Device Modeling Report

COMPONENTS: OPERATIONAL AMPLIFIER

PART NUMBER:NJM2107

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

Spice Model


```
*$
* PART NUMBER: NJM2107
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM2107 +IN V- -IN OUT V+
X_U1 +IN -IN V+ V- OUT NJM2107_ME
.ends NJM2107
.subckt NJM2107 ME 12345
c1 11 12 8.2272E-12
 c2 6 7 28.500E-12
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 707.36E3 -1E3 1E3 710E3 -710E3
 ga 6 0 11 12 595.73E-6
 gcm 0 6 10 99 58.973E-9
 iee 3 10 dc 96.202E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 1.4158E3
 rc2 4 12 1.4158E3
 re1 13 10 974.88
 re2 14 10 974.88
 ree 10 99 2.0790E6
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 125.30
 vb 9 0 dc 0
 vc 3 53 dc 1.0309
 ve 54 4 dc 1.0309
 vlim 7 8 dc 0
 vlp 91 0 dc 1.5000
 vln 0 92 dc 1.5000
.model dx D(Is=800.00E-18)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx1 PNP(Is=800.00E-18 Bf=449.23)
.model qx2 PNP(ls=0.829E-15 Bf=477.9)
.ends
*$
```

Output Voltage Swing

Simulation result

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	2.200	2.195	-0.227
-Vout(V)	2.200	2.195	-0.227

Input Offset Voltage

Simulation result

Vos	Measurement		Simulation		Error	
VUS	1.000	mV	1.001	mV	-0.100	%

Slew Rate

Simulation result

Slew Rate(v/us)	Measurement	Simulation	%Error
Siew Rate(v/us)	3.000	2.853	-4.900

Input current

Simulation result

	Measurement	Simulation	%Error
lb(nA)	100.000	103.259	3.259
lbos(nA)	5.000	5.068	1.360

Open Loop Voltage Gain vs. Frequency

Simulation result

	Measurement	Simulation	%Error
f-0dB(MHz)	3.000	2.876	-4.133
Av-dc(dB)	80.000	79.781	-0.274

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

Common Mode Reject Ratio=10334/1.0435=9903.92

	Measurement	Simulation	%Error	
CMRR	80.000	79.916	0.1050	

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency

Before

Remark Common-Mode Rejection Voltage gain

Before

