Les séries numériques — Généralités

- $\mathbf{K} = \mathbf{R}$ ou \mathbf{C}
- $(u_n)_{n\geq 0}$ suite dans **K**
 - \star On forme les sommes

$$S_0 = u_0,$$
 $S_n = u_0 + u_1 + \ldots + u_n = \sum_{k=0}^n u_k$

- Étude de la suite $(S_n)_{n\geq 0}$
 - \star On peut souvent dire si (S_n) est convergente ou pas
 - * Calcul de la limite difficile en général!

1. Définitions et Exemples.

• Notation : si (u_n) est une suite dans \mathbf{K} , on note

$$S_0 = u_0, \quad \forall n \ge 1, \quad S_n = u_0 + u_1 + \ldots + u_n = \sum_{k=0}^n u_k$$

Définition. Soit $(u_n)_{n\geq 0}$ une suite dans **K**. $S_n = u_0 + \ldots + u_n$.

- 1. Si la suite de t.g. S_n est convergente, on dit que la série de t.g. u_n est convergente ou encore que la série $\sum u_n$ converge.
- 2. Si la suite $(S_n)_{n\geq 0}$ n'est pas convergente, on dite que la série de t.g. u_n est divergente ou que la série $\sum u_n$ diverge.
- $S_n = \text{somme partielle de la série } \sum u_n$
- Si la série $\sum u_n$ est convergente, la limite de la suite $(S_n)_{n\geq 0}$ s'appelle la somme de la série $\sum u_n$ et se note

$$\sum_{n=0}^{+\infty} u_n \quad \text{ou encore,} \quad \sum_{n>0} u_n$$

• Étudier la nature de la série $\sum u_n$ c'est dire si cette série est convergente ou divergente

Remarque. 1. Si la suite (u_n) est définie seulement pour $n \ge n_0$, on peut considérer la série $\sum u_n$; les sommes partielles sont alors

$$S_n = u_{n_0} + \ldots + u_n = \sum_{k=n_0}^n u_k$$

Si ces sommes partielles convergent, la limite est $\sum_{k=n_0}^{+\infty} u_k = \sum_{k\geq n_0} u_k$

2. Soit $n_0 \in \mathbf{N}$. On a, pour $n \geq n_0$,

$$S_n = u_0 + \ldots + u_{n_0} + u_{n_0+1} + \ldots + u_n$$

 (S_n) est cv ssi $(S_n - S_{n_0})$ est cv.

La nature d'une série ne dépend pas des premiers termes de la suite! Par contre, la valeur de la somme si!

3. Lorsque $\sum u_n$ est cv, notons S la limite de (S_n) i.e. $S = \sum_{n \geq 0} u_n$. Pour $n \geq 0$, le reste d'ordre n est

$$R_n = S - S_n = \sum_{k>n} u_k \longrightarrow 0, \quad \text{si } n \to \infty.$$

Proposition. $Si \sum u_n$ converge, alors $\lim u_n = 0$.

• En effet, $u_n = S_n - S_{n-1}$.

Définition. Lorsque (u_n) ne converge pas vers 0, on dit que la série $\sum u_n$ est grossièrement divergente (GDV).

Remarque. Attention, la réciproque est fausse!!! On peut avoir $\lim u_n = 0$ et $\sum u_n$ divergente.

Exemple. 1. Série géométrique. Soit $z \in \mathbb{C}$. On étudie $\sum z^n$, $u_n = z^n$.

$$S_n = 1 + z + \ldots + z^n = \begin{cases} n+1, & \text{si } z = 1, \\ \frac{1-z^{n+1}}{1-z}, & \text{si } z \neq 1. \end{cases}$$

- Si $|z| \ge 1$, $|u_n| = |z^n| = |z|^n \ge 1$. La série est GDV!
- Si $|z| < 1, z^{n+1} \to 0$ et

$$\lim_{n \to \infty} S_n = \sum_{n \ge 0} z^n = \frac{1}{1 - z}.$$

2. Série harmonique. Pour $n \ge 1$, $u_n = 1/n$. On note $H_n = \sum_{k=1}^n \frac{1}{k}$. On a $\lim_{n \to \infty} (1/n) = 0$ et pourtant $\sum_{k=1}^n \frac{1}{k}$ diverge! En effet,

$$H_{2n} - H_n = \frac{1}{n+1} + \ldots + \frac{1}{2n} \ge n \times \frac{1}{2n} = \frac{1}{2}$$

