

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER : 03221142
PUBLICATION DATE : 30-09-91

APPLICATION DATE : 24-07-89
APPLICATION NUMBER : 01192104

APPLICANT : KURARAY CHEM CORP;

INVENTOR : TANAKA EIJI;

INT.CL. : B01J 20/28 B01J 20/20

TITLE : ADSORBENT INDICATOR

ABSTRACT : PURPOSE: To accurately display the adsorption amount of a malodorous sulfur compound by molding a mixture of a metal salt or metal oxide and activated carbon using a binder composed of plastic or a plastic powder.

CONSTITUTION: A metal salt or metal oxide and activated carbon are mixed and the resulting mixture is molded using plastic or a plastic powder as a binder to obtain an adsorbent indicator of a malodorous sulfur compound. As the metal salt compound, a copper compound such as copper phosphate, copper sulfate or copper chloride or a lead compound such as lead sulfate or lead oxalate is pref. The latex being the binder for molding is composed of polyacrylonitrile or polybutadiene. Plastic is a thermoplastic resin or a thermosetting resin and the particle size thereof is pref. about 0.1-100 μ m.

COPYRIGHT: (C)1991,JPO&Japio

(07929420)
THIS PAGE IS A BLANK

THIS PAGE BLANK (USPTO)

⑨日本国特許庁(JP) ⑩特許出願公開
⑪公開特許公報(A) 平3-221142

⑫Int.Cl.⁵
B 01 J 20/28
20/20

識別記号 庁内整理番号
Z 6939-4C
D 6939-4C

⑬公開 平成3年(1991)9月30日

審査請求 未請求 請求項の数 3 (全7頁)

⑭発明の名称 吸着剤インディケーター

⑮特 願 平1-192104
⑯出 願 平1(1989)7月24日

⑰発明者 田中 宗治 岡山県岡山市西大寺上1-3-2-5

⑱出願人 クラレケミカル株式会社 岡山県備前市鶴海4342

⑲代理人 弁理士 小田中 審雄

明細書

1. 発明の名称

吸着剤インディケーター

2. 特許請求の範囲

(1) 金属塩または金属酸化物と活性炭を混合し、

ラテックスまたはプラスチック粉末をバインダーとして成形せしめてなる悪臭確實化合物の吸着量インディケーター。

(2) 銀塩または酸化銀をポリメタルメタアクリレートゲルに含有せしめてなる悪臭確實化合物の吸着量インディケーター。

(3) 銀塩または酸化銀と活性炭を混合し、ラテックスまたはプラスチック粉末をバインダーとして成形せしめてなるアルデヒド吸着量インディケーター。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は吸着剤フィルターや捕獲体の寿命を簡単に知る方法を提供することにある。

吸着剤は種々の分野で使用されているが、使用

中に有害物質を吸着し、性能は低下する。長期間使用すると吸着能が殆ど無くなっているのに知らずに、使用し改善効果が得られないということがよく起こる。従って、これらをフィルターとして用いる場合に、吸着剤の残存能力とマッチングした形でフィルターの寿命予測ができるれば、フィルターの交換時期を明確にすることが可能になり、審しく好ましい。

本発明は、吸着剤の有害物質に対する残存吸着能に相関して変化するインディケーター及び、これを内蔵することにより、フィルターの交換時期をフィルターの残存吸着能に対応して表示する方法を提供することにある。

[従来の技術]

吸着剤は一般家庭でも安易に使用されるようになつたが、長期間使用すると劣化が起こる。その際、吸着剤の性能がどれだけ残存しているか正確にわからないという欠点がある。

従来からよく行なわれている、フィルターの交換時期を表示する方法としては、例えばフィルタ

前面に紙を張りつけ、色の変化により寿命を予測する方法がある。これはタバコの煙がくるとヤニで茶色になるとことを利用したものである。しかし、この方法ではタバコ煙を含まないガスの浄化に用いた場合、茶色への変色が起らないので吸着剤が劣化していても指示されない事になる。

また、電池の電圧変化を利用して電池と豆球を用いる方法があるが、点灯していると電力が消費され電池の電圧が低下すれば、豆球が消えることを利用したものである。がこれは処理するガスの有害成分が高濃度であろうが低濃度であろうが無関係に、一定期間が過ぎれば、寿命の指示が出ることになり、きわめて不適当である。

あるいはカレンダーを張りつけ、時間が経過すれば取り替えるなど、吸着剤の残存性能に無関係な指標を使用している場合が多かった。この場合、使用しなくとも時間が来れば交換することになり、無駄である。

本来フィルターの寿命は、高濃度のガスが来れば短時間で劣化し、低濃度のガスであれば長時間

の寿命になるものである。従ってフィルターの寿命を表わすインディケーターとしては、吸着剤の残存吸着能に応じて寿命を示すものでなくてはならない。

吸着剤の残存性能と対応する形で使用期間、残存性能が確定できれば、吸着剤が劣化すればその使用期間に因らず寿命を指示できることになる。この様なインディケーター及びそれを内蔵したフィルターは産業上、きわめて有効である。

〔発明が解決しようとする問題点〕

吸着剤の残存吸着能に対応してインディケーター機能を発揮する組成物を板状、円柱状、円筒状、シート状に加工して、インディケーターとして使用する方法および、フィルター内にインディケーターが内蔵可能なように成形加工し、それを吸着剤と一体加工し、吸着剤の残存寿命と関連した指標を提供することにある。

〔問題点を解決するための手段〕

本発明のインディケーター及びインディケーターを内蔵した通過体は以下の様にして得られる。

②インディケーターの製法

本発明のインディケーターは、酸化水素用、アルデヒド用すなわち、酸化水素用としては金属塩化物-活性炭素が利用できる。酸化水素の累積吸着量と対応したインディケーターとして利用できる。この場合、金属塩化物としては、各種金属化合物が使用可能であるが、磷酸銅、磷酸銅、塩化銅などの銅化合物や、硫酸鉛、硫酸鉛等の鉛化合物が好ましい。

また、硝酸銀を添着したアクリル酸ゲルや、活性炭ではアセトアルデヒドや、ホルマリンなどの、アルデヒド化合物に対して、反応して銀を析出し、電気抵抗が低下するので、アルデヒドセンサーとして使用可能である。

インディケーターの形状としては、より的確なセンシティビティを出すためには、円柱状、板状、球状、円筒状など、有害成分との接触を防げない形状が好ましい。

これらの混合物を必要な形状に成形する必要があるが、成形のためのバインダーとしては、ラテックスや、プラスチック粉末が使用できる。

ラテックスとしては、ポリアクリロニトリル、ポリブタジエン、ポリアリレート、ポリ酢酸ビニル、カルボキシルメチルセルローズ、メチルセルローズ等が使用可能である。配合量は金属塩と活性炭の混合物100部に対して50~100部に

なる。

プラスチックの粒子径は0.1～100μ、好みは5～50μである。

ここでプラスチックとは、熱可塑性樹脂、熱硬化性樹脂、親水性樹脂、導電性樹脂等を言う。

熱可塑性樹脂としてはポリエチレン、ポリプロピレン、ABS、PEI、ナイロン、PBT、エチレンアクリル樹脂、PMMA樹脂、メソフェニズビッテ等が使用可能である。

熱硬化性樹脂としてはフラン樹脂、フェノール樹脂等が使用可能である。

親水性樹脂としてはポリビニルアルコール樹脂、エバール樹脂、等が使用可能である。

導電性樹脂としてはポリビニルビロール、ポリアセテレン等が使用可能である。

補強剤

強度を向上させるためには、補強剤を入れても良い。補強剤としては、ガラス繊維、炭素繊維、金属繊維などが使用できる。繊維径は、0.1～30μ、長さは0.5～10mが最適である。添加量は

0.5～10部、好みは2～5部である。

混合法

混合方法としては、通常の工業的混合方法、例えばミキサー、リボンミキサー、スタティックミキサー、ボールミル、サンブルミル、ニーダー等が使用できるがこの限りでない。

成形法

押出成型、ロールプレス、ペレットミル、打撃成形などの方法で、板状、円柱状、筒状が作れる。電気抵抗を検出するためのリード線は両端を金属照射してそれに半田付けするか、予め成形の際、埋め込むか、あるいは導電性の接着剤で接着するなどの方法が利用できる。

フィルター型枠内の所定の位置にインディケーターのリード線を出して、一体成形してもよい。リード線は、ステンレス線、銅被覆線、エナメル線などが使える。

④インディケーターの使用法

単独で用いる場合は、最高量インディケーターとして利用可能である。

(2) 内蔵型フィルターの製法、性能

本インディケーターは吸着剤を含むフィルターと共に使用することにより、そのフィルターの残留吸着能に対応した形で電気抵抗の変化を取り出せるので、フィルターの取り替え時期を正確に予測することができる。気相、液相に使える。

概略の製法

インディケーターがペレット状、筒状、円柱状であれば、フィルター内部に入れることができある。板状であれば、フィルターの外枠として、成形する。

〔吸着材〕

フィルターに用いる吸着材としては、活性炭、ゼオライト、シリカゲル、アルミナゲル等、なんでも使用可能である。

ゼオライトでは、天然ゼオライト、合成ゼオライト、モレキュラーシーブ5A、3A、4A、13X、ZSM-5等いづれも使用可能である。

本発明に用いる吸着材の粒度は使用目的に合致すればなんでも良い。気相フィルターの場合、粒

径、0.5～5μが好み。液相の場合は10μ以上～32μが良い。が、これに限定されるものではない。

また、吸着剤の形状は板状、ペレット状、顆粒状あるいは繊維状、フェルト状、織物状、シート状などのいづれか形態の吸着剤でも使用可能である。通過体として必要な形状であればよい。圧搾及び入れ替えなどの取扱い、造粒または、吸着剤を蒸着したシート状吸着剤が便利な場合がある。

〔吸着材〕

そのままで、パラでフィルターに充填してもよい。ペインダーを用いてブロック状に成形してもよい。ブロック化した場合はインディケーターを一体化できるメリットがある。ペインダーとして用いるプラスチックとしては、熱可塑性プラスチック、メソフェニズビッテ等、水や有機溶剤を用いて加熱融着できるものが適している。

本発明に使用するプラスチックは吸着剤表面に蒸着した場合、着色性や接着性、導電性を賦与し

特開平3-221142(4)

得るものでもよい。

更にプラスチック類を選択することにより、その物質と吸着剤との複合機能を付与できれば、更に新しい用途の展開が可能になる。ここでプラスチックとは、熱可塑性樹脂、熱硬化性樹脂、親水性樹脂、導電性樹脂等を言う。

熱可塑性樹脂としてはポリエチレン、ポリプロピレン、ABS、PST、ナイロン、PBT、エチレンアクリル樹脂、PMMA樹脂、メソフェーメビッテ等が使用可能である。

熱硬化性樹脂としてはフラン樹脂、フェノール樹脂等が使用可能である。

親水性樹脂としてはポリビニルアルコール樹脂、エバール樹脂、等が使用可能である。

導電性樹脂としてはポリビニルビロール、ポリアセチレン等が使用可能である。

これらの接着剤樹脂は、使用目的に応じて使い分けるのが好ましい。すなわち、水溶液の吸着に用いる場合は親水性ポリマーを接着剤とするのが最適で、また、油、有機溶剤などのろ過に用いる

場合は、親水性ポリマーを接着剤にするのが、その対象照物質に対する親和性の点で好ましい。

これらの粒子径としては、 $0.1 \mu\text{m} \sim 100 \mu\text{m}$ 、好ましくは、 $5 \mu\text{m} \sim 50 \mu\text{m}$ であるがこの限りではない。

