3.4.4 (128). Петля гистерезиса (статический метод)

Рябых Владислав и Исыпов Илья, Б05-905 28 сентября 2020 г.

Цель работы: наблюдение начальной кривой намагничивания ферромагнетиков и предельной петли гистерезиса.

В работе используются: источник питания, тороид, соленоид, баллистический гальванометр с осветителем и шкалой, амперметр, магазин сопротивлений, лабораторный автотрансформатор (ЛАТР), разделительный трансформатор.

Теория

Магнитная индукция B и напряженность магнитного поля H в ферромагнетиках связаны между собой сложным нелинейным образом: индукция зависит не только от напряженности, но и от предыстории образца. Связь между B и H типичного ферромагнетика иллюстрирует рис. 1. Выходящая из начала координат основная кривая намагничивания OACD возникает при намагничивании размагниченного образца.

Рис. 1: петля гистерезиса ферромагнетика

Зададимся целью определить коэрцитивную силу и индукцию насыщения предоставленного образца (материал — сталь). Индукция в образце складывается из напряжённости внешнего поля H и намагниченности образца: $B = \mu_0(H+M)$, где намагниченность M — магнитный момент единицы объема образца, а μ_0 — магнитная постоянная.

Сначала намагнитим образец до насыщения (точка D). Соответствующее значение индукции B_s называют индукцией насыщения. Потом будем постепенно уменьшать внешнее поле. Явление гистерезиса состоит в том, что при нулевом значении внешнего поля индукция остаётся некоторая остаточная индукция B_r . Чтобы размагнитить образец, то есть перевести его в состояние F, необходимо приложить «обратное» магнитное поле $-H_c$, которое называют коэрцитивной силой. Замкнутая кривая DEFD'E'F'D, возникающая при циклическом перемагничивании образца, намагниченного до насыщения, называется предельной петлёй гистерезиса.

Необходимо выразить H и B через параметры, измеряемые в эксперименте. Напряженность магнитного поля в H в тороиде зависит от тока, текущего в обмотке:

$$H \approx \frac{N}{\pi D}I\tag{1}$$

где D — средний диаметр тора, N — число витков.

При скачкообразном изменении тока на величину ΔI поле в тороиде меняется: $\Delta H \sim \Delta I$. Изменение ΔH приводит к изменению потока магнитной индукции Φ в сердечнике, и в измерительной обмотке сечения S_T с числом витков N_{T1} возникает ЭДС индукции:

$$\mathcal{E} = -\frac{d\Phi}{dt} = -SN'\frac{dB}{dt}.$$

Через гальванометр протекает импульс тока; первый отброс зайчика гальванометра, работающего в баллистическом режиме, пропорционален величине прошедшего через гальванометр заряда q:

$$\varphi = \frac{q}{b},$$

где b — баллистическая постоянная гальванометра.

Дополнительно для получения баллистической постоянной необходимо использовать вместо тороида пустотелый соленоид с числом витков N_{T0} , с N_{T1} витками на измерительной катушке, длиной l_c . Тогда исключив баллистическую постоянную и

выразив ΔB получим выражение:

$$\Delta B = \mu_0 N_c \frac{N_c'}{N'} \left(\frac{d_C}{d}\right)^2 \frac{R}{R_c} \frac{N_{C0}}{N_{T1}} \frac{\Delta I_c}{l_c} \frac{\Delta x}{\Delta x_c}.$$
 (2)

Измерение предельной петли гистерезиса начинаем с максимального значения магнитного поля, что соответствует точке D на рис. 1. Специальный генератор позволяет скачками менять токи в намагничивающей обмотке. Он работает неравномерно, так как разные скачки на разных участках петли вызывают разные отклонения зайчика гальванометра (большие скачки делаются вблизи насыщения и малые вблизи нуля). Дойдя до нулевого значения тока (E), меняем направление магнитного поля и снова увеличиваем ток в намагничивающей обмотке (D'). Затем снова меняем направление магнитного поля и возвращаемся в точку D.

