Revision Question 5 — 04/05/14

Let X be the subset of \mathbb{Z}^2 given by

$$\{(x,y) \in \mathbb{Z}^2 \mid x = y \text{ or } x = -y\}.$$

a) Given $z \in \mathbb{Z}$, let U_z^g be the subset of X given by

$$\{(x,y)\in X\mid x\geq z\},$$

and let U_z^l be the subset of X given by

$$\{(x,y) \in X \mid x \le z\}.$$

Give a reason why the set

$$\{U_z^g \mid z \in \mathbb{Z}\} \cup \{U_z^l \mid z \in \mathbb{Z}\}$$

does not define a topology on X.

b) Given $n \in \mathbb{N}$, let U_n be the subset of X given by

$$X \cap \{(x,y) \in \mathbb{Z}^2 \mid -n \le x \le n \text{ and } -n \le y \le n\}.$$

Let \mathcal{O}_X be the topology on X given by the set of subsets U of X such that, for every x which belongs to U, one of the following holds.

i) For some $n \leq 10$ which belongs to \mathbb{N} , we have both that x belongs to U_n and that U_n is a subset of U.

ii) We have both that x belongs to

$$\{(x,y) \in X \mid |x| > 10 \text{ or } |y| > 10\}$$

and that this set is a subset of U.

Demonstrate that (X, \mathcal{O}_X) is not connected. [5 marks]

- c) Let \mathcal{O}_X' be the subspace topology on X with respect to $(\mathbb{R}^2, \mathcal{O}_{\mathbb{R}^2})$. Is (X, \mathcal{O}_X) homeomorphic to (X, \mathcal{O}_X') ? Justify your answer. [8 marks]
- d) Define a topology \mathcal{O}_X'' on X such that (X, \mathcal{O}_X'') has the following properties.
 - i) It is connected.
 - ii) It is not compact.

Give a proof that (X, \mathcal{O}_X'') has property ii). You do not need to prove that (X, \mathcal{O}_X'') has property i). [6 marks]