Raaghav 94 NLP2 Sentiment Analysis

January 26, 2024

1 Sentiment Analysis

1.1 1. Explain the pipeline for developing sentiment analysis task.

Sentiment Analysis is the process of determining whether a piece of text is positive, negative or neutral. The pipeline for this task is as follows:

• Loading the Data

- Selecting and Downloading the appropriate dataset.

• Data Cleaning and Preprocessing

- Retain only the text and their sentiments.
- Remove Stopwords and Punctuations.
- Lowercase the text.
- Tokenize the dataset.
- Lemmatize the words.

• Feature Representation

- Vectorize the text using BoW, TF-IDF or word embeddings like Word2Vec.

• Model Building

- Classifier such as Logistic Regression, SVM, Decision Tree, Naive Bayes etc.

• Model Evaluation

 A test set is preprocessed with the same techniques and input to the model to classify and evaluate the performance.

1.2 2. Perform cleaning and preprocessing of text.

```
[]: import pandas as pd
  import numpy as np
  from sklearn.preprocessing import LabelEncoder
  from gensim.parsing.preprocessing import remove_stopwords
  from gensim.utils import simple_preprocess
  from nltk.stem.wordnet import WordNetLemmatizer
```

1.2.1 Load Dataset

```
[]: data = pd.read_csv("archive/train.csv", encoding='unicode_escape')
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27481 entries, 0 to 27480

```
Data columns (total 10 columns):
         Column
                           Non-Null Count
                                           Dtype
         ____
                           -----
     0
         textID
                           27481 non-null object
     1
         text
                           27480 non-null object
     2
         selected text
                           27480 non-null object
     3
        sentiment
                           27481 non-null object
         Time of Tweet
                           27481 non-null object
     5
        Age of User
                           27481 non-null object
     6
         Country
                           27481 non-null object
     7
         Population -2020 27481 non-null int64
         Land Area (Km<sup>2</sup>)
                           27481 non-null float64
         Density (P/Km<sup>2</sup>)
                           27481 non-null int64
    dtypes: float64(1), int64(2), object(7)
    memory usage: 2.1+ MB
[ ]: data = data[['selected_text', 'sentiment']]
    data.columns = ['sentences', 'sentiment']
    data.dropna(inplace=True)
    data.head(3)
[]:
                                  sentences sentiment
    O I'd have responded, if I were going
                                             neutral
    1
                                  Sooo SAD negative
    2
                               bullying me negative
[]: le = LabelEncoder()
    data['sentiment'] = le.fit_transform(data['sentiment'])
    data.head(3)
[]:
                                  sentences
                                            sentiment
    0 I'd have responded, if I were going
    1
                                   Sooo SAD
                                                     0
    2
                                                     0
                               bullying me
    1.3 Preprocessing the Data
[]: lemma = WordNetLemmatizer()
    def preprocess(text):
        text = simple_preprocess(remove_stopwords(text), deacc=True)
        return [lemma.lemmatize(str(word)) for word in text]
[]: data['sentences'] = data['sentences'].apply(preprocess)
     sentences = data["sentences"].values.tolist()
[]: sentences_list = [" ".join(i) for i in sentences]
```

1.4 3.Generate representations using

```
[]: from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from gensim.models.word2vec import Word2Vec
```

1.4.1 Bag of Words

```
[]: cv = CountVectorizer()
    count_matrix = cv.fit_transform(sentences_list)
    count_array = count_matrix.toarray()
```

1.4.2 TF-IDF

```
[]: tfidf = TfidfVectorizer()
   tfidf_matrix = tfidf.fit_transform(sentences_list)
   tfidf_array = tfidf_matrix.toarray()
```

1.4.3 Word2Vec - Continuous Bag of Words

```
[]: cbow = Word2Vec(sentences, vector_size=100, window=5, min_count=2, sg=0)
```

```
[]: vocab = cbow.wv.index_to_key

def get_mean_vector(model, sentence):
    words = [word for word in sentence if word in vocab]
    if len(words) >= 1:
        return np.mean(model.wv[words], axis=0)
    return np.zeros((100,))
```

```
[]: cbow_array = []
for sentence in sentences:
    mean_vec = get_mean_vector(cbow, sentence)
    cbow_array.append(mean_vec)

cbow_array = np.array(cbow_array)
```

1.4.4 Word2Vec - Skip-gram

```
[]: sg = Word2Vec(sentences, vector_size=100, window=5, min_count=2, sg=1)
```

```
[]: vocab = sg.wv.index_to_key

def get_mean_vector(model, sentence):
    words = [word for word in sentence if word in vocab]
    if len(words) >= 1:
        return np.mean(model.wv[words], axis=0)
    return np.zeros((100,))
```

```
[]: sg_array = []
for sentence in sentences:
    sg_array.append(get_mean_vector(sg, sentence))

sg_array = np.array(sg_array)
```

1.5 4. Classify the data using appropriate machine learning techniques to generate labels.

```
[]: from sklearn.naive_bayes import MultinomialNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report

y_train = data['sentiment'].values
```

```
[]: bow_model = MultinomialNB()
bow_model.fit(count_array, y_train)
bow_model.score(count_array, y_train)
```

[]: 0.8568413391557497

```
[]: tfidf_model = MultinomialNB()
  tfidf_model.fit(tfidf_array, y_train)
  tfidf_model.score(tfidf_array, y_train)
```

[]: 0.8592430858806405

```
[]: cbow_model = DecisionTreeClassifier()
  cbow_model.fit(cbow_array, y_train)
  cbow_model.score(cbow_array, y_train)
```

[]: 0.9702328966521107

```
[]: sg_model = DecisionTreeClassifier()
sg_model.fit(sg_array, y_train)
sg_model.score(sg_array, y_train)
```

[]: 0.9702328966521107

1.6 5. Analyze the labels and explain the impact of embedding techniques in misclassification.

```
[]: x_test = ["What is not to like about this product.",
    "Not bad.",
    "Not an issue.",
    "Not buggy.",
    "Not happy.",
    "Not user-friendly.",
```

```
"Not good.",
     "Is it any good?",
     "I do not dislike horror movies.",
     "Disliking horror movies is not uncommon.",
     "Sometimes I really hate the show.",
     "I love having to wait two months for the next series to come out!",
     "The final episode was surprising with a terrible twist at the end.",
     "The film was easy to watch but I would not recommend it to my friends.",
     "I LOL'd at the end of the cake scene."]
     y_{test} = [2, 1, 1, 1, 0, 0, 0, 1, 2, 0, 0, 2, 0, 0, 1]
     sentiment = {0:"Negative", 1:"Neutral", 2:"Positive"}
[]: bow_test = [' '.join(preprocess(sentence)) for sentence in x_test]
     bow_test = cv.transform(bow_test).toarray()
     tfidf_test = [' '.join(preprocess(sentence)) for sentence in x_test]
     tfidf_test = tfidf.transform(tfidf_test).toarray()
     cbow_test_embeds = [(preprocess(sentence)) for sentence in x_test]
     cbow test = []
     for sentence in cbow_test_embeds:
         cbow_test.append(get_mean_vector(cbow, sentence))
     cbow_test = np.array(cbow_test)
     sg test embeds = [(preprocess(sentence)) for sentence in x test]
     sg_test = []
     for sentence in sg_test_embeds:
         sg_test.append(get_mean_vector(sg, sentence))
     sg_test = np.array(sg_test)
[ ]: y_bow = bow_model.predict(bow_test)
     print([sentiment[i] for i in y_bow])
     print(classification_report(y_test, y_bow))
    ['Neutral', 'Negative', 'Negative', 'Neutral', 'Positive', 'Negative',
    'Negative', 'Positive', 'Neutral', 'Negative', 'Negative', 'Neutral', 'Neutral',
    'Neutral', 'Neutral']
                  precision
                               recall f1-score
                                                   support
               0
                       0.67
                                 0.57
                                           0.62
                                                         7
                       0.29
                                 0.40
                                           0.33
                                                         5
               1
                       0.00
                                 0.00
                                           0.00
               2
                                                         3
                                           0.40
                                                        15
        accuracy
       macro avg
                       0.32
                                 0.32
                                           0.32
                                                        15
    weighted avg
                       0.41
                                 0.40
                                           0.40
                                                        15
```

