Q-learning

Васильевых Павел, БПМИ213

План

- 1. Условие задачи.
- 2. Алгоритм.
- 3. Улучшения алгоритма.

Какую задачу решает?

s — некоторое состояние

a — некоторое действие

r(s,a) — награда за заданное действие в заданном состоянии

 $\pi(a|s)$ — распределение действий агента в заданном состоянии (политика)

 \mathcal{T} — траектория (последовательность из реализованных состояний, действий и наград)

 γ — коэффициент убывания награды

$$Q(s, a) = \max_{\pi} \mathbb{E}_{T \sim \pi \mid s_0 = s, a_0 = a} \sum_{t \ge 0} \gamma^t r(s_t, a_t)$$

Q-learning подбирает Q(s,a), по которому можно определить $\pi(a|s)$.

Как упростить задачу?

Во-первых, можно вывести уравнение оптимальности Беллмана:

$$Q(s,a) = r(s,a) + \gamma \mathop{\mathbb{E}}_{s' \sim p(s'|s,a)} \max_{a'} Q(s',a')$$

Во-вторых, можно простым образом выразить оптимальную политику через Q:

$$\pi(s) = \operatorname*{argmax}_{a} Q(s, a)$$

Как сделать задачу более практической?

- 1. Как-то инициализировать Q(s, a).
- 2. Заметить, что можно забыть про p(s'|s,a) и моделировать переходы экспериментально, совершая действия $argmax \ Q(s,a)$. В результате можно получить переходы вида (s,a,r,s').
- 3. Вывести из уравнения Беллмана функцию перехода: $Q(s,a) \leftarrow r(s,a) + \gamma \max_{a'} Q(s',a')$
- 4. Сгладить функцию перехода:

$$Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot \left(r(s,a) + \gamma \max_{a'} Q(s',a')\right)$$

Сходимость

Пусть Q(s,a) и r(s,a) инициализированы, $\gamma \in [0,1)$. Доказать, что процесс переходов $Q(s,a) = r(s,a) + \gamma$ \mathbb{E} $\max_{s' \sim p(s'|s,a)} Q(s',a')$ по всему множеству состояний и действий сходится.

Обозначим функционал перехода за R. Рассмотрим неизвестную истинную функцию $Q^*(s,a)$, для неё верно $R\circ Q^*=Q^*$. Заметим, что $\|R\circ Q-Q^*\|_{\infty}=\|R\circ Q-R\circ Q^*\|_{\infty}=\gamma\cdot \|\underset{s'\sim p(s'|s,a)}{\mathbb{E}} \left[\max_{a'}Q(s',a')-\max_{a'}Q^*(s',a')\right]\|_{\infty}\leq \gamma\cdot \|\underset{s'\sim p(s'|s,a)}{\mathbb{E}} \left[Q(s',a(s'))-Q^*(s',a(s'))\right]\|_{\infty}\leq \gamma\cdot \|Q-Q^*\|_{\infty}$, где $a(s')= \operatorname*{argmax} Q(s',a)$. Значит, $0\leq \underset{n\to\infty}{\lim} \|R^n\circ Q-Q^*\|_{\infty}\leq 1$ $\underset{n\to\infty}{\lim} (\gamma^n\cdot \|Q-Q^*\|_{\infty})=0$.

Дилемма exploration-exploitation

Из-за детерминированности $\underset{a}{\operatorname{argmax}} \, Q(s,a)$ вероятность попасть в некоторые состояния может быть равна 0, нужно добавить случайность, чтобы агент исследовал среду. Но она должна быть незначительной, чтобы агент использовал накопленный опыт.

$$\pi(s) = \begin{cases}$$
 случайное действие, вероятность ε argmax $Q(s,a)$, вероятность $1-\varepsilon$

Что получилось?

