Заметки к семинарам по методам оптимальных решений

https://github.com/bdemeshev/optimal-solution-pro зеркало: https://gitlab.com/bdemeshev/optimal-solution-pro

皮卡丘

Содержание

1	Картинки на плоскости	3
2	Оптимизация на плоскости	4
3	Симплекс-метод	4
4	Двойственность	0
5	Транспортная задача	12
6	Сети 1	15
7	Неравенства	9
8	Динамическое программирование	20
9	Решения	23
Xε	<mark>эштэги</mark>	34
И	сточники мудрости	34

При везении подсказку, ответ или решение можно найти, кликнув по номеру задачи.

Подробная книжка Фергюсона, [Fer]. Слайды к оксфордскому курсу, [Law].

Обсуждение интуиции за двойственными задачами, [lit].

Слайды по алгоритмам Кляйнберга и Тардос, [КТ].

1. Картинки на плоскости

Линейная оболочка (linear span):

$$Span(v_1, v_2, v_3) = \{x_1v_1 + x_2v_2 + x_3v_3 \mid x_1 \in \mathbb{R}, x_2 \in \mathbb{R}, x_3 \in \mathbb{R}\}\$$

Конус (cone):

Cone
$$(v_1, v_2, v_3) = \{x_1v_1 + x_2v_2 + x_3v_3 \mid x_1 \ge 0, x_2 \ge 0, x_3 \ge 0\}$$

Выпуклая линейная оболочка (convex linear hull):

$$\mathrm{Hull}(v_1, v_2, v_3) = \mathrm{Convex}(v_1, v_2, v_3) = \left\{ x_1 v_1 + x_2 v_2 + x_3 v_3 \mid x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0, \sum x_i = 1 \right\}$$

- **1.1** Рассмотрим точки на плоскости, A = (0,0), B = (5,3) и C = (5,-3).
 - а) Нарисуйте точки 0.5B + 0.5C, 0.9A + 0.1B, 3B 2C.
 - б) Нарисуйте точки $\frac{1}{3}A + \frac{1}{3}B + \frac{1}{3}C$, 0.1A + 0.45B + 0.45C, 0.9A + 0.05B + 0.05C.
- **1.2** Рассмотрим точки на плоскости, A = (1, 2), B = (3, 4) и C = (5, 1).
 - а) Нарисуйте Convex(A, B), Convex(A, B, C).
 - б) Нарисуйте Cone(A), Cone(A, B), Cone(A, B, C).
 - в) Нарисуйте Span(A), Span(A, B).
 - r) Нарисуйте A + Span(B), Cone(A) + Cone(B).
 - д) Нарисуйте Convex(A, B) + Cone(C), Convex(A) + Cone(B, C), Convex(A, C) + Cone(B, C).
- **1.3** Рассмотрим точки на плоскости A = (1, 2), B = (5, 2), C = (1, 4), D = (5, 4).
 - а) Запишите E = (1,3) как выпуклую линейную комбинацию точек A, B, C и D.
 - б) Запишите F=(3,3) как выпуклую линейную комбинацию точек $A,\,B,\,C$ и D всеми возможными способами.
 - в) Можно ли записать G=(6,3) как выпуклую линейную комбинацию точек $A,\,B,\,C$ и D?
 - г) Сколькими способами можно записать H=(4,3) как выпуклую линейную комбинацию A,B,C и D?
 - д) Сколькими способами можно записать I=(4,3) как выпуклую линейную комбинацию A,B и D?
 - е) Сколькими способами можно записать J=(4,2) как выпуклую линейную комбинацию A,B,C и D?
 - ж) Сколькими способами можно записать K=(4,2) как выпуклую линейную комбинацию A,C и D?
- **1.4** а) Нарисуйте семейство прямых $ax_1 + 5x_2 = 10$ на плоскости (x_1, x_2) .
 - б) Нарисуйте семейство прямых $2x_1 + x_2 = d$ на плоскости (x_1, x_2) .

2. Оптимизация на плоскости

- допустимое множество, feasible set, 可行集, kěxíng jí;
- допустимая область, feasible region, 可行域, kěxíng yù;
- линейное программирование, linear programming, 线性规划, xiànxìng guīhuà;
- целевая функция, objective function, 目标函数, mùbiāo hánshù;

2.1

2.1. Оптимизация на плоскости с параметром

2.2 Решите задачу линейного программирования при всех значениях c:

$$\begin{cases} cx_1 + x_2 \to \max \\ 2x_1 + 3x_2 \leqslant 6 \\ x_1 \geqslant 0 \\ x_2 \geqslant 0 \end{cases}$$

2.3 Решите задачу линейного программирования при всех значениях a:

$$\begin{cases} x_1 + 3x_2 \to \max \\ 2x_1 + ax_2 \leqslant 6 \\ x_1 \geqslant 0 \\ x_2 \geqslant 0 \end{cases}$$

3. Симплекс-метод

Решение x системы Ax=b называется допустимым, если все $x_i\geqslant 0$. Решение x системы Ax=b называется базисным, если столбцы $\operatorname{col}_i A$ при $x_i\neq 0$ линейно независимы.

• базисное допустимое решение, basic feasible solution, 基本可行解, jīběn kěxíng jiě;

Терминология

3.1 Рассмотрим систему уравнений

$$\begin{cases} 2x_1 + 3x_2 + x_3 = 8 \\ x_1 - x_2 + x_4 = 9 \end{cases}$$

Есть несколько векторов, $x_a = (0, 0, 0, 0)$, $x_b = (0, 0, 8, 9)$, $x_c = (1, 0, 6, 8)$, $x_d = (1, -9, 33, -1)$, $x_e = (0, -9, 35, 0)$.

- а) Какие векторы являются решениями системы?
- б) Какие векторы являются базисными решениями системы?

- в) Какие векторы являются допустимыми решениями при условии, что все $x_i \geqslant 0$?
- 3.2 Рассмотрим систему уравнений

$$\begin{cases} x_1 + 3x_2 + x_3 = 10 \\ 2x_1 + x_2 + x_4 = 11 \end{cases}$$

Есть несколько векторов, $x_a=(1,2,3,4)$, $x_b=(0,0,10,11)$, $x_c=(1,0,9,9)$, $x_d=(6,-1,7,0)$, $x_e=(0,11,-23,0)$.

