FUNDAMENTOS DE ESTRUTURA DE COMPUTADORES

PROF. X.

Conceitos Importantes

Sistemas	- Binários - 2 elementos		
Numerais	- Decimais - 10 elementos		
	- Hexadecimais - 16 elementos		
	- Octais - 8		
Transmissão de	- Interna / Externa		
Dados	- Paralela		
	- Serial (síncrona / assíncrona)		

Conceitos Importantes (cont.)

Sistemas Numerais	Cada sistema possui seu papel em áreas do computador
	Precisam ser convertidos para serem utilizados
Transmissão de Dados	É diferente para os vários tipos de periféricos e interfaces

Cotidiano -> muitos números

Utilizamos -> sistema decimal (zero a nove)

Outros: romano, binário, octal, hexadecimal e outros...

NÚMEROS BINÁRIOS

Natureza -> informação pode assumir qualquer valor compreendido em um intervalo de $-\infty$ a $+\infty$

Cores diferentes

Sons diferentes

Informação analógica

Circuitos eletrônicos deveriam seguir os moldes da natureza a fim de se tornar o mais real possível

Interferências eletromagnéticas podem alterar informações

Informação analógica é difícil de corrigir pela quantidade disponível

Dispositivos eletrônicos para o processamento de informações trabalham com o sistema binário

0 e 1 -> vantagem -> qualquer valor diferente de 0 ou 1 será desprezado pelo circuito eletrônico gerando confiabilidade e funcionalidade

bit -> binary digit

Vantagem do sistema digital (binário)

- informações são gravadas em forma de números
- Ex.: uma fita DAT ou um CD -> o que há gravado não são músicas ou sons, mas sim números. Com isso, há como usar mecanismos de correção de erros a fim de verificar a integridade dos dados.

Sistemas Numéricos Posicionais

Ex.: 4664 (decimal) e XXXVII (37 em romano)

O valor do primeiro algarismo 4 é diferente do valor do último algarismo (4664)

O primeiro indica 4 mil e o último indica 4 unidades. O mesmo acontece com o algarismo 6. O primeiro indica 6 centenas, enquanto o segundo indica 6 dezenas. (4664)

Números romanos -> cada um dos X vale 10, independentemente de sua posição. O mesmo acontece com o V e com o I.

Conclusão:

 No sistema decimal o valor de um determinado símbolo depende de sua posição, ou seja, este é um sistema posicional. O mesmo não acontece com o sistema romano e, portanto, o sistema romano não é posicional.

Sistemas binário e hexadecimal -> também são sistemas numéricos posicionais.

Valor Posicional - > um mesmo símbolo pode assumir valores diferentes dependendo de sua posição

Para os sistemas posicionais, é preciso conhecer o valor posicional de cada símbolo.

Fórmula:

$$\circ V = S * B \wedge P$$

V = Valor posicional do símbolo. Exemplo: o valor posicional do símbolo 4 no número decimal **345** é **40**.

S = Valor absoluto do símbolo. Exemplo: o valor do símbolo **4** no sistema decimal é **4**.

B = Base do sistema numérico. É a quantidade de símbolos que dispomos para escrever os números. Exemplos:

- Sistema decimal -> 10 símbolos (de 0 a 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); portanto: base = 10.
- Sistema binário -> 2 símbolos (0 e 1),
 portanto: base = 2.
- Sistema Hexadecimal -> 16 símbolos (0 a 15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F); os valores de 10 a 15 são representados por letras, e portanto:
 base = 16.

P = posição em que o símbolo em questão se encontra no número.

Definida da direita para esquerda, iniciando em zero. Exemplo:

- A posição do símbolo 5 no número 345 é 0 (zero).
- A posição do símbolo 4 no número 345 é 1.
- A posição do símbolo 3 no número 345 é 2.

Obs.: Na fórmula V = S * B ^ P, usamos o asterisco para indicar multiplicação e o acento circunflexo para indicar potência. (Informatiquês ...)

Lê-se como: V é igual a S que multiplica B elevado ao expoente P.

Fórmula -> facilidade para sabermos o valor de qualquer número, seja ele decimal, binário, hexadecimal, etc. Basta calcular o valor posicional de cada símbolo do número dado e então somar os valores encontrados.

