Objectives

Perform arithmetic operations with complex numbers

2 Solve quadratic equations with complex solutions

Intro

Complex numbers arose from the need to solve equations such as

$$x^2 + 1 = 0$$

•

Intro

Complex numbers arose from the need to solve equations such as

$$x^2 + 1 = 0$$

.

The solution to the above problem is

$$x = \pm \sqrt{-1}$$

Intro

Complex numbers arose from the need to solve equations such as

$$x^2 + 1 = 0$$

.

The solution to the above problem is

$$x = \pm \sqrt{-1}$$

 $\sqrt{-1}$ is the imaginary unit *i*.

Properties of *i*

•
$$i^2 = -1$$

Properties of i

•
$$i^2 = -1$$

• If c is a real number with $c \ge 0$, then $\sqrt{-c} = i\sqrt{c}$

A complex number is a number in the form a + bi, where a and b are real numbers and i is the imaginary unit.

A complex number is a number in the form a + bi, where a and b are real numbers and i is the imaginary unit.

A pure real number can be written as a + 0i and a pure imaginary number can be written as 0 + bi.

A complex number is a number in the form a + bi, where a and b are real numbers and i is the imaginary unit.

A pure real number can be written as a + 0i and a pure imaginary number can be written as 0 + bi.

Adding, subtracting, and multiplying complex numbers is a lot like that of real numbers.

A complex number is a number in the form a + bi, where a and b are real numbers and i is the imaginary unit.

A pure real number can be written as a + 0i and a pure imaginary number can be written as 0 + bi.

Adding, subtracting, and multiplying complex numbers is a lot like that of real numbers.

However, keep in mind that $i^2 = -1$.

Perform each indicated operation. Write your answers in a + bi form.

(a)
$$(1-2i)-(3+4i)$$

Perform each indicated operation. Write your answers in a + bi form.

(a)
$$(1-2i) - (3+4i)$$

= $1-2i-3-4i$

Perform each indicated operation. Write your answers in a + bi form.

(a)
$$(1-2i) - (3+4i)$$

= $1-2i-3-4i$
= $-2-6i$

(b)
$$(1-2i)(3+4i)$$

(b)
$$(1-2i)(3+4i)$$

= $3+4i-6i-8i^2$

(b)
$$(1-2i)(3+4i)$$

= $3+4i-6i-8i^2$
= $3-2i-8(-1)$

(b)
$$(1-2i)(3+4i)$$

= $3+4i-6i-8i^2$
= $3-2i-8(-1)$
= $3-2i+8$

(b)
$$(1-2i)(3+4i)$$

 $= 3+4i-6i-8i^2$
 $= 3-2i-8(-1)$
 $= 3-2i+8$
 $= 11-2i$

(c)
$$\sqrt{-3}\sqrt{-12}$$

(c)
$$\sqrt{-3}\sqrt{-12}$$

$$= i\sqrt{3} \cdot 2i\sqrt{3}$$

(c)
$$\sqrt{-3}\sqrt{-12}$$

$$= i\sqrt{3} \cdot 2i\sqrt{3}$$
$$= 2i^2\sqrt{9}$$

(c)
$$\sqrt{-3}\sqrt{-12}$$

$$= i\sqrt{3} \cdot 2i\sqrt{3}$$
$$= 2i^2\sqrt{9}$$
$$= -2(3)$$

(c)
$$\sqrt{-3}\sqrt{-12}$$

$$= i\sqrt{3} \cdot 2i\sqrt{3}$$
$$= 2i^2\sqrt{9}$$
$$= -2(3)$$
$$= -6$$

(d)
$$\sqrt{(-3)(-12)}$$

(d)
$$\sqrt{(-3)(-12)}$$

$$=\sqrt{36}$$

(d)
$$\sqrt{(-3)(-12)}$$

$$=\sqrt{36}$$

$$= 6$$

(e)
$$(x-(1+2i))(x-(1-2i))$$

(e)
$$(x - (1+2i))(x - (1-2i))$$

= $x^2 - x(1-2i) - x(1+2i) + (1+2i)(1-2i)$

(e)
$$(x - (1+2i))(x - (1-2i))$$

= $x^2 - x(1-2i) - x(1+2i) + (1+2i)(1-2i)$
= $x^2 - x + 2ix - x - 2ix + 1 - 2i + 2i - 4i^2$

