Subject Index

Analysis of Means (ANOM), 20–22, 42–47, 64, 68–69, 121, 135, 152, 405 assumptions, 555 for attributes data, 47 nonparametric, 47	sequential experimentation, 3, 4 example of, 222–225 training for designing experiments, 544–545 use of catapult, 545
with unequal variances, 45	treatments, 12
Analysis of Variance (ANOVA), 20–22, 35,	unbalanced data, 40
58, 62–64, 75, 81, 83, 116, 117, 123,	Bayes plot, 138
134, 152	Box–Cox transformation, 232
identity, 40	
Kruskal–Wallis, 46	Classification and regression trees (CART), 107
Basic concepts	Consolidated Standards of Reporting Trials
blocking, 13	(CONSORT), 430
choice of factor levels, 14, 15, 17	
experimental design objectives, 3	Designs
experimental units, 12	Addelman, 86
experimentation, 13, 162	analytic studies, 500
by students, 162	assessing the capability of a system,
steps, 13	528
hypothesis testing, 9	calibration, 525–526
power, 38	constrained least squares, 525
randomization, 6, 7, 13, 223	method of Lagrangian multipliers, 525
complete, 31	catalog of, 284
restricted, 148	categorical response variables, 524
replication, 8, 123, 551	completely randomized design
built in, 122	assumptions, 32–33
sample size determination, 9–11	checking, 34
selecting factors, 14	degrees of freedom, 41

 $\begin{tabular}{ll} \it Modern \, Experimental \, Design & By \, Thomas \, P. \, Ryan \\ \it Copyright \, @ \, 2007 \, John \, Wiley \, \& \, Sons, \, Inc. \end{tabular}$

Designs (cont.)	mixed factorials, 263-266
efficiency relative to RCB design,	constructing, 265
61	examples, 264, 266–273
unequal variances, 41–42	need for, 263–264
computer experiments, 523	Graeco-Latin square, 74, 80–84, 91
space-filling designs, 523–524	application, 82
cost-minimizing, 522	degrees of freedom limitations, 81–82
Cotter, 487–488	hyper, 90–91
factor correlations, 488	model, 80
cross-classified (factorial), 292	power, 82
crossover (changeover), 429	sets of, 82, 84
advantages, 430	use of ANOM, 83
applications, 429–430	incomplete block designs, 65–71, 90
computer analysis, 437	α -designs, 70–71, 90
designs for carryover effects, 432–435	balanced (BIB), 65–69, 84, 85, 526
Williams squares, 433–434	analysis, 66–68
example, 435–436	recovery of interblock information, 68
disadvantages, 430, 431	use of ANOM, 68–69
examples, 431	lattice, 70, 79
optimal, 431, 432	nonparametric analysis, 70
efficiency, 190	partially balanced, 69–70
df-efficiency, 222	John's 3/4 designs, 216–219
D-efficiency, 320, 330, 486, 487,	Latin square, 70–79, 84–85, 228, 562
506–507	assumptions, 72–74
G-efficiency, 283, 330	efficiency, 77
equileverage, 501–503	example, 74–76
factorial, 101	missing values, 86
2 ² , 101–102	example, 88
example, 103–106	model, 74
2 ³ , 119–120	standard form, 71, 72
examples, 120–122	use of ANOM, 76, 79
2 ⁵ , 136	using multiple Latin squares, 77–79
2^k , 142	microarray experiments, 529–530
blocking, 141	mixture, 522–523
example, 142–144	ANOM, 523
3 ² , 248	optimal, 523
decomposing the A*B interaction,	model-robust, 528–529
251	multiple responses, 452–453
example, 252	nested (hierarchical), 291
3 ^k , 248–257	ANOM, 302
inference, 252	applications, 292–293
interaction components, 250, 277,	estimating variance components,
288	300–301
linear effect, 253	examples, 294–298
quadratic effect, 253	factor, 292
bad data, 127–130	model, 292
example, 131–134	factorial, 291
blocking, 194	software shortcomings, 295–296
missing data, 138–140	a workaround, 295–296
,	

