Statistical learning, high dimension and big data

Stéphane Gaïffas

Today

- Again binary classification
- The linear SVM
- Construction of the hinge loss
- Kernels methods

Setting

- Binary classification problem
- We observe a training dataset D of pairs (x_i, y_i) for i = 1, ..., n
- Features $x_i \in \mathbb{R}^d$ and labels $y_i \in \{-1, 1\}$
- Aim is to learn a classification rule that generalizes well
- Given a features vector $x \in \mathbb{R}^d$, we want to predict the label y
- Without overfitting

Linear classification. Why?

- Let's start simple!
- On very large datasets (n is large, say $n \ge 10^7$), no other choice (training complexity)
- Big data paradigm: lots of data ⇒ simple methods are enough

A linear classifier

Learn $\hat{w} \in \mathbb{R}^d$ and \hat{b} such that

$$\hat{y} = \text{sign}(\langle x, \hat{w} \rangle + \hat{b})$$

is a good classifier

A dataset is **linearly separable** if we can find an hyperplane \boldsymbol{H} that puts

- ullet Points $x_i \in \mathbb{R}^d$ such that $y_i = 1$ on one side of the hyperplane
- Points $x_i \in \mathbb{R}^d$ such that $y_i = -1$ on the other
- H do not pass through a point x_i

An hyperplane

$$H = \{ x \in \mathbb{R}^d : \langle w, x \rangle + b = 0 \}$$

is a translation of a set of vectors orthogonal to w

- ullet $w \in \mathbb{R}^d$ is a non-zero vector normal to the hyperplane
- $b \in \mathbb{R}$ is a scalar

Definition of H is invariant by multiplication of w and b by a non-zero scalar

If H do not pass through any sample point x_i , we can scale w and b so that

$$\min_{(x,y)\in D}|\langle w,x\rangle+b|=1$$

For such w and b, we call H the canonical hyperplane

The distance of any point $x' \in \mathbb{R}^d$ to H is given by

$$\frac{|\langle w, x' \rangle + b|}{\|w\|}$$

So, if H is a canonical hyperplane, its **margin** is given by

$$\min_{(x,y)\in D}\frac{|\langle w,x\rangle+b|}{\|w\|}=\frac{1}{\|w\|}.$$

In summary: if D is strictly linearly separable, we can find a canonical separating hyperplane

$$H = \{x \in \mathbb{R}^d : \langle w, x \rangle + b = 0\}.$$

that satisfies

$$|\langle w, x_i \rangle + b| \ge 1$$
 for any $i = 1, \dots, n$,

which entails that a point x_i is correctly classified if

$$y_i(\langle x_i, w \rangle + b) \geq 1.$$

The margin of H is equal to 1/||w||.

Linear SVM: separable case

From that, we deduce that a way of classifying D with maximum margin is to solve the following problem:

$$\begin{split} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|_2^2 \\ & \text{subject to} \quad y_i(\langle x_i, w \rangle + b) \geq 1 \ \text{ for all } \ i = 1, \dots, n \end{split}$$

Note that:

- This problem admits a unique solution
- It is a "quadratic programming" problem, which is easy to solve numerically
- Dedicated optimization algorithms can solve this on a large scale very efficiently

Some tools from constrained optimization

Consider a constrained optimization problem

$$\min_{x \in \mathbb{R}^d} f(x)$$
 subject to $g_i(x) \leq 0$ for all $i = 1, \ldots, n$

where $f, g_1, \ldots, g_n : \mathbb{R}^d \to \mathbb{R}$

- We denote $P^* = f(x^*)$ the minimum of this objective (minimum of the **primal**)
- ullet The associated **Lagrangian** is the function given on $\mathbb{R}^d imes \mathbb{R}^n_+$ by

$$L(x,\alpha) = f(x) + \sum_{i=1}^{n} \alpha_i g_i(x)$$

for Lagrange or dual variables $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n_+$

• The **Lagrange dual** function is defined by

$$D(\alpha) = \inf_{\mathbf{x} \in \mathbb{R}^d} L(\mathbf{x}, \alpha) = \inf_{\mathbf{x} \in \mathbb{R}^d} \left(f(\mathbf{x}) + \sum_{i=1}^n \alpha_i g_i(\mathbf{x}) \right)$$

for $\alpha \in \mathbb{R}^n_+$

- D is always concave, as the infimum of linear functions
- We denote $D^* = D(\alpha^*) = \max_{\alpha \geq 0} D(\alpha)$ the optimal value of the dual. It is a convex problem (maximum of a concave function)
- For any **feasible** x and any $\alpha \geq 0$ we have $D(\alpha) \leq f(x)$, hence

$$D^* \leq P^*$$

This is called the weak duality inequality and always holds

• Something that does not always holds is **strong duality**:

$$D^* = P^*$$

Strong duality holds under **constraint qualitications** (sufficient but not necessary)

Probably the best known one is **strong duality**:

- The primal problem is **convex**: f, g_1, \ldots, g_n are convex
- **Slater**'s condition holds: there is some strictly feasible point $x \in \mathbb{R}^d$ such that

$$g_i(x) < 0$$
 for all $i = 1, \ldots, n$

• Slater's condition is obvious for affine functions: inequality no longer strict, reduces to the original constraint $g_i(x) \le 0$

