EN.553.662: Optimization for Data Science Homework 4

Ha Manh Bui (CS Department) hbui13@jhu.edu

Spring 2023

1 Problem 1

Let X be a real-valued random variable modeled with a normal distribution $\mathcal{N}(m, \sigma^2)$. Fixing a positive number ρ , we propose to estimate m and $\sigma^2 > 0$, based on a sample (x_1, \dots, x_N) by maximizing the penalized log-likelihood

$$\sum_{k=1}^{N} \log \varphi_{m,\sigma^2}(x_k) - N\rho \frac{|m|}{\sigma},$$

where φ_{m,σ^2} is the p.d.f. of $\mathcal{N}(m,\sigma^2)$, i.e.,

$$\varphi_{m,\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right).$$

We will assume in the following that the observed samples are not equal to the same constant value.

(1) Let μ_1 and μ_2 denote the first- and second-order empirical moments:

$$\mu_1 = \frac{1}{N}(x_1 + \dots + x_N)$$

$$\mu_2 = \frac{1}{N}(x_1^2 + \dots + x_N^2)$$

Prove that the pair (m, σ) is the optimal solution of the penalized likelihood problem if and only if there exists a scalar ξ such that (α, β, ξ) minimizes

$$F(\alpha, \beta, \xi) = \frac{1}{2}\alpha^2 - \mu_1 \alpha \beta + \frac{1}{2}\mu_2 \beta^2 - \log \beta + \rho \xi$$

subject to the constraints $\beta > 0$, $\xi - \alpha \ge 0$ and $\xi + \alpha \ge 0$, with $\alpha = m/\sigma$ and $\beta = 1/\sigma$.

Proof. Let denote

$$G: (m, \sigma) \mapsto \sum_{k=1}^{N} \log \varphi_{m, \sigma^2}(x_k) - N\rho \frac{|m|}{\sigma}.$$

We know that maximizing $G(m, \sigma)$ is equivalent to minimizing

$$-G(m,\sigma) = -\sum_{k=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_k - m)^2}{2\sigma^2}\right) \right] + N\rho \frac{|m|}{\sigma}$$

$$= \sum_{k=1}^{N} \left(\frac{(x_k - m)^2}{2\sigma^2} - \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) \right) + N\rho \frac{|m|}{\sigma}$$

$$= \frac{1}{2\sigma^2} \sum_{k=1}^{N} x_k^2 - \frac{m}{\sigma^2} \sum_{k=1}^{N} x_k + \frac{Nm^2}{2\sigma^2} - N\log\left(\frac{1}{\sqrt{2\pi}} \frac{1}{|\sigma|}\right) + N\rho \frac{|m|}{\sigma}.$$
(2)

Since N is positive and $\log(\frac{1}{\sqrt{2\pi}})$ is a constant, minimizes Equation 1 is equivalent to minimizing

$$\frac{1}{2\sigma^2} \frac{1}{N} \sum_{k=1}^{N} x_k^2 - \frac{m}{\sigma^2} \frac{1}{N} \sum_{k=1}^{N} x_k + \frac{m^2}{2\sigma^2} - \log(\frac{1}{|\sigma|}) + \rho \frac{|m|}{\sigma}.$$
 (3)

Let consider $\frac{1}{\sigma} > 0$, then $\log(\frac{1}{|\sigma|}) = \log(\frac{1}{\sigma})$ and 3 becomes

$$\frac{1}{2\sigma^2} \frac{1}{N} \sum_{k=1}^{N} x_k^2 - \frac{m}{\sigma^2} \frac{1}{N} \sum_{k=1}^{N} x_k + \frac{m^2}{2\sigma^2} - \log(\frac{1}{\sigma}) + \rho \frac{|m|}{\sigma}.$$

Replace $\alpha = m/\sigma$ and $\beta = 1/\sigma$, we obtain

$$\frac{1}{2}\mu_2\beta^2 - \mu_1\alpha\beta + \frac{1}{2}\alpha^2 - \log\beta + \rho\frac{|m|}{\sigma} \text{ s.t. } \beta > 0.$$

$$\tag{4}$$

Combining with $\rho > 0$, we obtain the optimal solution of minimizing 4, i.e., maximizing $G(m, \sigma)$ exists if and only if exist a scalar ξ s.t. (α, β, ξ) minimize

$$F(\alpha, \beta, \xi) = \frac{1}{2}\alpha^2 - \mu_1 \alpha \beta + \frac{1}{2}\mu_2 \beta^2 - \log \beta + \rho \xi \tag{5}$$

subject to the constraints $\beta > 0$, $\xi - \alpha \ge 0$ and $\xi + \alpha \ge 0$, with $\alpha = m/\sigma$ and $\beta = 1/\sigma$.

(2) Define $\hat{F}(\alpha, \beta, \xi) = \hat{F}(\alpha, \beta, \xi)$ if $\beta > 0$ and $+\infty$ otherwise. Prove that F is a closed convex function.

Proof. Calculate gradient of F, we get

$$\nabla_{\alpha,\beta,\xi}F(\alpha,\beta,\xi) = \left(\frac{\partial F}{\partial \alpha}, \frac{\partial F}{\partial \beta}, \frac{\partial F}{\partial \xi}\right) = \left(\alpha - \mu_1\beta, -\mu_1\alpha + \mu_2\beta - \frac{1}{\beta}, \rho\right).$$

Therefore, the Hessian matrix of F is

$$\mathbf{H}_{F} = \begin{bmatrix} \frac{\partial^{2} F}{\partial \alpha^{2}} & \frac{\partial^{2} F}{\partial \alpha \beta} & \frac{\partial^{2} F}{\partial \alpha \xi} \\ \frac{\partial^{2} F}{\partial \beta \alpha} & \frac{\partial^{2} F}{\partial \beta^{2}} & \frac{\partial^{2} F}{\partial \beta \xi} \\ \frac{\partial^{2} F}{\partial \xi \alpha} & \frac{\partial^{2} F}{\partial \xi \beta} & \frac{\partial^{2} F}{\partial \xi^{2}} \end{bmatrix} = \begin{bmatrix} 1 & -\mu_{1} & 0 \\ -\mu_{1} & \mu_{2} + \frac{1}{\beta^{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Since \mathbf{H}_F is a symmetric matrix, $\det(\mathbf{H}_{F_1}) = 1$,

$$\det(\mathbf{H}_{F_2}) = \begin{vmatrix} \mu_2 + \frac{1}{\beta^2} & 0 \\ 0 & 1 \end{vmatrix} = \mu_2 + \frac{1}{\beta^2} > 0,$$

and

$$\det(\mathbf{H}_{F_3}) = \begin{vmatrix} 1 & -\mu_1 & 0 \\ -\mu_1 & \mu_2 + \frac{1}{\beta^2} & 0 \\ 0 & 0 & 1 \end{vmatrix} = \mu_2 + \frac{1}{\beta^2} - \mu_1^2 \ge 0 \text{ (Jensen's inequality)},$$

we obtain \mathbf{H}_F is C^2 and a positive semi-definite matrix, as a result, F is a convex function. Continue to consider the Epigraphs of F w.r.t. β

$$epi(F) = \{(\beta, \hat{F}(\alpha, \beta, \xi)) \in \mathbb{R} \times \mathbb{R} : F(\beta) \le \hat{F}(\alpha, \beta, \xi)\},\$$

where $\beta \in (0, +\infty)$. Therefore, we have $\lim_n \beta_n = \beta$, $\lim_n \hat{F}(\alpha_n, \beta_n, \xi_n) = \hat{F}(\alpha, \beta, \xi)$, $F(\beta_n) \leq \hat{F}(\alpha_n, \beta_n, \xi_n)$, and $F(\beta) \leq \hat{F}(\alpha, \beta, \xi)$, i.e., epi(F) is closed subset of $\mathbb{R} \times \mathbb{R}$. As a result, we obtain F is a closed convex function.

