HW Sec 8.4 #24, #25.	
#24 : Anxn is symmetric	
Q(X) = X AX: a quadratic	form.
(a) A is positive definite iff Q(X) >0 for any X Show that A is positive de (=>) iff All eigenvalues of A and	0
iff Q(X) >0 for any X	e IK n
Show that A is positive de	finite
(=>) If All eigenvalues of A are	e positive.
(idea). (=>)	

Assume that A is positive definite

Then Q(x) > 0 for any X > 0 $Q(x) = X^T A X > 0$ Since A is symmetric, A has an eigenbasis $\{V_1, V_2, \dots, V_n\} : AV_i = \lambda_i V_i$ $X = V_i : Q(X) = Q(V_i) = V_i AV_i$ $X = V_i : Q(X) = Q(V_i) = V_i AV_i$ $X = V_i : Q(X) = Q(V_i) = V_i AV_i$ $X = V_i : Q(X) = Q(V_i) = V_i AV_i$ $X = V_i : Q(X) = Q(V_i) = V_i AV_i$

$$Q(X) = X^{T}AX = [31, 32] [31]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31, 4]$$

$$= [31, 32] [31,$$

4.3. Case 2 & 3.

(ase 2:
$$(Y = AY)$$

(A has complex eigenvalues.

Goal: Derive real-valued solutions.

(Ex) $Y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

(b) $A : \det(A - \lambda I) = \begin{bmatrix} -\lambda & 1 \\ -1 & -\lambda \end{bmatrix}$
 $= \lambda^2 + 1 = 0$; $\lambda = 2$, -2

(2)
$$V: \lambda = \hat{i}$$
 $\begin{bmatrix} -\hat{i} \\ -1 & -\hat{i} \end{bmatrix} \begin{bmatrix} \hat{i} \\ \hat{i} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$-\hat{i} \hat{i} \hat{i} + \hat{i} \hat{i} = 0 \\ \hat{i} \hat{i} = 0$$

Euler formula:
$$e^{it} = Cos(t) + iSin(t)$$
.

because of Taylor series.

$$Y_{i}(t) = (\begin{bmatrix} 1 \\ 0 \end{bmatrix} + i \begin{bmatrix} 0 \\ 1 \end{bmatrix}) (Cos(t) + iSin(t))$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} Cos(t) + i \begin{bmatrix} 0 \\ 1 \end{bmatrix} Cos(t)$$

$$+ i (\begin{bmatrix} 1 \\ 0 \end{bmatrix} Sin(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix}) (Cos(t) - iSin(t))$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} Cos(t) - \begin{bmatrix} 0 \\ 1 \end{bmatrix} (Cos(t) - iSin(t))$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} Cos(t) - \begin{bmatrix} 0 \\ 1 \end{bmatrix} Sin(t)$$

$$- i (\begin{bmatrix} 1 \\ 0 \end{bmatrix} Sin(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} Cos(t)$$

(Superposition)
$$\begin{array}{lll}
Y_1, X & \rightarrow & (i \times 1 + (2 \times 1) + (2 \times 1)$$

Euler formula:
$$e^{it} = Cos(t) + iSin(t)$$
.

because of Taylor series.

$$Y_{i}(t) = \left(\begin{bmatrix} 0 \end{bmatrix} + i \begin{bmatrix} 0 \end{bmatrix} \right) \left(Cos(t) + iSin(t)\right)$$

$$= \begin{bmatrix} 0 \end{bmatrix} Cos(t) + i \begin{bmatrix} 0 \end{bmatrix} Cos(t)$$

$$+ i \left(\begin{bmatrix} 0 \end{bmatrix} Sin(t) + \begin{bmatrix} 0 \end{bmatrix} Cos(t)$$

$$+ i \left(\begin{bmatrix} 0 \end{bmatrix} - i \begin{bmatrix} 0 \end{bmatrix} \right) \left(Cos(t) - iSin(t)\right)$$

$$= \begin{bmatrix} 0 \end{bmatrix} Cos(t) - \begin{bmatrix} 0 \end{bmatrix} Sin(t)$$

$$= \begin{bmatrix} 0 \end{bmatrix} Cos(t) + \begin{bmatrix} 0 \end{bmatrix} Sin(t)$$

$$- i \left(\begin{bmatrix} 0 \end{bmatrix} Sin(t) + \begin{bmatrix} 0 \end{bmatrix} Cos(t)$$

(Superposition)

Y, X
$$\rightarrow$$
 (i X + (2 X : a solution.

X + X = 2([o](os(t) - [o] Sin(t))

 $\frac{1}{2}$ X + $\frac{1}{3}$ X = [o](os(t) - [o] Sin(t)

[et" X3

Y, -X = 2i([o] Sin(t) + [o](os(t))

 $\frac{1}{2i}$ X - $\frac{1}{2i}$ X = [o] Sin(t) + [o](os(t))

$$\frac{1}{3}(t) = \begin{bmatrix} \cos(t) \\ -\sin(t) \end{bmatrix}, \quad \frac{1}{4}(t) = \begin{bmatrix} \sin(t) \\ \cos(t) \end{bmatrix} \\
W(\frac{1}{3}, \frac{1}{4}) = \det \begin{bmatrix} \frac{1}{3} & \frac{1}{4} \end{bmatrix} = \det \begin{bmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{bmatrix} \\
= \cos(t) + \sin(t) = 1 \neq 0$$
Wronskian
$$\frac{1}{3}(t), \quad \frac{1}{4}(t) = \frac{1}{3} \sin(t) = \frac{1}{3} \sin(t) \\
+ \frac{1}{3} \cos(t) = \frac{1}{3} \sin(t) + \frac{1}{3} \cos(t) = \frac{1}{3} \cos(t) \\
+ \frac{1}{3} \cos(t) = \frac{1}{3} \cos(t) =$$

(Ex)
$$y' = \begin{bmatrix} -2 & -1 \end{bmatrix} y$$

(1) Critical points: Let $y' = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} -2 & -1 \\ 4 & -2 \end{bmatrix} y = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: $y = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
(0, 0): a critical point.
(2) General solution
 $det(A-\lambda I) = \begin{bmatrix} -2-\lambda & -1 \\ 4 & -2-\lambda \end{bmatrix} = \begin{bmatrix} -2-\lambda & +4 \\ 4 & -2-\lambda \end{bmatrix} = 0$
 $\lambda = -2 \pm 2i$: (ase 2. ($\alpha = -2$, $\beta = 2$)

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 4 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 4 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 4 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 4 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 4 & -2 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$

$$(Ex) = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix}$$