STA 414/2104: Machine Learning

Russ Salakhutdinov

Department of Computer Science Department of Statistics rsalakhu@cs.toronto.edu

http://www.cs.toronto.edu/~rsalakhu/

Lecture 3

Parametric Distributions

• We want model the probability distribution $p(\mathbf{x}|\boldsymbol{\theta})$ of a random variable x given a finite set of observations: $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$

Need to determine $oldsymbol{ heta}$ given $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$

- We will also assume that the data points are i.i.d
- ullet We will focus on the maximum likelihood estimation $oldsymbol{ heta}^{\star}$

• Remember curve fitting example.

$$p(t|\mathbf{x}, \mathbf{w}_{ML}, \beta_{ML}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}_{ML}), \beta_{ML}^{-1}).$$

• Remember, the simplest linear model for regression:

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d = w_0 + \sum_{j=1}^d w_j x_j,$$

where $\mathbf{x} = (x_1, x_2, ..., x_d)^T$ a d-dimensional input vector (covariates).

Key property: linear function of the parameters $w_0, w_1, ..., w_d$.

However, it is also a linear function of input variables.
 Instead consider:

$$y(\mathbf{x}, \mathbf{w}) = w_0 \phi_0(\mathbf{x}) + w_1 \phi_1(\mathbf{x}) + \dots + w_{M-1} \phi_{M-1}(\mathbf{x}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}),$$

where $\phi_j(\mathbf{x})$ are known as basis functions.

- Typically $\phi_0(\mathbf{x}) = 1$ so that \mathbf{w}_0 acts as a bias (or intercept).
- ullet In the simplest case, we use linear bases functions: $\phi_j(\mathbf{x}) = x_j$.
- Using nonlinear basis allows the functions $y(\mathbf{x}, \mathbf{w})$ to be nonlinear functions of the input space.

Polynomial basis functions:

$$\phi_j(x) = x^j$$
.

Basis functions are global: small changes in **x** affect all basis functions.

Gaussian basis functions:

$$\phi_{j}(x) = \exp\left(-\frac{(x - \mu_{j})^{2}}{2s^{2}}\right).$$

$$0.75$$

$$0.25$$

$$0$$

$$0$$

$$0$$

$$0$$

$$1$$

Basis functions are local: small changes in **x** only affect nearby basis functions.

 μ_j and s control location and scale (width).

Sigmoidal basis functions

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$
, where $\sigma(a) = \frac{1}{1 + \exp(-a)}$.

Basis functions are local: small changes in ${\bf x}$ only affect nearby basis functions. μ_j and s control location and scale (slope).

- Decision boundaries will be linear in the feature space ϕ , but would correspond to nonlinear boundaries in the original input space x.
- Classes that are linearly separable in the feature space $\phi(\mathbf{x})$ need not be linearly separable in the original input space.

- We define two Gaussian basis functions with centers shown by the green crosses, and with contours shown by the green circles.
- Linear decision boundary (right) is obtained by using logistic regression, and corresponds to the nonlinear decision boundary in the input space (left, black curve).

Maximum Likelihood

• As before, assume observations arise from a deterministic function with an additive Gaussian noise:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon,$$

which we can write as:

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

• Given observed inputs $\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$, and corresponding target values $\mathbf{t} = [t_1, t_2, ..., t_N]^T$ under i.i.d assumption, we can write down the likelihood function:

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{i=1}^{N} \mathcal{N}(t_n|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta),$$

where $\phi(\mathbf{x}) = (\phi_0(\mathbf{x}), \phi_1(\mathbf{x}), ..., \phi_{M-1}(\mathbf{x}))^T$.

Maximum Likelihood

Taking the logarithm, we obtain:

$$\ln p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \sum_{i=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta)$$

$$= -\frac{\beta}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n)\right)^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi).$$
sum-of-squares error function

Differentiating and setting to zero yields:

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

Maximum Likelihood

Differentiating and setting to zero yields:

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

Solving for w, we get:

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$
 The Moore-Penrose pseudo-inverse, $\mathbf{\Phi}^{\dagger}$.

where Φ is known as the design matrix:

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$

Geometry of Least Squares

- Consider an N-dimensional space, so that $\mathbf{t} = [t_1, t_2, ..., t_N]^T$ is a vector in that space.
- Each basis function $\phi_j(\mathbf{x}_n)$, evaluated at the N data points, can be represented as a vector in the same space.
- If M is less than N, then the M basis function $\phi_j(\mathbf{x}_n)$, will span a linear subspace S of dimensionality M.
- ullet Define: $\mathbf{y} = \mathbf{\Phi} \mathbf{w_{ML}}$.
- ullet The sum-of-squares error is equal to the squared Euclidean distance $\Phi=$ between ${f y}$ and ${f t}$ (up to a factor of 1/2).

