1. Markov Transition Operator

Recall that

$$\begin{split} \mathcal{E}[f] &= \frac{1}{2} \mathop{\mathbb{E}}_{\mathbf{u} \sim \mathbf{v}} \left[(f(\mathbf{u}) - f(\mathbf{v}))^2 \right] = \frac{1}{2} \mathop{\mathbb{E}}_{\mathbf{u} \sim \mathbf{v}} \left[(f(\mathbf{u}))^2 \right] + \frac{1}{2} \mathop{\mathbb{E}}_{\mathbf{u} \sim \mathbf{v}} \left[(f(\mathbf{v}))^2 \right] - \mathop{\mathbb{E}}_{\mathbf{u} \sim \mathbf{v}} \left[f(\mathbf{u}) f(\mathbf{v}) \right] \\ &= \mathop{\mathbb{E}}_{\mathbf{u} \sim \mathbf{v}} \left[(f(\mathbf{u}))^2 \right] - \mathop{\mathbb{E}}_{\mathbf{u} \sim \mathbf{v}} \left[f(\mathbf{u}) f(\mathbf{v}) \right] \\ &= ||f||_2 - \mathop{\mathbb{E}}_{\mathbf{u} \sim \mathbf{v}} \left[f(\mathbf{u}) f(\mathbf{v}) \right]. \end{split}$$

We can write

$$\mathbb{E}_{\mathbf{u} \sim \mathbf{v}}\left[f(\mathbf{u})f(\mathbf{v})
ight] = \mathbb{E}_{\mathbf{u} \sim \pi \mathbf{v} \sim \mathbf{u}}\mathbb{E}\left[f(\mathbf{u})f(\mathbf{v})
ight] = \mathbb{E}_{\mathbf{u} \sim \pi}\left[f(\mathbf{u})\mathbb{E}_{\mathbf{v} \sim \mathbf{u}}\left[f(\mathbf{v})
ight]
ight]$$

Now we can define a new function $Kf:V o\mathbb{R}$, for $u\in V$, $Kf(u):=\mathop{\mathbb{E}}_{\mathbf{v}\circ u}[f(\mathbf{v})].$

Fact: K(f+g) = Kf + Kg.

Proof: For all $u \in V$,

$$K(f+g)(u) = \underset{\mathbf{v} \sim u}{\mathbb{E}} [(f+g)(\mathbf{v})]$$

$$= \underset{\mathbf{v} \sim u}{\mathbb{E}} [(f(\mathbf{v}) + g(\mathbf{v})]$$

$$= \underset{\mathbf{v} \sim u}{\mathbb{E}} [f(\mathbf{v})] + \underset{\mathbf{v} \sim u}{\mathbb{E}} [g(\mathbf{v})]$$

$$= Kf(u) + Kg(u).$$

Definition: The operator K is the Markov Transition Operator(Matrix) for G.

 $K_{u,v}=rac{1}{deg(u)}$ if $(u,v)\in E$; $K_{u,v}=0$ else. So, K is the adjacency matrix A, normalized so that row-sums are 1.

If G is a d-regular graph then $K=rac{1}{d}A$, and K is symmetric $K^{\mathrm{T}}=K$.

Fact: For $f,g:V o \mathbb{R}$, $\langle f,Kg
angle = \mathop{\mathbb{E}}_{\mathbf{u}\sim\mathbf{v}}[f(\mathbf{u})g(\mathbf{v})].$

Proof:

$$\begin{split} \langle f, Kg \rangle &= \underset{\mathbf{u} \sim \pi}{\mathbb{E}} \left[f(\mathbf{u}) \cdot Kg(\mathbf{u}) \right] \\ &= \underset{\mathbf{u} \sim \pi}{\mathbb{E}} \left[f(\mathbf{u}) \cdot \underset{\mathbf{v} \sim \mathbf{u}}{\mathbb{E}} \left[g(\mathbf{v}) \right] \right] \\ &= \underset{\mathbf{u} \sim \pi \mathbf{v} \sim \mathbf{u}}{\mathbb{E}} \left[f(\mathbf{u}) \cdot g(\mathbf{v}) \right] \\ &= \underset{\mathbf{v} \sim \mathbf{u}}{\mathbb{E}} \left[f(\mathbf{u}) \cdot g(\mathbf{v}) \right] \end{split}$$

Corollary: $\langle f, Kg \rangle = \langle Kf, g \rangle$, which implies K is self-adjoint.