- а) Какие векторы являются решениями системы?
- б) Какие векторы являются базисными решениями системы?
- в) Какие векторы являются допустимыми решениями при условии, что все $x_i \geqslant 0$?
- 3.3 Рассмотрим систему ограничений в канонической форме:

$$\begin{cases} 2x_1 + 5x_2 + x_3 = 8 \\ x_1 - 6x_2 + x_4 = 15 \\ -x_1 + 2x_2 + x_5 = 11 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0. \end{cases}$$

- а) Найдите хотя бы одно базисное допустимое решение системы.
- б) Найдите все базисные допустимые решения системы.
- 3.4 Рассмотрим систему ограничений в канонической форме:

$$\begin{cases} 2x_1 + 5x_2 - x_3 = 8 \\ x_1 - 6x_2 + x_4 = 15 \\ -x_1 + 2x_2 + x_5 = 11 \\ x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0. \end{cases}$$

- а) Найдите хотя бы одно базисное допустимое решение системы.
- б) Найдите все базисные допустимые решения системы.

Приятная стартовая точка

3.5 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 + x_2 \to \max \\ x_1 + 3x_2 \leqslant 9 \\ 2x_1 + x_2 \leqslant 8 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.

3.6 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 + 2x_2 + 3x_3 \to \max \\ x_1 + x_2 + 2x_3 \leqslant 10 \\ 2x_1 + x_2 + x_3 \leqslant 5 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.7 Рассмотрим задачу линейного программирования:

$$\begin{cases} 2x_1 - 3x_2 \to \min \\ x_1 + x_2 \leqslant 10 \\ 2x_1 + x_2 \leqslant 5 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.8 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 + x_2 + x_3 \to \max \\ 2x_1 + x_2 + 3x_3 \leqslant 10 \\ x_1 - x_2 + x_3 \leqslant 6 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.
- г) Найдите хотя бы одно решение задачи симплекс-методом.
- 3.9 Рассмотрим задачу линейного программирования:

$$\begin{cases} x_1 - 2x_2 + 3x_3 \to \min \\ 3x_1 + 2x_2 + x_3 \leqslant 10 \\ x_1 + x_2 - x_3 \leqslant 5 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу.
- в) Укажите допустимое базисное решение для стартовой симплекс-таблицы.

6

г) Найдите хотя бы одно решение задачи симплекс-методом.

- а) Найдите хотя бы одно допустимое решение.
- б) Найдите все допустимые решения.
- в) Найдите все базисные допустимые решения.
- г) Запишите все допустимые решения в виде выпуклой линейной оболочки.
- д) Найдите оптимальное решение.

Особые случаи

Пустое допустимое множество

3.11 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + x_2 \to \max \\ x_1 + x_2 \leqslant 1 \\ x_1 + x_2 \geqslant 2 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Решите задачу графически.
- б) Решите задачу симплекс-методом.

Неограниченная задача

3.12 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + x_2 \to \max \\ x_1 + x_2 \geqslant 1 \\ x_1 \geqslant x_2 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Решите задачу графически.
- б) Решите задачу симплекс-методом.

Неединственное решение

3.13 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + x_2 \to \max \\ x_1 + x_2 \leqslant 1 \\ x_1 \geqslant x_2 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Решите задачу графически.
- б) Приведите задачу к каноническому виду.
- в) Найдите хотя бы одно решение задачи симплекс-методом.
- г) Выпишите все решения задачи симплекс-методом.
- д) Выпишите все базисные допустимые решения задачи.
- е) Запишите ответ в виде выпуклой линейной оболочки.

3.14 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 - x_2 \to \min \\ x_1 + x_2 \geqslant 1 \\ x_1 \geqslant x_2 \\ x_1 \geqslant 0, x_2 \geqslant 0. \end{cases}$$

- а) Решите задачу графически.
- б) Приведите задачу к каноническому виду.
- в) Найдите хотя бы одно оптимальное решение задачи симплекс-методом.
- г) Выпишите все решения задачи симплекс-методом в параметрическом виде.
- д) Выпишите все базисные оптимальные решения задачи.
- е) Запишите оптимальные решения в виде суммы выпуклой линейной оболочки и конуса.

3.15 Рассмотрим симплекс-табличку

	x_1	x_2	x_3	x_4	b
x_1	1	0	-1	3	5
x_2	0	1	-2	7	6
$\min z$	0	0	0	-3	12 - z

- а) Найдите хотя бы одно оптимальное решение.
- б) Выпишите все решения в параметрическом виде.
- в) Выпишите все базисные оптимальные решения задачи.
- г) Выпишите все решения, используя выпуклую линейную оболочки и конус.

3.16 Рассмотрим симплекс-табличку

	x_1	x_2	x_3	x_4	b
x_1	1	0	-1	3	5
x_2	0	1	3	7	6
$\max z$	0	0	0	-3	$\frac{16 + z}{}$

- а) Найдите хотя бы одно оптимальное решение.
- б) Выпишите все решения в параметрическом виде.
- в) Выпишите все базисные оптимальные решения задачи.

г) Выпишите все решения, используя выпуклую линейную оболочки и конус.

3.17 Рассмотрим симплекс-табличку

	x_1	x_2	x_3	x_4	b
x_1	1	0	-1	-2	5
x_2	0	1	3	-1	6
$\min z$	0	0	0	0	20 - z

- а) Найдите хотя бы одно оптимальное решение.
- б) Выпишите все решения в параметрическом виде.
- в) Выпишите все базисные оптимальные решения задачи.
- г) Выпишите все решения, используя выпуклую линейную оболочки и конус.

3.18 Рассмотрим симплекс-табличку

	x_1	x_2	x_3	x_4	b
x_1	1	0	2	-3	2
x_2	0	1	1	0	6
$\min z$	0	0	0	-2	5-z

- а) Найдите хотя бы одно допустимое решение.
- б) Найдите все допустимые решения.
- в) Найдите базисные допустимые решения.
- г) Найдите хотя бы одно оптимальное решение.
- д) Найдите все оптимальные решения.
- е) Найдите базисные оптимальные решения.

3.19 Рассмотрим задачу

$$\begin{cases} 2x_1 + 2x_2 + x_3 \to \max \\ x_1 + x_2 + x_3 \leqslant 10 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Найдите хотя бы одно допустимое решение.
- б) Найдите все допустимые решения.
- в) Найдите базисные допустимые решения.
- г) Найдите хотя бы одно оптимальное решение.
- д) Найдите все оптимальные решения.
- е) Найдите базисные оптимальные решения.

Поиск стартовой точки

3.20 Рассмотрим задачу линейного программирования:

$$\begin{cases} 3x_1 + x_3 \to \max \\ x_1 + 2x_2 + x_3 = 30 \\ x_1 - 2x_2 + 2x_3 = 18 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0. \end{cases}$$

- а) Приведите задачу к канонической форме.
- б) Выпишите стартовую симплекс-таблицу с искусственными переменными.
- в) Найдите хотя бы одно решение задачи симплекс-методом.

4. Двойственность

- двойственная задача, dual problem, 对偶问题, duì'ŏu wèntí;
- двойственность, duality, 对偶, duì'ŏu;
- условия дополняющей нежёсткости, complementary slackness condition, 互补松弛条件, hùbǔ sōngchí tiáojiàn;

Двойственные задачи в стандартной форме:

Двойственность между равенствами и переменными с произвольными значениями:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \qquad \leftrightarrow \qquad y_1 \in \mathbb{R}$$

$$x_2 \in \mathbb{R} \qquad \leftrightarrow \qquad a_{12}y_1 + a_{22}y_2 = c_2$$

Двойственные задачи в стандартной форме с векторами:

$$z = c^T x \to \min \qquad \qquad \leftrightarrow \qquad \qquad u = b^T y \to \max$$

$$Ax \geqslant b \qquad \qquad \leftrightarrow \qquad \qquad y \geqslant 0$$

$$x \geqslant 0 \qquad \qquad \leftrightarrow \qquad \qquad A^T y \leqslant c$$

Двойственность в оптимальной точке:

$$y_j^* \neq 0 \quad \Rightarrow \quad a_{j1}x_1^* + a_{j2}x_2^* + a_{j3}x_3^* = b_j$$

$$a_{1i}y_1^* + a_{2i}y_2^* \neq c_i \quad \Rightarrow \quad x_i^* = 0$$

4.1 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + 3x_2 + x_3 - x_4 \to \min \\ x_1 + x_2 + x_3 + x_4 \geqslant 6 \\ x_1 - x_2 + 2x_3 - 2x_4 \geqslant 10 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0, x_4 \geqslant 0 \end{cases}$$

- а) Выпишите двойственную задачу.
- б) Решите двойственную задачу.
- в) Найдите решение исходной задачи.
- 4.2 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + 3x_2 + x_3 - x_4 \to \max \\ x_1 + x_2 + x_3 + x_4 \leqslant 6 \\ x_1 - x_2 + 2x_3 - 2x_4 \leqslant 10 \\ x_1 \geqslant 0, x_2 \geqslant 0, x_3 \geqslant 0, x_4 \geqslant 0 \end{cases}$$

- а) Выпишите двойственную задачу.
- б) Решите двойственную задачу.
- в) Найдите решение исходной задачи.
- 4.3 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + 3x_2 + x_3 - x_4 \to \min \\ x_1 + x_2 + x_3 + 3x_4 = 6 \\ x_1 - x_2 + 2x_3 - 2x_4 = 10 \\ x_1 \geqslant 0, x_3 \geqslant 0, x_4 \geqslant 0 \end{cases}$$

- а) Выпишите двойственную задачу.
- б) Решите двойственную задачу.
- в) Найдите решение исходной задачи.
- 4.4 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + 3x_2 + x_3 - x_4 \to \min \\ x_1 + x_2 + x_3 + 3x_4 \geqslant 6 \\ x_1 - x_2 + 2x_3 - 2x_4 = 10 \\ x_1 \geqslant 0, x_3 \geqslant 0, x_4 \geqslant 0 \end{cases}$$

11

а) Выпишите двойственную задачу.

- б) Решите двойственную задачу.
- в) Найдите решение исходной задачи.
- 4.5 Рассмотрим задачу линейного программирования

$$\begin{cases} x_1 + 3x_2 + x_3 - x_4 \to \min \\ x_1 + x_2 + x_3 + 3x_4 = 6 \\ 2x_1 + 2x_2 + 2x_3 + 6x_4 = 10 \\ x_3 \geqslant 0, x_4 \geqslant 0 \end{cases}$$

- а) Выпишите двойственную задачу.
- б) Найдите допустимое множество двойственной задачи.
- в) Найдите допустимое множество исходной задачи.

5. Транспортная задача

- базисное допустимое решение, basic feasible solution, 基本可行解, jīběn kěxíng jiě;
- метод минимального элемента, least-cost rule, 最小元素法, zuìxiǎo yuánsù fǎ;
- метод северо-западного угла, northwest corner rule, 西北角法, xīběi jiǎo fǎ;
- транспортная задача, transportation problem, 运输问题, yùnshū wèntí;

Если в сбалансированной транспортной задаче m продавцов и n покупателей, то количество базисных переменных равно m+n-1. Базисные переменные должны соответствовать линейно независимым столбцам матрицы ограничений.

Метод потенциалов, Hitchhock method,

5.1 Рассмотрим сбалансированную транспортную задачу

$$\begin{cases} \sum_{ij} c_{ij} x_{ij} \to \min \\ \sum_{j} x_{ij} = a_i \text{ для любого } i \\ \sum_{i} x_{ij} = b_j \text{ для любого } j \\ \text{все } x_{ij} \geqslant 0. \end{cases}$$

а) Может ли измениться оптимальная точка, если каждый элемент матрицы C увеличить в 2 раза?

12

- б) Может ли измениться оптимальная точка, если один столбец матрицы C увеличить в 2 раза?
- в) Может ли измениться оптимальная точка, если одну строку матрицы C увеличить в 2раза?
- Γ) Может ли измениться оптимальная точка, если к каждому элементу матрицы C прибавить 1?
- д) Может ли измениться оптимальная точка, если в одном столбце матрицы C к каждому элементу прибавить 1?
- е) Может ли измениться оптимальная точка, если в одной строке матрицы C к каждому элементу прибавить 1?

5.2 Рассмотрим сбалансированную транспортную задачу

жения 1:
сированную транспортную задачу
$$\begin{cases} 8x_{11} + 5x_{12} + 4x_{13} + 6x_{21} + 7x_{22} + 3x_{23} \rightarrow \min \\ x_{11} + x_{12} + x_{13} = 10 \\ x_{21} + x_{22} + x_{23} = 20 \\ x_{11} + x_{21} = 7 \\ x_{12} + x_{22} = 11 \\ x_{13} + x_{23} = 12 \\ \text{все } x_{ij} \geqslant 0. \end{cases}$$

- а) Запишите задачу в виде симплекс-таблицы.
- б) Какая линейная зависимость существует между уравнениями?
- в) Сколько должно быть базисных и сколько свободных переменных?
- г) Запишите задачу в виде транспортной таблицы.
- д) Найдите базисное допустимое решение методом северо-западного угла.
- е) Найдите базисное допустимое решение методом минимального элемента.
- ж) Запишите двойственную задачу.
- з) Запишите условия дополняющей нежёсткости.
- и) Найдите хотя бы одно оптимальное решение.

