

On the Importance of Priors in Bayesian Deep Learning

Dr. Vincent Fortuin

RIKEN AIP (remotely)
April 2022

- Pathologies of common BNN priors
 - BNN priors and the cold posterior effect
 - The role of data augmentation
- How to find better priors
 - Empirical Bayes using the marginal likelihood
 - (PAC-)Bayesian meta-learning
- How to use function-space priors
 - Repulsive deep ensembles
 - GP priors in the latent space

- Pathologies of common BNN priors
 - BNN priors and the cold posterior effect
 - The role of data augmentation
- How to find better priors
 - Empirical Bayes using the marginal likelihood
 - (PAC-)Bayesian meta-learning
- How to use function-space priors
 - Repulsive deep ensembles
 - GP priors in the latent space

Background: Bayesian Neural Networks

Motivation: Cold-posterior effect

Empirical FCNN weights are heavy-tailed

Empirical CNN weights are correlated

Bayesian FCNNs with different priors

Bayesian CNNs with different priors

- Pathologies of common BNN priors
 - BNN priors and the cold posterior effect
 - The role of data augmentation
- How to find better priors
 - Empirical Bayes using the marginal likelihood
 - (PAC-)Bayesian meta-learning
- How to use function-space priors
 - Repulsive deep ensembles
 - GP priors in the latent space

Caveat: Data augmentation plays a role!

Averaging logits/probs doesn't help

[Nabarro, Ganev, Garriga-Alonso, F, van der Wilk, Aitchison. arXiv 2021]

- Pathologies of common BNN priors
 - BNN priors and the cold posterior effect
 - The role of data augmentation
- How to find better priors
 - Empirical Bayes using the marginal likelihood
 - (PAC-)Bayesian meta-learning
- How to use function-space priors
 - Repulsive deep ensembles
 - GP priors in the latent space

Marginal likelihood prior selection

[Immer, Bauer, F, Rätsch, Khan. ICML 2021]

Step 1: Optimize Marginal-Likelihood wrt. hyperparameters

Step 2: Compare marginal likelihood of models

ML-II prior improves generalization

[Immer, Bauer, F, Rätsch, Khan. ICML 2021]

X-		cross-va	lidation	marginal likeliho			ood optimization		
				KFAC		diagonal EF			
Dataset	Model	accuracy	logLik	accuracy	logLik	MargLik	accuracy	logLik	MargLik
MNIST	MLP	98.22	-0.061	98.38	-0.053	-0.158	97.05	-0.095	-0.553
	CNN	99.40	-0.017	99.46	-0.016	-0.064	99.45	-0.019	-0.134
FMNIST	MLP	88.09	-0.347	89.83	-0.305	-0.468	85.72	-0.400	-0.756
	CNN	91.39	-0.258	92.06	-0.233	-0.401	91.69	-0.233	-0.570
CIFAR10	CNN	77.41	-0.680	80.46	-0.644	-0.967	80.17	-0.600	-1.359
	ResNet	83.73	-1.060	86.11	-0.595	-0.717	85.82	-0.464	-0.876

Sidenote: Learning invariances

[Immer, van der Ouderaa, F, Rätsch, van der Wilk. arXiv 2022]

Another sidenote: Linguistic probing

[Immer, Torroba-Hennigen, F, Cotterell. ACL 2022]

Representation comparison

(a) optimal R^*

$$\log p(\boldsymbol{\pi}|\boldsymbol{\tau}, R^*, P^*) = -53$$

(b) random R'

 $\log p(\boldsymbol{\pi}|\boldsymbol{\tau},R',P^*) = -516$

Probe comparison

(c) optimal P^*

$$\log p(\boldsymbol{\pi}|\boldsymbol{\tau}, R^*, P^*) = -53$$

(d) insufficient P'

$$\log p(\boldsymbol{\pi}|\boldsymbol{\tau},R^*,P') = -103$$

- Pathologies of common BNN priors
 - BNN priors and the cold posterior effect
 - The role of data augmentation
- How to find better priors
 - Empirical Bayes using the marginal likelihood
 - (PAC-)Bayesian meta-learning
- How to use function-space priors
 - Repulsive deep ensembles
 - GP priors in the latent space

PAC-Bayesian meta-learning

[Rothfuss, F, Josifoski, Krause. ICML 2021]

PAC-Bayesian meta-learning

[Rothfuss, F, Josifoski, Krause. ICML 2021]

hyperposterior

$$\mathcal{Q}^*(P) = \frac{\mathcal{P}(P) \exp\left(\frac{\lambda}{n\beta + \lambda} \sum_{i=1}^n \ln Z_{\beta}(S_i, P)\right)}{Z^{II}(S_1, ..., S_n, \mathcal{P})}$$
hyperprior marginal likelihood

PAC-Bayesian meta-learning

[Rothfuss, F, Josifoski, Krause. ICML 2021]

	Accuracy	Calibration error
Vanilla BNN (Liu & Wang, 2016)	0.795 ± 0.006	0.135 ± 0.009
MLAP (Amit & Meir, 2018)	0.700 ± 0.0135	0.108 ± 0.010
MAML (Finn et al., 2017)	0.693 ± 0.013	0.109 ± 0.011
BMAML (Kim et al., 2018)	0.764 ± 0.025	0.191 ± 0.018
PACOH-NN (ours)	$\boldsymbol{0.885 \pm 0.090}$	$\boldsymbol{0.091 \pm 0.010}$

Few-shot learning on Omniglot

- Pathologies of common BNN priors
 - BNN priors and the cold posterior effect
 - The role of data augmentation
- How to find better priors
 - Empirical Bayes using the marginal likelihood
 - (PAC-)Bayesian meta-learning
- How to use function-space priors
 - Repulsive deep ensembles
 - GP priors in the latent space

