Cyberbullying Classifier

using Machine Learning

Group Members

• Ankush Singh 22BCT10002

• Prayrit Dhingra 22BCT10015

• Harsh Saini 22BCT10007

• Moksh Verma 22BCT10059

• Md Karimul Hasan 22BCT10001

Problem Statement

Often people are targeted and **cyberbullied** on social media platforms like **Discord**, Twitter, **Reddit** and Instagram.

We aim to make a text classifier that classifies tweets from twitter as 'not_cyberbullying' or 'cyberbullying' along with it's type – racial, age based, gender based, etc.

How will it work?

We have a **labeled dataset** that contains more than **40 thousand** tweets from twitter that are labelled with types of cyberbullying.

We plan to **train a model** on that dataset (also on other datasets to get better accuracy if possible).

The model would be able to:

- Process a sentence
- Figure out its sentiments
- Classify its cyberbullying type.

How is this different from other methods?

The most simple method of **detecting vulgar speech** in cyberbullying would be checking for **keywords**.

But this is **not accurate** since the poster can modify the spellings of the words however he wants, so our program has a **high chance of failure**.

We are using an approach that uses **Machine Learning** to analyze sentiments of a sentence and decide if it should be categorized as cyberbullying.

Progress of building our Model

```
[3]: tweets = pd.read_csv("cyberbullying_tweets.csv")
      tweets
[3]:
                                                      tweet_text cyberbullying_type
                 In other words #katandandre, your food was cra...
                                                                     not_cyberbullying
               Why is #aussietv so white? #MKR #theblock #ImA...
                                                                     not_cyberbullying
                 @XochitlSuckkks a classy whore? Or more red ve...
                                                                     not_cyberbullying
            3
                  @Jason_Gio meh. :P thanks for the heads up, b...
                                                                     not_cyberbullying
                 @RudhoeEnglish This is an ISIS account pretend...
                                                                     not_cyberbullying
                  Black ppl aren't expected to do anything, depe...
       47687
                                                                               ethnicity
      47688
                   Turner did not withhold his disappointment. Tu...
                                                                               ethnicity
      47689
                   I swear to God. This dumb nigger bitch. I have...
                                                                               ethnicity
                Yea fuck you RT @therealexel: IF YOURE A NIGGE...
                                                                               ethnicity
      47690
               Bro. U gotta chill RT @CHILLShrammy: Dog FUCK ...
                                                                               ethnicity
```

Vulgar Speech Dataset

Credits: Kaggle

```
[19]: #Shuffle your dataset
    shuffle_df = df.sample(frac=1)

# Define a size for your train set
    # 90% training, 10% testing
    train_size = int(0.9 * len(df))

# Split your dataset
    train_df = shuffle_df[:train_size]
    test_df = shuffle_df[train_size:]

[12]: numerical_features = list(features_df.columns)
% time temp = setup(data = train_df, target = 'cyberbullying_type', numeric_features=numerical_features)
```

	Description	Value
0	Session id	4866
1	Target	cyberbullying_type
2	Target type	Multiclass
3	Target mapping	gender: 0, not_cyberbullying: 1, religion: 2
4	Original data shape	(18000, 6)
5	Transformed data shape	(18000, 6)
6	Transformed train set shape	(12599, 6)
7	Transformed test set shape	(5401, 6)
8	Numeric features	5
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean

Splitting our dataset into training and testing parts

```
[12]: numerical_features = list(features_df.columns)
%time temp = setup(data = train_df, target = 'cyberbullying_type',numeric_features=numerical_features)
```

	Description	Value
0	Session id	4866
1	Target	cyberbullying_type
2	Target type	Multiclass
3	Target mapping	gender: 0, not_cyberbullying: 1, religion: 2
4	Original data shape	(18000, 6)
5	Transformed data shape	(18000, 6)
6	Transformed train set shape	(12599, 6)
7	Transformed test set shape	(5401, 6)
8	Numeric features	5
9	Preprocess	True
10	Imputation type	simple
11	Numeric imputation	mean
12	Categorical imputation	constant
13	Low variance threshold	0
14	Fold Generator	StratifiedKFold
15	Fold Number	10
16	CPU Jobs	-1
17	Use GPU	False
18	Log Experiment	False

