

University Institute of Engineering Department of Computer Science & Engineering

EXPERIMENT:4

NAME :Aishwary Singh

BRANCH : BE-CSE

SEMESTER : 5TH

SUBJECT : 23CSP-339

SUBJECT NAME: ADBMS

1. AIM:-

Solve the Problem related to Normalistion and give it closure ,candidate key along with prime attribute and non-prime attribute and in which type of normal exist

Problem 1

Consider a relation R having attributes as R(ABCD), functional dependencies are given below:

AB->C,

C->D,

D->A

Identify the set of candidate keys possible in relation R. List all the set of prime and non prime attributes.

Solution

Closures to find candidate keys

(AB)+

- Start: {A, B}
- From AB \rightarrow C \Rightarrow {A, B, C}
- From $C \rightarrow D \Rightarrow \{A, B, C, D\}$
- From $D \rightarrow A$ already there.

 $AB+=\{A, B, C, D\} \Rightarrow AB$ is a candidate key.

(BC)+

- Start: {B, C}
- From $C \rightarrow D \Rightarrow \{B, C, D\}$
- From $D \rightarrow A \Rightarrow \{A, B, C, D\}$

 $BC+ = \{A, B, C, D\} \Rightarrow BC$ is a candidate key

(BD)+

- Start: {B, D}
- From $D \rightarrow A \Rightarrow \{A, B, D\}$ From $AB \rightarrow C \Rightarrow \{A, B, C, D\}$

 $A = \{A, B, C, B\}$

 $BD+ = \{A, B, C, D\} \Rightarrow BD$ is a candidate key

(CD)+

- Start: {C, D}
- From $C \rightarrow D \Rightarrow \{C, D\}$ (no change)
- From $D \rightarrow A \Rightarrow \{A, C, D\}$
- From AB→C (needs B, but not present) → stop.
 CD is not a key.

Candidate Keys = $\{AB, BC, BD\}$

Prime and Non-prime Attributes

- Prime attributes = appear in at least one candidate key.
 - o Candidate keys: {AB}, {BC}, {BD}
 - o Prime attributes = {A, B, C, D} (since all appear across candidate keys).
- Non-prime attributes = none (all are prime).

Given Relation is in 3rd normal Form

Problem 2

Relation R(ABCDE) having functional dependencies as:

A->D,

B->A,

BC->D,

AC->BE

Identify the set of candidate keys possible in relation R. List all the set of prime and non prime attributes.

Solution

Step 1: closures to find candidate keys

(B, C)+

- Start: {B, C}
- From $B \rightarrow A \Rightarrow \{A, B, C\}$
- From $A \rightarrow D \Rightarrow \{A, B, C, D\}$
- From AC→BE (since A and C present) ⇒ {A, B, C, D, E} BC is a candidate key.

(A, C)+

- Start: {A, C}
- From $A \rightarrow D \Rightarrow \{A, C, D\}$
- From AC \rightarrow BE \Rightarrow {A, B, C, D, E} AC is a candidate key.

(B, E)+

- Start: {B, E}
- From $B \rightarrow A \Rightarrow \{A, B, E\}$
- From $A \rightarrow D \Rightarrow \{A, B, D, E\}$
- From AC \rightarrow BE (need C)
- From BC→D (need C)
 So {B, E, A, D} (missing C) not a key.

(B, C, E)+

- Start: {B, C, E}
- $B \rightarrow A \Rightarrow \{A, B, C, E\}$
- $A \rightarrow D \Rightarrow \{A, B, C, D, E\}$.
- But BC alone is already a key \rightarrow So BCE is superkey, not minimal.

So, Candidate Keys = {BC, AC}

- Prime attributes = those that appear in at least one candidate key.
 - o Candidate keys = {BC, AC}
 - o Prime attributes = $\{A, B, C\}$.
- Non-prime attributes = the rest.
 - \circ Non-prime = {D, E}.