Now, a fundamental tool: KKT theorem (Karush-Kuhn-Tucker)

- Assume that f, g_1, \ldots, g_n are **differentiable**, assume **strong duality**.
- Then, $x^* \in \mathbb{R}^d$ is a solution of the primal problem if and only if there is $\alpha^* \in \mathbb{R}^n_+$ such that

$$\nabla_{x}L(x^{*},\alpha^{*}) = \nabla f(x^{*}) + \sum_{i=1}^{n} \alpha_{i}^{*}\nabla g_{i}(x^{*}) = 0$$

$$g_{i}(x^{*}) \leq 0 \quad \text{for any } i = 1,\dots,n$$

$$\alpha_{i}^{*}g_{i}(x^{*}) = 0 \quad \text{for any } i = 1,\dots,n$$

- These are known as the KKT conditions
- The last one is called **complementary slackness**

In summary: if

- primal problem is convex and
- constraint functions satisfy the Slater's conditions then
 - strong duality holds.

If in addition we have that

• functions f, g_1, \ldots, g_n are **differentiable**

then

KKT conditions are necessary and sufficient for optimality

Back to the Linear SVM. The problem has the form

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} f(w)$$
 subject to $g_i(w, b) \leq 0$ for all $i = 1, \dots, n$

where

• $f(w) = \frac{1}{2} ||w||_2^2$ is **strongly convex**, since

$$\nabla^2 f(w) = I_d \succ 0$$

• Constraints are $g_i(w, b) \le 0$ with **affine** functions

$$g_i(w,b) = 1 - y_i(\langle x_i, w \rangle + b)$$

so that the constraints are qualified

We can apply the KKT theorem

Use this theorem to obtain a condition at the optimum

- It will lead to crucial properties on the SVM
- Allow to obtain the dual formulation of the problem

Lagragian

- Introduce dual variables $\alpha_i \geq 0$ for i = 1, ..., n corresponding to the constraints $g_i(w, b) \leq 0$
- For $w \in \mathbb{R}^d$, $b \in \mathbb{R}$ and $\alpha = (\alpha_1, \dots \alpha_n) \in \mathbb{R}^n_+$, introduce the Lagrangian

$$L(w, b, \alpha) = \frac{1}{2} ||w||_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i(\langle w, x_i \rangle + b))$$

$$L(w, b, \alpha) = \frac{1}{2} ||w||_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i (\langle w, x_i \rangle + b))$$

KKT conditions

Set the gradient to zero

$$\nabla_{w}L(w,b,\alpha) = w - \sum_{i=1}^{n} \alpha_{i}y_{i}x_{i} = 0 \quad \text{namely} \quad w = \sum_{i=1}^{n} \alpha_{i}y_{i}x_{i}$$

$$\nabla_{b}L(w,b,\alpha) = -\sum_{i=1}^{n} \alpha_{i}y_{i} = 0 \quad \text{namely} \quad \sum_{i=1}^{n} \alpha_{i}y_{i} = 0$$

Write the complementary slackness condition

$$\alpha_i (1-y_i(\langle w, x_i \rangle + b)) = 0$$
 namely $\alpha_i = 0$ or $y_i(\langle w, x_i \rangle + b) = 1$ for all $i = 1, \dots, n$

This entails the following properties at the optimum

• There are **dual** variables $\alpha_i \geq 0$ such that the **primal** solution (w, b) satisfies

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

We have that

$$\alpha_i \neq 0$$
 iff $y_i(\langle w, x_i \rangle + b) = 1$

This means that

- w writes as a linear combination of the features vectors x_i that belong to the marginal hyperplanes $\{x \in \mathbb{R}^d : \langle w, x \rangle + b = \pm 1\}$
- These vectors x_i are called **support vectors**

The support vectors fully define the maximum-margin hyperplane, hence the name **Support Vector Machine**

Dual optimization problem

Lagrangian is

$$L(w, b, \alpha) = \frac{1}{2} ||w||_2^2 + \sum_{i=1}^n \alpha_i (1 - y_i(\langle w, x_i \rangle + b))$$

Plug $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ in it to obtain

$$L(w, b, \alpha) = \frac{1}{2} \left\| \sum_{i=1}^{n} \alpha_i y_i x_i \right\|_2^2 + \sum_{i=1}^{n} \alpha_i - b \sum_{i=1}^{n} \alpha_i y_i$$
$$- \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

Recalling that $\sum_{i=1}^{n} \alpha_i y_i = 0$ and doing some algebra we arrive at the dual formulation

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$
 subject to $\alpha_i \geq 0$ and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

Remarks

- As in the primal formulation, it is again a quadratic programming problem
- At optimum, we have (using KKT conditions) that the decision function is expressed using the dual variables as

$$x \mapsto \operatorname{sgn}(\langle w, x \rangle + b) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

ullet The intercept b can be expressed for any support vector x_i as

$$b = y_i - \sum_{j=1}^n \alpha_j y_j \langle x_i, x_j \rangle$$

This allows to write the margin as a function of the dual variables

• Multiplying the last equality by $\alpha_i y_i$ and summing entails

$$\sum_{i=1}^{n} \alpha_i y_i b = \sum_{i=1}^{n} \alpha_i y_i^2 - \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

• Namely recalling that at optimum $\sum_{i=1}^{n} \alpha_i y_i = 0$ and $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ we get

$$0 = \sum_{i=1}^n \alpha_i = \|w\|_2^2, \quad \text{namely}$$

$$\mathsf{margin} = \frac{1}{\|w\|_2^2} = \frac{1}{\sum_{i=1}^n \alpha_i} = \frac{1}{\|\alpha\|_1}$$

• Okay, this is a nice theory, but...

Have you ever seen a dataset that looks that this?

Datasets are **not** linearly separable!

Keep cool and relax!

Replace the constraints

$$y_i(\langle w, x_i \rangle + b) \ge 1$$
 for all $i = 1, ..., n$,

that are too strong, by the relaxed ones

$$y_i(\langle w, x_i \rangle + b) \ge 1 - s_i$$
 for all $i = 1, ..., n$,

for slack variables $s_1, \ldots, s_n \ge 0$

Slack rope

Linear SVM: non-separable case

Relax, but keep the slacks s_i as small as possible (goodness-of-fit)

Replace the original problem

$$\begin{aligned} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|_2^2 \\ & \text{subject to} \quad y_i(\langle x_i, w \rangle + b) \geq 1 \quad \text{for all} \quad i = 1, \dots, n \end{aligned}$$

by the relaxed one using slack variables:

$$\begin{aligned} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}, s \in \mathbb{R}^n} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n s_i \\ & \text{subject to} \quad y_i(\langle x_i, w \rangle + b) \geq 1 - s_i \ \text{and} \ s_i \geq 0 \ \text{for all} \ i = 1, \dots, n \end{aligned}$$

where C > 0 is the "goodness-of-fit strength"

- The slack $s_i \ge 0$ measures the distance by which x_i violates the desired inequality $y_i(\langle x_i, w \rangle + b) \ge 1$
- A vector x_i with $0 < y_i(\langle x_i, w \rangle + b) < 1$ is correctly classified but is an outlier, since $s_i > 0$
- If we omit outliers, training data is correctly classified by the hyperplane $\{x \in \mathbb{R}^d : \langle x, w \rangle + b = 0\}$ with a margin $1/\|w\|_2^2$
- The margin $1/||w||_2^2$ is called a **soft-margin** (in the non-separable case), while it is a **hard-margin** in the separable case

Linear SVM: non-separable case

So, we arrived at:

$$\begin{aligned} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}, s \in \mathbb{R}^n} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n s_i \\ & \text{subject to} \quad y_i(\langle x_i, w \rangle + b) \geq 1 - s_i \quad \text{and} \quad s_i \geq 0 \quad \text{for all} \quad i = 1, \dots, n \end{aligned}$$

Once again:

- This problem admits a unique solution
- It is a quadratic programming problem

The constant C > 0 is chosen using V-fold cross-valiation

Lagrangian

$$L(w, b, s, \alpha, \beta) = \frac{1}{2} ||w||_{2}^{2} + C \sum_{i=1}^{n} s_{i}$$

$$+ \sum_{i=1}^{n} \alpha_{i} (1 - s_{i} - y_{i} (\langle w, x_{i} \rangle + b)) - \sum_{i=1}^{n} \beta_{i} s_{i}$$

At optimum, let's again:

- ullet set the gradients ∇_w , ∇_b and ∇_s to zero
- write the complementary conditions

$$\nabla_{w}L(w,b,s,\alpha,\beta) = w - \sum_{i=1}^{n} \alpha_{i}y_{i}x_{i} = 0 \quad \text{i.e.} \quad w = \sum_{i=1}^{n} \alpha_{i}y_{i}x_{i}$$

$$\nabla_{b}L(w,b,s,\alpha,\beta) = -\sum_{i=1}^{n} \alpha_{i}y_{i} = 0 \quad \text{i.e.} \quad \sum_{i=1}^{n} \alpha_{i}y_{i} = 0$$

$$\nabla_{s}L(w,b,s,\alpha,\beta) = C - \alpha_{i} - \beta_{i} = 0 \quad \text{i.e.} \quad \alpha_{i} + \beta_{i} = C$$

and the complementary condition

$$lpha_iig(1-s_i-y_i(\langle w,x_i
angle+b)ig)=0$$
 i.e. $lpha_i=0$ or $y_i(\langle w,x_i
angle+big)=1-s_i$ $eta_is_i=0$ i.e. $eta_i=0$ or $s_i=0$

for all $i = 1, \ldots, n$

This means that

- $w = \sum_{i=1}^{n} \alpha_i y_i x_i$
- If $\alpha_i \neq 0$ we say that x_i is a support vector and in this case $y_i(\langle w, x_i \rangle + b) = 1 s_i$
 - If $s_i = 0$ then x_i belongs to a margin hyperplane
 - If $s_i \neq 0$ then x_i is an outlier and $\beta_i = 0$ and then $\alpha_i = C$

