

第二节矩阵及其运算

- 一經際的概念
- 二 絕降的代数選第
- 三 經 降 鉤 特 置
- 剄 莎阵的行列或

一、矩阵的概念

1、矩阵的引入

(1) 某班级同学早餐情况

姓名	馒头	包子	鸡蛋	稀饭
周**	4	2	2	1
张**	0	0	0	0
陈**	4	9	8	6

为了方便,常用下面的数表表示

 $\left(egin{array}{ccccccc} 4 & 2 & 2 & 1 \ 0 & 0 & 0 & 0 \ 4 & 9 & 8 & 6 \ \end{array}
ight)$

这个数表反映了学生的 早餐情况.

(2) 某航空公司在A, B, C, D四城市之间的航线图

为了方便,常用下面的数表表示 其中√表示有航班.

到站

天水 伊朗 新乡 上海

天水
明
f乡
上海

0	1/	1	0
1	0	1	0
\1/	0	0	1
0	1	0	0

为了便于计算,把表中的√改成1,空白地方填上0,就得到一个数表:

这个数表反映了 四城市间交通联 接情况.

(3) 某班4个同学两次考试的成绩

(4) 线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

的解取决于 $\begin{cases}
\text{ 系数} \quad a_{ij}(i,j=1,2,\dots,n(m)), \\
\text{常数项} \quad b_i(i=1,2,\dots,m)
\end{cases}$

线性方程组的系数与常数项按原位置可排为

$$egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \ \cdots & \cdots & \cdots & \cdots \ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \ \end{pmatrix}$$
 对线性方程组的研究可转化为对这张表的研究.

2、矩阵的定义

定义 由数域 F 中的 $m \times n$ 个数 a_{ij} ($i = 1, 2, \dots, m$; $j = 1, 2, \dots, n$) 排成的 $m \in M$ 的矩形数表,称为数域 F 中的一个 $m \times n$ 矩阵.

记作:
$$A = (a_{ij})_{m \times n}$$
 $A_{m \times n}$ (a_{ij})
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{pmatrix}$$
 标

 a_{ii} 称为矩阵A的(i,j)元素.

- 注:(1)元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵.
 - (2) 只有一行的矩阵称为行矩阵, 只有一列的矩阵称为列矩阵.
 - (3) 行数与列数相等的矩阵称为 n 阶方阵,
 - (4) |A| 称为方阵的行列式.
 - (5) 若 $A = (a_{ij})_{m \times n}, B = (b_{ij})_{s \times t}$, 且 m = s, n = t, 称两矩阵同型。
 - (6) 若 $A = (a_{ij})_{m \times n}$, $B = (b_{ij})_{m \times n}$, 且 $a_{ij} = b_{ij}$, 称两矩阵相等.

$$\begin{pmatrix} 1 & 0 & 3 & 5 \\ -9 & 6 & 4 & 3 \end{pmatrix}$$
 2×4 实矩阵

$$\begin{pmatrix}
13 & 6 & 2i \\
2 & 2 & 2 \\
2 & 2 & 2
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 3 \\ 2 & 2 \end{pmatrix}$$

$$(2 \ 3 \ 5 \ 9)$$

两矩阵同型

$$\begin{pmatrix} 1 & 1 & 3 \\ 2 & 0 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 3 \\ 2 & 0 & 2 \end{pmatrix}$$

两矩阵相等

例如:

$$\begin{bmatrix} \mathbf{a+b} & 3 \\ \mathbf{0} & \mathbf{d} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{a-b} \\ \mathbf{c} & \mathbf{8} \end{bmatrix}$$

问: a, b, c, d各等于多少?

3、几种特殊的矩阵

(1) 零矩阵

 $m \times n$ 个元素全为零的矩阵称为零矩阵.

记作 O_m 或 O

注意 不同的零矩阵未必相等的.

(2) 对角矩阵

记作

主对角线以外的所有元素全为零的n阶方阵称为对角矩阵.

(3) 单位矩阵

主对角线上的所有元素全为1的对角阵称为单位阵.

记作 E χI

(4) 数量矩阵

主对角线上的所有元素全为 / 的对角阵称为数量阵.

记作 λE .

(5) 三角矩阵

上三角矩阵与下三角矩阵统称为三角阵. 记作 tria(A).

(6) 负矩阵

若
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$-a_{11}$$
 \cdots $-a_{1n}$ \vdots \vdots $-a_{m1}$ \cdots $-a_{mn}$

为 A 的负矩阵. 记作 -A.

二、矩阵的代数运算

1、矩阵的加法

(1) 定义 若
$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n},$$

规定
$$A + B = (a_{ij} + b_{ij})_{m \times n}$$

注意:只有同型矩阵才能进行加法运算.

(2) 运算规律(设ABCO均是同型矩阵)

(1)
$$A+B=B$$
 (交換律)

(2)
$$(A+B)+C=A$$
 (结合律)

(3)
$$A + O = A$$
 (4) $A + (-A) = O$

(5)
$$A - B = A + (调读)$$

两次考试成绩单:

问: 两次考试各科总成绩?

2、数乘矩阵

(1) 定义 若
$$A = (a_{ij})_{m \times n}, k \in F$$
, 规定 $kA = Ak = (ka_{ij})_{m \times n}$

$$kA = \begin{pmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ ka_{21} & ka_{22} & \dots & ka_{2n} \\ \dots & \dots & \dots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{pmatrix} = Ak$$

(2) 运算规律(设 A B均是 作阵, $\lambda, \mu \in F$

1) 1A = A 2) $\lambda(\mu A) = (\lambda \mu)A$

3) $\lambda(A+B) = \lambda A + \lambda B$

 $4) \quad (\lambda + \mu)A = \lambda A + \mu A$

5) 0A = 0

 $6) \quad \lambda O = 0$

注意: 1)数乘矩阵是数 λ 去乘A中的每一个元素.

2) 若 λA = Ø则

 $\lambda = 0$.or. $\lambda = 0$.or. $\lambda = 0$.and $\lambda = 0$

矩阵的加法与数乘运算统称为矩阵的线性运算.

若期末(A) 占0.5, 期中(B) 占0.3, 平时(C) 占0.2,

问:学期总体平均成绩是多少?

(10X0.5	9X0.5	8X0.5	
ı	9X0.5	10X0.5	8X0.5	-0 FA
ı	8X0.5	9X0.5	10X0.5	=0.5A
ı	9X0.5	8X0.5	10X0.5	
)	
	9X0.3	9X0.3	8X0.3	
ı	9X0.3	10X0.3	9X0.3	=0.3B
ı	8X0.3	9X0.3	7X0.3	
l	7X0.3	8X0.3	10X0.3	
	7X0.2	9X0.2	8X0.2	
ı	9X0.2	6X0.2	9X0.2	=0.2C
	8X0.2	9X0.2	7X0.2	Charles and
1	8X0.2	8X0.2	8X0.2	

学期总体平均成绩为:

$$0.5A+0.3B+0.2C = \begin{pmatrix} 9.1 & 9 & 8 \\ 9 & 9.2 & 8.5 \\ 8 & 9 & 8.5 \\ 8.2 & 8 & 9.6 \end{pmatrix}$$

3、矩阵的乘法

(1) 定义 若
$$A = (a_{ij})_{m \times s}$$
, $B = (b_{ij})_{s \times n}$,

规定
$$AB = C = (c_{ij})_{m \times n}$$
,

其中
$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{is}b_{sj} = \sum_{k=1}^{s} a_{ik}b_{kj}$$
 $(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$

```
      a11
      a12
      a1r

      b11
      b1j
      b1n

      b21
      b2j
      b2n

      a11
      a12
      a1r

                                                  br1 ... brj ... brn
   am1 am2 ... amr
C11 C12 .... C1n

C21 C22 .... C2n

Cm1 Cm2 .... Cmn
                                                   AmxrBrxn=Cmxn
C_{ij} = a_{i1} b_{1j} + a_{i2} b_{2j} + ... + a_{ir} b_{rj}
```

```
从成绩单A中选一名攻硕,一名出国,
数、政、英三科权值分别为
```

攻硕:0.5、0.2、0.3;

出国:0.4、0.1、0.5. 如何选?

A (10 9 8 9 10 8 8 9 10 9 8 10

```
0.4)
          10
                    0.2 0.1
              10
10X0.5+9X0.2+8X0.3
                      10X0.4+9X0.1+8X0.5
9X0.5+10X0.2+8X0.3
                      9X0.4 + 10X0.1 + 8X0.5
                      8X0.4+9X0.1+10X0.5
8X0.5 + 9X0.2 + 10X0.3
9X0.5+8X0.2+10X0.3
                      9X0.4+8X0.1+10X0.5
          8.9
         8.6
                          AT=M
          9.1
          9.4
```

矩阵乘法运算性质:

- (1) 0A=0, A0=0;
- (2) IA=A, AI=A; (单位矩阵的作用)
- (3) (AB)C= A(BC) (结合律)
- (4) A(B+C) = AB+AC (B+C)A = BA+CA(分配律)
- (5) K(AB)= (KA) B= A(KB) (数与矩阵可交换)

?

(1)
$$\Rightarrow$$
:
$$\begin{bmatrix} -2 & 0 & 3 \\ 1 & -4 & 5 \\ 0 & 2 & -3 \\ 7 & 2 & -6 \end{bmatrix} \begin{bmatrix} -3 & 4 \\ 2 & 1 \\ 0 & -3 \end{bmatrix}$$

(2) 设矩阵
$$A = \begin{bmatrix} a_1 \\ a_2 \\ ... \\ a_n \end{bmatrix}$$
, $B = [b_1 \ b_2 \ ... \ b_n]$,

求AB与BA.

计算:

(3)
$$\Rightarrow A = \begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} B = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} C = \begin{bmatrix} -4 & 8 \\ 2 & -4 \end{bmatrix}$$

求: AB 和 AC

矩阵乘法的特殊性:

(i) 无交换律: AB≠BA

若AB=BA. 称A与B乘积可换

(ii) 有零因子:

AB=0不能推出A=0或B=0

(iii) 无消去律:

AB=AC不能推出B=C

特别:

$1 \times s$ 与 $s \times 1$ 矩阵的乘积 为一阶方阵,即一个数

$$(a_{11} \quad a_{12} \quad \cdots \quad a_{1s}) \begin{pmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{s1} \end{pmatrix} = a_{11}b_{11} + a_{12}b_{21} + \cdots + a_{1s}b_{s1} = \sum a_{1k}b_{k1}$$
 $s \times 1 = 1 \times s$ 矩阵的乘积为一个 s 阶方阵

$s \times 1$ 与 $1 \times s$ 矩阵的乘积为 一个 s 阶方阵

$$\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{s1} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & \cdots & a_{11}b_{1s} \\ a_{21}b_{11} & a_{21}b_{12} & \cdots & a_{21}b_{1s} \\ \vdots & \vdots & & \vdots \\ a_{s1}b_{11} & a_{s1}b_{12} & \cdots & a_{s1}b_{1s} \end{pmatrix}$$

例1 设
$$A = \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix}, M = \begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix}, N = \begin{pmatrix} 2 & 5 \\ 6 & -2 \end{pmatrix},$$

求M-N,A(M-N), (M-N)A,AM,AN.

$$\begin{array}{ccc} \mathbf{AE} & B = M - N = \begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix} - \begin{pmatrix} 2 & 5 \\ 6 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix} \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$BA = \begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} 12 & 12 \\ -12 & -12 \end{pmatrix}$$

$$AM = \begin{pmatrix} 16 & 6 \\ -16 & -6 \end{pmatrix}$$
 $AN = \begin{pmatrix} 16 & 6 \\ -16 & -6 \end{pmatrix}$

例2 设甲、乙两家公司生产 I 、 II 、 II 三种型

号的计算机, 月产量(单位:台)为

I
 II
 III

 25
 20
 18

 24
 16
 27

$$A = \begin{pmatrix} 25 & 20 & 18 \\ 24 & 16 & 27 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

如果生产这三种型号的计算机每台的利润(单位:万

那么这两家公司的月利润 (单位: 万元) 为多少?

解 依题意

$$C = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} \\ b_{21} \\ b_{31} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} \end{pmatrix}$$

$$= \begin{pmatrix} 25 \times 0.5 + 20 \times 0.2 + 18 \times 0.7 \\ 24 \times 0.5 + 16 \times 0.2 + 27 \times 0.7 \end{pmatrix} = \begin{pmatrix} 29.1 \\ 34.1 \end{pmatrix}$$

甲公司每月的利润为29.1万元,乙公司的利润为34.1万元。

(2) 矩阵相乘的三大特征

1、无交换律
$$AB \stackrel{?}{\longrightarrow} BA$$

2、无消去律
$$AM = AN \stackrel{\frown}{\longrightarrow} M = N$$

3、若
$$AB=0$$
 \Rightarrow $A=0$.or. $B=0$

(3) 运算规律

(假定所有运算合法, A B是矩阵, λ , $\lambda \in R$

(1)
$$ABC = A(BC)$$
 (2) $\lambda(AB) = (\lambda A)B = A(\lambda B)$

(3)
$$A(B+C) = AB + AC$$
 $(A+B)C = AC + BC$

(4)
$$AO = OA = O$$
 (5) $EA = AE = A$

注 O 不尽相同, E亦不尽相同.

