ÉRETTSÉGI VIZSGA • 2015. május

FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2015. május 18. 8:00

Az írásbeli vizsga időtartama: 240 perc

Pótlapok száma								
Tisztázati								
Piszkozati								

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot!

A pótlapon tüntesse fel a feladat sorszámát is!

írásbeli vizsga 1513 2 / 16 2015. május 18.

Fizika	 eme	elt.	SZI	nt

Azonosító								
jel:								

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

1.	Egy játékvonat egy percig mozog. Az első 40 másodpercben egyenletesen halad,
	majd 20 másodperc alatt egyenletesen lassulva megáll. Hogyan aránylik az első
	40 másodpercben megtett s1 útja az utolsó 20 másodpercben megtett s2 útjához?

- **A)** $s_1/s_2 = 1$
- **B)** $s_1/s_2 = 2$
- C) $s_1/s_2 = 3$
- **D)** $s_1/s_2 = 4$

2 pont	

2. Hol jöttek létre a Földön található nehéz elemek atommagjai?

- A) A Földön keletkeztek, vulkánok felrobbanása során.
- B) Szupernóva-robbanások során keletkeztek a Föld keletkezése előtt.
- C) Az ősrobbanás során keletkeztek.

|--|

3. Az alábbi kijelentések közül melyik következik a hőtan első főtételéből?

- **A)** Alacsonyabb hőmérsékletű helyről magasabb hőmérsékletű helyre csak energiabefektetés árán áramolhat hő.
- **B)** Nincs olyan periodikusan működő hőerőgép, amelynek hatásfoka meghaladja a 100%-ot.
- C) Az abszolút nulla fok hőmérsékletet csak megközelíteni lehet, elérni nem.

2 pont	
--------	--

Azonosító								
jel:								

4. Egy "L" alakú, homogén, azonos vastagságú és szélességű idomot az ábrának megfelelően felfüggesztünk egy fonálra. Az idom bal oldali, hosszabbik szára kétszer olyan hosszú, mint a jobb oldali, rövidebbik. Az idom melyik vége van messzebb a felfüggesztő fonál egyenesétől?

- A) A bal oldali, hosszabb vége ("B").
- B) Egyenlő távol vannak a végek.
- C) A jobb oldali, rövidebb vége ("J").

2 pont

5. A mellékelt grafikonon egy olyan körfolyamat látható, amelyik egy izoterm, egy izochor és egy adiabatikus szakaszból áll. Tudjuk, hogy a körfolyamat során összességében a gáz pozitív munkát végez a környezetén. Az adiabatikus folyamatban hogyan változik a gáz térfogata?

- A) Nő.
- B) Nem változik.
- C) Csökken.
- **D)** A megadott adatok alapján nem dönthető el.

2 pont	

- 6. Mekkora a maghasadás következtében létrejövő hasadványmagok fajlagos (egy nukleonra jutó) kötési energiájának nagysága (abszolút értéke) az eredeti (pl. ²³⁵U) atommagéhoz képest?
 - **A)** Mindkét hasadványmag fajlagos kötési energiájának nagysága nagyobb lesz, mint az eredeti atommag kötési energiájának nagysága volt.
 - **B)** Mindkét hasadványmag fajlagos kötési energiájának nagysága kisebb lesz, mint az eredeti atommag kötési energiájának nagysága volt.
 - C) Mindkét hasadványmag fajlagos kötési energiájának nagysága ugyanakkora lesz, mint az eredeti atommag kötési energiájának nagysága volt.

			Ī
			1

2 pont

írásbeli vizsga 1513 4 / 16 2015. május 18.

- 7. Egy függőleges tengelyű, hosszú, hengeres edénybe valamennyi vizet öntünk, és egy hangvillával megállapítjuk, hogy a víz feletti levegőoszlop f_{θ} frekvenciájú hangra rezonál. Ha megemelkedik a szobában a hőmérséklet, a hőtágulás következtében megemelkedik a vízszint, és megnő a hang terjedési sebessége. Hogyan változik a légoszlop rezonancia-frekvenciája f_{θ} -hoz képest?
 - A) Lecsökken.
 - B) Változatlan marad.
 - C) Megnő.

