

Bachelor thesis

Angular Measurement by Magnetic Sensor Arrays and Tolerance Compensation by Gaussian Process

Fakultät Technik und Informatik
Department Informations- und Elektrotechnik

Faculty of Computer Science and Engineering Department of Information and Electrical Engineering

Overview

- Application
- Characteristics
- Data Adaption
- Gaussian Processes

Overview

- Application
- Characteristics
- Data Adaption
- Gaussian Processes

- Software Development
- Simulation Sensor Array
- Simulation Gaussian Processes
- Testing Experiments
- Summary

Contactless angle measurement

- Contactless angle measurement
- Angle encoded by magnetic field

- Contactless angle measurement
- Angle encoded by magnetic field
- Field strength measurement in X-/ Ydirection

• TMR Sensor

- TMR Sensor
- Wheatstone Bridge

- TMR Sensor
- Wheatstone Bridge
- 90° rotated to each other
- 360° periodicity

100

-100

-150

Characterization

Arrays as long vectors

- Arrays as long vectors
- Frobenius-Norm

Learning by training data

- Learning by training data
- Adjust by test data
- Optimize by model parameter

- Learning by training data
- Adjust by test data
- Optimize by model parameter
- Prediction by regression weights

- Learning by training data
- Adjust by test data
- Optimize by model parameter
- Prediction by regression weights

Covariance function (Kernel) drives the model behavior!

 $d_{X}^{2}\langle \mathbf{A}, \mathbf{B} \rangle$

Fractional Kernel

Fractional Kernel

$$rac{\sigma_f^2}{1+rac{d_{_{\!X}}^2\langle\mathbf{A},\mathbf{B}
angle}{2\sigma_I^2}}$$

Control of influence

- Control of influence
- Data fit by model likelihoods

- Control of influence
- Data fit by model likelihoods
- Model generalization by losses

Analyze Data

Gaussian Process Regression

Pred. Angle

Mathematical Simulation

Physical Simulation

Modul driven

- Modul driven
- Reusability
- Expandability

- Modul driven
- Reusability
- Expandability
- Integration
- Documentation

Configuration of sizes,
 position, shape and
 voltage supply

- Configuration of sizes, position, shape and voltage supply
- Determine start and rest position of the system

Imprinting configuration at 1 mm and 200 kA/m

- Imprinting configuration at 1 mm and 200 kA/m
- Minimal distance at4 mm and 25 kA/m

- Imprinting configuration at 1 mm and 200 kA/m
- Minimal distance at4 mm and 25 kA/m
- Linear area at7 mm and 7,4 kA/m

Legende

 Load und initiate simulation parameters

Prozessstart Datensatz, Datenstruktur Prozessende Prozessschritt Alle Positionen 1 Schreibt in Data-Container **Alle Winkel 2 Schreibt in Info-Container

- Load und initiate simulation parameters
- Execute in nested for loops

Legende

- Load und initiate simulation parameters
- Execute in nested for loops
- Save data containers

Input – simulation angle

- Input simulation angle
- Mesh grid calculation at each Sensor Pixel

Simulation – Sensor Array

- Input simulation angle
- Mesh grid calculation at each Sensor Pixel
- Mapping Take reference voltages

Configuration

- Configuration
 - Kernel Modul
 - Mean computation

MSLL – Mean Standardized Logarithmic Loss

- Configuration
 - Kernel Modul
 - Mean computation
 - Loss computation

MSLL – Mean Standardized Logarithmic Loss

- Configuration
 - Kernel Modul
 - Mean computation
 - Loss computation
 - Number of runs

MSLL – Mean Standardized Logarithmic Loss

- Configuration
 - Kernel Modul
 - Mean computation
 - Loss computation
 - Number of runs
 - Parameter bounds

MSLL – Mean Standardized Logarithmic Loss

Training mode

GPR – Gaussian Processes for Regression
 MSLL – Mean Standardized Logarithmic Loss
 MSLLA – Mean Standardized Logarithmic Loss Angle
 MSLLR – Mean Standardized Logarithmic Loss Radius

