WO 2005/080423

1/22

SEQUENCE LISTING

<110	>	Orga	nisa	tion	1		fic Deve						arch		
<120	>	Anti	fung	al p	epti	.des									
<130	>	5016	92												
<150 <151		AU 2 2004	0049		8										
<160	>	62													
<170	>	Pate	ntIn	ver	sion	3.3	}								
<210: <211: <212: <213:	> >	1 64 PRT Gall	eria	mel	lone	lla								٠	
<400	>	1													
Met 1	Lys	Phe	Thr	Gly 5	Ile	Phe	Phe	Ile	11e 10	Met	Ala	Ile	Ile	Ala 15	Le
Phe :	Ile	Gly	Ser 20	Asn	Glu	Ala	Ala	Pro 25	Lys	Val	Asn	Val	Asn 30	Ala	Ile
Lys 1	Lys	Gly 35	Gly	Lys	Ala	Ile	Gly 40	Lys	Gly	Phe	Lys	Val 45	Ile	Ser	Ala
Ala s	Ser 50	Thr	Ala	His	Asp	Val 55	Tyr	Glu	His	Ile	Lys 60	Asn	Arg	Arg	His
<2102 <2112 <2122 <2132	> >	2 64 PRT Galle	eria	mel:	lone:	lla									
<400>	> :	2													
Met A	Asn	Phe	Thr	Gly 5	Ile	Phe	Phe	Met	Ile 10	Met	Ala	Ile	Ile	Ala 15	Leu
Phe I	[le	Gly	Ser 20	Asn	Glu	Ala	Ala	Pro 25	Lys	Val	Asn	Val	Asn 30	Ala	Ile
Lys I	ъ́уѕ	Gly 35	Gly	Lys	Ala	Ile	Gly 40	Lys	Gly	Phe	Lys	Val 45	Île	Ser	Ala
Ala S	er 50	Thr	Ala	His	Asp	Val 55	Tyr	Glu	His	Ile	Lys 60	Asn	Arg	Arg	His

