ビリヤード写像における面積保存性の証明

まるげり

2025年1月23日

表題のとおりです. 2 通りやります.

0 イントロダクション: ビリヤード写像について

いま, 平面領域 $D \subset \mathbb{R}^2$ (ビリヤード台) の中を動く質点 (ボール) の運動を考える. ボールは台 D の境界にぶつかると, 入射角と反射角が等しくなるように向きを変えるとする.

このとき、台の境界をなす閉曲線 $\gamma = \partial D$ に向きを入れて、パラメータとして弧長パラメータ s を選んでおく: すなわち、x,y 座標について、適当なパラメータ t でパラメータ付けした閉曲線 γ の各点を $(\gamma_1(t),\gamma_2(t))$ と書いたとき、

$$s(t) = \int_0^t \sqrt{\left(\frac{d\gamma_1}{dt}\right)^2 + \left(\frac{d\gamma_2}{dt}\right)^2} dt$$

で決まるパラメータ s によって、再度パラメータ変換 $\gamma(s) = \gamma(t(s))$ により閉曲線に s でのパラメータを入れるのである. (要するに、曲線に沿った「弧の長さ」をパラメータとして選ぶ.)

さて、境界上の点 $\gamma(s)$ にいたボールが反射角 α で出発し、境界上の別の点 $\gamma(s')$ にぶつかり、そのときの入射角(反射角)が α' であったとする。このとき、 (s,α) がビリヤードの運動により (s',α') に写った、と考えられる。出発点とそのときの反射角が決まれば、次にぶつかる点とそのときの入射角は一意に定まる。これを写像と捉えるのである。

図 1: ビリヤード系

この写像 $T:(s,\alpha)\mapsto (s',\alpha')$ を**ビリヤード写像**という. なお, γ の一周の長さを L としておくと, この写像の定義域・値域 (相空間という) は $(\mathbb{R}/L\mathbb{Z})\times[0,\pi]$ と書ける. (入射角 α が 0 や π の場合は, ビリヤードの運動によってその場を動かない (写像 T の不動点) と考える.)

さて, 実はこのビリヤード写像 T は, 相空間 $(\mathbb{R}/L\mathbb{Z}) \times [0,\pi]$ 上で次の 2 次微分形式 (2 - form) を保存することが知られている.

Theorem 1. ビリヤード写像 $T:(s,\alpha)\mapsto (s',\alpha')$ は面積形式 $\sin\alpha ds\wedge d\alpha$ を保存する. つまり,

 $\sin \alpha ds \wedge d\alpha = \sin \alpha' ds' \wedge d\alpha'$.

この Theorem1 より, ビリヤード写像 T は**面積保存写像**であるという. (ここで言う「面積」は, あくまで台 D のいる 平面での面積ではなく, 相空間 $(\mathbb{R}/L\mathbb{Z}) \times [0,\pi]$ における面積のことである.)

以下,この証明をやります.

1 初等幾何的方法

こちらはよく知られている方法で、Birkhoff の証明を多少現代的に書いたもの。ビリヤード写像に触れている文献には 大体書いているが、たとえば Tabachnikov の"Geometry and Billiards"や日本語のものだと柴山先生の『重点解説 ハミルトン系』などに載っている。

Theorem 1 の証明 1. いま, $\gamma(s)$ と $\gamma(s')$ の距離(の -1 倍)を h(s,s') と置く. s は弧長パラメータなので, その微分 $\frac{\partial \gamma(s)}{\partial s}$ は点 $\gamma(s)$ における単位接ベクトルである. 内積を $\langle \cdot, \cdot \rangle$ で表すことにすれば,

$$\begin{split} 2h(s,s')\frac{\partial h}{\partial s'} &= \frac{\partial h^2}{\partial s'} \\ &= -\frac{\partial |\gamma(s) - \gamma(s')|^2}{\partial s'} \\ &= 2\frac{\partial \langle \gamma(s), \gamma(s') \rangle}{\partial s'} - \frac{\partial \langle \gamma(s'), \gamma(s') \rangle}{\partial s'} \\ &= 2\langle \gamma(s), \frac{\partial \gamma(s')}{\partial s'} \rangle - 2\langle \gamma(s'), \frac{\partial \gamma(s')}{\partial s'} \rangle \\ &= 2\langle \gamma(s') - \gamma(x), \frac{\partial \gamma(s')}{\partial s'} \rangle \\ &= -2h(s,s')\cos\alpha'. \\ &\therefore \frac{\partial h}{\partial s'} &= -\cos\alpha'. \end{split}$$

