

DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS

General purpose

Class 1, NPO

0.22 pF to 100 nF

RoHS compliant & Halogen Free

YAGEO Phícomp

<u>2</u>

SCOPE

This specification describes NP0 series chip capacitors with lead-free terminations.

APPLICATIONS

- Consumer electronics for example
 - Tuners
 - Television receivers
 - All types of cameras
- Telecommunications
- Data processing

FEATURES

- Supplied in tape on reel
- Nickel-barrier end termination
- RoHS compliant
- Halogen Free compliant

ORDERING INFORMATION - GLOBAL PART NUMBER, PHYCOMP CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

CC <u>xxxx</u> <u>x</u> <u>x</u> NPO <u>x</u> BN <u>xxx</u> (5)

(I) SIZE – INCH BASED (METRIC)

0201 (0603)

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

1812 (4532)

(2) TOLERANCE

 $B = \pm 0.1 pF$

 $C = \pm 0.25 \text{ pF}$

 $D = \pm 0.5 pF$

 $F = \pm 1\%$

 $G = \pm 2\%$

 $| = \pm 5\%$

 $K = \pm 10\%$

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

C = Bulk case

(4) RATED VOLTAGE

7 = 16 V

8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $121 = 12 \times 10^{1} = 120 \text{ pF}$

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig.I.

DIMENSION

Table I For outlines see fig. 2

0201 0.6 ±0.03 0.3 ±0.03 0.10 0.20 0.2 0402 1.0 ±0.05 0.5 ±0.05 0.20 0.30 0.4 0603 1.6 ±0.10 0.8 ±0.10 0.20 0.60 0.4 0805 2.0 ±0.10 (1) 1.25 ±0.10 (1) 8efer to 0.25 0.75 0.75	TVDF	l ()	\A((mama)	T (MM)	L ₂ / L ₃ (mm)		L ₄ (mm)
0402 1.0 ±0.05 0.5 ±0.05 0.20 0.30 0.4 0603 1.6 ±0.10 0.8 ±0.10 0.20 0.60 0.4 0805 2.0 ±0.10 (1) 1.25 ±0.10 (1) 0.25 0.75 0.75 0.75	IIPE	E L _I (mm) VV (mm)		1 (141141)	min.	max.	min.
0603 1.6 ±0.10 0.8 ±0.10 0.20 0.60 0.4 0805 2.0 ±0.10 (1) 1.25 ±0.10 (1) Refer to 0.25 0.75 0.7	0201	0.6 ±0.03	0.3 ±0.03	_	0.10	0.20	0.20
0805 2.0 ±0.10 (1) 1.25 ±0.10 (1) Refer to 0.25 0.75 0.75	0402	1.0 ±0.05	0.5 ±0.05	<u></u>	0.20	0.30	0.40
0805 Refer to 0.25 0.75 0.7	0603	1.6 ±0.10	0.8 ±0.10	_	0.20	0.60	0.40
Refer to 0,23 0,73 0,7	0805	2.0 ±0.10 ⁽¹⁾	1.25 ±0.10 ⁽¹⁾		0.25	0.75	0.70
2,0 ±0.20 (2) 1.25 ±0.20 (4) table 2 to 5	0003	2.0 ±0.20 ⁽²⁾	1.25 ±0.20 ⁽²⁾		0.25	0.75	0.70
3.2 ± 0.15 (1) 1.6 ± 0.15 (1)	1206	3.2 ±0.15 ⁽¹⁾	1.6 ±0.15 ⁽¹⁾	table 2 to 3	0.25	0.75	1.40
3.2 ±0.30 ⁽²⁾ 1.6 ±0.20 ⁽²⁾	1200	3.2 ±0.30 ⁽²⁾	1.6 ±0.20 ⁽²⁾	_	0.25 0.75	1.40	
1210 3.2 ±0.20 2.5 ±0.20 0.25 0.75 1.4	1210	3.2 ±0.20	2.5 ±0.20	_	0.25	0.75	1.40
1812 4.5 ±0.20 3.2 ±0.20 0.25 0.75 2.2	1812	4.5 ±0.20	3.2 ±0.20		0.25	0.75	2.20

OUTLINES

- 1. Dimension for size 0805 and 1206, $C \le I nF$
- 2. Dimension for size 0805 and 1206, C > I nF

