

Forecasting the age structure of the scientific workforce in Australia

Rob J Hyndman & Kelly Nguyen

30 June 2025

Ideal labour force model

$$P_{x+1,t+1} = P_{x,t} - D_{x,t} - R_{x,t} + G_{x,t} - C_{x,t} + N_{x,t}$$

 $P_{x,t}$ = number of equivalent full-time workers

 $D_{x,t}$ = number of deaths

 $R_{x,t}$ = number of retirements

 $G_{x,t}$ = number of graduates who work in science

 $C_{x,t}$ = net number of people who have a career change

 $N_{x,t}$ = net number of migrants

Pragmatic labour force model

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

x = Age t = Year

 $P_{x,t}$ = number of equivalent full-time workers

 $q_{x,t}$ = probability of death

 r_x = probability of retirement

 g_x = proportion of graduates by age

 G_t = total number of graduates in science

 $E_{x,t}$ = remainder

Working population: $P_{x,t}$

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

Working population: $P_{x,t}$

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

Death rates: $q_{x,t}$

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

Retirement rates: r_x

45-59

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

Age group

65-69

60-64

70+

Retirement rates: r_x

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

Graduate completions: G_t

2010

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

Total graduates: Natural and Physical Sciences (2006 - 2023) 28000 -Number of graduates 20000 -

> 2015 Year

2020

Graduate completions: g_x

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

Graduate completions: g_x

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

Remainder: $E_{x,t}$

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

Remainder: $E_{x,t}$

$$E_{x,t} = P_{x+1,t+1} - P_{x,t}(1 - q_{x,t} - r_x) - g_xG_t$$

Remainder: $E_{x,t}$

$$E_{x,t} = P_{x+1,t+1} - P_{x,t}(1 - q_{x,t} - r_x) - g_x G_t$$

Forecasting models

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

 G_t ARIMA model of total graduates by year $q_{x,t}$ functional time series model $E_{x,t}$ functional time series model

Forecasting models

$$P_{x+1,t+1} = P_{x,t}(1 - q_{x,t} - r_x) + g_xG_t + E_{x,t}$$

 G_t ARIMA model of total graduates by year $g_{x,t}$ functional time series model $E_{x,t}$ functional time series model

■ Future sample paths of all components simulated to obtain probabilistic forecasts of $P_{x,t}$

Forecasting models: graduates G_t

Forecasting models: $\overline{q_{x,t}}$

Forecasting models: $q_{x,t}$

