Exercise 2

Caio Couto Batatinha (caiocbatatinha@gmail.com)

13. November 2021

Exercise 2

Determine whether S_n is an unbiased estimator of σ . In case it is not an unbiased estimator, which one is larger $E[S_n]$ or σ ?

Solution

The standard deviation of a sample is defined as:

$$S_n=\sqrt{\sum_{i=1}^nrac{(X_i-ar{X}_n)^2}{n-1}},$$

Considering $\mathrm{Var}[S_n]
eq 0$, we take:

We can rewrite the variance as:

$$\mathrm{E}[S_n^2] - \mathrm{E}^2[S_n]$$

So:

$$\mathrm{E}^2[S_n] < \mathrm{E}[S_n^2]$$

Taking the square root in both sides:

$$\mathrm{E}[S_n] < \sqrt{\mathrm{E}[S_n^2]} = \sigma$$

Therefore is a biased estimator

References

https://www.math.arizona.edu/~jwatkins/N_unbiased.pdf

Exercise 2 2