Chapitre 3

Réduction des endomorphismes

1. Pour bien débuter

1.1. Matrices d'endomorphisme

- a) Endomorphisme d'un K-espace vectoriel
 - Endomorphisme d'un espace vectoriel E: application linéaire de E dans E.
 - L'ensemble des endomorphismes de E est noté $\overline{\mathcal{L}(E)}$
 - $(\mathcal{L}(E), +, \circ,.)$ est une algèbre non commutative avec des diviseurs de zéro.
 - Son groupe des inversibles est le **groupe linéaire** $\overline{(GL(E), \circ)}$: c'est le groupe des automorphismes de E (i.e. des endomorphismes bijectifs)
- b) Matrice d'un endomorphisme dans une base de E
 - Si $\mathcal{B}=(e_1,e_2,...,e_n)$ est une base d'un K-espace vectoriel E et si $u\in\mathcal{L}$ E, la **matrice de u dans la base** \mathcal{B} est la matrice $A=(a_{i,j})_{i,j}\in\mathcal{M}_n(K)$ notée $\boxed{M_{\mathcal{B}}(u)} \text{ définie par : } \boxed{\forall j\in [\![1,n\ [\!] : u(e_j)=\sum_{i=1}^n a_{i,j}e_i}$
 - Soient $x = \sum_{j=1}^{n} x_j e_j$ et $y = \sum_{j=1}^{n} y_j e_j$ deux vecteurs de E.

Soient
$$X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in \mathcal{M}_{\scriptscriptstyle n,1} \ K \ \text{ et } Y = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} \in \mathcal{M}_{\scriptscriptstyle n,1}(K) \ \text{les matrices colonnes des}$$

coordonnées respectives de x et y dans la base \mathcal{B} (on écrit $X=M_{\mathcal{B}}(x)$).

Alors $[y=u(x)]\Leftrightarrow [Y=A\times X]$, égalité matricielle qui se traduit par les n égalités $\forall i\in [1,n\]:\ y_i=\sum_{j=1}^n a_{i,j}x_j$

- c) Isomorphisme canonique
 - L'application $\varphi: \begin{cases} \mathcal{L}(E) \to \mathcal{M}_{\!\scriptscriptstyle n}(K) \\ u \to M_{\scriptscriptstyle \mathcal{B}}(u) \end{cases}$ est un isomorphisme d'espaces vectoriels.
- d) Endomorphisme canoniquement associé à une matrice
 - Soit $A\in\mathcal{M}_n(K)$ et $\mathcal{C}=(\varepsilon_j)_j$ la base canonique de K^n . L'endomorphisme canoniquement associé à A est $u\in\mathcal{L}(K^n)$ tel que $M=M_{\mathcal{C}}(u)$
- e) Théorème du rang, isomorphisme dans le cas où les e.v. sont de même dimension finie, image d'une base, automorphisme (cf. cours de MPSI)

1.2. Matrice de passage

- Si $\mathcal{B} = (e_1, e_2, ..., e_n)$ et $\mathcal{B}' = (e_1', e_2', ..., e_n')$ sont deux bases de E, la **matrice de passage** de \mathcal{B} à \mathcal{B}' est la matrice P notée $Pass(\mathcal{B}, \mathcal{B}')$ dont la j-ième colonne est constituée des coordonnées du vecteur e_j' dans la base \mathcal{B} . Ainsi $Pass(\mathcal{B}, \mathcal{B}') = M_{\mathcal{B}}(\mathcal{B}')$. Alors $P \in GL_n(K)$ et $P^{-1} = Pass(\mathcal{B}', \mathcal{B})$
- Soit $x = \sum_{j=1}^{n} x_{j} e_{j} \in E$ avec $X = M_{\mathcal{B}}(x)$ et $X' = M_{\mathcal{B}'}(x)$, alors X = X = X = X
- Soit $u \in \mathcal{L}(E)$ avec $M = M_{\mathcal{B}}(u)$ et $M' = M_{\mathcal{B}'}(u)$, alors $M' = P^{-1}MP$

1.3. Matrices semblables

- Deux matrices $M \in \mathcal{M}_n(K)$ et $M' \in \mathcal{M}_n(K)$ sont dites **semblables** s'il existe une matrice $P \in GL_n(K)$ telle que $M' = P^{-1}MP$. Ce qui revient à écrire que M et M' représentent le même endomorphisme u dans deux bases (distinctes ou non).
- Deux matrices semblables ont même **déterminant** et même **trace**On peut ainsi définir, si $M = M_{\mathcal{B}}(f)$: dét(u) = dét(M) et tr(u) = tr(M)
- On peut ainsi définir, si $M=M_{\mathcal{B}}(f)$: $d\acute{e}t(u)=d\acute{e}t(M)$ et tr(u)=tr(M)• Pour rappel $d\acute{e}t(A)=\sum_{\sigma\in\mathfrak{S}_n}\varepsilon(\sigma)a_{\sigma(1),1}...a_{\sigma(n),n}$ et $tr(A)=\sum_{i=1}^na_{i,i}$.

1.4. Sous-espace stable

a) Définition

Soit $u \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. On dit que F est stable par u (ou que u stabilise F) si $u(F) \subset F$.

- b) Endomorphisme induit
 - Si un sous-espace vectoriel F est stable par $u \in \mathcal{L}(E)$, on peut alors définir : $u_{|F} \in \mathcal{L}(F) \quad \text{défini par } u_{|F}(x) = u(x).$ $u_{|F} \text{ s'appelle l'endomorphisme induit de } u \text{ sur } F.$
- c) Matrice dans une base de E adaptée à F
 - Si F est un sous-espace vectoriel de E, il admet un supplémentaire G $(F \oplus G = E)$; on obtient alors une base \mathcal{B} de E en concaténant deux bases respectives \mathcal{B}_1 et \mathcal{B}_2 de F et G. Si F est stable par un endomorphisme u, sa $(A \cap B)$

matrice M dans la base \mathcal{B} sera alors une **matrice-blocs** : $M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$

où
$$A = M_{\mathcal{B}_i}(u_{|F}) \in \mathcal{M}_p(K)$$
, $C \in \mathcal{M}_{n-p}(K)$, $p = \dim(F)$

- On rappelle à ce sujet qu'on a alors $d\acute{e}t(M) = d\acute{e}t(A) \times d\acute{e}t(C)$
- Si de plus G est aussi stable par u, alors $M = \begin{pmatrix} A & 0 \\ 0 & C \end{pmatrix}$

On peut généraliser pour $E = \bigoplus_{i=1}^{n} E_i$, où chaque E_i est stable par u, alors M

sera une matrice-blocs
$$M = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_r \end{pmatrix}$$

d) Exemple fondamental

Soit a un vecteur non nul de E. Alors

$$[Vect(a) \text{ est stable par } u] \Leftrightarrow [\exists \lambda \in \mathbb{K} / u(a) = \lambda a]$$

On dit alors que a est un vecteur propre, que λ est une valeur propre de u. Ces notions essentielles seront reprises au § 3.

e) Propriété

Si deux endomorphismes u et v commutent (i.e. $u \circ v = v \circ u$), alors Ker(v) et Im(v) sont stables par u.

Démo 3

2. Polynômes d'endomorphismes, de matrices

2.1.Définition

Définition 1 : polynômes d'endomorphisme, de matrice

Soit
$$P \in K[X]$$
 avec $P = \sum_{i=0}^{n} a_i X^i$, $u \in \mathcal{L}(E)$, $A \in \mathcal{M}_n(K)$.

- L'évaluation de P en u est définie par $P(u) = \sum_{i=1}^{n} a_i u^i$
- L'évaluation de P en A est définie par $P(A) = \sum_{i=1}^{n} a_i A^i$

Avec les conventions $u^0 = Id_E$ et $M^0 = I_n$.

• Exemple : pour $P = X^2 - 1 = (X - 1)(X + 1)$

$$P(u) = u^2 - Id_E = (u - Id_E) \circ (u + Id_E)$$

$$P(M) = M^2 - I_n = (M - I_n)(M + I_n)$$

 $P(M)=M^2-I_n=(M-I_n)(M+I_n)$ Propriété : Si $A=M_{\mathcal{B}}(u)$, alors $P(A)=M_{\mathcal{B}}(P(u))$

2.2. Morphismes fondamentaux

Théorème : Soient $u \in \mathcal{L}(E)$ et $M \in \mathcal{M}_n(K)$.

Les applications
$$\Phi: \begin{cases} K[X] \to \mathcal{L}(E) \\ P \to P(u) \end{cases}$$
 et $\Psi: \begin{cases} K[X] \to \mathcal{M}_n(K) \\ P \to P(M) \end{cases}$ sont des

morphismes d'algèbres.

- On a notamment $PQ(u) = P(u) \circ Q(u) = Q(u) \circ P(u)$
- Démonstration 5. (pour $\Psi: \Psi = \varphi \circ \Phi$ où φ est défini en § 1.1.e.)
- Attention: pour $x \in E$, l'écriture P(u)(x) a un sens car $P(u) \in \mathcal{L}(E)$ mais l'écriture P(u(x)) n'a aucun sens.

- Conséquence 1 : $\operatorname{Im}(\Phi)$ est une sous-algèbre commutative de $\mathcal{L}(E)$ notée $\overline{K[u]}$ $\operatorname{Im}(\Psi)$ est une sous-algèbre commutative de $\mathcal{M}_n(K)$ notée $\overline{K[M]}$
- Conséquence 2 : $\operatorname{Ker}(\Phi)$ est un idéal de K[X] donc il existe un polynôme P tel que $\operatorname{Ker}(\Phi) = (P)$ (de même pour Ψ)

2.3. Idéal annulateur et polynômes annulateurs

Définition : Soit $u \in \mathcal{L}(E)$ (resp. $A \in \mathcal{M}_n(K)$).

- polynôme annulateur de u (resp. A) : tout polynôme P tel que $P(u)=0_{\mathcal{L}(E)}$ (resp. $P(A)=0_n$)
- idéal annulateur de u (resp. A) : l'ensemble \mathcal{I}_u (resp. \mathcal{I}_A) des polynômes annulateurs de u (resp. A)
 - Justification : $\mathcal{I}_u = Ker(\Phi)$ est bien un idéal de K[X] 6.
 - Exemples :
 - o Homothétie : $h = \lambda Id_{\scriptscriptstyle E}$ a pour polynôme annulateur $X \lambda$
 - 0 Matrice scalaire : $A = diag(a,a,...,a) = aI_n \ \ \mbox{a pour polynôme annulateur} : \ X-a$
 - o Projecteur : $p^2 = p$ donc p a pour polynôme annulateur $X^2 X$
 - o Symétrie : $s^2 = Id_{\scriptscriptstyle E}$ donc s a pour polynôme annulateur $X^2 1$
 - Exercice : Soit $D \in \mathcal{L}(\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}))$ défini par D(f) = f'. Montrer que le seul polynôme annulateur de D est le polynôme nul.

