Problem Statement :

Yulu has recently suffered considerable dips in its revenues. They have contracted a consulting company to understand the factors on which the demand for these shared electric cycles depends. Specifically, they want to understand the factors affecting the demand for these shared electric cycles in the Indian market.

Goal is to find out the factors affecting the demand for these shared electriy cycles in the market

View recommended plots

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.stats.weightstats import ztest
from statsmodels.stats.proportion import proportions_ztest
import statsmodels.api as sm
from statsmodels.formula.api import ols
from scipy.stats import mannwhitneyu
from scipy.stats import skew, kurtosis, pearsonr, spearmanr
import os
os.getcwd()
os.chdir('/content/sample_data')
df=pd.read csv('bike sharing.csv')
df.head()
<del>____</del>
                datetime season holiday workingday weather temp atemp humidity windspeed casual registered
                                                                                                             count
                                                                                                                     \blacksquare
     0 2011-01-01 00:00:00
                                                            9.84
                                                                 14.395
                                                                             81
                                                                                       0.0
                                                                                                3
                                                                                                          13
                                                                                                                16
                                                                                                                     ıl.
     1 2011-01-01 01:00:00
                              1
                                      0
                                                 0
                                                         1
                                                            9.02 13.635
                                                                             80
                                                                                       0.0
                                                                                                8
                                                                                                          32
                                                                                                                40
     2 2011-01-01 02:00:00
                                      0
                                                 0
                                                            9.02 13.635
                                                                             80
                                                                                       0.0
                                                                                                          27
                                                                                                                32
     3 2011-01-01 03:00:00
                                      0
                                                 0
                                                         1
                                                            9 84 14 395
                                                                             75
                                                                                       0.0
                                                                                                3
                                                                                                          10
                                                                                                                13
     4 2011-01-01 04:00:00
                                                 n
                                                                 14.395
                                                                             75
                                                         1
                                                            9.84
                                                                                       0.0
                                                                                                           1
                                                                                                                 1
```

New interactive sheet

1.Exploratory Data Analysis

Generate code with df

Next steps: (

1.Checkin for missing values

```
df.info()
    <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10886 entries, 0 to 10885
     Data columns (total 12 columns):
     #
         Column
                      Non-Null Count Dtype
     ---
          datetime
                      10886 non-null
                                      object
          season
                      10886 non-null
                      10886 non-null
          workingday
                      10886 non-null
                                      int64
          weather
                      10886 non-null
                                      int64
                      10886 non-null float64
         temp
          atemp
                      10886 non-null
                                      float64
          humidity
                      10886 non-null
                                      int64
                      10886 non-null
                                      float64
      8
         windspeed
          casual
                      10886 non-null
                                      int64
      10 registered
                      10886 non-null
                                      int64
                      10886 non-null
     dtypes: float64(3), int64(8), object(1)
     memory usage: 1020.7+ KB
# changing the type of datetime column
df['datetime']=pd.to_datetime(df['datetime'])
df.head()
```

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0	2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16
1	2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40
2	2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32
3	2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3	10	13
4	2011-01-01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0	1	1

Next steps: Generate code with df

View recommended plots

New interactive sheet

df.isnull().sum()

df.describe()

→ *		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed
	count	10886	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	10886.000000	10886.000000	10886.000000
	mean	2011-12-27 05:56:22.399411968	2.506614	0.028569	0.680875	1.418427	20.23086	23.655084	61.886460	12.799395
	min	2011-01-01 00:00:00	1.000000	0.000000	0.000000	1.000000	0.82000	0.760000	0.000000	0.000000
	25%	2011-07-02 07:15:00	2.000000	0.000000	0.000000	1.000000	13.94000	16.665000	47.000000	7.001500
	50%	2012-01-01 20:30:00	3.000000	0.000000	1.000000	1.000000	20.50000	24.240000	62.000000	12.998000
	75%	2012-07-01 12:45:00	4.000000	0.000000	1.000000	2.000000	26.24000	31.060000	77.000000	16.997900

Observation:

Since there are no missing values in the dataset, we will proceed with a detailed univariate analysis of each feature to better understand their individual distributions and explore their relationships with the total number of bikes rented.

- 2.Univariate Analysis and Impact on Product Orders
- ✓ A. DateTime Column

```
df1=df.copy()
df1['datetime'].value_counts()
```


df1['datetime'].describe()

df1['year']=df1['datetime'].dt.year
df1['month']=df1['datetime'].dt.month

df1['day']=df1['datetime'].dt.day

df1['day_name']=df1['datetime'].dt.day_name()

df1['is_Weekend']=df1['day_name'].isin(['Saturday','Sunday'])

df1['hour_of_Day']=df1['datetime'].dt.hour

df1.describe()

		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed
	count	10886	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	10886.000000	10886.000000	10886.000000
	mean	2011-12-27 05:56:22.399411968	2.506614	0.028569	0.680875	1.418427	20.23086	23.655084	61.886460	12.799395
	min	2011-01-01 00:00:00	1.000000	0.000000	0.000000	1.000000	0.82000	0.760000	0.000000	0.000000
	25%	2011-07-02 07:15:00	2.000000	0.000000	0.000000	1.000000	13.94000	16.665000	47.000000	7.001500
	50%	2012-01-01 20:30:00	3.000000	0.000000	1.000000	1.000000	20.50000	24.240000	62.000000	12.998000
	75%	2012-07-01 12:45:00	4.000000	0.000000	1.000000	2.000000	26.24000	31.060000	77.000000	16.997900
	max	2012-12-19 23:00:00	4.000000	1.000000	1.000000	4.000000	41.00000	45.455000	100.000000	56.996900
	std	NaN	1.116174	0.166599	0.466159	0.633839	7.79159	8.474601	19.245033	8.164537

df1.head()

_		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	year	month	day	day
	0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16	2011	1	1	Sa
	1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40	2011	1	1	Sa
	(.	2011-01-							_								>

New interactive sheet

View recommended plots

```
plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.countplot(df1,x='year')
plt.title('Distribution of Records by Year')

plt.subplot(1,3,2)
sns.barplot(df1,x='year',y='count',estimator='sum')
plt.title('Total Rental Bike by Years')
plt.ticklabel_format(style='plain', axis='y')

plt.subplot(1,3,3)
sns.barplot(df1,x='year',y='count')
plt.title('Average Rental Bike by Years')
```

Generate code with df1


```
plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.countplot(df1,x='month')
plt.title('Distribution of Records by Month')

plt.subplot(1,3,2)
sns.barplot(df1,x='month',y='count',estimator='sum')
plt.title('Total Rental Bike by Month')

plt.subplot(1,3,3)
sns.barplot(df1,x='month',y='count')
plt.title('Average Rental Bike by Month')
plt.show()
```



```
Start coding or \underline{\text{generate}} with AI.
```

```
plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.countplot(df1,x='day')
plt.title('Distribution of Records by Day')

plt.subplot(1,3,2)
sns.barplot(df1,x='day',y='count',estimator='sum')
plt.title('Total Rental Bike by Day')

plt.subplot(1,3,3)
sns.barplot(df1,x='day',y='count')
plt.title('Average Rental Bike by Day')
plt.show()
```



```
plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.countplot(df1,x='day_name')
plt.title('Distribution of Records by Days of Week')
plt.xticks(rotation='vertical')

plt.subplot(1,3,2)
sns.barplot(df1,x='day_name',y='count',estimator='sum')
plt.title('Total Rental Bike by Days of Week')
plt.xticks(rotation='vertical')
```

```
plt.subplot(1,3,3)
sns.barplot(df1,x='day_name',y='count')
plt.xticks(rotation='vertical')
plt.title('Average Rental Bike by Days of Week')
plt.show()
```



```
plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.countplot(df1,x='hour_of_Day')
plt.title('Distribution of Records by Hour of Day')
plt.xticks(rotation='vertical')

plt.subplot(1,3,2)
sns.barplot(df1,x='hour_of_Day',y='count', estimator='sum')
plt.xticks(rotation='vertical')
plt.title('Total Rental Bike by Hour of Day')

plt.subplot(1,3,3)
sns.barplot(df1,x='hour_of_Day',y='count')
plt.xticks(rotation='vertical')
plt.title('Average Rental Bike by Hour of Day')
plt.show()
```



