Extended Edition

Inside Kubernetes An Architectural Deep Dive

Anthony E. Nocentino

aen@centinosystems.com

Anthony E. Nocentino

- Consultant and Trainer
- Founder and President of Centino Systems
 - Specialize in system architecture and performance
 - Masters Computer Science
 - Microsoft MVP Data Platform 2017 2020
 - Linux Foundation Certified Engineer
 - Friend of Redgate 2015-2019
- email: aen@centinosystems.com
- · Twitter: @nocentino
- Blog: www.centinosystems.com/blog
- Pluralsight Author: <u>www.pluralsight.com</u>

Agenda

- What is Kubernetes
- Benefits of Using Kubernetes
- Kubernetes API Objects
- Exploring Kubernetes Architecture
- Deploying Applications
- Deploying SQL Server

What is Kubernetes?

- Container Orchestrator
- Infrastructure Abstraction
- Desired State

Kubernetes Benefits

- Managing state, starting things and keeping them up
- Speed and consistency of deployment
- Ability to absorb change quickly
- Ability to recovery quickly
- Hide complexity in Cluster
- Persistent application access endpoints

Kubernetes Cluster

Kubernetes API

- · API Objects Represent resources in your system
- API Server Main communication hub
 - Pods
 - Controllers
 - Services
 - Storage
 - ...and more

Pods

- One or more containers
- It's your application or service
- The most basic unit of work
- Unit of scheduling
- · Ephemeral no Pod is ever "redeployed"

Controllers

- Create and manage Pods for you
- Define your desired state
- Respond to Pod State and Health
- ReplicaSet
- Deployment

Services

- Adds persistency to our ephemeral world
- Networking abstraction for Pod access
- IP and DNS name for the service
- Load balancing
- Redeployed Pods automatically updated
- Scaled by adding/removing Pods

Exploring Kubernetes Architecture

Controller Operation of Pods

Services

Controller Operations - Deployment

Deploying Applications

- Imperative
- Declarative
- YAML and JSON

Declarative Deployment - Manifests

```
apiVersion: app/v1
kind: Deployment
metadata:
  name: hello-world
spec:
  replicas: 3
  selector:
    matchLabels:
      app: hello-world
                                     kubectl apply -f deployment.yaml
  template:
    metadata:
      labels:
        app: hello-world
    spec:
      containers:
      - image: gcr.io/google-samples/hello-app:1.0
        name: hello-app
```

Demo!

- Imperatively Deploying a web application
- Accessing Services within a Cluster

Running SQL Server in Kubernetes

· A Pod goes back to its initial state each time it's deployed

- State where do we store data?
- · Configuration how do we configure SQL Server?

Decoupling Data and Computation

Storage in Kubernetes

- Persistent Volume (pv)
 - Administrator defined storage
 - iSCSI, NFS, FC, AzureDisk...many more
- Persistent Volume Claim (pvc)
 - The Pod "claims" the pvc
 - The pvc is mapped to the pv by k8s
 - Decouples the Pod and the storage

Cluster

Data Persistency in SQL Server in K8S

- Define Persistent Volumes/Persistent Volume Claims
 - Instance directory (error log, default trace, etc..)
 - /var/opt/mssql/
 - User Database default directory
 - /var/opt/mssql/data

Configuring SQL Server in a Pod

- Pods go back to the initial state of the container image on creation
- In our Pod configuration we define Environment Variables
 - Used at startup to configure the SQL Instance
 - ACCEPT_EULA
 - MSSQL_SA_PASSWORD
 - Stored in the cluster as a secret (hashed, not encrypted)

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-environment-variables?view=sql-server-2019

Running SQL Server in a Pod (con't)

- In our Pod configuration define our storage configuration (pvc)
- Initial Pod deployment
 - If there's no system databases in the default data directory...
 - /var/opt/mssql/data
 - They're copied into the default data directory from the SFPs
- On subsequent Pod deployments the storage is attached into the 'new' Pod
 - Databases are already there
 - Master is read...contains our instance's configuration and state
 - Defined and accessible user databases are brought online

High Availability in SQL Server in Kubernetes

Demo

- · Deploying SQL Server in a **Deployment** with Persistent Storage
 - Recovery Scenario
 - Upgrading SQL Server

Advanced Disk Topologies for SQL Server

- Define your Persistent Volumes and Persistent Volume Claims
- Use environment variables to specify default directories on Pod at startup
 - MSSQL_DATA_DIR (/data)
 - MSSQL_LOG_DIR (/log)
- New user databases will be created in these locations
- On Pod creation
 - · All PV/PVCs will be mounted in the container at the defined locations
 - Master will online the databases

http://www.centinosystems.com/blog/sql/data-persistency-and-advanced-sql-server-disk-topologies-in-kubernetes/

Resource Management

- Resource management can happen at the Pod and Namespace levels
 - CPU and Memory
 - · requests guaranteed
 - · limits upper limit
 - No limits by default

Server Instance settings still apply

```
containers:
    name: mssql
    image: '.../server:2019-CU1-ubuntu-16.04'
    resources:
        requests:
            cpu: 1
            memory: 1Gi
            limits:
            cpu: 1
            memory: 8Gi
```


Backups!

- Persistent Volume (Shared or Dedicated)
 - AzureDisk
 - AzureFile
 - NFS/iSCSI/FC
- To URL
- Drive the backup jobs with normal techniques
 - Ola Hallengren's
 - Maintenance Plans
 - dbatools

Cluster

Demo!

- · Deploying SQL Server in a **Deployment** with Persistent Storage
 - Disk Topology
 - Setting Resource Limits
 - Backing up SQL Server in Kubernetes

https://docs.microsoft.com/en-us/sql/big-data-cluster/big-data-cluster-overview?view=sqlallproducts-allversions

Azure Arc - Data Services

How it works: architecture of Azure data services on customer infrastructure

A few steps to get Azure data services in your environment:

- 1 Have Kubernetes on your infrastructure
- 2 Prepare environment with APIs and CLIs
- 3 Install Azure Arc data controller
- 4 Connect to Azure
- Deploy and run Azure data services for your workloads

Management and tooling

Azure Portal

Azure Data Studio

CLI

3rd Party

Review

- What is Kubernetes
- Benefits of Using Kubernetes
- Kubernetes API Objects
- Exploring Kubernetes Architecture
- Deploying Applications
- Deploying SQL Server

More Resources

- Docker for Windows/Mac
- Managed Service Providers
 - Azure Kubernetes Service (AKS)
 - https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough
 - Elastic Container Service for Kubernetes (EKS)
 - https://aws.amazon.com/getting-started/projects/deploy-kubernetes-app-amazon-eks/
 - Google Kubernetes Engine (GKE)
 - https://cloud.google.com/kubernetes-engine/docs/how-to/
- Pluralsight Kubernetes Installation and Configuration Fundamental and more!
 - https://app.pluralsight.com/profile/author/anthony-nocentino
- Deploying SQL Server in Kubernetes from PASS HADR Virtual Chapter
 - https://youtu.be/5u3Dk4zKa9A (Configuration, Resource Management, Backups)

Need more data or help?

http://www.centinosystems.com/blog/talks/

Links to resources

Demos

Presentation

Pluralsight

aen@centinosystems.com @nocentino www.centinosystems.com

Solving tough business challenges with technical innovation

Thank You!

