Vectors and Kinematics

Aaron W. Tarajos April 15, 2025

1.1 Vector algebra 1

Given two vectors $\mathbf{A} = (2 \,\hat{\mathbf{i}} - 3 \,\hat{\mathbf{j}} + 7 \,\hat{\mathbf{k}})$ and $\mathbf{B} = (5 \,\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2 \,\hat{\mathbf{k}})$ find: (a) $\mathbf{A} + \mathbf{B}$; (b) $\mathbf{A} - \mathbf{B}$; (c) $\mathbf{A} \cdot \mathbf{B}$; (d) $\mathbf{A} \times \mathbf{B}$.

solution

(a)

$$\mathbf{A} + \mathbf{B} = (2+5)\,\hat{\mathbf{i}} + (-3+1)\,\hat{\mathbf{j}} + (7+2)\,\hat{\mathbf{k}}$$
$$= 7\,\hat{\mathbf{i}} - 2\,\hat{\mathbf{j}} + 9\,\hat{\mathbf{k}}$$

(b)

$$\mathbf{A} - \mathbf{B} = (2 - 5)\,\hat{\mathbf{i}} + (-3 - 1)\,\hat{\mathbf{j}} + (7 - 2)\,\hat{\mathbf{k}}$$
$$= -3\,\hat{\mathbf{i}} - 4\,\hat{\mathbf{j}} + 5\,\hat{\mathbf{k}}$$

(c)

$$\mathbf{A} \cdot \mathbf{B} = (2 \cdot 5) + (-3 \cdot 1) + (7 \cdot 2)$$
$$= 10 - 3 + 14$$
$$= 21$$

(d)

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & -3 & 7 \\ 5 & 1 & 2 \end{vmatrix}$$
$$= (-6 - 7) \hat{\mathbf{i}} - (4 - 35) \hat{\mathbf{j}} + (2 + 15) \hat{\mathbf{k}}$$
$$= -13 \hat{\mathbf{i}} + 31 \hat{\mathbf{j}} + 17 \hat{\mathbf{k}}$$

1.2 Vector algebra 2

Given two vectors $\mathbf{A} = (3 \,\hat{\mathbf{i}} - 2 \,\hat{\mathbf{j}} + 5 \,\hat{\mathbf{k}})$ and $\mathbf{B} = (6 \,\hat{\mathbf{i}} - 7 \,\hat{\mathbf{j}} + 4 \,\hat{\mathbf{k}})$ find: (a) \mathbf{A}^2 ; (b) \mathbf{B}^2 ; (c) $(\mathbf{A} \cdot \mathbf{B})^2$.

1.3 Cosine and sine by vector algebra

Find the cosine and sine of the angle between $\mathbf{A} = (3 \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ and $\mathbf{B} = (-2 \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$.

1.4 Direction cosines

The direction cosines of a vector are the cosines of the angles it makes with the coordinate axes. The cosines of the angles between the vector and the x, y, and z axes are usually called, in turn, α , β , and γ . Prove that $\alpha^2 + \beta^2 + \gamma^2 = 1$, using either geometry or vector algebra.

1.5 Perpendicular vectors

Show that if |A - B| = |A + B|, then A and B are perpendicular.

1.6 Diagonals of a parallelogram

Show that the diagonals of an equilateral parallelogram are perpendicular.

1.7 Law of sines

Prove the law of sines using the corss product. It should only take a couple of lines.

1.8 Vector proof of a trigonometric identity

Let $\hat{\bf a}$ and $\hat{\bf b}$ be unit vectors in the x-y plane making angles θ and ϕ with the x axis, respectively. Show that $\hat{\bf a} = \cos \theta \, \hat{\bf i} + \sin \theta \, \hat{\bf j}$, $\hat{\bf b} = \cos \phi \, \hat{\bf i} + \sin \phi \, \hat{\bf j}$, and using vector algebra prove that

$$\cos(\theta - \phi) = \cos\theta\cos\phi + \sin\theta\sin\phi.$$

1.9 Perpendicular unit vector

Find a unit vector perpendicular to $\mathbf{A} = (\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}})$ and $\mathbf{B} = (2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 3\hat{\mathbf{k}})$.

1.10 Perpendicular unit vectors

Given vector $\mathbf{A} = 3 \,\hat{\mathbf{i}} + 4 \,\hat{\mathbf{j}} - 4 \,\hat{\mathbf{k}}$,

- (a) find a unit vector $\hat{\mathbf{B}}$ that lies in the x-y plane and is perpendicular to A.
- (b) find a unit vector $\hat{\mathbf{C}}$ that is perpendicular to both \mathbf{A} and $\hat{\mathbf{B}}$.
- (c) Show that **A** is perpendicular to the plane defined by $\hat{\mathbf{B}}$ and $\hat{\mathbf{C}}$.