

# Programação de computadores

OPERADORES

Professor: Eliane Ribeiro

## No episódio anterior...

Função: print("Primeiro exemplo")

```
main.py

1 print("Primeiro exemplo")
2
3
```





#### No episódio anterior...

- Variáveis armazenam temporariamente uma informação na memória do computador.
- Para isto, devemos **identificar** em que parte da memória estamos guardando a informação para depois poder recuperá-la.





#### No episódio anterior...

Para entrada de dados em Python utilizamos a função: input()

```
variável = input("Mensagem")
```





O valor fornecido pelo usuário é **sempre um texto, nunca um número.** 



#### Conversões de tipos

```
a = int(input("Digite um número inteiro: "))
b = float(input("Digite sua altura: "))
```

#### Conceitos abordados nesta aula

- A proposta desta aula é apresentar para vocês as Operações Numéricas.
- Veremos, portanto, as operações aritméticas básicas: soma, subtração, multiplicação, divisão e resto da divisão.
- Para isso vamos conhecer os operadores numéricos e suas precedências.



## Prioridade dos operadores aritméticos

| Operador | Operação                     | Prioridade |
|----------|------------------------------|------------|
| +        | Soma                         | 40         |
| -        | Subtração                    | 40         |
| *        | Multiplicação                | 3º         |
| /        | Divisão                      | 3º         |
| //       | Parte Inteira                | 3º         |
| %        | Resto de uma divisão inteira | 20         |
| +        | Manutenção de sinal          | 10         |
| -        | Inversão de sinal            | 10         |

#### Observações:

- Em uma expressão com operadores da mesma prioridade, as operações serão executadas de esquerda a direita.
- Nas linguagens com operadores para potência, eles teriam prioridade maior que + / \*

#### **Exemplos no Colaboratory**

$$1-2^{2}\times 3+8:2-\sqrt{36}$$
  
 $2-49:2\times(2+4)$   
 $3-5^{2}-9:(4-1)$ 



## Exercício no Colaboratory

Converta as expressões matemáticas para que possam ser calculadas e utilize o Colaboratory para dar as respostas seguintes:

$$1 - 10 + 20 \times 30 = ??$$

$$3 - (94 + 2) \times 6 - 1 = ??$$





Vamos criar um programa que solicite ao usuário um número inteiro com três dígitos e exiba esse número com os dígitos invertidos.

```
algoritmo inverso
  inicio
  inteiro num, d1, d2, d3, inverso
  escreva("Digite um número com três dígitos:")
  leia(num)
  d1 = num div 100
  d2 = num % 100 div 10
  d3 = num % 10
  inverso = d3 * 100 + d2 * 10 + d3
  escreva("O inverso do número digitado é: ", inverso)
  fim
```



Vamos criar um programa que solicite ao usuário um número inteiro com três dígitos e exiba esse número com os dígitos invertidos.

```
num = int(input("Digite um número com três digitos: "))
2  d1 = num // 100
3  d2 = num % 100 // 10
4  d3 = num % 10
5  inverso = d3*100+d2*10+d1
6  print("O inverso do número digitado é", inverso)
```



## Funções Matemáticas (Operadores adicionais)

- math = Módulo matemático reúne funções matemáticas.
- é tutilizado somente para números não complexos.
- Para utiliza-lo, devemos fazer a importação da biblioteca math: import math



| Funções           | Descrição                                                                   |
|-------------------|-----------------------------------------------------------------------------|
| math.fabs(x)      | Retorna o valor absoluto, não negativo de x.                                |
| math.floor(x)     | Retorna o maior número inteiro menor ou igual a x.                          |
| math.ceil(x)      | Retorna o menor número inteiro maior ou igual a x                           |
| math.sqrt(x)      | Retorna a raiz quadrada de x                                                |
| math.trunc(x)     | Retorna a parte inteira de x                                                |
| math.factorial(x) | Retorna o produto de um inteiro x e todos os inteiros positivos menor que x |

# Funções Matemáticas (Operadores adicionais)

| Funções            | Descrição                                                                             |
|--------------------|---------------------------------------------------------------------------------------|
| math.sin(x)        | Retorna um valor representando o seno de um ângulo x                                  |
| math.cos(x)        | Retorna um valor representando o cosseno de um ângulo x                               |
| math.tan(x)        | Retorna um valor representando a tangente de um ângulo x                              |
| math.asin(x)       | Retorna o arco-seno de um valor numérico                                              |
| math.acos(x)       | Retorna o arco-cosseno de um valor numérico                                           |
| math.atan(x)       | Retorna o arco-tangente de um valor numérico                                          |
| math.hypot(x,y)    | Retorna a hipotenusa dos números (catetos) fornecidos                                 |
| math.log(x,[base]) | Retorna o log de um dado número x na base em questão                                  |
|                    | Retorna o valor de x elevado à potência y                                             |
| math.pow(x,y)      | Se quisermos o resultado em inteiro, devemos usar a função embutida de Python, pow(), |
|                    | ou o operador **.                                                                     |
| math.pi            | Retorna o valor do número pi                                                          |

Mais em: <a href="https://docs.python.org/3/library/math.html">https://docs.python.org/3/library/math.html</a>

Vamos criar um programa que apresente o resultado da raiz quadrada de um número digitado pelo usuário. O algoritmo em pseudocódigo ficará assim:

```
algoritmo calculadora
   inicio
        real num, resultado
        escreva ("Digite um número para saber sua raiz quadrada")
        leia (num)
        resultado = raiz(num)
        escreva ("O valor da raiz quadrada é: ", resultado)
        fim
```



