MATH3823 - Solutions to Chapter 6 Exercises

Exercise 6.1

a. If $Y \sim P(\lambda)$, then $E(Y) = \lambda$, $var(Y) = \lambda$, $E(Y^2) = \lambda + \lambda^2$. Hence for the mixture model

$$E(Y) = E(Y|X=1)P(X=1) + E(Y|X=2)P(X=2) = \frac{1}{2}(\lambda_1 + \lambda_2)$$

$$E(Y^2) = E(Y^2|X=1)P(X=1) + E(Y^2|X=2)P(X=2) = \frac{1}{2}(\lambda_1 + \lambda_1^2 + \lambda_2 + \lambda_2^2),$$

so that

$$Var(Y) = \frac{1}{2}(\lambda_1 + \lambda_1^2 + \lambda_2 + \lambda_2^2) - \left\{\frac{1}{2}(\lambda_1 + \lambda_2)\right\}^2 = \lambda + (\lambda_1 - \lambda_2)^2 / 4.$$

b. Writing $\overline{Y} = \frac{1}{2}(\overline{Y}_1 + \overline{Y}_2)$, then

$$E[\bar{Y}_1] = E\left[\frac{1}{30} \sum_{i=1}^{30} Y_i\right] = \frac{1}{30} \times 30 \times \lambda_1 = \lambda_1.$$

Similarly,

$$Var[\bar{Y}_1] = Var\left[\frac{1}{30}\sum Y_i\right] = \frac{1}{30^2} \times 30 \times \lambda_1 = \frac{\lambda_1}{30}$$

hence,

$$E[\bar{Y}_1^2] = (E[\bar{Y}_1])^2 + Var[\bar{Y}_1] = \lambda_1^2 + \frac{\lambda_1}{30}.$$

Similarly, \overline{Y}_2 has mean λ_2 , variance $\lambda_2/30$, and $E[\bar{Y}_1^2] = \lambda_2^2 + \lambda_2/30$.

So,

$$E[\bar{Y}] = \frac{1}{2} \left(E[\bar{Y}_1] + E[\bar{Y}_2] \right) = \frac{1}{2} \left(\lambda_1 + \lambda_2 \right) = \lambda.$$

For $E[S^2] = \frac{1}{n-1} E\left[\sum Y_i^2 - n(\overline{Y})^2\right]$ we see that we will need,

$$E\left[\sum_{i=1}^{60} Y_i^2\right] = E\left[\sum_{i=1}^{30} Y_i^2\right] + E\left[\sum_{i=31}^{60} Y_i^2\right] = 30(\lambda_1^2 + \lambda_1 + \lambda_2^2 + \lambda_2).$$

and

$$E[\overline{Y}^2] = \frac{1}{4} E\left[(\overline{Y}_1)^2 + 2\overline{Y}_1 \overline{Y}_2 + (\overline{Y}_2)^2 \right] = \frac{1}{4} \{ \lambda_1^2 + \lambda_1/30 + 2\lambda_1\lambda_2 + \lambda_2^2 \ + \lambda_2/30 \}.$$

Hence

$$E(S^2) = \frac{1}{59} E\left[\sum_{i=1}^{60} Y_i^2 - 60(\overline{Y})^2\right] = \frac{1}{2} (\lambda_1 + \lambda_2) + \frac{60}{4 \cdot 59} (\lambda_1 - \lambda_2)^2,$$

which is larger than λ when $\lambda_1 \neq \lambda_2$.

The χ^2 goodness of fit statistic is just

$$X^{2} = \sum_{k} (O_{k} - E_{k})^{2} / E_{k} = (n-1)S^{2} / \overline{Y},$$

in terms of observed values $O_i = Y_i$ and expected values $E_i = \overline{Y}$. Here n = 60. Under the null hypothesis that the model is a good fit, the S^2 and \overline{Y} have the same expectation and for large n, $X^2 \sim \chi^2_{n-1}$ approximately. Under the mixture model the numerator has a larger expectation and X^2 will be larger in distribution than χ^2_{n-1} . Hence the statistic is bigger and so will be further into the upper tail. This means that the hypothesis is more likely to be rejected and the model deemed a poor fit

c. When a scale parameter ϕ is present, it can be used to represent the true scale variability in the model, plus the effects of overdispersion.

