

Microsoft Box Office

Author: Matthew Gayanelo

Overview

Due to the success of original content creation in various streaming platforms, Microsoft will be launching an in house movie studio. In order to optimize this venture, Microsoft has tasked us with conducting a data study that will produce actionable insights and guide them on creating optimum content.

Business Problem

Summary of the business problem you are trying to solve, and the data questions that you plan to answer to solve them.

There are several data sets available to preform insight analysis, and moreover several metrics that could define success. Fundamentally, this study will look to answer the following questions:

- 1. Which genres generated the highest amount of domestic revenue per movie?
- 2. Which genres had the highest measurable amount of engagement?
- 3. When an audience does engage, which genres garnered the most positive response?

In order to address these questions, the following will be used as success metrics:

- 1. Average Domestic Gross per Movie by Genre
- 2. Average Votes per Movie by Genre
- 3. Average Rating per Movie by Genre

A firm unerstanding of these metrics will provide a holistic understanding of revenue generation, the measured emotional engagement of the audience, and how positive/negative nature of that audience engagement is.

Data Understanding

In order to meet the time requirements, and achieve an optimal data study, the following data sets have been chosen to conduct our analytics:

1. IMDB Titles / Genre Classifications

- Source: IMDB
- Analytical Prupose: General Classification
- Target Variable: 'tconst' (unique identifier) & 'genres'
- Target Variable Use: 'tconst' will be used to match IMDB titles with IMDB Ratings in order to bucket the final dataset

2. IMDB Ratings

- Source: IMDB
- Analytical Prupose: Measure Engagement & Average Rating
- Target Variable: 'tconst' (unique identifier), 'averagerating' & 'numvotes'
- Target Variable Use: 'tconst' will be used to match IMDB titles with IMDB Ratings in order to bucket the final dataset, 'averagerating' will be used to measure positivity/negativity of engagement & 'numvotes' will be used to measure size of engagement

3. Box Office Movie Gross

- Source: Box Office Mojo
- Analytical Prupose: Measure Domestic Gross
- Target Variable: 'title' & 'domestic gross'
- Target Variable Use: 'title' will be used to merge this data set into the final data frame, while 'domestic gross' will be used to measure revenue generation on a per genre basis.

Data Preparation: IMDB Titles / Genre Classifications (df_basics)

Variables Dropped / Created:

'updated_original_title' was created to mitigate 21 NaN Values in 'original_title'. Values in the 'updated_original_title' were derived from the 'primary_title' when available or the 'original_title' if found to be NaN. This column would act as a placeholder for future merges in the event that 'original_title' would be required

Missing/NaN Values Solutions:

5,408 rows were dropped due to the missing 'genres' data, since 'genres' were the main data point required from the set

2.072 rows were dropped due to being 'studio', 'year', and 'primary title' duplicates.

31,739 NaN values were found in the 'runtime_minutes' column, but since this data point was not relevant to our core analytics these rows were left intact

Justification:

Data cleanup primarily focused on 'genres' and 'updated_primary_title' as the former would act as the main data point needed to bucket revenue, ratings, and votes in the IMDB ratings Data Set while the former would act as a potential unique identifier in future mergers. Dropping the selected rows was deemed permissable as this only comprised less than ~5% of the total database.

```
In [1]:
          1
            # Import standard packages
            import pandas as pd
          2
            import numpy as np
          3
            import matplotlib.pyplot as plt
            import seaborn as sns
          6
            import plotly.express as px
          7
          8
            pd.set_option('display.max_columns', None)
          9
         10
            %matplotlib inline
In [2]:
         1
            #Creating Core Data Frames
          2
          3
            df basics = pd.read csv('data/zippedData/imdb.title.basics.csv.gz')
            df ratings = pd.read csv('data/zippedData/imdb.title.ratings.csv.gz')
            df gross = pd.read csv('data/zippedData/bom.movie gross.csv.qz')
In [3]:
         1
            #Quick snapshot of df basics
          2
```

Out[3]:

3

df basics.head()

	tconst	primary_title	original_title	start_year	runtime_minutes	genres
0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,Drama
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,Drama
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Comedy,Drama
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy,Drama,Fantasy

