- Consider the problem (P),
 Min c^Tx
 subject to
 Ax = b, x ≥ 0.
 Let x₀ be an optimal BFS of this problem.
- A new variable x_{n+1} is added to the LPP given above.

- Consider the problem (P), Min c^Tx subject to
 Ax = b, x ≥ O. Let x₀ be an optimal BFS of this problem.
- A new variable x_{n+1} is added to the LPP given above.
- A column is added to the matrix A call it $\tilde{\mathbf{a}}_{n+1}$ and a component c_{n+1} is added to the cost vector \mathbf{c} , which is the cost associated with the new variable x_{n+1} .

- Consider the problem (P),
 Min c^Tx
 subject to
 Ax = b, x ≥ 0.
 Let x₀ be an optimal BFS of this problem.
- A new variable x_{n+1} is added to the LPP given above.
- A column is added to the matrix A call it $\tilde{\mathbf{a}}_{n+1}$ and a component c_{n+1} is added to the cost vector \mathbf{c} , which is the cost associated with the new variable x_{n+1} .
- Since \mathbf{x}_0 is optimal for \mathbf{P} $\mathbf{x}_0' = [\mathbf{x}_0^T, 0]^T$ is feasible for the new problem (P'), given by:

- Consider the problem (P), Min c^Tx subject to
 Ax = b, x ≥ O. Let x₀ be an optimal BFS of this problem.
- A new variable x_{n+1} is added to the LPP given above.
- A column is added to the matrix A call it $\tilde{\mathbf{a}}_{n+1}$ and a component c_{n+1} is added to the cost vector \mathbf{c} , which is the cost associated with the new variable x_{n+1} .
- Since \mathbf{x}_0 is optimal for \mathbf{P} $\mathbf{x}_0' = [\mathbf{x}_0^T, 0]^T$ is feasible for the new problem (P'), given by:
- Min $[\mathbf{c}, c_{n+1}]^T \mathbf{x}_{(n+1)\times 1}$ subject to $[A : \tilde{\mathbf{a}}_{n+1}] \mathbf{x}_{(n+1)\times 1} = \mathbf{b}, \quad \mathbf{x}_{(n+1)\times 1} \geq \mathbf{0}.$

• To check whether \mathbf{x}'_0 is optimal for (P'), add a new column to the optimal table and calculate $c_{n+1} - z_{n+1}$.

- To check whether \mathbf{x}'_0 is optimal for (P'), add a new column to the optimal table and calculate $c_{n+1} z_{n+1}$.
- If $c_{n+1} z_{n+1} \ge 0$, then \mathbf{x}'_0 is optimal for the new problem.

- To check whether \mathbf{x}'_0 is optimal for (P'), add a new column to the optimal table and calculate $c_{n+1} z_{n+1}$.
- If $c_{n+1} z_{n+1} \ge 0$, then \mathbf{x}'_0 is optimal for the new problem.
- If **not**, then enter $\tilde{\mathbf{a}}_{n+1}$ in the basis and use the **simplex** to either obtain an optimal solution of (P') or to conclude that (P') **does not** have an optimal solution.

- To check whether \mathbf{x}'_0 is optimal for (P'), add a new column to the optimal table and calculate $c_{n+1} z_{n+1}$.
- If $c_{n+1} z_{n+1} \ge 0$, then \mathbf{x}'_0 is optimal for the new problem.
- If **not**, then enter $\tilde{\mathbf{a}}_{n+1}$ in the basis and use the **simplex** to either obtain an optimal solution of (P') or to conclude that (P') **does not** have an optimal solution.
- Adding a variable to P results in adding a constraint to the dual,

- To check whether \mathbf{x}'_0 is optimal for (P'), add a new column to the optimal table and calculate $c_{n+1} z_{n+1}$.
- If $c_{n+1} z_{n+1} \ge 0$, then \mathbf{x}'_0 is optimal for the new problem.
- If **not**, then enter $\tilde{\mathbf{a}}_{n+1}$ in the basis and use the **simplex** to either obtain an optimal solution of (P') or to conclude that (P') **does not** have an optimal solution.
- Adding a variable to P results in adding a constraint to the dual, If the feasible region of the new dual becomes empty,

- To check whether \mathbf{x}'_0 is optimal for (P'), add a new column to the optimal table and calculate $c_{n+1} z_{n+1}$.
- If $c_{n+1} z_{n+1} \ge 0$, then \mathbf{x}'_0 is optimal for the new problem.
- If **not**, then enter $\tilde{\mathbf{a}}_{n+1}$ in the basis and use the **simplex** to either obtain an optimal solution of (P') or to conclude that (P') **does not** have an optimal solution.
- Adding a variable to P results in adding a constraint to the dual, If the feasible region of the new dual becomes empty, then P' will not have an optimal solution.

 Addition of a new constraint makes the feasible region of P smaller.

- Addition of a new constraint makes the feasible region of P smaller.
- Let us assume that the new constraint added is of the form $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$, where \mathbf{a}_{m+1}^T is a row vector.

- Addition of a new constraint makes the feasible region of P smaller.
- Let us assume that the new constraint added is of the form $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$, where \mathbf{a}_{m+1}^T is a row vector.
- Case 1: \mathbf{x}_0 satisfies $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$.

- Addition of a new constraint makes the feasible region of P smaller.
- Let us assume that the new constraint added is of the form $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$, where \mathbf{a}_{m+1}^T is a row vector.
- Case 1: \mathbf{x}_0 satisfies $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$. Then \mathbf{x}_0 is optimal for the changed problem also.

