- 1. a. escalar b. vectorial c. escalar d. vectorial e. vectorial f. escalar
- 2. a. i. (9,6) ii. (0, 1) iii. (-1, -1) iv. (4, 1) v. $\left(3, -\frac{4}{3}\right)$
 - b. i. (4, 2, 0) ii. (4, -2, 1) iii. (-1, 0, 0)
- 3.

$$\vec{v} = \left(\frac{3\sqrt{2}}{2}; \frac{3\sqrt{2}}{2}\right)$$
 b. $\vec{v} = \left(1; \sqrt{3}\right)$ c. $\vec{v} = \left(-\frac{1}{2}; -\frac{\sqrt{3}}{2}\right)$

- 4. La fuerza resultante es de, aproximadamente, 97,73 N
- 5. a. $\left\| \overrightarrow{OP} \right\| = \sqrt{10}$ $\left\| \overrightarrow{OQ} \right\| = \sqrt{10}$ $\left\| \overrightarrow{OR} \right\| = \sqrt{14}$ $\left\| \overrightarrow{OS} \right\| = \sqrt{13}$

b.
$$\|\overrightarrow{PQ}\| = 2\sqrt{5}$$

c. d(P, Q) =
$$2\sqrt{5}$$

d. d(R, S) =
$$\sqrt{17}$$

$$e.\left(\frac{\sqrt{14}}{7}, \frac{3\sqrt{14}}{14}, \frac{\sqrt{14}}{14}\right)$$

- 6. $\left(\frac{5\sqrt{2}}{2}, \frac{5\sqrt{2}}{2}\right) y \left(-\frac{5\sqrt{2}}{2}, -\frac{5\sqrt{2}}{2}\right)$
- 7 a $\overrightarrow{v.u} = 5$, \overrightarrow{w} . $(2\overrightarrow{u} \overrightarrow{v}) = -12$, \overrightarrow{v} . $(\overrightarrow{w} + \overrightarrow{u}) = 19$
 - b. El ángulo comprendido entre \overline{u} y \overline{v} es de aproximadamente 1,38 radianes. El ángulo comprendido entre \overline{v} y \overline{w} es de aproximadamente 0,886 radianes.
 - c. $\overline{u} \times \overline{v} = (9, 23, 10) \overline{u} \times \overline{w} = (-1, 6, 16)$
 - d. $k(14, -7, 7) con k \in R$
- 8. a. k = -3 b. k = -17
- 9. i. $X = (0 \ 2) + \lambda (2 \ -1)$ $\lambda \in R$ ii. $X = (0 \ 3) + \lambda (1 \ -1)$ $\lambda \in R$ iii. $X = \begin{pmatrix} 1 \ \frac{2}{3} \end{pmatrix} + \lambda (3 \ 1)$ $\lambda \in R$ iv. $X = \lambda (3 \ 1)$ $\lambda \in R$
- 10. i. $X = (1 \ 3 \ -1) + \lambda (0 \ 1 \ 2) \ \lambda \in R$ ii. $X = (1 \ 2 \ -1) + \lambda (1 \ -1 \ 2) \ \lambda \in R$ iii. $X = (3 \ 2 \ -1) + \lambda (1 \ 4 \ -6) \ \lambda \in R$ iv. Una posibilidad es $X = (-3 \ 2 \ 1) + \lambda (2 \ 1 \ 0) \ \lambda \in R$. No es única.
- 11.
 - i. Son concurrentes. Se intersecan en el punto (1 -2 5)
 - ii. Son alabeadas.
 - iii. Son paralelas.
 - iv. Son coincidentes.

- 12. a. Dos puntos del plano podrían ser (1, 0, -1) y (0, 1, 0).
 - b. Un versor normal podría ser $\left(\frac{3\sqrt{14}}{14} \quad \frac{\sqrt{14}}{14} \quad \frac{\sqrt{14}}{7}\right)$
 - c. La intersección del plano con cada uno el eje x es $\left(\frac{1}{3};0;0\right)$, con el eje y (0; 1; 0) y con el eje z $\left(0;0;\frac{1}{2}\right)$
 - d. Con el plano xy: X = $t(1; -3; 0) + (0; 1; 0), t \in R$ Con el plano yz: $X = t. (0; -2; 1) + (0; 1; 0), t \in R$

Con el plano xz: $X = t.\left(1; \ 0; -\frac{3}{2}\right) + (0; 0; \frac{1}{2})$, $t \in R$

- e. 3x + y + 2z = 1
- f. X = (1, -1, 0) + λ (3, 1, 2) con $\lambda \in R$
- 13. a. i. -x + 3y 6z = 16 ii. -2y + z = 6
 - b. i. x + z = 1 ii. -13x + 6y + 11z = 1
 - c. y = 0
 - d. 2x + 4y 3z = -18
 - e. x + 2y + 2z = -2
 - f. 2x y + 4z = 3
- 14.
- a. $X = \lambda (153) + (001) \text{ con } \lambda \in R$
- b. $X = \lambda$ (-8 5 7) + $\left(\frac{17}{7} \frac{1}{7} \ 0\right)$ con $\lambda \in R$
- c. No hay intersección
- d. (2-1 -3)
- $e.\left(0\ -\frac{3}{2}\ \frac{3}{2}\right)$
- 15
- a. Π : 5x + 2y + 7z = 19 r: X = λ (5 2 7) + (3 4 5) con $\lambda \in \mathbb{R}$
- b. $M = \left(\frac{1}{2} \ 3 \ \frac{3}{2}\right)$
- 16. a. -2x + 14y + 5z + 12 = 0
 - b. $k = \frac{7}{2}$