## AGI DOC PACKAGE – Table Of Contents

| An Oscillo                         | scope Overview                  |                            |          |   | 2    |
|------------------------------------|---------------------------------|----------------------------|----------|---|------|
| AGI Block                          | Diagram                         |                            |          |   | 3    |
| AGI Oscill                         | loscope Requirements            |                            |          |   | 4    |
|                                    | - AGI Project                   |                            |          |   |      |
| Parts List                         | - AGI PCB ASSEMBLY              |                            |          |   | 6    |
| Bare Print                         | ed Circuit Board – Rev 0        |                            |          |   | 7    |
| Bare Print                         | ed Circuit Board – Rev 0 RE     | WORK INSTRUCTIONS .        |          |   | 8    |
| Bare Print                         | ed Circuit Board – Rev 0 RE     | WORK INSTRUCTIONS .        |          |   | 9    |
| Bare Print                         | ed Circuit Board – Rev 1        |                            |          |   | 10   |
| AGI Sche                           | matic                           |                            |          |   | 11   |
| Load Part                          | s: .1uf Capacitor, 1N4004 Di    | ode                        |          |   | 12   |
| Load Part                          | s: 470pf, 47uf, 330uf Capaci    | tor                        |          |   | 13   |
|                                    | s: Resistors                    |                            |          |   |      |
| Load Part                          | s: 10K Resistors, Q1, Q2, SV    | V1                         |          |   | 15   |
|                                    | •                               |                            |          |   |      |
|                                    | s: Potentiometers & Test Poi    |                            |          |   |      |
|                                    | s: Headers, Connectors, Ics     |                            |          |   |      |
| Power Su                           | pply Checks & IC Installation   | l                          |          |   | 19   |
| Test Mode Mounting, DUE to AGI PCB |                                 |                            |          |   |      |
| Final Mounting of DUE to AGI PCB   |                                 |                            |          |   |      |
| Wiring AGI To DUE                  |                                 |                            |          |   |      |
|                                    | in and Offset Adjust            |                            |          |   |      |
|                                    | in and Offset Adjust            |                            |          |   |      |
|                                    | Select & Wiring AGI To Scope    |                            |          |   |      |
|                                    | OPE Test Pattern Description    |                            |          |   |      |
|                                    |                                 |                            |          |   |      |
|                                    | c Details (Power Supply, Pg     |                            |          |   |      |
|                                    | c Details (Analog Circuits, Pg  | •                          |          |   |      |
|                                    | Details (Digital Circuits, Pg   |                            |          |   |      |
|                                    | X 1 Single Page Schematic.      |                            |          |   |      |
|                                    | X 2 Test Points & Dimension     |                            |          |   |      |
| APPENDI                            | X 3 Libraries and IDE Setup     |                            |          |   | 33   |
| THIS DOCUMENT CONTAINS PROJECT     | First Made For                  | Filename                   | Revision | 2 | Page |
| SPECIFIC DOCUMENTATION             | AGI: Arduino Graphics Interface | . 20180808P1 RHH D DOC'554 | 1        |   |      |

AMC Brookfield, WI USA

## **An Analog Oscilloscope Overview**

An oscilloscope accepts a voltage input from a device under test and displays that voltage as a dot on a display screen. A positive voltage into the scope drives the Y-axis of the trace, moving the 'dot' up on the screen, while a negative voltage input moves the 'dot' down. A second, independent voltage is applied to the X-axis of the oscilloscope. In this case, a positive voltage moves the dot to the right along the X-axis while a negative voltage moves the dot to the left.

By applying the unknown test voltage into the Y-axis and a linear ramp waveform into the X-axis, the dot will graphically show how the unknown test voltage changes over time.



The linear ramp waveform driving the X-axis waveform is created inside the oscilloscope by an internal <u>time base sweep generator</u> circuit. Two (or four) channel oscilloscopes allow multiple signals to be simultaneously traced across the screen. With careful calibration of the time base and input amplifiers of the scope, precise amplitude and time measurements are made.

The earliest computer graphics and radar displays (circa: 1940-1970's) used CRTs driven in an X-Y fashion to show monochrome vector graphic displays.

This project side steps the internal Time Base seep generator of the oscilloscope and drives both the X & Y axis with a microprocessor. In this way we can show high resolution vector art graphic images on an oscilloscope screen.



Made by: E. Andrews Date: 8-17-2017

## AGI Block Diagram





| First Made For                  |
|---------------------------------|
| AGI: Arduino Graphics Interface |
| Last updated: 20180104 EWA      |

## AGI Oscilloscope Requirements

Overall graphics quality is influenced by the quality and performance of the oscilloscope and CRT used. This project works well only with ANALOG Oscilloscopes; Digital scopes will only produce poor looking output.