- Addition of a new constraint makes the feasible region of P smaller.
- Let us assume that the new constraint added is of the form $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$, where \mathbf{a}_{m+1}^T is a row vector.
- Case 1: \mathbf{x}_0 satisfies $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$. Then \mathbf{x}_0 is optimal for the changed problem also.
- Case 2: \mathbf{x}_0 does not satisfy the new constraint, that is $\mathbf{a}_{m+1}^T \mathbf{x}_0 > b_{m+1}$,

- Addition of a new constraint makes the feasible region of P smaller.
- Let us assume that the new constraint added is of the form $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$, where \mathbf{a}_{m+1}^T is a row vector.
- Case 1: \mathbf{x}_0 satisfies $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$. Then \mathbf{x}_0 is optimal for the changed problem also.
- Case 2: \mathbf{x}_0 does not satisfy the new constraint, that is $\mathbf{a}_{m+1}^T \mathbf{x}_0 > b_{m+1}$, or $\mathbf{a}_{B,m+1}^T B^{-1} \mathbf{b} > b_{m+1}$,

- Addition of a new constraint makes the feasible region of P smaller.
- Let us assume that the new constraint added is of the form $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$, where \mathbf{a}_{m+1}^T is a row vector.
- Case 1: \mathbf{x}_0 satisfies $\mathbf{a}_{m+1}^T \mathbf{x} \leq b_{m+1}$. Then \mathbf{x}_0 is optimal for the changed problem also.
- Case 2: \mathbf{x}_0 does not satisfy the new constraint, that is $\mathbf{a}_{m+1}^T \mathbf{x}_0 > b_{m+1}$, or $\mathbf{a}_{B,m+1}^T \mathbf{B}^{-1} \mathbf{b} > b_{m+1}$, where $\mathbf{a}_{B,m+1}^T$ and $\mathbf{a}_{N,m+1}^T$ are the components of \mathbf{a}_{m+1}^T corresponding to the basic variables and nonbasic variables of \mathbf{x}_0 , respectively.

• The new constraint can be written as

$$\mathbf{a}_{m+1}^{T}\mathbf{x} + \mathbf{s}_{m+1} = b_{m+1}$$
, where $\mathbf{s}_{m+1} \geq 0$.

- The new constraint can be written as $\mathbf{a}_{m+1}^T \mathbf{x} + \mathbf{s}_{m+1} = \mathbf{b}_{m+1}$, where $\mathbf{s}_{m+1} \geq \mathbf{0}$.
- If B denotes the basis matrix corresponding to \mathbf{x}_0 , then

- The new constraint can be written as $\mathbf{a}_{m+1}^T \mathbf{x} + s_{m+1} = b_{m+1}$, where $s_{m+1} \ge 0$.
- If B denotes the basis matrix corresponding to x₀, then

$$\left[egin{array}{ccc} B & \mathbf{O} \ \mathbf{a}_{B,m+1}^T & 1 \end{array}
ight]$$

is the new basis matrix after the new constraint is added, the newly added **basic variable** being s_{m+1} .

- The new constraint can be written as $\mathbf{a}_{m+1}^T \mathbf{x} + s_{m+1} = b_{m+1}$, where $s_{m+1} \ge 0$.
- If B denotes the basis matrix corresponding to \mathbf{x}_0 , then

$$\left[\begin{array}{cc} B & \mathbf{O} \\ \mathbf{a}_{B,m+1}^T & 1 \end{array}\right]$$

is the new basis matrix after the new constraint is added, the newly added **basic variable** being s_{m+1} .

• The inverse of this new basis matrix is given by

$$\left[\begin{array}{cc} B^{-1} & \mathbf{O} \\ -\mathbf{a}_{B,m+1}^T B^{-1} & 1 \end{array}\right].$$

$$[-\mathbf{a}_{B,m+1}^{T}B^{-1},1]\begin{bmatrix} B & N & \mathbf{O} \\ \mathbf{a}_{B,m+1}^{T} & \mathbf{a}_{N,m+1}^{T} & 1 \end{bmatrix} = [\mathbf{O}, -\mathbf{a}_{B,m+1}^{T}B^{-1}N + \mathbf{a}_{N,m+1}^{T}, 1]$$

$$[-\mathbf{a}_{B,m+1}^T B^{-1}, 1] \begin{bmatrix} B & N & \mathbf{O} \\ \mathbf{a}_{B,m+1}^T & \mathbf{a}_{N,m+1}^T & 1 \end{bmatrix} = [\mathbf{O}, -\mathbf{a}_{B,m+1}^T B^{-1} N + \mathbf{a}_{N,m+1}^T, 1]$$

• The new RHS becomes

$$\begin{bmatrix} B^{-1} & \mathbf{O} \\ -\mathbf{a}_{B,m+1}^T B^{-1} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ b_{m+1} \end{bmatrix} = \begin{bmatrix} B^{-1}\mathbf{b} \\ b_{m+1} - \mathbf{a}_{B,m+1}^T B^{-1}\mathbf{b} \end{bmatrix}$$

$$[-\mathbf{a}_{B,m+1}^T B^{-1}, 1] \begin{bmatrix} B & N & \mathbf{O} \\ \mathbf{a}_{B,m+1}^T & \mathbf{a}_{N,m+1}^T & 1 \end{bmatrix} = [\mathbf{O}, -\mathbf{a}_{B,m+1}^T B^{-1} N + \mathbf{a}_{N,m+1}^T, 1]$$