Product specification 4 14 **Surface-Mount Ceramic Multilayer Capacitors** General Purpose

NP0

16 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR NPO

CAP.	0201		0402			0603		
	25 V	50 V	16 V	25 V	50 V	16 V	25 V	50 V
0.22 pF	0.3±0.03	0.3±0.03	_				,	
0.47 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
0.82 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
I.0 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
I.2 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
I.5 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
1.8 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
2.2 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
2.7 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
3.3 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
3.9 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
4.7 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
5.6 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
6.8 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
8.2 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
10 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
12 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
15 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
18 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
22 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
27 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
33 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
39 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
47 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
56 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
68 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
82 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
100 pF	0.3±0.03	0.3±0.03	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

Product specification 5

16 V to 50 V

NP0

14

CAPACITANCE RANGE & THICKNESS FOR NPO

Surface-Mount Ceramic Multilayer Capacitors General Purpose

	s from 0201 to (0603 (continu	•			0403		
CAP.	0201 25 V	50 V	0402 16 V	25 V	50 V	0603 16 V	25 V	50 V
120 pF		30 1	0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
150 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
180 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
220 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
270 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
330 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
390 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
470 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
560 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
680 pF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
820 pF						0.8±0.1	0.8±0.1	0.8±0.1
I.O nF			0.5±0.05	0.5±0.05	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1
I.2 nF						0.8±0.1	0.8±0.1	0.8±0.1
1.5 nF						0.8±0.1	0.8±0.1	0.8±0.1
I.8 nF						0.8±0.1	0.8±0.1	0.8±0.1
2.2 nF						0.8±0.1	0.8±0.1	0.8±0.1
2.7 nF						0.8±0.1	0.8±0.1	0.8±0.1
3.3 nF						0.8±0.1	0.8±0.1	0.8±0.1
3.9 nF						0.8±0.1	0.8±0.1	0.8±0.1
4.7 nF								
5.6 nF								
6.8 nF								
8.2 nF								
IO nF						0.8±0.1	0.8±0.1	0.8±0.1
I2 nF								
15 nF								
18 nF								
22 nF								

NOTE

33 nF

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

Surface-Mount Ceramic Multilayer Capacitors General Purpose

NP0

16 V to 50 V

Product specification 6 14

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 4 Siz	es from 0805	to 1812							
CAP.	0805			1206			1210		1812
	16 V	25 V	50 V	16 V	25 V	50 V	25 V	50 V	50 V
0.22 pF									
0.47 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
0.82 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
1.0 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
1.2 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
1.5 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
1.8 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
2.2 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
2.7 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
3.3 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
3.9 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
4.7 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
5.6 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
6.8 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
8.2 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
10 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
12 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
15 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
18 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
22 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
27 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
33 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
39 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1			
47 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	
56 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
68 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
82 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
100 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

Surface-Mount Ceramic Multilayer Capacitors General Purpose NPO 16 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 5 Sizes from 0805 to 1812 (continued)

CAP.	0805	o to 1812 (co	ntinueu)	1206			1210		1812
CAI.	16 V	25 V	50 V	16 V	25 V	50 V	25 V	50 V	50 V
120 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
150 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
180 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
220 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
270 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
330 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
390 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
470 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
560 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
680 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
820 pF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
I.O nF	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
I.2 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
I.5 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
1.8 nF	0.85±0.1	0.85±0.1	0.85±0.1	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
2.2 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
2.7 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.6±0.1	0.6±0.1	0.6±0.1	1.25±0.2	1.25±0.2	1.25±0.2
3.3 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2
3.9 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2
4.7 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2
5.6 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2
6.8 nF	1.25±0.2	1.25±0.2	1.25±0.2	0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2
8.2 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2
10 nF	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2
I2 nF				0.85±0.1	0.85±0.1	0.85±0.1			1.25±0.2
15 nF				0.85±0.1	0.85±0.1	0.85±0.1			1.25±0.2
18 nF				0.85±0.1	0.85±0.1	0.85±0.1			1.25±0.2
22 nF				0.85±0.1	0.85±0.1	0.85±0.1	2.0±0.2	2.0±0.2	1.25±0.2
33 nF				0.85±0.1	0.85±0.1	0.85±0.1			
47 nF				1.25±0.2	1.25±0.2	1.25±0.2	1.60±0.2	1.60±0.2	
56 nF									
68 nF				1.60±0.2	1.60±0.2	1.60±0.2			
82 nF									
100 nF				1.60±0.2	1.60±0.2	1.60±0.2			