2 pont

8. Egy testet rugóra akasztva azt tapasztaljuk, hogy a test súlya a rugót 20 cm-rel nyújtja meg. A rugóra akasztott testet vízszintes felületre helyezzük, majd az eredetileg nyújtatlan rugó felső végét gyors mozdulattal 30 cm-rel feljebb rántjuk. Mekkora lesz a test legnagyobb távolsága a vízszintes felülettől mozgása során?

- **A)** 50 cm.
- **B)** 40 cm.
- C) 30 cm.
- **D)** 20 cm.

2 pont

9. Egy váltóáramú körben egy kondenzátor kapacitív ellenállása $X_{\rm c}=100~\Omega$, ohmos ellenállása elhanyagolható. Mekkora a kondenzátor effektív (hatásos) teljesítménye, ha a feszültség az ábrán látható módon változik az idő függvényében?

- A) $P_{\text{eff}} = 0 \text{ W}.$
- **B)** $P_{\text{eff}} = 100 \text{ W}.$
- **C)** $P_{\text{eff}} = 50 \text{ W}.$
- **D)** $P_{\text{eff}} = 70.7 \text{ W}.$

2 pont

Fizika	 eme	1t	szin	١t

Azonosító								
jel:								

- 10. Egy dugattyúval lezárt edényben levegő és vízgőz keveréke található (semmi más). A relatív páratartalom 100%. Csökkenteni szeretnénk az edényben a relatív páratartalmat. Erre két eljárást dolgoztunk ki. A) A keverék hőmérsékletét változatlanul tartva megnöveltük a henger térfogatát. B) A térfogatot változatlanul tartva megnöveltük a keverék hőmérsékletét. Melyik esetben csökken az edényben a relatív páratartalom?
 - A) Csak a térfogatának növelésekor.
 - B) Csak a hőmérsékletének növelésekor.
 - C) Mindkét esetben.
 - **D)** Egyik esetben sem.

2 pont	
--------	--

- 11. Egy bolygó körül űrszonda kering körpályán. Elképzelhető-e az, hogy egy másik űrszondát pontosan ugyanezen körpályára állítsanak oly módon, hogy az mindig az eredeti űrszondával ellentétes pontján legyen a körpályának, a bolygó túloldalán.
 - A) Nem, mivel egy körpályán egyszerre csak egy űrszonda keringhet.
 - B) Igen, elképzelhető.
 - C) Csak akkor képzelhető el, ha a másik űrszonda tömege pontosan megegyezik az elsőével.

12. Egy m tömegű, q töltésű golyót szigetelő fonálra függesztünk az iskolai laboratóriumban. A golyó homogén elektromos térben van, melynek irányát az ábrán az Ē elektromos térerősségvektor jelzi. Az inga ábra szerinti egyensúlyának beállta után a fonalat óvatosan elégetjük. Milyen pályán mozog a golyó a fonál elégetése után?

- A) Az A) jelű, függőleges, egyenes pályán.
- **B)** A B) jelű, a fonál egyenesébe eső pályán.
- C) A C) jelű parabolapályán.
- **D)** A D) jelű, a térerősségvektorral párhuzamos pályán.

írásbeli vizsga 1513 6 / 16 2015. május 18.

Azonosító								
jel:								

- 13. A ²²⁸Ra rádiumizotóp felezési ideje 6,7 év. Hogyan lehet ilyen hosszú felezési időt egy évnél kevesebb idő alatt megmérni?
 - A) Meg kell mérni, hogy mennyi idő alatt bomlik el az atommagok tizenhatod része, és az így kapott időt meg kell szorozni nyolccal.
 - **B)** Az anyagminta sugárzásának intenzitás-idő függvényéből logaritmussal ki lehet számítani a felezési időt.
 - C) Egy mól anyag helyett csak egy nyolcad mól anyagot kell mintául venni, így a felezési idő is a nyolcadára csökken.

