Tensores en Pytorch

Diego Andrade Canosa Roberto López Castro

Índice

- Introducción
- Tensores en Pytorch
- Variables y gradients
 - Autograd

Introducción

- En matemáticas, un tensor es un artefacto algebraico multidimensional que permite almacenar información numérica
- Se usan en:
 - Matemáticas
 - Física
 - Química
 - Deep Learning!!
- Características básicas de un tensor:
 - Rank: Número de dimensiones
 - Shape: Tamaño de cada dimensión
 - · Tipo de datos

Introducción

Fuente: https://leonardoaraujosantos.gitbook.io/opencl/

Introducción

- En Deep Learning se usan los tensores para almacenar
 - Entradas
 - Parámetros aprendibles:
 - Pesos
 - Bias
 - Datos auxiliares:
 - Gradientes
 - Activaciones
 - Pérdidas (loss)
 - Salidas

Codificación de entradas usando tensores

- Reconocimiento de imágenes
 - La imagen se proporciona como un tensor tridimensional (C (canales) x H (altura) x W (anchura)
 - Se suele incluir una cuarta dimensión N que tiene el número de samples en un batch
 - El procesamiento batch hace que los datos de entrada se procesen en conjuntos (de imágenes en este caso)
 - **RECUERDA:** El cálculo de la función de pérdida, los consiguientes gradientes y su aplicación se realiza al haber procesado todas las entradas de un batch
 - Los formatos disponibles dependen del orden de estas 4 dimensiones (NCHW es el más común en Pytorch, channel first y el preferido por GPUs de Nvidia)

Ejemplo: NCHW

Ejemplo: CHWN

Physical data layout NCHW, NHWC, and CHWN layouts

Formatos en Pytorch

- NHWC: channel last (memory_format=torch.channel_last)
- NCHW: channel first (memory_format=torch.contiguous_format)

Codificación de entradas usando tensores

• Lenguaje:

- El texto de entrada se somete a un proceso de tokenización por los que se divide el texto en palabras, caracteres, o grupos de caracteres o palabras
 - Cada token se representa mediante un valor numérico
 - Se codifica la secuencia de tokens. Dos opciones principales:
 - One-hot encoding
 - Se usa un vector disperso del mismo tamaño que el número de tokens distintos
 - Se pone un **1** sólo en la posición del vector que pertenece al dato del token actual; **o** en las demás posiciones
 - Word embedding
 - Se le asigna un vector de valores a cada posible token
 - Se codifica el texto como un tensor que contiene estos vectores para una secuencia de tokens
 - Palabras similares serán representadas por valores similares

Ejemplo: one-hot embedding

Vocabulary:
Man, woman, boy,
girl, prince,
princess, queen,
king, monarch

Each word gets a 1x9 vector representation

Ejemplo: word embedding

22

Ejemplo: word embedding

Each word gets a 1x3 vector

Similar words... similar vectors

@shane a lvnn | @TeamEdgeTier

Codificación de parámetros aprendibles

- La representación interna de pesos y bias depende del tipo de modelo
 - Perceptrón multicapa:
 - Pesos y Bias se representan en tensores diferentes
 - Redes convolucionales:
 - Pesos y bias se representan en tensores diferentes
 - Suelen tener 2 dimensiones (altura y anchura)
 - Existe un tercera dimensión para indexar la información respecto a cada kernel (o filtro) que se suele asociar con las características identificadas internamente por el modelo
 - Redes Recurrentes
 - Transformers

Codificación de parámetros aprendibles

- La representación interna de pesos y bias depende del tipo de modelo
 - Perceptrón multicapa:
 - Redes convolucionales:
 - Redes Recurrentes
 - Los tensores representan las conexiones recurrentes y los estados ocultos
 - Las conexiones recurrentes son los pesos que conectan los estados ocultos a través de diferentes instantes de tiempo
 - (Batch,Nº de neuronas,Nº de capas ocultas)
 - Transformers
 - Attention weights: (num_heads, sequence_length, sequence_length)
 - Hidden state tensors: (num_layers, batch_size, sequence_length, hidden_size)
 - Positional encoding: (sequence_length, embedding_dimension)
 - Feed-Forward Network Tensors: (num_layers, batch_size, sequence_length, hidden_size)

Codificación de datos de salida

- En problemas de predicción del siguiente valor de una serie numérica: la salida podría ser un único valor numérico
- En problemas de clasificación los logits son las puntuaciones no normalizadas asignadas a cada categoría por nuestro modelo
 - Clasificadores multiclase: la salida podría ser un vector con tantos elementos como categorías, y cada elemento contiene la probabilidad asignada a esa categoría
 - Clasificadores binarios: la salida es la probabilidad de que la entrada pertenezca a la clase positiva

