

TTK4135 – Lecture 20 Summing up / Nonlinear MPC / Control applications

Lecturer: Lars Imsland

Outline

- Summing up optimization
- Today: Control and (nonlinear) optimization
 - Nonlinear MPC, some "practical"/industrial issues on MPC
 - Reference: F&H 4.5, 4.6
- Some examples from literature using concepts from this course

Numerical optimization in a nutshell (in this course)

- Unconstrained optimization
 - Search directions: Steepest descent, Newton, Quasi-Newton
 - Globalization: Line-search and (possibly) Hessian modification (Alg. 6.1)
- Constrained optimization
 - Optimality conditions, KKT
 - Linear programming: Standard form, KKT conditions, BFPs, SIMPLEX method (Proc. 13.1)
 - Quadratic programming: EQP/QP, KKT system, Active set method (Alg. 16.3)
 - Nonlinear programming: Nonlinear equations (Alg. 11.1), SQP-method (Alg. 18.3)

Learning goal Ch. 2, 3 and 6: Understand this slide **Line-search unconstrained optimization**

 $\min f(x)$

- Initial guess x_0
- While termination criteria not fulfilled
 - Find descent direction p_k from x_k
 - Find appropriate step length α_k ; set $x_{k+1} = x_k + \alpha_k p_k$
 - k = k + 1
- 3. $x_M = x^*$? (possibly check sufficient conditions for optimality)

A comparison of steepest descent and Newton's method. Newton's method uses curvature information to take a more direct route. (wikipedia.org)

Termination criteria:

Stop when first of these become true:

- $\|\nabla f(x_k)\| \le \epsilon$ (necessary condition)
- $||x_k x_{k-1}|| \le \epsilon$ (no progress)
- $||f(x_k) f(x_{k-1})|| \le \epsilon$ (no progress)
- $k \le k_{\text{max}}$ (kept on too long)

Descent directions:

- Steepest descent $p_k = -\nabla f(x_k)$
- Newton

$$p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Quasi-Newton

$$p_k = -B_k^{-1} \nabla f(x_k)$$

$$B_k \approx \nabla^2 f(x_k)$$

How to calculate derivatives - Ch. 8

Step length line search (Wolfe):

Quasi-Newton: BFGS method

$$p_k = -B_k^{-1} \nabla f(x_k)$$
$$B_k \approx \nabla^2 f(x_k)$$
$$H_k = B_k^{-1}$$

We use only gradient!

Algorithm 6.1 (BFGS Method).

Given starting point x_0 , convergence tolerance $\epsilon > 0$, inverse Hessian approximation H_0 ;

 $k \leftarrow 0$;

while $\|\nabla f_k\| > \epsilon$;

Compute search direction

$$p_k = -H_k \nabla f_k;$$

Set $x_{k+1} = x_k + \alpha_k p_k$ where α_k is computed from a line search procedure to satisfy the Wolfe conditions (3.6);

Define $s_k = x_{k+1} - x_k$ and $y_k = \nabla f_{k+1} - \nabla f_k$;

Compute H_{k+1} by means of (6.17);

 $k \leftarrow k + 1;$

end (while)

$$H_{k+1} = (I - \rho_k s_k y_k^T) H_k (I - \rho_k y_k s_k^T) + \rho_k s_k s_k^T$$

Example (from book)

Using steepest descent, BFGS and inexact Newton on Rosenbrock function

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

- Iterations from starting point (-1.2,1):
 - Steepest descent: 5264
 - BFGS: 34
 - Newton: 21
- Last iterations; value of $||x_k x^*||$

steepest	BFGS	Newton
descent		
1.827e-04	1.70e-03	3.48e-02
1.826e-04	1.17e-03	1.44e-02
1.824e-04	1.34e-04	1.82e-04
1.823e-04	1.01e-06	1.17e-08

Types of Constrained Optimization Problems

- Linear programming
 - Convex problem
 - Feasible set polyhedron

- · Quadratic programming
 - Convex problem if $P \ge 0$
 - Feasible set polyhedron

$$\min \quad \frac{1}{2}x^{\mathsf{T}}Px + q^{\mathsf{T}}x$$
subject to $Ax \le b$

$$Cx = d$$

- Nonlinear programming
 - In general non-convex!

min
$$f(x)$$

subject to $g(x) = 0$
 $h(x) \ge 0$

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$c_i(x) = 0, \quad i \in \mathcal{E},$$

KKT conditions (Theorem 12.1)

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

KKT-conditions (First-order necessary conditions): If x^* is a local solution and LICQ holds, then there exist λ^* such that

Starting point for all algorithms for constrained optimization in this course!

