WUOLAH

Preguntas-teoricas-VF-y-Ejercicios.pdf

Preguntas Primer parcial (recopilacion)

- 2° Arquitectura de Computadores
- Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación
 Universidad de Granada

WUOLAH + #QuédateEnCasa

#KeepCalm #EstudiaUnPoquito

Enhorabuena, por ponerte a estudiar te **regalamos un cartel** incluído entre estos apuntes para estos días.

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Preguntas teóricas V/F y Ejercicios

- 1. En la expresión de la ley de Amdahl Sp<= P / (1 + f (p -1)) para la ganancia de velocidad al mejorar un recurso:
- P es el factor de incremento de prestaciones del recurso que se mejora
 →Verdadero
- F es la fracción de t antes de la mejora en el que NO se utiliza el recurso mejorado
 → Verdadero
- La máxima ganancia de que se puede conseguir es 1 / (1-f) → Falso, la maxima ganancia que se puede conseguir es 1/f
- F puede ser mayor que 1 → Falso
- SP no puede ser mayor nunca que P→Verdadeo
- 2. En un procesador superescalar, en pleno rendimiento el CPi es menor que 1. Verdadero
- 3. Los núcleos Sunday Bride pueden terminar hasta 8 operaciones en FLOP por ciclo. ¿Cuál es la máxima velocidad (GFLOPS) de 1 núcleo con dicha arquitectura que funciona a una frecuencia de 2'5 GHz?

8 FLOP/ciclo * 2.5 (Gciclos/s) = 20 GFLOPS

- 4. En un computador NUMA, la memoria está físicamente distribuida aunque utiliza un modelo de programación de memoria compartida. → Verdadero
- 5. Un multicomputador también se denomina computador UMA \rightarrow Falso

Tu academiia de idiomas Online y tu centro examinador de Cambridge.

Cursos súper-intensivos online de preparación de B1, B2, C1 y C2.

Comienzo 1 de Junio. Fin 30 de Junio. 1.5 horas de Lunes a Viernes.

6. Si el bucle for i=1; to N; do a(i) = b(i)*c se ejecuta en 5s y N=1012 siendo c, a() y b() datos en coma flotante. ¿Cuantos GFLOPS alcanza la máquina? ¿Y si fueran en 10 segundos y N=10^14?

1*10^12 (FLOP)/(5s*10^9) = 1000/5 GFLOPS = 200 GFLOPS 2* 10^14 (op_float) / (10(seg) * 10^9) = 20000 GFLOP = 20TFLOP

- 7. Las hebras de un proceso comparten la memoria asignada, los registros, la pila y el contador de programa. → Falso
- 8. Las hebras necesitan recurrir a llamadas del SO. → Falso
- 9. Un multiprocesador puede funcionar con MISD. → Verdadero
- 10. En las secuencias de instrucciones

(a) add r1, r2, r3; r1 ¢ r2 + r3

(b) sub r1, r1, r4; r1 ∈ r1 - r4

→ Hay dependencia RAW en r1 → Verdadero

→ Hay dependencia WAR en r1 → Falso

add r1, r2, r3; r1 ← r2+r3 sub r1,r2,r4; r1← r2-r4 add r3,r2,r1; r3← r2+r1

Solo hay dependencias WAW y RAW debido al registro r1 → Falso, también hay dependencias WAR debidas al registro r3

No hay dependencias debido al uso del registro r2 → Verdadero

Hay dependencias RAW entre las instrucciones debido al registro 2 → Falso solo se lee y por lo tanto no da lugar a dependencias.

- 11. Un procesador con una frecuencia de reloj de 4GHz ejecuta sus programas en menos tiempo que otro a una frecuencia de 2 GHz → Falso, El tiempo de CPU, además de depender de la frecuencia de reloj depende de NI y de CPI
- 12. Cual es la velocidad pico en MIPS de un procesador que puede terminar hasta tres instrucciones por ciclo y funciona a una frecuencia de reloj de 2GHz 3(inst/ciclo)*2*10^9 (ciclo/s) * (1/10^6) = 6000 MIPS
- 13. La comunicación entre procesadores en un computador UMA se realiza a través de escrituras y lecturas en la memoria compartida, igual que en un computador NUMA → Verdadero
- 14. Un núcleo de procesamiento puede terminar hasta 4 operaciones en coma flotante (FLOP) por ciclo ¿Cúal es su máxima velocidad (en GFLOPS) si funciona a una frecuencia de reloj de 2 GHz?

15. Escriba la expresión para el tiempo de CPU en términos del número de instrucciones (NI), el número de ciclos por instrucción (CPI), y la frecuencia de reloj (F)

- 16. Dado un programa en , dos procesadores que tengan el mismo valor de IPC y frecuencia de reloj no necesariamente tardarán lo mismo en ejecutarlo → Verdadero , El Tcpu también depende del repertorio de instrucciones (a través de NI)
- 17. El acrónimo NORMA significa No Ordered Memory Access ya que en este tipo de computador los procesadores necesitan sincronizarse para garantizar el acceso a la memoria compartida → Falso, Significa No Remote Memory Access

18. Escriba la expresion de la ley de Amdahl en términos de p (ganancia de velocidad del recurso que se ha mejorado) y de f (fracción del tiempo de procesamiento en el computador base durante el que NO se puede aprovechar la mejora):

$$S \le p / (1+f x (p-1))$$

- En un procesador segmentado a pleno rendimiento el CPi es estrictamente < 1
 → Falso,
- 2. Un computador UMA es un multiprocesador donde la memoria está físicamente distribuida. → Falso, está físicamente centralizada
- 3. Un multiprocesador también se denomina NORMA → Verdadero
- 4. El paralelismo entre hebras permite aprovechar una granularidad menor que paralelismo entre procesos. → Verdadero
- 5. Un multiprocesador puede funcionar como MISD con la correspondiente sincronización entre procesadores → Verdadero

```
    6. En r1∈ r2 + r3
r1∈ r1 -r4
    Hay respecto a r1
-WAR → Write after read, Falso
-RAW → Read after write, Verdadero
```

-WAW → Write after write, Verdadero

- F es la fracción del tiempo antes de la mejora en la que se utiliza el recurso mejorado. →Falso
- 2. La maxima ganancia posible es 1/f → Verdadero
- 3. Un procesador con una frecuencia de reloj de 4GHz ejecuta sus programas en menos tiempo que otro de frecuencia 2GHz →Falso

