# **PROJECT REPORT**

**Project Name**: Digital Naturalist-Al Enabled Tool For

**Biodiversity Researchers** 

**Team Id**: PNT2022TMID51703

Team: JIJY A.V (Leader)

JEMI .K (Mem 1)

GRACIA ROSE .J (Mem 2)

BIBISHA M.S (Mem 3)

#### 1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

### 2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

## 3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

## 4. REQUIREMENT ANALYSIS

4.1 Functional requirement

## 5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture

## 6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning, Schedule & Estimation
- 7. **CODING & SOLUTIONING** (Explain the features added in the project along with code)
- 7.1 Feature 1
- 8. TESTING
- 8.1 Test Cases
- 9. **RESULTS**
- 9.1 Performance Metrics

## 10. CONCLUSION

Source Code, GitHub & Project Demo Link

#### 1. INTRODUCTION

# 1.1Project Overview

A naturalist is someone who studies the patterns of nature, identifies a different kind of flora and fauna in nature. Being able to identify the flora and fauna around us often leads to an interest in protecting wild spaces, and collecting and sharing information about the species we see on our travels is very useful for conservation groups like NCC.

Field naturalists can only use this web app from anywhere to identify the birds, flowers, mammals and other species they see on their hikes, canoe trips and other excursions.



In this project, we are creating a web application which uses a deep learning model, trained on different species of birds, flowers and mammals.

# 1.2 Purpose

To biological recording have to date typically focused on active sampling,

that is, images collected specifically for the purpose of recording wildlife (e.g.,

wildlife recording apps or camera traps). However, this has neglected large

amounts of image data that are not collected for the purposes of biological

recording, but which nonetheless may contain useful information about

biodiversity.

This includes social media imagery(e.g., Flickr and Instagram), CCTV, and

imagery collected along linear infrastructure (e.g., Google StreetView). These

unexploited image data could be rapidly analyzed using "Al naturalists" designed to

locate potential images of biodiversity and classify what they see.

### 2.LITERATURE SURVEY

## 2.2 Existing problem

- Digital Nature Photography is the definitive how to book on photographing nature with a digital camera.
- Digital Photography is a process that uses an electronic device called a digital camera to capture an image.
- Landscape photography is one of the last bastions of traditional film, but this is slowly changing, as more and more leading photographers adopt digital technology.
- Heather is a versatile wildlife photographer whose images

# combine scientific accuracy with pictorial appeal.

#### 2.2 References

**1.** M. Schroeck, R. Shockley, J. Smart, D. Romero-Morales, P. Tufano **Analytics: The Real-World Use of Big Data**IBM Institute for Business Value (2012)

**2.**A.Y. Sun, B.R. Scanlon

How can Big Data and machine learning benefit environment and water management: a survey of methods, applications, and future directions Environ. Res. Lett., 14 (2019), p. 073001

**3.**M.A. Tabak, M.S. Norouzzadeh, D.W. Wolfson, S.J. Sweeney, K.C. Vercauteren, N.P. Snow, J.M. Halseth, P.A.D. Salvo, J.S. Lewis, M.D. White, *et al.* 

Machine learning to classify animal species in camera trap images: applications in ecology

Methods Ecol. Evol., 10 (2019), pp. 585-590

**4.**R. Gibb, E. Browning, P. Glover-Kapfer, K.E. Jones **Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring**Methods Ecol. Evol., 10 (2019), pp. 169-185

5.B. Efron, T. Hastie

**Computer Age Statistical Inference** 

Cambridge University Press (2016)

**6.**C.J. Lintott, K. Schawinski, A. Slosar, K. Land, S. Bamford, D. Thomas, M.J. Raddick, R.C. Nichol, A. Szalay, D. Andreescu, *et al.* 

Galaxy zoo: morphologies derived from visual inspection of galaxies

## from the Sloan digital sky survey

Mon. Not. R. Astron. Soc., 389 (2008),

#### 2.3 Problem Statement Definition

Create a problem statement is a detailed description of an issue that needs to be addressed by a problem-solving team. It is written to focus the team at the beginning, keep the team on track during the project, and to confirm that the team delivered an appropriate solution that addresses a customer need at the end of the project.

A customer problem statement outlines problems that the customer faces. It helps to figure out how the product or service will solve the problem for them. The statement helps to understand the experience to be offered to the customers.