〔製法〕

本発明のインディケーターを内蔵したフィルターの製法としては、吸着剤表面に于め、吸着剤粉末をコーティングまたは付着させ、この吸着剤粒子と内蔵すべきインディケーターを同時に所量の粉に内にいれ、加熱圧着する事により、得られる。

ペインダーの粒子径としては、 $1 \mu\text{m} \sim 100 \mu\text{m}$ 、好ましくは、 $5 \mu\text{m} \sim 50 \mu\text{m}$ であるがこの限りではない。

吸着材に対する接着剤の使用割合は、吸着材の粒度や比重によって異なるが、吸着材100重量部に対して、プラスチック2~10重量部が好ましいが、必要最低限であることが、吸着能低下を防ぐ点から良い。

添着する方法は、混合することにより添着でき

て、また、フィルターに内蔵するとそのフィルターの寿命を知らせることが出来、残留吸着能と対応して、寿命を知ることができる。以下実施例によって、具体的な効果について説明する。

〔実施例〕

実施例 1

粉末活性炭100重量部および、純鐵網100重量部および、粒子径30μmのポリエチレン粉末35部をよく混合し、これを板状($10\text{mm} \times 50\text{mm} \times 1\text{mm}$ 試料1)、ペレット状($5\text{mm} \times 30\text{mm}$ 試料2)、筒状内径($2\text{mm} \times$ 外径 $6\text{mm} \times 20\text{mm}$ 試料3)に加熱加圧成形した。これらの両端にステンレスの針金のリード線を取り付けた。また粉末活性炭100重量部にたいして、純鐵網200重量部(試料4)および、純鐵網300重量部(試料5)および粒子径30μmのポリエチレン粉末35部をよく混合し、これを板状($10\text{mm} \times 50\text{mm} \times 1\text{mm}$)に成形した。

図1は各センサーの電気抵抗の経時変化である。

図のように本発明のインディケーターは、親水

るが、その混合方法としては、通常の工業的の混合方法、例えばミキサー、リボンミキサー、スタチックミキサー、ボールミル、サンブルミル、ニーダー等が使用できるがこの限りでない。混合の際、混合のみでも付着させることができるが、プラスチックと吸着材の接着をより強固にするために、簡単な加熱を行なうのがよい。熱源としては静電気の発生下あるいは、マイクロ波、赤外線、遠赤外線、高周波等を混合の際、同時に照射することにより、より強固にできるが、これらを用いなくても良い。又加熱の際、或圧下で加熱することにより、接着剤から発生する低沸点有機化合物が吸着剤に吸着されて吸着能が低下するのを防止することができる。成形圧力を大きくすることにより、強度の大きい成形体が得られる。

これを空気清浄器のフィルターとして、~~導水器~~を用いて使用することにより、その寿命を適確指示することができる。

〔考明の効果〕

単独で用いれば、基層量インディケーターとし

その吸着量に応じて電気抵抗は変化し、寿命インディケーターとして、有効であることが明らかになつた。

実施例 2

吸水倍率 100 倍の PMMA グル 10 グラムを、硝酸銀 5 g を含む水 1 リットル中に投入し、吸水させて、硝酸銀を 5.0 wt% 含む PMMA グルを得た。これを直径 1.0 m の円柱状に押し出し成形し、150°C 5 時間乾燥して、直角約 5 m の硝酸銀吸着グルを得た。(試料 6)