```
plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.countplot(df1,x='is_Weekend')
plt.title('Distribution of Records by Weekend')

plt.subplot(1,3,2)
sns.barplot(df1,x='is_Weekend',y='count', estimator='sum')
plt.title('Total Rental Bike by Weekend')
plt.ticklabel_format(style='plain', axis='y')

plt.subplot(1,3,3)
sns.barplot(df1,x='is_Weekend',y='count',estimator='mean')
plt.title('Average Rental Bike by Weekend')
plt.show()
```


df1.groupby(['is_Weekend'])['count'].describe()

weekend=df1['count'][df1['is_Weekend']==True]
weekday=df1['count'][df1['is_Weekend']==False]

 $shapiro(df1['count'][df1['is_Weekend'] == False]), shapiro(weekend)$

```
/usr/local/lib/python3.11/dist-packages/scipy/stats/_axis_nan_policy.py:586: UserWarning: scipy.stats.shapiro: For N > 5000, compute res = hypotest_fun_out(*samples, **kwds)
(ShapiroResult(statistic=np.float64(0.8719635392415016), pvalue=np.float64(5.9968067214417674e-62)),
ShapiroResult(statistic=np.float64(0.8839035546386282), pvalue=np.float64(1.1719443532179681e-43)))
```

levene(weekday, weekend)

```
EveneResult(statistic=np.float64(0.003153454582717379), pvalue=np.float64(0.955218859658268))
```

```
#Since the distribution is not n a normal disb so we will perform maan -whitney u test instead of ttest as it only has two independent {
    stat, p_val = mannwhitneyu(weekend, weekday)
    print(p_val)

print('less')
    stat, p_val = mannwhitneyu(weekend, weekday, alternative='greater')
    print(stat)
    print(p_val)

print('great')
    stat, p_val = mannwhitneyu(weekend, weekday, alternative='greater')
```

```
print(stat)
print(p_val)

12229385.5
0.9172853772290441
less
12229385.5
0.45864268861452206
great
12229385.5
0.45864268861452206
```

Observation

- 1. The distribution of data across time components such as hour, day, month and year is relatively uniform, indicating consistent data recording or user activity throughout these periods and suggesting no significant outliers. As a result, the distributions of aggregated metrics such as the mean and the sum appear similar.
- 2. Total and average rental counts exhibit a clear seasonal trend, following a bell-shaped pattern with peak demand during summer months. This suggests that external factors such as weather may significantly influence rental behavior.
- 3. The total number of bike rentals shows clear peaks at 8 AM and between 5–6 PM, with a gradual increase starting from 7 AM and tapering off after 8 PM. This pattern strongly suggests commuter usage, with higher demand during morning and evening rush hours, likely due to individuals traveling to and from work.
- 4. While the total number of records is higher on weekdays (7,723) compared to weekends (3,163), the average number of orders per day is nearly the same for both approximately 192.7 on weekdays vs. 188.7 on weekends. This indicates that although weekends comprise fewer days, the per-day demand remains comparable to weekdays, suggesting consistently high bike usage throughout the week. The slightly higher 75th percentile and median on weekends also hint at occasional spikes in weekend demand.
 - a. Meekends span fewer days, so total rentals are lower.
 - b. III Mean orders per day are almost identical, indicating steady demand.
 - c. Weekend variability is slightly lower (lower std), suggesting more stable usage patterns.

To statistically validate this, a Mann–Whitney U test (non-parametric, due to non-normal distribution) was conducted with the alternative hypothesis that weekend orders are greater than weekday orders. The test returned a U-statistic of 1,4122,9385.5 and a p-value of 0.91, indicating no statistically significant difference in rental counts between weekends and weekdays at the 5% significance level.

Conclusion: There is no strong evidence to suggest that bike rentals are significantly higher on weekends. Usage remains consistently high across both periods.

Next Steps: Temporal Binning and Hypothesis Testing

Since the total rental count varies significantly across different months, hours of the day, and between weekdays and weekends, we will categorize the month column into four seasons and the hour_of_day column into broader time-of-day bins. This binning will allow for clearer comparisons and enable us to perform hypothesis testing to statistically evaluate whether these time-based factors have a significant impact on rental bike demand.

✓ Season

```
# feature engineering so that we can do hypothesis
bins = [0, 2, 5, 8, 11, 12]
label = ['Winter', 'Spring', 'Summer', 'Fall', 'Winter']
df1['season_explicit'] = pd.cut(df1['month'], bins=bins, labels=label, include_lowest=True, right=True, ordered=False)
df1['season_explicit'].unique()
    ['Winter', 'Spring', 'Summer', 'Fall']
     Categories (4, object): ['Fall', 'Spring', 'Summer', 'Winter']
print('Fall :',df1['month'][df1['season explicit']=='Fall'].unique())
print('Winter :',df1['month'][df1['season_explicit']=='Winter'].unique())
print('Spring :',df1['month'][df1['season_explicit']=='Spring'].unique())
print('Summer :',df1['month'][df1['season_explicit']=='Summer'].unique())
    Fall : [ 9 10 11]
     Winter: [ 1 2 12]
     Spring : [3 4 5]
     Summer : [6 7 8]
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
ax=sns.barplot(df1,x='season_explicit',y='count',estimator='sum',errorbar=None)
```

plt.show()

```
plt.title('Total Rental Bike by Season')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(1,2,2)
ax=sns.barplot(df1,x='season_explicit',y='count',errorbar=None)
plt.title('Average Rental Bike by Season')
ax.bar_label(ax.containers[0], fontsize=10);
plt.show()
```



```
Fall=df1['count'][df1['season_explicit']=='Fall']
Spring=df1['count'][df1['season_explicit']=='Spring']
Summer=df1['count'][df1['season_explicit']=='Summer']
Winter=df1['count'][df1['season_explicit']=='Winter']
shapiro(Fall), shapiro(Spring), shapiro(Summer), shapiro(Winter)
     (ShapiroResult(statistic=np.float64(0.8965266280315776),\ pvalue=np.float64(1.6639128346075196e-39)), \\
      ShapiroResult(statistic=np.float64(0.869157493321312), pvalue=np.float64(5.545622851146553e-43)),
      ShapiroResult(statistic=np.float64(0.9239206326191018), pvalue=np.float64(3.8461328759133764e-35)),
      ShapiroResult(statistic=np.float64(0.8380853741720926), pvalue=np.float64(3.669397194021309e-46)))
grouped = [group['count'].values for name, group in df1.groupby('season_explicit')]
h_stat, p_val = kruskal(*grouped)
print("Kruskal-Wallis p-value:", p_val)
    Kruskal-Wallis p-value: 1.5586650887163282e-127
     <ipython-input-27-b786f17a1d4e>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in a futur
       grouped = [group['count'].values for name, group in df1.groupby('season_explicit')]
h_stat, p_val = f_oneway(*grouped)
print("ANOWA one way p-value:", p_val)
ANOWA one way p-value: 5.33002739416866e-132
plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
ax=sns.countplot(df1,x='season')
plt.title('Distribution of Records by season')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(1,3,2)
ax=sns.barplot(df1,x='season',y='count', estimator='sum',errorbar=None)
plt.title('Total Rental Bike by season')
plt.ticklabel_format(style='plain', axis='y')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(1,3,3)
ax=sns.barplot(df1,x='season',y='count',estimator='mean',errorbar=None)
ax.bar_label(ax.containers[0], fontsize=10);
plt.title('Average Rental Bike by season')
```



```
grouped = [group['count'].values for name, group in df1.groupby('season')]
h_stat, p_val = kruskal(*grouped)
print("Kruskal-Wallis p-value:", p_val)
   Kruskal-Wallis p-value: 2.479008372608633e-151
h_stat, p_val = f_oneway(*grouped)
print("ANOWA one way p-value:", p_val)
ANOWA one way p-value: 6.164843386499654e-149
  Hour of Day
#Similarly for the hours of the day
bins=[-1,5,11,18,23]
labels=['Early Morning','Morning','Afternoon','Evening']
df1['time_of_day']=pd.cut(df1['hour_of_Day'],bins=bins,labels=labels,include_lowest=True)
df1['hour_of_Day'][df1['time_of_day']=='Early Morning'].unique()
⇒ array([0, 1, 2, 3, 4, 5], dtype=int32)
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
ax=sns.barplot(df1,x='time_of_day',y='count',estimator='sum',errorbar=None)
plt.title('Total Rental Bike by Time of day')
ax.bar_label(ax.containers[0], fontsize=10);
plt.ticklabel_format(style='plain', axis='y')
plt.subplot(1,2,2)
ax=sns.barplot(df1,x='time_of_day',y='count',errorbar=None)
plt.title('Average Rental Bike by Time of day')
ax.bar_label(ax.containers[0], fontsize=10);
plt.show()
```


Observation

Impact of Time of Day and Season on Bike Rental Orders Based on the visual analysis and statistical hypothesis testing, we have statistically significant evidence that both time of day and season have a meaningful impact on the number of rental bike orders.

In both cases, the p-values were less than 0.05, which allows us to reject the null hypothesis and conclude that:

- 1. The time of day significantly affects bike rental demand.
- 2. The season also has a significant influence on bike rental usage.

This implies that bike rental patterns are not uniformly distributed throughout the day or across different seasons — certain hours and seasons see higher or lower rental activity, driven by user behavior, weather, and commuting trends.

B. Holiday

