Formulation

The goal is to express quantum mechanics in a new way with geometric algebra in order to get an understanding for space and spin.

The wavefunction can be expressed as

$$\Psi = \sum_{i=1}^n rac{1}{\sqrt{2}} (e_i + J f_i) (\mathfrak{R} \psi_i + J \, \mathfrak{I} \psi_i)$$

where e_i, f_i are orthonormal vectors which square to +1,

$$J = e_0 f_0$$

is an independent bivector, and ψ_i are the complex valued components of the wave vector. This makes the wave function an odd-grade multivector.

For a spin-1/2 particle coordinates will come out as

$$egin{aligned} J\Psi\Psi^\dagger &= J + Tt + Xx + Yy + Zz \ X &= rac{1}{2}(e_1f_2 + e_2f_1) \ Y &= rac{1}{2}(e_1e_2 + f_1f_2) \ Z &= rac{1}{2}(e_2f_2 - e_1f_1) \ T &= rac{1}{2}(e_1f_1 + e_2f_2) \end{aligned}$$

which means that space rotations can be derived in this basis and the same rotor can be applied to Ψ too.

They anti-commute and obey

$$XY = Z$$
 $YZ = X$ $ZX = Y$
 $XT = 0$ $YT = 0$ $ZT = 0$

$$egin{aligned} \Pi &= e_1 f_1 e_2 f_2 \ XX &= -rac{1}{2}(1+\Pi) \ YY &= -rac{1}{2}(1+\Pi) \ ZZ &= -rac{1}{2}(1+\Pi) \ TT &= -rac{1}{2}(1-\Pi) \end{aligned}$$

which has been derived from the spin wave vector alone without actually considering time and for a positive signature vector space. Note that these multivectors are not invertable.

Observation in quantum mechanics

The probability $P=|\langle \psi_1|\psi_2\rangle|^2$ to measure a state ψ_1 in a state ψ_2 can be calculated from

$$egin{aligned} P(1
ightarrow 2) &= \langle (1 - \Psi_1 \Psi_1^\dagger) (1 - \Psi_2 \Psi_2^\dagger)
angle \ &= \langle \Psi_1 \Psi_1^\dagger \Psi_2 \Psi_2^\dagger
angle - 1 \end{aligned}$$

which is an inner product between two state multivectors of the form $\Psi\Psi^{\dagger}$.

Unitary transformation

A unitary transformation of the wavefunction can be represented as a rotor in geometric algebra. Note that the same rotor can be applied to Ψ or $\Psi\Psi^{\dagger}$.

State vector

$$\Psi = \sum_{i=1}^n rac{1}{\sqrt{2}} (e_i + J f_i) (\mathfrak{R} \psi_i + J \, \mathfrak{I} \psi_i)$$

The wave function squared can be expanded into a bivector

$$oxed{\Omega = J\Psi\Psi^\dagger \ = J + \sum_i e_i f_i \, |\psi_i|^2 + \sum_{i < j} (e_i f_j + e_j f_i) \, \mathfrak{R}(\psi_i \psi_j^*) - \sum_{i < j} (e_i e_j + f_i f_j) \, \mathfrak{I}(\psi_i \psi_j^*)}$$

(see appendix) such that the probability is

$$P = \Omega_1 \cdot \Omega_2 - 1$$

Single spin

The wavefunction for a single spin-up in a direction given by Euler angles θ,ϕ is usually written as

$$\psi = egin{pmatrix} \cosrac{ heta}{2} \ \sinrac{ heta}{2}e^{i\phi} \end{pmatrix}$$

up to an arbitrary phase.

Written in geometric algebra this is

$$J\Psi\Psi^{\dagger} = J + e_1 f_1 \cos^2 \frac{\theta}{2} + e_2 f_2 \sin^2 \frac{\theta}{2}$$
 $+ (e_1 f_2 + e_2 f_1) \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \phi$
 $+ (e_1 e_2 + f_1 f_2) \cos \frac{\theta}{2} \sin \frac{\theta}{2} \sin \phi$
 $= J + e_1 f_1 \frac{1 - \cos \theta}{2} + e_2 f_2 \frac{1 + \cos \theta}{2}$
 $+ (e_1 f_2 + e_2 f_1) \frac{1}{2} \sin \theta \cos \phi$
 $+ (e_1 e_2 + f_1 f_2) \frac{1}{2} \sin \theta \sin \phi$
 $= J + \frac{1}{2} (e_1 f_1 + e_2 f_2)$
 $+ \frac{1}{2} (e_2 f_2 - e_1 f_1) \cos \theta$
 $+ \frac{1}{2} (e_1 f_2 + e_2 f_1) \sin \theta \cos \phi$
 $+ \frac{1}{2} (e_1 e_2 + f_1 f_2) \sin \theta \sin \phi$

Remembering that we have Euler angles, we can identify the multivectors for space coordinates from this expression for a single spin

$$egin{aligned} J\Psi\Psi^\dagger &= J + Tt + Xx + Yy + Zz \ X &= rac{1}{2}(e_1f_2 + e_2f_1) \ Y &= rac{1}{2}(e_1e_2 + f_1f_2) \ Z &= rac{1}{2}(e_2f_2 - e_1f_1) \ T &= rac{1}{2}(e_1f_1 + e_2f_2) \end{aligned}$$

The expression for T is a guess from the remaining term.

