AMENDMENTS TO THE CLAIMS

Claims 1-6 (canceled)

7. (currently amended) A method for treating insulin resistance in a mammal which comprises administering to said mammal an effective amount of a compound of formula I

or the stereoisomeric mixtures, diastereomerically enriched, diastereomerically pure, enantiomerically enriched or enantiomerically pure isomers, or the pharmaceutically acceptable salts and prodrugs thereof,

wherein

e is 0 or 1;

n and w are each independently 0, 1 or 2;

provided that w and n cannot both be 0 at the same time;

Y is oxygen or sulfur;

 R^1 is hydrogen, -CN, $-(CH_2)_0N(X^6)C(O)X^6$, $-(CH_2)_0N(X^6)C(O)(CH_2)_t-A^1$,

 $-(CH_2)_0N(X^6)SO_2(CH_2)_1-A^1$, $-(CH_2)_0N(X^6)SO_2X^6$, $-(CH_2)_0N(X^6)C(O)N(X^6)(CH_2)_1-A^1$,

 $-(CH_2)_0N(X^6)C(O)N(X^6)(X^6)$, $-(CH_2)_0C(O)N(X^6)(X^6)$, $-(CH_2)_0C(O)N(X^6)(CH_2)_7-A^1$,

 $-(CH_2)_0C(O)OX^6$, $-(CH_2)_0C(O)O(CH_2)_1-A^1$, $-(CH_2)_0OX^6$, $-(CH_2)_0OC(O)X^6$,

 $-(CH_2)_0OC(O)(CH_2)_t-A^1$, $-(CH_2)_0OC(O)N(X^6)(CH_2)_t-A^1$, $-(CH_2)_0OC(O)N(X^6)(X^6)$,

 $-(CH_2)_{\alpha}C(O)X^6$, $-(CH_2)_{\alpha}C(O)(CH_2)_{c}-A^1$, $-(CH_2)_{\alpha}N(X^6)C(O)OX^6$,

 $-(CH_2)_aN(X^6)SO_2N(X^6)(X^6)$, $-(CH_2)_aS(O)_mX^6$, $-(CH_2)_aS(O)_m(CH_2)_t-A^1$,

 $-(C_1-C_{10})alkyl$, $-(CH_2)_1-A^1$, $-(CH_2)_2-(C_3-C_7)cycloalkyl$, $-(CH_2)_2-Y^1-(C_1-C_6)alkyl$,

 $-(CH_2)_{q}-Y^1-(CH_2)_{t}-A^1$ or $-(CH_2)_{q}-Y^1-(CH_2)_{t}-(C_3-C_7)$ cycloalkyl;

where the alkyl and cycloalkyl groups in the definition of R^1 are optionally substituted with (C_1-C_4) alkyl, hydroxyl, (C_1-C_4) alkoxy, carboxyl, -CONH₂,

 $-S(O)_m(C_1-C_6)$ alkyl, $-CO_2(C_1-C_4)$ alkyl ester, 1H-tetrazol-5-yl or 1, 2 or 3 fluoro;

 Y^1 is O, $S(O)_m$, $-C(O)NX^6$ -, -CH=CH-, $-C\equiv C-$, $-N(X^6)C(O)-$, $-C(O)NX^6-$,

-C(O)O-, -OC(O)N(X⁶)- or -OC(O)-;

q is 0, 1, 2, 3 or 4;

t is 0, 1, 2 or 3;

<u>said</u> $(CH_2)_q$ group and $(CH_2)_t$ group may each be optionally substituted with hydroxyl, (C_1-C_4) alkoxy, carboxyl, $-CONH_2$, $-S(O)_m(C_1-C_6)$ alkyl,

 $-CO_2(C_1-C_4)$ alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro, or 1 or 2 (C_1-C_4) alkyl;

 R^2 is hydrogen, (C_1-C_8) alkyl, $-(C_0-C_3)$ alkyl- (C_3-C_8) cycloalkyl, $-(C_1-C_4)$ alkyl- A^1 or A^1 ;

where the alkyl groups and the cycloalkyl groups in the definition of R^2 are optionally substituted with hydroxyl, $-C(O)OX^6$, $-C(O)N(X^6)(X^6)$, $-N(X^6)(X^6)$,

 $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)A^1$, $-C(O)(X^6)$, CF_3 , CN or 1, 2 or 3 halogen;

 R^3 is A^1 , (C_1-C_{10}) alkyl, $-(C_1-C_6)$ alkyl- A^1 , $-(C_1-C_6)$ alkyl- (C_3-C_7) cycloalkyl,

 $-(C_1-C_5)$ alkyl- $X^1-(C_1-C_5)$ alkyl, $-(C_1-C_5)$ alkyl- $X^1-(C_0-C_5)$ alkyl- A^1 or

 $-(C_1-C_5)$ alkyl- $X^1-(C_1-C_5)$ alkyl- (C_3-C_7) cycloalkyl;

where the alkyl groups in the definition of R3 are optionally substituted with

-S(O)_m(C₁-C₆)alkyl, -C(O)OX³, 1, 2, 3, 4 or 5 halogens, or 1, 2 or 3 OX³;

 X^1 is O, $S(O)_{m_1} - N(X^2)C(O) - C(O)N(X^2) - C(O) - C(O) - C(O)O - CX^2 = CX^2 - CX^2$

 $-N(X^2)C(O)O_{-}, -OC(O)N(X^2)_{-} \text{ or } -C = C_{-};$

 R^4 is hydrogen, (C_1-C_6) alkyl or (C_3-C_7) cycloalkyl, or R^4 is taken together with R^3 and the carbon atom to which they are attached and form (C_5-C_7) cycloalkyl, (C_5-C_7) cycloalkenyl, a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, or is a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 X^4 is hydrogen or (C_1-C_6) alkyl or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring:

where a and b are independently 0, 1, 2 or 3;

 X^5 and X^{5a} are each independently selected from the group consisting of hydrogen, trifluoromethyl, A^1 and optionally substituted (C_1 - C_6)alkyl;

the optionally substituted (C_1-C_6) alkyl in the definition of X^5 and X^{5a} is optionally substituted with a substituent selected from the group consisting of A^1 , OX^2 , $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^2$, (C_3-C_7) cycloalkyl, $-N(X^2)(X^2)$ and $-C(O)N(X^2)(X^2)$;

or the carbon bearing X⁵ or X^{5a} forms one or two alkylene bridges with the nitrogen atom bearing R⁷ and R⁸ wherein each alkylene bridge contains 1 to 5 carbon atoms, provided that when one alkylene bridge is formed then X⁵ or X^{5a} but not both may be on the carbon atom and R⁷ or R⁸ but not both may be on the nitrogen atom and further provided that when two alkylene bridges are formed then X⁵ and X^{5a} cannot be on the carbon atom and R⁷ and R⁸ cannot be on the nitrogen atom;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 Z^1 is a bond, O or N-X², provided that when a and b are both 0 then Z^1 is not N-X² or O;

R⁷ and R⁸ are independently hydrogen or optionally substituted (C₁-C₆)alkyl;

where the optionally substituted (C_1-C_6) alkyl in the definition of R^7 and R^8 is optionally independently substituted with A^1 , $-C(O)O-(C_1-C_6)$ alkyl,