```
df1['holiday'].value_counts().plot.pie(autopct='%.2f%%')
plt.show()
```


df1.groupby(['holiday'])['count'].describe()

plt.figure(figsize=(15,5))

₹		count	mean	std	min	25%	50%	75%	max	
	holiday									ıl.
	0	10575.0	191.741655	181.513131	1.0	43.0	145.0	283.0	977.0	
	1	311.0	185.877814	168.300531	1.0	38.5	133.0	308.0	712.0	
	4									

```
plt.subplot(1,3,1)
sns.countplot(df1,x='holiday')
plt.title('Distribution of Records by holiday')
plt.xticks(rotation='vertical')

plt.subplot(1,3,2)
sns.barplot(df1,x='holiday',y='count', estimator='sum')
plt.xticks(rotation='vertical')
plt.title('Total Rental Bike by holiday')

plt.subplot(1,3,3)
ax=sns.barplot(df1,x='holiday',y='count', errorbar=None)
plt.xticks(rotation='vertical')
ax.bar_label(ax.containers[0], fontsize=10)
plt.title('Average Rental Bike by holiday')
plt.show()
```



```
holiday=df1['count'][df1['holiday']==1]
non_holiday=df1['count'][df1['holiday']==0]
holiday.shape,non_holiday.shape
```

```
→ ((311,), (10575,))
shapiro(df1['count'][df1['holiday']==1]),shapiro(df1['count'][df1['holiday']==0])
🚁 /usr/local/lib/python3.11/dist-packages/scipy/stats/_axis_nan_policy.py:586: UserWarning: scipy.stats.shapiro: For N > 5000, compute
       res = hypotest_fun_out(*samples, **kwds)
     (ShapiroResult(statistic=np.float64(0.8933219721845991), pvalue=np.float64(5.860375945260022e-14)),
      ShapiroResult(statistic=np.float64(0.8774986090169171), \ pvalue=np.float64(1.5553857580870473e-67)))
levene(holiday,non holiday)
EveneResult(statistic=np.float64(1.222306875221986e-06), pvalue=np.float64(0.9991178954732041))
ttest_ind(holiday,non_holiday,alternative='two-sided')
TtestResult(statistic=np.float64(-0.5626388963477119), pvalue=np.float64(0.5736923883271103), df=np.float64(10884.0))
#Since the distribution is not n a normal disb so we will perform maan -whitney u test instead of ttest as it only has two independent §
stat, p_val = mannwhitneyu(holiday, non_holiday)
print(stat)
print(p_val)
stat, p_val = mannwhitneyu(holiday, non_holiday, alternative='less')
print(stat)
print(p_val)
    1635100.0
     0.8646355678725027
     1635100.0
```

Observation

0.43231778393625137

1. The total number of records is much higher on non-holidays (10,575) compared to holidays (311), as expected due to the smaller number of holidays. However, the **average number of orders per day** is nearly the same — approximately **191.7 on non-holidays** vs. **185.8 on holidays**.

This suggests that, although holidays are rare (just ~2.86% of the data), the **demand per day remains comparable**, reflecting consistently high bike usage even on holidays. The slightly wider interquartile range (IQR) on holidays also hints at greater variability in usage on some holidays.

Key insights:

- 31 Holidays occur less frequently, hence total orders are lower.
- In the mean order count per day is nearly identical between holidays and non-holidays.
- W Holiday usage shows slightly higher IQR, suggesting occasional spikes in demand.

To statistically validate this, a **Mann–Whitney U test** (non-parametric due to non-normal distribution) and a **two-sample t-test** were performed with the alternative hypothesis that the mean number of orders differs between holidays and non-holidays. Both tests returned **p-values of 0.56**, indicating **no statistically significant difference** at the 5% significance level.

Thus, we conclude that **holiday and non-holiday average usage are statistically the same**, supporting the idea of steady demand regardless of the day type.

df1.head()

_ →		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	year	month	day	day
	0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16	2011	1	1	Sa
	1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40	2011	1	1	Sa
	2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32	2011	1	1	Sa
	3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3	10	13	2011	1	1	Sa
	4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0	1	1	2011	1	1	Sa

Next steps: Generate code with df1 View recommended plots New interactive sheet

- C. Workfing Day
- Checking for outlier

 $\label{testedf1} $$ \text{test-df1[['workingday','day_name']][((df1['is_Weekend']==True) | (df1['holiday']==1)) \& (df1['workingday']==1)] $$ \text{test['day_name'].value_counts()} $$ $$ \text{test-df1[['workingday']==1) | (df1['holiday']==1) | (df1['workingday']==1) | (df1['worki$

count
day_name
dtvpe: int64

df1['workingday'].value_counts().plot.pie(autopct='%.2f%%')
plt.show()

df1.groupby(['workingday'])['count'].describe()

→		count	mean	std	min	25%	50%	75%	max	
	workingday									11.
	0	3474.0	188.506621	173.724015	1.0	44.0	128.0	304.0	783.0	
	1	7412.0	193.011873	184.513659	1.0	41.0	151.0	277.0	977.0	

plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.countplot(df1,x='workingday')
plt.title('Distribution of Records by workingday')
plt.xticks(rotation='vertical')

```
plt.subplot(1,3,2)
ax=sns.barplot(df1,x='workingday',y='count', estimator='sum', errorbar=None)
plt.xticks(rotation='vertical')
plt.title('Total Rental Bike by workingday')
plt.ticklabel_format(style='plain', axis='y')
ax.bar_label(ax.containers[0], fontsize=10)

plt.subplot(1,3,3)
ax=sns.barplot(df1,x='workingday',y='count', errorbar=None)
plt.xticks(rotation='vertical')
ax.bar_label(ax.containers[0], fontsize=10)
plt.title('Average Rental Bike by workingday')
plt.show()
```



```
workingday=df1['count'][df1['workingday']==1]
non_workingday=df1['count'][df1['workingday']==0]
workingday.shape,non_workingday.shape
→ ((7412,), (3474,))
shapiro(df1['count'][df1['workingday']==1]),shapiro(non_workingday)
wsr/local/lib/python3.11/dist-packages/scipy/stats/_axis_nan_policy.py:586: UserWarning: scipy.stats.shapiro: For N > 5000, compute
       res = hypotest_fun_out(*samples, **kwds)
     (ShapiroResult(statistic=np.float64(0.8702545795617624), pvalue=np.float64(2.2521124830019574e-61)),
      Shapiro Result (statistic = np.float 64 (0.885211755076074), \ pvalue = np.float 64 (4.4728547627911074e-45))) \\
import scipy.stats as stats
stats.probplot(workingday, dist="norm", plot=plt)
plt.title('Q-Q Plot for Count')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.grid(True)
plt.show()
```



```
stats.probplot(non_workingday, dist="norm", plot=plt)
plt.title('Q-Q Plot for Count')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.grid(True)
plt.show()
```


levene(workingday,non_workingday)

```
 \begin{tabular}{ll} \hline \end{tabular} \end{tabu
```

 $\verb|ttest_ind(workingday,non_workingday,alternative='two-sided'|)|$

```
TtestResult(statistic=np.float64(1.2096277376026694), pvalue=np.float64(0.22644804226361348), df=np.float64(10884.0))
```

#Since the distribution is not n a normal disb so we will perform maan -whitney u test instead of ttest as it only has two independent $\{a,b\}$

```
stat, p_val = mannwhitneyu(workingday, non_workingday)
print(stat)
print(p_val)
```

```
stat, p_val = mannwhitneyu(workingday, non_workingday, alternative='less') print(stat) print(p_val)
```

```
12868495.5
0.9679139953914079
12868495.5
```

0.48395699769570394

Observation

1. The total number of records is much higher on workingday compared to non workingday, as expected due to the smaller number of holidays. However, the average number of orders per day is nearly the same — approximately 188.7 on non-workingday vs. 193.8 on workingday.

This suggests that, although non-workingday are low, the **demand per day remains comparable**, reflecting consistently high bike usage even on workingday.

Key insights:

- 31 Non-workingday occur less frequently, hence total orders are lower.
- III The mean order count per day is nearly identical between non-workingday and workingday.
- Non-workingday usage shows slightly higher IQR, suggesting occasional spikes in demand.

To statistically validate this, a **Mann–Whitney U test** (non-parametric due to non-normal distribution) and a **two-sample t-test** were performed with the alternative hypothesis that the mean number of orders differs between holidays and non-holidays. Both tests returned **p-values** ** **greater than .05, indicating** ****no statistically significant difference** at the 5% significance level.

Thus, we conclude that **workingday and non-workingday average usage are statistically the same**, supporting the idea of steady demand regardless of the day type.

D. Weather

```
df1['weather'].value_counts().plot.pie(autopct='%.2f%%')
plt.show()
```


df1.groupby(['weather'])['count'].describe()


```
plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.countplot(df1,x='weather')
plt.title('Distribution of Records by weather')
plt.xticks(rotation='vertical')

plt.subplot(1,3,2)
ax=sns.barplot(df1,x='weather',y='count', estimator='sum', errorbar=None)
plt.xticks(rotation='vertical')
plt.title('Total Rental Bike by weather')
plt.ticklabel_format(style='plain', axis='y')
ax.bar_label(ax.containers[0], fontsize=10)
```

```
plt.subplot(1,3,3)
ax=sns.barplot(df1,x='weather',y='count', errorbar=None)
plt.xticks(rotation='vertical')
ax.bar_label(ax.containers[0], fontsize=10)
plt.title('Average Rental Bike by weather')
plt.show()
```



```
grouped = [group['count'].values for name, group in df1.groupby('weather')]
```

```
import scipy.stats as stats

stats.probplot(grouped[0], dist="norm", plot=plt)
plt.title('Q-Q Plot for Count')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.grid(True)
```



```
stats.probplot(non_workingday, dist="norm", plot=plt)
plt.title('Q-Q Plot for Count')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.grid(True)
plt.show()
```


levene(*grouped)

EveneResult(statistic=np.float64(54.85106195954556), pvalue=np.float64(3.504937946833238e-35))

h_stat, p_val = kruskal(*grouped)
print("Kruskal-Wallis p-value:", p_val)

Fruskal-Wallis p-value: 3.501611300708679e-44

f_oneway(*grouped)

5 F_onewayResult(statistic=np.float64(65.53024112793271), pvalue=np.float64(5.482069475935669e-42))

∨ Observation: Impact of Weather on Bike Rental Counts

Bike rental activity significantly varies across different weather conditions:

- 1. Weather Type 1 (Clear/Partly Cloudy) sees the highest average daily rental count (205.2) and the largest sample size (n=7192).
- 2. As weather conditions worsen (Types 2 and 3), the average rental count drops significantly to 179 and 119 respectively.
- 3. Weather Type 4 has only one observation, so it is statistically irrelevant for inference.

Statistical Tests:

- 1. Levene's test returned a p-value < 0.001, indicating that the variance of rental counts is not equal across weather groups (i.e., heteroscedasticity exists).
- 2. Both the Kruskal–Wallis test (non-parametric) and one-way ANOVA (parametric) returned extremely low p-values (< 0.001), confirming that at least one weather group has a significantly different mean rental count.
- Key Insight: Weather has a statistically significant impact on rental demand. Clear weather (Type 1) is associated with substantially higher usage, while poor weather leads to lower rental activity.

df1.head()

→	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	year	month	day	day
C	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16	2011	1	1	Sa
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40	2011	1	1	Sa
2	2011-01- 9 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32	2011	1	1	Sa
3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3	10	13	2011	1	1	Sa
4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0	1	1	2011	1	1	Sa

New interactive sheet

Next steps: Generate code with df1

E. Temperature

sns.histplot(df1['temp'],kde=True)

View recommended plots

stats.probplot(df1['temp'], dist="norm", plot=plt)
plt.title('Q-Q Plot for Count')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.grid(True)
plt.show()

from statsmodels.graphics.gofplots import qqplot

df1['temp'].describe()

_		temp
	count	10886.00000
	mean	20.23086
	std	7.79159
	min	0.82000
	25%	13.94000
	50%	20.50000
	75%	26.24000
	max	41.00000
	dtvne: fl	oat64


```
print('Spearman',spearmanr(df1['temp'],df1['count']))
pearsonr(df1['temp'],df1['count'])
```

Spearman SignificanceResult(statistic=np.float64(0.40798939475098117), pvalue=np.float64(0.0))
PearsonRResult(statistic=np.float64(0.39445364496724905), pvalue=np.float64(0.0))

Observation: Temperature and Order Count Analysis

1. Temperature Distribution

The histogram of temperature (temp) shows a fairly symmetric distribution, centered around the mean of ~20.2°C.

Skewness ≈ 0.0037 and Kurtosis ≈ -0.91 confirm the distribution is nearly normal, but slightly platykurtic (flatter than normal).

The KDE curve has a slight bimodal shape, suggesting possibly two distinct user behavior clusters (e.g., moderate and warm days).

- 2. Q-Q Plot of Count The Q-Q plot of count deviates from the red reference line at both tails, indicating that count is not normally distributed. Therefore, normality-based parametric tests (like t-test or ANOVA) may not be appropriate unless transformation is applied.
- 3. Relationship Between Temperature and Count

The lineplot of temp vs. count shows a positive trend, with a rise in counts as temperature increases, especially between 10°C to 30°C.

There's a peak between 30°C, and 35°C, after which the count may slightly decline or stabilize – possibly due to discomfort from heat.

4. Correlation Analysis

Test Statistic p-value Interpretation

Pearson 0.394 0.000 Moderate positive linear relationship

Spearman 0.408 0.000 Moderate positive monotonic (ranked) relation

Both tests show statistically significant positive correlation (p < 0.001), meaning as temperature increases, so does the number of rentals.

✓ Final Observations

Warmer temperatures encourage higher rental counts, up to a threshold, indicating temperature-sensitive usage behavior.

✓ F. Humidity

```
df1['humidity'].nunique()
```

→ 89

sns.histplot(df1['humidity'],kde=True)


```
stats.probplot(df1['humidity'], dist="norm", plot=plt)
plt.title('Q-Q Plot for Count')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.grid(True)
plt.show()
```


 $\label{eq:qqplot} $$ qqplot(df1['humidity'], line='s') $$ $$ "s' draws a standardized line through the data $$ plt.title('Q-Q Plot of Count') $$ plt.show()$

df1['humidity'].describe()

→		humidity
	count	10886.000000
	mean	61.886460
	std	19.245033
	min	0.000000
	25%	47.000000
	50%	62.000000
	75%	77.000000
	max	100.000000
	dtvne: fl	nat64

from scipy.stats import skew, kurtosis

plt.show()

```
print("Skewness:", skew(df1['humidity']))
print("Kurtosis:", kurtosis(df1['humidity']))

Skewness: -0.0863232869219358
   Kurtosis: -0.760019710012902

plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.lineplot(df1,x='humidity',y='count')
plt.title('Distribution of Records by weather')
plt.xticks(rotation='vertical')
```


print('Spearman',spearmanr(df1['humidity'],df1['count']))
pearsonr(df1['humidity'],df1['count'])

8

humidity

9

8

20

Spearman SignificanceResult(statistic=np.float64(-0.35404912201756106), pvalue=np.float64(0.0))
PearsonRResult(statistic=np.float64(-0.31737147887659456), pvalue=np.float64(2.921541663741126e-253))

001

Observation: Humidity and Bike Rental Count Analysis

1. Humidity Distribution

Mean: ~61.89

0

Standard Deviation: ~19.25

Range: 0 to 100

The distribution of humidity is approximately symmetric with:

Skewness = -0.0863 → Very slight left skew (almost symmetric)

Kurtosis = $-0.76 \rightarrow \text{Platykurtic}$, indicating a flatter distribution than a normal distribution

This suggests humidity values are evenly spread, and there's no significant tail behavior.

2. Correlation with Order Count

Test Statistic p-value Interpretation

Pearson -0.317 ~0.0 Moderate negative linear correlation

Spearman -0.354 \sim 0.0 Moderate negative monotonic correlation

Both correlations are statistically significant (p < 0.001).

As humidity increases, the number of bike rentals decreases. This suggests that higher humidity (e.g., muggy or rainy weather) may discourage outdoor bike use.

Key Observations

Humidity negatively impacts bike rentals, possibly due to discomfort or weather conditions like rain.

The relationship is moderately strong and statistically significant, both in linear and monotonic terms.

Migher humidity might signal adverse riding conditions, explaining the drop in usage.

df1['windspeed'].nunique()

→ 28

sns.histplot(df1['windspeed'],kde=True)

