Some linear algebra background

CSE 250B

Matrix-vector notation

Vector $x \in \mathbb{R}^p$ and matrix $M \in \mathbb{R}^{r \times p}$:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_r \end{pmatrix}, \quad M = \begin{pmatrix} M_{11} & M_{12} & \cdots & M_{1p} \\ M_{21} & M_{22} & \cdots & M_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ M_{r1} & M_{r2} & \cdots & M_{rp} \end{pmatrix}.$$

Matrix-vector notation

Vector $x \in \mathbb{R}^p$ and matrix $M \in \mathbb{R}^{r \times p}$:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_p \end{pmatrix}, \quad M = \begin{pmatrix} M_{11} & M_{12} & \cdots & M_{1p} \\ M_{21} & M_{22} & \cdots & M_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ M_{r1} & M_{r2} & \cdots & M_{rp} \end{pmatrix}.$$

Transpose x^T and $M^T \in \mathbb{R}^{p \times r}$:

$$x^{T} = \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{p} \end{pmatrix}, \quad M^{T} = \begin{pmatrix} M_{11} & \cdots & M_{r1} \\ M_{12} & \cdots & M_{r2} \\ M_{13} & \cdots & M_{r3} \\ \vdots & \ddots & \vdots \\ M_{1} & \cdots & M_{n} \end{pmatrix}.$$

Matrix-vector notation

Vector $x \in \mathbb{R}^p$ and matrix $M \in \mathbb{R}^{r \times p}$:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_p \end{pmatrix}, \quad M = \begin{pmatrix} M_{11} & M_{12} & \cdots & M_{1p} \\ M_{21} & M_{22} & \cdots & M_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ M_{r1} & M_{r2} & \cdots & M_{rp} \end{pmatrix}.$$

Transpose x^T and $M^T \in \mathbb{R}^{p \times r}$:

$$x^{T} = \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{p} \end{pmatrix}, \quad M^{T} = \begin{pmatrix} M_{11} & \cdots & M_{r1} \\ M_{12} & \cdots & M_{r2} \\ M_{13} & \cdots & M_{r3} \\ \vdots & \ddots & \vdots \\ M_{1p} & \cdots & M_{rp} \end{pmatrix}.$$

Properties of transpose: $(A^T)^T = A$ and $(AB)^T = B^T A^T$.

Dot product of vectors $x, y \in \mathbb{R}^p$:

$$x \cdot y = x^T y = x_1 y_1 + \dots + x_p y_p.$$

Dot product of vectors $x, y \in \mathbb{R}^p$:

$$x \cdot y = x^T y = x_1 y_1 + \dots + x_p y_p.$$

This tells us the angle between x and y:

Dot product of vectors $x, y \in \mathbb{R}^p$:

$$x \cdot y = x^T y = x_1 y_1 + \dots + x_p y_p.$$

This tells us the angle between x and y:

Easiest when x, y are unit vectors (length 1): then $\cos \theta = x \cdot y$.

Dot product of vectors $x, y \in \mathbb{R}^p$:

$$x \cdot y = x^T y = x_1 y_1 + \dots + x_p y_p.$$

This tells us the angle between x and y:

Easiest when x, y are *unit vectors* (length 1): then $\cos \theta = x \cdot y$.

x is orthogonal (at right angles) to y iff $x \cdot y = ??$

Dot product of vectors $x, y \in \mathbb{R}^p$:

$$x \cdot y = x^T y = x_1 y_1 + \dots + x_p y_p.$$

This tells us the angle between x and y:

Easiest when x, y are unit vectors (length 1): then $\cos \theta = x \cdot y$.

x is orthogonal (at right angles) to y iff $x \cdot y = ??$ What is $x \cdot x$?

Matrix-vector products

If $M \in \mathbb{R}^{r \times p}$ and $x \in \mathbb{R}^p$ then

$$Mx = \begin{pmatrix} \longleftarrow & M_1 & \longrightarrow \\ \longleftarrow & M_2 & \longrightarrow \\ & \vdots & & \\ \longleftarrow & M_r & \longrightarrow \end{pmatrix} \begin{pmatrix} | \\ \\ \\ | \\ \end{pmatrix} = \begin{pmatrix} M_1 \cdot x \\ M_2 \cdot x \\ \vdots \\ M_r \cdot x \end{pmatrix}$$

Matrix-vector products

If $M \in \mathbb{R}^{r \times p}$ and $x \in \mathbb{R}^p$ then

$$Mx = \begin{pmatrix} \longleftarrow & M_1 & \longrightarrow \\ \longleftarrow & M_2 & \longrightarrow \\ & \vdots & & \\ \longleftarrow & M_r & \longrightarrow \end{pmatrix} \begin{pmatrix} | \\ | \\ x \\ | \end{pmatrix} = \begin{pmatrix} M_1 \cdot x \\ M_2 \cdot x \\ \vdots \\ M_r \cdot x \end{pmatrix}$$

