Discrete Mathematics

Homework 3 Deadline: 5/27

Exercise 4.1

18. Consider the following four equations:

1)
$$1 = 1$$

$$2 + 3 + 4 = 1 + 8$$

$$5+6+7+8+9=8+27$$

4)
$$10 + 11 + 12 + 13 + 14 + 15 + 16 = 27 + 64$$

Conjecture the general formula suggested by these four equations, and prove your conjecture.

Assume general formula:

$$a_n = \sum_{i=1}^{(2n+1)} (n^2 + i) = n^3 + (n+1)^3$$

Proof:

$$a_n = \sum_{i=1}^{(2n+1)} (n^2+i) = \sum_{i=1}^{(2n+1)} (n^2) + \sum_{i=1}^{(2n+1)} (i) = n^2 (2n+1) +$$

$$\sum_{i=1}^{(2n+1)} i = 2n^3 + n^2 + \frac{(2n+1)(2n+1+1)}{2} = 2n^3 + n^2 + 2n^2 + 3n + 1$$
$$= n^3 + (n^3 + 3n^2 + 3n + 1) = n^3 + (n+1)^3$$

24. A sequence of numbers a_1, a_2, a_3, \ldots is defined by

$$a_1 = 1$$
 $a_2 = 2$ $a_n = a_{n-1} + a_{n-2}, n \ge 3.$

- a) Determine the values of a_3 , a_4 , a_5 , a_6 , and a_7 .
- **b)** Prove that for all $n \ge 1$, $a_n < (7/4)^n$.

$$(a)a_3 = 3, a_4 = 5, a_5 = 8, a_6 = 13, a_7 = 21$$

b) For n=1, $a_1 = 1 < (\frac{7}{4})^1$ is true.

Assume for all $1 \le n \le k$, $k \ge 1$, $a_k = a_{k-1} + a_{k-2} < (\frac{7}{4})^k$

is true.

For n=k+1,

$$a_{k+1} = a_k + a_{k-1} < (\frac{7}{4})^k + (\frac{7}{4})^{k-1} = (\frac{7}{4})^{k-1} * (\frac{7}{4} + 1) = (\frac{7}{4})^{k-1} * \frac{11}{4} = (\frac{7}{4})^{k-1} * (\frac{44}{16}) < (\frac{7}{4})^{k-1} * \frac{49}{16} = (\frac{7}{4})^{k-1} * (\frac{7}{4})^2 = (\frac{7}{4})^{k+1}$$

Exercise 4.2

12. For $n \ge 0$ let F_n denote the *n*th Fibonacci number. Prove that

$$F_0 + F_1 + F_2 + \cdots + F_n = \sum_{i=0}^n F_i = F_{n+2} - 1.$$

Basis step: when n = 0, $\sum_{i=0}^{0} F_i = F_0 = 0 = F_2 - 1$ is true.

Induction step: when n = k, $\sum_{i=0}^{k} F_i = F_{k+2} - 1$ is true for $k \ge 0$.

Then
$$\sum_{i=0}^{k+1} F_i = F_{k+1} + \sum_{i=0}^k F_i = F_{k+1} + (F_{k+2} - 1) = F_{k+3} - 1$$
.

So when n = k + 1, $\sum_{i=0}^{k+1} F_i = F_{k+3} - 1$ is true for all $n \ge 0$.

- 16. Give a recursive definition for the set of all
 - a) positive even integers
 - b) nonnegative even integers
- (a) Define the set X recursively by
 - **(1)2∈***X*
 - (2) for each $a \in X$, $a+2 \in X$
- (b) Define the set Y recursively by
 - (1) 0∈Y
 - (2) for each $a \in Y$, $a+2 \in Y$

Exercise 4.3

10. If $n \in \mathbb{Z}^+$, and n is odd, prove that $8 | (n^2 - 1)$.

Because n is odd, n + 1 and n - 1 is even.

Assume n-1 is divisible by 4, then $8|(n^2-1)$ holds.

Assume n - 1 is not divisible by 4.

Let
$$n - 1 = 4k + r$$
, $0 \le r < 4$, k , $r \in \mathbb{Z}$.

Because
$$4 \nmid (n-1) \Rightarrow r \neq 0$$

Because
$$2|(n-1) \Rightarrow 2|r \Rightarrow r=2$$

Thus,
$$(n + 1) = 4k + r + 2 = 4(k + 1)$$

$$\Rightarrow$$
 4|(n+1) \Rightarrow 8|(n-1)(n+1) \Rightarrow 8|(n²-1) holds.

12. Determine the quotient q and remainder r for each of the following, where a is the dividend and b is the divisor.

a)
$$a = 23, b = 7$$

a)
$$a = 23$$
, $b = 7$ **b)** $a = -115$, $b = 12$

c)
$$a = 0$$
, $b = 42$

c)
$$a = 0$$
, $b = 42$ d) $a = 434$, $b = 31$

(a)
$$q = 3$$
, $r = 2$

(b)
$$q = -10$$
, $r = 5$ ($q = -9$, $r = -7$)

(c)
$$q = 0$$
, $r = 0$

$$(d)q = 14, r = 0$$

18. For what base do we find that 251 + 445 = 1026?

Let **b** be the base

$$\Rightarrow (2b^2 + 5b + 1) + (4b^2 + 4b + 5) = b^3 + 2b + 6$$

$$\Rightarrow 6b^2 + 9b + 6 = b^3 + 2b + 6$$

$$\Rightarrow b^3 - 6b^2 - 7b = 0$$

$$\Rightarrow b(b-7)(b+1)=0$$

$$\Rightarrow$$
 $b = 0, 7$, or -1 , but $b \in \mathbb{Z}^+$, so $b = 7$.

Exercise 4.4

12. Let $a, b \in \mathbb{Z}^+$ where $a \ge b$. Prove that gcd(a, b) =gcd(a-b,b).

1. We want to show $gcd(a, b) \ge gcd(a - b, b)$.

Let $c = \gcd(a, b)$, that is, there are x, y such that ax + by = cThen c = ax - bx + by + bx = (a - b)x + b(x + y) where x, x + b $\mathbf{v} \in \mathbb{Z}^+$

Hence,
$$gcd(a - b, b) \le c = gcd(a, b)$$

2. We show that $gcd(a, b) \leq gcd(a - b, b)$.

Let $d = \gcd(a - b, b)$, that is, there are i, j such that (a - b)i + b

$$bj = d$$

Then $d = ai - bi + bj = ai + b(j - i)$
Hence, $gcd(a, b) \le d = gcd(a - b, b)$

By 1 and 2, we can get gcd(a, b) = gcd(a - b, b).

16. Let $a, b \in \mathbb{Z}^+$. Prove that there exist $c, d \in \mathbb{Z}^+$ such that cd = a and gcd(c, d) = b if and only if $b^2 | a$.

要證兩邊,只證一邊的扣5分

%=>"

$$gcd((c,d)) = b \Rightarrow b \mid c \text{ and } b \mid d$$

 $\Rightarrow b^2 \mid cd$
 $\Rightarrow b^2 \mid a$
"<=""

 $b^2|a \Rightarrow a = kb^2$ where $k \in \mathbb{Z}^+$.

Choose c = kb, d = b satisfy that cd = a and gcd(kb, b) = b

Exercise 4.5

8. a) How many positive divisors are there for

$$n = 2^{14}3^95^87^{10}11^313^537^{10}$$
?

- b) For the divisors in part (a), how many are
 - i) divisible by $2^3 3^4 5^7 11^2 37^2$?
 - ii) divisible by 1,166,400,000?
 - iii) perfect squares?
 - iv) perfect squares that are divisible by 2²3⁴5²11²?
 - v) perfect cubes?
 - vi) perfect cubes that are multiples of $2^{10}3^95^27^511^213^237^2$?
 - vii) perfect squares and perfect cubes?

錯一個扣兩分,五個以上 -10

(a) (14+1)(9+1)(8+1)(10+1)(3+1)(5+1)(10+1) = 3920400

(b)

(i).
$$(14-3+1)(9-4+1)(8-7+1)(10+1)(3-2+1)(5+1)(10-2+1) = 171072$$

(ii).
$$1166400000 = 2^93^65^5$$

$$(14-9+1)(9-6+1)(8-5+1)(10+1)(3+1)(5+1)(10+1) = 278784$$

(iii).
$$([14/2] + 1)([9/2] + 1)([8/2] + 1)([10/2] + 1)([3/2] + 1)([5/2] + 1)([10/2] + 1) = 43200$$

(iv).
$$\left(\left| \frac{14-2}{2} \right| + 1 \right) \left(\left| \frac{9-4}{2} \right| + 1 \right) \left(\left| \frac{8-2}{2} \right| + 1 \right) \left(\left| \frac{10}{2} \right| + 1 \right) \left(\left| \frac{3-2}{2} \right| + 1 \right) \left(\left| \frac{5}{2} \right| + 1 \right) \left(\left| \frac{5}{2} \right| + 1 \right) \left(\left| \frac{10}{2} \right| + 1 \right) = 9072$$

(v).
$$([14/3] + 1)([9/3] + 1)([8/3] + 1)([10/3] + 1)([3/3] + 1)([5/3] + 1)([10/3] + 1) = 3840$$

$$(vi).1 \times 1 \times 2 \times 2 \times 1 \times 1 \times 3 = 12$$

一一列舉出可能性(2只有12可以選擇,3只有9可以選擇,5

有3或6可以選,以此類推)

(vii).
$$([14/6] + 1)([9/6] + 1)([8/6] + 1)([10/6] + 1)([3/6] + 1)([5/6] + 1)([10/6] + 1) = 48$$