

PCB行业OCR解决方案

产品描述

视觉控制系统

将带有深度学习的多种视觉能力集成在1台设备中,通过灵活快速部署,满足各类任务

灵活光源

支持多种光源灵活部署

工业相机

支持30W像素至6000w相机,支持超过50款不同型号的相机

AI 在 PCB制造各环节中的应用

电镀/沉铜

内外层AOI

阻焊

成检

分拣包装

电镀工艺大数据 分析

AOI假点过滤及 缺陷多分类

塞孔、油墨外观 缺陷检测

AVI假点过滤及 缺陷多分类

混料分拣

案例分享

SmartMore 周篇

项目背景

◆概述:产品为一个PCB面板,将PCB面板上的序列号识别,检测结果给到机械臂去进行分类良品、不良;

◆产品尺寸: 600mm * 600mm

◆客户需求:产品序列号与检孔机检测结果进行绑定,方便客户追溯;

◆效率要求: 在流水线上, 2s/片

PCB

客户挑战

人员成本高

员工招聘-培训-离职,人员流动性大,综合成本高。

目检难度大

人员每天重复性劳动,会疲劳,有情绪, 影响检测效果

检测结果不稳定

无法做到全检,多数情况是抽检。检 测项目简单,只能初步判断有无,而 不是全检

整体成本高

下游厂商的良品率及产品溯源的要求。 不良品一般是整批退回,造成回收成本巨大。人力成本高,投入产出比不匹配

项目难点

识别字符复杂

有其他字体干扰,字符间距近,

样品超过5种,数量多,一致性差

配置要求灵活

现场配置的光源,相机, 视觉控制器比较小,能满 足客户需求

字符印刷不清晰

背景复杂,有背景噪点

需要大视野设备

算法要求高

根据场景,需要使用深度 学习算法。完成对复杂背 景的字符识别

SmartMore 問題

SmartMore 問題

设备介绍

视觉控制系统

强大的图像处理能力

A,无需编程,操作简单,任务界面友好,不需要专业的计算机背景, 只需要简易设置,即可完成任务部署。

- B,快速切换不同任务。打通VIMO平台算法模型,可实现检测,分类,分割,字符提取,扫码等多种功能。仅需30-50张样品,训练模型后,即可导入到视觉控制器进行使用。
- C,算力强,运行速度快。算法运行速度达到ms级别,是CPU运行的10倍。

VIMO模型

丰富的算法支持。提供OCR算法,检测算法,分类算法,分割算法等多种算法支持,可为生产制造的各个环节提供解决方案。

训练过程可视化。产品具备自动参数调优、智能化数据分配等特性,用户无需AI专业知识,只需进行简单参数配置,即可进行一键训模。

测试结果一目了然。模型训练完成后即可进行模型测试,测试结果包含模型信息,测试指标和可视化图像,用户快速判断模型性能。

丰富的相机支持。 支持HiKivision、迈德威视等不同相机,同时提供二次开发的接口,可开发自定义功能。简易设置,无需打开第三方相机软件。可同时接入多个相机,多路任务推理

支持不同的光源型号和打光方式

解决方案分析

上料拍照

AI推理

检测项: 料号/日期

检测结果

按类分拣

- 兼容各类PCB板料
- 2. 兼容所有字符,准确率>99%
- CT < 100ms/片
- 4. 支持多种相机和光源

l OCR字符提取							
相机	1200W, 4024×3036						
镜头	8mm,定焦,						
光源	常亮条形光						
工作距离	50cm						
视野范围	2000mm*2000mm						
检测效率	<100ms						

技术实现

基于深度学习的OCR算法

基于深度学习算法的OCR功能,在图片光照不均、人工合成及文字背景对比不明显的情形下均有很好的效果。相比于传统文字定位方法,具有更好的鲁棒性及明显的优势。

例如:

- 字符扭曲、模糊或同种字符形态多样
- 点状印刷(同一字符不连续)或字符粘连
- 包装弯曲造成的字符遮挡、褶皱、变形
- 反光、打光变化造成的背景干扰
- 要求仅识别部分字符

药包装

食品包装

箱体字符

金属部件

非标字符

不同景深

字符变形

算法效果

通过对采集的30张图片进行数据标注,模型训练,模型准确率达到99%

视觉控制器部署上线

训练平台模型测试

训练平台模型训练

设备对比分析

设备参数对比									
设备	检测工位	适用产品	光学系统	检测时间(按 600mm*600m m最大尺寸计算)	检测指标	检测方案	其他功能		
思谋	OCR字符识别	最小检测元件: >50µm	相机:1200W, 4024×3036 视野:2000mm*500mm	CT<100ms	Escape rate≤0.1% Overkill≤1% <mark>准确率>99%</mark>	AI 图像处理	1) 支持离线运行 2) 自动学习功能 3) 数据保存功能 4) 报警功能		
日本某头部视觉企业		待检产品尺寸: <mark>600mm*600mm</mark> 最小检测元件:>50μm 最小字符间距:<1mm	相机:1200W 视野:2000mm*500mm	CT<100ms	Escape rate≤0.1% Overkill≤1% <mark>准确率<30%</mark>	传统图像处理	1)支持离线编程 2)数据保存功能 3)报警功能		
国内某视觉企业		待检产品尺寸: <mark>600mm*600mm</mark> 最小检测元件:>50μm 最小字符间距:<1mm	相机:1200W 视野:2000mm*500mm	CT<200ms	无法识别	传统图像处理	1)支持离线编程 2)数据保存功能 3)报警功能		

说明:

- 1) 客户现场环境狭小,对相机,光源等有明确要求,需要更加灵活的场景设备;
- 2) 三台设备检测精度相同,但所用的光学方案有差异;
- 3) 思谋采用AI+OCR方案,全程无需编程,模块化操作,可以实现快速的模型切换,适应多种产线任务。

