

Building Robotic Applications with Open-source VLA Models

Ville Kuosmanen Voyage Robotics

Building Robotic Applications with Open-source VLA Models

Ville Kuosmanen Voyage Robotics

Engineered systems to end-to-end learning

TASKS

AND THE VIRTUALLY IMPOSSIBLE.

E2e learning is eating robotics

GOSIM AI Paris 2025

How can I use VLAs?

How do we get started?

First we need a robot

Al robotics is Python-driven

Al robotics is Python-driven

LeRobot

Fine-tuning VLAs

GOSIM

- Today's VLAs don't work zero-shot
- We need to **fine-tune** a pre-trained model with our own data

OS VLAs to choose from

- Pi0

 π

- GR00T N1

- RDT

(many others...)

Robot data is highly valuable 😌

Robot data is highly valuable 😌

Characteristics of good robotics datasets

- High resolution (640 x 480 or better)
- High FPS (20 or better)
- Consistent FPS, no lag or frozen frames
- Fast movements
- Stable movements, no shaking
- Target objects visible in frames
- Human controller not visible in frames
- Wrist cameras showing manipulated object
- Not too dark

Data diversity

Metrics for dataset quality

Value-order correlation

Demo-SCORE

Dataset	Avg. VOC
RT-1 [5]	0.74
Dobb-E [54]	0.53
Bridge [62]	0.51
QT-OPT [28]	0.19
DROID [30]	-0.01
RoboNet [12]	-0.85
	•

Table 1 | Average Value-Order Correlation (VOC) scores on selected OXE datasets. As shown, demonstration datasets with un-occluded camera views generally have high scores. In contrast, exploration datasets have low scores.

Robot data is highly valuable 😌

Training on the cloud

Inference

 We can ask a VLM model to prompt our VLA with a short term instruction

Pi0 demo

Supporting the VLA model

- Unable to tell when rollout is a success or failure
 - Use VLM to detect success / failure
- Safety and error detection
 - Augment imperfect model with human interventions

Verdict

- All major components of the VLA stack are open source
- Your job is to combine them
 - "Robotics is an integration problem"
- Real deployments produce real data...

