

An introduction to spectral methods for solving ODEs

Manuel Borregales

Ph.D. student at the Porous media group, University of Bergen, Bergen, Norway. Post-doc at the Computational Geosciences group, SINTEF Digital, Oslo, Norway.

Numerical methods for ODEs, Karlstad University, 6 Nov 2019.

The solution u(x) is **expanded** into a series of **orthogonal functions**.

$$u(x) \approx u^{N}(x) = \sum_{k=0}^{N} c_k \, \phi_k(x)$$

The solution u(x) is **expanded** into a series of **orthogonal functions**.

$$u(x) \approx u^{N}(x) = \sum_{k=0}^{N} c_k \, \phi_k(x)$$

• The numerical solution is related to its spectrum

The solution u(x) is **expanded** into a series of **orthogonal functions**.

$$u(x) \approx u^{N}(x) = \sum_{k=0}^{N} c_k \phi_k(x)$$

- The numerical solution is related to its spectrum
- Exponential convergence rate (Spectral accuracy): $O(h^N), h \approx \frac{1}{N}$
- $\bullet \ \ {\sf Computational\ cost:}\ O(Nlog(N)) \\$

Outline

Introduction

Orthogonal functions Chebyshev polynomials Fourier series

Spectral methods

Conclusion
Recommended references

Two functions $\phi(x)$ and $\varphi(x)$ are orthogonal in an interval [a,b] if

$$\int_{a}^{b} \phi(x) \; \varphi(x) \; dx = 0$$

Two functions $\phi(x)$ and $\varphi(x)$ are orthogonal in an interval [a,b] if

$$\int_{a}^{b} \phi(x) \; \varphi(x) \; dx = 0$$

By applying GramSchmidt process to the basis $\{1, x, x^2, ...\}$ the Legendre polynomials are obtained.

$$\int_{a}^{b} \phi(x) \ \varphi(x) \ w(x) \ dx = 0$$

$$\int_{a}^{b} \phi(x) \ \varphi(x) \ w(x) \ dx = 0$$

interval	w(x)	Orthogonal basis
[-1, 1]	1	Legendre polynomials $P_l^m(x)$

$$\int_{a}^{b} \phi(x) \ \varphi(x) \ w(x) \ dx = 0$$

interval	w(x)	Orthogonal basis	
[-1, 1]	1	Legendre polynomials $P_l^m(x)$	ς.
$(0,\infty)$	e^{-x}	Laguerre polynomials $L_k(x)$	

$$\int_{a}^{b} \phi(x) \ \varphi(x) \ w(x) \ dx = 0$$

interval	w(x)	Orthogonal basis
[-1,1]	1	Legendre polynomials $P_l^m(x)$
$(0,\infty)$	e^{-x}	Laguerre polynomials $L_k(x)$
$(-\infty,\infty)$	e^{-x^2}	Hermite polynomials $H_k(x)$

$$\int_{a}^{b} \phi(x) \ \varphi(x) \ w(x) \ dx = 0$$

w(x)	Orthogonal basis
1	Legendre polynomials $P_l^m(x)$
e^{-x}	Laguerre polynomials $L_k(x)$
e^{-x^2}	Hermite polynomials $H_k(x)$
$\frac{1}{\sqrt{1-x^2}}$	Chebyshev polynomials $T_k(x)$
	$ \begin{array}{c} 1 \\ e^{-x} \\ e^{-x^2} \\ \underline{} \end{array} $

$$\int_{a}^{b} \phi(x) \ \varphi(x) \ w(x) \ dx = 0$$

interval	w(x)	Orthogonal basis
[-1,1]	1	Legendre polynomials $P_l^m(x)$
$(0,\infty)$	e^{-x}	Laguerre polynomials $L_k(x)$
$(-\infty,\infty)$	e^{-x^2}	Hermite polynomials $H_k(x)$
[-1,1]	$\frac{1}{\sqrt{1-x^2}}$	Chebyshev polynomials $T_k(x)$
$[-\pi,\pi]$	_	Trigonometric functions $F_k(x)$ (Fourier)

$$\int_{a}^{b} \phi(x) \ \varphi(x) \ w(x) \ dx = 0$$

interval	w(x)	Orthogonal basis
[-1, 1]	1	Legendre polynomials $P_l^m(x)$
$(0,\infty)$	e^{-x}	Laguerre polynomials $L_k(x)$
$(-\infty,\infty)$	e^{-x^2}	Hermite polynomials $H_k(x)$
[-1,1]	$\frac{1}{\sqrt{1-x^2}}$	Chebyshev polynomials $T_k(x)$
$[-\pi,\pi]$	_	Trigonometric functions $F_k(x)$ (Fourier)

