

睿尔曼机器人 rm_ros_interface 使用说明书 V1.0

睿尔曼智能科技(北京)有限公司

文件修订记录:

版本号	时间	备注
V1.0	2023-11-20	拟制

目录

1. rm_ros_	interface 功能包说明	4
2. rm_ros_	interface 功能包使用	4
3. rm_ros_	interface 功能包架构说明	4
3.1 功能	包文件总览	4
4. rm_ros_	interface 消息说明	6
1.	关节错误代码 Jointerrorcode.msg	6
2.	清除关节错误代码 Jointerrclear.msg	6
3.	所有坐标系名称 Getallframe.msg	7
4.	关节运动 Movej.msg	7
5.	直线运动 Movel.msg	8
6.	圆弧运动 Movec.msg	8
7.	关节空间规划到目标位姿 Movejp.msg	S
8.	角度透传 Jointpos.msg	S
9.	位姿透传 Cartepos.msg	10
10.	机械臂当前状态(角度+欧拉角)Armoriginalstate.msg	10
11.	机械臂当前状态(弧度+四元数)Armstate.msg	11

12.	读取软件版本号 Armsoftversion.msg	12
13.	手爪力控夹取 Gripperpick.msg	13
14.	手爪力控夹取(持续力控夹取)Gripperpick.msg	13
15.	手爪到达指定位置 Gripperset.msg	14
16.	力位混合控制 Setforceposition.msg	14
17.	六维力数据 Sixforce.msg	15
18.	设置灵巧手手势 Handposture.msg	16
19.	设置灵巧手动作序列 Handseq.msg	16
20.	设置灵巧手各自由度角度 Handangle.msg	17
21.	设置灵巧手速度 Handspeed.msg	17
22.	设置灵巧手力阈值 Handforce.msg	17
23.	透传力位混合补偿(角度)Forcepositionmovejoint.msg	18
24.	透传力位混合补偿(位姿)Forcepositionmovejoint.msg	19
25.	速度开环控制(升降机构)Liftspeed.msgg	20
26.	位置闭环控制(升降机构)Liftheight.msgg	20
27.	获取升降机构状态(升降机构)Liftstate.msg	21
29.	获取升降机构状态(升降机构)Liftstate.msg	22
30.	获取升降机构状态(升降机构)Liftstate.msg	22

1. rm ros interface 功能包说明

rm_ros_interface 功能包的主要作用为为机械臂在 ROS2 的框架下运行提供必要的 消息文件,在下文中将通过以下几个方面详细介绍该功能包。

- 1. 功能包使用。
- 2. 功能包架构说明。
- 3. 功能包话题说明。

通过这三部分内容的介绍可以帮助大家:

- 1. 了解该功能包的使用。
- 2. 熟悉功能包中的文件构成及作用。
- 3. 熟悉功能包相关的话题,方便开发和使用。

2. rm ros interface 功能包使用

该功能包并没有可执行的使用命令,其主要作用为为其他功能包提供必须的消息文件。

3. rm ros interface 功能包架构说明

3.1 功能包文件总览

当前 rm_driver 功能包的文件构成如下。

	Forcepositionmovepose.msg
Ι	Force_Position_State.msg
I	— Getallframe.msg
I	— GetArmState_Command.msg
I	— Gripperpick.msg
Ι	- Gripperset.msg
Ι	— Handangle.msg
Ι	
Ι	— Handposture.msg
Ι	Handseq.msg
Ι	Handspeed.msg
Ι	— Jointerrclear.msg
Ι	— Jointerrorcode75.msg
Ι	— Jointerrorcode.msg
I	— Jointpos75.msg
I	├— Jointpos.msg
I	Liftheight.msg
I	Liftspeed.msg
I	Liftstate.msg
I	— Movec.msg
I	├── Movej75.msg
1	├── Movej.msg

│		
│ ├── Setrealtimepush.msg		
— Sixforce.msg		
L— Stop.msg		
├── package.xml	#依赖声明文件	
L— src		

