(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 3 January 2002 (03.01.2002)

(10) International Publication Number WO 02/00244 A2

(51) International Patent Classification7: A61K 38/00 (21) International Application Number: PCT/US01/41110

(22) International Filing Date:

22 June 2001 (22.06.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 09/605,266

28 June 2000 (28.06.2000) US

(71) Applicant: SULZER BIOLOGICS INC. [US/US]; 9900 Spectrum Drive, Austin, TX 78717 (US).

(72) Inventors: AKELLA, Rama; 8811 Spiltarrow Drive, Austin, TX 78717 (US). RANIERI, John, P.; 1406A Molhe Drive, Austin, TX 78703 (US).

- (74) Agent: SCOTT, Timothy, L.; Sulzer Medica USA Inc., 3 East Greenway Plaza, Suite 1600, Houston, TX 77046
- (81) Designated States (national): CA, JP.
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROTEIN MIXTURES FOR WOUND HEALING

66 45 36

20

(57) Abstract: A protein mixture that is useful in the treatment of wounds, where the mixture is isolated from bone or is produced from recombinant proteins and may include two or more of BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, BMP-7, TGF-β1, TGF-β2, TGF-β3, and FGF-1.

Protein Mixtures for Wound Healing

Description

5 Background Art

10

15

20

25

30

The invention relates to use of protein mixtures, comprising a variety of growth factors, for use in the treatment of wounds.

Wound healing is a complex process involving several cell types and growth factors for an effective closure. The normal wound healing process can be broadly classified into three stages namely the inflammatory, proliferative and maturation phases. The inflammatory phase lasts 0-2 days and involves an orderly recruitment of cells to the wound area. This is followed by the 2-6 day proliferative phase, in which fibroblasts, keratinocytes and other cells in the wound bed begin to actively proliferate to close the wound. The maturation phase follows the proliferative phase, peaking at 21 days, by which time the wound is completely healed by restructuring the initial scar tissue.

A problematic wound does not follow the normal timetable for the healing process as described above. A problematic wound could fail to follow the normal healing process for any number of reasons, including nutrition, vascular status, metabolic factors, age, immune status, drug therapy, neurologic status and psychologic status, among others. Several local factors also play an important role in wound healing, including the presence of necrotic tissue in the area, infection, foreign body presence, degree of desiccation, presence of edema, pressure, friction, shear maceration and dermatitis.

It has been shown from wound fluid composition studies that growth factors play an important role in all three phases of wound healing. The cell types that are recruited to the wound area secrete growth factors that assist in and promote the wound healing process. Platelets, for example, are the first cell type to be recruited at the wound site, and initiate the wound healing process by secreting growth factors (i.e., platelet derived growth factors, or PDGF) which are chemotactic for other cell types. By so doing, the platelets assist in the recruitment and proliferation of additional cell types that promote synthesis of new tissue. In addition to the above mentioned functional properties, growth factors also have the ability to regulate protein synthesis within the cell and control intracellular signaling thus allowing cells to communicate with one another.

Since wound healing is a complex process, which involves formation of connective tissue, and new blood vessels to nourish the site, it is evident that several growth factors

15

20

25

30

come into play. In chronic wounds there is an increase in collagenase activity and higher levels of inflammatory cytokines. Additionally, there is an absence of growth factors in the wound fluid, which causes the cells to be mitotically incompetent. All of these factors cause impaired wound healing. Some of these factors have been studied in the preclinical animal models as well as in the clinic. Most growth factor studies involving the wound healing process involve tests in the 20-25 day range, which appears to adequately model the normal wound healing process. However, it is now realized that to get 100% closure of problematic wounds, longer study periods such as long as 6 months or more would be advantageous.

The only FDA approved growth factor for wound healing use in the clinic is platelet derived growth factor (PDGF) marketed by Ortho-McNeil Pharmaceutical as REGRANEX(r). REGRANEX(r) contains becaplermin, a recombinant human platelet-derived growth factor (rhPDGF-BB) for topical administration. Becaplermin is produced by recombinant DNA technology by insertion of the gene for the B chain of platelet derived growth factor (PDGF) into yeast. Becaplermin has a molecular weight of approximately 25 KD and is a homodimer composed of two identical polypeptide chains that are bound together by disulfide bonds. REGRANEX(r) is a non-sterile, low bioburden, preserved, sodium carboxymethylcellulose-based (CMC) topical gel, containing the active ingredient becaplermin and the inactive ingredients sodium chloride, sodium acetate trihydrate, glacial acetic acid, water for injection, and methylparaben, propylparaben, and m-cresol as preservatives and l-lysine hydrochloride as a stabilizer.

Studies of various growth factors in the wound healing process have been conducted. Some of the findings from these studies are summarized below:

- 1) PDGF-BB (the growth factor in REGRANEX(r)) is a chemoattractant for neutrophils, monocytes, and fibroblasts. In wound healing applications it has been shown to increase extracellular matrix deposition and enhance proliferation of fibroblasts. PDFG is not an angiogen, however. Thus, additional growth factors will be required for the healthy maintenance of neodermis.
- 2) Fibroblast Growth Factor (FGF) increases capillary density and proliferation of fibroblasts. A topical application in gel form was tested and it was shown that there was no systemic absorption of the protein (<1% of the dose detected).
- 3) Transforming growth factor \(\beta 2 \) (TGF \(\beta 2 \)) is a growth factor that enhances proliferation of several cell types both in vitro and in vivo and has been tested in venous ulcer healing and in diabetic foot ulcer trials. In a two-arm clinical study a 40% reduction

15

20

25

30

of wound size compared to the control wound was observed in 6 weeks when used at 0.5 μg/cm². However, in a 3 arm clinical study when 2.5 μg/cm² was tested for comparison against standard XEROFORM(tm) dressing, the results were not very encouraging.

- 4) Epidermal growth Factor (EGF) produced by platelets and macrophages is a mitogen for epithelial cells. This growth factor was first tested in burn patients and the initial results were promising. However, when tested in volunteers there was no difference between growth factor treatments and placebo. This could be due to the fact that EGF is not good for migration of keratinocytes, but is a good mitotic agent.
- 5) Keratinocyte Growth Factor-2 (KGF-2) was tested for its ability to increase ephithelialization. By day 6 the interstices were closed. KGF-2 promotes re-10 epithelialization in young and old animals suggesting indirect mechanisms for neogranulation tissue formation. Xia Y.D., et al., J. Pathol. (1999) 188: 431-438. There is increased resistance to mechanical stress of healed wounds; hence KGF-2 may be useful for the treatment of surgical wounds. Jiminez, P.A. & Rampy, M.A., (1999) J. Surg. Res. 81: 238-242.
 - 6) Connective tissue growth factor (CTGF) is a secreted, mitogenic, chemotactic and cell matrix inducing factor encoded by an immediate early growth responsive gene. Involvement of CTGF in human atherosclerosis and fibrotic disorders suggests a role in tissue regeneration like wound repair, but also in aberrant deposition of extracellular matrix. In fact, anti-CTFG antibodies have been used to block the fibrotic cascade.

Studies on the kinetics of action of various growth factors demonstrated that some growth factors such as granulocyte-monocyte colony stimulating factor (GMCSF) and bovine FGF acted sequentially. It was hypothesized that a combination of growth factors would be better than a single growth factor treatment. However, in animal models, a combination of these two factors actually slowed the regenerative process and healing never achieved 100%. Hence, sequential delivery of these factors was attempted: GMCSF was administered first followed by FGF delivery 25 days later. In a single study, no improvement over control could be demonstrated.

In yet another study combining TGF-B, bFGF (basic FGF) and CTGF it was found that TGF-B1, TGF-B2 or TGF-B3 caused skin fibrosis after 3 days of continuous injection but the change was transient and disappeared after 7 days of continuous injection. In contrast, irreversible fibrosis was observed upon simultaneous injection of TGF-B and bFGF or TGF-ß and CTGF, or TGF-ß injection for the first 3 days followed by bFGF or CTGF injection for the next 4 days. These observations suggest that TGF-ß1 induces skin fibrosis and bFGF or CTGF maintains it in various skin fibrotic disorders.

Another way of obtaining growth factor mixtures considered the use of platelet releasate, which contains a collection of growth factors released from platelets derived from blood. The advantages of this material are that it is autologous or homologous, and is readily available and presumably contains the required factors in the proper ratio. To date, although some improvement in the healing process was observed initially, by 24 weeks there was no difference between growth factor and placebo treatments.

It is thus apparent that although several polypeptide growth factors have shown significant biological activity in pre-clinical wound repair models, the only growth factor that has proven to be effective in the clinic is the human recombinant PDGF-BB. This may be due to poor delivery, drug instability or the inability of a single factor to orchestrate the complex process of wound healing. An effective treatment should address issues such as angiogenesis, efficient collagen deposition and proper epithelialization to close the wound.

Summary of Invention

10

15

20

25

30

The invention comprises compositions and methods for improving the wound healing process in living animals, including human subjects. In preferred embodiments, the invention comprises a mixture of growth factors, which improve the wound healing process. In this context, the terms "excluding," "exclusion," or "excluded" refers to the removal of substantially all of an indicated component, to the extent that such component can be removed from a mixture with immunoaffinity chromatography or otherwise not included in the mixture. The term "pharmaceutically acceptable carrier" is used herein in the ordinary sense of the term and includes all known carriers including water.

"BP" is a protein cocktail derived from bone as described in U.S. Patent Nos. 5,290,763, 5,371,191, and 5,563,124 (each of which is hereby incorporated by reference herein in its entirety). In brief, the cocktail is prepared by guanidine hydrochloride protein extraction of demineralized bone particles. The extract solution is filtered, and subjected to a two step ultrafiltration process. In the first ultrafiltration step an ultrafiltration membrane having a nominal molecular weight cut off (MWCO) of 100 kD is employed. The retentate is discarded and the filtrate is subjected to a second ultrafiltration step using an ultrafiltration membrane having a nominal MWCO of about 10 kD. The retentate is then subjected to diafiltration to substitute urea for guanidine. The protein-containing urea solution is then subjected to sequential ion exchange chromatography, first anion exchange chromatography followed by cation exchange chromatography. The osteoinductive proteins

15

20

25

30

produced by the above process are then subjected to HPLC with a preparative VYDAC(tm) column at and eluted with shallow increasing gradient of acetonitrile. One minute fractions of the HPLC column eluate are pooled to make the BP cocktail (fraction number can vary slightly with solvent composition, resin size, volume of production lot, etc.). One embodiment of the BP cocktail is characterized as shown in Figures 1-6. Absolute and relative amounts of the growth factors present in the BP cocktail can be varied by collecting different fractions of the HPLC eluate. In a particularly preferred embodiment, fractions 29-34 are pooled. It is also contemplated that certain proteins may be excluded from the BP mixture without affecting wound healing activity.

BP was originally discovered as a mixture of proteins known to have osteogenic activity. However, it contains a plurality of growth factors and is strongly angiogenic. In particular, BP contains a number of bone morphogenetic proteins (BMPs), including BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, and BMP-7, as well as TGF-81, TGF-82, and TGF-83. FGF-1 is also present in the mixture. The presence of each of the foregoing proteins was detected using immunoblot techniques, as depicted Figure 14. When BP was tested in an animal model to determine if it would be effective in aiding wound closure, it was surprisingly discovered that BP promotes wound healing, even though it is a markedly different process than osteogenesis.

The protein compositions of the invention can be advantageously combined with traditional wound dressings including primary and secondary dressings, wet-to-dry dressings, absorbent dressings, nonadherent dressings, semipermeable dressings, transparent dressings, hydrocolloid dressings, hydrogels, foam dressings, alginate dressings, surgical tapes and the like as is appropriate for the type of wound being treated.

Compositions according to the present invention may also be combined with a variety of other active ingredients, such as aloe vera, arginine, glutamine, zinc, copper, vitamin C, B vitamins and other nutritional supplements, antibiotics, antiseptics, antifungals, deodorizers, and the like. Embodiments of the invention can also be combined with a variety of anti-inflammatory agents that inhibit the action of proinflammatory cytokines such as interleukin-1, interleukin-6 and tumor necrosis factor-alpha. Many such inhibitors are well known, such as IL-1Ra, soluble TGF-ß receptor, cortocosteroids, and it is believed that more will be discovered in the future.

In one embodiment, the invention is a composition for the treatment of wounds comprising the proteins BMP-3 and TGF-ß2 in a pharmaceutically acceptable carrier. As shown in Figure 18, BMP-3 is the growth factor present in the highest concentration in the

10

15

20

25

30

BP mixture. TGF-ß2 is believed to play an important role in wound healing because it promotes the proliferation of several cell types, which is important, for example, in the proliferative stage of the wound healing process. As already noted, TGF-ß2 alone has been the subject of study as a wound healing agent. Without limitation as to specific mechanisms, it is believed that these two growth factors may be significant in the wound healing activity displayed by BP.

In another embodiment, compositions of the present invention comprise BMP-3, TGF-B2, and one or more of BMP-2, BMP-4, BMP-5, BMP-6, and BMP-7 in a pharmaceutically acceptable carrier. BMP-6 is known to induce a cascade of events leading to the expression of both BMP-2 and BMP-4, both of which are known to have osteogenic activity. BMP-2 has also been implicated in the regulation of kidney tissue regeneration. BMP-7 (also known as OP-1) is currently undergoing preclinical testing as a wound-healing agent.

In still another embodiment, compositions of the present invention comprise BMP-3, TGF-82, one or more of BMP-2, BMP-4, BMP-5, BMP-6, and BMP-7, and one or more of FGF-1, TGF-81, and TGF-83. FGF-1 is known to be an angiogenic growth factor, although its activity is not as pronounced as FGF-2, which has not been detected in BP. TGF-81 and TGF-83 are both known to enhance cell proliferation.

The presence of a number of proteins, which are believed to have no growth factor activity has been detected in BP. Accordingly, these proteins, including histone proteins, ribosomal proteins, or both, may be excluded from compositions of the present invention. Alternatively, the composition may comprise the BP mixture isolated as described in U.S. Patent Nos. 5,290,763, 5,371,191, and 5,563,124 as shown in Figures 2 and 3 (lanes inside the box pooled to make BP). Histones and ribosomes may be excluded from the BP by, for example, antibody binding or other techniques known in the art. Additionally, the composition of matter may contain one or more of the listed active components supplied as a recombinantly produced protein. Preferably, the components are isolated from a natural source and are at least partially phosphorylated and glycosylated.

In another embodiment, the above compositions are used in wound healing applications together with a pharmaceutically acceptable carrier. The pharmaceutically acceptable carrier includes dressings such as hydrocolloid dressings, hydrogels, foam dressings, and alginate dressings. Additional active ingredients may include arginine, glutamine, zinc, copper, vitamin C, vitamin B1, vitamin B2, vitamin B3, vitamin B6, vitamin B12, and folate or growth factors such as epidermal growth factor, platelet derived

. 10

15

20

25

growth factor, insulin-like growth factor, keratinocyte growth factor, vascular endothelial growth factor, transforming growth factor alpha, nerve growth factor, connective tissue growth factor and granulocyte-monocyte colony stimulating factor. Inflammation inhibitor, such as interleukin-1 inhibitor, interleukin-6 inhibitor and tumor necrosis factor-alpha inhibitor may also be added to the composition. Of course, pain relief agents, disinfectants, antibiotics and other active ingredients suitable for particular wound applications may also be added thereto.

Brief Description of Drawings

Figure 1 illustrates an SDS-PAGE of a protein mixture according to the present invention, both in reduced and nonreduced forms.

Figure 2 is an SDS-PAGE gel of HPLC fractions 27-36 of a protein mixture according to an embodiment of the present invention.

Figure 3 is an SDS-PAGE gel with identified bands indicated according to the legend of Figure 4.

Figure 4 is an SDS-PAGE gel of a protein mixture according to an embodiment of the present invention with identified bands indicated, as provided in the legend.

Figure 5 is two-dimensional (2-D) SDS-PAGE gel of a protein mixture according to an embodiment of the present invention with internal standards indicated by arrows.

Figure 6 is a 2-D SDS-PAGE gel of a protein mixture according to an embodiment of the present invention with circled proteins identified as in the legend.

Figures 7A-O are mass spectrometer results for tryptic fragments from onedimensional (1-D) gels of a protein mixture according to an embodiment of the present invention.

Figure 8 is a 2-D gel Western blot of a protein mixture according to an embodiment of the present invention labeled with anti-phosphotyrosine antibody.

Figures 9A-D are 2-D gel Western blots of a protein mixture according to an embodiment of the present invention, labeled with indicated antibodies. Figure 9A indicates the presence of BMP-3 and BMP-2. Figure 9B indicates the presence of BMP-3 and BMP-7 and BMP-7, and Figure 9D indicates the

7. Figure 9C indicates the presence of BMP-7 and BMP-2, and Figure 9D indicates to presence of BMP-3 and TGF-\(\beta\)1.

Figure 10 is a PAS (periodic acid schiff) stained SDS-PAGE gel of HPLC fractions of a protein mixture according to an embodiment of the present invention.

Figure 11is an anti-BMP-7 stained SDS-PAGE gel of a PNGase F treated protein mixture according to an embodiment of the present invention.

10

20

25

30

Figure 12 is an anti-BMP-2 stained SDS-PAGE gel of a PNGase F treated protein mixture according to an embodiment of the present invention.

Figures 13A-B are bar charts showing explant mass of glycosylated components in a protein mixture according to an embodiment of the present invention (Figure 13A) and ALP score (Figure 13B) of the same components.

Figure 14 is a chart showing antibody listing and reactivity.

Figures 15A-B together comprise a chart showing tryptic fragment sequencing data for components of a protein mixture according to an embodiment of the present invention.

Figures 16A-F together comprise a chart showing tryptic fragment mass spectrometry data for components of a protein mixture according to an embodiment of the present invention.

Figures 17A-B are an SDS-gel (Figure 17B) and a scanning densitometer scan (Figure 17A) of the same gel for a protein mixture according to an embodiment of the present invention.

Figure 18 is a chart illustrating the relative mass, from scanning densitometer quantification, of protein components in a protein mixture according to an embodiment of the present invention.

Figures 19A-D together comprise a chart showing mass spectrometry data of various protein fragments from 2D gels of a protein mixture according to an embodiment of the present invention.

Detailed Description of the Invention

EXAMPLE 1. BP IN SINGLE DOSE APPLICATION TO NUDE MICE

A single dose application of BP to full thickness wounds in nude mice covered with human meshed split thickness skin grafts has been found to heal the wound completely and faster than wounds not receiving the growth factor mixture. Although the specific manner in which the growth factors in BP affect the wound healing process is not fully understood, it is hypothesized that the synergistic action of the multiple growth factors present in BP helps the wounds recover better than those in control animals that have received the carrier alone.

Full thickness wounds were created in nude mice such that the wound area comprised about 20% of the total body surface. BP was prepared as in U.S. Patent Nos. 5,290,763, 5,371,191, and 5,563,124, and applied to the wound in a povidone carrier. The wound was then covered with human meshed split thickness skin grafts. The control group of animals received only the povidone carrier. The graft sites were dressed and closed with

10

15

20

25

band-aids to keep the dressing securely in place. The first dressing changes were carried out on day 5 post operative and every third day thereafter. The basic protocol is also described in "Clinical and Experimental Approaches to Dermal and Epidermal Repair: Normal and Chronic Wounds," pp. 429-442 (1991) Wiley-Liss, Inc. and Cooper M.L., et al., The Effects of Epidermal Growth factor and basic Fibroblast Growth factor on Epithelialization of Meshed Skin Graft Interstices, Prog. Clin. Biol. Res. (1991) 365: 429-42. Such protocols are known to persons of skill in the art.

The results were strongly encouraging. Single application of two concentrations (either $100 \mu g/wound$ site or $200 \mu g/wound$ site) of growth factor were tested. There was no difference either in the rate or degree of wound healing between the two groups. However, there was a marked difference between the group of animals that received the growth factor treatment and the control animals that did not receive the growth factor. By day 11 POD (post operative day), a 95% wound closure was observed in the animals that received the growth factor whereas the control animals showed only a 74% closure. By day 14 POD all growth factor treated animals had a 100% closure while the control animals had only a 85% closure as of day 20 POD.

The thickness of the epithelial layer in BP treated wounds was significantly higher in BP treated animals compared to the control animals, as shown in Table 1. The data represents the thickness of neodermis in mm measured on day 11 for the BP treated animals and day 16 for the control animals such that measurements are made at equivalent extents of healing. Histological analysis revealed that the wounds were closed by the human cells from the grafted material and there was collagen deposition in the closed wounds as revealed by involucrin and collagen type 1 immuno histological staining (data not shown). The capillary density in the wound bed following BP treatment was also significantly higher at the time of wound closure compared to untreated controls, as shown in Table 1. Further, in the animals treated with the lower BP dosage, there was a significant increase in the smooth muscle cell (SMC) count in the BP treated wounds as compared to the controls, as also seen in Table 1.

PCT/US01/41110

5

10

15

20

Table 1. Wound Thickness, Capillary Count and SMC Count for BP and Control Treated Wounds.

	Treatment				
	100 μg BP (n=5)	200 μg BP (n=5)	Control (n=10)		
Epithelial Thickness (mm)	$1.60 \pm 0.12 (P < 0.001)$	$1.55 \pm 0.09 (P < 0.001)$	1.1 ±0.25		
Capillary/Field	37 ±6 (P<0.01)	$35 \pm 7 (P < 0.01)$	25± 5.9		
SMC counts/Field	53 ± 3.5 (P<0.001)	46.8 ± 4.4 (P<0.05)	46 ± 5.8		

In summary, a single dose application of BP was effective in reducing the healing time of full thickness wound in nude mice grafted with human meshed split thickness skin. Additionally, the thickness of the neodermis and the density of the capillaries in the treated wounds were significantly higher compared to the control group of animals. In contrast, bFGF, also an angiogenic growth factor, was shown to have a deleterious effect on epithelialization when tested in a similar animal model. (Cooper, M.L. et al., 1991; Clinical and experimental approaches to dermal and epidermal repair: normal and chronic wounds, pp 429-442; Weilly-Liss, Inc.).

EXAMPLE 2. BP IN HYDROGEL

A small number of animals (n=3) were treated with BP solubilized in a hydrogel (carboxy-methyl cellulose) in the same animal model as described above. In this study, it was observed that the wounds (n=2) treated with BP in the hydrogel showed initiation of epithelialization as early as 5 days post operation compared to the wounds treated with BP solubilized in 1% povidone, which showed initiation of epithelialization only at 8 days post operation (data not shown). In both instances, the control animals that received the carrier alone did not show initiation of epithelialization until POD 8. Detailed histology is being carried out on the tissue samples to determine the thickness of the neodermis and the degree of angiogenesis in the wounds treated with the hydrogel formulation. However, wound closure data is presented in Table 2, below.

10

15

Table 2. Percent Wound Closure for BP and Control Treated Wounds.

	. 道:	Percent	Wound Clost	ire (%).	
	Animal#.	POD 5	POD 8	POD.II	POD-14
*Control (no BP)	1	0	50	70	70
Control (hydrogel, no BP, no salts)	2	25	70	70	100
BP & hydrogel, no salts	3	0	70	90	100
BP & hydrogel, no salts	4	25	80	90	90
BP & hydrogel, salts (some precipitate formed, probably due to buffering salts)	5	0	80	90	100

^{*} The control animal had very thin and fragile skin at the time of biopsy compared to the animals, which received BP.

In summary, the results were very promising although preliminary, showing quicker wound closure in BP treated than control animals. Thus, more extensive experiments were undertaken to confirm the results, as described below.

EXAMPLE 3. COMPARATIVE STUDY BETWEEN REGRENEX(r) AND BP

REGRANEX(r) (PDGF-BB), the only approved growth factor product in the market for treating diabetic foot ulcers, showed complete healing in 50% of the patient population compared to the 35% placebo gel treatment that demonstrated complete healing after repeat application for about 20 weeks in diabetic patients (see REGRANEX(r) U.S. full prescribing information - package insert). Hence, a comparison of REGRANEX(r) (tm) versus BP was undertaken in a study similar to that described above. The results are presented in Tables 3 and 4.

Table 3. BP, Hydrogel (HG) and Regranex® Treated Wounds and Percent Wound Closure (%), Epithelial Thickness (mm) and Degree of Angiogenesis (# Estimated Capillaries per 20x Field).

	Percent (9) Woun	l Closur			ED.	Angio
	Percent (§	19 山				(un)	cap/hpf 20x)
Animal	direatments Group (1982)	ROD	RODE	#POD*4	POD	EPO DE	POD=
1	BP	10	25	85	100	17.5	28
2	BP	10					
3	BP	15					
4	BP	10					
5	BP	10	30	85	80	7.5	16
6	BP	10					
7	BP	10	10				
8	BP	10	30	85	100	11.5	26
9	BP	30	50	85	100	16	21
10	BP	30	50	85	100	12	20
11	BP	20	45	85	100	18	18
12	BP	10	15	85	90	6	20
13	BP	10	20	95	100	5.5	23
14	BP	15	25	90	100	10	32
15	BP	5	50	90	95	14	25
n		15	11	10	10	10	10
mean		13.67	31.82	87.00	96.50	11.80	22.9
SD		7.43	14.71	3.50	6.69	4.58	4.88
SEM		0.54	0.46	0.04	0.07	0.39	
16	HG	15	35	75	55	12.5	28
17	HG	10	60	70	95	10.5	5
18	HG	5	25	60	95	9	34
19	HG	10	30	70	90	17.5	8
20	HG	20	40	80	95	17.5	20
21	HG	10	10	80	95	13	15
22	HG	30	80	70	90	10	
23	HG	10	80	80	90	20	10
24	HG	15	40	70	90	18	15
25	HG	20	35	70	90	10.5	16
26	HG	10	10	70	90	12.5	20
27	HG	10	35	70	90	8	32
28	HG	10	55				
29	HG	5	40				
30	HG	15	40	70			
n		15	15	13	12	12	11
mean		13.00	41.00	71.92	88.75	13.25	18.455

SD		6.49	20.72	5.60	10.90	4.01	9.55
SEM		0.50	0.51	0.08	0.12	0.30	
31	Regranex	20	30	55	75	16	
32	Regranex	15	80				13
33	Regranex	20	80	100	100	8.5	4
34	Regranex	15	50	90	100	10	
35	Regranex	40	75				6
36	Regranex	15	70	90	100	7.5	10
37	Regranex	15	70	90		18	
38	Regranex	10	80				
39	Regranex	40	80				
40	Regranex	15	50	80	90	15	13
41	Regranex	15	10				
42	Regranex	5	50	100	100	16	21
43	Regranex	40	70	100	100	22.5	10
44	Regranex	5	40	80	100	16.5	6
45	Regranex						
n		14	14	9	8	9	9
mean		19.29	59,64	87.22	95.63	14.44	10.375
SD		12.07	21.88	14.39	9.04	4.88	5.4
SEM		0.63	0.37	0.16	0.09	0.34	

The percent closure results can be summarized as follows:

Table 4. Summary

5

	POD's	BP (mean)	HG (mea <u>n</u>)	REG (mean)
wound closure (%)	0	0.00	0.00	0.00
	5	13.67	13.00	19.29
	8	31.82	41.33	59.64
	11	87.00	71.92	87.22
	14	96.25	89.17	95.63
epithelial thickness (mm)	14	11.8	13.25	14.44
angiogenesis (#/filed)	14	22.9	18.45	10.38

Thus, the BP treatment is as good as REGRENEX(tm) in closing wounds although slightly slower healing rates are initially observed. BP treatment also shows slightly less thickening of the epithelium and shows considerably improved angiogenesis in the wound area.

25

30

EXAMPLE 4. FUTURE APPLICATIONS

Because BP has shown promise as a wound healing agent, it will next be tested in applications where wound healing is known to be deficient. Experiments similar to those described above will be performed with diabetic animals to test the healing of full and partial thickness wounds. The response of venous stasis ulcers and diabetic ulcers to BP will also be tested.

In preliminary experiments, Male Sprague Dawley rats weighing greater than 325 g were rendered diabetic by treatment with streptozotocin and the hyperglycemia was confirmed by glucometry. Four full thickness incisional wounds were introduced on the dorsal surface of each animal perpendicular to the longitudinal axis. The wounds were closed with silk sutures and the growth factor or the placebo applied into the wound gap or on top of the incision after closure. The application was done at two time points: 1) on day 0, which is on the day of introducing the wound (surgery) and a second application 2) on day 3 following the introduction of the wound. The incisional strength was measured on day 7 and day 10 after surgery. The data is given in Table 5 and is very encouraging that the BP treatment will be particularly useful in treating a variety of diabetic ulcers, or other wounds characterized by delayed and/or poor healing.

Table 5. Tensile Strength of Wounds in Diabetic Rats

		Tensil	e Strength (kg/m	m) ± sem
	Co	ntrol	BP	
Day 7	3.6	5 ± 1	4.2	± .7
Day 10	5.2	2 ± .7	9.1	± .8

20 EXAMPLE 5: FURTHER CHARACTERIZATION OF BP

The BP has been partially characterized as follows: high performance liquid chromatography ("HPLC") fractions have been denatured, reduced with DTT, and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). One minute HPLC fractions from 27 to 36 minutes are shown in Figure 2. Size standards (ST) of 14, 21, 31, 45, 68 and 97 kDa were obtained as Low Range size standards from BIORAD(tm) and are shown at either end of the coomassie blue stained gel. In the usual protocol, HPLC fractions 29 through 34 are pooled to produce BP (see boxes, Figures 2 and 3), as shown in a similarly prepared SDS-PAGE gel in Figure 17B.

