

Exploring Weather Trends

Jeffrey Smith

05/06/2020

Project Overview

The goal of this project is to analyze local and global temperature data and compare the temperature trends from my local area, Columbus, Ohio, to the overall global temperature trends. This analysis will first identify specific project objectives and discuss the various tools used throughout. Next, this analysis will explore the various global and city specific weather data made available for this project. We will then analyze annual moving averages of both the local and global temperatures. This project will conclude with a discussion of observations, highlighting differences between the localized and global analysis.

Project Objectives

- Export temperature data from Udacity's database
- Create visualizations comparing local and global temperatures
- Make observations of similarities and differences in local and global temperature averages

Tools Used:

- Python 3.7.4 64-bit: Calculations and visualizations
- SQL: Data extraction

Data Acquisition

The data acquired for this project was provided by Udacity through a SQL Workspace. This database provides three distinct tables.

- **city_list** Table containing a list of cities and countries in the database.
- **city_data** Table contains the average temperatures for each city by year (C°).
- **global_data** Table contains the average global temperatures by year (C°).

Using the temperatures database and the three tables provided, we executed the following queries to obtain the data required for this project.

Global Data Query

```
SELECT *
FROM global_data
```

City Data Query

```
SELECT *
FROM city_data
WHERE country = 'United States' AND city= 'Columbus';
```

Data Exploration

Data exploration began with the ingestion of both the global and local data sets. This exploration first focused on the global data. Table 1 provides a snippet of the global dataset, Table 2 presents information about the full dataset, and Table 3 denotes summary information.

Table 1: Global Average Temperature; 5 rows

Index	year	Global Average Temperature
0	1750	8.72
1	1751	7.98
2	1752	5.78
3	1753	8.39
4	1754	8.47

Table 2: Global Average Temperature Data Information

<class 'pandas.core.frame.dataframe'=""></class>				
RangeIndex: 266 entries, 0 to 265				
Data columns (total 2 columns):				
#	Column	Non-Null Count	Dtype	
0	year	266 non-null	int64	
1	GAT	266 non-null	float64	
dtypes: float64(1), int64(1)				
memory usage: 4.3 KB				

Table 3: Global Data Description

Global Data Description:				
	year	GAT		
count	266.000000	266.000000		
mean	1882.500000	8.369474		
std	76.931788	0.584747		
min	1750.000000	5.780000		
25%	1816.250000	8.082500		
50%	1882.500000	8.375000		
75%	1948.750000	8.707500		
max	2015.000000	9.830000		

Examining the global data set with these descriptive statistics, we find that there are 266 temperatures listed between the years of 1750 and 2015. Additionally, this dataset contains no missing values.

Table 4, Table 5, and Table 6 provide the same information and descriptive statistics for the local dataset.

Table 4: First Five Rows, Local Avg Temp

Index	year	Local Average Temperature
0	1743	7.46
1	1744	15.73
2	1745	6.91
3	1746	NaN
4	1747	NaN

Table 5: Local Average Temperature Data Information

<class 'pandas.core.frame.dataframe'=""></class>			
RangeIndex: 271 entries, 0 to 270			
Data columns (total 2 columns):			
#	Column	Non-Null Count	Dtype
0	year	271 non-null	int64
1	GAT	266 non-null	float64
dtypes: float64(1), int64(1)			
memory usage: 4.4 KB			

Table 6: Local Data Description

Global Data Description:			
	year	LAT	
count	271.000000	266.000000	
mean	1878.000000	13.941090	
std	78.375166	1.107914	
min	1743.000000	6.060000	
25%	1810.500000	13.582500	
50%	1878.000000	14.070000	
75%	1945.500000	14.450000	
max	2013.000000	16.050000	

Examining the local data, we find that there are 271 entries of which 266 are non-null. We also note that the data set spans the years of 1743 to 2013 which differs from the global data set's year span of 1750 to 2015. To preprocess the local data, records with null average temperature were removed. The remainder of the analysis utilizes a statistical analysis termed moving average.

Moving Averages Analysis

Moving average is a trend-following technical analysis method based on past data. This method of averaging helps to smooth out data allowing for a more intuitive interpretation, especially in terms of time-series data. Equation 1 denotes the Moving Average equation.

$$s_i = \frac{1}{n} \sum_{j=i}^{i+n-1} a_j \tag{1}$$

where n is the moving average step size

For this analysis we will implement a 10-year moving average on both the global and local data. To implement this average, we will create a new column in both datasets for the moving average and implementing pandas rolling method and adding the results as a new column to both datasets. Table 7 illustrates the first 12 rows of the global data with the inclusion of the moving average data.

Table 7: Global Moving Average Temperature; 12 rows

index	year	Global Average Temperature	Global Moving Avgerage
0	1750	8.72	NaN
1	1751	7.98	NaN
2	1752	5.78	NaN
3	1753	8.39	NaN
4	1754	8.47	NaN
5	1755	8.36	NaN
6	1756	8.85	NaN
7	1757	9.02	NaN
8	1758	6.74	NaN
9	1759	7.99	8.030
10	1760	7.19	7.877
11	1761	8.77	7.956

Data Visualization

Figure 1: Global and Local 10-year Moving Averages

These moving averages indicate a significant visual difference between the global and average temperature that Columbus, OH has realized over the centuries.

Observations

Findings that can be observed in Figure 1 include the following:

- On average, the temperature in Columbus, OH is higher than the global temperature.
- Both the global and local temperatures follow a similar movement pattern over time.
- Although there is a visual difference in the temperatures between the global and local temperatures, they have both followed a similar trend including a steady increase of the past decade.
- It appears that in the early 1800s there was a global decrease in the temperature.
 - Further investigation into this decline in temperature indicates that in 1816 severe weather abnormalities caused a decrease in global temperatures. More information can be found here.

Conclusion

Analyzing the moving average plot, we find that the temperatures in Columbus, OH are significantly warmer than the global temperature average. We were also able to pinpoint a specific temperature anomaly and conduct further research to uncover more information on its cause. Additionally, we were able to identify a gradual increase in temperatures across both the global and local data from around 1820 and continuing into today.