Week 7: Systems Applications & Inequalities

Student: SA Tutor: Rachel Eglash

October 22, 2025

Session 7.1 Systems Word Problems Mixture, Motion, Break-Even

Quick Reference: Problem Type Formulas

Mixture Problems

Key Formula: $(concentration_1)(volume_1) + (concentration_2)(volume_2) = (concentration_{final})(volume_{final})$ Two Equations Needed:

- 1. Total volume equation
- 2. Total substance (acid, alcohol, etc.) equation

Motion Problems

Key Formula: distance = rate \times time (d = rt)

Two Equations Needed:

- 1. Total distance equation (add if opposite directions, subtract if same direction)
- 2. Distance equations for each object: $d_1 = r_1 t$ and $d_2 = r_2 t$

Break-Even Problems

Key Formula: Total Cost = Total Revenue

Two Equations Needed:

- 1. Cost: C = Fixed Costs + (variable cost per item)(x)
- 2. Revenue: R = (price per item)(x)
- 3. Set them equal: C = R

Homework 7.1: Systems Word Problems

Instructions

: For each problem,

- 1. Define your variables with units
- 2. Write your system of equations
- 3. Solve using any method
- 4. Check your answer for reasonableness

Homework Problem 1: Mixture Problem

A pharmacist needs to prepare 200 mL of a 15 mg/mL alcohol solution.
She has solution "A", which is a 10 mg/mL solution.
She has solution "B", which is a 25 mg/mL solution.
How much of each should she mix?
Variables: $A = \text{number of mL of 10 mg/mL solution}$ B = number of mL of 25 mg/mL solution
Understanding Check:
Total alcohol needed = 200 mL \times 15 mg/mL = mg
System:
1. Equation for total mL:
2. Expression for mg from solution A:
3. Expression for mg from solution B:
4. Equation for total mg:
Solution:
$A = \underline{\hspace{1cm}} \operatorname{mL}$
$B = \underline{\hspace{1cm}} mL$
Check Your Answer:
Does $A + B = 200$?
Does the total alcohol equal 3000 mg?

Homework Problem 2: Motion Problem

Two trains leave the same station at the same time.
They travel in opposite directions.
Train A travels at 75 mph.
Train B travels at 65 mph.
After how many hours will they be 420 miles apart?
Variables: $t = \text{time in hours}$ $A = \text{distance traveled by train A in miles}$ $B = \text{distance traveled by train B in miles}$
Understanding Check:
$\label{eq:combined speed} \mbox{Combined speed} = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \mbox{mph}$
System:
1. Equation for total distance:
2. Equation for train A distance:
3. Equation for train B distance:
Solution:
$t = \underline{\hspace{1cm}}$ hours
Check Your Answer:
Train A distance: miles
Train B distance: miles
Total: miles (should equal 420)

Homework Problem 3: Break-Even Problem

A bakery makes cakes.
Fixed costs are \$1500 per month, and each cake costs \$20 to produce.
Each cake sells for \$45.
How many cakes must be sold to break even?
Variables: $x = \text{number of cakes}$ $C = \text{total cost in dollars}$ $R = \text{total revenue in dollars}$
Understanding Check:
Profit per cake = =
System:
1. Equation for total cost: $C = \underline{\hspace{1cm}}$
2. Equation for total revenue: $R = $
3. Break even means: $\underline{C = R}$
Solution:
$x = \underline{\hspace{1cm}}$ cakes
Check Your Answer:
Total cost:
Total revenue:
Are they equal?

Homework Problem 4: Mixture Problem Challenge

A coffee shop mixes two types of beans.
Premium beans cost \$12 per pound. Regular beans cost \$8 per pound.
The shop wants to make 50 pounds of a blend.
The blend should cost \$9.60 per pound.
How many pounds of each type should be used?
Variables: $p = \text{pounds of premium beans}$ $r = \text{pounds of regular beans}$
Understanding Check: Total cost of blend = 50 pounds \times \$9.60 per pound = This problem is like a mixture problem, but with cost instead of concentration!
System: 1. Equation for total pounds:
2. Expression for cost from premium beans:
3. Expression for cost from regular beans:
4. Equation for total cost:
Solution:
$p = \underline{\hspace{1cm}}$ pounds
$r = \underline{\hspace{1cm}}$ pounds
Check Your Answer: Does $p + r = 50$?
Does the total cost equal \$480?
Makes sense: Should use more regular beans (cheaper) than premium beans?