Notes of [2]

Chao Tao

Feb. 28, 2020

1 Problem Setup

There is a tabular *episodic* MDP $M^* = (S, A, \theta^*, R, H)$ where R is bounded within [0, 1] and only the transition probability θ^* is *unknown*. For simplicity, we also assume the reward function R is *deterministic*. We want to find a policy such that the regret incurred by this policy after K episodes is minimized.

2 Thompson Sampling

Like Optimism in the Face of Uncertainty, Thompson Sampling dating back to [3] is another general principal guiding you how to operate in a poorly understood environment. Due to its superior empirical performance [1], it gains increasing popularity recently. Thompson Sampling is a Bayesian method. Basically, at the very begining, the learner equipped with this policy assumes a prior distribution \mathcal{P}_1 on the unknown parameter of the underlying environment i.e., θ^* . At the begining of each episode $k \geq 1$, the learner just samples a virtual environment from the posterior distribution \mathcal{P}_k on θ^* which is derived based on \mathcal{P}_{k-1} and the history in the (k-1)th episode via Bayes' Theorem and then takes the optimal policy assuming the underlying model is the sampled one. The following pseudocode shows the aforementioned learning procedure.

Algorithm 1: Thompson Sampling

```
1 initialization: prior distribution \mathcal{P}_1

2 for episode k=1 to K do

3 compute posterior distribution \mathcal{P}_k=\mathcal{P}_1\mid \mathcal{H}_k

4 sample \theta_k from \mathcal{P}_k and compute the optimal policy \pi_k

5 for step h=1 to H do

6 observe state x_{k,h}

7 take action a_{k,h}=\pi_k(x_{k,h})
```

Denote the value function starting from time t under model M' using policy π' by $V_{\pi',t}^{M'}$. Given a prior distribution \mathcal{P}_1 on transition probability θ^* , the *Bayesian* regret is defined by

$$\mathcal{BR}_{K}^{\pi} \stackrel{\text{def}}{=} \mathbb{E}_{\theta^* \sim \mathcal{P}_1} \left[\mathbb{E} \left[\sum_{k=1}^{K} (V_{*,1}^{M^*} - V_{\pi_k,1}^{M^*})(x_{k,1}) \mid \theta^* \right] \right], \tag{1}$$

where the initial state for each episode can be either randomized or adversarial.

Notations and Definitions

[n]	$\{1,2,\ldots,n\}$
$ \mathcal{A} $	action space
A	$ \mathcal{A} $
\mathcal{S}	state space
$\mid S \mid$	$ \mathcal{S} $
H	horizon
K	# of episodes
T	HK
$R: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$	known reward function
$\theta^*: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$	transition probability of the underlying MDP
$\pi = (\pi_1, \dots, \pi_K)$	an arbitrary policy where π_k is the policy in the kth episode
$V_{\pi',t}^{M'}$	value function starting from time t under model M' using policy π'
$x_{k,1}$	initial state of the k th episode
$(x_{k,h},a_{k,h})$	state-action pair in the k th episode and at the h th time step
$\mid \mathcal{H}_k \mid$	history before the kth episode $(x_{1,1}, a_{1,1}, \dots, x_{1,H+1}, \dots, x_{k-1,1}, a_{k-1,1}, \dots, x_{k-1,H+1})$
$N_k(x,a)$	number of hits of state-action pair (x, a) before the kth episode
ρ	an arbitrary transition probability
V	an arbitrary value function
$(\rho V)(x,a)$	$\sum_{y \in \mathcal{S}} \rho(y \mid x, a) V(y)$
$\mid \mathcal{BR}^\pi_K$	Bayesian regret incurred by policy π
\mathcal{P}_k	posterior distribution right <i>before</i> the <i>k</i> th episode

4 Theorem

In this lecture, we are going to show

Theorem 1. When $T \ge \sqrt{SA}$, the Bayesian regret i.e., (1) incurred by Algorithm 1 is bouned by $\widetilde{\mathcal{O}}(HS\sqrt{AT})$.

Remark 2. The theorem holds for any prior distribution.

Proof. In the subsequent part, unless otherwise specified, the expectation operator is taken over all random variables. Note that θ^* is treated as a random variable. Rewrite \mathcal{BR}_K^{π} we have

$$(1) = \sum_{k=1}^{K} \mathbb{E}\left[(V_{*,1}^{M^*} - V_{\pi_k,1}^{M^*})(x_{k,1}) \right]$$

$$= \sum_{k=1}^{K} \left(\mathbb{E}\left[(V_{*,1}^{M^*} - V_{\pi_k,1}^{M_k})(x_{k,1}) \right] + \mathbb{E}\left[(V_{\pi_k,1}^{M_k} - V_{\pi_k,1}^{M^*})(x_{k,1}) \right] \right)$$

$$= \sum_{k=1}^{K} \mathbb{E}\left[(V_{*,1}^{M^*} - V_{\pi_k,1}^{M_k})(x_{k,1}) \right] + \sum_{k=1}^{K} \mathbb{E}[\widetilde{\Delta}_k],$$
(2)

where we have defined $\widetilde{\Delta}_k \stackrel{\text{def}}{=} (V_{\pi_k,1}^{M_k} - V_{\pi_k,1}^{M^*})(x_{k,1}).$