<210> 3 <211> 68 <212> PRT <213> Galleria mellonella

<400> 3

Met Arg Leu Ser Ile Ile Leu Val Val Met Met Val Met Ala Met

Phe Val Ser Ser Gly Asp Ala Ala Pro Gly Lys Ile Pro Val Lys Ala 25

Ile Lys Lys Gly Gly Gln Ile Ile Gly Lys Ala Leu Arg Gly Ile Asn

Ile Ala Ser Thr Ala His Asp Ile Ile Ser Gln Phe Lys Pro Lys Lys 50 55

Lys Lys Asn His 65

<210> 4 <211> 39 <212> PRT <213> Galleria mellonella

<400> 4

Lys Val Asn Val Asn Ala Ile Lys Lys Gly Gly Lys Ala Ile Gly Lys 1 5 10 15

Gly Phe Lys Val Ile Ser Ala Ala Ser Thr Ala His Asp Val Tyr Glu

His Ile Lys Asn Arg Arg His 35

<210> 5

<211> 33 <212> PRT

<213> Galleria mellonella

Gly Gly Gln Ile Ile Gly Lys Ala Leu Arg Gly Ile Asn Ile Ala Ser

Thr Ala His Asp Ile Ile Ser Gln Phe Lys Pro Lys Lys Lys Asn 25 20

His

<210> <211> <212> <213>	6 342 DNA Gall	leria mello	nella				
<400>	6						
	gtaa	catctttatt	agttatcgta	aaataacaga	ttgtagaaat	gaagtttaca	60
ggaatat	tct	tcataattat	ggcgatcatt	gccctcttta	tagggtcaaa	tgaagcggcg	120
cctaaaç	gtca	atgttaatgc	cattaagaag	ggaggaaagg	ccataggaaa	aggatttaaa	180
gtaatca	agtg	cggcgagtac	agcgcatgac	gtctatgaac	acattaaaaa	cagaaggcac	240
taataaa	acc	aaaaataatt	atttatttta	taaggtaatt	ttaagacata	taatgtatgt	300
tgcaaat	tat	taagtgaaat	aaaatataaa	atatttttg	tt		342
<210> <211> <212> <213>	7 349 DNA Gall	eria mellor	nella				
<400> gctttgt	7 cta	cgggtaacat	ctttattagt	tatcgtaaaa	taacagattg	tagaaatgaa	60
ttttaca	agga	atattcttca	tgattatggc	gatcattgcc	ctctttatag	ggtcaaatga	120
agcggcg	gcct	aaagtcaatg	ttaatgccat	taagaaggga	ggaaaggcca	taggaaaagg	180
atttaaa	agta	atcagtgcgg	cgagtacagc	gcatgacgtc	tatgaacaca	ttaaaaacag	240
aaggcac	ctaa	tagaaccaaa	aataatcatt	tattttataa	ggtaatttta	agacatataa	300
tgaatgt	tgc	aaattattaa	gtggaataaa	atataaaata	ttttttgtt		349
<210> <211> <212> <213>	8 420 DNA Gall	eria mellon	nella				
<400> gttattt	8 ttt	aaagatcaaa	gcgtaattaa	ttcattgtgc	tgtgtctgaa	aggaacaaaa	60
					ggctatgttt		120
gagatgo	ggc	gcctggaaaa	attcctgtga	aagcgattaa	aaaaggaggg	caaattattg	180
					tgacataatt		240
					atcgttcaat		300
ataataa	ataa	taaattttac	ttatattact	ataatataat	taatatttt	aattgtgcca	360

ttttagtttt	ataaattata	ttaagtatta	attttataat	taataaaaaa	gcttaaatat	420
<210> 9 <211> 192 <212> DNA <213> Gal	leria mello	nella				
<400> 9						
atgaagttta	caggaatatt	cttcataatt	atggcgatca	ttgccctctt	tatagggtca	60
aatgaagcgg	cgcctaaagt	caatgttaat	gccattaaga	agggaggaaa	ggccatagga	120
aaaggattta	aagtaatcag	tgcggcgagt	acagcgcatg	acgtctatga	acacattaaa	180
aacagaaggc	ac					192
<210> 10 <211> 192 <212> DNA <213> Gal	leria mello	nella			·	
<400> 10			•			
	caggaatatt	cttcatgatt	atggcgatca	ttgccctctt	tatagggtca	60
aatgaagcgg	cgcctaaagt	caatgttaat	gccattaaga	agggaggaaa	ggccatagga	120
aaaggattta	aagtaatcag	tgcggcgagt	acagcgcatg	acgtctatga	acacattaaa	180
aacagaaggc	ac					192
<210> 11 <211> 204 <212> DNA <213> Gal	leria mellon	nella				
<400> 11	ccataatatt	aatcattata	atgatggtga	taactatatt	tataaacaat	60
ggagatgcgg	cgcctggaaa	aattcctgtg	aaagcgatta	aaaaaggagg	gcaaattatt	120
ggtaaagctc	tgcgtggaat	caatatagcg	agtactgcac	atgacataat	tagccagttc	180
aaaccgaaaa	agaagaaaaa	ccat				204
<210> 12 <211> 117 <212> DNA <213> Gall	leria mellor	nella				
<400> 12 aaagtcaatg	ttaatgccat	taagaaggga	ggaaaggcca	taggaaaagg	atttaaagta	60
atcagtgcgg	cgagtacagc	gcatgacgtc	tatgaacaca	ttaaaaacag	aaggcac	117

