D206 Performance Assessment

Author: Coots, Anthony ID: 010958511
Date: 03/21/2024

Table of Contents:

- Research Question
 - Question or Decision
 - Required Variables
- Data-Cleaning Plan
 - Plan to Assess Quality of Data
 - Justification of Approach
 - Justification of Tools
 - Provide the Code
- Data-Cleaning
 - Cleaning Findings
 - Justification of Mitigation Methods
 - Summary of the Outcomes
 - Mitigation Code
 - Clean Data
 - Limitations
 - Impact of Limitations
 - Principal Components
 - Criteria Used
 - Benefits
- Supporting Documents
 - Video
 - Acknowledgement of Web Sources
 - Acknowledgement of Sources

Research Question

A: Question or Decision

"Of the factors provided, which factors predict readmission within a single month of discharge for the average patient?"

B: Required Variables

Variable Name	Data Type	Description	Example
CaseOrder	Identifier	Used for ordering the observations.	1
Customer_id	Identifier	Patient identifier value.	X110648
Interaction	Identifier	Hospital transaction identifier value.	e3b0a319-9e2e-4a23-8752- 2fdc736c30f4
UID	Identifier	Additional unique identifier value. See Interaction.	8e866e2402ea8db6d0584209f714e
City	Qualitative/Categorical	City where patient holds residency.	Stoddard
State	Qualitative/Categorical	State where patient holds residency.	NH
County	Qualitative/Categorical	County where patient holds residency.	heshire
Zip	Qualitative/Categorical	Zipcode where patient holds residency.	68164
Lat	Quantitative/Numeric	Latitude coordinates of patient residency.	41.12489
Lng	Quantitative/Numeric	Longitude coordinates of patient residency.	-72.11417
Population	Quantitative/Numeric	General population within patient residency.	2951
Area	Qualitative/Categorical	General area of patient residency.	Rural
Timezone	Qualitative/Categorical	Time zone of patient	America/Los_Angeles

Variable Name	Data Type	Description	Example
Job	Qualitative/Categorical	Working job title of patient.	Police officer
Children	Quantitative/Numeric	The integer amount of children a patient has.	6
Age	Quantitative/Numeric	The integer age of a patient.	22
Education	Qualitative/Categorical	Level of education disclosed by patient.	Master's Degree
Employment	Qualitative/Categorical	Means of employment level of patient.	Full Time
Income	Quantitative/Numeric	Yearly income disclosed by patient.	62054.63
Marital	Qualitative/Categorical	Marital status disclosed by patient.	Married
Gender	Qualitative/Categorical	Gender indentification disclosed by patient.	Male
ReAdmis	Qualitative/Categorical	Whether or not the patient has been readmitted a month since initial admission.	No
VitD_levels	Quantitative/Numeric	Measure of patient's vitamin D level (ng/mL.)	17.80233
Doc_visits	Quantitative/Numeric	Measure of primary doctor visits in initial admit.	4
Full_meals_eaten	Quantitative/Numeric	Measure of full meals ate	2

Variable Name	Data Type	Description	Example
		while admitted.	
VitD_supp	Quantitative/Numeric	Measure of vitamin D supplements given to patient.	1
Soft_drink	Qualitative/Categorical	Whether or not patient regularly consumes soft drinks.	Yes
Initial_admin	Qualitative/Categorical	General reason for visit.	Elective Admission
HighBlood	Qualitative/Categorical	Patient has hypertension.	No
Stroke	Qualitative/Categorical	Patient has had a stroke.	No
Complication_risk	Qualitative/Categorical	Patient level of complication risk.	Medium
Overweight	Qualitative/Categorical	Patient is overweight.	1
Arthritis	Qualitative/Categorical	Patient has arthritis.	No
Diabetes	Qualitative/Categorical	Patient has diabetes.	1
Hyperlipidemia	Qualitative/Categorical	Patient has hyperlipidemia.	No
BackPain	Qualitative/Categorical	Patient has back pain.	Yes
Anxiety	Qualitative/Categorical	Patient has anxiety.	1
Allergic_rhinitis	Qualitative/Categorical	Patient has allergic rhinitis.	No
Reflux_esophagitis	Qualitative/Categorical	Patient has reflux esophagitis.	No
Asthma	Qualitative/Categorical	Patient has asthma.	Yes
Services	Qualitative/Categorical	Type of work patient has	CT Scan

Variable Name	Data Type	Description	Example
		had done while admitted.	
Initial_days	Quantitative/Numeric	The numeric number of days of admission.	9.05821
TotalCharge	Quantitative/Numeric	Total daily charge to patient not including additional charges.	3191.048774
Additional_charges	Quantitative/Numeric	Patient charges for specialized treatments.	16815.5136
ltem1	Qualitative/Categorical	Survey result for speed of admission.	3
Item2	Qualitative/Categorical	Survey result for speed of treatment.	3
Item3	Qualitative/Categorical	Survey result for speed of visit.	2
Item4	Qualitative/Categorical	Survey result for reliability.	1
ltem5	Qualitative/Categorical	Survey result for options available.	6
Item6	Qualitative/Categorical	Survey result for time of treatment.	3
ltem7	Qualitative/Categorical	Survey result for staff friendliness.	3
Item8	Qualitative/Categorical	Survey result for active listening.	6

Data-Cleaning Plan

C1: Plan to Assess Quality of Data

The plan to assess the quality of the medical raw dataset includes the detection of duplicates, missing values, outliers, and the need for re-expression of categorical values. Duplicates are detected using the df.duplicated().value counts() function in a dataframe 'df', which indicates the number of 'True' and 'False' values corresponding distinct and unique rows, where 'False' is not duplicates and vice versa. The df.isnull().sum() function is utilized to count null (NaN) values across variables, identifying columns that may require data imputation. The missingno.matrix(df) function from the missingno library, will be employed to display NaN and non-NaN values within the dataframe, providing a visualization of data completeness. Outliers are identified through the sns.boxplot() function from seaborn, which generates boxplots. This method is chosen for its effectiveness in highlighting outliers. The re-expression of categorical values, especially for columns with responses like 'Yes' or 'No', is addressed by identifying relevant columns with df.columns[df.isin(['Yes', 'No']).any()].tolist(), preparing the dataset for further analysis by ensuring categorical data is represented accurately, typically as ones or zeros. Additionally, data frame functions, such as astype will be used to re-express certain variables when appropriate post one-hot and ordinal encoding when necessary.

C2: Justification of Approach

Finding duplicates is important for ensuring accuracy, reducing bias, and maintaining consistency within this dataset. Duplicates can affect data by exaggerating certain conditions or demographic values. This directly impacts the analysis, in a bias manner. For instance, if the dataset counts a duplicate record of a diabetic individual, the ratio of diabetic to non-diabetic individuals could appear misleadingly even. The method outlined in Section C1 addresses this issue by checking for duplicate rows. If duplicates were to exist, the output would display of the function call would state 'True' alongside the count of such records. However, the analysis confirms that all records are unique, as indicated by 'False' for each of the ten thousand observations, verifying the absence of duplicates. Ultimately, this verification step is essential for ensuring the dataset's integrity.

Detecting missing values is an important data cleaning step. Removing observations due to the absence of values in certain variables while is straightforward, this action risks discarding valuable information in other variables. The df.isnull().sum().sort_values(ascending = False) function is used for identify missing values involves producing the name and count of each column, detailing the count of missing entries within each column in the data set. Additionally, 'missingno' matrix is used for visualization, offering a picture of data completeness for each column in the data set. These methods not only highlight areas of concern but also guides the decision-making process on how best to handle the missing data. By imputation, the route to address the removal and reassignment of outliers is mapped.

Among various visualization techniques like histograms and z-scores, boxplots stand

out when it comes to identifying outliers in variables. Utilizing Seaborn, the popular Python library for visualization, these boxplots come straightforward and efficient. To detect outliers, the process involves a simple function call for each variable. This approach not only simplifies the detection of outliers but also provides a clear visual of the data's distribution and the values that could either be true data points for representation or potential data entry errors and etcetera, facilitating a better analysis.

The function df.columns[df.isin(['Yes', 'No']).any()].tolist() will pinpoint which data frame columns contain binary categorical values expressed as 'Yes' or 'No', similarly 1 or 0. Consistency in data representation impacts data analysis specifically the data cleaning phase. The columns of categorical values can require conversion to a numerical format (e.g., 'Yes' to '1' and 'No' to '0') to better assist the cleaning phase, which typically handle numerical input for outlier detection, etc. This function operates by examining each element within the data frame for a column and value match with 'Yes' or 'No', and then applies .any() to each column to check for at least one occurrence of these values. These columns are then put into a list using .tolist(). By doing this, the columns needing reexpression are now all containing binary categorical values, which ultimately assists the other parts of this phase, such as detecting and handling outliers. On top of binary categorical values, columns that represent numeric values will be appropriately address such that, income has no more than two places right of the decimal, or that columns like Children are a whole number. Additionally, multiple columns that are either nominal or ordinal will be made their own boolean variables, via one-hot or ordinal encoding.

C3: Justification of Tools

In this project, the language of choice, 'Python' is selected for library of (programming) libraries, significantly assisting in the data cleaning phase. Libraries such as matplotlib and seaborn for visualizations, enabling the creation of both simple and intermediate graphs. Pandas, a great tool for data manipulation, was used for cleaning to visualization with the data frame. Numpy was used for its' advanced mathematical functions for dimensional arrays, while the os library streamlined accessing the current working directory. The statistics library provided basic statistical analyses, and the warnings library was employed to maintain a clear output by suppressing messages that are not necessarily essential for this project. Collectively, these libraries showcase Python's effective data cleaning capability.

C4: Provide the Code

Install missingno if not installed.

In [103...

pip install missingno

```
Requirement already satisfied: missingno in c:\users\antho\anaconda3\lib\site-pac
kages (0.5.2)
Requirement already satisfied: numpy in c:\users\antho\anaconda3\lib\site-package
s (from missingno) (1.26.4)
Requirement already satisfied: matplotlib in c:\users\antho\anaconda3\lib\site-pa
ckages (from missingno) (3.8.0)
Requirement already satisfied: scipy in c:\users\antho\anaconda3\lib\site-package
s (from missingno) (1.11.4)
Requirement already satisfied: seaborn in c:\users\antho\anaconda3\lib\site-packa
ges (from missingno) (0.12.2)
Requirement already satisfied: contourpy>=1.0.1 in c:\users\antho\anaconda3\lib\s
ite-packages (from matplotlib->missingno) (1.2.0)
Requirement already satisfied: cycler>=0.10 in c:\users\antho\anaconda3\lib\site-
packages (from matplotlib->missingno) (0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in c:\users\antho\anaconda3\lib
\site-packages (from matplotlib->missingno) (4.25.0)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\antho\anaconda3\lib
\site-packages (from matplotlib->missingno) (1.4.4)
Requirement already satisfied: packaging>=20.0 in c:\users\antho\anaconda3\lib\si
te-packages (from matplotlib->missingno) (23.1)
Requirement already satisfied: pillow>=6.2.0 in c:\users\antho\anaconda3\lib\site
-packages (from matplotlib->missingno) (10.2.0)
Requirement already satisfied: pyparsing>=2.3.1 in c:\users\antho\anaconda3\lib\s
ite-packages (from matplotlib->missingno) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7 in c:\users\antho\anaconda3\l
ib\site-packages (from matplotlib->missingno) (2.8.2)
Requirement already satisfied: pandas>=0.25 in c:\users\antho\anaconda3\lib\site-
packages (from seaborn->missingno) (2.1.4)
Requirement already satisfied: pytz>=2020.1 in c:\users\antho\anaconda3\lib\site-
packages (from pandas>=0.25->seaborn->missingno) (2023.3.post1)
Requirement already satisfied: tzdata>=2022.1 in c:\users\antho\anaconda3\lib\sit
e-packages (from pandas>=0.25->seaborn->missingno) (2023.3)
Requirement already satisfied: six>=1.5 in c:\users\antho\anaconda3\lib\site-pack
ages (from python-dateutil>=2.7->matplotlib->missingno) (1.16.0)
Note: you may need to restart the kernel to use updated packages.
 import importlib.util
 import matplotlib.patches as pat
```

```
In [104...
```

```
import importlib.util
import matplotlib.patches as pat
import matplotlib.pyplot as plt
import missingno as msno
import numpy as np
import os
import pandas as pd
import seaborn as sns
from scipy import stats
from sklearn.decomposition import PCA
import statistics
import warnings

# What is my current working directory?
print(os.getcwd())

# Read csv into data frame.
df = pd.read_csv('medical_raw_data.csv')
```

 $\label{lem:c:shoolwgu} C:\Users\antho\OneDrive\Desktop\School\WGU\Data\ Analytics, M.S\D206\e9d8sm5uf8df75k650df$

Data frame 'df'

In [105...

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 53 columns):

Data	columns (total 53 co	olumns):	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	10000 non-null	int64
1	CaseOrder	10000 non-null	int64
2	Customer_id	10000 non-null	object
3	Interaction	10000 non-null	object
4	UID	10000 non-null	object
5	City	10000 non-null	object
6	State	10000 non-null	object
7	County	10000 non-null	object
8	Zip	10000 non-null	int64
9	Lat	10000 non-null	float64
10	Lng	10000 non-null	float64
11	Population	10000 non-null	int64
12	Area	10000 non-null	object
13	Timezone	10000 non-null	object
14	Job	10000 non-null	object
15	Children	7412 non-null	float64
16	Age	7586 non-null	float64
17	Education	10000 non-null	object
18	Employment	10000 non-null	object
19	Income	7536 non-null	float64
20	Marital	10000 non-null	object
21	Gender	10000 non-null	object
22	ReAdmis	10000 non-null	object
23	VitD_levels	10000 non-null	float64
24			
25	Doc_visits	10000 non-null 10000 non-null	int64
	Full_meals_eaten		int64
26	VitD_supp	10000 non-null	int64
27	Soft_drink	7533 non-null	object
28	Initial_admin	10000 non-null	object
29	HighBlood	10000 non-null	object
30	Stroke	10000 non-null	object
31	Complication_risk	10000 non-null	object
32	Overweight	9018 non-null	float64
33	Arthritis	10000 non-null	object
34	Diabetes	10000 non-null	object
35	Hyperlipidemia	10000 non-null	object
36	BackPain	10000 non-null	object
37	Anxiety	9016 non-null	float64
38	Allergic_rhinitis	10000 non-null	object
39	Reflux_esophagitis	10000 non-null	object
40	Asthma	10000 non-null	object
41	Services	10000 non-null	object
42	<pre>Initial_days</pre>	8944 non-null	float64
43	TotalCharge	10000 non-null	float64
44	Additional_charges	10000 non-null	float64
45	Item1	10000 non-null	int64
46	Item2	10000 non-null	int64
47	Item3	10000 non-null	int64
48	Item4	10000 non-null	int64
49	Item5	10000 non-null	int64
50	Item6	10000 non-null	int64

```
51 Item7 10000 non-null int64
52 Item8 10000 non-null int64
dtypes: float64(11), int64(15), object(27)
memory usage: 4.0+ MB

Duplicates
```

Duplicate

> CaseOrder False 10000 Name: count, dtype: int64 Customer id False 10000 Name: count, dtype: int64 Interaction False 10000 Name: count, dtype: int64 UID False 10000 Name: count, dtype: int64 City False 6072 True 3928 Name: count, dtype: int64 State True 9948 False 52 Name: count, dtype: int64 County 8393 True False 1607 Name: count, dtype: int64 Zip False 8612 1388 True Name: count, dtype: int64 Lat 8588 False True 1412 Name: count, dtype: int64 Lng False 8601 True 1399 Name: count, dtype: int64 Population False 5951 True 4049 Name: count, dtype: int64 Area True 9997 False 3 Name: count, dtype: int64 Timezone True 9974 False 26 Name: count, dtype: int64 Job 9361 True False 639 Name: count, dtype: int64 Children True 9988

12 Name: count, dtype: int64

False

Age True 9927 73 False Name: count, dtype: int64 Education True 9988 False 12 Name: count, dtype: int64 Employment 9995 True False Name: count, dtype: int64 Income False 7532 True 2468 Name: count, dtype: int64 Marital 9995 True False Name: count, dtype: int64 Gender 9997 True False 3 Name: count, dtype: int64 ReAdmis True 9998 False Name: count, dtype: int64 VitD_levels False 10000 Name: count, dtype: int64 Doc_visits True 9991 False Name: count, dtype: int64 Full_meals_eaten True 9992 False Name: count, dtype: int64 VitD_supp True 9994 False Name: count, dtype: int64 Soft_drink True 9997 False 3 Name: count, dtype: int64 Initial_admin True 9997 Name: count, dtype: int64 HighBlood True 9998 False 2

Name: count, dtype: int64

Stroke

True 9998 False 2 Name: count, dtype: int64 Complication_risk True 9997 False 3 Name: count, dtype: int64 Overweight 9997 True False 3 Name: count, dtype: int64 Arthritis True 9998 False 2 Name: count, dtype: int64 Diabetes True 9998 False 2 Name: count, dtype: int64 Hyperlipidemia True 9998 False Name: count, dtype: int64 BackPain True 9998 False Name: count, dtype: int64 Anxiety True 9997 False 3 Name: count, dtype: int64 Allergic_rhinitis 9998 True False 2 Name: count, dtype: int64 Reflux_esophagitis True 9998 False 2 Name: count, dtype: int64 Asthma True 9998 False 2 Name: count, dtype: int64 Services True 9996 False 4 Name: count, dtype: int64 Initial_days False 8945 1055 Name: count, dtype: int64 TotalCharge False 10000 Name: count, dtype: int64 Additional_charges

8888

localhost:8888/lab/tree/OneDrive/Desktop/School/WGU/Data Analytics%2C M.S/D206/e9d8sm5uf8df75k650df/D206PA.ipynb

False

```
True
         1112
Name: count, dtype: int64
Item1
        9992
True
False
Name: count, dtype: int64
Item2
        9993
True
False
Name: count, dtype: int64
Item3
         9992
True
False
Name: count, dtype: int64
Item4
True
         9993
False
           7
Name: count, dtype: int64
Item5
True
         9993
False
Name: count, dtype: int64
Item6
True
        9993
False
           7
Name: count, dtype: int64
Item7
True
         9993
False
Name: count, dtype: int64
Item8
True
         9993
False
Name: count, dtype: int64
```

Missing Values

```
In [108... # Detect null values in dataset.
df.isnull().sum().sort_values(ascending = False)
```

Out[108	Children	2588
	Soft_drink	2467
	Income	2464
	Age	2414
	Initial_days	1056
	Anxiety	984
	Overweight	982
	Stroke	0
	Complication_risk	0
	Arthritis	0
	Diabetes	0
	Hyperlipidemia	0
	BackPain	0
	Allergic_rhinitis	0
	Unnamed: 0	0
	HighBlood	0
	Asthma	0
	Services	0
	TotalCharge	0
	Additional_charges	0
	Item1	0
	Item2	0
	Item3	0
	Item4	0
	Item5	0
	Item6	0
	Item7	0
	Reflux_esophagitis	0
	VitD_supp	0
	Initial_admin	0
	CaseOrder	0
	Customer id	0
	Interaction	0
	UID	0
	City	0
	State	0
	County	0
	Zip	0
	Lat	0
	Lng	0
	Population	0
	Area	0
	Timezone	0
	Job	0
	Education	0
	Employment	0
	Marital	0
	Gender	0
	ReAdmis	0
	VitD_levels	0
	Doc_visits	0
	Full_meals_eaten	0
	Item8	0
	_ cciiio	0

dtype: int64

```
In [109... # Detect missing values in dataset.
msno.matrix(df, figsize = (15, 5), fontsize = 11, labels = True)

plt.title('Missing Data Indentification')
plt.show()
```



```
In [110...
          print('Outliers:\n')
          # Find columns that have outliers (data points greater than or less than their r\epsilon
          for col in df:
              if ((df[col].dtypes == 'float64' or df[col].dtypes == 'int64')) and df.column
                   Q1 = df[col].describe()['25%']
                   Q3 = df[col].describe()['75%']
                   IQR = Q3 - Q1
                   whiskerL = (Q1 - (1.5 * IQR))
                   whiskerR = (Q3 + (1.5 * IQR))
                   whiskerL = (df[df[col] >= whiskerL][col].min())
                   whiskerR = (df[df[col] <= whiskerR][col].max())</pre>
                   if any(df[col] > whiskerR) or any(df[col] < whiskerL):</pre>
                       out_count = ((df[col] > whiskerR).sum() + (df[col] < whiskerL).sum()</pre>
                       status = 'True'
                   else:
                       status = 'False'
                   if status == 'True':
                       print(str(col) + ':' + ((25 - len(str(col)) - len(str(status))) * '
                   elif status == 'False':
                       print(str(col) + ':' + ((34 - len(str(col)) - len(str(status))) * '
             elif (df[col].dtypes != 'float64' or df[col].dtypes != 'int64') and df.column
                   print(str(col) + ':' + ((43 - len(str(col))) * ' ') + 'Not Applicable.')
```

Outliers:

CaseOrder: Not Applicable. Customer id: Not Applicable. Interaction: Not Applicable. UTD: Not Applicable. City: Not Applicable. Not Applicable. State: Not Applicable. County: Zip: Not Applicable. Lat: Not Applicable. Not Applicable. Lng: Population: True, number of outliers: 855. Area: Not Applicable. Timezone: Not Applicable. Job: Not Applicable. Children: True, number of outliers: 303. False, number of outliers: 0. Age: Education: Not Applicable. Employment: Not Applicable. Income: True, number of outliers: 252. Marital: Not Applicable. Not Applicable. Gender: Not Applicable. ReAdmis: True, number of outliers: 534. VitD levels: Doc_visits: False, number of outliers: 0. Full_meals_eaten: True, number of outliers: 8. VitD supp: True, number of outliers: 70. Soft_drink: Not Applicable. Initial_admin: Not Applicable. HighBlood: Not Applicable. Stroke: Not Applicable. Complication_risk: Not Applicable. False, number of outliers: 0. Overweight: Arthritis: Not Applicable. Diabetes: Not Applicable. Hyperlipidemia: Not Applicable. BackPain: Not Applicable. False, number of outliers: 0. Anxiety: Allergic rhinitis: Not Applicable. Reflux_esophagitis: Not Applicable. Not Applicable. Asthma: Services: Not Applicable. Initial days: False, number of outliers: 0. TotalCharge: True, number of outliers: 466. Additional_charges: True, number of outliers: 424. Item1: True, number of outliers: 449. Item2: True, number of outliers: 429. True, number of outliers: 443. Item3: Item4: True, number of outliers: 450. Item5: True, number of outliers: 443. True, number of outliers: 443. Item6: True, number of outliers: 438. Item7: Item8: True, number of outliers: 442.

```
In [111...
          # Detect needed re-expression of categorical variables.
          print('Needs re-expression:\n')
          # Logic for if column in data frame should be re-expressed.
          for col in df:
              if df.columns.tolist().index(col) > 10:
                  # Anxiety or Overweight contains 1 and 0 which can be recognized as boole
                  if (col == 'Anxiety' or col == 'Overweight' or col == 'Timezone' or col
                      status = 'False'
                  elif (df[col].dtypes == 'float64' or df[col].dtypes == 'int64'):
                      status = 'False'
                  elif (df[col].dtypes == 'object' and df[col].isin(['Yes', 'No']).any())
                      status = 'True'
                  else:
                      status = 'True'
                  print(str(col) + ':' + ((20 - len(str(col))) * ' ') + status)
```

Needs re-expression:

Population: False Area: True Timezone: False Job: False Children: False False Age: Education: True Employment: True Income: False Marital: True Gender: True ReAdmis: True VitD levels: False Doc_visits: False Full_meals_eaten: False VitD supp: False Soft_drink: True Initial_admin: True HighBlood: True Stroke: True Complication_risk: True Overweight: False Arthritis: True Diabetes: True Hyperlipidemia: True BackPain: True Anxiety: False Allergic_rhinitis: True Reflux_esophagitis: True Asthma: True Services: True Initial days: False TotalCharge: False Additional_charges: False Item1: False Item2: False Item3: False Item4: False Item5: False Item6: False Item7: False Item8: False

Data Cleaning

D1: Cleaning Findings

The following has been observerd during the assessment of the dataset which involved detecting duplicates, missing values, outliers and the need for re-expression of categorical variables:

• The column provided to the left of CaseOrder, Unnamed: 0 is repetitive and thus will be removed before the production of the cleaned dataset.

- The are no duplicate observations considering all variables.
- Columns CaseOrder , Customer_id , Interaction , UID individually show no duplicates. There is no missing values for these variables and outliers or reexpression may not be appropriate with these data points as they do not have inherent order (nominal).

Demographic Data:

- Column City is allowed duplicates and has no missing values, additionally, the outliers and/or re-expression may be misleading in the scenario.
- Column State is allowed duplicates and has no missing values, additionally like City, the outliers and/or re-expression may be misleading in the scenario.
- Column County is allowed duplicates and has no missing values, like City and State , the outliers and/or re-expression may be misleading in the scenario.
- Column Zip is allowed duplicates and has no missing values. The outliers and/or re-expression may be misleading in the scenario. NOTE: Nominal data point.
- Column Lat is allowed duplicates and has no missing values. The outliers and/or re-expression may be misleading in the scenario.
- Column Lng is allowed duplicates and has no missing values. The outliers and/or re-expression may be misleading in the scenario.
- Column Population is allowed duplicates and has no missing values. Outliers have been detected and should be addressed. The variable does not require reexpression as it is quantitative.
- Column Area is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Timezone is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
 - **NOTE**: Timezone based on patient sign-up according to data dictionary, will not be queued to remove data.
- Column Age is allowed duplicates and is missing values. Outliers have not been detected. The variable does not require re-expression as it is quantitative.

• **NOTE**: Age is also depicted as a float64 variable, this should be changed to an integer field.

- Column Gender is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
 - NOTE: Only values such as "Male", "Female" and "Prefer not to answer" exist yet the data dictionary states for "Male", "Female" and "Nonbinary."
- Column Education is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Employment is allowed duplicates and has no missing values. Outliers
 have not been detected as the variable is qualitative, not numeric.
- Column Income is allowed duplicates and is missing values. Outliers have been detected and should be addressed. The variable does not require re-expression as it is quantitative.
- Column Marital is allowed duplicates and has no missing values. Outliers
 have not been detected as the variable is qualitative, not numeric.
- Column Job is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Children is allowed duplicates and is missing values. Outliers have been detected and should be addressed. The variable does not require reexpression as it is quantitative.
 - **NOTE**: Children is also depicted as a float64 variable, this should be changed to an integer field.

Hospitalization Data:

- Column Services is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Initial_admin is allowed duplicates and has no missing values.
 Outliers have not been detected as the variable is qualitative, not numeric.
- Column Initial_days is allowed duplicates and is missing values. Outliers have not been detected. The variable does not require re-expression as it is quantitative.
- Column TotalCharge is allowed duplicates and has no missing values. Outliers have been detected and should be addressed. The variable does not require reexpression as it is quantitative.

 Column Additional_charges is allowed duplicates and has no missing values. Outliers have been detected and should be addressed. The variable does not require re-expression as it is quantitative.

Medical Data:

- Column ReAdmis is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column VitD_levels is allowed duplicates and has no missing values. Outliers
 have been detected and should be addressed. The variable does not require reexpression as it is quantitative.
- Column Doc_visits is allowed duplicates and has no missing values. Outliers have not been detected. The variable does not require re-expression as it is quantitative.
- Column Full_meals_eaten is allowed duplicates and has no missing values.
 Outliers have been detected and should be addressed. The variable does not require re-expression as it is quantitative.
- Column VitD_supp is allowed duplicates and has no missing values. Outliers have been detected and should be addressed. The variable does not require reexpression as it is quantitative.
- Column Soft_drink is allowed duplicates and is missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column HighBlood is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Stroke is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Overweight is allowed duplicates and is missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Arthritis is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Diabetes is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Hyperlipidemia is allowed duplicates and has no missing values.
 Outliers have not been detected as the variable is qualitative, not numeric.
- Column BackPain is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Anxiety is allowed duplicates and **is** missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Allergic_rhinitis is allowed duplicates and has no missing values.
 Outliers have not been detected as the variable is qualitative, not numeric.
- Column Reflux_esophagitis is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not

numeric.

- Column Asthma is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric.
- Column Complication_risk is allowed duplicates and has no missing values.
 Outliers have not been detected as the variable is qualitative, not numeric.

Survey Data:

- Column Item1 is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric. The variable does not require re-expression as it is in ordinal format, the desirable format for mitigation code.
- Column Item2 is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric. The variable does not require re-expression as it is in ordinal format, the desirable format for mitigation code.
- Column Item3 is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric. The variable does not require re-expression as it is in ordinal format, the desirable format for mitigation code.
- Column Item4 is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric. The variable does not require re-expression as it is in ordinal format, the desirable format for mitigation code.
- Column Item5 is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric. The variable does not require re-expression as it is in ordinal format, the desirable format for mitigation code.
- Column Item6 is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric. The variable does not require re-expression as it is in ordinal format, the desirable format for mitigation code.
- Column Item7 is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric. The variable does not require re-expression as it is in ordinal format, the desirable format for mitigation code.
- Column Item8 is allowed duplicates and has no missing values. Outliers have not been detected as the variable is qualitative, not numeric. The variable does

not require re-expression as it is in ordinal format, the desirable format for mitigation code.

• **NOTE**: Naming conventions are not practical as they lack description and create poor documentation.

Variable Name	Duplicates?	Missing Values?	Outliers?	Needs Re-expression?
CaseOrder	0	0	N/A	N/A, Quantitative Identifier.
Customer_id	0	0	N/A	N/A, Quantitative Identifier.
Interaction	0	0	N/A	N/A, Qualitative Identifier.
UID	0	0	N/A	N/A, Qualitative Identifier.
City	3928	0	No, Categorical.	Nominal.***
State	9948	0	No, Categorical.	Nominal.***
County	8393	0	No, Categorical.	Nominal.***
Zip	1388	0	No, Categorical.	Nominal.***
Lat	1412	0	N/A	N, Quantitative.
Lng	1399	0	N/A	N, Quantitative.
Population	4049	0	855	N, Quantitative.
Area	9997	0	No, Categorical.	Nominal.***
Timezone	9974	0	No, Categorical.	Nominal.***
Job	9361	0	No, Categorical.	Nominal.***
Children	9988	2588	303	No, Quantitative.
Age	9927	2414	No	No, Quantitative.
Education	9988	0	No, Categorical.	Ordinal.^^^
Employment	9995	0	No, Categorical.	Nominal.***

Variable Name	Duplicates?	Missing Values?	Outliers?	Needs Re-expression?
Income	7532	2464	252	N, Quantitative.
Marital	9995	0	No, Categorical.	Nominal.***
Gender	9997	0	No, Categorical.	Nominal.***
ReAdmis	9998	0	No, Categorical.	Nominal.***
VitD_levels	0	0	534	No, Quantitative.
Doc_vists	9991	0	No, Categorical.	No, Quantitative.
Full_meals_eaten	9992	0	8	No, Quantitative.
VitD_supp	9994	0	70	N, Quantitative.
Soft_drink	9997	2467	No, Categorical.	Nominal.***
Initial_admin	9997	0	No, Categorical.	Nominal.***
HighBlood	9998	0	No, Categorical.	Nominal.***
Stroke	9998	0	No, Categorical.	Nominal.***
Complication_risk	9997	0	No, Categorical.	Ordinal.^^^
Overweight	9997	982	No, Categorical.	Nominal.***
Arthritis	9998	0	No, Categorical.	Nominal.***
Diabetes	9998	0	No, Categorical.	Nominal.***
Hyperlipidemia	9998	0	No, Categorical.	Nominal.***
BackPain	9998	0	No, Categorical.	Nominal.***
Anxiety	9997	984	No, Categorical.	Nominal.***
Allergic_rhinits	9998	0	No, Categorical.	Nominal.***
Reflux_esophagitis	9998	0	No,	Nominal.***

Variable Name	Duplicates?	Missing Values?	Outliers?	Needs Re-expression?
			Categorical.	
Asthma	9998	0	No, Categorical.	Nominal.***
Services	9996	0	No, Categorical.	Nominal.***
Initial_days	1055	1056	No	No, Quantitative.
TotalCharge	0	0	466	No, Quantitative.
Additional_charges	1112	0	424	No, Quantitative.
Item1	9992	0	No, Categorical.	Ordinal.^^^
Item2	9993	0	No, Categorical.	Ordinal.^^^
Item3	9992	0	No, Categorical.	Ordinal.^^^
Item4	9993	0	No, Categorical.	Ordinal.^^^
Item5	9993	0	No, Categorical.	Ordinal.^^^
Item6	9993	0	No, Categorical.	Ordinal.^^^
Item7	9993	0	No, Categorical.	Ordinal.^^^
Item8	9993	0	No, Categorical.	Ordinal.^^^

^{***} The re-expression of these variables may be unnecessary or far-fetched given the scenario. However, some variables could see a change in data type. (e.g., converting from an Object type to a Boolean type.)

^^^ The re-expression of these variables will use Ordinal Encoding. Some fields such as Item1-Item8 are already expressed appropriately. Additionally, some variables could see a change in data type. (e.g., converting from an Object type to a Int type.)

D2: Justification of Mitigation Methods

The duplication mitigation process involves reiteratively scanning each column of the cleaned data frame using the function df_clean[col].duplicated().value_counts() within a loop to verify the amount of duplicates per variable. Although the findings should not be

particularly remarkable to the diligent worker, it should be known that identification columns such as CaseOrder, Customer_id, Interaction or UID should have no duplicates whatsoever. Likewise, an evaluation of entire observations using df_clean.duplicated().value_counts() should confirm the absence of duplicates for total observations in the dataset/data frame.

