Exercícios – síntese de funções de acesso e de filtros LC

Síntese de Circuitos – ENGC46

Professor: Maicon D. Pereira

Departamento de Engenharia Elétrica e de Computação

Universidade Federal da Bahia

Exercício 1

Identifique a função de acesso e sintetize Z(s) utilizando as 1º forma de Foster.

2 pares imaginário zeros:

zeros: 2 pares imaginário $\rightarrow \omega_{z1} = 2 e \omega_{z2} = 7 \rightarrow (s^2 + \omega_{zi}^2)$

pólos: 1 na origem → elemento em s no denominador

1 par imaginário $\rightarrow \omega_{p1} = 5 \rightarrow (s^2 + \omega_{pi}^2)$

1 no infinito -> ordem do numerador > denominador

$$Z(s) = \frac{\left(s^2 + \omega_{z1}^2\right)\left(s^2 + \omega_{z2}^2\right)}{s\left(s^2 + \omega_{p1}^2\right)} = \frac{\left(s^2 + 2^2\right)\left(s^2 + 7^2\right)}{s\left(s^2 + 5^2\right)}$$

$$Z(s) = \frac{(s^2 + \omega_{z1}^2)(s^2 + \omega_{z2}^2)}{s(s^2 + \omega_{p1}^2)} = \frac{(s^2 + 2^2)(s^2 + 7^2)}{s(s^2 + 5^2)}$$

 1ª Forma de Foster: baseia-se na expansão da impedância em frações parciais.

$$Z(s) = \frac{(s^2 + 2^2)(s^2 + 7^2)}{s(s^2 + 5^2)}$$

- zeros: 2 pares imaginários
- pólos: 1 par imaginário, 1 na origem e 1 no infinito

- Existe pólo no infinito (C_∞) e pólo na origem (L₀).
- Um par de pólos finitos

 uma associação LC série.

1ª forma de Foster para Z(s):

$$\frac{1}{|C_0|} = s.Z(s)|_{s=0} = s.\frac{(s^2 + 2^2)(s^2 + 7^2)}{s(s^2 + 5^2)} \bigg|_{s=0} \Rightarrow C_0 = \frac{25}{196} F$$

$$\left. L_{\infty} = \frac{Z(s)}{s} \right|_{s \to \infty} = \frac{\frac{\left(s^2 + 2^2\right)\left(s^2 + 7^2\right)}{s\left(s^2 + 5^2\right)}}{s} = \frac{\frac{\left(s^2 + 2^2\right)\left(s^2 + 7^2\right)}{s^4 + 25s^2}}{s} \Rightarrow L_{\infty} = 1 \text{ H}$$

$$\frac{1}{C_1} = \left(\frac{\left(s^2 + 5^2\right)}{s}Z(s)\right|_{s^2 = -(5^2)} = \left(\frac{\left(s^2 + 5^2\right)}{s}\frac{\left(s^2 + 2^2\right)\left(s^2 + 7^2\right)}{s\left(s^2 + 5^2\right)}\right)\Big|_{s^2 = -(5^2)} \Rightarrow \frac{C_1 = \frac{25}{504} F}{s}$$

$$\omega_{p1}^2 = \frac{1}{L_1C_1} = 5^2 \Rightarrow \frac{L_1}{504} = \frac{625}{504} H$$

Exercício 2

Sintetizar y_{22} utilizando as formas de Foster.

$$y_{22} = \frac{s^4 + 16s^2 + 48}{3s^3 + 30s}$$

Exercício 2

Sintetizar y_{22} utilizando as formas de Foster.

$$y_{22} = \frac{s^4 + 16s^2 + 48}{3s^3 + 30s}$$

2º Forma de Foster: baseia-se na expansão da <u>admitância</u> em frações parciais:

$$Y(s) = \frac{1}{sL_0} + sC_{\infty} + \sum_{i} \frac{s/L_i}{\left(s^2 + \omega_{pi}^2\right)}$$
Associações LC série: freq. de cada par de pólos ω_{pi} $^2 = 1/(L_iC_i)$

Pólo na origem

Sintetizar y_{22} utilizando as formas de Foster.

$$y_{22} = \frac{s^4 + 16s^2 + 48}{3s^3 + 30s}$$

- 4 zeros: 2 pares imaginários
 - 4 pólos: 1 par imaginário, 1 na origem e 1 no infinito

- Existe pólo no infinito (C_∞) e pólo na origem (L₀).

