조사와 같은 간접적인 방법을 활용해서 DB의 용도를 파악하고 전체적인 요구사항을 수집함

기존 문서 조사

기존 응용 프로그램과 관련된 매뉴얼과 각종 양식(Form), 보고서(Report), 차트(Chart) 등 기존 문서를 조사함

상세 업무 분석

요구 수집 결과를 기초로 분할한 각 업무 영역별로 요구되는 데이터 및 트랜잭션을 분석함

1. 요구수집 및 분석 단계

요구 분석의 산출물

① 업무 영역 분할

- 인터뷰 내용
- 설문조사 내용
- 업무 분장표
- 업무흐름도
- 현 시스템 분석도
- 범 기관적 제약조건
- 기존 문서 조사 결과
- 기존 보고서 양식 등

② 업무 영역별 사용자 요구사항 정리

③ 요구분석 명세서 작성

요구분석 명세서

- 데이터 요구분석 명세서
- 트랜잭션 요구분석 명세서

- ① 업무 영역 분할
- ② 상세 업무 분석

개념적 설계란?

요구 분석 명세서를 기초로 DBMS와는 무관한 추상적인 형태로 사용자의 요구를 표현하는 것

개념적 설계의 주요 업무

개념적 모델링

- 데이터의 조직 및 표현에 초점을 맞추기 때문에 데이터 중심 설계가 됨
- 데이터 요구분석 명세서를 기초로 ER 모델을 도출함

트랜잭션 모델링

- 응용을 위한 데이터 처리에 초점을 맞추기 때문에 처리 중심 설계가 됨
- 트랜잭션 요구 분석 명세서를 기초로 업무 단위의 유형별 트랜잭션을 나열함

개념적 설계의 필요성

사용자의 다양한 요구사항을 처음부터 완벽하게 DB가 이해할 수 있는 방법으로 표현하는 것이 어려우므로, 우선 개념적이고 다소 추상적인 방법으로 표현할 필요가 있음

사용자의 요구사항이 빠짐없이 표현되었는지 쉽게 파악할 수 있고, 사용자와 개발자 간의 의사소통을 원활히 하는데 도움이 됨

개념적 모델링의 산출물

① 개체와 관계 및 속성 등 식별

② ER 다이어그램 작성

데이터 요구 분석 명세서 Input 개념적 모델링

Output ER 다이어그램

- ① 요구 분석 명세서를 기초로 핵심 개체 타입 식별
- ② 개체 타입들 간의 관계 식별
- ③ 관계 타입의 유형과 카디널리티(옵션) 결정
- ④ 개체 타입의 속성 식별
- ⑤ 개체 타입의 식별자(후보 키) 결정
- ⑥ 관계 타입의 속성 식별

트랜잭션 모델링의 산출물

① DB 설계에 반영할 필요가 있는 주요 트랜잭션 식별 ② 업무 단위의 유형별 트랜잭션 명세서 작성

트랜잭션 요구 분석 명세서 모델링 Output 트랜잭션 명세서

- ① DB 설계에 반영할 필요가 있는 주요 트랜잭션 식별
- ② 각 트랜잭션의 입력 데이터와 출력 데이터, 그리고 내부적인 제어의 흐름 파악
- ③ 트랜잭션들 간의 상대적인 중요도와 예상 실행 빈도수 파악 (추후 물리적 설계를 위한 중요한 정보가 됨)

3. DBMS 선정 단계

DBMS 선정의 필요성

ER 다이어그램으로 표현된 개념적 데이터 모델을 논리적 데이터 모델로 변환하기 위해서 DBMS가 선정되어야 변환할 논리적 데이터 모델이 결정됨

논리적 데이터 모델

개념적 설계 단계의 산출물인 개념적 DB 스키마를 가장 효율적이고 안정적으로 표현할 수 있는 논리적 데이터 모델 (예: 관계 데이터 모델)을 기초로 하는 DBMS 선택

운영 환경

DB를 구축할 하드웨어 환경(PC, 워크스테이션, 메인프레임 등)과 운영체제(윈도우, 리눅스, 유닉스 등) 등을 고려해서 운영 환경에 적합한 DBMS 선택

경제성

DBMS의 가격과 하드웨어 구입 비용, 교육 비용, 운영 비용, 유지 비용 등 경제적인 측면을 고려해서 DBMS 선택

4. 논리적 설계 단계

논리적 설계란?

