# Digital Logic Design (EL-1005)

LABORATORY MANUAL
Spring 2022



# **LAB 08**

# **Binary Comparator**

Instructor: Engr. Misbah Malik

| /02    | RDED:        | MARKS AWA |              |
|--------|--------------|-----------|--------------|
| & DATE | 'S SIGNATURE | FACULTY'  |              |
|        | SEC          | ROLL NO   | STUDENT NAME |

# Lab Session 08: Binary Comparator

### **OBJECTIVES:**

> To learn and understand how to design a multiple output combinational circuit

> To learn and understand the working of 2-bit binary comparator

> To learn and understand the working and usage of Exclusive-OR and Exclusive-NOR gates

APPARATUS: Logic trainer, Logic probe

**COMPONENTS:** ICs 74LS08, 74LS32, 74LS04, 74LS86, 74LS02

### THEORY:

Binary comparator is a combinational circuit that compares magnitude of two binary data signals A & B and generates the results of comparison in the form of three output signals A>B, A=B, A<B. Binary comparator is a multiple input and multiple output combinational circuit. When a combinational circuit has two or more than two outputs then each output is expressed separately as a function of all inputs. Separate K-map is made for each output.

### **One-bit comparator:**

One-bit comparator compares magnitude of two numbers A and B, 1 bit each, and generates the comparison result. The result consists of three outputs let us say L, E, G, so that

$$L = 1 if A < B$$

$$E = 1 if A = B$$

**Truth Table:** 

$$G = 1 if A > B$$

| Inputs |   | Outpu | Outputs |   |
|--------|---|-------|---------|---|
| A      | В | L     | E       | G |
| 0      | 0 | 0     | 1       | 0 |
| 0      | 1 | 1     | 0       | 0 |
| 1      | 0 | 0     | 0       | 1 |
| 1      | 1 | 0     | 1       | 0 |

### K-Maps for Outputs:





K-Map for Output L

K-Map for Output E



K-Map for Output G

### **Boolean Expressions of Outputs:**

L:  $\bar{A}B$ 

E:  $AB + \bar{A}\bar{B}_{-}$ 

G:  $A\bar{B}_{-}$ 

### **Exclusive-OR & Exclusive-NOR gates:**

The figure given below shows the symbol of Exclusive-OR (XOR) and Exclusive-NOR (XNOR) gates.





Boolean expression of XNOR gate is  $AB + \overline{AB}$  and Boolean expression of XOR is  $\overline{AB} + \overline{AB}$ . Boolean expression of XNOR gate can be implemented using XOR gate as shown in figure below:



### **Circuit Diagram for one-bit comparator:**



In this experiment 74LS86 IC will be used for implementation of XOR gate function. 74LS86 IC contains four 2-input XOR gates. The function table and connection diagram for this IC are shown below:

### **Function Table:**

| Inputs |   | Output           |
|--------|---|------------------|
| Α      | В | Y                |
| L      | L | L                |
| L      | Н | Н                |
| Н      | L | Н                |
| Н      | Н | L                |
|        |   | de la la colonia |

H= Logic High, L= Logic Low

### **Connection Diagram:**



## **LAB TASKS**

| Name                                                                                              | Student ID   | Section                     |
|---------------------------------------------------------------------------------------------------|--------------|-----------------------------|
| Exercise # 1  Design a combinational circuit that compresult. The result consists of three output |              | nd generates the comparison |
| L =                                                                                               | = 1 if A < B |                             |
| E:                                                                                                | = 1 if A = B |                             |
| G :                                                                                               | = 1 if A > B |                             |
| 1. Write truth table                                                                              |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |
|                                                                                                   |              |                             |

| Exercise # 2 Find minimal SOP expressions for the outputs L, E, and G using K-map. Draw separate K-map for each output in the space given below |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                 |  |  |  |
|                                                                                                                                                 |  |  |  |
|                                                                                                                                                 |  |  |  |
|                                                                                                                                                 |  |  |  |
|                                                                                                                                                 |  |  |  |
|                                                                                                                                                 |  |  |  |
|                                                                                                                                                 |  |  |  |
|                                                                                                                                                 |  |  |  |
| Evereice # 2                                                                                                                                    |  |  |  |

Implement the combinational circuit of 2-Bit Binary comparator on Logisim and generate truth table.

### **INSTRUCTION FOR SUBMISSION**

Upload Word File with all working on Google Classroom.