Total amount of NA Values per column:

Original total line items = 146144

144072

Total amount of NA Values per column:

```
tconst 0
primary_title 0
original_title 19
start_year 0
runtime_minutes 31337
genres 0
dtype: int64
```

In [6]: #Creating an updated_original_title columnn that replaced NaN values in
2
3 df_basics['updated_original_title'] = np.where(df_basics['original_title
4
5 df_basics[df_basics['original_title'].isna()]

Out[6]:

	tconst	primary_title	original_title	start_year	runtime_minutes	genres	updated_orgin
39095	tt2397619	Woody Allen: A Documentary	NaN	2012	195.0	No Genre	Woody <i>F</i> Docum
58624	tt3414266	The Outer Loop	NaN	2013	78.0	No Genre	The Oute
62944	tt3616658	The Hangman	NaN	2017	NaN	No Genre	The Ha
79274	tt4548042	Urban Legend: The Blind Side Strangler	NaN	2016	NaN	No Genre	Urban Leger Blind Side St
80116	tt4599436	Please Don't Eat the Pansies	NaN	2016	NaN	No Genre	Please Don't F
82058	tt4715728	Regen	NaN	2016	NaN	No Genre	
82308	tt4732998	Limbo	NaN	2017	NaN	No Genre	
85353	tt4940426	OldZilla	NaN	2018	NaN	No Genre	(
107378	tt6288348	Deadly Affection	NaN	2017	NaN	No Genre	Deadly Af
108971	tt6403090	What It Takes to Win	NaN	2017	NaN	No Genre	What It Takes
108983	tt6404278	Over Nor Out	NaN	2018	NaN	No Genre	Over N
111377	tt6509234	Samurai Cop 3	NaN	2019	NaN	No Genre	Samurai
111899	tt6543294	The Work	NaN	2017	NaN	No Genre	Th
112608	tt6603544	Utopians	NaN	2015	NaN	No Genre	Ut
115131	tt6823030	Hilfe, ich hab meine Eltern geschrumpft	NaN	2018	NaN	Adventure	Hilfe, ich hab Eltern gesch
115934	tt6877572	X A 7	NaN	2020	NaN	No Genre	
115983	tt6882442	Hirugao: Love Affairs in the Afternoon	NaN	2017	125.0	Romance	Hirugao: Love in the Aft
116205	tt6900940	Hasan Minhaj: Homecoming King	NaN	2017	NaN	No Genre	Hasan I Homecomir
116350	tt6911842	Senioritus	NaN	2017	75.0	No Genre	Ser

Data Preparation: IMDB Title Ratings (df_ratings)

Variables Dropped / Created:

None

Missing/NaN Values Solutions:

None

Justification:

None

Out[7]:

	tconst	averagerating	numvotes
0	tt10356526	8.3	31
1	tt10384606	8.9	559
2	tt1042974	6.4	20
3	tt1043726	4.2	50352
4	tt1060240	6.5	21

Total amount of NA Values per column:

```
tconst 0
averagerating 0
numvotes 0
dtype: int64

Duplicate values: 0
```

Data Preparation: IMDB Title Ratings (df_gross)

Variables Dropped / Created:

None

Missing/NaN Values Solutions:

28 'domestic_gross' line items dropped due to NaN values

Justification:

All other NaN values were retained as they would not influence the analytics moving forward

Out[9]:

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
3	Inception	WB	292600000.0	535700000	2010
4	Shrek Forever After	P/DW	238700000.0	513900000	2010

Total amount of NA Values per column:

```
title 0
studio 5
domestic_gross 28
foreign_gross 1350
year 0
dtype: int64
```

Duplicated Title, Year & Studio Combinations = 0
Original total line items = 3387

	title	studio	domestic_gross	toreign_gross	year
210	Outside the Law (Hors-la-loi)	NaN	96900.0	3300000	2010
555	Fireflies in the Garden	NaN	70600.0	3300000	2011
1862	Plot for Peace	NaN	7100.0	NaN	2014

Data Preparation: Joining df_basics and df_ratings (df_titles_and_ratings)

Variables Dropped / Created:

Genre Columns: Genre categories were isolated into seperate columns to determine their isolated revenue, engagement and ratings metrics.