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

NP0

16 V to 50 V

THICKNESS CLASSES AND PACKING QUANTITY

Table	6						
SIZE	THICKNESS	TAPE WIDTH -	Ø180 MM		Ø330 MM		QUANTITY
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister	PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000		10,000	
_	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		10,000	
	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
	0.85 ±0.1 mm	8 mm		4,000		10,000	
_	1.0 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
1210	1.25 ±0.2 mm	8 mm		3,000			
	1.5 ±0.1 mm	8 mm		2,000			
	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000			
	2,0 ±0,2 11111	0 111111		1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
	1.15 ±0.15 mm			3,000			
	1.13 ±0.13 mm	12 mm		3,000			
	1.35 ±0.2 mm						
1808		12 mm		2,000			
	1.5 ±0.1 mm	12 mm		2,000			
	1.6 ±0.2 mm	12 mm		2,000			
	2.0 ±0.2 mm	12 mm		2,000			
	0.6 / 0.85 ±0.1 mm	12 mm		2,000			
	1.15 ±0.1 mm	12 mm		1,000			
	1.15 ±0.15 mm	12 mm		1,000			
1812	1.35 ±0.15 mm	12 mm		1,000			
	1.5 ±0.1 mm	I2 mm		1,000			

12 mm

12 mm

12 mm

1,000

1,000

500

1.6 ±0.2 mm

 $2.0 \pm 0.2 \text{ mm}$ $2.5 \pm 0.2 \text{ mm}$

9 14

ELECTRICAL CHARACTERISTICS

NP0 DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise stated all electrical values apply at an ambient temperature of 20±1 °C, an atmospheric pressure of 86 to 106 kPa, and a relative humidity of 63 to 67%.

Table 7

Table 7		
DESCRIPTION		VALUE
Capacitance range		0.22 pF to 100 nF
Capacitance tolerance		
	C < 10 pF	±0.1 pF, ±0.25 pF, ±0.5 pF
	C ≥ 10 pF	±1%, ±2%, ±5%, ±10%
Dissipation factor (D.F.)		
	C < 30 pF	≤ I / (400 + 20C)
	C ≥ 30 pF	≤ 0.1 %
Insulation resistance after	r I minute at U _r (DC)	$R_{\rm ins} \ge 10~{\rm G}\Omega$ or $R_{\rm ins} \times C_r \ge 500$ seconds whichever is less
Maximum capacitance ch	nange as a function of temperature	
(temperature characteris	stic/coefficient):	±30 ppm/°C
Operating temperature	range:	-55 °C to +125 °C

SOLDERING RECOMMENDATION

Table 8

SOLDERING METHOD	SIZE 0201	0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	≥ 0.1 µF	≥ 1.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave		< 0.1 µF	< 1.0 µF	< 2.2 µF	< 4.7 µF	

TESTS AND REQUIREMENTS

Table 9 Test procedures and requirements

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Visual inspection and dimensio n check		4.4	Any applicable method using × 10 magnification	In accordance with specification
Capacitance		4.5.1	Class I: $f = 1 \text{ MHz for C} \le 1 \text{ nF, measuring at voltage 1 V}_{rms} \text{ at 20 °C}$ $f = 1 \text{ KHz for C} > 1 \text{ nF, measuring at voltage 1 V}_{rms} \text{ at 20 °C}$	Within specified tolerance
Dissipation factor (D.F.)		4.5.2	Class I: $f = I \text{ MHz for C} \le I \text{ nF, measuring at voltage I V}_{ms} \text{ at } 20 \text{ °C}$ $f = I \text{ KHz for C} > I \text{ nF, measuring at voltage I V}_{ms} \text{ at } 20 \text{ °C}$	In accordance with specification
Insulation resistance		4.5.3	At U_r (DC) for I minute	In accordance with specification
Temperature coefficient		4.6	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage. Step Temperature(°C) a 25±2 b Lower temperature±3°C c 25±2 d Upper Temperature±2°C e 25±2 (I) Class I Temperature Coefficient shall be calculated from the formula as below Temp, Coefficient = $\frac{C2 - C1}{C1 \times \Delta T} \times 10^6$ [ppm/°C] C1: Capacitance at step c C2: Capacitance at 125°C ΔT : 100 °C(=125°C-25°C) (2) Class II Capacitance Change shall be calculated from the formula as below $\Delta C = \frac{C2 - C1}{C1} \times 100\%$ C1: Capacitance at step c C2: Capacitance at step c	<general purpose="" series=""> Class I: Δ C/C: ±30ppm Class2: X7R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82% <high capacitance="" series=""> Class2: X7R/X5R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%</high></general>

