FMI, Info, Anul II, 2017-2018 Programare logică

Seminar 6 Rezoluție SLD. Sisteme de rescriere.

Teorie pentru S6.1:

- O clauză definită este o formulă de forma:
 - $-P(t_1,\ldots,t_n)$ (formulă atomică), unde P este un simbol de predicat, iar t_1,\ldots,t_n termeni
 - $-P_1 \wedge \ldots \wedge P_n \rightarrow Q$, unde toate P_i, Q sunt formule atomice.
- O regulă din Prolog $Q : -P_1, \ldots, P_n$ este o clauză $P_1 \wedge \ldots \wedge P_n \to Q$, iar un fapt din Prolog $P(t_1, \ldots, t_n)$ este o formulă atomică $P(t_1, \ldots, t_n)$.
- O clauză definită $P_1 \wedge \ldots \wedge P_n \to Q$ poate fi gândită ca formula $Q \vee \neg P_1 \vee \ldots \vee \neg P_n$.
- Pentru o multime de clauze definite T, regula rezolutiei SLD este

SLD
$$\frac{\neg P_1 \lor \dots \lor \neg P_i \lor \dots \lor \neg P_n}{(\neg P_1 \lor \dots \lor \neg Q_1 \lor \dots \lor \neg Q_m \lor \dots \lor \neg P_n)\theta}$$

unde $Q \vee \neg Q_1 \vee \cdots \vee \neg Q_m$ este o clauză definită din T (în care toate variabilele au fost redenumite) și θ este c.g.u pentru P_i și Q.

• Fie T o mulţime de clauze definite şi $P_1 \wedge \ldots \wedge P_m$ o ţintă, unde P_i sunt formule atomice. O derivare din T prin rezoluţie SLD este o secvenţă $G_0 := \neg P_1 \vee \ldots \vee \neg P_m$, G_1, \ldots , G_k, \ldots în care G_{i+1} se obţine din G_i prin regula SLD. Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numeşte SLD-respingere.

Teorema 1 (Completitudinea SLD-rezoluției). Sunt echivalente:

- (i) există o SLD-respingere a lui $P_1 \wedge \ldots \wedge P_m$ din T,
- (ii) $T \vDash P_1 \land \cdots \land P_m$.

(S6.1) Găsiți o SLD-respingere pentru următoarele programe Prolog și ținte:

- (a) 1. r := p,q. 5. t. ?- w.
 - 2. s := p,q. 6. q.
 - 3. v :- t,u. 7. u.
 - 4. w :- v,s. 8. p.
- (b) 1. q(X,Y) := q(Y,X), q(Y,f(f(Y))). ?- q(f(Z),a).
 - 2. q(a,f(f(X))).
- (c) 1. p(X) := q(X,f(Y)), r(a). 4. r(X) := q(X,Y). ?- p(X), q(Y,Z).
 - 2. p(X) := r(X). 5. r(f(b)).
 - 3. q(X,Y) := p(Y).

Demonstrație:

$$\begin{array}{c}
(a) \\
G_0 = \neg w
\end{array}$$

$$G_1 = \neg v \vee \neg s \tag{4}$$

$$G_2 = \neg t \vee \neg u \vee \neg s \tag{3}$$

$$G_3 = \neg u \vee \neg s \tag{5}$$

$$G_4 = \neg s \tag{7}$$

$$G_5 = \neg p \lor \neg q \tag{2}$$

$$G_6 = \neg q \tag{8}$$

$$G_7 = \square \tag{6}$$

$$G_0 = \neg q(f(Z), a)$$

$$G_1 = \neg q(a, f(Z)) \lor \neg q(a, f(f(a)))$$
 (1 cu $\theta(X) = f(Z)$ și $\theta(Y) = a$)

$$G_2 = \neg q(a, f(Z)) \qquad (2 \operatorname{cu} \theta(X) = a)$$

$$G_3 = \square$$
 (2 cu $\theta(Z) = f(X)$)

$$G_0 = \neg p(X) \lor \neg q(Y, Z)$$

$$G_1 = \neg r(X_1) \lor \neg q(Y, Z)$$
 (2 cu $\theta(X) = X_1$)

$$G_2 = \neg q(Y, Z) \qquad (5 \text{ cu } \theta(X_1) = f(b))$$

$$G_3 = \neg p(Z_1) \qquad (3 \text{ cu } \theta(X) = Y_1 \text{ şi } \theta(Y) = Z_1)$$

$$G_4 = \neg r(X) \qquad (2 \text{ cu } \theta(Z_1) = X)$$

$$G_5 = \square$$
 (5 cu $\theta(X) = f(b)$)

Teorie pentru S6.2:

Fie T o mulțime de clauze definite și o țintă $G_0 = \neg P_1 \lor \ldots \lor \neg P_m$. Un arbore SLD este definit astfel:

- Fiecare nod al arborelui este o ţintă (posibil vidă)
- Rădăcina este G_0
- Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in T$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i și G_{i+1} este etichetată cu C_i .

Dacă un arbore SLD cu rădăcina G_0 are o frunză \square (clauza vidă), atunci există o SLD-respingere a lui G_0 din T.

(S6.2) Desenați arborele SLD pentru programul Prolog de mai jos și ținta ?- p(X,X).

- 1. p(X,Y) := q(X,Z), r(Z,Y).
- 7. s(X) := t(X,a).

2. p(X,X) := s(X).

8. s(X) := t(X,b).

3. q(X,b).

9. s(X) := t(X,X).

4. q(b,a).

- 10. t(a,b).
- 5. q(X,a) :- r(a,X).
- 11. t(b,a).

6. r(b,a).

Demonstrație:

Teorie pentru S6.3:

- Pentru un limbaj de ordinul I \mathcal{L} , o regulă de rescriere $l \to r$ este formată din doi termeni $l, r \in Trm_{\mathcal{L}}$ astfel încât l nu este variabilă și $Var(r) \subseteq Var(l)$.
- Un sistem de rescriere (TRS) este o mulțime finită de reguli de rescriere.
- Dacă R este un sistem de rescriere, pentru $t, t' \in Trm_{\mathcal{L}}$ definim relația $t \to_R t'$ astfel:

$$t \to_R t' \Leftrightarrow t \text{ este } c[z \leftarrow \theta_s(l)]$$
 şi
$$t' \text{ este } c[z \leftarrow \theta_s(r)], \text{ unde}$$
$$c \text{ context}, \ l \to r \in R, \ \theta \text{ substituţie}$$

- Un termen t este reductibil dacă există un termen t' astfel îcât $t \to t'$.
- Un termen t este în formă normală (ireductibil) dacă nu este reductibil.
- t_0 este o formă normală a lui t dacă $t \stackrel{*}{\to} t_0$ și t_0 este în formă normală.
- t_1 şi t_2 se intâlnesc $(t_1 \downarrow t_2)$ dacă există $t \in T$ a.î. $t_1 \stackrel{*}{\to} t \stackrel{*}{\leftarrow} t_2$.

(S6.3) Fie \mathcal{L} un limbaj de ordinul I cu un simbol de constantă 0, un simbol de funcție s de aritate 1 şi un simbol de funcție f de aritate 2. Folosind sistemul de rescriere

$$R=\{f(g(x))\to g(x),\ g(f(x))\to g(x)\},$$

rescrieţi termenii $t_1 = f(f(g(f(g(0)))))$ şi $t_2 = f(f(0))$ până la o formă normală. Caracterizaţi formele normale ale sistemului R.

Demonstrație:

Forma normală a lui t_1 este g(g(0)), deoarece

$$t_1 = f(f(g(f(g(0))))) \to_R f(f(g(g(0)))) \to_R f(g(g(0))) \to_R g(g(0)),$$

iar t_2 este în formă normală.

Formele normale pentru sistenul R sunt $f(\ldots(f(0))\ldots), g(\ldots(g(0))\ldots)$ și 0.

Teorie pentru S6.4:

• Un sistem de rescriere se numeşte

- noetherian: dacă nu există reduceri infinite $t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \dots$
- confluent: $t_1 \stackrel{*}{\leftarrow} t \stackrel{*}{\rightarrow} t_2 \Rightarrow t_1 \downarrow t_2$.
- complet (convergent, canonic): confluent şi noetherian.
- Fie $l_1 \to r_1$, $l_2 \to r_2 \in R$ astfel încât:
 - (i) $Var(l_1) \cap Var(l_2) = \emptyset$,
 - (ii) există t un subtermen al lui l_1 care nu este variabilă $(l_1 = c[z \leftarrow t], \text{ unde } nr_z(c) = 1, t \text{ nu este variabilă})$
 - (iii) există θ c.g.u pentru t și l_2 (i.e. $\theta(t) = \theta(l_2)$).

Pereche
a $(\theta(r_1),\theta(c)[z\leftarrow\theta(r_2)])$ se numește pereche critică.

$$\theta(r_1) \stackrel{\theta(l_1)}{\longleftarrow} \theta(c) \stackrel{R}{[z \leftarrow \theta(r_2)]}$$

Teorema 2 (Teorema Perechilor Critice). Dacă R este noetherian, atunci sunt echivalente:

- (i) R este confluent,
- (ii) $t_1 \downarrow_R t_2$ pentru orice pereche critică (t_1, t_2) .

(S6.4) Fie \mathcal{L} un limbaj de ordinul I cu două simboluri de funcție f și g de aritate 1. Cercetați dacă sistemul de rescriere de mai jos este confluent:

$$R = \{ f(f(x)) \to g(x) \}.$$

Demonstraţie:

Se observă că R este noetherian, deci putem aplica Teorema Perechilor Critice. Determinăm perechile critice ale sistemului R. Redenumind variabilele, considerăm $l_1 \to r_1, l_2 \to r_2 \in R$ ca fiind $f(f(x)) \to g(x)$ și $f(f(y)) \to g(y)$, respectiv. Subtermenii lui l_1 care nu sunt variabile sunt f(x) și f(f(x)). Investigăm fiecare caz:

• t := f(x). Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = f(z). Mai mult, $\theta(x) = f(y)$ este c.g.u. pentru t și l_2 . Obținem perechea critică $P_1 = (g(f(y)), f(g(y)))$.

