Experiment Default Effects Applications

Analysis July 19

Omar Vasquez Duque

1 Data cleaning

First experiment. July 13, 2023. Prolific. Sample of 300 people. Second experiment, July 14, 2023. Sample of 400 people.

- 1.1 var creation for analysis
- 1.2 var creation second exp

```
table(dfexp$choice)
##
                                                             Yahoo
##
        Google
                       Bing DuckDuck Go
                                               Ecosia
##
           116
                          5
                                      10
                                                     0
                                                                 0
table(dfexp$assigned_bing)
##
##
   0
## 95 31
```

2 Exploratory analysis

3 search engine choice plot

```
## Scale for fill is already present.
## Adding another scale for fill, which will replace the existing scale.
```



```
# test = dfexp %>%
# mutate(across(starts_with("used"), as.numeric))

#' *This worked!!! Saves a lot of time. Mind I should use "across" much more. And apply, lappl

# test = test %>%
# mutate(nbing = used_bing_q1 + used_bing_q2 + used_bing_q3) # This works too!
```

3.1 creates dfs for comparison pA|D(A) vs pA|C

```
# Create dfs for comparison with forced choice

dfgoogle = dfexp %>%
  filter(forced_choice_s==1 | assigned_google==1)

dfbing = dfexp %>%
  filter(forced_choice_s==1 | assigned_bing==1)

dfyahoo = dfexp %>%
  filter(forced_choice_s==1 | assigned_yahoo==1)
```

```
dfddg = dfexp %>%
filter(forced_choice_s==1 | assigned_duckduckgo==1)
```

```
library(jtools)
```

Mind there are two ways to operationalize the effect:

- 1) compared with choice-screen
- 2) compared with any other default

3.2 creates df for default condition

```
# DF for defaults in search
dfexp_def_s = dfexp %>%
  filter(choice_search==0)
```

4 Status Quo Effects Search

4.1 Bing

```
# Bing Q1
sqbingq1= glm(used_bing_q1 ~ forced_choice_s, data=dfbing, family ="binomial")
#check effect on quality
qualbing = lm(bing_qual ~ forced_choice_s, data = dfbing)
summary(qualbing)
```

```
##
## Call:
## lm(formula = bing_qual ~ forced_choice_s, data = dfbing)
##
## Residuals:
               1Q Median
                               3Q
      Min
                                      Max
## -2.8929 -0.7689 0.0471 0.8012 2.2311
##
## Coefficients:
                   Estimate Std. Error t value
                                                           Pr(>|t|)
##
                               0.2024 17.657 < 0.0000000000000000 ***
## (Intercept)
                     3.5729
## forced_choice_s1 -0.8040
                                                           0.000466 ***
                                0.2250 - 3.573
```

```
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.127 on 160 degrees of freedom
## Multiple R-squared: 0.0739, Adjusted R-squared: 0.06811
## F-statistic: 12.77 on 1 and 160 DF, p-value: 0.0004664
plotbingq1 = effect_plot(sqbingq1, pred = "forced_choice_s", interval = TRUE, plot.points = TR
plotbingq1
        1.00
        0.75
     used_bing_q1
        0.50
        0.25
        0.00
```

*Interesting. Status quo effect goes down. People start switching. I need longer questionnaire. Hopefully, 5 enough. If not, run final version with 7 questions? Not sure it's worth it

