Author: Diana Jerusha Olulo

Student name: Diana Jerusha Olulo

Student pace: part time

Instructor name: Noah K./ William O. / Samuel G.

Blog post URL:

Overview:

This project analyzes movie data to make informed decisions for Microsoft's venture into creating a new movie studio. The analysis encompasses three key areas: determining the target worldwide gross and production budget, setting an optimal runtime for Microsoft's movies, and selecting genres based on their popularity. These decisions aim to equip Microsoft with the necessary insights to increase the likelihood of producing successful movies.

Business problem

Microsoft has made the strategic decision to enter the film industry and embark on producing their own films. In pursuit of this new venture, this analysis seeks to provide valuable advice to Microsoft by offering insights and informed decisions on how they should approach their entry into the filmmaking domain.

Questions Addressed by the Analysis:

- 1. What is the relationship for Microsoft's worldwide gross and production budget?
- 2. What should be the optimal runtime for Microsoft's movies?
- 3. Which genres should Microsoft prioritize for production based on their popularity?

Data Understanding

The data deing used for this project comes from the tmdb movies, imdb title basics and tn movie budget

In [29]: #importing necessary libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns

In [2]:

df1 = pd.read_csv("ZippedData/tmdb.movies.csv", index_col=0) #converting the file to a dataframe df1.head()#print out the first five lines

Out[2]:

	genre_ids	id	original_language	original_title	popularity	release_date	title	vote_average	vote_count
0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788
1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610
2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368
3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174
4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	8.3	22186

Out[3]:

genres	runtime_minutes	start_year	original_title	primary_title	tconst	
Action,Crime,Drama	175.0	2013	Sunghursh	Sunghursh	tt0063540	0
Biography,Drama	114.0	2019	Ashad Ka Ek Din	One Day Before the Rainy Season	tt0066787	1
Drama	122.0	2018	The Other Side of the Wind	The Other Side of the Wind	tt0069049	2
Comedy,Drama	NaN	2018	Sabse Bada Sukh	Sabse Bada Sukh	tt0069204	3
Comedy,Drama,Fantasy	80.0	2017	La Telenovela Errante	The Wandering Soap Opera	tt0100275	4

Out[4]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317.000.000	\$620.181.382	\$1.316.721.747

Data Merging

In [5]: merged_df = pd.merge(df1, df2)# merging df1 and df2
merged_df.head()#printing the first five lines

Out[5]:

	genre_ids	id	original_language	original_title	popularity	release_date	title	vote_average	vote_count	tconst	primary_
	0 [12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788	tt0926084	Harry Po and Dea Hallows:
	1 [14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610	tt0892769	How to 1 Your Dra
	2 [12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368	tt1228705	Iron Ma
	3 [28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	8.3	22186	tt1375666	Incer
	4 [12, 14, 10751]	32657	en	Percy Jackson & the Olympians: The Lightning T	26.691	2010-02-11	Percy Jackson & the Olympians: The Lightning T	6.1	4229	tt0814255	P Jackso Olympi Lightnino
4											•

1 16, 10751] 10191 ell Your Dragon 28.734 2010-03-20 Hall Your Dragon 7.7 7610 tt0892769 Your		ned_df = ned_df.he		nerge(df3,	left_index=	True, righ	nt_index=Tru	e, how='oute	r')			
1 [14, 12, 16, 10751] 10191 en How to Irain Your Dragon 28.734 2010-03-26 Train Your Dragon 7.7 7610 tt0892769 How to Irain Your Dragon 2 [12, 28, 878] 10138 en Iron Man 2 28.515 2010-05-07 Iron Man 2 6.8 12368 tt1228705 3 [28, 878, 12] 27205 en Inception 27.920 2010-07-16 Inception 8.3 22186 tt1375666 4 [12, 14, 10751] 32657 en The Use the Colympians: The Lightning 26.691 2010-02-11 Olympians: Olympians: The Lightning 6.1 4229 tt0814255								Part 1				
3 [28, 878, 12] 27205 en Inception 27.920 2010-07-16 Inception 8.3 22186 tt1375666 Percy Jackson & The Lightning T	1	[14, 12, 16, 10751]	10191	en		28.734	2010-03-26	Train Your	7.7	7610	tt0892769	Ho Yo
Percy Percy Jackson & the [12, 14, 32657 en Olympians: Olympians: The Lightning T Percy Lightning T.	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368	tt1228705	I
Jackson & Jackson & the [12, 14, 32657 en Olympians: 6.1 4229 tt0814255 The Lightning T	3	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	8.3	22186	tt1375666	
	4	[12, 14, 10751]	32657	en	Jackson & the Olympians: The	26.691	2010-02-11	Jackson & the Olympians: The Lightning	6.1	4229	tt0814255	C Lig

