Ampliación de interpolación con Splines

Miguel Anguita Ruiz Pablo Baeyens Fernández Pablo David Medina Sánchez Rubén Morales Pérez Francisco Javier Morales Piqueras

${\bf \acute{I}ndice}$

1.	\mathbf{Spli}	nes cuadráticos	2
	1.1.	Introducción a los splines	2
	1.2.	Descripción del espacio de splines cuadráticos	2
	1.3.	Interpolación con splines cuadráticos	2
	1.4.	Error en los splines cuadráticos	2
	1.5.	Ejemplos	3
	1.6.	Método local para la resolución de splines cuadráticos	4
	1.7.	Método global: cálculo con una base de potencias truncadas	4
2.	Spli	nes cúbicos	4
	2.1.	Construcción a partir de los valores de s'' en los nodos $\{x_i\}$	5
	2.2.	Propiedades de minimización	7
		2.2.1. Cota de error en los splines cúbicos	9
	2.3.	Ejemplos	9
3.	Imp	elementación en ordenador: Octave	10
	3.1.	Spline Lineal	10
	3.2.	Splines cuadráticos	10
Α.	Defi	iniciones y notación	11

1. Splines cuadráticos

1.1. Introducción a los splines

Definición. Sea [a,b] un intervalo, $P = \{x_i\}_{i=0...n} \in \mathcal{P}([a,b]), k,r \in \mathbb{N}, r < k <!->->$. Se dice que $s:[a,b] \to \mathbb{R}$ es un spline si $s \in C^r([a,b])$ y para todo $1 \le i \le n$, $s_{|[x_{i-1},x_i]} \in \mathbb{P}_k$. $S_k^r(P)$ es el espacio de dichas funciones.

La palabra **spline** con el tiempo se usó para referirse a una larga banda flexible generalmente de metal, que podía usarse para dibujar curvas continuas suaves, forzando a la banda a pasar por puntos específicos y trazados a lo largo de la curva.

1.2. Descripción del espacio de splines cuadráticos

Partimos de [a, b] un intervalo y $P \in \mathcal{P}([a, b])$. En esta primera sección nos centramos en los splines cuadráticos: los pertenecientes a $S_2^1(P)$.

Sus trozos son polinomios de grado menor o igual que 2 de la forma $ax^2 + bx + c$. Además son funciones de clase 1 (derivables en [a, b] con derivada continua), lo que proporciona condiciones interesantes para resolver problemas de interpolantes.

Veamos algunas propiedades:

Proposición. Sea [a,b] intervalo, $P=\{x_i\}_{i=0...n}\in \mathscr{P}([a,b]), \ entonces \ dim(S_2(P))=n+2.$

Demostración. Sea $s \in S_2(P)$.

- Para cada intervalo $[x_{i-1}, x_i]$ $s|_{[x_{i-1}, x_i]}(x) = ax^2 + bx + c$ para ciertos $a, b, c \in \mathbb{R}$. Por lo tanto cada trozo está determinado por 3 parámetros. Con n trozos tenemos 3n parámetros en total.
- Si imponemos la continuidad y derivabilidad en los extremos tenemos que

$$s_i(x_i) = s_{i+1}(x_i)$$
 $s'_i(x_i) = s'_{i+1}(x_i)$

para todo i = 1...n - 1. De cada condición se obtienen n - 1 ecuaciones, por lo tanto obtendremos: n - 1 + n - 1 = 2n - 2 ecuaciones linealmente independientes.

Por lo tanto,
$$dim(S_2(P)) = 3n - (2n - 2) = n + 2.$$

Con el conocimiento de la dimensión del espacio podemos describir una base del espacio de splines cuadráticos con el uso de potencias truncadas. Una base del espacio es: $\{1, x, x^2, (x-x_1)_+^2, ..., (x-x_{n-1})_+^2\}$.

