TERS TUREY

Bir I araligindaki her x iqin F'(x) = f(x) ise I araligindaki

F(x) fonksiyonuna f(x) in ters türevi denir. * Eger F, I araliginda f fonksiyonunun bir ters türevi ise fin

I "bzerindeki en genel ters türevi

F(x)+c (c: keyfi bir sabit)

dir.

Bellistz integral

f(x) in tim ters türevlerinin kimesine "f(x) in x'e gibre belirsiz integrali" denir.

(t(x) qx

ile gösterilir.

integral Tablosu

1)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
 $(n \neq -1)$, $\int k dx = kx + c$ $(k \mid b \mid r \mid say_1)$

2) (
$$coskx dx = \frac{sinkx}{k} + c$$

3) (
$$Sinkx dx = -\frac{Coskx}{k} + c$$

4)
$$\int Sec^2kx dx = \int (1+tan^2kx) dx = \int \frac{1}{cos^2kx} dx = \frac{tankx}{k} + c$$

5)
$$\int \operatorname{Cosec}^2 kx \, dx = \int (1+\cot^2 kx) dx = \int \frac{1}{\operatorname{Sin}^2 kx} \, dx = -\frac{\cot kx}{k} + c$$

6)
$$\int \frac{dx}{x} = \ln|x| + c$$

7)
$$\int e^{kx} dx = \frac{e^{kx}}{k} + c$$

8)
$$\int a^x dx = \frac{a^x}{\ln a} + c$$

11)
$$\int Secx. tanx dx = Secx + C$$

12) (
$$cosec x \cdot co + x dx = -cosec x + c$$

13)
$$\int \frac{dx}{1+x^2} = \arctan x + c$$

$$\int \frac{dx}{a^2+x^2} = \frac{1}{a} \arctan \frac{x}{a} + c$$

14)
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + c$$

$$\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + c$$

15)
$$\left(\frac{-dx}{1+x^2} = -\operatorname{arc} \cot x + c\right)$$
, $\left(\frac{-dx}{\sqrt{1-x^2}} = -\operatorname{arc} \cos x + c\right)$

~ BELIRLI INTEGRAL_

Riemann Toplami;

y=f(x) sürekli ve negatif olmayan bir fonksiyon olmak üzere, f in grafigi altında, x-ekseninin üstünde, x=a ve x=b doğrulari arasında kalan R bölgesinin alanını bulalım.

(aib) araligini keyfi olarak a=xo<xi<x2<---<xn=b noktaları ile keyfi n alt aralığa bölelim.

P={xo,x1,---,xn} kümesine [a,b] nin bir bölüntüsü denir.

[Xi-1, Xi] (15i5n) alt aralıklarına da P bölüntüsünün alt aralıkları denir. Her [xi-1,xi] alt aralığının uzunluğunu Dxi ile göstere $\lim_{t \to \infty} yani \quad \Delta x_i = x_i - x_{i-1}$ olsun. Bu alt aralikların içinden birer

keyfi ci noktası seçelim:

 $f(c_1). Dx_1$ $f(c_2) Dx_2$

Bu durunda her bir dikdörtgenin alanı f(ci). 0x; olur. $S_n = \sum_{i=1}^n f(c_i) \cdot \Delta x_i$ toplamina "f fonksiyonu ve P bölüntüsü igin Genel Riemann Toplami denir.

Alt aralıkların en büyüğü sıfıra gidecek şekilde alt aralıkların sayısını sinirsiz arttirinsak (n->00, Dx; >0 lain limit alirsak):

R'nin Alanı =
$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \frac{\sum_{i=1}^{n} f(c_i) \Delta x_i}{\sum_{i=1}^{n} f(c_i) \Delta x_i}$$
 olur.

* R'nin alanı [a,b] nin nasıl bölündüğü ve c; lerin nasıl seçildigirden bağımsızdır. Dolayısıyla qesitli P bölüntüleri ve c; seçimine bağlı birçok Riemann Toplamı yazılabilir.

* Eger [a,b] yi esit n paraya böler $(\Delta x_i = \frac{b-a}{n})$

ve c: 'yi her araligin;

Sog ug noktası alırsak;

$$S_n = \sum_{i=1}^{n} f(a+i \cdot b-a) \cdot \frac{b-a}{n}$$

b) Sol us noktası alırsak;
$$S_{n} = \sum_{i=1}^{n} f(a + (i-1) \frac{b-a}{n}) \cdot \frac{b-a}{n}$$

$$C_{i}$$

C: DX; Riemann Toplamlarini elde ederiz.

