

Europäisches Patentamt European Patent Office Office européen des brevets

(11) EP 0 980 957 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 23.02.2000 Bulletin 2000/08

(51) Int. E21B 33/16, C04B 24/26

(21) Application number: 99306504.4

(22) Date of filing: 18.08.1999

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT
LI LU MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 18.08.1998 US 135998

(71) Applicant: Halliburton Energy Services, Inc. (a Delaware corp.)
Duncan, Oklahoma 73536 (US)

(72) Inventors: , Chatterji, Jiten Duncan, Oklahoma 73533 (US), Cromwell, Roger S.
Walters, Oklahoma 73572 (US), Onan, David D.
Duncan, Oklahoma 73533 (US), King, Bobby J.
Duncan, Oklahoma 73533 (US)

(74) Representative:
Wain, Christopher Paul et al
A.A. Thornton & Co.
235 High Holborn
London WC1V 7LE (GB)

(54) Composition for sealing pipe in well bore

(57) A composition for sealing pipe in

well bore comprises an aqueous rubber latex, a rubber latex activator for causing the latex to harden, an organosilane and a filler.

7

9

၀ စ

တ

ш

Description

The present invention relates to a composition for sealing pipe in a well bore.

Hydraulic cement compositions are commonly utilized as sealants in subterranean well construction and repair procedures. For example, hydraulic cement compositions are used in primary sealing operations whereby strings of pipe such as casing and liners are sealed in well bores. In performing primary cementing, a hydraulic cement composition is pumped into the annular space between the walls of the well bore and the exterior surfaces of pipe disposed therein. The cement composition is permitted to set in the annular space thereby forming an annular sheath of hardened substantially impermeable cement therein. The cement sheath is intended to support and position the pipe in the well bore and bond the exterior surfaces of the pipe to the walls of the well bore whereby the undesirable migration of fluids between zones or formations penetrated by the well bore is prevented.

Set hydraulic cement compositions are brittle solid masses which generally do not have sufficient resiliency to resist the loss of pipe and/or formation bond, cracking or shattering as a result of pipe movements caused by expansion, contraction, impacts or shocks. The bond loss, cracking or shattering of the set cement allows leakage of formation fluids through at least portions of the well bore by way of the annulus therein which can be highly detrimental.

Thus, there are needs for improved pipe sealing compositions and methods of sealing pipe in well bores whereby the hardened compositions are highly resilient solid masses having high bond strengths.

We have now devised an improved sealing composition which meets the needs described above and overcome or reduces the deficiencies of the prior art.

In one aspect, the present invention provides a composition for sealing pipe in a well bore, which composition hardens into a highly resilient solid mass having high bond strength, said composition comprising:

an aqueous rubber latex in an amount of from 10% to 90% by weight of said composition;

a rubber latex activator for causing said rubber latex to harden, in an amount of from 0.1% to 5% by weight of said composition;

an organosilane compound in an amount of from 0.1% to 10% by weight of said composition; and

a filler in an amount of from 10% to 30% by weight of said composition.

The invention also provides a method of sealing a pipe in a well bore, which method comprises the steps of placing a sealing composition of the invention in the annulus between said pipe and the walls of said well bore; and allowing said composition to harden into a solid mass.

One preferred sealing composition of this invention is comprised of an aqueous rubber latex present in an amount in the range of from about 10% to about 40% by weight of the composition, a rubber latex activator present in an amount in the range of from about 0.1% to about 5% by

0

5

20

25

30

35

45

40

55

weight of the composition, an organosilane present in an amount in the range of from about 0.1% to about 10% by weight of the composition, an aqueous rubber latex stabilizing surfactant present in an amount in the range of from about 10% to about 15% by weight of the composition, a hydraulic cement present in amount in the range of from about 10% to about 40% by weight of the composition, an epoxy resin present in an amount in the range of from about 15% to about 30% by weight of the composition, an epoxide containing liquid present in an amount in the range of from about 2% to about 10% by weight of the composition, an epoxide hardening agent present in an amount in the range of from about 2% to about 10% by weight of the composition and a solid filler present in an amount in the range of from about 10% to about 30% by weight of the composition.

5

10

15

25

30

35

40

45

50

While the sealing compositions of this invention can be utilized for sealing non-rusted pipe in well bores, they are particularly effective for sealing the more typical rusted pipe utilized in well bores by the oil industry.

The present invention provides an improved composition for sealing pipe in a well bore whereby the hardened sealing composition is a highly resistant solid mass having high bond strength which effectively withstands pipe movements due to expansion, contraction, impacts, shocks or the like. The compositions of this invention are basically comprised of an aqueous rubber latex, a rubber latex activator for causing the rubber latex to harden, an organosilane compound for providing high bond strength to the composition and a filler for providing rigidity to the composition which can be a hydraulic cement and/or a particulate solid filler such as crystalline silica (sand).