1.3. Interpolación con splines cuadráticos

1.4. Error en los splines cuadráticos

Teorema. Sean $f \in C^2([a,b])$, $\{x_i\}_{i=0...n} \in \mathscr{P}([a,b])$, $s \in S_2^1(\{x_i\}_{i=0...n})$ spline para f, $h = \max\{x_i - x_{i-1}\}_{i=1...n}$, E = f - s. Además, sea M > 0 tal que:

$$M \ge Sup\{|f''(x) - f''(y)| : |x - y| \le h, x, y \in [a, b]\}$$

Entonces, se verifica, para todo $x \in [a, b]$:

$$E(x) \le \frac{h^2 M}{2} \tag{1}$$

La demostración, así como cotas para las derivadas y cotas más precisas en función de la localización de x puede encontrarse en *Quadratic Interpolatory Splines*, W. Kammerer, G. Reddien y R.S. Varga, (1973).

1.5. Ejemplos

Problema. Dados los datos de la tabla, halla mediante el método global el spline cuadrático que interpole los nodos y cuya derivada en x_1 sea 4.

Solución. Debemos hallar $s \in S_2(P)$ con $a, b, c, \alpha, \beta \in \mathbb{R}$ tales que, para $x \in [2, 8]$:

$$s(x) = a + bx + cx^{2} + \alpha(x - 4)_{+}^{2} + \beta(x - 5)_{+}^{2}$$

Planteamos el sistema de ecuaciones GX = b:

$$\begin{pmatrix} 1 & 2 & 4 & 0 & 0 \\ 1 & 4 & 16 & 0 & 0 \\ 1 & 5 & 25 & 0 & 0 \\ 1 & 8 & 64 & 16 & 9 \\ 0 & 1 & 8 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \\ 5 \\ 5 \\ 4 \end{pmatrix}$$

Resolviendo el sistema, obtenemos la solución $a=35, b=-20, c=3, \alpha=-5, \beta=2$. Por tanto, para $x \in [2,8]$:

$$s(x) = 35 - 20x + 3x^{2} - 5(x - 4)_{+}^{2} + 2(x - 5)_{+}^{2}$$

Es decir:

$$s(x) = \begin{cases} 3x^2 - 20x + 35 & x \in [2, 4) \\ -2x^2 + 20x - 45 & x \in [4, 5) \\ 5 & x \in [5, 8] \end{cases}$$

1.6. Método local para la resolución de splines cuadráticos

El problema que debemos resolver es el siguiente:

```
\begin{tabular}{|c|}
    \hline
    Hallar $s(x)\ \in S_2(x_0,x_1...,x_n)$ tal que:\\
    $s(x_i)=y_i\ i=0,1,...,n$\\
    $s'(x_i)=d_i\ i=0,1,...,n$\\
    \hline
\end{tabular}
```

Para todo nodo desde 1 hasta n calculamos la tabla de Diferencias Divididas de la siguiente forma:

X	Y	DD 1	DD 2
x_{i-1}	y_{i-1}		
x_i	y_i	$p_i = \frac{y_i - y_{i-1}}{h_i}$	_
x_i	y_i	d_i	$\frac{d_i-p_i}{h_i}$

Siendo
$$h_i = x_i - x_{i-1}$$

De esta forma, para cada x_i ya tendríamos una fórmula:

$$s_i(x) = y_{i-1} + p_i(x - x_{i-1}) + \frac{d_i - p_i}{h_i}(x - x_{i-1})(x - x_i)$$

1.7. Método global: cálculo con una base de potencias truncadas

Para este método usaremos una base del espacio vectorial $S_2(x_0, x_1..., x_n)$.

Tenemos los siguientes matrices y vectores: G:matriz de Gram de nuestra base, en la cual evaluaríamos los elementos de la base en todos los nodos X:vector de coeficientes b:vector con los valores que queremos interpolar.

De esta forma, deberíamos resolver el sistema G x = b.

2. Splines cúbicos

Uno de los problemas de la interpolación polinomial es que, al ir aumentando el número de nodos el grado del polinomio necesario para interpolarlos aumenta. Esto conlleva fluctuaciones en los extremos de la interpolación.