Alt ve Ust Riemann Toplamları

f(x) fonksiyonu ve P bölüntüsü için:

· Alt Riemann Toplami: L(f,P) "st Riemann Toplami: U(f,P)

ile gösterilir.

• li: her [xi-1, xi] araliginin minimumu ui: her [xi-1, xi] araliginin maksimumu

olmak üzere;

$$L(f,P) = \sum_{i=1}^{n} f(l_i) \cdot \Delta x_i = f(l_i) \cdot \Delta x_i + \cdots + f(l_n) \cdot \Delta x_n \Rightarrow \text{Araligin min.}$$

$$noktalari baz alinin$$

$$U(f,P) = \sum_{i=1}^{n} f(u_i) \cdot \Delta x_i = f(u_i) \cdot \Delta x_1 + \dots + f(u_n) \cdot \Delta x_n \Rightarrow \text{Araligin maks.}$$

$$\text{noktalari baz alınır.}$$

ile tanimlanir.

Azalan fonk. igin Alt Riemann toplominda sag ug noktalar baz alinir.

Azalon fonk. için Üst Riemann toplomında sol uç noktalar baz alınır.

0-a b-a
0-a
0-x
0-x
1 X2 X3 --- X₁₋₁ X; X_{n-1} b=x_n

 $x_i = a + i\left(\frac{b-a}{n}\right)$

 $X_{i-1} = Q + (i-1)(b-a)$

Artan fonk. Igin
Alt Riemann
toplaminda sol
ug noktalar
baz alinir.

Artan fonk. iqin Ust Riemann toplamında sag Uq noktalar baz alınır.

Belirli Integral

Eger her seferinde birbirlerine daha yakın ve daha çok sayıda noktaya sahip P bölüntüleri için, L(f,P) ve U(f,P) toplamlarını hesaplarsak limit durumunda bu toplamlar ortak bir degere yakınsarlar ki bu deger, f(x) > 0 ise, y=f(x), x=a ve x=b, y=0ile sınırlı bölgenin alanıdır.

* Her P bölüntüsü için , L(f,P) < I < U(f,P) olacak sekilde birtek I sayısı varsa f integre edilebilirdir. Bu I sayısına "f'in [a,b] araligindaki belirli integrali "denir.

$$\begin{cases}
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} U(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} S_{n} \\
I = \int_{a}^{b} f(x) dx = \lim_{n \to \infty} L(f, P) = \lim_{n \to$$

* f lin [a,b] deki integrali bir sayıdır.

* a: integralin alt sinir! b: Integralin "ust siniri

· dx: x 'in diferensiyeli (Riemann toplamındaki Dx yerine gelir.)

x: integrasyon degiskenidir.

* [a,b] nin tum P bölüntüleri igin $L(f,P) \leq \int f(x) dx \leq U(f,P) dir.$

* Eger [a,b] de $f(x) \leq 0$ ise R nin Alanı = - $\int_{-\infty}^{\infty} f(x) dx dir.$

$$+ \sum_{\alpha} \frac{R_1}{R_2} \frac{R_3}{R_2} \times = \sum_{\alpha} \frac{b}{f(x) dx} = R_1 + R_3 - R_2$$

Genel Riemann Toplami ile Belirli integral:

a) [a,b] esit n parqaya bölünür ve c; ler sag uqtan seqilirse:

b) [aıb] esit n parçaya bölünür ve c; ler sol uçtan seçilirse:

$$\int_{0}^{b} f(x)dx = \lim_{n \to \infty} \left\{ \sum_{i=1}^{n} f\left(a+(i-1)(b-a)\right) \cdot \frac{b-a}{n} \right\}$$
 formulü ile hesaplanır.

Toplam Famülleri:

1)
$$\sum_{i=1}^{n} i = 1+2+3+\cdots+n = \frac{n(n+1)}{2}$$

2)
$$\sum_{i=1}^{n} a = a + a + - - - + a = a \cdot n$$

3)
$$\sum_{i=1}^{n} i^2 = 1 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

4)
$$\sum_{i=1}^{n} i^3 = 1 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Ornek! $f(x) = x^2$ igin [0,2] araliginin bir bölüntüsünü

P=
$$\left\{0, \frac{1}{2}, 1, \frac{3}{2}, 2\right\}$$
 olarak alt ve üst toplamları bulunuz.

