

In the Garment Industry Productivity is a must

Keeping costs low

Global Competition

Fast Fashion Demand

About the Dataset

15 Variables1197 Observations

- date
- day
- quarter
- over time

- Deparment
- Team No
- No of Workers
- Idle men
- Incentive

Production Process

- No of style changes
- Standard Minute
 Value
- Work in Progress
- Idle time

Productivity Metrics

- Targeted Productivity
- Actual Productivity

Sewing

Finishing

Sewing & Finishing Different Work Flows

01. Sewing

Creative, dynamic, frequent style changes

Finishing

Standardized, consistent, final touches like pressing and packaging

SEWING AND FINISHING DEPARTMENTS ARE 2 SEPERATE CLUSTERS

Key Insights

Finishing Department less consistent than the sewing Department

20% - **Not Productive** in Sewing

40% - **Not Productive** in Finishing

Sewing

Finishing

Recommendations for Improving Team Productivity

Sewing

• Team 5 - Underperforms despite Low Expectations

Finishing

 Reallocate some of Team 6, 7, and 8's workload to Team 5 • Provide training to Teams 6, 7, and 8

Presence of Multi-collinearity

- numerical vs numerical Kandels tau
- Categorical vs Categorical Pearson's chi-square test fisher's exact test

Factor Analysis For Mixed Data

Correlated Variable Groups

idle_time
idle_men
no_of_style_change

no_of_workers smv over_time

targeted_productivity no_of_style_change

targeted_productivity incentive

date quarter day

SUGGESTIONS FOR ADVANCED ANALYSIS

Multi Collinearity & Irrelevant Features

- Ridge Regression
 - Good for multicollinearity
 - No feature selection
- Lasso Regression
 - Has feature selection properties
 - Sometimes struggles with multicollinearity
- Elastic Net Regression
 - Balance between Ridge and Lasso

• Regression Tree

- Handles non-linear relationships well
- Can be sensitive to outliers
- When multicollinearity exists, can pick one feature
 & ignore others

• Random Forest

- Handles multicollinearity better than a single tree
- Reduces overfitting via bagging

XGBoost

- Reduces overfitting with regularization
- Efficient and high-performing

MODELS FOR PREDICTING ACTUAL PRODUCTIVITY OF THE GARMENT

MEASURE	RIDGE	LASSO	ELASTIC	REGRESSION TREE	RANDOM FOREST	XGBOOST
TRAIN MSE	0.0207	0.02102	0.0208	0.0153	0.0109	0.01007
TEST MSE	0.02165	0.02148	0.0215	0.0141	0.01131	0.01384
TRAIN R2	32.82%	31.96%	32.539%	50.43%	56.25%	67.40%
TEST R2	18.10%	18.73%	32.54%	46.71%	49.715%	47.61%

Shrinkage Methods

Non Linear methods

All the models show lower accuracy in predictions

"Sewing is the backbone of the Garment Production"

40 - 60 %

Total Time Spent

Of the total time spent in manufacturing the garment is for sewing

International Labor Organization

50 - 60%

Production Cost

The sewing process in garment factories accounts for up to 50 - 60% of total production costs

World bank

01.

Faster Production

02.

Lower Costs & Fewer Mistakes

03.

Better Quality & Happier Customers

ALL MODELS SHOW BETTER PERFORMANCE IN PREDICTING SEWING DEPARTMENT PRODUCTIVITY

Shrinkage Methods

Non	Linear methods	5

MEASURE	RIDGE	LASSO	ELASTIC	REGRESSION TREE	RANDOM FOREST	XGBOOST
TRAIN MSE	0.00453	0.00469	0.00449	0.00811	0.00194	0.00202
TEST MSE	0.00481	0.00486	0.00475	0.00727	0.0035	0.00415
TRAIN R2	81.57%	80.95%	82.97%	67.07%	88.434%	91.773%
TEST R2	76.67%	76.42%	76.98%	64.61%	80.70%	79.81%

Best Predictive Model

Random Forest

RANDOM FOREST MODEL

Feature Importance

Most important Features

Incentives
Target productivity
SMV
Overtime

Parameter	Value	
n_estimators	500	
min_samples_split	10	
min_samples_leaf	6	
max_leaf_nodes	100	
max_features	0.5	
max_depth	None	
ccp_alpha	0	

Managing Incentive Allocation for peak productivity

01.

Set Effective Incentive Levels

Low Incentive Range (1-25)

minimal improvement in productivity when incentives are increased within this range. This suggests that smaller incentives may not be strong enough to significantly motivate workers.