There are many analog scopes manufactured by Tektronix, HP, Phillips, Leader, GW-Instek and others that will work well. Look for these key features to find a suitable scope for this project:

- Screen size: Larger is better!
- Scope must support an X-Y Mode
- Scope must be run in DC Mode

# Typical Scope <u>Front Panel</u> View showing XY Operation Controls



Typical Scope Rear Panel View showing Z-AXIS INPUT connector



Page

Made by: E. Andrews Date: 8-17-2017

## Parts List – AGI Project

| Item | Ref Designators                                         | QTY | Description/Values/Notes                                                                         | Manufacturer         | Mfg PN       | Alternate Sources      | Additional Notes                                                                                                  |
|------|---------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------|----------------------|--------------|------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1    | AGI PCB Assembly                                        | 1   | -                                                                                                |                      | -            | -                      | See build PCB Documentation beginning on page 6.                                                                  |
| 2    | Arduino Due Processor<br>Board                          | 1   | ARDUINO DUE (or compatible)                                                                      | Arduino.org          | See Web Site | Amazon, eBay, & others |                                                                                                                   |
| 3    | BNC to BNC Cables                                       | 2   | BNC to BNC, 500hm Cable,<br>3-5Ft Length, AGI to<br>Oscilloscope Interconnect                    | Various              | Various      | Amazon, eBay, & others | Shielded or Twisted Pair cabling is recommended; Final method & length of XYZ interconnection is BUILDER'S choice |
| 4    | + 12VDC Power Supply                                    | 1   | +12 VDC @ 2 Amp                                                                                  | Various              | Various      | Amazon, eBay, & others | Selection of Power Supply and<br>method of interconnect to AGI<br>PCB is BUILDER'S choice                         |
| 5    | Hookup Wire                                             | AR  | Wire for interconnection<br>between AGI and Arduino<br>Due                                       | Various, As Required | Various      | Amazon, eBay, & others | Method of interconnection is BUILDER'S choice                                                                     |
| 5    | Misc Headers to facilitate interconnect                 | AR  | Connectors headers for interconnect between AGI and Due                                          | Various, As Required | Various      | Amazon, eBay, & others | Method of interconnection is BUILDERS choice                                                                      |
| 6    | 4-40 X 0.75 In Long Spacer<br>(Spacer, Nuts, Screws AR) | 4   | Spacers used to mount DUE to TOP OF AGI PCB                                                      | Various              | Various      | Amazon, eBay, & others | Final mounting method is BUILDER'S choice                                                                         |
| 7    | 4-40 X 0.75 In Long Spacer (Spacer, Nuts, Screws AR)    | 4   | Spacers used to mount AGI to a base or enclosure                                                 | Various              | Various      | Amazon, eBay, & others | Final mounting method is BUILDER'S choice                                                                         |
| 8    | Project Enclosure                                       | 1   | As Required, BUILDER'S choice                                                                    | Various              | Various      | Amazon, eBay, & others | Final enclosure method is BUILDER's choice                                                                        |
| 9    | Analog Oscilloscope with XYZ Drive Capability           | 1   | Analog Oscilloscope is required as the final display device. Note: DIGITAL scopes will not work. | Various              | Various      | Amazon, eBay, & others | See OSCILLOSCOPE<br>REQUIREMENTS page to qualify<br>possible oscilloscope candidates.                             |

|          | THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION |  |  |  |  |
|----------|-------------------------------------------------------|--|--|--|--|
| Made by: | E. Andrews Date: 8-17-2017                            |  |  |  |  |

| Revision | 2     |
|----------|-------|
| Printed  |       |
| 1/4/2018 | 16:09 |

Page AMC Brookfield, WI USA

## Parts List – AGI PCB ASSEMBLY

IC sockets for all 8-pin and 14-pin devices is recommended.

