Higher-Order Model Checking for Program Verification

Naoki Kobayashi Tohoku University

In collaboration with:

Ryosuke Sato, Naoshi Tabuchi, and Hiroshi Unno (Tohoku University)
Luke Ong (University of Oxford)

This Talk

- ♦ Overview of higher-order program verification based on higher-order model checking (or, the model checking of higher-order recursion schemes)
 - What is higher-order model checking?
 - How can program verification be reduced to higher-order model checking?
 - How can higher-order model checking problems be solved?

Goal: Software model checker for ML

Outline

- Higher-order recursion schemes and model checking
- ♦ From program verification to model checking of recursion schemes [K. POPLO9]
- ♦ Dealing with infinite data
 - From recursion schemes to higher-order transducers [K., Tabuchi, and Unno, POPL10]
 - Predicate abstraction and CEGAR [K., Sato, Unno, 2010]
- ♦ Model checking algorithms for recursion schemes [K. PPDP09]
- **♦** Conclusion

Higher-Order Recursion Scheme

♦ Grammar for generating an infinite tree

Higher-Order Recursion Scheme

♦ Grammar for nite tree Tree whose paths are labeled by Order-1 scheme $S \rightarrow A c$ $A \rightarrow \lambda x$. a x (A (b x))S: $o, A: o \rightarrow o$ $S \rightarrow A c \rightarrow a$ ć A(b c) c A(b(b c))

Model Checking Recursion Schemes

Given

G: higher-order recursion scheme

A: alternating parity tree automaton (APT) (a formula of modal μ -calculus or MSO), does A accept Tree(G)?

e.g.

- Does every finite path end with "c"?
- Does "a" occur eventually whenever "b" occurs?

```
n-EXPTIME-complete [Ong, LICS06] n = 2^{p(x)} (for order-n recursion scheme) n = 2^{p(x)}
```

TRecS [K., PPDP09]

http://www.kb.ecei.tohoku.ac.jp/~koba/trecs/

Why Recursion Schemes?

- **♦** Expressive:
 - Subsumes many other MSO-decidable tree classes (regular, algebraic, Caucal hierarchy, HPDS, ...)
- High-level (c.f. higher-order PDS):
 - Recursion schemes

 \approx

Simply-typed λ -calculus

- + recursion
- + tree constructors (but not destructors)
- + finite data domains such as booleans (via Church encoding, true=λx.λy.x, false=λx.λy.y)
- + infinite data with a restricted set of primitives

Suitable models for higher-order programs

Outline

- Higher-order recursion schemes and model checking
- ♦ From program verification to model checking of recursion schemes [K. POPLO9]
- ♦ Dealing with infinite data
 - From recursion schemes to higher-order transducers [K., Tabuchi, and Unno, POPL10]
 - Predicate abstraction and CEGAR [K., Sato, Unno, 2010]
- ♦ Model checking algorithms for recursion schemes [K. PPDP09]
- **♦** Conclusion

From Program Verification to Model Checking Recursion Schemes [K. POPL 2009]

Sound, complete, and automatic for:

- Simply-typed λ -calculus + recursion
 - + finite base types (e.g. booleans)
- A large class of verification problems:

From Program Verification to Model Checking: Example

```
F \times k \rightarrow + (c k) (r(F \times k))
let f(x) =
  if * then close(x)
  else read(x); f(x)
in
let y = open "foo"
in
     f (y)
  Is the file "foo"
accessed according
                                 Is each path of the tree
  to read* close?
                                      labeled by r*c?
```

From Program

continuation parameter, expressing how "foo" is accessed after the call returns

let f(x) =
 if * then close(x)
 else read(x); f(x)
in
let y = open "foo"
in
 f (y)

F x k \rightarrow + (c k) (r(F x k))

S \rightarrow F d \star CPS

Transformation!

Is the file "foo" accessed according to read* close?

