Math 360 Notes

September 11, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Limits, Continuity, and Differentiability

Recall from Real Analysis that:

Definition 1. $\lim_{x\to z_0} f(z) = f(z_0)$ iff $\forall \epsilon > 0$, $\exists \delta > 0$ such that $d(z, z_0) < \delta$ implies $d(f(z) - f(z_0)) < \epsilon$. Note, $| \circ |$ denotes the modulus of a complex number z.

Suppose $\lim_{z\to z_0} f(z) = L$. Then $L = \alpha + i\beta$, $z_0 = x_0 + iy_0$, and

$$f(z) = u(x,y) + iv(x,y). \tag{1}$$

iff

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = \alpha \tag{2}$$

$$\lim_{(x,y)\to(x_0,y_0)} v(x,y) = \beta. \tag{3}$$

It works out that all of our limit rules still hold, including L'Hopital's rule. Also, everything from limits carries over to continuity.

Theorem 1 (Extreme Value Theorem). Let f(z) be a continuous function on a compact region R. Then f(z) is bounded on R. In other words, there is an $M \in R$ such that |f(z)| < M for any $z \in R$. (Continuous images of compact sets attain a maximum and minimum.)

Differentiability

$$\frac{df}{dz} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}.$$
 (4)

It all works the same way.

Definition 2. If f'(z) exists at every point in some neighborhood of z_0 , then f(z) is said to be analytic \iff holomorphic \iff regular. If f(z) is analytic at every point on a domain D, we say it is analytic on D.

Remark: analytic is used in real analysis for function which can be expanded as a power series. In complex analysis, all differential functions can be expressed as a power series; in real analysis, this is not necessarily true.

Proposition 1. $f(z) = \overline{z}$ (conjugation / reflection) is not differentiable.

Proposition 2. $\frac{1}{i} = -i$

The Cauchy-Riemann Equations

If f is differentiable, then

$$f'(z) = u_x + iv_x \tag{5}$$

$$f'(z) = -iu_y + v_y \tag{6}$$

implies

$$u_x = v_y \tag{7}$$

$$u_y = -v_x. (8)$$

Note, the converse of this statement is not true. If all of the partial derivatives are continuous, then f is analytic.