16711 HW 5 - Writeup

Saeed Bai, Mohammadreza Mousaei

TOTAL POINTS

8/6

QUESTION 1

Computing Manipulator EOMs 6 pts

1.1 2 / 2

- √ 0 pts Correct
 - 0.5 pts Partially correct
 - 1 pts No M_11 value provided.

1.2 2/2

- √ 0 pts Correct
 - 0.5 pts Partially correct
 - 0 pts Correct but I think there's a typo
 - 1 pts No answer provided
 - **0.5 pts** Further simplification needed.

1.3 2/2

- √ 0 pts Correct
 - 0.5 pts Partially correct
 - 1 pts No answer provided

1.4 2/0

- √ + 2 pts Correct
 - 0 pts Not answered.
 - + 0.5 pts No result provided

Problem 1

From the provided code, section Q1, the component M_{11} of the resulting inertia matrix $M(\theta)$ is:

$$M_{11} = I_{z_1} + m_3(r_2\cos(\theta_2 + \theta_3) + l_1\cos(\theta_2))^2 + I_{z_3}\cos(\theta_2 + \theta_3)^2 + I_{y_3}\sin(\theta_2 + \theta_3)^2 + I_{z_2}\cos(\theta_2)^2 + I_{y_2}\sin(\theta_2)^2 + m_2r_1^2\cos(\theta_2)^2$$

Problem 2

From the provided code, section Q2, the component C_{21} of the resulting Coriolis matrix $C(\theta, \dot{\theta})$ is:

$$C_{21} = \dot{\theta}_1 \left(\frac{m_3 \sin(2\theta_2) l_1^2}{2} + m_3 \sin(2\theta_2 + \theta_3) l_1 r_2 + \frac{m_2 \sin(2\theta_2) r_1^2}{2} + \frac{m_3 \sin(2\theta_2 + 2\theta_3) r_2^2}{2} - \frac{I_{y_3} \sin(2\theta_2 + 2\theta_3)}{2} + \frac{I_{z_3} \sin(2\theta_2 + 2\theta_3)}{2} - \frac{I_{y_2} \sin(2\theta_2)}{2} + \frac{I_{z_2} \sin(2\theta_2)}{2} \right)$$

Problem 3

From the provided code, section Q3, the element N_3 of the vector $N(\theta, \dot{\theta})$ is:

$$N_3 = -gm_3r_2\cos(\theta_2 + \theta_3)$$

Problem 4

We implemented a PD controller to control the manipulator. We have:

$$\tau = M\ddot{\theta} + C\dot{\theta} + N \atop \tau = K_p(\theta_{des} - \theta) + K_d(\dot{\theta_{des}} - \dot{\theta}) \right\} \longrightarrow \ddot{\theta} = M^{-1} \left(K_p(\theta_{des} - \theta) + K_d(\dot{\theta_{des}} - \dot{\theta}) - C\dot{\theta} - N \right)$$

1.1 2/2

- √ 0 pts Correct
 - 0.5 pts Partially correct
 - 1 pts No M_11 value provided.

Problem 1

From the provided code, section Q1, the component M_{11} of the resulting inertia matrix $M(\theta)$ is:

$$M_{11} = I_{z_1} + m_3(r_2\cos(\theta_2 + \theta_3) + l_1\cos(\theta_2))^2 + I_{z_3}\cos(\theta_2 + \theta_3)^2 + I_{y_3}\sin(\theta_2 + \theta_3)^2 + I_{z_2}\cos(\theta_2)^2 + I_{y_2}\sin(\theta_2)^2 + m_2r_1^2\cos(\theta_2)^2$$

Problem 2

From the provided code, section Q2, the component C_{21} of the resulting Coriolis matrix $C(\theta, \dot{\theta})$ is:

$$C_{21} = \dot{\theta}_1 \left(\frac{m_3 \sin(2\theta_2) l_1^2}{2} + m_3 \sin(2\theta_2 + \theta_3) l_1 r_2 + \frac{m_2 \sin(2\theta_2) r_1^2}{2} + \frac{m_3 \sin(2\theta_2 + 2\theta_3) r_2^2}{2} - \frac{I_{y_3} \sin(2\theta_2 + 2\theta_3)}{2} + \frac{I_{z_3} \sin(2\theta_2 + 2\theta_3)}{2} - \frac{I_{y_2} \sin(2\theta_2)}{2} + \frac{I_{z_2} \sin(2\theta_2)}{2} \right)$$

Problem 3

From the provided code, section Q3, the element N_3 of the vector $N(\theta, \dot{\theta})$ is:

$$N_3 = -gm_3r_2\cos(\theta_2 + \theta_3)$$

Problem 4

We implemented a PD controller to control the manipulator. We have:

$$\tau = M\ddot{\theta} + C\dot{\theta} + N \atop \tau = K_p(\theta_{des} - \theta) + K_d(\dot{\theta_{des}} - \dot{\theta}) \right\} \longrightarrow \ddot{\theta} = M^{-1} \left(K_p(\theta_{des} - \theta) + K_d(\dot{\theta_{des}} - \dot{\theta}) - C\dot{\theta} - N \right)$$

1.2 2/2

√ - 0 pts Correct

- 0.5 pts Partially correct
- **0 pts** Correct but I think there's a typo
- 1 pts No answer provided
- **0.5 pts** Further simplification needed.

