XC6219/XC6211 Series

ETR0307_009

300mA High Speed LDO Regulators with ON/OFF Switch

■GENERAL DESCRIPTION

The XC6219/XC6211 series are highly accurate, low noise, CMOS LDO Voltage Regulators. Offering low output noise, high ripple rejection ratio, low dropout and very fast turn-on times, the XC6219/XC6211 series is ideal for today's cutting edge mobile phone.

Internally the XC6219/XC6211 includes a reference voltage source, error amplifiers, driver transistors, current limiters and phase compensators. The XC6219/XC6211's current limiters' foldback circuit also operates as a short protect for the output current limiter and, the output pin. The output voltage is set by laser trimming. Voltages are selectable in 50mV steps within a range of 0.9V to 5.0V. The XC6219/XC6211 series is also fully compatible with low ESR ceramic capacitors, reducing cost and improving output stability. This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response performance and high PSRR achieved across a broad range of frequencies.

The CE function allows the output of regulator to be turned off, resulting in greatly reduced power consumption.

■APPLICATIONS

- Mobile phones
- Cordless phones, radio communication equipment
- Portable games
- Cameras, Video cameras
- Reference voltage sources
- Battery powered equipment

■FEATURES

Maximum Output Current : 150mA (Vout<1.75V, A~D type)

240mA (Vout≥1.8V, A~D type) 300mA (Vout≥1.3V, E~H type)

Dropout Voltage : 200mV @ 100mA

Operating Voltage Range : 2.0V ~ 6.0V

Output Voltage Range : $0.9V \sim 5.0V (0.05V \text{ steps})$ Highly Accuracy : $\pm 2\% (VOUT>1.5V)$

±30mV (Vout≦1.5V)

<u>+</u>30mV (VouT≦1.5V) <u>+</u>1% (VouT≧3.0V)

Low Power Consumption : $25 \mu A (TYP.)$

Standby Current : Less than 0.1μ A (TYP.)

High Ripple Rejection : 65dB @ 10kHzOperating Ambient Temperature : -40°C ~ 85 °C

Low ESR Capacitor : Ceramic capacitor compatible

Ultra Small Packages : SOT-25

SOT-89-5 (for XC6219 only) USP-6B (for XC6219 only)

Environmentally Friendly : EU RoHS Compliant, Pb Free

■TYPICAL APPLICATION CIRCUIT

●XC6219 series

1 VIN VOUT 5 CL 1µF 7/// 3 CE NC 4

SOT-25

■TYPICAL PERFORMANCE CHARACTERISTICS

Ripple Rejection Rate

■PIN CONFIGURATION

* The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and hear release. If the pad needs to be connected to other pins, it should be connected to the VSS pin.

■PIN ASSIGNMENT

	PIN NU	JMBER			
XC6211		XC6219		PIN NAME	FUNCTIONS
SOT-25	SOT-25 SOT-89-5		USP-6B		
5	1	4	1	VIN	Power Input
2	2 2		5	Vss	Ground
1	3	3 3		CE	ON / OFF Control
3	4	1	2, 4	NC	No Connection
4	5	5	3	Vout	Output

■FUNCTION

TYPE A,E

PIN NAME	SIGNAL	STATUS
	L	Stand-by
CE	Н	Active
	OPEN	Stand-by

TYPE B,F

PIN NAME	SIGNAL	STATUS		
	L	Stand-by		
CE	Н	Active		
	OPEN	Undefined state		

TYPE C,G

PIN NAME	SIGNAL	STATUS
	L	Active
CE	Н	Stand-by
	OPEN	Stand-by

TYPE D,H

PIN NAME	SIGNAL	STATUS
	L	Active
CE	Н	Stand-by
	OPEN	Undefined state

^{*}If XC6211/XC6219 B,D,F,H types are used with the CE pin opened, the IC goes into "Undefined state". The CE pin voltage should be fixed in low or high for stable operation.

■PRODUCT CLASSIFICATION

Ordering Information

XC6219 1)2(3(4)5(6)-7)(*1) (Standard pin layout versions)

XC6211 ①②③④⑤⑥-⑦ (*1) (Different pin layout version in SOT-25)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
		Α	150mA, High Active, pull-down resistor built in (Semi-custom)
		В	150mA, High Active, no pull-down resistor built in (Standard)
		С	150mA, Low Active, pull-up resistor built in (*4) (Semi-custom)
1)	CE Pin Logic	D	150mA, Low Active, no pull-up resistor built in (Semi-custom)
	OL 1 III LOGIC	Е	300mA, High Active, pull-down resistor built in (*4) (Semi-custom)
		F	300mA, High Active, no pull-down resistor built in (Standard)
		G	300mA, Low Active, pull-up resistor built in (Semi-custom)
		Н	300mA, Low Active, no pull-up resistor built in (Semi-custom)
23	Output Voltage	09~50	e.g. ②=3, ③=0, → 3.0V
		2 ^(*3)	0.1V increments, ±2% accuracy
		2	e.g. $3=2$, $3=8$, $4=2 \rightarrow 2.80$ V, $\pm 2\%$
		1(*2)	0.1V increments, ±1% accuracy
4)	Output Voltage Accuracy	'	e.g. $2=3$, $3=0$, $4=1 \rightarrow 3.00V$, $\pm 1\%$
		A ^(*3)	0.05V increments, ±2% accuracy
			e.g. $2=2$, $3=8$, $4=A \rightarrow 2.85V$, $\pm 2\%$
		B ^(*2)	0.05V increments, ±1% accuracy
			e.g. $2=3$, $3=0$, $4=B \rightarrow 3.05V$, $\pm 1\%$
		MR	SOT-25(3,000/Reel)
		MR-G	SOT-25(3,000/Reel)
56-7	Packages	PR	SOT-89-5 (for XC6219 only) (1,000/Reel)
30-0	(Order Unit)	PR-G	SOT-89-5 (for XC6219 only) (1,000/Reel)
		DR	USP-6B (for XC6219 only) (3,000/Reel)
		DR-G	USP-6B (for XC6219 only) (3,000/Reel)

 $^{^{(\}mbox{{}^{\prime}}\mbox{{}^{\prime}})}$ The "-G" suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.

 $^{^{(\}mbox{\tiny $^{\circ}$2)}}$ Output voltage of the $~\pm1\%$ accuracy product is 3.0V or more.