Алгоритм, подходящий для Q(s,a), которые можно задать таблицей:

- 1. Инициализировать Q(s, a).
- 2. Получить из среды начальное состояние s_0 .
- 3. Повторить для k = 0 ... n:
- 1) выбрать случайное действие a_k с вероятностью ε , иначе $a_k = \arg\max \mathrm{Q}(s_k,a)$;
 - 2) получить награду r_k и следующее состояние s_{k+1} ;
- 3) обновить $\mathbf{Q}(s_k, a_k) \leftarrow (1-\alpha) \cdot \mathbf{Q}(s_k, a_k) + \alpha \cdot \Big(r_k + \gamma \max_{a'} \mathbf{Q}(s_{k+1}, a')\Big).$

Таргет-сеть

В случае, когда состояний много, можно задать Q(s,a) нейросетью с обновляемыми таргетами $r_k+\gamma\max_{a'}Q(s_{k+1},a')$. Но в такой модификации у алгоритма возникает ещё один недостаток — нестабильность сети из-за зависимости таргетов от предыдущих выходов.

Чтобы сделать сеть стабильной, нужна таргет-сеть. Создадим копию имеющейся сети и будем использовать её для обновления таргетов, заменяя её веса параметрами основной сети раз в m шагов обучения.

Experience replay

Для качественного обучения нейросети обычно нужно усреднять градиент по батчу. Если мы будем следить за последовательными действиями одного агента, сеть будет забывать предыдущий опыт.

Решения:

- 1) Несколько агентов одновременно;
- 2) experience replay, то есть запись всех переходов в буфер и семплирование случайных батчей из него.

А если действий много?

Сделаем ещё одну нейросеть $\pi(s)$ для приближения argmax Q(s,a). Её можно обучать параллельно с основной: на каждом шаге алгоритма будем делать шаг градиентного подъёма для батча функций $Q(s,\pi(s))$, где параметры сети Q(s,a) зафиксированы.

Deep Q-learning (Actor-Critic)

- 1. Одинаково инициализировать Q(s, a) и таргет-сеть.
- 2. Инициализировать $\pi(s)$.
- 3. Получить из среды начальное состояние s_0 .
- 4. Повторить для k = 0 ... n:
 - 1) выбрать случайное действие a_k с вероятностью ε , иначе $a_k = \operatorname*{argmax}_a \mathrm{Q}(s_k,a)$;
 - 2) получить награду r_k и следующее состояние s_{k+1} ;
 - 3) добавить переход (s_k, a_k, r_k, s_{k+1}) в буфер;
 - 4) сэмплировать батч из буфера;
 - 5) сделать шаг градиентного подъёма для $Q(s,\pi(s))$ по параметрам $\pi(s)$;
 - 6) посчитать таргеты $r + \gamma Q(s', \pi(s'))$, используя таргет-сеть;
 - 7) сделать шаг градиентного спуска для Q(s, a);
 - 8) если k : m, обновить веса таргет-сети.

Модификации

DDPG (Deep determistic policy gradient): для Q и π есть по две нейросети (одна меняется на каждом шаге, другая постепенно двигает веса к весам первой), действия генерируются из нормального распределения с центром в значении меняющейся π , а таргеты для обучения Q считаются с помощью двух стабильных сетей. Есть проблема переоценки, решается добавлением второй Q.

SAC (Soft actor-critic): в этом алгоритме случайные (исследовательские) шаги не создаются отдельно или поверх выхода π . Случайность π включается в задачу оптимизации через прибавление энтропии текущей π с константным весом к каждой награде r.

Выводы

Мы рассмотрели алгоритм, для обучения которого можно использовать весь накопленный опыт (off-policy). Очевидно, есть большой простор для улучшений и оптимизаций под конкретные задачи.

Однако мы могли бы подойти к задаче RL и со стороны функции политики. Тогда бы мы попали в область on-policy алгоритмов, которые могут оказаться эффективнее, но это тема следующего семинара.

Ссылки

Статья про Q-learning:

https://education.yandex.ru/handbook/ml/article/obuchenie-s-podkrepleniem.

Лекция про DDPG и SAC:

https://dzen.ru/video/watch/6521821790b03d45f18118ce.

Применение Deep Q-network:

https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark.