C++ programok egységtesztelése googletest segítségével (GKxB_INTM006)

Dr. Hatwágner F. Miklós

Széchenyi István Egyetem, Győr

https://github.com/wajzy/GKxB_INTM006.git 2019. július 23.

Tesztelés célja: a hibákat megtalálni üzembe helyezés előtt Tesztelés alapelvei

- A tesztelés bizonyos hibák jelenlétét jelezheti (ha nem jelzi, az nem jelent automatikusan hibamentességet)
- 2 Nem lehetséges kimerítő teszt (a hangsúly a magas kockázatú részeken van)
- 3 Korai teszt (minél hamarabb találjuk meg a hibát, annál olcsóbb javítani)
- Hibák csoportosulása (azokra a modulokra/bemenetekre kell tesztelni, amelyre a legvalószínűbben hibás a szoftver)
- 5 Féregirtó paradoxon (a tesztesetek halmazát időnként bővíteni kell, mert ugyanazokkal a tesztekkel nem fedhetünk fel több hibát)
- 6 Körülmények (tesztelés alapossága függ a felhasználás helyétől, a rendelkezésre álló időtől, stb.)
- 7 A hibátlan rendszer téveszméje (A megrendelő elsősorban az igényeinek megfelelő szoftvert szeretne, és csak másodsorban hibamenteset; verifikáció vs. validáció)

Tesztelési technikák

Fekete dobozos (black-box, specifikáció alapú)

A tesztelő nem látja a forrást, de a specifikációt igen, és hozzáfér a futtatható szoftverhez. Összehasonlítjuk a bemenetekre adott kimeneteket az elvárt kimenetekkel

Fehér dobozos (white-box, strukturális teszt)

Kész struktúrákat tesztelünk, pl.:

- kódsorok.
- elágazások,
- metódusok.
- osztályok,
- funkciók.
- modulok.

Lefedettség: a struktúra hány %-át tudjuk tesztelni a tesztesetekkel?

Egységteszt (unit test): a metódusok struktúra tesztje.

- komponensteszt (egy komponens tesztelése)
 - 1 egységteszt
 - 2 modulteszt
- 2 integrációs teszt (kettő vagy több komponens együttműködése)
- rendszerteszt (minden komponens együtt)
- 4 átvételi teszt (kész rendszer)

Kik végzik a tesztelést?

- 1-3 Fejlesztő cég
 - 4 Felhasználók

Komponensteszt

- fehér dobozos teszt
- egységteszt
 - bemenet → kimenet vizsgálata
 - nem lehet mellékhatása
 - lacktriangleright regressziós teszt: módosítással elronthattunk valamit, ami eddig jó volt ightarrow megismételt egységtesztek
- modulteszt
 - nem funkcionális tulajdonságok: sebesség, memóriaszivárgás (memory leak), szűk keresztmetszetek (bottleneck)

Integrációs teszt

- Komponensek közötti interfészek ellenőrzése, pl.
 - komponens komponens (egy rendszer komponenseinek együttműködése)
 - rendszer rendszer (pl. OS és a fejlesztett rendszer között)
- Jellemző hibaokok: komponenseket eltérő csapatok fejlesztik, elégtelen kommunikáció
- Kockázatok csökkentése: mielőbbi integrációs tesztekkel

Rendszerteszt: a termék megfelel-e a

- követelmény specifikációnak,
- funkcionális specifikációnak,
- rendszertervnek.

Gyakran fekete dobozos, külső cég végzi (elfogulatlanság) Leendő futtatási környezet imitációja

Atvételi teszt, fajtái:

- alfa: kész termék tesztelése a fejlesztőnél, de nem általa (pl. segédprogramok)
- béta: szűk végfelhasználói csoport
- felhasználói átvételi teszt: minden felhasználó használja, de nem éles termelésben. Jellemző a környezetfüggő hibák megjelenése (pl. sebesség)
- uzemeltetői átvételi teszt: rendszergazdák végzik, biztonsági mentés, helyreállítás, stb. helvesen működnek-e

Rengeteg C++ egységteszt keretrendszerből lehet választani:

- Wiki oldal
- Exploring the C++ Unit Testing Framework Jungle
- C++ Unit Test Frameworks

Részletesen megvizsgáljuk: googletest

A googletest főbb tulajdonságai

- platformfüggetlen (Linux, Windows, Mac)
- független és megismételhető tesztek
- lacktriangle struktúrálható tesztek (teszt program o teszt csomag o teszteset)

goog et est

- informatív
- leveszi a tesztelés technikai részének terhét a tesztelőről
- gyors (megosztott erőforrások)
- könnyen tanulható (xUnit architektúra)

Telepítés (Ubuntu 18.04 LTS)

sudo apt install libgtest-dev

Teszt keretrendszer forrásainak heszerzése

sudo apt install cmake

Ezzel végezzük a forráskódok automatizált fordítását.

cd /usr/src/gtest

Ebben a mappában találhatóak a források.

sudo cmake CMakeLists.txt

Összeállító (build) körnvezet előkészítése.

sudo make

Összeállítás indítása

sudo ln -st /usr/lib/ /usr/src/gtest/libgtest.a sudo ln -st /usr/lib/ /usr/src/gtest/libgtest_main.a Szimbolikus hivatkozások létrehozása.

Feladat

Készítsünk mátrixműveleteket megvalósító osztályt, ami elsőként egy mátrixszorzást valósít meg.

