CALF: Categorical Automata Learning Framework

Gerco van Heerdt Matteo Sammartino Alexandra Silva

May 23, 2017

Active automata learning

- Active automata learning algorithms learn an automaton describing the behaviour of a system by providing inputs and observing outputs
- Enables verification methods that work on an automaton
- ► Allows comparison of different implementations of e.g. a network protocol

Capturing systems more precisely requires more complex types of automata and more complicated learning algorithms

Idea: understanding the main concepts on an abstract level helps developing and reasoning about new algorithms

CALF

Our Categorical Automata Learning Framework

- Gives an abstract view on the ingredients and constructions of learning algorithms, leading to new adaptations
- Covers also minimisation and equivalence testing
- Allows transferring optimisations among these areas

Active learning of DFAs: the basic setting

- ► Finite alphabet set A
- ▶ Target regular language \mathcal{L} : $A^* \rightarrow 2 = \{0,1\}$
- ▶ Oracle that can tell whether a given word is in \mathcal{L} (membership queries)

Aim is to learn a DFA accepting \mathcal{L} , in particular the minimal one

A simple data structure used to conjecture a DFA is the observation table

Observation table

Given $S, E \subseteq A^*$, define

$$\begin{aligned} \mathsf{row}_{\mathsf{t}} \colon S \to 2^E & \mathsf{row}_{\mathsf{t}}(s)(e) = \mathcal{L}(se) \\ \mathsf{row}_{\mathsf{b}} \colon S \cdot A \to 2^E & \mathsf{row}_{\mathsf{b}}(sa)(e) = \mathcal{L}(sae) \end{aligned}$$

$$S \begin{bmatrix} \varepsilon & a & aa \\ \hline \varepsilon & 0 & 0 & 1 \\ S \cdot A \begin{bmatrix} a & 0 & 1 & 0 \\ b & 0 & 0 & 0 \end{bmatrix}$$

S and E evolve throughout runs of learning algorithms

Hypothesis

Given an observation table defined by $S, E \subseteq A^*$, the *hypothesis* DFA is given by

$$H = \{ \mathsf{row}_{\mathsf{t}}(s) \mid s \in S \} \subseteq 2^{E}$$

$$\begin{split} & \text{init} \in H & \text{init} = \mathsf{row}_\mathsf{t}(\varepsilon) \\ & \delta \colon H \times A \to H & \delta(\mathsf{row}_\mathsf{t}(s), a) = \mathsf{row}_\mathsf{b}(sa) \\ & \text{out} \colon H \to 2 & \mathsf{out}(\mathsf{row}_\mathsf{t}(s)) = \mathsf{row}_\mathsf{t}(s)(\varepsilon) \end{split}$$

provided that $\varepsilon \in S \cap E$ and two properties hold

Closedness and consistency

- ▶ **Closedness** states that each transition leads to a state of the hypothesis. The table is closed if for all $t \in S \cdot A$ there is $s \in S$ such that $\mathsf{row}_\mathsf{t}(s) = \mathsf{row}_\mathsf{b}(t)$
- ▶ Consistency states that there is no ambiguity in determining transitions. The table is consistent if for all $s_1, s_2 \in S$ with

$$\mathsf{row}_\mathsf{t}(s_1) = \mathsf{row}_\mathsf{t}(s_2)$$

we have, for any $a \in A$,

$$\mathsf{row}_{\mathsf{b}}(s_1 a) = \mathsf{row}_{\mathsf{b}}(s_2 a)$$

Closedness

The table is closed if for all $t \in S \cdot A$ there is $s \in S$ such that $\mathsf{row}_\mathsf{t}(s) = \mathsf{row}_\mathsf{b}(t)$

$$\begin{array}{c|c} & \varepsilon \\ \hline \varepsilon & 1 \\ \hline a & 0 \end{array}$$

If no such s exists, add the word t to S

$$\begin{array}{c|c}
 & \varepsilon \\
\hline
 & \varepsilon & 1 \\
 & a & 0 \\
\hline
 & aa & 1
\end{array}$$

Consistency

The table is consistent if for all $s_1, s_2 \in S$ with $\mathsf{row}_\mathsf{t}(s_1) = \mathsf{row}_\mathsf{t}(s_2)$ we have, for any $a \in A$, $\mathsf{row}_\mathsf{b}(s_1 a) = \mathsf{row}_\mathsf{b}(s_2 a)$

$$\begin{array}{c|c}
\varepsilon \\
\hline
\varepsilon \\
a \\
1 \\
\hline
aa \\
0
\end{array}$$

If $row_b(s_1a)(e) \neq row_b(s_2a)(e)$, add ae to E to distinguish $row_t(s_1)$ and $row_t(s_2)$

	ε	$\mathbf{a}\varepsilon$
ε	1	1
a	1	0
aa	0	0

Hypothesis construction

- ► State space: distinct top rows (image of row_t)
- ▶ Initial state: ε row
- ▶ Output: taken from ε column
- ► Transitions: appending symbols to row labels

	ε	а
ε	0	1
a	1	0
aa	0	1

ID algorithm

Assume a given set $S\subseteq A^*$ such that for every state of the minimal DFA accepting $\mathcal L$ there is a word in S reaching that state

Closedness will automatically hold

- 1. Initialise $E = \{\varepsilon\}$
- 2. Enforce consistency
- 3. Construct the hypothesis

The hypothesis will be isomorphic to the minimal DFA

L* algorithm

Assume an oracle that can tell whether a hypothesis accepts the right language, and if not provides a counterexample word (equivalence queries)

- 1. Enforce closedness and consistency
- 2. Construct the hypothesis
- 3. Ask the oracle if the hypothesis is correct
- 4. If not, add all prefixes of the counterexample to S and restart

The hypothesis will be correct after finitely many iterations, and it will be isomorphic to the minimal DFA

DA of words

Given the language $\mathcal{L} \colon A^* \to 2$, we have a DA accepting $\mathcal{L} \colon$

- ► State space: A*
- ▶ Initial state: $\varepsilon \in A^*$
- ▶ Output: $\mathcal{L}: A^* \rightarrow 2$
- Transitions:

$$c: A^* \times A \rightarrow A^*$$
 $c(u, a) = ua$

Reachability map

If Q is a DA accepting \mathcal{L} , there is a unique DA homomorphism $r\colon A^* \to Q$ given by

$$r(\varepsilon) = \text{init}_Q$$
 $r(ua) = \delta_Q(r(u), a)$

called the $reachability\ map$, which assigns to each word the state it reaches in Q

Q is reachable if r is surjective: every state is reached by a word

DA of languages

Given the language $\mathcal{L} \colon A^* \to 2$, we have a DA accepting $\mathcal{L} \colon$

- ► State space: 2^{A*}
- ▶ Initial state: $\mathcal{L} \in 2^{A^*}$
- Output:

$$\varepsilon$$
?: $2^{A^*} \to 2$ ε ?(I) = $I(\varepsilon)$

Transitions:

$$\partial\colon 2^{A^*}\times A\to 2^{A^*} \qquad \qquad \partial(I,a)(v)=I(av)$$
 e.g.
$$\partial(\{a,ba,abb\},a)=\{\varepsilon,bb\}$$

Observability map

If Q is a DA accepting \mathcal{L} , there is a unique DA homomorphism $o\colon Q\to 2^{A^*}$ given by

$$o(q)(\varepsilon) = \operatorname{out}_Q(q)$$
 $o(q)(av) = o(\delta_Q(q, a))(v)$

called the *observability map*, which assigns to each state the language it accepts

The DA Q is observable if o is injective: different states accept different languages

A DA is *minimal* if it is both reachable and observable

Total response

The language $\mathcal{L}\colon A^* o 2$ induces DAs A^* and 2^{A^*} accepting \mathcal{L}

The reachability map of 2^{A^*} coincides with the observability map of A^* in the DA homomorphism called the *total response of* \mathcal{L} :

$$t_{\mathcal{L}} \colon A^* o 2^{A^*}$$
 $t_{\mathcal{L}}(u)(v) = \mathcal{L}(uv)$

If Q is any DA accepting \mathcal{L} , then $t_{\mathcal{L}} = A^* \stackrel{r}{\to} Q \stackrel{o}{\to} 2^{A^*}$

Function factorisation

Every function can be written as a surjection followed by an injection:

$$B \xrightarrow{f} C \qquad e(b) = f(b)$$

$$im(f) \qquad m(c) = c$$

Factorisation uniqueness

In a commutative square of functions as on the left,

$$\begin{array}{ccc}
U & \xrightarrow{i} & V & & U & \xrightarrow{i} & V \\
g \downarrow & & \downarrow h & & g \downarrow & \downarrow h \\
W & \xrightarrow{j} & X & & W & & X
\end{array}$$

where i is surjective and j injective, there is a unique diagonal d making the triangles commute: d(i(u)) = g(u)

