

WELTORGANISATION :

INTERNATIONALE ANMELDUNG VERÖFI
INTERNATIONALE ZUSAMMENARBEIT A

WO 9602519A1

(51) Internationale Patentklassifikation 6:

C07D 239/56, 401/12, 239/38, 239/46, 239/60, A61K 31/505

A1

(43) internationales
Veröffentlichungsdatum:

1. Februar 1996 (01.02.96)

(21) Internationales Aktenzeichen:

PCT/EP95/02784

(22) Internationales Anmeldedatum:

14. Juli 1995 (14.07.95)

(30) Prioritätsdaten:

P 44 25 143.2

15. Juli 1994 (15.07.94)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HELLENDAHL, Beate [DE/DE]; Sebastian-Kneipp-Strasse 17, D-67105 Schifferstadt (DE). LANSKY, Annegret [DE/DE]; Am Dautenberg 21, D-64297 Darmstadt (DE). MUNSCHAUER, Rainer [DE/US]; 46 Hunting Avenue, Shrewsbury, MA 01545 (US). BIALOJAN, Siegfried [DE/DE]; In den Auwiesen 49, D-68723 Oftersheim (DE). UNGER, Liliane [DE/DE]; Wollstrasse 129, D-67065 Ludwigshafen (DE). TESCHENDORF, Hans-Jürgen [DE/DE]; Georg-Nuß-Strasse 5, D-67373 Dudenhofen (DE). WICKE, Karsten [DE/DE]; Ziegeleistrasse 113, D-67122 Altrip (DE). DRESCHER, Karla [DE/DE]; Unteres Bieth 10, D-69221 Dossenheim (DE).

(74) Anwälte: KINZEBACH, Werner usw.; Reitstötter, Kinzebach & Partner, Postfach 86 06 49, D-81633 München (DE).

(81) Bestimmungsstaaten: AU, BG, BR, CA, CN, CZ, FI, HU, JP, KR, MX, NO, NZ, RU, SI, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: SUBSTITUTED PYRIMIDINE COMPOUNDS AND THEIR USE

(54) Bezeichnung: SUBSTITUIERTE PYRIMIDINVERBINDUNGEN UND DEREN VERWENDUNG

(57) Abstract

The use is disclosed of pyrimidine compounds having the formula (I), in which R^1 , R^2 , R^3 , A, B and Ar have the meanings given in the description. These compounds have a high affinity for the dopamine D_3 receptor and are therefore useful for treating diseases that respond to dopamine D_3 ligands.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft die Verwendung von Pyrimidinverbindungen der Formel (I), worin R¹, R², R³, A, B und Ar die in der Beschreibung angegebenen Bedeutungen besitzen. Die erfindungsgemäßen Verbindungen besitzen eine hohe Affinität zum Dopamin-D₃-Rezeptor und sind daher zur Behandlung von Erkrankungen brauchbar, die auf Dopamin-D₃-Liganden ansprechen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neusceland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

20

SUBSTITUIERTE PYRIMIDINVERBINDUNGEN UND DEREN VERWENDUNG

Die Erfindung betrifft substituierte Pyrimidinverbindungen und die Verwendung derartiger Verbindungen. Die erwähnten Verbindungen besitzen wertvolle therapeutische Eigenschaften und sind insbesondere zur Behandlung von Erkrankungen brauchbar, die auf Dopamin-D3-Liganden ansprechen.

Verbindungen der hier in Rede stehenden Art mit physiologischer Aktivität sind bereits teilweise bekannt. So beschreiben DE 21 39 082 und DE 22 58 561 basisch substituierte Pyrimidinderivate bzw. Pyrimidonderivate als Arzneimittel zur Senkung des Blutdrucks. Diese Pyrimidin- bzw. Pyrimidonderivate besitzen die Formeln:

worin in (A) X unter anderem ein Schwefelatom bedeutet, A eine C_1-C_6 -Alkylengruppe bedeutet und R^1 , R^2 , R^3 und Z für verschiedene Substituenten stehen. In (B) stehen X und Y für ein Sauerstoff-oder Schwefelatom, A für eine C_2-C_6 -Alkylengruppe und R und Z für verschiedene Substituenten.

- Neuronen erhalten ihre Informationen unter anderem über G-Protein-gekoppelte Rezeptoren. Es gibt zahlreiche Substanzen, welche ihre Wirkung über diese Rezeptoren ausüben. Eine davon ist Dopamin.
- Es liegen gesicherte Erkenntnisse über die Anwesenheit von Dopamin und dessen physiologische Funktion als Neurotransmitter vor. Auf Depamin ansprechende Zellen stehen im Zusammenhang mit der

Etiologie von Schizophrenie und der Parkinson'schen Krankheit. Die Behandlung dieser und anderer Erkrankungen erfolgt mit Arzneimitteln, die mit den Dopaminrezeptoren in Wechselwirkung treten.

5

Bis 1990 waren zwei Subtypen von Dopaminrezeptoren pharmakologisch klar definiert, nämlich die D_1 und D_2 -Rezeptoren.

Sokoloff et al., Nature 1990, 347 : 146 - 151, hat einen dritten Subtyp gefunden, nämlich die D_3 -Rezeptoren. Sie werden hauptsächlich im limbischen System exprimiert. Strukturell unterscheiden sich die D_3 -Rezeptoren von den D_1 - und D_2 -Rezeptoren in etwa der Hälfte der Aminosäurereste.

Die Wirkung von Neuroleptika wurde im allgemeinen ihrer Affinität zu den D_2 -Rezeptoren zugeschrieben. Neuere Rezeptorbindungsstudien haben dies bestätigt. Danach besitzen die meisten Dopaminantagonisten, wie Neuroleptika, hohe Affinität zu den D_2 -Rezeptoren, aber nur geringe Affinität zu den D_3 -Rezeptoren.

20

Überraschenderweise wurde nun gefunden, daß bestimmte Pyrimidinverbindungen eine hohe Affinität zum Dopamin- D_3 -Rezeptor und eine geringe Affinität zum D_2 -Rezeptor aufweisen. Es handelt sich somit um selektive D_3 -Liganden.

25

Gegenstand der vorliegenden Erfindung ist daher die Verwendung der Pyrimidinverbindungen der allgemeinen Formel I:

30

$$R^{2}$$
 R^{3}
 R^{3}
 R^{3}

35

worin

für eine C_1 - C_{18} -Alkylengruppe steht, die gegebenenfalls mindestens eine Gruppe umfaßt, die ausgewählt ist unter 0, s, NR^4 , $CONR^4$, NR^4CO , COO, OCO und einer Doppel- oder einer Dreifachbindung,

B für

$$-N$$
 $N-$, $-N$ oder $-N$

steht,

- R^1 , R^2 , R^3 unabhängig voneinander ausgewählt sind unter H, Halogen, OR^4 , NR^4R^5 , SR^4 , CF_3 , CN, CO_2R^4 und $C_1-C_8-Alkyl$, das gegebenenfalls durch OH, $OC_1-C_8-Alkyl$ oder Halogen substituiert ist,
- R^4 für H, C_1 - C_8 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_8 -Alkyl oder Halogen substituiert ist, steht,
- R^5 die für R^4 angegebenen Bedeutungen besitzt oder für COR^4 oder CO_2R^4 steht;
- Ar für Phenyl, Pyridyl, Pyrimidyl oder Triazinyl steht,

wobei Ar gegebenenfalls ein bis vier Substituenten aufweisen kann, die unabhängig voneinander ausgewählt sind unter OR^5 , C_1 – C_8 –Alkyl, C_2 – C_6 –Alkenyl, C_2 – C_6 –Alkinnyl, Halogen, CN, CO_2R^4 , NO_2 , SO_2R^4 , SO_3R^4 , NR^4R^5 , $SO_2NR^4R^5$, SR^4 , CF_3 , CHF_2 , einem 5- oder 6-gliedrigen carbocyclischen, aromatischen oder nicht-aromatischen Ring und einem 5- oder 6-gliedrigen heterocyclischen aromatischen oder nicht-aromatischen Ring mit 1 bis 3 Heteroatomen, die ausgewählt sind unter 0, S und N, wobei der Ring gegebenenfalls substituiert sein kann durch C_1 – C_8 -Alkyl, Hal, OC_1 – C_8 -Alkyl, OH, NO_2 , CF_3 und wobei

Ar gegebenenfalls auch mit einem carbocyclischen oder heterocyclischen Ring der oben definierten Art kondensiert sein kann,

und der Salze davon mit physiologisch verträglichen

Säuren zur Herstellung eines pharmazeutischen Mittels zur Behandlung von Erkrankungen, die auf Dopamin-D3-Rezeptorantagonisten bzw. -agonisten ansprechen.

5

Die Erfindung betrifft auch die Pyrimidinverbindungen der Formel I'

10

$$R^{2} \stackrel{N}{\longrightarrow} N \qquad A - B - A r$$

worin

15

A, B, Ar, R^1 , R^2 und R^3 die in den Ansprüchen 1 bis 8 angegebenen Bedeutungen besitzen, und die Salze davon mit physiologisch verträglichen Säuren,

ausgenommen die Verbindungen der Formel

20

25

worin \mathbb{R}^1 für OH oder SH steht, \mathbb{R}^2 und \mathbb{R}^3 unabhängig voneinander für H, $C_1-C_6-Alkyl$, $OC_1-C_6-Alkyl$, $SC_1-C_6-Alkyl$, CO_2H , OH, SH, NR^4R^5 oder Halogen stehen, wobei R4 und R5 für H oder C1-C6-Alkyl stehen, A für $SC_1-C_6-Alkylen$, $NHC_1-C_6-Alkylen$ oder $N(C_1-C_6-Alkyl)-C_1-$ C₆-Alkylen steht, B für

30

steht und Ar für Phenyl steht,

35

das gegebenenfalls einen oder mehrere Substituenten aufweist, die ausgewählt sind unter C1-C4-Alkyl, OC1-C4-Alkyl, SC1-C4-Alkyl, NO2, CF3, F, Cl oder Br.

