

Winning Space Race with Data Science

Meet Pandya 02/05/2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data Collection through API
- Data Collection with Web Scraping
- Data Wrangling
- Exploratory Data Analysis with SQL
- Exploratory Data Analysis with Data Visualization
- Interactive Visual Analytics with Folium
- Machine Learning Prediction

Summary of all results

- Exploratory Data Analysis result
- Interactive analytics in screenshots
- Predictive Analytics result

Introduction

Project background and context

• Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. This goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.

Problems you want to find answers

- What factors determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What operating conditions needs to be in place to ensure a successful landing program.

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected using SpaceX API and web scraping from Wikipedia.
- Perform data wrangling
 - One-hot encoding was applied to categorical features
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- The data was collected using various methods
 - Data collection was done using get request to the SpaceX API.
 - Next, we decoded the response content as a Json using .json() function call and turn it into a pandas dataframe using .json_normalize().
 - We then cleaned the data, checked for missing values and fill in missing values where necessary.
 - In addition, we performed web scraping from Wikipedia for Falcon 9 launch records with BeautifulSoup.
 - The objective was to extract the launch records as HTML table, parse the table and convert it to a pandas dataframe for future analysis.

Data Collection - SpaceX API

- We used the get request to the SpaceX API to collect data, clean the requested data and did some basic data wrangling and formatting.
- https://github.com/meetpandya47 15/IBMDataScienceCapstoneProj ect/blob/main/nbs/1.%20Data%20 Collection%20API.ipynb

```
1. Get request for rocket launch data using API
          spacex url="https://api.spacexdata.com/v4/launches/past"
          response = requests.get(spacex url)
   2. Use json normalize method to convert json result to dataframe
In [12]:
           # Use json normalize method to convert the json result into a dataframe
           # decode response content as json
           static json df = res.json()
In [13]:
           # apply json normalize
           data = pd.json normalize(static json df)
   3. We then performed data cleaning and filling in the missing values
In [30]:
           rows = data falcon9['PayloadMass'].values.tolist()[0]
           df rows = pd.DataFrame(rows)
           df rows = df rows.replace(np.nan, PayloadMass)
          data falcon9['PayloadMass'][0] = df rows.values
           data_falcon9
```

Data Collection - Scraping

- We applied web scrapping to webscrap Falcon 9 launch records with BeautifulSoup
- We parsed the table and converted it into a pandas dataframe.
- The link to the notebook is https://github.com/meetpan dya4715/IBMDataScienceC apstoneProject/blob/main/n bs/2.%20Data%20Collectio n%20and%20Webscraping.i pynb

```
1. Apply HTTP Get method to request the Falcon 9 rocket launch page
       static url = "https://en.wikipedia.org/w/index.php?title=List of Falcon 9 and Falcon Heavy launches&oldid=1927686922"
In [5]: # use requests.get() method with the provided static_url
          # assign the response to a object
          html data = requests.get(static url)
          html_data.status_code
Out[5]: 200
    2. Create a BeautifulSoup object from the HTML response
           # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
           soup = BeautifulSoup(html_data.text, 'html.parser')
         Print the page title to verify if the BeautifulSoup object was created properly
          # Use soup.title attribute
           soup.title
          <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title>
       Extract all column names from the HTML table header
         column_names = []
         # Apply find all() function with "th" element on first launch table
         # Iterate each th element and apply the provided extract column from header() to get a column name
         # Append the Non-empty column name ('if name is not None and Len(name) > 0') into a list called column names
          element = soup.find all('th')
          for row in range(len(element)):
                 name = extract_column_from_header(element[row])
                 if (name is not None and len(name) > 0):
                     column names.append(name)
        Create a dataframe by parsing the launch HTML tables
    5. Export data to csv
```

Data Wrangling

- We performed exploratory data analysis and determined the training labels.
- We calculated the number of launches at each site, and the number and occurrence of each orbits
- We created landing outcome label from outcome column and exported the results to csv.
- The link to the notebook is https://github.com/meetpandya4715/IB MDataScienceCapstoneProject/blob/ma in/nbs/3.%20EDA.ipynb

EDA with Data Visualization

 We explored the data by visualizing the relationship between flight number and launch Site, payload and launch site, success rate of each orbit type, flight number and orbit type, the launch success yearly trend.

 The link to the notebook is https://github.com/meetpandya4715/l
 BMDataScienceCapstoneProject/blob/main/nbs/jupyter-labs-eda-dataviz.ipynb
 dataviz.ipynb

EDA with SQL

- We loaded the SpaceX dataset into a PostgreSQL database without leaving the jupyter notebook.
- We applied EDA with SQL to get insight from the data. We wrote queries to find out for instance:
 - The names of unique launch sites in the space mission.
 - The total payload mass carried by boosters launched by NASA (CRS)
 - The average payload mass carried by booster version F9 v1.1
 - The total number of successful and failure mission outcomes
 - The failed landing outcomes in drone ship, their booster version and launch site names.
- The link to the notebook is https://github.com/meetpandya4715/IBMDataScienceCapstoneProject/blob/main/nbs/jupyter-labs-eda-sql-coursera.ipynb

Build an Interactive Map with Folium

- We marked all launch sites, and added map objects such as markers, circles, lines to mark the success or failure of launches for each site on the folium map.
- We assigned the feature launch outcomes (failure or success) to class 0 and 1.i.e., 0 for failure, and 1 for success.
- Using the color-labeled marker clusters, we identified which launch sites have relatively high success rate.
- We calculated the distances between a launch site to its proximities. We answered some question for instance:
 - Are launch sites near railways, highways and coastlines.
 - Do launch sites keep certain distance away from cities.

