2. Algebra

2.1 The basic processes of algebra

Knowledge and use of basic skills in manipulative algebra including use of the associative, commutative and distributive laws, are expected

General algebra skills. Accuracy!

2.2 Definition of a function

Notation f (x) will be used, e.g. f (x) = $x^2 - 9$

Part of N5.

2.3 Domain and range of a function

Domain may be expressed as, for example, x > 2, or 'for all x, except x = 0' and range may be expressed as f(x) > -1

DOMAIN: range of values for
$$x$$
 e.g. for $f(x) = \sqrt{x+3}$ that make up the 'input'. domain is $x \ge -3$

e.g. for
$$f(x) = (x+4)^2 - 1$$

range is $f(x) \ge -1$

Pay close attention to the 'STRICTNESS' of inequalities. e.g. < or <

Composite functions 2.4

The result of two or more functions, say f and g, acting in succession. fg(x) is g followed by f

If
$$f(x) = 2x+1$$

and $g(x) = 3-x^2$

$$fg(x) = g(x) \text{ is input'}$$

$$= f(3-x^2) \text{ into } f(x)$$

$$= 2(3-x^2)+1$$

$$= 6-2x^2+1$$

$$= 7-2x^2$$

2.5 Inverse functions

The inverse function of f is written f-1 Domains will be chosen for f to make f one-one

e.g. if
$$f(x) = 2x + 1$$

thun $f'(x) = \frac{x-1}{2}$

A Step-by-step method:

$$f(x) = 4x^3 - 1$$

$$y = 4x^3 - 1 # \text{ write as "}y = ...$$

$$y+1 = 4x^3$$

$$y+1 = x^3 # \text{ Make } x \text{ the subject}$$

$$f': \overline{-1} \Rightarrow \overline{+2}$$

$$3\sqrt{\frac{5+1}{4}} = x$$
Stake in required form

2.6 Expanding brackets and collecting like terms

Expand and simplify

$$(y^2-2y+3)(2y-1)-2(y^3-3y^2+4y-2)$$

Part of N5.

2.7 Expand
$$(a+b)^n$$
 for positive integer n

Expand and simplify $(5x + 2)^3$

Use Pascal's triangle to work out the coefficient of x^3 in the expansion of $(3 + 2x)^5$

PASCAL'S TRIANGLE

$$|33| = |(5x+2)^{3}$$

$$|33| = |(5x)^{3}(2)^{0} + 3(5x)^{1}(2)^{1} + 3(5x)^{1}(2)^{2} + |(5x)^{0}(2)^{3}$$

$$|464| = |(125x^{3})(1) + 3(25x^{1})(2) + 3(5x)(4) + |(1)(8)$$

$$|5|0|05| = |25x^{3} + |50x^{2}| + 60x + 8$$

Factorise fully
$$(2x + 3)^2 - (2x - 5)^2$$

Factorise $15x^2 - 34xy - 16y^2$
Factorise fully $x^4 - 25x^2$

Part of N5.

2.9 Manipulation of rational expressions:

Use of $+-\times\div$ for algebraic fractions with denominators being numeric, linear or quadratic

Simplify
$$\frac{5}{x+2} - \frac{3}{2x-1}$$
Simplify $\frac{x^3 + 2x^2 + x}{x^2 + x}$
Simplify $\frac{5x^2 - 14x - 3}{4x^2 - 25} \div \frac{x - 3}{4x^2 + 10x}$

Part of N5.