Realização de funções de acesso

O componentes podem ser obtidos da FA da seguinte forma:

$$\frac{1}{L_0} = \frac{1}{L_1} = s. y_{22}|_{s=0} = s \frac{s^4 + 16s^2 + 48}{3s^3 + 30s}|_{s=0} = \frac{48}{30} \Rightarrow L_1 = 0.625 \text{ H}$$

$$C_{\infty} = C_{1} = \frac{Y_{22}}{s} \Big|_{s \to \infty} = \frac{1}{s} \frac{s^{4} + 16s^{2} + 48}{3s^{3} + 30s} \Big|_{s \to \infty} \cong \frac{s^{4}}{3s^{4}} \Rightarrow C_{1} = \frac{1}{3} F$$

$$\left. \frac{1}{L_i} = \frac{1}{L_2} = \frac{\left(s^2 + \omega_{pi}^2\right)}{s} y_{22} \right|_{s^2 = -\omega_{pi}^2 = -10} = \left. \frac{\left(s^2 + 10\right)}{s} \frac{s^4 + 16s^2 + 48}{3s^3 + 30s} \right|_{s^2 = -10}$$

$$\frac{1}{L_2} = \frac{\left(s^2 + 10\right)}{s} \frac{s^4 + 16s^2 + 48}{3s(s^2 + 10)} \bigg|_{s^2 = 10} = \frac{s^4 + 16s^2 + 48}{3s^2} \bigg|_{s^2 = -10} = 0.4 \Rightarrow \frac{L_2 = 2,5 \text{ H}}{2s^2 + 10}$$

$$\omega_{pi}^2 = \frac{1}{L_i C_i} \Rightarrow C_i = C_2 = \frac{1}{L_2 \omega_p^2} = \frac{1}{2,5.10} \Rightarrow C_2 = 0.04 \text{ F}$$

Exercício 3

Sintetizar y_{22} e a rede dada abaixo utilizando as formas de Cauer.

$$y_{22} = \frac{s^4 + 16s^2 + 48}{3s^3 + 30s} = \frac{(s^2 + 4)(s^2 + 12)}{3s(s^2 + 10)}$$

$$C_2 \qquad L_2$$

$$C_1 \qquad L_1 \qquad Y_{22}(s)$$

Exercício 3

Sintetizar y_{22} e a rede dada abaixo utilizando as formas de Cauer.

- 1ª Forma de Cauer: Se a Z (ou Y) tem pólo na infinito é extraída uma indutância em série L∞ (ou capacitância em paralelo C∞) → Neste caso, C₁.
- 2ª Forma de Cauer: Se a Z (ou Y) tem <u>pól</u>o na origem é extraída uma capacitância em série C₀ (ou indutância em paralelo L₀) → Neste caso, L₁.

2ª Forma de Cauer

Se a admitância tem pólo na origem é extraída uma indutância em paralelo: L₀

$$\frac{1}{L_1} = (sy_{22})\Big|_{s=0} = \left(s\frac{(s^2+4)(s^2+12)}{3s(s^2+10)}\right)\Big|_{s=0} = \frac{4.12}{3.10} = 1,6 \implies L_1 = 0,625 \text{ H}$$

$$y_{22\alpha} = y_{22} - \frac{1}{sL_1}$$

$$y_{22\alpha} = \frac{s^4 + 16s^2 + 48}{3s^3 + 30s} - \frac{16}{10s} = \frac{10s^4 + 160s^2 + 480 - 48s^2 - 480}{30s(s^2 + 10)} = \frac{10s^3 + 112s}{30(s^2 + 10)}$$

Rede remanescente:

Tem pólo no infinito: aplicar a 1ª forma de Cauer.

1^a Forma de Cauer

Se a admitância tem pólo no infinito é extraída uma capacitância em paralelo: C...

Determinação de C..:

$$C_1 = \frac{Y(s)}{s} \bigg|_{s \to \infty}$$

Impedância remanescente Y1(s):

$$Y_1(s) = Y(s) - sC_1$$

$$C_1 = \frac{Y_{22\alpha}}{s} \bigg|_{s \to \infty} = \frac{10s^2 + 112}{30s^2 + 300} \Rightarrow C_1 = \frac{1}{3}F$$

$$y_{22b} = y_{22a} - sC_1 = \frac{10s^3 + 112s}{30(s^2 + 10)} - \frac{s}{3}$$

$$y_{22b} = \frac{12s}{30(s^2 + 10)}$$
 \Rightarrow $z_{22b} = \frac{1}{y_{22b}} = \frac{30(s^2 + 10)}{12s}$

Rede remanescente:

Arbitramos começar pela 2ª forma.