```
<a> <Axes: xlabel='windspeed', ylabel='Count'>
```



```
stats.probplot(df1['windspeed'], dist="norm", plot=plt)
plt.title('Q-Q Plot for Count')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.grid(True)
plt.show()
```


df1['windspeed'].describe()

count	10886.000000
mean	
	12.799395
std	8.164537
min	0.000000
25%	7.001500
50%	12.998000
75%	16.997900
max	56.996900
dtype: fl	oat64

```
print("Skewness:", skew(df1['windspeed']))
print("Kurtosis:", kurtosis(df1['windspeed']))

    Skewness: 0.5886853963635482
```

from scipy.stats import skew, kurtosis

Skewness: 0.5886853963635482 Kurtosis: 0.629292367034056

```
plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.lineplot(df1,x='windspeed',y='count')
plt.title('Distribution of Records by weather')
plt.xticks(rotation='vertical')
plt.show()
```


print('Spearman',spearmanr(df1['windspeed'],df1['count']))
pearsonr(df1['windspeed'],df1['count'])

Spearman SignificanceResult(statistic=np.float64(0.1357773747113304), pvalue=np.float64(5.9015220272171205e-46))
PearsonRResult(statistic=np.float64(0.10136947021033277), pvalue=np.float64(2.8984072031553694e-26))

∨ Observation: Wiind and Bike Rental Count Analysis

Windspeed has minimal influence on rental counts overall, despite being statistically significant.

Both linear and rank-based associations are weak.

IIII The data shows some skewness and outliers, so any strong conclusions should be drawn cautiously.

df1.head()

₹		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	year	month	day	day
	0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16	2011	1	1	Sa
	1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40	2011	1	1	Sa
	2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32	2011	1	1	Sa
	3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3	10	13	2011	1	1	Sa
	4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0	1	1	2011	1	1	Sa

Next steps: Generate code with df1 View recommended plots New interactive sheet

H. casual user

Checking for outlier

np.all((df1['casual']+df1['registered'])==df1['count'])

_ np.True_

df1['casual'].nunique()

→ 309

sns.histplot(df1['casual'],kde=True)

df1['casual'].describe()

_		
		casual
	count	10886.000000
	mean	36.021955
	std	49.960477
	min	0.000000
	25%	4.000000
	50%	17.000000
	75%	49.000000
	max	367.000000

dtvne: float64

stats.probplot(df1['casual'], dist="norm", plot=plt)
plt.title('Q-Q Plot for Count')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.grid(True)
plt.show()


```
qqplot(df1['casual'], line='s') # 's' draws a standardized line through the data
plt.title('Q-Q Plot of Count')
plt.show()
```



```
from scipy.stats import skew, kurtosis
```

```
print("Skewness:", skew(df1['casual']))
print("Kurtosis:", kurtosis(df1['casual']))
```

Skewness: 2.495404491505502 Kurtosis: 7.547610130561701

```
plt.figure(figsize=(15,5))
plt.subplot(1,3,1)
sns.lineplot(df1,x='casual',y='count')
plt.title('Distribution of Records by weather')
plt.xticks(rotation='vertical')
plt.show()
```


print('Spearman',spearmanr(df1['casual'],df1['count']))
pearsonr(df1['casual'],df1['count'])

Spearman SignificanceResult(statistic=np.float64(0.8473776754290643), pvalue=np.float64(0.0))
PearsonRResult(statistic=np.float64(0.6904135653286744), pvalue=np.float64(0.0))

Observation: Casual and Bike Rental Count Analysis

© Casual users are a major driver of rental volume, especially during spikes (e.g., weekends, holidays).

- iii Distribution is skewed and peaked, reflecting user behavior patterns.
- Correlation results suggest tracking casual user trends can help forecast total demand effectively.
- I. registered user
- Checking for outlier

```
np.all((df1['registered']+df1['registered'])==df1['count'])
```

→ np.False_

df1['registered'].nunique()

→ 731

sns.histplot(df1['registered'],kde=True)

df1['registered'].describe()