Problem 1

From the provided code, section Q1, the component M_{11} of the resulting inertia matrix $M(\theta)$ is:

$$M_{11} = I_{z_1} + m_3(r_2\cos(\theta_2 + \theta_3) + l_1\cos(\theta_2))^2 + I_{z_3}\cos(\theta_2 + \theta_3)^2 + I_{y_3}\sin(\theta_2 + \theta_3)^2 + I_{z_2}\cos(\theta_2)^2 + I_{y_2}\sin(\theta_2)^2 + m_2r_1^2\cos(\theta_2)^2$$

Problem 2

From the provided code, section Q2, the component C_{21} of the resulting Coriolis matrix $C(\theta, \dot{\theta})$ is:

$$C_{21} = \dot{\theta}_1 \left(\frac{m_3 \sin(2\theta_2) l_1^2}{2} + m_3 \sin(2\theta_2 + \theta_3) l_1 r_2 + \frac{m_2 \sin(2\theta_2) r_1^2}{2} + \frac{m_3 \sin(2\theta_2 + 2\theta_3) r_2^2}{2} - \frac{I_{y_3} \sin(2\theta_2 + 2\theta_3)}{2} + \frac{I_{z_3} \sin(2\theta_2 + 2\theta_3)}{2} - \frac{I_{y_2} \sin(2\theta_2)}{2} + \frac{I_{z_2} \sin(2\theta_2)}{2} \right)$$

Problem 3

From the provided code, section Q3, the element N_3 of the vector $N(\theta, \dot{\theta})$ is:

$$N_3 = -gm_3r_2\cos(\theta_2 + \theta_3)$$

Problem 4

We implemented a PD controller to control the manipulator. We have:

$$\tau = M\ddot{\theta} + C\dot{\theta} + N \atop \tau = K_p(\theta_{des} - \theta) + K_d(\dot{\theta_{des}} - \dot{\theta}) \right\} \longrightarrow \ddot{\theta} = M^{-1} \left(K_p(\theta_{des} - \theta) + K_d(\dot{\theta_{des}} - \dot{\theta}) - C\dot{\theta} - N \right)$$

1.3 2/2

- √ 0 pts Correct
 - 0.5 pts Partially correct
 - 1 pts No answer provided

Problem 1

From the provided code, section Q1, the component M_{11} of the resulting inertia matrix $M(\theta)$ is:

$$M_{11} = I_{z_1} + m_3(r_2\cos(\theta_2 + \theta_3) + l_1\cos(\theta_2))^2 + I_{z_3}\cos(\theta_2 + \theta_3)^2 + I_{y_3}\sin(\theta_2 + \theta_3)^2 + I_{z_2}\cos(\theta_2)^2 + I_{y_2}\sin(\theta_2)^2 + m_2r_1^2\cos(\theta_2)^2$$

Problem 2

From the provided code, section Q2, the component C_{21} of the resulting Coriolis matrix $C(\theta, \dot{\theta})$ is:

$$C_{21} = \dot{\theta}_1 \left(\frac{m_3 \sin(2\theta_2) l_1^2}{2} + m_3 \sin(2\theta_2 + \theta_3) l_1 r_2 + \frac{m_2 \sin(2\theta_2) r_1^2}{2} + \frac{m_3 \sin(2\theta_2 + 2\theta_3) r_2^2}{2} - \frac{I_{y_3} \sin(2\theta_2 + 2\theta_3)}{2} + \frac{I_{z_3} \sin(2\theta_2 + 2\theta_3)}{2} - \frac{I_{y_2} \sin(2\theta_2)}{2} + \frac{I_{z_2} \sin(2\theta_2)}{2} \right)$$

Problem 3

From the provided code, section Q3, the element N_3 of the vector $N(\theta, \dot{\theta})$ is:

$$N_3 = -gm_3r_2\cos(\theta_2 + \theta_3)$$

Problem 4

We implemented a PD controller to control the manipulator. We have:

$$\tau = M\ddot{\theta} + C\dot{\theta} + N \atop \tau = K_p(\theta_{des} - \theta) + K_d(\dot{\theta_{des}} - \dot{\theta}) \right\} \longrightarrow \ddot{\theta} = M^{-1} \left(K_p(\theta_{des} - \theta) + K_d(\dot{\theta_{des}} - \dot{\theta}) - C\dot{\theta} - N \right)$$

Figure 1: The resulting trajectory for θ , $\dot{\theta}$ and $\ddot{\theta}$, respectively in each column from left to right

1.4 2/0

- √ + 2 pts Correct
 - 0 pts Not answered.
 - + 0.5 pts No result provided