<210> 13

<211> 99 <212> DNA

<213> Galleria mellonella

<400> 13

ggagggcaaa ttattggtaa agctctgcgt ggaatcaata tagcgagtac tgcacatgac

ataattagcc agttcaaacc gaaaaagaag aaaaaccat

99

60

<210> 14

<211> 67 <212> PRT

<213> Spodoptera litura

<400> 14

Met Lys Leu Thr Lys Val Phe Val Ile Leu Ile Val Val Ala Leu

Leu Val Pro Ser Glu Ala Ala Pro Gly Lys Ile Pro Val Lys Ala Ile 20 25

Lys Lys Ala Gly Ala Ala Ile Gly Lys Gly Leu Arg Ala Ile Asn Ile 35

Ala Ser Thr Ala His Asp Val Tyr Ser Phe Phe Lys Pro Lys His Lys 55

Lys Lys His

<210> 15 <211> 67

<212> PRT

<213> Manduca sexta

<400> 15

Met Lys Leu Thr Ser Leu Phe Ile Phe Val Ile Val Ala Leu Ser Leu

Leu Phe Ser Ser Thr Asp Ala Ala Pro Gly Lys Ile Pro Val Lys Ala

Ile Lys Gln Ala Gly Lys Val Ile Gly Lys Gly Leu Arg Ala Ile Asn 35

Ile Ala Gly Thr Thr His Asp Val Val Ser Phe Phe Arg Pro Lys Lys 50 55 60

Lys Lys His 65

<210> 16

<211> 66

<212> PRT <213> Bombyx mori

<400> 16

Met Asn Ile Leu Lys Phe Phe Phe Val Phe Ile Val Ala Met Ser Leu

Val Ser Cys Ser Thr Ala Ala Pro Ala Lys Ile Pro Ile Lys Ala Ile 20

Lys Thr Val Gly Lys Ala Val Gly Lys Gly Leu Arg Ala Ile Asn Ile 35

Ala Ser Thr Ala Asn Asp Val Phe Asn Phe Leu Lys Pro Lys Lys Arg

Lys His 65

<210> 17

<211> 41 <212> PRT <213> Heliothis virescens

Gly Lys Ile Pro Ile Gly Ala Ile Lys Lys Ala Gly Lys Ala Ile Gly 5

Lys Gly Leu Arg Ala Val Asn Ile Ala Ser Thr Ala His Asp Val Tyr

Thr Phe Phe Lys Pro Lys Lys Arg His 40

<210> 18

<211> 66

<212> PRT

<213> Bombyx mori

<400> 18

Met Tyr Phe Leu Lys Tyr Phe Ile Val Val Leu Val Ala Leu Ser Leu 5

Met Ile Cys Ser Gly Gln Ala Asp Pro Lys Ile Pro Val Lys Ser Leu

Lys Lys Gly Gly Lys Val Ile Ala Lys Gly Phe Lys Val Leu Thr Ala

Ala Gly Thr Ala His Glu Val Tyr Ser His Val Arg Asn Arg Gly Asn

Gln Gly 65

<210> 19

<211> 32

<212> PRT

<213> Galleria mellonella

<400> 19

Lys Val Asn Val Asn Ala Ile Lys Lys Gly Gly Lys Ala Ile Gly Lys

Gly Phe Lys Val Ile Ser Ala Ala Ser Thr Ala His Asp Val Tyr Glu 25

<210> 20

<211> 28 <212> PRT

<213> Galleria mellonella

<400> 20

Gly Gly Gln Ile Ile Gly Lys Ala Leu Arg Gly Ile Asn Ile Ala Ser

Thr Ala His Asp Ile Ile Ser Gln Phe Lys Pro Lys

<210> 21

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer

<220>

<221> misc_feature

<222> (6) . . (6)

