```
In [1]:
            import os
          1
            import glob
          3 from sklearn.feature_extraction.text import TfidfVectorizer
          4 | from sklearn.model_selection import train_test_split, GridSearchCV
          5 from sklearn.naive_bayes import MultinomialNB
          6 from sklearn import metrics
            import seaborn as sns
          7
             import matplotlib.pyplot as plt
In [2]:
             data = []
          2
             labels = []
             for file in glob.glob(os.path.join('Dataset','*.txt')): # Recursively
In [3]:
          1
                 label = os.path.basename(file.split('.')[0])
          2
          3
                 with open(file,'r', encoding='utf-8') as f:
          4
                     s = f.readlines()
          5
                     data.extend(s[i] for i in range(16521))
          6
                     labels.extend([label] * len(s))
In [4]:
            data[:5]
Out[4]:
        ['maak my wakker nege-uur v. m. op vrydag\n',
         "stel 'n alarm vir twee ure van nou af\n",
          'janneman stilte\n',
         'stop\n',
         'janneman onderbreek dit vir tien sekondes\n']
In [5]:
             data = [sentence[:-1] for sentence in data] # to remove the \n charact
In [6]:
            data[:5]
        ['maak my wakker nege-uur v. m. op vrydag',
Out[6]:
         "stel 'n alarm vir twee ure van nou af",
         'janneman stilte',
          'stop',
         'janneman onderbreek dit vir tien sekondes']
In [7]:
            len(data), len(labels)
Out[7]: (446067, 446067)
In [8]:
            text2vec = TfidfVectorizer() # converting the text to numerical forma
```

- 1. TfidfVectorizer is also a pre-processing technique used to convert text data into numerical form.
- 2. TfidfVectorizer not only counts the frequency of each word but also assigns a weight to each word based on its frequency in the document and its frequency in the entire corpus. This means that it gives higher weights to words that are important or informative in the document and lower weights to common words that are not. This is

achieved through a term frequency-inverse document frequency (TF-IDF) formula that balances the frequency of a word in a document with its frequency in the entire corpus.

```
In [9]:
           1 X_train, X_test, Y_train, Y_test = train_test_split(data, labels, test
              # Results in 80% training data, 20% test data
In [10]:
              X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, te
              # Results in 70% training data, 10% Validation data
In [11]:
              x_train = text2vec.fit_transform(X_train)
           2 | x_test = text2vec.transform(X_test)
           3 x val = text2vec.transform(X val)
In [12]:
              x_train
Out[12]: <312246x153532 sparse matrix of type '<class 'numpy.float64'>'
                  with 1934798 stored elements in Compressed Sparse Row format>
In [13]:
              classifier = MultinomialNB()
In [14]:
              classifier.fit(x_train, Y_train)
Out[14]: MultinomialNB()
         In a Jupyter environment, please rerun this cell to show the HTML representation or
         trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
         with nbviewer.org.
In [15]:
              # Fine tuning the Multinomail Naive Bayes using Validation data
In [16]:
              param = \{'alpha' : (2.0, 1.5, 1, 0.1, 0.01, 0.001)\}
In [17]:
              Classifier = GridSearchCV(classifier, param, cv = 5, scoring='accuracy
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

Classifier.fit(x_val, Y_val)

Out[18]: GridSearchCV(cv=5, estimator=MultinomialNB(),

scoring='accuracy')

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

param_grid={'alpha': (2.0, 1.5, 1, 0.1, 0.01, 0.001)},

In [18]:

Out[19]: MultinomialNB(alpha=0.1)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Validation Accuracy: 0.9920416078194005

```
In [22]: 1 print("validation Data Performace Metrics:")
2 print(metrics.classification_report(Y_val, y_pred_val))
```

validation Data Performace Metrics:

	precision	recall	f1-score	support
af-ZA	1.00	0.99	0.99	1652
cy-GB	1.00	1.00	1.00	1652
da-DK	0.98	0.98	0.98	1652
de-DE	1.00	0.99	0.99	1652
en-US	0.99	1.00	0.99	1652
es-ES	1.00	1.00	1.00	1652
fi-FI	1.00	0.99	1.00	1652
fr-FR	0.99	1.00	0.99	1652
hu-HU	0.92	1.00	0.96	1653
is-IS	1.00	0.99	1.00	1652
it-IT	0.99	0.99	0.99	1652
jv-ID	1.00	0.99	0.99	1652
lv-LV	1.00	0.99	1.00	1652
ms-MY	0.99	1.00	0.99	1652
nb-NO	0.98	0.98	0.98	1652
nl-NL	0.99	0.99	0.99	1652
pl-PL	1.00	0.99	1.00	1652
pt-PT	1.00	0.99	1.00	1652
ro-RO	1.00	0.99	1.00	1652
ru-RU	1.00	0.99	1.00	1652
sl-SL	1.00	0.99	0.99	1652
sq-AL	1.00	0.99	1.00	1652
sv-SE	0.99	0.98	0.99	1652
sw-KE	1.00	1.00	1.00	1652
tl-PH	1.00	1.00	1.00	1653
tr-TR	1.00	0.99	0.99	1652
vi-VN	1.00	1.00	1.00	1653
accuracy			0.99	44607
macro avg	0.99	0.99	0.99	44607
weighted avg	0.99	0.99	0.99	44607