WO 96/02519 PCT/EP95/02784

Bei den erfindungsgemäß zur Anwendung kommenden Verbindungen handelt es sich um selektive Dopamin-D₃-Rezeptor-Liganden, die regioselektiv im limbischen System angreifen und auf Grund ihrer geringen Affinität zum D₂-Rezeptor nebenwirkungsärmer als die klassischen Neuroleptika sind, bei denen es sich um D₂-Rezeptorantagonisten handelt. Die Verbindungen sind daher zur Behandlung von Erkrankungen brauchbar, die auf Dopamin-D₃-Rezeptorantagonisten bzw. -agonisten ansprechen, z.B. zur Behandlung von Erkrankungen des zentralen Nervensystems insbesondere Schizophrenie, Depressionen, Neurosen und Psychosen. Außerdem sind sie zur Behandlung von Schlafstörungen, Übelkeit und als Antihistaminika brauchbar.

5

10

20

30

35

Im Rahmen der vorliegenden Erfindung besitzen die nachfolgenden 15 Ausdrücke die anschließend angegebenen Bedeutungen:

Alkyl (auch in Resten wie Alkoxy, Alkylamino etc) bedeutet eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 8 Kohlenstoffatomen, vorzugsweise 1 bis 6 Kohlenstoffatomen und insbesondere 1 bis 4 Kohlenstoffatomen. Die Alkylgruppe kann einen oder mehrere Substituenten aufweisen, die unabhängig voneinander ausgewählt sind unter OH und OC_1-C_8 -Alkyl.

Beispiele für eine Alkylgruppe sind Methyl, Ethyl, n-Propyl, i-25 Propyl, n-Butyl, iso-Butyl, t-Butyl, etc.

Alkylen steht für geradkettige oder verzweigte Reste mit vorzugsweise 2 bis 15 Kohlenstoffatomen, besonders bevorzugt 3 bis 10 Kohlenstoffatomen.

Die Alkylengruppen können gegebenenfalls wenigstens eine der oben angegebenen Gruppen umfassen. Diese kann - ebenso wie die erwähnte Doppel- oder Dreifachbindung - in der Alkylenkette an beliebiger Stelle oder am Ende der Kette angeordnet sein, so, daß sie die Kette mit dem Pyrimidinrest verbindet. Letzteres ist bevorzugt. Wenn die Alkylengruppe eine Doppel- oder Dreifachbindung umfaßt, besitzt sie mindestens drei Kohlenstoffatome in der

Kette.

Halogen bedeutet, F, Cl, Br, I und insbesondere Cl, Br, I.

Vorzugsweise stehen R^1 , R^2 und R^3 unabhängig voneinander für H, C_1-C_8 -Alkyl, NR^4R^5 , SR^4 oder OR^4 , wobei R^4 und R^5 unabhängig voneinander für H oder C_1-C_8 -Alkyl stehen.

Der Rest Ar kann einen, zwei, drei oder vier Substituenten, vorzugsweise einen oder zwei Substituenten, die sich jeweils in m-Stellung befinden, aufweisen. Vorzugsweise sind sie unabhängig ausgewählt unter Halogen, CF₃, CHF₂, CN, NO₂, OR⁴, NR⁴R⁵, C₁-C₈-Alkyl, OC₁-C₈-Alkyl, Phenyl und SR⁴, wobei R⁴ und R⁵ für H oder C₁-C₈-Alkyl stehen. Wenn einer der Substituenten für C₁-C₈-Alkyl steht, ist eine verzweigte Gruppe und insbesondere Isopropyl oder t-Butyl bevorzugt.

Ar weist vorzugsweise wenigstens einen Substituenten auf und steht insbesondere für

20 .

35

worin D^1 , D^2 und D^3 unabhängig voneinander für CR oder N stehen und R, X und Y für H oder die oben bzw. nachfolgend angegebenen Bedeutungen stehen.

Vorzugsweise steht Ar für gegebenenfalls substituiertes Phenyl, 2-, 3- oder 4-Pyridinyl oder 2-, 4(6)- oder 5- Pyrimidinyl.

Wenn einer der Substituenten des Restes Ar für einen 5- oder 6gliedrigen heterocyclischen Ring steht, so handelt es sich beispielsweise um einen Pyrrolidin-, Piperidin-, Morpholin-, Piperazin-, Pyridin-, 1,4-Dihydropyridin-, Pyrimidin-, Triazin-, Pyrrol-, Thiophen-, Thiazol-, Imidazol-, Oxazol-, Isoxazol-, Pyra-

10

15

20

zol-, oder Thiadiazolrest.

Wenn einer der Substituenten des Restes Ar für einen carbocyclischen Rest steht, handelt es sich insbesondere um einen Phenyl-, Cyclopentyl- oder Cyclohexylrest.

Wenn Ar mit einem carbocyclischen oder heterocyclischen Rest kondensiert ist, handelt es sich insbesondere um einen Naphthalin-, Di- oder Tetrahydronaphthalin-, Chinolin-, Di- oder Tetrahydrochinolin, Indol-, Dihydroindol-, Benzimidazol-, Benzothia-zol-, Benzothiadiazol-, Benzopyrrol- oder Benzotriazolrest.

Eine bevorzugte Ausführungsform sind die Verbindungen der Formel I, worin A für C_1 - C_{10} -Alkylen steht, das gegebenenfalls wenigstens eine Gruppe umfaßt, die ausgewählt ist unter O, S, NR^3 , Cyclohexylen und einer Doppel- oder Dreifachbindung.

Eine weitere bevorzugte Ausführungsform ist die Verwendung der Verbindungen der Formel I, worin R^1 , R^2 und R^3 unabhängig voneinander für H, C_1 - C_8 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_8 -Alkyl oder OH substituiert sein kann, OH, OC_1 - C_8 -Alkyl SR^4 oder NR^4R^5 steht, wobei R^4 und R^5 unabhängig voneinander für H oder C_1 - C_8 -Alkyl stehen;

25 nenfalls einen, zwei, drei oder vier Substituenten aufweist, die ausgewählt sind unter H, C₁-C₈-Alkyl, das gegebenenfalls durch OH, OC₁-C₈-Alkyl oder Halogen substituiert ist, OR⁴, wobei R⁴ für H, C₁-C₈-Alkyl, das gegebenenfalls durch OH, OC₁-C₈-Alkyl oder Halogen substituiert ist, CHF₂, CF₃, CN, Halogen, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cyclohexyl, Phenyl, Naphthyl und einem 5- oder 6-gliedrigen heterocyclischen aromatischen Rest mit 1 bis 3 Heteroatomen, ausgewählt unter O, N und S.

Eine weitere bevorzugte Ausführungsform ist die Verwendung der Verbindungen der Formel I, worin

B für

5 steht.

10

15

Eine weitere bevorzugte Ausführungsform ist die Verwendung der Verbindungen der Formel I, worin Ar für Phenyl steht, das ein bis vier Substituenten aufweist, die unabhängig voneinander ausgewählt sind unter H, C_1 - C_8 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_8 -Alkyl oder Halogen substituiert ist, Phenyl, Naphthyl, Pyrrolyl, CN, NO₂, CF₃, CHF₂, Halogen, SO₂R⁴ oder SR⁴ steht, wobei R⁴ für H oder C_1 - C_8 -Alkyl steht oder worin die Substituenten unabhängig voneinander ausgewählt sind unter C_1 - C_8 -Alkyl, Phenyl, CF₃, CHF₂, CN, NO₂, Halogen, OC_1 - C_8 -Alkyl oder SR⁴ steht, wobei R⁴ für H oder C_1 - C_8 -Alkyl steht und Y für H, C_1 - C_8 -Alkyl, Hal oder CF₃ steht.

Eine weitere bevorzugte Ausführungsform ist die Verwendung von Verbindungen der Formel I, worin Ar für Pyrimidinyl steht, das ein bis drei Substituenten aufweist, die unabhängig voneinander ausgewählt sind unter H, C₁-C₈-Alkyl, Phenyl, Naphthyl, C₅-C₆-Cycloalkyl, OH, OC₁-C₈-Alkyl, Halogen, CN, NO₂, CF₃, CHF₂ und einem 5- oder 6-gliedrigen, heterocyclischen, aromatischen oder nichtaromatischen Rest mit 1 bis 3 Heteroatomen, ausgewählt unter 0, N und S.

Eine weitere bevorzugte Ausführungsform ist die Verwendung von Verbindungen der Formel I, worin Ar für Pyridinyl steht, das ein bis vier Substituenten aufweist, die unabhängig voneinander ausgewählt sind unter H, C₁-C₈-Alkyl, Phenyl, Naphthyl, OH, OC₁-C₈-Alkyl, Halogen, CF₃, CN, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl und einem 5-oder 6-gliedrigen, heterocyclischen, aromatischen Rest mit 1 bis 3 Heteroatomen, ausgewählt unter O, N und S.

35

Die Erfindung umfaßt auch die Säureadditionssalze der Verbindun-

gen der Formel I, mit physiologisch verträglichen Säuren. Als physiologisch verträgliche organische und anorganische Säuren kommen beispielsweise Salzsäure, Bromwasserstoffsäure, Phosphorsäure, Schwefelsäure, Oxalsäure, Maleinsäure, Fumarsäure, Milchsäure, Weinsäure, Adipinsäure oder Benzoesäure in Betracht. Weitere brauchbare Säuren sind in Fortschritte der Arzneimittelforschung, Band 10, Seiten 224 ff, Birkhäuser Verlag, Basel und Stuttgart, 1966, beschrieben.

Die Verbindungen der Formel I können ein oder mehrere Asymmetriezentren aufweisen. Zur Erfindung zählen daher nicht nur die Racemate, sondern auch die betreffenden Enantiomere und Diastereomere. Auch die jeweiligen tautomeren Formen zählen zur Erfindung.