2 pont	
--------	--

14. A mellékelt ábrán egy épület falához gyengén rögzített, és egy kiugró kőpárkány miatt meghajlított villámhárítót láthatunk. Egy villámcsapás esetén a villámhárítóban rövid ideig 10⁵ A erősségű áram is folyhat. Ekkor az ilyen módon kialakított villámhárító kiszakadhat a falból. Miért?

- A) Mert a nagy áramerősség miatt a villámhárító párkány feletti és alatti függőleges részei között erős vonzóerő lép fel.
- **B)** Mert a nagy áramerősség miatt a villámhárító párkány feletti és alatti függőleges részei között erős taszítóerő lép fel.
- C) Mert a nagy áramerősség miatt a villámhárító párkány feletti és alatti vízszintes részei között erős vonzóerő lép fel.
- **D)** Mert a nagy áramerősség miatt a villámhárító párkány feletti és alatti vízszintes részei között erős taszítóerő lép fel.

15. Hogyan változik az ernyőn létrejövő interferenciaképen az intenzitásmaximumok közötti távolság, ha az ernyőt a rácstól távolítjuk (az s távolságot növeljük)?

- A) A maximumok közti távolság nő.
- **B)** A maximumok közti távolság nem változik.
- C) A maximumok közti távolság csökken.

Azonosító								
jel:								

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

1. A Hold látványa

"Senki arról nem kételkedik, hogy a Hold homályos test, mert az ő világának mind változásai, mind fogyatkozási nyilván mutattyák, valamint hogy gömbölyű is, és az ő felső színe valóban darabos, és különbféle makulákkal pettegettetett. Gömbölyűségéről a messzelátó tsők bizonyosságot tesznek, s ha ezek bővebben nem mutatnák is a makulákat, maga már a puszta szem eleget mutat."

Varga Márton: A Tsillagos égnek, s a Föld golyóbissának... megismertetése. Nagyvárad, 1809.

Jellemezze a Hold tengely körüli forgását és Föld körüli keringését! Térjen ki a két mozgást jellemző adatok kapcsolatának következményeire! Magyarázza el a holdfázisok keletkezésének okát, ismertesse a holdfázisok változásának ütemét! A Holdat úgy tartjuk számon, mint éjszaka világító égitestet. Az Egyenlítőn élő ember melyik holdfázisban mondhatja, hogy a Hold este kel fel és hajnalban nyugszik le? Miért? Mutassa be a holdfogyatkozás és a napfogyatkozás jelenségét! Mely holdfázisokban figyelhetünk meg nap- és holdfogyatkozást? Mutassa meg, hogy a csatolt képek közül melyik ábrázol holdfogyatkozást és melyik holdfázist! Ezt miből lehet eldönteni, és miért? Ismertesse, hogy hold- és napfogyatkozás idején milyennek látná a Földet és a Napot a Hold megfelelő oldalán álló űrhajós!

írásbeli vizsga 1513 8 / 16 2015. május 18.

Azonosító								
jel:								

2. A nukleonok

"...(Rutherford) hosszasan kifejtette előttem a magszerkezet problémáival kapcsolatos véleményét, különösen azt a nehézséget hangsúlyozva, hogyan épülhetnek fel az összetett magok, ha csak a két elemi rész, a proton és elektron áll rendelkezésre, rámutatva a neutron szükségességére. Ő maga úgy vélte, hogy mindez üres spekuláció, és minthogy mindig idegenkedett a kísérleti alapot nélkülöző spekulációktól, nagyon ritkán beszélt erről, legfeljebb szűk baráti körben... A gondolatot azonban nem ejtette el, engem pedig teljesen meggyőzött."