 $-S(O)_m(C_1-C_6)alkyl, \ 1\ to\ 5\ halogens,\ 1\ to\ 3\ hydroxy,\ 1\ to\ 3\ -O-C(O)(C_1-C_{10})alkyl\ or\ 1$ $\underline{to\ 3\ (C_1-C_6)alkoxy;\ or}$

R⁷ and R⁸ can be taken together to form -(CH₂)_r-L-(CH₂)_r-;

where L is $C(X^2)(X^2)$, $S(O)_m$ or $N(X^2)$;

 A^1 for each occurrence is independently (C_5 - C_7)cycloalkenyl, phenyl or a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially

saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

A¹ for each occurrence is independently optionally substituted, in one or optionally both rings if A¹ is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, -OX⁶,

 $-C(O)N(X^6)(X^6)$, $-C(O)OX^6$, oxo, (C_1-C_6) alkyl, nitro, cyano, benzyl,

 $-S(O)_m(C_1-C_6)$ alkyl, 1H-tetrazol-5-yl, phenyl, phenoxy, phenylalkyloxy, halophenyl, methylenedioxy, $-N(X^6)(X^6)$, $-N(X^6)C(O)(X^6)$, $-SO_2N(X^6)(X^6)$,

 $-N(X^6)SO_2$ -phenyl, $-N(X^6)SO_2X^6$, $-CONX^{11}X^{12}$, $-SO_2NX^{11}X^{12}$, $-NX^6SO_2X^{12}$,

-NX⁶CONX¹¹X¹², -NX⁶SO₂NX¹¹X¹², -NX⁶C(O)X¹², imidazolyl, thiazolyl and tetrazolyl, provided that if A¹ is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy;

where X11 is hydrogen or optionally substituted (C1-C6)alkyl;

the optionally substituted (C_1-C_6) alkyl defined for X^{11} is optionally independently substituted with phenyl, phenoxy, (C_1-C_6) alkoxycarbonyl, $-S(O)_m(C_1-C_6)$ alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 (C_1-C_{10}) alkanoyloxy or 1 to 3 (C_1-C_6) alkoxy;

 X^{12} is hydrogen, (C_1-C_6) alkyl, phenyl, thiazolyl, imidazolyl, furyl or thienyl, provided that when X^{12} is not hydrogen, X^{12} is optionally substituted with one to three substituents independently selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃ and CF₃;

or X^{11} and X^{12} are taken together to form -(CH_2)_r-L¹-(CH_2)_r-; where L^1 is $C(X^2)(X^2)$, O, $S(O)_m$ or $N(X^2)$;

r for each occurrence is independently 1, 2 or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, or optionally substituted (C_3 - C_7)cycloalkyl, where the optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^2 are optionally independently substituted with -S(O)_m(C_1 - C_6)alkyl, -C(O)OX³, 1 to 5 halogens or 1-3 OX³;

 X^3 for each occurrence is independently hydrogen or (C_1-C_6) alkyl;

 X^6 is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, (C_2 - C_6)halogenated alkyl, optionally substituted (C_3 - C_7)cycloalkyl, (C_3 - C_7)-halogenatedcycloalkyl, where optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^6 is optionally independently substituted by 1 or 2 (C_1 - C_4)alkyl, hydroxyl, (C_1 - C_4)alkyl, carboxylate (C_1 - C_4)alkyl ester, or 1H-tetrazol-5-yl; or

when there are two X^6 groups on one atom and both X^6 are independently (C_1-C_6) alkyl, the two (C_1-C_6) alkyl groups may be optionally joined and, together with the atom to which the two X^6 groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or NX^7 ;

 X^7 is hydrogen or (C_1-C_8) alkyl optionally substituted with hydroxyl; and m for each occurrence is independently 0, 1 or 2;

with the proviso that:

 X^6 and X^{12} cannot be hydrogen when it is attached to C(O) or SO₂ in the form C(O) X^6 , C(O) X^{12} , SO₂ X^6 or SO₂ X^{12} ; and

when R^6 is a bond then L is $N(X^2)$ and each r in the definition $-(CH_2)_r$ -L- $(CH_2)_r$ - is independently 2 or 3; wherein the method according to claim 1 which additionally comprises administering to a mammal in need thereof a growth hormone releasing hormone or a functional analog thereof.

8. (canceled)

9. (original) A method for increasing levels of endogenous growth hormone, which comprises administering to a human or other animal in need thereof effective amounts of a functional somatostatin antagonist and a compound of formula I

or the stereoisomeric mixtures, diastereomerically enriched, diastereomerically pure, enantiomerically enriched or enantiomerically pure isomers or the pharmaceutically acceptable salts and prodrugs thereof,

wherein

e is 0 or 1;

n and w are each independently 0, 1 or 2;

provided that w and n cannot both be 0 at the same time;

Y is oxygen or sulfur;

