ANÁLISIS MATEMÁTICO II — Examen Final

20 de Febrero de 2017

			Apellido y Nombre				Condición			
1	2	3	4	5	6	7		8	TOTAL	NOTA

LOS EJERCICIOS 7 Y 8 SON SOLO PARA ALUMNOS LIBRES

- 1. (1.5 pts.) Dadas las funciones $f(x) = -3x^2 + 2x + 6$ y $g(x) = 3x^2 + 2$.
 - a) Grafique el área A comprendida entre los gráficos de f y g.
 - b) Calcule el valor numérico de A.
- a) (1 pto.) Determine el radio de convergencia y el intervalo de convergencia de la serie
 - b) (1 pto.) Utilice la expansión $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots$, válida para |x| < 1, para representar a la función $f(x) = \frac{7}{1+x}$, en potencias de x.
- 3. (1.5 pts.) Calcule la siguiente integral sobre la región $R = \{(x,y) \mid 0 \le x \le e^y \text{ y } 0 \le y \le 1\}.$

$$\int \int_{R} \sqrt{1 + e^{y}} dx dy$$

- 4. (1 pto.) Sea $f(x, y, z) = x \sin(x + 2z)$.
 - (a) Obtenga la ecuación del plano tangente a la superficie de nivel de la función f que pasa por el punto $P_0 = (-1, \pi/3, \pi/6)$.
 - (b) Encuentre la ecuación de la recta que pasa por P_0 y es normal al plano calculado en (a).
- 5. (2 pts.) Sea $f(x) = e^{-x/3}$
 - a) Determine el orden del polinomio de Taylor de f, centrado en a=0, que se necesita para aproximar e^{-1} con un error menor que 0.002.
 - b) Dé el valor de la aproximación de e^{-1} que se obtiene con este método (puede dejarlo expresado como una suma).
- 6. (2 pts.) Sea $f(x,y) = y^3 + 4x^2 y^2 8xy$. Determine los puntos críticos de f y decir si son máximos, mínimos o puntos de silla.
- 7. (1 pto.) Dé la ecuación vectorial del plano S generado por los vetores v = (1, 0, 4) y w = (2, 3, 10)y que además contiene al punto $P_0 = (2, 3, 5)$.
- 8. (1 pto.) Determine si cada una de las siguientes sucesiones es convergente o divergente.
 - a) $a_n = \frac{\ln(n)}{5n}$ b) $a_n = \frac{\cos(\pi n)}{n^2}$