

Faculty of Computers and Artificial intelligence

Discrete Mathematics

Lecture 7 Relations

□ Introduction

- Relationships between elements of sets are represented using the structure called a relation, which is just a subset of the Cartesian product of the sets.
- The most direct way to express a relationship between elements of two sets is to use ordered pairs made up of two related elements. For this reason, sets of ordered pairs are called binary relations.

□ Definition 1:

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

A binary relation from A to B is a set R of ordered pairs where the first element of each ordered pair comes from A and the second element comes from B.

We use the notation a R b to denote that $(a, b) \in R$ and $a \not R b$ to denote that $(a,b) \notin R$. Moreover, when (a,b) belongs to R, a is said to be related to b by R.

□ Example 1:

Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$.

Then $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B.

Roster notation (Roster form of set):

$$R = \{(0, a), (0, b), (1, a), (2, b)\}$$

AXB={(0,a),(0,b), (1,a),(1,b),(2,0)(2,b) }

Rz R3

 R_1

R4= Ø

□ Example 1:

We can represent relations from a set A to a set B graphically or using a table:

Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$.

Then $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is $R=\{(a,1),(b,2),(c,2)\}$ a relation from A to B? Yes.
- Is $Q=\{(1,a),(2,b)\}$ a relation from A to B? No.
- Is P={(a,a),(b,c),(b,a)} a relation from A to A? Yes

Functions as Relations

Recall that a function f from a set A to a set B assigns exactly one element of B to each element of A. The graph of f is the set of ordered pairs (a, b) such that b = f(a). Because the graph of f is a subset of $A \times B$, it is a relation from A to B.

□ Relations on a Set

 $A \longrightarrow B$ (a,b)

Definitions:

- A relation on the set A is a relation from A to A. In other words, a relation on a set A is a subset of $A \times A$.
- The identity relation I_A on a set A is the set $\{(a, a) | a \in A\}$
 - Ex. If $A = \{1, 2, 3\}$, then $I_A = \{(1, 1), (2, 2), (3, 3)\}$

□ Example 2:

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation

 $R = \{(a, b) | a \text{ divides } b\}$?

 $R = \{(a, b) | a \text{ divides } b\}$

Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation

□ Example 2:

Solution:

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

R	1	2	3	4
1	×	×	×	×
2		×		×
3			×	
4				×

□ Example 3:

$$R_1 = \{(a,b)|a < b\}$$
 = \{(\alpha,b)\|a > b\}
 $R_2 = \{(a,b)|a > b\}$
 $R_3 = \{(a,b)|a = b\}$
 $R_4 = \{(a,b)|a = -b\}$
 $R_5 = \{(a,b)|a = b \text{ or } a = -b\}$

$$R_6 = \{(a, b) | 0 \le a + b \le 1\}$$

$$A = \{-1, 0, 1, 2\}$$

$$A \times A = \{(-1, -1), (-1, 0), (-1, 1), (-1, 1), (-1, 0), (-1, 0)$$

□ Example 3: Solution:

$$R_1 = \{(a,b)|a < b\}$$

$$= \{(-1,0), (-1,1), (-1,2), (0,1), (0,2), (1,2)\}$$

$$R_2 = \{(a,b)|a > b\}$$

$$= \{(0,-1), (1,0), (1,-1), (2,1), (2,0), (2,-1)\}$$

□ Example 3: Solution:

$$R_3 = \{(a,b)|a=b\} = \{(-1,-1),(0,0),(1,1),(2,2)\}$$

 $R_4 = \{(a,b)|a=-b\} = \{(-1,1),(0,0),(1,-1)\}$

$$R_5 = \{(a,b)|a = b \text{ or } a = -b\}$$
$$= \{(-1,-1), (0,0), (1,1), (2,2), (-1,1), (1,-1)\}$$

□ Example 3: Solution:

$$R_6 = \{(a,b)|0 \le a+b \le 1\}$$

$$= \{(-1,1), (-1,2), (0,0), (0,1), (1,-1), (1,0), (2,-1)\}$$

□ Example 4:
$$A=\{1,2,3\}$$
 R_1 R_2 R_3

How many relations are there on a set with *n* elements?

It is not hard to determine the number of relations on a finite set, because a relation on a set A is simply a <u>subset</u> of $A \times A$.

Note:
$$|A \times A| = |A|^2 = n^2$$

Solution:

A relation on a set A is a subset of $A \times A$. Because $A \times A$ has n^2 elements when A has n elements, there are 2^{n^2} subsets of $A \times A$.

- Properties of Relations
- There are several properties that are used to classify relations on a set. We will introduce the most important of these relations.
- Reflexive
- Irreflexive
- Symmetric
- Antisymmetric
- Transitive

□ Reflexive and Irreflexive

A relation R on a set A is called *reflexive* if $(a, a) \in R$ for every element $a \in A$.

A relation R on a set A is called *irreflexive* if $(a, a) \notin R$ for every element $a \in A$.

not reflexive ≠ *irreflexive*

□ Example 1:

Consider the following relations on {1, 2, 3, 4} are reflexive or irreflexive or not?

$$R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\$$

$$R_2 = \{(1, 1), (1, 2), (2, 1)\},\$$

$$R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},\$$

$$R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},\$$

$$R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},\$$

$$R_6 = \{(3, 4)\}.$$

□ Example 1:

Consider the following relations on {1, 2, 3, 4} are reflexive or irreflexive or not?

Solution: R_3 and R_5 are reflexive

$$R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\$$

$$R_2 = \{(1, 1), (1, 2), (2, 1)\},\$$

$$R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},\$$

$$R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},\$$

$$R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},\$$

$$R_6 = \{(3, 4)\}.$$

□ Example 1:

Consider the following relations on {1, 2, 3, 4} are reflexive or irreflexive or not?

Solution: R_3 and R_5 are reflexive R_4 and R_6 are irreflexive $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},$ $R_2 = \{(1, 1), (1, 2), (2, 1)\},$ $R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},$ $R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},$ $R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},$ $R_6 = \{(3, 4)\}.$

□ Example 1:

Consider the following relations on {1, 2, 3, 4} are reflexive or irreflexive or not?

Solution: R_3 and R_5 are reflexive

 R_4 and R_6 are irreflexive

 R_1 and R_2 are Not reflexive Not irreflexive

$$R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\$$

$$R_2 = \{(1, 1), (1, 2), (2, 1)\},\$$

$$R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},\$$

$$R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},\$$

$$R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},\$$

$$R_6 = \{(3,4)\}.$$

□ Example 2:

Is the "divides" relation on the set of positive integers reflexive? (a,a) ER

Solution:

Because $a \mid a$ whenever a is a positive integer, the "divides" relation is **reflexive**. 212

Example 3:

,-2,-1,0,1,2,---Is the "divides" relation on the set of integers reflexive?

Solution:

The relation is **not reflexive** because 0 does not divide 0.

□ Example 4:

Is the following reflexive or not?

relations on the integers are

$$R_1 = \{(a,b)|a \le b\}$$

 $R_2 = \{(a,b)|a > b\}$
 $R_3 = \{(a,b)|a = b\}$
 $R_4 = \{(a,b)|a = b + 1\}$
 $R_5 = \{(a,b)|a = b \text{ or } a = -b\}$
 $R_6 = \{(a,b)|a + b \le 3\}$

□ Example 4:

Is the following relations on the integers are

reflexive or not?

Solution:
$$R_1$$
, R_3 , and R_5 are reflexive

$$R_1 = \{(a, b) | a \le b\}$$

$$R_2 = \{(a, b) | a > b\}$$

$$R_3 = \{(a, b) | a = b\}$$

$$R_4 = \{(a, b) | a = b + 1\}$$

$$R_5 = \{(a, b) | a = b \text{ or } a = -b\}$$

$$R_6 = \{(a, b) | a + b \le 3\}$$

□ Example 4:

Solution:

 R_1 , R_3 , and R_5 are reflexive

 R_2 , R_4 , and R_6 are not reflexive

$$R_1 = \{(a, b) | a \le b\}$$

$$R_2 = \{(a, b) | a > b\}$$

 $R_2 = \{(a, b) | a > b\}$ (Counter example, 2 \Rightarrow 2)

$$R_3 = \{(a, b) | a = b\}$$

$$R_4 = \{(a, b) | a = b + 1\}$$

 $R_4 = \{(a, b) | a = b + 1\}$ (Counter example, $2 \neq 2 + 1$)

$$R_5 = \{(a, b) | a = b \text{ or } a = -b\}$$

$$R_6 = \{(a, b) | a + b \le 3\}$$

 $R_6 = \{(a, b) | a + b \le 3\}$ (Counter example, 2 + 2 \le 3)

Symmetric and Antisymmetric

A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$.

A relation R on a set A such that for all $a, b \in A$, if $(a,b) \in R$ and $(b,a) \in R$, then a = bis called *antisymmetric*.

$$\begin{cases} (1,2) & \longrightarrow (2,1) \\ (3,1) & \longrightarrow \times \end{cases} \qquad (1,2) \longrightarrow (3,1) \longrightarrow$$

$$(1,2) \longrightarrow (3,1) \longrightarrow$$

□ Example 4:

Which of the following relations are symmetric and which are antisymmetric? $A = \{1,2,3,4,4,4\}$

```
R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\
R_2 = \{(1, 1), (1, 2), (2, 1)\},\
R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},\
R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},\
R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},\
R_6 = \{(3,4)\}.
R_7 = \{(1,1), (2,2)\}.
```

□ Example 4:

Solution:

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}, not Symmetric not Antisymmetric
R_2 = \{(1, 1), (1, 2), (2, 1)\}, symmetric (not Antisymmetric)
R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\}, symmetric
R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\}, antisymmetri not symmetric
R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},\
                                                                        antisymmetric
R_6 = \{(3,4)\}. antisymmetric
R_7 = \{(1,1), (2,2)\}. symmetric and antisymmetric
```

□ Example 5:

Is the "divides" relation on the set of positive integers symmetric?

Solution:

This relation is **not symmetric** because $1 \mid 2$, $2 \nmid 1$.

$$a \mid b \longrightarrow (a_1b) \in \mathbb{R}$$

$$b \mid a \longrightarrow (b_1a) \in \mathbb{R}$$

$$1 \mid 2 \qquad (1,12) \in \mathbb{R}$$

$$2 \mid 1$$

□ Example 6:

Is the "divides" relation on the set of positive integers antisymmetric?

214 V

Solution:

This relation is antisymmetric.

To see this, note that if a and b are positive integers with $a \mid b$ and $b \mid a$, then a = b.

Transitive

A relation R on a set A is called *transitive* If whenever $(a,b) \in R$ and $(b,c) \in R$, then $(a,c) \in R$, for all $a,b,c \in A$

□ Example 1:

Which of the following relations are transitive?

```
R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\
R_2 = \{(1, 1), (1, 2), (2, 1)\},\
R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},\
R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},\
R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},\
R_6 = \{(3,4)\}.
R_7 = \{(1,1), (2,2)\}.
```

□ Example 1: Solution:

Which of the following relations are transitive?

$$R_{1} = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\}, \quad \text{(i)} \quad \text{(i)$$

□ Example 2:

1,213,--- 2+

Is the "divides" relation on the set of positive integers transitive?

Solution:

This relation is transitive.

Combining Relations

```
The relations R_1 = \{(1,1), (2,2), (3,3)\} and R_2 = \{(1,1), (1,2), (1,3), (1,4)\} can be combined to obtain
```

Solution:

$$R_1 \cup R_2 = \{(1,1), (2,2), (3,3), (1,2), (1,3), (1,4)\}$$

 $R_1 \cap R_2 = \{(1,1)\}$
 $R_1 - R_2 = \{(2,2), (3,3)\}$
 $R_2 - R_1 = \{(1,2), (1,3), (1,4)\}$
 $R_1 \oplus R_2 = R_1 \cup R_2 - R_1 \cap R_2$
 $= \{(2,2), (3,3), (1,2), (1,3), (1,4)\}$

Questions?