The various components of the BP were characterized by mass spectrometry and amino acid sequencing of tryptic fragments where there were sufficient levels of protein for

WO 02/00244

5

10

15

20

25

30

PCT/US01/41110

analysis. The major bands in the 1D gel (as numerically identified in Figure 3) were excised, eluted, subjected to tryptic digestion and the fragments were HPLC purified and sequenced. The sequence data was compared against known sequences, and the best matches are shown in Figures 15A-B. These identifications are somewhat tentative in that only portions of the entire proteins have been sequenced and, in some cases, there is variation between the human and bovine analogs for a given protein.

The same tryptic protein fragments were analyzed by mass spectrometry and the mass spectrograms are shown in Figures 7A-O. The tabulated results and homologies are shown in Figures 16A-F which provides identification information for the bands identified in Figures 3-4. As above, assignment of spot identity may be tentative based on species differences and post-translational modifications. A summary of all protein identifications from ID gels is shown in Figure 4.

The identified protein components of BP, as described in Figures 15A-B, 16A-F and 19A-D, were quantified as shown in Figures 17A and 17B. Figure 17B is a stained SDS-PAGE gel of BP and Figure 17A represents a scanning densitometer trace of the same gel. The identified proteins were labeled and quantified by measuring the area under the curve. These results are presented in Figure 18 as a percentage of the total peak area.

Thus, there are 11 major bands in the BP SDS-PAGE gel representing about 60% of the protein in BP. The identified proteins fall roughly into three categories: the ribosomal proteins, the histones and growth factors, including bone morphogenic factors (BMPs). It is expected that the ribosomal proteins and histone proteins may be removed from the BP without loss of activity, since these proteins are known to have no growth factor activity. Upon this separation, the specific activity is expected to increase correspondingly.

Experiments are planned to confirm the hypothesis that the histone and ribosomal proteins may be removed from the BP with no resulting loss, or even an increase, in specific activity. Histones will be removed from the BP cocktail by immunoaffinity chromatography using either specific histone protein antibodies or a pan-histone antibody. The histone depleted BP (BP-H) will be tested as described above for wound healing and/or osteogenic activity. Similarly, the known ribosomal proteins will be stripped and the remaining mixture (BP-R) tested.

An SDS-PAGE gel of BP was also analyzed by Western immunoblot with a series of antibodies, as listed in Figure 14. Visualization of antibody reactivity was by horse radish peroxidase conjugated to a second antibody and using a chemiluminescent substrate. Further, TGF-B1 was quantified using commercially pure TGF-B1 as a standard and was

20

25

30

determined to represent less than 1% of the BP protein. The antibody analysis indicated that each of the proteins listed in Figure 14 is present in BP.

The BP was further characterized by 2-D gel electrophoresis, as shown in Figures 5-6. The proteins are separated in horizontal direction according to charge (pI) and in the vertical direction by size as described in two-dimensional electrophoresis adapted for resolution of basic proteins was performed according to the method of O'Farrell et al. (O'Farrell, P.Z., Goodman, H.M. and O'Farrell, P.H., Cell, 12: 1133-1142, 1977) by the Kendrick Laboratory (Madison, WI). Two-dimensional gel electrophoresis techniques are known to those of skill in the art. Nonequilibrium pH gradient electrophoresis ("NEPHGE") using 1.5% pH 3.5-10, and 0.25% pH 9-11 ampholines (Amersham Pharmacia Biotech, Piscataway, NJ) was carried out at 200 V for 12 hrs. Purified tropomyosin (lower spot, 33,000 KDa, pI 5.2), and purified lysozyme (14,000 KDa, pI 10.5 - 11) (Merck Index) were added to the samples as internal pI markers and are marked with arrows.

After equilibration for 10 min in buffer "0" (10% glycerol, 50 mM dithiothreitol, 2.3% SDS and 0.0625 M tris, pH 6.8) the tube gel was sealed to the top of a stacking gel which is on top of a 12.5% acrylamide slab gel (0.75 mm thick). SDS slab gel electrophoresis was carried out for about 4 hrs at 12.5 mA/gel.

After slab gel electrophoresis two of the gels were coomassie blue stained and the other two were transferred to transfer buffer (12.5 mM Tris, pH 8.8, 86 mM Glycine, 10% MeoH) transblotted onto PVDF paper overnight at 200 mA and approximately 100 volts/two gels. The following proteins (Sigma Chemical Co., St. Louis, MO) were added as molecular weight standards to the agarose which sealed the tube gel to the slab gel: myosin (220,000 KDa), phosphorylase A (94,000 KDa), catalase (60,000 KDa), actin (43,000 KDa), carbonic anhydrase (29,000 KDa) and lysozyme (14,000 KDa). Figure 5 shows the stained 2-D gel with size standards indicated on the left. Tropomyosin (left arrow) and lysozyme (right arrow) are also indicated.

The same gel is shown in Figure 6 with several identified proteins indicated by numbered circles. The proteins were identified by mass spectrometry and amino acid sequencing of tryptic peptides, as described above. The identity of each of the labeled circles is provided in the legend of Figure 6 and the data identifying the various protein spots is presented in Figures 19A-D.

Because several of the proteins migrated at more than one size (e.g., BMP-3 migrating as 6 bands) investigations were undertaken to investigate the extent of post-translation

10

15

20

25

30

modification of the BP components. Phosphorylation was measured by anti-phosphotyrosine immunoblot and by phosphatase studies. Figure 8 shows a 2-D gel, electroblotted onto filter paper and probed with a phosphotyrosine mouse monoclonal antibody by SIGMA (# A-5964). Several proteins were thus shown to be phosphorylated at one or more tyrosine residues.

Similar 2-D electroblots were probed with BP component specific antibodies, as shown in Figures 9A-D. The filters were probed with BMP-2, BMP-3 (Fig. 9A), BMP-3, BMP-7 (Fig. 9B), BMP-7, BMP-2 (Fig. 9C), and BMP-3 and TGF-81 (Fig. 9D). Each shows the characteristic, single-size band migrating at varying pl, as is typical of a protein existing in various phosphorylation states.

For the phosphatase studies, BP in 10 mM HCl was incubated overnight at 37° C with 0.4 units of acid phosphatase (AcP). Treated and untreated samples were added to lyophilized discs of type I collagen and evaluated side by side in the subcutaneous implant rat bioassay, as previously described in U.S. Patent Nos. 5,290,763, 5,563,124 and 5,371,191. Briefly, 10 (g of BP in solution was added to lyophilized collagen discs and the discs implanted subcutaneously in the chest of a rat. The discs were then recovered from the rat at 2 weeks for the alkaline phosphotase ("ALP" - a marker for bone and cartilage producing cells) assay or at 3 weeks for histological analysis. For ALP analysis of the samples, the explants were homogenized and levels of ALP activity measured using a commercial kit. For histology, thin sections of the explant were cut with a microtome, and the sections stained and analyzed for bone and cartilage formation.

Both native- and phosphatase-treated BP samples were assayed for morphogenic activity by mass of the subcutaneous implant (explant mass) and ALP score. The results showed that AcP treatment reduced the explant mass and ALP score from 100% to about 60%. Thus, phosphorylation is important for BP activity.

The BP was also analyzed for glycosylation. Figure 10 shows an SDS-PAGE gel stained with periodic acid schiff (PAS) - a non-specific carbohydrate stain, indicating that several of the BP components are glycosylated (starred protein identified as BMP-3). Figures 11-12 show immunodetection of two specific proteins (BMP-7, Fig. 11 and BMP-2, Fig. 12) treated with increasing levels of PNGase F (Peptide-N-Glycosidase F). Both BMP-2 and BMP-7 show some degree of glycoslyation in BP, but appear to have some level of protein resistant to PNGase F as well (plus signs indicate increasing levels of enzyme). Functional activity of PNGase F and sialadase treated samples were assayed by explant

WO 02/00244 PCT/US01/41110

mass and by ALP score, as shown in Figure 13A and 13B which shows that glycosylation is required for full activity.

In summary, BMPs 2, 3 and 7 are modified by phosphorylation and glycosylation. These post-translation modifications affect protein morphogenic activity, 33% and 50% respectively, and care must be taken in preparing BP not to degrade these functional derivatives.

5

15

20

25

30

WHAT IS CLAIMED IS:

- 1. A composition for the treatment of wounds, said composition comprising the growth factors BMP-3 and TGF-82 in a pharmaceutically acceptable carrier.
- 2. The composition of claim 1, further comprising a growth factor selected from the group consisting of BMP-2, BMP-4, BMP-5, BMP-6, and BMP-7.
 - 3. The composition of claim 2, further comprising a growth factor selected from the group consisting of FGF-1, TGF-\(\text{B1}\), and TGF-\(\text{B3}\).
 - 4. The composition of claim 3, wherein the growth factors are derived from a natural source and are at least partially phosphorylated and glycosylated.
- 10 5. The composition of claim 1, excluding histone proteins H1c and H1x.
 - 6. A composition for the treatment of wounds, said composition comprising a mixture of growth factors comprising BMP-2, BMP-3, BMP-6, and TGF-B2 in a pharmaceutically acceptable carrier.
 - 7. The composition of claim 6, from which ribosomal proteins LORP, L6, S20, L3, S3a, S4 and L32 have been substantially excluded.
 - 8. The composition of claim 7, wherein the growth factors are derived from bovine bone and are at least partially phosphorylated and glycosylated.
 - 9. A composition for the treatment of wounds, said composition comprising a mixture of proteins as identified in Figure 1, wherein the histone proteins have been excluded from the mixture, said mixture being in a pharmaceutically acceptable carrier.
 - 10. The composition of claim 9, wherein the ribosomal proteins have been excluded therefrom.
 - 11. A composition for the treatment of wounds, said composition comprising a mixture of proteins components as identified in Figure 1, wherein the ribosomal proteins have been excluded therefrom, said components being in a pharmaceutically acceptable carrier.
 - 12. The composition of claim 11, wherein the histone proteins have been excluded therefrom.
 - 13. A composition for the treatment of wounds, said composition comprising a mixture of proteins comprising BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, BMP-7, TGF-ß1, TGF-ß2, and TGF-ß2, and FGF-1 in a pharmaceutically acceptable carrier.
 - 14. The composition of claim 13, wherein ribosomal proteins have been substantially eliminated from the mixture.

