RELATÓRIO 09:ROTEIRO DA NONA AULA PRÁTICA - UTILIZAÇÃO DA MÁQUINA SÍNCRONA PARA CORREÇÃO DO FATOR DE POTÊNCIA

Batista, H.O.B.¹, Alves, W. F. O.²
Matriculas: 96704¹, 96708²
Departamento de Engenharia Elétrica,
Universidade Federal de Viçosa, Viçosa - MG.
e-mails: hiago.batista@ufv.br¹, werikson.alves@ufv.br²

I. Introducão

Uma característica extremamente importante da máquina síncrona é que o fator de que a potência gerada por ela pode ser controlado continuamente numa ampla faixa. Este controle é feito pelo ajuste da corrente no enrolamento de campo. A máquina síncrona é uma máquina de dupla excitação, onde a magnetização do circuito magnético pode ser obtida a partir do estator ou do rotor (neste caso no enrolamento de campo alimentado em tensão contínua). Por exemplo, se o estator é alimentado pela rede e a máquina esta operando em vazio ou com uma carga no eixo constante, pela variação da corrente no enrolamento de campo, o fator de potência pode ser controlado desde um fator de potência atrasado, unitário ou adiantado. No momento em que é feito o paralelo do gerador síncrono com a rede elétrica o mesmo fica flutuando na rede, não fornecendo ou absorvendo nenhuma potência reativa e ativa da rede. Nessas condições o seu fator de potência é praticamente unitário, comportandose como uma carga puramente resistiva.

II. Objetivos Gerais e Específicos

Esta aula tem por objetivo obter o gráfico do fator de potência de um compensador síncrono e da corrente do estator em função da corrente de excitação do enrolamento de campo, quando a corrente do enrolamento de campo é variada, essa curva é chamada de curva "v". Este mesmo gráfico será obtido para o motor síncrono alimentando uma carga constante no eixo.

III. Materiais

- Uma máquina de corrente contínua;
- Uma máquina síncrona operando como motor e como gerador;
- Multímetros;
- Um tacômetro;
- Duas fontes c.c;
- Dois varivolts:

• Três wattímetros monofásicos;

IV. Desenvolvimento

Para a realização do ensaio é montado um protótipo no laboratório, conforme a Figura 1. O motor síncrono é ligado em estrela (Y), com o neutro da Y ligado no neutro da rede.

Figura 1. Esquema de ligação para o ensaio.

Os passos que iremos realizar para efetuar está prática são:

- a) Fazer o paralelo do gerador síncrono com a rede elétrica;
- b) Medir a potência ativa total (sem variar a excitação do enrolamento de campo), a tensão de fase e a corrente de estator (média dos três amperímetros) e calcular o fator de potência e observar a flutuação;
- c) Tomar como referência a corrente do enrolamento de campo lida pelo amperímetro no momento em que é efetuado o paralelo com a rede elétrica, aumentar gradativamente a excitação do enrolamento de campo até 0,7 A. Para cada variação efetuar as medidas no estator conforme item (b) e calcular para cada caso o fator de potência e a potência reativa;

- d) Diminuir a excitação do enrolamento de campo até que a corrente lida no amperímetro seja igual a lida no momento após efetuado o paralelo. A partir daí será diminuído gradativamente o seu valor até que a leitura no amperímetro seja nula. Para cada variação será feito as medidas no estator conforme item (b) e calcular para cada caso o fator de potência e a potência reativa;
- e) Será repetido os itens anteriores para a máquina síncrona funcionando como motor suprindo uma carga em seu eixo;
- f) Uma carga será fixada e ligada em paralelo com os terminais da armadura do gerador de corrente contínua, que representa a carga fixa no eixo do motor síncrono; A máquina de corrente contínua deve operar como gerador, representando uma carga fixa no eixo do motor síncrono;
- g) Supondo que a máquina síncrona esteja operando como um compensador síncrono e desprezando a perdas rotacionais, será determinado para a excitação normal a corrente do estator:
 - Se a corrente de campo fosse aumentada em 150% da excitação normal, encontre a corrente do estator e o fator de potência reduzida
 - Se a corrente de campo fosse reduzida em 50% da excitação normal, encontre a corrente do estator e o fator de potência
 - Para cada caso trace o diagrama fasorial e despreze a resistência do estator; OBS: na excitação normal a máquina síncrona opera com fator de potência unitário