### 3. IDEATION & PROPOSED SOLUTION

## 3.1 Empathy Map Canvas



# 3.2 Ideation and Brainstorming

# Ideation:-



# **Brainstorming:**



# **3.3 Proposed Solution**

| S.NO | Parameter         | Description         |
|------|-------------------|---------------------|
| 1.   | Problem           | speciesThe          |
|      | Statement(Problem | project aims to     |
|      | to be solved)     | create an           |
|      |                   | application for the |
|      |                   | hikers to identify  |
|      |                   | rare of birds,      |
|      |                   | flowers,            |

|    |                 | mammals by             |  |
|----|-----------------|------------------------|--|
|    |                 | giving a picture       |  |
|    |                 | taken by them.         |  |
| 2. | Idea / Solution | A naturalist is        |  |
|    | Description     | someone who            |  |
|    |                 | studies the patterns   |  |
|    |                 | of nature, identifies  |  |
|    |                 | a different kind of    |  |
|    |                 | flora and fauna in     |  |
|    |                 | nature.                |  |
|    |                 | Being able to          |  |
|    |                 | identify the flora and |  |
|    |                 | fauna around us        |  |
|    |                 | often leads to an      |  |
|    |                 | interest in            |  |
|    |                 | protecting wild        |  |
|    |                 | spaces, and            |  |
|    |                 | collecting and         |  |
|    |                 | sharing information    |  |
|    |                 | about the species      |  |
|    |                 | we see on our          |  |
|    |                 | travels is very useful |  |
|    |                 | for conservation       |  |
|    |                 | groups like NCC.       |  |
|    |                 |                        |  |
| 3. | Novelty /       | Medical                |  |
|    | Uniqueness      | practitioners have     |  |

|    |                                           | been putting heavy emphasis on the enhancement of precision medicine andinventing a novel and effective cures for complex diseases. Al, on                                                                                                                                          |
|----|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | Social Impact / Customer Satisfaction The | The interest in customer experience has increased at a phenomenal rate. However, research to capture the true meaning of the concept is limited. Therefore, this study aims to address the question of what are the underlying dimensions that constitute the construct of customer |

|    |                 | experience.          |  |
|----|-----------------|----------------------|--|
| 5. | Business Model  | A digital business   |  |
|    | (Revenue Model) | model might be       |  |
|    |                 | defined as a model   |  |
|    |                 | that leverages       |  |
|    |                 | digital technologies |  |
|    |                 | to improve several   |  |
|    |                 | aspects of an        |  |
|    |                 | organization . From  |  |
|    |                 | how the company      |  |
|    |                 | acquires customers,  |  |
|    |                 | to what              |  |
|    |                 | product/service it   |  |
|    |                 | provides. A digital  |  |
|    |                 | business model is    |  |
|    |                 | such when digital    |  |
|    |                 | technology helps     |  |
|    |                 | enhance its value    |  |
|    |                 | proposition.         |  |

# 3.4 Problem solution



# **4.REQUIREMENT ANALYSIS**

# 4.1 Functional Requirements:-

| FR No. | Functional           | Sub Requirement      |  |
|--------|----------------------|----------------------|--|
|        | Requirement (Epic)   | (Story / Sub-Task)   |  |
| FR-1   | User Registration    | Registration through |  |
|        |                      | Form                 |  |
|        |                      | Registration through |  |
|        |                      | Gmail                |  |
|        |                      | Registration through |  |
|        |                      | LinkedIN             |  |
| FR-2   | User Confirmation    | Confirmation via     |  |
|        |                      | Email                |  |
|        |                      | Confirmation via     |  |
|        |                      | OTP                  |  |
| FR-3   | User Login           | Login into           |  |
|        |                      | application          |  |
| FR-4   | User Dashboard       | Learn to access the  |  |
|        |                      | application          |  |
| FR-5   | Online digital media | Such as social       |  |
|        |                      | media images, may    |  |
|        |                      | be a new source of   |  |
|        |                      | biodiversity         |  |
|        |                      | observations, but    |  |
|        |                      | they are far too     |  |
|        |                      | numerous for a       |  |
|        |                      | human to practically |  |
|        |                      | review.              |  |
| FR-6   | Images               | Images were          |  |
|        |                      | predominantly        |  |

|  | biodiversity focused, |
|--|-----------------------|
|  | showing single        |
|  | species.              |
|  | Non-functional        |
|  | Requirements:         |
|  | Following are the     |
|  | non-functional        |
|  | requirements of the   |
|  | proposed solution.    |
|  | FR No.                |

