Листок 4. Формулы и схемы.

DM-ML 22. По формуле в 2-КНФ построим ориентированный граф. Вершинами графа будут множество переменных и отрицаний переменных. Для каждого дизъюнкта $(l_1 \lor l_2)$ в графе проводится два ребра из $\neg l_1$ в l_2 и из $\neg l_2$ в l_1 . Докажите, что формула выполнима тогда и только тогда, когда для каждой переменной x вершины x и $\neg x$ находятся в разных компонентах сильной связности (т.е. либо из x нет пути в x, либо из x нет пути в x).

DM-ML 23. Докажите, что в ориентированном графе G(V, E) без циклов все вершины можно пронумеровать числами от 1 до |V| таким образом, что ребра идут из вершин с меньшими номерами в вершины с большими номерами.

DM-ML 24. Докажите, что глубина дерева решений для функции $OR_n(x_1, x_2, ..., x_n) = x_1 \lor x_2 \lor ... \lor x_n$ не меньше n.

DM-ML 25. Докажите, что размер дерева решений для функции $f(x_1, x_2, ..., x_{2n}) = x_1x_2 + x_2x_3 + \cdots + x_{2n-1}x_2n$ не меньше, чем 2^n , но существует ветвящаяся программа для этой функции размера O(n).

DM-ML 26. Докажите, что если булева функция вычисляется с помощью ветвящейся программы размера S, то она вычисляется и с помощью булевой схемы размера O(S).

DM-ML 27. Правило ослабления позволяет вывести из дизъюнкта A дизъюнкт $A \lor B$ для любого дизъюнкта B. Покажите, что если из дизъюнктов D_1, D_2, \ldots, D_n семантически следует дизъюнкт C (это значит, что любой набор значений переменных, который выполняет все дизъюнкты D_i , выполняет также и C), то C можно вывести из D_i с помощью применений правил резолюции и ослабления.

DM-ML 28.

- (а) Докажите, что при суммировании двоичных чисел $\overline{a_n a_{n-1} \dots a_1}$ и $\overline{b_n b_{n-1} \dots b_1}$ перенос в i-м разряде происходит тогда и только тогда, когда число $\overline{a_i a_{i-1} \dots a_1}$ больше числа $\overline{b_i' b_{i-1}' \dots b_1'}$, где $b_k' = 1 b_k$ для всех k от 1 до n. Далее считаем, что $n = 2^m$.
- (б) Постройте схему размера O(n) и глубины $O(\log n)$, которая вычислит результаты сравнений чисел $\overline{a_j a_{j-1} \dots a_{j-2^k+1}}$ с $\overline{b_j' b_{j-1}' \dots b_{j-2^k+1}'}$ для всех $k \leq m$ и всех j, кратных 2^k (при этом $j \leq n$). Результат сравнения можно хранить в двух битах: 00, если первое число меньше, 11, если первое число больше и 10, если числа равны.
- (в) Постройте схему размера O(n) и глубины $O(\log n)$, которая вычислит результаты сравнений чисел $\overline{a_i a_{i-1} \dots a_1}$ и $\overline{b_i' b_{i-1}' \dots b_1'}$ для всех i от 1 до n.

(г) Покажите, что существует схема для сложения двух n-битных чисел размера O(n) и глубины $O(\log n)$.

DM-ML 10. Булева функция $f: \{0,1\}^n \to \{0,1\}$ называется монотонной, если при $x \leq y$ выполняется $f(x) \leq f(y)$ ($x \leq y$, если для всех $1 \leq i \leq n$ выполняется $x_i \leq y_i$).

(б) Докажите, что монотонную булеву функцию можно записать в виде формулы, которая использует только связки \vee и \wedge .

DM-ML 13.

(в) Докажите, что такое представление единственное с точностью до перестановки мономов.

DM-ML 14. Пусть формула $\phi \to \psi$ является тавтологией. Докажите, что найдется такая формула τ , которая содержит только общие для ϕ и ψ переменные, что формулы $\phi \to \tau$ и $\tau \to \psi$ являются тавтологиями.

DM-ML 15. Приведите пример булевой функции от n аргументов, у которой любая дизъюнктивная и конъюнктивная нормальная форма содержит лишь члены (дизъюнкты или конъюнкты) длины n.

DM-ML 16. Две формулы, содержащие только переменные и связки \vee , \wedge и \neg эквивалентны. Докажите, что они останутся эквивалентными, если всюду \vee заменить на \wedge и наоборот.

DM-ML 17. (Теорема Поста) Пусть есть набор булевых функций, среди которых есть не монотонная, не сохраняющая ноль (т.е., $f(0, \ldots, 0) = 1$), не сохраняющая единицу (т.е., $g(1, \ldots, 1) = 0$), не линейная, не самодвойственная. Докажите, что с помощью композиций этих функций можно получить

- (а) отрицание, константу 1, константу 0;
- (б) любую булеву функцию.
- (в) Докажите, что если набор булевых функций не удовлетворяет условию теоремы Поста, то через композицию этих функций нельзя выразить все булевы функции.

DM-ML 18. Докажите, что у каждой невыполнимой формулы в КНФ, использующей n переменных, есть резолюционное опровержение, состоящие из не более, чем $2^{n+1}-1$ дизъюнктов.

DM-ML 19. В каждую клетку квадрата $n \times n$ поставим свою пропозициональную переменную, затем для каждой клетки, в которой стоит переменная x запишем дизъюнкт $(\neg x \lor u(x) \lor r(x))$, где u(x) — это переменная, которая находится в верхней соседней клетке для x, а r(x) — это перемененная — правый сосед x (если верхнего соседа нет, то u(x) = 0, а если правого нет, то r(x) = 0). Пусть a — переменная, которая стоит в

левой нижней клетке, допишем еще дизъюнкт (a). Покажите, что конъюнкция выписанных дизъюнктов — невыполнимая формула и для нее существует резолюционное опровержение длины $O(n^2)$.

DM-ML 20. Как модифицировать рассказанный на лекции алгоритм, проверяющий выполнимость формулы в 2-КНФ, чтобы он за полиномиальное от числа переменных время также выдавал набор значений переменных, который выполняет формулу?

DM-ML 21. Формула в КНФ называется Хорновской, если каждый ее дизъюнкт содержит не более одной переменной без отрицания. Придумайте алгоритм, который за полиномиальное от длины входной формулы время проверит, выполнима ли Хорновская формула.