# Lecture 9. Dectection Threshold

<sup>1</sup> School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen)

#### 1. Optimality of Detection Threshold

## 

For the independent Gaussian sequence model

$$Y_i \sim_{indep.} N(\mu_i, 1), \quad i = 1, \dots, n.$$

Consider a "Bayesian" decision/testing problem

$$H_0: \mu_i = 0, \ i = 1, \dots, n, \ v.s. \ H_1: \mu_I = \mu, \ \mu_i = 0, \ i \in \{1, \dots, n\} \setminus I.$$
 (1.1)

where I is uniformly distributed on  $\{1, \dots, n\}$ . Or we can formulate this decision/testing problem as

$$H_0: \mu_i = 0, \ i = 1, \dots, n, \ v.s. \ H_1: \{\mu_i\}_{1 \le i \le n} \sim \pi.$$

where  $\pi$  is the distribution who selects a coordinate I uniformly and sets  $\mu_I = \mu$  and  $\mu_i = 0$  for all other  $i \neq I$ .

As complicated as this multiple hypothesis testing problem may seems, this setup differs from the previous problem in the important respect that  $H_0$  and  $H_1$  are both simple hypotheses and therefore we can directly apply the Neyman-Pearson Lemma. The UMP test rejects for large values of the likelihood ratio and the densities under the null and the alternative are given by

$$f_0(y) = \prod_{j=1}^n \left[ \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y_j^2} \right]$$

$$f_1(y) = \frac{1}{n} \sum_{i=1}^n \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y_i - \mu)^2} \prod_{j=1, j \neq i}^n \left[ \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y_j^2} \right],$$

which leads to the likelihood ratio

$$L = \frac{f_1(y)}{f_0(y)} = \frac{e^{-\frac{1}{2}\mu^2}}{n} \sum_{i=1}^n e^{y_i \mu}.$$

Since  $\{Y_1, \dots, Y_n\}$  are i.i.d under the null hypothesis, so L would "ideally" converge to a constant according to law of large numbers.

Recall the powerlessness threshold  $\mu(n)=(1-\epsilon)\sqrt{2\log n}$  in Bonferroni case. Here we also concentrate on this threshold and investigate the asymptotic behavior of likelihood ratio statistic when taking this  $\mu=\mu(n)$ . But because  $\mu=\mu(n)$  depends on n, so we have to treat it more carefully such as we may need a triangular array argument. For instance, when we check the Lyapunov condition for q=3, we have

$$\frac{1}{\left(\sum_{i=1}^{n} \text{Var}\left(e^{Y_{i}\mu-\mu^{2}/2}\right)\right)^{3/2}} \sum_{i=1}^{n} \mathbb{E}|e^{Y_{i}\mu-\mu^{2}/2}|^{3} \to \infty.$$

Therefore, we may target to derive a weaker result compare to asymptotic distribution.

**Proposition 1.1.** If  $\mu = \mu(n) = (1 - \epsilon)\sqrt{2 \log n}$ , then  $L \stackrel{p}{\to} 1$ .

Proof. Recall that

$$L = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

with  $X_i = e^{Y_i \mu - \frac{1}{2} \mu^2}$  iid. Assume first  $0 < \epsilon < \frac{1}{2}$ , take  $T_n = \sqrt{2 \log n}$ , and write

$$\tilde{L} = \frac{1}{n} \sum_{i=1}^{n} X_i \mathbf{1}_{\{Y_i \le T_n\}},$$

We have

$$P(\tilde{L} \neq L) \le P(\max Y_i > T_n) \to 0,$$

and it suffices to establish that

$$\tilde{L} = \epsilon \sqrt{2 \log n} + o_P(1),$$

which, in particular, follows if

- 1.  $E_0(\tilde{L}) = \Phi(\epsilon \sqrt{2 \log n}),$
- 2.  $Var_0(\tilde{L}) = o(1)$ .

Proceeding,

$$\mathbb{E}_{0}(\tilde{L}) = \mathbb{E}_{0}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\mathbf{1}_{\{Y_{i}\leq T_{n}\}}\right)$$

$$= \int_{-\infty}^{T_{n}}e^{\mu z - \mu^{2}/2}\frac{1}{\sqrt{2\pi}}e^{-\frac{z^{2}}{2}}dz$$

$$= \int_{-\infty}^{T_{n}}\frac{1}{\sqrt{2\pi}}e^{-\frac{(z-\mu)^{2}}{2}}dz$$

$$= \Phi(T_n - \mu) = \Phi(\epsilon \sqrt{2\log n}),$$

where  $\Phi$  is the cumulative distribution function of the standard normal distribution. Furthermore,

$$\operatorname{Var}_{0}(\tilde{L}) = \frac{1}{n} \operatorname{Var} \left( \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} \mathbf{1}_{\{Y_{i} \leq T_{n}\}} \right)$$

$$\leq \frac{1}{n} \mathbb{E}_{0}(X_{1}^{2} \mathbf{1}_{\{Y_{1} \leq T_{n}\}}) = \frac{1}{n} \int_{-\infty}^{T_{n}} e^{-\mu^{2} + 2\mu z} \phi(z) dz = \frac{1}{n} e^{\mu^{2}} \Phi(T_{n} - 2\mu)$$

Since  $\Phi(T_n - 2\mu) \leq \phi(2\mu - T_n)$ , this gives

$$\operatorname{Var}_{0}(\tilde{L}) \leq \frac{1}{n} e^{\mu^{2}} \phi(2\mu - T_{n}) = \frac{1}{n} e^{(1-\epsilon)^{2} T_{n}^{2}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(1-2\epsilon)^{2} T_{n}^{2}}{2}\right)$$
$$= \frac{1}{\sqrt{2\pi}n} \exp\left(\frac{(1-2\epsilon^{2}) T_{n}^{2}}{2}\right) = \frac{1}{\sqrt{2\pi}} \exp\left(-\epsilon^{2} T_{n}^{2}\right) \to 0.$$

This proves the result for  $0 < \epsilon < \frac{1}{2}$ . The claim for  $1 > \epsilon > \frac{1}{2}$  is even simpler since  $\exp(-\mu^2)/n$  converges to zero in this case.

**Proposition 1.2.** Set threshold  $T_n(\alpha)$  such that  $P_0(L \ge T_n(\alpha)) = \alpha$ . Then for the likelihood ratio test,

$$\lim_{n \to \infty} P(Type \ II \ error) = 1 - \alpha.$$

Proof.

$$P(\text{Type II Error}) = P_1(L \ge T_n(\alpha)) = \int \mathbb{1}(L \le T_n(\alpha))dP_1$$

$$= \int \mathbb{1}(L \le T_n(\alpha))LdP_0$$

$$= \int \mathbb{1}(L \le T_n(\alpha))dP_0 + \int \mathbb{1}(L \le T_n(\alpha))(L-1)dP_0$$

$$= (1-\alpha) + \int \mathbb{1}(L \le T_n(\alpha))(L-1)dP_0$$

$$\approx (1-\alpha).$$

Therefore,

$$\lim_{n \to \infty} P(\text{Type II error}) = 1 - \alpha.$$

The last claim follows from the fact that  $L \stackrel{p}{\to} 1$ . We can make this rigorous as follows: let  $Z_n = \mathbf{1}_{\{L \le T_n(\alpha)\}}(L-1)$ . First,  $Z_n \stackrel{p}{\to} 0$ . Second, because  $L \stackrel{p}{\to} 1$ ,  $T_n(\alpha)$  is uniformly bounded, and hence so is  $Z_n$ . The bounded convergence theorem then gives that  $\mathbb{E}[|Z_n|] \to 0$ .

Conclusion: If  $\mu^{(n)} = (1 - \epsilon)\sqrt{2 \log n}$ , then the optimal test has

$$\mathbb{P}(\text{Type I Error}) + \mathbb{P}(\text{Type II Error}) \to 1.$$

**Broad Conclusion:** Let's think back to the original problem, with  $H_1: \mu_i > 0$  for one i, a composite of n alternatives.