Definition

$$T_n(x) = \cos(n\theta(x)), \ \theta(x) := \arccos(x)$$

Definition

$$T_n(x) = \cos(n\theta(x)), \ \theta(x) := \arccos(x)$$

Recurrence relation

$$T_0(x) = 1,$$

 $T_1(x) = x,$
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$

Definition

$$T_n(x) = \cos(n\theta(x)), \ \theta(x) := \arccos(x)$$

Recurrence relation

$$T_0(x) = 1,$$

 $T_1(x) = x,$
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$

Orthogonality

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 & n \neq m \\ \pi & n = m = 0 \\ \frac{\pi}{2} & n = m \neq 0 \end{cases}$$

-0.4 -0.6 -0.8

-0.5

0.5

Definition

$$T_n(x) = \cos(n\theta(x)), \ \theta(x) := \arccos(x)$$

Recurrence relation

$$T_0(x) = 1,$$

 $T_1(x) = x,$
 $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$

Orthogonality

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 & n \neq m \\ \pi & n = m = 0 \\ \frac{\pi}{2} & n = m \neq 0 \end{cases}$$

Derivatives

$$\frac{d^{p}}{dx^{p}}T_{n}(x) = \sum_{k=0}^{N-p} D_{n,k,p} T_{k}(x)$$

• Definition $F_k(x) = e^{ikx} = \cos(kx) + i\sin(kx)$

- $\bullet \ \ {\rm Definition} \ F_k(x) = e^{ikx} = \cos(kx) + i\sin(kx)$
- Derivatives $\frac{d^p}{dx^p}F_k(x)=(ik)^pF_k(x)$

- Definition $F_k(x) = e^{ikx} = \cos(kx) + i\sin(kx)$
- Derivatives $\frac{d^p}{dx^p}F_k(x)=(ik)^pF_k(x)$
- Fourier Transform $S(u) = \hat{u}$

$$\hat{u}(\xi) = \int_{-\infty}^{\infty} u(x)e^{-i2\pi x\xi} dx$$

- Definition $F_k(x) = e^{ikx} = \cos(kx) + i\sin(kx)$
- \bullet Derivatives $\frac{d^p}{dx^p}F_k(x)=(ik)^pF_k(x)$
- $\bullet \ \ \text{Fourier Transform} \ S(u) = \hat{u}$

$$\hat{u}(\xi) = \int_{-\infty}^{\infty} u(x)e^{-i2\pi x\xi} dx$$

Inverse Fourier Transform

$$u(x) = \int_{-\infty}^{\infty} \hat{u}(\xi)e^{i2\pi\xi x} d\xi$$

- Definition $F_k(x) = e^{ikx} = \cos(kx) + i\sin(kx)$
- Derivatives $\frac{d^p}{dx^p}F_k(x) = (ik)^pF_k(x)$
- $\bullet \ \ \text{Fourier Transform} \ S(u) = \hat{u}$

$$\hat{u}(\xi) = \int_{-\infty}^{\infty} u(x)e^{-i2\pi x\xi} dx$$

Inverse Fourier Transform

$$u(x) = \int_{-\infty}^{\infty} \hat{u}(\xi)e^{i2\pi\xi x} d\xi$$

Discrete Fourier Transform

$$\hat{u}_k = \sum_{k=0}^{N-1} u_n e^{-i2\pi k \frac{n}{N}}$$

- Definition $F_k(x) = e^{ikx} = \cos(kx) + i\sin(kx)$
- Derivatives $\frac{d^p}{dx^p}F_k(x)=(ik)^pF_k(x)$
- Fourier Transform $S(u) = \hat{u}$

