ASSIGNMENT 4

MTH 301, 2021-22

(1) Let $x \in \mathbb{R}^n$. For $1 \le p < \infty$ define $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ and $||x||_\infty = \max_{1 \le i \le n} |x_i|$. For r > 0denote $B_r(x) = \{y : ||x-y||_p < r\}$. Sketch $B_1(0)$ for $p = 1, \frac{4}{3}, 2$ and ∞ in \mathbb{R}^2 . Also show that for any pair of $p_1, p_2, 1 \le p_1, p_2 \le \infty$ there exists constants C_1, C_2 such that

$$C_1 ||x||_{p_1} \le ||x||_{p_2} \le C_2 ||x||_{p_1}, \ \forall x \in \mathbb{R}^n.$$

- (2) Show that $d(x,y) = \left| \frac{1}{x} \frac{1}{y} \right|$ is a metric for $x, y \in (0, \infty)$.
- (3) Let d be a metric on \mathbb{R}^n . Show that ρ as defined below are metrics.

 - (a) $\rho(x, y) = \sqrt{d(x, y)}$. (b) $\rho(x, y) = \frac{d(x, y)}{1 + d(x, y)}$.
 - (c) $\rho(x,y) = \min\{d(x,y), 1\}.$
- (4) For a $n \times m$ real matrix $A = (a_{ij})$ define $||A|| = \max_{1 \le i \le n} \left(\sum_{j=1}^m |a_{ij}|^2 \right)^{\frac{1}{2}}$. Identify $\mathbb{R}^{n \times m}$ as set of all $n \times m$ real matrices. Show that d(A, B) = ||A - B|| is a metric on $\mathbb{R}^{n \times m}$.
- (5) Denote \mathbb{R}^{∞} to be the collection of all real sequences $x = \{x_n\}$. Show that

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{n!} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$

defines a metric on \mathbb{R}^{∞} .

(6) For $x = (x_1.x_2, ..., x_n) \in \mathbb{R}^n$ denote $||x|| = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$. For $x, y \in \mathbb{R}^n$ denote

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

- (a) If $\langle x, y \rangle = 0$ i.e. they are orthogonal then $||x + y||^2 = ||x||^2 + ||y||^2$.
- (b) $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$ for all $x, y \in \mathbb{R}^n$.
- (c) Let ||x|| = ||y|| = 1 and $||\frac{x+y}{2}|| = 1$. Then show that x = y.
- (d) Suppose U is a linear transform from \mathbb{R}^n to \mathbb{R}^m . U is called an **isometry** if ||Ux|| =||x||, self-adjoint if $U=U^*$, unitary if $UU^*=U^*U=I$.
 - (i) Let U be an isometry.
 - (A) Show that $\langle Ux, Uy \rangle = \langle x, y \rangle$.
 - (B) If $\{v_1, \ldots, v_k\}$ is an orthonormal set in \mathbb{R}^n then show that $\{Uv_1, \ldots, Uv_k\}$ is also orthonormal.
 - (C) Will U be unitary? Will U be self adjoint?
 - (ii) If U satisfies $UU^* = U^*U$ then will it necessarily be unitary?
- (e) Let M be a subspace of \mathbb{R}^n with an orthonormal basis $\{v_1,\ldots,v_k\}$. Define a linear transformation on \mathbb{R}^n by $Px = \sum_{i=1}^k \langle x, v_i \rangle v_i$.
 - (i) Show that Px belongs to M, and Py = y for all $y \in M$. Hence show that $P^2 = P$.
 - (ii) Show that $\langle Px, x Px \rangle = 0$
 - (iii) Hence show that $||x||^2 = ||Px||^2 + ||x Px||^2$.

- (iv) If y belongs to M, show that $||x y||^2 = ||y Px||^2 + ||x Px||^2$.
- (v) Hence show that ||Px|| is the closest point in M to x.
- (7) If $a_i < b_i \in \mathbb{R}$ for i = 1, ..., n then the subset $(a_1, b_1) \times \cdots \times (a_n, b_n)$ of \mathbb{R}^n is called an open rectangle and the subset $[a_1, b_1] \times \cdots \times [a_n, b_n]$ is called a closed rectangle.
 - (a) Show that an open rectangle is an open set and a closed rectangle is a closed set.
 - (b) Show that a sub set U of \mathbb{R}^n is an open set if and only if for every $x_0 \in U$ there exists an open rectangle R such that $x_0 \in R \subset U$.
- (8) Show that every open set in \mathbb{R} can be expressed as countable union of disjoint open intervals.
- (9) Show that every set in \mathbb{R}^n can be expressed as intersection of open sets.

(10)

Definition 0.1. Let (X, d) be a metric space and $A \subseteq X$.

A point $x \in A$ is said to be an interior point of A if $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \subset A$. Denote A° to be the set of all interior points of A.

A point $x \in X$ is said to be an exterior point of A if $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \subset A^{c}$. Denote A_{ext} to be the set of all interior points of A.

A point $x \in X$ is said to be a **boundary point** of A if for every $\epsilon > 0$ the ball $B_{\epsilon}(x)$ contains points of both A and A^{c} . Denote ∂A the set of boundary points of A. (is also called boundary of A)

- (a) Find $\partial \mathbb{Q}$.
- (b) Let $A = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. Find ∂A .
- (c) Let $x \in A$. Show that either $x \in \partial A$ or $x \in A^o$.
- (d) Show that if A is closed then $\partial A \subseteq A$ and if A is open then $\partial A \cup A = \emptyset$.
- (e) Show that A° is the largest open set contained in A.
- (f) Let \bar{A} be the smallest closed set containing A. Show that $\bar{A} \setminus A^0 = \partial A$.
- (11) Let A, B be two closed subsets of \mathbb{R}^n . Define

$$d(A, B) = \inf\{||a - b|| = d(a, b) : a \in A \text{ and } b \in B\}.$$

- (a) If $A = \{a\}$ is a singleton set then show that d(A, B) > 0.
- (b) Give example of two disjoint closed sets A and B such that d(A, B) = 0.
- (c) If A is compact and $A \cap B = \emptyset$ then show that d(A, B) > 0.