Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Matemática Discreta 2 Curso 2021

PRÁCTICO 9 : Grupos-Raíces primitivas.

Ejercicio 1.

- a. Probar que 2 es raiz primitiva módulo 13 y también módulo 27.
- b. Hallar todas las raices primitivas módulo 13.
- c. Para cada divisor $d \mid 18$, hallar un elemento de U(27) con orden exactamente d.

Ejercicio 2. Asumiendo que 2 es raiz primitiva módulo 101, que $5 \equiv 2^{24} \pmod{101}$, que $6 \equiv 2^{70} \pmod{101}$ y que $n = 2^a 3^b$ con a, b enteros positivos, resuelva las siguientes partes.

- a. Hallar los órdenes de $\overline{5}$ y $\overline{6}$ en U(101).
- b. Encontrar enteros positivos a, b tal que \overline{n} tenga orden 50 en U(101).

Ejercicio 3.

- a. Probar que si G es un grupo y $x, y \in G$ entonces $\langle x \rangle \subseteq \langle y \rangle$ si y solo si $x \in \langle y \rangle$.
- b. Sea g una raiz primitiva módulo p con p primo y sean x,y enteros positivos no múltiplos de p. Escribamos $x\equiv g^a\pmod p$ y $y\equiv g^b\pmod p$ con $a,b\in\mathbb Z$. Denotamos como es usual \overline{x} la clase de x en U(p) y por $o(\overline{x})$ su orden multiplicativo en este grupo.
 - i. Probar que existe $t \in \mathbb{Z}$ tal que $x \equiv y^t \pmod{p}$ si y solo si $\operatorname{mcd}(b, p-1)|a$.
 - ii. Probar que $o(\overline{x})|o(\overline{y})$ si y solo si $\operatorname{mcd}(b,p-1)|\operatorname{mcd}(a,p-1)$. (Sug. utilize que en todo grupo G se cumple $o(g^n)=\frac{o(g)}{\operatorname{mcd}(o(g),n)}$.)
 - iii. Concluya que si $o(\overline{x})|o(\overline{y})$ entonces $\langle \overline{x} \rangle \subseteq \langle \overline{y} \rangle$.

Ejercicio 4.

- a. Sean $r, s \in \mathbb{N}$. Probar que existen $a \neq b$ enteros coprimos tales que $a|r, b|s \neq mcm(r, s) = ab$.
- **b**. Sea G un grupo finito y $x,y \in G$ tales que xy = yx. Probar que existe $z \in G$ tal que o(z) = mcm(o(x),o(y)) (recordar que si g y h conmutan y tienen órdenes coprimos, entonces o(gh) = o(g)o(h)).
- **c**. Sea p primo y $g \in U(p)$ tal que o(g) = d .
 - i) Probar que si $h \notin \langle g \rangle$ entonces o(h) no divide a d (sugerencia: pensar en raíces de x^d-1 o utilice el ejercicio 3).
 - ii) Probar que existe $z \in U(p)$ con o(z) > o(g).
- d. Si p es primo, utilizar lo anterior para obtener un algoritmo para hallar una raíz primitiva módulo p.
- e. Hallar $\langle 2 \rangle \subset U(23)$ y utilizar el algoritmo anterior para hallar una raíz primitiva módulo 23.

Ejercicio 5.

- **a**. Sea b impar y $k \ge 3$ un entero, probar que $b^{2^{k-2}} \equiv 1 \pmod{2^k}$ (sugerencia: inducción en k).
- **b**. Concluir que no existen raíces primitivas módulo 2^k para $k \ge 3$.

Ejercicio 6. Sean $r, s \in \mathbb{N}$ con 1 < r < s y mcd(r, s) = 1.

- **a**. Probar que si $a \in U(rs)$ entonces $a^{\text{mcm}(\varphi(r),\varphi(s))} \equiv 1 \pmod{rs}$.
- **b**. Probar que si r>2 entonces $\operatorname{mcd}(\varphi(r),\varphi(s))>1$ (sugerencia: probar que ambos son pares).
- c. Probar que sólo pueden existir raíces primitivas módulo m para $m=2,\,4,\,p^{\alpha}$ o $2p^{\alpha}$ con p primo impar y $\alpha\in\mathbb{N}$ (sugerencia: utilizar los ejercicios anteriores).

