

Theory of Computing

Tutorial 2

Part 1 (*Sets and Languages*)

- **1.** Let $\Sigma = \{a, m, n, t\}$ be an alphabet. Which of the following strings belong to Σ^* (Give the equivalent of each string).
 - $\mathbf{a} \cdot \mathbf{a}^4$
 - **b.** $(mn)^2t^3$
 - c. $m^3 v^5$
- **2.** Give the equivalent of each of the following strings.
 - **a.** 0^21^2
 - **b.** $(01)^2$
 - **c.** $((00)^21^3)^2$
- **3.** Consider the following languages:
 - **a.** $L_1 = \{a^m b a^n : m \in \mathbb{N} \land n \in \mathbb{N}\}\$ over $\Sigma = \{a,b\}$

Which of the following strings belong to L_1 ?

- a) aaabaa
- b) aaab
- c) aabbaaa

b.
$$L_2 = \{ a^{n^2} : n \in \mathbb{N}^+ \} \text{ over } \Sigma = \{a\}$$

Which of the following strings belong to L_2 ?

- a) a
- b) aaaaaa
 - c) aaaaa

c.
$$L_3 = \{s^j t s^j : j \in \mathbb{N}^+ \land (s=0 \lor s=1) \land (t=+ \lor t=-)\} \text{ over } \Sigma = \{0, 1, +, -\}$$

Which of the following strings belong to L₃?

- a) 0++0
- b)00+00
- c) 100+1256
- d) 1111-1111
- **4**. Give a formal expression that describes a language where each string.
 - contains two a: an a at the beginning of the string and an a at the end of the string.
 - contains an even number of b between the two a.
- **5**. Consider the following language L defined over $\Sigma = \{t,o\}$ such as: $L = \{(to)^{2n}: n \in \mathbb{N} \}$
 - **a.** Describe in a sentence the set of strings of this language.
 - **b.** Which of the following string belong to L?
 - a) ttoo
- b) tototo
- c) ttoto
- d) totototo
- **6.** Give a formal expression that describes the set of strings over the alphabet $\Sigma = \{0\}$ where each string contains a prime number of 0.
- 7. Determine if each of the given expression is true or false. Justify your answer.
 - **a.** The empty set \emptyset is a language.
 - **b.** Ø⊈{ε}
 - c. $\varepsilon \in \emptyset$

- **d.** $\varepsilon \subseteq \varepsilon$
- e. $\emptyset = \{\epsilon\}$
- f. The string EasEa is an element of the language {a, aa, aaa}
- **g.** If a language is presented as the set $\{\varepsilon, \varepsilon\varepsilon, \varepsilon\varepsilon\varepsilon\}$, this set contain three strings.
- **h.** Σ^* is a language for all alphabet Σ .
- i. Let L be a language. $\varepsilon \in L$.
- **j.** Σ^* Σ^* is a language.

Part 2 (Finite Auatomata)

Exercise 1

Classify the following automata, first determine if the description is correct or not, then determine wither the automaton is deterministic or non-deterministic. Explain why.

a) $\Sigma = \{a, b\}$

b) $\Sigma = \{a\}$

c) $\Sigma = \{a\}$

d) $\Sigma = \{a\}$

Exercise 2 (*Deterministic Finite Automata*)

1. Let us consider the following automaton A:

Describes how the automaton processes each of the following strings:

a. 10000

- b. 10011
- c. 1101
- 2. Construct a DFA that accepts the set of strings of length 2 over $\Sigma = \{0, 1\}$.
- 3. Construct a DFA that recognizes a language L defined over Σ with: $\Sigma = \{0, 1\}$ and L = $\{s \mid |s| \text{ is even}\}.$
- 4. Construct a DFA that recognizes a language L defined over Σ with: $\Sigma = \{a, b, c\}$ and L= $\{s \mid |s| \text{ is odd}\}$
- 5. Construct a DFA that recognizes a language L defined over Σ with: $\Sigma = \{0, 1\}$ and L= $\{s \mid |s| \text{ mod } 4=0\}$
- 6. Construct a DFA that recognizes a language L defined over Σ with: $\Sigma = \{0,1\}$ and L= $\{s \mid |s|=1 \text{ or } |s| \ge 3\}$.
- 7. Construct a DFA for the following language $L = \{\omega | \omega \text{ contains an equal number of occurrences of 01 and 10} \}$ defined over the alphabet $\Sigma = \{0, 1\}$.

Exercise 3 (*Nondeterministic Finite Automata*)

1. Let us consider the following NFA:

Describes how the automaton processes each of the following strings:

- **a.** 10101101
- **b.** 1110
- **c.** 10001
- 2. Construct the NFAs that can recognize the following languages:
 - a) L1 = $\{\omega | \omega \text{ is a string in which at least one ai occurs even number of times}$ (not necessarily consecutively), where $1 \le i \le 3$ over $\Sigma = \{a1, a2, a3\}$.
 - b) L2 = $\{\omega | \omega \text{ contains two 0s separated by a substring whose length is a multiple of 3}, <math>\Sigma = \{0, 1\}.$