(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-310774 (P2000-310774A)

(43)公開日 平成12年11月7日(2000.11.7)

(51) Int.Cl. ⁷		酸別記号	F I			デ ー マコート*(参考)
G02F	1/1335	5 1 5	G 0 2 F	1/1335	5 1 5	2 H O	49
		5 2 0			5 2 0	2 H 0	88
G 0 2 B	5/30		G 0 2 B	5/30		2 H O	8 9
G02F	1/133	500	G 0 2 F	1/133	500	2 H 0	9 1
	1/137			1/137			
			審查請求	未請求	請求項の数5	OL (全	7 頁)
(21)出願番号		特顯平11-121034	(71)出願人	0000000)44		
				旭硝子	朱式会社		
(22)出顧日		平成11年4月28日(1999.4.28)		東京都	千代田区有楽町-	-丁目12番 1	号
			(71)出願人	0001037	747		
				オプト	レックス株式会	生	
				東京都	荒川区東日暮里:	五丁目7番1	8号
			(72)発明者	尾関 1	正雄		
			-	神奈川。	具横浜市神奈川	区羽沢町115	0番地
				旭硝子	株式会社内		
			(74)代理人	1000834	104		
				弁理士	大原 拓也		
						最終	質に続く

(54) 【発明の名称】 カラー液晶表示装置

(57)【要約】

【課題】 時分割駆動系で、白、赤、青、緑の4色がい ずれも純度の高い発色状態で併存可能なカラー液晶表示 装置を提供する。

【解決手段】 リタデーションを利用し同一表示単位で 多色表示を行う方式において、一対の偏光板の少なくと も一方として、赤および青における偏光度が緑における それに較べて相対的に低い特定の範囲を示すカラー偏光 板を用いる。

【特許請求の範囲】

【請求項1】 透明電極と配向膜をそれぞれ有しほぼ平 行に設けられた二つの基板間に、ねじれ配向したネマチ ック液晶が挟持され、各基板の配向膜によって形成され る液晶分子の配向方向による液晶層のねじれ角が160 ~300°とされ、液晶層の外側に一対の偏光板が配置 され、液晶層と一方の偏光板との間に少なくとも一枚以 上の位相差板が配置され、透明電極間に駆動電圧を印加 する駆動回路が備えられたカラー液晶表示装置におい て、前記一対の偏光板のうち少なくとも一方の偏光板が カラー偏光板であり、前記カラー偏光板の偏光度の波長 依存性が、(波長650mmの偏光度)/(波長450 nmの偏光度)が0.1~0.7、(波長650nmの 偏光度) / (波長550nmの偏光度) が0~0.6、 (波長450nmの偏光度) / (波長550nmの偏光 度)が0.4~1.0であり、液晶層での液晶の屈折率 異方性 Δn_L と液晶層の厚み d_L との積 $\Delta n_L d_L$ が 1.0~1.5µmであり、かつ、時分割駆動により4 値以上の異なった電圧値を選択することによって、白、 赤、青、緑の4色を同一表示単位で発色させることを特 徴とするカラー液晶表示装置。

【請求項2】 前記カラー偏光板の偏光度の波長依存性が、(波長650 nmの偏光度) / (波長450 nmの偏光度) が0.2~0.6、(波長650 nmの偏光度) / (波長550 nmの偏光度) / (波長550 nmの偏光度) / (波長450 nmの偏光度) / (波長550 nmの偏光度) が0.5~1.0であることを特徴とする請求項1に記載のカラー液晶表示装置。

【請求項3】 前記位相差板の延伸軸方向と位相差板を配置した基板側の液晶分子の配向方向との角度 θ_2 が80~100°であり、前記位相差板に隣接した偏光板の吸収軸と前記配向方向との角度 θ_1 が130~150°であり、他方の基板側の偏光板の吸収軸と前記他方の基板側の液晶分子の配向方向との角度 θ_3 が125~145°であることを特徴とする請求項1または2に記載のカラー液晶表示装置。

