6 On relations

6.1 Basic exercises

1. Let $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d\}$ and $C = \{x, y, z\}$. Let $R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\} : A \rightarrow B$ and $S = \{(b, x), (b, y), (c, y), (d, z)\} : B \rightarrow C$.

Draw the internal diagrams of the relations. What is the composition $S \circ R : A \rightarrow C$?

2. Prove that relational composition is associative and has the identity relation as the neutral element.

To prove the associativity of relational composition we must prove for arbitrary sets f, g, h that $\forall a \in A, d \in D : a(h \circ (g \circ f))d \iff a((h \circ g) \circ f)d$.

$$a(h \circ (g \circ f)) d \iff$$

$$\exists c \in C : a(g \circ f) c \wedge chd \iff$$

$$\exists b \in B, c \in C : afb \wedge bgc \wedge chd \iff$$

$$\exists b \in B : afb \wedge b(h \circ g) d \iff$$

$$a((h \circ g) \circ f) d$$

$$(1)$$

So relational composition is associative as required.

3. For a relation $R: A \to B$, let its opposite or dual relation $R^{op}: B \to A$ be defined by:

$$bR^{\text{op}}a \iff aRb$$
 (2)

For $R, S: A \rightarrow B$ and $T: B \rightarrow C$, prove that:

(a)
$$R \subseteq S \Longrightarrow R^{\mathrm{op}} \subseteq S^{\mathrm{op}}$$

$$\forall a \in A, b \in B :$$
 $bR^{op}a \iff$
 $aRb \implies$
 $aSb \text{ since } R \subseteq S \iff$
 $bS^{op}a$

$$bR^{\text{op}}a \Longrightarrow bS^{\text{op}}a \Longrightarrow R^{\text{op}} \subseteq S^{\text{op}} \text{ as required}$$

$$(4)$$

(b) $(R \cap S)^{\operatorname{op}} = R^{\operatorname{op}} \cap S^{\operatorname{op}}$

For: Ms Luana Bulat

RHS:

$$R \subseteq S \iff$$

$$R \cap S = R \iff$$

$$(R \cap S)^{\text{op}} = R^{\text{op}}$$

$$(5)$$

LHS:

$$R^{\text{op}} \subseteq S^{\text{op}} \iff R^{\text{op}} \cap S^{\text{op}} = R^{\text{op}}$$

$$(6)$$

Combining (5) and (6) gives:

$$(R \cap S)^{\text{op}} = R^{\text{op}} = (R^{\text{op}} \cap S^{\text{op}}) \Longrightarrow (R \cap S)^{\text{op}} = (R^{\text{op}} \cap S^{\text{op}}) \text{ as required}$$
 (7)

(c) $(R \cup S)^{\text{op}} = R^{\text{op}} \cup S^{\text{op}}$

RHS:

$$R \subseteq S \iff$$

$$R \cup S = S \iff$$

$$(R \cup S)^{\text{op}} = S^{\text{op}}$$
(8)

LHS:

$$R^{\text{op}} \subseteq S^{\text{op}} \iff R^{\text{op}} \cup S^{\text{op}} = S^{\text{op}}$$

$$(9)$$

Combining (8) and (9) gives:

$$(R \cup S)^{\text{op}} = S^{\text{op}} = R^{\text{op}} \cup S^{\text{op}} \Longrightarrow (R \cup S)^{\text{op}} = R^{\text{op}} \cup S^{\text{op}}$$
(10)

(d) $(T \circ S)^{\operatorname{op}} = S^{\operatorname{op}} \circ T^{\operatorname{op}}$

LHS:

$$\forall a \in A, c \in C : c(S \circ T)^{\operatorname{op}} a \iff a(S \circ T) c \iff \exists b \in B : a T b \wedge b S c \iff \exists b \in B : b T^{\operatorname{op}} a \wedge c S^{\operatorname{op}} b \iff \exists b \in B : c S^{\operatorname{op}} b \wedge b T^{\operatorname{op}} a \iff c(S^{\operatorname{op}} \circ T^{\operatorname{op}} a)$$

$$(11)$$

$$c(S \circ T)^{\text{op}} a \iff c(S^{\text{op}} \circ T^{\text{op}} a \iff c(S \circ T)^{\text{op}} a = c(S^{\text{op}} \circ T^{\text{op}} a \text{ as required}$$

$$(12)$$

6.2 Core exercises

For: Ms Luana Bulat

1. Let $R, R' \subseteq A \times B$ and $S, S' \subseteq B \times C$ be two pairs of relations and assume $R \subseteq R'$ and $S \subseteq S'$.