(3) Prove that there exists $\epsilon > 0$ that only depends on μ_1 and μ_2 such that, if $\beta \leq \epsilon$, then (α, β, ξ) cannot be an optimal solution of the problem in Question (1).

Proof. Assume $F(\alpha, \beta, \xi) \geq \frac{1}{2}(\mu_2 - \mu_1^2)\beta^2 - \log \beta$, i.e.,

$$\begin{split} &\frac{1}{2}\alpha^2 - \mu_1\alpha\beta + \frac{1}{2}\mu_2\beta^2 - \log\beta + \rho\xi \geq \frac{1}{2}(\mu_2 - \mu_1^2)\beta^2 - \log\beta \\ \Leftrightarrow &\frac{1}{2}\alpha^2 - \mu_1\alpha\beta + \rho\xi \geq -\frac{1}{2}\mu_1^2\beta^2 \\ \Leftrightarrow &\left(\frac{1}{\sqrt{2}}\right)^2 - 2\frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}\mu_1\alpha\beta + \left(\frac{1}{\sqrt{2}}\mu_1\beta\right)^2 + \rho\xi \\ \Leftrightarrow &\left(\frac{1}{\sqrt{2}}\alpha - \frac{1}{\sqrt{2}}\mu_1\beta\right)^2 + \rho\xi \geq 0 \text{ (always true since } \rho\xi \geq 0 \text{ due to } \xi - \alpha \geq 0 \text{ and } \xi + \alpha \geq 0). \end{split}$$

As a consequence, we obtain

$$F(\alpha, \beta, \xi) \ge \frac{1}{2}(\mu_2 - \mu_1^2)\beta^2 - \log \beta.$$

Consider $(\alpha, \beta, \xi) = (0, 1, 0)$, we get

$$F(\alpha, \beta, \xi) = F(0, 1, 0) \ge \frac{1}{2}(\mu_2 - \mu_1^2) \ge \frac{1}{2}(\mu_2 - \mu_1^2) - \log \beta, \forall \beta > 0.$$
 (6)

Assume there exits $\epsilon > 0$ s.t. $\beta \leq \epsilon$, then

$$F(\alpha, \beta, \xi) = F(0, 1, 0) \ge \frac{1}{2}(\mu_2 - \mu_1^2) \ge \frac{1}{2}(\mu_2 - \mu_1^2) - \log \beta \ge \frac{1}{2}(\mu_2 - \mu_1^2) - \log \epsilon.$$

This means that (α, β, ξ) is no longer the minimizer of the F function. As a result, it can not be an optimal solution to the problem in Question (1).

(4) Prove that the minimization problem in Question (1) is then equivalent to minimizing F subject to the constraints $\beta \geq \epsilon$, $\xi - \alpha \geq 0$ and $\xi + \alpha \geq 0$, where ϵ satisfies the conditions of Question (3).

Proof. We have

$$\nabla_{\alpha,\beta,\xi}F(\alpha,\beta,\xi) = \left(\frac{\partial F}{\partial \alpha}, \frac{\partial F}{\partial \beta}, \frac{\partial F}{\partial \xi}\right) = \left(\alpha - \mu_1\beta, -\mu_1\alpha + \mu_2\beta - \frac{1}{\beta}, \rho\right).$$

Since $\nabla_{\alpha,\beta,\xi}F(0,1,0) = 0$, we obtain $(\alpha,\beta,\xi) = (0,1,0) \in \arg\min F$. On the other hand, since $\beta \geq \epsilon$ and $\epsilon > 0$ in Question (3), combining with the Inequality 6, we obtain

$$F(\alpha, \beta, \xi) = F(0, 1, 0) \ge \frac{1}{2}(\mu_2 - \mu_1^2) \ge \frac{1}{2}(\mu_2 - \mu_1^2) - \log \epsilon \ge \frac{1}{2}(\mu_2 - \mu_1^2) - \log \beta.$$

As a result, the minimization problem in Question (1) is then equivalent to minimizing F subject to the constraints $\beta \ge \epsilon$, $\xi - \alpha \ge 0$ and $\xi + \alpha \ge 0$, where $\epsilon > 0$.

(5) Prove that the KKT conditions characterize the solutions of the problem in Question (4), and that they can be reduced to:

$$\begin{cases} \alpha - \mu_1 \beta = \lambda_2 - \lambda_1 \\ -\mu_1 \alpha + \mu_2 \beta - \frac{1}{\beta} = 0 \\ \rho - \lambda_1 - \lambda_2 = 0 \\ \lambda_1 (\alpha - \xi) = 0 \\ \lambda_2 (\alpha + \xi) = 0 \end{cases}$$

where $\lambda_1, \lambda_2 \geq 0$ are Lagrange multipliers.

Proof. Let the set constraints $C = \mathcal{E} \cup \mathcal{I}$, where \mathcal{E} is equality and \mathcal{I} is inequality set constraints. Since the constraints in Question (4) include $\beta \geq \epsilon$, $\xi - \alpha \geq 0$ and $\xi + \alpha \geq 0$, where $\epsilon > 0$, we obtain the constrains C follows

$$\begin{cases} -\beta < 0 \\ \alpha - \xi \le 0 \\ -\xi - \alpha \le 0 \end{cases}$$

Let the active constraints $A(\alpha, \beta, \xi) = \{i \in \mathcal{C}, \gamma_i(\alpha, \beta, \xi) = 0\}$ at $(\alpha, \beta, \xi) \in \Omega$, we get

$$\begin{cases} \gamma_1(\alpha, \beta, \xi) = \alpha - \xi = 0 \\ \gamma_2(\alpha, \beta, \xi) = -\xi - \alpha = 0 \end{cases}$$

So, we have $\nabla \gamma_1(\alpha, \beta, \xi) = (1, 0, -1)$ and $\nabla \gamma_2(\alpha, \beta, \xi) = (-1, 0, -1)$, therefore, $(\nabla \gamma_i(\alpha, \beta, \xi), i \in A(\alpha, \beta, \xi))$ are linearly independent, as a consequence, $(\alpha, \beta, \xi)^* \in \arg \min F$ satisfy MF-CQ and $\exists \lambda_i, i \in \mathcal{C}$ s.t. satisfy the KKT condition

$$\begin{cases} \nabla_{\alpha,\beta,\xi} L((\alpha,\beta,\xi)^*,\lambda) = 0 & (\mathrm{I}) \\ \lambda_1 \ge 0, i \in \mathcal{I} & (\mathrm{II}) \\ \lambda_i \gamma_i ((\alpha,\beta,\xi)^*) = 0, i \in \mathcal{I} & (\mathrm{III}) \end{cases}$$