The new RHS becomes

$$\begin{bmatrix} B^{-1} & \mathbf{O} \\ -\mathbf{a}_{B,m+1}^T B^{-1} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ b_{m+1} \end{bmatrix} = \begin{bmatrix} B^{-1}\mathbf{b} \\ b_{m+1} - \mathbf{a}_{B,m+1}^T B^{-1}\mathbf{b} \end{bmatrix}$$

 If x₀ does not satisfy the newly added constraint then the (m + 1) th entry of the RHS will be **strictly** less than zero.

$$[-\mathbf{a}_{B,m+1}^{T}B^{-1},1]\begin{bmatrix} B & N & \mathbf{O} \\ \mathbf{a}_{B,m+1}^{T} & \mathbf{a}_{N,m+1}^{T} & 1 \end{bmatrix} = [\mathbf{O}, -\mathbf{a}_{B,m+1}^{T}B^{-1}N + \mathbf{a}_{N,m+1}^{T}, 1]$$

The new RHS becomes

$$\begin{bmatrix} B^{-1} & \mathbf{O} \\ -\mathbf{a}_{B,m+1}^T B^{-1} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ b_{m+1} \end{bmatrix} = \begin{bmatrix} B^{-1}\mathbf{b} \\ b_{m+1} - \mathbf{a}_{B,m+1}^T B^{-1}\mathbf{b} \end{bmatrix}$$

- If x₀ does not satisfy the newly added constraint then the (m+1) th entry of the RHS will be **strictly** less than zero.
- Since the cost associated with s_{m+1} is equal to zero, all the $c_i z_i$ entries remain unchanged and are non negative.

$$[-\mathbf{a}_{B,m+1}^{T}B^{-1},1]\begin{bmatrix} B & N & \mathbf{O} \\ \mathbf{a}_{B,m+1}^{T} & \mathbf{a}_{N,m+1}^{T} & 1 \end{bmatrix} = [\mathbf{O}, -\mathbf{a}_{B,m+1}^{T}B^{-1}N + \mathbf{a}_{N,m+1}^{T},1]$$

The new RHS becomes

$$\begin{bmatrix} B^{-1} & \mathbf{O} \\ -\mathbf{a}_{B,m+1}^T B^{-1} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ b_{m+1} \end{bmatrix} = \begin{bmatrix} B^{-1}\mathbf{b} \\ b_{m+1} - \mathbf{a}_{B,m+1}^T B^{-1}\mathbf{b} \end{bmatrix}$$

- If x₀ does not satisfy the newly added constraint then the (m+1) th entry of the RHS will be **strictly** less than zero.
- Since the cost associated with s_{m+1} is equal to zero, all the $c_i z_i$ entries remain unchanged and are non negative.
- Then Dual Simplex can be used either to obtain the new optimal solution or to conclude that new (P) is infeasible.

- The column corresponding to that variable in the optimal simplex table $B^{-1}\tilde{\mathbf{a}}_{j}$ is changed to $B^{-1}\tilde{\mathbf{a}}_{j}'$.

- The column corresponding to that variable in the optimal simplex table $B^{-1}\tilde{\mathbf{a}}_{i}$ is changed to $B^{-1}\tilde{\mathbf{a}}_{i}'$.
- If the new $c_j z'_j$ value satisfies the **optimality condition**, then the previous optimal solution will be optimal for the new problem.

- The column corresponding to that variable in the optimal simplex table $B^{-1}\tilde{\mathbf{a}}_{i}$ is changed to $B^{-1}\tilde{\mathbf{a}}_{i}'$.
- If the new c_j z'_j value satisfies the optimality condition, then the previous optimal solution will be optimal for the new problem.
- If not, then use Simplex either to obtain the new optimal solution or to conclude that new (P) does not have an optimal solution.

- Then treat this case as the case when a variable (say a variable x_{n+1}) is added to the problem with column $\tilde{\mathbf{a}}'_j$ and cost c_i .

- Then treat this case as the case when a variable (say a variable x_{n+1}) is added to the problem with column $\tilde{\mathbf{a}}'_j$ and cost c_i .
- Add a column $B^{-1}\tilde{\mathbf{a}}'_j$ and the corresponding $c_{n+1} z_{n+1}$ value to the previous simplex table.

- Then treat this case as the case when a variable (say a variable x_{n+1}) is added to the problem with column $\tilde{\mathbf{a}}'_j$ and cost c_i .
- Add a column $B^{-1}\tilde{\mathbf{a}}'_{j}$ and the corresponding $c_{n+1} z_{n+1}$ value to the previous simplex table.
- If u_{j,(n+1)} = 0, then it implies that
 {ã₁,...,ã_{j-1},ã'_j,ã_{j+1},...,ã_m} is LD and we have to find an initial BFS for the changed problem.

- Then treat this case as the case when a variable (say a variable x_{n+1}) is added to the problem with column $\tilde{\mathbf{a}}'_j$ and cost c_i .
- Add a column $B^{-1}\tilde{\mathbf{a}}'_{j}$ and the corresponding $c_{n+1} z_{n+1}$ value to the previous simplex table.
- If u_{j,(n+1)} = 0, then it implies that
 {\vec{a}_1, ..., \vec{a}_{j-1}, \vec{a}'_j, \vec{a}_{j+1}, ..., \vec{a}_m} is LD and we have to find an initial BFS for the changed problem.
- If $u_{j,(n+1)} \neq 0$, then pivot on this element and make x_{n+1} enter the basis and x_i leave the basis.

• Perform the necessary elementary row operations to make the (n+1) th column as the j th column of l and $c_{n+1} - z_{n+1}$ equal to 0.

