Controle intermédiaire Durée 2H

Documents, Calculatrices et téléphones portables interdits.

Exercice 1 6 points

Les questions sont indépendantes

- 1. Etudier la nature de $\sum_{n>1} \left(nLog\left(1+\frac{1}{n}\right) \cos\frac{1}{\sqrt{n}} \right)$.
- 2. Etudier la convergence et la convergence absolue de $\sum_{n\geq 1}\sin\left(\frac{n^2+1}{n}\pi\right)$.
- 3. Calculer $\lim_{n \longrightarrow +\infty} \frac{n^{2016}}{n!}$.

Exercice 25,5 points

Soit la fonction $F(x) = \sum_{n \ge 1} f_n(x)$ où $f_n(x) = \frac{\cos(nx)}{n^x}$ avec $x \in \mathbb{R}_+^*$.

- 1. Montrer que F est bien définie sur \mathbb{R}_+^* .
- 2. Montrer que $\sum_{n\geq 1} f_n(x)~$ converge normalement sur $[2,+\infty[~.$
- 3. Etudier la convergence uniforme de $\displaystyle \sum_{n\geq 1} f_n(x)$ sur]0,2].
- 4. Etudier la continuité de F sur \mathbb{R}_+^* .

Exercice 3 3,5 points

Les questions sont indépendantes:

1. Déterminer le rayon et la somme de la série entière

$$\sum_{n\geq 0} \left(-1\right)^{n+1} nx^n.$$

2. Déterminer le rayon de la série entière

$$\sum_{n\geq 0} \left(chn\right) x^n.$$

1

On rappelle que $chn = \frac{e^n + e^{-n}}{2}$.

Corrigé du CI

Exercice 1

1. Etudier la nature de $\sum_{n>1} \left(nLog\left(1+\frac{1}{n}\right) - \cos\frac{1}{\sqrt{n}} \right)$:

Posons

$$u_n = nLog\left(1 + \frac{1}{n}\right) - \cos\frac{1}{\sqrt{n}}$$

Utilisons les développements limités, on a:

$$Log\left(1 + \frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)$$

donc

$$nLog\left(1+\frac{1}{n}\right)=1-\frac{1}{2n}+\frac{1}{3n^2}+\circ\left(\frac{1}{n^2}\right)$$

$$\cos\frac{1}{\sqrt{n}} = 1 - \frac{1}{2n} + \frac{1}{4!n^2} + o\left(\frac{1}{n^2}\right)$$

d'où

$$nLog\left(1+\frac{1}{n}\right) - \cos\frac{1}{\sqrt{n}} = \frac{7}{4!n^2} + o\left(\frac{1}{n^2}\right)$$

par conséquent

$$nLog\left(1+\frac{1}{n}\right)-\cos\frac{1}{\sqrt{n}} \sim \frac{7}{4!n^2}$$

Comme $\frac{7}{4!n^2} \ge 0$ alors $\sum_{n\ge 1} U_n$ et $\sum_{n\ge 1} \frac{7}{4!n^2}$ sont de même nature;

or $\sum_{n\geq 1} \frac{7}{4!n^2}$ converge car c'est une série de Riemann 2>1 donc $\sum_{n\geq 1} U_n$ converge.

2. Etudier la convergence et la convergence absolue de $\sum_{n\geq 1} \sin\left(\frac{n^2+1}{n}\pi\right)$.

Posons

$$v_n = \sin\left(\frac{n^2 + 1}{n}\pi\right)$$

On a

$$v_n = \sin\left(n\pi + \frac{\pi}{n}\right) = (-1)^n \sin\left(\frac{\pi}{n}\right).$$

(a) La convergence absolue de $\sum_{i=1}^{n} v_i$:

$$|v_n| = \left| (-1)^n \sin\left(\frac{\pi}{n}\right) \right| = \left| \sin\left(\frac{\pi}{n}\right) \right| \underset{+\infty}{\sim} \frac{\pi}{n}$$

Or $\sum_{n\geq 1}\frac{\pi}{n}$ diverge car série de Rieman $1\leq 1$ donc $\sum_{n\geq 1}|v_n|$ diverge donc $\sum v_n$ ne converge pas absolument.

