Homework 3

Rebekah Mayne Math 370, Fall 2024

February 24, 2025

1 (Page 40)

Problem 7. Solve $9x \equiv 4 \pmod{1453}$.

Solution.

We can look for solutions by doing the following

Then, we can see that $9(1282) = 11628 \equiv 4 \pmod{1453}$. So $x \equiv 1282 \pmod{1453}$.

Problem 8. Solve $4x \equiv 9 \pmod{1453}$.

Solution.

We can look for solutions by doing the following (after the first, we can only check even multiples of 1453, because it has to be even to be divisible.)

$$\begin{array}{c} 4 \stackrel{?}{|} 1453 + 9 \rightarrow (4 \nmid 62) \rightarrow 4 \nmid 1462 \\ \\ 4 \stackrel{?}{|} 2915 + 1453(2) \rightarrow (4 \mid 68) \rightarrow 4 \mid 4368 \end{array}$$

Then, we can see that $4(1092) = 4368 \equiv 9 \pmod{1453}$. So $x \equiv 1092 \pmod{1453}$.

Problem 15. Find a positive integer such that half of it is a square, a third of it is a cube, and a fifth of it is a fifth power.

Solution.

Let n be a positive integer. Then we want $a^2 = \frac{n}{2}$, $b^3 = \frac{n}{3}$ and $c^5 = \frac{n}{5}$. Or rewritten as $n = 2a^2$, $n = 3b^3$, and $n = 5c^5$. Then we know that 3, 2, 5|n So we need to be able to find $i_1, i_2, i_3, j_1, j_2, j_3, k_1, k_2, k_3$ so that

$$n = (2^{2i_1+1})(3^{2j_1})(5^{2k_1}) = (2^{3i_2})(3^{3j_2+1})(5^{3k_2}) = (2^{5i_3})(3^{5j_3})(5^{5k_3+1})$$

So we need to find $2i_1 + 1 = 3i_2 = 5i_3$, $2j_1 = 3j_2 + 1 = 5j_3$ and $2k_1 = 3k_2 = 5k_3 + 1$.

For the first, we can see that for $2i_1 + 1 = 3i_2 = 5i_3 = e_1$, this means that $2i_1 + 1$ must be divisible by 3 and 5. So let $e_1 = 2i_1 + 1 \equiv 0 \pmod{3}$ and $e_1 \equiv 0 \pmod{5}$. Then,

Then, we can let $e_1 = 45$. Then we want to find $e_2 = 2j_1 = 3j_2 + 1 = 5j_3$, this means that $e_2 = 3j_2 + 1 \equiv 0 \pmod{5}$ and $e_2 \equiv 0 \pmod{2}$. So

$$\begin{array}{l} 3j_2+1\equiv 0\pmod{2}\\ j_2\equiv -1\pmod{2}\\ j_2\equiv 1\pmod{2} & \to \quad j_2=2r_1+1\\ & e_2=3(2r_1+1)+1\\ & e_2=6r_1+4 \end{array}$$

$$\begin{array}{l} 6r_1+4\equiv 0\pmod{5} & \leftarrow \\ r_1-1\equiv 0\pmod{5}\\ r_1\equiv 1\pmod{5} & \to \quad r_1=5r_2+1\\ & e_2=6(5r_2+1)+4\\ & e_2=30r_2+10 \end{array}$$

$$\begin{array}{l} e_2\equiv 10\pmod{30} & \leftarrow \end{array}$$

So lets let $e_2 = 40$. Then we want to find $e_3 = 2k_1 = 3k_2 = 5k_3 + 1$, this means that $e_3 = 5k_3 + 1 \equiv 0$

 $\pmod{2}$ and $e_3 \equiv 0 \pmod{3}$.

So lets let $e_2 = 36$. Then,

$$\begin{array}{lclcrcl} (2^{45})(3^{40})(5^{36}) & = & (2^{2i_1+1})(3^{2j_1})(5^{2k_1}) & = & (2^{3i_2})(3^{3j_2+1})(5^{3k_2}) & = & (2^{5i_3})(3^{5j_3})(5^{5k_3+1}) \\ (2^{45})(3^{40})(5^{36}) & = & 2(2^{22}\cdot 3^{20}\cdot 5^{18})^2 & = & 3(2^{15}\cdot 3^{13}\cdot 5^{12})^3 & = & 5(2^9\cdot 3^8\cdot 5^7)^5 \end{array}$$

So our $n = 2^{45} \cdot 3^{40} \cdot 5^{36}$.

