

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática

Ingeniería Informática

FUNDAMENTOS DE PROGRAMACIÓN

UNIDAD 8 Funciones

Guía de trabajos prácticos 2023

UNIDAD 8 Funciones

Ejercicio 8.1

Escriba <u>prototipos</u> que cumplan con las características de las siguientes funciones propuestas. Proponga los elementos que considere necesarios.

- a. Una función con nombre *facto()* que sirva para calcular el factorial de un número entero.
- b. Una función *hipot()* que retorne la hipotenusa de un triángulo rectángulo.
- c. Una función llamada es_primo que permita determinar si un número es primo.
- d. Una función para mostrar un arreglo* en pantalla.
- e. Una función con nombre *division_con_resto()* que devuelva el cociente entero y el resto de la división entre 2 enteros.
- f. Una función llamada *intercambia()* que permita intercambiar los valores de dos variables de tipo caracter.
- g. Una función para insertar un elemento en un arreglo*.

*Nota: El tipo de dato para decir "arreglo 1D de enteros" en C++ es "vector<int>". Lo aprenderemos a utilizar en la próxima unidad. Por ahora solo debe declarar el prototipo, no implementar la función completa.

Ejercicio 8.2

Reescriba el ejercicio 7.12 (determinar e informar los 1000 primeros números primos) utilizando una función auxiliar para determinar si un número es primo.

Ejercicio 8.3

Escriba una función que permita calcular la diferencia en años entre dos fechas con formato *aaaammdd* y utilícela desde un programa cliente.

Ejercicio 8.4

Escriba una función que determine el mayor de 3 valores enteros positivos. Modifique la función para que, utilizando parámetros por defecto, sirva también para determinar el mayor de 2 parámetros.

Ejercicio 8.5

Desarrolle una función llamada *Intercambia(...)* que reciba dos variables enteras por referencia e intercambie sus valores. Escriba dos sobrecargas de la función que permitan realizar el mismo procedimiento con dos datos de tipo real, y dos de tipo caracter. Pruebe las funciones desde un programa cliente.

Ejercicio 8.6

Escriba un programa que permita calcular las raíces de una ecuación cuadrática de la forma $ax^2+bx+c=0$ conociendo los valores de sus coeficientes. Para ello:

- a. Implemente una función para calcular el determinante.
- b. Implemente una función para calcular las raíces en el caso de que sean reales (la función debe, a su vez, utilizar la función implementada en a).
- c. Implemente una función que calcule los coeficientes en caso de que las raíces sean complejas conjugadas.

Proponga para las funciones los parámetros y valores de retorno que considere apropiados. El programa debe informar el tipo y valor de las raíces.

Ejercicio 8.7

- a) En cierta materia, un alumno es regular si tiene al menos 50% en cada parcial (o en su recuperatorio, queda siempre la mejor nota) y 60% de asistencia. Y es promocionado si tiene al menos 80% en cada parcial y 80% de asistencia. Escriba una función que reciba los datos de un alumno y retorne su condición.
- b) Desarrolle un programa cliente que permita ingresar los nombres, el porcentaje de asistencia, y las 4 calificaciones (parcial 1, parcial 2, recuperatorio 1, y recuperatorio 2) de cada uno de los *N* alumnos del curso. El programa debe, haciendo uso de la función, contar y mostrar cuántos alumnos quedan en condición de regular y cuántos de promoción.

Ejercicio 8.12

El <u>algoritmo de Euclides</u> es un método antiguo y eficaz para calcular el máximo común divisor (MCD) de dos números enteros. Fue propuesto originalmente por Euclides en su obra *Elementos* y enuncia que el MCD entre dos números a y b puede obtenerse de manera recursiva aplicando las siguientes propiedades:

- Si a>b, entonces MCD(a,b) = MCD(a-b,b)
- Si a<b, entonces MCD(a,b) = MCD(a, b-a)
- Si a=b, entonces MCD(a,b) = a

Cuestionario

- 1. Mencione las ventajas del empleo de subprogramas.
- 2. ¿Qué es el prototipo de una función C++? ¿Dónde debe plantearse?
- 3. A continuación se propone un alias o referencia a una posición de memoria que no ha sido identificada antes con una variable: int &x=3. ¿Acepta el compilador C++ esta proposición? Explique.
- 4. ¿Es posible que una función no devuelva resultados? ¿Cómo reconoce una función C++ que no retorna un resultado?.
- 5. Defina: a) argumentos o parámetros formales; b) parámetros actuales.
- 6. Explique pasaje de parámetros por valor y pasaje por referencia.
- 7. ¿Pueden emplearse nombres de argumentos en una función C++ que sean coincidentes con nombres de otras variables declaradas en la función main?
- 8. ¿Puede una función utilizar variables declaradas en el programa cliente?
- 9. Describa las posibilidades de empleo de la sentencia return.
- 10. ¿Es posible llamar a una función con menos parámetros actuales que los formales propuestos en el prototipo? Explique.
- 11. ¿Por qué no es conveniente realizar acciones de entrada / salida en una función?
- 12. ¿Cuáles son las condiciones para que una función sea recursiva?
- 13. ¿Cuáles son las ventajas y desventajas de utilizar funciones recursivas?
- 14. ¿Es obligatorio colocar identificadores en los parámetros formales del prototipo de una función C++?
- 15. ¿Qué entiende por sobrecarga de funciones? ¿Cómo detecta el compilador cuál función debe ejecutar ante una llamada en el caso de sobrecarga?

Ejercicios Adicionales

Ejercicio 8.8

Escriba una función recursiva que permita calcular la potencia de un número elevado a un exponente entero y utilícela desde un programa cliente. *Ayuda:* $recuerde que a^n = a * a^{n-1}$.

Ejercicio 8.9

Escriba una función recursiva que permita calcular la potencia de un número elevado a un exponente entero, sabiendo que:

- $a^n = a^{n/2} * a^{n/2}$, si n es par y mayor que cero
- $a^n = a * a^{n-1}$, si n es impar y mayor que cero

Compare esta solución -en cuanto a la cantidad de llamadas que realiza-, contra la versión anterior (por ejemplo para el caso 2³⁰).

Ejercicio 8.10

La función H(x) se define de la siguiente forma:

• 4 * x si x < 4• 3 * H(x - 2) + 1 $si x \ge 4$

Escriba una función recursiva que calcule el valor de la función y obtenga, con un programa cliente, los valores de H(7), H(5) y H(12).

Ejercicio 8.11

Los valores 0, 1, 1, 2, 3, 5, 8, 13 corresponden a los ocho primeros términos de la célebre <u>sucesión de Fibonacci</u>. En dicha sucesión, el i-ésimo valor (t_i) se calcula como: t_i = t_{i-1} + t_{i-2} . Es decir, cada término se obtiene de la suma de los dos términos anteriores, a excepción del primero y el segundo, los cuales son, por definición, iguales a 0 y 1 respectivamente.

- a) Escriba una función recursiva que permita calcular el i-ésimo término de la sucesión de Fibonacci, según la definición anterior.
- b) Luego utilícela para mostrar los 20 primeros términos de la misma.
- c) Analice la cantidad de llamadas que se ejecutan para obtener t₃, t₄ y t₅.