```
print([sentiment[i] for i in y_tfidf])
     print(classification_report(y_test, y_tfidf))
    ['Neutral', 'Negative', 'Negative', 'Neutral', 'Positive', 'Neutral',
    'Negative', 'Neutral', 'Neutral', 'Negative', 'Negative', 'Neutral', 'Neutral',
    'Neutral', 'Neutral']
                  precision
                               recall f1-score
                                                  support
               0
                       0.60
                                 0.43
                                           0.50
                                                         7
                                 0.60
               1
                       0.33
                                            0.43
                                                         5
               2
                       0.00
                                 0.00
                                            0.00
                                                         3
                                            0.40
        accuracy
                                                        15
                       0.31
                                 0.34
                                            0.31
                                                        15
       macro avg
    weighted avg
                       0.39
                                 0.40
                                            0.38
                                                        15
[]: y_cbow = cbow_model.predict(cbow_test)
     print([sentiment[i] for i in y_cbow])
     print(classification_report(y_test, y_cbow))
    ['Neutral', 'Negative', 'Positive', 'Negative', 'Negative', 'Negative',
    'Negative', 'Negative', 'Positive', 'Negative', 'Neutral', 'Neutral', 'Neutral',
    'Neutral', 'Negative']
                  precision
                               recall f1-score
                                                   support
                                 0.57
                                                         7
               0
                       0.50
                                            0.53
               1
                       0.00
                                 0.00
                                            0.00
                                                         5
               2
                       0.50
                                 0.33
                                           0.40
                                                         3
                                            0.33
                                                        15
        accuracy
                                            0.31
       macro avg
                       0.33
                                 0.30
                                                        15
    weighted avg
                       0.33
                                 0.33
                                            0.33
                                                        15
[]: y_sg = sg_model.predict(sg_test)
     print([sentiment[i] for i in y_sg])
     print(classification_report(y_test, y_sg))
    ['Negative', 'Negative', 'Negative', 'Negative', 'Negative',
    'Negative', 'Positive', 'Neutral', 'Neutral', 'Negative', 'Neutral', 'Positive',
    'Neutral', 'Neutral']
                  precision
                               recall f1-score
                                                   support
               0
                       0.50
                                 0.57
                                            0.53
                                                         7
                       0.20
                                 0.20
                                            0.20
               1
                                                         5
               2
                       0.00
                                            0.00
                                 0.00
                                                         3
```

[]: y_tfidf = tfidf_model.predict(tfidf_test)

accuracy			0.33	15
macro avg	0.23	0.26	0.24	15
weighted avg	0.30	0.33	0.32	15

1.7 6. Discuss the limitations of each embedding technique and explain the techniques that rectify it.

- BOW
 - Sparse Representation.
 - Word Order is not considered.
 - Does not capture semantic meaning of the text.
 - Computationally Intensive.
- TF-IDF
 - Sparse Representation.
 - Does not capture semantic meaning of the text.
 - Computationally Intensive.
- Word2Vec
 - Semantic and Dense Representation.
 - CBow: Faster and Better Representation for Frequent Words.
 - SkipGram: Works well with small amount of data and Represent Rare words well.

All these still face Out-Of-Vocabulary (OOV) problem that can be resolved by using FastText which uses N-grams of the words.