

Types of ML

Types of Machine Learning Techniques

- The machine learning algorithms which we will be covering are
 - Supervised learning algorithms
 - Unsupervised learning algorithms

Models for Supervised Learning

- We identify strong links between variables of a data table (columns).
- Such a link may translate into an expression between one variable y
 (the so-called "dependent" or "response" or "label" variable) and a
 group of other variables {xi} (the so-called "independent variables" or
 "predictors" or "features"):

 $y = f(x_1, x_2, ..., x_p) + Small random noise$

Models for Supervised Learning

- When the response variable is numerical, predictive modeling is called Regression.
- When the response variable is nominal / categorical, predictive modeling is called Classification. The values of the response variable can be considered as "class labels" in this case.

Examples

- Regression Case: Sales are influenced by the variables like advertisement expenses, manpower deployed for sales, cost of products, number of dealers etc. Hence we see here Sales = function (Adv. Exp, Manpower, Cost, Dealers, ...)
- Classification Case: The customer may purchase a particular product based on some conditions like his need, his age, his income, his place of residence etc. Hence we see here

Prob(Customer Purchases) = function(Age, Income, Residence,...)

Short Quiz: Identify the type

- 1. An e-commerce company using labeled customer data to predict whether or not a customer will purchase a particular item.
- A healthcare company using data about cancer tumors (such as their geometric measurements) to predict whether a new tumor is benign or malignant.
- 3. A factory wanting to predict the time before a break-down of its production machines.
- 4. A restaurant using review data to ascribe positive or negative sentiment to a given review.
- 5. A bike share company using time and weather data to predict the number of bikes being rented at any given hour.

Short Quiz: Answers

- 1. An e-commerce company using labeled customer data to predict whether or not a customer will purchase a particular item. --- Classification
- A healthcare company using data about cancer tumors (such as their geometric measurements) to predict whether a new tumor is benign or malignant. --- Classification
- 3. A factory wanting to predict the time before a break-down of its production machines. --- **Regression**
- 4. A restaurant using review data to ascribe positive or negative sentiment to a given review. --- Classification
- 5. A bike share company using time and weather data to predict the number of bikes being rented at any given hour. --- Regression

Examples: Supervised Learning

- Naïve Bayes
- K-NN
- Decision Trees
- Regression Models
- Neural Nets
- Support Vector Machines

Partitioning in Supervised Learning

- In Supervised Learning, we partition the data
- We typically deal with two or three partitions:
 - a training set,
 - a Test set,
 - and sometimes an additional test set.

Training Partition

- Typically the largest partition
- Contains the data used to build the various models we are examining
- Generally used to develop multiple models.

Test Partition

- Used to assess the performance of each model so that you can compare models and pick the best one.
- This partition is used for internally verifying the performance of the models
- Important for measuring the goodness of fit

Supervised Learning Process with 2 partitions

Unsupervised Learning

- Unsupervised learning algorithms are those used where there is no outcome variable to predict or classify.
- Association rules, data reduction methods, and clustering techniques are all unsupervised learning methods.

Examples of Unsupervised Learning

- Clustering Techniques
 - Hierarchical
 - K-means
 - DBSCAN
- Principal Component Analysis
- Association Rules

Lifecycle of any ML Project

Define the scope

Deciding what you want to do

Collect / Extract the Data

Pull the data from different sources

Deploy the Model

 Deploy and Maintain the model

Train an appropriate Model

 Train and evaluate different ML models

Technologies for ML

Desktop Software

- Click and Drag (Menu Driven)
 - KNIME
 - RapidMiner
 - SAS Enterprise Miner
 - IBM SPSS Modeller

Programming Languages

- R
- Python
- Julia
- Scala

- An open source project
- Fast on desktop with small sized data
- Add-ins (packages) available for every statistical/ML algorithm in the world
- Has been used since last 2 decades for statistical computing by statistical professionals community
- There are good IDEs available like RStudio, RTVS, R Commander, Tinn-R, STATET(Eclipse plug-in) etc.
- Among IDEs R Studio is most known
- Provides a scope for implementing our own algorithms being an open source language

- An open source project
- Fast on desktop with small sized data
- Add-ins (packages) available for every statistical/ML algorithm in the world
- The statistical aspects of Python have been developed recently
- There are good IDEs available like Spyder(Anaconda Installation), PyCharm etc.
- Provides a scope for implementing our own algorithms being an open source language

Cloud-Based Platform

- Amazon Web Services
- Microsoft Azure
- Google Cloud Al

Large Scale Data Processing Libraries

- Libraries are such kind of modules which are language independent.
- Using libraries, one can code in R / Python / Java
- Well known libraries for ML are
 - Apache Spark
 - h2o (by h2o.ai)
 - TensorFlow (by Google)
 - Theano (by University of Montreal)
 - CNTK (by Microsoft)
- All of the above provide support for GPU-based operations for algorithms in Deep Learning
- The superb feature which these libraries provide is the fast speed that too at relatively low cost.

Thank You