A more preferred composition of this invention is comprised of an aqueous rubber latex, a rubber latex activator, an organosilane compound, a rubber latex stabilizing surfactant, a hydraulic cement such as calcium aluminate cement, an epoxy resin, an epoxide containing liquid, an epoxide hardening agent and a particulate solid filler.

A variety of well known rubber materials which are commercially available in aqueous latex form, i.e., aqueous dispersions or emulsions, can be utilized in accordance with the present invention. For example, natural rubber (cis-1,4-polyisoprene) and most of its modified types can be utilized. Synthetic polymers of various types can also be used including nitrile rubber, ethylene-propylene rubbers (EPM and EPDM), styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), butyl rubber, neoprene rubber, cis-1,4-polybutadiene rubber and blends thereof with natural rubber or styrene-butadiene rubber, high styrene resin, silicone rubber, chlorosulfonated polyethylene rubber, crosslinked polyethylene rubber, epichlorohydrin rubber, fluorocarbon rubber, fluoro- silicone rubber, polyurethane rubber, polyacrylic rubber and polysulfide rubber. The aqueous latex forms of one or more of the above rubbers can be utilized with the other components of the sealing composition being added directly to the latex.

Of the various aqueous rubber latexes which can be utilized, those formed of cis-polyisoprene rubber, nitrile rubber, ethylene-propylene rubber, styrene-butadiene rubber, nitrile-butadiene rubber, butyl rubber and neoprene rubber are generally preferred.

The most preferred aqueous rubber latex for use in accordance with this invention is a styrene-butadiene copolymer latex emulsion prepared by emulsion polymerization. The aqueous phase of the emulsion is an aqueous colloidal dispersion of the styrene-butadiene copolymer. The latex dispersion usually includes water in an amount in the range of from about 40% to about 70% by weight of the latex, and in addition to the dispersed styrene-butadiene particles, the latex often includes small quantities of an emulsifier, polymerization catalysts, chain

modifying agents and the like. The weight ratio of styrene to butadiene in the latex can range from about 10%:90% to about 90%:10%.

Styrene-butadiene latexes are often commercially produced as terpolymer latexes which include up to about 3% by weight of a third monomer to assist in stabilizing the latex emulsions. The third monomer, when present, generally is anionic in character and includes a carboxylate, sulfate or sulfonate group. Other groups that may be present on the third monomer include phosphates, phosphonates or phenolics. Non-ionic groups which exhibit stearic effects and which contain long ethoxylate or hydrocarbon tails can also be present.

5

10

15

20

25

30

35

40

45

50

A particularly suitable and preferred styrene-butadiene aqueous latex contains water in an amount of about 50% by weight of the latex, and the weight ratio of styrene to butadiene in the latex is about 25%:75%. A latex of this type is available from Halliburton Energy Services of Duncan, Oklahoma, under the trade designation "LATEX 2000[™]à."

The aqueous rubber latex utilized is generally included in the sealing compositions of this invention in an amount in the range of from about 10% to about 90% by weight of the compositions, preferably about 15% to about 40% and more preferably about 24%.

In order to cause the rubber latex to harden into a solid mass, a latex activator is included in the sealing composition. While various acids and other materials can be utilized as activators, particularly suitable rubber latex activators are metallic oxides such as zinc oxide, magnesium oxide and calcium oxide. Zinc oxide is the most preferred rubber latex activator for use in accordance with this invention.

The rubber latex activator is generally included in the sealing compositions of this invention in an amount in the range of from about 0.1% to about 5% by weight of the compositions, preferably about 0.4% to about 3% and more preferably about 0.5%.

Suitable organosilane compounds for providing high bond strengths to the sealing compositions of this invention include, but are not limited to, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropyltriethoxysilane and 3-glycidoxypropyltrimethoxysilane. Of these, N-2-(aminoethyl)-3-aminopropyltriethoxysilane is preferred.

The organosilane compound is generally included in the sealing compositions of this invention in an amount in the range of from about 0.01% to about 10% by weight of the sealing compositions, preferably about 0.1% to about 5% and more preferably about 0.1%.

In order to provide rigidity to the hardened sealing compositions, a filler such as hydraulic cement and/or a particulate solid such as crystalline silicas, amorphous silicas, clays, iron oxide, calcium carbonate or barite is included in the compositions. The filler is generally present in the compositions in an amount in the range of from about 10% to about 30% by weight of the compositions.

In order to prevent the aqueous latex from prematurely coagulating and increasing the viscosity of the sealing compositions, an effective amount of a rubber latex stabilizing surfactant can be included in the compositions. A suitable such surfactant has the formula

R-Ph-O(OCH2CH2)mOH

wherein R is an alkyl group having from about 5 to about 30 carbon atoms, Ph is phenyl and m is an integer in the range of from about 5 to about 50. A preferred surfactant in this group is ethoxylated nonylphenol containing in the range of from about 20 to about 30 moles of ethylene

oxide.