- Perform the necessary elementary row operations to make the (n+1) th column as the j th column of I and c_{n+1} - z_{n+1} equal to 0.
- Delete the column corresponding to $\tilde{\mathbf{a}}_j$ from all subsequent calculations, and the variable x_{n+1} is now indexed as x_i .

- Perform the necessary elementary row operations to make the (n+1) th column as the j th column of I and c_{n+1} - z_{n+1} equal to 0.
- Delete the column corresponding to $\tilde{\mathbf{a}}_j$ from all subsequent calculations, and the variable x_{n+1} is now indexed as x_i .
- The necessary calculations mentioned above might disturb the optimality as well as the feasibility of the current BFS.

- Perform the necessary elementary row operations to make the (n+1) th column as the j th column of I and c_{n+1} - z_{n+1} equal to 0.
- Delete the column corresponding to $\tilde{\mathbf{a}}_j$ from all subsequent calculations, and the variable x_{n+1} is now indexed as x_i .
- The necessary calculations mentioned above might disturb the optimality as well as the feasibility of the current BFS.
- If however the new $c_j z_j$ values are all **nonnegative** and all the RHS entries remain **non negative**, then the table is **optimal** and the corresponding BFS is **optimal** for the new **(P)**.

If the new table has all RHS entries nonnegative, but atleast one of the c_j - z_j values is negative then use Simplex either to obtain the new optimal solution, or to conclude that the new (P) does not have an optimal solution.

- If the new table has all RHS entries nonnegative, but atleast one of the c_j z_j values is negative then use Simplex either to obtain the new optimal solution, or to conclude that the new (P) does not have an optimal solution.
- If all the $c_j z_j$ values are nonnegative but atleast one of the RHS entries in the simplex table is negative then use **Dual Simplex** to obtain the new optimal solution or to conclude that the new **(P)** has **no** feasible solution.

Consider the problem P:
 Min c^Tx
 subject to Ax = b, x ≥ O.

Consider the problem P:
 Min c^Tx
 subject to Ax = b, x ≥ 0.

• Assume $b \ge 0$.

- Consider the problem P:
 Min c^Tx
 subject to Ax = b, x ≥ 0.
- Assume b > 0.
- Add artificial variables w_1, \ldots, w_m with cost M (M large).

- Consider the problem P: Min $\mathbf{c}^T \mathbf{x}$ subject to Ax = b, x > 0.
- Assume b > 0.
- Add artificial variables w_1, \ldots, w_m with cost M (M large).
- We get an initial BFS to the following problem LP(M) given by, Min $\mathbf{c}^T \mathbf{x} + [M, \dots, M] \mathbf{w}$ subject to

$$\mathbf{A}\mathbf{x} + \mathbf{w} = [\mathbf{A} : \mathbf{I}] \begin{bmatrix} \mathbf{x} \\ \mathbf{w} \end{bmatrix} = \mathbf{b}, \mathbf{x} \ge \mathbf{O}, \mathbf{w} \ge \mathbf{O},$$

where $\mathbf{w} = [w_1, \dots, w_m]^T$.

- Consider the problem P: Min $\mathbf{c}^T \mathbf{x}$ subject to Ax = b, x > 0.
- Assume b > 0.
- Add artificial variables w_1, \ldots, w_m with cost M (M large).
- We get an initial BFS to the following problem LP(M) given by, Min $\mathbf{c}^T \mathbf{x} + [M, \dots, M] \mathbf{w}$ subject to $A\mathbf{x} + \mathbf{w} = [A:I] \begin{bmatrix} \mathbf{x} \\ \mathbf{w} \end{bmatrix} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, \mathbf{w} \geq \mathbf{0},$

$$A\mathbf{x} + \mathbf{w} = [A:I] \begin{bmatrix} \mathbf{x} \\ \mathbf{w} \end{bmatrix} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}, \mathbf{w} \ge \mathbf{0},$$
where $\mathbf{w} = [w]$

where $\mathbf{w} = [w_1, \dots, w_m]^T$.

• An initial BFS is $[\mathbf{O}_{1\times n}, w_1, \dots, w_m]^T$.

- Consider the problem P:
 Min c^Tx
 subject to Ax = b, x ≥ 0.
- Assume b > 0.
- Add artificial variables w_1, \ldots, w_m with cost M (M large).
- We get an initial BFS to the following problem LP(M) given by,
 Min c^Tx + [M,..., M]w

subject to $\mathbf{X} + [M, \dots, M]\mathbf{W}$

$$A\mathbf{x} + \mathbf{w} = [A : I] \begin{bmatrix} \mathbf{x} \\ \mathbf{w} \end{bmatrix} = \mathbf{b}, \mathbf{x} \ge \mathbf{O}, \mathbf{w} \ge \mathbf{O},$$

where $\mathbf{w} = [w_1, \dots, w_m]^T$.

- An initial BFS is $[\mathbf{O}_{1\times n}, w_1, \dots, w_m]^T$.
- $\mathbf{x} \in \mathbf{Fea(P)} \Leftrightarrow [\mathbf{x}^T, \mathbf{O}_{1 \times m}]^T \in \mathbf{Fea(LP(M))}.$

• Case 1: LP(M) has an optimal solution.

- Case 1: LP(M) has an optimal solution.
- Case 1a: $[\mathbf{x}_*^T, \mathbf{O}_{1 \times m}]^T$ is an **optimal** BFS of **LP(M)** with all the artificial variables as nonbasic variables.

- Case 1: LP(M) has an optimal solution.
- Case 1a: $[\mathbf{x}_*^T, \mathbf{O}_{1\times m}]^T$ is an **optimal** BFS of **LP(M)** with all the artificial variables as nonbasic variables.

