- 1、地址 x.x.x.0/24, 子网掩码 255.255.224.0, 2^8 个区间(不难但是会被阴)
- 2、解释电路交换与分组交换、无连接和有连接、可靠字节流和可靠信息流的区别。

电路交换 (circuit switching) ₽

直接利用可切换的物理通信线路,连接通信双方。↩

特点:在发送数据前,必须建立起点到点的物理通路,建立物理通路时间较长,数据传送延迟较短, ϵ

分为: 空分电路交换, 时分电路交换~

报文交换 (message switching) ₽

信息以报文(逻辑上完整的信息段)为单位进行存储转发。~

特点: 1 线路利用率高; 2 要求中间结点(网络通信设备)缓冲大; 3 延迟时间长。↩

分组交换 (packet switching) ₽

信息以分组为单位进行存储转发。源结点把报文分为分组,在中间结点存储转发,目的结点 把分组合成报文。↩

分组:比报文还小的信息段,可定长,也可变长。↩

特点: 1 线路利用率高; 2 结点存储器利用率高; 3 延迟短; 4 额外信息增加。↩

分为:数据报(datagram)和虚电路(virtual circuit)₽

数据报:每个分组均带有全称网络地址(源、目的),可走不同的路径。↩

虚电路:分三个阶段↓

- 建立:发带有全称网络地址的呼叫分组,建立虚电路;↓
- 传输:沿建立好的虚电路传输数据;↓
- 拆除:拆除虚电路。↓

结论: ↩

- 电路交换适用于实时信息和模拟信号传送,在线路带宽比较低的情况下使用比较经济;√
- 报文交换适用于线路带宽比较高的情况,可靠灵活,但延迟大; ↩
- 分组交换缩短了延迟,也能满足一般的实时信息传送。在高带宽的通信中更为经济、合
- 理、可靠。是目前公认较(最)好的一种交换技术。↩
- 3、回退 N 帧协议,序号 0~7,参照往年题
- 4、网络 A——B——C,AB 间的数据包大小 P1,链路 N1 个,每个延迟 D1,数据传输速率 B1。BC 间的数据包大小 P2(P1>P2 且为 P2 的倍数),链路 N2 个,每个延迟 D2,数据传输 速率 B2。假设数据包需要重组,没有网络重构,处理时间不计。从 A 发送 L 大小的数据到 C(L>P1 且为 P1 的倍数),分组交换。

问: B1>=B2 和 B1<B2 时,发送完毕所需的时间。

5、设以太网中的 A、B 主机通过 10Mbit/s 的链路连接到交换机,每条链路的传播延迟均为 20us,交换机接受完一个分组为 35us 后转发该分组,计算 A 向 B 发送一个长度为 10000bit 的分组时,从 A 开始发送至 B 接收到该分组所需的总时间。

解:

发送时延: 10000bit÷10000000bit/s=0.001s=1000 μs

传播时延: 20 μs

交换机接收分组时间: 35 μ s 交换机发送时延: 1000 μ s

传播时延是 20μs

总时间=总时延

6、拥塞控制算法,初始阈值 4KB, MSS=1KB。第8章传输层

	拥塞窗口	阈值	发送序号
收到 3K 的 ack 后	4 KB	4KB	4、5、6、7
全部收到	5KB	4KB	8、9、10、11、12
全部收到	6KB	4KB	13、14、15、16、17、18
第一个数据包超时	1KB	ЗКВ	13

拥塞控制算法,初始阈值 32KB, MSS=1KB。第8章传输层

	拥塞窗口	阈值
收到 10K 的 ack 后	11 KB	32KB
收到 32K 的 ack 后	32 KB	32 KB
第一个数据包超时前(已知)	40 KB	32 KB
第一个数据包超时后	1 KB	20 KB

TCP 使用慢启动算法,初始阀值 3KB, MSS=1KB。假设发送方不断发送数据包,从 0 开始编号。

事件	拥塞窗口大小	阀值	此时发送的包
收到编号为2的数据包的确认	ЗКВ	ЗКВ	(1)3、4、5
收到(1)中所有包的确认	4KB	ЗКВ	(2)6、7、8
收到(2)中所有包的确认	5KB	ЗКВ	(3)9、10、11
(3)中的第一个包超时	1KB	2.5KB	9

- **7**、给了一个路由器的表项,画出拓扑结构,要求标明路由器的端口和 ip 地址、IP 端(含子 网掩码)。跟往年题差不多。
- 8、给一个 URL: http://info.tsinghua.edu.cn:80/index.jsp
- 1、说出这个 URL 各个组成部分
- 2、一般来说,在浏览器里输入 http://info.tsinghua.edu.cn:80/index.jsp 跟输入

http://166.111.4.98:80/index.jsp 看到的是一样的。

- (1) 如果输前者能打开,后者打不开,这可能是什么原因?
- (2) 如果输前者打不开,后者能打开,这可能是什么原因?
- 1、协议://主机名(服务器): 端口/路径?查询(询问)
- 2、(1)域名打的开说明域名没问题,域名对应地址打不开说明域名对应的主机空间有问题。
- (2)通过域名网址打不开某网页,而用 IP 地址可以,域名解析服务器有问题,需重新设置。

9、IPv6 地址如 8888:0000:0000:0000:0000:1111:0000。

略写后是8888::1111:0。(只能使用一次双冒号)

10、一个1300字节的 IP 包,包头长度为20字节,进入一个MTU为500的网络中。

1,分成三段,偏移量为0,460,920;

2,分成三段,偏移量为0,480,960;

3,分成三段,偏移量为0,500,1000;

4,都不对

是 1,因为 20TCP header,20IP header。。。

11、已知一个 B 类 IP 地址为 170.13.10.25, 子网掩码为 255.255.248.0, 问该网络的可用 ip 有哪些,子网掩码有多少位。

ip 地址转换成二进制为 10101010.00001101.00001010.00011001

子网掩码转换成二进制为 11111111.11111111.11111000.00000000

与运算结果为 10101010.00001101.00001000.00000000

转换成十进制就是 170.13.8.0

所以该网络的可用 ip 地址范围为 170.13.8.1----170.13.15.254, 子网掩码有 21 位!

12、子网掩码 255.255.248.0,可用最大 IP 数是多少? 一共 11 位,有 2048 个地址,要不要减去全 0 和全 1 呢?

第 5 章的 28 题: 子网掩码 255.255.240.0, 问最多能容纳多少主机?

答案是: The mask is 20 bits long, so the network part is 20 bits. The remaining 12bits are for the host, so 4096 host addresses exist.

13、(1)以太网和无线局域网各提供什么服务(无确认的无连接,有确认的无连接,有确认的有连接)

都是无连接的,无线局域网 MACA 无确认, MACAW 有确认;以太网无确认。

面向连接服务的可以是电路交换,也可以是分组交换。

在数据链路层,HDLC 和 PPP 协议是面向连接的,而以太网使用的 CSMA/CD 则是无连接的。在网络层,X.25 协议是面向连接的,而 IP 协议则是无连接的。

在运输层,TCP 是面向连接的,而 UDP 则是无连接的。

(2)一个分组分成 10 帧发,每帧正确传输概率 p=80%,若不对帧进行确认,平均要发送几次报文,几次帧;若对每帧进行确认平均发几次帧。

答:

不对帧确认时,分组 1 次发送正确的概率为 p^{10} ,第 k 次才发送正确的概率为 $(1-p^{10})^{k-1}p^{10}$ 。 平均发送报文次数= $(1*(1-p^{10})^0+2*(1-p^{10})^1+3*(1-p^{10})^2+.....)p^{10}=(1/(p^{10})^2)*p^{10}=p^{-10}=9.3$ 。 平均发送帧次数= $10*p^{-10}=93$ 次。

对帧确认时, 每帧发送第 k 次才正确的概率为(1-p)^{k-1}p,

每帧平均发送次数=(1*(1-p)0+2*(1-p)1+3*(1-p)2+.....)p=1/p=1.25

平均发送帧次数 = 10*1.25 = 12.5

发送报文次数1次。

(3) 若 p=99%,再计算(2),结合 end-to-end argument,讨论为什么以太网和无线局域网提供不同的服务。平均发送报文次数 = p^{-10} = 1.1。平均发送帧次数=10* p^{-10} = 11 次。对帧确认时,平均发送帧次数 = 10* 1/p = 10.1。发送报文次数 1 次。

14、一个报文为: header a b c d e f g h i j k 第7章 分片

其中 header 为(23,0,1),23 为序号,0 为段偏移,1 为截止标记。该报文进入另一个网络被分成三个报文发送,分别为

header1 a b c d

header2 i j k

header3 e f g h

这三个报文按上述顺序到达,请写出三个 header 各是什么

(23, 0, 0) (23, 4, 0) (23, 7, 1)

15、路由器为:

166.111.68.0	255.255.252.0	Α
166.111.68.0	255.255.255.0	В
59.66.130.0	255.255.255.252	С
59.66.131.0	255.255.255.128	D
0.0.0.0	0.0.0.0	Ε

求 166.111.68.X,166.111.69.y,59.66.130.192,59.66.131.78 的出口