【請求項4】 前記一対の偏光板のうち一方の偏光板の 外側に反射板または半透過反射板を配置したことを特徴 とする請求項1~3のいずれか1項に記載のカラー液晶 表示装置。

【請求項5】 液晶の Δn_L が0.18以上であることを特徴とする請求項 $1\sim4$ のいずれか1項に記載のカラー液晶表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、時分割駆動系で、 白、赤、青、緑の4色が、いずれも純度の高い発色状態 で併存可能なカラー液晶表示装置に関する。

[0002]

【従来の技術】特開平2-118516号(従来例1)

には、ツイストした液晶セルにおいて印加電圧を変化させることにより様々な色相変化が可能であることが示されている。しかし、その発色は、黄、赤、紫、青紫、青、緑であり、白表示はできていないという課題を有している。また、従来例1では、補償セルを用いて、2層にすることにより白黒表示が可能であることが示されている。しかし、画面上に、白または黒と、青や緑等の色を併存させることができないという問題がある。

【0003】特開平2-183220号(従来例2)においては、補償セル側にも画素を形成し、表示させることによって、白または黒と、青や緑などの色を併存させることが可能とされている。しかしながらこの場合には、2層の液晶パネルの各画素を1画素ずつ対応させて形成しなければならず、製造が極めて困難となるばかりでなく、斜めから見た場合の視差が生じて色が渗んで見えてしまうという問題が起こる。また、パネルの重量が増大するという問題もある。

【0004】特開平8-292434号(従来例3)に は、位相差板を用いることにより、無彩色を表示でき、 かつ青、赤、緑の表示が可能であると述べられている。 しかし、電圧印加に対して白発色の次にくる赤表示はオ レンジ赤となっており、色純度の高い赤の発色はできて いない。従来例3の中には、赤の認識が高いピンク赤の 発色が可能な仕様が記述されているが、ピンク赤を発色 させるためには液晶の $\Delta n_L d_L$ を大きくし、液晶の状 態変化を大きくする必要がある。そこで、ピンク赤と白 を時分割駆動で両立させるためには、液晶層の Δ n_L dLを1.7以上とする必要があった。しかし、液晶層の $\Delta n_L d_L$ の増大を Δn_L の増大でまかなうには限度が あり、 d_L も大きくしなければならないため、液晶の応 答速度が遅くなるとか、視角依存性が大きくなるとか、 セルギャップ変動に対して弱くなるとか、温度依存性が 大きくなるとかの問題があり現実的ではない。このよう に、純度の高い白と、赤認識の高い赤とを実用的な液晶 層の $\Delta n_L d_L$ で得ることができないという問題があ

【0005】特開平9-33917号(従来例4)には、液晶層の Δ n_L d_Lが1.533 μ mのスタティック駆動系で、青系に着色された偏光板を用いることによりオレンジ色がピンク系の赤色に表示され、無彩色、赤、緑、青の4色表示ができること、また、偏光板の着色を紫(パープル)系とすることにより、赤が強くなることが開示されている。しかしながらこの方法では、時分割駆動系で、純度が高い赤、同じく白、同じく青、同じく禄を併存させることはできなかった。

[0006]

【発明が解決しようとする課題】本発明は、上述したような従来技術の問題点を解決し、時分割駆動系で、白、赤、青、緑の4色がいずれも純度の高い発色状態で併存可能なカラー液晶表示装置を提供することを目的とす

る。

[0007]

