Lenguaje matemático, conjuntos y números

Prueba Objetiva Calificable

Ejercicio 1

Sean A, B y C subconjuntos arbitrarios no vacíos de un conjunto X, que tiene al menos dos elementos. Si $A \cup B = B \cap C$ entonces, necesariamente se tiene que:

- a) A = B y B = C.
- b) $A \subset B \subset C$.
- c) $C \subset B \subset A$.

Ejercicio 2

Sea $U = \mathbb{Z}$ el universo de las variables x e y. Consideramos las proposiciones:

- p; $\exists x \, \forall y \text{ tal que } x + y > 0$.
- q; $\forall x \,\exists y \text{ tal que } x + y > 0.$
- $r; \ \forall x \forall y \text{ se tiene } x + y > 0.$
- s; $\exists x \, \forall y \text{ tal que } y^2 > x$.

Se tiene:

- a) p, q y s son verdaderas.
- b) r y s son falsas.
- c) p es falsa y s es verdadera.

Ejercicio 3

Sean E un conjunto no vacío y $f \colon E \longrightarrow E$ una aplicación. Consideramos las tres proposiciones:

- 1. f es inyectiva
- 2. $\forall A, B \in \mathcal{P}(E), \ A \cap B = \emptyset \Rightarrow f(A) \cap f(B) = \emptyset.$
- 3. $\forall A, B \in \mathcal{P}(E), B \subset A \Rightarrow f(A \setminus B) = f(A) \setminus f(B)$

Se tiene:

- a) Las tres proposiciones son equivalentes.
- b) Sólo dos proposiciones son equivalentes.
- c) No hay dos proposiciones que sean equivalentes.

Ejercicio 4

Sean E un conjunto no vacío y A un subconjunto de E no vacío tal que $A \neq E$. En el conjunto de las partes de E, $\mathcal{P}(E)$, consideramos la relación de equivalencia \mathcal{R} dada por:

$$B \mathcal{R} C$$
 si v sólo si $B \cup A = C \cup A$

Sobre las clases de equivalencia consideramos las siguientes proposiciones :

- 1. $[\emptyset] = [B] \quad \forall B \in \mathcal{P}(E) \text{ tal que } B \subset A.$
- $[E] = [\overline{A}]$
- 3. $\forall C \in \mathcal{P}(E) \quad [C] = \{B \subset E \mid (C \setminus A) \subset B\}$

Se tiene:

- a) Las tres proposiciones son verdaderas.
- b) Sólo dos proposiciones son verdaderas.
- c) Sólo hay una proposición verdadera.

Ejercicio 5

Sea $p \in \mathbb{N} \setminus \{0, 1\}$ un número primo. En

$$H_p = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}^* \text{ y } n \in \mathbb{N}^* \text{ son primos entre si y } p \text{ no divide a } n \right\} \cup \{0\}$$

se considera la suma y producto de números racionales restringidas a H_p . Se tiene que:

- a) $(H_p, +, \cdot)$ no es un anillo.
- b) El único elemento no inversible de H_p es 0.
- c) $(H_p, +, \cdot)$ no es un cuerpo.

Soluciones

Ejercicio 1

Observemos en primer lugar que $A \subset A \cup B$ y $B \subset A \cup B$ y que $B \cap C \subset B$ y $B \cap C \subset C$, por tanto, si $A \cup B = B \cap C$ entonces se tiene que $B \subset A \cup B = B \cap C \subset B$ y $A \subset A \cup B = B \cap C \subset C$. En consecuencia, $B = A \cup B = B \cap C$ y $A \subset B \subset C$. Luego la condición $A \subset B \subset C$ es necesaria. Veamos que las otras dos condiciones no son en general necesarias. Tomamos A, B y C tales que $A \subset B \subset C$ pero $A \neq B$ o $B \neq C$, por ejemplo, $A = \{1\}$, $B = \{1, 2\}$ y $C = \{1, 2\}$. Se tiene que $A \cup B = B = B \cap C$ y sin embargo no se cumple que A = B y B = C ni tampoco $C \subset B \subset A$.

Ejercicio 2

La proposición, p; $\exists x \, \forall y$ tal que x+y>0, es falsa pues su negación, $\neg p; \forall x \, \exists y$ tal que $x+y \geqslant 0$, es verdadera. En efecto dado $x \in \mathbb{Z}$ existe $y \in \mathbb{Z}$, basta tomar por ejemplo y = -x, tal que x + y = x - x = 0 > 0.

La proposición q es verdadera pues dado $x \in \mathbb{Z}$ existe $y \in \mathbb{Z}$, basta tomar por ejemplo y = -x + 1, tal que x + y = x - x + 1 = 1 > 0.

La proposición r es falsa pues existen $x, y \in \mathbb{Z}$, por ejemplo x = -1, y = 0, tales que $x + y = -1 \ge 0$. Obsérvese que la negación de r es $\neg r$; $\exists x \exists y$ tales que $x + y \not > 0$.

La proposición s es verdadera. Basta tomar x = -1. $\forall y \in \mathbb{Z}$ se tiene que $y^2 \ge 0 > -1 = x$.

La opción correcta es "p es falsa y s es verdadera".