$$\hat{u}(\xi) = \int_{-\infty}^{\infty} u(x)e^{-i2\pi x\xi} dx$$

Inverse Fourier Transform

$$u(x) = \int_{-\infty}^{\infty} \hat{u}(\xi)e^{i2\pi\xi x} d\xi$$

Discrete Fourier Transform

$$\hat{u}_k = \sum_{k=0}^{N-1} u_n e^{-i2\pi k \frac{n}{N}}$$

Inverse Discrete Fourier Transform

$$u_n = \frac{1}{N} \sum_{k=0}^{N-1} \hat{u}_n e^{i2\pi n \frac{k}{N}}$$

- Definition $F_k(x) = e^{ikx} = \cos(kx) + i\sin(kx)$
- Derivatives $\frac{d^p}{dx^p}F_k(x) = (ik)^pF_k(x)$
- Fourier Transform $S(u) = \hat{u}$

$$\hat{u}(\xi) = \int_{-\infty}^{\infty} u(x)e^{-i2\pi x\xi} dx$$

Inverse Fourier Transform

$$u(x) = \int_{-\infty}^{\infty} \hat{u}(\xi)e^{i2\pi\xi x} d\xi$$

• Discrete Fourier Transform

$$\hat{u}_k = \sum_{k=0}^{N-1} u_n e^{-i2\pi k \frac{n}{N}}$$

Inverse Discrete Fourier Transform

$$u_n = \frac{1}{N} \sum_{k=0}^{N-1} \hat{u}_n e^{i2\pi n \frac{k}{N}}$$

 $a_n \cos(nx) + b_n \sin(nx)$

Spectral methods

$$D u(x) = f(x).$$

- $\bullet \ \ x\in [a,b], \, u(a)=u(b)=0.$
- $\bullet \ \ D \ \text{is the differential operator (with ordinary derivatives)}$
- $ullet \ u$ is the solution

$$D\ u(x) = f(x).$$

- $\bullet \ \ x \in [a,b], \, u(a)=u(b)=0.$
- $\bullet \ \ D \ \text{is the differential operator (with ordinary derivatives)}$
- u is the solution

The solution u(x) is **expanded** into a series of **orthogonal** functions.

$$u(x) \approx u^{N}(x) = \sum_{k=0}^{N} c_k \phi_k(x)$$

$$D u(x) = f(x).$$

- $\bullet \quad x \in [a,b], \, u(a)=u(b)=0.$
- $\bullet \hspace{0.1in} D$ is the differential operator (with ordinary derivatives)
- u is the solution

The solution u(x) is **expanded** into a series of **orthogonal** functions.

$$u(x) \approx u^{N}(x) = \sum_{k=0}^{N} c_k \,\phi_k(x)$$

The goal of spectral methods is to choose the coefficients c_k such that the residual R is minimized.

$$R(x) := Du^{N}(x) - f = D \sum_{k=0}^{N} c_{k} \phi_{k}(x) - f(x)$$

$$D u(x) = f(x).$$

- $x \in [a, b], u(a) = u(b) = 0.$
- ullet D is the differential operator (with ordinary derivatives)
- u is the solution

The solution u(x) is **expanded** into a series of **orthogonal** functions.

$$u(x) \approx u^{N}(x) = \sum_{k=0}^{N} c_k \phi_k(x)$$

The goal of spectral methods is to choose the coefficients c_k such that the residual R is minimized.

$$R(x) := Du^{N}(x) - f = D \sum_{k=0}^{N} c_{k} \phi_{k}(x) - f(x)$$

Collocation methods:

$$R(x_l) = 0, \quad l = 0:N$$

$$D u(x) = f(x).$$

- $x \in [a, b], u(a) = u(b) = 0.$
- ullet D is the differential operator (with ordinary derivatives)
- u is the solution

The solution u(x) is **expanded** into a series of **orthogonal** functions.

$$u(x) \approx u^N(x) = \sum_{k=0}^{N} c_k \phi_k(x)$$

The goal of spectral methods is to choose the coefficients c_k such that the residual R is minimized.

