

Lenguajes Formales y de Programación

Práctica1: Manual de Usuario

Sección: A

Nombre: Registro académico:

Mariano Francisco Camposeco Camposeco 202030987

1.	Creación de la	expresión	regular que	e describa el	patrón de	cada token
----	----------------	-----------	-------------	---------------	-----------	------------

1.1. Identificador:

Expresión regular: ([L])+.([0-9])*

1.2. Número:

Expresión regular: [0-9]+

1.3. Decimal:

Expresión regular: [0-9]+((.).(0-9)+)*

1.4. Puntuación:

Expresión regular: ((.)|(,)|(;)|(:))+

1.5. Operador:

Expresión regular: ((+)|(-)|(*)|(/)|(%))+

1.6. Agrupación:

Expresión regular: $((()|())|([)|(])|(\{)|(\}))+$

2. Gramática regular de cada token.

2.1. Identificador:

Definición formal AFD: $A=(Q,\Sigma,\partial,A,F)$

- 1.Q={s0, s1}
- 2.s0
- 3. $\Sigma = \{[a-z], [A-Z], [0-9]\}$
- $4.F={s1}$
- 5. Función de transición

$$\partial(S0, [L]) = S1$$

$$\partial(S1, [0-9]) = S1$$

$$\partial(S1, [L]) = S1$$

2.2. Número:

Definición formal AFD: $A=(Q,\Sigma,\partial,A,F)$

- 1.Q={s0, s1}
- 2.s0
- 3. $\Sigma = \{[0-9]\}$

- $4.F = {s1}$
- 5. Función de transición

$$\partial(S0, [0-9]) = S1$$

$$\partial(S1, [0-9]) = S1$$

2.3. Decimal:

Definición formal AFD: $A=(Q,\Sigma,\partial,A,F)$

- 1.Q={s0, s1,s2,s3}
- 2.s0
- 3. $\Sigma = \{[0-9],(.)\}$
- $4.F={s3}$
- 5. Función de transición

$$\partial(S0, [0-9]) = S1$$

$$\partial(S1, (.)) = S2$$

$$\partial(S1, [0-9]) = S1$$

$$\partial(S2, [0-9]) = S3$$

$$\delta(S3, [0-9]) = S3$$

2.4. Puntuación:

Definición formal AFD: $A=(Q,\Sigma,\partial,A,F)$

- 1.Q={s0, s1}
- 2.s0
- 3. Σ={(.), (,), (;), (:)}
- $4.F={s1}$
- 5. Función de transición

$$\lambda(SO_{1}) = S1_{2}$$

$$\partial(SO, (,)) = S1$$

$$\partial(SO, (.)) = S1$$
 $\partial(SO, (.)) = S1$ $\partial(SO, (..)) = S1$ $\partial(SO, (...)) = S1$

$$\partial(S0, (:)) = S1$$

$$\partial(S1, (.)) = S1$$

$$\partial(S1.(.)) = S1$$

$$\partial(S1.(:)) = S1$$

$$\partial(S1, (.)) = S1$$
 $\partial(S1, (.)) = S1$ $\partial(S1, (.)) = S1$ $\partial(S1, (.)) = S1$

2.5. Operador:

Definición formal AFD: $A=(Q,\Sigma,\partial,A,F)$

- 1.Q={s0, s1}
- 2.s0
- 3. $\Sigma = \{(+), (-), (*), (/), (%)\}$
- $4.F={s1}$
- 5. Función de transición

$$\partial(SO, (+)) = S1 \quad \partial(SO, (-)) = S1 \quad \partial(SO, (*)) = S1 \quad \partial(SO, (/)) = S1 \quad \partial(SO, (%)) = S1$$

$$\partial(S1, (+)) = S1 \quad \partial(S1, (-)) = S1 \quad \partial(S1, (*)) = S1 \quad \partial(S1, (/)) = S1 \quad \partial(S1, (%)) = S1$$

2.6. Agrupación:

- 1.Q={s0, s1}
- 2.s0
- 3. $\Sigma = \{((), ()), ([), (]), (\{), (\})\}$
- $4.F={s1}$
- 5. Función de transición

$$\delta(SO,\,(()\,\,)=S1\quad \delta(SO,\,())\,\,)=S1\quad \delta(SO,\,([))=S1\quad \delta(SO,\,([))=S1\quad \delta(SO,\,([))=S1\quad \delta(SO,\,([))=S1)$$

$$\partial(S1, (()) = S1 \quad \partial(S1, ())) = S1 \quad \partial(S1, ([)) = S1 \quad \partial(S1, ([))) = S1 \quad \partial(S1, ([))) = S1$$

3. AFD de cada token.

3.1. Identificador

3.3.

3.4.

3.5.

3.6.

4. Creación del AFD que acepte todos los tokens

4.1. Diagrama de transiciones del AFD

4.2. Tabla de transiciones del AFD

FT	s0	s1	s2	s3	s4	s5	s6	s7
L	∂ (s0, [L])=s1	∂(s1,						
		[L])=s1						
[0-9]	∂(s0, [0-9])=s2	∂(s1, [0-	∂(s2, [0-	∂(s3, [0-	∂(s4, [0-			
		9])=s1	9])=s2	9])=s4	9])=s4			
(.)	∂(s0, (.))=s5		∂(s2,			∂(s5,		
			(.))=s3			(.))=s5		
(,)	∂(s0, (,))=s5					∂(s5,		
						(,))=s5		
(;)	∂(s0, (;))=s5					∂(s5,		
						(;))=s5		
(:)	∂(s0, (:))=s5					∂(s5,		
						(:))=s5		
(+)	∂(s0, (+))=s7							∂(s7, (+))=s7
(-)	∂(s0, (-))=s7							∂(s7, (-))=s7
(*)	∂(s0, (*))=s7							∂(s7, (*))=s7
(/)	∂(s0, (/))=s7							∂(s7, (/))=s7

(%)	∂(s0, (%))=s7				∂(s7, (%))=s7
(()	∂(s0, (())=s6			∂(s6, (()	
)=s6	
())	∂(s0, ()))=s6			∂(s6, ())	
)=s6	
([)	∂(s0, ([))=s6			∂(s6, ([))=s6	
(])	∂(s0, (]))=s6			∂(s6, (]))=s6	
({)	∂(s0, ({))=s6			∂(s6, ({))=s6	
(})	∂(s0, (}))=s6			∂(s6, (}))=s6	