Département des Technologies de l'Informatique

Devoir de Synthèse

Unité d'Enseignement : Réseaux Locaux & architecture TCP/IP	Classes: RSI21
Durée: 1h30	Nombre de pages : 4
Date: 3 Janvier 2023	Heure de début :
Proposé par : R. BRAHMI	Documents Autorisés : NON

Exercice 1: (5pts)

Soit la topologie suivante

Topologie 1

- 1. Donner la structure d'une requête ARP en précisant les différents champs envoyés par le PC B vers le PC A
- 2. Schématiser la requête ARP sur la topologie.
- **3.** Quelle est la différence entre ARP et RARP ?
- **4.** Citer les problèmes détectés, proposer une solution.
- **5.** Le protocole STP est activé, vous vous basez sur les informations affichées sur la topologie 2
 - a. Quel est le pont racine?
 - **b.** Quels sont les ports désignés ?
 - **c.** Quels les ports racine? Quel est le port alternatif? A les indiquer sur la topologie.

Figure 2: Topologie 2

6. Quelles sont les limites de cette topologie ? Proposer des améliorations possibles ?

Exercice 2: (6pts)

Taille de données = 1400 octets

- 1. Expliquer le terme MTU
- 2. Qu'est-ce que la fragmentation
- 3. En supposant que tous les fragments arrivent à la destination Z. Compléter soigneusement le tableau, ci-dessous, des fragments seulement au niveau de la station Z?

Fragment	Taille	Identificatio n	MF	DF	Offset

- **4.** Un destinataire peut-il confondre deux fragments qui ont les mêmes éléments suivants : IP source, IP destination et offset ?
- 5. Quels sont les inconvénients d'une fragmentation excessive?

Exercice 3 : (4,5 pts)

- 1. Quel est le dernier hôte valide sur le sous-réseau 172.16.216.192/26?
- 2. Quelle est l'adresse de broadcast du réseau 172.24.19.0/26?
- **3.** Laquelle des adresses suivantes est une adresse IP valide d'un hôte étant donnée l'adresse du réseau est **191.254.0.0** lorsqu'on utilise 11 bits pour la création de sous-réseau ?
 - **a.** 191.254.0.32
 - **b.** 191.254.0.96
 - **c.** 191.254.1.29
 - **d.** 191.54.1.64
- **4.** Nous souhaitons diviser le réseau **192.168. 32.0** en **quatre** sous-réseaux, chacun avec un nombre différent d'adresses IP requises, comme indiqué ci-dessous.
 - **Sous-réseau 1**: 125 adresses IPv4.
 - Sous-réseau 2: 60 adresses IPv4.
 - **Sous-réseau 3**: 29 adresses IPv4.
 - Sous-réseau 4: 29 adresses IPv4.

Ce type de division est possible avec le VLSM

Compléter le tableau suivant

Sous réseau	Le nombre d'hôtes	Adresse de sous réseau	Plage d'adresses des hôtes	Adresse de diffusion
1	125			
2	60			
3	29			
4	29			

Exercice 4 : (4,5 pts)

- 1. UDP et IP ne sont-ils pas fiables au même degré? Pourquoi?
- 2. Quelles sont les caractéristiques de la fenêtre coulissante TCP ?
- **3.** Quelle sont les phases d'une connexion TCP ?
- 4. Expliquer le processus d'établissement de connexion TCP
- 5. Quelle est la signification des accusés de réception TCP
- **6.** Comment le TCP assure-t-il la fiabilité ?

Bon travail @