DA homomorphism factorisation

In an image factorisation

if f is a DA homomorphism, then so are e and m, given this DA structure on im(f):

- ▶ Initial state: initial state of C
- Output: output of C
- ► Transitions: the unique diagonal

Minimal DA

The minimal DA accepting $\mathcal{L} \colon A^* \to 2$ can be obtained in theory by factorising the total response $t_{\mathcal{L}}$:

Since e and m are DA homomorphisms, we must have $e=r_M$ and $m=o_M$ by the uniqueness properties

Minimisation

Similarly, the reachable part of a DA $\it Q$ is obtained by factorising its reachability map:

Equivalent states are merged by factorising the observability map:

The hypothesis approximates the minimal DA

Concretely, the minimal DA is given by

$$M = \{t_{\mathcal{L}}(u) \mid u \in A^*\}$$

$$\begin{array}{ll} \operatorname{init} \in M & \operatorname{init} = t_{\mathcal{L}}(\varepsilon) \\ \delta \colon M \times A \to M & \delta(t_{\mathcal{L}}(u), a) = t_{\mathcal{L}}(ua) \\ \operatorname{out} \colon M \to 2 & \operatorname{out}(t_{\mathcal{L}}(u)) = t_{\mathcal{L}}(u)(\varepsilon) \end{array}$$

This is equivalent to the hypothesis for $S = E = A^*$

Abstract automaton

Given a category C, objects I and O in C, and a functor $F: C \to C$, an *automaton* is an object Q in C with three morphisms:

DAs as automata

For DAs:

- ▶ A singleton 1 serves as the initial state selector
- ▶ The set $2 = \{0, 1\}$ captures rejection (0) and acception (1)
- ▶ The functor $(-) \times A$ provides the transition domain

Reachability and observability maps

Assume an initial object @ among automata without output and a final object Ω among automata without initial state:

Languages can be defined as morphisms $I \to \Omega$ or $@ \to O$, which correspond bijectively to each other through the total response

The total response may be defined as the reachability map of Ω or as the observability map of $\mathbb Q$

Factorisation system

We assume two classes of **C**-morphisms:

- lacktriangleright "surjective" morphisms ${\cal E}$ and
- lacktriangle "injective" morphisms ${\cal M}$

such that

- ▶ every **C**-morphism $f: A \to B$ can be factored as $f = m \circ e$, with $e \in \mathcal{E}$ and $m \in \mathcal{M}$;
- $ightharpoonup \mathcal{E}$ and \mathcal{M} are closed under composition and contain all isos;
- lacktriangle everything in ${\mathcal E}$ is an epi, and everything in ${\mathcal M}$ is a mono; and
- we have the unique diagonal property that does not fit on this slide but is the same as before

Lifts to the category of automata if F preserves ${\mathcal E}$

Approximating an object

A wrapper for an object T is a pair of morphisms

$$w = (S \xrightarrow{\sigma} T, T \xrightarrow{\pi} P)$$

- ▶ T is called the target of w
- $ightharpoonup \sigma$ selects from T
- $\blacktriangleright \pi$ classifies T

The (unstructured) *hypothesis* H is the image of $\xi = \pi \circ \sigma$:

Observation table wrapper

For $S, E \subseteq A^*$, we have a wrapper for the minimal DA M for \mathcal{L} :

$$(S \xrightarrow{\alpha} A^* \xrightarrow{r} M, M \xrightarrow{o} 2^{A^*} \xrightarrow{\omega} 2^E),$$

where

- $ightharpoonup \alpha$ is the inclusion and
- $\triangleright \omega$ restricts to E

Recall $o \circ r = t_{\mathcal{L}}$ and note that

$$\xi = \omega \circ t_{\mathcal{L}} \circ \alpha = \mathsf{row}_{\mathsf{t}}$$

The image of row_t is precisely the state space of the hypothesis in learning

Approximating algebraic structure

Consider a wrapper

$$w = (S \xrightarrow{\sigma} T, T \xrightarrow{\pi} P)$$

Given a functor F and an F-algebra $f \colon FT \to T$, we have the approximation

$$\xi_f = FS \xrightarrow{F\sigma} FT$$

$$\downarrow_f$$

$$T \xrightarrow{\pi} P$$

Approximating the minimal DFA transition function

For the observation table wrapper

$$(S \xrightarrow{\alpha} A^* \xrightarrow{r} M, M \xrightarrow{o} 2^{A^*} \xrightarrow{\omega} 2^E)$$

and transition function $\delta \colon M \times A \to M$, we have $\xi_{\delta} = \mathsf{row}_{\mathsf{b}}$ (up to $S \times A \cong S \cdot A$):

$$S \times A \xrightarrow{\alpha \times \mathsf{id}_A} A^* \times A \xrightarrow{r \times \mathsf{id}_A} M \times A$$

$$\downarrow \delta \qquad \qquad \downarrow \delta \qquad \qquad$$

Closedness and consistency

A wrapper $(S \xrightarrow{\sigma} T, T \xrightarrow{\pi} P)$ is f-closed, for $f: FT \to T$, if a morphism close exists making the left triangle commute

