Peckness of Edge Posets

David Hemminger, Aaron Landesman, Zijian Yao

August 4, 2014

Table of Contents

1 The Edge Poset and a Conjecture

- 2 Main Result
 - Main Result
 - Outline of Proof

Definition of the Edge Poset

Definition

For P a finite graded poset, it's *edge poset* $\mathcal{E}(P)$ is the finite graded poset defined as follows.

- Elements of $\mathcal{E}(P)$ are ordered pairs $(x,y) \in P \times P$ where $x \lessdot y$
- Define $(x, y) \lessdot_{\varepsilon} (x', y')$ if $x \lessdot_{P} x'$ and $y \lessdot_{P} y'$
- Define $\leq_{\mathcal{E}}$ to be the transitive closure of $\lessdot_{\mathcal{E}}$
- Define $\operatorname{rk}_{\mathcal{E}}(x,y) = \operatorname{rk}_{P}(x)$.

A Conjecture on the Peckness of Edge Posets

Definition

The boolean algebra of rank n is the poset whose elements are subsets of [n] with order given by containment, i.e. for $A, B \in B_n$, $A \leq B$ if $A \subseteq B$.

Conjecture (Hemminger, Landesman, and Yao 2014)

Let $G \subseteq Aut(B_n)$. Then $\mathcal{E}(B_n/G)$ is Peck.

Table of Contents

1 The Edge Poset and a Conjecture

- Main Result
 - Main Result
 - Outline of Proof

Statement of Theorem

Definition

A group action of G on P is *cover transitive* if whenever $x, y, z \in P$ such that $x \lessdot z$, $y \lessdot z$, and $y \in Gx$, there exists some $g \in \mathsf{Stab}_G(z)$ such that $g \cdot x = y$.

Theorem (Hemminger, Landesman, and Yao 2014)

If a group action of G on B_n is cover transitive, then $\mathcal{E}(B_n/G)$ is Peck.

Definition

Given a group action of G on P, we define a group action of G on $\mathcal{E}(P)$ by letting $g \cdot (x,y) = (g \cdot x, g \cdot y)$ for all $g \in G$.

Definition

Given a group action of G on P, we define a group action of G on $\mathcal{E}(P)$ by letting $g \cdot (x,y) = (g \cdot x, g \cdot y)$ for all $g \in G$.

Proposition

The map $q: \mathcal{E}(P)/G \to \mathcal{E}(P/G)$ defined by q(G(x,y)) = (Gx,Gy) is a surjective morphism. Furthermore, q is also injective if and only if the action of G on P is cover transitive.

Lemma

If $f: P \to Q$ is a bijective morphism and P is Peck then Q is Peck.

It then suffices to show that $\mathcal{E}(P)/G$ is Peck. The following theorem will be useful.

Theorem (Stanley, 1984)

If P is unitary Peck and $G \subseteq Aut(P)$, then P/G is Peck.