The solution corresponds to the orthogonal projection of **t** onto the subspace S.

Sequential Learning

• The training data examples are presented one at a time, and the model parameter are updated after each such presentation (online learning):

• For the case of sum-of-squares error function, we obtain:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \left(t_n - \mathbf{w}^{(t)T} \phi(\mathbf{x}_n) \right) \phi(\mathbf{x}_n).$$

- Stochastic gradient descent: if the training examples are picked at random (dominant technique when learning with very large datasets).
- Care must be taken when choosing learning rate to ensure convergence.

Regularized Least Squares

• Let us consider the following error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

 λ is called the regularization coefficient.

Ridge

regression

• Using sum-of-squares error function with a quadratic penalization term, we obtain:

$$rac{1}{2}\sum_{n=1}^{N}\{t_{n}-\mathbf{w}^{\mathrm{T}}oldsymbol{\phi}(\mathbf{x}_{n})\}^{2}+rac{\lambda}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

which is minimized by setting:

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

The solution adds a positive constant to the diagonal of $\Phi^T\Phi$. This makes the problem nonsingular, even if $\Phi^T\Phi$ is not of full rank (e.g. when the number of training examples is less than the number of basis functions).

Effect of Regularization

- The overall error function is the sum of two parabolic bowls.
- The combined minimum lies on the line between the minimum of the squared error and the origin.
- The regularizer shrinks model parameters to zero.

Other Regularizers

Using a more general regularizer, we get:

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Lasso

Quadratic

The Lasso

• Penalize the absolute value of the weights:

$$\mathbf{w}^{lasso} = \underset{\mathbf{w}}{\operatorname{argmin}} \left[\frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{M-1} |w_j| \right].$$

- ullet For sufficiently large λ , some of the coefficients will be driven to exactly zero, leading to a sparse model.
- The above formulation is equivalent to:

$$\mathbf{w}^{lasso} = \underset{\mathbf{w}}{\operatorname{argmin}} \ \frac{1}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n))^2, \text{ subject to } \sum_{j=1}^{M-1} |w_j| \le \tau.$$

unregularized sum-of-squares error

- The two approaches are related using Lagrange multiplies.
- The Lasso solution is a quadratic programming problem: can be solved efficiently.

Lasso vs. Quadratic Penalty

Lasso tends to generate sparser solutions compared to a quadratic regularizer (sometimes called L_1 and L_2 regularizers).

Statistical Decision Theory

- We now develop a small amount of theory that provides a framework for developing many of the models we consider.
- Suppose we have a real-valued input vector \mathbf{x} and a corresponding target (output) value t with joint probability distribution: $p(\mathbf{x}, t)$.
- Our goal is predict target t given a new value for **x**:
 - for regression: t is a real-valued continuous target.
 - for classification: t a categorical variable representing class labels.

The joint probability distribution $p(\mathbf{x},t)$ provides a complete summary of uncertainties associated with these random variables.

Determining $p(\mathbf{x}, t)$ from training data is known as the inference problem.

Example: Classification

Medical diagnosis: Based on the X-ray image, we would like determine whether the patient has cancer or not.

• The input vector \mathbf{x} is the set of pixel intensities, and the output variable t will represent the presence of cancer, class C_1 , or absence of cancer, class C_2 .

x -- set of pixel intensities

• Choose t to be binary: t=0 correspond to class C₁, and t=1 corresponds to C₂.

Inference Problem: Determine the joint distribution $p(\mathbf{x}, \mathcal{C}_k)$ or equivalently $p(\mathbf{x}, t)$. However, in the end, we must make a decision of whether to give treatment to the patient or not.

Example: Classification

Informally: Given a new X-ray image, our goal is to decide which of the two classes that image should be assigned to.

• We could compute conditional probabilities of the two classes, given the input image:

posterior probability of probability of observed prior probability
$$c_{\mathbf{k}} \text{ given observed data.} \qquad \text{data given } c_{\mathbf{k}} \qquad \text{for class } c_{\mathbf{k}}$$

$$p(\mathcal{C}_k | \mathbf{x}) = \frac{p(\mathbf{x}, \mathcal{C}_k)}{\sum_{k=1}^K p(\mathbf{x}, \mathcal{C}_k)} = \frac{p(\mathbf{x} | \mathcal{C}_k) p(\mathcal{C}_k)}{p(\mathbf{x})}$$
 Bayes' Rule

• If our goal to minimize the probability of assigning **x** to the wrong class, then we should choose the class having the highest posterior probability.

$$p(\text{mistake}) = p(\mathbf{x} \in \mathcal{R}_1, \mathcal{C}_2) + p(\mathbf{x} \in \mathcal{R}_2, \mathcal{C}_1) = \int_{\mathcal{R}_1} p(\mathbf{x}, \mathcal{C}_2) d\mathbf{x} + \int_{R_2} p(\mathbf{x}, \mathcal{C}_1) d\mathbf{x}$$

if $p(\mathbf{x}, \mathcal{C}_1) > p(\mathbf{x}, \mathcal{C}_2)$ then we should assign \mathbf{x} to class \mathcal{C}_1 .

