

Codeforces Round #289 (Div. 2, ACM ICPC Rules)

А. Максимум в таблице

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

Таблица a размера $n \times n$ задаётся следующим образом:

- В первой строке и в первом столбце таблицы стоят единицы, то есть $a_{i, 1} = a_{1, i} = 1$ для всех i = 1, 2, ..., n.
- Каждое из оставшихся чисел в таблице определяется как сумма числа над ним и числа слева от него. Иными словами, остальные элементы таблицы задаются формулой $a_{i,j} = a_{i-1,j} + a_{i,j-1}$.

Эти условия однозначно задают все элементы таблицы.

Вам даётся число n. Требуется определить значение максимального числа в таблице $n \times n$, построенной по вышеприведенным правилам.

Входные данные

В единственной строке входных данных задано натуральное число n ($1 \le n \le 10$) — количество строк и столбцов таблицы.

Выходные данные

В единственной строке выведите натуральное число m — максимальное число построенной таблицы.

Примеры тестов

входные	: данные	
1		
выходны	выходные данные	
1		

1	
входные данные	
5	
выходные данные	
70	

Примечание

Во втором тесте строки таблицы выглядят так:

```
{1, 1, 1, 1, 1},
{1, 2, 3, 4, 5},
{1, 3, 6, 10, 15},
{1, 4, 10, 20, 35},
{1, 5, 15, 35, 70}.
```

В. Раскраска шаров

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

На столе лежит n кучек камней, в i-й кучке находится a_i камней. Требуется раскрасить каждый камень в один из k цветов так, чтобы для каждого цвета c и для любых двух кучек i и j количества камней цвета c в кучках i и j отличались не более чем на один.

Иными словами, пусть $b_{i,\,c}$ — количество камней в i-й кучке, покрашенных в цвет c. Тогда для любых $1 \le c \le k,\, 1 \le i,j \le n$ должно выполняться $|b_{i,\,c} - b_{j,\,c}| \le 1$. Необязательно использовать все k цветов: если цвет c не встречается в кучке i, то $b_{i,\,c}$ полагается равным нулю.

Входные данные

В первой строке входных данных заданы натуральные числа n и k ($1 \le n, k \le 100$), разделенные пробелом — количество кучек и количество цветов соответственно.

Во второй строке заданы n натуральных чисел $a_1, a_2, ..., a_n$ ($1 \le a_i \le 100$), задающие количества камней в кучках.

Выходные данные

Если раскраски камней, удовлетворяющей условию задачи, не существует, в единственной строке выведите «NO» (без кавычек).

Иначе в первой строке «YES» (без кавыечек). Далее должны следовать n строк, в i-й из них должны находиться a_i чисел, разделенных пробелами. j-е ($1 \le j \le a_i$) из этих чисел должно равняться цвету j-го камня в i-й кучке. **Если возможных ответов несколько**, разрешается вывести любой.

Примеры тестов

примеры тестов		
входные данные		
4 4 1 2 3 4		
1 2 3 4		
выходные данные		
YES		
1		
1 4 1 2 4		
1 2 3 4		

кодные данные	
2 2 4 1 3	
ыходные данные	

входные данные		
5 4		
3 2 4 3 5		
выходные данные		
YES		
1 2 3		
1 3		
1 2 3 4		
1 3 4		
1 1 2 3 4		

С. Суммы цифр

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

У Васи была **строго возрастащая** последовательность целых положительных чисел $a_1, ..., a_n$. Вася построил по ней новую последовательность $b_1, ..., b_n$, где b_i — сумма цифр a_i в десятичной записи. После этого последовательность a_i потерялась, осталась только последовательность b_i .

Васе интересно, какими могли быть числа a_i . Из всех вариантов последовательности a ему интересен такой, в котором последнее число a_n является минимально возможным. Помогите Васе восстановить исходную последовательность.

Гарантируется, что подобная последовательность всегда существует.

Входные данные

В первой строке записано одно целое число n ($1 \le n \le 300$).

В следующих n строках записаны числа $b_1,...,b_n$ — требуемые суммы цифр. Все b_i удовлетворяют ограничениям $1 \le b_i \le 300$.

Выходные данные

11 100

Выведите n чисел по одному на строке — корректный вариант для чисел a_i , в порядке возрастания индексов. Последовательность должна быть строго возрастающей. Сумма цифр i-го числа должна быть равна b_i . Если вариантов с минимальным значением последнего числа несколько, выведите любой. Числа следует выводить без ведущих нулей.

Примеры тестов
входные данные
3 1
2 3
выходные данные
1 2
3
входные данные
3
2 1
выходные данные

D. Восстановление чисел

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод

вывод: стандартный вывод

У Васи было два массива, составленных из целых неотрицательных чисел: a размера m и b размера m. Вася выбрал натуральное число k и построил таблицу v размера $n \times m$ по следующему правилу:

$$v_{i,j} = (a_i + b_j) \operatorname{mod} k$$

Вася записал таблицу v на листок и положил в стол.

Спустя год Вася, копаясь в кипе вещей в столе, нашёл какой-то листок, на котором была записана таблица w размера $n \times m$. Он вспомнил, что когда-то давно строил таблицу по вышеописанным правилам, но он не уверен, что нашёл тот самый листок с таблицей v. Ваша задача — выяснить, могла ли найденная таблица w быть получена по этим правилам, и если да, то определить какой-нибудь набор чисел $k, a_1, a_2, ..., a_n, b_1, b_2, ..., b_m$, по которым могла полуиться такая таблица.

