NATIONAL UNIVERSITY OF SINGAPORE SCHOOL OF COMPUTING

EXAMINATION FOR Semester 2: AY2011/2012

CS4231 PARALLEL AND DISTRIBUTED ALGORITHMS

Apr/May 2012

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper contains FIVE(5) questions and comprises SEVEN(7) printed pages, including this page.
- 2. Answer ALL questions within the space in this booklet.
- 3. This is an OPEN book examination.
- 4. Please write your MATRICULATION NUMBER below.

MATRICULATION NUMBER: _____

EXAMINER'S USE ONLY		
Question	Marks	Score
Q1	9	
Q2	4	
Q3	5	
Q4	9	
Q5	13	_
Total	40	

1. Recall (from Tutorial 1) the swap instruction that is described by

Like TestAndSet, swap is implemented as one atomic hardware instruction.

Show that two processes can use swap to reach consensus (i.e. satisfying Agreement, Validity and Wait-Freedom). [9 marks]

2. Recall the following parallel mutual exclusion algorithm that uses a shared variable turn:

P_0	P_1
RequestCS (0) {	$RequestCS(1){}$
turn $\leftarrow 1$;	$turn \leftarrow 0;$
while(turn==1) $\{\}$;	while(turn= $=0$){};
}	}

One can consider the 2 processes as using the algorithm to reach consensus on who should enter critical section first. However, the consensus number for a register is 1, so a register cannot be used to reach consensus for 2 processes.

Is there a contradiction? Justify your answer.

[4 marks]

3. Consider the proof of the Fischer-Lynch-Paterson Theorem. Let S be a global state, P and Q be two processes, e_P an event at P and e_Q an event at Q.

Explain why $e_P(e_Q(S)) = e_Q(e_P(S))$ if e_P and e_Q are valid message (send or receive) events for S. [5 marks]

PAGE 5 CS4231

- 4. In Byzantine Agreement, each process starts with a binary input value, and they communicate through messages to agree on the output value, so that
 - (BA Termination) all nonfaulty processes decide eventually;
 - (BA Agreement) all nonfaulty processes decide the same value;
 - (BA Validity) if all nonfaulty processes have the same input value v, then all nonfaulty processes decide v.

Now, change the above to the Byzantine General problem: There is a distinguished process that is called the general, and the other processes are called lieutenants. The general starts with a binary input value v_G . The general and lieutenants communicate through messages to agree on an output value, so that

- (BG Termination) all nonfaulty processes decide eventually;
- (BG Agreement) all nonfaulty processes decide the same value;
- (BG Validity) if the general is nonfaulty, then all nonfaulty processes decide v_G .

Show that any protocol \mathcal{P}_{BA} for Byzantine Agreement (e.g. \mathcal{P}_{BA} is the Phase King Protocol) can be used to solve the Byzantine General Problem. [9 marks]

5. Consider the following history H over transactions $\xrightarrow{T_1}$, $\xrightarrow{T_2}$ and $\xrightarrow{T_3}$, where operation o_k belongs to T_k (for clarity, transitive edges are omitted).

(i) Insert lock and unlock operations into H to give a locked history H^L that is two-phase locked. [5 marks]

(ii) Draw the serialization graph SG(H).

[3 marks]

(iii) Is H serializable? If so, show a serial history S that is equivalent to H; if not, explain why.

[5 marks]