Math2033 TA note 5

Yang Yunfei, Chen Yipei, Liu Ping March 11, 2019

1 LIMIT

Theorem 1 (Supremum property). *If a set S has a supremum in* \mathbb{R} *and* $\epsilon > 0$, *then there is* $x \in S$ *such that* sup $S - \epsilon < x \le \sup S$.

Definition 2. A sequence $\{x_n\}$ converges to a number x (or has limit x) iff for every $\epsilon > 0$, there is $K \in \mathbb{N}$ such that for every n > K, it implies $d(x_n, x) = |x_n - x| < \epsilon$ (which means $x_K, x_{K+1}, x_{K+2}, \ldots \in (x - \epsilon, x + \epsilon)$).

Theorem 3 (Supremum Limit Theorem). *Let S be a nonempty set with upper bound c. There is a sequence* $\{\omega_n\}$ *in S converging to c if and only if c* = sup *S*.

Example 4. Determine if each of the following set has an infimum and a supremum. If they exists, find them and give reasons to support your answers.

$$S = \left\{ x + y : x, y \in \left[\frac{1}{2}, 1\right) \right\} \setminus \left\{ 2 - \frac{1}{n} : n \in \mathbb{N} \right\}$$

Solution: We first observe that 1 and 2 is the lower bound and upper bound of *S* respectively, because $\forall x, y \in [\frac{1}{2}, 1), 1 \le x + y < 2$.

Next, we show that 1 is the infimum of S using Theorem 1. For any $\epsilon > 0$, we can find a n > 4 and $n > \frac{1}{\lfloor \frac{\epsilon}{2} \rfloor} + 1$. Hence, if we take $x = y = \frac{1}{2} + \frac{1}{n} \in [\frac{1}{2}, 1)$, we have $x + y \in S$ and $1 < x + y < 1 + \frac{2}{n} < 1 + \frac{2}{\lfloor \frac{\epsilon}{2} \rfloor + 1} < 1 + \epsilon$, which shows $\inf S = 1$.

To show sup S=2, we can construct a sequence $x_n=2-\frac{1}{\sqrt{2}n}$. Since $x_n\in S$ and $\lim_{n\to\infty}2-\frac{1}{\sqrt{2}n}=2$, by Theorem 3, we prove 2 is the supremum of S.

Example 5. Determine if each of the following set has an infimum and a supremum. If they exists, find them and give reasons to support your answers.

$$S = \{\frac{k}{n!} : k, n \in \mathbb{N}, \frac{k}{n!} < \sqrt{2}\}$$

Solution:(1)

The infimum is 0 and supremum $\sqrt{2}$. We prove it by definition. Firstly $\frac{k}{n!} > 0$ for $k, n \in \mathbb{N}$. Then if $\inf S = a > 0$, $\operatorname{fix} k = 1$, we can choose n large enough to make $\frac{1}{n!} < a$ which contradicts a is the infimum of S. So $\inf S = 0$. For the supremum, we have $\sup S \leq \sqrt{2}$ because $\frac{k}{n!} < \sqrt{2}$, $k, n \in \mathbb{N}$. If $\sqrt{2}$ is not the supremum and $\sup S = a < \sqrt{2}$. Then we can find a rational number $a < \frac{p}{q} < \sqrt{2}$. Then choose n = q, k = (q - 1)!p, we have $\frac{k}{n!} = \frac{p}{q}$ which contradicts a is the supremum of S. So $\sup S = \sqrt{2}$.

Solution:(2)

The infimum is 0 and supremum $\sqrt{2}$. Firstly $\frac{k}{n!} > 0$ for $k, n \in \mathbb{N}$ and the sequence $\frac{1}{n!} \to 0$ as $n \to +\infty$. By infimum limit theorem we have $\inf S = 0$. In the same fashion, we first have $\sup S \le \sqrt{2}$ because $\frac{k}{n!} < \sqrt{2}, k, n \in \mathbb{N}$. We can have a sequence of rational number $\frac{p_i}{q_i} \to \sqrt{2}$ as $i \to +\infty$. Then choose $n_i = q_i, k_i = p_i(q_i - 1)!$, we have $\frac{k_i}{n_i!} \to \sqrt{2}$ as $i \to +\infty$. Then by supremum limit theorem we have $\sup S = \sqrt{2}$.

Example 6. Let $z_n = n^{1/n}$. Show that $\{z_n\}$ converges to 1 by checking the definition.

Solution: For every $\epsilon > 0$ and $n \ge 2$, by the binomial theorem,

$$(1+\epsilon)^n = 1 + n\epsilon + \frac{n(n-1)}{2}\epsilon^2 + \dots + \epsilon^n \ge \frac{n(n-1)}{2}\epsilon^2.$$

By the Archimedean principle, there exists integer $K(\epsilon) \ge \max(2, 1 + \frac{2}{\epsilon^2})$. Thus, for each $n > K(\epsilon)$, we have $\epsilon^2 > \frac{2}{n-1}$ and

$$(1+\epsilon)^n \ge \frac{n(n-1)}{2}\epsilon^2 > n.$$

Therefore, $n > K(\epsilon)$ implies $1 \le n^{1/n} < 1 + \epsilon$. So $\{z_n\}$ converges to 1.