Лекция №6. Линейные однородные уравнения.

Пусть L – линейный дифференциальный оператор т.е.

$$L(y_1 + y_2) = L(y_1) + L(y_2), \quad L(cy) = cL(y).$$

Общий вид линейного дифференциального оператора порядка n:

$$Ly = a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y, \quad a_0(x) \neq 0.$$
 (1)

Общий вид линейного дифференциального уравнения n-го порядка

$$a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \ldots + a_n(x)y = f(x).$$
 (2)

Уравнение (2) называется линейным однородным если $f(x)\equiv 0$ и линейным неоднородным в противном случае. Если все $a_i(x)$ и f(x) – непрерывные функции, то из теоремы

существования и единственности решения задачи Коши следует существование решения линейного уравнения (2).

Теорема (о множестве решений линейного однородного дифференциального уравнения)

Множество решений линейного однородного дифференциального уравнения образует линейное пространство.

Доказательство.

Так как множество всех действительнозначных функций образует линейное пространство, то для доказательства теоремы достаточно показать замкнутость множества решений линейного однородного уравнения относительно операций сложения и умножения на число, то есть надо показать, что если y_1, y_2 — решения линейного однородного дифференциального уравнения, α — число, то $y_1+y_2, \alpha y_1$ — тоже решения линейного однородного уравнения. Действительно в силу линейности оператора L будем иметь

$$L(y_1 + y_2) = Ly_1 + Ly_2 = 0 + 0 = 0,$$

 $L(\alpha y_1) = \alpha L(y_1) = \alpha 0 = 0.$

Линейная зависимость и независимость системы вектор-функций.

Пусть $\boldsymbol{x}^1(t), \boldsymbol{x}^2(t), \dots, \boldsymbol{x}^k(t)$ – вектор-функции со значениями в \mathbb{R}^n .

Определение

Вектор-функции $x^1(t), x^2(t), \dots, x^k(t)$ называются линейно зависимыми на J(J- интервал или отрезок) если существуют постоянные c_1, c_2, \dots, c_k не все равные нулю, такие что

$$c_1 \mathbf{x}^1(t) + c_2 \mathbf{x}^2(t) + \ldots + c_k \mathbf{x}^k(t) = 0 \quad \forall t \in J.$$
 (3)

Определение

Вектор-функции $x^1(t), x^2(t), \dots, x^k(t)$ называются линейно независимыми на J если равенство (3) на J возможно только тогда, когда все $c_1=\ldots=c_k=0$.

Пример

Функции

$$x^{1}(t) = t, x^{2}(t) = |t|$$

являются линейно независимыми на J=[-1,1] и линейно зависимыми на J=[0,1]. Действительно рассмотрим равенство

$$c_1 t + c_2 |t| = 0 (4)$$

 $npu\ t=-1\ u\ npu\ t=1$

$$\begin{cases} -c_1 + c_2 = 0, \\ c_1 + c_2 = 0. \end{cases}$$

Отсюда следует, что $c_1 = c_2 = 0$ и следовательно функции $x^1(t)$ и $x^2(t)$ – линейно независимыми на J = [-1,1]. Рассмотрим эти жее функции на J = [0,1]. Равенство (4) запишется в этом случае в виде

$$c_1t + c_2t = (c_1 + c_2)t = 0$$

и очевидно будет выполнено например при $c_1=1, c_2=-1$. Это означает, что функции $x^1(t)$ и $x^2(t)$ – линейно зависимыми на J=[0,1].

Определитель Вронского для системы функций и его свойства.

Определение

Пусть даны n функций $y_1(x), y_2(x), \ldots, y_n(x)$, имеющих производные до порядка n-1 включительно. Тогда определителем Вронского для системы функций $y_1(x), y_2(x), \cdots, y_n(x)$ называется функция

$$W_{y_1, y_2, \dots, y_n}(x) = \begin{vmatrix} y_1 & \dots & y_n \\ y_1' & \dots & y_n' \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}.$$
 (5)

Лемма (1)

Если функции $y_1(x),\ y_2(x),\ \dots\ ,\ y_n(x)$ линейно зависимы на $J,\ mo\ W_{y_1,y_2,\dots,y_n}(x)\equiv 0$ на J.

