1 Maximum Likelihood Estimator

Three properties of maximum likelihood esti-

- 1. θ_{ML} is consistent. $\theta_{ML} \to \theta_0$ when $n \to \infty$.
- 2. θ_{ML} is asymptotically normal. $\sqrt{n}(\theta_{ML} \theta_0$) ~ $\mathcal{N}(0, I_n(\theta_0))$ when $n \to \infty$ and $I_n(\theta_0)$ is the fisher information.
- 3. θ_{ML} is asymptotically efficient. θ_{ML} mi- **3** BLR and GP nimizes $\mathbb{E}(\theta - \theta_0)^2$ when $n \to \infty$ because the asymptotic variance equals the Rao-Cramer bound (MLE is asymptotically unbiased). Note: when *n* is finite, θ_{ML} is not necessarily efficient, e.g., Stein estimator is

Rao-Cramer bound: for any unbiased estimator $\hat{\theta}$ of θ_0 , $\mathbb{E}(\hat{\theta} - \theta_0)^2 \geq 1/I_n(\theta_0)$, where $I_n(\theta) = -\mathbb{E}(\frac{\partial^2}{\partial \theta^2} \log f(X; \theta) \mid \theta) =$ $\mathbb{E}(\frac{\partial}{\partial \theta} \log f(X; \theta) \mid \theta)^2$ is the fisher informati-

Sketch of Proof: define $\Lambda = \frac{\partial \log P(X;\theta)}{\partial \theta}$. Cauchy-Schwarz says $Cov^2(\Lambda, \hat{\theta}) \leq Var(\Lambda) Var(\hat{\theta}) =$ $\mathbb{E}(\Lambda^2)$ **Var** $(\hat{\theta})$ because $\mathbb{E}\Lambda = 0$. Note that $\mathbf{Cov}(\Lambda, \hat{\theta}) = \mathbb{E}(\Lambda \hat{\theta}) = \int_{X} \hat{\theta}(x) \frac{\partial}{\partial \theta} f(x; \theta) dx =$ $\frac{\partial}{\partial \theta} \int_X \hat{\theta}(x) f(x;\theta) dx = \frac{\partial}{\partial \theta} \mathbb{E} \hat{\theta} = 1$. Therefore, A function is a kernel iff k(x,x') = k(x',x) (sym- $\operatorname{Var}(\hat{\theta}) \geq 1/\mathbb{E}(\Lambda^2)$.

However, when the dimension of problem goes to infinity while keeping the data-dim ratio fixed, MLE is biased and the p-values are unreliable.

2 Regression

Bias-Variance trade-off

Let D be the training dataset and \hat{f} be the predictive function. $\mathbb{E}_D \mathbb{E}_{Y|X} (\hat{f}(X) - Y)^2 =$ $\mathbb{E}_D \mathbb{E}_{Y|X} [(\hat{f}(X) - \mathbb{E}_{Y|X}Y)^2 + (\mathbb{E}_{Y|X}Y - Y)^2] =$ $\mathbb{E}_D(\hat{f}(X) - \mathbb{E}(Y \mid X))^2 + \mathbb{E}_D(\mathbb{E}(Y \mid X) - Y)^2 =$ $\mathbb{E}_D(\hat{f}(x) - \mathbb{E}_D\hat{f}(x))^2 + \left(\mathbb{E}_D\hat{f}(x) - \mathbb{E}(Y \mid X)\right)^2 +$ $\mathbb{E}_D(\mathbb{E}(Y \mid X) - Y)^2$. It means that expected square error (training) = variance of prediction + squared bias + variance of noise.

The optimal trade-off is achieved by avoiding under-fitting (large bias) and over-fitting (large variance). Note that here the variance of output is computed by refitting the regressor on a new dataset.