Prove that $S \circ R \subseteq S' \circ R'$.

$$R \subseteq R' \Longrightarrow$$

$$\forall a \in A, b \in B : aRb \Longrightarrow aR'b$$

$$S \subseteq S' \Longrightarrow$$

$$\forall b \in B, c \in C : bSc \Longrightarrow bS'c$$

$$(13)$$

$$\forall a \in R, c \in S : a(S \circ R)c \iff$$

$$\exists b \in B : aRb \land bSc \Longrightarrow$$

$$\exists b \in B : aR'b \land bS'c \text{ using (13)} \iff$$

$$a(S' \circ R'c) \text{ as required}$$

$$(14)$$

2. Let $\mathcal{F} \subseteq \mathcal{P}(A \times B)$ and $\mathcal{G} \subseteq \mathcal{P}(B \times C)$ be two collections of relations from A to B and from B to C, respectively Prove that

$$\left(\bigcup \mathcal{G}\right) \circ \left(\bigcup \mathcal{F}\right) = \bigcup \{S \circ R \mid R \in \mathcal{F}, S \in \mathcal{G}\} : A \to C \tag{15}$$

$$\forall a \in A, c \in C:$$

$$a(\left(\bigcup \mathcal{G}\right) \circ \left(\bigcup \mathcal{F}\right))c \iff$$

$$\exists b \in B: \exists R \in \mathcal{F} : aRb \land \exists S \in \mathcal{G} : bSc \implies$$

$$\left(\left(\bigcup \mathcal{G}\right) \circ \left(\bigcup \mathcal{F}\right)\right) \subseteq \bigcup \{S \circ R \mid R \in \mathcal{F}, S \in \mathcal{G}\} \iff$$

$$\left(\bigcup \mathcal{G}\right) \circ \left(\bigcup \mathcal{F}\right) \subseteq \bigcup \{S \circ R \mid R \in \mathcal{F}, S \in \mathcal{G}\}$$

$$\left(\bigcup \mathcal{G}\right) \circ \left(\bigcup \mathcal{F}\right) \subseteq \bigcup \{S \circ R \mid R \in \mathcal{F}, S \in \mathcal{G}\}$$

$$\forall a \in A, c \in C:$$

$$a \bigcup \{S \circ R \mid R \in \mathcal{F}, S \in \mathcal{G}\} c \iff$$

$$\exists R \in \mathcal{F}, S \in \mathcal{G} : a(S \circ R)b \iff$$

$$a((\bigcup \mathcal{G}) \circ (\bigcup \mathcal{F}))b \iff$$

$$\bigcup \{S \circ R \mid R \in \mathcal{F}, S \in \mathcal{G}\} \subseteq (\bigcup \mathcal{G}) \circ (\bigcup \mathcal{F})$$

Combining (16) and (17) using the antisymmetry of \subseteq gives:

$$\bigcup \{S \circ R \mid R \in \mathcal{F}, S \in \mathcal{G}\} = \left(\bigcup \mathcal{G}\right) \circ \left(\bigcup \mathcal{F}\right) \text{ as required}$$
 (18)

Recall that the notation $\{S \circ R : A \to C \mid R \in \mathcal{F}, S \in \mathcal{G}\}$ is a common syntactic sugar for the formal definition $\{T \in \mathcal{P}(A \times C) \mid \exists R \in \mathcal{F} : \exists S \in \mathcal{G} : T = S \circ R\}$. Hence,

$$T \in \{ S \circ R \in A \to C \mid R \in \mathcal{F}, S \in \mathcal{G} \} \iff \exists R \in \mathcal{F} : \exists S \in \mathcal{G} : T = S \circ R$$
 (19)

What happens in the case of big intersections?