Support vectors either belong to a marginal hyperplane, or are outliers with $\alpha_i = \mathcal{C}$

Dual problem

• Plugging $w = \sum_{i=1}^{n} \alpha_i y_i x_i$ in $L(w, b, s, \alpha, \beta)$ leads to the same formula as before

$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

with the constraints

$$\alpha_i \ge 0, \quad \beta_i \ge 0, \quad \sum_{i=1}^n \alpha_i y_i = 0, \alpha_i + \beta_i = C$$

that can be rewritten for as

$$0 \leq \alpha_i \leq C, \quad \sum_{i=1}^n \alpha_i y_i = 0$$

for all $i = 1, \ldots, n$

Leading to the following dual problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

subject to
$$0 \le \alpha_i \le C$$
 and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

 This is the same problem as before, but with the extra constraint

$$\alpha_i \leq C$$

It is again a convex quadratic program

As in the linearly separable case, the label prediction is expressed using the dual variables as

$$x \mapsto \operatorname{sgn}(\langle w, x \rangle + b) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} \langle x, x_{i} \rangle + b\right)$$

The intercept b can be expressed for a support vector x_i such that $0 < \alpha_i < C$ as

$$b = y_i - \sum_{i=1}^n \alpha_j y_j \langle x_i, x_j \rangle$$

A very important remark

The dual problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

subject to
$$0 \le \alpha_i \le C$$
 and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

and the label prediction (using dual variables)

$$x \mapsto \operatorname{sgn}(\langle w, x \rangle + b) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

depends only on the features x_i via their **inner products** $\langle x_i, x_j \rangle$!

This will be particularly important next week: kernel methods

The hinge loss

Going back to the primal problem

$$\begin{aligned} & \min_{w \in \mathbb{R}^d, b \in \mathbb{R}, s \in \mathbb{R}^n} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n s_i \\ & \text{subject to} \quad y_i(\langle x_i, w \rangle + b) \geq 1 - s_i \quad \text{and} \quad s_i \geq 0 \quad \text{for all} \quad i = 1, \dots, n \end{aligned}$$

We remark that it can be rewritten as

$$\underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \max \Big(0, 1 - y_i \big(\langle x_i, w \rangle + b \big) \Big).$$

Introducing the hinge loss

$$\ell(y, y') = \max(0, 1 - yy') = (1 - yy')_+,$$

the problem can be written as

$$\underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b).$$

Leads to an alternative understanding of the linear SVM.

Recalling that the 0/1 loss given by

$$\ell_{0/1}(y,z)=\mathbf{1}_{yz\leq 0},$$

we can understand the linear SVM, as an approximation of the problem

$$\underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \mathbf{1}_{y_i(\langle x_i, w \rangle + b) \leq 0},$$

which is impossible numerically (NP-hard)

Hinge loss is a **convex surrogate** for the 0/1 loss

The losses we've seen so far for classification

$$\begin{split} \ell_{0-1}(y,y') &= \mathbf{1}_{yy' \leq 0} \quad \ell_{\mathsf{hinge}}(y,y') = (1-yy')_+ \\ \ell_{\mathsf{logistic}}(y,y') &= \mathsf{log}(1+e^{-yy'}). \end{split}$$

Grandmother's recipe:

Grandmother's recipes for logistic regression vs linear SVM

Logistic regression

- Logistic regression has a nice probabilistic interpretation
- Relies on the choice of the logit link function

SVM

• No model, only aims at separating points

No one is not better than the other in general. Depends on the data.

Once again, what is always important though is the **construction**of the features you'll use for training

Features engineering and kernel methods

- Given raw features $x_1, \ldots, x_n \in \mathbb{R}^d$, we can construct **new** features
- For instance, we can add second order polynomials of the features

$$x_j^2, x_j x_k$$
 for any $1 \le j, k \le d$

• It increases the number of features, hence the dimension of the model weights w learned from it

A feature map

- ullet Consider a feature map $\varphi:\mathbb{R}^d o oldsymbol{H}$ that adds all these new features
- H is an Hilbert space (eventually infinite dimensional), endowed with an inner product $\langle \cdot, \cdot \rangle_H$
- The decision boundary $x \to \langle w, \varphi(x) \rangle + b = 0$ is **not an** hyperplane anymore (but $\varphi(x) \to \langle w, \varphi(x) \rangle + b = 0$ is)

A common belief: **increasing dimension** of features space makes data **almost linearly separable**

The **polynomial** mapping $\varphi : \mathbb{R}^2 \to \mathbb{R}^6$ for $x = (x_1, x_2) \in \mathbb{R}^2$

$$\varphi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1)$$

solves the XOR (Exclusive OR) classification problem

XOR : label y_i is blue iff one of the coordinates of x_i equals 1.

- ullet Blue and red points cannot be linearly separated in \mathbb{R}^2
- But **they can using the mapping** φ , using the hyperplane $x_1x_2 = 0$

This mapping φ is call **polynomial mapping of order 2**.