# 4.2 Non Functional Requirements :-

| FR No. | Non-Functional | Description         |  |
|--------|----------------|---------------------|--|
|        | Requirement    |                     |  |
| NFR-1  | Usability      | To create an        |  |
|        |                | application for the |  |
|        |                | hikers to identify  |  |
|        |                | rare species of     |  |
|        |                | birds, flowers,     |  |
|        |                | mammals by giving   |  |
|        |                | a picture taken by  |  |
|        |                | them.               |  |
| NFR-2  | Security       | The ever-growing    |  |
|        |                | number of digital   |  |
|        |                | sensors in the      |  |
|        |                | environment has led |  |

|       |             | to an increase in the amount of digital data being generated.                                                                                                                                                             |
|-------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-3 | Reliability | By combining social media APIs with AI classifiers, we were able to build an AI naturalist capable of creating biodiversity datasets from previouslyunexploit ed data sources.                                            |
| NFR-4 | Performance | Being able to identify the flora and fauna around us often leads to an interest in protecting wild spaces, and collecting and sharing information about the species we see on our travels is very useful for conservation |

|       |              | groups like NCC.     |
|-------|--------------|----------------------|
| NFR-5 | Availability | When venturing into  |
|       |              | the woods, field     |
|       |              | naturalists usually  |
|       |              | rely on common       |
|       |              | approaches like      |
|       |              | always carrying a    |
|       |              | guidebook around     |
|       |              | everywhere or        |
|       |              | seeking help from    |
|       |              | experienced          |
|       |              | ornithologists.      |
|       |              | There should be a    |
|       |              | handy tool for them  |
|       |              | to capture, identify |
|       |              | and share the        |
|       |              | beauty to the        |
|       |              | outside world.       |
|       |              |                      |
| NFR-6 | Scalability  | Field naturalist can |
|       |              | only use from        |
|       |              | anywhere to identify |
|       |              | the birds, flowers,  |
|       |              | mammals and other    |
|       |              | species they see on  |
|       |              | their hikes, canoe   |
|       |              | trips and            |

| Other excursions. |
|-------------------|
|-------------------|

### **5.PROJECT DESIGN**

## **5.1 Data Flow Diagram**

A Data Flow Diagram (DFD) maps out the flow of information for any process or system. It uses defined symbols like rectangles, circles and arrows, plus short text labels, to show data inputs, outputs, storage points and the routes between each destination. Data flowcharts can range from simple, even hand-drawn process overviews, to in-depth, multi-level DEFs that dig progressively deeper into how the data is handled. They can be used to analyze an existing system or model a new one. That's why DFDs remain so popular after all these years. While they work well for data flow software and systems, they are less applicable now a days to visualizing interactive real-time or data base-oriented software were systems



## 5.2 Solution & Technical Architecture

A Solution architecture is an architectural description of a specific solution. SAs combine guidance from different enterprise architecture viewpoints as well as from the enterprise architecture viewpoints as well as from the enterprise solution architecture. The solution architecture helps ensure that a new system will fit the existing enterprise environment. A good solutions architect looks at the existing environment and analyses what technologies are available and what software product must be developed to provide the best solution for the problem that needs to be solved.



# **6.PROJECT PLANNING AND SCHEDULING**

| ctio | UserStoryNumber | UserStory/T  | StoryPoints | Priority | TeamM    |
|------|-----------------|--------------|-------------|----------|----------|
| Req  |                 | ask          |             |          | ember    |
| me   |                 |              |             |          |          |
| pic) |                 |              |             |          |          |
| istr | UNS-1           | As a user, I | 3           | High     | Jijy A V |
| n(M  |                 | can register |             |          | (Team    |
| е    |                 | for the      |             |          | Leader)  |
| r)   |                 | application  |             |          |          |
|      |                 | by entering  |             |          |          |
|      |                 | my email     |             |          |          |
|      |                 | .password.   |             |          |          |

|       | and           |   |      |          |
|-------|---------------|---|------|----------|
|       | confirming    |   |      |          |
|       | my            |   |      |          |
|       | password.     |   |      |          |
| UNS-  | As a user, I  | 2 | High | Jemi K   |
|       | will receive  |   |      | (Memb    |
|       | confirmati    |   |      | er 1)    |
|       | on email      |   |      |          |
|       | once I have   |   |      |          |
|       | registered    |   |      |          |
|       | For the       |   |      |          |
|       | application   |   |      |          |
| UNS-2 | As a user, I  | 3 | High | Gracia   |
|       | can register  |   |      | Rose J   |
|       | for the       |   |      | (Memb    |
|       | application   |   |      | er 2)    |
|       | through       |   |      |          |
|       | Facebook      |   |      |          |
| UNS-3 | As a user, I  | 3 | High | Bibisha  |
|       | can log in to |   |      | MS       |
|       | the           |   |      | (Memb    |
|       | application   |   |      | er3)     |
|       | by entering   |   |      |          |
|       | email and     |   |      |          |
|       | password      |   |      |          |
| UNS-2 | As a          | 3 | High | Jijy A V |
|       | registered    |   |      | (Team    |
|       |               |   |      |          |

