More on Calibration and Reconstruction

Objective

This chapter contains additional information on Camera Callibration and Reconstruction.

Contents:

- Recalling Projective Geometry
- Vanishing Points
- Camera Calibration from VPs
- Camera from Fundamental Matrix

2 Dimensional

	\mathbb{P}^2	\mathbb{R}^2	
points	$\mathbf{x} = (kx_1, kx_2, k)^T = (x_1, x_2, 1)^T \text{ for } k \neq 0$ $\mathbf{x}_{\infty} = (kx_1, kx_2, 0)^T = (x_1, x_2, 0)^T \text{ for } k \neq 0$	$\mathbf{x} = (x_1, x_2)^T$	points at infinity
lines	$\mathbf{l} = (kl_1, kl_2, k)^T = (l_1, l_2, 1)^T \text{ for } k \neq 0$ $\mathbf{l}_{\infty} = (0, 0, k)^T \text{ for } k \neq 0$	$\mathbf{l} = (a, b, c)^T$	lines at infinity

2 Dimensional

If a point x lies on line I

$$\mathbf{x}^T \mathbf{l} = 0$$

■ The intersection x of two lines \mathbf{l}_1 and \mathbf{l}_2

$$x = \mathbf{l}_1 \times \mathbf{l}_2$$

■ The line joining points x_1 and x_2

$$\mathbf{l} = \boldsymbol{x}_1 \times \boldsymbol{x}_2$$

Note that in \mathbb{P}^2 parallel lines intersect at infinity $(a,b,c)\times(a,b,c')=(b(c'-c),a(c-c'),0)$

3 Dimensional

	\mathbb{P}^3	\mathbb{R}^3	
nts	$\mathbf{x} = (kx_1, kx_2, kx_3, k)^T = (x_1, x_2, x_3, 1)^T \text{ for } k \neq 0$	$\boldsymbol{x} = (x_1, x_2, x_3)^T$	
points	$\mathbf{x} = (kx_1, kx_2, kx_3, k)^T = (x_1, x_2, x_3, 1)^T \text{ for } k \neq 0$ $\mathbf{x}_{\infty} = (kx_1, kx_2, kx_3, 0)^T = (x_1, x_2, x_3, 0)^T \text{ for } k \neq 0$		points at infinity
planes	$\pi = (k\pi_1, k\pi_2, k\pi_3, k)^T = (\pi_1, \pi_2, \pi_3, 1)^T \text{ for } k \neq 0$ $\pi_{\infty} = (0, 0, 0, k)^T \text{ for } k \neq 0$	$oldsymbol{\pi} = (\pi_1, \pi_2, \pi_3)^T$	
pl	$\boldsymbol{\pi}_{\infty} = (0, 0, 0, k)^T$ for $k \neq 0$	-	planes at infinity

3 Dimensional

• If a point x lies on plane π

- $\longrightarrow x^T \pi = 0$
- Three (non collinear) points define a plane \longrightarrow $\begin{bmatrix} x_1^T \\ x_2^T \\ x_2^T \end{bmatrix} \pi = \mathbf{0}$
- Three planes define a point

- $\longrightarrow \begin{bmatrix} \boldsymbol{\pi}_1^T \\ \boldsymbol{\pi}_2^T \\ \boldsymbol{\pi}_2^T \end{bmatrix} \boldsymbol{x} = \mathbf{0}$
- Note that in \mathbb{P}^3 points at infinity lie on a plane at infinity

$$(x_1, x_2, x_3, 0)^T (0, 0, 0, k) = 0$$

Contents:

- Recalling Projective Geometry
- Vanishing Points
- Camera Calibration from VPs
- □ Camera from Fundamental Matrix

Vanishing Points

Examples

Vanishing Points

A point in 3D space through point $A = (\mathbf{a}^T, 1)^T$ moving in direction $D = (\mathbf{d}^T, 0)^T$ $P(\lambda) = A + \lambda D$

appears on a projective camera $\mathcal{M} = \mathcal{K} [I \mid 0]$ in homogeneous coordinates

$$p(\lambda) = \mathcal{M} P(\lambda)/z(\lambda) = (\mathcal{M}A + \lambda \mathcal{M}D)/z(\lambda) = (\mathbf{a} + \lambda \mathcal{K}d)/z(\lambda)$$

where **a** is the image of **A**

Vanishing Points

The vanishing point is given by

$$\mathbf{v} = \lim_{\lambda \to \infty} \mathbf{p}(\lambda) = \lim_{\lambda \to \infty} [(\mathbf{a} + \lambda \mathcal{K} \mathbf{d})/z(\lambda)] \propto \mathcal{K} \mathbf{d}$$

Note that \mathbf{v} depends only on line direction \mathbf{d} , not on \mathbf{A} .

On computing VPs

Contents:

- Recalling Projective Geometry
- Vanishing Points
- Camera Calibration from VPs
- □ Camera from Fundamental Matrix

Camera Orientation from VPs

Result 1: Consider 2 images of a scene where

- □ cameras differs only in orientation (\mathcal{R}) and position (t) \rightarrow (both have the same \mathcal{K}).
- \mathbf{v}_i and \mathbf{v}'_i are corresponding VPs

The directions d_i and d'_i

$$d_i = \mathcal{K}^{-1}\mathbf{v}_i / ||\mathcal{K}^{-1}\mathbf{v}_i||$$
 and $d'_i = \mathcal{K}^{-1}\mathbf{v}'_i / ||\mathcal{K}^{-1}\mathbf{v}'_i||$

are related by the camera rotation \mathcal{R}

$$d_i' = \mathcal{R}d_i$$

Angle between Lines from VPs

Result 2: if \mathbf{v}_1 and \mathbf{v}_2 are the vanishing points of lines \mathbf{l}_1 and \mathbf{l}_2 with directions \mathbf{d}_1 and \mathbf{d}_2 , the angle between both lines can be computed from

$$\cos \theta = \frac{\boldsymbol{d}_1^T \boldsymbol{d}_2}{\|\boldsymbol{d}_1\| \|\boldsymbol{d}_2\|} = \frac{\mathbf{v}_1^T \boldsymbol{\omega} \mathbf{v}_2}{\sqrt{\mathbf{v}_1^T \boldsymbol{\omega} \mathbf{v}_1} \sqrt{\mathbf{v}_2^T \boldsymbol{\omega} \mathbf{v}_2}}$$

where
$$\omega = (\mathcal{K}\mathcal{K}^T)^{-1} = \mathcal{K}^{-T} \mathcal{K}^{-1}$$
 image of the absolute conic

K from VPs in a single view

Result 3: From previous slide, if \mathbf{v}_1 and \mathbf{v}_2 are the vanishing points of 2 **orthogonal lines**, then

$$\mathbf{v}_1^T \mathbf{\omega} \mathbf{v}_2 = 0$$

Clearly, if ω meets the constraint above, $k\omega$ also does, for all $k\neq 0$. Thus ω has 8 dof.

K from VPs in a single view

Result 4: If it is known that

- □ skew angle is zero $\rightarrow \mathcal{K}_{12}=0$.
- \Box pixels are square $\rightarrow \mathcal{K}_{11} = \mathcal{K}_{22}$
- ω takes the form

$$\mathbf{\omega} = \begin{vmatrix} w_1 & 0 & w_2 \\ 0 & w_1 & w_3 \\ w_2 & w_3 & w_4 \end{vmatrix}$$

By setting $w_4 = 1$, ω can be estimated from three orthogonal VPs.

K from VPs in a single view

Result 5: If it is known that

- \square skew angle is zero $\rightarrow \mathcal{K}_{12}=0$.
- \Box pixels are square $\rightarrow \mathcal{K}_{11} = \mathcal{K}_{22}$
- □ image center $\rightarrow \mathcal{K}_{13} = \mathcal{K}_{23} = 0$ (by offsetting vp's coordinates)
- ω takes the form

$$\mathbf{\omega} = \begin{bmatrix} w_1 & 0 & 0 \\ 0 & w_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 & 0 & 0 \\ 0 & \alpha^2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/f^2 & 0 & 0 \\ 0 & 1/f^2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
focal length

A single pair of orthogonal VPs is enough to compute $\overset{in\ pixels}{\omega}$.

From ω to \mathcal{K} and \mathcal{K}'

By definition

$$\omega = (\mathcal{K}\mathcal{K}^T)^{-1} = \mathcal{K}^{-T}\mathcal{K}^{-1}$$

Applying Cholesky factorization to ω followed by inversion yields \mathcal{K} .

Cholesky factorization

A $n \times n$ symmetric positive-definite matrix **A** can be decomposed into a product of

□ a lower triangular matrix **L** and its transpose, i.e.,

$$\mathbf{A} = \mathbf{L} \; \mathbf{L}^T$$
 or

□ an upper triangular matrix **U** and its transpose, i.e.

$$\mathbf{A} = \mathbf{U}^T \mathbf{U}$$

Assignments

Assignment 1:

Download the MATLAB demo $\underline{\text{Image2K}}$ for the subject covered in this chapter and estimate the camera matrix \mathcal{K} from 2 and 3 VPs. Are the results consistent?

Assignments

Assignment 2:

Compare the camera matrix K estimated by Zhang's method and by the VP based methods using the chessboard images available in $\underline{\text{Image2K}}$.

Contents:

- Recalling Projective Geometry
- Vanishing Points
- Camera Calibration from VPs
- Camera from Fundamental Matrix

23

Reconstruction thus far

Require intrinsic and extrinsic cameras' parameters

Reconstruction thus far

 Reconstruction algorithms so far require knowledge of projective projection matrices

$$\mathcal{M} = \mathcal{K}(\mathcal{R} \mid t)$$

 $\mathcal{M}' = \mathcal{K}'(\mathcal{R}' \mid t')$

- □ Whereas intrinsic parameters (\mathcal{K},\mathcal{K}') can be measured "once and for all", extrinsic parameters ($\mathcal{R},t,\mathcal{R}',t'$) must be estimated for each camera positioning \rightarrow troublesome!
- Next, we see a method that does not require estimating extrinsic parameters $(\mathcal{R},t,\mathcal{R}',t')$, at least explicitly.

Recalling the essential matrix

- The extrinsic parameters $(\mathcal{R},t,\mathcal{R}',t')$ are embedded in the essential matrix $\mathcal{E} = \mathbf{t} \times \mathbf{R}$, where
 - \blacksquare R= $\mathcal{RR'}^T$ is the rotation matrix of the 2nd to 1st camera frames
 - $\mathbf{t} = \mathbf{t} \mathbf{R}\mathbf{t}'$ is the vector defined by the origins of 1st to the 2nd camera frames
- $oldsymbol{arepsilon}$ $oldsymbol{\mathcal{E}}$ is rank 2 and has 2 equal non zero singular values.
- □ By setting 1st camera frame (who cares?) as the world frame ($\mathcal{R}=\mathbf{I}$, $t=\mathbf{0}$), yields

$$(\mathcal{R},t,\mathcal{R}',t')=(\mathbf{I},\mathbf{0},\mathbf{R}^T,-\mathbf{R}^T\mathbf{t})$$

Recalling the essential matrix

 $lue{}$ In the calibrated case (\mathcal{K} and \mathcal{K} ' known) \mathcal{E} can be computed from \mathcal{F}

$$\mathcal{E}=\mathcal{K}'^T\mathcal{F}\mathcal{K}$$

- The fundamental matrix \mathcal{F} can be extracted from a set of corresponding points (seen before)
- lacksquare So, it might be possible to perform 3D reconstruction from \mathcal{F} (and from some ground truth data).

Ambiguity given \mathcal{F}

Two cameras \mathcal{M} and \mathcal{M}' determine uniquely a fundamental matrix \mathcal{F} .

The converse is not true. Look

$$p = \mathcal{M} P = (\mathcal{M}\mathcal{H}) (\mathcal{H}^{-1} P)$$

 $p' = \mathcal{M}' P = (\mathcal{M}' \mathcal{H}) (\mathcal{H}^{-1} P)$

where \mathcal{H} is a 4×4 projective transformation matrix.

Thus, \mathcal{F} determines the pair of camera matrices \mathcal{M} and \mathcal{M}' up to a 3D 4×4 projective transformation \mathcal{H} .

Canonical camera given ${\mathcal F}$

Let

- floor be a fundamental matrix computed from pairs of matching points. and
- $lue{}$ A pair of projection matrices consistent with \mathcal{F} is

$$\mathcal{M} = \mathcal{K} [I | 0]$$

$$\mathcal{M}' = \mathcal{K}' (R^T | -R^T \mathbf{t})$$

(initial estimates)

Camera from \mathcal{E}

Useful matrices:

Note that **W Z** =
$$diag(1,1,0)$$
 and **Z W**^T = $-diag(1,1,0)$

Camera from \mathcal{E}

Result 6: If the svd of \mathcal{E} is \mathbf{U} diag $(1,1,0)\mathbf{V}$ T, then

a)
$$[\mathbf{t}_{\times}] = \mathbf{U}\mathbf{Z}\mathbf{U}^T$$
 and $\mathbf{R} = \mathbf{U}\mathbf{W}\mathbf{V}^T$

b)
$$[t_{\star}] = -UZU^T$$
 and $R = UWV^T$

c)
$$[\mathbf{t}_{\times}] = \mathbf{U}\mathbf{Z}\mathbf{U}^T$$
 and $\mathbf{R} = \mathbf{U}\mathbf{W}^T\mathbf{V}^T$

d) $[\mathbf{t}_{\times}] = -\mathbf{U}\mathbf{Z}\mathbf{U}^T$ and $\mathbf{R} = -\mathbf{U}\mathbf{W}^T\mathbf{V}^T$ are possible factorizations of $\boldsymbol{\mathcal{E}}$

Camera from \mathcal{E}

Geometric Interpretation of the 4 solutions:

Reconstruction from Ground Truth

The true projective transformation \mathcal{H} (or \mathcal{H}^{-1}) is such that

- H has 15 dof.
- Each correspondence provides 3 independent equations.
- Thus, 5 correspondences are enough.
- Same methods for computing homographies work here.

Reconstruction from Ground Truth

Algorithm

Assignments

Assignment 3:

Download the MATLAB <u>programs</u> that implement approaches for fundamental matrix estimation. Estimate \mathcal{F} for both chessboard images. Using the camera matrix \mathcal{K} computed in step 1, write a program that implements the method for camera calibration based on \mathcal{F} and \mathcal{K} presented in the classroom.

Next Topic

Structure from Motion