Linear programming, standard form and KKT

LP:
$$\min_{x \in \mathbb{R}^n} c^T x \quad \text{subject to} \quad \begin{cases} a_i x = b_i, & i \in \mathcal{E} \\ a_i x \geq b_i, & i \in \mathcal{I} \end{cases}$$
 LP, standard form:
$$\min_{x \in \mathbb{R}^n} c^T x \quad \text{subject to} \quad \begin{cases} Ax = b \\ x \geq 0 \end{cases}$$

Lagrangian:
$$\mathcal{L}(x,\lambda,s) = c^T x - \lambda^T (Ax - b) - s^T x$$

KKT-conditions (LPs: necessary and sufficient for optimality):

$$A^{T}\lambda^{*} + s^{*} = c,$$

 $Ax^{*} = b,$
 $x^{*} \ge 0,$
 $s^{*} \ge 0,$
 $x_{i}^{*}s_{i}^{*} = 0, \quad i = 1, 2, ..., n$

Simplex method: BFP and KKT

General QP problem

$$\min_{x} \frac{1}{2} x^{\top} G x + x^{\top} c$$
s.t. $a_i^{\top} x = b_i, \quad i \in \mathcal{E}$

$$a_i^{\top} x \ge b_i, \quad i \in \mathcal{I}$$

Lagrangian

$$\mathcal{L}(x^*, \lambda^*) = \frac{1}{2} x^\top G x + x^\top c - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i (a_i^\top x - b_i)$$

KKT conditions

General:

$$Gx^* + c - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i^* a_i = 0$$

$$a_i^\top x^* = b_i, \qquad i \in \mathcal{E}$$

$$a_i^\top x^* \ge b_i, \qquad i \in \mathcal{I}$$

$$\lambda_i^* \ge 0, \qquad i \in \mathcal{I}$$

$$\lambda_i^* (a_i^\top x^* - b_i) = 0, \qquad i \in \mathcal{E} \cup \mathcal{I}$$

Defined via active set:

$$\mathcal{A}(x^*) = \mathcal{E} \cup \left\{ i \in \mathcal{I} \middle| a_i^\top x^* = b_i \right\}$$