Another latex stabilizing surfactant which can be used has the general formula

5

10

 $R_1(OR_2)_nSO_3X$

wherein R_1 is selected from the group consisting of alkyl groups having from 1 to about 30 carbon atoms, cycloalkyl groups having 5 or 6 carbon atoms, C_1 - C_4 alkyl substituted cycloalkyl groups, phenyl, alkyl substituted phenol of the general formula

(R₃)_aPh-

wherein Ph is phenyl, R₃ is an alkyl group having from 1 to about 18 carbon atoms and a is an integer of from 1 to 3, and phenyl-alkyl groups wherein the alkyl groups have from 1 to about 18 carbon atoms and the phenyl-alkyl groups have a total of from about 8 to about 28 carbon atoms; R₂ is a substituted ethylene group of the formula

20

-CH₂CH₂R₄

wherein R_4 is selected from hydrogen, methyl, ethyl or mixtures thereof; n is a number from 0 to about 40 provided that when R_1 is phenyl or alkyl substituted phenyl, n is at least 1; and X is any compatible cation.

Another surfactant which can be utilized is a sodium salt having the general formula

30

35

25

R₅-Ph(OR₆)_oSO₃X

wherein R_5 is an alkyl radical having in the range of from 1 to about 9 carbon atoms, R_6 is the group $-CH_2CH_2$ -, o is an integer from about 10 to about 20 and X is a compatible cation. Another surfactant which can be utilized is a sodium salt having the formula

R7(OR8)pSO3X

40

45

wherein R_7 is an alkyl group having in the range of from about 5 to about 20 carbon atoms, R_8 is the group $-CH_2CH_2$ -, p is an integer in the range of from about 10 to about 40 and X is a compatible cation. A preferred surfactant of this type is the sodium salt of a sulfonated compound derived by reacting a C_{12} - C_{15} alcohol with about 40 moles of ethylene oxide (hereinafter referred to as an "ethoxylated alcohol sulfonate") which is commercially available under the name "AVANEL S400TMà" from PPG Mazer, a division of PPG Industries, Inc. of Gurnee, Illinois.

50

55

While different rubber latex stabilizers and amounts can be included in the sealing compositions of this invention depending on the particular aqueous rubber latex used and other factors, the latex stabilizer is usually included in the sealing compositions in an amount in the range of from about 10% to about 15% by weight of the aqueous rubber latex in the compositions, preferably from about 1% to about 5%, and more preferably about 2.5%.

When a hydraulic cement is utilized in the compositions of this invention, it can be Portland cement, calcium aluminate cement or other cement which does not adversely affect other

components in the sealing compositions. Of the various hydraulic cements that can be used, calcium aluminate cement is preferred. When used, the hydraulic cement is generally present in the sealing compositions in an amount in the range of from about 10% to about 40% by weight of the composition, preferably from about 15% to about 30% and more preferably about 24%.

5

10

15

20

25

40

45

50

55

While various epoxy resins can be utilized, preferred such resins are those selected from the condensation products of epichlorohydrin and bisphenol A. A particularly suitable such resin is commercially available from the Shell Chemical Company under the trade designation "EPON®RESIN 828". This epoxy resin has a molecular weight of about 340 and a one gram equivalent of epoxide per about 180 to about 195 grams of resin. Preferably, the above described epoxy resin is pre-dispersed in a non-ionic aqueous fluid. A water borne resin of this type is commercially available from the Shell Chemical Company under the trade designation "EPI-REZ®-3510-W-60." Other water borne resins can also be utilized including, but not limited to, an epoxidized bisphenol A novalac resin which is pre-dispersed in a non-ionic aqueous fluid and is com- mercially available from the Shell Chemical Company under the trade designation "EPI-REZ®-5003-W-55." This epoxy resin has a one gram equivalent of epoxide per about 205 grams of resin.

When a water borne resin is utilized in the compositions of this invention, it is generally present in an amount in the range of from about 15% to about 30% by weight of the compositions, preferably from about 15% to about 25%, and more preferably about 19%.

