Chapitre 3

Équations et inéquations du second degré

I. Équation du second degré

1) Discriminant

Propriété:

Pour tous réels a, b et c avec $a \neq 0$, on a :

$$ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right] \text{ avec } \Delta = b^2 - 4ac$$

Démonstration:

On a vu que:

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2}}{4a^{2}} \right] + c \text{ donc}$$

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{4ac}{4a^{2}} \right] = a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{b^{2} - 4ac}{4a^{2}} \right]$$

Définition:

Soit f une fonction trinôme, définie sur définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ où a, b et c sont des réels $(a \neq 0)$.

Le nombre $\Delta = b^2 - 4ac$ est appelé **discriminant** du trinôme.

Exemple:

$$f(x) = 3x^2 + x - 2.$$

f a pour discriminant $\Delta = 1^2 - 4 \times 3 \times (-2) = 1 + 24 = 25$.

Définition:

L'expression $a\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]$ est appelée **forme canonique** du trinôme ax^2+bx+c .

1

2) Équation du second degré

Définition:

Une **équation du second degré à une inconnue** x est une équation qui peut s'écrire sous la forme :

$$ax^2 + bx + c = 0$$

où a, b et c sont des réels donnés et $a \neq 0$.

Exemples:

- $3x^2 7x + 2 = 0$
- $2x^2 9 = 0$
- $-x^2+2x=0$
- L'équation (E) $x^2-4+3x=2x^2-x$ peut s'écrire sous la forme $ax^2+bx+c=0$ En effet, (E) équivaut à $x^2-4+3x-2x^2+x=0$ soit $-x^2+4x-4=0$ Donc ici a=-1: b=4 et c=-4.

Interprétation graphique:

Les solutions de l'équation $ax^2+bx+c=0$ correspondent aux abscisses des points d'intersections entre la parabole \mathcal{P} d'équation $y=ax^2+bx+c$ et l'axe des abscisses d'équation y=0.

L'équation n'a pas de solution.

L'équation admet une solution.

L'équation admet deux solutions.

2

3) Résolution

Propriété:

Résolution de l'équation du second degré $ax^2+bx+c=0$ $(a \ne 0)$:

$$\Delta = b^2 - 4ac$$

- Lorsque Δ <0, l'équation n'a pas de solution.
- Lorsque $\Delta = 0$, l'équation admet une solution $x_0 = -\frac{b}{2a}$.
- Lorsque $\Delta > 0$, l'équation admet deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Démonstration:

On sait que $ax^2 + bx + c = 0$ équivaut à $a\left[\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = 0$ donc à $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} = 0$ $(a \neq 0)$, c'est-à-dire $\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{4a^2}$.

En posant $X=x+\frac{b}{2a}$, résoudre l'équation $ax^2+bx+c=0$ revient donc à résoudre $X^2=\frac{\Delta}{4a^2}$.

- Si $\Delta < 0$, alors $\frac{\Delta}{4a^2} < 0$. L'équation n'a pas de solution (car X^2 est positif).
- Si $\Delta = 0$, alors l'équation s'écrit $X^2 = 0$. Cette équation a une seule solution X = 0, c'està-dire $x + \frac{b}{2a} = 0$ donc $x = -\frac{b}{2a}$.
- Si $\Delta > 0$, alors l'équation admet deux solutions :

$$X_{1} = \sqrt{\frac{\Delta}{4 a^{2}}} \qquad \text{et} \qquad X_{2} = -\sqrt{\frac{\Delta}{4 a^{2}}}$$
Soit
$$x_{1} + \frac{b}{2 a} = \sqrt{\frac{\Delta}{4 a^{2}}} \qquad \text{et} \qquad x_{2} + \frac{b}{2 a} = -\sqrt{\frac{\Delta}{4 a^{2}}}$$

o Si
$$a > 0$$
, $\sqrt{4a^2} = 2a$ donc:

$$x_1 = \frac{-b}{2a} + \frac{\sqrt{\Delta}}{2a} = \frac{-b + \sqrt{\Delta}}{2a} \quad \text{et} \quad x_2 = \frac{-b}{2a} - \frac{\sqrt{\Delta}}{2a} = \frac{-b - \sqrt{\Delta}}{2a}$$

$$\circ \text{ Si } a < 0, \sqrt{4a^2} = -2a \text{ donc}:$$

$$x_1 = \frac{-b}{2a} + \frac{\sqrt{\Delta}}{-2a} = \frac{-b - \sqrt{\Delta}}{2a} \text{ et } x_2 = \frac{-b}{2a} - \frac{\sqrt{\Delta}}{-2a} = \frac{-b + \sqrt{\Delta}}{2a}$$

Exemples:

- Résolution de l'équation $2x^2-3x+5=0$ a=2, b=-3 et c=5 ainsi $\Delta=(-3)^2-4\times2\times5=9-40=-31$ donc $\Delta<0$. L'équation n'admet aucune solution.
- Résolution de l'équation $3x^2-x-4=0$ $a=3,\ b=-1\ \text{et}\ c=-4\ \text{ainsi}\ \Delta=(-1)^2-4\times3\times(-4)=1+48=49\ \text{donc}\ \Delta>0\ .$ L'équation admet deux solutions :

3

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1+7}{6} = \frac{8}{6} = \frac{4}{3}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1-7}{6} = \frac{-6}{6} = -1$

L'ensemble des solutions S= $\{-1; \frac{4}{3}\}$.