<223> N = inosine

23

21

```
<220>
<221> misc_feature
<222> (12) ... (12)
\langle 223 \rangle N = inosine
<400> 21
aaygtnaayg cnathaaraa rgg
<210> 22
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<220>
<221> misc feature
<222> (7)..(7)
<223> N = inosine
<220>
<221> misc_feature <222> (16)..(16)
<223> N = inosine
<220>
<221> misc_feature
<222> (19)..(19)
<223> N = A, C, G or T
<400> 22
ytcrtanacr gcrtgngcnt g
<210> 23
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide primer
<220>
<221> misc_feature
<222> (3)..(3)
<223> N = inosine
<220>
<221> misc_feature
<222> (6)..(6)
<223> N = inosine
<220>
<221> misc_feature
<222> (18)..(18)
\langle 223 \rangle N = inosine
```

<400> 23 ggnggncara thathggnaa rgc 23 <210> 24 <211> 23 . <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <220> <221> misc_feature <222> (3)..(3) <222> (3)...(3) <223> N = inosine <220> <221> misc_feature <222> (5)..(5) <223> N = inosine <220> <221> misc_feature <222> (18)..(18) $\langle 223 \rangle$ N = inosine <220> <221> misc_feature <222> (21)..(21) <223> N = A. C. G or T <400> 24 tgnsndatda trtcrtgngc ngt 23 <210> 25 <211> 22 <212> DNA <213> Artificial Sequence 1 <220> <223> Oligonucleotide primer <400> 25 gaggaaaggc cataggaaaa gg 22 <210> 26 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide primer <400> 26 18 actcgccgca ctgattac

WO 2005/080423 PCT/AU2005/000234 10/22

<210> <211> <212> <213>	27 18 DNA Artificial Sequence	
<220> <223>	Oligonucleotide primer	
<400> gggggg	27 caga tcattggg	18
<210><211><212><212><213>		
<220> <223>	Oligonucleotide primer	
<400> ttatgto	28 catg ggccgtact	19
<210><211><212><212><213>	29 337 DNA Galleria mellonella	
<400> ggtaaca	29 atct ttattagtta togtaaaata acagattgta gaaatgaagt ttacaggaat	60
attcttc	cata attatggcga tcattgccct ctttataggg tcaaatgaag cggcgcctaa	120
agtcaat	tgtt aatgccatta agaagggagg aaaggccata ggaaaaggat ttaaagtaat	180
cagtgc	ggcg agtacagcgc atgacgtcta tgaacacatt aaaaacagaa ggcactaata	240
aaaccaa	aaaa taattattta ttttataagg taattttaag acatataatg tatgttgcaa	300
attatta	aagt gaaataaaat ataaaatatt ttttgtt	337
<210> <211> <212> <213>	30 32 PRT Galleria mellonella	
<400>	30	
Lys Val	l Pro Ile Gly Ala Ile Lys Lys Gly Gly Lys Ile Ile Lys Lys 5 10 15	
Gly Let	u Gly Val Ile Gly Ala Ala Gly Thr Ala His Glu Val Tyr Ser 20 25 30	
<210> <211> <212> <213>	31 20 DNA Artificial Sequence	

<220>

<223> Oligonucleotide sequence

<220>

<221> misc_feature

 $\langle 222 \rangle$ (3)..(3) $\langle 223 \rangle$ N = A, C, G or T

<220>

<221> misc_feature

<222> (9)..(9)

<223> N = inosine

<220>

<221> misc_feature <222> (12)..(12)

 $\langle 223 \rangle$ N = inosine

<220>

<221> misc_feature

 $\langle 222 \rangle$ (18)...(18) $\langle 223 \rangle$ N = A, C, G or T

<400> 31

ccnaargtnc cnathggngc

20

<210> 32

<211> 20 <212> DNA <213> Artificial Sequence

<220>

<223> Oligonucleotide Primer

<220>

<221> misc_feature <222> (3)..(3)

<223> N = A, C, G or T

<220>

<221> misc_feature

<222> (12)..(12) <223> N = inosine

<220>

<221> misc_feature

<222> (18)..(18)