$$Gx^* + c - \sum_{i \in \mathcal{A}(x^*)} \lambda_i^* a_i = 0$$

$$a_i^\top x^* = b_i, \qquad i \in \mathcal{A}(x^*)$$

$$a_i^\top x^* \ge b_i, \qquad i \in \mathcal{I} \backslash \mathcal{A}(x^*)$$

$$\lambda_i^* \ge 0, \qquad i \in \mathcal{A}(x^*) \cap \mathcal{I}$$

Active set method for convex QP

```
Algorithm 16.3 (Active-Set Method for Convex QP).
   Compute a feasible starting point x_0;
   Set W_0 to be a subset of the active constraints at x_0;
                                                                                                                                            \min_{p} \quad \frac{1}{2} p^T G p + g_k^T p
                                                                                                                                                                                                             (16.39a)
   for k = 0, 1, 2, ...
             Solve (16.39) to find p_k;
                                                                                                                                     subject to a_i^T p = 0, i \in \mathcal{W}_k.
                                                                                                                                                                                                             (16.39b)
             if p_k = 0
                        Compute Lagrange multipliers \hat{\lambda}_i that satisfy (16.42),
                                                                                                                                        \sum a_i \hat{\lambda}_i = g = G\hat{x} + c,
                                                                                                                                                                                                             (16.42)
                                            with \hat{\mathcal{W}} = \mathcal{W}_{\iota};
                        if \hat{\lambda}_i \geq 0 for all i \in \mathcal{W}_k \cap \mathcal{I}
                                  stop with solution x^* = x_k;
                        else
                                  j \leftarrow \arg\min_{i \in \mathcal{W}_k \cap \mathcal{I}} \hat{\lambda}_i;
                                 x_{k+1} \leftarrow x_k; \ \mathcal{W}_{k+1} \leftarrow \mathcal{W}_k \setminus \{i\};
             else (* p_k \neq 0 *)
                                                                                                                                 \alpha_k \stackrel{\text{def}}{=} \min \left( 1, \min_{i \notin \mathcal{W}_k, a_i^T p_k < 0} \frac{b_i - a_i^T x_k}{a_i^T p_k} \right).
                                                                                                                                                                                                             (16.41)
                        Compute \alpha_k from (16.41);
                        x_{k+1} \leftarrow x_k + \alpha_k p_k;
                        if there are blocking constraints
                                  Obtain W_{k+1} by adding one of the blocking
                                             constraints to \mathcal{W}_k;
                        else
                                  \mathcal{W}_{k+1} \leftarrow \mathcal{W}_k;
   end (for)
```


No degeneracy and *G>0*: Active set method converges in finite number of iterations.

Example 16.4

$$\min_{x} q(x) = (x_1 - 1)^2 + (x_2 - 2.5)^2$$

$$-x_1 - 2x_2 + 6 \ge 0 \tag{2}$$

$$-x_1 + 2x_2 + 2 \ge 0 \tag{3}$$

$$x_1 \ge 0 \tag{4}$$

$$x_2 \ge 0 \tag{5}$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

Local SQP-algorithm for solving NLPs

Only equality constraints:

$$\min f(x) \qquad \qquad \min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p$$
subject to $c(x) = 0$

$$\text{subject to} \quad A_k p + c_k = 0.$$

Algorithm 18.1 (Local SQP Algorithm for solving (18.1)). Choose an initial pair (x_0, λ_0) ; set $k \leftarrow 0$;

Choose an initial pair (x_0, λ_0) ; set $k \leftarrow 0$; repeat until a convergence test is satisfied

Evaluate f_k , ∇f_k , $\nabla^2_{xx} \mathcal{L}_k$, c_k , and A_k ;

Solve (18.7) to obtain p_k and l_k ;

Set $x_{k+1} \leftarrow x_k + p_k$ and $\lambda_{k+1} \leftarrow l_k$;

end (repeat)

With inequality constraints:

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \geq 0, & i \in \mathcal{I} \end{cases} \quad \min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p \\ \text{subject to} \quad \nabla c_i(x_k)^T p + c_i(x_k) = 0, \quad i \in \mathcal{E}, \\ \nabla c_i(x_k)^T p + c_i(x_k) \geq 0, \quad i \in \mathcal{I}. \end{cases}$$

Thm 18.1: Alg. 18.1 identifies (eventually) the optimal active set of constraints (under assumptions). After, it behaves like Newton's method for equality constrained problems.

A practical line search SQP method

Algorithm 18.3 (Line Search SQP Algorithm).

Choose parameters $\eta \in (0, 0.5)$, $\tau \in (0, 1)$, and an initial pair (x_0, λ_0) ; Evaluate f_0 , ∇f_0 , c_0 , A_0 ;

If a quasi-Newton approximation is used, choose an initial $n \times n$ symmetric positive definite Hessian approximation B_0 , otherwise compute $\nabla_{xx}^2 \mathcal{L}_0$; **repeat** until a convergence test is satisfied

Compute p_k by solving (18.11); let $\hat{\lambda}$ be the corresponding multiplier;

Set
$$p_{\lambda} \leftarrow \hat{\lambda} - \lambda_k$$
;

Choose μ_k to satisfy (18.36) with $\sigma = 1$;

Set $\alpha_k \leftarrow 1$;

while $\phi_1(x_k + \alpha_k p_k; \mu_k) > \phi_1(x_k; \mu_k) + \eta \alpha_k D_1(\phi(x_k; \mu_k) p_k)$

Reset $\alpha_k \leftarrow \tau_{\alpha} \alpha_k$ for some $\tau_{\alpha} \in (0, \tau]$;

end (while)

