Manufacturing Downtime

Data Analysis Project

1. Line Productivity

How many batches met the optimum production time?

```
Total batches in dataset: 38

Batches with production time <= minimum batch time: 2 (5.26%)

Batch Product Flavor Minutes Of Production Min batch time
422116 LE-600 Lemon lime 60.0 60

422136 DC-600 Diet Cola 60.0 60
```

- Only 2 out of 38 batches (5.26%) met or were faster than the minimum required batch time.
- This indicates that 94.74% of batches experienced delays
- Batch 422116 (LE-600, Lemon Lime) and Batch 422136 (DC-600, Diet Cola)
 were the only ones that precisely met the target time of 60 minutes.
- No batches were faster than the minimum time, meaning no production cycles exceeded expectations.

Which batch is the worst in terms of efficiency?

Batch	Product	Operator	Minutes Of	Production	Clock_HHMM	Downtime minutes	Downtime_HHMM	Efficiency
422111	OR-600	Mac		135.0	2h 15m	75	1h 15m	44.4
422123	CO-600	Dennis		133.0	2h 13m	73	1h 13m	45.1
422147	CO-2L	Charlie		205.0	3h 25m	107	1h 47m	47.8
422140	RB-600	Dee		123.0	2h 3m	63	1h 3m	48.8
422118	CO-600	Dee		120.0	2h 0m	60	1h 0m	50.0
422143	RB-600	Dennis		118.0	1h 57m	58	0h 58m	50.8
422128	CO-600	Charlie		112.0	1h 52m	52	0h 52m	53.6
422120	CO-600	Dee		112.0	1h 52m	52	0h 52m	53.6
422113	LE-600	Mac		110.0	1h 49m	50	0h 50m	54.5
422134	DC-600	Mac		110.0	1h 50m	50	0h 50m	54.5
422135	DC-600	Mac		105.0	1h 44m	45	0h 45m	57.1
422137	RB-600	Dee		105.0	1h 45m	45	0h 45m	57.1
422126	CO-600	Charlie		104.0	1h 43m	44	0h 44m	57.7
422112	LE-600	Mac		100.0	1h 39m	40	0h 40m	60.0
422124	CO-600	Dennis		100.0	1h 39m	40	0h 40m	60.0
422114	LE-600	Mac		100.0	1h 40m	40	0h 40m	60.0
422146	CO-2L	Charlie		160.0	2h 40m	62	1h 2m	61.3

- Worst Batch: 422111 (OR-600)
 - Efficiency: 44.4%
 - o **75 mins downtime** in a 135-min run
 - Operator: Mac
 - o Batch 422147 (CO-2L) had more **total downtime** (107 mins vs 75 mins)
 - But Batch 422111 had worse efficiency
 - (Efficiency = (Min of Production Downtime)/Min of Production.

2. Products Analysis:

• What is the most frequently produced product?

Production Analysis by Product:							
	Product	Flavor	Batch_Count	Total_Production_Hours	Hours_per_Batch	Mins_per_Batch	Percentage_of_Total_Products
	CO-600	Cola	15	41.6	2.77	166.2	35.5
	CO-2L	Cola	5	29.7	5.93	355.8	25.3
	RB-600 R	Root Berry	7	18.6	2.66	159.9	15.9
	LE-600 L	emon lime	6	13.4	2.23	134.0	11.4
	DC-600	Diet Cola	4	9.5	2.37	142.5	8.1
	OR-600	Orange	1	4.5	4.50	270.0	3.8

- Most Produced: CO-600 (Cola, 600ml) accounts for 35.5% of production
- Fastest Product: <u>LE-600</u> (Lemon Lime) at 2.23 hrs/batch
- Slowest Product: CO-2L (2L bottles) takes 5.93 hrs/batch
- Which product has the highest/lowest production efficiency (Productive Minutes/Total Production time per product)?

			Batch_Count	Efficiency	Downtime_Percentage	Total_Production_Hours	Productive_Hours	Downtime_Hours
Product	Flavor	Product_Size						
DC-600	Diet Cola	600 ml	4	71.7%	28.3%	5.9	4.0	1.9
LE-600	Lemon lime	600 ml	6	71.0%	29.0%	8.8	6.0	2.8
CO-600	Cola	600 ml	15	67.3%	32.7%	23.2	15.0	8.2
CO-2L	Cola	2 L	5	66.1%	33.9%	12.8	8.2	4.6
RB-600	Root Berry	600 ml	7	64.4%	35.6%	11.3	7.0	4.3
OR-600	Orange	600 ml	1	44.4%	55.6%	2.2	1.0	1.2

Highest Efficiency:

- Diet Cola (DC-600, 71.7%) and Lemon Lime (LE-600, 71.0%) are the most efficient, with relatively lower downtime percentages (28.3% and 29.0%, respectively).
- Efficiency:
 - o Orange (OR-600, 44.4%) performs the worst, with 55.6% downtime.

✓ Recommendations:

- Address root causes of downtime for Orange (OR-600) and Root Berry (RB-600) to stabilize production.
- Process Optimization: Focus on Cola 2L (CO-2L) and CO-600 to reduce downtime and improve throughput.

• What's the average number of batches produced per shift? Does this vary by product?

```
Average number of batches produced per shift (overall):
Shift
Morning (6AM-2PM)
                   3.8
Afternoon (2PM-10PM) 4.0
Night (10PM-6AM)
Name: Batch, dtype: float64
Average number of batches produced per shift by product:
         CO-2L CO-600 DC-600 LE-600 OR-600 RB-600
Product
Shift
Morning (6AM-2PM)
                 1.0 4.0 2.0
                                    0.0 1.0
                                                    3.0
Afternoon (2PM-10PM) 3.0
                               2.0 6.0 0.0
                         5.0
                                                    0.0
                  1.0 2.0 0.0 0.0 0.0
Night (10PM-6AM)
                                                   4.0
```

Overall Productivity by Shift:

- The Afternoon shift (2PM-10PM) is the most productive, averaging 4.0 batches per day, followed closely by the Morning shift (6AM-2PM) with 3.8 batches.
- The Night shift (10PM-6AM) has the lowest output, averaging 2.3 batches, suggesting potential efficiency or scheduling constraints.

Product-Specific Trends:

- LE-600 (Lemon Lime) dominates Afternoon production (6.0 batches), while CO-600 (Cola 600ml) is the most produced in Morning (4.0 batches).
- RB-600 (Root Berry) is primarily a Night shift product (4.0 batches), possibly due to specialized handling or demand patterns.
- OR-600 (Orange) has minimal production, appearing only in the Morning shift (1.0 batch).
- CO-2L (Cola 2L) sees steady production in Afternoon (3.0 batches) and limited output in Morning (1.0 batch) and Night (1.0 batch) shifts.

3. Downtime Factors

• What are the most common causes of downtime?

	Total_Events	Affected_Batches	Total_Minutes	Total_Hours	Avg_Minutes_Per_Event
Downtime factors.Description					
Machine adjustment	12	12	332	5.5	27.7
Machine failure	11	11	254	4.2	23.1
Inventory shortage	9	9	225	3.8	25.0
Batch change	5	5	160	2.7	32.0
Batch coding error	6	6	145	2.4	24.2
Other	6	6	74	1.2	12.3
Product spill	3	3	57	1.0	19.0
Calibration error	3	3	49	0.8	16.3
Labeling error	2	2	42	0.7	21.0
Label switch	3	3	33	0.6	11.0
Conveyor belt jam	1	1	17	0.3	17.0

- Most frequent cause for downtime is Machine adjustment (12 events)
- o Avg. 27.7 minutes per adjustment
- o **Batch Changes** have longest avg. duration (32 mins/event)
- Machine Failures caused 4.2 total hours of downtime

How often do operator errors contribute to downtime?

Percentage_of_Total_Events	Total_Hours	Total_Minutes	Total_Events	Operator Error
47.5	10.2	612	29	No
52.5	12.9	776	32	Yes

- o 52.5 % of all downtime (12.9 hours) is caused by operator errors
- Occurs in 32 distinct events (out of 61 total downtime events)

Most common downtime factor caused by operator error

Error Type	Occurrences	Total Hours
Machine adjustment	12	5.5
Batch change	5	2.7
Batch coding error	6	2.4
Product spill	3	1.0
Calibration error	3	0.8
Label switch	3	0.6

 Machine adjustment is the most frequent downtime factor caused by operator error

Are there patterns in downtime based on time of day or shift?

Shift-wise Downtime Summary:								
	Occurrences	Total_Downtime_Minutes	Total_Hours					
Shift								
Afternoon (2PM-10PM)	25	584	9.7					
Morning (6AM-2PM)	22	534	8.9					
Night (10PM-6AM)	14	270	4.5					

- 1. Afternoon Shift (2PM-10PM):
 - Highest total downtime (9.7 hrs)
 - o Most frequent events (25 occurrences)
- 2. Night Shift (10 PM 6AM):
 - o Fewest events

Recommendations:

- 1. Afternoon Shift Focus:
 - o Schedule additional maintenance checks before 2PM
- 2. Morning Shift Reduction:
 - o Schedule breaks strategically around 10AM
 - o Pre-shift machine checks at 6AM
- 3. Operator Alertness:
 - o Consider shorter work blocks
 - o Implement checklist system for critical procedures

4. Operator Performance

Which operator has the best/worst efficiency ratio?

Operator	Efficiency Ratio	total_actual_production	total_downtime
Charlie	2.0	774.0	384
Dee	1.8	660.0	370
Dennis	1.7	518.0	302
Mac	1.6	518.0	332

Most Efficient Operator: Charlie (Ratio: 2.0) Least Efficient Operator: Mac (Ratio: 1.6)

Recommendations:

- For Mac: Investigate causes of downtime (machine issues, training needs)
- For Charlie: Use as a benchmark for best practices

How does each operator's performance vary by shift?

Operator Efficiency Ratio (Actual Production/Downtime) by Shift

Shift Morning (6AM-2PM) Afternoon (2PM-10PM) Night (10PM-6AM)

Operator Operator							
Charlie	0.0	1.9	4.0				
Dee	2.4	0.0	1.3				
Dennis	1.7	1.5	0.0				

Shift Preferences:

- Charlie and Mac perform best at night.
- Dee excels in mornings.

Mac

o Dennis is moderately efficient during the day.

Recommendations:

- Assign Charlie & Mac to Night Shifts (highest efficiency).
- Schedule Dee for Mornings (avoid afternoons).
- Keep Dennis on Day Shifts (Morning/Afternoon).