Exemplo:

Decimal 345: **Símbolos** | 3 | 4 | 5

Posição | 2 | 1 | 0

Outra forma de escrever: 3⁽²⁾4⁽¹⁾5⁽⁰⁾

Valor posicional:

$$300 + 40 + 5 = 345$$

Matematicamente escrevemos um número em função da potência de sua base, mesmo que isso pareça transparente para nós, que estamos acostumados a trabalhar, com a base decimal. Para um número decimal de quatro algarismos, cada algarismo tem os seguintes "pesos":

10³ 10² 10¹ 10⁰

Por exemplo:

$$10 = 1x10^{1} + 0x10^{0}$$

$$100 = 1x10^{2} + 0x10^{1} + 0x10^{0}$$

$$1000 = 1x10^{3} + 0x10^{2} + 0x10^{1} + 0x10^{0}$$

$$123 = 1x10^{2} + 2x10^{1} + 3x10^{0}$$

Compreendendo bem o sistema decimal, fica fácil entender os números binários.

Cada casa binária terá um "peso" individual, sempre relativo à potência de 2, já que estamos trabalhando com a base 2. Para um número binário de oito algarismos (8 bits), cada algarismo tem os seguintes "pesos":

Por exemplo:

$$0 = 0x2^0$$

$$10 = 1x2^1 + 0x2^0$$

$$110 = 1x2^2 + 1x2^1 + 0x2^0$$

(equivalendo a 6 em decimal)

BASE HEXADECIMAL

Primeiros microprocessadores

Palavras binárias de dados manipuladas eram múltiplas do nibble

Base amplamente utilizada uma vez que o maior valor numérico que poderia ser atribuído a um nibble era 16

Sistema Decimal -> sistema numérico posicional mais antigo conhecido

Surgiu na Índia

Substituiu aos poucos os demais sistemas numéricos existentes

Hoje -> quase universal

Representação -> 10 símbolos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), portanto: base = 10

Seres humanos -> sistema satisfatório

Sistema Binário -> para máquinas, dados precisam ser interpretados

Computador -> sistema decimal não é prático

Usa-se o estado da corrente elétrica (ligada/desligada, alta/baixa, ou algo parecido)

Sistema binário, utiliza ZERO e UM

Correspondem aos estados desligado e ligado, respectivamente, portanto dois símbolos = base 2

Valor do símbolo (zero ou um) depende de sua posição, temos então um sistema posicional.

Sistema Binário -> para máquinas, dados precisam ser interpretados

Computador -> sistema decimal não é prático

Usa-se o estado da corrente elétrica (ligada/desligada, alta/baixa, ou algo parecido)

Sistema binário, utiliza ZERO e UM

Correspondem aos estados desligado e ligado, respectivamente, portanto dois símbolos = base 2

Valor do símbolo (zero ou um) depende de sua posição, temos então um sistema posicional.

Sistema Octal -> sistema de numeração posicional que utiliza 8 símbolos (0, 1, 2, 3, 4, 5, 6, 7) e portanto sua base é 8

Sistema binário -> máquinas eletrônicas

Seres Humanos -> sistema decimal é o preferido

Endereçamentos no computador -> Pouco espaço, mas muita necessidade

Convertendo de Decimal para Binário

Como representar o número 37 em binário?

Calculadora científica -> você pode ser amigo de uma!

Necessário -> passos e métodos para conversão

Divisões sucessivas do número dado por 2

(base do sistema binário)

Fim -> quociente zero

Converter 37 para binário:

Dividendo	Divisor	Quociente	Resto
37	2	18	1 🛊
18	2	9	0
9	2	4	1
4	2	2	0
2	2	1	0
1	2	0	1

37 em binário = 100101

Convertendo de Binário para Decimal

Calcular o valor posicional de cada símbolo do número dado.

Usar a fórmula do valor posicional:

Converter 100101 para decimal:

Posição	5	4	3	2	1	0
Símbolo	1	0	0	1	0	1
Valor posicional	V=1*2^5 V=1*32 V=32	V=0*2^4 V=0*16 V=0	V=0*2^3 V=0*8 V=0	V=1 *2^2 V=1*4 V=4	V=0*2^1 V=0*2 V=0	V=1*2^0 V=1*1 V=1

Somar valores: (32 + 0 + 0 + 4 + 0 + 1) = 37

100101 em decimal = 37

Sistema Hexadecimal

Sistema numérico posicional bastante usado em informática

Especialmente usado em programação assembly

16 símbolos

Símbolo	Valor Absoluto
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

Convertendo de Decimal para Hexadecimal

Base 16 -> técnica = decimal para binário

Calculadora científica -> você pode ser amigo de uma!

Necessário -> passos e métodos para conversão

Divisões sucessivas do número dado por 16

(base do sistema hexadecimal)

Fim -> quociente zero

Converter o decimal 23870 para hexadecimal:

Dividendo	Divisor	Quociente	Resto	
23870	16	1491	14	
1491	16	93	3	
93	16	5	13	
5	16	0	5	

O decimal 23870 = 5D3E hexadecimal

Resto	5	13	3	14
Símbolo	5	D	3	E

Convertendo de Hexadecimal para Decimal

Sistema posicional

Calcular o valor posicional de cada símbolo do número dado.