この円柱にリード線を取り付け、強化水素吸着量インディケーターとして用いた。

図 2 に、強化水素吸着量と電気抵抗の関係を示す。

図のようすに本発明の PMMA グルー硝酸銀成形体は、強化水素吸着量インディケーターとして使用可能である。

実施例 3

硝酸銀 2.0 重量部、活性炭粉末 2.0 重量部、粒子径 2.0 μ のポリプロピレン粉末 1.0 重量部をよ

く混合し、これを板状 1.0 m × 5.0 m × 1 m (試料 7) に加熱成形した。

実施例 1 と同じ方法で、アセトアルデヒドガスを 2 メッシュ導入した。この時のインディケーターの電気抵抗変化を図 3 に示す。

図のようすに本発明のアルデヒドインディケーターは、アルデヒド吸着量に対応したインディケーターとなり得ることがよくわかる。

実施例 4

実施例 1 で作成した強化水素インディケーター、試料 1、試料 2、試料 3 を用いて強化水素インディケーターを内蔵した空気清浄器用フィルターを作成した。

板状センサー(試料 1)は、フィルターの枠の一部として、使用し、ペレット状センサー(試料 2)はペレット状活性炭と共に、フィルター内部に充填した。筒状センサー(試料 3)は、風の流れる方向に穴に向けてフィルター内にセットした。

このフィルターの大きさは、1.7 m × 1.9 m × 9 m で活性炭の充填量は 80 l であった。この活

用えることがわかる。

実施例 5

実施例 3 で作成したアルデヒドインディケーターを実施例 4 と同じ方法で、アセトアルデヒドガスを 2 メッシュ導入した。この時のインディケーターの電気抵抗変化を図 6 に示す。

このフィルターに充填した活性炭の使用前のアセトアルデヒド吸着量は 5 wt% で、使用後の活性炭のアセトアルデヒド吸着量は 0.2 wt% であった。

図のようすに本発明のインディケーター内蔵フィルターは、アセトアルデヒド吸着量に対応した寿命を指示し得ることがわかる。

4. 図面の簡単な説明

図 1 実施例 1、強化水素吸着量と電気抵抗の関係

図 2 実施例 2、強化水素吸着量と電気抵抗の関係

図 3 実施例 3、アルデヒド吸着量と電気抵抗の関係

性炭の使用前の強化水素吸着量は 2.8% であった。このフィルターを入れた空気清浄器を内容積 1 立方メートルの箱に入れて、強化水素を連続的に注入し、各センサーの電気抵抗の変化を測定した。

図 4 はフィルターに置ける各センサーの設置状態、図 5 は各センサーの電気抵抗の経時変化である。図のようすに本発明のフィルターは、フィルターの強化水素の処理量に応じて電気抵抗は変化し、寿命センサーとして、有効であることが明らかになつた。

このときの使用済活性炭の強化水素吸着量は、3.0% であった。

比較のため、寿命インディケーターとして用いた豆球点灯式のインディケーターでは豆球の使用時間が短いため、灯が消えなかつた。

また使用開始時にラベルを剥した白い紙は、白いまま変化が無かつた。これは処理ガスがタバコ煙でないためである。

この様に従来からあるインディケーターは、フィルターの吸着剤の残存性能と無関係を直示を

図4 実施例4、エアーフィルターとインディケーター配置図

図5 実施例4、フィルター使用時間とインディケーターの電気抵抗の関係

図6 実施例5、フィルター使用時間とインディケーターの電気抵抗の関係

特許出願人 クラレケミカル株式会社
代理人弁理士 小田中 錠

図5

手続補正書(方式)
平成3年4月9日
特許庁長官 植松敏一郎

7. 補正の内容
図5を別紙の様に訂正する(欠落していた
図書「図6」を記入する)。

1. 事件の表示
特願平1-192104号

2. 発明の名称
吸着剤インディケーター

3. 補正をする者
事件との関係 特許出願人
岡山県留萌市鶴海4342

クラレケミカル株式会社

代表取締役 戸叶常雄

4. 代理人
〒530 大阪市北区東天満2丁目1番27号
東天満パークビル2号館(5階)

電話 大阪(06)351-5505
(8841) 弁理士 小田中壽

5. 補正命令の日付(発送日)

平成3年3月12日

6. 補正の対象 図面

THIS PAGE BREAK (0610) 判紙

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING
(text) AND 3049 21HT

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USP10)