Deep Reinforcement Learning agents playing DOOM

Kashtanova Victoriya and Hurault Samuel

Reinforcement Learning Final Project

January, 29 2019

The RL problem to solve

Sensimotor control in a complex and dynamic **3-dimentional** envirionment"

Introduction DFP Arnold DFP with features Comparison Conclusion

Visual Doom AI Competition

Li	mited Death	match	Full Death	nmatch
Agent Name	Number of frags	K/D Ratio	Number of frags	K/D Ratio
5vision	142	0.41	12	0.20
AbyssII	118	0.40	-	-
Arnold	413	2.45	164	33.40
CLYDE	393	0.94	-	-
ColbyMules	131	0.43	18	0.20
F1	559	1.45	-	-
IntelAct	-	-	256	3.58
Ivomi	-578	0.18	-2	0.09
TUHO	312	0.91	51	0.95
WallDestroyerXxx	-130	0.04	-9	0.01

Figure: Results of the Visual Doom AI Competition 2016. Scores marked with '-' indicate that the agent did not participate in the corresponding track. The best results in each column are marked in bold¹.

¹Devendra Singh Chaplot and Guillaume Lample. "Arnold: An Autonomous Agent to Play FPS Games". In: AAAI. 2017.

Project objectives

- 2 methods :
 - Learning To Act by Prediction the Future (**DFP**)²
 - Playing FPS Games with Deep Reinforcement Learning (Arnold)³
- Replicates each article's main results in Doom
- Optimize the methods
- Evaluation of the methods in an other environment

²Alexey Dosovitskiy and Vladlen Koltun. "Learning to Act by Predicting the Future". In: *CoRR* abs/1611.01779 (2016). arXiv: 1611.01779. URL: http://arxiv.org/abs/1611.01779.

³Guillaume Lample and Devendra Singh Chaplot. "Playing FPS Games with Deep Reinforcement Learning.". In: *Proceedings of AAAI*. 2017. ■ ► ■ ▼ ↑ № ■

Introduction to the DFP model

Learning To Act by Prediction the Future

At each game time step t: predict future measurements

Introduction to the DFP model

Introduction to the DFP model

We want to specify which measurements we care about at any given time

At each game time step t:

The model

- No scalar reward.
- Trained on experiences previously collected : Supervised learning
- Predict future measurement for 3 different future time steps $\tau = (8, 16, 32)$.

Experiments

Two given scenarios :

Name	Health gathering	Battle
Image	30x 30x 0x 150 150	30 888 1
Nb Actions	4	8
Measurements	(Health)	(Ammo,Health,Kills)

Health Gathering scenario

• Basic training from the article : episode limited to 525 steps.

Figure: Health at the end of an episode during training

Figure: Life time during training for the 2 different *episode_timeout* values.

Training Testing	short episodes	long episodes
short episodes	517	509
long episodes	658	1166

Figure: Life time (Number of step of an episode)

Health Gathering scenario

• Battle original learning. Fixed goal vector input (0.5, 0.5, 1) during training and testing.

Figure: Average number of kills per episodes during learning.

• Training with short and long episodes

Training Testing	short episodes	long episodes
long episodes	9.8	15.9

Figure: Average number of kills

• Choice of the input goal vector at inference time (Ammo, Health, Kills).

Training Testing	(0.5, 0.5, 1)	Random goal in $\left[-1,1\right]$
(0.5, 0.5, 1)	15.9	13.5
(1, 1, 1)	15.2	14.7
(0,0,1)	1.6	2.4

Figure: Average Kill count for varying input goal vectors.

Arnold's model⁴

Are there any enemies?
and
Is there any ammo left?

No

Yes

Navigation (DQN)
(move forward,
turn left and turn right)

Action (DRQN)

Deep Q-Networks (Navigation)

Deep Recurrent Q-Networks (Action)

Deep Recurrent Q-Networks (Action)

Figure: Initial DRQN model⁵.

Deep Recurrent Q-Networks (Action)

Figure: DRQN model with features⁶.

⁶Guillaume Lample and Devendra Singh Chaplot. "Playing FPS Games with Deep Reinforcement Learning.". In: *Proceedings of AAAI*. 2017.

Experiments: Health Gathering

Figure: Performances of the model during the training on Health gathering scenario.

Experiments: Deathmatch

Figure: Performances of the model during the training on Deathmatch scenario.

Health Gathering Video

Deathmatch Video

Use game features information on DFP

First strategy :

$$game features_t = egin{pmatrix} Medikit \ Poison \ Enemy \end{pmatrix} = egin{pmatrix} 1 \ 0 \ 1 \end{pmatrix} \ \dots \ egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} \ \dots$$

Use game features information on DFP

• Second strategy :

Experiments

Experiments

Training	Testing with goal $(0.5, 0.5, 1)$
Initial network	13.5
Method 1	15.6
Method 2	15.5

Figure: Average kill count with and without the "enemy" game feature information.

Comparison : Health gathering

Both methods learned on the very same scenario.

	DFP	Arnold
Life time (nb of steps)	4664	2058

Comparison : Defend the center

Methods learned on different battle scenarios.

	DFP	Arnold
Kill/Death	8.9	8.6

What we have done ...

- Comparison of two different RL formulations: Q-learning (Arnold) vs Supervised Learning (DFP).
- Replicated the main results of both articles.
- Improved the DFP network with ideas from the Q-learning network.

To go further ...

- Optimize the parameters.
- Use Arnold navigation / action network split on the DFP method.
- Adapt to an other 3D environment: CARLA (autonomous driving) and MINOS (Indoor navigation).