(51) 4 C 04 B 35/20

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Н АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(01)	20		$\alpha \alpha \alpha$	/29-33
1211	37	(7/	ULIZ.	//4-22

- (22) 04.01.85
- (46) 30.11.87.Бюл. № 44
- (71) Восточный научно-исследовательский и проектный институт огнеупорной промышленности
- (72) Ю.И.Савченко, В.А.Перепелицын, И.А.Степанова, П.П.Павлов, С.Н.Табатчикова и В.М.Бежаев
- (53) 666.97 (088.8)
- (56) Огнеупорные изделия, материалы и сырье, Справочник. М.: 1977, с. 87.

Заявка ФРГ № 2308171, кл. С 04 В 35/68, 1975.

(54)(57) МАГНЕЗИАЛЬНО-СИЛИКАТНЫЙ ОГНЕУПОР, включающий форстерит и алюмомагниевую шпинель, о т л и ч а ющ и й с я тем, что, с целью повышения устойчивости огнеупора к щелочно-силикатным расплавам и снижения
газопроницаемости при сохранении высокой огнеупорности, он дополнительно содержит периклаз и монтичеллит
при следующем соотношении компонентов, мас. % доли:

,			
Форстерит	51		73
Алюмомагниевая			
шпинель	21	-	30
Периклаз	5	-	15
Монтичеппит	1		4

25

Изобретение относится к огнеупорной промышленности и может быть использовано для производства износоустойчивых магнезиально-силикатных изделий и огнеупорных масс, применяемых в футеровках нагревательных и плавильных печей.

Целью предлагаемого технического решения является повышение устойчи-вости огнеупора к щелочно-силикатным расплавам и снижение газопроницаемости при сохранении высокой огне-упорности.

Сущность технического решения заключается в фазовом легировании и регулировании пористой текстуры и кристаллической структуры огнеупора путем увеличения содержания химически инертного компонента — шпинели в сочетании с высокоогнеупорным минералом-периклазом и известковомагнезиальным силикатом-монтичеллитом.

Повышение устойчивости заявляемого огнеупора к щелочно-силикатным расплавам достигается благодаря наличию плотного химически инертного огнеупора периклазофорстеритошпинельного кристаллического сростка с высоким содержанием шпинели MgAl 20 4 и мелкими размерами проницаемых пор.

Тонкопористая текстура также обеспечивает снижение газопроницаемости и скорости инфильтрационно-коррозионных процессов на контакте с расплавами.

Имеющийся в составе огнеупора наименее тугоплавкий минерал-монти-челлит Са MgSiO₄ (температура плав-ления 1498°C) выполняет двойную функциональную роль: предотвращает укрупнение пор (коалесценцию) и уменьшает скорость коррозии высокоогнеупорных минералов.

Сохранение огнеупорности и других термических свойств предлагаемого огнеупора обеспечивается повышенным содержанием шпинели MgAl 20 4 (температура плавления 2135°C) в сочетании с периклазом MgO (температура плавления 2800°C) и форстеритом Mg 2SiO 4 (температура плавления 1890°C). Отрицательное влияние монтичеллита на огнеупорность предлагаемого огнеупора полностью нейтрализуется наличием в нем периклаза и шпинели.

При содержании шпинели и периклаза менее заявляемых пределов, а монтичеллита и форстерита более соответственно 4,0 и 73,0 мас. % долей, существенно снижается огнеупорность, повышается газопроницаемость и скорость коррозии в щелочно-силикатном расплаве. Причиной ухудшения физико-химических свойств является повышенное содержание оксида кальция, обусловливающее увеличение реакционной способности и канальной пористости огнеупора.

Если массовая доля монтичеллита менее 1,0%, то формирование плотной 15 структуры не достигается, огнеупор имеет повышенную пористость, газопроницаемость и скорость коррозии в расплавах. Увеличение массовой доли шпинели и периклаза сверх заявляемых пределов не приводит к заметному ухудшению структуры и свойств огнеупора, однако значительно усложняет его технологию и повышает себестоимость.

Предлагаемые пределы содержания форстерита, являющегося минеральной основой огнеупора, определяются оптимальными суммарными количествами шпинели, периклаза и монтичеллита.