Chadwick: Néhány személyes megjegyzés a neutron keresésével kapcsolatban, 1962. (Simonyi: A fizika kultúrtörténete)

Nevezze meg a nukleonokat, hasonlítsa össze tömegüket, a tömegük közti különbséget viszonyítsa egy elektron tömegéhez! Jellemezze a nukleáris kölcsönhatást! Mutassa be a tömeghiány (tömegdefektus) jelenségét! Ismertesse a tömeghiány és a kötési energia kapcsolatát! Mit nevezünk izotópnak? Adjon példát egy, a természetben előforduló stabil és egy instabil izotópra! Hogyan befolyásolja egy anyag moláris tömegét izotópjainak gyakorisága? Adjon meg egy példát olyan bomlássorozat-részletre, melynek kezdeti és utolsó vizsgált elemei egymásnak izotópjai! Nevezze meg a példaként megadott folyamatban lejátszódó bomlástípusokat és a bomlások során létrejövő elemeket!

3. Hőtágulás, hőmérsékletmérés

"A szilárd testek kiterjedése iránt a közéletben figyelemmel kell lenni. A vasráfok a kerekekre tüzesen vonatnak, azért, hogy meghűlvén a keréktalpakat jól szorítsák. A pintérek is így tartoznak a vasabroncsokat a hordóra vonni. Vassínek lerakásánál, lánczhidaknál, általában véve minden vasművek le- vagy falbarakásánál figyelni kell arra, hogy a terjedésnek bizonyos térecske hagyassék, máskülönben a sínek nagy hőnél meggörbülnek, a falak pedig megrepednek."

Warga János: Természettan, Pesten, 1850

Ismertesse a szilárd anyagok lineáris hőtágulásának jelenségét, a tágulás mértékét befolyásoló tényezőket! Mutasson be egy, a természetben vagy technikában előforduló példát a jelenségre! Értelmezze a szilárd anyagok és a folyadékok térfogati hőtágulását! Mutassa be a folyadékos hőmérő készítésének elvét! Értelmezze a Celsius-féle hőmérsékleti skálát! Miért alkalmatlan a víz folyadékos hőmérő tágulási közegének? Ismertesse az ideális gázok állandó nyomás melletti térfogati hőtágulását, a hőtágulási együttható értékét! Értelmezze a Kelvinféle hőmérsékleti skálát! Mutassa be a hőmérséklet fogalmát az ideális gázok kinetikus modellje alapján!

Tartalom	Kifejtés	Összesen
18 pont	5 pont	23 pont

Azonosító								
jel:								

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

1. Egy rugós játékpuska által kilőtt lövedék sebességét szeretnénk megmérni. Először a puskát 1 méteres magasságban, vízszintesen tartva többször lőttünk vele, és megmértük, hogy a lövedék vízszintesen milyen távol esett le a puska csövének végétől. Azután a puskát egy másik, az előzőnél nagyobb magasságba emeltük, és megismételtük a kísérletet. A két mérési sorozat eredményét az alábbi táblázat tartalmazza – sajnos a két méréshez tartozó adatok a nagy sietségben véletlenül összekeveredtek.

mérés:	1.	2.	3.	4.	5.	6.	7.
<i>d</i> (cm)	232	222	321	323	229	317	338
mérés:	8.	9.	10.	11.	12.	13.	14.
d (cm)	302	216	225	244	312	328	207

- a) Jelölje be a mért távolságokat egy számegyenesen!
- b) Határozza meg, hogy melyik adatok tartoznak az egyik, illetve a másik magasságból végzett méréssorozathoz! Határozza meg a mérés alapján, hogy átlagosan milyen messzire hordott a puska az első, illetve a második méréssorozat során!
- c) Az első méréssorozathoz tartozó átlagos vízszintes távolságok ismeretében határozza meg, hogy átlagosan mekkora sebességgel hagyja el a lövedék a játékpuskát!
- d) Milyen magasról lőttünk a puskával a második mérési sorozatban?