Is each path of the tree labeled by r*c?

ing:

```
let f(x, y) =
  if * then
    close(x); close(y)
  else
    read(x); write(y);
    f(x, y)
let x = new^{r*c} () in
let y = new^{w*c} () in
     f (x, y)
                           access
```

recursion scheme generating a tree that represents resource-wise access sequence

```
let f(x, y) =
 if * then
   close(x); close(y)
 else
   read(x); write(y);
   f(x, y)
let x = new^{r^c} () in
let y = neww*c () in
    f(x, y)
```

```
S \rightarrow \text{new}^{r*c}
(\lambda x. \text{ new}^{W*c}(\lambda y. \text{ } F \times y \times ))
\text{new}^{r*c} \text{ } k \rightarrow + (v^{r*c} \text{ } (k \text{ } I)) \text{ } (k \text{ } K)
\text{I } \text{a } k \rightarrow \text{a } k \qquad \text{K } \text{a } k \rightarrow k
\text{close } x \text{ } k \rightarrow x \text{ } c \text{ } k
\dots
```

```
let f(x, y) =
  if * then
    close(x); close(y)
  else
    read(x); write(y);
    f(x, y)
let x = new^{r^*c} () in
let y = new^{w*c} () in
     f (x, y)
```

```
S \rightarrow \text{new}^{r^*c}
        (\lambda x. \text{ new}^{W^*c}(\lambda y. F \times y \star))
new^{r^*c} k \rightarrow + (v^{r^*c} (k I)) (k K)
Iak \rightarrow ak
                           K a k \rightarrow k
close x k \rightarrow x c k
  Non-deterministically choose
  whether or not to keep track
```

of the new resource

```
S \rightarrow \text{new}^{r^*c}
let f(x, y) =
                                                 (\lambda x. \text{ new}^{w^*c}(\lambda y. F \times y \star))
\text{new}^{r^*c} \quad k \to + (v^{r^*c} (k I)) \quad (k K)
   if * then
       close(x); close(y)
   else
                                                  Iak \rightarrow ak
                                                                                  K a k \rightarrow k
       read(x); write(y);
                                                 close x k \rightarrow x c k
       f(x, y)
                                                                         x is bound to I or K
let x = new^{r*c} () in
let y = new^{w*c} () in
                                                      close I k
                                                                                 close K k
         f (x, y)
                                                      \rightarrowI c k
                                                                                  \rightarrowK c k
                                                      \rightarrowc k
                                                                                  \rightarrowk
```

```
S \rightarrow \text{new}^{r^*c}
let f(x, y) =
                                                      (\lambda x. \text{ new}^{w^*c}(\lambda y. F \times y \star))
   if * then
                                               new^{r^*c} k \rightarrow + (v^{r^*c} (k I)) (k K)
      close(x); close(y)
   else
      read(x); write(y);
      f(x, y)
let x = new^{r*c} () in
let y = new^{w*c} () in
                                                                  FKI*
                                           FII *
       f (x, y)
```

```
S \rightarrow \text{new}^{r^*c}
let f(x, y) =
                                                         (\lambda x. \text{ new}^{W^*c}(\lambda y. F \times y \star))
   if * then
                                                 new^{r^*c} k \rightarrow + (v^{r^*c} (k I)) (k K)
      close(x); close(y)
   else
      read(x); write(y);
      f(x, y)
let x = new^{r^*c} () in
let y = new^{w^*c} () in
        f (x, y)
```

```
S \rightarrow \text{new}^{r^*c}
let f(x, y) =
                                                         (\lambda x. \text{ new}^{W^*c}(\lambda y. F \times y \star))
   if * then
                                                 new^{r^*c} k \rightarrow + (v^{r^*c} (k I)) (k K)
      close(x); close(y)
   else
      read(x); write(y);
      f(x, y)
let x = new^{r*c} () in
let y = new^{w*c} () in
        f (x, y)
```

From Program Verification to Model Checking Recursion Schemes

Sound, complete, and automatic for:

- A large class of higher-order programs: simply-typed λ -calculus + recursion
 - + finite base types (+dynamic creation of resources)
- A large class of verification problems: resource usage verification [Igarashi&K. POPL2002], reachability, flow analysis, strictness analysis, ...

Comparison with Traditional Approach (Control Flow Analysis)

♦ Control flow analysis

♦ Our approach

Only information about infinite data domains is approximated!

