13 mai 2023 MP2I

Devoir Surveillé 9

- Écrire lisiblement sur des feuilles grandes et doubles, au stylo ou à l'encre bleu foncé ou noir et souligner ou encadrer ses résultats. On accordera de l'importance à la présentation.
- La calculatrice est interdite.
- Vous avez le droit de sauter des questions et d'admettre les résultats correspondants pour traiter les questions suivantes.
- Il est conseillé de parcourir le sujet dans sa globalité avant de commencer.
- La durée de ce devoir est de 2 heures.

PROBLÈME MATRICES DE TRACE NULLE

Définitions et notations :

• On rappelle que les produits de matrices blocs dont les dimensions sont compatibles se font exactement comme des produits de matrices 2×2 . Ainsi, si $A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$ et $B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$ avec $A_1, B_1 \in \mathcal{M}_n(\mathbb{R}), A_2, B_2 \in \mathcal{M}_{p,n}(\mathbb{R}), A_3, B_3 \in \mathcal{M}_{n,p}(\mathbb{R})$ et $A_4, B_4 \in \mathcal{M}_p(\mathbb{R})$, alors :

$$A \times B = \begin{pmatrix} A_1 B_1 + A_2 B_3 & A_1 B_2 + A_2 B_4 \\ A_3 B_1 + A_4 B_3 & A_3 B_2 + A_4 B_4 \end{pmatrix}.$$

- Pour $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{R})$, on note $\text{Tr}(A) = \sum_{i=1}^n a_{i,i}$ la trace de A.
- On note $\mathcal{T}_n^0(\mathbb{R}) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid \operatorname{Tr}(A) = 0\}$ l'ensemble des matrices de trace nulle, $\mathcal{D}_n(\mathbb{R})$ l'ensemble des matrices diagonales de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{E}_n(\mathbb{R}) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid \forall i \in [1, n], \ a_{i,i} = 0\}$ l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients diagonaux sont nuls.
- On dit qu'une matrice M est de la forme (S) si il existe $X,Y\in\mathcal{M}_n(\mathbb{R})$ telles que M=XY-YX.

Le but du problème est de montrer que les matrices de la forme (S) sont exactement les matrices de trace nulle.

1) Première implication. Soit $M \in \mathcal{M}_n(\mathbb{R})$ de la forme (S). Montrer que $M \in \mathcal{T}_n^0(\mathbb{R})$.

Partie I. Les matrices de diagonale nulle sont de la forme (S).

- 2) Une somme directe.
 - a) On rappelle que $\mathcal{D}_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$. Donner sans preuve sa dimension.
 - b) Démontrer que $\mathcal{E}_n(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ et déterminer sa dimension. On en précisera une base.
 - c) Montrer que $\mathcal{M}_n(\mathbb{R}) = \mathcal{D}_n(\mathbb{R}) \oplus \mathcal{E}_n(\mathbb{R})$.

3) On pose
$$A = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & n \end{pmatrix}$$
 et on note φ l'application $\varphi : \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{M}_n(\mathbb{R}) \\ M & \mapsto & AM - MA \end{array} \right.$

- a) Vérifier que φ est une application linéaire.
- b) Calcul de $rg(\varphi)$.
 - i) Montrer que $\ker(\varphi) = \mathcal{D}_n(\mathbb{R})$.
 - ii) En déduire le rang de φ .
- c) Montrer que $\operatorname{Im}(\varphi) \subset \mathcal{E}_n(\mathbb{R})$.
- d) Montrer que $\operatorname{Im}(\varphi) = \mathcal{E}_n(\mathbb{R})$ et en déduire que :

$$\forall B \in \mathcal{E}_n(\mathbb{R}), \ \exists M \in \mathcal{M}_n(\mathbb{R}) \ /B = AM - MA.$$

e) Montrer que $\forall B \in \mathcal{E}_n(\mathbb{R}), \ \exists N \in \mathcal{E}_n(\mathbb{R}) \ /B = AN - NA$. A-t-on unicité de N?

Partie II. Caractérisation des homothéties.

On va montrer dans cette partie que si $u \in L(\mathbb{R}^n)$ avec $n \in \mathbb{N}^*$ fixé, alors :

u est une homothétie $\Leftrightarrow \forall x \in \mathbb{R}^n, (x, u(x))$ est une famille liée.

