LTUFPJ

Lista Toda Ultra Fabulosa Pro

Emmanuel Buenrostro

June 11, 2022

Problem (Baja California TST 2019/5). En cada celda de una cuadrícula de $n \times n$ $(n \ge 3)$ se escribe un número entre 0 y n (ambos incluidos), de manera que la suma de cada cuadrado posible de 2×2 es distinta. Encuentra todos los números n para los cuales se puede llenar la cuadrícula de esta forma.

Solución

Hay en total $(n-1)^2$ cuadros de 2×2 , y podemos tener como suma cualquier número desde 0 a 4n, entonces si $(n-1)^2>4n+1$ por principio de casillas va a haber al menos una suma repetida. Entonces

$$(n-1)^2 = n^2 - 2n + 1 \le 4n + 1 \Rightarrow n(n-6) \le 0 \Rightarrow n \le 6$$

Asi que los unicos posibles serian 3, 4, 5, 6, para n=3 tomamos el cuadro 3×3 superior izquierdo de la siguiente cuadricula, de manera similar para n=4,5

0	0	1	1	2
0	0	0	0	0
2	2	3	3	4
2	3	3	3	4
4	4	5	5	5

Donde en la siguiente tabla los números representan la suma del cuadrado con esa celda como casilla inferior derecha.

0	1	2	3
4	5	6	7
9	11	12	14
13	15	16	17

Y para n = 6 tenemos que

0	0	0	0	1	1
0	0	1	1	1	1
5	0	5	0	6	1
5	0	6	1	6	1
5	5	5	5	6	6
5	5	6	6	6	6

Donde en la siguiente tabla los números representan la suma del cuadrado con esa celda como casilla inferior derecha.

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Entonces los unicos posibles son $\{3,4,5,6\}$