Сопротивления измерительных цепей R и R_1 подбираются одинаковыми, чтобы можно было считать постоянную гальванометра действительно постоянной (в общем случае она зависит от полного сопротивления в цепи).

Измерение начальной кривой намагничивания (участок OAC) производится по той же схеме, но с предварительно размагниченным образцом.

Экспериментальная установка

Рис. 2: схема установки для исследования петли гистерезиса

После снятия петли гистерезиса необходимо размагнитить сердечник, подключив его к цепи переменного тока, постепенно снижая его амплитуду. Только затем следует приступать к снятию основной кривой намагничивания.

Рис. 3: схема установки для калибровки гальванометра

Ход работы

Подготовив к работе экспериментальную установку по схеме 1 с рис. 2, $R_{\rm M}=140$ Ом. Снимем зависимость величины скачка зайчика Δx от величины силы тока в цепи $I.\ H$ вычисляем по формуле (1). Результаты измерений приведены в таблицах 1 и 2.

состояние кнопки	<i>I</i> , A	H, A/M	Δx , cm	ΔB , Тл	В, Тл
15	1.70	306.0			
14	1.20	216.0	2.9	0.11	0.1
13	0.87	156.6	2.7	0.10	0.2
12	0.62	111.6	2.7	0.10	0.3
11	0.43	77.4	2.6	0.10	0.4
10	0.35	63.0	1.4	0.05	0.5
9	0.30	54.0	0.8	0.03	0.5
8	0.27	48.6	0.5	0.02	0.5
7	0.25	45.0	0.4	0.02	0.5
6	0.23	41.4	0.4	0.02	0.6
5	0.21	37.8	0.4	0.02	0.6
4	0.19	34.2	0.5	0.02	0.6
3	0.17	30.6	0.5	0.02	0.6
2	0.12	21.6	1.2	0.05	0.7
1	0.06	10.8	1.6	0.06	0.7
0	0.00	0.0	1.9	0.07	0.8
1	-0.06	-10.8	2.2	0.08	0.9
2	-0.12	-21.6	2.9	0.11	1.0
3	-0.17	-30.6	3.5	0.13	1.1
4	-0.19	-34.2	1.9	0.07	1.2
5	-0.21	-37.8	2.4	0.09	1.3
6	-0.23	-41.4	2.8	0.11	1.4
7	-0.25	-45.0	3.6	0.14	1.5
8	-0.27	-48.6	4.6	0.18	1.7
9	-0.30	-54.0	6.8	0.26	2.0
10	-0.35	-63.0	10.4	0.40	2.4
11	-0.43	-77.4	12.9	0.50	2.9
12	-0.62	-111.6	12.0	0.46	3.3
13	-0.87	-156.6	7.0	0.27	3.6
14	-1.20	-216.0	5.1	0.20	3.8
15	-1.70	-306.0	4.4	0.17	4.0

Таблица 1: результаты измерений

состояние кнопки	I, A	H, A/M	Δx , cm	ΔB , Тл	B, Тл
15	-1.70	-306.0	4.4	0.17	4.0
14	-1.20	-216.0	2.9	0.11	3.9
13	-0.87	-156.6	2.7	0.10	3.7
12	-0.62	-111.6	2.7	0.10	3.6
11	-0.43	-77.4	2.6	0.10	3.5
10	-0.35	-63.0	1.4	0.05	3.5
9	-0.30	-54.0	0.8	0.03	3.5
8	-0.27	-48.6	0.5	0.02	3.4
7	-0.25	-45.0	0.4	0.02	3.4
6	-0.23	-41.4	0.5	0.02	3.4
5	-0.21	-37.8	0.4	0.02	3.4
4	-0.19	-34.2	0.5	0.02	3.4
3	-0.17	-30.6	0.5	0.02	3.4
2	-0.12	-21.6	1.2	0.05	3.3
1	-0.06	-10.8	1.6	0.06	3.2
0	0.00	0.0	1.8	0.07	3.2
1	0.06	10.8	2.2	0.08	3.1
2	0.12	21.6	2.9	0.11	3.0
3	0.17	30.6	3.5	0.13	2.8
4	0.19	34.2	2.0	0.08	2.8
5	0.21	37.8	2.4	0.09	2.7
6	0.23	41.4	2.8	0.11	2.6
7	0.25	45.0	3.6	0.14	2.4
8	0.27	48.6	4.6	0.18	2.3
9	0.30	54.0	6.9	0.27	2.0
10	0.35	63.0	10.5	0.40	1.6
11	0.43	77.4	12.6	0.48	1.1
12	0.62	111.6	12.0	0.46	0.6
13	0.87	156.6	7.1	0.27	0.4
14	1.20	216.0	5.1	0.20	0.2
15	1.70	306.0	4.3	0.17	0.0