Weighted Score: Created to determine the weighted rating of each genre, basing the statistical weight of each movie by the votes garnered.

Missing/NaN Values Solutions:

All relevant missing data/NaN line items solved for before merge

```
# Joining df ratings and df basiscs --> when I joined the dfs, I lost a
In [13]:
          1
          2
          3
             df_titles_and_ratings = pd.merge(df_ratings, df_basics, how = 'inner',
          4
          5
             df_titles_and_ratings.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 72557 entries, 0 to 72556
         Data columns (total 9 columns):
          #
              Column
                                     Non-Null Count Dtype
                                     72557 non-null object
          0
              tconst
          1
              averagerating
                                     72557 non-null float64
          2
                                     72557 non-null int64
              numvotes
          3
              primary title
                                     72557 non-null object
          4
              original_title
                                     72557 non-null object
          5
              start_year
                                     72557 non-null int64
          6
              runtime_minutes
                                     65057 non-null float64
          7
              genres
                                     72557 non-null object
              updated_orginal_title 72557 non-null object
         dtypes: float64(2), int64(2), object(5)
         memory usage: 5.5+ MB
             #Checking for duplicates in merged data frame
In [14]:
          1
```

```
df titles and ratings.duplicated(subset=['primary_title', 'start_year']
```

Out[14]: 0

```
#Identifying all the unique Genres
In [15]:
           1
           2
           3
             unique genres = []
           4
              for genres in df_titles_and_ratings['genres']:
           5
                  genre_list = genres.split(',')
           6
                  for genre in genre list:
           7
                      unique_genres.append(genre)
           8
           9
             unique_genres_list = set(unique_genres)
          10
          11
             unique_genres_list
Out[15]: {'Action',
           'Adult',
           'Adventure',
           'Animation',
           'Biography',
           'Comedy',
           'Crime',
           'Documentary',
           'Drama',
           'Family',
           'Fantasy',
           'Game-Show',
           'History',
           'Horror',
           'Music',
           'Musical',
           'Mystery',
           'News',
           'No Genre',
           'Reality-TV',
           'Romance',
           'Sci-Fi',
           'Short',
           'Sport',
           'Thriller',
           'War',
           'Western'}
In [16]:
              #Adding genres as columns
           1
           2
           3
              for genre in unique genres list:
           4
                  df titles and ratings[genre] = np.where(df titles and ratings.genre
           5
```

Out[17]:

	tconst	averagerating	numvotes	primary_title	original_title	start_year	runtime_minutes
3	tt1043726	4.2	50352	The Legend of Hercules	The Legend of Hercules	2014	99.0
9	tt1161457	4.2	148	Vanquisher	The Vanquisher	2016	90.0
19	tt1229238	7.4	428142	Mission: Impossible - Ghost Protocol	Mission: Impossible - Ghost Protocol	2011	132.0
20	tt1232829	7.2	477771	21 Jump Street	21 Jump Street	2012	109.0
35	tt1294141	4.5	113	Dancing Ninja	Dancing Ninja	2010	98.0
72524	tt9378850	3.8	114	Kung Fu Monster	Wu lin guai shou	2018	104.0
72525	tt9382596	4.1	293	The Car: Road to Revenge	The Car: Road to Revenge	2019	89.0
72530	tt9526152	7.6	29	DanMachi: Is It Wrong to Try to Pick Up Girls	Gekijouban danjon ni deai o motomeru no wa mac	2019	82.0
72553	tt9844256	7.5	24	Code Geass: Lelouch of the Rebellion - Glorifi	Code Geass: Lelouch of the Rebellion Episode III	2018	120.0
72554	tt9851050	4.7	14	Sisters	Sisters	2019	NaN

6836 rows × 36 columns

```
In [18]:
           1
             #Create an Average Weighted Score
           2
           3
             # df titles and ratings['Average Genre Weighted Score'] = df titles and
           4
           5
             for genre in unique genres list:
                 df_titles_and_ratings[genre + ' WS'] = np.where(df_titles_and_ratin
           6
           7
                                                       df_titles_and_ratings['numvotes
                                                       df titles and ratings[df titles
           8
           9
```

Data Preparation: Creating df_rev_and_ratings (df_titles_and_ratings + df_gross)

Variables Dropped / Created:

'unique id': A unique identifier created out of the 'primary_title' and the 'year for df_gross and made out of the 'title' and 'year' for df_titles_and_ratings. This identifier will be used to merge both dataframes.