となる. 同様にして、 $\frac{\partial h}{\partial s} = \cos \alpha$ もわかる. 以上から、 $\mathrm{d}h = \cos \alpha \mathrm{d}s - \cos \alpha' \mathrm{d}s'$ 、つまり

$$0 = d^2 h = \sin \alpha ds \wedge d\alpha - \sin \alpha' ds' \wedge d\alpha'$$

となり、これから面積保存性 $\sin \alpha ds \wedge d\alpha = \sin \alpha' ds' \wedge d\alpha'$ がわかる.

2 その2:

3 その3: Poincaré-Cartan の積分不変式を用いた方法

以下は、ほとんど Arnold と Avez の"Ergodic Problems of Classical Mechanics" [1] の APPENDIX 31 に載っている内容です。

大まかに説明すると、「ビリヤード写像を自由運動を記述するハミルトン系に適当な Poincaré 断面を取ったときの Poincaré 写像とみなしたとき、Poincaré-Cartan の積分不変式から導かれる微分形式がなんと $\sin \alpha ds \wedge d\alpha$ になっている」ということです.

3.1 ハミルトン系の準備: Poincaré-Cartan の積分不変式

まず準備としてハミルトン系と Poincaré-Cartan の積分不変式について解説します. このあたりは Arnold の"Mathematical Methods of Classical Mechanics"や Arnold, Kozlov, Neishtadt の"Mathematical Aspects of Classical and Celestial Mechanics"を大いに参考にしました. とはいえ, 多少は微分幾何に慣れてないとチンプンカンプンかもしれない(僕も微分幾何に弱いですが…)になってしまっていると思います.

Poincaré-Cartan の積分不変式のもっと直接的な導出が知りたい人は、伊藤先生の『常微分方程式と解析力学』をオススメします.

普通**ハミルトン系**というと、 \mathbb{R}^{2n} 上の運動方程式で、ある関数 (**ハミルトニアン**)H(p,q) に対し、

$$\dot{q}_k = \frac{\partial H}{\partial p_k}, \ \dot{p}_k = \frac{\partial H}{\partial q_k} \quad (k = 1, \dots, n)$$
 (3.1)

と表されるものを指す. この解 (p(t), q(t)) 上で H は t に依らず一定になる. (多くの場合, H を力学的エネルギーの和(運動エネルギー + ポテンシャル)と解釈しても大丈夫.)

ただ, 今回は Poincaré-Cartan の積分不変式を導きたい + 自分の勉強も兼ねて, 少し特殊なやり方でハミルトン系を定めよう. 2n+1 次元多様体 M^{2n+1} に, 適当な座標 $(p,q,t)=(p_1,\cdots,p_n,q_1,\cdots,q_n,t)$ を取る. M^{2n+1} 上の関数 H(p,q,t)

に対し, 次のような 1 次微分形式 (1-form)

$$\theta = pdq - Hdt \tag{3.2}$$

を考える.

この 1-form θ により、ハミルトン系は次のようなやり方で決定される.

その外微分 $\omega = d\theta$ は 2-form であるが, 各点 $x \in M^{2n+1}$ について, ある接ベクトル $\xi_x \neq 0$ が存在し,

$$\omega(\xi_x, \eta_x) = 0 \quad \forall \eta_x \in T_x M$$

が存在する. なぜなら, ω を表現する (2n+1) 次の歪対称行列を A とすれば,

$$\omega(\xi_x, \eta_x) = (A\xi_x, \eta_x)$$

である. A は歪対称なので転置を取ると $A^{\mathsf{T}} = -A$ であるが, 一方で 2n+1 次なので,

$$\det(A) = \det(A^{\mathsf{T}}) = \det(-A) = (-1)^{2n+1} \det(A) = (-1) \det(A)$$

となる. 結局, $\det(A) = 0$ となり, A は非正則行列になるので, 同次方程式 $A\xi_x = 0$ が解を持つのである.

