Solution for Q.3:

Q.3_(a).py (Part (a) in Question.3):

```
import numpy as np
import matplotlib.pyplot as plt
from pylab import *
s = np.linspace(-4,4,1000)
def FourierTransform(a):
        Ff = (1/(a^{**}2))^*np.exp((-np.pi^*(s^{**}2))/(a^{**}2))
        return Ff
Ff1 = FourierTransform(1)
Ff2 = FourierTransform(1.2)
Ff3 = FourierTransform(1.3)
Ff4 = FourierTransform(2)
Ff5 = FourierTransform(2.3)
plt.plot(s,Ff1,'b',label='In this plot,a = 1')
plt.plot(s,Ff2,'r',label='In this plot,a = 1.2')
plt.plot(s,Ff3,'k',label='In this plot,a = 1.3')
plt.plot(s,Ff4,'m',label='In this plot,a = 2')
plt.plot(s,Ff5,'y',label='In this plot,a = 2.3')
plt.legend()
plt.ylabel('Ff(s)')
plt.xlabel('s')
plt.grid()
plt.show()
```


(Part (b),(c),(d),(e) in Question.3):

(b) We are given that $f(t) = e^{-\alpha r t t}$ In this part, we have to assume a = 1.

Sampling rate R_{time} is picked to construct the sequence $\{f(nR_{time})\}$ for

 $h=-\infty$ to $+\infty$ Let $p(t)=\sum_{n} S(t-nR_{time})$, $f_p(t)=f(t)\cdot p(t) \Rightarrow Contains Set of impulses at integral multiples of <math>R_{time}$.

 $f_p(t) = \sum_n f(nR_{time}) \cdot \delta(t - nR_{time})$

Now if we want to calculate the fourier transform of fp(t) ie Kp(j)

$$F_{p(j,z)} = \int_{-\infty}^{+\infty} f_{p(t)} \cdot e^{-jzt} dt = \int_{-\infty}^{+\infty} f_{n(n(t)} \cdot s(t-n(t)) \cdot e^{-jzt} dt$$

Hence, $F_{p(j-2)} = \sum_{n} f(nR_{time}) \int_{-\infty}^{+\infty} S(t-nR_{time}) \cdot e^{-jSt} dt = \sum_{n} f(nR_{time}) \cdot e^{-jSt} (nR_{time}) \cdot e^{-jSt} dt = \sum_{n} f(nR_{time}) \cdot e^{-jSt} dt = \sum_{n} f(nR_{ti$

Now if we have fit, then in the problem it is given that -

in terms of $s \leftarrow \frac{f(t)}{t^{2}}$, then the first f(t) = f(t) is f(t) = f(t).

Hence, Ffp(s)= fp(t). ej271st dt = \sum_n f(nRtime) - j(2175)nRtime

Basically, $f_{p}(j,\Sigma)$ i.e. the fourier transform of $f_{p}(t)$ (in terms of J_{z}) = $f_{p}(j,\Sigma) = \frac{1}{T_{0}} \sum_{k} F(j(J_{z}-kJ_{z}))$ where $J_{z} = \frac{2\pi}{T_{0}}$ and $T_{0} = \frac{2\pi}{T_{0}}$ period.

If f(1) is bicunded, then: So if Sig > 252y, then we can get the F(js) from Fp(js) by just applying window function in frequency domain

- Is I have so

So we also can get fet) from fp(t),

1 The expression which we get in 6 gives a Continuous function of the frequency s. We evaluate it at s= mRgag for m such that

$$-\frac{B}{2} \le mR_{6eq} \le \frac{B}{2}$$

We have to write an approximate expression for Ff(mRfcg).

$$Ff_{p}(mRpq) = \left(Ff(mRpq)\right)_{approx} = \frac{+\infty}{\int (nR_{time})} - \frac{j2\pi kn}{k_{feq}} (nR_{time})$$

$$\frac{1}{\left(\text{Ff}(mR_{\text{free}})\right)} = \frac{100}{\text{prox}} = \frac{100}{\text{h} = -\infty} = \frac{12\pi (mR_{\text{free}})(nR_{\text{time}})}{\text{h} = -\infty}; \quad \frac{B}{2} \leq mR_{\text{free}} \leq \frac{B}{2}$$

where $f(nRtime) = e^{-a^2\pi (nRtime)^2}$

If we consider f[m] to be of finite length = NIL

(Ff(mRprod)) aprimite n= [284m] f(nRtime) (e) [nRtime) - B < mRprog < B|2]

(Ff(mRprod)) aprimite n= [284m] the observe that B is actually Discrete

time Fourier transform (DTFT) and, In @ it is basically Discrete Fourier transform (DFT).

So In general, if we have act) signal, then its DTFT X(jue) is $\chi(j\omega) = \sum_{n} \chi(j\omega) = \sum_{n} \chi(n) = \chi(n) = \chi(n)$ where $\chi(j\omega) = \sum_{n} \chi(n) = \chi(n)$ given by -

and if x[n] is of finite length and if we are calculating DFTwort N values S.t N > L(Length of Signal), then

DFT equations are-

$$x[n] = \frac{1}{N} \sum_{k=0}^{N+1} x[k] e^{N+1} ; o \leq n < N$$

$$x[k] = \sum_{n=0}^{N+1} x[n] e^{N} ; o \leq k < N$$

 We know that X(jw) = ∑x(b) e

+os

C where we got this expression from Xp(j,x) = fx(t), e dt Here W= SZTs, Here Ts=Rtime

In our case, when we started the part (6), 52 = 2178

The expression which we got in G is $f(nR_{time}) = f(nR_{time}) = f(nR_{time}$

: Fp(s)= = f[r]. ejwn where w= (arrRtime)s

- F(j 2MsRtime) = F(jw) = \sum_{5}f[n].e

Now In Analysis equation of DFT i-e $X[K] = \sum_{n=0}^{N-1} \chi[n] \cdot e^{n}$ $X[K] = \sum_{n=0}^{N-1} \chi[n] \cdot e^{n}$ $X[K] = \sum_{n=0}^{N-1} \chi[n] \cdot e^{n}$

Here $X[m] = X(\frac{j2\pi m}{N})$

Hence for Calculating F[m] i.e $F(j \frac{2\pi m}{N})$, $w = \frac{2\pi m}{N}$

 $\therefore (2\pi) Rhme S = \frac{2\pi m}{N}$ Hence $S = \frac{M}{NRtime}$

Hence $F(\frac{2\pi m}{N}) = \sum_{n} f(n) \cdot e^{j(2\pi R_{time})} \frac{m}{NR_{time}} = Ff(mR_{free})$ got in @ In @ part, we got

(Ff (mRea)) = >f[n].e (nRtime)

Hence by Companison, we say that

Hence
$$N = \frac{1}{RtimeRfrag}$$

Hence $N = \frac{1}{R \text{time} R \text{freq}}$ whose N is actually the number of samples to be stored in time demain as well as in freq. clomain.

-: The number of samples to be stored in time durain is equal to

Rfoq = 1 and Rtime = 1

Also, the number of values computed in the frequency domain is also equal to $N = LB = \frac{1}{Rtime. Rfreq}$.

Now the number of samples considered for getting of back from apt.

where repting a try pting is the are dividing the freq domain analysis

where repting a try pting is the are dividing the freq domain analysis

(xp(j)) (yw) P(jw) as (xp(jw) - 2x(j 211K), S(w - 211K))

N is the so-of-samples

(xp(jw) P(jw) as (xp(jw) - 2x(j 211K), S(w - 211K))

Taken in 211 Con 2116

is equal to
$$\left(\frac{L}{2Rtime} + \frac{L}{2Rtime}\right) = \frac{L}{Rtime} = h$$
,

and the number of values which we get in freq, domain is equal $\frac{B}{2RG\omega} + \frac{B}{2RG\omega} = \frac{B}{RG\omega} = n_2$

: For DFT, n= n2 (must condition)

Scanned with Caturecanould like to pick LRfog= BRtime = 1, (C=1)

Q.3_(f).py (Part (f) in Question.3):

```
from pylab import *
import matplotlib.pyplot as plt
import numpy as np
def Original function(a,Rtime):
       t = np.arange(0,2,Rtime) # time vector
       y = np.exp((-a**2)*np.pi*((t)**2))
       return t,y
def DFT_cal_for_givenFunction(a,Rtime):
       Fs = 1.0/Rtime; # sampling rate
       t,y = Original_function(a,Rtime)
       N = len(y) # length of the signal
       Rfreq = 1/(N*Rtime)
       k = np.arange(N)
       frq = k*Rfreq # two sides frequency range
       frq = frq[range(int(N/2))] # one side frequency range
       Y = 2*np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return t,y,N,frq,Y
t1,y1,N1,frq1,Y1 = DFT_cal_for_givenFunction(1,1/100)
t2,y2,N2,frq2,Y2 = DFT_cal_for_givenFunction(2,1/500)
subplot(2, 2,1)
plt.plot(t1,y1,'b',label='Original signal when a = 1')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
plt.legend()
subplot(2,2,2)
plt.plot(frq1,abs(Y1),'r',label = 'DFT(approximation of Ff(s)) when a = 1 and Rtime = 1/100
s,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y1(freq)|')
plt.xlim(0,20)
plt.grid()
plt.legend()
plt.title('fig. for (f) when a = 1 and Rtime = 1/100 \text{ s}')
```

```
print('In first two plots for signal and its Ff(s) approx, we observe that we have taken a = 1 and
Rtime = 1/100 \text{ s}, hence Rfreq = 1/2 \text{ Hz}, N = 200')
subplot(2,2,3)
plt.plot(t2,y2,'b',label='Original signal when a = 2')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
plt.legend()
subplot(2,2,4)
plt.plot(frq2,abs(Y2),'r',label = 'DFT(approximation of Ff(s)) when a = 2 and Rtime = 1/500
s,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y2(freq)|')
plt.xlim(0,20)
plt.grid()
plt.legend()
plt.title('fig. for (f) when a = 2 and Rtime = 1/500 \text{ s}')
print('In last two plots for signal and its Ff(s) approx, we observe that we have taken a = 2 and
Rtime = 1/500 s ,hence Rfreg = 1/2 Hz,N = 1000')
print('----')
print("Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of
fft becomes very large if we don't do these, just for understanding purpose we are taking this.")
plt.show()
```

In first two plots for signal and its Ff(s) approx,we observe that we have taken a = 1 and Rtime = 1/100 s ,hence Rfreq = 1/2 Hz,N = 200

In last two plots for signal and its Ff(s) approx,we observe that we have taken a = 2 and Rtime = 1/500 s, hence Rfreq = 1/2 Hz,N = 1000

Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.

Q.3_(g).py (Part (g) in Question.3):

```
from pylab import *
import matplotlib.pyplot as plt
import numpy as np
```

```
def Original_function(a,Rtime,Rfreq):
    t = np.arange(0,1/Rfreq,Rtime) # time vector
    y = np.exp((-a**2)*np.pi*((t)**2))
    return t,y

def DFT_cal_for_givenFunction(a,Rtime,Rfreq):
    Fs = 1.0/Rtime; # sampling rate
    t,y = Original_function(a,Rtime,Rfreq)
    N = len(y)# length of the signal
    Rfreq = 1/(N*Rtime)
    k = np.arange(N)
```

```
frq = k*Rfreq # two sides frequency range
       frg = frg[range(int(N/2))] # one side frequency range
       Y = 2*np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return t,y,N,frq,Y
t1,y1,N1,frq1,Y1 = DFT_cal_for_givenFunction(1,1/100,1/3)
t2,y2,N2,frq2,Y2 = DFT_cal_for_givenFunction(2,1/500,1/4)
t3,y3,N3,frq3,Y3 = DFT_cal_for_givenFunction(3,1/1000,1/6.5)
t4,y4,N4,frq4,Y4 = DFT_cal_for_givenFunction(3.5,1/1200,4)
subplot(4, 2,1)
plt.plot(t1,y1,b',label='Original signal when a = 1')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
plt.legend()
subplot(4,2,2)
plt.plot(frq1,abs(Y1),'r',label = 'DFT(approximation of Ff(s)) when a = 1 and Rtime = 1/100
s,Rfreq = 1/3Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y1(freq)|')
plt.xlim(0,40)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 1 and Rtime = 1/100 s,Rfreg = 1/3Hz')
print('In Row1, there are two plots for signal and its Ff(s) approx, we observe that we have taken
a = 1 and Rtime = 1/100 \text{ s}, Rfreq = 1/3 \text{ Hz}, N = 300')
print('----')
subplot(4,2,3)
plt.plot(t2,y2,'b',label='Original signal when a = 2')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
```

```
plt.legend()
subplot(4,2,4)
plt.plot(frq2,abs(Y2),'r',label = 'DFT(approximation of Ff(s)) when a = 2 and Rtime = 1/500 s,
Rfreg = 1/4 Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y2(freq)|')
plt.xlim(0,40)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 2 and Rtime = 1/500 s,Rfreq = 1/4 Hz')
print('In Row2,there are two plots for signal and its Ff(s) approx, we observe that we have taken
a = 2 and Rtime = 1/500 s ,Rfreq = 1/4 Hz,N = 2000')
print('----')
subplot(4,2,5)
plt.plot(t3,y3,'b',label='Original signal when a = 3')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
plt.legend()
subplot(4,2,6)
plt.plot(frq3,abs(Y3),'r',label = 'DFT(approximation of Ff(s)) when a = 3 and Rtime = 1/1000 s,
Rfreq = 1/6.5 Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y3(freq)|')
plt.xlim(0,40)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 3 and Rtime = 1/1000 s,Rfreq = 8 Hz ')
print('In Row3,there are two plots for signal and its Ff(s) approx,we observe that we have taken
a = 3 and Rtime = 1/1000 s ,Rfreq = 1/6.5 Hz,N = 650')
print('-----')
subplot(4,2,7)
plt.plot(t4,y4,b',label='Original signal when a = 3.5')
plt.xlabel('Time')
```

```
plt.ylabel('Amplitude')
plt.xlim(0,0.25)
plt.grid()
plt.legend()
subplot(4,2,8)
plt.plot(frq4,abs(Y4),'r',label = 'DFT(approximation of Ff(s)) when a = 3.5 and Rtime = 1/1200 s,
Rfreg = 4 Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y4(freq)|')
plt.xlim(0,40)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 3.5 and Rtime = 1/1200 s,Rfreq = 4 Hz ')
print('In Row4,there are two plots for signal and its Ff(s) approx, we observe that we have taken
a = 3.5 and Rtime = 1/1200 s ,Rfreq = 4 Hz,N = 300')
print('-----')
```

print("Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.") plt.show()

Output in terminal:

In Row1, there are two plots for signal and its Ff(s) approx, we observe that we have taken a = 1 and Rtime = 1/100 s, Rfreq = 1/3 Hz, N = 300

In Row2, there are two plots for signal and its Ff(s) approx, we observe that we have taken a = 2 and Rtime = 1/500 s, Rfreq = 1/4 Hz, N = 2000

In Row3,there are two plots for signal and its Ff(s) approx,we observe that we have taken a = 3 and Rtime = 1/1000 s ,Rfreq = 1/6.5 Hz,N = 650

In Row4,there are two plots for signal and its Ff(s) approx,we observe that we have taken a = 3.5 and Rtime = 1/1200 s, Rfreq = 4 Hz, N = 300

Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.

Figure Obtained after running the code:

Q.3_(h)(w2).py (Part (h) taking w2(t) as window function in Question.3):

```
from pylab import *
import matplotlib.pyplot as plt
import numpy as np

def Original_function(a,Rtime,Rfreq):
    L = 1/Rtime
    t = np.arange(-L/2,L/2,Rtime) # time vector
    y = (np.exp((-a**2)*np.pi*((t)**2)))*(1-((2*np.abs(t))/L))
    return t,y,L

def DFT_cal_for_givenFunction(a,Rtime,Rfreq):
```

```
Fs = 1.0/Rtime; # sampling rate
       t,y,L = Original function(a,Rtime,Rfreg)
       N = len(y)# length of the signal
       Rfreq = 1/(N*Rtime)
       k = np.arange(N)
       frq = k*Rfreq # two sides frequency range
       frq = frq[range(int(N/2))] # one side frequency range
       Y = 2*np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return L,t,y,N,frq,Y
L1,t1,y1,N1,frq1,Y1 = DFT_cal_for_givenFunction(1,1/100,1/3)
L2,t2,y2,N2,frq2,Y2 = DFT_cal_for_givenFunction(2,1/500,1/4)
L3,t3,y3,N3,frg3,Y3 = DFT cal for givenFunction(3,1/1000,1/6.5)
L4,t4,y4,N4,frq4,Y4 = DFT_cal_for_givenFunction(3.5,1/1200,4)
subplot(4, 2,1)
plt.plot(t1,y1,b',label='function1 when a = 1')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-2,2)
plt.grid()
plt.legend(loc = 'best')
subplot(4,2,2)
plt.plot(frq1,abs(Y1),'r',label = 'DFT(approximation of Ff(s)) when a = 1 and Rtime = 1/100
s,Rfreq = 1/3Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y1(freq)|')
plt.xlim(0,10)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 1 and Rtime = 1/100 s,Rfreq = 1/3Hz')
print('In Row1, there are two plots for signal and its Ff(s) approx, we observe that we have taken
a = 1 and Rtime = 1/100 \text{ s}, Rfreq = 1/3 \text{ Hz}, N = 300')
print('----')
```

```
plt.plot(t2,y2,b',label='function1 when a=2')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-2,2)
plt.grid()
plt.legend(loc = 'best')
subplot(4,2,4)
plt.plot(frq2,abs(Y2),'r',label = 'DFT(approximation of Ff(s)) when a = 2 and Rtime = 1/500 s,
Rfreq = 1/4 Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y2(freq)|')
plt.xlim(0,10)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 2 and Rtime = 1/500 s,Rfreq = 1/4 Hz')
print('In Row2,there are two plots for signal and its Ff(s) approx,we observe that we have taken
a = 2 and Rtime = 1/500 s ,Rfreq = 1/4 Hz,N = 2000')
print('----')
subplot(4,2,5)
plt.plot(t3,y3,'b',label='function1 when a = 3')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-2,2)
plt.grid()
plt.legend(loc = 'best')
subplot(4,2,6)
plt.plot(frq3,abs(Y3),'r',label = 'DFT(approximation of Ff(s)) when a = 3 and Rtime = 1/1000 s,
Rfreq = 1/6.5 Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y3(freq)|')
plt.xlim(0,10)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 3 and Rtime = 1/1000 s,Rfreq = 8 Hz ')
print('In Row3,there are two plots for signal and its Ff(s) approx,we observe that we have taken
a = 3 and Rtime = 1/1000 s ,Rfreq = 1/6.5 Hz,N = 650')
print('----')
```

```
subplot(4,2,7)
plt.plot(t4,y4,b',label='function1 when a = 3.5')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-0.25,0.25)
plt.grid()
plt.legend(loc = 'best')
subplot(4,2,8)
plt.plot(frq4,abs(Y4),'r',label = 'DFT(approximation of Ff(s)) when a = 3.5 and Rtime = 1/1200 s,
Rfreq = 4 Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y4(freq)|')
plt.xlim(0,10)
plt.grid()
plt.legend(loc = 'best')
#plt.title('fig. for (f) when a = 3.5 and Rtime = 1/1200 s,Rfreq = 4 Hz ')
print('In Row4,there are two plots for signal and its Ff(s) approx, we observe that we have taken
a = 3.5 and Rtime = 1/1200 s ,Rfreq = 4 Hz,N = 300')
print('----')
print("Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of
fft becomes very large if we don't do these, just for understanding purpose we are taking this.")
print('-----')
print('Also we can say that we are considering our calculations for t ranging from -L/2 to L/2,
and for t>L/2 or t<-L/2, the value of the function f(t)w2(t) = 0'
plt.show()
```