In [7]: joined_df.shape

Out[7]: (21078, 20)

Data cleaning

In [8]: df=joined_df

df.shape

Out[8]: (21078, 20)

```
In [9]: |df.columns
Out[9]: Index(['genre ids', 'id x', 'original language', 'original title',
                'popularity', 'release date x', 'title', 'vote average', 'vote count',
                'tconst', 'primary_title', 'start_year', 'runtime_minutes', 'genres',
                'id_y', 'release_date_y', 'movie', 'production budget'.
                'domestic gross', 'worldwide gross'],
               dtype='object')
In [10]:
         #dropping uneccessary columns
         df.drop([ 'genre_ids', 'original_title', 'release_date_x', 'id_x', 'id_y', 'release_date_y', 'domestic_gross'
         df.shape
In [11]:
Out[11]: (21078, 12)
In [12]: #checking the information about the dataseet ie. no of rows, columns, datatype, memory usage, null valuesetc
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 21078 entries, 0 to 21077
         Data columns (total 12 columns):
          # Column
                                Non-Null Count Dtype
                                 _____
             original_language 21078 non-null object
             popularity
                                21078 non-null float64
          1
          2
             title
                                21078 non-null object
                                21078 non-null float64
          3
             vote average
             tconst
                                21078 non-null object
             primary_title
                                21078 non-null object
             start year
                                21078 non-null int64
             runtime_minutes
                                19452 non-null float64
                                20779 non-null object
              genres
              movie
                                5782 non-null object
          10 production budget 5782 non-null object
          11 worldwide gross
                                5782 non-null object
         dtypes: float64(3), int64(1), object(8)
         memory usage: 2.1+ MB
```

```
In [13]: #checking the proportiion of missing values
         df.isnull().mean()
Out[13]: original language
                               0.000000
         popularity
                               0.000000
         title
                               0.000000
         vote_average
                               0.000000
         tconst
                               0.000000
         primary title
                               0.000000
         start_year
                               0.000000
         runtime minutes
                              0.077142
         genres
                              0.014185
         movie
                              0.725686
         production_budget
                              0.725686
         worldwide_gross
                               0.725686
         dtype: float64
In [14]: #dropping missing values in runtime minutes since the percentage is small
         df = df.dropna(subset=['runtime_minutes', 'genres'])
In [15]: #replacing missing values with the word missing
         df['movie'] = df['movie'].fillna('missing')
         <ipython-input-15-7424e4559b88>:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
         returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#return
         ing-a-view-versus-a-copy)
           df['movie'] = df['movie'].fillna('missing')
In [18]: | df['movie'].isna().mean()
Out[18]: 0.0
```

```
In [19]: # removing dollar signs from the column
         df['production budget'] = df['production budget'].str.replace('$', '')
         #removing commas
         df['production budget'] = df['production budget'].str.replace(',', '')
         #filling missing values with zero
         df['production budget'] = df['production budget'].fillna(0)
         # Convert column 'A' to integer type
         df['production_budget'] = df['production_budget'].astype(int)#changing the data type
         <ipython-input-19-e9f1dcf2c0f3>:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
         returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy)
           df['production_budget'] = df['production_budget'].str.replace('$', '')
         <ipython-input-19-e9f1dcf2c0f3>:4: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
         returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy)
           df['production_budget'] = df['production_budget'].str.replace(',', '')
         <ipython-input-19-e9f1dcf2c0f3>:6: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
         returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy)
           df['production_budget'] = df['production_budget'].fillna(0)
         <ipython-input-19-e9f1dcf2c0f3>:8: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
         returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy)
           df['production_budget'] = df['production_budget'].astype(int)#changing the data type
```

```
In [20]: |df['worldwide gross'] = df['worldwide gross'].str.replace('$', '')
         df['worldwide gross'] = df['worldwide gross'].str.replace(',', '')
         df['worldwide gross'] = df['worldwide gross'].fillna(0)
         # Convert column 'A' to integer type
         df['worldwide gross'] = df['worldwide gross'].astype(float)
         <ipython-input-20-fb4fc0579464>:1: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
         returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy)
           df['worldwide gross'] = df['worldwide gross'].str.replace('$', '')
         <ipython-input-20-fb4fc0579464>:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
         returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy)
           df['worldwide_gross'] = df['worldwide_gross'].str.replace(',', '')
         <ipython-input-20-fb4fc0579464>:3: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
         returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#return
         ing-a-view-versus-a-copy)
           df['worldwide_gross'] = df['worldwide_gross'].fillna(0)
         <ipython-input-20-fb4fc0579464>:6: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
         returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#return
         ing-a-view-versus-a-copy)
           df['worldwide gross'] = df['worldwide gross'].astype(float)
```

```
In [21]: df.isna().mean()#checking for missing values
Out[21]: original_language
                              0.0
         popularity
                               0.0
         title
                               0.0
         vote average
                               0.0
         tconst
                               0.0
         primary title
                               0.0
         start year
                               0.0
         runtime_minutes
                              0.0
                               0.0
         genres
         movie
                              0.0
         production budget
                              0.0
         worldwide gross
                              0.0
         dtype: float64
In [22]: #checking for duplicates in any columns
         df.duplicated().any()
Out[22]: True
In [23]: #dropping duplicate values and keeping the first entry among the duplicates
         df.drop_duplicates(inplace=True, keep='first')
         <ipython-input-23-6877bfec3eaf>:2: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
         returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#return
         ing-a-view-versus-a-copy)
           df.drop_duplicates(inplace=True, keep='first')
```

```
In [24]: #Getting to knwo the statistics summary of the data
df.describe()
```