Usar a fórmula do valor posicional:

$$\circ V = S * B \wedge P$$

Converter 5C3FA para decimal:

Posição	4	3	2	1	0
Símbolo	5	С	3	F	Α
Valor absoluto	5	12	3	15	10
Valor posicional	V=5*16^4 V=5*65536 V=327680	V=12*16^3 V=12*4096 V=49152	V=3*16^2 V=3*256 V=768	V=15*16^1 V=15*16 V=240	V=10*16^0 V=10*1 V=10

Somar (327680 + 49152 + 768 + 240 + 10)

Tabela de valores e bases

Valor Binário	Valor Octal	Valor Decimal	Valor Hexadecimal
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	А
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	Е
1111	17	15	F

Algarismos em sistema octal estarão sempre representando 3 bits

Algarismos em sistema hexadecimal estarão sempre representando 4 bits

Ex.: F12AC (hexadecimal) é um número de 20 bits

129D3E12 é um número de 32 bits.

Achou-se muito mais fácil trabalhar com números em hexadecimal do que em binário

10 -> qual sistema?

Depende da base em que o mesmo está representado

Na informática -> o símbolo "\$" ou "b" para números binários, "o" para números octais e "h" para números hexadecimais

Ex.: 10 vale \$1010 ou 1010b ou 120 ou Ah.

Binario	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Offset(h)	00	01	02	03	04	05	06	07	80	09	0A	0B	0C	0D	0E	0F	
00000660														36	34	30	Hello, world.640
00000670	30	39	30	39	31	36	35	30	30	30	31	39	36	32	33	0D	090916500019623.
00000680	0A	3A	31	30	31	45	35	30	30	30	39	30	39	33	36	35	.:101E5000909365
00000690	30	30	38	30	39	33	36	34	30	30	32	46	35	46	33	46	00809364002F5F3F
000006A0	34	46	38	30	39	31	36	36	30	31	45	46	0D	0A	3A	31	4F80916601EF:1
000006B0															64		
000006C0					6C		74		74	6F				6C		46	cimal tutorial!F
000006D0	38	39	34	45	31	39	39	33	36	0D	0Α	3A	31	30	31	45	894E19936:101E
000006E0	37	30	30	30			02		04			07			0A		7000
000006F0	0C		0E	0F		11			14		16				1A		
00000700	10		1E	1F					24						2A	2B	
00000710		2D	2E														,/0123456789:;
00000720			3E	3F					44			4/			4A		<=>?@ABCDEFGHIJK
00000730													58		5A		LMNOPQRSTUVWXYZ[
00000740	5C			5F								67				6B	
00000750			6E	6F			82										
00000760 00000770						91	92	83 93		85 95	86 96	87 97	88 98			9B	[]~.€., [,]+ ‰5 < Œ.Ž''""•~™š>
00000770		8D	8E				92	93 A3						99 49			
00000780						B1	B2	B3				B7	B8			BB	0.ŽY Ç£¤¥¦\$ ©ª«
00000790 000007A0		RD	RE	RE	CO			C3			C6		C8		CA	CB	ννα · λάδδδδες ÈÉËË
000007A0		CD	CF	CF				D3		D5					DA	DB	ŤŤŤĐÑÒÓÔÕÖרÙÚÛ
000007B0		DD							F4							EB	ÜÝbRàáâããåæcèéêë
000007C0		ED	FF												FΔ	FB	líîïðñòóôõö÷øùúû
000007E0	FC		ĒΕ		33	39	43	OD.	OΑ	3A	31	30	31	45	44	30	üýbÿ39C:101ED0
000007E0	30	30	35	37	30	30	45	38	39	35	33	32	39	36	30	32	005700E895329602
00000710	50	50	J	<i>31</i>	50	JU	TU	50	97	JJ	JJ	JL	33	50	50	JZ	0037002033323002

Números Binários para Decimais

$$101010 = 1 * 25 + 0 * 24 + 1 * 23 + 0 * 22 + 1 * 21 + 0 * 20$$
$$= 32 + 0 + 8 + 0 + 2 + 0 = 42$$

$$1111111 = 1 * 25 + 1 * 24 + 1 * 23 + 1 * 22 + 1 * 21 + 1 * 20$$
$$= 32 + 16 + 8 + 4 + 2 + 1 = 63$$

$$011011 = 0 * 25 + 1 * 24 + 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20$$
$$= 16 + 8 + 2 + 1 = 27$$

Números Decimais para binários

$$7 = 111$$

Números hexadecimais para números decimais

```
1234 = 1 * 16^{3} + 2 * 16^{2} + 3 * 16^{1} + 4 * 16^{0}
= 1 * 4096 + 2 * 256 + 3 * 16 + 4 * 1 = 4660
ABC = 10 * 16^{2} + 11 * 16^{1} + 12 * 16^{0}
= 10 * 256 + 11 * 16 + 12 * 1 = 2748
```