Problem 16. The three consecutive integers 48,49, and 50 each have a square factor.

- (a) Find *n* such that $3^2|n, 4^2|n + 1$ and $5^2|n + 2$.
- (b) Can you find n such that $2^2|n, 3^2|n+1$ and $4^2|n+2$?

Solution.

(a) This can be rewritten as $n \equiv 0 \pmod{3^2}$, $n+1 \equiv 0 \pmod{4^2}$ and $n+2 \equiv 0 \pmod{5^2}$. Or $n \equiv 0 \pmod{9}$, $n \equiv -1 \pmod{16}$ and $n \equiv -2 \pmod{25}$. Then, we can do the following to solve for n,

$$n \equiv 0 \pmod{9} \qquad \rightarrow \qquad n = 9k_1$$

$$9k_1 \equiv -1 \pmod{16} \qquad \leftarrow$$

$$*k_1 \equiv 7 \pmod{16} \qquad \rightarrow \qquad k_1 = 16k_2 + 7$$

$$\qquad \qquad n = 9(16k_2 + 7)$$

$$\qquad \qquad n = 144k_2 + 63$$

$$144k_2 + 63 \equiv -2 \pmod{25} \qquad \leftarrow$$

$$-6k_2 + 13 \equiv 23 \pmod{25}$$

$$-6k_2 \equiv 10 \pmod{25}$$

$$6k_2 \equiv 15 \pmod{25}$$

$$* * k_2 \equiv 15 \pmod{25}$$

$$* * k_2 \equiv 15 \pmod{25}$$

$$n = 144(25k_3 + 15) + 63$$

$$n = 3600k_3 + 2160 + 63$$

$$n = 3600k_3 + 2223$$

$$n \equiv 2223 \pmod{3600}$$

* work:

** work:

So let n = 2223, we can check that

$$2223/3^{2} = 247 \checkmark$$
$$2224/4^{2} = 139 \checkmark$$
$$2225/5^{2} = 89 \checkmark$$

(b) We know that $n \equiv 0 \pmod{4}$, and that 16k = n + 2 so we can check this out under mod 4

$$16k = n + 2$$
$$0 \equiv 0 + 2 \pmod{4}$$
$$0 \equiv 2 \pmod{4}$$

This is not possible, so we cannot find a solution.

2 (Page 48)

Problem 2. What is the least residue of

- (a) $5^{10} \pmod{11}$
- (b) $5^{12} \pmod{11}$
- (c) $1945^{12} \pmod{11}$

Solution.

- (a) By FLT, because 5 ± 11 , and because 11 is prime, we know that $5^{10}\equiv1\pmod{11}$.
- (b) $5^{12} \equiv 5 \cdot 5 \pmod{11}$ because 11 is prime, and $a^p \equiv a \pmod{p}$, so then

$$\begin{array}{ll} 5^{12} & \equiv 5 \cdot 5 & \pmod{11} \\ & \equiv 25 & \pmod{11} \\ 5^{12} & \equiv 3 & \pmod{11} \end{array}$$

(c) By FLT, because 1945 \pm 11, and because 11 is prime, we know that $1945^{10} \pmod{11} \equiv 1$, so we can see the following,

$$\begin{array}{lll} 1945^{12} & \equiv 1945^{10} \cdot 1945^2 & \pmod{11} \\ & \equiv 1 \cdot 1945^2 & \pmod{11} \\ & \equiv (1100 + 845)^2 & \pmod{11} \\ & \equiv (770 + 75)^2 & \pmod{11} \\ & \equiv (66 + 9)^2 & \pmod{11} \\ & \equiv (9)^2 & \pmod{11} \\ & \equiv (-2)^2 & \pmod{11} \\ 1945^{12} & \equiv 4 & \pmod{11} \end{array}$$

Problem 4. What are the last two digits of 7^{333}

Solution.