2.4. Polynôme minimal (cas où dim(E) est finie)

a) Propriété préliminaire

Lemme fondamental : Soit E un espace vectoriel de dimension finie. Tout endomorphisme $u \in \mathcal{L}(E)$ admet un polynôme annulateur non nul.

Variante matricielle:

toute matrice $A \in \mathcal{M}_n(K)$ admet un polynôme annulateur non nul.

- Démonstration 8
- Ainsi l'idéal annulateur \mathcal{I}_u est non nul et donc : il existe un unique polynôme unitaire noté μ_u tel que $\mathcal{I}_u = (\mu_u)$
- De même l'idéal annulateur \mathcal{I}_A est non nul et donc : il existe un unique polynôme unitaire noté μ_A tel que $\mathcal{I}_A = (\mu_A)$

b) Définition

Définition : Soit E un espace vectoriel de dimension finie. on appelle **polynôme minimal** de $u \in \mathcal{L}(E)$ (resp. $A \in \mathcal{M}_n(K)$) l'unique polynôme unitaire générateur noté μ_u (resp. μ_A) de l'idéal \mathcal{I}_u (resp. \mathcal{I}_A)

- Conséquences:
 - Tout polynôme annulateur est multiple du polynôme minimal.
 - Le polynôme minimal est l'unique polynôme annulateur de degré minimal.
 - En particulier : $\mu_u(u) = 0_{\mathcal{L}(E)}$ $\mu_A(A) = 0_n$ $d^{\circ}(\mu_u) \geqslant 1$, $d^{\circ}(\mu_A) \geqslant 1$
- Exemples: 10
 - Homothétie : $h = \lambda Id_E$ a pour polynôme minimal $X \lambda$
 - Matrice scalaire : $A = diag(a, a, ..., a) = aI_n ...$ polynôme minimal : X a
 - Toute matrice non scalaire a un polynôme minimal de degré $n\geqslant 2$
 - Projecteur : polynôme annulateur $X^2 X = X(X 1)$ polynôme minimal : $\overline{\overline{X}(\leftrightarrow p=0_{_{\mathcal{L}\,E}})}$, $\overline{X-1}$ ($\leftrightarrow p=Id_{_{E}}$), X(X-1) $(\leftrightarrow p \notin \{0_{\mathcal{L}(E)}, Id_E\}$
 - Symétrie : polynôme annulateur : $X^2 1 = (X 1)(X + 1)$ polynôme minimal : $\overline{X-1} \ \ (\leftrightarrow s = Id_{\scriptscriptstyle E}\,), \ \overline{X+1} \ \ (\leftrightarrow s = -Id_{\scriptscriptstyle E}\,)$ $\overline{|X(X-1)|} \ (\leftrightarrow s \not\in \{-Id_E, Id_E\}$
 - $\circ \quad A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \text{ vérifie } A^2 = 3A \dots \text{ polynôme minimal } \overline{X(X-3)}$
- c) Polynôme minimal d'un endomorphisme et de sa matrice

<u>Propriété</u>: Si $A = M_{\mathcal{B}}(u)$, alors:

Les polynômes annulateurs de u sont les polynômes annulateurs de A.

Démo 11

- Les idéaux annulateurs \mathcal{I}_u et \mathcal{I}_A sont égaux
- Les polynômes minimaux μ_u et μ_A sont égaux.

Corollaire:

deux matrices semblables ont le même polynôme minimal

Démo **12**

d) Polynôme minimal d'un endomorphisme induit

Propriété : Si un sous-espace vectoriel F est stable par u, alors le polynôme minimal de l'endomorphisme induit $u_{|F} \in \mathcal{L}(F)$ divise le polynôme minimal de u.

Démo

13

e) Base de K[u]

Propriété : Soit $d = d^{\circ}(\mu_{u})$ La famille $(Id_{\scriptscriptstyle E},u,u^2,\ldots,u^{d-1})$ est une base de K[u] .

Démo

14

- Traduction matricielle : $(I_n, A, A^2, ..., A^{d-1})$ est une base de K[A].
- Conséquence : $\dim(K[u]) = d$, $\dim(K[A]) = d$.

2.5. Application ; calcul des puissances d'une matrice (méthode 1).

- Méthode : on effectue la division euclidienne de X^k par le polynôme μ_A : $X^k = \mu_A \times Q + R$ et on évalue en $A: A^k = R(A)$ 15.
- Exemple: polynôme minimal et puissances de $M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

2.6. Exemple fondamental: matrice compagnon

• Tout polynôme $P = X^n + \sum_{i=0}^{n-1} a_i X^i$ est polynôme minimal d'au moins une

matrice, sa **matrice compagnon** définie par : $C = \begin{bmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & \vdots & -a_1 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & 1 & 0 & \vdots \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{bmatrix}$

• Démonstration 16

2.7. <u>Décomposition des noyaux</u>

Lemme de décomposition des noyaux :

Soit $(P_i)_{i=1..r}$ une famille de polynômes deux à deux premiers entre eux.

Si
$$P = \prod_{i=1}^r P_i$$
, alors $Ker(P(u)) = \bigoplus_{i=1}^r Ker(P_i(u))$

Théorème de décomposition des noyaux :

Soit $(P_i)_{i=1..r}$ une famille de polynômes deux à deux premiers entre eux.

