Statistical Modeling BANA 7042

Lecture 6: Modeling count data

Dr. Dungang Liu

What is count data?

• A type of data in which the observations take non-negative integer values {0, 1, 2, 3,} .

Examples

- The number of patients who come to the ER of Children's Hospital between 9PM and 1AM.
- The number of shoppers in Kenwood Towne Centre on a calendar day.
- The number of Google searches (in a week) for flights to Shanghai right before Lunar New Year.

Compared to other data types ...

- In which ways, count data is different from binomial data or rank (ordinal) data?
- Binomial data (e.g., the no. of damages out of 6 O-rings) has an upper bound, whereas count data is unbounded from above.
- Ordinal data (e.g., ratings of a product) only reflects ranks, its values {0,1,2,3} should not be interpreted as numbers. The values of count data {0,1,2,...} are the numbers of the occurrence of a specific event.

What distribution to model count data?

Poisson distribution

$$\Pr\{Y = y\} = \frac{e^{-\mu}\mu^y}{y!}, \quad y = 0, 1, 2, \dots$$

How many parameters used in Poisson distribution?

$$\mu = E(Y) = Var(Y)$$

The impact of the mean parameter

```
par(mfrow=c(1,3))
barplot(dpois(0:5,0.5),xlab="y",ylab="Probability",names=0:5,main="mean=0.5")
barplot(dpois(0:10,2),xlab="y",ylab="Probability",names=0:10,main="mean=2")
barplot(dpois(0:15,5),xlab="y",ylab="Probability",names=0:15,main="mean=5")
```


How can we model a count response using a number of covariates?

Model the number of species on the Galapagos Islands

Modeling count data - Dr. Dungang Liu

Modeling count data - Dr. Dungang Liu

Species diversity on the Galapagos Islands

There are 30 Galapagos islands and 7 variables in the dataset. The relationship between the number of plant species and several geographic variables is of interest.

```
library("faraway")
data(gala)
str(gala)
?gala
gala<-gala[,-2] ### Remove the second variable
summary(gala)</pre>
```

```
Species
      the number of plant species found on the island
Endemics
      the number of endemic species
Area
      the area of the island (km$^2$)
Elevation
      the highest elevation of the island (m)
Nearest
      the distance from the nearest island (km)
Scruz
      the distance from Santa Cruz island (km)
Adjacent
      the area of the adjacent island (square km)
Source
M. P. Johnson and P. H. Raven (1973) "Species number and endemism: The Galapagos Archipelago revisited" Science, 179, 893-895
```


Summary statistics

```
> summary(gala)
   Species
                     Area
                                    Elevation
                                                     Nearest
                                  Min. : 25.00
Min. : 2.00
                Min.
                     : 0.010
                                                   Min.
                                                          : 0.20
                1st Qu.: 0.258
1st Qu.: 13.00
                                  1st Qu.: 97.75
                                                   1st Qu.: 0.80
Median : 42.00
               Median : 2.590
                                  Median : 192.00
                                                   Median: 3.05
Mean : 85.23
               Mean
                     : 261.709
                                  Mean
                                       : 368.03
                                                   Mean :10.06
                                  3rd Qu.: 435.25
 3rd Qu.: 96.00
                3rd Qu.:
                          59.237
                                                   3rd Qu.:10.03
                Max. :4669.320
Max. :444.00
                                  Max. :1707.00
                                                   Max. :47.40
                Adjacent
    Scruz
Min. : 0.00
                Min. : 0.03
                1st Qu.: 0.52
1st Qu.: 11.03
                Median: 2.59
Median : 46.65
Mean : 56.98
                Mean
                     : 261.10
 3rd Qu.: 81.08
                3rd Qu.: 59.24
       :290.20
                       :4669.32
Max.
                Max.
```

The idea of modeling a binary response

Suppose the binary response

$$Y \sim \text{Bernoulli}(p)$$

- We will make two additional assumptions on top of this assumption:
 - 1. Y relies on X only through its mean, e.g $Y \sim \text{Bernoulli}(p(X))$
 - 2. The logit transformation of the parameter p

$$logit(p) = log(\frac{p}{1-p}) = \beta_1 + \beta_2 X$$

How to extend the idea to modeling a count response?