Set $x_{k+1} \leftarrow x_k + \alpha_k p_k$ and $\lambda_{k+1} \leftarrow \lambda_k + \alpha_k p_{\lambda}$;

Evaluate f_{k+1} , ∇f_{k+1} , c_{k+1} , A_{k+1} , (and possibly $\nabla^2_{xx} \mathcal{L}_{k+1}$);

If a quasi-Newton approximation is used, set

$$s_k \leftarrow \alpha_k p_k$$
 and $y_k \leftarrow \nabla_x \mathcal{L}(x_{k+1}, \lambda_{k+1}) - \nabla_x \mathcal{L}(x_k, \lambda_{k+1})$,

and obtain B_{k+1} by updating B_k using a quasi-Newton formula;

end (repeat)

$$\min_{p} \quad f_k + \nabla f_k^T p + \frac{1}{2} p^T \nabla_{xx}^2 \mathcal{L}_k p \tag{18.11a}$$

subject to
$$\nabla c_i(x_k)^T p + c_i(x_k) = 0, \quad i \in \mathcal{E},$$
 (18.11b)

$$\nabla c_i(x_k)^T p + c_i(x_k) \ge 0, \quad i \in \mathcal{I}.$$
 (18.11c)

Compare Alg. 6.1:

- Search direction from quadratic approximation
- Line search
- Update Hessian using BFGS

Model predictive control

A model of the process is used to compute the control signals (inputs) that optimize predicted future process behavior

Process control hierarchy before and after MPC

Embedded Model Predictive Control

PhD project Giorgio Kufoalor

Traditional MPC

- Successful in process industries
- · Sampling times of minutes
- Powerful computing platforms

(M. Morari, 2013)

Embedded MPC

- Small, high performance plants
- Sampling times of ms to ns
- Limited embedded platform

(M. Morari, 2013)

Embedded MPC for new industrial applications

(Statoil subsea factory)

Main contributions to fill the gap

PhD project Giorgio Kufoalor

- Step-response MPC on ultra-reliable, resource constrained, industrial hardware
- Detailed study on MPC formulations and solver methods to achieve fast and reliable solutions
 - Achieve significant savings, both in computations and memory usage
 - Exploiting problem structure and specifics of computing platform
 - Automatic code generation (almost...)
- Development of new multistage QP framework, tailored to stepresponse MPC
- All extensively tested on a realistic subsea compact separation simulator using hardware-in-the-loop testing

D. K. M. Kufoalor, S. Richter, L. Imsland, T. A. Johansen, Enabling Full Structure Exploitation of Practical MPC Formulations for Speeding up First-Order Methods, 56th IEEE Conference on Decision and Control, 2017

Open-loop optimization with linear state-space model

$$\min_{z \in \mathbb{R}^n} f(z) = \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q_{t+1} x_{t+1} + d_{x,t+1} x_{t+1} + \frac{1}{2} u_t^{\top} R_t u_t + d_{u,t} u_t + \frac{1}{2} \Delta u_t^{\top} S \Delta u_t$$

subject to

$$x_{t+1} = A_t x_t + B_t u_t, \quad t = \{0, \dots, N-1\}$$

$$x^{\text{low}} \le x_t \le x^{\text{high}}, \quad t = \{1, \dots, N\}$$

$$u^{\text{low}} \le u_t \le u^{\text{high}}, \quad t = \{0, \dots, N-1\}$$

$$-\Delta u^{\text{high}} \le \Delta u_t \le \Delta u^{\text{high}}, \quad t = \{0, \dots, N-1\}$$

