1. (10 คะแนน) จงเขียนประสิทธิภาพเชิงเวลาของความสัมพันธ์เวียนเกิดต่อไปนี้ โดยใช้ Master Theorem หรือตอบว่า "ไม่ตรง เงื่อนไข" กรณีที่ความสัมพันธ์ดังกล่าวไม่ตรงกับเงื่อนไขของ Master Theorem สำหรับทุก ๆ ข้อให้ถือว่า $T(1) = \Theta(1)$

Master Theorem

The Master Theorem applies to recurrences of the following form:

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1$ and b > 1 are constants and f(n) is an asymptotically positive function.

There are 3 cases:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a} \log^k n)$ with $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ with $\epsilon > 0$, and f(n) satisfies the regularity condition, then $T(n) = \Theta(f(n))$. Regularity condition: $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n.

ข้อ	Recurrent	ความซับซ้อนเชิงเวลา
(1)	$T(n) = 2^n T(n/2) + n^n$	0 (n 1 69 7)
(2)	$T(n) = 2T(n/2) + n \log n$	G(nlo, n)
(3)	$T(n) = 2T(n/4) + n^{0.51}$	θ ($n^{0.51}$)
(4)	T(n) = 16T(n/4) + n!	O CMI)
(5)	$T(n) = \sqrt{2}T(n/2) + \log n$	0 (vn)
(6)	$T(n) = 2T(n/2) + n/\log n$	(Cn)
(7)	$T(n) = 64T(n/8) - n^2 \log n$	
(8)	$T(n) = 4T(n/2) + \log n$	b (n2)
(9)	$T(n) = T(n/2) + n(2 - \cos(n))$	0 C h (2-(0, (h))
(10)	T(n) = 4T(n/2) + cn	O (n)

2. (3 คะแนน) กำหนดให้ผลลัพธ์ของการคำนวณปัญหา Longest Common Subsequence (LCS) ของสายอักขระ
OLAHATLASOA กับ AHAHOLALASA ด้วยวิธี Dynamic Programming ตามเอกสารประกอบคำสอน มีผลเป็นดังตาราง
ดังต่อไปนี้จงหาว่า LCS ของสายอักขระสองอันนี้คืออะไร

	เลขประจำตัวนิสิต	ชื่อ-สกุ		
--	------------------	----------	--	--

		0		Λ	- 11	Λ	т		Λ	c	0	Λ
		0	L	Α	Н	Α	- 1		Α	S	0	Α
	0	0	0	0	0	0	0	0	0	0	0	0
Α	0	0	0	1	1	1	1	1	1	1	1	1
Н	0	0	1	1	2	2	2	2	2	2	2	2
Α	0	0	0	1	2	3	3	3	3	3	3	3
Н	0	0	0	1	2	3	3	3	3	3	3	3
0	0	1	1	1	2	3	3	3	3	3	3	4
L	0	1	2	2	2	3	3	4	4	4	4	4
Α	0	1	2	3	3	3	3	4	5	5	5	5
L	0	1	2	3	3	3	3	4	5	5	5	5
Α	0	1	2	3	3	4	4	4	5	5	5	6
S	0	1	2	3	3	4	4	4	5	6	6	6
Α	0	1	2	3	3	4	4	4	5	6	6	7

คำตอบ _____ (ให้ตอบ string ที่เป็น LCS)

3. (5 คะแนน) Peak Detection ให้ x[1], x[2], ..., x[n] เป็น รายการของตัวเลขจำนวนเต็มที่มีคุณสมบัติพิเศษว่าตัวเลขใน รายการจะเพิ่มขึ้นเรื่อยๆจนถึงตัวเลขที่มีค่ามากที่สุดหลังจากนั้นตัวเลขก็จะลดลงเรื่อยๆจนจบรายการ จงเติม Pseudo Code ที่ใช้ หาว่าตัวเลขที่มีค่ามากที่สุดคือค่าอะไร (ตัวอย่างเช่น x = <1,2,5,6,8,9,15,3,2,1> จะได้ peak คือ 15) โดยประสิทธิภาพเชิง เวลาต้องไม่ช้ากว่า O(log n) โดยเรารับประกันว่าตัวเลขที่มีค่ามากที่สุดจะไม่เป็นตัวที่ 1 หรือ n และ n >= 3