$$\begin{split} &R^1 \text{ is hydrogen, -CN, -(CH_2)_qN(X^6)C(O)X}^6, -(CH_2)_qN(X^6)C(O)(CH_2)_{t^-}A^1, \\ &-(CH_2)_qN(X^6)SO_2(CH_2)_{t^-}A^1, -(CH_2)_qN(X^6)SO_2X^6, -(CH_2)_qN(X^6)C(O)N(X^6)(CH_2)_{t^-}A^1, \end{split}$$

```
-(CH_2)_aN(X^6)C(O)N(X^6)(X^6), -(CH_2)_aC(O)N(X^6)(X^6), -(CH_2)_aC(O)N(X^6)(CH_2)_t-A^1,
-(CH_2)_0C(O)OX^6, -(CH_2)_0C(O)O(CH_2)_1-A^1, -(CH_2)_0OX^6, -(CH_2)_0OC(O)X^6,
-(CH_2)_0OC(O)(CH_2)_t-A^1, -(CH_2)_0OC(O)N(X^6)(CH_2)_t-A^1, -(CH_2)_0OC(O)N(X^6)(X^6),
-(CH_2)_0C(O)X^6, -(CH_2)_0C(O)(CH_2)_t-A^1, -(CH_2)_0N(X^6)C(O)OX^6,
-(CH_2)_qN(X^6)SO_2N(X^6)(X^6), -(CH_2)_qS(O)_mX^6, -(CH_2)_qS(O)_m(CH_2)_t-A^1,
-(C_1-C_{10})alkyl, -(CH_2)_t-A^1, -(CH_2)_a-(C_3-C_7)cycloalkyl, -(CH_2)_a-Y^1-(C_1-C_6)alkyl,
-(CH_2)_0-Y^1-(CH_2)_t-A^1 or -(CH_2)_0-Y^1-(CH_2)_t-(C_3-C_7)cycloalkyl;
         where the alkyl and cycloalkyl groups in the definition of R1 are optionally substituted
         with (C_1-C_4)alkyl, hydroxyl, (C_1-C_4)alkoxy, carboxyl, -CONH<sub>2</sub>,
         -S(O)_m(C_1-C_6)alkyl, -CO_2(C_1-C_4)alkyl ester, 1H-tetrazol-5-yl or 1, 2 or 3 fluoro;
         Y^1 is O, S(O)_{m_1} -C(O)NX<sup>6</sup>-, -CH=CH-, -C\(\text{\arga}C\)-, -N(X<sup>6</sup>)C(O)-, -C(O)NX<sup>6</sup>-,
         -C(O)O_{-}, -OC(O)N(X^{6})_{-} or -OC(O)_{-};
         q is 0, 1, 2, 3 or 4;
         t is 0, 1, 2 or 3;
         said (CH<sub>2</sub>)<sub>a</sub> group and (CH<sub>2</sub>)<sub>t</sub> group may each be optionally substituted with hydroxyl,
         (C_1-C_4)alkoxy, carboxyl, -CONH_2, -S(O)_m(C_1-C_6)alkyl,
         -CO_2(C_1-C_4)alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro, or 1 or 2 (C_1-C_4)alkyl;
R^2 is hydrogen, (C_1-C_8)alkyl, -(C_0-C_3)alkyl-(C_3-C_8)cycloalkyl, -(C_1-C_4)alkyl-A^1 or A^1;
         where the alkyl groups and the cycloalkyl groups in the definition of R2 are optionally
         substituted with hydroxyl, -C(O)OX^6, -C(O)N(X^6)(X^6), -N(X^6)(X^6).
         -S(O)_m(C_1-C_6)alkyl, -C(O)A^1, -C(O)(X^6), CF_3, CN or 1, 2 or 3 halogen;
R^3 is A^1, (C_1-C_{10}) alkyl, -(C_1-C_6) alkyl-A^1, -(C_1-C_6) alkyl-(C_3-C_7) cycloalkyl,
-(C_1-C_5)alkyl-X^1-(C_1-C_5)alkyl, -(C_1-C_5)alkyl-X^1-(C_0-C_5)alkyl-A^1 or
-(C_1-C_5)alkyl-X^1-(C_1-C_5)alkyl-(C_3-C_7)cycloalkyl;
         where the alkyl groups in the definition of R3 are optionally substituted with
         -S(O)_m(C_1-C_6)alkyl, -C(O)OX^3, 1, 2, 3, 4 or 5 halogens, or 1, 2 or 3 OX^3;
         X^{1} is O, S(O)<sub>m</sub>, -N(X<sup>2</sup>)C(O)-, -C(O)N(X<sup>2</sup>)-, -OC(O)-, -C(O)O-, -CX<sup>2</sup>=CX<sup>2</sup>-.
         -N(X^2)C(O)O_{-}, -OC(O)N(X^2)_{-} \text{ or } -C = C_{-};
R<sup>4</sup> is hydrogen, (C<sub>1</sub>-C<sub>6</sub>)alkyl or (C<sub>3</sub>-C<sub>7</sub>)cycloalkyl, or R<sup>4</sup> is taken together with R<sup>3</sup> and the
carbon atom to which they are attached and form (C5-C7)cycloalkyl, (C5-C7)cycloalkenyl, a
```

R⁴ is hydrogen, (C₁-C₆)alkyl or (C₃-C₇)cycloalkyl, or R⁴ is taken together with R³ and the carbon atom to which they are attached and form (C₅-C₇)cycloalkyl, (C₅-C₇)cycloalkenyl, a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, or is a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 X^4 is hydrogen or (C_1-C_6) alkyl or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring;

$$Z^1$$
 $(CH_2)_a$ $(CH_2)_b$

where a and b are independently 0, 1, 2 or 3;

 X^5 and X^{5a} are each independently selected from the group consisting of hydrogen, trifluoromethyl, A^1 and optionally substituted (C_1 - C_6)alkyl;

the optionally substituted (C_1-C_6) alkyl in the definition of X^5 and X^{5a} is optionally substituted with a substituent selected from the group consisting of A^1 , OX^2 , $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^2$, (C_3-C_7) cycloalkyl, $-N(X^2)(X^2)$ and $-C(O)N(X^2)(X^2)$:

or the carbon bearing X^5 or X^{5a} forms one or two alkylene bridges with the nitrogen atom bearing R^7 and R^8 wherein each alkylene bridge contains 1 to 5 carbon atoms, provided that when one alkylene bridge is formed then X^5 or X^{5a} but not both may be on the carbon atom and R^7 or R^8 but not both may be on the nitrogen atom and further provided that when two alkylene bridges are formed then X^5 and X^{5a} cannot be on the carbon atom and R^7 and R^8 cannot be on the nitrogen atom;

or X^5 is taken together with X^{5a} and the carbon atom to which they are attached and form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 Z^1 is a bond, O or N-X², provided that when a and b are both 0 then Z^1 is not N-X² or O;

 R^7 and R^8 are independently hydrogen or optionally substituted (C_1 - C_6)alkyl;

where the optionally substituted (C_1 - C_6)alkyl in the definition of R^7 and R^8 is optionally independently substituted with A^1 , -C(O)O-(C_1 - C_6)alkyl,

-S(O)_m(C₁-C₆)alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 -O-C(O)(C₁-C₁₀)alkyl or 1 to 3 (C₁-C₆)alkoxy; or

R⁷ and R⁸ can be taken together to form -(CH₂)_r-L-(CH₂)_r-;

where L is $C(X^2)(X^2)$, $S(O)_m$ or $N(X^2)$;

 A^1 for each occurrence is independently (C_5 - C_7)cycloalkenyl, phenyl or a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

A¹ for each occurrence is independently optionally substituted, in one or optionally both rings if A¹ is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, -OX⁶,

- $-C(O)N(X^6)(X^6)$, $-C(O)OX^6$, oxo, (C_1-C_6) alkyl, nitro, cyano, benzyl,
- $-S(O)_m(C_1-C_6)$ alkyl, 1H-tetrazol-5-yl, phenyl, phenoxy, phenylalkyloxy, halophenyl, methylenedioxy, $-N(X^6)(X^6)$, $-N(X^6)C(O)(X^6)$, $-SO_2N(X^6)(X^6)$,
- -N(X⁶)SO₂-phenyl, -N(X⁶)SO₂X⁶, -CONX¹¹X¹², -SO₂NX¹¹X¹², -NX⁶SO₂X¹²,
- -NX⁶CONX¹¹X¹², -NX⁶SO₂NX¹¹X¹², -NX⁶C(O)X¹², imidazolyl, thiazolyl and tetrazolyl, provided that if A¹ is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy;

where X¹¹ is hydrogen or optionally substituted (C₁-C₆)alkyl;

the optionally substituted (C_1-C_6) alkyl defined for X^{11} is optionally independently substituted with phenyl, phenoxy, (C_1-C_6) alkoxycarbonyl, $-S(O)_m(C_1-C_6)$ alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 (C_1-C_{10}) alkanoyloxy or 1 to 3 (C_1-C_6) alkoxy;

 X^{12} is hydrogen, (C₁-C₆)alkyl, phenyl, thiazolyl, imidazolyl, furyl or thienyl, provided that when X^{12} is not hydrogen, X^{12} is optionally substituted with one to three substituents independently selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃ and CF₃;

or X^{11} and X^{12} are taken together to form -(CH₂)_r-L¹-(CH₂)_r-; where L¹ is C(X²)(X²), O, S(O)_m or N(X²);

r for each occurrence is independently 1, 2 or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, or optionally substituted (C_3 - C_7)cycloalkyl, where the optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^2 are optionally independently substituted with $-S(O)_m(C_1$ - C_6)alkyl, $-C(O)OX^3$, 1 to 5 halogens or 1-3 OX^3 ;