Tensores en Pytorch

- Similares, e interoperables, con los ndarrays de numpy
- Sus métodos cuelgan directamente del paquete principal de pytorch (torch)
- Métodos para distintos tipos de operaciones
 - Inicialización
 - Manipulación
 - Operación

Tensores en Pytorch: Creación e inicialización

Directamente desde los datos

```
data = [[1, 2],[3, 4]]
x_data = torch.tensor(data)
```

• Desde un array de numpy

```
np_array = np_array(data)
x_np = torch.from_numpy(np_array)
```

tensor([[1, 2], [3, 4]])

• A partir de la forma de otro tensor

```
x_ones = torch.ones_like(x_data)
x_rand = torch.rand_like(x_data,dtype=torch.float)
```


Tensores en Pytorch: Creación e inicialización

• Con unos valores determinados (1^s o 0^s) o aleatorios

```
shape = (2,3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)
```


Tensores en Pytorch: Atributos

• Un tensor tiene 3 atributos básicos en Pytorch: shape, dtype y device

```
tensor = torch.rand(3,4)

print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
```

```
Shape of tensor: torch.Size([3, 4])
Datatype of tensor: torch.float32
Device tensor is stored on: cpu
```


- Dado un tensor a de tamaño (2,4,4), podemos
 - Hacer slicing siguiendo una notación estándar

a

```
a[1]
```

```
a[1,2:3]
tensor([[0.67, 0.16, 0.29, 0.28],
[0.76, 0.86, 0.05, 0.19]])
```


• Cambiar la forma de un tensor con el comando reshape

```
a.reshape(8,4)
                a
                                                             tensor([[0.43, 0.56, 0.42, 0.77],
tensor([[[0.43, 0.56, 0.42, 0.77],
                                                                      [0.55, 0.60, 0.97, 0.73],
        [0.55, 0.60, 0.97, 0.73],
        [0.68, 0.77, 0.25, 0.67],
                                                                      [0.68, 0.77, 0.25, 0.67],
        [0.41, 0.25, 0.57, 0.81]],
                                                                      [0.41, 0.25, 0.57, 0.81],
                                                                      [0.57, 0.19, 0.58, 0.48],
       [[0.57, 0.19, 0.58, 0.48],
                                                                      [0.12, 0.35, 0.02, 0.94],
        [0.12, 0.35, 0.02, 0.94],
                                                                      [0.09, 0.28, 0.69, 0.35],
        [0.09, 0.28, 0.69, 0.35],
                                                                      [0.04, 0.83, 0.40, 0.46]])
        [0.04, 0.83, 0.40, 0.46]]])
```


Transponer el tensor con el comando transpose

```
tensor([[0.53, 0.90, 0.64, 0.77, 0.94, 0.53, 0.04, 0.88], [0.98, 0.90, 0.31, 0.81, 0.87, 0.62, 0.52, 0.41], [0.10, 0.63, 0.21, 0.83, 0.70, 0.47, 0.49, 0.26], [0.76, 0.89, 0.31, 0.42, 0.36, 0.75, 0.38, 0.11]])
```


Combinar varios tensores

```
Tensores a y b
```

```
torch.vstack((a,b))
torch.concatenate((a,b),dim=0)
```

```
tensor([[0.60, 0.61],
[0.95, 1.00],
[0.98, 0.25],
[0.78, 0.80]])
```

```
torch.hstack((a,b))
torch.concatenate((a,b),dim=1)
```

```
tensor([[0.93, 0.79, 0.12, 0.30], [0.79, 0.55, 0.59, 0.98]])
```


• torch.unsqueeze(input,dim)
Devuelve un nuevo tensor al
que se le ha insertado una
dimensión de tamaño 1 en
dim

• torch.argwhere(input)
Devuelve un tensor que
contiene los índices de todos
los elementos no nulos

• torch.chunk(input,chunks,di m=o) Intenta dividir un tensor en chunks trozos a lo largo de su dimensión dim

```
>>> torch.arange(11).chunk(6)
(tensor([0, 1]),
tensor([2, 3]),
tensor([4, 5]),
tensor([6, 7]),
tensor([8, 9]),
tensor([10]))
>>> torch.arange(12).chunk(6)
(tensor([0, 1]),
tensor([2, 3]),
 tensor([4, 5]),
 tensor([6, 7]),
tensor([8, 9]),
 tensor([10, 11]))
>>> torch.arange(13).chunk(6)
(tensor([0, 1, 2]),
tensor([3, 4, 5]),
tensor([6, 7, 8]),
 tensor([ 9, 10, 11]),
 tensor([12]))
```


Separarlos con el comando split

torch.split(a,2,dim=1)

Tensores en Pytorch: Operación

- Podemos realizar operaciones algebraicas con los tensores
 - Producto de matrices torch.matmul: torch.matmul
 - Producto element-wise: torch.mul, u operador *
 - Reducción por suma: tensor.sum()
 - Operaciones in-place
 - El resultado se almacena en el tensor desde el que se llama
 - Se identifican porque su nombre termina con el sufijo _
 - Ejemplos: add_, mul_,copy_, etc...

