The Internet of Things

The Internet of Things (IoT) is the network of physical objects or "things" embedded[1] with electronics, software, sensors[2] and connectivity to enable it to achieve greater value and service by exchanging data with the manufacturer, operator and/or other connected devices. Each thing is uniquely identifiable through its embedded computing system but is able to interoperate within the existing Internet infrastructure.

-- Wikipedia

The Internet of Things

Kevin Ashton

Helped create RFID as an Open Standard

...where everything has an ID

Started "Internet of Things" concept

(He's also interesting in other ways...)

If everything has an address...

- Things can have and report status
- Status is
- immediate
- useful
- associated with a thing associated with the thing's attributes
- Things can accept individual input
- Control themselves
- Control other things in the environment

What kind of information?

- Internal state
- Temperature, Pressure, Speed
- Location
- Environmental state
- Weather
- Traffic
- Counts
- Financial, economic, network data
- Anything...

Even more things to measure...

- Traffic patterns
- Shopping habits
- Medical readings
- Wearables health, mental state, locations
- Inventory
- Energy use
- Water quality
- Wildlife habits
- Airline locations

Feedback and control

- Devices can receive commands
- Control themselves
- Control directly connected things
- Send control messages to other things
- Direct feedback and control
- Microcontrollers, no networked control
- Networked feedback (or not) and control
- Networking capability is needed (e.g. SOC)
- Control decisions are made elsewhere

Things to control...

- Thermostats
- Speeds
- Alarms
- Positions
- Dosages
- Feeding
- Trades and economic activity
- Inventory orders
- ...and so forth...

Measurement devices

- Analog devices measure the real world
- Temperature, light, speed, etc.
- Usually a chemical, electrical, or magnetic sensor
- Analog to digital converters (ADCs)
- Convert analog voltage to digital data
- Which can be handled by a computer
- Which can be sent via a digital network

Control Devices

- Mechanical analog devices control the real world
- Driven by voltage levels
- Presence of voltage
- Intensity and frequency of voltage
- Frequently electomagnetic or peizoelectric
- Digital to analog converter (DACs)
- Digital signals can be computed and sent

DACs create analog voltages from digital signals

Analog voltages drive analog devices

Computational Devices

- Requirements
- small and inexpensive
- simple to program
- durable, physically and evironmentally
- low power draw
- easy to incorporate into products
- Devices
- These are basically small computers
- History and details later

How much of this is there?

- More things now than people on earth
- 20-30 billion things by 2020
- What about _everything_? But these are "interesting" things.

The Internet of Objects

- RFID is extremely inexpensive
- printable circuit costs pennies
- doesn't require inherent power.
- not very smart. Just transmits a number.
- what about a 'smart' RFID?
- Internet communication for _everything_
- Trillions of things -- soup cans, toothpaste tubes
- Can you imagine the data?

Back to Interesting Things

- Is the data or control worth \$20?
- If so, you can afford a small computer
- Processor
- Memory
- Storage
- Input/output
- Early microcomputers
- used external chips for memory, I/O, storage
- expensive

Microcontrollers - system on a chip

- Intel 8742
- 12 MHz 128 Bytes (yes, bytes) RAM

- Variables go here2048 Bytes of EPROMPut programs there Digital I/O ports

Power on - starts running Power off - stops running Put assembly program into EEPROM (electrically erasable ROM)

Microcontroller programs

If thermometer says too cold Turn on heater

If thermometer says too hot Turn on air conditioner

Otherwise

Turn them both off

Microcontroller characteristics

- Local data collection
- Local decisions
- Some LAN communication
- E.g. cars, fly-by-wire, environmental control
- Little WAN communication
- Networking is *hard*.
- Hard to program complexity
- Cheap and durable, cheaper than wires

Microcontroller usage

- Tiny computers in everything
- Cheaper than conventional circuitry
- E.g. cheaper in TVs than analog tuning
- Sensors and servos cheaper than long wires
- Smaller than other options
- Ever seen an original iPad nano? A Tamagochi?
- Great for operating devices
- Not so great for Internet networking
- Often networking is harder than data collection

Current Generation Microcontrollers

- Standardized circuits
- Easier to program
- Development kits available
- We will look at the Arduino
- Very common for hobby use

Industrial versions for real world

- http://www.arduino.cc/
- Subject of this week's lab (on a simulator)

Microcontroller advantages

- Versatile
- Common
- Cheap
- Durable
- Low power consumption
- Easy to learn

Microcontroller limitations

- Harder to network
- (Networking modules are available)
- Require external IDEs
- Nonstandard tools and languages (maybe) Relatively slow and not very smart
- Not much local processing power

We want an *Internet* of things

- Microcontrollers are toy computers
- Cell phones need *real* computers
- Cell phones need to communicate
- So what powers cell phones?

System on a Chip (SOC)

frequency functions—all on a single chip substrate. A system on a chip or system on chip (SoC or SOC) is an may contain digital, analog, mixed-signal, and often radiocomputer or other electronic system into a single chip. It integrated circuit (IC) that integrates all components of a

-- Wikipedia

System on a Chip (SOC)

- System on a Chip (SOC)
- Significant amounts of RAM
- Local storage as flash-ram
- Ability to run conventional software
- Linux
- Windows
- Well-known software development stacks
- Reasonably low power consumption
- Easy to incorporate into designs

ARM SOC

ARM devices

- RISC
- Low power Open design
- Fairly fast

Seems useful...

SOCs become popular

Check this out:

http://en.wikipedia.org/wiki/List of system-on-a-chip suppliers

- lots of options
- sold in manufacturing quantities
- a few hobbyist SOCs designs emerge

A Teaching Problem...

- Students in England getting worse at CS
- Why?
- Home computers used to be toys
- Modern home computers are _*not*_ toys.
- Kids can't tear apart Mom and Dad's MacBook Pro
- Solution
- Raspberry Pi Foundation formed
- Design and build a cheap, educational SOC board
- Make it very flexible and easy to use

The Raspberry Pi

1 GHz 1 Gb Linux Ethernet USB GPIO

Data Collection Architecture

Data Collection Architecture

...About the Raspberry Pi

- So it's a great little device for lots of things
- It does not collect data well
- Lots of power consumption
- Relatively large
- No analog ports
- Communicates very well
- But so does your laptop
- You're welcome to use an RPi or your laptop for that An RPi is a cheaper device to dedicate to that job

Data Collection Architecture

Data Collection Architecture

Lab Preparation

- Bring your laptop running Chrome
- Make sure WiFi works for you
- Read a little about the Arduino
- http://www.arduino.cc/
- http://en.wikipedia.org/wiki/Arduino
- We will be programming a simulated Arduino

Demo Time

Questions?

See you next time!