

SISTEM REKOMENDASI PENYEWAAN PERLENGKAPAN PESTA MENGGUNAKAN COLLABORATIVE FILTERING DAN PENGGALIAN ATURAN ASOSIASI

Gita Indah Marthasari¹⁾, Yufis Azhar²⁾, Dwi Kurnia Puspitaningrum³⁾

^{1,2} Jurusan Teknik Informatika, Fakultas Teknik, Universitas Muhammadiyah Malang
Jl. Raya Tlogomas 246, Malang

E-mail: ¹gita@umm.ac.id, ²yufis@umm.ac.id, ³neeluph@gmail.com

ABSTRAK

E-commerce berbasis web merupakan salah satu media yang efektif dalam jual beli. Banyak usaha yang telah memanfaatkan fasilitas ini. Salah satunya adalah bidang jasa persewaan alat-alat pesta. Untuk memberikan layanan yang lebih baik, e-commerce dilengkapi dengan fitur lain antara lain sistem rekomendasi. Sistem ini memudahkan konsumen menentukan barang untuk dibeli dengan cara menampilkan produk yang terkait dengan salah satu produk lain yang dibeli atau dilihat konsumen. Salah satu mekanisme untuk membangun sistem ini adalah collaborative filtering. Cara kerja collaborative filtering adalah dengan membangun sebuah basis data yang menyimpan produk-produk yang disukai konsumen. Transaksi baru yang dibuat oleh seorang konsumen akan dicocokkan dengan basis data tersebut untuk mengetahui data historis mana yang paling sesuai dengan data baru tersebut. Data historis yang paling sesuai akan ditampilkan sebagai rekomendasi bagi konsumen yang melakukan transaksi tersebut. Salah satu teknik yang dapat digunakan adalah penggalian aturan asosiasi menggunakan Algoritma Apriori. Pada penelitian ini, dibuat sebuah website persewaan alat-alat pesta dengan menerapkan sistem rekomendasi. Sistem rekomendasi dibangun menggunakan aturan-aturan yang dihasilkan oleh Algoritma Apriori. Untuk dapat menampilkan barang rekomendasi digunakan nilai support 20, sedangkan nilai confidence digunakan untuk menentukan N-teratas barang untuk direkomendasikan.

Kata kunci: sistem rekomendasi, collaborative filtering, algoritma apriori.

ABSTRACT

Web-based e-commerce is an effective media for buying and selling. Many businesses have taken the advantages of this facility. One of them is the party tools rental services. To provide better service, e-commerce is equipped with other features such as a recommendation mechanism. This mechanism allows consumers specify the goods to be purchased by displaying products that are related to another purchased product or customer visits. One mechanism for establishing this system is collaborative filtering. Collaborative filtering works by building a database that stores the products which are preferred by consumers. New transactions made by a consumer will be matched with the database to find out which data are related the most. The most appropriate historical data to be displayed as a recommendation for consumers who conduct such transactions. One technique that can be used is extracting association rules using Apriori Algorithm. In this study, a website of party tools rental service is created to implement the recommendation system. A recommendation system built using rules generated by Apriori Algorithm. To be able to display items used on the value of the support 20, while the confidence value is used to determine the N-top items to be recommended.

Keywords: recommender system, collaborative filtering, apriori algorithm.

PENDAHULUAN

Akhir-akhir ini, usaha persewaan alat-alat pesta berkembang sangat pesat seiring dengan maraknya penggunaan website untuk penjualan (e-commerce). Konsumen diberikan kemudahan dalam melihat, memilih, dan menyewa dibutuhkan peralatan yang karena semuanya dapat dilakukan secara online dan tidak terbatas waktu. Websitewebsite tersebut umumnya menyediakan katalog yang memungkinkan konsumen melihat secara detail tiap alat yang disewakan. Konsumen harus secara jeli memilih dan memilah barang yang akan disewa. Namun, karena beragamnya jenis dan harga barang, konsumen seringkali kesulitan untuk memutuskan barang-barang untuk disewa.

Sistem rekomendasi merupakan salah satu solusi untuk persoalan ini. Dalam sebuah sistem e-commerce, mekanisme rekomendasi bekerja dengan menerima data tentang barang yang diinginkan konsumen dan memberikan saran atau rekomendasi barang lainnya yang diperkirakan akan dibutuhkan. Saat ini, sistem rekomendasi telah digunakan di banyak area, antara lain wisata [1], rekomendasi film [2], dan pembelian barang [3], [4]. Website-website ecommerce terkemuka baik maupun luar negeri seperti ebay.com, amazon.com, yahoo.com, lazada.com, dan elevenia.com telah mengimplementasikan sistem ini.

Salah satu metode yang populer digunakan adalah collaborative filtering[3]. Cara kerja collaborative filtering adalah dengan membangun sebuah basis data yang menyimpan itemitem yang disukai konsumen. Transaksi baru yang dibuat oleh seorang konsumen akan dicocokkan dengan basis data tersebut untuk mengetahui data historis mana yang paling sesuai dengan data baru tersebut. Data historis yang paling ditampilkan sesuai akan sebagai rekomendasi bagi konsumen vang melakukan transaksi tersebut.

Data mining merupakan salah satu teknik yang dapat digunakan dalam

collaborative filtering. Cho [4] menggunakan metode induksi pohon keputusan untuk menganalisis penggunaan website, Wahyu menerapkan metode nearest neighbor untuk membuat sistem rekomendasi pariwisata, Sarwar [3] mengimplementasikan metode association rule mining untuk membuat sistem rekomendasi, dan Fadlil [2] menggunakan metode klasterisasi untuk menganalisis rating film. Salah satu metode yang sesuai untuk collaborative filtering adalah association rule mining (penggalian aturan asosiasi) [5]. Artikel ini akan membahas mengenai penerapan metode association rule mining dalam collaborative filtering pada pembuatan website persewaan alat-alat pesta.

METODE

Sistem rekomendasi telah marak pada website-website digunakan interaktif. Sistem ini bekerja dengan melakukan analisis data dan menghasilkan N-teratas item yang akan dijadikan sebagai rekomendasi bagi pengguna. Dalam penelitian ini akan dibuat sebuah website penyewaan alat-Website tersebut alat pesta. menerapkan sistem rekomendasi menggunakan mekanisme collaborative filtering. Cara kerja collaborative filtering adalah dengan membangun sebuah basis data yang berisi pilihanpilihan pengguna [3]. Jika ada transaksi baru dari seorang konsumen, maka data transaksi tersebut akan dicocokkan dengan basis data. Data dari basis data yang paling sesuai akan ditampilkan ke pengguna sebagai saran atau rekomendasi sistem. Pembahasan metode akan dibagi menjadi dua vaitu penjelasan mengenai aturan asosiasi (association rule mining) dan algoritma Apriori.

Teknik Aturan Asosiasi

Knowledge Discovery in Database (KDD) sejak lama telah digunakan untuk analisis data pada ecommerce. Salah satu tekniknya adalah

penggalian aturan asosiasi. Analisis asosiasi atau association rule mining adalah teknik penggalian data untuk menemukan aturan asosiasi antara suatu kombinasi item. Metodologi analisis asosiasi terbagi menjadi 2 tahap, yakni melakukan analisa pola frekuensi tinggi (frequent pattern) dan berikutnya proses pembentukan adalah asosiasi.Variabel pengukuran untuk menemukan pola-pola paling menarik dalam penggalian aturan asosiasi dari data adalah:

- a. Support yaitu suatu ukuran yang menunjukkan seberapa besar tingkat dominasi suatu item atau itemset dari keseluruhan transaksi.
- b. *Confidence* yaitu suatu ukuran yang menunjukkan hubungan antar dua item secara kondisional (berdasarkan suatu kondisi tertentu).

Jika D adalah set transaksi, dimana tiap transaksi T di Dmerepresentasikan set item yang ada di I. Aturan asosiasi berbentuk if A then B $(A \Rightarrow B)$, dimana antecedent A dan consequent B subset dari I, dan A dan B mutually exclusive. Supports untuk aturan asosiasi tertentu $A \Rightarrow B$ adalah proporsi transaksi di D yang berisi baik Adan B. Confidencec untuk aturan asosiasi tertentu $A \Rightarrow B$ adalah ukuran akurasi aturan. ditentukan dengan persentase transaksi di D yang berisi A yang juga berisi B.

Aturan yang diinginkan adalah aturan yang mempunyai *support* yang tinggi atau *confidence* yang tinggi, dan biasanya keduanya. Aturan yang kuat adalah aturan yang memenuhi atau melebihi kriteria *support* dan *confidence* minimum. *Itemset* adalah set item yang berisi di dalam I, dan k-itemset adalah *itemset* yang berisi k items. Frekuensi *itemset* adalah jumlah transaksi yang berisi *itemset* tertentu. *Frequent itemset* adalah *itemset* yang terjadi paling sedikit pada jumlah tertentu, mempunyai *itemset* frequency $\geq \Phi$. Misalkan, $\Phi = 4$, *itemset* yang terjadi lebih dari 4 disebut *frequent*.

Notasi set of frequent k-itemsets adalah F_k .

Aturan asosiasi dapat digunakan untuk membangkitkan N-teratas produk rekomendasi dengan penjelasan sebagai berikut; untuk *n* konsumen, disimpan yang dilakukan transaksi oleh *n* konsumen tersebut. Selanjutnya, teknik aturan asosiasi diterapkan terhadap data transaksi tersebut berdasarkan nilai minimum support dan minimum confidence tertentu. Sekarang, untuk sejumlah V konsumen baru, cara menentukan N-teratas produk rekomendasi bagi mereka adalah sebagai berikut; Pertama, dicari aturan-aturan sesuai dengan vang konsumen (konsumen yang melihat produk-produk yang ada di bagian kiri aturan). Seandainya P_u adalah himpunan produk yang direkomendasikan oleh sistem dan belum dibeli oleh konsumen u. maka produk-produk ini diurutkan dari nilai confidence tertinggi. Hasil pengurutan selanjutnya ditampilkan sebagai produk rekomendasi.

Algoritma Apriori

Algoritma Apriori adalah sebuah algoritma yang diusulkan oleh Agrawal & Srikant pada tahun 1994 untuk menentukan frequent item set pada aturan boolean[5]. Algoritma ini merupakan algoritma penggalian aturan asosiasi pertama yang menggunakan pemangkasan berbasis nilai support sehingga dapat mengurangi komputasi akibat pembengkakan kandidat Konsep itemset[6]. utama dalam algoritma Apriori adalah frequent itemset (himpunan item yang memenuhi nilai minimal *support*), properti Apriori (himpunan bagian dari sebuah frequentitemset selalu bersifat frequent), dan operasi penggabungan [7]. Algoritma ini awalnya dirancang untuk diterapkan pada data transaksi pembelian di sebuah toko, namun beberapa waktu terakhir penggunaannya tidak terbatas persoalan tersebut. Masukan bagi Algoritma Apriori adalah (1) batas min_sup (nilai support minimal) dan (2)

data transaksi. Apriori menghasilkan seluruh *frequentitemset* dari data transaksi yang ada di basis data.

Algoritma Apriori menggunakan mekanisma bread-first search untuk menemukan kandidat (k+1)-itemset dari k-itemset. Frekuensi dari itemset dapat dihitung berdasarkan kemunculannya dalam transaksi. Istilah Apriori digunakan karena adanya mekanisme pembangkitan itemset berdasarkan itemset sebelumnya. Jika L₁ adalah itemset yang terdiri atas 1 item, maka L₂ (itemset yang terdiri atas 2 item) dapat dibangkitkan dari L_1 . L_2 selanjutnya digunakan untuk membangkitkan itemset L₃, dan seterusnya hingga tidak lagi ditemukan frequentitemset. Pencarian itemset untuk tiap iterasi dilakukan terhadap keseluruhan data transaksi [7][8]. Tahapan pembangkitkan L_k dari _{1,k-1}adalah sebagai berikut:

- a) Tahap penggabungan menemukan Lk, sebuah himpunan kandidat dari k-itemset dibangkitkan dengan menggabungkan L_{k-1} dengan dirinya sendiri. Himpunan ini disebut dengan C_k. Terdapat 11 dan 12 sebagai itemset di L_{k-1} . Notasi $l_i[j]$ menyatakan item ke-j pada l_i . Berdasarkan kesepakatan, item pada sebuah transaksi atau itemset diurutkan sesuai abjad. Operasi penggabungan, L_{k-1} dengan L_{k-1} dilakukan dengan kondisi item pada L_{k-1} dapat digabungkan hanya jika item (k-2) dari keduanya adalah sama.
- b) Tahap pemangkasan : C_k merupakan superset L_k sehingga anggotanya dapat bersifat *frequent* atau *infrequent*, tetapi seluruh *frequent* kitemset termasuk anggota C_k .

Himpunan Ck dapat berukuran sangat besar sehingga berpengaruh pada proses komputasi. Untuk mengatasi itu, digunakan properti Apriori sebagai berikut:

- a. Tiap (k-1)-itemset yang tidak *frequent* (memenuhi minimal support) tidak dapat menjadi k-itemset.
- b. Dengan demikian, jika himpunan bagian (k-1) dari sebuah kandidat k-itemset tidak termasuk L_{k-1} maka kandidat juga bersifat tidak frequent dan dapat dihapus dari C.

Properti Apriori tersebut diperoleh dari observasi bahwa jika itemset I tidak memenuhi nilai minimal support, maka I disebut infrequent, dengan kata lain P(I) < min_sup. Jika sebuah item A ditambahkan ke itemset I A) maka frekuensi kemunculan himpunan hasilnya tidak akan lebih besar dari P(I) sehingga $(I \ A)$ juga bersifat infrequent. Properti ini termasuk ke dalam properti anti-monoton menyatakan "jika himpunan a tidak lolos pengujian, seluruh superset dari A juga tidak akan lolos dari ujian yang sama".

HASIL DAN PEMBAHASAN

Sebelum implementasi ke dalam bahasa pemrograman, terlebih dahulu dilakukan analisis dan perancangan sistem. Analisis dan perancangan dibuat menggunakan notasi UML (Unified Modelling Language). Website ini akan digunakan oleh dua jenis pengguna yaitu pemiliki untuk mengelola data barang dan transaksi, serta konsumen untuk melihat dan menyewa barang. Berdasarkan analisis kebutuhan. diketahui bahwa terdapat dua peran pengguna yaitu sebagai pemilik toko administrator sekaligus sistem konsumen. Pemilik dapat melakukan pengaturan rekomendasi jika memperbarui aturan asosiasi, mengelola data barang (produk), memeriksa laporan transaski, dan mengelola data transaksi. Sedangkan konsumen dapat melihat produk yang disewakan dan menyewa produk yang diinginkan. Fitur-fitur yang terdapat dalam sistem ditunjukkan melalui diagram use-case pada Gambar 1. Perancangan basis data dapat dilihat pada Gambar 2. Sedangkan perancangan struktur menu untuk pemilik ditunjukkan pada Gambar 3 dan struktur menu untuk konsumen ditunjukkan pada Gambar 4.

Gambar 1. Use-case diagram sistem

Gambar 2. Perancangan basis data

Gambar 3. Struktur menu untuk pemilik

Gambar 4. Struktur menu

Selanjutnya dilakukan implementasi perancangan ke dalam program berbasis web. Tampilan dari website adalah sebagai berikut:

 a. Halaman Depan Pemilik
 Tampilan website bagian depan bagi pemilik ditunjukkan pada Gambar 5.

Gambar 5. Halaman depan

b. Halaman Tambah Data Barang Tampilan website untuk penambahan data barang ditunjukkan pada Gambar 6.

Gambar 6. Halaman tambah data barang

c. Halaman Perbarui Aturan Asosiasi Tampilan website untuk memperbarui aturan asosiasi ditunjukkan pada Gambar 7.

Gambar 7. Halaman proses penggalian aturan

d. Halaman Depan Konsumen
 Tampilan website bagian depan bagi konsumen ditunjukkan pada Gambar 8.

Gambar 8. Halaman depan konsumen

e. Halaman Detail Barang Tampilan website untuk detail barang sekaligus rekomendasi produk lain ditunjukkan pada Gambar 9.

Gambar 9. Halaman detail barang dan rekomendasi

Data awal yang digunakan untuk pembentukan aturan asosiasi berjumlah 300 data yang merupakan data transaksi di Persewaan Arisona sejak tahun 2013. Seluruh data transaksi ini selanjutnya disiapkan sebelum diproses menggunakan Algoritma Apriori. Aturan asosiasi yang terbentuk adalah sebagai berikut:

IF 89 AND THEN 53	support = 13.597733711048%	confidence =78.688524590164%
IF 53 AND THEN 92	support = 7.9320113314448%	confidence =34.146341463415%
IF 92 AND THEN 53	support = 7.9320113314448%	confidence =40%
IF 53 AND THEN 97	support = 10.481586402266%	confidence =45.121951219512%
IF 97 AND THEN 53	support = 10.481586402266%	confidence =78.723404255319%
IF 55 AND THEN 63	support = 12.464589235127%	confidence =56.410256410256%
IF 63 AND THEN 55	support = 12 464589235127%	confidence =75 862068965517%

Berdasarkan hasil uji coba, fungsionalitas sistem telah berjalan dengan baik. Hasil pengujian dapat dilihat pada Tabel 1.

Tabel 1. Uji Coba Fungsionalitas Sistem

Fitur	Hasil Uji Coba
Login pemilik	Berhasil
Lihat produk	Berhasil
Lihat detil produk	Berhasil
Tambah data produk	Berhasil
Tambah jenis produk	Berhasil
Hapus data produk	Berhasil
Tampilkan jenis produk	Berhasil
Edit data produk	Berhasil

Perbarui data rekomendasi Lihat daftar transaksi	Berhasil Berhasil
penyewaan	
Lihat daftar transaksi	Berhasil
pengembalian	
Lihat laporan transaksi	Berhasil
Lihat rekomendasi	Berhasil
Lihat keranjang belanja	Berhasil
Lihat rekomendasi berdasarkan	Berhasil
keranjang belanja	
Lihat daftar harga produk	Berhasil

Untuk mengetahui nilai support dan confidence yang sesuai, dilakukan pengujian. beberapa kali Prosedur dengan pengujian adalah mencoba beberapa kemungkinan nilai support dan confidence kemudian melihat rekomendasinya. Dari hasil pengujian, disimpulkan bahwa jika nilai support dibuat terlalu tinggi (>20%), maka ditampilkan produk yang rekomendasi jumlahnya sedikit bahkan tidak ada sama sekali. Oleh karena itu, sistem menggunakan nilai support 20%. Hasil pengujian dapat dilihat pada Tabel 2. Pada Tabel 2 terlihat bahwa nilai support yang dibutuhkan untuk memunculkan kombinasi minimal (2 barang) adalah 20%. Adapun nilai confidence dapat diatur dibuat lebih tinggi dari nilai support. Nilai confidence ini digunakan untuk menentukan barangdirekomendasikan ke barang yang konsumen.

Tabel 2. Hasil pengujian algoritma Apriori

Kombinasi	Nilai	Nilai Support
Barang	Confidence	
44,49	2/4*100 = 50%	2/10*100 = 20%
49,44	2/4*100 = 50%	2/10*100 = 20%
44,92	2/4*100 = 50%	2/10*100 = 20%
92,44	2/2*100 = 100%	2/10*100 = 20%
44,65	2/4*100 = 50%	2/10*100 = 20%
65,44	2/2*100 = 100%	2/10*100 = 20%
49,92	2/4*100 = 50%	2/10*100 = 20%
49,86	2/4*100 = 50%	2/10*100 = 20%
86,49	2/2*100 = 100%	2/10*100 = 20%
49,89	2/4*100 = 50%	2/10*100 = 20%
89,49	2/2*100 = 100%	2/10*100 = 20%
49,97	2/4*100 = 50%	2/10*100 = 20%
44,49,92	2/2*100 = 100%	2/10*100 = 20%
92,44,49	2/2*100 = 100%	2/10*100 = 20%
49,92,44	2/2*100 = 100%	2/10*100 = 20%
44,49,65	2/2*100 = 100%	2/10*100 = 20%
65,44,49	2/2*100 = 100%	2/10*100 = 20%