Normal Form

Given Relation is in 1Normal Form

Problem 3. Consider a relation R having attributes as R(ABCDE), functional dependencies are given below:

B->A, A->C,

BC->D,

AC->BE

Identify the set of candidate keys possible in relation R. List all the set of prime and non prime

attributes.

Solution

Compute Closures

(B, C)+

- Start: {B, C}
- From $B \rightarrow A \Rightarrow \{A, B, C\}$
- From $A \rightarrow C$ (C already present)
- From AC \rightarrow BE \Rightarrow {A, B, C, E}
- From BC \rightarrow D \Rightarrow {A, B, C, D, E}.

BC is a candidate key.

(A, C)+

- Start: {A, C}
- From $A \rightarrow C$ (no change)
- From $AC \rightarrow BE \Rightarrow \{A, B, C, E\}$
- From $B \rightarrow A$ (already have A)
- From BC \rightarrow D \Rightarrow {A, B, C, D, E}.

AC is a candidate key.

(B, A)+ (same as AB)

- Start: {A, B}
- From $B \rightarrow A$ (already there)
- From $A \rightarrow C \Rightarrow \{A, B, C\}$
- From AC \rightarrow BE \Rightarrow {A, B, C, E}
- From BC \rightarrow D \Rightarrow {A, B, C, D, E}

AB is a candidate key.

(B)+

- Start: {B}
- From $B \rightarrow A \Rightarrow \{A, B\}$
- From $A \rightarrow C \Rightarrow \{A, B, C\}$
- From AC \rightarrow BE \Rightarrow {A, B, C, E}
- From BC \rightarrow D \Rightarrow {A, B, C, D, E}

B alone is a candidate key.

(A)+

- Start: {A}
- From $A \rightarrow C \Rightarrow \{A, C\}$
- From $AC \rightarrow BE \Rightarrow \{A, B, C, E\}$
- From $B \rightarrow A$ (already have A)
- From BC \rightarrow D \Rightarrow {A, B, C, D, E}

A alone is a candidate key.

Minimal candidate keys = $\{A, B\}$

Prime vs Non-prime Attributes

- Prime attributes = attributes in any candidate key.
 - \circ Candidate keys = {A, B}
 - o Prime attributes = $\{A, B\}$
- Non-prime attributes = others.
 - \circ Non-prime = {C, D, E}

Normal Form

Given Relation is in BCNF

Problem 4 Consider a relation R having attributes as R(ABCDEF), functional dependencies are given below:

A->BCD,

BC->DE,

B->D,

D->A

Identify the set of candidate keys possible in relation R. List all the set of prime and non prime attributes.

Solution

To check Attribute Closures

(A)+

- Start: {A}
- $A \rightarrow BCD \Rightarrow \{A, B, C, D\}$
- From $B \rightarrow D$ (already have D)
- From $D \rightarrow A$ (already have A)
- From BC \rightarrow DE (BC \subseteq {A,B,C,D}) \Rightarrow add E \rightarrow {A, B, C, D, E}

Missing F. Not a key.

(B)+

- Start: {B}
- From $B \rightarrow D \Rightarrow \{B, D\}$
- From $D \rightarrow A \Rightarrow \{A, B, D\}$
- From $A \rightarrow BCD \Rightarrow \{A, B, C, D\}$
- From BC → DE (need C, now present) ⇒ {A, B, C, D, E}
 Still missing F. Not a key.

```
(C)+
         Start: {C}
         No FD fires. \Rightarrow {C} Not a key.
(D)+
         Start: {D}
        From D \rightarrow A \Rightarrow \{A, D\}
    • From A \rightarrow BCD \Rightarrow \{A, B, C, D\}
    • From BC \rightarrow DE (have B,C) \Rightarrow add E
         \Rightarrow {A, B, C, D, E}
         Missing F. Not a key.
(E)+
         Start: {E}
         No FD fires. \Rightarrow {E} Not a key.
(F)+
         Start: {F}, no FDs apply. Not a key.
(A,F)+
        Start: \{A, F\}
    • From A \rightarrow BCD \Rightarrow \{A, B, C, D, F\}
    • From BC \rightarrow DE \Rightarrow add E
         \Rightarrow \{A, B, C, D, E, F\}.
          \{A, F\} is a key.
(B,F)+
         Start: \{B, F\}
       From B \rightarrow D \Rightarrow \{B, D, F\}
    • From D \rightarrow A \Rightarrow \{A, B, D, F\}
    • From A \rightarrow BCD \Rightarrow \{A, B, C, D, F\}
    • From BC \rightarrow DE \Rightarrow {A, B, C, D, E, F}.
          {B, F} is a key.
(C,F)+
         Start: \{C, F\}
        No FDs fire (need A, B, D). Not a key.
(D,F)+
    • Start: {D, F}
    • From D \rightarrow A \Rightarrow \{A, D, F\}
```