- 15. The composition of claim 13, wherein histone proteins have been substantially eliminated from the mixture.
- 16. The composition claim 13, wherein the components are isolated from a natural source and are at least partially phosphorylated and glycosylated.
- 5 17. The composition of claim 13, wherein at least one of the components is a recombinantly produced protein.
 - 18. A method of wound healing, said method comprising applying a composition as in claims 13 to a wound.
- 19. The method of claim 18, where the pharmaceutically acceptable carrier includes a 10 hydrogel.
 - 20. The method of claim 18, wherein the components are isolated from a natural source and are at least partially phosphorylated and glycosylated.
 - 21. The method of claim 18, where the pharmaceutically acceptable carrier includes a dressing selected from the group consisting of hydrocolloid dressings, hydrogels, foam dressings, and alginate dressings.
 - 22. The method of claim 18, further including one or more active ingredient selected from the group consisting of arginine, glutamine, zinc, copper, vitamin C, vitamin B1, vitamin B2, vitamin B3, vitamin B6, vitamin B12, and folate.
- 23. The method of claim 18, further including one or more growth factor selected from the group consisting of epidermal growth factor, platelet derived growth factor, insulin-like growth factor, keratinocyte growth factor, vascular endothelial growth factor, transforming growth factor alpha, nerve growth factor, connective tissue growth factor and granulocytemonocyte colony stimulating factor.
- The method of claim 11, further including one or more inflammation inhibitor
 selected from the group consisting of interleukin-1 inhibitor, interleukin-6 inhibitor and tumor necrosis factor-alpha inhibitor.

FIG. 1

FIGURE 3

Band No.	Identity
1	Histone H1.c
2 .	Histone H1.c
3	Ribosomal protein RS20
4	Similar to ribosomal protein LORP
5	BMP-3
6	α2 macroglobulin RAP and BMP-3
7	Similar to ribosomal protein LORP
8	BMP-3
9	BMP-3
11	Ribosomal protein RL6 and BMP-3
18	TGF-β2 / SPP 24
20	Factor H
22	TGF-β2
25	BMP-3 and H1.x
29	BMP-3 and ribosomal protein RL32

FIGURE 4

FIGURE 5

Timed Ion Selector: 16.1 OFF Marror Ratio: 1.080 Negative tons: OFF PSD Mirror Ratio: Pressure: 1.70e-08 Low Mass Gats: 500.0 Lesser: 1965 Scans Averaged: 256 2000 Mass (m/z) Grid Voltage: 84,000 % Guide Wire Voltage: 0.076 % Accelerating Voltage: 20000 Delay: 50 ON Comment: BARNES-1, trypsin, 7.5 % Method: LDE1000A

Mode: Linear

852

Figure

FIGURE 9A

FIGURE 9B

FIGURE 9C

FIGURE 9D

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13A

FIGURE 13B

FIGURE 14: Antibody Listing

Specificity	Antigen	Host Species	PC/MC	Source	Catalog No.
TGF-β1 (human)	Protein	Rabbit	Polyclonal	Promega	G1221
TGF-β2 (human)	Peptide	Rabbit	Polycional	Santa Cruz Biotechnology	sc-90
TGF-β3 (human)	Peptide	Rabbit	Polyclonal	Santa Cruz Biotechnology	sc-82
		<u></u> _		·	
BMP-2 (human)	Protein	Rabbit	Polyclonal	Austral Biologics	PA-513-9
BMP-3 (human)	Peptide	Chicken	Polyclonal	Research Genetics	NA
BMP-4 (human)	Peptide	Goat	Polycional	- Santa Cruz Biotechnology	so-6896
BMP-5 (human)	Peptide	Goat	Polyclonal	Santa Cruz Biotechnology	sc-7405
BMP-6 (human)	Peptide	Mouse	Monoclonal	Novocastra Laboratories	NCL-BMP6
BMP-7 (human)	Peptide	Rabbit	Polyclonal	Research Genetics	NA .
FGF-! (human)	Peptide	Goat	Polyclonal	Santa Cruz Biotechnology	sc-1884 ·
osteonectin (bovine)	Protein	Mouse	Monocional	DSHB	AON-1
osteocalcin (bovine)	Protein	Rabbit	Polycional	Accurate Chemicals	A761/RIH
serum albumin (bovine)	Protein	Rabbit	Polycional	Chemicon International	AB870
transferrin (human)	Protein	Chicken	Polyclonal	Chemicon International	AB797
apo-A1 lipoprotein (human)	Protein	Goat	Polyclonal	Chemicon International	AB740

Figure 15 A. Identification of Proteins by Amino Acid Sequencing of Tryptic Fragments

	Comple	Postinione Date	Beet Detabase Watch Match Identification	Match		Species	Acc. No.	AAs
	Daliu Salipie	Sequence Date						
. 2	(x 49	XLAAAGYDVEK	ALAAAGYDVEK	11/11	histone H1.c	human	87668 (NCBI)	65-75
3	(5,67 (7,246)	SLEKVCADLIR	SLEKVCADLIR	11//11	40s Ribosomal Protein S20	rat	R)	31-41
4	0 S9 XJ	(V)VCGMLGFPSEAPV VVCGMLGFPGEKRV 11/14	WCGMLGFPGEKRV		LORP	esnow	88	213-
2	N terminal sea	STGVLLPLQNNELPG	STGVLLPLQNNELPG 15/15		BMP-3	ритал		8 8 8 8
	fx 72 (3925)	STGVLLPLQNNELPGA STGVLLPLQNNELPG 20/20 EYQY AEYQY	STGVLLPLQNNELPG AEYQY		BiMP-3	human		309
	fx 74	STGVLLPLQ	PLQ	6/6	BMP-3	human	:	286 288
8	fx 55 (1568)	(S)QTLQFXE	SQTLQFDE	7/8	BMP-3	human	4557371 (NCBI)	353
•	Fx 47	WAF	no match		223			T
	N terminal sea	YSREKNT(P)A(P	HGGKYSREKNAPKP		a2-Macroglobulin Receptor Assoc. Pro.	human	oc)	31-46
	fx 57	Satlafdea	sат.ағ <u>р</u> еа	6/6	BMP-3	human T	4557371 (NCBI)	8 8
	fx 57 (1852)	SLKPSNHA	SLKPSNHA	8/8	BMP-3	human	4557371 (NCBI)	6 4 5 7
1	fx 51	AALRPLVKP	AALRPLVKP	6/6	80s Ribosomal Protein L32	esnow	rot)	 0-
	fx 37 (no	A(H)I(Q)VERYV	AIVER	5/5	60s Ribosomal Protein L32	mouse	rot)	109- 113
	ou)	A(H)i(Q)VERYV	HOSDRYV	<i>L/</i> S	Ribosomal Protein	mouse	P17932 (Swiss-Prot)	22-28
8	0 0	XALF(G)AQLGXALGPI	no match			T		
6	fx 58 (1567)		DEQT	10/10	BMP-3	human	P12645 (Swiss-Prot)	355

Figure 15 B. Identification of Proteins by Amino Acid Sequencing of Tryptic Fragments

Band	Band Sample	Sequence Data	Best Database Match Match	Match	Identification	Species	Acc. No.	AAs
=	fx 55	SQTLXF	SatlaF	9/9	BMP-3	human	4557371 NCBD	348- 351
	(1311)			_				3 2
	fx 47	INLATVTKPVGGDK	VLATVTKPVGGDK	13/13	60s Ribosomai Protein Lb	numan		RR-10
	(1772)						(Swiss-Prot)	
	ل ر 76	XVFAL	VFAL	4/4	60s Ribosomal Protein L6 Ihuman	human	Q02878	273-
	(1795)						(Swiss-Prot)	276
	fx 61	AVPOLOGYLR	AIPOLOGYLR	9/10	60s Ribosomat Protein L6 Ihuman	human	Q02878	282-
	(1145)		•				(Swiss-Prot)	27.1
18							•	
22	fx 58	ALDAAYCFR	ALDAAYCFR	6/6	TGE-82	human	P08112	303-
	(1101)						(Swiss-Prot)	311
	fx 69 (no	GYNANFCAGACPYL	GYNANFCAGACPYL	14/14	TGF-82	human	P08112	340-
	match)						(Swiss-Prot)	353
	89 xJ	VNSQSLSPY	VNSQSLSPY	6/6	SPP24	bovine	Q27967	42-50
	(1411.71)						(Swiss-Prot)	
25	6E XJ	KAAKPSV(P)	KAAKPSVP	8/8	Histone H1.x	human	JC4928 (PIR)	199-
	(1470)							2 <u>8</u> 8
29					-			
2 - 5		Land (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	,	L. O.D.	1 t			

fx = fraction number (molecular weight of fragment, as measured by SDS-PAGE)

Figure 16A. Identification of Proteins by Mass Spectrometry of Tryptic Fragments

Comments		15 MS peaks match with	Band 2		÷	postular jo major district	peptide confirmed by sequence analysis		15 MS peaks match with Band 1									107	12 MS peaks match with Band 8			
% Cover-	age	22					6			62									80			
AAs		110-121		65-79	64-79	35-54	65-79*	64-79	35-54	50-59		72.83		28-66	88-88	9-21	5-21	88-119	150-167	٠	1	455-478
Mass Diff.	erence	080		0.16	0.58	-0.74	90'0	0.13		0.38		30.0			0.55	0.27	-0.17	-0.85	-0.32			0.47
Mase	Spec	Dalabase 44.70.97	1/4:3/	1579.71	1707.89	2012.32	1579.71	4707 89	2012.32	1129.40			1156.30	1334.62	1351.58	1517.77	1919.19	3404.87	1988.27		2410.63	2610.10
11000	Spec	Data	11/2.9/	1579.87	1708.47	2011.58	1579.76	4708 02	2012.12	1129.76		j	1156.21	1334.48	1352.13	1518.04	1919.02	3404.02	1987.95		2410.35	2610.57
	Acc. No.		87668 (NCBI)				87668 (NCBI)			R3RT20	(PIR)								NP002309	Prot)		
	Species		human				human			rat									human			
	Mass Spec Profile		4 peaks match with	o.i'n anoisin			3 peaks match with	histone H1.c.		7 pooks	match with	S20							3 peaks	match with	Oxidase RP	
,	Band		-				. 7			ſ	?						-	. —	4			

Identification of Proteins by Mass Spectrometry of Tryptic Fragments Figure 16B.

Comments		% coverage calculation is relative to the mature BMP-3, 183 AAS (290-472)						identification of starred	peptide confirmed by sequence analysis					,		% coverage calculation is relative to the mature BMP-3, 183 AAS (290-472)		
% Cover-	age	48									17					15		
AAs		381-368	346-357	345-357	410-424	346-360	374-392	373-392		290-318*	283-290			129-150	257-282	346-357	410-424	
Mass Diff-	erence	0.01	-0.05	00:00	-0.05	0.07	-0.17	96.0-	•	1.38	0.09			0.15	-0.01	0.18	-0.03	
Mass	Spec Database	1113.31	1438.58	1586.76	1651.91	1794.02	2268.63	2424.81	ı	3407.77	1002.15			2382.43	3048.52	1566.75	1651.91	
Mass	Spec Data	1113.32	1438.53	1586.76	1651.88	1794.09	. 2268.48	2424.45		3409.15	1002.24			2362.58	3048.51	1586.93	1651.88	
Acc. No.		4557371 (NCBI)		· ·		•					P30533	(Swiss- Prot)				4557371 (NCBI)		
Species		human		٠	i de la companya de l	٠.	,				human				•	human		
Mass Spec	Profile	9 peaks match with BMP-3			ji t	,					3 peaks	match with	Macroglobuli n RAP			2 peaks match with BMP-3		
Band		န			i e						9							

Figure 16 C. Identification of Proteins by Mass Spectrometry of Tryptic Fragments

Comments		-				% coverage calculation is relative to the mature BMP-3, 183 AAS (290-472)	+1	÷ .			12 MS peaks match with Band 4	% coverage calculation is relative to the mature BMP-3, 183 AAS (290-472)					
% Cover-	age	33				2					က	9g			•		
AAs		67-75	1-10*	65-74	19-29	102-111	361-368	190-200	410-424	346-360	648-669	361-368	346-357	345-357	410-424	41-66	290-318
Mass Diff-	erence	0.08	-0.08	0.44	0.12	0.22	0.08	-0.32	0.37	-0.40	-0.26	-0.17	0.02	10.01	0.30	·	1.17
Mass	Spec.	1033.17	1093.40	1134.28	1449.66	1060.20	1113.31	1360.58	1651.91	1794.02	2410.63	1113.31	1438.58	1586.78	1651.61	2901.19	3407.77
Mass	Spec	1033.25	1093.31	1134.72	1449.78	1080.42	1113.39	1360.28	1652.28	1793.62	2410.37	1113.14	1438.60	1586.77	1851.91	2901.67	3408.94
Acc No		P17932 (Swiss- Prot)				4557371 (NĊBI)					NP002309 (Swiss- Prot)	4557371 (NCBI)					
Species		вѕпош				human					human	human					
Man San	Profile	4 peaks match with ribosome	75			5 peaks match with) i				1 peak matches with Lysyl Oxidase RP	6 peaks match with					
	Dag	7									80	6 ·					

Figure 18 D. Identification of Proteins by Mass Spectrometry of Tryptic Fragments

Comments	% coverage calculation is relative to the mature BMP-3, 183 AAS (290-472)															
% Cover- age			16					52				90 30		•		
AAs	361-368 410-424 346-360	373-392 290-318	114-122	141-155	10-20	282-271	280-271	303-311	400-409	312-328	340-362	42-53	113-124	86-98	62-77	33-53
Mass Diff- erence	-0.08 -0.18 -0.44	0.57	.0.15	0.02	0.03	0.01	90.08	-0.06	-0.16	-0.23	-0.21	-0.67	-0.06	0.04	0.05	-0.10
Mass Spec Database	1113.31 1651.91 1794.02	3407.77	1140.23	1528.86	1059.12	1145.35	1386.68	1101,28	1175.42	2240.60	2891.91	1411.60	1447.65	1540.60	1869.05	2268.57
Mass Spec Data	1113.23 1651.73 1783.58	2424.24 3408.34	1140.38	1526.88	1059.15	1145.38	1388.74	1101.20	1175.28	2240.37	2691.70	1410.93	1447.59	1540.64	1869.10	2268.47
Acc. No.	4557371 (NCBI)		Q02878 (Swiss- Prot)		P47911 (Swiss- Prot)			P08112 (Swiss- Prot)				Q27967 (Swiss- Prot)				
Species	human		human		esnow			human				bovine				
Mass Spec Profile	5 peaks match with BMP-3		5 peaks match with ribosome L6					4 peaks match with TGF-92				5 peaks match with SPP24				
Band	-							18					_			

Figure 16 E. Identification of Proteins by Mass Spectrometry of Tryptic Fragments

			7	7	7	7		TT		-	Т	T	T					7
Comments					AT .									% coverage calculation is relative to the mature BMP-3, 183 AAS (280-472)				
% Cover-	956	8					1.1		44					ਲ				
AAs		503-311	400-408	312-347	312-328	340-362	42-53	113-124	48-57	107-118	Ŧ	48-58	43-57	102-111	346-357	345-357	410-424	290-318
Mass Diff-	erence	-0.11	-0.28	-0.28	-0.35	-0.30	-0.37	-0.25	90'0	-0.64	-0.67	-0.02	-0.74	0.23	0.25	0,16	-0.11	1.09
Mass	Spec	1101.28	1175.42	2084.42	2240.60	2691.61	1411.60	1447.85	1208.40	1222.35	1350.52	1364.59	1782.97	1060.20	1438.58	1566.76	1851.91	3407.77
Mass	Spec	1101.15	1175.13	2084.16	22/0.25	2691,81	1411.23	1447,40	1208.46	1221.71	1349.85 ·	1364.57	1732.23	1060.43	1438.83	1568.92	1651.80	3408.88
Acc. No.		P08112 (Swiss- Prot)					(54/ss-	Prot)	JC4928 (PIR)					4557371 (NCBI)				
Species		human	•				bovine		human					human				
Mass Soec	Profile	5 peaks match with TGE-82	}				2 peaks malch with	SPP24	5 peaks match with histone Hf x	2				5 peaks match with BMP-3				
Rand		Z							S3									

Figure 18 F. Identification of Proteins by Mass Spectrometry of Tryptic Fragments

Comments	% coverage calculation is relative to the mature BMP-3, 183 AAS (290-472)			
% Cover- age	. 27			
AAS	361-368	1	345-357	
Mass Mass Diff- Spec erence atabase	60.0-	0.12	11.0	121
Mass Spec Database	1113.31	1438.58	1586.75	3407.77
Mass Spec Data		1438.70	1568.88	3409.04
cies Acc. No.	4557371 (NCBI)			
Sp	human			-
and Mass Spec	4 peaks match with BMP-3			
Band	83			

Figure 17A

Figure 17B

FIGURE 18: Quantitation of Identified BP proteins

Identified Protein	Percentage of Total Protein
LORP	2
BMP-3	. 11
BMP-3 and A2-MG	3
RL6 & BMP-3	4
Histone	3 .
Histone	3
Histone & BMP-3	4
BMP-3	8
RL32 & BMP-3	8
RS2D	5
SPP24 & TGF-β2	6
Total	58%

Figure 19A Identification of Proteinsby Mass Spectrometry of Fragments from 2D Gels

Comments							peptide match	commined by sequence analysis	·										
8	age	0	8				8.	o bas			41	-					1	0	
	§		172.487			368-382	488-504		241-253	648-668	105-118		58-70	21-33	301-314	318-334		239-261	131-154
		Dist.	44.0	<u>?</u> ?		0.51	NA NA		-0.31	97.0	97'0		0.14	96'0	1.06	0.71	1.40	0.80	0.41
		Database	1007 44	1037.14		1921.14	¥2		1609.88	2410.63	1406.80		1546.70	1660.80	1680.80	1834.00	2351.50	2380.70	2721.10
	Peaks	~	•	1837.01	·	1921.85	2679.51		1609.57	2410,89	1407.26		1546.84	1681.16	1681.86	1834.71	2352.90	2381.50	2721.51
	Acc. No.			P05160 (Swiss- Prof)					NP002309 (Swiss- Prot)	•	D25075 (Swice.	Prot)							
	Species			Human					Human		Boadmo								
	Mass Spec			N	Coagulation	rado Allio			Trypsin 2 peaks match		dobres of the	with Cathepsin	L Precursor			٠			
	Spot Digest			Lys-C					Trypsin) & (T							
	Spot			-					2		1	"			,				

Figure 198 Identification of Proteinsby Mass Spectrometry of Fragments from 2D Gels

Comments		peplide matches confirmed by sequence analysis						•													•
% Coverage				R			16		90												
AAs				28-31	32-57	3	42-60	21-32	78-85	99-108			113-124			62-77	61-77	2141	78-88	88-108	125-151
	Dia	NA	2,02	-0.34	120	-0.17	-0.02	0.47	-0.09	-0.24	0.11	-0.07	-0.02	0.05	0.08	0.11	0.77	0.41	0.53	-0.51	0.79
	Database	NA	4583.06	774.90	809.94	1175.43	1415.58	2187.51	1078.15	1104.31	1172.31	1411.60	1447.85	1540.52	1696.71	1869.05	2025.24	2272.58	2599.65	2683.81	2825.01
Peaks	Data	1461.58	4595.08	774.58	809.67	1175.28	1415.56	2187.98	1076.06	1101.07	1172.42	1411.53	1447.63	1540.57	1696.79	1889.18	2026.01	2272,97	2600.18	2693.30	2928.80
Acc. No.		P18836 (Swiss- Prot)		P21214 (Swiss Prot)			QZ7887 (Swiss- Prof)		OZ7967 (Swiss- Prof)												
Species		Rat		Bovine			Bovine		Bovine						-		-				
Mass Spec Profile		2 peaks match with Lysyl Oxidase		3 peaks match with TGF-b2			2 peaks match with SPP24		13 peats match with SPP24												
Digest		Lysc		Lys-C					Trypsin												
Spot		+		S				1	9												

