Introduction à la robotique

TD N° 2 : Modélisation géométrique directe - Convention DH

Exercice 1: Robot PRR

On considère le robot représenté sur la Figure 1 en configuration quelconque.

FIGURE 1 - Robot PRR

Ce robot est constitué de 4 corps notés S_0 , S_1 , S_2 et S_3 articulés entre eux de la façon suivante :

- La liaison entre les corps S_0 et S_1 est une liaison glissière d'axe horizontal.
- La liaison entre les corps S_1 et S_2 est une liaison pivot d'axe vertical tel que la distance entre l'axe de cette liaison et celui de la liaison précédente est nulle.
- La liaison entre les corps S_2 et S_3 est une liaison pivot d'axe horizontal tel que la distance entre l'axe de cette liaison et celui de la liaison précédente vaut l_2 , constante.

Soient q_1 , q_2 et q_3 les variables articulaires. Les sens positifs des liaisons sont donnés sur la figure.

- 1. Sur la Figure 2 reporter les repères \mathcal{R}_0 , \mathcal{R}_1 , \mathcal{R}_2 et \mathcal{R}_3 , et remplir le tableau des paramètres conformément à la convention Denavit-Hartenberg.
- 2. En déduire le tableau des paramètres Denavit-Hartenberg associés.
- 3. Ecrire les trois transformations homogènes ${}^b\mathbf{T}_0$, ${}^0\mathbf{T}_1$, ${}^1\mathbf{T}_2$ et ${}^2\mathbf{T}_3$, puis en déduire le modèle géométrique direct ${}^b\mathbf{T}_3$.
- 4. Donner le vecteur des paramètres articulaires q pour la configuration de la figure puis vérifier la matrice ${}^{b}\mathbf{T}_{3}$ pour cette configuration.

- 5. On note $\mathbf{x} = [p_x, p_y, p_z]^T$ les coordonnés de l'organe terminal. A partir de la question précédente, écrire le modèle géométrique direct du robot restreint.
- 6. Vérifier le modèle géométrique direct du robot graphiquement par rapport à une configuration donnée.

Exercice 2: Un robot RPR

On considère le robot représenté sur la Figure 2 en configuration quelconque.

FIGURE 2 - Robot RPR

Ce robot est constitué de 4 corps notés S_0 , S_1 , S_2 et S_3 articulés entre eux de la façon suivante :

- La liaison entre les corps S_0 et S_1 est une liaison pivot d'axe vertical, paramétré par l'angle q_1 .
- La liaison entre les corps S_1 et S_2 est une liaison glissière d'axe horizontal perpendiculaire à l'axe de la liaison précédente; paramétré par la distance q_2 ,
- La liaison entre les corps S_2 et S_3 est une liaison pivot d'axe horizontal perpendiculaire à l'axe de la liaison précédente; paramétré par l'angle q_3 .

Le corps S_3 est une tige dont l'extrémité, notée P, se situe à la distance l_2 de l'axe de la liaison S_2 - S_3 .

Les sens positifs des liaisons sont donnés sur la figure.

- 1. Sur la Figure 2, reporter les repères \mathcal{R}_0 , \mathcal{R}_1 , \mathcal{R}_2 et \mathcal{R}_3 , et remplir le tableau des paramètres conformément à la convention Denavit-Hartenberg. Expliquer ce qui détermine vos choix.
- 2. En déduire le tableau des paramètres Denavit-Hartenberg associés.
- 3. Ecrire les trois transformations homogènes ${}^{b}\mathbf{T}_{0}$, ${}^{0}\mathbf{T}_{1}$, ${}^{1}\mathbf{T}_{2}$ et ${}^{2}\mathbf{T}_{3}$, puis en déduire le modèle géométrique direct ${}^{b}\mathbf{T}_{3}$.
- 4. Donner le vecteur des paramètres articulaires q pour la configuration de la figure puis vérifier la matrice ${}^b\mathbf{T}_3$ pour cette configuration.
- 5. On note $\mathbf{x} = [p_x, p_y, p_z]^T$ les coordonnés de l'organe terminal. A partir de la question précédente, écrire le modèle géométrique direct du robot restreint.

6. Vérifier graphiquement le modèle géométrique direct du robot par rapport à une configuration de votre choix.

Exercice 3

La figure schématise un manipulateur RRP composé de 3 solides S_1, S_2, S_3 , un bâti S_0 et 3 liaisons tel que

- S0-S1 : pivot d'axe vertical passant par O_0 , paramétré par l'angle q_1 ,
- S1-S2 : pivot d'axe horizontal passant par O_0 , paramétré par l'angle q_2 ,
- et S2-S3 : glissière le long de S_2 paramétré par la distance q_3 ,

Le sens positif des articulations est donné sur la figure, ainsi que les répères \mathcal{R}_0 et \mathcal{R}_3 lié à la base et l'effecteur.

On note $\mathbf{x} = [p_x, p_y, p_z]^T$ le vecteur des paramètres opérationnels qui représentent les coordonnées de O_3 dans \mathcal{R}_0 et $\mathbf{q} = [q_1, q_2, q_3]^T$ le vecteur des paramètres articulaires.

- 1. Définir sur la feuille jointe les répères $\mathcal{R}_i = (O_i, \vec{x}_i, \vec{y}_i, \vec{z}_i)$, selon la convention de Denavit-Hartenberg, ainsi que le tableau des paramètres associés.
- 2. Donner les matrices de transformations homogènes ${}^{0}\mathbf{T}_{1}$, ${}^{1}\mathbf{T}_{2}$, ${}^{2}\mathbf{T}_{3}$ et en déduire ${}^{0}\mathbf{T}_{3}$. Vérifier graphiquement cette matrice pour la configuration de la figure.
- 3. Déduire les relations entre \mathbf{x} et \mathbf{q} .
- 4. En utilisant Chasles, retrouver ces relations.
- 5. Résoudre le modèle géométrique inverse $\mathbf{q} = [q_1, q_2, q_3]^T$ en fonction des paramètres $\mathbf{x} = [p_x, p_y, p_z]^T$.
- 6. Combien de solutions au problème inverse?
- 7. Comment peut-on définir l'espace de travail du robot.