Note that for $x, x' \in \mathbb{R}^2$ we have

$$\langle \varphi(x), \varphi(x') \rangle = \left\langle \begin{bmatrix} x_1^2 \\ x_1^2 \\ x_2^2 \\ \sqrt{2}x_1x_2 \\ \sqrt{2}x_1 \\ \sqrt{2}x_2 \end{bmatrix}, \begin{bmatrix} x_1^2 \\ x_1'^2 \\ x_2'^2 \\ \sqrt{2}x_1'x_2' \\ \sqrt{2}x_1' \\ \sqrt{2}x_2' \\ 1 \end{bmatrix} \right\rangle$$

$$= (x_1x_1' + x_2x_2' + 1)^2$$

$$= (\langle x, x' \rangle + 1)^2$$

This motivates the definition of

$$K(x, x') = \langle \varphi(x), \varphi(x') \rangle = (\langle x, x' \rangle + c)^q$$

where $q \in \mathbb{N} - \{0\}$ and c > 0. In this case K is called the polynomial **kernel** of degree q.

Given a "raw feature" space \mathcal{X} (often $\mathcal{X} = \mathbb{R}^d$), a function

$$K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

is called a **kernel** over \mathcal{X} .

Definition. We say that a kernel K is **symmetric** iff

$$K(x,x')=K(x',x)$$

for any $x, x' \in \mathcal{X}$

Definition. We say that a kernel is PDS (positive definite symetric) iff

- it is symmetric
- ullet for any $N\in\mathbb{N}$ and any $\{x_1,\ldots x_N\}\subset\mathcal{X}$ we have

$$\mathbf{K} = [K(x_i, x_j)]_{1 \leq i, j \leq N} \succeq 0$$

meaning that \boldsymbol{K} is positive semi-definite (symmetric), or equivalently that

$$u^{\top} \mathbf{K} u = \sum_{1 \leq i, j \leq N} u_i u_j K(x_i, x_j) \geq 0$$

for any $u \in \mathbb{R}^N$, or equivalently that all eigenvalues of K are non-negative.

For a sample x_1, \ldots, x_n we call $\mathbf{K} = [K(x_i, x_j)]_{1 \le i, j \le n}$ the **Gram matrix** of this sample.

Definition. Hadamard product $A \odot B$ between two matrices A and B (or vectors) with the same dimensions is given by

$$(\mathbf{A} \odot \mathbf{B})_{i,j} = \mathbf{A}_{i,j} \odot \mathbf{B}_{i,j}$$

Theorem. The sum, product, pointwise limit and composition with a power series $\sum_{n\geq 0} a_n x^n$ with $a_n\geq 0$ for all $n\geq 0$ preserves the PDS property.

Proof. Consider two $N \times N$ Gram matrices K, K' of PDS kernels K, K' and take $u \in \mathbb{R}^N$. Observe that

$$u^{\top}(\mathbf{K} + \mathbf{K}')u = u^{\top}\mathbf{K}u + u^{\top}\mathbf{K}'u \geq 0$$

So PDS is preserved by the sum and finite sums by reccurence.

Now, to prove that the product $K \odot K'$ is PDS, write $K = MM^{\top}$, where M is the square-root of K (which is SDP) and note that

$$u^{\top}(\mathbf{K} \odot \mathbf{K}')u = \sum_{1 \leq i,j \leq N} u_i u_j \mathbf{K}_{i,j} \mathbf{K}'_{i,j} = \sum_{1 \leq i,j \leq N} \sum_{k=1}^{N} u_i u_j \mathbf{M}_{i,k} \mathbf{M}_{k,j} \mathbf{K}'_{i,j}$$
$$= \sum_{k=1}^{N} z_k^{\top} \mathbf{K}' z_k \geq 0$$

with $z_k = u \odot \mathbf{M}_{\bullet,k}$.

This proves that finite products of PDS kernels is PDS.

Assume that $K_n \to K$ as $n \to +\infty$ pointwise, where K_n is a sequence of PDS kernels.

It means that any associated sequence of Gram matrices K_n and the its limit K satisfies $K_n \to K$ entrywise, so that for any $u \in \mathbb{R}^N$ we have

$$u^{\top} \mathbf{K}_n u \rightarrow u^{\top} \mathbf{K} u$$

so $u^{\top} \mathbf{K} u \geq 0$ since $u^{\top} \mathbf{K}_n u \rightarrow u$ for all n.

This proves stability of PDS property under pointwise limit.

Now, let K be a kernel such that |K(x,x')| < r for all $x,x' \in \mathcal{X}$ and $\sum_{n\geq 0} a_n x^n$ a power series with radius of convergence r.

By stability under sum and product, we have that

$$\sum_{k=0}^{N} a_n K^n$$

is PDS, and

$$\lim_{N\to+\infty}\sum_{n=0}^N a_n K^n = \sum_{n>0} a_n K^n$$

remains PDS since PDS is kept under pointwise limit.

This concludes the proof of the theorem.

Theorem. The following inequality holds for K, K' two PDS kernels

$$K(x,x')^2 \le K(x,x)K(x',x')$$

for any $x, x' \in \mathcal{X}$. It is called the **Cauchy-Schwartz inequality** for PSD kernels.

