

MISSILE APPLICATION CONDENSED MESSAGE (MACM) DATA FORMAT

WHITE SANDS MISSILE RANGE
REAGAN TEST SITE
YUMA PROVING GROUND
DUGWAY PROVING GROUND
ELECTRONIC PROVING GROUND
ABERDEEN TEST CENTER
NATIONAL TRAINING CENTER

NAVAL AIR WARFARE CENTER WEAPONS DIVISON NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION NAVAL UNDERSEA WARFARE CENTER DIVISION, NEWPORT PACIFIC MISSILE RANGE FACILITY NAVAL UNDERSEA WARFARE CENTER DIVISION, KEYPORT

30TH SPACE WING
45TH SPACE WING
AIR FORCE FLIGHT TEST CENTER
AIR ARMAMENT CENTER
AIR WARFARE CENTER
ARNOLD ENGINEERING DEVELOPMENT CENTER
BARRY M. GOLDWATER RANGE
UTAH TEST AND TRAINING RANGE

NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

	Report Docume	Form Approved OMB No. 0704-0188						
maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar DMB control number.	ion of information. Send commentarters Services, Directorate for Inf	ts regarding this burden estimate formation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington			
1. REPORT DATE DEC 2004			3. DATES COVERED 00-01-2004 to 00-09-2004					
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER			
Missile Application	n Condensed Messag	ge Data Format		5b. GRANT NUMBER				
				5c. PROGRAM E	LEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NU	JMBER			
			5e. TASK NUMBER ET-033					
				5f. WORK UNIT NUMBER				
	ZATION NAME(S) AND AE rs Council,1510 Hea ,88002	,White Sands	8. PERFORMING ORGANIZATION REPORT NUMBER 264-04					
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited						
13. SUPPLEMENTARY NO	OTES							
applications. The M provides the minim in a near real-time	ard message format MACM, a data form num data necessary or post-mission GP adorange, doppler slk.	at designed for hig to generate a kinet S signal processor.	h-speed output of ic carrier-phase m The carrier-to-no	raw GPS me neasurement ise ratio, car	asurement data, of receiver position rier phase			
15. SUBJECT TERMS	omy Maagumamanta (Crount MACM						
Electronic Trajecto	ory Measurements (Froup; MACM						
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	Same as 20							

Form Approved OMB No. 0704-0188

	Report Docume	Form Approved OMB No. 0704-0188						
maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding ar DMB control number.	ion of information. Send commentarters Services, Directorate for Inf	ts regarding this burden estimate formation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington			
1. REPORT DATE DEC 2004			3. DATES COVERED 00-01-2004 to 00-09-2004					
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER			
Missile Application	n Condensed Messag	ge Data Format		5b. GRANT NUMBER				
				5c. PROGRAM E	LEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NU	JMBER			
			5e. TASK NUMBER ET-033					
				5f. WORK UNIT NUMBER				
	ZATION NAME(S) AND AE rs Council,1510 Hea ,88002	,White Sands	8. PERFORMING ORGANIZATION REPORT NUMBER 264-04					
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited						
13. SUPPLEMENTARY NO	OTES							
applications. The M provides the minim in a near real-time	ard message format MACM, a data form num data necessary or post-mission GP adorange, doppler slk.	at designed for hig to generate a kinet S signal processor.	h-speed output of ic carrier-phase m The carrier-to-no	raw GPS me neasurement ise ratio, car	asurement data, of receiver position rier phase			
15. SUBJECT TERMS	omy Maagumamanta (Crount MACM						
Electronic Trajecto	ory Measurements (Froup; MACM						
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	Same as 20							

Form Approved OMB No. 0704-0188

STANDARD 264-04

MISSILE APPLICATION CONDENSED MESSAGE (MACM) DATA FORMAT

DECEMBER 2004

Prepared by

Electronic Trajectory Measurements Group Range Commanders Council

Published by

Secretariat
Range Commanders Council
White Sands Missile Range
New Mexico 88002

ABSTRACT

This document provides the standard message format for Global Positioning System (GPS) receivers used in high dynamic air/ground missile testing applications. The message, Missile Application Condensed Message (MACM), is a data format designed for high-speed output of raw GPS measurement data. This format provides the minimum data necessary to generate a kinetic carrier-phase measurement of receiver position in a near real-time or post-mission GPS signal processor. The carrier-to-noise ratio, carrier phase measurement, pseudorange, doppler shift, elapsed lock time, and condition flags are supplied for each satellite under track.

