Singular Value Decomposition Notes on Linear Algebra

Chia-Ping Chen

Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC

Introduction

- The singular value decomposition, SVD, is just as amazing as the LU and QR decompositions.
- It is closely related to the diagonal form $A = Q\Lambda Q^T$ of a symmetric matrix. What happens if the matrix is not symmetric?
- It turns out that we can factorize A by $Q_1\Sigma Q_2^T$, where Q_1,Q_2 are orthogonal and Σ is nonnegative and diagonal-like. The diagonal entries of Σ are called the singular values.

SVD Theorem

Any $m \times n$ real matrix A can be factored into

$$A = Q_1 \Sigma Q_2^T = (orthogonal)(diagonal)(orthogonal).$$

The matrices are constructed as follows: The columns of Q_1 $(m \times m)$ are the eigenvectors of AA^T , and the columns of Q_2 $(n \times n)$ are the eigenvectors of A^TA . The r singular values on the diagonal of Σ $(m \times n)$ are the square roots of the nonzero eigenvalues of both AA^T and A^TA .

Proof of SVD Theorem

The matrix A^TA is real symmetric so it has a complete set of orthonormal eigenvectors: $A^TAx_j = \lambda_j x_j$, and

$$x_i^T A^T A x_j = \lambda_j x_i^T x_j = \lambda_j \delta_{ij}.$$

For positive λ_j 's (say $j=1,\ldots,r$), we define $\sigma_j=\sqrt{\lambda_j}$ and $q_j=\frac{Ax_j}{\sigma_j}$. Then $q_i^Tq_j=\delta_{ij}$. Extend the q_i 's to a basis for R^m . Put x's in Q_2 and q's in Q_1 , then

$$(Q_1^T A Q_2)_{ij} = q_i^T A x_j = \begin{cases} 0 & \text{if } j > r, \\ \sigma_j q_i^T q_j = \sigma_j \delta_{ij} & \text{if } j \leq r. \end{cases}$$

That is,
$$Q_1^T A Q_2 = \Sigma$$
. So $A = Q_1 \Sigma Q_2^T$.

Remarks

- For positive definite matrices, SVD is identical to $Q\Lambda Q^T$. For indefinite matrices, any negative eigenvalues in Λ become positive in Σ .
- The columns of Q_1, Q_2 give orthonormal bases for the fundamental subspaces of A. (Recall that the nullspace of A^TA is the same as A).
- $AQ_2 = Q_1\Sigma$, meaning that A multiplied by a column of Q_2 produces a multiple of column of Q_1 .
- $AA^T = Q_1\Sigma\Sigma^TQ_1^T$ and $A^TA = Q_2\Sigma^T\Sigma Q_2^T$, which mean that Q_1 must be the eigenvector matrix of AA^T and Q_2 must be the eigenvector matrix of A^TA .

Applications of SVD

Through SVD, we can expand a matrix to be a sum of rank-one matrices

$$A = Q_1 \Sigma Q_2^T = u_1 \sigma_1 v_1^T + \dots + u_r \sigma_r v_r^T.$$

- Suppose we have a 1000×1000 matrix, for a total of 10^6 entries. Suppose we use the above expansion and keep only the 50 most most significant terms. This would require 50(1 + 1000 + 1000) numbers, a save of space of almost 90%.
- This is used in image processing and information retrieval (e.g. Google).

SVD for Image

A picture is a matrix of gray levels. This matrix can be approximated by a small number of terms in SVD.

Pseudoinverse

Suppose $A = Q_1 \Sigma Q_2^T$ is the SVD of an $m \times n$ matrix A. The pseudoinverse of A is defined by

$$A^+ = Q_2 \Sigma^+ Q_1^T,$$

where Σ^+ is $n \times m$ with diagonals $\frac{1}{\sigma_1}, \ldots, \frac{1}{\sigma_r}$.

- The pseudoinverse of A^+ is A, or $A^{++} = A$.
- The minimum-length least-square solution to Ax = b is $x^+ = A^+b$. This is a generalization of the least-square problem when the columns of A are not required to be independent.

Proof of Minimum Length

Multiplication by Q_1^T leaves the length unchanged, so

$$|Ax-b| = |Q_1\Sigma Q_2^Tx-b| = |\Sigma Q_2^Tx-Q_1^Tb| = |\Sigma y-Q_1^Tb|,$$

where $y = Q_2^T x = Q_2^{-1} x$. Since Σ is a diagonal matrix, we know the minimum-length least-square solution is $y^+ = \Sigma^+ Q_1^T b$. Since |y| = |x|, the minimum-length least-square solution for x is

$$x^{+} = Q_{2}y^{+} = Q_{2}\Sigma Q_{1}^{T}b = A^{+}b.$$