Si
$$P = \prod_{i=1}^{r} P_i$$
 est annulateur de u , alors $E = \bigoplus_{i=1}^{r} Ker(P_i(u))$

• Démonstrations 17

3. Eléments propres

3.1. Définitions

a) Valeurs propres, vecteurs propres, spectre

Définitions : Soit $u \in \mathcal{L}(E)$

- * $\lambda \in \mathbb{K}$ est une valeur propre de u si $\exists x \in E \setminus \{0_E\} / u(x) = \lambda x$
- * $x \in E$ est un vecteur propre de u si $x \neq 0_E$ et $\exists \lambda \in K / u(x) = \lambda x$
- ***** Le spectre de u, noté $Sp_{\mathbb{K}}(u)$ est l'ensemble des valeurs propres de u.
- Si x est vecteur propre, la valeur propre qui lui est associée est unique
- Si λ est valeur propre, si x est un vecteur propre associé à λ , il n'est pas unique puisque tout vecteur $\alpha.x$ ($\alpha \in \mathbb{K}^*$) est aussi vecteur propre.

b) Exemples: quelques astuces...

Soient les matrices
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 2 & 1 \\ 1 & 2 & 0 \end{pmatrix} \text{ et } C = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 5 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

- A: somme de chaque ligne $\Rightarrow 2 \in Sp(A)$; vecteur propre x = (1,1,1)
- B: somme de chaque colonne $\Rightarrow 4 \in Sp(B)$

C: lecture de la 2^{nde} colonne $\Rightarrow 5 \in Sp(C)$; vecteur propre $e_2 = (0,1,0)$ lecture du rang : $rg(C) < 3 \Rightarrow 0 \in Sp(C)$; vecteur propre (1,0,-1)

c) Sous-espace propre

<u>Propriété</u> préliminaire :

Soit E est un espace vectoriel de dimension finie.

Alors : $[\lambda \text{ est valeur propre de } u] \Leftrightarrow [(u - \lambda Id_E) \notin GL(E)]$:

Démo **19**

- Plus généralement :
 - il peut être pratique de poser pour tout $\lambda \in \mathbb{K}$, $E_{\lambda} = \operatorname{Ker}(u \lambda Id_{E})$
 - dans ce cas, on pourra écrire $[\lambda \in Sp_{\mathbb{K}}(u)] \Leftrightarrow [E_{\lambda} \neq \{0_{E}\}]$
- Noter que $[0 \in \mathit{Sp}_{\mathbb{K}}(u)] \Leftrightarrow [\mathit{Ker}(u) \neq \{0_{\scriptscriptstyle{E}}\}] \Leftrightarrow [u \not\in \mathit{GL}(E)]$

Définitions : Soit $\lambda \in Sp_{\mathbb{K}}$ u .

- * Le sous-espace propre associé à λ est $\overline{E_{\lambda} = \text{Ker}(u \lambda Id_E)}$
- $\begin{array}{l} \text{Comme} \ \ \lambda \in Sp_{\mathbb{K}}(u) \,, \ \text{nécessairement} \ \ E_{\lambda} \neq \{0_{\scriptscriptstyle E}\} \\ \hline E_{\lambda} \ \ \text{est l'ensemble des vecteurs propres associés à} \ \ \lambda \\ \hline \end{array} \ (\text{avec en plus} \ \ 0_{\scriptscriptstyle E}) \\ \end{array}$
- Démonstration : | 20 |

3.2. Propriétés

Soit $u \in \mathcal{L}(E)$

- 1. Toute somme d'une famille de sous-espaces propres associés à des valeurs propres distinctes est directe.
- 2. Toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.
- 3. Si dim(E) = n, alors $\operatorname{card}(Sp_{\mathbb{K}}(u)) \leq n$
- 4. Si $v \in \mathcal{L}(E)$ et si u et v commutent, alors tout sous-espace propre de u est stable par v.
- Démonstrations :

Valeurs propres et polynôme minimal 3.3.

a) Une propriété importante

Propriété : Soient $P \in \mathbb{K}[X]$, $u \in \mathcal{L}(E)$, $\lambda \in \mathbb{K}$ et $x \in E$.

- Si $u(x) = \lambda x$, alors $P(u)(x) = P(\lambda).x$
- Si $\lambda \in Sp_{\mathbb{K}}(u)$, alors $P(\lambda) \in Sp_{\mathbb{K}}(P(u))$
- Démonstrations : 22

b) Un théorème essentiel

Théorème : Soit $u \in \mathcal{L} E$.

- Les valeurs propres de u sont racines de tout polynôme annulateur.
- Les valeurs propres de u sont les racines de son polynôme minimal.
- Démonstrations:
- Autrement dit : si P est annulateur de u et le polynôme minimal $Sp_{\mathbb{K}}(u) \subset Rac_{\mathbb{K}}(P)$ et $Sp_{\mathbb{K}}(u) = Rac_{\mathbb{K}}(\mu_u)$
- c) Exemples 24
 - $\begin{array}{ll} \bullet & \text{Homoth\'etie}: \ h = \lambda Id_E & \mu_{h_{\lambda}} = X \lambda & Sp_{\mathbb{K}}(h_{\lambda}) = \{\lambda\} \\ \bullet & \text{Projecteur} \ \ p \not \in \{0_{\mathcal{L}(E)}, Id_E\} & \mu_p = X(X-1) & Sp_{\mathbb{K}}(p) = \{0,1\} \\ \bullet & \text{Sym\'etrie} \ \ s \not \in \{Id_E, -Id_E\} & \mu_s = (X+1)(X-1) & Sp_{\mathbb{K}}(s) = \{-1,1\} \end{array}$

