Analiza 2a

Ruslan Urazbakhtin 21. julij 2025 KAZALO 2

Kazalo

1	Fun	akcije več spremenljivk 3
	1.1	Prostor \mathbb{R}^n
		1.1.1 Zaporedja v \mathbb{R}^n
	1.2	Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m
	1.3	Parcialni odvodi in diferenciabilnost
		1.3.1 Parcialni odvod
		1.3.2 Diferenciabilnost
		1.3.3 Višji parcialni odvodi
		1.3.4 Diferenciabilnost preslikav
	1.4	Izrek o implicitni funkciji
		1.4.1 Osnovna verzija izreka o implicitni funkciji
		1.4.2 Izrek o inverzni preslikavi
		1.4.3 Izrek o implicitni preslikavi
	1.5	Podmnogoterosti v \mathbb{R}^n
	1.6	Taylorjeva formula
	1.7	Ekstremi funkcij več spremenljivk
		1.7.1 Potrebni in zadostni pogoji na 2. odvodi, da je kritična točka lokalni
		ekstrem
		1.7.2 Vezani ekstremi
2	Inte	egrali s parametri 20
	2.1	Odvajanje integralov s parametri
	2.2	Integral integrala s parametrom
	2.3	Posplošeni integrali s parametri
	2.4	Eulerjeva funkcija gama
	2.5	Eulerjeva funkcija beta
3	Rie	mannov integral v \mathbb{R}^n
	3.1	Riemannov integral
	3.2	Osnovne lastnosti Riemannova integrala po kvadrih
	3.3	Fubinijev izrek
	3.4	Riemannov integral na omejenih množicah
		3.4.1 Prostornina omejene množice
	3.5	Lastnosti omejenih množic s prostornino 0

1 Funkcije več spremenljivk

1.1 Prostor \mathbb{R}^n

Definicija 1.1. Prostor \mathbb{R}^n je kartezični produkt $\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_n$. Na njem definiramo sešte-

vanje in množenje s skalarjem po komponentah. S tema operacijama je $(\mathbb{R}, +, \cdot)$ vektorski prostor nad \mathbb{R} . Posebej definiramo še skalarni produkt

$$x \cdot y = \sum_{i=1}^{n} x_i y_i,$$

ki nam da normo $||x||=\sqrt{x\cdot x}$ in metriko d(x,y)=||x-y||. (\mathbb{R}^n,d) je tako metrični prostor.

Definicija 1.2. Naj bosta $a, b \in \mathbb{R}^n$ vektorja, za katera je $a_i \leq b_i$ za vse $i \in \{1, \dots, n\}$. **Zaprt kvader**, ki ga določata a in b, je množica

$$[a,b] = \{x \in \mathbb{R}^n \mid \forall i \in \{1,\ldots,n\} : a_i \le x_i \le b_i\}.$$

Podobno definiramo odprt kvader kot

$$(a,b) = \{x \in \mathbb{R}^n \mid \forall i \in \{1,\ldots,n\} : a_i < x_i < b_i\}.$$

Opomba 1.3. Odprte množice v normah $||x||_{\infty}$ in $||x||_2$ so iste.

Izrek 1.4. Množica $K \subseteq \mathbb{R}^n$ je kompaktna natanko tedaj, ko je zaprta in omejena.

1.1.1 Zaporedja v \mathbb{R}^n

Definicija 1.5. Zaporedje v \mathbb{R}^n je preslikava $a : \mathbb{N} \to \mathbb{R}^n$. Namesto a(m) pišemo a_m , kjer $a_m = (a_1^m, \dots, a_n^m)$.

Opomba 1.6. Zaporedje v \mathbb{R}^n porodi n zaporedij v \mathbb{R} .

Trditev 1.7. Naj bo $(a_m)_m$ zaporedje $v \mathbb{R}^n$, $a_m = (a_1^m, \dots, a_n^m)$. Velja:

 $Zaporedje (a_m)_m konvergia \iff konvergira zaporedja (a_1^m)_m, \ldots, (a_n^m)_m.$

V primeru konvergence velja:

$$\lim_{m \to \infty} a_m = (\lim_{m \to \infty} a_1^m, \dots, \lim_{m \to \infty} a_n^m).$$

Dokaz. Definicija limite.

1.2 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Definicija 1.8. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Naj bo $a\in D$. **Preslikava** f je zvezna v točki a, če

$$\forall \epsilon > 0 . \exists \delta > 0 . \forall x \in D . ||x - a|| < \delta \implies ||f(x) - f(a)|| < \epsilon.$$

Preslikava f je **zvezna na** D, če je zvezna v vsaki točki $a \in D$.

Trditev 1.9. Naj bo $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ preslikava. Naj bo $a \in D$. Preslikava f je zvezna v točki a natanko tedaj, ko za vsako zaporedje $(x_n)_n$, $x_n \in D$, ki konvergira proti a, zaporedje $(f(x_n))_n$, $f(x_n) \in \mathbb{R}^m$ konvergira proti f(a).

Definicija 1.10. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava. Preslikava f je **enakomerno zvezna na** D, če

$$\forall \epsilon > 0. \exists \delta > 0. \forall x, x' \in D. ||x - x'|| < \delta \implies ||f(x) - f(x')|| < \epsilon.$$

Trditev 1.11. Zvezna preslikava na kompaktne množice je enakomerno zvezna.

Trditev 1.12. Naj bo $f: K^{komp} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ zvezna preslikava. Potem je $f_*(K)$ kompaktna.

Definicija 1.13. Preslikava $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ je C-lipschitzova, če

$$\exists C \in \mathbb{R} . \forall x, x' \in D . ||f(x) - f(x')|| \le C||x - x'||.$$

Trditev 1.14. Za preslikavo $f: D \to X'$ velja:

f je C-lipschitzova $\implies f$ je enakomerno zvezna $\implies f$ je zvezna.

Trditev 1.15. Naj bosta $f, g : D \subset \mathbb{R}^n \to \mathbb{R}$ zvezni funkciji v $a \in D$. Naj bo $\lambda \in \mathbb{R}$. Tedaj so v a zvezni tudi funkcije:

$$f + g$$
, $f - g$, λf , fg .

Če za vsak $x \in D$, $g(x) \neq 0$, tedaj so v a zvezna tudi funkcija:

$$\frac{f}{g}$$
.

Trditev 1.16. Kompozitum zveznih preslikav je zvezna preslikava.

Dokaz. Z zaporedji kot pri analizi 1.

Zgled 1.17. Nekaj primerov zveznih preslikav.

- Preslikava $\pi_i(x_1,\ldots,x_n)=x_i$ je zvezna na \mathbb{R}^n za vsak $j=1,\ldots,n$.
- Vse polinomi v n-spremenljivkah so zvezne funkcije na \mathbb{R}^n .
- Vse racionalne funkcije so zvezne povsod, razen tam, kjer je imenovalec enak 0.

Definicija 1.18. Preslikava $f:D\subset\mathbb{R}^n\to\mathbb{R}$ je funkcija n-spremenljivk.

Opomba 1.19. Naj bo (M,d) metrični prostor in $N \subset M$. Naj bo $f: M \to \mathbb{R}$ zvezna funkcija na M. Potem $f|_N$ je tudi zvezna funkcija na N.

Trditev 1.20. Naj bosta $D \subseteq \mathbb{R}^n$ in $D_j = \pi_j(D)$. Naj bo $a \in D$, $a = (a_1, \ldots, a_n)$ in $f: D \to \mathbb{R}^m$ zvezna v a. Tedaj za vsak $j = 1, \ldots, n$ preslikava $\varphi_j: D_j \to \mathbb{R}^m$ s predpisom $\varphi_j(t) = f(a_1, \ldots, a_{j-1}, t, a_{j+1}, \ldots, a_n)$ zvezna v a_j .

Dokaz. Definicija zveznosti v točki.

Opomba 1.21. Če je funkcija več spremenljivk zvezna v neki točki $a \in \mathbb{R}^n$, je zvezna tudi kot funkcija posameznih spremenljivk.

Zgled 1.22. Naj bo $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna kot funkcija vsake spremenljivke posebej? Ali je f zvezna na \mathbb{R}^2 ?

Zgled 1.23. Naj bo $f(x,y) = \begin{cases} \frac{2x^2y}{x^4+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna kot funkcija vsake spremenljivke posebej? Ali je zvezna na vsaki premici? Ali je f zvezna na \mathbb{R}^2 ?

Opomba 1.24. Zgleda pokažeta, da obrat v prejšnji trditvi ne velja.

Naj bo $D \subseteq \mathbb{R}^n$ in $F: D \to \mathbb{R}^m$ preslikava. Naj bo $x \in D$, potem je $F(x) \in \mathbb{R}^m$, kjer je $F(x) = (y_1, \ldots, y_m)$. Lahko pišemo $F(x) = (f_1(x), \ldots, f_m(x))$. Torej F določa m funkcij n-spremenljivk.

Trditev 1.25. Naj bo $a \in D \subseteq \mathbb{R}^n$. Naj bo $F = (f_1, \dots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Preslikava F je zvezna v a $\iff f_1, \ldots, f_m$ so zvezne v a.

Dokaz. Definicija zveznosti v točki.

Zgled 1.26 (Omejenost linearnih preslikav). Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava, potem

$$\exists M \in \mathbb{R} . M > 0 . \forall x \in \mathbb{R}^n . x \neq 0 . \frac{||\mathcal{A}x||}{||x||} \leq M \text{ (oz. } ||\mathcal{A}x|| \leq M||x||).$$

Trditev 1.27. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Velja:

 \mathcal{A} je zvezna $\iff \mathcal{A}$ je zvezna v točki $0 \iff \mathcal{A}$ je omejena.

Dokaz. Definicija zveznosti in omejenosti.

Trditev 1.28. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Tedaj \mathcal{A} je zvezna.

Dokaz. Na linearno preslikavo lahko gledamo kot na množenje s matriko.

Opomba 1.29. Ker so linearne preslikave omejene, obstaja supremum, ki nam da matrično normo

$$\sup_{x\in\mathbb{R}^n\setminus\{0\}}\frac{||\mathcal{A}x||}{||x||}=\sup_{||x||=1}||\mathcal{A}x||=||\mathcal{A}||.$$

Definicija 1.30. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna preslikava. Preslikavo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ s predpisom $x \mapsto \mathcal{A}x + b, \ b \in \mathbb{R}^m$ imenujemo **afina preslikava**.