Si dividimos el intervalo en una partición podemos interpolar utilizando un polinomio en cada intervalo, es decir, utilizando **splines cúbicos**. Como veremos después este método minimiza la cota de error.

$$S(x) = \begin{cases} S_0(x) & \text{si } x \in [t_0, t_1) \\ S_1(x) & \text{si } x \in [t_1, t_2) \\ \vdots & \vdots \\ S_{n-1}(x) & \text{si } x \in [t_{n-1}, t_n) \end{cases}$$

$$(2)$$

Esta interpolación lineal fragmentaria pasa por los puntos: $\{(x_0, f(x_0)), (x_1, f(x_1)), ..., (x_n, f(x_n))\}$ Dentro de los cúbicos encontramos los de clase 1 y 2, denotados po S_3^1 y S_3^2 (ó S_3).

1. Los splines cúbicos de clase 1 son continuos y derivables con derivada continua. Forman un espacio vectorial de dimensión 2(n+1), cuya base es:

$$\{1, x, x^2, x^3, (x - x_1)_+^2, (x - x_1)_+^3, ..., (x - x_{n-1})_+^2, (x - x_{n-1})_+^3\}$$

Estos splines no aseguran derivabilidad en los extremos. En un contexto geométrico esto significa que la función no es suave en los puntos de unión. Generalmente las condiciones físicas necesitan esa suavidad, y es aquí donde intervienen los splines cúbicos de clase 2.

2. Los splines cúbicos de clase 2 son continuos y 2 veces derivables. Como sabemos que la dimensión de un spline la dimensión de este espacio es (3-2)n+2+1=n+3.

Como tenemos n+1 variables, tenemos 2 libertades en la resolución.

2.1. Construcción a partir de los valores de s'' en los nodos $\{x_i\}$

Vamos a plantear un método de resolución utilizando las segundas derivadas, denotamos, para i = 1, ... n - 1:

- $M_i = S''(x_i)$, que son desconocidos a priori salvo en un spline natural.
- $h_i = x_i x_{i-1}$

Como el spline es de clase 2, tenemos para i = 1, ...n - 1:

$$S''(x_i) = S''_i(x_i) = S''_{i+1}(x_i)$$

La restricción a cada intervalo de S es un polinomio S_i de grado 3, por ende, S_i'' es lineal, con expresión para $x \in [x_{i-1}, x_i]$:

$$S_i''(x) = M_{i-1} \frac{x_i - x}{h_i} + M_i \frac{x - x_{i-1}}{h_i}$$

Integramos dos veces usando que $S_i(x_{i-1}) = y_{i-1}$ y $S_i(x_i) = y_i$ para las constantes de integración obteniendo, para $x \in [x_{i-1}, x_i]$:

$$S_i(x) = M_{i-1} \frac{(x_i - x)^3}{6h_i} + M_i \frac{x - x_{i-1}}{6h_i} + \frac{y_{i-1} - M_{i-1}h_i^2}{6} \cdot \frac{x_i - x}{h_i} + \frac{y_i - M_i h_i^2}{6} \cdot \frac{x - x_{i-1}}{h_i}$$

Esta ecuación nos permite calcular S conocidas M_i con i = 0, 1, ...n. Las condiciones de suavidad en las ligaduras nos permiten igualar $S'_{i+1}(x_i) = S'_i(x_i)$. Derivando una vez, si $x \in [x_{i-1}, x_i]$:

$$S_i'(x) = -M_{i-1} \frac{(x_i - x)^2}{2h_i} + M_i \frac{(x - x_{i-1})^2}{2h_i} + \frac{y_i - y_{i-1}}{h_i} - (M_i - M_{i-1}) \frac{h_i}{6}$$

Si $x \in [x_i, x_{i+1}]$:

$$S'_{i+1}(x) = -M_i \frac{(x_{i+1} - x)^2}{2h_i} + M_{i+1} \frac{(x - x_i)^2}{2h_{i+1}} + \frac{y_{i+1} - y_i}{h_{i+1}} - (M_{i+1} - M_i) \frac{h_{i+1}}{6}$$

