Fourieranalyse
Fast Fourier Transform
Team G

Inleiding

2 Waarom werkt DFT zoveel trager dan FFT?

3 FFT

4 Besluit

- Inleiding
- Waarom werkt DFT zoveel trager dan FFT?
- **3** FFT
- 4 Besluit

Inleiding

- ► James Cooley & John Tukey
- ► DFT = traag!
- ► Oplossing: FFT = snel!
- ▶ Toepassingen: noise cancelling, complexe DVGL, . . .

Figuur: James Cooley & John Tukey

2 · FFT · Inleiding Kuleuven kulak

- Inleiding
- 2 Waarom werkt DFT zoveel trager dan FFT?
- 6 FFT
- 4 Besluit

Waarom werkt DFT zoveel trager dan FFT?

DFT

formules:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi k n/N}$$

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{i2\pi kn/N}$$

- efficiëntie: $\mathcal{O}(N^2)$
- ightharpoonup vermenigvuldigingen: N^2
- ightharpoonup optellingen: N(N-1)

FFT

- formules: zie verder
- efficiëntie: $\mathcal{O}(Nlog_2N)$
- vermenigvuldigingen: $\frac{N}{2}log_2N$
- ightharpoonup optellingen: $Nlog_2N$

Complexiteit van DFT vs. FFT

Figuur: Aantal wiskundige operaties voor DFT en FFT

	DFT			Radix-2		
N	CM N ²	CA N(N-1)	Total	CM (N/2)log ₂ N	CA Nlog ₂ N	Total
2	4	2	6	1	2	3
4	16	12	28	4	8	12
8	64	56	120	12	24	36
16	256	240	496	32	64	96
32	1,024	992	2,016	80	160	240
64	4,096	4,032	8,128	192	384	576
128	16,384	16,256	32,640	448	896	1,344
256	65,536	65,280	130,816	1,024	2,048	3,072
512	262,144	261,632	523,776	2,304	4,608	6,912
1,024	1,048,576	1,047,552	2,096,128	5,120	10,240	15,360
2,048	4,194,304	4,192,256	8,386,560	11,264	22,528	33,792
4,096	16,777,216	16,773,120	33,550,336	24,576	49,152	73,728

Complexiteit van DFT vs. FFT

Figuur: Complexiteit van beide algoritmes

Voorbeeld:

Geluidsbestand van enkele seconden 262.144 datapunten (N=262.144)

$$\frac{\mathcal{O}(N^2)}{\mathcal{O}(Nlog_2N)} \approx 12.000$$

 \Longrightarrow 12.000 keer meer berekeningen

- Inleiding
- Waarom werkt DFT zoveel trager dan FFT?
- 3 FFT
- 4 Besluit

Hoe dit wordt opgelost in de FFT

- Periodiciteit en symmetrie van sinus- en cosinusfuncties
- ► Datapunten met zelfde informatie
- Grote problemen opsplitsen
- ► Machten van 2
- Matrixproduct

DFT-algoritme

$$\begin{pmatrix} A_0 \\ A_1 \\ A_2 \\ A_3 \end{pmatrix} = \begin{pmatrix} \omega^0 & \omega^0 & \omega^0 & \omega^0 \\ \omega^0 & \omega^1 & \omega^2 & \omega^3 \\ \omega^0 & \omega^2 & \omega^4 & \omega^6 \\ \omega^0 & \omega^3 & \omega^6 & \omega^9 \end{pmatrix} \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

 $A_n = \text{getransformeerde functiewaarde}$

 $\omega = e^{-2\pi i/n}$

 $a_n = \mathsf{datapunten}$

(1)

Werking FFT

$$\begin{cases}
A_0 \\
A_1 \\
A_2 \\
A_3
\end{cases} = \begin{cases}
I_2 & -D_2 \\
I_2 & -D_2
\end{cases} \cdot \begin{cases}
F_2 & 0_2 \\
0_2 & F_2
\end{cases} \cdot \begin{cases}
a_{\text{even}} \\
a_{\text{oneven}}
\end{cases}$$
(2)

Werking FFT 2

$$\begin{cases}
A_0 \\
A_1 \\
\vdots \\
A_6 \\
A_7
\end{cases} = \begin{cases}
I_4 & -D_4 \\
I_4 & -D_4
\end{cases} \cdot \begin{cases}
Q_4 & 0_4 \\
0_4 & Q_4
\end{cases} \cdot \begin{cases}
a_{\text{even}} \\
a_{\text{oneven}}
\end{cases}$$
(3)

$$Q_4 = \begin{cases} F_2 & 0_2 \\ 0_2 & F_2 \end{cases} \tag{4}$$

kulak

Het vlinderdiagram

- 'array' van elementen → tactisch door elkaar halen
- elementen terug combineren
- ▶ 1 'vlinder' = 1 DFT
- $\sim \omega_n^k = e^{-2\pi i k/n}$
- n datapunten $\rightarrow n-1$ simpele DFT-berekeningen

Figuur: Vlinderdiagram

Implementatie

- Geluidsbestand openen
- ► FFT toepassen
- Manipulatie
- ► RFFT toepassen
- Geluidsbestand maken

- Inleiding
- Waarom werkt DFT zoveel trager dan FFT?
- **3** FFT
- 4 Besluit

Besluit

- Dagelijks leven
- 2 soorten fouriertransformaties
- Verschil in uitvoeringssnelheid
- ► FFT gebaseerd op DFT

Referentielijst I

Todd Mateer.

Fast fourier transform algorithms with applications. 2008

Paul S. Heckbert.

Fourier transforms and the fast fourier transform (fft) algorithm. 1998.

Steven L Brunton and J Nathan Kutz.

Data-driven science and engineering: Machine learning, dynamical systems, and control.

Cambridge University Press, 2019.

Referentielijst II

Michael A Peimani.

Pitch correction for the human voice.

PhD thesis, PhD. Thesis, University of California, Santa Cruz, 2009.

- Understanding the fft algorithm.
- Discrete fourier transform (dft).
- Fast fourier transform (fft).
- What makes a fourier transform fast?
- Dft vs fft.
- Fast fourier transform.

Referentielijst III

Discrete fouriertransformatie.