Using $p(\mathbf{x}, \mathcal{C}_k) = p(\mathcal{C}_k | \mathbf{x}) p(\mathbf{x})$: To minimize the probability of making mistake, we assign each \mathbf{x} to the class for which the posterior probability $p(\mathcal{C}_k | \mathbf{x})$ is largest.

Expected Loss

- Loss Function: overall measure of loss incurred by taking any of the available decisions.
- Suppose that for \mathbf{x} , the true class is C_k , but we assign \mathbf{x} to class j \rightarrow incur loss of L_{ki} (k,j element of a loss matrix).

Consider medical diagnosis example: example of a loss matrix:

$$\begin{array}{c|c} \textbf{Decision} \\ \text{cancer} & \text{normal} \\ \hline \boldsymbol{\xi} & \text{cancer} & \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix} \end{array}$$

Expected Loss:

$$\mathbb{E}[L] = \sum_{k} \sum_{j} \int_{\mathcal{R}_{j}} L_{kj} p(\mathbf{x}, \mathcal{C}_{k}) d\mathbf{x}$$

Goal is to choose regions \mathcal{R}_i as to minimize expected loss.

Reject Option

Regression

Let $\mathbf{x} \in \mathbb{R}^d$ denote a real-valued input vector, and $\mathbf{t} \in \mathbb{R}$ denote a real-valued random target (output) variable with joint the distribution $p(\mathbf{x}, t)$.

- The decision step consists of finding an estimate y(x) of t for each input x.
- Similar to classification case, to quantify what it means to do well or poorly on a task, we need to define a loss (error) function: $L(t, y(\mathbf{x}))$.
- The average, or expected, loss is given by:

$$\mathbb{E}[L] = \int \int L(t, y(\mathbf{x})) p(\mathbf{x}, t) d\mathbf{x} dt.$$

• If we use squared loss, we obtain:

$$\mathbb{E}[L] = \int \int \left(t - y(\mathbf{x})\right)^2 p(\mathbf{x}, t) d\mathbf{x} dt.$$

Squared Loss Function

• If we use squared loss, we obtain:

$$\mathbb{E}[L] = \int \int (t - y(\mathbf{x}))^2 p(\mathbf{x}, t) d\mathbf{x} dt.$$

- Our goal is to choose y(x) so as to minimize the expected squared loss.
- The optimal solution (if we assume a completely flexible function) is the conditional average:

 $y(\mathbf{x}) = \int tp(t|\mathbf{x})dt = \mathbb{E}[t|\mathbf{x}].$

The regression function $y(\mathbf{x})$ that minimizes the expected squared loss is given by the mean of the conditional distribution $p(t|\mathbf{x})$.

Squared Loss Function

• If we use squared loss, we obtain:

$$(y(\mathbf{x}) - t)^2 = (y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}] + \mathbb{E}[t|\mathbf{x}] - t)^2$$

= $(y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}])^2 + 2(y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}])(\mathbb{E}[t|\mathbf{x}] - t) + (\mathbb{E}[t|\mathbf{x}] - t)^2.$

• Plugging into expected loss:

$$\mathbb{E}[L] = \int \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2 p(\mathbf{x}) d\mathbf{x} + \int \text{var}[t|\mathbf{x}] p(\mathbf{x}) d\mathbf{x}$$
expected loss is minimized intrinsic variability of t

when $y(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$.

intrinsic variability of the target values.

Because it is independent noise, it represents an irreducible minimum value of expected loss.

Other Loss Function

• Simple generalization of the squared loss, called the *Minkowski* loss:

$$\mathbb{E}[L] = \int \int \left(t - y(\mathbf{x})\right)^q p(\mathbf{x}, t) d\mathbf{x} dt.$$

- The minimum of $\mathbb{E}[L]$ is given by:
 - the conditional mean for q=2,
 - the conditional median when q=1, and
 - the conditional mode for $q \rightarrow 0$.

