Scientific Computing for Biologists

Biology 723 Fall 2013 Tue 2:50-5:20

Instructor: Paul M. Magwene TA: Colin Maxwell

Email: paul.magwene@duke.edu

Phone: 613-8159

27 August 2013

Overview of Lecture

- Course Mechanics
 - Goals of course
 - Structure of lectures
 - Grading
- Introduction to R
 - R resources
 - Important programming concepts
 - Introduction to data types and data structures in R
- Literate programming
- Hands-On Session

Class Structure

Lectures

- Typically 60-75 minutes
- Emphasize the mathematical basis of the methods/approaches from both a geometric and algebraic basis
- Discuss algorithms underlying the methods

Hands-on

- Walk through some examples
- Apply the techniques and concepts to real data
- Highlight available R/Python libraries

Syllabus

Date	Торіс
August 27	Introduction; Getting Acquainted with R
September 3	Data as Vectors: Geometry of Correlation and Regression; Visualizing bivariate data in R $$
September 10	Descriptive statistics as matrix operations; Visualizing and working with multivariate data in $\mbox{\bf R}$
September 17	Multiple regression and introduction to biplots; Regression in R
September 24	Non-linear regression models
October 1	Eigenvectors and Eigenvalues; Principal Components Analysis
October 8	Singular Value Decomposition, Biplots, and Correspondence Analysis
October 15	Discriminant analysis and Canonical Variate Analysis
October 22	Fall Break
October 29	Analyses based on Similarity/Distance I; Hierarchical and K-means clustering
November 5	Analyses based on Similarity/Distance II; Multidimensional scaling
November 12	Randomization and Monte Carlo Methods; Jackknife, Bootstrap, Permutation
November 19	Building Bioinformatics Pipelines I; Pipes, redirection, subprocesses
November 26	Building Bioinformatics Pipelines II; Putting the concepts to work

Course Goals

- Introduce multivariate statistics from a geometric perspective, emphasizing the geometry of vector spaces.
- Develop a good working knowledge of R (a statistical computing environment), Python (a general purpose programming language), and Unix-like command line (de facto standard for building bioinformatics pipelines).
- 3 Provide the tools and knowledge to conduct reproducible computational and statistical research.

Texts for Course

- Wickens, T. D. 1995. The geometry of multivariate statistics.
- Matloff, N. 2011. The Art of R Programming.
- Downey, A. B., J. Elkner, and C. Meyers. How to think like a computer scientist: learning with Python.
 - Available at http://www.ibiblio.org/obp/thinkCSpy/

Supplementary Texts

Statistics

- Krzanowski, W. J. 2003. Principles of multivariate analysis.
 Oxford University Press.
- Sokal, R. R. and F. J. Rohlf. 1995. Biometry. W. H. Freeman.

Math

Hamilton, A. G. 1989. Linear algebra: an introduction with concurrent examples. Cambridge University Press.

Grading

- Problem sets/programming assignments
 - 10-12 homeworks over the course of the semester
 - Programming assignments should not be submitted until they produce correct results; I will provide you with scripts/corresponding data to check the correctness of your code
 - No credit for late assignments

Why Both R and Python?

The first half of the course is built around these use of the R programming language; in the second half of the course we will use both R and Python.

- R is geared toward statistical computing
 - Great set of built-in facilities for statistically oriented tasks
 - Somewhat cumbersome syntax for non-statistical tasks
- Python is a general programming language
 - Clearer syntax
 - Wider range of modules
 - web programming, databases, numerical analysis, etc.
 - More natural language for simulation
 - More suitable as a 'glue' language
 - building bioinformatics pipelines

Introduction to R

What is R?