1.3 Parcialni odvodi in diferenciabilnost

1.3.1 Parcialni odvod

Definicija 1.31. Naj bo $f: D \subset \mathbb{R}^n \to \mathbb{R}$ funkcija. Naj bo $a = (a_1, \dots, a_n) \in D$ notranja točka. Funkcija f je **parcialno odvedljiva po spremenljivki** x_j **v točki** a, če obstaja limita

$$\lim_{h \to 0} \frac{f(a_1, \dots, a_{j-1}, a_j + h, a_{j+1}, \dots, a_n) - f(a_1, \dots, a_n)}{h},$$

oz. če je funkcija

$$x_j \mapsto f(a_1, \dots, a_{j-1}, x_j, a_{j+1}, \dots, a_n)$$

odvedliva v točki a_i .

Če je ta limita obstaja, je to **parcialni odvod** funkcije f po spremenljivki x_j v točki a. Oznaki: $\frac{\partial f}{\partial x_j}(a)$, $f_{x_j}(a)$, $(D_j f)(a)$.

Opomba 1.32. Vse elementarne funkcije so parcialno odvedljive po vseh spremenljivkah tam, kjer so definirane.

Zgled 1.33. Naj bo $f(x, y, z) = e^{x+2y} + \cos(xz^2)$. Izračunaj $f_x(x, y, z), f_y(x, y, z), f_z(x, y, z)$.

1.3.2 Diferenciabilnost

Definicija 1.34. Naj bo $f: D \subset \mathbb{R}^n \to \mathbb{R}$ funkcija. Naj bo $a = (a_1, \dots, a_n) \in D$ notranja točka. Funkcija f je **diferenciabilna v točki** a, če obstaja tak linearen funkcional $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$, da velja:

$$f(a+h) = f(a) + \mathcal{L}(h) + o(h),$$

kjer $\lim_{h\to 0} \frac{||o(h)||}{||h||} = 0.$

Opomba 1.35. Če je tak \mathcal{L} obstaja, je enolično določen.

Dokaz. Pokažemo, da iz
$$\mathcal{L}(h) = (\mathcal{L}_1 - \mathcal{L}_2)(h) = (o_2 - o_1)(h) = o(h)$$
 sledi, da je $L = 0$. \square

Definicija 1.36. Če je f diferenciabilna v a je \mathcal{L} natanko določen in ga imenujemo **diferencial** funkcije f v točki a. Oznaka: $\mathcal{L} = df_a$. Linearen funkcional \mathcal{L} imenujemo tudi **odvod** funkcije f v točki a. Oznaka: (Df)(a).

Opomba 1.37. Recimo, da je funkcija f diferenciabilna v točki a. Preslikava s predpisom $h \mapsto f(a) + (df_a)(h)$ je najboljša afina aproksimacija funkcije $h \mapsto f(a+h)$.

Trditev 1.38. Naj bo $f: D \subset \mathbb{R}^n \to \mathbb{R}$ diferenciabilna v notranji točki $a \in D$. Tedaj je f v točki a parcialno odvedljiva po vseh spremenljivkah. Poleg tega je zvezna v točki a. Pri tem za $h = (h_1, \ldots, h_n)$ velja:

$$(df_a)(h) = \frac{\partial f}{\partial x_1}(a) \cdot h_1 + \ldots + \frac{\partial f}{\partial x_n}(a) \cdot h_n = f_{x_1}(a) \cdot h_1 + \ldots + f_{x_n}(a) \cdot h_n$$

Opomba 1.39. Naj bo $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}$ linearen funkcional, $x \in \mathbb{R}^n$, potem lahko zapišemo

$$\mathcal{L}(x) = l_1 x_1 + \ldots + l_n x_n = \begin{bmatrix} l_1 & \ldots & l_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \text{ kjer } \begin{bmatrix} l_1 & \ldots & l_n \end{bmatrix} \text{ matrika linearnega}$$

funkcionala glede na standardne baze.

Dokaz. Zveznost pokažemo z limito. Za parcialno odvedljivost poglejmo kaj se dogaja za $h=(h_1,0,\ldots,0)$.

Opomba 1.40. Trditev pove, da je $df_a = \begin{bmatrix} \frac{\partial f}{\partial x_1}(a) & \dots & \frac{\partial f}{\partial x_n}(a) \end{bmatrix} = (\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)).$ Zapis: $(\vec{\nabla}f)(a) = (\operatorname{grad} f)(a) = (\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)).$

Vektor (grad f)(a) imenujemo **gradient funkcije** f v točki a. Operator $\vec{\nabla} = (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n})$ je **operator nabla**.

Zgled 1.41. Naj bo $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f diferenciabilna?

Zgled 1.42. Naj bo $f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$. Ali je f zvezna? Ali je f parcialno odvedljiva? Ali je f diferenciabilna?

Opomba 1.43. Zgleda pokažeta, da obrat v prejšnji trditvi ne velja

Izrek 1.44. Naj bo $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija in naj bo $a \in D$ notranja točka. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah v točki a in so parcialni odvodi zvezni v točki a. Tedaj je f diferenciabilna v točki a.

Dokaz. Za n=2. Definicija diferenciabilnosti + 2-krat Lagrangeev izrek.

1.3.3 Višji parcialni odvodi

Naj bo $f: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah na $D: f_{x_1}, \ldots, f_{x_n}$. To so tudi funkcije n-spremenljivk in morda so tudi te parcialno odvedljive po vseh oz. nekatarih spremenljivkah.

Trditev 1.45. Naj bo $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija, $a \in \text{Int}(D)$. Naj bosta $i, j \in \{1, 2, ..., n\}$. Denimo, da v točki a obstajata $\frac{\partial f}{\partial x_i}$, $\frac{\partial f}{\partial x_j}$ in tudi druga odvoda $\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)$, $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j}\right)$. Če sta $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i}\right)$, $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j}\right)$ zvezni v točki a, potem sta enaki v točki a:

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (a) = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (a).$$

Dokaz. Dovolj za n = 2.

Definiramo funkcijo J(h,k)=f(a+h,b+k)-f(a+h,b)-f(a,b+k)+f(a,b) ter funkciji $\varphi(x)=f(x,b+k)-f(x,b)$ in $\psi(y)=f(a+h,y)-f(a,y)$. Zapišemo J prvič s pomočjo funkcije φ , drugič pa s pomočjo funkcije ψ ter uporabimo 2-krat Lagrangeev izrek in upoštevamo zveznost.

Opomba 1.46. Pravimo, da parcialni odvodi komutirajo in pišemo $\frac{\partial^2 f}{\partial x_i \partial x_j}$.

Definicija 1.47. Naj bo $D^{\text{odp}} \subseteq \mathbb{R}^n$. Pravimo, da je funkcija $f: D \to \mathbb{R}$ razreda C^k na D, če obstajajo vse parcialne odvodi funkcije f do reda k in so vse ti parcialni odvodi zvezni na D.

Definicija 1.48. Naj bo $D^{\text{odp}} \subseteq \mathbb{R}^n$. Množico vseh k-krat zvezno parcialno odvedljivih funkcij označimo z $C^k(D)$. Množica gladkih funkcij je $C^{\infty}(D) = \bigcap_{k=1}^{\infty} C^k(D)$. Množica zveznih funkcij na D je C(D).

Opomba 1.49. Množica $C^k(D)$ z operacijama seštevanja, množenja s skalarji in komponiranja preslikav je algebra nad \mathbb{R} .

Diferenciabilnost preslikav 1.3.4

Definicija 1.50. Naj bo $F:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ preslikava, $a\in D$ notranja točka. Preslikava F je **diferenciabilna** v točki a, če obstaja taka linearna preslikava $\mathcal{L}: \mathbb{R}^n \to \mathbb{R}^m$, da velja:

$$F(a+h) = F(a) + \mathcal{L}(h) + o(h),$$

kjer je $\lim_{h\to 0}\frac{|o(h)|_m}{|h|_n}$. Preslikavo $\mathcal L$ imenujemo **diferencial** F v točki a. Oznaka: dF_a . Imenujemo ga tudi **odvod** F v točki a. Oznaka: (DF)(a).

Opomba 1.51. Kot pri funkcijah, če je tak \mathcal{L} obstaja, je enolično določen.

Zgled 1.52. Obravnavaj diferenciabilnost preslikav:

- $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna, $F(x) = \mathcal{A}x$.
- $F: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $F(X) = X^2$. Namig: S pomočjo CSB neenakosti pokažimo, da je $|H^2| < |H|^2$.

Izrek 1.53. Naj bo $a \in D$ notranja točka. Naj bo $F = (f_1, \ldots, f_m) : D \to \mathbb{R}^m$ preslikava. Velja:

Preslikava F je diferenciabilna $v \ a \in D \iff so \ f_1, \ldots, f_m \ diferenciabilne \ v \ a.$

Tedaj

$$(DF)(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(a) & \dots & \frac{\partial f_m}{\partial x_n}(a) \end{bmatrix}$$

Matrika linearne preslikave (DF)(a), ki je zapisana v standardnih bazah, se imenuje Jacobijeva matrika.

 $Dokaz. \ (\Longrightarrow)$ Zapišemo enakost $F(a+h) = F(a) + dF_a(h) + o(h)$ po komponentah. (⇐) Definicija diferenciabilnosti.

Posledica 1.54. Naj bo $a \in D$ notranja točka. Naj bo $F = (f_1, \ldots, f_m) : D \to \mathbb{R}^m$ preslikava. Tedaj velja: Če so vse funkcije f_1, \ldots, f_m v točki a parcialno odvedlivi po vseh spremenljivkah in so ti vse odvodi zvezni v točki a, potem je F diferenciabilna v točki a.

Zgled 1.55. Naj bo $F(x,y,z) = (x^2 + 2y + e^z, xy + z^2), f: \mathbb{R}^3 \to \mathbb{R}^2$. Določi (DF)(1,0,1).

Definicija 1.56. Preslikava $F: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ je razreda $C^k(D)$, če so vse koordinatne funkcije $f_1, \ldots, f_m \in C^k(D)$.