Ejercicio 7. Sea p un número primo impar y a una raíz primitiva módulo p^{α} .

- a. Probar que si a es impar entonces la clase de a en $U(2p^{\alpha})$ es un generador de dicho grupo.
- **b**. Probar que si a es par entonces la clase de $a+p^{\alpha}$ en $U(2p^{\alpha})$ es un generador de dicho grupo.
- **c**. Concluir que existen raíces primitivas módulo $2p^{\alpha}$ para p primo impar.
- **d**. Hallar una raíz primitiva módulo 162.

Ejercicio 8. (Logaritmo discreto) Sea p un primo impar y r una raíz primitiva módulo p.

- **a**. Probar que $r^a \equiv r^b \mod p \Leftrightarrow a \equiv b \mod (p-1)$.
- **b**. Por lo tanto podemos definir la función $e: \mathbb{Z}_{p-1} \to \mathbb{Z}_p^*$ definida por $e(a \mod (p-1)) = r^a \mod p$. Probar que esta función es biyectiva (sugerencia: probar que es inyectiva). A la función inversa de e la llamamos logaritmo discreto en base r y se caracteriza por la propiedad $\log_r b = \beta \Leftrightarrow r^\beta \equiv b \mod p$.
- **c**. Probar que si $a \not\equiv 0 \mod p$ y $n \in \mathbb{Z}^+$ entonces $\log_r(a^n) \equiv n \log_r a \mod (p-1)$.
- **d**. Probar que 3 es raíz primitiva módulo 43 y hallar $\log_3 38 \in \mathbb{Z}_{42}$.

Ejercicio 9. Resolver las siguientes congruencias:

- **a**. $x^{27} \equiv 38 \pmod{43}$.
- **b**. $x^{11} \equiv 38 \pmod{43}$.
- **c**. $x^{20} \equiv 38 \pmod{43}$.
- **d**. $28^z \equiv 38 \pmod{43}$

(sugerencia: utilizar que si g es raíz primitiva módulo 43, entonces si $x \in U(43)$, se tiene que $x = g^{\alpha}$ para algún $\alpha \in \{0, 1, \dots 41\}$)

Ejercicio 10. (Directo del Teorema de Korselt) A un entero positivo compuesto n se le llama pseudoprimo de Carmichael si para todo a se cumple $a^n \equiv a \pmod n$. Sea n un pseudoprimo de Carmichael y sea p un divisor primo de n, pruebe que:

- **a**. p^2 no divide a n (sugerencia: tomar a=p en la definición de pseudoprimo de Carmichael).
- **b**. p-1|n-1 (sugerencia: considerar una raíz primitiva módulo p).

Ejercicio 11. Sea p primo.

- a. Probar que si p es impar y r es una raíz primitiva módulo p entonces $r^{p-1/2} \equiv -1 \pmod p$.
- **b**. Probar el Teorema de Wilson utilizando raíces primitivas: Si p es primo, entonces $(p-1)! \equiv -1 \pmod{p}$.

Ejercicio 12. Generalice la idea del ejercicio anterior para probar el siguiente resultado:

Si
$$p$$
 es un primo impar y $m=p^{\alpha}$ entonces
$$\prod_{\gcd(a,m)=1}^{m-1} a \equiv -1 \mod p$$

Ejercicio 13. Sea p un primo impar. Para cada $n \in \mathbb{Z}^+$ definimos $S_n = 1^n + 2^n + \ldots + (p-1)^n$. Probar que:

$$S_n \equiv \left\{ \begin{array}{ccc} 0 & (\text{m\'od } p) & \text{si } n \text{ no es m\'ultiplo de } p-1 \\ -1 & (\text{m\'od } p) & \text{si } n \text{ es m\'ultiplo de } p-1 \end{array} \right.$$