Version 2 August 20, 2024

Slide 6 updated for static temperature of 271 K (487.8 R)

DPW-8 & AePW-4

Static Deformation Working Group

August 16, 2024

dpwaiaa@gmail.com
(working group specific email TBD

Administrative Information

- Meeting schedule
 - Third Friday of the month; 10:00 Eastern Time (will adjust with US Daylight Saving Time)
- For questions about the working group, please email dpwaiaa@gmail.com
- Websites
 - Static Deformation Working Group website https://aiaa-dpw.larc.nasa.gov
 - Geometry/Grid websites
 https://aiaa-dpw.larc.nasa.gov/geometry.html
 - https://aiaa-dpw.larc.nasa.gov/grids.html
 - Postprocessing website (including ONERA OAT15A experimental results)
 - https://aiaa-dpw.larc.nasa.gov/postprocessing.html
 - Large File Upload
 - https://nasagov.app.box.com/f/fd164563283b4e85857d1a0975b0b363

Geometry and Grids

Geometry

- https://aiaa-dpw.larc.nasa.gov/geometry.html
- High-quality CAD is being created or already exists, much from DPW-7
- Available for download from the DPW website and JAXA website (link coming)

Common grids are being generated

- Strongly encourage use of committee-supplied grids
- Cadence/Pointwise, Helden Aerospace, NASA Ames (and you???)
- User's best practices for solvers may require alternate grids
- Submission to the workshop strongly desires any custom grids to be provided for posting on the website

RANS Committee-Supplied Grids Status

- The ONERA OAT15A RANS committee-supplied grids are complete
 - These are intended to be RANS grids
 - Grids are all one cell wide
 - New grids will be necessary for alternate schemes (not committee supplied)
- Participants are strongly encouraged, but not required to use these supplied grids for RANS simulations
- RANS gridding guidelines have been posted to the grids website (v3, July 1)
 - https://aiaa-dpw.larc.nasa.gov/grids.html
- · A link to the server hosting the grids is available on the grids website

RANS Committee-Supplied Grids Status

- Grid partner updates (more details available in links below)
 - Helden Aerospace (HeldenMesh)
 - ONERA OATI5A Grids:

https://dpw.larc.nasa.gov/DPW8/Cadence_Grids.REV00/Cadence-ONERA-OAT15A 230mmChord 780mmSpan upZ 2024 06 25-Unstructured-README.pdf

- Cadence (Pointwise)
 - ONERA OAT15A Grids:

https://dpw.larc.nasa.gov/DPW8/Helden_Grids.REV00/Helden_Grids.REV00.0701202 4-README.pdf

- NASA Ames (Chimera Grid Tools), in work

Test Case 1a: Workshop-Wide Validation

- Validation of steady CFD analysis, required
- Users are encouraged to employ best practices

Settings

- Steady CFD (e.g., RANS)
- Prefer some version of SA, multiple turbulence models can be submitted
- Purely 2D simulations (one cell wide)

Grids

- Six-member RANS grid family; four are required, six are desirable
- Encourage use of committee-supplied grids; user-generated grids are acceptable
- Committee-supplied grid is one cell wide with a 230mm chord (same as experiment) and follows RANS best practices

Conditions

- Mach 0.73, Re_c =3m (based on chord length), T_{static} = 271 K (487.8 R)
- Alpha: 1.36, 1.50, 2.50, 3.00, 3.10

Jaquin, et al. "Experimental Study of Shock Oscillation over a Transonic Supercritical Profiles." AIAA Journal, Vol. 47, No. 9, 2009. Pages 1985-1994.

Updates

- Steve Massey (NASA Langley)
- Ben Rider (Boeing)

Data Submission for ONERA OAT15A (In Work)

- Please follow these instructions:
 - https://aiaa-dpw.larc.nasa.gov/postprocessing.html
- Case 1a
 - Required data
 - F&M: https://aiaa-dpw.larc.nasa.gov/Forms/DPW8-AePW4 ForceMoment v2.dat
 - CP CUts: https://aiaa-dpw.larc.nasa.gov/Forms/DPW8-AePW4_SectionalCuts_v2.dat
 - Optional data set supplement
 - Boundary layer profile data (DPW8-AePW4_BoundaryLayerAveraged_v1.dat)
- Data submission method options are still being developed

Additional Conversation Topics

- Potential questions to address for ONERA OAT15A validation
 - Effect of wake resolution and extent of increased resolution?
 - Dependence upon farfield bounding box?
 - Relationship between anisotropic and isotropic grid cells?
 - And others?

