ELEC 402

Standard Cell Layout Lecture 10

Reza Molavi
Dept. of ECE
University of British Columbia
reza@ece.ubc.ca

Slides Courtesy: Dr. Sudip Shekhar (UBC)

Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
 - Use PNR (placement & routing) tools for synthesis
- Standard cell design methodology
 - V_{DD} and GND should abut (standard height)
 - Adjacent gates should satisfy design rules so as to "snap together"
 - NMOS at bottom and PMOS at top
 - All gates include well and substrate contacts
 - Use poly and M1 to route the standard cells v_o and leave upper metal layers (M2, M3...) as routing channels to interconnect cells
 - Upper metal layers often follow HVH or VHV track direction to ease PNR

Standard Cells – Inverter

- Horizontal N-diffusion and P-diffusion strips, Vertical polysilicon gates
- ➤ Metal1 V_{DD} and GND rails at top and bottom respectively
- $\lambda = 0.125 \, \mu \text{m}$ in 0.25 μm process \rightarrow not that useful in newer technologies

Standard Cells - NAND2

2-input NAND gate

Standard Cell Layout Methodology

Mirrored Cell V_{DD} V_{DD} M2 M3 **GND** Mirrored Cell **GND**

Contacts & Wells not shown

Pitch Matching of Snap-Together Cells

The two technique allowing to repeat structures and abut them together

Pitch matching is a necessity

Pitch Matching of Snap-Together Cells

The two technique allowing to repeat structures and abut them together

Pitch matching is a necessity

Multi-Fingered Transistors

For a very wide transistor that does not fit in the standard cell height, break the transistor into multiple fingers → wide layout

Stick Diagrams

- Contains no dimensions
- Represents relative positions of transistors
- > Help plan layout quickly

NAND3

Stick Diagrams Example: **O3AI**

The goal is to draw the layout such that

- there is <u>no</u>
 <u>discontinuity</u> in
 diffusion areas
- 2. gates (polysilicon in red) run vertically
- 3. No need for <u>crossovers</u>

M1 (first metal layer) is drawn in blue to make necessary connections

Stick Diagrams & Logic Graph

- Systematic approach to derive order of input signal wires so gate can be laid out to minimize area
- ➤ PU and PD are duals (parallel ←→ series)
- Vertices are nodes (signals) of circuit, VDD, X, GND; Edges are transistors

Two Possibilities

- > Line of diffusion layout abutting source-drain connections
- Crossover eliminated by A B C ordering

Consistent Euler Trail

- > ABC
- > CAB
- \triangleright B C A \rightarrow no PD
- > BAC
- \triangleright ACB \rightarrow no PD
- > CBA

- > A path through all nodes in the graph such that each edge is visited once and only once.
- > The sequence of signals on the path is the signal ordering for the inputs.
- > PU and PD Euler paths are (must be) consistent (same sequence)
- > If you can define a Euler path then you can generate a layout with no diffusion breaks

Example 2: AOI22 x = (ab+cd)'

(b) Euler Paths $\{a \ b \ c \ d\}$

(c) stick diagram for ordering $\{a\ b\ c\ d\}$

Circuit Diagram

Example 3: Y = (ab+c+d)'

NAND3 with Good Layout

Actual diffusion cap on the output is 7C, instead of 9C

Example 4 and Key Solution

Out' = a(d+e) + bc