We have shown that the average Type II error (Bayes risk) of any level- $\alpha$  procedure is no better than  $1 - \alpha$ , from which it of course follows that the worst-case error (minimax risk) is no better either. That is, for any test

$$\liminf_{n\to\infty} \left[ \mathbb{P}_{H_0}(\text{Type I Error}) + \sup_{H_1} \mathbb{P}(\text{Type II Error}) \right] \ge 1,$$

where the sup is taken over all alternatives in which one coordinate has mean

$$\mu^{(n)} = (1 - \epsilon)\sqrt{2\log n}.$$

In this regime, the Bonferroni procedure is optimal for testing the global null. Asymptotically, it is able to perfectly differentiate between the null and alternative hypothesis when  $\mu^{(n)}$  is larger than the  $\sqrt{2\log n}$  threshold, and we have just shown that no test is able to do better in minimax risk than a coin flip when  $\mu^{(n)}$  is smaller than the  $\sqrt{2\log n}$  threshold.

#### 2. Global Testing

Global Testing: Recall our independent Gaussian sequence model

$$y_i = \mu_i + z_i,$$

where  $z_i$  are i.i.d. N(0,1) for  $1 \le i \le n$ . In vector notation, we can write this as  $y \sim N(\theta, I)$ .

We are testing:

$$H_0: \mu = 0$$
 v.s.  $H_1:$  at least one  $\mu_i \neq 0$ 

Variation: One-Way Layout:

$$y_i = \tau + \mu_i + z_i,$$

where  $\tau$  is the grand mean and  $\mu_i$  are the individual differences. (For identifiability, we usually require  $\sum \mu_i = 0$ .) Then,  $H_0$  is the hypothesis that all

means (treatments) are the same, while  $H_1$  is the hypothesis that at least one is different.

**Global Test Statistic:** Consider the first model above. A natural test is to reject  $H_0$  if  $||y||^2$  is large. In the variation, we would reject if  $\sum (y_i - \bar{y})^2$  is large. (If we didn't know the variance  $\sigma^2$  of  $y_i$ , we could estimate it and use an F test.) All of these tests would exhibit similar qualitative behavior.

**Goal:** Understand when this test is effective.

Notice that, we saw that the Bonferroni procedure is, in some sense, as good as it gets for alternatives with only one  $\mu_i \neq 0$ . We will see that the test above is "optimal" in some sense against a different class of alternatives.

## 2.1. $\chi^2$ Test

The test statistic for the  $\chi^2$  test is

$$T = \sum_{i=1}^{n} y_i^2 = ||y||^2.$$

Under  $H_0$ , we have  $T \approx \chi_n^2$ . Thus, the level- $\alpha$  test rejects  $H_0$  when  $T > \chi_n^2 (1 - \alpha)$ , where  $\chi_n^2 (1 - \alpha)$  is the  $(1 - \alpha)$ -th quantile of  $\chi^2$  distribution with degree of freedom n.

Note that under  $H_0$ ,

$$T = \sum_{i=1}^{n} z_i^2,$$

with  $\mathbb{E}(z_1) = 1$  and  $\operatorname{Var}(z_1^2) = 2$ . Hence, by a CLT approximation, for large n we roughly have

$$\frac{T-n}{\sqrt{2n}} \sim N(0,1),$$

implying that

$$\chi_n^2(1-\alpha) \approx n + \sqrt{2n} \cdot z(1-\alpha).$$

Under  $H_1$ , T is a non-central  $\chi^2$ . Here,

$$T = \sum_{i=1}^{n} (\mu_i + z_i)^2,$$

with  $\mathbb{E}[(\mu_i + z_i)^2] = \mu_i^2 + 1$ , and  $\text{Var}[(\mu_i + z_i)^2] = 4\mu_i^2 + 2$ . Again, for large n we have an approximate normal distribution with

$$\frac{T - (n + ||\mu||^2)}{\sqrt{2n + 4||\mu||^2}} \sim N(0, 1),$$

To summary up, If we let

$$Z = \frac{T - n}{\sqrt{2n}}$$

be the normalized version of the test statistic and define

$$\theta = \frac{\sum_{i=1}^{n} \mu_i^2}{\sqrt{2n}}$$

which is, in a sense, the signal-to-noise ratio (SNR), then we roughly have:

$$H_0: Z \sim N(0,1)$$

$$H_1: Z \sim N\left(\theta, 1 + \frac{\theta}{\sqrt{n/8}}\right).$$

Therefore, the test is easy when  $\theta \ll 1$ , and hard when  $\theta \gg 1$ . (For example, when  $\theta = 2$ , the power of the test is roughly  $P(N(0,1) > 1.65 - 2) \approx 66\%$ .) In other words, the power of the  $\chi^2$  test is determined by the relative size of  $||\mu||^2$  compared to  $\sqrt{n}$ .

**SNR:** If we had started with a model in which the noise variance is  $\sigma^2$  as in

$$y_i = \mu_i + \sigma z_i, \quad i = 1, \dots, n,$$

where the  $z_i$ 's are as before, then we would see that the detection power depends sensitively on

$$\theta = \frac{\sqrt{n}}{2} \frac{||\theta||^2}{\sigma^2 n}.$$

This is because the model is equivalent to  $y_i = \frac{\mu_i}{\sigma} + z_i$ , i = 1, ..., n. Therefore, if we define the SNR as

$$\text{SNR} = \frac{\text{total signal power}}{\text{total expected noise power}} = \frac{||\mu||^2}{\sigma^2 n},$$

we can see that  $\theta \propto \text{SNR}$  with a constant of proportionality equal to  $\sqrt{n/2}$ . So we now assume  $\sigma = 1$  without loss of generality.

A natural question arises: when  $\theta \ll 1$ , is there a test that does better than the  $\chi^2$  test? To show that the answer is no, we use the same strategy as before to show the optimality of the Bonferroni test: introduce a simpler "Bayesian" decision problem, and show that even in this setting, the optimal test given by the Neyman-Pearson Lemma is powerless.

## 2.2. Bayesian Problem

$$H_0: \mu = 0$$
$$H_1: \mu \sim \pi_o$$

where  $\pi_{\rho}$  distributes mass uniformly on the sphere of radius  $\rho$ .

Notice this is a simple hypothesis problem, therefore, to apply Neyman-Pearson Lemma, we look at the likelihood ratio statistic. But before that, we introduce some notation: let  $\mu = \rho u$ , where u is uniformly distributed on the unit sphere, and let  $\pi$  be the uniform distribution on the sphere. We have

$$L = \int_{S^{n-1}} \frac{e^{-\frac{1}{2}\|y - \rho u\|^2}}{e^{-\frac{1}{2}\|y\|^2}} \pi(du) = \int_{S^{n-1}} e^{-\frac{1}{2}\rho^2 + \rho u^T y} \pi(du).$$

We will show that if  $\theta_n = \frac{\rho^2}{\sqrt{2n}} \to 0$  as  $n \to \infty$ , then  $\operatorname{Var}_0(L) \to 0$ . Because  $\mathbb{E}_0(L) = 1$ , we have that  $L \to 1$ , this implies that  $\mathbb{P}_1$  (Type II Error)  $= \mathbb{E}_0(1_{\{L \le T_n\}}L) \to 1 - \alpha$ , i.e. we can do no better than a coin toss (we have no power).

One of the useful relationship worth mentioning is, if  $y \sim N(0,1)$ , then

$$\mathbb{E}\left(e^{a^T y}\right) = e^{||a||^2/2},$$

which is the moment generating function of a Gaussian random vector. Then

$$\mathbb{E}_{0}(L^{2}) = \mathbb{E}_{0} \left[ \int \int e^{-\rho^{2}/2 + \rho u^{T} y} e^{-\rho^{2}/2 + \rho v^{T} y} \pi(du) \pi(dv) \right]$$

$$= \mathbb{E}_{0} \left[ \int \int e^{-\rho^{2} + \rho(u+v)^{T} y} \pi(du) \pi(dv) \right]$$

