$egin{array}{c} { m VE203} \\ { m Assignment} \ { m 2} \end{array}$

Jiang Yicheng 515370910224

September 27, 2016

$1 \quad 2 + 2 = 4$

1.1

We define the function $\cdot + \cdot : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ has the following properties:

- 1. n + 0 = n
- 2. For $m \neq 0$, set m = succ(m'), n + m = succ(n) + m'

1.2

Since
$$n + 1 = succ(n), 2 = succ(1), 3 = succ(2), 4 = succ(3)$$
, then

$$2 + 2 = 2 + succ(1) = succ(2) + 1 = 3 + 1 = succ(3) = 4$$

So we get that 2 + 2 = 4

1.3

We first prove that $\forall m, n \in \mathbb{N}, succ(n+m) = succ(n) + m \forall n \in \mathbb{N},$

- 1. When m = 0, succ(n + m) = succ(n + 0) = succ(n) = succ(n) + 0 = succ(n) + m so the statement holds when m = 0
- 2. Assume that the statement holds when $m = m_0$, i.e. $succ(n + m_0) = succ(n) + m_0$, then according to definition of addition

$$succ(n + succ(m_0)) = succ(succ(n) + m_0)$$
$$= succ(succ(n)) + m_0$$
$$= succ(n) + succ(m_0)$$

so the statement also holds when $m = succ(m_0)$.

To sum up, $\forall m, n \in \mathbb{N}, succ(n+m) = succ(n) + m$. Then we try to prove that $\forall n \in \mathbb{N}, n+0=0+n$

- 1. When n = 0, n + 0 = 0 + 0 = 0 + n so the statement holds when n = 0
- 2. Assume that the statement holds when $n = n_0$, i.e. $n_0 + 0 = 0 + n_0$, then according to definition of addition and the statement we just prove

$$0 + succ(n_0) = succ(0) + n_0 = succ(0 + n_0)$$
$$= succ(n_0 + 0) = succ(n_0)$$
$$= succ(n_0) + 0$$

so the statement also holds when $n = succ(n_0)$.

To sum up, $\forall n \in \mathbb{N}, n+0=0+n$.

Now we start to prove that $\forall m, n \in \mathbb{N}, n+m=m+n. \ \forall n \in \mathbb{N}$

1. When m=0, n+0=0+n has been proved, so the statement holds when m=0

2. Assume that the statement holds when $m = m_0$, i.e. $n + m_0 = m_0 + n$, then according to definition of addition and the statement we just prove

$$n + succ(m_0) = succ(n) + m_0 = succ(n + m_0)$$
$$= succ(m_0 + n)$$
$$= succ(m_0) + n$$

so the statement also holds when $m = succ(m_0)$. In conclusion, $\forall m, n \in \mathbb{N}, n + m = m + n$.

2 Straightforward Induction

Proof:

- 1. When n = 1, 2, since $a_1 = 1 = 3 \cdot 2^{1-1} + 2 \cdot (-1)^1$, $a_2 = 8 = 3 \cdot 2^{2-1} + 2 \cdot (-1)^2$, so $a_n = 3 \cdot 2^{n-1} + 2 \cdot (-1)^n$ holds for n = 1, 2
- 2. Assume that $\forall n \leq k(k \geq 2), a_n = 3 \cdot 2^{n-1} + 2 \cdot (-1)^n$ holds, then

$$a_{k+1} = a_k + 2a_{k-1} = 3 \cdot 2^{k-1} + 2 \cdot (-1)^k + 2 \cdot (3 \cdot 2^{k-1-1} + 2 \cdot (-1)^{k-1})$$

= $(3+3) \cdot 2^{k-1} + (2-4) \cdot (-1)^k$
= $3 \cdot 2^{k+1-1} + 2 \cdot (-1)^{k+1}$

so the equation also holds for n = k + 1. To sum up, $\forall n > 0, a_n = 3 \cdot 2^{n-1} + 2 \cdot (-1)^n$

3 The Fifth Peano Axiom

Proof: Assume that there exists some non-empty set $S \subset \mathbb{N}$ doesn't have a least element, that is $\forall m \in S, \exists m_0 \in S \text{ such that } m_0 < m$.

Set $T = \mathbb{N} \setminus S$. Since 0 is not the successor of any natural number, then if $0 \in S$, it would be the least number in S. So $0 \in T$.

Since 1 is the successor of 0, and since $0 \notin S$, then if $1 \in S$, 1 would be the least number in S. So $1 \in T$.

Since 2 is the successor of 1, and since $0,1 \notin S$, then if $2 \in S$, 2 would be the least number in S. So $2 \in T$.

Repeat this way, we can prove that for each natural number n, its successor is in T. And since $0 \in T$, then according to induction axiom $T = \mathbb{N}$, and therefore $S = \emptyset$. This leads to contradiction.

So such kind of set doesn't exist, and Well-Ordering Principle holds.

4 Is a direct induction approach always successful?

First, we use induction to prove that $(1+x)^n \ge 1 + nx$ holds for any $n \in \mathbb{N}$, where x > -1

Proof:

- 1. When n = 0, $(1+x)^n = (1+x)^0 = 1$, $1+nx = 1+0 \cdot x = 1$. So $(1+x)^n \ge 1+nx$ holds when n=0
- 2. Assume that $(1+x)^n \ge 1 + nx$ holds when n=k, where $k \in \mathbb{N}$, i.e. $(1+x)^k \ge 1 + kx$. Then

$$(1+x)^{k+1} \ge (1+x) \cdot (1+kx)$$

$$= 1 + kx + x + kx^{2}$$

$$= (1 + (k+1)x + kx^{2})$$

$$\ge 1 + (k+1)x$$

This is because $k \in \mathbb{N}, x > -1$

So $(1+x)^n \ge 1 + nx$ also holds when n = k+1.

According to $1, 2, \forall n \in \mathbb{N}, (1+x)^n \ge 1 + nx$. So $\forall n \in \mathbb{N}, (1+x)^n \ge nx$

5 Strong Induction

Proof:

- 1. When n = 1, 2, since $1 = 2^0, 2 = 2^1$, then we can see that the statement holds for n = 1, 2.
- 2. Assume that $\forall n \in \mathbb{N}, 1 \leqslant n \leqslant k(k \geqslant 2)$, it can be written as a sum of distinct powers of 2. Then for n = k + 1:
 - (a) If k+1 is even, then $k \ge \frac{k+1}{2} \in \mathbb{N}^*$, according to assumption we can set that $\frac{k+1}{2} = p_0 2^0 + p_1 2^1 + \dots + p_{(k+1)/2} 2^{(k+1)/2} (p_i \in \{0,1\}, i = 0, 1, \dots, (k+1)/2).$ This is practical since $2^n = (1+1)^n > n \cdot 1 = n$. Then $k+1 = p_0 2^1 + p_1 2^2 + \dots + p_{(k+1)/2} 2^{(k+1)/2+1}$ which is a sum of distinct powers of 2.
 - (b) If k+1 is odd, then $\frac{k}{2} \in \mathbb{N}^*, 1 \leq \frac{k}{2} \leq k$, according to assumption we can set that $\frac{k}{2} = p_0 2^0 + p_1 2^1 + \dots + p_{k/2} 2^{k/2} (p_i \in \{0, 1\}, i = 0, 1, \dots, k/2)$. Then $k+1 = 2^0 + p_0 2^1 + p_1 2^2 + \dots + p_{k/2} 2^{k/2+1}$ which is a sum of distinct powers of 2.

according to (a)(b), k + 1 always can be written as a sum of distinct powers of 2. So, the statement also holds for n = k + 1.

From 1,2, every $n \in \mathbb{N} \setminus \{0\}$ can be written as a sum of distinct powers of 2.

6 Structural Induction

Proof: Use structural induction to prove

- 1. Since $(0,0) \in S$, and 5|0+0, the base case is established.
- 2. Assume that $\forall a, b \in S, 5 | (a+b)$, so we can set $a+b=5k, k \in \mathbb{N}$. Then $(a+2,b+3), (a+3,b+2) \in S$, and (a+2)+(b+3)=(a+3)+(b+2)=a+b+5=5(k+1). Since $k+1 \in \mathbb{N}, 5 | ((a+2)+(b+3)), 5 | ((a+3)+(b+2))$.