Regularization

Ridge and Lasso can be viewed as MAP (maximum a posterior) estimation. A Gaussian prior on β is equivalent to Ridge and a Laplacian prior is equivalent to Lasso. Using

tion: $X\beta^{\text{Ridge}} = \sum_{j=1}^{\bar{d}} [d_j^2/(d_j^2 + \lambda)] u_j u_j^T Y$ (each $u_i u_i^T Y$ can be viewed as a model). Lasso has more sparse estimations because the gradient of regularization does not shrink as in the case of Ridge.

Bayesian Linear Regression

 $Y = X\beta + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$ and a prior $\beta \sim$ $\mathcal{N}(0,\Lambda^{-1})$. By Bayesian, $\beta \mid X,Y \sim \mathcal{N}(\mu_{\beta},\Sigma_{\beta})$, where $\mu_{\beta} = (X^T X + \sigma^2 \Lambda)^{-1} X^T Y$ and $\Sigma_{\beta} =$ universally more efficient for single sam- $\sigma^2(X^TX + \sigma^2\Lambda)^{-1}$. MAP estimation of this prior (i.e., μ_{β}) is equivalent to Ridge regression given $\Lambda = \lambda I$ and $\sigma = 1$.

When $\Lambda = \lambda I$, under the prior, $Y \sim$ $\mathcal{N}(0, \frac{1}{1}X^TX + \sigma^2I)$. Therefore, $\mathbf{Cov}(y_i, y_i) =$ $\frac{1}{\lambda}x_i^Tx_i$. It means a prior that closer samples is more similar, i.e., $Cov(y_i, y_i)$ is large when $x_i^T x_i$ is large. The kernel $X^T \Lambda^{-1} X$ is thus called linear kernel. When a general kernel is used, Gaussian Process appears.

Gaussian Process

Kernel Function

metry) and $\int_{\Omega} k(x,x')f(x)f(x')dxdx' \ge 0$ for any $f \in L_2$ and $\Omega \in \mathbb{R}^d$ (semi-positiveness in continuous case) or K(X) is a valid covariance matrix for any X (semi-positiveness in discrete case). The latter is equivalent to either (1) $\sum_{i,j} a_i a_j K(x_i, x_j) \ge 0$ for any $a_{i,j}$ and $k_{i,j}$, or (2) $k(x,x') = \phi(x)^T \phi(x')$ for some ϕ .

Assume $k_{1,2}$ are valid kernels, then the following are valid kernels:

- 1. $k(x, x') = k_1(x, x') + k_2(x, x')$.
- 2. $k(x,x') = k_1(x,x') \cdot k_2(x,x')$. Proof: let $V \sim \mathcal{N}(0, K_1), W \sim \mathcal{N}(0, k_2)$ and is independent to V, then $Cov(V_iW_i, V_iW_i) =$ $Cov(V_i, V_i) Cov(W_i, W_i) = k_1 \cdot k_2(x_i, x_i).$
- 3. $k(x, x') = ck_1(x, x')$ for constant c > 0.
- 4. $k(x,x') = f(k_1(x,x'))$ if f is a polynomial with positive coefficients or the exp. Proof: polynomial can be proved by applying the product, positive scaling and addition. Exp can be proved by taking limit on the poly-
- 5. $k(x, x') = f(x)k_1(x, x')f(x')$.
- 6. $k(x, x') = k_1(\phi(x), \phi(x'))$ for any function ϕ . Example: RBF kernel $k(x,y) = \exp(-\frac{1}{2\sigma^2}||x - y||^2)$ $|y|^2 = \exp(-\frac{1}{2\sigma^2}||x||^2)\exp(\frac{1}{\sigma^2}x^Ty)\exp(-\frac{1}{2\sigma^2}||y||^2)$ However, naive gradient descent has two model.

SVD, we get Ridge has built-in model selec- is valid. Since x^Ty is the linear kernel and thus $\exp(\frac{1}{\sigma^2}x^Ty)$ is a valid kernel, let $f(x) = \exp(-\frac{1}{2\sigma^2}||x||^2)$, we get the RBF function equals f(x)k(x,y)f(y), which is a valid kernel.

