Dixit-Stiglitz Model

Dmitry Mukhin

dmukhin@wisc.edu

Primitives of the static model:

1. preferences: $U=C=\left(\int C_i^{\frac{\theta-1}{\theta}}\mathrm{d}i\right)^{\frac{\theta}{\theta-1}}$,

2. technology: $Y_i = AL_i$,

3. endowment: $L = \int L_i = 1$.

In contrast to the growth and RBC model, assume that only one firm can produce each variety and hence, is a monopoly in the market of that product. At the same time, the firm takes GE prices as given.

Households choose consumption of each product:

$$\max_{\{C_i\}} \left(\int C_i^{\frac{\theta-1}{\theta}} \mathrm{d}i \right)^{\frac{\theta}{\theta-1}}$$

s.t.
$$\int P_i C_i di = W + \int \Pi_i di \equiv E$$
,

where E is the total income of a representative consumer. It is more convenient, however, to solve the dual problem of minimizing expenditures:

$$\min_{\{C_i\}} \int P_i C_i \mathrm{d}i$$

s.t.
$$\left(\int C_i^{\frac{\theta-1}{\theta}} \mathrm{d}i\right)^{\frac{\theta}{\theta-1}} = C.$$

Denote the Lagrange multiplier with P and take the FOC wrt C_i :

$$P_i = P\left(\int C_i^{\frac{\theta-1}{\theta}} di\right)^{\frac{1}{\theta-1}} C_i^{-\frac{1}{\theta}}.$$

This implies that demand for product i is equal

$$C_i = \left(\frac{P_i}{P}\right)^{-\theta} C. \tag{1}$$

Substitute into the constraint to solve for the Lagrange multiplier:

$$P = \left(\int P_i^{1-\theta} \mathrm{d}i \right)^{\frac{1}{1-\theta}}.$$

Note that $\int P_i C_i di = PC$, so it makes sense to call it the aggregate (ideal) price index, i.e. the price of one unit of consumption bundle.

Firms maximize profits subject to household demand (1), production technology and taking decisions of other firms as given:

$$\max_{C_i, P_i} P_i C_i - W L_i$$

s.t.
$$C_i = \left(\frac{P_i}{P}\right)^{-\theta} C$$
, $C_i = AL_i$.

Substitute constraints in the objective function and take the FOC:

$$C_i - \theta \left(P_i - \frac{W}{A} \right) \left(\frac{P_i}{P} \right)^{-\theta} \frac{C}{P_i} = 0,$$

which can be solved for the optimal price:

$$P_i = \frac{\theta}{\theta - 1} \frac{W}{A}.\tag{2}$$

Given symmetry across firms, we obtain $P = \frac{\theta}{\theta - 1} \frac{W}{A}$. Note that the equilibrium conditions only describe the real wage and relative prices of products, while nominal prices and wages are undetermined. Finally, the market clearing condition

$$\int \frac{C_i}{A} \mathrm{d}i = \frac{C}{A} = 1 \tag{3}$$

then pins down the output $C_i = C = 1$, so that the aggregate welfare is equal U = C = 1.

SPP is to allocate labor across firms in an optimal way:

$$\max_{\{C_i\}} \left(\int C_i^{\frac{\theta-1}{\theta}} \mathrm{d}i \right)^{\frac{\theta}{\theta-1}}$$

s.t.
$$\int \frac{C_i}{A} \mathrm{d}i = 1.$$

The FOC implies $C_i = C = 1$. Therefore, the monopolistically competitive equilibrium coincides with the first-best allocation and there is no room for government interventions.