实验安排

数字逻辑电路课程有16个学时的实验,初步安排如下:

计算机1班 第8,10周 周三上午 1-4 (8:00-11:40) 计算机2班 第9,11周 周三上午 1-4 (8:00-11:40) 计算机3班 第9-12周 周二的下午5-6节 计算机4班 第10-13周 周一晚上 9-10 (19:00-20:50) 计算机5班 第9-12周 周三晚上9-10 (19:00-20:50) 物联网1班 第8,10周 周三下午5-8 (14:00-17:40) 物联网2班 第9,11周 周三下午5-8 (14:00-17:40)

计算机1班 第13,14周 周二上午4节 (8:00-11:40) 计算机2班 第13,14周 周二下午4节 (14:00-17:40) 计算机3班 第13,14周 周二晚上4节 (18:30-22:10) 计算机4班 第13,14周 周四上午4节 (8:00-11:40) 计算机5班 第13,14周 周四下午4节 (14:00-17:40) 物联网1班 第13,14周 周三下午4节 (14:00-17:40) 物联网2班 第13,14周 周三晚上4节(18:30-22:10) 实验设备台套数有限,所以一次只能安排一个班实验。

实验地点:综合实验楼305房间

第五章作业布置

- 1、下周二上课时间进行随堂期中考试,考试时间1节课。试卷题量大。考试内容:前5章。Verilog HDL暂时不考,期末必考。
- 2、由于期中考试,作业推迟一周交。第8周才交作业。
- 3、本次(4月4号)作业要求:

每个同学自己从第五章的课后习题中选 3题做到作业本中,至于做哪3题,每个同 学自己选择。不作硬性规定。我在检查作 业时,只看是否做了3题。(从你购买的课

本上选题做就可以了。)

数字逻辑

丁贤庆

ahhfdxq@163.com

第五章

锁存器和触发器

5.4 触发器的电路结构和工作原理

5.4.1 主从D触发器的电路结构和工作原理

1. 电路结构

主锁存器与从锁存器结构相同

 TG_1 和 TG_4 的工作状态相同

 TG_2 和 TG_3 的工作状态相同

2. 工作原理

(1) CP=0时:

$$\overline{C}$$
 =1, C =0,

 TG_1 导通, TG_2 断开——输入信号D 送入主锁存器。

Q'跟随D端的状态变化,使Q'=D。

 TG_3 断开, TG_4 导通——从锁存器维持在原来的状态不变。

2. 工作原理

(2) CP由0跳变到1:

$$\overline{C}$$
 =0, C =1,

TG₁断开,TG₂导通——输入信号D 不能送入主锁存器。 主锁存器维持原态不变。

 TG_3 导通, TG_4 断开——从锁存器Q'的信号送Q端。

触发器的状态仅仅取决于CP信号上升沿到达前瞬间的D信号

5.4.2 典型主从D触发器集成电路

74HC/HCT74中D触发器的逻辑图

74HC/HCT74的逻辑符号和功能表

国标逻辑符号

74HC/HCT74的功能表

输入				输	出
$\overline{S}_{\mathrm{D}}$	$\overline{R}_{\mathrm{D}}$	CP	D	Q	\overline{Q}
L	Н	×	×	Н	L
Н	L	×	×	L	Н
L	L	×	×	Н	Н
$\overline{S}_{\mathrm{D}}$	$\overline{R}_{ m D}$	CP	D	Q^{n+1}	$\overline{Q^{n+1}}$
Н	Н	↑	L	L	H
H	Н	†	H	H	L

具有直接置1、直接置0,正边沿触发的D功能触发器

5.4.3 主从D触发器的动态特性

动态特性反映其触发器对输入信号和时钟信号间的时间要求,以及输出状态对时钟信号响应的延迟时间。

建立时间t_{SU},保证与D相关的电路建立起稳定的状态,使触发器状态得到正确的转换。

保持时间 $t_{\rm H}$: 保证D状态可靠地传送到Q

触发脉冲宽度 t_{w} : 保证内部各门正确翻转。

传输延迟时间t_{PLH}和t_{PHL}: 时钟脉冲CP上升沿至输出端新状态 稳定建立起来的时间

最高触发频率 f_{cmax} : 触发器内部都要完成一系列动作,需要一定的时间延迟,所以对于CP最高工作频率有一个限制。

或非门构成的SR锁存器

输入		输	出	备注	
R	S	Qn	Q ⁿ⁺¹	Q^{n+1}	
0	0	0	0	1	
0	0	1	0	1	保持
0	1	0	1	0	
0	1	1	1	0	置1
1	0	0	0	1	
1	0	1	0	1	置0
1	1	0	0	0	
1	1	1	0	0	禁止