Mercer's Theorem

Assume k(x, x') is a valid kernel. Then there exists an orthogonal basis e_i and $\lambda_i \geq 0$, s.t. $k(x, x') = \sum_{i} \lambda_{i} e_{i}(x) e_{i}(x').$

Conditional Gaussian

 $\mathbb{E}(y_2 \mid y_1) = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (y_1 - \mu_1), \mathbf{Var}(y_2 \mid y_1) =$ $\Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}$.

4 Linear Methods for Classification **Concept Comparison**

- 1. Probabilistic Generative, modeling p(x, y): (1) can create new samples, (2) outlier detection, (3) probability for prediction, (4) high computational cost and (5) high bias.
- 2. Probabilistic Discriminative, modeling $p(y \mid x)$: (1) probability for prediction, (2) medium computational cost and (3) medium bias.
- 3. Discriminative, modeling y = f(x): (1) no probability for prediction, (2) low computational cost and (3) low bias.

Infer p(x, y) for classification problems

Use $p(x,y) = p(y)p(x \mid y)$. Since y has finite states, model p(y) and $p(x \mid y)$ for different y. The modeling requires to (1) guess a distribution family and (2) infer parameters by MLE.

Compute $p(y \mid x)$ by discriminant analysis (DA) Linear DA

Goal: classify a sample into two Gaussian distribution with $\Sigma_0 = \Sigma_1$. After calculation, $p(y = 1 \mid x) = 1/(1 + \exp(-\log \frac{p(x|y=1)p(y=1)}{p(x|y=0)p(y=0)})) =$

 $1/(1 + \exp(w_1^T x + w_0))$ since the quadratic term is eliminated due to $\Sigma_0 = \Sigma_1$.

Quadratic DA

Goal: classify a sample into two Gaussian distribution with $\Sigma_0 \neq \Sigma_1$. After calculation, $p(y = 1 \mid x) = 1/(1 + \exp(x^T W x + w_1^T x + w_0)).$

Optimization Methods

Optimal Learning Rate for Gradient Descent

Goal: find $\eta^* = \operatorname{argmin}_{\eta} L(w^k - \eta \cdot \nabla L(w^k))$. By Taylor expansion of $L(w^{k+1})$ at w^k and solve for the optimal η , we get $\eta^* =$ $||\nabla L(w^k)||^2$ $\overline{\nabla L(w^k)^T H_L(w^k) \nabla L(w^k)}$.

weaknesses: (1) it often has a zig-zag behavior, especially in a very narrow, long and slightly downward valley; (2) the gradient update is small near the stationary point. This can be mitigated by adding a momentum term in the update: $w^{k+1} = w^k - \eta \nabla L(w^k) + \mu^k (w^k - w^{k-1})$ which speeds the update towards the "common" direction.

Newton's Method

Taylor-expand L(w) at w_k to derive the optimal w^{k+1} : $L(w) \approx L(w) + (w - w^k)^T \nabla L(w^k) +$ $\frac{1}{2}(w-w^k)^T H_I(w^k)(w-w^k) \Rightarrow w^{k+1} = w^k H_I^{-1}(w^k)\nabla L(w^k)$.

Pros: (1) better updates compared to GD since it uses the second Taylor term and (2) does not require learning rate.

Cons: requires H_I^{-1} which is expensive.

Bayesian Method

In most cases, the posterior is intractable. Use approximation of posterior instead.