X³ for each occurrence is independently hydrogen or (C₁-C₆)alkyl;

 X^6 is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, (C_2 - C_6)halogenated alkyl, optionally substituted (C_3 - C_7)cycloalkyl, (C_3 - C_7)-halogenatedcycloalkyl, where optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^6 is optionally independently substituted by 1 or 2 (C_1 - C_4)alkyl, hydroxyl, (C_1 - C_4)alkoxy, carboxyl, $CONH_2$, -S(O)m(C_1 - C_6)alkyl, carboxylate (C_1 - C_4)alkyl ester, or 1H-tetrazol-5-yl; or when there are two X^6 groups on one atom and both X^6 are independently (C_1 - C_6)alkyl, the two (C_1 - C_6)alkyl groups may be optionally joined and, together with the atom to which the two X^6 groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or NX^7 :

 X^7 is hydrogen or (C₁-C₆)alkyl optionally substituted with hydroxyl; and m for each occurrence is independently 0, 1 or 2; with the proviso that:

 X^6 and X^{12} cannot be hydrogen when it is attached to C(O) or SO_2 in the form $C(O)X^6$, $C(O)X^{12}$, SO_2X^6 or SO_2X^{12} ; and

when R^6 is a bond then L is $N(X^2)$ and each r in the definition $-(CH_2)_r$ -L- $(CH_2)_r$ - is independently 2 or 3.

10. (original) A method of treating or preventing congestive heart failure, obesity or frailty associated with aging, which comprises administering to a mammal in need thereof effective amounts of a functional somatostatin antagonist and a compound of formula I

or the stereoisomeric mixtures, diastereomerically enriched, diastereomerically pure, enantiomerically enriched or enantiomerically pure isomers or the pharmaceutically acceptable salts and prodrugs thereof,

wherein

```
n and w are each independently 0, 1 or 2;
provided that w and n cannot both be 0 at the same time;
Y is oxygen or sulfur;
R^1 is hydrogen, -CN, -(CH<sub>2</sub>)<sub>0</sub>N(X<sup>6</sup>)C(O)X<sup>6</sup>, -(CH<sub>2</sub>)<sub>0</sub>N(X<sup>6</sup>)C(O)(CH<sub>2</sub>)<sub>1</sub>-A<sup>1</sup>,
-(CH_2)_qN(X^6)SO_2(CH_2)_t-A^1, -(CH_2)_qN(X^6)SO_2X^6, -(CH_2)_qN(X^6)C(O)N(X^6)(CH_2)_t-A^1,
-(CH_2)_0N(X^6)C(O)N(X^6)(X^6), -(CH_2)_0C(O)N(X^6)(X^6), -(CH_2)_0C(O)N(X^6)(CH_2)_{t-}A^1,
-(CH_2)_aC(O)OX^6, -(CH_2)_aC(O)O(CH_2)_t-A^1, -(CH_2)_aOX^6, -(CH_2)_aOC(O)X^6,
-(CH_2)_0OC(O)(CH_2)_t-A^1, -(CH_2)_0OC(O)N(X^6)(CH_2)_t-A^1, -(CH_2)_0OC(O)N(X^6)(X^6),
-(CH_2)_aC(O)X^6, -(CH_2)_aC(O)(CH_2)_t-A^1, -(CH_2)_aN(X^6)C(O)OX^6,
-(CH_2)_aN(X^6)SO_2N(X^6)(X^6), -(CH_2)_aS(O)_mX^6, -(CH_2)_aS(O)_m(CH_2)_t-A^1,
-(C_1-C_{10})alkyl, -(CH_2)_t-A^1, -(CH_2)_a-(C_3-C_7)cycloalkyl, -(CH_2)_a-Y^1-(C_1-C_6)alkyl,
-(CH_2)_a-Y^1-(CH_2)_t-A^1 or -(CH_2)_a-Y^1-(CH_2)_t-(C_3-C_7) cycloalkyl;
         where the alkyl and cycloalkyl groups in the definition of R1 are optionally substituted
         with (C_1-C_4)alkyl, hydroxyl, (C_1-C_4)alkoxy, carboxyl, -CONH<sub>2</sub>,
         -S(O)_m(C_1-C_6)alkyl, -CO_2(C_1-C_4)alkyl ester, 1H-tetrazol-5-yl or 1, 2 or 3 fluoro;
         Y^1 is O, S(O)_{m_1} -C(O)NX<sup>6</sup>-, -CH=CH-, -C=C-, -N(X<sup>6</sup>)C(O)-, -C(O)NX<sup>6</sup>-,
         -C(O)O_{-}, -OC(O)N(X^{6})- or -OC(O)_{-};
         q is 0, 1, 2, 3 or 4;
         t is 0, 1, 2 or 3;
         said (CH<sub>2</sub>)<sub>a</sub> group and (CH<sub>2</sub>)<sub>t</sub> group may each be optionally substituted with hydroxyl,
         (C_1-C_4)alkoxy, carboxyl, -CONH<sub>2</sub>, -S(O)<sub>m</sub>(C<sub>1</sub>-C<sub>6</sub>)alkyl,
         -CO_2(C_1-C_4)alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro, or 1 or 2 (C_1-C_4)alkyl;
R^2 is hydrogen, (C_1-C_8)alkyl, -(C_0-C_3)alkyl-(C_3-C_8)cycloalkyl, -(C_1-C_4)alkyl-A^1 or A^1;
         where the alkyl groups and the cycloalkyl groups in the definition of R<sup>2</sup> are optionally
          substituted with hydroxyl, -C(O)OX^6, -C(O)N(X^6)(X^6), -N(X^6)(X^6),
         -S(O)_m(C_1-C_6)alkyl, -C(O)A^1, -C(O)(X^6), CF_3, CN or 1, 2 or 3 halogen;
R^3 is A^1, (C_1-C_{10}) alkyl, -(C_1-C_6) alkyl-A^1, -(C_1-C_6) alkyl-(C_3-C_7) cycloalkyl,
-(C_1-C_5)alkyl-X^1-(C_1-C_5)alkyl, -(C_1-C_5)alkyl-X^1-(C_0-C_5)alkyl-A^1 or
-(C_1-C_5)alkyl-X^1-(C_1-C_5)alkyl-(C_3-C_7)cycloalkyl;
         where the alkyl groups in the definition of R<sup>3</sup> are optionally substituted with
         -S(O)_m(C_1-C_6)alkyl, -C(O)OX^3, 1, 2, 3, 4 or 5 halogens, or 1, 2 or 3 OX^3;
         X^{1} is O, S(O)<sub>m</sub>, -N(X<sup>2</sup>)C(O)-, -C(O)N(X<sup>2</sup>)-, -OC(O)-, -C(O)O-, -CX<sup>2</sup>=CX<sup>2</sup>-,
         -N(X^2)C(O)O_{-1} - OC(O)N(X^2) - or - C = C_{-1}
```

e is 0 or 1;

 R^4 is hydrogen, (C_1-C_6) alkyl or (C_3-C_7) cycloalkyl, or R^4 is taken together with R^3 and the carbon atom to which they are attached and form (C_5-C_7) cycloalkyl, (C_5-C_7) cycloalkenyl, a

partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, or is a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 X^4 is hydrogen or (C_1-C_6) alkyl or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring;

where a and b are independently 0, 1, 2 or 3;

 X^5 and X^{5a} are each independently selected from the group consisting of hydrogen, trifluoromethyl, A^1 and optionally substituted (C_1 - C_6)alkyl;

the optionally substituted (C_1-C_6) alkyl in the definition of X^5 and X^{5a} is optionally substituted with a substituent selected from the group consisting of A^1 , OX^2 , $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^2$, (C_3-C_7) cycloalkyl, $-N(X^2)(X^2)$ and $-C(O)N(X^2)(X^2)$;

or the carbon bearing X⁵ or X^{5a} forms one or two alkylene bridges with the nitrogen atom bearing R⁷ and R⁸ wherein each alkylene bridge contains 1 to 5 carbon atoms, provided that when one alkylene bridge is formed then X⁵ or X^{5a} but not both may be on the carbon atom and R⁷ or R⁸ but not both may be on the nitrogen atom and further provided that when two alkylene bridges are formed then X⁵ and X^{5a} cannot be on the carbon atom and R⁷ and R⁸ cannot be on the nitrogen atom;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4

heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 Z^1 is a bond, O or N-X², provided that when a and b are both 0 then Z^1 is not N-X² or O:

R⁷ and R⁸ are independently hydrogen or optionally substituted (C₁-C₆)alkyl;

where the optionally substituted (C_1 - C_6)alkyl in the definition of R^7 and R^8 is optionally independently substituted with A^1 , -C(O)O-(C_1 - C_6)alkyl,

-S(O)_m(C₁-C₆)alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 -O-C(O)(C₁-C₁₀)alkyl or 1 to 3 (C₁-C₆)alkoxy; or

R⁷ and R⁸ can be taken together to form -(CH₂)_r-L-(CH₂)_r-;

where L is $C(X^2)(X^2)$, $S(O)_m$ or $N(X^2)$;

 A^1 for each occurrence is independently (C_5 - C_7)cycloalkenyl, phenyl or a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

A¹ for each occurrence is independently optionally substituted, in one or optionally both rings if A¹ is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, -OX⁶,

- $-C(O)N(X^6)(X^6), -C(O)OX^6, oxo, (C_1-C_6)alkyl, nitro, cyano, benzyl, \\$
- $-S(O)_m(C_1-C_6)$ alkyl, 1H-tetrazol-5-yl, phenyl, phenoxy, phenylalkyloxy, halophenyl, methylenedioxy, $-N(X^6)(X^6)$, $-N(X^6)C(O)(X^6)$, $-SO_2N(X^6)(X^6)$,
- -N(X⁶)SO₂-phenyl, -N(X⁶)SO₂X⁶, -CONX¹¹X¹², -SO₂NX¹¹X¹², -NX⁶SO₂X¹²,
- -NX⁶CONX¹¹X¹², -NX⁶SO₂NX¹¹X¹², -NX⁶C(O)X¹², imidazolyl, thiazolyl and tetrazolyl, provided that if A¹ is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy;

where X¹¹ is hydrogen or optionally substituted (C₁-C₆)alkyl;

the optionally substituted (C_1-C_6) alkyl defined for X^{11} is optionally independently substituted with phenyl, phenoxy, (C_1-C_6) alkoxycarbonyl, $-S(O)_m(C_1-C_6)$ alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 (C_1-C_{10}) alkanoyloxy or 1 to 3 (C_1-C_6) alkoxy;

 X^{12} is hydrogen, (C₁-C₆)alkyl, phenyl, thiazolyl, imidazolyl, furyl or thienyl, provided that when X^{12} is not hydrogen, X^{12} is optionally substituted with one to three substituents independently selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃ and CF₃;

or X^{11} and X^{12} are taken together to form -(CH₂)_r-L¹-(CH₂)_r-; where L¹ is C(X²)(X²), O, S(O)_m or N(X²);

r for each occurrence is independently 1, 2 or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, or optionally substituted (C_3 - C_7)cycloalkyl, where the optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^2 are optionally independently substituted with $-S(O)_m(C_1$ - C_6)alkyl, $-C(O)OX^3$, 1 to 5 halogens or 1-3 OX^3 ;

X³ for each occurrence is independently hydrogen or (C₁-C₆)alkyl;

 X^6 is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, (C_2 - C_6)halogenated alkyl, optionally substituted (C_3 - C_7)cycloalkyl, (C_3 - C_7)-halogenatedcycloalkyl, where optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^6 is optionally independently substituted by 1 or 2 (C_1 - C_4)alkyl, hydroxyl, (C_1 - C_4)alkoxy, carboxyl, $CONH_2$, - $S(O)_m(C_1$ - C_6)alkyl, carboxylate (C_1 - C_4)alkyl ester, or 1H-tetrazol-5-yl; or when there are two X^6 groups on one atom and both X^6 are independently (C_1 - C_6)alkyl, the two (C_1 - C_6)alkyl groups may be optionally joined and, together with the atom to which the two X^6 groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or NX^7 ;

 X^7 is hydrogen or (C₁-C₆)alkyl optionally substituted with hydroxyl; and m for each occurrence is independently 0, 1 or 2; with the proviso that:

 X^6 and X^{12} cannot be hydrogen when it is attached to C(O) or SO_2 in the form $C(O)X^6$, $C(O)X^{12}$, SO_2X^6 or SO_2X^{12} ; and

when R^6 is a bond then L is $N(X^2)$ and each r in the definition - $(CH_2)_r$ -L- $(CH_2)_r$ - is independently 2 or 3.

- 11. (original) A method according to claim 10 wherein said functional somatostatin antagonist is an alpha-2 adrenergic agonist.
- 12. (original) A method according to claim 11 wherein said alpha-2 adrenergic agonist is selected from the group consisting of clonidine, xylazine and medetomidine.

13. (original) A method according to claim 12 wherein said compound of formula I is 2-amino-N-[2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide L-tartaric acid salt.

14. (original) A pharmaceutical composition which comprises a pharmaceutically acceptable carrier, an amount of an alpha-2 adrenergic agonist and an amount of a compound of formula I

or the stereoisomeric mixtures, diastereomerically enriched, diastereomerically pure, enantiomerically enriched or enantiomerically pure isomers or the pharmaceutically acceptable salts and prodrugs thereof,

wherein

e is 0 or 1;

n and w are each independently 0, 1 or 2;

provided that w and n cannot both be 0 at the same time;

Y is oxygen or sulfur;