Izrek 1.57 (Verižno pravilo). Naj bo $a \in D \subseteq \mathbb{R}^n$ notranja točka. Naj bo $b \in \Omega \subseteq \mathbb{R}^m$ notranja točka. Naj bo $F: D \to \Omega$ diferenciabilna v točki a in velja F(a) = b. Naj bo $G: \Omega \to \mathbb{R}^k$ diferenciabilna v točki b. Tedaj $G \circ F$ diferenciabilna v točki a in velja:

$$D(G \circ F)(a) = (DG)(b) \circ (DF)(a) = (DG)(F(a)) \circ (DF)(a).$$

Označimo $F(x_1,\ldots,x_n)=(f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n))$ in $G(y_1,\ldots,y_m)=(g_1(y_1,\ldots,y_m),\ldots,g_k)$ Potem

$$D(G \circ F)(a) = \begin{bmatrix} \frac{\partial g_1}{\partial y_1} & \cdots & \frac{\partial g_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial g_k}{\partial y_1} & \cdots & \frac{\partial g_k}{\partial y_m} \end{bmatrix} (b) \cdot \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix} (a)$$

Dokaz. Definicija diferenciabilnosti.

Posledica 1.58 (k = 1, G = g funkcija). Naj bo $\Phi(x_1, \ldots, x_n) = g(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$. Potem

$$\frac{\partial \Phi}{\partial x_j}(a) = \frac{\partial g}{\partial y_1}(b) \cdot \frac{\partial f_1}{\partial x_j}(a) + \frac{\partial g}{\partial y_2}(b) \cdot \frac{\partial f_2}{\partial x_j}(a) + \ldots + \frac{\partial g}{\partial y_m}(b) \cdot \frac{\partial f_m}{\partial x_j}(a)$$

Zgled 1.59. Naj bo $F(x,y)=(x^2+y,xy),\ g(u,v)=uv+v^2.$ Naj bo $\Phi=g\circ F.$ Izračunaj $(D\Phi)(x,y)$ na dva načina.

1.4 Izrek o implicitni funkciji

1.4.1 Osnovna verzija izreka o implicitni funkciji

Radi bi poiskali zadostni pogoji na funkcijo f(x,y), da bi enačba f(x,y) = 0 lokalno v okolici točki (a,b), za katero velja f(a,b) = 0, predstavljala graf funkcije $y = \varphi(x)$.

Izrek 1.60 (Osnovna verzija izreka o implicitni funkciji). Naj bo $D \subseteq \mathbb{R}^2$ odprta, $(a,b) \in D$, $f: D^{odp} \to \mathbb{R}$ funkcija razreda $C^1(D)$ in naj velja:

- 1. f(a,b) = 0.
- 2. $f_{y}(a,b) \neq 0$.

Potem obstajata $\delta > 0$ in $\epsilon > 0$, da velja: $I \times J \subseteq D$, kjer je $I = (a - \delta, a + \delta)$, $J = (b - \epsilon, b + \epsilon)$ in enolično določena funkcija $\varphi : I \to J$ razreda C^1 , za katero velja:

- 1. $\varphi(a) = b$.
- 2. $\forall (x,y) \in I \times J$. $f(x,y) = 0 \iff y = \varphi(x)$ (rešitve enačbe f(x,y) = 0 so natanko graf funkcije φ).
- graf funkcije φ). 3. $\varphi'(x) = -\frac{f_x(x,\varphi(x))}{f_n(x,\varphi(x))}$ za vsak $x \in I$.

Dokaz. Funkcijo φ konstruiramo s pomočjo izreka o bisekciji z upoštevanjem stroge monotonosti funkciji $y \mapsto f(x,y)$.

Zveznost ($\overline{I} \times \overline{J}$ je kompaktna), odvedljivost in zveznost odvoda pokažemo z pomočjo izraza $f(x + \Delta x, y + \Delta y) - f(x, y) = 0$ in Lagrangeeva izreka, kjer $x + \Delta x \in (a - \delta, a + \delta), \ y = \varphi(x), \ y + \Delta y = \varphi(x + \Delta x).$

Posledica 1.61. Če je funkcija f razreda C^k , potem je tudi funkcija φ razreda C^k .

Zgled 1.62. Kaj če pogoji niso izpolnjeni?

- 1. $f(x,y) = (x-y)^2$, f(x,y) = 0 v okolici točke (0,0) (pogoji ni potrebni).
- 2. $f(x,y) = y^3 x$, f(x,y) = 0 v okolici točke (0,0) (odvedljivost φ).
- 3. $f(x,y) = y^2 x^2 x^4$, f(x,y) = 0 v okolici točke (0,0) (enoličnost φ).
- 4. $f(x,y) = y^2 + x^2 + x^4$, f(x,y) = 0 v okolici točke (0,0) (množica rešitev).

1.4.2 Izrek o inverzni preslikavi

Naj bo $\Phi: D^{\text{odp}} \subseteq \mathbb{R}^m \to \mathbb{R}^m$ preslikava, $\Phi \in C^1(D)$. Kakšne so zadostni pogoji za (lokalno) obrnljivost preslikave Φ ?

Definicija 1.63. Naj bosta D, $\Omega \subseteq \mathbb{R}^m$ odprti. Preslikava $\Phi : D \to \Omega$ je C^1 -difeomorfizem, če

- 1. Φ je bijekcija,
- 2. $\Phi \in C^1(D)$,
- 3. $\Phi^{-1} \in C^1(\Omega)$.

Podobno definiramo C^k -difeomorfizem za $k \in \mathbb{N} \cup \{\infty\}$.

Zgled 1.64. Ali je $f(x) = x^3$, $f: \mathbb{R} \to \mathbb{R}$ difeomorfizem?

Trditev 1.65. Naj bosta D, $\Omega \subseteq \mathbb{R}^m$ odprti. Naj bo $\Phi : D \to \Omega$ C^1 -difeomorfizem. Tedaj je $\det(D\Phi) \neq 0$ na D.

Dokaz. Pogledamo $\Phi^{-1} \circ \Phi = \mathrm{id}_D$ (verižno pravilo).

Posledica 1.66. $(D\Phi^{-1})(y) = (D\Phi)^{-1}(x)$, *kjer* $y = \Phi(x)$.

Zgled 1.67. Ali velja obrat trditve? Naj bo $\Phi(x,y) = (e^x \cos y, e^x \sin y), \ \Phi : \mathbb{R}^2 \to \mathbb{R}^2$. Ali je Φ difeomorfizem?

Lema 1.68 (Lagrangeev izrek za funkcijo več spremenljivk). Naj bo $D \subseteq \mathbb{R}^n$ odprta množica, točki $a, b \in D$ taki, da za vsak $t \in [0,1]$ daljica $(1-t)a+tb \in D$, $f:D \to \mathbb{R}$ funkcija razreda C^1 . Tedaj obstaja taka točka ξ iz daljice med a in b, da je $f(b) - f(a) = (Df)(\xi)(b-a)$.

Dokaz. Lagrangeev izrek za funkcijo $\varphi(t) = f((1-t)a + tb)$.

Lema 1.69. Predpostavki kot prej. Naj obstaja tak $M \in \mathbb{R}$, da za vsak j = 1, ..., n in vsak $x \in D$ velja: $\left| \frac{\partial f}{\partial x_j}(x) \right| \leq M$. Tedaj $|f(b) - f(a)| \leq M\sqrt{n}|b - a|$.

Dokaz. Uporabimo prejšnjo trditev.

Lema 1.70. Naj bo $D \subseteq \mathbb{R}^n$, $a,b \in D$ kot prej. Naj bo $F:D \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $F=(f_1,\ldots,f_m)$ preslikava razreda C^1 . Naj obstaja tak $M \in \mathbb{R}$, da za vsak $j=1,\ldots,n$, vsak $i=1,\ldots,m$ in vsak $x \in D$ velja: $\left|\frac{\partial f_i}{\partial x_j}(x)\right| \leq M$. $Tedaj ||F(b) - F(a)|| \leq M \sqrt{mn} ||b-a||$.

Izrek 1.71 (Izrek o inverzni preslikavi). Naj bo $D \subseteq \mathbb{R}^m$ odprta, $F: D \to \mathbb{R}^m$ preslikava razreda C^1 , $a \in D$ in b = F(a). Če je $\det(DF)(a) \neq 0$, potem obstajata okolici $a \in U \subseteq \mathbb{R}^m$ in $b \in V \subseteq \mathbb{R}^m$, da je $F: U \to V$ C^1 -difeomorfizem.

Definicija 1.72. Če je $F:D\to\Omega$ preslikava med odprtimi množicami v \mathbb{R}^m in je $\det(DF)(x)\neq 0$ za vse $x\in D$, pravimo, da je F lokalni difeomorfizem.

Dokaz. Dovolj, da izrek dokažemo za primer, ko a = b = 0, (DF)(0) = I. П TODO

Posledica 1.73. Če je Φ razreda C^k za $k \in \mathbb{N} \cup \{\infty\}$, je Φ lokalni C^k difeomorfizem.

Opomba 1.74. Če je m=1, potem $f:I\subseteq\mathbb{R}\to\mathbb{R}$. Naj bo $a\in I,\ f\in C^1(I),\ f'(a)\neq 0$. Potem $f'(x) \neq 0$ v okolici a, torej f ima lokalni C^1 inverz.

Zgled 1.75. Naj bo $F: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, \ F(X) = X^2$. Ali je F v okolici točke $I \in \mathbb{R}^{n \times n}$ lokalni difeomorfizem? Kaj to pomeni?

1.4.3 Izrek o implicitni preslikavi

Imamo n+m spremenljivk: (x,y), kjer $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots,y_m)$ in m enačb. Pričakujemo, da bomo lahko m spremenljivk izrazili kot funkcijo ostalih, tj. najdemo preslikavo $\Phi: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$, da velja $y = \Phi(x)$.

Primer 1.76 (Linearen primer). Naj bosta $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$, $\mathcal{B}: \mathbb{R}^m \to \mathbb{R}^m$ linearni, $b \in \mathbb{R}^m$. Naj rešujemo enačbo Ax+By=b. Kdaj lahko za vsak $b\in\mathbb{R}^m$ iz te enačbe y razrišemo

Če je n=0, potem rešujemo enačbo By=b. Kdaj lahko to enačbo enolično rešimo za vsak $b \in \mathbb{R}^m$?

Naj bo $F: D^{\text{odp}} \subseteq \mathbb{R}^n_x \times \mathbb{R}^m_y \to \mathbb{R}^m$, $F = (f_1, \dots, f_m)$ preslikava razreda C^1 . Za vsak $y \in \mathbb{R}^m$ naj bo $\frac{\partial F}{\partial x}$ diferencial preslikave $x \mapsto F(x, y)$. Imenujemo ga **parcialni** diferencial na prvo spremenljivko.