Локазательство.

Если $y_1(x), y_2(x), \ldots, y_n(x)$ – линейно зависимы, то существуют

$$c_1, c_2, \cdots, c_n : c_1^2 + c_2^2 + \cdots + c_n^2 \neq 0$$

такие что для $\forall x \in J$ справедливо

$$c_1 y_1 + \ldots + c_n y_n = 0. (6)$$

Продифференцируем это равенство по x n-1 раз, получим

$$\begin{cases} c_1 y_1 + \dots + c_n y_n = 0 \\ c_1 y_1' + \dots + c_n y_n' = 0 \\ \dots \\ c_1 y_1^{(n-1)} + \dots + c_n y_n^{(n-1)} = 0 \end{cases}$$

или же

$$c_1 \begin{pmatrix} y_1 \\ y'_1 \\ \dots \\ y_1^{(n-1)} \end{pmatrix} + c_2 \begin{pmatrix} y_2 \\ y'_2 \\ \dots \\ y_2^{(n-1)} \end{pmatrix} + \dots + c_n \begin{pmatrix} y_n \\ y'_n \\ \dots \\ y_n^{(n-1)} \end{pmatrix} = \mathbf{0}.$$

То есть столбцы определителя Вронского линейно зависимы, значит сам определитель равен 0. $\hfill\Box$

Лемма (2)

Если $W_{y_1,y_2,...,y_n}(x_0) \neq 0$, то функции $y_1(x), y_2(x), \ldots, y_n(x)$ – линейно независимы.

Доказательство.

От противного. Предположим, что $y_1(x), y_2(x), \ldots, y_n(x)$ – линейно зависимы, тогда по Лемме (1) $W_{y_1,y_2,\ldots,y_n}(x_0)\equiv 0$. Получаем противоричие с условием $W_{y_1,y_2,\ldots,y_n}(x_0)\neq 0$.

Лемма (3)

Если $y_1(x), y_2(x), \ldots, y_n(x)$ – решения линейного однородного уравнения и $W_{y_1,y_2,\ldots,y_n}(x_0)=0$, то функции $y_1(x),y_2(x),\ldots,y_n(x)$ линейно зависимы на J и $W_{y_1,y_2,\ldots,y_n}(x)\equiv 0$ на J.

Доказательство.

Рассмотрим функцию

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \ldots + c_n y_n(x).$$

Эта функция – решение линейного однородного уравнения. Подберем константы c_1, c_2, \ldots, c_n так чтобы

$$c_1^2 + c_2^2 + \dots + c_n^2 \neq 0,$$

 $y(x_0) = 0, y'(x_0) = 0, \dots, y^{(n-1)}(x_0) = 0.$

Это можно сделать, так как эти условия эквивалентны тому, что существует нетривиальное решение линейной однородной алгебраической системы уравнений

$$\begin{cases} c_1 y_1(x_0) + \dots + c_n y_n(x_0) = 0 \\ c_1 y_1'(x_0) + \dots + c_n y_n'(x_0) = 0 \\ \dots \\ c_1 y_1^{(n-1)}(x_0) + \dots + c_n y_n^{(n-1)}(x_0) = 0 \end{cases}$$

определителькоторой равен $W_{y_1,y_2,\dots,y_n}(x_0)$ и следовательно равен 0. По теореме существования и единственности решения задачи Коши $y(x)\equiv 0$. Таким образом функции $y_1(x),y_2(x),\dots,y_n(x)$ — линейно зависимы и по Лемме (1) $W_{y_1,y_2,\dots,y_n}(x)\equiv 0$.

Замечание

 $x_0 = 0$ равен 0.

Утверждение Леммы (3) не верно для произвольных функций. Как показывает пример для линейно независимых на отреже [-1,1] функций $y_1(x) = x^3$ и $y_2(x) = |x|^3$ определитель Вронского в точке