The missingno library's matrix visualization, with the df.isnull().sum() method from pandas, works in the mitigation process in order to verify the final results. Additionally they assist with the presence of missing values within the data frame with the detection process. Referencing the techniques outlined in the WGU D206 course materials titled 'Detecting and Treating Missing Values', missing data is imputed using the data frame's .mean(), .median(), and .mode() functions, for the distribution characteristics of each variable. Specifically, .mean() is used for variables displaying a uniform distribution, .median() is applied to variables displaying skewness, and .mode() is chosen for distributions that were displaying bimodal picking one of the two hills to represent the missing values, as seen in boolean qualitative variables such as 'Soft_drink'.

Columns containing outliers are initially identified through Seaborn boxplot visualizations for verification. Subsequently, using DataFrame functions like .min() and .max() in parallel to Q1, Q3 and IQR calculations will find exactly what values are outliers as these are values out of range of the boxplot whiskers. Then after, the implementation will handle outliers by first replacing them with null values using NumPy's .where() function in order to imputate with the .median() function for fair input. Regardless, some outliers might persist to prevent introducing bias through excessive distortion of the dataset. The use of plots was crucial in confirming that the imputation of outliers was executed correctly. **NOTE**: "We do not check categorical variables for outliers....In fact, there is no concept of outliers in a categorical variable." An informative conversation I have had with Dr. Eric Straw.

Finally, variables are then examined to re-express nominal and ordinal characteristics among the variables. Notably, columns such as 'State', 'City', 'County', and 'Zip' will be grouped for simplification of location and subsequently one-hot encoded the 'State' column in the cleaned DataFrame. The 'Education' column will then be ordinal encoded to numerically represent educational levels, with the highest level indicating a Doctorate degree/Professional School degree. Additionally, a few categorical variables present a "Yes" and "No" response and will be converted to a boolean column, with 1s and 0s for clearer representation among all columns one-hot encoded or boolean. A re-expression also involves transforming age values from decimals to whole numbers to re-define the dataset's wholeness.

D3: Summary of the Outcomes

The duplication process performed as expected in the justification, no duplicates were found in any of the identification variables, CaseOrder, Customer_id, Interaction or UID. Similarly no duplicates of observations were found. All together there was indication of duplicates among variables which should be appropriate such as Age, Children, etc. The

missingno matrix in parallel to the df.isnull().sum() indicated 7 columns had missing values, that were then imputated and verified to not distort the data. The verification of missing data and the imputation process can be seen more descriptively in D4. The outliers were appropriately removed onceover and then displayed again in boxplots. Though outliers still exist, as mentioned in D2, they remain as part of the new boxplot range and will remain to not distort the data in a bias manner. Finally, columns were appropriately involved in data type conversions with the addition of 15 columns from one-hot encoding. Ordinal encoding was also performed to indicate level numerically upon the Complication_risk and Education columns.

D4: Mitigation Code

Name: count, dtype: int64

```
In [114... # Value counts of duplicates (are allowed for individual variables besides identa
for col in df_clean:
    print(df_clean[col].duplicated().value_counts())
```

> CaseOrder False 10000 Name: count, dtype: int64 Customer id False 10000 Name: count, dtype: int64 Interaction False 10000 Name: count, dtype: int64 UID False 10000 Name: count, dtype: int64 City False 6072 True 3928 Name: count, dtype: int64 State 9948 True False 52 Name: count, dtype: int64 County 8393 True False 1607 Name: count, dtype: int64 Zip False 8612 1388 True Name: count, dtype: int64 Lat False 8588 True 1412 Name: count, dtype: int64 Lng False 8601 True 1399 Name: count, dtype: int64 Population False 5951 True 4049 Name: count, dtype: int64 Area True 9997 False 3 Name: count, dtype: int64 Timezone True 9974 False 26 Name: count, dtype: int64 Job 9361 True False 639 Name: count, dtype: int64 Children True 9988

12 Name: count, dtype: int64

False

Age True 9927 73 False Name: count, dtype: int64 Education True 9988 False 12 Name: count, dtype: int64 Employment 9995 True False Name: count, dtype: int64 Income False 7532 True 2468 Name: count, dtype: int64 Marital 9995 True False Name: count, dtype: int64 Gender 9997 True False 3 Name: count, dtype: int64 ReAdmis True 9998 False Name: count, dtype: int64 VitD_levels False 10000 Name: count, dtype: int64 Doc_visits True 9991 False Name: count, dtype: int64 Full_meals_eaten True 9992 False Name: count, dtype: int64 VitD supp True 9994 False Name: count, dtype: int64 Soft_drink True 9997 False 3 Name: count, dtype: int64 Initial_admin True 9997 Name: count, dtype: int64 HighBlood True 9998 False 2 Name: count, dtype: int64

Stroke

True 9998 False 2 Name: count, dtype: int64 Complication_risk True 9997 False 3 Name: count, dtype: int64 Overweight 9997 True False 3 Name: count, dtype: int64 Arthritis True 9998 False 2 Name: count, dtype: int64 Diabetes True 9998 False 2 Name: count, dtype: int64 Hyperlipidemia True 9998 False Name: count, dtype: int64 BackPain True 9998 False Name: count, dtype: int64 Anxiety True 9997 False 3 Name: count, dtype: int64 Allergic_rhinitis True 9998 False 2 Name: count, dtype: int64 Reflux_esophagitis True 9998 False 2 Name: count, dtype: int64 Asthma True 9998 False 2 Name: count, dtype: int64 Services True 9996 False 4 Name: count, dtype: int64 Initial_days False 8945 1055 Name: count, dtype: int64 TotalCharge False 10000 Name: count, dtype: int64 Additional_charges

8888

False

True

Item1 True

1112 Name: count, dtype: int64

9992

```
False
         Name: count, dtype: int64
         Item2
         True
                  9993
         False
         Name: count, dtype: int64
         Item3
         True
                  9992
         False
         Name: count, dtype: int64
         Item4
         True
                  9993
         False
                    7
         Name: count, dtype: int64
         Item5
         True
                  9993
         False
         Name: count, dtype: int64
         Item6
         True
                  9993
         False
                     7
         Name: count, dtype: int64
         Item7
         True
                  9993
         False
         Name: count, dtype: int64
         Item8
                  9993
         True
         False
         Name: count, dtype: int64
          Mitigating - Missing Values
In [115...
          # Define values as numbers for imputation purposes. Method seen by Dr. Middleton,
          dict = {"Soft_drink": {"No": 0, "Yes": 1, "unknown": np.nan}}
          df_clean.replace(dict, inplace = True)
          print('Missing Values:')
          for col in df_clean.sort_index(axis = 1):
              if df_clean[col].isna().sum() > 0:
                   print(col)
         Missing Values:
         Age
         Anxiety
         Children
         Income
         Initial_days
         Overweight
         Soft_drink
```

Examining Distribution:

```
# Ignore FutureWarnings (from sns inf -> NaN.)
In [116...
          warnings.simplefilter(action='ignore', category=FutureWarning)
           fig, ax = plt.subplots(4, 2, figsize = (20, 20))
           ax = ax.flatten()
           ax[-1].axis('off')
           null_list = sorted(df.columns[df.isna().any()].tolist())
           for i, col in enumerate(null_list):
               if (df_clean[col].dtypes != 'bool'):
                   sns.histplot(df_clean[col], bins = 10, ax = ax[i], kde = True)
           plt.tight_layout()
           plt.show()
          600
          200
         2000
         2000
```

Perform Imputation:

```
# Based on the distribution of the graphs, imputate.
In [117...
          # Uniform -> Mean, Skewed -> Median, Bimodial -> Mode.
          mean col = ['Age']
          median_col = ['Children', 'Income']
          mode_col = ['Anxiety', 'Initial_days', 'Overweight', 'Soft drink']
          age_before = df_clean['Age'].describe()
          chi_before = df_clean['Children'].median()
          inc_before = df_clean['Income'].median()
          # Impute on columns with null (NaN values) data. Method seen by Dr. Middleton, G\epsilon
          for col in null list:
              if col in mean_col:
                   df_clean[col].fillna(df_clean[col].mean(), inplace = True)
              elif col in median col:
                   df_clean[col].fillna(df_clean[col].median(), inplace = True)
              elif col in mode_col:
                   df_clean[col] = df_clean[col].fillna(df_clean[col].mode()[0])
          age_after = df_clean['Age'].describe()
          chi_after = df_clean['Children'].median()
          inc_after = df_clean['Income'].median()
          fig, ax = plt.subplots(4, 2, figsize = (20, 20))
          ax = ax.flatten()
          ax[-1].axis('off')
          for i, col in enumerate(null_list):
              if (df_clean[col].dtypes != 'bool'):
                   sns.histplot(df_clean[col], bins = 10, ax = ax[i], kde = True)
          plt.tight_layout()
          plt.show()
```


