Санкт-Петербургский Государственный университет

Реализация алгоритма поиска путей в графовых базах данных через тензорное произведение на GPGPU

Орачев Егор Станиславович, 17.Б11-мм

Научный руководитель: доцент кафедры информатики, к.ф.-м.н. С.В. Григорьев Рецензент: разработчик биоинформатического ПО, ЗАО "БИОКАД" А.С. Хорошев

Программная инженерия

29 апреля 2021

Введение

- Графовая модель данных
- Графовые базы данных
- Граф программы, потока управления, данных и т.д
- Запрос к графовой БД: ограничение на пути

Figure: Пример графовой БД

Запросы с КС ограничениями

Figure: Пример графа

- Мотивация: навигация в графе
- Пример: находятся ли вершины А и В на одном уровне иерархии?
- Применение: анализ RDF данных, биоинформатика, статический анализ кода
- Проблема: отсутствие поддержки КС запросов как в современных СУБД, так и в отдельных инструментах

Алгоритмы поиска путей с КС ограничениями

- На основе линейной алгебры:
 - Алгоритм Рустама Азимова
 - ▶ Алгоритм на основе тензорного произведения¹
- Операции: матричное умножение, поэлементное сложение, произведение Кронекера и т.д. в булевом полукольце
- Структура матриц: разреженная
- Для эффективной реализации требуется библиотека примитивов разреженной булевой линейной алгебры на GPGPU

¹Context-Free Path Querying by Kronecker Product, Egor Orachev, Ilya Epelbaum, Rustam Azimov, Semyon Grigorev. Дата обращения: 9.04.2021. Ссылка на статью: https://link.springer.com/chapter/10.1007/978-3-030-54832-2_6

Цель и задачи

Целью данной работы является реализация алгоритма поиска путей в графовых базах данных через тензорное произведение на GPGPU. Задачи:

- Разработка архитектуры библиотеки примитивов разреженной линейной булевой алгебры для вычислений на GPGPU
- Реализация библиотеки в соответствии с разработанной архитектурой
- Реализация алгоритма поиска путей с КС ограничениями через тензорное произведение с использованием разработанной библиотеки
- Экспериментальное исследование полученных результатов

Требования к библиотеке

- Поддержка вычислений на Cuda-устройстве
- Поддержка вычислений на СРU
- С-совместимый АРІ для работы с библиотекой
- Python-пакет для работы с примитивами и операциями библиотеки в управляемой высокоуровневой среде языка Python
- Поддержка логирования, функций для отладки и прототипирования конечных пользовательских алгоритмов

Архитектура библиотеки

Figure: Архитектура разработанной библиотеки

Последовательность обработки операций

Figure: Последовательность выполнения вычислительной матричной операции на Nvidia GPU с использованием pycubool

Детали реализации

- C, C++, CUDA C/C++, Python
- Разреженная матрица булевых значений хранится формате CSR
- Размер в памяти $sizeof(unsigned\ int)*(rows+1+nvals)$
- Операции:
 - Умножение
 - Поэлементное сложение
 - Произведение Кронекера
 - Транспонирование
 - Редуцирование к вектор-столбцу
 - ▶ Извлечение подматрицы

Пример использования С АРІ

```
#include <cubool/cubool.h>
3 cuBool Status TransitiveClosure(cuBool_Matrix A, cuBool_Matrix* T) {
      cuBool_Matrix_Duplicate(A, T);
                                                           /* Копируем матрицу смежности A */
     cuBool_Index total = 0;
      cuBool_Index current;
      cuBool Matrix Nvals(*T, &current);
                                                           /* Количество ненулевых значений */
      while (current != total) {
                                                           /* Пока результат меняется */
          total = current:
          cuBool MxM(*T. *T. *T. CUBOOL HINT ACCUMULATE): /* T += T x T */
          cuBool Matrix Nvals(*T. &current):
16
      return CUBOOL STATUS SUCCESS:
17 }
```

Figure: Вычисление транзитивного замыкания для ориентированного графа без меток с использованием **cuBool C API**

Пример использования Python API

```
import pycubool

def transitive_closure(a: pycubool.Matrix):
    t = a.duplicate()  # Копируем матрицу смежности A
    total = 0  # Количество ненулевых значений результата

while total != t.nvals:  # Пока результат меняется
    total = t.nvals  # t += t x t

total = t.nvals  # t += t x t
```

Figure: Вычисление транзитивного замыкания для ориентированного графа без меток с использованием **pycubool**

Алгоритм поиска путей с КС ограничениями через тензорное произведение

- Алгоритм реализован с использованием разработанного пакета русиbool
- Реализация доступна в рамках проекта CFPQ-PyAlgo
- Вход: ориентированный граф с метками на ребрах и КС грамматика в виде рекурсивного автомата
- Выход: матрица достижимости, а также индекс для восстановления всех пути в графе соответствии с входной грамматикой

Инфраструктура CFPQ-PyAlgo

Figure: Архитектура CFPQ-PyAlgo стенда для тестирования алгоритмов

Экспериментальное исследование

- Рабочая станция: Intel Core i7-6790, 3.40GHz, RAM DDR4 64Gb, GeForce GTX 1070 с 8Gb VRAM, OC Ubuntu 20.04
- Данные, необходимые для замеров, предварительно загружаются в RAM или VRAM в требуемом формате
- Исследовательские вопросы:
 - **B1**: Какова производительность отдельных операций реализованной библиотеки примитивов разреженной линейной булевой алгебры на GPGPU по сравнению с существующими аналогами?
 - **B2:** Какова производительность реализованного алгоритма поиска путей через тензорное произведение на GPGPU по сравнению с существующими аналогами, также полагающимися на примитивы линейной алгебры?

В1: Набор данных

Матрица М	Кол-во Строк R	$\operatorname{Nnz} M$	Nnz/R	$\operatorname{Max} \operatorname{Nnz}/R$	$\operatorname{Nnz} M^2$	Nnz $M + M^2$
wing	62,032	243,088	3.9	4	714,200	917,178
$luxembourg_osm$	114,599	239,332	2.0	6	393,261	632,185
amazon0312	400,727	3,200,400	7.9	10	14,390,544	14,968,909
amazon-2008	735,323	5,158,388	7.0	10	25,366,745	26,402,678
web-Google	916,428	5,105,039	5.5	456	29,710,164	30,811,855
roadNet-PA	1,090,920	3,083,796	2.8	9	7,238,920	9,931,528
roadNet-TX	1,393,383	3,843,320	2.7	12	8,903,897	12,264,987
belgium_osm	1,441,295	3,099,940	2.1	10	5,323,073	8,408,599
roadNet-CA	1,971,281	5,533,214	2.8	12	12,908,450	17,743,342
$netherlands_osm$	2,216,688	$4,\!882,\!476$	2.2	7	8,755,758	13,626,132

Figure: Разреженные матричные данные

В1: Матричное умножение

Матрица <i>М</i>	cuBool		CUSP		cuSP.	RS	clSF	PRS	SuiteSprs		
	t	m	t	m	t	m	t	$^{\mathrm{m}}$	t	$^{\mathrm{m}}$	
wing	1.9	93	5.2	125	20.1	155	4.2	105	7.9	22	
luxembourg_osm	2.4	91	3.7	111	1.7	151	6.9	97	3.1	169	
amazon0312	23.2	165	108.5	897	412.8	301	52.2	459	257.6	283	
amazon-2008	33.3	225	172.0	1409	184.8	407	77.4	701	369.5	319	
web-Google	41.8	241	246.2	1717	4761.3	439	207.5	1085	673.3	318	
roadNet-PA	18.1	157	42.1	481	37.5	247	56.6	283	66.6	294	
roadNet-TX	22.6	167	53.1	581	46.7	271	70.4	329	80.7	328	
belgium_osm	23.2	151	32.9	397	26.7	235	68.2	259	56.9	302	
roadNet-CA	32.0	199	74.4	771	65.8	325	98.2	433	114.5	344	
$netherlands_osm$	35.3	191	51.0	585	51.4	291	102.8	361	90.9	311	

Figure: Матричное умножение, время (t) в миллисекундах, память (m) в мегабайтах, отклонение в пределах 10%

В1: Поэлементное матричное сложение

Mатрица M	cuB	ool	CU	$\overline{\mathrm{SP}}$	cuSI	PRS	clSP	RS	SuiteSpr	
	t	m	t	m	t	\mathbf{m}	t	m	t	m
wing	1.1	95	1.4	105	2.4	163	-	-	2.3	176
luxembourg_osm	1.7	95	1.0	97	0.8	151	-	-	1.6	174
amazon0312	11.4	221	16.2	455	24.3	405	-	-	37.2	297
amazon-2008	17.5	323	29.5	723	27.2	595	-	-	64.8	319
web-Google	24.8	355	31.9	815	89.0	659	-	-	77.2	318
roadNet-PA	16.9	189	11.2	329	11.6	317	-	-	36.6	287
roadNet-TX	19.6	209	14.5	385	16.9	357	-	-	45.3	319
belgium_osm	19.5	179	10.2	303	10.5	297	-	-	28.5	302
roadNet-CA	30.5	259	19.4	513	20.2	447	-	-	65.2	331
$netherlands_osm$	30.1	233	14.8	423	18.3	385	-	-	50.2	311

Figure: Поэлементное матричное сложение, время (t) в миллисекундах, память (m) в мегабайтах, отклонение в пределах 10%