$$R(x) := Du^{N}(x) - f = D \sum_{k=0}^{N} c_{k} \phi_{k}(x) - f(x)$$

Collocation methods:

$$R(x_l) = 0, \quad l = 0:N$$

Weighted residuals methods: $\int_a^b R(x)\varphi_l(x)w(x)dx = 0$, l = 0:N

Collocation method (Pseudospectral method)

$$D u(x) = f(x).$$

- $\bullet \ \ x \in [a,b], \, u(a)=u(b)=0$
- $\bullet \ \ D \ \text{is the differential operator (with ordinary derivatives)} \\$
- $u(x) \approx u^N(x) = \sum_{k=0}^N c_k \, \phi_k(x)$

Collocation method (Pseudospectral method)

$$D u(x) = f(x).$$

- $x \in [a, b], u(a) = u(b) = 0$
- D is the differential operator (with ordinary derivatives)
- $u(x) \approx u^N(x) = \sum_{k=0}^{N} c_k \phi_k(x)$

Create an array of points $\{x_l\}_{l=0}^N$ such that $a = x_0 < x_1 < ... x_{N-1} < x_N = b$.

0.5

$$u^{N}(a) = 0, \ u^{N}(b) = 0,$$

 $R(x_{l}) = 0, \ l = 1 : N - 1.$

Fig. 5.1. Chebyshev points are the projections onto the x-axis of equally spaced points on the unit circle. Note that they are numbered from right to left,

Collocation method (Pseudospectral method)

$$D u(x) = f(x).$$

$$\bullet \ \ x \in [a,b], \, u(a)=u(b)=0$$

D is the differential operator (with ordinary derivatives)

•
$$u(x) \approx u^N(x) = \sum_{k=0}^N c_k \, \phi_k(x)$$

Create an array of points $\{x_l\}_{l=0}^N$ such that $a = x_0 < x_1 < ... x_{N-1} < x_N = b$.

$$u^{N}(a) = 0, \ u^{N}(b) = 0,$$

$$R(x_l) = 0, \ l = 1: N-1.$$

Method

$$\sum_{k=0}^{N} c_k \underline{D\phi_k(x_l)} = f(x_l), \ l = 1, ..., N-1$$

$$\sum_{k=0}^{N} (\mathbf{A})_{l,k} c_k = (\mathbf{b})_l, \ l = 1, ..., N-1$$

$$\mathbf{A}c = \mathbf{b}$$

$$D u(x) = f(x).$$

- $\bullet \ \ x \in [a,b], \, u(a) = u(b) = 0$
- D is the differential operator (with ordinary derivatives)
- $u(x) \approx u^N(x) = \sum_{k=0}^N c_k \, \phi_k(x)$

Create an array of points $\{x_l\}_{l=0}^N$ such that $a = x_0 < x_1 < ... x_{N-1} < x_N = b$.

$$u^{N}(a) = 0, \ u^{N}(b) = 0,$$

$$R(x_l) = 0, \ l = 1: N-1.$$

Method

$$\sum_{l=0}^{N} c_k D\phi_k(x_l) = f(x_l), \ l = 1, ..., N-1$$

$$D(\cdot) := (\cdot)'' + (\cdot)' + (\cdot), => u'' + u' + u = f(x),$$

$$\sum_{k=0}^{N} (\mathbf{A})_{l,k} \ c_k = (\mathbf{b})_l, \ l = 1, ..., N-1$$

$$\sum_{k=0}^{N} \left((\mathbf{D}_2)_{l,k} + (\mathbf{D})_{l,k} + d_l \delta_{lk} \right) c_k = b_l, \ l = 1, ..., N - b_l$$

$$c = \mathbf{k}$$

$$({\bf D}_2 + {\bf D} + {\bf I}) c = b$$

Differentiation Matrices D

Chebyshev

Fourier

$$(\mathbf{D})_{ij} = \begin{cases} \frac{2N^2 + 1}{6}, & i = j = 0\\ -\frac{2N^2 + 1}{6}, & i = j = N\\ -\frac{x_j}{2(1 - x_j^2)}, & i = j; 0 \le j \le N\\ (-1)^{i + j} \frac{c_j}{c_j(x_i - x_j)}, & i \ne j \end{cases}$$