Then \mathbf{x}_* is an **optimal** BFS for **P**.

- Case 1: LP(M) has an optimal solution.
- Case 1a: $[\mathbf{x}_*^T, \mathbf{O}_{1\times m}]^T$ is an **optimal** BFS of **LP(M)** with all the artificial variables as nonbasic variables.

Then \mathbf{x}_* is an **optimal** BFS for **P**.

• Case 1b: $[\mathbf{x}_*^T, \mathbf{w}_*^T]^T$ is optimal for LP(M) and $\mathbf{w}_* \neq \mathbf{0}$.

- Case 1: LP(M) has an optimal solution.
- Case 1a: $[\mathbf{x}_*^T, \mathbf{O}_{1\times m}]^T$ is an **optimal** BFS of **LP(M)** with all the artificial variables as nonbasic variables.
 - Then \mathbf{x}_* is an **optimal** BFS for **P**.
- Case 1b: $[\mathbf{x}_*^T, \mathbf{w}_*^T]^T$ is optimal for LP(M) and $\mathbf{w}_* \neq \mathbf{O}$. Then P does not have a feasible solution.

- Case 1: LP(M) has an optimal solution.
- Case 1a: $[\mathbf{x}_*^T, \mathbf{O}_{1\times m}]^T$ is an **optimal** BFS of **LP(M)** with all the artificial variables as nonbasic variables.

Then \mathbf{x}_* is an **optimal** BFS for **P**.

- Case 1b: $[\mathbf{x}_*^T, \mathbf{w}_*^T]^T$ is optimal for LP(M) and $\mathbf{w}_* \neq \mathbf{O}$. Then P does not have a feasible solution.
- Case 2: LP(M) does not have an optimal solution.

• Case 2a: In some iteration (or simplex table), there exists a k such that $c_k - z_k < 0$, the corresponding column $B^{-1}\tilde{\mathbf{a}}_k \leq \mathbf{O}$ and $\mathbf{w} = \mathbf{O}$ in the corresponding BFS for $\mathbf{LP(M)}$.

- Case 2a: In some iteration (or simplex table), there exists a k such that c_k z_k < 0, the corresponding column B⁻¹ã_k ≤ O and w = O in the corresponding BFS for LP(M).
- Then there exists a **direction** $\mathbf{d} = \begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix}$ of Fea(LP(M)) such that

- Case 2a: In some iteration (or simplex table), there exists a k such that $c_k z_k < 0$, the corresponding column $B^{-1}\tilde{\mathbf{a}}_k \leq \mathbf{O}$ and $\mathbf{w} = \mathbf{O}$ in the corresponding BFS for $\mathbf{LP}(\mathbf{M})$.
- Then there exists a **direction d** = $\begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix}$ of Fea(LP(M)) such that $\mathbf{c}^T \mathbf{d}_1 + [M, \dots, M] \mathbf{d}_2 < 0$.

- Case 2a: In some iteration (or simplex table), there exists a k such that $c_k z_k < 0$, the corresponding column $B^{-1}\tilde{\mathbf{a}}_k \leq \mathbf{O}$ and $\mathbf{w} = \mathbf{O}$ in the corresponding BFS for $\mathbf{LP}(\mathbf{M})$.
- Then there exists a **direction d** = $\begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix}$ of Fea(LP(M)) such that $\mathbf{c}^T \mathbf{d}_1 + [M, \dots, M] \mathbf{d}_2 < 0$.
- Then $\mathbf{d_1}$ is a **direction** of $Fea(\mathbf{P})$ and $\mathbf{c}^T\mathbf{d_1} < 0$.

- Case 2a: In some iteration (or simplex table), there exists a k such that $c_k z_k < 0$, the corresponding column $B^{-1}\tilde{\mathbf{a}}_k \leq \mathbf{O}$ and $\mathbf{w} = \mathbf{O}$ in the corresponding BFS for $\mathbf{LP}(\mathbf{M})$.
- Then there exists a **direction d** = $\begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix}$ of Fea(LP(M)) such that $\mathbf{c}^T \mathbf{d}_1 + [M, \dots, M] \mathbf{d}_2 < 0$.
- Then d₁ is a direction of Fea(P) and c^Td₁ < 0.
 Hence P does not have an optimal solution but P has a feasible solution.

- Case 2a: In some iteration (or simplex table), there exists a k such that $c_k z_k < 0$, the corresponding column $B^{-1}\tilde{\mathbf{a}}_k \leq \mathbf{O}$ and $\mathbf{w} = \mathbf{O}$ in the corresponding BFS for $\mathbf{LP(M)}$.
- Then there exists a **direction** $\mathbf{d} = \begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix}$ of Fea(LP(M)) such that $\mathbf{c}^T \mathbf{d}_1 + [M, \dots, M] \mathbf{d}_2 < 0$.
- Then d₁ is a direction of Fea(P) and c^Td₁ < 0.
 Hence P does not have an optimal solution but P has a feasible solution.
- Case 2b: In some iteration (or simplex table),
 c_k z_k = min{c_j z_j : c_j z_j < 0}, B⁻¹ã_k ≤ O and w ≠ O in the corresponding BFS for LP(M).