Suppose
$$S\subseteq V, T\subseteq V$$
, and $f=1_S, g=1_T$, then $\langle f, Kg \rangle = \underset{\mathbf{u} \sim \mathbf{v}}{\mathbb{E}} \left[1_S(\mathbf{u}) 1_T(\mathbf{v}) \right] = \Pr_{\mathbf{u} \sim \mathbf{v}} [\mathbf{u} \in S \wedge \mathbf{v} \in T].$

Let ρ be any distribution on vertices, we do:

- 1. $u \sim \rho$.
- 2. 1 random step $u \rightarrow v$.

If ho' is the distribution of v then ho K =
ho'.

Corollary: $\pi K = \pi$.

Claim: $K^2 = K \circ K$ operator as $K^2 f(u) = \mathop{\mathbb{E}}_{u o w} \mathop{\mathbb{E}}_{2 \operatorname{step}} [f(w)]$

Proof: Given f, let g=Kf, then $K^2f=K(Kf)=Kg$.

For all $u \in V$:

$$\mathcal{E}(K^2f)(u)=Kg(u)=\mathop{\mathbb{E}}_{v\sim u}[g(v)]=\mathop{\mathbb{E}}_{v\sim u}[Kf(v)]=\mathop{\mathbb{E}}_{v\sim u}[\mathop{\mathbb{E}}_{w\sim v}[f(w)]]=\mathop{\mathbb{E}}_{u
ightarrow w^2 ext{ step}}[f(w)].$$

Corollary: $orall t \in \mathbb{N}$, $(K^t f)(u) = \mathop{\mathbb{E}}_{u o w \text{ } t \text{ step}} [f(w)]$, even when t = 0.

2. The Laplacian

Now, we consider the quadratic form $\mathcal{E}[f]$.

$$\begin{split} \mathcal{E}[f] &= \frac{1}{2} \mathop{\mathbb{E}}_{u \sim v} \left[(f(u) - f(v))^2 \right] = \langle f, f \rangle - \mathop{\mathbb{E}}_{u \sim v} \left[f(u) f(v) \right] \\ &= \langle f, f \rangle - \mathop{\mathbb{E}}_{u \sim \pi v \sim u} \left[f(u) f(v) \right] \\ &= \langle f, f \rangle - \mathop{\mathbb{E}}_{u \sim \pi} \left[f(u) \mathop{\mathbb{E}}_{v \sim u} f(v) \right] \\ &= \langle f, f \rangle - \mathop{\mathbb{E}}_{u \sim \pi} \left[f(u) \cdot K f(u) \right] \\ &= \langle f, f \rangle - \langle f, K f \rangle \\ &= \langle f, (I - K) f \rangle \end{split}$$

Definition: L = I - K is the (normalized) laplacian operator for G.

For a d-regular graph G, $L=I-rac{1}{d}A=rac{1}{d}(dI-A)$.

I.e.
$$Lf: V o \mathbb{R}$$
, $Lf(u) = f(u) - \mathop{\mathbb{E}}_{v \sim u}[f(v)]$.

Let $S\subseteq V$, $f=1_S$, then

- $ullet \ \langle f, Lf
 angle = \mathcal{E}[f] = \Pr_{u \in \mathcal{U}}[u \in S, v
 ot \in S].$
- $ullet \ \langle f,f
 angle = \mathop{\mathbb{E}}_{u\sim\pi}[f(u)^2] = \mathop{Pr}_{u\sim\pi}[u\in S].$

 $\frac{\langle f, Lf \rangle}{\langle f, f \rangle} = \Pr_{u \sim v}[v \not \in S | u \in S] = \Pr[\text{Pick a random } u \in S \text{ do 1 step, that you get out of } S] \in [0, 1]$

Definition: $\frac{\langle f, Lf \rangle}{\langle f, f \rangle}$ is the conductance $\Phi(S)$.