 $\langle 223 \rangle$ N = A, C, G or T

<400> 32

tanacttcrt gngcdgtncc

20

<210> 33

<211> 20

<212> DNA

<213> Artificial Sequence

<220>		
	Oligonucleotide Primer	
<400>	33	
		20
aggici	ttggt gtaattggtg	20
	•	
<210>		
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Sequence	
	2	
<400>	/ 34	
	accaa ttacaccaag	20
gcagca	accaa ccaccaay	20
1010	25	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
•		
<220>		
<223>	Oligonucleotide Sequence	
<400>	35	
	agggt ctaggtgtgc	20
••		
<210>	36	
<211>		
<212>	•	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Sequence	
<400>	36	
gegge	gccaa gcacacctag	20
	• • • • • • •	
<210>	37	
<211>		
<211>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Primer	
<400>		
cttcaa	atott agtgaaaact togo	24
<210>	38	
<211>		
<211>		
<213>	Artificial Sequence	

WO 2005/080423 PCT/AU2005/000234

<220> <223>	Oligonucleotide Primer	
<400>	38	
	tact tcataattat atac	24
<210>	39	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Sequence	
	•	
<400>		
gttgca	ggac ttaatactta gtg	23
<210>	40	
<211>	25	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Sequence	
<400>	40	
	ttta ctaataagta tgtgg	25
gagtat	cca ccaacaayta cycyy	23
<210>		
<211>	35	
<212> <213>	•	
\213 /	Artificial Sequence	
<220>		
<223>	Oligonucleotide Primer	
<400>	41	
	aaca atgaagttta caggaatatt cttca	35
<210>	42	
<211>	39	•
<212>	DNA	
<213>	Artificial Sequence	
.000		
<220>	Oli-sensite Primer	
<223>	Oligonucleotide Primer	
<400>	42	
tctaga	ttag tgccttctgt ttttaatgtg ttcatagac	39
<210>	43	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	

<220> <223>	Oligonucleotide Primer	
<400>	43	
cgccag	agga cccctaaac	19
<210>	44	
<211> <212>	21 DNA	
<213>		
<220>		
<223>	Oligonucleotide Primer	
	•	
<400>	44 gcca gaaccaagag a	21
accyac	geea gaaccaagag a	21
-210 >		
<210> <211>	•	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Primer	
<400>	45	
	gaga tgccaccatg aagtttacag gaatattett ca	42
<210>	46	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide Primer	
<400>	46	
ttagtg	cctt ctgtttttaa tgtgttcata gac	33
<210>	47	
<211>	63 DD#	
<212> <213>	PRT Galleria mellonella	
<400>	47	
Met Lys	s Leu Thr Gly Leu Phe Phe Met Ile Met Ala Met Leu Ala Leu	
1	5 10 15	
Phe Val	l Gly Ala Gly Gln Ala Asp Pro Lys Val Pro Ile Gly Ala Ile	
	20 25 30	
Lys Lys	Gly Gly Lys Ile Ile Lys Lys Gly Leu Gly Val Ile Gly Ala	
	35 40 45	

·	
Ala Gly Thr Ala His Glu Val Tyr Ser His Val Lys Asn Arg His 50 55 60	
<210> 48 <211> 38 <212> PRT <213> Galleria mellonella	
<400> 48	
Lys Val Pro Ile Gly Ala Ile Lys Lys Gly Gly Lys Ile Ile Lys Lys 1 5 10 15	
Gly Leu Gly Val Ile Gly Ala Ala Gly Thr Ala His Glu Val Tyr Ser 20 25 30	
His Val Lys Asn Arg His 35	
<210> 49 <211> 375 <212> DNA <213> Galleria mellonella	
<400> 49 qtaacaqtac caccqtgtac agtcgcagta gttagtcttc aatcttagtg aaaacttcgc	60
ttototttat caaccatgaa gotgacoggt otatttttca tgatcatggo gatgotogoo	120
ctgtttgttg gcgctggtca agccgaccet aaggtgccca ttggcgccat caagaagggt	180
ggcaaaatta ttaaaaaagg tcttggtgta attggtgccg ctggtacagc gcatgaagta	240
tatagccacg tcaagaacag gcattagatt cttgaagaat atatagtata taattatgaa	300
gtactatcct tttgtatatg tgactaagtg cataatgtaa agtcaaatga aatatatatt	360
atttatcctc gtgcc	375
<210> 50 <211> 192 <212> DNA <213> Galleria mellonella	`
<400> 50 atgaagetga eeggtetatt ttteatgate atggegatge tegecetgtt tgttggeget	60
ggtcaagccg accctaaggt gcccattggc gccatcaaga agggtggcaa aattattaaa	120
aaaggtettg gtgtaattgg tgeegetggt acagegeatg aagtatatag ceaegteaag	180
aacaggcatt ag	192
200037 03	