A low viscosity epoxide containing liquid can also be utilized in the sealing compositions of the present invention to modify the epoxy resin used and to add flexibility and resiliency to the sealing composition after hardening. While various epoxide containing liquids can be used, preferred such liquids are the diglycidyl ether of 1,4-butanediol, the diglycidyl ether of neopentyl glycol and the diglycidyl ether of cyclohexane dimethanol. A suitable epoxide containing liquid comprised of the diglycidyl ether of 1,4-butanediol is commercially available from the Shell Chemical Company under the trade name "HELOXY®67." This epoxide containing liquid has a viscosity at 25°C in the range of from about 13 to about 18 centipoises, a molecular weight of 202 and a one gram equivalent of epoxide per about 120 to about 130 grams of the liquid. A suitable diglycidyl ether of neopentylglycol is commercially available from the Shell Chemical Company under the trade name "HELOXY®68." This epoxide containing liquid has a viscosity at 25°C in the range of from about 13 to about 18 centipoises, a molecular weight of 216 and a one gram equivalent of epoxide per about 130 to about 140 grams of the liquid. A suitable diglycidyl ether of cyclohexanedimethanol is commercially available from the Shell Chemical Company under the trade name "HELOXY®107." This epoxide containing liquid has a viscosity at 25°C in the range of from about 55 to about 75 centipoises, a molecular weight of 256 and a one gram equivalent of epoxide per about 155 to about 165 grams of the liquid.

When an epoxide containing liquid is included in the sealing compositions of this invention, it is generally present in an amount in the range of from about 2% to about 10% by weight of the compositions, preferably from about 2% to about 6% and more preferably about 5%.

A variety of epoxide hardening agents can be utilized in the sealing compositions of this invention which contain the above described epoxide containing liquids and/or epoxy resins. Such hardening agents include, but are not limited to, aliphatic amines, aliphatic tertiary amines, aromatic amines, cycloaliphatic amines, heterocyclic amines, amidoamines, polyamides, polyethylamines and carboxylic acid anhydrides. Of these, aliphatic amines,

aromatic amines and carboxylic acid anhydrides are the most suitable.

5

10

15

20

30

35

40

45

55

Examples of aliphatic and aromatic amine hardening agents are triethylenetetraamine, ethylenediamine, N-cocoalkyltrimethylenediamine, isophoronediamine, diethyltoluenediamine, and tris(dimethylaminomethylphenol). Examples of suitable carboxylic acid anhydrides are methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, maleic anhydride, polyazelaic polyanhydride and phthalic anhydride. Of these, triethylenetetraamine, ethylenediamine, Ntris cocoalkyltrimethylenediamine, isophoronediamine, diethyltoluenediamine and (dimethylaminomethylphenol) are preferred, with isophoronediamine, diethyletoluenediamine and tris(dimethylaminomethylphenol) being the most preferred.

When utilized, the above described hardening agents or mixtures of such agents are generally included in the sealing compositions of this invention in an amount in the range of from about 2% to about 10% by weight of the compositions, preferably from about 2% to about 6% and more preferably about 4.5%.

A preferred composition of this invention for sealing pipe in a well bore which hardens into a highly resilient solid mass having high bond strength is comprised of an aqueous rubber latex present in an amount in the range of from about 10% to about 90% by weight of the composition, a rubber latex activator for causing the rubber latex to harden present in an amount in the range of from about 0.1% to about 5% by weight of the composition, an organosilane compound present in an amount in the range of from about 0.1% to about 10% by weight of the composition and a filler present in an amount in the range of from about 10% to about 30% by weight of the composition.

The aqueous rubber latex is preferably selected from the group of cis-polyisoprene rubber, nitrile rubber, ethylene-propylene rubber, styrene-butadiene rubber, nitrile-butadiene rubber, butyl rubber and neoprene rubber. The most preferred aqueous rubber latex is an aqueous styrene-butadiene rubber latex. The rubber latex activator is preferably selected from the group of zinc oxide, magnesium oxide and calcium oxide. The most preferred latex activator is zinc oxide. The organosilane compound preferably selected from 3-N-2-(aminoethyl)-3glycidoxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane, The aminopropyltriethoxysilane and 3-glycidoxypropyltrimethoxysilane. most preferred organosilane compound is N-2-(aminoethyl)-3-amino-propyltriethoxysilane. The filler can be a hydraulic cement and/or a particulate solid such as crystalline silica.

Another preferred sealing composition of this invention is comprised of an aqueous rubber latex, preferably an aqueous styrene-butadiene latex, present in an amount in the range of from about 10% to about 40% by weight of the composition; a rubber latex activator, preferably zinc oxide, present in an amount in the range of from about 0.1% to about 5% by weight of the composition; an organosilane, preferably N-2-(aminoethyl)3-aminopropyltriethoxysilane, present in an amount in the range of from about 0.1% to about 10% by weight of the composition; an aqueous rubber latex stabilizing surfactant, preferably an ethoxylated alcohol sulfonate, present in an amount in the range of from about 10% to about 15% by weight of the aqueous rubber latex in the composition; a hydraulic cement, preferably calcium aluminate cement, present in an amount in the range of from about 10% to about 40% by weight of the composition; a water borne epoxy resin, preferably the condensation product of epichlorohydrin and bisphenol A dispersed in water, present in an amount in the range of from about 15% to about 30% by weight of the composition; an epoxide containing liquid, preferably the diglycidyl ether of 1,4 butanediol, present in an amount in the range of from about 2% to about 10% by weight of the

composition; an epoxide hardening agent selected from the group of isophoronediamine, diethyltoluenediamine, tris(dimethylaminomethylphenol) and mixtures thereof present in an amount in the range of from about 2% to about 10% by weight of the composition; and a particulate crystalline silica filler present in an amount in the range of from about 10% to about 30% by weight of the composition.