This mapping $x \mapsto Mx$ is a **linear function** from \mathbb{R}^p to \mathbb{R}^r :

$$M(x+x')=Mx+Mx'.$$

Matrix-vector products

If $M \in \mathbb{R}^{r \times p}$ and $x \in \mathbb{R}^p$ then

$$Mx = \begin{pmatrix} \longleftarrow & M_1 & \longrightarrow \\ \longleftarrow & M_2 & \longrightarrow \\ & \vdots & & \\ \longleftarrow & M_r & \longrightarrow \end{pmatrix} \begin{pmatrix} | \\ | \\ x \\ | \\ \end{pmatrix} = \begin{pmatrix} M_1 \cdot x \\ M_2 \cdot x \\ \vdots \\ M_r \cdot x \end{pmatrix}$$

This mapping $x \mapsto Mx$ is a **linear function** from \mathbb{R}^p to \mathbb{R}^r :

$$M(x+x')=Mx+Mx'.$$

If $M \in \mathbb{R}^{p \times p}$ and $x \in \mathbb{R}^p$ then $x \mapsto x^T M x$ is a **quadratic function** from \mathbb{R}^p to \mathbb{R} :

$$x^T M x = \sum_{i,j=1}^p M_{ij} x_i x_j.$$

① Write the linear function $f(x_1, x_2) = 3x_1 + 2x_2$ using vector notation (here, $x_1, x_2 \in \mathbb{R}$).

- ① Write the linear function $f(x_1, x_2) = 3x_1 + 2x_2$ using vector notation (here, $x_1, x_2 \in \mathbb{R}$).
- **2** Write the quadratic function $f(x_1, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2$ using matrices and vectors.

- ① Write the linear function $f(x_1, x_2) = 3x_1 + 2x_2$ using vector notation (here, $x_1, x_2 \in \mathbb{R}$).
- **2** Write the quadratic function $f(x_1, x_2) = x_1^2 + 2x_1x_2 + 3x_2^2$ using matrices and vectors.
- **3** A linear function from \mathbb{R}^3 to \mathbb{R}^3 is given by the matrix

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}.$$

As x varies, does Mx fill up all of \mathbb{R}^3 ?

A hierarchy of square matrices

- 1 PSD or not?
 - $\bullet \ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

- 1 PSD or not?
 - $\bullet \ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
 - $\bullet \ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

- 1 PSD or not?
 - $\bullet \ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
 - $\bullet \ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
- 2 A diagonal matrix is PSD if and only if ???

- PSD or not?
 - $\bullet \ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
 - $\bullet \ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
- 2 A diagonal matrix is PSD if and only if ???
- **3** Show: If M, N are of the same size and PSD and M + N is PSD.

Useful fact: a matrix M is PSD iff it can be written in the form UU^T for some matrix U.

Useful fact: a matrix M is PSD iff it can be written in the form UU^T for some matrix U.

Quick check: say $U \in \mathbb{R}^{r \times p}$ and $M = UU^T$.

Useful fact: a matrix M is PSD iff it can be written in the form UU^T for some matrix U.

Quick check: say $U \in \mathbb{R}^{r \times p}$ and $M = UU^T$.

1 *M* is square.

Useful fact: a matrix M is PSD iff it can be written in the form UU^T for some matrix U.

Quick check: say $U \in \mathbb{R}^{r \times p}$ and $M = UU^T$.

- **1** *M* is square.
- **2** *M* is symmetric.

Useful fact: a matrix M is PSD iff it can be written in the form UU^T for some matrix U.

Quick check: say $U \in \mathbb{R}^{r \times p}$ and $M = UU^T$.

- 1 M is square.
- 2 *M* is symmetric.
- **3** Pick any $z \in \mathbb{R}^r$. Then

$$z^{T}Mz = z^{T}UU^{T}z = (z^{T}U)(U^{T}z)$$

= $(U^{T}z)^{T}(U^{T}z) = ||U^{T}z||^{2} \ge 0.$

Useful fact: a matrix M is PSD iff it can be written in the form UU^T for some matrix U.

Quick check: say $U \in \mathbb{R}^{r \times p}$ and $M = UU^T$.

- **1** *M* is square.
- 2 *M* is symmetric.
- **3** Pick any $z \in \mathbb{R}^r$. Then

$$z^{T}Mz = z^{T}UU^{T}z = (z^{T}U)(U^{T}z)$$

= $(U^{T}z)^{T}(U^{T}z) = ||U^{T}z||^{2} \ge 0.$

Another useful fact: any covariance matrix is PSD. (Same argument, along with linearity of expectation.)

1 Any matrix M defines a linear transformation $x \mapsto Mx$.

- **1** Any matrix M defines a linear transformation $x \mapsto Mx$.
- **2** We'd like to understand the nature of these transformations. The easiest case is when *M* is **diagonal**:

$$\underbrace{\begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 10 \end{pmatrix}}_{M} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} 2x_1 \\ -x_2 \\ 10x_3 \end{pmatrix}}_{Mx}$$

In this case, M simply scales each coordinate separately.

