

Unità aritmetica e logica

- Esegue le operazioni aritmetiche e logiche
- Ogni altra componente nel calcolatore serve questa unità
- Gestisce gli interi
- Può gestire anche i numeri reali

Rappresentazione degli interi

- Possiamo solo usare 0 e 1 per rappresentare tutto
- I numeri positivi sono scritti in binario come sappiamo
 - □e.g. 41=00101001
- Non c'è bisogno del segno

Rappresentazione in modulo e segno

- Segno: bit più a sinistra
 - □0 significa positivo
 - □ 1 significa negativo
- Esempio:
 - \Box +18 = 00010010
 - \Box -18 = 10010010
- Problemi
 - □ Per eseguire operazioni aritmetiche bisogna considerare sia i moduli che i segni
 - □ Due rappresentazioni per lo 0: +0 and -0

Complemento a due: in generale

- Positivi: da 0 (n zeri) a 2ⁿ⁻¹ -1 (uno zero seguito da n-1 uni)
- Negativi:
 - ☐ Bit più significativo (più a sinistra) a 1
 - $\hfill \square$ I restanti n-1 bit possono assumere $2^{n\text{-}1}$ configurazioni diverse, quindi da -1 a -2^{n\text{-}1}
- Se sequenza di bit a_{n-1} a_{n-2} ... a₁ a₀,

numero =
$$-2^{n-1} a_{n-1} + \sum_{(i=0, ..., n-2)} 2^{i} a_{i}$$

- Numeri positivi: a_{n-1} = 0
- Numeri negativi: positivo 2ⁿ⁻¹
- NOTA BENE: la formula **definisce** il complemento a due

Rappresentazione in complemento a due

- bit più a sinistra → -2ⁿ⁻¹
- Per n bit: possiamo rappresentare tutti i numeri da -2ⁿ⁻¹ a +2ⁿ⁻¹ – 1
- Per i numeri positivi, come per modulo e segno
 - □n zeri rappresentano lo 0, poi 1, 2, ... in binario per rappresentare 1, 2, ... positivi
- Per i numeri negativi, da n uni per il -1, andando indietro

Complemento a due su 3 e 4 bit

Bit pattern	Value represented		
011	3		
010	2		
001	1		
000	0		
111	-1		
110	-2		
101	-3		
100	-4		

Bit pattern	Value represented			
0111 0110 0101 0100 0011 0010 0001 0000 1111 1110 1101 1101 1010	7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6			
1000	-8			

Complemento a due: numeri negativi

- Confrontiamo le rappresentazioni di k e –k
 - da destra a sinistra, uguali fino al primo 1 incluso
 - □ poi una il complemento dell'altra
- Esempio (su 4 bit): 2=0010, -2=1110

Complemento a due: decodifica veloce

- Se bit più a sinistra =0 → positivo, altrimenti negativo
- Se positivo, basta leggere gli altri bit
- Se negativo, scrivere gli stessi bit da destra a sinistra fino al primo 1, poi complementare, e poi leggere
- Es.: 1010 è sicuramente negativo (bit più a sinistra vale -2ⁿ⁻¹), rappresenta 0110 (6), quindi -6

Complemento a due: altro metodo di decodifica veloce

- Data la rappresentazione di k (positivo), -k si può anche ottenere così:
 - □ Complemento bit a bit della rappresentazione di k
 - □ Somma di 1 al risultato
- Esempio:
 - □ 2=0010
 - □ Complemento: 1101
 - □ 1101 +1 = 1110
 - □ -2=1110

Benefici del complemento a 2

- Una sola rappresentazione dello zero
- Le operazioni aritmetiche sono facili
- La negazione è facile
 - $\square 3 = 00000011$
 - □ Complemento Booleano 11111100
 - □ Somma di 1 11111101

Numeri rappresentabili

- Complemento a 2 su 8 bit
 - □ Numero più grande: $+127 = 011111111 = 2^7 -1$
 - □ Numero più piccolo: $-128 = 10000000 = -2^{7}$
- Complemento a 2 su 16 bit
 - \square +32767 = 01111111 11111111 = 2^{15} 1
 - \square -32768 = 10000000 00000000 = -2¹⁵

٧

Esercizi

- Da complemento a 2 a base 10:
 - □00011, 01111, 11100, 11010, 00000, 10000
- Da base 10 a complemento a 2 su 8 bit:
 - \Box 6, -6, 13, -1, 0
- Numero più grande e più piccolo per la notazione in complemento a 2 su 4, 6, 8 bit

Conversione tra diverse lunghezze

- Da una rappresentazione su n bit ad una rappresentazione dello stesso numero su m bit (m > n)
- Modulo e segno: facile
 - □Bit di segno nel bit più a sinistra
 - □m-n zeri aggiunti a sinistra
 - □ Esempio (da 4 a 8 bit): 1001 → 10000001

Conversione tra diverse lunghezze

- Complemento a 2: stessa cosa del modulo e segno per numeri positivi
- Per numeri negativi: replicare il bit più significativo dalla posizione attuale alla nuova
- Esempi:

```
\Box +18 (8 bit) = 00010010
```

□ +18 (16 bit) = 00000000 00010010

□ -18 (8 bit) = 11101110

□ -18 (16 bit) = 11111111 11101110

Opposto su numeri in complemento a 2

- Due passi:
 - □ Complemento
 - □Somma 1

Opposto: caso speciale 1

• 0 = 00000000

■ Complemento: 11111111

■ Somma 1: +1

■ Risultato: 1 00000000

■ L'uno più a sinistra è un overflow, ed è ignorato. Quindi - 0 = 0

Opposto: caso speciale 2

■ -128 = 10000000

■ Complemento: 01111111

■ Somma 1: +1

■ Risultato: 10000000

■ Quindi, -(-128) = -128!