Build a Dashboard with Plotly Dash

- We built an interactive dashboard with Plotly dash
- We plotted pie charts showing the total launches by a certain sites
- We plotted scatter graph showing the relationship with Outcome and Payload Mass (Kg) for the different booster version.
- The link to the notebook is https://github.com/meetpandya4715/IBMDataScienceCapstoneProject/blob/main/py_files/spacex_dash_app.py

Predictive Analysis (Classification)

- We loaded the data using numpy and pandas, transformed the data, split our data into training and testing.
- We built different machine learning models and tune different hyperparameters using GridSearchCV.
- We used accuracy as the metric for our model, improved the model using feature engineering and algorithm tuning.
- We found the best performing classification model.
- The link to the notebook is https://github.com/meetpandya4715/IBMDataScienceCapstoneProject/blob/main/nbs/SpaceX_Machine%20Learning%20Prediction_Part_5.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• From the plot, we found that the larger the flight amount at a launch site, the greater the success rate at a launch site.

Payload vs. Launch Site

• scatter plot of payload vs launch site.

Success Rate vs. Orbit Type

 From the plot, we can see that ES-L1, GEO, HEO, SSO, VLEO had the most success rate.

Flight Number vs. Orbit Type

• The plot below shows the Flight Number vs. Orbit type. We observe that in the LEO orbit, success is related to the number of flights whereas in the GTO orbit, there is no relationship between flight number and the orbit.

Payload vs. Orbit Type

• We can observe that with heavy payloads, the successful landing are more for PO, LEO and ISS orbits.

Launch Success Yearly Trend

• From the plot, we can observe that success rate since 2013 kept on increasing till 2020.

All Launch Site Names

• use unique() function in select query

```
In [7]: %%sql
    select unique(launch_site) from spacextbl
    * ibm_db_sa://fpz16464:***@3883e7e4-18f5-4afe-bet
498/bludb
    Done.

Out[7]: launch_site
    CCAFS LC-40
    CCAFS SLC-40
    KSC LC-39A
    VAFB SLC-4E
```

Launch Site Names Begin with 'CCA'

• for this query we use like operator in where clause

L											
	<pre>select * from spacextbl where launch_site like 'CCA%' limit 5; * ibm_db_sa://fpz16464:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqblod8lcg.databases.appdomain.cloud:3 498/bludb</pre>										
	Done.	ub									
	DATE	Time (UTC)	booster_version	launch_site	payload	payload_mass_	_kg_	orbit	customer	mission_outcome	Landir _Outcon
	2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit		0	LEO	SpaceX	Success	Failu (parachut
	2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese		0	LEO (ISS)	NASA (COTS) NRO	Success	Failu (parachut
	2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2		525	LEO (ISS)	NASA (COTS)	Success	No attem
	2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1		500	LEO (ISS)	NASA (CRS)	Success	No attem

Total Payload Mass

 we use sum to find total payload mass and like operator to filter out only nasa customers.

Average Payload Mass by F9 v1.1

 we use avg() function on payload_mass__kg_ column and like operator on booster version in where clause

```
Task 4

Display average payload mass carried by booster version F9 v1.1

In [20]: %sql select avg(payload_mass_kg_) as avg_payload_F9v1p1 from spacextbl where booster_version like 'F9 v1.1%';

* ibm_db_sa://fpz16464:***@3883e7e4-18f5-4afe-be8c-fa31c41761d2.bs2io90l08kqblod8lcg.databases.appdomain.cloud:31 498/bludb Done.

Out[20]: avg_payload_f9v1p1

2534
```

First Successful Ground Landing Date

• used min() date where mission_outcome was success.

Successful Drone Ship Landing with Payload between 4000 and 6000

 used unique() function for booster_version column, checked mission_outcome and used between clause for payload range.

Total Number of Successful and Failure Mission Outcomes

used count() aggregate function and group by clause on mission_outcome

Boosters Carried Maximum Payload

 used subquery to find out maximum payload mass then used unique() function on booster version.

2015 Launch Records

• applied year() function on date column in where column to get the data of 2015.

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 used table expression or derived table to get data between given date range, grouped final data by landing outcome, used count() function in select statement with order by desc clause at the end.

All launch sites global map markers

Markers showing launch sites with color label

Launch Site distance to landmarks

Pie chart showing the success percentage achieved by each launch site

Pie chart showing the Launch site with the highest launch success ratio

Scatter plot of Payload vs Launch Outcome for all sites, with different payload selected in the range slider

Classification Accuracy

• The decision tree classifier is the model with the highest classification accuracy

```
models = { 'KNeighbors':knn_cv.best_score_,
               'DecisionTree': tree cv.best score ,
               'LogisticRegression':logreg cv.best score ,
               'SupportVector': svm cv.best score }
 bestalgorithm = max(models, key=models.get)
 print('Best model is', bestalgorithm,'with a score of', models[bestalgorithm])
 if bestalgorithm == 'DecisionTree':
     print('Best params is :', tree cv.best params )
if bestalgorithm == 'KNeighbors':
     print('Best params is :', knn_cv.best params )
 if bestalgorithm == 'LogisticRegression':
     print('Best params is :', logreg cv.best params )
if bestalgorithm == 'SupportVector':
     print('Best params is :', svm cv.best params )
Best model is DecisionTree with a score of 0.8732142857142856
Best params is : {'criterion': 'gini', 'max depth': 6, 'max features': 'auto', 'min samples leaf': 2, 'min samples split': 5, 'splitter': 'random'}
```

• The confusion matrix for the decision tree classifier shows that the classifier can distinguish between the different classes. The major problem is the false positives .i.e., unsuccessful landing marked as successful landing by the classifier.

Conclusions

We can conclude that:

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- The Decision tree classifier is the best machine learning algorithm for this task.

