```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

data.head(5)

|   | User_ID | Product_ID | Gender | Age      | Occupation | City_Category | Stay_In_Current_City_Years | Marital_Status | Produc |
|---|---------|------------|--------|----------|------------|---------------|----------------------------|----------------|--------|
| 0 | 1000001 | P00069042  | F      | 0-<br>17 | 10         | А             | 2                          | 0              |        |
| 1 | 1000001 | P00248942  | F      | 0-<br>17 | 10         | А             | 2                          | 0              |        |
| 2 | 1000001 | P00087842  | F      | 0-<br>17 | 10         | А             | 2                          | 0              |        |
| ^ | 1000001 | D0000E440  | -      | 0-       | 40         |               | ^                          | ^              |        |

data.columns

data.shape

(550068, 10)

data.describe()

|       | User_ID      | <b>Occupation</b> | Marital_Status | Product_Category | Purchase      | 1 | ıl. |
|-------|--------------|-------------------|----------------|------------------|---------------|---|-----|
| count | 5.500680e+05 | 550068.000000     | 550068.000000  | 550068.000000    | 550068.000000 |   |     |
| mean  | 1.003029e+06 | 8.076707          | 0.409653       | 5.404270         | 9263.968713   |   |     |
| std   | 1.727592e+03 | 6.522660          | 0.491770       | 3.936211         | 5023.065394   |   |     |
| min   | 1.000001e+06 | 0.000000          | 0.000000       | 1.000000         | 12.000000     |   |     |
| 25%   | 1.001516e+06 | 2.000000          | 0.000000       | 1.000000         | 5823.000000   |   |     |
| 50%   | 1.003077e+06 | 7.000000          | 0.000000       | 5.000000         | 8047.000000   |   |     |
| 75%   | 1.004478e+06 | 14.000000         | 1.000000       | 8.000000         | 12054.000000  |   |     |
| max   | 1.006040e+06 | 20.000000         | 1.000000       | 20.000000        | 23961.000000  |   |     |

 $\verb|sns.boxplot(x=data["Gender"],y=data["Purchase"])|\\$ 

| Purchase | 12  | 13  | 14 | 24  | 25  | 26  | 36  | 37  | 38  | 48  | • • • | 23952 | 23953 | 23954 | 23955 | 23956 | 23958 | 23959 | 239 |
|----------|-----|-----|----|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| Gender   |     |     |    |     |     |     |     |     |     |     |       |       |       |       |       |       |       |       |     |
| F        | 27  | 25  | 30 | 28  | 30  | 27  | 36  | 31  | 34  | 33  |       | 0     | 0     | 0     | 1     | 0     | 0     | 1     |     |
| M        | 74  | 81  | 65 | 90  | 83  | 85  | 71  | 79  | 80  | 75  |       | 1     | 2     | 2     | 2     | 1     | 4     | 1     |     |
| All      | 101 | 106 | 95 | 118 | 113 | 112 | 107 | 110 | 114 | 108 |       | 1     | 2     | 2     | 3     | 1     | 4     | 2     |     |

3 rows × 18106 columns

## Women are not spending more than man

```
## Univariante Analysis
```

```
plt.figure(figsize=(10, 6))
sns.histplot(data=data, x='Purchase', kde=True)
plt.show()
```



```
\label{lem:sns.boxplot(data=data, x='Purchase', orient='h')} $$ plt.show()
```



|      | User_ID | Gender | Purchase | 1 | ıl. |
|------|---------|--------|----------|---|-----|
| 0    | 1000001 | F      | 334093   |   |     |
| 1    | 1000002 | М      | 810472   |   |     |
| 2    | 1000003 | М      | 341635   |   |     |
| 3    | 1000004 | М      | 206468   |   |     |
| 4    | 1000005 | М      | 821001   |   |     |
|      |         |        |          |   |     |
| 5886 | 1006036 | F      | 4116058  |   |     |
| 5887 | 1006037 | F      | 1119538  |   |     |
| 5888 | 1006038 | F      | 90034    |   |     |
| 5889 | 1006039 | F      | 590319   |   |     |
| 5890 | 1006040 | М      | 1653299  |   |     |
|      |         |        |          |   |     |

5891 rows × 3 columns

```
amt_df[amt_df['Gender']=='M']['Purchase'].hist(bins=35)
plt.show()
amt_df[amt_df['Gender']=='F']['Purchase'].hist(bins=35)
plt.show()
```

```
1400
      1200
      1000
male_avg = amt_df[amt_df['Gender']=='M']['Purchase'].mean()
female_avg = amt_df[amt_df['Gender']=='F']['Purchase'].mean()
print("Average amount spend by Male customers: {:.2f}".format(male_avg))
print("Average amount spend by Female customers: {:.2f}".format(female_avg))
     Average amount spend by Male customers: 925344.40
    Average amount spend by Female customers: 712024.39
male df = amt df[amt df['Gender']=='M']
female_df = amt_df[amt_df['Gender']=='F']
genders = ["M", "F"]
male_sample_size = 3000
female_sample_size = 1500
num repitions = 1000
male_means = []
female means = []
for _ in range(num_repitions):
    male_mean = male_df.sample(male_sample_size, replace=True)['Purchase'].mean()
    female_mean = female_df.sample(female_sample_size, replace=True)['Purchase'].mean()
    male_means.append(male_mean)
    female_means.append(female_mean)
          fig, axis = plt.subplots(nrows=1, ncols=2, figsize=(20, 6))
axis[0].hist(male_means, bins=35)
axis[1].hist(female_means, bins=35)
axis[0].set_title("Male - Distribution of means, Sample size: 3000")
axis[1].set_title("Female - Distribution of means, Sample size: 1500")
plt.show()
```





```
print("Population mean - Mean of sample means of amount spend for Male: {:.2f}".format(np.mean(male_means)))
print("Population mean - Mean of sample means of amount spend for Female: {:.2f}".format(np.mean(female_means)))

print("\nMale - Sample mean: {:.2f} Sample std: {:.2f}".format(male_df['Purchase'].mean(), male_df['Purchase'].std()))

print("Female - Sample mean: {:.2f} Sample std: {:.2f}".format(female_df['Purchase'].mean(), female_df['Purchase'].std()))

Population mean - Mean of sample means of amount spend for Male: 925203.96
Population mean - Mean of sample means of amount spend for Female: 712059.99

Male - Sample mean: 925344.40 Sample std: 985830.10
Female - Sample mean: 712024.39 Sample std: 807370.73
```

```
male_margin_of_error_clt = 1.96*male_df['Purchase'].std()/np.sqrt(len(male_df))
male_sample_mean = male_df['Purchase'].mean()
male_lower_lim = male_sample_mean - male_margin_of_error_clt
male_upper_lim = male_sample_mean + male_margin_of_error_clt
female_margin_of_error_clt = 1.96*female_df['Purchase'].std()/np.sqrt(len(female_df))
female sample mean = female df['Purchase'].mean()
female_lower_lim = female_sample_mean - female_margin_of_error_clt
female_upper_lim = female_sample_mean + female_margin_of_error_clt
\label{eq:print}  \texttt{print}(\texttt{"Male confidence interval of means: (\{:.2f\}, \{:.2f\})".format(\texttt{male\_lower\_lim}, \texttt{male\_upper\_lim}))} 
print("Female confidence interval of means: ({:.2f}, {:.2f})".format(female_lower_lim, female_upper_lim))
     Male confidence interval of means: (895617.83, 955070.97)
     Female confidence interval of means: (673254.77, 750794.02)
amt_df = data.groupby(['User_ID', 'Age'])[['Purchase']].sum()
amt_df = amt_df.reset_index()
amt df
            User_ID
                       Age Purchase
       0
            1000001
                      0-17
                              334093
                              810472
            1000002
                       55+
       1
       2
            1000003 26-35
                              341635
            1000004 46-50
                              206468
       3
       4
            1000005 26-35
                              821001
       ...
                             4116058
           1006036 26-35
      5886
      5887
            1006037 46-50
                             1119538
      5888
           1006038
                       55+
                               90034
      5889
           1006039 46-50
                              590319
      5890 1006040 26-35
                             1653299
     5891 rows × 3 columns
amt_df['Age'].value_counts()
     26-35
              2053
     36-45
              1167
     18-25
              1069
     46-50
               531
     51-55
               372
     55+
     0-17
               218
     Name: Age, dtype: int64
sample size = 200
num_repitions = 1000
all_means = {}
age_intervals = ['26-35', '36-45', '18-25', '46-50', '51-55', '55+', '0-17']
for age_interval in age_intervals:
    all_means[age_interval] = []
for age_interval in age_intervals:
    for in range(num repitions):
        mean = amt_df[amt_df['Age']==age_interval].sample(sample_size, replace=True)['Purchase'].mean()
        all_means[age_interval].append(mean)
for val in ['26-35', '36-45', '18-25', '46-50', '51-55', '55+', '0-17']:
    new_df = amt_df[amt_df['Age']==val]
    margin_of_error_clt = 1.96*new_df['Purchase'].std()/np.sqrt(len(new_df))
    sample_mean = new_df['Purchase'].mean()
    lower_lim = sample_mean - margin_of_error_clt
    upper_lim = sample_mean + margin_of_error_clt
    print("For age {} --> confidence interval of means: ({:.2f}, {:.2f})".format(val, lower_lim, upper_lim))
```

```
For age 26-35 --> confidence interval of means: (945034.42, 1034284.21)
For age 36-45 --> confidence interval of means: (823347.80, 935983.62)
For age 18-25 --> confidence interval of means: (801632.78, 908093.46)
For age 46-50 --> confidence interval of means: (713505.63, 871591.93)
For age 51-55 --> confidence interval of means: (692392.43, 834009.42)
For age 55+ --> confidence interval of means: (476948.26, 602446.23)
For age 0-17 --> confidence interval of means: (527662.46, 710073.17)
```

✓ 0s completed at 11:00 PM

• ×