2ª Forma de Cauer

Se a impedância tem pólo na origem é extraída uma capacitância em série: C₀

$$\frac{1}{C_2} = (sz_{22b})|_{s=0} = \frac{300}{12} = 25 \implies C_2 = 0.04 F$$

$$z_{22c} = z_{22b} - \frac{1}{sC_2}$$

$$z_{22c} = \frac{30(s^2 + 10)}{12s} - \frac{25}{s} = \frac{30s^2 + 300 - 300}{12s} = 2,5s$$

Tem pólo no infinito: aplicar a 1ª forma de Cauer.

$$L_2 = \frac{z_{22c}}{s} \bigg|_{s \to \infty} = \frac{2,5s}{s} \Rightarrow L_2 = 2,5H$$

Caso a rede LC não tivesse sido imposta:

$$y_{22} = \frac{s^4 + 16s^2 + 48}{3s^3 + 30s} = \frac{(s^2 + 4)(s^2 + 12)}{3s(s^2 + 10)}$$

y₂₂ tem pólo na origem → aplicar a 2ª forma de Cauer → rede começa com um indutor.

 y_{22} tem n = 4 \rightarrow n é par \rightarrow rede tem 4 elementos e termina com um capacitor.

Exercício 4

Sintetize a rede LC terminada por uma resistência de 1 Ω (resistência de fonte nula) que represente a função de transferência a seguir.

$$T(s) = \frac{10 s(s^2 + 1000)}{17 s^4 + 30 s^3 + 8500 s^2 + 12500 s + 25.10^4}$$

Passos para síntese de redes LC com terminação simples:

- 1- Dada a função de transferência T(s) identificar se o numerador N(s) é par ou ímpar.
- 2- Construir a FA y_{22} utilizando a parte par e a parte ímpar do denominador de T(s).
- 3 Conceber arquitetura para realizar y₂₂ de modo a realizar os ZEROS DE TRANSMISSÃO.
- 4 Dimensionar componentes de y_{22} .

$$T(s) = \frac{10 s(s^2 + 1000)}{17 s^4 + 30 s^3 + 8500 s^2 + 12500 s + 25.10^4}$$

$$T(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{D_{I}(s) + D_{p}(s)}$$

N(s) é impar \rightarrow y₂₂ é impar-par $y_{22}(s) = Y_L \frac{D_I(s)}{D_R(s)}$

$$\mathbf{y_{22}(s)} = \mathbf{Y_L} \frac{\mathbf{D_I(s)}}{\mathbf{D_P(s)}}$$

Elementos impares de D(s) $D_1(s) = 30s^3 + 12500s$

Elementos pares de D(s)

$$D_{P}(s) = 17s^4 + 8500s^2 + 25.10^4$$

$$Y_L = \frac{1}{R_L} = 1$$

$$y_{22}(s) = 1 \frac{30s^3 + 12500s}{17s^4 + 8500s^2 + 25.10^4}$$

1 zero na origem

$$T(s) = \frac{10 s(s^2 + 1000)}{17 s^4 + 30 s^3 + 8500 s^2 + 12500 s + 25.10^4}$$

1 zero no infinito

1 par de zeros em

 $\pm j31,62 \text{ rad/s}$

Singularidades de $y_{22}(s)$

1 zero na origem

$$y_{22}(s) = 1 \frac{30s^3 + 12500s}{17s^4 + 8500s^2 + 25.10^4}$$

1 zero no infinito

1 par de zeros em $\pm j20,41$ rad/s

2 pares de pólos em $\pm j21,65$ rad/s e $\pm j5,60$ rad/s

Zeros finitos de T(s) e $y_{22}(s)$ diferentes \rightarrow Aplicar método "ZERO-SHIFT" em $y_{22}(s)$:

 Pólos na origem em y(s) permitem mover os zeros para a <u>esquerda</u> com extração de L₁ em paralelo → y₂₂ não tem pólo na origem e, de qualquer forma, zero deve ser movido para a direita.

