

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet²)	Price (\$1000)		
$\rightarrow x$	y ~		
2104	460		
1416	232		
1534	315		
852	178		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
<u>×</u> 1	×2	*3	*	5)
2104	5	1	45	460
-> 1416	3	2	40	232 + m = 47
1534	3	2	30	315
852	2	1	36	178
R	│ ∧	 ሶ	 1	J. [14167
Notation:				$\chi^{(2)} = 3$
$\rightarrow n$ = number of features $n = 4$				- 2 \in \
$\rightarrow x^{(i)}$ = input (features) of i^{th} training example.				
$\Rightarrow x_j^{(i)}$ = value of feature <u>j</u> in i^{th} training example.				

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_n \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

$$\theta = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in \mathbb{R}^{m_1}$$

Multivariate linear regression.

Machine Learning

Linear Regression with multiple variables

Gradient descent for multiple variables

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ **(simultaneously update for every** $j = 0, \dots, n$)

Gradient Descent

Previously (n=1):

Repeat
$$\{\theta_0 := \theta_0 - o | \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \}$$

$$\left(rac{\partial}{\partial heta_0} J(heta)
ight)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \underline{x}^{(i)}$$

(simultaneously update θ_0, θ_1)

New algorithm $(n \ge 1)$:

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update
$$\overline{\theta}_j$$
 for $j=0,\dots,n$)

$$egin{aligned} heta_1 := heta_1 - lpha rac{1}{m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) x^{(i)} \end{aligned}$$
 $egin{aligned} heta_0 := heta_0 - lpha rac{1}{m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)}) x^{(i)} \end{aligned}$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale.

Feature Scaling

Get every feature into approximately a

Mean normalization

Replace \underline{x}_i with $\underline{x}_i - \mu_i$ to make features have approximately zero mean (Do not apply to $\underline{x}_0 = 1$).

E.g.
$$\Rightarrow x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5}$$

$$\Rightarrow \begin{bmatrix} -0.5 \le x_1 \le 0.5 \\ -0.5 \le x_2 \le 0.5 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_1 \\ y_2 \end{bmatrix}$$

$$x_2 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_3 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_4 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_2 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_5 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_2 \leftarrow \begin{bmatrix} x_1 - y_3 \\ y_3 \end{bmatrix}$$

$$x_1$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice II: Learning rate

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge also possible)

To choose α , try

$$\dots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, \dots$$

Machine Learning

Linear Regression with multiple variables

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_{0} + \theta_{1} \times frontage + \theta_{2} \times depth$$

Area

 $\times = frontage \times depth$
 $h_{\theta}(x) = \theta_{0} + \theta_{1} \times depth$

Polynomial regression

$$\Rightarrow x_2 = (size)^2$$
$$\Rightarrow x_3 = (size)^3$$

Choice of features

Machine Learning

Linear Regression with multiple variables

Normal equation

Gradient Descent

Normal equation: Method to solve for θ analytically.

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\sec^2 \phi}{\cos^2 \phi}$$
Solve, Solve,

$$\underline{\theta \in \mathbb{R}^{n+1}} \qquad \underline{J(\theta_0, \theta_1, \dots, \theta_m)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underline{\frac{\partial}{\partial \theta_j} J(\theta)} = \cdots \stackrel{\boldsymbol{\leq}}{=} 0 \qquad \text{(for every } j\text{)}$$

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: $\underline{m=4}$.

J	Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\rightarrow x_0$	x_1	x_2	x_3	x_4	y	
1	2104	5	1	45	460	7
1	1416	3	2	40	232	
1	1534	3	2	30	315	
1	852	2	_1	, 36	178	ل
	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $1416 3 2$ $1534 3 2$ $852 2 1$ $M \times (N+1)$	2 40 2 30 3 36	$y = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	460 232 315 178	1est or

$\underline{\underline{m} \text{ examples } (\underline{x^{(1)}}, \underline{y^{(1)}}), \dots, (\underline{x^{(m)}}, \underline{y^{(m)}}) \text{ ; } \underline{n \text{ features.}}$

$$\underbrace{\theta = \underbrace{(X^T X)^{-1} X^T y}}_{(X^T X)^{-1} \text{ is inverse of matr}} \leftarrow$$

$$(TX)^{-1}$$
 is inverse of matrix X^TX .

Octave:
$$pinv(x'*x)*x'*y$$

$$pinv(x'*x) * x' * y$$

$$0 \le x_1 \le 1$$

$$0 = 6 (x^Tx)^{-1}x^Ty$$

$$min J(0)$$

$$0 \le x_1 \le 10^{-5}$$

$$0 \le x_1 \le 10^{-5}$$

m training examples, \underline{n} features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when \underline{n} is large.

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute
- $\longrightarrow (X^T X)^{-1} \quad \overset{\mathsf{h} \times \mathsf{n}}{\longrightarrow} \quad O(\mathsf{n}^3)$
 - Slow if n is very large.

$$N = \{000\}$$

Machine Learning

Linear Regression with multiple variables

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave: pinv(X'*X) *X'*y

What if X^TX s non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$
 $x_2 = \text{size in m}^2$
 $x_1 = (3.28)^2 \times 2$

Too many features (e.g. $m \le n$).

- Delete some features, or use regularization.
 - 1 laster