Propriété:

Soient x_1 et x_2 les racines d'un trinôme $ax^2 + bx + c$ où a, b et c sont des réels $(a \neq 0)$.

On a
$$x_1 + x_2 = -\frac{b}{a}$$
 et $x_1 \times x_2 = \frac{c}{a}$.

Exemple:

Le polynôme du second degré $P(x) = x^2 + 2x + 3$ a pour discriminant $\Delta = 2^2 - 4 \times (-1) \times 3 = 16$. P(x) admet donc deux racines réelles x_1 et x_2 .

$$x_1 + x_2 = \frac{-2}{-1} = 2 \text{ et } x_1 \times x_2 = \frac{3}{-1} = -3.$$

Propriété:

Deux réels ont pour somme S et pour produit P si, et seulement si, ils sont solutions de l'équation :

$$x^2 - Sx + P = 0$$

<u>Démonstration :</u>

• Si deux réels x_1 et x_2 vérifient $x_1 + x_2 = S$ et $x_1 \times x_2 = P$, alors $x_2 = S - x_1$ et $P = x_1 \times (S - x_1)$ et donc $x_1^2 - Sx_1 + P = 0$. Dans ce cas x_1 est bien solution de $x^2 - Sx + P = 0$.

La démonstration est la même pour x_2 .

• Réciproquement, si x_1 et x_2 sont solutions de $x^2 - Sx + P = 0$, alors, d'après la propriété précédente, $x_1 + x_2 = \frac{S}{1}$, soit $x_1 + x_2 = S$ et $x_1 \times x_2 = \frac{P}{1}$, ainsi $x_1 \times x_2 = P$.

4

Exemple:

L'équation $2x^2 - x - 1 = 0$ admet $x_1 = 1$ comme solution évidente.

L'autre solution x_2 vérifie donc $1 \times x_2 = \frac{-1}{2}$. D'où $x_2 = -\frac{1}{2}$.

Utilisation de la calculatrice :

```
PROGRAM: DEGRE2

:Prompt A,B,C

:B2-4AC→D

:If D>0

:Then

:Disp "2 SOLS :"

,(-B-√(D))/(2A)*

Frac, "ET",(-B+√(D))/(2A)*

Frac "ET",(-B+√(D))/(2A)*

Else

:If D=0

:Then

:Disp "1 SOL :",

-B/(2A)*Frac

:Else

:Disp "0 SOL"

:End∎
```

```
Pr9mDEGRE2
B=?-3
C=?5
Ø SOL

Pr9mDEGRE2
A=?4
B=?-12
C=?9
1 SOL:

Pr9mDEGRE2
Fait

Pr9mDEGRE2
A=?3
B=?-1
C=?-4
2 SOLS:
ET

4/3
Fait
```

```
=====DEGRE2 ======
"A"?+A#
"B"?+B#
"C"?+C#
"DELTA=":B2-4AC+D,
#
If D>0#
Then "2 SOLUTIONS :"#
"X1=":(-B-JD),(2A),
"X2=":(-B+JD),(2A),
#
Else #
If D=0#
Then "1 SOLUTION:"#
"X=":-B,(2A),
#
Else "0 SOLUTION"#
IfEnd#
IfEnd#
IfEnd
TOP BTM SECTION A+3 CEMP
```

```
A?
B?
-3
C?
5
DELTA=
Ø SOLUTION
```

```
A?
4
B?
-12
C?
9
DELTA=
1 SOLUTION:
X=
3J2
- Disp -
```

```
A?
3
B?
-1
C?
-4
DELTA=
2 SOLUTIONS:
X1=
-1
X2=
4,3
- Disp -
```

II. <u>Inéquation du second degré</u>

1) Factorisation du trinôme

Propriété:

On considère le trinôme $ax^2 + bx + c$.

• Lorsque $\Delta > 0$, en notant x_1 et x_2 les deux racines, on a :

$$ax^2+bx+c=a(x-x_1)(x-x_2)$$

• Lorsque $\Delta = 0$, en notant x_0 l'unique racine, on a :

$$ax^2 + bx + c = a(x - x_0)^2$$

• Lorsque $\Delta < 0$, le trinôme $ax^2 + bx + c$ ne se factorise pas.

Exemple:

On a vu que l'équation $3x^2 - x - 4 = 0$ avait deux solutions : -1 et $\frac{4}{3}$.

