《数据结构与算法》勘误表

URL: http://db.pku.edu.cn/mzhang/ds/resource/errata.pdf

张 铭 王腾蛟 赵海燕

修定于 2009 年 10 月 28 日

目 录

一、教材信息

1. 教材出版信息

张铭,王腾蛟,赵海燕,《数据结构与算法》,高等教育出版社,2008年6月。普通高等教育"十一五"国家级规划教材

高教社购书热线: 010-58581118, 58581117, 58581116。

高教社网上订购 URL: http://www.landraco.com.cn

2. 每位作者负责的章节

本书第 8、10、11、12 章 (第 194-240 页,第 260-281 页)由张铭教授执笔,第 5、6、7、9 章 (第 100-193,第 241-259 页)由王腾蛟副教授执笔,第 1、2、3、4 章 (第 1-99 页)由赵海燕副教授执笔。

3. 课程网站(课程讲义、算法源代码等)

http://www.db.pku.edu.cn/mzhang/DS/(教育网) http://www.jpk.pku.edu.cn/pku.jpk/course/sj.jg/

4. 课程和教材论坛

http://groups.google.com/group/ds2008 advanced pkucs/

二、勘误表

页数	具体位置	修改结果
P24	倒数L5 习题12(3)	$T(n) = 2T(\lfloor n/2 \rfloor) + n$
P31	算法 2.3 中的 L6(即	n= curLen;
	for 语句)之前增加	
	一行	
P33	算法 2.5 中的 L6 中	if (curLen <= 0)
	的<=号中间的空格	
	去掉,	
P37	L1 (算法 2.8)	<pre>Head = tail = new Link <t> (null);</t></pre>
P37	算法 2.9 中 L6(即	Link < T > *p = head - > next;
	while 语句之前一	
	行)改为	
p87	倒数 L1	while (s2[i] != '\0'
P93	倒数 L9	在图 4.6 的例子中,第 1 趟匹配后,如果模式仅仅右移一位
		的话,下趟匹配中 <mark>会</mark> 有冗余的比
P94	L11	T(j-i+2j-1)必相同。依此类推, 或可找到某个 k (0 < k < i)
		值,使得
P94	L13 后增加	如果找不到这样的 k,则取其为 0。
P94	倒数 L12 开始至倒	计算 next[i]时充分利用了位置 i 之前的各个字符的 next
	数 L4 修改为	值,若用 n_i 表示 next[i]的话,特征数 n_{i+1} ($i>0$, $0 \leq n_{i+1} \leq$
		i)可以采用如下的递归方式来定义:
		1) $n_0 = -1$; 对于 $i > 0$ 的 n_{i+1} ,假定已知前一位置的
		特征数 n _i = k;
		2) 如果 $i > 0$, $k \ge 0$ 且 $P_i = P_k$ 则 $n_{i+1} = k+1$;
		3) 当 $k \ge 0$,且 $P_i \ne P_k$ 时,则令 $k = n_k$,并让 3)
		循环直到条件不满足(变为 $P_i = P_k$ 或上一步骤 $k =$

		o エBな1 - 1 フ\
		0 而导致 k=-1 了);
		4) $\leq k = 0$, $\leq P_i \neq P_k$ $\leq P_i$, $\leq P_i = 0$.
		一般把模式的第一个字符的特征数设置为-1,以尽可能
		地减少冗余比较。此时,上述条件 2) 和 4)可以合并处理。
		在算法中,简化为
		1) $n_0 = -1$; 对于 $i > 0$ 的 n_i ,假定已知前一位置的
		特征数 n _i = k;
		2) 当 k≥0, 且 P _i ≠ P _k 时,则令 k = n _k ,并让 2)
		循环直到条件不满足 (变为 $P_i = P_k$ 或 $k = 0$);
		3) n _{i+1} =k+1; // 此时 k = -1, 或者 P ₁ ==P _k
P95	L1	此时该把模式右移 i - k 位,即用 P_k 与 T_i 进行比较。如果 P_i =
		P _k ,则 T _i
P95	算法 4.7 的 L9	while (i < m-1) { // 若写成 i < m 会越界
P95	算法 4.7 的 L14	删除 "if (i == m) break"
		// 此句是跟 "i < m" 匹配的,上面写 "i <m-1" th="" 就可免掉<=""></m-1">
P97	L8	return (j-pLen);
P102	证明部分的第4行	将"如果删去一个分支结点"改为"如果删去一个有两个空结
		点的分支结点"
P114	Parent 函数的 while	添加: if (pointer == NULL) return NULL;
	循环之后(代码的	,
	倒数第3行)	
P117	InsertNode 函数的	建议将 while(pointer != NULL) 变为 while(1)
	while 条件	20013 mms(pomes: 110=2) 2003 mms(1)
P143	图 6.6	索引值为 2 的行:将子结点链表中的值由顺次为 6,7,5 变
		为 5, 6, 7
		索引值为6的行:将子结点链表中的值由顺次为10,10变为
		10, 11
P148	L3-4 替换	原来的
		if (pointer == NULL)
		root = subroot->RightSibling();
		1000 Sub1000 / Kightofffing (/ ,
		替换为:
		if (pointer == NULL) {// subroot 无父,则是某个树根
		pointer = root;
		while (pointer->RightSibling() != subroot) //
		Militer (pointer / Kightsibiling () := Sub100t) // 「
		pointer = pointer->RightSibling();
		pointer - pointer / RightSibling(); pointer->setSibling(subroot->RightSibling());
		// 前后挂接,脱链
		// RU/H 注1次,加坡 }
P163	图 7.4a	
P163	第2段最后一行	n 个顶点{V0,V1,V2,,Vn-1}
P166		
1 100	D(v _i)	n-1 n-1

		$D(v_i) = \sum A[i, j] = \sum A[j, i]$
		j=0 j=0
P166	$ID(v_j)$	n-1 n-1
		ID $(vj) = \sum A[i, j], OD(vi) = \sum A[i, j]$
		i=0 j=0
P169	代码 7.3 中	if (preEdge.to <numvertex)< th=""></numvertex)<>
	NextEdge 函数	改为 if (preEdge.to <numvertex-1) th="" 更好<=""></numvertex-1)>
P183	第一段	该算法的基本思想是:在原图的相邻矩阵 adj 上做 n 次迭代,
		递归地产生一个矩阵序列 adj ⁽⁰⁾ , adj ⁽¹⁾ ,,adj ⁽ⁿ⁻¹⁾ 。其中,adj ^(k)
		的值等于
P183	图 7.21	矩阵代号为 adj, adj ⁽⁰⁾ , adj ⁽¹⁾ , adj ⁽²⁾
P222	L3	收集 r 个队列的时间是 $\Theta(r)$
P245	9.3 节第 4 段第 2 行	归并趟数为 rlogkm7
P251	第3段	从图 9.4 中可以方便地看到
P318	L10	"满足 4m+8(m+1)"前面添加"同层拉链占一个指针"
P328	图 11.25(f)	c 结点应该为 62 d 结点应该为 60
P345	倒数 L7	"首先适配"中间没有逗号
P377	图 12.47	(4,9)YALAAMs\$ 下面结点标号 1; (9,9)\$ 下面结点标号 9

三、鸣谢

感谢同时任教的宋国杰老师、历届助教的大力协助,全体信息学院同学的认真钻研、积 极探索,所有热心读者的帮助。