定义 对于矩阵A, B 若 AB = 郡 AB = 可交換.

例2 设
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$
 的所有可交换矩阵.

解 设
$$X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$$
, 于是 $AX = XA$

$$\begin{pmatrix} x_1 & x_2 \\ 2x_1 + x_3 & 2x_2 + x_4 \end{pmatrix} = \begin{pmatrix} x_1 + 2x_2 & x_2 \\ x_3 + 2x_4 & x_4 \end{pmatrix}$$

建立方程组得 $x_1 = x_4, x_2 = 0, x_3 \in R$

FILL
$$X = \begin{pmatrix} x_1 & 0 \\ x_3 & x_1 \end{pmatrix}$$
 or $X = \begin{pmatrix} a & 0 \\ b & a \end{pmatrix}, (a, b \in R)$

4、方阵的幂

(1) 定义 若 $A = (a_{ij})_{n \times n}, k \in \mathbb{Z}^+,$ 规定 $\underbrace{AA \cdots A}_{k} = A^{k}$

- 注: 1、一般矩阵的幂无意义,除了方阵.
 - 2、k只能是正整数.
 - (2) 运算规律(设 A 均是 阶方阵, $k,k_1,k_2 \in Z^+$
- 1) $A^{k_1} \cdot A^{k_2} = A^{k_1 + k_2}$ 2) $(A^{k_1})^{k_2} = A^{k_1 k_2}$
- 3) $(\lambda A)^k = \lambda^k A^k$ 4) $E^k = E$
- 5) $A^k = AA^{k-1} = A^2A^{k-2} = \dots = A^{k-2}A^2 = A^{k-1}A$
- 6) $(AB)^k = A(BA)^{k-1}B$

$$(A + \lambda E)^k$$

$$= A^k + C^1 2 A^k$$

$$= A^{k} + C_{k}^{1} \lambda A^{k-1} + C_{k}^{2} \lambda^{2} A^{k-2} + \dots + C_{k}^{k-1} \lambda^{k-1} A + \lambda^{k} E$$

$$(AB)^k \stackrel{2}{\longrightarrow} A^k B^k$$

2)
$$(A+B)^2 - A^2 + 2AB + B^2$$

例3 设
$$A = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}$$
, 计算 $A^2, A^3, \dots A^k$.

$$\begin{array}{ccc} & & \\ &$$

$$A^{3} = AA^{2} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2\lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3\lambda \\ 0 & 1 \end{pmatrix}$$

猜想
$$A^k = \begin{pmatrix} 1 & k\lambda \\ 0 & 1 \end{pmatrix}$$

下用数学归纳法证明

当 n = 时, 等式显然成立.

当n =时,等式成立,即

$$A^{k} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}^{k} = \begin{pmatrix} 1 & k\lambda \\ 0 & 1 \end{pmatrix} (k = 1, 2, \cdots)$$

要证 n = k 时成立,此时有

$$A^{k+1} = AA^k = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k\lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & (k+1)\lambda \\ 0 & 1 \end{pmatrix}$$

等式成立.所以猜想正确.

例4 设
$$A = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$
, 计算 A^k .

易见
$$B^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad B^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$B^{k} = B^{3}B^{k-3} = OB^{k-3} = O(k > 3)$$

$$A^{k} = (B + \lambda E)^{k}$$

$$= B^{k} + C_{k}^{1} \lambda B^{k-1} + C_{k}^{2} \lambda^{2} B^{k-2} + \dots + C_{k}^{k-1} \lambda^{k-1} B + \lambda^{k} E$$

$$= \lambda^{k} E + C_{k}^{1} \lambda^{k-1} B + C_{k}^{2} \lambda^{k-2} B^{2} + C_{k}^{3} \lambda^{k-3} B^{3} + O + \dots + O$$

$$= (\lambda^{k}) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + (k\lambda^{k-1}) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$+\left(rac{k(k-1)}{2}\lambda^{k-2}
ight)\!\!\left(egin{array}{ccc} 0 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight)\!\!=\!$$

$$+\left(\frac{k(k-1)}{2}\lambda^{k-2}\right)\begin{pmatrix}0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0\end{pmatrix} = \begin{pmatrix}\lambda^{k} & k\lambda^{k-1} & \frac{k(k-1)}{2}\lambda^{k-2}\\ 0 & \lambda^{k} & k\lambda^{k-1}\\ 0 & 0 & \lambda^{k}\end{pmatrix}$$