Missing/NaN Values Solutions:

All relevant missing data/NaN line items solved for before merge

```
In [20]:
              #Remove punctuation from df titles and ratings and df gross
           1
           2
           3
             import string
           4
           5
             punc = string.punctuation
           6
           7
             for i in punc:
           8
                  df_titles_and_ratings['primary_title'] = df_titles_and_ratings['pri
           9
          10
             for i in punc:
                  df gross['title'] = df gross['title'].apply(lambda x: x.replace(i,
          11
          12
```

```
#Create 'unique id' to merge df_titles_and_ratings and df_gross
In [21]:
          1
           2
          3
             df_gross['unique id'] = df_gross['title'] + df_gross['year'].astype(str
           4
          5
             df_titles_and_ratings['unique id'] = df_titles_and_ratings['primary_tit
          7
             df_titles_and_ratings.head()
          8
          9
             df_rev_and_ratings = pd.merge(df_gross, df_titles_and_ratings, how = 'i
         10
            df_rev_and_ratings
         11
```

Out[21]:

	title	studio	domestic_gross	foreign_gross	year	unique id	tconst	averagera
0	Toy Story 3	BV	415000000.0	652000000	2010	Toy Story 32010	tt0435761	
1	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010	Harry Potter and the Deathly Hallows Part 12010	tt0926084	
2	Inception	WB	292600000.0	535700000	2010	Inception2010	tt1375666	
3	Shrek Forever After	P/DW	238700000.0	513900000	2010	Shrek Forever After2010	tt0892791	
4	The Twilight Saga Eclipse	Sum.	300500000.0	398000000	2010	The Twilight Saga Eclipse2010	tt1325004	
1828	Helicopter Eela	Eros	72000.0	NaN	2018	Helicopter Eela2018	tt8427036	
1829	Girls vs Gangsters	WGUSA	37100.0	NaN	2018	Girls vs Gangsters2018	tt7870578	
1830	A Paris Education	KL	21600.0	NaN	2018	A Paris Education2018	tt6593240	
1831	The Quake	Magn.	6200.0	NaN	2018	The Quake2018	tt6523720	
1832	An Actor Prepares	Grav.	1700.0	NaN	2018	An Actor Prepares2018	tt5718046	

1833 rows × 69 columns

Data Preparation: Creating the Final Aggregated Data Frame

Variables Dropped / Created:

- 'ADG per Movie' was created to determine the average Domestic Gross a movie in each genre would generate
- 'Average Votes per Movie' was created to determine to total amount of engagement each movie genre recieved per movie
- 'Total Movies' was created to help calculate the two metrics above
- All NaN values in 'Domestic Gross' were dropped, due to this being the main data point
- · All 'No Genre' line items were dropped, as this was a nescessary unique classifier
- 'News' was dropped as a genre type as only 1 movie in our data set was categroized under this genre

Missing/NaN Values Solutions:

· All relevant missing data/NaN line items solved for before merge

```
In [22]:
           1
             #Creating Final Data Frame
           2
           3
             genre_names = list(unique_genres_list)
           4
             genre_ws = []
           5
             genre_votes = []
           7
             genre ws names = []
             for genre in genre names:
           9
                 genre ws names.append(genre + " WS")
          10
          11
             for genre in unique genres list:
                 genre votes.append(int(df titles and ratings[df titles and ratings[
          12
          13
          14
             for ws in genre ws names:
          15
                 genre ws.append(df titles and ratings[df titles and ratings[ws] > 0
          16
          17
             domestic gross = []
          18
          19
             for genre in unique genres list:
          20
                 domestic gross.append(int(df rev and ratings[df rev and ratings[gen
          21
             final df = pd.DataFrame(np.column_stack([genre_names, genre_ws, genre_v
          22
          23
                                             columns=['Genres', 'Weighted Score', 'Vo
          24
          25
             final df.sort values('Weighted Score', ascending = False).head()
          26
          27
             # Convert Weighted Score to Float and Round to 2 Decimal Points
          28
          29
             final df['Weighted Score'] = final df['Weighted Score'].map (lambda x:
          30
          31
             # Convert Votes into int type
          32
          33
             final df['Votes'] = final df['Votes'].map(lambda x: int(x))
          34
          35
             # Convert Domestic Gross into int type
          36
          37
             final df['Domestic Gross'] = final df['Domestic Gross'].map(lambda x: i
```

```
#Adding AVG Domestic Gross (Domestic Gross / Total Movies Made) and Ave
In [23]:
           1
           2
           3
             total_movies = []
           4
             for genre in unique_genres_list:
           5
           6
                 total movies.append(df rev and ratings[df rev and ratings[genre] ==
           7
             final_df['Total Movies'] = total_movies
           8
           9
          10
             # Convert 'Total Movies' into int type
          11
             final_df['Total Movies'] = final_df['Total Movies'].map(lambda x: int(x)
          12
          13
          14
             final_df['ADG per Movie'] = (final_df['Domestic Gross'] // final_df['To
          15
          16
             final_df['Average Votes per Movie'] = (final_df['Votes'] // final_df['T
          17
          18
```

```
In [25]: 1 #Dropping No Genre & News
2
3 final_df = final_df[final_df['Genres'] != 'No Genre']
4 final_df = final_df[final_df['Genres'] != 'News']
5
6
7 final_df
```

Out[25]:

	Genres	Weighted Score	Votes	Domestic Gross	Total Movies	ADG per Movie	Average Votes per Movie
0	Family	6.75	8122032	4914445400	81	60672165.0	100272.0
1	Crime	6.87	38504001	8044572800	258	31180514.0	149240.0
2	Drama	7.07	116034992	22417474297	950	23597341.0	122142.0
3	Comedy	6.72	72745599	29377658095	656	44783015.0	110892.0
4	Horror	6.11	22727000	5109835100	140	36498822.0	162335.0
5	Sci-Fi	7.13	42663593	14567714999	110	132433772.0	387850.0
6	Documentary	7.29	4655907	607499998	103	5898058.0	45202.0
7	Thriller	6.78	46687896	11448560600	277	41330543.0	168548.0
8	Musical	7.10	1316149	344582700	11	31325700.0	119649.0
9	Adventure	7.06	82997791	41129487795	364	112993098.0	228015.0
10	History	7.39	7615733	1873181799	72	26016413.0	105774.0
11	Biography	7.48	21404084	5192693999	187	27768417.0	114460.0
12	Fantasy	6.69	25500287	8913708499	124	71884745.0	205647.0
13	Mystery	6.88	24098372	4694026000	130	36107892.0	185372.0
17	Music	7.14	6573015	1823313200	68	26813429.0	96661.0
19	Western	7.52	2443038	506151100	11	46013736.0	222094.0
20	Romance	6.66	25908372	5824994700	300	19416649.0	86361.0
22	Sport	7.31	3648102	999294000	35	28551257.0	104231.0
23	Animation	7.25	14929064	12950305798	113	114604476.0	132115.0
25	Action	6.90	100007799	36490448997	518	70444882.0	193065.0
26	War	7.08	2643994	200781100	23	8729613.0	114956.0

Data Modeling

Our analytics took a simple 4 step approach to adress our 3 core questions.

- Step 1: Determine the total land scape by first determining which Genre Type was used the most in our dataset
- Step 2: Determine the highest Average Domestic Revenue per Genre

- Step 3: Determine the highest Average Votes per Genre
- Step 4: Determine the highest Weighted Score per Genre
- Step 5: Determine the most balanced Genre Combinations in order to provide an adequate recomendation to Microsoft

These steps were purposely put in place in order to isolate those Genres that not only scored the highest ratings, earned the most money and garnered the most engagement, but to also determine of these genre combinations could provide the best competitive entry point for a new film studio.

