Universal Domain Adaptation Benchmark for Time Series Data Representation

EUSIPCO 2025

Romain Mussard, Fannia Pacheco, Maxime Berar, Gilles Gasso & Paul Honeine

Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ, LITIS UR 4108

Summary

- 1. Introduction
- 2. The Challenges of Universal Domain Adaptation
- 3. UniDABench: Universal Domain Adaptation Benchmark
- 4. Experimental Results
- 5. Conclusion

Introduction

Time Series and Distribution Shift

Time Series

• Univariate: sequence of real-valued observations

$$\{x_t\}_{t=1}^T, \quad x_t \in \mathbb{R}$$

• Multivariate: multiple synchronized channels

$$\{\mathbf{x}_t\}_{t=1}^T, \quad \mathbf{x}_t \in \mathbb{R}^d$$

Time Series and Distribution Shift

Why Distribution Shift Matters

Deep models often assume training and test data follow the same distribution:

$$\mathcal{D}_{\mathsf{train}} = \mathcal{D}_{\mathsf{test}}$$

In practice, time series data frequently violates this assumption, leading to degraded performance.

Examples

- Sensor drift in biomedical signals (e.g., ECG).
- Seasonal or regime changes in financial time series.
- Different devices or acquisition protocols in speech signals.

The Challenges of Universal Domain **Adaptation**

Distribution Shift

Covariate Shift

Datasets & Distributions

- Source Domain : $\mathcal{D}_s = \{x_i^s, y_i^s\}_{i=0}^{n_s} \sim P_s(x, y)$
- Target Domain : $\mathcal{D}_t = \{x_i^t\}_{i=0}^{n_t} \sim P_t(x,y)$
- $P_s(x) \neq P_t(x)$

(Unsupervised) Domain Adaptation

Domain Adaptation

(Unsupervised) Domain Adaptation

Domain Adaptation

(Unsupervised) Domain Adaptation in Practice

Model:

$$h(\cdot)=f\circ g(\cdot),$$

with:

- $g(\cdot): \mathcal{X} \to \mathcal{Z}$ a feature extractor
- $f(\cdot): \mathcal{Z} \to \mathcal{Y}$ a classifier

Risk Minimization:

$$\min_{f,g} \frac{1}{n_s} \sum_{i=1}^{n_s} \mathcal{L}_{ce}(f(g(x_i^s)), y_i^s) + \lambda D(g(x_i^s), g(x_i^t))$$

- \mathcal{L}_{ce} is the cross-entropy on source domain
- D align the distributions over the representation space \mathcal{Z}

Universal Domain Adaptation

Objectives:

- Alignment: Align source and target common samples
- OOD Discovery: Detect target private samples (OOD samples)

No prior assumption is made regarding target set distribution!

UniDABench: Universal Domain Adaptation Benchmark

Benchmark

Benchmark Overview

Model Selection in UniDA

Algorithm 1 Model Selection Procedure

```
Require: Number of runs N_r, number of validation scenarios
     N_{val}, number of test scenarios N_{eval}
Require: Dataset \mathbf{D} = \{\mathcal{D}^1, \mathcal{D}^2, \cdots \mathcal{D}^d\}
 1: S_{val}, S_{eval} \leftarrow \text{select}(\mathbf{D}, N_{val}), \text{select}(\mathbf{D}, N_{eval})
 2: Initialize scores ← [] #Vector to store H-scores
 3: for n \leftarrow 1 to N_r do
          for each pair \{\mathcal{D}^s, \mathcal{D}^t\} \in \mathcal{S}_{val} do
 5: Split \mathcal{D}^t into \{\mathcal{D}_{tn}^t, \mathcal{D}_{tn}^t\}
 6: Train model using (\mathcal{D}^s, \mathcal{D}_{t_n}^t)
 7: h \leftarrow \text{compute H score}(\mathcal{D}_{t_e}^t)
               append(scores, h)
       end for
10: end for
11: return arg max scores_i
                                                          #Select best models
```


