Introduction into Biostatistics

Organisation

- 1.6. Introduction into biostatistics
- 8.6. Descriptive statistics
- 22.6. Hypothesis testing
- 29.6. Big data and data visualisation

Recap on probability

A model

Data

A model based on data

Estimating probabilities can only be as good as your assumptions/ data

Recap on confidence of one probability measurement

- A random (or representative) sample!
- They are independent observations!
- The data are accurate!

Recap on confidence of one probability measurement

Please answer in the chat:

Does the confidence interval get bigger, if you...

... increase n?

... increase the confidence level, e.g. from 95% to 99%?

Recap on accuracy and precision

How do these relate to confidence intervals?

Does the confidence interval get bigger, if you increase n?

Know your problem, know your distribution!

Confidence increases with n

Normal

Confidence does not increase with n

Descriptive statistics

Data types and distributions

- Probability data (binomial distribution)
- Counted data (Poisson distribution)
- Normal distribution

Summary statistics

- Min, max, mean
- Mode
- Median and quartiles
- Confidence intervals

Probability data/ Binominal distribution

-> Jupyter Notebook

Counted data/ Poisson distribution

- Radioactive decay
- Raisins in a Dresdner Stollen
- Mutations in a genome

Discrete variables

Ordinal variables

- limited set of discrete values with order

e.g. scale from 1-10

Nominal, binomial variables

- limited set of discrete values without order

e.g. responder <-> non responder

Continuous variables

Interval variables

- continuous value, for which intervals make sense, but no ratios

e.g. °C

Ratio variables

- continuous value, for which ratios make sense

e.g. height, weight, enzyme activity, Kelvin

1 2 2 5 5 5 10 30

1 2 2 5 5 5 10 30

Min value: 1

Max value: 30

1 2 2 5 5 5 10 30

Min value: 1

Max value: 30

Parametric measures

Mean: (1+2+2+5+5+5+10+30)/8 = 7.5

Variance: (1+4+4+25+25+25+100+900)/8 = 90.57143

SD: square_root (variance) = 9.516902

SD = standard deviation = sigma

1 2 2 5 5 5 10 30

Min value: 1

Max value: 30

Parametric measures

Mean: (1+2+2+5+5+5+10+30)/8 = 7.5

Variance: (1+4+4+25+25+25+100+900)/8 = 90.57143

SD: square_root (variance) = 9.516902

SD = standard deviation = sigma

non-parametric measures:

1 2 2 5 5 5 10 30

Ranks: 1 2 2 4 4 4 7 8

Median: the central value: 5

Quartiles: the value of the lower and upper quarter: 2, 6.25

Inter quartile range (IQR): 6.25-2

Normal distribution

Gaussian distribution, bell-shaped distribution

The result of general imprecision: weighing, pipetting, randomness

Therefore also: height, weight

Density defined by mean and standard deviation

Summary

- Probability data (Binomial distribution)
- Count data (Poisson distribution)
- Categorical and continuous data types
- Normal distributions
- Describing a distribution (mean, median, standard deviation, mode, error)