Review

§5.3 (Indefinite Integrals); §5.4, §5.5 (FTC)

MATH 1910 Recitation September 6, 2016

- (1) F is called an **antiderivative** of f if
- (2) Any two antiderivatives of f on an interval (a, b) differ by a constant.
- (3) **Fundamental Theorem of Calculus, Part I (FTC I):** if F(x) is an antiderivative for f(x), then

(2)

- (4) (a) $\int 0 dx =$ (3)
 - (b) $\int k \, dx =$
 - (c) $\int cf(x) dx =$
 - (d) $\int (f(x) + g(x)) dx =$ (6) +
 - (e) $\int x^n dx = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$
 - (f) $\int \sin x \, dx = \frac{1}{2} \int_{-\infty}^{\infty} e^{-x} \, dx$
 - (g) $\int \sec^2 x \, dx = \boxed{ }$
 - (h) $\int \sec x \tan x \, dx =$
- (5) To solve an initial value problem dy/dx = f(x), $y(x_0) = y_0$, first find the general antiderivative y = F(x) + C. Then determine C using the initial condition $F(x_0) + C = y_0$.
- (6) The **area function** with lower limit a is $A(x) = \begin{bmatrix} 12 \\ 12 \end{bmatrix}$.
- (7) Fundamental Theorem of Calculus, Part II (FTC II):

- (8) A consequence of FTC II is that every continuous function has an antiderivative.
- (9) Let $G(x) = \int_a^{g(x)} f(t) dt$. Let $A(x) = \int_a^x f(t) dt$. Then

 $\frac{d}{dx}G(x) = \frac{d}{dx} \int_{a}^{g(x)} f(t) dt =$

 $\S5.3$ (Indefinite Integrals); $\S5.4$, $\S5.5$ (FTC)

(1) Evaluate the integral:

(a)
$$\int \cos x \, dx$$

(b)
$$\int \csc x \cot x \, dx$$

$$(c) \int \frac{3}{x^{3/2}} dx$$

(d)
$$\int_{-2}^{2} (10x^9 + 3x^5) dx$$

(e)
$$\int_0^4 \sqrt{x} \, dx$$

(f)
$$\int_{\pi/4}^{3\pi/4} \sin\theta \, d\theta$$

(g)
$$\int_{0}^{5} |x^2 - 4x + 3| dx$$

(h)
$$\int_{4}^{9} \frac{16+t}{t^2} dt$$

- (2) Solve the differential equation $\frac{dy}{dx} = 8x^3 + 3x^2 3$ with initial condition y(1) = 1.
- (3) Given that $f''(x) = x^3 2x + 1$, f'(0) = 1, and f(0) = 0, find f' and then find f.
- (4) If $G(x) = \int_1^x \tan t \, dt$, find G(1) and $G'(\pi/4)$.
- (5) Find a formula for the function represented by the integral: $\int_2^x (t^2 t) dt$.
- (6) Express the antiderivative F(x) of f(x) as an integral, given that $f(x) = \sqrt{x^4 + 1}$ and F(3) = 0.
- (7) Calculate the derivative: $\frac{d}{dx} \int_{1}^{x^3} \tan t \, dt$.