# Credit underwriting ML project

Fred Serfati - 07/23/2024



#### Plan

- 1. Introduction: Credit underwriting
- 2. EDA
- 3. Data Preprocessing & Feature Engineering
- 4. Data Visualization
- 5. Modeling
- 6. Results and Feature importances
- 7. Conclusions
- 8. Q&A



### Introduction: Credit underwriting

- Determine the creditworthiness of an applicant, by identifying whether they should be given a loan in the future
- Helps financial institutions manage risks and ensure profitability
- Accurate credit underwriting decisions:
  - Protect lenders from financial losses
  - Support borrowers in accessing fair credit opportunities



### Modelisation using Machine Learning

- Supervised problem: access to outcome/label of loan
- **Binary classification:** categorical target with 2 categories: good (non-default) & bad (default)



### **Exploratory Data Analysis**



### Data preparation

- 2 datasets:
  - Application (644 records) for every customer that has been given a loan in a 6 month period
  - Loan (1266 records) for the outcome of those loans: good (i.e., non default) or bad (default)
- Merged Loan data (target) to Application data (variables) using a left join
- Final dataset: only 631 records: tiny dataset!



#### Dataset presentation

- 631 records, 32 columns
- Target: flgGood, i.e., whether a loan defaulted ('Bad', 0) or not ('Good', 1)
- Different types of variables:
  - **Numerical**: e.g., amount\_requested, monthly\_rent\_amount
  - Categorical:
    - Ordinal: e.g., email\_duration, residence\_duration
    - **Nominal**: e.g., bank\_account\_direct\_deposit, how\_use\_money
- (Stratified) train test split:
  - o 80% (488) for train/validation, used for model training, fine-tuning and model selection
  - o 20% (122) for test, used for predictions (nothing else!)



### Dealing with missing values



- Other\_phone\_type: dropped column
- 3 other features: dropped rows with null values (very few)
- Tried imputation with mean for payment\_amount\_approved but let to poorer performances



### Unique values



- Customer\_id, application\_when and email: dropped or transformed (1 unique value per application)
- Status: dropped (1 unique value, because all loans in this dataset were approved; i.e., 0 variance)



### A slightly imbalanced dataset



- 45% of good loans vs 55% of bad loans: slight imbalance
- Still very limited, so no need for advanced sampling methods (such as SMOTE)
- However, choice of metrics still very important (can't use accuracy)

### Data Preprocessing & Feature Engineering



### Data preprocessing

- Numerical features:
  - Standard scaling
  - No need for missing values imputation: already removed all missing values
- Nominal variables: one-hot-encoding
- Ordinal variables: ordinal encoding



### Feature engineering

- Age
- Year, month and day of week of application
- How\_use\_money: categories regroupment
- Zip code: only kept 3 first digits to reduce dimensionality
- Average FICO score (money, retail, telecom, bank card)
- Potentially useful ratios, e.g.:
  - Debt-to-income (DTI) and approved DTI
  - Approved-to-requested-amount: proportion of the requested amount that was granted
  - Approved-to-requested-loan-duration: proportion of the requested duration that was granted



### Data Visualization



### Relationship between target and categorical features (1/2)



- 76% of loans used for debt reimbursement were good
- Only 50% for personal and family expenses



### Relationship between target and categorical features (2/2)





### Relationship between target and numerical features





### Pairwise relationships between numerical features



- Strong correlation between:
  - Requested & approved duration
  - Requested & approved amount
  - Requested & approved payment amount
  - Loan duration & number of payments
  - All FICO scores
  - 0 ...
- Moderate correlation between:
  - Num\_payments & approved\_duration
  - Num payment & amount approved
  - 0 ...