Figure 19C Identification of Proteinsby Mass Spectrometry of Fragments from 2D Gels

Comments					4																
*	Coverage		42		•		10			37								•			
AAs			26-31	32-37	98-107	1-25	42-60			348-355	10-18	286-296	249-260	103-114	103-115	34.49	30-49	177-197	200-223	70-98	198-223
		Diff.	-0.34	-0.25	-0.31	1.44	0.26			0.25	0.08	0.22	0.02	0.17	0.04	-0.16	-0.12	0.34	0.27	-0.48	-0.25
		Database	774.90	809.84	1175.43	3166.66	2187.51			917.14	984.15	1192.40	1380.65	1464.63	1620.82	1779.00	2238.55	2325.65	2681.04	2888.43	2946.35
STR.	Peaks	Data	774.58	808.69	1175.12	3168.10	2187.77	:		917.39	984.23	1182,62	1380.67	1464.60	1620.86	1778.84	2238.43	2325.99	2881.31	2897.94	2946.10
Acc. No.			P21214 (Swiss- Prof)			,	Q27967 (Swiss-	Prot		P39872 (Swiss- Prot)											
Species	•		Bovine				Bovine			Bovine									•		
Mags Spec	Profile		4 peaks match				1 peak	matches with	671.00	Trypsin 12 peaks match with ribosome	<u> </u>										
Snot Digest			Lys.C							Trypsin											
Spot			7							••											

Figure 19D Identification of Proteinsby Mass Spectrometry of Bragments from 2D Gels

Comments																					
*	Сочендв		29							æ					R						
AAs			19-26	152-161	151-161	174-186	94-108	199-212	65-81	34-46	•	65-79	64-79	1-21	230-238	134-144	230-241	198-210	37-48	221-239	77-88
		Diff	-0.05	-0.02	0.13	0.00	-0.10	-0.08	-0.04	0.19		-0.01	-0.24	-0.38	0.10	0.00	0.42	0.12	-0.23	-0.24	-0.10
		Database	920.10	1218.31	1348.48	1518,69	1583.82	1720.00	1953,16	1327.56		1579.71	1707.89	2147.53	1168.38	1216.39	1353.61	1507.89	1557.98	2140.58	2581.90
SE	Peaks	Data	920.05	1218.28	1346.62	1516.69	1593.72	1719,91	1953.12	1327.75	· .	1579.70	1707.65	2147.17	1168.48	1216.39	1354.03	1507.81	1557.75	2140.34	2591.80
· Acc. No.			P97351 (Swiss- Prol)		•	•				87668 (NCBI)					P12750 (Swiss- Prat)			,	•		
Species			Mouse							Human					Human						
Mass Spec	Profile		7 peaks match with ribosome	}						match	with histone		•		Trypsin 6 peaks match with ribosome						٠
Spot Digest			Trypsin							Trypsin					Trypsin						
Spot			co .							9					=						

(19) World Intellectual Property Organization International Bureau

. | CALLA TATA SANTA BANDA BANDA KATA TATA BANDA B

(43) International Publication Date 3 January 2002 (03.01.2002)

PCT

(10) International Publication Number WO 02/000244 A3

3 East Greenway Plaza, Suite 1600, Houston, TX 77046

(74) Agent: SCOTT, Timothy, L.; Sulzer Medica USA Inc.,

(51) International Patent Classification⁷: A61K 38/18, 9/00, A61L 15/60, A61P 17/02

(21) International Application Number: PCT/US01/41110

(22) International Filing Date: 22 June 2001 (22.06.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 09/605,266 28 June 2

28 June 2000 (28.06.2000) US

00.(28.06.2000) Hz — with inter-

(71) Applicant: SULZER BIOLOGICS INC. [US/US]; 9900 Spectrum Drive, Austin, TX 78717 (US).

(81) Designated States (national): CA, JP.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,

Published:

with international search report

NL, PT, SE, TR).

(88) Date of publication of the international search report: 1 May 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors: AKELLA, Rama; 8811 Spiltarrow Drive, Austin, TX 78717 (US). RANIERI, John, P.; 1406A Molhe Drive, Austin, TX 78703 (US).

(54) Title: PROTEIN MIXTURES FOR WOUND HEALING

(57) Abstract: A protein mixture that is useful in the treatment of wounds, where the mixture is isolated from bone or is produced from recombinant proteins and may include two or more of BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, BMP-7, TGF-β1, TGF-β2, TGF-β3, and FGF-1.

Int tional Application No PCT/US 01/41110 the first of the second project (the court of

The first of the contract of t

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61K38/18 A61K A61K9/00 A61L15/60 A61P17/02 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, MEDLINE, EMBASE, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category ' WO 02 47713 A (SULZER BIOLOG INC) 1-17 20 June 2002 (2002-06-20) page 1, line 5 - line 6 page 11, line 1 - line 3 1-4,6,13 US 5 290 763 A (POSER JAMES W ET AL) χ 1 March 1994 (1994-03-01) cited in the application the whole document 1-4.6.13X US 5 371 191 A (POSER JAMES W ET AL) 6 December 1994 (1994-12-06) the whole document 1-4,6,13 US 5 563 124 A (POSER JAMES W ET AL) X 8 October 1996 (1996-10-08) cited in the application the whole document -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. ΧI Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-*O* document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means document published prior to the international filing date but *&* document member of the same patent family later than the priority date claimed Date of the actual completion of the international search Date of mailing of the international search report 29/01/2003 21 January 2003 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Bayrak, S Fax: (+31-70) 340-3016

Int tional Application No PCT/US 01/41110

	PC1/US 01/41110
etion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
US 6 054 122 A (DROHAN WILLIAM NASH ET AL) 25 April 2000 (2000-04-25) column 12, line 14 - line 53; example 10	1-4,6, 9-13
US 5 116 738 A (ROSEN VICKI ET AL) 26 May 1992 (1992-05-26) column 1, line 27 - line 56	1-24
US 5 141 905 A (ROSEN VICKI A ET AL) 25 August 1992 (1992-08-25) column 1 -column 3 column 6 -column 8 column 21, line 35 - line 37	1-24
US 5 187 076 A (CELESTE ANTHONY J ET AL) 16 February 1993 (1993-02-16) column 7, line 35 -column 8, line 19 column 9, paragraph 2	1-24
WO 96 41818 A (ELSON CLIVE ;TAYLOR JOHN (US); SINGH MANISH (US); DROHAN WILLIAM N) 27 December 1996 (1996-12-27) page 10, line 28 -page 11, line 2 page 23, line 16 - line 28 page 25, line 26 -page 27, line 29	1-24
EP 0 747 066 A (COLLAGEN CORP) 11 December 1996 (1996-12-11) page 5, line 52 - line 59	1-24
US 5 356 630 A (GLOWACKI JULIANNE ET AL) 18 October 1994 (1994-10-18) claim 1	1-24
	US 6 054 122 A (DROHAN WILLIAM NASH ET AL) 25 April 2000 (2000-04-25) column 12, line 14 - line 53; example 10 US 5 116 738 A (ROSEN VICKI ET AL) 26 May 1992 (1992-05-26) column 1, line 27 - line 56 US 5 141 905 A (ROSEN VICKI A ET AL) 25 August 1992 (1992-08-25) column 1 -column 3 column 6 -column 8 column 21, line 35 - line 37 US 5 187 076 A (CELESTE ANTHONY J ET AL) 16 February 1993 (1993-02-16) column 7, line 35 -column 8, line 19 column 9, paragraph 2 WO 96 41818 A (ELSON CLIVE ;TAYLOR JOHN (US); SINGH MANISH (US); DROHAN WILLIAM N) 27 December 1996 (1996-12-27) page 10, line 28 -page 11, line 2 page 23, line 16 - line 28 page 25, line 26 -page 27, line 29 EP 0 747 066 A (COLLAGEN CORP) 11 December 1996 (1996-12-11) page 5, line 52 - line 59 US 5 356 630 A (GLOWACKI JULIANNE ET AL) 18 October 1994 (1994-10-18)

"hternational application No. PCT/US 01/41110

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 18-24 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this international Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

information on patent family members

in ational Application No
PCT/US 01/41110

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0247713	A	20-06-2002	US WO	2002173453 A1 0247713 A2	21-11-2002 20-06-2002
					15 01 0000
US 5290763	Α	01-03-1994	AT	187739 T	15-01-2000
			CA	2107481 A1	23-10-1992
			DE	69230434 D1	20-01-2000 03-08-2000
			DE	69230434 T2	13-06-2000
			DK	584283 T3 0584283 A1	02-03-1994
			EP	2142827 T3	01-05-2000
			ES GR	3032957 T3	31-05-2000
			JP	6507173 T	11-08-1994
			WO	9218142 A1	29-10-1992
			US	5371191 A	06-12-1994
			US	5563124 A	08-10-1996
US 5371191	Α	06-12-1994	US	5290763 A	01-03-1994
			AT CA	187739 T 2107481 A1	15-01-2000 23-10 - 1992
			DE	69230434 D1	20-01-2000
			DE	69230434 T2	03-08-2000
			DK	584283 T3	13-06-2000
			EP	0584283 A1	02-03-1994
			ES.	2142827 T3	01-05-2000
			GR	3032957 T3	31-07-2000
			JP	6507173 T	11-08-1994
			WO	9218142 A1	29-10-1992
			US	5563124 A	08-10-1996
US 5563124	A	08-10-1996	US	5290763 A	01-03-1994
			EP	0729325 A1	04-09-1996
			JP	9505305 T	27-05-1997
			WO	9513767 A1	26-05-1995
			AT	187739 T	15-01-2000
			CA	2107481 A1	23-10-1992
			DE	69230434 D1	20-01-2000 03-08-2000
			DE	69230434 T2 584283 T3	13-06-2000
			DK Ep	0584283 A1	02-03-1994
			ES	2142827 T3	01-05-2000
			GR	3032957 T3	31-07-2000
			JP	6507173 T	11-08-1994
			WO	9218142 A1	29-10-1992
			US	5371191 A	06-12-1994
US 6054122	 А	25-04-2000	AU	6169896 A	30-12-1996
J. J.J	••		CA	2223889 A1	19-12-1996
			EP	0869804 A1	14-10-1998
			JP	11507277 T	29-06-1999
			WO	9640174 A1	19-12-1996
			AU	717906 B2	06-04-2000
			AU	4510096 A	26-06-1996
			CA EP	2207289 A1	13-06-1996
				0796115 A1	24-09-1997
					06-10-1000
			JP	10510183 T	06-10-1998
					06-10-1998 13-06-1996 06-03-2001

