

6-13-00

LERNER AND GREENBERG, P.A. PATENT ATTORNEYS AND ATTORNEYS AT LAW

2200 Hollywood Boulevard Hollywood, Florida 33020 Tel: (954) 925-1100

Fax: (954) 925-1101

www.patentusa.com patents@patentusa.com

Mailing Address: Post Office Box 2480 Hollywood, FL 33022-2480

New York Office 153 E 57th Street Suite 15G New York, NY 10022

"Express Mail" mailing label number EL608559503US Date of Deposit June 12, 2000

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Docket No.: GR 99 P 2011

Herbert L. Lerner (NY Bar)

Laurence A. Greenberg (FL Bar) Werner H. Stemer (FL Bar), Senior Attorney

Ralph E. Locher (FL, IL, MO Bars)

Mark P. Weichselbaum (TN Bar)

Gregory L. Mayback (FL Bar) Markus Nolff (FL Bar)

Otto S. Kauder (Reg. Pat. Agent) Loren Donald Pearson (FL Bar)

Manfred Beck (US & German Pat. Agent)

Date: June 12, 2000

Hon. Commissioner of Patents and Trademarks

Washington, D.C. 20231

Sir

Enclosed herewith are the necessary papers for filing the following application for Letters Patent:

Applicant

ULRICH EMMERLING ET AL.

Title

FUNCTIONAL MONITORING SYSTEM, IN PARTICULAR ACCESS

CONTROL SYSTEM, AND METHOD FOR FUNCTIONAL

CONTROL

1 sheet of formal drawings in triplicate.

A check in the amount of \$ 690.00 covering the filing fee.

Information Disclosure Statement and 3 References.

This application is being filed without a signed oath or declaration under the provisions of 37 CFR 1.53(d). Applicants await notification of the date by which the oath or declaration and the surcharge are due, pursuant to this rule.

The Patent and Trademark Office is hereby given authority to charge Deposit Account No. 12-1099 of Lerner and Greenberg, P.A. for any fees due or deficiencies of payments made for any purpose during the pendency of the above-identified application.

LAURENCE A. GREENBERG REG. NO. 29,308

LAG:kc

10

FUNCTIONAL MONITORING SYSTEM, IN PARTICULAR ACCESS CONTROL SYSTEM, AND METHOD FOR FUNCTIONAL CONTROL

Background of the Invention:

Field of the Invention:

The invention relates to a functional monitoring system, in particular access control system, having a central transmitting and receiving station and a plurality of transponders which can communicate bidirectionally with the transmitting and receiving station.

European patent EP 0 440 974 B1 and U.S. Patent No. 5,552,641 disclose such functional monitoring systems in the form of motor vehicle access control systems. There, a central transmitting and receiving station arranged in or on the motor vehicle transmits an interrogation code signal (question code) for example after the actuation of a door actuating button.

- The signal is answered by a portable transponder located in 20 radio range. The motor vehicle access control system described in U.S. Patent No. 5 552 641 may be configured with multichannel capability for security reasons.
- If, for such an access control system, a plurality of portable 25 transponders are issued for use by a number of persons, the

20

25

5

10

functional monitoring system, in the case of desired functional control, should not only be able to identify whether one or more transponders are located in the detection range of the central transmitting and receiving station, but also be able to detect which transponder or transponders is or are involved. This is true particularly if the individual transponders are assigned different functional scopes (by way of example, one transponder may be allowed only to unlock the central locking system, while another transponder may, in addition to actuating the central locking system, also disconnect the immobilizer device and thus enable the motor vehicle for a driving mode).

and which, transponders are located in the detection range. At the same time, it must be ensured that a plurality of authorized transponders do not mutually influence one another during the transmission of their response code signals (answer code), such that the system can no longer check the correctness of the response code signals and hence the desired function is also not enabled. The communication thus needs to be safeguarded against collisions. One possible approach for solving this problem consists in allocating different identifiers, e.g. numbers, to the transponders and directing the transponder search in each case only at one transponder,

The functional monitoring system must therefore check whether,

that is to say transmitting a dedicated interrogation code

signal for each transponder (e.g. with an address which designates only this one transponder). The transponders belonging to a system are then successively interrogated as to their presence by multiple repetition of the transmission of the interrogation code signal, which is progressively altered in each case, and waiting for an response code signal. However, this procedure takes up an appreciable amount of time, with the result that an undesirable time delay may possibly occur between a user requesting a specific function and the function that is actually being carried out.

