Redes Neuronales 2

Redes Neuronales

Parte 2

Estructura General

Personalizando la red neuronal

• Principalmente se modifican la función de costo y las capas ocultas.

Funciones de Costo

MSE (Mean Squared Error)

$$\sum_{k=1}^{m} \left(y_k - a_k^{(L)} \right)^2$$

- Penaliza las grandes diferencias
- Susceptible a outliers

MAE (Mean Absolute Error)

$$\sum_{k=1}^{m} \left| y_k - a_k^{(L)} \right|$$

- Mejor manejo de outlier que MSE
- Puede tener mínimos locales
- Computacionalmente costoso

Huber

$$C_{\delta} \begin{cases} \frac{1}{2}a^{2} & si |a| \leq \delta \\ \delta|a| - \frac{1}{2}\delta & de lo contrario \end{cases}$$

Maneja bien los outlier y mínimos locales

Se tiene δ como hiperparámetro

Más funciones de costo

Clasificación

- Log
- Focal
- Cross-Entropy
- Hinge

Regresión

- MSE
- MAE
- Huber
- Log-cosh

El poder de la profundidad

Redes neuronales profundas pueden fácilmente ajustarse a etiquetas aleatorias

La capacidad de la red puede ser suficiente para memorizar completamente el conjunto de datos.

Regularización

Weight regularization

Weight clipping

Dropout

Incremento de data

Early Stopping

Weight regularization 44

$$C(w; x, y) = C(w; x, y) + \alpha\Omega(w)$$

Donde

C es la función de costo

w los coeficientes del modelo

x, y la data de entrenamiento

 Ω la función de regularización, que penaliza modelos complejos lpha el hiperparámetro que controla el grado de regularización

 Ω puede ser por ejemplo w^2 o |w|

Weight clipping

- Método de limitar el tamaño de los coeficientes
- Si el coeficiente (o la norma del vector) supera un valor predeterminado, aplicar la reducción.

Dropout

- Durante el entrenamiento, ciertos nodos son ignorados (dropped out) de forma aleatoria
- Evita que la red dependa de nodos en particular.

(a) Standard Neural Net

(b) After applying dropout.

Dropout

$$a_j^l = \phi(z_j^l)$$

Cambia a:

$$\tilde{a}_j^l = \frac{1}{1-p} \cdot d_j^l \cdot \phi(z_j^l)$$

Donde

 d_j^l es Bernoulli(1-p)

El factor $\frac{1}{1-p}$ se añade para que el nodo siga teniendo el mismo valor esperado $\phi(z_i^l)$

Bernoulli(1-p) es 0 con probabilidad p; 1 de lo contrario

Dropout

Derivadas parciales:

$$\frac{\partial C}{\partial w_{j,k}^{(l)}} = \delta_j^l \cdot \tilde{a}_k^{l-1} \qquad \frac{\partial C}{\partial b_j^{(l)}} = \delta_j^l$$

Gradiente local

$$\delta_j^l = \frac{1}{1-p} \cdot d_j^l \cdot \phi'(z_j^l) \cdot \sum_k \delta_k^{l+1} \cdot w_{k,j}^{l+1}$$

Incremento de data

Usar la data existente y generar nuevas observaciones

- Transformaciones
 - Espejo
 - Translación
 - Escalar
 - Rotación
 - Ruido

Early Stopping

- Entrenar la red usando el training set.
- Validar el modelo cada n número de iteraciones.
- Detener el entrenamiento cuando:
 - El error de validación se incrementa
 - No hay mejora del error de validación después de x iteraciones
- El modelo final es aquél con menor error de validación.

Capas Ocultas

Capas Ocultas

Fully Connected

- Cada neurona se conecta con todas las otras neuronas de la siguiente capa
- Perceptrón multicapa
- Hiperparámetros asociados
 - Función de Activación
 - Número de Neuronas
 - Dropout

Convolución

- Detectar características en imágenes
- El filtro también es llamado kernel

Convolución 1D

$$z_1 = a_1 w_1 + a_2 w_2 + a_3 w_3$$

 $z_2 = a_2 w_1 + a_3 w_2 + a_4 w_3$
 $z_3 = a_3 w_1 + a_4 w_2 + a_5 w_3$
:

Convolución 2D

Convolución 2D: Ejemplo

$$\bullet \begin{pmatrix}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{pmatrix}$$

https://docs.gimp.org/2.2/en/plug-in-convmatrix.html

Convolutional Neural Network (CNN) Una CNN aplica al menos una capa convolucional en al menos una capa.

Cada capa convolucional tiene múltiples kernels

Los kernels son entrenados por backpropagation y GD

Propiedades del CNN

 Menor interacción entre unidades vecinas

Propiedades del CNN

- Uso del mismo parámetro para más de una sola función en la red
- Reducción significativa en el número de parámetros (pesos)

- Número de filtros
- Canales
- Tamaño
- Paso
- Padding
- Activación

- Número de filtros
- Canales
- Tamaño
- Paso
- Padding
- Activación

- Número de filtros
- Canales
- Tamaño
- Paso
- Padding
- Activación

Dimension: 6 x 6

https://indoml.com

- Número de filtros
- Canales
- Tamaño
- Paso
- Padding
- Activación

Funciones de Activación

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

https://indoml.com

Pooling

- Resume estadísticamente las salidas cercanas, reduciendo las dimensiones
- Por lo general se usa el promedio o el máximo (maxpooling)
- Tamaño y paso

Fully connected