Lemma 3. $\mathbb{E}[V_{*,1}^{M^*}(x_{k,1})] = \mathbb{E}[V_{\pi_k,1}^{M_k}(x_{k,1})].$

Proof. Just note that

$$\begin{split} \mathbb{E}[V_{*,1}^{M^*}(x_{k,1})] &= \mathbb{E}[\mathbb{E}[V_{*,1}^{M^*}(x_{k,1}) \mid \mathcal{H}_k]] \\ &= \mathbb{E}[\mathbb{E}[V_{\pi_k,1}^{M_k}(x_{k,1}) \mid \mathcal{H}_k]] \\ &= \mathbb{E}[V_{\pi_k,1}^{M_k}(x_{k,1})]. \end{split}$$

Applying Lemma 3 in (2), we obtain

$$(1) = \sum_{k=1}^{K} \mathbb{E}[\widetilde{\Delta}_k].$$

Next we focus on bounding $\widetilde{\Delta}_k$. Note that

$$\begin{split} \mathbb{E}[\widetilde{\Delta}_k \mid M^*, M_k] &= \mathbb{E}[(V_{\pi_k, 1}^{M_k} - V_{\pi_k, 1}^{M^*})(x_{k, 1}) \mid M^*, M_k] \\ &= \mathbb{E}[(\theta_k V_{\pi_k, 2}^{M_k})(x_{k, 1}, a_{k, 1}) - (\theta^* V_{\pi_k, 2}^{M^*})(x_{k, 1}, a_{k, 1}) \mid M^*, M_k] \\ &= \mathbb{E}[((\theta_k - \theta^*) V_{\pi_k, 2}^{M_k})(x_{k, 1}, a_{k, 1}) + (V_{\pi_k, 2}^{M_k} - V_{\pi_k, 2}^{M^*})(x_{k, 2}) \mid M^*, M_k] \\ &+ \mathbb{E}[(\theta^* (V_{\pi_k, 2}^{M_k} - V_{\pi_k, 2}^{M^*}))(x_{k, 1}, a_{k, 1}) - (V_{\pi_k, 2}^{M_k} - V_{\pi_k, 2}^{M^*})(x_{k, 2}) \mid M^*, M_k] \\ &= \mathbb{E}[((\theta_k - \theta^*) V_{\pi_k, 2}^{M_k})(x_{k, 1}, a_{k, 1}) + (V_{\pi_k, 2}^{M_k} - V_{\pi_k, 2}^{M^*})(x_{k, 2}) \mid M^*, M_k], \end{split}$$

where in the second last inequality we have used

$$\mathbb{E}[(\theta^*(V_{\pi_k,2}^{M_k} - V_{\pi_k,2}^{M^*}))(x_{k,1}, a_{k,1}) - (V_{\pi_k,2}^{M_k} - V_{\pi_k,2}^{M^*})(x_{k,2}) \mid M^*, M_k] = 0.$$

By recursion and Hölder's inequality, we derive

$$\mathbb{E}[\widetilde{\Delta}_{k} \mid M^{*}, M_{k}] = \sum_{t=1}^{H} \mathbb{E}[((\theta_{k} - \theta^{*})V_{\pi_{k}, t+1}^{M_{k}})(x_{k, t}, a_{k, t}) \mid M^{*}, M_{k}]$$

$$\leq \sum_{t=1}^{H} \mathbb{E}\left[\|(\theta_{k} - \theta^{*})(x_{k, t}, a_{k, t})\|_{1} \cdot \left\|V_{\pi_{k}, t+1}^{M_{k}}\right\|_{\infty} \mid M^{*}, M_{k}\right]$$

$$\leq H \cdot \sum_{t=1}^{H} \mathbb{E}[\|(\theta_{k} - \theta^{*})(x_{k, t}, a_{k, t})\|_{1} \mid M^{*}, M_{k}], \tag{3}$$

where in the second last inequality we have used $\left\|V_{\pi_k,t+1}^{M_k}\right\|_{\infty} \leq H$.

