Partie académique : éléments de solution

Exercice 4 - Entiers *n*-sommables

- **1.** Cas n = 4
 - **a.** 4 = 1 + 2 3 + 4
 - **b.** Le plus grand entier 4-sommable est obtenu en complétant avec des sommes : 1 + 2 + 3 + 4 = 10.
 - **c.** Le plus petit est obtenu en complétant avec des soustractions : 1-2-3-4=-8.
 - **d.** On a déjà -8 et 10 qui sont 4-sommables. On complète avec les nombres obtenus avec 2 puis 1 soustractions

-8 = 1 - 2 - 3 - 4	2 = 1 + 2 + 3 - 4
-4 = 1 + 2 - 3 - 4	4 = 1 + 2 - 3 + 4
-2 = 1 - 2 + 3 - 4	6 = 1 - 2 + 3 + 4
0 = 1 - 2 - 3 + 4	1 + 2 + 3 + 4 = 10

On aurait pu également remarquer que puisqu'il existe seulement 8 décompositions différentes ($2 \times 2 \times 2$), qu'il n'y avait pas d'autres entiers 4-décomposables.

Finalement, l'ensemble des entiers 4-sommables est $\{-8, -4, -2, 0, 2, 4, 6, 10\}$.

2. Pour tout réel a, a - (a + 1) - (a + 2) + (a + 3) = 0

On a donc $(1-2-3+4)+(5-6-7+8)+\cdots+(97-98-99+100)=0$ donc est 100-sommable.

3. a. Soit N et M deux entiers n-sommables alors $N+M=2+k_2\times 2+k_3\times 3+\cdots k_i\times i+\cdots +k_n\times n$ où k_i vaut 0 si N et M ont des signes différents devant i et vaut -2 ou 2 sinon.

Donc N+M est une somme de nombres pairs donc est pair et par conséquent, N et M ont même parité.

b. Tout d'abord, on doit avoir $1+2+\cdots+n \geq 2023$ soit $n^2+n \geq 4046$. En résolvant l'inéquation du second degré ou avec un tableur on obtient $n \geq 64$.

Pour n=64: $1+2+\cdots+64=\frac{64\times65}{2}=2080$ est pair donc, d'après le **a.**, tous les entiers 64-sommables sont pairs, 2023 n'est pas 64-sommable.

Pour
$$n = 65: 1 + 2 + \dots + 65 = \frac{65 \times 66}{2} = 2145$$
 et $2145 - 2023 = 122 = 2 \times 61$ donc: $2023 = 1 + 2 + 3 + \dots + 60 - 61 + 62 + 63 + 64 + 65$

Le plus petit entier n tel que 2023 soit n-sommable est 65.

- c. Si $S=1+2a_2+3a_3+\cdots+na_n$ (où $a_i=\pm 1$) alors $2-S=1-2a_2-3a_3-\cdots-na_n$ qui est donc bien n-sommable.
- **d.** Tout d'abord, $M = 1 + 2 + 3 + \cdots + n$.

Soit N un autre entier n-sommable, $N=1+2a_2+3a_3+\cdots+na_n$ où $a_i=\pm 1$

On a donc $M-N=2(1-a_2)+3(1-a_3)+\cdots+n(1-a_n)$ avec $1-a_i\geq 0$. Comme $M\neq N$, au moins un des $1-a_i$ est non nul et $(1-a_i)i\geq 4$ car $i\geq 2$. On en déduit $M-N\geq 4$ soit $N\leq M-4$.

Si m+2 était n-sommable, 2-(m+2)=M-2 le serait également d'après la question précédente (1.c).

e. Tout d'abord, $1+2+\cdots+100=\frac{100\times101}{2}=5050$ donc tous les entiers 100-sommables sont pairs.

Soit N un entier 100-sommable strictement positif et X la somme des entiers soustraits dans la décomposition de N, alors $N = 5050 - 2 \times X$.

Ainsi, X vaut 0 ou la somme d'une partie des entiers compris entre 2 et 100 et $X \le 2524$ puisque N > 0. Prenons maintenant un nombre entier X compris entre 2 et 2524.

On a $100 + 99 + \cdots + 1 > 2524$ donc il existe un entier naturel non nul k tel que :

$$(k+1) + (k+2) + \dots + 100 \le X < k + (k+1) + \dots + 100$$

Alors
$$X = (k+1) + \cdots + 100 + d$$
, soit $d = X - ((k+1) + \cdots + 100)$, et $0 \le d < k$.

Donc X est somme d'une partie des entiers compris entre 2 et 100.

Il y a 2524 possibilités différentes pour X: tous les entiers compris entre 2 et 2524 auxquels on ajoute 0. Il y a donc 2524 entiers 100-sommables strictement positifs.

D'après la question **c.** et comme $N \ge 2$, il y a autant de négatifs 100-sommables, obtenus en faisant 2-N. On a donc au total 5048 nombres 100-sommables : tous les nombres pairs compris entre -5048 et 5050 exceptés -5046 et 5048.

Exercice 5 - Triangulations et retournements

1. a. On peut utiliser la suite de retournements ci-dessous :

- **b.** Il suffit de remarquer que le processus est réversible.
- **2. a.** If y a n sommets, dont A et ses deux voisins. Une triangulation utilise donc n-3 diagonales et détermine alors n-2 triangles.

La triangulation divise les angles intérieurs de $\mathcal P$ afin de former les angles intérieurs des n-2 triangles. La somme des mesures des angles intérieurs de $\mathcal P$ est ainsi égale à la somme des mesures des angles intérieurs de ces n-2 triangles, et elle vaut donc $(n-2)180^\circ$.

b. Toute triangulation divise les angles intérieurs de \mathcal{P} afin de former les angles intérieurs des triangles. Appelons t le nombre de triangles d'une triangulation donnée. La somme des mesures des angles intérieurs de \mathcal{P} est ainsi égale à la somme des mesures des angles intérieurs de ces t triangles, et on a donc :

 $(n-2)180^{\circ} = t \times 180^{\circ}$ soit t = n-2.

Ainsi toute triangulation de \mathcal{P} est formée de n-2 triangles.

3. a. On note B et C les sommets adjacents au sommet A.

Si [BC] n'est pas une diagonale de \mathcal{T} , le triangle ABC n'est pas un des triangles définis par \mathcal{T} . Il existe alors une diagonale issue du sommet A, diagonale qu'on note [AX].

Si [BC] est une diagonale de \mathcal{T} , [BC] est un côté d'un triangle BCX où X \neq A. On utilise alors le retournement qui échange les diagonales [BC] et [AX], ce qui ajoute une diagonale issue de A et on divise le polygone en deux sous-polygones via la diagonale [AX].

Dans tous les cas, on peut donc considérer, en utilisant la diagonale [AX], un découpage de $\mathcal P$ en deux sous-polygones, eux-mêmes triangulés via les triangulations induites par celles de $\mathcal P$ (l'un ou l'autre de ces polygones pouvant être réduit à un triangle). Il suffit de recommencer sur chacun de ces sous-polygones. On ajoute ainsi, une par une, toutes les diagonales issues de A pour aboutir à la triangulation $\mathcal T_A$.

- **b.** On peut de même transformer \mathcal{T}' en \mathcal{T}_A et donc, puisque le processus est réversible, \mathcal{T}_A en \mathcal{T}' . Quitte à transiter par \mathcal{T}_A , on peut donc toujours transformer \mathcal{T} en \mathcal{T}' à l'aide d'un nombre fini de retournements.
- **4.** Soit A et B deux sommets adjacents de \mathcal{P} . On considère la triangulation \mathcal{T}_A dont les diagonales sont celles issues de A, et la triangulation \mathcal{T}_B dont les diagonales sont celles issues de B. Puisque A et B sont adjacents, ces deux triangulations n'ont aucune diagonale commune. Si l'on veut transformer \mathcal{T}_A en \mathcal{T}_B , il faut donc que chacune des n-3 diagonales de \mathcal{T}_A soit impliquée dans un retournement. Ainsi, il faut au moins n-3 retournements pour transformer \mathcal{T}_A en \mathcal{T}_B .
- **5.** Soit \mathcal{T} et \mathcal{T}' deux triangulations de \mathcal{P} . Soit A un sommet de \mathcal{P} qui est l'extrémité d'au moins une diagonale utilisée dans \mathcal{T}' . Soit \mathcal{T}_A la triangulation dont les diagonales sont celles issues de A.

Pour transformer \mathcal{T} en \mathcal{T}_A , il suffit à chaque retournement d'ajouter une diagonale issue de A, ce qui nécessite au plus n-3 retournements. On peut transformer \mathcal{T}' en \mathcal{T}_A selon le même principe, mais puisqu'au moins une diagonale est déjà en place, cela ne nécessite qu'au plus n-4 retournements.

On peut donc, en inversant le processus, transformer $\mathcal{T}_{\!A}$ en \mathcal{T}' en au plus n-4 retournements.

Ainsi, on transforme \mathcal{T} en \mathcal{T}' à l'aide d'au plus 2n-7 retournements.

- **6.** On suppose que $n \ge 13$ et on considère deux triangulations \mathcal{T} et \mathcal{T}' de \mathcal{P} .
 - **a.** À elles deux, \mathcal{T} et \mathcal{T}' utilisent 2(n-3) diagonales, par forcément distinctes.

Chaque diagonale a ses deux extrémités parmi les n sommets de \mathcal{P} , donc, à elles toutes, elles nécessitent 4(n-3) extrémités. En moyenne, un sommet de \mathcal{P} est l'extrémité de $\frac{4n-12}{n}=4-\frac{12}{n}$ diagonales.

Comme $n \ge 13$, $4 - \frac{12}{n} > 3$.

Ainsi, il existe un sommet de $\mathcal P$ qui est l'extrémité d'au moins 4 des diagonales parmi celles utilisées par $\mathcal T$ et $\mathcal T'$.

b. Il suffit de reprendre le raisonnement du **5.** en choisissant pour sommet A l'un de ceux qui sont l'extrémité d'au moins 4 des diagonales concernées.

Cela permet d'économiser 3 retournements par rapport au 5. Ainsi, on peut toujours transformer $\mathcal T$ en $\mathcal T'$ à l'aide d'au plus 2n-10 retournements.

Remarque : en fait, la majoration 2n-10 est optimale pour $n \ge 13$. Cependant, la preuve de cette optimalité est inaccessible dans le cadre de l'épreuve.

Exercice 6- Numerus clausus

- **1.** Notons m_r la moyenne des étudiants recalés. On a 350 admis dont la moyenne est 80 et 250 recalés dont la moyenne est m_r .
 - La moyenne de l'ensemble des étudiants est 66, on a donc $350 \times 80 + 250 \times m_r = 600 \times 66$, on obtient $m_r = 46.4$

2.

- **a.** Si l'on note N le nombre d'étudiants admis, il y a 600 N recalés. On a donc $N \times 71 + (600 N) \times 56 = 600 \times 66$, soit N = 400.
- **b.** La nouvelle moyenne de l'ensemble des étudiants est $\frac{400 \times 72 + 200 \times 58}{600} = \frac{40400}{600} \approx 67,33$.
- c. La note minimale d'un étudiant est 3.
- **d.** Les 400 admis le restant, on s'intéresse aux étudiants initialement recalés. Ils sont 200 et la moyenne de leurs notes est 58. On dispose de $200 \times 58 = 11\,600$ points à répartir entre ces étudiants.

Comme chaque étudiant a au minimum 3 points, on répartit d'abord $200 \times 3 = 600$ points.

Il reste donc $11\,600-600=11\,000$ à répartir entre un maximum d'étudiants de façon à compléter leur 3 points pour atteindre la barre des 65 points.

 $\frac{11000}{62} \approx 177,4$ donc on peut avoir au maximum 177 étudiants qui passent de recalés à admis, soit au maximum un total de 577 étudiants admis.