(A jelenség során a közegellenállás hatását tekintsük elhanyagolhatónak! $g = 9.8 \frac{\text{m}}{\text{c}^2}$)

írásbeli vizsga 1513 10 / 16 2015. május 18.

a)	b)	c)	d)	Összesen
3 pont	4 pont	3 pont	2 pont	12 pont

2. Egyik végén zárt, függőlegesen lefelé fordított hengerben két, $m=0.6\,$ kg tömegű, $A=10\,$ cm² keresztmetszetű dugattyú mozoghat súrlódásmentesen az ábra szerint. A dugattyúk által elzárt térrészekben 0 °C-os héliumgáz van. A dugattyúk távolsága egymástól, illetve az edény tetejétől és aljától egyaránt 10 cm.

- a) Mennyi a felső, illetve az alsó elzárt térrészben lévő gáz tömege?
- b) A felső térrészben lévő gázt lassan melegíteni kezdjük. (A dugattyú jó hőszigetelő, az alsóban a gáz hőmérséklete változatlan.) Mennyi hőt kell a gázzal közölni, hogy az alsó dugattyú alsó pereme éppen elérje a henger alsó, nyitott végét?

(A külső légnyomás 10 ⁵ Pa,	$R = 8.31 \frac{J}{\text{mol} \cdot \text{K}},$	$g = 9.8 \frac{\text{m}}{\text{s}^2}$.)
--	---	--

a)	b)	Összesen
7 pont	5 pont	12 pont

- 3. Egy 235 U (urán) atommag egy termikus neutronnal találkozik, és a reakció során 34 Sr (stroncium) és 140 Xe (xenon) atommagokra, valamint neutronokra hasad szét.
 - a) Írja föl a folyamatot, figyeljen a rendszámok és tömegszámok megadására is!
 - b) Mekkora energia szabadul fel egy ilyen hasadás során? (Az urán és a maghasadást kiváltó termikus neutron mozgási energiája elhanyagolhatóan kicsi.)
 - c) Hány gramm uránnak kell ilyen módon elhasadnia, hogy 1 MJ energia szabaduljon fel?

 $(m_{\rm Xe} = 139,922 \text{ u}, m_{\rm Sr} = 93,915 \text{ u}, m_{\rm U} = 235,044 \text{ u}, m_{\rm n} = 1,009 \text{ u}, \text{ ahol u az atomi}$ tömegegységet jelenti, $1 \text{ u} = 1,661 \cdot 10^{-27} \text{ kg}, c = 2,998 \cdot 10^8 \frac{\text{m}}{\text{s}}.)$

írásbeli vizsga 1513 13 / 16 2015. május 18.

a)	b)	c)	Összesen
6 pont	4 pont	3 pont	13 pont

4. Egy laboratóriumi kísérletben egy $m = 2 \cdot 10^{-4}$ g tömegű, pontszerűnek tekinthető golyót helyezünk egy vákuumban levő síkkondenzátor alsó fegyverzetére az ábrán látható módon. A golyó az érintkezés hatására $Q = 3 \cdot 10^{-10}$ C töltésre tesz szert. (A kondenzátorlemezek vízszintes síkúak.)

- a) Határozza meg a golyóra ható eredő erő nagyságát!
- b) Mekkora lesz a golyó maximális sebessége?

$$(g = 9.8 \frac{\text{m}}{\text{s}^2})$$

a)	b)	Összesen
6 pont	4 pont	10 pont

T1	1.	
H171k9	— emeli	C7111

Dátum:

Azonosító								
jel:								

Figyelem! Az értékelő tanár tölti ki!

	maximális pontszám	elért pontszám
I. Feleletválasztós kérdéssor	30	
II. Esszé: tartalom	18	
II. Esszé: kifejtés módja	5	
III. Összetett feladatok	47	
Az írásbeli vizsgarész pontszáma	100	

	javító tanár
Dátum:	

	elért pontszám egész számra kerekítve	programba beírt egész pontszám
I. Feleletválasztós kérdéssor		
II. Esszé: tartalom		
II. Esszé: kifejtés módja		
III. Összetett feladatok		

javító tanár	jegyző
	Dátum: