Supplementary file 1 A: Model equations

Reaction nr	reaction	Function	Present in model(s)
1 PTS_Glc Glucose proton symporter	GLC_Ext + PEP -> G6P + PYR; FBP Pi_Int	$ PTS_Glc \cdot \frac{Pi_Int}{Pi_Int + kaPi_Int_PTS_Glc} \cdot \frac{kiFBP_PTS_Glc}{FBP + kiFBP_PTS_Glc} \cdot \frac{GLC_Ext}{kmGLC_PTS_Glc} \cdot \frac{PEP}{kmGLC_PTS_Glc} \cdot \frac{GLC_Ext}{kmGLC_PTS_Glc} \cdot \frac{PEP}{kmGLC_PTS_Glc} \cdot \frac{GLC_Ext}{kmGLC_PTS_Glc} \cdot \frac{PEP}{kmGC_PTS_Glc} \cdot \frac{GLC_Ext}{kmGLC_PTS_Glc} \cdot \frac{PEP}{kmGC_PTS_Glc} \cdot \frac{GLC_Ext}{kmGLC_PTS_Glc} \cdot \frac{PEP}{kmGCP_PTS_Glc} \cdot \frac{GLC_Ext}{kmGCP_PTS_Glc} \cdot \frac{GLC_Ext}{kmGCP_PTS_Glc} \cdot \frac{PEP}{kmGCP_PTS_Glc} \cdot \frac{GLC_Ext}{kmGCP_PTS_Glc} \cdot \frac{GLC_Ext}{kmGCP_PTS_Glc} \cdot \frac{GLC_Ext}{kmGCP_PTS_Glc} \cdot \frac{GLC_Ext}{kmGCP_PTS_Glc} \cdot \frac{PEP}{kmGCP_PTS_Glc} \cdot \frac{GLC_Ext}{kmGCP_PTS_Glc} \cdot \frac{GLC_Ext}{kmGCP_PTS$	1,2,3,4,5,6
2 PGI Glucose-6- phosphate isomerase	G6P = F6P	PGI · (kcat_PGI · G6P kcat_PGI F6P kmG6P_PGI kmG6P_PGI kmG6P_PGI kmG6P_PGI kmG6P_PGI kmG6P_PGI kmG6P_PGI kmF6P_PGI k	1,2,3,4,5,6
3 PFK Phosphofructokinas e	F6P + ATP -> FBP + ADP	$\frac{\text{PFK \cdot kcat_PFK \cdot } \frac{\text{ATP}}{\text{kmF6P_PFK}} \cdot \frac{\text{F6P}}{\text{kmATP_PFK}}}{\left(1 + \frac{\text{ATP}}{\text{kmF6P_PFK}}\right) \cdot \left(1 + \frac{\text{ADP}}{\text{kmF6P_PFK}}\right) \cdot \left(1 + \frac{\text{FBP}}{\text{kmADP_PFK}}\right) \cdot \left(1 + \frac{\text{FBP}}{\text{kmADP_PFK}}\right) \cdot 1}$	1,2,3,4,5,6
4 FBA Fructose- bisphosphate aldolase	GAP + Pi_Int + NAD = DGP + NADH	FBA · (kcat_FBA · FBP kmFBP_FBA · kcat_FBA · kmFBP_FBA) 1 + FBP kmFBP_FBA + GAP kmGAP_FBA + (GAP kmGAP_FBA) 2	1,2,3,4,5,6
5 GAPDH Glyceraldehyde-3- phosphate dehydrogenase	DGP + ADP = PEP + ATP		

6 ENO Enolase	PEP + ADP -> PYR + ATP; FBP Pi_Int	ENO · (kcat_ENO · ·	1,2,3,4,5,6
		$\left(1 + \frac{DGP}{kmDGP_ENO}\right) \cdot \left(1 + \frac{ADP}{kmADP_ENO}\right) + \left(1 + \frac{PEP}{kmPEP_ENO}\right) \cdot \left(1 + \frac{ATP}{kmATP_ENO}\right) - 1$	
7 PYK Pyruvate kinase	PYR + CoA + NAD = AcCoA + NADH; GAP		1,2,3,4,5,6
8 LDH Lactate dehydrogenase	PYR + NADH -> LAC + NAD; FBP Pi_Int* O2	$\frac{\text{LDH} \cdot \text{FBP}}{\text{FBP} + \text{kaFBP_LDH}} \cdot \frac{\text{kiPi_Int_LDH}}{\text{O2} + \text{kiO2_LDH}} \cdot \frac{\text{kiO2_LDH}}{\text{kcat_LDH}} \cdot \frac{\text{NADH}}{\text{kmPYR_LDH}} \cdot \frac{\text{PYR}}{\text{kmPYR_LDH}} \cdot \frac{\text{NADH}}{\text{kmPYR_LDH}} \cdot \frac{\text{PYR}}{\text{kmNADH_LDH}} \cdot \frac{\text{NADH}}{\text{kmPYR_LDH}} \cdot \frac{\text{PYR}}{\text{kmNADH_LDH}} \cdot \frac{\text{NADH}}{\text{kmNADH_LDH}} \cdot \text$	1*,2*,3*,4*,5, 6
9 PDH Pyruvate dehydrogenase	PYR + CoA + NAD = AcCoA + NADH; GAP	$\frac{\text{PDH} \cdot \frac{\text{kiGAP_PDH}}{\text{GAP} + \text{kiGAP_PDH}} \cdot \left(\text{kcat_PDH} \cdot \frac{\text{NAD}}{\text{kmPYR_PDH}} \cdot \frac{\text{PYR}}{\text{kmCoA_PDH}} \cdot \frac{\text{CoA}}{\text{kmNAD_PDH}} \cdot \frac{\text{kcat_PDH}}{\text{keq_PDH}} \cdot \frac{\text{AcCoA}}{\text{kmPYR_PDH}} \cdot \frac{\text{NADH}}{\text{kmCoA_PDH}} \right)}{\left(1 + \frac{\text{NAD}}{\text{kmPYR_PDH}}\right) \cdot \left(1 + \frac{\text{CoA}}{\text{kmNAD_PDH}}\right) + \left(1 + \frac{\text{AcCoA}}{\text{kmAcCoA_PDH}}\right) \cdot \left(1 + \frac{\text{NADH}}{\text{kmNADH_PDH}}\right) - 1}$	1,2,3,4,5,6
10 PTA_ACK Phosphotransacetyl	AcCoA + ADP -> ACE + ATP + CoA	PTA_ACK ·kcat_PTA_ACK · AcCoA_ PTA_ACK · kmADP_PTA_ACK	1,2,3,4,5,6
ase			
11 ATPase	ATP -> ADP + Pi_Int	ATPase ·kcat_ATPase · $ \frac{\left(\frac{\text{ATP}}{\text{kmATP_ATPase}}\right)^{\text{nATPase}}}{\left(\frac{\text{ATP}}{\text{kmATP_ATPase}}\right)^{\text{nATPase}}} + 1 $	2,4,6
12 NOXE NADH oxidase	O2 + 2 * NADH -> 2 * NAD	$NOXE \cdot kcat_NOXE \cdot \left(\frac{O2}{kmNADH_NOXE}\right)^2 \cdot \frac{NADH}{kmO2_NOXE}$	3,4,6
		$\left(1 + \frac{O2}{\text{kmNADH_NOXE}}\right)^{2} \cdot \left(1 + \frac{\text{NADH}}{\text{kmO2_NOXE}}\right) + 1 + \frac{\text{NAD}}{\text{kmNAD_NOXE}} - 1$	

*Models marked with an asterisk contain the function for Lactate Dehydrogenase without the oxygen inhibition term	kiO2_LHD O2+kiO2_LDH

Supplementary file 1 B comparison of model additions

Figure 1 Zoomed in version of comparison of 100 parameter sets for the model with and without additions. Outliers on the top were removed to better show overall performance of the models.

Figure 2 Correlation of the parameter sets for model 3 that includes NoxE for the best 10 performing parameter sets.

Parameter distributions for each of the 6 models over 100 parameter sets as well as heatmaps showing the correlation between parameters over all 100 fittings for each of the six model configurations are available upon request.

Supplementary file 1 C Simulating 40 independent samples.

Metabolite concentrations measured and predicted using a 1000x sampling.

Supplementary file 1 D Metabolomics analysis.

Figure 3 Local sensitivity analysis using 1000x sampling from the measurement distribution.

Figure 4 Global sensitivity analysis using a 100,000 Latin Hypercube sampling withing the parameter search range.

Figure 5 Correlation analysis of control coefficients control over flux through glycolysis using a 100,000 Latin Hypercube sampling.