Contents

Types of Vectors	1
Addition of Two Vectors	2
Triangle Law	2
Parallelogram Law	
Magnitude of Resultant	2
Special Cases for addition of two vectors	3
Special Cases for angles	3
Equal Magnitude	3
Number of Vectors	3
Resultant Zero	3
Equilibrium on 3 vectors	4
Equilibrium on 4 vectors	4
Application of equilibrium	4
Method of solving problem related to vectors	4
Vector myths	5
Resolution of vectors	5
Convention of vector notation	5
Convention of angle	5

Types of Vectors

- **Null** vectors are those that have:
 - zero magnitude
 - any arbitary direction
- Polar vectors :

- Start from a point and end at another point.
- Force, Velocity, Acceleration are examples
- · Axial vectors:
 - Have no Starting point
 - Torque, Angular momentum are examples

Addition of Two Vectors

Triangle Law

• When two vectors taken in order are represented by two sides of a triangle taken in order then the third side of the triangle taken in opposite order represents the resultant of the two vectors in magnitude and direction.

Parallelogram Law

• When two placed tail to tail are represented by adjacent sides of a parallelogram then the resultant of the two vectors is given by the diagonal of the parallelogram.

Magnitude of Resultant

• The magnitude is give by:

$$R = \sqrt{A^2 + 2AB\cos\theta + B^2}$$

• The direction of vector A with vector R is:

$$\tan\alpha = \frac{B\sin\theta}{A + B\cos\theta}$$

• The direction of vector B with vector R is:

$$\tan \beta = \frac{A \sin \theta}{A + B \cos \theta}$$

• The magnitude of direction of a vector with resultant comes separately .

Special Cases for addition of two vectors

• The **maximum** resultant is given by:

$$R_{max} = A + B$$

• The **minimum** resultant is given by:

$$R_{min} = A - B$$

• If the direction of vectors is not mentioned the resultant lies between R_{max} and R_{min} .

Special Cases for angles

Equal Magnitude

The resultant of **vectors** in the case of two vectors A **equal magnitude** in particular angles are:

• Case 60°:

$$R = \sqrt{3}A$$

• Case 90°:

$$R = \sqrt{2}A$$

• Case 120°:

$$R = A$$

Number of Vectors

Resultant Zero

The number of vectors required to have the resultant zero in:

- a plane of same magnitude is: 2
- a plane is: 3
- · not in a plane is: 4

Equilibrium on 3 vectors

- If resultant of any two vectors is equal to third vector in magnitude and opposite in direction.
- The net resultant of 3 vectors is zero.
- The case where this condition is not satisfied, the net resultant is non zero.

Equilibrium on 4 vectors

- If resultant of any three vectors is equal to fourth vector in magnitude and opposite in direction.
- The net resultant of 4 vectors is zero.
- The case where this condition is not satisfied, the net resultant is non zero.

Application of equilibrium

- If the vectors are initially in equilibrium.
- · One of them is removed.
- The change is body is equivalent to the removed vector.
- If the resultant is perpendicular to either vector, the angle between vectors is obtuse.

Method of solving problem related to vectors

- 1. Draw the figure for condition.
- 2. Apply parallelogram law for composing the figure of the condition.
- 3. Check for evaluation with Pythagorean theorem.
- 4. Check for evaluation with angle made by the vector with the resultant.
 - This step is used often in conditions of two cases.

Vector myths

- · Polygonal law can never give the:
 - magnitude of resultant of many vectors
 - direction of resultant of many vectors

Resolution of vectors

• When $\vec{A_1}, \vec{A_2}, ..., \vec{A_n}$ act on a body at an angle $\theta_1, \theta_2, ..., \theta_n$ then, Total components of vector along the direction of \hat{i} and \hat{j} is given by:

$$\vec{R_x} = A_1 \cos \theta_1 \times \hat{i} + A_2 \cos \theta_2 \times \hat{i} + \dots + A_n \cos \theta_n \times \hat{i}$$

$$\vec{R_y} = A_1 \sin \theta_1 \times \hat{i} + A_2 \sin \theta_2 \times \hat{i} + \dots + A_n \sin \theta_n \times \hat{i}$$

The expression for resultant by resolving into components is given by:

$$R = \sqrt{R_x^2 + R_y^2}$$

The angle α with the axis along \hat{i} is given by:

$$\tan \alpha = \frac{R_y}{R_x}$$

Convention of vector notation

- East = \hat{i}
- West = -i
- North = \hat{i}
- South = -i
- Upward = \hat{k}
- Downward = $-\hat{k}$

Convention of angle

The term representing the angle of vectors is expressed as:

- Where the angle is pointing from which side.
 - 30° North of East
 - * Oriented in north direction originating from east.
 - 40° West of North
 - * Oriented in west originating from north.
 - 60° South of West
 - * Oriented in west originating from south.
 - 45° South of East
 - * Oriented in east originating from south.