FA and Regex

Theorem Suppose $L_1, L_2 \subseteq \Sigma^*$ are accepted by FA, then so are $\Sigma^* - L_1, L_1 \cap L_2, L_1 \cup L_2, L_1^*, L_1^*$

Proof Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be two DFA's such that $\mathcal{L}(M_1) = L_1$, $\mathcal{L}(M_2) = L_2$

Without losing the generality, assume $Q_1 \cap Q_2 = \emptyset$

1. $\Sigma^* - L_1$

$$\mathsf{M}' = \left(\mathsf{Q}_1, \mathsf{\Sigma}, \mathsf{\delta}_1, \mathsf{q}_1, \mathsf{Q} - \mathsf{F}_1\right)$$

Proof Let $x \in \Sigma^*$, then $x \in \mathcal{L}(M') \equiv \delta_1^*(q_1, x) \in Q_1 - F_1 \equiv \delta_1^*(q_1, x) \notin F_1 \equiv x \notin \mathcal{L}(M_1) = x \in (\Sigma^* - L_1)$

This construction mightn't work if M_1 NFA since $\delta_1^*(q_1,x) \cap Q_1 - F_1 \neq \emptyset$ AND $\delta_1^*(q_1,x) \cap F_1 \neq \emptyset$ can both be true

2. $L_1 \cup L_2$

$$M_1$$
 λ q_0 λ M_2

OR M' =
$$\left(\underline{\underline{Q_1 \times Q_2}}, \Sigma, \delta', \{q_1, q_2\}, F_1 \times Q_2 \cup F_2 \times Q_1\right)$$

- 3. $L_1 \cap L_2 = \overline{L_1} \cap \overline{L_2}$ $OR M'' = (Q_1 \times Q_2, \Sigma, \delta', \{q_1, q_2\}, F_1 \times Q_2 \cap F_2 \times Q_1)$
- 4. $L(M_1)L(M_2)$

5. $\left(L(M_1)\right)^+$

6.
$$\left(L(M_1)\right)^* = \left(L(M_1)\right)^+$$
 with $q_0 \in F$

Theorem All regular language can be accepted by a FA

Proof Base case: $\mathcal{L}(\phi) = \emptyset$

$$\mathcal{L}(\lambda) = \lambda$$

$$\forall a \in \Sigma. \mathcal{L}(a) = \{a\}$$

Constructor case:

Suppose $\mathcal{L}(r')$, $\mathcal{L}(r'')$ accepted by FA, then $\mathcal{L}(r'r'') = \mathcal{L}(r')\mathcal{L}(r'')$ $\mathcal{L}(r' \cup r'') = \mathcal{L}(r') \cup \mathcal{L}(r'')$ $\mathcal{L}((r')^*) = (\mathcal{L}(r'))^*$

By closure results, they are all accepted by FA

Definition generalized transition graph:

A NFA with 1 initial state and in which edges are labelled by regex instead of subset of Σ or $\Sigma \cup \{\lambda\}$

Then, a string is accepted by a GTG IFF $\exists k \in \mathbb{N}$. $(x = x_1 \dots x_k \text{ where } x_1, \dots, x_k \in \Sigma^* \text{ and } \exists \text{path } e_1 \dots e_k \text{ from } q_0 \text{ to } f \in F \text{ s.t. } x_i \in \mathcal{L}(r_i) \text{ for } i = 1, \dots, k \text{ and } r_i \text{ is the regex labelled on } e_i$

Example

If $x = x_1x_2x_3x_4$ where $x_i \in \mathcal{L}(r_i)$, then M accepts x

Theorem $\forall A \in FA, \exists r \in \text{regex}. \mathcal{L}(A) = \mathcal{L}(r)$

Discussion without lose generality, take a GTG has exactly one final state that is not q_0 Also assume $\forall q, q' \in Q$ there exists edge between, if not add an edge labelled φ Then, prove by induction on the number of states in $M = (Q, \Sigma, \delta, q_0, F)$

To prove if $L = \mathcal{L}(M)$ for a GTG M, then $L = \mathcal{L}(r)$ for a regex r

By previous theorem, $L = \mathcal{L}(M')$ for FA M'

By definition, all NFA is a GFG

Example

Proof base case: n = 2

Then, $\mathcal{L}(M) = \mathcal{L}\left(r_0^* r_{01} (r_1 + r_{10} r_0^* r_{01})^*\right)$

Suppose n>2, construut a GFG M' s.t. $\mathcal{L}(M')=\mathcal{L}(M)$ which has 1 fewer state, then by IH, exists $r,\mathcal{L}(M')=\mathcal{L}(r)$

To construct such GFG, take arbitrary $q_x \in Q - \{q_0\} - F$, let $Q' = Q - \{q_x\}$

Without lose generality, assume q_x has edge connected to q_i, q_j and have paths as labelled below.