Mfg PN Description & Add'l Data

NOTE: Use PCB or hand-wire using Prototype Perf-Board for assembly. Use of

| Item | Ref Designators                                                                                  | QTY | Value/Notes                  | Manufacturer                       | Mfg PN                                      | Digikey (                          | DK) PN                    |          | Description &                                | Add'l Data               |
|------|--------------------------------------------------------------------------------------------------|-----|------------------------------|------------------------------------|---------------------------------------------|------------------------------------|---------------------------|----------|----------------------------------------------|--------------------------|
| 1    | C10,C12                                                                                          | 2   | 470pf                        | KEMET                              | C410C471J1G5TA7200                          | DK: 399-4473-1-N                   | D                         | CAP CEF  | R 470PF 100V COG/NPO A                       | XIAL                     |
| 2    | C11,C13,C14,C15,C16,C4,C5,C<br>8,C9                                                              | 9   | .1uf                         | Taiyo Yuden                        | UP050F104Z-A-BZ                             | DK: 587-5501-1-N                   | D                         | CAP CEF  | R 0.1UF 50V AXIAL                            |                          |
| 3    | C2,C7                                                                                            | 2   | 330uf                        | Panasonic                          | ECA-1EHG331                                 | DK: P5542-ND                       |                           | CAP ALL  | JM 330UF 20% 25V RAD                         | AL                       |
| 4    | C3,C6                                                                                            | 2   | 47uf                         | Panasonic                          | EEU-FC1H470                                 | DK: P10321-ND                      |                           | CAP ALL  | JM 47UF 20% 50V RADIA                        | L                        |
| 5    | D1                                                                                               | 1   | 1N4004                       | Micro Com                          | 1N4004-TP                                   | DK: 1N4004-TPMS                    | SCT-ND                    | DIODE C  | GEN PURP 400V 1A DO41                        |                          |
| 6    | L1,L2                                                                                            | 2   | LED 3MM GRN                  | Broadcom Limited                   | HLMP-1503-C0002                             | DK: 516-3190-2-N                   |                           | LED GRI  | N DIFF 3MM ROUND T/H                         |                          |
| 7    | P1,P2,P3                                                                                         | 3   | Can use Chassis<br>Mount BNC | TE Connectivity AMP<br>Connectors  | 1-1634612-0                                 | DK: A97555-ND                      |                           | CONN B   | SNC JACK R/A 50 OHM PC                       | В                        |
| 8    | PL1                                                                                              | 1   | Alt: Jumper Wire             | Samtec                             | MALE: TSW-110-07-T-S<br>FEMALE: SSA-110-S-T | MALE DK: SAM103<br>FEMALE DK: SAM1 |                           | 10 PIN . | 025" SQ. MALE OR FEMA                        | LE TERM                  |
| 9    | PL2                                                                                              |     | Alt: Jumper Wire             | Samtec                             | HTSW-101-07-T-S                             | DK: SAM11363-NE                    |                           |          | 25" SQ. MALE TERM                            |                          |
| 10   | PL3                                                                                              | 1   | Alt: Jumper Wire             | Samtec                             | MALE: TSW-108-07-T-S                        | MALE DK: SAM103                    |                           | 8 PIN .0 | 25" SQ. MALE OR FEMAL                        | E TERM                   |
|      |                                                                                                  |     |                              |                                    | FEMALE: SSA-108-S-T                         | FEMALE: SAM112                     |                           |          |                                              |                          |
| 11   | PL4                                                                                              | 1   | Alt: Jumper Wire             | Samtec                             | MALE: HTSW-101-07-T-S                       | MALE DK: SAM113                    |                           |          | 25" SQ. MALE OR FEMAL                        |                          |
| 12   | PL5                                                                                              | 1   | Alt: Jumper Wire             | Samtec                             | MALE: TSW-102-24-T-S<br>FEMALE: SSA-102-S-T | MALE DK: SAM123<br>FEMALE DK: SAM1 |                           | 2 PIN .0 | 25" SQ. MALE OR FEMAL                        | E IERM                   |
| 13   | PL6                                                                                              | 1   | Alt: Jumper Wire             | Samtec                             | TSW-103-15-T-S                              | DK: SAM9525-ND                     | 1122-02-IND               | 3 PIN O  | 25" SQ. MALE TERM                            |                          |
| 14   | Q1,Q2                                                                                            | 2   | IRFD9120                     | Vishay, Siliconix                  | IRFD9120PBF                                 | DK: IRFD9120PBF-                   | ND                        |          | T P-CH 100V 1A 4-DIP                         |                          |
| 15   | R1,R11,R4,R8                                                                                     |     | 4.7K                         | Yageo                              | CFR-25JB-52-4K7                             | DK: 4.7KQBK-ND                     |                           |          | K OHM 1/4W 5% AXIAL                          |                          |
| 16   | R10,R13                                                                                          | 2   | 10K                          | Bourns, Inc                        | PV36W103C01B00                              | DK: 490-2875-ND                    |                           |          | ER 10K OHM 0.5W TH                           |                          |
| 17   | R12,R2,R3,R5                                                                                     | 4   | 10K                          | Yageo                              | MFR-25FBF52-10K                             | DK: 10.0KXBK-ND                    |                           |          | OHM 1/4W 1% AXIAL                            |                          |
| 18   | R14,R6                                                                                           | 2   | 100K                         | Bourns, Inc                        | PV36W104C01B00                              | DK: 490-2876-ND                    |                           |          | ER 100K OHM 0.5W TH                          |                          |
| 19   | R15,R16                                                                                          | 2   | 1K                           | Yageo                              | MFR-25FBF52-1K                              | DK: 1.00KXBK-ND                    |                           |          | OHM 1/4W 1% AXIAL                            |                          |
| 20   | R7                                                                                               | 1   | 240                          | Yageo                              | CFR-25JB-52-240R                            | DK: 240QBK-ND                      |                           |          | OHM 1/4W 5% AXIAL                            |                          |
| 21   | R9                                                                                               | 1   | 1.5K                         |                                    | MFR-25FBF52-1K5                             | DK: 1.50KXBK-ND                    |                           |          | K OHM 1/4W 1% AXIAL                          |                          |
|      | SW1                                                                                              | 1   | 1.5K                         | Yageo                              |                                             | BUILDER CHOICE                     |                           |          | <u> </u>                                     | as desired Cubstitute    |
| 22   |                                                                                                  |     |                              | BUILDER CHOICE                     | BUILDER CHOICE                              |                                    |                           | jumper   | VITCH for remote mounwire if not needed (See | Build Doc for details)   |
| 23   | TP1,TP10,TP11,<br>TP12,TP13,TP14,<br>TP15,TP16,TP17,<br>TP18,TP2,TP3,TP4,<br>TP5,TP6,TP7,TP8,TP9 | 18  | OPTIONAL                     | Samtec                             | HTSW-101-07-T-S                             | DK: SAM11363-NE                    | )                         | FROM II  | NSULATED, SOLID-CORE<br>ARE NOT REQUIRED ANI |                          |
| 24   | U1                                                                                               | 1   | LM317                        | Fairchild/ON Semi                  | LM317AHVT                                   | DK: LM317AHVT-N                    | ND                        | IC REG L | INEAR ADJ 1A TO220-3 [                       | Heat Sink Required!]     |
| 25   | U2                                                                                               | 1   | LM7805                       | Fairchild/ON Semi                  | LM7805ACT                                   | DK: LM7805ACT-N                    | ID                        | IC REG L | DO 5V 1A TO220-3 [Hea                        | t Sink Required!]        |
| 26   | U3,U4                                                                                            | 2   | CA3240                       | Intersil                           | CA3240EZ                                    | DK: CA3240EZ-ND                    |                           | IC OPAN  | MP GP 4.5MHZ 8DIP (USE                       | 8-PIN SOCKET)            |
| 27   | U5                                                                                               | 1   | CD4066                       | Texas Inst.                        | CD4066BE                                    | DK: 296-2061-5-N                   | D                         | QUAD B   | BILATERAL SWITCH 14-DI                       | P (USE 14-PIN SOCKET)    |
| 28   | U6                                                                                               | 1   | CD1013BE                     | Texas Inst.                        | CD4013BE                                    | DK: 296-2033-5-N                   | D                         | IC D-TY  | PE POS TRG DUAL 14DIP                        | (USE 14-PIN SOCKET)      |
| 29   | U7                                                                                               | 1   | 74HC00                       | Tex Instr.                         | 74HC00E                                     | DK: 296-12769-5-1                  | ND                        | IC GATE  | NAND 4CH 2-INP 14-DIF                        | (USE 14-PIN SOCKET)      |
| 30   | U8                                                                                               | 1   | 74LS14                       | Tex Instr.                         | SN74LS14N                                   | DK: 296-1643-5-N                   | D                         | IC HEX S | SCHMITT-TRIG INV 14-DI                       | P (USE 14-PIN SOCKET)    |
| SF   | DCUMENT CONTAINS PROPECIFIC DOCUMENTATION  E. Andrews Date: 8-17-2                               |     | AGI: Arduino (               | Graphics Interface<br>20180104 EWA | Filename<br>20180805R1 BUI                  | LD DOC.pptx                        | Revision Printed 1/4/2018 | 2        | Page 6                                       | AMC<br>Brookfield, WI US |