|       | user, I need  |   |      | Leader) |
|-------|---------------|---|------|---------|
|       | to easily     |   |      |         |
|       | login login   |   |      |         |
|       | to my         |   |      |         |
|       | registered    |   |      |         |
|       | account via   |   |      |         |
|       | the web       |   |      |         |
|       | page in       |   |      |         |
|       | minimum       |   |      |         |
|       | time          |   |      |         |
| UNS-4 | As a user, I  | 3 | Medi | Jemi K  |
|       | need to       |   | um   | (Memb   |
|       | have a        |   |      | er 1)   |
|       | friendly user |   |      |         |
|       | interface to  |   |      |         |
|       | easily view   |   |      |         |
|       | and access    |   |      |         |
|       | there         |   |      |         |
|       | sources       |   |      |         |
| UNS-1 | As a new      | 3 | High | Gracia  |
|       | user, I want  |   |      | Rose J  |
|       | to first      |   |      | (Memb   |
|       | register      |   |      | er 2)   |
|       | using my      |   |      |         |
|       | organizati    |   |      |         |
|       | on email      |   |      |         |
|       | and create a  |   |      |         |
|       |               |   |      |         |

|       | password       |   |      |          |
|-------|----------------|---|------|----------|
|       | for            |   |      |          |
|       | The            |   |      |          |
|       | account.       |   |      |          |
| UNS-4 | <b>nt</b> As a | 3 | High | Bibisha  |
|       | registered     |   |      | MS       |
|       | user, I need   |   |      | (Memb    |
|       | to easily log  |   |      | er3)     |
|       | in using the   |   |      |          |
|       | registered     |   |      |          |
|       | accouvia       |   |      |          |
|       | the web        |   |      |          |
|       | page           |   |      |          |
| UNS-1 | As a user, I   | 1 | High | Jijy A V |
|       | want to first  |   |      | (Team    |
|       | register       |   |      | Leader)  |
|       | using my       |   |      |          |
|       | email and      |   |      |          |
|       | create a       |   |      |          |
|       | password       |   |      |          |
|       | For the        |   |      |          |
|       | account        |   |      |          |

