Filtering, smoothing and prediction

Sensor fusion & nonlinear filtering

Lars Hammarstrand

WHAT IS FILTERING?

• Filtering is about recursively estimating parameters of interest based on measurements.

Notation

 Let x_k contain parameters of interest and y_k the measurements at time k. (Time is usually discrete.)

Objective

• Compute $p(\mathbf{x}_k|\mathbf{y}_{1:k})$ where $\mathbf{y}_{1:k} \stackrel{\triangle}{=} \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \dots & \mathbf{y}_k \end{bmatrix}$ contains all data up to time k.

FILTERING IN AUTOMOTIVE APPLICATION

 Vehciles fuses / filters noisy observations from onboard sensor, i.e., radar, lidar and camera, to estimate the current traffic situation:

 \mathbf{x}_k : current relative position and velocity of other cars

 I_k : current relative position, headning and shape of the current lane.

 \mathbf{g}_k : current relative position, heading and shape of the guard rails.

FILTERING IN OTHER APPLICATIONS

 Historically, positioning of airplanes and ships have been important examples.

 \mathbf{x}_k : positions and velocities of planes

 Control of physical systems often require estimation of the interior state.

 \mathbf{x}_k : angle of crankshaft, pressure, etc.

 Often important to assess the states in many other types of systems, e.g., biological or economical.

 \mathbf{x}_k : diffusion coefficients, spread of a disease or prices.

FILTERING, SMOOTHING AND PREDICTION

Smoothing and prediction are closely related to filtering.

SMOOTHING IN AUTOMOTIVE APPLICATIONS

- Autonmous vehicles use detailed maps to position themselves and to navigate.
- Collect sensor data from many vehicles to jointly estimate their trajectories and the map:

I: global position, headning and shape of the all lanes.

g: global position, heading and shape of the guard rails.

s: global position of signs and its type.

SMOOTHING IN OTHER APPLICATIONS

 Surveillance of, e.g., airports is important for safety reasons.

 \mathbf{x}_k : positions of people, bags, etc.

- Other examples:
 - Communication systems: having received a complete message you try to decode it.
 - Sports: determine where a ball bounced, if someone cheated...
 - Medicine: e.g., use sequences of arterial blood pressure to estimate the intracranial pressure.

PREDICTIONS IN AUTOMOTIVE APPLICATION

 Vehciles make predicitons of the traffic situation in the near future when, e.g., planning for a safe path or assessing collision risks:

 \mathbf{x}_{k+n} : future relative position and velocity of other cars

 I_{k+n} : future relative position, headning and shape of the current lane.

 \mathbf{g}_{k+n} : future relative position, heading and shape of the guard rails.

PREDICTION IN OTHER APPLICATIONS

 Weather predictions are important, e.g., to plan routes of airplanes.

 \mathbf{x}_k : winds, pressures, temperatures, etc.

- Other examples:
 - Economy: the management of companies relies on forecasts of, e.g., demand.
 - Politics: many decisions are based on predictions regarding population growth, the financial market, etc.

SELF-ASSESSMENT

Check all that apply.

- The prediction problem is about predicting future measurements given the current state vector.
- In smoothing we conditione on data observed after time k when we compute the distribution of x_k.
- In filtering, smoothing and prediction, both the measurements and the state variables may vary with time.

State space models

Sensor fusion & nonlinear filtering

Lars Hammarstrand

DISCRETE-TIME STATE SPACE MODELS

Discrete-time state space models

For a state vector, \mathbf{x}_k , and a measurement vector, \mathbf{y}_k , where k denotes a discrete time index, we have the following models,

Motion Model:
$$\mathbf{x}_{k} = f_{k-1}(\mathbf{x}_{k-1}, \mathbf{q}_{k-1})$$
 (1)

Motion Model:
$$\mathbf{x}_k = f_{k-1}(\mathbf{x}_{k-1}, \mathbf{q}_{k-1})$$
 (1)
Measurement model: $\mathbf{y}_k = h_k(\mathbf{x}_k, \mathbf{r}_k)$ (2)

where $\mathbf{x}_0 \sim p(\mathbf{x}_0)$.

