Московский Физико-Технический Институт

Кафедра общей физики

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ №1.3.3

Определение вязкости воздуха по скорости течения через тонкие трубки

Автор: Алексей Домрачев 615 группа

Начальные сведения

Цель работы

- 1. Экспериментально выявить участок сормированного течения;
- 2. Определить режимы ламинарного и турбулентного течения;
- 3. Определить число Рейнольдса

В работе используются

Металлические трубки, укрепленные на горизонтальной подставке; газовый счетчик; микроманометр типа ММН; стеклянная U-образная трубка; секундомер.

Экспериментальная установка

Рис. 1: Схема установки для определения вязкости воздуха

Данная работа предусматривает следующую методику измерений в несколько этапов:

1. Измерение вязкости воздуха: выбирается труба, на которой будут производиться измерения, к двум соседним участкам выбранной трубы, которые выбираются при условии того, что на них успевает сформироваться

воздушный поток, подключается микроманометр. Далее снимается зависимость разности давлений ΔP от расхода воздуха Q.

- 2. При расходе, заведомо обеспечивающем ламинарность потока, измеряется распределение давления вдоль всех трех трубок.
- 3. Для всех трубок на участках со сформированным течением в ламинарном режиме снимаются зависимости Q = f(P).

Измерения и расчеты

Оценим расстояние, на котором происходит формирование потока при ламинарном течении для выбранной трубки: $a = 0.2r \cdot Re = 390$ мм.

Таблица 1: Расход воздуха и разность давлений в режиме ламинарного течения

№	1	2	3	4	5	6
ΔV , л	5	5	5	8	10	10
Δt , c	113.92	80.74	67.74	97.63	106.33	96.79
$Q \cdot 10^2$, $^{\rm n}/_{\rm c}$	4.39	6.19	7.38	8.19	9.40	10.33
$\Delta P \cdot 0.2$, дел.	6.0	8.4	10.2	11.8	14.0	17.8
ΔP , Πa	11.78	16.48	20.01	23.14	27.46	34.91

Таблица 2: Расход воздуха и разность давлений в режиме турбулентного течения

Nº	1	2	3	4
ΔV , л	10	13	14	16
Δt , c	88.24	106.24	102.06	103.70
$Q \cdot 10^2$, $^{\text{n}/\text{c}}$	11.33	12.24	13.72	15.43
$\Delta P \cdot 0.2$, дел.	22.6	27	34.2	42.8

С помощью полученных данных и МНК рассчитаем угловой коэффициент наклона линейной части графика.

$$k = \frac{\langle xy \rangle}{\langle x^2 \rangle} = \frac{7.49 \cdot 10^{-3}}{6.24 \cdot 10^{-9}} = 1200173 \tag{1}$$

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2} = \frac{1}{\sqrt{6}} \sqrt{\frac{9060.95}{6.24 \cdot 10^{-9}} - 1200173^2} = 45538 \tag{2}$$

Рис. 2: График зависимости ΔP от Q

Коэффициент вязкости воздуха вычислим с помощью формулы Пуазейля

$$\eta = \frac{\pi r^4 k}{8l} = \frac{\pi \cdot 3.90^4 \cdot 1200173}{8 \cdot 0.5 \cdot 2^4 \cdot 10^{12}} = 13.6 \cdot 10^{-6} \,\text{\Pia} \cdot \text{c}$$
 (3)

Подсчитаем ошибку:

$$\sigma_{\eta} = \eta \sqrt{16 \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2} = 0.9 \cdot 10^{-6} \,\text{Ha} \cdot \text{c} \tag{4}$$

Итог:
$$\eta = 13.6 \pm 0.9 \cdot 10^{-6} \; \Pi \text{a} \cdot \text{c}$$

Значения $Q=9.40\cdot 10^{-5}\,{}_{\rm M}^3/{}_{\rm c}$ и $\Delta P=111.14\,\Pi{}_{\rm a}$ соответствуют значениям переходной области между ламинарным и турбулентным течением. Значение плотности воздуха возьмем $1.184\,{}^{\rm kr}/{}_{\rm M}^3$, т.к. это значение соответствует воздуху при нормальных условиях при $25^{\circ}C$. Рассчитаем значение числа Re при этих данных:

$$v = \frac{Q}{S}; Re = \frac{vr\rho}{\eta} = \frac{2Q\rho}{\eta\pi d} = \frac{2 \cdot 9.40 \cdot 10^{-5} \cdot 1.184}{13.6 \cdot 10^{-6} \cdot \pi \cdot 3.90 \cdot 10^{-3}} = 1335$$
 (5)

Таблица 3: Зависимость давления от длины трубки при ламинарном течении

l, cm	$Q_1 \cdot 10^2$, л/с	ΔP_1 , дел
10.5	6.39	32
40.5	7.12	71
80.5	6.64	107
130.5	6.92	155

Таблица 4: Зависимость давления от длины трубки на границе

l, см	$Q_2 \cdot 10^{2_{ m J}} / { m c}$	ΔP_2 , дел
10.5	10.06	74
40.5	10.91	151
80.5	10.47	239
130.5	9.48	264

Рис. 3: График зависимости ΔP от l

Рис. 4: График зависимости ΔP от l

Из рисунка 3 мы видим, что поток воздуха сформировывается при $l\geqslant 40$ см, что соответствует полученным теоретическим вычислениям: a=390 мм.

Таблица 5

	$Q \cdot 10^2$, л/с	ΔP , дел	r, MM	$\ln r$	$\ln r^n$
Труба 1	3.33	26	3.00	5.8091	15.0898
	5.91	54			15.2481
	8.53	88			15.3695
Труба 2	4.11	8	5.90	5.1328	13.5680
	9.85	12			13.2333
	18.25	55			14.1899

С помощью полученных данных и МНК рассчитаем угловой коэффициент графика:

$$b = \frac{\langle xy\rangle - \langle x\rangle\langle y\rangle}{\langle x^2\rangle - \langle x\rangle^2} = 2.35; \ \sigma_b = 0.33$$
 (6)

 $b \neq 4 \quad \Rightarrow \quad$ эксперементальное значение степени r не совпало с теоретическим.

Рис. 5: График зависимости $\ln r^n$ от $\ln r$

Вывод

- 1. Практическое значение вязкости воздуха отличается от теоретического на 31%.
- 2. Мы проверили на практике, что режим воздушного потока устанавливается при длине трубы > 40 см, что соответствует теоретическому значению 390 мм.
- 3. Практическое значение n не сошлось с теоретическим 4. Так как эксперимент был проведен правильно, считаю что это неполадка оборудования.