CS 228 : Logic in Computer Science

Krishna. S

Handling Quantifiers : Done on Board

- $\exists x \forall y [x > y \lor \neg Q_a(x)] = \exists x [\neg \exists y [x \leqslant y \land Q_a(x)]]$
- ▶ Draw the automaton for $[x \le y \land Q_a(x)]$
- Project out the y-row
- Determinize it, and complement it
- ► Fix the *x*-row : Intersect with $\begin{pmatrix} \Sigma \\ 0 \end{pmatrix}^* \begin{pmatrix} \Sigma \\ 1 \end{pmatrix} \begin{pmatrix} \Sigma \\ 0 \end{pmatrix}^*$
- ▶ Project the *x*-row

Points to Remember

- ▶ Given $\varphi(x_1, ..., x_n)$, construct automaton for atomic FO formulae over the extended alphabet $\Sigma \times \{0, 1\}^n$
- ► Intersect with the regular language where every x_i is assigned 1 exactly at one position
- ▶ Given a sentence $Q_{x_1} \dots Q_{x_n} \varphi$, first construct the automaton for the formula $\varphi(x_1, \dots, x_n)$
- ► Replace ∀ in terms of ∃

Points to Remember

- ► Given the automaton for $\varphi(x_1, ..., x_n)$, the automaton for $\exists x_i \varphi(x_1, ..., x_n)$ is obtained by projecting out the row of x_i
- This may result in an NFA
- ▶ Determinize it and complement it to get a DFA for $\neg \exists x_i \varphi(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$
- ▶ Intersect with the regular language where each of $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ are assigned 1 exactly at one position

The Computational Effort

Given NFAs A_1 , A_2 each with atmost n states,

- ▶ The union has atmost 2*n* states
- Intersection has almost n² states
- ▶ The complement has atmost 2ⁿ states
- ► The projection has atmost *n* states

Cost of determinization : n + 1 to 2^n

- $\Sigma = \{0, 1\}$, languages where the n^{th} bit from the right is a 1.
- ▶ NFA has *n* + 1 states.
- ► Size of corresponding DFA?

The Computational Effort

- ▶ $\psi = Q_1 \dots Q_n \varphi$. If $Q_i = \exists$ for all i, then size of A_{ψ} is same the size of A_{φ} .
- ▶ When $Q_1 = \exists, Q_2 = \forall, \dots$: each \forall quantifier can create a 2^n blowup in automaton size
- Size of automaton is

where the tower height k is the quantifier alternation size.

► This number is indeed a lower bound!

The Automaton-Logic Connection

Given any FO sentence φ , one can construct a DFA A_{φ} such that $L(\varphi) = L(A_{\varphi})$.

Summary

- ▶ Given FO formula φ , build an automaton A_{φ} preserving the language
- Satisfiability of FO reduces to non-emptiness of underlying automaton

Satisfiability to Model Checking

- Satisfiability of FO over words
- Model checking
 - System abstracted as a model DFA/NFA A
 - Specification written in FO as formula φ
 - ▶ Does system model $\models \varphi$
 - ▶ $L(A) \subseteq L(\varphi)$?
 - $L(A) \cap \overline{L(\varphi)} = \emptyset?$
- ► FO-definable ⊂ *REG*

Next directions

- Going back to general FO, and discuss the nontermination of the satisfiability checking procedure (Shawn Hedman)
- Inexpressiveness of FO : EF games (Straubing)
- MSO logic that can capture exactly regular languages (Wolfgang Thomas AAT)
- ► Temporal Logics (only LTL) (Baier-Katoen)
- Immediate next : MSO

Monadic Second Order Logic (MSO)

Symbols in MSO

Formulae of MSO, over signature τ , are sequences of symbols, where each symbol is one of the following:

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V_1 = \{x_1, x_2, ...\}$ of first order variables
- ▶ An element of the infinite set $V_2 = \{X_1, X_2, ...\}$ of second order variables where each variable has arity 1 (new!)
- ightharpoonup Constants and relations from au
- ▶ The connectives \rightarrow , \land , \lor , \neg
- ► The quantifiers ∀, ∃
- Paranthesis

Well formed Formulae

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- I is a wff
- ▶ If t_1, t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i 's are terms for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- ▶ If *t* is either a first order variable or a constant, *X* is a second order variable, then *X*(*t*) is a wff
- ▶ If φ and ψ are wff, then $\varphi \to \psi, \varphi \land \psi, \varphi \lor \psi$ and $\neg \varphi$ are wff
- ▶ If φ is a wff and x is a first order variable, then $(\forall x)\varphi$ and $(\exists x)\varphi$ are wff
- ▶ If φ is a wff and X is a second order variable, then $(\forall X)\varphi$ and $(\exists X)\varphi$ are wff

