|             | Page No.  Date:                                                                                                     |
|-------------|---------------------------------------------------------------------------------------------------------------------|
| *           | CALCULUS -: Cackuly is the study of Differentiation and integration.                                                |
| 7)          | Calculus Explain the changes in values, on a small and large scale, related to any junction.                        |
| #           | Differentiation Differential Calculus [f'(x)]-!                                                                     |
| >           | Differential calculy is the rate of change of a variable of a quantity with respect to another variable / quantity. |
| *           | Differential Johnwas:                                                                                               |
| <u>(i)</u>  | dK = 0 ; K = Constant number                                                                                        |
| <b>(27)</b> | $\frac{d(x)}{dx} = 1$                                                                                               |
| 3           | d(Kx) = K ; K= constant                                                                                             |
| Jan 4       | $\frac{d(x^m)}{dx} = mx^{m-1}$                                                                                      |

|         | Page No.  Date:                                                |
|---------|----------------------------------------------------------------|
| *       | Derivatives of Logarithmic and Exponential  Junctions-!        |
| <u></u> | $\frac{d(e^{x})}{dx} = e^{x}$                                  |
| 2       | $\frac{d(Ln(x))}{dx} = \frac{1}{x}$ $\ln = \text{naturel Log}$ |
| 3.      | $\frac{d(qx)}{dx} = \frac{q^{x} \log q}{q}$                    |
| 4       | $\frac{d(x^{x})}{dx} = x^{x}(1+\ln x)$                         |
| 5       | d(Logax) 1 x 1<br>dx x In 9                                    |
| * -     | Trignometric femation-!                                        |
| (D)     | d (sinx) = (osx                                                |
| 2.      | d (Cojx) - Sinx                                                |
| 3       | d (tanx) = Sec2x                                               |
|         |                                                                |

|            | Page No.                                                                       |
|------------|--------------------------------------------------------------------------------|
|            | Date:                                                                          |
|            |                                                                                |
| 4          | d (Cotx) Cosec2x                                                               |
| (4)        | dx                                                                             |
|            |                                                                                |
| $\bigcirc$ | d (Sec x) - Sec x . fan x                                                      |
|            | CN.                                                                            |
| a          | d (Cosec x) Cosec x. Cotx                                                      |
| (6)        | d (Cosec x) = - Cosec x. Cotx                                                  |
|            |                                                                                |
| *          | Inverse Frignometric functioner                                                |
| -          |                                                                                |
| 0          | d (sin-1x) = 1                                                                 |
|            | dx $dx$                                                                        |
| £          | d (Cal-1x) -1                                                                  |
| (2.)       | $\frac{dx}{dx} = \frac{1-x^2}{\sqrt{1-x^2}}$                                   |
|            |                                                                                |
| 3          | $\frac{d(\tan^{-1}x)}{dx} = \frac{1}{1+x^2}$                                   |
|            | dx 1+ x2                                                                       |
|            | 1 ( Cat-1 ve)                                                                  |
| (4)        | $\frac{d\left(\cot^{-1}x\right)}{dx} = -1$                                     |
|            | ; · · · · · · · · · · · · · · · · · · ·                                        |
|            | (+)                                                                            |
| *          | Sum and difference rule for Differentiation:                                   |
|            | · ·                                                                            |
|            | Then the function is the sum or difference of two junctions, the derivative is |
|            | y two grands) for augustines as                                                |
|            |                                                                                |

|         | Page No.  Date:                                                             |
|---------|-----------------------------------------------------------------------------|
|         | the sum or Difference of derivetive of each function.                       |
| ->      | In short you have to differentiate both funtion and then add of difference. |
|         | $IJ \oint f(x) = U(x) \pm V(x)$                                             |
|         | then $f'(x) = U'(x) \pm V'(x)$                                              |
| *       | Product Rule -: (x) -: for multiplication, and have to apply this           |
|         | IJ f(x) = 2  (x)                                                            |
|         | Then f'w= u'(x) x v(x) + u(x) x v'(x)                                       |
|         | cu'(x) and v'(x) = diffrentiation values                                    |
| *       | Quotient Rule (=) -!                                                        |
| P 4 4 4 | If we have                                                                  |
|         | $f(x) = \underline{u(x)}$                                                   |
|         |                                                                             |

