PATENT ABSTRACTS OF JAPAN

(11)Publication number:

62-143552

(43) Date of publication of application: 26.06.1987

(51)Int.CI.

H04N 1/04

HO4N 1/04

(21)Application number: 60-282768

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

18.12.1985

(72)Inventor: UNO TERUHIKO

(54) IMAGE READER

(57) Abstract:

PURPOSE: To hold a light quantity within the unit time of a light source always at a regulated level by always observing the light quantity in the light source, and controlling the number of pulses generated at a pulse generating means which generates the pulse to illuminate the light source at every scanning of a photoelectric converter with a signal synchronized with the scanning of the photoelectric converter.

CONSTITUTION: The light quantity in a fluorescent lamp 1 is received with a photodetector 7, such as a photocell, etc., and is converted to an electrical signal, and the signal is sent to a light receiving circuit 8. A light quantity feedback circuit 9, by controlling the on and off times of a switching circuit 5 corresponding to the output of the light receiving circuit 8, controls the light quantity in the fluorescent lamp 1 within one scanning time of a line sensor 2 so as to hold always a regulated level. At such a time, an illumination circuit 6 performs the high frequency illumination of the fluorescent lamp 1 with a synchronous or an asynchronous signal in the scanning time of the line sensor 2.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

⑩ 公 開 特 許 公 報 (A)

昭62 - 143552

@Int_Cl_4

識別記号

庁内整理番号

四公開 昭和62年(1987)6月26日

H 04 N 1/04

101

8220-5C D-8220-5C

審査請求 未請求 発明の数 1 (全3頁)

公発明の名称 画像読取装置

②特 関 昭60-282768

愛出 願 昭60(1985)12月18日

⑩ 明 者 字 野 輝 比 古 。

川崎市幸区柳町70番地 株式会社東芝柳町工場内

创出 願 人 株 式 会 社 東 芝 川崎市幸区堀川町72番地

码代 理 人 弁理士 鈴江 武彦 外2名

明機會

1. 発明の名称

運輸放取装置

2. 特許請求の範囲

(1)光瀬からの光を被読取物に照射し、その被 徳取物からの光を光電変換器で電気信号に変換す ることにより、前記被読取物の画像を読取る画像 後取装置において;

前記光瀬を点灯させるパルスを発生するパルス 発生手段と;

的記光環の光量を検出する光量検出手段と: 前記光量検出手段での検出光量を一定にするペ く前記パルス発生手段のパルス発生数を前記光電 変換器の走査に開閉した信号で前記光電変換器の 一走査ごとに制御する高周被パルス制御手段と を具備したことを特徴とする画像読取装置。

(2)前記光穏を点灯させるパルスは高周波パルスである特許請求の範囲第1項記載の画像院取获 重。

(3)前記光源は蛍光灯である特許請求の範囲第

1 項記載の画像鉄取装置。

(4) 前記光電変換器はCCD形ラインセンサである特許請求の範囲第1項記載の函像映取装置。

3.発明の詳細な説明

[発明の技術分野]

本発明は、たとえばカラーの画像を光学的に決取る画像洗取装置に係り、特に光源の光量変動に対する安定化に関する。

[発明の技術的背景とその問題点]

一般に、この種の画像競取装置にあっては、光 源からの光をカラー原稿などの被誘取物に照射し、 その反射光をCCD形ラインセンサなどの光量積 分形の光電変換器で走査により電気信号に変換し、 画像信号として処理したのち出力されるようになっている。

ところで、従来のこの種の画像競取装置においては、安定した色分解特性を得るために、ハロゲンランプなどの演色性のよい光源が使用されていた。このような光源の場合には、印加する電圧を一定に保てば光分布が一定となり、取扱いは比較

- 1 -

的に容易であった。しかし、このような光線は効率が悪く、しかも発熱量が多いので、小形の積置に使用できなかった。また、光源に印加する電圧を変化させて光量を制御する場合には、分光分布も変化してしまい、光量調節が困難となる欠点もあった。

そこで、これらの光源に代わって世光灯が検討されている。世光灯を光源として用いる場合には、発光効率もよく、また複数種類の蛍光体を適当に組合わせることにより、かなり自由な分光分布が得られる。したがって、このような蛍光灯を使用することにより、光電変換器との組合せにおいて色分解特性を良好にすることが比較的に容易となる。

ここで、光電変換器としてのラインセンサが一定時間内の受光光量の積分値に比例した信号を出力するとき、光線の前記一定時間内における光量の積分値は一定である必要がある。しかし、蛍光灯は一般に低周波の交流電圧で点灯するため、一定時間内の光量積分値が点灯周期の位相に依存し

- 3 -

信号が得られる画象洗取装置を提供することにある。

[発明の根要]