Verification:

```
In [118... # Verify the imputation of data for null values. As seen in 'Video 2: Getting Sto
# Treating Missing Values'
print('Age:\t\t\tBefore\t\t\tAfter')
print('Mean\t\t|\t' + str(age_before['mean']) + ',\t' + str(age_after['mean']) +

print('Children:\t|\tBefore\t\t\tAfter')
print('Median\t\t|\t' + str(chi_before) + ',\t\t' + str(chi_after) + '\n')

print('Income:\t\t|\tBefore\t\t\tAfter')
print('Median\t\t|\t' + str(inc_before) + ',\t\t' + str(inc_after))
```

Age: | Before After

Mean | 53.29567624571579, 53.29567624571578

Children: Before After Median 1.0, 1.0

Income: | Before After Median | 33942.28, 33942.28

Verification - Missing Values

```
In [119... # Detect null values in dataset.
    df_clean.isnull().sum().sort_values(ascending = False)
```

Out[119	CaseOrder	0
	Customer_id	0
	HighBlood	0
	Stroke	0
	Complication_risk	0
	Overweight	0
	Arthritis	0
	Diabetes	0
	Hyperlipidemia	0
	BackPain	0
	Anxiety	0
	Allergic_rhinitis	0
	Reflux_esophagitis	0
	Asthma Services	0
		0
	Initial_days TotalCharge	0
	Additional charges	0
	Item1	0
	Item2	0
	Item3	0
	Item4	0
	Item5	0
	Item6	0
	Item7	0
	Initial_admin	0
	Soft_drink	0
	VitD_supp	0
	Timezone	0
	Interaction	0
	UID	0
	City	0
	State	0
	County	0
	Zip	0
	Lat	0
	Lng	0
	Population	0
	Area	0
	Job	0
	Full_meals_eaten	0
	Children	0
	Age	0
	Education	0
	Employment	0
	Income	0
	Marital	0
	Gender	0
	ReAdmis	0
	VitD_levels	0
	Doc_visits Item8	0
	dtype: int64	Ø
	acype. Into4	

Mitigating - Outliers

```
# Find which columns have outliers.
In [121...
          out_cols = []
           for col in df_clean:
             if ((df_clean[col].dtypes == 'float64' or df_clean[col].dtypes == 'int64')) a
                   Q1 = df_clean[col].describe()['25%']
                   Q3 = df_clean[col].describe()['75%']
                   IQR = Q3 - Q1
                   whiskerL = (Q1 - (1.5 * IQR))
                   whiskerR = (Q3 + (1.5 * IQR))
                   whiskerL = (df_clean[df_clean[col] >= whiskerL][col].min())
                   whiskerR = (df_clean[df_clean[col] <= whiskerR][col].max())</pre>
                   if any(df_clean[col] > whiskerR) or any(df_clean[col] < whiskerL):</pre>
                       out_count = ((df_clean[col] > whiskerR).sum() + (df_clean[col] < whis</pre>
                       out_cols.append(str(col))
                   else:
                       status = 'False'
           print('Outliers:')
           print(out_cols)
         Outliers:
         ['Population', 'Children', 'Income', 'VitD_levels', 'Full_meals_eaten', 'VitD_sup
         p', 'TotalCharge', 'Additional charges']
In [122...
          # Plot columns with outliers.
          fig, ax = plt.subplots(2, 5, figsize = (20, 40))
           ax = ax.flatten()
           ax[-1].axis('off')
           ax[-2].axis('off')
```

```
out_list = sorted(out_cols)
for i, col in enumerate(out_list):
   boxV = sns.boxplot(df_clean[col], ax = ax[i])
   boxV.set_xlabel(str(col))
plt.tight_layout()
plt.show()
```


Verification - Outliers

```
# If a column with data type 'float' or ' int', find its' whiskers and thus its'
In [123...
           # 'Video 3: Getting Started with D206 Detecting and Treating Outliers'
           for col in df_clean:
              if ((df_clean[col].dtypes == 'float64' or df_clean[col].dtypes == 'int64')) a
                   Q1 = df clean[col].describe()['25%']
                   Q3 = df_clean[col].describe()['75%']
                   IQR = Q3 - Q1
                   whiskerL = (Q1 - (1.5 * IQR))
                   whiskerR = (Q3 + (1.5 * IQR))
                   whiskerL = (df_clean[df_clean[col] >= whiskerL][col].min())
                   whiskerR = (df clean[df clean[col] <= whiskerR][col].max())</pre>
                   if any(df_clean[col] > whiskerR) or any(df_clean[col] < whiskerL):</pre>
                       if (any(df_clean[col] > whiskerR) and not any(df_clean[col] < whisker</pre>
                            df_clean[col] = np.where(df_clean[col] > whiskerR, np.nan, df_clean[col]
                            df_clean[col].fillna(df_clean[col].median(), inplace = True)
                       elif (any(df_clean[col] < whiskerL) and not any(df_clean[col] > whisl
                            df clean[col] = np.where(df clean[col] < whiskerL, np.nan, df clean[col]</pre>
                            df_clean[col].fillna(df_clean[col].median(), inplace = True)
                       else:
                            df_clean[col] = np.where(df_clean[col] < whiskerL, np.nan, df_clean[col]</pre>
                            df_clean[col] = np.where(df_clean[col] > whiskerR, np.nan, df_clean[col]
                            df_clean[col].fillna(df_clean[col].median(), inplace = True)
           fig, ax = plt.subplots(2, 5, figsize = (20, 40))
           ax = ax.flatten()
           ax[-1].axis('off')
           ax[-2].axis('off')
           out_list = sorted(out_cols)
           # Set each boxplot with name of column it represents.
           for i, col in enumerate(out list):
               boxV = sns.boxplot(df_clean[col], ax = ax[i])
               boxV.set_xlabel(str(col))
           plt.tight_layout()
           plt.show()
```


Mitigating - Re-expression of Variables

In [124... # Data frame before mitigation.
 df_clean.T

Out[124... 0

CaseOrder	1	
Customer_id	C412403	Z91918
Interaction	8cd49b13-f45a-4b47-a2bd- 173ffa932c2f	d2450b70-0337-4406-bdbb bc1037f1734
UID	3a83ddb66e2ae73798bdf1d705dc0932	176354c5eef714957d486009feabf19
City	Eva	Mariann
State	AL	F
County	Morgan	Jackso
Zip	35621	3244
Lat	34.3496	30.8451
Lng	-86.72508	-85.2290
Population	2951.0	11303.
Area	Suburban	Urba
Timezone	America/Chicago	America/Chicag
Job	Psychologist, sport and exercise	Community development works
Children	1.0	3.
Age	53.0	51.
Education	Some College, Less than 1 Year	Some College, 1 or More Years, N Degre
Employment	Full Time	Full Tim
Income	33942.28	46805.9
Marital	Divorced	Marrie
Gender	Male	Femal
ReAdmis	No	N
VitD_levels	17.80233	18.9946
Doc_visits	6	
Full_meals_eaten	0.0	2.
VitD_supp	0.0	1.
Soft_drink	0.0	0.
Initial_admin	Emergency Admission	Emergency Admissio
HighBlood	Yes	Υe

0

	_	
Stroke	No	N
Complication_risk	Medium	Hig
Overweight	0.0	1.
Arthritis	Yes	N
Diabetes	Yes	N
Hyperlipidemia	No	N
BackPain	Yes	N
Anxiety	1.0	0.
Allergic_rhinitis	Yes	N
Reflux_esophagitis	No	Υe
Asthma	Yes	N
Services	Blood Work	Intravenou
Initial_days	10.58577	15.12956
TotalCharge	3191.048774	4214.90534
Additional_charges	17939.40342	17612.9981
Item1	3	
Item2	3	
Item3	2	
Item4	2	
Item5	4	
Item6	3	
Item7	3	
Item8	4	