### Pairwise relationships between ordinal features



Nothing remarkable here: no "correlation" between any pair of ordinal features



### Pairwise relationships between **nominal** features



- Strong relationship between application year & month:
  - Probably because data from 2010
     only cover October to December while
     data from 2011 only cover January
     April
- Moderate relationship between application month (and year) & how\_use\_money



### Chi-square tests of independence



- H0: ind. vs H1: non-ind.
- Payment\_frequency, bank\_account\_duration and how\_use\_money:
  - Reject H0: target not independent of those variables
- All other categorical variables:
  - Fail to reject H0: not enough evidence to conclude variable not independent from target
- Careful with interpretation because of multiple testing problem



### Modeling



### Why we can't use accuracy

- (Slight) imbalance problem, so biased towards majority class ('Bad')
- More importantly, in credit underwriting, we don't only care about overall correctness,
   but also about:
  - False positives (granting a credit that will default: money loss)
  - False negatives (missing a good loan: missed opportunity)



#### Metrics used

- Balanced accuracy: weighted version of accuracy, taking into account class imbalance
- **Precision**: proportion of true positive (good loans) out of all loans predicted as good
  - The higher, the more we can trust that if a loan is predicted as good, it will really be good
- Recall (TPR): proportion of true positives (good loans) out of all actual good loans
  - The higher, the more good loans are identified by the model
- F1-score: balance between precision and recall
  - Useful here, as we care both about precision and recall
- AUC-ROC:
  - The higher, the better the model is able to distinguish between good and bad loans
- AU-PRC:
  - The higher, the better the model performs with the positive (good) class.



#### Model evaluation: stratified 5-fold cross-validation

- Why cross-validation instead of a simple train/valid split?
  - Very small training dataset (less than 500 records):
    - High variance in metrics from one split to another: not trustworthy
  - To avoid bad surprises once model in production, need to robustly evaluate generalization
     error: cross-validation
  - The higher the number of folds, the more robust (but computationally more expensive)
- Why stratified?
  - Same proportion of Good vs Bad loans in each fold (compare apples to apples)



### Model selection: random search then grid search

- For each model:
  - Narrow down the best hyperparameter region using a 100-iteration randomized search
- Select the best model according to the metrics \*
- Define a refined and with lower cardinality hyperparameter grid around the parameters of the best model
- Run a grid search on the model with the previous grid to fine-tune it even further
- Best of both worlds:
  - efficiency of randomized search
  - accuracy of grid search

<sup>\*</sup> What if different metrics lead to different best models? Fortunately not the case here, as there was always a consensus between metrics.



### Model selection: random search then grid search

#### **Family candidates**

- Random forest
- **XGboost**
- LightGBM



### **Best model/family**

- Best RF: 0.6
- Best XGboost: 0.7

Grid

**Best LightGBM:** 8.0

#### Final model

Best LightGBM ++: 0.85



### Machine learning models explored

- Dummy classifier (always predicts the majority class): serves as a **baseline**
- Logistic regression
- Tree based models:
  - Decision Tree
  - Random Forest
  - Gradient boosting:
    - XGBoost
    - LightGBM
    - CatBoost



### Results & Feature Importances



### Results





### Global Feature importances



- Method: Permutation importance
- Relative importances (not absolute)
- **Global** importances: most important features **overall**, not locally
- Most important features:
  - FICO score, L2C score, DTI, age, monthly rent amount, monthly income amount
- Least important features:
  - Residence rent or own, residence duration, approved to requested amount
- Careful with interpretation because of correlated features and poor performances



### Final predictions (extract)

|    | predicted_probability | predicted_label | true_label |
|----|-----------------------|-----------------|------------|
| 50 | 0.611983              | 1               | 1          |
| 51 | 0.595950              | 0               | 0          |
| 52 | 0.821817              | 0               | 0          |
| 53 | 0.694141              | 1               | 1          |
| 54 | 0.702674              | 0               | 0          |
| 55 | 0.659986              | 0               | 1          |
| 56 | 0.731026              | 1               | 1          |
| 57 | 0.672661              | 1               | 1          |
| 58 | 0.653270              | 1               | 1          |
| 59 | 0.720309              | 1               | 0          |



### Conclusions



### Challenges & Limitations

- Biggest challenge: making the most out of such a small dataset
- Lack of feature description:
  - Some variables were not self-explanatory, and thus I had to assume several things (e.g., residence\_rent\_or\_own, or difference between payment amount and payment amount approved)



### Recommendations & Next steps

- Collect more data and re-train the models
  - If no additional data are available, use data augmentation techniques to generate synthetic
     data
- Discuss with domain experts to gain knowledge about feature importances in credit underwriting
- Try other feature engineering techniques (e.g., cyclical encoding of time-related features)
- Use other feature importances methods, such as:
  - L2 logistic regression coefficients
  - Local methods for explaining individual predictions: SHAP, LIME



## Thank you for your attention! Questions?