Za vsak $x \in \mathbb{R}^n$ naj bo $\frac{\partial F}{\partial y}$ diferencial preslikave $y \mapsto F(x,y)$. Imenujemo ga **parcialni**

$$\text{ Velja: } \frac{\partial F}{\partial x}(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(x,y) & \dots & \frac{\partial f_1}{\partial x_n}(x,y) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x,y) & \dots & \frac{\partial f_m}{\partial x_n}(x,y) \end{bmatrix} \text{ in } \frac{\partial F}{\partial y}(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial y_1}(x,y) & \dots & \frac{\partial f_m}{\partial y_m}(x,y) \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1}(x,y) & \dots & \frac{\partial f_m}{\partial x_n}(x,y) \end{bmatrix} .$$

Diferencial preslikave F je potem enak $(DF)(x,y) = \begin{bmatrix} \frac{\partial F}{\partial x}(x,y) & \frac{\partial F}{\partial y}(x,y) \end{bmatrix}$ (bločni zapis).

Opomba 1.77. Za vektor
$$\begin{bmatrix} h \\ k \end{bmatrix}$$
, kjer je $h \in \mathbb{R}^n$, $k \in \mathbb{R}^m$ velja: $(DF)(x,y) \begin{bmatrix} h \\ k \end{bmatrix} = \frac{\partial F}{\partial x}(x,y)h + \frac{\partial F}{\partial y}(x,y)k \in \mathbb{R}^m$.

Izrek 1.78 (Izrek o implicitni preslikavi). Naj bo $D \subseteq \mathbb{R}^n_x \times \mathbb{R}^m_y$ odprta množica, $(a,b) \in D$, $F:D \to \mathbb{R}^m$ preslikava razreda C^1 . Naj velja:

- 1. F(a,b) = 0,
- 2. $\det(\frac{\partial F}{\partial y}(a,b)) \neq 0$.

Tedaj obstaja okolica $U \subseteq \mathbb{R}^n$ točke a in okolica $V \subseteq \mathbb{R}^m$ točke b in taka enolično določena preslikava $\varphi: U \to V$ razreda C^1 , da velja:

- 1. $\phi(a) = b$.
- 2. $\forall (x,y) \in U \times V$. $F(x,y) = 0 \iff y = \varphi(x)$ (rešitve te enačbe je isto kot graf φ
- 3. $(D\varphi)(x) = -\left(\frac{\partial F}{\partial u}(x,y)\right)^{-1} \frac{\partial F}{\partial x}(x,y), \ y = \varphi(x) \ za \ vsak \ x \in U.$

Dokaz. Uporabimo izrek o inverzni preslikavi.

Definiramo preslikavo $\Phi: D \subseteq \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \times \mathbb{R}^m$, $\Phi(x,y) = (x,F(x,y))$. Kandidata za preslikavo φ najdemo v oblike inverza Φ^{-1} , nato enostavno preverimo lastnosti.

Posledica 1.79. Če je preslikava F razreda C^k , je tudi preslikava φ razreda C^k .

Zgled 1.80. Naj bo $x,y \in \mathbb{R}$, $F(x,y) = x^2 + y^2 - 1$. S pomočjo izreka o implicitni preslikavi pokaži, da v okolici točke (0,1) rešitve enačbe F(x,y) = 0 graf neke preslikave φ . Določi tudi preslikavo φ .

Zgled 1.81. Naj bo $F(x,y,z)=(y+xy+xz^2,z+zy+x^2),\ F=(f,g)$ in naj rešujemo enačbo F(x,y,z)=0. Preveri zahteve izreka v okolici točke (0,0,0) in zapiši spremenljivki y in z kot funkciji spremenljivke x. Določi tudi prvi in drugi odvod funkcij f in g po spremenljivke x. Kaj je rezultat?

Zgled 1.82. Naj bo $F: \mathbb{R}^3 \to \mathbb{R}$ in naj rešuejmo enačbo F(x,y,z) = 0. Recimo, da F(a,b,c) = 0. Kakšna povezava med zadostnimi pogajami in rangom (DF)(a,b,c)? Kaj če gledamo preslikavo $F: \mathbb{R}^3 \to \mathbb{R}^2$?

Definicija 1.83. Naj bo $D^{\text{odp}} \in \mathbb{R}^n$ in $F: D \to \mathbb{R}^m$ preslikava razreda C^1 , $a \in D$.

- 1. Rang preslikave F v točki a je rang $_a F := \operatorname{rang}(DF)(a)$.
- 2. Če je rang $_a F$ konstanten na D, je F tega ranga na D, tj. rang $F = \operatorname{rang}_a F$.
- 3. Preslikava F je **maksimalnega ranga v točki** a, če je rang $_a F = \min \{m, n\}$.

Opomba 1.84. Ta pogoj je lokalno stabilen, tj. če je rang $_a F = \min\{n, m\}$, potem obstaja okolica od a, kjer rang F maksimalen.

Posledica 1.85. Naj bo $F: D^{odp} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ preslikava razreda C^k , $k \in \mathbb{N}$ in naj velja m < n. Naj bo $a \in D$, F(a) = 0 in F maksimalnega ranga v točki a. Tedaj obstajajo indeksi $i_1 < i_2 < \ldots < i_{n-m}$, $j_1 < j_2 < \ldots < j_m$, $i_k \neq j_l$ za vse k in l in take funkcije $\varphi_1, \ldots, \varphi_m$ razreda C^k definirane v okolici točke $(a_{i_1}, \ldots, a_{i_{n-m}})$, da je v neki okolici V točke v0 ekvivalentna sistemu enačb:

$$x_{j_1} = \varphi_1(x_{i_1}, \dots, x_{i_{n-m}})$$

$$\vdots$$

$$x_{j_m} = \varphi_m(x_{i_1}, \dots, x_{i_{n-m}})$$

Ekvivalentno: Obstaja permutacija $\sigma \in S_n$, da v okolici točke a velja:

$$F(x) = 0 \iff (x_{\sigma(1)}, \dots, x_{\sigma(n)}) = (x_{\sigma(1)}, \dots, x_{\sigma(n-m)}, \varphi(x'_{\sigma})), \text{ kjer } \varphi = (\varphi_1, \dots, \varphi_m).$$

Dokaz. TODO

Primer 1.86. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna, $m \leq n$, rang $\mathcal{A} = m$ (\mathcal{A} je surjektivna). Rešujemo enačno $\mathcal{A}x = b$. Prostor rešitev je n - m dimenzialen.

Posledica 1.87. Naj bo $F: D^{odp} \subseteq \mathbb{R}^n \to \mathbb{R}^m$ preslikava razreda C^1 , $m \leq n$, $a \in D$ in naj velja $\operatorname{rang}_a F = m$. Tedaj obstaja okolica V točke F(a) = b in okolica U točke a, da je $F: U \to V$ surjektivna.

Dokaz. TODO

1.5 Podmnogoterosti v \mathbb{R}^n

Podmnogoterost je posplošitev pojmov "krivulja" in "ploskev".

Definicija 1.88. Naj bo $M \subseteq \mathbb{R}^{n+m}$, $M \neq \emptyset$. Množica M je gladka (vsaj razreda C^1) podmnogoterost dimenzije n in kodimenzije m prostora \mathbb{R}^{n+m} , če za vsako točko $a \in M$ obstaja okolica U v \mathbb{R}^{n+m} in take C^1 funkcije $F_1, \ldots, F_m : U \to \mathbb{R}$, da velja:

- 1. $M \cap U = \{x \in U \mid F_1(x) = \dots = F_m(x) = 0\} = F^*(\{0\}).$
- 2. $rang(F_1, ..., F_m) = m \text{ na } U.$

Opomba 1.89. Funkcije F_1, \ldots, F_m se imenujejo lokalne definicijske funkcije za $M \cap U$.

TODO

1.6 Taylorjeva formula

Naj bo $f: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija, $a \in D$. Funkcijo f bi radi v okolici točke a aproksimirali s polinomi.

Izrek 1.90. Recimo, da velja

- 1. Množica $D \subseteq \mathbb{R}^n$ odprta, $a \in D$.
- 2. $f: D^{odp} \to \mathbb{R}$ funkcija razreda $C^{k+1}(D)$.
- 3. Vektor $h \in \mathbb{R}^n$ tak, da daljica med a in a + h leži v D.

Tedaj obstaja tak $\theta \in (0,1)$, da je

$$f(a+h) = f(a) + (D_h f)(a) + \frac{1}{2!} (D_h^2 f)(a) + \dots + \frac{1}{k!} (D_h^k f)(a) + R_k$$
 (*),

kjer je $D_h = h_1 D_1 + h_2 D_2 + \ldots + h_n D_n$ odvod v smeri h in $R_k = \frac{1}{(k+1)!} (D_h^{k+1} f)(a + \theta h)$ ostanek.

Izraz (*) je **Taylorjeva formula** za funkcijo več spremenljivk.

$$Dokaz.$$
 TODO

Opomba 1.91. Pokaži, da velja

- 1. $(D_h f)(a) = \sum_{j=1}^n h_j \frac{\partial f}{\partial x_i}(a)$.
- 2. $(D_h^2 f)(a) = \sum_{k=1}^n \sum_{j=1}^n h_k h_j \frac{\partial^2 f}{\partial x_k \partial x_j}(a)$.

Primer 1.92. Pokaži, da za n=2 velja $D_{(h,k)}^m=\sum_{j=0}^m \binom{m}{j}h^jk^{m-j}\frac{\partial^m}{\partial x^j\partial y^{m-j}}$.

Opomba 1.93. $h \mapsto f(a) + (D_h f)(a) + \frac{1}{2!}(D_h^2 f)(a) + \ldots + \frac{1}{k!}(D_h^k f)(a)$ je polinom stopnje največ k v spremenljivkah h_1, h_2, \ldots, h_n .

Opomba 1.94. Če je funkcija f razreda $C^{\infty}(D)$ lahko tvorimo **Taylorjevo vrsto**:

$$\sum_{i=1}^{\infty} \frac{1}{j!} (D_h^j f)(a).$$

- Vrsta sigurno konvergira za h = 0.
- Tudi, če vrsta konvergira za nek $h \neq 0$, ne konvergira nujno k f(a+h).

Definicija 1.95. Če Taylorjeva vrsta konvergira k f(a+h) za vse vse $||h|| \le \delta$ za nek $\delta > 0$, tj.

$$f(a+h) = \sum_{j=1}^{\infty} \frac{1}{j!} (D_h^j f)(a),$$

potem rečemo, da je funkcija f v okolici točke a (realno) analitična.

Zgled 1.96. Razvij funkcijo $f(x,y) = e^{xy}$ v Taylorjevo vrsto v okolici točke (0,0).