 R^1 is hydrogen, -CN, -(CH₂)₀N(X⁶)C(O)X⁶, -(CH₂)₀N(X⁶)C(O)(CH₂)₁-A¹,

 $-(CH_2)_qN(X^6)SO_2(CH_2)_t-A^1$, $-(CH_2)_qN(X^6)SO_2X^6$, $-(CH_2)_qN(X^6)C(O)N(X^6)(CH_2)_t-A^1$,

 $-(CH_2)_qN(X^6)C(O)N(X^6)(X^6)$, $-(CH_2)_qC(O)N(X^6)(X^6)$, $-(CH_2)_qC(O)N(X^6)(CH_2)_t-A^1$,

 $-(CH_2)_qC(O)OX^6$, $-(CH_2)_qC(O)O(CH_2)_t-A^1$, $-(CH_2)_qOX^6$, $-(CH_2)_qOC(O)X^6$,

 $-(CH_2)_0OC(O)(CH_2)_t-A^1$, $-(CH_2)_0OC(O)N(X^6)(CH_2)_t-A^1$, $-(CH_2)_0OC(O)N(X^6)(X^6)$,

 $-(CH_2)_0C(O)X^6$, $-(CH_2)_0C(O)(CH_2)_t-A^1$, $-(CH_2)_0N(X^6)C(O)OX^6$,

 $-(CH_2)_qN(X^6)SO_2N(X^6)(X^6)$, $-(CH_2)_qS(O)_mX^6$, $-(CH_2)_qS(O)_m(CH_2)_t-A^1$,

 $-(C_1-C_{10})$ alkyl, $-(CH_2)_t-A^1$, $-(CH_2)_a-(C_3-C_7)$ cycloalkyl, $-(CH_2)_a-Y^1-(C_1-C_6)$ alkyl,

 $-(CH_2)_q-Y^1-(CH_2)_t-A^1$ or $-(CH_2)_q-Y^1-(CH_2)_t-(C_3-C_7)$ cycloalkyl;

where the alkyl and cycloalkyl groups in the definition of R^1 are optionally substituted with (C_1-C_4) alkyl, hydroxyl, (C_1-C_4) alkoxy, carboxyl, -CONH₂,

 $-S(O)_m(C_1-C_6)$ alkyl, $-CO_2(C_1-C_4)$ alkyl ester, 1H-tetrazol-5-yl or 1, 2 or 3 fluoro;

 Y^1 is O, $S(O)_m$, $-C(O)NX^6$ -, -CH=CH-, -C=C-, $-N(X^6)C(O)$ -, $-C(O)NX^6$ -,

-C(O)O-, -OC(O)N(X⁶)- or -OC(O)-;

q is 0, 1, 2, 3 or 4;

t is 0, 1, 2 or 3;

said $(CH_2)_q$ group and $(CH_2)_t$ group may each be optionally substituted with hydroxyl, (C_1-C_4) alkoxy, carboxyl, $-CONH_2$, $-S(O)_m(C_1-C_6)$ alkyl,

 $-CO_2(C_1-C_4)$ alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro, or 1 or 2 (C_1-C_4)alkyl;

 R^2 is hydrogen, (C_1-C_8) alkyl, $-(C_0-C_3)$ alkyl- (C_3-C_8) cycloalkyl, $-(C_1-C_4)$ alkyl- A^1 or A^1 ;

where the alkyl groups and the cycloalkyl groups in the definition of R^2 are optionally substituted with hydroxyl, $-C(O)OX^6$, $-C(O)N(X^6)(X^6)$, $-N(X^6)(X^6)$,

 $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)A^1$, $-C(O)(X^6)$, CF_3 , CN or 1, 2 or 3 halogen;

 R^3 is A^1 , (C_1-C_{10}) alkyl, $-(C_1-C_6)$ alkyl- A^1 , $-(C_1-C_6)$ alkyl- (C_3-C_7) cycloalkyl,

 $-(C_1-C_5)$ alkyl- $X^1-(C_1-C_5)$ alkyl, $-(C_1-C_5)$ alkyl- $X^1-(C_0-C_5)$ alkyl- A^1 or

 $-(C_1-C_5)$ alkyl- $X^1-(C_1-C_5)$ alkyl- (C_3-C_7) cycloalkyl;

where the alkyl groups in the definition of R3 are optionally substituted with

 $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^3$, 1, 2, 3, 4 or 5 halogens, or 1, 2 or 3 OX^3 ;

 X^{1} is O, S(O)_m, -N(X^{2})C(O)-, -C(O)N(X^{2})-, -OC(O)-, -C(O)O-, -C X^{2} =C X^{2} -,

 $-N(X^2)C(O)O-, -OC(O)N(X^2)- or -C=C-;$

 R^4 is hydrogen, (C_1-C_6) alkyl or (C_3-C_7) cycloalkyl, or R^4 is taken together with R^3 and the carbon atom to which they are attached and form (C_5-C_7) cycloalkyl, (C_5-C_7) cycloalkenyl, a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, or is a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 X^4 is hydrogen or (C_1-C_6) alkyl or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring;

$$Z^{1}$$
 C CH_{2} C CH_{2} C CH_{2} C

where a and b are independently 0, 1, 2 or 3;

 X^5 and X^{5a} are each independently selected from the group consisting of hydrogen, trifluoromethyl, A^1 and optionally substituted (C_1 - C_6)alkyl;

the optionally substituted (C_1-C_6) alkyl in the definition of X^5 and X^{5a} is optionally substituted with a substituent selected from the group consisting of

 A^1 , OX^2 , $-S(O)_m(C_1-C_6)alkyl$, $-C(O)OX^2$, $(C_3-C_7)cycloalkyl$, $-N(X^2)(X^2)$ and $-C(O)N(X^2)(X^2)$;

or the carbon bearing X⁵ or X^{5a} forms one or two alkylene bridges with the nitrogen atom bearing R⁷ and R⁸ wherein each alkylene bridge contains 1 to 5 carbon atoms, provided that when one alkylene bridge is formed then X⁵ or X^{5a} but not both may be on the carbon atom and R⁷ or R⁸ but not both may be on the nitrogen atom and further provided that when two alkylene bridges are formed then X⁵ and X^{5a} cannot be on the carbon atom and R⁷ and R⁸ cannot be on the nitrogen atom;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 Z^1 is a bond, O or N-X², provided that when a and b are both 0 then Z^1 is not N-X² or O;

R⁷ and R⁸ are independently hydrogen or optionally substituted (C₁-C₆)alkyl;

where the optionally substituted (C_1 - C_6)alkyl in the definition of R^7 and R^8 is optionally independently substituted with A^1 , -C(O)O-(C_1 - C_6)alkyl,

 $-S(O)_m(C_1-C_6)$ alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 $-O-C(O)(C_1-C_{10})$ alkyl or 1 to 3 (C_1-C_6) alkoxy; or

R⁷ and R⁸ can be taken together to form -(CH₂)_r-L-(CH₂)_r-;

where L is $C(X^2)(X^2)$, $S(O)_m$ or $N(X^2)$;

A¹ for each occurrence is independently (C₅-C₇)cycloalkenyl, phenyl or a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4

heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

A¹ for each occurrence is independently optionally substituted, in one or optionally both rings if A¹ is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, -OX⁶,

- $-C(O)N(X^6)(X^6)$, $-C(O)OX^6$, oxo, (C_1-C_6) alkyl, nitro, cyano, benzyl,
- $-S(O)_m(C_1-C_6)$ alkyl, 1H-tetrazol-5-yl, phenyl, phenoxy, phenylalkyloxy, halophenyl, methylenedioxy, $-N(X^6)(X^6)$, $-N(X^6)C(O)(X^6)$, $-SO_2N(X^6)(X^6)$,
- $-N(X^6)SO_2$ -phenyl, $-N(X^6)SO_2X^6$, $-CONX^{11}X^{12}$, $-SO_2NX^{11}X^{12}$, $-NX^6SO_2X^{12}$,
- -NX⁶CONX¹¹X¹², -NX⁶SO₂NX¹¹X¹², -NX⁶C(O)X¹², imidazolyl, thiazolyl and tetrazolyl, provided that if A¹ is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy;

where X¹¹ is hydrogen or optionally substituted (C₁-C₆)alkyl;

the optionally substituted (C_1-C_6) alkyl defined for X^{11} is optionally independently substituted with phenyl, phenoxy, (C_1-C_6) alkoxycarbonyl, $-S(O)_m(C_1-C_6)$ alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 (C_1-C_{10}) alkanoyloxy or 1 to 3 (C_1-C_6) alkoxy;