Recordando que $h_i = x_i - x_{i-1}$ e igualando $S'_{i+1}(x_i) = S'_i(x_i)$:

$$-M_i \frac{h_{i+1}}{2} + \frac{y_{i+1} - y_i}{h_{i+1}} - (M_{i+1} - M_i) \frac{h_{i+1}}{6} = M_i \frac{h_i}{2} + \frac{y_i - y_{i-1}}{h_i} - (M_i - M_{i-1}) \frac{h_i}{6}$$

Agrupamos los M_i :

$$-M_i \frac{h_{i+1}}{2} + M_i \frac{h_{i+1}}{6} - M_i \frac{h_i}{2} + M_i \frac{h_i}{6} + \frac{y_{i+1} - y_i}{h_{i+1}} - \frac{y_i - y_{i-1}}{h_i} = M_{i+1} \frac{h_{i+1}}{6} + M_{i-1} \frac{h_i}{6}$$

Multiplicamos a ambos lados por 6, sacamos factor común y recordamos que $f[x_i, x_{i+1}] = \frac{y_{i+1} - y_i}{h_{i+1}}$:

$$6M_i \frac{-3h_{i+1}}{6} + \frac{h_{i+1}}{6} - 3\frac{h_i}{6} + \frac{h_i}{6} + 6(f[x_i, x_{i+1}] - f[x_{i-1}, x_i]) = M_{i+1}h_{i+1} + M_{i-1}h_i$$

Agrupando y multiplicando M_i arriba y abajo por -2:

$$-2M_i \frac{-2h_{i+1} - 3h_i + h_i}{-2} + 6(f[x_i, x_{i+1}] - f[x_{i-1}, x_i]) = M_{i+1}h_{i+1} + M_{i-1}h_i$$

Pasamos el M_i a la derecha y dividimos por $(h_{i+1} + h_i)$ en ambos lados:

$$6\frac{f[x_i, x_{i+1}] - f[x_{i-1}, x_i]}{h_{i+1} - h_i} = M_{i+1} \frac{h_{i+1}}{h_{i+1} + h_i} + M_{i-1} \frac{h_i}{h_{i+1} + h_i} + 2M_i$$

$$6f[x_{i-1}, x_i, x_{i+1}] = \frac{M_{i+1}h_{i+1} + M_{i-1}h_i}{h_{i+1} + h_i} + 2M_i$$

Denotando por $m_i = \frac{h_i}{h_i + h_{i+1}}$, $\lambda_i = \frac{h_{i+1}}{h_i + h_{i+1}}$ y $\gamma_i = 6f[x_{i-1}, x_i, x_{i+1}]$:

$$m_i M_{i-1} + 2M_i + \lambda_i M_{i+1} = \gamma_i$$

Con los M_i en las ligaduras tendremos 4(n-1) variables, para que el sistema sea determinado nos faltan dos condiciones. Hay diferentes condiciones que se nos pueden presentar:

Spline sujeto

 $S_1'(x_0) = f_0'$ y $S_n'(x_n) = f_n'$. De acuerdo con la fórmula de S'(x) obtenemos:

$$f_0' = -\frac{M_0 h_i}{2} + f[x_0, x_1] - \frac{(M_1 - M_0)h_i}{6} \implies 2M_0 + M_1 = \frac{6(f[x_0, x_1] - f_0')}{h_1} = 6f[x_0, x_0, x_1]$$

Equivalentemente para x_n :

$$S'_n(x_n) = -\frac{M_{n-1}(x_n - x_n)^2}{2h_n} + \frac{M_n(x_n - x_{n-1})^2}{2h_n} + \frac{(y_n - y_{n-1})}{h_n} - \frac{(M_n - M_{n-1})h_n}{6}$$

$$\implies M_{n-1} + 2M_n = 6f[x_{n-1}, x_n, x_n]$$

Tomando $\mu_i = h_i/(h_i + h_{i+1})$, la matriz del sistema es:

$$\begin{pmatrix} 2 & \lambda_0 & 0 & \cdots & 0 \\ \mu_1 & 2 & \lambda_1 & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & \mu_{n-1} & 2 & \lambda_{n-1} \\ 0 & \cdots & 0 & \mu_n & 2 \end{pmatrix} \begin{pmatrix} M_0 \\ M_1 \\ \vdots \\ M_{n-1} \\ M_n \end{pmatrix} = \begin{pmatrix} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{n-1} \\ \gamma_n \end{pmatrix}$$

