CP 8.1

Consider the closed-loop transfer function $T(s) = \frac{25}{s^2 + s + 25}$

Develop an m-file to, obtain the Bode plot and verify that the resonant frequency is 5 rad/s and that the peak magnitude Mpw is 14 dB.

```
close all; clear;
fprintf("CP8.1 \n");
```

CP8.1

```
num = [25]; den = [1 1 25];
sys = tf(num, den);
w = logspace(0,1,500);

[mag, phase] = bode(sys, w);
[mp, wr_index] = max(mag);
mp_log = 20*log10(mp); wr = w(wr_index);

fprintf("Mpw = %f dB, wr = %f rad/s", mp_log, wr);
```

```
Mpw = 14.021586 dB, wr = 4.958962 rad/s

figure; bode(sys, w); grid on;
```


CP 8.4

A unity negative feedback system has the loop transfer function $G_c(s)G(s) = \frac{54}{s(s+6)}$.

Determine the closed-loop system bandwidth. Using the bode function obtain the Bode plot and label the plot with the bandwidth.

```
close all; clear;
fprintf("CP8.4 \n");
```

CP8.4

```
num = [54]; den = [1 6 0];
sys = tf(num, den);
sys_closed = feedback(sys,1);
wb = bandwidth(sys_closed);

title_name = strcat('Bandwidth = ', num2str(wb), ' rad/sec');
figure; bode(sys_closed); grid on;
title(title_name);
```


CP 8.9

Design a filter, G(s), with the following frequency response:

- 1. For $\omega < 1 \operatorname{rad}/s$, the magnitude $20 \log_{10} |G(j\omega)| < 0 \, \mathrm{dB}$.
- 2. For $1 < \omega < 1000\,\mathrm{rad}/s$, the magnitude $20\log_{10}|G(j\omega)| \ge 0\,\mathrm{dB}$.
- 3. For $\omega > 1000\,\mathrm{rad}/s$, the magnitude $20\log_{10}\!|G(j\omega)| < 0\,\mathrm{dB}$.

Try to maximize the peak magnitude as close to $\omega = 40 \,\mathrm{rad}/s$ as possible.

Ans.

$$G(s) = K \frac{\sum_{i} (s + z_i)}{\sum_{j} (s + p_j)}$$
, K < 0 for initial condition 1.

zeros: 1, 1000; poles: two poles between 1 ~ 1000

 \implies My design of this system $G(s) = 0.6 \frac{(s+1)(s+1000)}{(s+20)(s+80)}$

```
close all; clear;
fprintf("CP8.9 \n");
```

CP8.9

```
K = 0.6;
a1 = [1 1]; a2 = [1 1000]; a = conv(a1, a2); a = K*a;
b1 = [1 20]; b2 = [1 80]; b = conv(b1, b2);

sys = tf(a, b);
w = logspace(0,3,10000);

[mag, phase] = bode(sys, w);
[mp, wp_index] = max(mag);
wp = w(wp_index);

fprintf("peak magnitude at wp = %f rad/s", wp);
```

peak magnitude at wp = 40.064551 rad/s

figure; bode(sys); grid on;

CP 9.3

Using the nichols function, obtain the Nichols chart with a grid for the following transfer functions:

(a)
$$G(s) = \frac{1}{s+0.2}$$

(b)
$$G(s) = \frac{1}{s^2 + 2s + 1}$$

(c)
$$G(s) = \frac{6}{s^3 + 6s^2 + 11s + 6}$$

Determine the approximate phase and gain margins from the Nichols charts and label the charts accordingly.

```
close all; clear;
fprintf("CP9.3 \n");
```

CP9.3

```
% a
a1 = [1]; b1 = [1 0.2];
sys1 = tf(a1, b1);
figure; nichols(sys1); ngrid;
```


figure; bode(sys1); grid on;


```
% b
a2 = [1]; b2 = [1 2 1];
sys2 = tf(a2, b2);
figure; nichols(sys2); ngrid;
```


figure; bode(sys2); grid on;


```
% c
a3 = [6]; b3 = [1 6 11 6];
sys3 = tf(a3, b3);
figure; nichols(sys3); ngrid;
```


figure; bode(sys3); grid on;

- (a) $G. M. = \infty$ and $P. M. = 120^{\circ}$
- (b) $G. M. = \infty$ and $P. M. = \infty$
- (c) G. M. = 20dB and $P. M. = \infty$