Números decimais para números hexadecimais

Números Octais para Decimais

$$12 = 1 * 8^{1} + 2 * 8^{0}$$

= 1 * 8 + 2 * 1 = 10

$$725 = 7 * 8^2 + 2 * 8^1 + 5 * 8^0$$

= 448 + 16 + 5 = 469

Números Decimais para Octais

É possível realizar conversões utilizando-se de métodos de substituição

1 1 0 0 1 1 1 (64)(32) (16) (8) (4) (2) (1) (64+32+0+0+4+2+1=103 1 0 0 0 1 0 0 0 0 0 1 (2048)(1024)(512)(256)(128)(64)(32)(16)(8)(4)(2)(1) (2048+0+0+0+1=2177
$$2^{12}$$
 2^{8} 2^{0}

É possível realizar conversões utilizando-se de métodos de substituição com a tabela, entre sistemas binário, hexadecimal e octal, nunca o decimal!!

Para binários:

1110.1110 -> separando em grupos de 4 bits -> podemos converter pela tabela para hexadecimal -> = EE

Para binários:

11.101.110 -> separando em grupos de 3 bits -> podemos converter pela tabela para octal -> = 356

255 em binário é 11111111 2 em binário é 0010 e 5 é 0101 pela tabela -> 001001010101 = 597

Conjuntos de algarismos binários (bits) formam palavras binárias que representarão números máximos bastante definidos e relativamente pequenos

Cada casa binária só poderá ser preenchida com dois algarismos (0 ou 1), enquanto cada casa decimal pode ser preenchida com dez algarismos (de 0 a 9).

Palavras binárias recebem nomes especiais conforme a quantidade de bits utilizadas pelas mesmas, representando um variação de números bastante definida:

Nibble = 4 bits

Byte = 8 bits

Word = 16 bits

Double Word = 32 bits

Quad Word = 64 bits

Pode-se utilizar de sufixos mas ...

O sufixo K (kilo), que em decimal, representa 1.000 vezes, em binário representa 2¹⁰ vezes (1024). Logo, 1 Kbyte representa 1.024 bytes, 2 Kbytes 2.048 bytes e assim sucessivamente. Do mesmo modo, o sufixo M (mega) representa 2²⁰ vezes (1.048.576), diferenciando-se da representação Decimal.

```
Kilobyte 2^{10}= 1.024 (bytes)
Megabyte 2^{20}= 1.048.576 (bytes)
Gigabyte 2^{30}= 1.073.741.824 (bytes)
Terabyte 2^{40}= 1.099.511.627.776 (bytes)
Petabyte 2^{50}= 1.125.899.906.843.624 (bytes)
Exabyte 2^{60}= 1.152.921.504.607.870.976 (bytes)
Zetabyte 2^{70}= 1.180.591.620.718.458.879.424 (bytes)
Yottabyte 2<sup>80</sup>= 1.208.925.819.615.701.892.530.176 (bytes)
```

1024 *bytes* = 1 *kilobyte*

1024 *kilobytes* = 1 *megabyte*

Dividir por 1024 para medida superior

Multiplicar por 1024 para medida inferior

Ex.: 30456 *megabytes* são quantos *gigabytes*? 30456 / 1024 = 29,742 *gigabytes*

É ≠ de dividir por mil, não são múltiplos de milhares

Convertendo Unidades

```
30 gigabytes são quantos bytes?
 30 \times 1024 = 30720 \text{ megabytes}
 30720 x 1024 = 31457280 kilobytes
 31457280 x 1024 = 32212254720 bytes
E são quantos bits?
 multiplicar por 8 (8 b = 1 B)
bytes = "B" maiúscula
bits = "b" minúscula
```

Convertendo Unidades

Ex.: Placa de rede de 100 Mb/s

Para os bits, toda conta será normalmente por mil, então, se temos 1000 bits, temos 1
 Kb, se temos 1000 Kb, temos 1 Mb e assim por diante.

Ex.: Um disco rígido de 80 GB.

Memória RAM de 2 GB

Uma placa de rede de 100 Mb/s.

Um modem de 56 Kb/s

Resumo da Aula

Sistemas Numerais	Cada sistema possui seu papel em áreas do computador Precisam ser convertidos para serem utilizados
Bits e Bytes	Formação de caracteres e unidades de referência

Obrigado pela atenção

1 1 00 1 1 0 1 1 1 1 0 1 1 1

32768+16384+0+0 +2048+1024+0 +256+128+64+32+0+8+4+2+1