52 rows × 10000 columns

```
for col in one_hot_cols:
   df_{clean}[col] = 0
# One-hot encoding, State:
for idx, row in df clean.iterrows():
   currRow = row['State']
   if currRow in regionW:
        df_clean.loc[idx, 'West'] = 1
   elif currRow in regionC:
        df_clean.loc[idx, 'Central'] = 1
   elif currRow in regionE:
        df_clean.loc[idx, 'East'] = 1
# One-hot encoding, Area:
for idx, row in df_clean.iterrows():
   currRow = row['Area']
   if currRow == ('Suburban'):
       df clean.loc[idx, 'Suburban'] = 1
   elif currRow == ('Urban'):
        df_clean.loc[idx, 'Urban'] = 1
   elif currRow == ('Rural'):
        df_clean.loc[idx, 'Rural'] = 1
# One-hot encoding, Employment:
for idx, row in df clean.iterrows():
   currRow = row['Employment']
   if currRow == ('Full Time'):
        df_clean.loc[idx, 'Full_Time_Employment'] = 1
   elif currRow == ('Part Time'):
        df clean.loc[idx, 'Part Time Employment'] = 1
   elif currRow == ('Retired'):
        df_clean.loc[idx, 'Retired'] = 1
   elif currRow == ('Student'):
        df_clean.loc[idx, 'Student_Employment'] = 1
   elif currRow == ('Unemployed'):
        df clean.loc[idx, 'No Employment'] = 1
# One-hot encoding, Marital:
for idx, row in df_clean.iterrows():
   currRow = row['Marital']
   if currRow == ('Divorced'):
        df_clean.loc[idx, 'Divorced'] = 1
   elif currRow == ('Married'):
        df_clean.loc[idx, 'Married'] = 1
   elif currRow == ('Never Married'):
        df_clean.loc[idx, 'Never_Married'] = 1
   elif currRow == ('Separated'):
        df_clean.loc[idx, 'Separated'] = 1
   elif currRow == ('Widowed'):
        df_clean.loc[idx, 'Widowed'] = 1
```

```
# One-hot encoding, Gender:
for idx, row in df_clean.iterrows():
    currRow = row['Gender']
    if currRow == ('Male'):
        df_clean.loc[idx, 'Male'] = 1
    elif currRow == ('Female'):
        df_clean.loc[idx, 'Female'] = 1
    elif currRow == ('Prefer not to answer'):
        df_clean.loc[idx, 'Nonbinary'] = 1
# One-hot encoding, Initial_admin:
for idx, row in df_clean.iterrows():
    currRow = row['Initial_admin']
    if currRow == ('Emergency Admission'):
        df_clean.loc[idx, 'EmergencyAdmission'] = 1
    elif currRow == ('Elective Admission'):
        df_clean.loc[idx, 'ElectiveAdmission'] = 1
    elif currRow == ('Observation Admission'):
        df_clean.loc[idx, 'ObservationAdmission'] = 1
# One-hot encoding, Services:
for idx, row in df_clean.iterrows():
    currRow = row['Services']
    if currRow == ('Blood Work'):
        df_clean.loc[idx, 'Blood_Work'] = 1
    elif currRow == ('Intravenous'):
        df_clean.loc[idx, 'Intravenous'] = 1
    elif currRow == ('CT Scan'):
        df_clean.loc[idx, 'CT_Scan'] = 1
    elif currRow == ('MRI'):
        df_clean.loc[idx, 'MRI'] = 1
# Ordinal encoding, Education:
dict = {"Education": {"Some College, Less than 1 Year": 5,
            "Some College, 1 or More Years, No Degree": 5,
            "GED or Alternative Credential": 4, "Regular High School Diploma": 4
            "Bachelor's Degree": 7, "Master's Degree": 8,
            "Nursery School to 8th Grade": 2,
```

```
for col in trsf_bool:
              dict = {str(col): { "Yes": 1, "No": 0}}
              df_clean.replace(dict, inplace = True)
          df_clean.replace(dict, inplace = True)
In [127...
          # Column data type re-expression.
          # List of columns to convert to bool
          bool_cols = ['Soft_drink', 'HighBlood', 'Stroke', 'Overweight', 'Arthritis', 'Di
                        'Anxiety', 'Allergic_rhinitis', 'Reflux_esophagitis', 'Asthma', 'Wes
                        'Urban', 'Rural', 'Full_Time_Employment', 'Part_Time_Employment', '
                        'No_Employment', 'Divorced', 'Married', 'Never_Married', 'Separated
                        'Nonbinary', 'EmergencyAdmission', 'ElectiveAdmission', 'Observation
                        'CT_Scan', 'MRI', 'ReAdmis']
          # Re-express as bool.
          for col in bool_cols:
              df_clean[col] = df_clean[col].astype('bool')
          int_cols = ['Population', 'Children', 'Age', 'Complication_risk', 'Item1', 'Item2')
                       'Item5', 'Item6', 'Item7', 'Item8']
          # Re-express as int64.
          for col in int cols:
              df_clean[col] = df_clean[col].astype('int64')
          dec_cols = ['VitD_levels', 'Full_meals_eaten', 'VitD_supp', 'Initial_days',
                       'TotalCharge', 'Additional_charges']
          # Re-express precision.
          for col in dec_cols:
              df_clean[col] = df_clean[col].round(2)
In [128...
          # Remove the variables that were used for one-hot encoding.
          df_clean = df_clean.drop(columns = ['City', 'State', 'County', 'Zip', 'Area', 'Em|
          df clean.T
```

Out[128... 0

	1	CaseOrder
Z919	C412403	Customer_id
d2450b70-0337-4406-bd bc1037f17	8cd49b13-f45a-4b47-a2bd- 173ffa932c2f	Interaction
176354c5eef714957d486009feabf	3a83ddb66e2ae73798bdf1d705dc0932	UID
30.84	34.3496	Lat
F	False	Student_Employment
F	True	Suburban
1	False	Urban
F	False	West
F	False	Widowed

68 rows × 10000 columns

```
In [129...
```

```
# Re-assign data frame with order of old data frame with the inclusion of one-how
df_clean = df_clean[['CaseOrder', 'Customer_id', 'Interaction', 'UID', 'West', 'Common of one-how
'Timezone', 'Job', 'Children', 'Age', 'Education', 'Full_Time_Emple of the inclusion of one-how
'Income', 'Dot one of the inclusion of one-how
'Income', 'Dot one of one-how
'Timezone', 'Dot one of one-how
'Timezone', 'Gustomer_id', 'Never_Married', 'Separated', 'I
'Full_meals_eaten', 'VitD_supp', 'Soft_drink', 'EmergencyAdmission
'Overweight', 'Arthritis', 'Diabetes', 'Hyperlipidemia', 'BackPasion'
'CT_Scan', 'MRI', 'Initial_days', 'TotalCharge', 'Additional_chait
```

Verification - Re-expression of Variables

```
In [130...
```

```
# Verification of dataset post-mitigation.
df_clean.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 68 columns):

Data	columns (total 68 columns	umns):	
#	Column	Non-Null Count	Dtype
0	CaseOrder	10000 non-null	int64
1	Customer_id	10000 non-null	object
2	Interaction	10000 non-null	object
3	UID	10000 non-null	object
4	West	10000 non-null	bool
5	Central	10000 non-null	bool
6	East	10000 non-null	bool
7	Lat	10000 non-null	float64
8	Lng	10000 non-null	float64
9	Population	10000 non-null	int64
10	Suburban	10000 non-null	bool
11	Urban	10000 non-null	bool
12	Rural	10000 non-null	bool
13	Timezone	10000 non-null	object
14	Job	10000 non-null	object
15	Children	10000 non-null	int64
16		10000 non-null	int64
	Age	10000 non-null	
17	Education		int64
18	Full_Time_Employment	10000 non-null	bool
19	Part_Time_Employment	10000 non-null	bool
20	Retired	10000 non-null	bool
21	Student_Employment	10000 non-null	bool
22	No_Employment	10000 non-null	bool
23	Income	10000 non-null	float64
24	Divorced	10000 non-null	bool
25	Married	10000 non-null	bool
26	Never_Married	10000 non-null	bool
27	Separated	10000 non-null	bool
28	Widowed	10000 non-null	bool
29	Male	10000 non-null	bool
30	Female	10000 non-null	bool
31	Nonbinary	10000 non-null	bool
32	ReAdmis	10000 non-null	bool
33	VitD_levels	10000 non-null	float64
34	Doc_visits	10000 non-null	int64
35	Full_meals_eaten	10000 non-null	float64
36	VitD_supp	10000 non-null	float64
37	Soft_drink	10000 non-null	bool
38	EmergencyAdmission	10000 non-null	bool
39	ElectiveAdmission	10000 non-null	bool
40	ObservationAdmission	10000 non-null	bool
41	HighBlood	10000 non-null	bool
42	Stroke	10000 non-null	bool
43	Complication_risk	10000 non-null	int64
44	Overweight	10000 non-null	bool
45	Arthritis	10000 non-null	bool
46	Diabetes	10000 non-null	bool
47	Hyperlipidemia	10000 non-null	bool
48	BackPain	10000 non-null	bool
46 49	Anxiety	10000 non-null	bool
	Allergic_rhinitis		
50	writeRrc_Lumingtrz	10000 non-null	bool