Summary of the Invention:

The object of the invention is to provide a functional monitoring system which overcomes the above-noted deficiencies and disadvantages of the prior art devices and methods of this kind, and which is distinguished by rapid response in the event of desired triggering of the function to be controlled.

With the above and other objects in view there is provided, in 20 accordance with the invention, a function monitoring system, comprising:

a transmitting and receiving station configured to transmit an interrogation code signal at regular intervals, at irregular intervals, and/or as a reaction to a triggering event; and

a plurality of transponders each configured to respond to the interrogation code signal upon receiving the interrogation code signal and to generate a response signal and transmit the response signal to the transmitting and receiving station.

In other words, the system according to the invention is

5

10

configured such that the central transmitting and receiving station transmits only a single search signal to all of the transponders belonging to the system and all of the transponders which are located in the reception range answer simultaneously. As a result, not only is the search operation distinctly reduced in respect of the time and power requirement, but the desired function can also be carried out immediately even if just a single authorized transponder reports. The interrogation code signal is thus identical for all of the transponders.

In accordance with an additional feature of the invention, each of the transponders includes a synchronization device

20 effecting a synchronization of a transponder operation with the interrogation code signal received by the transponder or a code signal sequence transmitted with the interrogation code signal, such that the response signals of the transponders are transmitted in synchronicity.

In other words, when the interrogation code signal (search signal or search telegram) is received, the transponders are synchronized with the bit sequence of the signal and then simultaneously start to transmit their answer, for example after a time interval which is the same for all of the transponders and suffices for synchronization purposes has elapsed starting from the reception of the interrogation code signal. This ensures that all of the transponders transmit exactly with the same timing rhythm, so that, at the reception end, no signal collision occurs, rather there is merely an increase in the received field strength in an advantageous manner. In this case, all of the transponders transmit the same answer signal with the same frequency and baud rate.

15 As an alternative or in addition, each transponder may be
equipped with a dedicated subcarrier frequency generator which
generates a subcarrier frequency which differs from the
subcarrier frequencies of at least some, preferably all, of
the other transponders and serves for modulation of the

20 carrier frequency signal, which is the same for all of the
transponders, in which case the subcarrier frequency is
preferably modulated beforehand with a code sequence (e.g.
identifier information or information about an additional
function to be controlled) assigned to the respective

25 transponder. The baud rate is likewise the same for all of the
transponders. After the search signal, all of the transponders

method.

in the detection range answer with the same carrier frequency and baud rate but with their additional, dedicated frequency component (intermediate frequency) caused by the subcarrier. It is not necessary to synchronize the various transponders in this case. The receiving station thus receives all of the answer signals essentially simultaneously immediately after the transmission of the search signal and can divide the answer signals between different channels, for example by means of suitable filters, and evaluate them separately and thus identify essentially in parallel which transponders are present in the detection range. The modulation of the subcarrier frequency signal and/or the modulation of the (main) carrier frequency signal may preferably be effected by means of amplitude modulation or frequency modulation or by 15 means of another suitable modulation method. At the same time, selective information transmission and/or transponder identification is possible by virtue of the double modulation

In accordance with a preferred feature of the invention, the 20 transmitting and receiving station forms a part of an access control system, such as a motor vehicle access control system.

With the above and other objects in view there is also provided, in accordance with the invention, a method of 25 operating a functional monitoring system having a transmitting

20

and receiving station and a plurality of transponders, the method which comprises:

transmitting an interrogation code signal with a transmitting and receiving station; and

5 simultaneously responding with each of a plurality of transponders receiving the interrogation code signal by transmitting a response signal.

