Задание на 5-мин семинара №15 Механика 2022

Вычислите скобку Пуассона следующих функций на $T^*\mathbb{R}^3$:

$$\{M_i, (\vec{x} \cdot \vec{a})(\vec{p} \cdot \vec{b})\},\$$

где M_i-i -я компонента углового момента $\vec{M}=\vec{x}\times\vec{p}$ в декартовых координатах, $(\vec{x}\cdot\vec{a}):=x_1a_1+x_2a_2+x_3a_3$ — линейная форма с *постоянными* коэффициентами a_i и аналогично для $(\vec{x}\cdot\vec{b})$. Компоненты радиус-вектора и импульса x_i и p_i — канонически сопряженные переменные:

$$\{x_i, p_j\} = \delta_{ij}, \quad \{x_i, x_j\} = \{p_i, p_j\} = 0.$$

Решение. Пользуемся правилом Лейбинца для произведения $(\vec{x} \cdot \vec{a})(\vec{p} \cdot \vec{b})$ (по всем повторяющимся индексам проводится суммирование):

 $\{M_i, (\vec{x} \cdot \vec{a})(\vec{p} \cdot \vec{b})\} = \{M_i, x_j\}a_j(\vec{p} \cdot \vec{b}) + (\vec{x} \cdot \vec{a})\{M_i, p_j\}b_j = \epsilon_{ijk}x_ka_j(\vec{p} \cdot \vec{b}) + (\vec{x} \cdot \vec{a})\epsilon_{ijk}p_kb_j$

 $\{M_i, (\vec{x} \cdot \vec{a})(\vec{p} \cdot \vec{b})\} = (\vec{p} \cdot \vec{b})[\vec{a} \times \vec{x}]_i + (\vec{x} \cdot \vec{a})[\vec{b} \times \vec{p}]_i$.