Propriedades das operações sobre palavras

Concatenação

elemento neutro
$$\lambda.w = w.\lambda = w$$
 associatividade $(uv)w = u(vw)$ não comutatividade e.g., $aa.bb \neq bb.aa$ comprimento $|uv| = |u| + |v|$

Inversão

da concatenação $(uv)^R = v^R u^R$

Ordens

Sejam $\Sigma = \{a_1, a_2, \ldots, a_n\}$ um alfabeto com $a_1 < a_2 < \ldots < a_n$ e $u, v, x, y \in \Sigma^*$

Ordem lexicográfica ou do dicionário (<)

- u < v se $\blacktriangleright u$ é um prefixo próprio de v ou
 - $\qquad \qquad u = xa_iy, v = xa_jz \ \text{e} \ a_i < a_j$

Ordem mista $(<_M)$

$$u <_M v$$
 se $|u| < |v|$ ou $|u| = |v|$ e $u < v$

Com igualdade: $u \le v$ se u < v ou u = v, e o mesmo para \le_M

Caracterização finita de linguagens

- Através de uma definição recursiva
- Recorrendo a operações sobre conjuntos
 - união, intersecção, complemento, . . .
 - ► concatenação de conjuntos:

se X e Y forem conjuntos de palavras (i.e., linguagens)

$$XY = X \cdot Y = \{xy \mid x \in X \text{ e } y \in Y\}$$

Exemplo

$$\{1, 2, 3\} \cdot \{1, 00, \lambda\} = \{ 11, 21, 31, 100, 200, 300, 1, 2, 3 \}$$

Estrela de Kleene

▶ Seja *X* um conjunto

$$X^* = \bigcup_{n \ge 0} X^n \qquad X^+ = \bigcup_{n > 0} X^n$$

em alternativa, $X^+ = XX^*$

► Também conhecida como operador de fecho ou de iteração

Exemplo

Linguagem dos números naturais sem zeros à esquerda

$$\{0\} \cup \{1,2,\dots,9\} \{0,1,\dots,9\}^*$$

Vasco Pedro, LFA, UE, 2012/2013

Propriedades do fecho

Sejam X e Y conjuntos

- $X \subseteq X^*$
- $\blacktriangleright \emptyset^* = \{\lambda\}$
- se $X \subseteq Y$, então $X^* \subseteq Y^*$
- ▶ se $X \neq \emptyset$, então X^* é infinito

Conjuntos regulares

Os conjuntos regulares sobre o alfabeto Σ são definidos como

(base) $\emptyset, \{\lambda\}$ e $\{a\}$, para todo $a \in \Sigma$, são conjuntos regulares sobre Σ

 $_{(passo\ recursivo)}$ sejam X e Y conjuntos regulares sobre Σ ; os conjuntos

$$X \cup Y$$
 XY
 X^*

são conjuntos regulares sobre Σ

 $_{(fecho)}$ X é um conjunto regular sobre Σ somente se puder ser construído através de um número finito de aplicações do passo recursivo a partir dos elementos da base

Expressões regulares

As expressões regulares sobre o alfabeto Σ são definidas como (base) \emptyset , λ e a, para todo $a \in \Sigma$, são expressões regulares sobre Σ (passo recursivo) sejam u e v expressões regulares sobre Σ ; as expressões

$$(u \cup v)$$
$$(uv)$$
$$(u^*)$$

são expressões regulares sobre Σ

 $({\sf fecho})$ u é uma expressão regular sobre Σ somente se puder ser construída através de um número finito de aplicações do passo recursivo a partir dos elementos base

Linguagem regular

A linguagem representada por uma expressão regular é:

$$L(\emptyset) = \emptyset$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\} \quad (a \in \Sigma)$$

$$L(u \cup v) = L(u) \cup L(v)$$

$$L(uv) = L(u)L(v)$$

$$L(u^*) = L(u)^*$$

Duas expressões regulares são equivalentes se representam a mesma linguagem

Uma linguagem representada por uma expressão regular é uma linguagem regular

Propriedades das expressões regulares (1)

$$\emptyset u = u\emptyset = \emptyset$$

$$(uv)w = u(vw)$$

$$u \cup v = v \cup u$$

$$(u \cup v) \cup w = u \cup (v \cup w)$$

$$u(v \cup w) = uv \cup uw$$

$$(u \cup v)w = uw \cup vw$$

$$\emptyset^* = \lambda$$

$$u^* = (u^*)^*$$

$$(uv)^* u = u(vu)^*$$

Propriedades das expressões regulares (2)

$$(u \cup v)^* = (u^* \cup v)^*$$

$$= u^*(u \cup v)^*$$

$$= (u \cup vu^*)^*$$

$$= (u^*v^*)^*$$

$$= (u^*v)^*u^*$$

$$= u^*(vu^*)^*$$