Look at 7^{333} (mod 100). Or we can rewrite it using the Chinese remainder theory and solve for what 7^{333} (mod 25) and 7^{333} (mod 4) and combine. Starting we can see

$$7^{333} \equiv (7^2)^{166} \cdot 7 \pmod{25}$$

$$\equiv (49)^{166} \cdot 7 \pmod{25}$$

$$\equiv (-1)^{166} \cdot 7 \pmod{25}$$

$$7^{333} \equiv 7 \pmod{25}$$

and

$$7^{333} \equiv (-1)^{333} \pmod{4}$$

 $\equiv -1 \pmod{4}$
 $7^{333} \equiv 3 \pmod{4}$

Then we want to solve for $x \equiv 3 \pmod{4}$ and $x \equiv 7 \pmod{25}$ as follows,

$$\begin{array}{llll} x \equiv 3 \pmod{4} & \to & x = 4k_1 + 3 \\ 4k_1 + 3 \equiv 7 \pmod{25} & \leftarrow \\ 4k_1 \equiv 4 \pmod{25} & \to & k_1 = 25k_2 + 1 \\ & & x = 4(25k_2 + 1) + 3 \\ & & x = 100k_2 + 4 + 3 \\ & & x = 100k_2 + 7 \\ \hline \\ x \equiv 7 \pmod{100} & \leftarrow \\ 7^{333} \equiv 7 \pmod{100} & \end{array}$$

So we can see that the last two digits of 7^{333} is 07.

Problem 6. What is the remainder when 314^{162} is divided by 163?

Solution.

This can be rewritten as 314^{162} (mod 163). Since 163 is prime, we can use FLT, so

$$314^{162} \equiv 1 \pmod{163}$$
.

Problem 8. What is the remainder when 2001^{2001} is divided by 26?

Solution.

This can be rewritten as $2001^{2001} \pmod{26}$. Since 26 is not prime, we can't use FLT, but we can break it into $2001^{2001} \pmod{13}$ and $2001^{2001} \pmod{2}$ and use the remainder theorem as follows,

Then,

$$2001^{2001} \equiv (1)^{2001} \pmod{2}$$

 $\equiv 1 \pmod{2}$
 $2001^{2001} \equiv -1 \pmod{2}$

Since we have both $2001^{2001} \equiv -1 \pmod{13}$ and $2001^{2001} \equiv -1 \pmod{2}$, since $13 \perp 2$ this means that

$$2001^{2001} \equiv -1 \pmod{26}.$$

3 (Page 55)

Problem 3. Calculate τ and σ of $10115 = 5 \cdot 7 \cdot 17^2$ and $100115 = 5 \cdot 20023$.

Solution.

10115 First we can start with

$$\tau(10115) = \tau(5) \cdot \tau(7) \cdot \tau(17^{2})$$
$$= (2) \cdot (2) \cdot (3)$$
$$\tau(10115) = 12$$

Then,

$$\sigma(10115) = \sigma(5) \cdot \sigma(7) \cdot \sigma(17^{2})$$

$$= (5+1) \cdot (7+1) \cdot \left(\frac{17^{2+1}-1}{17-1}\right)$$

$$= (48) \cdot \left(\frac{17^{3}-1}{16}\right)$$

$$= (3) \cdot (4913-1)$$

$$= (3) \cdot (4912)$$

$$\sigma(10115) = 14736$$

100115 For this we start with

$$\tau(100115) = \tau(5) \cdot \tau 20023$$
$$= (2)cdot(2)$$
$$\tau(100115) = 4$$

Then,

$$\sigma(100115) = \sigma(5) \cdot \sigma20023$$

$$= (5+1) \cdot (20023+1)$$

$$= (6) \cdot (20024)$$

$$\sigma(100115) = 120144$$

Problem 5. Show that σn is odd if n is a power of two.

Proof. Let n be a power of two, that is for some positive integer k $n = 2^k$. Then we want to find if $n \pmod{2}$ is 0 or 1 to see if σn is even or odd.

$$\sigma(n) = \sigma(2^k)$$

$$= \frac{2^{k+1} - 1}{2 - 1}$$

$$= 2^{k+1} - 1$$

$$\equiv 0 - 1 \pmod{2}$$

$$\sigma(n) \equiv 1 \pmod{2}$$

Since $\sigma(n) \equiv 1 \pmod{2}$ we know that $\sigma(n)$ is odd.

Problem 7. What is the smallest integer n such that $\tau(n) = 8$? Such that $\tau(n) = 10$?

Solution.

