1 Übung 05

1.1 H 5-1

Alle Transitionen von q_0 zu q_3 addieren mindestens 3, weshalb die kleinste vom Automaten akzeptierte Zahl 3 ist. Ob die akzeptierte Zahl gerade oder ungerade ist, hängt davon ab mit welcher Zahl man q_0 "verlässt". Der ursprüngliche Automat kann vom Finalzustand aus nur gerade Zahlen hinzuaddieren, akzeptiert aber dennoch, je nach Zahl aus q_0 , alle Zahlen aus $n \in \mathbb{N} \mid n \geq 3$, weshalb über q_1 im minimalen Automaten beliebige Zahlen aus \mathbb{N} addiert werden können.

1.2 H 5-3

Wie aus Kapitel 3 bereits bekannt ist $A^* = \emptyset^c$.

(a)
$$a^{+}c^{+} = aa^{*}cc^{*}$$
$$= a\{b,c\}^{c}c\{a,b\}^{c}$$
$$\{b,c\}^{c} = A^{*} \setminus A^{*} \cdot \{b,c\} \cdot A^{*} = a^{*}$$
$$\{a,b\}^{c} = A^{*} \setminus A^{*} \cdot \{a,b\} \cdot A^{*} = c^{*}$$

(b)
$$(abc)^* = \{\varepsilon\} \cup (aA^* \cap A^*c) \setminus A^* \cdot \{aa, ac, ba, bb, cb, cc\} \cdot A^*$$

(c)
$$\{w : |w|_a \le 3\} = A^* \setminus A^* \cdot \{a\} \cdot A^* \cdot \{a\} \cdot A^* \cdot \{a\} \cdot A^* \cdot \{a\} \cdot A^*$$

(d)
$$\{w : |w|_{abc}\} = A^* \cdot \{abc\} \cdot A^* \cdot \{abc\} \cdot A^* \setminus A^* \cdot \{abc\} \cdot A^* \cdot \{abc\} \cdot$$