

概述

TM1618是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用IC,内部集成有MCU 数字接口、数据锁存器、LED 驱动、键盘扫描等电路。本产品质量可靠、稳定性好、抗干扰能力 强。主要适用于家电设备(智能热水器、微波炉、洗衣机、空调、电磁炉)、机顶盒、电子称、智 能电表等数码管或LED显示设备。

特性说明

- · 采用CMOS工艺
- 多种显示模式 (7 段×5位 ~ 8段×4 位)
- 最大支持矩阵按键5×1
- 辉度调节电路(8 级占空比可调)
- 串行接口 (CLK, STB, DIO)
- 振荡方式: 内置RC振荡
- 内置上电复位电路
- 内置数据锁存电路
- 抗干扰能力强
- 封装形式: SOP18/DIP18

三、 管脚定义:

四、管脚功能定义:

符号	管脚名称	管脚号	说明
DIO	数据输出输入	1	在时钟上升沿输入串行数据,从低位 开始。在时钟下降沿输出串行数据,从 低位开始。输出时为P管开漏输出。
CLK	时钟输入	2	在上升沿读取串行数据,下降沿输出数据。
STB	片选输入	3	在下降沿初始化串行接口,随后等待接收指令。STB为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB为高时,CLK被忽略。
К2	键扫数据输入	4	输入该脚的数据在显示周期结束后被锁存。
SGE1/KS1~ SEG5/KS5	输出(段)	6~10	段輸出(也用作键扫描输出),P管开 漏输出。
GRID1∼ GRID4	输出(位)	14~18	位输出,N管开漏输出。
SEG14/GRID5~ SEG12/GRID7	输出(段/位)	11~13	段/位复用输出, 只能选段或位输出
VDD	逻辑电源	5	接电源正
GND	逻辑地	16	接系统地

注意: DIO口输出数据时为N管开漏输出,在读键的时候需要外接1K-10K的上拉电阻。本公司推荐10K的上 拉电阻。

五、指令说明

指令用来设置显示模式和LED 驱动器的状态。

在STB下降沿后由DIO输入的第一个字节作为指令。经过译码, 取最高B7、B6两位比特位以区别不同的指令。

В7	В6	指令					
0	0	显示模式命令设置					
0	1	数据命令设置					
1	0	显示控制命令设置					
1	1	地址命令设置					

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效之前传送 的指令或数据保持有效。

(1) 显示模式命令设置:

该指令用来设置选择段和位的个数(4~5位,7~8段)。当该指令被执行时,显示被强制关闭。在显 示模式不变时,显存内的数据不会被改变,显示控制命令控制显示开关。

MSB						A	LSB	
В7	В6	В5	B4	В3	B2	B1	В0	显示模式
0	0					0	0	4位8段
0	0		工子位	页,填0		0	1	5位7段
0	0		九大四	人,填 U		1	0	6位6段
0	0					1	1	7位5段

(2) 数据命令设置:

该指令用来设置数据写和读, B1和B0位不允许设置01或11。

MSB

_	MOD							LUD		
	В7	В6	В5	B4	В3	B2	B1	В0	功能	说明
	0	1					0	0	数据读写模式	写数据到显示寄存器
	0	1					1	0	设置	读键扫数据
	0	1	无关	 连项,		0			地址增加模式	自动地址增加
	0	1	填	į 0		1			设置	固定地址
	0	1			0				测试模式设置	普通模式
	0	1			1				(内部使用)	测试模式

(3) 显示控制命令设置:

该指令用来设置显示的开关以及显示亮度调节。共有8级辉度可供选择进行调节。

MSB LSB

В7	В6	В5	B4	В3	B2	B1	ВО	功能	说明
1	0	无关	E项,		0	0	0	显示辉度设置	设置脉冲宽度为 1/16
1	0	填	0		0	0	1	业小件及以且	设置脉冲宽度为 2/16

TM1618

1	0		0	1	0		设置脉冲宽度为 4/16
1	0		0	1	1		设置脉冲宽度为 10/16
1	0		1	0	0		设置脉冲宽度为 11/16
1	0		1	0	1		设置脉冲宽度为 12/16
1	0		1	1	0		设置脉冲宽度为 13/16
1	0		1	1	1		设置脉冲宽度为 14/16
1	0	0				显示开关设置	显示关
1	0	1				业小月大以且	显示开

(4) 地址命令设置:

该指令用来设置显示寄存器的地址。如果地址设定为0xCE或者最高,则数据会被忽略。上电时,首地址 默认设为COH。

MSB							LSB			
В7	В6	В5	B4	В3	B2	B1	В0	显示地址		
1	1			0	0	0	0	СОН		
1	1			0	0	0	1	C1H		
1	1			0	0	1	0	C2H		
1	1			0	0	1	1	СЗН		
1	1			0	1	0	0	C4H		
						0	1	0	1	C5H
		无关		0	1	1	0	С6Н		
		填	0	0	1	1	1	С7Н		
				1	0	0	0	C8H		
				1	0	0	1	С9Н		
				1	0	1	0	CAH		
				1	0	1	1	СВН		
				1	1	0	0	ССН		
1	1			1	1	0	1	CDH		

显示寄存器地址:

该寄存器存储通过串行接口接收从外部器件传送到TM1618的数据,最多有效地址为14位,分别与芯片SEG和 GRID管脚对应, 具体分配如图(2):

写LED显示数据的时候,按照显示地址从低位到高位,数据字节从低位到高位操作。

-	与2220显示效用1711次,1次流虚小绝显小限图型间面上,数据1 77次限图型间面外下。															
	X	X	SEG14	SEG13	SEG12	X	X	Х	X	X	X	SEG5	SEG4	SEG3	SEG2	SEG1
)	哥四位	HU(高	XX)	氏四位)	xxHL(1	2	()	高四位	xHU(雨	Х		氐四位	HL (1	XX
	В7	В6	В5	B4	В3	B2	B1	В0	В7	В6	В5	В4	В3	B2	B1	В0
GRID1		HU	C1			HL	C1			HU	C0			HL	CO	
GRID2		HU	С3			HL	C3			HU	C2			HL	C2	
GRID3		HU	C5			HL	C5			HU	C4			HL	C4	
GRID4		HU	C7			'HL	C7			HU	C6			HL	C6	
GRID5		HU	C9			HL	C9			HU	C8			HL	C8	
GRID6		HU	СВ			HL	CE			HU	CA			HL	CA	
GRID7		HU	CD			HL	CD			HU	CC			HL	CC	

图 (2)

▲注意: 芯片显示寄存器在上电瞬间其内部保存的值可能是随机不确定的,此时客户直接发送开屏命令, 将有可能出现显示乱码。所以我司建议客户对显示寄存器进行一次上电清零操作,即上电后向14位显存地址中全 部写入数据0x00。

显示:

驱动共阴数码管:

图 (7)

图7给出共阴数码管的连接示意图,如果让该数码管显示"0",需要向COH(GRID1)地址中从低位开始写 入0x1F数据并向C1H(GRID1)地址中从低位开始写入0x18数据,此时对应每一个SEG/GRID的数据如下表格。

SEG1	SEG2	SEG3	SEG4	SEG5	X	X	X	X	X	X	SEG12	SEG13	SEG14	X	X	
XX	HL(作	氏四位)	X	xHU(清	高四位)		xxHL(低四位)			xx	HU(高	高四位)	
ВО	B1	B2	В3	B4	В5	В6	В7	В0	B1	B2	В3	В4	В5	В6	В7	
	C0	HL			C0	HU			C1HL			C1	HU		GRID1	
1	1	1	1	1	0	0	0	0	0	0	1	1	0	0	0	

注意:驱动共阴极数码管,SEG引脚只能接LED的阳极,GRID只能接LED的阴极,不可反接。

键扫描和键扫数据寄存器:

该芯片最大支持的键扫矩阵为1×5bit,如下所示:

键扫数据储存地址如下所示,先发读按键命令后,开始读取5字节的按键数据BYTE1一BYTE3,读数据从低位 开始输出,其中B7和B6位为无效位固定输出为0。芯片K和KS引脚对应的按键按下时,相对应的字节内的BIT位为 1。

	В0	B1	B2	В3	B4	В5	В6	В7	
ĺ	X	K2	X	X	K2	X	X	X	
ĺ	0	KS1	0	0	KS2	0	0	0	BYTE1
	0	KS3	0	0	KS4	0	0	0	BYTE2
	0	KS5	0	0	0	0	0	0	BYTE3

▲注意: 1、TM1618最多可以读3个字节, 不允许多读。

2、读数据字节只能按顺序从BYTE1-BYTE3读取,不可跨字节读。例如:硬件上的K2与KS5对应按 键按下时,此时想要读到此按键数据,必须需要读到第3节的第B1位,才可读出数据。

组合按键: 复合按键的问题: SEG1/KS1-SEG10/KS10是显示和按键扫描复用的。以图(12)为例子, 显示需要D1亮, D2灭, 需要让SEG1为"0", SEG2为"1"状态, 如果S1, S2同时被按下, 相当于SEG1, SEG2被短路, 这时D1, D2都被点亮。