Given that $n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k}$, we know that $\tau(n) = \prod_{i=1}^k (e_i + 1)$. Then, if $\tau(n) = 8$ we know that $8 = 2^3$, so we have one of the following: $(e_1 + 1)(e_2 + 1)(e_3 + 1) = (2)(2)(2)$, $(e_1 + 1)(e_2 + 1) = (4)(2)$, $(e_1 + 1)(e_2 + 1) = (2)(4)$ or $(e_1 + 1) = 8$. Respectively, with the smallest primes possible (2, 3, 3) and (2, 3) this would be n = (2)(3)(5) = 30, $n = (2^3)(3) = 24$, $n = (2)(3^3) = 54$, or $n = (2^7) = 128$. So we can see that for $\tau(n) = 8$ the smallest possible n = 24.

Then for $\tau(n) = 10$, we know that $10 = 2 \cdot 5$, so we have one of the following: $(e_1 + 1)(e_2 + 1) = (2)(5)$, $(e_1 + 1)(e_2 + 1) = (5)(2)$, or $(e_1 + 1) = (10)$. Respectively these are $n = (2)(3^4) = 162$, $n = (2^4)(3) = 48$ or $n = 2^9 = 512$. So we can see that for $\tau(n) = 10$, the smallest possible n is 48.

Problem 8. Does $\tau(n) = k$ have a solution for n for each k?

Proof. Given any positive integer k, we know we can find a solution for $\tau(n) = k$ where $n = 2^{k-1}$, no matter what the k, we see that

$$\tau(n) = \tau(2^{k-1}) = (k-1+1) = k$$

So there is always a solution n for each k.

Problem 9. In 1644, Mersenne asked for a number with 60 divisors. Find one smaller than 10,000. *Solution*.

We can see that $60 = 2^2 \cdot 3 \cdot 5$, so based on the past solutions I may guess that the smallest n's will be one of the following: $(e_1+1)(e_2+1)(e_3+1) = (5)(4)(3)$, $(e_1+1)(e_2+1)(e_3+1) = (6)(5)(2)$, or $(e_1+1)(e_2+1)(e_3+1)(e_4+1) = (5)(3)(2)(2)$. Those are respectively $n = (2^4)(3^3)(5^2) = (4)(27)(10^2) = (108)(100) > 10,000$, $n = (2^5)(3^4)(5^1) = (4^2)(3^4)(10) = (16)(81)(10) = (1296)(10) > 10,000$, or $n = (2^4)(3^2)(5^1)(7^1) = (8)(9)(10)(7) = 5040$. So an n smaller than 10,000 with 60 divisors is 5040.

Problem 10. Find infinitely many n such that $\tau(n) = 60$.

Solution.

Using the above calculation, $\tau(n) = 60$ for all n of the form

$$p_a^4 \cdot p_b^3 \cdot p_c^2$$

for any primes p_1, p_2 , and p_3 . Since there are infinitely many primes, there are then infinitely many n's as well.

Problem 12. For which n is $\sigma(n)$ odd?

Solution.

Let $\sigma(n)$ be odd, then we see

$$\sigma(n) = \prod_{i=1}^{k} \left(\frac{p_i^{e_i+1} - 1}{p_i - 1} \right)$$

For $\sigma(n)$ to be odd, all of the things in the product have to also be odd, so $\frac{p_i^{e_i+1}-1}{p_i-1}$ must be odd. First we will check for when p_i is even, meaning $p_i=2$. In this case we have $\frac{2^{e_i+1}-1}{2-1}=2^{e_i+1}-1$ which must be odd by definition, so this will always be true.

Then, if p_i is anything other than 2, we can see that for $\frac{p_i^{e_i+1}-1}{p_i-1}$ to be odd, that $\exists k$ where k is odd, s.t.

$$p_i^{e_i+1} - 1 = k(p_i - 1)$$

$$p_i^{e_i+1} - 1 = kp_i - k$$

$$p_i^{e_i+1} - kp_i = 1 - k$$

$$p_i(p_i^{e_i} - k) = 1 - k$$

Then, take it mod 2, to then see

$$1(1^{e_i} - 1) \equiv 1 - 1 \mod 2$$
$$1^{e_i} - 1 \equiv 0 \mod 2$$
$$1^{e_i} \equiv 1 \mod 2$$
$$(-1)^{e_i} \equiv 1 \mod 2$$

This means that we can see that e_i must be even.

So σn is odd only when n has the form,

$$n = 2^{e_1} \cdot p_1^{2e_2} \cdots p_k^{2e_k}.$$

4 (Page 71)

Problem 1. Calculate $\phi(42)$, $\phi(420)$, and $\phi(4200)$.

Solution.