|                | Page No.                                                                                                                                                                                                |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Date:                                                                                                                                                                                                   |
|                | derivative of the function can be.                                                                                                                                                                      |
|                | $f'(x) = \underline{\mathcal{A}''(x)} \times V(x) - \underline{\mathcal{A}(x)} \times V'(x)$ $[V(x)]^2$                                                                                                 |
| - Š            | $f'(x) = 2x^3 - 4x^2 + x - 33$ $f'(x) = ?$                                                                                                                                                              |
|                | $\frac{d}{dx} \left( \frac{\partial^2 4x^2}{\partial x^2} + \frac{\partial^2 4x^2}{\partial x^2} \right) = \frac{2x(2x^2) - 4(x)}{2x^2}$                                                                |
|                | $f'(x) = 2 \frac{d}{dx}(x^3) - 4 \frac{d}{dx}(x^2) + 1 \frac{d}{dx}(x) - \frac{d}{dx}(33)$                                                                                                              |
|                | $= 2(3x^{2}) - 4(2x) + 1 - 0$ $= 2(3x^{2}) - 4(2x) + 1 - 0$ $= 6x^{2} - 8x + 1$ |
| <u>&amp;</u> . | $f(x) = \frac{\sin x}{x} \qquad f'(x)$ $\frac{d(\sin x)}{dx} = \frac{d(\sin x)x - \sin x}{dx} \left(\frac{d(x)}{dx}\right)$ $\frac{d(\sin x)}{dx} = \frac{d(x)}{dx} \left(\frac{d(x)}{dx}\right)$       |
|                |                                                                                                                                                                                                         |
|                | $= \frac{\times \text{ Cod } \times - \text{ Sin 2}}{\times^2}$                                                                                                                                         |
|                |                                                                                                                                                                                                         |

|         | Page No.  Date:                                                                             |
|---------|---------------------------------------------------------------------------------------------|
| *       | Integration / Integral Calculy: (5)                                                         |
| J       | The process of evaluating the area under of curve of quenchion is called integral calculus. |
| o{<br>→ | The process of finding the anti-<br>derivative of 9 function.                               |
| *       | list of Integral formulas.                                                                  |
| 0       | SIdk = x+c C = Constant                                                                     |
| 2-)     | $\int q  dx = qx + c$                                                                       |
| (E)     | Joseph = Walker                                                                             |
| In (31) | Smax = (xn+1) +c : n = 1                                                                    |
| 4       | SSinx dx = - Cosx +C                                                                        |
| (5.)    | SCON X dx = sin x + C                                                                       |
| 6       | Ssec2x dx = tanx +C                                                                         |
| B       | Scorec2x dx = - Cot x +C                                                                    |
|         | Sose x dx =                                                                                 |

|                  | Page No.  Date:                                                                                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8                | Sexxx (tanx) dx = Secx +c                                                                                                                                 |
| 9                | S Cosecx x (cotx) dx = - sosecx + c                                                                                                                       |
| (0)              | S(x) dx = Ln/x/+c   Ln= natural Lg                                                                                                                        |
| (I)              | $\int e^{x} dx = e^{x} + c$ $ x  = mode of x$                                                                                                             |
| (2)              | $\int q^{2} dx = (q^{2}) + c : q>0; q\neq 1$                                                                                                              |
| (3)              | $\int \frac{1}{1-x^2} dx = \sin x + C$                                                                                                                    |
| (14)             | $\int \frac{1}{1+\chi^2} dx = +an^{-1}\chi + C$                                                                                                           |
| (15.)            | [ 1 dn = Sec x + C                                                                                                                                        |
| 16)              | $\int \frac{\sin^{n}(x)dx}{n} = \frac{-1}{n} \frac{\sin^{n-1}(x)}{\sin^{n}(x)} \left(\cos(x) + \frac{n-1}{n}\right) \frac{\sin^{n-2}(x)}{\sin^{n}(x)} dx$ |
| ( <del>?</del> ) | $\int GS^{n}(x)dx = \frac{1}{n} GS^{n-1}(x) Sin(x) + \frac{n-1}{n} \int GS^{n-2}(x) dx$                                                                   |

tan (wdx = 1 tan (w)-ftan -2 (wdx

|      | Page No.  Date:                                                                                  |
|------|--------------------------------------------------------------------------------------------------|
| (13) | $\int Sec^{n}(x) dx = \frac{1}{n-1} Sec^{n-2}(x) + an(x) + \frac{n-2}{n-1} \int Sec^{n-2}(x) dx$ |
| (4)  | $\int (oyec^{n}(x)dx = -1 csc^{n-2}(x) cot(x) + \frac{n-2}{n-1} \int csc^{n-2}(x) dx$            |
| Ex.  | opply limits  we don't dad c  because we have  1 mit.                                            |
|      |                                                                                                  |
|      |                                                                                                  |

|     | Page No.  Date:                                                                                    |
|-----|----------------------------------------------------------------------------------------------------|
| A   | Integration By Part formula:                                                                       |
|     | Suv dx = u Svdx-S(u'Svdx) dx                                                                       |
|     | TLATE Rule-: For Fidentify the function that Comes just (u) and the second (V), we use ILATE Rule. |
|     | TLATE stands for:                                                                                  |
| 0   | I -: Inverse Trignometric function. (A-1)                                                          |
|     | L-: Logarithmic functions: Lnx, Log5(x), etc.                                                      |
| (3) | A -: Algebric Junction:                                                                            |
| (H) | T: Trignometric fn. (Smn, Gox, tama etc.)                                                          |
|     | E-: Exponential fn. (ex) (Ex. ss.)                                                                 |
| A   | Tangents and normals: A Tangent to                                                                 |
|     | line the touches the curve at me point and has the same slope as the curve at that point.          |