Surface-Mount Ceramic Multilayer Capacitors General Purpose

NP0

16 V to 50 V

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS
Adhesion		4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N
Bond strength of plating on		4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
end face			Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm	<pre><general purpose="" series=""> ΔC/C Class 1: NP0: within ±1% or 0.5 pF whichever is greater</general></pre>
Resistance to soldering heat	IEC 60384- 21/22	4.9	Precondition: 150 +0/−10 °C for I hour, then keep for 24 ±1 hours at room temperature Preheating: for size ≤ 1206: 120 °C to 150 °C for I minute Preheating: for size > 1206: 100 °C to 120 °C for I minute	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
			and 170 °C to 200 °C for I minute Solder bath temperature: 260 ± 5 °C Dipping time: 10 ± 0.5 seconds Recovery time: 24 ± 2 hours	<pre><general purpose="" series=""> ΔC/C Class 1: NP0: within ±0.5% or 0.5 pF whichever is greater</general></pre>
				D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			 Temperature: 235±5°C / Dipping time: 2 ±0.5 s Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free)Depth of immersion: 10mm 	
Rapid change of		4.11	Preconditioning; 150 +0/-10 °C for I hour, then keep for	No visual damage
temperature			24 ±1 hours at room temperature	<general purpose="" series=""></general>
			5 cycles with following detail:	ΔC/C
			30 minutes at lower category temperature 30 minutes at upper category temperature	Class 1: NP0: within ±1% or 1 pF whichever is greater
			Recovery time 24 ±2 hours	
				D.F. meet initial specified value R _{ins} meet initial specified value

TEST	TEST METH	OD	PROCEDURE	REQUIREMENTS
Damp heat with U _r load	IEC 60384- 21/22	4.13	 Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ± I hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Damp heat test: 500 ± I2 hours at 40 ± 2 °C; 90 to 95% R.H. I.0 U_r applied Recovery: Class I: 6 to 24 hours Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met. 	No visual damage after recovery
Endurance		4.14	 Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Endurance test: Temperature: NPO: 125 °C Specified stress voltage applied for 1,000 hours:	No visual damage
Voltage proof	IEC 60384-1	4.6	Specified stress voltage applied for 1 minute $U_r \le 100 \text{ V}$: series applied 2.5 U_r $100 \text{ V} < U_r \le 200 \text{ V}$ series applied (1.5 $U_r + 100$) $200 \text{ V} < U_r \le 500 \text{ V}$ series applied (1.3 $U_r + 100$) $U_r > 500 \text{ V}$: 1.3 U_r 1: 7.5 mA	No breakdown or flashover

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 18	Nov. 26, 2019	-	- Update 1206/12nF to 47nF dimension
Version 17	Jul. 29, 2019	-	- Update 0805/10nF dimension
Version 16	Mar. 7, 2017	-	- 0805 L4 spec updated
Version 15	Nov. 21, 2016	-	- Product range updated
Version 14	Jul. 22, 2016	-	- Add 0805/8.2nF and 10nF/ 16V to 50V, T=1.25mm
Version 13	May. 16, 2016	-	- Product range updated
Version 12	Feb. 16, 2016	-	- Product range updated
Version 11	Sep. 11, 2014	-	- Product range updated
Version 10	Feb. 18, 2014	-	- Product range updated
Version 9	Jun. 17, 2013	-	- Product range updated
Version 8	Aug 05, 2011	-	- Dimension updated
Version 7	Jun 14, 2011	-	- Size I 2 I 0 T= I.0mm SPQ added
			- Dimension updated
Version 6	Jan 06, 2011	-	- Dimension updated
Version 5	Dec 29, 2010	-	- Dimension updated
Version 4	Nov 23, 2010	-	- Dimension updated
Version 3	Apr 20, 2010	-	- The statement of "Halogen Free" on the cover added
			- Dimension updated
Version 2	Oct 26, 2009	-	- Typo updated
Version I	Jun 02, 2009	-	- I2NC code updated
Version 0	Apr 15, 2009	-	- New datasheet for general purpose NP0 series with RoHS compliant
			- Replace the "I6V to 50V" part of pdf files: NP0_I6V_7, NP0_I6V-to-I00V_6, NP0_25V_7, NP0_50-to-500V_II
			- Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NPOX5RX7RY5V_0201_6.3-to-50V_2
			- Define global part number
			- Description of "Halogen Free compliant" added
			- Test method and procedure updated