```
<del>_</del>
               registered
      count 10886.000000
                155.552177
      mean
                151.039033
       std
      min
                  0.000000
      25%
                 36.000000
      50%
                118.000000
      75%
                222.000000
                886.000000
      max
```

dtvne: float64

stats.probplot(df1['registered'], dist="norm", plot=plt)
plt.title('Q-Q Plot for Count')
plt.xlabel('Theoretical Quantiles')
plt.ylabel('Sample Quantiles')
plt.grid(True)
plt.show()

print('Spearman', spearmanr(df1['registered'],df1['count']))
pearsonr(df1['registered'],df1['count'])

Spearman SignificanceResult(statistic=np.float64(0.9889007735401409), pvalue=np.float64(0.0))
PearsonRResult(statistic=np.float64(0.9709481058098282), pvalue=np.float64(0.0))

∨ Observation: Registered and Bike Rental Count Analysis

Registered users are the dominant contributor to overall rental count variability.

There's a near-perfect correlation — suggesting that tracking registered user behavior alone is a strong predictor of total bike demand.

⚠ The right skew suggests a few peak usage days

df1.head()

_		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	year	month	day	day
	0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16	2011	1	1	Sa
	1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40	2011	1	1	Sa
	2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32	2011	1	1	Sa
	3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3	10	13	2011	1	1	Sa
	4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0	1	1	2011	1	1	Sa

Next steps: Generate code with df1 View recommended plots New interactive sheet

→ 3.Bivariate Analysis and Impact on Product Orders

A. Season vs Time of Day

df1.head()

<u>-</u>																		
	dateti	ne sea	son h	oliday	workingda	y weatl	her	temp	atemp	humidity	windspeed	casual	registered	count	year	month	day	
(2011-0 00:00:)1	1	0		0	1	9.84	14.395	81	0.0	3	13	16	2011	1	1	
,	2011-0 1 01:00:)1	1	0		0	1	9.02	13.635	80	0.0	8	32	40	2011	1	1	
2	2011-0 2 02:00:)1	1	0		0	1	9.02	13.635	80	0.0	5	27	32	2011	1	1	
3	2011-0 3 03:00:)1	1	0		0	1	9.84	14.395	75	0.0	3	10	13	2011	1	1	
4	2011-0 4 04:00:)1	1	0		0	1	9.84	14.395	75	0.0	0	1	1	2011	1	1	
serve		stab(df	1['ti	me_of_da	y'],df1['	season_e	expl	icit'])									
· •	_		Fall	Spring	Summer	Winter												
		of_day	670	670	684	651	1	_										
	Early Mo Morni	_	679 684	670 684	684 684	651 678	7	1										
	WIOTH	ıg	004	004	004	010												
	Δftern	on	798	798	798	798												
Next s		ng	798 570 code w	798 570 ith observ	570	798 570 View reco	omm	ended	plots	New interact	ective sheet							
i2_cc CH	Eveni iteps: Go contingenc ini2Contin kpected_f [88 [57	nerate c v(observeq=arr 4.88241 2.78559	570 code w ve) sult(ay([[.778, .618, .156,	570 ith observing statistic 673.3422 682.6253 798.1466 570.1047	570 .c=np.floa .7448, 671 .99041, 686 .1033, 802 .2166, 573	570 View reco	5586 5 , 88 , 43 ,	107215 674.57 676.35 790.81	515772), 7505052, 5586992]	pvalue=np 664.95939	.float64(0.	9999031:	316541389), (dof=9,				
i2_cc	Eveni iteps: Go contingence ini2Contin kpected_f [68 [80 [57	nerate c v(observeq=arr 4.88241 2.78559	570 code w ve) sult(ay([[.778, .618, .156,	570 ith observing statistic 673.3422 682.6253 798.1466 570.1047	570 .c=np.floa .7448, 671 .9041, 686 .61033, 802	570 View reco	5586 5 , 88 , 43 ,	107215 674.57 676.35 790.81	515772), 7505052, 5586992]	pvalue=np 664.95939	.float64(0.	99990313	316541389), (dof=9,				
i2_cc	Eveni ontingenc ni2Contin xpected_f [68 [80 [57 e=pd.cros	nerate c /(observed) gencyRefred=arr 4.88241 3.78559 1.98971	570 ve) ssult(ay([[778, 618, 156,	570 ith observing statistic 673.3422 682.6253 798.1466 570.1047	570 .c=np.floa .7448, 671 .99041, 686 .1033, 802 .2166, 573	570 View reco	5586 5 , 88 , 43 ,	107215 674.57 676.35 790.81	515772), 7505052, 5586992]	pvalue=np 664.95939	.float64(0.	99990313	316541389), (dof=9,				
i2_cc	Eveni inteps: Ga contingence ini2Contin pected_f [68 [80 [57 e=pd.crose sea time_of_	nerate of control of the control of	570 code w ve) ssult([coay([[778, 156, 11] 11] 11]:	570 ith observing statistic formula f	570 ve	570 View reco	5586 5 , 88 , 43 ,	107215 674.57 676.35 790.81	515772), 7505052, 5586992]	pvalue=np 664.95939	.float64(0.	99990313	316541389), (dof=9,				
i2_cc	Eveni Interps: Go Interps: Go	nerate c /(observed=arrived=a	570 code w ve) ssult(ay([[778, 156, 156, 11['ti 0 68	570 ith observer statisti 673.3422 682.6253 798.14665 570.1047 me_of_da 2	570 c.c=np.floa 67448, 671 69041, 686 61033, 802 72166, 573 y'],df1[' 4 682	570 View reco	5586 5 , 88 , 43 ,	107215 674.57 676.35 790.81	515772), 7505052, 5586992]	pvalue=np 664.95939	.float64(0.	99990313	316541389), (dof=9,				
Next s i2_cc Ches	Eveni Inteps: General	nerate of the control	570 code w ve) ssult(cay([[778, 156, 11['ti 1 :: 0 68 8 684	570 ith observing statistic formula f	570 .c=np.floa 27448, 671 19941, 686 1033, 802 2166, 573 y'],df1[' 4 682 684	570 View reco	5586 5 , 88 , 43 ,	107215 674.57 676.35 790.81	515772), 7505052, 5586992]	pvalue=np 664.95939	.float64(0.	99990313	316541389), (dof=9,				
Next s	Eveni Inteps: Go Interps: Go	ng nerate c /(observed=arr 1.88241 2.78559 1.98971 stab(df son day ing 64	570 code w ve) ssult(ay([[778, 156, 156, 11 1 :: 0 68 8 68 8 79	statisti 673.3422 682.6253 798.1466 570.1047 me_of_da	570 Comp.float Comp.float	570 View reco	5586 5 , 88 , 43 ,	107215 674.57 676.35 790.81	515772), 7505052, 5586992]	pvalue=np 664.95939	.float64(0.	99990313	316541389), (dof=9,				
Next s Clester Clester Consider the second secon	Eveni citeps: Gentingence chi2Contin citeps: Gentingence chi2Contingence chi2Cont	nerate c /(observed=arr 4.88241 2.78559 1.98971 stab(df son day ing 64 67 n 79	570 code w ve) sult(cay([[778, 618, 156, 1 ['ti	570 ith observing statistic formula f	570 C=np.floa 17448, 671 19041, 686 1033, 802 12166, 573 19941 14 1682 1682 1684 1798 1570 1682 1684 1682 1684 1682 1684 1682 1684 1688 168	570 View reco	55586 5 , 888, 43, 16,	107215 674.57 676.35 790.81 564.86	515772), 7505052, 5586992] 609407] 5863862]	pvalue=np 664.95939	float64(0.	99990313	316541389),	dof=9,				
Next s Checkery Checkery	Eveni citeps: Gi contingence mi2Contin xpected_f [68 [80 [57] ce=pd.crose sea time_of_ Early Morr Morning Afternoce Evening citeps: Gi	ng nerate c /(observed=arr 1.88241 2.78559 1.98971 stab(df son day ing 64 67 n 79	570 rode w ve) sult(ay([[778, 156, 156, 11['ti 0 68 8 68 8 790 0 570 rode w	570 ith observing statistic formula f	570 C=np.floa 17448, 671 19041, 686 1033, 802 12166, 573 19941 14 1682 1682 1684 1798 1570 1682 1684 1682 1684 1682 1684 1682 1684 1688 168	570 View recco	55586 5 , 888, 43, 16,	107215 674.57 676.35 790.81 564.86	515772), 7505052, 5586992] 609407] 5863862]	pvalue=np 664.95939	float64(0.	99990313	316541389), (dof=9,				
Next s Clear Conserve Next s Next s	Eveni citeps: Ge contingence mi2Contin pected_f [68 [80 [57] e=pd.crose sea time_of_ Early Morr Morning Afternoce Evening citeps: Ge contingence	ng nerate c /(observed)	570 sode w ve) sult(ay([[778, 156, 156, 1] 1 :: 0 68 8 68 8 790 0 570 sode w ve)	570 ith observing statistic formula fo	570 ve	570 View recc t64(0.69 .1232776 .1363218 .2516994 .0369283 season'	55586 5 , 888, 43, 16,	107215 674.57 676.35 790.81 564.86	515772), 7505052, 5586992] 609407] 5863862]	pvalue=np 664.95939 ,])))	o.float64(0.739],		316541389), d					

Observation:

The p-value (0.998) is significantly higher than the conventional alpha level of 0.05.

Therefore, we fail to reject the null hypothesis.

This indicates that there is no statistically significant association between season and time of day in terms of how rental orders are distributed.

B. Season vs Weather

```
observe=pd.crosstab(df1['weather'],df1['season'])
₹
                                         丽
       season
                        2
                              3
                                    4
      weather
         1
               1759
                     1801
                           1930
                                 1702
         2
                715
                      708
                            604
                                  807
         3
                211
                      224
                            199
                                  225
         4
                        0
                              0
                                    0
             Generate code with observe

    View recommended plots

                                                                       New interactive sheet
 Next steps:
chi2_contingency(observe)
This Chi2ContingencyResult(statistic=np.float64(49.15865559689363), pvalue=np.float64(1.5499250736864862e-07), dof=9,
     \verb|expected_freq=array|| [[1.77454639e+03, 1.80559765e+03, 1.80559765e+03, 1.80625831e+03]|, \\
            [6.99258130e+02, 7.11493845e+02, 7.11493845e+02, 7.11754180e+02],
            [2.11948742e+02, 2.15657450e+02, 2.15657450e+02, 2.15736359e+02],
            [2.46738931e-01, 2.51056403e-01, 2.51056403e-01, 2.51148264e-01]]))
observe=pd.crosstab(df1['weather'],df1['season_explicit'])
observe
season_explicit Fall Spring Summer Winter
                                                       \blacksquare
              weather
                                                       16
                                                1697
             1
                       1731
                                1711
                                        2053
             2
                        744
                                775
                                         530
                                                 785
             3
                        256
                                236
                                         153
                                                 214
             4
                          0
                                  0
                                           0
 Next steps: ( Generate code with observe

    View recommended plots

                                                                       New interactive sheet
 ##★ Step 3: Create a two-way contingency table (Age vs season_explicit)
contingency_table = pd.crosstab(df1['weather'],df1['season_explicit'], margins=True)
print("Two-Way Contingency Table:\n")
print(contingency_table)
# 🖈 Step 4: Compute marginal probabilities
total = contingency_table.loc['All', 'All']
print(total)
marginal_probs = contingency_table / total
print("\n Marginal Probabilities:\n")
print(round(marginal_probs,2))
# ★ Step 5: Conditional Probabilities
# Probability of season given weather
cond_prob_City_given_gender =pd.crosstab(df1['weather'],df1['season_explicit'], normalize='index')
print("\n@ P(Season | weather):\n")
print(round(cond_prob_City_given_gender,2))
# Probability of weather given season_explicit
cond_prob_gendre_given_city = pd.crosstab(df1['season_explicit'],df1['weather'],normalize='index')
print("\n P(weather | Season):\n")
print(round(cond_prob_gendre_given_city ,2))
→ Two-Way Contingency Table:
     season_explicit Fall Spring Summer Winter
                                                       A11
     weather
                       1731
                                       2053
                                                      7192
                               1711
                                               1697
     1
     2
                       744
                               775
                                        530
                                                785
                                                      2834
     3
                        256
                                236
                                        153
                                                214
                                                       859
                         0
```