V. Resultados e Discussões

A partir dos ensaios em laboratório, foi levantado a Tabela I, que é os dados da máquina síncrona operando como um condensador síncrono.

Tabela I Máquina Síncrona Operando Como Um Capacitor Síncrono

Instanta da Paralala

		instante do Paralelo					
		$P_{3\phi}$	V_L	I_A	I_F		
		30	220	0,52	0,24		
Aumento de I_F				Diminuição de I_F			
$P_{3\phi}$	V_L	I_A	I_F	$P_{3\phi}$	V_L	I_A	I_F
30	220	$0,\!52$	0,24	90	220	1,51	0,24
20	220	0,6	0,3	80	220	1,53	0,2
30	220	0,65	0,35	70	220	1,86	0,15
30	220	0,67	0,4	40	220	2,3	0,1
30	220	0,7	0,45	90	220	2,44	0,05
30	220	0,73	0,5	0	220	$2,\!52$	0,01
30	220	0,77	0,55	0	220	2,89	0
88	220	0,85	0,6	-	220	-	-
70	220	0,9	0,67	-	220	-	-
120	220	1,3	0,73	-	220	-	-

De acordo com os dados da Tabela I, temos que o fator de potência logo após efetuado o paralelo será:

$$\cos \theta = \frac{30}{\sqrt{3} \cdot 220 \cdot 0,52} = 0,1514 \tag{1}$$

Ainda com a Tabela I, nos é pedido para calcular a potência reativa e o fator de potência para todo o aumento de I_F , logo utilizando da equação 2, obteremos a potência reativa. Sendo assim, foi obtido a Tabela II. Da mesma forma também foi calculado o fator de potência e a potência reativa para a diminuição de I_F , conforme mostra a Tabela III.

$$Q_{3\phi} = P_{3\phi} \cdot \tan(\cos^{-1}(\theta)) \tag{2}$$

 ${\it Tabela~II}$ Fator de Potência e Potência Reativa - Aumento de I_F

	Aumento de I_F						
$P_{3\phi}$	V_L	I_A	I_F	$\cos(\theta)$	$Q_{3\phi}$		
30	220	0,52	0,24	0,151403	195,8624		
20	220	0,6	0,3	0,087477	227,7543		
30	220	0,65	0,35	0,121122	245,8597		
30	220	0,67	0,4	0,117507	253,5356		
30	220	0,7	0,45	0,112471	265,0434		
30	220	0,73	0,5	0,107849	276,5449		
30	220	0,77	0,55	0,102246	291,8717		
88	220	0,85	0,6	0,271694	311,7098		
70	220	0,9	0,67	0,204114	335,7261		
120	220	1,3	0,73	0,242245	480,6121		

Diminuição de IF						
$P_{3\phi}$	V_L	I_A	I_F	$\cos(\theta)$	$Q_{3\phi}$	
90	220	1,51	0,24	0,156416	568,305	
80	220	1,53	0,2	0,137219	577,4934	
70	220	1,86	0,15	0,098765	705,29	
40	220	2,3	0,1	0,04564	875,5044	
90	220	2,44	0,05	0,096799	925,3987	

A Figura 2 representa o gráfico de $I_A = f(I_F)$ e $\cos(\theta) = f(I_F)$, a curva "v".

Figura 2. Curva "V" para os resultados obtidos das Tabela III e II.

