Assignment_2_Group86_final_ver

November 16, 2020

1 COMP5318 - Machine Learning and Data Mining: Assignment 2

Group 86

tlin4302 | 470322974 | Jenny Tsai-chen Lin

jsun4242 | 500409987 | Jiawei Sun

jyan2937 | 480546614 | Jinxuan Yang

1.1 The notebook includes sections:

- Section 0. Hardware and software specifications
- Section 1. Library and general functions
- Section 2. Data pre-processing
- Section 3. Implement algorithms
 - 3.1 AdaBoost Classifier
 - 3.2 Convolutional Neural Network Classifier
 - 3.3 Support-Vector-Machine Classifier
- Section 4. Compare result between algorithms in train dataset
- Section 5: Best perfroming algorithms in testing data (we will submit this in seperate notebook

In response to 4 main parts of report requirement:

- 1. Try 3 different Machine Learning methods and compare their performance. | Section 3 & Section 5 |
- 2. Choosing an appropriate model and its complexity | Section 3
- 3. Using pre-processing techniques on the datasets | Section 2
- 4. Computer infrastructure | TBC
- 5. Ease of prototyping
- 6. Hardware and software specifications of the computer that you used for performance evaluation

1.1.1 Hardware and software specifications

hardware: 1. CPU: Intel i7-8700K @ 3.70GHz 2. RAM: 64G DDR4 3000MHz 3. Graphics: NVidia GeForce GTX 1080Ti 4. Chipset: Z370

1.1.2 Software specifications

```
[43]: import os, platform
      print('OS name:', os.name, ', system:', platform.system(), ', release:', u
      →platform.release())
      import sys
      print("Anaconda version:")
      #!conda list anaconda
      print("Python version: ", sys.version)
      print("Python version info: ", sys.version_info)
      import PIL
      from PIL import Image
      print("PIL version: ", PIL._version__)
      import matplotlib
      import matplotlib.pyplot as plt
      print("Matplotlib version: ", matplotlib.__version__)
      #import tensorflow as tf
      #print("Keras version:", tf.keras.__version__)
      import cv2
      print("OpenCV version: ", cv2.__version__)
      import numpy as np
      print("nump version: ", np.__version__)
     OS name: nt , system: Windows , release: 10
     Anaconda version:
     Python version: 3.8.3 (default, Jul 2 2020, 17:30:36) [MSC v.1916 64 bit
     (AMD64)]
     Python version info: sys.version_info(major=3, minor=8, micro=3,
     releaselevel='final', serial=0)
     PIL version: 7.2.0
     Matplotlib version: 3.2.2
     OpenCV version: 4.4.0
     nump version: 1.18.5
```

1.2 Section 0. Switches

```
[4]: test_ABC = True
ABC_load_model = True

test_CNN_train = False
test_CNN_predict = True

test_SVC = True
SVC_load_model = True

# Caution: Slow if turned on.
do_hyper_parameter_tuning = False
```

```
# set as you like.
g_thread_num = 6
```

1.3 Section 1. Library and general functions

```
[5]: # Go to anaconda prompt to install package imblearn
    # anaconda: conda install -c glemaitre imbalanced-learn
    #pip install kmeans-smote

from skimage import io, transform
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd

import cv2

import time
```

1.3.1 global variables

```
[6]: # choose one of below two line depend file location***** [JL_UPDATE_
     \rightarrow description]
     g_dataset_dir = "./dataset/"
     #g_dataset_dir = "../dataset/"
     a random file = "./dataset/train/1b1B1b2-2pK2q1-4p1rB-7k-8-8-3B4-3rb3.jpeg"
     \#a_random_file = ".../dataset/train/1b1B1b2-2pK2q1-4p1rB-7k-8-8-3B4-3rb3.jpeg"
     saved_model_path = "./saved_model/"
     abc_model_file = saved_model_path + "abc_dump.pkl"
     svc_model_file = saved_model_path + "svc_dump.pkl"
     cnn_model_file = saved_model_path + "cnn_weights"
     ten_fold_result_path = "./ten_fold_results/"
     # define global variable
     g_train_dir = g_dataset_dir + "/train/"
     g_test_dir = g_dataset_dir + "/test/"
     g_{image_size} = 400
     g_grid_row = 8
```

```
g_grid_col = 8
g_grid_num = g_grid_row * g_grid_col
g_grid_size = int(g_image_size / g_grid_row)
#Processing 1 - scale down
g_down_sampled_size = 200
g_down_sampled_grid_size = int(g_grid_size / (g_image_size /__

→g_down_sampled_size))
# global instance of mapping of char vs chess pieces
# reference: Forsyth-Edwards Notation, https://en.wikipedia.org/wiki/
→Forsyth%E2%80%93Edwards_Notation
\# pawn = "P", knight = "N", bishop = "B", rook = "R", queen = "Q" and king = "K"
# White pieces are designated using upper-case letters ("PNBRQK") while black
→pieces use lowercase ("pnbrqk")
# we use 0 to note an empty grid.
# 13 items in total.
g_piece_mapping = {
    "P" : "pawn",
    "N" : "knight",
    "B" : "bishop",
    "R" : "rook",
    "Q" : "queen",
    "K" : "king",
    "p" : "pawn",
    "n" : "knight",
    "b" : "bishop",
    "r" : "rook",
    "q" : "queen",
    "k" : "king",
    "0" : "empty_grid"
}
g_num_labels = len(g_piece_mapping)
g_labels = ["P",
"N",
"B",
"R".
"Q",
"K",
```

```
"p",
"n",
"b",
"r",
"q",
"k",
"0"]
```

1.3.2 Helper codes for label & board

```
[4]: #DataHelper.py
     import os
     import cv2
     from skimage import io
     import numpy as np
     import glob
     import h5py
     # get clean name by a path, where in our case this gets the FEN conviniently
     def GetCleanNameByPath(file_name):
         return os.path.splitext(os.path.basename(file_name))[0]
     # get full paths to the files in a directory.
     def GetFileNamesInDir(path_name, extension="*", num_return = 0):
         if num_return == 0:
             return glob.glob(path_name + "/*." + extension)
         else:
             return glob.glob(path_name + "/*." + extension)[:num_return]
     # get name list
     def GetCleanNamesInDir(path_name, extension = "*", num_return = 0):
         names = GetFileNamesInDir(path_name, extension)
         offset = len(extension) + 1
         clean_names = [os.path.basename(x)[:-offset] for x in names]
         if num_return == 0:
             return clean_names
         else:
             return clean_names[:num_return]
     # read dataset
     def ReadImages(file_names, path = "", format = cv2.IMREAD_COLOR):
         if path == "":
             return [cv2.imread(f, format) for f in file_names]
         else:
```

```
return [cv2.imread(path + "/" + f, format) for f in file_names]

# read image by name

def ReadImage(file_name, gray = False):
    return io.imread(file_name, as_gray = gray)

# h5py functions

# read h5py file
# we assume the labels and
def ReadH5pyFile(file_name, data_name):
    h5_buffer = h5py.File(file_name)
    return h5_buffer[data_name].copy()

# write h5py file
def WriteH5pyFile(file_name, mat, data_name = "dataset"):
    with h5py.File(file_name, 'w') as f:
    f.create_dataset(data_name, data = mat)
```

```
[5]: #BoardHelper.py
     import re
     import string
     from collections import OrderedDict
     import numpy as np
     import skimage.util
     from skimage.util.shape import view_as_blocks
     #from ChessGlobalDefs import * # [JL_not able to load]
     #FEN TO LABELS OF SQUARES
     def FENtoL(fen):
         rules = {
             r"-": r"",
             r"1": r"0",
             r"2": r"00",
             r"3": r"000".
             r"4": r"0000",
             r"5": r"00000",
             r"6": r"000000",
             r"7": r"0000000",
             r"8": r"00000000",
         }
         for key in rules.keys():
```

```
fen = re.sub(key, rules[key], fen)
    return list(fen)
# Label array to char list:
def LabelArrayToL(arr):
   rules = {
        0 : "P",
        1 : "N",
        2 : "B",
        3 : "R",
        4 : "Q",
       5 : "K",
       6: "p",
       7 : "n",
       8 : "b",
       9 : "r",
      10 : "q",
      11 : "k",
      12 : "0"
    }
   flattened = arr.flatten(order = "C")
   L = []
   for x in flattened:
        L.append(rules[x])
   return L
# char list to FEN
def LtoFEN(L):
   FEN = ""
   for y in range(8):
        counter = 0
        for x in range(8):
            idx = x + y * 8
            char = L[idx]
            if char == "0":
                counter += 1
```

```
if x == 7:
                   FEN += str(counter)
           else:
               if counter:
                   FEN += str(counter)
                   counter = 0
               FEN += char
       if y != 7:
           FEN += "-"
   return FEN
# FEN to one-hot encoding, in our case, it returns an 64 by 13 array, with each
\hookrightarrowrow as a one-hot to a grid.
def FENtoOneHot(fen):
    # this rule is in the same format as g piece mapping
    \#rules = {
         "P" : np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
         "N" : np.array([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
    #
         "B": np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
         "R": np.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
         "Q" : np.array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]),
    #
         "K" : np.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]),
         "p": np.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]),
         "n": np.array([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]),
    #
         "b": np.array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]),
         "r": np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]),
         "q": np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]),
         "k": np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]),
    #
         "0": np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
    #}
   rules = {
        "P" : 0.
        "N" : 1.
       "B" : 2,
       "R" : 3.
        "Q" : 4.
        "K" : 5.
        "p" : 6,
```

```
"n" : 7,
        "b" : 8,
        "r" : 9,
        "q" : 10,
        "k" : 11.
        "0" : 12
    }
    L = FENtoL(fen)
    one_hot_array = np.zeros((g_grid_num, g_num_labels), dtype = np.int32) # 64_1
→ by 13
    for i, c in enumerate(L):
        one_hot_array[i, rules[c]] = 1
    return one_hot_array
# get 8*8 char matrix
def LtoCharMat(1):
    if type(1) == list:
        return np.array(1).reshape((8,8))
    if type(1) == str:
        return np.array([1]).reshape((8,8))
def GetBoardCell(board_image, row = 0, col = 0, size = 50):
    return np.array(board_image)[row*size:(row+1)*size,col*size:(col+1)*size]
# get grids of image
def ImageToGrids(image, grid_size_x, grid_size_y):
    return skimage.util.shape.view_as_blocks(image, block shape = (grid_size y,_
→grid_size_x, 3)).squeeze(axis = 2)
# get grids of image
def ImageToGrids_grey(image, grid_size_x, grid_size_y):
    return skimage.util.shape.view_as_blocks(image, block_shape = (grid_size_y,__
→grid_size_x, 1)).squeeze(axis = 2)
```

Confusion matrix - heatmap

```
[6]: from sklearn.metrics import confusion_matrix
import pandas as pd

# function - to create confusion matrix
def conf_mat(true,pred):
    A = pd.Series(true, name='Actual')
```

```
P = pd.Series(pred, name='Predict')
    #conf_matt = pd.crosstab(A, P, margins=True)
    conf_matt = pd.crosstab(A, P)
   return conf_matt
#function - to create heatmap for confusion matrix
import matplotlib.pyplot as plt
def plot_confusion_matrix(conf_matt, cmap=plt.cm.gray_r):
   conf_norm = conf_matt / conf_matt.sum(axis=1)
   fig = plt.figure()
   ax = fig.add_subplot(111)
   cax = ax.matshow(conf_norm, cmap=cmap)
   fig.colorbar(cax)
   tick_marks = np.arange(len(conf_norm.columns))
   plt.xticks(tick_marks, conf_norm.columns)
   plt.yticks(tick_marks, conf_norm.index)
   plt.ylabel(conf_norm.index.name)
   plt.xlabel(conf_norm.columns.name)
```

1.4 Section 2. Data pre-processing

1.4.1 Pre-processing - generic

```
[7]: #[JL_update func_generator]
     # split into 64 small square from 1 board
     # image resized to 400x 400 to 200x 200. 64 square at 25x 25 each
     def PreprocessImage(image):
         image = transform.resize(image, (g_down_sampled_size, g_down_sampled_size),_
     →mode='constant')
         # 1st and 2nd dim is 8
         grids = ImageToGrids(image, g_down_sampled_grid_size,_
     →g_down_sampled_grid_size)
         return grids.reshape(g_grid_row * g_grid_col, g_down_sampled_grid_size,_u
     →g_down_sampled_grid_size, 3)
     # split into 64 small square from 1 board -
     # output of x: number of image x 64 x 25 x 25 x 3 , y: number of image x 64 x 13
     def func_generator(train_file_names):
        x = \Gamma
         y = []
         for image_file_name in train_file_names:
```

```
img = ReadImage(image_file_name)
    x.append(PreprocessImage(img))
    y.append(np.array(FENtoOneHot(GetCleanNameByPath(image_file_name))))
return np.array(x), np.array(y)
```

```
x type : <class 'numpy.ndarray'>
x shape: (1, 64, 25, 25, 3)
y type : <class 'numpy.ndarray'>
y shape: (1, 64, 13)
```

[8]: <matplotlib.image.AxesImage at 0x1b7b2e16eb0>

1.4.2 Pre-processing - canny [JL_Update]

```
[9]: # Processing image with canny [JL udpate- whole]
     import cv2
     def PreprocessImage_canny(image):
         image = cv2.Canny(image, 100, 200)
         image = transform.resize(image, (g_down_sampled_size, g_down_sampled_size),_
     →mode='constant')
         # 1st and 2nd dim is 8
        image = image[..., np.newaxis]
        grids = ImageToGrids_grey(image, g_down_sampled_grid_size,__
     →g_down_sampled_grid_size)
        return grids.reshape(g_grid_row * g_grid_col, g_down_sampled_grid_size,_u
     # atomic func:
     def func_canny(file_name):
         img = ReadImage(file_name) #[JL_update from 'image_file_name' to_
     → 'file_name']
        x = PreprocessImage_canny(img)
        y = np.array(FENtoL(GetCleanNameByPath(file_name)))
        return x, y
     # split into 64 small square from 1 - output of x: number of image x64 x 25 x25_{\square}
     \rightarrow, y:number of image x 64
     def func_generator_canny(image_file_names):
        xs = []
        ys = []
        for image_file_name in image_file_names:
            x, y = func_canny(image_file_name)
            xs.append(x)
            ys.append(y)
        return xs, ys
```

```
print("x[0] type :", type(x[0]))
print("x[0] shape:", x[0].shape)
print("y type :", type(y))
print("y[0] type :", type(y[0]))
print("y[0] shape:", y[0].shape)

plt.imshow(x[0][1])
```

x type : <class 'list'>

x[0] type : <class 'numpy.ndarray'>

x[0] shape: (64, 25, 25)
y type : <class 'list'>

y[0] type : <class 'numpy.ndarray'>

y[0] shape: (64,)

[10]: <matplotlib.image.AxesImage at 0x1b7b2ef9880>

1.4.3 Pre-processing - SIFT

```
kps = [cv2.KeyPoint(x = center_x + 50 * col, y = center_y + 50 * row, _size_
 ⇒= 45)]
    # USE THE CORRECT VERSION OF CV2
    if cv2.__version__ == "4.4.0":
        keypoints, descriptors = cv2.SIFT create(edgeThreshold = 0).
→compute(image = board_image, keypoints = kps)
    else:
        keypoints, descriptors = cv2.xfeatures2d.SIFT_create(edgeThreshold = 0).
→compute(image = board_image, keypoints = kps)
    return keypoints[0], descriptors[0, :]
def PreprocessImage_sift(image):
    # 1st and 2nd dim is 8
    desc=[]
    for i in range(8):
        for j in range(8):
            kp, d= ExtractSIFTForGrid(image,i,j)
            desc.append(np.array(d))
    return desc
# atomic func:
def func_sift(file_name):
    img = ReadImage(file name)
    x = PreprocessImage_sift(img)
    y = np.array(FENtoL(GetCleanNameByPath(file_name)))
    return x, y
# split into 64 small square from 1 - output of x: number of image x64 x128,
\rightarrow y:number of image x 64
def func generator sift(image file names):
    xs = \prod
    ys = []
    for image_file_name in image_file_names:
        x, y = func_sift(image_file_name)
        xs.append(np.array(x))
        ys.append(np.array(y))
    return xs, ys
```

```
[12]: # Example output for a file - SIFT [JL_NEW]
```

x type : <class 'list'>
x[0] type : <class 'numpy.ndarray'>
x[0] shape: (64, 128)
y type : <class 'list'>
y[0] type : <class 'numpy.ndarray'>
y[0] shape: (64,)

b

1.4.4 Example of SIFT

```
[13]: #[JL_UPDATE_add_sobel]
      import cv2
      from skimage.filters import sobel
      #print("Sift: decriptor size:", cv2.SIFT_create().descriptorSize())
      img = ReadImage(a_random_file)
      img1 = cv2.Canny(img, 100, 200)
      img2= sobel(img[:,:,0])
      print(img.shape)
      print(img1.shape)
      print(img2.shape)
      kp, desc = ExtractSIFTForGrid(img, 0, 1)
      kp2, desc2 = ExtractSIFTForGrid(img, 0, 3)
      kp3, desc3 = ExtractSIFTForGrid(img, 0, 5)
      kp4, desc4 = ExtractSIFTForGrid(img, 1, 3)
      img_kp = cv2.drawKeypoints(img, [kp, kp2,kp3,kp4], img, flags=cv2.
      →DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
      img_kp1 = cv2.drawKeypoints(img1, [kp, kp2,kp3,kp4], img1, flags=cv2.
      →DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
      print('file name:',a_random_file)
      plt.figure(figsize=(18,6))
      plt.suptitle('Image processing output', fontsize=16)
      plt.subplot(1, 3, 1)
      plt.imshow(img_kp, aspect='auto')
      plt.title('original image with keypoint')
      plt.subplot(1, 3, 2)
      plt.imshow(img2, aspect='auto')
      plt.title('Sobel image')
      plt.subplot(1, 3, 3)
      plt.imshow(img1, aspect='auto')
      plt.title('Canny image')
      plt.show()
      plt.figure(figsize=(15,6))
      plt.suptitle('Sift output for original image at squares', fontsize=16)
      #plt.tight layout()
```

```
plt.subplot(2, 2, 1)
plt.title('square 0,1(b)')
plt.bar(x = range(128), height = desc)
plt.xticks(x = range(128))
plt.subplot(2,2, 2)
plt.title('square 0,3(B)')
plt.bar(x = range(128), height = desc2)
plt.xticks(x = range(128))
plt.subplot(2,2,3)
plt.title('square 0,5(b)')
plt.bar(x = range(128), height = desc3)
plt.xticks(x = range(128))
plt.subplot(2,2,4)
plt.title('square 1,3(K)')
plt.bar(x = range(128), height = desc4)
plt.xticks(x = range(128))
plt.show()
```

(400, 400, 3) (400, 400) (400, 400)

file name: ./dataset/train/1b1B1b2-2pK2q1-4p1rB-7k-8-8-3B4-3rb3.jpeg

Sift output for original image at squares

1.4.5 Read image - generic, canny, sift - run time

```
running time for generic 100 images
--- 1.8795301914215088 seconds ---
runnning time for sift 100 images
--- 31.234498977661133 seconds ---
runnning time for canny 100 images
--- 0.7300238609313965 seconds ---
```

1.4.6 Subset train data - high quality (image level)

reduced file number from 100 to 21

1.4.7 Undersempling -square (grid level)

```
[]: # install the package if needed.
!pip install imblearn
```

```
[19]: #subset data (in square level)
#ref: #https://www.researchgate.net/post/
→How_to_use_clustering_to_reduce_data_set_samples
# implement using https://imbalanced-learn.readthedocs.io/en/stable/generated/
→imblearn.under_sampling.ClusterCentroids.html

from imblearn.under_sampling import ClusterCentroids

# output x: number of grid x 125, y: number of grid
def undersampling_ClusterCentroids_canny(X,Y):
    trans = ClusterCentroids(random_state=0)
    length=len(np.array(Y))
    X= np.array(X).reshape(length*64,25*25)
    Y = np.array(Y).reshape(length*64)
```

```
X_resampled, y_resampled = trans.fit_sample(X, Y)

return X_resampled, y_resampled

# output x: number of grid x 128, y: number of grid

def undersampling_ClusterCentroids_sift(X,Y):
    trans = ClusterCentroids(random_state=0)
    length=len(np.array(Y))
    X= np.array(X).reshape(length*64,128)
    Y = np.array(Y).reshape(length*64)
    X_resampled, y_resampled = trans.fit_sample(X, Y)
    return X_resampled, y_resampled
```

```
--- 4.387495756149292 seconds ---
reduce grid number from 6400 to 455
--- 4.333498954772949 seconds ---
reduce grid number from 6400 to 455
```

1.4.8 Read Image - parallel version

```
[21]: from joblib import Parallel, delayed

# note: functions are first-class objects in Python. we pass it directly as

→parameter.

def Preprocess_parallel(func, file_names, job_count = 6):

result = Parallel(n_jobs=job_count)(delayed(func)(file_name) for file_name

→in file_names)

return zip(*result)
```

--- 2.41849946975708 seconds ---

1.4.9 Read file names

```
[23]: # Using FEN to identify grid with chess

num_train = 500 # small bath train
num_test= 500 # small bath train

# Reading lables
train_file_names = GetFileNamesInDir(g_train_dir, extension = "jpeg",num_return_\upper \to = num_train)
test_file_names = GetFileNamesInDir(g_test_dir, extension = "jpeg",num_return = \upper \to num_test)
```

1.5 Section 3. Implement algorithms

1.5.1 Section 3.0 AdaBoostClassifier (ABC) Prototype

Import data - SIFT output (n x 128)

```
[48]: # import data - train
      start_time = time.time()
      #xs_train, ys_train = Preprocess_parallel(train_file_names)
      xs_train_sift, ys_train_sift = Preprocess_parallel(func_sift, train_file_names)_
      → #[JL - I broke Preprocess_parallel. use this instead ]
      print('xs_train_sift, ys_train_sift generated:',len(xs_train_sift))
      print(np.array(xs_train_sift).shape, np.array(ys_train_sift).shape)
      print('--- {} seconds ---'.format(time.time() - start_time))
      # import data - test
      start time = time.time()
      #xs_train, ys_train = Preprocess_parallel(train_file_names)
      xs_test_sift, ys_test_sift = Preprocess_parallel(func_sift, test_file_names) _
      \rightarrow#[JL - I broke Preprocess_parallel. use this instead ]
      print('xs_test_sift, ys_test_sift generated:',len(xs_test_sift))
      print(np.array(xs_test_sift).shape, np.array(ys_test_sift).shape)
      print('--- {} seconds ---'.format(time.time() - start_time))
```

```
xs_train_sift, ys_train_sift generated: 500
     (500, 64, 128) (500, 64)
     --- 37.124494791030884 seconds ---
     xs_test_sift, ys_test_sift generated: 500
     (500, 64, 128) (500, 64)
     --- 36.313974142074585 seconds ---
     intital prediction accuracy in sift data
[49]: xs_train_sift2= np.array(xs_train_sift).reshape(500*64,128)
      ys_train_sift2 = np.array(ys_train_sift).reshape(500*64)
      print('shape of train data:',np.array(xs_train_sift2).shape, np.
       →array(ys_train_sift2).shape)
      # ABC classifier
      from sklearn.ensemble import AdaBoostClassifier
      from sklearn.metrics import accuracy score
      from sklearn.metrics import classification_report
      start_time = time.time()
      ada = AdaBoostClassifier(n_estimators=50, learning_rate=0.5, random_state=42)
      ada.fit(xs_train_sift2,ys_train_sift2)
      y_pred= ada.predict(xs_train_sift2)
      #Evaluate its performance on the training and test set
      print("AdaBoost- accuracy on validation set:", accuracy_score(ys_train_sift2⊔
       \rightarrow, y_pred))
      print('--- {} seconds ---'.format(time.time() - start_time))
     shape of train data: (32000, 128) (32000,)
     AdaBoost- accuracy on validation set: 0.82525
     --- 9.386971950531006 seconds ---
     Import data - canny output ( n x 25 x 25 )
[50]: # import data - train 500
      start_time = time.time()
      #xs train, ys train = Preprocess parallel(train file names)
      xs_train_canny, ys_train_canny = func_generator_canny(train_file_names) #[JL -_
      \hookrightarrow I broke Preprocess parallel. use this instead ]
      print('xs_train_canny, ys_train_canny generated:',len(xs_train_canny))
      print(np.array(xs_train_canny).shape, np.array(ys_train_canny).shape)
```

print('--- {} seconds ---'.format(time.time() - start_time))

import data - test 500

```
start_time = time.time()
      #xs_train, ys_train = Preprocess_parallel(train_file names)
      xs_test_canny, ys_test_canny = func_generator_canny(test_file_names) #[JL - IL
      →broke Preprocess_parallel. use this instead ]
      print('xs_test_canny, ys_test_canny generated:',len(xs_test_canny))
      print(np.array(xs test canny).shape, np.array(ys test canny).shape)
      print('--- {} seconds ---'.format(time.time() - start_time))
     xs_train_canny, ys_train_canny generated: 500
     (500, 64, 25, 25) (500, 64)
     --- 3.753024101257324 seconds ---
     xs_test_canny, ys_test_canny generated: 500
     (500, 64, 25, 25) (500, 64)
     --- 3.7304747104644775 seconds ---
     intital prediction accuracy in canny data
[51]: xs_train_canny2= np.array(xs_train_canny).reshape(500*64,25*25)
      ys_train_canny2 = np.array(ys_train_canny).reshape(500*64)
      print('shape of train data:',np.array(xs_train_canny2).shape, np.
      →array(ys_train_canny2).shape)
      # ABC classifier
      from sklearn.ensemble import AdaBoostClassifier
      from sklearn.metrics import accuracy_score
      from sklearn.metrics import classification_report
      start_time = time.time()
      ada = AdaBoostClassifier(n_estimators=50, learning_rate=0.5, random_state=42)
      ada.fit(xs_train_canny2,ys_train_canny2)
      y_pred= ada.predict(xs_train_canny2)
      #Evaluate its performance on the training and test set
      print("AdaBoost- accuracy on validation set:", accuracy_score(ys_train_canny2⊔
       \rightarrow,y_pred))
      print('--- {} seconds ---'.format(time.time() - start_time))
```

```
shape of train data: (32000, 625) (32000,)
AdaBoost- accuracy on validation set: 0.14365625
--- 29.521029233932495 seconds ---
```

1.5.2 Proceed with canny data

Split train to train and validation

```
[64]: #split 500 training data start_time = time.time()
```

```
test_size=0.33
      from sklearn.model_selection import train_test_split
      X_train, X_val, Y_train, Y_val = train_test_split(
          xs_train_canny,ys_train_canny, test_size=0.33, random_state=0)
      print(np.array(X_train).shape, np.array(X_val).shape, np.array(Y_train).shape,
       →np.array(Y_val).shape)
      print('--- {} seconds ---'.format(time.time() - start_time))
     (335, 64, 25, 25) (165, 64, 25, 25) (335, 64) (165, 64)
     --- 0.10301804542541504 seconds ---
     Undersampling traing set
[65]: # test sift -resampled
      start_time = time.time()
      X resampled, Y_resampled = undersampling_ClusterCentroids_canny(X_train,Y_train)
      print('--- {} seconds ---'.format(time.time() - start_time))
      print('reduce grid number from',len(np.array(Y_train))*64,'to',len(np.
      →array(Y_resampled)))
      print('shape of resampled data:',np.array(X_resampled).shape, np.
       →array(Y_resampled).shape)
     --- 45.152501344680786 seconds ---
     reduce grid number from 21440 to 2028
     shape of resampled data: (2028, 625) (2028,)
[66]: # reshpe train daa, validation data, and testing data as resampled
      X_train= np.array(X_train).reshape(335*64,25*25)
      Y_train = np.array(Y_train).reshape(335*64)
      print('shape of train data:',np.array(X_train).shape, np.array(Y_train).shape)
      X_{val} = np.array(X_{val}).reshape(165*64,25*25)
      Y_val = np.array(Y_val).reshape(165*64)
      print('shape of validation data:',np.array(X_val).shape, np.array(Y_val).shape)
      xs_test_canny= np.array(xs_test_canny).reshape(num_test*64,25*25)
      ys_test_canny = np.array(ys_test_canny).reshape(num_test*64)
      print('shape of test data:',np.array(xs_test_canny).shape, np.
       →array(ys_test_canny).shape)
     shape of train data: (21440, 625) (21440,)
     shape of validation data: (10560, 625) (10560,)
     shape of test data: (32000, 625) (32000,)
```

Base classifier- Tree (with canny & canny resampling)

```
[67]: # Tree classifier - Canny data
      from sklearn.tree import DecisionTreeClassifier
      start_time = time.time()
      #Apply pre-pruning by limiting the depth of the tree - max_depth=2
      tree = DecisionTreeClassifier(criterion='gini', max_depth=5)
      tree.fit(X_train, Y_train)
      #Evaluate its performance on the training and test set
      print("Accuracy on training set: {:.3f}".format(tree.score(X_train, Y_train)))
      print("Accuracy on validation set: {:.3f}".format(tree.score(X_val, Y_val)))
      print("Accuracy on testing set: {:.3f}".format(tree.score(xs_test_canny,__

ys_test_canny)))
      print('--- {} seconds ---'.format(time.time() - start_time))
     Accuracy on training set: 0.891
     Accuracy on validation set: 0.886
     Accuracy on testing set: 0.897
     --- 1.3639991283416748 seconds ---
[68]: # Tree classifier - Canny & resampling data
      from sklearn.tree import DecisionTreeClassifier
      start_time = time.time()
      #Apply pre-pruning by limiting the depth of the tree
      tree = DecisionTreeClassifier(criterion='gini', max_depth=5)
      tree.fit(X_resampled, Y_resampled)
      #Evaluate its performance on the training and test set
      print("Accuracy on training set: {:.3f}".format(tree.score(X_train, Y_train)))
      print("Accuracy on validation set: {:.3f}".format(tree.score(X_val, Y_val)))
      print("Accuracy on testing set: {:.3f}".format(tree.score(xs_test_canny,_

    ys_test_canny)))
      print('--- {} seconds ---'.format(time.time() - start_time))
     Accuracy on training set: 0.900
     Accuracy on validation set: 0.902
     Accuracy on testing set: 0.905
     --- 0.3940086364746094 seconds ---
     AdaBoostClassifier- Tree (with canny & canny resampling)
[70]: # ABC classifier- Canny data
      from sklearn.ensemble import AdaBoostClassifier
      from sklearn.metrics import accuracy_score
      from sklearn.metrics import classification_report
      start_time = time.time()
```

```
ada = AdaBoostClassifier(n_estimators=50,
                               base_estimator =_
       →DecisionTreeClassifier(criterion='gini', max_depth=5),
                               learning rate=0.5,
                               random state=42)
      ada.fit(X train, Y train)
      y_pred_val = ada.predict(X_val)
      y_pred_test = ada.predict(xs_test_canny)
      #Evaluate its performance on the training and test set
      print("AdaBoost- accuracy on validation set:", accuracy_score(Y_val, u
       →y_pred_val))
      print("AdaBoost- accuracy on testing set:", accuracy_score(ys_test_canny,_
      →y_pred_test))
      print('--- {} seconds ---'.format(time.time() - start_time))
     AdaBoost- accuracy on validation set: 0.9800189393939394
     AdaBoost- accuracy on testing set: 0.98275
     --- 69.9584972858429 seconds ---
[71]: # ABC classifier- Canny & resampling data
      start_time = time.time()
      ada = AdaBoostClassifier(n_estimators=50,
                               base_estimator =
      →DecisionTreeClassifier(criterion='gini', max_depth=5),
                               learning_rate=0.5,
                               random_state=42)
      ada.fit(X_resampled, Y_resampled)
      y_pred_val = ada.predict(X_val)
      y_pred_test = ada.predict(xs_test_canny)
      #Evaluate its performance on the training and test set
      print("AdaBoost- accuracy on validation set:", accuracy_score(Y_val, u
       →y_pred_val))
      print("AdaBoost- accuracy on testing set:", accuracy_score(ys_test_canny,_
       →y_pred_test))
      print('--- {} seconds ---'.format(time.time() - start_time))
     AdaBoost- accuracy on validation set: 0.975189393939394
     AdaBoost- accuracy on testing set: 0.97621875
```

Hyper parameter tunning

--- 17.773995876312256 seconds ---

```
[76]: | ###https://machinelearningmastery.com/adaboost-ensemble-in-python/
      if do_hyper_parameter_tuning:
          from sklearn.ensemble import AdaBoostClassifier
          from sklearn.model_selection import GridSearchCV
          # AdaBoost
          param_grid = [{'n_estimators': np.arange(10,50,5),
                        'learning_rate': [0.01, 0.05, 0.1, 1,5,10]
                       }]
          start_time = time.time()
          abc = GridSearchCV(AdaBoostClassifier(random_state=42), param_grid)
          abc.fit(X_resampled, Y_resampled)
          print('--- {} seconds ---'.format(time.time() - start_time))
          # SVC
          param_grid = [{'n_estimators': np.arange(10,50,5),
                        'learning_rate': [0.01, 0.05, 0.1, 1,5,10],
                         "kernel" : ["linear", "poly", "rbf", "sigmoid"],
                         "C" : [0.01, 1, 10, 100]
                       }]
          start time = time.time()
          svc = GridSearchCV(svm.SVC(random_state=42), param_grid)
          abc.fit(X_resampled, Y_resampled)
          print('--- {} seconds ---'.format(time.time() - start_time))
      else:
          print("Hyper parameter tuning skipped.")
```

Adaboost: Hyper parameter tuning skipped.

GridSearchCV Result

```
[77]: if do_hyper_parameter_tuning:
    # Print grid search results
    from sklearn.metrics import classification_report

means = abc.cv_results_['mean_test_score']
    stds = abc.cv_results_['std_test_score']
    params = abc.cv_results_['params']
```

```
print('Grid search mean and stdev:\n')

for mean, std, p in zip(means, stds, params):
        print("%0.3f (+/-%0.03f) for %r"% (mean, std * 2, p))

# Print best params
print('\nBest parameters:', abc.best_params_)
print("Detailed classification report:")
print()
print(classification_report(Y_val, abc.predict(X_val)))
print()
else:
    print("Adaboost: Hyper parameter report skipped.")
```

Adaboost: Hyper parameter report skipped.

1.6 Section 3.1 SVM Classifier (SVC)

Base class for all classifiers

```
[24]: import abc
      # interface of the classifiers
      class IClassifier:
          # this method should accept a list of file names of the training data
          @abc.abstractmethod
          def Train(self, train_file_names):
              raise NotImplementedError()
          # this should accept a 400 * 400 * 3 numpy array as query data, and returns
       → the fen notation of the board.
          @abc.abstractmethod
          def Predict(self, query_data):
              raise NotImplementedError()
          # this should accept a list of file names, and returns the predicted labels
       \hookrightarrow as 1d numpy array.
          @abc.abstractmethod
          def Predict(self, query_data):
              raise NotImplementedError()
```

```
Class definition for SVC
```

```
[45]: from sklearn import svm import numpy as np

# image io and plotting
```

```
from skimage import io, transform
import skimage.util
from skimage.util.shape import view_as_blocks
from matplotlib import pyplot as plt
# parallel processing
from joblib import Parallel, delayed
# model save and load
import pickle
import os
# profiling
import time
# joblib needs the kernel to be a top-level function, so we defined it here.
def PreprocessKernel(name):
   img = ReadImage(name, gray = True)
   grids = SVCClassifier.SVCPreprocess(img)
   labels = np.array(FENtoOneHot(GetCleanNameByPath(name))).argmax(axis=1)
   return grids, labels
# SVM Classifier
class SVCClassifier(IClassifier):
   def init (self):
        self.__svc__ = svm.SVC(C=1.0, cache_size=200, class_weight=None,_
\rightarrowcoef0=0.0.
                          decision_function_shape='ovr', degree=3, gamma=0.001,__
max_iter=-1, probability=False, random_state=None,__
⇒shrinking=True,
                         tol=0.001, verbose=False)
    # this method should accept a list of file names of the training data
   def Train(self, train_file_names):
       print("svc: reading image.")
       start_time = time.time()
       xs, ys = SVCClassifier.PreprocessParallelWrapperFunc(train_file_names)
       print("svc: finished reading image, {} sec.".format(time.time() -
→start time))
        # train
       print("svc: start training.")
       start_time = time.time()
       self.__svc__.fit(xs, ys)
       print("svc: finished. {} sec.".format(time.time() - start_time))
    # this should accept a 400 * 400 * 3 numpy array as query data, and returns \Box
 → the fen notation of the board.
```

```
def Predict(self, query_data):
       grids = SVCClassifier.SVCPreprocess(query_data)
      y_pred = self.__svc__.predict(grids)
      return LabelArrayToL(y_pred)
  # predict by file name:
  def PredictMultiple(self, file_names):
      preds = []
      truth = []
      for f in file names:
           img = ReadImage(f, gray = True)
           y_pred = self.Predict(img)
           y_true = FENtoL(GetCleanNameByPath(f))
           preds.append(y_pred)
           truth.append(y_true)
       all_pred = np.vstack(preds)
       all_truth = np.vstack(truth)
      return all_pred, all_truth
   # parallel pre-process wrapper:
  Ostaticmethod
  def PreprocessParallelWrapperFunc(file_names, num_thread = g_thread_num):
       result = Parallel(n_jobs =_
→num_thread)(delayed(PreprocessKernel)(file_name) for file_name in file_names)
      xs, ys = zip(*result)
      xs = np.concatenate(xs, axis=0)
      ys = np.concatenate(ys)
      return xs, ys
  Ostaticmethod
  def SVCPreprocess(img):
       img = transform.resize(img, (g_down_sampled_size, g_down_sampled_size),__

→mode='constant')
       grids = skimage.util.shape.view_as_blocks(img, block_shape = __
→(g_down_sampled_grid_size, g_down_sampled_grid_size))
       grids = grids.reshape((-1, grids.shape[3], grids.shape[3]))
       grids = grids.reshape((grids.shape[0], grids.shape[1] * grids.shape[1]))
      return grids
  def SaveModel(self, save file name):
       os.makedirs(os.path.dirname(save_file_name), exist_ok = True)
       with open(save_file_name, 'wb') as file:
           pickle.dump(self.__svc__, file)
  def LoadModel(self, load_file_name):
```

```
with open(load_file_name, 'rb') as file:
    self.__svc__ = pickle.load(file)
```

Test code for SVC

```
[26]: if test_SVC:
          svc = SVCClassifier()
          train_names = GetFileNamesInDir(g_train_dir)
          if SVC_load_model:
              print("svc: loading model from " + svc_model_file)
              svc.LoadModel(svc_model_file)
          else:
              svc.Train(train_names[:500])
          y_truth = FENtoL(GetCleanNameByPath(a_random_file))
          img = ReadImage(a_random_file, gray = True)
          pred = svc.Predict(img)
          print("truth: ", ''.join(y_truth))
          print("pred : ", ''.join(pred))
          # save model
          if not SVC_load_model:
              print("svc: saving model to " + svc_model_file)
              svc.SaveModel(svc_model_file)
```

svc: loading model from ./saved_model/svc_dump.pkl

G:\Anaconda3\lib\site-packages\sklearn\base.py:329: UserWarning: Trying to unpickle estimator SVC from version 0.23.1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk.

warnings.warn(

1.6.1 Section 3.2 Convolutional Neural Network Classifier (CNN)

Class definition for CNN

```
[27]: import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import layers

import cv2
    from skimage import io, transform
    import numpy as np
    import os

#import tensorflow as tf
```

```
#from tensorflow import keras
#from tf.keras.models import Sequential
#from tf.keras.layers.core import Flatten, Dense, Dropout, Activation
#from tf.keras.layers.convolutional import Convolution2D
class CNNClassifier(IClassifier):
    # the file name format does not accept batch as parameter. link:
    # https://qithub.com/tensorflow/tensorflow/issues/38668
    s_check_point_file_name = "./CNN_training_checkpoint/cp_{epoch:
→02d}-{accuracy:.2f}.ckpt"
    s_check_point_path = os.path.dirname(s_check_point_file_name)
    s_save_frequence = 10000 # save a checkpoint every s_save_frequence batches
   def __init__(self):
        #tf.config.threading.set_inter_op_parallelism_threads(3)
        #tf.config.threading.set_intra_op_parallelism_threads(3)
        # define our model
        self.__model__ = keras.Sequential(
                layers.Convolution2D(32, (3, 3), input_shape =
 →(g_down_sampled_grid_size, g_down_sampled_grid_size, 3)),
                layers.Activation('relu'),
                layers.Dropout(0.1),
                layers.Convolution2D(32, (3, 3)),
                layers.Activation('relu'),
                layers.Convolution2D(32, (3, 3)),
                layers.Activation('relu'),
                layers.Flatten(),
                layers.Dense(128),
                layers.Activation('relu'),
                layers.Dropout(0.3),
                layers.Dense(13),
                layers.Activation("softmax")
           ]
        )
       self.__model__.compile(loss = "categorical_crossentropy", optimizer =_
 →'adam', metrics = ["accuracy"])
        self.__save_check_point_callback__ = tf.keras.callbacks.ModelCheckpoint(
```

```
filepath = CNNClassifier.s_check_point_file_name,
           monitor='val_accuracy',
           save_weights_only = True,
           save_freq = CNNClassifier.s_save_frequence,
           verbose = 1
           )
    # generator
   Ostaticmethod
   def func generator(train file names):
       for image_file_name in train_file_names:
           img = ReadImage(image_file_name)
           x = CNNClassifier.PreprocessImage(img)
           y = np.array(FENtoOneHot(GetCleanNameByPath(image_file_name)))
           yield x, y
   # this method should accept N * 64 * m * n numpy array as train data, and N_{\sf L}
\hookrightarrow lists of 64 chars as label.
   def Train(self, train_data_names):
       train_size = len(train_data_names)
       ## try load last checkpoint
       #if not self.LoadMostRecentModel():
       # os.makedirs(CNNClassifier.s_check_point_path, exist_ok = True)
       # train
       self.__model__.fit(CNNClassifier.func_generator(train_data_names),
                           use_multiprocessing = False,
                           \#batch\_size = 1000,
                           steps_per_epoch = train_size / 20,
                           epochs = 2,
                           #callbacks = [self.__save_check_point_callback__],
                           verbose = 1)
   # this should accept a 64 * m * n numpy array as query data, and returns
\rightarrow the fen notation of the board.
   def Predict(self, query_data):
       grids = CNNClassifier.PreprocessImage(query_data)
       y_pred = self.__model__.predict(grids).argmax(axis=1)
       return y_pred
   # predict by file name:
   def PredictMultiple(self, file_names):
```

```
preds = []
       truth = []
       for f in file_names:
           img = ReadImage(f, gray = False)
           y_pred = LabelArrayToL(self.Predict(img))
           y_true = FENtoL(GetCleanNameByPath(f))
           preds.append(y_pred)
           truth.append(y_true)
       all_pred = np.vstack(preds)
       all_truth = np.vstack(truth)
      return all_pred, all_truth
  def LoadModel(self, name):
       self.__model__.load_weights(name)
  def SaveModel(self, name):
       os.makedirs(os.path.dirname(name), exist_ok = True)
       self.__model__.save_weights(name)
  def PrintModel(self):
       self.__model__.summary()
  def LoadMostRecentModel(self):
       return self.LoadMostRecentModelFromDirectory(CNNClassifier.
→s_check_point_path)
  def LoadMostRecentModelFromDirectory(self, path):
       try:
           last_cp = tf.train.latest_checkpoint(path)
           self.__model__.load_weights(last_cp)
           print("Loaded checkpoint from " + last_cp)
           return True
       except:
           print("No checkpoint is loaded.")
          return False
  def TestAccuracy(self, test_file_names):
      num_files = len(test_file_names)
      predict_result = self.__model__.predict(CNNClassifier.

¬func_generator(test_file_names)).argmax(axis=1)
      predict_result = predict_result.reshape(num_files, -1)
      predicted_fen_arr = np.array([LtoFEN(LabelArrayToL(labels)) for labels_
→in predict_result])
```

```
test_fens = np.array([GetCleanNameByPath(file_name) for file_name in_
→test_file_names])
       final_accuracy = (predicted_fen_arr == test_fens).astype(np.float).
\rightarrowmean()
       return final_accuracy
   Ostaticmethod
   def PreprocessImage(image):
       image = transform.resize(image, (g_down_sampled_size,_
→g_down_sampled_size), mode='constant')
       # 1st and 2nd dim is 8
       grids = ImageToGrids(image, g_down_sampled_grid_size,__
→g_down_sampled_grid_size)
       # debug
       #plt.imshow(grids[0][3])
       #plt.show()
       return grids.reshape(g_grid_row * g_grid_col, g_down_sampled_grid_size,_
→g_down_sampled_grid_size, 3)
```

test code for CNN

```
[28]: if test CNN train:
          cnn = CNNClassifier()
          train_names = GetFileNamesInDir(g_train_dir)
          cnn.Train(train_names)
          cnn.SaveModel(cnn_model_file)
      if test_CNN_predict:
          cnn = CNNClassifier()
          cnn.PrintModel()
          print("cnn: loading model from " + cnn_model_file)
          cnn.LoadModel(cnn_model_file)
          predicted_label = cnn.Predict(ReadImage(a_random_file))
          L = predicted_label
          FEN = LtoFEN(LabelArrayToL(L))
          print("predicted: " + FEN)
          print("Original: " + GetCleanNameByPath(a_random_file))
          #test_file_names = GetFileNamesInDir(q_test_dir)[:1000]
          #print("CNN: Testing accuracy for {} board images.".
       \rightarrow format(len(test_file_names)))
          #accuracy = cnn.TestAccuracy(test_file_names)
          #print("CNN: Final accuracy: {}".format(accuracy))
```

labels = cnn.PredictMultiple(GetFileNamesInDir(g_test_dir)[:100])

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 23, 23, 32)	896
activation (Activation)	(None, 23, 23, 32)	0
dropout (Dropout)	(None, 23, 23, 32)	0
conv2d_1 (Conv2D)	(None, 21, 21, 32)	9248
activation_1 (Activation)	(None, 21, 21, 32)	0
conv2d_2 (Conv2D)	(None, 19, 19, 32)	9248
activation_2 (Activation)	(None, 19, 19, 32)	0
flatten (Flatten)	(None, 11552)	0
dense (Dense)	(None, 128)	1478784
activation_3 (Activation)	(None, 128)	0
dropout_1 (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 13)	1677
activation_4 (Activation)	(None, 13)	0
Tatal 1 400 052		

Total params: 1,499,853 Trainable params: 1,499,853 Non-trainable params: 0

cnn: loading model from ./saved_model/cnn_weights predicted: 1b1B1b2-2pK2q1-4p1rB-7k-8-8-3B4-3rb3 Original: 1b1B1b2-2pK2q1-4p1rB-7k-8-8-3B4-3rb3

1.6.2 Section 3.3 AdaBoost Classifier

class definition

[29]: from sklearn.ensemble import AdaBoostClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier

```
from sklearn.metrics import accuracy_score
import numpy as np
# image io and plotting
from skimage import io, transform
import skimage.util
from skimage.util.shape import view_as_blocks
from matplotlib import pyplot as plt
# parallel processing
from joblib import Parallel, delayed
# model save and load
import pickle
import os
# profiling
import time
# joblib needs the kernel to be a top-level function, so we defined it here.
def PreprocessKernel(name):
   img = ReadImage(name, gray = True)
   grids = ABClassifier.ABCPreprocess(img)
   labels = np.array(FENtoOneHot(GetCleanNameByPath(name))).argmax(axis=1)
   return grids, labels
# Adaboost Classifier
class ABClassifier(IClassifier):
   def __init__(self):
       self.__abc__ = AdaBoostClassifier(n_estimators=30,
                                          base_estimator =__
→DecisionTreeClassifier(criterion='gini', max_depth=5),
                                          learning_rate=0.5)
   # this method should accept a list of file names of the training data
   def Train(self, train file names):
       print("abc: reading image.")
       start_time = time.time()
        xs, ys = ABClassifier.PreprocessParallelWrapperFunc(train file names)
       print("abc: finished reading image, {} sec.".format(time.time() -
→start time))
        # train
       print("abc: start training.")
       start_time = time.time()
       self.__abc__.fit(xs, ys)
       print("abc: finished. {} sec.".format(time.time() - start_time))
```

```
# this should accept a 400 * 400 * 3 numpy array as query data, and returns \Box
→ the fen notation of the board.
   def Predict(self, query_data):
       grids = ABClassifier.ABCPreprocess(query data)
       y_pred = self.__abc__.predict(grids)
       return LabelArrayToL(y pred)
   # parallel pre-process wrapper:
   Ostaticmethod
   def PreprocessParallelWrapperFunc(file_names, num_thread = g_thread_num):
       result = Parallel(n_jobs =__
→num_thread)(delayed(PreprocessKernel)(file_name) for file_name in file_names)
       xs, ys = zip(*result)
       xs = np.concatenate(xs, axis=0)
       ys = np.concatenate(ys)
       return xs, ys
   Ostaticmethod
   def ABCPreprocess(img):
       img = transform.resize(img, (g down_sampled_size, g_down_sampled_size),_
→mode='constant')
       grids = skimage.util.shape.view_as_blocks(img, block_shape = __
→(g_down_sampled_grid_size, g_down_sampled_grid_size))
       grids = grids.reshape((-1, grids.shape[3], grids.shape[3]))
       grids = grids.reshape((grids.shape[0], grids.shape[1] * grids.shape[1]))
       return grids
   def SaveModel(self, save_file_name):
       os.makedirs(os.path.dirname(save_file_name), exist_ok = True)
       with open(save_file_name, 'wb') as file:
           pickle.dump(self.__abc__, file)
   def LoadModel(self, load file name):
       with open(load_file_name, 'rb') as file:
           self.__abc__ = pickle.load(file)
   # predict by file name:
   def PredictMultiple(self, file_names):
       preds = []
       truth = []
       for f in file_names:
           img = ReadImage(f, gray = True)
           y_pred = self.Predict(img)
           y_true = FENtoL(GetCleanNameByPath(f))
```

```
preds.append(y_pred)
    truth.append(y_true)

all_pred = np.vstack(preds)
all_truth = np.vstack(truth)
return all_pred, all_truth
```

Test code for ABC

```
[30]: if test_ABC:
          abc = ABClassifier()
          train_names = GetFileNamesInDir(g_train_dir)
          if ABC_load_model:
              print("abc: loading model from " + abc_model_file)
              abc.LoadModel(abc_model_file)
          else:
              abc.Train(train_names)
          y_truth = FENtoL(GetCleanNameByPath(a_random_file))
          img = ReadImage(a_random_file, gray = True)
          pred = abc.Predict(img)
          print("truth: ", ''.join(y_truth))
          print("pred : ", ''.join(pred))
          # save model
          if not ABC_load_model:
              print("abc: saving model to " + abc_model_file)
              abc.SaveModel(abc_model_file)
```

abc: loading model from ./saved_model/abc_dump.pkl

G:\Anaconda3\lib\site-packages\sklearn\base.py:329: UserWarning: Trying to unpickle estimator DecisionTreeClassifier from version 0.23.1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk.

warnings.warn(

G:\Anaconda3\lib\site-packages\sklearn\base.py:329: UserWarning: Trying to unpickle estimator AdaBoostClassifier from version 0.23.1 when using version 0.23.2. This might lead to breaking code or invalid results. Use at your own risk.

warnings.warn(

1.7 10-fold cross validation for 3 classifiers

Cv reference https://scikit-learn.org/stable/modules/cross_validation.html

options for 10 fold 1. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html 2. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html (Preferred) "StratifiedKFold is a variation of k-fold which returns stratified folds: each set contains approximately the same percentage of samples of each target class as the complete set."

1.7.1 helper functions

```
[39]: # filters accepts a list of file names, and return the data matrix and labels
      import random
      from sklearn.metrics import confusion_matrix
      # get balanced accuracy from confusion matrix
      def BalancedAccuracyFromConfusionMatrix(cm):
          ret = np.empty((cm.shape[0]))
          for idx, row in enumerate(cm):
              ret[idx] = row[idx] / row.sum()
          return ret.mean()
      # dummy filter to return all files
      def DefaultFilter(file_names, rate = 1):
          return file_names
      # filter using random_sampling:
      def RandomFilter(file_names, rate = 1):
          # we fix the random part to assure the results are consistent
          random_seed = 4242
          random.seed(random_seed)
          return random.sample(file_names, k = int(len(file_names) * rate))
      def ConfusionMatrix(classifier, test file names, filter = RandomFilter,
       →sampling_rate = 0.001):
          confusion_matrices = []
          accuracies = []
          accuracies_balanced = []
          train_time_cost = []
          validation_time_cost = []
          # split name list into 10 equal parts
          division = len(test_file_names) / float(10)
          complete_name_folds = [ test_file_names[int(round(division * i)):_
       →int(round(division * (i + 1)))] for i in range(10) ]
          filtered_name_folds = complete_name_folds.copy()
          for i in range(10):
```

```
filtered_name_folds[i] = filter(complete_name_folds[i], rate = __
→sampling_rate)
   # we use filtered name folds to train, and validation.
   for iv in range(10):
       # merge the 9 folds:
       train_names = []
       validation_names = []
       for i in range(10):
           if i != iv:
               train_names.extend(filtered_name_folds[i])
           else:
               # validation_names = complete_name_folds[i].copy()
               validation_names = filtered_name_folds[i].copy()
       # train the classifier:
                                 ", type(classifier).__name__, "for fold #",_
       print("training started:
→iv, "# train files:", len(train_names))
       t = time.time()
       classifier.Train(train_names)
       train_time_cost.append(time.time() - t)
       print("training finished: ", type(classifier)._name_, "for fold #",u
بi۷,
             "time: {}s".format(time.time() - t))
       print("predicting started: ", type(classifier).__name__, "for fold #",__
نv)
       t = time.time()
       ypreds, y_true = classifier.PredictMultiple(validation names)
       validation_time_cost.append(time.time() - t)
       ypreds = ypreds.reshape((-1, 1))
       y_true = y_true.reshape((-1, 1))
       conf_mat = confusion_matrix(y_true, ypreds, labels = g_labels)
       confusion_matrices.append(conf_mat)
       accuracy = np.trace(conf_mat) / float(np.sum(conf_mat))
       accuracies.append(accuracy)
       accuracy_balanced = BalancedAccuracyFromConfusionMatrix(conf_mat)
       accuracies_balanced.append(accuracy_balanced)
       print("predicting finished: ", type(classifier).__name__, "for fold #",__
بi۷,
```

```
"time: {}s".format(time.time() - t), " accuracy: ", accuracy, "⊔

⇒balanced_accuracy:", accuracy_balanced)

return confusion_matrices, accuracies, accuracies_balanced, □

⇒train_time_cost, validation_time_cost
```

1.7.2 10-fold routine

```
[40]: # 10-fold for ABC
      train_file_names = GetFileNamesInDir(g_train_dir, extension = "jpeg")
      # random sampling rate of the each fold in 10-fold
      abc_random_sampling_rate = 0.005
      abc_tf = ABClassifier()
      confusion matrices abc, accuracies abc, accuracies balanced abc,
      →train_time_cost_abc, validation_time_cost_abc = \
      ConfusionMatrix(abc tf, train file names, RandomFilter, sampling rate = ___
       →abc_random_sampling_rate)
     training started:
                           ABClassifier for fold # 0 # train files: 360
     abc: reading image.
     abc: finished reading image, 1.4620320796966553 sec.
     abc: start training.
     abc: finished. 103.93197131156921 sec.
     training finished: ABClassifier for fold # 0 time: 105.40400314331055s
     predicting started: ABClassifier for fold # 0
     predicting finished: ABClassifier for fold # 0 time: 0.6069967746734619s
     accuracy: 0.999609375 balanced accuracy: 0.9973474801061007
                           ABClassifier for fold # 1 # train files: 360
     training started:
     abc: reading image.
     abc: finished reading image, 1.4645004272460938 sec.
     abc: start training.
     abc: finished. 104.42150020599365 sec.
                           ABClassifier for fold # 1 time: 105.89599990844727s
     training finished:
     predicting started:
                           ABClassifier for fold # 1
     predicting finished: ABClassifier for fold # 1 time: 0.603518009185791s
     accuracy: 0.9984375 balanced_accuracy: 0.9913306205989134
     training started:
                           ABClassifier for fold # 2 # train files: 360
     abc: reading image.
     abc: finished reading image, 1.428978681564331 sec.
     abc: start training.
     abc: finished. 105.28100204467773 sec.
     training finished:
                           ABClassifier for fold # 2 time: 106.72047924995422s
     predicting started: ABClassifier for fold # 2
     predicting finished: ABClassifier for fold # 2 time: 0.5950014591217041s
     accuracy: 0.99609375 balanced_accuracy: 0.9759506329654791
```

training started: ABClassifier for fold # 3 # train files: 360

abc: reading image.

abc: finished reading image, 1.4075002670288086 sec.

abc: start training.

abc: finished. 104.87652969360352 sec.

training finished: ABClassifier for fold # 3 time: 106.29400038719177s

predicting started: ABClassifier for fold # 3

predicting finished: ABClassifier for fold # 3 time: 0.6039984226226807s

accuracy: 0.997265625 balanced accuracy: 0.9780571992110455

training started: ABClassifier for fold # 4 # train files: 360

abc: reading image.

abc: finished reading image, 1.4154675006866455 sec.

abc: start training.

abc: finished. 105.77800250053406 sec.

training finished: ABClassifier for fold # 4 time: 107.20297193527222s

predicting started: ABClassifier for fold # 4

predicting finished: ABClassifier for fold # 4 time: 0.584998369216919s

accuracy: 0.9984375 balanced_accuracy: 0.987045282303903

training started: ABClassifier for fold # 5 # train files: 360

abc: reading image.

abc: finished reading image, 1.4695062637329102 sec.

abc: start training.

abc: finished. 104.32799673080444 sec.

training finished: ABClassifier for fold # 5 time: 105.80750131607056s

predicting started: ABClassifier for fold # 5

predicting finished: ABClassifier for fold # 5 time: 0.5930004119873047s

accuracy: 0.995703125 balanced_accuracy: 0.9714359864157435

training started: ABClassifier for fold # 6 # train files: 360

abc: reading image.

abc: finished reading image, 1.3969721794128418 sec.

abc: start training.

abc: finished. 104.03352880477905 sec.

training finished: ABClassifier for fold # 6 time: 105.43997287750244s

predicting started: ABClassifier for fold # 6

predicting finished: ABClassifier for fold # 6 time: 0.5954806804656982s

accuracy: 0.997265625 balanced accuracy: 0.978860711937635

training started: ABClassifier for fold # 7 # train files: 360

abc: reading image.

abc: finished reading image, 1.4229962825775146 sec.

abc: start training.

abc: finished. 104.89802718162537 sec.

training finished: ABClassifier for fold # 7 time: 106.33052468299866s

predicting started: ABClassifier for fold # 7

predicting finished: ABClassifier for fold # 7 time: 0.5924742221832275s

accuracy: 0.9921875 balanced_accuracy: 0.9335987100224892

training started: ABClassifier for fold # 8 # train files: 360

abc: reading image.

abc: finished reading image, 1.4279963970184326 sec.

```
abc: start training.
     abc: finished. 104.12350082397461 sec.
     training finished:
                         ABClassifier for fold # 8 time: 105.56049680709839s
     predicting started: ABClassifier for fold # 8
     predicting finished: ABClassifier for fold # 8 time: 0.6044681072235107s
     accuracy: 0.882421875 balanced_accuracy: 0.9741572671662589
     training started:
                          ABClassifier for fold # 9 # train files: 360
     abc: reading image.
     abc: finished reading image, 1.4425017833709717 sec.
     abc: start training.
     abc: finished. 103.4440004825592 sec.
                         ABClassifier for fold # 9 time: 104.89653134346008s
     training finished:
     predicting started: ABClassifier for fold # 9
     predicting finished: ABClassifier for fold # 9 time: 0.5945329666137695s
     accuracy: 0.99609375 balanced_accuracy: 0.9802935917717553
[43]: # 10-fold for CNN
     # random sampling rate of the each fold in 10-fold
     cnn_random_sampling_rate = 0.5
     train_file_names = GetFileNamesInDir(g_train_dir, extension = "jpeg")
     cnn_tf = CNNClassifier()
     confusion_matrices_cnn, accuracies_cnn, accuracies_balanced_cnn,_
      →train_time_cost_cnn, validation_time_cost_cnn = \
     ConfusionMatrix(cnn_tf, train_file_names, RandomFilter, sampling_rate = ___
      →cnn_random_sampling_rate)
                          CNNClassifier for fold # 0 # train files: 36000
     training started:
     Epoch 1/2
     1800/1800 [============== ] - 86s 48ms/step - loss: 0.0717 -
     accuracy: 0.9816
     Epoch 2/2
     1800/1800 [============= ] - 86s 48ms/step - loss: 0.0137 -
     accuracy: 0.9962
     training finished: CNNClassifier for fold # 0 time: 173.21597123146057s
     predicting started: CNNClassifier for fold # 0
     predicting finished: CNNClassifier for fold # 0 time: 190.31954169273376s
     accuracy: 0.99988671875 balanced_accuracy: 0.9993654833744536
     training started:
                         CNNClassifier for fold # 1 # train files: 36000
     Epoch 1/2
     1800/1800 [============== ] - 85s 47ms/step - loss: 0.0082 -
     accuracy: 0.9978
     Epoch 2/2
     1800/1800 [============= ] - 87s 48ms/step - loss: 0.0097 -
     accuracy: 0.9980
     training finished: CNNClassifier for fold # 1 time: 172.03247952461243s
```

```
predicting started: CNNClassifier for fold # 1
predicting finished: CNNClassifier for fold # 1 time: 190.49558448791504s
accuracy: 0.9999453125 balanced_accuracy: 0.9997318125770653
training started: CNNClassifier for fold # 2 # train files: 36000
Epoch 1/2
1800/1800 [============= ] - 88s 49ms/step - loss: 0.0047 -
accuracy: 0.9989
Epoch 2/2
1800/1800 [============== ] - 93s 52ms/step - loss: 0.0015 -
accuracy: 0.9995
training finished: CNNClassifier for fold # 2 time: 181.0259976387024s
predicting started: CNNClassifier for fold # 2
predicting finished: CNNClassifier for fold # 2 time: 192.8062334060669s
accuracy: 0.99997265625 balanced_accuracy: 0.9998544865604954
training started: CNNClassifier for fold # 3 # train files: 36000
Epoch 1/2
1800/1800 [============= ] - 81s 45ms/step - loss: 0.0027 -
accuracy: 0.9993
Epoch 2/2
1800/1800 [============ ] - 88s 49ms/step - loss: 0.0032 -
accuracy: 0.9992
training finished: CNNClassifier for fold # 3 time: 169.52500009536743s
predicting started: CNNClassifier for fold # 3
predicting finished: CNNClassifier for fold # 3 time: 188.18117094039917s
accuracy: 0.9999921875 balanced_accuracy: 0.9999589962276528
training started: CNNClassifier for fold # 4 # train files: 36000
Epoch 1/2
1800/1800 [============== ] - 84s 47ms/step - loss: 0.0040 -
accuracy: 0.9992
Epoch 2/2
accuracy: 0.9999
training finished: CNNClassifier for fold # 4 time: 166.33447456359863s
predicting started: CNNClassifier for fold # 4
predicting finished: CNNClassifier for fold # 4 time: 186.27306246757507s
accuracy: 1.0 balanced_accuracy: 1.0
training started: CNNClassifier for fold # 5 # train files: 36000
Epoch 1/2
1800/1800 [============= ] - 81s 45ms/step - loss: 0.0040 -
accuracy: 0.9994
Epoch 2/2
1800/1800 [============== ] - 82s 45ms/step - loss: 0.0097 -
accuracy: 0.9988
                   CNNClassifier for fold # 5 time: 162.42997932434082s
training finished:
predicting started: CNNClassifier for fold # 5
predicting finished: CNNClassifier for fold # 5 time: 186.77905106544495s
accuracy: 0.999875 balanced_accuracy: 0.9989402831648335
training started:
                   CNNClassifier for fold # 6 # train files: 36000
```

```
Epoch 1/2
    1800/1800 [============== ] - 81s 45ms/step - loss: 7.1590e-04 -
    accuracy: 0.9997
    Epoch 2/2
    1800/1800 [============= ] - 82s 45ms/step - loss: 3.0410e-04 -
    accuracy: 0.9999
    training finished:
                        CNNClassifier for fold # 6 time: 162.53049755096436s
    predicting started: CNNClassifier for fold # 6
    predicting finished: CNNClassifier for fold # 6 time: 186.63142657279968s
    accuracy: 1.0 balanced_accuracy: 1.0
                        CNNClassifier for fold # 7 # train files: 36000
    training started:
    Epoch 1/2
    1800/1800 [============= ] - 80s 45ms/step - loss: 0.0045 -
    accuracy: 0.9994
    Epoch 2/2
    accuracy: 0.9998
    training finished: CNNClassifier for fold # 7 time: 161.7800006866455s
    predicting started: CNNClassifier for fold # 7
    predicting finished: CNNClassifier for fold # 7 time: 185.8971197605133s
    accuracy: 1.0 balanced accuracy: 1.0
                        CNNClassifier for fold # 8 # train files: 36000
    training started:
    Epoch 1/2
    1800/1800 [============== ] - 80s 45ms/step - loss: 0.0041 -
    accuracy: 0.9994
    Epoch 2/2
    1800/1800 [============= ] - 81s 45ms/step - loss: 0.0013 -
    accuracy: 0.99970s - loss: 0.0
    training finished: CNNClassifier for fold # 8 time: 161.87600111961365s
    predicting started: CNNClassifier for fold # 8
    predicting finished: CNNClassifier for fold # 8 time: 187.63858294487s
    accuracy: 1.0 balanced_accuracy: 1.0
                        CNNClassifier for fold # 9 # train files: 36000
    training started:
    Epoch 1/2
    1800/1800 [============= ] - 80s 44ms/step - loss: 0.0018 -
    accuracy: 0.9997
    Epoch 2/2
    1800/1800 [============== ] - 81s 45ms/step - loss: 0.0026 -
    accuracy: 0.99961s - los
    training finished: CNNClassifier for fold # 9 time: 161.5344979763031s
    predicting started: CNNClassifier for fold # 9
    predicting finished: CNNClassifier for fold # 9 time: 186.5864441394806s
    accuracy: 1.0 balanced_accuracy: 1.0
[47]: # 10-fold for SVM
     train_file_names = GetFileNamesInDir(g_train_dir, extension = "jpeg")
     # random sampling rate of the each fold in 10-fold
```

```
svc_random_sampling_rate = 0.01
svc_tf = SVCClassifier()
confusion_matrices_svc, accuracies_svc, accuracies_balanced_svc,_
 →train_time_cost_svc, validation_time_cost_svc = \
ConfusionMatrix(svc_tf, train_file_names, RandomFilter, sampling_rate =__
 →svc_random_sampling_rate)
training started:
                      SVCClassifier for fold # 0 # train files: 720
svc: reading image.
svc: finished reading image, 2.2850053310394287 sec.
svc: start training.
svc: finished. 270.9725008010864 sec.
training finished:
                     SVCClassifier for fold # 0 time: 273.2755048274994s
                     SVCClassifier for fold # 0
predicting started:
predicting finished: SVCClassifier for fold # 0 time: 24.56050157546997s
accuracy: 0.9755859375 balanced accuracy: 0.8390801614481257
training started:
                     SVCClassifier for fold # 1 # train files: 720
svc: reading image.
svc: finished reading image, 2.1169722080230713 sec.
svc: start training.
svc: finished. 269.3235237598419 sec.
training finished:
                     SVCClassifier for fold # 1 time: 271.4594974517822s
predicting started:
                     SVCClassifier for fold # 1
predicting finished: SVCClassifier for fold # 1 time: 24.53800320625305s
accuracy: 0.97578125 balanced accuracy: 0.851003508486225
training started:
                     SVCClassifier for fold # 2 # train files: 720
svc: reading image.
svc: finished reading image, 2.127997398376465 sec.
svc: start training.
svc: finished. 267.36296916007996 sec.
                     SVCClassifier for fold # 2 time: 269.50846672058105s
training finished:
                     SVCClassifier for fold # 2
predicting started:
predicting finished: SVCClassifier for fold # 2 time: 24.64452815055847s
accuracy: 0.9748046875 balanced accuracy: 0.8442856239581942
training started:
                     SVCClassifier for fold # 3 # train files: 720
svc: reading image.
svc: finished reading image, 2.1524736881256104 sec.
svc: start training.
svc: finished. 267.72552585601807 sec.
training finished:
                     SVCClassifier for fold # 3 time: 269.8954989910126s
predicting started: SVCClassifier for fold # 3
predicting finished: SVCClassifier for fold # 3 time: 24.613504648208618s
accuracy: 0.9771484375 balanced accuracy: 0.8418881733972017
                     SVCClassifier for fold # 4 # train files: 720
training started:
svc: reading image.
```

svc: finished reading image, 2.0699989795684814 sec.

svc: start training.

svc: finished. 267.7185003757477 sec.

training finished: SVCClassifier for fold # 4 time: 269.8139982223511s

predicting started: SVCClassifier for fold # 4

predicting finished: SVCClassifier for fold # 4 time: 24.771501779556274s

accuracy: 0.9759765625 balanced_accuracy: 0.8401999249500759

training started: SVCClassifier for fold # 5 # train files: 720

svc: reading image.

svc: finished reading image, 2.133993148803711 sec.

svc: start training.

svc: finished. 267.6675329208374 sec.

training finished: SVCClassifier for fold # 5 time: 269.8200011253357s

predicting started: SVCClassifier for fold # 5

predicting finished: SVCClassifier for fold # 5 time: 24.553966999053955s

accuracy: 0.9701171875 balanced_accuracy: 0.8018837193943575

training started: SVCClassifier for fold # 6 # train files: 720

svc: reading image.

svc: finished reading image, 2.1104936599731445 sec.

svc: start training.

svc: finished. 273.1029999256134 sec.

training finished: SVCClassifier for fold # 6 time: 275.23199915885925s

predicting started: SVCClassifier for fold # 6

predicting finished: SVCClassifier for fold # 6 time: 24.997468948364258s

accuracy: 0.980078125 balanced_accuracy: 0.8347615121472585

training started: SVCClassifier for fold # 7 # train files: 720

svc: reading image.

svc: finished reading image, 2.091013193130493 sec.

svc: start training.

svc: finished. 271.07047414779663 sec.

training finished: SVCClassifier for fold # 7 time: 273.1799671649933s

predicting started: SVCClassifier for fold # 7

predicting finished: SVCClassifier for fold # 7 time: 25.155030488967896s

accuracy: 0.9787109375 balanced_accuracy: 0.8173997864853184

training started: SVCClassifier for fold # 8 # train files: 720

svc: reading image.

svc: finished reading image, 2.12349534034729 sec.

svc: start training.

svc: finished. 269.79501008987427 sec.

training finished: SVCClassifier for fold # 8 time: 271.93650913238525s

predicting started: SVCClassifier for fold # 8

predicting finished: SVCClassifier for fold # 8 time: 24.724002838134766s

accuracy: 0.97578125 balanced_accuracy: 0.8372536721897584

training started: SVCClassifier for fold # 9 # train files: 720

svc: reading image.

svc: finished reading image, 2.1125197410583496 sec.

svc: start training.

svc: finished. 268.1715042591095 sec.

```
training finished: SVCClassifier for fold # 9 time: 270.30202198028564s predicting started: SVCClassifier for fold # 9 predicting finished: SVCClassifier for fold # 9 time: 24.58800220489502s accuracy: 0.9740234375 balanced_accuracy: 0.8392838619821293
```

1.7.3 Serialize the results (export to hard drive)

```
[58]: # dump the matrices for report.
     os.makedirs(os.path.dirname(ten_fold_result_path), exist_ok = True)
     np.save(ten_fold_result_path + "confusion_matrices_abc.npy", __
      np.save(ten_fold_result_path + "accuracies_abc.npy", accuracies_abc)
     np.save(ten_fold_result_path + "accuracies_balanced_abc.npy", __
      →accuracies_balanced_abc)
     np.save(ten_fold_result_path + "train_time_cost_abc.npy", train_time_cost_abc)
     np.save(ten_fold_result_path + "validation_time_cost_abc.npy", __
      →validation_time_cost_abc)
     np.save(ten_fold_result_path + "confusion_matrices_cnn.npy", __
      np.save(ten_fold_result_path + "accuracies_cnn.npy", accuracies_cnn)
     np.save(ten_fold_result_path + "accuracies_balanced_cnn.npy", __
      →accuracies_balanced_cnn)
     np.save(ten fold result path + "train time cost cnn.npy", train time cost cnn)
     np.save(ten_fold_result_path + "validation_time_cost_cnn.npy", __
      →validation_time_cost_cnn)
     np.save(ten_fold_result_path + "confusion_matrices_svc.npy", __
      np.save(ten_fold_result_path + "accuracies_svc.npy", accuracies_svc)
     np.save(ten_fold_result_path + "accuracies_balanced_svc.npy",_
      →accuracies_balanced_svc)
     np.save(ten_fold_result_path + "train_time_cost_svc.npy", train_time_cost_svc)
     np.save(ten_fold_result_path + "validation_time_cost_svc.npy", __
      →validation_time_cost_svc)
     svc_tf.SaveModel(svc_model_file)
     abc_tf.SaveModel(abc_model_file)
     cnn_tf.SaveModel(cnn_model_file)
```

1.7.4 Read the results from hard drive

```
[35]: import numpy as np
      confusion_matrices_abc = np.load(ten_fold_result_path + "confusion_matrices_abc.
       →npy")
      accuracies_abc = np.load(ten_fold_result_path + "accuracies_abc.npy")
      accuracies_balanced_abc = np.load(ten_fold_result_path +__

¬"accuracies_balanced_abc.npy")
      train_time_cost_abc = np.load(ten_fold_result_path + "train_time_cost_abc.npy")
      validation_time_cost_abc = np.load(ten_fold_result_path +
      →"validation time cost abc.npy")
      confusion_matrices_cnn = np.load(ten_fold_result_path + "confusion_matrices_cnn.
       →npy")
      accuracies_cnn = np.load(ten_fold_result_path + "accuracies_cnn.npy")
      accuracies_balanced_cnn = np.load(ten_fold_result_path +__

¬"accuracies_balanced_cnn.npy")
      train_time_cost_cnn = np.load(ten_fold_result_path + "train_time_cost_cnn.npy")
      validation_time_cost_cnn = np.load(ten_fold_result_path +__

¬"validation_time_cost_cnn.npy")
      confusion_matrices_svc = np.load(ten_fold_result_path + "confusion_matrices_svc.
      accuracies svc = np.load(ten fold result path + "accuracies svc.npy")
      accuracies_balanced_svc = np.load(ten_fold_result_path +_

¬"accuracies balanced svc.npy")
      train_time_cost_svc = np.load(ten_fold_result_path + "train_time_cost_svc.npy")
      validation_time_cost_svc = np.load(ten_fold_result_path +__
       →"validation_time_cost_svc.npy")
```

1.7.5 Plot the results

```
import matplotlib.pyplot as plt
def plot_accuracy(mat_abc, mat_cnn, mat_svc, title):
    line, = plt.plot([i for i in range(len(mat_abc))],mat_abc)
    line.set_label('AdaBoost')
    line, = plt.plot([i for i in range(len(mat_cnn))],mat_cnn)
    line.set_label('CNN')
    line, = plt.plot([i for i in range(len(mat_svc))],mat_svc)
    line.set_label('SVM')
    plt.title(title)
    plt.xlabel('10 - folds')
    plt.ylabel('accuracy')
    plt.ylim(0.5, 1.1)
    plt.legend()
    plt.show()
```

```
plot_accuracy(accuracies_abc, accuracies_cnn, accuracies_svc, "Accuracy of 3<sub>□</sub>

→Classifiers")

plot_accuracy(accuracies_balanced_abc, accuracies_balanced_cnn, □

→accuracies_balanced_svc, "Balanced Accuracy of 3 Classifiers")
```


[]:

1.7.6 Bonus: GUI: see GUI_with_Classifiers.ipynb