It is f-consistent if a morphism cons exists making the right triangle commute

For the observation table wrapper, δ -closedness and δ -consistency are the classical notions of closedness and consistency

Structured hypothesis

If $(S \xrightarrow{\sigma} T, T \xrightarrow{\pi} P)$ is f-closed and f-consistent, for $f : FT \to T$, we have an algebra

For an observation table wrapper and $f=\delta_M,\ \theta=\delta_H$ (We only consider F that preserve "surjective" morphisms)

Initial state

The initial state of M can be seen as an algebra

init:
$$1 \rightarrow M$$

for $1 = \{*\}$ an arbitrary singleton

This gives a closedness property init-closedness (init-consistency is trivial) stating that there must be $s \in S$ s.t. $\xi(s) = \xi_{\text{init}}(*)$, where

$$\xi_{\mathsf{init}} \colon 1 \to 2^{\mathsf{E}}$$
 $\xi_{\mathsf{init}}(*)(e) = \mathcal{L}(e)$

is the row of the empty word

Thus, this property is weaker than requiring $\varepsilon \in S$

Output

The set of accepting states can be seen as a coalgebra

out:
$$M \rightarrow 2$$

for
$$2 = \{0, 1\}$$

This gives a consistency property (technically coclosedness) stating that for all $s_1, s_2 \in S$ s.t. $\xi(s_1) = \xi(s_2)$ we must have $\xi_{\text{out}}(s_1) = \xi_{\text{out}}(s_2)$, where

$$\xi_{\mathsf{out}} \colon S o 2 \qquad \qquad \xi_{\mathsf{init}}(s) = \mathcal{L}(s)$$

is the column of the empty word

Again, this property is weaker than requiring $\varepsilon \in E$

Simple correctness conditions

Consider a wrapper $(S \xrightarrow{\sigma} T, T \xrightarrow{\pi} P)$

If σ is surjective, we have a diagonal

$$\begin{array}{ccc}
S & \xrightarrow{\sigma} & T \\
e \downarrow & & \downarrow \pi \\
H & \xrightarrow{m} & P
\end{array}$$

If π is injective, we have a diagonal

$$\begin{array}{ccc}
S & \xrightarrow{e} & H \\
\sigma \downarrow & \psi & \downarrow m \\
T & \xrightarrow{\kappa} & P
\end{array}$$

If both of these hold, then ϕ and ψ are inverse to each other

Results

Consider a wrapper $(S \xrightarrow{\sigma} T, T \xrightarrow{\pi} P)$

If σ is surjective, we have a diagonal

$$\begin{array}{ccc}
S & \xrightarrow{\sigma} & T \\
e \downarrow & & \downarrow \pi \\
H & \xrightarrow{m} & P
\end{array}$$

- ▶ For any $f: FT \rightarrow T$, the wrapper is f-closed
- ▶ If the wrapper is f-consistent, ϕ is an F-algebra homomorphism

Results

Consider a wrapper $(S \xrightarrow{\sigma} T, T \xrightarrow{\pi} P)$

If π is injective, we have a diagonal

$$\begin{array}{ccc}
S & \xrightarrow{e} & H \\
\sigma \downarrow & & \downarrow m \\
T & \xrightarrow{\pi} & P
\end{array}$$

- ▶ For any $f: FT \rightarrow T$, the wrapper is f-consistent
- lacktriangleright If the wrapper is f-closed, ψ is an F-algebra homomorphism

Results

Consider a wrapper $(S \xrightarrow{\sigma} T, T \xrightarrow{\pi} P)$

If σ is surjective and π injective, we have diagonals

- $\blacktriangleright \phi$ and ψ are inverse to each other
- ▶ For any $f: FT \to T$, the wrapper is f-closed and f-consistent
- \blacktriangleright ϕ and ψ are F-algebra homomorphisms (and thus isos)

