CSCI-GA.2560-001, Artificial Intelligence

April 18, 2022

Solutions to Problem 1 of Homework 10 (5 Points)

Name: Anav Prasad (ap7152) Due: 5PM on Monday, April 18

Collaborators:

1. [5 pts.] Suppose that a classifier computes a numeric score to an item based on the classifier's "confidence" that the item is a member of the target category. In using the classifier, you set a threshold, accept the items whose score is higher than the threshold, and reject items whose score is lower. For instance, suppose you have the following training set and outputs for a binary classifier:

Name	a	b	c	d	e	f	g	h	i	j
Label	Т	Т	F	Т	F	Т	Т	F	F	F
Score	.95	.92	.85	.84	.81	.75	.71	.69	.62	.56
Name	k	1	m	n	О	p	q	r	s	t
Label	F	F	${ m T}$	F	Т	F	F	F	Т	F
Score	.51	.48	.43	.42	.32	.25	.21	.15	.08	.01

If you then set the threshold at 0.50, the classifier will accept items a-k and reject items l-t. However only the 'T' items should have been accepted.

Compute precision, recall, and F-score for the following thresholds: 0.9, 0.8, 0.7, 0.4, 0.2.

Solution:

For each threshold:

• threshold = 0.9:

True Positives
$$(TP) = 2$$

False Positives (FP) =
$$0$$

True Negatives
$$(TN) = 12$$

False Negatives
$$(FN) = 6$$

Therefore,

$$Precision = \frac{TP}{TP + FP}$$
$$= \frac{2}{2+0}$$

$$\therefore$$
 Precision = 1.0

Recall =
$$\frac{TP}{TP + FN}$$

= $\frac{2}{2+6}$
∴ Recall = $\frac{1}{4} = \mathbf{0.25}$

Thus,

$$\begin{aligned} \text{F-Score} &= \frac{2 \cdot Precision \cdot Recall}{Precision + Recall} \\ &= \frac{2 \cdot 1.0 \cdot (1/4)}{1.0 + (1/4)} \\ &= \frac{1/2}{5/4} \\ &\therefore \text{F-Score} = \frac{2}{5} = \textbf{0.4} \end{aligned}$$

• threshold = 0.8:

Therefore,

$$\begin{aligned} \text{Precision} &= \frac{TP}{TP + FP} \\ &= \frac{3}{3+2} \\ \therefore \textbf{Precision} &= \frac{3}{5} = \textbf{0.6} \\ \text{Recall} &= \frac{TP}{TP + FN} \\ &= \frac{3}{3+5} \\ \therefore \textbf{Recall} &= \frac{3}{8} = \textbf{0.375} \end{aligned}$$

Thus,

F-Score
$$= \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$
$$= \frac{2 \cdot (3/5) \cdot (3/8)}{3/5 + 3/8}$$
$$= \frac{9/20}{39/40}$$
$$\therefore \text{ F-Score} = \frac{6}{13} \approx \textbf{0.462}$$

• threshold = 0.7:

Therefore,

$$\begin{aligned} \text{Precision} &= \frac{TP}{TP + FP} \\ &= \frac{5}{5+2} \\ \therefore \textbf{Precision} &= \frac{5}{7} \approx \textbf{0.714} \\ \text{Recall} &= \frac{TP}{TP + FN} \\ &= \frac{5}{5+3} \\ \therefore \textbf{Recall} &= \frac{5}{8} = \textbf{0.625} \end{aligned}$$

Thus,

$$\begin{aligned} \text{F-Score} &= \frac{2 \cdot Precision \cdot Recall}{Precision + Recall} \\ &= \frac{2 \cdot (5/7) \cdot (5/8)}{5/7 + 5/8} \\ &= \frac{25/28}{75/56} \\ \therefore \text{F-Score} &= \frac{2}{3} \approx \textbf{0.667} \end{aligned}$$

• threshold = 0.4:

Therefore,

Precision =
$$\frac{TP}{TP + FP}$$

= $\frac{6}{6+8}$
 \therefore **Precision** = $\frac{3}{7} \approx \mathbf{0.429}$

$$\begin{aligned} \operatorname{Recall} &= \frac{TP}{TP + FN} \\ &= \frac{6}{6+2} \\ \therefore \operatorname{Recall} &= \frac{3}{4} = \mathbf{0.75} \end{aligned}$$

Thus,

F-Score =
$$\frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$
$$= \frac{2 \cdot (3/7) \cdot (3/4)}{3/7 + 3/4}$$
$$= \frac{9/14}{33/28}$$
$$\therefore \text{ F-Score} = \frac{6}{11} \approx \textbf{0.545}$$

• threshold = 0.2:

True Positives
$$(TP) = 7$$

False Positives $(FP) = 10$
True Negatives $(TN) = 2$
False Negatives $(FN) = 1$

Therefore,

Precision =
$$\frac{TP}{TP + FP}$$

$$= \frac{7}{7 + 10}$$

$$\therefore \mathbf{Precision} = \frac{7}{17} \approx \mathbf{0.412}$$

$$\mathbf{Recall} = \frac{TP}{TP + FN}$$

$$= \frac{7}{7 + 1}$$

$$\therefore \mathbf{Recall} = \frac{7}{8} = \mathbf{0.875}$$

$$\mathbf{F-Score} = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

$$= \frac{2 \cdot (7/17) \cdot (7/8)}{7/17 + 7/8}$$

$$= \frac{49/68}{175/136}$$

$$\therefore \mathbf{F-Score} = \frac{14}{25} = \mathbf{0.56}$$

CSCI-GA.2560-001, Artificial Intelligence

April 18, 2022

Solutions to Problem 2 of Homework 10 (5 Points)

Name: Anav Prasad (ap7152) Due: 5PM on Monday, April 18

Collaborators:

2. [5 pts.] Using the following training set with k-nearest neighbors

A 1	A2	\mathbf{C}
3	3	A
4	5	В
2	2	A
10	9	A
14	12	В
17	19	В
8	13	В

Indicate the predicted label for each element of the following test set, also provide precision and recall.

A1	A2	\mathbf{C}
3	6	A
20	5	В
6	6	A
19	9	A
17	19	В

Use Euclidean distance squared, unit votes, and K = 3.

Solution:

For precision and recall measurement, let A represent the "positive" classification and B represent the "negative" classification.

Classification of the test set elements:

Computing the euclidean distance squared from this test element to every other element:

A 1	A2	Distance	Vote
3	3	9	A
4	5	2	В
2	2	17	A
10	9	58	A
14	12	157	В
17	19	365	В
8	13	74	В

Counting the votes of the K nearest neighbors:

Class	Vote
A	2
В	1

Thus, the kNN classification for this element is A.

$\mathbf{A1}$	$\mathbf{A2}$	\mathbf{C}
20	5	В

Computing the euclidean distance squared from this test element to every other element:

A 1	A2	Distance	Vote
3	3	293	A
4	5	256	В
2	2	333	A
10	9	116	A
14	12	85	В
17	19	205	В
8	13	208	В

Counting the votes of the K nearest neighbors:

Class	Vote
A	1
В	2

Thus, the kNN classification for this element is B.

•	A 1	A2	\mathbf{C}
•	6	6	A

Computing the euclidean distance squared from this test element to every other element:

A 1	A2	Distance	Vote
3	3	18	A
4	5	5	В
2	2	32	A
10	9	25	A
14	12	100	В
17	19	290	В
8	13	53	В

Counting the votes of the K nearest neighbors:

Class	Vote
A	2
В	1

Thus, the kNN classification for this element is A.

	$\mathbf{A1}$	$\mathbf{A2}$	\mathbf{C}
•	19	9	A

Computing the euclidean distance squared from this test element to every other element:

A 1	A2	Distance	Vote
3	3	292	A
4	5	241	В
2	2	338	A
10	9	81	A
14	12	34	В
17	19	104	В
8	13	137	В

Counting the votes of the K nearest neighbors:

Class	Vote
A	1
В	2

Thus, the kNN classification for this element is B.

•	A 1	A2	\mathbf{C}
	17	19	В

Computing the euclidean distance squared from this test element to every other element:

A 1	A2	Distance	Vote
3	3	452	A
4	5	365	В
2	2	514	A
10	9	149	A
14	12	58	В
17	19	0	В
8	13	117	В

Counting the votes of the K nearest neighbors:

	_
Class	Vote
A	0
В	3

Thus, the kNN classification for this element is B.

Therefore, the compilated results of kNN on the test set are as follows:

A1	A2	Given Class	Predicted Class
3	6	A	A
20	5	В	В
6	6	A	A
19	9	A	В
17	19	В	В

Therefore,

True Positives
$$(TP) = 2$$

False Positives
$$(FP) = 0$$

True Negatives
$$(TN) = 2$$

False Negatives
$$(FN) = 1$$

Thus,

$$\begin{aligned} \text{Precision} &= \frac{TP}{TP + FP} \\ \therefore \textbf{Precision} &= \frac{2}{2+0} = \textbf{1.0} \\ \text{Recall} &= \frac{TP}{TP + FN} \\ &= \frac{2}{2+1} \\ \therefore \textbf{Recall} &= \frac{2}{3} \approx \textbf{0.667} \end{aligned}$$