解决办法: 串联二极管如图 (14) 所示。

十、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

▲注意: 1、读取数据时,从串行时钟CLK的第8个上升沿开始设置指令到CLK下降沿读数据之间需要一个等 待时间Twait(最小2µS)。具体参数见时序特性表。

TM1618

应用时串行数据的传输:

(1) 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕, "STB"不需要置高紧跟着传数据. 最多14BYTE. 数据传送完毕才将 "STB" 置高。

CLK								
DIO	Command1	Command2	Command3	Data1	Data2	 Data n	Command4	
STB							1	

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址

Data1~ n: 传输显示数据至Command3地址和后面的地址内(最多14bytes)

Command4: 显示控制命令

(2) 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完毕,"STB"不 需要置高, 紧跟着传1BYTE数据, 数据传送完毕才将"STB"置高。然后重新设置第2个数据需要存放的地址, 最多 6BYTE数据传送完毕, "STB"置高。

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址1

Data1: 传输显示数据1至Command3地址内

Command4: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

Command5:显示控制命令

(3) 读按键时序

Command1: 设置读按键命令 Data1~3:读取按键数据

(4) 采用地址自动加一和固定地址方式的程序设计流程图:

采用自动地址加一的程序设计流程图:

©Titan Micro Electronics www.titanmec.com

V1.2

采用固定地址的程序设计流程图:

十二、应用电路:

TM1618驱动共阴数码屏硬件电路图(18):

▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1618芯片放置,加强滤波效果。

- 2、连接在DIO、CLK、STB通讯口上下拉三个100pF电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V, 因此TM1618供电应选用5V。

©Titan Micro Electronics www.titanmec.com

V1.2

十三、 电气参数:

极限参数 (Ta = 25℃, Vss = 0V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	-0.5 \sim VDD + 0.5	V
LED SEG 驱动输出电流	101	-50	mA
LED GRID 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	−40 ~ +80	°C
储存温度	Tstg	−65 ~+150	$^{\circ}$
ESD	MM(机器模式)	200	V
ΕΟΝ	HBM(人体模式)	2000	V

正常工作范围 (Ta = -20 ~ +80℃, Vss = 0V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD)-	5	_	V	-
高电平输入电压	VIH	0.7 VDD	-	VDD	V	-
低电平输入电压	VIL	0	I	0.3 VDD	V	-

©Titan Micro Electronics www.titanmec.com

- 13 -V1.2

- 14 -

电气特性 (Ta = -20 ~ +80℃, VDD = 5V, V_{ss} = 0V)

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	Ioh1	20	30	60	mA	SEG5∼SEG11, Vo = VDD -3V
同化丨捌山Ч机	Ioh1	20	25	50	mA	SEG5∼SEG11, Vo = VDD -2V
低电平输入电流	${ m I}_{ m OL}$	80	120	-	mA	GRID1、RID2 Vo=0.3V
低电平输出电流	Idout	3	_	_	mA	Vo = 0.4V, Dout
高电平输出电流容 许量	Itolsg	-	-	5	%	Vo = VDD - 3V, SEG5∼SEG11
高电平输入电压	VIH	0. 7 VDD	-		V	CLK, DIO, STB
低电平输入电压	VIL	_	-	0. 3 VDD	V	CLK, DIO, STB

开关特性 (Ta = -20 ~ +80℃, VDD = 5V)

参数	符号	最小	典型	最大	单位	测试条件	
	$t_{\mathtt{PLZ}}$	-		300	ns	CLK → DIO	
传输延迟时间	$t_{\scriptscriptstyle PZL}$		_	100	ns	CL = 1	15pF, RL = 10K Ω
	t _{TZH} 1	_	-	2	μs	CL = 300p F	SEG5~SEG11
上升时间	t _{TZH} 2	ı	-	0. 5	μs		SEG12/GRID7
下降时间	t _{THZ}	-	-	1.5	μs	CL =	300pF, SEGn, GRIDn

TM1618

最大输入时钟频 率	Fmax	-	_	1	MHz	占空比50%
输入电容	CI	_	_	15	pF	_

时序特性 (Ta = -20 ~ +80℃, VDD = 5V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PW _{CLK}	500	-	-	ns	-
选通脉冲宽度	PW _{STB}	1	_	_	μs	-
数据建立时间	$t_{ ext{ iny SETUP}}$	100	_	_	ns	_
数据保持时间	$t_{ ext{ t HOLD}}$	100	_	_	ns	-
CLK →STB 时间	t _{CLK-STB}	1	_	_	μs	CLK ↑ →STB ↑

时序波形图:

十四、IC 封装示意图: SOP18 封装尺寸:

E2

B2

©Titan Micro Electronics

8,200

0.871

DIP18 封装尺寸:

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

0.323

0.034

0.354

0.D46

www.titanmec.com

9.000

1.171

- 17 -