■ 2ⁿ stringhe su n bit, un numero positivo in più di quelli negativi: -2ⁿ si può rappresentare, ma +2ⁿ no → -2ⁿ non può essere complementato

Somma e sottrazione

- Per la somma: normale somma binaria
 - □ Controllare il bit più significativo per l'overflow
- Per la sottrazione: basta avere i circuiti per somma e complemento
 - \square Es. (4 bit): 7-5 = 7 +(-5) = 0111 + 1011 = 0010

Esempi di somme

Problem in base ten		Problem in two's complement		
3 + 2	→	$0011 \\ + 0010 \\ \hline 0101$	\rightarrow	5
-3 <u>+-2</u>	→	1101 + 1110 1011	\rightarrow	- 5
7 <u>+ -5</u>	→	$0111 \\ + 1011 \\ \hline 0010$	\rightarrow	2

Hardware per somma e sottrazione

SW = Switch (select addition or subtraction)

Overflow

- Overflow: quando si sommano due numeri positivi tali che il risultato è maggiore del massimo numero positivo rappresentabile con i bit fissati (lo stesso per somma di due negativi)
- Se la somma dà overflow, il risultato non è corretto
- Come si riconosce? Basta guardare il bit più significativo della risposta: se 0 (1) e i numeri sono entrambi negativi (positivi) → overflow

Esempi di somme su 4 bit

- **■** -4 (1100) + 4 (0100) = 10000 (0)
 - ☐ Riporto ma non overflow
- **-**4 (1100) 1 (1111): 11011 (-5)
 - ☐ Riporto ma non overflow
- -7 (1001) -6 (1010) = 10011 (non è -13, ma 3)
 - □ Overflow
- + 7 (0111) + 7 (0111) = 1110 (non è 14, ma -2)
 - □ Overflow

Moltiplicazione

- Più complessa
- Calcolare il prodotto parziale per ogni cifra
- Sommare i prodotti parziali

Esempio di moltiplicazione

- 1011 Moltiplicando (11 decimale)
- x 1101 Moltiplicatore (13 decimale)
- 1011 Prodotto parziale 1
- 0000 Prodotto parziale 2
- 1011 Prodotto parziale 3
- 1011 Prodotto parziale 4
- 10001111 Prodotto (143 decimale)
- Nota: da due numeri di n bit potremmo generare un numero di 2n bit

Implementazione

- Se Q_0 = 0, traslazione di C, A e Q
- Se Q₀ = 1, somma di A e M in A, overflow in C, poi traslazione di C, A, e Q
- Ripetere per ciascun bit di Q
- Prodotto (2n bit) in A e Q

Un esempio

C 0	A 0000	Q 1101	M 1011	Initia	1	Values
0	1011 0101	1101 1110	1011 1011	Add Shift	}	First Cycle
0	0010	1111	1011	Shift	}	Second Cycle
0	1101 0110	1111 1111	1011 1011	Add Shift	}	Third Cycle
1	0001 1000	1111 1111	1011 1011	Add Shift	}	Fourth Cycle

Moltiplicare numeri in complemento a 2

- Per la somma, i numeri in complemento a 2 possono essere considerati come numeri senza segno
- Esempio:
 - □ 1001 + 0011 = 1100
 - □ Interi senza segno: 9+3=12
 - □ Complemento a 2: -7+3=-4

Moltiplicare numeri in complemento a 2

- Per la moltiplicazione, questo non funziona!
- Esempio: 11 (1011) x 13 (1101)
 - □ Interi senza segno: 143 (10001111)
 - □ Se interpretiamo come complemento a 2: -5 (1011) x -3 (1101) dovrebbe essere 15, invece otteniamo 10001111 (-113)
- Non funziona se almeno uno dei due numeri è negativo

Moltiplicare numeri in complemento a 2

Bisogna usare la rappresentazione in complemento a due per i prodotti parziali:

- (a) Unsigned integers
- (b) Twos complement integers
- Problemi anche se moltiplicatore negativo
- Una possibile soluzione:
 - 1. convertire I fattori negativi in numeri positivi
 - 2. effettuare la moltiplicazione
 - 3. se necessario (-+ o +-), cambiare di segno il risultato
- Soluzione utilizzata: algoritmo di Booth (più veloce)

Divisione

- Più complessa della moltiplicazione
- Basata sugli stessi principi generali
- Utilizza traslazioni, somme e sottrazioni ripetute