GRADIENT DESCENT

Author

Vinitra Muralikrishnan 11th March, 2024

Contents

1	Overview	
	1.1 Update rule	
	1.2 Basic algorithm	
	1.3 Adaptive step size algorithm / Backtracking line search	
	1.3.1 Exact line search	
2	Convergence Analysis	
3	Considerations	
	3.1 Pros and Cons	

1 Overview

Definition 1.1. It is an algorithm for minimizing a differentiable function.

1.1 Update rule

 $x_k = x_{k-1} - t_k \nabla f(x_{k-1})$. where, t_k can be fixed or adaptive.

1.2 Basic algorithm

- 1. choose initial point $x_0 \in \mathbb{R}$
- 2. repeat $x_k = x_{k-1} t_k \nabla f(x_{k-1})$
- 3. stop for instrice when objective decreases by less than ϵ (user parameter).

1.3 Adaptive step size algorithm / Backtracking line search

- 1. Set x_0 , $\alpha_0 > 0$, $0 < \rho < 1$
- 2. On each iteration k:
- $f_k \leftarrow f(x_k)$
- 4. Set $d_k \leftarrow -\nabla f(x_{k-1})$
- 5. $\alpha \leftarrow \alpha_0$
- 6. while $f(x_k + \alpha d_k) \ge f_k : \alpha \leftarrow \rho \alpha$
- 7. $x_{k+1} \leftarrow x_k + \alpha d_k$

1.3.1 Exact line search

Can we choose the ideal step direction?

This would also be a minimization problem as follows:

$$t = \operatorname*{argmin}_{s \ge 0} f(x - s\nabla f(x))$$

Answer: No

- approximation is not as efficient as backtracking
- not worth solving yet another minimization problem for an existing one

2 Convergence Analysis

3 Considerations

3.1 Pros and Cons

Pros

- \bullet simple idea
- ullet low computational cost per iterations
- \bullet fast for problems that are well-conditioned and strongly convex

Cons

- Slow for problems not strongly convex
- ullet slow if problem not well conditioned
- ullet only applicable to differentiable functions