Introduction to Triangles

Connecting any three points with three line segments will get you a triangle. Here is the triangle ABC, which was created by connecting three points A, B, and C:

1.1 Equilateral and Isosceles Triangles

We talk a great deal about the length of the sides of triangles. If all three sides of the triangle are the same length, we say it is an *equilateral triangle*:

If only two sides of the triangle are the same length, we say it is an *isosceles triangle*:

The shortest distance between two points is always the straight line between them. This means you can be certain that the length of one side will *always* be less than the sum of the lengths of the remaining two sides. This is known as the *triangle inequality*.

For example, in this diagram, c must be less than a + b.

1.2 Interior Angles of a Triangle

We also talk a lot about the interior angles of a triangle:

A triangle where one of the interior angles is a right angle is said to be a right triangle:

If a triangle has an obtuse interior angle, it is said to be an *obtuse triangle*:

If all three interior angles of a triangle are less than 90° , it is said to be an *acute triangle*.

The measures of the interior angles of a triangle always add up to 180° . For example, if we know that a triangle has interior angles of 37° and 56° , we know that the third interior angle is 87° .

Exercise 1 Missing Angle

One interior angle of a triangle is 92°. The second angle is 42°. What is the measure of the third interior angle?

How can you know that the sum of the interior angles is 180° ? Imagine that you started on the edge of a triangle and walked all the way around to where you started. (going counter-clockwise.) You would turn three times to the left:

After these three turns, you would be facing the same direction that you started in. Thus, $T_A + T_B + T_C = 360^\circ$. The measures of the interior angles are α , b, and c. Notice that α and T_A are supplementary. So we know that:

- $T_A = 180 a$
- $T_B = 180 b$
- $T_C = 180 c$

So we can rewrite the equation above as

$$(180 - a) + (180 - b) + (180 - c) = 360^{\circ}$$

Which is equivalent to

$$a + b + c = 360^{\circ}$$

Exercise 2 Interior Angles of a Quadrilateral

Any four-sided polygon is a *quadrilateral*. Using the same "walk around the edge" logic, what is the sum of the interior angles of any quadrilateral?

Working Space

Answer on Page 5

APPENDIX A

Answers to Exercises

Answer to Exercise 1 (on page 3)

$$180^{\circ} - (92^{\circ} + 42^{\circ}) = 46^{\circ}$$

Answer to Exercise 2 (on page 4)

360°

INDEX

```
acute triangle, 3
equilateral triangle, 1
isoscelese triangle, 1
obtuse triange, 3
right triangle, 2
triangle, 1
triangle inequality, 2
```