Control PID

Kjartan Halvorsen

2021-03-08

Control en lazo cerrado

Control en cascada

Idea clave Mejorar el control utilizando más información

El controlador PID

P Proporcional: Controla rapidez de la respuesta

Integral: Elimina el error e(t) en estado estable

D Derivada: Da amortiguación

El controlador PID

Actividad Cómo ajustar las ganancias P, I y D para obtener la respuesta deseada?

Caso	Р	1	D
Α			
В			
C			
D			

El controlador PID en forma paralela

$$u(t) = k_c \left(e(t) + \frac{1}{\tau_i} \int_0^t e(\xi) d\xi + \tau_d \frac{d}{dt} e(t) \right)$$

$$U(s) = F(s)E(s), \qquad F(s) = k_c \left(1 + \frac{1}{\tau_i s} + \tau_d s\right)$$

El controlador PID en forma paralela

$$u(t) = k_c \left(\underbrace{e(t) + \tau_d \frac{d}{dt} e(t)}_{\text{error predicho}} + \underbrace{\frac{1}{\tau_i} \int_0^t e(\xi) d\xi}_{\text{error acumulado}} \right)$$

El controlador PID en forma serial

$$F(s) = K_c \left(rac{ au_I s + 1}{ au_I s}
ight) (au_D s + 1) = \underbrace{rac{K_c (au_I + au_D)}{ au_I}}_{k_c} \left(1 + \underbrace{rac{1}{(au_I + au_D)} s}_{ au_I} + \underbrace{rac{ au_I au_D}{ au_I + au_D}}_{ au_d} s
ight)$$

Actividad Un controlador PID en forma serial tiene los parámetros $K_c = 2$, $\tau_l = 0.5$, $\tau_D = 0.5$, determine los parámetros correspondientes para un controlador PID en forma paralela, k_c , tau_d , τ_i .

Sintonización de un PID

El método de sintonización SIMC

Journal of Process Control Volume 13, Issue 4, June 2003, Pages 291-309

Simple analytic rules for model reduction and PID controller tuning \bigstar

Sigurd Skogestad △ 🖾

a.k.a. "Probably the best simple PID tuning rules in the world"

El método de sintonización SIMC - Sistema de primer orden

Dado modelo G(s) del proceso y modelo $G_c(s)$ deseado del sistema en lazo cerrado

$$G(s) = K \frac{1}{\tau s + 1}, \qquad G_c(s) = \frac{1}{\tau_c s + 1}$$

El controlador será un controlador PI

$$F(s) = \underbrace{rac{ au}{K au_c}}_{k_c} \left(1 + \underbrace{rac{1}{ au_{ au_i}}}_{ au_i} s
ight).$$

con $k_c = \frac{\tau}{K\tau_c}$ and $\tau_i = \tau$.

El método de sintonización SIMC - Control de la corriente

Modelo:
$$G(s) = \frac{K}{\tau s + 1} = \frac{\frac{1}{R}}{\frac{L}{R}s + 1}$$
, $L = 1 \text{ mH}$, $R = 0.5 \Omega$

$$F(s) = \underbrace{\frac{\tau}{K\tau_c}}_{k_c} \left(1 + \underbrace{\frac{1}{\tau_i}}_{\tau_i} s\right).$$

Actividad Asumiendo que queremos una respuesta en lazo cerrado igual rápido que el sistema en lazo abierto: $\tau_c = \tau$. Determine k_c y τ_i .

El método de sintonización SIMC - Sistema de segundo orden

Dado modelo del proceso G(s) y comportamiento deseado del sistema en lazo cerrado $G_c(s)$

$$G(s) = K \frac{1}{s^2}, \qquad G_c(s) = \frac{1}{\tau_c s + 1}$$

Se obtiene buena robustez con el controlador

$$F(s) = K_c \left(\frac{\tau_I s + 1}{\tau_I s}\right) (\tau_D s + 1) = \underbrace{\frac{K_c(\tau_I + \tau_D)}{\tau_I}}_{K_c} \left(1 + \underbrace{\frac{1}{(\tau_I + \tau_D)} s}_{\tau_i} + \underbrace{\frac{\tau_I \tau_D}{\tau_d} s}_{\tau_d}\right)$$

0

 $k_c = \frac{1}{2K(\tau_c)^2}, \qquad au_i = 8 au_c, \qquad au_d = 2 au_c$

 $K_c = \frac{1}{4K(\tau_c)^2}, \qquad \tau_I = \tau_d = 4\tau_c$

El método de sintonización SIMC - Sistema de segundo orden

Dado modelo del proceso G(s) y comportamiento deseado del sistema en lazo cerrado $G_c(s)$

$$G(s) = K \frac{1}{s^2}, \qquad G_c(s) = \frac{1}{\tau_c s + 1}$$

Se obtiene buena robustez con el controlador

$$F(s) = K_c \left(\frac{\tau_I s + 1}{\tau_I s}\right) (\tau_D s + 1) = \underbrace{\frac{K_c(\tau_I + \tau_D)}{\tau_I}}_{K_c} \left(1 + \underbrace{\frac{1}{(\tau_I + \tau_D)} s}_{\tau_i} + \underbrace{\frac{\tau_I \tau_D}{\tau_I + \tau_D}}_{\tau_d} s\right)$$

con

$$K_c = \frac{1}{4K(\tau_c)^2}, \qquad \tau_I = \tau_d = 4\tau_c$$

Actividad Asumiendo K=4 y $\tau_c=0.5$. Determine los parámetros PID k_c , τ_i y τ_d .

El método de sintonización SIMC - Control de la posición

Dado

$$G(s) = K \frac{1}{s^2}, \qquad G_c(s) = \frac{1}{\tau_c s + 1}$$

Cómo obtener el parámetro K?

$$J\dot{\omega} = \sum T_i \quad \Rightarrow \quad J\dot{\omega} = T_m - T_g$$

Escribe el torque de motor como $T_m(t) = T_g + ku(t)$

$$\ddot{\theta}(s) = \dot{\omega}(t) = \frac{k}{J}u(t) = Ku(t) \quad \Leftrightarrow \quad \Theta(s) = \frac{K}{s^2}U(s)$$

$$\omega(t) = \omega(0) + K \int_0^t u(\tau) d\tau$$

El método de sintonización SIMC - Control de la posición

$$\omega(t) = \omega(0) + K \int_0^t u(\tau) d\tau$$

$$0.2$$

$$K = \frac{\omega_f - \omega(0)}{\int_0^t u(\tau)d\tau} = \frac{\omega_f - \omega(0)}{10} = 36/10 = 3.6$$