Die Herstellung der Verbindungen der Formel I' kann analog zu üblichen Methoden erfolgen, wie z.B. beschrieben in A.R. Katritz-ky, C.W. Rees (ed.), "Comprehensive Heterocyclic Chemistry", 1. Aufl. Pergamon Press 1984, insbesondere Vol. 3, Part 2A; D.J. Brown, "The Pyrimidines", in "The Chemistry of Heterocyclic Compounds", E.C. Taylor (Hrsg.), John Wiley & Sons Inc. Ny, insbesondere Vol.16 + Suppl. I + II (1985), sowie Vol 52 (1994) und der dort zitierten Literatur. Das Verfahren zur Herstellung der Verbindungen besteht darin, daß man

25

20

5

15

i) eine Verbindung der allgemeinen Formel II:

30

35

worin Y^1 für eine übliche Abgangsgruppe steht, mit einer Verbindung der allgemeinen Formel III

H - B - Ar

umsetzt;

ii) zur Herstellung einer Verbindung der Formel I', worin A ein Sauerstoff- oder Schwefelatom oder NR⁴ umfaßt:

eine Verbindung der allgemeinen Formel IV:

worin Z^1 für O, S oder NR^4 steht und A^1 für $C_0-C_{18}-Alky-$ len steht, mit einer Verbindung der allgemeinen Formel VI

$$y^1 - A^2 - B - Ar$$

15

5

worin Y^1 die oben angegebenen Bedeutungen besitzt, und A^2 für C_1 - C_{18} -Alkylen steht, wobei A^1 und A^2 zusammen 1 bis 18 Kohlenstoffatome aufweisen, umsetzt,

20

iii) zur Herstellung einer Verbindung der Formel I', worin A die Gruppe COO oder CONR4 umfaßt:

eine Verbindung der allgemeinen Formel VII:

25

30

oder ein Salz davon, wobei Y^2 für OH, OC_1-C_4 -Alkyl, Cl oder zusammen mit CO für eine aktivierte Estergruppe steht, und A^1 die oben angegebenen Bedeutungen besitzt, mit einer Verbindung der Formel VIII:

$$z^1 - A^2 - B - Ar$$

10

15

20

25

30

35

worin A^2 die oben angegebenen Bedeutungen besitzt, und Z^1 für OH oder NHR 4 steht, umsetzt,

iv) zur Herstellung einer Verbindung der Formel I', worin A die Gruppe OCO oder NR4CO umfaßt:

eine Verbindung der Formel IV

$$R^{2} + \frac{N}{N} = -Z^{1}H$$

worin Z^1 für O oder NR^4 steht, mit einer Verbindung der Formel X:

$$Y^2$$
co - A^2 - B - Ar

worin A^2 , B und Y^2 die oben angegebenen Bedeutungen besitzen, umsetzt, wobei R^1 , R^2 , R^3 , A, B und Ar die oben angegebenen Bedeutungen besitzen.

Die oben beschriebenen Umsetzungen erfolgen im allgemeinen in einem Lösungsmittel bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des verwendeten Lösungsmittels. Brauchbare Lösungsmittel sind beispielsweise Ethylacetat, Tetrahydrofuran, Dimethylformamid, Dimethoxyethan, Toluol, Xylol oder ein Keton, wie Aceton oder Methylethylketon.

Gewünschtenfalls arbeitet man in Gegenwart eines säurebindenden Mittels. Geeignete säurebindende Mittel sind anorganische Basen, wie Natrium- oder Kaliumcarbonat, Natriummethylat, Natriumethylat, Natriumhydrid oder organische Basen, wie Triethylamin oder Pyridin. Letztere können gleichzeitig als Lösungsmittel dienen.

Die Isolierung des Rohprodukts erfolgt in üblicher Weise, beispielsweise durch Filtration, Abdestillieren des Lösungsmittels oder Extraktion aus dem Reaktionsgemisch etc. Die Reinigung der WO 96/02519 PCT/EP95/02784

erhaltenen Verbindung kann in üblicher Weise erfolgen, beispielsweise durch Umkristallisieren aus einem Lösungsmittel, Chromatographie oder Überführen in eine Säureadditionsverbindung.

Die Säureadditionssalze werden in üblicher Weise durch Mischen der freien Base mit der entsprechenden Säure, gegebenenfalls in Lösung in einem organischen Lösungsmittel, beispielsweise einem niedrigen Alkohol, wie Methanol, Ethanol oder Propanol, einem Ether, wie Methyl-t-butylether, einem Keton, wie Aceton oder Methylethylketon oder einem Ester, wie Essigsäureethylester, hergestellt.

Die oben erwähnten Ausgangsmaterialien sind literaturbekannt oder können nach bekannten Verfahren hergestellt werden.

1.5

20

25

30

35

Zur Behandlung der oben erwähnten Erkrankungen werden die erfindungsgemäßen Verbindungen in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperitoneal) verabreicht. Die Applikation kann auch mit Dämpfen oder Sprays durch den Nasen-Rachen-Raum erfolgen.

Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägliche Wirkstoffdosis etwa 10 bis 1000 mg pro Patient und Tag bei oraler Gabe und etwa 1 bis 500 mg pro Patient und Tag bei parenteraler Gabe.

Die Erfindung betrifft auch pharmazeutische Mittel, die die erfindungsgemäßen Verbindungen enthalten. Diese Mittel liegen in den üblichen galenischen Applikationsformen in fester oder flüssiger Form vor, beispielsweise als Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees, Suppositorien, Lösungen oder Sprays. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln, wie Tablettenbindemitteln, Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließregulierungsmitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien und/oder

Treibgasen verarbeitet werden (vgl. H. Sucker et al., Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1978). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 1 bis 99 Gew.-%.

5

Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung ohne sie zu begrenzen.

Beispiel 1

10

4-[3-(4-{3-Trifluormethylphenyl}piperazinyl)-propylthio]-pyrimi-din

15

1-(3-Chlorphenyl)-4-(3-trifluormethylphenyl)piperazin

20

a)

30 g (0,13 mol) m-Trifluormethylphenylpiperazin, 23 g (0,146 mol) 1-Brom-3-chlorpropan und 15 g (0,148 mol) Triethylamin wurden in 200 ml THF 4 Stunden unter Rückfluß erhitzt. Nach Abkühlen wurde abgesaugt und eingeengt. Der zähflüssige Rückstand wurde mit Essigester aufgenommen, mit Wasser gewaschen, über MgSO₄ getrocknet und anschließend eingeengt. Als Rückstand erhielt man 39 g Produkt als gelbliches Öl (quantitative Ausbeute).

25

b) 4-[3-(4-{3-Trifluormethylphenyl}piperazinyl)-propylthio]pyrimidin

30

35

1,5 g (13,4 mmol) 4-Mercaptopyrimidin, 4,3 g (14 mmol) 1-(3-chlorpropyl)-4-(3-trifluormethylphenyl)piperazin und 1,5 g (15 mmol) Triethylamin wurden in 5 ml DMF 1 Stunde bei 100°C gerührt. Anschließend wurde auf 5%ige Salzsäure gegossen und mit MTB-Ether extrahiert. Nach Alkalisieren der wäßrigen Phase mit Natronlauge wurde mit Essigester extrahiert, die

organische Phase über MgSO₄ getrocknet und eingeengt. Der Rückstand wurde chromatographisch gereinigt (Laufmittel: $CH_2Cl_2/CH_3OH = 98/2$). Es wurden 3,0 g Produkt als gelbliches Öl erhalten (= 59 % Ausbeute)

5

10 Beispiel 2

2-(5-(4-{3-Trifluormethylphenyl}piperazinyl)-pentylmercapto]pyrimidin

15

- a) 2-(5-Chlorpentylmercapto)-pyrimidin
- 2,8 g (25 mmol) 2-Mercaptopyrimidin, 4,64 g (25 mmol) 1-Brom-5-chlorpentan und 2,58 g (25,5 mmol) Triethylamin wurden in 100 ml THF 4 Stunden unter Rückfluß erhitzt. Nach dem Abkühlen wurde abgesaugt, eingeengt und der Rückstand chromatographisch gereinigt (Laufmittel: Cyclohexan/Essigester = 92/8). Man erhielt 2,8 g Produkt (= 52 % Ausbeute).
 - b) 2-[5-(4-{3-Trifluormethylphenyl}piperazinyl)-pentylmercapto]-pyrimidin
- 2,8 g (12,9 mmol) 2-(5-Chlorpentylmercapto)-pyrimidin, 3,27 g (14,2 mmol) m-Trifluormethylphenylpiperazin und 1,44 g (14,2 mmol) Triethylamin wurden in 5 ml DMF 1 Stunde bei 90°C gerührt. Anschließend wurde auf Wasser gegossen und dreimal mit CH₂Cl₂ extrahiert, über MgSO₄ getrocknet und eingeengt. Der Rückstand wurde mit Methyl-t-butylether versetzt, abgesaugt und die Mutterlauge eingeengt. Nach chromatographischer Reinigung (Laufmittel: CH₂Cl₂/CH₃OH = 97/3)

WO 96/02519 PCT/EP95/02784

15

erhielt man 4,0 g Produkt als Öl (= 75 % Ausbeute)

¹H-NMR [δ;ppm]: 1,54(4H); 1,78 (2H); 2,4 (2H); 2,6 (4H); 3,18 (2H); 3,23 (4H); 6,95 (1H); 7,01(3H); 7,1 (3H); 7,33 (1H); 8,5 (1H).