Laplacian Method

Idea: approximate posterior near the MAP estimation with a Gaussian distribution. $p(w \mid$ $(X,Y) \propto p(w,X,Y) \propto \exp(-R(w))$, where R(w) = $-\log p(w, X, Y)$. Let $w^* = \operatorname{argmin} R(w)$ be the MAP estimation and Taylor-expand R(w) at w^* : $R(w) \approx R(w^*) + \frac{1}{2}(w - w^*)^T H_R(w^*)(w - w^*)$. Therefore, $p(w \mid X, Y) \propto \exp(-R(w^*) - \frac{1}{2}(w - w^*))$ $(w^*)^T H_R(w^*)(w-w^*)$ and thus $(w \mid X,Y) \sim$ $\mathcal{N}(w^*, H_R^{-1}(w^*)).$

Bayesian Information Criterion (BIC)

We use prior $w \sim \mathcal{N}(\mu_0, \alpha_0 I_d)$ for α_0 sufficiently large (little prior). Since $p(w \mid X,Y) = p(w,X,Y)/p(X,Y) \approx$ $\exp(-R(w^*) - \frac{1}{2}(w - w^*)^T H_R(w^*)(w (w^*)/p(X,Y)$ is a Gaussian distribution, we have $p(X,Y) \approx e^{-R(w^*)}(2\pi)^{-d/2}|H_R(w^*)|^{-1/2}$. Therefore, $\log p(X,Y) \approx -R(w^*) - \frac{d}{2} \log(2\pi) - \frac{d}{2} \log(2\pi)$ $\frac{1}{2}\log|H_R(w^*)| = \log p(w^*) + \log p(X, Y \mid w^*) \frac{\tilde{d}}{2}\log(2\pi) - \frac{1}{2}\log|H_R(w^*)|$. Further, notice that $H_R(w^*) = \frac{\partial^2}{\partial w^T} (-\log p(w^*) - \log p(X, Y \mid w^*)) =$ $-(\alpha_0 I_d)^{-1} - N \mathbb{E}_{x,y}(\frac{\partial^2}{\partial w^T} \log p(x,y \mid w^*)) \approx N \mathbf{I},$ where I is the fisher information. Therefore, we define BIC = $-\log p(X, Y \mid w^*) + \frac{d}{2} \log N$ and thus $\log p(X,Y) \approx \text{const} - \text{BIC. A lower}$ BIC means (approximately) a larger evidence (log-likelihood of samples) and thus a better

LDA by loss minimization

Perceptron

Goal: for $y_i \in \{0,1\}$, find w, s.t. $y_i w^T x_i > 0$ for any *i*. The classification function is c(x) = $\operatorname{sgn}(w^T x)$.

L(v,c(x)) = 0 if $vw^Tx > 0$ and L(v,c(x)) = $-yw^Tx$ o.w. By gradient descent, the Perceptron is guaranteed to converge if (1) the data is linearly separable, (2) learning rate $\eta(k) > 0$, (3) $\sum_{k} \eta(k) \rightarrow +\infty$ and (4) $(\sum_k \eta(k)^2)/(\sum_k \eta(k))^2 \rightarrow 0$. However, there exists multiple solutions if the data is linearly separable.

Fisher's LDA

Idea: project the two distribution into one dimension and maximize the ratio of the variance between the classes and the variance within the classes, i.e., $\max(w^T u_1 - w^T u_0)^2 / (w^T S w)$, where $S = \Sigma_0 + \Sigma_1$. Let gradient be zero and solve for w^* , we get $w^* \propto S^{-1}(u_1 - u_0)$.

We first compute w^* and fit distributions of the two-class projection. Then apply Bayesian decision theory to make classification.

5 Convex Optimization

Definition: the objective is convex and the feasible set is convex. The standard form is to minimize a convex function (f(w)) for convex f) under affine equality constraint $(g_i(w) = 0)$ for affine g_i) and convex non-positive constraint $(h_i(w) \leq 0 \text{ for convex } h_i)$.

