

Medical Anomaly Edition

ft. GANs

- Blastoma
- Cystic fibrosis
- Appendicitis
- Pneumonia
- Tumor

- Blastoma
- X Cystic fibrosis
- Appendicitis
- X Pneumonia
- Tumor

- Blastoma
- Cystic fibrosis
- Appendicitis
- Pneumonia
- Tumor

Alzheimer's

- Blastoma
 - X Cystic fibrosis
 - Appendicitis
- Pneumonia
- × Tumor

Alzheimer's

? Alzheimer's

You only find what you're looking for

[[[232 234 234] [232 236 237] [228 231 235]

••

[221 226 227] [214 224 224]

[209 222 220]]

[[231 233 233] [229 233 234] [227 231 236]

•

[217 224 227] [216 226 226] [211 222 220]]

Color: Pink

Shape: Circle Radius: 12cm

Icing?: Yes

Hole?: Yes

Hole Size: 2.5cm Sprinkles?: Yes

Sprinkles Size: 1cm x 0.2cm

Color: (200, 130, 150)

Shape: 0

Radius: 12cm

Icing?: 1

Hole?: 1

Hole Size: 2.5cm

Sprinkles?: 1

Sprinkles Size: 1cm x 0.2cm

Reconstruction Loss

Encoder Matching

Discrimination

Reconstruction Loss

Encoder Matching

Discrimination

Reconstruction Loss

Encoder Matching

Discrimination


```
def evaluate(image):
reconstruction_loss = image_diff(image, reconstruct(image))
embedding = in_dist(healthy_embed, encode(image))
discriminator = netD(image)

total_loss = reconstruction_loss + embedding + discriminator
threshold = 0.30
return total_loss > threshold
```


Anomaly


```
def localize_anomaly(image):
reconstruction = reconstruct_image(image)
image_similarity = similar(image, reconstruction)
anomaly_location = local_min(image_similarity)
return anomaly_location
```

Anomaly

Anomaly

liamhinzman.com

liamhinzman@gmail.com