- 3. Suppose R is a relation on a set A. Prove that
 - (a) R is reflexive iff $id_A \subseteq R$

R is reflexive implies that every element in A is related to itself under R. Assume R is reflexive:

$$\forall a \in A.aRa \iff id_A \subseteq R$$
 (20)

(b) R is symmetric iff $R = R^{op}$.

For R to be symmetric, $\forall a_1, a_2 \in A, a_1Ra_2 \iff a_2Ra_1$.

Assume R is symmetric:

$$\forall a, b \in A.aRb \iff bRa \iff$$

$$\forall a, b \in A.bR^{op}a \iff aR^{op}b \iff$$

$$\forall a, b \in A.aR^{op}b \iff bR^{op}a \iff$$

$$R = R^{op}$$
(21)

(c) R is transitive iff $R \circ R \subseteq R$

For: Ms Luana Bulat

Assume that $R \circ R \subseteq R$.

$$R \circ R \subseteq R \iff$$

$$\forall a, c \in A.a(R \circ R)c \Longrightarrow aRc \iff$$

$$\forall a, b, c \in A.aRb \land bRc \Longrightarrow aRc$$

$$(22)$$

This is the definition of transistivity and so we are done.

(d) R is antisymmetric iff $R \cap R^{op} \subseteq id_A$.

R is antisymmetric if $\forall a \in A.aRa$.

Assume $R \cap R^{op} \subseteq id_A$.

$$R \cap R^{\text{op}} \subseteq \text{id}_a \iff$$

$$\forall a_1, a_2 \in A. a_1 R a_2 \wedge a_1 R^{\text{op}} a_2 \Longrightarrow a_1 = a_2 \iff$$

$$\forall a_1, a_2 \in A. a_1 R a_2 \wedge a_2 R a_2 \Longrightarrow a_1 = a_2$$

$$(23)$$

Which is the definition of antisymmetric and so we are done.

- 4. Let R be an arbitrary relation on a set A, for example, representing an undirected graph. We are interested in constructing the smallest transitive relation (graph) containing R, called the transitive closure of R.
 - (a) We define the family of relations which are transitive supersets of R:

$$\mathcal{T}_R \triangleq \{Q : A \to A \mid R \subseteq Q \text{ and } Q \text{ is transitive}\}$$
 (24)

R is not necessarily going to be an element of this family, as it might not be transitive. However R is a lower bound for \mathcal{T}_R , as it is a subset of every element of the family.

Prove that the set $\bigcap \mathcal{T}_R$ is the transitive closure for R.

(b) $\bigcap \mathcal{T}_R$ is the intersection of an infinite number of relations so it's difficult to compute the transitive closure this way. A better approach is to start with R, and keep adding the missing connections until we get a transitive graph. This can be done by repeatedly composing R with itself: after n compositions, all paths of length n in the graph represented by R will have a transitive connection between their endpoints.

Prove that the (at least once) iterated composition $R^{\circ +} \triangleq R \circ R^{\circ} *$ is the transitive closure for R, i.e. it coincides with the greatest lower bound of $\mathcal{T}_R : R^{\circ +} = \bigcap \mathcal{T}_R$.

Hint: show that $R^{\circ +}$ is both an element and a lower bound of \mathcal{T}_R .