Consider condition (I) $\nabla_{\alpha,\beta,\xi}L((\alpha,\beta,\xi)^*,\lambda)=0$, we have

$$L((\alpha, \beta, \xi)^*, \lambda) = F(\alpha, \beta, \xi) + \sum_{i \in \mathcal{C}} \lambda_i \gamma_i(\alpha, \beta, \xi)$$
$$= \frac{1}{2} \alpha^2 - \mu_1 \alpha \beta + \frac{1}{2} \mu_2 \beta^2 - \log \beta + \rho \xi + \lambda_1 (\alpha - \xi) + \lambda_2 (-\xi - \alpha).$$

Calculate gradient w.r.t. α, β, ξ , we get

$$\nabla_{\alpha,\beta,\xi}L((\alpha,\beta,\xi)^*,\lambda) = \left(\alpha - \mu_1\beta + \lambda_1 - \lambda_2, -\mu_1\alpha + \mu_2\beta - \frac{1}{\beta}, \rho - \lambda_1 - \lambda_2\right).$$

So, $\nabla_{\alpha,\beta,\xi}L((\alpha,\beta,\xi)^*,\lambda)=0$ equivalent to

$$\begin{cases}
\alpha - \mu_1 \beta = \lambda_2 - \lambda_1 \\
-\mu_1 \alpha + \mu_2 \beta - \frac{1}{\beta} = 0 \\
\rho - \lambda_1 - \lambda_2 = 0
\end{cases}$$
(7)

Consider condition (II) $\lambda_1 \geq 0, i \in \mathcal{I}$, we get

$$\begin{cases} \lambda_1 \ge 0\\ \lambda_2 \ge 0 \end{cases} \tag{8}$$

Consider condition (III) $\lambda_i \gamma_i((\alpha, \beta, \xi)^*) = 0, i \in \mathcal{I}$, we get

$$\begin{cases} \lambda_1(\alpha - \xi) = 0 \\ \lambda_2(-\xi - \alpha) = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_1(\alpha - \xi) = 0 \\ \lambda_2(\alpha + \xi) = 0 \end{cases}$$
 (9)

Combine the result of 7, 8, and 9, we obtain the KKT conditions characterize the solutions of the problem in Question (4), and that they can be reduced to:

$$\begin{cases} \alpha - \mu_1 \beta = \lambda_2 - \lambda_1 \\ -\mu_1 \alpha + \mu_2 \beta - \frac{1}{\beta} = 0 \\ \rho - \lambda_1 - \lambda_2 = 0 \\ \lambda_1 (\alpha - \xi) = 0 \\ \lambda_2 (\alpha + \xi) = 0 \end{cases}$$

where $\lambda_1, \lambda_2 \geq 0$ are Lagrange multipliers.

(6) Find a necessary and sufficient condition on μ_1 , μ_2 and ρ for a solution to this system to satisfy $\alpha = 0$, and and provide the optimal β in that case.

Solution. The necessary and sufficient condition on μ_1 , μ_2 and ρ for a solution to this system to satisfy $\alpha = 0$ follows

$$\begin{cases} -\mu_1 \beta = \lambda_2 - \lambda_1 \\ \mu_2 \beta - \frac{1}{\beta} = 0 \\ \rho - \lambda_1 - \lambda_2 = 0 \\ -\lambda_1 \xi = 0 \\ \lambda_2 \xi = 0 \\ \lambda_1, \lambda_2, \xi \ge 0 \\ \rho, \beta > 0 \end{cases} \Leftrightarrow \begin{cases} \mu_1 = \frac{\lambda_1 - \lambda_2}{\beta} \\ \mu_2 = \frac{1}{\beta^2} \\ \rho = \lambda_1 + \lambda_2 \end{cases}$$

where $\lambda_1, \lambda_2 \geq 0$. Since the condition $\beta > 0$, we obtain the optimal of β in this case is $\beta = \frac{1}{\sqrt{\mu_2}}$.

- (7) Assume that the condition in Question (6) is not satisfied.
- (a) Prove that in that case, α has the same sign as μ_1 .

Proof. Let's consider the condition in Question (6) is not satisfied, i.e., $\alpha \neq 0$, then there are two cases $\alpha < 0$ and $\alpha > 0$. From the KKT conditions in Question (4), α must satisfy the conditions that follow

$$\begin{cases} \lambda_1(\alpha - \xi) = 0\\ \lambda_2(\alpha + \xi) = 0\\ \lambda_1 + \lambda_2 = \rho > 0\\ \lambda_1, \lambda_2, \xi \ge 0 \end{cases}$$

Therefore, the solution to these equations are

$$\begin{cases} \alpha = \xi > 0 \\ \lambda_2 = 0 \\ \lambda_1 > 0 \end{cases} \quad \begin{cases} \alpha = -\xi < 0 \\ \lambda_1 = 0 \\ \lambda_2 > 0 \end{cases}$$
 (10)

Replace these solutions to the KKT condition $\alpha - \mu_1 \beta = \lambda_2 - \lambda_1$, we obtain

$$\beta = \begin{cases} \frac{\alpha + \lambda_1}{\mu_1} & \text{with } \alpha, \lambda_1 > 0\\ \frac{\alpha - \lambda_2}{\mu_1} & \text{with } \alpha < 0, \lambda_2 > 0 \end{cases}$$

Assume α and μ_1 has a different sign, then $\beta \leq 0$ for both case and contradict with the condition that $\beta > 0$. As a consequence, we obtain α has the same sign as μ_1 .

(b) Completely describe the solution of the system, separating the cases $\mu_1 > 0$ and $\mu_1 < 0$. Solution. Recall the system from the KKT condition,

$$\begin{cases} \alpha - \mu_1 \beta = \lambda_2 - \lambda_1 \text{ (I)} \\ -\mu_1 \alpha + \mu_2 \beta - \frac{1}{\beta} = 0 \text{ (II)} \\ \rho - \lambda_1 - \lambda_2 = 0 \text{ (III)} \\ \lambda_1 (\alpha - \xi) = 0 \text{ (IV)} \\ \lambda_2 (\alpha + \xi) = 0 \text{ (V)} \end{cases}$$

where $\lambda_1, \lambda_2 \geq 0$. From (I), we have $\alpha = \lambda_2 - \lambda_1 + \mu_1 \beta$. Replace this α to (II), and we get

$$-\mu_{1}(\lambda_{2} - \lambda_{1} + \mu_{1}\beta) + \mu_{2}\beta - \frac{1}{\beta} = 0$$

$$\Leftrightarrow (\mu_{2} - \mu_{1}^{2})\beta + (\lambda_{1} - \lambda_{2})\mu_{1} - \frac{1}{\beta} = 0$$

$$\Leftrightarrow (\mu_{2} - \mu_{1}^{2})\beta^{2} + (\lambda_{1} - \lambda_{2})\mu_{1}\beta - 1 = 0 \text{ (due to } \beta > 0).$$

