Problemas

Derivación e integración numéricas

Ejercicio 1 Deduce razonadamente las fórmulas de derivación de tres y cinco puntos.

Ejercicio 2 Si $f(x) = e^x$, calcular la derivada en $x_0 = 0$ con h = 1 usando las fórmulas centradas de los tres y cinco puntos. Calcular el error absoluto y relativo en cada caso.

Sea h = 1 y $x_{-1} = -1$ e $x_1 = 1$. Según la fórmula de los tres puntos,

$$f'(0) \approx \frac{f(1) - f(-1)}{2} = \frac{e - 1/e}{2} = 1.5443.$$

Sea h=1 y $x_{-2}=-2, x_{-1}=-1, x_1=1, x_2=2.$ Según la fórmula de los cinco puntos

$$f'(0) \approx \frac{-f(2) + 8f(1) - 8f(-1) + f(-2)}{12} = \frac{-e^2 + 8e - 8/e + 1/e^2}{12} = 0.9624.$$

Sabemos que $f'(x) = e^x$, y, por tanto, f'(0) = 2.7186. Si denotamos como $f'_3(0)$ la aproximación de la derivada según la fórmula de los tres puntos, el error absoluto viene dado por:

$$|f'(0) - f_3'(0)| =$$

y el error relativo por

$$\frac{|f'(0) - f_3'(0)|}{|f_3'(0)|} =$$

Si denotamos como $f'_5(0)$ la aproximación de la derivada según la fórmula de los cinco puntos, el error absoluto viene dado por:

$$|f'(0) - f_5'(0)| =$$

y el error relativo por

$$\frac{|f'(0) - f_5'(0)|}{|f_5'(0)|} =$$

Ejercicio 3 Si $f(x) = e^x$, entonces $f'(1.5) \approx 4.4817$. Aproximamos el valor de esta derivada usando la fórmula progresiva. Si comenzamos con el paso h = 0.2 y lo vamos dividiendo cada vez a la mitad, ¿cuál es h para el cual se obtiene un error absoluto menor que 10^{-3} ?

Ejercicio 4 Se conocen algunos valores de la función f(x,y) y se especifican en la siquiente tabla:

y y 0	0.5	1	1.5	2	
0	0.0775	0.1573	0.2412	0.3309	0.4274
0.5	0.1528	0.3104	0.4767	0.6552	0.8478
1	0.2235	0.4547	0.7002	0.9653	1.2533
1.5	0.2866	0.5846	0.9040	1.2525	1.6348

Tomando h = 0.5, calcula:

- a) $\partial f/\partial x$ en (1,0).
- b) $\partial^2 f/\partial x^2$ en (1,0).
- c) $\partial^2 f/\partial x \partial y$ en (1,0).

Ejercicio 5 Toma h = 0.1 y evalúa numéricamente las derivadas parciales de segundo orden de la función $f(x,y) = e^{x^2+y}$ en el origen. Compara los valores obtenidos con el valor exacto de tales derivadas. Repite los cálculos tomando h = 0.05.

Ejercicio 6 Deduce razonadamente las fórmulas simples de integración de Newton-Cotes cerradas para n = 1, 2, 3.

Ejercicio 7 Deduce razonadamente las fórmulas simples de integración de Newton-Cotes abiertas para n = 1, 2, 3.

Ejercicio 8 Deduce razonadamente las fórmulas compuestas de integración del trapecio y Simpson.

Ejercicio 9 Aproxima el valor de las siguientes integrales definidas usando los métodos simples del rectángulo, trapecio y Simpson y calculando el error que se comete en cada caso en relación con el valor exacto especificado:

- a) $\int_0^2 3x^2 dx = 8$.
- b) $\int_0^1 e^x dx = 1.71828$.
- c) $\int_{-1}^{1} (x + 2x^2 x^3 + 5x^4) dx = 3.3333.$
- d) $\int_{2}^{3} \frac{1}{\sqrt{x-1}} dx = 0.82842$.

Ejercicio 10 Aproxima el valor de las siguientes integrales definidas usando los métodos compuestos del trapecio y Simpson, tomando en todos los casos h = 0.1, y calculando el error que se comete en cada caso en relación con el valor exacto especificado:

- a) $\int_0^2 3x^2 dx = 8$.
- b) $\int_0^1 e^x dx = 1.71828$.

c)
$$\int_{-1}^{1} (x + 2x^2 - x^3 + 5x^4) dx = 3.3333.$$

d)
$$\int_2^3 \frac{1}{\sqrt{x-1}} dx = 0.82842$$
.

Ejercicio 11 Teniendo en cuenta que no es conocida una integral de la función $f(x) = e^{x^2}$, calcula el valor de la siguiente integral definida

$$\int_0^1 e^{x^2} dx,$$

con un error menor a 0.003. Usa las reglas compuestas del trapecio y de Simpson.

Ejercicio 12 Una cuerda vibra adoptando la forma, $y = \sin x$ entre las abscisas x = 0 y x = 4 en un instante t_0 . Calcula apróximadamente la longitud de la cuerda sabiendo que la longitud L viene dada por:

$$L = \int_0^4 \sqrt{1 + \cos^2(x)} dx,$$

utilizando la regla de Simpson compuesta con n = 8.