- Case 2a: In some iteration (or simplex table), there exists a k such that $c_k z_k < 0$, the corresponding column $B^{-1}\tilde{\mathbf{a}}_k \leq \mathbf{O}$ and $\mathbf{w} = \mathbf{O}$ in the corresponding BFS for $\mathbf{LP}(\mathbf{M})$.
- Then there exists a **direction d** = $\begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix}$ of Fea(LP(M)) such that $\mathbf{c}^T \mathbf{d}_1 + [M, \dots, M] \mathbf{d}_2 < 0$.
- Then d₁ is a direction of Fea(P) and c^Td₁ < 0.
 Hence P does not have an optimal solution but P has a feasible solution.
- Case 2b: In some iteration (or simplex table),
 c_k z_k = min{c_j z_j : c_j z_j < 0}, B⁻¹ã_k ≤ O and w ≠ O in the corresponding BFS for LP(M).
 Then P does not have a feasible solution.

- Case 2a: In some iteration (or simplex table), there exists a k such that $c_k z_k < 0$, the corresponding column $B^{-1}\tilde{\mathbf{a}}_k \leq \mathbf{O}$ and $\mathbf{w} = \mathbf{O}$ in the corresponding BFS for $\mathbf{LP}(\mathbf{M})$.
- Then there exists a **direction** $\mathbf{d} = \begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix}$ of Fea(LP(M)) such that $\mathbf{c}^T \mathbf{d}_1 + [M, \dots, M] \mathbf{d}_2 < 0$.
- Then d₁ is a direction of Fea(P) and c^Td₁ < 0.
 Hence P does not have an optimal solution but P has a feasible solution.
- Case 2b: In some iteration (or simplex table), $c_k z_k = \min\{c_j z_j : c_j z_j < 0\}, B^{-1}\tilde{\mathbf{a}}_k \le \mathbf{0}$ and $\mathbf{w} \ne \mathbf{0}$ in the corresponding BFS for **LP(M)**. Then **P** does **not** have a **feasible** solution.
- The above conclusion of **Case 2b** that **P** is **infeasible** may not be true if $c_k z_k$ is **not** the **most negative** among the $c_i z_i$ values.

• Case 2c: In some iteration (or simplex table), there exists a k such that $c_k - z_k < 0$, the corresponding column $B^{-1}\tilde{\mathbf{a}}_k \leq \mathbf{0}$ for $\mathbf{LP}(\mathbf{M})$.

• Case 2c: In some iteration (or simplex table), there exists a k such that $c_k - z_k < 0$, the corresponding column $B^{-1}\tilde{\mathbf{a}}_k \leq \mathbf{0}$ for $\mathbf{LP}(\mathbf{M})$.

Then **P** does **not** have an **optimal** solution (may be **infeasible**).

- Case 2c: In some iteration (or simplex table), there exists a k such that c_k − z_k < 0, the corresponding column B⁻¹ã_k ≤ O for LP(M).
 Then P does not have an optimal solution (may be infeasible, may not be infeasible).
- Remark 1: If at some stage of solving the artificial variables leave the basis, then the corresponding BFS is a BFS of P.

- Case 2c: In some iteration (or simplex table), there exists a k such that $c_k z_k < 0$, the corresponding column $B^{-1}\tilde{\mathbf{a}}_k \leq \mathbf{0}$ for $\mathbf{LP}(\mathbf{M})$.
 - Then **P** does **not** have an **optimal** solution (may be **infeasible**).
- Remark 1: If at some stage of solving the artificial variables leave the basis, then the corresponding BFS is a BFS of P.
 - Then delete all columns corresponding to the **artificial** variables and continue.

• **Example 1 :** Consider the problem **P**, Minimize $x_1 - x_2$ subject to $2x_1 + x_2 \ge 4$

$$x_1 + x_2 \le 4$$

 $x_1 - x_2 \le 1$
 $x_1 \ge 0, x_2 \ge 0$.

• Example 1 : Consider the problem P, Minimize $x_1 - x_2$ subject to $2x_1 + x_2 \ge 4$

$$x_1 - x_2 \le 1$$

 $x_1 \ge 0, x_2 \ge 0.$

By adding variables we get the following problem,
 Minimize x₁ - x₂
 subject to
 2x₁ + x₂ - x₃ - 4

$$2x_1 + x_2 - s_1 = 4$$

$$x_1 - x_2 + s_2 = 1$$

$$x_1 \ge 0, x_2 \ge 0, s_1 \ge 0, s_2 \ge 0.$$

• Example 1 : Consider the problem P, Minimize $x_1 - x_2$ subject to $2x_1 + x_2 \ge 4$

$$x_1 - x_2 \le 1$$

 $x_1 \ge 0, x_2 \ge 0.$

By adding variables we get the following problem,
 Minimize x₁ - x₂
 subject to
 2x₁ + x₂ - s₁ = 4

$$2x_1 + x_2 - s_1 = 4$$

 $x_1 - x_2 + s_2 = 1$
 $x_1 \ge 0, x_2 \ge 0, s_1 \ge 0, s_2 \ge 0.$

• If we consider the initial basic solution with basic variables s_1 and s_2 , then the $c_j - z_j$ values are not ≥ 0 for all j.

- Example 1 : Consider the problem P, Minimize $x_1 - x_2$ subject to $2x_1 + x_2 \ge 4$ $x_1 - x_2 \le 1$ $x_1 > 0, x_2 > 0$.
- By adding variables we get the following problem, Minimize $x_1 - x_2$ subject to $2x_1 + x_2 - s_1 = 4$ $x_1 - x_2 + s_2 = 1$

 $x_1 \ge 0$, $x_2 \ge 0$, $s_1 \ge 0$, $s_2 \ge 0$. If we consider the initial basic solu

If we consider the initial basic solution with basic variables s₁ and s₂, then the c_j − z_j values are not ≥ 0 for all j.
 We do not have a feasible solution of the dual of P at hand.