 X^{12} is hydrogen, (C₁-C₆)alkyl, phenyl, thiazolyl, imidazolyl, furyl or thienyl, provided that when X^{12} is not hydrogen, X^{12} is optionally substituted with one to three substituents independently selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃ and CF₃;

or X^{11} and X^{12} are taken together to form -(CH₂)_r-L¹-(CH₂)_r-; where L¹ is C(X²)(X²), O, S(O)_m or N(X²);

r for each occurrence is independently 1, 2 or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, or optionally substituted (C_3 - C_7)cycloalkyl, where the optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^2 are optionally independently substituted with -S(O)_m(C_1 - C_6)alkyl, -C(O)OX³, 1 to 5 halogens or 1-3 OX³;

X³ for each occurrence is independently hydrogen or (C₁-C₆)alkyl;

 X^6 is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, (C_2 - C_6)halogenated alkyl, optionally substituted (C_3 - C_7)cycloalkyl, (C_3 - C_7)-halogenatedcycloalkyl, where optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^6 is optionally independently substituted by 1 or 2 (C_1 - C_4)alkyl, hydroxyl, (C_1 - C_4)alkoxy, carboxyl, $CONH_2$, -S(O)_m(C_1 - C_6)alkyl, carboxylate (C_1 - C_4)alkyl ester, or 1H-tetrazol-5-vl; or

when there are two X^6 groups on one atom and both X^6 are independently (C_1 - C_6)alkyl, the two (C_1 - C_6)alkyl groups may be optionally joined and, together with the atom to which the two X^6 groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or NX^7 ;

 X^7 is hydrogen or (C₁-C₆)alkyl optionally substituted with hydroxyl; and m for each occurrence is independently 0, 1 or 2;

with the proviso that:

 X^6 and X^{12} cannot be hydrogen when it is attached to C(O) or SO₂ in the form C(O) X^6 , C(O) X^{12} , SO₂ X^6 or SO₂ X^{12} ; and

when H^6 is a bond then L is $N(X^2)$ and each r in the definition $-(CH_2)_r$ -L- $(CH_2)_r$ - is independently 2 or 3.

Claims 15-25 (canceled)

26. (original) A method of treating sleep disorders in a mammal suffering from sleep disorders comprising administering to said mammal an effective amount of a compound of formula I

or the stereoisomeric mixtures, diastereomerically enriched, diastereomerically pure, enantiomerically enriched or enantiomerically pure isomers, or the pharmaceutically acceptable salts and prodrugs thereof,

wherein

e is 0 or 1;

n and w are each independently 0, 1 or 2;

provided that w and n cannot both be 0 at the same time;

Y is oxygen or sulfur;

 R^1 is hydrogen, -CN, -(CH₂)_qN(X⁶)C(O)X⁶, -(CH₂)_qN(X⁶)C(O)(CH₂)_t-A¹,

 $-(CH_2)_qN(X^6)SO_2(CH_2)_t-A^1$, $-(CH_2)_qN(X^6)SO_2X^6$, $-(CH_2)_qN(X^6)C(O)N(X^6)(CH_2)_t-A^1$,

 $-(CH_2)_0N(X^6)C(O)N(X^6)(X^6)$, $-(CH_2)_0C(O)N(X^6)(X^6)$, $-(CH_2)_0C(O)N(X^6)(CH_2)_t-A^1$,

```
-(CH_2)_0C(O)OX^6, -(CH_2)_0C(O)O(CH_2)_1-A^1, -(CH_2)_0OX^6, -(CH_2)_0OC(O)X^6,
-(CH_2)_0OC(O)(CH_2)_t-A^1, -(CH_2)_0OC(O)N(X^6)(CH_2)_t-A^1, -(CH_2)_0OC(O)N(X^6)(X^6),
-(CH_2)_qC(O)X^6, -(CH_2)_qC(O)(CH_2)_t-A^1, -(CH_2)_qN(X^6)C(O)OX^6,
-(CH_2)_aN(X^6)SO_2N(X^6)(X^6), -(CH_2)_aS(O)_mX^6, -(CH_2)_aS(O)_m(CH_2)_t-A^1,
-(C_1-C_{10})alkyl, -(CH_2)_t-A^1, -(CH_2)_q-(C_3-C_7)cycloalkyl, -(CH_2)_q-Y^1-(C_1-C_6)alkyl,
-(CH_2)_a - Y^1 - (CH_2)_t - A^1 or -(CH_2)_a - Y^1 - (CH_2)_t - (C_3 - C_7) cycloalkyl;
         where the alkyl and cycloalkyl groups in the definition of R1 are optionally substituted
         with (C_1-C_4)alkyl, hydroxyl, (C_1-C_4)alkoxy, carboxyl, -CONH<sub>2</sub>,
         -S(O)_m(C_1-C_6)alkyl, -CO_2(C_1-C_4)alkyl ester, 1H-tetrazol-5-yl or 1, 2 or 3 fluoro;
         Y^1 is O, S(O)_m, -C(O)NX^6-, -CH=CH-, -C=C-, -N(X^6)C(O)-, -C(O)NX^6-,
         -C(O)O-, -OC(O)N(X^6)- or -OC(O)-;
         q is 0, 1, 2, 3 or 4;
         t is 0, 1, 2 or 3;
         said (CH<sub>2</sub>)<sub>0</sub> group and (CH<sub>2</sub>)<sub>1</sub> group may each be optionally substituted with hydroxyl,
         (C_1-C_4)alkoxy, carboxyl, -CONH_2, -S(O)_m(C_1-C_6)alkyl,
         -CO_2(C_1-C_4)alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro, or 1 or 2 (C_1-C_4)alkyl;
R^2 is hydrogen, (C_1-C_8)alkyl, -(C_0-C_3)alkyl-(C_3-C_8)cycloalkyl, -(C_1-C_4)alkyl-A^1 or A^1;
         where the alkyl groups and the cycloalkyl groups in the definition of R2 are optionally
         substituted with hydroxyl, -C(O)OX^6, -C(O)N(X^6)(X^6), -N(X^6)(X^6),
         -S(O)_m(C_1-C_6)alkyl, -C(O)A^1, -C(O)(X^6), CF_3, CN or 1, 2 or 3 halogen;
R^3 is A^1, (C_1-C_{10}) alkyl, -(C_1-C_6) alkyl-A^1, -(C_1-C_6) alkyl-(C_3-C_7) cycloalkyl,
-(C_1-C_5)alkyl-X^1-(C_1-C_5)alkyl, -(C_1-C_5)alkyl-X^1-(C_0-C_5)alkyl-A^1 or
-(C_1-C_5)alkyl-X^1-(C_1-C_5)alkyl-(C_3-C_7)cycloalkyl;
         where the alkyl groups in the definition of R3 are optionally substituted with
         -S(O)_m(C_1-C_6)alkyl, -C(O)OX^3, 1, 2, 3, 4 or 5 halogens, or 1, 2 or 3 OX^3;
         X^{1} is O, S(O)_{m}, -N(X^{2})C(O)_{-}, -C(O)N(X^{2})_{-}, -OC(O)_{-}, -C(O)O_{-}, -CX^{2}=CX^{2}_{-},
         -N(X^2)C(O)O_{-}, -OC(O)N(X^2)_{-} \text{ or } -C \equiv C_{-};
R<sup>4</sup> is hydrogen, (C<sub>1</sub>-C<sub>6</sub>)alkyl or (C<sub>3</sub>-C<sub>7</sub>)cycloalkyl, or R<sup>4</sup> is taken together with R<sup>3</sup> and the
```