7 On partial functions

7.1 Basic exercises

For: Ms Luana Bulat

1. Let $A_2 = \{1, 2\}$ and $A_3 = \{a, b, c\}$. List the element of the sets $PFun(A_i, A_j)$ for $i, j \in \{2, 3\}$.

Hint: there may be quite a few, so you can think of ways of characterising all of them without giving an explicit listing.

$$\{\{(1,a),(2,b)\} \lor \{(1,a)\} \lor \{(2,b)\} \lor \varnothing \mid a,b \in A_3\}$$
(25)

2. Prove that a relation $R: A \to B$ is a partial function iff $R \circ R^{op} \subseteq id_B$.

 (\Longrightarrow)

$$R \circ R^{\text{op}} \subseteq \text{id}_{B} \iff$$

$$\forall b_{1}, b_{2} \in B.b_{1}(R \circ R^{\text{op}})b_{2} \Longrightarrow b_{1} = b_{2} \Longrightarrow$$

$$\forall b_{1}, b_{2} \in B. \exists a \in A.b_{1}R^{\text{op}}a \land aRb_{2} \Longrightarrow b_{1} = b_{2} \iff$$

$$\forall b_{1}, b_{2} \in B. \exists a \in A.aRb_{1} \land aRb_{2} \Longrightarrow b_{1} = b_{2}$$

$$(26)$$

This implies that R is a partial function by definition.

(\Leftarrow) Assume R is a partial function and so each a in R is related to at most one b. This means that by assumption $aRb_1 \wedge aRb_2 \Longrightarrow b_1 = b_2$.

$$b_{1}(R \circ R^{\mathrm{op}})b_{2} \iff$$

$$\exists a \in A.b_{1}R^{\mathrm{op}}a \wedge aRb_{2} \iff$$

$$\exists a \in A.aR^{\mathrm{op}}b_{1} \wedge aRb_{2} \iff$$

$$b_{1} = b_{2} \text{ since } a \text{ is related to at most one } b \in B \iff$$

$$(R \circ R^{\mathrm{op}}) \subseteq \mathrm{id}_{B} \text{ as required}$$

$$(27)$$

3. Prove that the identity relation is a partial function, and that the composition of partial functions is a partial function.

The definition of a partial funtion $R: A \to B$ is that each $a \in A$ is related to at most one $b \in B$. This means that $\forall a \in A : \forall b_1, b_2 \in B . aRb_1 \land aRb_2 \Longrightarrow b_1 = b_2$.

For the identity function, which has domain A and A, by definition $\forall a \in A.a \text{ id}_A a \Longrightarrow a = a$.

Assume $a \operatorname{id}_A a_1 \wedge a \operatorname{id}_A a_2$

$$\forall a \in A. \forall a_1, a_2 \in A. aRa_1 \land aRa_2 \iff$$

$$\forall a \in A. \forall a_1, a_2 \in A. aRa_1 \land aRa_2 \iff$$

$$a = a_1 \land a = a_2 \iff$$

$$a_1 = a_2 \text{ as required}$$

$$(28)$$

To prove that the composition of partial functions is a partial function we will start with functions $R:A\to B$ and $S:B\to C$, will compose them and prove that any $a\in A$ is related to only one $c\in C$ under $S\circ R$.

$$\forall a \in A. \forall b_1, b_2 \in B.aRb_1 \land aRb_2 \Longrightarrow b_1 = b_2 \land$$

$$\forall b \in B. \forall c_1, c_2 \in C.bSc_1 \land bSc_2 \Longrightarrow c_1 = c_2 \Longleftrightarrow$$

$$\forall a \in A. \forall c_1, c_2 \in C.a(S \circ R)c_1 \land a(S \circ R)c_2 \Longrightarrow c_1 = c_2$$

$$(29)$$

This is the expression for a partial function – and so we can conclude that $S \circ R$ is a partial function. Since both R and S were arbitrary we can conclude that for all partial functions, the composition of two partial functions is a partial function.

7.2 Core exercises

For: Ms Luana Bulat

- 1. Show that $(PFun(A, B), \subseteq)$ is a partial order. What is its least element, if it exists?
- 2. Let $\mathcal{F} \subseteq \operatorname{PFun}(A, B)$ be a non-empty collection of partial functions from A to B.
 - (a) Show that $\bigcap \mathcal{F}$ is a partial function.
 - (b) Show that $\bigcup \mathcal{F}$ need not be a partial function by defining two partial functions $f, g: A \to B$ such that $f \cup g: A \to B$ is a non-functional relation.
 - (c) Let $h:A \to B$ be a partial function. Show that if every element of \mathcal{F} is below h then $\bigcup \mathcal{F}$ is a partial function.

