

Unobtrusive and Personalised Monitoring of Parkinson's Disease Using Smartphones

Julio Vega

Interaction Analysis and Modelling Lab

It's all about people

You might know them

and another 5.2 million...

Technology-based monitoring

In the lab

Uncomfortable

Motor Focused

Short & Sporadic

Intrusive

Population based

The potential of the digital world

Personal

Internet

Ambient

Our goal

Digital Biomarkers

Our protocol

11 participants

22 sensors per participant

6-week visits

and nine months to get ethical approval...

Validation

Compare smartphone inferences vs symptom changes

Every 6 weeksClinical Scores

Every daySelf-Reporting

Start designing, implementing, executing, early

Go tech!

But tech can fail...

Trying even more tech

Cube with NFC tags

Trying even more tech

Micro:Bit

BRCK-IIII TO PALOGUE

Create and encode paper diaries or surveys

Answers

Did the diary work?

7 participants

~380 days (at least once a day)

Answer rate 96%

Why 96%? It was simple, flexible, and physical

Put your users first

Data Analysis

(a.k.a. data cleaning)

Key factor

Personalisation

Precision Medicine

Generalisation

Population Methods

Smartphone data

Diary data

Our data

Smartphone data

- 14 location (Canzian '15, Barnett '18)
- 2 Activity Recognition (Google API)
- 4 calls
- 2 screen
- 2 sleep
- 1 Wi-Fi
- 1 light, 2 SMS, 5 keyboard (only Android)

Groundtruth data

- Daily self-reported top 3 personal symptoms
- Clinical (every 6 weeks)
 - MDS-UPDRS: Gold standard
 - PDQ-39: Quality of life
 - NMS: Non-motor symptoms
 - ACE: cognition
 - Six laptop-based cognitive tests

Be aware of the benefits and limitations of technology

The bottleneck

... a main bottleneck in the current digital phenotyping work is not due to technical challenges but more due to the lack of sufficient statistical methodology...

Lisa A. Marsh Opportunities and needs in digital phenotyping Nature Neuropsychopharmacology April '18

Personal Predictions

Create Prediction

2 Personalise Prediction

3 Test Prediction

Define relation between smartphone features and human behaviour Adapt smartphone features to each person's symptom fluctuations

Compare adapted features to a random baseline

Example of prediction

What features are relevant to each person?

P01 - Fatigue

Personal Prediction on 100% of data

Participant	Groundtruth	weeks	Agreement
P01	Slow Walk	31	0.53
P01	Fatigue	31	0.37
P03	Low Energy	31	0.29
P03	Pain	31	0.35
P03	Freezing	31	0.23
P04	Fatigue	37	0.45
P06	Gait	42	0.18
P07	Low Energy	46	0.21
P08	Gait	43	0.34
P08	Pain	43	0.35

P01 Fatigue vs Max Home Distance

Class	Precision (diff over chance)	Recall (diff over chance)
worse	0.75 (+0.17)	0.67 (+0.09)
no change	0.03 (NA)	0.04 (-0.04)
better	0.60 (+0.22)	0.75 (+0.38)

P01 Fatigue (agreement)

P01 Fatigue (precision vs chance)

Other participants

P04 - Fatigue

Insights

Our method **personalised** smartphone features to people's symptoms (not on unseen data)

Our method **adapted** to patients with different weekly trends

Our method tracked contiguous fluctuations (blocks of behaviour)

The personalisation/testing split is not suitable for a real-world deployment

Limitations (opportunities)

Validity of smartphone features

Self-reporting drawbacks

Confounding factors in people's behaviour

Clinical validity and usefulness of weekly trends

Creating new questions is as good as getting answers

Unobtrusive and Personalised Monitoring of Parkinson's Disease Using Smartphones

julio.vega@manchester.ac.uk juliovega.info