Si $\sum n^{-1}$ convergeait, on aurait $\lim (H_{2n} - H_n) = 0!!$

Proposition. Soit $(a_n)_{n\geq 0}$ une suite de **K**. On note, pour $n\geq 0$, $u_n=a_n-a_{n+1}$. La série $\sum u_n$ est convergente ssi (a_n) est convergente et dans ce cas

$$\sum_{n>0} u_n = a_0 - \lim a_n.$$

• En effet,

$$S_n = \sum_{k=0}^n u_k = (a_0 - a_1) + (a_1 - a_2) + \ldots + (a_{n-1} - a_n) + (a_n - a_{n+1}) = a_0 - a_{n+1}.$$

Exemple. 1. $\sum \frac{1}{n(n+1)} \text{ cv} : \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.

2.
$$\sum \ln \left(1 + \frac{1}{n}\right)$$
 diverge: $\ln \left(1 + \frac{1}{n}\right) = \ln(n+1) - \ln(n)$

2011/2012 : fin du cours 2

2. Opérations sur les séries.

Proposition. 1. Si les séries $\sum u_n$ et $\sum v_n$ cv, alors $\sum (u_n + v_n)$ cv et

$$\sum_{n>0} (u_n + v_n) = \sum_{n>0} u_n + \sum_{n>0} v_n.$$

2. $Si \sum u_n \ cv, \ alors, \ pour \ tout \ \lambda \in \mathbf{K}, \ \sum (\lambda u_n) \ cv \ et$

$$\sum_{n\geq 0} (\lambda u_n) = \lambda \sum_{n\geq 0} u_n$$

Corollaire. Soit $\lambda \neq 0$. Les séries $\sum u_n$ et $\sum (\lambda u_n)$ ont même nature.

Remarque. 1. La somme d'une série convergente et d'une série divergente est divergente

- 2. On ne peut rien dire pour la somme de deux séries divergentes :
 - (a) $u_n = v_n = 1/n$, $\sum (u_n + v_n)$ diverge
 - (b) $u_n = 1/n$, $v_n = -1/(n+1)$, $u_n + v_n = 1/(n(n+1))$, $\sum (u_n + v_n)$ converge

Proposition. Soit (u_n) une suite complexe; $u_n = a_n + ib_n$. $\sum u_n \ cv \ ssi \sum a_n \ et \sum b_n \ cv \ et \ dans \ ce \ cas$

$$\sum_{n\geq 0} u_n = \sum_{n\geq 0} a_n + i \sum_{n\geq 0} b_n, \qquad \operatorname{Re}\left(\sum_{n\geq 0} u_n\right) = \sum_{n\geq 0} \operatorname{Re}(u_n), \quad \operatorname{Im}\left(\sum_{n\geq 0} u_n\right) = \sum_{n\geq 0} \operatorname{Im}(u_n).$$

3. Convergence absolue.

Définition. Soit $\sum u_n$ une série dans **K**. Si la série $\sum |u_n|$ est convergente, on dit que la série de t.g. u_n est absolument convergente (ACV).

Théorème. Une série absolument convergente est convergente et $|\sum u_n| \leq \sum |u_n|$

• Attention : la réciproque est fausse cf. exemple plus loin.

Définition. Si la série $\sum u_n$ est convergente et la série $\sum |u_n|$ divergente, on dit que la série de t.g. u_n est semi-convergente (SCV).

Preuve du théorème. • On montre que le suite (S_n) est de Cauchy

- Puisque $\sum |u_n|$ est cv, $T_n = \sum_{k=0}^n |u_k|$ est de Cauchy.
- Soit $\varepsilon > 0$, il existe $p \ge 0$ tel que $|T_n T_m| < \varepsilon$ dès que $p \le n \le m$.
- D'après l'inégalité triangulaire, si $p \le n \le m$,

$$|S_n - S_m| = |u_{n+1} + u_{n+2} + \ldots + u_m| \le |u_{n+1}| + |u_{n+2}| + \ldots + |u_m| = |T_n - T_m| < \varepsilon.$$

- On suppose que $\sum |u_n|$ cv.
- Pour l'inégalité, on envoie $n \to \infty$, dans l'inégalité

$$|S_n| = \left| \sum_{k=0}^n u_k \right| \le |T_n| = \sum_{k=0}^n |u_k|.$$

Remarque. Si $\sum |u_n|$ est GDV, $\sum u_n$ est aussi GDV!