• <u>Pólos no infinito</u> em y(s) permitem mover os zeros para a <u>direita</u> com extração de C_1 em paralelo \rightarrow y_{22} não tem pólo no infinito.

Singularidades de $z_{22}(s)$

$$z_{22}(s) = \frac{1}{y_{22}} = \frac{17s^4 + 8500s^2 + 25.10^4}{30s^3 + 12500s}$$

2 pares de zeros em

 \pm j21,65 rad/s

 $\pm j$ 5,60 rad/s

1 pólo na origem

1 pólo no infinito

1 par de pólos em $\pm j20,41$ rad/s

Método "ZERO-SHIFT":

- <u>Pólos na origem</u> em z (s) permitem mover os zeros para a <u>esquerda</u> com extração de C₁ em série. Zero de z₂₂ deve ser movido para a direita.
- X
- <u>Pólos no infinito</u> em z(s) permitem mover os zeros para a <u>direita</u> com extração de L_1 em série. Neste caso será o zero em $\pm j21,65$ rad/s.

$$z_{22} = \frac{1}{y_{22}} = \frac{17s^4 + 8500s^2 + 25.10^4}{30s^3 + 12500s}$$

 $z_{22} = 1/y_{22}$ tem pólo no infinito \rightarrow a extração parcial com L₁ desloca o zero de z_{22} para zero de transmissão em ω_z , fornecendo z_{22a} :

$$\begin{vmatrix}
L_1 = \frac{Z_{22}}{s} \\
s^2 = -\omega_z^2 = -1000
\end{vmatrix} = \frac{117s^4 + 8500s^2 + 25.10^4}{30s^3 + 12500s} \Big|_{s^2 = -1000}$$

$$L_1 = \frac{17(-1000)^2 + 8500(-1000) + 25.10^4}{30(-1000)^2 + 12500(-1000)} \Rightarrow L_1 = 0.5 \text{ H}$$

$$z_{22\alpha} = z_{22} - sL_1 = \frac{17s^4 + 8500s^2 + 25.10^4}{30s^3 + 12500s} - 0,5s$$

$$z_{22\alpha} = \frac{4s^4 + 4500s^2 + 50.10^4}{60s^3 + 25000s} = \frac{4(s^2 + 125)(s^2 + 1000)}{60s^3 + 25000s}$$
Agora o par de zeros em $\pm j\sqrt{1000}$ aparece em $z_{22\alpha}$

Agora o par de aparece em z_{22a}

Concebendo o restante da rede de $y_{22}(s)$ para sintetizar os zeros de transmissão de T(s).

Cria um zero no Usado para deslocar

Importante: O último elemento da rede LC deve ficar em série com a fonte. Neste caso, C3.

Síntese de $y_{22a} = 1/z_{22a}$: 2^a Forma de Foster \rightarrow expansão da <u>admitância</u> em frações parciais e síntese de conjuntos LC série em paralelo \rightarrow OK.

$$y_{22\alpha} = \frac{60s^3 + 25000s}{4(s^2 + 125)(s^2 + 1000)}$$

4 zeros: 1 na origem, um no infinito e um par imaginário.

4 pólos: 2 pares imaginários

- Não existe pólo no infinito (C_∞) ou pólo na origem (L₀).
- 2 pares de pólos finitos → duas associações LC série.

$$\frac{1}{L_i} = \frac{\left(s^2 + \omega_{pi}^2\right)}{s} y(s) \bigg|_{s^2 = -\omega_{pi}^2}$$

$$\frac{1}{L_2} = \frac{\left(s^2 + \omega_p^2\right)}{s} y_{22\alpha}(s) \bigg|_{s^2 = -\omega_p^2 = -1000} = \frac{\left(s^2 + 1000\right)}{s} \frac{60s^3 + 25000s}{4(s^2 + 125)(s^2 + 1000)} \bigg|_{s^2 = -1000}$$

