Physics 406 Homework

EVAN CARPENTER

Winter 2022

1 Homework 1

Problem 1.

problem 1

Problem 2.

problem 2

Problem 3.

problem 3

Problem 4.

Suppose that a particle moving in one dimension is confined to x > 0, and it's energy is $E = \frac{p^2}{2m} + mgx$ Make a sketch to indicate what region of classical phase space is accessible to this particle if its energy lies between E_0 and $E_0 + \delta E_0$.

Figure 1: Particle constrained

2 Homework 2

Problem 1.

(a) Show that the number of states $\phi(E)$ with energy less than E, for a particle of mass m in a cubical box of side L is:

$$\phi(E) = \frac{\pi}{6} \left(\frac{L}{\pi \hbar}\right)^3 (2mE)^{3/2}$$

Hint: Use the energy levels 2.1.3 in Reif and treat the n as continuous variables.

- (b) Calculate $\Omega(E)$
- (c) A nitrogen molecule at room temperature has a typical energy of $6 \times 10^{-14} \text{ergs}$. Calculate $\phi(E)$ for a particle in a box of side length 10cm. Also calculate $\Omega(E)$ assuming $\delta E = 10^{-24} \text{ergs}$

Problem 2. Reif 2.4

Consider an isolated system consisting of a large number N of weakly interacting localized particles of spin $\frac{1}{2}$. Each particle has a magnetic moment μ which can point either parallel or antiparallel to an applied field H. The energy of the system is then $E = -(n_1 - n_2)\mu H$, where n_1 is the number of spins aligned parallel to H and n_2 is the number of spins aligned antiparallel to H.

- (a) Consider the energy range between $E + \delta E$ where δE is much smaller than E, but E is still microscopically large, so $\mu H \ll \delta E \ll E$. What is $\Omega(E)$ (the total number of states in the energy range)?
- (b) Write down an expression for $ln(\Omega(E))$ as a function of E. Simplify this expression by using Stirling's formula in it's simplest form:

$$ln(n!) \approx n ln(n) - n$$

(c) Assume that the energy E is in a region where $\Omega(E)$ is appreciable \rightarrow that it is not close to the extreme possible values $\pm N\mu H$ which it can assume. In this case apply a Gaussian approximation to part (a) to obtain a simple expression for $\Omega(E)$ as a function of E.

Problem 3. Reif 2.5

Consider the infinitesimal quantity

$$A(x,y)dx + B(x,y)dy \equiv dF$$

(a) Suppose dF is an exact differential so that F = F(x, y). Show that A, B must satisfy the condition:

$$\frac{\partial A}{\partial y} = \frac{\partial B}{\partial x}$$

(b) If dF is an exact differential, show that the integral $\int dF$ evaluated along any closed path on the xy plane must vanish.

Problem 4. Reif 2.7

(a) Consider a particle confined to a cubical box. The possible energy levels are given by

$$E = \frac{(\hbar \pi)^2}{2m} \left[\left(\frac{n_x}{L_x} \right)^2 + \left(\frac{n_y}{L_y} \right)^2 + \left(\frac{n_z}{L_z} \right)^2 \right]$$

Show that the force exerted by the particle in this state on a wall perpendicular to the x axis is given by

$$F_x = -\frac{\partial E}{\partial L_x}$$

while the length L_x is changed quasi-statically by an amount dL_x .

(b) Calculate explicitly the pressure on this wall. By averaging over all possible states, find an expression for the mean pressure on this wall (Hint: Exploit the property that $\overline{n_x^2} = \overline{n_y^2} = \overline{n_z^2}$ must be true by symmetry.) Show that the mean pressure can be simply expressed in terms of mean energy \overline{E} of the particle and the volume $V = L_x L_y L_z$ of the box.