staggered, 298–300	efficiency, 61
with factorial structure, 300	missing values, 86–87
nonlinear models, 528	number of blocks to use, 59
non-normal responses, 529	use of ANOM, 64
nonorthogonal, 212	repeated measures, 425
inadvertent, 225	advantages, 425
nonregular, 170	carryover effects, 427
defined, 170	crossover designs, 429
one-factor-at-a-time (OFAT) designs, 3,	example, 428
115–116, 483–487	how many?, 437
advantages, 486, 487	missing data and imputation, 438
nonorthogonality, 486, 487	response surface, 360
OFAT designs versus OFAT	applications of, 361
experimentation, 484	blocking, 394–397
statistical process control checks, 487	Box-Behnken, 386-389, 477, 478, 502
strict, 485, 486	blocking, 396
optimal, 69, 503-507	rotatability, 387
applications, 507	central composite (CCD), 361, 363,
criticisms, 504, 505	365, 368, 369, 373–377, 385, 389,
D-optimal, 279, 281, 282, 330, 364,	395, 397, 405, 495, 502
504, 507, 508, 512, 513, 532	blocking, 394–395
Bayesian, 504–505	centerpoints, 373-376
CONVERT algorithm, 505	example, 383–384
E-optimal, 505	face centered cube, 377, 404
G-optimal, 505	inscribed (CCI), 377, 388
GH-optimal, 511	uniform precision design, 375
incorporating costs, 522	comparison, 397
I-optimal, 364	desirable properties, 360–361
L-optimal, 505	orthogonality, 375
model-robust, 504	rotatability, 375–377
Q-optimal, 511	Doehlert (uniform shell) designs, 393
orthogonal arrays, 102, 138, 170, 229,	applications, 393
282, 321, 499	Draper–Lin (small composite) designs,
combined, 314, 316, 318	377–383
compound, 318, 319	blocking, 396, 397
inner, 314, 318, 321, 326	eligible projected, 363
mixed levels, 275–277, 321	for computer simulations, 404
outer, 314, 318, 321, 326	Hoke, 394, 397
product, 314–316, 318	hybrid, 390
orthogonal main effect plans, 278, 489	311A, 391
Plackett–Burman, 212, 215, 230, 231, 336,	Koshal, 393
378–379, 381, 383, 405, 489, 532	noncentral composite, 405
applications, 494–498, 542	number of designs to use, 362–364
foldover, 494	optimal, 405
projective properties, 493, 494	row-column, 406
projective properties, 475, 474	small factor changes, 364
randomized complete block (RCB)	split factor changes, 304 split factorial, 405
design, 56–64, 77, 195, 344	restricted regions of operability, 508–514
assumption, 57–58	examples, 508–514
assumption, 57–50	Champies, 500–514

Designs (sout)	ummanlicated 114 116
Designs (cont.)	unreplicated, 114, 116
robust, 311	weighing, 524–528
rotation, 488	with noise factors, 316–318
saturated, 105, 138, 489	Youden design, 84–86
screening, 15, 360, 489–500	lists of, 86
<i>p</i> -efficient, 500	model, 85
space-filling, 369, 385, 386, 514–521	replicated, 86
Latin hypercube, 369, 519–521	Dual response problem, 406
example, 520–521	
properties, 384–386	Effects
sphere-packing, 369, 385, 518–519	conditional main, 107, 109, 114, 115,
uniform, 364, 366, 368, 369, 389, 507,	121, 133, 134, 147, 179, 208,
514–518	209, 255–257, 317, 318, 372,
applications, 386	380, 381, 388, 389–390, 407,
definition, 515	467, 485, 492
split-lot, 345–346, 349	derivation of, 152
use of fractional factorials, 345–346	example, 108, 113
split-plot, 330–331, 349, 351, 560	necessary sample sizes for, 113
blocking, 342–343	two-split, 181
example, 333	confounded, 5, 12
analysis, 333–335	dispersion, 150, 312
versus incorrect complete	detecting, 150, 314
randomization analysis, 335	estimates, 114
in industry, 336	precision of, 153
example, 336–338, 355	relationship with regression
mirror image pairs design, 336	coefficients, 153, 177
Plackett–Burman designs, 343	interaction, 102, 106, 134
subplot, 332, 349	control \times noise, 315, 319
error, 333	generalized, 318
independent of whole plot error,	noise \times noise, 316
339	transformations, 114
whole plot, 331–332, 338, 349	Tukey test for, 117–118
error, 332	location, 312
with fractional factorials, 340-342	main, 102
example, 341	partial confounding, 5
with hard-to-change factors, 343	simple, 107
examples, 343–345	Evolutionary Operation (EVOP), 363–364,
split-split-plot, 345	531
split-unit, 330–331	Box–EVOP, 531
strip-plot (strip-block), 346–349	dealing with interactions, 531
applications, 347–349	simplex, 364
example, 346–347	Expected mean squares, 144–146, 273
use of fractional factorials, 346–348	for replicated 2 ² design, 153–155
supersaturated, 489, 498–500, 513, 563	in general, 155–157
nonorthogonality, 499	simple method of determining, 146
Taguchi, 312–315, 320–322, 544	
equivalent to suboptimal fractional	Factors
factorials, 313	control, 311, 316, 318, 321
trend-free, 521–522	fixed, 32, 101, 146

