ON THE EXPECTATION AND VARIANCE OF HAMMING DISTANCE BETWEEN TWO LLD RANDOM VECTORS*

FU FANGWEI (符方伟)

SHEN SHIYI (沈世镒)

(Department of Mathematics, Nankai University, Tianjin 300071, China)

Abstract

By using the generalized MacWilliams theorem, we give new representations for expectation and variance of Hamming distance between two i.i.d random vectors. By using the new representations, we derive a lower bound for the variance, and present a simple and direct proof of the inequality of [1].

Key words. Hamming distance, random vector, expectation, variance, generalized MacWilliams theorem

1. Introduction

Let $F_2^n = \{0,1\}^n$ be an *n*-dimensional vector space over the binary field $F_2 = \{0,1\}$. The Hamming distance between two vectors $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$ is the number of coordinates where they differ, and is denoted by $d_H(x,y)$,

$$d_H(x,y) = \sum_{i=1}^n |x_i - y_i|.$$

The Hamming weight of x is the number of non-zero coordinates, and is denoted by $w_H(x)$. Obviously $w_H(x) = d_H(x, 0)$, where 0 is the zero vector.

The scalar product of x and y is

$$\langle x,y\rangle = x_1y_1 + \cdots + x_ny_n$$
 in F_2 .

For a set $A \subseteq F_2^n$, |A| denotes the cardinality of A. The average distance in A is defined by

$$\operatorname{dist}(A) = \frac{1}{|A|^2} \sum_{x \in A} \sum_{y \in A} d_H(x, y). \tag{1.1}$$

Received July 31, 1993.

^{*} This research is supported by Young Teacher Foundation of Chinese Educational Ministry and Natural Science Foundation of China.

The variance of dist (A) is defined by

$$\operatorname{var}(A) = \frac{1}{|A|^2} \sum_{x \in A} \sum_{y \in A} \left[d_H(x, y) - \operatorname{dist}(A) \right]^2. \tag{1.2}$$

Althöfer and Sillke^[1] proved

Theorem 1.1. Every non-empty set $A \subseteq F_2^n$ satisfies the inequality

$$\operatorname{dist}(A) \ge \frac{n+1}{2} - \frac{2^{n-1}}{|A|},\tag{1.3}$$

where equality is possible only for $|A| = 2^n$ and for $|A| = 2^{n-1}$ with A being a subcube. This inequality yields only negative values as lower bounds for $|A| < \frac{2^n}{n+1}$. Therefore it is only meaningful for large subsets.

In this paper, we derive the following inequality for var(A).

Theorem 1.2. Every non-empty set $A \subseteq F_2^n$ satisfies the inequality

$$\operatorname{var}(A) \ge \frac{n-1}{4} + \frac{2^{n-1}}{|A|} - \frac{2^{2n-2}}{|A|^2},\tag{1.4}$$

where equality holds for $|A| = 2^n$ and for $|A| = 2^{n-1}$ with A being a subcube.

If $A = F_2^n$, we have

$$\begin{split} \frac{n+1}{2} - \frac{2^{n-1}}{|F_2^n|} &= \frac{n+1}{2} - \frac{1}{2} = \frac{n}{2}, \\ \frac{n-1}{4} + \frac{2^{n-1}}{|F_2^n|} - \frac{2^{2n-2}}{|F_2^n|^2} &= \frac{n-1}{4} + \frac{1}{2} - \frac{1}{4} = \frac{n}{4}. \end{split}$$

For a given $x \in F_2^n$,

$$\sum_{y \in F_2^n} d_H(x, y) = \sum_{i=0}^n \sum_{y \in F_2^n : d_H(x, y) = i} d_H(x, y)$$

$$= \sum_{i=0}^n i \left| \left\{ y \in F_2^n : d_H(x, y) = i \right\} \right| = \sum_{i=0}^n i \binom{n}{i} = n2^{n-1},$$

$$\sum_{y \in F_2^n} \left[d_H(x, y) \right]^2 = \sum_{i=0}^n i^2 \binom{n}{i} = n(n+1)2^{n-2}.$$

Hence

$$\operatorname{dist}(F_2^n) = \frac{1}{2^{2n}} \sum_{x \in F_2^n} \sum_{y \in F_2^n} d_H(x, y) = \frac{n2^{n-1}2^n}{2^{2n}} = \frac{n}{2},$$

$$\operatorname{var}(F_2^n) = \frac{1}{2^{2n}} \sum_{x \in F_2^n} \sum_{y \in F_2^n} \left[d_H(x, y) \right]^2 - \left[\operatorname{dist}(F_2^n) \right]^2 = \frac{2^n n(n+1)2^{n-2}}{2^{2n}} - \frac{n^2}{4} = \frac{n}{4}.$$