この $A\xi_x=0$ を満たす ξ_x 全体は線形空間をなすが,この次元が 1 しかないとき,この ξ_x (を適当に正規化したもの) を ω の**渦の方向**あるいは**特性方向**といい,渦の方向により定まるベクトル場 $\xi=\{\xi_x\}$ の積分曲線を ω の**渦線**あるいは**特性** 曲線という.M の中の閉曲線 γ_0 に対し,この曲線上の点から始めた渦線によって出来上がる曲面を ω の**渦管**という.

渦管の上で 2-form ω はどうなるかを確認しておこう.

パラメータ u が入った M^{2n+1} 内の閉曲線 γ_0 を考える. $(\gamma_0(0)=\gamma_0(1)$ とする.) この曲線上の各点 $\gamma_0(u)$ から出発する 渦線を $x(s,u)=x^s(\gamma_0(u))$ とすれば、閉曲線 γ_0 に対して定まる ω の渦管 Γ は $\Gamma=\{x(s,u)=x^s(\gamma_0(u))|s\in\mathbb{R},u\in[0,1]\}$ と書ける.

 Γ は $x: \mathbb{R} \times [0,1] \ni (s,u) \to x^s(\gamma_0(u)) \in \Gamma$ により座標 (s,u) が入る. 恒等写像 $i: \Gamma \to M^{2n+1}$ により Γ を M^{2n+1} に 埋め込むと, x(s,u) = (p(s,u)q(s,u)t(s,u)) と書いて, $p_s = \nabla_s p, p_u = \nabla_u p$ などと表せば,

$$i^*dp = dp(s, u) = p_s ds + p_u du,$$

$$i^*dq = dq(s, u) = p_q ds + q_u du,$$

$$i^*dt = dt(s, u) = t_s ds + t_u du.$$

である. M^{2n+1} 上の 2-form ω の Γ への引き戻し $i^*\omega$ を基底 ds, du で表示すれば、

$$i^*\omega = [dp(s,u) \ dq(s,u) \ dt(s,u)]A \begin{bmatrix} dp(s,u) \\ dq(s,u) \\ dt(s,u) \end{bmatrix} = [ds \ du] \begin{bmatrix} p_s & q_s & t_s \\ p_u & q_u & t_u \end{bmatrix} A \begin{bmatrix} p_s & p_u \\ q_s & q_u \\ t_s & t_u \end{bmatrix} \begin{bmatrix} ds \\ du \end{bmatrix}$$

一方で, x(s,u) は渦の方向 ξ の積分曲線なので, $x_s = [p_s, q_s, t_s]^\mathsf{T}$ は $Ax_s = 0$ を満たす. よって,

$$i^*\omega = [ds\ du]\begin{bmatrix} x_s \\ x_u \end{bmatrix} A \begin{bmatrix} x_s & x_u \end{bmatrix} \begin{bmatrix} ds \\ du \end{bmatrix} = [ds\ du] \begin{bmatrix} x_s^\mathsf{T} A x_s & x_s^\mathsf{T} A x_u \\ x_u^\mathsf{T} A x_s & x_u^\mathsf{T} A x_u \end{bmatrix} \begin{bmatrix} ds \\ du \end{bmatrix} = [ds\ du] \begin{bmatrix} 0 & 0 \\ 0 & x_u^\mathsf{T} A x_u \end{bmatrix} \begin{bmatrix} ds \\ du \end{bmatrix}$$

ここで、A が歪対称で $x_u^\mathsf{T} A x_u = (x_u^\mathsf{T} A x_u)^\mathsf{T} = -x_u^\mathsf{T} A x_u$ であるから、 $x_u^\mathsf{T} A x_u = 0$ である. よって、

$$i^*\omega = 0$$

となる. つまり, 渦管 Γ の上では微分形式 ω は消失するのである.

さて,この渦管の上での周回積分について,次が成り立つ.

Theorem 2. $\omega = d\theta$ の渦管 Γ 上の, (渦管を一周する) 同じ向きの閉曲線 γ_0, γ_1 を考えると, 渦線が γ_0 から γ_1 に向けて伸びているとすれば,

$$\int_{\gamma_0} \theta = \int_{\gamma_1} \theta.$$

この定理は、渦の方向により定まるベクトル場の運動について、

$$I(s) = \int_{x^s(\gamma_0)} \theta$$

がsに依らず不変であることを示唆している(**ケルビンの渦定理**の一般化).