Posledica 1.97. Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^n$ odprta, $a \in D$.
- 2. $f: D^{odp} \to \mathbb{R}$ funkcija razreda $C^{k+1}(D)$.
- 3. Vektor $h \in \mathbb{R}^n$ tak, da daljica med a in a + h leži v D.

Potem je

- 1. $R_k = o(||h||^k)$ za $h \to 0$. 2. $R_k = O(||h||^{k+1})$ za $h \to 0$.

- **Opomba 1.98.** Velja: 1. $R_k = o(||h||^k) \iff \lim_{h\to 0} \frac{|R_k|}{||h||^k} = 0$ (izraz je majhen).
 - 2. $R_k = O(||h||^{k+1}) \iff \exists M \in \mathbb{R} \cdot \frac{|R_k|}{||h||^{k+1}} \le M$, ko gre h proti 0 (velikostni red).

Dokaz. TODO

Opomba 1.99. Naj bo $f: \mathbb{R}^2 \to \mathbb{R}$ funkcija razreda C^{∞} v okolici točke (0,0), h = (x,y). Pokaži, da za koeficient a_{nm} pred x^ny^m velja: $(\frac{\partial^{n+m}}{\partial x^n\partial y^m}f)(0,0) = a_{nm}n!m!$.

1.7 Ekstremi funkcij več spremenljivk

Definicija 1.100. Naj bo $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ funkcija, $a\in D$.

1. Funkcija f ima v točki a lokalni maksimum, če

$$\exists r > 0 \, . \, \forall x \in D \cap K(a, r) \, . \, f(a) \geq f(x).$$

Funkcija f ima v točki a strogi lokalni maksimum, če

$$\exists r > 0 \, . \, \forall x \in D \cap K(a, r) \, . \, f(a) > f(x).$$

2. Funkcija f ima v točki a (globalni) maksimum na D, če

$$\forall x \in D . f(a) \ge f(x).$$

- 3. Podobno definiramo: lokalni minimum, (globalni) minimum.
- 4. **Lokalni ekstrem** (oz. **globalni ekstrem**) je skupno ime za lokalni (oz. globalni) minumum in maksimum.

Opomba 1.101. Če je $K^{\text{komp}} \subseteq \mathbb{R}^n$ in $f: K \to \mathbb{R}$ zvezna funkcija, potem ima f na K maksimum in minimum.

Definicija 1.102. Naj bo $D^{\text{odp}} \subseteq \mathbb{R}^n$ in $f: D \to \mathbb{R}$ funkcija razreda C^1 (dovolj, da je diferenciabilna).

Rečemo, da je točka $a \in D$ stacionarna (oz. kritična) točka funkcije f, če

$$(Df)(a) = 0$$
, tj. $\frac{\partial f}{\partial x_1}(a) = \frac{\partial f}{\partial x_2}(a) = \dots = \frac{\partial f}{\partial x_n}(a) = 0$.

Trditev 1.103. Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^n$ odprta, $a \in D$.
- 2. $f: D \to \mathbb{R}$ funkcija razreda C^1 .

Tedaj, če ima funkcija f v točki a lokalni ekstrem, je a kritična točka za f.

$$Dokaz.$$
 TODO

Zgled 1.104. Naj bo $K = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 3\}, \ f(x,y) = x^2 - xy + y^2 - 3x + 4.$ Poišči minimum in maksimum funkcije f na K.

1.7.1 Potrebni in zadostni pogoji na 2. odvodi, da je kritična točka lokalni ekstrem

Naj bo $D \subseteq \mathbb{R}^n$ odprta, $f: D \to R$ funkcija razreda C^2 . Definiramo **Hessejevo matriko** 2. odvodov:

$$(Hf)(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & & & & \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \vdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}.$$

Opomba 1.105. Če je $f \in C^2(D)$, potem mešani odvodi so enaki, tj. $(Hf)^T = Hf$. Torej Hessejeva matrika je simetrična, torej ima v vsaki točki realne lastne vrednosti.

 $\langle (Hf)h,h\rangle$ je **Hessejeva forma** (kvadratna forma, ki pripada matrike (Hf)(a)).

Definicija 1.106. Hessejeva matrika Hf je

- pozitivno semidefinitna (pišemo $Hf \ge 0$), če $\forall v \in D . \langle (Hf)v, v \rangle \ge 0 \iff$ vse lastne vrednosti so nenagitvne;
- pozitivno definitna (pišemo Hf>0), če $\forall v\in D\,.\,v\neq 0 \implies \langle (Hf)v,v\rangle>0 \iff$ vse lastne vrednosti so pozitivne;
- negativno semidefinitna (pišemo $Hf \leq 0$), če $\forall v \in D . \langle (Hf)v, v \rangle \leq 0 \iff$ vse lastne vrednosti so nepozitivne;
- negativno definitna (pišemo Hf < 0), če $\forall v \in D . v \neq 0 \implies \langle (Hf)v, v \rangle < 0 \iff$ vse lastne vrednosti so negativne.

Trditev 1.107 (Potrebni pogoji). Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^n$ odprta, $a \in D$.
- 2. Funkcija $f: D \to \mathbb{R}$ razreda C^2 .

Tedaj

- Če ima f v točki a lokalni maksimum, potem
 - 1. (Df)(a) = 0,
 - 2. $Hf(a) \leq 0$.
- Če ima f v točki a lokalni minimum, potem
 - 1. (Df)(a) = 0,
 - 2. $(Hf)(a) \ge 0$.

Dokaz. TODO

Izrek 1.108 (Zadostni pogoji). Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^n$ odprta, $a \in D$.
- 2. Funkcija $f: D \to \mathbb{R}$ razreda C^2 .
- 3. $a \in D$ stacionarna točka funkcije f.

Tedaj

- Če je (Hf)(a) > 0, potem ima funkcija f v točki a (strogi) lokalni minimum.
- Če je (Hf)(a) < 0, potem ima funkcija f v točki a (strogi) lokalni maksimum.
- Če ima (Hf)(a) tako pozitivne, kot negativne lastne vrednosti, potem funkcija f v točki a nima lokalnega ekstrema.

Zgled 1.109. Določi $(Hf_i)(0,0)$ za $f_1(x,y) = \frac{1}{2}(x^2+y^2), f_2(x,y) = \frac{1}{2}(-x^2-y^2), f_3(x,y) = \frac{1}{2}(x^2-y^2).$

Posledica 1.110 (Zadostni pogoji, n = 2). Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^2$ odprta, $(a,b) \in D$.
- 2. Funkcija $f: D \to \mathbb{R}$ razreda C^2 .
- 3. $(a,b) \in D$ stacionarna točka funkcije f.

Tedaj

- Če je $f_{xx}f_{yy} f_{xy}^2(a,b) > 0$, potem ima funkcija f v točki (a,b).
 - Če je $f_{xx}(a,b) > 0$, potem ima funkcija f v točki (a,b) lokalni minimum.
 - Če je $f_{xx}(a,b) < 0$, potem ima funkcija f v točki (a,b) lokalni maksimum.
- Če je $f_{xx}f_{yy} f_{xy}^2(a,b) < 0$, potem funkcija f v točki (a,b) nima lokalnega ekstrema.

Dokaz. TODO

Zgled 1.111. Naj bo $f(x, y, z) = x^2 + y^2 + z^2 + 2xyz$. Klasificiraj vse stacionarne točke funkcije f.

1.7.2 Vezani ekstremi

Izrek 1.112. Recimo, da velja

- 1. Podmnožica $D \subseteq \mathbb{R}^n$ odprta.
- 2. Funkciji f, g_1, \ldots, g_m razreda $C^1(D), m < n$.
- 3. Preslikava $G = (g_1, \ldots, g_m) : D \to \mathbb{R}^m$ maksimalnega ranga.
- 4. $M = G^{-1}(\{0\}) \neq \emptyset$, tj. $M = \{x \in D \mid g_1(x) = 0, \dots, g_m(x) = 0\}$ podmnogoterost v D.
- 5. Funkcija $f: M \to \mathbb{R}$ ima v točki $a \in M$ lokalni ekstrem (kot funkcija iz M v \mathbb{R}). Tedaj obstajajo take realne konstante $\lambda_1, \ldots, \lambda_m$, da je

$$(Df)(a) = \lambda_1(Dg_1)(a) + \ldots + \lambda_m(Dg_m)(a) = \sum_{j=1}^m \lambda_j(Dg_j)(a).$$

Dokaz. TODO

Opomba 1.113. Lagrangeeva metoda za iskanja vezanih ekstremov

- 1. Tvorimo funkcijo $F(x_1, \dots, x_n, \lambda_1, \dots, \lambda_m) = f(x) \sum_{j=1}^m \lambda_j g_j(x)$.
- 2. Iščemo stacionarne točke F:
 - $D_x F = (Df)(x) \sum_{j=1}^m \lambda_j (Dg_j)(x) = 0$ (*n* enačb).

• $D_{\lambda_j}F=-g_j(x)=0$ za $j=1,\ldots,m$ (m enačb). Konstante $\lambda_1,\ldots,\lambda_m$ so **Lagrangeevi multiplikatorji**.

Zgled 1.114. Določi stacionarne točke funkcije f(x,y,z)=z na $M=\{(x,y,z)\in\mathbb{R}^3\,|\,x^2+y^2+z^2=1;\,\,x\in\mathbb{R}^3\,|\,x^2+y^2+z^2=1;\,\,x\in\mathbb{R}^3\,|\,x^2+y^2+z^2=1;\,\,x\in\mathbb{R}^3\,|\,x^2+y^2+z^2=1;\,\,x\in\mathbb{R}^3\,|\,x^2+y^2+z^2=1;\,\,x\in\mathbb{R}^3\,|\,x^2+y^2+z^2=1;\,\,x\in\mathbb{R}^3$

Zgled 1.115. Določi stacionarne točke funkcije $f(x,y,z)=x^2-xy+y^2-3x+4$ na robu $x^2+y^2=9$.

Integrali s parametri

Naj bo $f:[a,b]_x\times[c,d]_y\to\mathbb{R}$ funkcija. Gledamo funkcijo $F(y)=\int_0^b f(x,y)\,dx$, kjer $y \in [c,d]$ je parameter.

Zanima nas v kakšni so povezavi lastnosti funkcije f in funkcije F.

Zgled 2.1. Izračunaj
$$F(y) = \int_0^\pi \sin(xy) dx$$
. Ali je $F(y)$ zvezna? Kaj je D_F ?

Zgled 2.2. Eulerjeva funkcija gama je $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$.