UniDA State-of-the-Art

Method	Alignment	OOD Discovery	Threshold Based
UAN [1]	Adversarial Discriminator	Non Adversarial Discriminator	✓
DANCE [2]	Neighborhood Clustering	Entropy Separation	✓
OVANet [3]	Entropy	One-vs-All Rejection	X
UniOT [4]	Neighborhood Clustering	Optimal Transport	✓
PPOT [5]	Prototypical Wasserstein	Softmax Thresholding	✓
UniJDOT [6]	Optimal Transport	Auto-thresholding	X

Time Series Oriented Representation Layer

Time-Frequency Feature Extractor

Time Series Oriented Representation Layer

TSLANet: Rethinking Transformers for Time Series Representation Learning [7]

13/22

Time Series Oriented Representation Layer

Segment, Shuffle, and Stitch: A Simple Layer for Improving Time-Series Representations [8]

14/22

Time Series Datasets

Dataset	# Users/Domains	# Channels	# Classes	Sequence Length	Training set	Testing set
UCIHAR	30	9	6	128	2300	990
HHAR	9	3	6	128	12716	5218
EDF	20	1	5	3000	14280	6130

Experimental Results

Results

Methods	CNN	FNO	TSLANet	S 3
UAN	60.1	62.3	32.3	52.2
OVANet	24.9	31.2	32.0	27.3
PPOT	<u>37.6</u>	62.1	6.9	35.9
DANCE	<u>53.0</u>	54.1	2.0	46.7
UniOT	47.7	49.1	53.5	37.6
UniJDOT	<u>61.0</u>	64.6	59.7	54.1

H-score (%) for HAR dataset

Methods	CNN	FNO	TSLANet	S 3
UAN	47.8	41.1	34.0	41.9
OVANet	27.0	43.7	28.3	23.3
PPOT	40.6	48.6	2.1	39.4
DANCE	40.6	41.8	0.0	42.4
UniOT	<u>51.0</u>	54.3	39.9	44.6
UniJDOT	56.6	61.2	55.7	<u>57.8</u>

H-score (%) for HHAR dataset

Methods	CNN	FNO	TSLANet	S 3
UAN	<u>54.2</u>	57.6	30.2	52.1
OVANet	55.4	42.2	23.5	52.7
PPOT	45.0	36.9	3.8	36.8
DANCE	51.9	41.4	19.2	50.6
UniOT	41.4	41.2	32.3	37.7
UniJDOT	44.3	55.6	<u>55.0</u>	50.4

H-score (%) for EDF dataset

$$\textbf{H-score} = \frac{2A_cA_u}{A_c + A_u}$$

 A_c is the accuracy of known classes. A_u is the accuracy of target unknown classes.

Results

H-scores (%) for HAR

Scenario	UAN*	OVANet [†]	PPOT*	DANCE*	UniOT [†]	UniJDOT*
$12 \rightarrow 16$	<u>56.8</u>	41.8	61.0	49.9	48.9	50.6
$13 \rightarrow 3$	67.3	16.4	78.0	71.4	64.4	<u>76.3</u>
$15 \rightarrow 21$	<u>78.4</u>	53.7	36.8	66.6	53.2	81.5
$17 \rightarrow 29$	63.5	32.0	72.8	65.3	52.9	78.3
$1 \rightarrow 14$	<u>63.8</u>	33.5	62.8	64.8	58.2	39.2
$22 \rightarrow 4$	63.0	36.7	68.4	41.2	54.0	72.4
$24 \rightarrow 8$	<u>50.7</u>	40.8	58.2	38.6	<u>50.7</u>	47.0
$30 \rightarrow 20$	47.2	9.2	54.0	49.4	51.9	<u>53.4</u>
$6 \rightarrow 23$	66.6	12.4	<u>75.8</u>	68.5	52.8	78.7
$9 \rightarrow 18$	<u>65.4</u>	43.8	53.2	25.4	48.5	68.6
Mean	62.3	32.0	62.1	54.1	53.5	64.6

