

Universidade Federal de Roraima Álgebra Linear I - Lista de exercícios Prof. Jairo S. Araujo Costa

Data:07-10/12/2020 MB202 Turma 1

Questão 1. Sejam T_1 e T_2 isometrias num espaço vetorial (V, \langle , \rangle) . Mostre que $T_1 \circ T_2$ e T_1^{-1} também o são.

Questão 2. Seja $T\in \mathcal{L}(V,V)$ um automorfismo. Mostre que se T é auto-adjunto então T^{-1} também o é.

Questão 3. Seja $T \in \mathcal{L}(V, V)$ um operador auto-adjunto. Dados $v \in V$ e $n \in \mathbb{N}$, mostre que $T^n(v) = \mathbf{0}$ implica $T(v) = \mathbf{0}$.

Questão 4. Sejam (V, \langle , \rangle) um espaço vetorial e $T \in \mathcal{L}(V, V)$ um operador que admite adjunto T^* . Mostre que, se $T^* \circ T = \mathbf{0}$, então $T = \mathbf{0}$.

Questão 5. Sejam (V, \langle , \rangle) um espaço vetorial e $T \in \mathcal{L}(V, V)$ um operador simétrico. Mostre que $(Nuc\ T)^{\perp} = Im\ T$

Questão 6. Um subespaço W de um espaço vetorial V é dito ser invariante pelo operador $T:V\to V$ quando $T(W)\subset W$. Isto é, $T(v)\in W$, para todo $v\in W$. Mostre que:

- a) Se λ é um autovalor do operador $T: V \to V$, então o subespaço $V_{\lambda} = \{v \in V; T(v) = \lambda v\}$ é invariante por T.
- b) Se o subespaço $W\subset V$ é invariante pelo operador $T:V\to V,$ então W^\perp é invariante por $T^*.$

Questão 7. Prove que um operador T é inversível se, e somente se, não possui autovalor igual a zero. No caso afirmativo, prove que os autovetores de T e T^{-1} coincidem. E os autovalores?

Questão 8. Suponha que $v \in V$ seja autovetor dos operadores $T_1, T_2 \in \mathcal{L}(V, V)$, ao mesmo tempo com autovalores λ_1 e λ_2 , respectivamente. Encontre autovalores e autovetores de $T_1 + T_2$ e $T_1 \circ T_2$.

Questão 9. Verifique quais dos seguintes operadores são diagonalizáveis. Justifique.

a)
$$T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$$
 dado por $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & b+c \\ 2c & a \end{bmatrix}$

b) $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ definido por $T(at^3 + bt^2 + ct + d) = t^3 + t^2 + (c+d)t + 2a$

Questão 10. Exercícios 10.22 e 10.23 (página 154) do livro "Álgebra Linear", disponível em: https://sites.icmc.usp.br/szani/alglin.pdf.