Save Your Words

Mikhail Tokarev Nuttaree Busarapongpanich Rashmi Jadhav Yu-Wen Chen

The Objective

- Paraphrase sentences and make them longer
 - Preserve the original semantics
- Fun experiment to expand sentences
 - detailed and more text is useful for understanding a topic thoroughly

The original writing

The elaborated writing

Who cares?

- Non-natives
 - Can use this as a lesson to improve their writing skills
 - Usually, a writing aims to be concise, however, when you want to explain something, you have to write more and more
- Students
 - Who want to get the good grade for their writing
- Researchers:
 - Who want to cite other research to their paper without plagiarism problem
- Journalist/writer
 - They usually need to write a lot to fill the empty spaces daily
 - So do people like to consume such content

Current Work in the field

Transformer and seq2seq model for Paraphrase Generation

Elozino Egonmwan a

University of L Lethbridge, AB

{elozino.egonmwan, ylli

https://www.aclweb.org/anthology/D19-5627.pdf

Neural Paraphrase Generation with Stacked Residual LSTM Networks

Aaditya Prakash^{1,2}, Sadid A. Hasan², Kathy Lee², Vivek Datla²,

Ashequl Q

¹Brandei

²Artificial Intelligence Laboratory {aprakash, aaditya.

{sadid.hasan,kat {ashegul.gadir,jo

https://arxiv.org/pdf/1610.03098.pdf

Paraphrase Generation with Latent Bag of Words

Yao Fu

Department of Computer Science Columbia University yao.fu@columbia.edu

Yansong Feng

Institute of Computer Science and Technology Peking University fengyansong@pku.edu.cn

John P. Cunningham

Department of Statistics Columbia University jpc2181@columbia.edu

https://arxiv.org/pdf/2001.01941v1.pdf

What is new in our idea?

- Opposite to text summarization, we are expanding the text
- On top of paraphrasing which tries to rewrite sentences, we are focused on generating longer text
- Fairly different than current paraphrasing models
- Modifications in the beam search algorithm to be biased towards longer sentences

Dataset: Language-Net¹

- A collection of sentence level paraphrases from Twitter
- The largest human-labeled paraphrase corpus to date of 51,524 sentence pairs

Sentence 1	Sentence 2	labeled
Samsung halts production of its Galaxy Note 7 as battery problems linger.	Samsung temporarily suspended production of its Galaxy Note7 devices following reports.	True
The 7 biggest changes Obamacare made, and those that may disappear.	What a repeal of Obamacare would look like , in plain English.	False

Encoder-Decoder LSTM

Encoder-Decoder LSTM

Little change for Beam Search

Project Risks

- Output sentence being:
 - Not paraphrased: adds excess details to the sentence or changes barely anything
 - Alters the sentence meaning even if it is longer than input
 - Not longer than the input: paraphrased but not longer
- When we force the sentence to be longer (ignoring EOS in beam search if sentences don't reach the expected length), it might also break grammar/ sentence structure.
- Too narrow/wide beam search can impact the quality of the sentences
- Ethical risk: model may be used for unethical purposes

Project Success

- Generate output sentences for test inputs
- Ask reviewers (this could be us, our friends, and family) to label the instances
 - Label 0: The generated sentence is NOT meaningful/paraphrased/longer
 - Label 1: The generated sentence conforms to project objective of generating a longer sentence whilst preserving its meaning
- Collect N reviewer's labels and pick the majority label

$$label_{out} = \begin{cases} 1, & \frac{\sum_{reviewer=1}^{N} (label_{reviewer} == 1)}{N} > 0.5 \\ 0, & Otherwise \end{cases}$$

- We'd like to achieve an accuracy (get more 1s than 0s) more than 70%

Project timeline

Week 7 - Week 8

- Build the model with dataset
- Evaluate the generated sentences

Week 9

- Experiment different models for encoder and decoder
- Modify the beam search further

Week 10

- Get reviewer labels on generated sentences
- Analyze model accuracies

Thanks!

=> We'd like to express our sincere gratitude to you for staying patient in listening to us today!