(b) La convergence de $\sum_{n\geq 1} v_n$:

Méthode 1:

$$v_n = (-1)^n \sin\left(\frac{\pi}{n}\right)$$

$$= (-1)^n \left(\frac{\pi}{n} - \frac{1}{6} \frac{\pi^3}{n^3} + \circ\left(\frac{1}{n^3}\right)\right)$$

$$= \pi \underbrace{\frac{(-1)^n}{n}}_{w_n} - \underbrace{\frac{\pi^3}{6} \frac{(-1)^n}{n^3} + \circ\left(\frac{1}{n^3}\right)}_{t_n}$$

i. $\sum_{n\geq 1} w_n$ converge car c'est une série de Leibniz.

ii.
$$t_n \underset{+\infty}{\sim} -\frac{\pi^3 \left(-1\right)^n}{6n^3} = k_n \Longrightarrow |t_n| \underset{+\infty}{\sim} \frac{\pi^3}{6n^3}$$

 $\sum_{n>1} \frac{\pi}{6n^3}$ converge car c'est une série de Riemann 2>1.

donc $\sum_{i=1}^{n} t_n$ converge absolument donc elle converge

donc $\sum_{n\geq 1} v_n$ converge car c'est la somme de deux séries convergentes.

Conclusion $\sum v_n$ est semie convergente.

Méthode 2: On montre que $\displaystyle{\sum_{n\geq 1}} v_n$ est une série de Leibniz

 $v_n = (-1)^n \sin\left(\frac{\pi}{n}\right) : \sin\left(\frac{\pi}{n}\right) \ge 0 \sin\left(\frac{\pi}{n}\right) \downarrow \text{ car composée d'une crois-}$

sante et d'une décroissante. $\lim_{n\longrightarrow +\infty}\sin\left(\frac{\pi}{n}\right)=0\ \mathrm{donc}\ \sum_{n\geq 1}v_n\ \mathrm{est}\ \mathrm{une}\ \mathrm{série}\ \mathrm{de}\ \mathrm{Leibniz}\ \mathrm{donc}\ \mathrm{elle}\ \mathrm{est}$ convergente.

3. Calculer $\lim_{n \longrightarrow +\infty} \frac{n^{2016}}{n!}$: Posons $b_n = \frac{n^{2016}}{n!}$, étudions la nature de lasérie $\sum_{n \ge 0} b_n$;

 $b_n > 0$ appliquons la règle de D'ala

$$b_n > 0 \text{ appliquons la règle de D'alambert:}$$

$$\lim_{n \longrightarrow +\infty} \frac{b_{n+1}}{b_n} = \lim_{n \longrightarrow +\infty} \frac{\left(n+1\right)^{2016}}{\left(n+1\right)!} \cdot \frac{n!}{n^{2016}} = \frac{n!}{\left(n+1\right)!} \cdot \frac{\left(n+1\right)^{2016}}{n^{2016}} = \frac{1}{n+1} \cdot \left(\frac{n+1}{n}\right)^{2016}$$

$$\lim_{n \longrightarrow +\infty} \frac{b_{n+1}}{b_n} = \lim_{n \longrightarrow +\infty} \frac{1}{n+1} \cdot \left(\frac{n+1}{n}\right)^{2016} = 0 < 1 \Longrightarrow \sum_{n \ge 0} b_n \text{ converge}$$

$$\Longrightarrow \lim_{n \longrightarrow +\infty} b_n = 0.$$

Exercice 2 5,5 points

Soit la fonction
$$F(x) = \sum_{n \ge 1} f_n(x)$$
 où $f_n(x) = \frac{\cos(nx)}{n^x}$ avec $x \in \mathbb{R}_+^*$.