• Example 1 : Consider the problem P, Minimize $x_1 - x_2$ subject to $2x_1 + x_2 \ge 4$ $x_1 - x_2 \le 1$

 $x_1 > 0$, $x_2 > 0$, $s_1 > 0$, $s_2 > 0$.

 $\chi_1 > 0, \chi_2 > 0.$

- By adding variables we get the following problem, Minimize $x_1 - x_2$ subject to $2x_1 + x_2 - s_1 = 4$ $x_1 - x_2 + s_2 = 1$
- If we consider the initial basic solution with basic variables s_1 and s_2 , then the $c_j z_j$ values are not ≥ 0 for all j. We do **not** have a **feasible solution** of the **dual** of **P** at hand.
- The (Big-M) is used which provides an initial BFS of P for Simplex algorithm.

 Consider the modified problem Minimize x₁ - x₂ + Mw subject to

$$2x_1 + x_2 - s_1 + w = 4$$

 $x_1 - x_2 + s_2 = 1$
 $x_1, x_2, s_1, s_2, w \ge 0$.

 Consider the modified problem Minimize x₁ - x₂ + Mw subject to

$$2x_1 + x_2 - s_1 + w = 4$$

$$x_1 - x_2 + s_2 = 1$$

 $x_1, x_2, s_1, s_2, w \ge 0.$

Here w is called the artificial variable and cost M associated with it is **very large**.

 Consider the modified problem Minimize x₁ - x₂ + Mw subject to

$$2x_1 + x_2 - s_1 + w = 4$$

$$x_1 - x_2 + s_2 = 1$$

$$x_1, x_2, s_1, s_2, w > 0.$$

Here w is called the artificial variable and cost M associated with it is very large.

 The initial table corresponding to the basic variables w and s₂ is given below.

 Consider the modified problem Minimize x₁ - x₂ + Mw subject to

$$2x_1 + x_2 - s_1 + w = 4$$

$$x_1 - x_2 + s_2 = 1$$

$$x_1, x_2, s_1, s_2, w \geq 0.$$

Here w is called the artificial variable and cost M associated with it is **very large**.

 The initial table corresponding to the basic variables w and s₂ is given below.

$c_j - z_j$		-M - 1		0	0	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	B^{-1} s ₁	B^{-1} s ₂	$B^{-1}\mathbf{w}$	$B^{-1}\mathbf{b}$
W	2	1	-1	0	1	4
s_2	1	-1	0	1	0	1

 x₁ will be the entering variable and s₂ will be the leaving variable for the next table.

$c_j - z_j$	0	−3 <i>M</i>	Μ	$2M - 1$ B^{-1} s ₂	0	
	$B^{-1}\tilde{\mathbf{a}}_1$	$B^{-1}\tilde{\mathbf{a}_2}$	B^{-1} s ₁	B^{-1} s ₂	$B^{-1}\mathbf{w}$	B^{-1} b
W	0	3	-1	-2	1	2
<i>X</i> ₁	1	-1	0	1	0	1

x₂ will be the entering variable and the artificial variable w
 will be the leaving variable.

• x_2 will be the **entering variable** and the artificial variable w will be the **leaving variable**.

0

$c_j - z_j$		0	0	-1	Μ	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	B^{-1} s ₁	B^{-1} s ₂	$B^{-1}\mathbf{w}$	B^{-1} b
<i>X</i> ₂	0	1				2/3
<i>X</i> ₁	1	0				$1 + \frac{2}{3}$

Continue with the BFS corresponding to the basic vectors
 x₁ and x₂ and drop the column corresponding to the
 artificial variable w from all future calculations.

 Continue with the BFS corresponding to the basic vectors x₁ and x₂ and drop the column corresponding to the artificial variable w from all future calculations.

 Now proceed with simplex method.

- Continue with the BFS corresponding to the basic vectors x₁ and x₂ and drop the column corresponding to the artificial variable w from all future calculations.

 Now proceed with simplex method.
- Example 2: Consider the problem, Minimize $x_1 + x_2$ subject to $x_1 + 2x_2 \le 2$ $3x_1 + 5x_2 \ge 15$ $x_1 > 0, x_2 > 0$.

- Continue with the BFS corresponding to the basic vectors x₁ and x₂ and drop the column corresponding to the artificial variable w from all future calculations.

 Now proceed with simplex method.
- Example 2: Consider the problem, Minimize $x_1 + x_2$ subject to $x_1 + 2x_2 \le 2$ $3x_1 + 5x_2 \ge 15$ $x_1 \ge 0, x_2 \ge 0$. We consider the corresponding modified problem
- Minimize $x_1 + x_2 + Mw$ subject to $x_1 + 2x_2 + s_1 = 2$ $3x_1 + 5x_2 - s_2 + w = 15$ $x_1, x_2, s_1, s_2, w > 0$.

- Note that this problem can also be solved by dual simplex method.
 - We will solve it by using the **Big-M** method.

- Note that this problem can also be solved by dual simplex method.
 - We will solve it by using the **Big-M** method.
- The initial table is given by

$c_j - z_j$	1 – 3 <i>M</i>	1 – 5 <i>M</i>	0	Μ	0	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	B^{-1} s ₁	B^{-1} s ₂	$B^{-1}\mathbf{w}$	$B^{-1}\mathbf{b}$
<i>s</i> ₁	1	2	1	0	0	2
W	3	5	0	-1	1	15

- Note that this problem can also be solved by dual simplex method.
 - We will solve it by using the **Big-M** method.
- The initial table is given by

$c_j - z_j$	1 – 3 <i>M</i>	1 – 5 <i>M</i>	0	Μ	0	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	B^{-1} s ₁	B^{-1} s ₂	$B^{-1}\mathbf{w}$	B^{-1} b
<i>s</i> ₁	1	2	1	0	0	2
W	3	5	0	-1	1	15

• Here x_2 is the entering variable and s_1 the leaving variable, hence the next table is given by,

 Note that this problem can also be solved by dual simplex method.

