物理化学吸附分析仪

所属学校:重庆大学

仪器基本信息						仪器编号		09031475				
						仪器英文名称	R Auto	Auto – Physisorption Analyzer				
						所属校内单位	<u> </u>	材料科学与工程学院				
						放置地点	ВД	B区实验大楼粉体实验室				
						仪器负责人	李新	李新禄制道		国别	美国	
						制造厂商		麦克仪器公司				
						规格型号		ASAP 2020 M + C				
						仪器原值				置日期 2008.12		
仪器性能信	主要技术	2 个脱气站和 1 个分析站高真空系统中分子涡轮泵的真空度 < 10E ~ 9mmHg;分析系统的真空度;微孔区段分辨率:0.2Å;绝对压力 10E ~ 5mmHg;比表面积:0.0005m²/g 无上限;孔径分析范										
	指标	度: 微孔区较分辨率: 0.2A; 绝对压力 10E~3mmrig; 比表面积: 0.0003m/g 尤上限; 孔径分析泡 围: 3.5A~5000A; 孔体积最小至 0.0001 cc/g。										
能信息	主要功能	该仪器是高精度的比表面积、孔隙度和化学吸附分析的一体机;具有6个物理吸附进气口和6 个化学吸附进气口,可提供氮气,氩气,二氧化碳,氧气,氮气,一氧化碳和氢气物理吸附及化学										
尽	及特色	吸附分析。										
	主要研究 方向	主要应用于活性炭和多孔纳米金属氧化物的比表面积和孔结构的方面的研究。										
相关科研信息	在研或曾 承担的重 大项目	教育部博士点新教师基金;重庆大学中央高校基本科研业务费自然科学基金类重大项目。										
	学术论文	近三年利用该仪器作为主要科研手段发表的代表性论文:										
		序号	作者	ŕ	论文是	近 目	期刊	期刊名称		卷(期)	起止页	
		1	李新	禄!	An urchin – like graphite – based anode material for lithium ion batteries		e Electrochi	Electrochimica Acta		55(9)	5519 – 5522	
		2	李新	禄 perform	Effect of carbon nanotubes on the anode performance of natural graphite for lithium ion batteries			•		71(4)	457 – 459	
	专利或奖项	— ₹	中多层	 是石墨烯的	 内制备方法(专利号 200910	191895.0)	0				
#	收费标准	联盟		400 元/样(介孔)500 元/样品(全孔)								
共享服务信息		联盟内		200 元/样(介孔)400 元/样品(全孔)								
	联系信息	联系人		李新禄	李新禄 联系电话 65127940 电子邮件 lixinlu@cqu. e				qu. edu.	. cn		
息	开放时间 提前预约											