Out[24]:

	popularity	vote_average	start_year	runtime_minutes	production_budget	worldwide_gross
count	18467.00000	18467.000000	18467.000000	18467.000000	1.846700e+04	1.846700e+04
mean	3.80749	5.750615	2014.177939	91.356961	8.888205e+06	2.600016e+07
std	4.91130	1.733414	2.522028	25.494119	2.666385e+07	1.037226e+08
min	0.60000	0.000000	2010.000000	1.000000	0.000000e+00	0.000000e+00
25%	0.65400	4.900000	2012.000000	83.000000	0.000000e+00	0.000000e+00
50%	1.72600	5.900000	2014.000000	90.000000	0.000000e+00	0.000000e+00
75%	5.64500	6.800000	2016.000000	100.000000	1.250000e+06	8.639550e+04
max	80.77300	10.000000	2020.000000	1834.000000	4.250000e+08	2.776345e+09

```
In [25]: df = df[(df['production_budget'] != 0)]# removing rows with the missing values which are denoted by zero
df = df[(df['worldwide_gross'] != 0)]
```

```
In [26]: df.shape# checking the numer of rows and columns available in hte dataset
```

Out[26]: (4853, 12)

```
In [27]: # Position of the Outlier values
x = np.where(df['runtime_minutes']>150)
print(x)
```

```
(array([ 261, 322, 391, 409, 473, 474, 478, 479, 604, 876, 919, 953, 957, 961, 1515, 1520, 1522, 1700, 1796, 1839, 1909, 1914, 1919, 1924, 1929, 1979, 2009, 2074, 2075, 2096, 2098, 2107, 2271, 2364, 2492, 2605, 2612, 2683, 2687, 2786, 2828, 2832, 2834, 2939, 2943, 2946, 2950, 3007, 3129, 3390, 3408, 3492, 3506, 3510, 3568, 3844, 3849, 3853, 3882, 3946, 4135, 4361, 4392, 4764, 4770, 4775, 4835], dtype=int64),)
```

plotting the boxplot that vividly shows the outliers

In [30]: sns.boxplot(df['popularity'])# plotting the boxplot that vividly shows the outliers