Space rotations will be derived soon.

$$egin{aligned} e_1f_1 &= T-Z \ e_2f_2 &= T+Z \ TT+XX &= -1 \end{aligned} \ \Omega = J + \sum_i e_if_i \left|\psi_i
ight|^2 + 2\sum_{i < j} X_{ij}\,\mathfrak{R}(\psi_i\psi_j^*) - 2\sum_{i < j} Y_{ij}\,\mathfrak{I}(\psi_i\psi_j^*) \end{aligned}$$

Interpretation

A vague idea why quantum mechanics is this way, is because due to the rules of probability, a state should be a (multi)vector and probabilities be calculated from an inner product. The probabilities rules are that they should sum to 1 and redoing a measurement yields the same results.

This state is constantly being rotated looking like $\Delta = \cdots R_3 R_2 R_1 ? R_1^\dagger R_2^\dagger R_3^\dagger \cdots$ we somehow get, that actually Δ should split into $\Delta = \Psi \Psi^\dagger$ with the consequence that the degrees of freedom are largely reduced. The above construction with geometric algebra demonstrates how to do this "square root".

Appendix

Derivation

$$\Psi = \sum_i rac{1}{\sqrt{2}} (e_i + J f_i) (\mathfrak{R} \psi_i + J \, \mathfrak{I} \psi_i)$$

With $z_i=\Re\psi_i+J\,\Im\psi_i$

$$egin{aligned} \Psi \Psi^\dagger &= rac{1}{2} \sum_{ij} (e_i + J f_i) z_i z_j^\dagger (e_j - J f_j) \ &= \sum_i (1 - e_i f_i J) z_i z_i^\dagger \ &+ rac{1}{2} \sum_{i < j} \left((e_i + J f_i) (e_j - J f_j) z_i z_j^\dagger + (e_j + J f_j) (e_i - J f_i) z_j z_i^\dagger
ight) \ &= \sum_i (1 - e_i f_i J) z_i z_i^\dagger \ &+ rac{1}{2} \sum_{i < j} \left(e_i e_j + f_i f_j - (e_i f_j + e_j f_i) J \right) z_i z_j^\dagger \ &+ rac{1}{2} \sum_{i < j} \left(e_j e_i + f_j f_i - (e_j f_i + e_i f_j) J \right) z_j z_i^\dagger \end{aligned}$$

With the real and imaginary parts

$$egin{aligned} R_{ij} &= rac{1}{2}(z_iz_j^\dagger + z_jz_i^\dagger) \ JI_{ij} &= rac{1}{2}(z_iz_j^\dagger - z_jz_i^\dagger) \ z_iz_j^\dagger &= R_{ij} + J\,I_{ij} \ z_jz_i^\dagger &= R_{ij} - J\,I_{ij} \end{aligned}$$

where R_{ij}, I_{ij} are scalars this becomes

$$egin{aligned} \Psi \Psi^\dagger &= \sum_i (1 - e_i f_i J) z_i z_i^\dagger \ &+ rac{1}{2} \sum_{i < j} \left(e_i e_j + f_i f_j - (e_i f_j + e_j f_i) J
ight) (R_{ij} + J \, I_{ij}) \ &+ rac{1}{2} \sum_{i < j} \left(-e_i e_j - f_i f_j - (e_i f_j + e_j f_i) J
ight) (R_{ij} - J \, I_{ij}) \ &= \sum_i z_i z_i^\dagger - \sum_i e_i f_i J z_i z_i^\dagger \ &- \sum_{i < j} (e_i f_j + e_j f_i) J R_{ij} \ &+ \sum_{i < j} (e_i e_j + f_i f_j) J \, I_{ij} \end{aligned}$$

For normalized wave vectors

$$\langle \Psi \Psi^\dagger
angle = 1$$

Therefore

$$J\Psi\Psi^\dagger = J + \sum_i e_i f_i z_i z_i^\dagger + \sum_{i < j} (e_i f_j + e_j f_i) R_{ij} - \sum_{i < j} (e_i e_j + f_i f_j) \, I_{ij}$$

is a grade-2 multivector.

The probability in quantum mechanics can be calculated from the dot product of two real vectors where states have the components

$$(\psi_i\psi_i^*,\ldots,\sqrt{2}\mathfrak{R}(\psi_i\psi_i^*),\ldots,\sqrt{2}\mathfrak{I}(\psi_i\psi_i^*),\ldots)$$

(shown elsewhere). Therefore in our case and for normalized wave vectors the probability can also be calculated from

$$P(1 o 2) = \langle (1-\Psi_1\Psi_1^\dagger)(1-\Psi_2\Psi_2^\dagger)
angle = \langle \Psi_1\Psi_1^\dagger\Psi_2\Psi_2^\dagger
angle - 1$$