l'Ingénieur

Sciences

DM 1 Pour le 19/09/2017

Cisaille à découpe au vol

D'après P. Dubois, C. Gamelon.

Savoirs et compétences :

Mise en situation

Schéma-bloc du système

Question 1 Représenter le schéma-blocs du système. Indiquer les grandeurs d'entrée et de sortie de chaque bloc.

Fonction de transfert de l'ensemble vérin et charge

Équation de comportement dynamique

Fonction de transfert du vérin

Question 2 Transformer les deux équations précédentes dans le domaine de Laplace. En déduire l'expression de la fonction de transfert : $H_v(p) = \frac{X(p)}{Q(p)}$, que l'on mettra sous la forme : $H_v(p) = \frac{k}{p(ap^2 + bp + 1)}$.

Correction D'une part, $mp^2X(p) = S\Delta P(p) - fpX(p) \Leftrightarrow \frac{p(mp+f)}{S}X(p) = \Delta P(p)$. D'autre part : $Q(p) = SpX(p) + \frac{V}{2B}p\Delta P(p) \Leftrightarrow 2B\frac{Q(p) - SpX(p)}{Vp} = \Delta P(p)$. On a donc : $\frac{p(mp+f)}{S}X(p) = 2B\frac{Q(p) - SpX(p)}{Vp} \Leftrightarrow \frac{p(mp+f)}{S}X(p) + \frac{2BSpX(p)}{Vp} = \frac{2BQ(p)}{Vp}$ $\Leftrightarrow \left(\frac{p(mp+f)}{S} + \frac{2BSp}{Vp}\right)\frac{Vp}{2B} = \frac{Q(p)}{X(p)} \Leftrightarrow \left(\frac{p(mp+f)}{S}\frac{Vp}{2B} + Sp\right) = \frac{Q(p)}{X(p)}.$ On a donc, $H_v(p) = \frac{1}{p\left(\frac{(mp+f)}{S}\frac{Vp}{2B} + S\right)} = \frac{1}{p\left(\frac{Vm}{2BS}p^2 + \frac{fV}{2BS}p + S\right)} = \frac{1/Q}{p\left(\frac{Vm}{2BS^2}p^2 + \frac{fV}{2BS^2}p + 1\right)}.$ Au final, $k = \frac{1}{S}$, $a = \frac{Vm}{2BS^2}$ et $b = \frac{fV}{2BS^2}$.

Détermination des paramètres canoniques à partir du diagramme de Bode

Question 3 Donner l'expression littérale du gain fréquentiel en décibel $GdB(\omega)$ en fonction des notations K_v , ω_0 et ξ , (ne pas développer le dénominateur pour le calcul du module de $H_v(j\omega)$). Quelle est sa valeur pour $\omega = \omega_0$?

$$\begin{aligned} & \text{Correction} \quad H_v(j\omega) = \frac{K_v}{j\omega \left(1 + \frac{2\xi}{\omega_0}j\omega - \frac{\omega^2}{\omega_0^2}\right)} \\ & \text{En conséquence, } G_{\text{dB}}(\omega) = 20\log\left|\frac{K_v}{j\omega \left(1 + \frac{2\xi}{\omega_0}j\omega - \frac{\omega^2}{\omega_0^2}\right)}\right| = 20\log K_v - 20\log\left|j\omega\right| - 20\log\left|1 + \frac{2\xi}{\omega_0}j\omega - \frac{\omega^2}{\omega_0^2}\right| \\ & = 20\log K_v - 20\log\omega - 20\log\left|\sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(\frac{2\xi\omega}{\omega_0}\right)^2}\right| \\ & \text{Au final, } G_{\text{dB}}(\omega_0) = 20\log K_v - 20\log\omega_0 - 20\log 2\xi. \end{aligned}$$

Question 4 Déterminer l'asymptote de la courbe de gain lorsque ω tend vers 0. Quelle est sa pente? Pour quelle valeur de ω coupe-t-elle l'horizontale à 0 dB?

Correction On a
$$G_{\mathrm{dB}}(\omega) = 20 \log K_{\nu} - 20 \log \omega - 20 \log \left| \sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(\frac{2\xi \omega}{\omega_0}\right)^2} \right|$$
.

Lorsque ω tend vers 0, le gain tend $20\log K_v - 20\log \omega$. La pente est donc de $-20\,\mathrm{dB/decade}$. Elle coupe l'horizontale à 0 dB en $\omega = K_v$.

Question 5 Déterminer l'asymptote de la courbe de gain lorsque ω tend vers l' ∞ . Quelle est sa pente? Pour quelle valeur de ω coupe-t-elle l'asymptote précédente?

Correction On a
$$G_{\mathrm{dB}}(\omega) = 20 \log K_v - 20 \log \omega - 20 \log \left| \sqrt{\left(1 - \frac{\omega^2}{\omega_0^2}\right)^2 + \left(\frac{2\xi\omega}{\omega_0}\right)^2} \right|$$
.

Lorsque ω tend vers l'infini, le gain tend $20\log K_v - 20\log \omega$, $G_{\rm dB}$ tend vers $= 20\log K_v - 20\log \omega - 20\log \frac{\omega^2}{\omega_0^2}$

 $= 20\log K_{\nu} - 20\log \omega - 20\log \omega^{2} + 20\log \omega_{0}^{2} = 20\log K_{\nu} + 40\log \omega_{0} - 60\log \omega.$

La pente est donc de -60 dB/decade.