4. rm ros interface 消息说明

1. 关节错误代码 Jointerrorcode.msg

```
uint16[] joint_error
uint8 dof
```

msg 成员

uint16[] joint_error

每个关节报错信息。

uint8 dof

机械臂自由度信息。

2. 清除关节错误代码 Jointerrclear.msg

```
uint8 joint_num
bool block
```

msg 成员

joint_num

对应关节序号,从基座到机械臂手爪端,序号依次为 1~6 或 1~7。

block

是否为阻塞模式, bool 类型, true:阻塞, false:非阻塞。

3. 所有坐标系名称 Getallframe.msg

string[10] frame_name

msg 成员

frame_name

返回的工作坐标系的名称数组。

4. 关节运动 Movej.msg

float32[] joint

uint8 speed

bool block

uint8 dof

msg 成员

joint

关节角度,float 类型,单位:弧度。

speed

速度百分比例系数,0~100。

block

是否为阻塞模式, bool 类型, true:阻塞, false:非阻塞。

dof

机械臂自由度信息。

5. 直线运动 Movel.msg

```
geometry_msgs/Pose pose
```

uint8 speed

bool block

msg 成员

pose

机械臂位姿,geometry_msgs/Pose 类型,x、y、z 坐标(float 类型,单位:m)+四元数(float 类型)。

speed

速度百分比例系数,0~100。

block

是否为阻塞模式, bool 类型, true:阻塞, false:非阻塞。

6. 圆弧运动 Movec.msg

geometry_msgs/Pose pose_mid

geometry_msgs/Pose pose_end

uint8 speed

bool block

msg 成员

pose_mid

中间位姿,geometry_msgs/Pose 类型,x、y、z 坐标(float 类型,单位:m)+四元数。

pose_end

目标位姿,geometry_msgs/Pose 类型,x、y、z 坐标(float 类型,单位:m)+四元数。

speed

速度百分比例系数,0~100。

block

是否为阻塞模式,bool 类型,true:阻塞,false:非阻塞。

7. 关节空间规划到目标位姿 Movejp.msg

geometry_msgs/Pose pose

uint8 speed

bool block

msg 成员

pose

目标位姿,geometry_msgs/Pose 类型,x、y、z 坐标(float 类型,单位:m)+四元数。

speed

速度百分比例系数,0~100。

block

是否为阻塞模式, bool 类型, true:阻塞, false:非阻塞。

8. 角度透传 Jointpos.msg

float32[] joint

bool follow

float32 expand

uint8 dof

msg 成员

joint

关节角度, float 类型,单位:弧度。

follow

跟随状态,bool 类型,true 高跟随,false 低跟随,不设置默认高跟随。

expand

拓展关节,float 类型,单位:弧度。

dof

机械臂自由度信息。

9. 位姿透传 Cartepos.msg

geometry_msgs/Pose pose

bool follow

msg 成员

pose

机械臂位姿,geometry_msgs/Pose 类型,x、y、z 坐标(float 类型,单位:m)+四元数。

follow

跟随状态,bool 类型,true 高跟随,false 低跟随,不设置默认高跟随。

10. 机械臂当前状态(角度+欧拉角)Armoriginalstate.msg

float32[] joint

float32[6] pose


```
uint16 arm_err
```

uint16 sys_err

uint8 dof

msg 成员

joint

关节角度, float 类型,单位:度。

pose

机械臂当前位姿,float 类型, x、y、z 坐标, 单位: m, x、y、z 欧拉角,

单位:度。

arm_err

机械臂运行错误代码, unsigned int 类型。

arm_err

控制器错误代码, unsigned int 类型。

dof

机械臂自由度信息。

11. 机械臂当前状态(弧度+四元数)Armstate.msg

float32[] joint

geometry_msgs/Pose pose

uint16 arm_err

uint16 sys_err

uint8 dof

msg 成员

joint

关节角度, float 类型,单位:弧度。

pose

机械臂当前位姿,float 类型, x、y、z 坐标, 单位: m, x、y、z、w 四元数。

arm_err

机械臂运行错误代码,unsigned int 类型。

arm_err

控制器错误代码, unsigned int 类型。

dof

机械臂自由度信息。