Bias-Variance Decomposition

- Introducing a regularization term can help us control overfitting. But how can we determine a suitable value of the regularization coefficient?
- Let us examine the expected squared loss function. Remember:

$$\mathbb{E}[L] = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x} + \iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$$

for which the optimal prediction is given by the conditional expectation:

$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x}) \,dt.$$

intrinsic variability of the target values: The minimum achievable value of expected loss

- If we model $h(\mathbf{x})$ using a parametric function $y(\mathbf{x}, \mathbf{w})$, then from a Bayesian perspective, the uncertainly in our model is expressed through the posterior distribution over parameters \mathbf{w} .
- We first look at the frequentist perspective.

Bias-Variance Decomposition

- From a frequentist perspective: we make a point estimate of \mathbf{w}^* based on the dataset D.
- We next interpret the uncertainly of this estimate through the following thought experiment:
 - Suppose we had a large number of datasets, each of size N, where each dataset is drawn independently from $p(\mathbf{x}, t)$.
 - For each dataset D, we can obtain a prediction function $y(\mathbf{x}; \mathcal{D})$.
 - Different datasets will give different prediction functions.
 - The performance of a particular learning algorithm is then assessed by taking the average over the ensemble of these datasets.
- Let us consider the expression:

$${y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})}^2.$$

• Note that this quantity depends on a particular dataset D.

Bias-Variance Decomposition

• Consider:

$${y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})}^2.$$

• Adding and subtracting the term $\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})]$, we obtain

$$\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}$$

$$+2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}.$$

ullet Taking the expectation over $\mathcal{D}, \$ the last term vanishes, so we get:

$$\mathbb{E}_{\mathcal{D}}\left[\left\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\right\}^{2}\right] \\ = \underbrace{\left\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\right\}^{2}}_{\left(\text{bias}\right)^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\right\}^{2}\right]}_{\text{variance}}.$$

expected
$$loss = (bias)^2 + variance + noise$$

Average predictions over all datasets differ from the optimal regression function.

Solutions for individual datasets vary around their averages -- how sensitive is the function to the particular choice of the dataset.

Intrinsic variability of the target values.

$$(\text{bias})^{2} = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2} p(\mathbf{x}) \, d\mathbf{x}$$

$$\text{variance} = \int \mathbb{E}_{\mathcal{D}} \left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} \right] p(\mathbf{x}) \, d\mathbf{x}$$

$$\text{noise} = \iint \{h(\mathbf{x}) - t\}^{2} p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

- Trade-off between bias and variance: With very flexible models (high complexity) we have low bias and high variance; With relatively rigid models (low complexity) we have high bias and low variance.
- The model with the optimal predictive capabilities has to balance between bias and variance.

• Consider the sinusoidal dataset. We generate 100 datasets, each containing N=25 points, drawn independently from $h(x) = \sin 2\pi x$.

• Consider the sinusoidal dataset. We generate 100 datasets, each containing N=25 points, drawn independently from $h(x) = \sin 2\pi x$.

- Note that averaging many solutions to the complex model with M=25 data points represents a very good fit to the regression function
- Averaging may be a beneficial procedure.

• Let us examine the bias-variance trade-off quantitatively.

- Consider the sinusoidal dataset. We generate 100 datasets, each containing N=25 points, drawn independently from $h(x) = \sin 2\pi x$.
- The average prediction is estimated as:

$$\bar{y} = \frac{1}{L} \sum_{l=1}^{L} y^{(l)}(x). \qquad \text{(bias)}^2 = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2 p(\mathbf{x}) \, d\mathbf{x}$$

$$\text{variance} = \int \mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^2\right] p(\mathbf{x}) \, d\mathbf{x}$$

And the integrated squared bias and variance are given by:

$$(\text{bias})^{2} = \frac{1}{N} \sum_{n=1}^{N} \left[\bar{y}(x_{n}) - h(x_{n}) \right]^{2}$$

$$\text{variance} = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{L} \sum_{l=1}^{L} \left[y^{(l)}(x_{n}) - \bar{y}(x_{n}) \right]^{2}$$

where the integral over x weighted by the distribution p(x) is approximated by the finite sum over data points drawn from that distribution.

From these plots note that over-regularized model (large λ) has high bias, and under-regularized model (low λ) has high variance.

Beating the Bias-Variance Trade-off

- We can reduce the variance by averaging over many models trained on different datasets:
 - In practice, we only have a single observed dataset. If we had many independent training sets, we would be better off combining them into one large training dataset. With more data, we have less variance.
- Given a standard training set D of size N, we could generate new training sets, N, by sampling examples from D uniformly and with replacement.
 - This is called bagging and it works quite well in practice.
- Given enough computation, we would be better off resorting to the Bayesian framework (which we will discuss next):
 - Combine the predictions of many models using the posterior probability of each parameter vector as the combination weight.