

Algebra

Applied Mathematics

Calculus and Analysis

Discrete Mathematics

Foundations of Mathematics

Geometry

History and Terminology

Number Theory

Probability and Statistics

Recreational Mathematics

Topology

Alphabetical Index

Interactive Entries

Random Entry

New in MathWorld

MathWorld Classroom

About MathWorld

Contribute to MathWorld

Send a Message to the Team

MathWorld Book

Wolfram Web Resources »

13.773 entries Last updated: Sun Aug 22 2021

Created, developed, and nurtured by Eric Weisstein at Wolfram Research

Algebra > Linear Algebra > Matrices > Matrix Types > Calculus and Analysis > Functional Analysis > Geometry > Projective Geometry > General Projective Geometry >

Projection Matrix

A projection matrix P is an $n \times n$ square matrix that gives a vector space projection from \mathbb{R}^n to a subspace W. The columns of P are the projections of the standard basis vectors, and W is the image of P. A square matrix P is a projection matrix iff $P^2 = P$.

A projection matrix P is orthogonal iff

$$P = P^*, (1)$$

where P* denotes the adjoint matrix of P. A projection matrix is a symmetric matrix iff the vector space projection is orthogonal. In an orthogonal projection, any vector v can be written $v = v_W + v_{W^+}$, so

$$\langle v, P w \rangle = \langle v_W, P w \rangle = \langle P v, w \rangle.$$
 (2)

An example of a nonsymmetric projection matrix is

$$\mathsf{P} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix},\tag{3}$$

which projects onto the line v = x.

The case of a complex vector space is analogous. A projection matrix is a Hermitian matrix iff the vector space projection satisfies

$$\langle v, P w \rangle = \langle v_W, P w \rangle = \langle P v, w \rangle,$$
 (4)

where the inner product is the Hermitian inner product. Projection operators play a role in quantum mechanics and quantum computing.

Any vector in W is fixed by the projection matrix $P_{w} = w$ for any w in W. Consequently, a projection matrix P has norm equal to one, unless P = 0,

$$\|P\| = \sup_{|x|=1} |Px| \ge 1. \tag{5}$$

Let A be a C^* -algebra. An element $p \in A$ is called projection if $p^* = p$ and $p^2 = p$. For example, the real function fdefined by f(x) = 0 on G_1 and f(x) = 1 on G_2 is a projection in the C^* -algebra C(X), where X is assumed to be disconnected with two components G_1 and G_2 .

SEE ALSO:

Idempotent, Inner Product, Map Projection, Orthogonal Set, Projection, Projection Operator, Pseudoinverse, Symmetric Matrix, Vector Space Projection, Vertical Perspective Projection

.999 with 123 repeating

THINGS TO TRY:

- = .999 with 123 repeating
- = GF(8)
- = inverse of quaternion 1+0i+0j+2k ** (-1i+3+4j+3k)

Linear Transformations and **Basic Computer Graphics**

Projecting Images from a Point Cloud Portions of this entry contributed by Mohammad Sal Moslehian

Portions of this entry contributed by Todd Rowland

REFERENCES:

Kadison, R. V. and Ringrose, J. R. Fundamentals of the Theory of Operator Algebras, Vol. 1: Elementary Theory. Providence, RI: Amer. Math. Soc., 1997.

Murphy, G. J. C-*-Algebras and Operator Theory. New York: Academic Press, 1990.

Referenced on Wolfram|Alpha: Projection Matrix

CITE THIS AS:

Moslehian, Mohammad Sal; Rowland, Todd; and Weisstein, Eric W. "Projection Matrix." From *MathWorld--*A Wolfram Web Resource. https://mathworld.wolfram.com/ProjectionMatrix.html

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Step-by-step Solutions »

Walk through homework problems stepby-step from beginning to end. Hints help you try the next step on your own.

Wolfram Language »

Knowledge-based programming for everyone.

Contact the MathWorld Team

- Learn AP Calculus
- Free Interactive Course

Start Free Course »

