MoskaliovYV 15022025-091505

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.3	0.601	125.8	2.587	42.9	0.102	49.3	0.234	-64.8
2.4	0.608	123.1	2.474	40.6	0.106	48.4	0.232	-67.2
2.5	0.617	120.7	2.370	38.5	0.109	47.5	0.229	-69.6
2.6	0.628	118.4	2.269	36.2	0.112	46.6	0.226	-72.1
2.7	0.633	116.1	2.181	33.9	0.116	45.6	0.224	-74.8
2.8	0.639	113.9	2.096	31.5	0.119	44.6	0.222	-77.5
2.9	0.647	111.8	2.021	29.6	0.122	43.7	0.219	-80.3
3.0	0.655	109.7	1.948	27.5	0.126	42.9	0.217	-83.1
3.1	0.660	107.7	1.882	25.7	0.129	41.9	0.215	-86.1
3.2	0.667	105.7	1.819	23.9	0.132	40.9	0.213	-89.1
3.3	0.674	103.8	1.757	21.9	0.135	40.0	0.212	-92.2

и частоты $f_{\rm H}=2.8~\Gamma\Gamma$ ц, $f_{\rm B}=2.9~\Gamma\Gamma$ ц. **Найти** модуль s_{11} в дБ на частоте $f_{\rm B}$.

- 1) -13.2 дБ
- 2) -18.3 дБ
- 3) 6.1 дБ
- 4) -3.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.332	-167.1	10.393	86.1	0.046	68.3	0.292	-62.1
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
1.7	0.346	-177.1	7.877	79.1	0.057	67.3	0.235	-69.7
1.9	0.352	178.5	7.048	75.7	0.064	66.6	0.215	-73.7
2.2	0.360	173.8	6.033	72.1	0.072	65.5	0.194	-80.2
2.6	0.364	168.0	5.044	67.3	0.084	63.6	0.176	-88.0
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
4.0	0.380	151.1	3.239	52.7	0.125	55.9	0.154	-108.8
5.0	0.393	142.2	2.599	43.2	0.154	49.5	0.135	-120.4

и частоты $f_{\scriptscriptstyle \rm H}=1.3$ ГГц, $f_{\scriptscriptstyle \rm B}=5$ ГГц.

Найти обратные потери по входу на $f_{\rm H}$.

- 1) 4.1 дБ
- 2) 4.8 дБ
- 3) 9.6 дБ
- 4) 8.1 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.9	0.716	93.5	1.452	10.3	0.153	34.4	0.213	-111.7
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.1	0.728	90.5	1.369	6.6	0.159	32.5	0.215	-118.4
4.2	0.732	89.0	1.330	4.9	0.161	31.6	0.217	-121.7
4.3	0.737	87.5	1.292	3.1	0.164	30.7	0.219	-125.0
4.4	0.743	86.0	1.256	1.2	0.166	29.8	0.221	-128.3
4.5	0.749	84.6	1.221	-0.8	0.169	28.9	0.225	-131.4
4.6	0.752	83.4	1.190	-2.1	0.171	28.2	0.227	-134.2
4.7	0.755	82.3	1.161	-3.4	0.174	27.6	0.230	-136.9
4.8	0.759	81.1	1.131	-4.8	0.176	26.9	0.233	-139.5
4.9	0.763	80.0	1.103	-6.3	0.178	26.3	0.236	-142.1

и частоты $f_{\rm H}=4$ ГГц, $f_{\rm B}=4.8$ ГГц. **Найти** неравномерность усиления в полосе $f_{\rm H}...f_{\rm B}$, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

- 1) 1 дБ
- 2) 2.4 дБ
- 3) 0.2 дБ
- 4) 1.9 дБ

Задан двухполюсник на рисунке 2, причём R1 = 25.88 Om.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 3 – Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Найти точку (см. рисунок 4), соответствующую коэффициенту отражения от нормированного импеданса $z=0.22\text{-}0.61\mathrm{i}$.

Рисунок 4 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.533	166.8	5.967	75.6	0.051	56.7	0.274	-43.8
1.6	0.557	145.3	3.754	59.4	0.074	54.7	0.253	-50.7
2.2	0.596	128.6	2.704	45.0	0.098	50.2	0.237	-62.5
2.8	0.639	113.9	2.096	31.5	0.119	44.6	0.222	-77.5
3.4	0.682	101.9	1.698	19.7	0.138	39.1	0.212	-95.3
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.6	0.752	83.4	1.190	-2.1	0.171	28.2	0.227	-134.2

Найти точку (см. рисунок 5), соответствующую s_{11} на частоте 2.2 ГГц.

Рисунок 5 – Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D