- Določi D_{Γ} .
- Kakšen predznak ima Γ na D_{Γ} ?
- Določi osnovno rekurzivno relacijo za Γ .
- Kakšna povezava med fakulteto in Γ ?
- Kako bi lahko definirali Γ za negativne vrednosti? Za katere lahko?

Definicija 2.3. Podmnožica $D \subseteq \mathbb{R}^n$ je lokalno kompaktna, če

$$\forall a \in D \,.\, \exists r \in \mathbb{R} \,.\, r > 0 \,.\, D \cap \overline{K(a,r)}$$
kompaktna množica.

Zgled 2.4. Primeri lokalno kompaktnih množic.

- Vsaka zaprta in vsaka odprta množica v \mathbb{R}^n je lokalno kompaktna.
- $D \subseteq \mathbb{R}^2$, $D = K(0,1) \cup \{(1,0)\}$ ni lokalno kompaktna.

Trditev 2.5. Recimo, da velja

- 1. $D \subseteq \mathbb{R}^n$ lokalno kompaktna podmnožica;
- 2. I zaprt interval na \mathbb{R} ;
- 3. $funkcija\ f: I_x \times D_y\ zvezna.$

Tedaj je funkcija $F(u,v,y) = \int_{u}^{v} f(x,y) dx$, kjer so $(u,v,y) \in I \times I \times D$, zvezna na $I \times I \times D$.

Dokaz. Dokazujemo zveznost v točki $(u_0, v_0, y_0) \in I \times I \times D$. Ocenimo razliko |F(u, v, y) - V(u, v, y)| $F(u_0, v_0, y_0)$.

• Kaj vemo o funkciji f na nekem kompaktu?

Posledica 2.6. Recimo, da velja

- 1. $D \subseteq \mathbb{R}^n$ lokalno kompaktna podmnožica;
- 2. I = [a, b];
- 3. funkcija $f: I_x \times D_y$ zvezna.

Tedaj je funkcija $F(y) = \int_a^b f(x,y) dx$, zvezna na D.

Odvajanje integralov s parametri 2.1

Trditev 2.7. Recimo, da velja

- 1. $funkcija\ f: [a,b]_x \times (c,d)_y \to \mathbb{R}\ zvezna;$
- 2. $\forall (x,y) \in [a,b] \times (c,d)$. f parcialno odvedljiva po y; 3. $funkcija \frac{\partial f}{\partial y}(x,y)$ zvezna na $[a,b] \times (c,d)$.

Tedaj je

1.
$$F(y) = \int_a^b f(x, y) dx$$
 odvedljiva funkcija na (c, d) .

1.
$$F(y) = \int_a f(x,y) dx$$
 odvedljiva funkcija na (c,a) .
2. $F'(y) = \frac{dF}{dy}(y) = \frac{d}{dy} \int_a^b f(x,y) dx = \int_a^b \frac{\partial f}{\partial y}(x,y) dx$, tj. lahko zamenjamo vrstni red odvajanja.

Dokaz. Dokazujemo, da je F odvedljiva v točki $y \in (c,d)$. Ocenimo razliko $\left| \frac{F(y+h) - F(y)}{h} - \int_a^b \frac{\partial f}{\partial y}(x,y) dx \right|$

- Lagrangeev izrek.
- Ustrezni kompakti.

Posledica 2.8. Recimo, da velja

- 1. $funkcija\ f: [a,b]_x \times (c,d)_y \to \mathbb{R}\ zvezna;$

2.
$$\forall (x,y) \in [a,b] \times (c,d)$$
, f parcialno odvedljiva po y ;
3. $funkcija \frac{\partial f}{\partial y}(x,y)$ zvezna na $[a,b] \times (c,d)$.
4. $funkciji \alpha, \beta: (c,d) \rightarrow [a,b]$ zvezno odvedljivi.
 $Tedaj F'(y) = \frac{d}{dy} \int_{\alpha(y)}^{\beta(y)} f(x,y) dx = \int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial y}(x,y) dx + \beta'(y) f(\beta(y),y) - \alpha'(y) f(\alpha(y),y)$.

Dokaz. $F(u, v, y) = \int_{u}^{v} f(x, y) dx \implies \int_{\alpha(v)}^{\beta(y)} f(x, y) dx = F(\alpha(y), \beta(y), y)$. Torej treba izračunati odvod funkcije treh spremenljivk

• Osnovni izrek analize.

Posledica 2.9. Recimo, da velja

- 1. podmnožica $D \subseteq \mathbb{R}^n$ odprta;
- 2. $funkcija\ f:[a,b]_x\times D_y\to\mathbb{R}\ zvezna;$
- 3. $\forall (x,y) \in [a,b] \times D . \forall j \in [n] . f \ parcialno \ odvedljiva \ po \ y_j;$
- 4. $\forall j \in [n]$. $\frac{\partial f}{\partial y_j}(x,y)$ so zvezne funkcije na $[a,b] \times D$.

1.
$$F(y) = \int_a^b f(x,y) dx$$
 funkcija razreda C^1 na D .

2.
$$\frac{\partial F}{\partial y_i}(y) = \int_a^b \frac{\partial f}{\partial y_i}(x, y) dx$$
.

Zgled 2.10. S pomočjo integrala s parametrom $F(a) = \int_0^1 \frac{x^a - 1}{\ln x} dx$ izračunaj $\int_0^1 \frac{x - 1}{\ln x} dx$.

Integral integral as parametrom

Izrek 2.11. Recimo, da velja

1. $funkcija\ f:[a,b]\times [c,d]\to \mathbb{R}\ zvezna.$

Tedaj je

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) \, dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx.$$

Definicija 2.12. Integrali tipa $\int_{c}^{d} \left(\int_{a}^{b} f(x,y) dx \right) dy$ imenujemo dvakratni integrali.

Dokaz. Definiramo $\Psi(y) = \int_{c}^{y} \left(\int_{a}^{b} f(x,s) \, dx \right) ds$ in $\Phi(y) = \int_{a}^{b} \left(\int_{c}^{y} f(x,s) \, ds \right) dx$. Dololj, da dokažemo:

- Ψ in Φ se ujemata v eni točki.
- $\Psi' = \Phi'$.

Pomagamo si s osnovnim izrekom analize.

Zgled 2.13. Izračunaj $\int_0^1 \left(\int_0^2 (x+y^2) dx \right) dy$ na dva načina.

2.3 Posplošeni integrali s parametri

Naj bo Y neka množica, $a \in \mathbb{R}, \ f: [a, \infty)_x \times Y_y \to \mathbb{R}$ funkcija. Standardni predpostavki:

- Funkcija f za vsak $y \in Y$ zvezna, tj. $x \mapsto f(x,y)$ zvezna na $[a,\infty)$ za vsak $y \in Y$. Za vsak $y \in Y$ obstaja integral $F(y) = \int_{a}^{\infty} f(x,y) dx$

Opomba 2.14. Integral $F(y) = \int_a^\infty f(x,y) dx$ obstaja po definiciji, če obstaja $\lim_{b \to \infty} \int_a^b f(x,y) dx$. Ta limita obstaja natanko tedaj, ko $\lim_{b\to\infty}\int_{b}^{\infty}f(x,y)\,dx=0$, kar je ravno konvergenca po točkah.?

Definicija 2.15. Integral $F(y) = \int_{a}^{\infty} f(x,y) dx$ konvergira enakomerno na Y, če

$$\forall \epsilon > 0 . \exists b_0 \ge a . \forall b \ge b_0 . \forall y \in Y . \left| \int_b^\infty f(x, y) dx \right| < \epsilon.$$

Zgled 2.16. Izračunaj $F(y)=\int_0^\infty ye^{-xy}\,dx$ za $y\in[0,\infty)$. Ali je konvergenca enakomerna na $[c, \infty)$, c > 0? Ali je konvergenca enakomerna na $(0, \infty)$?

Opomba 2.17. Recimo, da $F(y) = \int_a^\infty f(x,y) \, dx$ konvergira enakomerno. Kaj to pomeni? Naj bo $F_b(y) = \int_a^\infty f(x,y) \, dx$. Potem funkcijsko zaporedje $F_b(y)$ konvergira enakomerno. merno proti F(y) na Y.

Trditev 2.18. Recimo, da velja

- $podmnožica Y \subseteq \mathbb{R}^n \ lokalno \ kompaktna;$
- $funkcija \ f:[a,\infty)\times Y\to \mathbb{R} \ zvezna;$
- integral s parametri $F(y) = \int_{a}^{\infty} f(x,y) dx$ konvergira enakomerno na Y.

Tedaj je F zvezna na Y

Dokaz. Enakomerna limita zveznih funkcij.

Opomba 2.19. Zveznost (in odvedljivost) sta lokalni lastnosti (zvezna (oz. odvedljiva) v vsaki točki), tj. f je zvezna na Y, če je zvezna v vsaki točki $y \in Y$ (tudi, če je zvezna v okolici vsake točke $y \in Y$). Zato v prejšnji trditvi je za zveznost F na Y dovolj zahtevati, da je integral lokalno enakomerno konvergira, tj

$$\forall y \in Y . \exists r > 0 . F$$
 enakomerno konvergira na $Y \cap K(y,r)$.

Trditev 2.20 (Test enakomerne konvergence). Recimo, da velja

- 1. $funkcija\ f:[a,\infty)\times Y\to\mathbb{R}\ zvezna\ za\ vsak\ y\in Y;$
- 2. obstaja taka zvezna funkcija $g:[a,\infty)\to\mathbb{R}$, da za vsak $(x,y)\in[a,\infty)\times Y$ velja $|f(x,y)| \le g(x);$
- 3. obstaja integral $\int_{-\infty}^{\infty} g(x) dx$.

Tedaj integral $F(y) = \int_{a}^{\infty} f(x, y) dx$ konvergira enakomerno na Y.

Dokaz. Cauchyjev kriterij za konvergenco integralov.

Zgled 2.21. Obravnavaj lokalno enakomerno konvergenco funkcij

•
$$s \mapsto \int_1^\infty x^{s-1} e^{-x} dx$$
.

•
$$s \mapsto \int_{0}^{1} x^{s-1} e^{-x} dx$$
.

Vpeljava nove spremenljivke $x = t^N$?

Trditev 2.22. Recimo, da velja

1. $funkcija\ f:[a,\infty)_x\times [c,d]_y\to\mathbb{R}\ zvezna;$

2. integral $F(y) = \int_{-\infty}^{\infty} f(x,y) dx$ konvergira enakomerno na [c,d].

