Schneider-Stuhler complex of locally analytic principal series for PGL_n .

Zichuan Wang

Indiana University

Let E/\mathbb{Q}_p be a finite field extension, $G := \mathrm{GL}_n(\mathbb{Q}_p)$, and X be its Bruhat-Tits building:

Let E/\mathbb{Q}_p be a finite field extension, $G:=\mathrm{GL}_n(\mathbb{Q}_p)$, and X be its Bruhat-Tits building: a G-simplicial complex whose vertices are homothety classes of \mathbb{Z}_p -lattices in \mathbb{Q}_p^n and whose q-simplices are represented by descending chains of lattices in \mathbb{Q}_p^n of length q

$$\Lambda_0 \supsetneq \Lambda_1 \supsetneq \dots \Lambda_q \supsetneq p\Lambda_0$$

Let E/\mathbb{Q}_p be a finite field extension, $G:=\mathrm{GL}_n(\mathbb{Q}_p)$, and X be its Bruhat-Tits building: a G-simplicial complex whose vertices are homothety classes of \mathbb{Z}_p -lattices in \mathbb{Q}_p^n and whose q-simplices are represented by descending chains of lattices in \mathbb{Q}_p^n of length q

$$\Lambda_0 \supsetneq \Lambda_1 \supsetneq \dots \Lambda_q \supsetneq p\Lambda_0$$

For each simplex F of X, we have a filtration of its stabilizer \mathcal{P}_F by subgroups $\mathcal{P}_F \supsetneq U_F^{(0)} \supsetneq U_F^{(1)} \cdots \supsetneq U_F^{(e)} \supsetneq \ldots$ with nice properties such as $U_F^{(e)} \subset U_{F'}^{(e)}$ if $F \subset F'$.

Let E/\mathbb{Q}_p be a finite field extension, $G:=\mathrm{GL}_n(\mathbb{Q}_p)$, and X be its Bruhat-Tits building: a G-simplicial complex whose vertices are homothety classes of \mathbb{Z}_p -lattices in \mathbb{Q}_p^n and whose q-simplices are represented by descending chains of lattices in \mathbb{Q}_p^n of length q

$$\Lambda_0 \supsetneq \Lambda_1 \supsetneq \dots \Lambda_q \supsetneq p\Lambda_0$$

For each simplex F of X, we have a filtration of its stabilizer \mathcal{P}_F by subgroups $\mathcal{P}_F \supsetneq U_F^{(0)} \supsetneq U_F^{(1)} \cdots \supsetneq U_F^{(e)} \supsetneq \ldots$ with nice properties such as $U_F^{(e)} \subset U_{F'}^{(e)}$ if $F \subset F'$. So, if V is any complex smooth representation of G, then $V_F^{(e)} \subset V_F^{(e)}$, and we get a chain complex of oriented G-chains valued in various U_F -fixed subspaces of V, for simplices F in X.

Let E/\mathbb{Q}_p be a finite field extension, $G:=\mathrm{GL}_n(\mathbb{Q}_p)$, and X be its Bruhat-Tits building: a G-simplicial complex whose vertices are homothety classes of \mathbb{Z}_p -lattices in \mathbb{Q}_p^n and whose q-simplices are represented by descending chains of lattices in \mathbb{Q}_p^n of length q

$$\Lambda_0 \supsetneq \Lambda_1 \supsetneq \dots \Lambda_q \supsetneq p\Lambda_0$$

For each simplex F of X, we have a filtration of its stabilizer \mathcal{P}_F by subgroups $\mathcal{P}_F \supsetneq U_F^{(0)} \supsetneq U_F^{(1)} \cdots \supsetneq U_F^{(e)} \supsetneq \ldots$ with nice properties such as $U_F^{(e)} \subset U_{F'}^{(e)}$ if $F \subset F'$. So, if V is any complex smooth representation of G, then $V_F^{(e)} \subset V_F^{(e)}$, and we get a chain complex of oriented G-chains valued in various U_F -fixed subspaces of V, for simplices F in X. We call it the (smooth) Schneider-Stuhler complex for V at level e.

Problem

Theorem (Schneider-Stuhler, 1993)

Let
$$U := U_{[\mathbb{Z}_p^n]}^{(e)} = \left\{ \operatorname{GL}_n(\mathbb{Z}_p) \ni A \equiv I_n \pmod{p^e} \right\}$$
. For any V generated by V^U as G -representation, the Schneider-Stuhler complex $\operatorname{SS}_{\bullet} := C_c^{or}(X_{\bullet}, \underline{V})$ is a resolution of V .

Problem

Theorem (Schneider-Stuhler, 1993)

Let
$$U := U_{[\mathbb{Z}_p^n]}^{(e)} = \left\{ \operatorname{GL}_n(\mathbb{Z}_p) \ni A \equiv I_n \pmod{p^e} \right\}$$
. For any V generated by V^U as G -representation, the Schneider-Stuhler complex $\operatorname{SS}_{\bullet} := C_c^{or}(X_{\bullet}, \underline{V})$ is a resolution of V .

We may consider the larger category of locally \mathbb{Q}_p -analytic E-linear G-representations, and replace the fixed vectors V^{U_F} by the analytic vectors $V^{U_F-\mathrm{an}}$. Then we again get a chain complex.

Problem

Theorem (Schneider-Stuhler, 1993)

Let
$$U := U_{[\mathbb{Z}_p^n]}^{(e)} = \left\{ \operatorname{GL}_n(\mathbb{Z}_p) \ni A \equiv I_n \pmod{p^e} \right\}$$
. For any V generated by V^U as G -representation, the Schneider-Stuhler complex $\operatorname{SS}_{\bullet} := C_c^{or}(X_{\bullet}, \underline{V})$ is a resolution of V .

We may consider the larger category of locally \mathbb{Q}_p -analytic E-linear G-representations, and replace the fixed vectors V^{U_F} by the analytic vectors V^{U_F-an} . Then we again get a chain complex.

Question

Suppose V is generated by $V^{U-\mathrm{an}}$. Is it true that its locally analytic Schneider-Stuhler complex gives a resolution of V?

Theorem (Lahiri, 2020)

For n=2, i.e., $G=\mathrm{GL}_2(\mathbb{Q}_p)$, let B be the upper-triangular Borel subgroup, T the diagonal torus, and $V=\mathrm{Ind}_B^G(\chi)$ the locally analytic induction of any locally \mathbb{Q}_p -analytic character of T.

Theorem (Lahiri, 2020)

For n=2, i.e., $G=\operatorname{GL}_2(\mathbb{Q}_p)$, let B be the upper-triangular Borel subgroup, T the diagonal torus, and $V=\operatorname{Ind}_B^G(\chi)$ the locally analytic induction of any locally \mathbb{Q}_p -analytic character of T. Then, there exists $e\in\mathbb{Z}_{\geq 0}$ depending on χ such that the locally analytic Schneider-Stuhler complex for V at level e is a resolution of V.

Theorem (Lahiri, 2020)

For n=2, i.e., $G=\operatorname{GL}_2(\mathbb{Q}_p)$, let B be the upper-triangular Borel subgroup, T the diagonal torus, and $V=\operatorname{Ind}_B^G(\chi)$ the locally analytic induction of any locally \mathbb{Q}_p -analytic character of T. Then, there exists $e\in\mathbb{Z}_{\geq 0}$ depending on χ such that the locally analytic Schneider-Stuhler complex for V at level e is a resolution of V.

The proof is a detailed analysis of the action of G on $G/B = \mathbb{P}^1$.

Theorem (Lahiri, 2020)

For n=2, i.e., $G=\operatorname{GL}_2(\mathbb{Q}_p)$, let B be the upper-triangular Borel subgroup, T the diagonal torus, and $V=\operatorname{Ind}_B^G(\chi)$ the locally analytic induction of any locally \mathbb{Q}_p -analytic character of T. Then, there exists $e\in\mathbb{Z}_{\geq 0}$ depending on χ such that the locally analytic Schneider-Stuhler complex for V at level e is a resolution of V.

The proof is a detailed analysis of the action of G on $G/B = \mathbb{P}^1$.

Remark

The Schneider-Stuhler complex can be defined in exactly the same way for char p smooth V, but it is *not* always a resolution of V (\exists counterexample by Ollivier-Schneider, using results of Breuil).

Theorem (Lahiri, 2020)

For n=2, i.e., $G=\operatorname{GL}_2(\mathbb{Q}_p)$, let B be the upper-triangular Borel subgroup, T the diagonal torus, and $V=\operatorname{Ind}_B^G(\chi)$ the locally analytic induction of any locally \mathbb{Q}_p -analytic character of T. Then, there exists $e\in\mathbb{Z}_{\geq 0}$ depending on χ such that the locally analytic Schneider-Stuhler complex for V at level e is a resolution of V.

The proof is a detailed analysis of the action of G on $G/B = \mathbb{P}^1$.

Remark

The Schneider-Stuhler complex can be defined in exactly the same way for char p smooth V, but it is *not* always a resolution of V (\exists counterexample by Ollivier-Schneider, using results of Breuil). However, for smooth principal series V, Ollivier (2013) has shown that it *is* a resolution regardless of characteristic.

Theorem (Kohlhaase-Schraen, 2013)

Let $I \subset G := \mathrm{PGL}_n(\mathbb{Q}_p)$ be the Iwahori subgroup, i.e., represented by those in $\mathrm{PGL}_n(\mathbb{Z}_p)$ which are upper-triangular modulo p.

Theorem (Kohlhaase-Schraen, 2013)

by those in $\operatorname{PGL}_n(\mathbb{Z}_p)$ which are upper-triangular modulo p. Let $U^{(e)}$ be the filtration of $\operatorname{PGL}_n(\mathcal{O}_F)$. Let $\mathcal{A}:=\operatorname{Ind}_{I\cap B}^I(\chi)^{U^{(e)}\text{-an}}$, which is naturally isomorphic to $\operatorname{Ind}_B^G(\chi)(I)^{U^{(e)}\text{-an}}=V(I)^{U^{(e)}\text{-an}}$.

Let $I \subset G := \operatorname{PGL}_n(\mathbb{Q}_p)$ be the Iwahori subgroup, i.e., represented

Theorem (Kohlhaase-Schraen, 2013)

Let $I \subset G := \operatorname{PGL}_n(\mathbb{Q}_p)$ be the Iwahori subgroup, i.e., represented by those in $\operatorname{PGL}_n(\mathbb{Z}_p)$ which are upper-triangular modulo p. Let $U^{(e)}$ be the filtration of $\operatorname{PGL}_n(\mathcal{O}_F)$. Let $\mathcal{A} := \operatorname{Ind}_{I \cap B}^I(\chi)^{U^{(e)}\text{-an}}$, which is naturally isomorphic to $\operatorname{Ind}_B^G(\chi)(I)^{U^{(e)}\text{-an}} = V(I)^{U^{(e)}\text{-an}}$. Then, \exists an exact sequence of locally analytic G-representations

$$\left(\bigwedge^{\bullet} E^{\Delta}\right) \otimes_{\mathcal{E}} \operatorname{c-Ind}_{I}^{G}(\mathcal{A}) \to V = \operatorname{Ind}_{\mathcal{B}}^{G}(\chi) \to 0$$

for large enough e, where Δ is the set of simple roots of G.

Theorem (Kohlhaase-Schraen, 2013)

Let $I \subset G := \operatorname{PGL}_n(\mathbb{Q}_p)$ be the Iwahori subgroup, i.e., represented by those in $\operatorname{PGL}_n(\mathbb{Z}_p)$ which are upper-triangular modulo p. Let $U^{(e)}$ be the filtration of $\operatorname{PGL}_n(\mathcal{O}_F)$. Let $\mathcal{A} := \operatorname{Ind}_{I \cap B}^I(\chi)^{U^{(e)}\text{-an}}$, which is naturally isomorphic to $\operatorname{Ind}_B^G(\chi)(I)^{U^{(e)}\text{-an}} = V(I)^{U^{(e)}\text{-an}}$. Then, \exists an exact sequence of locally analytic G-representations

$$\bigg(\bigwedge^{\!\bullet} E^\Delta\bigg) \otimes_E \mathrm{c\text{-}Ind}_I^G(\mathcal{A}) \to V = \mathrm{Ind}_B^G(\chi) \to 0$$

for large enough e, where Δ is the set of simple roots of G.

To each $\alpha \in \Delta$, the authors define $y_{\alpha} \in \operatorname{End}_{G}(\operatorname{c-Ind}_{I}^{G}(A))$. Then, the resolution is the Koszul complex of $\operatorname{c-Ind}_{I}^{G}(A)$ defined by these endomorphisms.

Since the two complexes have the same length n and the same 0-th homology V, one may hope to relate them. Indeed, we can show

Proposition

For n=2, there is a $\operatorname{PGL}_2(\mathbb{Q}_p)$ -equivariant isomorphism from the Kohlhaase-Schraen resolution to the Schneider-Stuhler complex.

Since the two complexes have the same length n and the same 0-th homology V, one may hope to relate them. Indeed, we can show

Proposition

For n=2, there is a $\operatorname{PGL}_2(\mathbb{Q}_p)$ -equivariant isomorphism from the Kohlhaase-Schraen resolution to the Schneider-Stuhler complex.

The strategy is to rewrite the Schneider-Stuhler complex in terms of compact inductions from the stabilizer of the stabilizer \mathcal{P}_F of representatives F for G-orbits to the whole group G. Then, the natural maps turned out to be isomorphisms.

Since the two complexes have the same length n and the same 0-th homology V, one may hope to relate them. Indeed, we can show

Proposition

For n = 2, there is a $\operatorname{PGL}_2(\mathbb{Q}_p)$ -equivariant isomorphism from the Kohlhaase-Schraen resolution to the Schneider-Stuhler complex.

The strategy is to rewrite the Schneider-Stuhler complex in terms of compact inductions from the stabilizer of the stabilizer \mathcal{P}_F of representatives F for G-orbits to the whole group G. Then, the natural maps turned out to be isomorphisms.

Remark

For $n \geq 3$, if there is a morphism of complexes $KS_{\bullet} \to SS_{\bullet}$, it seems that it is not an isomorphism degree-wise.

Consequences and the next step

Application

There is a work in progress by Shishir Agrawal and Matthias Strauch, which, assuming the exactness of the Schneider-Stuhler complex, uses the theory of solid locally analytic representations and a spectral sequence argument to show that if V and W are admissible, then the Schneider-Stuhler resolution of V can be used to compute $\operatorname{Ext}_G(V,W)$.

Consequences and the next step

Application

There is a work in progress by Shishir Agrawal and Matthias Strauch, which, assuming the exactness of the Schneider-Stuhler complex, uses the theory of solid locally analytic representations and a spectral sequence argument to show that if V and W are admissible, then the Schneider-Stuhler resolution of V can be used to compute $\operatorname{Ext}_G(V,W)$.

Future

The next step is to see if the arguments of Ollivier can be adapted to locally analytic principal series.