Несобственные интегралы, зависящие от параметра

Необходимые и достаточные условия сходимости интегралов

Теорема (критерий Коши). Интеграл $\int_a^b f(x,y) \, dx$ сходится равномерно на Y тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \in (0, b - a) \ \forall A, B \in (b - \delta, b) \ \forall y \in Y \quad \left| \int_A^B f(x, y) \, dx \right| < \varepsilon.$$

Теорема (признак Вейерштрасса). Если найдётся такая функция $\varphi(x)$, что

$$|f(x,y)| \le \varphi(x), \quad x \in [a,b), \quad y \in Y,$$

и интеграл $\int_a^b \varphi(x) \, dx$ сходится, то интеграл $\int_a^b f(x,y) \, dx$ сходится равномерно и абсолютно на Y.

Теорема (признак Абеля). Пусть интеграл $\int_a^b f(x,y) \, dx$ сходится равномерно на Y. Пусть функция g(x,y) при каждом $y \in Y$ монотонна по x и

$$\exists C > 0 : |g(x,y)| \le C, \quad x \in [a,b), \ y \in Y.$$

Тогда $\int_a^b f(x,y)g(x,y) dx$ сходится равномерно на Y.

Теорема (признак Дирихле). Пусть интегралы $\int_a^A f(x,y) \, dx$ равномерно по $A \in [a,b)$ и $y \in Y$ ограничены. Пусть функция g(x,y) при каждом $y \in Y$ монотонна по x и

$$g(x,y) \stackrel{Y}{\Longrightarrow} 0$$
 при $x \to b - 0$.

Тогда $\int_a^b f(x,y)g(x,y)\,dx$ сходится равномерно на Y.

Пример.
$$\int_0^{+\infty} \frac{x \sin(ax)}{n^2 + x^2} \, dx, \, 0 < a_0 \leqslant a.$$

Пример.
$$\int_0^{+\infty} \frac{\sin x}{x} \cdot e^{-ax} dx, \ a \geqslant 0.$$

Предельный переход под знаком несобственного интеграла

Пример.

$$f_n(x) = \begin{cases} \frac{n}{x^2} e^{-\frac{n}{x}}, & x > 0; \\ 0, & x = 0, \end{cases} \quad n \in \mathbb{N}$$

Теорема (о предельном переходе под знаком несобственного интеграла).

Пусть интеграл $\int_a^{+\infty} f(x,y)\,dx$ сходится равномерно относительно $y\in Y.$ Пусть $y_0\in Y'$ и для каждого $A\in [a,+\infty)$

$$f(x,y) \stackrel{[a,A]}{\Longrightarrow} \varphi(x)$$
 при $y \to y_0$.

Тогда

$$\lim_{y \to y_0} \int_a^{+\infty} f(x, y) \, dx = \int_a^{+\infty} \varphi(x) \, dx.$$

Теорема (о непрерывности несобственного интеграла).

Пусть при каждом $A \in [a, +\infty)$ функция f(x, y) непрерывна на $[a, A] \times [c, d]$ и пусть интеграл $\int_a^{+\infty} f(x,y) dx$ сходится равномерно на [c,d]. Тогда $I(y) = \int_a^{+\infty} f(x,y) dx$ непрерывна на [c,d].

Теорема (о дифференцируемости несобственного интеграла).

Пусть при каждом $y \in [c,d]$ функция f(x,y) непрерывна по x на $[a,+\infty)$, а функция $f_y'(x,y)$ непрерывна на $[a,+\infty) \times [c,d]$. Пусть интеграл $\int_a^{+\infty} f(x,y) \, dx$ сходится при каждом $y \in [c,d]$, а интеграл $\int_{-\infty}^{+\infty} f_y'(x,y) dx$ сходится равномерно на [c,d]. Тогда

$$I'(y) = \int_{a}^{+\infty} f_y'(x, y) dx, \quad y \in [c, d].$$

Теорема (об интегрируемости несобственного интеграла).

Пусть функция f(x,y) непрерывна на $[a,+\infty)\times[c,d]$ и интеграл $\int_{-\infty}^{+\infty}f(x,y)\,dx$ сходится равномерно относительно $y \in [c, d]$. Тогда

$$\int_{c}^{d} dy \int_{a}^{+\infty} f(x,y) dx = \int_{a}^{+\infty} dx \int_{c}^{d} f(x,y) dy.$$

Теорема (о перестановке двух несобственных интегралов). Пусть

- (a) функция f(x,y) непрерывна на $[a,+\infty)\times[c,+\infty)$,
- (b) интеграл $\int_{-\infty}^{+\infty} f(x,y) dx$ сходится равномерно относительно $y \geqslant c$,
- (c) интеграл $\int_{c}^{+\infty} f(x,y) dy$ сходится равномерно относительно $x \geqslant a$,
- (d) один из интегралов $\int_{a}^{+\infty} dx \int_{a}^{+\infty} |f(x,y)| dy$ или $\int_{a}^{+\infty} dy \int_{a}^{+\infty} |f(x,y)| dx$ определён.

Тогда

$$\int_{c}^{+\infty} dy \int_{a}^{+\infty} f(x,y) dx = \int_{a}^{+\infty} dx \int_{c}^{+\infty} f(x,y) dy.$$