Algorithms Worksheet 2

For each part of a question write the answer and include workings. Each question is worth two marks, there are also two marks for attendance.

1. Solve for T(n) using the ansatz $T(n) = r^n$ for the following two step recursion relations. Solving for r will give two values r_1 and r_2 , this means that the general solution will be $T(n) = Ar_1^n + Br_2^n$. Use the two base values to find A and B.

a)
$$T(n) = 2T(n-1) + 3T(n-2)$$
 with $T(0) = 0$ and $T(1) = 4$.

b)
$$T(n) = T(n-2)$$
 with $T(0) = 0$ and $T(1) = 2$.

Solution:

For (a) we have

$$r^2 = 2r + 3 \tag{1}$$

so $r^2 - 2r - 3 = 0$ or (r - 3)(r + 1) = 0 so

$$T(n) = 3^n A + (-1)^n B (2)$$

and the initial conditions give A + B = 0 and 3A - B = 4 so

$$T(n) = 3^n - (-1)^n \tag{3}$$

For (b) we get $r^2 = 1$ so

$$T(n) = A + (-1)^n B \tag{4}$$

and the initial conditions give A + B = 0 and A - B = 2 so

$$T(n) = 1 - (-1)^n (5)$$

2. This question is about the master theorem. Use it to calculate big-Theta for T(n) in each case.

a)
$$T(n) = 25T(n/5) + 4n^2$$

b)
$$T(n) = 20T(n/5) + 4n$$

c)
$$T(n) = 16T(n/2) + 2n^4$$

Solutions: for the first one $\log_5 25 = 2$ and c = 2 so this is the middle case and $T(n) \in \Theta(n^2 \log n)$, for the second $\log_5 20 > 1$ so it is the first case and $T(n) \in \Theta(n^{\log_5 20})$; the last one is in the middle case as well since $\log_2 16 = 4$ and $T(n) \in \Theta(n^4 \log n)$.

3. This question is about quicksort; use the quicksort algorithm to sort the set {4,7,8,10,1,2,5,9,3,6} showing all your steps, use the median of triples on the first three entries to find the pivot; you don't need to go through the individual swaps involved in the in-place implementation, just divide the set around the pivot.

Solution: for example

$$4 \quad 7 \quad 8 \quad 10 \quad 1 \quad 2 \quad 5 \quad 9 \quad 3 \quad \ 6$$

COMS10001 - PandA2 algorithms worksheet 2 - Conor

4. This question is about quicksort in place; perform the first step of quicksort, dividing the set into two, on the set {4,7,8,10,1,2,5,9,3,6} using the pivot 7 and individual swaps. Solution: the bold numbers are being considered for swapping.

4	7	8	10	1	2	5	9	3	6
4	6	8	10	1	2	5	9	3	7
4	6	8	10	1	2	5	9	3	7
4	6	8	10	1	2	5	9	3	7
4	6	3	10	1	2	5	9	8	7
4	6	3	10	1	2	5	9	8	7
4	6	3	10	1	2	5	9	8	7
4	6	3	10	1	2	5	9	8	7
4	6	3	5	1	2	10	9	8	7
4	6	3	5	1	2	10	9	8	7
4	6	3	5	1	2	10	9	8	7
4	6	3	5	1	2	10	9	8	7
4	6	3	5	1	2	7	9	8	10