Simple correctness conditions for observation tables

For an observation table wrapper

$$(S \xrightarrow{\alpha} A^* \xrightarrow{r} M, M \xrightarrow{o} 2^{A^*} \xrightarrow{\omega} 2^E),$$

- ▶ $r \circ \alpha$ is surjective if and only if for each state of M there is a word in S reaching that state
- $\omega \circ o$ is injective if and only if for each pair of distinct states of M there is a word in E on which they behave differently

Less simple correctness conditions (1)

Let $(S \xrightarrow{\sigma} Q, Q \xrightarrow{\pi} P)$ be a wrapper for an automaton Q If

- $\triangleright \sigma$ is surjective;
- Q is observable;
- the wrapper is out-consistent; and
- the wrapper is δ -consistent

Less simple correctness conditions (2)

Let $(S \xrightarrow{\sigma} Q, Q \xrightarrow{\pi} P)$ be a wrapper for an automaton Q

- π is injective;
- Q is reachable;
- ▶ the wrapper is init-closed; and
- \blacktriangleright the wrapper is δ -closed

ID correctness

lf

- σ is surjective;
- Q is observable;
- the wrapper is out-consistent; and
- the wrapper is δ -consistent

- ▶ ID assumes a set S such that $\sigma = S \xrightarrow{\alpha} A^* \xrightarrow{r} M$ is surjective
- ightharpoonup Q = M is observable by definition
- out-consistency holds because $\varepsilon \in E$
- lacktriangleright δ -consistency is what the algorithm enforces

L* correctness

lf

- σ is surjective;
- Q is observable;
- the wrapper is out-consistent; and
- the wrapper is δ -consistent

- ▶ Adding all prefixes of a counterexample to S increases the image of $\sigma = S \xrightarrow{\alpha} A^* \xrightarrow{r} M$
- Q = M is observable by definition
- out-consistency holds because $\varepsilon \in E$
- lacktriangledown δ -consistency is enforced before constructing the hypothesis

Reachability analysis

To find the reachable part R of a known DFA Q, we can use a wrapper of inclusions

$$(S \rightarrow R, R \rightarrow Q),$$

where $S \subseteq R$

- ▶ init-closedness: init $_R$ ∈ S
- ▶ δ -closedness: for each $s \in S$ and $a \in A$, $\delta_R(s, a) \in S$

Since $\operatorname{init}_R = \operatorname{init}_Q$ and $\delta_R(s, a) = \delta_Q(s, a)$, this leads to the usual algorithm:

- ▶ initialise S = {init_Q}
- ▶ while $\delta_Q(s, a) \notin S$, add it

Reachability analysis correctness

$$(S \xrightarrow{\sigma} R, R \xrightarrow{\pi} Q)$$

lf

- π is injective;
- R is reachable;
- the wrapper is init-closed; and
- the wrapper is δ -closed

State merging

To merge equivalent states of a DFA Q, we could use a wrapper

$$(Q \xrightarrow{\sigma} O, O \xrightarrow{o} 2^{A^*} \xrightarrow{\omega} 2^E)$$

where O is the automaton of languages accepted by Q and σ classifies states according to their language

out-consistency says that states of Q equivalent under ξ must have the same output (accept/reject)

 δ -consistency says that equivalent states of Q must have equivalent successors for each $a \in A$

These can be satisfied as in learning

State merging correctness

$$(Q \xrightarrow{\sigma} O, O \xrightarrow{o} 2^{A^*} \xrightarrow{\omega} 2^E)$$

lf

- σ is surjective;
- O is observable;
- the wrapper is out-consistent; and
- the wrapper is δ -consistent

General equivalence testing theorem

For U and V DFAs and $S, E \subseteq A^*$ we have wrappers

$$w_{U} = (\sigma_{U}, \pi_{U}) = (S \xrightarrow{\alpha} A^{*} \xrightarrow{r} U, U \xrightarrow{o} 2^{A^{*}} \xrightarrow{\omega} 2^{E})$$

$$w_{V} = (\sigma_{V}, \pi_{V}) = (S \xrightarrow{\alpha} A^{*} \xrightarrow{r} V, V \xrightarrow{o} 2^{A^{*}} \xrightarrow{\omega} 2^{E})$$

Suppose

- σ_U is surjective;
- $\blacktriangleright \pi_U$ is injective; and
- either σ_V is surjective and V observable or π_V is injective and V reachable

Then $U \cong V$ if and only if all of the below hold

$$\xi^{w_U} = \xi^{w_V} \qquad \xi^{w_U}_{\delta} = \xi^{w_V}_{\delta} \qquad \xi^{w_U}_{\rm init} = \xi^{w_V}_{\rm init} \qquad \xi^{w_U}_{\rm out} = \xi^{w_V}_{\rm out}$$