-Spline natural

$$M_0 = 0 \text{ y } M_n = 0$$

$$\begin{pmatrix} 2 & \lambda_0 & 0 & \cdots & 0 \\ \mu_1 & 2 & \lambda_1 & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & \mu_{n-1} & 2 & \lambda_{n-1} \\ 0 & \cdots & 0 & \mu_n & 2 \end{pmatrix} \begin{pmatrix} M_0 \\ M_1 \\ \vdots \\ M_{n-1} \\ M_n \end{pmatrix} = \begin{pmatrix} 0 \\ \gamma_1 \\ \vdots \\ \gamma_{n-1} \\ 0 \end{pmatrix}$$

-Spline periódico

$$S_{1}'(x_{0}) = S_{n}'(x_{n}) \text{ y } S_{1}''(x_{0}) = S_{n}''(x_{n}) \begin{pmatrix} 2 & \lambda_{0} & 0 & \cdots & 0 \\ \mu_{1} & 2 & \lambda_{1} & 0 & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & 0 & \mu_{n-1} & 2 & \lambda_{n-1} \\ 0 & \cdots & 0 & \mu_{n} & 2 \end{pmatrix} \begin{pmatrix} M_{0} \\ M_{1} \\ \vdots \\ M_{n-1} \\ M_{n} \end{pmatrix} = \begin{pmatrix} 0 \\ \gamma_{1} \\ \vdots \\ \gamma_{n-1} \\ 0 \end{pmatrix}$$

2.2. Propiedades de minimización

Comenzamos planteando un problema de minimización sobre el espacio euclídeo $(C^2([a,b]), <\cdot, \cdot>)$, con la métrica y norma definida de la forma usual:

$$\langle f, g \rangle = \int_{a}^{b} fg, \qquad ||f|| = \sqrt{\int_{a}^{b} f^{2}}$$

Planteamos el problema:

Problema. Sea $f \in C^2([a,b]), P \in \mathcal{P}([a,b])$. Sea $H \subset C^2([a,b])$ definido por:

$$H = \{g \in C^2([a,b]) : \forall p \in P \ g(p) = f(p) \ y \ g'(a) = f'(a), \ g'(b) = f'(b)\}$$

Hallar $u \in H$ tal que ||u''|| sea mínima.

Para resolver el problema, demostramos el siguiente teorema:

Teorema (Minimización). Sea $f \in C^2([a,b])$, $P \in \mathcal{P}([a,b])$, s spline sujeto para f. Se verifica:

$$\forall u \in H: ||s''|| \le ||u''||$$

Demostración. Sea $u \in H$, e = u - s. Tenemos:

$$||u''||^2 = ||e'' + s''||^2 = ||e''||^2 + ||s''||^2 + 2 < e'', s'' >$$

Dividimos $\langle e'', s'' \rangle$ en intervalos:

$$< e'', s'' > = \int_a^b e''s'' = \sum_1^{n-1} \int_{x_i}^{x_{i+1}} e''s''$$

En cada intervalo, integramos por partes:

$$\sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} e'' s'' = \sum_{i=1}^{n-1} e'(x) s''(x) \Big|_{x_i}^{x_{i+1}} - \sum_{i=1}^{n-1} \int_{x_i}^{x_{i+1}} e' s'''$$

La primera sumatoria es una suma telescópica, por lo que conservamos el primer y último término:

$$\sum_{1}^{n-1} e'(x)s''(x)\big|_{x_i}^{x_{i+1}} = e'(b)s''(b) - e'(a)s''(a) = (u'(b) - s'(b))s''(b) - (u'(a) - s'(b))s''(a) = 0$$

ya que $u, s \in H$.

