TAXONOMY AND PHYLOGENY

Shubhabrata Paul

Things to remember...

- Systematics
- Taxonomy
- Phylogenetic tree or cladogram
- Kinds of characters
- □ Homology & analogy
- Mono-, para- & polyphyletic groups

Reading material: Invertebrate Paleontology and Evolution, by Clarkson

Practice of classification

- People have classified the natural world for thousands of years based on traits such as:
 - edibility "We can eat these plants, but not these."
 - cultural meaning "These animals are sacred, these are evil."
 - utility "These animals pull our plows, those we shear for wool."

Classifying organisms

 More than 2000 years ago, Aristotle developed the first widely accepted system of biological classification

- Aristotle's System- Classified organisms as either animals or plants
 - Plants were classified by size (trees, shrubs or herbs
 - Animals were classified as "bloodless" or "redblooded"

Finding order in nature

Aristotle's Classification System									
Plants									
Herbs	Shrubs	Trees							
Violets Rosemary Onions	Blackberry bush Honeysuckle Flannelbush	Apple Oak Maple							
Animals with red blood									
Land	Water	Air							
Wolf Cat Bear	Dolphin Eel Sea bass	Owl Bat Crow							

Naturalistic Systematics

- Around the 18th century, naturalists sought to classify nature in a way that reflected nature, rather than the way humans use nature.
- Of course, there was disagreement about what constituted a "natural" system, or even if a "natural" system was necessary.

Carolus Linnaeus (1707-1778)

There's no systematic organization of anything! I'm going to fix that!

- broadened Aristotle's classification
- created the 1st formal system of taxonomy.

 Taxonomy- branch of biology that identifies, names and classifies species based on their natural relationships

Systematics

- Systematics is the study of biological diversity in an evolutionary context
- Includes
 - Speciation
 - Taxonomy
 - Phylogeny
- Goal: to Determine Evolutionary History (**Phylogeny**)
 of Life

Taxonomy

- Taxa group of organisms at a particular level in a classification system (taxonomy)
- Taxonomy is the branch of systematics concerned with naming and classification.
- Includes DINC
 - Description
 - Identification
 - Nomenclature
 - Classification

Taxonomy: I. Description

= assign features

Character = a feature (e.g., "body height")

 Character states = two or more forms of a character (e.g., "short," "tall").

 Biologists can use DNA characters, Paleontologists have only morphology of hard skeleton

Taxonomy: II. Identification

= associate an unknown with a known using taxonomic key or characters

- Tree
 - □ Leaves simple Species *B*
 - □ Leaves pinnate Species C
- Herb
 - □ Flowers redSpecies D
 - □ Flowers white Species E

Taxonomy: III. Nomenclature

- Naming, according to a formal system.
- Binomial: Species are two names (Linnaeus):

- E.g., Homo sapiens
 - Homo = genus name
 - \square sapiens = specific epithet
 - Homo sapiens = species name

Taxonomy: IV. Classification

Organizing different things into groups

 Classification organisms first classified by Aristotle over 2,000 years ago

Classification scheme of the Middle Ages was replaced with a binomial system by Linnaeus about 250 years ago.

Taxonomical hierarchy

- □Domain
 - Kingdom
 - Phyla
 - Classes
 - Orders
 - Families
 - Genera
 - Species

Biological classifications are hierarchical: each taxonomic group is nested within a more inclusive higher order group.

Taxonomic hierarchy

- Species- group of organisms that can interbreed and produce fertile offspring
- Genus- group of species that are closely related and share a common ancestor
- Family- group of related genera
- Order- group of related families
- Class- group of related orders
- Phylum- group of related classes
- Kingdom- group of related phyla
- Domain- Broadest of all taxa and contains 1 or more Kingdoms

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Phylogeny

- Based on known (inferred) evolutionary history.
- Advantage:
 - Classification reflects pattern of evolution
 - Classification not ambiguous

Phylogenetic trees are used to place different taxonomic schemes together, and to show connection between classification and phylogeny.

Tree of Life

Phylogeny and Classification

"Our classifications will come to be, as far as they can be so made, genealogies."

- Charles Darwin, 1859

Taxonomy and Phylogeny

- Taxonomic characters allow phylogenetic grouping
- Useful taxonomic characters
 - Morphological
 - Molecular (biochemical)
 - Chromosomal
 - Proteins
 - DNA
- Homologies
 - Character similarities attributed to common ancestry

Cladogram

Modern phylogenetic systematics are based on cladistic analysis

- A phylogenetic diagram (tree) is also called a <u>cladogram</u>.
- A cladogram is constructed that depicts hypothesis of evolutionary relationships
 - Species that share derived characters belong to a clade.
 - Each node represents a hypothetical ancestral species.

Each branch in the tree is called a clade.

Cladogram

Clade

 one branch on the diagram showing a group of species that share a single common ancestor

Synapomorphy

□ a shared derived character state

Symplesiomorphy

□ a shared ancestral character state

Autapomorphy

□ a derived character state unique to one study group member

Homology

Similarity resulting from common ancestry.

Homoplasy (analogy)

- Similarity <u>not</u> due to common ancestry
- Convergence (parallelism) gain of new, similar features independently.

Reversal – loss of new (apomorphic) feature,
 resembles ancestral (old) feature.

Analogy: Convergence

spines of cacti & euphorbs

Cactus

Euphorb

Convergent evolution:

wings of some animals evolved independently

Analogy: Reversal

Leg-less lizards

Snake

reversal within
Tetrapods:
loss of a derived
feature – forelimbs.

Monophyletic group

 A monophyletic group includes a common ancestor and all of its descendents

Paraphyletic group

 A paraphyletic group includes a common ancestor and some but not all of its descendents

Polyphyletic group

 A polyphyletic group is a group whose members do not share a recent common ancestor

Relationships

 \Box = recency of common ancestry

i.e., taxa sharing a common ancestor more recent in time are more closely related than those sharing common ancestors more distant in time.

Example

Are fish more closely related to sharks or to humans?

Example

Are fish more closely related to sharks or to humans?

Let's see...

- □ Is "E" more closely related to "D" or to "F"?
- □ Is "E" more closely related to "B" or to "A"?
- □ Is "E" more closely related to "B" or to "C"?

Did humans evolve from apes?

We are human, but we are also apes

- We share unique human features.
- We also share features with other apes (and with other animals, plants, fungi, bacteria, etc.).
- Humans didn't evolve from apes, humans <u>are</u> apes.

Let's construct a cladogram (1)...

Study group

Outgroup member

a species that is closely related to the species under study, the outgroup has a shared primitive character that is common to all species.

Let's construct a cladogram (II)...

		TAXA						
		Lancelet (outgroup)	Lamprey	Tuna	Salamander	Turtle	Leopard	
CHARACTERS	Hair	0	0	0	0	0	1	
	Amniotic (shelled) egg	0	0	0	0	1	1	
	Four walk- ing legs	0	0	0	1	1	1	
	Jaws	0	0	1	1	1	1	
	Vertebral column (backbone)	0	1	1	1	1	1	

Final cladogram

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.