$$= e^{-\rho^{2}} \int \int e^{\rho^{2}||u+v||^{2}/2} \pi(du) \pi(dv)$$

$$= \int \int e^{\rho^{2} u^{T} v} \pi(du) \pi(dv),$$

where the third equality uses the form of mgf. and the fourth uses the fact that  $u^T u = v^T v = 1$ . By spherical symmetry, we can fix  $v = e_1 = (1, 0, \dots, 0)$  to obtain

$$\mathbb{E}_0(L^2) = \int e^{\rho^2 u_1} \pi(du)$$

with  $u = (u_1, \dots, u_n)$  uniform on  $S^{n-1}$ . Using the Taylor approximation

$$e^{\rho^2 u_1} = 1 + \rho^2 u_1 + \frac{\rho^4 u_1^2}{2} + \cdots,$$

we have

$$\mathbb{E}e^{\rho^2 u_1} = 1 + \mathbb{E}[\rho^2 u_1] + \mathbb{E}\left[\frac{\rho^4 u_1^2}{2}\right] + \cdots$$
$$= 1 + 0 + \frac{\rho^4}{2n} + 0 + O\left(\frac{\rho^8}{n^2}\right),$$

which is to say

$$\mathbb{E}_0 L^2 = 1 + \theta_n^2 + O(\theta_n^4) \to 1$$

when  $\theta_n = \frac{\rho^2}{\sqrt{2n}} \to 0$ . Thus proving that the likelihood ratio test has no power if  $\frac{||\mu||^2}{\sqrt{2n}} \to 0$  as  $n \to \infty$ .

# 3. Comparison between Bonferroni's and $\chi^2$ tests

The regimes in which Bonferroni and  $\chi^2$  are effective are completely different.

• Example 3.1. Consider  $n^{1/4}$  of the  $\mu_i$ 's are equal to  $\sqrt{2logn}$ . (E.g. when  $n=10^6, n^{1/4}\approx 32$  and  $\sqrt{2logn}\approx 5.3$ .) In this set-up, the Bonferroni test has full power, but because

$$\theta_n = \frac{n^{1/4} 2 \log n}{\sqrt{2n}} \to 0,$$

the  $\chi^2$  test has no power.

• Example 3.2. Consider  $\sqrt{2n}$  of the  $\mu_i$ 's are equal to 3. The  $\chi^2$  test has almost full power. Meanwhile, the Bonferroni test has no power, because when n is large (large number of tests) it's very likely that the smallest p-value comes from a null  $\mu_i$ , not a true signal. An intuitive argument is as follows: among these nulls, the largest  $y_i$  has size  $\approx \sqrt{2logn}$  while among the true signals, the largest  $y_i$  has size  $\approx 3 + \sqrt{2log\sqrt{2n}}$ . If n is large, the former value is larger.

We can summarize our conclusions thus far in a table:

|                 | Small, distributed effects | Few strong effects |
|-----------------|----------------------------|--------------------|
| $\chi^2$ test   | Powerful                   | Weak               |
| Bonferroni test | Weak                       | Powerful           |

We present some further numerical illustration: Let  $n=10^6$  and  $\alpha=0.05$ , and consider Bonferroni's,  $\chi^2$  and Fisher's combination global tests for the following alternatives:

- Sparse strong effects:  $\mu_i$  is the same as the Bonferroni Threshold,i.e.,  $(|z(\alpha/(2n))| = 5.45)$  for  $1 \le i \le 4$  and 0 otherwise.
- Distributed weak effects:  $\mu_i$  is 1.1 for  $1 \le i \le k = 2400$  and 0 otherwise.

In the sparse setting, the power of Bonferroni's method can be approximated as follows :

$$1 - \mathbb{P}_{H_1}(\max |y_i| \le |z(\alpha/(2n))|) \approx 1 - (\mathbb{P}(|y_1| \le \mu_1))^4 \approx 1 - 1/16 = 0.9375$$

On the other hand,  $\chi^2$  test (and similarly Fisher's test) would be almost powerless, as  $\theta = ||\mu||^2/\sqrt{2n} = 0.084 \ll 1$ .