Therefore the lower bounds in Theorem 1.1 and Theorem 1.2 are tight for $A = F_2^n$. If A is a subcube, $A = F_2^{n-1} \times \{0\} = \{(x,0) \mid x \in F_2^{n-1}\}$, we have

$$\frac{n+1}{2} - \frac{2^{n-1}}{|F_2^{n-1} \times \{0\}|} = \frac{n-1}{2},$$

$$\frac{n-1}{4} + \frac{2^{n-1}}{|F_2^{n-1} \times \{0\}|} - \frac{2^{2n-2}}{|F_2^{n-1} \times \{0\}|^2} = \frac{n-1}{4}.$$

In the same way, we have

$$\operatorname{dist}\left(F_2^{n-1} \times \{0\}\right) = \frac{n-1}{2}, \quad \operatorname{var}\left(F_2^{n-1} \times \{0\}\right) = \frac{n-1}{4}.$$

Therefore the lower bounds in Theorem 1.1 and Theorem 1.2 are tight for $|A| = 2^{n-1}$ with A being a subcube.

Let X, Y be two independent identical distributed (i.i.d) random vectors. The common probability distribution is $P = \{P(x) \mid x \in F_2^n\}$. The expectation of $d_H(X,Y)$ is

$$E d_H(X,Y) = \sum_{x \in F_2^n} \sum_{y \in F_2^n} P(x) P(y) d_H(x,y).$$
 (1.5)

The variance of $d_H(X, Y)$ is

$$D d_{H}(X,Y) = E[d_{H}(X,Y)]^{2} - [Ed_{H}(X,Y)]^{2}$$
(1.6)

$$= \sum_{x \in F_n^n} \sum_{y \in F_n^n} P(x) P(y) \left[d_H(x, y) - E d_H(X, Y) \right]^2. \tag{1.7}$$

Denote

$$L(P) = 2^{n-1} \sum_{x \in F_n^n} \left[P(x) - \frac{1}{2^n} \right]^2.$$
 (1.8)

L(P) measures how unequally P is distributed.

Althöfer and Sillke^[1] proved

Theorem 1.3.
$$Ed_H(X,Y) \ge \frac{n}{2} - L(P)$$
. (1.9)

We derive a lower bound for $Dd_H(X,Y)$.

Theorem 1.3.
$$Dd_H(X,Y) \ge \frac{n}{4} - [L(P)]^2$$
. (1.10) For a set $A \subseteq F_2^n$, let X_A, Y_A be two i.i.d random vectors with common distribution

$$P_A(x) = \left\{ egin{array}{ll} rac{1}{|A|}, & ext{if } x \in A, \\ 0, & ext{otherwise.} \end{array}
ight.$$

It is easy to see that

$$Ed_{H}(X_{A}, Y_{A}) = \operatorname{dist}(A), \qquad Dd_{H}(X_{A}, Y_{A}) = \operatorname{var}(A),$$

$$L(P_{A}) = 2^{n-1} \left[|A| \left(\frac{1}{|A|} - \frac{1}{2^{n}} \right)^{2} + (2^{n} - |A|) \left(\frac{1}{2^{n}} \right)^{2} \right] = \frac{2^{n-1}}{|A|} - \frac{1}{2}.$$

Then

$$\frac{n}{2} - L(P_A) = \frac{n+1}{2} - \frac{2^{n-1}}{|A|}, \qquad \frac{n}{4} - \left[L(P_A)\right]^2 = \frac{n-1}{4} + \frac{2^{n-1}}{|A|} - \frac{2^{2n-2}}{|A|^2}.$$

Therefore Theorem 1.1 and Theorem 1.2 could be derived from Theorem 1.3 and Theorem 1.4 respectively in a straightforward way.

Althöfer and Sillke proved Theorem 1.3 by using induction method. In this paper we first introduce the generalized MacWilliams theorem, then we give new representations for $Ed_H(X,Y)$ and $Dd_H(X,Y)$. Finally we derive Theorem 1.4, and present a simple and direct proof of Theorem 1.3 by using the new representations.

2. Generalized MacWilliams Theorem

 \mathcal{R} is the field of real numbers. $f: F_2^n \longrightarrow \mathcal{R}$ is a function. Denote

$$M = \sum_{u \in F_n^*} f(u) \neq 0, \tag{2.1}$$

$$B_{i} = \sum_{u \in F_{2}^{n}: w_{H}(u)=i} f(u), \qquad i = 0, 1, \dots, n.$$
 (2.2)

 $\{B_0, B_1, \dots, B_n\}$ is called the weight distribution of f. The weight enumerator of f is defined by

$$W_f(z) = \sum_{u \in F_i^n} f(u) z^{w_H(u)} = \sum_{i=0}^n B_i z^i.$$
 (2.3)

The Hadamard transform of f is

$$\overline{f}(u) = \frac{1}{M} \sum_{v \in F_1^n} (-1)^{\langle u, v \rangle} f(v), \qquad u \in F_2^n.$$
 (2.4)

 \overline{f} is also a function from F_2^n to \mathcal{R} . Denote

$$\overline{B}_{i} = \sum_{u \in F_{n}: w_{H}(u)=i} \overline{f}(u), \qquad i = 0, 1, \cdots, n.$$
(2.5)

 $\{\overline{B}_0, \overline{B}_1, \cdots, \overline{B}_n\}$ is the weight distribution of \overline{f} . The weight enumerator of \overline{f} is

$$W_{\overline{f}}(z) = \sum_{i=0}^{n} \overline{B}_{i} z^{i}. \tag{2.6}$$

Theorem 2.1. (Generalized MacWilliams Theorem)

$$W_{\overline{f}}(z) = \frac{1}{M} (1+z)^n W_f\left(\frac{1-z}{1+z}\right),\tag{2.7}$$

$$W_f(z) = \frac{M}{2^n} (1+z)^n W_{\overline{f}} \left(\frac{1-z}{1+z}\right). \tag{2.8}$$

The proof of the generalized MacWilliams theorem could be found in [2] (pp. 132-137).

3. Several Lemmas

 $P = \{P(u) | u \in F_2^n\}$ is a probability distribution on F_2^n . Function $f_P : F_2^n \longrightarrow \mathcal{R}$ is defined by

$$f_P(u) = \sum_{a,b \in F_n^n: a+b=u} P(a)P(b).$$
 (3.1)

Obviously,

$$M_P = \sum_{u \in F_2^n} f_P(u) = 1.$$

The weight distribution of f_P is $\{B_0(P), B_1(P), \cdots, B_n(P)\}$.

$$B_i(P) = \sum_{u \in F_2^n : w_H(u) = i} \sum_{a,b \in F_2^n : a + b = u} P(a)P(b).$$
 (3.2)

The weight enumerator of f_P is $W_{f_P}(z)$.

$$W_{f_P}(z) = \sum_{i=0}^{n} B_i(P) z^i.$$
 (3.3)

The Hadamard transform of f_P is \overline{f}_P .

$$\overline{f}_{P}(u) = \sum_{v \in F_{P}^{n}} (-1)^{\langle u, v \rangle} f_{P}(v) \tag{3.4}$$

$$= \sum_{v \in F_2^n} (-1)^{\langle u, v \rangle} \sum_{a, b \in F_2^n: a+b=v} P(a)P(b)$$

$$\tag{3.5}$$

$$=\sum_{a,b\in F_a^n} (-1)^{\langle u,a+b\rangle} P(a) P(b) \tag{3.6}$$

$$= \left[\sum_{a \in F_n^*} (-1)^{\langle u, a \rangle} P(a)\right]^2 \ge 0. \tag{3.7}$$

The weight distribution of \overline{f}_P is $\{\overline{B}_0(P), \overline{B}_1(P), \cdots, \overline{B}_n(P)\}$.

$$\overline{B}_i(P) = \sum_{u \in F_i^n: w_H(u) = i} \overline{f}_P(u) \tag{3.8}$$

$$= \sum_{u \in F_2^n: w_H(u)=i} \left[\sum_{a \in F_2^n} (-1)^{\langle u, a \rangle} P(a) \right]^2 \ge 0.$$
 (3.9)

The weight enumerator of \overline{f}_P is

$$W_{\overline{f}_P}(z) = \sum_{i=0}^n \overline{B}_i(P)z^i. \tag{3.10}$$

From the generalized MacWilliams theorem, we have

$$W_{f_P}(z) = \frac{1}{2^n} (1+z)^n W_{\overline{f}_P}\left(\frac{1-z}{1+z}\right). \tag{3.11}$$

Lemma 3.1. ([2], p.134, Problem (13))

$$\sum_{v \in F_2^n} (-1)^{\langle u, v \rangle} = \begin{cases} 2^n, & \text{if } u = 0, \\ 0, & \text{if } u \neq 0. \end{cases}$$
 (3.12)

Lemma 3.2.
$$Ed_H(X,Y) = \sum_{i=0}^{n} iB_i(P),$$
 (3.13)

$$E[d_H(X,Y)]^2 = \sum_{i=0}^n i^2 B_i(P). \tag{3.14}$$

Proof.

$$\begin{split} Ed_{H}(X,Y) &= \sum_{a \in F_{2}^{n}} \sum_{b \in F_{2}^{n}} P(a)P(b)d_{H}(a,b) = \sum_{a \in F_{2}^{n}} \sum_{b \in F_{2}^{n}} P(a)P(b)w_{H}(a+b) \\ &= \sum_{u \in F_{2}^{n}} w_{H}(u) \sum_{a,b \in F_{2}^{n}: a+b=u} P(a)P(b) = \sum_{u \in F_{2}^{n}} w_{H}(u)f_{P}(u) \\ &= \sum_{i=0}^{n} \sum_{u \in F_{2}^{n}: w_{H}(u)=i} w_{H}(u)f_{P}(u) = \sum_{i=0}^{n} iB_{i}(P). \end{split}$$

(3.14) could be proved in the same way.

4. A Direct and Simple Proof of Theorem 1.3

Lemma 4.1.
$$Ed_{H}(X,Y) = \frac{n}{2} - \frac{\overline{B}_{1}(P)}{2}.$$
 (4.1) Proof. From (3.3), we know that the differentiation of $W_{f_{P}}(z)$ is

$$W'_{f_P}(z) = \sum_{i=0}^{n} i B_i(P) z^{i-1}. \tag{4.2}$$

From (4.2) and Lemma 3.2, we have

$$W'_{f_P}(1) = \sum_{i=0}^n i B_i(P) = E d_H(X, Y). \tag{4.3}$$

From (3.11), we have

$$W'_{f_P}(z) = \frac{1}{2^n} \left[n(1+z)^{n-1} W_{\overline{f}_P}\left(\frac{1-z}{1+z}\right) - 2(1+z)^{n-2} W'_{\overline{f}_P}\left(\frac{1-z}{1+z}\right) \right]. \tag{4.4}$$

Then

$$W'_{f_P}(1) = \frac{1}{2^n} \left[n 2^{n-1} W_{\overline{f}_P}(0) - 2^{n-1} W'_{\overline{f}_P}(0) \right]. \tag{4.5}$$

From (3,9), (3,10), we have

$$W_{\overline{f}_P}(0) = \overline{B}_0(P) = 1, \qquad W'_{\overline{f}_P}(0) = \overline{B}_1(P).$$
 (4.6)

From (4.5), (4.6), we have

$$W'_{f_P}(1) = \frac{n}{2} - \frac{\overline{B}_1(P)}{2}. (4.7)$$

Therefore from (4.3) and (4.7), we have

$$Ed_H(X,Y) = \frac{n}{2} - \frac{\overline{B}_1(P)}{2}.$$

For a given $u \in F_2^n$, $w_H(u) \ge 2$, we denote

$$G_u^0 = \{ a \in F_2^n \mid \langle u, a \rangle = 0 \}, \qquad G_u^1 = \{ a \in F_2^n \mid \langle u, a \rangle = 1 \}.$$

Lemma 4.2.
$$\overline{B}_1(P) \le 2L(P);$$
 (4.8)

equality holds only when

$$P(G_u^0) = P(G_u^1)$$
 for every $u \in F_2^n$, $w_H(u) \ge 2$. (4.9)

Proof. From (3.9), we have

$$\begin{split} \overline{B}_{1}(P) &= \sum_{u \in F_{2}^{n}: w_{H}(u) = 1} \left[\sum_{a \in F_{2}^{n}} (-1)^{\langle u, a \rangle} P(a) \right]^{2} \\ &= \sum_{u \in F_{2}^{n}} \left[\sum_{a \in F_{2}^{n}} (-1)^{\langle u, a \rangle} P(a) \right]^{2} - 1 - \sum_{u \in F_{2}^{n}: w_{H}(u) \geq 2} \left[\sum_{a \in F_{2}^{n}} (-1)^{\langle u, a \rangle} P(a) \right]^{2} \\ &\leq -1 + \sum_{u \in F_{2}^{n}} \left[\sum_{a \in F_{2}^{n}} (-1)^{\langle u, a \rangle} P(a) \right]^{2} = -1 + \sum_{u \in F_{2}^{n}} \sum_{a, b \in F_{2}^{n}} (-1)^{\langle u, a + b \rangle} P(a) P(b) \\ &= -1 + \sum_{a, b \in F_{2}^{n}} P(a) P(b) \sum_{u \in F_{2}^{n}} (-1)^{\langle u, a + b \rangle}. \end{split}$$

From Lemma 3.1, we have

$$\sum_{u \in F_2^n} (-1)^{\langle u, a+b \rangle} = \begin{cases} 2^n, & \text{if } a = b, \\ 0, & \text{if } a \neq b. \end{cases}$$