A particularly preferred composition of this invention is comprised of an aqueous styrene-butadiene latex containing about 50% by weight water and a ratio of styrene to butadiene of 25%: 75% by weight present in the composition in an amount of about 25% by weight of the composition, a zinc oxide rubber latex activator present in an amount of about 0.5% by weight of the composition, N-2-(aminoethyl)-3-aminopropyltriethoxy-silane present in an amount of about 0.25% by weight of the composition, an ethoxylated alcohol sulfonate latex stabilizing surfactant present in an amount of about 2.5% by weight of the composition, calcium aluminate cement present in an amount of about 25% by weight of the composition, the condensation product of epichlorohydrin and bisphenol A dispersed in water present in an amount of about 19% by weight of the composition, the diglycidyl ether of 1,4 butanediol present in an amount of about 4.5% by weight of the composition, and a crystalline silica filler present in an amount of about 18.25% by weight of the composition.

The methods of the present invention are basically comprised of preparing a sealing composition of this invention which hardens into a highly resilient solid mass having a high bond strength, placing the sealing composition in the annulus between a pipe and the walls of a well bore, and allowing the sealing composition to harden into a solid mass.

In order to further illustrate the compositions and methods of the present invention, the following examples are given.

Example 1

10

25

30

35

40

45

50

55

A rubber latex composition was prepared by mixing an aqueous styrene-butadiene latex (25% styrene:75% butadiene by weight containing 50% by weight water) with particulate crystalline silica and zinc oxide. The resulting composition was placed into the annulus of a pipe assembly, i.e., a small pipe centered inside a larger pipe. Prior to the tests the outer surface of the small pipe and inner surface of the larger pipe were sandblasted to remove rust. The rubber latex composition was cured at 140°F for 72 hours. After curing, the shear bond strength of the composition was determined by supporting the larger pipe and applying force to the small inner pipe. The shear bond strength is the total force applied divided by the bonded surface area which breaks.

A second rubber latex composition was prepared by mixing the above described aqueous styrene-butadiene latex with particulate crystalline silica, zinc oxide, a latex stabilizing surfactant, i.e., an ethoxylated alcohol sulfonate and calcium aluminum cement. The resulting composition was placed in the annulus of a second pipe assembly of the type described above and the shear bond strength of the hardened composition was determined as described above. Also, the compressive strengths of portions of the hardened compositions were determined in accordance with the procedure set forth in API Specification For Materials And Testing For Well Cements, API Specification 10, 5th Edition dated July 1, 1990 of the American Petroleum Institute.

The components and amounts of the components in the compositions and the results of the tests are set forth in Table I below.

TABLE I

			170				
Coi	mpressive	and Cle	ean Pipe Sur	face She	ar Bond St	rength	Tests
	8	Sealing (Composition	Compon	ents		
Sealing Composition No.	Aqueou s Rubber Latex ¹ à , grams	Zinc Oxide, grams	Particulate Crystalline Silica, grams	Latex Stabiliz er ² à, grams	Calcium Aluminate Cement, grams	She ar Bon d Stre ngth ³ à, psi	Compressive Strength, psi
1	350	6.5	325	-	-	0	32
2	300	6	225	15	75	0	71

¹à Aqueous styrene-butadiene latex (25% styrene:75% butadiene by wt. and containing 50% by wt. water).

30

35

5

10

15

20

From Table I, it can be seen that the rubber latex compositions did not bond to the pipe assembly.

Example 2

below.

The shear bond tests described in Example 1 were repeated utilizing two sealing compositions of the present invention. The first composition was comprised of the aqueous styrene-butadiene latex described in Example 1, zinc oxide, particulate crystalline silica and an organosilane, i.e., 3-glycidoxypropyltrimethoxysilane. The second composition included the above described components and in addition, the latex stabilizing surfactant described in Example 1 and calcium aluminate cement. The components and the amounts of the components in the sealing compositions and the results of the tests are set forth in Table II

50

²à ethoxylated alcohol sulfonate

³à Pipe assembly surfaces cleaned by sand blasting.

TABLE II

	Clear	Pipe S	urface Shear B	ond Streng	gth Tests		
		Seal	ling Composition	on Compo	nents		
Sealing Composition No.	Aqueous Rubber Latex ¹ à, grams	Zinc Oxide, grams	Particulate Crystalline Silica, grams	Latex Stabilizer ² à, grams	Calcium Aluminate Cement, grams	Orga nosil ane ³ à, psi	Shear Bond Strengt h ⁴ à, psi
1	350	6.5	325	-	-	0.6	6
2	300	6	225	15	75	0.6	10.5

¹à Aqueous styrene-butadiene latex (25% styrene:75% butadiene by wt. and containing 50% by wt. water).

