- 1. 関数 $f: \mathbb{R} \to \mathbb{R}, x \mapsto 3x$ に対して、以下の問いに答えよ.
 - (a) $\varepsilon = 3$ に対して

$$|x-1| < \delta_{\varepsilon} \Longrightarrow |f(x) - f(1)| < \varepsilon$$

を満たす $\delta_{\varepsilon} > 0$ の条件を答えよ.

(b) 実数 ε (> 0) に対して

$$|x-1| < \delta_{\varepsilon} \Longrightarrow |f(x) - f(1)| < \varepsilon$$

を満たす $\delta_{\varepsilon} > 0$ の条件を答えよ.

- (c) 関数 f は x=1 で連続であることを ε - δ 論法に基づき示せ.
- (d) 関数 f は連続 (すなわち全ての点 $x_0 \in \mathbb{R}$ で連続) であることを ε - δ 論法に基づき示せ.
- 2. 関数 $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$ は連続であることを ε - δ 論法に基づき示せ.