Suppose the count response

$$Y \sim \text{Poisson}(\mu)$$

- We will make two additional assumptions on top of this assumption:
 - 1. Y relies on X only through its mean, e.g $Y \sim \text{Poisson}(\mu(X))$
 - 2. The log transformation of the parameter μ

$$\log(\mu) = \beta_1 + \beta_2 X$$

Fit a GLM

```
modp<-glm(Species ~ ., family=poisson, gala)
summary(modp)
step(modp)
drop1(modp, test="Chisq")</pre>
```

```
> summary(modp)
Call:
glm(formula = Species ~ ., family = poisson, data = gala)
Deviance Residuals:
             10 Median
   Min
                              30
                                      Max
-8.2752 -4.4966 -0.9443 1.9168 10.1849
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.155e+00 5.175e-02 60.963 < 2e-16 ***
           -5.799e-04 2.627e-05 -22.074 < 2e-16 ***
Area
Elevation 3.541e-03 8.741e-05 40.507 < 2e-16 ***
Nearest 8.826e-03 1.821e-03 4.846 1.26e-06 ***
Scruz -5.709e-03 6.256e-04 -9.126 < 2e-16 ***
Adjacent
           -6.630e-04 2.933e-05 -22.608 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 716.85 on 24 degrees of freedom
AIC: 889.68
```

```
> step(modp)
Start: AIC=889.68
Species ~ Area + Elevation + Nearest + Scruz + Adjacent
```

		Df	Deviance	AIC
<r< td=""><td>none></td><td></td><td>716.85</td><td>889.68</td></r<>	none>		716.85	889.68
_	Nearest	1	739.41	910.24
_	Scruz	1	813.62	984.45
_	Area	1	1204.35	1375.18
_	Adjacent	1	1341.45	1512.29
_	Elevation	1	2389.57	2560.40

```
> drop1(modp,test="LRT")
Single term deletions
```

Model:

```
Species ~ Area + Elevation + Nearest + Scruz + Adjacent
         Df Deviance
                        AIC
                                 LRT
                                      Pr(>Chi)
              716.85 889.68
<none>
             1204.35 1375.18 487.51 < 2.2e-16
Area
             2389.57 2560.40 1672.72 < 2.2e-16 ***
Elevation
            739.41 910.24
                                               * * *
                               22.57 2.031e-06
Nearest
              813.62 984.45 96.77 < 2.2e-16
Scruz
             1341.45 1512.29 624.61 < 2.2e-16 ***
Adjacent
```

Check the correlation

> round(cor(gala),2)

	Species	Area	Elevation	Nearest	Scruz	Adjacent
Species	1.00	0.62	0.74	-0.01	-0.17	0.03
Area	0.62	1.00	0.75	-0.11	-0.10	0.18
Elevation	0.74	0.75	1.00	-0.01	-0.02	0.54
Nearest	-0.01	-0.11	-0.01	1.00	0.62	-0.12
Scruz	-0.17	-0.10	-0.02	0.62	1.00	0.05
Adjacent	0.03	0.18	0.54	-0.12	0.05	1.00