8 On functions

8.1 Basic exercises

- 1. Let $A_2 = \{1, 2\}$ and $A_3 = \{a, b, c\}$. List the elements of the sets $\operatorname{Fun}(A_i, A_j)$ for $i, j \in \{2, 3\}$.
- 2. Prove that the identity partial function is a function, and the composition of functions yields a function
- 3. Prove or disprove that $(\operatorname{Fun}(A,B),\subseteq)$ is a partial order.
- 4. Find endofunctions $f, g: A \to A$ such that $f \circ g \neq g \circ f$.

8.2 Core exercises

- 1. A relation $R:A\to B$ is said to be total if $\forall a\in A,\exists\in B:aRb$. Prove that this is equivalent to $\mathrm{id}_A\subseteq R^\mathrm{op}\circ R$. Conclude that a relation $R:A\to B$ is a function iff $R\circ R^{textop}\subseteq \mathrm{id}_B$ and $\mathrm{id}_A\subseteq R^\mathrm{op}\circ R$.
- 2. Let $\chi: \mathcal{P}(U) \to (U \Rightarrow [2])$ be the function mapping subsets $S \subseteq U$ to their characteristic functions $\chi_S: U \to [2]$.
 - (a) Prove that for all $x \in U$,
 - $\chi_{A\cup B}(x) = (\chi_A(x) \vee \chi_B(x)) = \max(\chi_A(x), \chi_B(x))$
 - $\chi_{A \cap B}(x) = (\chi_A(x) \wedge \chi_B(x)) = \min(\chi_A(x), \chi_B(x))$
 - $\chi_{A^c}(x) = (\chi_A(x)) = (1 \chi_A(x))$
 - (b) For what construction A?B on sets A and B does it hold that

$$\chi_{A?B}(x) = (\chi_A(x) \oplus \chi_B(x)) = (\chi_A(x) +_2 \chi_B(x)) \tag{30}$$

8.3 Optional advanced exercise

Consider a set A together with an element $a \in A$ and an endofunction $f: A \to A$.

Say that a relation $R: \mathbb{N} \to A$ is (a, f)-closed whenever

$$R(0, a)$$
 and $\forall n \in \mathbb{N}, x \in A : R(n, x) \Rightarrow R(n+1, f(x))$ (31)

Define the relation $F: \mathbb{N} \to A$ as

$$F \triangleq \bigcap \{R : \mathbb{N} \to A \mid R \text{ is } (a, f)\text{-closed}\}$$
 (32)

- 1. Prove that F is (a, f-closed.
- 2. Prove that F is total, that is: $\forall n \in \mathbb{N} : \exists y \in A : F(n, y)$.
- 3. Prove that F is a function $\mathbb{N} \to A$, that is: $\forall n \in \mathbb{N} \exists ! y \in A : F(n, y)$.

Hint: Proceed by induction. Observe that, in view of the previous item, to show that $\exists ! y \in A : F(k, y)$ it suffices to exibit an (a, f)-closed relation R_k such that $\exists ! y \in A : R_k(k, y)$. (Why?)

For instance, as the relation $R_0 = \{(m, y) \in \mathbb{N} \times A \mid m = 0 \Rightarrow y = a\}$ is (a, f)-closed one has that $F(0, y) \Rightarrow R_0(0, y) \Rightarrow y = a$.

hjel2@cam.ac.uk

4. Show that if h is a function $\mathbb{N} \to A$ with h(0) = a and $\forall n \in \mathbb{N} : h(n+1) = f(h(n))$ then h = F.

Thus, for every set A together with an element $a \in A$ and an endofunction $f: A \to A$ there exists a unique function $F: \mathbb{N} \to A$, typically said to be inductively defined, satisfying the recurrence relation

$$F(n) = \begin{cases} a & \text{for } n = 0\\ f(F(n-1)) & \text{for } n \ge 1 \end{cases}$$
 (33)

