```
SETTING UP THE MODULES(PANDAS, NUMPY) AND IMPORTING THE DATASET
In [1]:
import pandas as pd
import numpy as np
In [2]:
cvd = pd.read csv("covid worldwide.csv")
In [3]:
cvd.head()
Out[3]:
                Country Total Cases Total Deaths Total Recovered Active Cases
                                                                               Total Test
   Serial Number
                                                                                           Population
0
              1
                    USA 104,196,861
                                       1,132,935
                                                                   1,741,147 1,159,832,679
                                                     101,322,779
                                                                                          334,805,269
1
              2
                          44,682,784
                                         530,740
                                                                      1,755
                                                                             915,265,788 1,406,631,776
                   India
                                                     44,150,289
                          39,524,311
                                                                     95,532
                                                                             271,490,188
                                                                                           65,584,518
2
              3
                  France
                                         164,233
                                                     39,264,546
3
              4 Germany
                          37,779,833
                                         165,711
                                                     37,398,100
                                                                    216,022
                                                                             122,332,384
                                                                                           83,883,596
                          36,824,580
                                         697,074
                                                     35,919,372
                                                                    208,134
                                                                              63,776,166
                                                                                          215,353,593
                   Brazil
DATA CLEANING AND TRANSFORMATION
 1. Missing data
In [4]:
cvd.isnull().sum()
Out[4]:
Serial Number
Country
                        0
Total Cases
                        0
Total Deaths
                       6
```

Active Cases

Total Test

Population

0

0

3

```
dtype: int64
In [7]:
cvd = cvd.dropna(subset=['Population'])
In [8]:
cvd.isnull().sum()
Out[8]:
Serial Number
                      0
                      0
Country
Total Cases
                      0
Total Deaths
                      0
Total Recovered
                      0
Active Cases
                      0
Total Test
                      0
Population
                      0
dtype: int64
In [9]:
cvd.tail()
Out[9]:
    Serial Number
                       Country Total Cases Total Deaths Total Recovered Active Cases Total Test Population
224
             225
                     Montserrat
                                     1,403
                                                   8
                                                              1,376
                                                                            19
                                                                                  17,762
                                                                                             4,965
225
             226
                          Niue
                                      747
                                                   0
                                                                746
                                                                             1
                                                                                       0
                                                                                             1,622
227
             228
                    Vatican City
                                       29
                                                   0
                                                                 29
                                                                             0
                                                                                       0
                                                                                               799
228
             229 Western Sahara
                                       10
                                                   1
                                                                  9
                                                                             0
                                                                                       0
                                                                                            626,161
230
             231
                       Tokelau
                                        5
                                                   0
                                                                  0
                                                                             5
                                                                                       0
                                                                                             1,378
 1. Data types
In [10]:
cvd.dtypes
Out[10]:
Serial Number
                      int64
Country
                      object
Total Cases
                      object
Total Deaths
                      object
Total Recovered
                      object
Active Cases
                      object
Total Test
                      object
Population
                      object
dtype: object
```

In [11]:

First, I convert the fields from string(object) to decimals(float64) so that I can remo
ve the commas from the strings.

convert = ['Total Cases', 'Total Deaths', 'Total Recovered', 'Active Cases', 'Total Test
', 'Population']
cvd[convert] = cvd[convert].apply(lambda x: x.str.replace(',', '').astype(float))

In [12]:

cvd.dtypes

Out[12]:

```
Country
                   object
Total Cases
                 float64
Total Deaths
                 float64
Total Recovered
                 float64
Active Cases
                 float64
Total Test
                  float64
Population
                  float64
dtype: object
In [13]:
# Then in order for me to convert the fields from decimals(float64) to whole numbers(int)
, I need to replace the non-finite values ('NaN' or 'inf') with zero.
replace = ['Total Cases', 'Total Deaths', 'Total Recovered', 'Active Cases', 'Total Test
', 'Population']
cvd[replace] = cvd[replace].apply(lambda x: x.fillna(0).replace([np.inf, -np.inf], 0).as
type(int))
In [14]:
cvd.dtypes
Out[14]:
Serial Number
                   int64
                  object
Country
Total Cases
                   int32
Total Deaths
                   int32
Total Recovered
                   int32
Active Cases
                   int32
Total Test
                   int32
Population
                   int32
dtype: object
In [15]:
cvd = cvd.replace('USA', 'United States of America')
cvd = cvd.replace('Western Sahara', 'W. Sahara')
cvd = cvd.replace('Dominican Republic', 'Dominican Rep.')
cvd = cvd.replace('DRC', 'Dem. Rep. Congo')
cvd = cvd.replace('Falkland Islands', 'Falkland Is.')
cvd = cvd.replace('Equatorial Guinea', 'Eq. Guinea')
cvd = cvd.replace('CAR', 'Central African Rep.')
cvd = cvd.replace("Ivory Coast", "Côte d'Ivoire")
cvd = cvd.replace('Eswatini', 'eSwatini')
cvd = cvd.replace('DPRK', 'North Korea')
cvd = cvd.replace('S. Korea', 'South Korea')
cvd = cvd.replace('UAE', 'United Arab Emirates')
cvd = cvd.replace('UK', 'United Kingdom')
cvd = cvd.replace('South Sudan', 'S. Sudan')
cvd = cvd.replace('Bosnia and Herzegovina', 'Bosnia and Herz.')
cvd = cvd.replace('Solomon Islands', 'Solomon Is')
new row = {'Serial Number': '91',
           'Country': 'China',
           'Total Cases': 503302,
           'Total Deaths': 5272,
           'Total Recovered': 379053,
           'Active Cases': 118977,
           'Total Test': 160000000,
           'Population': 1425893465
cvd = cvd.append(new row, ignore index=True)
C:\Users\USER\AppData\Local\Temp\ipykernel 9232\666807371.py:27: FutureWarning: The frame
.append method is deprecated and will be removed from pandas in a future version. Use pan
das.concat instead.
```