• t := f(f(x)). Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Mai mult, $\theta(x) = y$ este c.g.u. pentru t și l_2 . Obținem perechea critică $P_1 = (g(y), g(y))$.

Evident $g(y) \downarrow g(y)$, dar $g(f(y)) \not\downarrow f(g(y))$ deoarece g(f(y)) şi f(g(y)) sunt deja în formă normală. Din Teorema Perechilor Critice obținem că R nu este confluent.

(S6.5) Fie \mathcal{L} un limbaj de ordinul I cu trei simboluri de constantă a, b şi c, un simbol de funcție g de aritate 1 şi un simbol de funcție f de aritate 2. Cercetați dacă sistemul de rescriere de mai jos este confluent:

$$R = \{ f(x, x) \to a, \quad f(x, g(x)) \to b, \quad c \to g(c) \}.$$

Demonstrație:

Se observă că R nu se termină:

$$c \to_R g(c) \to_R g(g(c)) \to_R \dots$$

În concluzie nu putem aplica Teorema perechilor critice pentru a stabili confluența. Se observă că:

Cum $a \not\downarrow b$, sistemul R nu este confluent.

(S6.6) Fie \mathcal{L} un limbaj de ordinul I cu trei simboluri de constantă a, b şi c, un simbol de funcție g de aritate 1 şi un simbol de funcție f de aritate 2. Găsiți perechile critice pentru sistemul de rescriere:

$$R = \{ f(x,x) \to a, \quad f(x,g(x)) \to b, \quad c \to g(c) \}.$$

Demonstrație:

Printre cazurile posibile, se numără:

- Cazul $\mathbf{l_1} \to \mathbf{r_1} = \mathbf{f}(\mathbf{x}, \mathbf{x}) \to \mathbf{a}$ şi $\mathbf{l_2} \to \mathbf{r_2} = \mathbf{f}(\mathbf{y}, \mathbf{y}) \to \mathbf{a}$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile:
 - $-\mathbf{t} = \mathbf{f}(\mathbf{x}, \mathbf{x})$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Mai mult, $\theta(x) = y$ este c.g.u. pentru t și l_2 . Obținem perechea critică (a, a).
- Cazul $l_1 \to r_1 = f(\mathbf{x}, \mathbf{x}) \to \mathbf{a}$ și $l_2 \to r_2 = f(\mathbf{y}, \mathbf{g}(\mathbf{y})) \to \mathbf{b}$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile:
 - $-\mathbf{t} = \mathbf{f}(\mathbf{x}, \mathbf{x})$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Nu există c.g.u. pentru t și l_2 .
- Cazul $l_1 \to r_1 = f(\mathbf{x}, \mathbf{x}) \to \mathbf{a}$ și $l_2 \to r_2 = \mathbf{c} \to \mathbf{g}(\mathbf{c})$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile:
 - $-\mathbf{t} = \mathbf{f}(\mathbf{x}, \mathbf{x})$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Nu există c.g.u. pentru t și l_2 .
- Cazul $l_1 \to r_1 = f(\mathbf{x}, \mathbf{g}(\mathbf{x})) \to \mathbf{b}$ și $l_2 \to r_2 = f(\mathbf{y}, \mathbf{g}(\mathbf{y})) \to \mathbf{b}$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile:
 - $-\mathbf{t} = \mathbf{g}(\mathbf{x})$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = f(x, z). Nu există c.g.u. pentru t și l_2 .
 - $-\mathbf{t} = \mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x}))$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Mai mult, $\theta(x) = y$ este c.g.u. pentru t și l_2 . Obținem perechea critică (b, b).
- Cazul $\mathbf{l_1} \to \mathbf{r_1} = \mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x})) \to \mathbf{b}$ și $\mathbf{l_2} \to \mathbf{r_2} = \mathbf{c} \to \mathbf{g}(\mathbf{c})$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile:
 - $-\mathbf{t} = \mathbf{g}(\mathbf{x})$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = f(x, z). Nu există c.g.u. pentru t și l_2 .
 - $-\mathbf{t} = \mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x}))$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Nu există c.g.u. pentru t și l_2 .
- Cazul $\mathbf{l_1} \to \mathbf{r_1} = \mathbf{c} \to \mathbf{g(c)}$ şi $\mathbf{l_2} \to \mathbf{r_2} = \mathbf{c} \to \mathbf{g(c)}$. Considerăm subtermenii t ai lui l_1 care nu sunt variabile:
 - $-\mathbf{t} = \mathbf{c}$. Observăm că $l_1 = c[z \leftarrow t]$ pentru contextul c = z. Mai mult, orice substituție este c.g.u. pentru t și l_2 . Obținem perechea critică (g(c), g(c)).

În concluzie, perechile critice pentru R sunt (a, a), (b, b) şi (g(c), g(c)).