VMMT3 Projekt IMDB review

Obsah

Popis úlohy	1
Popis dát a preprocessing	1
Model	2
Baseline	2
Trénovanie	3
Testovanie	4
Záver a porovnanie s baseline	5

Popis úlohy

Úlohou je naučiť neurónovú sieť identifikovať polaritu filmovej recenzie.

Popis dát a preprocessing

IMDB reviews je veľká databáza filmových recenzií, ktorá sa bežne používa na trénovanie modelov na určovanie pozitívneho a negatívneho sentimentu textu. Dataset je voľne prístupný v knižnici Tensorflow pomocou príkazu tf.keras.datasets.imdb_reviews.load_data. Pozostáva z 50 000 recenzií rozdelených na train (25 000) a test (25 000) množiny. Dataset je vyvážený: pomerné zastúpenie jednotlivých tried je rovnaké (50 %).

Dataset je predspracovaný, je v podobe matice čísiel, je tokenizovaný. Pred jeho načítaním však treba zvoliť veľkosť slovníka (v našom prípade použijeme 2048 slov), ktorá určí hranicu najfrekventovanejších slov, a všetky ostatné zmení za výplňový token. Jediná potrebná úprava je nastavenie dĺžky recenzií. Aby bola stála, je treba určiť jednotnú dĺžku a všetky recenzie na ňu zarovnať (napr. pomocou funkcie tf.keras.utils.pad_sequences). Nami nastavená dĺžka je 256 slov. Ukážku recenzie v tokenizovanej a dĺžkovo homogenizovanej podobe vidíme na obrázku 1. Ukážku v slovnej podobe na obrázku 2.

array([0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,		0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	1,	14,	20,	47,	111,	439,
	2,	19,	12,	15,	166,	12,	216,	125,	40,	6,	364,
	352,	707,	1187,	39,	294,	11,	22,	396,	13,	28,	8,
	202,	12,	1109,	23,	94,	2,	151,	111,	211,	469,	4,
	20,	13,	258,	546,	1104,	2,	12,	16,	38,	78,	33,
	211,	15,	12,	16,	2,	63,	93,	12,	6,	253,	106,
	10,	10,	48,	335,	267,	18,	6,	364,	1242,	1179,	20,
	19,	6,	1009,	7,	1987,	189,	5,	6,	2,	7,	2,
	2,	95,	1719,	6,	2,	7,	2,	2,	49,	369,	120,
	5,	28,	49,	253,	10,	10,	13,	1041,	19,	85,	795,
	15,	4,	481,	9,	55,	78,	807,	9,	375,	8,	1167,
	8,	794,	76,	7,	4,	58,	5,	4,	816,	9,	243,
	7,	43,	50],	dtyp	e=int32	.)					

Obr. 1: Ukážka tokenizovanej recenzie spolu s výplňou na stanovenú dĺžku.

```
REVIEW_POLARITY: 0 - Negative ...<Padding Tokens>... this movie has many problem ...<Padding Tokens>... with it that makes it come off like a low budget class project from someone in film school i have to give it credit on its ...<Padding Tokens>... though many times throughout the movie i found myself laughing ...<Padding Tokens>... it was so bad at times that it was ...<Padding Tokens>... which made it a fun watch br br if you're looking for a low grade slasher movie with a twist of psychological horror and a ...<Padding Tokens>... of ...<Padding Tokens>... then pop a ...<Padding Tokens>... of ...<Padding Tokens>... some friends over and have some fun br br i agree with other comments that the sound is very bad dialog is next to impossible to follow much of the time and the soundtrack is kind of just there
```

Obr. 2: Ukážka textovej recenzie z IMDB datasetu spolu s jej polaritou.

Model

Ako baseline si stanovíme jednoduchú rekurentnú siet, ktorú sa finálnym modelom (zložitejšou rekurentnou sietou) pokúsime prekonať. Pre lepšie vyhodnotenie presnosti modela použijeme pri trénovaní finálneho modela 5-fold cross validation.

Baseline

Baseline je jednoduchá rekurentná siet, ktorej topológiu môžeme vidieť v tabuľke 1. Výsledky klasifikačných metrík a confusion matrix predikcií baseline modela na základe testovacieho datasetu (ktorý bol pred krížovou validáciou skrytý) môžeme vidieť v tabuľkách 2 a 3. Priebeh trénovania baseline modela (20 epoch, batch size 64, optimizér Adam(lr = 0.001) vidíme na obrázku 3. Ako vidíme, model po 3 epochách začína byť pretrénovaný.

Obr. 3: Priebeh trénovania baseline modela.

Name	Type	Shape	# Par.	Act.	Regul. Padding
input_1 embedding_1 lstm_1 dense_1	InputLayer Embedding LSTM Dense	[(None, None)] (None, None, 16) (None, 8) (None, 1)	0 32768 800 9	None	None – None – None – None –
Total par.: Trainable par.: Non-trainable par.:	33577 33577 0	(131.16 KB) (131.16 KB) (0.00 Byte)			

Tabuľka 1: Topológia baseline modela.

