

developer at SCRM - Lidl International Hub

www.developerro.com

Quantum Filip coins game

https://www.ted.com/talks/shohini_ghose_a_beginner_s_guide_to_quantum_computing

610ssie computer: 50%-50%

Quantum computers

97% - 3%

Paul Benioff

quantum mechanical model of Turing Machines

Schrodinger's eat experiment

Schrodinger's cat

An opaque box

Poisonous gas bottle

A device that releases gas when a particle decays

A particle with a 50% probability of disintegrating in time X

$$(\alpha \cdot | 0 > + \beta \cdot | 1 >)$$

where:
$$|\alpha|^2 + |\beta|^2 = 1$$

$$r_{\alpha}e^{i\phi}_{\alpha}|0\rangle + r_{\beta}e^{i\phi}_{\beta}|1\rangle$$

- Z axis: | 1> or | 0>
- X axis: |+> or |->
- Y axis: |i> or |-i>

Bloch sphere

11 binary = 3 decimal

where:
$$|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$$

Classie logie gates

NOT	
Input	Output
0	1
1	0

YES	
Input	Output
0	0
1	1

AND		
Input		Output
0	0	0
0	1	0
1	0	0
1	1	1

XOR		
Inp	ut	Output
0	0	0
0	1	1
1	0	1
1	1	0

OR		
Input Output		Output
0	0	0
0	1	1
1	0	1
1	1	1

Quantum logie gates

Z	
Input	Output
 0>	 0>
[1>	[-1 >
	×
Input	X Output

SWAP		
Input	0	utput
[00 >		OO>
[O1>		10>
10>		 01>
[11>		 11>
	CNOT	
Control	Target	Output
 0>	 0>	[00 >
 0>	1>	 01>
[1>	[0>	[11 >
[1>	[1>	10>

Н		
Input	Output	
 0>	0>+ 1>	
	$\sqrt{2}$	
[1>	0>- 1>	
	$\sqrt{2}$	

Young's interference experiment

double-slit interferometer

demo

- \$ dotnet tool install -g Microsoft.Quantum.IQSharp
- \$ dotnet new -i Microsoft.Quantum.ProjectTemplates
- \$ dotnet new console -lang Q#

Entanglement

$$\frac{1}{\sqrt{2}}|00\rangle + 0|01\rangle + 0|10\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

Teleport

why dodge bullets?

https://www.nature.com/articles/nature23675

610ssie computer: 50%-50%

Quantum computers

97%-3%

Meanwhile, In the Bealtorid

30 qubits = 10 teraflops

Application examples

Quantum cypher

- Private keys (Heisenberg principle)

Farmacy Molecules Models

- The same quantum properties

New network models

Quantum networks based on teleportation

Faster search

- N elements N/2 cycles vs \sqrt{N} cycles

2019 News

Intel Fabricates 49 Qubit Superconducting Chip

IBM's new 53-qubit quantum computer is its biggest yet
The system will go online in October.

Google reportedly attains 'quantum supremacy' Its quantum computer can solve tasks that are otherwise unsolvable, a report says.

Nuclear weapons lab buys D-Wave's next-gen quantum computer Los Alamos National Laboratory will install D-Wave's 5,000-qubit Advantage system in 2020.

2020 News

Novel error-correction scheme developed for quantum computers https://phys.org/news/2020-03-error-correction-scheme-quantum.html

D-Wave Opens Quantum-Computing Resources to Coronavirus Research

https://www.wsj.com/articles/d-waveopens-quantum-computing-resources-tocoronavirus-research-11585763422

