

9.1.2 Cas particulier de vecteurs colinéaires

Propriété 9. 23

- si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires et de même sens, alors $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC$. si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires et de sens opposés, alors $\overrightarrow{AB}.\overrightarrow{AC} = -AB \times AC$.

Exemple

Soient A,B et C trois points alignés tels que $B \in [AC]$ et AB = 4 et BC = 1. Calculer $\overrightarrow{AB}.\overrightarrow{AC},\overrightarrow{AB}.\overrightarrow{AB}$ et $\overrightarrow{BC}.\overrightarrow{BA}$.

9.1.3Expression du produit scalaire avec le projeté orthogonal

Propriété 9. 24

Pour tous vecteurs non nuls $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, on considère le point C' projeté orthogonal de C sur la droite (AB).

On a alors $\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AC'}$

Exemple

Soit ABC un triangle et soit H le pied de la hauteur issue de C. On sait également que AH=5, AB=3 et B appartient au segment [AH].

Calculer $\overrightarrow{AB}.\overrightarrow{AC}$

Savoir-Faire 9.28

Savoir choisir la forme adaptée pour calculer un produit scalaire Quand cela est possible, calculer le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ dans chacune des situations ci-dessous.

Pas d'inquiétude! Il sera possible de calculer tous ces produits scalaires...un peu de patience!

Savoir-Faire 9.29

SAVOIR UTILISER LE PRODUIT SCALAIRE POUR CALCULER UN ANGLE OU UNE DISTANCE ABC est le triangle ci-dessous avec AB=3 et AC=4.

 ${\rm H}$ est le pied de la hauteur issue de C, et AH=2.5

- 1. Calculer $\overrightarrow{AB}.\overrightarrow{AC}$
- 2. En déduire la mesure de α , mesure de l'angle \widehat{BAC} arrondie au degré près.

9.1.4 Produit scalaire et orthogonalité

Définition 9.21

- Dire que deux vecteurs $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ sont orthogonaux signifie que les droites (AB) et (AC) sont perpendiculaires.
- Par convention, le vecteur nul $\vec{0}$ est orthogonal à tout vecteur.

Propriété 9. 25

Pour tous vecteurs \vec{u} et \vec{v} , \vec{u} est orthogonal à \vec{v} équivaut à $\vec{u} \cdot \vec{v} = 0$

*Démonstration 9.7

Dans le cas où $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ sont non nuls, montrons que \vec{u} est orthogonal à \vec{v} équivaut à $\vec{u}.\vec{v} = 0$.