<210> 51 <211> 117 <212> DNA <213> Galleria mellonella

<400> 51

aaggtgccca ttggcgccat caagaagggt ggcaaaatta ttaaaaaagg tcttggtgta 60

attggtgccg ctggtacagc gcatgaagta tatagccacg tcaagaacag gcattag

117

60

<210> 52

<211> 63

<212> PRT

<213> Galleria mellonella

<400> 52

Met Lys Leu Thr Gly Leu Phe Leu Met Ile Met Ala Val Leu Ala Leu 10

Phe Val Gly Ala Gly Gln Ala Asp Pro Lys Val Pro Ile Gly Ala Ile

Lys Lys Gly Gly Lys Ile Ile Lys Lys Gly Leu Gly Val Leu Gly Ala

Ala Gly Thr Ala His Glu Val Tyr Asn His Val Arg Asn Arg Gln

<210> 53

<211> 38

<212> PRT

<213> Galleria mellonella

<400> 53

Lys Val Pro Ile Gly Ala Ile Lys Lys Gly Gly Lys Ile Ile Lys Lys

Gly Leu Gly Val Leu Gly Ala Ala Gly Thr Ala His Glu Val Tyr Asn 20 25

His Val Arg Asn Arg Gln 35

<210> 54

<211> 462

<212> DNA

<213> Galleria mellonella

<400> 54

acttcattgt gtacagttgc aggacttaat acttagtgaa ctacttactc ctcgttacca

accatgaagc	tgaccggtct atttctcatg atcatggc	gg tgctcgcgct gtttgttggc	120
gctggtcaag	ccgaccctaa ggtgcccatt ggcgctat	ca agaagggcgg caaaattatt	180
aaaaagggtc	taggtgtgct tggcgccgcg ggcacagc	gc acgaagtgta caaccacgtt	240
aggaacaggc	agtaacgtca tgcgtgattg ttgtacat	ac agtacttaca atacgatttg	300
tcttggctgt	gatatatett tagataaatt aatttata	at accacatact tattagtaaa	360
atactcaaat	atattgatta tagatacatt aataaata	tt aattattaca atattttgtt	420
tttatgtaca	atgcgaatag attctaccct ctgcctcg	tg cc	462
	leria mellonella		
<400> 55 atgaagctga	ccggtctatt tctcatgatc atggcggt	ge tegegetgtt tgttggeget	60
ggtcaagccg	accetaaggt geecattgge getateaa	ga agggcggcaa aattattaaa	120
aagggtctag	gtgtgcttgg cgccgcggc acagcgca	cg aagtgtacaa ccacgttagg	180
aacaggcagt	aa .		192
<210> 56 <211> 117 <212> DNA <213> Gall <400> 56	leria mellonella		
	ttggcgctat caagaagggc ggcaaaat	ta ttaaaaaggg tctaggtgtg	60
cttggcgccg	cgggcacagc gcacgaagtg tacaacca	cg ttaggaacag gcagtaa	117
	doptera exigua		
<400> 57			
Met Lys Leu 1	Thr Lys Val Phe Val Ile Val II	le Val Val Ala Leu 15	
Leu Val Pro	Ser Glu Ala Ala Pro Gly Lys I 20 25	le Pro Val Lys Ala Ile 30	