$$c_j = \begin{cases} 2 & j = 0, N \\ 1 & 1 \le j \le N - 1 \end{cases}$$

$$(2N^2+1)$$

 $(\mathbf{D})_{ij} = \begin{cases} 0 & i = j \\ \frac{1}{2}(-1)^{i-j}cot(\frac{x_i - x_j}{2}), & i \neq j \end{cases}$

$$(\mathbf{D}_2)_{ij} = \begin{cases} -\frac{2N^2 + 1}{6} & i = j\\ \frac{1}{2}(-1)^{i-j+1} \csc^2(\frac{x_i - x_j}{2}), & i \neq j \end{cases}$$

$$(\mathbf{D}_k) = (\mathbf{D})^k$$

the kth differentiation matrix will be the same as applying the first differentiation matrix k times

⁰D. Gottlieb, M. Y. Hussaini, and S. A. Orszag. Introduction: Theory and Applications of Spectral Methods. Spectral Methods for Partial Differential Equations. SIAM, 1984.

Fourier + Fast Fourier Transform

$$D(\cdot) := (\cdot)'' \to u'' = f(x),$$

$$\sum_{k=0}^{N} c_k \phi_k''(x_l) = f(x_l), \ l = 1, ..., N-1$$
$$\phi_k(x) = e^{ikx}$$

Fourier + Fast Fourier Transform

$$D(\cdot) := (\cdot)'' \to u'' = f(x),$$

$$\sum_{k=0}^{N} c_k \phi_k''(x_l) = f(x_l), \ l = 1, ..., N-1$$
$$\phi_k(x) = e^{ikx}$$

$$\sum_{k=0}^{N} c_k(ik)^2 e^{ikx} = f(x_l), \ l = 1, ..., N-1$$

Fourier + Fast Fourier Transform

$$D(\cdot) := (\cdot)'' \to u'' = f(x),$$

$$\sum_{k=0}^{N} c_k \phi_k''(x_l) = f(x_l), \ l = 1, ..., N - 1$$
$$\phi_k(x) = e^{ikx}$$

$$\mathcal{F}\left\{\sum_{k=0}^{N} c_k(ik)^2 e^{ikx}\right\} = \mathcal{F}\left\{f(x_l)\right\}, \ l = 1, ..., N-1$$

Fourier + Fast Fourier Transform

$$D(\cdot) := (\cdot)'' \to u'' = f(x),$$

$$\sum_{k=0}^{N} c_k \phi_k''(x_l) = f(x_l), \ l = 1, ..., N-1$$
$$\phi_k(x) = e^{ikx}$$

$$\mathcal{F}\left\{\sum_{k=0}^{N} c_k(ik)^2 e^{ikx}\right\} = \mathcal{F}\left\{f(x_l)\right\}, \ l = 1, ..., N-1$$

$$c_k(ik)^2 = \hat{f}_l \rightarrow c_k = \frac{\hat{f}_l}{(ik)^2}$$

Galerkin method

$$\int_{a}^{b} R(x)\varphi_{l}(x)w(x)dx = 0, \ l = 0,...,N$$

Boundary conditions $\phi_k(a) = \phi_k(b) = 0, \ k = 0, ..., N$

$$\sum_{k=0}^{N} \left(\int_{a}^{b} D(\phi_{k}(x)) \ \phi_{l}(x) \ w(x) \ dx \right) c_{k} = \int_{a}^{b} f(x) \phi_{l}(x) \ w(x) \ dx, \ l = 0...N$$

$$\sum_{k=0}^{N} (\mathbf{A})_{l,k} c_k = (\mathbf{b})_l, \ l = 0, ..., N$$

$$\mathbf{A}c = \mathbf{b}$$

$$D(\cdot) := (\cdot)'' + (\cdot)' + (\cdot), => u'' + u' + u = f(x),$$

$$\sum_{l=0}^{N} ((\mathbf{D}_{2})_{l,k} + (\mathbf{D})_{l,k} + d_{l}\delta_{lk})c_{k} = \mathbf{b}_{l}, \ l = 0, ..., N$$