• We also assume that both the motion noise, \mathbf{q}_{k-1} , and the measurement noise, \mathbf{r}_k , are independent of all other noise vectors.

THE MOTION MODEL

Motion / process model

• The system dynamics are described by (1),

$$\mathbf{x}_{k} = f_{k-1}(\mathbf{x}_{k-1}, \mathbf{q}_{k-1}), \qquad P(\mathbf{x}_{k} | \mathbf{x}_{k-1})$$

which we refer to as the motion / process model.

Note:

- It describes the state evolution, $p(\mathbf{x}_k | \mathbf{x}_{k-1})$, i.e., the distribution of \mathbf{x}_k given \mathbf{x}_{k-1} .
- The motion model thus connects state over time and helps us to rule out unreasonable trajectories.

MM

THE MEASUREMENT MODEL

Measurement model

 How the measurements relate to the state vector is described by (2),

$$\mathbf{y}_k = h_k(\mathbf{x}_k, \mathbf{r}_k) \iff \rho(\mathbf{y}_k | \mathbf{x}_k)$$

and is called the measurement model or the sensor model.

Note:

- It describes the distribution of \mathbf{y}_k given \mathbf{x}_k , $p(\mathbf{y}_k|\mathbf{x}_k)$, i.e., it defines the likelihood function.
- The measurement model relates data to the state vector and helps us to use data to learn about the states.

MODELS WITH INPUT VARIABLES

Known input signal

• The system may also have a known input signal, **u**_k,

$$\begin{cases} \mathbf{x}_k &= f_{k-1}(\mathbf{x}_{k-1}, \mathbf{u}_k, \mathbf{q}_{k-1}) \\ \mathbf{y}_k &= h_k(\mathbf{x}_k, \mathbf{u}_k, \mathbf{r}_k). \end{cases} \iff \begin{cases} \rho(\mathbf{x}_k | \mathbf{x}_{k-1}; \mathbf{u}_k), \\ \rho(\mathbf{y}_k | \mathbf{x}_k; \mathbf{u}_k), \end{cases}$$

The time index for **u** in the motion model can also be k-1.

 The input signal is often a control signal but it may also be an accurate measurement.

SELF-ASSESSMENT

An important benefit with having both a measurement and a motion model is that past data can provide information about the current state.

- True.
- False.

Conditional independencies in state space models

Sensor fusion & nonlinear filtering

Lars Hammarstrand

STATE SPACE MODELS AND CONDITIONAL INDENDENCIES

• We represent state space models in one of two forms:

$$\begin{cases} \mathbf{x}_k &= f_{k-1}(\mathbf{x}_{k-1}, \mathbf{q}_{k-1}) \\ \mathbf{y}_k &= h_k(\mathbf{x}_k, \mathbf{r}_k) \end{cases} \iff \begin{cases} \rho(\mathbf{x}_k | \mathbf{x}_{k-1}) \\ \rho(\mathbf{y}_k | \mathbf{x}_k). \end{cases}$$

• For the form on the left hand side we assume:

Both the motion noise, \mathbf{q}_{k-1} , and the measurement noise, \mathbf{r}_k , are independent of all other noise vectors.

• The corresponding assumptions for the density representation:

$$\rho(\mathbf{x}_{k}|\mathbf{x}_{0:k-1},\mathbf{y}_{1:k-1}) = \rho(\mathbf{x}_{k}|\mathbf{x}_{k-1})$$

$$\rho(\mathbf{y}_{k}|\mathbf{x}_{0:k},\mathbf{y}_{1:k-1}) = \rho(\mathbf{y}_{k}|\mathbf{x}_{k})$$
(2)

 Note: Both x_k and y_k are stochastic processes and the assumption in (1) implies that x_k is a Markov process.

BAYESIAN NETWORKS AND CONDITIONAL INDEPENDENCIES

- A Bayesian network (also known as belief networks or Bayes net) is a probabilistic graphical model.
- Bayesian networks are directed acyclic graphs that describe how a joint density can be factorized. It also

STATE SPACE MODELS AND BAYESIAN NETWORKS

• A state space model can be described as a Bayesian network:

• The graph illustrates that:

$$p(\mathbf{x}_{0:k}, \mathbf{y}_{1:k}) = p(\mathbf{y}_{1:k} | \mathbf{x}_{0:k}) p(\mathbf{x}_{0:k})$$

$$= p(\mathbf{y}_{1} | \mathbf{x}_{0:k}) p(\mathbf{y}_{2} | \mathbf{y}_{1}, \mathbf{x}_{0:k}) \dots p(\mathbf{y}_{k} | \mathbf{y}_{1:k-1}, \mathbf{x}_{0:k})$$

$$p(\mathbf{x}_{0}) p(\mathbf{x}_{1} | \mathbf{x}_{0}) p(\mathbf{x}_{2} | \mathbf{x}_{0:1}) \dots p(\mathbf{x}_{k} | \mathbf{x}_{0:k-1})$$

$$= p(\mathbf{y}_{1} | \mathbf{x}_{1}) p(\mathbf{y}_{2} | \mathbf{x}_{2}) \dots p(\mathbf{y}_{k} | \mathbf{x}_{0:k-1})$$

$$= p(\mathbf{y}_{1} | \mathbf{x}_{1}) p(\mathbf{y}_{2} | \mathbf{x}_{2}) \dots p(\mathbf{y}_{k} | \mathbf{x}_{k-1}) p(\mathbf{y}_{2} | \mathbf{x}_{2}) \dots p(\mathbf{y}_{k} | \mathbf{x}_{k-1})$$

SELF-ASSESSMENT

Suppose the Bayesian network

describes the joint distribution over variables x_{k-1} , x_k and y_k . Check all that apply:

•
$$p(x_k, x_{k-1}, y_k) = p(x_k | x_{k-1}) p(x_{k-1}) p(y_k | x_k)$$

•
$$p(x_k, y_k) = p(y_k|x_k)p(x_k)$$

•
$$p(y_k|x_k,x_{k-1}) = p(y_k|x_k)$$

Optimal filtering

Sensor fusion & nonlinear filtering

Lars Hammarstrand

FILTERING: PROBLEM FORMULATION

Consider a time-discrete state space model:

$$p(\mathbf{x}_k | \mathbf{x}_{k-1})$$
 motion model $p(\mathbf{y}_k | \mathbf{x}_k)$ measurement model, and suppose that $\mathbf{x}_0 \sim p(\mathbf{x}_0)$ and $p(\mathbf{x}_k | \mathbf{x}_{0:k-1}, \mathbf{y}_{1:k-1}) = p(\mathbf{x}_k | \mathbf{x}_{k-1})$

$$p(\mathbf{y}_k|\mathbf{x}_{0:k},\mathbf{y}_{1:k-1}) = p(\mathbf{y}_k|\mathbf{x}_k).$$

Objective in filtering

• We seek to compute $p(\mathbf{x}_k|\mathbf{y}_{1:k})$ for $k=1,2,3,\ldots$

A NON-RECURSIVE SOLUTION

• We know Bayesian statistics \Rightarrow we can find $p(\mathbf{x}_k|\mathbf{y}_{1:k})!$

Step 1: use Bayes' rule to find

$$\rho(\mathbf{x}_{0:k}|\mathbf{y}_{1:k}) = \frac{\rho(\mathbf{y}_{1:k}|\mathbf{x}_{0:k})\rho(\mathbf{x}_{0:k})}{\rho(\mathbf{y}_{1:k})} \propto \rho(\mathbf{x}_0) \prod_{i=1}^k \rho(\mathbf{y}_i|\mathbf{x}_i)\rho(\mathbf{x}_i|\mathbf{x}_{i-1})$$

Step 2: marginalize with respect to $\mathbf{x}_{0:k-1}$

$$\rho(\mathbf{x}_k|\mathbf{y}_{1:k}) = \int \rho(\mathbf{x}_{0:k}|\mathbf{y}_{1:k}) \, d\mathbf{x}_{0:k-1}$$

Weakness: complexity grows with k.

A RECURSIVE FILTERING SOLUTION

Methodology

• Recursively compute $p(\mathbf{x}_k|\mathbf{y}_{1:k})$ from $p(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1})$.

 A block diagram illustrating the prediction and update steps that we perform recursively.

THE PREDICTION STEP

Prediction

- Compute $p(\mathbf{x}_k | \mathbf{y}_{1:k-1})$ from $p(\mathbf{x}_{k-1} | \mathbf{y}_{1:k-1})$.
- In this step we use our knowledge regarding \mathbf{x}_{k-1} , obtained from $\mathbf{y}_{1:k-1}$, to predict \mathbf{x}_k .

$$p(\mathbf{x}_{k}|\mathbf{y}_{1:k-1}) = \int P(\mathbf{x}_{k}, \mathbf{x}_{k-1}|\mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1} = \int P(\mathbf{x}_{k}|\mathbf{x}_{k-1}, \mathbf{y}_{1:k-1}) P(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1}$$

$$= \int P(\mathbf{x}_{k}|\mathbf{x}_{k-1}) P(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1}$$

$$= \int P(\mathbf{x}_{k}|\mathbf{x}_{k-1}) P(\mathbf{x}_{k-1}|\mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1}$$

This is the *Chapman-Kolmogorov* equation.

SELF-ASSESSMENT ON THE PREDICTION STEP

Suppose $x_k = x_{k-1} + q_k$ where $q_k \sim \mathcal{N}(0, 1)$. The uncertainties in $p(x_k | y_{1:k-1})$ are then normally [select a suitable word below] than the uncertainties in $p(x_{k-1} | y_{1:k-1})$.

- smaller
- larger
- neither larger nor smaller

Only one answer applies.

THE MEASUREMENT UPDATE STEP

Measurement update

- Compute $p(\mathbf{x}_k|\mathbf{y}_{1:k})$ from $p(\mathbf{x}_k|\mathbf{y}_{1:k-1})$.
- In this step, we update our knowledge about \mathbf{x}_k using the new measurement \mathbf{v}_{k} .

assurement
$$\mathbf{y}_k$$
.
$$p(\mathbf{x}_k|\mathbf{y}_{1:k}) = p(\mathbf{x}_k|\mathbf{y}_{1:k-1}) = \frac{p(\mathbf{y}_k|\mathbf{x}_k, \mathbf{y}_{1:k-1})}{p(\mathbf{y}_k|\mathbf{y}_{1:k-1})}$$

 Note: the prediction and update equations are general. They provide a recursive solution to any filtering problem!

SELF-ASSESSMENT ON THE UPDATE STEP

Suppose $y_k = x_k + r_k$ where $r_k \sim \mathcal{N}(0, 1)$. The uncertainties in $p(x_k|y_{1:k})$ are then normally [select a suitable word below] than the uncertainties in $p(x_k|y_{1:k-1})$.

- smaller
- larger
- neither larger nor smaller

Only one answer applies.

OPTIMAL FILTER EXAMPLE

2D random walk with position observations

• Let us consider a 2D state vector, $\mathbf{x}_k = [x_1, x_2]^T$, with the following system model

$$\mathbf{x}_k = \mathbf{x}_{k-1} + \mathbf{q}_{k-1}$$
 $\mathbf{q}_{k-1} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$ $\mathbf{y}_k = \mathbf{x}_k + \mathbf{r}_k$ $\mathbf{r}_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$ and $\mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{P}_0)$

PREDICTION AND UPDATE ILLUSTRATIONS

Optimal filter recursion:

- Note 1: uncertainties increase during prediction step.
- Note 2: posterior ∝ prior (predicted density) x likelihood.