We want to $\max \mathcal{E}[f] = \langle f, Lf \rangle = \frac{1}{2} \mathop{\mathbb{E}}_{u \sim v} \left[(f(u) - f(v))^2 \right]$ subject to $||f||_2^2 = \langle f, f \rangle = \mathop{\mathbb{E}}_{u \sim \pi} [f(u)^2] = 1.$

A maximizer exists call it $\varphi:V o\mathbb{R}$.

Claim: $L\varphi = \lambda \varphi$ for some λ .

Proof: Assume for the sake of contradiction φ and $L\varphi$ are not parallel. Suppose ψ in a unit vector and orthogonal to φ , and let $\epsilon \neq 0$ be small real number. Let $f = \frac{1}{\sqrt{1+\epsilon^2}}(\varphi + \epsilon \cdot \psi)$, we have $||f||_2^2 = \frac{1}{1+\epsilon^2}||\varphi + \epsilon \cdot \psi||_2^2 = \frac{1}{1+\epsilon^2}||\varphi||_2^2 + \epsilon^2 \cdot ||\psi||_2^2 = 1$ by Pythagorus.

$$egin{aligned} \langle f, Lf
angle &= rac{1}{1+\epsilon^2} \langle arphi + \epsilon \cdot \psi, Larphi + \epsilon \cdot L\psi
angle \ &= rac{1}{1+\epsilon^2} ig(\langle arphi, Larphi
angle + 2\epsilon \, \langle \psi, Larphi
angle + O(\epsilon^2) ig) \ &> \langle arphi, Larphi
angle. \end{aligned}$$

If we choose $|\epsilon|$ small enough.

Corollary: $\mathcal{E}[arphi] = \langle arphi, L arphi
angle = \langle arphi, \lambda arphi
angle = \lambda \ \langle arphi, arphi
angle = \lambda \ \in [0, 2].$

Fact: $\mathop{\mathbb{E}}_{u\sim\pi}[arphi(u)]=0$ and $\langle arphi,\mathbb{1}
angle=0.$

Proof of the Fact: Assume $\mathbb{E}[\varphi(u)] \neq 0$, define $f = \varphi - \mathbb{E}[\varphi(u)]$. Notice that $\mathcal{E}[f] = \mathcal{E}[\varphi]$ does not change but $||f||_2^2 = \langle \varphi - \mathbb{E}[\varphi(u)], \varphi - \mathbb{E}[\varphi(u)] \rangle = ||\varphi||_2^2 - \mathbb{E}[\varphi(u)]^2 < ||\varphi||_2^2 = 1$. Let $f' = \frac{f}{||f||_2}$, $||f'||_2^2 = 1$ and $\mathcal{E}[f'] = \frac{1}{||f||_2^2} \mathcal{E}[f] > \mathcal{E}[f] = \mathcal{E}[\varphi]$, which is a contradiction since φ is the maximizer.

Now, we consider Max $\langle f, Lf \rangle$ subject to $||f||_2^2=1$ and $f\perp \varphi$. using the same argument above, the maximizing vector φ' having $L\varphi'=\lambda'\varphi'$ for some $\lambda'\leq \lambda$ and $\underset{u\sim\pi}{\mathbb{E}}[\varphi'(u)]=0$ $(\langle \varphi',\mathbb{1}\rangle=0)$. Notice that $L\mathbb{1}=0$.

Theorem (Spectral Theorem): Given a graph G, there exists orthogonal functions $\varphi_0, \varphi_1, \ldots, \varphi_{n-1}$ with $\varphi_0 \equiv \mathbb{1}$ and real numbers $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$ with $0 = \lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_{n-1} \leq 2$ such that $L\varphi_i = \lambda_i \varphi_i$.