Proof. Take $x, x' \in \mathcal{X}$ and consider the Gram matrix

$$\mathbf{K} = \begin{bmatrix} K(x,x) & K(x,x') \\ K(x',x) & K(x',x') \end{bmatrix}.$$

Since K is PDS, then $K \succeq 0$, which entails that

$$0 \le \det \mathbf{K} = K(x, x)K(x', x') - K(x, x')^2$$

Theorem [Reproducing kernel Hilbert space]. Let $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PDS kernel. Then, there is a Hilbert space $\mathbf{H} \subset \mathbb{R}^{\mathcal{X}}$ endowed with an inner product $\langle \cdot, \cdot \rangle$ and a mapping $\varphi: \mathcal{X} \to \mathbf{H}$ such that

$$K(x, x') = \langle \varphi(x), \varphi(x') \rangle \tag{1}$$

and such that the reproducing property holds:

$$h(x) = \langle h, K(x, \cdot) \rangle$$

for any $h \in \mathbf{H}$ and $x \in \mathcal{X}$.

Remarks.

- $K(x, \cdot)$ means $x' \mapsto K(x, x')$
- ullet H is a space containing functions $\mathcal{X} o \mathbb{R}$
- (1) stresses the fact that a PDS kernel is some kind of similarity measure, since it is actually an inner product

- We say that H is a reproducting kernel Hilbert space associated to the kernel K.
- The Hilbert space H is called the features space associated to K
- The corresponding mapping $\varphi: \mathcal{X} \to \mathbf{H}$ is called the **features** mapping
- ${\pmb H}$ is endowed with an inner product $\langle h,h' \rangle$ for $h,h' \in {\pmb H}$ and a norm $\|h\| = \sqrt{\langle h,h \rangle}$
- The feature space might is not unique in general

The space \boldsymbol{H} is constructed as the completion of the subspace containing elements of the form

$$h(x) = \sum_{i=1}^{q} a_i K(x_i, x)$$

for $x_1, \ldots, x_N \in \mathcal{X}$ and $a_1, \ldots, a_N \in \mathbb{R}$

In summary

- Choose a kernel K you think relevant, if it's PDS, then there is a mapping φ and a RKHS \mathbf{H} for it
- Feature engineering becomes kernel engineering with kernel methods

Definition. The **normalized kernel** K' associated to a kernel K is given by

$$K'(x,x') = \frac{K(x,x')}{\sqrt{K(x,x)K(x',x')}}$$

if K(x,x)K(x',x') > 0 and K(x,x') = 0 otherwise.

Theorem. If K is a PDS kernel, its normalized kernel K' is PDS.

Remark. We have that K(x,x') is the cosine of the angle between $\varphi(x)$ and $\varphi(x')$ if K is a normalized kernel (if none is zero). Once again, K(x,x') is a similarity measure between x and x'

Proof. Let $x_1, \ldots, x_N \in \mathcal{X}$ and $c \in \mathbb{R}^N$. If $K(x_i, x_i) = 0$ or $K(x_j, x_j) = 0$ then $K(x_i, x_j) = 0$ using Cauchy-Schwartz, so $K'(x_i, x_j) = 0$.

So, we can assume $K(x_i, x_i) > 0$ for all i = 1, ..., N and write the following:

$$\sum_{1 \leq i,j \leq N} \frac{c_i c_j K(x_i, x_j)}{\sqrt{K(x_i, x_i)K(x_j, x_j)}} = \sum_{1 \leq i,j \leq N} \frac{c_i c_j \langle \varphi(x_i), \varphi(x_j) \rangle}{\|\varphi(x_i)\| \|\varphi(x_j)\|}$$
$$= \left\| \sum_{i=1}^{N} \frac{c_i \varphi(x_i)}{\|\varphi(x_i)\|} \right\| \geq 0$$

which proves the theorem.

Remark. If K is a normalized kernel, then

$$\|\varphi(x)\| = \langle \varphi(x), \varphi(x) \rangle = K(x, x) = 1$$

for any $x \in \mathcal{X}$

The polynomial kernel. For c>0 and $q\in\mathbb{N}-\{0\}$ we define the polynomial kernel

$$K(x,x')=(\langle x,x'\rangle+c)^q.$$

It is a PDS kernel

Proof. It is the power of the PDS kernel $(x, x') \mapsto \langle x, x' \rangle + b$.

We already computed its mapping $\varphi(x)$: it contains all the monomials of degree less than q of the coordinates of x

The RBF kernel (Radial Basis Function). For $\gamma > 0$ it is given by

$$K(x, x') = \exp(-\gamma ||x - x'||_2^2)$$

Theorem. The RBF kernel is a PDS and normalized kernel.

Proof. First remark that

$$\exp(-\gamma \|x - x'\|_{2}^{2}) = \frac{\exp(2\gamma \langle x, x' \rangle)}{\exp(\gamma \|x\|^{2}) \exp(\gamma \|x'\|^{2})}$$
$$= \frac{K'(x, x')}{\sqrt{K'(x, x)K'(x', x')}}$$

with $K'(x,x') = \exp(2\gamma\langle x,x'\rangle)$ and that K' is PDS since

$$K'(x,x') = \sum_{n>0} \frac{(2\gamma\langle x,x'\rangle)^n}{n!}$$

namely a series of the PDS kernel $(x, x') \mapsto 2\gamma \langle x, x' \rangle$.