Calculate Δ from this Equation, we have

$$\Delta = (\lambda_1 - \lambda_2)^2 \mu_1^2 + 4(\mu_2 - \mu_1^2).$$

Therefore, we obtain the solution of β includes

$$\beta = \begin{cases} \frac{(\lambda_2 - \lambda_1)\mu_1 - \sqrt{(\lambda_1 - \lambda_2)^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)} \\ \frac{(\lambda_2 - \lambda_1)\mu_1 + \sqrt{(\lambda_1 - \lambda_2)^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)} \end{cases}$$

Let's consider $\mu_1 > 0$, using the result $\alpha = \xi > 0$, $\lambda_2 = 0$, $\lambda_1 > 0$ from 10, we obtain

$$\beta = \begin{cases} \frac{-\lambda_1 \mu_1 - \sqrt{\lambda_1^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)} \le 0 \text{ (contradiction with } \beta > 0) \\ \frac{-\lambda_1 \mu_1 + \sqrt{\lambda_1^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)} \end{cases}$$

Replace this β to (I), we obtain

$$\alpha = -\lambda_1 + \mu_1 \frac{-\lambda_1 \mu_1 + \sqrt{\lambda_1^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)}.$$

As a consequence, for $\mu_1 > 0$, we have the solution of the system from KKT conditions are

$$\begin{cases} \alpha = -\lambda_1 + \mu_1 \frac{-\lambda_1 \mu_1 + \sqrt{\lambda_1^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)} \\ \beta = \frac{-\lambda_1 \mu_1 + \sqrt{\lambda_1^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)} \\ \xi = -\lambda_1 + \mu_1 \frac{-\lambda_1 \mu_1 + \sqrt{\lambda_1^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)}. \end{cases}$$

Similarly, consider $\mu_1 < 0$, using the result $\alpha = -\xi < 0, \lambda_1 = 0, \lambda_2 > 0$ from 10, we obtain

$$\beta = \begin{cases} \frac{\lambda_2 \mu_1 - \sqrt{\lambda_2^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)} \le 0 \text{ (contradiction with } \beta > 0) \\ \frac{\lambda_2 \mu_1 + \sqrt{\lambda_2^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)} \end{cases}$$

Replace this β to (I), we obtain

$$\alpha = \lambda_2 + \mu_1 \frac{\lambda_2 \mu_1 + \sqrt{\lambda_2^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)}.$$

As a consequence, for $\mu_1 < 0$, we have the solution of the system from KKT conditions are

$$\begin{cases} \alpha = -\lambda_2 + \mu_1 \frac{\lambda_2 \mu_1 + \sqrt{\lambda_2^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)} \\ \\ \beta = \frac{\lambda_2 \mu_1 + \sqrt{\lambda_2^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)} \\ \\ \xi = -\lambda_2 - \mu_1 \frac{\lambda_2 \mu_1 + \sqrt{\lambda_2^2 \mu_1^2 + 4(\mu_2 - \mu_1^2)}}{2(\mu_2 - \mu_1^2)}. \end{cases}$$

- (8) Summarize this discussion and prove that one of the two following statements holds (with extra credit if you probe both, i.e., prove that they give the same solution).
- (a) The optimal parameters can be computed as follows
 - If $\mu_1^2 \le \rho^2 \mu_2$: $\hat{m} = 0$, $\hat{\sigma} = \sqrt{\mu_2}$.
 - If $\mu_1^2 > \rho^2 \mu_2$:

$$\hat{m} = \mu_1 - sign(\mu_1)\rho\hat{\sigma}$$

$$\hat{\sigma} = \frac{2s^2}{\sqrt{\rho^2\mu_1^2 + 4s^2} - \rho|\mu_1|},$$

with $s^2 = \mu_2 - \mu_1^2$.

Proof. Consider $\mu_1^2 \leq \rho^2 \mu_2$, from the result of Question (6), we know $\mu_1 = \frac{\lambda_1 - \lambda_2}{\beta}$, $\mu_2 = \frac{1}{\beta^2}$, and $\rho = \lambda_1 + \lambda_2$ is necessary and sufficient condition for a solution of the system from KKT conditions to satisfy $\alpha = 0$ with the optimal of $\beta = \frac{1}{\sqrt{\mu_2}}$. So, replace these condition into $\mu_1^2 \leq \rho^2 \mu_2$, we obtain

$$\frac{(\lambda_1 - \lambda_2)^2}{\sigma^2} \le \frac{(\lambda_1 + \lambda_2)^2}{\sigma^2} \text{ (true for } \lambda_1, \lambda_2 \ge 0). \tag{11}$$

As a result, $\mu_1^2 \le \rho^2 \mu_2$ satisfy $\alpha = 0$. Since $\alpha = \frac{\hat{m}}{\hat{\sigma}}$ and $\beta = \frac{1}{\hat{\sigma}}$, with $\alpha = 0$ and $\beta = \frac{1}{\sqrt{\mu_2}}$ for $\mu_1^2 \le \rho^2 \mu_2$, we obtain

$$\hat{m} = 0, \hat{\sigma} = \sqrt{\mu_2}.$$

Consider $\mu_1^2 \ge \rho^2 \mu_2$, Inequality 11 and the result above implies $\mu_1^2 \ge \rho^2 \mu_2$ satisfy $\alpha > 0$ and $\alpha < 0$. Since $\alpha = \frac{\hat{m}}{\hat{\sigma}}$ and $\beta = \frac{1}{\hat{\sigma}}$, combining with the result of α, β from Question (7) for both case $\alpha > 0$ and $\alpha < 0$, we obtain

$$\hat{m} = \mu_1 - sign(\mu_1)\rho\hat{\sigma}
\hat{\sigma} = \frac{2s^2}{\sqrt{\rho^2\mu_1^2 + 4s^2} - \rho|\mu_1|},$$

with $s^2 = \mu_2 - \mu_1^2$.

(b) The optimal parameters are

$$\hat{m} = sign(\mu_1) \max(0, |\mu_1| - \rho \hat{\sigma})$$

$$\hat{\sigma} = \min\left(\sqrt{\mu_2}, \frac{2s^2}{\sqrt{\rho^2 \mu_1^2 + 4s^2} - \rho|\mu_1|}\right)$$

with $s^2 = \mu_2 - \mu_1^2$.

Proof. From Question (6) and (7), we know there are three cases for the solution of the system from KKT conditions, which includes

$$\begin{cases} \hat{m} = 0, \hat{\sigma} = \sqrt{\mu_2}, & \alpha = 0\\ \hat{m} = \mu_1 - sign(\mu_1)\rho\hat{\sigma}, \hat{\sigma} = \frac{2s^2}{\sqrt{\rho^2 \mu_1^2 + 4s^2 - \rho |\mu_1|}}, & \alpha > 0 \text{ and } \alpha < 0 \end{cases}$$
(12)

Since α has the same sign with μ_1 if $\alpha \neq 0$ (result from Question (7)), the system 12 equivalents

$$\begin{cases} \hat{m} = 0, \hat{\sigma} = \sqrt{\mu_2}, \quad \alpha = 0\\ \hat{m} = sign(\mu_1)(|\mu_1| - \rho\hat{\sigma}), \hat{\sigma} = \frac{2s^2}{\sqrt{\rho^2 \mu_1^2 + 4s^2 - \rho|\mu_1|}}, \quad \alpha > 0 \text{ and } \alpha < 0 \end{cases}$$

Therefore, to maximize the penalized log-likelihood

$$G(m,\sigma) = \sum_{k=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_k - m)^2}{2\sigma^2}\right) \right] + N\rho \frac{|m|}{\sigma},$$

the optimal parameter must be the maximum of m and minimum of σ , i.e.,

$$\hat{m} = sign(\mu_1) \max(0, |\mu_1| - \rho \hat{\sigma})$$

$$\hat{\sigma} = \min\left(\sqrt{\mu_2}, \frac{2s^2}{\sqrt{\rho^2 \mu_1^2 + 4s^2} - \rho|\mu_1|}\right)$$

with $s^2 = \mu_2 - \mu_1^2$.