#### **BOTTOM SIDE VIEW**



THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA

Filename 20180805R1 BUILD DOC.pptx Revision Page Printed 1/4/2018 16:09

## REV 0 TOPSIDE REWORK (Pg 1 of 1)

### **REV 0 PCB TOP-SIDE REWORK INSTRUCTIONS**

(Only perform this rework when using REV 0 PCBs!)

1. Cut traces in 3 spots (CUT 1,2,3) on TOP of PCB as shown in **Figure A** below.



2. Cut traces in 2 spots (CUT 4,5) on TOP of PCB as shown in **Figure B** below.





THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA Filename 20180805R1 BUILD DOC.pptx Revision 2 Page
Printed
1/4/2018 16:09

## REV 0 BOTTOM SIDE REWORK (Pg 1 of 2)

BOTTOM SIDE VIEW

See TOP SIDE LABELING to determine PCB revision level!

## REV 0 PCB BOTTOM-SIDE REWORK INSTRUCTIONS

- (Only perform this rework when using REV 0 PCBs!)

  1. Add 2 Jumper Wires (JUMP 1,2) on BOTTOM as shown in Figure A below.
- . Cut traces in 4 spots (CUT 1,2,3,4) on BOTTOM as shown in Figure B below.
- . Add 3 Jumper Wires (JUMP 3,4,5) on BOTTOM as shown in **Figure C** below.



THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA Filename 20180805R1 BUILD DOC.pptx

Revision 2
Printed
1/4/2018 16:09

Page

**TOP SIDE VIEW** Board Revision Level Mark DAC1 Q

**BOTTOM SIDE VIEW** 



Made by: E. Andrews Date: 8-17-2017



#### **TOP SIDE VIEW**

### **BEFORE YOU BEGIN ASSEMBLY**

### Use and OHM METER to verify the following:

- 1. Perform any PCB rework steps as required and defined on preceding pages of this document.
- 2. +5V bus is NOT SHORTED TO GROUND.
- 3. +10V bus is NOT SHORTED TO GROUND.
- 4. +5V bus is NOT SHORTED to +10V bus.
- 5. +12 V input is NOT SHORTED TO +10V.

| <b>Ref Name</b> | Qty | Value |           |
|-----------------|-----|-------|-----------|
| C1              | 1   | .1uf  |           |
| C11             | 1   | .1uf  |           |
| C13             | 1   | .1uf  |           |
| C14             | 1   | .1uf  | $\frown$  |
| C15             | 1   | .1uf  | (10)-222- |
| C16             | 1   | .1uf  |           |
| C4              | 1   | .1uf  |           |
| C5              | 1   | .1uf  |           |
| C8              | 1   | .1uf  |           |
| C9              | 1   | .1uf  |           |

| D1 | 1 | 1N4004 | ф |
|----|---|--------|---|





Made by: E. Andrews Date: 8-17-2017

## Load Parts: 470pf, 47uf, 330uf Capacitor

| Ref Name | Qty | Value     |     |
|----------|-----|-----------|-----|
| C10      | 1   | 470pf (2) |     |
| C12      | 1   | 470pf     | 122 |

| C3 | 1 | 47uf | $\overline{\bigcirc}$ | <u> </u> |
|----|---|------|-----------------------|----------|
| C6 | 1 | 47uf | 2                     | O        |

←Observe Polarity!

| C2 | 1 | 330uf (2) |  |
|----|---|-----------|--|
| C7 | 1 | 330uf 2   |  |

←Observe Polarity!

