Conjuntos e Lógica Fuzzy

Aula 06 – Sistemas Baseados em Regras. Aplicação 1: Máquina de Lavar Roupas

Marcos Eduardo Valle

Sistemas Baseados em Regras Fuzzy

Sistemas baseados em regras *fuzzy* constituem uma poderosa ferramenta com aplicações em diversas áreas incluindo:

- Automação e controle.
- Previsão de séries temporais.
- Reconhecimento de padrões.
- Biomatemática.

Aspectos positivos dos sistemas baseados em regras *fuzzy* incluem:

- Capacidade de aproximação universal e forte fundamento matemático.
- Fácil interpretação e implementação por não-matemáticos e alta interoperabilidade.

Exemplo: Lava Roupas

Objetivo:

Automatizar o funcionamento de uma máquina de lavar roupas de modo a economizar água, eletricidade, detergente, etc.

Formulação e Variáveis do Problema:

Conhecido o peso aproximado das roupas e quão sujas elas estão, determinaremos a quantidade de detergente a ser aplicada.

- Variáveis independentes: Peso e sujeira.
- Variável dependente: Quantidade de detergente.

Primeiramente, definiremos conjuntos *fuzzy* para as variáveis independentes.

Fuzzificação - Peso

Em termos matemáticos, tem-se:

$$\begin{split} \varphi_{\text{Muito Leve}}(p) &= \text{Trap}(p; -20, -10, 0, 20), \\ \varphi_{\text{Leve}}(p) &= \text{Trap}(p; 10, 30, 30, 50), \\ \varphi_{\text{Pesado}}(p) &= \text{Trap}(p; 40, 65, 65, 90), \\ \varphi_{\text{Muito Pesado}}(p) &= \text{Trap}(p; 75, 90, 100, 120), \end{split}$$

em que

$$\operatorname{Trap}(x;a,m,n,b) = \max \left\{ 0, \min \left\{ 1, \left(\frac{x-a}{m-a} \right), \left(\frac{b-x}{b-n} \right) \right\} \right\}.$$

Fuzzificação - Sujeira

Marcos Eduardo Valle MS580/MT580 6 / 18

Em termos matemáticos, tem-se:

$$\begin{split} \varphi_{\text{Quase Limpo}}(\boldsymbol{s}) &= \text{Tri}(\boldsymbol{s}; -20, 0, 20), \\ \varphi_{\text{Sujo}}(\boldsymbol{s}) &= \text{Tri}(\boldsymbol{s}; 10, 30, 50), \\ \varphi_{\text{Muito Sujo}}(\boldsymbol{s}) &= \text{Tri}(\boldsymbol{s}; 40, 70, 100), \\ \varphi_{\text{Extr. Sujo}}(\boldsymbol{s}) &= \text{Tri}(\boldsymbol{s}; 80, 100, 120), \end{split}$$

em que

$$\operatorname{Tri}(x; a, m, b) = \max \left\{ 0, \min \left\{ \left(\frac{x - a}{m - a} \right), \left(\frac{b - x}{b - m} \right) \right\} \right\}.$$

Consequente: Quantidade de detergente

8/18

Em termos matemáticos, tem-se:

$$arphi_{ ext{Muito Pouco}}(q) = ext{Trap}(q; 0, 10, 10, 20), \ arphi_{ ext{Pouco}}(q) = ext{Trap}(q; 20, 30, 30, 40), \ arphi_{ ext{Moderado}}(q) = ext{Trap}(q; 40, 50, 50, 60), \ arphi_{ ext{Exagerado}}(q) = ext{Trap}(q; 60, 70, 70, 80), \ arphi_{ ext{Máximo}}(q) = ext{Trap}(q; 80, 90, 100, 120).$$

Base de Regras Fuzzy

- SE o peso é muito leve e a sujeira é quase limpo, ENTÃO a quantidade de detergente é muito pouco.
- SE o peso é muito leve e a sujeira é sujo, ENTÃO a quantidade de detergente é pouco.

:

 SE o peso é pesado e a sujeira é muito sujo, ENTÃO a quantidade de detergente é exagerado.

:

 SE o peso é muito pesado e a sujeira é extremamente sujo, ENTÃO a quantidade de detergente é máximo.

