Wednesday, 27 October 2021 8:45 AM

Deln: (s,t) - cut

For any $A \subseteq V$ with $(s,t) \in (A, \bar{A})$

(a) $\operatorname{cut}(A, \overline{A}) := \{(x, y) \in E \mid x \in A, y \in \overline{A}\}$

oute

10. 10. 10. 10.

Capacity of (s,t)-cut

For a cut (A, \overline{A}) with $S \in A$ and $t \in \overline{A}$

$$\begin{array}{c} \textcircled{\text{α}} & \text{$C(A,\bar{A})$} = \sum_{i} & \text{$C(A,y)$} \\ & (\alpha,y) \in \text{cut}(A,\bar{A}) \end{array}$$

De Which (s,t) - cut has minimum capacity?

A

n - 3

$$C(A, \bar{A}) = 20 + 20 + 10 = 50$$

Fout
$$(A) := \sum_{\substack{(x,y) \in E \\ x \in A \\ y \in A}} f(x,y)$$

Demma from $\frac{1}{30}$: For each $A \subseteq V$, and a flow f $f_{out}(A) - f_{in}(A) = \sum_{x \in A} \left(f_{out}(x) - f_{out}(x) \right)$

Corollary of hemma:

For any cut (A, \bar{A}) with $S \in A$ and $[i \in \bar{A}]$

faut(A) - fin(A) = faut(8)

For any cut
$$(A, \overline{A})$$
 $(s,t) \in A \times \overline{A}$

$$val(f) = fout(A) - fin(A) \leq fout(A) \leq$$

Theorem 1:

$$(s,t)$$
 - man-ylow value $\stackrel{?}{\sim}$ $\stackrel{\sim}{\sim}$ $A \subseteq V$

(s,t) €

Lemma: Suppose I is a fine that council be Ford-Fulkerson algorith frathe

hemma. Let
$$f$$
 be flow s.t. $\not\equiv$ s \rightarrow t palm i het $A := Set of vertices reachable f Then, $val(f) = C(A, \overline{A})$.

Proof$

$$E_1 = \{\alpha, y\} \in E(G) \mid x \in A, y \in \overline{A} \}$$

bug olw (r(x,y) to and yEA

Ei is fully saturated

Ez hoc

$$\Rightarrow$$
 fout (A) - fin (A) = $c(A, \overline{A}) - 0$

$$\Rightarrow$$
 val $(f) = C(A, \overline{A})$

$$\Rightarrow$$
 Flow f is a (s,t) - man-fli

=> Flow of computed from F.F. algo

(s,t) - man-flow value Theolem 2:

Mon Flow Min cut Thearn

Applia cations

Bi-partite Matchia

Set M = E(5) &t. two edges C, , e, e M have a

Common Verter.

(1)

wheeled

X (Factly @ CSE)

COL 351 studets.

Integral - (0, t) - man - flow. -> edges from X

val (s,t - man-flow) = No of

Time complexity = Time to compete new graph to find M.M. O(m+n)

$$= O((m+n)n)$$

$$= O(m \cdot n)$$