W-method

Let U be a known minimal DFA and V an unknown one Using minimization-like algorithms inspired by learning, we can find

- ▶ $S \subseteq A^*$ such that $S \xrightarrow{\sigma_U} U$ is surjective and
- ▶ $E \subseteq A^*$ such that $U \xrightarrow{\pi_U} 2^E$ is injective

These are the first two conditions for the theorem

They also ensure that the hypothesis of w_U is isomorphic to U

W-method

Assume that at this point the equalities hold:

$$\xi^{w_U} = \xi^{w_V} \qquad \xi^{w_U}_\delta = \xi^{w_V}_\delta \qquad \xi^{w_U}_{\rm init} = \xi^{w_V}_{\rm init} \qquad \xi^{w_U}_{\rm out} = \xi^{w_V}_{\rm out}$$

Then the two hypotheses coincide and are isomorphic to $\it U$ Assume a given upper bound $\it n$ on $|\it V\>|$

Updating S to $S \cdot A^{\leq (n-|U|)}$ ensures that (assuming $\varepsilon \in S$)

 $ightharpoonup \sigma_V$ is surjective (and we know that V is observable)

which triggers the theorem: $U \cong V$ if and only if

$$\xi^{w_U} = \xi^{w_V} \qquad \xi^{w_U}_\delta = \xi^{w_V}_\delta \qquad \xi^{w_U}_{\rm init} = \xi^{w_V}_{\rm init} \qquad \xi^{w_U}_{\rm out} = \xi^{w_V}_{\rm out}$$

W-method

Determining the equalities

$$\xi^{w_U} = \xi^{w_V} \qquad \xi^{w_U}_{\delta} = \xi^{w_V}_{\delta} \qquad \xi^{w_U}_{\rm init} = \xi^{w_V}_{\rm init} \qquad \xi^{w_U}_{\rm out} = \xi^{w_V}_{\rm out}$$

consists in testing whether U and V agree on a set of words:

$$\xi^{w_U}(s)(e) = \mathcal{L}_U(se)$$
 $\xi^{w_U}_{\delta}(s)(a)(e) = \mathcal{L}_U(sae)$

etc., and analogously for V

Optimising learning

We distinguish rows by adding a word to E, but this requires a query for every row in the table

More efficient is to handle the classification using a *classification* tree

Classification tree

- ► Internal nodes represent experiments, the result of which determines the next subtree
- ► Classification is into the set *L* of labels making up the leaves
- ▶ A tree τ classifies languages, $2^{A^*} \xrightarrow{\omega_{\tau}} L$, and states of an automaton using the composition $Q \xrightarrow{o} 2^{A^*} \xrightarrow{\omega_{\tau}} L$

Sifting

Given the target language \mathcal{L} , a tree also classifies words: given a word u we move on a node v to the subtree of $\mathcal{L}(uv)$

This is called sifting

The closedness and consistency that follow from our general definitions are conveniently described using this classification:

- ► Closedness states that all words in S · A must sift into a leaf into which a word from S sifts
- ▶ Consistency states that for $s_1, s_2 \in S$ sifting into the same leaf, s_1a and s_2a for each $a \in A$ must also sift into the same leaf

Optimised algorithms

- ▶ L*: Kearns and Vazirani's algorithm
- ► State merging: splitting tree algorithm
- Conformance testing: HSI-method

Other instances

- Nondeterministic automata (more generally JSL automata)
- Weighted automata over a field
- Nominal automata
- Automata with a state space that is an algebra for a monad preserving finite sets (naive general algorithm: CONCUR submission)

Future work: more instances

- Register automata
- Tree automata
- Büchi-style automata
- Alternating automata
- ▶ (Subclasses of) probabilistic automata

More future work

- Optimised algorithms for automata with structure
- Implementation of the CONCUR algorithm
- Describing iterative algorithms abstractly
- Finding other (possibly even non-automaton?) applications of the general wrapper theory

Reading material

- Master thesis: An Abstract Automata Learning Framework Gerco van Heerdt
- CSL submission: CALF: Categorical Automata Learning Framework
 Gerco van Heerdt, Matteo Sammartino, Alexandra Silva
- ► CONCUR submission: Learning Automata with Side-Effects Gerco van Heerdt, Matteo Sammartino, Alexandra Silva

These and others can be found on our website:

http://calf-project.org