【課題を解決するための手段】上記目的を達成するため に、第1の発明は、透明電極と配向膜をそれぞれ有しほ ば平行に設けられた二つの基板間に、ねじれ配向したネ マチック液晶が挟持され、各基板の配向膜によって形成 される液晶分子の配向方向による液晶層のねじれ角が1 60~300°とされ、液晶層の外側に一対の偏光板が 配置され、液晶層と一方の偏光板との間に少なくとも一 枚以上の位相差板が配置され、透明電極間に駆動電圧を 印加する駆動回路が備えられたカラー液晶表示装置にお いて、前記一対の偏光板のうち少なくとも一方の偏光板 がカラー偏光板であり、前記カラー偏光板の偏光度の波 長依存性が、(波長650nmの偏光度)/(波長45 0 nmの偏光度) が0.1~0.7、(波長650 nm の偏光度) / (波長550 n mの偏光度) が0~0. 6、(波長450 nmの偏光度)/(波長550 nmの 偏光度)が0.4~1.0であり、液晶層での液晶の屈 折率異方性 Δn_L と液晶層の厚み d_L との積 $\Delta n_L d_L$ が1.0 \sim 1.5 μ mであり、かつ、時分割駆動により 4値以上の異なった電圧値を選択することによって、 白、赤、青、緑の4色を同一表示単位で発色させること を特徴としている。

【0008】第2の発明は、前記カラー偏光板の偏光度の波長依存性が、(波長650nmの偏光度)/(波長450nmの偏光度)が0.2~0.6、(波長650nmの偏光度)/(波長550nmの偏光度)/(波長550nmの偏光度)が0.5~1.0であることを特徴としている。

【0009】第3の発明は、前記位相差板の延伸軸方向と位相差板を配置した基板側の液晶分子の配向方向との角度 θ_2 が80~100°であり、前記位相差板に隣接した偏光板の吸収軸と前記配向方向との角度 θ_1 が130~150°であり、他方の基板側の偏光板の吸収軸と前記他方の基板側の液晶分子の配向方向との角度 θ_3 が125~145°であることを特徴としている。

【0010】第4の発明は、前記一対の偏光板のうち一方の偏光板の外側に反射板または半透過反射板を配置したことを特徴としている。第5の発明は、液晶の Δ n_L が0.18以上であることを特徴としている。

[0011]

【発明の実施の形態】本発明においては、偏光度の波長依存性が上記のように特定され、赤(650nm)および青(450nm)における偏光度が緑(550nm)における偏光度に較べて相対的に低い特定の範囲を満たす、カラー偏光板を用いることが重要である。

【0012】可視光(特に400~700nmを指す) 全波長領域に亘って偏光度の高い偏光板(例えば住化製 SK-1842AP)を使った場合、白を発色させ、か つ液晶の状態を変化させて、純度の高い赤色および青を 発色させることは極めて難しい。なぜなら、白を発色さ せるためには可視光の全波長の位相をほぼ揃える必要が あり、揃えた所から電圧変化によって液晶の状態を変化 させても、各波長間の位相差の変化を大きくすることが できないからである。故に、赤に近い色調としてのオレ ンジ色は発色可能であるが、純度の高い赤を発色させる ことができない。

【0013】一方、液晶層の△n L d L および位相差板のリタデーション値のバランス、位相差板および偏光板の配置を調整して純度の高い赤を発色させた場合には、白の純度が低下して緑味を帯びたものとなってしまう。【0014】ここで前記のような緑の波長領域で、一般に知られた紫系のカラー偏光板を使用することにより、白の緑味を抑えて完全な白に変えることができるとともに、オレンジ発色を赤に変換でき、また青の発色も保たれるので、白、赤、青の3色をいずれも純度の高い発色状態で併存させることが可能となる。

【0015】しかしながら、一般に知られた紫系のカラー偏光板を用いた場合、青と赤の偏光度が小さいので、緑の発色時に、赤と青の光も透過するため、緑の発色を得ることが出来ないという問題が発生する。そのため、青と赤の偏光度を制御することが重要となる。

【0016】具体的には、カラー偏光板の偏光度の波長依存性を、(波長650nmの偏光度) / (波長450nmの偏光度) が0.1~0.7、(波長650nmの偏光度) / (波長550nmの偏光度) が0~0.6、(波長450nmの偏光度) / (波長550nmの偏光度) が0.4~1.0とする。