3.4.Cas des matrices

- a) Principe : on a vu en préambule que
 - A toute matrice $A \in \mathcal{M}_n(K)$ est canoniquement associé un endomorphisme $u \in \mathcal{L}(\mathbb{K}^n)$ et que $[y = u(x)] \Leftrightarrow [Y = A \times X]$ où $X \in \mathcal{M}_{n,1}(\mathbb{K})$
 - On identifie couramment la matrice-colonne $X \in \mathcal{M}_{n,1}$ K et le n-uplet $(x_1, x_2, ..., x_n) \in \mathbb{K}^n$
 - On a alors $[u(x) = \lambda x] \Leftrightarrow [A.X = \lambda .X] \Leftrightarrow [(A \lambda I_n)X = 0]$; dans cet esprit :

b) Définitions

Soit $A \in \mathcal{M}_n(K)$

- \bullet $\lambda \in K$ est une valeur propre de A si $\exists X \in K^n \setminus \{0_{K^n}\} / AX = \lambda X$
- \bullet Le spectre de A, noté $Sp_{\mathbb{K}}(A)$ est l'ensemble des valeurs propres de A.
- **\Le sous-espace propre** de A associé à λ est $E_{\lambda} = \operatorname{Ker}(A \lambda I)$
- On retrouve alors toutes les propriétés du \S 3.en remplaçant $u \in \mathcal{L}(E)$ par $A \in \mathcal{M}_n(K)$
- Deux matrices semblables représentant le même endomorphisme dans des bases distinctes (ou non), elles auront donc même spectre et mêmes sousespaces propres (on a vu qu'elles ont aussi même polynôme minimal)

c) Exemple:
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

- $\bullet \quad \mu_{\scriptscriptstyle A} = X(X-3)$ $Sp(A) = \{0, 3\}$
- $\blacksquare \quad B \quad \text{v\'erifie} \ B^3 = 0_3 \ \text{mais} \ B^2 \neq 0_3 \ : \ \mu_B = X^3 \ \text{et} \quad Sp(B) = \{0\}$ B est une matrice nilpotente d'indice 3 (cf. \S 6.4)
- C+I=A, rg(A)=1 donc $-1 \in Sp(C)$ et $\dim(E_{-1}) = \dim(Ker(C+I)) = 2$ De plus (somme de chaque ligne) $2 \in Sp(C)$ et $u = (1,1,1) \in E_2$ E_{-1} et E_2 sont en somme directe donc $\dim(E_2) = 1$ et $E_2 = \text{Vect}(u)$
- d) Changement de corps

Propriété:

Soit $A \in \mathcal{M}_n(\mathbb{R})$ considérée comme élément de $\mathcal{M}_n(\mathbb{C})$: $Sp_{\mathbb{R}}(A) \subset Sp_{\mathbb{C}}(A)$

- Démonstration **25**
- Exemple: matrice triangulaire où l'inclusion est stricte

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \; ; \; Sp_{\mathbb{R}}(A) = \varnothing \; \; ; \; Sp_{\mathbb{C}}(A) = \{i, -i\} \; \; ext{(obtenu par } \chi_A \;\;\; lacksquare$$

- 4. Polynôme caractéristique
 - 4.1. **Définitions**

 $\underline{\operatorname{Intro}}: \lambda \in Sp(A) \Leftrightarrow \dim(E_{\lambda}) \neq 0 \Leftrightarrow A - \lambda I \not\in GL_n(K) \Leftrightarrow \det(\lambda I - A) = 0$

a) Polynôme caractéristique d'une matrice

Définition : polynôme caractéristique d'une matrice $A \in \mathcal{M}_n(K)$.

On appelle polynôme caractéristique de A le polynôme $\chi_{\scriptscriptstyle A}=\det(XI_{\scriptscriptstyle n}-A)$

• Justification du caractère polynomial

27 . L

- Exemples 28
 - o Matrice triangulaire $\overline{\chi_A = \prod_{i=1}^n (X t_{i,i})}$ o Matrice compagnon de $P : \overline{\chi_A = \mu_A = P}$

30

29

Propriétés:

- ❖ Deux matrices semblables ont même polynôme caractéristique.
- Démonstration

b) Polynôme caractéristique d'un endomorphisme

Définition : polynôme caractéristique d'un endomorphisme $u \in \mathcal{L}(E)$.

On appelle polynôme caractéristique de u le polynôme caractéristique de sa matrice dans une base quel conque ou encore $\boxed{\chi_{\scriptscriptstyle \!\! u} = \det(X I d_{\scriptscriptstyle \!\! E} - u)}$.

• Justification de l'indépendance de la base choisie

Propriétés

- χ_u est un polynôme unitaire de degré n: $\chi_u = X^n + \sum_{i=0}^{n-1} a_i X^i$
- $\begin{array}{ll} & \bullet & \boxed{a_{n-1} = -\mathrm{tr}(u)} \; \mathrm{et} \; \boxed{a_0 = (-1)^n \, \mathrm{d\acute{e}t}(u)}. \\ \\ & \bullet & \mathrm{Ainsi} \; \boxed{\chi_u = X^n \mathrm{tr}(u) X^n + \ldots + (-1)^n \, \mathrm{d\acute{e}t}(u)} \\ \\ & \bullet & \chi_u(\lambda) = \, \mathrm{d\acute{e}t}_{\mathcal{B}}(\lambda Id_E u) \\ \end{array}$
- Remarque : notion d'invariants
- Exemples 32.
 - o Homothétie de rapport a (matrice scalaire) : $\chi_h = (X-a)^n$
 - o Projecteur : $\chi_p = (X-1)^p X^q$ où $p = \dim(F)$ et $q = \dim(G)$
 - o Symétrie : $\chi_s = (X-1)^p (X+1)^q$ où $p = \dim(F)$ et $q = \dim(G)$
 - o Endomorphisme de rang 1 : $\chi_{\scriptscriptstyle u} = X^{\scriptscriptstyle n-1}(X-\operatorname{tr}(u))$

c) Cas d'un endomorphisme induit

Proposition : polynôme caractéristique d'un endomorphisme induit Si $u \in \mathcal{L}(E)$ stabilise un sous-espace vectoriel F, alors $\chi_{u_F} \mid \chi_u$.

