

<u>Gameboard</u>

Maths

Geometry Trigonometry

Simplify Trig Expressions

Simplify Trig Expressions

Pre-Uni Maths for Sciences H3.1

Simplify the following trigonometric expressions.

$$\frac{1}{\cos^2 t - 1}$$

Simplify the following expression to give a single trigonometric function:

$$\frac{1}{\cos^2 t - 1}$$

The following symbols may be useful: cos(), cosec(), cot(), sec(), sin(), t, tan()

$$\frac{1-\sin^2 x}{\cos x}$$

Simplify the following expression to give a single trigonometric function:

$$\frac{1-\sin^2 x}{\cos x}$$

The following symbols may be useful: cos(), cosec(), cot(), sec(), sin(), tan(), x

Part C
$$\sin \alpha \tan \alpha - \frac{1}{\cos \alpha}$$

Simplify the following expression to give a single trigonometric function:

$$\sin\alpha\tan\alpha - \frac{1}{\cos\alpha}$$

The following symbols may be useful: alpha, cos(), cosec(), cot(), sec(), sin(), tan()

Part D
$$an w - rac{\cos w}{1-\sin w}$$

Simplify the following expression to give a single trigonometric function:

$$\tan w - \frac{\cos w}{1 - \sin w}$$

The following symbols may be useful: cos(), cosec(), cot(), sec(), sin(), tan(), w

Created for isaacphysics.org by Julia Riley.

<u>Gameboard</u>

Maths

Functions: Reciprocal Trig 1ii

Functions: Reciprocal Trig 1ii

Part A
$$\sec \frac{1}{2}\alpha = 4$$

Solve, for $0^{\circ} < \alpha < 180^{\circ}$, the equation $\sec \frac{1}{2}\alpha = 4$. Give your answer in degrees, to three significant figures.

Part B
$$\tan \beta = 7 \cot \beta$$

Solve, for $0^{\circ} < \beta < 180^{\circ}$, the equation $\tan \beta = 7 \cot \beta$. Give your answers to three significant figures.

Enter your answers in order from lowest value of β to highest.

(lowest value)
(highest value)

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 30 - Trigonometry: Reciprocal</u>

& Inverse Functions

<u>Gameboard</u>

Maths

Advanced Trig Identities 5ii

Advanced Trig Identities 5ii

Solve, for $0^\circ < \theta < 360^\circ$, the equation $\sec^2 \theta = 4 \tan \theta - 2$. Give inexact answers to 1 dp.							
Enter your answers in order from lowest value of $ heta$ to highest.							
(lowest value)							
(highest value)							

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 30 - Trigonometry: Reciprocal

& Inverse Functions

<u>Gameboard</u>

Maths

Advanced Trig Identities 2ii

Advanced Trig Identities 2ii

Part A $2 \tan^2 \theta - \frac{1}{\cos \theta}$

Express $2 \tan^2 \theta - \frac{1}{\cos \theta}$ in terms of $\sec \theta$.

The following symbols may be useful: sec(), theta

Part B Solve

Hence solve, for $0^\circ < \theta < 360^\circ$, the equation

$$2\tan^2\theta - \frac{1}{\cos\theta} = 4$$

Enter your answers in order from lowest value of θ to highest. Give inexact answers to 1 dp.

(lowest value)

(highest value)

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 30 - Trigonometry: Reciprocal

& Inverse Functions

<u>Gameboard</u>

Maths

Functions: Inverse Trig 3ii

Functions: Inverse Trig 3ii

Figure 1: A diagram showing sections of curves

Each diagram in Figure 1 shows part of a curve, the equation of which is one of the following:

$$y = \sin^{-1} x, \ \ y = \cos^{-1} x, \ \ y = \tan^{-1} x, \ \ y = \sec x, \ \ y = \csc x, \ \ y = \cot x$$

Part A Fig. 1

Which equation corresponds to $\mathbf{Fig.}\ \mathbf{1}$?

- $y = \csc x$
- $\bigcirc \quad y = \sin^{-1} x$
- $y = an^{-1} x$
- $y = \cot x$
- $y = \cos^{-1} x$
- $y = \sec x$

Part B Fig. 2

Which equation corresponds to $\mathbf{Fig.}\ \mathbf{2}$?

- $y = \cot x$
- $y = \cos^{-1} x$
- $y = \csc x$
- $y = an^{-1} x$
- $\bigcirc \quad y = \sin^{-1} x$
- $y = \sec x$

Part C Fig. 3

Which equation corresponds to $\mathbf{Fig.}\ \mathbf{3}$?

- $y = \sin^{-1} x$
- $\bigcirc \quad y = \cos^{-1} x$
- $\bigcirc \quad y = \tan^{-1} x$
- $y = \csc x$
- $y = \sec x$
- $y = \cot x$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 30 - Trigonometry: Reciprocal

<u>& Inverse Functions</u>

<u>Home</u> <u>Gameboard</u> Maths Functions Graph Sketching Sketching Reciprocal Trigonometric Functions

Sketching Reciprocal Trigonometric Functions

Part A Sketch $2 \sec x + 2$

Sketch the graph of $y=2\sec x+2$ in the interval $0^\circ \le x \le 360^\circ$.

Part B Sketch $\cot{(x+\frac{\pi}{4})}-1$

Sketch the graph of $y=\cot{(x+\frac{\pi}{4})}-1$ in the interval $0\leq x\leq 2\pi$.

Part C Sketch $-\csc{\frac{x}{2}}-3$

Sketch the graph of $y=-\csc{\frac{x}{2}}-3$ in the interval $-2\pi \leq x \leq 2\pi$.

Created for isaacphysics.org by Matthew Rihan

Gameboard:

STEM SMART Single Maths 30 - Trigonometry: Reciprocal

& Inverse Functions

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Gameboard</u>

Maths

Functions: Inverse Trig 1ii

Functions: Inverse Trig 1ii

Figure 1 shows the graph of $y = -\arcsin(x-1)$.

Figure 1: A graph of the function $y=-\arcsin{(x-1)}$

Part A Transformations

Give details of the pair of geometrical transformations which transform the graph of $y = -\arcsin(x-1)$ to the graph of $y = \arcsin x$.

Reflect in x-axis,	translate by	, 1	in a direction
λ 1 Tollock III μ -axis,	แลแอเลเซ มา	у т	-u-un ection

	Reflect in x -axis,	translate b	ov 1	in $+x$ -direction

Reflect in
$$y$$
-axis, translate by 1 in $-x$ -direction

Reflect in
$$y = -x$$
, translate by 1 in $+x$ -direction

Reflect in
$$y$$
-axis, translate by 1 in $+y$ -direction

Reflect in line
$$y = x$$
, translate by 1 in $+y$ -direction

Reflect in
$$y$$
-axis, translate by 1 in $-y$ -direction

Part B Sketch

Sketch the graph of $y = |-\arcsin(x-1)|$.

To see an example sketch, answer the following question: For what value of y does the curve meet the y-axis?

The following symbols may be useful: pi

Part C Solutions

Find the exact solutions of the equation $\left|-\arcsin\left(x-1\right)\right|=\frac{\pi}{3}$.

Give the largest exact solution.

The following symbols may be useful: x

Give the smallest exact solution.

The following symbols may be useful: x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

<u>STEM SMART Single Maths 30 - Trigonometry: Reciprocal</u>
<u>& Inverse Functions</u>

<u>Home</u> <u>Gameboard</u> Maths Functions Graph Sketching Sketching Inverse Trigonometric Functions

Sketching Inverse Trigonometric Functions

Part A Sketch $\arcsin \frac{x}{3} + \frac{\pi}{2}$

Sketch the graph of $y = \arcsin \frac{x}{3} + \frac{\pi}{2}$.

Part B Sketch $2\arctan{(x-1)}$

Sketch the graph of $y = 2 \arctan(x - 1)$.

Part C Sketch $\arccos\left(-\frac{x}{2} + \frac{1}{2}\right) - \frac{\pi}{3}$

Sketch the graph of $y = \arccos\left(-\frac{x}{2} + \frac{1}{2}\right) - \frac{\pi}{3}$.

Created for isaacphysics.org by Matthew Rihan

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.