Nome, o	cognome, matricola		
---------	--------------------	--	--

Calcolatori Elettronici (12AGA) – esame del 14.2.2019

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande).

Non è possibile consultare alcun tipo di materiale. Tempo: 15 minuti.

!!!! Attenzione: il compito è su 2 facciate !!!!

1	Quanti insiemi sono contenuti in una cache set associative a 8 vie composta da 128 linee da 32 byte ciascuna?		
2	Si considerino le architetture a vettore e a matrice usate per il progetto delle memorie RAM. Quale vantaggio presenta l'architettura a matrice?		A B C D
3	Si consideri un decoder con 4 ingressi. Quante sono le sue uscite?	2 4 8 16	A B C D
4	Si consideri un sistema di arbitraggio basato su Daisy Chain e composto da 8 unità. Quanti segnali di Grant escono dall'arbitro?	1 3 8 16	A B C D
5	Si consideri la memoria di microcodice esistente in un'unità di controllo microprogrammata. A quale unità tra quelle elencate a destra sono collegate le sue uscite?		A B C D
6	Quanti multiplexer da 2 a 1 sono necessari per costruire un multiplexer da 8 a 1?		
7	Quale vantaggio presenta un sommatore di tipo carry lookahaed rispetto a un ripple carry adder?	È più veloce Richiede un hardware più semplice È più facile da progettare È più robusto ai guasti	A B C D

		Quale tra i fenomeni elencati a lato può causare uno stallo in un processore con pipeline?	Un miss nella cache dati			
		same in an processore con preside.	Un errore in un'operazione aritmetica	В		
			Un'operazione di I/O	С		
			L'esecuzione di un'istruzione NOP	D		
9		Si consideri un sistema 8086 che include un'interfaccia parallela 8255 la cui porta A è	OUT 80h, 10	A		
		configurata in output in modo 0 e corrisponde	MOV DX, 80h	В		
		all'indirizzo 80h. Assumendo che il sistema utilizzi	MOV AL, 10	ĺ		
		l'architettura memory mapped e DS contenga il	OUT DX, AL	<u></u>		
		valore 0, quale dei frammenti di codice riportati a		С		
		fianco scrive sulla porta A il valore 10?	MOV [BX], 10	<u></u>		
			Nessuno dei precedenti: l'operazione richiede di essere eseguita	D		
			attraverso l'Interrupt Controller	<u>L</u>		
	10	Si scriva un frammento di codice in Assembler x86				
		che, date due variabili con segno su 32 bit VAR1 e				
		VAR2, ne scambi i valori, ossia scriva in VAR1 il				
		valore di VAR2 e viceversa.				

Risposte corrette

1	2	3	4	5	6	7	8	9	10
16	С	D	A	В	7	A	A	С	

Domanda 10 (esempio di soluzione)

MOV AX, VAR1 MOV DX, VAR2 MOV VAR2, AX MOV VAR1, DX MOV AX, VAR1+2 MOV DX, VAR2+2 MOV VAR2+2, AX

MOV VAR1+2, DX

	Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti.
11	Si disegni lo schema di connessione tra CPU, Interrupt Controller e dispositivi periferici, riportando i principali segnali di interconnessione e specificandone il parallelismo. Si descrivano le operazioni eseguite da una CPU a partire dal momento in cui un dispositivo periferico esterno manda un segnale di richiesta di interrupt e sino al momento in cui inizia l'esecuzione della Interrupt Service Routine corrispondente a tale richiesta.
12	Si disegni una memoria composta da 32 Kparole di 32 bit ciascuna, utilizzando moduli da 8 Kparole da 8 bit ciascuna.

Nome, cognome, matricola

Esercizio di programmazione

sino a 12 punti – è possibile consultare solamente l'instruction set Intel - tempo: 60 minuti

Dati i prezzi di acquisto e di vendita di un titolo azionario, e tenendo conto dell'eventuale dividendo erogato nel periodo di possesso, si vuole calcolare il **rendimento** del titolo espresso in percentuale. Ad esempio, se il titolo è stato acquistato a 190\$ ed è stato venduto a 199\$, e se nel frattempo è stato erogato un dividendo da 2\$, il rendimento sarà dato da:

$$\frac{P_{vend} - P_{acq} + Div}{P_{acq}} = \frac{199 - 190 + 2}{190} \cdot 100 = 5.5$$

Si noti che il risultato può essere positivo o negativo.

Si scriva una procedura calcola in linguaggio Assembler 8086 che calcoli il rendimento di ciascun titolo in un insieme di DIM titoli (DIM dichiarato come costante), con un'approssimazione di ±1 (non è richiesto uno specifico arrotondamento). È consentito lavorare nell'ipotesi di non avere *overflow*, ma si tenga conto dell'ordine delle operazioni per ottenere risultati significativi.

I prezzi di acquisto e di vendita di ciascun titolo, l'ammontare del dividendo e i valori di rendimento (che dovranno essere aggiornati dalla procedura) sono memorizzati in vettori di *word*. Gli indirizzi dei vettori sono passati alla procedura mediante *stack*.

Esempio (DIM = 4):

prezzo_acq	prezzo_acq prezzo_vend		rendimento
190	199	2	5
68	40	5	-33
71	81	0	14
84	90	1	8

Di seguito un esempio di programma chiamante.

DIM EQU 4 .model small .stack .data

prezzo_acq dw 190, 68, 71, 84
prezzo_vend dw 199, 40, 81, 90
dividendo dw 2, 5, 0, 1
rendimento dw DIM DUP(?)

.code
.startup
LEA AX, prezzo_acq
PUSH AX
LEA AX, prezzo_vend
PUSH AX
LEA AX, dividendo
PUSH AX
LEA AX, rendimento
PUSH AX
CALL calcola
ADD SP, 8
.exit