```
||n[@]:= (*定义数据点*)
    data = {{321, 0.662}, {558, 1.173}, {631, 1.332}};
    (*线性回归拟合*)
    fit = LinearModelFit[data, x, x];
         线性拟合模型
    (*新的数据点*)
    newData = {310, 275, 223, 179, 147, 121};
    (*计算能量*)
    calculatedEnergies = fit[#] & /@ newData;
    (*输出新数据点及其对应的能量*)
    newDataWithEnergies = Transpose[{newData, calculatedEnergies}]
                        转置
    (*获取拟合方程*)
    fitFunction = fit["BestFit"];
    (*绘制数据点和拟合直线,并标出数据点的数值和拟合方程*)
    Show[ListPlot[data, PlotStyle → {Red, PointSize[Large]}, AxesLabel → {"1", "MeV"}],
    显示 绘制点集
                       上绘图样式
                                  红色点的大小
     Plot[fitFunction, {x, 300, 650}, PlotStyle → Blue],
                                   绘图样式
                                            蓝色
     PlotLabel → "数据点及拟合直线", Epilog →
     绘图标签
                                 绘制主图后绘制的图形
      {Text["("<> ToString[data[1, 1]]] <> ", "<> ToString[data[1, 2]] <> ") ", {312, 0.662},
                  转换为字符串
                                              转换为字符串
         {-1, -1}], Text["("<> ToString[data[2, 1]]] <> ", " <> ToString[data[2, 2]]] <> ")",
                             L转换为字符串
                   文本
                                                          _ 接换为字符串
        {558, 1.173}, {-1, -1}], Text["("<> ToString[data[3, 1]]] <>
                               本文
                                          L转换为字符串
          ", "<> ToString[data[3, 2]] <> ") ", {631, 1.332}, {-1, -1}], Text[
                L转换为字符串
        "拟合直线: y = " <> ToString[Normal[fitFunction], InputForm], {450, 1.2}, {0, 1}]}]
                          | 转换为普通表达式
                                                      输入格式
    (*计算误差分析*)
    Print["拟合方程: ", fitFunction];
    Print["拟合参数: ", fit["ParameterTable"]];
    打印
    Print["决定系数R<sup>2</sup>: ", fit["RSquared"]];
    Print["标准误差: ", fit["EstimatedVariance"]];
    打印
Out[\circ] = \{ \{310, 0.638064\}, \{275, 0.562463\}, \{223, 0.450143\}, \}
     \{179, 0.355102\}, \{147, 0.285981\}, \{121, 0.229821\}\}
```


拟合方程: -0.0315407 + 0.00216001 x

Estimate Standard Error t-Statistic P-Value 拟合参数: 1 -0.0315407 0.00217351 -14.5114 0.043801

x 0.00216001 4.17632×10⁻⁶ 517.206 0.00123088

决定系数R2: 0.999996 标准误差: 9.16255×10⁻⁷

|n[*]= (*拟合η的曲线*)

```
(*定义数据点*)
data = \{\{0.1, 10.9\}, \{0.2, 10.7\}, \{0.3, 10.4\},
   \{0.4, 9.17\}, \{0.5, 8.11\}, \{0.6, 6.87\}, \{0.8, 6.17\}, \{1.0, 5.69\}\};
(*样条拟合*)
splineFit = Interpolation[data, Method → "Spline"];
          内插
                              方法
(*定义需要计算的点*)
points = {0.6380638206068592, 0.562463305371894, 0.4501425398799458,
   0.35510189215598964, 0.28598142108402147, 0.2298210383380474};
(*计算这些点对应的值*)
fittedValues = splineFit /@ points;
(*输出计算结果*)
fittedTable =
  TableForm[Transpose[{points, fittedValues}], TableHeadings \rightarrow {None, {"x", "\eta"}}];
(*绘制数据点、拟合曲线及新的计算点*)
plot = Show[ListPlot[data, PlotStyle → {Red, PointSize[Large]},
     显示 绘制点集
                         绘图样式
                                     【红色 点的大小 【大
    AxesLabel \rightarrow {"x", "\eta"}, PlotLegends \rightarrow {"数据点"}],
    坐标轴标签
   Plot[splineFit[x], {x, 0, 1.1}, PlotStyle → Blue, PlotLabel → "样条拟合"],
   绘图
                                            蓝色 绘图标签
                                 绘图样式
   ListPlot[Transpose[{points, fittedValues}], PlotStyle → {Green, PointSize[Medium]},
                                             绘图样式
   绘制点集
                                                         绿色
                                                               点的大小
    PlotLegends → {"计算点"}], PlotLegends → {"数据点", "样条拟合", "计算点"}];
    绘图的图例
(*显示结果表格和图像*)
{fittedTable, plot}
```


|| (*拟合R的曲线*)

0.355102

0.285981

0.229821

0.644321

0.745083

0.83486

0.2

0.4

0.6

```
(*定义数据点*)
data = \{\{0.2, 0.8841\}, \{0.3, 0.7236\}, \{0.4, 0.5875\}, \{0.5, 0.4912\},
   \{0.6, 0.4266\}, \{0.662, 0.3914\}, \{0.8, 0.3373\}, \{1.0, 0.2977\}\};
(*样条拟合*)
splineFit = Interpolation[data, Method → "Spline"];
          内插
                             方法
(*定义需要计算的能量点*)
energyPoints = {0.6380638206068592, 0.562463305371894, 0.4501425398799458,
   0.35510189215598964, 0.28598142108402147, 0.2298210383380474};
(*计算这些能量点对应的值*)
fittedValues = splineFit /@ energyPoints;
(*输出计算结果*)
fittedTable = TableForm[Transpose[{energyPoints, fittedValues}],
   TableHeadings → {None, {"Energy (E)", "R"}}];
   表格标头
(*绘制数据点和样条拟合曲线及计算点*)
plot = Show[ListPlot[data, PlotStyle → {Red, PointSize[Large]},
                        绘图样式
                                    红色 点的大小
    AxesLabel → {"E", "R"}, PlotLegends → {"数据点"}],
   坐标轴标签
                自然常数 绘图的图例
   Plot[splineFit[x], {x, 0.2, 1.0}, PlotStyle → Blue, PlotLabel → "样条拟合",
                                  上绘图样式
                                             AxesLabel \rightarrow \{"E", "R"\} \], ListPlot \[Transpose[\{energyPoints, fittedValues\}], \]
                          | 绘制点集 | 转置
   坐标轴标签
                自然常数
    PlotStyle → {Green, PointSize[Medium]}, PlotLegends → {"计算点"}],
                绿色
                     点的大小
                                L中
                                         上绘图的图例
   PlotLegends → {"数据点","样条拟合","计算点"}];
   绘图的图例
(*显示结果表格和图像*)
{fittedTable, plot}
                          R
 Energy (E)
 0.638064
              0.404489
                         0.8
              0.449096
 0.562463
                                                     数据点
                         0.6
 0.450143
              0.534102,
                         0.4
```

计算点

1.0

8.0

```
In[*]:= (*定义数组*)
    N1 = \{12148, 10334, 8096, 7488, 6416, 7982\};
    R = \{0.40448890651960123, 0.4490962620538123, 0.5341021068829621,
        0.6443213225242196, 0.7450830049591655, 0.83485976288315};
    eta = {6.499772114618485, 7.328101703602218, 8.627846621099549,
        9.76455793754295, 10.503066483228785, 10.687640690255227`};
     (*计算公式结果*)
    results = N1 / (R * eta);
     (*以第一个数据为基准 (分母) 进行计算*)
    normalizedResults = results / results[[1]];
    (*输出计算结果*)
    TableForm[Transpose[{N1, R, eta, results, normalizedResults}],
    表格形式
     \label{thm:condition} \mbox{TableHeadings} \rightarrow \{\mbox{None, {"N1", "R", "eta", "Result", "Normalized Result"}}\}]
```

是否正规化

Out[•]//TableForm=

表格标头

	N1	R	eta	Result	Normalized Result
	12 148	0.404489	6.49977	4620.62	1.
	10 334	0.449096	7.3281	3140.06	0.679575
	8096	0.534102	8.62785	1756.89	0.380228
	7488	0.644321	9.76456	1190.17	0.257579
	6416	0.745083	10.5031	819.867	0.177437
	7982	0.83486	10.6876	894.574	0.193605

In[•]:=

0.4

0.2

20

40

60

80

```
/// /// /// /// (*定义角度和对应的数据点*) angles = {10, 30, 50, 70, 90, 110};
     values = normalizedResults;
     (*样条拟合*)
     splineFit = Interpolation[Transpose[{angles, values}], Method → "Spline"];
     (*绘制数据点和拟合曲线*)
     plot = Show[ListPlot[Transpose[{angles, values}], PlotStyle → {Red, PointSize[Large]},
           显示 L绘制点集 L转置
                                                         绘图样式
                                                                      【红色 【点的大小 】 大
         AxesLabel → \left\{ \text{"角度 } (度) \text{ ", "値"} \right\}, PlotLegends → \left\{ \text{"数据点"} \right\} \right],
         坐标轴标签
                                           绘图的图例
        Plot[splineFit[x], \{x, 10, 110\}, PlotStyle \rightarrow Blue,
                                          绘图样式
         PlotLabel → "样条拟合曲线", PlotLegends → {"拟合曲线"}]];
         上绘图标签
                                     绘图的图例
     (*显示图像*)
     plot
      值
     1.0
     0.8
                                                             数据点
     0.6
Out[ • ]=
                                                               拟合曲线
```