Tedaj

$$\int_{c}^{d} \left(\int_{a}^{\infty} f(x, y) \, dx \right) \, dy = \int_{a}^{\infty} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx.$$

Dokaz. Račun.

Kadar je
$$\int_{c}^{\infty} \left(\int_{a}^{\infty} f(x, y) \, dx \right) \, dy = \int_{a}^{\infty} \left(\int_{c}^{\infty} f(x, y) \, dy \right) \, dx?$$

Opomba 2.23. Podobno vprašanje: Kadar je $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$?

Trditev 2.24. Recimo, da velja

1. funkcija $f:[a,\infty)_x\times[c,\infty)_y\to[0,\infty)$ nenegativna in zvezna; 2. integral $F(y)=\int_a^\infty f(x,y)\,dx$ konvergira lokalno enakomerno na $[c,\infty)$ in integral $G(x) = \int_{c}^{\infty} f(x,y) \, dy$ konvergira lokalno enakomerno na $[a,\infty)$ (imamo zveznost F in G).

Tedaj

$$\int_{c}^{\infty} \left(\int_{a}^{\infty} f(x, y) \, dx \right) \, dy = \int_{a}^{\infty} \left(\int_{c}^{\infty} f(x, y) \, dy \right) \, dx.$$

Torej ali sta oba enaka ∞, ali pa sta oba končna in enaka.

Dokaz. Ocenimo navzgor
$$\int_a^b G(x) dx$$
 in $\int_c^d F(y) dy$.

Trditev 2.25. Recimo, da velja

1. funckija $f:[a,\infty)\times[c,\infty)\to\mathbb{R}$ zvezna;

2. integral $F(y) = \int_{a}^{\infty} |f(x,y)| dx$ konvergira lokalno enakomerno na $[c,\infty)$ in integral $G(x) = \int_{-\infty}^{\infty} |f(x,y)| dy$ konvergira lokalno enakomerno na $[a,\infty)$;

3. Ali $\int_{c}^{\infty} \left(\int_{a}^{\infty} |f(x,y)| \, dx \right) \, dy$ končen ali $\int_{a}^{\infty} \left(\int_{c}^{\infty} |f(x,y)| \, dy \right) \, dx$ končen. Tedaj je

$$\int_{c}^{\infty} \left(\int_{a}^{\infty} |f(x,y)| \, dx \right) \, dy = \int_{a}^{\infty} \left(\int_{c}^{\infty} |f(x,y)| \, dy \right) \, dx.$$

Trditev 2.26 (Odvod posplošenega integrala s parametri). Recimo, da velja

1. $funkcija\ f:[a,\infty)\times(c,d)\to\mathbb{R}\ zvezna;$

2. integral
$$F(y) = \int_{a}^{\infty} f(x, y) dx$$
 konvergira na (c, d) ;

- 3. $\forall (x,y) \in [a,b] \times (c,d)$. f parcialno odvedljiva po y; 4. $funkcija \frac{\partial f}{\partial y}(x,y)$ zvezna na $[a,b] \times (c,d)$;
- 5. integral $y \mapsto \int_{-\infty}^{\infty} \frac{\partial f}{\partial y}(x,y) dx$ konvergira lokalno enakomerno na (c,d).

1.
$$F(y) = \int_{a}^{\infty} f(x, y) dx$$
 zvezno odvedljiva funkcija na (c, d) ;

2.
$$F'(y) = \frac{d}{dy} F(y) = \frac{d}{dy} \int_{a}^{\infty} f(x,y) dx = \int_{a}^{\infty} \frac{\partial f}{\partial y}(x,y) dx.$$

Dokaz. TODO

Zgled 2.27. Naj bo
$$0 < c < d$$
. Izračunaj $\int_0^\infty \frac{e^{-cx} - e^{-dx}}{x}$.

Trditev 2.28. Recimo, da velja

- 1. podmnožica $D \subseteq \mathbb{R}^n$ odprta;
- 2. funkcija $f:[a,\infty)\times D\to\mathbb{R}$ zvezna; 3. za vsak $(z,y)\in[a,\infty)\times$ obstajajo $\frac{\partial f}{\partial y_i}$ in so zvezni;

4. za vsak
$$y \in D$$
 obstaja $F(y) = \int_{a}^{\infty} f(x, y) dx$;

5. za vsak $j \in \{1, ..., n\}$ integral $F(y) = \int_a^\infty \frac{\partial f}{\partial y_i} dx$ konvergira lokalno enakomerno

Tedaj je

1.
$$F(y) = \int_{a}^{\infty} f(x,y) dx$$
 zvezno odvedljiva funkcija na D ;

2.
$$F'(y) = \frac{\partial F}{\partial y_j}(y) = \frac{\partial}{\partial y_j} \int_a^\infty f(x,y) \, dx = \int_a^\infty \frac{\partial f}{\partial y_j}(x,y) \, dx \ za \ vse \ j \in \{1,\ldots,n\}.$$

Zgled 2.29. Opazujemo integral $\int_0^\infty \frac{\sin x}{x} dx$. Velja:

- $\frac{2}{\pi} \int_0^\infty \frac{\sin(ax)}{x} dx = \operatorname{sgn}(a).$
- $\frac{\sin x}{x}$ je nihanje z padajočo amplitudo, kar je podobno alternirajoče harmonične vrste.
- Integral $\int_0^\infty \frac{|\sin x|}{x} dx$ ne obstaja.
- $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$. Dokaz TODO

Eulerjeva funkcija gama

Definicija 2.30. Funkcija $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$ je *Eulerjeva funkcija gama*.

Trditev 2.31. Lastnosti Eulerjeve funkcije gama:

- $D_{\Gamma}=(0,\infty)$.
- $\Gamma(s+1) = s\Gamma(s)$. Če je $n \in \mathbb{N}$, potem $\Gamma(n+1) = n!$.
- $\Gamma(1) = 1$.
- $\Gamma \in C((0,\infty))$.
- $\Gamma(s) = \frac{\Gamma(s+1)}{s}$, s > 0. Če je $s \approx 0$, potem $\Gamma(s) \approx \frac{1}{s}$.
- $\Gamma \in C^{\infty}((0,\infty))$.
- $\Gamma(s) > 0$.
- Γ je konveksna funkcija na $(0,\infty)$. Tudi $\ln \Gamma$ konveksna funkcija na $(0,\infty)$.

Dokaz. TODO

Opomba 2.32. O konveksnosti. TODO

Zgled 2.33. Naj bo a > 0. S pomočjo Eulerjeve funkcije gama izračunaj $\int_{a}^{\infty} e^{-ax^2} dx$.

Zgled 2.34. Naj bo $a \in \mathbb{R}$, $\sigma > 0$. S pomočjo prejšnjega zgleda izračunaj $\int_{-\infty}^{\infty} \exp\left(\frac{-(x-a)^2}{2\sigma^2}\right) dx$.

Izrek 2.35. Eulerjeva funkcija Γ je natanko določena z lastnostmi:

- 1. $\Gamma(1) = 1$;
- 2. $\Gamma(s+1) = s\Gamma(s)$;
- 3. $\Gamma(s) > 0$ in Γ je zvezna na $(0, \infty)$;
- 4. $\ln \Gamma$ je konveksna.

Eulerjeva funkcija beta

Definicija 2.36. Funkcija $B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$ je Eulerjeva funkcija beta.

Trditev 2.37. Lastnosti Eulerjeve funkcije beta:

- $D_B = (0, \infty) \times (0, \infty)$.
- B(p,q) = B(q,p). $\frac{1}{2}B(\frac{\alpha+1}{2}, \frac{\beta+1}{2}) = \int_0^{\frac{\pi}{2}} \sin^{\alpha}t \cos^{\beta}t \, dt \, za \, \alpha, \beta > -1$.

Trditev 2.38. $B(p,q) = \int_0^\infty \frac{t^{p-1}}{(1+t)^{p+q}} dt$.

Dokaz. V B(p,q) vpeljamo $t=\frac{x}{1-x}$.

Posledica 2.39. $B(p, 1-p) \int_0^\infty \frac{t^{p-1}}{1+t} dt \ za \ 0$

Posledica 2.40. $B(\frac{1}{2}, \frac{1}{2}) = \pi$.

Dokaz. Račun.

Opomba 2.41. Za $p \in (0,1)$ velja:

$$B(p, 1-p) = \frac{\pi}{\sin(p\pi)}.$$

Izrek 2.42 (Osnovna povezava med B in Γ).

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$$

Dokaz. TODO □

Posledica 2.43. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Dokaz. Račun z pomočjo osnovne povezave med B in Γ .

Primer 2.44. Izračunaj $\Gamma(\frac{7}{2})$.

Primer 2.45. S pomočjo Eulerjeve funkcije beta izračunaj $\int_0^{\frac{\pi}{2}} \sin^8 x \cos^6 x \, dx$.

Izrek 2.46 (Stirlingova formula).

$$\lim_{s \to \infty} \frac{\Gamma(s+1)}{s^s e^{-s} \sqrt{2\pi s}} = 1.$$

Posledica 2.47.
$$\lim_{n \to \infty} \frac{n!}{n^n e^{-n} \sqrt{2\pi n}} = 1$$
, tj. $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$.

Primer 2.48. Izračunaj $\lim_{n\to\infty} \frac{(2n)!}{n! \, n^n \, 2^n}$.

3 Riemannov integral v \mathbb{R}^n

Definicija 3.1. *Kvader* [a, b] je množica $[a, b] = \{x = (x_1, \dots, x_n) \mid a_j \le x_j \le b_j, \ j = 1, \dots, n\}$ za $a \le b$.

Prostornina kvadra je $V([a,b]) = \prod_{j=1}^{n} (b_j - a_j)$.

Definicija 3.2. Delitev D kvadra K = [a, b] dobimo z delitvami robov kvadra K:

$$\forall j \in \{1, \dots, n\} \ . \ a_j = x_o^j < x_1^j < \dots < x_{m_j}^j = b_j.$$

Opomba 3.3. Delitev D je dana z delitvami robov. Lahko rečemo, da je delitev D sestavljena iz manjših kvadrov, ki jo delitev robov porodi in pišemo $\sum_{Q \in D}$, tj. gremo po vseh kvadrih delitve D.

Definicija 3.4. Delitev D' kvadra K je finejša od delitve D, če vsebuje vse delilne točke delitve D.

Opomba 3.5.