$$({\bf D}_2 + {\bf D} + {\bf I}) c = {\bf b}$$

Collocation method vs Galerkin method

Collocation method

$$u^{N}(a) = 0, \ u^{N}(b) = 0,$$

 $R(x_{l}) = 0, \ l = 1 : N - 1$

Galerkin method

$$\int_a^b R(x)\varphi_l(x)w(x)dx = 0, \ l = 1: N-1$$

$$\varphi_l \in \operatorname{span}\{\{\phi_k\}_{k=0}^N\}$$

Methods

$$\sum_{k=0}^{N} c_k \underline{D\phi_k(x_l)} = f(x_l), \ l = 1, ..., N-1$$

$$\sum_{l=0}^{N} (\mathbf{A})_{l,k} \ c_k = (\mathbf{b})_l, \ l = 1, ..., N-1$$

$$\mathbf{A}c = \mathbf{b}$$

- 1) Dense matrix A
- 2) No integration need it
- 3) Easy to implement
- 4) BC are imposed in the algebraic system

$$(\mathbf{A})_{l,k} = \int_a^b D(\phi_k(x)) \ \varphi_l(x) \ w(x) \ dx$$

$$(\mathbf{b})_{l} = \int_{a}^{b} f(x)\varphi_{l}(x) \ w(x) \ dx, \ l = 0...N$$

$$\sum_{l=0}^{N} (\mathbf{A})_{l,k} \ c_k = (\mathbf{b})_l, \ l = 0, ..., N$$

$$\mathbf{A}c = \mathbf{b}$$

- 1) Banded matrix A
- 2) Requires integration for the right hand side
- 3) Slightly higher acuraccy
- 4) BC are imposed in the trial functions

$$\int_{a}^{b} R(x)\varphi_{l}(x)w(x)dx = 0, \ l = 0,..,N$$

$$\int_{a}^{b} \left(D \sum_{k=0}^{N} c_{k} \, \underline{\phi_{k}}(x) - f(x) \right) \, \underline{\varphi_{l}}(x) \underline{w}(x) dx = 0$$

$$\int_{a}^{b} R(x)\varphi_{l}(x)w(x)dx = 0, \ l = 0,..,N$$

$$\int_{a}^{b} \left(D \sum_{k=0}^{N} c_{k} \, \underline{\phi_{k}}(x) - f(x) \right) \, \underline{\varphi_{l}}(x) \underline{w}(x) dx = 0$$

Trial and test function $\{\phi_k\}_{k=0}^N, \{\varphi_l\}_{l=0}^N$

$$\int_{a}^{b} R(x)\varphi_{l}(x)w(x)dx = 0, \ l = 0, ..., N$$

$$\int_{a}^{b} \left(D \sum_{k=0}^{N} c_{k} \, \underline{\phi_{k}}(x) - f(x) \right) \, \underline{\varphi_{l}}(x) \underline{w}(x) dx = 0$$

Trial and test function $\{\phi_k\}_{k=0}^N, \{\varphi_l\}_{l=0}^N$

Collocation

- Legendre polynomials $P_l^m(x)$
- Laguerre polynomials $L_k(x)$
- Hermite polynomials $H_k(x)$
- Chebyshev polynomials $T_k(x)$
- Trigonometric functions e^{ikx} (Fourier)

$$\int_{a}^{b} R(x)\varphi_{l}(x)w(x)dx = 0, \ l = 0, ..., N$$

$$\int_{a}^{b} \left(D \sum_{k=0}^{N} c_{k} \, \underline{\phi_{k}}(x) - f(x) \right) \, \underline{\varphi_{l}}(x) \underline{w}(x) dx = 0$$

Trial and test function $\{\phi_k\}_{k=0}^N, \{\varphi_l\}_{l=0}^N$

- Collocation
- Galerkin $\{\phi_k\}_{k=0}^N = \{\varphi_l\}_{l=0}^N$

- Legendre polynomials $P_l^m(x)$
- Laguerre polynomials $L_k(x)$
- Hermite polynomials $H_k(x)$
- Chebyshev polynomials $T_k(x)$
- Trigonometric functions e^{ikx} (Fourier)

$$\int_{a}^{b} R(x)\varphi_{l}(x)w(x)dx = 0, \ l = 0, ..., N$$

$$\int_{a}^{b} \left(D \sum_{k=0}^{N} c_{k} \, \underline{\phi_{k}}(x) - f(x) \right) \, \underline{\varphi_{l}}(x) \underline{w}(x) dx = 0$$

