Policy
Ne learn - value function FROM EXPEDIENCE
EXPERZENCE
Plan with the model to construct a value function
Model-free ML DNo model
Dearn value function / policy from experience
Model-based RL
Or given a model
@ plan value function / policy from model

Markor Decision Processes 1/Solve Dynamic Exhaustive Full Search Programming Backups One-4ep updates Couple of Steps (bellman equations) (Model + semple) Monte Sample enporal Difference Backups Learning bootstrapping, 2 Shallow deep Backups Backups sample Whole trajectory Sample-based Version of DP (Sample one step)

$$= \theta^{\mathsf{T}} P^{\mathsf{n}} \varphi(s)$$

$$= \bigvee_{\Theta} (P^{\hat{}} \phi(s))$$

Stochastic Models

(generative models)

 $\hat{R}_{t+1} = \hat{P}(S_t, A_t, \dots)$

V: hoise term

(can be chained)

Full models

branching:

Model the complete transition

dynamics, including stochasticity

E[V(Stri) | St=5]

 $= \overline{\sum_{\alpha}} \pi(\alpha|s) \overline{\sum_{\beta'}} \hat{P}(s,\alpha,s') (\hat{Y}(s,\alpha,s') + \hat{Y} V(s'))$

$$E[V(S_{t+n}|S_{t}=s)]$$
=\[\frac{7}{\alpha} \pi(s_{1}a_{1}s') \frac{\hat{\gamma}(s_{1}a_{1}s')}{\hat{\gamma}(s_{1}a_{1}s')} \frac{\hat{\gamma}(s_{1}a_{1}s')}{\hat{\gamma}(s_{1}a_{1}s')} \frac{\hat{\gamma}(s_{1}a_{1}s'')}{\hat{\gamma}(s_{1}a_{1}s'')} \frac{\hat{\gamma}(s_{1}a_{1}s'')}{\hat{\gamma}(s_{1}a_{1}s'')}

Models:

Table Lookup

Linear Expectation

Linear Gaussian

DNN

N(s,a)

Planning with a Model
Model Py
solve Mop: <5, A, Py)
Algorithm: Value iteration Policy iteration thee search
Sample-based Planning
Model: generate samples
Sample experience from model
S, R ~ Pn (.(s.a)
Model-free RL to Sample.
Monte-Carlo control Sarsa Q-learning

Idea: (PLANNING.)
1. Construct a lookup table model from
real experience
2. Apply model-free RL to sampled experience
Full-batch Batch Learning Planning (Planning) (Planning) (Planning)

Moving beyond model-based and model-free labels

The sharp distinction between model-based and model-free methods is becoming somewhat less useful.

- For tabular RL there is an exact output equivalence between some conventional model-based and model-free algorithms.
- When the agent stores transitions in an experience replay buffer and learns from it (as in DQN), we can think of this stored experience as an implicit model.
- More generally, an agent can store its experience in other forms. In those cases it is unclear if either or both labels apply.

The terms are still used to describe whether an algorithm is explicitly modeling the environmental dynamics (to a greater or lesser extent), and how the agent is generalizing the distinction anymore.

SO

Using experience in the place of a model

Recall prioritized sweeping from tabular dynamic programming.

Update the value function of the states with the largest magnitude Bellman errors using a priority queue.

A related idea is prioritized experience replay (Schaul et al, 2015) which works from experience for general function approximation.

- ► The experience replay buffer maintains a priority for each transition, with the priority given by the magnitude of the Bellman error.
- Minibatches are sampled using this priority to quickly reduce errors.
- Weighted importance sampling corrects for bias from non-uniform sampling.

is sometimes called prioritize sweeping proactive sweeping is a more general

Mc samples	Much st	eps 1	Nodel	one-step
	l-ligh	Vari erce	Cinpe	· - ()
	easy	to lear	<u> </u>	
Jo OT	poling	(20miny	(0-	teamin)

Limits of Planning with an Inaccurate Model

- ▶ Given an imperfect model $\hat{p}_{\eta} \neq p$
- ightharpoonup Performance is limited to optimal policy for approximate MDP $\langle \mathcal{S}, \mathcal{A}, \hat{\rho}_{\eta} \rangle$
- Model-based RL is only as good as the estimated model
- When the model is inaccurate, planning process will compute a suboptimal policy (not covered in these slides)
 - Approach 1: when model is wrong, use model-free RL
 - ▶ Approach 2: reason explicitly about model uncertainty over η (e.g. Bayesian methods)
 - Approach 3: Combine model-based and model-free methods in a safe way.