```
51 Reflux_esophagitis
                         10000 non-null bool
 52 Asthma
                         10000 non-null bool
 53 Blood Work
                         10000 non-null bool
 54 Intravenous
                         10000 non-null bool
 55 CT_Scan
                         10000 non-null bool
 56 MRI
                         10000 non-null bool
 57 Initial_days
                         10000 non-null float64
                         10000 non-null float64
 58 TotalCharge
 59 Additional charges
                         10000 non-null float64
 60 Item1
                         10000 non-null int64
 61 Item2
                         10000 non-null int64
 62 Item3
                         10000 non-null int64
 63 Item4
                         10000 non-null int64
 64 Item5
                         10000 non-null int64
 65 Item6
                         10000 non-null int64
 66 Item7
                         10000 non-null int64
 67 Item8
                         10000 non-null int64
dtypes: bool(39), float64(9), int64(15), object(5)
memory usage: 2.6+ MB
```

D5: Clean Data

```
In [131...
```

```
# Copy of clean dataset.

df_clean.to_csv('medical_raw_data_clean.csv')
```

D6: Limitations

The data-cleaning process involved a general lack of familiarity with the programming language, Python, used for cleaning introducing growing pains in the process. Additionally, inconsistencies among qualitative variables added ambiguity, which is hurtful for accuracy. The presence of missing values in three of the qualitative variables posed a unique challenge, as imputation for such a small range, 0 and 1, may skew the dataset innappropriately. Inappropriately formatted fields added extra steps to convert data into a usable format. A general lack of understanding in domain knowledge regarding hospital operations, may have hindered the ability to identify errors or anomalies within the dataset, possibly leading to incorrect decisions. These challenges define the importance of expertise in both the technical and subject matter aspects of the data-cleaning to ensure proper outcomes.

D7: Impact of Limitations

As mentioned previously, lack of Python familiarity involved growing pains which thus significantly slowed the cleaning process. Additionally, the lack of familiarity may have inhibited skipping out on other methods more effective for analysis. The missing values may be misrepresenting the entire picture of an observation. Imputation on boolean fields, also may misrepresent the entire picture of an observation. The lack of domain knowledge may limit the interpretation of the data and thus may not generate an accurate dataset for future use.

E1: Principal Components

In [132... # Quantitative (continous) variables only. pca_cols = df_clean[['Lat', 'Lng', 'Population', 'Children', 'Age', 'Income', 'V: 'VitD_supp', 'Initial_days', 'TotalCharge', 'Additional_char # Normalization to ensure PCA algorithm captures appropriate variance of data. cols_normalized = (pca_cols - pca_cols.mean())/pca_cols.std() # Sets the number of components, 13 in this case. pca = PCA(n_components=pca_cols.shape[1]) # Used for dimension reduction, calculating the eigenvalues and eigenvectors. pca.fit(cols_normalized) # Stores the analysis into a local data frame. med_pca = pd.DataFrame(pca.transform(cols_normalized), columns = ['PCA1', 'PCA2' 'PCA9', 'PCA10 # Organizes columns and respective pca values. loadings = pd.DataFrame(pca.components_.T, columns = ['PCA1', 'PCA2', 'PCA3', 'PCA4', 'PCA5', 'PCA6 index=pca_cols.columns) loadings

\cap		+	Γ	1	\supset	7	
U	и	L	L	Τ	0	_	••

	PCA1	PCA2	PCA3	PCA4	PCA5	PCA6	
Lat	-0.021960	-0.024889	0.639403	0.077157	-0.047315	0.104678	0.0
Lng	-0.005158	0.034415	-0.499811	-0.002214	0.015231	-0.088838	-0.1
Population	0.034536	-0.024141	-0.568801	-0.038217	0.033725	0.067249	0.0
Children	0.015640	-0.015352	-0.076238	0.015442	-0.153267	0.874886	0.2
Age	0.054333	0.703054	0.009155	0.031959	-0.027119	0.001147	0.0
Income	-0.002531	-0.015715	-0.037335	0.393293	0.500562	0.103205	0.5
VitD_levels	0.051246	0.025323	0.057529	-0.415653	0.577754	-0.041368	0.2
Doc_visits	-0.012482	0.010666	0.022327	0.234527	0.559705	0.289603	-0.7
Full_meals_eaten	-0.025165	0.036380	0.074515	-0.575919	0.241366	-0.051218	0.0
VitD_supp	0.045693	-0.005724	0.009823	0.525068	0.115414	-0.333846	0.1
Initial_days	0.700264	-0.065617	0.019272	0.009985	-0.048502	0.009059	-0.0
TotalCharge	0.704173	-0.045932	0.023025	-0.029218	0.022364	-0.003195	-0.0
Additional_charges	0.057989	0.703079	0.013032	0.023209	-0.010218	0.028291	0.0
4							•

E2: Criteria Used

Scree Plot

```
# Principal Component Analysis. Code assistance via 'Getting Started with D206 |
cov_matrix = np.dot(cols_normalized.T, cols_normalized) / pca_cols.shape[0]
eigenvalues = [np.dot(eigenvector.T, np.dot(cov_matrix, eigenvector)) for eigenvalues
# Plot the eigenvalues as assigned above.
plt.plot(eigenvalues)
plt.xlabel('Number of Components')
plt.ylabel('Eigenvalue')
plt.axhline(y = 1, color = 'Red', linestyle = ':')

plt.tight_layout()
plt.show()
```


The Kaiser rule states that eigenvalues only greater than or equal to 1 are worth keeping. The graph depicts which components are over this limit though it is still hard to tell. The following code programmatically indicates that 6 variables follow the Kaiser rule. As seen in PCA1, Initial_days and TotalCharge may be the heaviest influence on PC1, Additional_charges on PC2, Lat on PC3 however and so on for the remaining eigenvalues greater than or equal to one as found below where generally, "...a component with an eigenvalue of 1 accounts for as much variance as single variable." (O'Connor, The number of eigenvalues greater than 1)

Kaiser Criterion:

```
In [134... # Kaiser Rule.
    for i, e in enumerate(eigenvalues):
        if e >= 1:
            print('PCA' + str(i + 1) + ': ' + str(e))
PCA1: 1 79796/3111109211
```

PCA1: 1.7979643111109211 PCA2: 1.546415888406625 PCA3: 1.213017447936713 PCA4: 1.0347603667253222 PCA5: 1.012824731704533 PCA6: 1.0036673420344593

E3: Benefits

Principal Component Analysis may benefit the company by means of dimension reduction and data visualization for data exploration. The data set does not have nearly as many continous quantitative variables as it does qualitative variables, however a correlation can be found with what results come from the PCA analysis from the thirteen provided. By transforming these relationships, as seen in the section before, 6 components may offer insight into the data provided. More specifically the relationship as seen between the TotalCharge and Initial_days, is perhaps more beneficial to the hospital than the initial scenario presents as PCA1 displays more variance than the variables by themselves. This dataset is particularly large and PCA thus can reduce such. The scope of what is important or beneficial to the hospital is indicitive of the business need and more.

Supporting Documents

F: Video

https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=47162933-ce5f-41c2-bd72-b13b00436eb8

https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d89e62c9-4527-4a98-ae29-b136014277cb (Only if interested, 40 min step by step demonstration.)

G: Acknowledgement of Web Sources

https://builtin.com/data-science/step-step-explanation-principal-component-analysis by Zakaria Jaadi

https://www.geeksforgeeks.org/principal-component-analysis-pca/ https://saturncloud.io/blog/how-to-get-column-name-which-contains-a-specific-valueat-any-rows-in-python-pandas/ by Saturn Cloud https://learnpython.com/blog/sort-alphabetically-in-python/ by Xavier Riguolet

https://www.statology.org/pandas-isin-multiple-columns/ By "Zach" https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html by SciKit-Learn

https://seaborn.pydata.org/tutorial/function_overview.html by Seaborn

H: Acknowledgement of Sources

Dr. Eric Straw

Dr. Keiona Middleton, D206 Getting Started with D206 Videos/Slideshows

O'Connor, B. P. (n.d.). The number of eigenvalues greater than 1. R. https://search.r-project.org/CRAN/refmans/EFA.dimensions/html/NEVALSGT1.html

WGU Data Science Team

In []: