911 Calls Exploring Data and Analysis

For this Exploring Data Analysis project, we will be analyzing some 911 call data from <u>Kaggle</u>. The data contains the following fields:

- lat : String variable, Latitude
- lng: String variable, Longitude
- desc: String variable, Description of the Emergency Call
- zip: String variable, Zipcode
- title: String variable, Title
- timeStamp: String variable, YYYY-MM-DD HH:MM:SS
- twp: String variable, Township
- addr: String variable, Address
- e: String variable, Dummy variable (always 1)

Exploring Data Analysis report contents:

- Data overview
- Data cleaning and Feature Engineering: Categorical Data
- Data cleaning and Feature Engineering: Numerical Data
- Hypothesis Testing (3 of them)
- Conducting a formal significance test for one of the hypotheses and discuss the results
- Suggestions for next steps in analyzing this data
- Summary of the quality of this data set and a request for additional data if needed

Exploring Data Analysis Initial Plans:

- Read data as dataset
- present the summary of characteristics of dataset and find out the data types of features of our dataset.
- Check Nan values, null values, outlier and perform data cleaning
- EDA -> Check makes statistical analysis like determining mean, median, correlation, standard deviation and do visualization while identifying features to use to predict.
- Feature engineering and Hypothesis analysis

EMS: Emergency Medical Services

Read Data as dataset reading data and view what kind of data it is and look for columns and rows we have.

0 40.297876 -75.581294 REINDEER CT & DEAD END; NEW HANOVER; Station 19525.0 EMS: BACK PAINS/INJURY 2015-12-10 17:40:00 NEW HANOVER REINDEER CT & DEAD END 1 40.258061 -75.264680 BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP 19446.0 EMS: DIABETIC EMERGENCY 2015-12-10 17:40:00 HATFIELD HATFIELD WHITEMARSH LN 2 40.121182 -75.351975 HAWS AVE; NORRISTOWN; ODOR/LEAK 19401.0 Fire: GAS-ODOR/LEAK 2015-12-10 2015-12-1		lat	Ing	desc	zip	title	timeStamp	twp	addr	•
1 40.258061 -75.264680 LN; HATFIELD TOWNSHIP 19440.0 EMERGENCY 17:40:00 TOWNSHIP WHITEMARSH LN 2 40.121182 -75.351975 HAWS AVE; NORRISTOWN; 2015-12-10 @ 14:39:21-St 19401.0 Fire: GAS-ODOR/LEAK 17:40:00 NORRISTOWN HAWS AVE 3 40.116153 -75.343513 AIRY ST & SWEDE ST; NORRISTOWN; Station 308A; 19401.0 EMS: CARDIAC EMERGENCY 17:40:01 NORRISTOWN ST ST ST ST SWEDE ST SWEDE ST ST SWEDE SWEDE ST SWEDE S	0	40.297876	-75.581294		19525.0			NEW HANOVER		
2 40.121182 -75.391975 2015-12-10 @ 14:39:21-St 19401.0 ODOR/LEAK 17:40:00 NORRISTOWN HAWS AVE AIRY ST & SWEDE ST; NORRISTOWN; Station 308A; 19401.0 EMS: CARDIAC EMERGENCY 17:40:01 NORRISTOWN ST CHERRYWOOD CT & DEAD 4 40.251492 -75.603350 END; LOWER POTTSGROVE; NaN EMS: DIZZINESS 17:40:01 POTTSGROVE & DEAD END	1	40.258061	-75.264680		19446.0					
3 40.116153 -75.343513 NORRISTOWN; Station 19401.0 EMS. CARDIAC 2015-12-10 NORRISTOWN ST ST & SWEDE ST ST ST ST & SWEDE ST ST ST ST & SWEDE ST ST ST ST ST ST ST & SWEDE ST	2	40.121182	-75.351975		19401.0			NORRISTOWN	HAWS AVE	
4 40.251492 -75.603350 END; LOWER POTTSGROVE; NaN EMS: DIZZINESS 2015-12-10 LOWER CHERRYWOOD CT	3	40.116153	-75.343513	NORRISTOWN; Station	19401.0			NORRISTOWN		
	4	40.251492	-75.603350	END; LOWER POTTSGROVE;	NaN	EMS: DIZZINESS				

We need to check characteristics of our dataset and find the summary of each features data types we have

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99492 entries, 0 to 99491
Data columns (total 9 columns):
     Column Non-Null Count Dtype
              99492 non-null float64
99492 non-null float64
99492 non-null object
86637 non-null float64
     lng
     desc
 3 zip
 4 title 99492 non-null object
     timeStamp 99492 non-null object
              99449 non-null object
     twp
     addr
               98973 non-null object
                99492 non-null int64
dtypes: float64(3), int64(1), object(5)
memory usage: 6.8+ MB
```

```
lat
                   0
lng
                   0
desc
                   0
title
                   0
timeStamp
                   0
                   0
twp
                  43
addr
                 519
zip
               12855
dtype: int64
```

Through dataset, our data shows that we have the following characteristics:

- Number of rows (entries): 99492
- Number of columns: 9
- Dataset features contains different data types like (floats, objects)
- Dataset features shows missing data:
 - there are 12855 missing data from zip (zip code) column
 - there are 43 missing data from twp (township) column
 - there are 519 missing data addr (address) column
- Most of our data is type of Object (String).
- 1. We need to find out most consecutive emergency that most frequently use 911 call.
- 2. find out the place where there are many emergencies between 2015-2016.
- 3. We will use hypothesis testing to find out time of day that has effect on volume of 911 calls.

The results of above steps will help us to find which models that can be used to track down the uses of volume of 911 calls and days of most emergency.

After adding other features of hour, month, and days of weeks of emergency calls, the results is the following

lat	Ing	desc	zip	title	timeStamp	twp	addr	е	Hour	Month	Day of Week
0 40.297876	-75.581294	REINDEER CT & DEAD END; NEW HANOVER; Station	19525.0	EMS: BACK PAINS/INJURY	2015-12-10 17:40:00	NEW HANOVER	REINDEER CT & DEAD END		17	12	Thu
1 40.258061	-75.264680	BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP	19446.0	EMS: DIABETIC EMERGENCY	2015-12-10 17:40:00	HATFIELD TOWNSHIP	BRIAR PATH & WHITEMARSH LN		17	12	Thu
2 40.121182	-75.351975	HAWS AVE; NORRISTOWN; 2015-12-10 @ 14:39:21-St	19401.0	Fire: GAS- ODOR/LEAK	2015-12-10 17:40:00	NORRISTOWN	HAWS AVE		17	12	Thu
3 40.116153	-75.343513	AIRY ST & SWEDE ST; NORRISTOWN; Station 308A;	19401.0	EMS: CARDIAC EMERGENCY	2015-12-10 17:40:01	NORRISTOWN	AIRY ST & SWEDE ST		17	12	Thu
4 40.251492	-75.603350	CHERRYWOOD CT & DEAD END; LOWER POTTSGROVE; S	NaN	EMS: DIZZINESS	2015-12-10 17:40:01	LOWER POTTSGROVE	CHERRYWOOD CT & DEAD END		17	12	Thu

Data Cleaning and Feature Engineering

1. We will start with Data cleaning

we found that we have the following data that we need to be careful working with them:

- there are 12855 missing data from zip (zip code) column
- there are 43 missing data from twp (township) column
- there are 519 missing data addr (address) column

Thus:

- we will replace missing values of zip code into 0
- we will replace missing input data of township into noTown Provided
- we will replace missing values of address to its township

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99492 entries, 0 to 99491
Data columns (total 12 columns):
    Column Non-Null Count Dtype
    lat
lng
               99492 non-null float64
                99492 non-null float64
 1
    desc 99492 non-null object
 3 zip
                99492 non-null float64
    title 99492 non-null object
 4
 5 timeStamp 99492 non-null datetime64[ns]
 6 twp
                99492 non-null object
7 addr 98973 non-null object
8 e 99492 non-null int64
9 Hour 99492 non-null int64
                99492 non-null int64
    Month
 11 Day of Week 99492 non-null object
dtypes: datetime64[ns](1), float64(3), int64(3), object(5)
memory usage: 9.1+ MB
```

Now we can see that data cleaning have taken place.