forced_choice_s

1

*Different comparison: Pb|B compared with any other default

0

```
lm(data = dfexp, used_bing_q1 ~ assigned_bing)

##
## Call:
## lm(formula = used_bing_q1 ~ assigned_bing, data = dfexp)
##
## Coefficients:
```

```
##
      (Intercept) assigned_bing1
##
          0.01053
                         0.79593
lm(data = dfexp, used_bing_q1 ~ assigned_bing + bing_qual + bing_prior) #It is working this ti.
##
## Call:
## lm(formula = used_bing_q1 ~ assigned_bing + bing_qual + bing_prior,
       data = dfexp)
##
## Coefficients:
##
      (Intercept) assigned_bing1
                                        bing_qual
                                                       bing_prior
##
         -0.19284
                          0.73993
                                          0.07055
                                                          0.01190
bingq1 = glm(data = dfexp_def_s, used_bing_q1 ~ assigned_bing: bing_prior, family = "binomial"
summary(bingq1)
##
## Call:
## glm(formula = used_bing_q1 ~ assigned_bing:bing_prior, family = "binomial",
       data = dfexp_def_s)
##
## Coefficients:
##
                             Estimate Std. Error z value
                                                            Pr(>|z|)
## (Intercept)
                              -1.9636
                                          0.3775 -5.201 0.000000198 ***
## assigned_bing0:bing_prior -1.7500
                                          1.0802 -1.620
                                                               0.105
## assigned_bing1:bing_prior
                               4.1037
                                          0.8375
                                                   4.900 0.000000958 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
       Null deviance: 128.29 on 125 degrees of freedom
##
## Residual deviance: 70.73 on 123 degrees of freedom
## AIC: 76.73
##
## Number of Fisher Scoring iterations: 6
typeof(dfexp$bing_qual)
## [1] "double"
```

```
lm(data = dfexp, used_bing_q3 ~ assigned_bing)
##
## Call:
## lm(formula = used_bing_q3 ~ assigned_bing, data = dfexp)
## Coefficients:
##
      (Intercept) assigned_bing1
          0.01053
                         0.66689
##
#'* Second experiment*
lm(data = datexp, used_bing_q1 ~ assigned_bing)
##
## Call:
## lm(formula = used_bing_q1 ~ assigned_bing, data = datexp)
##
## Coefficients:
      (Intercept) assigned_bing1
##
##
          0.03086
                          0.72710
e2.test = lm(data = datexp, used_bing_q1 ~ assigned_bing:bing_prior + bing_qual)
summary(e2.test) #there is an interaction effect. Prior use moderates the effect of the defaul
##
## Call:
## lm(formula = used_bing_q1 ~ assigned_bing:bing_prior + bing_qual,
       data = datexp)
##
## Residuals:
##
       Min
                  1Q
                      Median
                                    30
                                            Max
## -0.87099 -0.15981 -0.07405 0.16978 0.92608
##
## Coefficients:
                            Estimate Std. Error t value
                                                                    Pr(>|t|)
## (Intercept)
                              0.05064
                                        0.06301
                                                   0.804
                                                                      0.4222
## bing_qual
                              0.03988
                                         0.01970
                                                   2.024
                                                                      0.0439 *
                                        0.05617 -2.078
## assigned_bing0:bing_prior -0.11669
                                                                      0.0386 *
## assigned_bing1:bing_prior 0.62096
                                         0.04936 12.581 < 0.0000000000000000 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.3547 on 310 degrees of freedom
     (5 observations deleted due to missingness)
## Multiple R-squared: 0.4802, Adjusted R-squared: 0.4752
## F-statistic: 95.46 on 3 and 310 DF, p-value: < 0.00000000000000022
```

```
e2.bingq1 = glm(data = datexp, used_bing_q1 ~ assigned_bing + bing_prior, family = "binomial")
summary(e2.bingq1)
##
## Call:
## glm(formula = used_bing_q1 ~ assigned_bing + bing_prior, family = "binomial",
       data = datexp)
##
##
## Coefficients:
##
                 Estimate Std. Error z value
                                                         Pr(>|z|)
                  -4.3456
                             0.5390 -8.062 0.000000000000000752 ***
## (Intercept)
                              0.5000 8.857 < 0.0000000000000000 ***
## assigned_bing1 4.4281
## bing_prior
                  1.5298
                              0.3801
                                     4.024 0.000057136630600006 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 426.29 on 318 degrees of freedom
## Residual deviance: 201.80 on 316 degrees of freedom
## AIC: 207.8
##
## Number of Fisher Scoring iterations: 6
#'*visualization*
# E2. Bing Q1
e2.sqbingq1= glm(used_bing_q1 ~ assigned_bing, data=datexp, family ="binomial")
e2.plotbingq1 = effect_plot(e2.sqbingq1, pred = "assigned_bing", interval = TRUE, plot.points
```

