

Ciências da Computação e Sistemas de Informação

PHPSimplex

Ciências da Computação e Sistemas de Informação

http://www.phpsimplex.com/simplex/simplex.htm?l=pt

Método: Simplex / Duas Fases ✔
Quantas variáveis de Gráfico ?
Quantas restrições?
Continuar

Método Gráfico						
Qual é o objetivo da função? Maximizar ✔						
Função: $1 X_1 + 2 X_2$						
Restrições:						
1 $X_1 + 3$ $X_2 \le \checkmark$ 12						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
1 $X_1 + 5$ $X_2 \ge \checkmark$ 9						
$X_1, X_2 \ge 0$						
Continuar						

Ciências da Computação e Sistemas de Informação

Método Gráfico

MAXIMIZAR: $Z = 1 X_1 + 2 X_2$

 $1 X_1 + 3 X_2 \le 12$

 $1 \; X_1 + 1 \; X_2 \leq 10$

 $1 X_1 + 5 X_2 \ge 9$

 $X_1, X_2 \ge 0$

Prof. Dr. João Carlos Lopes Fernandes

Ciências da Computação e Sistemas de Informação

Ponto	Coordenada X (X1)	Coordenada Y (X2)	Valor da função (Z)
0	0	0	0
A	0	4	8
В	12	0	12
C	9	1	11
D	0	10	20
E	10	0	10
F	0	1.8	3.6
G	9	0	9

Mostrar os resultados como frações.

NOTA:

Verde são os pontos em que a solução seja encontrada. Vermelho são os pontos fora da região viável.

Solucionar pelo método Simplex

Salvar o exercício

Ciências da Computação e Sistemas de Informação

Problema de Transporte. Exemplo Protótipo

Um dos principais produtos da firma Lactosal é o leite.

Os pacotes de leites são empacotados em 3 fábricas e depois são distribuídos de caminhão para quatro armazéns

Conhecendo os *custos de transporte*, a *procura* prevista para cada armazém e *as capacidades de produção* de cada fábrica, pretende-se:

OTIMIZAR O PROGRAMA DE DISTRIBUIÇÃO DIÁRIO DO LEITE.

Ciências da Computação e Sistemas de Informação

Os dados dos custos de uma carga de leite para cada combinação fábricaarmazém e das ofertas (produção) e procuras, em cargas de caminhão/dia, são os seguintes:

24 cargas
diárias de leite
devem ser
produzidas e
distribuídas

	Custo por carga de caminhão				
		Arma			
Fábricas	1	2	3	4	Oferta
1	1	2	3	4	6
2	4	3	2	4	8
3	0	2	2	1	10
Procura	4	7	6	7	

Ciências da Computação e Sistemas de Informação

Oferta total superior à procura total. Exemplo 1: Plano de Produção.

Uma multinacional produz aviões comerciais para diversas companhias de aviação. A última etapa no processo de produção é a produção de motores seguido da sua instalação no avião.

Para cumprir os contratos estabelecidos deve ser determinado o plano ótimo de produção dos motores para os próximos quatro meses.

Ciências da Computação e Sistemas de Informação

Oferta total superior à procura total. Exemplo 1: Plano de Produção.

Os dados para o plano da produção para os quatro meses futuros são os seguintes:

Mês	Instalações programadas	Produção máxima	Custo unitário de produção	Custo unitário de armazenamento
1	10	25	1.08	
2	15	35	1.11	0.015
3	25	30	1.10	0.015
4	20	10	1.13	0.015

os custos em milhões de dólares

Ciências da Computação e Sistemas de Informação

Oferta total inferior à procura total Exemplo 2: distribuição de recursos de agua.

Uma empresa administra a distribuição de água de uma região. Para isto é preciso canalizar a água de 3 rios que estão situados fora da região e distribui-la para 4 cidades.

Agora o gerente da empresa pretende distribuir toda a água disponível dos 3 rios para as 4 cidades, de forma a pelo menos satisfazer as necessidades essenciais de cada uma, minimizando o custo total.