Microstate/Term & Symbol

M. Sc. Inorganic Chemistry CC-1/CC-6/NET/PAT

Dr. Naresh Kumar

Prof. of Chemistry
Univ. Dept. of Chemistry
B. N. Mandal University, Madhepura

Microstate

Microstate is the arrangement of electron of particular electronic configuration which can be differentiated in terms of energy or angular momentum.

it is energy (states) level of different arrangement of electron.

We know that there is motionable energy (rotational, vibrational & translational energy) & it gives S-S interaction (coupling) 1-1 coupling & j-j coupling which gives several types of energy states (level).

It is calculated by following formula

No. of Microstate
$$=\frac{\underline{n}}{\underline{e}}$$

n = twice of the no. of orientation of orbital

e = No. of given e-

But some of it are allowable & some are not

Similarly for d^x system microstates are as

Microstates for nd 1-10

configuration	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9	d^{10}
microstates	10	45	120	210	252	210	120	45	10	1

The number of microstates (the total degeneracy) for a configuration nd^x is the same as for nd^{10-x} .

Term Symbol & State

Term Symbol & state are the abbreviated form of electronic configuration bearing low energy orbital of the system. Term symbol of an electron arrangement reflects the total spin angular momentum(Ms), total orbital angular momentum(L) & total angular momentum(J). It is represented by following formula

Ms

L

J

Where

Ms= 2S+1 (S=total spin quantum no.)=total spin angular momentum. It gives idea of s-s coupling.

S=s1+s2+.... For P^2 system s=+1/2+1/2=1

So Ms = 2x1+1=3

Microstate		m_l		M_S
index	+1	O	-1	
1	↑	1		+1
2		\uparrow	\uparrow	+1
3			+	+1
4	+	+		-1
5		+	\leftarrow	-1
6	+		\leftarrow	-1
7		+		О
8			\rightarrow	О
9	+	↑		О
10		↑	\leftarrow	О
11	+			О
12		+	+	О
13	$\uparrow\downarrow$			О
14		$\uparrow\downarrow$		О
15			\downarrow	О

At 1st maximum Ms gives maximum stability & then maximum L value gives maximum stability

L= total orbital angular momentum=term It gives idea about 1-1 coupling. It represents term

 $L = 0 \quad 1 \quad 2 \quad 3$ $Term = S \quad P \quad D \quad F$

$\underline{\mathbf{Iern} = \mathbf{S} \mathbf{P} \mathbf{D} \mathbf{F}}$								
Microstate			L					
index	+1	O	-1					
1	1	↑		+1				
2		\uparrow	\uparrow	-1				
3	1		\uparrow	О				
4	+	+		+1				
5		+	+	-1				
6	+		+	О				
7	1	+		+1				
8	†		+	О				
9	+	↑		+1				
10		↑	+	-1				
11	+		↑	О				
12		+	\uparrow	-1				
13	$\uparrow\downarrow$			+2				
14		$\uparrow\downarrow$		О				
15			$\uparrow\downarrow$	-2				

- Draw out 2/+1 boxes and label with m_i values
 - ➤ Place electrons in boxes to maximize S (1st Rule)
 - ➤ Occupy from left to right to maximize L (2nd Rule)
 - ➤ Add m_s to get S and m_i to get L

Energy level of different terms of given electronic configuration can be arranged by certain rules. Let us consider following example

d² electron configuration

Two electrons in d_{xy} , d_{xz} , d_{xy} , d_{z2} and d_{x2-y2} orbitals.

- 1. For a given electron configuration, the term with the greatest multiplicity lies lowest in energy. (Hund's rule.)
- For a term of a given multiplicity, the greater the value of L, the lower the energy.

Lowest E Highest E
$$^{3}F$$
 < ^{3}P < ^{1}G < ^{1}D < ^{1}S

Note: The rules for predicting the ground state always work, but they may fail in predicting the order of energies for excited states.

Lowest E Highest E
$$^{3}F$$
 < ^{1}D < ^{3}P < ^{1}G < ^{1}S

Real Order

J=L+S to L-S it gives idea about LS coupling for less than half filled less value of J(=L-S) value is effective & more than half filled more value of J(=L+S) is effective

How to find Microstates

Type -1

When electronic configuration in 1 suborbit is given

No. of Micro State =
$$\frac{n}{e - n-e}$$
 $n = twice the no. of orbital $e = No.$ of given e-$

Example
$$\mathbf{P}^{1} = \frac{6}{1 \cdot 6 \cdot 1} = 6$$

$$\mathbf{P}^{2} = \frac{6}{2 \cdot 6 \cdot 4} = 15$$

Microstates for nd 1-10

configuration	d^1	d^2	d^3	d^4	d^5	d^6	d^7	d^8	d^9	d^{10}
microstates	10	45	120	210	252	210	120	45	10	1

The number of microstates (the total degeneracy) for a configuration nd^x is the same as for nd^{10-x} .

Type - II

Electronic configuration in two suborbits are given

No. of Microstate =
$$\frac{\underline{n}}{\underline{e} \quad \underline{n-e}} \quad \mathbf{X} \quad \frac{\underline{n}}{\underline{e} \quad \underline{n-e}}$$
For P¹ For d¹

Example
$$6 \times \frac{10}{|1| |10-1} = 6 \times 10 = 60$$

Type - III

When term symbol are given

$$(2S+1)_L$$

Formula = 2S+1 X 2L+1
for 2_D , $2S+1=2$ & 2L+1=2x2+1=5
No. Of M.S. = 2X5=10

For 3F

No. of microstate=3x7=21

Type - IV

When ground term state(GST) is given

$$^{(2S+1)}L_J$$

Formula = (2J+1)

```
J = L + S: \text{ number of microstates} = 2J + 1
{}^{3}P_{2} \text{ (5 microstates)}
{}^{3}P_{1} \text{ (3 microstates)}
{}^{3}P_{0} \text{ (1 microstate)}
9 \text{ microstates}
For
{}^{1}G \rightarrow {}^{1}G_{4} \quad (L = 4, S = 0)
{}^{1}S \rightarrow {}^{1}S_{0} \quad (L = 0, S = 0)
{}^{1}D \rightarrow {}^{1}D_{2} \quad (L = 2, S = 0)
{}^{3}F \rightarrow {}^{3}F_{4} \quad (L = 3, S = 1)
{}^{3}P \rightarrow {}^{3}P_{2} \quad (L = 1, S = 1)
5 \text{ microstates}
5 \text{ microstates}
```

Type - V

When degeneracy is given

No. of microstate = 2S+1 X degeneracy Here

Degeneracy Singlet Doublet Triplet
A(1) E(2) T(3)

 $^2T_{1g}$

Here 2S+1=2 & degeneracy for T=3 So no. of microstate= 2S+1 x degeneracy=2x3=6

 $3T_{2g}$ Formula = $(2S+1)_L$ = 3X3=9

2A_{1g}
No. of microstate= 2X1=2

