Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 6

Aufgabe 6.1 (2+3+1 Punkte)

Gegeben sei das Wort $w = aacbcbbaccabbcbccccabccccabccccab über <math>\{a, b, c\}$.

a) Zerlegen Sie w in Dreierblöcke und geben Sie für jeden Block an, wie häufig er in w vorkommt.

 $w={
m aac}$ bcb bac cab bcb ccc cab ccc bcb ccc cab ccc cab

Block	Häufigkeit
aac	1
bcb	3
bac	1
cab	4
ссс	4

b) Konstruieren Sie den für den Huffman-Code benötigten Baum.

c) Geben Sie die Codierung von w mit dem zu dem Baum gehörenden Huffman-Code an.

Das codierte Wort ist 0000100110011110110111101110

Aufgabe 6.2 (2+2+2 Punkte)

Sei G = (V, E) ein gerichteter Graph.

Zeigen Sie:

a) Falls gilt: $\forall v \in V : d^+(v) \geq 1$, dann gibt es für jedes $k \in \mathbb{N}_0$ einen Pfad der Länge k in G.

Für G gelte: $\forall v \in V : d^+(v) \ge 1$.

Induktionsanfang: k=0: Sei $v\in V$ beliebig. Dann gibt es den Pfad (v) der Länge 0. $\sqrt{}$

Induktionsvoraussetzung: Für ein beliebiges, aber festes $k \in \mathbb{N}_0$ gilt: Es gibt einen Pfad der Länge k in G.

Induktionsschritt: Wir zeigen, dass es dann auch einen Pfad der Länge k+1 in G gibt:

Nach Induktionsvoraussetzung gibt es einen Pfad (v_0, \ldots, v_k) der Länge k in G. Nach Voraussetzung gilt $d^+(v_k) \ge 1$, das heißt $\exists v_{k+1} \in \{y \mid (x,y) \in E\}$.

Dann ist $(v_0, \ldots, v_k, v_{k+1})$ ein Pfad der Länge k+1 in G.

(Details, dessen Fehlen keinen Punktabzug gibt: Nach Induktionsvoraussetzung gilt $\forall i \in \mathbb{G}_k : (v_i, v_{i+1}) \in E$. Weiterhin gilt $(v_k, v_{k+1}) \in E$, und damit folgt $\forall i \in \mathbb{G}_{k+1} : (v_i, v_{i+1}) \in E$.

Damit ist (v_0, \ldots, v_{k+1}) ein Pfad der Länge k+1 in G.)

b) G ist kein gerichteter Baum falls gilt: $\forall v \in V : d^+(v) \ge 1$. (**Hinweis**: Verwenden Sie Teilaufgabe a) mit $k \ge |V|$.)

Für G gelte: $\forall v \in V : d^+(v) > 1$.

Wie in Teilaufgabe a) gezeigt, gibt es in G einen Pfad jeder beliebigen Länge, also insbesondere einen Pfad der Länge k = |V|.

Dies bedeutet, dass wir einen Pfad $(v_0, \ldots, v_{|V|})$ finden können.

Es gilt $|\{v_0, \dots, v_{|V|}\}| \leq |V| \Rightarrow$ Es gibt $i, j \in \mathbb{G}_{|V|+1}$ mit i < j und $v_i = v_j$.

Angenommen, G wäre ein Baum und r die Wurzel von G. Nach Definition gibt es dann einen Pfad von r nach v_i . Fügen wir an diesen Pfad den Pfad $(v_i, \ldots v_j)$ an, so erhalten wir einen weiteren Pfad von r nach $v_j = v_i$, was jedoch in einem Baum nicht möglich ist.

Somit kann G kein gerichteter Baum sein.

c) Falls gilt: $\exists v \in V : d^-(v) \geq 2$, ist G kein gerichteter Baum.