Let $\bar{\theta}_k(\cdot \mid s,a)$ be the empirical transition probability before the kth episode. We define \mathcal{M}_k as the set of models such that its transition probability θ satisfies $|\bar{\theta}_k(\cdot \mid s,a) - \theta(\cdot \mid s,a)| \leq C\sqrt{\frac{S\ln(SAT)}{1\vee N_k(s,a)}}$ for all $(s,a)\in\mathcal{S}\times\mathcal{A}$ where C is a universal constant which will be defined later. According to Theorem 4, we know that there exists a constant C>0 such that $\Pr(M_k\notin\mathcal{M}_k)\leq 1/K$ and $\Pr(M^*\notin\mathcal{M}_k)\leq 1/K$. Hence

$$(1) = \sum_{k=1}^{K} \mathbb{E}[\widetilde{\Delta}_{k}]$$

$$\leq \sum_{k=1}^{K} \mathbb{E}[\widetilde{\Delta}_{k} \mathbb{1}(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k})] + H \cdot \sum_{k=1}^{K} (\mathbf{Pr}(M_{k} \notin \mathcal{M}_{k}) + \mathbf{Pr}(M^{*} \in \mathcal{M}_{k})),$$

according to $\widetilde{\Delta}_k \leq H$ and a union bound. Recall $\mathbf{Pr}(M_k \notin \mathcal{M}_k) \leq 1/K$ and $\mathbf{Pr}(M^* \notin \mathcal{M}_k) \leq 1/K$, we further obtain

$$(1) \lesssim \sum_{k=1}^{K} \mathbb{E}[\widetilde{\Delta}_{k} \mathbb{1}(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k})]$$

$$= \sum_{k=1}^{K} \mathbb{E}[\mathbb{E}[\widetilde{\Delta}_{k} \mathbb{1}(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}) \mid M_{k}, M^{*}]]$$

$$\leq \sum_{k=1}^{K} \mathbb{E}[\mathbb{E}[\widetilde{\Delta}_{k} \mid M_{k}, M^{*}] \cdot \mathbb{1}(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k})]$$

$$(4)$$

Putting (3) back into (4), we have

$$(1) \lesssim \sum_{k=1}^{K} \mathbb{E} \left[\sum_{t=1}^{H} \mathbb{E}[((\theta_{k} - \theta^{*})V_{\pi_{k}, t+1}^{M_{k}})(x_{k,t}, a_{k,t}) \mid M^{*}, M_{k}] \cdot \mathbb{1}(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}) \right]$$

$$\leq \sum_{k=1}^{K} \mathbb{E} \left[\mathbb{E} \left[\sum_{h=1}^{H} CH \sqrt{\frac{S \ln(SAT)}{1 \vee N_{k}(x_{k,h}, a_{k,h})}} \mid M^{*}, M_{k} \right] \cdot \mathbb{1}(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}) \right]$$

$$= \mathbb{E} \left[\mathbb{E} \left[CH \cdot \sum_{k=1}^{K} \sum_{h=1}^{H} \sqrt{\frac{S \ln(SAT)}{1 \vee N_{k}(x_{k,h}, a_{k,h})}} \mid M^{*}, M_{k} \right] \cdot \mathbb{1}(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}) \right], \quad (5)$$

where in the second last inequality we have used $|\bar{\theta}_k(\cdot \mid s, a) - \theta(\cdot \mid s, a)| \leq C\sqrt{\frac{S\ln(SAT)}{1 \vee N_k(s, a)}}$ when $M_k \in \mathcal{M}_k$ and $M^* \in \mathcal{M}_k$.

Note that

$$\sum_{k=1}^{K} \sum_{h=1}^{H} \sqrt{\frac{S \ln(SAT)}{1 \vee N_k(x_{k,h}, a_{k,h})}} \lesssim \sqrt{S \ln(SAT)} \cdot \sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} \sum_{t=0}^{N_K(s,a)} \sqrt{\frac{1}{1 \vee t}}$$

$$\leq \sqrt{S \ln(SAT)} \cdot \left(\sum_{(s,a) \in \mathcal{S} \times \mathcal{A}} 2\sqrt{N_K(s,a)} + SA \right)$$

$$\leq 2S\sqrt{AT \ln(SAT)} = \widetilde{\mathcal{O}}(S\sqrt{AT}), \tag{6}$$

where in the third last inequality we have used $\sum_{(s,a)\in\mathcal{S}\times\mathcal{A}}\sqrt{N_K(s,a)}\leq\sqrt{SAT}$ which is due to Cauchy-Schwarz inequality and $T>\sqrt{SA}$.

Putting (6) back into (5), we prove this theorem.

5 Tools

Theorem 4 ([4]). Let P be a probability distribution on the set $S = \{1, ..., S\}$. Let $X_1, X_2, ..., X_m$ be i.i.d. random variables distributed according to P. Then, for all $\epsilon > 0$, it holds that

$$\mathbf{Pr}(\|P - \bar{P}\|_1 \ge \epsilon) \le (2^S - 2) \exp(-m\epsilon^2/2),$$

where \bar{P} is the empirical estimation of P defined as $\bar{P}(i) = \frac{\sum_{j=1}^{m} \mathbb{1}(X_j=i)}{m}$.

References

- [1] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In *NIPS*, pages 2249–2257, 2011.
- [2] Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior sampling. In *NIPS*, pages 3003–3011, 2013.
- [3] William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.

	6	

[4] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. Inequalities for the 11 deviation of the empirical distribution. *Hewlett-Packard Labs, Tech. Rep*, 2003.