SIMPULAN

Pada penelitian ini, dibuat sebuah website persewaan alat-alat pesta. Untuk

memudahkan pengguna menentukan barang-barang yang akan disewa, disediakan sebuah fitur rekomendasi. Fitur rekomendasi dibangun dengan menggabungkan mekanisme collaborative filtering dan teknik aturan asosiasi. Metode aturan asosiasi yang digunakan adalah Algoritma Apriori. Algoritma Apriori digunakan untuk membentuk basis data kesukaan berdasarkan data transaksi. Data transaksi menyimpan data barang-barang vang disewa konsumen dalam satu transaksi. Implementasi Algoritma **Apriori** menghasilkan basis data aturan yang menggambarkan barang-barang disewa secara bersamaan. Basis data ini selanjutnya dijadikan sebagai acuan untuk memberikan rekomendasi produk kepada konsumen.

Rekomendasi produk ditampilkan ketika konsumen melihat detail barang. Barang yang muncul sebagai rekomendasi sistem berasal dari basis data aturan yang dibentuk menggunakan Apriori. Untuk Algoritma dapat menghasilkan jumlah kombinasi barang yang layak, digunakan nilai support 20%. Nilai confidence dari tiap aturan yang dihasilkan digunakan untuk menentukan N-teratas barang yang ditampilkan sebagai barang rekomendasi.

SARAN

Adapun saran bagi penelitian di bidang ini antara lain menambah jumlah data transaksi sehingga dapat diperoleh aturan yang lebih kuat yaitu memiliki nilai *support* yang tinggi. Selain itu, pada sistem yang telah dibuat rekomendasi ditampilkan saat konsumen melihat detail barang. Untuk penelitian selanjutnya, dapat ditambahkan fitur rekomendasi yang berasal dari data historis konsumen baik data transaksi maupun data penggunaan web.

DAFTAR PUSTAKA

[1] B.T. Wahyu, and A.W. Anggriawan, "Sistem Rekomendasi Paket Wisata Se-Malang Raya menggunakan

- Metode Hybrid-Content Based dan Collaborative". *Jurnal Ilmiah Teknologi dan Informasi ASIA*, vol. 9, no. 1, pp. 6-13, Februari 2015.
- [2] J. Fadlil, and W.F. Mahmudy, "Pembuatan Sistem Rekomendasi menggunakan Decision Tree dan Clustering". *Kursor*, vol. 3, no. 1, pp. 45-54, 2007.
- [3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Analysis of recommendation algorithms for ecommerce". *In Proceedings of the 2nd ACM conference on Electronic commerce*, pp. 158-167, 2000.
- [4] Y. H. Cho, J. K. Kim, and S. H. Kim, "A personalized recommender system based on web usage mining and decision tree induction". *Expert systems with Applications*, vol. 23(3), pp. 329-342, 2002.
- [5] J.J. Sandvig, B. Mobasher, and R. Burke, "Robustness of Collaborative Recommendation Based on Association Rule Mining". Proceeding of the 2007 ACM Conference on Recommender System, pp. 105-112, Oktober 2007.
- [6] G. Gunadi, and D.I. Sensuse, "Penerapan Metode Data Mining Market Basket Analysis terhadap Data Penjualan Produk Buku dengan menggunakan Algoritma Apriori dan Frequent Pattern Growth (FP-Growth): Studi Kasus Percetakan PT Gramedia". *Jurnal Telematika MKOM*, vol. 4, no. 1, Maret 2012.
- [7] P.N. Tan, M. Steinbach, and V. Kumar, *Introduction to Data Mining*, Addison Wesley, 2006.
- [8] P. Tanna, and Y. Ghodasara, "Using Apriori with WEKA for Frequent Pattern Mining". *International Journal of Engineering Trends and Technology*, vol. 12, no. 3, June 2014.
- [9] J.K. Jain, N. Tiwari, M. Ramaiya, "A survey : On association rule mining". *International Journal of Engineering Research and*

Applications, vol. 3, no. 1, pp. 2065-2069, January-February 2013.