

Dulce Torres & Sabrina Temesghen

Introduction

Problem

Experimental data is difficult to obtain and often missing

Previous Work

ab initio and DFT techniques not applicable for extended hydrocarbons

Our approach

Apply MTB/2, a less computationally intensive method

Methodologies

Standard Heat of Formation Workflow

Compare the computed relative energies and heat of formations to experimental values

Hamiltonian Matrix

Diagonal

Energy of electron on AO ϕ

One-center off diagonal

$$H_{\mu\nu} = U_{\mu}(A) \cdot \delta_{\mu\nu}(\mu, \nu \in A)$$

Two-center off diagonal

$$H_{\mu\nu} = \pm \beta_{\mu\nu}^{AB} (R_{AB}/a_0)^{1/2} \exp(-\lambda_{\mu\nu}^{AB} R_{AB}^2/a_0^2)$$

Table 1. Parameters of the MTB/2 Model

parameter	Н	С					
U_s^A (eV) U_p^A (eV)	-13.605	−21.55 −13.50					
Bond-Type Parameters							
parameter	H-H	С-Н	C-C				
λss	0.280	0.275	0.086				
λsp		0.218	0.180				
λρρσ			0.186				
λρρπ			0.282				
βss (eV)	-4.442	-8.574	-5.969				
βsp (eV)		-6.813	-6.160				
$\beta pp\sigma$ (eV)			-8.420				
$\beta pp\pi$ (eV)			-7.403				
α_{AB} (Å ⁻¹)	2.823	2.831	3.401				
γ_{AB} (eV)	12.612	99.370	658.659				
ω_{AB} (eV)	-0.0791	-0.0340	0.0312				
r _{AB} (Å)	2.279	2.843	3.044				

Atomic Parameters

Energy Calculation

Standard eigenvalue problem

$$E = \sum_{i} n_{i} \varepsilon_{i} + E_{rep}$$

$$E_{rep} = \sum_{A>B} G_{AB}$$

$$G_{AB} = \gamma_{AB} \exp(-\alpha_{AB} R_{AB}) + \omega_{AB} \exp[-6(R_{AB} - r_{AB})^2]$$

Table 1. Parameters of the MTB/2 Model

Atomic Parameters			
parameter	Н	С	
J ^A _s (eV)	-13.605	-21.559	
U_s^A (eV) U_p^A (eV)		-13.507	

Bond-Type Parameters						
parameter	H-H	C-H	C-C			
λss	0.280	0.275	0.086			
λsp		0.218	0.180			
λρρσ			0.186			
λρρπ			0.282			
βss (eV)	-4.442	-8.574	-5.969			
βsp (eV)		-6.813	-6.160			
$\beta pp\sigma$ (eV)			-8.420			
βppπ (eV)			-7.403			
α_{AB} (Å ⁻¹)	2.823	2.831	3.401			
γ_{AB} (eV)	12.612	99.370	658.659			
ω _{AB} (eV)	-0.0791	-0.0340	0.0312			
r_{AB} (Å)	2.279	2.843	3.044			

Heat of Formation

$$\Delta H_{f,298}^0 = E - \sum_A E_{isol}(A) + \sum_A H_{f,298}^0(A)$$

1) Total energy

 $E_{isol}(A) = n_s U_s(A) + n_p U_p(A)$

- 2) Isolation energy
- 3) Atom specific heat formation

Results & Discussion

Results

Large over predictions:

- Alkanes (ex: pentane: +249 kcal/mol)
- Branched/Substituted alkenes (ex: trimethylethane +203, isobutene +172)
- Strained Rings with
 Saturation (ex:
 Cyclopropane(tris)..: +132)

Better performance:

- Simple Alkenes & Alkynes
 (Diacetylene, ethylene, cyclopropene)
- Aromatics & Cross-Conjugated Systems

	Molecule	Experimental	Predicted	Difference	Absolute_Error	Bias
4	pentane	-35.1	214.14300	-249.243	249.24300	Over
3	butane	-30.1	173.63300	-203.733	203.73300	Over
10	trimethylethene	-9.9	179.78700	-189.687	189.68700	Over
9	isobutene	-4.0	168.63100	-172.631	172.63100	Over
2	propane	-25.0	133.21600	-158.216	158.21600	Over
20	benzene	19.7	153.86200	-134.162	134.16200	Over
27	cyclopropane,tris(methylene)	74.8	207.19800	-132.398	132.39800	Over
25	fulvelene	33.8	-58.54170	92.3417	92.34170	Under
12	vinylacetylene	70.4	149.89000	-79.49	79.49000	Over
7	acetylene	54.5	-12.31000	66.81	66.81000	Under
18	cubane	148.7	81.95710	66.7429	66.74290	Under
16	cyclobutene	37.5	-26.56910	64.0691	64.06910	Under
15	cyclopropene	66.2	8.04425	58.15575	58.15575	Under
26	2,4-hexadiyne	70.4	114.87200	-44.472	44.47200	Over
17	fulvene	53.5	95.32050	-41.8205	41.82050	Over
11	diacetylene	111.0	82.01010	28.9899	28.98990	Under
8	propene	6.7	23.08040	-16.3804	16.38040	Over
14	cyclopropane	12.7	28.92750	-16.2275	16.22750	Over
6	ethylene	12.5	20.23880	-7.7388	7.73880	Over
24	benzene	0.0	0.00000	0	0.00000	Under
0	H2	0.0	0.00000	NaN	0.00000	Under