This standard affords flexibility to meet the specific needs of ranges. It is intended to be a living document with the ability to respond to changes and to future developments in GPS and range testing requirements.

Commonly used scientific abbreviations/symbols are defined in standard reference dictionaries. Definitions of abbreviations and acronyms with special applications to this document are included where the term first appears or in the chapter entitled Data Descriptions.

Table Of Contents

<u>Title</u>	<u>Page</u>
Abstract	iii
1. Introduction	1
2. Data Descriptions	4
3. MACM Message Example	8
4. Testing And Verification	12
5. Format Maintenance/Updating	12
List Of Tables	
Table Number	<u>Page</u>
Table 1. Parameters of the MACM Message	1
Table 2. Example MACM Data Record Format	2
Table 3: MACM Data Field Definitions	3
Table 4: Example of MACM Hexadecimal Messages	9
Table 5: Interpretation of a Sample MACM Message	10

1. Introduction

The Electronic Trajectory Measurements Group (ETMG) of the Range Commanders Council (RCC) has prepared this document to define a data message format for use in missile testing applications. The intent is to foster compatibility in the exchange and analyses of these type data among the member ranges operating under the cognizance of the RCC. This document defines a standard data message format comprised of GPS receiver output data and related parameters. The message format was developed to optimize data output and data transmission in air/ground missile testing applications that require high-speed data output within test communications bandwidth limitations of the user range.

The data format is a Fixed Packed Record (FPR) consisting of a header field, structure of each satellite under track, and a checksum for the message. The Missile Application Condensed Message (MACM) length depends on the number of satellites being tracked. Table 1, Parameters of the MACM Message, provides the actual variables of the MACM record. Table 2, Example MACM Data Record Format, presents an example of the message makeup, including the number of data bytes for each parameter, for a MACM record with seven satellites under track. Table 3, MACM Data Field Definitions, provides detail descriptions for each variable in the MACM message.

Table 1. Parameters of the MACM Message

- a. Name of message
- b. Version of code
- c. Number of remaining satellites structures in the message
- d. GPS time tag
- e. Receiver clock offset
- f. Satellite identification number
- g. Satellite status
- h. Signal to noise ratio at the receiver
- i. Carrier phase counter output
- j. Pseudorange from satellite to receiver
- k. Rate of change of carrier phase counter
- 1. Time satellite is under continuous track
- m. Message checksum byte

<u>Note</u>: Further definition and description of these individual parameters is provided in Table 2, Table 3, and in Paragraph 2, Data Descriptions, of this standard.

Table 2. Example MACM Data Record Format							
Data	Function	Total Bytes					
[MACM:4] [VERSION:1] [NUMOBS:1] [GPSTIME:4] [OFFSET: 4]	Header	14					
[PRN:1][CONDITION:2][CN0:1][PHASE:8][PSRNGE:4][RATE:4][LCK TIME:4]	OBSERV'N	24					
[PRN:1][CONDITION:2][CN0:1][PHASE:8][PSRNGE:4][RATE:4][LCK TIME:4]	OBSERV'N	24					
[PRN:1][CONDITION:2][CN0:1][PHASE:8][PSRNGE:4][RATE:4][LCK TIME:4]	OBSERV'N	24					
[PRN:1][CONDITION:2][CN0:1][PHASE:8][PSRNGE:4][RATE:4][LCK TIME:4]	OBSERV'N	24					
[PRN:1][CONDITION:2][CN0:1][PHASE:8][PSRNGE:4][RATE:4][LCK_TIME:4]	OBSERV'N	24					
[PRN:1][CONDITION:2][CN0:1][PHASE:8][PSRNGE:4][RATE:4][LCK TIME:4]	OBSERV'N	24					
[PRN:1][CONDITION:2][CN0:1][PHASE:8][PSRNGE:4][RATE:4][LCK_TIME:4]	OBSERV'N	24					
[CHECKSUM:1]	CHECKSUM	1					

Note: The number after the colon is the number of bytes associated with each field.

In the example above, a message with 7 satellites reported, is 183 bytes long.

The definitions of the individual data fields within the MACM message are given in <u>Table 3</u>, <u>MACM Data Field Definitions</u>.

