

Bioelectronics

Waseda University Graduate school of information, production and systems, Production system

> Professor. Takeo Miyake

Schedule

[Fundamentals]

- 1. 4/15 Basic chemical and biochemical concepts
- 4/22 Basic biophysical concepts
- 3. 4/29 Basic bioelectrochemical concepts1
- 4. 5/13 Basic bioelectrochemical concepts2

[Applications]

- 5. 5/20 Cancel (Homework1 and 2)
- 6. 5/27 Biosensors and bioelectronics1
- 7. 6/03 Cancel (Homework3 and 4)
- 8. 6/10 Student seminar
- 6/17 Biosensors and bioelectronics2
- 10. 6/24 From bioelectronics (electron) to iontronics (ion)1 11. 7/01 From bioelectronics (electron) to iontronics (ion)2
- 12. 7/ 8 Wearable applications1
- 13. 7/15 Wearable applications2
- 14. 7/22 Student seminar

ワセぽち

https://my.waseda.jp/a

Key:

Q: I can understand in

A1: English A2: Japanese A3: Both A4: Neither

ワセぽち

https://my.waseda.jp/a

Key:

Q: What is your major (or background)?

A1: Mathematics A6: Biology A2: Computer science A7: Mechanics A3: Physics

A8: The others

A4: Chemistry A5: Electronics

ワセぽち

https://my.waseda.jp/a

Key:

Q: How understanding of "bioelectronics" before today's class?

> A1: Extremely knowing A2: Very knowing A3: Somewhat knowing A4: Mostly unknowing A5: Totally unknowing

Evaluation

No examination

Reports: ca. 70% (Presentation?)

Class participation (Attendance): ca. 30%

Wearable devices

Interfacial Mismatch

Hard Electron/Hole Dry

Recording

Ion control

Human

body

Soft

Wet

The elements in human body

Homework1

体内に存在する元素を3つ選び、体内でどのように働いているかを示し、 その説明をまとめよ(図があると望ましい).

Choose three elements in our body, and the summarize as the following contents (any pages, including the figures and references).

- 1. The chosen three elements (選んだ3元素は何か?)
- 2. Why the elements are important in our body? (なぜ重要?)
- 3. How the elements work in our body? (どう働く?)
- 4. Conclusions and future perspective (結論と将来性)

5. Reference or book (参考文献、号、巻、ページ) Deadline: Apri 27 2025

✓ Upload electrical file (MS word or pdf)to this lecture in MyWaseda

Biological size and cell diversity

Basic chemical and biochemical concepts

Bioenergy

Energy

Kinetic energy

Potential energy

Bioenergy

Kinetic energy

Potential energy

Motion of molecules

Bioenergy

Bioenergy

The Gibbs energy (change: ΔG) $\Delta G = \Delta H - T\Delta S$ (at constant T)

> H: The enthalpy T: Temperature S: The Entropy

The Gibbs free energy

G = H-TS (= U+PV-TS)

Change in Gibbs energy (ΔG) at constant T

 $\Delta G = \Delta H - T \Delta S$

Spontaneous reaction: $-\Delta G$

The Gibbs free energy

$$\Delta G = \Delta H - T \Delta S$$

The 1st law of thermodynamics

Energy conservation in a closed system

<u>Change in energy in system = energy in – energy out</u>

The Gibbs free energy

$$\Delta G = \Delta H - T \Delta S$$

The 2nd law of thermodynamics

The entropy of an isolated system tends to increase.

$$\Delta S_{univ} = \Delta S_{system} + \Delta s_{surroundings} > 0$$

The Gibbs free energy

Spontaneous reaction: - ΔG

The Gibbs free energy G = H-TS = U+PV-TS

Change in Gibbs energy (ΔG) at constant T

$$\Delta G(n, P, T) = \Delta U + V\Delta P + P\Delta V - S\Delta T - T\Delta S$$

$$= (\Delta U + P\Delta V - T\Delta S) - S\Delta T + V\Delta P$$

$$\Delta U = T\Delta S - P\Delta V$$

$$= -S\Delta T + V\Delta P + (\mu_A \Delta n_A + \mu_B \Delta n_B +)$$

$$= -S\Delta T + V\Delta P + \sum_i \mu_i \Delta n_i$$
Open system

Matter

Matter

System

Matter

The Chemical potential

$$\Delta G(n,\,P,\,T) = -\,S\Delta T + V\Delta P + \sum_{i} _{\mu_i} \! \Delta n_i$$