^{*} Models trained with FNO † Models trained with TSLANet

Results CNN

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
HAR 12 → 16	56.9	20.5	26.2	39.4	22.2	45.8
HAR $13 \rightarrow 3$	72.3	39.7	57.8	87.3	61.4	77.6
HAR $15 \rightarrow 21$	76.3	20.6	39.6	87.5	61.8	79.0
HAR $17 \rightarrow 29$	68.2	16.5	47.6	74.6	48.9	64.8
HAR $1 \rightarrow 14$	80.0	17.2	24.5	19.2	55.8	46.0
HAR $22 \rightarrow 4$	73.4	40.2	46.7	82.3	52.2	70.4
HAR $24 \rightarrow 8$	42.7	21.3	27.0	58.0	44.1	54.2
HAR $30 \rightarrow 20$	37.7	15.4	27.2	32.9	35.1	45.2
HAR $6 \rightarrow 23$	24.5	11.6	34.2	00.0	50.5	68.8
HAR $9 \rightarrow 18$	69.0	46.3	45.2	49.0	45.3	58.3
HAR mean	60.1	24.9	37.6	53.0	47.7	61.0

H-score (%) for HAR dataset

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
HHAR $0 \rightarrow 2$	46.8	31.1	30.6	36.5	42.0	41.3
HHAR $0 \rightarrow 6$	41.4	34.0	31.8	49.8	61.6	64.2
HHAR $1 \rightarrow 6$	53.0	29.1	67.4	40.5	63.0	78.3
HHAR $2 \rightarrow 7$	36.2	13.6	12.3	42.1	15.8	14.7
HHAR $3 \rightarrow 8$	53.8	27.3	48.8	49.2	70.6	72.3
HHAR $4 \rightarrow 5$	62.2	37.4	35.6	25.6	52.9	67.5
HHAR $5 \rightarrow 0$	13.1	07.4	02.2	12.7	11.0	00.0
HHAR $6 \rightarrow 1$	73.4	20.4	70.0	57.4	81.3	87.2
HHAR $7 \rightarrow 4$	50.1	38.5	61.9	24.6	62.7	74.3
HHAR $8 \rightarrow 3$	48.1	31.5	44.9	67.3	49.5	66.6
HHAR mean	47.8	27.0	40.6	40.6	51.0	56.6

H-score (%) for HHAR dataset

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
EEG $0 \rightarrow 11$	39.9	18.6	17.3	44.6	33.1	25.2
EEG $12 \rightarrow 5$	58.2	67.0	45.5	57.2	42.9	52.6
EEG $13 \rightarrow 17$	32.3	41.1	44.1	42.5	41.4	33.8
EEG $16 \rightarrow 1$	56.4	59.2	53.7	48.3	43.6	54.6
EEG $18 \rightarrow 12$	44.6	43.2	32.9	39.2	43.1	35.4
EEG $3 \rightarrow 19$	55.6	59.9	41.8	43.0	40.8	40.2
EEG $5 \rightarrow 15$	61.6	64.3	59.2	55.7	33.0	43.4
EEG $6 \rightarrow 2$	57.5	59.2	36.1	57.8	53.3	43.8
EEG $7 \rightarrow 18$	66.8	61.2	61.7	63.2	45.7	58.9
EEG $9 \rightarrow 14$	69.6	80.3	57.5	67.2	37.3	55.2
EEG mean	54.2	55.4	45.0	51.9	41.4	44.3

H-score (%) for EDF dataset

$$\mathbf{H\text{-}score} = \frac{2A_cA_u}{A_c + A_u}$$

 A_c is the accuracy of known classes. A_u is the accuracy of target unknown classes.