用与非门构成的基本SR锁存器

用与非门构成的基本SR锁存器

a.电路图

b. 简化功能表

c.国标逻辑符号

\overline{R}	\overline{S}	Q	\overline{Q}
1	1	不变	不变
1	0	1	0
0	1	0	1
0	0	1	1

约束条件:

$$\overline{S} + \overline{R} = 1$$

5.4.4 其他电路结构的触发器

1. 维持阻塞触发器

2、工作原理

$$CP = 0$$

$$Q_4 = \overline{\mathbf{D}}, \quad Q_1 = D$$

$$Q^{n+1}=Q^n$$

D信号存于 Q_4

D 信号进入触发器, 为状态刷新作好准备

当CP 由0 跳变为1 $Q^{n+1} = D$

$$Q^{n+1} = D$$

在CP脉冲的上升沿,触发器按此前的D信号刷新

当*CP* = **1**

D信号不影响 \overline{S} 、 \overline{R} 的状态,Q的状态不变

在CP脉冲的上升沿到来瞬间使触发器的状态变化

5.5 触发器的逻辑功能

- 5.5.1 D 触发器
- 5.5.2 JK 触发器
- 5.5.2 T触发器
- 5.5.3 SR 触发器
- 5.5.4 D触发器功能的转换

5.5 触发器的逻辑功能

不同逻辑功能的触发器国际逻辑符号

D触发器

T触发器

JK 触发器

RS 触发器

5.5.1 D 触发器

1. 特性表

D	Q^n	Q^{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

2. 特性方程

$$Q^{n+1} = D$$

3. 状态图

5.5.2 JK 触发器

图 5.4.8 利用传输延迟的 JK 触发器的逻辑电路

图 5.4.9 由 1 变 0 后瞬间输出 SR 锁存器的简化电路

$$Q^{n+1} = \overline{SRQ^n} = \overline{JQ^n} \overline{KQ^nQ^n}$$

$$Q^{n+1} = J \overline{Q^n} + \overline{K}Q^n$$

5.5.2 JK 触发器

1.特性表

J	K	Q ⁿ	Q ⁿ⁺¹	说 明
0	0	1		状态不变
0	1	1	0	置 0
	0	1	processory processory	置 1
present.	jenneni	1		翻转

2.特性方程

$$Q^{n+1} = J\overline{Q^{n}} + \overline{K}Q^{n}$$

3.状态转换图

例5.4.1 设下降沿触发的JK触发器时钟脉冲和J、K信号的波形如图所示试画出输出端Q的波形。设触发器的初始状态为0。

5.5.3 T触发器

逻辑符号

特性方程

$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n$$

特性表

T	Q ⁿ	Q^{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

状态转换图

4. T'触发器

逻辑符号

时钟脉冲每作用一次,触发器翻转一次。

5.5.4 SR 触发器

1. 特性表

Q^n	S	R	Q^{n+1}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	不确定
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	不确定

2. 特性方程

$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ SR = 0 \quad (约束条件) \end{cases}$$

3. 状态图 S=1 R=0

R=1

5.5.5 D触发器功能的转换

1.D 触发器构成 JK 触发器

2. D 触发器构成 T 触发器

$$Q^{n+1} = D$$

$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n$$

$$D = T\overline{Q} + \overline{T}Q = T \oplus Q$$

3. D 触发器构成 T' 触发器

小 结

- 锁存器和触发器都是具有存储功能的逻辑电路,是构成时序电路的基本逻辑单元。每个锁存器或触发器都能存储1位二值信息。
- 锁存器是对脉冲电平敏感的电路,它们在一定电平作用下改变状态。
- 触发器是对时钟脉冲边沿敏感的电路,它们在时钟脉冲的上升沿或下降沿作用下改变状态。
- 触发器按逻辑功能分类有D触发器、JK触发器、T(T') 触发器和SR触发器。它们的功能可用特性表、特性方程和状态图来描述。触发器的电路结构与逻辑功能没有必然联系。

5.6 用Verilog HDL描述锁存器和触发器

5.6.1 时序电路建模基础

5.6.2 锁存器和触发器的Verilog建模

5.6.1 时序电路建模基础

Verilog行为级描述用关键词initial或always,但 initial是面向仿真,不能用于逻辑综合,本书不介绍。 always是无限循环语句,其用法为:

always@(事件控制表达式(或敏感事件表))

begin

块内局部变量的定义:

过程赋值语句;

end

敏感事件分为电平敏感事件和边沿触发事件:

电平敏感事件(如锁存器):

always@(sel or a or b)

sel、a、b中任意一个电平发生变化,后面的过程赋值语句将执行一次。

边沿敏感事件(如触发器):

always@(posedge CP or negedge CR)

CP的上升沿或CR的下降沿来到,后面的过程语句就会执行。

过程赋值语句有阻塞型和非阻塞型:

阻塞型用"="表示,多条语句顺序执行。

```
begin
B=A;
C=B+1;
end
```

非阻塞型用"<="表示,语句块内部的语句并行执行。

```
begin
B<=A;
C<=B+1;
end
```


5.6.2 锁存器和触发器的Verilog建模实例

```
module D latch (Q, D, E); //D锁存器的描述
 output Q;
 input D, E;
 reg Q;
 always @(E or D)
  if (E) Q \le D; //Same as: if (E== 1)
endmodule
module DFF (Q, D, CP); //D触发器的描述
 output Q;
 input D, CP;
 reg Q;
 always @(posedge CP)
  Q \leq D;
endmodule
```