Trial and test function $\{\phi_k\}_{k=0}^N, \{\varphi_l\}_{l=0}^N$

- Collocation
- Galerkin $\{\phi_k\}_{k=0}^N = \{\varphi_l\}_{l=0}^N$
- Tau-Lanczos $\{\phi_k\}_{k=0}^N = \{\varphi_l\}_{l=0}^N$

- Legendre polynomials $P_l^m(x)$
- Laguerre polynomials $L_k(x)$
- Hermite polynomials $H_k(x)$
- Chebyshev polynomials $T_k(x)$
- Trigonometric functions e^{ikx} (Fourier)

$$\int_{a}^{b} R(x)\varphi_{l}(x)w(x)dx = 0, \ l = 0, ..., N$$

$$\int_{a}^{b} \left(D \sum_{k=0}^{N} c_{k} \, \underline{\phi_{k}}(x) - f(x) \right) \, \underline{\varphi_{l}}(x) \underline{w}(x) dx = 0$$

Trial and test function $\{\phi_k\}_{k=0}^N, \{\varphi_l\}_{l=0}^N$

- Collocation
- Galerkin $\{\phi_k\}_{k=0}^N = \{\varphi_l\}_{l=0}^N$
- Tau-Lanczos $\{\phi_k\}_{k=0}^N = \{\varphi_l\}_{l=0}^N$
- \bullet Petrov-Galerkin $\{\phi_k\}_{k=0}^N \neq \{\varphi_l\}_{l=0}^N$

- Legendre polynomials $P_l^m(x)$
- Laguerre polynomials $L_k(x)$
- Hermite polynomials $H_k(x)$
- Chebyshev polynomials $T_k(x)$
- Trigonometric functions e^{ikx} (Fourier)

$$\int_{a}^{b} R(x)\varphi_{l}(x)w(x)dx = 0, \ l = 0, ..., N$$

$$\int_{a}^{b} \left(D \sum_{k=0}^{N} c_{k} \, \underline{\phi_{k}}(x) - f(x) \right) \, \underline{\varphi_{l}}(x) \underline{w}(x) dx = 0$$

Trial and test function $\{\phi_k\}_{k=0}^N, \{\varphi_l\}_{l=0}^N$

- Collocation
- Galerkin $\{\phi_k\}_{k=0}^N = \{\varphi_l\}_{l=0}^N$
- Tau-Lanczos $\{\phi_k\}_{k=0}^N = \{\varphi_l\}_{l=0}^N$
- Petrov-Galerkin $\{\phi_k\}_{k=0}^N \neq \{\varphi_l\}_{l=0}^N$
- Least square $\{\phi_k\}_{k=0}^N, \{\varphi_l\}_{l=0}^M$ with $N \neq M$

- Legendre polynomials $P_l^m(x)$
- Laguerre polynomials $L_k(x)$
- Hermite polynomials $H_k(x)$
- Chebyshev polynomials $T_k(x)$
- Trigonometric functions e^{ikx} (Fourier)

Recommended references

- D. Dutykh, A brief introduction to pseudo-spectral methods: application to diffusion problems, Lecture notes, 38 pp, 2016. CNRSLAMA, Universit Savoie Mont Blanc, France arXiv:1606.05432v2 [math.NA] 14 Feb 2019
- C. I. GHEORGHIU, Spectral Methods for Differential Problems Institute of Numerical Analysis, Cluj-Napoca, ROMANIA January 20, 2005-May 15, 2007

Recommended references

- D. Dutykh, A brief introduction to pseudo-spectral methods: application to diffusion problems, Lecture notes, 38 pp, 2016. CNRSLAMA, Universit Savoie Mont Blanc, France arXiv:1606.05432v2 [math.NA] 14 Feb 2019
- C. I. GHEORGHIU, Spectral Methods for Differential Problems Institute of Numerical Analysis, Cluj-Napoca, ROMANIA January 20, 2005-May 15, 2007
- J. P. Boyd. Chebyshev and Fourier spectral methods. *Dover Pubns*, 2001.
- L. N. Trefethen. Spectral methods in MATLAB. Society for Industrial Mathematics, 2000.