$$[0,2] \longrightarrow [0,\frac{1}{2}] \left[\frac{1}{2},1\right] \left[1,\frac{3}{2}\right] \left[\frac{3}{2},2\right] \rightarrow 4 \text{ aralık}$$

$$\Delta x_{k} = \frac{1}{2}$$
 (k=1,2,3,4)

 $y=x^{2} \quad \text{fonkslyon artan } \left[\times k_{-1}, \times k \right] \quad \text{aralign } i \neq i n :$ $U_{k} = \times k \quad \Rightarrow \quad \text{Aralign maksimumu sag uqta}$ $\ell_{k} = \times k_{-1} \quad \Rightarrow \quad \text{Aralign minimumu sol uqta}$

$$\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$$

$$U_1 = \frac{1}{2} \rightarrow f(U_1) = \frac{1}{4}$$

$$U_2 = 1 \rightarrow f(U_2) = 1$$

$$U_3 = \frac{1}{2} \rightarrow f(U_2) = \frac{1}{2}$$

$$L(f,P) = \frac{4}{2!} f(l_i).DX_i = \frac{1}{2}.O + \frac{1}{2}.\frac{1}{4} + \frac{1}{2}.1 + \frac{1}{2}.\frac{9}{4} = \frac{14}{8} \rightarrow AH \text{ Toplam}$$

$$U(f,P) = \sum_{i=1}^{4} f(u_i) \Delta x_i = \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{2} \cdot \frac{9}{4} + \frac{1}{2} \cdot 4 = \frac{30}{8} \rightarrow \text{ ust Toplam}$$

Örneki y=x+1 dogrusu altında, x-ekseninin üstünde, x=0 ve x=2 arasında kalan bölgenin alanını üst Riemann toplamı ile bulunuz.

I.you
[0,2] araligini esit n paragya bölelim. Bu durumda

her bir araligin uzunluğu

$$\Delta x_i = \frac{2}{n}$$
 (i=1,2,--,n) olur.

[Xi-1, Xi] temel araliginin maksimumu fonk. artan olduğu için, sağ uç olan xi noktasında olur.

$$0 \stackrel{?}{\underset{\sim}{\sim}} \frac{4}{\cancel{\wedge}} \stackrel{X_{i-1}}{\underset{\sim}{\sim}} \underset{\times_{i}}{\times_{i}} = \stackrel{1}{\overset{2}{\sim}} \stackrel{2}{\underset{\sim}{\sim}}$$

$$X_{i} = \frac{2i}{n} \rightarrow f(X_{i}) = f(\frac{2i}{n}) = \frac{2i}{n} + 1$$

$$U(f_{1}P) = \sum_{i=1}^{n} f(x_{i}) \cdot \Delta X_{i} = \sum_{i=1}^{n} \frac{2}{n} \left(\frac{2i}{n} + 1\right)$$

$$= \sum_{i=1}^{n} \left[\frac{4}{n^{2}}i + \frac{2}{n}\right] = \frac{4}{n^{2}} \cdot \frac{n(n+1)}{2} + \frac{2}{n} \cdot n$$

$$= 2 \cdot \frac{(n+1)}{n} + 2$$

$$\lim_{n\to\infty} U(f,P) = \lim_{n\to\infty} \sum_{i=1}^{n} f(x_i) \cdot \Delta x_i = \lim_{n\to\infty} 2 \frac{(n+1)}{n} + 2 = 4$$

y=x+1 [0,2] araliginda artandir. Her bir araligin maksimumu sag uqta olur.

[0,2] araligini esit n parqaya böler ve sag uq formülü kullanılırsa:

$$\lim_{n\to\infty} U(f, P) = \lim_{n\to\infty} \left\{ \frac{2-0}{n} \cdot \sum_{i=1}^{n} f(\frac{2i}{n}) \right\} = \lim_{n\to\infty} \frac{2}{n} \sum_{i=1}^{n} (\frac{2i}{n} + 1)$$

$$= \lim_{n\to\infty} \frac{2}{n} \left[\frac{2}{n} \cdot \frac{n(n+1)}{2} + n \right] = 4$$

y=x2 parabolů, y=0, x=0, x=b arasındaki bölgenin alanını [0,b] araligini esit n parçaya bölelim. $\Delta x_i = \frac{b}{n} \quad (i=1,...,n) \text{ olun.}$ Riemann toplamları ile bulunuz.

$$\Delta x_i = \frac{b}{\Omega}$$
 (i=1,--,n) olur

Alani üst Riemonn toplamı ile bulalım.

