The Importance of the Scaffold for *de Novo* Enzymes: A Case Study with Kemp Eliminase

Asmit Bhowmick, Sudhir C. Sharma and Teresa Head-Gordon

Parameterization of substrate in reactant and transition state. In order to perform simulations with 5-nitrobenzisoxazole using the AMOEBA force field, we need to obtain parameters for all atoms in the substrate molecule in the reactant and transition states. For parameterizing the transition state of this molecule, the structure of the substrate used for parameterization was reported in Ref [¹], in which the C-H and N-O bonds are partially broken and the C-N bond is somewhere between a double and triple bond as shown in Figure 2 of the main text. Since the transition state structure is not at it's energy minimum, we do not minimize the structure as done in the original protocol (the reactant state structure is minimized). As can also be seen in Figure 1 of the main text, the system used for the parameterization includes not only the ligand but also a base (acetate) to better model the transition state. The overall system has a net charge of -1e.

We then use the protocol described by Ponder and Ren [²] which has 2 main components – first finding the electrostatic parameters and second, finding 'valence' parameters (bond lengths, bond angles, dihedrals). The electrostatic component is described briefly in 6 steps below.

- 1. Run a single point quantum mechanics-based calculation on the transition state structure using Gaussian g09 at the MP2/6-311G(1D, 1P) level of theory. This calculation returns the electron density as obtained at this relatively low level of theory.
- 2. Find approximate charges, dipoles and quadrupoles by running the distributed multipole analysis using GDMA on the electron density.
- 3. Once we have the approximate multipoles, use Tinker's POLEDIT program to break the dipole moments into permanent contributions that act between polarization groups and mutual contributions that act within and between polarization groups.
- 4. A second Gaussian g09 calculation is run at the MP2/6-311G(2D, 2P) level of theory to obtain a electrostatic potential.
- 5. In order to obtain a electrostatic potential, we create a spatial grid on which to calculate the potential using Tinker's POTENTIAL program and then compute the potential using the Gaussian CUBEGEN program.

6. Finally, using Tinker's POTENTIAL program, we fit the atomic multipoles to the

MP2/6-311G(2D, 2P) electrostatic potential.

After finishing the first step, the 'valence' parameters are assigned from similar, previously

parameterized organic compounds. Thus, we model the transition state of the substrate with

transition state electrostatics and energy minimized state valence parameters.

The exact same protocol was used to parameterize the EL state of the 19NT inhibitor for

the ketosteroid isomerase enzyme.

Calculation of dipole moment of the 3 bonds in EL and EL^{\dagger} states for 5-nitrobenzisoxazole. We

used the monopoles and dipole moments of the parameterized 5-nitrobenzisoxazole in

AMOEBA to calculate the dipole moment of the 3 bonds in each state. Table S2 lists the

parameters used to calculate the dipole moment of each bond. The positive direction is as shown

in Fig 2 of the main text. Since the net charge is not zero, we used Δq instead of q to calculate

the dipole contribution from the monopoles.

Active site residues for KE07, KE70 and KSI. We defined active site residues to be residues that

are within 5 Å from the substrate of the respective enzymes studied. The residue numbers are -

KE07: 9, 11, 48, 50, 101, 128, 169, 201, 202

KE70: 16, 18, 45, 48, 72, 103, 138, 140, 168, 202, 204

KSI: 16, 20, 40, 57, 61, 66, 86, 88, 90, 99, 101, 103, 116, 118, 120

S2

TABLES

Table S1. Design and laboratory directed evolution mutations for KE07 and KE70. The computationally designed residues (red), mutated residues introduced by LDE of a given round (black) and residues after which insertions took place (green) have been listed in the table below ^{3 4}