In Row1, there are two plots for signal and its Ff(s) approx, we observe that we have taken a = 1 and Rtime = 1/100 s ,Rfreq = 1/3 Hz,N = 300

In Row2, there are two plots for signal and its Ff(s) approx, we observe that we have taken a = 2 and Rtime = 1/500 s ,Rfreq = 1/4 Hz,N = 2000

In Row3, there are two plots for signal and its Ff(s) approx, we observe that we have taken a = 3 and Rtime = 1/1000 s ,Rfreq = 1/6.5 Hz,N = 650

In Row4,there are two plots for signal and its Ff(s) approx,we observe that we have taken a = 3.5 and Rtime = 1/1200 s, Rfreq = 4 Hz, N = 300

Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.

Also we can say that we are considering our calculations for t ranging from -L/2 to L/2, and for t>L/2 or t<-L/2, the value of the function f(t)w2(t) = 0

Figure Obtained after running the code:

Q.3_(h)(w3).py (Part (h) taking w3(t) as window function in Question.3):

from pylab import *
import matplotlib.pyplot as plt
import numpy as np

```
def Original function(a,Rtime,Rfreg):
       L = 1/Rtime
       t = np.arange(-L/2,L/2,Rtime) # time vector
       y = (np.exp((-a^{**}2)^*np.pi^*((t)^{**}2)))^*((np.sin(2^*np.pi^*t/L))^{**}2)
       return t,y,L
def DFT_cal_for_givenFunction(a,Rtime,Rfreq):
       Fs = 1.0/Rtime; # sampling rate
       t,y,L = Original function(a,Rtime,Rfreg)
       N = len(y)# length of the signal
       Rfreq = 1/(N*Rtime)
       k = np.arange(N)
       frq = k*Rfreq # two sides frequency range
       frq = frq[range(int(N/2))] # one side frequency range
       Y = 2*np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return L,t,y,N,frq,Y
L1,t1,y1,N1,frq1,Y1 = DFT_cal_for_givenFunction(1,1/100,1/3)
L2,t2,y2,N2,frq2,Y2 = DFT_cal_for_givenFunction(2,1/500,1/4)
L3,t3,y3,N3,frq3,Y3 = DFT_cal_for_givenFunction(3,1/1000,1/6.5)
L4,t4,y4,N4,frq4,Y4 = DFT_cal_for_givenFunction(3.5,1/1200,4)
subplot(4, 2,1)
plt.plot(t1,y1,'b',label='Original signal when a = 1')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-2,2)
plt.grid()
plt.legend(loc = 'best')
subplot(4,2,2)
plt.plot(frq1,abs(Y1),'r',label = 'DFT(approximation of Ff(s)) when a = 1 and Rtime = 1/100
s,Rfreq = 1/3Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y1(freq)|')
plt.xlim(0,10)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 1 and Rtime = 1/100 s,Rfreq = 1/3Hz')
```

```
print('In Row1,there are two plots for signal and its Ff(s) approx, we observe that we have taken
a = 1 and Rtime = 1/100 \text{ s}, Rfreq = 1/3 \text{ Hz}, N = 300')
print('----')
subplot(4,2,3)
plt.plot(t2,y2,'b',label='Original signal when a = 2')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-2,2)
plt.grid()
plt.legend(loc = 'best')
subplot(4,2,4)
plt.plot(frq2,abs(Y2),'r',label = 'DFT(approximation of Ff(s)) when a = 2 and Rtime = 1/500 s,
Rfreq = 1/4 Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y2(freq)|')
plt.xlim(0,10)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 2 and Rtime = 1/500 s,Rfreq = 1/4 Hz')
print('In Row2, there are two plots for signal and its Ff(s) approx, we observe that we have taken
a = 2 and Rtime = 1/500 s ,Rfreq = 1/4 Hz,N = 2000')
print('----')
subplot(4,2,5)
plt.plot(t3,y3,'b',label='Original signal when a = 3')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-2,2)
plt.grid()
plt.legend(loc = 'best')
subplot(4,2,6)
plt.plot(frq3,abs(Y3),'r',label = 'DFT(approximation of Ff(s)) when a = 3 and Rtime = 1/1000 s,
Rfreq = 1/6.5 \text{ Hz,f} > 0 \text{Hz'}) # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y3(freq)|')
plt.xlim(0,10)
```

```
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 3 and Rtime = 1/1000 s,Rfreq = 8 Hz ')
print('In Row3,there are two plots for signal and its Ff(s) approx, we observe that we have taken
a = 3 and Rtime = 1/1000 s ,Rfreq = 1/6.5 Hz,N = 650')
print('----')
subplot(4,2,7)
plt.plot(t4,y4,b',label='Original signal when a = 3.5')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-0.25,0.25)
plt.grid()
plt.legend(loc = 'best')
subplot(4,2,8)
plt.plot(frq4,abs(Y4),'r',label = 'DFT(approximation of Ff(s)) when a = 3.5 and Rtime = 1/1200 s,
Rfreg = 4 Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y4(freq)|')
plt.xlim(0,10)
plt.grid()
plt.legend(loc = 'best')
#plt.title('fig. for (f) when a = 3.5 and Rtime = 1/1200 s,Rfreq = 4 Hz ')
print('In Row4,there are two plots for signal and its Ff(s) approx, we observe that we have taken
a = 3.5 and Rtime = 1/1200 s ,Rfreq = 4 Hz,N = 300')
print('----')
print("Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of
fft becomes very large if we don't do these, just for understanding purpose we are taking this.")
print('-----')
print('Also we can say that we are considering our calculations for t ranging from -L/2 to L/2,
and for t>L/2 or t<-L/2, the value of the function f(t)w3(t) = 0'
plt.show()
```

In Row1,there are two plots for signal and its Ff(s) approx,we observe that we have taken a = 1 and Rtime = 1/100 s, Rfreq = 1/3 Hz, N = 300

In Row2,there are two plots for signal and its Ff(s) approx,we observe that we have taken a = 2 and Rtime = 1/500 s ,Rfreq = 1/4 Hz,N = 2000

In Row3,there are two plots for signal and its Ff(s) approx,we observe that we have taken a = 3 and Rtime = 1/1000 s ,Rfreq = 1/6.5 Hz,N = 650

In Row4,there are two plots for signal and its Ff(s) approx,we observe that we have taken a = 3.5 and Rtime = 1/1200 s, Rfreq = 4 Hz, N = 300

Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.