#### **TOP SIDE VIEW**



Made by: E. Andrews Date: 8-17-2017

### Load Parts: Resistors

| Ref Name | Qty   | Value         |
|----------|-------|---------------|
|          | - ' ' |               |
| R7       | 1     | 240           |
|          |       |               |
| R9       | 1     | 1.5K <b>—</b> |
|          |       |               |
| R15      | 1     | 1K (2)        |
| R16      | 1     | 1K 2          |
|          |       |               |
| R1       | 1     | 4.7K          |
| R11      | 1     | 4.7K (4) -    |
| R4       | 1     | 4.7K          |
| R8       | 1     | 4.7K          |

#### **TOP SIDE VIEW**



## Load Parts: 10K Res., Q1-Q2, U1-2, L1-2

### **TOP SIDE VIEW**



orientation! U1 1 LM317 ←Note device

orientation! U2 LM7805 ←Note device 1 orientation! Note: 1) WARNING: Heat Sink Tab on U1 LM317 = +9.0 VDC.

- 2) WARNING: Heat Sink Tab on U2 LM7805 = GND.

DO NOT MOUNT U1 Heat Sink to GROUND. DO NOT mount U1 & U2 to a COMMON Heat sink unless insulating washers & hardware are used to electrically insulate tabs from one another and heat sink base metal!

3) To ensure proper spacing & placement, Mount U1 and U2 devices to heatsink(s) BEFORE installing and attaching to PCB!

|   | Ref Name | Qty | Value         |              |
|---|----------|-----|---------------|--------------|
| ſ | L1       | 1   | LED 3MM GRN   | ←Note device |
|   | L2       | 1   | LED 3MM GRN 2 | orientation! |

→ Note: Builders Choice - Any color LED may be used.



#### **TOP SIDE VIEW**

#### **OPTION 1: NO EXTERNAL POWER SWITCH**

If no external power switch is desired, install jumper wires as shown.



#### **OPTION 2: OFF BOARD POWER SWITCH**





## Load Parts: Potentiometers & Test Points

| Ref Name | Qty | Value | !                     |  |
|----------|-----|-------|-----------------------|--|
| R10      | 1   | 10K   | 10 Turn               |  |
| R13      | 1   | 10K   | Potentiometer         |  |
| R14      | 1   | 100K  | 10 Turn               |  |
| R6       | 1   | 100K  | 10 Turn Potentiometer |  |

←Note device orientation!

|   | ←Note device |
|---|--------------|
| 0 | orientatio   |

| TP1  | 1 | GROUND, OPTIONAL |          |
|------|---|------------------|----------|
| TP10 | 1 | OPTIONAL         |          |
| TP11 | 1 | OPTIONAL         | (18)     |
| TP12 | 1 | OPTIONAL         |          |
| TP13 | 1 | OPTIONAL -       | <b>-</b> |
| TP14 | 1 | OPTIONAL         | _        |
| TP15 | 1 | OPTIONAL         |          |
| TP16 | 1 | GROUND, OPTIONAL |          |
| TP17 | 1 | OPTIONAL         |          |
| TP18 | 1 | GROUND, OPTIONAL |          |
| TP2  | 1 | OPTIONAL         |          |
| TP3  | 1 | OPTIONAL         |          |
| TP4  | 1 | OPTIONAL         |          |
| TP5  | 1 | GROUND, OPTIONAL |          |
| TP6  | 1 | OPTIONAL         |          |
| TP7  | 1 | OPTIONAL         |          |
| TP8  | 1 | OPTIONAL         |          |
| TP9  | 1 | OPTIONAL         |          |

Note: Installation of Test Point (TP) pins is OPTIONAL. TP pins may be omitted and scope probes touched to TP hole as needed.

Alternately, TP pins may be made from snap apart male-headers or short pieces of insulated wire protruding up from board.

# TP5 TP8 се n! TP18 00000000 TP9 TP10 TP11 TP16 TP2 TP12 **TP13** TP3 TP1 TP15 TP14 TP6 TP17

THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA Filename 20180805R1 BUILD DOC.pptx

**TOP SIDE VIEW** 

Revision 2 Page
Printed 1/4/2018 16:09



## Power Supply Checks & IC Installation

### VERIFY POWER SUPPLY

CAUTION: BEFORE CONNECTING TO ARDUINO DUE OR INSTALLING U3-U8, CHECK POWER SUPPLY VOLTAGES!

