Experiment 03

Experiment: DTMF(Dual Tone Multifrequency or TouchTone) coder / decoder

Objective: Study and Analysis of DTMF (Dual Tone Multifrequency, or

TouchTone) coder / decoder using Digital FIR Filter in MATLAB.

At The end Of this experiment, You II learn about

- (a) Functionality of DTMF and it's different applications.
- (b) Implementation of BandPass Digital Filters.
- (c) DTMF Coder/Decoder.
- (d) How to characterize a filter by knowing how it reacts to different frequency components in the input.

Hz .	1209	1336	1477	1633
697	1	2	3	Α
770	4	5	6	В
852	7	8	9	С
941	*	0	#	D

Encoding

Decoding

BPF: Moving Average LPF then Frequency Shift

DTFT Property studied before:

$$e^{j\omega_0 n}x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X(e^{j(\omega-\omega_0)})$$

 $h[n] = \beta \cos(\hat{w}c^*n)$ where $0 \le n < L$.

Where L is the filter length, and $\hat{w}c$ is the center frequency that defines the frequency location of the pass band and β is used to adjust the gain in the pass band. So it is possible to choose β so that the maximum value of the frequency response magnitude will be one. The Band width of the band pass filter is controlled by L; The larger the value of L, the narrower the band width.

Noise performance: Before it gets decoded encoded signal is corrupted with noise

You may additionally compare performance of BPF scheme mentioned here and discussed in theory class.

Graphical User Interface: Not Mandatory

Bonus credit which can be used for shortfall in any other place.