# 7. CODING & SOLUTIONING

# 7.1 Feature Code 1

```
# -*- coding: utf-8 -*-
Created on Sat Nov 12 13:05:05 2022
@author: Alice
#Importing Libraries
#Locating and loading datasets
import pathlib
from pathlib import Path
import os, gc, glob, random
from PIL import Image
#DataManagement and matrix calculations
import pandas as pd
import numpy as np
#Model Building
import tensorflow as tf
import keras
import keras.backend as K
from keras.optimizers import SGD, Adam, Adagrad, RMSprop
from keras.applications import *
from keras.preprocessing import *
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPool2D, Flatten, Activation,
BatchNormalization, Dropout
from keras.models import Model
from keras.utils.np_utils import to_categorical
from sklearn.model_selection import train_test_split
# Data Visualization
import matplotlib.pyplot as plt
#Loading and testing models
from keras.models import load_model
from keras.models import model_from_json
# Directory operations
```

```
import os
from os import listdir
______
_____#
______
______#
# =======DEFINING THE REQUIRED
______
______ #
______
_____#
def generateListofFiles(dirName):
  """This function returns a list with exact paths of files inside the given
directory """
  listOfFile = os.listdir(dirName)
  allFiles = list()
  for fol name in listOfFile:
    fullPath = os.path.join(dirName, fol_name)
    allFiles.append(fullPath)
  return allFiles
def Configure_CNN_Model(output_size):
  """This function defines the cnn model structure and configures the layers"""
  K.clear_session()
  model = Sequential()
model.add(Dropout(0.4,input_shape=(224, 224, 3)))
  model.add(Conv2D(256, (5, 5),input_shape=(224, 224, 3),activation='relu'))
  model.add(MaxPool2D(pool_size=(2, 2)))
  #model.add(BatchNormalization())
  model.add(Conv2D(128, (3, 3), activation='relu'))
  model.add(MaxPool2D(pool_size=(2, 2)))
  #model.add(BatchNormalization())
```

```
model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPool2D(pool_size=(2, 2)))
    #model.add(BatchNormalization())
   model.add(Flatten())
    model.add(Dense(512, activation='relu'))
   model.add(Dropout(0.3))
    model.add(Dense(256, activation='relu'))
   model.add(Dropout(0.3))
   model.add(Dense(128, activation='relu'))
   model.add(Dropout(0.3))
   model.add(Dense(output_size, activation='softmax'))
    return model
def PrepreocessData(subfolders):
    """Pre precess the image data in the provided category list"""
    X_data, Y_data, found = [], [], []
    id no=0
    #itering in all folders under Boats folder
    for paths in subfolders:
        #setting folder path for each boat type
        files = glob.glob (paths + "/*.jpg")
        found.append((paths.split('\\')[-2], paths.split('\\')[-1]))
        #itering all files under the folder one by one
        for myFile in files:
            img = Image.open(myFile)
            #img.thumbnail((width, height), Image.ANTIALIAS) # resizes image
in-place keeps ratio
            img = img.resize((224,224), Image.ANTIALIAS) # resizes image
without ratio
            #convert the images to numpy arrays
            img = np.array(img)
            if img.shape == ( 224, 224, 3):
                # Add the numpy image to matrix with all data
                X_data.append (img)
                Y_data.append (id_no)
        id_no+=1
    #converting lists to np arrays again
    X = np.array(X_data)
```

```
Y = np.array(Y_data)
# Print shapes to see if they are correct
  print("x-shape", X.shape, "y shape", Y.shape)
  X = X.astype('float32')/255.0
  y_cat = to_categorical(Y_data, len(subfolders))
  print("X shape", X, "y_cat shape", y_cat)
  print("X shape", X.shape, "y_cat shape", y_cat.shape)
  return X_data, Y_data, X, y_cat, found;
def splitData():
  X_train, X_test, y_train, y_test = train_test_split(X, y_cat,
test_size=0.2)
  print("The model has " + str(len(X_train)) + " inputs")
  return X_train, X_test, y_train, y_test
_____#
______
_____#
# ======LOADING THE DATA AND PRE-
#
______
______
______ #
# Augument the datasets with AugumentData.py.
# The AugumentData.py will generate many images with the original dataset to
increase the accuracy of the model.
# Loading the augumented data form local storage
aug_data_location = "C:/Users/Oxluk/OneDrive/Documents/Digital
Naturalist/augumented data"
Folders = generateListofFiles(aug_data_location)
subfolders = []
for num in range(len(Folders)):
  sub_fols = generateListofFiles(Folders[num])
```

### 8. TESTING

## 8.1Test case

```
# -*- coding: utf-8 -*-
Created on Sat Nov 12 13:05:05 2022
@author: Alice
#Importing Libraries
#Locating and loading datasets
import pathlib
from pathlib import Path
import os, gc, glob, random
from PIL import Image
#DataManagement and matrix calculations
import pandas as pd
import numpy as np
#Model Building
import tensorflow as tf
import keras
import keras.backend as K
from keras.optimizers import SGD, Adam, Adagrad, RMSprop
from keras.applications import *
from keras.preprocessing import *
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.models import Sequential
from keras.layers import Dense, Conv2D, MaxPool2D, Flatten, Activation,
BatchNormalization, Dropout
from keras.models import Model
from keras.utils.np_utils import to_categorical
from sklearn.model_selection import train_test_split
```