```
Δ11
                  2731
                          2722
                                  2736
                                           2697 10886
10886
Marginal Probabilities:
season_explicit Fall Spring
                               Summer
                                        Winter
                                                  A11
weather
                  0.16
                          0.16
                                                 0.66
1
                                  0.19
                                          0.16
2
                  0.07
                          0.07
                                  0.05
                                          0.07
                                                 0.26
3
                  0.02
                          0.02
                                  0.01
                                          0.02
                                                 0.08
4
                  0.00
                          0.00
                                  0.00
                                           0.00
                                                 0.00
A11
                 0.25
                          0.25
                                  0.25
                                          0.25
                                                 1.00
Ø P(Season | weather):
season_explicit Fall Spring
                                Summer
weather
                  0.24
                          0.24
                                  0.29
                                           0.24
1
                          0.27
                                  0.19
                                          0.28
2
                 0.26
3
                 0.30
                          0.27
                                  0.18
                                          0.25
4
                 9.99
                          9.99
                                  9.99
                                          1.00
P(weather | Season):
weather
season_explicit
Fall
                  0.63
                       0.27
                              0.09
                       0.28
                              0.09
                                    0.0
Spring
                 0.63
Summer
                 0.75
                       0.19
                              0.06
                                    0.0
Winter
                       0.29
                              0.08
                                    0.0
                 0.63
```

chi2_contingency(observe)

Observation:

- 1. Since the p-value is significantly less than 0.05, we reject the null hypothesis.
- 2. This means there is a statistically significant association between season and weather condition.
- 3. The distribution of weather types is not uniform across different seasons, which is also intuitive (e.g., more clear weather in summer, more fog/rain in winter, etc.).
- 4. Both season and weather independently have strong effects on rental demand.
- 5. There is also a significant interaction between season and weather, meaning the impact of weather on demand varies depending on the season
- Additional Insights from Probability Tables:
 - 1. The likelihood of clear weather (Type 1) is highest during summer (75%), while misty/cloudy (Type 2) and light rain/snow (Type 3) are more balanced in other seasons.
 - 2. Severe weather (Type 4) is extremely rare (only 1 observation, in winter).
 - 3. P(season | weather) shows that summer sees the highest share of clear weather, which may explain peak demand patterns in that season.
- C. Season vs User

plt.show()

df1.groupby(['season_explicit'])['casual'].describe() 🚌 <ipython-input-123-60871c6839a2>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in a futu df1.groupby(['season_explicit'])['casual'].describe() count mean std min 25% 50% 75% max season explicit Fall 2731.0 40.036983 53.542463 0.0 6.0 21.0 51.0 362.0 5.0 19.0 51.0 367.0 Spring 2722.0 38.998530 54.320648 0.0 Summer 2736.0 53.139985 53.497395 0.0 11.0 39.0 75.0 297.0 Winter 2697.0 11.586578 19.321772 0.0 1.0 5.0 13.0 229.0 df1.groupby(['season'])['casual'].describe() **→** \blacksquare count mean std min 25% 50% 75% max season ıl. 1 2686.0 15.489576 31.222498 0.0 1.0 5.0 15.0 367.0 2 2733.0 47.446762 57.649556 0.0 8.0 29.0 63.0 361.0 3 2733.0 52.220271 54.638059 0.0 10.0 36.0 74.0 350.0 2734.0 28.580834 42.596214 0.0 4 4.0 14.0 33.0 362.0 df1.groupby(['season'])['registered'].describe() **₹** std min 25% 50% 75% \blacksquare count mean max season th 2686.0 100.853686 108.082025 1 0.0 22.0 69.0 141.00 681.0 2 2733.0 167.804610 156.156658 0.0 39.0 133.0 243.00 782.0 3 2733.0 182.196853 164.386982 0.0 53.0 151.0 252.00 886.0 4 2734.0 170.407462 154.828357 1.0 46.0 139.0 238.75 857.0 plt.figure(figsize=(15,10)) plt.subplot(2,2,1) ax=sns.barplot(df1,x='season_explicit',y='casual',estimator='sum',errorbar=None) plt.title('Total Casual User by Season') ax.bar_label(ax.containers[0], fontsize=10); plt.subplot(2,2,2) ax=sns.barplot(df1,x='season_explicit',y='casual',errorbar=None) plt.title('Average Casual User by Season') ax.bar_label(ax.containers[0], fontsize=10); plt.subplot(2,2,3)

```
ax=sns.barplot(df1,x='season_explicit',y='registered',estimator='sum',errorbar=None)
plt.title('Total Registered User by Season')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(2,2,4)
ax=sns.barplot(df1,x='season_explicit',y='registered',errorbar=None)
plt.title('Average Regisetered User by Season')
ax.bar_label(ax.containers[0], fontsize=10);
```



```
Fall=df1['casual'][df1['season_explicit']=='Fall']
Spring=df1['casual'][df1['season_explicit']=='Spring']
Summer=df1['casual'][df1['season_explicit']=='Summer']
Winter=df1['casual'][df1['season_explicit']=='Winter']
shapiro(Fall),shapiro(Spring),shapiro(Summer),shapiro(Winter)
     (ShapiroResult(statistic=np.float64(0.7108849604081486),\ pvalue=np.float64(3.8882364835692346e-56)),\\
      ShapiroResult(statistic=np.float64(0.6914126179007014), pvalue=np.float64(3.153620838130092e-57)),
      ShapiroResult(statistic=np.float64(0.8426327400646079), pvalue=np.float64(5.85498659108043e-46)),
      ShapiroResult(statistic=np.float64(0.5744502546163965), pvalue=np.float64(6.554063986343844e-63)))
grouped = [group['casual'].values for name, group in df1.groupby('season')]
h_stat, p_val = kruskal(*grouped)
print("Kruskal-Wallis p-value:", p_val)
★ Kruskal-Wallis p-value: 0.0
h_stat, p_val = f_oneway(*grouped)
print("ANOWA one way p-value:", p_val)
ANOWA one way p-value: 1.5923432031874097e-225
plt.figure(figsize=(15,10))
plt.subplot(2,2,1)
ax=sns.barplot(df1,x='season',y='casual',estimator='sum',errorbar=None)
plt.title('Total Rental Bike by Season')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(2,2,2)
ax=sns.barplot(df1,x='season',y='casual',errorbar=None)
plt.title('Average Rental Bike by Season')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(2,2,3)
```

```
ax=sns.barplot(df1,x='season',y='registered',estimator='sum',errorbar=None)
plt.title('Total Rental Bike by Season')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(2,2,4)
ax=sns.barplot(df1,x='season',y='registered',errorbar=None)
plt.title('Average Rental Bike by Season')
ax.bar_label(ax.containers[0], fontsize=10);
```



```
Fall=df1['casual'][df1['season']=='Fall']
Spring=df1['casual'][df1['season']=='Spring']
Summer=df1['casual'][df1['season']=='Summer']
Winter=df1['casual'][df1['season']=='Winter']
shapiro(Fall),shapiro(Spring),shapiro(Summer),shapiro(Winter)
হ <ipython-input-131-d68e94ae3607>:5: SmallSampleWarning: One or more sample arguments is too small; all returned values will be NaN.
       shapiro(Fall), shapiro(Spring), shapiro(Summer), shapiro(Winter)
     (ShapiroResult(statistic=np.float64(nan), pvalue=np.float64(nan)),
      ShapiroResult(statistic=np.float64(nan),\ pvalue=np.float64(nan)),
      ShapiroResult(statistic=np.float64(nan), pvalue=np.float64(nan)),
      ShapiroResult(statistic=np.float64(nan), pvalue=np.float64(nan)))
grouped = [group['casual'].values for name, group in df1.groupby('season')]
h_stat, p_val = kruskal(*grouped)
print("Kruskal-Wallis p-value:", p_val)
★ Kruskal-Wallis p-value: 0.0
h_stat, p_val = f_oneway(*grouped)
print("ANOWA one way p-value:", p_val)
```

→ ANOWA one way p-value: 7.937798855774506e-214

Observation:

- 1. Both casual and registered users show significantly different rental patterns across seasons.
- 2. Casual users prefer summer and fall, while registered users are more consistent year-round.
- 3. Statistical tests confirm these differences are highly significant, and not due to random chance.
- 4. These insights are valuable for seasonal marketing, resource planning, and inventory management.
- → D. Time of Day vs User

```
df1.groupby(['time_of_day'])['casual'].describe()
```

<ipython-input-134-74a16d8707af>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in a futu
df1.groupby(['time_of_day'])['casual'].describe()

	coun	t mean	std	min	25%	50%	75%	max	\blacksquare
time_of_o	day								ıl.
Early Morn	ing 2684.	0 4.539866	7.125119	0.0	0.0	2.0	6.00	68.0	
Morning	2730.	0 28.955678	36.048671	0.0	6.0	17.0	36.00	258.0	
Afternoo	n 3192.	0 72.489975	66.561441	0.0	24.0	54.0	97.00	367.0	
Evening	2280.	0 30.488158	31.337353	0.0	8.0	20.0	44.25	237.0	