(9) What happens when $\rho \geq 1$?

Solution. Since $s^2 = \mu_2 - \mu_1^2$ and $s^2 \ge 0$, we get $\mu_1^2 \le \mu_2$. If $\rho \ge 1$, let's consider two cases of condition for μ_1, μ_2 , we have

$$\begin{cases} \mu_1^2 \le \rho^2 \mu_2 \\ \mu_1^2 \ge \rho^2 \mu_2 \text{ contradict with } \mu_1^2 \le \mu_2 \end{cases}$$

Therefore, only $\mu_1^2 \le \rho^2 \mu_2$ satisfy $\rho \ge 1$. Using the result from Question (8), we obtain the corresponding optimal parameter of the objective function when $\mu_1^2 \le \rho^2 \mu_2$, i.e., $\rho \ge 1$ is

$$\hat{m} = 0, \quad \hat{\sigma} = \sqrt{\mu_2}.$$

(10) Program the estimator described in Question (8), and apply it to each of the K = 500 columns in the file project4_Gaussians.csv (each column has dimension N = 100). Let m_k, σ_k denote the mean and standard deviation estimated for column k.

Provide, sorted in increasing order, the indexes of the columns for which $m_k \neq 0$. Also provide a histogram of $(\sigma_1, \dots, \sigma_k)$. Take $\rho = 0.25$.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def estimate_Gaussians(X, rho):
    \mathrm{Mu}, \ \mathrm{Sigma} \ = \ [\,] \ , \quad [\,]
     Mu_1 = np.mean(X, axis = 0)
     Mu_2 = np.mean(np.square(X), axis = 0)
     S_square = Mu_2 - np.square(Mu_1)
     tmp\_1 \,=\, np.\, sqrt\, (Mu\_2)
     tmp_2 = (2*S\_square)/(np.sqrt(rho**2 * Mu_1**2 + 4*S\_square) - rho*np.abs(Mu_1))
     for i in range (len(tmp_-1)):
          tmp\_s \, = \, \min \, (\, tmp\_1 \, [\, i \, ] \, , \ tmp\_2 \, [\, i \, ] \, )
          Sigma.append(tmp_s)
          Mu.append(np.sign(Mu.1[i]) * max(0, np.abs(Mu.1[i]) - rho * tmp_s))
     return np.array (Mu), np.array (Sigma)
if __name__ == "__main__":
    X = pd.read\_csv\left( 'homework4\_data/project4\_Gaussians.csv'\right)
     X = X.drop(['Unnamed: 0'], axis = 1).to_numpy()
     X = np.squeeze(X)
    Mu, \; Sigma = \; estimate\_Gaussians (X, \; \; 0.25)
     print ("The indexes of the columns for which " + r'$m_k\neq0$' + " is: ")
     for i in range (len (Mu)):
          if Mu[i] != 0:
               \texttt{print}\,(\,i\;,\;\; \texttt{end} \;\; = "\;\;"\,)
     print()
     plt.hist(Sigma)
     plt. hlsb('glma')
plt. xlabel('Standard deviation ' + r'$\sigma$' + ' value')
plt. ylabel('Frequency')
plt. title("Histogram of " + r'$(\sigma_1,\cdots,\sigma_k)$')
     plt.savefig("problem1.pdf")
```

Result:

The indexes of the columns for which $m_k \neq 0$ is:

 $1\ 23\ 35\ 37\ 61\ 69\ 115\ 159\ 183\ 247\ 252\ 254\ 263\ 275\ 277\ 279\ 304\ 343\ 348\ 355\ 369\ 372\ 380\ 419\ 423\ 424\ 453\ 467\ 475\ 478\ 483\ 489$

Figure 1: Histogram of $(\sigma_1, \dots, \sigma_k)$.

2 Problem 2

Fix a number c > 0 and let Ω_c be the ℓ^1 -norm ball with radius c,

$$\Omega_c = \{ x \in \mathbb{R}^n : |x^{(1)}| + \dots + |x^{(n)}| \le c \}.$$

One can prove (see Problem set 3, Problem V) that, for $y \in \mathbb{R}^n$, $y \notin \Omega_c$, $x = proj_{\Omega_c}(y)$ is such that

$$x^{(j)} = sign(y^{(j)}) \max(|y^{(j)}| - \lambda, 0)$$

with

$$f_y(\lambda) := \sum_{j=1}^n \max(|y^{(j)}| - \lambda, 0) = c$$

(1) Define

- $\lambda_0 = \max\{|y^{(j)}|: f_y(|y^{(j)}|) \ge c\}$ if there exists j such that $f_y(|y^{(j)}|) \ge c$, and $\lambda_0 = 0$ otherwise,
- $\lambda_1 = \min\{|y^{(j)}| : f_y(|y^{(j)}|) \le c\}.$

Justify the existence of λ_0, λ_1 when $y \notin \Omega_c$ and prove that the value of λ such that $f_y(\lambda) = c$ is then given by

$$\lambda = \begin{cases} \lambda_0 + \frac{c - f_y(\lambda_0)}{f_y(\lambda_0) - f_y(\lambda_1)} (\lambda_0 - \lambda_1) & \text{if } \lambda_0 < \lambda_1\\ \lambda_0 & \text{if } \lambda_0 = \lambda_1 \end{cases}$$

Proof. When $y \notin \Omega$, if there exists j such that $f_y(|y^{(j)}|) \geq c$, then we have

$$\{|y^{(j)}|: f_y(|y^{(j)}|) \ge c\} \ne \emptyset$$

therefore, if $\lambda_0 = \max\{|y^{(j)}|: f_y(|y^{(j)}|) \ge c\}$, then λ_0 always exists. Otherwise, with $\lambda_0 = 0$, then λ_0 also exists.

On the other hand, consider $a, b \in \{1, \dots, n\}$, due to $|y^{(a)}|, |y^{(b)}| \ge 0$, then if $|y^{(a)}| \le |y^{(b)}|$, we always have

$$f_y(|y^{(a)}|) \ge f_y(|y^{(b)}|).$$

Therefore, for $|y^{(j)}| \ge 0, \forall j \in \{1, \dots, n\}$, we obtain

$$f_y(0) \ge |y^{(j)}| \Rightarrow \{||y^{(j)}| : f_y(|y^{(a)}|) \le c\} \ne \emptyset.$$

As a result, if $\lambda_1 = \min\{|y^{(j)}| : f_y(|y^{(j)}|) \le c\}$, then λ_1 always exits. If $\lambda_0 = \lambda_1$, then we have

$$\max\{|y^{(j)}|: f_y(|y^{(j)}|) \ge c\} = \min\{|y^{(j)}|: f_y(|y^{(j)}|) \le c\} \Leftrightarrow f_y(|y^{(j)}|) = c \Rightarrow \lambda = \lambda_0 = \lambda_1.$$
 (13)

If $\lambda_0 < \lambda_1$, we have

$$f_y(\lambda_0) - f_y(\lambda_1) = \sum_{j=1}^n \max(|y^{(j)}| - \lambda_0 - |y^{(j)}| + \lambda_1, 0) = \sum_{j=1}^n \max(\lambda_1 - \lambda_0, 0) = n(\lambda_1 - \lambda_0).$$

Replace this equation with the expressions

$$\lambda_0 + \frac{c - f_y(\lambda_0)}{f_y(\lambda_0) - f_y(\lambda_1)} (\lambda_0 - \lambda_1)$$

we get

$$\lambda_{0} + \frac{c - f_{y}(\lambda_{0})}{f_{y}(\lambda_{0}) - f_{y}(\lambda_{1})} (\lambda_{0} - \lambda_{1}) = \lambda_{0} + \frac{1}{n} (f_{y}(\lambda_{0}) - c)$$

$$= \lambda_{0} + \frac{1}{n} \sum_{i=1}^{n} \max(|y^{(j)}| - \lambda_{0} - |y^{(j)}| + \lambda, 0)$$

$$= \lambda_{0} + \frac{1}{n} \sum_{i=1}^{n} \max(\lambda - \lambda_{0}, 0).$$
(14)

Let's consider $\lambda \geq \lambda_0$, from 14, we obtain

$$\lambda_0 + \frac{1}{n} \sum_{i=1}^n \max(\lambda - \lambda_0, 0) = \lambda_0 + \frac{1}{n} n(\lambda - \lambda_0) = \lambda.$$
 (15)

Otherwise, if $\lambda < \lambda_0$, we get

$$\sum_{i=1}^{n} \max(\lambda - \lambda_0, 0) = 0 \Rightarrow f_y(\lambda_0) = c \Rightarrow \lambda = \lambda_0 \Rightarrow \text{contradict with } \lambda < \lambda_0.$$

As a consequence, combining the result from 14 and 15, if $\lambda_0 < \lambda_1$, then

$$\lambda = \lambda_0 + \frac{c - f_y(\lambda_0)}{f_y(\lambda_0) - f_y(\lambda_1)} (\lambda_0 - \lambda_1).$$

Combining with the result from 13, we obtain

$$\lambda = \begin{cases} \lambda_0 + \frac{c - f_y(\lambda_0)}{f_y(\lambda_0) - f_y(\lambda_1)} (\lambda_0 - \lambda_1) & \text{if } \lambda_0 < \lambda_1 \\ \lambda_0 & \text{if } \lambda_0 = \lambda_1 \end{cases}$$

(2) Write a program that takes y and c as inputs and returns $proj_{\Omega_c}(y)$ using this solution. Apply this program to the vector in the file project4_vector.csv, which has dimension 10000. Return, for $c \in \{5, 10, 20, 100\}$, the value of $|y - proj_{\Omega_c}(y)|^2$.