- 'A language and environment for statistical computing and graphics'
- First developed in the mid-90s
- Derives from the S language
 - S was developed at Bell Labs in the mid-80s
- Advantages
 - Free and open-source
 - Much of the academic statistical community has adopted it
 - Active developer and user community
 - Wealth of built-in and user contributed libraries available for all types of analyses
- Disadvantages
 - GUI not as well developed as commercial statistical packages
 - S-Plus; site licensed by Duke see OIT website
 - Has higher learning curve than some other simpler statistical software
 - Command-line can be intimidating

R Resources on the Web

- Home Page
 - http://www.r-project.org
- Comprehensive R Archive Network (CRAN)
 - http://cran.r-project.org/mirrors.html
 - See especially the 'Task Views'
 - Statistical and population genetics
 - Environmental and ecological analysis
 - Spatial statistics
- Introductions and Tutorials
 - see http://cran.r-project.org/other-docs.html

Some R Packages of Interest

- Bioconductor software package geared towards analysis of genomic data, especially microarray data, http://www.bioconductor.org/
- ape 'Analysis of Phylogenetics and Evolution', http://ape.mpl.ird.fr/
- ade4 Analysis of Ecological Data: Exploratory and Euclidean methods in Environmental sciences, http://pbil.univ-lyon1.fr/ADE-4/home.php?lang=eng

Some Important Programming Concepts

Data Types

- refer to the types of values that can be represented in a computer program
- determine the representation of values in memory
- determine the operations you can perform on those values
- Examples: integers, strings, floating point values

Data Structures

- a way of storing collections of data
- different structures are more efficient for particular types of operations
- Examples: lists, hash tables, stacks, queues, trees

Variables

- Variables are references to objects/values in memory
- Think of them as labels that point to particular places in a computer's memory

More Important Programming Concepts

- Statement
 - an instruction that a computer program can execute
 - Example: print("Hello, World!")
- Operators
 - Symbols representing specific computations
 - Example: +, -, * (addition, subtraction, multiplication)
- Expression
 - a combination of values, variables, and operators
 - Example: 1 + 1
- Functions (subroutines, procedures, methods)
 - A piece of code that carries out a specific task, set of instructions, calculations, etc.
 - Typically used to encapsulate algorithms

Basic Data Types, Data Structures

and Operators in R

Numeric Data Types in R

■ Floating point values ('doubles')

```
> x <- 10.0
> typeof(x)
[1] "double"
```

Complex numbers

```
> x <- 1+1i
> typeof(x)
[1] "complex"
```

- Integers
 - Default numeric type is double, must explicitly ask for integers if single values

```
> x <- as.integer(10)
> typeof(x)
[1] "integer"
```

Additional Data Types in R

■ Boolean('logical')

```
> x <- TRUE # or x <- T
> x <- F # or x <- FALSE
> typeof(x)
[1] "logical"
```

Character strings

```
> x <- 'Hello' # or x <- "Hello"
> typeof(x)
[1] "character"
```

Arithmetic Operators and Mathematical Functions in R

```
> 10 + 2 # addition
[1] 12
> 10 - 2 # subtraction
[1] 8
> 10 * 2 # multiplication
[1] 20
> 10 / 2 # division
Γ17 5
> 10 ^ 2 # exponentiation
Γ17 100
> 10 ** 2 # alternate exponentiation
[1] 100
> sqrt(10) # square root
[1] 3.162278
> 10 ^ 0.5 # same as square root
Γ17 3.162278
> pi*(3)**2 # R knows some useful constants
Γ17 28.27433
> exp(1) # exponential function
[1] 2.718282
```

Simple Data Structures in R: Vectors

Vectors are the simplest data structure in R

vectors represent an ordered list of items

```
> x <- c(2,4,6,8)
> y <- c('joe','bob','fred')</pre>
```

vectors have length (possibly zero) and type

```
> typeof(x)
[1] "double"
> length(x)
[1] 4
> typeof(y)
[1] "character"
```

Simple Data Structures in R: Vectors

Accesing the objects in a vector is accomplished by 'indexing':

■ The elements of the vector are assigned indices 1...n where n is the length of the vector

```
> x <- c(2,4,6,8)
> length(x)
[1] 4
> x[1]
[1] 2
> x[2]
[1] 4
> x[3]
[1] 6
> x[4]
[1] 8
```

Simple Data Structures in R: Vectors

Single objects are usually represented by vectors as well

```
> x <- 10.0
> length(x)
[1] 1
> x[1]
[1] 10
```