【0017】さらに、カラー偏光板の偏光度の波長依存性を、(波長650nmの偏光度)/(波長450nmの偏光度)が0.2~0.6、(波長650nmの偏光度)/(波長550nmの偏光度)が0.1~0.6、(波長450nmの偏光度)/(波長550nmの偏光度)が0.5~1.0とすることが好ましい。

【0018】以上の様な偏光度の比の範囲を満足すれば、緑の発色が可能でかつ、白、赤、青の表示が可能となる。

【0019】1枚のカラー偏光板で偏光度の波長依存性が上記範囲内に入ることが望ましいが、吸収軸を一致させて複数枚のカラー偏光板を組み合わせて所望の波長依存性を有するようにしてもよい。

【0020】ここで、偏光板の偏光度の定義を記述する。偏光板の透過軸方向の透過率をPx、吸収軸方向の透過率をPyとすると、前記偏光度は、(Px-Py)/(Px+Py)で表される。また、偏光板を2枚直交配置したときの透過率をT」、平行配置したときの透過率をT』とすると、T」とT』は、

 $T \perp = P x \times P y$

 $T \parallel = (Px^2 + Py^2)/2$

となる。よって、偏光度は $\{(T || -T \perp) / (T || + T \perp)\}$ 1/2 で表すことができる。

【0021】図7に本実施例に用いたカラー偏光板の偏光度の波長依存性を示す。この図中に、一般に知られている、青系のカラー偏光板(ポラテクノ製B-1825T)、赤系のカラー偏光板(ボラテクノ製R-18255T)、紫系のカラー偏光板(ボラテクノ製V12-

18245T) および本実施例に用いたカラー偏光板を示す。また、表1にデジタルデータを示す。図7より、本実施例に用いたカラー偏光板の偏光度の波長依存性は、従来から用いられているカラー偏光板の偏光度の波長依存性と異なっているのが理解できる。

[0022]

【表1】

	各波長における偏光度			観光度の比			
偏光板	450mm	650nm	850nm	650/450	650/550	450/550	
B-18255T	0. 141	0. 560	0. 893	6. 33	1. 69	0. 252	
R-18255T	0. 575	0. 970	0.0511	0. 0889	0. 0527	0. 593	
V12-18245T	0.168	0. 934	0.135	0. 850	0. 145	0.169	
東西河	0. 760	0. 999	0.313	0.417	0.313	0. 750	

【0023】本発明においては、液晶層での液晶の屈折率異方性 Δn_L と液晶層の厚み d_L との積 Δn_L d_L が $1.0\sim1.5$ μ m、好ましくは $1.1\sim1.4$ μ mと される。この値が大きすぎる場合には、従来例3の問題点として前述したような d_L の増大に伴う弊害が生じ、一方、この値が小さ過ぎる場合には、十分な発色が達成されなくなるので不都合である。また、 Δn_L に着目すれば、 d_L を過大としないために0.18以上、特に、0.19以上の液晶が好ましく採用される。

【0024】使用上限温度が高くなる屋外用途、車載用途向けには、高温でも希望の発色状態を保持するために、ネマチックアイソトロピック転移温度Tniが105℃以上、特に110℃以上の液晶を用いることが好ましい。また、位相差板のリタデーションとしては、液晶層のΔnLdLよりも大きくする。すなわち、1.1~1.6nmとすることが好ましい。

【0025】位相差板および偏光板の角度配置としては、図2に示すように、位相差板の延伸軸方向と位相差板を配置した基板側の液晶分子の配向方向との角度 θ_2 を80~100°とし、前記位相差板に隣接した偏光板の吸収軸と前記配向方向との角度 θ_1 を130~150°とし、他方の基板側の偏光板の吸収軸と前記他方の基板側の液晶分子の配向方向との角度 θ_3 を125~145°とすることが望ましい。この角度配置とすることで発色変化がもっとも大きくなる。