A numerical approximation of the power for these tests with 500 trials is as expected:

Bonferroni = 
$$95.0\%$$
, Chi – sq =  $5.6\%$ , Fisher =  $6.0\%$ ,

For the other alternative, the power of Bonferroni is roughly

$$\mathbb{P}_{H_1}(\max |y_i| > |z(\alpha/(2n))|) \le \mathbb{P}(\max_{i \le k} |y_i| > |z(\alpha/(2n))|) + \mathbb{P}(\max_{i > k} |z_i| > |z(\alpha/(2n))|) \approx 0.066.$$

Also  $\theta = ||\mu||^2/\sqrt{2n} = 2.05$ . Hence, Bonferroni's approach has almost no power while the  $\chi^2$  test and Fisher's test should have significant power. Numerically,

Bonferroni = 
$$6.0\%$$
, Chi – sq =  $68.8\%$ , Fisher =  $63.4\%$ ,

4. Comparison of Bonferroni and other Global Tests

Recall Simes procedure, which rejects the global null when

$$\min_{1 \le i \le n} \{ p_{(i)} \cdot n/i \} \le \alpha.$$

The Simes procedure is strictly less conservative than Bonferroni.

• Example 4.1. Consider n=2, thus Simes' test rejects if  $p_{(1)} \leq \alpha/2$  or  $p_{(2)} \leq \alpha$ . Below we plot the rejection regions of each test in Figure.1. We can easily check that in this case, the size of Bonferroni is  $\alpha - \alpha^2/4$ , while the size of Simes is  $\alpha$ . Nevertheless, Simes still tends to look at lower p-values, since higher p-values are unlikely to be less or equal to  $\alpha \frac{i}{n}$ .

**Theorem 4.2.** Under  $H_0$  and independence of the  $p_i$ , the Simes test statistics  $T_n \sim U(0,1)$ , and thus the Simes test rejects  $H_0$  if  $T_n \leq \alpha$ .



Figure 1: Striped area is the rejection region of Bonferroni approach and shadow area is the rejection region of Simes approach.

*Proof.* We adopt the mathematical induction approach. Clearly the theorem results hold for n=1. Assume that it is true for n-1, i.e.,  $T_{n-1} \sim U(0,1)$ . Notice that the density of  $p_{(n)}$  is

$$f(t) = nt^{n-1}$$

for  $t \in [0,1]$ . Then

$$\mathbb{P}(T_n \le \alpha) = \int_0^1 \mathbb{P}(T_n \le \alpha | p_{(n)} = t) f(t) dt$$
$$= \int_0^\alpha f(t) dt + \int_\alpha^1 \mathbb{P}(T_n \le \alpha | p_{(n)} = t) f(t) dt.$$

We first handle the second integral. Conditional on  $p_{(n)} = t$ , the other p values are independently uniform on U(0,t), so if we divide them by t, we can apply the inductive hypothesis, once we observe:

$$\min_{1 \le i \le n-1} p_{(i)} \frac{n}{i} \le \alpha \quad \Leftrightarrow \quad \min_{1 \le i \le n-1} \frac{p_{(i)}}{t} \cdot \frac{n-1}{i} \le \frac{\alpha}{t} \cdot \frac{n-1}{n}$$

Therefor,  $\mathbb{P}(T_n \leq \alpha | p_{(n)} = t) = \frac{\alpha}{t} \cdot \frac{n-1}{n}$  for  $t \geq \alpha$ . Then

$$\mathbb{P}(T_n \le \alpha) = \int_0^\alpha nt^{n-1}dt + \int_\alpha^1 \frac{\alpha}{t} \cdot \frac{n-1}{n}nt^{n-1}dt$$
$$= \alpha^n + \alpha \int_\alpha^1 (n-1)t^{n-2}dt = \alpha^n + \alpha[1 - \alpha^{n-1}] = \alpha.$$

Thus finishes the proof. As a summary, we see that the Simes procedure is powerful for a single strong effect, but has moderate power for many mild effects.

#### 5. Tests Based on Empirical CDF's

Define empirical CDF of  $p_1, \dots, p_n$  as

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{i : p_i \le t\}$$

Under the global null  $H_0$  we have that

$$\mathbb{E}(\hat{F}_n(t)) = t.$$

Moreover, if we assume that  $p_i$ 's are independent,  $n\hat{F}_n(t)$  is a binomial random variable with parameter t. Now, the idea is that, under the global null,  $\hat{F}_n(t)$  should be around t. Hence, we can measure the distance between what we observe and what we expect and reject if the difference is large.