2.10 Use and manipulation of formulae and expressions

Rearrange $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ to make v the subject

Part of NS. May require factorisation.

$$\frac{1}{5} = \frac{1}{4} + \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4} + \frac{1}{4}$$

$$\frac{1}$$

Factorise
$$x^3 - 2x^2 - 5x + 6$$

Show that 2x-3 is a factor of $2x^3-x^2-7x+6$

Solve
$$x^3 + x^2 - 10x + 8 = 0$$

Show that x-7 is a factor of x^5-7x^4-x+7

If
$$f(\alpha) = 0$$
 then:
 $(x-\alpha)$ is a factor of $f(x)$
 $x = \alpha$ is a solution of $f(x)$

Let
$$f(x) = x^3 + x^2 - 10x + 8$$

try $f(1) = 1^3 + 1^2 - 10(1) + 8$
 $= 0$... $(x-1)$ is a factor
 $x^3 + x^2 - 10x + 8 = 0$
 $(x-1)(x^2 + 2x - 8) = 0$ algebraic division
 $(x-1)(x+4)(x-2) = 0$ or mental approach
 $x = 1$, $x = -4$, $x = 2$

2.12 Completing the square

Work out the values of a, b and c such that

$$2x^2 + 6x + 7 \equiv a(x+b)^2 + c$$

$$2x^{2}+6x+7=\alpha x^{2}+2\alpha bx+\alpha b^{2}+c$$

$$a = 2$$
 $2ab = 6$ $ab^{2} + c = 7$
 $2(2)b = 6$ $2(\frac{3}{2})^{2} + c = 7$
 $4b = 6$ $\frac{9}{2} + c = 7$
 $b = \frac{6}{4} = \frac{3}{2}$ $c = \frac{5}{2}$

2.13 Drawing and sketching of functions Interpretation of graphs

Graphs could be linear, quadratic, exponential and restricted to no more than 3 domains

Exponential graphs will be of the form $y = ab^x$ and $y = ab^{-x}$, where a and b are rational numbers

Sketch the graph of $y = x^2 - 5x + 6$

Label clearly any points of the intersection with the axes

A function f is defined as

$$f(x) = x^{2}$$
 $0 \le x < 1$
= 1 1 \le x < 2
= 3-x 2 \le x < 3

Draw the graph of y = f(x) on the grid below for values of x from 0 to 3

Given a sketch of $y = ab^{-x}$, and two points, work out the values of a and b

Mostly on extension of N5 skills.

2.14 Solution of linear and quadratic equations

Solutions of quadratics to include solution by factorisation, by graph, by completing the square or by formula

Problems will be set in a variety of contexts, which result in the solution of linear or quadratic equations

By completing the square:
$$x^2 - 4x - 12 = 0$$

$$\chi^{2} - 4x - 12 = 0$$

$$(x - 2)^{1} - 16 = 0$$

$$(x - 2)^{2} = 16$$

$$x - 2 = \pm 4$$

$$x - 2 = 4$$

$$x = 6$$

$$x = -2$$

Solve
$$4x-3y = 0$$
 and $6x + 15y = 13$
Solve $y = x + 2$ and $y^2 = 4x + 5$
Solve $y = x^2$ and $y - 5x = 6$
Solve $xy = 8$ and $x + y = 6$

N5 linear approach:

$$20x - 15y = 0$$
 add
 $6x + 15y = 13$
 $26y = 13$

Substitution:
$$y = y^2$$
:

 $y = x + z$
 $y = x^2$
 $y = 5x + 6$
 $(x+2)^2 = 4x + 5$
 $y = 5x + 6$
 $x^2 = 5x + 6$

$$(x+2)^2 = 4x + 5$$

$$\chi^{2} = 5 \chi + 6$$

2.16 Algebraic solution of linear equations in three unknowns

Solve
$$0 2x - 5y + 4z = 22$$

$$2 x+y+2z = 4$$

$$(3) \quad x - y - 6z = -4$$

From a pair in 3 unknowns, elimation to produce one in 2 unknowns.