How to Solve

- (1) Define Lagrangian: $L(w, \lambda, \alpha) = f(w) +$ $\sum_{i} \lambda_{i} g_{i}(w) + \sum_{j} \alpha_{j} h_{j}(w)$ and $\alpha_{j} \geq 0$.
- (2) Check whether strong duality holds using Slater's condition (sufficient but not necessary): there is a strictly feasible point, i.e., $\exists w_0$, s.t. $g_i(w_0) = 0$ and $h_i(w_0) < 0$.
- (3) Solve for dL(w) = 0, $g_i(w) = 0$, $\alpha \ge 0$, $h_i(w) \leq 0$ and $\alpha_i h_i(w) = 0$ (complementary slackness).
- (4) Weak duality always holds and when Slater's condition holds it equals $\min_{w} f(w)$: solve $\max_{\lambda,\alpha} \Theta(\lambda,\alpha)$ s.t. $\alpha \geq 0$, where $\Theta(\lambda,\alpha) =$ $\min_{w} L(w, \lambda, \alpha)$. The optimal in the weak duality is a lower bound for $\min_{w} f(w)$ since $\Theta(\lambda, \alpha) \leq \min_{w} f(w)$ for any λ and α .

6 Support Vector Machine **Hard-Margin SVM**

The optimization form is to minimize $\frac{1}{2}||w||^2$, s.t. $y_i(w^Tx_i + w_0) \ge 1$ $(y_i \in \{-1, 1\})$. It is convex and the Slater's condition holds under the

assumption of linear separability.

By solving $\min_{w,w_0} L(w, w_0, \alpha)$, the duality form is $\max_{\alpha} -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j + \sum_i \alpha_i$, s.t. $\alpha_i \ge 0$, $\sum_i \alpha_i y_i = 0$. $w^* = \sum_{i \in \text{support vec}} \alpha_i^* y_i x_i$.

Soft-Margin SVM & Kernel SVM

When the data is not linearly separable, one solution is to add slack_variables: $\min_{\xi, w, w_0} \frac{1}{2} ||w||^2 + C \sum_i \xi_i$, s.t. $y_i(w^T x_i + w_0) \ge$ $1 - \xi_i$ and $\xi_i \ge 0$. Note: when the data is linearly separable, soft-margin does not necessarily produce the same cut-plane as the hard-margin SVM, especially when the margin is small due to few support vectors. When $C \to \infty$, it becomes hard-margin SVM.

The only difference in the dual form is that we need an extra condition $0 \le \alpha \le C$. $\xi_i^* =$ $\max(0, 1 - y_i(w^{*T}x_i + w_0)).$

Another solution, Kernel SVM, is to use $K(x_i, x_i) = \phi(x_i)^T \phi(x_i)$ to replace $x_i^T x_i$.

Multi-class SVM

Idea: use M := #class hyperplanes and maximize the generalized margin: min $\sum_{i=1}^{M} w_i^T w_i$ s.t. $w_{v_i}^T x_i + w_{v_{i,0}} - \max_{v \neq v_i} w_v^T x_i + w_{v,0} \ge 1$.

Structural SVM

Goal: predict a structured output label, e.g., parsing trees.

Difficulty of predicting structures:

- 1. Compact representation of output space (cannot use one model for each class). Sol: use a score function and feature map $\hat{v} =$ $\operatorname{argmax}_{v} w^{T} \Psi(x, y).$
- 2. Efficient prediction (cannot use bruteforce search to find argmax). Sol: assume structures such as decomposable output
- 3. Define prediction error (cannot use 0/1 errors). Sol: use a loss function $\Delta(\psi, \hat{\psi})$.
- 4. Efficient training (cannot evaluate all constraints). Sol: iteratively add new constraints to the training.

Ensemble: Adaboost

Adaboost has following properties:

- 1. It minimizes exponential loss forwardly.
- 2. It trains max-margin classifiers.
- 3. It, as well as Random Forest, is spiky selfaveraging interpolators, which localize the effect of noise.
- 4. It falls into the double descent regime: over-parameterized models can have better generalization.

8 Generative Models

Variational Autoencoder: use approximated probability to model $p(z \mid x)$ and the $p(x \mid z)$.

- Pro: can be used as feature representation.
- Con: generated images are blurrier and relatively low compared to GAN.

