

IoT Fundamentals – ECE3501

Allen Ben Philipose – 18BIS0043

Digital Assignment - 2

To: Prof. Suresh Chavhan

Digital Assignment - II ECE3501

TASK - II

Aim

To design a circuit using Arduino for detecting distance between the system and an object using an ultrasonic sensor and plot it with respect to time

Tools Required

Tinkercad – for simulating the connection and coding of the Arduino circuit

ThingSpeak – for plotting the graph

Circuit Diagram

Flow diagram

Output from Tinkercad

Code

```
int Distance = 0;
long readUltrasonicDistance(int triggerPin, int
echoPin)
{
  pinMode(triggerPin, OUTPUT); // Clear the
trigger
  digitalWrite(triggerPin, LOW);
  delayMicroseconds(2);
// Sets the trigger pin to HIGH state for 10
microseconds
  digitalWrite(triggerPin, HIGH);
  delayMicroseconds(10);
  digitalWrite(triggerPin, LOW);
  pinMode(echoPin, INPUT);
// Reads the echo pin, and returns the sound
wave travel time in microseconds
  return pulseIn(echoPin, HIGH);
}
```

```
void setup()
{
  pinMode(13, OUTPUT);
  pinMode(12, OUTPUT);
  pinMode(11, OUTPUT);
  Serial.begin(9600);
}
void loop()
{
  Distance = 0.01723 * readUltrasonicDistance(3,
2);
if (Distance >= 250) {
    digitalWrite(13, LOW);
    digitalWrite(12, LOW);
    digitalWrite(11, LOW);
  }
  if (Distance < 250 && Distance >= 150) {
    digitalWrite(13, LOW);
```

```
digitalWrite(12, LOW);
    digitalWrite(11, HIGH);
  }
  if (Distance < 150 && Distance >= 50) {
    digitalWrite(13, LOW);
    digitalWrite(12, HIGH);
    digitalWrite(11, LOW);
  }
  if (Distance < 50) {
    digitalWrite(13, HIGH);
    digitalWrite(12, LOW);
    digitalWrite(11, LOW);
  }
  Serial.println(Distance);
  delay(10); // Delay a little bit to improve
simulation performance
}
```

Observations

datetime	field1	latitude 💌	longitude 💌	elevation 🔻 status 🔻
26-07-2020 12:03:30 UT	14	-89	155.6	22 Awake
26-07-2020 12:03:31 UT	25	0.5	-170	23 Awake
26-07-2020 12:03:32 UT	34	90	0	24 Awake
26-07-2020 12:03:33 UT	59	70	10	25 Awake
26-07-2020 12:03:34 UT	101	80	20	26 Awake
26-07-2020 12:03:35 UT	129	40	30	27 Awake
26-07-2020 12:03:36 UT	144	50	40	28 Awake
26-07-2020 12:03:37 UT	165	60	50	29 Awake
26-07-2020 12:03:38 UT	183	20	60	30 Awake
26-07-2020 12:03:39 UT	213	30	70	31 Awake
26-07-2020 12:03:40 UT	257	10	80	32 Awake
26-07-2020 12:03:41 UT	292	30	90	33 Awake
26-07-2020 12:03:42 UT	318	50	100	34 Awake
26-07-2020 12:03:43 UT	324	60	110	35 Awake
26-07-2020 12:03:44 UT	336	70	120	36 Awake

^{*}Only field1 contains observed values, other values are random and do not affect the graph

Output from Excel

Output from ThingSpeak

Conclusion

Therefore, by using Tinkercad, we simulated a circuit for measuring the distance between the object and the system, and by recording the output in a csv file, we can plot it using ThingSpeak.