e2.plotbingq1

Now, do the same for Q5

```
e2.sqbingq5= glm(used_bing_q5 ~ assigned_bing, data=datexp, family ="binomial")
e2.plotbingq5 = effect_plot(e2.sqbingq5, pred = "assigned_bing", interval = TRUE, plot.points = e2.plotbingq5
```


See how this effect affects Google

4.2 Video had no effect. Probably everyone pais attention. Check number of correct answers

See if video had an effect... It did not work out. No difference

```
##
## Call:
## glm(formula = statquo ~ video, family = "binomial", data = datexp)
##
## Coefficients:
               Estimate Std. Error z value
                                                     Pr(>|z|)
## (Intercept)
                2.0323
                           0.2440
                                   8.33 < 0.00000000000000000 ***
                -0.5203
## video1
                           0.3211
                                    -1.62
                                                        0.105
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 266.72 on 318 degrees of freedom
##
## Residual deviance: 264.05 on 317 degrees of freedom
## AIC: 268.05
##
## Number of Fisher Scoring iterations: 4
glm.video = effect_plot(glmvideo, pred = "video", interval = TRUE, plot.points = TRUE, jitter =
glm.video
        1.00
        0.75
        0.50
        0.25
        0.00
                         €0000 € 0 %
                                                          0
                                                                1
                                              video
```

```
e2.googleq5= glm(used_google_q5 ~ assigned_bing, data=datexp, family ="binomial")
e2.plotgoogleq5 = effect_plot(e2.googleq5, pred = "assigned_bing", interval = TRUE, plot.pointee2.plotgoogleq5
```


Substantial effect! lowers use of Google!

```
#Bing Q3
sqbingq3= glm(used_bing_q3 ~ forced_choice_s, data=dfbing, family ="binomial")
plotbingq3 = effect_plot(sqbingq3, pred = "forced_choice_s", interval = TRUE, plot.points = TRUE)
plotbingq3
```


4.3 Yahoo

Check status quo effects for Yahoo. There is no variance, so just report counts

```
sqyahooq1= glm(used_yahoo_q1 ~ forced_choice_s, data=dfyahoo, family ="binomial")

plotyahooq1 = effect_plot(sqyahooq1, pred = "forced_choice_s", interval = TRUE, plot.points = "
#Now check for default data: pY/Y vs pY/Y'

sqdefyahooq1 = glm(used_yahoo_q1 ~ assigned_yahoo, data=dfexp_def_s, family ="binomial")

plotsqdefyahooq1 = effect_plot(sqdefyahooq1, pred = "assigned_yahoo", interval = TRUE, plot.po
# Check q3

sqdefyahooq3 = glm(used_yahoo_q3 ~ assigned_yahoo, data=dfexp_def_s, family ="binomial")

plotsqdefyahooq3 = effect_plot(sqdefyahooq3, pred = "assigned_yahoo", interval = TRUE, plot.po
```


plotsqdefyahooq1

 ${\tt plotsqdefyahooq3}$

4.4 DuckDuck Go

Do the same with DuckDuckGo

```
sqdefddg1 = glm(used_duckduckgo_q1 ~ assigned_duckduckgo, data=dfexp_def_s, family ="binomial"
plotsqdefddg1 = effect_plot(sqdefddg1, pred = "assigned_duckduckgo", interval = TRUE, plot.poin
plotsqdefddg1
```



```
# Check q3
sqdefddgq3 = glm(used_duckduckgo_q3 ~ assigned_duckduckgo, data=dfexp_def_s, family ="binomial
plotsqdefddgq3 = effect_plot(sqdefddgq3, pred = "assigned_duckduckgo", interval = TRUE, plot.pd
plotsqdefddgq3
```



```
sqyahooq3= glm(used_yahoo_q3 ~ forced_choice_s, data=dfyahoo, family ="binomial")
plotyahooq3 = effect_plot(sqyahooq3, pred = "forced_choice_s", interval = TRUE, plot.points = 'plotyahooq3
```