[x:-1, X:] araligi için maksimum sag uç olan X: de alır.

$$X_i = \frac{b}{n}i \rightarrow f(x_i) = f(\frac{b}{n}i) = \frac{b^2}{n^2}i^2$$

$$U(f,P) = \sum_{i=1}^{n} f(x_i) \Delta x_i = \sum_{i=1}^{n} \frac{b^2}{n^2} \cdot i^2 \cdot \frac{b}{n} = \frac{b^3}{n^3} \cdot \sum_{i=1}^{n} i^2 = \frac{b^3}{n^3} \cdot \frac{n(n+1)(2n+1)}{6}$$

$$\lim_{n\to\infty} U(f, P) = \lim_{n\to\infty} \frac{b^3}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{b^3}{3}$$

Ornek! y=x, y=0, x=1, x=3 arasında kalan bölgenin alanını alt Riemann toplani ile bulunuz.

y=x [1,3] araligini esit n parçaya bölersek her bir araligin uzunluğu $\Delta x_i = \frac{3-1}{n} = \frac{2}{n}$ (1=1,2,...n) her bir araligin uzunluğu $\Delta x_i = \frac{3-1}{n} = \frac{2}{n}$ (1=1,2,...n) y=x artan fonk olduğunden her bir araligin minimumu

sol ugta olur.

[xi-1, xi] I cin li=xi-1 olur.

$$x_{i-1} = 1 + (i-1) \stackrel{?}{=} \Rightarrow f(x_i) = f(1 + (i-1) \stackrel{?}{=}) = 1 + (i-1) \stackrel{?}{=}$$

$$L(f,P) = \sum_{i=1}^{n} f(x_i) \cdot \Delta x_i = \sum_{i=1}^{n} [1 + (i-1) \frac{2}{n}] \cdot \frac{2}{n}$$

$$= \sum_{i=1}^{n} \left[\frac{2}{n} + \frac{4}{n^2} (i-1) \right] = \frac{2}{n} \cdot n + \frac{4}{n^2} \left[\frac{n(n+1)}{2} - n \right]$$

$$=2+\frac{2n^2-2n}{n^2}$$

$$\lim_{n\to\infty} L(f,P) = \lim_{n\to\infty} \left(2 + \frac{2n^2 - 2n}{n^2}\right) = 4$$

Blr Fonksiyonun Ortalama Degeri :

Eger f, [a,b] "vzerinde Integrallenebilir ise fin [a,b] "vzerindeki ortalama degeri:

ort
$$(f) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$
 dir.

Belirli integralin Özellikleri:

$$\begin{array}{ccc} & & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} = - \left\{ \begin{array}{ccc} & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right. (x) \, qx$$

$$2) \int_{a} f(x) dx = 0$$

3)
$$\int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} (f(x) \mp g(x)) dx = \int_{a}^{b} f(x) dx \mp \int_{a}^{b} g(x) dx$$

5) [a,b] de
$$f(x) \ge g(x)$$
 ise $f(x) dx \ge \int_a^b g(x) dx$
[a,b] de $f(x) \ge 0$ ise $f(x) dx \ge 0$

*6) Eger maksf ve minf, fin [a,b] deki maks. ve min. deger-

leri ise,

 $min f.(b-a) \leq \int f(x)dx \leq maks f(b-a) dir. Bu özellige$

maks. - min. esitsizligi denir.

Ornek! Belirli integralin őzelliklerini kullanarak (VI+Cos3x dx integralinin degerinin 12 ye esit veya daha küçük olduğunu e

 $\sqrt{1+\cos^3x}$ in [0,1] araligndaki maksimum degeri $\sqrt{1+1}=\sqrt{2}$ dir. Belirli integralin maks. - min. esitsizligi özelligine göre,

 $\sqrt{1+\cos^3x} \, dx \leq \text{maks.} f (1-0) \Rightarrow \sqrt{1+\cos^3x} \, dx \leq \sqrt{2}$

Belirli Integraller Iqin Ortalama Deger Teoreni:

Eger f fonksiyonu [a,b] aralığında sürekli ise, [a,b] aralığındaki bir c noktasında asağıdaki esitlik doğrudur:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Ornek! Eger f fonksiyonu [a,b] de sürekli ve $\int_{a}^{b} f(x) dx = 0$ ise [a,b] araliginda en az bir kez f(x)=0 olacağını gösterinliz.