The interrogation code signal is thereby transmitted at regular time intervals, irregular time intervals, or in reaction to a triggering event.

In accordance with a further feature of the invention, the transponders are synchronized for transmitting the response signal, i.e., before and/or during the response transmission.

In accordance with again a further feature of the invention, the respective response signals are generated by double modulation with an initial modulation of a subcarrier frequency signal with an response code signal and a subsequent modulation of a carrier frequency signal, common to all of the transponders, with the modulation output signal obtained in the initial modulation.

In accordance with a concomitant feature of the invention, the transmitting and receiving station evaluates the frequency components caused by the subcarrier frequency signals of the individual transponders in different channels.

5

10

25

Consequently, in the case of the invention, by means of a single interrogation code signal, all of the transponders are addressed and required to react simultaneously, with the result that the successive searching for a single transponder in each case is obviated and the system reaction time is shortened to the minimum possible time. This is important particularly in the case of keyless access control systems, but also in the case of other functional monitoring systems. In this case, it is ensured at the same time that the communication is free from collisions, in particular by virtue of synchronization and/or the use of different answer frequency components for the same carrier frequency and baud rate.

20 Other features which are considered as characteristic for the invention are set forth in the appended claims.

Although the invention is illustrated and described herein as embodied in a functional monitoring system, in particular access control system, and method for functional control, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.

5

The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.

Brief Description of the Drawings:

Fig. 1 is a schematic block diagram of the system according to the invention; and

15

10

Fig. 2 is a block diagram of part of the internal transponder structure.

Description of the Preferred Embodiments:

20 Referring now to the figures of the drawing in detail and first, particularly, to Fig. 1 thereof, there is seen an exemplary embodiment of the invention, wherein the functional monitoring system is designed as a motor vehicle access control system. The system includes a transmitting and receiving station which is fitted in or on a schematically

illustrated motor vehicle 1 and comprises at least one

20

25

transmitter 2 and at least one receiver 3. The transmitter 2 and the receiver 3 operate inductively and/or in the radio frequency range and can be combined to form a single unit assembly. Furthermore, there are a plurality of transponders 4, 5, 6, which may be designed for example as key ring pendants or smart cards. Each transponder is equipped with an inductive receiving unit and a radio frequency transmitting unit.

In order to unlock the motor vehicle, it is necessary to actuate, for example, a pushbutton 7, a door handle or another component on the motor vehicle. This actuation is detected by a control unit 8, which controls the central locking device and thereupon drives the transmitter 2 for transmitting, for example an inductive, interrogation code signal (search telegram). This interrogation code signal (also referred to as a question code signal) is received by all transponders present in the transmission range. The transponders are all configured such that they answer the same interrogation code signal immediately with their preferably coded answer signal. These simultaneously transmitted answer signals are received by the receiver 3 and evaluated by the control unit 8 or a separate evaluation circuit which, if appropriate in the case of different answer signals, can select and evaluate even only one of the these answer signals. In the case of a correct answer signal, that is to say an response code which

15

20

2.5

corresponds to the expected code, the desired action is performed by the control unit 8, that is to say in this case the motor vehicle doors are unlocked. It is possible for the initialization of the authorization communication not only to be initiated by the access control system after the actuation of the pushbutton 7 or another component but also, as an alternative, to be started in cyclic or acyclic intervals by the automatic transmission of the interrogation code signal.

