

9.

Code: 15AT31T

Register			
Number		1.000	,

III Semester Diploma Examination, April/May-2018

HEAT POWER ENGINEERING

[Max. Marks : 100 Time: 3 Hours] Answer any 6 out of 9 form Part - A. Note: (ii) Answer any 7 out of 10 from Part - B. PART - A 5 Define the terms Pressure, Volume, Temperature, Enthalpy and Entropy. 1. Explain Zeroth law of thermodynamics. 2. Define Boyle's law & Charle's law. 3. Derive an equation for characteristic gas equation. 4. Define Thermodynamic process and list out the types of thermodynamic processes. 5 5. What do you understand by a thermodynamic cycle? Distinguish between reversible 6. 5 and irreversible cycle. 5 List the advantages and disadvantages of liquid fuels. 7. 5 Explain the phenomenon of knocking in S.I. engine. 8. 5 Define delay period. Mention variables affecting delay period.

PART - B

10.	(a)	Derive steady flow energy equations (SPEE).	3
	(b)	What do you mean by property of a system? Distinguish extensive and intensive properties of a system.	5
11.	(a)	Distinguish between mechanical and thermal equilibrium.	5
	(b)	Determine final pressure of a gas when 2 m ³ of gas at 6 bar is heated by keeping temperature constant. Final volume is 6 m ³ .	5
12.	(a)	What is the difference between characteric gas constant and universal gas constant?	5
	(b)	Derive an expression for the workdone during Isobaric process.	5
13.14.15.	of 7 temp in er = 28 0.1 i fina An fuel cycl	ertain gas occupies a space of 0.3 m^3 at a pressure of 2 bar and temperature 7 °C. It is heated at constant volume until the pressure is 7 bar. Determine 0. at the end of process, mass of gas, change in internal energy and change in thalpy, during the process. Assume $C_p = 1.005 \text{ kJ/kg K}$, $C_v = 0.712 \text{ kJ/kg K}$ & R $^{17} \text{ J/kg K}$. In $^{13} \text{ of air at a pressure of } 1.5 \text{ bar is expanded isothermally to } 0.5 \text{ m}^3$. Calculate the 1 pressure of gas and heat supplied during the process. In $^{13} \text{ engineer claims an engine to develop } 3.75 \text{ kW}$. After testing engine consumes of 0.44 kg/hr having $C_v = 42000 \text{ kJ/kg K}$. Maximum temperature recorded in the 1 is 1400 °C & until the temperature becomes 350 °C . Find whether engineer if it is his claim.	10
16.	Der	ive an expression for air standard efficiency of Otto cycle.	10
17.	(a) (b)	Represent diesel cycle on P-V & T-S diagram. A sample of coal has the following composition by weight Carbon – 72%, Hydrogen – 7%, Oxygen – 9%, Nitrogen 3%, Sulphur – 2%, Ash – 7%. Find HCV & LCV per kg of coal.	5
18.	(a) (b)	Explain the conversion of volumetric analysis into mass analysis. Calculate the minimum mass of air required for complete combustion.	5 5
19.	Wit	h the help of P-θ diagram, explain the stages of combustion in SI engine.	10