```
import numpy as np
import pandas as pd
def func_f(y, lmda):
    out = np.abs(y) - lmda
    out = out * (out >= 0)
    return np.sum(out)
def find_lambda(y, c):
    list_lmd_0, list_lmd_1 = [], []
    for i in range(len(y)):
        tmp = func_f(y, np.abs(y[i]))
        if tmp >= c:
            list_lmd_0.append(np.abs(y[i]))
        if tmp \ll c:
            list_lmd_1.append(np.abs(y[i]))
    lmda_1 = min(list_lmd_1)
    if len(list_lmd_0) != 0:
        lmda_0 = max(list_lmd_0)
        lmda_0 = 0
    if lmda_0 = lmda_1:
        return lmda_0
    return \ lmda_0 + ((c - func_f(y, \ lmda_0)) / (func_f(y, \ lmda_0) - func_f(y, \ lmda_1))) \ * \ (lmda_0 - lmda_1)
def project(y, c):
    lmda = find_lambda(y, c)
    x = np.abs(y) - lmda
    x = x * (x >= 0)
    x = np. sign(y) * x
    return x
def problem2_2():
    y = pd.read_csv('homework4_data/project4_vector -1.csv')
    y = y.drop(['Unnamed: 0'], axis = 1).to_numpy()
    y = np.squeeze(y)
    list_c = [5, 10, 20, 100]
    for c in list_c:
        out = np.linalg.norm(y - project(y, c))**2
        print("The value of " + r' \$ | y - proj_{\{\Omega\_c\}}(y)|^2 \$' + " \ for \ c = " + str(c) + " \ is: " + str(out))
if __name__ == "__main__":
    problem2_2()
```

Result:

The value of $|y - proj_{\Omega_c}(y)|^2$ for c = 5 is: 9797.346376053942

The value of $|y - proj_{\Omega_c}(y)|^2$ for c = 10 is: 9768.217407278022

The value of $|y - proj_{\Omega_c}(y)|^2$ for c = 20 is: 9713.883606540363

The value of $|y - proj_{\Omega_c}(y)|^2$ for c = 100 is: 9340.632835889344

(3) Let $u \in \mathbb{R}^n$ be given. Define $g_u(x) = u^{\top}x$. Let $J = \arg\max\{|u^{(j)}|, j = 1, \dots, n\}$. Prove that

$$\arg\min_{\Omega_c} g_u = \left\{ -c \sum_{j \in J} sign(u^{(j)}) \rho^{(j)} e_j : \sum_{j \in J} \rho^{(j)} = 1, \rho^{(j)} \ge 0, j \in J \right\}$$

where e_1, \dots, e_n form the canonical basis of \mathbb{R}^n .

Proof. We have $\Omega_c = \{x \in \mathbb{R}^n : |x^{(1)}| + \cdots + |x^{(n)}| \le c\}$, with c > 0, so, Ω_c being defined by affine inequalities, the KKT conditions apply with the Lagrangian

$$L(x,\lambda) = u^{\top} x + \lambda (|x^{(1)}| + \dots + |x^{(n)}| - c)$$

= $u^{(1)} x^{(1)} + \dots + u^{(n)} x^{(n)} + \lambda (|x^{(1)}| + \dots + |x^{(n)}| - c).$

Calculate the gradient, and we

$$\nabla_x L(x,\lambda) = \left(\frac{\partial L}{\partial x^{(1)}}, \cdots, \frac{\partial L}{\partial x^{(n)}}\right) = \left(u^{(1)} + \lambda \frac{x^{(1)}}{|x^{(1)}|}, \cdots, u^{(n)} + \lambda \frac{x^{(n)}}{|x^{(n)}|}\right).$$

If $x \in \arg\min_{\Omega_c} g_u$, then x must satisfies the KKT conditions

$$\begin{cases} \nabla_x L(x,\lambda) = 0 & \text{(I)} \\ \lambda \ge 0 & \text{(II)} \\ \lambda(|x^{(1)}| + \dots + |x^{(n)}| - c) = 0 & \text{(III)} \end{cases}$$

From (I), we have $u^{(i)} + \lambda \frac{x^{(i)}}{|x^{(i)}|} = 0$, $\forall i \in \{1, \dots, n\}$, replace into (III) and we get

$$\lambda \left(\frac{-\lambda x^{(1)}}{u^{(1)}} - \dots - \frac{\lambda x^{(n)}}{u^{(n)}} - c \right) = 0.$$

$$(16)$$

Combining condition (II) with the result from Question (1), we have $\lambda = \max\{|u^{(j)}| : f_u(|u^{(j)}|) \ge c\}$ if $f_u(|u^{(j)}|) \ge c$, otherwise, $\lambda = 0$. So, if $\lambda > 0$, we have 16 equivalents

$$-\lambda \left(\frac{x^{(1)}}{u^{(1)}} + \dots + \frac{x^{(n)}}{u^{(n)}}\right) - c = 0$$

$$\Rightarrow x^{(i)} = u^{(i)} \left(\frac{-c}{\lambda} - \sum_{j=1, j \neq i}^{n} \frac{x^{(j)}}{u^{(j)}}\right)$$

$$\Leftrightarrow x^{(i)} = -c \left(\frac{u^{(i)}}{\lambda} + \sum_{j=1, j \neq i}^{n} \frac{u^{(i)}x^{(j)}}{u^{(j)}c}\right), \forall i \in \{1, \dots, n\}.$$

$$(17)$$

Replace $J = \arg \max\{|u^{(j)}|, j = 1, \dots, n\}$ into 17, we obtain

$$x = \arg\min_{\Omega_c} g_u = \left\{ -c \sum_{j \in J} sign(u^{(j)}) \rho^{(j)} e_j : \sum_{j \in J} \rho^{(j)} = 1, \rho^{(j)} \ge 0, j \in J \right\}$$

where e_1, \dots, e_n form the canonical basis of \mathbb{R}^n .

(4) Let $\alpha_t = 2/(2+t)$. Prove that the iterations

$$\begin{cases} x_{t+1} = (1 - \alpha_t)x_t - c\alpha_t sign(x_t^{(j_t)} - y^{(j_t)})e_{j_t} \\ j_t \in \arg\max\{|x_t^{(j)} - y^{(j)}|, j = 1, \dots, n\} \end{cases}$$

with $x_0 = 0$, converges to $x = proj_{\Omega_c} y$.

Proof. Using the result from Question (3), we have the iterations equivalents to

$$x_{t+1} = (1 - \alpha_t)x_t + \alpha_t \underset{\Omega_c}{\operatorname{arg\,min}} (x \mapsto (x_t - y)^\top x)$$

$$\Leftrightarrow x_{t+1} = (1 - \alpha_t)x_t + \alpha_t \underset{\Omega_c}{\operatorname{arg\,min}} ((x_t - y)^\top (x - x_t)).$$

Let $\nabla F(x_t) = x_t - y$, then we have $x^* = proj_{\Omega_c} y$, with $\alpha_t = 2/(2+t)$, we always have

$$(1 - \rho \alpha_t) \alpha_t \le \alpha_{t+1} \le \alpha_t$$

for $\rho = 1/2$. Therefore, apply the Theorem of the conditional gradient algorithm, we get

$$F(x_t) - F(x^*) \le \frac{2LD^2}{2+t}, t \ge 1$$

with $D = \max\{|x-y| : x, y \in \Omega_c\}$. As a consequence, with $x_0 = 0$, we obtain x_t converges to $\operatorname{proj}_{\Omega_c} y$. \square

(5) Program this algorithm, taking as input y and c and using $T = 10^4$ iterations. Using again the vector in project4_vector.csv, return, for $c \in \{5, 10, 20, 100\}$, the value of $|y-x_T|^2$ and of $|x_T-proj_{\Omega_c}(y)|^2$, where x_T is the output of the algorithm, and $proj_{\Omega_c}(y)$ was computed in Question (2).