Comparison with Traditional Approach (Software Model Checking)

Program Classes	Verification Methods
Programs with while-loops	Finite state model checking
Programs with 1st-order recursion	Pushdown model checking
Higher-order functional programs	Recursion scheme model checking

infinite state model checking

Outline

- Higher-order recursion schemes and model checking
- ♦ From program verification to model checking of recursion schemes [K. POPLO9]
- ♦ Dealing with infinite data
 - From recursion schemes to higher-order transducers [K., Tabuchi, and Unno, POPL10]
 - Predicate abstraction and CEGAR [K., Sato, Unno, 2010]
- ♦ Model checking algorithms for recursion schemes [K. PPDP09]
- **♦** Conclusion

Goal

♦ Automated verification of higher-order tree-processing programs

```
fun revApp x y = revAcc y (revAcc x [])
and revAcc x z =
  case x of (* list destructor *)
  [] => z
  lelem::y => revAcc y (elem::z)
```

Given two sequences $x \in a^*b^*$ and $y \in b^*c^*$, does revApp x y return an element of $c^*b^*a^*$?

Our Approach

- ♦ Extension of our previous verification method, by higher-order, multi-tree transducers (HMTT)
 - Sound, complete, automatic for a certain class of higher-order programs manipulating lists and trees

algebraic data types

Higher-Order, Multi-Tree Transducers (HMTT)

- ♦ Two kinds of trees
 - input trees, which can only be destructed
 - output trees, which can only be constructed
- ♦ Higher-order (recursive) functions
- ♦ Multiple inputs (unlike ordinary transducers)

```
RevApp x y = RevAcc y (RevAcc x nil).

RevAcc x z =

case x of nil => z

| a(y) => RevAcc y (a z)
| b(y) => RevAcc y (b z)
| c(y) => RevAcc y (c z).
```

HMTT Verification Problem

```
Given: HMTT \ H: \ i \rightarrow \ldots \rightarrow i \rightarrow o \\ input \ specification: \ L_1, \ldots, \ L_m \ (regular \ tree \ languages) \\ output \ specification: \ L \\ does \\ H: \ L_1 \rightarrow \ldots \rightarrow L_m \rightarrow L \\ (i.e. \ \forall t_1 \in L_1, \ldots, \ t_m \in L_m. (H \ t_1 \ \ldots \ t_m) \in L) \\ hold?
```

HMTT verification method

HMTT verification problem:

$$H(L_1, \ldots, L_m) \subseteq L$$
?

- 1. Construct a recursion scheme (with finite data) G that approximates $H(L_1, \ldots, L_m)$
- 2. Use a higher-order model checker to decide: Lang(G) \subseteq L

From HMTT to Recursion Scheme

Ideas:

- Construct a recursion schem approximating the output la
- by abstracting input trees b

92

```
Ranges over {q0,q1,q2} tomaton
```

```
H: a*b*c* \rightarrow c*b*a*?
H x = Rev x z

Rev x z =

case \times of nil \Rightarrow z

a(y) \Rightarrow Rev y (a z)
b(y) \Rightarrow Rev y (b z)
c(y) \Rightarrow Rev y (c z).
```

Rev $x z \rightarrow$ case x of q0 = > + (Rev q0 (a z))(Rev q1 (b z))(Rev q2 (c z))Abstraction of Rev q1 (b z)) nil or c(y) Rev q2 (c z)) with $\alpha(y)=q2$ + (Rev q2 (c z)) z

Soundness and (In)completeness

♦ Soundness:

If the verification succeeds, HMTT satisfies the input/output specification.

♦ Completeness for linear HMTT:

If a linear HMTT satisfies the specification, the verification succeeds.

♦ Incompleteness:

HMTT verification is undecidable (so that the verification may fail even if the given HMTT satisfies the spec.)