Base de Regras Fuzzy

	Quase	Sujo	Muito	Extr.
	limpo	Sujo	sujo	sujo
Muito	Muito	Pouco	Moderado	Moderado
leve	pouco	1 0000	Moderado	Woderado
Leve	Pouco	Pouco	Moderado	Exagerado
Pesado	Moderado	Moderado	Exagerado	Exagerado
Muito	Moderado	Exagerado	Máximo	Máximo
Pesado	Modorado	Lagorado	Maximo	Maximo

Observe que temos 16 regras no total.

Gráfico da Máquina de Lavar Roupas

Método de Inferência

Dado que o peso é p = 10 e o nível de sujeira é s = 15, determinamos o quantidade de detergente da seguinte forma:

Calculamos a ativação de cada regra da seguinte forma:

$$w_i = \varphi_{A_{1i}}(p) \wedge \varphi_{A_{2i}}(s), \quad \forall i = 1, \ldots, 16.$$

Por exemplo, a ativação da primeira regra é:

$$w_1 = \varphi_{\text{Muito Leve}}(p) \land \varphi_{\text{Quase Limpo}}(s) = 0.5 \land 0.25 = 0.25.$$

Analogamente, a ativação da segunda regra é:

$$w_2 = \varphi_{\mathsf{Muito Leve}}(p) \land \varphi_{\mathsf{Sujo}}(s) = 0.5 \land 0.25 = 0.25.$$

Todas as outras regras tem ativação nula, ou seja, $w_i = 0$ para i = 3, ..., 16.

O conjunto fuzzy da quantidade de detergente é determinado através da união dos conjuntos fuzzy obtidos tomando o mínimo entre w_i e a função de pertinência do consequente da regra, ou seja,

$$arphi_{ ext{Otd. Deter.}} = igcup_{i=1}^{16} \left(\mathbf{\textit{W}}_i \wedge arphi_{\mathbf{\textit{Q}}_i}
ight),$$

em que $Q_i \in \{\text{Muito Pouco}, \text{Pouco}, \text{Moderado}, \text{Exagerado}, \text{Máximo}\}.$

Este é um exemplo do método de inferência de Mamdani!

Neste exemplo,

$$\varphi_{\text{Qtd. Deter.}} = \left(0.25 \land \varphi_{\text{Muito Pouco}}\right) \cup \left(0.25 \land \varphi_{\text{Pouco}}\right),$$

cuja função de pertinência, obtida usando o máximo, é

Marcos Eduardo Valle

Defuzzificação

Finalmente, transformamos o conjunto *fuzzy* que representa a quantidade de detergente em um valor real. Esse processo é chamado defuzzificação.

Defuzzificação

O conjunto $\mathit{fuzzy}\ \varphi_{\mathsf{Qtd.\ Deter.}}$ pode ser transformado em um número real usando o **centro de área**, também chamado **centroide**, dado por

$$q^* = rac{\int qarphi_{ ext{Qtd. Deter.}}(q)dq}{\int arphi_{ ext{Qtd. Deter.}}(q)dq}.$$

No caso discreto, temos

$$q^* = rac{\sum_{j=1}^n q_j arphi_{ ext{Qtd. Deter.}}(q_j)}{\sum_{j=1}^n arphi_{ ext{Qtd. Deter.}}(q_j)}.$$

Neste exemplo, considerando o peso é p=10, o nível de sujeira é s=15 e assumindo que

$$q \in \{0, 10/3, 2 \times 10/3, \dots, 29 \times 10/3, 100\},\$$

encontramos

$$q^* = rac{\sum_{j=1}^n q_j arphi_{ ext{Qtd. Deter.}}(q_j)}{\sum_{j=1}^n arphi_{ ext{Qtd. Deter.}}(q_j)} = rac{50}{5/2} = 20.$$

Conclusão: Sistemas Baseados em Regas Fuzzy

Um sistema baseado em regras fuzzy contém três componentes:

- Dicionário, que define conjuntos fuzzy sobre as variáveis.
- Base de regras, que estabelece uma relação entre as variáveis.
- Método de inferência, usado para determinar a saída dado uma certa entrada.

Eventualmente, pode-se acrescentar uma quarta componente, chamada **defuzzificação**, que transforma uma saída *fuzzy* em um número real ou um conjunto clássico.

Muito grato pela atenção!