

Tema 4: Retículos y Álgebras de Boole

Retículos

1. ¿Es un retículo distributivo el definido por el siguiente diagrama de Hasse?

Solución: Sí, ya que no contiene ningún subretículo de las dos formas estándar de retículos que no son distributivos.

2. Estudia cuáles de los siguientes conjuntos ordenados son retículos.

Solución: Sólo el retículo (c).

3. Obtén los diagramas de Hasse de todos los retículos, salvo isomorfismos, de uno, dos, tres, cuatro y cinco elementos.

Solución: De un elemento y de dos elementos, trivial, sólo hay uno.

De tres elementos, sólo hay uno, que es una cadena.

De cuatro elementos, existen dos:

De cinco elementos existen cinco:

4. Sea $\mathcal{F}(\mathbb{N})$ la colección de todos los subconjuntos finitos de \mathbb{N} . ¿Tiene $(\mathcal{F}(\mathbb{N}), \subseteq)$ algún elemento maximal? ¿Es $(\mathcal{F}(\mathbb{N}), \subseteq)$ un retículo?

Solución: $(\mathcal{F}(\mathbb{N}), \subseteq)$ no tiene elementos maximales, pero sí tiene uno minimal que es el conjunto \emptyset . Sí es un retículo, porque para cada par de elementos $A, B \in \mathcal{F}(\mathbb{N})$,

$$Supremo(A, B) = A \cup B$$
 y $Infimo(A, B) = A \cap B$

son subconjuntos finitos de \mathbb{N} .

5. Sea $E(\mathbb{N})$ la colección de todos los subconjuntos finitos de \mathbb{N} que tienen un número par de elementos. En $(E(\mathbb{N}), \subseteq)$ se consideran los elementos $A = \{1, 2\}, B = \{1, 3\}$. Encontrar cuatro cotas superiores para $\{A, B\}$. ¿Tiene $\{A, B\}$ supremo en $(E(\mathbb{N}), \subseteq)$? ¿Es $(E(\mathbb{N}), \subseteq)$ un retículo? *Solución*: Cotas superiores para $\{A, B\}$ son

$$C = \{1, 2, 3, 4\}, D = \{1, 2, 3, 8\}, E = \{1, 2, 3, 4, 5, 6, 7, 8\}, F = \{1, 2, 3, 5, 9, 20\}.$$

El conjunto $\{A, B\}$ no tiene supremo en $(E(\mathbb{N}), \subseteq)$, y por tanto, $(E(\mathbb{N}), \subseteq)$ no es un retículo.

6. Estudia si en el siguiente retículo se verifica la igualdad $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

Solución: No se verifica, ya que $a \lor (b \land c) = a \lor d = a$, pero $(a \lor b) \land (a \lor c) = 1 \land 1 = 1$.

7. Encuentra el complementario de cada elemento en $(D_{42},/)$, $(D_{45},/)$ y $(D_{105},/)$. ¿Son álgebras de Boole estos retículos?

Solución: La descomposición de 42 en factores primos es $42 = 2 \cdot 3 \cdot 7$, y por lo tanto sí es un álgebra de Boole. $|D_{48}| = 8$, de hecho $D_{42} = \{1, 2, 3, 6, 7, 14, 21, 42\}$ y los complementarios son

$$1' = 42$$
, $2' = 21$, $3' = 14$ $6' = 7$.

En cambio, la descomposición en factores primos de 45 es 45 = $3^2 \cdot 5$ y, por tanto, no es un álgebra de Boole. $|D_{45}| = 6$, donde $D_{45} = \{1, 3, 5, 9, 15, 45\}$, y

$$1' = 45, \quad 5' = 9.$$

Pero no existen complementarios de 3 ni de 15. La descomposición en factores primos de 105 es 105 = $3 \cdot 5 \cdot 7$ y, por tanto, sí es un álgebra de Boole. El número de elementos es $|D_{105}|$ = 8 donde D_{105} = {1, 3, 5, 7, 15, 21, 35, 105}, y los complementarios son:

$$1' = 105$$
, $3' = 35$, $5' = 21$, $7' = 15$.

- 8. Se considera el conjunto $A = \{2, 3, 4, 6, 12, 15, 24, 90, 180, 360\}$ y la relación de orden de divisibilidad.
 - a) Representa el diagrama de Hasse del conjunto ordenado (A, /).
 - b) Es(A, /) un retículo?
 - c) Obtén, si existen, las cotas inferiores, cotas superiores, ínfimo, supremo, mínimo, máximo, elementos minimales y maximales del subconjunto $B = \{2, 3, 4, 6, 12, 180\}$.

2

Solución: Las soluciones son

a) El diagrama de Hasse de (A, /) es

- b) No es un retículo porque el conjunto $\{2,3\}\subseteq A$ no tiene ínfimo.
- c) Cotas superiores (B) = $\{180, 360\}$, Supremo (B) = 180, Cotas Inferiores (B) = no existen, Ínfimo (B) = no existe, Maximales (B) = $\{180\}$, Máximo (B) = 180, Minimales (B) = $\{2, 3\}$, Mínimo (B) = no existe.

