Assignment Two Answers

Question 1:

a)

Given $2 \cdot 1066 + 1492 \equiv n \pmod{1776} \Rightarrow 3624 \equiv n \pmod{1776}$

 $1776 \mid (1776 - n), n \in \mathbb{N}$

n is any of $\{..., 72, 1848, 3480, ...\}$

n is not unique because it's residue class has more than one element.

b)

Given $n \equiv 3 \pmod{4}$

 $n = 3 + 4r_1, r_1 \in \mathbb{N}$

Given $m \equiv 5 \pmod{8}$

 $m = 5 + 8r_2, r_2 \in \mathbb{N}$

Proof by contradiction:

 $3 + 4r_1 = 5 + 8r_2$

 $\Rightarrow 4r_1 = 8r_2 + 5 - 3$

 $\Rightarrow 4r_1 = 8r_2 + 2$

 $\Rightarrow 2r_1 = 4r_2 + 1$

 $2r_1$ is an even number, $r_1 \in \mathbb{N}$

 $4r_2+1 \text{ is an odd number, } r_2 \in \mathbb{N}$

 $\therefore 2r_1 \neq 4r_2 + 1 \blacksquare$

Question 2:

a)
$$\overline{B}$$

b)
$$A - B$$

c)
$$(A \cup B) - (A \cap B)$$

d)
$$(A \cap B) \cup \overline{(A \cup B)}$$

Question 3:

$$(-4+3x)^{12} = \sum_{k=0}^{12} {12 \choose k} (3x)^{12-k} (-4)^k$$

To find the coefficient of x^5 , let k = 7.

$$\binom{12}{5} \cdot (-4)^7 \cdot (3x)^{12-7} = 792 \cdot -16384 \cdot 243x^5 = -3,153,199,104x^5$$

: the coefficient of x^5 is -3,153,199,104

Question 4:

a)

Given $a, b, c, d \in \mathbb{Z}$ with $b, d \neq 0 : \frac{a}{b} R \frac{c}{d} \Leftrightarrow ad = bc$ }

Let
$$x = \frac{a}{b}$$
, $y = \frac{c}{d}$, $R = \{(x, y) \ni x, y \text{ belongs to } \mathbb{Q} : x = y\}$.

Reflexive

If
$$x = x \Rightarrow (x, x) \in R$$
.

Symmetric

If
$$x = y \Leftrightarrow y = x$$
, then $(x, y) \in R \land (y, x) \in R$.

Transitive

Suppose $(x, y) \in R \land (y, z) \in R$, then $(x, z) \in R$.

If
$$x = y \Rightarrow y = z \Rightarrow x = z$$
.

Since $x = z \Leftrightarrow x = x$, then $(x, x) \in R$

 $\therefore (x,z) \in R$.

Equivalence Classes

$$[-1] = \{-1\}$$

$$\left[\frac{4}{5}\right] = \left\{\frac{4}{5}\right\}$$

b)

Given $x, y \in \mathbb{R}, R = \{(x, y) : |x - y| \le 1\}$

Let
$$x = 2, y = 3, z = 4, (2,3) \in R \land (3,4) \in R$$
.

$$(2,4) \notin R$$

 \therefore R is not an equivalence relation as it is not transitive.