1

本発明は上記目的を達成するために、光振の光量を常に観察し、この光量の値を一定にするべく、光振を点灯させるパルスを発生するパルス発生手段のパルス発生数を、光電変換器の走査に周期した信号で光電変換器の一走査ごとに制御することにより、光振の単位時間内の光量を常に一定に保持するようにしたものである。

[発明の実施例]

以下、本発明の一実施例について図面を参照して説明する。

第1図において、1は光瀬としての蛍光灯で、図示しない被洗取物(たとえばカラー原稿など)に対して相対的に移動し、被読取物の画像面に光を照射する。2は光量積分形の光電変換器としてのCCD形ラインセンサで、蛍光灯1とともに被読取物に対して相対的に移動し、被読取物からの反射光を受光して自己走変により電気信号に変換

(前記一定時間内における光量の積分値は一定とならず)、ラインセンサの出力にも影響を与えて しまう欠点がある。

こうした欠点を除去するために、最近、、労労党を高周被パルスによって点灯することにより課金を少なしていたが、ラインセンサを高速を与えない高周被パルスで労光灯を点灯する必要がある。ただし、あまり高い周被数で労光灯を点灯すると、労光灯の点灯装置上での損失が大きく、効率よく点灯することが周離であった。

さらに、環境温度の変化あるいは経時劣化など による光線の光量変動は避けることができず、長 時間に渡り安定した狭取信号を得ることが困難で あった。

[発明の目的]

本発明は上記事情に組みてなされたもので、その目的とするところは、環境温度の変化あるいは経時劣化などによる光源の光量変動を押えて常に安定な状態に保持でき、よって常に安定した誘取

- 4 -

する。ラインセンサ2は驅動回路3によって走査 駆動される。ラインセンサ2の出力は信号処理回 路4に送られ、ここで所定の信号処理が行なわれ、 蓄傷信号として外部に出力されるようになってい る。蛍光灯1は、スイッチング回路5を介して点 灯回路(高周波パルス発生回路) 6 から高周波パ ルスが供給され、その高周被パルスによって点灯 される。蛍光灯1の光量はホトセルなどの受光素 子7で受光して電気信号に変換し、その信号を受 光回路8に送る。受光回路8は、受光素子7の出 カを増幅して光量フィードパック回路9に送る。 光量フィードバック回路9は、受光回路8の出力 に応じてスイッチング回路5のオン、オフ時間を 制御することにより、ラインセンサ2の一走査時 関内(以下これを一主走査時間内と称する)にお ける蛍光灯1の光量が常に一定になるよう制御す る。ここで、点灯回路6は、ラインセンサ2の走 査時間(以下これを主走査時間と称する)に周期 あるいは非周期の信号で蛍光灯1を高周波点灯し ている。また、受光素子7は、約690mm~

- 5 -

1 1 0 0 n m の赤外光もしくはこれを含む赤外光をほぼカットするフィルタを受光面に備えており、これにより蛍光灯 1 の不要な赤外光の影響を除去するようになっている。

第2 関に本装置の調光のタイミング図を示す。 A はラインセンサ 2 の走査、つまり主走査を制御 する主走査制御信号で、一主走査に 1 回パルスが

- 7 -

助を押えて常に安定な状態に保持でき、よって常 に安定した読取信号が得られる画像読取装置を提 供できる。

4. 図面の簡単な説明

第1回は本発明の一実施例を示す構成図、第2 図は異実施例における調光のタイミング図である。

1 … … 蛍光灯 (光振)、2 … … C C D 形ラインセンサ (光電変換器)、5 … … スイッチング回路、6 … … 点灯回路、7 … … 受光素子、8 … … 受光回路、9 … … 光量フィードバック回路。

出额人代理人 弁理士 鈴 扛 武 彦

得られる。 B は世光灯 1 を点灯させるための高周 彼パルス(点灯包路 6 の出力)、 C はスイッチング回路 5 のオン、オフ制御信号(光量フィードバック回路 9 の出力)、 D は実際に世光灯 1 に印加される高周被点灯信号(スイッチング回路 5 の出力)である。

このように、蛍光灯1の一主走査時間内の光量 積分値を常に観察し、この光量の値を一定にする べく、対きに観察し、この光量の値を一定にする がより、対きを主走査に両期した信号で制 でを発生したが、できるのである。これでは、 はなり、では、では、できるのでは、ないでは、ないでは、ないでは、できるのでは、できる。 により、環境温度の変化のできる。とどできる。 はないできるが持らいには、 ないできる。 ないできる

「発明の効果」

以上詳述したように本発明によれば、環境温度 の変化あるいは経時劣化などによる光線の光量表

-8-

- 9 -