#### 5.1. Tukey's Second-Level Significance Testing

Second-Level Significance Testing: Define the Higher Criticism Statistic

$$HC_n^* = \max_{0 \le t \le 1} \frac{\hat{F}_n(t) - t}{t(1 - t)/n}$$

The difference between this test and Anderson-Darling statistic is that this uses a maximum value rather than a (squared) average.

Define statistics  $HC_{-}(t)$  as

Define statistics  $HC_n(t)$  as

$$HC_n(t) = \frac{\hat{F}_n(t) - t}{t(1 - t)/n} - \frac{\#\{\text{significance of level } 1\} - nt}{\sqrt{nt(1 - t)}}$$

then  $HC_n^*$  scans across significance levels for departure from  $H_0$ . Hence, a large value of  $HC_n^*$  indicates significance of an overall body of tests.

#### 6. Sparse Mixtures

Original Model: We have independent statistics  $X_i$  distributed as

$$H_{0,i}: X_i \sim N(0,1)$$

# 

$$H_{1,i}: X_i \sim N(\mu_i, 1), \qquad \mu_i > 0$$

Here we consider a framework in which we are interested in possibilities within  $H_1$  with a small fraction of non-null hypotheses. Rather than directly saying that there are some amount of nonzeromeans under  $H_1$ , we assume that our samples follow a mixture of N(0,1) and  $N(\mu,1)$  with  $\mu$  fixed, resulting in the following:

#### Simple Model with Equal Means:

$$H_0: X_i \overset{i.i.d}{\sim} N(0,1)$$

$$H_1: X_i \overset{i.i.d}{\sim} (1-\varepsilon)N(0,1) + \varepsilon N(\mu,1)$$

Put another way, there are about  $n\varepsilon$  non-nulls under  $H_1$ . The likelihood ratio for this model is then

$$L = \prod_{i=1}^{n} [(1 - \varepsilon) + \varepsilon e^{\mu X_i - \mu^2/2}].$$

In Ingster (2000) and Jin (2003), they considered the dependence scheme of  $\varepsilon$  and  $\mu$  on n as

$$\varepsilon_n = n^{-\beta}, \frac{1}{2} < \beta < 1$$
$$\mu_n = \sqrt{2r \log n}, 0 < r < 1$$

to carry out asymptotic analysis. This automatically incorporates the settings of "the needle in a haystack problem" corresponds to  $\beta=1$  and r=1; the small distributed effects case corresponds to  $\beta=1/2$ .

In this more general case, Ingster (2000) and Jin (2003) found that there is a threshold curve for r of the form

$$\rho^*(\beta) = \begin{cases} \beta - \frac{1}{2} & \frac{1}{2} < \beta < \frac{3}{4} \\ (1 - \sqrt{1 - \beta})^2 & \frac{3}{4} \le \beta \le 1 \end{cases}$$

such that

1. If  $r > \rho^*(\beta)$ , we can adjust the Neyman-Pearson test to achieve

$$\mathbb{P}_0(\text{Type I Error}) + \mathbb{P}_1(\text{Type II Error}) \to 0$$

2. If  $r < \rho^*(\beta)$ , then for any test

$$\lim \inf_{n} \mathbb{P}_0(\text{Type I Error}) + \mathbb{P}_1(\text{Type II Error}) \geq 1$$

More interestingly, it has been proved for  $r > \rho^*(\beta)$  in the sparse mixture setting, the higher criticism statistic with a proper threshold has full power asymptotically. This is interesting because the HC statistic does not need knowledge of  $\varepsilon$  and / or  $\mu$ .

#### References

Ingster, Y. I. (2000). Adaptive chi-square tests. Journal of Mathematical Sciences, 99, 1110-1119.

Jin, J. (2003). Detecting and estimating sparse mixtures. Stanford University. Williams, D. (1991). Probability with martingales. Cambridge university press.