Exemple. La série de t.g. $u_n = \frac{e^{in\theta}}{n(n+1)}$ est cv pour tout $\theta \in \mathbf{R}$.

• D'où l'intérêt d'étudier les séries à termes positifs

Faire la série harmonique alternée à l'aide des suites adjacentes.

Séries à termes positifs

- Dans ce chapitre, $u_n \geq 0$, pour tout n, et on étudie $\sum u_n$.
- On a $S_n S_{n-1} = u_n \ge 0$: (S_n) est croissante!

1. Généralités.

Proposition. Soit $(u_n)_{n\geq 0}$ une suite de réels positifs.

 $\sum u_n$ converge ssi les sommes partielles sont majorées i.e il existe $K \geq 0$ tel que

$$\forall n \ge 0, \quad S_n = \sum_{k=0}^n u_k = u_0 + \ldots + u_n \le K$$

• Si $u_n \ge 0$ et $\sum u_n$ diverge on a $S_n \to +\infty$: on écrit parfois $\sum_{n\ge 0} u_n = +\infty$.

Théorème (Comparaison). Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que, pour tout $n \geq 0$, $0 \leq u_n \leq v_n$.

- 1. $Si \sum v_n \ cv, \ alors \sum u_n \ cv \ et \ 0 \le \sum_{n\ge 0} u_n \le \sum_{n\ge 0} v_n$.
- 2. $Si \sum u_n \ dv, \ alors \sum v_n \ dv.$

Démonstration. • On a $S_n = \sum_{0 \le k \le n} u_k \le T_n = \sum_{0 \le k \le n} v_k$

- \star Si (T_n) est majorée, il en va de même de (S_n)
- \star Si (S_n) n'est pas majorée, (T_n) ne l'est pas non plus

• Si $0 \le u_n \le v_n$ pour tout $n \ge n_0$, $\sum u_n$ cv si $\sum v_n$ cv et $\sum v_n$ est dv si $\sum u_n$ l'est.

Remarque (Retour sur ACV implique CV). • Cas u_n réel. Notons $v_n = |u_n| - u_n$. D'après l'inégalité triangulaire, $v_n = |v_n| \le 2|u_n|$. $\sum v_n$ cv. Comme $u_n = |u_n| - v_n$, $\sum u_n$ est convergente.

• Cas $u_n \in \mathbf{C}$: $u_n = a_n + ib_n$. On a $|a_n| \le |u_n|$ et $|b_n| \le |u_n|$. $\sum a_n$ et $\sum b_n$ sont ACV. Pas fait

Corollaire. Soient (u_n) à termes positifs et (v_n) à termes strictement positifs.

 $Si \lim \frac{u_n}{v_n} = l > 0 \ alors \sum u_n \ et \sum v_n \ ont \ même \ nature.$

- Il existe n_0 tq, pour $n \ge n_0$, $\left| \frac{u_n}{v_n} l \right| \le \frac{l}{2}$ soit $u_n \frac{l}{2} \le v_n \le u_n \frac{3l}{2}$.
- Bien penser aux équivalents pour les séries à termes positifs!

Exemple. 1. $u_n = \frac{1}{n^2}$, $v_n = \frac{1}{n(n+1)}$. $\lim \frac{u_n}{v_n} = 1$: $\sum v_n$ cv donc $\sum u_n$ cv.

2.
$$u_n = \frac{1}{n}$$
, $v_n = \ln\left(1 + \frac{1}{n}\right)$: $\sum v_n \, dv \, donc \, \sum u_n \, dv$

- Si $u_n \ge 0$, $v_n > 0$ et $u_n/v_n \longrightarrow 0$ alors $\sum u_n$ ev si $\sum v_n$ ev
 - * Pour $\varepsilon = 1$, il existe n_0 tq $0 \le u_n \le v_n$ si $n \ge n_0$
- $u_n = \frac{1}{n^3}$, $v_n = \frac{1}{n^2}$. On vient de voir que $\sum v_n$ cv; par suite, $\sum u_n$ cv

2. Comparaison à une série géométrique.

Règle de d'Alembert. Soit $\sum u_n$ une série à termes strictement positifs. On suppose qu'il existe un entier n_0 et un réel 0 < k < 1 tels que

$$\forall n \ge n_0, \qquad \frac{u_{n+1}}{u_n} \le k.$$

Alors la série $\sum u_n$ est convergente.