Proof. Stokes の定理から、

$$\int_{\Gamma} \omega = \int_{\Gamma} d\theta = \int_{\gamma_0} \theta - \int_{\gamma_1} \theta$$

であるが、渦管の上で ω は消失するので、左辺は0である. よって、

$$\int_{\gamma_0} \theta - \int_{\gamma_1} \theta = 0$$

となり, 題意が示される.

ところで、1-form θ は式 (3.2) で具体的に与えていた。このときの $\omega=d\theta$ に対する積分曲線(渦線)はなんであろうか? 具体的に ω の表現行列 A を計算しよう。 $p=(p_1,\cdots,p_n), q=(q_1,\cdots,q_n)$ として, $H_p=\nabla_p H(p,q,t), H_q=\nabla_Q H(p,q,t)$ で表せば,

$$A = \begin{bmatrix} O_n & E_n & -H_p \\ -E_n & O_n & -H_q \\ H_p^\mathsf{T} & H_q^\mathsf{T} & 0 \end{bmatrix}$$

となる. ただし, E_n は n 次の単位行列, O_n は n 次の零行列である.

この表現行列 A の右上の 2n 次正方行列は正則であるため,同次方程式 AX=0 の解空間は 1 次元であり,上の話が適用できる.解空間の元 $X\in TM$ は

 $X = \sum_{k} X_{k} \frac{\partial}{\partial p_{k}} + X_{k+n} \frac{\partial}{\partial q_{k}} + X_{t} \frac{\partial}{\partial t}$

と書けるが、特に $X_t \neq 0$ である.

(なぜなら, AX = 0 より

$$AX = \begin{bmatrix} X_{k+n} - H_p X_t \\ -X_k - H_q X_t \\ H_p X_k + H_q X_{k+n} \end{bmatrix} = 0$$

であるので、もし $X_t=0$ なら $X_k=X_{k+n}=X_t=0$ となり、 X=0 になってしまう.)

そのため、特に $X_t = 1$ となるものを渦の方向として定めても良い。このとき、AX = 0から他の成分は

$$X_k = -H_{q_k}, \ X_{k+n} = H_{p_k} \quad (k = 1, \dots n)$$

と決定する. したがって、渦の方向の定めるベクトル場Xは

$$X = \sum_{k} -H_{q_{k}} \frac{\partial}{\partial p_{k}} + H_{p_{k}} \frac{\partial}{\partial q_{k}} + \frac{\partial}{\partial t}$$

であり、この積分曲線 $x(s,x_0)=(p(s,x_0),q(s,x_0)t(s,x_0))$ の満たすべき方程式は拡張したハミルトン系

$$\dot{q}_k = \frac{\partial H}{\partial p_k}, \ \dot{p}_k = -\frac{\partial H}{\partial q_k}, \ \dot{t} = 1 \quad (k = 1, \dots, n)$$
 (3.3)

にほかならない. Theorem2 から, 拡張したハミルトン系 (3.3) のフロー x^s に沿って, 積分

$$\int_{x^s(\gamma_0)} pdq - Hdt \tag{3.4}$$

の値は不変である.

Theorem 3. 拡張したハミルトン系 (3.3) について、相空間内の閉曲線 γ_0 と、フロー x^s により描かれる管 $\gamma_1 = x^1(\gamma_0)$ について、

$$\int_{\gamma_0} pdq - Hdt = \int_{\gamma_1} pdq - Hdt.$$

ハミルトン系 (3.1) は (3.3) の解を (p,q) 平面に射影したものに過ぎないが、上の定理をハミルトンフロー ϕ^t により $\gamma_1 = \phi^t(\gamma_0)$ にすれば、 γ_0, γ_1 上で t は定数であり dt = 0 となるので、次が成立する;