<u>DO NOT PROCEED IF VOLTAGES ARE INCORRECT!</u>

- With AGI board DISCONNECTED FROM Arduino DUE, apply power +12V to AGI BOARD via PL2.
  - a) OBSERVE < 25 MA draw from +12 VDC supply. PL2
  - b) OBSERVE LED L1 & L2 are illuminated.
- 2. With a voltmeter, CONFIRM ANALOG VOLTS REG:
  - a) 9.0VDC  $\pm$  0.15 VDC is present at PIN 8 of U3 & U4.
- 3. With a voltmeter, CONFIRM DIGITAL VOLT REG:
  - a)  $5.0 \text{VDC} \pm 0.15 \text{ VDC}$  present at PIN 14 of U5, U6, U7, U8.
- 4. With a voltmeter, CONFIRM:
  - a) +5V power is present at both pins of PL5.
  - b) PL1 DAC0 and PL1 DAC1 pins = 0.0 VDC.
- 5. If all voltage checks are correct, remove power from AGI & install U3-U8 per table below.

### INSTALL ICS INTO SOCKETS

| <b>Ref Name</b> | Qty         | Value             |                 |
|-----------------|-------------|-------------------|-----------------|
| U3              | 1           | CA3240            | Install IC into |
| U4              | 1           | CA3240            | 8 Pin Socket    |
| U5              | 1           | CD4066            |                 |
| U6              | 1           | C4013BE           | Install IC into |
| U7              | 1           | 74HC00            | 14 Pin Socket   |
| U8              | 1           | 74LS14            |                 |
| U6<br>U7        | 1<br>1<br>1 | C4013BE<br>74HC00 |                 |

←Note device orientation!←Note device orientation!

PL1

- 6. Apply +12V power to AGI through PL2 once again and observe proper +9 an 5 V levels.
- 7. Verify total current draw from 12 V supply < 225 MA <u>with</u> DUE board attached & connected.



Use these holes for

THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA Filename 20180805R1 BUILD DOC.pptx Revision 2
Printed
1/4/2018 16:09

Page

### **ARDUINO DUE BOARD**

## **AGI PCB**





Note: If using metal standoffs, it is necessary to turn down a region at the top of each spacer so that metal of spacer does not short out pads on DUE!



### FOR TEST AND TROUBLE SHOOTING

Using 4-40 Standoff Spacers, Arduino DUE can be mounted to TOP RIGHT SIDE of AGI PCB in a *temporary fashion* so as to provide full "scope-probe" test access to the AGI circuit board.

### ---- CAUTION -----

20

VERIFY SCREWS AND/OR METAL STANDOFFS ARE NOT TOUCHING CIRCUIT PADS, LANDS, OR OTHER PARTS ON THE TOP OR BOTTOM OF ARDUINO-DUE CPU!

THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA Filename 20180805R1 BUILD DOC.pptx

Revision 2 Page Printed 1/4/2018 16:09

## **ARDUINO DUE BOARD**

## AGI PCB



A1 A2 A3 A4 A5 6 TX3 14 RX 15 TX2 16 RX2 17 TX1 18 EX1 19 

Note: If using metal standoffs, it is necessary to turn down a region at the top of each spacer so that metal of spacer does not short out pads on DUE!



Using 4-40 Standoff Spacers, Arduino DUE can be mounted to TOP of AGI PCB. Additional Arduino Shields can then be installed onto DUE as needed.

#### -- CAUTION -----

VERIFY SCREWS AND/OR METAL STANDOFFS ARE NOT TOUCHING CIRCUIT PADS, LANDS, OR OTHER PARTS ON THE TOP OR BOTTOM OF ARDUINO-DUE CPU!

THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA Filename 20180805R1 BUILD DOC.pptx

Revision 2
Printed
1/4/2018 16:09

Page 21

## Wiring AGI To DUE

TO AVOID DAMAGE TO DUE CPU OR AGI BOARDS, ONLY CONNECT AND POWER ARDUINO DUE - AGI COMBINATION AFTER POWER CHECKS AS DETAILED ON PAGE 19 HAVE BEEN COMPLETED!

CAUTION: Do NOT touch DAC0 or DAC1 wires to +5V or GND connection as this will irreversably damage the DUE CPU!

1) Connect DAC0 & DAC1 wires between AGI and DUE boards as shown.

2) Connect 2 GROUND wires between AGI and DUE boards as shown.



VERIFY SCREWS AND/OR METAL STANDOFFS ARE NOT TOUCHING CIRCUIT PADS, LANDS, OR OTHER PARTS ON THE TOP OR BOTTOM OF ARDUINO-DUE CPU!

3) Connect D2 and D3 wires between AGI and DUE boards as shown.

4) Connect 2 +5V wires between AGI and DUE boards as shown.

THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA Filename 20180805R1 BUILD DOC.pptx

