Tutorial Exercise for Tuesday 20230905

1. Determine the inverse of the given matrix A *using row reduction*.

$$A = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3 \end{bmatrix}$$

- 2. TRUE or FALSE? Justify your answer proof if TRUE or counter-example if FALSE.
 - a) The sum of two invertible matrices (square matrices of the same order) is always invertible.
 - b) If matrices A and B commute, then invertibility of A implies invertibility of B.
- 3. Suppose AB = AC, where B and C are n×p matrices and A is an invertible n×n matrix. Show that B = C. Is this true, in general, when A is not invertible? Justify your answer (proof if true, counter-example if false).
- 4. **Observation 1 in Invertible Matrices Quick Review** (L07 on Monday 20230821) states that if the inverse of A exists, it is unique. Can you prove this?
- 5. Consider a general 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 - a) Using Theorem 1 (VIT) and Corollary 1.1, show that A is invertible if and only if ad $-bc \neq 0$.
 - b) Hence determine an expression (formula) for A^{-1} .
- 6. Construct a 2×2 matrix A with all non-zero entries such that the solution set of the system $A\mathbf{x} = \mathbf{0}$ is the line in \mathbb{R}^2 through (5,-3) and the origin. Now find a non-zero vector \mathbf{b} such that the solution set of $A\mathbf{x} = \mathbf{b}$ is not a line in \mathbb{R}^2 parallel to the solution set of $A\mathbf{x} = \mathbf{0}$. Explain why this does not contradict Observation 6 (see lecture slides for L06 on Friday 20230818).
- 7. Given an $m \times n$ matrix A and an $n \times p$ matrix B, the product AB is given by the rule AB = $[Av_1 \ Av_2 \ \ Av_p]$ in column form where $B = [v_1 \ v_2 \ \ v_p]$ in column form. Construct an example to illustrate this rule. The matrix A in your example should be at least 3×3 and B should be at least 3×2 . Then prove the rule in the general case.
 - 8. a) Show that an elementary matrix E obtained by replacement of a row R_i of I by $R_i + kR_i$, where j < i, is a unit lower triangular matrix.
 - b) Show that the product of two unit lower triangular matrices is again a unit lower triangular matrix.

- c) Show that if A is a unit lower triangular matrix, then A is invertible and A⁻¹ is also a unit lower triangular matrix.
- 9. a) Obtain an LU decomposition of the matrix A given below.
 - b) Solve the non-homogeneous system Ax = b, where b is given below, using the LU decomposition obtained in part a).

$$\mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

- 10. For each of the following, clearly state TRUE or FALSE. Then, justify your answer (proof if TRUE, counter-example if FALSE).
 - a) For any square matrix A, if A^k is invertible for some positive integer k > 1, then A itself is invertible.
 - b) If a 3×3 square matrix A satisfies $A^3 = \mathbf{0}$, then $A = \mathbf{0}$. Here $\mathbf{0}$ indicates the zero matrix.
- 11. Consider the system $\mathbb{R}^{3\times3}$ of 3×3 (square) matrices with real entries. A non-zero matrix A is said to be a **zero-divisor** if there exists some non-zero matrix B such that AB = 0, the zero matrix.
- a) If A is invertible, then it cannot be a zero-divisor. TRUE or FALSE? Justify your answer.
- b) If A is not invertible, then it must be a zero-divisor. TRUE or FALSE? Justify your answer.
- 12. a) Obtain an LU decomposition of the matrix A given below.
- b) Solve the non-homogeneous system Ax = b, for b_1 and b_2 given below, using the LU decomposition obtained in part a). Take b_1 and b_2 as column vectors. Explain the difference in the answers for these two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$.

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 6 & 16 \\ 3 & 8 & 21 \end{bmatrix}$$
 $\mathbf{b_1} = (1, 4, 5)$ $\mathbf{b_2} = (3, 7, 15)$

- 13. a) Obtain an LU decomposition of the matrix A given below.
- b) Solve the non-homogeneous system Ax = b, where b is given below, using the LU decomposition obtained in part a). Take **b** as a column vector.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 1 & 1 \\ 1 & 7 & 2 & 1 \end{bmatrix}$$

$$\mathbf{b} = (4, 9, 14)$$