Recommended references

- D. Dutykh, A brief introduction to pseudo-spectral methods: application to diffusion problems, Lecture notes, 38 pp, 2016. CNRSLAMA, Universit Savoie Mont Blanc, France arXiv:1606.05432v2 [math.NA] 14 Feb 2019
- C. I. GHEORGHIU, Spectral Methods for Differential Problems Institute of Numerical Analysis, Cluj-Napoca, ROMANIA January 20, 2005-May 15, 2007
- J. P. Boyd. Chebyshev and Fourier spectral methods. *Dover Pubns*, 2001.
- L. N. Trefethen. Spectral methods in MATLAB. Society for Industrial Mathematics, 2000.
- M.M. Khader, S. Mziou Chebyshev spectral method for studying the viscoelastic slip flow due to a permeable stretching surface embedded in a porous medium with viscous dissipation and non-uniform heat generation. Boundary Value Problems, (37) 2017.
- V. Vaibhav A Fast Chebyshev Spectral Method for Nonlinear Fourier Transform arXiv:1909.03710 [physics.comp-ph] Submitted on 9 Sep 2019)

- Spectral methods are a family of methods where the solution of a ODE u is **expanded** into a series of **orthogonal** functions
- The numerical solution is related to its spectrum

- Spectral methods are a family of methods where the solution of a ODE u is **expanded** into a series of **orthogonal** functions
- The numerical solution is related to its spectrum
- Spectral accuracy: $O(h^N)$, $h \approx \frac{1}{N}$
- Computational cost: $O(N \log N)$

- Spectral methods are a family of methods where the solution of a ODE u is **expanded** into a series of **orthogonal** functions
- The numerical solution is related to its spectrum
- Spectral accuracy: $O(h^N)$, $h \approx \frac{1}{N}$
- Computational cost: $O(N \log N)$

Thanks for your attention

- Spectral methods are a family of methods where the solution of a ODE u is **expanded** into a series of **orthogonal** functions
- The numerical solution is related to its spectrum
- Spectral accuracy: $O(h^N)$, $h \approx \frac{1}{N}$
- Computational cost: $O(N \log N)$

Thanks for your attention

The examples and the slides are available in GitHub https://github.com/tayloris/spectral.git

1.4 Comparisons with Finite Difference Method: Why Spectral Methods are Accurate and Memory-Minimizing

Finite difference methods approximate the unknown u(x) by a sequence of overlapping polynomials which interpolate u(x) at a set of grid points. The derivative of the local interpolant is used to approximate the derivative of u(x). The result takes the form of a weighted sum of the values of u(x) at the interpolation points.

Spectral One high-order polynomial for WHOLE domain Finite Difference Multiple Overlapping Low-Order Polynomials Finite Element/Spectral Element Non-Overlapping Polynomials, One per Subdomain

Figure 1.3: Three types of numerical algorithms. The thin, slanting lines illustrate all the grid points (black circles) that *directly* affect the estimates of derivatives at the points shown above the lines by open circles. The thick black vertical lines in the bottom grid are the subdomain walls

Figure 1.2: Schematic of three types of finite elements

¹J. P. Boyd. Chebyshev and Fourier spectral methods. *Dover Pubns*, 2001.

Figure 4. Illustration of the aliasing phenomenon: two FOURIER modes are indistinguishable on the discrete grid. The modes represented here are $\cos(x)$ and $\cos(9x)$ and the discrete grid is composed of N=11 equispaced points on the segment $[-\pi,\pi]$.

²

²D. Dutykh, A brief introduction to pseudo-spectral methods: application to diffusion problems, *Lecture notes*, 38 pp, 2016. CNRSLAMA, Universit Savoie Mont Blanc, France arXiv:1606.05432v2 [math.NA] 14 Feb 2019