42 Start with $42 = 2 \cdot 3 \cdot 7$, then

$$\phi(42) = 42\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{7}\right)$$

$$= (42)\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{6}{7}\right)$$

$$= (1)(2)(6)$$

$$\phi(42) = 12$$

420 Start with $420 = 2^2 \cdot 3 \cdot 5 \cdot 7$, then

$$\pi 420 = 420 \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) \left(1 - \frac{1}{5} \right) \left(1 - \frac{1}{7} \right)$$

$$= (420) \left(\frac{1}{2} \right) \left(\frac{2}{3} \right) \left(\frac{4}{5} \right) \left(\frac{6}{7} \right)$$

$$= (2)(1)(2)(4)(6)$$

$$= 24 \cdot 4$$

$$\phi(420) = 96$$

4200 Start with $4200 = 2^3 \cdot 3 \cdot 5^2 \cdot 7$, then

$$\phi(4200) = (4200) \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{7}\right)$$

$$= (420) \left(\frac{1}{2}\right) \left(\frac{2}{3}\right) \left(\frac{4}{5}\right) \left(\frac{6}{7}\right)$$

$$= (20)(1)(2)(4)(6)$$

$$\phi(4200) = 960$$

Problem 3. Calculate ϕ of $10115 = 5 \cdot 7 \cdot 17^2$ and $100115 = 5 \cdot 20023$.

Solution.

Start with $10115 = 5 \cdot 7 \cdot 17^2$, then

$$\phi(10115) = (10115) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{7}\right) \left(1 - \frac{1}{17}\right)$$
$$= (10115) \left(\frac{4}{5}\right) \left(\frac{6}{7}\right) \left(\frac{16}{17}\right)$$
$$= (17)(4)(6)(16)$$
$$\phi(10115) = 6528$$

Then, start with $100115 = 5 \cdot 20023$, then

$$\phi(100115) = (100115) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{20023}\right)$$
$$= (100115) \left(\frac{4}{5}\right) \left(\frac{20022}{20023}\right)$$
$$= (1)(4)(20022)$$
$$\phi(100115) = 80088$$

Problem 7. Show that if n is odd, then $\phi(4n) = 2\phi(n)$.

Proof. Let n be odd. Then lets look at $\phi(4n)$,

$$\phi(4n) = phi(2^2)\phi(n)$$

$$= 4\left(1 - \frac{1}{2}\right)\phi(n)$$

$$= 4\left(\frac{1}{2}\right)\phi(n)$$

$$\phi(4n) = 2\phi(n).$$

Problem 14. Find four solutions of $\phi(n) = 16$.

Solution.

Let $\phi(n)=16$, then let $n=p_1^{e_1}\cdots p_k^{e_k}$. For $\phi(n)=16$ then

$$\phi(n) = n \prod_{i=1}^{k} \frac{p_i - 1}{p_i}$$

$$\phi(n) = n \frac{\prod_{i=1}^{k} p_i - 1}{\prod_{i=1}^{k} p_i}$$

$$n = \phi(n) \frac{\prod_{i=1}^{k} p_i}{\prod_{i=1}^{k} p_i - 1}$$

$$n = 16 \frac{\prod_{i=1}^{k} p_i}{\prod_{i=1}^{k} p_i - 1}$$

$$n = \frac{16}{\prod_{i=1}^{k} p_i - 1} \prod_{i=1}^{k} p_i$$

We need to find r_i where $r_i = p_i - 1$, we can see by above that $r_i|16$, and $r_i + 1$ is prime, so we can list the divisors of 16:

$$r_i = \{1, 2, 4, 8, 16\}$$

Then check for primes in $r_i + 1 = p_i$

$$r_i + 1 = \{2, 3, 5, \emptyset, 17\}$$

So our only possibilities for r_i are $\{1, 2, 4, 16\}$ and so we must have p_i in $\{2, 3, 5, 17\}$. Then, going back to our other formula for $\phi(n)$ we can see

$$\phi(n) = p_1^{e_1 - 1}(p_1 - 1) \cdot p_2^{e_2 - 1}(p_2 - 1) \cdot p_3^{e_3 - 1}(p_3 - 1) \cdot p_4^{e_4 - 1}(p_4 - 1)$$

$$16 = 2^{e_1 - 1}(2 - 1) \cdot 3^{e_2 - 1}(3 - 1) \cdot 5^{e_3 - 1}(5 - 1) \cdot 17^{e_4 - 1}(17 - 1)$$