To proceed with our goal of finding out the reason of most consecutive emergencies that most frequently use 911 call. we need, here we are go:

lat	Ing	desc	zip	title	timeStamp	twp	addr	е	Hour	Month	Day of Week	Reason
0 40.297876	-75.581294	REINDEER CT & DEAD END; NEW HANOVER; Station	19525.0	EMS: BACK PAINS/INJURY	2015-12-10 17:40:00	NEW HANOVER	REINDEER CT & DEAD END		17	12	Thu	EMS
1 40.258061	-75.264680	BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP	19446.0	EMS: DIABETIC EMERGENCY	2015-12-10 17:40:00	HATFIELD TOWNSHIP	BRIAR PATH & WHITEMARSH LN	1	17	12	Thu	EMS
2 40.121182	-75.351975	HAWS AVE; NORRISTOWN; 2015-12-10 @ 14:39:21-St	19401.0	Fire: GAS- ODOR/LEAK	2015-12-10 17:40:00	NORRISTOWN	HAWS AVE		17	12	Thu	Fire
3 40.116153	-75.343513	AIRY ST & SWEDE ST; NORRISTOWN; Station 308A;	19401.0	EMS: CARDIAC EMERGENCY	2015-12-10 17:40:01	NORRISTOWN	AIRY ST & SWEDE ST	1	17	12	Thu	EMS
4 40.251492	-75.603350	CHERRYWOOD CT & DEAD END; LOWER POTTSGROVE; S	0.0	EMS: DIZZINESS	2015-12-10 17:40:01	LOWER POTTSGROVE	CHERRYWOOD CT & DEAD END		17	12	Thu	EMS

Key Findings and Insights, which synthesizes the results of Exploratory Data Analysis in an insightful and actionable manner

1. We need to see general statistical values of results from cleaning and feature engineering to describe our dataset

	lat	Ing	zip	е	Hour	Month
count	99492.000000	99492.000000	99492.000000	99492.0	99492.000000	99492.000000
mean	40.159526	-75.317464	16752.030334	1.0	13.117085	4.983195
std	0.094446	0.174826	6460.927718	0.0	5.671564	3.012176
min	30.333596	-95.595595	0.000000	1.0	0.000000	1.000000
25%	40.100423	-75.392104	19006.000000	1.0	9.000000	3.000000
50%	40.145223	-75.304667	19131.000000	1.0	14.000000	5.000000
75%	40.229008	-75.212513	19440.000000	1.0	17.000000	7.000000
max	41.167156	-74.995041	77316.000000	1.0	23.000000	12.000000

The above results shows that there are no outliers in our data. Then, and the table provide mean, standard deviation, min max, median, quartiles for better visualization

From the above charts of reasons of call due to Days of week and month, the visualization shows that there is imbalanced data provided which might cause an issue while model classification

2. Then, we can start to find mean, median, correlation, standard deviation for each group to see the possibilities of model selection.

	lat	Ing	zip	e	Hour	Month
Reaso	on					
EN	IS 40.167055	-75.327201	17456.570207	1.0	12.771569	5.015406
Fi	re 40.155476	-75.319704	16766.697788	1.0	13.456166	4.970845
Traff	ic 40.150910	-75.303194	15781.176327	1.0	13.448466	4.944250

	lat	Ing	zip	е	Hour	Month
Reason						
EMS	0.096620	0.180239	5605.714066	0.0	5.962304	2.987176
Fire	0.089404	0.185086	6426.186220	0.0	5.717137	2.971436
Traffic	0.092632	0.161416	7378.435335	0.0	5.196015	3.062346

- We can observe from the above results that emergency of Fire has much effect in volume of 911 calls as the hour it takes has greater mean and low standard deviation.
- EMS has least effect in volume of 911 calls as the hour it takes has low mean compared to other reasons.

we can observe that, we need to continue with applying transformation to our data to improve them for next step of model fit.