	KE07 Design	KE07 Best LDE Variant	KE70 Design	KE70 Best LDE Variant
Sequence	ILE 7	Asp	HIS 17	
	ALA 9		ALA 19	
	ILE 11		THR 20	Ser
	VAL 12	Met	ALA 21	
	LYS 19		ASP 23	
	SER 48		LYS 29	Asn
	TRP 50		THR 43	Asn
	PHE 77	Ile	ASP 45	
	HIS 84		TYR 48	Phe
	PHE 86		TRP 72	Cys
	GLU 101		SER 74	Gly
	ILE 102	Phe	GLY 101	Ser
	GLN 123		ALA 103	
	TYR 128		SER 138	Ala
	ALA 130		HIS 166	Asn
	LYS 146	Thr	VAL 168	
	VAL 169		THR 171	
	GLY 171		GLY 177	
	LEU 176		ALA 178	Sei
	HIS 201		LYS 197	Asn
	GLY 202	Arg	THR 198	Ile
	MET 207		ILE 202	
	LYS 222		ALA 204	Val
	ASN 224	Asp	ASP 212	
	PHE 229	Ser	ALA 231	
			ALA 235	
			SER 239	Ala
			HIS 251	
$\mathbf{k}_{\mathrm{cat}}(\mathbf{s}^{-1})$	0.02	1.37	0.14	5.00
$\mathbf{K}_{\mathbf{M}}$ (mM)	1.40	0.54	1.11	0.09
$k_{cat}/K_{M}(M^{-1}s^{-1})$	12.2	2590	126	57300

S3

Table S2. Bond dipoles using AMOEBA force field electrostatics.

Table 82. Bond dipoles using AMOEBA force field electrostatics.										
C-H bond (+ve axis from C to H)	EL	\mathbf{EL}^{\dagger}								
Permanent dipole (Debye)	-0.93	0.1								
Charge on C (e units)	0.05	0.05								
Charge on H (e units)	0.04	0.20								
Charge difference (e units)	-0.01	0.15								
Distance (Å)	1.09	1.31								
Net dipole (Debye)	-1.0	1.0								
C-N bond (+ve axis from N to C)	EL	\mathbf{EL}^{\dagger}								
Permanent dipole (Debye)	-0.1	-0.2								
Charge on C (e units)	0.05	0.05								
Charge on N (e units)	-0.27	-0.05								
Charge difference (e units)	-0.32	-0.1								
Distance (Å)	1.36	1.25								
Net dipole (Debye)	2.0	0.4								
N-O bond (+ve axis from O to N)	EL	\mathbf{EL}^{\dagger}								
11 O bond (1 ve dans from O to 11)										
Permanent dipole (Debye)	0.7	-1.1								
· · · · · · · · · · · · · · · · · · ·		-1.1 -0.44								
Permanent dipole (Debye)	0.7									
Permanent dipole (Debye) Charge on O (e units)	0.7 0.09	-0.44								
Permanent dipole (Debye) Charge on O (e units) Charge on N (e units)	0.7 0.09 -0.27	-0.44 -0.05								
Permanent dipole (Debye) Charge on O (e units) Charge on N (e units) Charge difference (e units)	0.7 0.09 -0.27 -0.36	-0.44 -0.05 0.39								
Permanent dipole (Debye) Charge on O (e units) Charge on N (e units) Charge difference (e units) Distance (Å)	0.7 0.09 -0.27 -0.36 1.4	-0.44 -0.05 0.39 1.8								
Permanent dipole (Debye) Charge on O (e units) Charge on N (e units) Charge difference (e units) Distance (Å) Net dipole (Debye)	0.7 0.09 -0.27 -0.36 1.4 -1.7	-0.44 -0.05 0.39 1.8 2.3								
Permanent dipole (Debye) Charge on O (e units) Charge on N (e units) Charge difference (e units) Distance (Å) Net dipole (Debye) N-O bond for 5-nitro (+ve axis from O to N)	0.7 0.09 -0.27 -0.36 1.4 -1.7 EL	-0.44 -0.05 0.39 1.8 2.3 EL [†]								
Permanent dipole (Debye) Charge on O (e units) Charge on N (e units) Charge difference (e units) Distance (Å) Net dipole (Debye) N-O bond for 5-nitro (+ve axis from O to N) Permanent dipole (Debye)	0.7 0.09 -0.27 -0.36 1.4 -1.7 EL 0.01	-0.44 -0.05 0.39 1.8 2.3 EL [†] 0.12								
Permanent dipole (Debye) Charge on O (e units) Charge on N (e units) Charge difference (e units) Distance (Å) Net dipole (Debye) N-O bond for 5-nitro (+ve axis from O to N) Permanent dipole (Debye) Charge on O (e units)	0.7 0.09 -0.27 -0.36 1.4 -1.7 EL 0.01 -0.46188	-0.44 -0.05 0.39 1.8 2.3 EL [†] 0.12 -0.50388								
Permanent dipole (Debye) Charge on O (e units) Charge on N (e units) Charge difference (e units) Distance (Å) Net dipole (Debye) N-O bond for 5-nitro (+ve axis from O to N) Permanent dipole (Debye) Charge on O (e units) Charge on N (e units)	0.7 0.09 -0.27 -0.36 1.4 -1.7 EL 0.01 -0.46188 0.79685	-0.44 -0.05 0.39 1.8 2.3 EL [†] 0.12 -0.50388 0.81965								
Permanent dipole (Debye) Charge on O (e units) Charge on N (e units) Charge difference (e units) Distance (Å) Net dipole (Debye) N-O bond for 5-nitro (+ve axis from O to N) Permanent dipole (Debye) Charge on O (e units) Charge on N (e units) Charge difference (e units)	0.7 0.09 -0.27 -0.36 1.4 -1.7 EL 0.01 -0.46188 0.79685 1.25873	-0.44 -0.05 0.39 1.8 2.3 EL [†] 0.12 -0.50388 0.81965 1.32353								