Results FNO

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
HAR 12 → 16	56.8	29.2	61.0	49.9	36.5	50.6
HAR $13 \rightarrow 3$	67.3	45.5	78.0	71.4	51.9	76.3
HAR $15 \rightarrow 21$	78.4	14.5	36.8	66.6	56.4	81.5
HAR $17 \rightarrow 29$	63.5	20.7	72.8	65.3	53.0	78.3
HAR $1 \rightarrow 14$	63.8	28.4	62.8	64.8	44.8	39.2
HAR $22 \rightarrow 4$	63.0	64.0	68.4	41.2	57.4	72.4
HAR $24 \rightarrow 8$	50.7	24.0	58.2	38.6	47.8	47.0
HAR $30 \rightarrow 20$	47.2	24.8	54.0	49.4	45.2	53.4
HAR $6 \rightarrow 23$	66.6	26.4	75.8	68.5	50.6	78.7
HAR $9 \rightarrow 18$	65.4	34.5	53.2	25.4	47.5	68.6
HAR mean	62.3	31.2	62.1	54.1	49.1	64.6

H-score (%) for HAR dataset

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
HHAR $0 \rightarrow 2$	41.8	55.4	28.0	37.8	42.4	45.4
HHAR $0 \rightarrow 6$	41.6	59.8	36.6	32.8	52.5	59.7
HHAR $1 \rightarrow 6$	41.8	51.2	71.2	44.0	71.5	78.7
HHAR $2 \rightarrow 7$	23.1	23.4	08.5	27.6	16.2	25.7
HHAR $3 \rightarrow 8$	44.1	69.8	65.9	62.9	71.1	77.9
HHAR $4 \rightarrow 5$	45.3	27.2	54.2	50.4	58.3	77.0
HHAR $5 \rightarrow 0$	24.5	16.2	07.9	23.8	20.9	12.9
HHAR $6 \rightarrow 1$	55.0	27.1	63.1	56.4	81.5	86.0
HHAR $7 \rightarrow 4$	43.0	39.0	77.9	38.8	71.5	76.7
HHAR $8 \rightarrow 3$	50.6	67.4	73.2	43.3	57.2	71.8
HHAR mean	41.1	43.7	48.6	41.8	54.3	61.2

H-score (%) for HHAR dataset

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
EEG $0 \rightarrow 11$	39.9	25.5	21.3	33.9	34.8	38.1
EEG $12 \rightarrow 5$	58.5	46.1	60.0	39.5	39.1	65.2
EEG $13 \rightarrow 17$	42.3	47.7	15.5	36.6	43.4	42.9
EEG $16 \rightarrow 1$	66.7	45.6	54.3	45.5	44.6	60.5
EEG $18 \rightarrow 12$	49.3	39.7	16.9	35.7	41.0	42.8
EEG $3 \rightarrow 19$	65.2	40.4	36.6	42.6	40.3	54.8
EEG $5 \rightarrow 15$	45.4	38.7	47.6	32.8	32.0	67.7
EEG $6 \rightarrow 2$	62.3	50.9	9.9	49.0	50.9	49.9
EEG $7 \rightarrow 18$	66.6	41.4	58.8	50.9	45.3	64.3
EEG $9 \rightarrow 14$	80.4	46.3	47.7	47.6	40.9	69.2
EEG mean	57.6	42.2	36.9	41.4	41.2	<u>55.6</u>

H-score (%) for EDF dataset

$$\mathbf{H\text{-}score} = \frac{2A_cA_u}{A_c + A_u}$$

 A_{c} is the accuracy of known classes. A_{u} is the accuracy of target unknown classes.

Results TSLANet

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
HAR 12 → 16	30.5	41.8	01.3	00.0	48.9	32.6
HAR $13 \rightarrow 3$	43.9	16.4	12.3	02.2	64.4	73.5
HAR $15 \rightarrow 21$	28.9	53.7	06.7	02.7	53.2	83.1
HAR $17 \rightarrow 29$	43.2	32.0	04.8	06.1	52.9	82.7
HAR $1 \rightarrow 14$	48.1	33.5	01.3	00.0	58.2	55.7
HAR $22 \rightarrow 4$	34.0	36.7	02.7	0.00	54.0	83.1
HAR $24 \rightarrow 8$	21.8	40.8	09.0	00.0	50.7	66.2
HAR $30 \rightarrow 20$	30.3	09.2	06.0	00.0	51.9	0.00
HAR $6 \rightarrow 23$	23.7	12.4	01.2	02.3	52.8	61.1
HAR $9 \rightarrow 18$	19.0	43.8	23.5	06.3	48.5	58.9
HAR mean	32.3	32.0	06.9	02.0	53.5	59.7