hard to change, 148–150, 212, 267, 332,	semi-foldover, 203–216, 233
335, 344, 484, 487, 507, 522	of a 2^{k-2} design, 204
software, 150	with software, 215
noise, 311, 312, 316, 318, 321	shortcomings, 203
not reset, 150	for natural subsets of factors, 226–228
qualitative, 6, 101	irregular fraction, 216, 220, 221
quantitative, 6, 101	minimum aberration, 192–194
random, 32, 146	missing data, 230
hypothesis tests, 146–147	mixed level, 274–275
False discovery rate (FDR), 137	linear effects, 276
Fractional factorials, 169	quadratic effects, 276
3/4 fractions, 216–219	number of clear effects criterion, 192–194
2^{k-p} , 176, 186	one fraction better than another?, 179–181
projective properties, 219–220	post-fractionation, 226, 227, 348–349
projective properties, 219–220 2^{k-1} , 170–181	
2^{k-2} , 181–187	pre-fractionation, 226
	projective properties, 170
example, 182–184	relationship with Latin squares, 228–229
2 ³⁻¹ , 171, 176, 178	replicated, 223
2 ⁴⁻¹ , 175, 180	resolution, 169, 187, 212, 233
2^{5-2} , 191	defined, 170
2^{6-2} , 202	small fractions, 220
3^{k-p} , 257–262, 362	
constructing, 260–262	Gage R&R (reproducibility and
linear and quadratic effects, 259	repeatability) study, 295
minimum aberration, 277	Gantt charts, 13
minimum confounded effects, 277	Generalized <i>F</i> -test, 42, 46
projective properties, 259	
3^{k-1} , 262–263	Hadamard matrix, 488
alias structure, 262	
3^{3-1} , 262–263	Journal of Statistics Education, 544
4 or more levels	
method of replacement, 278	Lenth's sample size determination applet,
4^{3-1} , 279	11, 39, 59, 77
16-point designs, 187	Lenth's PSE method, 124, 126–129, 131,
aliases and alias structure, 174, 177–179,	136–139, 173, 188, 233, 252, 319, 338,
283	470, 485, 489, 496, 560
partial aliasing/partial confounding, 174	Leverage values, 385, 501
alternatives to, 229	saturated design, 501
bad data, 230	Lurking variable, 6
blocking, 195	
examples, 196, 199	Measurement capability studies, 523
size two blocks, 200–201	Missing data, 22, 39–40, 48, 230
confounded effects, 174	Modeling variability, 316
defining relation, 171	Models
retrieving lost relation, 190–192	generalized linear, 529
df-efficiency, 222	hierarchical, 147, 390
foldover, 178, 200–203	mixed, 58
of a 2^{k-1} design, 201	nonhierarchical, 147, 378, 390, 407
mirror image, 200, 201	unrestricted, 156
mmor mage, 200, 201	umesmeted, 130