Also we can say that we are considering our calculations for t ranging from -L/2 to L/2, and for t>L/2 or t<-L/2, the value of the function f(t)w3(t)=0

Q.3 (h) compare.py (Part (h) comparing wrt window functions in Question.3):

```
from pylab import *
import matplotlib.pyplot as plt
import numpy as np
def function1(a,Rtime,Rfreq):
       L = 1/Rtime
       t = np.arange(-L/2,L/2,Rtime) # time vector
       y = (np.exp((-a^{**}2)^*np.pi^*((t)^{**}2)))^*(1-((2^*np.abs(t))/L))
       return t,y,L
def function2(a,Rtime,Rfreq):
       L = 1/Rtime
       t = np.arange(-L/2,L/2,Rtime) # time vector
       y = (np.exp((-a**2)*np.pi*((t)**2)))*(np.sin(2*np.pi*t/L))**2
       return t,y,L
def DFT cal for givenFunction1(a,Rtime,Rfreg):
       Fs = 1.0/Rtime; # sampling rate
       t,y,L = function1(a,Rtime,Rfreq)
       N = len(y)# length of the signal
       Rfreq = 1/(N*Rtime)
       k = np.arange(N)
       frq = k*Rfreq # two sides frequency range
       frq = frq[range(int(N/2))] # one side frequency range
       Y = np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return L,t,y,N,frq,Y
def DFT cal for givenFunction2(a,Rtime,Rfreg):
       Fs = 1.0/Rtime; # sampling rate
       t,y,L = function2(a,Rtime,Rfreq)
       N = len(y)# length of the signal
       Rfreq = 1/(N*Rtime)
       k = np.arange(N)
       frq = k*Rfreq # two sides frequency range
       frq = frq[range(int(N/2))] # one side frequency range
       Y = 2*np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return L,t,y,N,frq,Y
L1,t1,y1,N1,frq1,Y1 = DFT_cal_for_givenFunction1(1,1/100,1/3)
```

```
L2,t2,y2,N2,frq2,Y2 = DFT_cal_for_givenFunction2(1,1/100,1/3)
subplot(2, 2,1)
plt.plot(t1,y1,'b',label='function1 in reference to w2(t) when a = 1')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-2,2)
plt.grid()
plt.legend(loc = 'best')
subplot(2,2,2)
plt.plot(frq1,abs(Y1),'r',label = 'DFT(approximation of Ff1(s)) when a = 1 and Rtime = 1/100
s,Rfreq = 1/3Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y1(freq)|')
plt.xlim(0,8)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 1 and Rtime = 1/100 s,Rfreg = 1/3Hz')
print('In Row1,there are two plots for function1 and its Ff1(s) approx, we observe that we have
taken a = 1 and Rtime = 1/100 \text{ s}, Rfreq = 1/3 \text{ Hz}, N = 300')
print('----')
subplot(2, 2,3)
plt.plot(t2,y2,'b',label='function2 in reference to w3(t) when a = 1')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-2,2)
plt.grid()
plt.legend(loc = 'best')
subplot(2,2,4)
plt.plot(frq2,abs(Y2),'r',label = 'DFT(approximation of Ff2(s)) when a = 1 and Rtime = 1/100
s,Rfreq = 1/3Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y2(freq)|')
plt.xlim(0,8)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 1 and Rtime = 1/100 s,Rfreq = 1/3Hz ')
print('In Row2,there are two plots for function2 and its F2(s) approx, we observe that we have
taken a = 1 and Rtime = 1/100 \text{ s}, Rfreq = 1/3 \text{ Hz}, N = 300')
print('----')
```

print("Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value	of
fft becomes very large if we don't do these, just for understanding purpose we are taking this.	.")
print('')	
print('Also we can say that we are considering our calculations for t ranging from -L/2 to L/2,	,
and for t>L/2 or t<-L/2,the value of the function f(t)w2(t) = 0')	
plt.show()	

In Row1,there are two plots for function1 and its Ff1(s) approx,we observe that we have taken a = 1 and Rtime = 1/100 s, Rfreq = 1/3 Hz, N = 300

In Row2,there are two plots for function2 and its F2(s) approx,we observe that we have taken a = 1 and Rtime = 1/100 s, Rfreq = 1/3 Hz, N = 300

Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.

Also we can say that we are considering our calculations for t ranging from -L/2 to L/2, and for t>L/2 or t<-L/2, the value of the function f(t)w2(t) and f(t)w3(t) = 0

Q.3_(i)(f).py (Part (i) solving for (f) part in Question.3):

```
from pylab import *
import matplotlib.pyplot as plt
import numpy as np

def Original_function(Rtime):
    t = np.arange(0,2,Rtime) # time vector
    y = np.cos(2*np.pi*t) + 0.5*np.sin(4*np.pi*t)
    return t,y

def DFT_cal_for_givenFunction(Rtime):
    Fs = 1.0/Rtime; # sampling rate
    t,y = Original_function(Rtime)
    N = len(y) # length of the signal
    Rfreq = 1/(N*Rtime)
    k = np.arange(N)
    frq = k*Rfreq # two sides frequency range
    frq = frq[range(int(N/2))] # one side frequency range
```

```
Y = 2*np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return t,y,N,frq,Y
t1,y1,N1,frq1,Y1 = DFT cal for givenFunction(1/10)
t2,y2,N2,frq2,Y2 = DFT_cal_for_givenFunction(1/500)
subplot(2, 2,1)
plt.plot(t1,y1,'b',label='g(t) when Rtime = 1/10 \text{ s'})
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,1.75)
plt.grid()
plt.legend()
subplot(2,2,2)
plt.plot(frq1,abs(Y1),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/50 s,f>0Hz') #
plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y1(freq)|')
plt.xlim(0,2.6)
plt.grid()
plt.legend()
plt.title('fig. for (f) when Rtime = 1/10 \text{ s}')
print('In first two plots for signal and its Ff(s) approx, we observe that we have taken Rtime =
1/10 \text{ s}, hence Rfreq = 1/2 \text{ Hz}, N = 20')
subplot(2,2,3)
plt.plot(t2,y2,'b',label='g(t) when time = 1/500 \text{ s'})
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,1.75)
plt.grid()
plt.legend()
subplot(2,2,4)
plt.plot(frq2,abs(Y2),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/500 s,f>0Hz') #
plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y2(freq)|')
plt.xlim(0,20)
plt.grid()
plt.legend()
```

```
plt.title('fig. for (f) when Rtime = 1/500 s ')
print('In last two plots for signal and its Ff(s) approx,we observe that we have taken Rtime =
1/500 s ,hence Rfreq = 1/2 Hz,N = 1000')
print('-----')
print("Here we are normalzing fft calculation to 2*(1/N) times the fft value,because the value of
```

print("Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.") plt.show()

Output in terminal:

In first two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = 1/10 s, hence Rfreq = 1/2 Hz,N = 20

In last two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = 1/500 s, hence Rfreq = 1/2 Hz,N = 1000

Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.