Démonstration

L **33** .

Corollaire : Si $E=\bigoplus_{i=1}^r E_i$ et que u stabilise chaque E_i , alors $\chi_u=\prod_{i=1}^n \chi_{u_{\mid E_i}}$

4.2.Polynôme caractéristique et valeurs propres

a) Racines du polynôme caractéristique

Théorème : Soient $u \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(K)$

Les valeurs propres de u (resp. A) sont les racines de son polynôme caractéristique : $\mathrm{Sp}_{\mathbb{K}}(u) = \mathrm{Rac}(\chi_u)$ (resp. $\mathrm{Sp}_{\mathbb{K}}(u) = \mathrm{Rac}(\chi_{A})$.

Démonstration

L

Corollaire : un endomorphisme d'un espace vectoriel de dimension n admet au plus n valeurs propres, autrement dit : $|card(Sp(u))| \leq n$

b) Ordre de multiplicité

Définition : On appelle **ordre multiplicité** d'une valeur propre λ son ordre de multiplicité en tant que racine de son polynôme caractéristique.

• Exemple : si le polynôme caractéristique est scindé :
$$\chi_u = \prod_{i=1}^r (X - \lambda_i)^{m_i}$$

$$\boxed{ \operatorname{tr}(u) = \sum_{i=1}^r m_i \lambda_i} \quad \text{et} \quad \boxed{ \det(u) = \prod_{i=1}^r \lambda_i^{m_i} }$$

Pour retenir : c'est ce qu'on obtient pour une matrice diagonale dans la diagonale de laquelle chaque λ_i apparaît m_i fois 35.

c) Dimension du sous-espace propre et ordre de multiplicité

Théorème : Si λ est valeur propre d'ordre m, alors $1 \leq \dim(E_{\lambda}) \leq m$

- Démonstration
- 36
- Exemple: si λ est valeur propre d'ordre 1, alors $\dim(E_{\lambda}) = 1$

4.3. Polynôme caractéristique et polynôme minimal

Théorème de Cayley-Hamilton

Le polynôme caractéristique d'un endomorphisme u est annulateur de u.

- Démonstration admise
- Ainsi $\chi_{{\boldsymbol u}}(u)=0_{{\mathcal L}(E)}$ et de même pour une matrice : $\chi_{{\boldsymbol A}}(A)=0_{{\boldsymbol n}}$

Corollaire de Cayley-Hamilton

Le polynôme minimal divise le polynôme caractéristique : $\mu_A \mid \chi_A$.

- Démonstration
- <mark>37</mark>. ∠

• Si
$$\chi_u = \prod_{i=1}^r (X - \lambda_i)^{m_i}$$
 alors $\mu_u = \prod_{i=1}^r (X - \lambda_i)^{\alpha_i}$ avec $\forall i \in [1, r] : \alpha_i \leqslant m_i$

• Exercice : soit $A \in \mathcal{M}_n(\mathbb{R})$: si $\chi_A = (X-1)^2(X^2+X+1)\dots$

4.4. Exemple traité 1 :
$$A = \begin{pmatrix} 6 & -6 & 5 \\ -4 & -1 & 10 \\ 7 & -6 & 4 \end{pmatrix}$$

- Calcul de χ_A et détermination de Sp(A).
- \bullet Détermination des sous-espaces propres de A.
- Détermination de μ_A .

5. Endomorphismes diagonalisables

5.1. Définitions

Définitions \circlearrowleft Un endomorphisme $u \in \mathcal{L}(E)$ est dit **diagonalisable** s'il existe une base \mathcal{B} de E dans laquelle sa matrice est diagonale.

- \circlearrowleft Une matrice $A \in \mathcal{M}_n(K)$ est dite diagonalisable si elle est semblable à une matrice diagonale.
- Ainsi [A est diagonalisable] \Leftrightarrow $[\exists P \in GL_n(\mathbb{K})/P^{-1}AP$ est diagonale]
- • Si $A = M_{\mathcal{B}}(u)$: [A est diagonalisable] \Leftrightarrow [u est diagonalisable]

Propriété : La diagonale de la matrice diagonale est alors constituée des valeurs propres, chacune ayant pour occurrence son ordre de multiplicité.

• Démonstration

38

5.2. Caractérisation de la diagonalisabilité

Proposition : Soit $u \in \mathcal{L}(E)$. Alors

u est diagonalisable $\Leftrightarrow E$ possède une base de vecteurs propres.