C:\Users\Dee\anaconda3\envs\learn-env\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the f ollowing variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[30]: <AxesSubplot:xlabel='popularity'>


```
In [31]: sns.boxplot(df['runtime_minutes'])
```

C:\Users\Dee\anaconda3\envs\learn-env\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the f ollowing variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[31]: <AxesSubplot:xlabel='runtime_minutes'>

Removing Outliers

```
In [32]: #Creating a function to remove the ouliers using the IQR method

def remove_outliers_iqr(df, column):
    q1 = df[column].quantile(0.25)
    q3 = df[column].quantile(0.75)
    iqr = q3 - q1
    lower_bound = q1 - 1.5 * iqr
    upper_bound = q3 + 1.5 * iqr
    return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]</pre>
```

```
In [33]: # Remove outliers in the following columns using the function created above
    df = remove_outliers_iqr(df, 'runtime_minutes')
    df = remove_outliers_iqr(df, 'production_budget')
    df = remove_outliers_iqr(df, 'worldwide_gross')
    df = remove_outliers_iqr(df, 'popularity')
```

Visualisations after removing the outliers

In [34]: sns.boxplot(df['popularity'])

C:\Users\Dee\anaconda3\envs\learn-env\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the f ollowing variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[34]: <AxesSubplot:xlabel='popularity'>

In [35]: sns.boxplot(df['runtime_minutes'])

C:\Users\Dee\anaconda3\envs\learn-env\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the f ollowing variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[35]: <AxesSubplot:xlabel='runtime_minutes'>

In [37]: df.describe()

Out[37]:

	popularity	vote_average	start_year	runtime_minutes	production_budget	worldwide_gross
count	3454.000000	3454.000000	3454.000000	3454.000000	3.454000e+03	3.454000e+03
mean	2.803139	5.559873	2012.102490	91.269543	2.002213e+07	3.896244e+07
std	2.749238	1.621166	2.355448	12.667780	1.990075e+07	4.559862e+07
min	0.600000	0.000000	2010.000000	56.000000	5.000000e+03	2.600000e+01
25%	0.665250	4.800000	2011.000000	84.000000	5.000000e+06	4.024722e+06
50%	1.552000	5.600000	2011.000000	90.000000	1.400000e+07	2.015804e+07
75%	3.836000	6.600000	2012.000000	99.000000	3.000000e+07	5.891821e+07
max	11.571000	10.000000	2020.000000	128.000000	9.000000e+07	1.879959e+08

```
In [38]: df.shape
Out[38]: (3454, 12)
```

Data Visualization

Univariate Analysis

In [50]: age duration of a movie that people tend to watch
 istplot(data=df['runtime_minutes'],bins='auto') # creates a histogram using Seaborn's histplot() function
 ge_runtime_minutes = df['runtime_minutes'].mean() #calculates the mean of the runtime_minutes column
 line below adds a vertical line at the position of the mean runtime
 xvline(average_runtime_minutes, color='black', linestyle='dashed', linewidth=1.5, label=f'Mean Runtime: {avera
 itle('Dsitribution of runtime minutes');


```
In [40]: sns.histplot(data=df['production_budget'],bins='auto')
    average_production_budget = df['production_budget'].median()
    plt.axvline(average_production_budget, color='black', linestyle='dashed', linewidth=1.5, label=f'Mean Runtime:
    plt.title('Distribution of production budget');
```



```
In [41]: sns.histplot(data=df['worldwide_gross'],bins='auto')
    average_worldwide_gross = df['worldwide_gross'].median()
    plt.axvline(average_worldwide_gross, color='black', linestyle='dashed', linewidth=1.5, label=f'Mean Runtime: {
    plt.title('Distribution of worldwide gross');
```



```
In [42]: # Get the count of each genre
genre_counts = df['genres'].value_counts()

# Get the top 10 genres
top_10_genres = genre_counts.head(10)

# Create a bar plot of the top 10 genres
top_10_genres.plot(kind='bar') # plotting a bar graph

# Add a title and labels to the plot
plt.title('Frequency distribution of different genres')
plt.xlabel('Genre')
plt.ylabel('Count')

# Show the plot
plt.show()
```



```
In [43]: # Plot density plot
    plt.figure(figsize=(8, 6))
    sns.kdeplot(df['production_budget'], shade=True, color='red') # creates a kernel density estimate (KDE) plot
    plt.title(' Density Distribution of production budget')
    plt.xlabel('production budget')
    plt.ylabel('Density')
    plt.show() # displays the plot
```