Table S3: Contributions of pre-organization relative to reorganization to the free energy stabilization of the transition state along the 3 bonds of the substrate 5-nitrobenzisoxazole in the EL and EL^{\dagger} states of KE07 and KE70 designed enzymes and best LDE variants. We evaluate the preorganization with an adiabatic step whereby the transition state dipoles change, but there is no relaxation of the structural ensemble to these changes, using the reactant state ensemble only. See Table 1 in the text for further details.

Enzyme Construct and ΔG [‡]	Fields	generated for eac	ch bond
transition state stabilization	С-Н	C≡N	O-N
Designed KE07			
$\Delta G^{\ddagger} = -5.3 \text{ kcal/mole}$	-5.6 kcal/mole	3.1 kcal/mole	-2.8 kcal/mole
ΔG^{\dagger} preorganization (adiabatic)	-5.8 kcal/mole	3.05 kcal/mole	-3.1 kcal/mole
ΔG^{\ddagger} reorganization	0.2 kcal/mole	0.05 kcal/mole	0.3 kcal/mole
LDE R7 Variant KE07		_	<u> </u>
$\Delta G^{\ddagger} = -9.9 \text{ kcal/mole}$	−9.1 kcal/mole	3.2 kcal/mole	-4.0 kcal/mole
ΔG^{\ddagger} preorganization (adiabatic)	-9.0 kcal/mole	3.4 kcal/mole	-4.1 kcal/mole
ΔG [‡] reorganization	-0.1 kcal/mole	-0.2 kcal/mole	0.1 kcal/mole
Designed KE70			
$\Delta G^{\ddagger} = -6.6 \text{ kcal/mole}$	-6.3 kcal/mole	3.5 kcal/mole	-3.8 kcal/mole
ΔG^{\ddagger} preorganization (adiabatic)	-6.3 kcal/mole	3.6 kcal/mole	-3.7 kcal/mole
ΔG^{\ddagger} reorganization	-0.0 kcal/mole	-0.1 kcal/mole	-0.1 kcal/mole
	T		
LDE R6 Variant KE70			
$\Delta G^{\ddagger} = -6.6 \text{ kcal/mole}$	-6.3 kcal/mole	2.1 kcal/mole	−2.4 kcal/mole
ΔG^{\ddagger} preorganization (adiabatic)	-6.4 kcal/mole	2.1 kcal/mole	-2.6 kcal/mole
ΔG^{\ddagger} reorganization	0.1 kcal/mole	~0 kcal/mole	0.2 kcal/mole

Table S4: List of top residues that contribute >10 MV/cm electric field by magnitude at the C-H, C-N, and NO bond in either the EL and EL † states for the designed enzyme KE07 enzyme and the best LDE R7 variant. Positive sign indicates field supporting bond breaking (C-H and N-O) and bond-making (C-N). Contributions to activation free energies are also provided using the dipole values reported in Table S2