```
def conditional_grad(y, c):
    def find_{-j}(x, y):
         j, \max_{-j} = 0, 0
         for i in range(len(y)):
             tmp = np.abs(x[i]-y[i])
             if \max_{-j} < \text{tmp}:
                  \max_{-j} = tmp
         return i
    x = np.zeros(len(y))
    for t in range (10000):
         alpha = 2/(2+t)
         j = find_{-j}(x, y)
         e = np.zeros(len(y))
         e[j] = 1
         x = (1-alpha)*x-c*alpha*np.sign(x[j]-y[j])*e
    return x
def problem2_5():
    y = pd.read_csv('homework4_data/project4_vector -1.csv')
    y = y.drop(['Unnamed: 0'], axis = 1).to_numpy()
    y = np.squeeze(y)
    list_c = [5, 10, 20, 100]
    for c in list_c:
         x_T = conditional_grad(y, c)
         print ("The value of " + r' |y-x_T|^2 " for c = " + str(c) + " is: "
                + \operatorname{str}(\operatorname{np.linalg.norm}(y - x_T) **2))
         print("The value of " + r' | x_T - proj_{\Omega_c}(y)|^2 " + " for c = " + str(c) + " is: "
               + str(np.linalg.norm(x_T - project(y, c))**2))
if __name__ == "__main__":
    problem2_5()
The value of |y - x_T|^2 for c = 5 is: 9797.346377942433
The value of |x_T - proj_{\Omega_c}(y)|^2 for c = 5 is: 1.8884932352928527e-06
The value of |y - x_T|^2 for c = 10 is: 9768.217424264963
The value of |x_T - proj_{\Omega_c}(y)|^2 for c = 10 is: 1.2463814546991488e-05
The value of |y - x_T|^2 for c = 20 is: 9713.883736900732
The value of |x_T - proj_{\Omega_c}(y)|^2 for c = 20 is: 0.00010089560776718761
The value of |y - x_T|^2 for c = 100 is: 9340.645931864432
The value of |x_T - proj_{\Omega_c}(y)|^2 for c = 100 is: 0.010320629431984777
```

(6) Let m > 0 be an integer and assume that a vector $b \in \mathbb{R}^m$ and and $m \times n$ matrix A is given. Let $F(x) = \frac{1}{2}|Ax - b|^2$, for $x \in \mathbb{R}^n$. Prove that the iterations

$$\begin{cases} x_{t+1} = (1 - \alpha_t)x_t - c\alpha_t sign(u_t^{(j_t)})e_{j_t} \\ j_t \in \arg\max\{|u_t^{(j)}|, j = 1, \dots, n\} \\ u_t = A^{\top}(Ax_t - b) \end{cases}$$

with $x_0 = 0$, $\alpha_t = 2/(2+t)$, converges to $x \in \underset{\Omega_c}{\arg \min} F$.

Proof. We have

$$F(x) = \frac{1}{2} \left(|Ax|^2 - 2(Ax)^{\top} b + |b|^2 \right)$$

Calculate the gradient, and we get:

$$\nabla F(x) = A^{\top} (Ax_t - b) = u_t.$$

Using the result from Question (3), we have the iterations equivalents to

$$x_{t+1} = (1 - \alpha_t)x_t + \alpha_t \underset{\Omega_c}{\operatorname{arg\,min}} (x \mapsto u_t^\top x)$$

$$\Leftrightarrow x_{t+1} = (1 - \alpha_t)x_t + \alpha_t \underset{\Omega_c}{\operatorname{arg\,min}} (\nabla F(x_t)^\top (x - x_t)).$$

So, let $x^* \in \underset{\Omega_c}{\operatorname{arg\,min}} F$, with $\alpha_t = 2/(2+t)$, we always have

$$(1 - \rho \alpha_t) \alpha_t \le \alpha_{t+1} \le \alpha_t$$

for $\rho = 1/2$. Therefore, apply the Theorem of the conditional gradient algorithm, we get

$$F(x_t) - F(x^*) \le \frac{2LD^2}{2+t}, t \ge 1$$

with $D=\max\{|x-y|:x,y\in\Omega_c\}$. As a consequence, with $x_0=0$, we obtain x_t converges to $\underset{\Omega_c}{\arg\min}F$.

(7) Program this algorithm, taking as input the matrix A and the vector b. Run this program with $T=10^5$ iterations, using the data in project4_regression_A.csv and project4_regression_b.csv, for which m=500 and n=1000. For each value of $c \in \{5,10,15\}$ provide the values of the residual error, $|Ax_T-b|^2$, and the indexes, listed in increasing order, of the c largest numbers in the set $\{x_T^{(k)}, k=1, \cdots, n\}$.

