Multimedia Information Retrieval and Technology

Lecture 20 Compression Algorithms

By: Laura Liu

Room: EE314

Tel. no. 7756

- 1. Introduction
- 2. Variable-Length Coding (VLC)
 - Shannon-Fano Algorithm
 - Huffman Coding Algorithm
 - Adaptive Huffman Coding Algorithm
- 3. Basics of Information Theory
- 4. LZW Compression
- 5. Arithmetic Coding

Arithmetic coding is a more modern coding method that usually outperforms Huffman coding.

- Huffman coding assigns each symbol a codeword which has an integral bit length.
- Arithmetic coding can treat the whole message as one unit.
- A message is represented by a half-open interval [a, b), where a and b are real numbers between 0 and 1.

Initially, the interval is [0,1).

When the message becomes longer, the length of the interval shortens, and the number of bits needed to represent the interval increases.

Example: encode symbols CAEE\$

Suppose the alphabet is [A, B, C, D, E, F, \$], in which \$ is a special symbol used to terminate the message.

Probability distribution is as shown in Figure 7.8(a).

Symbol	Probability Range	
A	0.2	[0, 0.2)
В	0.1	[0.2, 0.3)
C	0.2	[0.3, 0.5)
D	0.05	[0.5, 0.55)
E	0.3	[0.55, 0.85)
F	0.05	[0.85, 0.9)
\$	0.1	[0.9, 1.0)

ALGORITHM 7.5 Arithmetic Coding Encoder

```
BEGIN
   low = 0.0; high = 1.0; range = 1.0;
   while (symbol != terminator)
         get (symbol);
         low = low + range * Range_low(symbol);
         high = low + range * Range_high(symbol);
         range = high - low;
   output a code so that low <= code < high;
END
```


	Symbol	low	high	range
-		0	1.0	1.0
	С	0.3	0.5	0.2
	Α	0.30	0.34	0.04
	Е	0.322	0.334	0.012
	Е	0.3286	0.3322	0.0036
	\$	0.33184	0.33220	0.00036

(c) New low, high, and range generated.

Fig. 7.8 (cont'd): Arithmetic Coding: Encode Symbols "CAEE\$"

Fig. 7.8(b) Graphical display of shrinking ranges.

For clarity of illustration, the ever-shrinking ranges are enlarged in each step (indicated by dashed lines) in Figure 7.8(b).

After the second symbol A, *low, high,* and *range* are 0.30, 0.34, and 0.04.

The process repeats itself until after the terminating symbol \$ is received. By then *low* and *high* are 0.33184 and 0.33220, respectively.

It is apparent that finally we have

$$range = P_C \times P_A \times P_E \times P_E \times P_S = 0.2 \times 0.2 \times 0.3 \times 0.3 \times 0.1 = 0.00036$$

The final step in encoding calls for generation of a number that falls within the range [low, high).

[0.33184, 0.33220)

The following algorithm will ensure that **the shortest binary codeword** is found if *low* and *high* are the two
ends of the range and *low* < *high* .

Generating Codeword for Encoder

• The final step in Arithmetic encoding calls for the generation of a number that falls within the range [low, high). The above algorithm will ensure that the shortest binary codeword is found.

When low = 0.33184, high = 0.3322. If we assign 1 to the first binary fraction bit, it would be 0.1 in binary, and its decimal $value(code) = value(0.1) = 2^{-1} = 0.5 > high$. Hence, we assign 0 to the first bit. Since value(0.0) = 0 < low, the while loop continues.

Assigning 1 to the second bit makes a binary *code* 0.01 and $value(0.01)=2^{-2}=0.25$, which is less than *high*, so it is accepted.

Since it is still true that *value*(0.01) < *low*, the iteration continues.

Eventually, the binary codeword generated is 0.01010101, which is

$$2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} = 0.33203125$$

8 bits in total.

- 1. Introduction
- 2. Variable-Length Coding (VLC)
 - Shannon-Fano Algorithm
 - Huffman Coding Algorithm
 - Adaptive Huffman Coding Algorithm
- 3. Basics of Information Theory
- 4. LZW Compression
- 5. Arithmetic Coding

ALGORITHM 7.6 ARITHMETIC CODING DECODER

```
BEGIN
   get binary code and convert to decimal value = value(code);
   Do
         find a symbol s so that
              Range_low(s) <= value < Range_high(s);</pre>
         output s;
         low = Rang_low(s);
         high = Range_high(s);
         range = high - low;
         value = [value - low] / range;
   Until symbol s is a terminator
END
```


Arithmetic Decoding

Table 7.5 illustrates the decoding process for the above example.

Initially, value = 0.33203125. Since this value falls in Range(C), the first output symbol is C.

This yields value = [0.33203125 - 0.3]/0.2 = 0.16015625, which in turn determines that the second symbol is A.

Eventually, *value* is 0.953125, which falls in the range [0.9, 1.0) of the terminator \$.

Table 7.5 Arithmetic coding: decode symbols "CAEE\$"

value	Output Symbol	low	high	range
0.33203125	С	0.3	0.5	0.2
0.16015625	Α	0.0	0.2	0.2
0.80078125	E	0.55	0.85	0.3
0.8359375	E	0.55	0.85	0.3
0.953125	\$	0.9	1.0	0.1

Exercise I

- Suppose the alphabet is [A, B, C], and the known probability distribution is $P_A = 0.5$, $P_B = 0.4$, $P_C = 0.1$. For simplicity, let's also assume that both encoder and decoder know that the length of the messages is always 3, so there is no need for a terminator.
- i. How many bits are needed to encode the message BBB by Huffman coding?
- ii. How many bits are needed to encode the message BBB by arithmetic coding?

Properties of Arithmetic Coding

- 1) Variable-length codes
- 2) Nonblock codes: an entire sequence of source symbols is assigned a single arithmetic code word;

