

INTRODUCTION

- Follow along at ucsbhyperloop.com/dw
- 21 senior engineering undergraduates working to build and test a pod at Competition Weekend
- Emphasizing cost-effectiveness, scalability, and feasibility
- Estimated cost to complete design: \$40,000
 - Funding/resources already raised:
 - \$5,000 from Ingersoll Rand
 - \$5,000 from Raytheon
 - \$5,000 from private donors
 - Electronics donated by NXP Semiconductors
 - ~\$25,000 to be raised

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Brakin

Weight

Levitation

Electronics

Controls

Power

Production

FRAME

- 13'7" (length) x 3'4" (width) x 2'7" (height)
- Divided into front, base, and rear frame
 - Lightweight, wooden front frame reinforces shell
 - Aluminum base frame supports all major subsystems
 - Steel tube rear frame interfaces with SpaceX pusher

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

SHELL

- Tapered bullet shape
- E-Glass reinforced polyester
 - Uniformly strong in all directions

Introduction

Frame

Shell

Propulsion

I-Beam Stabilizatior

Braking

Weight

Levitation

Electronics

Controls

Power

Production

WIND TUNNEL TESTING

- 3-D printed ABS plastic pod model
- Reynolds number in evacuated tube is 8.5×10^3
- Estimated drag coefficient = 1.5
 - Drag force at 0.02 psi = 1.5 lbs

Pod model mounted in wind tunnel

Introduction

Fram

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

TRAJECTORY

- Top speed of 218 mph (320 fps)
- Total run time of 29.16 s
 - Acceleration 4.98 s
 - Coasting 3.75 s
 - Braking 20.43 s

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Flectronics

Controls

Power

Production

SERVICE WHEELS

- Powered service wheels for transport and potential pod recovery
- Wheels extend 1/8" below hover engines
- Motorized rear-left support wheel

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

I-BEAM STABILIZATION

- Benchmarked from roller coaster design and car/motorcycle suspension systems
- Spring-damper resists movement from the parallel linkage
 - Handles lateral forces

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Flectronics

Controls

Power

Production

BRAKING

- Pneumatic braking assembly with four actuated brake pads
 - Brake pads clamp onto the I-beam
 - Located at rear of pod

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

BRAKING

• Pressurized air tank provides pneumatic brake force

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

BRAKING

- Braking automatically activated by solenoid valves if power fails
- Ball valve manually disengages the brakes

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

POD WEIGHT —

Subsystem	Weight
Frame	66 lbs
Shell	83 lbs
Service Propulsion Wheels	96 lbs
I-Beam Stabilization	60 lbs
Braking	27 lbs
Magnetic Levitation Engines	60 lbs
Battery and Electronics	63 lbs
Total Weight	455 lbs

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

MAGNETIC LEVITATION

- System utilizes four Arx Pax Magnetic Field Architecture (MFA) hover engines
- Electronically adjustable hover height
 - Aiming for 0.20" (5mm) pending further testing
- Four engine payload
 - 550 lbs

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Scalability

Production

MAGNETIC LEVITATION

- Best chance of success for competition while still adhering to the future scalability of the Hyperloop
 - Operate at high speeds and in low-pressure environments
 - Levitation + Propulsion + Braking + Control

Arx Pax HE3.0 Hover Engine

Introduction

Frame

Shel

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

MAGLEV PROTOTYPING

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

MAGLEV PROTOTYPING

Introduction

Frame

Shel

Propulsion

I-Beam Stabilizatio

Braking

Weight

Levitation

Electronics

Controls

Power

Production

MAGLEV PROTOTYPING

Introduction

Fram

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

SYSTEM CIRCUIT BOARD

- 8.1" x 8.1" printed circuit board
 - (2) LPC NXP4088 microcontrollers
 - Actuation
 - Sensor interface
 - Communication
 - Pod-stop command
 - Control systems

Already fabricated and awaiting assembly

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

SENSORS

- Photoelectric sensor:
 - Detects reflective strips on top half of tube
- Short-range ranging sensor:
 - Determines height relative to bottom of tube
- Long-range ranging sensor:
 - Gives position relative to sides of the tube
- Consolidated Board:
 - Accelerometer
 - Gyroscope
 - Barometer
 - Thermometer

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

SENSOR LOCATIONS

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Brakin

Weight

Levitation

Electronics

Controls

Power

Production

PROTOTYPING

- Currently prototyping sensors on LPC NXP4088 Developer's Kit
- Testing cabling constraints on a full-sized model

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

CONTROL SYSTEMS

Navigation

- Absolute position with photoelectric sensor
- Double integrate accelerometer between strips

Stability

- Absolute position with short range ranging sensors
- Relative position with gyroscopes
- Adjust each engine's levitation to maintain stability and correct disturbances

Braking

- Microcontroller activates/disengages brake system solenoid
- Automatically applied if connection lost for >5 secs

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

POWER SYSTEM

- Battery Bank 1
 - Onboard electronics, NAP, braking, service propulsion
- Battery Bank 2
 - Magnetic levitation system

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitatio

Electronics

Controls

Power

Production

BATTERY BANK 1

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

BATTERY BANK 2

- Independent power supply for each engine
 - 20Ahr capacity (per engine) for 26.2 min of levitation
- Protection circuit to prevent battery over-discharge
- Motor controller communicates with System PCB

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

BATTERY SELECTION

- Lithium polymer (LiPo)
 - Battery of choice for quadcopter/drone applications
 - Optimal capacity/weight ratio
 - High discharge rating
 - Easily obtainable off-shelf packs
 - Fire safety
 - Fire resistance bags encase each battery bank
 - Stainless steel LiPo charge box to prevent battery puncture in the event of a crash

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production

PRODUCTION SCHEDULE

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Brakin

Weight

Levitation

Electronics

Controls

Power

Production

CONCLUSION

- Work began in October 2015
 - With school schedules—effectively 12 weeks of work
- Accomplishments
 - Raised \$15,000—need \$25,000 to reach goal of \$40,000
 - Printed Circuit Board is in assembly
 - Prototyping sensors with NXP Developer's Kit
 - 3D printed model
 - Used for extensive wind tunnel testing
 - Magnetic levitation testing & prototyping
 - Styrofoam and PVC pipe model of frame completed
 - Beginning to work with cabling
 - Established a finance/marketing team

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Brakin

Weight

Levitation

Electronics

Controls

Power

Production

CONCLUSION

- Thank you to our mentors and our sponsors.
- Please find us at Booth 64 or contact us:
 - ucsbhyperloop@gmail.com
 - ucsbhyperloop.com
 - @UCSBHyperloop

Raytheon

Introduction

Frame

Shell

Propulsion

I-Beam Stabilization

Braking

Weight

Levitation

Electronics

Controls

Power

Production