Compare with other defaults. Do chi-squared test.

```
yahooq1 = glm(data = dfexp_def_s, used_yahoo_q1 ~ assigned_yahoo + yahoo_prior, family = "binor
summary(yahooq1)
##
## Call:
## glm(formula = used_yahoo_q1 ~ assigned_yahoo + yahoo_prior, family = "binomial",
##
       data = dfexp_def_s)
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    -21.897
                              2886.766 -0.008
                                                   0.994
## assigned_yahoo1
                     21.763
                              2886.766
                                         0.008
                                                   0.994
## yahoo_prior
                      1.232
                                 0.844
                                          1.460
                                                   0.144
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 95.915
                              on 125
                                      degrees of freedom
## Residual deviance: 34.224 on 123 degrees of freedom
## AIC: 40.224
##
```

```
## Number of Fisher Scoring iterations: 20
lm(data = dfexp_def_s, used_yahoo_q1 ~ assigned_yahoo + yahoo_prior + yahoo_qual)
##
## Call:
## lm(formula = used_yahoo_q1 ~ assigned_yahoo + yahoo_prior + yahoo_qual,
       data = dfexp_def_s)
##
##
## Coefficients:
##
       (Intercept) assigned_yahoo1
                                         yahoo_prior
                                                           yahoo_qual
##
          -0.10781
                            0.56504
                                             0.07431
                                                              0.03965
```

4.5 Big regression general analysis status quo effect

There si something wrong with the default data set. Showing NAs in assigned to a

```
dfexp_def_s = dfexp_def_s %>%
 mutate(statquo_sq1 = ifelse(assigned_bing==1 & used_bing_q1==1 | assigned_google==1 & used_g
         statquo_sq3= ifelse(assigned_bing==1 & used_bing_q3==1 | assigned_google==1 & used_go
         prior_use = ifelse(assigned_google==1 & google_prior==1 | assigned_bing==1 & bing_prior_
         explor_sq1 = ifelse(str_length(se_beatles)>1, 1,0),
         age = 2023 - as.numeric(q32),
         age_c = case_when(age < 30 ~ "18-29",
                           age >29 & age <40 ~ "30-39",
                           age >39 & age <50 ~ "40-49",
                           age>49 & age <60 ~ "50-59",
                           age>59 ~ "60 +"))
lm(data=dfexp_def_s, formula= statquo_sq1 ~ prior_use)
##
## Call:
## lm(formula = statquo_sq1 ~ prior_use, data = dfexp_def_s)
## Coefficients:
## (Intercept)
                  prior_use
        0.6000
                     0.3186
##
lm(data=dfexp_def_s, formula= statquo_sq1 ~ prior_use + age_c)
##
## Call:
## lm(formula = statquo_sq1 ~ prior_use + age_c, data = dfexp_def_s)
```

```
##
## Coefficients:
                                          age_c40-49
## (Intercept)
                 prior_use
                              age_c30-39
                                                        age_c50-59
                                                                      age_c60 +
       0.64683
                    0.31029
                               -0.05514
                                            -0.02280
                                                          -0.08007
                                                                       -0.10985
##
    Data defaults without Google
dfexp_def_s2 = dfexp_def_s %>%
 filter(assigned_google==0)
lm(data=dfexp_def_s2, formula= statquo_sq1 ~ explor_sq1 + prior_use)
##
## Call:
## lm(formula = statquo_sq1 ~ explor_sq1 + prior_use, data = dfexp_def_s2)
##
## Coefficients:
## (Intercept)
                explor_sq1
                             prior_use
                     0.1091
                                 0.2755
##
        0.6154
glmsqs1 = glm(data=dfexp_def_s2, formula= statquo_sq1 ~ explor_sq1 + prior_use, family = "binor
summary(glmsqs1)
##
## Call:
## glm(formula = statquo_sq1 ~ explor_sq1 + prior_use, family = "binomial",
##
       data = dfexp_def_s2)
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 0.4700
                            0.3291 1.428 0.15330
                13.4660 1455.3976
## explor_sq1
                                      0.009 0.99262
## prior_use
                 1.6301
                            0.5435 2.999 0.00271 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 100.365 on 94 degrees of freedom
## Residual deviance: 89.877 on 92 degrees of freedom
## AIC: 95.877
## Number of Fisher Scoring iterations: 14
```