Serial Number

int64

cvd = cvd.append(new row, ignore index=True)

In [16]:

```
cvd_sorted = cvd.sort_values(by='Population', ascending=False)
cvd_sorted.head()
```

Out[16]:

	Serial Number	Country	Total Cases	Total Deaths	Total Recovered	Active Cases	Total Test	Population
228	91	China	503302	5272	379053	118977	160000000	1425893465
1	2	India	44682784	530740	44150289	1755	915265788	1406631776
0	1	United States of America	104196861	1132935	101322779	1741147	1159832679	334805269
19	20	Indonesia	6730289	160817	6565208	4264	114158919	279134505
52	53	Pakistan	1576313	30640	1538689	6984	30570862	229488994

DATA VISUALIZATION

1. Setting up the module(matplotlib, geopandas)

In [17]:

```
import geopandas as gpd
import matplotlib.pyplot as plt
```

1. Merginng geopandas dataset with current dataset and clean the new merged datasets

In [18]:

```
world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
merged = world.merge(cvd, how='left', left_on='name', right_on='Country')
merged.head()
```

Out[18]:

	pop_est	continent	name	iso_a3	gdp_md_est	geometry	Serial Number	Country	Total Cases	Total Deaths	Reco
0	889953.0	Oceania	Fiji	FJI	5496	MULTIPOLYGON (((180.00000 - 16.06713, 180.00000	143	Fiji	68820.0	883.0	6
1	58005463.0	Africa	Tanzania	TZA	63177	POLYGON ((33.90371 - 0.95000, 34.07262 - 1.05982	157	Tanzania	42664.0	846.0	
2	603253.0	Africa	W. Sahara	ESH	907	POLYGON ((- 8.66559 27.65643, - 8.66512 27.58948	229	W. Sahara	10.0	1.0	
3	37589262.0	North America	Canada	CAN	1736425	MULTIPOLYGON (((-122.84000 49.00000, - 122.9742	34	Canada	4550256.0	50380.0	444
4	328239523.0	North America	United States of America	USA	21433226	MULTIPOLYGON (((-122.84000 49.00000, - 120.0000	1	United States of America	104196861.0	1132935.0	10132
4)

```
merged.isnull().sum()
Out[19]:
                    0
pop_est
continent
name
                    0
iso a3
                    0
gdp_md_est
                    0
                    0
geometry
Serial Number
                   8
Country
Total Cases
Total Deaths
Total Recovered
Active Cases
Total Test
                   8
Population
                   8
dtype: int64
In [20]:
merged = merged.dropna(subset=['Population'])
merged.isnull().sum()
Out[20]:
pop est
continent
name
                    0
                    0
iso a3
gdp md est
geometry
                    0
Serial Number
Country
Total Cases
Total Deaths
                   0
Total Recovered
                   0
Active Cases
                   0
Total Test
                   0
                    0
Population
dtype: int64
 1. Number of Countries with the Covid-19
In [21]:
n = merged['Country'].nunique()
print('Number of Countries that had the virus: ', n)
Number of Countries that had the virus: 169
1. Creating a Geographical Plot for Total Death Worldwide
```

```
In [22]:
```

```
fig, ax = plt.subplots(figsize=(18,12))
merged.plot(column='Total Deaths', cmap='Reds', legend=True, ax=ax)
ax.set_title('Global distribution of Total Covid-19 Deaths Worldwide')
ax.set_axis_off()
plt.show()
```