В качестве сырьевых компонентов использовали спеченный периклаз (MgO), полученный из химически чистого гидрокарбоната магния путем прокаливания при 1400°С, периклазовый порошок с содержанием СаО от 6,0 до 10,7 мас.% долей, синтезированную шпинель MgAl₂O₄, спеченный форстерит, природный оливин (дунит), прокаленный при 1500°С и плавленый форстеритошпинельный материал, содержащий 15,5-47,3 мас.% долей, шпинели MgAl₂O₄.

Составы сырьевых смесей приведены в табл.1, минеральный состав магнезиально-силикатных огнеупоров приведен в табл.2 (см.стр. 7-8).

Изготовление всех образцов огнеупоров осуществляли следующим образом.

1,24 г/см³ до влажности 3,0% и сметшивали в течение 5 мин. Из готовых масс прессовали образцы под давлением 150 МПа. Обжиг осуществляли при 1600°С в течение 4 ч.

у всех полученных образцов изделий определяли открытую пористость (по ГОСТ 2409-80), огнеупорность (по ГОСТ 4069-80), газопроницаемость (по ГОСТ 11573-80) и средний размер канальных пор (методом ртутной порометрии).

Состав	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃
A	.75,8	0,2	0,1
B	80,0	-	=
В	68,0	<u>-</u>	_

В качестве состава А применяли промышленное тарное стекло. Составы Б и В соответствовали синтетическим стеклам.

Минеральный состав образцов определяли микроскопическими и петрохимическими методами.

Свойства полученных образцов приведены в табл. 3 (см.стр.9).

Как видно из данных табл.3, предлагаемый огнеупор существенно превосходит сравниваемый по устойчивости к щелочно-силикатным расплавам и газопроницаемости (в среднем в 1,5 -3 раза). Различия в свойствах огнеупора определяются спецификой их минерального состава. Устойчивость к щелочно-силикатным расплавам оценивали путем измерения объема образцов до и после испытания в стационарных условиях при 1500°С в течение 3 ч. Были использованы щелочно-силикатные расплавы трех составов, мас. % доли:

CaO	MgO	Na_2O	K 20
8,9	0,2	13,8	1,0
8,0	- ,	12,0	-
14,0		18,0	_

Использование предлагаемого огнеупора позволяет значительно повысить износоустойчивость футеровок плавильных и нагревательных печей, упростить технологию производства магнезиально-силикатных изделий, снизить их себестоимость и расширить ассортимент. Для изготовления заявляемого огнеупора можно применять различные природные и техногенные материалы, в том числе плавленые огнеупорные форстеритошпинельные шлаки и другие продукты ферросилавного производства, что служит созданию безотходных технологических процессов и охране окружающей среды.

Таблина і

	~~~~~~			Таб	лиц	a i		
Компоненты сырьевых смесей	ቀት примеров выполнения (%) образцов)							
	Предлага	Предлагаемый огнеупор						
	1	2	3	4	5	6		
Спеченный периклаз (MgO)							10.0	
Периклазовый порошок, содержащий СаО, мас.% доли			*			٠	3	
6,0		· 🕳 છ	-	-	-			
7,2	<u> </u>	- '	. <b>-</b>	· _	6,0	6,0		
9,0	. =	-	12,5	12,5	_	-	-	
9,6	19,0	19,0	•	-				
10,7	· _		· _	-	_	-	_	

Плавленый форстеритошпинельный материал, содержащий шпинель MgAl₂O₄ мас.% доли

## Продолжение табл. 1

Компоненты сырьевых	мя примеров выполнения (ми образцов)							
смесей	Предлага	Предлагаемый огнеупор						
	1	2	3	4	5	6		
15,5			andre andre delse comp differ sold state of the sile o	and and and and and and and and				
22,3	<b>-</b>	, <del>-</del> ,.	· -	-		94,0	·. <u>-</u>	
30,0	_	۹ ــ	-	87,5		· -	-	
37,0	·	81,0		, . <del>-</del>	· -	·	-	
47,3 Шпинель MgAl ₂ O ₄	- 30,0	- -	25,0	<u>.</u> 2	21,0	) -	10,0	
Спеченный форстерит Мg ₂ SiO ₄	51,0		62,5		73,0	) · -	este .	
Оливин (дунит)	ethna. II	-	-			_	80,0	

## Таблица 2

Минералы (название и химическая фор-	%% примеров выполнения (%% образцов)						
мула), мас.% доли	Предла	Известный состав					
	1,2	3,4	5,6				
Форстерит Mg ₂ SiO ₄	51,0	62,5	73,0	90,0			
Шпинель MgAl ₂ O ₄	30,0	25,0	21,0	10,0			
Периклаз MgO	15,0	10,0	5,0				
Монтичеллит CaMgSiO ₄	4,0	2,5	1,0	-			

ристость, %

MKM

Средний размер канальных пор,

Огнеупорность, °С

18,8 18,5 18,2

10-12 8-10 30-32

1750 1740

1750 >

	,		12661:	22	. 8		інца 3
Свойства	№№ прим	еров выпо	олнения (М		в)		
	Предл	агаемый с	огнеупор				Известный
	1	2	3	4	5	6	состав
Уменьшение объема образтиа после истинатания в шелочно-силикатном расплаве, состава, %					,	<u></u>	
<b>A</b>	2,9	2,1	4,8	4,6	5,3	4,9	7,8
В	3,5	3,2	5,1	5,0	5,6	5,4	9,3
В	3,8	3,3	5,8	5,3	5,9	5,5	10,4
Газопроница- емость, мкм ²	0,61	0,57	0,54	0,51	0,43	0,39	1,60
Открытая по-							

12-15 10-13

1740

16,5 16,1 18,3 17,8

1740

10-14 9-12

1730 > 1730

Редактор М. Панф		Составитель Л.Булгако	ова
	иловская	Техред М.Моргентал	Корректор И.Муска
Заказ 5912	по дел	Тираж 588 осударственного комитета ам изобретений и открыти Москва, Ж-35, Раушская и	<b>і</b> й

Производственно-полиграфическое предприятие, г.Ужгород, ул.Проектная, 4

**DERWENT-ACC-NO:** 1988-166362

**DERWENT-WEEK:** 199024

COPYRIGHT 2008 DERWENT INFORMATION LTD

**TITLE:** Magnesium silicate refractory contains forsterite,

alumino-magnesium spinel, and additional periclase and

monticellite, to improve properties

**INVENTOR:** PEREPELITS V A; SAVCHENKO Y U I; STEPANOVA I A

PATENT-ASSIGNEE: SAVCENKO J[SAVCI], VOST RES ASSOC

[VOSTR], WEST REFRACTORIES[WREFR]

**PRIORITY-DATA:** 1985SU-3857002 (January 4, 1985)

#### **PATENT-FAMILY:**

PUB-NO PUB-DATE LANGUAGE

SU 1266122 A November 30, 1987 RU

CS 8609619 A September 12, 1989 CS

DD 274746 A January 3, 1990 DE

#### **APPLICATION-DATA:**

PUB-NO APPL-DESCRIPTOR APPL-NO APPL-DATE

SU 1266122A N/A 1985SU-3857002 January 4,

1985

#### **INT-CL-CURRENT:**

TYPE IPC DATE

CIPS C04B35/20 20060101

ABSTRACTED-PUB-NO: SU 1266122 A

#### **BASIC-ABSTRACT:**

Addn. of periclase (I) and monticellite (II) to the mixt. for the prepn. of magnesial silicate refractory improves its properties. The mixt. contains (in wt.%): forsterite 51-73, aluminomagnesial spinel 21-30, (I) 5-15 and (II) 1-4 and is fired for 4 hours at 1600 deg.

The material is used for furnace linings.

ADVANTAGE - Increased resistance to alkaline silicate melts and lower gas permeability.

Bul.44/30.11.87

TITLE-TERMS: MAGNESIUM SILICATE REFRACTORY CONTAIN

FORSTERITE ALUMINO SPINEL ADD PERICLASE

MONTICELLITE IMPROVE PROPERTIES

**DERWENT-CLASS:** J09 L02

**CPI-CODES:** J09-B01; L02-E05;

**SECONDARY-ACC-NO:** 

**CPI Secondary Accession Numbers:** 1988-074438