一 角度 (度)

100

```
In[•]:= (*定义角度θ,单位为度*)
       theta = {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120};
        (*将角度转换为弧度*)
       thetaRad = theta * (Pi / 180);
                            圆周率
        (*计算 1-cos(θ)*)
       oneMinusCosTheta = N[1 - Cos[thetaRad]];
                            上… 上余弦
        (*计算 hv'*)
       h\nuPrime = 0.662 / (1 + (0.662 / 0.511) * oneMinusCosTheta);
       (*计算 a*)
       a = ((2.818 * 10^{-3})^{2} / 2) * (hvPrime / 0.662)^{2} *
            (0.662 / hvPrime + hvPrime / 0.662 - Sin[thetaRad]^2);
                                                 正弦
        (*第一个数为分母, 计算 a/7.94112*10^-6*)
       normalizedA = a / a[2];
        (*输出结果表格*)
       TableForm [Transpose [{theta, oneMinusCosTheta, h∨Prime, a, normalizedA}], TableHeadings →
          \{\text{None, } \{"\theta \ (度)", "1 - \text{Cos}(\theta)", "hv'", "a", "a / (7.523829687777629*10^-6)"\}\}\}
                                    余弦
Out[ • ]//TableForm=
                                   hγ'
       θ (度)
                   1 − Cos (Θ)
                                                                    a / (7.523829687777629*10^{-6})
       0
                                                 7.94112 \times 10^{-6}
                   0.
                                   0.662
                                                                    1.05546
       10
                   0.0151922
                                   0.649222
                                                 7.52383 \times 10^{-6}
                                                                    1.
       20
                   0.0603074
                                   0.614027
                                                 6.45165 \times 10^{-6}
                                                                    0.857495
                                                 5.11918 \times 10^{-6}
       30
                   0.133975
                                   0.564094
                                                                    0.680396
                                                 3.87534 \times 10^{-6}
       40
                   0.233956
                                   0.508024
                                                                    0.515076
                                                 2.89407 \times 10^{-6}
       50
                   0.357212
                                   0.452567
                                                                    0.384653
                                                 2.2004 \times 10^{-6}
                   0.5
                                   0.40176
                                                                    0.292457
       60
                                                 1.74635 \times 10^{-6}
                   0.65798
                                   0.357372
                                                                    0.232109
       70
                                                 1.46672 \times 10^{-6}
       80
                   0.826352
                                   0.319724
                                                                    0.194943
       90
                                   0.28839
                                                 1.30445 \times 10^{-6}
                                                                    0.173376
                   1.
                                                 1.21714 \times 10^{-6}
       100
                   1.17365
                                   0.26265
                                                                    0.161771
                   1.34202
                                   0.241731
                                                 1.17569 \times 10^{-6}
                                                                    0.156262
       110
                                   0.224922
                                                 1.16101 \times 10^{-6}
       120
                   1.5
                                                                    0.154311
```

0.4

0.2

40

```
/// // // (*定义角度和对应的两个数据集*) angles = {10, 30, 50, 70, 90, 110};
    values1 = normalizedResults;
     (*样条拟合*)
    splineFit1 = Interpolation[Transpose[{angles, values1}], Method → "Spline"];
    splineFit2 = Interpolation[Transpose[{angles, values2}], Method \rightarrow "Spline"];\\
                内插
                             转置
     (*绘制数据点和拟合曲线*)
    plot = Show[ListPlot[Transpose[{angles, values1}], PlotStyle → {Red, PointSize[Large]},
                                                                红色 点的大小 大
          显示 绘制点集 转置
                                                    绘图样式
        AxesLabel → {"角度 (度)", "值"}, PlotLegends → {"实验值"}],
        坐标轴标签
       Plot[splineFit1[x], {x, 10, 110}, PlotStyle → Blue, PlotLabel → "实验值拟合曲线",
                                      绘图样式
                                                 PlotLegends \rightarrow {"实验值"}], ListPlot[Transpose[{angles, values2}],
        绘图的图例
                                 绘制点集 转置
        PlotStyle → {Green, PointSize[Large]}, PlotLegends → {"理论值"}],
                    上绿色 点的大小
                                    大
                                            绘图的图例
       Plot[splineFit2[x], {x, 10, 110}, PlotStyle \rightarrow Purple,
                                       绘图样式
        PlotLabel → "理论值拟合曲线", PlotLegends → {"理论值"}]];
        绘图标签
                                   绘图的图例
     (*显示图像*)
    plot
      值
    1.0
                                                      实验值
    0.8

    实验值

    0.6
Out[ • ]=
                                                      理论值
```

理论值

· 角度(度)

100