# Data Visualization

```
import matplotlib.pyplot as plt
#Loading and testing models
from keras.models import load_model
from keras.models import model_from_json
# Directory operations
import os
from os import listdir
______
_____#
______
______#
# ======DEFINING THE REOUIRED
______
______#
_____#
def generateListofFiles(dirName):
  """This function returns a list with exact paths of files inside the given
directory """
listOfFile = os.listdir(dirName)
allFiles = list()
for fol_name in listOfFile:
fullPath = os.path.join(dirName, fol_name)
allFiles.append(fullPath)
return allFiles
def Configure_CNN_Model(output_size):
 """This function defines the cnn model structure and configures the layers"""
K.clear_session()
model = Sequential()
model.add(Dropout(0.4, input_shape=(224, 224, 3)))
model.add(Conv2D(256, (5, 5), input_shape=(224, 224, 3), activation='relu'))
```

```
model.add(MaxPool2D(pool_size=(2, 2)))
#model.add(BatchNormalization())
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPool2D(pool size=(2, 2)))
#model.add(BatchNormalization())
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPool2D(pool size=(2, 2)))
#model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(output_size, activation='softmax'))
return model
def PrepreocessData(subfolders):
"""Pre precess the image data in the provided category list"""
X_{data}, Y_{data}, found = [], [], []
id_no=0
#itering in all folders under Boats folder
for paths in subfolders:
#setting folder path for each boat type
files = glob.glob (paths + "/*.jpg")
found.append((paths.split('\\')[-2],paths.split('\\')[-1]))
#itering all files under the folder one by one
for myFile in files:
         img = Image.open(myFile)
#img.thumbnail((width, height), Image.ANTIALIAS) # resizes image
in-place keeps ratio
          img = img.resize((224,224), Image.ANTIALIAS) # resizes image
without ratio
          #convert the images to numpy arrays
img = np.array(img)
```

```
if img.shape == ( 224, 224, 3):
         # Add the numpy image to matrix with all data
         X data.append (img)
  Y_data.append (id_no)
  id_no+=1
#converting lists to np arrays again
X = np.array(X data)
Y = np.array(Y_data)
# Print shapes to see if they are correct
print("x-shape", X.shape, "y shape", Y.shape)
X = X.astype('float32')/255.0
y_cat = to_categorical(Y_data, len(subfolders))
print("X shape", X, "y_cat shape", y_cat)
print("X shape", X.shape, "y_cat shape", y_cat.shape)
  return X_data, Y_data, X, y_cat, found;
def splitData():
X_train, X_test, y_train, y_test = train_test_split(X, y_cat,
test_size=0.2)
print("The model has " + str(len(X_train)) + " inputs")
return X_train, X_test, y_train, y_test
______
______ #
______
_____#
# ======LOADING THE DATA AND PRE-
______
_____#
______
______#
# Augument the datasets with AugumentData.py.
# The AugumentData.py will generate many images with the original dataset to
increase the accuracy of the model.
```

```
# Loading the augumented data form local storage
aug data location = "C:/Users/0xluk/OneDrive/Documents/Digital
Naturalist/augumented data"
Folders = generateListofFiles(aug_data_location)
subfolders = []
for num in range(len(Folders)):
sub fols = generateListofFiles(Folders[num])
subfolders+=sub_fols
X_data, Y_data, X, y_cat, found= PrepreocessData(subfolders)
# Splitting the data to Test and Train
X_train, X_test, y_train, y_test = splitData()
______
______ #
______
_____#
# -----BUILDING THE CNN
______
______#
______
_____#
early_stop_loss = EarlyStopping(monitor='loss', patience=3, verbose=1)
early_stop_val_acc = EarlyStopping(monitor='val_accuracy', patience=3,
verbose=1)
model_callbacks=[early_stop_loss, early_stop_val_acc]
model = Configure_CNN_Model(6)
model.compile(loss='categorical_crossentropy',optimizer=Adam(lr=0.001),metrics=
['accuracy'])
weights = model.get weights()
model.set_weights(weights)
```

```
______
______#
______
_____#
______
______#
______
_____#
image_number = random.randint(0,len(X_test))
predictions = model.predict([X_test[image_number].reshape(1, 224,224,3)])
for idx, result, x in zip(range(0,6), found, predictions[0]):
print("Label: {}, Type : {}, Species : {} , Score : {}%".format(idx,
result[0], result[1], round(x*100,3)))
#predicting the class with max probability
ClassIndex=np.argmax(model.predict([X_test[image_number].reshape(1,
224,224,3)]),axis=1)
print(found[ClassIndex[0]])
______
______ #
______
______#
______
_____#
_____#
model_{json} = model_{to_{json}} () #indent=2
with open("DigitalNaturalist.json", "w") as json_file:
json_file.write(model_json)
```

model.save\_weights("DigitalNaturalist.h5")
print("Saved model to disk")

#### 9.RESULTS

# 9.1 Performance Metrics



#### 10.CONCLUSION

A naturalist is someone who studies the patterns of nature, identifies a different kind of flora and fauna in nature. Being able to identify the flora and fauna around us often leads to an interest in protecting wild spaces, and collecting and sharing information about the species we see on our travels is very useful for conservation groups like NCC.

Git hub link :-https://github.com/IBM-EPBL/IBM-Project-43439-1660716904

Demo video link :-https://drive.google.com/file/d/1V0vWwW-kG-KFyRIvEKbXp5VZqGQO1DyP/view?usp=drivesdk