5.3 Рассмотрим сбалансированную транспортную задачу

$$\begin{cases} 10x_{11} + 8x_{12} + 9x_{13} + 5x_{21} + 2x_{22} + 3x_{23} + \\ +6x_{31} + 7x_{32} + 4x_{33} + 7x_{41} + 6x_{42} + 8x_{43} \to \min \\ \sum_i x_{i1} = 25, \sum_i x_{i2} = 25, \sum_i x_{i3} = 50, \\ \sum_j x_{1j} = 15, \sum_j x_{2j} = 20, \sum_j x_{3j} = 30, \sum_j x_{4j} = 35, \\ \operatorname{BCe} x_{ij} \geqslant 0. \end{cases}$$

- а) Запишите задачу в виде транспортной таблицы.
- б) Запишите двойственную задачу.
- в) Найдите базисное допустимое решение методом северо-западного угла.
- г) Найдите базисное допустимое решение методом минимального элемента.
- д) Найдите хотя бы одно оптимальное решение.

- **5.4** Рассмотрим сбалансированную транспортную задачу, в которой 3 производителя и 7 потребителей.
 - а) Сколько всего переменных в этой задаче?
 - б) Сколько базисных и сколько свободных переменных в этой задаче?
 - в) Сколько переменных в двойственной задаче?
 - г) Сколько уравнений в условиях дополняющей нежёсткости?
- **5.5** В каждой транспортной таблице выписано базисное допустимое решение. Определите, какие переменные должны быть базисными, какие должны быть свободными, а какие могут быть базисными или свободными.

ر د	5	x_{12}	x_{13}
a) ·	x_{21}	7	8
	x_{31}	x_{32}	3

ر (5	x_{12}	x_{13}
б) -	3	x_{22}	8
	x_{31}	x_{32}	3

n)	5	x_{12}	x_{13}
в)	3	x_{22}	x_{23}
	9	x_{32}	3

	5	x_{12}	4	x_{34}	7
г)	2	x_{22}	x_{23}	3	x_{25}
	x_{31}	x_{32}	2	x_{34}	x_{35}
	x_{41}	7	x_{43}	x_{44}	x_{45}

6. Сети

Алгоритм Дейкстры, Dijkstra algorithm

6.1 На ребрах графа указано время в пути.

- а) С помощью алгоритма Дейкстры найдите самые быстрые маршруты из вершины a во все остальные вершины.
- б) Выпишите матрицу весов для куска графа из вершин $a,\,b,\,c$ и d.
- **6.2** С помощью алгоритма Дейкстры найдите кратчайшее расстояние из точки старта s до каждой точки лабиринта.

6.3 Матрица весов взвешенного графа равна

$$M = \begin{pmatrix} \infty & 4 & \infty & 2 \\ 2 & \infty & 1 & \infty \\ 3 & 4 & \infty & 1 \\ 5 & 6 & \infty & \infty \end{pmatrix}.$$

Нарисуйте граф.

6.4 Матрица смежности графа равна

$$M = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

- а) Нарисуйте граф.
- б) Найдите матрицу $A=M^2$. Какой смысл у элемента a_{44} ? Какой смысл у элемента a_{31} ?
- в) Найдите матрицу $B=M^3$. Какой смысл у элемента b_{31} ? Какой смысл у элемента b_{32} ?

Задача о максимальном потоке и о минимальном разрезе

- пропускная способность, capacity, 大流量?;
- поток, flow, 流;
- источник, source, 源 ;
- сток, sink, **江** ;
- paspes, cut, 割;
- бутылочное горлышко, bottleneck, 瓶颈 ;
- минимальный разрез, minimal cut, 最小割;

- увеличивающая цепь, augmenting path, 增广路径, zēng guǎng lu jing;
- остаточная пропускная способность, residual capacity, 残留容量;

Хорошие слайды можно найти у Кляйнберга и Тардос, [KT]. алгоритм Форда — Фалкерсона, Ford — Fulkerson algorithm, ?;

6.5 На ребрах графа указаны текущий поток f и пропускная способность c. Например, надпись 1/3 над ребром означает, что по ребру течёт поток величины 1, а пропускная способность ребра равна 3.

- а) Найдите пропускную способность разреза c(S,T) для $S=\{s,b,c\}, T=\{e,g,t,d\}.$
- б) Найдите пропускную способность разреза c(S,T) для $S=\{s,g,e\}$, $T=\{b,c,t,d\}$.
- в) Найдите величину потока v(f).
- r) Найдите исходящий поток $f^{\text{out}}(S)$ и входящий поток $f^{\text{in}}(S)$ для множества $S=\{s,b,g,e\}.$
- д) Найдите остаточную пропускную способность bneck(s-b-e-t,f).
- е) Найдите остаточную пропускную способность bneck(s-c-g-d-e-t,f).
- **6.6** Надпись f/c на ребре означает текущий поток f и пропускную способность c.

- а) Найдите пропускную способность разреза c(S,T) для $S = \{s,b,c\}$ и $T = \{e,g,t\}$.
- б) Найдите пропускную способность разреза c(S,T) для $S=\{s,g,e\}$ и $T=\{b,c,t\}$.
- в) Найдите величину потока v(f).
- r) Найдите исходящий поток $f^{\mathrm{out}}(S)$ и входящий поток $f^{\mathrm{in}}(S)$ для множества $S=\{s,c,g\}.$
- д) Найдите остаточную пропускную способность bneck(s-b-e-t,f).
- е) Найдите остаточную пропускную способность bneck(s-c-g-b-e-t,f).
- **6.7** Надпись f/c на ребре означает текущий поток f и пропускную способность c.

- а) С помощью алгоритма Форда Фалкерсона найдите максимальный поток.
- б) Укажите минимальный разрез.
- в) Запишите задачу максимизации потока как задачу линейного программирования.
- 6.8 На ребрах графа с помощью f/c указаны текущий поток f и пропускная способность c.

- а) С помощью алгоритма Форда Фалкерсона найдите максимальный поток.
- б) Укажите минимальный разрез.
- в) Запишите задачу максимизации потока как задачу линейного программирования.

Меры центральности

• Степень вершины, degree of the vertex, $\deg(v)$, 度 , dù;

• Центральность по близости, closeness centrality, 接近中心性, jiējìn zhōngxīn xìng;

$$\operatorname{closeness}(v) = \frac{1}{\sum_{x} d(v, x)},$$

где d(v,x) — кратчайшее расстояние между вершинами v и x.

• Центральность по количеству кратчайших путей, betweenness centrality, 介数中心性 , jiè shù zhōngxīn xìng;

betweenness
$$(v) = \sum_{v \neq a, v \neq b, a \neq b} \frac{N_v(a, b)}{N(a, b)},$$

где N(a,b) — количество кратчайших путей между вершинами a и b, $N_v(a,b)$ — количество кратчайших путей между вершинами a и b, проходящих через вершину v.

6.9 Рассмотрим следующий граф:

- а) Найдите степень каждой вершины, deg(v).
- б) Найдите центральность каждой вершины по близости, closeness(v).
- в) Найдите центральность каждой вершины по числу кратчайших путей, betweenness(v).

6.10 Рассмотрим следующий граф:

- а) Найдите степень каждой вершины, deg(v).
- б) Найдите центральность каждой вершины по близости, closeness(v).
- в) Найдите центральность каждой вершины по числу кратчайших путей, betweenness(v).

7. Неравенства

• AM/GM inequality,

$$(x_1 + x_2 + \ldots + x_n)/n \geqslant \sqrt[n]{x_1 x_2 \cdots x_n}.$$

19

• Неравенство Коши — Буняковского, Cauchy — Schwarz inequality,

$$|\langle a, b \rangle| \leqslant ||a|| ||b||,$$

где
$$||a|| = \sqrt{a_1^2 + \ldots + a_n^2}$$
, $\langle a, b \rangle = a_1 b_1 + \ldots + a_n b_n$.

7.1 Найдите условные экстремумы:

- а) $xyz \to \max$ при условии x + y + z = 600, $x \ge 0$, $y \ge 0$, $z \ge 0$.
- б) $xy \to \max$ при условии $2x + y = 600, x \ge 0, y \ge 0.$
- в) $xy \to \max$ при условии $2x + y = 400, x \ge 0, y \ge 0.$
- г) $x^2y \to \max$ при условии $x + y = 300, x \ge 0, y \ge 0.$
- д) $x^3y^5 \to \max$ при условии $6x + 7y = 200, x \geqslant 0, y \geqslant 0.$
- е) $a + b + c \to \min$ при условии $abc = 100, a \ge 0, b \ge 0, c \ge 0.$
- ж) $a^2 + b^2 + c^2 \to \min$ при условии $abc = 100, a \ge 0, b \ge 0, c \ge 0.$
- з) $ab + bc + ac \rightarrow \min$ при условии $abc = 100, a \ge 0, b \ge 0, c \ge 0.$
- и) $2a + 3b + 4c \to \min$ при условии $abc = 100, a \ge 0, b \ge 0, c \ge 0.$
- к) $2ab + 3bc + 4ac \rightarrow \min$ при условии $abc = 100, a \ge 0, b \ge 0, c \ge 0.$
- л) $a+b+c \to \min$ при условии $a^2b^3c^4=100, a\geqslant 0, b\geqslant 0, c\geqslant 0.$
- м) $7a + 3b + 4c \rightarrow \min$ при условии $a^2b^3c^4 = 100, a \ge 0, b \ge 0, c \ge 0.$

7.2

7.3

7.4

7.5

7.6

8. Динамическое программирование

- Принцип Беллмана, Bellman principle,
- Метод обратной индукции, backward induction, 逆向归纳法 , nìxiàng guīnà fǎ;
- 8.1 На ребрах графа указано время в пути в часах.

- а) С помощью метода обратной индукции найдите самые быстрые маршруты в вершину j из вершин a,b и c.
- б) С помощью метода обратной индукции найдите самые медленные маршруты в вершину j из вершин a, b и c.
- **8.2** В куче лежит 2024 камня. Бульбазавр и Пикачу берут камни из кучи по очереди. Бульбазавр берёт камень первым. Бульбазавр может взять 2, 3 или 5 камней за один ход. Пикачу может взять 1 или 3 камня за один ход.

Проигрывает игру тот, кто первым не сможет сделать ход по правилам.

- а) Сможет ли Бульбазавр выиграть?
- б) Если Бульбазавр может выиграть, то какой первый ход ему нужно сделать?
- 8.3 В куче лежит 1000 камней. Бульбазавр и Пикачу берут камни из кучи по очереди. Бульбазавр берёт камень первым. Бульбазавр может взять 1, 2 или 4 камней за один ход. Пикачу может взять 1 или 3 камня за один ход.

Проигрывает игру тот, кто первым не сможет сделать ход по правилам.

- а) Сможет ли Бульбазавр выиграть?
- б) Если Бульбазавр может выиграть, то какой первый ход ему нужно сделать?
- 8.4 В самолёт можно загрузить контейнеры четырёх типов. Веса этих типов контейнеров равны 2, 3, 5 и 6 тонн, а ценности -5, 6, 9 и 11 тысяч рублей, соответственно. Грузоподъёмность самолёта -14 тонн.

Найдите оптимальную загрузку самолёта.

8.5 В самолёт можно загрузить контейнеры четырёх типов. Веса этих типов контейнеров равны 2, 3, 4 и 6 тонн, а ценности -5, 7, 11 и 17 тысяч рублей, соответственно. Грузоподъёмность самолёта -15 тонн.

Найдите оптимальную загрузку самолёта.

8.6 В куче лежит 1234 камня. Бульбазавр и Пикачу берут камни из кучи по очереди. Пикачу берёт камень первым. Бульбазавр может взять 2 или 3 камня за один ход. Пикачу может взять 1 или 3 камня за один ход.

Выигрывает игру тот, кто первым не сможет сделать ход по правилам.

- а) Сможет ли Пикачу выиграть?
- б) Если Бульбазавр может выиграть, то какой первый ход ему нужно сделать?
- 8.7 На ребрах графа указано время в пути в часах.

- а) С помощью метода обратной индукции найдите самые быстрые маршруты в вершину j из вершин a,b и c.
- б) С помощью метода обратной индукции найдите самые медленные маршруты в вершину j из вершин a,b и c.

9. Решения

1.1.

1.2.

1.3.

a)
$$E = 0.5A + 0B + 0.5C + 0D$$

б) Например, F = 0A + 0.5B + 0.5C + 0D = 0.5A + 0B + 0C + 0.5D = 0.25A + 0.25B + 0.25C + 0.25D. Для нахождения всех способов надо решить систему:

$$\alpha A + \beta B + \gamma C + \delta D = E\alpha + \beta + \gamma + \delta = 1$$

$$\left(\begin{array}{ccc|c}
1 & 5 & 1 & 5 & 3 \\
2 & 2 & 4 & 4 & 3 \\
1 & 1 & 1 & 1 & 1
\end{array}\right) \to \dots \to \left(\begin{array}{ccc|c}
0 & 1 & 0 & 1 & 1/2 \\
0 & 0 & 1 & 1 & 1/2 \\
1 & 0 & 0 & -1 & 0
\end{array}\right)$$

Система имеет бесконечное количество решений.

Все способы, $F = \alpha A + (0.5 - \alpha)B + (0.5 - \alpha)C + \alpha D$, где $\alpha \in [0; 0.5]$.

- в) Нельзя, так как $G \notin \text{Convex}(A, B, C, D)$.
- г) Есть ∞ способов.
- д) Есть 1 способ. Решаем систему уравнений $I=t_1A+t_2B+(1-t_1-t_2)D$. Получаем, что I=0.25A+0.25B+0.5D.
- е) Есть 1 способ, J = 0.25A + 0.75B.
- **ж**) 0

1.4.

2.1.

2.2.

2.3.

3.1.

вектор	решение	базисное решение	допустимое решение
$x_a = (0, 0, 0, 0)$	нет	нет	нет
$x_b = (0, 0, 8, 9)$	да	да	да
$x_c = (1, 0, 6, 8)$	да	нет	да
$x_d = (1, -9, 33, -1)$	да	нет	нет
$x_e = (0, -9, 35, 0)$	да	да	нет

	вектор	решение	базисное решение	допустимое решение
	$x_a = (1, 2, 3, 4)$	нет	нет	нет
3.2.	$x_b = (0, 0, 10, 11)$	да	да	да
	$x_c = (1, 0, 9, 9)$	да	нет	да
	$x_d = (6, -1, 7, 0)$	да	нет	нет
	$x_e = (0, 11, -23, 0)$	да	да	нет

3.3.

a)
$$x = (0, 0, 8, 15, 11)$$

б)

3.4.

а) Решение x=(0,0,-8,15,11) является базисным и не является допустимым. Подойдёт, например, x=(4,0,0,11,15).

б)

3.5.

3.6.

	x_1	x_2	x_3	x_4	x_5	b	_	
x_4	-3	-1	0	1	-2	0 5		x = (0, 0, 5, 10, 0), z = 15.
x_3	2	1	1	0	1	5	, _	x = (0, 0, 0, 10, 0), z = 10.
$\max z$	-5	-1	0	0	-3	z - 15		

3.7.

b x_1 x_3 x_4 x_5 x_2 1* 3 0 10 x_4 3.8. 6 1 0 1 1 -10 1 0 1 1 $\max z$ z

	x_1	x_2	x_3	x_4	x_5	b	_	
x_2	2	1	3	1	0	10	_	$m = (0, 10, 0, 0, 16), \alpha = 10$
x_5	3	0	4	1	1	16	,	x = (0, 10, 0, 0, 16), z = 10.
$\max z$	-1	0	-2	-1	0	z - 10	_	

x = (0, 0, 0, 10, 6), z = 0.

3.9.

3.10.

- a) x = (3, 4, 0, 0).
- б) Найдите все допустимые решения.

в)

$$x_1 = 3 - x_3 - 5x_4 \geqslant 0$$
 $x_2 = 4 - 2x_3 - 6x_4 \geqslant 0$ $x_3 \geqslant 0$ $x_4 \geqslant 0$

- r) A = (3, 4, 0, 0), B = (0, 2/5, 0, 3/5), C = (0, 0, 1/2, 1/2), D = (1, 0, 2, 0).
- д) $\operatorname{Convex}(A,B,C,D)$, где A=(3,4,0,0), B=(0,2/5,0,3/5), C=(0,0,1/2,1/2), D=(1,0,2,0).
- e) D = (1, 0, 2, 0), z = 2.

	x_1	x_2	x_3	x_4	<i>b</i>
x_1	1	-1	0	2 1	
x_3	0	0.5	1	3 2	
$\min z$	0	-1.5	0	-12	2-z

3.11.

3.12.

	x_1	x_2	x_3	x_4	y_1	b	_
x_1	1	0	-1/2	-1/2	1/2	1/2	
x_2	0	1	-1/2	1/2	1/2	1/2	, неограниченная задача
$\max z$	0	0	1	0	-1	z-1	
$\min u$	0	0	0	0	-1	-u	

3.13.

	x_1	x_2	x_3	x_4	b)	
x_1	1	0	1/2	-1/2	2 1/	′2	x = (1/2, 1/2, 0, 0), z = 1.
x_2	0	1	1/2	$1/2^*$	1/	2	x = (1/2, 1/2, 0, 0), z = 1.
$\max z$	0	0	-1	0	z –	- 1	
	x_1	x_2	x_3	x_4	b		
x_1	1	1	1	0	1		$m = (1, 0, 0, 0) \times -1$
x_4	0	2*	1	1	1	, .	x = (1, 0, 0, 0), z = 1.
$\max z$	0	0	-1	0 2	z - 1		

Оптимум: [A, B] = Convex(A, B), A = (1/2, 1/2), B = (1, 0).

3.14.

3.15. z = 15

- а) Например, A = (5, 6, 0, 0).
- б)

$$\begin{cases} x_3 \geqslant 0 \\ x_1 = 5 + x_3 \\ x_2 = 6 + 2x_3 \\ x_4 = 0 \end{cases}$$

- B) A = (5, 6, 0, 0)
- r) $x \in A + \text{Cone}(u)$, rge A = (5, 6, 0, 0), u = (1, 2, 1, 0).

3.16. z = -16

а) Например, A = (5, 6, 0, 0).