• Pour $n > n_0$,

$$u_n = \frac{u_n}{u_{n-1}} \times \frac{u_{n-1}}{u_{n-2}} \times \dots \times \frac{u_{n_0+1}}{u_{n_0}} \times u_{n_0} \le k^{n-n_0} u_{n_0} = k^n u_{n_0} k^{-n_0}.$$

• Puisque 0 < k < 1, le théorème de comparaison donne le résultat.

Corollaire. Soit $\sum u_n$ une série à termes strictement positifs t.q. $\lim \frac{u_{n+1}}{u_n} = l$.

- 1. Si l < 1, la série $\sum u_n$ converge;
- 2. $si \ l > 1$, la série $\sum u_n$ est GDV
- Si l = 1 on ne peut rien dire!

$$\star u_n = 1/n : \sum u_n \, \mathrm{dv}$$

$$\star u_n = 1/n^2 : \sum u_n \text{ cv}$$

Démonstration. • Dans le premier cas, k = (1+l)/2 < 1 et il existe n_0 tel que, pour tout $n \ge n_0, u_{n+1}/u_n \le k$

• Dans le second cas, k = (1+l)/2 > 1 et il existe n_0 tel que, pour $n \ge n_0$, $u_{n+1}/u_n \ge k$ et

$$u_n = \frac{u_n}{u_{n-1}} \times \frac{u_{n-1}}{u_{n-2}} \times \dots \times \frac{u_{n_0+1}}{u_{n_0}} \times u_{n_0} \ge k^{n-n_0} u_{n_0} \ge u_{n_0} > 0.$$

__ 2011/2012 : fin du cours 3 _____

Exemple. • Étude de la série de t.g. $u_n = n^2 x^n$.

- * Si x = 0, $u_n = 0$! Rien à faire!
- Il ne s'agit pas d'une série à termes positifs. On regarde l'ACV
 - $\star \quad \text{On a } \lim \frac{|u_{n+1}|}{|u_n|} = |x|$
 - \star Si |x| < 1, la série $\sum u_n$ est ACV d'après le corollaire
 - * Si |x| > 1, d'après le corollaire, $\sum |u_n|$ est GDV donc $\sum u_n$ est aussi GDV
 - * Si |x|=1, on ne peut pas conclure. Mais $|u_n|=n^2\to\infty$ donc $\sum u_n$ est GDV
- Si $\sum u_n$ est à termes positifs et $u_{n+1}/u_n \ge 1$ alors u_n est croissante et $\sum u_n$ est GDV sauf si tous les termes sont nuls!

Règle de Cauchy. Soit $\sum u_n$ une série à termes positifs ou nuls. On suppose qu'il existe un entier n_0 et un réel 0 < k < 1 tels que

$$\forall n \ge n_0, \qquad \sqrt[n]{u_n} \le k.$$

Alors la série $\sum u_n$ est convergente.

- En effet, pour tout $n \ge n_0$, $u_n \le k^n$.
- Rappel, si $u_n > 0$, $\sqrt[n]{u_n} = u_n^{1/n} = e^{\ln(u_n)/n}$.

Corollaire. Soit $\sum u_n$ une série à termes positifs ou nuls. On suppose que $\lim \sqrt[n]{u_n} = l$.

- 1. Si l < 1, $\sum u_n$ est convergente
- 2. Si l > 1, $\sum u_n$ est GDV

Démonstration. • Si l < 1, k = (1+l)/2 < 1 et il existe n_0 t.q. $u_n \le k^n$ si $n \ge n_0$.

- Si l > 1, k = (1+l)/2 > 1 et il existe n_0 t.q. $u_n \ge k^n \longrightarrow +\infty$.
- On utilise cette règle quand u_n comporte des puissances n-ièmes.

Exemple. Étude de la série de t.g. $u_n = x^n/n^n$. Ce n'est pas une série à termes positifs, on étudie d'abord l'ACV. On a $\sqrt[n]{u_n} = |x|/n \longrightarrow 0$. D'après le critère de Cauchy, la série $\sum u_n$ est ACV.

3. Comparaison à une série de Riemann.

Définition. Soit α un réel. La série de terme général $\frac{1}{n^{\alpha}}$ s'appelle la série de Riemann.