(e)
$$(x - (1+2i))(x - (1-2i))$$

 $= x^2 - x(1-2i) - x(1+2i) + (1+2i)(1-2i)$
 $= x^2 - x + 2ix - x - 2ix + 1 - 2i + 2i - 4i^2$
 $= x^2 - 2x + 1 - 4(-1)$

(e)
$$(x - (1+2i))(x - (1-2i))$$

 $= x^2 - x(1-2i) - x(1+2i) + (1+2i)(1-2i)$
 $= x^2 - x + 2ix - x - 2ix + 1 - 2i + 2i - 4i^2$
 $= x^2 - 2x + 1 - 4(-1)$
 $= x^2 - 2x + 5$

Complex Conjugates

If z = a + bi is a complex number, then the conjugate of z (denoted \overline{z}) is

$$\overline{z} = a - bi$$

Complex Conjugates

If z = a + bi is a complex number, then the conjugate of z (denoted \overline{z}) is

$$\overline{z} = a - bi$$

Likewise, if
$$z = a - bi$$
,

$$\overline{z} = a + bi$$

Complex Conjugates

If z = a + bi is a complex number, then the conjugate of z (denoted \overline{z}) is

$$\overline{z} = a - bi$$

Likewise, if z = a - bi,

$$\overline{z} = a + bi$$

Complex conjugates are used to divide complex numbers and find complex solutions to equations.

Write your answer in a + bi form for

$$\frac{1-2i}{3-4i}$$

$$\frac{1-2i}{3-4i}$$

$$=\frac{1-2i}{3-4i}\left(\frac{3+4i}{3+4i}\right)$$

$$\frac{1-2i}{3-4i}$$

$$= \frac{1-2i}{3-4i} \left(\frac{3+4i}{3+4i} \right)$$
$$= \frac{3+4i-6i-8i^2}{9-12i+12i-16i^2}$$

$$\frac{1-2i}{3-4i}$$

$$= \frac{1-2i}{3-4i} \left(\frac{3+4i}{3+4i}\right)$$

$$= \frac{3+4i-6i-8i^2}{9-12i+12i-16i^2}$$

$$= \frac{11-2i}{25}$$

$$\frac{1-2i}{3-4i}$$

$$= \frac{1-2i}{3-4i} \left(\frac{3+4i}{3+4i}\right)$$

$$= \frac{3+4i-6i-8i^2}{9-12i+12i-16i^2}$$

$$= \frac{11-2i}{25}$$

$$= \frac{11}{25} - \frac{2}{25}i$$

Properties of Complex Conjugates

Let z and w be complex numbers.

$$\bullet$$
 $\overline{\overline{z}} = z$

$$\bullet \ \overline{z} + \overline{w} = \overline{z + w}$$

$$\bullet \ \overline{z} \cdot \overline{w} = \overline{zw}$$

- $(\overline{z})^n = \overline{z^n}$ for any natural number n
- z is a real number if and only if $\overline{z} = z$

Objectives

Perform arithmetic operations with complex numbers

Solve quadratic equations with complex solutions

Quadratic Equations with Complex Solutions

In the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

the discriminant

$$b^2 - 4ac$$

tells us what type of solutions we will have.

The Discriminant

 $b^2 - 4ac > 0$ gives us 2 unique real solutions.

The Discriminant

 $b^2 - 4ac = 0$ gives us 1 unique real solution (a double root).

The Discriminant

 $b^2 - 4ac < 0$ gives us 2 complex solutions that are *conjugates*.

Solve $x^2 - 2x + 5 = 0$. Exact answers only.

Solve
$$x^2 - 2x + 5 = 0$$
. Exact answers only.

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(5)}}{2(1)}$$

Solve
$$x^2 - 2x + 5 = 0$$
. Exact answers only.

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(5)}}{2(1)}$$
$$x = \frac{2 \pm \sqrt{-16}}{2}$$

Solve
$$x^2-2x+5=0$$
. Exact answers only.
$$x=\frac{-(-2)\pm\sqrt{(-2)^2-4(1)(5)}}{2(1)}$$

$$x=\frac{2\pm\sqrt{-16}}{2}$$

$$x=\frac{2\pm4i}{2}$$

Solve
$$x^2 - 2x + 5 = 0$$
. Exact answers only.

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(5)}}{2(1)}$$

$$x = \frac{2 \pm \sqrt{-16}}{2}$$

$$x = \frac{2 \pm 4i}{2}$$

$$x = 1 \pm 2i$$