개념적 데이터 모델(개념적 스키마)을 DBMS가 지원하는 논리적 데이터 모델(논리적 스키마)로 변환하는 것

논리적 설계의 주요 업무

논리적 모델링

- ERD로 표현된 개념적 데이터 모델을 논리적 데이터 모델(관계 데이터 모델)로 변환함
- 정규화를 통해서 보다 바람직한 형태로 변환함
- 요구 분석 명세서를 기초로 일관성과 무결성을 위한 제약조건을 정의함

트랜잭션 인터페이스 설계

- 트랜잭션 모델링을 기초로 인터페이스를 설계함
- 트랜잭션의 전체적인 골격과 DB 접근 방법 등을 개괄적으로 정의함

스키마 평가 및 정제

- 논리적 스키마를 정량적 정보와 성능 평가기준에 따라 평가함
- 정량적 정보 : 데이터의 양, 처리 빈도수, 처리 작업량 등
- 성능 평가기준 : 데이터 전송량, DB의 크기 등

4. 논리적 설계 단계

논리적 설계의 필요성

선택한 DBMS를 이용해서 DB를 구축하기 위해, 먼저 ER 다이어그램으로 표현된 개념적 데이터 모델을 DBMS가 지원하는 논리적 데이터 모델, 즉 논리적 스키마로 변환하는 단계를 거쳐야 함

논리적 모델링의 산출물

- ① 개체와 관계를 모두 릴레이션으로 변환
- ② 릴레이션 단순화
- ③ 정규화를 통해서 보다 바람직한 형태로 변환
- ④ 무결성 제약조건 정의

5. 물리적 설계 단계

물리적 설계란?

- 논리적 스키마(릴레이션 스키마와 <mark>무결성 제약조건</mark>)를 기초로, DBMS가 지원하는 방법 가운데 효율적이고 구현 가능한 방법을 선택해서 내부 스키마(물리적 데이터 구조)로 변환하는 것
- 트랜잭션 응답 시간과 저장 공간의 효율화, 트랜잭션 처리도 등을 감안해서 물리적 구조를 결정 해야 함

물리적 설계 단계의 주요 업무

물리적 모델링

- 내부 스키마 (즉, 저장 레코드 양식)
- 트랜잭션 분석
- 뷰와 인덱스 등 설계

트랜잭션 상세 설계

• 응용 프로그램 개발을 위해 각 트랜잭션의 입출력 데이터를 결정하고, 내부적인 제어 흐름을 상세히 설계

물리적 모델링의 산출물

- 릴레이션은 테이블로, 속성은 칼럼으로 표현
- 관련성은 외부 키로 표현
- 데이터 타입과 크기, 제약조건 등 표현
- 뷰와 인덱스 정의

6. 구현 및 테스트 단계

구현 및 테스트란?

물리적 설계 단계 완료

선택한 DBMS로 DB 생성

적절한 프로그래밍 언어나 개발 도구 이용

트랜잭션을 처리하는 응용 프로그램 구현

테스트

전체적인 DB 구축 완성

주요 업무

구현 단계테스트 단계설계된 DB 구조를 DDL로 작성생성된 DB 구조가
설계된 DB 구조와 일치하는지 확인기존 DB를 새로운 DB로 변환 (옵션)응용 프로그램과
DB의 연동이 원활한지 확인DB에 초기 데이터 적재(Loading)트랜잭션 유형별로 테스트 케이스를
선정하여, 데이터 조작이 원활한지 확인유지보수를 위한 문서화 작업

쉼터

물감을 아끼면 그림을 그릴 수 없다.

꿈을 아끼면 성공을 그릴 수 없다.

자신을, 노력을, 실패를 아끼지 말고, 자신의 꿈을 그려라!