- Če je D delitev K, potem $\sum_{Q \in D} V(Q) = V(K)$.
- Če je D' finejša od D, potem
 - Vsak kvader iz D^\prime leži v enem od kvadrov iz D.
 - Vsak kvader iz D je unija kvadrov iz D'.

Naj bo $f:K=[a,b]\subseteq\mathbb{R}^n\to\mathbb{R}$ omejena funkcija. Definiramo

$$m = m(f) = m(f, K) = m(K) = \inf_{K} f(x)$$

 $M = M(f) = M(f, K) = M(K) = \sup_{K} f(x)$

Naj bo D delitev kvadra K. Naj bo $Q \in D$ (nek manjši kvader). Definiramo

$$m(f,Q) = m(Q) = \inf_{Q} f(x)$$
$$M(f,Q) = M(Q) = \sup_{Q} f(x)$$

Definicija 3.6. Spodnja Darbouxoeva vsota funkcije f pri delitvni D je

$$s(f,D) = s(D) = \sum_{Q \in D} m(Q) V(Q).$$

 $Zgornja\ Darbouxoeva\ vsota$ funkcije f pri delitvni D je

$$S(f,D) = S(D) = \sum_{Q \in D} M(Q)V(Q).$$

Opomba 3.7. Velja: $m(K)V(Q) \le s(f, D) \le S(f, D) \le M(K)V(K)$.

Lema 3.8. Naj bo delitev D' finejša od delitve D. Tedaj

$$s(f, D) < s(f, D') < S(f, D') < S(f, D).$$

Posledica 3.9. Naj bosta D_1, D_2 delitvi kvadra K. Tedaj

$$s(f, D) \le S(f, D).$$

Ker za poljubni delitvi D_1,D_2 velja $s(f,D) \leq S(f,D).$ Lahko Definiramo

$$s(f) = \sup_{D} s(f, D)$$

$$S(f) = \inf_{D} S(f, d)$$

Velja: $s(f) \leq S(f)$.

Definicija 3.10. Funkcija f je na kvadru K integrabilna po Darbouxju, če

$$s(f) = S(f).$$

Opomba 3.11. Če velja enakost, to vrednost trenutno iznačimo z I_D . Sicer to označimo $\int_K f(x)\,dx = \int_K f(x)\,dV(K)$.

Primer 3.12.

 $n=2:\int\int_K f(x,y)dxdy$ je dvojni integral.

 $n=3:\int\int\int_K f(x,y,z)dxdydz$ je trojni integral.

3.1 Riemannov integral

Definicija 3.13. Naj bo K = [a, b] kvader, D delitev, $f : K \to \mathbb{R}$ funkcija. Za vsak $Q \in D$ izberimo neko točko $\eta_Q \in Q$. Riemannova vsota funkcije f pri delitvi D in izboru točk $\eta = \{\eta_Q \in Q\}$ je

$$R(f, D, \eta) = \sum_{Q \in D} f(\eta_Q) V(Q).$$

Označimo z $\Delta(D)$ maksimum vseh dolžin vseh tobov kvadrov delitve D.

Definicija 3.14. Funkcija f je integrabilna po Riemannu na kvadru K, če obstaja limita njenih Riemannovih vsot, tj.

$$\lim_{\Delta(D)\to 0} R(f, D, \eta) = I_R.$$

Opomba 3.15. To pomeni, da

$$\forall \epsilon > 0 \,.\, \exists \delta > 0 \,.\, \forall D^{\text{delitev}} \,.\, \Delta(D) < \delta \implies \forall \eta^{\text{izbor točk}} \,.\, |R(f,D,\eta)| < \epsilon.$$

Zgled 3.16. TODO

Opomba 3.17. Če ima funkcija $f: K \to \mathbb{R}$ limito Riemannovih vsot, je f omejena.

Lema 3.18. Naj bo D_0 delitev kvadra K. Naj bo $\epsilon > 0$. Potem obstaja tak $\delta > 0$, da za vsako delitev D, za katero je $\Delta(D) < \delta$, velja, da je vsota prostornin kvadrov delitve D, ki niso vsebovani v kakšnem od kvadrov delitve D_0 manja od ϵ .

Izrek 3.19. Naj bo $f: K \to \mathbb{R}$ omejena funkcija. NTSE:

- 1. f je na K integrabilna po Darbouxju.
- 2. f je na K integrabilna po Riemannu.
- 3. $\forall \epsilon > 0$. $\exists D^{delitev}$. $S(f, D) s(f, D) < \epsilon$.

Dodatek. V tem primeru je $I_D = I_R$.

Trditev 3.20. Naj bo $f: K \to \mathbb{R}$ zvezna, potem je f na K integrabilna.

$$Dokaz.$$
 TODO:

3.2 Osnovne lastnosti Riemannova integrala po kvadrih

Naj bo $K \subseteq \mathbb{R}^n$ kvader, funkciji f, g integrabilni na K.

1. Naj bosta $\lambda, \mu \in \mathbb{R}$. Tedaj je tudi

$$\lambda f + \mu g$$

integrabilna na K in

$$\int_{K} (\lambda f + \mu g)(x) dx = \lambda \int_{K} f(x) dx + \mu \int_{K} g(x) dx.$$

Torej množica integrabilnih funkcij na K je vektorski prostor nad $\mathbb R$ in integral je linearen funkcional na tem prostoru.

Dokaz. TODO: □

2. Če je $f(x) \leq g(x)$ za vse $x \in K,$ je

$$\int_K f(x) \, dx \le \int_K g(x) \, dx.$$

Dokaz. TODO: □

3. Funkcija |f| je integrabilna in

$$\left| \int_{K} f(x) \, dx \right| \le \int_{K} |f(x)| \, dx.$$

Dokaz. TODO:

3.3 Fubinijev izrek

I. Naj bo $A\subseteq\mathbb{R}^n$ kvader in $B\subseteq\mathbb{R}^m$ kvader. Naj bo $f:A\times B\subseteq\mathbb{R}^{n+m}\to\mathbb{R}$ integrabilna. Naj bo za vsak $x\in A$ funkcija $y\mapsto f(x,y)$ integrabilna na B. Potem je funkcija

$$x \mapsto \int_B f(x, y) \, dy$$

integrabilna na A in velja:

$$\int \int_{A \times B} f(x, y) \, dx dy = \int_{A} \left(\int_{B} f(x, y) \, dy \right) \, dx.$$

II. Naj bo $A\subseteq\mathbb{R}^n$ kvader in $B\subseteq\mathbb{R}^m$ kvader. Naj bo $f:A\times B\subseteq\mathbb{R}^{n+m}\to\mathbb{R}$ integrabilna. Naj bo za vsak $y\in B$ funkcija $x\mapsto f(x,y)$ integrabilna na A. Potem je funkcija

$$y \mapsto \int_A f(x,y) \, dy$$

integrabilna na B in velja:

$$\int \int_{A \times B} f(x, y) \, dx dy = \int_{B} \left(\int_{A} f(x, y) \, dx \right) \, dy.$$

Posledica 3.21. Če je f zvezna na $A \times B$, potem

$$\int \int_{A \times B} f(x, y) \, dx dy = \int_{A} \left(\int_{B} f(x, y) \, dy \right) \, dx = \int_{B} \left(\int_{A} f(x, y) \, dx \right) \, dy.$$

Posledica 3.22. Naj bo $f:[a,b]\times [c,d]\to \mathbb{R}$ zvezna. Tedaj

$$\int \int_{[a,b]\times[c,d]} f(x,y) \, dx dy = \int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy.$$

Posledica 3.23. Naj bo $f: K = [a, b] \times [c, d] \times [g, h] \rightarrow \mathbb{R}$ zvezna. Tedaj

$$\int \int \int_K f(x,y) \, dx dy = \int_g^h \left(\int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy \right) \, dz = \check{s}e \, \, 5 \, \, drugih \, \, vrstnih \, \, redov.$$

Zgled 3.24. TODO:

3.4 Riemannov integral na omejenih množicah

Naj bo podmnožica $A\subseteq\mathbb{R}^n$ omejena, $f:A\to\mathbb{R}$ omejena funkcija. Kako bi lahko definirali $\int_A f(x)\,dx$? Kaj bi bila prostornina V(A) množice A?

Ker je A omejena obstaja kvader K, da je $A \subseteq K$. Definiramo funkcijo $\widetilde{f}(x) = \begin{cases} f(x); & x \in A \\ 0; & x \notin A \end{cases}$.

Definicija 3.25. Omejena funkcija f na A je integrabilna na omejeni množici A, če je \widetilde{f} integrabilna na kvadru K, kjer je $A\subseteq K$. Tedaj

$$\int_{A} f(x) \, dx = \int_{K} \widetilde{f}(x) \, dx.$$

Opomba 3.26. Dobra definiranost. TODO:

Opomba 3.27. Kaj če je K že kvader? TODO:

Zgled 3.28. TODO:

Trditev 3.29. Naj bo $A \subseteq \mathbb{R}^n$ omejena podmnožica. Naj bosta $f, g : A \to \mathbb{R}$ integrabilni na A in naj bosta $\lambda, \mu \in \mathbb{R}$. Teda je

$$\lambda f + \mu q$$

integrabilna na A in

$$\int_{A} (\lambda f + \mu g)(x) dx = \lambda \int_{A} f(x) dx + \mu \int_{A} g(x) dx.$$

Dokaz. TODO:

Opomba 3.30. Množica integrabilnih na A funkcij tvori vektroski prostor nad R in integral je linearen funkcional na tem prostoru.

3.4.1 Prostornina omejene množice

Definiramo karakteristično funkcijo množice A:

$$\chi_A(x) = \begin{cases} 1; & x \in A \\ 0; & x \notin A \end{cases}.$$

Definicija 3.31. Omejena množica $A\subseteq\mathbb{R}^n$ ima prostornino, če je funkcija $x\mapsto 1$ integrabilna na A. Tedaj

$$V(A) = \int_A 1 dx.$$

Opomba 3.32. To je Jordanova prostornina množice.

Opomba 3.33.
$$V(A) = \int_A 1 \, dx = \int_K \chi_A(x) \, dx.$$

Opomba 3.34. Če ima A prostornino, so vse konstantne funkcije integrabilne na A:

$$\int_{A} \lambda \, dx = \lambda V(A).$$

Zgled 3.35. Ali $A = [0,1]^2 \cap \mathbb{Q}$ ima prostornino?

Trditev 3.36. Omejena množica $Q \subseteq \mathbb{R}^n$ ima prostornino natanko tedaj, ko $V(\partial A) = 0$.

3.5 Lastnosti omejenih množic s prostornino 0