```
plt.figure(figsize=(15,10))
plt.subplot(2,2,1)
ax=sns.barplot(df1,x='time_of_day',y='casual',estimator='sum',errorbar=None)
plt.title('Total Casual user by time_of_day')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(2,2,2)
ax=sns.barplot(df1,x='time_of_day',y='casual',errorbar=None)
plt.title('Average Casua User by time_of_day')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(2,2,3)
ax=sns.barplot(df1,x='time_of_day',y='registered',estimator='sum',errorbar=None)
plt.title('Total Registered User by time_of_day')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(2,2,4)
ax=sns.barplot(df1,x='time_of_day',y='registered',errorbar=None)
plt.title('Average Registered User by time_of_day')
ax.bar_label(ax.containers[0], fontsize=10);
plt.show()
```



```
Fall=df1['casual'][df1['time_of_day']=='Early Morning']
Spring=df1['casual'][df1['time_of_day']=='Morning']
Summer=df1['casual'][df1['time_of_day']=='Afternoon']
Winter=df1['casual'][df1['time_of_day']=='Evening']
shapiro(Fall),shapiro(Spring),shapiro(Summer),shapiro(Winter)
⋺₹
     (ShapiroResult(statistic=np.float64(0.6553356190165827), pvalue=np.float64(6.256169564638762e-59)),
      ShapiroResult(statistic=np.float64(0.7211397977942362), pvalue=np.float64(1.7087744499054598e-55)),
      ShapiroResult(statistic=np.float64(0.8476665854175441), pvalue=np.float64(3.6853877248247166e-48)),
      ShapiroResult(statistic=np.float64(0.8188135178738867), pvalue=np.float64(5.134854292337917e-45)))
grouped = [group['casual'].values for name, group in df1.groupby('time_of_day')]
h_stat, p_val = kruskal(*grouped)
print("Kruskal-Wallis p-value:", p_val)
    Kruskal-Wallis p-value: 0.0
     <ipython-input-150-7504f437f782>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in a futι
       grouped = [group['casual'].values for name, group in df1.groupby('time_of_day')]
h_stat, p_val = f_oneway(Fall,Spring,Summer,Winter)
print("ANOWA one way p-value:", p_val)
   ANOWA one way p-value: 0.0
  E. weather vs User
df1.groupby(['time_of_day'])['casual'].describe()
```

```
₹
                                       std min 25% 50% 75%
                                                                         \blacksquare
                count
                           mean
                                                                  max
      weather
                                                                         ılı.
               7192.0 40.308676 53.443710 0.0 5.0 20.0 55.0 367.0
         1
         2
               2834.0 30.785462 43.027108
                                            0.0
                                                4.0
                                                     15.0 40.0
                                                                 350.0
         3
                859.0 17.442375 31.993259
                                            0.0 1.0
                                                       6.0 18.5
                                                                 263.0
         4
                  1.0
                       6.000000
                                      NaN 6.0 6.0
                                                       6.0
                                                            6.0
                                                                   6.0
df1.groupby(['weather'])['registered'].describe()
₹
                count
                            mean
                                         std
                                               min
                                                      25%
                                                             50%
                                                                   75%
                                                                          max
                                                                                \blacksquare
      weather
                                                                                 ıl.
         1
               7192.0 164.928115 155.294051
                                                0.0
                                                     41.0 130.0 236.0 886.0
         2
               2834.0 148.170078 144.765721
                                                0.0
                                                     35.0
                                                          112.0 211.0 788.0
         3
                859.0 101.403958 119.344152
                                                0.0
                                                     21.5
                                                            64 0 134 0 791 0
                  1.0 158.000000
                                        NaN 158.0 158.0 158.0 158.0 158.0
plt.figure(figsize=(15,10))
plt.subplot(2,2,1)
ax = sns.barplot(df1, x = 'weather', y = 'casual', estimator = 'sum', errorbar = None)
plt.title('Total Rental Bike by weather')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(2,2,2)
ax=sns.barplot(df1,x='weather',y='casual',errorbar=None)
plt.title('Average Rental Bike by weather')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(2,2,3)
ax=sns.barplot(df1,x='weather',y='registered',estimator='sum',errorbar=None)
plt.title('Total Rental Bike by weather')
ax.bar_label(ax.containers[0], fontsize=10);
plt.subplot(2,2,4)
ax=sns.barplot(df1,x='weather',y='registered',errorbar=None)
plt.title('Average Rental Bike by weather')
ax.bar_label(ax.containers[0], fontsize=10);
plt.show()
```



```
Fall=df1['casual'][df1['weather']==1]
Spring=df1['casual'][df1['weather']==2]
Summer=df1['casual'][df1['weather']==3]
Winter=df1['casual'][df1['weather']==4]
shapiro(Fall),shapiro(Spring),shapiro(Summer),shapiro(Winter)
    /usr/local/lib/python3.11/dist-packages/scipy/stats/_axis_nan_policy.py:586: UserWarning: scipy.stats.shapiro: For N > 5000, compute
       res = hypotest_fun_out(*samples, *
     <ipython-input-148-8b072d6b5d0c>:5: SmallSampleWarning: One or more sample arguments is too small; all returned values will be NaN.
       shapiro(Fall),shapiro(Spring),shapiro(Summer),shapiro(Winter)
     (ShapiroResult(statistic=np.float64(0.7293304921265313), pvalue=np.float64(1.5405120666360966e-75)),
      ShapiroResult(statistic=np.float64(0.690642858821042), pvalue=np.float64(4.421444985724021e-58)),
      ShapiroResult(statistic=np.float64(0.5512983932932148), pvalue=np.float64(3.8272237700398536e-42)),
      ShapiroResult(statistic=np.float64(nan), pvalue=np.float64(nan)))
grouped = [group['casual'].values for name, group in df1.groupby('weather')]
h_stat, p_val = kruskal(*grouped)
print("Kruskal-Wallis p-value:", p_val)
→ Kruskal-Wallis p-value: 1.6853366233576997e-61
h_stat, p_val = f_oneway(*grouped)
print("ANOWA one way p-value:", p_val)
ANOWA one way p-value: 3.3100209801972467e-44
```

Observation:

- 1. Both casual and registered users are significantly affected by weather conditions, with clear weather encouraging higher rentals.
- 2. The effect is stronger for casual users, likely due to their greater preference for good outdoor conditions.
- 3. Statistical evidence (both parametric and non-parametric) confirms the weather-rental relationship is highly significant.

A Implication: Weather forecasts can be used to predict demand and optimize resource allocation (e.g., bike availability, staffing).

2.Reccomendation

▼ Final Recommendation: Strategic Optimization of Bike Rental Operations

Based on the comprehensive analysis and statistically significant observations, the following actionable recommendation is proposed:

ODE : Data-Driven Optimization Strategy for Bike Rental Services

1. Dynamic Demand Forecasting

Use time of day, season, weather, and humidity data to build predictive models for rental demand. These models should inform decisions on:

- Bike distribution (e.g., relocating bikes to high-demand areas in peak seasons or hours).
- Staffing levels (e.g., more staff during clear weather weekends or summer evenings).
- Maintenance scheduling (e.g., prioritize during off-peak hours or seasons).

2. Inventory and Resource Planning

- Casual users peak in summer and fall, especially in clear weather increase bike inventory and visibility (ads, events) in these conditions.
- Registered users are more stable year-round ensure consistent service through the year with emphasis on commute hours.

3. Weather-Aware Operations

Implement real-time weather-integrated demand forecasting tools:

- Anticipate drops in demand during high humidity or poor weather days (Types 2 and 3).
- · Increase availability and promotions during sunny (Type 1) periods, especially in summer.

4. Segmented User Targeting

- · Casual Users:
 - o Target with seasonal campaigns, promotions, and events.
 - Focus on weekends, holidays, and good weather periods.
- Registered Users:
 - o Focus on commuting features, loyalty programs, and service consistency.

5. Marketing & Communication Strategy

- Use seasonal insights to plan campaigns:
 - Summer = promote outdoor fun, tourist use, casual rides.
 - Winter = emphasize safety, reliable commuting for registered users.
- Promote weather-related offers (e.g., discounts on gloomy days to drive usage).

6. Policy & Strategic Recommendations

- Collaborate with city planners to enhance bike lanes and infrastructure during high-demand periods.
- Consider expanding service zones or hours in high-traffic time slots (evenings, summer weekends).
- Develop a resilience plan for weather variability (e.g., temporary hubs or shelters in poor weather zones).

Conclusion

Bike rental usage is significantly influenced by **seasonality**, **weather**, **humidity**, **and time of day**, with strong evidence from statistical testing. Leveraging these insights through **targeted**, **data-driven operations and marketing** can significantly enhance efficiency, customer satisfaction, and profitability.

```
Start coding or generate with AI.

Start coding or generate with AI.

Start coding or generate with AI.
```