Vamos criar um programa que apresente o resultado da raiz quadrada de um número digitado pelo usuário. O programa em Python ficará assim:

```
1 # Exemplo 2 - Raiz quadrada
2 import math
3
4 num = float(input("Digite um número: "))
5 resultado = math.sqrt(num)
6 print("O valor da raiz quadrada é: ", resultado)
```



Vamos criar um programa solicite um número real, calcule e que apresente: a) o valor absoluto; b) somente sua parte inteira; c) sua raiz quadrada; d) o fatorial desse número. O programa em Python ficará assim:

```
main.py >
     import math
     num = float(input("Digite um número real: "))
     absoluto = math.fabs(num)
     inteiro = math.trunc(num)
     raiz = math.sqrt(absoluto)
     fatorial = math.factorial(math.trunc(inteiro))
     print("Absoluto:", absoluto)
     print("Inteiro:", inteiro)
     print("Raiz", raiz)
     print("Fatorial", fatorial)
```



Vamos criar um programa solicite o raio de uma circunferência, calcule e que apresente a área e o comprimento da circunferência. O programa em Python ficará assim:

```
import math
import math
raio = float(input("Digite o raio da circunferência em cm: "))
comprimento = 2 * math.pi * raio
area = math.pi * raio * raio
print("O comprimento da circunferência é igual a %.2f cm" % (comprimento))
print("A área da circunferência é igual a %.2f cm2" % (area))
```



A luz do sol, ao incidir num prédio, projeta uma sombra chão, formando um triângulo retângulo como o mostrado na figura abaixo. Faça um programa solicite o comprimento da sombra e o ângulo de inclinação dos raios solares, calcule e mostre a altura do prédio.



Ângulo de inclinação

Comprimento da sombra

python™

# Exercícios de aplicação



#### Mas, antes...

Vamos corrigir os exercícios da última aula?



## Correção dos exercícios da aula 02

- 1- Desenvolva um programa em Python que solicite ao usuário os valores dos lados de um retângulo e calcule e mostre seu perímetro e sua área.
- 2- Escreva um programa em Python que solicite ao usuário o salário atual e mostre o salário acrescido de 5% de comissão.
- **3-** Escreva um programa em Python que solicite ao usuário a distância entre duas cidades e o tempo de viagem. O programa deverá calcular e exibir a velocidade média de um carro que vai de uma cidade para outra. Utilize a fórmula:

$$v_m = \frac{distancia}{tempo}$$



## Correção dos exercícios da aula 02

**4–** Escreva um programa em Python que calcule as duas raízes de uma equação de 2º grau ax²+bx+c, conhecendo os valores dos coeficientes da mesma (a, b, c). Suponha que as raízes são reais. Lembre-se que para calcular as duas raízes:

$$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \quad \text{com} \quad \Delta = b^2 - 4.a.c$$

5- Escreva um programa em Python que leia a cotação do dólar (taxa de conversão), leia um valor em dólares e converta e mostre o valor equivalente em Reais.



## Correção dos exercícios da aula 02

- **6-** Escreva um programa em Python que leia um valor representando o gasto realizado por um cliente do restaurante ComaBem e visualize o valor total a ser pago, considerando os 10% do garçom.
- **7-** Escreva um programa em Python que obtenha uma temperatura em graus Celsius, calcule e mostre a respectiva temperatura nas escalas Fahrenheit e Kelvin. Utilize as fórmulas abaixo:

$$t_F = 1,8 * t_C + 32$$
  
 $T_K = t_C + 273$ 



# Alguma dúvida????



## Então, agora é pra valer... Exercícios de aplicação



#### Observações sobre exercícios

- Todos os exercícios devem ser resolvidos em Python.
- O código Python pode ser feito no IDLE ou no Repl.it e deve ser salvo um arquivo por exercício com a extensão .py
- Após finalizar todos os exercícios da aula, compacte os arquivos .py e envie no Blackboard.



#### Exercícios

- 1- Faça um programa em Python que calcule e mostre o valor do volume do tronco de uma pirâmide, para isso o programa deve solicitar ao usuário os valores da altura do tronco da pirâmide (h), o valor da base menor (Bmenor) e o da base maior (Bmaior) e calcular a seguinte expressão:
- volume =h/3\*(Bmaior\*\*2 + Bmenor\*\*2 + (Bmaior\*\*2 \* Bmenor\*\*2)\*\*0.5)
- 2- Crie um programa em Python que solicite o valor em horas para o usuário, calcule e mostre o valor em minutos, sabendo que 1 hora tem 60 minutos.
- **3-** Crie um programa em Python que solicite ao usuário a sua idade expressa em anos, meses e dias (variáveis separadas). Calcule e mostre a idade expressa apenas em dias. Para isso considere 1 ano = 365 dias, 1 mês = 30 dias.

#### Exercícios

4- Escreva um programa em Python para calcular o valor de uma prestação em atraso (prestação). Para isso, obtenha o valor da prestação (valorPrestação), a porcentagem de multa pelo atraso (multa) e a quantidade de dias de atraso (qtdeDias). Calcular e mostrar o valor da prestação atualizado, sabendo que:

prestacao=valorPrestacao+(valorPrestacao\*(multa/100)\*qtdeDias)

5- Faça uma programa em Python que peça do usuário um valor em graus para um ângulo. Converta-o para radianos e, usando funções da biblioteca math, imprima o seno, cosseno e tangente deste ângulo.

#### Créditos

Esta aula teve por base o material produzido e cedido gentilmente pelos Professores Alcides, Lédon, Amilton e Cristiane.