Generative Adversarial Network: use 2-player game to sample from p(x). Pro: SOTA.

• Con: (1) unstable, (2) potential mode collapse and (3) cannot solve p(x).

9 Non-parametric Bayesian Inference (BI) **Exact Conjugate Prior of Multivariate Gaussian** Data: $x_i \sim \mathcal{N}(\mu, \Sigma)$ i.i.d.. Inverse Wishart: $\Sigma \sim$ $W^{-1}(S, v) \propto |\Sigma|^{(v+p+1)/2} \exp(-\text{Tr}(\Sigma^{-1}S)/2).$

Normal Inverse Wishart as conjugate prior: $p(\mu, \Sigma | m_0, k_0, v_0, S_0) = \mathcal{N}(\mu | m, \Sigma / k_0) \mathcal{W}^{-1}(\Sigma | S_0, v_0).$ $p(\mu, \Sigma | m_0, k_0, v_0, S_0) = \mathcal{N}(\mu | m, \Sigma / k_0) \mathcal{W}^{-1}(\Sigma | S_0, v_0).$ $p(\mu, \Sigma | m_0, k_0, v_0, S_0) = \mathcal{N}(\mu | m, \Sigma / k_0) \mathcal{W}^{-1}(\Sigma | S_0, v_0).$ Posterior: $G | \{\theta_i\}_{i=1}^n \sim \mathrm{DP}\left(\alpha + n, \frac{\alpha H + \sum_{i=1}^n \delta_{\theta_i}}{\alpha + n}\right)$ $k_0 + N$, $v_p = v_0 + N$, $S_p = S_0 + k_0 m_0 m_0^{\top}$ $k_p m_p m_p^{\top} + \sum (x_i - \overline{x})(x_i - \overline{x})^{\top}$.

BI with Semi-Conjugate Prior

New prior: $\mu \sim \mathcal{N}(m_0, V_0)$, $\Sigma \sim \mathcal{W}^{-1}(S_0, v_0)$, then posterior $p(\mu, \Sigma|X)$ is intractable, but condition posterior is exact, $p(\mu|\Sigma, X) =$ $\mathcal{N}(m_p, V_p), V_p^{-1} = V_0^{-1} + N\Sigma^{-1}, V_p^{-1}m_p =$ $V_0^{-1} m_0 + N \Sigma^{-1} \overline{x}$; $p(\Sigma | \mu, X) = W^{-1}(S_n, v_n), v_n =$ $v_0 + N$, $S_p = S_0 + \sum x_i x_i^{\top} + N \mu \mu^{\top} - 2N \bar{x} \mu^{\top}$.

Gibbs sampling: random variable $p(z_1, \dots, z_n)$ intractable, cyclically resample z_i according to tractable conditional distribution $p(z_i|z_{i})$ n times, when $n \to \infty$, $(z_1, \dots, z_p) \sim p(z_1, \dots, z_p)$ Finally, replace posterior with MC sampling: $\mathbb{E}_{\theta|X} f(x|\theta) \approx \sum f(x|\theta_i)/N$

BI for Gaussian Mixture Model

Data model: latent K class variable $z_i \sim$ $Cat(\pi)$, observed $x_i \sim \mathcal{N}(\mu_{z_i}, \Sigma_{z_i})$. Prior: $\mu_k \sim$ $\mathcal{N}(m_0, V_0), \ \Sigma_k \sim \mathcal{W}^{-1}(S_0, v_0), \ \pi \sim \operatorname{Dir}(\alpha) \propto$ $\prod_{k}^{K} p_{k}^{\alpha_{k}-1}$. Prior also intractable.