12. 读取软件版本号 Armsoftversion.msg

string planversion

string ctrlversion

string kernal1

string kernal2

string productversion

msg 成员

planversion

读取到的用户接口内核版本号,string 类型。

ctrlversion

实时内核版本号,string 类型。

kernal1

实时内核子核心 1 版本号, string 类型。

kernal2

实时内核子核心 2 版本号, string 类型。

productversion

机械臂型号, string 类型。

13. 手爪力控夹取 Gripperpick.msg

uint16 speed

uint16 force

bool block

msg 成员

speed

手爪力控夹取速度, unsigned int 类型, 范围: 1~1000。

force

手爪夹取力矩阈值, unsigned int 类型, 范围 : 50~1000。

block

是否为阻塞模式,bool 类型,true:阻塞,false:非阻塞。

14. 手爪力控夹取(持续力控夹取)Gripperpick.msg

uint16 speed

uint16 force

bool block

msg 成员

speed

手爪力控夹取速度, unsigned int 类型, 范围: 1~1000。

force

手爪夹取力矩阈值, unsigned int 类型, 范围 : 50~1000。

block

是否为阻塞模式, bool 类型, true:阻塞, false:非阻塞。

15. 手爪到达指定位置 Gripperset.msg

uint16 position

bool block

msg 成员

position

手爪目标位置, unsigned int 类型, 范围: 1~1000,代表手爪开口度: 0~70mm。

block

是否为阻塞模式,bool 类型,true:阻塞,false:非阻塞。

16. 力位混合控制 Setforceposition.msg

uint8 sensor

uint8 mode

uint8 direction

int16 n

bool block

msg 成员

sensor

传感器;0-一维力;1-六维力。

mode

Mode: 0-工作坐标系力控; 1-工具坐标系力控。

Direction

力控方向;0-沿 X 轴;1-沿 Y 轴;2-沿 Z 轴;3-沿 RX 姿态方向;4-沿 RY 姿态方向;5-沿 RZ 姿态方向。

n

力的大小,单位 0.1N。

block

是否阻塞, true:阻塞, false:非阻塞。

17. 六维力数据 Sixforce.msg

float32 force fx

float32 force_fy

float32 force_fz

float32 force_mx

float32 force_my

float32 force_mz

msg 成员

force_fx

沿x轴方向受力大小。

force_fy

沿 y 轴方向受力大小。

force_fz

沿z轴方向受力大小。

force_mx

沿x轴方向转动受力大小。

force_my

沿y轴方向转动受力大小。

force_mz

沿z轴方向转动受力大小。

18. 设置灵巧手手势 Handposture.msg

uint16 posture_num

bool block

msg 成员

posture_num

预先保存在灵巧手内的手势序号,范围:1~40。

block

是否为阻塞模式,bool 类型,true:阻塞,false:非阻塞。

19. 设置灵巧手动作序列 Handseq.msg

uint16 seq_num

bool block

msg 成员

seq_num

预先保存在灵巧手内的序列序号,范围:1~40。

block

是否为阻塞模式, bool 类型, true:阻塞, false:非阻塞。

20. 设置灵巧手各自由度角度 Handangle.msg

int16[6] hand_angle

bool block

msg 成员

hand_angle

手指角度数组,范围:0~1000。另外,-1 代表该自由度不执行任何操作, 保持当前状态。

block

是否为阻塞模式, bool 类型, true:阻塞, false:非阻塞。

21. 设置灵巧手速度 Handspeed.msg

uint16 hand_speed

bool block

msg 成员

hand_speed

手指速度,范围:1~1000。

block

是否为阻塞模式,bool 类型,true:阻塞,false:非阻塞。

22. 设置灵巧手力阈值 Handforce.msg

uint16 hand_force

bool block

msg 成员

hand_force

手指力,范围:1~1000。

block

是否为阻塞模式,bool 类型,true:阻塞,false:非阻塞。

23. 透传力位混合补偿(角度)Forcepositionmovejoint.msg

float32[] joint
uint8 sensor
uint8 mode
int16 dir
float32 force
bool follow
uint8 dof

