E.T.S.E.T.B.

variables Z = X + Y y T = X - Y vale

E.T.S.E.T.B.	6. Sean X e Y dos variables conjuntamente uniformes en la	
Probabilidad y Procesos Estocásticos 21 de Diciembre de 2007	región definida por $X^2+Y^2\leq 4,\ 0\leq X\leq Y.$ Para $0\leq z\leq 4,\ f_{X^2+Y^2}(z)$ vale	
Apellidos	$\square \ z^2/4 \qquad \qquad \square \ z/2 \qquad \qquad \boxtimes \ 1/4$	
<i>Nombre</i>	$\hfill \square$ Ninguna de las anteriores es correcta	
(No escribir en este espacio)		
Marcar la respuesta elegida con una cruz: ⊠ Duración: 1h 50'	7. Sean X_1, \ldots, X_{10} variables aleatorias incorreladas uniformes en $[0,2]$. La varianza de $Y=(X_1+\ldots+X_{10})/10$ vale	
	\boxtimes 1/30 \Box 1/10 \Box 1/3 \Box 1	
1. Sean X e Y dos variables aleatorias conjuntamente uniformes en la región definida por $0 \le X \le Y \le 4$. La esperanza de X condicionada a $X+Y \le 4$ vale $ \square $	8. Sean X e Y dos variables aleatorias uniformes en $[0,2]$, independientes. La probabilidad de que $\max(X,Y)>3\min(X,Y)$ vale	
	$\square \ 1/6 \qquad \qquad \square \ 1/4 \qquad \qquad \boxtimes \ 1/3 \qquad \qquad \square \ 1/2$	
 2. Sean X e Y dos variables aleatorias exponenciales de media 2, independientes. La variable X condicionada a X+Y = 4 □ es exponencial de media 2 	9. Sean X e Y dos variables aleatorias conjuntamente normales de medias $m_X=m_Y=1$, varianzas $\sigma_X^2=4$, $\sigma_Y^2=1$ y coeficiente de correlación $\rho=0.5$. La mejor estimación en media cuadrática de X dada $X+Y$ vale	
\Box tiene densidad $f_{X X+Y=4}(x) = \frac{x}{4}e^{-x/2}$ para $x \ge 0$	$\square \frac{2}{3}(X+Y) \qquad \qquad \boxtimes \frac{5(X+Y)-3}{7}$	
\boxtimes es uniforme en $[0,4]$	$\Box \frac{7}{11}(X+Y) \qquad \Box \frac{4(X+Y)-3}{5}$	
$\hfill \square$ Ninguna de las otras es cierta	$\frac{1}{11}$ $\frac{1}{5}$	
3. Un usuario accede a un servidor en un instante uniformemente distribuido entre las 8 de la mañana y las 5 de la tarde. El tiempo del servicio S , en segundos, se comporta como una variable uniformemente distribuida entre 1 y $T+2$, donde T es el tiempo transcurrido desde las 8 hasta el instante del acceso, medido en horas. La probabilidad de que el servicio dure menos de 2 segundos vale	10. En una urna se introducen 10 bolas rotuladas con 1, 1, 2, 2, 3, 3, 4, 4, 5 y 5. Se extraen las bolas de la urna sin devolución hasta que sale la segunda bola marcada con el número 3. La probabilidad de que el número de bolas extraídas sea 6 es □ 1/10 □ 1/3 □ Ninguna de las anteriores es correcta	
$\boxtimes \frac{1}{9} \ln 10$ $\Box \frac{2}{9} \ln 11$ $\Box \frac{2}{11}$ $\Box \frac{2}{9}$		
4. Sean X e Y dos variables aleatorias exponenciales de medias $m_X=2$ y $m_Y=3$, independientes. La mejor esti-	11. Se lanza una moneda. Si sale cara, se lanza una vez un dado, y si sale cruz, el dado se lanza dos veces y se multiplican los dos resultados. La esperanza de la puntuación obtenida es	
mación lineal homogénea, en media cuadrática, de X dada $X+Y$ es	\boxtimes 63/8 \Box 11 \Box 63/4 \Box 22	
$\Box \frac{1}{3}(X+Y) \qquad \boxtimes \frac{7}{19}(X+Y)$ $\Box \frac{2}{5}(X+Y) \qquad \Box \frac{12}{19}(X+Y)$	12. Se reordenan al azar las letras $\{A,B,C,D,E\}$. La probabilidad de que exactamente 2 de las 5 letras queden en la posición inicial vale	
	$\square \ 1/12 \qquad \boxtimes \ 1/6 \qquad \square \ 1/4 \qquad \square \ 1/3$	
5. Sean X e Y dos variables aleatorias conjuntamente normales de medias $m_X=0$ y $m_Y=2$, varianzas $\sigma_X^2=1$ y $\sigma_Y^2=4$, incorreladas. El coeficiente de correlación de las	13. Sean X e Y dos variables aleatorias geométricas de parámetro 0.2, independientes. La probabilidad de que	

 \boxtimes 1/9 \Box 1/6 \Box 1/3 \Box 1/2 $\square \quad -3/25 \qquad \qquad \boxtimes \quad -3/5 \qquad \qquad \square \quad -1/3$ \Box 1/3

X = Y vale