В2: Набор данных

Γ раф \mathcal{G}	V	E	Кол-во <i>sco</i>	Кол-во $type$	Кол-во bt	Кол-во а	Кол-во d
go-hierarchy	45 007	980 218	490 109	0	_	_	_
enzyme	48 815	109 695	8 163	14 989	_	_	_
eclass_514en	239 111	$523\ 727$	90 512	72 517	_	_	_
go	272 770	$534\ 311$	90 512	58 483	_	_	_
geospecies	450 609	$2\ 201\ 532$	0	89 062	20 867	_	_
taxonomy	5 728 398	$14\ 922\ 125$	2 112 637	2 508 635	_	_	_
arch	3 448 422	5 940 484	_	_	_	671 295	2 298 947
crypto	3 464 970	5 976 774	_	_	_	678 408	$2\ 309\ 979$
drivers	4 273 803	$7\ 415\ 538$	_	_	_	858 568	2849201
fs	4 177 416	7 218 746	_	_	_	824 430	2784943

Figure: RDF графы и графы программ для экспериментов

В2: Запросы с КС ограничениями

$$S \to \overline{subClassOf} \quad S \quad subClassOf \mid \overline{type} \quad S \quad type$$

$$\mid \overline{subClassOf} \quad subClassOf \mid \overline{type} \quad type$$
(1)

$$S \to \overline{subClassOf} \ S \ subClassOf \mid subClassOf$$
 (2)

$$S \rightarrow broaderTransitive \quad S \quad \overline{broaderTransitive}$$

$$\mid broaderTransitive \quad \overline{broaderTransitive}$$

$$(3)$$

$$S \to \overline{d} \ V \ d$$

$$V \to ((S?)\overline{a})^* (S?)(a(S?))^*$$
(4)

Figure: КС грамматики запросов для анализа. Запросы, для анализа RDF данных: G_1 (1), G_2 (2), G_{geo} (3), для анализа указателей в графах программ — G_{ma} (4).

B2: Анализ RDF данных

		G_1								G_2							
Γ раф \mathcal{G}	Tn	S_{gpu}	Tn	S_{cpu}	Mts	ζ_{gpu}	Mtz	ζ_{cpu}	Tns	gpu	Tn	S_{cpu}	Mtx	gpu	Mt	\mathbf{x}_{cpu}	
	t	\mathbf{m}	t	m	t	$^{\mathrm{m}}$	t	\mathbf{m}	t	$^{\mathrm{m}}$	t	\mathbf{m}	t	$^{\mathrm{m}}$	t	$^{\mathrm{m}}$	
go-hierarchy	0.15	315	0.17	265	0.11	208	0.08	254	0.27	484	0.24	252	0.06	6	0.09	255	
enzyme	0.02	9	0.04	137	0.01	<1	0.01	181	0.01	4	0.02	132	0.01	<1	0.01	181	
eclass_514en	0.10	57	0.24	205	0.04	14	0.07	180	0.09	36	0.27	193	0.02	2	0.06	181	
go	1.67	176	1.58	282	0.43	68	1.00	244	0.82	119	1.27	243	0.18	12	0.94	246	
taxonomy	2.21	1266	4.42	2018	0.71	364	1.13	968	0.90	969	3.56	1776	0.24	91	0.72	1175	

Figure: Анализ RDF данных с использованием запросов G_1 и G_2 , время (t) в секундах, память (m) в мегабайтах, отклонение в пределах 10%

Γ раф \mathcal{G}	Tns_{gpu}		Tn	S_{cpu}	Mt	X_{gpu}	Mtx_{cpu}		
	t	\mathbf{m}	t	\mathbf{m}	t	m	t	\mathbf{m}	
geospecies	err	err	26.32	19537	1.17	5272	7.48	7645	

Figure: Анализ RDF данных с использованием запроса G_{geo} , время (t) в секундах, память (m) в мегабайтах, отклонение в пределах 10%

В2: Анализ указателей

Γ раф \mathcal{G}	Tns_{gpu}		Tns	cpu	Mts	ζ_{gpu}	Mtx_{cpu}		
	t	\mathbf{m}	t	$^{\mathrm{m}}$	t	\mathbf{m}	t	\mathbf{m}	
arch	57.22	1928	262.45	6718	27.90	588	83.75	1842	
crypto	57.43	1966	257.52	6720	28.10	596	84.83	1842	
drivers	err	err	1309.57	46941	62.49	3999	269.93	5750	
fs	83.86	3166	470.49	46941	47.67	932	165.09	5750	

Figure: Анализ указателей с использованием запроса G_{ma} , время (t) в секундах, память (m) в мегабайтах, отклонение в пределах 10%

Заключение

- Спроектирована библиотека примитивов линейной булевой алгебры для работы с разреженными данными на GPGPU
- Реализована библиотека $cuBool^2$ в соответствии с разработанной архитектурой, опубликован соответствующий python-пакет³
- С использованием pycubool peaлизован алгоритм поиска путей с КС ограничениями через тензорное произведение
- Выполнено экспериментальное исследование полученных артефактов
- Результаты исследования были представлены на конференции GrAPL 2021⁴

²GitHub cuBool: https://github.com/JetBrains-Research/cuBool

³PyPI pycubool: https://test.pypi.org/project/pycubool/

⁴GrAPL 2021: Workshop on Graphs, Architectures, Programming, and Learning. Сайт конференции: https://hpc.pnl.gov/grapl/.