The tanh kernel. Also called the sigmoid kernel

$$\mathcal{K}'(x,x') = \tanh(a\langle x,x'\rangle + c) = \frac{e^{a\langle x,x'\rangle + c} - e^{a\langle x,x'\rangle + c}}{e^{a\langle x,x'\rangle + c} + e^{a\langle x,x'\rangle + c}}$$

for a, c > 0. It is again a PDS kernel (same argument as for the RBF kernel).

Remark. By far, the RBF kernel is the most widely used: uses as a similarity measure the Euclidean norm

Kernel based algorithms how to use kernels for classification and regression?

• Let's recall the primal and dual formulation of the SVM

Linear SVM. Primal problem is

$$\min_{w\in\mathbb{R}^d,b\in\mathbb{R},s\in\mathbb{R}^n}\frac{1}{2}\|w\|_2^2+C\sum_{i=1}^ns_i$$
 subject to $y_i(\langle x_i,w\rangle+b)\geq 1-s_i$ and $s_i\geq 0$ for all $i=1,\ldots,n$ or equivalently

$$\underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b)$$

where $\ell(y,y')=\max(0,1-yy')=(1-yy')_+$ is the hinge loss Label prediction given by

$$y = \operatorname{sgn}\left(\langle x, w \rangle + b\right)$$

Kernel SVM: replace x_i by $\varphi(x_i)$. In the primal this leads to

$$\underset{w \in \mathbb{R}^d, b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \ell(y_i, \langle \varphi(x_i), w \rangle + b)$$

Label prediction is given by

$$y = \operatorname{sgn}(\langle \varphi(x), w \rangle + b)$$

In the primal, you need to compute $\varphi(x)$!

Dual problem is

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

subject to
$$0 \le \alpha_i \le C$$
 and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

and the label prediction using dual variables

$$x \mapsto \operatorname{sgn}(\langle w, x \rangle + b) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

depends only on the features x_i via their inner products $\langle x_i, x_j \rangle$

Fundamental remark. The dual problem depends only on the features via their inner products

Given some kernel K, let's replace the "raw" inner products $\langle x_i, x_j \rangle$ by the "new" inner products $K(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle$

The kernel trick. Once again, to train the SVM with a kernel, you don't need to know or compute the $\varphi(x_i)$

The kernel SVM

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

subject to $0 \le \alpha_i \le C$ and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

and the label prediction using dual variables

$$x \mapsto \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} K(x, x_{i}) + b\right)$$

with the intercept given by

$$b = y_i - \sum_{i=1}^n \alpha_j y_j K(x_j, x_i)$$

for any i such that $0 < \alpha_i < C$ (cf previous lecture)

This proves that the hypothesis solution writes

$$h(x) = \operatorname{sgn}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} K(x, x_{i}) + b\right),\,$$

namely a combination of functions $K(x_i, \cdot)$ where x_i are the support vectors.

For the RBF kernel, the decision function is

$$x \mapsto \sum_{i:\alpha_i \neq 0} \alpha_i y_i \exp\left(-\gamma \|x - x_i\|_2^2\right) + b$$

It is a mixture of Gaussian "densities". Let's recall that the x_i with $\alpha_i \neq 0$ are the support vectors

$$x \mapsto \sum_{i:\alpha_i \neq 0} \alpha_i y_i \exp\left(-\gamma \|x - x_i\|_2^2\right) + b$$

The kernel trick is not only for the SVM

Representer theorem. If K is a PDS kernel and H its corresponding RKHS, we have that for any increasing function g and any function $L: \mathbb{R}^n \to \mathbb{R}$ that the optimization problem

$$\underset{h \in \mathbf{H}}{\operatorname{argmin}} g(\|h\|) + L(h(x_1), \dots, h(x_n))$$

admits only solutions of the form

$$h=\sum_{i=1}^n\alpha_iK(x_i,\cdot).$$

Kernel ridge regression.

- Consider this time a continuous label $y_i \in \mathbb{R}$, features $x_i \in \mathcal{X}$ for i = 1, ..., n and a features mapping $\varphi : \mathcal{X} \to \boldsymbol{H}$ with PDS kernel K
- Kernel ridge regression considers the problem

$$\underset{w}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \ell(y_{i}, \langle w, \varphi(x_{i}) \rangle) + \frac{\lambda}{2} \|w\|_{2}^{2} \right\}$$

where λ is a penalization parameter, and $\ell(y,y')=\frac{1}{2}(y-y')^2$ is the least-squares loss

Can be written as

$$\underset{w}{\operatorname{argmin}} F(x) \quad \text{with} \quad F(w) = \|y - Xw\|_2^2 + \lambda \|w\|_2^2$$

with \boldsymbol{X} the matrix with rows containing the $\varphi(x_i)$ and $y = [y_1 \cdots y_n] \in \mathbb{R}^n$

This problem is strongly convex, and admits a global minimum iff

$$\nabla F(w) = 0$$
 namely $(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})w = \boldsymbol{X}^{\top}y$