- 1. Montrer que F est bien définie sur \mathbb{R}_+^* . $\sum_{n\geq 1}\frac{\cos{(nx)}}{n^x} \text{ converge si et ssi } x>0 \text{ c'est un exemple fondamental.}$
- 2. Montrer que $\sum_{n\geq 1} f_n(x)$ converge normalement sur $[2,+\infty[$.

On a:

$$|f_n(x)| = \left| \frac{\cos(nx)}{n^x} \right| \le \frac{1}{n^x}$$

Or
$$x \ge 2$$
 \implies $-x \le -2$ \implies $-x Logn \le -2Logn$ car $Logn \ge 0$ \implies $e^{-x \log n} \le e^{-2\log n}$ car e^x est \uparrow \implies $\frac{1}{n^x} \le \frac{1}{n^2}$ \implies $|f_n(x)| \le \frac{1}{n^2}$ $\forall x \in [2, +\infty[$.

or $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge car série de Rieman 2 > 1.

donc $\sum_{n>1} f_n(x)$ converge normalement sur $[2, +\infty[$.

3. Etudier la convergence uniforme de $\sum f_n(x)$ sur]0,2].

Posons
$$]0,2] =]0,\varepsilon] \cup [\varepsilon,2]$$
 où $0 < \varepsilon < 2$

(a) Etude de la cv uniforme sur $]0,\varepsilon]$:
On remarque que: $\exists x_n = \frac{1}{n} \in]0,\varepsilon]$ à partir d'un certain rang, tel que $f_n(x_n) = f_n(\frac{1}{n}) = \frac{\cos{(1)}}{\frac{1}{n}}$

$$\lim_{n \longrightarrow +\infty} \frac{\cos(1)}{\frac{1}{n}} = \lim_{n \longrightarrow +\infty} \cos(1) e^{-\frac{Logn}{n}} = \cos(1) \neq 0 \Longrightarrow (f_n(x))_n$$

ne converge pas uniformément sur $]0,\varepsilon] \Longrightarrow \sum_{n\geq 1} f_n(x)$ ne converge pas

uniformément sur $]0,\varepsilon] \Longrightarrow \sum_{n\geq 1} f_n(x)$ ne converge pas uniformément sur [0, 2]

(b) Etude de la cv uniforme sur $[\varepsilon, 2]$: Appliquons Abel1 uniforme:

i.
$$\frac{1}{n^x}$$
 est décroissante

i.
$$\frac{1}{n^x}$$
 est décroissante
ii. $\frac{1}{n^x} = n^{-x} = e^{-x \log n} \le e^{-\log n} = \frac{1}{n^\varepsilon}$ et $\lim_{n \to +\infty} \frac{1}{n^\varepsilon} = 0 \Longrightarrow \frac{1}{n^x} \xrightarrow[\text{surf}(\varepsilon,2)]{} 0$.

iii.
$$\left| \sum_{k=1}^{n} \frac{\cos(kx)}{k^{x}} \right| \leq \frac{1}{\left| \sin\left(\frac{x}{2}\right) \right|}$$

$$2 \geq x \geq \varepsilon \implies 1 \geq \frac{x}{2} \geq \frac{\varepsilon}{2}$$

$$\implies \sin\left(\frac{x}{2}\right) \geq \sin\left(\frac{\varepsilon}{2}\right)$$

$$\implies \left| \sin\left(\frac{x}{2}\right) \right| = \sin\left(\frac{x}{2}\right) \geq \sin\left(\frac{\varepsilon}{2}\right)$$

$$\implies \frac{1}{\sin\left(\frac{x}{2}\right)} \leq \frac{1}{\sin\left(\frac{\varepsilon}{2}\right)}$$

$$\implies \frac{1}{\sin\left(\frac{x}{2}\right)} \leq \frac{1}{\sin\left(\frac{\varepsilon}{2}\right)}$$

$$\left| \sum_{k=1}^{n} \frac{\cos(kx)}{k^{x}} \right| \leq \frac{1}{\sin\left(\frac{\varepsilon}{2}\right)} \iff \text{indép de } x$$

 $\operatorname{car} \frac{x}{2} \in \left[\frac{\varepsilon}{2}, 1\right] \subset \left[0, \frac{\varepsilon}{2}, 1\right]$

et sur cet intervalle sin i

Conclusion: $\sum_{n\geq 1} f_n(x)$ converge uniformément sur $[\varepsilon,2]$.