 $^{^{(^{*}3)}}$ Output voltage accuracy of the $V_{\text{OUT}}{\leqq}1.5V$ is $\pm30\text{mV}.$

 $^{^{(^{\}circ}4)}$ With the pull-up resistor or pull-down resistor built-in types, the supply current during operation will increase by V_{IN} / 2.0M Ω (TYP.)

■BLOCK DIAGRAM

XC6211,XC6219 series Type A,E

XC6211,XC6219 series Type B,D,F,H

XC6211,XC6219 series Type C,G

^{*}Diode inside the circuit are an ESD protection diode and a parasitic diode.

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAME	TER	T-89 Pd 600 (PCB mounted) ⁽⁻²⁾ 500 1300 (PCB mounted) ⁽⁻²⁾		
Input Volt	age	VIN	7	V
Output Cu	rrent	lout	500 ^(*1)	mA
Output Vo	ltage	Vout	Vss - 0.3 ~ Vin + 0.3	V
CE Pin Vo	ltage	VCE Vss - 0.3 ~ Vin + 0.3		
	SOT-25		= * *	
	301-23	Pd	600 (PCB mounted) ^(*2)	mW
Power Dissipation	SOT-89		500	
Fower Dissipation			1300 (PCB mounted) ^(*2)	
	USP-6B		120	
	USF-0B		1000 (PCB mounted) ^(*2)	
Operating Ambient	Temperature	Topr	- 40 ~ + 85	°C
Storage Temp	perature	Tstg	- 55 ~ + 125	°C

All voltages are described based on the V_{SS} pin.

 $^{^{(*1)}}$ $I_{OUT} \leq Pd/(V_{IN}-V_{OUT})$

^(*2) The power dissipation figure shown is PCB mounted and is for reference only. Please refer to page 24~26 for details.

●XC6219/XC6211 Type A,B

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*5)			V _{OUT(T)} ^(*2)	(*2)	V _{OUT(T)} (*2)		
(2%)	(*3)	L =20 A	×0.98	V _{OUT(T)} ^(*2)	×1.02		
Output Voltage (*6)	V _{OUT(E)} (*3)	I _{OUT} =30mA	V _{OUT(T)} ^(*2)	(*2)	V _{OUT(T)} (*2)	V	1
(1%)			×0.99	V _{OUT(T)} ^(*2)	×1.01		
Maximum Output	1	0.9V≦V _{OUT(T)} ≦1.75V	150	-	-	mA	(1)
Current	I _{OUTMAX}	1.8V≦V _{OUT(T)} ≦5.0V	240	-	-	IIIA	U
Load Regulation	ΔV_{OUT}	1mA≦I _{OUT} ≦100mA	-	15	50	mV	1
Dropout Voltage (*4)	Vdif1	I _{OUT} =30mA	1	Е	-1	mV	1
Dropout voltage	Vdif2	I _{OUT} =100mA	- E-2		-2	1117	U
Supply Current (Type A)		V _{CE} =V _{IN=} V _{OUT(T)} +1.0V	-	28	55		
Supply Current	l _{DD}	V _{OUT} ≦0.95V, V _{IN} =V _{CE} =2.0V		25	50	μΑ	2
(Type B)			-	25	50		
Stand-by Current	I _{STB}	$V_{IN} = V_{OUT(T)} + 1.0V, V_{CE} = V_{SS}$ $V_{OUT} \le 0.95V, V_{IN} = 2.0V$		0.01	0.10	μΑ	2
Line Regulation	$\Delta V_{OUT}/$ $(\Delta V_{IN} \cdot V_{OUT})$	$V_{OUT(T)}$ +1.0 $V \le V_{IN} \le 6.0V$ $V_{OUT} \le 0.95V$, 2.0 $V \le V_{IN} \le 6.0V$ $I_{OUT} = 30mA$ $V_{OUT} \le 1.75V$, $I_{OUT} = 10mA$	-	0.01	0.20	%/V	1
Input Voltage	V _{IN}	-	2	-	6	V	-
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTopr•V _{OUT})	I _{OUT} =30mA -40°C≦Topr≦85°C	-	±100	-	ppm/°C	1
Power Supply Rejection Ratio	PSRR	V_{IN} =[$V_{OUT(T)}$ +1.0]V+1.0Vp- p_{AC} V_{OUT} \leq 1.5, V_{IN} =2.5V+1.0Vp- p_{AC} I_{OUT} =50mA, f=10kHz	-	E-3	-	dB	4
Current Limiter	llim	$V_{IN}=V_{OUT(T)}+2.0V, V_{CE}=V_{IN}$ $0.9V \le V_{OUT(T)} \le 1.75V$	-	300	-		1
Current Limiter	111111	$V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=V_{IN}$ $1.8V \le V_{OUT(T)} \le 5.0V$	240	300	-	- mA	U
Short Circuit Current	I _{SHORT}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$ $V_{OUT} \le 1.75V$, $V_{IN}=V_{OUT(T)}+2.0V$	-	50	-	mA	1
CE 'High' Level Voltage	V _{CEH}	-	1.6	-	V _{IN}	V	1
CE 'Low' Level Voltage	V _{CEL}	-	-	-	0.25	V	1
CE 'High' Level Current (Type A)		V _{IN} =V _{CE} =V _{OUT(T)} +1.0V	-0.10	-	5.0	^	
CE 'High' Level Current (Type B)	I _{CEH}	$V_{OUT} \le 0.95V, V_{IN} = V_{CE} = 2.0V$	-0.10	-	0.10	μΑ	2
CE 'Low' Level Current	I _{CEL}	$V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=V_{SS}$ $V_{OUT}\leq 0.95V, V_{IN}=2.0V$	-0.10	-	0.10	μΑ	2

^(*1) Unless otherwise stated, V_{IN} = $V_{OUT(T)}$ +1.0V. If V_{OUT} is less than 0.95V, V_{IN} = 2.0V.

^(*2) $V_{OUT(T)}$ = Specified output voltage

^(*3) V_{OUT(E)} = Effective output voltage

The output voltage when " $V_{OUT(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.

^(*4) Vdif={V_{IN1}-V_{OUT1}}

 $V_{\text{OUT1}}\text{=}A \text{ voltage equal to 98\% of the output voltage whenever an amply stabilized } I_{\text{OUT}} \{V_{\text{OUT(T)}}\text{+}1.0V\} \text{ is input.}$

 V_{IN1} =The Input Voltage when V_{OUT1} appears as Input Voltage is gradually decreased.