【0026】本実施の形態では、液晶層を左螺旋としたが、螺旋が逆であっても液晶層の液晶分子の配向方向、偏光板の吸収軸方向、位相差板の延伸軸方向との関係 θ 1、 θ 2、 θ 3 を反時計回りとして考えればよい。本発明のカラー液晶表示装置の一態様においては、発色の順序が電圧の低い側からで白、赤、青、緑となる。

【0027】なお、本発明において、同一表示単位とは、セグメント表示部では対向する電極で形成される1つのセグメントであり、ドットマトリクス表示部では対向する電極で形成される1つのドットである。

【0028】本発明の好ましい形態においては、背景色

との混色によるコントラストおよび色純度の低下を抑制 する観点から、上記表示単位間の間隔を極力小さくし、 15μm以下、望ましくは10μm以下とすることが好 ましい。

【0029】本発明のカラー液晶表示装置の駆動方式としては、表示画素数が多い用途に対応可能な、時分割駆動方式が採用される。また、階調表示の制御方式として周知の方式が用いられるが、階調設定の自由度の観点からパルス幅変調方式(PWM)あるいはこれとフレーム変調方式との併用が好ましく採用される。

[0030]

【実施例】つぎに図面を参照しながら、本発明の実施例について詳しく説明する。図1に本発明の一実施例であるカラー液晶表示装置の基本的構成を説明する模式的断面図を示す。ここで、1、2は一対の偏光板、3は液晶層、4は位相差板、15はバックライトである。

【0031】液晶セルは以下のようにして作成した。ガラス基板上に設けられたITO透明導電膜をストライプ状の電極7、8にパターニングし、その上に絶縁膜9、10を形成し、さらにポリイミドのオーバーコートを形成し、これをラビングして配向制御膜11、12を形成した2枚の基板5、6を作成した。このようにして作成した2枚の基板5、6の周辺をシール材13でシールして、液晶セルを形成し、ネマチック液晶を注入し、注入孔を封止材で封止した。

【0032】液晶層の厚み d_L はセル間隔を調整して 6.5 μ mに設定した。 液晶には Δn_L が0.19 5、ネマチックーアイソトロピック転移温度 T_{n_i} が115 $^{\circ}$ のものを用いた。結果として液晶層の Δn_L d_L は約1.27 μ mとなる。液晶層のねじれ角は240 $^{\circ}$ とした。位相差板のリタデーション値は1.40 μ m (590nmで測定した場合)とした。

【0033】表側の偏光板1はカラー偏光板を用い、裏側の偏光板2は通常の偏光板(住化製SK-1842AP)を用いた。用いたカラー偏光板は、2枚重ねたときの分光透過率特性が、直交配置のときは、450nmで

5.9%、500nmで0.1%、550nmで0%、600nmで0%、650nmで32%、700nmで58%であり、平行配置のときは、450nmで21%、500nmで17%、550nmで14%、600nmで19%、650nmで39%、700nmで59%である。偏光度は、450nmで0.75、500nmで1.0、550nmで1.0、600nmで1.0、650nmで0.313、700nmで0.28となる。すなわち、偏光度の比は、(650nm/450nm)が0.417、(650nm/550nm)が0.313、(450nm/550nm)が0.750となる。このカラー偏光板の特性を図3に示す。

【0034】本実施例において、液晶分子の配向方向、 偏光板の吸収軸方向および位相差板の延伸軸方向は図2 に示すように、時計回りに見て、 θ_1 を141°、 θ_2 を89°、 θ_3 を140°に設定した。

【0035】得られたカラー液晶表示装置の駆動は、1 /65デューテイ、1/5バイアスの時分割駆動波形で 行った。このときの電圧-透過率の関係を図5に示す。 コントローラドライバとしては、東芝製IC(T6K0 3)を用いた。階調レベルとしては、白表示はoff波 形、緑表示はon波形、赤表示および背表示は、on波 形とoff波形の中間の電圧レベルを印加した。中間レ ベルは、バルス幅変調とフレーム変調の合成によって作 成している。