Initial analysis, without using a weighted average on scoring, or a per capita metric on votes and revenue would have yielded analytics that would have skewed our reccomendations towards those segments that had the most movies made. As such, niche metrics had to be created to balance our analytics and provide an optimum reccomendation.

```
In [44]:
           1
              #STEP 1:
           2
           3
             final_df = final_df.sort_values('Total Movies', ascending = True)
           4
           5
             avg_total_movies = np.mean(final_df['Total Movies'])
           6
           7
             plt.figure(figsize=(10, 8))
           8
           9
             plt.barh(final_df['Genres'], final_df['Total Movies'])
          10
          11
             # plotting a line to show the average genre popularity
             plt.vlines(x=avg_total_movies, ymin=-0.5, ymax=20.5, color='red',
          12
                         linestyles='dashed', label='Average Movies Made')
          13
          14
             plt.legend()
          15
          16
             plt.title('Total Movies')
          17
             plt.xlabel('Movies Made')
             plt.ylabel('Genres')
          18
          19
          20
             plt.show()
          21
          22
```


In [37]: 1 final_df.sort_values('ADG per Movie', ascending = True)

Out[37]:

	Genres	Weighted Score	Votes	Domestic Gross	Total Movies	ADG per Movie	Average Votes per Movie
6	Documentary	7.29	4655907	607499998	103	5898058.0	45202.0
26	War	7.08	2643994	200781100	23	8729613.0	114956.0
20	Romance	6.66	25908372	5824994700	300	19416649.0	86361.0
2	Drama	7.07	116034992	22417474297	950	23597341.0	122142.0
10	History	7.39	7615733	1873181799	72	26016413.0	105774.0
17	Music	7.14	6573015	1823313200	68	26813429.0	96661.0
11	Biography	7.48	21404084	5192693999	187	27768417.0	114460.0
22	Sport	7.31	3648102	999294000	35	28551257.0	104231.0
1	Crime	6.87	38504001	8044572800	258	31180514.0	149240.0
8	Musical	7.10	1316149	344582700	11	31325700.0	119649.0
13	Mystery	6.88	24098372	4694026000	130	36107892.0	185372.0
4	Horror	6.11	22727000	5109835100	140	36498822.0	162335.0
7	Thriller	6.78	46687896	11448560600	277	41330543.0	168548.0
3	Comedy	6.72	72745599	29377658095	656	44783015.0	110892.0
19	Western	7.52	2443038	506151100	11	46013736.0	222094.0
0	Family	6.75	8122032	4914445400	81	60672165.0	100272.0
25	Action	6.90	100007799	36490448997	518	70444882.0	193065.0
12	Fantasy	6.69	25500287	8913708499	124	71884745.0	205647.0
9	Adventure	7.06	82997791	41129487795	364	112993098.0	228015.0
23	Animation	7.25	14929064	12950305798	113	114604476.0	132115.0
5	Sci-Fi	7.13	42663593	14567714999	110	132433772.0	387850.0

```
# #STEP 2:
In [62]:
           1
           2
           3
             final_df = final_df.sort_values('ADG per Movie', ascending = True)
           4
           5
             avg_adg = np.mean(final_df['ADG per Movie'])
           6
           7
             plt.figure(figsize=(10, 8))
           8
           9
             plt.barh(final_df['Genres'], final_df['ADG per Movie'])
          10
          11
             # plotting a line to show the average genre popularity
          12
             plt.vlines(x=avg_adg, ymin=-0.5, ymax=20.5, color='red',
          13
                         linestyles='dashed', label='Average Gross per Movie')
          14
             plt.legend()
          15
          16
             plt.title('Average Domestic Gross')
          17
             plt.xlabel('Average Domestic Gross per Movie')
             plt.ylabel('Genres')
```