From (deterministic) HTT [Engelfreit] to linear HMTT

♦ HTT

$$F e = e$$
 $F (a(x)) = a (F x) (F x)$
 $F (b(x)) = b (F x) (F x)$

♦ linear HMTT

F x = H x (
$$\lambda$$
y.y)
H z k =
case z of
a(x) => H x (λ y.k (a y y))
| b(x) => H x (λ y.k (b y y))

Experiments

	order	rules	states	Time (msec)
MergeAdr	1	3	6	2
RemoveB	2	4	7	1
HomRep	4	10	4	29
Gapid [Tozawa]	3	12	30	87
Xml_rep1 [Tozawa]	3	8	23	3
Xhtml_id	1	1	50	86
Xhtml_div	1	2	50	39
Xhtml_a	1	2	50	243

Cannot be verified by previous methods

Much faster than state-of the art for HTT [Tozawa05]

Comparable to state-of the art for MTT [Frisch&Hosoya]

(Environment: Intel(R) Xeon(R) 3Ghz with 2GB memory)

HomRep

```
HomRep n s = F n (Hom (Concat B B) A) (I2Str s).

F n h s = case n of zero => (Str2O s)

| succ(m) => F m h (h s).

A xa xb z = xa z.

B xa xb z = xb z.

Empty xa xb z = z.
```

Concat s1 s2 xa xb z = s1 xa xb (s2 xa xb z).

Hom sa sb s xa xb z= s (sa xa xb) (sb xa xb) z.

String operations

Conversion between internal string representation and trees

Forward vs Backward Inference

Dealing with Infinite Data Domains

- Higher-order multi-tree transducers (HMTT) to deal with algebraic data
 - HMTT verification method [K., Tabuchi&Unno, POPL 2010]
 - Extension to deal with arbitrary tree-processing programs [Unno, Tabuchi&K., APLAS 2010]
- ♦ Predicate abstraction and CEGAR (c.f. BLAST, SLAM, ...)

Limitation of HMTT

♦ Strict classification of trees into input/output trees (constructed trees cannot be destructed again)

```
fun rev x =
    case x of
      nil => nil
    |a(y) =  app | (rev y) | (a nil)
    |b(y)| =  app (rev y) (b nil)
and app \times y =
    case x of
       nil => y
     | a(z) => a (app z y)
     |b(z)| \Rightarrow b(app z y)
```

Extended HMTT [Unno et al. APLAS 2010]

♦ Allow coercion from output to input trees:

```
fun rev x =
   case x of
      nil => nil
    |a(y)| =  app (coerce (rev y)) (a nil)
    |b(y)| =  app (coerce (rev y)) (b nil)
and app \times y =
    case x of
       nil => y
     | a(z) => a (app z y)
     |b(z)| \Rightarrow b(app z y)
```

Extended HMTT [Unno et al. APLAS 2010]

♦ Allow coercion from output to input trees and requires it be annotated with invariant:

```
fun rev \times = (* rev: a*b* -> b*a* *)
   case x of
     nil => nil
    |a(y)| =  app (coerce^{b^*a^*} (rev y)) (a nil)
    | b(y) =  app (coerce^{b^*} (rev y)) (b nil)
and app x y =
    case x of
      nil => y
     |a(z) => a (app z y)
     |b(z)| \Rightarrow b(app z y)
```

Verification method for Extended HMTT

1. Assuming coercion annotations to be correct, verify that the output is correct.

```
fun rev x = (* rev: a*b* -> b*a* *)

case x of

nil => nil

| a(y) => app (coerce<sup>b*a*</sup> (rev y)) (a nil)

| b(y) => app (coerce<sup>b*</sup> (rev y)) (b nil)
```

```
fun revO x = (* revO: a*b* -> b*a* *)

case x of

nil => nil

| a(y) => app gen<sup>b*a*</sup> (a nil)

| b(y) => app gen<sup>b*</sup> (b nil)
```

- 1. Assuming coercion annotations to be correct, verify that the output is correct.
- 2. Verify the soundness of each annotation (assuming the other coercions to be correct)

```
fun rev x = (* rev: a*b* -> b*a* *)

case x of nil => nil

| a(y) => app (coerce<sup>b*a*</sup> (rev y)) (a nil)
| ...
```

```
fun revC x = (* approximate trees passed to coerceb*a* *)

case x of nil => empty

| a(y) => (revO y)
```

- 1. Assuming coercion annotations to be correct, verify that the output is correct.
- 2. Verify the soundness of each annotation (assuming the other coercions to be correct)

```
fun rev x = (* rev: a*b* -> b*a* *)

case x of nil => nil

| a(y) => app (coerce<sup>b*a*</sup> (rev y)) (a nil)
| ...
```

```
fun revC x = (* approximate trees passed to coerce^{b*a*} *)

case x of nil => empty

| a(y) => union (revO y) (revC y)
```