L'intersection des deux asymptotes a lieu quand

 $20\log K_v - 20\log \omega = 20\log K_v + 40\log \omega_0 - 60\log \omega \iff \log \omega = \log \omega_0$. Ainsi, l'intersection des asymptotes a lieu en $\omega = \omega_0$.

Question 6 Déduire des résultats précédents et du diagramme de Bode de $H_v(p)$ donné sur la feuille réponse les valeurs des paramètres K_v , ω_0 et ξ (on tracera les asymptotes avec leur pente réelle).

Question 7 Donner l'expression littérale de la phase $\varphi(\omega)$ en fonction des notations ω_0 et ξ . Déterminer ses limites lorsque ω tend vers 0 et lorsque ω tend vers l'infini. Tracer le diagramme asymptotique de phase. Calculer les valeurs de la phase en degrés pour la pulsation propre ω_0 puis pour 100 et 200 rad s⁻¹. Tracer la courbe de phase.

Correction

$$\varphi(\omega) = \arg K_{v} - \arg \left(j\omega\right) - \arg \left(1 + \frac{2\xi}{\omega_{0}}j\omega - \frac{\omega^{2}}{\omega_{0}^{2}}\right) = 0 - \frac{\pi}{2} - \arg \left(\left(1 - \frac{\omega^{2}}{\omega_{0}^{2}}\right) + \frac{2\xi\omega}{\omega_{0}}j\right)$$

Lorsque ω tend vers 0, $\varphi(\omega)$ tend vers $-\frac{\pi}{2}$.

Lorsque ω tend vers l'infini, $-\arg\left(\left(1-\frac{\omega^2}{\omega_0^2}\right)+\frac{2\xi\omega}{\omega_0}j\right)$ tend vers π donc $-\arg(...)$ tend vers $-\pi$.

Explication graphique de prof de SII...

Au final, lorsque ω tend vers l'infini, $\varphi(\omega)$ tend vers -

Détermination des gains K_c , K_a et K_d

 $\textbf{Question 8} \quad \textit{Quelle valeur K doit-on donner au produit des gains $K_c \, K_a \, K_d$ (préciser les unités). On note K_0 le produit des gains $K_c \, K_a \, K_d$ (préciser les unités).}$ KK_{ν} (gain en boucle ouverte). Quelle est la valeur de K_0 ? Quelle est la marge de phase ainsi obtenue?

Correction Étant donné l'exigence demandée, le gain de la FTBO doit être de -6 dB lorsque la phase vaut -180°. On a déjà vu que pour cette phase, le gain décibel de H_{ν} vaut 37 dB. Le gain dB vaut $20 \log K + 20 \log |H_{\nu}|$. On cherche donc *K* tel que $20 \log K + 20 \log |H_v| = -6$. Au final, $K = 710^{-3} \,\mathrm{m}^2 \,\mathrm{s}^{-1}$. Par suite, $K_0 = 7 \,\mathrm{s}^{-1}$.

Erreur de traînage

Question 9 Donner l'expression de l'écart $\varepsilon(p)$ en fonction de E(p) et H(p). La tôle se déplace à vitesse constante v, quelle est la transformée E(p) de e(t)? Donner l'expression de $\varepsilon(p)$ en fonction de v et des paramètres canoniques.

Correction On peut redémontrer le résultat suivant :
$$\varepsilon(p) = \frac{E(p)}{1 + FTBO(p)} = \frac{E(p)}{1 + H(p)}$$
.
Exprimons $\varepsilon(p)$: $\varepsilon(p) = E(p) - X(p) = E(p) - H(p)\varepsilon(p)$; donc $\varepsilon(p)(1 + H(p)) = E(p) \Longleftrightarrow \varepsilon(p) = \frac{E(p)}{1 + H(p)}$.

Le consigne étant une vitesse, on a donc
$$E(p) = \frac{v}{p^2}$$
. On a donc : $\varepsilon(p) = \frac{v}{p^2} \frac{1}{1 + \frac{K_v K_c K_a K_d}{p \left(1 + \frac{2\xi}{\omega_0} p + \frac{p^2}{\omega_0^2}\right)}}$.

Question 10 On appelle erreur de traînage ε_t la différence entre l'entrée et la sortie en régime permanent pour une entrée en rampe. Donner l'expression de ε_t . Faire l'application numérique avec $v = 1 \text{ m s}^{-1}$ et $K_0 = 7$ (unité SI).

Identification temporelle

Question 11 Déterminer l'expression de la réponse temporelle de ce système soumis à une entrée identique à celle de la cisaille (déplacement de la tôle à vitesse constante : $v = 1 \,\mathrm{m\,s^{-1}}$).

Question 12 Déterminer les valeurs numériques de K_f et T à l'aide de relevés sur la courbe.

Correction Première solution : cf cours pour un système du premier ordre soumis à une rampe.

Seconde solution : se raccrocher à ce que l'on sait (peut-être) pour un premier ordre soumis à un échelon... en effet, la rampe peut être assimilée à un premier ordre intégré. Ainsi, pour un système du premier ordre soumis à un échelon d'amplitude v, la valeur finale est vK_f . Ainsi, en intégrant, la pente en régime permanent sera de vK_f . La pente étant de 1 on a $K_f = 1$.

Reste à savoir que l'asymptote coupe l'axe des abscisses en T. Après lecture, $T=0.15\,\mathrm{s}$.

Question 13 Vérifier que l'on a la même erreur de traînage.

Correction Même erreur que précédemment.

Question 14 Quel réglage peut-on envisager sur la cisaille pour compenser cette erreur?

Correction Il est possible de décaler la butée de 14 cm et ainsi supprimer l'écart de trainage.