- 4. Etudier la continuité de F sur \mathbb{R}_+^* .
 - (a) $\forall n, f_n \text{ est continue sur } \mathbb{R}$.

$$\begin{array}{ll} \text{(b)} & \displaystyle \sum_{n\geq 1} f_n(x) \text{ converge normalement sur } [2,+\infty[\text{ donc } \displaystyle \sum_{n\geq 1} f_n(x) \text{ converge } \\ & \text{uniformément sur } [2,+\infty[\\ & \text{ et } \displaystyle \sum_{n\geq 1} f_n(x) \text{ converge uniformément sur } [\varepsilon,2] \text{ donc } \displaystyle \sum_{n\geq 1} f_n(x) \text{ converge } \\ & \text{uniformément sur } [\varepsilon,+\infty[\ \forall \varepsilon>0. \end{array}$$

Conclusion F est continue sur $[\varepsilon, +\infty[$ $\forall \varepsilon > 0$ donc F est continue sur $\underset{\varepsilon>0}{\cup} \left[\varepsilon, +\infty\right[= \mathbb{R}_{+}^{*}$

Exercice 3 3,5points

Les questions sont indépendantes:

1. Déterminer le rayon et la somme de la série entière

$$\sum_{n>0} (-1)^{n+1} n x^n.$$

On pose $a_n = (-1)^{n+1} n$

(a) Le rayon de convergence de la série:

$$\lim_{n \longrightarrow +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \longrightarrow +\infty} \left| \frac{n+1}{n} \right| = 1 \Longrightarrow R = 1.$$

(b) Le domaine de convergence D de la série:

Si
$$x = 1, \sum_{n \ge 0} (-1)^{n+1} n$$
 diverge grossièrement.

Si
$$x = -1$$
, $\sum_{n \ge 0}^{n \ge 0} (-1)^{n+1} n (-1)^n = -\sum_{n \ge 0} n$ qui diverge grossièrement.
donc $D =]-1,1[$.

(c) Calcul de la somme: Pour
$$x\in]-1,1[$$

$$S\left(x\right) =\sum_{n\geq 0}\left(-1\right) ^{n+1}nx^{n}=-\sum_{n\geq 0}\left(-x\right) ^{n}n$$

Posons
$$y = -x \in]-1,1[$$

$$\sum_{n=0}^{+\infty} ny^n = \sum_{n=1}^{+\infty} ny^n = y \sum_{n=1}^{+\infty} ny^{n-1}$$

$$= y \left(\sum_{n=0}^{+\infty} y^n\right)' \forall y \in]-1,1[$$

$$= y \left(\frac{1}{1-y}\right)' \forall y \in]-1,1[$$

$$= \frac{y}{(y-1)^2}. \forall y \in]-1,1[.$$

donc
$$S(x) = \frac{x}{(x+1)^2} . \forall x \in]-1, 1[.$$

2. Déterminer le rayon de la série entière

$$\sum_{n>0} (chn) x^n.$$

On rappelle que
$$chn = \frac{e^n + e^{-n}}{2}$$
.

$$chn = \frac{e^n + e^{-n}}{2} = e^n \left(\frac{1 + e^{-2n}}{2}\right) \underset{+\infty}{\sim} e^n \cdot \frac{1}{2} = b_n$$

On a
$$\lim_{n \to +\infty} \left| \frac{b_{n+1}}{b_n} \right| = \lim_{n \to +\infty} \left| \frac{e^{n+1}}{e^n} \right| = e \Longrightarrow R = \frac{1}{e}.$$