The transponders 4 to 6 may be designed identically and contain an internal synchronization device which, when the interrogation code signal is received, effects synchronization with that signal, in particular for the purpose of attaining phase synchronization. Since the synchronization is performed in parallel in all of the receiving transponders, the latter are synchronized with the same signal, with the result that these transponders also operate in a mutually synchronized manner. The transponders are designed in such a way that they not only use the received interrogation code signal for synchronization purposes, but also evaluate it to the effect of whether the signal involved is an expected signal requiring a response code signal. If this is the case, all of the transponders transmit their response code signal (also referred to as an answer signal) in a synchronized manner, for example after a fixed time interval, which is the same for all of the transponders, starting from the reception of the

.15

20

interrogation code signal, with the result that these answer signals arrive at the receiver 3 at exactly the same time (disregarding the in practice insignificant delay differences possibly present due to distance differences). On account of their identical design, all of the transponders transmit the same answer signal with the same frequency and baud rate, with the result that, on account of the synchronization, no signal collision occurs at the receiver 3.

As an alternative or in addition to this synchronization of the transponders, it may also be provided that each transponder is assigned a dedicated characteristic frequency or other identifier which enables the central transmitting and receiving station to distinguish the transponders from one another in spite of simultaneous signal reception. To that end, in addition to the carrier frequency of usually 433 MHz which is common to all of the transponders, and the baud rate-dependent modulation - which is likewise the same for all of the transponders - of said carrier frequency (customary baud rates are 1 KBd to 10 KBd), it is possible to provide a further subcarrier for each transponder of 100 kHz, for example.

Fig. 2 shows the internal structure of a transponder, which,
25 in this respect, may be the same for all of the transponders
belonging to the system. A subcarrier frequency generator 10

20

25

generates a subcarrier frequency signal having a frequency of e.g. 100 kHz, which is applied to a modulator 12 (amplitude or frequency modulator). The modulator 12 modulates the subcarrier frequency signal with a code signal which is generated by a code generator 11 and has a specific baud rate. The output signal of the modulator 12 is applied to a second modulator 14, which modulates said signal with the actual carrier frequency of e.g. 433 MHz, which is generated by a carrier frequency signal generator 13. The output signal of the modulator 14 is radiated via a non-illustrated antenna to the receiver 3 (Fig. 1) of the transmitting and receiving station. Since there are a plurality of transponders (for example up to 8 transponders in the case of a motor vehicle), each transponder 4 to 6 is assigned a dedicated subcarrier, for example with a 100 kHz spacing. By way of example, the transponder 4 then has a subcarrier frequency of 100 kHz, the transponder 5 a subcarrier frequency of 200 kHz and the transponder 6 a subcarrier frequency of 300 kHZ, etc. However, the baud rate and the (main) carrier frequency are the same for all of the transponders 4 to 6. After the interrogation code signal, all transponders present in the reception range answer essentially simultaneously, in which case synchronization need not necessarily be provided. Each transponder answers with its dedicated output signal containing the frequency components which are defined by the subcarrier and are characteristic of the respective

15

20

25

transponder (dedicated intermediate frequency). The receiver 3 and/or the control unit 8 can divide these simultaneously received answer signals between different channels, for example by means of suitable frequency filters, and evaluate them there. The receiver 3 or the control unit 8 is designed in such a way that it then selects the information received on all of the channels or only some channels, or else only on one channel, with regard to a correct response code and, in the case of a correct response code, triggers the associated function, for example unlocks the motor vehicle. In this case, it is also possible to assign a dedicated functional scope to each transponder, or at least to individual transponders, in which case the control unit 8, upon identifying the transponder currently present, enables only the functional scope assigned to said transponder, e.g. only door unlocking, but not engine starting.

The functional monitoring system may, if appropriate, also contain a plurality of transmitting and receiving stations for each object to be controlled, in order for example to transmit in different directions and to be able to receive well from different directions.

The functional monitoring system according to the invention may be not only a motor vehicle access control system but generally any desired system which enables specific actions or

15

performs functions when an authorized transponder is present in the detection range of the system. The access control system may also be designed as an immobilizer control system which enables the motor vehicle to be started only when an authorized transponder is present. The functional monitoring system may also be an access control system for a or in a house, in which one or more doors, in particular entrance doors, can be opened only when an authorized transponder is concomitantly carried, or an access control system for an automatic teller machine from which cash can be removed only when an authorized transponder is located in the near range around the machine. In this case, the central transmitting and receiving station is respectively fitted in the region of the object that is to be controlled with regard to its function, together with a control device which performs the signal evaluation and functional control.