Lys Lys Ala Gly Thr Ala Ile Gly Lys Gly Leu Arg Ala Ile Asn Ile 35 40 45

Ala Ser Thr Ala His Asp Val Tyr Ser Phe Phe Lys Pro Lys His Lys

Lys Lys His 65

<210> 58

<211> 54 <212> PRT <213> Hyblaea puera

<400> 58

Ala Met Ser Leu Val Ser Cys Ser Thr Ala Ala Pro Ala Lys Ile Pro

Ile Lys Ala Ile Lys Thr Val Gly Lys Ala Val Gly Lys Gly Leu Arg 25

Ala Ile Asn Ile Ala Ser Thr Ala Asn Asp Val Phe Asn Phe Leu Lys 40

Pro Lys Lys Arg Lys His 50

<210> 59

<211> 41 <212> PRT <213> Caligo illioneus

Gly Lys Ile Pro Ile Asn Ala Ile Arg Lys Gly Ala Lys Ala Val Gly

His Gly Leu Arg Ala Leu Asn Ile Ala Ser Thr Ala His Asp Ile Ala

Ser Ala Phe His Arg Lys Arg Lys His

<210> 60

<211> 37

<212> PRT

<213> Caligo illioneus

<400> 60

Arg Lys Ile Pro Val Glu Ala Ile Lys Lys Gly Ala Ser Arg Ala Trp 10 5

Arg Ala Leu Asp Leu Ala Ser Thr Ala Tyr Asp Ile Ala Ser Ile Phe 20 25

Asn Arg Lys Arg Glu. 35

<210> 61

<211> 40

<212> PRT

<213> Caligo illioneus

<400> 61

Gly Lys Ile Pro Val Glu Ala Leu Lys Lys Gly Ala Lys Val Ala Gly 10

Arg Ala Trp Arg Ala Leu Asp Leu Ala Ser Thr Ala Tyr Asp Ile Ala 20 25 30

His Leu Phe Asp Arg Lys Arg Asn

<210> 62

<211> 43

<212> PRT

<213> Artificial Sequence

<220>

<223> Consensus sequence for Galleria peptides

<220>

<221> MISC_FEATURE

<222> (1)..(1)

<223> Xaa = GLY, PRO, ALA or ABSENT, or more preferably GLY or ABSENT

<220>

<221> MISC FEATURE

<222> (3)..(3)

<223> Xaa = ILE, VAL, ALA, LEU, MET or PHE, or more preferably ILE or

<220>

<221> MISC_FEATURE

<222> (4)...(4) <223> (4) (4) (4) <223> (4) (4

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Xaa = ILE, VAL, ALA, LEU, MET or PHE, or more preferably ILE or VAL

<220>

<221> MISC_FEATURE

<222> (6)..(6)

