Tasca teoria - 2

Nom i cognoms: Martin Azpillaga niub 14944926. Teoria 2.

 $\mathbf{2}$. Considerem la matriu quadrada d'ordre n

$$M = \left(\begin{array}{c|c} 0 & B \\ \hline A & C \end{array}\right), \quad A \in \mathcal{M}_{k \times k}(\mathbb{R}), \quad B \in \mathcal{M}_{h \times h}(\mathbb{R}), \quad C \in \mathcal{M}_{k \times h}(\mathbb{R}), \quad k + h = n$$

Demostreu que $\det(M) = (-1)^{kh} \det(A) \det(B)$.

Lo demostraremos por induccion sobre h. Para facilitar la tarea usaremos la notación $A_{k\times k}$ para referirnos a $A\in\mathcal{M}_{k\times k}$

i) caso inicial: h=1

$$M_1 = \left(\begin{array}{c|c} 0_{1 \times k} & b_1^1 \\ \hline A_{k \times k} & C_{k \times 1} \end{array}\right)$$

Si desarrollamos la primera fila por adjuntos:

$$det(M_1) = b_1^1 A d(M_1)_n^1 (-1)^{k+1+1}$$

$$b_1^1 = det(B) A d(M_1)_n^1 = det(A) (-1)^{k+2} = (-1)^k$$

$$det(M_1) = (-1)^k det(B) det(A)$$

El caso inicial es cierto.

ii) Hipotesis de induccion: h = s-1.

$$N = \left(\begin{array}{c|c} 0'_{s-1 \times k} & B'_{s-1 \times s-1} \\ \hline A_{k \times k} & C'_{k \times s-1} \end{array}\right)$$

Suponemos que se cumple:

$$det(N) = det(B')det(A)(-1)^{(h-1)k}$$

Cabe destacar que los $Ad(M)_i^1$ cuando i>k son casos particulares de esta matriz N.

Por tanto si i > k:

$$Ad(M)_{i}^{1} = det(B')det(A)(-1)^{kh-k}$$
$$det(B') = Ad(B)_{i-k}^{1}$$
$$\downarrow$$
$$Ad(M)_{i}^{1} = Ad(B)_{i-k}^{1}det(A)(-1)^{kh-k}$$

iii) Caso general h=s.

$$M = \left(\begin{array}{c|c} 0_{s \times k} & B_{s \times s} \\ \hline A_{k \times k} & C_{k \times s} \end{array}\right)$$

Si lo desarrollamos por la primera fila:

$$det(M) = \sum_{i=1}^{n} m_i^1 A d(M)_i^1 (-1)^{i+1}$$

Observamos que mientras $i \le k$ el sumanndo será cero, ya que $m_i^1 = 0$.

Por tanto podemos hacer un cambio de variable en el sumatorio para que solamente recorra desde $b_1^1...b_h^1$. Utilizamos x = i - k

$$det(M) = \sum_{x=1}^{h} b_x^1 A d(M)_{x+k}^1 (-1)^{k+x+1}$$

Sustituimos $Ad(M)_{x+k}^1$ por la hipotesis de induccion:

$$Ad(M)_{x+k}^{1} = Ad(B)_{x+k-k}^{1} det(A)(-1)^{kh-k}$$

Nos queda:

$$det(M) = \sum_{x=1}^{h} b_x^1 A d(B)_x^1 det(A) (-1)^{kh-k} (-1)^{k+x+1}$$

Unimos ambos (-1):

$$det(M) = \sum_{x=1}^{h} b_x^1 A d(B)_x^1 det(A) (-1)^{kh+x+1}$$

Sacamos en factor comun los productos que no dependen de x:

$$det(M) = det(A)(-1)^{kh} \sum_{x=1}^{h} b_x^1 A d(B)_x^1 (-1)^{x+1}$$

El sumatorio es justamente la expresión del det(B) desarrollado por la primera fila. Por tanto:

$$det(M) = det(A)(-1)^{kh} det(B)$$

c.v.d. Martin Azpillaga

1. Deduïu que si una matriu quadrada $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ commuta amb totes les matrius quadrades d'ordre n, aleshores $A = \lambda I_n$ per un cert $\lambda \in \mathbb{R}$. Indicació: Sigui E_i^j la matriu quadrada d'ordre n amb tots els coeficients 0 llevat un 1 en la columna i, fila j. En particular, $AE_i^j = E_i^j A$.

Primero probemos que λI_n si cumple la proposición. A λI_n se le conoce como matriz escalar ya que el efecto que crea al multiplicarla con una matriz es el mismo que multiplicar un escalar por una matriz. Como es invertible:

$$I_n = \sum_i E_i^i$$

$$\lambda I_n = \sum_i \lambda E_i^i$$

$$\lambda I_n = (\lambda E_1^1 + \lambda E_2^2 + \dots + \lambda E_n^n)$$

Lo cual al multiplicar por X multiplica cada fila por λ . Lo mismo que: λX . Por tanto es evidente que conmuta con todos, ya que:

$$\lambda X = X\lambda \to \lambda I_n X = X\lambda I_n$$

Teniendo en cuenta que, como un escalar conmuta con cualquier matriz:

$$\lambda/\lambda AB = BA$$

$$\lambda AB = \lambda BA$$

$$\lambda AB = B\lambda A$$

Por tanto, si una matriz A cumple que AB = BA, λA también lo cumple. Usaremos esto mas adelante.

Demostremos que λI_n es el unico que cumple la propiedad. Analicemos las matrices A que cumplen que AB = BA para una matriz B concreta:

Las mas evidentes son: Las potencias de B

$$A = B^n : n \in \mathbb{N} \to B^n B = BB^n = B^{n+1}$$

Las matriz identidad:

$$A = I_n \rightarrow I_n B = BI_n = B$$

La inversa de B, si tiene:

$$A = B^{-1} \to B^{-1}B = BB^{-1} = I_n$$

A estos hay que añadirles las no tan evidentes que cumplen las condiciones que impone la matriz B que varían segun su orden y sus coeficientes. Estas pueden ser infinitas y entre ellas se encuentran las citadas anteriormente, llamaremos las matrices N las que cumplen las condiciones y no son ni I_n, B^{-1}, B^n .

Todas estas cumplen para una matriz B concreta, pero las únicas que nos interesan son aquellas que no dependan de una B concreta, sino que valgan para cualquier B. Por tanto las matrices $A = B^n, B^{-1}, N$ no son validas, ya que dependen de B. La única válida es I_n

Nos queda de que independientemente del B que tengamos, I_n siempre conmutara con el. Uusando la proposición del inicio, los λI_n también lo harán y además serán los unicos que lo hagan.

c.v.d Martin Azpillaga