- Training mode
 - Load and initiate

GPR – Gaussian Processes for Regression

MSLL – Mean Standardized Logarithmic Loss

MSLLA – Mean Standardized Logarithmic Loss Angle

MSLLR – Mean Standardized Logarithmic Loss Radius

- Training mode
 - Load and initiate
 - Generalization with embedded scaling

GPR – Gaussian Processes for Regression

MSLL – Mean Standardized Logarithmic Loss

MSLLA – Mean Standardized Logarithmic Loss Angle

MSLLR – Mean Standardized Logarithmic Loss Radius

- Training mode
 - Load and initiate
 - Generalization with embedded scaling
 - Final scaling and valuing

GPR – Gaussian Processes for Regression

MSLL – Mean Standardized Logarithmic Loss

MSLLA – Mean Standardized Logarithmic Loss Angle

MSLLR – Mean Standardized Logarithmic Loss Radius

Sequential initialization

- Sequential initialization
 - Struct based model

- Sequential initialization
 - Struct based model
 - Framework configuration

- Sequential initialization
 - Struct based model
 - Framework configuration
 - Build up references

- Sequential initialization
 - Struct based model
 - Framework configuration
 - Build up references
 - Load functionality

- Sequential initialization
 - Struct based model
 - Framework configuration
 - Build up references
 - Load functionality
 - Parametrize model

Start Config Load GPR Model Init Kernel Init Config Init Train DS Init Kernel Return **Parameters** Set Kernel Compute Compute Target Sinoids Function K-Matrix Set Input Add Noise Function to K-Matrix Adjust Decompose Training Data K-Matrix Set Basis Compute Beta Coeff. Function Set Mean Function Compute Weights Compute Likelihoods

Generalization

- Generalization
 - Set Noise Variance

- Generalization
 - Set Noise Variance
 - Kernel scaling

- Generalization
 - Set Noise Variance
 - Kernel scaling
 - Loss computation

- Generalization
 - Set Noise Variance
 - Kernel scaling
 - Loss computation
 - Save intermediate results

Kernel Scaling

- Kernel Scaling
 - Set kernel parameter

- Kernel Scaling
 - Set kernel parameter
 - Partial reinitialization

- Kernel Scaling
 - Set kernel parameter
 - Partial reinitialization
 - Likelihood computation

Working mode

- Working mode
 - Switch model direction from fitting to prediction

- Working mode
 - Switch model direction from fitting to prediction
 - Minimized parameter set and functional driver for prediction

- Working mode
 - Switch model direction from fitting to prediction
 - Minimized parameter set and functional driver for prediction
 - Framewise or block wise prediction

- Working mode
 - Switch model direction from fitting to prediction
 - Minimized parameter set and functional driver for prediction
 - Framewise or block wise prediction
 - Results, derivates and quality measures return as vectors

Scaling of covariance function

SLLA – Standardized Logarithmic Loss Angle

SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

- Scaling of covariance function
 - Empirical without optimization

SLLA – Standardized Logarithmic Loss Angle

SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

- Scaling of covariance function
 - Empirical without optimization
 - Value the generalization

Disabled

SLLA – Standardized Logarithmic Loss Angle

SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

- Scaling of covariance function
 - Empirical without optimization
 - Value the generalization

Disabled

SLLA – Standardized Logarithmic Loss Angle

SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

- Scaling of covariance function
 - Empirical without optimization
 - Value the generalization

Overfitting

SLLA – Standardized Logarithmic Loss Angle

SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

- Scaling of covariance function
 - Empirical without optimization
 - Value the generalization

Improved

SLLA – Standardized Logarithmic Loss Angle

SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

- Scaling of covariance function
 - Empirical without optimization
 - Value the generalization

Improved

SLLA – Standardized Logarithmic Loss Angle

SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

- Scaling of covariance function
 - Empirical without optimization
 - Value the generalization

Optimizable

SLLA – Standardized Logarithmic Loss Angle

SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

- Scaling of covariance function
 - Empirical without optimization
 - Value the generalization

Optimizable

SLLA – Standardized Logarithmic Loss Angle

SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

• Trade-off

MSLL – Mean-Standardized-Logarithmic-Loss

- Trade-off
 - Switch on optimization

MSLL – Mean-Standardized-Logarithmic-Loss

- Trade-off
 - Switch on optimization
 - Resources
 - Effort

MSLL – Mean-Standardized-Logarithmic-Loss

- Trade-off
 - Switch on optimization
 - Resources
 - Effort

MSLL – Mean-Standardized-Logarithmic-Loss

- Trade-off
 - Switch on optimization
 - Resources
 - Effort
 - Balancing error and loss

MSLL – Mean-Standardized-Logarithmic-Loss

17 Reference angles

- Trade-off
 - Switch on optimization
 - Resources
 - Effort
 - Balancing error and loss

MSLL - Mean-Standardized-Logarithmic-Loss

- Drifted in X-/ Y-direction
- Small distance
- Tilt magnet

- Drifted in X-/ Y-direction
- Small distance
- Tilt magnet

- Drifted in X-/ Y-direction
- Small distance
- Tilt magnet
- Balancing references

- Drifted in X-/ Y-direction
- Small distance
- Tilt magnet
- Balancing references
- Scaling ration nearby 1:10

Good preconditions

Magnet at array edge

Position: $(0.5, 1.0, 4.5)^T$ mm, Tilt: 11.0°

Saturation + Dispersion

Magnet at array edge

Misaligned angles

edge

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Saturation + Dispersion

Tobias Wulf - tobias.wulf@haw-hamburg.de

Position: $(0.5, 1.0, 4.5)^T$ mm, Tilt: 11.0°

Rotation along Z-Axis in $^{\circ}$

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

 $\sigma_f = 2.05, \ \sigma_l = 20.16, \ \sigma_n^2 = 3.00e - 07, \ N = 17$

Simple mean is drifted

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

- Simple mean is drifted
- Regression balanced out

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Very small angle errors over full rotation

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Very small angle errors over full rotation

Small variation

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Small lift, leak of coverage

Very small angle errors over full rotation

Small variation

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Small lift, leak of coverage

High trust, tight intervals

CIA – Confidence Interval Angle CIR – Confidence Interval Radius

Position: $(0.5, 1.0, 4.5)^T$ mm, Tilt: 11.0°

Small lift, leak of coverage

Showing the leakage

High trust, tight intervals

CIA – Confidence Interval Angle CIR – Confidence Interval Radius

Position: $(0.5, 1.0, 4.5)^T$ mm, Tilt: 11.0°

 $\sigma_f = 2.05, \ \sigma_l = 20.16, \ \sigma_n^2 = 3.00e - 07, \ N = 17$

Small lift, leak of coverage

SLLA – Standardized Logarithmic Loss Angle

SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

Position: (0.5, 1.0, 4.5)^T mm, Tilt: 11.0°

Small lift, leak of coverage

Strong generalization

SLLA – Standardized Logarithmic Loss Angle SLLR – Standardized Logarithmic Loss Radius MSLLA – Mean Standardized Logarithmic Loss Angle MSLLR – Mean Standardized Logarithmic Loss Radius

Position: $(0.5, 1.0, 4.5)^T$ mm, Tilt: 11.0°

Small lift, leak of coverage

Leakage weakened the generalization

Strong generalization

SLLA – Standardized Logarithmic Loss Angle SLLR – Standardized Logarithmic Loss Radius

MSLLA – Mean Standardized Logarithmic Loss Angle

Achievements

• To do's

- Achievements
 - Simulation Framework
 - Expandability

To do's

- Achievements
 - Simulation Framework
 - Expandability
 - Kernel Scaling
 - Generalization

To do's

- Achievements
 - Simulation Framework
 - Expandability
 - Kernel Scaling
 - Generalization
 - Tolerance compensation

• To do's

- Achievements
 - Simulation Framework
 - Expandability
 - Kernel Scaling
 - Generalization
 - Tolerance compensation

- To do's
 - Process minimization and limitation

- Achievements
 - Simulation Framework
 - Expandability
 - Kernel Scaling
 - Generalization
 - Tolerance compensation

- To do's
 - Process minimization and limitation
 - Hardware libs in C
 - Route to real data

- Achievements
 - Simulation Framework
 - Expandability
 - Kernel Scaling
 - Generalization
 - Tolerance compensation

- To do's
 - Process minimization and limitation
 - Hardware libs in C
 - Route to real data
 - Full characterization

- Achievements
 - Simulation Framework
 - Expandability
 - Kernel Scaling
 - Generalization
 - Tolerance compensation

- To do's
 - Process minimization and limitation
 - Hardware libs in C
 - Route to real data
 - Full characterization
 - Circular Statistics

The End

Thank you for your attention!