Graphes et Applications

Plan

- 1. Introduction
- 2. Généralités sur les graphes
- 3. Représentation d'un graphe en machine
- 4. Parcours dans les graphes
- 5. Plus court chemin dans un graphe
- 6. Arbre recouvrant
- 7. Coloration d'un graphe
- 8. Graphes planaires
- 9. Flots et réseaux de transports
- 10. Réseaux d'interactions

...

Stéphane BONNEVAY 35

35

Graphes et Applications

Représentation d'un graphe en machine

MATRICE D'ADJACENCE

Graphe orienté

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Matrice $M = (m_{ij})$:

$$m_{ij} = \begin{cases} 1 & \text{si } (i,j) \in E \\ 0 & \text{si } (i,j) \notin E \end{cases}$$

Quelle serait la complexité d'un algorithme qui ferait la liste de tous les successeurs de tous les sommets ?

 $O(n^2)$

Stéphane BONNEVAY 36

Graphes et Applications

Représentation d'un graphe en machine

MATRICE D'ADJACENCE

Graphe orienté

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

 $M^n = (m_{ij})^n$: nombre de chemins de longueur n allant de i à j

Stéphane BONNEVAY 37

37

Graphes et Applications

Représentation d'un graphe en machine

MATRICE D'ADJACENCE

Graphe orienté

Matrice booléenne

Stéphane BONNEVAY 38

Graphes et Applications

Représentation d'un graphe en machine

MATRICE D'ADJACENCE

Graphe non-orienté

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Matrice $M = (m_{ij})$:

$$m_{ij} = \begin{cases} 1 & \text{si } (i,j) \in E \\ 0 & \text{si } (i,j) \notin E \end{cases}$$

Matrice symétrique

Que vaut $M^2 M^3 M^4 \dots$?

Stéphane BONNEVAY

39

Graphes et Applications

Représentation d'un graphe en machine

MATRICE D'ADJACENCE

Graphe non-orienté

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

$$M^{2} = \begin{pmatrix} 3 & 1 & 1 & 2 & 2 \\ 1 & 3 & 2 & 2 & 1 \\ 1 & 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 4 & 1 \\ 2 & 1 & 1 & 1 & 2 \end{pmatrix} \quad M^{3} = \begin{pmatrix} 4 & 7 & 5 & 7 & 3 \\ 7 & 4 & 3 & 7 & 5 \\ 5 & 3 & 2 & 6 & 3 \\ 7 & 7 & 6 & 6 & 6 \\ 3 & 5 & 3 & 6 & 2 \end{pmatrix} \quad M^{4} = \begin{pmatrix} 19 & 14 & 11 & 19 & 14 \\ 14 & 19 & 14 & 19 & 11 \\ 11 & 14 & 11 & 13 & 9 \\ 19 & 19 & 13 & 26 & 13 \\ 14 & 11 & 9 & 13 & 11 \end{pmatrix}$$

Stéphane BONNEVAY 40