On a done
$$3x^2 - x - 4 = 3(x+1)\left(x - \frac{4}{3}\right)$$
.

Remarques:

• Lorsque l'équation $ax^2 + bx + c = 0$ admet des solutions, ces solutions sont les racines du trinôme $ax^2 + bx + c$.

Ce sont les abscisses des points d'intersection de la parabole avec l'axe des abscisses.

• Lorsque le polynôme a deux racines distinctes α_1 et α_2 , l'abscisse α du sommet de la parabole est la moyenne des deux racines : $\alpha = \frac{\alpha_1 + \alpha_2}{2}$.

2) Signe du trinôme

Propriété:

Soit f, une fonction polynôme de degré 2, définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ avec $a\neq 0$ et Δ le discriminant du trinôme ax^2+bx+c .

• Si $\Delta > 0$, alors, x_1 et x_2 étant les racines du trinôme telles que $x_1 < x_2$, f(x) est du signe de a si et seulement si $x \in]-\infty; x_1[\cup]x_2; +\infty[$.

6

- Si $\Delta = 0$, alors f(x) est du signe de a si et seulement si $x \neq -\frac{b}{2a}$.
- Si $\Delta < 0$, alors, pour tout réel x, f(x) est du signe de a.

Démonstration :

• Si $\Delta > 0$, alors, pour tout réel x, $f(x) = a(x - x_1)(x - x_2)$ où x_1 et x_2 sont les racines du trinôme (avec $x_1 < x_2$).

On a donc le tableau de signe suivant :

x	$-\infty$	x_1		x_2		+∞
$x-x_1$	_	0	+		+	
$x-x_2$	_		_	0	+	
$(x-x_1)(x-x_2)$	+	0	_	0	+	
$a(x-x_1)(x-x_2)$	Signe de a	0	Signe de -a	0	Signe de a	

Ainsi, f(x) est du signe de a si et seulement si $x \in]-\infty; x_1[\cup]x_2; +\infty[$.

• Si $\Delta = 0$, alors, pour tout réel x, $f(x) = a(x - x_0)^2$, avec $x_0 = \frac{-b}{2a}$.

Le carré $(x-x_0)^2$ est strictement positif pour $x \neq x_0$ et il s'annule en x_0 .

Ainsi f(x) est du signe de a si et seulement si $x \neq -\frac{b}{2a}$.

• Si $\Delta < 0$, alors $\frac{\Delta}{4a^2} < 0$. On en déduit que, pour tout réel x, $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} > 0$.

Or $f(x)=a\left[\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right]$, donc le signe de f(x) est celui de a.

Exemple:

Le polynôme (1-x)(3x-2) a pour racines 1 et $\frac{2}{3}$. Le coefficient a est le coefficient de x^2 . On a a=-3<0.

Le trinôme est du signe de -a donc positif sur l'intervalle $\left[\frac{2}{3};1\right]$ et du signe de a donc négatif sur $\left]-\infty;\frac{2}{3}\right]\cup [1;+\infty[$

III. <u>Synthèse</u>

Soit le polynôme $P(x)=ax^2+bx+c$

$\Delta = b^2 - 4ac$	$\Delta < 0$	$\Delta = 0$	$\Delta > 0$
Solutions de l'équation $P(x)=0$	Pas de solution	Une seule solution : $\alpha = -\frac{b}{2a}$	Deux solutions: $\alpha_1 = \frac{-b - \sqrt{\Delta}}{2a}$ $\alpha_2 = \frac{-b + \sqrt{\Delta}}{2a}$
Factorisation de $P(x)$	Pas de factorisation	$P(x) = a(x - \alpha)^2$	$P(x) = a(x - \alpha_1)(x - \alpha_2)$
a>0 Position de la parabole par rapport à l'axe des abscisses	α a		α α α α α α α α α α α α α α α α α α α
Signe de $P(x)$	$\begin{array}{c cc} x & -\infty & +\infty \\ \hline P(x) & + & \end{array}$	$\begin{array}{ c c c c c c }\hline x & -\infty & \alpha & +\infty \\\hline P(x) & + & 0 & + \\\hline \end{array}$	$\begin{array}{ c c c c c c c }\hline x & -\infty & \alpha_1 & \alpha_2 & +\infty \\\hline P(x) & + & 0 & - & 0 & + \\\hline \end{array}$
a < 0			
Position de la parabole par rapport à l'axe des abscisses	a	α	$\frac{\alpha_1}{\alpha}$
Signe de $P(x)$	$ \begin{array}{c cc} x & -\infty & +\infty \\ \hline P(x) & - \end{array} $	$ \begin{array}{ c c c c c c } \hline x & -\infty & \alpha & +\infty \\ \hline P(x) & -0 & - \end{array} $	$\begin{array}{ c c c c c c c }\hline x & -\infty & \alpha_1 & \alpha_2 & +\infty \\ \hline P(x) & - & 0 & + & 0 & - \\ \hline \end{array}$