Moderate Incentive Range (25-50)

A sharp increase in productivity is observed when incentives rise from 25 to 50. This indicates that a threshold effect exists—workers respond significantly to a higher incentive level once it crosses a certain point.

Avoid Small Increments

Setting Targets for getting peak Productivity

Lower Target Productivity (Below 0.4):

Actual productivity stagnates, likely due to low motivation and unclear goals, resulting in minimal gains.

Higher Target Productivity (Above 0.4):

Once the target exceeds 0.4, actual productivity rises steadily, showing that higher benchmarks boost performance through clear goals and motivation.

01.

Set a Minimum Target Benchmark

02.

Monitor and Adjust Goals

Peak performance at smv Range (10-20)

simpler tasks with lower smv values are generally more efficient reaching peak performance at smv 25

Exponential Drop in SMV beyond 30

Further increase in smv beyond this point does not yield a productivity gain

Standard Minute Value = (Basic minute + Bundle allowances + machine allowance + personal fatigue allowances).

Aim to keep the SMV below 30

Break down complex tasks into simpler sub tasks of smv around 25

Targeted Training for tasks having high SMV

Investigating teams for optimizing productivity

Interpretation

When all other predictors are kept constant, all teams perform essentially the same

Team 5 is one of the worst performing team in sewing

35% - Not

Productive work
in Team 5

Pairwise Comparison of target productivity - Dunn's Test

P < 0.05

Dunn's Test

for team 5 with other teams

Team 5 currently has lower target productivity, but have the potential to perform as well as other teams

Gradually raising their goals and offering support, we can help them reach their full potential.

Finishing Department

"Efficiency in the finishing department is not just about speed; it's about precision, consistency, and delivering quality that meets the expectations of the end consumer."

~ Apparel Resources

Finishing Department - Predictors

Zero Observations idle_time
idle_men
wip
no_of_style_change

Predictors

Finishing Department

Target Productivity
incentives
SMV
Over time
No of Workers
Quarter
Day
Team

MODELS FOR PREDICTING ACTUAL PRODUCTIVITY OF THE FINISHING DEPARTMENT

MEASURE	RIDGE	LASSO	ELASTIC	REGRESSION TREE	RANDOM FOREST	XGBOOS
TRAIN MSE	0.0308	0.0306	0.0307	0.0330	0.021	0.023
TEST MSE	0.0331	0.0326	0.0326	0.0313	0.020	0.029
TRAIN R2	20.20%	20.66%	20.52%	14.48%	43.3%	41.52%
TEST R2	5.29%	6.73%	6.78%	10.29%	26.8%	18.36%

Shrinkage Methods

Non Linear methods

All the models show very lower accuracy in predictions

range of incentives:- taka 0-3600 Total incentives:- taka 14040

Incentive

2000

3000

1000

range of incentives:- taka 0-138
Total incentives:- taka 24128

In finishing department high incentives but less frequent low impact on productivity gain

Productivity goals are same for both departments

Productivity goals are same for both departments

Target Productivity = (Total Target Output per Day × Efficiency) / (Total Working Hours × Maximum Production Rate per Hour)

focus on calculating target productivities for departments separately

Investigating the number of workers and Standard Minute Value (SMV) for the finishing Department

Histogram of SMV

50% of number of workers = 8

Range = 2-28

Smaller SMV tasks are given for the finishing Range=2.90 5.13

A predictor with low variance doesn't change much, providing limited information about how the dependent variable behaves, making it harder for the model to learn a meaningful relationship

References

https://medium.com/@randayandika1/employe e-productivity-in-garment-factory-2cdc98de39c0

https://in.apparelresources.com/businessnews/manufacturing/productivity-apparelmanufacturing-back-basics/

https://fashion2apparel.com/workingprocedure-of-sewing-department-ingarment-industry/

Books/Articles

http://repository.wyb.ac.lk/bitstream/hand le/1/1722/ASBIRES-2009-97.pdf? sequence=2&isAllowed=y

https://www2.stat.duke.edu/~rcs46/lectur es_2017/08-trees/08-tree-regression.pdf

Videos

- https://www.onlineclothingstudy.com/2019/09 /standard-minute-value-smv-definition.html
- https://garmentsdoctor.com/calculate-hourlyproduction-target/
- https://cran.rproject.org/web/packages/randomForest/rand omForest.pdf
- https://www.geeksforgeeks.org/random-forestapproach-in-r-programming/
- https://www.geeksforgeeks.org/ml-xgboostextreme-gradient-boosting/
- https://www.geeksforgeeks.org/random-forestregression-in-python/
- https://www.geeksforgeeks.org/decision-treefor-regression-in-r-programming/