	KE07	Design		C-H Bond	KE07 R7 Variant				
	E	lectric Field	i			Electric Field			
Residue	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}		Residue	EL	\mathbf{EL}^{\dagger}	$\Delta \mathbf{G}^{\ddagger}$	
Glu-101	86.3 (11)	103.6 (11)	-9.1(0.7)		Glu-101	142.2 (12)	144.3 (16)	-13.7 (1)	
His-201	8.7 (1)	11.2 (1)	-0.9(0.1)		His-201	4.1 (1)	7.3 (1)	-0.5 (0.1)	
Gly-202	1.1 (0.1)	1.5 (0.1)	-0.1(~0)		Arg-202	18.7 (1)	18.6 (2)	-1.8 (0.1)	
Glu-46	6.6 (1)	5.3 (0.5)	-0.6(0.1)		Glu-46	11.2 (1)	12.1 (2)	-1.1 (0.1)	
Ser-48	-7.6 (2)	-4.3 (2)	0.6(0.1)		Ser-48	-17.1 (2)	-16.1 (3)	1.6 (0.2)	
Lys-222	-43.5 (6)	-46.3 (6)	4.3 (0.4)		Lys-222	-51.8 (6)	-41.5 (6)	4.5 (0.4)	
Asn-224	1.2 (0.5)	1.7 (0.2)	-0.1 (~0)		Asp-224	-16.1 (2)	-10.4 (2)	1.3 (0.1)	

	KE07 Design				KE07 R7 Variant				
Electric Field						E	lectric Field	d	
Residue	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}		Residue	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}	
Glu-101	15.5 (7)	18.7 (7)	1.1 (0.6)		Glu-101	47.4 (7)	54.4 (12)	3.5 (0.7)	
His-201	3.9 (2)	5.5 (2)	0.3 (0.2)		His-201	16.3 (2)	21.2 (3)	1.1 (0.2)	
Lys-222	10.6 (7)	16.8 (6)	0.7 (0.7)		Lys-222	-3.8 (3)	4.0 (7)	-0.4 (0.3)	
Asn-224	2.2 (0.6)	2.9 (0.5)	0.2 (0.1)		Asp-224	-19.8 (2)	-13.6 (2)	-1.6 (0.2)	

	KE07	Design		N-O Bond	KE07 R7 Variant				
	E	lectric Field	l			Electric Field			
Residue	EL	\mathbf{EL}^{\dagger}	$\Delta \mathbf{G}^{\ddagger}$		Residue	EL	\mathbf{EL}^{\dagger}	$\Delta \mathbf{G}^{\ddagger}$	
Glu-101	53.0 (6.0)	65.1 (2.4)	-11.5(.5)		Glu-101	58.5 (2.5)	60.0 (1.3)	-11.4 (.2)	
His-201	12.7 (2.5)	15.4 (0.7)	-2.7 (.2)		His-201	7.3 (2)	7.5 (1)	-1.3 (0.2)	
Gly-202	1.1 (0.1)	1.5 (0.1)	-0.2(~0)		Arg-202	21.4 (2)	21.8 (2.9)	-4.1 (0.4)	
Glu-46	7.3 (1)	6.8 (0.3)	-1.3(0.1)		Glu-46	10.2 (1)	10.6 (0.3)	-2 (0.1)	
Ser-48	-5.8 (1)	-3.5 (1)	0.8 (0.1)		Ser-48	-10.0 (2)	-7.7 (3)	1.7 (0.4)	
Lys-222	-54.5(6)	-59.5 (3.2)	11 (0.6)		Lys-222	-45.6 (3.9)	-40.6 (2.4)	8.2 (0.4)	
Asn-224	1.8 (0.7)	2.6 (0.5)	-0.4(0.1)		Asp-224	-19.2 (2.9)	-11.2 (2.3)	2.8 (0.3)	

Table S5: List of top residues that contribute >10 MV/cm electric field by magnitude at the C-H, C-N, and NO bond in either the EL and EL^{\dagger} states for the designed enzyme KE70 enzyme and the best LDE R6 variant. Positive sign indicates field supporting bond breaking (C-H and N-O) and bond-making (C-N). Contributions to activation free energies are also provided using the dipole values reported in Table S2