• From $A \rightarrow BCD \Rightarrow \{A, B, C, D, F\}$

From BC \rightarrow DE \Rightarrow add E

(E,F)+

• Start: {E, F}, no FDs apply. **Not a key.**

Check minimality

- {A,F} minimal
- {B,F} minimal
- {D,F} minimal

Candidate Keys

{AF,BF,DF}

Prime vs Non-prime Attributes

- Prime attributes = those that appear in at least one candidate key.
 - \circ Candidate keys = {A,F}, {B,F}, {D,F}
 - \circ Prime attributes = {A, B, D, F}
- Non-prime attributes = the rest.
 - \circ Non-prime = {E,C}

Normal Form

Given relation is 1st Normal Form

Problem 5.

Designing a student database involves certain dependencies which are listed below:

X ->Y

 $WZ \rightarrow X$

 $WZ \rightarrow Y$

Y ->W

 $Y \rightarrow X$

 $Y \rightarrow Z$

The task here is to remove all the redundant FDs for efficient working of the student database management system.

Solution

Closure are

 $X^+ \rightarrow \{X,Y,W,Z\}$ $Y^+ \rightarrow \{X,Y,W,Z\}$

 $WZ^+ \rightarrow \{X,Y,W,Z\}$

Candidate Keys Are

 $\{X,Y,WZ\}$

Prime vs Non-prime Attributes

- Prime attributes = those that appear in at least one candidate key.
 - \circ Candidate keys = $\{X\}, \{Y\}, \{WZ\}$
 - o Prime attributes = $\{X,Y,W,Z\}$
- Non-prime attributes = null;

Normal Form

Given relation is in BCNF

Problem 6

Debix Pvt Ltd needs to maintain database having dependent attributes ABCDEF. These attributes are functionally dependent on each other for which functionally dependency set F given as:

 $A \rightarrow BC$

 $D \rightarrow E$

 $BC \rightarrow D$,

 $A \rightarrow D$

Consider a universal relation R1(A, B, C, D, E, F) with functional dependency set F, also all attributes are simple and take atomic values only. Find the highest normal form along with the candidate keys with prime and non-prime attribute.

Solution

Find Candidate Keys

- AF^+ :
 - \circ Start with $\{A, F\}$.
 - $\circ \quad \text{From A} \to B, C, D, E, \text{ we get } \{A, B, C, D, E, F\}$

So AF is a candidate key.

 $A^+ = \{A, B, C, D, E\} \neq R1$ (F missing). $F^+ = \{F\} \neq R1$ (F missing). $FD^+ = \{F, D, E\} \neq R1$ (F missing). $FBC^+ = \{F, B, C, D\} \neq R1$ (F missing).

Thus, the only candidate key = $\{A F\}$.

Prime vs Non-prime Attributes

- Prime attributes = those that appear in at least one candidate key.
 - Candidate keys = {AF}
 - \circ Prime attributes = {A,F}
- Non-prime attributes = $\{B,C,D,E\}$

Normal Form

Given relation is in 1st normal form