Входные данные

В первой строке заданы натуральные числа n и m ($1 \le n, m \le 100$), разделенные пробелом — количество строк и столбцов в найденной таблице соответственно.

В i-й из последующих строк следуют числа $w_{i,\,1}, w_{i,\,2}, ..., w_{i,\,m}$ ($0 \le w_{i,\,j} \le 10^9$), разделенные пробелами — элементы i-й строки таблицы w.

Выходные данные

Если таблица w не могла быть получена указанным в условии способом, в единственной строке выведите « ${
m NO}$ » (без кавычек).

Иначе нужно вывести четыре строки.

В первой строке выведите «YES» (без кавычек).

Во второй строке выведите натуральное число k ($1 \le k \le 10^{18}$). Обратите внимание, что каждый элемент таблицы w должен лежать в пределах от 0 до k - 1 включительно.

В третьей строке выведите n натуральных чисел $a_1, a_2, ..., a_n$ ($0 \le a_i \le 10^{18}$).

В четвертой строке выведите m натуральных чисел $b_1, b_2, ..., b_m$ ($0 \le b_i \le 10^{18}$).

Примеры тестов

Входные данные 2 3 1 2 3 2 3 4 Выходные данные YES 1000000007 0 1 1 2 3

. 2 3
входные данные
. 2
. 2
выходные данные
res
1
. 2

входные данные
2 2
1 2 2 1
выходные данные
NO NO

Примечание

Под записью $b \bmod c$ подразумевается остаток от целочисленного деления b на c.

Гарантируется, что если существует какой-то набор чисел $k, a_1, ..., a_n, b_1, ..., b_m$, по которому могла быть построена таблица w, то существует и набор чисел, удовлетворяющий ограничениям $1 \le k \le 10^{18}, \ 1 \le a_i \le 10^{18}, \ 1 \le b_i \le 10^{18}$. Иными словами, эти верхние границы введены только для удобства проверки.

Е. Мелодичная песня

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

В седьмом классе Саша начал слушать музыку. Для того чтобы оценивать, какая из песен нравится ему больше, он ввел понятие мелодичности песни. Название песни — это слово из заглавных латинских букв. Мелодичность песни это мелодичность её названия.

Назовем простой мелодичностью слова отношение количества гласных букв в слове к количеству всех букв в слове.

Назовем мелодичностью слова сумму простых мелодичностей всех подстрок слова.

Более формально, определим функцию vowel(c), равную 1, если c — гласная, и 0 иначе. Пусть s_i-i -й символ строки s, а $s_{i..j}$ — подстрока слова s, начинающаяся с i-го символа и заканчивающаяся j-м символом ($s_{isi+1}...s_j$, $i \le j$).

Тогда простая мелодичность s определяется по формуле:

$$simple(s) = \frac{\sum\limits_{i=1}^{|s|} vowel(s_i)}{|s|}$$

Мелодичность S равна

$$\sum_{1 \le i \le j \le |s|} simple(s_{i..j}).$$

Найдите мелодичность данной песни.

Гласными буквами считаются I, E, A, O, U, Y.

Входные данные

На ввод подаётся единственная строка s ($1 \le |s| \le 5 \cdot 10^5$) — название песни.

Выходные данные

Определите $\mathit{мелодичность}$ песни с абсолютной или относительной погрешностью не более 10^{-6} .

Примеры тестов

входные данные	
IEAIAIO	
выходные данные	
28.0000000	

входные данные
BYOB
выходные данные
5.8333333

ВХОДНЫЕ ДАННЫЕ

YISVOWEL

ВЫХОДНЫЕ ДАННЫЕ

17.0500000

Примечание

В первом примере все буквы — гласные. Простая мелодичность каждой подстроки равна 1.

Всего в слове длины 7 имеется 28 подстрок. Значит, мелодичность песни равна 28.

F. Контроль успеваемости

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 256 мегабайт ввод: стандартный ввод вывод: стандартный вывод

На одной из своих контрольных работ по информатике Дмитрий Олегович решил дать следующую задачу:

Пусть дано дерево T на n вершинах, заданное своей матрицей смежности a[1...n, 1...n]. Какую последовательность чисел выведет следующий псевдокод?

dfs(1);

Чтобы было легче проверять работы студентов, Дмитрий Олегович решил придумать такое дерево T, чтобы в ответе получилась его любимая последовательность b. С другой стороны, Дмитрий Олегович не хочет давать студентам одинаковые данные в контрольной работе — ведь в таком случае не миновать списывания. Поэтому у Дмитрия Олеговича возник следующий вопрос: сколько существует таких деревьев, что при запуске данного псевдокода на них выведенная последовательность в точности совпадает с последовательностью b?

Два дерева на n вершинах считаются различными, если их матрицы смежности a_1 и a_2 не совпадают, то есть существует такая пара (i,j), что $1 \le i,j \le n$ и $a_1[i][j] \ne a_2[i][j]$.

Входные данные

В первой строке задано натуральное число n ($1 \le n \le 500$) — количество чисел в последовательности b.

Во второй строке задаются n натуральных чисел $b_1, b_2, ..., b_n$ ($1 \le b_i \le n$), разделенные пробелом. Гарантируется, что последовательность b является перестановкой. Иными словами, каждое из чисел 1, 2, ..., n встречается в последовательности b ровно один раз. Также гарантируется, что $b_1 = 1$.

Выходные данные

Выведите одно число — остаток от деления количества подходящих деревьев на $10^9 + 7$.

Примеры тестов

```
Входные данные

3
1 2 3

Выходные данные
2
```

```
входные данные
3
1 3 2

выходные данные
1
```