Setting up training dataset

[13]: %time lightgbm = create_model('lightgbm') AUC MCC Accuracy Recall Prec. Kappa Fold 0.5063 0.6614 0.5063 0.5057 0.4905 0.2136 0.2220 0 0.5349 0.6768 0.5349 0.5319 0.5193 0.2603 0.2691 1 0.6592 0.5071 0.5004 0.4889 0.2161 0.2244 0.5278 0.6783 0.5278 0.5296 0.2491 0.2638 3 0.5065 0.5294 0.6796 0.5294 0.5310 0.5130 0.2533 0.2644 5 0.5135 0.6725 0.5135 0.5077 0.4985 0.2271 0.2339 0.5111 0.6590 0.5111 0.5112 0.4962 0.2216 6 0.2298 0.6658 0.5071 0.4988 0.2218 7 0.4923 0.2280 0.6669 0.5159 0.2340 0.2429 8 0.5115 0.4994 0.5099 0.6748 0.5099 0.5022 0.4889 0.2212 0.2314 9 Mean 0.5163 0.5130 0.2410 0.0100 0.0076 0.0100 0.0123 0.0100 0.0158 0.0171 Std CPU times: user 2.09 s, sys: 236 ms, total: 2.33 s

Wall time: 10.5 s

Creating a Light Gradient Boosting Machine Model

[16]: #evaluate model
 predict_model(tuned_lightgbm)

						Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс
	Light Gradient Boosting M		ng M	achine	0.5238	0.6793	0	0	0	0.2416	0.2502		
[16]:		and	is	the	to	you	cyberbullyii	ng_type	predic	tion_la	bel	predicti	on_score
	12599	2.0	1.0	1.0	1.0	1.0		religion		relig	ion		0.5959
	12600	0.0	0.0	0.0	0.0	1.0		gender	not_cy	berbully	ing		0.4273
	12601	0.0	0.0	0.0	0.0	0.0	not_cybe	rbullying	not_cy	berbully	ing		0.5634
	12602	0.0	1.0	0.0	2.0	0.0		religion	not_cy	berbully	ing		0.3799
	12603	0.0	0.0	2.0	0.0	2.0		religion		relig	ion		0.5099
	17995	0.0	2.0	3.0	1.0	0.0		gender		relig	ion		0.4062
	17996	0.0	0.0	0.0	0.0	0.0		religion	not_cy	berbully	ing		0.5634
	17997	0.0	0.0	0.0	0.0	0.0	not_cybe	rbullying	not_cy	berbully	ing		0.5634
	17998	1.0	0.0	0.0	3.0	2.0		gender		relig	ion		0.5178
	17999	0.0	0.0	0.0	0.0	0.0	not_cybe	rbullying	not_cy	berbully	ing		0.5634

Testing the Model

[18]: compare_models()

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс	TT (Sec)
gbc	Gradient Boosting Classifier	0.5237	0.6750	0.5237	0.5216	0.5085	0.2436	0.2521	0.9400
ada	Ada Boost Classifier	0.5204	0.6589	0.5204	0.5164	0.5064	0.2400	0.2471	0.2090
lda	Linear Discriminant Analysis	0.5187	0.6684	0.5187	0.5149	0.5071	0.2363	0.2417	0.0710
lightgbm	Light Gradient Boosting Machine	0.5163	0.6694	0.5163	0.5130	0.4994	0.2318	0.2410	0.3390
Ir	Logistic Regression	0.5154	0.6688	0.5154	0.5181	0.5063	0.2245	0.2283	0.0810
ridge	Ridge Classifier	0.5149	0.0000	0.5149	0.5130	0.4951	0.2272	0.2383	0.0420
rf	Random Forest Classifier	0.5112	0.6623	0.5112	0.5069	0.4966	0.2224	0.2291	0.3250
et	Extra Trees Classifier	0.5073	0.6580	0.5073	0.5038	0.4922	0.2123	0.2185	0.3460
dt	Decision Tree Classifier	0.5048	0.6530	0.5048	0.5007	0.4890	0.2074	0.2136	0.0780
nb	Naive Bayes	0.5017	0.6577	0.5017	0.4879	0.4679	0.2124	0.2293	0.0490
qda	Quadratic Discriminant Analysis	0.4992	0.6582	0.4992	0.4850	0.4640	0.2078	0.2253	0.0670
svm	SVM - Linear Kernel	0.4971	0.0000	0.4971	0.5065	0.4402	0.2062	0.2371	0.1100
knn	K Neighbors Classifier	0.4512	0.5953	0.4512	0.4607	0.4352	0.1235	0.1306	0.1470
dummy	Dummy Classifier	0.3985	0.5000	0.3985	0.1588	0.2271	0.0000	0.0000	0.0460

[18]: 🔻

GradientBoostingClassifier

Comparing different model accuracies

Thank You