25

30

35

20

5

10

From Table II, it can be seen that the presence of the organosilane in the sealing compositions provided shear bond strength to the compositions.

Example 3

Additional shear bond tests were conducted utilizing sealing compositions like those described in Example 2 except that different organosilanes were utilized in some of the compositions and the bonded surfaces of the pipe assemblies utilized were rusted. The components and quantities of the components utilized in the sealing compositions and the results of the tests are set forth in Table III below.

40

45

50

TABLE III

		·		IADLE	111				
		Rust	ed Pipe Surf	ace Shea	r Bond Strer	ngth Test:	5		
			Sealing	Compos	ition Compo	onents			
Sealing Composition No.	Aqueou s Rubber Latex ¹ à , grams	Zinc Oxide grams	Particulate Crystalline Silica, grams	Latex Stabiliz er ² à, grams	Calcium Aluminate Cement, grams	Organo -Silane ³ à, grams	Organo -Silane ⁴ à, grams	Organo -Silane s ⁵ à, grams	Shear Bond Stren gth ⁶ à
1	350	6.5	325	-	-	0.6	-	-	31.5
2	300	6	225	15	75	0.6	-	-	46
3	350	6.5	325	-	-	-	0.6	-	5.2
4	300	6	225	15	75	-	0.6	-	10
5	350	6.5	325	-	-	-	-	0.6	6
6	300	6	225	15	75	-	-	0.6	8

²à ethoxylated alcohol sulfonate

³à 3-glycidoxypropyltrimethoxysilane

⁴à Pipe assembly surfaces cleaned by sand blasting.

10

15

5

From Table III, it can be seen that higher shear bond strengths were obtained as a result of the pipe surfaces being rusted and that the alternate organosilanes tested were not as effective as the first organosilane, i.e., 3-glycidoxypropyltrimethoxysilane.

Example 4

20

Shear bond strength tests utilizing sand blasted pipe assemblies as well as compressive strength tests were conducted utilizing sealing compositions which instead of an organosilane included a water borne epoxy resin and an epoxide hardening agent. Some of the test compositions also included an epoxide containing liquid in addition to the water borne epoxy resin. The components and quantities of components in the sealing compositions and the results of the tests are given in Table IV below.

	TABL

30

35

40

45

					TABLE IV					
		Compr	essive And (Clean Pip	e Surface S	hear Bo	nd Streng	th Tests		
			Sealing	Compos	ition Compor	nents				
Sealing Composition No.	Aqueou s Rubber Latex ¹ à , grams	Zinc Oxide, grams	Particulate Crystalline Silica, grams	Latex Stabiliz er ² à, grams	Calcium Aluminate, grams	Water Borne Epoxy Resin ³ à, grams	e Contain ing Liquid 4, grams	Epoxid e Hardeni ng Agent ⁵ à, grams	Shear Bond Stren gth ⁶ à , psi	Compressive Strength psi
1	175	3.25	325	-	-	175	-	24.15	29.2	32
2	150	3	225	7.5	75	150	-	21	14	187
3	175	3.25	325	-	-	130	45	33	15	58.4
4	150	3	300	7.5	75	120	30	27	46	86
5	150	3	150	1.5	150	120	30	27	120	375

¹à Aqueous styrene-butadiene latex (25% styrene:75% butadiene by wt. and containing 50% by wt. water).

à Aqueous styrene-butadiene latex (25% styrene:75% butadiene by wt. and containing 50% by wt. water).

²à ethoxylated alcohol sulfonate

³⁻glycidoxypropyltrimethoxysilane

³⁻mercaptopropyltrimethoxysilane

³⁻glycidoxypropylmethyldiethoxysilane

⁶à Pipe assembly surfaces rusted.

²à ethoxylated alcohol sulfonate

a Condensation product of epichlorohydrin and bisphenol A dispersed in water available from Shell Chemical Co. under trade designation "EPI-REZ®3510W60"

aDiglycidyl ether of 1,4-butanediol

à Diethyltoluenediamine

⁶à Pipe assembly surfaces cleaned by sand blasting.

From Table IV, it can be seen that increased shear bond and compressive strengths were obtained as a result of the presence of the epoxide materials in the sealing compositions.

Example 5

Additional tests like those described in Example 4 were conducted using sealing compositions similar to the compositions tested in Example 4 except that the compositions also included organosilanes. The components and quantities of components in the sealing compositions and the results of the tests are set forth in Table V below.