10

In analoger Weise wurden die in der nachfolgenden Tabelle 1 angegebenen Verbindungen hergestellt:

Tabelle 1

r. Beispiel	
lr. Beispiel	physikalische Daten, H-NMR (6,ppm) Smp. (°C)
CH3 CF3 CF3	2,0(2H);2,5(3H);2,55(2H); 2,63(4H);3,23(6H);6,8(1H); 7,1 (3H);7,35(1H);8,36(1H)
OH N S N N CF 3	1,8(2H);2,45(6H); 3,1(2H); 3,2(4H); 5,0(1H); 7,05(1H); 7,15(1H); 7,2(1H); 7,4(1H)
HO N S N N N CF S	1,5(4H);1,75(2H);2,4(2H); 2,6(4H);3,2(2H);3,25(6H); 6,22(1H); 7,1(3H);7,35(1H); 7,85(1H); 11,3(1H)
HO N S CH ₃	129 - 130
H ₂ N N S CH ₃ N - CF s	0,97(3H);2,0-2,3(3H); 2,5(4H);2,8(1H);3,2(6H);6,1 (1H); 6,85(2H);7,07(1H);7,2 (1H); 7,4(1H); 7,9 (1H)
CH ₃ N CF ₃ N CF ₃	2,0(2H);2,4(6H);2,55(2H); 2,43(4H);3,23(6H);6,7(1H); 7,1(3H); 7,36(1H)
	HO N S CF3 HO N S CF3 HO N S CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3

1	9	X HC1	2,0(2H); 2,62(2H); 2,7(4H); 3,2(2H); 3,28(4H); 5,95(1H); 6,95(1H); 7,1 (3H); 7,35(1H); 8,55(2H);
10	10	H ₂ N N S N N N C S	1,95(2H); 2,5(2H); 2,6(4H); 3,15(2H); 3,27(4H); 4,87(2H); 6,15(1H); 7,1(3H);7,35(1H); 8,06(1H)
15	11	CF 3	1,75(4H); 2,45(2H); 2,62(4H); 3,22(6H); 6,98(1H); 7,1(3H); 7,35(1H); 8,5(2H)
20	12	HO N S N N N	1,98(2H); 2,55(2H); 2,65(4H); 3,25(6H); 6,21 (1H); 7,1(3H); 7,35(1H); 7,85(1H)
25	13	HO N S 2HCI	131 - 132
30	14	H ₂ N N N N N N N N N N N N N N N N N N N	2,6(4H); 3,03(2H); 3,23(4H); 3,78(2H); 4,85(2H); 5,8 (2H); 6,13(1H); 7,06(3H); 7,33(1H); 8,05(1H)
35	15	HO N S N C C I	232 - 234

1		18	
5	16	HO N S N N N N N N N N N N N N N N N N N	188 - 190
10	17	HO N S N N CH3	1,26 (6H); 2,0 (2H); 2,59 (2H); 2,66 (4H); 2,88 (1H); 3,2(6H); 6,2(1H); 6,78 (3H); 7,2 (1H); 7,8 (1H)
15	18	HO N S N N N	70 - 83
20	19	HO N S N CF s	2,0(2H); 2,65(4H); 2,8(2H); 3,28(4H); 6,15(1H); 6,2(1H); 7,5(3H); 7,63(1H); 7,85(1H)
2 5	20	HO N S N CF 3	1,5(1H); 2 (7H); 2,58 (2H); 3,05(3H); 3,2(2H); 6,18(1H); 7,45(4H); 7,8(1H)
30	21	HO N S N N N N N N N N N N N N N N N N N	151 - 153
35	22	S N N O CF 3	180 - 186

5	23	HO N S N N CI	170 - 174
10	24	HO N S N N N N N N N N N N N N N N N N N	1,45(6H); 1,75(2H); 2,4(2H); 2,6(4H); 3,2(2H); 3,25(4H); 6,2(1H); 7,1(3H); 7,32(1H); 7,88(1H)
15	25	HO N S N	1,8-2,2(8H);2,6(3H); 3,1(2H);3,25(2H),6,2(1H); 7,45(4H);7,8(1H)
20	26 .	HS N O N CF 3	144 - 156
25	27	HS NOW NOW OF S	200 - 205
30	28	SH CF s	165 - 171
35	29	OH CF s	169 - 172

30	HO N S N N CF 3	161 - 165
31	HO N S N N CF 3	174 - 176
32	HO N S N N - ()	60 - 71
33	HO N S N N	2,0(2H);2,6(6H);3,25(6H); 6,2(1H);6,85(1H);6,95(1H); 7,15(1H);7,25(1H);7,85(1H)
34	HO N S N N CHF 2	2,0(2H);2,56(2H);2,65(4H); 3,25(6H);6,18(1H);6,6(1H); 7,0(2H);7,04(1H);7,33(1H); 7,82(1H)
35	HO N S N N	1,15(6H);1,82(2H);2,4(2H); 2,5(8H);3,1(6H);6,1(1H);6,5 (1H);6,58(2H);7,85(1H)
36	HO N S N N	1,3(18H);2,0(2H); 2,55(2H); 2,65(4H); 3,25(6H); 6,2(1H); 6,8 (2H); 7,0 (1H); 7,85 (1H)

Bei- spiel		
37	NH ₂ N S N F F	
38	HO N S N N N O -	151-153°C
39	OH C1- N S N N N F F	170-175°C Hydrochlorid
40	OH N S N C1 -	189-190°C Hydrochlorid
41	OH — N — F F F F C1 — N — C1 —	158-160°C Hydrochlorid

<u></u>		
Bei- spiel		
39.02		
42	OH N	132-134°C
43	NH ₂ NH ₂ F F N N N N N N N N N N N	•
44	NH ₂ N N S N N N	118-125°C
45	OH S N F F	163-166°C
4 E	OH N F F F N N N N N N N N N	109-114°C

Bei-		
spiel		
47	OH	201-203°C
48	OH S N N N N N N N N N N N N N N N N N N	138-140°C
49	H N N N N N N N N N N N N N N N N N N N	138-140°C
50	OH S N N F F F C1	77-80°C
51	H ₂ N N N N	. 290-295°C (Fumarat)

Bei- spiel		
52		128-130°C (Fumarat)
53	$ \begin{array}{c} 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	158-160°C (Fumarat)
54		138-141°C (Fumarat)
55	$ \begin{array}{c c} & & & \\ & &$	55~60°C
56	OH N S N N N F	62-70°C

Be:-	·	
spiel		
57		. 70-73°C
3'		
	OH N S	
	N	
58		127-134°C
	•	Hydrochlorid
	OH	
	N —	
	$N \sim N \sim$	
	C1- C1-	
59	ОН	85-90°C
	N IJ	
	N S N	
	N N N	
	N	
60	CF ₃	: 204-210°C
	N	
	N	
	N SH	
61		137-191°C
	OH (
	$N \sim N \sim$	
1		

Auf analoge Weise können die in den nachfolgenden Tabellen 2-6 genannten Verbindungen erhalten werden.

Tabelle 2	&	-(CH ₂) ₃ -	-(CH ₂) ₄ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂) ₃ -	.(CH ₂)3-	(CH ₂).							
£4	⋖	-CH2-	ဟ	S	တ	-CH2-	S	တ	-CH2-	0	-CH2-	Ś	·CH2·	တ	ĊH
9 B	X.Y	CH2-N	CH.	OHO HO	CH	CH ₂ -N	CHEC	CH.C	CH ₂ -N	CH2-N	CH2-N	CHTC	CH2-N	OH#O	CH2.N
	R10	I	r	I	I	I	I	I	I	ı	I	I	I	ОМе	OMe
	R9	Me	£	1-Pyrrolyl	2-Napht	1But	I	I	tBut	I	1801	18nt	iProp	I	I
4 - B -	R8	I	I	I	I	I	I		I						
Z-\\z	R7	1But	tBut	1B ut	iProp	ជ័	1But	CF3	CF3	Prop	I	I	I	1But	iProp
4 E	R6	I	I	I	I	I	OM _o	OMe	I	OiProp	I	I	I	I	I
	£5	HO	Ö	R	NH ₂	Į O	HO	NH2	P	NHW	Ö	P	NH2	NHW	P O
		I	I	I	I	Μœ	I	I	I	I	I	I	Me	I	I
	æ	I	I	Μe	I	I	I	I	I	I	Μe	I	I	I	I
	Perisp.Nr.							8',							

Tabelle 2 (Forts.)

1																						
5	В	·(CH ₂)3·	-(CH ₂) ₃ -	-(CH ₂) ₅ -	·(CH ₂) ₃ .	-(CH ₂) ₃ .	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-(CH ₂)5.	-(CH2)4-	-(CH ₂) ₃ -	-(CH ₂) ₃ -	-CH2-CH-CH2-	-CH2-CH-CH2-	-CH2-CH-CH2-	-CH2-C(CH3)-CH-CH2-	-CH2-C(CH3)-CH-CH2-	-CH2-C(CH3)-CH-CH2-	·CH2·C(CH3)=CH·CH2·	-CH2-CH-CH2-	-CH2-CH-CH2-	·CH2·CH*CH·CH2·
10	4	ဟ	·CH2·	0	-CH2-	ဟ	-CH2-	S	-CH2-	-CH2-	S	-CH2-	·CH2·	ဟ	တ	ဟ	-CH2-	ဟ	ဟ	·CH2·	0	·CH2·
	×:<	OH-N	CH2.N	CH2-N	CH2-N	OHO CH	CH2-N	CH-C	CH2-N	CH ₂ -N	CH-C	CH2-N	CH2-N	CH	CH-C	OH-CH-C	CH ₂ -N	OH-CH-C	OH-C	CH2-N	CH ₂ ·N	CH ₂ ·N
15	B10	I	I	I	I	I	I	I	OMe	I	Me	I	I	I	I	I	I	ı	I	r	I	I
20	R9		CF3	tBut	tBut	iProp	1801	I	CF3	1But	18ot	ı	We was	A	1-Pyrrolyl	2-Naphi	1But	Į	I	tBut	I	1801
20	R8	I	I	I	S	S	U U	S	S	L	Z	u.	I	I	I	I	I	I	I	I	I	S
	78	1But	1But	CF3	nProp	CF3	£	1801	tBut	nProp	£	(But	18n1	1But	18nt	iProp	ũ	1But	CF3	CF3	iProp	I
25	R6	OMe	OMe	OMe	I	I	I	OW O	I	OMe	I	MO	I	I	I	I	I	OMe	OMe	I	OiProp	I
	R3	Ð	ŏ	P	N I N	P	P	N I N	NHW	Ö	Q	Ð	HO	Ö	Ö	NH2	9	Ö	NH2	Ö	NIMe	O
30	R2	ı	I	I	I	M	I	I	Ţ	I	I	I	I	I	I	I	Me	I	I	I	I	I
	٤	I	I	¥.	I	I	I	I	I	I	I	I	I	I	W	I	I	I	I	I	I	™
35	isp. Nr.	76	77	78	79	80	81	82	83	84	85	86	87	& &	8 9	06	91	9.5	93	94	95	96

Tabelle 2 (Forts.)