Prediction

> modp\$y							
Baltra	Bartolome	Caldwell	Champion	Coamano	Daphne.Major	Daphne.Minor	Darwin
58	31	3	25	2	18	24	10
Eden	Enderby	Espanola	Fernandina	Gardner1	Gardner2	Genovesa	Isabela
8	2	97	93	58	5	40	347
Marchena	Onslow	Pinta	Pinzon	Las.Plazas	Rabida	SanCristobal	SanSalvador
51	2	104	108	12	70	280	237
SantaCruz	SantaFe	SantaMaria	Seymour	Tortuga	Wolf		
444	62	285	44	16	21		
> round(predic	t(modp,type='	"response"),1)					
> round(predic Baltra	t(modp,type='Bartolome	response"),1) Caldwell	Champion	Coamano	Daphne.Major	Daphne.Minor	Darwin
-		-		Coamano 17.0	Daphne.Major 36.6	Daphne.Minor 32.1	Darwin 10.9
Baltra	Bartolome	Caldwell	Champion		-	32.1	
Baltra 78.7	Bartolome 20.4	Caldwell 25.7	Champion 21.4	17.0	36.6	32.1	10.9
Baltra 78.7 Eden	Bartolome 20.4 Enderby	Caldwell 25.7 Espanola	Champion 21.4 Fernandina	17.0 Gardner1	36.6 Gardner2 38.2	32.1 Genovesa	10.9 Isabela
Baltra 78.7 Eden 29.8	Bartolome 20.4 Enderby 26.8	Caldwell 25.7 Espanola 27.9	Champion 21.4 Fernandina 87.7	17.0 Gardner1 15.9	36.6 Gardner2 38.2	32.1 Genovesa 25.0	10.9 Isabela 370.8
Baltra 78.7 Eden 29.8 Marchena	Bartolome 20.4 Enderby 26.8 Onslow	Caldwell 25.7 Espanola 27.9 Pinta	Champion 21.4 Fernandina 87.7 Pinzon	17.0 Gardner1 15.9 Las.Plazas	36.6 Gardner2 38.2 Rabida 53.1	32.1 Genovesa 25.0 SanCristobal	10.9 Isabela 370.8 SanSalvador

Goodness of fit measure

• Pearson's X^2 statistic

$$X^2 = \sum_{i=1}^n \frac{(y_i - \hat{\mu}_i)^2}{\hat{\mu}_i}$$

gof<-sum(residuals(modp, type="pearson")^2)
pchisq(gof, df.residual(modp), lower=F)</pre>

- > gof ### Peason's goodness of fit statistic [1] 761.9792
- > df.residual(modp) ### Degrees of freedom
 [1] 24
- > pchisq(gof,df.residual(modp),lower=F) ### P-value
 [1] 2.18719e-145

The model does not fit the data well. Why?

The mean and variance parameters are not separatable

$$Y \sim \text{Poisson}(\mu)$$

- The mean is $E(Y) = \mu$
- The variance is $Var(Y) = \mu$
- Once the mean is specified by the Poisson regression, the variance is determined at the same time! This is different from the case of linear regression models.

What would you do?

$$Y \sim \text{Poisson}(\mu)$$

- Suppose the mean $E(Y) = \mu$ is correctly captured by the Poisson regression model.
- But the data suggest that the variance is consistently greater than

$$Var(Y) = \mu$$

Dispersion parameter

Suppose the count response

$$Y \sim \text{Poisson}(\mu)$$

- We will make three additional assumptions on top of this assumption:
 - 1. Y relies on X only through its mean, e.g $Y \sim \text{Poisson}(\mu(X))$
 - 2. The log transformation of the parameter μ

$$\log(\mu) = \beta_1 + \beta_2 X$$

3. The variance $Var(Y) = \phi \mu$, where the **dispersion parameter** ϕ allows one more layer of flexibility of the model.

Estimating the dispersion parameter

$$\hat{\sigma^2} = \frac{X^2}{n-q}$$

• Here, X^2 is the usual Pearson goodness-of-fit statistic, n is the number of sample cases (number of rows in the dataset we are modeling), and q is the number of parameters.

- Please try:
- dp<-gof/modp\$df.res

Updating the model

```
> dp
[1] 31.74914
> summary(modp,dispersion=dp)
Call:
glm(formula = Species ~ ., family = poisson, data = gala)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.1548079 0.2915897 10.819 < 2e-16 ***
           -0.0005799 0.0001480 -3.918 8.95e-05 ***
Area
           0.0035406 0.0004925 7.189 6.53e-13 ***
Elevation
            0.0088256 0.0102621
Nearest
                                 0.860
                                           0.390
           -0.0057094 0.0035251 -1.620
                                           0.105
Scruz
           -0.0006630 0.0001653 -4.012 6.01e-05 ***
Adjacent
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
(Dispersion parameter for poisson family taken to be 31.74914)
   Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 716.85 on 24 degrees of freedom
AIC: 889.68
```

Further reading

- Zero inflated count models
- Rate models