Usos comunes en ML

- Muchas de las operaciones de manipulación de tensores juegan un rol importante en procesos tales como el preprocesado de los datos
 - Las operaciones de reshape permiten cambiar la forma del tensor con los datos para adaptarla a la entrada requerida por la primera capa del modelo
 - Las operaciones de *slicing* permiten seleccionar una parte de los datos
 - Las operaciones de concatenación permiten combinar múltiples fuentes de datos
 - Las operaciones de concatenación tipo *stack* son útiles para componer los batches de datos
 - Las de transposición son útiles cuando necesitamos intercambiar un par de dimensiones de los datos
 - La operación *unsqueeze* se usa a menudo para añadir una dimensión más a los datos, habitualmente la dimensión batch
 - Las operaciones split y chunk son útiles para dividir los datos en batches más pequeños

Usos comunes en ML: unsqueeze

Usos comunes en ML: pad_sequence

Usos comunes en ML: split

```
1 # Si `image_batch` es un tensor con la forma (100, 3, 64, 64)
2 image_batch = torch.rand(100, 3, 64, 64)
3
4 # Podemos dividirlo en batches más pequeños (por ejemplo de 10)
5 small_batches = image_batch.split(10) # Ahora cada batch tiene la forma (10, 3, 64, 64)
```


Usos comunes en ML

- Otro uso común de los tensores es al final del proceso de entrenamiento para calcular métricas de precisión por ejemplo
 - Funciones de reducción son útiles como parte del cálculo de estadísticas
 - Funciones que permiten calcular máximos (o mínimos) y su posición en un array, son útiles para post-procesar las salidas de un modelo de clasificación
 - Las operaciones aritméticas sobre tensores son útiles como parte del cálculo de métricas de precisión

Usos comunes en ML: max

```
1 # Asume que el `model` ya está entrenado
2 # `data` son los datos de prueba
3 # y `labels` son las etiquetas correctas
4
5 # Haz predicciones
6 outputs = model(data)
7 # Calcula la probabilidad máxima y su posición
8 _, predicted = torch.max(outputs, 1)
9
10 # Calcula la predicción
11 correct = (predicted == labels).sum().item()
12 total = labels.size(0)
13 accuracy = correct / total
14
15 print('Precisión del modelo sobre las imágenes de prueba: %d %%' % (100 * accuracy))
16
```


Uso en ML: operaciones aritméticas

```
1 # `output` contiene las predicciones
2 # `target` contiene la ground-truth
3 output = torch.tensor([1.5, 2.5, 3.5, 4.5])
4 target = torch.tensor([2.0, 2.0, 4.0, 3.0])
5
6 # Calcula la métrica MAE
7 mae = (output - target).abs().mean().item()
8
9 print(f'Mean Absolute Error: {mae:.2f}')
```


Uso en ML: Definición de capas de RNP

```
def conv2d(input, filter):
    # Extrae las dimensiones de la entrada
    h, w = input.shape[-2:] # Asume shape (batch, channels, height, width)
    f.h, f.w = filter.shape[-2:] # Asume filter shape (out_channels, in_channels, filter_height, filter_width)

## Computa las dimensiones de la salida

out_h = h - f.h + 1

out_w = w - f_w + 1

## Operación de convolución

for i in range(out_h):

## Operación de convolución

for j in range(out_w):

## Selecciona la región de la entrada a la que se aplicará el filtro en esta iteración input_region = input[:, :, i:(i + f_h), j:(j + f_w)]

## La función einsum hace el dot product entre el filtro

## y la región correspondiente de la entrada

output[:, :, i, j] = torch.einsum('bchw, ochw -> bo', input_region, filter)

return output

## Teturn output
```


Laboratorio

- Revisa el notebook tensores.ipynb del repositorio github del curso
- Realiza los **Ejercicios** al final del notebook

Variables y gradientes

- Torch.autograd: Sistema de diferenciación automática (automatic differentiation system)
 - Componente central de Pytorch
- Registra un grafo que representa todas las operaciones realizadas sobre un conjunto de tensores
 - · Las hojas son los tensores de entrada
 - La raíz es la salida
- Recorriendo el grafo (raíz->hojas) podemos calcular automáticamente los gradientes usando la regla de la cadena

- Autograd mantiene en el grafo un conjunto de objetos de tipo función (graph_fn)
 - Se van creando durante la operación de los tensores
 - Llamando a la pasada *backward* vamos ejecutando la función *apply()* sobre todos ellos
- El grafo se recrea cada vez que se opera de nuevo con los tensores
 - En la práctica, esto sucede en cada pasada forward
 - Esta generación dinámica del grafo permite enriquecer la pasada forward con elementos dinámicamente configurables o con sentencias condicionales

- Existen nodos del grafo cuyas funciones no son diferenciables
 - Ejemplos: relu, o sqrt sobre o
- Para reducir el impacto de estas funciones en el cálculo, se siguen una serie de reglas bien definidas
 - Si la función es diferenciable, se calcula el gradiente
 - Si la función es cóncava, usa el sub-gradiente de la norma mínima (es la dirección descendente más pronunciada)
 - Si la función es convexa, usa el super-gradiente de la norma mínima (se calcula lo mismo que en el punto anterior, pero para –f(x)

 \sim

- Las Redes Neuronales (RNs) son una colección de funciones anidadas ejecutadas sobre algunos datos de entrada
 - Funciones parametrizadas a través de parámetros
 - Pesos (weights)
 - Y Bias
 - Función $\vec{y} = \vec{M}(\vec{x})$
 - \vec{y} salida
 - \vec{M} function
 - \vec{x} entrada

- Función de pérdida (loss)
 - $L(\vec{y}) = L(\vec{M}(\vec{x}))$
 - L función de pérdida
 - La salida es un valor único
 - Indica la distancia entre la salida actual de nuestra función y la deseada
- El objetivo del proceso de entrenamiento es minimizar la función de pérdida
 - · Ajuste progresivo de los parámetros de la función M (pesos+bias) hasta minimizar la función de pérdida
 - Implica hacer que su primera derivada respecto a la entrada sea o

$$\bullet \ \frac{b\,L}{b\,x} = 0$$

• En una RN la función de pérdida no depende directamente de la entrada sino de una función de la salida del modelo (que a su vez es una función de la entrada)

$$\cdot \frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\mathrm{d}(\vec{y})}{\mathrm{d}x}$$

• Que por la regla de la cadena del cálculo diferencia es $\frac{\delta L}{\delta y} \frac{\delta M(x)}{\delta x}$

- El cálculo de la derivada parcial de una función $\frac{\delta M(x)}{\delta x}$ puede ser complejo
 - La función M encierra una gran complejidad matemática
 - Multiplicación de parámetros (pesos)
 - Aplicación de funciones de activación
 - Otras transformaciones matemáticas aplicadas por el modelo
 - La función no tiene un único camino posible
 - Puede ser un grafo con cierta complejidad
- El mecanismo de autograd proporciona una solución a la complejidad de este cálculo
 - Mantiene la historia de computaciones realizadas
 - Es capaz de calcular la derivada parcial de cada uno de los nodos de este grafo

- El entrenamiento de una RN implica el ajuste de estos parámetros en dos fases:
 - Forward propagation: Se suministra una entrada a la red para comprobar qué salida se obtiene
 - Backward propagation: Se ajustan los parámetros de la red en una proporción que depende del error de su estimación
 - Ajuste hacia atrás
 - Es necesario computar las derivadas del error respecto a los parámetros de la función (gradients)
 - Con estos valores se ajustan los parámetros utilizando gradiente descents (GD)

Gradientes

- Cálculo de Mutiple Partial Derivatives sobre cálculos complejos
 - Crea dinámicamente y en tiempo de ejecución un grafo (DAG, Direct Acyclic Graph) que va registrando la computación (durante la forward pass)
 - Ese grafo se utiliza para calcular los gradientes en la back propagation
 - Útil cuando el cómputo para la que hay que calcular el gradiente es complejo
 - Difícil de calcular analíticamente
 - Indispensable si el cómputo tiene ramas que a veces se ejecutan y otras no, o bucles cuyo número de iteraciones no es fijo

- Existen varios métodos para recopilar los gradientes asociados a tensores
 - Durante la creación del tensor, se usa el parámetro requires_grad=True
 - En la creación del tensor
 - Durante la operación del tensor
 - Usando tensor.requires_grad=True
 - Realizando operaciones dentro del ámbito with torch.no_grad()
- Puede ser problemático con las operaciones in place: ejemplo matmul_
 - Podrían sobrescribir los valores necesarios para calcular los gradientes
 - Solución sencilla: evitar su uso

Autograd en tiempo de entrenamiento

- El modelo entrenado debe estar construido a partir de tensores (o capas) con autograd activado
- Definimos:
 - Un optimizador: por ejemplo, SGD
 - Una función de pérdida: que mida la diferencia entre la salida deseada y la predicción actual del modelo para cada entrada
- Ejecutamos la función backward sobre el cálculo de la función de pérdida para calcular los gradientes
- Actualizamos los parámetros del modelo con los gradientes calculados usando la función step sobre el optimizador
 - Después de cada paso de optimización debemos reinicializar los gradientes a cero usando la función zero_grad()

Autograd en tiempo de inferencia

- Una vez el modelo ha sido entrenado, se debería desactivar el mecanismo de autograd
 - No es necesario, los pesos no se van a modificar
 - Si está activo, va a generar sobrecarga
 - Mayor uso de memoria
 - Mayor uso de recursos computacionales
 - Se aplica .*requires_grad(False)* sobre tensores individuales, o sobre un *Module* completo

Modos de autograd

- Modo de evaluación: nn.Module.eval()
 - Modo Grad: Es el modo por defecto, en el que el mecanismo de autograd funciona correctamente
 - Modo No-Grad: Deshabilita el mecanismo de autograd
 - No registra las operaciones realizadas sobre los tensores
 - Registra las salidas intermedias
 - Podrían ser útiles para un proceso de autograd posterior
 - Modo Inferencia: Es un modo extremo de No-Grad en el que se deshabilitan todos los mecanismos y resultados de autograd
 - Acelera todavía más la ejecución del modelo

Autograd multihilo

```
1 # Define a train function to be used in different threads
2 def train_fn():
3          x = torch.ones(5, 5, requires_grad=True)
4          # forward
5          y = (x + 3) * (x + 4) * 0.5
6          # backward
7          y.sum().backward()
8          # potential optimizer update
9
10
11 # User write their own threading code to drive the train_fn
12 threads = []
13 for _ in range(10):
14          p = threading.Thread(target=train_fn, args=())
15          p.start()
16          threads.append(p)
17
18 for p in threads:
19          p.join()
```


Autograd multihilo

- Introduce concurrencia en la ejecución de la pasada backward
- Produce no-determismo
 - Varios hilos pueden acumular en el mismo atributo gradiente
 - Peligro race-condition
- Cada hilo mantiene su propio sub-grafo, pero podría haber partes del grafo compartidas
 - Efecto similar a ejecutar dos veces la operación *backward() ->* la segunda ejecución produce error en tiempo de ejecución
 - Evitable con retain_graph=True

El procesador de optimización de parámetros se puede monitorizar usando el profiler de autograd

```
>>> x = torch.randn((1, 1), requires grad=True)
>>> with torch.autograd.profiler.profile() as prof:
       for _ in range(100): # any normal python code, really!
           y = x ** 2
>>>
           y.backward()
>>> # NOTE: some columns were removed for brevity
>>> print(prof.key_averages().table(sort_by="self_cpu_time_total"))
Name
                                   Self CPU total CPU time avg
                                                                    Number of
                                   32.048ms
                                                   32.048ms
                                                                    200
mul
                                   27.041ms
                                                   27.041ms
wog
PowBackward0
                                   9.727ms
                                                 55.483ms
torch::autograd::AccumulateGrad
                                   9.148ms
                                                 9.148ms
                                                                    100
torch::autograd::GraphRoot
                                                   691.816us
                                                                    100
                                   691.816us
```

Profiling de autograd

Laboratorio

- Revisa el notebook autograd.ipynb del repositorio github del curso
- Realiza los **Ejercicios** al final del notebook

Referencias

- The fundamentals of Autograd: https://pytorch.org/docs/stable/autograd.html
- How Computational Graphs Are Constructed in Pytorch: https://pytorch.org/blog/computational-graphs-constructed-in-pytorch/
- Pytorch Internals: http://blog.ezyang.com/2019/05/pytorch-internals/
- https://oneapi-src.github.io/oneDNN/dev_guide_understanding_memory_formats.html

Referencias

- https://github.com/pytorch/tutorials/blob/main/intermediate source/memory_format_tutorial.py
- https://www.shanelynn.ie/get-busy-with-word-embeddingsintroduction/
- https://pytorch.org/docs/stable/notes/autograd.html