4. (5 คะแนน) สำหรับความสัมพันธ์เวียนเกิด K(P) ที่กำหนดให้ในแต่ละข้อย่อยต่อไปนี้ จงเติมค่าของ K(P) ต่าง ๆ เมื่อคำนวณด้วย วิธี Dynamic Programming ลงในตาราง สำหรับค่า P ตั้งแต่ 0 ถึง 11 และในแต่ละข้อ กำหนดให้ w1 = 1, w2 = 3, w3 = 5

4.2
$$K(P) = \begin{cases} 1 & P = 0 \\ sum(K(P - w_i)) & (for w_i \le p) & P > 0 \end{cases}$$

Р	0	1	2	3	4	5	6	7	8	9	10	11
K(P)	1	1_	1	(2)	3	(5)	Ý	(12)	Ly	30	47	74
	<u> </u>				/	/ ~	-/ + 1	- 1	- /∽		./	_/

5. (7 คะแนน) เหมืองแร่แห่งหนึ่งมีพื้นที่เป็นตารางสี่เหลี่ยมจตุรัส ขนาด 500 คูณ 500 ช่อง ช่องแต่ละช่องสามารถระบุด้วยพิกัด (r, c) ซึ่งหมายถึงช่องในแถวที่ r และคอลัมน์ที่ c ในพื้นที่ของเราสำหรับค่า r, c ตั้งแต่ 0 ถึง 499 เรามีรถขุดแร่อยู่คันหนึ่ง เริ่มต้น ที่ตำแหน่ง (499, 499) กำหนดให้เมื่อรถขุดแร่อยู่ในช่อง (a, b) ใด ๆ จะสามารถขุดแร่ได้เป็นจำนวน Mine[a][b] หน่วย หลังจาก ้นั้นรถขุดแร่จะต้องย้ายไปขุดที่อื่น รถขุดแร่นั้นเมื่อขุดช่อง (a, b) เสร็จแล้ว จะสามารถขยับไปยังช่อง (a -1, b) หรือ (a, b-1) ช่อง ใดช่องหนึ่งเท่านั้น แล้วกระทำการขุดแร่ในช่องนั้นต่อไป โดยที่รถขุดแร่ไม่สามารถออกไปนอกพื้นที่เหมืองแร่ได้เด็ดขาด (ตัวอย่าง การเดินทางของรถขุดแร่แบบหนึ่งทีเป็นไปได้คือ เริ่มที่ (499,499) -> (499,498) -> (499,497) -> ... -> (499,1) -> (499,0) -> (498,0) -> (497,0) -> ... -> (0,0)

5.1 จงเขียนความสัมพันธ์เวียนเกิด MaxMiner(r, c) ซึ่งคือผลรวมจำนวนแร่ที่ขุดได้มากที่สุดที่เป็นไปได้ เมื่อรถขุดแร่เริ่ม

5.2 จงเขียน pseudo-code ของฟังก์ชัน MaxMiner1(mine, r, c) ตามคำตอบในข้อ 5.1 โดยใช้วิธีการ Divide & Conquer โดยที่ยังไม่ต้องใช้วิธีการ Dynamic Programming โดยฟังก์ชันนี้จะต้องคืนค่า ผลรวมจำนวนแร่ที่ขุดได้มากที่สุดที่ เป็นไปได้ เมื่อรถขุดแร่เดินทางมาถึงช่อง (r, c)