Theorem 4. ハミルトン系 (3.1) について、相空間内の閉曲線 γ_0 と、ハミルトンフロー ϕ^t により描かれる管 $\phi^t(\gamma_0)$ について、

$$\int_{\gamma_0} pdq = \int_{\gamma_1} pdq.$$

以上から、ハミルトン系 (3.1) は式 (3.2) で決まる 1-form θ から導出できる。また、その拡張したハミルトン系 (3.3) には、積分で書ける不変量 (3.4) を持つ。この不変量 (3.4) を Poincaré-Cartan の積分不変式という。

3.2 ハミルトン系の Poincaré 写像

n 自由度ハミルトン系 (3.1) に話を戻す。この系の相空間は 2n 次元の多様体になるが、その断面 Σ を $H=h,q_1=0$ で与えると、 Σ は等エネルギー H=h を持つ 2n-2 次元部分多様体をなす。

ある領域 $\Sigma_0 \subset \Sigma$ で局所座標 $(P,Q) = (p_2, \cdots, p_n, q_2, \cdots, q_n)$ が取れたとし、かつこの領域で上の方程式について $\dot{q}_1 \neq 0$ が成り立っているとき、断面 Σ を surface of section とか Poincaré section とか言う. (日本だと多分「Poincaré 断面」と呼ぶケースが多いと思う.)

いま, 点 $x \in \Sigma_0$ であって, 初期点 x についてのハミルトン系の解がしばらくして Σ_0 に戻って来るようなものを考える. このとき, $\dot{q}_1 \neq 0$ より, x に十分近い点 $x' \in \Sigma_0$ を通過する解はまたいずれ Σ_0 に戻って来て, Σ_0 を横断する. この x' の定義できるような x の近傍 $\Sigma_1 \subset \Sigma_0 \subset \Sigma$ について, Σ_0 内の再帰した点を Ax' とすれば, 写像 $A: \Sigma_1 \to \Sigma_0$ が定義できる. (このような写像を **Poincaré 写像**という.)

Theorem 5. 上で定めたハミルトン系の Poincaré 写像 $A: \Sigma_1 \to \Sigma_0$ は正準的である. すなわち, Σ_1 内の任意の閉曲線 γ について,

$$\int_{\gamma} PdQ = \int_{A\gamma} PdQ. \tag{3.5}$$

である. ただし, $PdQ = \sum_{k=2}^{n} p_k dq_k$.

Proof. 拡張したハミルトン系 (3.3) の下で考え, 拡張した相空間 $\{(p,q,t)\}$ 上での閉曲線をそれぞれ γ' , $A\gamma'$ とする. (γ') は t=0 の面の上での γ_0 にほかならないが, 再帰時間は点ごとに異なるため $A\gamma'$ の各点での t 座標は一致しない)

Poincaré-Cartan の積分不変式(Theorem3)より

$$\int_{\gamma'} pdq - Hdt = \int_{A\gamma'} pdq - Hdt.$$

となる. ここで, γ および $A\gamma$ は等エネルギー面 (つまり, H= 定数である面) の上にあるので,

$$\int_{\gamma'} H dt = \int_{A\gamma'} H dt.$$

また, γ' 上は t=0 で一定なので,dt=0 であり,

$$\int_{\gamma'} H dt = 0.$$

したがって,

$$\int_{\gamma'} p dq = \int_{\gamma} p dq, \ \int_{A\gamma'} p dq = \int_{A\gamma} p dq$$

 q_1 は $\Sigma_1 \subset \Sigma$ 上で一定なので, γ' , $A\gamma'$ 上で dq=0 であり,

$$\int_{\gamma'} p_1 dq_1 = \int_{A\gamma'} p dq = 0.$$

したがって,

$$\int_{\gamma} PdQ = \int_{\gamma'} pdq - Hdt = \int_{A\gamma'} pdq - Hdt = \int_{A\gamma} PdQ.$$

となり,(3.5) が示された.

3.3 ビリヤード系への応用

Theorem1 の証明その 3. いま, 台 $D \subset \mathbb{R}^2$ 内を自由運動 (等速直線運動) するボールを考える. この質点の位置と速度をまとめて $(x,v) = (x_1,x_2,v_1,v_2)$ と置くと, 運動方程式は

$$\dot{x}_i = v_i, \ \dot{v}_i = 0 \quad (i = 1, 2)$$

である. この運動のハミルトニアン H(x,v) は運動エネルギーだけ, つまり

$$H(x,v) = \frac{1}{2}(v_1^2 + v_2^2).$$

となる.

