

Contrôle continu de mécanique du solide

Robot delta 2 axes de transfert dans une chaine

L'étude concerne un robot de type « delta 2 axes » utilisé dans une usine de conditionnement de produits agroalimentaires

Composition du système (voir schéma):

- Partie fixe
- Bras principal 1 (bp1)
- Bras secondaire 1 (bs1)
- Bras principal 2 (bp2)
- Bras secondaire 2 (bs2)
- Préhenseur (pr)

Données géométriques :

$$\overrightarrow{AB} = \mathbf{a}.\overrightarrow{x_1}; \overrightarrow{BE} = \mathbf{b}.\overrightarrow{x_3}; \overrightarrow{CD} = \mathbf{c}.\overrightarrow{x_2};$$

 $\overrightarrow{DE} = \mathbf{d}.\overrightarrow{x_4}; \overrightarrow{EG} = -\mathbf{L}.\overrightarrow{y_0};$

Torseur associé à l'action de la charge :

$$\left\{ \mathcal{T}_{(g \to pr)} \right\} \ = \left\{ \begin{matrix} \overrightarrow{R_{g \to pr}} \ = \ -Mg.\overrightarrow{y_0} \ = \ -P_{pr}.\overrightarrow{y_0} \\ \overrightarrow{M_{G_{g \to pr}}} \ = \ \overrightarrow{0} \end{matrix} \right\}$$

Partie fixe bp_1 bp_2 C A B bs_1 bs_2 bs_2 bs_2 bs_3 bs_4 bs_5 bs_6 bs_7 bs_8 bs_8 bs_9 bs_9

Position des différentes bases mobiles par rapport à la base fixe :

Questions

D'après le schéma plan simplifié :

- 1) Préciser le nombre de classes d'équivalence ou sous-ensembles cinématiques
- Réaliser le graphe des liaisons du système en précisant le nom des liaisons, le centre ainsi que l'axe principal
- 3) Exprimer $\overrightarrow{x_1}$ et $\overrightarrow{y_1}$ dans la base $(\overrightarrow{x_0}, \overrightarrow{y_0})$ en fonction de θ_1 Exprimer $\overrightarrow{x_2}$ et $\overrightarrow{y_2}$ dans la base $(\overrightarrow{x_0}, \overrightarrow{y_0})$ en fonction de θ_2 Exprimer $\overrightarrow{x_3}$ et $\overrightarrow{y_3}$ dans la base $(\overrightarrow{x_0}, \overrightarrow{y_0})$ en fonction de θ_3 Exprimer $\overrightarrow{x_4}$ et $\overrightarrow{y_4}$ dans la base $(\overrightarrow{x_0}, \overrightarrow{y_0})$ en fonction de θ_4
- 4) Ecrire vecteur \overrightarrow{AB} dans la base $(\overrightarrow{x_0}, \overrightarrow{y_0})$ Ecrire vecteur \overrightarrow{BE} dans la base $(\overrightarrow{x_0}, \overrightarrow{y_0})$ Ecrire vecteur \overrightarrow{CD} dans la base $(\overrightarrow{x_0}, \overrightarrow{y_0})$ Ecrire vecteur \overrightarrow{DE} dans la base $(\overrightarrow{x_0}, \overrightarrow{y_0})$
- 5) Ecrire le torseur de l'action de liaison en A Ecrire le torseur de l'action de liaison en B Ecrire le torseur de l'action de liaison en C Ecrire le torseur de l'action de liaison en D Ecrire le torseur de l'action de liaison en E

Rappel : Le torseur $\{\tau_{(2\to 1)}\}$ associé à l'action mécanique exercée en A, par un solide 2 sur un solide 1 sera noté :

$$\left\{\mathcal{T}_{(2\to 1)}\right\} \ = \ \left\{ \overrightarrow{R_{2\to 1}} \right\} = \left\{ \overrightarrow{R_{2\to 1}} = X_{21}.\overrightarrow{x} + Y_{21}.\overrightarrow{y} + Z_{21}.\overrightarrow{z} \right\} = \left\{ \overrightarrow{R_{2\to 1}} - X_{21}.\overrightarrow{x} + X_{21}.\overrightarrow{y} + X_{21}.\overrightarrow{z} \right\} = \left\{ \overrightarrow{R_{2\to 1}} - X_{21}.\overrightarrow{x} + X_{21}.\overrightarrow{y} + X_{21}.\overrightarrow{z} \right\} = \left\{ \overrightarrow{R_{2\to 1}} - X_{21}.\overrightarrow{R_{2\to 1}} - X_{21}.\overrightarrow{R_2\to 1} - X_{21}.$$

- 6) Ecrire le torseur $\{\mathcal{T}_{(g o pr)}\}$ au point E puis au point A
- 7) Exprimer le vecteur \overrightarrow{CA} (en fonction des distances a, b, c, d et des angles) dans le repère $(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$
- 8) Ecrire le torseur $\left\{\mathcal{T}_{(g
 ightarrow pr)}
 ight\}$ au point C