

Many drugs (ie: chemotherapy drugs) create

BAD SIDE EFFECTS

like hair loss, liver damage, and vomiting because they target

HEALTHY & DISEASED

Recently...
scientists have been Vable to encapsulate drugs to avoid targeting healthy cells. This has been a huge success. For example, J&J makes over \$500 million annually of its encapsulated chemotherapy drug, doxil, as its price increases from

ONE PROBLEM

It is incredibly difficult to encapsulate drugs.

Using the same doxil drug as an example, only one plant had the capability to encapsulate this drug for J&J.

In 2011, that plant had to shut down, resulting in J&J losing

82%

of its \$500 million/year revenue. These problems

lingered

for

years

Before

machines needed to encapsulate a drug.

\$25
per vial cost

5 days to produce a drug batch

Our solution: Amsterdam Fluidics

uses a single chip to complete the entire drug encapsulation process normally processed in an encapsulation facility.

By encapsulating drugs through a bottom-up method instead of top-down, we fundamentally improve manufacturing efficiency for pharmaceutical companies.

chip needed to encapsulate a drug.

50¢
per vial cost

3 Hours
to produce a
drug batch

The Science

Hydrodynamic Focusing in Microfluidic Channels

Kilo-Scale Droplet Generation

This proposed design should result in liposome encapsulated drugs

Lawrence D. Mayer
Chief Scientific Officer
Celator Pharmaceuticals

Daeyon Lee Laboratory

University of Pennsylvania Jeong et al. Lab Chip, 2015

Overly Simplified Explanation

The ability to encapsulate drugs through a chip has always been possible, except a chip could historically only encapsulate at 1mL per hour. With recently created microfluidics technology, we can now encapsulate at 3 liters per hour, a 3000x increase. This production is now fast enough to match current industrial scale drug production that entire factories previously needed.

Mentors

The **Innovator**

Enrique has conducted extensive research in drug discovery and cancer at the University of Cambridge. He has also worked as a healthcare consultant for Gassert Consulting.

PHD candidate, Biochemistry & Molecular Biophysics

Combines expertise in science and technology with understanding of health needs

The Manager

Ronald has worked with clients like Eli Lilly, Johnson & Johnson, and Wellpoint as a consultant and worked in venture capital.

MBA, Innovation Management Certificate, Engineering

Provides marketing, budgeting, finance and project management

The **Builder**

Alex has previously conducted research on polymer-based solar cells at the institute of Nanoelectronics in Munich, Germany.

Masters, Nanotechnology

Provides technical expertise in the fabrication process of the chip

Jeffrey Barrett

Vice President, Research and Development, Interdisciplinary Pharmacometrics, Sanofi

Elliot Menschik

Founder, DreamIT Health

Richard Kollender

Partner, Quaker BioVentures

Carolyn Wilson

Associate Director for Research at FDA

Timelin

TODAY

May 2016 •Complete

I-Corps

program

June 2016

- •Complete prototype* (including consumables, raw material and optimization steps)
- •File patent approval for first set of encapsulation types

December 2017

•File patent approval for second set of encapsulation types

January 2018

•Get FDA Approval (CMC designation under CDER review)

PRODUCT TIMELINE

FINANCIAL TIMELINE

June 2017

•Complete summer accelerator

September 2017

•Raise \$5 million series A

June 2018

•Secure first client

December 2018

•Break even on company operations

June 2020

•Secure second client