Q.3_(i)(g).py (Part (i) solving for (g) part in Question.3):

```
from pylab import *
import matplotlib.pyplot as plt
import numpy as np
def Original function(Rtime,Rfreg):
       t = np.arange(0,1/Rfreq,Rtime) # time vector
       y = np.cos(2*np.pi*t) + 0.5*np.sin(4*np.pi*t)
       return t,y
def DFT_cal_for_givenFunction(Rtime,Rfreq):
       Fs = 1.0/Rtime; # sampling rate
       t,y = Original_function(Rtime,Rfreq)
       N = len(y)# length of the signal
       Rfreq = 1/(N*Rtime)
       k = np.arange(N)
       frq = k*Rfreq # two sides frequency range
       frg = frg[range(int(N/2))] # one side frequency range
       Y = 2*np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return t,y,N,frq,Y
t1,y1,N1,frq1,Y1 = DFT_cal_for_givenFunction(1/100,1/3)
t2,y2,N2,frg2,Y2 = DFT cal for givenFunction(1/20,1/2.4)
t3,y3,N3,frq3,Y3 = DFT_cal_for_givenFunction(1/1000,1/9.989)
t4,y4,N4,frq4,Y4 = DFT_cal_for_givenFunction(1/1200,1.5)
subplot(4, 2,1)
plt.plot(t1,y1,'b',label='Original signal(g(t)) when Rtime = 1/100 s and Rfreq = 1/3 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
plt.legend()
subplot(4,2,2)
plt.plot(frq1,abs(Y1),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/100 s,Rfreq =
1/3Hz,f>0Hz') # plotting the spectrum
```

```
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y1(freq)|')
plt.xlim(0,40)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 1 and Rtime = 1/100 s,Rfreq = 1/3Hz ')
print('In Row1,there are two plots for signal and its Ff(s) approx, we observe that we have taken
Rtime = 1/100 \text{ s}, Rfreq = 1/3 \text{ Hz}, N = 300')
print('----')
subplot(4,2,3)
plt.plot(t2,y2,'b',label='Original signal(g(t)) when Rtime = 1/20 s and Rfreq = 1/2.4 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
plt.legend()
subplot(4,2,4)
plt.plot(frq2,abs(Y2),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/20 s, Rfreq = 1/2.4
Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y2(freq)|')
plt.xlim(0,8)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 2 and Rtime = 1/500 s,Rfreq = 1/4 Hz ')
print('In Row2,there are two plots for signal and its Ff(s) approx,we observe that we have taken
Rtime = 1/20 s ,Rfreq = 1/2.4 Hz,N = 48')
print('-----')
subplot(4,2,5)
plt.plot(t3,y3,'b',label='Original signal(g(t)) when Rtime = 1/1000 s and Rfreq = 1/9.989 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
plt.legend()
```

```
subplot(4,2,6)
plt.plot(frq3,abs(Y3),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/1000 s, Rfreq =
1/9.989 Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y3(freq)|')
plt.xlim(0,40)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 3 and Rtime = 1/1000 s,Rfreq = 8 Hz ')
print('In Row3,there are two plots for signal and its Ff(s) approx, we observe that we have taken
Rtime = 1/1000 \text{ s}, Rfreq = 1/9.989 \text{ Hz}, N = 9898')
print('----')
subplot(4,2,7)
plt.plot(t4,y4,'b',label='Original signal(g(t)) when Rtime = 1/1200 s and Rfreq = 1.5 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,0.6)
plt.grid()
plt.legend()
subplot(4,2,8)
plt.plot(frq4,abs(Y4),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/1200 s, Rfreq = 1.5
Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y4(freq)|')
plt.xlim(0,40)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 3.5 and Rtime = 1/1200 s,Rfreq = 4 Hz ')
print('In Row4,there are two plots for signal and its Ff(s) approx, we observe that we have taken
Rtime = 1/1200 \text{ s}, Rfreq = 1.5 \text{ Hz}, N = 1800')
print('-----')
print("Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of
fft becomes very large if we don't do these, just for understanding purpose we are taking this.")
plt.show()
```

In Row1,there are two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = 1/100 s, Rfreq = 1/3 Hz, N = 300

In Row2,there are two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = 1/20 s,Rfreq = 1/2.4 Hz,N = 48

.....

In Row3,there are two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = 1/1000 s, Rfreq = 1/9.989 Hz, N = 9898 ms

In Row4,there are two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = $1/1200 \, s$, Rfreq = $1.5 \, Hz$, N = $1800 \, s$

Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.


```
from pylab import *
import matplotlib.pyplot as plt
import numpy as np
def Original_function(Rtime,Rfreq):
       L = 1/Rtime
       t = np.arange(-L/2,L/2,Rtime) # time vector
       y = (np.cos(2*np.pi*t) + 0.5*np.sin(4*np.pi*t))*(1-((2*np.abs(t))/L))
       return t,y
def DFT_cal_for_givenFunction(Rtime,Rfreq):
       Fs = 1.0/Rtime; # sampling rate
       t,y = Original function(Rtime,Rfreg)
       N = len(y)# length of the signal
       Rfreq = 1/(N*Rtime)
       k = np.arange(N)
       frq = k*Rfreq # two sides frequency range
       frg = frg[range(int(N/2))] # one side frequency range
       Y = 2*np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return t,y,N,frq,Y
t1,y1,N1,frq1,Y1 = DFT_cal_for_givenFunction(1/100,1/3)
t2,y2,N2,frg2,Y2 = DFT cal for givenFunction(1/20,1/2.4)
t3,y3,N3,frq3,Y3 = DFT_cal_for_givenFunction(1/1000,1/9.989)
t4,y4,N4,frq4,Y4 = DFT_cal_for_givenFunction(1/1200,1.5)
subplot(4, 2,1)
plt.plot(t1,y1,'b',label='g(t)w2(t) when Rtime = 1/100 s and Rfreq = 1/3 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
plt.legend()
subplot(4,2,2)
plt.plot(frq1,abs(Y1),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/100 s,Rfreq =
1/3Hz,f>0Hz') # plotting the spectrum
```

```
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y1(freq)|')
plt.xlim(0,2.5)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 1 and Rtime = 1/100 s,Rfreq = 1/3Hz ')
print('In Row1, there are two plots for signal and its Ff(s) approx, we observe that we have taken
Rtime = 1/100 \text{ s}, Rfreq = 1/3 \text{ Hz}, N = 300')
print('----')
subplot(4,2,3)
plt.plot(t2,y2,'b',label='g(t)w2(t) when Rtime = 1/20 s and Rfreq = 1/2.4 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
plt.legend()
subplot(4,2,4)
plt.plot(frq2,abs(Y2),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/20 s, Rfreq = 1/2.4
Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y2(freq)|')
plt.xlim(0,2.5)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 2 and Rtime = 1/500 s,Rfreq = 1/4 Hz ')
print('In Row2,there are two plots for signal and its Ff(s) approx,we observe that we have taken
Rtime = 1/20 s ,Rfreq = 1/2.4 Hz,N = 48')
print('-----')
subplot(4,2,5)
plt.plot(t3,y3,'b',label='g(t)w2(t) when Rtime = 1/1000 s and Rfreq = 1/9.989 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,2)
plt.grid()
plt.legend()
```

```
subplot(4,2,6)
plt.plot(frq3,abs(Y3),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/1000 s, Rfreq =
1/9.989 Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y3(freq)|')
plt.xlim(0,2.5)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 3 and Rtime = 1/1000 s,Rfreq = 8 Hz ')
print('In Row3,there are two plots for signal and its Ff(s) approx, we observe that we have taken
Rtime = 1/1000 \text{ s}, Rfreq = 1/9.989 \text{ Hz}, N = 9898')
print('----')
subplot(4,2,7)
plt.plot(t4,y4,'b',label='g(t)w2(t) when Rtime = 1/1200 s and Rfreq = 1.5 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(0,0.6)
plt.grid()
plt.legend()
subplot(4,2,8)
plt.plot(frq4,abs(Y4),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/1200 s, Rfreq = 1.5
Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y4(freq)|')
plt.xlim(0,2.5)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 3.5 and Rtime = 1/1200 s,Rfreq = 4 Hz ')
print('In Row4,there are two plots for signal and its Ff(s) approx, we observe that we have taken
Rtime = 1/1200 \text{ s}, Rfreq = 1.5 \text{ Hz}, N = 1800')
print('----')
print("Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of
fft becomes very large if we don't do these, just for understanding purpose we are taking this.")
print('-----')
print('Also we can say that we are considering our calculations for t ranging from -L/2 to L/2, as
for t>L/2 or t<-L/2, the value of the function g(t)w2(t) = 0, g(t)w3(t) = 0
plt.show()
```

In Row1, there are two plots for signal and its Ff(s) approx, we observe that we have taken Rtime = 1/100 s, Rfreq = 1/3 Hz, N = 300

In Row2, there are two plots for signal and its Ff(s) approx, we observe that we have taken Rtime = 1/20 s, Rfreq = 1/2.4 Hz, N = 48

In Row3,there are two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = 1/1000 s, Rfreq = 1/9.989 Hz, N = 9898 ms

In Row4,there are two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = $1/1200 \, s$, Rfreq = $1.5 \, Hz$, N = $1800 \, s$

Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.

Also we can say that we are considering our calculations for t ranging from -L/2 to L/2, as for t>L/2 or t<-L/2, the value of the function g(t)w2(t) = 0, g(t)w3(t) = 0


```
from pylab import *
import matplotlib.pyplot as plt
import numpy as np
def Original_function(Rtime,Rfreq):
       L = 1/Rtime
       t = np.arange(-L/2,L/2,Rtime) # time vector
       y = (np.cos(2*np.pi*t) + 0.5*np.sin(4*np.pi*t))*((np.sin(2*np.pi*t/L))**2)
       return t,y
def DFT_cal_for_givenFunction(Rtime,Rfreq):
       Fs = 1.0/Rtime; # sampling rate
       t,y = Original function(Rtime,Rfreg)
       N = len(y)# length of the signal
       Rfreq = 1/(N*Rtime)
       k = np.arange(N)
       frq = k*Rfreq # two sides frequency range
       frg = frg[range(int(N/2))] # one side frequency range
       Y = 2*np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return t,y,N,frq,Y
t1,y1,N1,frq1,Y1 = DFT_cal_for_givenFunction(1/100,1/3)
t2,y2,N2,frg2,Y2 = DFT cal for givenFunction(1/20,1/2.4)
t3,y3,N3,frq3,Y3 = DFT_cal_for_givenFunction(1/1000,1/9.989)
t4,y4,N4,frq4,Y4 = DFT_cal_for_givenFunction(1/1200,1.5)
subplot(4, 2,1)
plt.plot(t1,y1,'b',label='g(t)w3(t) when Rtime = 1/100 s and Rfreq = 1/3 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.grid()
plt.legend()
subplot(4,2,2)
plt.plot(frq1,abs(Y1),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/100 s,Rfreq =
1/3Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
```

```
plt.ylabel('|Y1(freq)|')
plt.xlim(0,2.5)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 1 and Rtime = 1/100 s,Rfreg = 1/3Hz')
print('In Row1, there are two plots for signal and its Ff(s) approx, we observe that we have taken
Rtime = 1/100 \text{ s}, Rfreq = 1/3 \text{ Hz}, N = 300')
print('-----')
subplot(4,2,3)
plt.plot(t2,y2,'b',label='g(t)w3(t) when Rtime = 1/20 s and Rfreq = 1/2.4 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.grid()
plt.legend()
subplot(4,2,4)
plt.plot(frq2,abs(Y2),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/20 s, Rfreq = 1/2.4
Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y2(freq)|')
plt.xlim(0,2.5)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 2 and Rtime = 1/500 s,Rfreg = 1/4 Hz')
print('In Row2,there are two plots for signal and its Ff(s) approx,we observe that we have taken
Rtime = 1/20 \text{ s}, Rfreq = 1/2.4 \text{ Hz}, N = 48')
print('-----')
subplot(4,2,5)
plt.plot(t3,y3,'b',label='g(t)w3(t) when Rtime = 1/1000 s and Rfreq = 1/9.989 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.grid()
plt.legend()
subplot(4,2,6)
plt.plot(frq3,abs(Y3),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/1000 s, Rfreq =
1/9.989 Hz,f>0Hz') # plotting the spectrum
```

```
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y3(freq)|')
plt.xlim(0,2.5)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 3 and Rtime = 1/1000 s,Rfreq = 8 Hz ')
print('In Row3,there are two plots for signal and its Ff(s) approx, we observe that we have taken
Rtime = 1/1000 s ,Rfreq = 1/9.989 Hz,N = 9898')
print('----')
subplot(4,2,7)
plt.plot(t4,y4,'b',label='g(t)w3(t) when Rtime = 1/1200 s and Rfreq = 1.5 Hz')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.grid()
plt.legend()
subplot(4,2,8)
plt.plot(frq4,abs(Y4),'r',label = 'DFT(approximation of Ff(s)) when Rtime = 1/1200 s, Rfreq = 1.5
Hz,f>0Hz') # plotting the spectrum
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y4(freq)|')
plt.xlim(0,2.5)
plt.grid()
plt.legend()
\#plt.title('fig. for (f) when a = 3.5 and Rtime = 1/1200 s,Rfreq = 4 Hz ')
print('In Row4,there are two plots for signal and its Ff(s) approx, we observe that we have taken
Rtime = 1/1200 \text{ s}, Rfreq = 1.5 \text{ Hz}, N = 1800')
print('----')
print("Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of
fft becomes very large if we don't do these, just for understanding purpose we are taking this.")
print('----')
print('Also we can say that we are considering our calculations for t ranging from -L/2 to L/2, as
for t>L/2 or t<-L/2, the value of the function g(t)w2(t) = 0, g(t)w3(t) = 0
plt.show()
```