Out[62]: Text(0, 0.5, 'Genres')


```
In [61]: 1 avg_adg
```

Out[61]: 47479263.666666664

```
In [59]:
           1
             #STEP 3:
           2
           3
             #Bar Chart to determine highest Average Votes per Genre
           4
           5
             final_df = final_df.sort_values('Average Votes per Movie', ascending =
           6
           7
             avg_votes = np.mean(final_df['Average Votes per Movie'])
           8
           9
             plt.figure(figsize=(10, 8))
          10
          11
             plt.barh(final df['Genres'], final df['Average Votes per Movie'])
          12
          13
             # plotting a line to show the average genre popularity
          14
             plt.vlines(x=avg votes, ymin=-0.5, ymax=20.5, color='red',
                         linestyles='dashed', label='Average Gross per Movie')
          15
          16
             plt.legend()
          17
          18
             plt.title('Average Votes per Movie')
          19
             plt.xlabel('Movies Made')
             plt.ylabel('Genres')
          20
```

Out[59]: Text(0, 0.5, 'Genres')


```
In [58]:
           1
             #STEP 4:
           2
           3
             #Bar Chart to determine highest weighted score
           4
           5
             final_df = final_df.sort_values('Weighted Score', ascending = True)
           6
           7
             avg_ws = np.mean(final_df['Weighted Score'])
           8
           9
             plt.figure(figsize=(10, 8))
          10
          11
             plt.barh(final df['Genres'], final df['Weighted Score'])
          12
          13
             # plotting a line to show the average genre popularity
          14
             plt.vlines(x=avg ws, ymin=-0.5, ymax=20.5, color='red',
          15
                         linestyles='dashed', label='Average Weighted Score')
          16
             plt.legend()
          17
             plt.title('Weighted Score')
          18
          19
             plt.xlabel('Weighted Score')
             plt.ylabel('Genres')
          20
```

Out[58]: Text(0, 0.5, 'Genres')


```
#STEP 5:
In [102]:
            1
            2
            3
              #Bubble Chart for balanced reccomendation
            4
            5
              import plotly.express as px
            6
            7
              fig = px.scatter(final df, x="Average Votes per Movie", y="Weighted Sco
                            size="ADG per Movie", color="Genres",hover_name="Genres",
            8
            9
                           title = 'General Assessment')
           10
           11
              fig.show()
```

Evaluation & Conclusion

Our analysis has reuslted in the following findings:

1. Which genres generated the highest amount of domestic revenue per movie?

Scifi, Animation and Adventure dominate our per revenue analysis. Each genre averaged over 1 Billion Dollars in domestic gross, more than 2x the average across all Genres.

2. Which genres had the highest measurable amount of engagement?

Scifi, Adventure, and Western dominated our per voting/engagement analysis. In particular, Sci-Fi garnered an average 387k votes per movie, a staggering 2.5x the mean votes per genre. Adventure scored impressively as well, garnering ~228k votes, or 1.5x the mean votes per genre.

3. When an audience does engage, which genres garnered the most positive response?

Western, Biography, and History garnered the highest weighted scores, earning 7.52, 7.48 and 7.39 respectively. However, it is worth noting that the average weighted score for all genres rests at 7.06. This means that even our highest rated genre only scores 7% above the mean.

Moreover, Genre's that experienced success in the prior 2 metrics such as Scifi, Adventure and Animation all scored above the average (7.13, 7.06, and 7.13 respectively).

An overall analysis of all metrics (displayed in the Bubble Chart above), indicates Sci-Fi, Adventure and Western as clear favorites. However, as Microsoft will be launching a fledgeling studio, it would be best advised to strategically target genres that have not been fully saturated such as Adventure. Our analysis has shown that Animation is chosen as a genre almost half as much on average.

With the results above, this analysis proposes 3 potential routes:

- 1. Launch a Sci-Fi / Adventure film to compete for large shares of profitable markets off the bat
- 2. Launch a Sci-Fi / Western and forego potential revenue streams from Adventure
- 3. Launch a Sci-Fi / Animation Film to optimize for revenue generation and capitalize on an unerserved market

Analytical Critiques:

- 1. In order to round out our analysis, it would be helpful to integrate production cost to determine true profitability per Genre
- 2. Analysis could be further improved by losing less data during merges by potentially using a fuzzy match loop.