- 1. Assuming coercion annotations to be correct, verify that the output is correct.
- 2. Verify the soundness of each annotation (assuming the other coercions to be correct)

```
fun rev x = (* rev: a*b* -> b*a* *)

case x of nil => nil

| a(y) => app (coerce<sup>b*a*</sup> (rev y)) (a nil)
| ...
```

```
fun revC x = (* approximate trees passed to coerce<sup>b*a*</sup> *) case <math>x of nil => empty
| a(y) => union (union (revO y) (revC y))
(appC gen<sup>b*a*</sup> (a nil))
```

Correctness Issues

♦ Soundness:

A verified (EHMTT) program satisfies the input/output specification

♦ Incompleteness:

There is a program that is correct but cannot be verified by our method

Sources of incompleteness:

- Incompleteness of HMTT verification
- Coercion annotations may not be strong enough. (c.f. loop invariant annotations for Hoare logic)

Experiments

	Programs	#C	#Fun	Size	T _{Red}	T _{MC}
String processing	Reverse	2	3	32	1	4
	Isort	1	4	29	1	3
	Msort	4	8	131	2	224
	HomRep-Rev	1	12	90	1	31
XML transform.	Split	1	6	126	3	132
	Bib2Html	1	13	493	52	52
	XMarkQ1	1	12	454	29	168
	XMarkQ2	2	9	461	77	92
	Gapid-Html	1	17	374	2	112
Web applications	JWIG-guess	1	6	465	588	50
	JWIG-cal	2	12	475	72	73
Program transform. –	MinCaml-K	8	19	605	5	647

Experiments on Buggy Programs

(milli-secs.)

Programs	#C	#Fun	Size	T _{Red}	T _{MC}
Split-e	1	6	126	3	27
JWIG-guess-e	1	6	465	586	49
JWIG-cal-e	2	12	475	2	55

Correctly Rejected!

Related Work

- ♦ Ong and Ramsay, POPL2011
 - another approach to verification of tree processing programs via higher-order model checking
 - fully automated (c.f. coercion annotations in our approach)
 - abstracting input trees by patterns
 - counterexample-guided (pattern)
 abstraction refinement

Outline

- Higher-order recursion schemes and model checking
- ♦ From program verification to model checking of recursion schemes [K. POPLO9]
- ♦ Dealing with infinite data
 - From recursion schemes to higher-order transducers [K., Tabuchi, and Unno, POPL10]
 - Predicate abstraction and CEGAR [K., Sato, Unno, 2010]
- ♦ Model checking algorithms for recursion schemes [K. PPDP09]
- **♦** Conclusion

Predicate Abstraction and CEGAR for Higher-Order Model Checking

What are challenges?

♦ Predicate abstraction

- How to choose predicates for each term, in such a way that the resulting HOBP is consistent?

```
E.g. fun f g \times = ... g (x+1) ... fun h y z = ... fun main() = ... f (h 0) u ...
```

The same predicate should be used for z and u+1.

♦ CEGAR

- How to find new predicates to abstract each term to guarantee progress (i.e. any spurious counterexample is eliminated)?

Our solutions

♦ Predicate abstraction

Abstraction types to express abstraction interface:

```
E.g. f: (x:int[\lambda x.x>0]) \rightarrow int[\lambda y.y>x]
```

Assuming the argument n is abstracted using the predicate $\lambda x.x>0$, the abstraction of f should return the value of f(n) abstracted by $\lambda y.y>n$.

```
f(x) = if x>0 then x+1 else ...
=> f'(b)= if b then true else ...
```

♦ CEGAR

Reduction from abstraction type finding problem to a refinement type inference problem for SHP (straightline higher-order program).