In Row1,there are two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = 1/100 s, Rfreq = 1/3 Hz, N = 300

In Row2, there are two plots for signal and its Ff(s) approx, we observe that we have taken Rtime = 1/20 s, Rfreq = 1/2.4 Hz, N = 48

In Row3,there are two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = 1/1000 s, Rfreq = 1/9.989 Hz, N = 9898 s

In Row4,there are two plots for signal and its Ff(s) approx,we observe that we have taken Rtime = 1/1200 s, Rfreq = 1.5 Hz, N = 1800

Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.

Also we can say that we are considering our calculations for t ranging from -L/2 to L/2, as for t>L/2 or t<-L/2,the value of the function g(t)w2(t) = 0, g(t)w3(t) = 0

Q.3_(i)(h)_compare.py (Part (i) solving for (h) comparing wrt window functions in Question.3):

```
from pylab import *
import matplotlib.pyplot as plt
import numpy as np
def function1(Rtime,Rfreq):
       L = 1/Rtime
       t = np.arange(-L/2,L/2,Rtime) # time vector
       y = (np.cos(2*np.pi*t) + 0.5*np.sin(4*np.pi*t))*(1-((2*np.abs(t))/L))
       return t,y,L
def function2(Rtime,Rfreq):
       L = 1/Rtime
       t = np.arange(-L/2,L/2,Rtime) # time vector
       y = (np.cos(2*np.pi*t) + 0.5*np.sin(4*np.pi*t))*((np.sin(2*np.pi*t/L))**2)
       return t,y,L
def DFT_cal_for_givenFunction1(Rtime,Rfreq):
       Fs = 1.0/Rtime; # sampling rate
       t,y,L = function1(Rtime,Rfreq)
       N = len(y)# length of the signal
       Rfreq = 1/(N*Rtime)
       k = np.arange(N)
       frq = k*Rfreq # two sides frequency range
       frq = frq[range(int(N/2))] # one side frequency range
       Y = np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return L,t,y,N,frq,Y
def DFT cal for givenFunction2(Rtime,Rfreq):
       Fs = 1.0/Rtime; # sampling rate
       t,y,L = function2(Rtime,Rfreq)
       N = len(y)# length of the signal
       Rfreq = 1/(N*Rtime)
       k = np.arange(N)
       frq = k*Rfreq # two sides frequency range
       frq = frq[range(int(N/2))] # one side frequency range
       Y = 2*np.abs(np.fft.fft(y)/N) # fft computing and normalization
       Y = Y[range(int(N/2))]
       return L,t,y,N,frq,Y
```

```
L1,t1,y1,N1,frq1,Y1 = DFT cal for givenFunction1(1/100,1/3)
L2,t2,y2,N2,frq2,Y2 = DFT_cal_for_givenFunction2(1/100,1/3)
subplot(2, 2,1)
plt.plot(t1,y1,b',label='g(t)w2(t)')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.xlim(-2,2)
plt.grid()
plt.legend(loc = 'best')
subplot(2,2,2)
plt.plot(frq1,abs(Y1),'r',label = 'DFT(approximation of Ff1(s)) when Rtime = 1/100 s,Rfreq =
1/3Hz,f>0Hz') # plotting the spectrum
\#(\text{here } f1(t) = g(t)w2(t))
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y1(freq)|')
plt.xlim(0,3)
plt.grid()
plt.legend()
#plt.title('fig. for (f) when a = 1 and Rtime = 1/100 s,Rfreq = 1/3Hz')
print('In Row1,there are two plots for g(t)w2(t) and its Ff1(s) approx,we observe that we have
taken Rtime = 1/100 \text{ s}, Rfreq = 1/3 \text{ Hz}, N = 300')
print('----')
subplot(2, 2,3)
plt.plot(t2,y2,b',label='g(t)w3(t)')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.grid()
plt.legend(loc = 'best')
subplot(2,2,4)
plt.plot(frq2,abs(Y2),'r',label = 'DFT(approximation of Ff2(s)) when a = 1 and Rtime = 1/100
s,Rfreq = 1/3Hz,f>0Hz') # plotting the spectrum
\#(\text{here } f2(t) = g(t)w3(t))
plt.xlabel('Freq (Hz)')
plt.ylabel('|Y2(freq)|')
plt.xlim(0,3)
plt.grid()
plt.legend()
```

#plt.title('fig. for (f) when a = 1 and Rtime = 1/100 s,Rfreq = 1/3Hz ')
print('In Row2,there are two plots for g(t)w3(t) and its F2(s) approx,we observe that we have
taken a = 1 and Rtime = 1/100 s ,Rfreq = 1/3 Hz,N = 300')
print('')
print("Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.") print('')
print('Also we can say that we are considering our calculations for t ranging from -L/2 to L/2 , as for t>L/2 or t<-L/2,the value of the function $g(t)w2(t) = 0$, $g(t)w3(t) = 0'$) plt.show()

In Row1,there are two plots for g(t)w2(t) and its Ff1(s) approx,we observe that we have taken Rtime = 1/100 s ,Rfreq = 1/3 Hz,N = 300

In Row2, there are two plots for g(t)w3(t) and its F2(s) approx, we observe that we have taken a = 1 and Rtime = 1/100 s ,Rfreq = 1/3 Hz,N = 300

Here we are normalzing fft calculation to 2*(1/N) times the fft value, because the value of fft becomes very large if we don't do these, just for understanding purpose we are taking this.

Also we can say that we are considering our calculations for t ranging from -L/2 to L/2, as for t>L/2 or t<-L/2, the value of the function g(t)w2(t) = 0, g(t)w3(t) = 0