1. What are the top 5 countries with active cases

In [23]:

Out[23]:

Country Active Cases

155	Japan	10952618
4	United States of America	1741147
113	Poland	925549
94	Vietnam	870843
27	Mexico	429421

In [24]:

```
Country = merged_top5AC['Country']
Active_Cases = merged_top5AC['Active Cases']
fig = plt.figure(figsize=(12, 9))
plt.bar(Country, Active_Cases, color='red')
plt.xlabel('Country', weight='bold')
plt.ylabel('Active Cases', weight='bold')
plt.title('Top 5 Countries by Active Cases', weight='bold')
plt.show()
```

Top 5 Countries by Active Cases

10 -

1. Top 5 Countries in Total Covid Recoveries

In [25]:

Out[25]:

Country Total Recovered

4	United States of America	101322779
98	India	44150289
43	France	39264546
121	Germany	37398100
29	Brazil	35919372

In [26]:

```
Country = merged_top5TR['Country']
Total_Recovered = merged_top5TR['Total Recovered']
fig = plt.figure(figsize=(12, 9))
plt.bar(Country, Total_Recovered, color='green')
plt.xlabel('Country', weight='bold')
plt.ylabel('Total Recovered', weight='bold')
plt.title('Top 5 Countries by Recoveries', weight='bold')
plt.show()
```


Top 5 Countries by Recoveries

1. Top 5 Countries who conducted the most Covid-Tests

In [27]:

Out[27]:

	Cor	untry	Total Test
4	United States of Am	erica	1159832679
98	India		915265788
143	United Kingdom		522526476
132	Spain		471036328
18	Russia		273400000

In [28]:

```
Country = merged_top5CT['Country']
Total_Test = merged_top5CT['Total Test']
fig = plt.figure(figsize=(12, 9))
plt.bar(Country, Total_Test, color='aqua')
plt.xlabel('Country', weight='bold')
plt.ylabel('Total Test', weight='bold')
plt.title('Top 5 Countries by Covid Tests', weight='bold')
plt.show()
```


1. What is the relationship between Population and Active Cases

In [29]:

```
Con_Pop_Case = pd.DataFrame({
    'Country': merged['Country'],
    'Population': merged['Population'],
    'Active Cases': merged['Active Cases']
})
Con_Pop_Case.head()
```

Out[29]:

	Country	Population	Active Cases
0	Fiji	909466.0	1157.0
1	Tanzania	63298550.0	0.0
2	W. Sahara	626161.0	0.0
3	Canada	38388419.0	55863.0
4	United States of America	334805269.0	1741147.0

In [30]:

```
x = Con_Pop_Case['Population']
y = Con_Pop_Case['Active Cases']

fig = plt.figure(figsize=(12, 9))
plt.scatter(x, y)
z = np.polyfit(x, y, 1)
p = np.polyld(z)
plt.plot(x,p(x),'r--')
corr_coef = np.corrcoef(x, y)[0, 1]

plt.xlabel('Population', weight='bold')
plt.ylabel('Active Cases', weight='bold')
plt.title('Relationship between Population and Active Cases', weight='bold')
plt.text(0.5, 1.1, f"Correlation coefficient = {corr_coef:.2f}", ha='center', wa='center', weight='bold', transform=plt.gca().transAxes)
plt.show()
```


1. The relationship between total covid test and the total number of people who recovered from covid

```
In [31]:
```

```
Con_Test_Rec = pd.DataFrame({
    'Country': merged['Country'],
    'Total Recovered': merged['Total Recovered'],
    'Total Test': merged['Total Test']
})
Con_Test_Rec.head()
```

Out[31]:

	Country	Total Recovered	Total Test
0	Fiji	66780.0	6.677150e+05
1	Tanzania	0.0	0.000000e+00
2	W. Sahara	9.0	0.000000e+00
3	Canada	4444013.0	6.634312e+07
4	United States of America	101322779.0	1.159833e+09

In [32]:

```
x = Con_Test_Rec['Total Recovered']
y = Con_Test_Rec['Total Test']

fig = plt.figure(figsize=(12, 9))
plt.scatter(x, y)
z = np.polyfit(x, y, 1)
p = np.polyld(z)
```

```
plt.plot(x,p(x),'r--')
corr_coef = np.corrcoef(x, y)[0, 1]

plt.xlabel('Total Recovered', weight='bold')
plt.ylabel('Total Test', weight='bold')
plt.title('Relationship between Recoveries and Tests', weight='bold')
plt.text(0.5, 1.1, f"Correlation coefficient = {corr_coef:.2f}", ha='center', va='center', weight='bold', transform=plt.gca().transAxes)
plt.show()
```

Correlation coefficient = 0.84