9. (Examen Enero 2016)

a) Sea D_{63} el conjunto de todos los divisores de 63, y / la relación de divisibilidad dada por a/b si y sólo si "a divide a b". Dibuja el diagrama de Hasse del conjunto ordenado $(D_{63}, /)$. Solución: La descomposición 63 = $3^2 \cdot 7$, $|D_{63}| = 6$, $D_{63} = \{1, 3, 7, 9, 21, 63\}$, y el diagrama de Hasse es

b) Considera el conjunto ordenado A de la figura.

- *I*) Obtén las cotas superiores e inferiores, supremo, ínfimo, maximales, minimales, máximo y mínimo del conjunto $B = \{b, c, d\}$. *Solución:* C. Superiores $(B) = \{a\}$, Supremo (B) = a, C. Inferiores $(B) = \{h, i, j\}$, Infimo no existe,
 - Maximales $(B) = \{b, c\}$, Máximo no existe, Minimales $(B) = \{c, d\}$, Mínimo no existe.
- II) ¿Es A un retículo? Solución: No es un retículo, ya que, por ejemplo, el conjunto de dos elementos $\{h,i\}$ tienen como cotas superiores $\{a,b,c,d\}$, pero no tiene supremo.
- III) Sea A' el conjunto ordenado cuyo diagrama de Hasse es el mismo que el de A, pero eliminando las aristas que van de b a g y de d a i. ¿Es A' un retículo? Solución: El diagrama de Hasse de A' es

Así, A' sí es un retículo, ya que todo par de elementos tienen supremo e ínfimo.

- iv) ¿Es A' complementario? En caso de que no lo sea, da un elemento que no tenga complementario y otro que sí lo tenga, indicando un complementario.
 Solución: No es un retículo complementario: Los elementos h y c no tienen complementario; el elemento f tiene varios complementarios: e, g, i.
- v) ¿Es A' distributivo? Solución: No es distributivo. Por ejemplo, el subretículo formado por los elementos $\{j,h,c,i,g\}$ no es distributivo. En particular

$$g \wedge (h \vee i) \neq (g \wedge h) \vee (g \wedge i).$$

10. (Examen Noviembre 2016) Considera el conjunto ordenado A del dibujo.

- a) Sea B = {a, d, f}, encuentra todos los elementos notables de B (cotas superiores e inferiores, supremo, ínfimo, máximo y mínimo, maximales y minimales, si los hay).
 Solución: C. superiores = {a, 1}, Supremo = a, C. Inferiores = {0}, Ínfimo = 0, Maximales = {a}, Máximo = a, Minimales = {d, f}, Mínimo no existe.
- b) Encuentra, si existen, todos los elementos complementarios de b y c. Solución: $b' = \{f, g\}, \quad c' = e$.
- c) Razona si A es un álgebra de Boole.
 Solución: No es un álgebra de Boole: no es distributivo, y b tiene más de un complementario.
- 11. (Examen noviembre 2012) Dado el conjunto ordenado $A = \{a, b, c, d, e, f, g, h, i, j, k, l\}$ cuyo diagrama de Hasse es el de la figura y el subconjunto $B = \{b, e, f, k\}$.

- a) Hallar las cotas superiores e inferiores, supremo e ínfimo de B en A. Solución: C. Superiores = $\{b,a\}$; Supremo = b; C. Inferiores = $\{l\}$; Infimo = l.
- b) Hallar los elementos maximales y minimales, máximo y mínimo de B. Solución: Maximales = $\{b\}$; Máximo = b; Minimales = $\{e,k\}$; Mínimo no tiene.

- c) Hallar inf $\{f,g\}$ y sup $\{f,g\}$. ¿Es A un retículo? Solución: inf $\{f,g\}=k$; sup $\{f,g\}=b$. Sí es un retículo porque todo par de elementos tienen supremo e infimo.
- 12. (Examen enero 2017) Sea D_{270} el conjunto de los divisores positivos de 270. Se pide:
 - a) Sabiendo que una relación en D_{270} es un subconjunto del producto cartesiano $D_{270} \times D_{270}$, ¿cuál es el cardinal del conjunto de todas las relaciones distintas en D_{270} ?

 Solución: La descomposición en factores primos es $270 = 2 \cdot 5 \cdot 3^3$; luego $|D_{270}| = 16$; $|D_{270} \times D_{270}| = 16^2$. El número de subconjuntos de $D_{270} \times D_{270}$, es $2^{|D_{270} \times D_{270}|} = 2^{16^2}$.
 - b) Dibuja el diagrama de Hasse de D_{270} con la relación de orden de divisibilidad. Solución: El diagrama de Hasse es

- c) Encuentra todos los elementos de D_{270} que tienen complementario. Razona si D_{270} es álgebra de Boole.
 - Solución: Los complementarios son: 1' = 270; 2' = 137; 5' = 54; 27' = 10. No es un álgebra de Boole: no todos los elementos tienen complementario; por ejemplo, el 9 no tiene complementario.
- d) Sea el conjunto $C = D_{270} \setminus \{45, 54\}$ con la relación de orden de divisibilidad. Calcula si existe el sup $\{6, 27\}$ en C. Razona si C es un retículo.

Solución: En $C = D_{270} \setminus \{45, 54\}$ el sup $\{6, 27\} = 270$.

No es un retículo, porque no existe sup{9, 15}. En efecto las cotas superiores de este par de elementos son {90, 137, 270}, pero ninguna de ellas es menor que las otras dos.