[aib] de fin ortalana degeri:

$$ort(f) = \frac{1}{b-a} \cdot \int_{a}^{b} f(x) dx = 0$$

Ortalana Deger Teoremine göre f bu deger f bir $c \in [a_1b]$ araliginda alır. Dolayısıyla en az bir $c \in [a_1b]$ için f(c) = 0 dir.

Integral Hesabin Temel Teoremi

1. Kisim; Eger f [a,b] üzerinde sürekli ise bu durumda $F(x) = \int_{a}^{x} f(t) dt$ de [a,b] üzerinde süreklidir, (a,b) de türevlenebilirdir ve türevl f(x) dir.

$$E_{1}(x) = \frac{qx}{q} \left(\int_{x}^{q} t(t) dt \right) = t(x)$$

Lelbnitz Kuralı (İntegral İsareti Altında Türev)

f strekli we u(x) ille v(x) threulenebilen fonksiyonlar ise, $\frac{d}{dx} \left(\begin{array}{c} v(x) \\ f(t) \end{array} \right) = f(v(x)) \cdot v'(x) - f(u(x)) \cdot u'(x)$

dir.

Ornek!
$$f(x) = \int_{x}^{3} e^{-t^{2}} dt \Rightarrow f'(x) = ?$$

$$f'(x) = (3)! \cdot e^{-3^{2}} - 1 \cdot e^{-x^{2}} = -e^{-x^{2}}$$

Ornek!
$$G(x) = x^2 \begin{cases} 5x \\ e^{-t^2} dt \Rightarrow G'(0) = ? \end{cases}$$

$$G'(x)=2x.$$
 $\int_{0}^{5x} e^{-t^2} dt + x^2. \left[5.e^{-25x^2}\right]$
 $G'(0)=0$

Ornek!
$$f(x) = \int_{-1-t^2}^{-1-t^2} dt = f'(\frac{\pi}{4}) = ?$$

$$f'(x) = \cos x \cdot \frac{1}{1 - \sin^2 x} + \sin x \cdot \frac{1}{1 - \cos^2 x} = \frac{1}{\cos x} + \frac{1}{\sin x}$$

$$f'(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{4}{\sqrt{2}}$$

Ornek!
$$f(x) = \begin{cases} x+3 \\ t.(5-t) \end{cases}$$
 integralini maksimum yapan $x = ?$

$$f'(x) = 1.(x+3)(5-x-3) - 1.x(5-x) = 6-6x = 0 =) x=1$$
 kritik nokta.

$$f''(x) = -6 < 0 \Rightarrow x = 1$$
 make noktadir.

2. KISIM (Hesaplama Teoremi)

Eger f, [a,b] deki her noktada sürekli ve F, flin [a,b] deki herhangi bir ters türevi ise,

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

dir.

Ornek!
$$\int_{1}^{4} \left(\frac{3}{2} \sqrt{x} - \frac{4}{x^{2}}\right) dx = x^{3/2} + \frac{4}{x} \Big|_{1}^{4} = 4^{3/2} + \frac{4}{4} - \left(1^{3/2} + \frac{4}{1}\right) = 8 + 1 - 5 = 4$$

$$\int_{1}^{6} \operatorname{secx. tonx} dx = \operatorname{secx} \Big|_{1}^{6} = \operatorname{Sec} 0 - \operatorname{Sec}(-\frac{\pi}{4}) = 1 - \sqrt{2} \, \eta$$

<u>Örnek!</u> f(x) = Sinx fonksiyonunun x=0 ve $x=2\pi$ arasında,

- a) f(x) in belirli integralini
- b) f(x) in grafigi ile x-ekseni arasında kalan alanı bulunuz.

a)
$$\int_{0}^{2\pi} \sin x \, dx = -\cos x \Big|_{0}^{2\pi} = -(\cos 2\pi - \cos 0) = -(1-1) = 0$$

$$A_{1} = \int_{0}^{\pi} \sin x \, dx = -\cos x \Big|_{0}^{\pi} = -(\cos \pi - \cos 0) = 2$$

$$A_{2} = \int_{0}^{2\pi} \sin x \, dx = -\cos x \Big|_{\pi}^{2\pi} = -(\cos 2\pi - \cos \pi) = -2$$

$$Alan = |A_{1}| + |A_{2}| = 4$$

$$Alan = |A_{1}| + |A_{2}| = 4$$

<u>Ornek!</u> $-1 \le x \le 2$ igin $f(x) = x^3 - x^2 - 2x$ in grafigi ille x-ekseni arasında kalan bölgenin alanını bulunuz.