H-score (%) for HAR dataset

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
HHAR 0 → 2	39.8	18.8	01.2	00.0	42.4	67.5
HHAR $0 \rightarrow 6$	23.6	43.7	03.4	00.0	34.3	37.0
HHAR $1 \rightarrow 6$	48.2	28.9	01.2	00.0	51.5	75.2
HHAR $2 \rightarrow 7$	20.4	10.4	00.5	00.0	08.5	22.7
HHAR $3 \rightarrow 8$	48.8	70.0	02.2	00.0	70.0	77.1
HHAR $4 \rightarrow 5$	30.2	24.9	01.2	0.00	37.1	67.4
HHAR $5 \rightarrow 0$	04.3	02.5	00.2	0.00	03.7	02.0
HHAR $6 \rightarrow 1$	43.3	17.1	02.6	00.2	60.4	67.8
HHAR $7 \rightarrow 4$	32.3	33.5	05.3	0.00	39.0	61.4
HHAR $8 \rightarrow 3$	49.2	32.8	02.8	00.0	52.0	79.1
HHAR mean	34.0	28.3	02.1	00.0	39.9	55.7

H-score (%) for HHAR dataset

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
EEG $0 \rightarrow 11$	36.0	25.3	00.7	02.9	37.8	53.2
EEG $12 \rightarrow 5$	36.1	18.4	01.0	32.0	41.5	64.3
$EEG\ 13 \to 17$	15.2	01.5	04.6	05.5	17.9	15.8
$EEG\ 16 \to 1$	27.8	05.9	01.4	20.3	04.7	49.1
$EEG\ 18 \to 12$	27.6	29.1	10.2	18.5	9.8	39.0
EEG $3 \rightarrow 19$	34.8	28.4	01.7	12.8	39.5	73.4
EEG $5 \rightarrow 15$	28.2	13.9	03.0	8.80	66.0	76.4
EEG $6 \rightarrow 2$	29.0	55.7	08.5	36.8	32.2	55.8
EEG $7 \rightarrow 18$	31.7	8.80	8.00	12.0	36.0	61.9
EEG $9 \rightarrow 14$	35.9	48.2	05.7	42.6	37.9	61.4
EEG mean	30.2	23.5	03.8	19.2	32.3	55.0

H-score (%) for EDF dataset

$$\mathbf{H}\text{-score} = \frac{2A_cA_u}{A_c + A_u}$$

 A_c is the accuracy of known classes. A_u is the accuracy of target unknown classes.

Results S3Layer

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
HAR 12 → 16	43.6	26.0	30.2	40.3	21.8	39.8
HAR $13 \rightarrow 3$	63.0	30.0	42.1	68.4	34.0	60.6
HAR $15 \rightarrow 21$	37.2	35.3	36.8	34.9	46.1	38.1
HAR $17 \rightarrow 29$	63.9	30.5	56.4	57.3	36.4	61.0
HAR $1 \rightarrow 14$	56.9	28.2	9.8	46.2	39.0	52.6
HAR $22 \rightarrow 4$	51.8	18.5	32.4	53.5	41.8	53.8
HAR $24 \rightarrow 8$	41.5	21.1	33.5	28.8	34.5	51.4
HAR $30 \rightarrow 20$	53.7	25.1	42.3	50.9	33.6	58.1
HAR $6 \rightarrow 23$	51.0	22.6	43.2	43.4	54.1	69.0
HAR $9 \rightarrow 18$	59.0	35.8	32.1	43.1	35.0	56.7
HAR mean	52.2	27.3	35.9	46.7	37.6	54.1