Example (predicate abstraction)

```
let f \times g = g(x+1) in
let h z y = assert(y>z) in
let k n = if n>=0 then f n (h n) else ( ) in
  k m
         f: (x:int[]) \rightarrow (int[\lambda y.y > x] \rightarrow \star) \rightarrow \star
         h: (x:int[])\rightarrow int[\lambday.y>x] \rightarrow*
         k: int[] \rightarrow \star
let f()g = g(true) in
let h ( ) b = assert(b) in
let k() = if * then f()(h()) else() in
  k( )
```

Experiments

	_	
	cycle	Time (sec)
mc91	2	0.07
ackermann	3	0.15
a-cppr	6	3.40
a-max	5	4.78
l-zipmap	4	0.20
l-zipunzip	3	0.12
repeat	3	0.15
a-max-e	2	0.13

```
Arrays encoded by:

let mk_array n i =

assert(0<=i && i<n); 0

let update i n a x =

a(i);

let a' j = if i=j then x else a(i)
in a'
```

FAQ

Does it scale?

(It shouldn't, because of n-EXPTIME completeness)

Answer:

Don't know yet.

But there is a good hope it does!

Does higher-order model checking scale?

Good News

- + Fixed-parameter PTIME
- + Use the hybrid algorithm
- + Programs with worst-case behavior show an advantage of higher-order programs, rather than disadvantage of HO model checking

Bad News

- n-EXPTIME completeness
- Huge constant factor
- Hybrid algorithm has bad worst-case complexity!

Recursion schemes generating a^{2^m} c

Order-1:

$$S \rightarrow F_1$$
 c, $F_1 \times \rightarrow F_2(F_2 \times), \dots, F_m \times \rightarrow a(a \times)$

Order-0:

$$5\rightarrow a\ G_1,\ G_1\rightarrow a\ G_2,...,\ G_k\rightarrow c\ (k=2^m)$$

Exponential time algorithm for order-1

Polynomial time algorithm for order-0

Does higher-order model checking scale?

Good News

- + Fixed-parameter PTIME
- + Use the hybrid algorithm
- + Programs with worst-case behavior show an advantage of higher-order programs, rather than disadvantage of HO model checking
- + There is a realistic, fixedparameter PTIME algorithm! (see our forthcoming paper)

Bad News

- n-EXPTIME completeness
- Huge constant factor
- Hybrid algorithm has bad worst-case complexity!

Recursion schemes generating a^{2^m} c

Order-1:

$$S \rightarrow F_1$$
 c, $F_1 \times \rightarrow F_2(F_2 \times), \dots, F_m \times \rightarrow a(a \times)$

Order-0:

$$S \rightarrow a G_1, G_1 \rightarrow a G_2, ..., G_k \rightarrow c (k=2^m)$$

Polynomial time algorithm for order-1

>>

Polynomial time algorithm for order-0

FAQ

Does it scale?

(It shouldn't, because of n-EXPTIME completeness)

Answer:

Don't know yet.

But there is a good hope it does!

Conclusion

- ♦ New program verification technique based on model checking recursion schemes
 - Many attractive features
 - Sound, complete, and fully automatic for certain classes of higher-order programs and verification problems
 - Many interesting and challenging topics

Challenges

- ♦ A more efficient algorithm for higher-order model checking
- ♦ A software model checker for ML/Haskell
- ♦ Other applications of finite-state/pushdown automata that can be extended to higher-order pushdown automata (or recursion schemes)

 (e.g. extension of regular model checking?)
- \blacklozenge Extension of the decidability of higher-order model checking (Tree(G) $\models \varphi$)
- ♦ An (incomplete) algorithm for model checking of recursion schemes with advanced (e.g. recursive) types

References

- ♦ K., Types and higher-order recursion schemes for verification of higher-order programs, POPLO9
 - From program verification to model-checking, and typing
- ♦ K.&Ong, Complexity of model checking recursion schemes for fragments of the modal mu-calculus, ICALPO9

 Complexity of model checking
- ♦ K.&Ong, A type system equivalent to modal mu-calculus modelchecking of recursion schemes, LICS09
 - From model-checking to type checking
- ♦ K., Model-checking higher-order functions, PPDP09

 Type checking (= model-checking) algorithm
- ♦ K., Tabuchi & Unno, Higher-order multi-parameter tree transducers and recursion schemes for program verification, POPL10 Extension to transducers and its applications
- ♦ Tsukada & K., Untyped recursion schemes and infinite intersection types, FoSSaCS 10 Extension to deal with more advanced types
- ♦ Unno, Tabuchi & K., ..., APLAS 2010
 - Extension of POPL10 work to deal with arbitrary tree-processing programs