 $\omega_{pi}^2 = \frac{I}{L.C.}$

$$\frac{1}{L_2} = \frac{60(-1000) + 25000}{4(-1000 + 125)} \Rightarrow L_2 = 0.1 \text{ H}$$

$$\omega_p^2 = \frac{1}{L_2C_2} \Rightarrow C_2 = \frac{1}{L_2\omega_p^2} = \frac{1}{0,1.1000} \Rightarrow C_2 = 0.01 \text{ F}$$

$$\frac{1}{L_3} = \frac{\left(s^2 + \omega_p^2\right)}{s} y_{22\alpha}(s) \bigg|_{s^2 = -\omega_p^2 = -125} = \frac{\left(s^2 + 125\right)}{s} \frac{60s^3 + 25000s}{4(s^2 + 125)(s^2 + 1000)} \bigg|_{s^2 = -125}$$

$$\frac{1}{L_3} = \frac{60(-125) + 25000}{4(-125 + 1000)} \Rightarrow L_3 = 0, 2 \text{ H}$$

$$\omega_{p}^{2} = \frac{1}{L_{3}C_{3}} \Rightarrow C_{3} = \frac{1}{L_{3}\omega_{p}^{2}} = \frac{1}{0, 2.1000} \Rightarrow C_{3} = 0.04 \text{ F}$$

Comparação da resposta de magnitude do circuito e da função de transferência.

Exercício 5

Projete um filtro LC passa-baixa Butterwork com $f_p = 150 \text{ kHz}$, $f_s = 650 \text{ kHz}$, $A_{max} = 1 \text{ dB}$, $A_{min} = 60 \text{ dB}$, $R_1 = R_2 = 50 \Omega$.

Possibilidades de projeto:

- Obter T(s) da aproximação e sintetizar T(s) pela síntese da função de acesso para terminação dupla;
- Usar tabelas de síntese da rede LC para a aproximação de Butterworth;
- 3. Aplicar expressões que fornecem diretamente os componentes para a aproximação de Butterworth.

Usar tabelas de síntese da rede LC para a aproximação de Butterworth;

n	R _s	C ₁	L ₂	C ₃	L ₄	
	1.0000	1.4142	1.4142			
2	1.1111	1.0353	1.8352			
	1.2500	0.8485	2.1213		1	
	1.4286	0.6971	2.4387			
	1.6667	0.5657	2.0204	1	1	
	2.0000	0.4483	3.3461			
	2.5000	0.3419	4.0951	1		
	3.3333	0.2447	5.3126	1		
	5.0000	0.1557	7.7067			
	10.0000	0.0743	14.8138			
	INF.	1.4142	0.7071			
3	1.0000	1.0000	2,0000	1.0000		
	0.9000	0.8082	1.6332	1.5994		
	0.8000	0.8442	1.3840	1.9259		
	0.7000	0.9152	1.1652	2.2774	1	
	0.6000	1.0225	0.9650	2.7024		
	0.5000	1.1811	0.7789	3.2612		
	0.4000	1.4254	0.6042	4.0642	1	
	0.3000	1.8380	0.4396	5.3634		
	0.2000	2.6687	0.2842	7.9102		
	0.1000	5.1672	0.1377	15.4554	1	
	INF.	1.5000	1.3333	0.5000		
4	1.0000	0.7654	1.8478	1.8478	0.7654	
	1.1111	0.4657	1.5924	1.7439	1.4690	
	1.2500	0.3882	1.0940	1.5110	1.8109	
	1.4286	0.3251	1.8618	1.2913	2.1752	
	1.6667	0.2690	7.1029	1.0824	2.6131	
	2.0000	0.2175	2.4524	0.8826	3.1868	
	2.5000	0.1692	2.9858	0.6911	4.0094	
	3.3333	0.1237	3.8826	0.5072	5.3381	
	5.0000	0.0904	5.6835	0.3307	7.9397	
	10.0000	0.0392	11.0942	0.1616	15.6421	
	INF.	1.5307	1.5772	1.0824	0.3827	
n:	1/R _s	L,	C ₂	L ₃	C ₄	

Aplicar expressões que fornecem diretamente os componentes para a aproximação de Butterworth.

Expressões válidas para k = 1, 2, ..., n, com $R_1 = R_2 = 1 \Omega$, $\omega_p = 1$ rad/s e dependentes de ϵ .

$$C_k = 2\varepsilon^{1/n} \operatorname{sen}\left(\frac{2k-1}{2n}\pi\right)$$

Para k ímpar, onde k é o número do elemento do circuito.

$$\mathbf{L_k} = \mathbf{2} \mathbf{\epsilon}^{1/n} \operatorname{sen} \left(\frac{2\mathbf{k} - 1}{2\mathbf{n}} \pi \right)$$

Para k par;

$$R_{1}=1 \quad \begin{array}{c|c} & & & \\ \hline \end{array} \quad \begin{array}{c|c} & & \\ \end{array} \quad \begin{array}{c|c} & & \\ \hline \end{array} \quad \begin{array}{c|c} & & \\ \end{array} \quad \begin{array}{c|c} & & \\$$

Referência: Seção 5.2, Filtros Seletores de Sinais, Sidnei Noceti.