```
def\ conditional\_grad\_2\,(A,\ b\,,\ c\,)\colon
     def find_j(u):
         j, \max_{-j} = 0, 0
         for i in range(len(u)):
              tmp = np.abs(u[i])
              if \max_{j} < \text{tmp}:
                  \max_{-j} = tmp
                  j = i
         return i
    x = np.zeros(A.shape[1])
    for t in range (100000):
         u = np.dot(A.T, np.dot(A,x)-b)
         alpha = 2/(2+t)
         j = find_{-j}(u)
         e = np.zeros(A.shape[1])
         e[j] = 1
         x = (1-alpha)*x-c*alpha*np.sign(u[j])*e
     return x
def problem2_7():
    A = pd.read_csv('homework4_data/project4_regression_A -1.csv')
    A = A.drop(['Unnamed: 0'], axis = 1).to_numpy()
    A = np.squeeze(A)
    b = pd.read_csv('homework4_data/project4_regression_b.csv')
    b = b.drop(['Unnamed: 0'], axis = 1).to_numpy()
    b = np.squeeze(b)
     list_c = [5, 10, 15]
     for c in list_c:
         x_T = conditional_grad_2(A, b, c)
         print ("The value of " + r' |Ax_T - b|^2 " for c = " + str(c) + " is: "
                + \ str\left(np. \, linalg. norm\left(np. \, dot\left(A, x\_T\right) - b\right) **2\right))
         \begin{array}{l} list\_max\_x\_T = np.sort(x\_T)[-c:] \\ print("The indexes of the $c = " + str(c) + " largest number in the set " \end{array}
                + r' \{x_T^{(k)}\}, k=1, cdots, n\} 
         for k in range (A. shape [1]):
              if x_T[k] in list_max_x_T:
                   print (k, end = "")
         print()
if __name__ == "__main__":
     problem2_7()
Result:
The value of |Ax_T - b|^2 for c = 5 is: 1361.2936729535782
The indexes of the c = 5 largest number in the set \{x_T^{(k)}, k=1,\cdots,n\} is: 104 362 372 619 767
The value of |Ax_T - b|^2 for c = 10 is: 42.69954220008175
The indexes of the c = 10 largest number in the set \{x_T^{(k)}, k = 1, \dots, n\} is: 104 362 372 451 477 538 619
629 767 789
The value of |Ax_T - b|^2 for c = 15 is: 0.002448971584146125
The indexes of the c = 15 largest number in the set \{x_T^{(k)}, k = 1, \dots, n\} is: 104 217 362 372 451 477 520
523 538 619 629 767 789 863 990
```

(8) Program the projected gradient descent algorithm

$$x_{t+1} = proj_{\Omega_c}(x_t - \alpha \nabla F(x_t))$$

for the function F in Question (6), with $x_0 = 0$. This algorithm should take as input A, b and α and the vector b. Run this algorithm with the data in project4_regression_A.csv and project4_regression_b.csv and for $c \in \{5, 10, 15\}$, with $T = 10^5$ iterations. For each value of c provide the values of the residual error, $|Ax_T - b|^2$, and the indexes, listed in increasing order, of the c largest numbers in the set $\{x_T^{(k)}, k = 1, \dots, n\}$. Use $\alpha = 10^{-3}$ for c = 5, 10 and $\alpha = 10^{-4}$ for c = 15.

```
def\ projected\_GD\left(A,\ b\,,\ c\,,\ alpha\,\right)\colon
    x = np. zeros(A. shape[1])
     for t in range (100000):
         grad = np. dot(A.T, np. dot(A,x)-b)
         x = project(x-alpha*grad, c)
     return x
def problem2_8():
    A = pd.read_csv('homework4_data/project4_regression_A -1.csv')
    A = A. drop(['Unnamed: 0'], axis = 1).to_numpy()
    A = np. squeeze(A)
    b = pd.read_csv('homework4_data/project4_regression_b.csv')
    b = b.drop(['Unnamed: 0'], axis = 1).to_numpy()
    b = np.squeeze(b)
     list_c = [5, 10, 15]
     list_alpha = [1e-3, 1e-3, 1e-4]
     for i in range(len(list_c)):
         c = list_c[i]
         alpha = list_alpha[i]
         x_T = projected_GD(A, b, c, alpha)
         print ("The value of " + r' |Ax_T - b|^2 " for c = " + str(c) + " is: "
                + str(np.linalg.norm(np.dot(A,x_T)-b)**2))
         \begin{array}{l} list\_max\_x\_T = np.sort\,(x\_T)[-c:] \\ print("The indexes of the $c = " + str(c) + " largest number in the set " \\ \end{array}
               + r' \x_T^{(k)}, k=1, \cdots, n \
         for k in range (A. shape [1]):
              if x_T[k] in list_max_x_T:
                  print(k, end = "")
         print()
if __name__ == "__main__":
     problem2_8()
Result:
The value of |Ax_T - b|^2 for c = 5 is: 1361.2936662674565
The indexes of the c = 5 largest number in the set \{x_T^{(k)}, k=1,\cdots,n\} is: 104 362 372 619 767
The value of |Ax_T - b|^2 for c = 10 is: 42.699437957778756
The indexes of the c = 10 largest number in the set \{x_T^{(k)}, k = 1, \dots, n\} is: 104 362 372 451 477 538 619
629 767 789
The value of |Ax_T - b|^2 for c = 15 is:
ValueError: invalid value encountered in double_scalars
return \ lmda_0 + ((c - func_f(y, lmda_0))/(func_f(y, lmda_0) - func_f(y, lmda_1))) * (lmda_0 - lmda_1)
```