

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

Question Bank - Unit 3

Questions from the Prescribed Textbook

Topic	Exercise No.	Question No's
Chomsky Normal Form	6.1 6.2	1,6-11, 17, 19 1-5
Greibach Normal Form	6.2	10-13
CYK Algorithm	6.3	1-4
CFG to PDA	7.1	1-4, 6-8,

Extra Questions

Chomsky Normal Form

Convert the following grammar to Chomsky Normal Form

- 1) $S \rightarrow abS \mid baS \mid \lambda$
- 2) $S \rightarrow a \mid aA \mid B \mid C$, $A \rightarrow aB \mid \lambda$, $B \mid Aa$, $C \rightarrow cCD$, $D \rightarrow add$
- 3) $S \rightarrow A \mid aB \mid \lambda, A \rightarrow aA \mid B, B \rightarrow bB \mid C, C \rightarrow c \mid A$
- 4) $S \rightarrow BAB, B \rightarrow bba, A \rightarrow Bc$
- 5) $S \rightarrow ASA|aB, A \rightarrow B|S, B \rightarrow b| \varepsilon$

Greibach Normal Form

Convert the following grammar to Greibach Normal Form

- 1) S \rightarrow Sab | Sba | λ
- 2) $S \rightarrow AB, A \rightarrow aA \mid bB \mid b, B \rightarrow b$
- 3) $S \rightarrow abSb \mid aa$
- 4) $S \rightarrow aSb \mid ab$
- 5) $S \rightarrow A$, $A \rightarrow a B a | a$, $B \rightarrow b A b | b$

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013)

Department of Computer Science & Engineering

Automata Formal Languages & Logic

CYK Algorithm

Apply CYK - algorithm to verify the given string (s) can be derived from the below grammar

- 1) $S \rightarrow 00S11 \mid 11S00 \mid \lambda, w = 001111100$
- 2) $S \rightarrow 0S1 \mid 1S0 \mid SS \mid \lambda$, w = 00011110
- 3) $S \rightarrow AB$, $ABB \mid a$, $BAB \mid b$, w = aabbb, aabb, aabba, abbbb
- 4) $S \rightarrow AB$, $ABB \mid a$, $BAB \mid b$, w = aabbb
- 5) $S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \mid CC \mid b, C \mid AB \mid a, w \text{ is baaba}$ (https://web.cs.ucdavis.edu/~rogaway/classes/120/winter12/CYK.pdf)

CFG to PDA

Convert the following CFG to PDA

- 1) $S \rightarrow aSA \mid \lambda, A \rightarrow bB, B \rightarrow b$
- 2) $S \rightarrow 0S1 \mid A, A \rightarrow 1A0 \mid S \mid \lambda$
- 3) $S \rightarrow aA$, $A \rightarrow aABC \mid bB \mid a$, $B \rightarrow b$, $C \rightarrow c$. Show how an aabc is accepted.
- 4) $S \rightarrow 0AA, A \rightarrow 0S \mid 1S \mid 0$
- 5) S \rightarrow aA | bB | cC, A \rightarrow Sa, B \rightarrow Sb, C $\rightarrow \lambda$