10.4.7 PWM waveform harmonics

Fourier series:

$$i(t) = I_0 + \sum_{j=1}^{\infty} \sqrt{2} I_j \cos(j\omega t)$$

with

with
$$I_{j} = \frac{\sqrt{2} I_{pk}}{j\pi} \sin(j\pi D) \qquad I_{0} = DI_{pk}$$

Copper loss:

$$Dc P_{dc} = I_0^2 R_a$$

Dc
$$P_{dc} = I_0^2 R_{dc}$$

Ac $P_j = I_j^2 R_{dc} \sqrt{j} \ \varphi_1 \left[G_1(\sqrt{j} \ \varphi_1) + \frac{2}{3} \left(M^2 - 1 \right) \left(G_1(\sqrt{j} \ \varphi_1) - 2G_2(\sqrt{j} \ \varphi_1) \right) \right]$

DT

Total, relative to value predicted by low-frequency analysis:

$$\frac{P_{cu}}{DI_{pk}^{2}R_{dc}} = D + \frac{2\varphi_{1}}{D\pi^{2}} \sum_{j=1}^{\infty} \frac{\sin^{2}(j\pi D)}{j\sqrt{j}} \left[G_{1}(\sqrt{j} \varphi_{1}) + \frac{2}{3} \left(M^{2} - 1 \right) \left(G_{1}(\sqrt{j} \varphi_{1}) - 2G_{2}(\sqrt{j} \varphi_{1}) \right) \right]$$

Harmonic loss factor F_H

Effect of harmonics: F_H = ratio of total ac copper loss to fundamental copper loss

$$F_H = \frac{\sum_{j=1}^{\infty} P_j}{P_1}$$

The total winding copper loss can then be written

$$P_{cu} = I_0^2 R_{dc} + F_H F_R I_1^2 R_{dc}$$

Increased proximity losses induced by PWM waveform harmonics: D = 0.5

Increased proximity losses induced by PWM waveform harmonics: D = 0.3

Increased proximity losses induced by PWM waveform harmonics: D = 0.1

Discussion: waveform harmonics

- Harmonic factor F_H accounts for effects of harmonics
- Harmonics are most significant for φ₁ in the vicinity of 1
- Harmonics can radically alter the conclusion regarding optimal wire gauge
- A substantial dc component can drive the design towards larger wire gauge
- Harmonics can increase proximity losses by orders of magnitude, when there are many layers and when ϕ_1 lies in the vicinity of 1
- For sufficiently small φ_1 , F_H tends to the value $1 + (THD)^2$, where the total harmonic distortion of the current is

$$THD = \frac{\sqrt{\sum_{j=2}^{\infty} I_j^2}}{I_1}$$