6 Problems: Vector Spaces

1. Check that $V = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x, y \in \mathbb{R} \right\} = \mathbb{R}^2$ with the usual addition and scalar multiplication is a vector space.

2.	Check that the complex what your rules for vector as the base field (try com	numbers $\mathbb{C} = \{x + iy x,$ or addition and scalar maparing to problem 1).	$y \in \mathbb{R}$ form a vectual full function are.	tor space over C. Ma Also, explain what w	ke sure you state carefully ould happen if you used \mathbb{I}	y ₹

3. (a) Consider the set of convergent sequences, with the same addition and scalar multiplication that we defined for the space of sequences:

$$V = \left\{ f | f \colon \mathbb{N} \to \mathbb{R}, \lim_{n \to \infty} f \in \mathbb{R} \right\}$$

Is this still a vector space? Explain why or why not.

(b) Now consider the set of divergent sequences, with the same addition and scalar multiplication as before:

$$V = \left\{ f | f \colon \mathbb{N} \to \mathbb{R}, \lim_{n \to \infty} f \text{ does not exist or is } \pm \infty \right\}$$

Is this a vector space? Explain why or why not.

4. Consider the set of 2×4 matrices:

$$V = \left\{ \begin{pmatrix} a & b & c & d \\ e & f & g & h \end{pmatrix} | a, b, c, d, e, f, g, h \in \mathbb{C} \right\}$$

Propose definitions for addition and scalar multiplication in V. Identify the zero vector in V, and check that every matrix has an additive inverse.

- 5. Let $P_3^{\mathbb{R}}$ be the set of polynomials with real coefficients of degree three or less.
 - ullet Propose a definition of addition and scalar multiplication to make $P_3^{\mathbb{R}}$ a vector space.
 - Identify the zero vector, and find the additive inverse for the vector $-3 2x + x^2$.
 - Show that $P_3^{\mathbb{R}}$ is not a vector space over \mathbb{C} . Propose a small change to the definition of $P_3^{\mathbb{R}}$ to make it a vector space over \mathbb{C} .

Problem 5 hint