5
10
15
20
25
30
35
40
45
50

		Strength, psi	200	215	228	136	106	80
	Shear	Strength ⁸ , psi	61	43	20	89	20	187
	organo-	silane ⁷ , grams	ı	0.5		•	0.875	9.0
ડ ું.	Organo-	silane ⁶ , grams	0.5	•	0.875	9.0	•	•
Strength Te	Epoxide Hardening	Agent ² , grams	21	21	33	27	33	27
TABLE V Compressive And Clean Pipe Surface Shear Bond Strength Tests	nents Epoxide Containing	Liquid', grams		1	45	30	45	30
TABLE V Pipe Surface	ion Compo Water Borne Epoxy		150	150	130	120	130	120
T.A nd Clean Pi	Sealing Composition Components Water Borne Epo R Calcium Epoxy Cont	Aluminate, grams	75	75		75	,	75
mpressive A	Seali	Stabilizer², Aluminate, grams grams	7.5	7.5	•	15	,	15
3	Particulate Crystalline	Silica, grams	225	225	325	300	325	300
	Zinc		3	æ	3.25	60	3.25	Э
	Aqueous	Latex',	150	150	175	150	175	150
	Sealing	Compressive Composition No.	-	. 2	ъ	4	8	9

^{&#}x27; Aqueous styrene-butadiene latex (25% styrene:75% butadiene by wt. and containing 50% by wt. water).

² ethoxylated alcohol sulfonate
³ Condensation product of epichlorohydrin and bisphenol A dispersed in water available from Shell Chemical Co. under trade designation "EPI-REZ®5510W60"

Diglycidyl ether of 1,4-butanediol
 Diethyltoluenediamine

 ^{9.} glycidoxypropyltrimethoxysilane
 7 N-2-(aminoethyl)-3-aminopropyltrimethoxysilane
 8 Pipe assembly surfaces cleaned by sand blasting.

From Table V, it can be seen that the presence of both epoxide materials and organosilanes in the sealing compositions improved both the shear bond strengths and compressive strengths of the compositions.

Example 6

Additional sealing compositions which were similar to those of Example 5 were prepared except that two different organosilanes were included in two of the test compositions and the surfaces of the shear bond pipe assemblies used were rusted. The components and quantities of the components in the sealing compositions and the test results are set forth in Table VI below.

EP 0 980 957 A1 hear 3ond 340 360 328 328 328 325 psi 280 Rusted Pipe Surface Shear Bond Strength Tests

5

10

15

20

25

30

35

40

45

50

55

TABLE VI

		1			Sealing	Composit	Sealing Composition Components	nts					
						Water			J				ָ ֪֖֖֖
articulate	articulate	articulate				Rome	Epoxide	Epoxide		(,		Shear
Trystalline Latex	Trystalline Latex	Trystalline Latex		•	Calcium	Epoxy	Containing	Hardening	Organo-	Organo-	Organo	Organo	Волс
_	Silica, Stabilizer,	Silica, Stabilizer,	_	« C	luminate,	Kesın',	Liquid',	Agenr,	suane",	snane,	silane",		i
grams grams grams	grams	grams	grams		grams	grams	grams	grams	grams	grams	grams	grams	bsi
175 3.25 325 -			1			130	45	33	0.875	,	,		280
150 3 300 15			. 15		75	120	30	27	9.0				340
175 3.25 325 -	3.25	325			•	130	45	33		0.875	•		360
150 3 300 15	m	300 15	15		75	120	30	27	1	9.0	,	ı	328
150 3 150 15	3 150 15	150 15	15		150	120	30	27	9.0	•		,	328
150 3 150 15	3 150 15	150 15	15		150	120	30	27	,	9.0	•	,	554
150 3 150 15	3	150 15	15		150	120	30	27	•	1	9.0	1	325
150 3 150 15	3 150 15	150 15	15		150	120	30	27	•		•	9.0	380

Aqueous styrene-butadiene latex (25% styrene:75% butadiene by wt. and containing 50% by wt. water).

² ethoxylated alcohol sulfonate
³ Condensation product of epichlorohydrin and bisphenol A dispersed in water available from Shell Chemical Co. under trade designation "EPI-REZ*3510W60"

Diglycidyl ether of 1,4-butanediol Diethyltoluenediamine

³⁻glycidoxypropyltrimethoxysilane

N-2-(aminoethyl)-3-aminopropyltrimethoxysilane

^{8 3-}mercaptopropyltrimethoxysilane 9 3-glycidoxypropylmethyldiethoxysilane 10 Pipe assembly surfaces rusted.

From Table VI, it can be seen that the sealing compositions of this invention produced excellent shear bond strengths in rusted pipe.