	Skew
Month	0.690686
Hour	-0.339847
zip	-2.192439
lat	-16.639012
Ing	-21.550039

applying log transformation to skewed features from dataset

	Skew
log_Hour	-2.080357
log_zip	-2.210814
log_lat	-22.580780

	lat	Ing	zip	e	Hour	Month	log_Month	log_Hour	log_zip	log_lat	log_lng
count	99492.000000	99492.000000	99492.000000	99492.0	99492.000000	99492.000000	99492.000000	99492.000000	99492.000000	99492.000000	0.0
mean	40.159526	-75.317464	16752.030334	1.0	13.117085	4.983195	1.652344	2.514484	8.589987	3.717453	NaN
std	0.094446	0.174826	6460.927718	0.0	5.671564	3.012176	0.542269	0.616399	3.308896	0.002349	NaN
min	30.333596	-95.595595	0.000000	1.0	0.000000	1.000000	0.693147	0.000000	0.000000	3.444691	NaN
25%	40.100423	-75.392104	19006.000000	1.0	9.000000	3.000000	1.386294	2.302585	9.852563	3.716018	NaN
50%	40.145223	-75.304667	19131.000000	1.0	14.000000	5.000000	1.791759	2.708050	9.859118	3.717108	NaN
75%	40.229008	-75.212513	19440.000000	1.0	17.000000	7.000000	2.079442	2.890372	9.875140	3.719142	NaN
max	41.167156	-74.995041	77316.000000	1.0	23.000000	12.000000	2.564949	3.178054	11.255669	3.741642	NaN

Hypothesis Testing of our dataset

We will use hypothesis testing to find out time of day that has effect on volume of 911 calls.

From the above histogram, we can formulate our hypothesis in this way:

- 1. time of day has some effect on volume of 911 calls
- 2. month has some effect on volume of 911 calls
- 3. EMS has great effect on volume of 911 calls

1. Time of day has some effect on volume of 911 calls

- our null hypothesis will be "time of day has no effect on volume of 911 calls"
- our alternative hypothesis will be "time of day has some effect on volume of 911 calls"

We need to find p-value. as p-value for a statistical model is the probability that when the null hypothesis is true, the statistical summary is equal to or greater than the actual observed results.

```
The probability of getting massive call on Monday is 1.0
The p-value for Monday is: 4.1630465706831465
The probability of getting massive call on Tuesday is 1.0
The p-value for Tuesday is: 3.911964866746967
The probability of getting massive call on Wednesday is 1.0
The p-value for Wednesday is: 3.3659707066538544
The probability of getting massive call on Thursday is 1.0
The p-value for Thursday is: 2.722665382792572
The probability of getting massive call on Friday is 1.0
The p-value for Friday is: 4.101235297308582
The probability of getting massive call on Saturday is 1.0
The p-value for Saturday is: 4.047523777904953
The probability of getting massive call on Sunday is 1.0
The p-value for Sunday is: 4.045005226649829
```

The above results shows that probability of getting massive 911 calls of emergency is 1 which is strange but somehow seems to be true. It means that our p-value is not explaining the observation fairly. but as the p-value is to low compared to significance level, we reject our null hypothesis and we can conclude that most time of day has some effect on volume of 911 calls.

```
Month

1 12.980159
2 13.110927
3 13.057472
4 12.936076
5 13.098310
6 13.252927
7 13.284996
8 12.961005
12 13.441210
Name: Hour, dtype: float64
```

2. month has some effect on volume of 911 calls

from the above data observations, there are missing data of September, October, and November. for simply, we can conclude that those months has no effect on volume of 911 calls which doesn't make sense since there is problem of missing data.

3. EMS has great effect on volume of 911 calls.

```
The probability of getting massive call for EMS is 1.0
The p-value for EMS is: 1.55770530280906
The probability of getting massive call for Fire is 1.0
The p-value for Fire is: 2.7034110671855007
The probability of getting massive call for Traffic is 1.0
The p-value for Traffic is: 3.67583473273708
```

The above results shows that probability of getting massive 911 calls for different reasons of emergency provided is 1 which is strange but somehow seems to be true. It means that our p-values are not explaining the observation fairly except for p-value for traffic which is slightly greater than our significance level, but as the p-value is to low compared to significance level, we reject our null hypothesis for EMS and Fire, but we accept our null hypothesis for Traffic.

Next steps

The following steps need to considered:

- Missing data of months needs to be taken care of as it tends to reduce the confidences of model selection.
- It is highly recommended to request addition information to this data as its quality is not quite good. increase of features of data will be great.
- Dealing with known reasons we have, and the outcome is categorial data. this means that classification method is quite useful.
- I will suggest k-nearest neighbors to be used as classification method.

Summary of quality of data.

- The quality of data provides features that are quite useful but addition of other features is highly needed to make predictions and other analysis.
- We have seen that some provided data provided probability of 1, which is not quite true but its accurate is not bad.
- The selection process of model to be used so that the prediction is quite useful with our 911 calls dataset requires more observations which doesn't have missing data as we have seen.

The notebook can be accessed here: https://github.com/Emmanuel262/EDA_with_IBM