2003-2004 学年第二学期高等数学期中测试及数学竞赛试卷(2003 级)

·、填空题(12×4 分)

1. 设
$$\vec{a} = (3,-1,-2)$$
, $\vec{b} = (1,2,-1)$, 则 $(-2\vec{a})\cdot(3\vec{b}) = \underline{-18}$, $\vec{a} \times (2\vec{b}) = \underline{(0,2,14)} \circ (ar$ $(ar$ $(2\vec{b}) = \underline{(0,2,14)} \circ (ar$ $(2\vec{b}) = \underline{(0,2,14)} \circ (ar$

2. 过原点且与两直线
$$x+1 = \frac{y+2}{2} = z-1$$
 和
$$\begin{cases} x = 1 \\ y = -1 + t \text{ 平行的平面方程是} \underbrace{ \begin{array}{c} x - y + 3 = 0 \\ z = 2 + t \end{array}} \end{cases}$$

$$z = 2 + t$$

$$z = 2 + t$$

$$2x^2 - 2ax + y^2 = 0$$
3. $x^2 + y^2 + z^2 = a^2 = 5x + z = a$ 的交线在 xOy 面上的投影曲线方程是
$$x = 0$$

5. 设
$$U = \ln(x^2 + y^2 + z^2)$$
,则梯度 $gradU = \frac{1}{\chi + y + 3}(x, y, \delta)$ 。 $(\omega s_{M} - 3)(\sigma) s_{M} - \sigma$

5. 设
$$U = \ln(x^2 + y^2 + z^2)$$
, 则梯度 $\operatorname{grad} U = \frac{1}{x^2 + y^2 + z^2}$ (x, y, y)

6. 设 $U = \left(\frac{y}{x}\right)^{\frac{1}{2}}$, 则 $dU = \frac{1}{x^2}\left(\frac{y}{x}\right)^{\frac{1}{2}}dx + \frac{1}{y^2}\left(\frac{y}{x}\right)^{\frac{1}{2}}dy - \frac{1}{3^2}\left(\frac{y}{x}\right)^{\frac{1}{2}}\left(\frac{y}{x}\right)^{\frac{1}{2}}\left(\frac{y}{x}\right)^{\frac{1}{2}}$

7. 曲面
$$2xy + z - e^z = 3$$
 在点 $M(1,2,0)$ 处的切平面方程为 $2x + y - 4 = 0$ 。 $(06544 - .4)$ $08/(2)$

8.
$$\int_{0}^{2} dx \int_{x}^{2} e^{-y^{2}} dy = \frac{1}{2} (1 - e^{-4})$$
 \$\frac{1}{4} \frac{7}{7} \tag{7}.

9.
$$\int_0^2 dx \int_0^{\sqrt{2x-x^2}} f(x^2+y^2) dy$$
 的极坐标形式为 $\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \int_0^$

10. 设
$$\Omega$$
由 $x^2 + y^2 + z^2 = 1$ 所围,则 $\iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz = \frac{4\pi}{5}$. (08%—.8)

11. 设
$$L: y = -\sqrt{1-x^2}$$
 ,则 $\int_L (x^2 + y^2) ds = \overline{u}$

12. 设
$$\Sigma$$
 为 $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ 在第一卦限的部分,则 $\iint_{\Sigma} \left(z + 2x + \frac{4y}{3}\right) dS = \underline{\qquad \qquad }$

二、计算题 (4×8分)

1. 设
$$z = g(xy) + f\left(xy, \frac{x}{y}\right)$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$. (O) (1.)

2. 设D由xy = 1, y = x, x = 2所围,求 $\iint \frac{x^2}{v^2} dx dy$ 。

$$\int_{0}^{3} x^{2} = \int_{1}^{2} dx \int_{\frac{1}{2}}^{x} \frac{x^{2}}{y^{2}} dy$$

$$= \int_{1}^{2} (x^{3}-x) dx$$

$$= \frac{9}{4}$$

3. 计算
$$\iint_D \sqrt{x^2 + y^2} \, dx dy$$
, 其中 $D = \{(x, y) | 0 \le y \le x, x^2 + y^2 \le 2x \}$.

$$\int \frac{1}{3} x^{2} = \int_{0}^{\frac{\pi}{4}} \cos^{2} \cos^{2}$$

4. 计算
$$\iint_{\Omega} (x+z) dv$$
, Ω 为 $z = \sqrt{1-x^2-y^2}$ 与 $z = \sqrt{x^2+y^2}$ 所围立体域。 $(ossuce 3)$

三、求内接于半径为 R 的球且有最大体积的长方体的体积。(10分)

公司市局:
$$x^2+y^2+3^2=R^2$$

长方1本 (x,y,3).
 $2(1) = 8xy3$, 公立 $L(x,y,3,x) = xy3+\lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$
 $\sqrt{2} \ln x + \ln y + \ln 3 + \lambda(x^2+y^2+3^2-R^2)$

四、(任选做一题, 10分)

$$\frac{1}{1!} \quad \bar{x} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ 的和函数及} \sum_{n=2}^{\infty} (-1)^n \frac{n^2 - n}{2^n} \text{ 的和};$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

$$\frac{1}{1!} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^{n-2} \text{ ind } n = 1$$

2.
$$S: x^2 + y^2 + z^2 = 4(z \ge 0)$$
外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外侧,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间,求 $\int yzdzdx + 2dxdy$ 。

② $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间,求 $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ 外间, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$, $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ $\int S: x^2 + y^2 + z^2 = 4(z \ge 0)$ $\int S$

五、竞赛加题 (5×10分)

1. 设 $x_1 = 10$, $x_{n+1} = \sqrt{6 + x_n}$, 证明 $\lim_{n \to \infty} x_n$ 存在,并求出极限的值。(14 $\frac{1}{2}$ (14)

2. 设 f(x) 具二阶连续导数, f(a)=0 , $g(x)=\begin{cases} \frac{f(x)}{x-a}, & x \neq a \\ f'(a), & x=a \end{cases}$ 、求 g'(x) ,并证明 g'(x) 在 x=a 处连 续。 (o6 5人 ミン)

4. 计算: 1)
$$\int \frac{2 \ln x + 1}{x^3 (\ln x)^2} dx$$
; (07年)

2)
$$f(x)$$
连续, $\int_0^x t f(x-t) dt = 1 - \cos x$,求 $\int_0^{\frac{\pi}{2}} f(x) dx$ 。(1450年至321)(0750年至421)(10550年至3))

5. 己知
$$f(x) = \begin{cases} x, & 0 \le x \le 2 \\ 2x - 2, & 2 < x < +\infty \end{cases}$$
, $S(t)$ 是由 $y = f(x)$, $y = 0$, $x = t$ $(t > 0)$ 三条曲线所围的图形

的面积,求S(t)的表达式及S'(t)。

$$0 < t \le 2 \text{ ut}, S_{(t)} = \int_0^t x \, dx = \frac{1}{2} t^2$$

 $t > 2 \text{ ut}, S_{(t)} = \int_0^2 x \, dx + \int_2^t (2x - 2) \, dx = t^2 - 2t + 2$.

$$S_{1+1} = \begin{cases} \frac{1}{2}t^{2}, & 0 < t < 2 \\ t^{2} = 2t + 2, & t > 2 \end{cases}$$