- 4) Vérifier l'implication \Rightarrow .
- 5) On fixe à présent $u \in L(\mathbb{R}^n)$ et on suppose que $\forall x \in \mathbb{R}^n$, (x, u(x)) est une famille liée. On note $\mathcal{B}_{can} = (e_1, \dots, e_n)$ la base canonique de \mathbb{R}^n .
 - a) Montrer que $\forall x \in \mathbb{R}^n$, $\exists \lambda_x \in \mathbb{R} / u(x) = \lambda_x e_x$.
 - b) En étudiant $u(e_1 + e_i)$ pour $i \in [2, n]$, montrer que $\forall i \in [2, n]$, $\lambda_{e_i} = \lambda_{e_1}$.
 - c) En déduire que $u = \lambda_{e_1} \mathrm{Id}_{\mathbb{R}^n}$.

Partie III. Les matrices de trace nulle sont semblables aux matrices de diagonale nulle.

Le but de cette partie est de montrer par récurrence sur $n \in \mathbb{N}^*$ la propriété :

$$\mathcal{P}(n): \forall M \in \mathcal{T}_n^0(\mathbb{R}), \exists P \in GL_n(\mathbb{R}) / P^{-1}MP \in \mathcal{E}_n(\mathbb{R}).$$

- 6) Vérifier $\mathcal{P}(1)$.
- 7) On fixe $n \geq 2$ et on suppose $\mathcal{P}(n-1)$. On fixe $M \in \mathcal{T}_n^0(\mathbb{R})$ et on note $u \in L(\mathbb{R}^n)$ l'endomorphisme canoniquement associé à M.
 - a) On suppose qu'il existe $\lambda \in \mathbb{R}$ tel que $M = \lambda I_n$. Préciser alors la valeur de λ et montrer que dans ce cas, $\mathcal{P}(n)$ est vraie.

On suppose dans la suite qu'il n'existe pas de $\lambda \in \mathbb{R}$ tel que $M = \lambda I_n$.

- b) Montrer qu'il existe $x_1 \in \mathbb{R}^n$ tel que $(x_1, u(x_1))$ est libre. Justifier que si l'on pose $x_2 = u(x_1)$ alors il existe des vecteurs x_3, \ldots, x_n de \mathbb{R}^n tels que $\mathcal{B} = (x_1, \ldots, x_n)$ est une base de \mathbb{R}^n .
- c) Déterminer la première colonne de $M' = \operatorname{Mat}_{\mathcal{B}}(u)$. Si on note P_1 la matrice de passage de la base canonique de \mathbb{R}^n (notée \mathcal{B}_{can}) à la base \mathcal{B} , quelle relation a-t-on entre M, M', P_1 et P_1^{-1} ?

d) On décompose la matrice
$$M'$$
 en blocs $M' = \begin{pmatrix} 0 & L \\ C & N \end{pmatrix}$ où $L \in \mathcal{M}_{1,n-1}(\mathbb{R}), C \in \mathcal{M}_{n-1,1}(\mathbb{R})$ et $N \in \mathcal{M}_{n-1}(\mathbb{R})$.

- i) Montrer que $\operatorname{Tr}(N) = 0$ et en déduire qu'il existe $Q \in GL_{n-1}(\mathbb{R})$ telle que $Q^{-1}NQ \in \mathcal{E}_{n-1}(\mathbb{R})$.
- ii) On pose alors $P_2 = \begin{pmatrix} 1 & O_{1,n-1} \\ O_{n-1,1} & Q \end{pmatrix}$ la matrice par blocs où $O_{1,n-1} \in \mathcal{M}_{1,n-1}(\mathbb{R})$ et $O_{n-1,1} \in \mathcal{M}_{n-1,1}(\mathbb{R})$ sont des matrices nulles. Justifier que P_2 est inversible en déterminant son inverse que l'on cherchera sous la forme $\begin{pmatrix} \lambda_2 & L_2 \\ C_2 & Q_2 \end{pmatrix}$ avec

$$\lambda_2 \in \mathbb{R}, L_2 \in \mathcal{M}_{1,n-1}(\mathbb{R}), C_2 \in \mathcal{M}_{n-1,1}(\mathbb{R}) \text{ et } Q_2 \in \mathcal{M}_{n-1}(\mathbb{R}).$$

iii) En notant $P = P_1 P_2$, justifier que $P \in GL_n(\mathbb{R})$ et montrer que $P^{-1}MP \in \mathcal{E}_n(\mathbb{R})$.

Partie IV. La conclusion.

- 8) Soit $M' \in \mathcal{M}_n(\mathbb{R})$ une matrice de la forme (S) et soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice semblable à M'. Montrer que M est également de la forme (S).
- 9) En utilisant alors les résultats des parties précédentes, montrer que si $M \in \mathcal{T}_n^0(\mathbb{R})$, alors M est de la forme (S).