CROCO

Victor Trappler

November 20, 2019

Introduction

CROCO is a new oceanic modeling system built upon ROMS_AGRIF and the non-hydrostatic kernel of SNH (under testing), gradually including algorithms from MARS3D (sediments) and HYCOM (vertical coordinates). An important objective for CROCO is to resolve very fine scales (especially in the coastal area), and their interactions with larger scales. It is the oceanic component of a complex coupled system including various components, e.g., atmosphere, surface waves, marine sediments, biogeochemistry and ecosystems¹.

In this document, I will try to provide a summary of my understanding of this model and its use, especially in the light of my PhD work.

1 Numerics

Parametrization of the bottom friction

Linear friction

$$(\tau_b^x, \tau_b^y) = -r(u_b, v_b) \tag{1}$$

Quadratic (constant)

$$(\tau_b^x, \tau_b^y) = C_d \sqrt{u_b^2 + v_b^2} (u_b, v_b)$$
 (2)

Quadratic with Von Karman log-layer

$$(\tau_b^x, \tau_b^y) = C_d \sqrt{u_b^2 + v_b^2} (u_b, v_b)$$
 (3)

$$(\tau_b^x, \tau_b^y) = C_d \sqrt{u_b^2 + v_b^2(u_b, v_b)}$$

$$C_d = \begin{cases} \left(\frac{\kappa}{\log(\Delta z_b/r_z)}\right)^2 & \text{for } C_d \in [C_d^{\min}, C_d^{\max}] \\ C_d^{\min} \\ C_d^{\max} \end{cases}$$

$$(4)$$

$$\kappa = 0.41
\tag{5}$$

(6)

¹ taken from http://www.croco-ocean.org/

1.2 Numerical methods used

2 Utilisation

CROCO is written mainly in FORTRAN, so it needs to be first compiled, then executed

2.1 Compilation

2.1.1 param.h

Initialize parameters of the simulation, especially the number of tides to take into account:

• Physical grid

```
#elif defined FRICTION_TIDES
  parameter (LLm0=139, MMm0=164, N=1)
```

• NTIDES

2.1.2 cppdefs.h

```
#define REGIONAL /* REGIONAL Applications */
```

2.1.3 Compile

```
#!/bin/sh
../OCEAN/jobcomp
```

2.2 Execution

2.2.1 The .in file

time_stepping: NTIMES dt[sec] NDTFAST NINFO 25920 10 1 1

NTIMES is the number of time steps for the simulation

dt is the time-step for the simulation

Time simulated	NTIMES
1 hour	360
1 day	8640
$3 \mathrm{days}$	25920
1 week (7 days)	60480
1 month (30 days)	259200
1 year (360 days)	3110400
1 year (365 days)	3153600

Table 1: Table of some values for NTIMES, with dt of 10s

restart: NRST, NRPFRST / filename

720 -1

CROCO_FILES/croco_rst.nc

history: LDEFHIS, NWRT, NRPFHIS / filename

Г 180 С

CROCO_FILES/croco_rst_obs_1mo.nc

NRST: Number of time-steps between saving a rst file

NWRT: Number of time-steps between saving to the history file

forcing: filename

CROCO_FILES/croco_frc_M2S2K1.nc

climatology: filename

CROCO_FILES/croco_clm.nc

Here, the forcing filename is generated using MATLAB/OCTAVE and the <code>croco_tools</code>, that includes the tide

bottom_drag: RDRG [m/s], RDRG2, Zob [m], Cdb_min, Cdb_max

1.00d-04 0.00d+00 5.00d-06 1.00d-04

1.00d-01

2.3 Toward a black-box utilisation using crocopy