	Table 3. MACM Data Field Definitions							
Byte #	Name	Type	Content					
1	MACM	long	Sync_word (Name of message, ASCII "MACM")					
5	VERSION	unsigned char	MACM version number					
6	NUMOBS	short	Number of remaining structures to be sent for the current epoch. (Each structure is one satellite.)					
7	GPSTIME	long	Signal received in milliseconds of week GPS system time. This is the time tag for all measurements and position data.					
11	OFFSET	float	Receiver clock offset in meters.					
24*j-9	PRN	unsigned char	Satellite PRN number					
24*j-8	CONDITION	unsigned short	Manufacturer defined warning and condition flags					
24*j-6	CN0	unsigned char	Signal-to-noise ratio of satellite observation (dB)					
24*j-5	PHASE	double	Full carrier phase measurements in cycles.					
24*j+3	PSRNGE	unsigned long	Pseudo-range in seconds, scale factor = 3.0e10					
24*j+7	RATE	long	Rate of change of carrier phase, positive for increasing range. Scale factor = 1×10^{-4} Hz. Doppler (10^{-4} Hz)					
24*j+11	LOCKTIME	unsigned long	Continuous counts since satellite is locked. This number is to be incremented 500 times per second					
24*N+15	CHECKSUM	unsigned char	Checksum includes bytes 5 through the end of the message. (Checksum does not include bytes 1-4 nor the checksum byte its self.)					

Notes:

- j = 1,2, ..., N; where N = # of records in the message (# of SVs, value of byte #6).
- The message is variable in length. The number of 24-byte structures is defined by the value of byte #6 in the header.
- The message begins with the 4 byte sync word [4D 41 43 4D] (ASCII "MACM") and ends with the checksum byte.
- The checksum is computed by the bit-by-bit exclusive-*oring* of all bytes in the block of data defined in the table.
- Time synchronization of observations: Times of validity for MACM records are required to be aligned with GPS time to within one hundred microseconds.
- All parsing is done by counting from the sync_word.

2. Data Descriptions

Interpretation of individual data values are provided below.

2.1. Header Fields

Name: MACM

This is the four-byte synchronization word ("sync_word" [4D 41 43 4D]), which identifies the start of a MACM message in the midst of a stream that includes both MACM messages and other information. All data fields in the MACM message are found by counting forward from the location (offset) of the sync word.

Name: VERSION

This is a single byte that is assigned to indicate version number of the MACM format.

Name: NUMOBS (Abbreviation for "Number of Observations")

This is a single byte whose (hexadecimal) numeric value is the number of satellite vehicles that are being tracked by the receiver, and whose data are being reported in the body of this message. For example, a value of "0a" indicates that 10 satellites are being reported.

Name: GPSTIME

This is the four-byte GPS time of validity (called the epoch) of this particular MACM message. The times are reported in milliseconds. A GPSTIME value of 245380000 is a GPS time value of 245,380.000 seconds of the GPS week (Tuesday, 20 hours, 9 minutes, 40 seconds). Note: this differs from GMT (Greenwich Mean Time) by the current number of leap seconds.

Times of validity for MACM records are required to be aligned with GPS time to within 100 microseconds. For example, for a MACM reporting rate of 100 messages per second, one message should be valid at $245,380.0000 \pm .0001$ GPS seconds, the next at $245,380.0100 \pm .0001$, then $245,380.0200 \pm .0001$, etc.

Name: OFFSET

This is the (residual) four-byte GPS receiver clock offset, in meters. Part of the tracking process for GPS receivers is to align the receiver clock with the true GPS time, as broadcast by the individual satellites. The clock offset is the residual error in this alignment, after the best fit has been calculated.

2.2. Satellite Vehicle Fields

There is one record for each satellite being reported.

Name: PRN (Abbreviation for "Pseudorandom Noise")

This is the single byte pseudorandom noise identification number of the satellite.

Note: Each GPS satellite has three identification numbers, a Launch Order number, an SVN (Satellite Vehicle Number) and a PRN number. The Launch Order number is the order of satellites as they were launched. The SVN number is a serial number of the GPS satellite, assigned as it is manufactured. A typical Launch Order number is "BIIA-16", which is Block IIA satellite, and was the sixteenth Block II satellite to be launched. The SVN number of BIIA-16 is 32.

As each satellite is activated, it is assigned a PRN number ranging from 1 to 32. The PRN number is actually a key number that permits the GPS receiver to demodulate the encoded GPS signal from that particular satellite. Satellite BIIA-16 is currently (April, 2000) assigned PRN number 1.