ここで、原点 O が台の境界 $\gamma=\partial D$ の上になるようにし、 (q_1,q_2) を、 q_1 をボールの位置 M から最も近い境界上の点 N までの距離、 q_2 を原点 O から点 N までの弧の長さと定める。 $q=(q_1,q_2)$ は D 全体では定義できないが、 $\gamma=(\gamma_1,\gamma_2)$ の近傍に限って言えば正しく定まる.

図 2: ハミルトン系(自由運動)としてのビリヤード

境界上の各点 $\gamma(s)$ における接ベクトルを $\vec{t}(s)$, 法ベクトルを $\vec{n}(s)$ と書けば, $\vec{t}(s)$ は $\gamma(s)$ の弧長パラメータでの微分であり, $\vec{n}(s)$ は $\vec{t}(s)$ を $\pi/2$ だけ反時計回りに回転させたものなので,

$$\vec{t}(s) = (\gamma_1'(s), \gamma_2'(s)), \ \vec{n}(s) = (-\gamma_2'(s), \gamma_1'(s))$$

となる. $\vec{ON} = (\gamma_1(q_2), \gamma_2(q_2))$ であり, $\vec{NM} = q_1 \vec{n}(q_2)$ なので, $x = (x_1, x_2)$ から $q = (q_1, q_2)$ の点変換は

$$x_1 = \gamma_1(q_2) - q_1 \gamma_2'(q_2), \ x_2 = \gamma_2(q_2) + q_1 \gamma_1'(q_2)$$

と書ける. (ここのプライムはsでの微分.)

 γ の近傍(とその上での定まる速度ベクトル全体)のなす相空間内の開集合に対し、点変換 $q\mapsto x=x(q_1,q_2)$ から定まる (x,v) から (q,p)=への正準変換を考えることができる. 具体的には、正準変換の母関数 S(v,q) を

$$S(v,q) = v_1 x_1(q_1, q_2) + v_2 x_2(q_1, q_2) = v_1(\gamma_1(q_2) - q_1 \gamma_2'(q_2)) + v_2(\gamma_2(q_2) + q_1 \gamma_1'(q_2))$$

とすれば、点変換に対応する正準変換が定まり、このとき曲率を κ で書けば、運動量 $p=(p_1,p_2)$ は

$$p_{1} = \frac{\partial S}{\partial q_{1}} = -v_{1}\gamma_{2}'(q_{2}) + v_{2}\gamma_{1}'(q_{2})$$

$$= v \cdot \vec{n}(q_{2}),$$

$$p_{2} = \frac{\partial S}{\partial q_{2}} = v_{1}(\gamma_{1}'(q_{2}) - q_{1}\gamma_{2}''(q_{2})) + v_{2}(\gamma_{2}'(q_{2}) - q_{1}\gamma_{1}''(q_{2})),$$

$$= v \cdot \vec{t}(q_{2}) + q_{1}\kappa(q_{2})v \cdot \vec{n}(q_{2}).$$

で表示できる.

さて、このハミルトン系に対し、 $H=1/2, q_1=0$ での Poincaré 断面 Σ を取る.これは、|v|=1 かつボールが γ 上(つまり、壁にぶつかる瞬間)という条件にほかならず、ビリヤード写像 T はこの Poincaré 断面 Σ についての Poincaré 写像 とみることができる.すなわち、Theorem5 から T は Σ_1 上で 2-form $dp_2 \wedge dq_2$ を保存する.

運動量 p の式に $|v|=1, q_1=0$ を入れてみると, 入射角 α に対して

$$p_1 = v \cdot \vec{n}(q_2) = \sin \alpha,$$

$$p_2 = v \cdot \vec{t}(q_2) = \cos \alpha$$

であるから, Σ_0 上で $dp_2 \wedge dq_2 = d(\cos\alpha) \wedge dq_2 = \sin\alpha dq_2 \wedge d\alpha$. q_2 は γ の弧長パラメータだったから, これは $\sin\alpha ds \wedge d\alpha$ にほかならない.

参考文献

[1] V.I.Arnold, A.Avez. Ergodic Problems of Classical Mechanics, Benjamin, (1968)