Interesting coefficients, qualitatively. Now, run glm because p>1

```
mean(dfexp_def_s$statquo_sq1)
## [1] 0.8174603
```

4.6 Check if those who use the default use another one too!

This is important. q1 only a few use more than one, q3 many more explore.

Code below irrelevant. q1 only one person used more than one

```
# glm_just_one= glm(just_one_sq1 ~ se_assigned, data=dfexp_def_s, family ="binomial")
# plot_just_one_sq1 = effect_plot(glm_just_one, pred = "se_assigned", interval = TRUE, plot.po
# plot_just_one_sq1
table(dfexp_def_s$se_assigned, dfexp_def_s$just_one_sq1)
##
##
                  1 30
##
     Bing
##
     DuckDuck Go 0 37
                  0 31
##
     Google
##
     Yahoo
                  0 27
table(dfexp def s$se assigned, dfexp def s$just one sq2)
```

```
table(dfexp_def_s$se_assigned, dfexp_def_s$just_one_sq3)
##
##
                  0 1
                  2 29
##
     Bing
##
     DuckDuck Go 2 35
##
     Google
                  0 31
                  1 26
##
     Yahoo
    Code above is not what I need. The relevant variable is stat_quo_qi * just_one_qi
dfexp_def_s = dfexp_def_s %>%
  mutate(just_default_sq1 = ifelse(statquo_sq1==1 & just_one_sq1==1,1,0),
         just_default_sq3 = ifelse(statquo_sq3==1 & just_one_sq3==1,1,0))
table(dfexp_def_s$se_assigned, dfexp_def_s$just_default_sq1)
##
##
                  0 1
##
                  7 24
     Bing
##
     DuckDuck Go 4 33
                  2 29
##
     Google
     Yahoo
                 11 16
##
table(dfexp_def_s$se_assigned, dfexp_def_s$just_default_sq3)
##
##
                  0 1
                 11 20
##
     Bing
##
     DuckDuck Go 10 27
##
     Google
                  2 29
##
     Yahoo
                 14 13
```

4.6.1 Now with the second experiment

```
prior_use = ifelse(assigned_google==1 & google_prior==1 | assigned_bing==1 & bing_prior_
         just_default_sq1 = ifelse(statquo_sq1==1 & just_one_sq1==1,1,0),
         just_default_sq2 = ifelse(statquo_sq2==1 & just_one_sq3==1,1,0),
         just_default_sq3 = ifelse(statquo_sq3==1 & just_one_sq3==1,1,0),
         just_default_sq4 = ifelse(statquo_sq4==1 & just_one_sq3==1,1,0),
         just_default_sq5 = ifelse(statquo_sq5==1 & just_one_sq3==1,1,0))
table(datexp$se_assigned, datexp$just_default_sq1)
##
##
              0
                  1
##
     Bing
             45 112
##
     Google
              9 153
table(datexp$se_assigned, datexp$just_default_sq2)
##
##
              0
                  1
##
     Bing
             67 90
##
     Google 12 150
table(datexp$se_assigned, datexp$just_default_sq3)
##
##
                  1
##
             78 79
     Bing
##
     Google
              9 153
table(datexp$se_assigned, datexp$just_default_sq4)
##
##
              0
                  1
##
     Bing
             82 75
     Google 12 150
##
table(datexp$se_assigned, datexp$just_default_sq5)
##
##
                  1
              0
##
                73
     Bing
             84
##
     Google 18 144
```

Interesting result. More people tend to use Bing exclusively over time.