	KE70	Design		C-H Bond		KE70 R	6 Variant	
	Electric Field					I	Electric Fiel	d
Residue	EL	\mathbf{EL}^{\dagger}	$\Delta \mathbf{G}^{\ddagger}$		Residue	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}
His-17	30.0 (4)	47.4 (5)	-3.7 (0.3)		His-17	48.0 (4)	65.0 (4)	-5.4 (0.3)
Asp-45	16.1 (2)	17.8 (1)	-1.6 (0.1)		Asp-45	13.5 (1)	15.1 (1)	-1.4 (0.1)
Arg-70	-12.1 (2)	-13.4 (1)	1.2 (0.1)		Arg-70	-10.9 (1)	-11.5 (1)	1.1 (0.1)
Trp-72	9.0 (2)	10.8 (1)	-1 (0.1)		Cys-72	0.8 (1)	0.2(1)	-0.1 (0.1)
Ser-138	5.3 (0.5)	8.5 (0.3)	-0.7 (~0)		Ala-138	0.7 (0.1)	0.7 (0.1)	-0.1 (~0)
Glu-142	-7.6 (0.5)	-6.9 (0.2)	0.7 (~0)		Glu-142	-6.8 (~0)	-7.4 (~0)	0.7 (~0)

	KE70	Design		C-N Bond		KE70 R	6 Variant	
Electric Field						I	Electric Fiel	d
Residue	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}		Residue	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}
His-17	22.7 (2)	28.9 (0.5)	1.6 (0.2)		His-17	20.5 (2)	25.7 (1)	1.4 (0.2)
Asp-45	6.7 (1)	6.7 (0.5)	0.5 (0.1)		Asp-45	3.0(1)	4.4 (0.5)	0.2 (0.1)
Arg-70	-1.9 (0.8)	-1.3 (0.6)	-0.2 (0.1)		Arg-70	2.3 (1)	0.1 (0.4)	0.2 (0.1)
Trp-72	9.0 (0.9)	10.8 (0.5)	0.6(0.1)		Cys-72	3.8 (1)	2.2 (0.4)	0.3 (0.1)
Ser-138	20.1 (2)	29.3 (1)	1.3 (0.2)		Ala-138	2.3 (0.2)	2.8 (0.3)	0.2 (~0)
Glu-142	-0.9 (1)	-1.0 (0.3)	-0.1 (0.1)		Glu-142	-0.1 (0.4)	-1.3 (0.2)	~0

	KE70	Design		N-O Bond		KE70 R	6 Variant	
	I	Electric Fiel	d			I	Electric Fiel	d
Residue	EL	\mathbf{EL}^{\dagger}	$\Delta \mathbf{G}^{\ddagger}$		Residue	EL	\mathbf{EL}^{\dagger}	$\Delta \mathbf{G}^{\ddagger}$
His-17	4.9 (1)	7.7 (1)	-1.2 (0.1)		His-17	10.5 (1)	12.9 (1)	-2.3 (0.1)
Asp-45	10.7 (1)	12.5 (0.5)	-2.2 (0.1)		Asp-45	10.8 (0.6)	11.6 (0.3)	-2.1 (0.1)
Arg-70	-10.1 (1)	-12.0 (0.6)	2.1 (0.1)		Arg-70	-11.7 (1)	-11.2 (0.5)	2.2 (0.1)
Trp-72	7.8 (1)	11.9 (0.5)	-2 (0.1)		Cys-72	-3.6 (0.8)	-1.9 (1)	0.5 (0.1)
Ser-138	-8.4 (1)	-2.2 (0.7)	0.9 (0.1)		Ala-138	-0.5 (0.3)	-0.9 (0.3)	-0.1 (0.1)
Glu-142	-9.9 (1)	-8.7 (0.3)	1.8 (0.1)		Glu-142	-8.4 (0.6)	-9.5 (0.4)	1.7 (0.1)

Table S6: Chemical Positioning vs. Electric Field Environment at the C-H, C-N and O-N Bonds. The magnitude of the electric field in either the EL and EL[†] states for the designed KE07 enzyme and the best R7 variant. The active site is defined by residues within 5 Å from the center of the substrate, while the protein environment (scaffold) is summed over all residues outside this region. Solvent includes waters in the neck of the TIM barrel as well as the surrounding hydration and bulk water. Sum of free energy are summed over all bonds, with dominant region and bond most affected shown. Positive sign indicates field supporting bond breaking. Fields are reported in units of MV/cm