Free and Bound Variables

- ► Free, Bound Variables and Scope same as in FO
- ▶ In a wff $\varphi = \forall X\psi$ or $\exists X\psi$ every occurrence of X in ψ is bound
- A sentence is a formula with no free first order and second order variables

Assignments on τ -structures

Assignments

For a τ -structure \mathcal{A} , an assignment over \mathcal{A} is a pair of functions (α_1, α_2) , where

- ▶ $\alpha_1 : \mathcal{V}_1 \to u(\mathcal{A})$ assigns every first order variable $x \in \mathcal{V}_1$ a value $\alpha_1(x) \in u(\mathcal{A})$. If t is a constant symbol c, then $\alpha_1(t)$ is $c^{\mathcal{A}}$.
- ▶ $\alpha_2 : \mathcal{V}_2 \to 2^{u(\mathcal{A})}$ assigns to every second order variable $X \in \mathcal{V}_2$, $\alpha_2(X) \subseteq u(\mathcal{A})$.

Binding on a Variable

For an assignment $\alpha = (\alpha_1, \alpha_2)$ over \mathcal{A} , and $x \in \mathcal{V}_i$, i = 1, 2, $\alpha_i[x \mapsto a]$ is the assignment $\alpha_i[x \mapsto a](y) = \begin{cases} \alpha_i(y), y \neq x, \\ a, y = x \end{cases}$

Satisfaction

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright A \nvDash_{\alpha} \bot$
- \blacktriangleright $\mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha_1(t_1) = \alpha_1(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1,\ldots,t_k) \text{ iff } (\alpha_1(t_1),\ldots,\alpha_1(t_k)) \in R^A$
- $ightharpoonup \mathcal{A} \models_{\alpha} X(t) \text{ iff } \alpha_1(t) \in \alpha_2(X) \text{ (new)}$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} (\varphi \to \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$
- $\blacktriangleright A \models_{\alpha} (\forall x) \varphi$ iff for every $a \in u(A)$, $A \models_{\alpha[x \mapsto a]} \varphi$
- ▶ $A \models_{\alpha} (\forall X)\varphi$ iff for every $S \subseteq u(A)$, $A \models_{\alpha[X \mapsto S]} \varphi$ (new)

Recall the signature for the graph structure, $\tau = \{E\}$

► The graph is 3-colorable

Recall the signature for the graph structure, $\tau = \{E\}$

► The graph is 3-colorable

$$\exists X \exists Y \exists Z (\forall x [X(x) \lor Y(x) \lor Z(x)] \land$$

$$\forall x \forall y [E(x,y) \rightarrow \{\neg (X(x) \land X(y)) \land \neg (Y(x) \land Y(y)) \land \neg (Z(x) \land Z(y))\}])$$

Recall the signature for the graph structure, $\tau = \{E\}$

▶ The graph has an independent set of size $\ge k$

Recall the signature for the graph structure, $\tau = \{E\}$

▶ The graph has an independent set of size $\ge k$

$$\exists I \{ \forall x \forall y [(\neg(x = y) \land I(x) \land I(y)) \rightarrow \neg E(x, y)] \land \\ \exists x_1 \dots x_k [\bigwedge_{i \neq j} \neg(x_i = x_j) \land \bigwedge_i I(x_i)] \}$$

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

► Words of even length

$$\exists E \exists O \{ \forall x [(first(x) \rightarrow E(x)) \land (last(x) \rightarrow O(x))] \}$$

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

$$\exists E \exists O\{\forall x [(first(x) \to E(x)) \land (last(x) \to O(x))]$$
$$\land \forall x [(E(x) \lor O(x)) \land \neg (E(x) \land O(x))]$$

Recall the signature τ for the word structure, $\tau = \{Q_a, Q_b, <, S\}$ for $\Sigma = \{a, b\}$

Words of even length

$$\exists E \exists O \{ \forall x [(first(x) \to E(x)) \land (last(x) \to O(x))] \}$$

$$\land \forall x [(E(x) \lor O(x)) \land \neg (E(x) \land O(x))]$$

$$\land \forall x \forall y [S(x,y) \land O(x) \to E(y)]$$

$$\land \forall x \forall y [S(x,y) \land E(x) \to O(y)] \}$$

MSO on Words: Satisfiability

MSO on Words

- ► Signature $\tau = (Q_{\Sigma}, <, S)$, domain or universe = set of positions of a word
- MSO over words: Atomic formulae

$$X(x)|Q_{\Sigma}(x)|x = y|x < y|S(x,y)$$

- ▶ Given a MSO sentence φ , $L(\varphi)$ defined as usual
- ▶ A language $L \subseteq \Sigma^*$ is MSO definable iff there is an MSO formula φ such that $L = L(\varphi)$
- Given an MSO sentence φ , is it satisfiable/valid?

MSO Expressiveness

- ▶ Clearly, $FO \subseteq MSO$
- ► MSO=Regular