Exercise 6.2 I Percentages adding to 100% across housing Low Contact:

Satisfaction	Low	Medium	High
Tower blocks	25	30	37
Apartments	50	43	41
Houses	26	27	23
Total	100	100	100

High Contact:

Satisfaction	Low	Medium	High
Tower blocks	11	48	25
Apartments	46	43	48
Houses	43	39	26
Total	100	100	100

II Percentages adding to 100% across satisfaction

Low Contact:

Satisfaction	Low	Medium	High	Total
Tower blocks	30	25	46	100
Apartments	41	24	35	100
Houses	38	27	35	100

High Contact:

Satisfaction	Low	Medium	High	Total
Tower blocks	19	26	55	100
Apartments	31	26	43	100
Houses	38	31	31	100

III Percentages adding to 100% across contact

Low Satisfaction:

Contact	Low	High	Total
Tower blocks	66	34	100
Apartments	48	52	100
Houses	34	66	100

Medium Satisfaction:

Contact	Low	High	Total
Tower blocks	53	47	100
Apartments	40	60	100
Houses	31	69	100

High Satisfaction:

Contact	Low	High	Total
Tower blocks	50	50	100
Apartments	37	63	100
Houses	37	63	100

The three tables give percentages adding to 100 over housing, satisfaction and contact, respectively.

The R output shows the result of fitting a model with all 3 first-order interactions (also known as two-way interactions) but no second-order interaction (three-way interaction). The deviance $6.89 \sim \chi_4^2$ is not significant, so there is no need to consider the saturated model. The residuals all lie between ± 2 , again indicating the model is an adequate fit. There are strongly significant coefficients within each first-order interaction; hence, further simplification has not been attempted. For this dataset it does not seem reasonable to condition on any of the marginal totals so the counts are assumed to arise from a Poisson model, not a product-multinomial model.

```
##
## Call:
## glm(formula = count ~ sat + housing + contact + sat:housing +
```

```
##
       housing:contact + sat:contact, family = poisson)
##
   Coefficients:
##
##
                      Estimate Std. Error z value Pr(>|z|)
##
   (Intercept)
                        4.0943
                                   0.1127
                                            36.338
                                                   < 2e-16
                                            -0.704 0.481589
## sat2
                       -0.1073
                                   0.1524
## sat3
                        0.5608
                                   0.1329
                                             4.219 2.46e-05 ***
## housing2
                        0.7402
                                   0.1302
                                             5.687 1.30e-08 ***
## housing3
                        0.2395
                                   0.1417
                                             1.690 0.090995 .
## contact2
                       -0.4306
                                   0.1293
                                            -3.331 0.000867 ***
## sat2:housing2
                       -0.4068
                                   0.1713
                                            -2.375 0.017570 *
## sat3:housing2
                       -0.6416
                                   0.1501
                                            -4.275 1.91e-05 ***
   sat2:housing3
                       -0.3371
                                   0.1804
                                            -1.869 0.061627
                                            -5.749 8.98e-09 ***
## sat3:housing3
                       -0.9456
                                   0.1645
                                   0.1256
## housing2:contact2
                        0.5744
                                             4.575 4.76e-06 ***
## housing3:contact2
                        0.8906
                                   0.1387
                                             6.419 1.37e-10 ***
## sat2:contact2
                        0.2960
                                   0.1301
                                             2.275 0.022909 *
## sat3:contact2
                        0.3282
                                   0.1182
                                             2.777 0.005483 **
##
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
   (Dispersion parameter for poisson family taken to be 1)
##
##
##
       Null deviance: 294.477
                                on 17
                                       degrees of freedom
  Residual deviance:
                         6.893
                                on
                                    4
                                       degrees of freedom
##
  AIC: 148
##
## Number of Fisher Scoring iterations: 4
residuals(glm1, type="pearson")
##
                          2
                                       3
                                                   4
                                                                5
                                                                             6
             1
                0.01457774 -0.49864032
                                                     -0.01559242
##
    0.64620407
                                         -0.80142840
                                                                   0.52481845
             7
                          8
                                       9
##
                                                  10
                                                               11
                                                                            12
##
    0.37705287
                0.08967078 -0.46480966
                                         -0.35088696
                                                     -0.07196879
                                                                   0.36708512
```

Since there is no second-order interaction, the log odds ratios for any two variables are constant given the third. Here are some interpretations based on the tables of percentages and the coefficients in the R output.

0.84025074

16

17

0.08670781 -0.94719781

18

15

1.40479462

14

-1.05756656 -0.12654027

##

- For each level of contact, Tables I and II show that the ratio of high to low satisfaction is higher for tower block residents than for apartment dwellers, which is in turn higher than for house residents. This interpretation is confirmed by the coefficients sat3.housing2 = -0.64 and sat3.housing3 = -0.95.
- For each level of satisfaction, Tables I and III show that contact with neighbours increases as one moves from housing category tower block to apartment to house. This interpretation is confirmed by the coefficients housing2.contact2 = 0.57 and housing3.contact2 = 0.89.
- For each level of housing, Tables II and III show that high satisfaction goes with high contact. This interpretation is confirmed in particular by the coefficient sat3.contact2 = 0.33.

For me the overall conclusions are partly expected and partly unexpected. I am surprised that tower blocks have a higher satisfaction than houses, and that house residents have greater contact than tower block residents. But it is natural that higher satisfaction is associated with higher contact.

End of Solutions to Chapter 6 Exercises