	Negative sent.	Positive sent.
Negative sent.	10898	1602
Positive sent.	1890	10610

Tabuľka 2: Confusion matrix baseline modela. Zvýraznená hlavná diagonála označuje správne klasifikácie.

	precision	recall	f1-score	support
Negative sent. Positive sent.	0.85 0.87	0.87 0.85	0.86 0.86	12500 12500
accuracy macro avg weighted avg	0.86 0.86	0.86 0.86	0.86 0.86 0.86	25000 25000 25000

Tabuľka 3: Hodnota najbežnejších klasifikačných metrík baseline modela.

Trénovanie

Finálny model bude zložitejšia rekurentná sieť zložená z vrstiev Embedding, Conv1D, Bidirectional LSTM, Attention a Dense. Conv1D do siete pridávame v snahe zachytiť opakujúce sa viacslovné motívy, n-gramy (kde n je definované veľkosťou jadra konvolúcie). Attention zas zaručí lepšie chápanie kontextu.

Aby sme zabránili preučeniu a ušetrili výpočtový čas zvýšime batch size na 128 a znížime počet epoch na 10.

Finálny model môžeme vidieť v tabuľke 4. Priebeh trénovania môžeme vidieť na obrázku 4. Model sme pomocou 5-fold cross validation trénovali 10 epoch, s rovnakým optimizátorom a jeho nastavením, pri batch size 128. Pri embedding layer sme nastavili mask_zero na True, a veľkosť jadra Conv1D vrstvy na 3.

Name	Type	Shape	#Par.	Act.	Reg.	Padding
input_1	InputLayer	[(None,	0	None	None	_
		None)]				
embedding_1	Embedding	(None,	32768	None	None	_
4 1 4	C 1D	None, 16)	100	1	T 0 0 01	
conv1d_1	Conv1D	(None,	196	relu	L2=0.01	same
hidinactional 1	Didinactional	None, 4)	110	None	None	
bidirectional_1	Bidirectional	(None, None, 4)	112	None	None	_
attention 1	Attention	(None,	1	None	None	_
	110001101011	None, 4)	1	TOHC	TTOILC	
global_max_pool	GlobalMaxPooling1D	. ,	0	None	None	_
dropout_1	Dropout (0.5)	(None, 4)	0	None	None	_
$dense_1$	Dense	(None, 1)	5	sigmoid	None	_
Total par.:	33082	(129.23				
		KB)				
Trainable par.:	33082	(129.23)				
		KB)				
Non-trainable par.:	0	(0.00)				
		Byte)				

Tabuľka 4: Topológia modela.

Obr. 4: Priemerný priebeh trénovania finálneho modela pomocou 5-fold cross-validation.

Testovanie

Na vyhodnotenie modela sme použili testovací dataset, ktorý bol počas krížovej validácie skrytý. Confusion matrix predikcie testovacej množiny môžeme vidieť v tabuľke 5. Bežné hodnoty evaluácie modelov nájdeme v tabuľke 6.

	Negative sent.	Positive sent.
Negative sent.	10434	2066
Positive sent.	1271	11229

Tabuľka 5: Confusion matrix modela. Zvýraznená hlavná diagonála označuje správne klasifikácie.

	precision	recall	f1-score	support
Negative sent. Positive sent.	0.89 0.84	0.83 0.90	0.86 0.87	$12500 \\ 12500$
accuracy macro avg weighted avg	0.87 0.87	0.87 0.87	0.87 0.87 0.87	25000 25000 25000

Tabuľka 6: Hodnota najbežnejších klasifikačných metrík modela.

Záver a porovnanie s baseline

Rozdieľ medzi jednoduchým baseline model a finálnym modelom nie je významný, napriek tomu však ide o malé zlepšenie (nárast o 1 % vo všetkých metrikách je v porovnaní s pôvodným výsledkom nárast o 1,16 %). Takýto výsledok je však pomerne očakávateľný, nakoľko je bežne uvádzaný v rôznych zdrojoch, kde sa IMDB dataset spracúva pomocou RNN a nie napr. transformermi (napr. Chollet 2022 s. 329, 332).

V tabuľke 7 vidíme rozdiely medzi confusion matrix finálneho modela a baseline modela. Negatívne hodnoty nesprávnych klasifikácií označujú tie predikcie, v ktorých sa finálny model mýli menej, a naopak pozitívne tie, v ktorých chybuje viac.

Hodnoty správnych klasifikácií – vyznačená hlavná diagonála – sa interpretujú opačne; pozitívny rozdiel znamená, že výsledný model určil danú triedu o daný počet klasifikácií častejšie než baseline, negatívne číslo zas znamená zhoršenie finálneho modela.

Vidíme, že finálny model je horší v odhalovaní negatívnych recenzií, ale za to je lepší v odhalovaní pozitívnych recenzií.

	Negative sent.	Positive sent.
Negative sent.	-464	464
Positive sent.	-619	619

Tabuľka 7: Rozdiel confusion matrix modela a baselinemodela.

Za poznámku ešte stojí to, že finálny model ukážku klasifikácie recenzie z obrázka 2 klasifikoval správne ako negatívnu recenziu.

Lepšie výsledky by sme mohli dostať napríklad pri použití iných, externých, už natrénovaných modelov (transfer learning), ktoré dokážu vyextrahovať z pôvodných dát viac informácií, potom by sme však trénovali skôr už len klasifikátor než celú sieť. Ďalším spôsobom, ako zrejme môžeme zlepšiť výsledky, je použitie vektorových embeddingov.