Revision 2

Printed

1/4/2018 16:09

Page

22 AMC

#### X-Axis Gain and Offset Adjust **TOP SIDE VIEW** 50.00us 💷 [..... 840mU CurA: 240mV CurB: 1.74V TP5 TP2 ΔΥ: 1.50V GND 0 VDC TP8 - X OUTPUT Adjust X\_GAIN Pot to desired set desired value TP3 **TP18 - GND** (1.0 V P-P Recommended) 0000000 TP9 - X-OUTPUT Adjust X\_CENTER pot as needed to set TP10 - Z-OUTPUT 0 VDC bottom of waveform to approx. 0.3 VDC 082m 500mVB TP11 - POINT CLOCK X-Gain and Offset Adjustment 1. Connect AGI to Arduino DUE & apply power. 2. Using Arduino IDE, Load and start CRT SCOPE. **TP16 - GND** Open a Serial Port (Baud=115200, NONE). 3. Select Option 7; This outputs a full scale **TP2 - DAC0 INPUT TP12 - SHOW POINT** sine-wave segment to DAC0 and DAC1. TP17 - DMA CLOCK **TP4 - DAC1 INPUT** 4. Connect an oscilloscope to TP2 and TP3; **TP13 - SHOW POINT** Trigger on TP2 as shown. 5. Observe approx. 0.7 V P-P signal on TP2 (DAC0 INPUT). **TP3 X-AXIS BUFFER** 6. Monitor TP3 on scope and adjust X GAIN (R6) for desired amplitude (1.0 V P-P). **TP1 - GND** 7. Adjust Y-CNTR (R10) pot until bottom of waveform is approximately 0.25-0.3VDC above ground. 8. Connect to scope and place scope in XY mode. TP15 - CRT ON Y-AXIS CENTER & GAIN ADJ. Final adjust AGI pots in concert in concert with TP14 - S/H PULSE scope gain & position controls for proper XY display TP17 - DMA CLOCK **TP6 Y-AXIS BUFFER** of a circle. First Made For Page Filename Revision THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION AGI: Arduino Graphics Interface 20180805R1 BUILD DOC.pptx Printed 23 Last updated: 20180104 EWA Made by: E. Andrews Date: 8-17-2017

1/4/2018 16:09

# Y-Axis Gain and Offset Adjust



- 3. Select Option 7; This outputs a full scale TP2 - DAC0 INPUT
- sine-wave segment to DAC0 and DAC1. **TP4 - DAC1 INPUT** 4. Connect an oscilloscope to TP4 and TP6; Trigger on TP4 as shown.
- 5. Observe approx. 0.7 V P-P signal on
- TP4 (DAC1 INPUT). **TP3 X-AXIS BUFFER**
- 6. Monitor TP6 on scope and adjust
- Y GAIN (R11) for desired amplitude (1.0 V P-P). TP1 GND 7. Adjust Y-CNTR (R13) pot until bottom of waveform is
- approximately 0.25-0.3VDC above ground. 8. Connect to scope and place scope in XY mode. Final adjust AGI pots in concert in concert with scope gain

& position controls for proper XY display of a circle



THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION Made by: E. Andrews Date: 8-17-2017

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA

20180805R1 BUILD DOC.pptx

**TOP SIDE VIEW** 

Printed 1/4/2018 16:09



SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

AGI: Arduino Graphics Interface Last updated: 20180104 EWA

20180805R1 BUILD DOC.pptx

Printed 1/4/2018 16:09

25

# CRT SCOPE Test Pattern Descriptions



and Y output ports. This can be used to set the gain and centering POTS on the AGI as well as scope gain and centering controls as shown on page 20 & 21. → Use these options to change the DMA CLOCK frequency while observing the effects on plot quality on your scope.

This option will load a circular pattern into the XY List buffer that will output a full-scale partial sin wave pattern out on the X

→ Use these options to vary the duration and timing of the FRONT and BACK porch BLANKING SIGNAL. → This sends plots a full size circle inside of a full size square and

can also be used to set scope gain and centering controls

when driving scope with FULL SCALE square wave pattern. Try varying the DMA\_CLOCK (Option: c/C) while viewing these

→ Use this pattern plots to observe accuracy and/or artifacts

CRT SCOPE example program.

Page

revisions and features are added into the

NOTE: Menu details may vary slightly as new

SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

AGI: Arduino Graphics Interface

Last updated: 20180104 EWA

Filename 20180805R1 BUILD DOC.pptx

patterns.

