

# Übungen zur Quantentheorie 1, Sommersemester 2024

Dr. J. M. Link, Prof. Dr. C. Timm

Blatt 7

## Präsenzübungen

### Aufgabe 1:

Gegeben sei ein Dirac-Raum aufgespannt durch die uneigentlichen Vektoren  $|p\rangle$  mit  $p \in \mathbb{R}$ . Die  $|p\rangle$  seien orthonormiert:

$$\langle p|p'\rangle = \delta(p-p').$$

Betrachten Sie die beiden Vektoren

$$\begin{split} |\psi_1\rangle &= \sqrt{\frac{2}{\pi}} \int_0^\pi dp \, \cos p \, |p\rangle, \\ |\psi_2\rangle &= \sqrt{\frac{2}{\pi}} \int_0^\pi dp \, \sin p \, |p\rangle. \end{split}$$

Berechnen Sie die Norm von  $|\psi_1\rangle$  und  $|\psi_2\rangle$  sowie deren Skalarprodukt.

### Aufgabe 2:

Der Hamilton-Operator eines quantenmechanischen Systems sei  $\hat{H}$ . Weiter möge ein unitärer Operator  $\hat{U}$  existieren, der mit  $\hat{H}$  antikommutiert:

$$\hat{H}\hat{U} = -\hat{U}\hat{H}$$
.

- (a) Sei  $|\psi\rangle$  ein normierter Eigenzustand von  $\hat{H}$  zur Eigenenergie E. Zeigen Sie, dass  $\hat{H}$  auch einen Eigenzustand zur Energie -E hat und bestimmen Sie diesen.
- (b)  $\hat{U}$  sei auf dem gesamten Hilbert-Raum definiert. Daher hat  $\hat{U}$  ein vollständiges Orthonormalsystem  $\{|u_i\rangle\}$  von Eigenzuständen, die

$$\hat{U}|u_i\rangle = u_i|u_i\rangle$$

erfüllen. Betrachten Sie die Matrixelemente  $\langle u_i|\hat{H}|u_j\rangle$  von  $\hat{H}$ . Zeigen Sie, dass  $\langle u_i|\hat{H}|u_j\rangle\neq 0$  nur möglich ist, wenn  $u_i^*u_j=-1$  gilt. Was folgt für die Diagonalelemente  $\langle u_i|\hat{H}|u_i\rangle$ ? Hinweis: Es gilt  $\hat{H}=-\hat{U}^{\dagger}\hat{H}\hat{U}$  (wieso?).

# Hausaufgaben (zu besprechen ab 11.06.2024)

#### Aufgabe 3:

Ein quantenmechanisches System sei durch einen zeitabhängigen Hamilton-Operator der speziellen Form

$$\hat{H}(t) = \hat{H}_0 f(t)$$

charakterisiert. Hier ist  $\hat{H}_0$  ein zeitunabhängiger hermitescher Operator und f(t) eine reelle Funktion der Zeit.

- (a) Bestimmen Sie den Zeitentwicklungsoperator  $\hat{U}(t, t_0)$ . Wieso ist er von einfacherer Form als für einen ganz allgemeinen zeitabhängigen Hamilton-Operator?
- (b) Bestimmen Sie konkret den Zeitentwicklungsoperator für ein Zwei-Niveau-System mit dem Hamilton-Operator

$$\hat{H}(t) = -b\,\sigma_x\,\sin\omega t,$$

siehe auch Aufgabe 4 von Blatt 6. *Hinweis*: Wie sieht die Taylor-Entwicklung von  $\exp(ia(t)\sigma_x)$  aus? Wie kann man Potenzen von  $\sigma_x$  vereinfachen?

#### Aufgabe 4:

Ein quantenmechanisches System werde durch den Hamilton-Operator  $\hat{H}$  beschreiben. Außerdem soll es eine gerade Anzahl 2N selbstadjungierter Operatoren  $\hat{A}_n$ ,  $n=1,\ldots,2N$  geben mit den Eigenschaften

$$\hat{A}_n^2 = \mathbb{1},$$
 
$$[\hat{A}_n, \hat{H}] = 0,$$
 
$$\hat{A}_m \hat{A}_n = -\hat{A}_n \hat{A}_m \quad \text{für } m \neq n.$$

Die zweite Gleichung sagt aus, dass die  $\hat{A}_n$  Erhaltungsgrößen sind. Aufgrund der dritten Gleichung sind sie aber nicht verträglich – die  $\hat{A}_n$  kommutieren nicht miteinander, sondern sie antikommutieren.

- (a) Wir definieren  $\hat{B}_j := i\hat{A}_{2j-1}\hat{A}_{2j}$  für j = 1, ..., N. Zeigen Sie, dass die  $\hat{B}_j$  hermitesch (sogar selbstadjungiert) sind.
- (b) Welche Eigenwerte können die  $\hat{B}_i$  haben? *Hinweis*: Betrachten Sie  $\hat{B}_i^2$ .
- (c) Zeigen Sie, dass die  $\hat{B}_j$  mit  $\hat{H}$  und untereinander kommutieren. Was folgt daraus für ihre Eigenzustände?
- (d) Sei  $|\psi\rangle$  ein Eigenzustand von  $\hat{H}$  zum Eigenwert E. Zeigen Sie, dass  $\hat{A}_n |\psi\rangle$  überhaupt ein Zustand und insbesondere auch ein Eigenzustand von  $\hat{H}$  zum Eigenwert E ist.
- (e) Zeigen Sie mit Hilfe der bisher erzielten Ergebnisse, dass es mindestens  $2^N$  linear unabhängige Eigenzustände von  $\hat{H}$  zu demselben Eigenwert E gibt. (In anderen Worten, der von den entarteten Eigenvektoren aufgespannte Unterraum des Hilbert-Raums hat mindestens die Dimension  $2^N$ .) Hinweis: Wie verhalten sich  $\hat{A}_n$  und  $\hat{B}_j$  zueinander?