Modular arithmetic, 251, 279	Procter and Gamble, 320
Multiple comparisons, 36, 37	Rayovac, 347–348
Bonferroni intervals, 37, 38	Rothamsted Experimental Station, 179,
Scheffé's procedure, 38, 59, 60	182
Multiple readings, 8, 117, 123	102
Multiple response optimization, 447	Pareto effects chart/analysis, 126, 180, 213,
desirability function, 449	214, 255, 498
composite desirability, 450, 457	Processes in/out of statistical control, 18, 19,
example, 450	189, 255, 267
example, 430 exponential, 464	blocking out-of-control process, 60–61
importance constant, 451, 460, 461,	
	checking for, 141, 266, 487 check runs, 19
468	check runs, 19
maximization, 450, 457	Over experimental design 22
minimization, 450	Quasi-experimental design, 23
target value, 451	P ² 200 255 266 271 272 272 407
weight constant, 451, 460, 461	R ² , 208, 255, 266, 271, 273, 373, 497
desirability graph, 456	Region of operability, 364
dual response optimization, 452	irregular design space, 386
examples, 453–463	restricted, 387, 404, 508–514
frequent assumptions, 447	debarred observations, 387, 508, 509,
global optimum, 448	514 P
Hooke–Jeeves method, 450, 463, 464	Response surface methodology (RSM), 360
local optima, 448, 450	analyzing fitted surface, 398–404
overlaid contour plots, 447–449	contours of constant response, 398
pitfalls, 447, 455	ridge analysis, 403–404
variations, 463–464	method of Lagrangian multipliers,
genetic algorithm approach, 464	403
generalized reduced gradient algorithm,	with noise variables, 404
463–464	rising ridge, 398
mean squared error method, 464	stationary points, 400–403
piecewise desirability function, 463	confidence regions on, 402–403
Multi-vari plot, 530–531	in a three-stage operation, 418
NICTORNATECH H H 1 CC. C C 1	in the food industry, 417
NIST/SEMATECH e-Handbook of Statistical	method of steepest ascent/descent,
Methods, 18, 86, 111, 188, 347, 360,	370–373, 561
525, 545	example, 371–372
Normal probability plot methods, 136, 187,	modified method, 405
188, 194, 560	scale-independent methods, 373
Optimum operating conditions, 225, 360,	Satterthwaite's procedure, 271, 272
404	Shainin's variables search approach, 500
methods for determining, 360	Six Sigma, 22
Organizations cited	Sliding reference distribution, 36
American Society for Quality (ASQ), 1	Software for experimental design, 48, 89–90,
Booth Dispensers, Ltd., 499	151, 333, 350, 531–532
Morton Powder Coatings, 343	Cornerstone, 471
National Institute of Standards and	Dataplot, 135
Technology (NIST), 111, 135,	Design-Expert, 1, 11, 48, 89, 90, 151,154,
225, 524, 525	157, 175, 176, 177, 192, 201, 215,
-,- ,	,,,,,,

216, 217, 230–232, 246, 250, 252,	280, 287, 295, 300, 301, 321, 350,
279–281, 282, 291, 295, 313, 321,	365, 366, 374, 386, 392, 395, 396,
326, 328, 350, 369, 371, 379, 380,	398, 401, 407, 408, 427, 438, 445,
391–393, 396, 397, 407, 438, 452,	452, 470, 471, 475, 490, 491, 493,
457–462, 467–471, 480, 490, 492,	495, 501, 532
498, 504, 505, 518, 532	MIXSOFT, 523
D.o.E. Fusion Pro, 48, 151, 230, 232, 283,	R (CROSSDES), 434, 438
295, 321, 350, 356, 392, 407	RS/1, 508
Echip, 471	RS/Discover, 295, 350, 532
Gendex DOE toolkit, 90, 408, 511, 522	SAS Software, 64, 89–90, 157, 230, 271,
GOSSET, 1, 505	295, 297, 347, 350, 370, 404, 425,
JMP, 1, 48, 89, 90, 157, 176, 187, 192,	434, 437
201, 230–233, 265, 278–279, 281,	SPSS, 438
282, 289, 295, 297, 321, 366, 370,	Stat-ease, Inc., 130, 208, 221, 343
375, 392, 407, 408, 427, 438,	Statgraphics, 90, 233, 408
455–458, 460, 461, 464, 468–471,	Statistica, 233
480, 488, 505, 511, 512, 516–519,	Statistical process control methods, 19
532	Stepwise regression, 122, 207, 208, 277,
MathWorks, 520	497, 499
MAPLE, 403	Strong heredity assumption, 109
MINITAB, 1, 48, 64, 67, 87, 89, 90, 109,	
124, 127, 131, 135, 143, 146, 149,	Weak heredity assumption, 109
150, 154, 157, 176, 180, 186, 192,	
201, 230–233, 243, 244, 248–250,	Yates' algorithm, 172, 174
252, 255, 256, 269, 271–273, 275,	Yates order, 102–103, 127, 130, 134, 354