题号	-	_	=	四	总分
得分					

一、填空题 (每小题 3 分, 共 27 分)

1.
$$\operatorname{RR} \lim_{\substack{x \to \infty \\ y \to 2}} (1 + \frac{1}{x^2 + y^2})^{2x^2} = \underline{\hspace{1cm}}$$

2. 交换积分次序:
$$\int_{1}^{e} dx \int_{0}^{\ln x} f(x, y) dy = \underline{\qquad}.$$

3. 已知
$$z = \frac{1}{\sqrt{x^2 + y^2}}$$
,则 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = _____$

4. 函数
$$f(x, y, z) = x^2 y^2 z$$
 点 (1,2,1) 处的梯度 $gradf =$ ______.

5. 函数
$$r = \sqrt{x^2 + y^2 + z^2}$$
 点 $P(1,1,1)$ 处沿 $I = \{1,1,1\}$ 方向的方向导数
$$\frac{\partial r}{\partial I} = \underline{\hspace{1cm}}.$$

6.
$$f(x, y) = \sqrt{x^2 + y^2}$$
 在点(0,0)处沿任意方向的方向导数为_____.

7. 函数
$$f(x, y) = x^3 - 4x^2 + 2xy - y^2$$
 的极大值为 .

8. 函数
$$z = 2x - y$$
 在以 $A(1,0)$, $B(0,1)$, $C(-1,0)$ 为顶点的闭三角形区域 D 上的最大值为______.

9. 设
$$D: x^2 + y^2 \le 1$$
, 则二重积分 $I = \iint_{D} (x^2 + \sin y^5) d\sigma = _____.$

二、完成下列各题 (每小题 9 分, 共 63 分)

- 1. 已知 f(u, v) 有二阶连续偏导数且 $z = f(xy, e^{y})$,求 $\frac{\partial^{2} z}{\partial y \partial x}$.
- 2. 求空间曲线 Γ : $\begin{cases} x^2 + 2y^2 + z^2 = 10 \\ x + y + z = 4 \end{cases}$ 在点(1,2,1)处的切线方程.
- 3. 求马鞍面 z = xy 被柱面 $x^2 + y^2 = 1$ 所截部分的面积.
- 4. 计算三重积分: $I = \iint\limits_{\Omega} x^2 dv$, 其中 Ω : $\begin{cases} x^2 + y^2 \le 1 \\ 0 \le z \le 1 \end{cases}$.
- 5. 求空间立体 Ω : $x^2 + y^2 + z^2 \le 1$ 的质量,已知 Ω 的密度为 $\rho(x, y, z) = x^2 + y^2.$
- 6. 计算第一类曲线积分: $I = \oint_C (x^2 + 2y^2) ds$, 其中C: $x^2 + y^2 = 1$.
- 7. 计算第一类曲面积分: $I = \iint_S xyzdS$, 其中S为平面x + y + z = 1被三个坐标平面所截第一卦限部分.

三、证明题(共10分)

设函数 f(u, v) 可微, 证明曲面 S : f(x - z, y - 2z) = 0 上任一点处的切平面与某一定直线平行.