 \Leftrightarrow E est la somme directe de ses sous-espaces propres.

$$\Leftrightarrow \ \sum_{\scriptscriptstyle i=1}^r \dim(E_{\lambda_{\scriptscriptstyle i}}) = n \quad \text{ où } \ r = \operatorname{card}(Sp(u))$$

 $\Leftrightarrow \chi_u \text{ est scind\'e et } \forall i \in [1, r] : \dim(E_{\lambda_i}) = m_i$ $(m_i \text{ ordre de multiplicit\'e de } \lambda_i)$

• Démonstration

39

 $\bullet\,$ Conséquence : u n'est pas diagonalisable si et seulement si

 $\chi_{_{\! u}}$ n'est pas scindé ou $\chi_{_{\! u}}$ est scindé mais $\exists i \in [\![\ 1,r \]\!] : \dim(E_{\lambda_{_{\! i}}}) < m_i$

Corollaire : Si χ_u est scindé à racines simples, u est diagonalisable.

• Démonstration

40

• Exemples

o Suite du § 4.4 : $\dim(E_5) = 1 < 2 = m_5$ A n'est pas diagonalisable.

o Exemple traité 2 : $B = \begin{pmatrix} -1 & 2 & 1 \\ -2 & 3 & 1 \\ 4 & -4 & -1 \end{pmatrix}$

 ${\color{red} \bullet}$ Calcul de $\chi_{{B}}$ et détermination de $Sp({B})$: $\chi_{{B}}$ est scindé.

 \blacksquare Détermination des dimensions des sous-espaces propres de B.

• Conclusion : $\forall i \in [1, r]$: $\dim(E_{\lambda}) = m_i \rightarrow \underline{B}$ est diagonalisable.

 \blacksquare Ecriture de la matrice Δ diagonale semblable à B .

 \blacksquare Base de vecteurs propres, détermination d de $P/\Delta=P^{^{-1}}\!BP$.

- Détermination de $\mu_{\scriptscriptstyle B}$; nature de l'endomorphisme associé b.

■ Calcul de B^n : méthode n°2

Caractérisation de la diagonalisabilité par le polynôme minimal 5.3.

a) <u>Décomposition en projections</u>

Lemme : Soit $u \in \mathcal{L}(E)$ un endomorphisme diagonalisable et $P \in \mathbb{K}[X]$. Soit $Sp(u) = \{\lambda_1, \lambda_2, ... \lambda_r\}$ où r = card(Sp(u)) et soit p_i la projection de Esur E_{λ_i} parallèlement à $\bigoplus_{j\neq i} E_{\lambda_j}$. Alors $P(u) = \sum_{i=1}^r P(\lambda_i) p_i$

• Démonstration

• Il vient $\left|Id_E = \sum_{i=1}^r p_i\right|$! et pour $u \in \mathcal{L}(E)$ diagonalisable, $u = \sum_{i=1}^r \lambda_i p_i$

b) Diagonalisabilité et polynôme minimal

Théorème : Soit $u \in \mathcal{L}(E)$. u est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples.

Corollaire : Soit $u \in \mathcal{L}(E)$. u est diagonalisable si et seulement s'il admet un polynôme annulateur scindé à racines simples.

Démonstrations

• Exemples (suite des § 4.4 et § 5.2) 43

•
$$\chi_A = (X-5)^2(X+1)$$
 mais $\dim(E_5) = 1$ \longrightarrow $\mu_A = (X-5)^2(X+1)$

 $\chi_A = (X - 5)^2 (X + 1) \text{ mais } \dim(E_5) = 1 \quad \Rightarrow \quad \mu_A = (X - 5)^2 (X + 1)$ $\chi_B = (X - 1)^2 (X + 1) \text{ et } \dim(E_1) = 2 \quad \Rightarrow \quad \mu_B = (X - 1)(X + 1)$ Ainsi comme $\mu_{\scriptscriptstyle B}$ est annulateur, $B^2=I$ donc B est la matrice de la symétrie sur F = Ker(B - I) de direction G = Ker(B + I)

6. Endomorphismes trigonalisables

6.1.**Définitions**

Définitions

- Un endomorphisme $u \in \mathcal{L}(E)$ est dit trigonalisable s'il existe une base \mathcal{B} de E dans laquelle sa matrice est triangulaire supérieure
- Une matrice $A \in \mathcal{M}_{p}(K)$ est dite diagonalisable si elle est semblable à une matrice triangulaire supérieure.
- Si $A = M_{\mathcal{B}}(u)$, il est alors clair que

 $[A \text{ est trigonalisable}] \Leftrightarrow [u \text{ est trigonalisable}]$

Propriété: La diagonale de la matrice triangulaire est alors constituée des valeurs propres, chacune ayant pour occurrence son ordre de multiplicité.

• Démonstration

6.2.Caractérisation de la trigonalisabilité

Proposition : Soit $u \in \mathcal{L}(E)$.

u est trigonalisable

- $\Leftrightarrow \chi_u$ est scindé $\Leftrightarrow \text{Il existe un polynôme annulateur scindé}$
- $\Leftrightarrow \mu_{\scriptscriptstyle u} \,$ est scindé
- Démonstration

45 . L

Corollaire:

Tout endomorphisme d'un \mathbb{C} -espace vectoriel E est trigonalisable.

Toute matrice $A \in \mathcal{M}_n(K)$ est trigonalisable.