<223> Xaa = LYS, ARG, GLY, PRO, ALA, ASN, GLN or HIS, or more preferably LYS, GLY or ASN

```
<220>
<221> MISC_FEATURE
<222>
       (13)..(13)
<223> Xaa = GLN, ASN, HIS, LYS or ARG, or more preferably GLN or LYS
<220>
      MISC_FEATURE
<221>
<222>
       (14)..(14)
<223> Xaa = ILE, VAL, ALA, LEU or GLY, or more preferably ILE or ALA
<220>
<221> MISC_FEATURE
<222> (16) .. (16) '
<223> Xaa = GLY, PRO, ALA, LYS or ARG, or more preferably GLY or LYS
<220>
<221> MISC_FEATURE
<222>
       (18) .. (18)
<223> Xaa = VAL, LEU, ILE, GLY, PRO or ALA, or more preferably ALA or
       GLY
<220>
<221> MISC_FEATURE
<222> (19)..(19)
      Xaa = ILE, VAL, MET, ALA, PHE or LEU, or more preferably LEU or
<220>
<221> MISC FEATURE
<222> (20)..(20)
<223>
      Xaa = ARG, LYS, GLY, PRO or ALA, or more preferably ARG, GLY or
<220>
<221> MISC_FEATURE
<222> (21)..(21)
<223> Xaa = GLY, PRO, ALA, VAL, ILE, LEU, MET or PHE, or more
       preferably GLY or VAL
<220>
      MISC_FEATURE
<221>
<222>
      (22)..(22)
<223> Xaa = ILE, LEU, VAL, ALA, MET or PHE, or more preferably VAL, ILE or
<220>
<221> MISC_FEATURE
<222>
      (23) . . (23)
<223> Xaa = ASN, GLN, HIS, GLY, PRO, ALA, SER or THR, or more
       preferably ASN, GLY or SER
<220>
<221> MISC FEATURE
<222> (24)..(24)
<223> Xaa = ILE, VAL, ALA, LEU or GLY, or more preferably ILE or ALA
<220>
<221> MISC_FEATURE
<222>
      (26)..(26)
<223> Xaa = SER, THR, GLY, PRO or ALA, or more preferably SER or GLY
```

. .

```
<220>
 <221> MISC_FEATURE <222> (30)..(30)
 <223> Xaa = ASP or GLU
 <220>
 <221> MISC_FEATURE
 <222>
       (31)..(31)
 <223> Xaa = ILE, LEU, VAL, ALA, MET or PHE, or more preferably ILE or
 <220>
 <221> MISC FEATURE
 <222> (32)..(32)
 <223> Xaa = ILE, LEU, VAL, ALA, TYR, TRP or PHE, or more preferably ILE
       or TYR
<220>
<221> MISC FEATURE
 <222> (33)..(33)
<223> Xaa = SER, THR, ASN, GLN, HIS, GLU or ASP, or more preferably
       SER, ASN or GLU
<220>
<221> MISC FEATURE
<222> (34)..(34)
<223> Xaa = GLN, ASN or HIS, or more preferably GLN or HIS
<220>
<221> MISC_FEATURE
<222>
       (35) . . (35)
<223> Xaa = PHE, LEU, VAL, ALA, ILE or MET, or more preferably PHE, VAL
       or ILE
<220>
<221> MISC_FEATURE
<222> (36)..(36)
<223> Xaa = LYS or ARG
<220>
<221> MISC_FEATURE
<222>
      (37)..(37)
<223> Xaa = PRO, GLY, ASN, GLN or HIS, or more preferably PRO or ASN
<220>
<221> MISC_FEATURE
<222> (38)..(38)
<223> Xaa = LYS or ARG
<220>
<221> MISC_FEATURE
<222> (39)..(39)
<223> Xaa = LYS, ARG, HIS, ASN or GLN, or more preferably LYS, HIS, GLN
       or ARG
<220>
<221> MISC_FEATURE
       (40)..(40)
<222>
<223> Xaa = LYS, ARG, HIS, ASN, GLN or ABSENT, or more preferably LYS,
       HIS or ABSENT
```

<220>
<221> MISC_FEATURE
<222> (41)..(41)
<223> Xaa = LYS, ARG or ABSENT, or more preferably LYS or ABSENT

<220>
<221> MISC_FEATURE
<222> (42)..(42)
<223> Xaa = ASN, GLN, HIS or ABSENT, or more preferably ASN or ABSENT

<220>
<221> MISC_FEATURE
<222> (43)..(43)

<221> MISC_FEATURE
<222> (43)..(43)

<223> Xaa = HIS, ASN, GLN or ABSENT, or more preferably HIS or ABSENT

Xaa Lys Xaa Xaa Xaa Xaa Ala Ile Lys Lys Gly Gly Xaa Xaa Ile Xaa 1 10 15

Lys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Ala Xaa Thr Ala His Xaa Xaa Xaa 20 25 30