msg 成员

joint

角度力位混合透传,单位:弧度。

sensor

所使用传感器类型,0-一维力,1-六维力。

mode

模式,0-沿工作坐标系,1-沿工具端坐标系。

dir

力控方向,0~5 分别代表 X/Y/Z/Rx/Ry/Rz,其中一维力类型时默认方向为

Z 方向。

force

力的大小,精度 0.1N 或者 0.1Nm。

block

是否为阻塞模式,bool 类型,true:阻塞,false:非阻塞。

dof

机械臂自由度信息。

24. 透传力位混合补偿(位姿)Forcepositionmovejoint.msg

geometry_msgs/Pose pose

uint8 sensor

uint8 mode

int16 dir

float32 force

bool follow

msg 成员

pose

机械臂位姿信息,x、y、z位置信息+四元数姿态信息。

sensor

所使用传感器类型,0-一维力,1-六维力。

mode

模式,0-沿工作坐标系,1-沿工具端坐标系。

dir

力控方向,0~5 分别代表 X/Y/Z/Rx/Ry/Rz,其中一维力类型时默认方向为 Z 方向。

force

力的大小,精度 0.1N 或者 0.1Nm。

block

是否为阻塞模式, bool 类型, true:阻塞, false:非阻塞。

25. 速度开环控制(升降机构)Liftspeed.msg

int16 speed

bool block

msg 成员

speed

速度百分比,-100~100。Speed < 0:升降机构向下运动;Speed > 0:升降机构向上运动;Speed = 0:升降机构停止运动。

block

是否为阻塞模式, bool 类型, true:阻塞, false:非阻塞。

26. 位置闭环控制(升降机构)Liftheight.msg

uint16 height

uint16 speed

bool block

msg 成员

height

目标高度,单位 mm,范围:0~2600。

speed

速度百分比,1~100。

block

是否为阻塞模式, bool 类型, true:阻塞, false:非阻塞。

27. 获取升降机构状态(升降机构)Liftstate.msg

int16 height

int16 current

uint16 err_flag

msg 成员

height

当前升降机构高度,单位:mm,精度:1mm,范围:0~2300。

current

升降驱动错误代码,错误代码类型参考关节错误代码。

28. 查询(设置)UDP 机械臂状态主动上报配置 Setrealtimepush.msg

uint16 cycle

uint16 port

uint16 force_coordinate

string ip

msg 成员

cycle

设置广播周期,为 5ms 的倍数。

port

设置广播的端口号。

force_coordinate

系统外受力数据的坐标系,0 为传感器坐标系 1 为当前工作坐标系 2 为当前工具坐标系。

ip

自定义的上报目标 IP 地址。

29. 获取升降机构状态(升降机构)Liftstate.msg

int16 height

int16 current

uint16 err_flag

msg 成员

height

当前升降机构高度,单位:mm,精度:1mm,范围:0~2300。

current

升降驱动错误代码,错误代码类型参考关节错误代码。

30. 获取升降机构状态(升降机构)Liftstate.msg

uint16 cycle

uint16 port

uint16 force_coordinate

string ip

msg 成员

cycle

设置广播周期,为 5ms 的倍数(默认 1 即 1*5=5ms,200Hz)。

port

设置广播的端口号(默认8089)。

force_coordinate

设置系统外受力数据的坐标系(仅带有力传感器的机械臂支持)。

string ip

设置自定义的上报目标 IP 地址(默认 192.168.1.10)。