COEN 379 HW 5

1. 2-3 Tree: Insert OPENAIGM

Insert O:

Insert P:

Insert E:

Insert N:

Insert A:

Insert I:

Insert G:

Insert M:

Remove OPENAIGM

Remove O:

Remove P:

Remove E:

Remove N:

Remove A:

Remove I:

Remove G:

Remove M:

2. Treap: Insert OPENAIGM (7, 1, 4, 8, 2, 5, 3, 6)

Insert O:

Insert P(:

Insert E:

Insert N:

Insert A:

Insert I:

Insert G:

Insert M:

Remove OPENAIGM:

Remove O:

Remove P:

Remove E:

Remove N:

Remove A:

Remove I:

Remove G:

Remove M:

3. The expected number of nonleaves in a treap of size n (E[NL]) is related to the E[P] of homework 2 relating to partitions for random quicksort.

Looking at the structure of a treap, we notice that all of the nonleaves act just like pivot values, separating all lesser values to the left and all greater values to the right. Thus, we know that a treap can actually be a way to represent a partitioned array, and that all of the nonleaves can actually represent pivot values, meaning that E[NL] == E[P] == (2n-1)/3