Repeat with a different pair resg. z

Solve as per N5.

e.g.
$$3x + 2y - 2 = 8$$

 $2x + 3y + 2z = 9$
 $4x - y - 3z = 11$

$$\frac{x^{2}}{\Rightarrow} 6x + 4y - 2z = 16 \text{ add}$$

$$\frac{2x + 3y + 2z = 9}{8x + 7y} = 25$$

$$8x+7y = 25 \text{ subtract}$$

$$\frac{14x+7y=49}{-6x=-24}$$

$$x = 4$$

$$6x + 9y + 6z = 27 \text{ add}$$

$$8x - 2y - 6z = 22$$

$$14x + 7y = 49$$

Sub.
$$x = 4$$

 $8x4 + 7y = 25$
 $32 + 7y = 25$
 $7y = -7$
 $5 = -1$

5n6.
$$x=4, y=-1$$

 $3x4+2x(-1)-z=8$
 $12-2-z=8$
 $10-z=8$
 $2=z$

Solve
$$5(x-7) > 2(x+1)$$

Solve $x^2 < 9$
Solve $2x^2 + 5x \le 3$

Rearrange to have O on one side.

Sketch the function given on the other. > Stake Solutions.

e.g.
$$2x^{2}+5x \leq 3$$

 $2x^{2}+5x-3 \leq 0$
Roots at:
 $2x^{2}+5x-3=0$
 $(2x-1)(x+3)=0$

(2x-1)(x+3)=0 $x = \frac{1}{2}, x = -3$ Sketch

2.18 Index laws, including fractional and negative indices and the solution of equations

Express as a single power of $x = \sqrt{x^{\frac{1}{2}} \times x^{\frac{7}{2}}}$ Express as a single power of $x = \sqrt{\frac{x^{\frac{3}{2}} \times x^{\frac{7}{2}}}{x^{\frac{3}{2}}}}$

Solve
$$x^{\frac{1}{2}} = 3$$

Solve $\sqrt{x} - \frac{10}{\sqrt{x}} = 3$ $x > 0$

Part of N5.

Prove $(n+5)^2 - (n+3)^2$ is divisible by 4 for any integer value of n

$$(N+5)^{2} - (N+3)^{2}$$

$$= N^{2} + 10N + 25 - (N^{2} + 6N + 9)$$

$$= 4N + 16$$

$$= 4(N+4)$$

Since n+4 is an integer, 4(n+4) is a multiple of 4 for all n. ... $(n+5)^2 - (n+3)^2$ is divisible by 4 for all integer values of 1.

2.20 Using nth terms of sequences

Work out the difference between the 16th and 6th terms of the sequence with *n*th term $\frac{2n}{n+4}$

Limiting value of a sequence as $n \to \infty$

Write down the limiting value of $\frac{2n}{n+4}$ as $n \to \infty$

· Limiting value of
$$\frac{ax+b}{cx+d}$$
 as $n \to \infty$ is $\frac{a}{c}$

2.21 nth terms of linear sequences

A linear sequence starts 180 By using the nth term, work out which term has value -1000

Work out the nth term of the linear sequence r+s r+3s r+5s ...

let nth term = an + b

4 = -0

Sub.
$$a=-4$$

 $180 = -4 + 6$

$$-1000 = -4n + 184$$

 $-1184 = -4n$
 $1184 = 4n$

$$306. a = -4$$

 $180 = -4 + 6$
 $184 = 6$

$$-1104 = -4n$$
 $1184 = 4n$
 $296 = n$

10 16 18 16

-4 -4

$$2\alpha = -4$$

$$\alpha = -2$$

$$-2n^2+bn+c$$

1st term:
$$10 = -2(1)^{2} + b(1) + c$$

$$2^{nd}$$
 tom: $16 = -2(2)^{2} + b(2) + c$

$$b+c=12$$

$$2b+c=24$$

Sub.
$$b = 12$$

 $12 + c = 12$
 $c = 0$

$$-b = -12$$
$$b = 12$$

$$... n^{th} tem = -2n^2 + 12n$$

$$0 = -2n^{2} + 12n$$

$$0 = -2n(n-6)$$

$$k$$

$$-2n=0 \quad \text{an} \quad n-6=0$$

$$-2n=0$$
 or $n-6=0$
 $n=0$ $n=6$

.. the 6th term