According to 1,2, we can see that $\forall (a,b) \in S, 5 | (a+b)$

7 Some easy practice of relation properties

$7.1 \quad x+y=0$

- 1. Since $1 \in \mathbb{Z}$, $1+1=2 \neq 0$, this shows that the relation is not reflexive.
- 2. $\forall (x,y) \in R, y+x=x+y=0$, so $(y,x) \in R$. So the relation is symmetric.
- 3. Since 1 + (-1) = 0, (-1) + 1 = 0, then (1, -1), $(-1, 1) \in R$, while $1 + 1 = 2 \neq 0$, so the relation is not transitivity.

$7.2 \quad 2|(x-y)$

- 1. $\forall x \in \mathbb{Z}, (x, x) \in R$ since 2|0 = x x, which shows that the relation is reflexive.
- 2. $\forall (x,y) \in R$, set $x-y=2k, k \in \mathbb{Z}$. Then y-x=-2k=2(-k). Since $-k \in \mathbb{Z}, 2|(y-x)$. So $(y,x) \in R$. So the relation is symmetric.
- 3. $\forall (x,y), (y,z) \in R$, set $x-y=2k_1, y-z=2k_2(k_1, k_2 \in \mathbb{Z})$. Then $x-z=x-y+y-z=2(k_1+k_2)$. Since $k_1+k_2 \in \mathbb{Z}$, 2|(x-z). So $(x,z) \in R$. So the relation is transitivity.

7.3 xy=0

- 1. Since $1 \in \mathbb{Z}$, $1 \cdot 1 = 1 \neq 0$, this shows that the relation is not reflexive.
- 2. $\forall (x,y) \in R, yx = xy = 0$, so $(y,x) \in R$. So the relation is symmetric.
- 3. Since $1 \cdot 0 = 0, 0 \cdot 2 = 0$, then $(1,0), (0,2) \in R$, while $1 \cdot 2 = 2 \neq 0$, so the relation is not transitivity.

7.4 x=1 or y=1

- 1. Since $2 \in \mathbb{Z}, 2 \neq 1$, then $(2,2) \notin R$. This shows that the relation is not reflexive.
- 2. $\forall (x,y) \in R, x=1 \lor y=1$, so $(y,x) \in R$. So the relation is symmetric.
- 3. Since $(3,1),(1,2) \in R$, while $(3,2) \notin R$, then the relation is not transitivity.

7.5 $x=\pm y$

- 1. $\forall x \in \mathbb{Z}, (x, x) \in R$ since x = x, which shows that the relation is reflexive.
- 2. $\forall (x,y) \in R, x=y \lor x=-y$. So $y=x \lor y=-x$. So $(y,x) \in R$. So the relation is symmetric.
- 3. $\forall (x,y), (y,z) \in Rx = y \lor x = -y, y = z \lor y = -z$. Then $x = z \lor x = -z$. So $(x,z) \in R$. So the relation is transitivity.

$7.6 \quad x=2y$

- 1. Since $1 \in \mathbb{Z}, 1 \neq 2 = 2 \cdot 1$, then $(1,1) \notin R$. This shows that the relation is not reflexive.
- 2. $(2,1) \in R$, while $(1,2) \notin R$. So the relation is not symmetric.
- 3. Since $(4,2),(2,1) \in R$, while $(4,1) \notin R$, then the relation is not transitivity.

7.7 $xy \ge 0$

- 1. $\forall x \in \mathbb{Z}, (x,x) \in R$ since $x \cdot x = x^2 \ge 0$, which shows that the relation is reflexive.
- 2. $\forall (x,y) \in R, yx = xy \ge 0$. So $(y,x) \in R$. So the relation is symmetric.
- 3. Since $1 \cdot 0 = 0 \ge 0$, $0 \cdot (-1) = 0 \ge 0$, then $(1,0), (0,-1) \in R$, while $1 \cdot (-1) = -1 < 0$, so the relation is not transitivity.

7.8 x=1

- 1. Since $2 \in \mathbb{Z}, 2 \neq 1$, then $(2,2) \notin R$. This shows that the relation is not reflexive.
- 2. $(1,2) \in R$, while $(2,1) \notin R$, so the relation is not symmetric.
- 3. $\forall x, y, z \in \mathbb{Z}, (x, y), (y, z) \in R$, then x = 1 and therefore $(x, z) \in R$, then the relation is transitivity.