5.3 จงปรับคำตอบที่ได้ในข้อ 5.2 ให้ใช้วิธีการ Dynamic Programming แบบ Top-Down (หรือที่เรียกว่า Memoization) พร้อมทั้งระบุ ชื่อตัวแปรที่ใช้ในการเก็บค่าของ Dynamic Programming ด้วย โดยให้เขียนเป็น pseudo-code ของฟังก์ชัน MaxMiner2(mine, r, c)

```
5.3 จะบริบทัพยบที่ได้ในข้อ 5.2 ให้ใช้วิธีการ Dynamic Programming แบบ Top-Down (หรือที่เรียกว่า
Memoization) พร้อมทั้งระบุ ข็อตัวแปรที่ใช้ในการเก็บค่าของ Dynamic Programming ด้วย โดยให้เขียนเป็น pseudo-code
ของฟังก์ขัน MacMiner2(mine, r, c)
jn + mixt (547864) ; # m.c.m.oiiation serve(enem ! กลกะ ...)
```

int mire (SM) (SM) # me more ation conselement in mire a)

2 if Mix Miner 2 (mire y c)

it (mine EV) (EC) (ec-1)

it (mine EV) (EC) (ec-1)

it (mine EV) (EC) (ec-1)

it (miner EC) (ec) (ec) (ec)

miner (ec) (ec) (ec) (ec)

else if (ec) (ec) (ec) (ec)

else if (ec) (ec) (ec) (ec)

miner (ec) (ec) (ec) (ec)

in (ec) (ec) (ec) (ec) (ec)

else if (ec) (ec) (ec) (ec)

miner (ec) (ec)

else if (ec) (ec) (ec)

else if (ec)

return mine [] EG].

else return minetroco 6. (3 คะแนน) ให้พิจารณาปัญหาดาวเด่น (Celebrity Problem) ตามเอกสารประกอบคำสอน กำหนดให้ในกลุ่มมีคนอยู่ 5 คน แต่ละคนกำหนดด้วยหมายเลข 1 ถึง 5 และกำหนดให้มีตาราง a โดยที่ a[i][j] จะมีค่าเป็น 1 ก็ต่อเมื่อคนหมายเลข i รู้จักคน หมายเลข j เป็นดังตารางด้านล่างนี้ ให้ Celeb(a,p,q) เป็นฟังก์ชันที่จะคืนค่าหมายเลขคนที่เป็นดาวเด่น เมื่อเราพิจารณาเฉพาะ คนหมายเลข p ถึงหมายเลข q โดยที่ Celeb(a, p, q) จะคืนค่า 0 ก็ต่อเมื่อไม่มีดาวเด่นในกลุ่มคนหมายเลข p ถึง q

เราต้องการคำนวณค่า Celeb(a, 1, 5) ตามวิธี Divide & Conquer ตามเอกสารประกอบคำสอน จงเขียนการเรียก ฟังก์ชัน Celeb ที่ถูกเรียกทั้งหมดจากการเรียก Celeb(a, 1, 5) ตามลำดับเวลา พร้อมด้วย Parameter ต่าง ๆ และให้ระบุค่าที่ ฟังก์ชันดังกล่าวคืนค่ากลับมาด้วย

ลำดับที่เรียก	ฟังก์ชันและ Paremeter	ผลลัพธ์
1.	Celeb(a, 1, 5)	
2.		
3.		-
4.	62600	4
5.		

#	1	2	3	4	5
1	0	1	1	0	0
2	0	0	0	0	0
3	0	1	0	1	1
4	1	0	1	0	1
5	1	1	0	0	0

4

7. (5 คะแนน) รหัสเทียมต่อไปนี้เป็นการแก้ปัญหาปัญหาหนึ่งด้วยวิธีการ Dynamic Programming แบบ Bottom-up โดย กำหนดให้มีข้อมูลนำเข้าเป็น Array A[1..n] ส่วนผลลัพธ์ของการคำนวณอยู่ใน Array B[0..n] โดยมีคำตอบอยู่ที่ B{n] จงเขียน ความสัมพันธ์เวียนเกิดของฟังก์ชัน B(x) ของรหัสเทียมดังกล่าว พร้อมทั้งระบุกรณีพื้นฐานด้วย

```
B = Array [0..n]

B[0] = 0

for i = 1 to n

max = 0

for j = 1 to i-1

if (a[i] > a[j] and b[j] > max) max = b[j]

b[i] = max + 1
```