Some satellite tracking programs identify the individual GPS satellites by Launch Order number rather than PRN number. When using these tracking programs (particularly programs that use two-line-ephemeris [".tle"] orbital data), one must determine which ID number is used as an identifier. One place to find this information is on the US Naval Observatory's GPS Web Site (http://tycho.usno.navy.mil/gpscurr.html).

Name: CONDITION

This is a status byte (two bytes) that is set by the receiver. These two bytes are reserved for the sensor manufacturer to place track condition flags, warning flags, etc. The CONDITION field must include a flag that is set if the number reported for PHASE is not valid. The CONDITION field must also contain a flag that is set TRUE (for one message duration) when the PSRNGE field value is updated, and is FALSE otherwise

Name: CN0 (Abbreviation for "Carrier to Noise Ratio")

This is a single byte carrier-to-noise ratio (in dB-Hz units) of the signal. The carrier power (in watts) received by the GPS receiver is the input signal flux, "Signal", times the antenna gain, "AntGain". ("Signal" is defined as the signal power density that flows through an antenna whose area [aperture] is the equivalent of unity gain.) The (receiver-generated) noise power density is Boltzmann's constant "k" times the receiver noise temperature "Tr". ("Tr" is a standard measure of merit for RF receivers). The noise power density units are watts per unit bandwidth, or watts per hertz. The resulting quotient is:

$$C/N0 = (Signal*AntGain)/(k*Tr)$$

and has units of Hertz.

The reported value is this number, converted to dB. Typically values over 30 dB-Hz are considered good carrier-to-noise ratios.

Name: PHASE

This is an eight-byte output of the receiver phase cycle counter. The output is in whole numbers and fractions of a carrier cycle. Each L1 carrier cycle is approximately 19.0 cm. in length, and so each change in the PHASE value of \pm 1.0 represents a change in range between the satellite and the receiver of \pm 19 cm. The PHASE counter in MACM messages decrements as the range decreases, and increments as the range increases.

GPS receivers, equipped with the proper options, report the results of carrier tracking on each satellite. If satellites and earth locations were stationary, a receiver with an oscillator tuned to exactly the GPS transmission frequency (1575.42 MHz exactly for L1, for example) could compare the phase to the broadcast satellite carrier phase, and the difference would be a steady voltage. Satellites are moving, however, and the range between them and the receiver varies. As the range closes, for instance, the total number of carrier wavelengths between the satellite and receiver decreases. The receiver's difference detector will see this difference, outputting a complete sine-wave cycle for each whole-cycle decrease in range. Carrier tracking receivers contain counters that count these difference cycles.

Phase counters both count whole numbers of cycles, and measure fractions of a cycle, in their output data. Some receiver counters use a double precision floating point number definition for the phase number, which has approximately the number of significant figures shown in the interpretation sections of Table 4. However, a fraction of a phase less than 0.001 cycle is not significant data. When the satellite is first put under track, the counters may start at an arbitrary initial count. The data that is important is the change in cycle counts from epoch to epoch.

Name: PSRNGE (Abbreviation for "Pseudorange")

This is the measured (with corrections) pseudorange from the satellite to the receiver, in seconds. The measurement is scaled by a multiplication factor of 3.0x10^10. To convert to pseudorange in meters,

Pseudorange = [(speed of light)/3.0x10 10] x (RANGE) = [0.999308193x10 10] x (RANGE).

The "GPS propagation constant" is 2.99792458x10⁸ m/sec.

The pseudorange value is required to be updated at the MACM message rate. The update time of validity must be synchronized to GPS time, to within the same accuracy as the time of validity of the overall MACM message (100 microseconds). For example, the first update time for a pseudorange update might be $245,380.0000 \pm .0001$ GPS seconds, the next would occur at $245,380.1000 \pm .0001$ seconds, the next at $245,380.2000 \pm .0001$, etc.

For MACM messages where the pseudorange is not updated, the value of the last updated pseudorange is repeated. (Note that the CONDITION field will contain a flag that is TRUE at the message where pseudorange is valid, and is FALSE for messages where the pseudorange is not updated.)

Name: RATE

This is the measured rate of change of the cycle counter (PHASE), in units of 10^{-4} cycles per second. To convert to cycles per second, multiply the reported number by 0.0001.

There is (or should be) a close correlation between the DOP (Dilution of Precision) rate and the total increment/decrement in the PHASE number from epoch to epoch. The sign convention for the MACM message is that DOP is positive for increasing range and PHASE count. BEWARE: This sign convention is the opposite of the actual Doppler shift of the GPS carrier. It is also the opposite to the Doppler definition of the Rinex 2 (Receiver Independent Exchange) file convention.

Name: LOCKTIME

This is a four-byte time counter that is incremented at a constant 500 count per second rate for as long as an individual satellite is maintained in continuous track. If the lock time counter is reset, track has been (temporarily) broken. This means, in particular, that the PHASE counter may have missed some changes in cycles while track was broken. (This phenomenon is called "cycle slips".)

2.3. Checksum Byte

Name: CHECKSUM

The checksum byte is a method of detecting errors in the message file. The checksum is computed by the bit-by-bit exclusive-*oring* of all bytes in the block of data defined in the table and is appended to the end of the message. As an example, the checksum of

```
(1001 0110),
(1000 0101),
and (1100 0001)
```

is (1101 0010)

Users of the data should also, independently, calculate what the checksum should be, and compare it to the transmitted value. A mismatch indicates that this particular message is corrupted.

Notes:

- 1) The checksum does not provide any way to correct the message. The only choice for the user is to delete the message.
- 2) The checksum is not infallible, in other words it is possible for corrupted files to generate a correct checksum.

3. **MACM Example**

The MACM message can readily be interpreted when viewed on a hexadecimal viewer/editor. Table 4 shows a pair of actual MACM messages.

	Table 4. Example of MACM Hexadecimal Messages																								
Byte	Byte 1	Nun	nber	•																					ANSI Character
Offset	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f	10	11	12	13	14	15	16	17	
000000	0.0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000018	3 00	4d	41	43	4d	02	06	0e	a0	0с	90	40	7с	10	00	02	02	05	24	с1	1c	27	ad	b6	.MACM@ \$Á.'-¶
000030	83	39	e0	7a	b4	24	64	00	96	be	29	00	09	6d	48	18	0a	05	29	с1	39	82	89	7с	.9àz´\$d¾)mH)Á9
000048	-	61	a4	89	33	d2	34	fe	43	11	7e	00	00	95	6a	07	02	05	2b	c1	33	4f	3с	9e	.a¤.3ò4þC.~j+Á3O<.
000060		a3	14	7e	58	d9	a6	00	0d	96	3b	00	0a	49	cb	09	aa	00	28	c1	3d	92	f9	54	.£.~XÙ¦;IË.ª.(Á='ùT
000078		d4		8c	d4	36		ff	63		85	00	00	04		0e	02	05	25	c1	2d	bf	_		àÔ .Ô6úÿc\e%Á-¿õ¹
000090	-	05		8b	f8	67	a3	00	80	9с	42	00	09	cb	08	10	00	05	26	c1	37	44	bb	7d	Møg£BË&Á7D»}
0000a8		С6	e0	84	a7	1c	e7	ff	41	00	68	00	00	60	с7	27	00	00	00	00		00	00	00	.Æà.§.çÿA.h`Ç'
0000c0		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000d8		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000f0		00	00	00	00	00	00	00	00	00	00	00	00	4d	41	43	4d	02	06	0e	a0	33	a0	3f	
000108		С0	00	02	02	05	22	с1	1b		09	d0	27		00	,	b7	03	4b	00	97	7d	25	00	,À"ÁÐ'î.z·.K}%.
000120		80	d0	18	0a	05	28	c1	39	f4		4c	f5	33	d0	89		59	77	fe					Đ(Á9ôjLõ3Đ.+YwþC∼z.
000138		a8	f2	07	02	05	2e	c1	33	4b		3d		31	a0		59	1b	77	00		bf	cf	00	.¨òÁ3KÅ=·1 ~Y.w¿Ï.
000150		0 0.	00	0 0	aa		29	c1	33			0 0.		f9	80		d1	3b	75	ff	64	11	ad	00	.]S.ª.)Á3«ùùÑ;uÿd
000168			as	0e	02	05	25	c1	2d	7d	f9	a9	25	17	a0	8b	fa	db	bc	00		70	cf	00	Ù%Á−}ù©%úÛ¼pÏ.
000180			90	10	00	0.5	26	c1	37	75	8e	e2	62	4e	40	84	a3		fc	ff	41	d6	CC	00	.Þ&Á7u.âbN@.£züÿAÖÌ.
000198		74	4f	3a	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	.to:
0001b0	0 0 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

This sample contains two MACM messages. The first begins at offset byte 000019h, and ends at byte 0000b7h. The next message starts at byte 0000fdh, and ends at 00019h. Note that the messages may be preceded and followed by other bytes that are not part of the MACM message itself. These bytes are shown as zeroes, but may actually be any valid binary data stream, of any length. (The extra bytes, however, should not be so numerous that the message rate cannot be met.) Table 5 is the interpretation of the first of the two MACM messages from the example above.

Table 5. Interpretation of a Sample MACM Message									
<u>MACM</u>	VERSION	<u>NUMOBS</u>	GPSTIME	<u>OFFSET</u>			Field Name		
4d 41 43 4d	02	06	0e a0 0c 90	40 7c 10 00			Hex		
ASCII Text	2	6	245370000	3.938477			Interpretation		
PRN	CONDITION	<u>CN0</u>	PHASE	PSRNGE	RATE	LCK TIME	Field Name		
02	02 05	24	c1 1c 27 ad b6 83 39 e0	7a b4 24 64	00 96 be 29	00 09 6d 48	Hex		
2	Manufacturer	36 (dB)	-461291.428234962747	2058626148	9879081	617800	Interpretation		
PRN	CONDITION	<u>CN0</u>	PHASE	PSRNGE	RATE	LCK TIME	Field Name		
18	0a 05	29	c1 39 82 89 7c 1b 61 a4	89 33 d2 34	fe 43 11 7e	00 00 95 6a	Hex		
24	Manufacturer	41	-1671817.48479280714	2301874740	-29159042	38250	Interpretation		
PRN	CONDITION	<u>CN0</u>	PHASE	PSRNGE	RATE	LCK TIME	Field Name		
07	02 05	2b	c1 33 4f 3c 9e 05 a3 14	7e 58 d9 a6	00 0d 96 3b	00 0a 49 cb	Hex		
7	Manufacturer	43	-1265468.61727351416	2119752102	890427	674251	Interpretation		
PRN	CONDITION	<u>CN0</u>	<u>PHASE</u>	PSRNGE	RATE	LCK TIME	Field Name		
09	aa 00	28	c1 3d 92 f9 54 e0 d4 a0	8c d4 36 fa	ff 63 5c 85	00 00 04 65	Hex		
9	Manufacturer	40	-1938169.33155564219	2362717946	-10265467	1125	Interpretation		

Table 5. Interpretation of a Sample MACM Message (continued)									
PRN	CONDITION	<u>CN0</u>	PHASE	PSRNGE	RATE	LCK TIME	Field Name		
0e	02 05	2b	c1 2d bf f5 b9 4d 05 18	8b f8 67 a3	00 80 9c 42	00 09 cb 08	Hex		
14	Manufacturer	43	-974842.86191574018	2348312483	8428610	641800	Interpretation		
PRN	CONDITION	<u>CN0</u>	PHASE	PSRNGE	RATE	LCK TIME	Field Name		
10	00 05	26	c1 37 44 bb 7d 0b c6 e0	84 a7 1c e7	ff 41 00 68	00 00 60 c7	Hex		
16	Manufacturer	38	-1524923.48846095055	2225544423	-12517272	24775	Interpretation		
CHECK SUM							Field Name		
27							Hex		
							Interpretation		

4. Testing And Verification

The MACM message format has been implemented, tested, and verified in two separate manufactures GPS receivers, the Parthus NS-100M GPS Receiver circuit card assembly and Thales Navigation (Ashtech) G12 GPS Receiver. Results of the Parthus NS-100M GPS TSPI Receiver Circuit Board tests were documented in the following reports by the 46th Test Wing, Eglin AFB FL:

Acceptance Test Results	Serial Number 128501	14 February 2003
Acceptance Test Results	Serial Number 129747	14 February 2003
Acceptance Test Results	Serial Number 135577	14 February 2003
Acceptance Test Results	Serial Number 139699	14 February 2003
Acceptance Test Results	Serial Number 141131	14 February 2003

These tests followed Joint Advanced Missile Instrumentation (JAMI) Test Plan TP 543-006 in accordance with the Master Test Plan for the GPS TSPI Receiver Assembly, Document CDM 00-543/032.

5. Format Maintenance/Updating

This document shall be maintained and updated by the Electronics Trajectory Measurements Group of the Range Commanders Council and is intended to meet the needs of the ranges for high-speed output of raw GPS measurement data and post-test data exchange of GPS data.