Goal Gibbs sampling for BI, but to simplify conditional distribution.

d-seperation: for verifying conditional independence. Given with observed variable set VC inequality:

C, if any path from variable A to B is blocked on probability graph, then A and B are independent condition on C. By this thm: (1) z_i , z_i (2) μ , π (3) Σ , π all independent condition on other parameter. Sampling procedure: (1) $z^{(t)} \leftarrow p(\cdot|x, \mu^{(t-1)}, \Sigma^{(t-1)}),$ (2) $\mu^{(t)} \leftarrow$ $p(\cdot|x, \Sigma^{(t-1)}, z^{(t)}), (3) \Sigma^{(t)} \leftarrow p(\cdot|x, \mu^{(t)}, z^{(t)}), (4)$ $\pi^{(t)} \leftarrow p\left(\cdot|x,z^{(t)}\right)$

BI for Non-Parametric GMM

Goal: sample from infinite categorical distri. Dirichlet Process (DP): Θ parameter space, H prior distri on Θ , A_1, \dots, A_r arbitrary partition of Θ . G a categorical distribution over $\{A_i\}$ is $G \sim \mathrm{DP}(\alpha, H)$ if $(G(A_1), \dots, G(A_r)) \sim$ $Dir(\alpha H(A_1),...,\alpha H(A_r)).$

Condition on θ , Margin over $G: \theta_{n+1}$ $\theta_1, \dots, \theta_n \sim \frac{1}{\alpha+n} \left(\alpha H + \sum_{i=1}^n \delta_{\theta_i} \right)$, Leads to CRP

Three Methods of Sampling from DP

In $K \to \infty$ GMM, θ in DP is z, G is π . (1) Chinese Restaurant Process (CRP), sample z, marginalize over π :

$$p(z_n = k | \theta_{i < n}) = \begin{cases} n_k / (\alpha + n - 1), \text{ existing } k \\ \alpha / (\alpha + n - 1), \text{ new } k \end{cases}$$

Expect # of Class $\sum_{i=1}^{n} \frac{\alpha}{\alpha+i-1} \simeq \alpha \log \left(1+\frac{n}{\alpha}\right)$

(2) Stick-breaking Construction samples π : $\beta_k \sim \text{Beta}(1,\alpha), \, \theta_k^* \sim H, \, \pi_k = \beta_k \prod_{l=1}^{k-1} (1-\beta_l)$ (3) Marginalize over μ , Σ when sampling z (if intractable), less variance (Rao-Blackwall).

Exchangeability: $p(\{\theta_i\}) = \prod_{n=1}^N p(\theta_n | \{\theta_{i < n}\})$ unchanged after permuting sampling order. DeFinetti's Thm any exchangeable distri is a mixture model $P(\{\theta_i\}) = \prod_{i=1}^n G(\theta_i) dP(G)$

10 PAC Learning

Definitions:

- A learning algorithm A can learn $c \in C$ if there is a poly(.,.), s.t. for (1) any distribution \mathcal{D} on \mathcal{X} and (2) $\forall 0 < \epsilon < \frac{1}{2}, 0 <$ $\delta < \frac{1}{2}$, \mathcal{A} outputs $\hat{c} \in \mathcal{H}$ given a sample of size at least poly($\frac{1}{\epsilon}$, $\frac{1}{\delta}$, size(c)) such that $P(\mathcal{R}(\hat{c}) - \inf_{c \in C} \mathcal{R}(c) \le \epsilon) \ge 1 - \delta.$
- A is called an efficient PAC algorithm if it runs in polynomial of $\frac{1}{6}$ and $\frac{1}{8}$.
- C is (efficiently) PAC-learnable from \mathcal{H} if there is an algorithm A that (efficiently) learns C from \mathcal{H} .

- For an ERM \hat{c}_n^* , $P(\mathcal{R}(\hat{c}_n^*) \inf_{c \in \mathcal{C}} \mathcal{R}(c) > \epsilon) \le 2|\mathcal{C}| \exp\left(-\frac{n\epsilon^2}{2}\right)$. Finite VC-dimension means PAC-learnable.

11 Appendix

$$\frac{\partial}{\partial \Sigma} \log |\Sigma| = \Sigma^{-T}.$$