QP

where

$$x_0$$
 and u_{-1} is given
$$\Delta u_t := u_t - u_{t-1}$$

$$z^\top := (u_0^\top, x_1^\top, \dots, u_{N-1}^\top, x_N^\top)$$

$$n = N \cdot (n_x + n_u)$$

$$Q_t \succeq 0 \quad t = \{1, \dots, N\}$$

$$R_t \succ 0 \quad t = \{0, \dots, N-1\}$$

Model predictive control principle

Nonlinear MPC

The three ways of implementing NMPC

- Sequential (single shooting) methods
 - Only inputs as optimization variables, simulate to calculate objective and state constraints (and gradients)
 - "Small" optimization problem with no structure
 - Standard SQP methods are suitable
- Simultaneous methods
 - Both inputs and states as optimization variables, include model as equality constraints
 - Huge optimization problem, but constraints and gradients are very structured ("sparse", a lot of zeros)
 - Must use solvers that exploit this structure (e.g. IPOPT)
- In-between method: Multiple shooting
 - Divide horizon into "sub-horizons", use single-shooting on each sub-horizon and add equality constraints to
 "glue" each sub-horizon together
 - Results in medium-sized "block-structured" optimization problem
 - Ideally use solvers that exploit this structure (but not many exists)
- What is best? Depends...

NMPC example: van der Pol

Controlled van der Pol oscillator

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -x_1 + e(1 - x_1^2)x_2 + u$$

- Discretization (here: Euler)
- Stability dependent on horizon length
- Importance of "warm-start"

Output feedback MPC

Figure 4.3: The structure of an output feedback linear MPC.

Output feedback NMPC

Cybernetica

- Cybernetica provides advanced model-based control systems for the process industry
 - Based on non-linear first principles (mechanistic) models
 - Nonlinear state- and parameter estimation (EKF, MHE)
 - Online dynamic optimization (nonlinear model predictive control, NMPC)

SOME EXAMPLES

Applied LQR

Applied LQR

$$M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = S^{T}\tau + J_{c}(q)^{T}f_{c}$$

- 1. Modify dynamics to null-space of the contact constraint
- 2. Linearize the model around desired pose (q_0, \dot{q}_0, τ_0)

$$\dot{x} = Ax + Bu, \qquad x^T = [\Delta q^T, \Delta \dot{q}^T], \qquad u^T = [\Delta \tau]$$

3. Calculate the infinite horizon linear quadratic regulator

$$J = \int_{0}^{\infty} x^{T} Q x + u^{T} R u$$

4. Apply the input

$$\tau = \tau_0 - Kx$$

Fig. 1: Hydraulically actuated torque controlled Sarcos humanoid used for experiments.

Applied Open-Loop Dynamic Optimization

Applied Open-Loop Dynamic Optimization

- 1. Split the problem:
 - Lap time offline
 - Tracking online
- 2. Solve a "periodic" problem

$$\begin{aligned} & \min_{\mathbf{X}, \mathbf{U}} & & \sum_{k=0}^{N} j_{\text{LTO}}(\mathbf{x}_k, \mathbf{u}_k) \\ & \text{s.t.} & & \mathbf{x}_{k+1} = f_s^d(\mathbf{x}_k, \mathbf{u}_k) \\ & & & f_s^d(\mathbf{x}_N, \mathbf{u}_N) = \mathbf{x}_0 \end{aligned}$$

Fig. 3. The hierarchical controller uses the reference track in both stages of the hierarchical controller. First the lap time optimization (LTO) problem computes a reference path, whose curvature $\kappa(s)$ and speed profile $\bar{V}_x(s)$ are later used by the NMPC.

3. Apply NMPC for closed-loop

MPC using distributed SQP

MPC using distributed SQP

Algorithm 1 Schematic description of the Distributed SQP. The arguments of the functions are removed for brevity.

- 1: Coordinator initializes the problem.
- 2: while exit conditions not fulfilled do
- 3: Coordinator broadcasts T.
- 4: Each vehicle solves (8)
- 5: Each vehicle returns ∇V_i , $\nabla^2 V_i$, g_i , ∇g_i , $\nabla^2 g_i$.
- 6: Coordinator solves the SQP sub-problem (21).
- 7: Coordinator and vehicles compute α .
- 8: Coordinator takes step (20).

Fig. 2: Schematic illustration of the bi-level control structure for one vehicle. The coordinator is in closed-loop with all vehicles in the same way.

Branching Course MPC

Source:

Bjørn-Olav Holtung Eriksen https://doi.org/10.1002/rob.21900

Branching Course MPC

Figure 10: A set of predicted pose trajectories with 3 levels.