- Every element in a vector is of the same type
 - If this is not the case the the values are coerced to enforce this rule

```
> x <- c(1+1i, 2+1i, 'Fred', 10)
> x
[1] "1+1i" "2+1i" "Fred" "10"
```

Arithmetic Operators Work on Vectors in R

Most arithmetic operators work element-by-element on vectors in R

```
> x <- c(2, 4, 6, 8)
> y <- c(0, 1, 2, 3)
> x + y
[1] 2 5 8 11
> x - y
[1] 2 3 4 5
> x * y
[1] 0 4 12 24
> xA2
[1] 4 16 36 64
> sqrt(x)
[1] 1.414214 2.000000 2.449490 2.828427
```

Simple Data Structures in R: Lists

Lists

 Lists in R are like vectors but the elements of a list are arbitrary objects (even other lists)

```
> x <- list('Bob',27, 10, c(720,710))
> x
[[1]]
[1] "Bob"

[[2]]
[1] 27

[[3]]
[1] 10

[[4]]
[1] 720 710
```

Simple Data Structures in R: Lists

Accessing objects in Lists:

- Items in lists are accessed in a different manner than vectors.
 - Typically you use double brackets ([[]])to return the element at index i
 - Single brackets always return a list containing the element at index i

```
> x <- list('Bob', 27, 10, c(720,710))
> typeof(x[1])
[1] "list"
> typeof(x[[1]])
[1] "character"
```

Simple Data Structures in R: Lists

Objects in R lists can be named

```
> x <- list(name='Bob',age=27, years.in.school=10)
> x
$name
[1] "Bob"

$age
[1] 27

$years.in.school
[1] 10
```

Named list objects can be accessed via the \$ operator

```
> x$years.in.school
[1] 10
> x$name
[1] "Bob"
```

The names of list objects can be accessed with the names() function

```
> names(x)
[1] "name" "age" "years.in.school"
```

Literate Programming

"Literate programming" is a concept coined by Donald Knuth, a preeminent computer scientist:

- Programs are useless with descriptions
- Descriptions should be literate, not comments in code or typical reference manuals.
- The code in the descriptions should work.

Literate Programming and Reproducible Research

How literate programming can help to ensure your research is reproducible:

- The steps of your analyses are explicitly described, both as written text and the code and function calls used.
- Analyses can easily checked for correctness and reproduced from your literate code.
- Your literate code can serve as a template for future analyses, saving you time and the trouble of remembering all the gory details.

Tools for literate programming in R and Python

How literate programming can help to ensure your research is reproducible:

- R knitr; tool for weaving together R code and text to produce 'computable' documents that can be output as HTML or 上下.
- Python Ipython "notebooks"; Mathematica like interactive computing environments that intermingle code, graphics, and text.

A Literate programming Example

Literate programming tools typically use simple markup conventions in which you weave your code into your description by putting it between delimiter blocks

Example:

```
Here are some trivial R examples that will help to illustrate how knitr works:
```

```
<<>>=
z <- 1:10
mean(z)
summary(z)
z[z > 5]
@
```

The above text was a code block woven into my description. It gets evaluated and integrated into the output. Cool, eh?

knitr output

Output produced by knitr and LATEX for the code on the previous slide:

Here are some trivial R examples that will help to illustrate how knitr works:

```
z <- 1:10
mean(z)

## [1] 5.5

summary(z)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 3.25 5.50 5.50 7.75 10.00

z[z > 5]

## [1] 6 7 8 9 10
```

The above text was a code block woven into my description. It gets evaluated and integrated into the output. Cool, eh?

Fancier knitr output

Here's a somewhat fancier example of what knitr can produce:

Things to Remember

- Try it out programming involves experimentation
- Practice learning to program, like learning a foreign language, requires lots of practice.
- Persist many new tools/concepts can be hard to grasp at first. Keep plugging away until you get that 'Aha!' moment

You might be surprised to find that...

- Programming is fun! (at least sometimes)
- Math is fun! (at least sometimes)
- Statistics is fun! (at least sometimes)
- Gaining new insights into how your biological system of interest works is fun! (always)