^(*5) If $V_{\text{OUT(T)}}$ is less than 1.45V, $V_{\text{OUT(T)}}\text{-30mV}$ (MIN.), $V_{\text{OUT(T)}}\text{+30mV}$ (MAX.)

^(*6) Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

●XC6219/XC6211 Type C,D

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT	
Output Voltage (*5)			V _{OUT(T)} ^(*2)	(*2)	V _{OUT(T)} ^(*2)			
(2%)	(*2)		×0.98	V _{OUT(T)} ^(*2)	×1.02		_	
Output Voltage (*6)	V _{OUT(E)} (*3)	I _{OUT} =30mA	V _{OUT(T)} ^(*2)	(40)	V _{OUT(T)} ^(*2)	V	1	
(1%)			×0.99	$V_{OUT(T)}^{(*2)}$	×1.01			
Maximum Output		0.9V≦V _{OUT(T)} ≦1.75V	150	_	-			
Current	I _{OUTMAX}	1.8V≦V _{OUT(T)} ≦5.0V	240	_	_	mA	1	
Guilent		1.0 V = V OUT(T)=3.0 V	240	_	_			
Load Regulation	ΔV_{OUT}	1mA≦I _{OUT} ≦100mA	-	15	50	mV	1	
Dropout Voltage (*4)	Vdif1	I _{OUT} =30mA	-	E	-1	mV	1	
Dropout voltage	Vdif2	I _{OUT} =100mA	-	Е	-2	IIIV	•	
Supply Current		V _{IN=} V _{OUT(T)} +1.0V	-	28	55			
(Type C)	I _{DD}	V _{OUT} ≦0.95V, V _{IN} =2.0V				μΑ	2	
Supply Current		V _{CF} =V _{SS}	_	25	50		Ü	
(Type D)		0E 00						
Stand-by Current	1	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$	_	0.01	0.10	μΑ	2	
Stand-by Current	I _{STB}	$V_{OUT} \leq 0.95V$, $V_{IN} = V_{CE} = 2.0V$	-	0.01	0.10	μΑ	€	
		V _{OUT(T)} +1.0V≦V _{IN} ≦6.0V		0.01	0.20	%/V	1	
	ΔV _{OUT} /	V _{OUT} ≦0.95V, 2.0V≦V _{IN} ≦6.0V						
Line Regulation	(ΔV _{IN} •V _{OUT})	I _{OUT} =30mA	-					
		V _{OUT} ≦1.75V, I _{OUT} =10mA						
Input Voltage	V _{IN}	-	2	-	6	V	-	
Output Voltage								
Temperature	ΔV _{OUT} /	I _{OUT} =30mA	-	±100	-	ppm/°C	1	
Characteristics	(ΔTopr∙V _{OUT})	-40°C≦Topr≦85°C						
		V _{IN} =[V _{OUT(T)} +1.0]V+1.0Vp-p _{AC}						
Power Supply	PSRR	$V_{OUT} \le 1.5, V_{IN} = 2.5V + 1.0Vp - p_{AC}$	_	E-3	_	dB	4	
Rejection Ratio	rorat	I _{OUT} =50mA, f=10kHz				u.b	•	
		$V_{IN}=V_{OUT(T)}+2.0V$, $V_{CE}=V_{SS}$						
		1 /	-	300	-			
Current Limiter	llim	0.9V≦V _{OUT(T)} ≦1.75V				mA	1	
		V _{IN} =V _{OUT(T)} +1.0V, V _{CE} =V _{SS}	240	300	-			
		1.8V≦V _{OUT(T)} ≦5.0V						
Short Circuit Current	I _{SHORT}	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$	_	50	_	mA	1	
	GHOKI	$V_{OUT} \le 1.75V, V_{IN} = V_{OUT(T)} + 2.0V$						
CE 'High' Level Voltage	V _{CEH}	-	1.6	-	V_{IN}	V	1	
CE 'Low' Level Voltage	V_{CEL}	-	-	-	0.25	V	1	
OF !liab! Level Overs		V _{CE} =V _{IN} =V _{OUT(T)} +1.0V	0.40		0.40	^	•	
CE 'High' Level Current	I _{CEH}	$V_{OUT} \le 0.95V, V_{CE} = V_{IN} = 2.0V$	-0.10	-	0.10	μΑ	2	
CE 'Low' Level Current					0.40			
(Type C)		$V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=V_{SS}$	-5.0	-	0.10			
CE 'Low' Level Current	I _{CEL}	V _{OUT} ≦0.95V, V _{IN} =2.0V				μΑ	2	
(Type D)			-0.10	-	0.10			
· • · · ·	1	1		1	•			

^(*1) Unless otherwise stated, V_{IN} = $V_{OUT(T)}$ +1.0V. If V_{OUT} is less than 0.95V, V_{IN} = 2.0V.

^(*2) $V_{OUT(T)}$ = Specified output voltage

^(*3) $V_{OUT(E)}$ = Effective output voltage

The output voltage when " $V_{OUT(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.

^(*4) $Vdif=\{V_{IN1}-V_{OUT1}\}$

 $V_{\text{OUT}1}\text{=A voltage equal to 98\% of the output voltage whenever an amply stabilized }I_{\text{OUT}}\{V_{\text{OUT}(T)}\text{+}1.0V\} \text{ is input.}$

 V_{IN1} =The Input Voltage when V_{OUT1} appears as Input Voltage is gradually decreased.

^(*5) If $V_{\text{OUT(T)}}$ is less than 1.45V, $V_{\text{OUT(T)}}\text{-30mV}$ (MIN.), $V_{\text{OUT(T)}}\text{+30mV}$ (MAX.)

^(*6) Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

●XC6219/XC6211 Type E,F

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	① ① ① ① ① ① ① ② ②
C2% Vout(E) (*3) Vout(E) (*3)	① ① ① ① ① ① ②
Output Voltage (19) (1%) Vout(π) (2) ×0.99 Vout(π) (2) ×1.01 Vout(π) (2) ×1.01 Maximum Output Current I _{OUTMAX} V _{IN} =E-5 (*7) E-4 - - mA Load Regulation ΔV _{OUT} 1mA ≤ I _{OUT} ≤ 100mA - 15 50 mV Load Regulation2 ΔV _{OUT2} 1mA ≤ I _{OUT} ≤ 300mA - - 100 mV Dropout Voltage (*4) Vdif1 I _{OUT} =30mA - E-1 mV Supply Current (Type E) I _{OUT} =100mA - 28 55 Supply Current (Type F) V _{CE} =V _{IN} =V _{OUT} (π)+1.0V - 25 50 Stand-by Current I _{STP} V _{IN} =V _{OUT} (π)+1.0V, V _{CE} =V _{SS} - 0.01 0.10 μ A	① ① ① ① ① ① ②
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2
Current I_{OUTMAX} $V_{IN}=E-5^{+17}$ E-4 - - mA Load Regulation ΔV_{OUT} $1mA \le I_{OUT} \le 100mA$ - 15 50 mV Load Regulation2 ΔV_{OUT2} $1mA \le I_{OUT} \le 300mA$ - - 100 mV Dropout Voltage (*4) Vdif1 $I_{OUT} = 30mA$ - E-1 mV Supply Current (Type E) $I_{OUT} = 100mA$ - E-2 - 28 55 Supply Current (Type F) I_{OD} $V_{CE} = V_{IN} = V_{OUT(T)} + 1.0V$ - 25 50 Stand-by Current I_{STR} $V_{IN} = V_{OUT(T)} + 1.0V$, $V_{CE} = V_{SS}$ - 0.01 0.10 UA	1 1 2
	1 1 2
Load Regulation2 ΔV _{OUT2} 1mA ≤ I _{OUT} ≤ 300mA - - 100 mV Dropout Voltage ('4) Vdif1 I _{OUT} =30mA - E-1 mV Supply Current (Type E) I _{OUT} =100mA - E-2 Supply Current (Type F) V _{CE} =V _{IN} =V _{OUT(T)} +1.0V - 28 55 V _{OUT} ≤ 0.95V, V _{CE} =V _{IN} =2.0V - 25 50 Stand-by Current I _{STR} V _{IN} =V _{OUT(T)} +1.0V, V _{CE} =V _{SS} - 0.01 0.10 μ A	① ① ②
	① ②
Dropout Voltage (**) Vdif2 I _{OUT} =100mA - E-2 mV Supply Current (Type E) I_{DD} $V_{CE}=V_{IN}=V_{OUT(T)}+1.0V$ - 28 55 Supply Current (Type F) $V_{OUT} ≤ 0.95V, V_{CE}=V_{IN}=2.0V$ - 25 50 Stand-by Current I_{STR} $V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=V_{SS}$ - 0.01 0.10 μ A	2
Vdif2 I _{OUT} =100mA - E-2 Supply Current (Type E) I_{DD} $V_{CE}=V_{IN}=V_{OUT(T)}+1.0V$ - 28 55 Supply Current (Type F) $V_{OUT} ≤ 0.95V, V_{CE}=V_{IN}=2.0V$ - 25 50 Stand-by Current I_{STP} $V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=V_{SS}$ - 0.01 0.10 μ A	2
(Type E) I_{DD} $V_{CE}=V_{IN}=V_{OUT(T)}+1.0V$ - 28 55 μA V_{OUT} (Type F) V_{OUT} = 0.95V, $V_{CE}=V_{IN}=2.0V$ - 25 50 $V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$ - 0.01 0.10 μA	
(Type E) I_{DD} $V_{CE}=V_{IN}=V_{OUT(T)}+1.0V$ $V_{OUT} ≤ 0.95V, V_{CE}=V_{IN}=2.0V$ - 25 50 μ A Stand-by Current I_{STP} $V_{IN}=V_{OUT(T)}+1.0V, V_{CE}=V_{SS}$ - 0.01 0.10 μ A	
Supply Current V _{OUT} ≦0.95V, V _{CE} =V _{IN} =2.0V - 25 50 (Type F) V _{IN} =V _{OUT(T)} +1.0V, V _{CE} =V _{SS} - 0.01 0.10 #A	
(Type F) Stand-by Current Israe V _{IN} =V _{OUT(T)} +1.0V, V _{CE} =V _{SS} - 0.01 0.10 // A	2
Stand-by Current Ista	2
V _{OUT} ≦0.95V, V _{CE} =V _{IN} =2.0V	_
$V_{OUT(T)}$ +1.0 $V \le V_{IN} \le 6.0V$	
Line Regulation $\Delta V_{\text{OUT}}/$ $V_{\text{OUT}} \le 0.95 \text{V}, 2.0 \text{V} \le V_{\text{IN}} \le 6.0 \text{V}$ - 0.01 0.20 %/V	1
$(\Delta V_{IN} \cdot V_{OUT})$ $I_{OUT} = 30 \text{mA}$	
V _{OUT} ≦1.75V, I _{OUT} =10mA	
Input Voltage V _{IN} - 2 - 6 V	-
Output Voltage $\Delta V_{OUT}/$ $I_{OUT}=30 mA$	
Temperature (ΔTopr·V _{OUT}) -40°C≦Topr≦85°C - ±100 - ppm/°C	1)
Characteristics	
Power Supply V _{IN} =[V _{OUT(T)} +1.0]V+1.0Vp-p _{AC} 70	
PSRR V _{OUT} ≦1.5, V _{IN} =2.5V+1.0Vp-p _{AC} - 70 - dB	4
I _{OUT} =50mA, f=10kHz	
$V_{IN}=V_{OUT(T)}+2.0V$, $V_{CE}=V_{IN}$	
Current Limiter IIIm	1
$1.8V \le V_{\text{OUT(T)}} = 1.0V \cdot V_{\text{CE}} = V_{\text{IN}}$	
V _{IN} =V _{OUT(T)} ±1.0V, V _{CE} =V _{IN}	
Short Circuit Current I_{SHORT} $V_{OUT} \le 1.75V$, $V_{IN} = V_{OUT(1)} + 2.0V$ - 50 - mA	1
CE 'High' Level Voltage	1
CE 'Low' Level Voltage V _{CEL} 0.25 V	1
CE 'High' Level Current	
(Type E) V _{IN} =V _{CF} =V _{OLIT(T)} +1.0V -0.10 - 5.0	_
CE 'High' Level Current I_{CEH} $V_{OUT} \le 0.95V$, $V_{IN} = V_{CF} = 2.0V$ μ A	2
(Type F)	
$V_{IN}=V_{OLIT(T)}+1.0V$, $V_{CF}=V_{SS}$	
CE 'Low' Level Current I_{CEL} $V_{OUT} \le 0.95 \text{V}, V_{IN} = 2.0 \text{V}$ -0.1 $ 0.1$ $\mu \text{ A}$	2

^(*1) Unless otherwise stated, $V_{\text{IN}}\text{=}V_{\text{OUT}(T)}\text{+}1.0\text{V}.$ If V_{OUT} is less than 0.95V, $V_{\text{IN}}\text{=}2.0\text{V}.$

^(*2) $V_{OUT(T)}$ = Specified output voltage

^(*3) $V_{OUT(E)}$ = Effective output voltage

The output voltage when " $V_{OUT(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.

^(*4) $Vdif=\{V_{IN1}-V_{OUT1}\}$

 V_{OUT1} =A voltage equal to 98% of the output voltage whenever an amply stabilized I_{OUT} { $V_{\text{OUT}(T)}$ +1.0V} is input. V_{IN1} =The Input Voltage when V_{OUT1} appears as Input Voltage is gradually decreased.

^(*5) If $V_{OUT(T)}$ is less than 1.45V, $V_{OUT(T)}$ -30mV (MIN.), $V_{OUT(T)}$ + 30mV (MAX.)

^(*6) Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

^(*7) Please refer to the "Voltage Chart" table.

●XC6219/XC6211 Type G,H

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*5)	OTHECE	CONDITIONS	V _{OUT(T)} ^(*2)		V _{OUT(T)} (*2)	Onno	OII (OOI)
(2%)			×0.98	V _{OUT(T)} ^(*2)	×1.02		
Output Voltage (*6)	V _{OUT(E)} (*3)	I _{OUT} =30mA	V _{OUT(T)} (*2)		V _{OUT(T)} ^(*2)	V	1
(1%)			×0.99	V _{OUT(T)} ^(*2)	×1.01		
Maximum Output		(47)					_
Current	I _{OUTMAX}	V _{IN} =E-5 ^(*7)	E-4	-	-	mA	1
Load Regulation	ΔV_{OUT}	1mA≦I _{OUT} ≦100mA	-	15	50	mV	1
Load Regulation2	ΔV_{OUT2}	1mA≦I _{OUT} ≦300mA	-	-	100	mV	1
D 1 \(\sigma \) (*4)	Vdif1	I _{OUT} =30mA	-	Е	-1	\/	•
Dropout Voltage (*4)	Vdif2	I _{OUT} =100mA	-	Е	-2	mV	1
Supply Current							
(Type G)		V _{CE} =V _{IN=} V _{OUT(T)} +1.0V	-	28	55		
Supply Current	l _{DD}	V _{OUT} ≦0.95V, V _{IN} =2.0V		0=		μΑ	2
(Type H)		V _{CE} =V _{SS}	-	25	50		
Olevelle O verel		$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{IN}$		0.04	0.40		0
Stand-by Current	I _{STB}	V _{OUT} ≦0.95V, V _{CE} =V _{IN} =2.0V	-	0.01	0.10	μΑ	2
		V _{OUT(T)} +1.0V≦V _{IN} ≦6.0V					
5	ΔV _{OUT} /	V _{OUT} ≦0.95V, 2.0V≦V _{IN} ≦6.0V		0.01	0.20	%/V	
Line Regulation	(ΔV _{IN} •V _{OUT})	I _{OUT} =30mA	-				1
		V _{OUT} ≦1.75V, I _{OUT} =10mA					
Input Voltage	V _{IN}	-	2	-	6	V	-
Output Voltage	A)/ /	L =20A					
Temperature	ΔV _{OUT} /	I _{OUT} =30mA	-	±100	-	ppm/°C	1
Characteristics	(∆Topr•V _{OUT})	-40°C≦Topr≦85°C					
Dawar Coranho		V _{IN} =[V _{OUT(T)} +1.0]V+1.0Vp-p _{AC}					
Power Supply	PSRR	V _{OUT} ≦1.5, V _{IN} =2.5V+1.0Vp-p _{AC}	-	70	-	dB	4
Rejection Ratio		I _{OUT} =50mA、f=10kHz					
		$V_{IN}=V_{OUT(T)}+2.0V$, $V_{CE}=V_{SS}$					
Ot I insite a	11:	0.9V≦V _{OUT(T)} ≦1.75V		200		A	①
Current Limiter	llim	V _{IN} =V _{OUT(T)} +1.0V, V _{CE} =V _{SS}	-	380	-	mA	1
		1.8V≦V _{OUT(T)} ≦5.0V					
Chart Circuit Current		$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{ss}$		F0		m 1	①
Short Circuit Current	I _{SHORT}	$V_{OUT} \le 1.75V, V_{IN} = V_{OUT(T)} + 2.0V$	-	50	-	mA	1
CE 'High' Level Voltage	V _{CEH}	-	1.6	-	V _{IN}	V	1
CE 'Low' Level Voltage	V _{CEL}	-	-	-	0.25	V	1
CE 'High' Lovel Coment		V _{CE} =V _{IN} =V _{OUT(T)} +1.0V	0.40		0.40		2
CE 'High' Level Current	I _{CEH}	$V_{OUT} \le 0.95V, V_{CE} = V_{IN} = 2.0V$	-0.10	-	0.10	μΑ	¥)
CE 'Low' Level Current			-5.0		0.10		
(Type G)	1.	$V_{IN}=V_{OUT(T)}+1.0V$, $V_{CE}=V_{SS}$	-5.U	-	0.10	.,,	2
CE 'Low' Level Current	I _{CEL}	V _{OUT} ≦0.95V, V _{IN} =2.0V	-0.10	-	0.10	μΑ	⊌
(Type H)			-0.10	_	0.10		

^(*1) Unless otherwise stated, V_{IN} = $V_{OUT(T)}$ +1.0V. If V_{OUT} is less than 0.95V, V_{IN} = 2.0V.

^(*2) $V_{OUT(T)}$ = Specified output voltage

^(*3) $V_{OUT(E)}$ = Effective output voltage

The output voltage when " $V_{OUT(T)}$ +1.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.

^(*4) $Vdif=\{V_{IN1}-V_{OUT1}\}$

 $V_{\text{OUT1}}\text{=}A \text{ voltage equal to 98\% of the output voltage whenever an amply stabilized } I_{\text{OUT}} \{V_{\text{OUT(T)}}\text{+}1.0V\} \text{ is input.}$

 V_{IN1} =The Input Voltage when V_{OUT1} appears as Input Voltage is gradually decreased.

^(*5) If $V_{OUT(T)}$ is less than 1.45V, $V_{OUT(T)}$ -30mV (MIN.), $V_{OUT(T)}$ + 30mV (MAX.)

^(*6) Only for the $V_{\text{OUT}(T)}$ is more than 3.0V products.

^(*7) Please refer to the "Voltage Chart" table.

■ ELECTRICAL CHARACTERISTICS (Continued)

●Voltage Chart

SYMBOL		F	-0		F	<u>-</u> 1	F	:-2	E-3		
PARAMETER			Ī				L-Z		Power		
TAKAWETEK	OUTPUT	VOLTAGE	E OUTPUT VOLTAGE						DROPOUT		Supply
		%)		%)	VOLTAC	GE1 (mV)		GE2 (mV)	Rejection		
				V)	(I _{OUT} =30mA)		(I _{OUT} =100mA)		Ratio		
OUTPUT VOLTAGE		(V)		v)	Ta=	25°C	Ta=	25°C	Ta=25°C		
	V	DUT	V	OUT		dif1		dif2	PSRR		
$V_{OUT(T)}$	MIN	MAX	MIN	MAX	TYP	MAX	TYP	MAX	TYP		
0.90	0.870	0.930	-	-	1100	1110	1150	1200			
0.95	0.920	0.980	-	-	1100	1110	1100	1200			
1.00	0.970	1.030	-	-	1000	1010	1050	1100			
1.05	1.020	1.080	-	-	1000	1010	1000	1100			
1.10	1.070	1.130	-	-	900	910	950	1000			
1.15	1.120	1.180	-	-	300	310	550	1000			
1.20	1.170	1.230	-	-	800	810	850	900			
1.25	1.220	1.280	-	-	000	010	000	300			
1.30	1.270	1.330	-	-	700	710	750	800	65		
1.35	1.320	1.380	-	-	700	7 10	730	000			
1.40	1.370	1.430	-	-	600	610	650	700			
1.45	1.420	1.480	-	-	000	010	030	700			
1.50	1.470	1.530	-	-	500	510	550	600			
1.55	1.519	1.581	-	-	300	310	550	000			
1.60	1.568	1.632	-	-	400	.00 410	500	550			
1.65	1.617	1.683	-	-		410	300	330			
1.70	1.666	1.734	-	-		310	400	450			
1.75	1.715	1.785	-	-	300	310	400	450			
1.80	1.764	1.836	-	-	200	210	300	400			
1.85	1.813	1.887	-	-	200	210	300	400			
1.90	1.862	1.938	-	-	120	150	280	380			
1.95	1.911	1.989	-	-	120	130	200	300			
2.00	1.960	2.040	-	-				350			
2.05	2.009	2.091	-	-				330			
2.10	2.058	2.142	-	-					1		
2.15	2.107	2.193	-	-				330			
2.20	2.156	2.244	-	-	80	120	240	330			
2.25	2.205	2.295	-	-	OU	120	240				
2.30	2.254	2.346	-	-							
2.35	2.303	2.397	-	-				310	70		
2.40	2.352	2.448	-	-				310	10		
2.45	2.401	2.499	-	-							
2.50	2.450	2.550	-	-							
2.55	2.499	2.601	-	-							
2.60	2.548	2.652	-	-	70			200			
2.65	2.597	2.703	-	-				290			
2.70	2.646	2.754	-	-		100	220				
2.75	2.695	2.805	-	-		100	220				
2.80	2.744	2.856	-	-]		
2.85	2.793	2.907	-	-				270			
2.90	2.842	2.958	-	-				270			
2.95	2.891	3.009	-	-							

■ ELECTRICAL CHARACTERISTICS (Continued)

■Voltage Chart

SYMBOL	E-0			Е	-1	Е	-2	E-3	
PARAMETER					DROPOUT		DROPOUT		Power
	OUTPUT	VOLTAGE				VOLTAGE1 (mV)		VOLTAGE2 (mV)	
	(2)	%)				30mA)		00mA)	Rejection
	(\	V)	()	V)	(1001 0011111)		(-001		Ratio
OUTPUT VOLTAGE					Ta=25°C		Ta=25°C		Ta=25°C
$V_{OUT(T)}$	Vo	DUT	Vo	DUT	Vo	lif1	Vo	lif2	PSRR
- 001(1)	MIN	MAX	MIN	MAX	TYP	MAX	TYP	MAX	TYP
3.00	2.940	3.060	2.970	3.030				270	
3.05	2.989	3.111	3.020	3.081					
3.10	3.038	3.162	3.069	3.131					
3.15	3.087	3.213	3.119	3.182					
3.20	3.136	3.264	3.168	3.232					
3.25	3.185	3.315	3.218	3.283					
3.30	3.234	3.366	3.267	3.333					
3.35	3.283	3.417	3.317	3.384					
3.40	3.332	3.468	3.366	3.434					
3.45	3.381	3.519	3.416	3.485		90	200		
3.50	3.430	3.570	3.465	3.535			200	250	
3.55	3.479	3.621	3.515	3.586				250	
3.60	3.528	3.672	3.564	3.636					
3.65	3.577	3.723	3.614	3.687					
3.70	3.626	3.774	3.663	3.737					
3.75	3.675	3.825	3.713	3.788					
3.80	3.724	3.876	3.762	3.838					
3.85	3.773	3.927	3.812	3.889					
3.90	3.822	3.978	3.861	3.939					
3.95	3.871	4.029	3.911	3.990	60				
4.00	3.920	4.080	3.960	4.040	00				70
4.05	3.969	4.131	4.010	4.091					
4.10	4.018	4.182	4.059	4.141					
4.15	4.067	4.233	4.109	4.192					
4.20	4.116	4.284	4.158	4.242					
4.25	4.165	4.335	4.208	4.293					
4.30	4.214	4.386	4.257	4.343					
4.35	4.263	4.437	4.307	4.394					
4.40	4.312	4.488	4.356	4.444					
4.45	4.361	4.539	4.405	4.494		80	180	230	
4.50	4.410	4.590	4.455	4.545		00	100	230	
4.55	4.459	4.641	4.504	4.595					
4.60	4.508	4.692	4.554	4.646					
4.65	4.557	4.743	4.603	4.696					
4.70	4.606	4.794	4.653	4.747					
4.75	4.655	4.845	4.702	4.797					
4.80	4.704	4.896	4.752	4.848					
4.85	4.753	4.947	4.801	4.898					
4.90	4.802	4.998	4.851	4.949					
4.95	4.851	5.049	4.900	4.999					
5.00	4.900	5.100	4.950	5.050	50	70	160	210	

■ELECTRICAL CHARACTERISTICS (Continued)

● Specification & Condition by Series

SYMBOL	E-5	E-4		
CONDITION, RATINGS	INPUT VOLTAGE (V)	MAX. OUTPUT CURRENT		
	INFOT VOLIAGE (V)	(mA)		
OUTPUT VOLTAGE (V)	V_{IN}	MIN		
0.90~0.95	2.5	260		
1.00~1.05	2.5	260		
1.10~1.15	2.6	270		
1.20~1.25	2.7	290		
1.30~1.35	2.8			
1.40~1.45	2.9	300		
1.50~1.95	3.0	300		
2.00~6.00	V _{OUT(T)} +1.0			

^{*} $V_{\text{OUT}(T)}$ =Nominal output voltage

XC6219/XC6211 Series

TEST CIRCUITS

Circuit ①

Circuit ②

Circuit ③

Circuit 4

*TEST CIRCUIT V_{CE} (CE Pin Voltage)

ACTIVE

XC6211/XC6219 Type A,B,E,F: $V_{CE}=V_{IN}$ XC6211/XC6219 Type C,D,G,H: $V_{CE}=V_{SS}$

STANDBY

XC6211/XC6219 Type A,B,E,F: $V_{CE}=V_{SS}$ XC6211/XC6219 Type C,D,G,H: $V_{CE}=V_{IN}$

■OPERATIONAL EXPLANATION

<Output Voltage Control>

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET, which is connected to the Vout pin, is then driven by the subsequent output signal. The output voltage at the Vout pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the CE pin's signal

<Low ESR Capacitors>

With the XC6219/XC6211 series, a stable output voltage is achievable even if used with low ESR capacitors as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (CL) is connected as close as possible to the output pin (Vout) and the Vss pin. Please use an output capacitor with a capacitance value of at least $1.0 \,\mu$ F. Also, please connect an input capacitor (CIN) of $1.0 \,\mu$ F between the VIN pin and the Vss pin in order to ensure a stable power input.

Stable phase compensation may not be ensured if the capacitor runs out capacitance when depending on bias and temperature. In case the capacitor depends on the bias and temperature, please make sure the capacitor can ensure the actual capacitance.

<Current Limiter, Short-Circuit Protection>

The XC6219/XC6211 series includes a combination of a fixed current limiter circuit & a foldback circuit, which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6219/6211 series. In shutdown mode, output at the Vout pin will be pulled down to the Vss level via R1 & R2. The operational logic of the IC's CE pin is selectable (please refer to the selection guide). Note that as the standard XC6219/6211B type's regulator 1 and 2 are both 'High Active/No Pull-Down', operations will become unstable with the CE pin open. Although the CE pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the CE pin input current will increase when the IC is in operation. We suggest that you use this IC with either a VIN voltage or a Vss voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry.

■NOTES ON USE

- 1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep the resistance low between V_{IN} and V_{SS} wiring in particular.
- 3. Please wire the input capacitor (C_{IN}) and the output capacitor (C_L) as close to the IC as possible.
- 4. The IC is controlled with constant current start-up. Start-up sequence control is requested to draw a load current after even nominal output voltage rising up the output voltage.
- 5. Torex places an importance on improving our products and their reliability.

 We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.

■TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(2) Output Voltage vs. Input Voltage

XC6219/11x182

XC6219/11x182

XC6219/11x252

XC6219/11x252

XC6219/11x302

XC6219/11x302

(3) Dropout Voltage vs. Output Current

XC6219/11x302

(4) Supply Current vs. Input Voltage

XC6219/11x252

(4) Supply Current vs. Input Voltage (Continued)

XC6219/11x302

(5) Output Voltage vs. Ambient Temperature

20

Ambient Temperature Topr (°C)

80

100

1.60

-40

-20

(6) Supply Current vs. Ambient Temperature

(7) Input Transient Response

(7) Input Transient Response (Continued)

(8) Load Transient Response

(8) Load Transient Response (Continued)

(8) Load Transient Response (Continued)

(9) Ripple Rejection Rate

XC6219/11x302

■PACKAGING INFORMATION

1.6±0.05

0, 8

TOIREX 23/30

XC6219/XC6211 Series

● SOT-25 Power Dissipation

Power dissipation data for the SOT-25 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board Dimensions: 40 x 40 mm (1600 mm² in one side)

Metal Area: Copper (Cu) traces occupy 50% of the board

area in top and back faces.

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient Temperature (85°C)

Board Mount (Tjmax=125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	600	166.67
85	240	100.07

SOT-89-5 Power Dissipation

Power dissipation data for the SOT-89-5 is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board Dimensions: 40 x 40 mm (1600 mm² in one side)

Metal Area: Copper (Cu) traces occupy 50% of the board

area in top and back faces.

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 5 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient Temperature (85°C)

Board Mount (Tjmax=125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance (°C/W)
25	1300	76.92
85	520	70.92

XC6219/XC6211 Series

USP-6B Power Dissipation

Power dissipation data for the USP-6B is shown in this page.

The value of power dissipation varies with the mount board conditions.

Please use this data as the reference data taken in the following condition.

1. Measurement Condition

Condition: Mount on a board

Ambient: Natural convection

Soldering: Lead (Pb) free

Board Dimensions: 40 x 40 mm (1600 mm² in one side)

Metal Area: Copper (Cu) traces occupy 50% of the board

area in top and back faces.

Package heat-sink is tied to the copper traces

Material: Glass Epoxy (FR-4)

Thickness: 1.6 mm

Through-hole: 4 x 0.8 Diameter

Evaluation Board (Unit: mm)

2. Power Dissipation vs. Ambient Temperature

Board Mount (Tj max = 125°C)

Ambient Temperature (°C)	Power Dissipation Pd (mW)	Thermal Resistance(°C/W)
25	1000	400.00
85	400	100.00

■MARKING RULE

[XC6219 Series]

●SOT-25, SOT-89-5

① represents product series

MARK	PRODUCT SERIES
L	XC6219xxxxxx

② represents type of regulator

	MARK						
V _{OUT} 100mV II	NCREMENTS	V _{OUT} 50mV IN	PRODUCT SERIES				
V _{OUT} :0.1~3.0V	V _{OUT} :3.1~6.0V	V _{OUT} :0.15~3.05V V _{OUT} :3.15~6.05V					
V	А	Е	L	XC6219Axxxxx			
Х	В	F	M	XC6219Bxxxxx			
Υ	С	Н	N	XC6219Cxxxxx			
Z	D	K	Р	XC6219Dxxxxx			
<u>V</u>	<u>A</u>	<u>E</u>	Ш	XC6219Exxxxx			
<u>X</u>	B	<u>F</u>	<u>M</u>	XC6219Fxxxxx			
<u>Y</u>	C	<u>H</u>	<u>N</u>	XC6219Gxxxxx			
<u>Z</u>	<u>D</u>	<u>K</u>	<u>P</u>	XC6219Hxxxxx			

3 represents output voltage

MARK	OUTPUT VOLTAGE (V)		MARK	OU	TPUT V	OLTAGE	(V)		
0	-	3.1	-	3.15	F	1.6	4.6	1.65	4.65
1	-	3.2	1	3.25	Н	1.7	4.7	1.75	4.75
2	-	3.3	ı	3.35	K	1.8	4.8	1.85	4.85
3	-	3.4	ı	3.45	L	1.9	4.9	1.95	4.95
4	-	3.5	ı	3.55	М	2.0	5.0	2.05	-
5	-	3.6	ı	3.65	N	2.1	1	2.15	-
6	-	3.7	ı	3.75	Р	2.2	1	2.25	-
7	-	3.8	ı	3.85	R	2.3	1	2.35	-
8	0.9	3.9	0.95	3.95	S	2.4	1	2.45	-
9	1.0	4.0	1.05	4.05	T	2.5	-	2.55	-
Α	1.1	4.1	1.15	4.15	U	2.6	1	2.65	-
В	1.2	4.2	1.25	4.25	V	2.7	1	2.75	-
С	1.3	4.3	1.35	4.35	Χ	2.8	-	2.85	-
D	1.4	4.4	1.45	4.45	Υ	2.9	-	2.95	-
Е	1.5	4.5	1.55	4.55	Z	3.0	-	3.05	-

$\textcircled{4} \ \ \text{represents production lot number}$

0 to 9, A to Z reverse character of 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

XC6219/XC6211 Series

■MARKING RULE (Continued)

●USP-6B

12 represents product series

MA	RK	PRODUCT SERIES
1	2	FRODUCT SERIES
1	9	XC6219xxxxDx

3 represents type of regulator

MARK	TYPE	PRODUCT SERIES
Α	High Active, pull-down resistor built-in (semi-custom)	XC6219AxxxMx
В	High Active, no pull-down resistor built-in (standard)	XC6219BxxxMx
С	Low Active, pull-up resistor built-in (semi-custom)	XC6219CxxxMx
D	Low Active, no pull-up resistor built-in (semi-custom)	XC6219DxxxMx
E	High Active, pull-down resistor built-in (semi-custom)	XC6219ExxxDx
F	High Active, no pull-down resistor built-in (standard)	XC6219FxxxDx
Z	Low Active, pull-up resistor built-in (semi-custom)	XC6219GxxxDx
Н	Low Active, no pull-up resistor built-in (semi-custom)	XC6219HxxxDx

4 represents product series

MARK	VOLTAGE (V)	PRODUCT SERIES
3	3.X	XC6219x3xxDx
5	5.X	XC6219x5xxDx

5 represents output voltage

MARK	VOLTAGE	PRODUCT SERIES	SYMBOL	VOLTAGE	PRODUCT SERIES
0	X.0	XC6219xx0xDx	Α	X.05	XC6219xx0ADx
1	X.1	XC6219xx1xDx	В	X.15	XC6219xx1ADx
2	X.2	XC6219xx2xDx	С	X.25	XC6219xx2ADx
3	X.3	XC6219xx3xDx	D	X.35	XC6219xx3ADx
4	X.4	XC6219xx4xDx	Е	X.45	XC6219xx4ADx
5	X.5	XC6219xx5xDx	F	X.55	XC6219xx5ADx
6	X.6	XC6219xx6xDx	Н	X.65	XC6219xx6ADx
7	X.7	XC6219xx7xDx	K	X.75	XC6219xx7ADx
8	X.8	XC6219xx8xDx	L	X.85	XC6219xx8ADx
9	X.9	XC6219xx9xDx	М	X.95	XC6219xx9ADx

6 represents production lot number

0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

^{*} No character inversion used.

■MARKING RULE (Continued)

[XC6211 Series]

●SOT-25

① represents product series

MARK	PRODUCT SERIES			
A	XC6211xxxxMx			

② represents type of regulator

VOUT 100mV INCREMENTS		Vout 50mV II	PRODUCT SERIES	
Vout:0.1~3.0V	Vout:3.1~6.0V	Vout:0.15~3.05V	Vout:3.15~6.05V	
V	Α	Е	L	XC6211AxxxMx
X	В	F	М	XC6211BxxxMx
Y	С	Н	N	XC6211CxxxMx
Z	D	K	Р	XC6211DxxxMx
<u>V</u>	<u>A</u>	<u>E</u>	<u>L</u>	XC6211ExxxMx
<u>X</u>	<u>B</u>	<u>F</u>	<u>M</u>	XC6211FxxxMx
<u>Y</u>	<u>C</u>	<u>H</u>	<u>N</u>	XC6211GxxxMx
<u>Z</u>	<u>D</u>	<u>K</u>	<u>P</u>	XC6211HxxxMx

3 represents output voltage

MARK	OUTPUT VOLTAGE (V)			MARK	OUTPUT VOLTAGE (V)				
0	-	3.1	1	3.15	F	1.6	4.6	1.65	4.65
1	-	3.2	ı	3.25	Η	1.7	4.7	1.75	4.75
2	-	3.3	1	3.35	K	1.8	4.8	1.85	4.85
3	-	3.4	ı	3.45	L	1.9	4.9	1.95	4.95
4	-	3.5	ı	3.55	М	2.0	5.0	2.05	5.05
5	-	3.6	-	3.65	N	2.1	5.1	2.15	5.15
6	-	3.7	-	3.75	Р	2.2	5.2	2.25	5.25
7	-	3.8	1	3.85	R	2.3	5.3	2.35	5.35
8	-	3.9	-	3.95	S	2.4	5.4	2.45	5.45
9	-	4.0	-	4.05	Т	2.5	5.5	2.55	5.55
Α	-	4.1	-	4.15	U	2.6	5.6	2.65	5.65
В	-	4.2	-	4.25	V	2.7	5.7	2.75	5.75
С	-	4.3	-	4.35	Х	2.8	5.8	2.85	5.85
D	-	4.4	1	4.45	Y	2.9	5.9	2.95	5.95
Е	-	4.5	-	4.55	Z	3.0	6.0	3.05	6.05

4 represents production lot number

0 to 9, A to Z reverse character of 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.

www.s-manuals.com