【0036】発色の色変化を図4に色度図として示し、 測定は透過モードで行った。このパネルの開口率は86 %であった。

【0037】比較のためにカラー偏光板の代わりに通常 偏光板を用いた場合の色変化を図4に同時に示す。この 場合には白の発色が縁に寄っており、赤の発色が弱いこ とがわかる。このことにより、カラー偏光板を用いるこ とによる発色状態の改善効果が理解できる。

【0038】カラー偏光板を表側と裏側の両方に置いても、同様の効果が得られた。また、バックライトと裏側の偏光板の間に半透過反射板をおいて、半透過タイプとして用いても良好な表示が得られた。さらに、バックライトの代わりに反射板を用い反射型の液晶表示装置とすることもできる。また、裏側の偏光板として住友スリーエム社製RDF(製品名)のような偏光分離機能を有するフィルムを用いることもできる。

【0039】また、駆動法として、複数ライン同時選択 法を用いると、フレーム応答が抑制され、特に高温での 色純度の低下を抑えることが可能であった。

【0040】上記実施例では位相差板として、一軸異方性のものを1枚表示面側に配置したが、これを複数枚としたり、両側に配置したり、また、二軸異方性のもの、あるいはねじれ位相差板を使用することもできる。さらに、本発明はその効果を損しない範囲で種々の応用ができる。

【0041】位相差板を今回表側に配置したが、裏側に配置してもよい。つまり、上記実施例においては、カラー偏光板と位相差板とを近接させたが、位相差板とカラー偏光板を離して配置してもよい。

[0042]

【発明の効果】本発明により、カラーフイルターを用いずに、また、補償セルを用いることなく、時分割駆動で白、赤、青、緑の4色がいずれも純度の高い発色状態で併存可能なカラー液晶表示装置を実現できる。低消費電力で明るく携帯に適したカラー表示装置が可能となる。特に反射型として使用するとその効果は非常に大きい。【0043】本発明の液晶表示装置は、屋外での使用を前提とする携帯用の電子機器、例えば、携帯電話、電子手帳、電子ブック、電子辞書、PDA(携帯情報端末)、ページャー(ポケットベル)などに用いた場合に、その良好な視認性、表現力と合わせて高い機能性を発揮する。

【図面の簡単な説明】

【図1】本発明の一実施例の構成を説明する模式的断面 図。

【図2】本発明の実施例の液晶表示装置を上から見たときの、液晶層の液晶分子の配向方向、偏光板の吸収軸方向、および位相差板の延伸軸方向の相対位置を示す平面図

【図3】本発明の実施例に用いたカラー偏光板の、偏光 度、単体透過率、直交配置と平行配置のときの分光透過 率を示す図。

【図4】本発明の実施例の色変化と、比較例の色変化と を示す色度図。

【図5】本発明の実施例の電圧-透過率曲線と、比較例 の電圧-透過率曲線とを示す図。

【図6】本発明の比較例に用いた通常偏光板の、偏光 度、単体透過率、直交配置と平行配置のときの分光透過 率を示す図。

【図7】本発明に用いたカラー偏光板の偏光度の波長依存性と、一般に知られた青系、赤系、紫系のカラー偏光板の偏光度の波長依存性とを示す図。

【符号の説明】

- 1、2 偏光板
- 3 液晶層
- 4 位相差板
- 5、6 基板
- 7、8 透明電極
- 9、10 絶縁膜
- 11、12 配向膜
- 13 シール材
- 15 バックライト
- 16 液晶層の上側の液晶分子の配向方向
- 17 液晶層の下側の液晶分子の配向方向
- 18 上側の偏光板の吸収軸方向

19 下側の偏光板の吸収軸方向

20 位相差板の延伸軸方向

【図1】

【図2】

【図3】

【図4】

【図5】

フロントページの続き

(72)発明者 小嶋 誠司 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内