```
In [23]: 1 confusion_matrix = metrics.confusion_matrix(Y_val, y_pred_val)
2 plt.figure(figsize=(16, 12))
3 sns.heatmap(confusion_matrix, annot=True, fmt='d', cmap='BuPu', cbar=F
4 plt.xlabel("True label")
5 plt.ylabel("Predicted label")
```

Out[23]: Text(170.722222222223, 0.5, 'Predicted label')


```
In [24]: 1  y_pred_train = classifier_1.predict(x_train)
2  train_accuracy = metrics.accuracy_score(Y_train, y_pred_train)
3  print(f"Train Accuracy: {train_accuracy}")
```

Train Accuracy: 0.9722206209206843

In [25]: 1 print("Train Data Performace Metrics:")
2 print(metrics.classification_report(Y_train, y_pred_train))

Train Data Performace Metrics:

II alii Data Fe			C 4	
	precision	recall	f1-score	support
af-ZA	0.97	0.96	0.96	11565
cy-GB	0.99	0.99	0.99	11565
da-DK	0.91	0.92	0.92	11565
de-DE	0.99	0.97	0.98	11565
en-US	0.94	0.98	0.96	11565
es-ES	0.97	0.97	0.97	11565
fi-FI	0.83	0.99	0.90	11564
fr-FR	0.98	0.99	0.98	11564
hu-HU	0.99	0.96	0.98	11564
is-IS	1.00	0.98	0.99	11565
it-IT	0.98	0.98	0.98	11564
jv-ID	0.99	0.97	0.98	11565
lv-LV	0.99	0.98	0.99	11565
ms-MY	0.98	0.98	0.98	11565
nb-NO	0.92	0.91	0.92	11564
nl-NL	0.96	0.95	0.96	11565
pl-PL	0.99	0.97	0.98	11565
pt-PT	0.98	0.97	0.97	11565
ro-RO	0.99	0.98	0.98	11565
ru-RU	1.00	0.98	0.99	11564
sl-SL	0.99	0.98	0.98	11564
sq-AL	0.99	0.98	0.99	11565
sv-SE	0.98	0.97	0.97	11565
sw-KE	1.00	0.99	0.99	11565
tl-PH	0.99	0.99	0.99	11564
tr-TR	0.99	0.98	0.99	11565
vi-VN	1.00	1.00	1.00	11564
accuracy			0.97	312246
macro avg	0.97	0.97	0.97	312246
weighted avg	0.97	0.97	0.97	312246

```
In [26]: 1 confusion_matrix = metrics.confusion_matrix(Y_train, y_pred_train)
2 plt.figure(figsize=(16, 12))
3 sns.heatmap(confusion_matrix, annot=True, fmt='d', cmap='Blues', cbar=
4 plt.xlabel("True label")
5 plt.ylabel("Predicted label")
```

Out[26]: Text(170.722222222223, 0.5, 'Predicted label')


```
In [27]: 1  y_pred_test = classifier_1.predict(x_test)
2  test_accuracy = metrics.accuracy_score(Y_test, y_pred_test)
3  print(f"Test Accuracy: {test_accuracy}")
```

Test Accuracy: 0.9726164054968951

```
In [28]: 1 print("Test Data Performace Metrics:")
2 print(metrics.classification_report(Y_test, y_pred_test))
```

Test Data Performace Metrics:

icse baca i ci	TOT MACC THE	.1 103.		
	precision	recall	f1-score	support
af-ZA	0.97	0.96	0.96	3304
cy-GB	0.99	0.98	0.99	3304
da-DK	0.92	0.92	0.92	3304
de-DE	0.99	0.98	0.98	3304
en-US	0.94	0.98	0.96	3304
es-ES	0.97	0.97	0.97	3304
fi-FI	0.88	0.98	0.93	3305
fr-FR	0.98	0.98	0.98	3305
hu-HU	0.92	0.97	0.95	3304
is-IS	1.00	0.98	0.99	3304
it-IT	0.98	0.98	0.98	3305
jv-ID	0.99	0.97	0.98	3304
lv-LV	0.99	0.98	0.99	3304
ms-MY	0.98	0.98	0.98	3304
nb-NO	0.92	0.91	0.91	3305
nl-NL	0.96	0.96	0.96	3304
pl-PL	0.99	0.98	0.98	3304
pt-PT	0.98	0.97	0.98	3304
ro-RO	0.99	0.98	0.99	3304
ru-RU	1.00	0.99	0.99	3305
sl-SL	0.99	0.97	0.98	3305
sq-AL	1.00	0.98	0.99	3304
sv-SE	0.99	0.96	0.98	3304
sw-KE	1.00	0.99	0.99	3304
tl-PH	0.99	0.99	0.99	3304
tr-TR	1.00	0.98	0.99	3304
vi-VN	1.00	0.99	1.00	3304
accuracy			0.97	89214
macro avg	0.97	0.97	0.97	89214
weighted avg	0.97	0.97	0.97	89214

Out[29]: Text(170.722222222223, 0.5, 'Predicted label')

The Performance metrics of multinomial Naive Bayes classifier on Train, Test and Validation set is reported. The metrics reported indicate that the model is able to generalize better and is able to predict on unseen test data. The Test accuracy being approximately close enough to the Training and validation accuracy is an indication of the same.

The Confusion matrices of Train, Test and Validation depict that most of the samples from the corpus are classified correctly to their respective classes with a few misclassification associated with each class.

```
In [ ]: 1
```