R9

88

R7

Re

R3

0

				2	28									
-CH2-C(CH3)=CH-CH2-	-CH2-C(CH3)=CH-CH2-	-CH2-C(CH3)=CH-CH2-	-CH2-C(CH3)=CH-CH2-	-CH2-CH-CH2-	-CH2-CH=CH-CH2-	-CH2-CH=CH-CH2-	-CH2-C(CH3)-CH-CH2-	-CH2-C(CH3)-CH-CH2-	-CH2-C(CH3)-CH-CH2-	-CH2-C(CH3)=CH-CH2-	-CH2-CH-CH2-	-CH2-C(CH3)-CH-CH2-	-CH2-C(CH3)=CH-CH2-	-CH2-CH=CH-CH2-
S	-CH2-	ဟ	·CH2·	ဟ	-CH2-	0	-CH2-	S	-ĊH2-	S	-CH2-	-CH2-	S	·CH2·
OH=C	CH2-N	CH-C	CH ₂ -N	OH-C	CH ₂ -N	CH2-N	CH2-N	CHTC	CH2.N	OH-C	CH2-N	CH2-N	OH#C	CH2-N
I	I	OMe	ОМе	I	I	I	I	I	I	I	OMe	I	Me	I
tBut	iProp	I	I	tBut	CF3	1But	1But	iProp	18nt	I	CF3	tBut	18ut	I
u.	ರ	I	I	I	I	I	Š	S	T O O	S	S	L	S	Ŀ
I	I	t But	iProp	fBut	tBut	CF3	nProp	CF3	£	tBut	t But	nProp	4	tBut
I	I	I	I	OMe	OMe	OMe	I	I	I	OMe	I	OMe	I	OMe
HO H	NH2	NHMe	ᆼ	PO	P	Ö	NH ₂	Ю	OH	NH2	NHMe	HO	, HO	P P
I	Me	I	I	I	I	I	I	Me	I	I	I	I	I	I
I	I	I	I	I	I	Me	I	I	I	I	I	I	I.	I
24	86	66	100	101	102	103	104	105	106	107	108	109	110	111

	В	-(CH2)3-	67.	-(CH2)3-	-CH2-CH-CH	(CH2)C(CH2)	0.212.210	-(CH ₂) ₃ .	-CH2-C(CH3)
	4	, ch	2	S	S		د د	ဟ	-CH2-
Z Z OF A	×-×	17.00	Z-0,	CH ₂ -N	CH2-N		U L U	CH2-N	CHO
belle 3	R10		I	I	I		I	I	, and
Tabe	6		F.	2-Napht	4. Pumolvi		сНех	nHex	4
Z-\\z \\ \=\(\)	70		18nt	talet.		50	18nt	4.00	<u> </u>
A E	Š	2	HO	2	5 6	5	Z Ž	, ב כ	5
	9	R2	1		I.	I	3		ī
		Ir. A1	:	E	I	Ψ	7	Ľ.	I

, A,	Z \		A10 \ A9
	×	N P P P P P P P P P P P P P P P P P P P	
H2 H3		2	

Tabelle

E E	R7 R8 IBut H	R9 tBut	H H	X X X	∢ v	В. (СНо).
		I	ı	CH ₂ -N) ဟ	-(CH ₂) ₂ -
		I	OMe	CH ₂ ·N	ĭ	-CH2-CH-CH2-
		1Bu	I	CH-C	-CH2-	-CH2-C(CH3)-CH-CH2-
		1But	·	CH2-N	S	-(CH ₂) ₃ .
		iProp	I	OH HO	-CH2-	·(CH ₂) ₃ -
		iProp	OMe	OH-C	S	-(CH2)3-
		1But	I	CH2-N	ĭ	·CH2-CH-CH-CH2-
		I	I	CH2-N	S	-(CH ₂) ₄ -
		I	OMe	CH2-N	0	-(CH ₂) ₃ -
		tBu	I	CH=C	S	-CH2-C(CH3)=CH-CH2-
		19nt	I	CH2-N	-CH2-	-(CH ₂) ₃ .
		iProp	I	CH ₂ -N	S	-(CH ₂) ₃ -

Forts.)	
(FC	
4	
le	
Tabel	
Ţ	

				Ηl	Tabelle 4 (Forts.)	4 (FOE	(S)			
kisp.Nr.	2	R2	R3	R7	R8	R9	R10	×:×	A	82
140	I	I	NHMO	ı	I	iProp	OMe	CH ₂ -N	S	-(CH ₂) ₃ -
141	I	I	O	nProp	S	tBut	I	CH2-N	ဟ	-(CH ₂)4·
142	I	I	O	CF3	N O	iProp	ı	CH2-N	S	-(CH ₂) ₃ .
143	Me	I	O	f	H C H C	tBut	I	CH2-N	ĭ	-CH2-CH=CH-CH2-
144	I	I	O	1801	S	18nt	I	CH	·CH2·	-CH2-C(CH3)-CH-CH2-
145	I	I	NH2	tBut	I	nProp	OMe	CH ₂ ·N	S	-(CH ₂) ₃ -
146	I	I	OH	A	I	1801	OMe	OH-C	-CH2-	-(CH ₂)5-
147	I	Ž.	O	CF3	I	18ut	OMe	CH	ဟ	-(CH ₂) ₃ -
148	I	I	OH	18v1	Ŀ	I	Α	CH2-N	ĭ	-CH2-CH-CH2-
149	I	I	O	nProp	S	18ct	Me W	CH2-N	S	-CH2-CH-CH2-
150	I	I	NH2	nProp	S S	1But	OMe	CH.	-CH2-	-CH2-C(CH3)=CH-CH2-
151	I	I	P	18ct	S	I	OMe	CH ₂ ·N	S	-(CH ₂)4-

Tabelle 5

20

R10

H3

30

35

~
S
Fort
S
2
7
Ö
ap
Tal

R2	£	98 8	88	R9	R10	× :≺	4	80
I	동	OMe	S	tBut	I	CH2-N	S	-(CH2)3-
I	H O	OMe	Z.	(But	ı	CH2-N	S	-(CH2)3-
I	동	I	S	1Bul	OMe	CH ₂ -N	ĭ	-CH2-CH-CH2-
I	O	S S	I	18nt	OMe	CH-C	-CH2-	-CH2-C(CH3)-CH-CH2-
I	N N	I	ō	CF3	Me	CH2-N	S	-(CH2)3-
I	, P	OMe	S	1But	Ze Se	CH#C	-CH2-	-(CH ₂) ₃ -
Me	B	Me	Α	iProp	Me	CHTC	S	-(CH ₂) ₃ -

	8	-(CH ₂)4-	-CH2-CH=CH-CH2-	-CH2-C(CH3)=CH-CH2-	-(CH ₂) ₅ -	-(CH2)3-	-(CH ₂) ₃ -
	4	တ	ĭ	-CH2-	ဟ	-CH2-	ဟ
	>-×	CH2-N	CH ₂ -N	OH-CH-C	CH2-N	CH	CH-C
(:s.)	R10	I	I	I	OMe	OMe	OMe
Tabelle 6 (Forts.)	89	iProp	tBut	nProp	I	tBut	tBut
Tabelle	R7	18 ut	CF3	1But	tBut	1But	CF3
	R6	OMe O	OMe	S	Me	OMe	Me
	8	용	P	Ö	9 F	NH2	P
	R2	I	I	I	I	I	I
	£	I	=	S	I	I	I
	It is Sp. Nr. R1	187	388	189	190	191	192

WO 96/02519

PCT/EP95/02784

Beispiele für galenische Applikationsformen:

A) Tabletten

5

Auf einer Tablettenpresse werden in üblicher Weise Tabletten folgender Zusammensetzung gepreßt:

10 40 mg Substanz des Beispiels 1

120 mg Maisstärke

13,5 mg Gelatine

45 mg Milchzucker

2,25 mg Aerosil® (chemisch reine Kieselsäure in

15 submikroskopisch feiner Verteilung)

6,75 mg Kartoffelstärke (als 6 %iger Kleister)

20 B) Dragees

20 mg Substanz des Beispiels 4

60 mg Kernmasse

25 70 mg Verzuckerungsmasse

Die Kernmasse besteht aus 9 Teilen Maisstärke, 3 Teilen Milchzucker und 1 Teil Vinylpyrrolidon-Vinylacetat-Mischpolymerisat 60:40. Die Verzuckerungsmasse besteht aus 5 Teilen Rohrzucker, 2 Teilen Maisstärke, 2 Teilen Calciumcarbonat und 1 Teil Talk. Die so hergestellten Dragees werden anschließend mit einem magensaftresistenten Überzug versehen.

Biologische Untersuchungen - Rezeptorbindungsstudien

1) <u>D₃-Bindungstest</u>

Für die Bindungsstudien wurden klonierte humane D_3 -Rezeptor-exprimierende CCL 1,3 Mäusefibroblasten, erhältlich bei Res. Biochemicals Internat. One Strathmore Rd., Natick, MA 01760-2418 USA, eingesetzt.

10 Zellpräparation

Die D₃ exprimierenden Zellen wurden in RPMI-1640 mit 10 % fötalem Kälberserum (GIBCO Nr. 041-32400 N); 100 E/ml Penicillin und 0,2 % Streptomycin (GIBCO BRL, Gaithersburg, MD, USA) vermehrt. Nach 48 h wurden die Zellen mit PBS gewaschen und mit 0,05 % trypsinhaltiger PBS 5 min inkubiert. Danach wurde mit Medium neutralisiert und die Zellen durch Zentrifugation bei 300 xg gesammelt. Zur Lyse der Zellen wurde kurz das Pellet mit Lysispuffer (5mM Tris-HCl, pH 7,4 mit 10 % Glycerin) gewaschen und danach in einer Konzentration von 10⁷-Zellen /ml Lysispuffer 30 min bei 4°C inkubiert. Die Zellen wurden bei 200 xg 10 min zentrifugiert und das Pellet in flüssigem Stickstoff gelagert.

Bindungstests

25

30

35

15

20

Für den D_3 -Rezeptorbindungstest wurden die Membranen in Inkubationspuffer (50 mM Tris-HCl, pH 7,4 mit 120 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 2 mM MgCl₂, 10 μ M Quinolinol, 0,1 % Ascorbinsäure und 0,1 % BSA) in einer Konzentration von ca. 10⁶ Zellen/250 μ l Testansatz suspendiert und bei 30°C mit 0,1 nM 125 Jodsulpirid in Anwesenheit und Abwesenheit von Testsubstanz inkubiert. Die unspezifische Bindung wurde mit 10⁻⁶M Spiperon bestimmt.

Nach 60 min wurde der freie und der gebundene Radioligand durch Filtration über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-Zellsammler (Skatron, Lier, Norwegen) getrennt und die

WO 96/02519 PCT/EP95/02784

38

Filter mit eiskaltem Tris-HCl-Puffer, pH 7,4 gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 2200 CA Flüssigkeitszintillationszähler quantifiziert.

Die Bestimmung der Ki-Werte erfolgte über nichtlineare Regressionsanalyse mit dem Programm LIGAND.

D₂-Bindungstest 2)

Membranpräparationen

10

15

20

Nucleus caudatus (Rind) a)

Nucleus caudatus wurde aus Rinderhirn entfernt und in eiskalter 0,32 M Saccharose-Lösung gewaschen. Nach Gewichtsbestimmung wurde das Material zerkleinert und in 5 - 10 Volumen Saccharose-Lösung mit einem Potter-Elvehjem Homogenisator (500 U/min) homogenisiert. Das Homogenat wurde bei 3000 x g 15 Minuten (4°C) zentrifugiert und der resultierende Überstand einer weiteren 15minütigen Zentrifugation bei 40000 x g unterworfen. Danach wurde der Rückstand zweimal mit 50 mM Tris-HCl, pH 7,4 durch Resuspension und Zentrifugation gewaschen. Die Membranen wurden bis zum Gebrauch in flüssigem N₂ gelagert.

Striatum (Ratte) b)

25 Striati von Sprague-Dawley Ratten wurden in eiskalter 0,32 M Saccharose-Lösung gewaschen. Nach Gewichtsbestimmung wurden die Hirnteile in 5 - 10 Volumen Saccharose-Lösung mit einem Potter-Elvehjem Homogenisator (500 U/min) homogenisiert. Das Homogenat wurde bei 40000 x g 10 Minuten (4°C) zentrifugiert, danach wurde der Rückstand mit 50 mM Tris-30 HCl, 0.1 mM EDTA und 0,01 % Ascorbinsäure (pH 7,4) mehrmals durch Resuspension und Zentrifugation gewaschen. Der gewaschene Rückstand wurde mit dem obengenannten Puffer resuspendiert und 20 Minuten bei 37°C inkubiert (zwecks Abbau des endogenen Dopamins). Anschließend wurden die Membranen zwei-35 mal mit Puffer gewaschen und in Portionen in flüssigem Stickstoff eingefroren. Die Membranpräparation war maximal 1

Woche stabil.

Bindungstest

5

10

15

20

25

30

- a) ^{3}H -Spiperon (D_{2low})
- Nucleus caudatus-Membranen wurden in Inkubationspuffer (mM: Tris-HCl 50, NaCl 120, KCl 5, MgCl₂ 1, CaCl₂ 2, pH 7,4) aufgenommen. Verschiedene Ansätze von je 1 ml wurden hergestellt:
 - Totale Bindung: 400 μ g Membranen + 0,2 nmol/l ³H-Spipe-ron (Du Pont de Nemours, NET-565).
 - Unspezifische Bindung: wie Ansätze für totale Bindung + 10 μ M (+)-Butaclamol.
 - Prüfsubstanz: wie Ansätze für totale Bindung + steigende Konzentrationen von Prüfsubstanz.

Nach erfolgter Inkubation bei 25°C für 60 Minuten wurden die Ansätze über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-Zellsammler (Fa. Zinsser, Frankfurt) filtriert und die Filter mit eiskaltem 50 mM Tris-HCl-Puffer, pH 7,4 gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 2200 CA Flüssigkeitszintillationszähler quantifiziert.

Die Bestimmung der K_i -Werte erfolgte über nichtlineare Regressionsanalyse mit dem Programm LIGAND oder durch Umrechnung der IC_{50} -werte mit Hilfe der Formel von Cheng und Prusoff.

b) $^{3}H-ADTN (D_{2high})$

Striatummembranen wurden in Inkubationspuffer (50 mM Tris-HCl, pH 7,4, 1 mM MnCl₂ und 0,1 % Ascorbinsäure) aufgenommen.

- Verschiedene Ansätze von je 1 ml wurden hergestellt.
 - Totale Bindung: 300 μ g Naßgewicht + 1 nM 3 H-ADTN (Du

WO 96/02519 PCT/EP95/02784

40

Pont de Nemours, Kundensynthese) + 100 nM SCH 23390 (Belegung von D1-Rezeptoren).

- Unspezifische Bindung: wie Ansätze für totale Bindung + 50 nM Spiperon.
- Prüfsubstanz: wie Ansätze für totale Bindung + steigende Konzentrationen von Prüfsubstanz.
- Nach erfolgter Inkubation bei 25°C für 60 Minuten wurden die Ansätze über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-Zellsammler (Fa. Zinsser, Frankfurt) filtriert und die Filter mit eiskaltem 50 mM Tris-HCl-Puffer, pH 7,4 gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 2200 CA Flüssigkeitszintillationszähler quantifiziert.

Die Auswertung erfolgte wie unter a).

Die erfindungsgemäßen Verbindungen zeigen in diesen Tests sehr gute Affinitäten und hohe Selektivitäten gegenüber dem D_3 -Rezeptor. Die erhaltenen Werte sind für repräsentative Verbindungen in der nachfolgenden Tabelle 7 zusammengestellt.

Tabelle 7
Rezeptorbindung

5

Beispiel-Nr.	D ₃ 125 I-Sulpirid K _i [nM]	D ₂ 3H-Spiperon K _i [mM]	Selektivität K _i D ₂ /K _i .D ₃
12	4,2	357	85
13	2,3	142	61
17	2,8	200	71
19	3,0	175	58
48	4,0	480	120

Patentansprüche

1. Verwendung von Pyrimidinverbindungen der Formel I:

5

worin

10

für eine C_1 - C_{18} -Alkylengruppe steht, die gegebenenfalls mindestens eine Gruppe umfaßt, die ausgewählt
ist unter O, S, NR^4 , $CONR^4$, NR^4CO , COO, OCO und einer
Doppel- oder einer Dreifachbindung,

B für

15

20

25

steht,

 R^1 , R^2 , R^3 unabhängig voneinander ausgewählt sind unter H, Halogen, OR^4 , NR^4R^5 , SR^4 , CF_3 , CN, CO_2R^4 und $C_1-C_8-Alkyl$, das gegebenenfalls durch OH, $OC_1-C_8-Alkyl$ oder Halogen substituiert ist,

 R^4 für H, C_1 - C_8 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_8 -Alkyl oder Halogen substituiert ist, steht,

 R^5 die für R^4 angegebenen Bedeutungen besitzt oder für COR^4 oder CO_2R^4 steht;

Ar für Phenyl, Pyridyl, Pyrimidyl oder Triazinyl steht,

30

wobei Ar gegebenenfalls ein bis vier Substituenten aufweisen kann, die unabhängig voneinander ausgewählt sind unter OR^5 , C_1 – C_8 –Alkyl, C_2 – C_6 –Alkenyl, C_2 – C_6 –Alkinnyl, Halogen, CN, CO_2R^4 , NO_2 , SO_2R^4 , SO_3R^4 , NR^4R^5 , $SO_2NR^4R^5$, SR^4 , CF_3 , CHF_2 , einem 5- oder 6-gliedrigen carbocyclischen, aromatischen oder nicht-aromatischen Ring und einem 5- oder 6-gliedrigen heterocyclischen aromatischen oder nicht-aromatischen Ring mit 1 bis 3 Heteroatomen, die ausgewählt sind unter O, S und N,

35

10

30

wobei der Ring gegebenenfalls substituiert sein kann durch C_1 - C_8 -Alkyl, Hal, OC_1 - C_8 -Alkyl, OH, NO_2 , CF_3 und wobei

Ar gegebenenfalls auch mit einem carbocyclischen oder heterocyclischen Ring der oben definierten Art kondensiert sein kann.

und der Salze davon mit physiologisch verträglichen Säuren zur Herstellung eines pharmazeutischen Mittels zur Behandlung von Erkrankungen, die auf Dopamin- D_3 -Rezeptorantagonisten bzw. -agonisten ansprechen.