We can see that because 16 < 17, the only cases that 17 can be a factor are 17 and $17 \cdot 2$ ($2^0 \cdot (1) = 1$), then look for

$$16 = 2^{e_1 - 1}(2 - 1) \cdot 3^{e_2 - 1}(3 - 1) \cdot 5^{e_3 - 1}(5 - 1)$$

We can see that $5^2 > 16$ so $e_3 < 2$, then we can also see that $3 \nmid 16$, so $e_2 < 2$ as well. Then we have a few possibilities,

So the possibilities for $\phi(n) = 16$ are n = a where a is in $\{2^2 \cdot 3 \cdot 5, 2^3 \cdot 5, 2^4 \cdot 3, 2^5, 17, 17 \cdot 2\}$

Problem 15. Find all solutions of $\phi(n) = 4$ and prove that there are no more.

Proof. Using the same logic as above, we get to

$$n = \frac{4}{\prod_{i=1}^{k} p_i - 1} \prod_{i=1}^{k} p_i$$

We need to find r_i where $r_i = p_i - 1$, we can see by above that $r_i | 4$, and $r_i + 1$ is prime, so we can list the divisors of 4:

$$r_i = \{1, 2, 4\}$$

Then check for primes in $r_i + 1 = p_i$

$$r_i + 1 = \{2, 3, 5\}$$

So our only possibilities for r_i are $\{1,2,4\}$ and so we must have p_i in $\{2,3,5\}$. Then, going back to our other formula for $\phi(n)$ we can see

$$\phi(n) = p_1^{e_1 - 1}(p_1 - 1) \cdot p_2^{e_2 - 1}(p_2 - 1) \cdot p_3^{e_3 - 1}(p_3 - 1) \cdot p_4^{e_4 - 1}(p_4 - 1)$$

$$4 = 2^{e_1 - 1}(2 - 1) \cdot 3^{e_2 - 1}(3 - 1) \cdot 5^{e_3 - 1}(5 - 1)$$

Since 5 > 4, we can only have n = 5 or $n = 2 \cdot 5$. Moving on if 3 is a factor, we are left with

$$4 = 2^{e_1 - 1}(2 - 1) \cdot 3^{e_2 - 1}(2)$$

Since $3^2 > 4$ then $e_2 < 2$, so we can only have

$$4 = 2^{e_1 - 1} \cdot 2$$

$$2 = 2^{e_1 - 1}$$

$$e_1 = 2$$

So we get $n = 2^2 \cdot 3$ If 3 is not a factor we have

$$4 = 2^{e_1 - 1}(2 - 1)$$

$$4 = 2^{e_1 - 1}$$

$$e_1 = 3$$

Then, $n=2^3$.

So all the possibilities for n if $\phi(n)=4$ are n=a where a is in $\{2^3,2^2\cdot 3,2\cdot 5,5\}$.

5

Problem. Compute $\mu(n)$ for n = 1, 2, ..., 12.

Solution.

1: $1 = 1^1$

$$\mu(1) = 1$$

2: $2 = 2^1$

$$\mu(2) = (-1)^1$$

$$\mu(2) = -1$$

3: $3 = 3^1$

$$\mu(3) = (-1)^1$$

$$\mu(3) = -1$$

4: $4 = 2^2$

$$\mu(4) = 0$$

5: $5 = 5^1$

$$\mu(5) = (-1)^1$$

$$\mu(5) = -1$$

6:
$$6 = 2^1 \cdot 3^1$$

$$\mu(6) = (-1)^2$$
 $\mu(6) = 1$

7:
$$7 = 7^1$$

$$\mu(7) = (-1)^1$$

$$\mu(7) = -1$$

8:
$$8 = 2^3$$

$$\mu(8) = 0$$

9:
$$9 = 3^2$$

$$\mu(9) = 0$$

10:
$$10 = 2^1 \cdot 5^1$$

$$\mu(10) = (-1)^2$$

$$\mu(10) = 1$$

11:
$$11 = 11^1$$

$$\mu(11) = (-1)^1$$

$$\mu(11) = 1$$

12:
$$12 = 2^2 \cdot 3^1$$

$$\mu(12) = 0$$

6

Problem. Find all n, 25 < n < 40 such that $\mu(n) = 1$.

Solution.

All of the n such that $\mu(n) = 1$ are n with an even number of factors that are all unique primes. So any primes are automatically disqualified. Then between 25 and 40, this would include

So all n that have $\mu(n) = 1$ between 25 < n < 40 are $\{26, 33, 34, 35, 38, 39\}$.