Für G gelte $\exists v \in V : d^-(v) \geq 2$. Sei $v \in V$ ein Knoten, für den $d^-(v) \geq 2$ gilt. Das bedeutet, dass es zwei verschiedene Knoten $v_1, v_2 \in V$ gibt mit $\forall i \in \{0, 1\} : (v_i, v) \in E$.

Angenommen, G sei ein gerichteter Baum und $r \in V$ die Wurzel von G.

Dann gibt es nach Definition einen Pfad von r nach v_1 und einen Pfad von r nach v_2 .

Fügt man für $i \in \{0, 1\}$ an den Pfad von r nach v_i den Pfad (v_i, v) , erhält man einen Pfad von r nach v, der als vorletzten Knoten v_1 enthält, und einen Pfad von r nach v, der als vorletzten Knoten v_2 enthält.

Diese beiden Pfade sind verschieden, was nach der Definition von gerichteten Bäumen nicht vorkommen darf.

Aufgabe 6.3 (3 Punkte)

Zeichnen Sie möglichst viele ungerichtete Graphen mit vier Knoten, so dass gilt:

- Jeder Graph ist zusammenhängend.
- Jeder Graph ist schlingenfrei.
- Kein Graph ist isomorph zu einem der anderen Graphen.

Aufgabe 6.4 (3+2+2 Punkte)

Eine Zahl n ist genau dann eine Primzahl, wenn sie eine positive ganze Zahl ist und genau zwei Teiler hat, nämlich 1 und n. Insbesondere ist 1 **keine** Primzahl. Für $n \in \mathbb{N}_+$ sei der Graph $G_n = (V_n, E_n)$ gegeben durch

$$V_n = \{ m \in \mathbb{N}_+ \mid m \text{ teilt } n \}$$

$$E_n = \{ (k, m) \in V_n \times V_n \mid k \text{ teilt } m \wedge \frac{m}{k} \text{ ist eine Primzahl.} \}$$

a) Zeichnen Sie G_{12} , G_{16} und G_{30} .

 G_{12} :

 G_{16} :

 G_{30} :

b) Geben Sie eine hinreichende und notwendige Bedingung für $n \in \mathbb{N}_0$ an, damit G_n ein Baum ist.

 G_n ist genau dann ein Baum, wenn es eine Primzahl p und ein $k \in \mathbb{N}_0$ gibt, so dass $n = p^k$ gilt.

(Alternativ: G_n ist genau dann ein Baum, wenn es höchstens eine Primzahl gibt, die n teilt.)

c) Zeigen Sie: $\forall n, m \in \mathbb{N}_+ : n \text{ teilt } m \Rightarrow G_n \text{ ist Teilgraph von } G_m.$

Zu zeigen ist: n teilt $m \Rightarrow V_n \subseteq V_m$ und

 $n \text{ teilt } m \Rightarrow E_n \subseteq E_m.$

Es gelte also n teilt m.

 $V_n \subseteq V_m$: Sei $v \in V_n$ beliebig. Nach Definition gilt v teilt n.

Es gilt somit $\exists k_1 \in \mathbb{N}_0 : k_1 n = m \text{ und } \exists k_2 \in \mathbb{N}_0 : k_2 v = n \Rightarrow k_1 k_2 v = m \Rightarrow v \text{ teilt}$ m. (Dieser Schritt ist deutlich ausführlicher als die Feststellung, dass v, wenn es n teilt, auch m als Vielfaches von n teilt, die volle Punktzahl gäbe.)

Damit folgt $v \in V_m$, und es gilt somit $V_n \subseteq V_m$.

 $E_n \subseteq E_m$: Sei $(x, y) \in E_n$.

Wir haben gezeigt, dass dann $x \in V_m \land y \in V_m$ gilt. Außerdem gilt nach Definition von E_n : x teilt y und $\frac{y}{x}$ ist eine Primzahl. Damit folgt $(x,y) \in E_m$ und somit $E_n \subseteq E_m$.

Damit ist gezeigt, dass G_n ein Teilgraph von G_m ist.