free reinforcement learning additionally or alternatively

Reinforcement Learning 7: Planning and Models

10,164 views · Nov 23, 2018

Despoted

Up next

Reinforcement Learning 10: Classic Games Case Study DeepMind

Red and Simulated Experience
Real Experience: Sampled from environment (true Map)
Υ, <' ~ ρ
Simulated Experience: Sampled from model (approximate Mop)
Y, s'~ Py

Integrating Learning and Planning

- ▶ Model-Free RI
 - No model
 - Learn value function (and/or policy) from real experience
- Model-Based RL (using Sample-Based Planning)
 - Learn a model from real experience
 - Plan value function (and/or policy) from simulated experience
- Dyna
 - Learn a model from real experience
 - ▶ Learn AND plan value function (and/or policy) from real and simulated experience
 - ▶ Treat real and simulated experience equivalently. Conceptually, the updates from learning or planning are not distinguished.

and this is sometimes called dinah this is how how it's called in the

Reinforcement Learning 7: Planning and Models

10.164 views • Nov 23, 2018

Up next

Reinforcement Learning 10: Classic Games Case Study DeepMind

Dyna-Q Algorithm (Dyna + Glearning)

Initialize Q(s, a) and Model(s, a) for all $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$ Do forever:

- (a) $s \leftarrow \text{current (nonterminal) state}$
- (b) $a \leftarrow \varepsilon$ -greedy(s, Q)
- (c) Execute action a; observe resultant state, s', and reward, r
- (d) $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') Q(s,a)]$
- (e) $Model(s, a) \leftarrow s', r$ (assuming deterministic environment)
- (f) Repeat N times:

 $s \leftarrow \text{random previously observed state}$

 $a \leftarrow \text{random action previously taken in } s$

 $s', r \leftarrow Model(s, a)$

 $Q(s, a) \leftarrow Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$

Simulation-based Model
Given (fixed) model,
Global Value Function Select
Next

Forward <	Dearch			
Select the bost	action	by L	so kalead	
		_		
	_=			
Sparch				
Vee				
	a Cu	want st	ofe	
	9			
3 5	ک	8		
Use a MDP mode	4 60	look a	chacd	_
		0	/ Nation	
Simulation.	-be sed	Seavel	`	
0				
forward Uses	sample	-hased	Planin	
Seevel			0	r
Simulad	api sod	25	Moder	
	1 , , ,		I V SONE	Tree

		KL /
{ St, At, Rty,,	5 k	~ Pn
(Monte-Carlo Control -	<i>→</i> /×<	Jearch
Sama -> TI)	search	
		<u> </u>
	11 1	

Parameterized model My
Simulation policy 7
O Simulate K episodes from current state.
{ Sk = St, Ak, Rk, Sk, St, St, St, St, St, St, St, St, St, St
2 Evaluate State by mean return
(Monte-Carlo exclusion)
$V(S_t) = \frac{1}{k} \frac{1}{S_t} G_t^k \longrightarrow V_{\pi}(S_t)$
B Evaluate action by mean return
$9(5,a) = \frac{1}{k} \stackrel{k}{\geq} G_{k}^{k} \sim 9_{\chi}(5,a)$
4 Select Current (real) action with

Maximum value

Monte-carlo Simulation

Monte-Carlo Tree Search (Evaluation)

Given Model My

1. Simulate Kepisodes from current state St Using current simulation policy T

J. Build Search Tree containing visited states and

3. Evaluate states 9(s,a) by mean return of episodes from 5, a

9(s.a) = 1 2 2 7(Su, At = s.a) Gir ~> 9(s.a)

Afra	er Sean	eling, a	select	Current	- (real) ac-
With	Maxi	run Va	lue in	n Seave	L trae	
	ax :	= argm acf	= × 9.	(St, a)	

Monte-Carlo Tree Search (Simulation)

- ▶ In MCTS, the simulation policy π improves
- ▶ The simulation policy π has two phases (in-tree, out-of-tree)
 - ▶ Tree policy (improves): pick actions from q(s, a) (e.g. ϵ greedy(q(s, a)))
 - Rollout policy (fixed): e.g., pick actions randomly
- Repeat (for each simulated episode)
 - Select actions in tree according to tree policy.
 - Expand search tree by one node
 - Rollout to termination with default policy
 - Update action-values q(s,a) in the tree
- Output best action when simulation time runs out.
- lacktriangle With some assumptions, converges to the optimal values, $q(s,a) o q_*(s,a)$

going to consider a tree that we've built ourselves and

