Exercice 1.

1. Voici l'arbre pondéré complété:

2. (a) R_n et $\overline{R_n}$ forment une partition de l'univers donc, d'après la formule des probabilités totales on a :

$$\mathbf{P}(R_{n+1}) = \mathbf{P}(R_n \cap R_{n+1}) + \mathbf{P}\left(\overline{R_n} \cap R_{n+1}\right)$$

$$= \mathbf{P}(R_n) \times \mathbf{P}_{R_n}(R_{n+1}) + \mathbf{P}(\overline{R_n}) \times \mathbf{P}_{\overline{R_n}}(R_{n+1})$$

$$= 0.95r_n + 0.2(1 - r_n)$$

$$r_{n+1} = 0.75r_n + 0.2$$

(b) Voici le script complété:

- (c) Il semble que la suite (r_n) soit décroissante et qu'elle converge vers 0,8.
- (d) On procède par récurrence. Soit $P_n: \langle r_n \geq 0, 8 \rangle$.

<u>Initialisation</u>: vérifions que P_1 est vraie. si n = 1 on a $r_1 = 0.9$ donc $r_1 \ge 0.8$ ce qui justifie que P_1 est vraie.

<u>Hérédité</u> : Soit $n \in \mathbb{N}^*$. Supposons P_n vraie $(r_n \ge 0.8)$.

Montrons que P_{n+1} est vraie $(r_{n+1} \geqslant 0.8)$.

D'après l'hypothèse de récurrence : $r_n \ge 0.8$ et en multipliant cette inégalité par 0.75 > 0 il vient $0.75 r_n \ge 0.6$ puis en additionnant 0.2 on a $0.75 r_n + 0.2 \ge 0.8$ soit $r_{n+1} \ge 0.8$ ce qui prouve que P_{n+1} est vraie.

Conclusion: P_1 est vraie et P_n est héréditaire à partir du rang n = 1, P_n est donc vraie pour tout entier naturel n non nul.

$$\forall n \in \mathbb{N}^*, r_n \geqslant 0.8.$$

(e) $\forall n \in \mathbb{N}^*$,

$$r_{n+1} - r_n = 0.75r_n + 0.2 - r_n$$

= $-0.25r_n + 0.2$

D'après la question précédente on a démontré que $r_n \geqslant 0.8$ donc en multipliant cette inégalité par -0.25 < 0, il vient $-0.25 r_n \leqslant -0.2$ puis en additionnant 0.2 on obtient $-0.25 r_n + 0.2 \leqslant 0$ soit $r_{n+1} - r_n \leqslant 0$ ce qui prouve que la suite $(r_n)_{n \in \mathbb{N}^*}$ est décroissante.

- (f) La suite $(r_n)_{n\in\mathbb{N}^*}$ est décroissante et minorée par 0,8 donc la suite $(r_n)_{n\in\mathbb{N}^*}$ converge vers une limite ℓ .
- 3. (a) $\forall n \in \mathbb{N}^*$,

$$v_{n+1} = r_{n+1} - 0.8$$

$$= 0.75r_n + 0.2 - 0.8$$

$$= 0.75r_n - 0.6$$

$$= 0.75 \left(r_n - \frac{0.6}{0.75}\right)$$

$$= 0.75(r_n - 0.8)$$

$$= 0.75v_n$$

On en déduit que la suite $(v_n)_{n \in \mathbb{N}^*}$ est géométrique de raison q = 0.75 et de premier terme $v_1 = r_1 - 0.8 = 0.9 - 0.8 = 0.1$.

(b) $\forall n \in \mathbb{N}^*$, $v_n = v_1 q^{n-1}$ soit $v_n = 0.1 \times 0.75^{n-1}$. Or $v_n = r_n - 0.8$ donc:

$$r_n = \nu_n + 0.8$$

$$= 0.1 \times 0.75^{n-1} + 0.8$$

$$= \frac{0.1}{0.75} \times 0.75^n + 0.8$$

$$= \frac{2}{15} \times 0.75^n + 0.8$$

Exercice 2. Soit $P_n : \ll u_n = \frac{7}{8^{n+1}-1}$ ».

<u>Initialisation</u>: vérifions que P_0 est vraie.

si n = 0 on a dans le membre de gauche $u_0 = 1$ et dans le membre de droite $\frac{7}{8^{0+1} - 1} = 1$ donc P_0 est vraie.

<u>**Hérédité**</u>: Soit $n \in \mathbb{N}$. Supposons P_n vraie $\left(u_n = \frac{7}{8^{n+1} - 1}\right)$. Montrons que P_{n+1} est vraie $\left(u_{n+1} = \frac{7}{8^{n+2} - 1}\right)$.

D'après l'énoncé:

$$u_{n+1} = \frac{u_n}{u_n + 8}$$

$$= \frac{\frac{7}{8^{n+1} - 1}}{\frac{7}{8^{n+1} - 1} + 8} \quad \text{D'après H.R}$$

$$= \frac{\frac{7}{8^{n+1} - 1}}{\frac{7 + 8^{n+2} - 8}{8^{n+1} - 1}}$$

$$= \frac{7}{8^{n+1} - 1} \times \frac{8^{n+1} - 1}{8^{n+2} - 1}$$

$$= \frac{7}{8^{n+2} - 1}$$

Ceci prouve que P_{n+1} est vraie.

<u>Conclusion</u>: P_0 est vraie et P_n est héréditaire à partir du rang n=0, on en déduit que P_n est vraie pour tout entier naturel n.

$$\forall n \in \mathbb{N}, \ u_n = \frac{7}{8^{n+1} - 1}$$