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Yageo:

```
CC0805BPNPO9BN2R2 CC0603JRNPO9BN220 CC0603GRNPO9BN620 CC0402FPNPO9BN470
CC0603FPNPO9BN150 CC0603FPNPO9BN270 CC0603FPNPO9BN820 CC0603GPNPO9BN120
CC0603GPNPO9BN331 CC0603GPNPO9BN390 CC0603GPNPO9BN471 CC0603GPNPO9BN680
CC0805BPNPO9BN1R0 CC0805BPNPO9BN5R6 CC0805BPNPO9BN8R2 CC0805BPNPO9BNR47
CC0805BRNPO9BN1R8 CC0805CPNPO9BN6R8 CC0805FPNPO9BN180 CC0805FPNPO9BN270
CC0805GKNPO8BN332 CC0805GKNPO9BN272
                                    CC0805GPNPO9BN150 CC0805GPNPO9BN331
CC0805GRNPO9BN180 CC0805GRNPO9BN820 CC0805JPNPO9BN221 CC0805JPNPO9BN470
CC0805JPNPO9BN561 CC1206BRNPO9BN2R7 CC1206CRNPO9BNR56 CC1206FRNPO9BN101
CC1206FRNPO9BN150 CC1206FRNPO9BN152 CC1206GRNPO9BN101 CC1206JRNPO9BN392
CC1812JKNPO9BN153 CC0201CRNPO9BN3R0 CC0201CRNPO9BN3R6 CC0201CRNPO9BN5R0
CC0201CRNPO9BNR50 CC0201DRNPO9BN6R0
                                    CC0201DRNPO9BN8R0 CC0402DPNPO9BN100
CC0402DRNPO8BN100 CC0402DRNPO9BN3R0 CC0402DRNPO9BN6R2 CC0402JPNPO9BN270
CC0603BRNPO9BN1R3 CC0603CRNPO9BNR75 CC0603FRNPO9BN200 CC0603FRNPO9BN240
CC0603FRNPO9BN360 CC0603FRNPO9BN750 CC0603JPNPO9BN160 CC0603JRNPO9BN8R0
CC0603KRNPO9BN331 CC0201JRNPO8BN330 CC0603GRNPO7BN222 CC0805GRNPO9BN182
CC0805BPNPO9BN1R2 CC0805FPNPO9BN102 CC0805GPNPO9BN391 CC0805GPNPO9BN681
CC0805JKNPO7BN103 CC0805JKNPO7BN822 CC0805JKNPO8BN332 CC0805JPNPO9BN391
CC0805JRNPO7BN562 CC0805KKNPO9BN222 CC1206BRNPO9BN1R8 CC1206BRNPO9BN6R8
CC1206CRNPO9BN1R2 CC1206CRNPO9BN2R0 CC1206CRNPO9BN8R2 CC1206FRNPO9BN120
CC1206FRNPO9BN151 CC1206FRNPO9BN271 CC1206FRNPO9BN272 CC1206FRNPO9BN330
CC1206FRNPO9BN680 CC1206FRNPO9BN820 CC1206GRNPO9BN100 CC1206GRNPO9BN120
CC1206GRNPO9BN150 CC1206GRNPO9BN152 CC1206GRNPO9BN331 CC1206GRNPO9BN470
CC1206GRNPO9BN471 CC1206GRNPO9BN820 CC1206GRNPO9BN821 CC1206JPNPO9BN102
CC1206JPNPO9BN151 CC1206JPNPO9BN331 CC1206JPNPO9BN332 CC1206JRNPO9BN562
CC1206KRNPO9BN470 CC1210JKNPO9BN332 CC1812JKNPO9BN822 CC1210GKNPO9BN102
```