Advanced Mechanics of Materials Vocabulary

Stress and Strain

Vector Transformation: $\mathbf{a}' = \mathbf{M}\mathbf{a}$, where \mathbf{M} is the transformation, or rotation or direction cosine matrix

$$o \quad \mathbf{M} = \begin{bmatrix} x' \cdot x & x' \cdot y & x' \cdot z \\ y' \cdot x & y' \cdot y & y' \cdot z \\ z' \cdot x & z' \cdot y & z' \cdot z \end{bmatrix}$$

Tensor (2nd order) Transformation: $T' = MTM^T$

Stress vector on arbitrary surface with normal unit vector $m{n}$: $m{t} = m{T} m{n} = m{ au} + m{\sigma}$

Material Response

Hooke's Law (Voigt Notation)

$$\begin{bmatrix} \varepsilon_{XX} \\ \varepsilon_{yy} \\ \varepsilon_{ZZ} \\ \varepsilon_{yz} \\ \varepsilon_{ZX} \\ \varepsilon_{Xy} \end{bmatrix} = \frac{1}{E} \begin{bmatrix} 1 & -\nu & -\nu & 0 & 0 & 0 \\ -\nu & 1 & -\nu & 0 & 0 & 0 \\ -\nu & -\nu & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1+\nu & 0 & 0 \\ 0 & 0 & 0 & 0 & 1+\nu & 0 \\ 0 & 0 & 0 & 0 & 0 & 1+\nu \end{bmatrix} \begin{bmatrix} \sigma_{XX} \\ \sigma_{yy} \\ \sigma_{ZZ} \\ \sigma_{yz} \\ \sigma_{ZX} \\ \sigma_{Xy} \end{bmatrix}$$

Failure Theory

O Max distortion energy (Von Mises): $(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{xz}^2) = 2\sigma_{vp}^2$

Coulomb-Mohr: $\frac{\sigma_1}{\sigma_{11}} - \frac{\sigma_3}{\sigma_{12}'} = 1$

Fracture Mechanics

Stress intensity factor: $K = \lambda \sigma \sqrt{\pi a}$

Fatigue

$$\circ N_{cr} = N_f \left(\frac{\sigma_{cf}}{\sigma_f}\right)^{1/b}, \text{ where } b = \frac{\ln(\sigma_f/\sigma_e)}{\ln(N_f/N_e)}$$

o Modified Goodman:
$$\frac{\sigma_a}{\sigma_{cr}} + \frac{\sigma_m}{\sigma_u} = 1$$
o Soderberg: $\frac{\sigma_a}{\sigma_{cr}} + \frac{\sigma_m}{\sigma_{yp}} = 1$
o Gerber: $\frac{\sigma_a}{\sigma_{cr}} + \left(\frac{\sigma_m}{\sigma_u}\right)^2 = 1$
o SAE: $\frac{\sigma_a}{\sigma_{cr}} + \frac{\sigma_m}{\sigma_f} = 1$

O Soderberg:
$$\frac{\sigma_a}{\sigma_{cr}} + \frac{\sigma_m}{\sigma_{vp}} = 1$$

$$\circ \quad \text{Gerber: } \frac{\sigma_a}{\sigma_{cr}} + \left(\frac{\sigma_m}{\sigma_u}\right)^2 = 1$$

$$\circ \quad \mathsf{SAE:} \frac{\sigma_a}{\sigma_{cr}} + \frac{\sigma_m}{\sigma_f} = 1$$

Dynamic Loading

Impact factor (vertical drop): $K = 1 + \sqrt{1 + \frac{2h}{\delta_{ct}}}$

Stress Concentrations

Stress distribution around a hole in a flat plate under uniaxial loading

$$\begin{split} &\sigma_{r} = \frac{1}{2}\sigma_{o}\left[\left(1 - \frac{a^{2}}{r^{2}}\right) + \left(1 + \frac{3a^{4}}{r^{4}} - \frac{4a^{2}}{r^{2}}\right)\cos 2\theta\right] \\ &\sigma_{\theta} = \frac{1}{2}\sigma_{o}\left[\left(1 + \frac{a^{2}}{r^{2}}\right) - \left(1 + \frac{3a^{4}}{r^{4}}\right)\cos 2\theta\right] \\ &\tau_{r\theta} = -\frac{1}{2}\sigma_{o}\left(1 - \frac{3a^{4}}{r^{4}} + \frac{2a^{2}}{r^{2}}\right)\sin 2\theta \end{split}$$

Table 3.2. Maximum Pressure Po and Deflection δ of Two Bodies in Contact

Configuration	Spheres: $p_o = 1.5 \frac{F}{\pi a^2}$	Cylinders: $p_o = \frac{2}{\pi} \frac{F}{aL}$
A z p	Sphere on a Flat Surface	Cylinder on a Flat Surface
	$a = 0.880 \sqrt[3]{Fr_1 \Delta}$	$a = 1.076 \sqrt{\frac{F}{L}r_l \Delta}$
$\begin{pmatrix} r_1 \end{pmatrix} r_2 = r_2$	90	For $E_1 = E_2 = E$:
a F	$\delta = 0.775 \sqrt[3]{F^2 \frac{\Delta^2}{r_1}}$	$\delta = \frac{0.579F}{EL} \left(\frac{1}{3} + \ln \frac{2r_1}{a} \right)$
B z F	Two Spherical Balls	Two Cylindrical Rollers
	$a = 0.880 \sqrt[3]{F\frac{\Delta}{m}}$	$a = 1.076 \sqrt{\frac{F\Delta}{Lm}}$
	$\delta = 0.775 \sqrt[3]{F^2 \Delta^2 n} $	m
C ZĄ	Sphere on a Spherical Seat	Cylinder on a Cylindrical Sea

$$a = 0.880 \sqrt{\frac{F_n}{n}}$$

$$a = 1.076 \sqrt{\frac{F\Delta}{Ln}}$$

Note:
$$\Delta = \frac{1}{E_1} + \frac{1}{E_2}$$
, $m = \frac{1}{E_1} + \frac{1}{E_2}$, $n = \frac{1}{E_2} - \frac{1}{E_3}$

* all formulae in this table assume $\nu = 0.3$

Stress distributions: Stresses below the surface along the load axis (for $\nu=0.3$): (left) two spheres; (right) two parallel cylinders. Note: All normal stresses are compressive.

