Date :-21/01/2022

Time :-25 Minutes

(b) $\bar{a} - 2\bar{b} + 3\bar{c} = (\bar{\iota} + \bar{\jmath}) - 2(\bar{\jmath} + \bar{k}) + 3(\bar{\iota} + \bar{k})$

16. b

Exam Name :-MHTCET-

Mark :- 30

Date	41/	1to1Guru-3
1.	d	$I_{\text{removed}} = \frac{MR^2}{2}$ $I_{\text{removed}} = \frac{M(R/2)^2}{4} + \frac{M}{4}(\frac{R}{2})^2 = \frac{3MR^2}{32} \left[\because \frac{mr^2}{2} + mh^2 \right]$ $I_{\text{remain}} = I_{\text{total}} - I_{\text{removed}}$ $= \frac{MR^2}{2} - \frac{3}{32}MR^2 = \frac{13}{32}MR^2$
2.	a	(a) Electron is moving in opposite direction of field so field will produce an accelerating effect on electron.
3.	b	(b)
4.	b	(B) As at interface, velocity of light reduces by 20% of C Refractive index $= \frac{v_1}{v_2} = \frac{\sin i}{\sin r} = \frac{i}{r}$ $V_2 = 0.8V_1 : \frac{V_1}{v_2} = \frac{1}{0.8} = \frac{5}{4} : \frac{i}{r} = \frac{5}{4} : r = \frac{4}{5}i : \delta = i - r = \frac{i}{5}$
5.	c	(C) The force on electron $F = qE$ Acceleration $a = \frac{F}{m} = \frac{q/m}{m}$ $v^2 = 2ax = 2 \times \frac{qE}{m} \times x$ $v = \sqrt{\frac{2Eqx}{m}}$
6.	c	(c) The power loss in AC circuit will be minimum, if resistance is low. In inductance power loss is zero. It applies to high as well as low inductances.
7.	d	
8.	b	The smaller alkyl group along with oxygen atom is named as alkoxy group and the position of the alkoxy group is indicated by the minimum number.
9.	d	$P_4O_{10} + 6H_2O \longrightarrow 4H_3PO_4$ Orthophosphoric acid
10.	b	(b) Weaker the base or stronger the acid, stronger is the leaving group $ E > E $
11.	d	(D) Corundum is crystallized alumina while all others are mineral of iron.
12.	b	Electrolytes
13.		(1) Heat of decomposition of water is $H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g);$ $\Delta H = \frac{+573.2}{2} = 286.6 \text{ kJ/mol}$
14.	c	
15.		
	-	

		Required unit vector is
		$=\frac{(4\bar{\iota}-\bar{\jmath}+\bar{k})}{\sqrt{16+1+1}}$
		$\sqrt{16+1+1}$
		$=\frac{1}{3\sqrt{2}}\left(4\bar{\iota}-\bar{\jmath}+\bar{k}\right)$
		$(x^2 + y^2)(h^2 + k^2 - a^2) = (hx + ky)^2$
		$\therefore x^{n}(h^{2} + k^{2} - a^{2}) + y^{n}(h^{2} + k^{2} + a^{2})$ $= h^{2}x^{2} + k^{2}y^{2} + 2hkxy$
17.	9	$x^{2}(h^{2} + k^{2} - a^{2}) + y^{2}(h^{2} + k^{2} - a^{2})$ $= h^{2}x^{2} + k^{2}y^{2} + 2hkxy$ $x^{2}(k^{2} - a^{2}) + y^{2}(h^{2} - a^{2}) - 2hkxy = 0$
	a	Here $A = k^2 - a^2$, $B = h^2 - a^2$, $2H = -2hk$
		Since the given pair of lines are perpendicular A + B = 0
		$k^2 - a^2 + h^2 - a^2 = 0 \Rightarrow h^2 + k^2 = 2a^2$
18.	a	
19.		.,
		$\frac{\pi}{4}$
20.		(b) $I = \int_{1}^{\infty} \frac{1 - \tan x}{1 + \tan x} dx$
		$\int_{0}^{1} 1 + \tan x$
	b	$\frac{\pi}{4}$
		$I = \int \tan\left(\frac{\pi}{x} - x\right) dx$
		$I = \int_{0}^{\frac{\pi}{4}} \tan\left(\frac{\pi}{4} - x\right) dx$ $I = \left[\log\cos\left(\frac{\pi}{4} - x\right)\right] \frac{\pi}{4}$ $I = -\log\frac{1}{\sqrt{2}}$
		$\left[1 - \left[\log \cos \left(\frac{1}{4} - x\right)\right]\right]_0$
		$I = -\log \frac{1}{\sqrt{2}}$
		$I = \log \sqrt{2}$
		(D) $[(1, 2, 2, 1)^{1}]^{2}$
21.	d	$\lim_{x \to \infty} \left(\frac{1+2x}{1-x} \right)^{1/x} = \lim_{x \to \infty} \frac{(1+2x)\frac{1}{x}}{1-x} = \lim_{x \to \infty} \frac{[(1+2x)\frac{1}{2x}]}{1-x} = \frac{e^2}{1-x} = e^4$
		$\lim_{x \to 0} \left(\frac{1+2x}{1-2x} \right)^{1/x} = \lim_{x \to 0} \frac{(1+2x)\frac{1}{x}}{(1-2x)^{\frac{1}{x}}} = \lim_{x \to 0} \frac{\left[(1+2x)\frac{1}{2x} \right]^2}{\left[(1-2x)^{-\frac{1}{2x}} \right]^{-2}} = \frac{e^2}{e^{-2}} = e^4$
22.		Here $a = 6$, $h = \frac{1}{2}$, $b = -40$, $g = \frac{-35}{2}$, $f = \frac{-83}{2}$, $c = 11$
		Point of intersection is
		$\left(\frac{hf-bg}{a},\frac{gh-af}{a}\right)$
	c	$\begin{pmatrix} ab-h^2 & ab-h^2 \end{pmatrix}$
		$\left(\frac{-83}{1}-700 - \frac{-35}{1}+249\right)$
		$= \frac{4}{900}, \frac{4}{900} = (\frac{-2883}{-961}, \frac{901}{-961})$
		Point of intersection is $ \left(\frac{hf - bg}{ab - h^2}, \frac{gh - af}{ab - h^2}\right) $ $ = \left(\frac{-83}{4} - 700, \frac{-35}{4} + 249}{-240 - \frac{1}{4}}, \frac{-240 - \frac{1}{4}}{-961}\right) = \left(\frac{-2883}{-961}, \frac{961}{-961}\right) $ $ = (3, -1) $
		≡ (3, −1)