Calculus II Test #0 (Calculus I Review)

You have one hour to complete the test. Show your work and clearly label your answers. No scrap paper, calculators, or notes are allowed. To get credit on a problem, you must give a clear, well-written explanation. An answer alone will not suffice.			
		READ, AND PRINT AND SIGN YOUR NAME BEFORE BEGINNING THE TEST. I will neither give nor receive unauthorized assistance on this exam. Printed Name Signature	
			<u> </u>
Problem 1 Solve the differential equation $y' = -6x$ for $y = f(x)$ subject to the initial condition $f(1) = 12$.			
Problem 2 Compute $\frac{d}{dx}((\tan x)^5)$.			

Calculus II Test #0 (Calculus I Review)

Problem 3 Compute $\int \cot(x) dx$.

Problem 4 Calculate the definite integral $\int_0^1 (3x^2 - 6x + 1) dx$.

Calculus II Test #0 (Calculus I Review)

Problem 5 Let $f(x) = x^3 h(x^4)$, and $\int h(x) dx = H(x) + C$. Compute $\int f(x) dx$.

Problem 6 Solve the differential equation y' = -4y for y = f(x) subject to the initial condition f(0) = 14.

Calculus II Test #0 (Calculus I Review)

Problem 7 Assume g(x) is a twice-differentiable and integrable function over all real numbers and

$$f(x) = 7\ln(4x - 2) + 9\sin(g(x)) - \frac{3}{9x + 8}.$$

- a) What is the domain of f?
- b) Compute f'(x).
- c) Let $g(x) = 7\pi x$. Compute $\int_0^2 f'(x)dx$.

Problem 8 Air enters a spherical balloon at the rate of 5 cubic feet per minute $(5\frac{\text{ft}^3}{\text{min}})$. Recalling that the volume of a sphere is $V = \frac{4}{3}\pi r^3$, where r is the radius of the sphere, what is the rate of the radius' growth when the balloon's volume is 16 ft³?

Calculus II Test #0 (Calculus I Review)

Problem 9 Compute

- (a) $\frac{d}{dx}(\log_4(x^5))$
- (b) $\int 7^{2x} dx$.

Problem 10 Considering only that the acceleration due to gravity is $-9.8 \frac{\text{m}}{\text{sec}^2}$ in a vacuum on Earth, how high was an object dropped from rest if it took exactly 4 seconds to reach the surface?