Revision Printed 1/4/2018 16:09

## Known Issues

| Ref Num | Issue Description                        | Severity | Status      | Evaluation/Solution/Work-Around/Other Actions Taken               |
|---------|------------------------------------------|----------|-------------|-------------------------------------------------------------------|
| 1       | AGI POWER LED INDICATION INVALID         | LOW      | OPEN DATE:  | <b>ANALYSIS:</b> +5 V from programming cable feeds back through   |
|         | When +12V is NOT supplied to AGI but     |          | 20170920    | power supply circuits and energizes the +10V bus on the AGI to    |
|         | Arduino Due is connected to external     |          |             | approximately a +5V level. This causes +10V LED to illuminate.    |
|         | computer for programming, Both +5V and   |          | COSED DATE: | Since the AGI analog circuits are running in an UNDER-VOLT        |
|         | +10V LEDs on AGI board illuminate.       |          | 20171024    | condition, the XY signals output by the AGI may be distored and   |
|         |                                          |          |             | of poor quality.                                                  |
|         |                                          |          |             | <b>REV 0 PCB CORRECTIVE ACTION:</b> NONE - Operator must be       |
|         |                                          |          |             | advised that +10V led will dimly illuminate even when +10 V is in |
|         |                                          |          |             | an undervolt condition.                                           |
|         |                                          |          |             | REV 1 PCB CORRECTIVE ACTION: L1 Cathode connection                |
|         |                                          |          |             | moved from GROUND to +5V; L1 now operator correcty.               |
| 2       | REVERSE POWER CIRCUIT ERROR              | MED      | OPEN DATE:  | <b>EVALUATION:</b> Design review identified that FET power        |
|         | Polarity Protection FETs (Q1 & Q2) wired |          | 20170920    | protection was wired improperly on Rev 0 PCB and may not          |
|         | improperly.                              |          |             | function correctly. If +12VDC is wired improperly, AGI and/or     |
|         |                                          |          | COSED DATE: | DUE could be damaged.                                             |
|         |                                          |          | 20171024    | ANALYSIS: Polarity Protection FETs (Q1 & Q2) wired                |
|         |                                          |          |             | improperly. Schematics corrected and Rev RO PCB rework            |
|         |                                          |          |             | instructions generated.                                           |
|         |                                          |          |             | CORRECTIVE ACTION: Schematics and PCB corrected and               |
|         |                                          |          |             | reissued as Rev R1. Documentation updated, new GERBER FILES       |
|         |                                          |          |             | generated and put into project repository.                        |
| 3       | DISPLAYED POINTS ARE "FUZZY"             | HIGH     | OPEN DATE:  | <b>EVALUATION:</b> Op-amps show low level ringing which degrades  |
|         | XY Signal quality needs improvement.     |          | 20171024    | plot quality.                                                     |
|         |                                          |          |             | ANALYSIS: Amplifier stability and ringing is impacted by V+       |
|         |                                          |          | COSED DATE: | power supply value. Reducing V+ from 9.75 to 9.0 Volts            |
|         |                                          |          | 20171120    | significantly improves X-Y plot quality. This is accomplished by  |
|         |                                          |          |             | changing R7 from 220 ohms to 240 ohms.                            |
|         |                                          |          |             | <b>CORRECTIVE ACTION:</b> Schematics and BOM reissued as Rev R1.  |
|         |                                          |          |             | Documentation updated and put into project repository.            |

THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

| First Made For                                                |
|---------------------------------------------------------------|
| AGI: Arduino Graphics Interfact<br>Last updated: 20180104 EWA |
| •                                                             |

| Filename                |   |
|-------------------------|---|
| 20180805R1 BUILD DOC.pp | t |

Revision 2
Printed
1/4/2018 16:09

Page

### PAGE 1: AGI POWER SUPPLY



|          | THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION |  |  |
|----------|-------------------------------------------------------|--|--|
| Made by: | E. Andrews Date: 8-17-2017                            |  |  |

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA Filename 20180805R1 BUILD DOC.pptx

Revision 2 Page
Printed
1/4/2018 16:09

## CIRCUIT DETAILS - PG 2

### PAGE 2: ANALOG CIRCUITS



THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

AGI: Arduino Graphics Interface Last updated: 20180104 EWA Filename 20180805R1 BUILD DOC.pptx

Printed 1/4/2018 16:09

### **CIRCUIT DETAILS - PG 3**



|          | THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION |                 |  |
|----------|-------------------------------------------------------|-----------------|--|
| Made by: | E. Andrews                                            | Date: 8-17-2017 |  |

First Made For
AGI: Arduino Graphics Interface
Last updated: 20180104 EWA

Filename
20180805R1 BUILD DOC.pptx

Revision 2 Page
Printed
1/4/2018 16:09



### APPENDIX 2 Test Points & Dimensions

| TE   | ST POINT SUMMARY     |
|------|----------------------|
| TP2  | DAC0/X VOLT-DIVIDER  |
| TP3  | X-AXIS BUFFER        |
| TP4  | DAC1/Y VOLT-DIVIDER  |
| TP6  | Y-AXIS BUFFER        |
| TP7  | X_SYNC               |
| TP8  | X-AXIS OUTPUT        |
| TP9  | Y-AXIS OUTPUT        |
| TP10 | Z-AXIS OUTPUT        |
| TP11 | POINT_CLOCK          |
| TP12 | SHOW_POINT           |
| TP13 | SHOW_POINT           |
| TP14 | S/H_PULSE            |
| TP15 | CRT_ON               |
| TP17 | DMA_CLK              |
| TP1. | TP5.TP16.TP18=GROUND |



Made by: E. Andrews Date: 8-17-2017

### APPENDIX 3 Libraries and IDE Setup

- 1. Here's a link to an overview guide for installing Arduino Libraries <a href="https://www.arduino.cc/en/Guide/Libraries">https://www.arduino.cc/en/Guide/Libraries</a>
- 2. Download and install the DueTimer library from: Arduino.org site; it is also available from author at <a href="https://github.com/ivanseidel/DueTimer">https://github.com/ivanseidel/DueTimer</a>
- 3. Download and install the XYscope library from: <a href="https://github.com/Ed-EE-Eng/XYscope">https://github.com/Ed-EE-Eng/XYscope</a>
- 4. When you are done installing the DueTimer and XYscope library, your Arduino library files structure should resemble the following:



THIS DOCUMENT CONTAINS PROJECT SPECIFIC DOCUMENTATION

Made by: E. Andrews Date: 8-17-2017

First Made For AGI: Arduino Graphics Interface Last updated: 20180104 EWA Filename 20180805R1 BUILD DOC.pptx Revision 2 Page
Printed
1/4/2018 16:09

33