

maximal ideal is prime (general case)

 ${\bf Canonical\ name} \quad {\bf Maximal Ideal Is Prime general Case}$

Date of creation 2013-03-22 17:38:02 Last modified on 2013-03-22 17:38:02

Owner mclase (549) Last modified by mclase (549)

Numerical id 8

Author mclase (549) Entry type Theorem Classification msc 16D25

Related topic MaximalIdealIsPrime

Theorem. In a ring (not necessarily commutative) with unity, any maximal ideal is a prime ideal.

Proof. Let \mathfrak{m} be a maximal ideal of such a ring R and suppose R has ideals \mathfrak{a} and \mathfrak{b} with $\mathfrak{ab} \subseteq \mathfrak{m}$, but $\mathfrak{a} \nsubseteq \mathfrak{m}$. Since \mathfrak{m} is maximal, we must have $\mathfrak{a} + \mathfrak{m} = R$. Then,

$$\mathfrak{b} = R\mathfrak{b} = (\mathfrak{a} + \mathfrak{m})\mathfrak{b} = \mathfrak{a}\mathfrak{b} + \mathfrak{m}\mathfrak{b} \subseteq \mathfrak{m} + \mathfrak{m} = \mathfrak{m}.$$

Thus, either $\mathfrak{a}\subseteq\mathfrak{m}$ or $\mathfrak{b}\subseteq\mathfrak{m}$. This demonstrates that \mathfrak{m} is prime.

Note that the condition that R has an identity element is essential. For otherwise, we may take R to be a finite zero ring. Such rings contain no proper prime ideals. As long as the number of elements of R is not prime, R will have a non-zero maximal ideal.