Name:	USC ID:

INF 553 - SPRING 2020 QUIZ 11 (10 Points)

1. [1 Point] Explain the concept of "Communities" in **Social Network** Graphs taught in class. Explain this with the help of an example.

Ans: In Social Networks, communities are groups of people such that people within each group are densely connected to each other internally. For eg, in a facebook social network graph, we can have communities such as a set of people who play squash or a set of people who went to the same college. We can find such groups of people by looking at their common friends etc.

2. [1 Point] Explain Non-Overlapping vs. Overlapping Communities.

Ans: In overlapping communities, communities can share nodes with other communities where as in non-overlapping communities, communities do not share nodes with other communities.

3. [1 Point] Use the Girvan-Newman algorithm to calculate the betweenness of each edge (do this for Node B only i.e. the starting node is B). Write down the edges and their betweenness values in the format below:

Eg:
$$(F, E) = 3$$

Ans:

$$(A, B) = 1$$

$$(B, C) = 1$$

$$(B, D) = 4$$

$$(D, E) = 1$$

$$(D, F) = 1$$

$$(D, G) = 1$$

4. [1 Point] Write down the adjacency matrix for the graph.

Enter the values for the matrix shown below. Eg. for Row 1, enter [0, 0, 1, 0, 1, 1, 1]

	A	В	C	D	E	F	Ğ
A				Row 1			
В				Row 2			
\mathbf{C}				Row 3			
D				Row 4			
E				Row 5		5	
F				Row 6			
G				Row 7	1		

Ans:

A B

D E F G

	A	В	\mathbf{C}	D	E	F	G
Ī	0	1	1	0	0 🗸	0	0
Ī	1	0	1	1	0	0	0
	1	1	0	0	0	0	0
	0	1	0	0		1	1
	0	0	0	7 1	0	1	0
	0	0	0	1	1	0	1
	0	0	0	1	0	1	0

5. [1 Point] Write down the degree matrix for the graph.

Enter the values for the matrix shown below. Eg. for Row 1, enter [0, 0, 1, 0, 1, 1, 1]

	A B	C	D	E	F	G
A			Row 1			
В	\rightarrow		Row 2			
C			Row 3			
D			Row 4			
E			Row 5			
F			Row 6			
G			Row 7	•		

Ans:

	A	В	C	D	E	F	G
A	2	0	0	0	0	0	0
В	0	3	0	0	0	0	0
C	0	0	2	0	0	0	0
D	0	0	0	4	0	0	0
E	0	0	0	0	2	0	0
F	0	0	0	0	0	3	0
G	0	0	0	0	0	0	2

6. [1 Point] Write down the Laplacian matrix for the graph.

Enter the values for the matrix shown below. Eg. for Row 1, enter [0, 0, 1, 0, 1, 1, 1]

Ans:

A B C D E F G

A	В	\mathbf{C}	D	E	F	G
2	-1	-1	0	0	0	0
-1	3	-1	-1	0	0	0
-1	-1	2	0	0	0	0
0	-1	0	4	-1	-1	-1
0	0	0	-1	2	-1	0
0	0	0	-1	-1	3	-1
0	0	0	-1	0	-1	2

7. [2 Points] Explain the Affiliation Graph Model (AGM) in detail? And what is the relaxation technique for AGM? Explain.

Ans: AGM is a generative model that produces a network from community affiliation. The model consists of nodes, communities, memberships and probability of each community. Each community has a single probability. For each pair of nodes in a community say community A, we connect them with a probability pA.

In the relaxation technique, memberships have strength. The membership strength of a node to a community should be greater than zero, otherwise there is no membership.

8. [0.5 Point] Is the adjacency matrix of an undirected graph always symmetric? (True/False) Ans: True

9. [0.5 Point] What is the value of the smallest eigen value for every Laplacian Matrix

- a) -2
- b) -1
- c) 0
- d) 1
- e) 2

Ans: c

10. [1 Point] Explain briefly the three stages of spectral **partitioning** algorithm.

Ans: Pre-processing: Build Laplacian matrix L of the graph

Decomposition: Find eigenvalues λ and eigenvectors x of the matrix L. Map vertices to corresponding components of $\lambda 2$

Grouping: Sort components of reduced 1-dimensional vector. Identify clusters by splitting the sorted vector in two