Background: Posterior coverage

Repulsive deep ensembles

[D'Angelo, F. NeurIPS 2021]

Standard deep ensembles:

$$\mathbf{w}_{i}^{t+1} \leftarrow \mathbf{w}_{i}^{t} + \epsilon_{t} \phi(\mathbf{w}_{i}^{t})$$
$$\phi(\mathbf{w}_{i}^{t}) = \nabla_{\mathbf{w}_{i}^{t}} \log p(\mathbf{w}_{i}^{t} | \mathcal{D})$$

Repulsive deep ensembles:

$$\phi(\mathbf{w}_i^t) = \nabla_{\mathbf{w}_i^t} \log p(\mathbf{w}_i^t | \mathcal{D}) - \mathcal{R}\left(\left\{\nabla_{\mathbf{w}_i^t} k(\mathbf{w}_i^t, \mathbf{w}_j^t)\right\}_{j=1}^n\right)$$

Function-space repulsive deep ensembles:

$$\phi(\mathbf{w}_i^t) = \left(\frac{\partial \mathbf{f}_i^t}{\partial \mathbf{w}_i^t}\right)^{\top} \left[\nabla_{\mathbf{f}_i^t} \log p(\mathbf{f}_i^t | \mathcal{D}) - \mathcal{R}\left(\left\{\nabla_{\mathbf{f}_i^t} k(\pi_B(\mathbf{f}_i^t), \pi_B(\mathbf{f}_j^t))\right\}_{j=1}^n\right) \right]$$

canonical

projection

Repulsion approximates the posterior

[D'Angelo, F. NeurIPS 2021]

- Pathologies of common BNN priors
 - BNN priors and the cold posterior effect
 - The role of data augmentation
- How to find better priors
 - Empirical Bayes using the marginal likelihood
 - (PAC-)Bayesian meta-learning
- How to use function-space priors
 - Repulsive deep ensembles
 - GP priors in the latent space

GP priors in the latent space

[F, Collier, Wenzel, Liu, Allingham, Tran, Lakshminarayanan, Berent, Jenatton, Kokiopoulou. AABI 2022]

SNGP-distributed latent means (correlated across data points)

(RFF approximation)

SNGP kernel

 $egin{aligned} oldsymbol{f_c} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{K_{ heta}}(oldsymbol{x}, oldsymbol{x}) \ oldsymbol{u_i} \sim \mathcal{N}(oldsymbol{f_i}, oldsymbol{\Sigma}(oldsymbol{x}_i; arphi) \end{aligned}$

label noise covariance (possibly low-rank)

$$p(y_i = c \mid \boldsymbol{u}_i) = \mathbb{1} \left[c = rg \max_k u_{ik} \right]$$

output probabilities (approximated by softmax)

heteroscedastic logits

(correlated across classes)

Distance-aware OOD uncertainties

[F, Collier, Wenzel, Liu, Allingham, Tran, Lakshminarayanan, Berent, Jenatton, Kokiopoulou. AABI 2022]

Label noise modeling in real datasets

[F, Collier, Wenzel, Liu, Allingham, Tran, Lakshminarayanan, Berent, Jenatton, Kokiopoulou. AABI 2022]

Method	↑ID prec@1	↑Im Acc	↑ImC Acc	↑ImA Acc	↑ImR Acc	↑ImV2 Acc
Det.	0.471 ± 0.000	0.800 ± 0.000	0.603 ± 0.000	0.149 ± 0.000	0.311 ± 0.000	0.694 ± 0.000
Het.	0.480 ± 0.001	$0.796\pm{\scriptstyle 0.002}$	$0.590\pm{\scriptstyle 0.001}$	$0.132\pm {\scriptstyle 0.004}$	0.300 ± 0.006	0.687 ± 0.000
SNGP	$0.468\pm{\scriptstyle 0.001}$	$0.799\pm{\scriptstyle 0.001}$	0.602 ± 0.000	0.165 ± 0.003	0.328 ± 0.005	0.696 ± 0.003
HetSNGP	0.477 ± 0.001	0.806 ± 0.001	0.613 ± 0.003	0.172 ± 0.007	0.336 ± 0.002	0.705 ± 0.001

Sidenote: Attention prior in transformers

[Cinquin, Immer, Horn, F. AABI 2022]

Improving the prior helps in all tasks

[Cinquin, Immer, Horn, F. AABI 2022]

Dataset	Gauss. VI	Laplace VI	Logistic VI	Cauchy VI	Student VI
M1	1.40%	3.80%	4.12%	1.85%	2.79%
M2	2.85%	3.06%	2.76%	4.36%	2.70%
POS	0.12%	2.05%	2.16%	0.87%	-0.32%
MNIST	26.95%	33.31%	31.36%	5.66%	26.94%

Percentage of improvement changing from standard to improved prior

Take-home messages

Thank you!

Deepmind

Matthias Bauer

EPF Lausanne

Martin Josifoski

ETH Zürich

Tristan Cinquin Ryan Cotterell Francesco D'Angelo Max Horn Alexander Immer Andreas Krause Gunnar Rätsch Ionas Rothfuss

<u>Google</u>

Jesse Berent
Mark Collier
Rodolphe Jenatton
Effrosyni Kokiopoulou
Balaji Lakshminarayanan
Jeremiah Liu
Dustin Tran
Florian Wenzel

Imperial College London

Seth Nabarro Tycho van der Ouderaa Mark van der Wilk

MIT

Lucas Torroba-Hennigen

RIKEN

Mohammad Emtiyaz Khan

University of Bristol

Laurence Aitchison Stoil Ganev

University of Cambridge

James Allingham Adrià Garriga-Alonso Sebastian Ober Richard Turner

vbf21@cam.ac.uk

@vincefort