Théorème. La série de t $g \frac{1}{n^{\alpha}}$ est convergente ssi $\alpha > 1$.

Démonstration. • Si $\alpha \leq 0$, $\frac{1}{n^{\alpha}}$ ne tend pas vers 0: la série est GDV

• Si $0 < \alpha \le 1$. Pour tout $n \ge 1$,

$$n = n^{\alpha} \times n^{1-\alpha} \ge n^{\alpha}, \qquad \frac{1}{n} \le \frac{1}{n^{\alpha}}.$$

Nous avons vu que $\sum \frac{1}{n}$ dv il en va de même de $\sum \frac{1}{n^{\alpha}}$

• Soit $\alpha > 1$. Considérons la fonction $f(x) = -\frac{1}{x^{\alpha-1}}$ définie sur $]0, +\infty[$. L'égalité des AF donne, pour tout $n \geq 2$, l'existence d'un c tel que n-1 < c < n et

$$f(n) - f(n-1) = \frac{1}{(n-1)^{\alpha-1}} - \frac{1}{(n)^{\alpha-1}} = (n - (n-1))f'(c) = \frac{\alpha - 1}{c^{\alpha}} \ge \frac{\alpha - 1}{n^{\alpha}}$$

- * Puisque $\alpha 1 > 0$, $\lim \frac{1}{n^{\alpha 1}} = 0$, la série télescopique de t.g. $\frac{1}{(n 1)^{\alpha 1}} \frac{1}{n^{\alpha 1}}$ converge.
- $\star~$ Il en va de même de la série de t.g. $\frac{\alpha-1}{n^{\alpha}}$
- * Par conséquent la série $\sum \frac{1}{n^{\alpha}}$ est cv si $\alpha > 1$.

• Il faut connaître le résultat sur les séries de Riemann par cœur!!

Critère de Riemann. Soit $\sum u_n$ une série à termes positifs ou nuls et soit $\alpha \geq 0$.

- 1. Si $\lim n^{\alpha}u_n = l > 0$, $\sum u_n$ cv ssi $\alpha > 1$.
- 2. Si $\alpha > 1$ et $\lim n^{\alpha} u_n = 0$, $\sum u_n$ cv.
- 3. Si $\lim nu_n = +\infty$, $\sum u_n$ est divergente.

Démonstration. • Csq du théorème de comparaison!

- $\star \ \, \text{Cas 1} : \sum u_n \text{ et } \sum n^{-\alpha} \text{ ont même nature}$
- \star Cas 2: pour $n \ge n_0, u_n \le n^{-\alpha}$.
- * Cas 3: pour $n \ge n_0$, $u_n \ge n^{-1}$.

Exemple. 1. Étude des séries de t.g. $u_n = \frac{\ln n}{n^2}$ et $v_n = \frac{1}{\sqrt{n} \ln n}$.

- (a) $n^{3/2}u_n \longrightarrow 0$ d'où $\sum u_n$ cv
- (b) $nv_n \longrightarrow +\infty$ d'où $\sum v_n$ dv
- 2. Série harmonique alternée On étudie la série de terme général $u_n = \frac{(-1)^n}{n}$. On a, pour tout $n \ge 1$,

$$S_{2n} = -\frac{1}{1} + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \dots - \frac{1}{2n-1} + \frac{1}{2n} = \sum_{k=1}^{n} \left(-\frac{1}{2k-1} + \frac{1}{2k} \right) = \sum_{k=1}^{n} -\frac{1}{2k(2k-1)}.$$

Puisque $\frac{n^2}{2n(2n-1)} \longrightarrow \frac{1}{4}$, le critère de Riemann montre que S_{2n} converge vers $l \in \mathbf{R}$. D'autre part, nous avons, pour $n \ge 1$,

$$S_{2n+1} = S_{2n} - \frac{1}{2n+1} \longrightarrow l$$

Comme (S_{2n}) et (S_{2n+1}) converge vers l, $\lim S_n = l$. La série $\sum \frac{(-1)^n}{n}$ est convergente. Comme d'autre part, $\sum \left|\frac{(-1)^n}{n}\right| = \sum \frac{1}{n}$ est divergente, la série harmonique alternée est une série semi-convergente. On verra que la valeur de la somme est $-\ln(2)$.

• Si on ne connaît pas le signe de u_n , mais si $\lim n^{\alpha}u_n = l > 0$, u_n est positif pour $n \geq n_0$ et on peut appliquer le critère de Riemann.

2011/2012 : fin du cours 4 _

4. Comparaison à une intégrale.

- Soit $a \ge 0$ et $f: [a, +\infty[\longrightarrow \mathbf{R}$ une fonction positive et décroissante.
- Pour $a \le n_0 < n$, on a

$$f(n) + \int_{n_0}^n f(t) dt \le f(n_0) + f(n_0 + 1) + \dots + f(n - 1) + f(n) \le f(n_0) + \int_{n_0}^n f(t) dt.$$

• En effet, soit $n_0 \le k \le n$. Pour $t \in [k, k+1]$, $f(k+1) \le f(t) \le f(k)$ et

$$f(k+1) = \int_{k}^{k+1} f(k) dt \le \int_{k}^{k+1} f(t) dt \le f(k) = \int_{k}^{k+1} f(k) dt$$

• On fait la somme de ces inégalités de $k=n_0$ à k=n-1, pour obtenir

$$f(n_0+1)+\ldots+f(n) \le \int_{n_0}^n f(t) dt \le f(n_0)+\ldots+f(n-1)$$

• Soit encore

$$f(n_0) + f(n_0 + 1) + \dots + f(n) \le f(n_0) + \int_{n_0}^n f(t) dt$$
$$\int_{n_0}^n f(t) dt + f(n) \le f(n_0) + \dots + f(n-1) + f(n)$$

Définition. Soit $a \geq 0$ et $f: [a, +\infty[\longrightarrow \mathbf{R}]$. On dit que l'intégrale impropre ou l'intégrale généralisée $\int_a^{+\infty} f(t) dt$ converge lorsque la fonction $F(x) = \int_a^x f(t) dt$ possède une limite finie lorsque $x \to +\infty$.

• Lorsque que f est positive, F est croissante : $\int_a^{+\infty} f(t) dt$ converge si et seulement si F est majorée, $\int_a^{+\infty} f(t) dt$ diverge si et seulement si $\lim_{x\to+\infty} F(x) = +\infty$.

Proposition. Soient $a \ge 0$ et $f : [a, +\infty[$ positive et décroissante.

La série $\sum f(n)$ converge ssi $\int_a^{+\infty} f(t) dt$ converge.

Démonstration. • Si $\int_a^{+\infty} f(t) dt$ converge, F est majorée disons par K. Soit n_0 le plus petit entier supérieur ou égal à a. On a

$$S_n = f(n_0) + \ldots + f(n) \le f(n_0) + \int_{n_0}^n f(t) dt \le f(n_0) + \int_a^n f(t) dt \le f(n_0) + F(n) \le f(n_0) + K.$$

- $\star~$ Les sommes partielles de $\sum f(n)$ sont majorées ! $\sum f(n)$ cv
- Si $\int_a^{+\infty} f(t) dt$ diverge, puisque f est positive,

$$S_n = f(n_0) + \ldots + f(n) \ge f(n) + \int_{n_0}^n f(t) dt \ge \int_{n_0}^n f(t) dt = F(n) - F(n_0)$$

* Comme $\lim_{x\to+\infty} F(x) = +\infty$, les sommes partielles ne sont pas majorées et $\sum f(n)$ dv.

Séries de Bertrand. On étudie la série de t.g. $u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ pour α et β réels.

- Si $\alpha > 1$, $\gamma = (1+\alpha)/2 > 1$ et $n^{\gamma}u_n = \frac{1}{n^{(\alpha-1)/2}(\ln n)^{\beta}} \longrightarrow 0$: $\sum u_n$ cv d'après le critère de Riemann
- Si $\alpha < 1$, $nu_n = \frac{n^{1-\alpha}}{(\ln n)^{\beta}} \longrightarrow +\infty : \sum u_n$ dy d'après le critère de Riemann.
- Cas $\alpha = 1$

 $\star \ \beta \le 0 : u_n \ge \frac{1}{n} \text{ et } \sum u_n \text{ dv}$

 $\star \beta > 0$: la fonction $x \mapsto \frac{1}{x(\ln x)^{\beta}}$ est positive et décroissante sur $[2, +\infty[$. La série $\sum u_n$ a même nature que $\int_2^{+\infty} \frac{dt}{t(\ln t)^{\beta}}$. Or pour tout $x \ge 2$, $t = e^s$,

$$F(x) = \int_2^x \frac{dt}{t(\ln t)^{\beta}} = \int_{\ln 2}^{\ln x} \frac{ds}{s^{\beta}} = \begin{cases} \ln \ln x - \ln \ln 2, & \text{si } \beta = 1, \\ \frac{1}{1-\beta} \left(\frac{1}{(\ln x)^{\beta-1}} - \frac{1}{(\ln 2)^{\beta-1}} \right), & \text{si } \beta \neq 1 > 0 \end{cases}$$

- $\star \ \beta > 0 : F$ est majorée ssi $\beta > 1.$
- En conclusion,
 - 1. $\alpha > 1$ converge pour tout β
 - 2. $\alpha < 1$ diverge pour tout β
 - 3. $\alpha = 1$ converge ssi $\beta > 1$

Compléments sur les séries

1. Séries alternées.

Définition. Une série réelle $\sum u_n$ est alternée lorsque, pour tout $n \geq 0$, $u_n \times u_{n+1} \leq 0$.

- On a dans ce cas $u_n = (-1)^n |u_n|$ pour tout n ou $u_n = (-1)^{n+1} |u_n|$ pour tout n
- Par exemple, $u_n = (-1)^n / \sqrt{n}$.

Proposition (Critère des séries alternées). Soit $\sum u_n$ une série alternée. Si la suite ($|u_n|$) est décroissante et converge vers 0, la série $\sum u_n$ est convergente.

De plus, la somme de la série $S = \sum_{n \geq 0} u_n$ est comprise entre S_n et S_{n+1} et l'on a

1.
$$|S - S_n| \le |u_{n+1}|$$
;

2. $S - S_n$ du signe de u_{n+1} .

Démonstration. • On traite seulement le cas $u_n = (-1)^n |u_n|$.

- On montre que les suite (S_{2n}) et (S_{2n+1}) sont adjacentes. En effet,
 - * $S_{2(n+1)} S_{2n} = (-1)^{2n+2} |u_{2n+2}| + (-1)^{2n+1} |u_{2n+1}| = |u_{2n+2}| |u_{2n+1}| \le 0$ puisque $|u_n|$ est décroissante.
 - $\star~S_{2n+1}-S_{2n-1}=-|u_{2n+1}|+|u_{2n}|\geq 0$ puisque (|u_n|) est décroissante
 - * $|S_{2n+1} S_{2n}| = |(-1)^{2n+1}|u_{2n+1}| = |u_{2n+1}| \longrightarrow 0.$
- D'après le résultat sur les suites adjacentes, (S_{2n}) et (S_{2n+1}) sont convergentes de même limite S.
 - * Les résultats s'en suivent immédiatement.

Exemple (Série de Riemann alternée). $\sum \frac{(-1)^n}{n^{\alpha}}$ converge ssi $\alpha > 0$.

Proposition (Critère d'Abel). Soient $(a_n)_{n\geq 0}$ une suite positive et $(b_n)_{n\geq 0}$ une suite complexe. On suppose que

1. $il\ existe\ K \geq 0\ tel\ que$

$$\forall n \ge 0, \qquad \left| \sum_{k=0}^{n} b_k \right| \le K$$

2. $(a_n)_{n>0}$ est décroissante et converge vers 0.

Alors la série $\sum a_n b_n$ est convergente.

• On retrouve le résultat sur les séries alternées : $b_n = (-1)^n$, $a_n = |u_n|$.

Exemple (Application typique). Soit (a_n) une suite décroissante et convergente de limite 0. $\sum a_n \sin(nx)$ converge pour tout $x \in \mathbf{R}$ et $\sum a_n \cos(nx)$ converge pour tout $x \neq 0 \mod 2\pi$.

- Si $x = 0 \mod 2\pi$, $\sum a_n \sin(nx)$ est la série nulle!
- On se ramène au cas où $0 < x < 2\pi$. Montrons que $\sum a_n e^{inx}$ est convergente. On a pour tout n, puisque $e^{ix} \neq 1$,

$$\sum_{k=0}^{n} e^{ikx} = \sum_{k=0}^{n} \left(e^{ix} \right)^k = \frac{1 - e^{i(n+1)x}}{1 - e^{ix}} = \frac{e^{i(n+1)x/2}}{e^{ix/2}} \frac{e^{-ix(n+1)/2} - e^{ix(n+1)/2}}{e^{-ix/2} - e^{ix/2}} = e^{inx/2} \frac{\sin((n+1)x/2)}{\sin(x/2)}.$$

• On en déduit que, pour $0 < x < 2\pi$,

$$\sum_{k=0}^{n} \cos(kx) = \cos(nx/2) \frac{\sin((n+1)x/2)}{\sin(x/2)}, \quad \sum_{k=0}^{n} \sin(kx) = \sin(nx/2) \frac{\sin((n+1)x/2)}{\sin(x/2)}$$

• Par conséquent, pour $0 < x < 2\pi$,

$$\left| \sum_{k=0}^{n} e^{ikx} \right| \le \frac{1}{\sin(x/2)}.$$

- D'après le critère d'Abel, $\sum a_n e^{inx}$ est convergente pour $0 < x < 2\pi$
- Il en va de même de $\sum a_n \cos(nx) = \sum \operatorname{Re}(a_n e^{inx})$ et $\sum a_n \sin(nx) = \sum \operatorname{Im}(a_n e^{inx})$

2011/2012 : fin du cours 5

2. Utilisation des développements limités.

Pas fait

• Nature de la série de terme général

$$u_n = \frac{1}{\sqrt{n}} - \sqrt{n} \sin\left(\frac{1}{n}\right) = \frac{1}{\sqrt{n}} - \sqrt{n} \left(\frac{1}{n} - \frac{1}{6n^3} + \frac{\varepsilon_n}{n^3}\right), \quad \varepsilon_n = \varepsilon \left(n^{-1}\right) \longrightarrow 0$$
$$= \frac{1}{6n^{5/2}} - \frac{\varepsilon_n}{n^{5/2}}, \quad \varepsilon_n \to 0.$$

- \star Si *n* grand, u_n est positif
- * Critère de Riemann avec $\alpha = 5/2 > 1 : \sum u_n$ cv

• Nature de la série de terme général

$$u_n = e^{(-1)^n/\sqrt{n}} - 1 = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{2n} + \frac{\varepsilon_n}{n}, \quad \varepsilon_n = \varepsilon\left((-1)^n n^{-1/2}\right) \longrightarrow 0$$

- $\star~$ La série de t.g. $v_n=(-1)^n/\sqrt{n}$ est c
v d'après les séries alternées
- * Si n est grand $w_n = \frac{1}{n} \left(\frac{1}{2} + \varepsilon_n \right)$ est positif! Critère de Riemann $\alpha = 1, \sum w_n$ diverge
- * Par conséquent $\sum u_n = \sum (v_n + w_n)$ diverge
- * Pourtant $u_n \sim (-1)^n/\sqrt{n}!$ Attention, u_n n'est pas positif!

3. Produit de Cauchy.

Pas fait

• $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ deux suites. Pour $n\geq 0$, on pose

$$w_n = \sum_{p+q=n} u_p v_q = \sum_{k=0}^n u_k v_{n-k} = \sum_{k=0}^n u_{n-k} v_k.$$

- \star La suite $(w_n)_{n\geq 0}$ est le produit de convolution des suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$.
- \star La série $\sum w_n$ est appelée le produit de Cauchy des séries $\sum u_n$ et $\sum w_n$

Théorème (Mertens). $Si \sum u_n$ converge absolument et $\sum v_n$ converge (resp. converge absolument), alors $\sum w_n$ converge (resp. converge absolument) et

$$\sum_{n\geq 0} w_n = \sum_{n\geq 0} u_n \times \sum_{n\geq 0} v_n.$$

- L'application standard est $e^{x+y} = e^x e^y$
 - * Pour $z \in \mathbf{C}$, $e^z = \sum_{n > 0} \frac{z^n}{n!}$. La série précédente est ACV (d'Alembert).
 - $\star \quad u_n = x^n/n!, \ v_n = y^n/n!,$

$$w_n = (u \star v)_n = \sum_{k=0}^n u_k v_{n-k} = \sum_{k=0}^n \frac{x^k}{k!} \frac{y^{n-k}}{(n-k)!} = \sum_{k=0}^n \frac{1}{n!} \binom{n}{k} x^k y^{n-k} = \frac{(x+y)^n}{n!}$$

* Mertens

$$\sum_{n\geq 0} w_n = \sum_{n\geq 0} \frac{(x+y)^n}{n!} = \sum_{n\geq 0} \frac{x^n}{n!} \times \sum_{n\geq 0} \frac{y^n}{n!}.$$