H-score (%) for HAR dataset

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
HHAR 0 → 2	42.0	11.1	28.0	40.5	43.2	39.0
HHAR $0 \rightarrow 6$	39.3	65.0	37.7	51.0	47.8	65.9
HHAR $1 \rightarrow 6$	50.6	16.2	62.9	36.9	51.3	74.7
HHAR $2 \rightarrow 7$	27.7	12.5	33.3	42.6	15.7	25.1
HHAR $3 \rightarrow 8$	58.9	44.3	41.1	54.0	63.5	77.7
HHAR $4 \rightarrow 5$	43.8	06.4	33.3	25.1	53.7	61.0
HHAR $5 \rightarrow 0$	15.6	02.6	00.7	16.9	13.1	10.3
HHAR $6 \rightarrow 1$	49.0	04.7	63.2	55.9	56.7	82.5
HHAR $7 \rightarrow 4$	43.9	11.3	62.0	31.1	52.8	74.9
HHAR $8 \rightarrow 3$	48.6	59.1	31.4	69.5	47.9	67.1
HHAR mean	41.9	23.3	39.4	42.4	44.6	57.8

H-score (%) for HHAR dataset

Scenario	UDA	OVANet	PPOT	DANCE	UniOT	UniJDOT
EEG $0 \rightarrow 11$	36.4	20.1	22.6	40.0	27.7	46.0
EEG 12 \rightarrow 5	64.9	57.5	35.4	57.0	40.9	60.6
EEG $13 \rightarrow 17$	34.8	49.6	17.1	41.8	36.2	36.1
EEG $16 \rightarrow 1$	57.8	51.4	50.9	45.3	40.2	55.4
EEG $18 \rightarrow 12$	36.1	42.0	25.7	39.5	14.5	37.1
EEG $3 \rightarrow 19$	54.1	50.8	31.5	42.1	37.3	48.9
EEG $5 \rightarrow 15$	50.0	63.1	54.8	57.2	50.1	50.5
EEG $6 \rightarrow 2$	56.8	59.9	22.9	58.5	24.9	53.1
EEG $7 \rightarrow 18$	62.0	54.9	50.3	61.6	50.6	60.8
EEG $9 \rightarrow 14$	68.3	77.5	56.7	62.7	54.2	55.9
EEG mean	52.1	52.7	36.8	50.6	37.7	50.4

H-score (%) for EDF dataset

$$\mathbf{H\text{-}score} = \frac{2A_cA_u}{A_c + A_u}$$

 A_c is the accuracy of known classes. A_{u} is the accuracy of target unknown classes.

Conclusion

Conclusion

Wrap-Up:

- We proposed a framework for UniDA model training and testing
- We studied time-series—oriented architectures in UniDA
- Our study showed that recent architectures may not be well-suited for UniDA

Future Work:

- Focus on time series: How can we learn good representations of such data?
- Explore more methods and datasets
- Investigate whether foundation models improve performance

Thank You!

romain.mussard@univ-rouen.fr

Questions?

References i

- [1] K. You, M. Long, Z. Cao, J. Wang, and M. I. Jordan, "Universal domain adaptation," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
- K. Saito, D. Kim, S. Sclaroff, and K. Saenko, "Universal domain adaptation through self-supervision," 2020.
- K. Saito and K. Saenko, "Ovanet: One-vs-all network for universal domain adaptation," in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8980-8989, 2021.
- [4] W. Chang, Y. Shi, H. Tuan, and J. Wang, "Unified optimal transport framework for universal domain adaptation," in Advances in Neural Information Processing Systems (S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds.), vol. 35, pp. 29512-29524, Curran Associates, Inc., 2022.
- [5] Y. Yang, X. Gu, and J. Sun, "Prototypical partial optimal transport for universal domain adaptation," Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 10852-10860, Jun. 2023.
- R. Mussard, F. Pacheco, M. Berar, G. Gasso, and P. Honeine, "Deep joint distribution optimal transport for universal domain adaptation on time series." IEEE International Joint Conference on Neural Networks, 2025.
- E. Eldele, M. Ragab, Z. Chen, M. Wu, and X. Li, "Tslanet: Rethinking transformers for time series representation learning," in International Conference on Machine Learning, 2024.
- S. Grover, A. Jalali, and A. Etemad, "Segment, shuffle, and stitch: A simple layer for improving time-series representations," Advances in Neural Information Processing Systems, vol. 37, pp. 4878-4905, 2025.