We will solve it by using the **Big-M** method.

The initial table is given by

$c_j - z_j$	1 – 3 <i>M</i>	1 – 5 <i>M</i>	0	Μ	0	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	B^{-1} s ₁	B^{-1} s ₂	$B^{-1}\mathbf{w}$	$B^{-1}\mathbf{b}$
<i>s</i> ₁	1	2	1	0	0	2
W	3	5	0	-1	1	15

• Here x_2 is the entering variable and s_1 the leaving variable, hence the next table is given by,

•

$c_j - z_j$	$\frac{1}{2}(1-M)$	0	$\frac{1}{2}(5M-1)$	Μ	0	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}}_2$	B^{-1} s ₁	B^{-1} s ₂	$B^{-1}\mathbf{w}$	$B^{-1}\mathbf{b}$
X ₂	1/2	1	1 2	0	0	1
W	1 7	0	$-\frac{5}{2}$	-1	1	10

• Here x_1 is the entering variable and x_2 the leaving variable and the next table is given by

• Here x_1 is the entering variable and x_2 the leaving variable and the next table is given by

$c_j - z_j$	0	<i>M</i> − 1	3 <i>M</i> – 1	Μ	0	
	$B^{-1}\tilde{\mathbf{a}}_1$	$B^{-1}\tilde{\mathbf{a}}_2$	B^{-1} s ₁	B^{-1} s ₂	B^{-1} w	$B^{-1}\mathbf{b}$
X ₁	1	2	1	0	0	2
W	0	-1	-3	-1	1	9

• Here x_1 is the entering variable and x_2 the leaving variable and the next table is given by

$c_j - z_j$	0	<i>M</i> − 1	3 <i>M</i> − 1	М	0	
	$B^{-1}\tilde{\mathbf{a}}_1$	$B^{-1}\tilde{\mathbf{a}}_2$	B^{-1} s ₁	B^{-1} s ₂	B^{-1} w	$B^{-1}\mathbf{b}$
X ₁	1	2	1	0	0	2
W	0	-1	-3	-1	1	9

• Since the above optimal table has an artificial variable taking positive value hence the original problem (without the artificial variable) has no feasible solution.

Minimize $x_1 + x_2$ subject to $x_1 + 2x_2 + s_1 = 2$ $-3x_1 - 5x_2 + s_2 = -15$ $x_1, x_2, s_1, s_2 > 0$.

Minimize
$$x_1 + x_2$$
 subject to

$$x_1 + 2x_2 + s_1 = 2$$

 $-3x_1 - 5x_2 + s_2 = -15$

$$x_1, x_2, s_1, s_2 \geq 0.$$

The initial table is given by:

$c_j - z_j$	1	1	0	0	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}}_2$	B^{-1} e ₁	$B^{-1}{f e}_2$	B^{-1} b
<i>s</i> ₁	1	2	1	0	2
s ₂	-3	-5	0	1	-15

Minimize
$$x_1 + x_2$$

subject to
 $x_1 + 2x_2 + s_1 = 2$
 $-3x_1 - 5x_2 + s_2 = -15$

$$x_1, x_2, s_1, s_2 \geq 0.$$

The initial table is given by:

$c_j - z_j$	1	1	0	0	
	$B^{-1}\tilde{\mathbf{a}}_1$	$B^{-1}\tilde{\mathbf{a}}_2$	B^{-1} e ₁	B^{-1} e ₂	$B^{-1}\mathbf{b}$
<i>s</i> ₁	1	2	1	0	2
S ₂	-3	-5	0	1	-15

Here s_2 is the leaving variable and x_2 the entering variable.

• The next table is given by,

• The next table is given by,

$c_j - z_j$	<u>2</u> 5	0	0	<u>1</u> 5	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}}_2$	$B^{-1}{f e}_1$	$B^{-1}{f e}_2$	$B^{-1}\mathbf{b}$
<i>S</i> ₁	$-\frac{1}{5}$	0	1	<u>2</u> 5	-4
<i>X</i> ₂	3 5	1	0	$-\frac{1}{5}$	3

The next table is given by,

$c_j - z_j$	2 5	0	0	<u>1</u> 5	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}_2}$	$B^{-1}{f e}_1$	$B^{-1}{f e}_2$	$B^{-1}\mathbf{b}$
<i>S</i> ₁	$-\frac{1}{5}$	0	1	<u>2</u> 5	-4
<i>X</i> ₂	<u>3</u> 5	1	0	$-\frac{1}{5}$	3

• Here s_1 is the leaving variable and x_1 the entering variable. The next table is given by:

The next table is given by,

$c_j - z_j$	2 5	0	0	<u>1</u> 5	
	$B^{-1}\tilde{\mathbf{a}_1}$	$B^{-1}\tilde{\mathbf{a}}_2$	$B^{-1}{f e}_1$	$B^{-1}{f e}_2$	$B^{-1}\mathbf{b}$
<i>S</i> ₁	$-\frac{1}{5}$	0	1	<u>2</u> 5	-4
<i>X</i> ₂	<u>3</u> 5	1	0	$-\frac{1}{5}$	3

• Here s_1 is the leaving variable and x_1 the entering variable. The next table is given by:

Hence clearly the problem is infeasible.