En cuanto a la segunda, $s'''|_{[x_i,x_{i+1}]}$ es constante, por lo que podemos sacarlo de la integral:

$$\sum_{1}^{n-1} s_i \int_a^b e'(x) = \sum_{1}^{n-1} s_i (e(b) - e(a)) = 0$$

Es decir, $\langle e'', s'' \rangle = 0$. Por tanto:

$$||u''||^2 = ||e''||^2 + ||s''||^2 + 2 < e'', s'' > = ||e''||^2 + ||s''||^2 \ge ||s''||^2$$

donde utilizamos que la norma siempre es positiva.

Así, podemos observar que el **spline cúbico sujeto** asociado a una función f tiene la menor norma de su segunda derivada de entre las que interpolan a f en una partición dada, por lo que resuelve nuestro problema.

2.2.1. Cota de error en los splines cúbicos

Teorema. Sea $f \in C^4([a,b])$, $n \in \mathbb{N}$, $P = \{x_i\}_{i=0...n} \in \mathscr{P}([a,b])$ y $s \in S^1_3(P)$ spline para f. Además, sean $h = \max\{x_i - x_{i-1}\}_{i=1...n}$, M > 0 cota superior de $|f^{iv}|$ en [a,b] y E = f - s, $x \in [a,b]$. Se verifica:

$$|E(x)| \le \frac{5M}{384}h^4\tag{3}$$

La demostración, así como cotas para las derivadas, puede consultarse en *Optimal Error Bounds for Cubic Spline Interpolation*, Charles Hall y Weston Meyer, (1976).

2.3. Ejemplos

3. Implementación en ordenador: Octave

Hemos implementado las siguientes funciones en Octave:

```
    SplineLineal: Calcula spline lineal. (Usado en los splines cúbicos)
    Spline31: Calcula spline de clase 1.
    SplineNat: Calcula spline natural.
    SplinePer: Calcula spline periódico.
    SplineSuj: Calcula spline sujeto.
    SplineCuad: Calcula spline cuadrático de clase 1.
```

3.1. Spline Lineal

La función que nos permite calcular un spline lineal es muy

```
function s = SplineLineal(x,y)
  p = diff(y)./diff(x);
  A = [p' y(1:end-1)'];
  s = mkpp(x,A);
end
```

3.2. Splines cuadráticos

Utilizando el sistema que vimos anteriormente, podemos definir fácilmente una función que calcule los coeficientes de un spline cuadrático de clase 1:

```
function s = coefsSplineCuad(x, y, d_k, k)
    # Número de intervalos
n = length(x) - 1;

# 1, x, x²
A(:,1) = [ones(n+1,1); 0];
A(:,2) = [x' ; 1];
A(:,3) = [x'.^2 ; 2.*x(k+1)];

# Potencias truncadas
for j = 4 : n + 2
    pot = @(t) (t > x(j-2)) .* (t - x(j-2));
    A(:,j) = [pot(x').^2; 2.*pot(x(k+1))];
end

# Resolución del sistema
s = A \ [y' ; d_k];
```

end

A. Definiciones y notación

Definición. Sea $I \subset \mathbb{R}$ un intervalo cerrado y acotado con extremos a, b:

- \blacksquare Una partición P de I es un subconjunto finito de I con $a,b\in P$.
- $\mathcal{P}(I)$ es el conjunto de todas las particiones de I.

Definición. Sea $a \in \mathbb{R}$, $n \in \mathbb{N}$. La **potencia truncada** en a de grado n, $(x-a)_+^n$ viene dada por:

$$(x-a)_+^n = \begin{cases} 0 & \text{si } x \le a \\ (x-a)^n & \text{si } x > a \end{cases}$$

Cualquier potencia truncada de grado n es de clase n-1, y su derivada de orden n presenta una discontinuidad en a. La derivada de $(x-a)^n_+$ en x es $n(x-a)^{n-1}_+$.

Su implementación en Octave es bastante sencilla: dados a y n, podemos definir la potencia truncada como función anónima de la siguiente forma:

$$pot = @(x) (x > a) * (x - a)^n$$

Como Octave tiene tipos dinámicos convertirá (x > a) a 1 si x > a y a 0 en otro caso.