7

Problem. Find all non-primes n < 50 with $\mu(n) = -1$.

Solution.

Any non-primes n < 50 with $\mu(n) = -1$ must have an odd non-zero number of unique primes, it cannot be 5 because the smallest number with 5 unique primes is $2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$. So it will only be numbers with exactly 3 unique primes, The largest prime it can be must have $2 \cdot 3 \cdot a < 50$ so a < 8. Then, there are 4 primes under 8 (2,3,5,7), so there is a total of $\binom{4}{3} = 4$ numbers that this could apply to: $2 \cdot 3 \cdot 5$, $2 \cdot 3 \cdot 7$, $2 \cdot 5 \cdot 7$, $3 \cdot 5 \cdot 7$, which is 30, 42, 70, 105. So there are only two numbers less than 50 that are non-primes with $\mu(n) = -1$ and they are 30 and 42.

8

Problem. Prove that if n is any positive integer, then $\mu(n) \cdot \mu(n+1) \cdot \mu(n+2) \cdot \mu(n+3) = 0$.

Proof. Let n be any positive integer. If we think about n, n+1, n+2 and n+3, we can see that no matter what, if taken mod 4, one of these will be equivalent to 0 mod 4. Therefore, $\mu(n) \cdot \mu(n+1) \cdot \mu(n+2) \cdot \mu(n+3) = 0$, since at least one of them must be divisible by 4, making it's μ equal to 0, and therefore the product must also be 0.

9

Problem. A number with k digits, all being 1, is called a *repunit*. For example 11,11111, 111 are all repunits. Show that every odd prime except 5 divides some repunit. (**Hint:** all repunits can always be expressed in the form $\frac{10^k-1}{9}$)

Proof. Assume to the contrary, that $\exists p$ where p is prime an $p \neq 2, 5$, and it does **not** divide any repunit.

When $p \neq 2, 5$ then $p \perp 10$. Then look at one way to represent p not dividing any repunit (let k be any positive integer)

$$\begin{array}{ccc} \frac{10^k - 1}{9} & \not\equiv 0 & \pmod{p} \\ 10^k - 1 & \not\equiv 0 & \pmod{p} \\ 10^k & \not\equiv 1 & \pmod{p} \end{array}$$

But this is not possible since we know that $10^{p-1} \equiv 1 \pmod{p}$ because $10 \perp p$ so p must divide $\frac{10^{p-1}-1}{9}$ which is a repunit. So all odd p except 5 must divide at least one repunit.

10 Extra Credit

Problem. The notation $a \uparrow \uparrow b$ known as "Knuth's up-arrow notation," denotes the number

$$a^{a^{a^{a}\cdots a^{a}}}$$

with a tower of a's occurring exactly b times.

Compute the last two digits of 3 \(\frac{1}{2}\) 2000. That is, the last two digits of

$$3^{3^{3^{3\cdots}}}$$

with a total of 2000 3's occurring in the exponent. (No sage allowed!!)

Solution.

To find the last two digits we want to take this mod 100. First lets find $\phi(100)$, we know $100 = 2^2 \cdot 5^2$,

$$\phi(100) = 100 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right)$$

$$= 100 \left(\frac{1}{2}\right) \left(\frac{4}{5}\right)$$

$$= \frac{100}{2 \cdot 5} (1)(4)$$

$$= (10)(4)$$

$$\phi(100) = 40$$

Then, we want to think of how many exponents of 3 to get close to 40, since we know $3^{40} \equiv 1 \pmod{m}$, so lets look on a small scale, thinking of finding the least residue of the exponents mod 40

$$3^{3^3} \equiv (27)^3 \pmod{40}$$

$$\equiv (27)^3 \pmod{40}$$

$$\equiv -13^2 \cdot (-13) \pmod{40}$$

$$\equiv 169 \cdot (-13) \pmod{40}$$

$$\equiv 9 \cdot (-13) \pmod{40}$$

$$\equiv 9 \cdot (-3) + 9 \cdot (-10) \pmod{40}$$

$$\equiv -27 + -10 + -80 \pmod{40}$$

$$\equiv -37 \pmod{40}$$

$$\equiv 3 \pmod{40}$$

Let's iterate this up to a divisor of 2000,

So again on a small scale, we can see that for some k,

So the last two digits of $3 \uparrow \uparrow 2000$ is 03.