Misclassification of σ (Sigma) and π (Pi) Bonding

- What we did: Applied a hard threshold (unit_vec_component > 0.9) to decide σ vs. π alignment between orbital axis and the bond vectors.
 - However: "The electron/charge transfer via the orbital overlap has a direction or several competing directions in the chemical reactions... the ideal reactivity indexes should be computed with the identification of the orbital overlap direction (Shi et al., 2025)."
 - Real systems exhibit varying orbital overlaps due to continuous bond angle deformations, and classification based only on a static threshold ignores this directional nuance.

Effects:

 ρ β pp σ vs. β pp π

$$H_{\mu\nu} = \pm \beta_{\mu\nu}^{AB} (R_{AB}/a_0)^{1/2} \exp(-\lambda_{\mu\nu}^{AB} R_{AB}^2/a_0^2)$$

- Parameters for β pp σ are larger than β pp π
 - Overestimate the orbital coupling
 - Make H matrix too large
 - Cause the eigenvalues (orbital energies) to be too low

Results:

- Overstabilization of bonding orbitals
- Total energy is estimation is affected
- Heat of Formation (ΔHf) is too negative

Phase Factor:
$$H_{\mu\nu} = \pm \beta_{\mu\nu}^{AB} (R_{AB}/a_0)^{1/2} \exp(-\lambda_{\mu\nu}^{AB} R_{AB}^2/a_0^2)$$

Positive Phase Factor Only

- What we did: Assumed +1 phase factor and thereby, ignored sign inversion (±) in AO overlaps for bonding vs. antibonding orientation.
 - a. Bonding orientation $+\beta$ (what we are doing)
 - b. Antibonding orientation $-\beta$ (what's not being accounted for)
- Effects:
 - a. This affects the sign and magnitude of Hμν (off-diagonal Hamiltonian elements).
- Result: energy levels (eigenvalues) are shifted
 - a. especially when antibonding contributions are incorrectly treated as bonding.
 - b. Overestimate bonding
 - c. Underestimating antibonding
 - d. Heat of Formation (ΔHf) skewed

In a π bond, the sideways overlap of p orbitals leads to two types of molecular orbitals: bonding (π) and antibonding (π^*)

The orientation of the p orbitals is crucial for this overlap. If the lobes are out of phase, the interaction becomes antibonding.

Energy diagram for two Pi molecular orbitals in a typical pi bond

Error Distribution by Molecule Type

- Alkanes & Alkenes:
 - Widespread error
- Aromatics and Alkynes:
 - Tighter distribution = fewest error
- Ringed Compounds
 - Intermediate Performance

Potential Bias:

- Sigma vs. Pi Classification
- Phase Factor

Bond Type Distribution

Suggests possible systematic issues in bond-type recognition

- Alkanes and Ringed compounds: majority overpredicted
- Aromatics and Alkenes: more balanced predictions
- Overestimating π character

Potential Bias:

- Sigma vs. Pi Classification
- Phase Factor

Conclusion

- MTB/2 method is based on the orthogonal model and thus is even simpler than EHM... (Voityuk, 2008)."
- MTB/2 captures general thermochemical trends, but large errors persist in:
 - Saturated/branched alkanes and substituted alkenes (strong overprediction bias)
 - Misclassified σ/π bonds in distorted or mixed bonding systems
 - Overstabilization due to assuming a constant +1 phase factor
- Aromatics and π-delocalized systems are predicted with better accuracy

Next Steps (Future Work)

- Implementing proper orbital phase handling to distinguish bonding vs. antibonding
- Refining σ/π classification with flexible directional thresholds

Citations

Ashenhurst, J. (2023b, January 8). *Bonding and antibonding pi orbitals*. Master Organic Chemistry. https://www.masterorganicchemistry.com/2017/02/14/molecular-orbital-pi-bond/#notefour

Kolb, M.; Thiel, W. "Calculation of Two-Center One-Electron Integrals." J. Comput. Chem. 1993, 14, 775.

Shi, X., Song, J., & Wei, D. (2025). An analysis method including orbital overlap directions for predicting π electron properties and reactivity vectors. *Nature Communications*, *16*(1). https://doi.org/10.1038/s41467-025-58281-9

Voityuk, A. A. "Thermochemistry of Hydrocarbons. Back to Extended Hückel Theory." *J. Chem. Theory Comput.* 2008, *4*, 1877-1885.