SCHOOL OF COMPUTER ENGINEERING KALINGA INSTITUTE OF INDUSTRIAL TECHNOLOGY **DEEMED TO BE UNIVERSITY BHUBANESWAR**

Course: Operating System (Credits 3) (L-T-P) (3-0-0)

Course Code: CS20002 Session: Spring, 2025

Course Outcomes:

- 1. Able to understand the difference between different types of modern operating systems, virtual machines and their structure of implementation and applications.
- 2. Able to understand the difference between process & thread, issues in the scheduling of user-level processes/threads.
- 3. Able to understand and analyze the use of locks, semaphores, monitors for synchronizing multiprogramming / multithreaded systems and design solutions for multithreaded programs.
- 4. Able to understand the concepts of deadlock in operating systems and how they can be managed/avoided.
- 5. Able to understand the design and management concepts along with issues and challenges of main memory, virtual memory, and file system.
- 6. Able to understand the types of I/O management, disk scheduling, protection and security problems faced by operating systems and how to minimize these problems.

Module name	Topic/Coverage	No. of lectures	Days
Introduction	Introduction to OSOperating system structure		Day 1
	 Types of OS Batch OS Multiprogramming, multitasking OS 	3	Day 2
	 Multithreading, Multiprocessing System Distributed OS, Network OS Real-Time OS 		Day 3

2 | Page Course Handout : Operating System(CS2002)

	 Process description Process States (5-state model, 7 State model) Contents of PCB 		Day 4
	 Process scheduling Scheduling Queue Process schedulers (LT, ST and MT) Context switching Multithreading and their functionality. 	6	Day 5
	 CPU scheduling criteria CPU scheduling algorithms FIFO SJF, SRTN 		Day 6
Process	PriorityRound Robin		Day 7
	 HRRN Multi-level feedback scheduling Multi-level feedback queue scheduling 		Day 8
	Comparative Analysis of the CPU scheduling algorithms		Day 9
Activity	Activity 1	1	Day 10
	Race ConditionProcess Synchronization		Day 11
Concurrent	 Critical section problems Requirements for a solution to critical section problems 		Day 12
Process	 2-process software solutions (Peterson Solution) Semaphore Lock. 		Day 13
	 Classical problems of synchronization Producer-Consumer Problem Reader Writer Problem 	6	Day 14
	Dining Philosopher ProblemDisadvantages of Semaphore		Day 15
	 High-level synchronization tools Critical region Introduction to Monitor 		Day 16
Activity	Activity 2	1	Day 17
	 Deadlock Handling deadlock (Resource Allocation Graph (RAG)) 	4	Day 18
Deadlock .	Deadlock ignoranceDeadlock prevention	4	Day 19
	 Deadlock avoidance (Banker's Algorithm) Deadlock detection and recovery 		Day 20

3 | Page Course Handout : Operating System(CS2002)

			Day 21
Activity	Activity 3	1	Day 22
	MID SEMESTER		
Memory Management	Address bindingLogical and physical address		Day 23
	 Memory management using partitioning o Fixed Partitioning, Drawbacks o Dynamic Partitioning, Drawbacks 		Day 24
	 Virtual Memory: Translation look-aside buffers (TLBs) Hierarchical paging Inverted Page Tables 	8	Day 25
	PagingSegmentationSegmentation with Paging		Day 26
	Demand PagingDealing with Page faults		Day 27
	 Page replacement algorithms: First-In-First-Out(FIFO) Optimal Page Replacement (OPT) 		Day 28
	 Least Recently Used (LRU) Most Recently Used (MRU) Thrashing 		Day 29 Day 30
Activity	Activity 4	1	Day 31
	File conceptAccess MethodsDirectory structure.		Day 32
File Management	File system mountingFile System structure	3	Day 33
	File system ImplementationAllocation methodsFree space management		Day 34
I/O Management	I/O DevicesDevice controllerDevice Drivers	2	Day 35
Management	 Application I/O Interface 		Day 36
Activity	Activity 5	1	Day 37

4 | Page Course Handout : Operating System(CS2002)

Disk Management	 Disk Structure Disk Scheduling FCFS SCAN 	2	Day 38
	 Disk Scheduling C-SCAN LOOK C-LOOK 	•	Day 39
OS protection and security	 Domain of Protection Access matrix Implementation of Access matrix System security 	1	Day 40

^{*} The Total number of classes is approx 40, which includes lectures and activities.

Text Book: Abraham Silberschatz, Peter B. Galvin, and Greg Gagne, "Operating System Concepts", 10th edition, Wiley Publisher, May-2018.

Reference book:

- 1. William Stallings, "Operating Systems: Internals and Design Principles", 9th edition, Published by Pearson, July 2021.
- 2. Deitel, Deitel, and Choffnes, "Operating Systems-Part I", 3rd Edition, Published by Pearson, 2004.

Teaching Pedagogy: Whiteboard/Marker, PowerPoint Presentations, Web Resources

Web References:

- 1. http://facultv.cs.tamu.edu/bettati/
- 2. http://u.cs.biu.ac.il/ ariel/download/os288/ppts/
- 3. http://www.cs.rutgers.edu/pxk/416/index.html
- 4. http://www.tutorialspoint.com/operating_system/os_multi_threading.htm
- 5. http://cs.nyu.edu/courses/spring02/V22.0202-002/class-notes.html

Evaluation Scheme

Assessment Methodology: Mid Term: 20; End Term: 50

Distribution of Internal Marks:- Total 50 Marks

Mid Semester Examination = 20 Marks

Activity-based assessment=30 Marks

- i. Assignments/quizzes/Activities (20 Marks)
- ii. Class Participation (10 Marks)

Activity-based assessment includes Problem Solving, Critical Thinking, Creation along with Quiz which should cover all the COs.

Course Coordinator Spring, 2025