

ANEXOS LABORATORIO 6

Guamán Jhennifer, Lema Brianda, Mayorga Christopher

Universidad de las Fuerzas Armadas, Av. General Rumiñahui s/n Sangolquí-Ecuador (jtguaman, blema, cdmayorga3)@espe.edu.es 8 de Julio del 2020

Laboratorio de Circuitos Eléctricos NRC: 8703 Instructor: Darwin Alulema

ANEXOS

Cálculos potencia absorbida por resistencias

Figure 1. Circuito para comprobar el Teorema de MTP

Voltaje e intensidades medidas

Resistencia(ohm)	Voltaje medido (V)	Intensidad medida (mA)
220	2,32	10,6
470	4,22	8,98
680	5,43	7,98
820	6,09	7,43
1000	6,82	6,82
1500	8,33	5,56
1800	9	5
2200	9,71	4,41
3900	11,5	2,94
4700	11,9	2,54

$$P = IV$$

$$P_{R_1} = V_{R_1} \times I_{R_1}$$

 $P_{R_1} = 2,32 \times 10,6$
 $P_{R_1} = 24,592mW$

$$P_{R_2} = V_{R_2} \times I_{R_2}$$

 $P_{R_2} = 4,22 \times 8,98$
 $P_{R_2} = 37,8956mW$

$$P_{R_3} = V_{R_3} \times I_{R_3}$$

 $P_{R_3} = 5,43 \times 7,98$
 $P_{R_3} = 43,3314mW$

$$P_{R_4} = V_{R_4} \times I_{R_4}$$

 $P_{R_4} = 6,09 \times 7,43$
 $P_{R_4} = 45,2487mW$

$$P_{R_5} = V_{R_5} \times I_{R_5}$$

 $P_{R_5} = 6,82 \times 6,82$
 $P_{R_5} = 46,5124mW$

$$P_{R_6} = V_{R_6} \times I_{R_6}$$

 $P_{R_6} = 8,33 \times 5,56$
 $P_{R_6} = 46,3148mW$

$$P_{R_7} = V_{R_7} \times I_{R_7}$$

$$P_{R_7} = 9 \times 5$$

$$P_{R_7} = 45mW$$

$$P_{R_8} = V_{R_8} \times I_{R_8}$$
 $P_{R_8} = 9,71 \times 4,41$ $P_{R_8} = 42,8211mW$

$$P_{R_9} = V_{R_9} \times I_{R_9}$$

 $P_{R_9} = 11, 5 \times 2, 94$
 $P_{R_9} = 33, 81 mW$

$$P_{R_{1}0} = V_{R_{1}0} \times I_{R_{1}0}$$

 $P_{R_{1}0} = 11, 9 \times 2, 54$
 $P_{R_{1}0} = 30, 226mW$