Proyecto Final

Ingeniería de Software

Hannin Abarca

Gael Jimenez

David Sanchez

15 de Agosto del 2025

Diseño UML y Reglas de Negocio

1. Casos de Uso.

Agar MX — Casos de Uso

2. Diagrama de arquitectura.

Cliente Unity 8 ControlEntrada ControlCámara PredicciónCliente KCP/UDP (Mirror) Llamadas RPC, SyncVars, Mensajes Guardar nombre/sensibilidad/zoom Servidor Autoritativo (Unity Headless) 90 00 HUD/InterfazLeaderboard SistemaColisiones Emparejador/Salas ServicioLeaderboard ClienteRed (Mirror) Persistencia Ligera (Preferencias locales) GestorCélulas ServidorRed (Mirror/KCP) MundoJuego GeneradorComida SistemaVirus

Agar MX — Diagrama de Arquitectura (Componentes)

3. Diagramas de secuencia y colaboración.

Secuencia: Dividir Célula

Secuencia: Unirse a Sala Privada

4. Diagrama de clases (agregación, composición, generalización, especialización).

propietario: Jugador
Absorber(otra: Célula)
Dividir(): List<Célula>
Expulsar(): void

PuedeFusionarseCon(otra: Célula): bool

5. Diagrama de estados y actividades.

6. Diagramas de distribución y componente.

Diagrama de Distribución / Despliegue

Diagrama de Componentes — Servidor

7. Reglas de negocio documentadas.

Reglas de Negocio — Agar MX

ID	Nombre	Descripción
RB-0 1	Umbral de división	Una célula solo puede dividirse si su masa ≥ M_split. Configurable por sala.
RB-0 2	Límite de subcélulas	Un jugador no puede tener más de N_max subcélulas simultáneas.
RB-0 3	Absorción justa	La absorción ocurre si masaMayor >= k * masaMenor y existe superposición. k configurable.
RB-0 4	Cooldown de fusión	Subcélulas de un mismo jugador no pueden fusionarse hasta pasado t_merge segundos desde la división.
RB-0 5	Virus	Impactar un virus con radio > r_virus provoca división en n subcélulas con masa distribuida y dispersión inicial.
RB-0 6	Densidad de pellets	El mapa debe mantener [A, B] pellets activos. Se respawnean si bajan de A.
RB-0 7	AFK	Si inactividad > t_afk y la sala está llena, el jugador puede ser expulsado.
RB-0 8	Capacidad de sala	Máximo 64 jugadores por sala; se crea nueva cuando se alcanza el límite.

RB-0 9	Preferencias	Nombre, sensibilidad y zoom se guardan y restauran localmente.
RB-1 0	Anticheat básico	El servidor valida posiciones, masas y límites; descarta paquetes inválidos y corrige el estado cliente.
RB-1 1	Latencia	Si ping > p_max, el cliente reduce la tasa de envío y el servidor ajusta la extrapolación.
RB-1 2	Leaderboard	Actualización cada ≤ 1s; muestra top 10 y posición del jugador.
RB-1 3	Respawn	Tras morir, respawn con masa inicial M0 y protección antiabsorción temporal.
RB-1 4	Salas privadas	Acceso solo por código válido; expira si queda vacía por t_expire minutos.
RB-1 5	Versionado	Cliente y servidor deben coincidir en versionId para conectarse.