Таблица 2: результаты измерений

Для калибровки гальваноида подключим соленоид по схеме на рис. 3. Уменьшим сопротивление магазина $R_{\rm M}$ на величину $R_{\rm c}=46~{\rm Om}$: $R_{\rm M}=140-46=94~{\rm Om}$. Получим следующие значения для тока и максимального отклонения:

$$\Delta x_c = 23.5 \text{ cm}, \ \Delta I_c = 1.70 \text{ A}$$

После этого отключаем соленоид, собираем схему 1 на рис. 2, возвращаем магазину начальное сопротивление $R_{\scriptscriptstyle \rm M}=140\,$ Ом и проведём снятие начальной кривой намагничивания для размагниченного образца. Результаты измерений приведены в таблице 3.

состояние кнопки	I, A	H, A/M	Δx , cm	ΔB , Тл	B, Тл
0	0.00	0.0			
1	0.06	10.8	3.3	0.04	0.0
2	0.12	21.6	6.1	0.08	0.1
3	0.17	30.6	6.7	0.09	0.2
4	0.19	34.2	2.1	0.03	0.2
5	0.21	37.8	3.1	0.04	0.3
6	0.23	41.4	5.5	0.07	0.4
7	0.25	45.0	4.2	0.06	0.4
8	0.27	48.6	6.9	0.09	0.5
9	0.30	54.0	7.9	0.11	0.6
10	0.35	63.0	12.6	0.17	0.8
11	0.43	77.4	25.0	0.34	1.1
12	0.62	111.6	24.5	0.33	1.5
13	0.87	156.6	13.3	0.18	1.6
14	1.20	216.0	13.2	0.18	1.8
15	1.70	306.0	10.9	0.15	2.0

Таблица 3: результаты измерений для кривой намагничивания

Построим по данным из таблицы петлю гистерезиса и кривую намагничивания, см. рис **4**

Рис. 4: петля гистерезиса и кривая намагничивания

По графику определяем значения:

- коэрцитивной силы $H_c = (54 \pm 2) \frac{\text{A}}{\text{M}}$
- ullet значение индукции насыщения $B_s = (1.89 \pm 0.05) {
 m Tr}$
- максимальное значение дифференциальной магнитной проницаемости $\mu_{\text{диф}} = \frac{1}{\mu_0} \frac{dB}{dH} = 4500 \pm 1300$

Табличные значения (взяты из справочника в пособии к лабораторным работам для технической стали):

$$H_c = 80 \frac{\text{A}}{\text{M}}, \quad B_s = 2.15 \text{ Тл}, \quad \mu_{\text{диф}} = 5000.$$

Выводы

- 1. В ходе работы были исследованы петля гистерезиса магнитомягкого материала, его начальная кривая намагничивания.
- 2. По кривой гистерезиса видно, что материал является магнитомягким, так как площадь петли мала. Также она симметрична и в целом соответствует теоретическим изображениям подобных кривых.
- 3. Различие справочных и экспериментальных данных может объясняться тем, что, скорее всего, образец изготовлен не из чисто технического железа, а из сплава его с другим металлом.