- **1** Any matrix M defines a linear transformation $x \mapsto Mx$.
- **2** We'd like to understand the nature of these transformations. The easiest case is when *M* is **diagonal**:

$$\underbrace{\begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 10 \end{pmatrix}}_{M} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} 2x_1 \\ -x_2 \\ 10x_3 \end{pmatrix}}_{Mx}$$

In this case, M simply scales each coordinate separately.

What about more general matrices that are symmetric but not necessarily diagonal? They also just scale coordinates separately, but in a different coordinate system.

- **1** Any matrix M defines a linear transformation $x \mapsto Mx$.
- **2** We'd like to understand the nature of these transformations. The easiest case is when *M* is **diagonal**:

$$\underbrace{\begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 10 \end{pmatrix}}_{M} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{X} = \underbrace{\begin{pmatrix} 2x_1 \\ -x_2 \\ 10x_3 \end{pmatrix}}_{Mx}$$

In this case, M simply scales each coordinate separately.

What about more general matrices that are symmetric but not necessarily diagonal? They also just scale coordinates separately, but in a different coordinate system.

Let M be a $p \times p$ matrix.

We say $u \in \mathbb{R}^p$ is an **eigenvector** if M maps u onto the same direction, that is,

$$Mu = \lambda u$$

for some scaling constant λ . This λ is the **eigenvalue** associated with u.

We say u is an eigenvector of M, with eigenvalue λ , if $Mu = \lambda u$.

We say u is an eigenvector of M, with eigenvalue λ , if $Mu = \lambda u$.

Question: What are the eigenvectors and eigenvalues of:

$$M = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 10 \end{pmatrix} ?$$

We say u is an eigenvector of M, with eigenvalue λ , if $Mu = \lambda u$.

Question: What are the eigenvectors and eigenvalues of:

$$M = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 10 \end{pmatrix} ?$$

Answer: Eigenvectors e_1 , e_2 , e_3 , with corresponding eigenvalues 2, -1, 10.

We say u is an eigenvector of M, with eigenvalue λ , if $Mu = \lambda u$.

Question: What are the eigenvectors and eigenvalues of:

$$M = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 10 \end{pmatrix} ?$$

Answer: Eigenvectors e_1 , e_2 , e_3 , with corresponding eigenvalues 2, -1, 10.

Question: Matrix $M = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ has eigenvectors

$$u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

What are the corresponding eigenvalues?

We say u is an eigenvector of M, with eigenvalue λ , if $Mu = \lambda u$.

Question: What are the eigenvectors and eigenvalues of:

$$M = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 10 \end{pmatrix} ?$$

Answer: Eigenvectors e_1 , e_2 , e_3 , with corresponding eigenvalues 2, -1, 10.

Question: Matrix $M = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ has eigenvectors

$$u_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

What are the corresponding eigenvalues?

Answer: $\lambda_1 = 4$ and $\lambda_2 = 2$.

We say u is an eigenvector of M, with eigenvalue λ , if $Mu = \lambda u$.

Question: What are the eigenvectors and eigenvalues of:

$$M = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 10 \end{pmatrix} ?$$

Answer: Eigenvectors e_1 , e_2 , e_3 , with corresponding eigenvalues 2, -1, 10.

Question: Matrix $M = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ has eigenvectors

$$u_1=rac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix},\quad u_2=rac{1}{\sqrt{2}}\begin{pmatrix}-1\\1\end{pmatrix}.$$

What are the corresponding eigenvalues?

Answer: $\lambda_1 = 4$ and $\lambda_2 = 2$.

In both cases the eigenvectors form an orthonormal basis.

Eigenvectors of a real symmetric matrix

Theorem. Let M be any real symmetric $p \times p$ matrix. Then M has

- p eigenvalues $\lambda_1, \ldots, \lambda_p$
- corresponding eigenvectors $u_1, \ldots, u_p \in \mathbb{R}^p$ that are **orthonormal**:

$$u_i \cdot u_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

Eigenvectors of a real symmetric matrix

Theorem. Let M be any real symmetric $p \times p$ matrix. Then M has

- p eigenvalues $\lambda_1, \ldots, \lambda_p$
- corresponding eigenvectors $u_1, \ldots, u_p \in \mathbb{R}^p$ that are **orthonormal**:

$$u_i \cdot u_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

We can think of u_1, \ldots, u_p as being the axes of the natural coordinate system for understanding M.

Eigenvectors of a real symmetric matrix

Theorem. Let M be any real symmetric $p \times p$ matrix. Then M has

- p eigenvalues $\lambda_1, \ldots, \lambda_p$
- corresponding eigenvectors $u_1, \ldots, u_p \in \mathbb{R}^p$ that are **orthonormal**:

$$u_i \cdot u_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$

We can think of u_1, \ldots, u_p as being the axes of the natural coordinate system for understanding M.

Theorem. Let M be any real symmetric $p \times p$ matrix, and let $\lambda_1, \ldots, \lambda_p$ be its eigenvalues. Then:

- *M* is positive semidefinite iff every λ_i is ≥ 0 .
- M is positive definite iff every λ is > 0.