- Verwendung nach Anspruch 1 von Pyrimidinverbindungen der Formel I, worin
- für eine C₁-C₁₈-Alkylengruppe steht, die gegebenenfalls mindestens eine Gruppe umfaßt, die ausgewählt ist unter O, S, NR⁴, CONR⁴, NR⁴CO, COO, OCO und einer Doppel- oder einer Dreifachbindung,
 - B für

-N - N - N - N oder -N

steht,

- 25 R^1 , R^2 , R^3 unabhängig voneinander ausgewählt sind unter H, Halogen, OR^4 , NR^4R^5 , SR^4 , CF_3 , CN, CO_2R^4 und C_1-C_8- Alkyl, das gegebenenfalls durch OH, OC_1-C_8- Alkyl oder Halogen substituiert ist,
 - R^4 für H, C_1 - C_8 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_8 -Alkyl oder Halogen substituiert ist, steht,
 - R^5 die für R^4 angegebenen Bedeutungen besitzt oder für COR^4 oder CO_2R^4 steht;
 - Ar für Phenyl, Pyridyl, Pyrimidyl oder Triazinyl steht,
- wobei Ar gegebenenfalls einen oder zwei Substituenten X und Y aufweisen kann, die unabhängig voneinander

10

ausgewählt sind unter OR^5 , C_1 - C_8 -Alkyl, Hal, CN, CO_2R^4 , NO_2 , SO_2R^4 , SO_3R^4 , NR^4R^5 , $SO_2NR^4R^5$, SR^4 , CF_3 , CHF_2 , einem 5- oder 6-gliedrigen carbocyclischen, aromatischen oder nicht-aromatischen Ring und einem 5- oder 6-gliedrigen heterocyclischen aromatischen oder nicht-aromatischen Ring mit 1 bis 3 Heteroatomen, die ausgewählt sind unter O, S und N, wobei der Ring gegebenenfalls substituiert sein kann durch C_1 - C_8 -Alkyl, Hal, OC_1 - C_8 -Alkyl, OH, NO_2 , CF_3 und wobei

Ar gegebenenfalls auch mit einem carbocyclischen oder heterocyclischen Ring der oben definierten Art kondensiert sein kann.

- Verwendung nach Anspruch 1 oder 2 von Verbindungen der Formel I, worin A für C_3 - C_{10} -Alkylen steht, das gegebenenfalls wenigstens eine Gruppe umfaßt, die ausgewählt ist unter O, S, NR^4 und einer Doppel- oder Dreifachbindung.
- Verwendung nach einem der Ansprüche 1 bis 3 von Verbindungen der Formel I, worin R^1 , R^2 und R^3 unabhängig voneinander für H, C_1 - C_8 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_8 -Alkyl oder Halogen substituiert sein kann, OH, OC_1 - C_8 -Alkyl SR^4 oder NR^4R^5 steht, wobei R^4 und R^5 unabhängig voneinander für H oder C_1 - C_8 -Alkyl stehen;
- 25 Ar für Phenyl, Pyridyl oder Pyrimidyl steht, das gegebenenfalls einen, zwei, drei oder vier Substituenten aufweist, die ausgewählt sind unter H, C1-C8-Alkyl, das gegebenenfalls durch OH, OC1-C8-Alkyl oder Halogen substituiert ist, OR4, wobei R4 für H, C1-C8-Alkyl, das gegebenenfalls durch OH, OC1-C8-Alkyl oder Halogen substituiert ist, CHF2, CF3, CN, Halogen, C2-C6-Alkenyl, C2-C6-Alkinyl, C5-C6-Cycloalkyl, Phenyl, Naphthyl und einem 5- oder 6-gliedrigen heterocyclischen aromatischen Rest mit 1 bis 3 Heteroatomen, ausgewählt unter O, N und S.

Verwendung nach Anspruch 4 von Verbindungen der Formel I, 5. worin B für

$$-N$$
N- oder $-N$

steht.

Verwendung nach Anspruch 4 oder 5 von Verbindungen der Formel I, worin R1 für H, C1-C8-Alkyl, das gegebenenfalls 10 durch OH, OC1-C8-Alkyl oder Halogen substituiert ist, OR4, SR4 oder NR4R5 steht, wobei R4 und R5 unabhängig voneinander für H oder C₁-C₈-Alkyl stehen; R² für H, OR⁴ oder C₁-C₈-Alkyl steht; und R³ für H steht.

15

20

5

Verwendung nach einem der Ansprüche 1 bis 6 von Verbindun-7. gen der Formel I, worin Ar für Phenyl steht, das ein bis vier Substituenten aufweist, die unabhängig voneinander ausgewählt sind unter H, C1-C8-Alkyl, das gegebenenfalls durch OH, OC1-C8-Alkyl oder Halogen substituiert ist, Phenyl, Naphthyl, Pyrrolyl, CN, NO2, CF3, CHF2, Halogen, SO₇R⁴ oder SR⁴ steht, wobei R⁴ für H oder C₁-C₈-Alkyl steht.

25

Verwendung nach Anspruch 7, wobei die Substituenten unab-8. hängig voneinander ausgewählt sind unter C1-C8-Alkyl, Phenyl, CF₃, CHF₂, CN, NO₂, Halogen, OC₁-C₈-Alkyl oder SR⁴ steht, wobei R4 für H oder C1-C8-Alkyl steht und Y für H, C₁-C₈-Alkyl, Hal oder CF₃ steht.

30

Verwendung nach Anspruch 7 oder 8, wobei der Rest Ar einen 9. oder zwei Substituenten aufweist, die sich jeweils in m-Stellung befinden.

10. Verwendung nach einem der Ansprüche 1 bis 6 von Verbindun-35 gen der Formel I, worin

- Ar für Pyrimidinyl steht, das ein bis drei Substituenten aufweist, die unabhängig voneinander ausgewählt sind unter H, C₁-C₈-Alkyl, Phenyl, Naphthyl, C₅-C₆-Cyclo-alkyl, OH, OC₁-C₈-Alkyl, Halogen, CN, NO₂, CF₃, CHF₂ und einem 5- oder 6-gliedrigen, heterocyclischen, aromatischen oder nicht-aromatischen Rest mit 1 bis 3 Heteroatomen, ausgewählt unter O, N und S.
- 11. Verwendung nach einem der Ansprüche 1 bis 10 von Verbindungen der Formel I, worin
 - für Pyridinyl steht, das ein bis vier Substituenten aufweist, die unabhängig voneinander ausgewählt sind unter H, C₁-C₈-Alkyl, Phenyl, Naphthyl, OH, OC₁-C₈-Alkyl, Halogen, CF₃, CN, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl und einem 5- oder 6-gliedrigen, heterocyclischen, aromatischen Rest mit 1 bis 3 Heteroatomen, ausgewählt unter O, N und S;
- 20 12. Pyrimidinverbindungen der Formel I'

worin

A, B, Ar, R^1 , R^2 und R^3 die in den Ansprüchen 1 bis 8 angegebenen Bedeutungen besitzen, und die Salze davon mit physiologisch verträglichen Säuren,

ausgenommen die Verbindungen der Formel

35

30

25

15

20

25

worin R^1 für OH oder SH steht, R^2 und R^3 unabhängig voneinander für H, C_1 - C_6 -Alkyl, OC_1 - C_6 -Alkyl, SC_1 - C_6 -Alkyl, CO_2 H, OH, SH, NR^4R^5 oder Halogen stehen, wobei R^4 und R^5 für H oder C_1 - C_6 -Alkyl stehen, A für SC_1 - C_6 -Alkylen, NHC_1 - C_6 -Alkylen oder $N(C_1$ - C_6 -Alkyl)- C_1 - C_6 -Alkylen steht, B für -

steht und Ar für Phenyl steht,

- das gegebenenfalls einen oder mehrere Substituenten aufweist, die ausgewählt sind unter $C_1-C_4-Alkyl$, $OC_1-C_4-Alkyl$, $SC_1-C_4-Alkyl$, NO_2 , CF_3 , F, Cl oder Br.
 - 13. Verbindung nach Anspruch 12 der Formel

14. Pyrimidinverbindungen der Formeln:

und die physiologisch verträglichen Salze davon.

WO 96/02519 PCT/EP95/02784

15. Verfahren zur Herstellung der Verbindungen der Ansprüche 12, 13 oder 14, dadurch gekennzeichnet, daß man

50

i) eine Verbindung der allgemeinen Formel II:

5

$$\begin{array}{c|c}
R^1 \\
R^2 \\
\hline
N \\
N \\
N \\
A \\
-Y^1
\end{array}$$

worin

10

 \mathbf{Y}^{l} für eine übliche Abgangsgruppe steht, mit einer Verbindung der allgemeinen Formel III

$$H - B - Ar$$

umsetzt;

ii) zur Herstellung einer Verbindung der Formel I',
worin A ein Sauerstoff- oder Schwefelatom oder NR⁴
umfaßt:

20

eine Verbindung der allgemeinen Formel IV:

$$R^{2}$$

$$R^{3}$$

$$N$$

$$A^{1} - Z^{1} H$$

25

worin Z^1 für O, S oder NR^4 steht und A^1 für C_0 - C_{18} -A1-kylen steht, mit einer Verbindung der allgemeinen Formel VI

30

$$y^1 - A^2 - B - Ar$$

worin Y^1 die oben angegebenen Bedeutungen besitzt, und A^2 für C_1-C_{18} -Alkylen steht, wobei A^1 und A^2 zusammen 1 bis 18 Kohlenstoffatome aufweisen, umsetzt,

10

15

20

25

30

35

iii) zur Herstellung einer Verbindung der Formel I', worin A die Gruppe COO oder CONR4 umfaßt: eine Verbindung der allgemeinen Formel VII:

R2 N A1 COY?

worin Y^2 für OH, OC_1 - C_4 -Alkyl, Cl oder zusammen mit CO für eine aktivierte Estergruppe steht, und A^1 die oben angegebenen Bedeutungen besitzt, mit einer Verbindung der Formel VIII:

$$z^1 - A^2 - B - Ar$$

worin ${\tt A}^2$ die oben angegebenen Bedeutungen besitzt, und ${\tt Z}^1$ für OH oder NHR 4 steht,

iv) zur Herstellung einer Verbindung der Formel I', worin A die Gruppe OCO oder NR4CO umfaßt:

eine Verbindung der Formel IV

worin Z^1 für 0 oder NR^4 steht, mit einer Verbindung der Formel X:

$$y^2$$
co - A^2 - B - Ar

worin A^2 , B und Y^2 die oben angegebenen Bedeutungen besitzen, umsetzt, wobei in den obigen Formeln R^1 , R^2 , R^3 , A, B und Ar die in den Ansprüchen 1 bis 8 angegebenen Bedeutungen besitzen.

16. Pharmazeutisches Mittel, enthaltend mindestens eine Verbindung der Formel I nach einem der Ansprüche 12, 13 oder 14, gegebenenfalls zusammen mit physiologisch akzeptablen Trägern und/oder Hilfsstoffen.

BERICHTIGTES BLATT (REGEL 91) ISA/EP

17. Verfahren zur Behandlung von Erkrankungen, die auf Dopamin-D₃-Liganden ansprechen, wobei man einer Person, die einer derartigen Behandlung bedarf, eine therapeutisch wirksame Menge einer in einem der Ansprüche 1 bis 11 definierten Verbindung verabreicht.

INTERNATIONAL SEARCH REPORT

In. uonal Application No PCT/EP 95/02784

A. CLASSIFICATION OF SUBJECT MATTER C07D239/60 CO7D239/46 CO7D401/12 C07D239/38 CO7D239/56 IPC 6 A61K31/505 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) CO7D IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data hase consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1-12,15, DE, A, 22 58 561 (BYK-GULDEN LOMBERG) 20 A 16 June 1973 cited in the application see the whole document 1-12,15,DE, A, 21 39 082 (BYK-GULDEN LOMBERG) 15 A 16 February 1973 cited in the application see the whole document 1,2,15, DE,A,19 46 172 (HOECHST) 18 March 1971 A 16 see page 1 - page 17; claims 1-12, 15, DE, A, 19 42 405 (BYK-GULDEN LOMBERG) 16 A September 1971 see the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. * Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention "E" earlier document but published on or after the international cannot be considered novel or cannot be considered to filing date involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or "Y" document of particular relevance; the claimed invention which is cited to establish the publication date of another cannot be considered to involve an inventive step when the citation or other special reason (as specified) document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. "P" document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search **-7.** 11. 95 31 October 1995 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Francois, J Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP 95/02784

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	ernational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although Claim 17 is directed to a method for treatment of the human or animal body, the search has been carried out and based on the alleged effects of the composition. (Rule 39.1(iv)). Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: On Protest The additional search fees were accompanied by the applicant's protest
	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int sional Application No
PCT/EP 95/02784

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE-A-2258561	20-06-73	BE-A- 79220	06 01-06-73
		FR-A- 216210	13-07-7 3
		JP-A- 4806277	4 01-09-73
		LU-A- 6438	37 16-07-73
		NL-A- 721630	9 05-06-73
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		OA-A- 428	31-12-79
DE-A-2139082	15-02-73	BE-A- 78712	25 05-02-73
		FR-A- 215072	2 13-04-73
		LU-A- 6583	6 17-08-73
		NL-A- 721063	6 06-02-73
DE-A-1946172	18-03-71	AT-A,B 30812	6 15-05-73
		AT-A,B 30812	7 15-05-73
		AT-A,B 30944	5 15-07-73
		AT-A,B 30528	4 15-01-73
		BE-A- 75612	7 15-03-71
		CA-A- 92550	8 01-05-73
		FR-A- 207068	7 17-09-71
•		GB-A- 132039	5 13-06-73
		NL-A- 701318	9 16-03-71
		US-A- 378741	1 22-01-74
DE-A-1942405	16-09-71	AT-A- 30235	9 15-09-72
		AT-B- 31865	1 11-11-74
		BE-A- 75501	5 01-02-71
		CA-A- 95694	4 29-10-74
		CH-A- 58217	3 30-11-76
		CH-A- 55199	0 31-07-74
		FR-A,B 207330	0 01-10-71
		GB-A- 130932	
		LU-A- 6152	
		NL-A- 701236	·
		SE-B- 38644	
		US-A- 395778	
		US-A- 406798	

### INTERNATIONALER RECHERCHENBERICHT

pct/EP 95/02784

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C07D239/56 C07D401/12 C07 C07D239/60 CO7D239/46 CO7D239/38 A61K31/505 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüßtoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 CO7D Recherchierte aber nicht zum Mindestprüsstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegnsse) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategorie* 1-12, 15,DE, A, 22 58 561 (BYK-GULDEN LOMBERG) 20. A 16 Juni 1973 in der Anmeldung erwähnt siehe das ganze Dokument 1-12, 15,DE,A,21 39 082 (BYK-GULDEN LOMBERG) 15. A 16 Februar 1973 in der Anmeldung erwähnt siehe das ganze Dokument 1,2,15, DE,A,19 46 172 (HOECHST) 18. März 1971 A 16 siehe Seite 1 - Seite 17; Ansprüche 1-12, 15, DE,A,19 42 405 (BYK-GULDEN LOMBERG) 16. A September 1971 siehe das ganze Dokument Siehe Anhang Patentiamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen "T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum Besondere Kategorien von angegehenen Veröffentlichungen oder dem Prioritätsdatum verössentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verstandnis des der "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, Ersindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Theorie angegeben ist 'X' Verössentlichung von besonderer Bedeutung; die beanspruchte Ersindung Anmeldedatum veröffentlicht worden ist kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf "L" Verössentlichung, die geeignet ist, einen Prioritätsanspruch zweiselhast erersinderischer Tätigkeit beruhend betrachtet werden scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung anderen im Recherchenhericht genannten Veröffentlichung belegt werden -ykann nicht als auf erfinderischer Tätigkeit beruhend betrachtet soll oder die aus einem anderen besonderen Grund angegeben ist (wie werden, wenn die Veröffentlichung mit einer oder mehreren anderen ausgeführt) Verössentlichungen dieser Kategorie in Verbindung gebracht wird und "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, diese Verbindung für einen Fachmann naheliegend ist eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Absendedatum des internationalen Recherchenbenchts Datum des Abschlusses der internationalen Recherche ~ 7₂ 11. 95 31. Oktober 1995 Bevollmächtigter Bediensteter Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NI. - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Francois, J Fax: (+ 31-70) 340-3016

## INTERNATIONALER RECHERCHENBERICHT

internationales Aktenzeichen

PCT/EP 95/02784

Feld I	Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 1 auf Blatt 1)
Gemäß	Artikel 17(2)2) wurde aus folgenden Gründen für besummte Ansprüche kein Recherchenbericht erstellt:
Köi	Ansprüche Nr. weil Sie sen auf Gegenstände beziehen, zu deren Recherche die Behorde nicht verpflichtet ist, nämlich wonl der Anspruch 17 sich auf ein Verfahren zur Behandlung des menschlichen rpers bezieht, wurde die Recherche durchgeführt und gründete sich auf die geführten Wirkungen der Verbindung. (Regel 39.1(iv)).
2.	Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3.	Anspruche Nr. weil es sich capel um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feid II	Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 2 auf Blatt 1)
Die inter	nationale Remerchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält
1.	Da der Anmeder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche der internationalen Anmeldung.
	Da für alle remerchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusatzuche Recherchengebühr gerechtfertigt hätte, hat die Internationale Recherchenbehorde nicht zur Zahlung einer solchen Gebuhr aufgefordert.
	Da der Anmeider nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren entrichtet worden sind, namien auf die Ansprüche Nr.
	Der Anmeice: hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recher- chenbencht veschrankt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenœn Ansprüchen er- faßt:
Bemerkun	Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.  Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.

## --- INTERNATIONALER RECHERCHENBERICHT

Angahen zu Veroffentlichungen, die zur seihen Patentfamilie gehören

In uonales Aktenzeichen
PCT/EP 95/02784

			71/11 33/02/01
Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(cr) der Patentfamilie	Datum der Veröffendichung
	20-06-73	BE-A- 7922	206 01-06-73
DE-A-2258561	20-00-73	FR-A- 21621	
		JP-A- 480627	
		LU-A- 643	
		NL-A- 72163	
•		• • • • • • • • • • • • • • • • • • • •	289 31-12-79
DE 4 0120002	15-02-73	BE-A- 787	125 05-02-73
DE-A-2139082	15-02 /5	FR-A- 2150	722 13-04-73
			836 17-08-73
		NL-A- 7210	
DE-A-1946172	18-03-71	AT-A,B 308	
DE-W-13401/5	10 03 / 1	AT-A,B 308	
		AT-A,B 309	445 15-07-73
		AT-A,B 305	
		BE-A- 756	127 15-03-71
	•	CA-A- 925	508 01-05-73
		FR-A- 2070	687 17-09-71
		GB-A- 1320	395 13-06-73
		NL-A- 7013	189 16-03-71
		US-A- 3787	411 22-01-74
DE-A-1942405	16-09-71	AT-A- 302	2359 15-09-72
DE-W 1345403		AT-B- 318	3651 11-11-74
		BE-A- 755	01-02-71
	•	CA-A- 956	5944 29-10-74
		CH-A- 582	2173 30-11-76
		CH-A- 551	1990 31-07-74
		FR-A,B 2073	3300 01-10-71
			9324 07-03-73
		<b>—</b> • •	1527 22-06-71
			2364 23-02-71
		• • • • • • • • • • • • • • • • • • • •	6448 09-08-76
		<b>4</b>	7786 18-05-76
			7982 10-01-78