Code ▼

TMM Normalization

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-3-r25 (https://genomebiology.biomedcentral.com/articles/10.1186/gb-2010-11-3-r25)

Hide

```
library(edgeR)
library(ggplot2)
library(reshape2)
ndx <- which(colnames(dt_rna_cod) %in% rnaseq_meta_clin$sample_names)</pre>
tmp <- as.matrix(dt rna cod[, ndx, with = FALSE])</pre>
rownames(tmp) <- dt_rna_cod$gene_id</pre>
counts <- tmp
colData <- rnaseq_meta_clin</pre>
# Step 1: Create DGEList object and calculate TMM normalization factors
dge <- DGEList(counts = counts,group = colData$Cohort)</pre>
dge <- calcNormFactors(dge, method = "TMM")</pre>
norm_counts <- cpm(dge, normalized.lib.sizes = TRUE)</pre>
# Step 2: Estimate dispersion, fit the GLM, and perform LRT
dge <- DGEList(counts = counts, group = colData$Cohort)</pre>
dge <- calcNormFactors(dge, method = "TMM")</pre>
design <- model.matrix(~ colData$Cohort)</pre>
dge <- estimateDisp(dge, design)</pre>
fit <- glmFit(dge, design)</pre>
lrt <- glmLRT(fit)</pre>
# Step 3: Extract and filter DE genes
top_genes <- topTags(lrt, n = 50)$table</pre>
filtered genes <- top genes[
  abs(top_genes$logFC) > 1 &
  top genes$PValue < 0.05 &
  top_genes$FDR < 0.1,</pre>
round(filtered_genes, 6)
```

	logFC <dbl></dbl>	logCPM <dbl></dbl>	LR <dbl></dbl>	PValue <dbl></dbl>	FDR <dbl></dbl>
ENSG00000119630	-3.083226	1.357485	43.91500	0.000000	0.000001
ENSG00000204020	-1.357607	3.077190	20.48668	0.000006	0.029884
ENSG00000102109	-1.805964	4.318450	18.25757	0.000019	0.058578
ENSG00000205846	-1.414078	0.732552	17.73264	0.000025	0.058578

	logFC <dbl></dbl>	logCPM <dbl></dbl>	LR <dbl></dbl>	PValue <dbl></dbl>	FDR <dbl></dbl>
ENSG00000134363	3.707579	-2.990114	17.65490	0.000026	0.058578
ENSG00000179058	3.474074	-3.397633	17.17457	0.000034	0.067877
ENSG00000114405	-1.065656	0.299058	16.82590	0.000041	0.068037
ENSG00000171659	-1.384973	1.491211	16.75535	0.000043	0.068037
ENSG00000170819	1.753804	-1.192185	16.53151	0.000048	0.068037
ENSG00000239264	1.653957	2.926370	16.10262	0.000060	0.074652
1-10 of 13 rows				Previous 1	2 Next

Hide

```
filtered_gene_ids <- rownames(filtered_genes)</pre>
# Step 4: Extract normalized counts for filtered genes
norm_counts_filtered <- norm_counts[filtered_gene_ids, ]</pre>
# Convert to long format for ggplot2
norm_counts_df <- as.data.frame(norm_counts_filtered)</pre>
norm_counts_df$gene <- rownames(norm_counts_df)</pre>
norm_counts_long <- melt(norm_counts_df, id.vars = "gene")</pre>
# Add sample information to the long format data
norm counts long <- merge(norm counts long, colData, by.x = "variable", by.y = "sample names")</pre>
# Step 5: Create box plots for each gene
ggplot(norm\_counts\_long, aes(x = factor(Cohort), y = value, fill = factor(AnyDM))) +
  geom boxplot() +
 facet_wrap(~ gene, scales = "free_y") +
  labs(title = "Expression of Filtered Genes",
       y = "Normalized Counts",
       x = "Cohort") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))
```

Expression of Filtered Genes