P and T, Constant

$$\Delta G = \sum_{i} \mu_{i} \Delta n_{i} \qquad \longrightarrow \qquad \left| \mu_{i} = \left(\frac{\Delta G}{\Delta n_{i}} \right)_{P,T,i} \right|$$

$$\Delta G = \sum_{i} \mu_{i} \Delta n_{i}$$

Chemical potential in the liquid

$$\mu_i(I) = \mu_i^{\emptyset,ideal} + RT \ln a_i$$

The elements of human body

Chemical bonds and interaction

Chemical energy of Glucose

Why ATP Adverse (A) Prospidate groups Glacose Glacose Glacose Glacose Formation Glacose Glacose Glacose Formation Glacose Glacose Glacose Formation Glacose Glacose Glacose Formation Glacose Glacose Formation Glacose Glacose Formation Glacose Glacose Glacose Formation Glacose Glacose Glacose Formation Glacose Glacose Glacose Formation Addresses Glacose Formation Glacose Glacose Glacose Formation Glacose Glacose Glacose Formation Addresses Glacose Formation Glacose Glacose Glacose Formation Glacose Glacose Glacose Formation Addresses Glacose Glacose Glacose Formation Glacose Glacose Glacose Glacose ATP⁴-{aq} + H₂O(I) → ADP²-{aq} + P₁²-{aq} ADP²-{aq} Formation ADP²-{aq} Formation ADP²-{aq} ADP²-{aq} Formation ADP²-{aq} Formation ADP²-{aq} Formation ADP²-{aq} ADP²-{aq} Formation ADP²-{aq} Formation

Use ATP to drive endergonic reactions

Enzyme increase the rates of reactions

Water properties

 $NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq) (0.09eV (-9 kJ/mol))$

I conic bond: Na⁺CI⁻ The feet beard as a stressor bearen a planting of the conic bearing the state of the conic bear

NaCl(s)+aq $\Delta H_{sol} = 4 \text{ KJ/mol}$

Ionic mobilities

	$u/(10^{-8} \mathrm{m^2 s^{-1} V^{-1}})$		$u/(10^{-8} \mathrm{m^2 s^{-1} V^{-1}})$	
H*	36.23	OH-	20.64	
Na ⁺	5.19	Cl-	7.91	
K ⁺	7.62	Br ⁻	8.09	
Zn ²⁺	5.47	SO ₄ ²⁻	8.29	

Diffusion model (Einstein-Stokes equation)

Ionic mobilities

H+	$u/(10^{-8} \mathrm{m^2 s^{-1} V^{-1}})$	$u/(10^{-8} \mathrm{m^2 s^{-1} V^{-1}})$	
	36.23	OH-	20.64
Na ⁺	5.19	Cl-	7.91
K ⁺	7.62	Br ⁻	8.09
Zn ²⁺	5.47	SO ₄ -	8.29

Diffusion model (Einstein-Stokes equation)

Dq
$\mu_i - \frac{1}{k_B T}$

TABLE 1.6	Con	ductivity and Diffusion	n Coefficients of Selec	rted lone at	Infinite	Dilution in Water at 25	PC
Cation	Tall.	à, S · cm² · mal · ³	$D \times 10^5$, cm ² · a^{-1}	Anien	Tel	$\lambda_* B \cdot cm^2 \cdot msl^{-1}$	$D \times 10^{9}, cm^{2} \cdot a^{-}$
и-	1	349.6	9.30	OH-	1	197.6	5.35
Li*	1	36.7	1.00	P-	1	55.4	1.47
Na*	1	50.1	1.33	CI-	1	76.3	2.63
K.	1	73.5	1.95	NO _a -	1	71.4	1.90
Ca2+	2	119.0	6.79	00,	1	67.3	1.79
Cult.	2	107.2	6.71	80,8-	2	160.0	1.06
ZaZ+	2	105.6	0.70	COI2-	2	139.6	0.92
Oi	-	-	2.26	HSO,"	1	50.0	1.33
H ₂ O	-	-	2.44	HCQ ₂ -1	1	41.5	1.11

Ionic mobilities

	$u/(10^{-8} \mathrm{m^2 s^{-1} V^{-1}})$		$u/(10^{-8} \mathrm{m^2 s^{-1} V^{-1}})$	
H+	36.23	OH-	20.64	
Na ⁺	5.19	Cl-	7.91	
K ⁺	7.62	Br ⁻	8.09	
Zn ²⁺	5.47	SO ₄ ²⁻	8.29	

Grotthuss mechanism

pH, H⁺ and OH⁻

$$\begin{split} pH + pOH &= 14 \\ \\ pH &= -log_{10}a_{H^+} = log_{10}\frac{1}{a_{H^+}} \\ E &= E^0 + \frac{RT}{F}ln(a_{H^+}) \\ &= E^0 - \frac{2.303RT}{F}pH \\ \\ pOH &= -log_{10}a_{OH^-} = log_{10}\frac{1}{a_{OH^-}} \end{split}$$

Buffer solution –constant pH-

Henderson-Hasselbalch equation

$$pH = pK_a + log_{10} \left(\frac{[A^-]}{[HA]} \right)$$

$$H_2PO_4^- = 0.0392 \text{ M}$$
 $HPO_4^{-2} = 0.0608 \text{ M}$
 $0.1 = [H_2PO_4^-] + [HPO_4^{-2}]$