BuK Abgabe 9 | Gruppe 17

Malte Meng (354529), Charel Ernster (318949), Sebastian Witt (354738)

December 21, 2016

1 Aufgabe 9.1

(a). MaxSpanTree

Sei $\{V,E\}$ der Graph G und E^G die Menge der Gewichte von G. n=|E|

Zertifikat:

Z ist das Zertifikat der Form: $E_1\#E_2\#E_3\#...E_j$ E_i Index einer Kante des Spannbaumes mit i \in [1...j], j \le n

Vertifizierer:

Der Vertifizierer verifiziert das Zertifikat in polynomieller Zeit folgendermaßen (l= länge Zertifikat $l\le 2n$):

 \bullet Prüfe ob Zertifikat in der Form " $E_1\#E_2\#E_3\#...\#E_j$ " ist.

O(2n)

• Prüfe ob $\{E_1, ..., E_n\}$ ein Spannbaum von G ist. Prüfe ob alle v aus V verbunden sind.

O(n)

• Prüfe ob $\sum_{i=0}^{j} E_i^G \ge c$

O(n)

Somit kann das Zertifikat in polynomieller Zeit O(4n) verifiziert werden. Es verifiziert, dass es einen Spannbaum mit Gewicht $\geq c$ in G gibt. Das Entscheidungsproblem ist somit in NP.

(b). Composite

Zertifikat:

kist keine Primzahl, somit existiert eine Zerlegung T
 mit $\prod_0^n T_i = k, n \in \mathbb{N}, T_i \in Primzahlen$

Z ist das Zertifikat der Form: $T_1 \# T_2 \# ... \# T_n$.

Verifizierer: Der Vertifizierer verifiziert das Zertifikat in polynomieller Zeit folgendermaßen $(l = \text{länge Zertifikat } l \leq 2n)$:

• Prüfe ob Zertifikat in der Form " $T_1 \# T_2 \# T_3 \# ... \# T_n$ " ist.

O(2n)

• Prüfe ob $\prod_{i=0}^n T_i = k$

(polynomiell lösbar)

Somit kann Z in polynomieller Zeit verifiziert werden. Es verifiziert ob das Zertifikat eine Primzahlzerlegung von der binärkodierten Zahl k ist.

(c). Graphisomorphie

Zertifikat:

Sei δ die Permutation der Indizes der Menge V_1 die so der Abbildung f $V_1 \to V_2$ entspricht, so dass $(v_i, v_j) \in E_1 \implies (f(v_i), f(v_j)) \in E_2$ das Zertifikat Z ist nun diese Permutation in Tupelschreibweise. $\delta = (p_1, p_2, ..., p_n), Z = p_1 \# p_2 \# ... \# p_n$

Verifizierer:

Der Verifizierer Zertifiziert das Zertifikat in polynomieller Zeit folgendermaßen:

• Prüfe ob Zertifikat in der Form " $p_1 \# p_2 \# p_3 \# ... \# p_n$ " ist.

O(2n)

• Prüfe ob

$$\forall (v_i, v_j) \in E_1 \ \exists i' = p_i, j' = p_j, (v_{i'}, v_{j'}) \in E_2$$

O(n)

Somit kann in polynomieller Zeit verifiziert werden ob das Zertifikat stimmt, ob also eine Permutation existiert die die Knoten von G_1 auf G_2 abbildet und Kanten erhalten bleiben. Also prüft es ob die Graphen isomorph sind. \Rightarrow Graphisomorphie \in NP.