5

10

20

55

Claims

- 1. A composition for sealing pipe in a well bore, which composition hardens into a highly resilient solid mass having high bond strength, said composition comprising:
 - an aqueous rubber latex in an amount of from 10% to 90% by weight of said composition;
- a rubber latex activator for causing said rubber latex to harden, in an amount of from 0.1% to 5% by weight of said composition;
 - an organosilane compound in an amount of from 0.1% to 10% by weight of said composition; and
 - a filler in an amount of from 10% to 30% by weight of said composition.
- 25 2. A composition according to claim 1, wherein said aqueous rubber latex is selected from cispolyisoprene rubber, nitrile rubber, ethylene-propylene rubber, styrene-butadiene rubber, nitrile-butadiene rubber, butyl rubber and neoprene rubber.
- A composition according to claim 1, wherein said aqueous rubber latex is an aqueous styrene-butadiene latex.
- 4. A composition according to claim 3, wherein said aqueous styrene-butadiene latex contains about 50% water (by weight of the latex), and the weight ratio of styrene to butadiene in said latex is about 25%:75%.
- 5. A composition according to claim 1, 2, 3 or 4, wherein said rubber latex activator is selected from zinc oxide, magnesium oxide and calcium oxide.
- 6. A composition according to any of clains 1 to 5, wherein said organosilane compound is selected from 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2-(aminoethyl)-3-aminopropyltriethoxysilane or 3-glycidoxypropyltrimethyoxysilane.
- 7. A composition according to any of claims 1 to 6, wherein said filler is selected from hydraulic cement, crystalline silicas, amorphous silicas, clays, iron oxide, calcium carbonate and barite.
 - 8. A composition according to any of claims 1 to 7, which further comprises one or more of:
 - (a) an effective amount of an aqueous rubber latex stabilizing surfactant, preferably a sulfonated ethoxylated alcohol;

(b) a hydraulic cement, preferably calcium aluminate; 5 (c) an epoxy resin and an epoxy resin hardening agent, said epoxy resin preferably being comprised of the condensation product of epichlorohydrin and bisphenol A dispersed in a non-ionic aqueous fluid, and said hardening agent preferably being at least one member selected from aliphatic amines, aromatic amines and carboxylic acid anhydrides; 10 (d) an epoxide-containing liquid, preferably selected from the diglycidyl ether of 1,4butanediol, the diglycidyl ether or neopentyl glycol and the diglycidyl ether of cyclohexane dimethanol. 15 9. A method of sealing pipe in a well bore, which method comprises the steps of placing a sealing composition as claimed in any of claims 1 to 8, in the annulus between said pipe and 20 the walls of said well bore; and allowing said composition to harden into a solid mass. 25 30 35 40 45 50

EUROPEAN SEARCH REPORT

Application Number EP 99 30 6504

atocon	DOCUMENTS CONSIDE Citation of document with in	dication, where appropriate,		levant	CLASSIFICATION OF THE
ategory	of relevant pass		to	claim	APPLICATION (Int.CI.7)
Y	* column 8, line 42		*	,7,9	E21B33/16 C04B24/26
Y	* column 3, line 38 * column 3, line 57		*	,7-9	·
Y	GB 2 247 234 A (HAL 26 February 1992 (1 * page 5, line 29 - * page 8, line 3 - * page 10, line 19 * page 13, line 10	992-02-26) page 6, line 35 * line 8 * - line 22 *	1-5	,7-9	TECHNICAL FIELDS
Υ	US 5 037 868 A (M.S 6 August 1991 (1991 * column 1, line 21		* 1,6	i	SEARCHED (Int.Cl.7) E218 C048
Y	PATENT ABSTRACTS OF vol. 014, no. 043 (26 January 1990 (19 & JP 01 275454 A (M LTD), 6 November 19 * abstract *	C-0681), 90-01-26) ITSUI PETROCHEM IND	1-3	3,6,7	
	The present search report has	Date of completion of the searc			Examiner
	THE HAGUE	18 November 19		Bou	ilon, A
X : par Y : par doc A : tec O : noi	CATEGORY OF CITED DOCUMENTS tlcularly relevant if taken alone tlcularly relevant if combined with anotument of the same category hnological background —written disclosure symmediate document	T : theory or pr E : earlier pate after the fill her D : document c L : document c	inciple under nt document g date atted in the a ited for othe	erlying the t, but publ application or reasons	invention ished on, or

-19-

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 99 30 6504

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

18-11-1999

	nt document search repo		Publication date		Patent family member(s)	Publication date
EP 61	9414	A	12-10-1994	US BR CA NO US	5346011 A 9401333 A 2120198 A 941137 A 5483986 A	13-09-1994 15-11-1994 02-10-1994 03-10-1994 16-01-1996
US 56	88844	Α	18-11-1997	CA EP NO	2209232 A 0816302 A 973048 A	01-01-1998 07-01-1998 02-01-1998
GB 22	47234	A	26-02-1992	CA	2049518 A	22-02-199
US 50	37868	Α	06-08-1991	JP JP JP	1156354 A 1973167 C 6104763 B	19-06-1989 27-09-1999 21-12-199
JP 01	275454	A	06-11-1989	JP	2573993 B	22-01-199

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82