б)

$$\begin{cases} x_3 \in [0; 2] \\ x_1 = 5 + x_3 \\ x_2 = 6 - x_3 \\ x_4 = 0 \end{cases}$$

- B) A = (5, 6, 0, 0), B = (7, 0, 2, 0).
- г) $x \in \text{Convex}(A, B)$, где A = (5, 6, 0, 0), B = (7, 0, 2, 0).

3.17. z = 20

- а) Например, A = (5, 6, 0, 0).
- б)

$$\begin{cases} (x_3, x_4) \in S \\ S = \{(x_3, x_4) \mid x_3 \ge 0, x_4 \ge 0, 6 - 3x_3 + x_4 \ge 0 \} \\ x_1 = 5 + x_3 + 2x_4 \\ x_2 = 6 - 3x_3 + x_4 \end{cases}$$

- B) A = (5, 6, 0, 0), B = (7, 0, 2, 0).
- r) $x \in \text{Convex}(A, B) + \text{Cone}(u, v)$, rge A = (5, 6, 0, 0), B = (7, 0, 2, 0), u = (2, 1, 0, 1), v = (7, 0, 1, 3).

3.18.

- а) Например, A = (2, 6, 0, 0).
- б) Convex(A, B, C) + Cone(u), где A = (2, 6, 0, 0), B = (0, 5, 1, 0), C = (0, 0, 6, 10/3), u = (3, 0, 0, 1).
- B) A = (2, 6, 0, 0), B = (0, 5, 1, 0), C = (0, 0, 6, 10/3)
- г) Например, A = (2, 6, 0, 0).
- д) Convex(A, B), где A = (2, 6, 0, 0), B = (0, 5, 1, 0)
- e) A = (2, 6, 0, 0), B = (0, 5, 1, 0)

3.19.

- а) Например, A = (0, 0, 0).
- б) Convex(A, B, C, D), где A = (0, 0, 0), B = (10, 0, 0), C = (0, 10, 0), D = (0, 0, 10).

- B) A = (0,0,0), B = (10,0,0), C = (0,10,0), D = (0,0,10).
- г) Например, B = (10, 0, 0).
- д) Convex(B, C), где B = (10, 0, 0), C = (0, 10, 0).
- e) B = (10, 0, 0), C = (0, 10, 0).

3.20.

4.1.

a)

$$\begin{cases} 6y_1 + 10y_2 \to \max \\ y_1 + y_2 \leqslant 1 \\ y_1 - y_2 \leqslant 3 \\ y_1 + 2y_2 \leqslant 1 \\ y_1 - 2y_2 \leqslant -1 \\ y_1 \geqslant 0, y_2 \geqslant 0 \end{cases}$$

- $6) y_1 = 0, y_2 = 1/2, u = 5$
- в) $x_1 = 0, x_2 = 0, x_3 = 5 + x_4, x_4 \geqslant 1/2, z = 5$. Можно записать ответ в виде $x \in A + \text{Cone}(u)$, где A = (0, 0, 5.5, 0.5), u = (0, 0, 1, 1).

4.2.

a)

$$\begin{cases} 6y_1 + 10y_2 \to \min \\ y_1 + y_2 \geqslant 1 \\ y_1 - y_2 \geqslant 3 \\ y_1 + 2y_2 \geqslant 1 \\ y_1 - 2y_2 \geqslant -1 \\ y_1 \geqslant 0, y_2 \geqslant 0 \end{cases}$$

- $6) y_1 = 3, y_2 = 0, u = 18$
- B) $x_1 = 0, x_2 = 6, x_3 = 0, x_4 = 0, z = 18$

4.3.

a)

$$\begin{cases} 6y_1 + 10y_2 \to \max \\ y_1 + y_2 \leqslant 1 \\ y_1 - y_2 = 3 \\ y_1 + 2y_2 \leqslant 1 \\ 3y_1 - 2y_2 \leqslant -1 \end{cases}$$

$$b) y_1 = -7, y_2 = -10, u = -142$$

B) $x_1 = 0, x_2 = -42, x_3 = 0, x_4 = 16, z = -142$

4.4.

a)

$$\begin{cases} 6y_1 + 10y_2 \to \max \\ y_1 + y_2 \leqslant 1 \\ y_1 - y_2 = 3 \\ y_1 + 2y_2 \leqslant 1 \\ 3y_1 - 2y_2 \leqslant -1 \\ y_1 \geqslant 0 \end{cases}$$

- б) Пустое допустимое множество.
- в) Неограниченная задача.

4.5.

a)

$$\begin{cases} 6y_1 + 10y_2 \to \max \\ y_1 + 2y_2 = 1 \\ y_1 + 2y_2 = 3 \\ y_1 + 2y_2 \leqslant 1 \\ 3y_1 + 6y_2 \leqslant -1 \end{cases}$$

- б) Пустое допустимое множество.
- в) Пустое допустимое множество.

5.1.

5.2.

a)

б)
$$Eq_1 + Eq_2 = Eq_3 + Eq_4 + Eq_5$$
;

- в) 4 базисных переменных и 2 свободных;
- r)

д)

$$X = \begin{pmatrix} & 0 \\ 0 & \end{pmatrix}$$
$$X = \begin{pmatrix} & \\ & \end{pmatrix}$$

e)

$$X = \begin{pmatrix} & \\ & \end{pmatrix}$$

ж)

3)

$$X = \begin{pmatrix} & \\ & \end{pmatrix}$$

5.3.

5.4.

a)
$$3 \cdot 7 = 21$$
;

6)
$$3+7-1=9$$
, $21-9=12$;

B)
$$3 + 7 = 10$$
;

r)
$$10 + 21 = 31$$
;

5.5. Буквой «Б» отмечены переменные, которые обязательно являются базисными. Буквой «С» отмечены переменные, которые обязательно являются свободными. Надписью «Б или С» отмечены переменные, которые могут быть базисными или свободными.