Agora, entramos em outra parte do nosso experimento, neste caso iremos manter a carga no eixo da máquina constate e variar a corrente I_F . Realizando as devidas medições obtemos a Tabela IV. Com os valores medidos, agora iremos novamente calcular o fator de potência e a

potência reativa para os valores da Tabela IV, sendo assim iremos obter a Tabela V.

Tabela IV
CARGA NO EIXO DA MÁQUINA SÍNCRONA CONSTANTE E A CORRENTE
NO SEU ENROLAMENTO DE CAMPO VARIADA

I_F (A)	$P_{3\phi}$ (W)	V_L (V)	I_A (A)
0,02	810	220	5,1
0,06	780	220	4,33
0,1	750	220	3,82
0,15	660	220	3,18
0,2	720	220	2,74
0,25	690	220	2,34
0,3	660	220	2,01
0,35	660	220	1,86
0,4	660	220	1,86
0,45	660	220	2,14
0,5	660	220	2,72
56	720	220	3,34
0,6	720	220	3,82
0,65	780	220	4,43
0,7	780	220	4,91

Tabela V
CARGA NO EIXO DA MÁQUINA SÍNCRONA CONSTANTE E A CORRENTE
NO SEU ENROLAMENTO DE CAMPO VARIADA - ÂMPLIADA

I_F (A)	$P_{3\phi}$ (W)	V_L (V)	I_A (A)	$\cos(\theta)$	$Q_{3\phi}$
0,02	810	220	5,1	0,416804	1766,508
0,06	780	220	4,33	0,472741	1453,94
0,1	750	220	3,82	0,515246	1247,524
0,15	660	220	3,18	0,54467	1016,229
0,2	720	220	2,74	0,689602	756,1108
0,25	690	220	2,34	0,773838	564,7629
0,3	660	220	2,01	0,861717	388,6162
0,35	660	220	1,86	0,93121	258,3291
0,4	660	220	1,86	0,93121	258,3291
0,45	660	220	2,14	0,80937	478,9133
0,5	660	220	2,72	0,636783	799,1544
56	720	220	3,34	0,565722	1049,473
0,6	720	220	3,82	0,494636	1265,076
0,65	780	220	4,43	0,46207	1497,042
0,7	780	220	4,91	0,416898	1700,616

Agora as curvas em "V" para estes resultados, temos os seguintes gráficos das Figuras 3 e 4.

Figura 3. Curva "V" para os resultados obtidos da Tabela V.

Figura 4. Curva "V" para os resultados obtidos das Tabela III, II e V

Agora, respondendo as questões sobre compensador síncrono:

i) **Excitação Normal:** A máquina operando como compensador síncrono não absorve e nem entrega potência para a rede. Portanto $I_A=0$ e $E_F=V_T$ e $\delta=0$

ii) Excitação 50% Reduzida da Normal: O fluxo de potência ativa continua sendo nulo e $\delta = 0$, porém I_A irá mudar, então:

$$I_A = \frac{V_T - E_F}{jX_s} = \frac{1 - 0.5}{j1} = -j0.5 \ pu \ (atrasado) \ (3)$$

iii) Excitação 50% Aumentada da Normal: O fluxo de potência ativa continua sendo nulo e $\delta = 0$, porém I_A será alterado, logo:

$$I_A = \frac{V_T - E_F}{jX_s} = \frac{1 - 1.5}{j1} = j0.5 \ pu \ (adiantado)$$
 (4)

VI. Conclusões

Portanto, com esta prática, foi visto como a máquina síncrona pode ser utilizada para corrigir o fator de potência pois caso o compensador síncrono esteja sobre excitado ele irá possuir um fator de potência capacitivo. Além disso também vimos que ele pode ser utilizado em linhas de transmissão e subestações, pois serve para controlar a tensão ao longo da linha de transmissão através da injeção de reativos.

Referências

- [1]Stephen J Chapman. Fundamentos de máquinas elétricas. AMGH editora, 2013.
- [2] J. T. Resende. Laboratorio de Máquinas Elétricas 2 Pratica 09.
 D.E.L.-UFV, 2022.