information on patent family members

th tional Application No PCT/US 01/41110

			rc1/03	01/41110
Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 6054122 A		AU AU	696691 B2 6364894 A	17-09-1998 26-09-1994
		AU	8419298 A	05-11-1998
1		CA	2158134 A1	15-09-1994
	•	EP	0696201 A1	14-02-1996
		ĴΡ	9502161 T	04-03-1997
		WO.	9420133 A1	15-09-1994
		AT	212554 T	15-02-2002
		AU	667188 B2	14-03-1996
1		AU	9109391 A	25-06-1992
		CA	2097063 A1	28-05-1992
		DE	69132918 D1	14-03-2002
		DE	69132918 T2	31-10-2002
		DK	564502 T3	13-05-2002
		EP	1142581 A2	10-10-2001
		EP	0564502 A1	13-10-1993
		JP	6506191 T	14-07-1994
		WO	9209301 A1	11-06-1992
US 5116738 /	26-05-1992	ΑT	141928 T	15-09-1996
		AU	613314 B2	01-08-1991
-		AU	7783587 A	29-01-1988
		DE	3751887 D1	02-10-1996
		DE	3751887 T2	06-03-1997
		DK	53497 A	09-05-1997
		DK	106288 A	28-04-1988
		EP	1254956 A2	06-11-2002
		EP	0313578 A1	03-05-1989
		EP ES	0688869 A1 2007625 A6	27-12-1995 01-07-1989
1		GR	871028 A1	11-01-1988
		IE	75881 B1	24-09-1997
		ĪĒ	970378 L	01-01-1988
		ĬĹ	83003 A	31-07-1995
		ĴΡ	2729222 B2	18-03-1998
		JР	6298800 A	25-10-1994
		JP	3093682 B2	03-10-2000
		JP	10070989 A	17-03-1998
-		JP	2500241 T	01-02-1990
1		JP	2713715 B2	16-02-1998
1		KR	9705583 B1	18-04-1997
		MX	170919 B	22-09-1993
		NZ	220894 A	28-05-1990
1		PT	85225 A ,B	01-08-1987
		WO	8800205 A1	14-01-1988
		US US	5543394 A 5631142 A	06-08-1996 20-05-1997
		US	5031142 A 5013649 A	07-05-1997 07-05-1991
		US	6207813 B1	27-03-2001
		US	5459047 A	17-10-1995
		US	5166058 A	24-11-1992
		US	5635373 A	03-06-1997
		US	5849880 A	15-12-1998
		US	5187076 A	16-02-1993
-		US	6432919 B1	13-08-2002
		ÜS	5618924 A	08-04-1997
		ÜS	6150328 A	21-11-2000
		US	5366875 A	22-11-1994
L				

Information on patent family members

In stional Application No PCT/US 01/41110

				PC1/US	01/41110
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5116738	Α		US	5939388 A	17-08-1999
	••		ÜŠ	2002061577 A1	23-05-2002
•			ÜŠ	6245889 B1	12-06-2001
*			US	6177406 B1	23-01-2001
1			NO	880701 A	17-02-1988
			NO	963788 A	17-02-1988
j			NO	963789 A	17-02-1988
			US	5106748 A	21-04-1992
			US	5141905 A	25-08-1992
			US	5141905 A 5108922 A	28-04-1992
,			ZA	8704681 A	27-04-1988
				·	
US 5141905	Α	25-08-1992	AT	162223 T	15-01-1998
		•	AU	624940 B2	25-06-1992
			AU	5357790 A	22-10-1990
			CA	2030518 A1	29-09-1990
			ÐE	69031939 D1	19-02-1998
			DE	69031939 T2	10-09-1998
			DK	429570 T3	27-04-1998
			EP	0429570 A1	05-06-1991
			ES	2113857 T3	16-05-1998
			JP	3505098 T	07-11-1991
			KR	239203 B1	15-01-2000
			KR	247216 B1	15-03-2000
			MX	9203296 A1	01-07-1992
			WO	9011366 A1	04-10-1990
			ΑT	141928 T	15-09-1996
			ΑU	613314 B2	01-08-1991
			AU	7783587 A	29-01-1988
			DE	3751887 D1	02-10-1996
			DE	3751887 T2	06-03-1997
			DK	53497 A	09-05-1997
			DK	106288 A	28-04-1988
			ΕP	1254956 A2	06-11-2002
			EP	0313578 A1	03-05-1989
,			EP	0688869 A1	27-12-1995
			ES	2007625 A6	01-07-1989
J			GR	871028 A1	11-01-1988
			ĨĒ	75881 B1	24-09-1997
}			ÏĒ	970378 L	01-01-1988
			ĨĹ	83003 A	31-07-1995
}			ĴР	2729222 B2	18-03-1998
			ĴΡ	6298800 A	25-10-1994
			ĴΡ	3093682 B2	03-10-2000
			ĴΡ	10070989 A	17-03-1998
			ĴΡ	2500241 T	01-02-1990
			JΡ	2713715 B2	16-02-1998
			KR	9705583 B1	18-04-1997
			MX	170919 B	22-09-1993
			NO	880701 A	17-02-1988
			NO	963788 A	17-02-1988
ļ			NO	963789 A	17-02-1988
			NZ	220894 A	28-05-1990
}			PT	85225 A ,B	01-08-1987
			WO	8800205 A1	
1					14-01-1988
1			US	5543394 A	06-08-1996
ļ			US	5631142 A	20-05-1997
			US	5013649 A	07-05-1991
<u> </u>					

Information on patent family members

in alonal Application No PCT/US 01/41110

US 5141905 A	.s.	US US US US	6207813 B1 5459047 A 5106748 A 5166058 A	27-03-2001 17-10-1995 21-04-1992
	.s.	US US US	5459047 A 5106748 A	17-10-1995
US 5187076 A		US	5106748 A	21-04-1992
US 5187076 A			5166058 A	たま リヤ エフフん
US 5187076 A	16-02-1993			24-11-1992
		US	. 4877864 A	31-10-1989
		US	5013649 A	07-05-1991
	*	ΑT	162223 T	15-01-1998
	•	AU	624940 B2	25-06-1992
		AU	5357790 A	22-10-1990
		CA	2030518 A1	29-09-1990
		DE	69031939 D1	19-02-1998
	:	DE	69031939 T2	10-09-1998
	.*	DK	429570 T3	27-04-1998
		EP ES	0429570 A1 2113857 T3	05-06-1991 16-05-1998
		KR	239203 B1	15-01-2000
	.)	KR	247216 B1	15-03-2000
	; 7-\$	MX	9203127 A1	01-07-1992
		WO	9011366 A1	04-10-1990
	. 4	ÜS	6207813 B1	27-03-2001
		ÜS	5459047 A	17-10-1995
•	.1	US	5849880 A	15-12-1998
		US	2002061577 A1	23-05-2002
		ΑT	141928 T	15-09-1996
	; ;	AU	613314 B2	01-08-1991
		AU	7783587 A	29-01-1988
		DE	3751887 D1	02-10-1996
		DE	3751887 T2	06-03-1997
		DK	53497 A	09-05-1997
		DK	106288 A	28-04-1988
		EP	1254956 A2	06-11-2002
		EP Ep	0313578 A1 0688869 A1	03-05-1989 27-12-1995
	:	ES	2007625 A6	01-07-1989
		GR	871028 A1	11-01-1988
	*	įΪΕ	75881 B1	24-09-1997
		ΪĒ	970378 L	01-01-1988
		ĨĹ	83003 A	31-07-1995
		JP	2729222 B2	18-03-1998
		JP	6298800 A	25-10-1994
	Ç	JP	3093682 B2	03-10-2000
	*	JP	10070989 A	17-03-1998
		JP	2500241 T	01-02-1990
		JP	2713715 B2	16-02-1998
	ı	KR	9705583 B1	18-04-1997
		MX	170919 B 220894 A	22-09-1993
	:	NZ	220894 A 85225 A ,B	28-05-1990
		PT WO	85225 A ,B 8800205 A1	01-08-1987 14-01-1988
		US	5543394 A	06-08-1996
		US	5631142 A	20-05-1997
		US	5166058 A	24-11-1992
		·US	5635373 A	03-06-1997
	•	US	6432919 B1	13-08-2002
WO 06/1919	27-12-1996	CA	2224253 A1	27-12-1996
WO 9641818	27-12-1996	EP	0830381 A1	25-03-1998

Information on patent family members

ir itional Application No PCT/US 01/41110

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9641818	Α		JP	11507697 T	06-07-1999
			WO	9641818 Al	27-12-1996
			US	6124273 A	26-09-2000
EP 0747066	Α	11-12-1996	us Us	5936035 A	10-08-1999
21 07 17 000			US	5614587 A	25-03-1997
			ČĀ	2172906 A1	08-12-1996
	•		EP	0747066 A2	11-12-1996
			JP	9099052 A	15-04-1997
			ŬS.	5786421 A	28-07-1998
			ÜS	5744545 A	28-04-1998
US 5356630	A	18-10-1994	US	5545409 A	13-08-1996
55 555555	••	. 10 10 100,	ÜS	5629009 A	13-05-1997
			WO	9009783 A1	07-09-1990
			ÜŠ	5328695 A	12-07-1994
			US	5286763 A	15-02-1994

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)