6.3. Exemples

- Exemple 1 (suite du § 4.4)

- On peut améliorer par le lemme des noyaux en $T = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 5 & . \\ 0 & 0 & 5 \end{bmatrix} \dots$
- et même obtenir : $T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{pmatrix}$ (réduction de Jordan H.P.)
- Méthode pour trouver la bonne base pour la dernière matrice :
 - $u \in E_1, v \in E_5$: détermination des sous-espaces propres...
 - w vérifie (cf. troisème colonne) : A.w = v + 5w
- Exemple traité 3

Soit $C = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$: C est la matrice de la permutation $\gamma = (1, 2, 3)$

- $\chi_C = X^3 1 = (X 1)(X^2 + X + 1) = (X 1)(X j)(X j^2)$ dans \mathbb{C} , χ_C est scindé à racines simples

ightharpoonup C est \mathbb{C} -diagonalisable et $\mu_C = \chi_C$

• dans \mathbb{R} , χ_C n'est pas scindé

 \supset C n'est pas \mathbb{R} -trigonalisable et $\mu_C = \chi_C$

• généralisation : matrice de la permutation $\gamma = (1, 2, ..., n)$ de \mathfrak{S}_n .

6.4. Un bilan: situations possibles et exemples

	Cas 1	Cas 2	Cas 3	Cas 4
μ_u	non scindé	Scindé	Scindé à racines simples	
		avec au moins une		
		racine d'ordre $\geqslant 2$		
u	Non	trigonalisable	diagonalisable	
	trigonalisable	non diagonalisable		
χ_u	non scindé	Scindé		Scindé à
		avec au moins		racines
		une racine d'ordre $\geqslant 2$		simples
		$\exists i \in [\![1,r \]\!] /$	$\forall i \in [\mid 1, r \mid] :$	
		$\dim(E_{\lambda_i}) < m_i$	$\dim(E_{\lambda_i}) = m_i$	
	Ex. 3 (R)	Ex. 1	Ex. 2	Ex. 3 (C)
μ	$X^{3} - 1$	$(X-5)^2(X+1)$	(X-1)(X+1)	$X^{3} - 1$
χ	$X^{3} - 1$	$(X-5)^2(X+1)$	$(X-1)^2(X+1)$	$X^{3} - 1$

7. Cas particuliers

7.1. Endomorphismes nilpotents

Définitions

- $u \in \mathcal{L}(E)$ est dit nilpotent s'il existe $k \in \mathbb{N}$ tel que $u^k = 0_{\mathcal{L}(E)}$
- ❖ $A \in \mathcal{M}_n(K)$ est dite nilpotente s'il existe $k \in \mathbb{N}$ tel que $N^k = 0_n$
- ullet L'indice de nilpotence de u est alors $q = \operatorname{Min}(\{k \in \mathbb{N}^* \, / \, u^k = 0_{\mathcal{L}(E)}\})$
- lacktriangle L'indice de nilpotence de A est $q=\operatorname{Min}(\{k\in\mathbb{N}^*\,/\,A^k=0_n\})$
- Si $A = M_{\mathcal{B}}(u)$, il est alors clair que

 $[A \text{ est nilpotente d'indice } q] \Leftrightarrow [u \text{ est nilpotente d'indice } q]$

Propriétés : Soit $u \in \mathcal{L}(E)$

- $[u \text{ est nilpotent}] \Leftrightarrow [\chi_u = X^n]$
 - \Leftrightarrow [u est trigonalisable avec 0 pour seule valeur propre]
- $[u \text{ est nilpotente d'indice } q] \Leftrightarrow [\mu_u = X^q]$
- L''indice de nilpotence est nécessairement inférieur ou égal à n.
- Démonstrations 4
- 48
- Ainsi toute matrice nilpotente est semblable à une matrice triangulaiure à diagonale nulle.

la matrice
$$J = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$
 est nilpotente d'ordre n .

Justification 1 : $J^2=\ldots,\ J^3=\ldots,\ \ldots\ J^{n-1}=\ldots,J^n=0_n$

Argument sans calcul : elle est trigonalisable (!) et $\chi_u = X^n$.

7.2. Endomorphismes à polynôme minimal scindé

a) Décomposition de E

Théorème

Si $u \in \mathcal{L}(E)$ admet un polynôme annulateur scindé $P = \prod_{i=1}^r (X - \lambda_i)^{\beta_i}$, alors E est une somme directe $E=\bigoplus\limits_{i=1}^rF_i$ où sur chaque F_i , $u_{|F_i}=h_{\lambda_i}+n_i$ avec h_{λ_i} : homothétie de rapport $\,\lambda_i\,$ et $\,n_i\,$: endomorphisme nilpotent.

- Par le corollaire des noyaux, on prend : $F_i = Ker \ (u \lambda_i Id_E)^{\beta_i}$
- Démonstration **50**
- Pratiquement : on a intérêt à choisir $P=\mu_{A}$ s'il est connu, sinon $P=\chi_{A}$

b) Traduction matricielle

Théorème

Si un polynôme scindé $P = \prod_{i=1}^r (X - \lambda_i)^{\beta_i}$ annule $A \in \mathcal{M}_n(K)$, alors A est semblable à une matrice blocs $A = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & A_r \end{pmatrix}$

où chaque bloc est du type $A_i = \begin{pmatrix} \lambda_i & \times & \cdots & \times \\ 0 & \lambda_i & \ddots & \vdots \\ \vdots & \ddots & \ddots & \times \\ 0 & & 0 & \ddots \end{pmatrix} \in \mathcal{M}_{m_i}(\mathbb{K})$

où m_i est l'ordre de multiplicité de λ_i .

- A_i est donc triangulaire supérieure avec éléments diagonaux tous égaux.
- Démonstration
- Ceci permet donc de trigonaliser toute matrice connaissant $\chi_{\scriptscriptstyle A}$ scindé
- Exemple traité n°1 : $\mu_A = (X-5)^2(X+1)$, forme trigonalisée...