SMA Spring Simulation in COMSOL Multiphysics

Submitted by: Chinmay Vilas Samak (RA1711018010102)

1. Objective

To design and simulate a Nitinol (Ni-Ti) Helical Spring in COMSOL Multiphysics.

2. Equipment Required

PC with COMSOL Multiphysics installed.

3. Procedure

3.1 Initial Setup

- 1. Launch COMSOL Multiphysics software and select Model Wizard.
- 2. Select Space Dimension: 3D
- 3. **Select Physics:** Structural Mechanics \rightarrow Joule Heating and Thermal Expansion
- 4. **Select Study:** *Stationary*
- 5. Define Units: mm

3.2 Create Spring Geometry

- 1. Right-click Geometry → More primitives → Helix
- 2. Set the Dimensions as required

3.3 Add Material

- 1. Under the Add Material tab, browse to Material Library \rightarrow Nickel Alloys \rightarrow Ni-Ti (shape memory) and click Add to Selection. Then select the Spring geometry.
- 2. Define the *Material Properties* by entering appropriate values in the table.

3.4 Apply Boundary Conditions

- 1. Solid Mechanics → Fixed Constraint on one of the spring faces
- 2. Heat Transfer in Solids → Temperature (293 K) on the fixed spring face
- 3. *Electric Currents* → *Ground* on the fixed spring face
- 4. Electric Currents \rightarrow Terminal (0.5 A) on the free spring face

3.5 Mesh

- 1. Define *Mesh Element Size*. Note that finer mesh gives more accurate results but requires more computation time.
- 2. Click Build All to apply the mesh.

3.6 Compute the Study

1. Click on *Compute* button to compute the study.

3.7 Define Custom Results

- 1. Right-click on *Results* and select *3D Plot Group*. Rename the study as required.
- 2. Right-click on the newly created 3D Plot Group and select Surface.
- 3. Dropdown the *Expressions* tab and select the required analysis (e.g. Solid Mechanics → Displacement → Total Displacement).

3.8 Visualize the Results

- 1. Visualize the results by clicking on the respective 3D Plot Groups.
- 2. The results can be saved to a file by clicking on 3D Image button in top pane.

For a detailed video tutorial, please visit https://youtu.be/XYLJCq5xsXU.

4. Results

The maximum total displacement when 0.5 A current was flown through the SMA Spring was 80 mm.

The maximum vertical displacement when 0.5 A current was flown through the SMA Spring was 70 mm.

Appendix: Nitinol Properties

Property	Variable	Value	Unit
Density	ρ	rho(T[1/K])	Kg/m ³
Thermal Conductivity	k	18	W/m.K
Heat Capacity at Constant Pressure	c_p	837.36	J/kg.K
Electrical Conductivity	σ	12195	S/m
Relative Permittivity	ϵ	1	1
Coefficient of Thermal Expansion	α	11E-6	1/K
Young's Modulus	Е	E(T[1/K])	Pa
Poisson's Ratio	μ	0.33	1