## Mecánica de Materiales

#### III. Flexión

Pedro Jorge De Los Santos

30 de marzo de 2017

Instituto Tecnológico de Celaya Departamento de Ingeniería Mecánica

## Flexión

#### Introducción

En ingeniería se denomina flexión al tipo de deformación que presenta un elemento estructural alargado en una dirección perpendicular a su eje longitudinal. El término *alargado* se aplica cuando una dimensión es dominante frente a las otras. Un caso típico son las vigas, las que están diseñadas para trabajar, principalmente, por flexión.



### Tipos de flexión

Flexión pura. Flexión de la viga ante un momento flexionante



### Tipos de flexión

Flexión no uniforme. Flexión en presencia de fuerzas cortantes



### Flexión



**Fig. 4.4** Cantilever beam, not in pure bending.

#### Flexión

La distribución de esfuerzos normales en la sección puede obtenerse del par  ${\bf M}$  como si la viga estuviese en flexión pura.

Los esfuerzos cortantes en la sección dependen de la fuerza P'.

### Elemento simétrico sometido a flexión pura

Las fuerzas internas en cualquier sección transversal de un elemento simétrico en flexión pura son equivalentes a un par. El momento M se conoce como *momento flector*.



### Signo del momento flector

Dependiento la curvatura que produzca.



En cualquier punto de un elemento delgado, en flexión pura, se tiene un estado de esfuerzo uniaxial. Dado AB decrece y A'B' se alarga, cuando M>0, se nota que la deformación  $\epsilon_x$  y el esfuerzo  $\sigma_x$  son negativos en la parte superior del elemento (compresión) y positivos en la parte inferior (tensión).



Existe una superficie paralela a las caras superior e inferior del elemento, donde  $\epsilon_X$  y  $\sigma_X$  se anulan, conocida como superficie neutra.



Considerando el eje neutro:

$$L = \rho \theta$$

Considerando el arco JK:

$$L' = (\rho - y)\theta$$

Dado que inicialmente la longitud de JK era igual a L, entonces:

$$\delta = L' - L$$

Sustituyendo:

$$\delta = (\rho - y)\theta - \rho\theta$$

La deformación unitaria longitudinal  $\epsilon_x$  de los elementos de JK se obtiene dividiendo  $\delta$  entre la longitud original L de JK:

$$\epsilon_{\mathsf{x}} = \frac{\delta}{L} = \frac{-y\theta}{\rho\theta}$$

$$\epsilon_{\mathsf{x}} = -\frac{\mathsf{y}}{\rho}$$

Si c es la distancia máxima a la superficie neutra, y  $\epsilon_m$  el valor máximo absoluto de la deformación unitaria, entonces:

$$\epsilon_m = \frac{c}{\rho}$$

Luego:

$$\epsilon_{\mathsf{x}} = -\frac{\mathsf{y}}{\mathsf{c}} \epsilon_{\mathsf{m}}$$

### Esfuerzos y deformaciones en el rango elástico

Si c es la distancia máxima a la superficie neutra, y  $\epsilon_m$  el valor máximo absoluto de la deformación unitaria, entonces:

$$\epsilon_m = \frac{c}{\rho}$$

Luego:

$$\epsilon_{\mathsf{X}} = -\frac{\mathsf{y}}{\mathsf{c}} \epsilon_{\mathsf{m}}$$

# Deflexión de vigas

### Esfuerzos y deformaciones en el rango elástico

Si c es la distancia máxima a la superficie neutra, y  $\epsilon_m$  el valor máximo absoluto de la deformación unitaria, entonces:

$$\epsilon_m = \frac{c}{\rho}$$

Luego:

$$\epsilon_{\mathsf{X}} = -\frac{\mathsf{y}}{\mathsf{c}} \epsilon_{\mathsf{m}}$$

#### Referencias

- 1. Beer, F. P. (2013). Mecanica de materiales. Mexico, D.F: McGraw-Hill Interamericana.
- 2. Gere, J. M., Goodno, B. J., León, C. J. (2014). Mecánica de materiales. Australia: Thomson Learning.
- 3. Gere, J., Timoshenko, S. (1998). Mecnica de materiales. Mxico, D.F: Thomson Learning.
- Hibbeler, R. C., Murrieta, M. J. E., Molina, S. O., Saldana,
  S. S. (2011). Mecanica de materiales. Naucalpan de Juarez,
  Mexico: Pearson educacion.

••••

El contenido de esta presentación está basado en las referencias bibliográficas básicas del curso. Si no se indica de manera explícita, las imágenes y diagramas corresponden a la referencia [1].