TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR S, 02 jul 2025

()

Prof. Nelson Luís Dias

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL. VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [20] Para a figura ao lado, prove que

$$|a + b|^2 = |a|^2 + |b|^2 + 2|a||b|\cos(\theta).$$

Sugestão: aplique o teorema dos cossenos ao triângulo com um lado tracejado (paralelo a α) na figura, observando que $\alpha + \theta = \pi$.

SOLUÇÃO DA QUESTÃO:

Temos que

$$\alpha = \pi - \theta \implies \cos(\alpha) = -\cos(\theta).$$

Pelo teorema dos cossenos, o triângulo com lado tracejado da figura possui lados com comprimentos |a|, |b| e |a+b|, de forma que

$$|a + b|^2 = |a|^2 + |b|^2 - 2|a||b|\cos(\alpha)$$

= $|a|^2 + |b|^2 + 2|a||b|\cos(\theta)$

2 [20] Numa base ortonormal, a *contração* de dois tensores **A**, **B** é definida por

$$A: B = A_{ij}e_ie_j : B_{lm}e_le_m \equiv A_{ij}B_{lm}(e_j \cdot e_l)(e_i \cdot e_m).$$

Se S é um tensor simétrico de ordem 2, e A é um tensor anti-simétrico de ordem 2:

$$S = S_{ij}e_ie_j$$
, $S_{ij} = S_{ji}$; $A = A_{lm}e_le_m$, $A_{lm} = -A_{ml}$,

mostre que

$$S: A = 0.$$

SOLUÇÃO DA QUESTÃO:

$$\begin{split} S: A &= S_{ij} A_{lm}(\boldsymbol{e}_j \cdot \boldsymbol{e}_l) (\boldsymbol{e}_i \cdot \boldsymbol{e}_m). \\ &= S_{ij} A_{lm} \delta_{jl} \delta_{im} \\ &= S_{ij} A_{ji} \\ &= \frac{1}{2} S_{ij} A_{ji} + \frac{1}{2} S_{ji} A_{ij} \\ &= \frac{1}{2} S_{ij} \left(A_{ji} + A_{ij} \right) = 0 \; \blacksquare \end{split}$$

3 [20] A expansão em série de Taylor de uma função f(x, y) até a ordem 2 em torno de (0, 0) é dada por

$$f(x,y) = f(0,0) + \frac{\partial f(0,0)}{\partial x} x + \frac{\partial f(0,0)}{\partial y} y + \frac{1}{2!} \left[\frac{\partial^2 f(0,0)}{\partial x^2} x^2 + 2 \frac{\partial^2 f(0,0)}{\partial x \partial y} xy + \frac{\partial^2 f(0,0)}{\partial y^2} y^2 \right] + \dots$$

Obtenha a série de Taylor de $f(x, y) = \exp((x + y)^2)$ até a ordem 2.

Obs: A notação

$$\frac{\partial f(0,0)}{\partial x}$$

significa a derivada de f(x, y) em relação a x avaliada em (0, 0), e de forma análoga para as demais.

SOLUÇÃO DA QUESTÃO:

$$f(0,0) = 1,$$

$$\frac{\partial f(0,0)}{\partial x} = 2(x+y)e^{(x+y)^2}\Big|_{(0,0)} = 0,$$

$$\frac{\partial f(0,0)}{\partial y} = 2(x+y)e^{(x+y)^2}\Big|_{(0,0)}0,$$

$$\frac{\partial^2 f(0,0)}{\partial x^2} = 4(x+y)^2 e^{(x+y)^2} + 2 e^{(x+y)^2}\Big|_{(0,0)} = 2,$$

$$\frac{\partial^2 f(0,0)}{\partial x \partial y} = 4(x+y)^2 e^{(x+y)^2} + 2 e^{(x+y)^2}\Big|_{(0,0)} = 2,$$

$$\frac{\partial^2 f(0,0)}{\partial y \partial x} = 4(x+y)^2 e^{(x+y)^2} + 2 e^{(x+y)^2}\Big|_{(0,0)} = 2,$$

$$\frac{\partial^y (}{\partial f(0,0)^y} 2 = 4(x+y)^2 e^{(x+y)^2} + 2 e^{(x+y)^2}\Big|_{(0,0)} = 2;$$

$$f(x,y) = 1 + (x^2 + 2xy + y^2) + \dots \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} + xy = x^2.$$

Obs: nesta questão, você pode (e deve) usar o seguinte resultado:

$$\int x^2 \exp\left(\frac{1}{2}x^2\right) dx = x \exp\left(\frac{1}{2}x^2\right) - \frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{x}{\sqrt{2}}\right) + C,$$

onde erfi(x) é (neste caso) uma função **real** e **ímpar** cuja série de Taylor é conhecida:

$$\operatorname{erfi}\left(\frac{x}{\sqrt{2}}\right) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{2^{-n-1/2} x^{2n+1}}{n!(1+2n)}.$$

SOLUÇÃO DA QUESTÃO:

$$y = uv,$$

$$\frac{d[uv]}{dx} + x[uv] = x^{2},$$

$$u\frac{dv}{dx} + v\frac{du}{dx} + xuv = x^{2},$$

$$u\left[\frac{dv}{dx} + xv\right] + v\frac{du}{dx} = x^{2},$$

$$\frac{dv}{dx} + xv = 0,$$

$$\frac{dv}{dx} = -xv,$$

$$\frac{dv}{dv} = -xdx,$$

$$\int_{v_{0}}^{v} \frac{dv'}{v'} = \int_{\xi=0}^{x} -\xi d\xi$$

$$\ln \frac{v(x)}{v_{0}} = -\frac{1}{2}x^{2},$$

$$v(x) = v_{0} \exp\left(-\frac{1}{2}x^{2}\right);$$

$$v_{0} \exp\left(-\frac{1}{2}x^{2}\right) \frac{du}{dx} = x^{2},$$

$$\frac{du}{dx} = \frac{1}{v_{0}}x^{2} \exp\left(\frac{1}{2}x^{2}\right),$$

$$du = \frac{1}{v_{0}}x^{2} \exp\left(\frac{1}{2}x^{2}\right) dx,$$

$$\int_{u_{0}}^{u} du' = \frac{1}{v_{0}}\int_{\xi=0}^{x} \xi^{2} \exp\left(\frac{1}{2}\xi^{2}\right) d\xi,$$

$$u - u_{0} = \frac{1}{v_{0}}\left\{\left[x \exp\left(\frac{1}{2}x^{2}\right) - \frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{x}{\sqrt{2}}\right)\right] - \underbrace{\left[0 \exp\left(\frac{1}{2}0\right) - \frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{0}{\sqrt{2}}\right)\right]}_{=0}^{2}\right\},$$

$$u - u_{0} = \frac{1}{v_{0}}\left[x \exp\left(\frac{1}{2}x^{2}\right) - \frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{x}{\sqrt{2}}\right)\right],$$

$$u = u_{0} + \frac{1}{v_{0}}\left[x \exp\left(\frac{1}{2}x^{2}\right) - \frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{x}{\sqrt{2}}\right)\right];$$

$$y = uv = \left\{u_{0} + \frac{1}{v_{0}}\left[x \exp\left(\frac{1}{2}x^{2}\right) - \frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{x}{\sqrt{2}}\right)\right]\right\} v_{0} \exp\left(-\frac{1}{2}x^{2}\right)$$

$$= u_{0}v_{0} \exp\left(-\frac{1}{2}x^{2}\right) + \left[x \exp\left(\frac{1}{2}x^{2}\right) - \frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{x}{\sqrt{2}}\right)\right] \exp\left(-\frac{1}{2}x^{2}\right)$$

$$= y_{0} \exp\left(-\frac{1}{2}x^{2}\right) + \left[x - \exp\left(-\frac{1}{2}x^{2}\right) \frac{\sqrt{\pi}}{2} \operatorname{erfi}\left(\frac{x}{\sqrt{2}}\right)\right] = v$$

$$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} - xy = 0.$$

SOLUÇÃO DA QUESTÃO:

$$y = \sum_{n=0}^{\infty} a_n x^{n+r},$$

$$y' = \sum_{n=0}^{\infty} (n+r) a_n x^{n+r-1},$$

$$y'' = \sum_{n=0}^{\infty} (n+r-1)(n+r) a_n x^{n+r-2}.$$

Substituindo na EDO:

$$\sum_{n=0}^{\infty} (n+r-1)(n+r)a_n x^{n+r} - \sum_{n=0}^{\infty} a_n x^{n+r+1} = 0.$$

Faça

$$m+r=n+r+1,$$

$$m=n+1,$$

$$n=m-1.$$

Então,

$$\sum_{n=0}^{\infty} (n+r-1)(n+r)a_n x^{n+r} - \sum_{m=1}^{\infty} a_{m-1} x^{m+r} = 0,$$

$$\left[(r-1)r \right] a_0 x^r + \sum_{n=1}^{\infty} \left[(n+r-1)(n+r)a_n - a_{n-1} \right] x^{n+r} = 0;$$

A equação indicial é

$$(r-1)r = 0,$$

$$r_1 = 1,$$

$$r_2 = 0.$$

As raízes diferem por um inteiro. Mas o enunciado só pede **uma** solução LI, e sabemos que a maior raiz *sempre* produz uma solução. Então, $r_1 = 1$ e

$$n(n+1)a_n - a_{n-1} = 0,$$

$$a_n = \frac{a_{n-1}}{n(n+1)}.$$

Fazendo $a_0 = 1$,

$$y_1(x) = x + \frac{1}{2}x^2 + \frac{1}{12}x^3 + \frac{1}{144}x^4 + \frac{1}{2880}x^5 + \dots$$