Then

$$\overline{B}_1(P) \le -1 + 2^n \sum_{a \in F_2^n} P^2(a) = 2^n \sum_{a \in F_2^n} \left[P(a) - \frac{1}{2^n} \right]^2 = 2L(P);$$

equality holds only when $\forall u \in F_2^n, w_H(u) \geq 2$

$$\sum_{a \in F_2^n} (-1)^{\langle u, a \rangle} P(a) = P(G_u^0) - P(G_u^1) = 0.$$

Proof of Theorem 1.3 from Lemma 4.1 and Lemma 4.2. From Lemma 4.1 and Lemma 4.2, we have

$$Ed_H(X,Y) = \frac{n}{2} - \frac{\overline{B}_1(P)}{2} \ge \frac{n}{2} - L(P);$$

equality holds only when (4.9) is true.

5. Proof of Theorem 1.4

Lemma 5.1.
$$E[d_H(X,Y)]^2 = \frac{n(n+1)}{4} - \frac{n}{2}\overline{B}_1(P) + \frac{\overline{B}_2(P)}{2}.$$

Proof. From (4.2), we have

$$W_{f_P}''(z) = \sum_{i=0}^n i(i-1)B_i(P)z^{i-2}.$$

Then from Lemma 3.2, we have

$$W_{f_{P}}^{"}(1) = \sum_{i=0}^{n} i (i-1)B_{i}(P) = \sum_{i=0}^{n} i^{2}B_{i}(P) - \sum_{i=0}^{n} iB_{i}(P)$$
$$= E[d_{H}(X,Y)]^{2} - Ed_{H}(X,Y). \tag{5.1}$$

From (4.4), we have

$$\begin{split} W_{f_P}''(z) &= \frac{1}{2^n} \left[n(n-1)(1+z)^{n-2} W_{\overline{f}_P} \left(\frac{1-z}{1+z} \right) - 4(n-1)(1+z)^{n-3} W_{\overline{f}_P}' \left(\frac{1-z}{1+z} \right) \right. \\ &+ 4(1+z)^{n-4} W_{\overline{f}_P}'' \left(\frac{1-z}{1+z} \right) \right]. \end{split}$$

Hence

$$W_{f_{P}}^{"}(1) = \frac{1}{2^{n}} \left[n(n-1)2^{n-2}W_{\overline{f}_{P}}(0) - (n-1)2^{n-1}W_{\overline{f}_{P}}^{"}(0) + 2^{n-2}W_{\overline{f}_{P}}^{"}(0) \right]$$
$$= \frac{n(n-1)}{4} \overline{B}_{0}(P) - \frac{n-1}{2} \overline{B}_{1}(P) + \frac{1}{2} \overline{B}_{2}(P). \tag{5.2}$$

From (5.1), (5.2), (4.1), we have

$$E[d_{H}(X,Y)]^{2} = \frac{n(n-1)}{4} - \frac{n-1}{2}\overline{B}_{1}(P) + \frac{1}{2}\overline{B}_{2}(P) + \frac{n}{2} - \frac{1}{2}\overline{B}_{1}(P)$$
$$= \frac{n(n+1)}{4} - \frac{n}{2}\overline{B}_{1}(P) + \frac{1}{2}\overline{B}_{2}(P).$$

Proof of Theorem 1.4 from Lemma 5.1 and Lemma 4.2.

$$\begin{split} Dd_{H}(X,Y) = & E \big[d_{H}(X,Y) \big]^{2} - \big[Ed_{H}(X,Y) \big]^{2} \\ = & \frac{n(n+1)}{4} - \frac{n}{2} \overline{B}_{1}(P) + \frac{1}{2} \overline{B}_{2}(P) - \left[\frac{n}{2} - \frac{1}{2} \overline{B}_{1}(P) \right]^{2} \\ = & \frac{n}{4} - \frac{1}{4} \big[\overline{B}_{1}(P) \big]^{2} + \frac{1}{2} \overline{B}_{2}(P). \end{split}$$

From (3.9), (4.8), we have

$$\overline{B}_i(P) \ge 0, \qquad i = 0, 1, \dots, n; \qquad \overline{B}_1(P) \le 2L(P).$$

Therefore

$$Dd_H(X,Y) \geq \frac{n}{4} - [L(P)]^2$$
.

References

- [1] I. Althöfer and T. Sillke. An "Average Distance" Inequality for Large Subsets of the Cube. Journal of Combinatorical Theory (Series B), 1992, 56: 296-301.
- [2] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 1981 (Third printing).