The transponders may be configured as desired and be designed for example as smart card, key, key ring pendant or body

20 implant, provided that it is ensured that they can receive and transmit signals. To that end, each transponder may have an inductive receiver and a radio frequency transmitter, or be configured as a transmitter/receiver unit operating inductively or bidirectionally in the RF range. The signal

25 transmission may also be effected via infrared paths.

Authorized transponders are to be understood here to be transponders which belong to the relevant functional monitoring system. In the case of a motor vehicle, the assignment of the transponders may be effected e.g. at the end of the production line or in a workshop.

The detection range of the access control system in this case corresponds to that region in and around the system in which the central transmitting and receiving station can communicate with the transponders and receive signals therefrom. The interrogation code signal generally represents a bit pattern, that is to say a signal consisting of a bit sequence, which is transmitted by means of the transmitter 2, for example an inductive transmission antenna, and received and evaluated by the transponders which are present in its transmission range.

We claim:

- 1. A functional monitoring system, comprising:
- a transmitting and receiving station configured to transmit an interrogation code signal; and
- a plurality of transponders each configured to respond to the interrogation code signal upon receiving the interrogation code signal and to generate a response signal and transmit the response signal to said transmitting and receiving station.
- 2. The functional monitoring system according to claim 1, wherein said transmitting and receiving station is selectively configured to transmit the interrogation code signal at regular intervals, at irregular intervals, or as a reaction to a triggering event.
- 3. The functional monitoring system according to claim 1, wherein each of said transponders includes a synchronization device effecting a synchronization of a transponder operation with the interrogation code signal received by said transponder, such that the response signals of said transponders are transmitted in synchronization.
- The functional monitoring system according to claim 3,
 wherein said synchronization device effects a synchronization

of the transponder operation to a code signal sequence transmitted with the interrogation code signal.

- 5. The functional monitoring system according to claim 3, wherein said synchronization device effects a synchronization of a transmission signal generation of said plurality of transponders.
- 6. The functional monitoring system according to claim 1, wherein at least one of said transponders contains a subcarrier frequency generator for generating a subcarrier frequency signal, assigned to said transponder, for modulation of a carrier frequency signal common to all of said transponders.
- 7. The functional monitoring system according to claim 6, wherein said transponder comprises a carrier frequency generator generating a carrier frequency signal, a first modulator for modulating the subcarrier frequency signal generated by said subcarrier frequency generator with a code signal, and a second modulator for modulating the carrier frequency signal generated by said carrier frequency generator with the output signal output by said first modulator.
- The functional monitoring system according to claim 6,
 wherein said transmitting and receiving station comprises a

plurality of input channels with filters for filtering out frequency components caused by the subcarrier frequency signal.

- 9. The functional monitoring system according to claim 1, wherein each of said plurality of transponders contains a subcarrier frequency generator for generating a subcarrier frequency signal, assigned to the respective said transponder, for modulation of a carrier frequency signal common to all of said transponders
- 10. The functional monitoring system according to claim 9, wherein each of said transponders comprises a carrier frequency generator generating a carrier frequency signal, a first modulator for modulating the subcarrier frequency signal generated by said subcarrier frequency generator with a code signal, and a second modulator for modulating the carrier frequency signal generated by said carrier frequency generator with the output signal output by said first modulator.
- 11. The functional monitoring system according to claim 9, wherein said transmitting and receiving station comprises a plurality of input channels with filters for filtering out frequency components caused by the subcarrier frequency signal.

- 12. The functional monitoring system according to claim 1, wherein said transmitting and receiving station forms a part of an access control system.
- 13. The functional monitoring system according to claim 1, wherein said transmitting and receiving station is mounted at a motor vehicle and the monitoring system is a motor vehicle access control system.
- 14. A method of operating a functional monitoring system having a transmitting and receiving station and a plurality of transponders, the method which comprises:

transmitting an interrogation code signal with a transmitting and receiving station; and

simultaneously responding with each of a plurality of transponders receiving the interrogation code signal by transmitting a response signal.