- Note that $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}$ is always invertible. Thus kernel ridge allows admits a closed-form solution
- Requires to solve a $D \times D$ linear system, where D is the dimension of H
- What if *D* is large ?
- Let's us the kernel trick, as we did for SVM

ullet Representer theorem says that we can find lpha such that

$$h(x) = \langle w, \varphi(x) \rangle = \sum_{i=1}^{n} \alpha_i K(x_i, x) = \sum_{i=1}^{n} \alpha_i \langle \varphi(x_i), \varphi(x) \rangle$$

for any $x \in \mathcal{X}$

This means that

$$\mathbf{w} = \mathbf{X}^{\top} \alpha$$

Now, use the following trick: for any matrix \boldsymbol{X} , we have

$$(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top} = \boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{X}^{\top} + \lambda \boldsymbol{I})^{-1}$$

This entails

$$w = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y} = \boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{X}^{\top} + \lambda \boldsymbol{I})^{-1}\boldsymbol{y}$$

which gives (note that $(\boldsymbol{X}\boldsymbol{X}^{\top})_{i,j} = \langle \varphi(x_i), \varphi(x_i) \rangle = K(x_i, x_i)$)

$$\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

Proof of the trick. Note that

$$(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})\mathbf{X}^{\top} = \mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I}).$$

Multiplying on the left by $(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}$ leads to

$$\mathbf{X}^{\top} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I}).$$

and then on the right by $(\boldsymbol{X}\boldsymbol{X}^{\top} + \lambda \boldsymbol{I})^{-1}$ concludes with

$$(\boldsymbol{X}\boldsymbol{X}^{\top} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}$$

A cute trick. But let's do it like we did for the SVMs (just to be sure...)

An alternative formulation of

$$\min_{w} \sum_{i=1}^{n} (y_i - \langle w, \varphi(x_i) \rangle)^2 + \lambda ||w||_2^2$$

is given by

$$\min_{w} \sum_{i=1}^{n} (y_i - \langle w, \varphi(x_i) \rangle)^2 \text{ subject to } \|w\|_2^2 \le r^2$$

and also

$$\min_{w} \sum_{i=1}^{n} s_i^2$$
 subject to $\|w\|_2^2 \le r^2$ and $s_i = y_i - \langle w, \varphi(x_i) \rangle$

Which leads to the following Lagrangian

$$L(w, s, \alpha, \lambda) = \min_{w} \sum_{i=1}^{n} s_i^2 + \min_{w} \sum_{i=1}^{n} \alpha_i (y_i - s_i - \langle w, \varphi(x_i) \rangle) + \lambda(\|w\|_2^2 - r^2)$$

so that the KKT conditions leads to the following properties:

$$\nabla_{w}L = -\sum_{i=1}^{n} \alpha_{i}\varphi(x_{i}) + 2\lambda w \Rightarrow w = \frac{1}{2\lambda} \sum_{i=1}^{n} \alpha_{i}\varphi(x_{i})$$
$$\nabla_{s_{i}}L = 2s_{i} - \alpha_{i} \Rightarrow s_{i} = \alpha_{i}/2$$

and the slackness complementary conditions:

$$\alpha_i(y_i - s_i - \langle w, \varphi(x_i) \rangle) = 0$$
 and $\lambda(\|w\|_2^2 - r^2) = 0$

Plugging the expressions of w and s_i in functions of α in L gives after some algebra the dual objective

$$D(\alpha) = -\lambda \sum_{i=1}^{n} \alpha_i^2 + 2 \sum_{i=1}^{n} \alpha_i y_i$$
$$- \sum_{1 \le i, j \le n} \alpha_i \alpha_j \langle \varphi(x_i), \varphi(x_j) \rangle - \lambda r^2$$

(where we replaced $2\lambda\alpha_i$ by α_i) which can be written matricially as

$$D(\alpha) = -\lambda \|\alpha\|_2^2 + 2\langle \alpha, y \rangle - \alpha^\top \mathbf{X} \mathbf{X}^\top \alpha$$

= $2\langle \alpha, y \rangle - \alpha^\top (\mathbf{K} + \lambda \mathbf{I}) \alpha$

with optimum achieved for

$$\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

(same as before, of course...)

In summary

- Solving a problem in the dual benefits from the kernel trick
- Allows to construct complex non-linear decision functions
- OK if n is not too large... (if the $n \times n$ Gram matrix K fits in memory)
- Otherwise, stick to the primal!
- But don't forget about feature engineering (yes, again !)

Next week. We have seen a lot of problem of the form

$$\underset{w}{\operatorname{argmin}} f(w) + g(w)$$

with f a goodness-of-fit function and g is a penalization

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle w, x_i \rangle)$$
 $g(w) = \frac{1}{C} \operatorname{pen}(w)$

where ℓ is some loss and where pen is some penalization function, examples being $\text{pen}(w) = \frac{1}{2}\|w\|_2^2$ (ridge) and $\text{pen}(w) = \|w\|_1$ (Lasso)

Next week we'll learn how to solve this kind of problems using **optimization algorithms** (deterministic and stochastic)

Thank you!