Fouille de données : Etude et analyse de thèse

Nabil Redha BELKHOUS

Numéro d'étudiant : 16705491 Email : nbelkhous@gmail.com

Université Paris 8 Vincennes-Saint-Denis

UFR: MIASHS

Master 2 Big Data et fouille de données

Année Universitaire: 2016 - 2017

Université Paris 8

Sommaire

Introduction

Collecte et structure de données

Représentation des données

Méthodes de fouilles de données utilisées

Résultats expérimentaux

Méthodes retenues

Conclusion

Choix de la thèse : thèse cifre

Méthodes de fouilles de données pour la prédiction de l'évolution du prix d'un billet et application au conseil à l'achat en ligne

Présentée et soutenue publiquement par

Till WOHLFARTH

Introduction

Collecte de données

Sources de données

- Sites d'agence de voyages (Expedia, GoVoyages, ...)
- Sites de compagnies aériennes (Air France, EasyJet, ...)

Informations exploités

- Recherches utilisateurs
- Résultats de recherches
- Alertes

Structure de données

Structure de la base de données

- Vol :
 - aéroport de départ, aéroport d'arrivée
 - horaire de départ et de retour
 - un code transporteur aller et retour
- Séries de prix
 - vol, vendeur et prix
- Attributs
 - attributs définissant un vol
 - attributs dérivés des attributs définissant un vol
 - attributs liés au site marchand
 - attributs contextuels qui évoluent avec les points de la série temporelle

Université Paris 8

Étude du comportement des prix

Figure: Nombre de sauts par rapport au nombre de jours avant le départ (tranches de 3 jours) [1]

Série temporelle de prix

Figure: Time Series : Paris-Bangkok départ le 11/01/2013 pour 14 jours par Qatar [1]

Université Paris 8

Série de rendements

Figure: Série de rendements après filtre : Paris-Bangkok départ le 11/01/2013 pour 14 jours parQatar [1]

Université Paris 8

Niveau de gris

Figure: Niveau de gris après filtre : Paris-Bangkok départ le 11/01/2013 pour 14 jours par Qatar [1]

Clustering

- M-means
- 2 Bagged K-means
- EM

Université Paris 8

Classification

- CART
- **2** C4.5
- Adaboost
- 4 Forêts aléatoires

M-means

Figure: K-Means - Évolution du pourcentage de bonnes prédictions à -21 jours du départ pour différents nstart [1]

M-means

Figure: K-Means - Évolution du taux de bonne prédiction à -21 jours avant le départ pour différents nombres de clusters [1]

Figure: K-Means - Évolution des Gains/Pertes à -21 jours avant le départ pour différents nombres de clusters [1]

Université Paris 8

Résultat de segmentation

Bagged K-means

Figure: Comparaison du taux de bonne prédiction entre Bagged K-means et K-means [1]

2 Bagged K-means

Figure: Comparaison des Gains/Pertes entre Bagged K-means et K-means [1]

Figure: Comparaison des performances de l'algorithme EM en fonction de son type d'initialisation [1]

4 Comparatif

Méthode 1	Nb groupes	Taux BP	Economie/ t_1
K-means	5	62%	-1
EM	5	66%	4
K-means	10	64%	1
EM	10	62%	-3
K-means	30	62%	-7
EM	30	64%	1
K-means	40	66%	-18
EM	40	64%	1

Figure: Comparatif [1]

Figure: Évolution du pourcentage de bonnes prédictions à -21 jours de la date de départ pour différents élagages [1]

Figure: Évolution du pourcentage de bonnes prédictions à -21 jours de la date de départ pour différents élagages [1]

Figure: Évolution du taux d'erreur OOB en fonction du paramètre mtry [1]

4 Adaboost

Figure: Comparaison entre Adaboost et Random Forests [1]

Méthodes retenues

Comparatif entre les méthodes :

Méthode 1	Nb groupes	Taux BP	Economie/ t_1
RF	5	66%	4
RF	30	64%	1
Adaboost	5	63%	0
CART	5	62%	0
CART	30	62%	-3
C4.5	5	66%	-2
C4.5	30	61%	-7

Figure: Comparatif [1]

Méthodes retenues

- ① Segmentation: EM (K-means avec 5 groupe et 100 nstar)
- 2 Classification : Forêts aléatoires (12 attributes et 100 arbres)

Évolution des performances dans le temps

Figure: Évolution du taux de bonnes prédictions en fonction du temps [1]

1. Préparation des données

2. Segmentation des données

3. Classification et prédiction

[1] Till WOHLFARTH.

Méthodes de fouilles de données pour la prédiction de l'évolution du prix d'un billet et application au conseil à l'achat en ligne.

2013.

Questions

QUESTIONS?