15. The method according to claim 14, which comprises transmitting the interrogation code signal at regular time intervals.

- 16. The method according to claim 14, which comprises transmitting the interrogation code signal at irregular time intervals.
- 17. The method according to claim 14, which comprises transmitting the interrogation code signal as a reaction to a triggering event.
- 18. The method according to claim 14, which comprises synchronizing the transponders for transmitting the response signal.
- 19. The method according to claim 14, which comprises generating the respective response signals by double modulation with an initial modulation of a subcarrier frequency signal with an response code signal and a subsequent modulation of a carrier frequency signal, common to all of the transponders, with the modulation output signal obtained in the initial modulation.
- 20. The method according to claim 19, which comprises evaluating with the transmitting and receiving station the frequency components caused by the subcarrier frequency signals of the individual transponders in different channels.

Abstract of the Disclosure:

The transmitting and receiving station generates a interrogation code signal which is identical for all of the transponders. All of the transponders that receive the signal answer simultaneously at the same carrier frequency. In order to avoid signal collisions, the transponders are synchronized before and/or during the transmission of the response signals. As an alternative, each transponder is assigned a dedicated subcarrier frequency in addition to the main carrier

10 frequency, which is the same for all of the transponders.

WHS:kc - 99p2011F//6/12/2000

Docket No.: GR 99 P 2011

COMBINED DECLARATION AND POWER OF ATTORNEY IN ORIGINAL APPLICATION

As a below named inventor, I hereby declare that: my residence, post office address and citizenship are as stated below next to my name; that I verily believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

FUNCTIONAL MONITORING SYSTEM, IN PARTICULAR ACCESS CONTROL SYSTEM, AND METHOD FOR FUNCTIONAL CONTROL

described and claimed in the specification bearing that title, that I understand the content of the specification, that I do not know and do not believe the same was ever known or used in the United States of America before my or our invention thereof, or patented or described in any printed publication in any country before my or our invention thereof or more than one year prior to this application, that the same was not in public use or on sale in the United States of America more than one year prior to this application, that the invention has not been patented or made the subject of an inventor's certificate issued before the date of this application in any country foreign to the United States of America on an application filed by me or my legal representatives or assigns more than twelve month prior to this application, that I acknowledge my duty to disclose information of which I am aware which is material to the examination of this application under 37 C.F.R. 1.56a, and that no application for patent or inventor's certificate of this invention has been filed earlier than the following in any country foreign to the United States prior to this application by me or my legal representatives or assigns:

German Application No. 199 26 748.0, filed June 11, 1999, the International Priority of which is claimed under 35 U.S.C. §119.

I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

HERBERT L. LERNER (Reg.No.20,435) LAURENCE A. GREENBERG (Reg.No.29,308) WERNER H. STEMER (Reg.No.34,956) RALPH E. LOCHER (Reg.No. 41,947)

Address all correspondence and telephone calls to:

LERNER AND GREENBERG, P.A. POST OFFICE BOX 2480 HOLLYWOOD, FLORIDA 33022-2480 Tel: (954) 925-1100

Fax: (954) 925-1100

I hereby state that I have reviewed and understand the contents of the aboveidentified specification, including the claims, as amended by any amendment referred to above.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

FULL NAME OF FIRST JOINT INVENTOR:		ULRICH EMMERLING
INVENTOR'S SIGNATURE:		
DATE:		
Residence: KELHEIM, GERMANY		
Country of Citizenship:	GERMANY	
Post Office Address:	D-93309 KELHEIM GERMANY	
FULL NAME OF SECOND JOINT INVENTOR:		
INVENTOR'S SIGNATURE:		
DATE:		
Residence: SINZING, GERMANY		
Country of Citizenship:	GERMANY	
Post Office Address:	TANNENSTRASSE 5, D-93161 SINZING GERMANY	