Bivariate Analysis

```
In [44]: #Which genres tend to have the highest revenue?
# Plotting bar plot
genre = df['genres'].head(20)
plt.figure(figsize=(12, 8))
sns.barplot(x=genre, y='worldwide_gross', data=df, estimator=max) # Use max as the estimator to show the high
plt.title('Distribution of Revenue by Genre')
plt.xlabel('Genre')
plt.ylabel('Revenue (Worldwide Gross)')
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
plt.show()
```



```
In [45]: # Get the top 10 genres by frequency
top_genres = df['genres'].value_counts().head(10).index.tolist()

# Filter the dataframe to only include rows with one of the top 10 genres
top_genre_df = df[df['genres'].isin(top_genres)]

# Group the data by genres and calculate the mean runtime for each genre
genre_means = top_genre_df.groupby('genres')['popularity'].mean()

# Create a bar plot to visualize the mean runtime for each genre
sns.barplot(x=genre_means.index, y=genre_means.values)
plt.title('Distribution of popularity among different genres')
plt.xlabel('Genres')
plt.ylabel('popularity')
plt.xticks(rotation=45)
plt.show()
```



```
In [46]: #Highest rated genre
    # Get the top 10 genres by frequency
    top_genres = df['genres'].value_counts().head(10).index.tolist()

# Filter the dataframe to only include rows with one of the top 10 genres
    top_genre_df = df[df['genres'].isin(top_genres)]

# Group the data by genres and calculate the voteaverage for each genre
    genre_means = top_genre_df.groupby('genres')['vote_average'].mean()

# Create a bar plot to visualize the mean runtime for each genre
    sns.barplot(x=genre_means.index, y=genre_means.values)
    plt.title('Distribution of ratings among different genres')
    plt.xlabel('Genres')
    plt.ylabel('Runtime Minutes')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [47]: # Plotting bar plot
    genre = df['genres'].tail(20)
    plt.figure(figsize=(12, 8))
    sns.barplot(x=genre, y='production_budget', data=df, estimator=max) # Use max as the estimator to show the hi
    plt.title('Production budget among different genres')
    plt.xlabel('Genres')
    plt.ylabel('Production Budget')
    plt.xticks(rotation=45) # Rotate x-axis labels for better readability
    plt.show()
```



```
#Relationship between popularity and genre
In [48]:
         #Highest rated genre
         # Get the top 10 genres by frequency
         top_genres = df['genres'].value_counts().head(10).index.tolist()
         # Filter the dataframe to only include rows with one of the top 10 genres
         top_genre_df = df[df['genres'].isin(top_genres)]
         # Group the data by genres and calculate the voteaverage for each genre
         genre_means = top_genre_df.groupby('genres')['runtime_minutes'].mean()
         # Create a bar plot to visualize the mean runtime for each genre
         sns.barplot(x=genre_means.index, y=genre_means.values)
         plt.title('Distribution of popularity among different genres')
         plt.xlabel('Genres')
         plt.ylabel('runtime_minutes')
         plt.xticks(rotation=45)
         plt.show()
```


Multivariate Analysis

```
In [49]: # Calculate correlation matrix
    correlation_matrix = df.corr()
    # Create a mask to hide the upper triangle
    mask = np.triu(np.ones_like(correlation_matrix), k=1)
# Plot heatmap
    plt.figure(figsize=(8, 6))

sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", annot_kws={"size": 12}, mask=mask)
    plt.title('Correlation Heatmap of the dataset')
    plt.show()
```


In [16]: joined_df.to_csv('cleaned_df.csv')#exporting data