

Transformation of outcome variable in linear regression – why and how

Henrik Støvring

Senior researcher, MSc, PhD, DMSc Steno Diabetes Center Aarhus - Denmark hersto@rm.dk

September 14, SDCA

Overview

- Why do we need to transform?
- Spotting the need for a transformation
- Interpretation of regression coefficients with logtransformed outcome

Linear regression – normality assumption

Model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$
$$\varepsilon \sim N(0, \sigma^2)$$

• here σ^2 is the variance (= Standard Deviation squared)

Statistical theory (and rule-of-thumb experience)

- If residual variation (distribution of ε) is not normal:
 - Standard errors are biased
 - Confidence intervals do not maintain their nominal coverage
 - → Less or more than 95% of all 95% CIs will actually contain the true value
- HOWEVER: All analyses based on linear normal models (t-test, linear regression, ANOVA, ANCOVA) are considered to be rather robust to misspecification of model for residual variation

Simulation example

- Linear regression where residual variation is either
 - Normal
 - Uniform^5 (highly skewed)

Scatter plot Y vs X

Simulation setup

- Small datasets: n=10
- 10,000 repetitions
- For each data use linear regression to estimate slope (true value = 0.1 increase in Hba1c per BMI unit)
- Check if estimated confidence interval contains true value

Simulation results

- With normally distributed residual variation
 - Bias (w/ 95% CI):

-0.0010 (-0.0033; 0.0012)

Coverage probability of 95% CI:

95.1% (94.7%; 95.5%)

- With non-normally distributed residual variation
 - Bias (w/95% CI):

0.0009 (-0.0021; 0.0040)

Coverage probability of 95% CI:

95.7% (95.3%; 96.1%)

How do we spot a non-normal distribution

- Q-Q-plot
- Algorithm
 - Order data in ascending order $x_{[1]} < x_{[2]} < \cdots < x_{[n]}$
 - r_i is rank, ie 1, 2, 3,..., n
 - Compute $q_i = \frac{r_i}{n}$, i.e. the cumulative proportion of data points below or equal to data point i
 - Compute the quantile in a standard normal distribution for each q_i to obtain y_i
 - Plot $x_{[i]}$ vs y_i

Normal quantiles

Q-Q-plot

 Rationale is to create a linear function if data are normally distributed

GOOD!

Evaluating Q-Q-plots (I)

• Normal?

Evaluating Q-Q-plots (II)

• Normal?

Evaluating Q-Q-plots (III)

• Normal?

Some guidance

- Look for systematic deviations from linearity
- OK with single points deviating at the tails
- OK with criss-crossing over the line in the middle part
- S or L shapes typically indicates non-normality
- Log-normal is common and resembles an L lying down with the short edge pointing up
- Very difficult in small samples to determine that data are not following a normal distribution

Q-Q-plots for normally distributed data, n = 50

Q-Q-plots for normally distributed data, n = 1,000

Q-Q-plots for log-normally distributed data, n = 50

Q-Q-plots, log-normally distributed data, n = 1,000

Q-Q-plots for uniformly distributed data, n = 50

Q-Q-plots, uniformly distributed data, n = 1,000

Relation between Log-normal and normal

distribution

Interpretation of linear regression with log(Y) outcome

Assume we have transformed Y to estimate the following

$$\log(Y) = \beta_0 + \beta_1 \cdot x_1 + \varepsilon, \qquad \varepsilon \sim N(0, \sigma^2)$$

Using highschool math with exponential on both sides:

$$Y = \exp \beta_0 \cdot \exp(\beta_1)^x \cdot \exp \varepsilon$$

• In other words, the model is multiplicative

Interpretation of coefficients

• Intercept:

 $\exp(\beta_0)$: Median of outcome for reference person

• Slope:

 $\exp(\beta_1)$: Factor for increase in median of outcome per unit in explanatory variable

• Note: Non-linear model on original scale

Example output (log-scale)

. regress ln_hbalc b0.group bmi

Source	SS	df	MS	_	per of obs	=	342 472.07
Model Residual	38.1824433 13.7098077 51.8922509	2 339 	19.091221	16 Prob 91 R-so Adj	, 339) c) > F quared R-squared t MSE	= =	0.0000 0.7358 0.7342 .2011
<u> </u>	Coefficient				_	onf.	interval]
1.group bmi20 cons	2193906	.0217735 .0024052 .022921	-10.08 29.12 48.34	0.000 0.000 0.000	262218 .065308 1.06292	34	1765625 .0747702 1.153098

Example output (log-scale)

Normality check (log-scale)

Example output (original scale)

. regress ln hbalc b0.group bmi, eform("MedRat")

Source	SS	df	MS	Number	er of obs	=	342 472.07
Model Residual + Total	38.1824433 13.7098077 51.8922509	2 339 3 341	19.0912216 .04044193 	6 Prob l R-squ - Adj l	> F uared R-squared	= = =	0.0000 0.7358 0.7342 .2011
ln_hba1c	MedRat	Std. err.	 t	P> t	 [95% cor	 nf.	interval]
1.group bmi20 _cons	.803008 1.07255 3.028335	.0174843 .0025797 .0694126	-10.08 29.12 48.34	0.000 0.000 0.000	.7693428 1.067488 2.894833	3	.8381464 1.077637 3.167993

Example output (original scale)

Thanks for your attention – questions welcome!

(Djursland, July 2015 – H Støvring)