5 Results Weather Apps

```
# The same for weather apps part
dfexp2 = dfexp %>%
 mutate(chose_wc = if_else(choice_screen_2 == 1, 1, 0, NULL),
         chose_aw = if_else(choice_screen_2 == 2,1,0, NULL),
         chose_wu = if_else(choice_screen_2 == 3, 1,0, NULL),
         choice_wa = factor(case_when(chose_wc == 1 ~ "Weather Channel",
                            chose_aw == 1 ~ "AccuWeather",
                            chose_wu == 1 ~ "Weather Underground"),
                         levels = c("Weather Channel",
                                    "AccuWeather",
                                    "WeatherUnderground")),
         assigned_wc = ifelse(weather_do %in% "default_wc", 1, 0),
         assigned_aw = ifelse(weather_do %in% "default_aw", 1, 0),
         assigned_wu = ifelse(weather_do %in% "default_wu", 1, 0),
         used_wc_q1 = if_else(grepl("1", app_austin), 1, 0, NULL),
         used_aw_q1 = if_else(grepl("2", app_austin),1,0,NULL),
         used_wu_q1 = if_else(grepl("3", app_austin),1,0,NULL),
         used_other_q1 = if_else(grepl("4", app_austin),1,0,NULL),
         used_wc_q2 = if_else(grepl("1", app_cambridge), 1, 0, NULL),
         used_aw_q2 = if_else(grepl("2", app_cambridge),1,0,NULL),
         used_wu_q2 = if_else(grepl("3", app_cambridge),1,0,NULL),
         used_wc_q3 = if_else(grepl("1", app_cupertino), 1, 0, NULL),
         used_aw_q3 = if_else(grepl("2", app_cupertino),1,0,NULL),
         used_wu_q3 = if_else(grepl("3", app_cupertino),1,0,NULL),
         ac_qual = q31_1,
         aw_qual = q31_2,
         wu_qual = q31_3,
         ac_prior = ifelse(grepl("1", q54), 1, 0),
         aw_pior = ifelse(grepl("2", q54),1, 0),
         wu_prior = ifelse(grepl("3", q54), 1, 0),
         other_prior = ifelse(grepl("4", q54), 1, 0))
```

```
dfaw = dfexp2 %>%
filter(forced_choice_w==1| assigned_aw==1)
```

One plot for sq q1 for each $(a1_q1, a2_q1, a3_q1)$

Another for sq q3 for each $(a1_q3, a2_q3, a3_q3)$

```
#AccuWeather
sqawq1= glm(used_aw_q1 ~ forced_choice_w, data=dfaw, family ="binomial")
plotawq1 = effect_plot(sqawq1, pred = "forced_choice_w", interval = TRUE, plot.points = TRUE,
plotawq1
```



```
sqawq3= glm(used_aw_q3 ~ forced_choice_w, data=dfaw, family ="binomial")
plotawq3 = effect_plot(sqawq3, pred = "forced_choice_w", interval = TRUE, plot.points = TRUE,
plotawq3
```



```
# Convert vars for analysis

test = dfexp2 %>%
    mutate(across(starts_with("used"), as.numeric))

#' *This worked!!! Saves a lot of time. Mind I should use "across" much more. And apply, lappl

test = test %>%
    mutate(nbing = used_bing_q1 + used_bing_q2 + used_bing_q3) # This works too!
```

 $Effect_plot\ to\ show\ correlations\ browsers/s.engines\ controlling\ for\ changes\ in\ OSX\ market\ shares$