Test Case 1b: FEM Validation

Validation of Structural Model for NASA CRM

- Tap Test planned for comparison to normal mode solutions of FEM models
- Static Loads Tests will be conducted to compare deflection measurements (and maybe twist) to Linear Static FEM solutions

Users are encouraged to employ best practices for selected FEM codes

Settings

- Linear Eigenvalue Analysis (e.g. NASTRAN® SOL103)

Conditions

Rigid suspension at sting

Grid

- MSC NASTRAN® solid 4-node tetrahedral finite-element structural model
- Model consists of 6.8 · 106 elements, 4.1 · 106 degrees-of-freedom
- Supplied by NASA Langley's Configuration Aerodynamics Branch
- Wind tunnel sting will be added as beam model

Test Case 2a: Wing/Body Deformation

CFD/FEM start from unloaded (wind-off) geometry/grid

CRM Wing/Body

Reynolds numbers: 5M (LoQ) [Available: 5M(LoQ),20M(LoQ),20M(HiQ),30M(HiQ)]

- Mach Number: 0.85 [Available: 0.70, 0.85, 0.87]

Angle of Attack: 3.00 deg [Available: -3.0 – 12.0 deg]

Committee-supplied

- NASA CRM geometry in jig/unloaded condition
 - Trip location, if tested (optional to use)
- MSC NASTRAN® finite-element model of the NASA CRM
- Grid Family (L1:<u>Tiny/L2:Coarse/L3:Medium/L4:Fine/L5:eXtra-fine/L6:Ultra-fine)</u>

Comparison metrics

- Forces / Moments
- Sectional Twist / Deformation
- Sectional C_P distribution

Test Case 2b: Wing/Body Deformation (polar) @AIAA

- CFD/FEM start from unloaded (wind-off) geometry/grid
- CRM Wing/Body
 - Available Reynolds numbers: 5M (LoQ), 20M (LoQ), 20M (HiQ), 30M (HiQ)
 - Range of Mach numbers: 0.70, 0.85, 0.87 (Mcruise = 0.85)
 - Range of Angles of attack: -3.0 12.0 deg (AOAcruise ~ 2.75-3.00 deg)

Committee-supplied

- NASA CRM geometry in jig/unloaded condition
 - Trip location, if tested (optional to use)
- MSC NASTRAN® finite-element model of the NASA CRM
- Grid Family (L1:<u>Tiny/L2:Coarse/L3:Medium/L4:Fine/L5:eXtra-fine/L6:Ultra-fine)</u>

Comparison metrics

- Forces / Moments
- Sectional Twist / Deformation
- Sectional C_P distribution

Test Case 3: Wing/Body/Nacelle/Pylon

- CFD/FEM start from unloaded (wind-off) geometry/grid
- CRM Wing/Body/Nacelle /Pylon
 - Available Reynolds numbers: 5M (LoQ)
 - Range of Mach numbers: 0.70, 0.85, 0.87 (Mcruise = 0.85)
 - Range of Angles of attack: -3.0 12.0 deg (AOAcruise ~ 2.75-3.00 deg)

Committee-supplied

- NASA CRM geometry in jig/unloaded condition
 - Trip location, if tested (optional to use)
- MSC NASTRAN® finite-element model of the NASA CRM
- Grid Family (L1:<u>Tiny/L2:Coarse/L3:Medium/L4:Fine/L5:eXtra-fine/L6:Ultra-fine)</u>

Comparison metrics

- Forces / Moments
- Sectional Twist / Deformation
- Sectional C_P distribution

Nominal Schedule

- June, 2024
 - First Working Group Meeting
 - ONERA OAT15A geometry release
- July, 2024
 - ONERA OAT15A grids released ✓
 - AVIATION in-person meeting ✓
- · September, 2024
 - First look of Test Case 2/3 grids
- Fall/Winter, 2024
 - FEM Validation Data released
- Winter, 2024 (?)
 - Mini Workshop 1

- January, 2025
 - SciTech in-person meeting
- July, 2025
 - AVIATION in-person meeting
- Summer/Fall, 2025 (?)
 - Mini Workshop 2
- January, 2026
 - SciTech in-person meeting
- February, 2026
 - Delivery of final data set (perhaps alternate submissions prior to this date)
- June, 2026
 - Workshop in San Diego, CA

Working Group Meeting Cadence

- Currently set up for 10:00 Eastern time on third Friday of each month
 - A suitable meeting time is very difficult for global participants
 - Recurring meeting invite sent
- Next meeting: Friday, September 20th
 - Individuals or teams are welcome to present preliminary analysis for test case 1a (ONERA OAT15A Airfoil)
 - Please contact <u>ben.j.rider2@boeing.com</u> if you are interested to present grids or solutions

dpwaiaa@gmail.com

Static Deformation Working Group Leadership

- Stefan Keye, DLR
- Garrett McHugh, NASA Langley
- Ben Rider, The Boeing Company