	KE07 I	Design		C-H Bond		KE07 R7	Variant	
Electric Field						E	lectric Field	l
Region	EL	\mathbf{EL}^{\dagger}	$\Delta \mathbf{G}^{\ddagger}$		Region	EL	\mathbf{EL}^{\dagger}	$\Delta \mathbf{G}^{\ddagger}$
Base	86.3 (11)	103.6 (12)	-9.1 (0.7)		Base	142.2 (12)	144.3 (17)	-13.7 (1)
Active Site	1.0(1)	11.2 (2)	-0.6 (0.1)		Active Site	2.0(1)	8.3 (1)	-0.5 (0.1)
Scaffold	-24.1 (7)	-26.8 (7)	2.4 (0.5)		Scaffold	-40.1 (7)	-24.1 (7)	3.1 (0.5)
Solvent	-15.6 (4)	-19.2 (1)	1.7 (0.2)		Solvent	-22.6 (1)	-20.2 (2)	2.1 (0.1)

	KE07 Design					KE07 R7	Variant		
Electric Field						Electric Field			
Region	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}		Region	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}	
Base	15.4 (7)	18.7 (7)	1.1 (0.7)		Base	47.4 (8)	54.4 (14)	3.5 (0.8)	
Active Site	18.3 (3)	26.3 (3)	1.2 (0.3)		Active Site	26.3 (3)	35.3 (4)	1.8 (0.3)	
Scaffold	3.3 (7)	6.2 (6)	0.2 (0.7)		Scaffold	-26.5 (5)	-12.3 (8)	-2.3 (0.5)	
Solvent	6.8 (3)	7.7 (2)	0.5 (0.3)		Solvent	2.1 (2)	0.3(2)	0.2 (0.2)	

	KE07 1	Design		N-O				
Electric Field						F	Electric Fi	eld
Region	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}		Region	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}
Base	53.0 (7)	64.1 (3)	-11.4 (0.7)		Base	58.5 (5)	60.0 (4)	-11.3 (0.6)
Active Site	4.1 (1)	14.5 (1)	-1.9 (0.1)		Active Site	11.5 (2)	17.2 (2)	-2.8 (0.3)
Scaffold	-32.0 (7)	-37.0 (4)	6.7 (0.7)		Scaffold	-35.4 (5)	-23.2 (4)	5.4 (0.6)
Solvent	-21.4 (3.8)	-19.9 (1.5)	3.9 (0.3)		Solvent	-27.4 (2.4)	-23.7 (3)	4.8 (0.4)

KI	E07 Design	KE07 R7 Variant	Improvement from dominant bond	
Region	$\sum \Delta G^{\ddagger}$ (all bonds)	$\sum \Delta G^{\ddagger}$ (all bonds)	$\Delta\Delta G^{\ddagger}$ (best bond)	
Base	-19.4	-21.5	C-H bond (-4.6)	
Active Site	-1.3	-2.3	N-O bond (-0.8)	
Scaffold	9.3	6.2	C-N bond (-2.5)	
Solvent	6.1	6.7	C-N bond (-0.3)	

Table S7: Chemical Positioning vs. Electric Field Environment at the C-H, C-N and O-N Bonds. The magnitude of the electric field in either the EL and EL[†] states for the designed KE70 enzyme and the best R6 variant. The active site is defined by residues within 5 Å from the center of the substrate, while the protein environment is summed over all residues outside this region. Solvent includes waters in the neck of the TIM barrel as well as the surrounding hydration and bulk water. Sum of free energy are summed over all bonds, with dominant region and bond most affected shown. Positive sign indicates field supporting bond breaking. Fields are reported in units of MV/cm

KE70 Design				C-H Bond	KE70 R6 Variant			
Electric Field					Electric Field			
Region	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}		Region	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}
Base	46.1 (5)	65.1 (5)	-5.3 (0.3)		Base	61.4 (4)	80.1 (4)	-6.8 (0.3)
Active Site	16.7 (2)	23.1 (2)	-1.9 (0.1)		Active Site	2.3 (1)	2.9(1)	-0.2 (0.1)
Scaffold	-12.2 (4)	-11.3 (2)	1.1 (0.2)		Scaffold	-11.6 (2)	-9.1 (1)	1 (0.1)
Solvent	2.9(1)	0.7(1)	-0.2 (0.1)		Solvent	1.9(1)	2.8 (1)	-0.2 (0.1)

KE70 Design				C-N Bond	KE70 R6 Variant			
Electric Field					Electric Field			
Region	EL	\mathbf{EL}^{\dagger}	$\Delta \mathbf{G}^{\ddagger}$		Region	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}
Base	29.4 (3)	35.6 (2)	2.1 (0.3)		Base	23.5 (2)	30.1 (1)	1.7 (0.2)
Active Site	23.2 (4)	32.0 (4)	1.6 (0.4)		Active Site	6.1 (2)	8.9 (1)	0.4 (0.2)
Scaffold	-8.6 (4)	-11.4 (2)	-0.7 (0.4)		Scaffold	-5.8 (2)	-6.7 (2)	-0.4 (0.2)
Solvent	4.6 (1)	6.0(1)	0.3 (0.1)		Solvent	5.9(1)	4.7 (1)	0.5 (0.1)

KE70 Design				N-O Bond	KE70 R6 Variant			
Electric Field					Electric Field			
Region	EL	$\mathbf{E}\mathbf{L}^{\dagger}$	$\Delta \mathbf{G}^{\ddagger}$		Region	EL	\mathbf{EL}^{\dagger}	ΔG^{\ddagger}
Base	15.5 (2)	20.2 (1)	-3.5 (0.2)		Base	21.3 (2)	24.4 (2)	-4.3 (0.3)
Active Site	2.0 (~0)	16.6 (1)	-2.0 (0.1)		Active Site	-2.7 (1)	1.9(1)	~0 (0.1)
Scaffold	-9.8 (3)	-8.1 (2)	1.7 (0.3)		Scaffold	-12.6 (2)	-10.7 (1)	2.2 (0.2)
Solvent	1.1 (1)	-0.6 (1)	~0 (0.1)		Solvent	0.9(1)	1.2(1)	-0.2 (0.1)

Kl	E70 Design	KE70 R6 Variant	Improvement from dominant bond	
Region	$\sum \Delta G^{\dagger}$ (all bonds)	$\sum \Delta G^{\ddagger}$ (all bonds)	$\Delta\Delta G^{\ddagger}$ (best bond)	
Base	-6.7	-9.4	C-H bond (-1.5)	
Active Site	-2.3	0.2	C-N bond (-1.2)	
Scaffold	2.1	2.8	C-H bond (-0.1)	
Solvent	0.1	-0.1	C-H bond (-0.2)	

Supplementary Figures

Figure S1. The Kemp elimination KE07 and KE70 designs. (a) KE07 involved residues mutated from the original scaffold (red) as well as mutations introduced by LDE shown in blue. (b) KE70 involved residues mutated from the original scaffold (red) as well as mutations made during laboratory DE shown in blue. Additional design mutations via a recombination DE strategy are shown in green.

REFERENCES

- 1. Hu, Y.; Houk, K. N.; Kikuchi, K.; Hotta, K.; Hilvert, D., Nonspecific Medium Effects Versus Specific Group Positioning in the Antibody and Albumin Catalysis of the Base-Promoted Ring-Opening Reactions of Benzisoxazoles. *Journal of the American Chemical Society* **2004**, *126* (26), 8197-8205.
- 2. Ren, P.; Wu, C.; Ponder, J. W., Polarizable Atomic Multipole-Based Molecular Mechanics for Organic Molecules. *J Chem Theory Comput* **2011**, *7* (10), 3143-3161.
- 3. Khersonsky, O.; Röthlisberger, D.; Dym, O.; Albeck, S.; Jackson, C. J.; Baker, D.; Tawfik, D. S., Evolutionary Optimization of Computationally Designed Enzymes: Kemp Eliminases of the Ke07 Series. *J. Mol. Bio.* **2010**, *396*, 1025-42.
- 4. Khersonsky, O.; Röthlisberger, D.; Wollacott, A. M.; Murphy, P.; Dym, O.; Albeck, S.; Kiss, G.; Houk, K. N.; Baker, D.; Tawfik, D. S., Optimization of the in-Silico-Designed Kemp Eliminase Ke70 by Computational Design and Directed Evolution. *J. Mol. Bio.* **2011**, *407*, 391-412.