۵)	Б	Б или С	Б или С
a)	Б или С	Б	Б
	Б или С	С	Б

б)	Б	Б или С	С
0)	Б	Б или С	Б
	С	Б или С	Б

n)	Б	Б или С	С
в)	Б	Б или С	С
	Б	Б или С	Б

	Б	Б или С	Б	С	Б
г)	Б	Б или С	С	Б	С
	С	Б или С	Б	С	С
_	Б или С	Б	Б или С	Б или С	Б или С

		$b_1 =$	10	$b_2 =$	20	$b_3 =$	17
			12		10		6
	$a_1 = 5$					600	
			4		15		3
5.6.	$a_2 = 6$	400					
			9		7		M
	$a_3 = 7$	300					
			11		8		6
	$a_4 = 5$			500		300	

- **6.1**.
- **6.2.**
- **6.3.**
- 6.4.
- 6.5.

a)
$$c(S,T) = 5 + 3 + 6 + 1 + 6 = 21;$$

6)
$$c(S,T) = 3 + 6 + 4 + 4 + 2 = 19;$$

B)
$$v(f) = 4$$
;

r)
$$f^{\text{out}}(S) = 0 + 2 + 1 + 1 + 1 = 5$$
, $f^{\text{in}}(S) = 1 + 0 + 0 = 1$;

д)
$$\operatorname{bneck}(s - b - e - t, f) = \min\{2, 4, 3\} = 2;$$

e)
$$\operatorname{bneck}(s-c-g-d-e-t,f) = \min\{1,6,1,5,3\} = 1.$$

6.6.

a)
$$c(S,T) = 4 + 8 + 9 = 21$$
;

6)
$$c(S,T) = 10 + 10 + 10 + 10 = 40$$
;

B)
$$v(f) = 2 + 8 = 10$$
.

г)
$$f^{\text{out}}(S)$$
 и входящий поток $f^{\text{in}}(S)$ для множества $S=\{s,c,g\}$.

д)
$$bneck(s - b - e - t, f) = min\{2, 4, 10\} = 2.$$

e)
$$\operatorname{bneck}(s-c-g-b-e-t,f) = \min\{8,7,8,4,10\} = 4.$$

6.7.

a) $\max v(f) = 19;$

6) $\min c(S,T) = 19, S = \{s,c\}, T = \{b,g,e,t\}.$

6.8.

a) $\max v(f) = 10;$

Один из возможных вариантов:

 $\text{ 6) } \min c(S,T)=10, S=\{s,b,c,d,e,g\}, T=\{t\}.$

B)
$$\begin{cases} x_{sb} + x_{sc} + x_{sd} \to \max \\ \text{Bce } x_{ij} \geqslant 0 \\ x_{sb} \leqslant 3, x_{sd} \leqslant 6, x_{sc} \leqslant 2, x_{bd} \leqslant 3, x_{be} \leqslant 5 \\ x_{cg} \leqslant 6, x_{cd} \leqslant 1, x_{de} \leqslant 5, x_{dt} \leqslant 2, x_{dg} \leqslant 2 \\ x_{et} \leqslant 4, x_{gt} \leqslant 4 \\ x_{sb} = x_{bd} + x_{be}, x_{be} + x_{de} = x_{et}, x_{sc} = x_{cd} + x_{cg} \\ x_{dg} + x_{cg} = x_{gt}, x_{sd} + x_{bd} + x_{cd} = x_{de} + x_{dt} + x_{dg} \end{cases}$$

вершина	$\deg()$	closeness()	betweenness()
a	2	1/8	1
b	3	1/7	5
c	2	1/8	1
d	2	1/9	1
e	2	1/9	1
f	1	1/11	0
	a b c d	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	вершина	deg()	closeness()	betweenness()
	a	2	1/6	1
6.10.	b	3	1/5	7/2
	c	2	1/6	1
	d	2	1/7	1/2
	f	1	1/8	0

7.1.

a)
$$x = 200, y = 200, z = 200, \max f = 200^3$$
;

б) $xy \to \max$ при условии $2x + y = 600, x \ge 0, y \ge 0.$

в)
$$xy \to \max$$
 при условии $2x + y = 400, x \ge 0, y \ge 0.$

г)
$$300 = 0.5x + 0.5x + y \geqslant 3\sqrt[3]{0.5x \cdot 0.5x \cdot y}$$
, следовательно, $x = 200$, $y = 100$, max $f = 4000000$;

д)
$$x = 1400/112$$
, $y = 2000/112$, $\max f = 25^8 5^5 / 8 \cdot 7^5$;

e)
$$a = \sqrt[3]{100}$$
, $b = \sqrt[3]{100}$, $c = \sqrt[3]{100}$, min $f = 3\sqrt[3]{100}$;

ж)
$$a = \sqrt[3]{100}$$
, $b = \sqrt[3]{100}$, $c = \sqrt[3]{100}$, $\min f = 3\sqrt[3]{10000}$;

3)
$$a = \sqrt[3]{100}$$
, $b = \sqrt[3]{100}$, $c = \sqrt[3]{100}$, min $f = 3\sqrt[3]{10000}$;

и)
$$2a+3b+4c\geqslant 3\sqrt[3]{2a\cdot 3b\cdot 4c}=3\sqrt{3}2400$$
, следовательно, $a=\sqrt[3]{300}$, $b=2\sqrt[3]{300}/3$, $c=\sqrt[3]{300}/2$, min $f=3\sqrt[3]{2400}$;

к)
$$2ab+3bc+4ac \rightarrow \min$$
 при условии $abc=100,\, a\geqslant 0,\, b\geqslant 0,\, c\geqslant 0.$

л)
$$a + b + c \to \min$$
 при условии $a^2b^3c^4 = 100, a \ge 0, b \ge 0, c \ge 0.$

м)
$$7a+3b+4c o \min$$
 при условии $a^2b^3c^4=100, a\geqslant 0, b\geqslant 0, c\geqslant 0.$

7.2.

7.3.

7.4.

7.5.

7.6.

8.1.

- а) $a \to b \to e \to g \to i \to h \to j$: 18 часов, $b \to e \to g \to i \to h \to j$: 15 часов, $c \to f \to g \to i \to h \to j$: 18 часов.
- б) $a \to d \to c \to f \to i \to j$: 32 часа, $b \to d \to c \to f \to i \to j$: 26 часов, $c \to f \to i \to j$: 22 часа.

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

Источники мудрости

- [Fer] Tomas Ferguson. *Linear programming: concise introduction*. URL: http://web.tecnico.ulisboa.pt/mcasquilho/acad/or/ftp/FergusonUCLA_LP.pdf.
- [Law] Neil Laws. Linear programming: lecture notes. URL: https://www.stats.ox.ac.uk/~cmcd/lp/lp.pdf.
- [lit] littleO (https://math.stackexchange.com/users/40119/littleo). *Intuition behind the dual problem in optimization*. Mathematics Stack Exchange. url: https://math.stackexchange.com/q/223235.
- [KT] Kleinberg, John and Tardos, Éva. Lecture Slides for Algorithm Design. URL: https://www.cs.princeton.edu/~wayne/kleinberg-tardos/.