# What's in an A?



Using Classification and Data Exploration to Predict NYC's Restaurant Ratings

Brian Newborn - May 2018

#### The Question

Can we predict whether a restaurant will get an A on their Health inspection? And, can we quantify the cost of possible government interventions to boost ratings?





#### What is a restaurant grade?

- Yearly, at least
- "Point" system
  - $\circ$  A = 0-13
  - $\circ$  B = 14-27
  - $\circ$  C = 28+
- Mandatory closing if a "public health hazard" is found
- While this seems like a mainstay of NYC culture, it has only been around since 2010





#### Data

- The city posts all grades and reviews online via NYC OpenData
- Joined on US Census Data for income statistics





#### What's in the Data



- Vast majority of restaurants get "A" ratings
  - ~90% Restaurants have "A" as of 2018
- Improvement in "A" rate year over year
  - NYC's Public Health statistics suggest a decrease in foodborne illnesses, as well







#### Model Inputs

All restaurant inspections 2014-2018

- Cuisine Type (Chinese, Deli, American etc.) almost 100 labels
- Month of inspection
- Measurement of Neighborhood Wealth per ZIP Code
- Longitude/Latitude
- Boro

"A Ratings" (87%)

VS

"Not A Ratings" (13%)

#### Measurement of Success - CBA



**Cost** of Intervention = \$100

**Cost** of 2nd Inspection and Appeals Process = \$250

**Savings** of Preventing B/C/Failure = 250-100 = \$150

<u>CB</u> = \$250\*(Rate of False Negatives) + 100\*(Rate of False Positives) - \$150\*(Rate of True Positives)

## Logistic Regression Cost Effectiveness



Raising Threshold does the following:

- Greatly reduces false positives
- Increases false negatives at a lesser rate

#### **Minimum Cost**

- -Threshold = .62
- -Cost Per Intervention = \$15.57

### Takeaways

- By increasing our threshold to .62, the DOHMH can achieve a cost of apx. \$15 per intervention
- This method increases our predicted A restaurants but dramatically reduces false positives enough to lower costs



| True A     | Predicted A Correctly | False Positives           |
|------------|-----------------------|---------------------------|
| True Not A | False Negatives       | Predicted Not A Correctly |
|            | Predicted A (0)       | Predicted Not A (1)       |

#### Thank You!



### Thank You!



### Further Reading & Sources

- How We Score and Grade NYC DOH
- Restaurant Grades Home Page NYC DOH
- NYC Open Data
- 2012 Bloomberg Links Drop in Food Poisoning to Restaurant Grades
- 2017 NYTimes: What do Restaurant Grades Mean?
- 2017 Crain's: More restaurants are passing their health exams
- 2012 Blog: "NYC Dining: The Cost of an A"
- 2015: NYU/New School Is Public Grading Worth the Costs? An Evaluation of New York City's Restaurant Grades Policy
- 2014 Harvard Data Science: Big Data Analysis of NYC Health Inspections

## Logistic Regression

- Changing sampling style (SMOTE) did not improve model
- Low Precision for Non A restaurants 0.19
- High Recall

Accuracy Score = ~.89 both with over and regular sampling

Baseline = .87

| Feature                        | Approximate Coefficient Value |  |
|--------------------------------|-------------------------------|--|
| Cycle: Initial Inspection      | -2                            |  |
| Cycle: Reopening Inspection    | +1.2                          |  |
| Cycle: Re-inspection           | +.75                          |  |
| Pre-Permit: Initial Inspection | -0.5                          |  |
| Pre-Permit: Re-Inspection      | +0.3                          |  |
| American Restaurant            | -0.3                          |  |
| Chinese Restaurant             | +0.2                          |  |

#### Random Forest

- Oversampling non-A inspections for training boosted results
- Highest **Precision** for Non A > .40

Accuracy Score: .91-.92 with oversampling

Logistic Regression = .89



#### Appendix

- 1) D3 2018 Inspections Map
- 2) Folium Heatmap
- 3) Logistic Regression ROC/AUC
- 4) Logistic Regression Confusion Matrix
- 5) Random Forest ROC/AUC
- 6) Random Forest Confusion Matrix

## Seeing the Data

We also put together an interactive, by inspection map, for review.





## Logistic Regression ROC/AUC



## Logistic Regression Confusion Matrix



```
[[10559 6634]
[ 140 2414]]
```

```
# True A  # False Predicted Non A
# False Predicted A # True Predicted Non A
```

#### Random Forest ROC/AUC



#### Random Forest Confusion Matrix



```
# True A  # False Predicted Non A  # False Predicted Non A
```