Ejercicio 3

Las tres proposiciones son equivalentes:

- $(1) \Rightarrow (2)$. En efecto, supongamos que f es inyectiva y sean $A, B \in \mathcal{P}(E)$ tales que $A \cap B = \emptyset$. Veamos que $f(A) \cap f(B) = \emptyset$. Por reducción al absurdo, si existe $y \in f(A) \cap f(B)$ entonces existen $x_1 \in A$ y $x_2 \in B$ tales que $y = f(x_1) = f(x_2)$. Pero al ser f es inyectiva se obtiene que $x_1 = x_2 \in A \cap B$ que contradice la hipótesis $A \cap B = \emptyset$.
- $(2) \Rightarrow 3)$ Sean $A, B \in \mathcal{P}(E)$, tales que $B \subset A$. Tenemos que ver que $f(A \setminus B) = f(A) \setminus f(B)$.
- i) De $A \setminus B \subset A$ resulta que $f(A \setminus B) \subset f(A)$. Por otro lado, $(A \setminus B) \cap B = \emptyset$ por lo que aplicando 2) se obtiene que $f(A \setminus B) \cap f(B) = \emptyset$. Luego $f(A \setminus B) \subset f(A) \setminus f(B)$.
- ii) La inclusión $f(A) \setminus f(B) \subset f(A \setminus B)$ es siempre verdadera: Si $y \in f(A) \setminus f(B)$ existe $x \in A$ tal que y=f(x). Además x no puede ser elemento de B pues en caso contrario $y=f(x)\in f(B)$ y se cumpliría que $y \notin f(A) \setminus f(B)$. En consecuencia $x \in A \setminus B$.
- 3) \Rightarrow 1) Sean $x_1, x_2 \in E$ tales que $x_1 \neq x_2$. Sean $A = \{x_1, x_2\}$ y $B = \{x_2\}$. Puesto que $B \subset A$, aplicando 3) se tiene que $f(A \setminus B) = f(A) \setminus f(B)$. Es decir, $\{f(x_1)\} = \{f(x_1), f(x_2)\} \setminus \{f(x_1)\}$. Por tanto $f(x_1) \neq f(x_2)$ pues si tuvieramos $f(x_1) = f(x_2)$ sustituyendo en $\{f(x_1)\} = \{f(x_1), f(x_2)\} \setminus \{f(x_1)\}$ obtendríamos $\{f(x_1)\} = \emptyset$

Ejercicio 4

Teniendo en cuenta que $[\emptyset] = \{B \subset E \mid B \cup A = A\}$, resulta que si $B \subset A$ entonces $B \cup A = A$ y por tanto $B \in [\emptyset]$. Teniendo en cuenta que dos clases de equivalencia son disjuntas o son iguales se obtiene que $[\emptyset] = [B], \quad \forall B \in \mathcal{P}(E) \text{ tal que } B \subset A.$

Como $E \cup A = E = \overline{A} \cup A$ resulta que $E \mathcal{R} \overline{A}$ y por tanto $[E] = [\overline{A}]$.

Finalmente no es cierto que $\forall C \in \mathcal{P}(E)$ $[C] = \{B \subset E \mid (C \setminus A) \subset B\}$. Por ejemplo, si $C = \emptyset$ entonces $C \setminus A = \emptyset \text{ y } \{B \subset E \mid (C \setminus A) \subset B\} = \{B \subset E \mid \emptyset \subset B\} = \mathcal{P}(E). \text{ Pero } E \notin [\emptyset] \text{ pues } E \cup A = E \neq A = \emptyset \cup A.$

Ejercicio 5

Sean $\frac{m}{n}, \frac{m'}{n'} \in H_p$. Veamos que $\frac{m}{n} - \frac{m'}{n'} \in H_p$. Como $\frac{m}{n} - \frac{m'}{n'} = \frac{mn' - m'n}{nn'} = \frac{s}{q}$ siendo mn' - m'n = ds $nn' = dq \ y \ d = \operatorname{mcd}(|mn' - m'n|, nn') \ y \ s \in \mathbb{Z} \ y \ q \in \mathbb{N}^*.$

Obsérvese que por el teorema 5.52, p no divide a nn' pues mcd(p, n) = mcd(p, n') = 1. Por tanto, p no divide

a q y en consecuencia $\frac{m}{n} - \frac{m'}{n'} \in H_p$ Además $\frac{m}{n} \frac{m'}{n'} = \frac{mm'}{nn'} = \frac{s'}{q'}$, siendo mm' = ds, nn' = d'q', d = mcd(|mm'|, nn'), $s' \in \mathbb{Z}$ y $q' \in \mathbb{N}^*$. Procediendo como antes se deduce que $\frac{m}{n}\frac{m'}{n'} \in H_p$.

 $1 \in H_p$ pues $1 = \frac{1}{1}$ y p no divide a 1. Sea $\frac{m}{n} \neq 0 \in H_p$. Para que $\frac{m}{n}$ sea inversible en H_p se tiene que cumplir que $\frac{n}{m} \in H_p$, pero esto sólo es cierto si m no es múltiplo de p. Así, por ejemplo, $p = \frac{p}{1} \in H_p$ no es inversible y por tanto $(H_p, +, \cdot)$ no es un cuerpo.