R⁴ is hydrogen, (C₁-C₆)alkyl or (C₃-C₇)cycloalkyl, or R⁴ is taken together with R³ and the carbon atom to which they are attached and form (C₅-C₇)cycloalkyl, (C₅-C₇)cycloalkenyl, a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, or is a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 X^4 is hydrogen or (C_1-C_6) alkyl or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring;

$$X^{5}$$
 X^{5a} Z^{1} C $(CH_{2})_{a}$ $(CH_{2})_{b}$:

where a and b are independently 0, 1, 2 or 3;

 X^5 and X^{5a} are each independently selected from the group consisting of hydrogen, trifluoromethyl, A^1 and optionally substituted (C_1 - C_6)alkyl;

the optionally substituted (C_1-C_6) alkyl in the definition of X^5 and X^{5a} is optionally substituted with a substituent selected from the group consisting of A^1 , OX^2 , $-S(O)_m(C_1-C_6)$ alkyl, $-C(O)OX^2$, (C_3-C_7) cycloalkyl, $-N(X^2)(X^2)$ and $-C(O)N(X^2)(X^2)$;

or the carbon bearing X⁵ or X^{5a} forms one or two alkylene bridges with the nitrogen atom bearing R⁷ and R⁸ wherein each alkylene bridge contains 1 to 5 carbon atoms, provided that when one alkylene bridge is formed then X⁵ or X^{5a} but not both may be on the carbon atom and R⁷ or R⁸ but not both may be on the nitrogen atom and further provided that when two alkylene bridges are formed then X⁵ and X^{5a} cannot be on the carbon atom and R⁷ and R⁸ cannot be on the nitrogen atom;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen;

or X⁵ is taken together with X^{5a} and the carbon atom to which they are attached and form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

 Z^1 is a bond, O or N-X², provided that when a and b are both 0 then Z^1 is not N-X² or O;

R⁷ and R⁸ are independently hydrogen or optionally substituted (C₁-C₆)alkyl;

where the optionally substituted (C_1 - C_6)alkyl in the definition of R^7 and R^8 is optionally independently substituted with A^1 , -C(O)O-(C_1 - C_6)alkyl,

-S(O)_m(C₁-C₆)alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 -O-C(O)(C₁-C₁₀)alkyl or 1 to 3 (C₁-C₆)alkoxy; or

 R^7 and R^8 can be taken together to form -(CH₂)_r-L-(CH₂)_r;

where L is $C(X^2)(X^2)$, $S(O)_m$ or $N(X^2)$;

A¹ for each occurrence is independently (C₅-C₁)cycloalkenyl, phenyl or a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

A¹ for each occurrence is independently optionally substituted, in one or optionally both rings if A¹ is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, -OX⁶,

- $-C(O)N(X^6)(X^6)$, $-C(O)OX^6$, oxo, (C_1-C_6) alkyl, nitro, cyano, benzyl,
- $-S(O)_m(C_1-C_6)$ alkyl, 1H-tetrazol-5-yl, phenyl, phenoxy, phenylalkyloxy, halophenyl, methylenedioxy, $-N(X^6)(X^6)$, $-N(X^6)C(O)(X^6)$, $-SO_2N(X^6)(X^6)$,
- -N(X⁶)SO₂-phenyl, -N(X⁶)SO₂X⁶, -CONX¹¹X¹², -SO₂NX¹¹X¹², -NX⁶SO₂X¹²,
- -NX⁶CONX¹¹X¹², -NX⁶SO₂NX¹¹X¹², -NX⁶C(O)X¹², imidazolyl, thiazolyl and tetrazolyl, provided that if A¹ is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy;

where X¹¹ is hydrogen or optionally substituted (C₁-C₆)alkyl;

the optionally substituted (C_1-C_6) alkyl defined for X^{11} is optionally independently substituted with phenyl, phenoxy, (C_1-C_6) alkoxycarbonyl, $-S(O)_m(C_1-C_6)$ alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 (C_1-C_{10}) alkanoyloxy or 1 to 3 (C_1-C_6) alkoxy;

 X^{12} is hydrogen, (C₁-C₆)alkyl, phenyl, thiazolyl, imidazolyl, furyl or thienyl, provided that when X^{12} is not hydrogen, X^{12} is optionally substituted with one to three substituents independently selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃ and CF₃;

or X^{11} and X^{12} are taken together to form -(CH₂)_r-L¹-(CH₂)_r-; where L¹ is C(X²)(X²), O, S(O)_m or N(X²);

r for each occurrence is independently 1, 2 or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, or optionally substituted (C_3 - C_7)cycloalkyl, where the optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^2 are optionally independently substituted with $-S(O)_m(C_1$ - C_6)alkyl, $-C(O)OX^3$, 1 to 5 halogens or 1-3 OX^3 ;

X³ for each occurrence is independently hydrogen or (C₁-C₆)alkyl;

 X^6 is independently hydrogen, optionally substituted (C_1 - C_6)alkyl, (C_2 - C_6)halogenated alkyl, optionally substituted (C_3 - C_7)cycloalkyl, (C_3 - C_7)-halogenatedcycloalkyl, where optionally substituted (C_1 - C_6)alkyl and optionally substituted (C_3 - C_7)cycloalkyl in the definition of X^6 is optionally independently substituted by 1 or 2 (C_1 - C_4)alkyl, hydroxyl, (C_1 - C_4)alkoxy, carboxyl, $CONH_2$, -S(O)_m(C_1 - C_6)alkyl, carboxylate (C_1 - C_4)alkyl ester, or 1H-tetrazol-5-yl; or when there are two X^6 groups on one atom and both X^6 are independently (C_1 - C_6)alkyl, the two (C_1 - C_6)alkyl groups may be optionally joined and, together with the atom to which the two X^6 groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or NX^7 ;

 X^7 is hydrogen or (C₁-C₆)alkyl optionally substituted with hydroxyl; and m for each occurrence is independently 0, 1 or 2;

with the proviso that:

 X^6 and X^{12} cannot be hydrogen when it is attached to C(O) or SO_2 in the form $C(O)X^6$, $C(O)X^{12}$, SO_2X^6 or SO_2X^{12} ; and

when R^6 is a bond then L is $N(X^2)$ and each r in the definition $-(CH_2)_r$ -L- $(CH_2)_r$ - is independently 2 or 3.