Determinação da ordem mínima 'n' requerida para o filtro. Usaremos o caso com folga para A_{min} .

$$20\log(\left|\mathsf{T}(\mathsf{j}\omega_{\mathsf{S}})\right|)<-\mathsf{A}_{\mathsf{min}}$$

$$\varepsilon = \sqrt{10^{A_{\text{máx}}/10} - 1} = \sqrt{10^{1/10} - 1} = 0,5088$$

$$n > \frac{log \left(\frac{10^{A_{min}/10}-1}{10^{A_{máx}/10}-1}\right)}{log \left(\omega_{_{S}}/\omega_{_{P}}\right)^2} = \frac{log \left(\frac{10^{60/10}-1}{10^{1/10}-1}\right)}{log \left(2\pi650.10^3/2\pi150.10^3\right)^2} > 5,1716 \qquad \qquad n=6$$

Cálculo dos componentes através das expressões para a aproximação de Butterworth com $n = 6 e \epsilon = 0,5088$.

$$C_k = 2\epsilon^{1/n} \operatorname{sen}\left(\frac{2k-1}{2n}\pi\right)$$

$$L_k = 2\varepsilon^{1/n} \operatorname{sen}\left(\frac{2k-1}{2n}\pi\right)$$

 $C_k = 2\epsilon^{1/n} \, sen \bigg(\frac{2k-1}{2n} \pi \bigg) \qquad \begin{array}{l} \text{Para k impar, onde k \'e o} \\ \text{n\'umero do elemento do} \\ \text{circuito.} \end{array} \, \begin{cases} C_1 = 0.4625 \; \text{F} \\ C_3 = 1.7261 \; \text{F} \\ C_5 = 1.2636 \; \text{F} \end{cases}$

$$L_k = 2\epsilon^{1/n} sen \left(\frac{2k-1}{2n}\pi\right) \qquad \text{Para k par;} \qquad \begin{cases} L_2 = 1,2636 \text{ H} \\ L_4 = 1,7261 \text{ H} \\ L_6 = 0,4625 \text{ H} \end{cases}$$

Rede de ordem par

Rede LC de Butterworth duplamente terminada

Desnormalização de frequência para $\omega'_p = a\omega_p$ e de impedância para $R' = bR_1$).

Tabela 3.7.1 Efeito dos escalamentos em alguns elementos.

	ELEMENTOS									
ESCALAMENTO	R	С	L	VC VS	CC CS	VC CS	CC VS	AMP. OP.	FD NR	
				μ	β	g_m	r _m	$\frac{GB}{\overline{s}}$	D	
FREQUÊNCIA $\bar{s} = s / a$	R	$\frac{C}{a}$	$\frac{L}{a}$	μ	β	g_m	r _m	$\frac{aGB}{s}$	$\frac{D}{a^2}$	
IMPEDÂNCIA $\bar{z} = z / b$	bR	$\frac{C}{b}$	bL	μ	β	$\frac{g_m}{b}$	br _m	$\frac{GB}{\bar{s}}$	$\frac{D}{b}$	

Desnormalização para $\omega'_p = 2\pi 150.10^3 \text{ rad/s} \rightarrow a = 2\pi 150.10^3 \text{ e para R'} = 50 \ \Omega \rightarrow b = 50$:

$$\begin{aligned} \textbf{L}_{\text{k,desnormalizado}} &= \frac{b\textbf{L}_{\text{k}}}{a} & \begin{cases} \textbf{L}_{2} = 67,04 \ \mu\text{H} \\ \textbf{L}_{4} = 91,57 \ \mu\text{H} \\ \textbf{L}_{6} = 24,54 \ \mu\text{H} \end{cases} \end{aligned}$$

Simulação do filtro desnormalizado:

Exercício 6

Sintetize uma rede LC terminada por uma resistência de 16 Ω (considere a resistência de fonte nula) que represente a função de transferência a seguir.

