Exercise 1. Answer Sheet

Student's Name: <u>Haruki Terushima</u> Student's ID: <u>s1290037</u>

Problem 1. (30 points) For each function f(n) and time T in the following table, determine the largest size n of a problem that can be solved in time T, assuming that the algorithm to solve the problem takes f(n) milliseconds.

f(n)	<i>T</i> = 1 second 1000mil	<i>T</i> = 1 minute 60000mil	<i>T</i> = 1 hour 36000mil	T = 1 day 864000mil	T = 1 month (30 days) 25920000
\sqrt{n}	10^6	36*10^8	1296*10^6	6746496*10^6	6718464*10^8
n	10^3	60000	36000	864000	25920000
n^2	$10\sqrt{10}$	100√6	60√10	$10\sqrt{8640}$	$100\sqrt{2592}$
n^3	10	10*(60)^(1/3)	10*(36)^(1/3)	$10\sqrt{864}$	$10\sqrt{25920}$
2 ⁿ	log2(1000)	Log2(60000)	Log2(36000)	Log2(864000)	Log2(2592000 0)

Problem 2. (30 points) Consider sorting n numbers stored in array A by first finding the smallest element of A and exchanging it with the first element of the array, i.e. A[1]. Them find the second smallest element of A, and exchange it with A[2]. Continue in this manner for the first n-1 elements of A.

a) Write a pseudo-code for this algorithm which is known as "Selection Sort".

```
SelectionSort(A):
    n = length(A) // Number of elements in array A

for i from 0 to n-1 do:
    // Find the index of the smallest element in the unsorted part of the array minIndex = i

for j from i+1 to n-1 do:
    if A[j] < A[minIndex] then:
        minIndex = j

// Swap the smallest element with the first element of the unsorted part swap(A[i], A[minIndex])</pre>
```

b) What is the time complexity of the Selection Sort algorithm?

```
G(n)=O(n^2)
```

Problem 3. (40 points) Using the pseudo-code for **Merge Sort** algorithm given at the lecture, write a program implementing the **Merge Sort** algorithm. Use any programming language you know. Upload your

source code with instructions how to compile/run it. Give the input data and the program output in the space below.

The way of compile:

- 1. On the terminal, put "javac MergeSort.java"
- 2. There are 3 classes, so put "java MergeSort" on the terminal again.
- 3. Put the num. you will put and put the num for sorting.

Input 5 5 4 3 2 1 Output 1 2 3 4 5