Tutorial 2

SC-220 Groups and linear algebra Autumn 2019 (Dihedreal group, Subgroups, Cyclic groups, Permutation groups)

- (1) Show that the following subsets of D_4 are actually subgroups.
 - i) $\{1, r^2, s, r^2s\}$ ii) $\{1, r^2, rs, r^3s\}$
- (2) Determine if the following set of matrices are subgroups of $GL_n(\mathbb{R})$.
 - i) The diagonal $n \times n$ matrices with no zeros on diagonal.
 - ii) The $n \times n$ matrices with determinant -1.
 - iii) The set of $n \times n$ matrices such that $A^T A = I$.
- (3) Find the order of
 - i) 2,6,10 in the additive group \mathbb{Z}_{36} .
 - ii)2 in the multiplicative group \mathbb{Z}_{13}^* .
- (4) What are the generators of \mathbb{Z}_5 ? What about \mathbb{Z}_9 and \mathbb{Z}_{12} ? Do you notice a pattern?
- (5) Show that D_n is generated by by two elements rs and r^2s .
- (6) Let x and g be elements of a group G. Show that x and gxg^{-1} have the same order. Now show that xy and yx have the same order for any two elements x, y in G.
- (7) Consider the group of invertible 2×2 matrices with entries in real numbers under matrix multiplication $GL_2(\mathbb{R})$. Let $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ belong to $GL_2(\mathbb{R})$. Compute the order of A, B, AB, BA
- (8) Let σ be the permutation $1 \mapsto 3$, $2 \mapsto 4,3 \mapsto 5,4 \mapsto 2,5 \mapsto 1$ and let τ be the permutation $1 \mapsto 5$, $2 \mapsto 3,3 \mapsto 2,4 \mapsto 4,5 \mapsto 1$ Find the cycle decompositions of σ^2 , $\sigma\tau$ and $\tau^2\sigma$
- (9) Show that if σ is the m-cycle $(a_1a_2...a_m)$ then $|\sigma|=m$.
- (10) Compute the order of the element (13)(246) in S_6 .
- (11) Show that if $n \geq m$ then the number of m-cycles in S_n is given by

$$\frac{n(n-1)(n-2)\cdots(n-m+1)}{m}$$

1