$$T(s) = \frac{80}{s^3 + 2s^2 + 45s + 80}$$

N(s) é par
$$\rightarrow$$
 y₂₂ é par-ímpar $y_{22}(s) = Y_L \frac{D_P(s)}{D_I(s)}$

Elementos ímpares de D(s)
$$D_1(s) = s^3 + 45s$$

$$D_{l}(s) = s^3 + 45s$$

$$D_{P}(s) = 2s^2 + 80$$

$$Y_L = \frac{1}{R_L} = \frac{1}{16}$$

$$y_{22}(s) = \frac{1}{16} \frac{2s^2 + 80}{s^3 + 45s}$$

1 pólo na origem e 1 par finito

UFBA UNIVERSIDADE NOVA

Zeros de transmissão de T(s)

$$T(s) = \frac{80}{s^3 + 2s^2 + 45s + 80}$$
 1 zero no infinito

- Não há zeros finitos em T(s). Aplicar diretamente a formas de Foster, de Cauer ou combinações delas.
- Sintetizar o zero no infinito em T(s) com um indutor série ou capacitor em paralelo. Demais elementos complementam a ordem de T(s).
- 1ª Forma de Cauer: Se a Z (ou Y) tem pólo na infinito é extraída uma indutância em série L_∞ (ou capacitância em paralelo C_∞) → utiliza-se z₂₂ = 1/ y₂₂ para a síntese, pois apresenta pólo no infinito e extrai indutância que sintetiza zero no infinito de T(s).

Determinação de L₁:

$$\mathbf{L}_1 = \frac{\mathbf{Z}_{22}(\mathbf{S})}{\mathbf{S}}\bigg|_{\mathbf{S}\to\infty}$$

z₂₂(s) Impedância remanescente

$$z_{22a}(s) = z_{22}(s) - sL_1$$

$$\left. \begin{array}{c|c} \mathbf{L}_1 = \frac{\mathbf{z}_{22}(\mathbf{s})}{\mathbf{s}} \right|_{\mathbf{s} \to \infty} = \frac{1}{\mathbf{s}} \frac{16(\mathbf{s}^3 + 45\mathbf{s})}{2\mathbf{s}^2 + 80} \right|_{\mathbf{s} \to \infty} = \frac{16(\mathbf{s}^2 + 45)}{2\mathbf{s}^2 + 80} \quad \Rightarrow \quad \mathbf{L}_1 = \frac{16}{2} = 8 \text{ H}$$

$$z_{22\alpha} = z_{22} - sL_1$$

$$z_{22\alpha} = \frac{16s^3 + 45s}{2s^2 + 80} - 8s = \frac{40s}{2s^2 + 40}$$
1 zero no infinito

 $y_{22a} = 1/z_{22a}$ tem pólo no infinito \rightarrow capacitor paralelo

$$C_2 = \frac{y_{22a}(s)}{s}\bigg|_{s\to\infty}$$

$$y_{22b}(s) = y_{22a}(s) - sC_2$$

$$C_2 = \frac{y_{22\alpha}(s)}{s}\Big|_{s\to\infty} = \frac{1}{s} \frac{s^2 + 40}{40s}\Big|_{s\to\infty} \implies C_2 = \frac{2}{40} = 0.025 F$$

$$\mathbf{y}_{22b} = \mathbf{y}_{22a} - \mathbf{sC}_2$$

$$y_{22b} = \frac{s^2 + 40}{40s} - 0,025s = \frac{1}{s}$$
 1 zero no infinito

 $z_{22b} = 1/y_{22b}$ tem pólo no infinito > indutor série

$$\mathsf{L}_3 = \frac{\mathsf{Z}_{22b}(\mathsf{s})}{\mathsf{s}}\bigg|_{\mathsf{s}\to\infty}$$

$$z_{22c}(s) = z_{22b}(s) - sL_3$$

$$|\mathbf{L}_3| = \frac{\mathbf{z}_{22b}(\mathbf{s})}{\mathbf{s}} \Big|_{\mathbf{s} \to \infty} = \frac{1}{\mathbf{s}} \mathbf{s} \Big|_{\mathbf{s} \to \infty} \implies \mathbf{L}_3 = \mathbf{1}\mathbf{H}$$

$$z_{22c} = z_{22b} - sL_3 = 0$$
 Fim da síntese.