Az $A[a_{i,i}]_{m\times n}$ és $B[b_{i,i}]_{n\times n}$ mátrixok szorzatán azt a $C[c_{i,i}]_{m\times n}$ mátrixot értjük, amelyre $c_{i,j} = a_{i,1} \cdot b_{1,j} + a_{i,2} \cdot b_{2,j} + \cdots + a_{i,n} \cdot b_{n,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$


```
01/matrix01.h
   #include < vector >
   #include < iostream >
    namespace szeMatrix {
4
    template < class T>
    class Matrix {
      protected:
        std::vector<std::vector<T>> mtx:
8
9
10
      public:
        Matrix (std::vector < std::vector < T>>> src) {
11
12
          mtx = src;
13
```

```
01/matrix01.h

Matrix<T> mul(Matrix<T> right);
void print();
int getRowCount() { return mtx.size(); }
int getColCount() { return mtx[0].size(); }
T get(int row, int column) { return mtx[row][column]; }
};
```

```
01/matrix01.h
21
   template < class T>
22
   void Matrix<T>::print() {
23
      for(std::vector<T> row : mtx) {
24
        for(T elem : row) {
25
          std::cout << elem << '\t':
26
27
        std::cout << std::endl:
28
29
```

googletest

```
31
    template < class T>
32
    Matrix <T > Matrix <T > :: mul(Matrix <T > right) {
33
      // Rows of left matrix and result matrix
34
      int i = mtx. size();
35
      // Columns of right matrix and res. matrix
36
      int i = right.mtx[0].size():
37
      // Columns of left matrix and rows of right matrix
      int k = right.mtx.size();
38
39
40
      // Creating an empty result matrix
      std::vector<std::vector<T>> res:
41
      // Resizing and filling it with zeros
42
43
      res.resize(i, std::vector\langle T \rangle(j, 0.));
```

```
01/matrix01.h
      for (int r=0; r<i; r++) { // Matrix multiplication
45
46
        for (int c=0: c<i: c++) {
          for (int item = 0; item <k; item ++) {
47
48
             res[r][c] += mtx[r][item]*right.mtx[item][c];
49
50
51
52
53
      return
             Matrix (res);
54
55
56
```

```
01/example01.cpp
```

```
#include < vector >
   #include"matrix01.h"
 3
   int main() {
 5
      std::vector < std::vector < int >> v1 = {
        {11, 12, 13, 14},
 6
        {21, 22, 23, 24},
 8
        {31, 32, 33, 34}
9
10
      std::vector<std::vector<int>> v2:
11
12
      v2 resize (4, std :: vector < int > (3, 1.));
```

return 0:

14

15

16

17

18 19

```
01/example01.cpp

szeMatrix:: Matrix<int> m1(v1);
szeMatrix:: Matrix<int> m2(v2);
szeMatrix:: Matrix<int> multiplied = m1.mul(m2);
multiplied.print();
```

```
    Kimenet

    50
    50
    50

    90
    90
    90

    130
    130
    130
```

```
01/matrix01test.cpp
   #include"matrix01.h"
   #include < vector >
   #include < gtest / gtest . h>
4
   TEST(MulTest, meaningful) {
      std::vector<std::vector<int>> |eft = {
        {11, 12, 13, 14},
        {21, 22, 23, 24},
        {31, 32, 33, 34}
10
      };
11
      std::vector<std::vector<int>> right;
12
      right.resize (4, std::vector < int > (3, 1.));
```

13

14

15

16 17

18

```
01/matrix01test.cpp
  std::vector<std::vector<int>> expected = {
    {50, 50, 50},
    {90, 90, 90}.
    {130, 130, 130}
  };
  szeMatrix :: Matrix < int > m1(left);
  szeMatrix :: Matrix < int > m2( right );
  szeMatrix :: Matrix < int > multiplied = m1.mul(m2):
```

```
01/matrix01test.cpp
```

```
21
     ASSERT EQ(expected.size(), multiplied.getRowCount());
22
      ASSERT EQ(expected[0].size(), multiplied.getColCount());
23
      for (unsigned row=0; row<expected.size(); row++) {</pre>
24
        for (unsigned col=0; col < expected [row]. size (); col++) {
          EXPECT EQ(expected[row][col], multiplied.get(row, col));
25
26
27
28
29
30
   int main(int argc, char **argv) {
31
        ::testing::InitGoogleTest(&argc.argv):
32
        return RUN ALL TESTS();
33
```

```
01/CMakeLists.txt
```

```
1 cmake_minimum_required(VERSION 2.6)
14 # Locate GTest
15 find_package(GTest REQUIRED)
16 include_directories(${GTEST_INCLUDE_DIRS})
17
18 # Link runTests with what we want to test
19 # and the GTest and pthread library
20 add_executable(runTests matrix01test.cpp)
21 target_link_libraries(runTests ${GTEST_LIBRARIES} pthread)
```

cmake CMakeLists.txt

Összeállító (build) környezet beállítása.

make

Összeállítás indítása.

./runTests

Tesztprogram indítása.

Kimenet

```
[=======] Running 1 test from 1 test case.
 ----- Global test environment set-up.
         -1 1 test from MulTest
Γ RUN
          ] MulTest.meaningful
       OK ] MulTest.meaningful (0 ms)
   ----- 1 1 test from MulTest (0 ms total)
         -] Global test environment tear-down
[=======] 1 test from 1 test case ran. (0 ms total)
  PASSED 1 1 test.
```

Teszteset (test case)

"A set of preconditions, inputs, actions (where applicable), expected results and postconditions, developed based on test conditions." (meaningful, ld. matrix01test.ccp 5. sor)

Tesztkészlet (test suite)

"A set of test cases or test procedures to be executed in a specific test cycle." (MulTest, ld. matrix01test.ccp 5. sor)

Tesztprogram (test program)

Egy vagy több tesztkészletet foglal magába.

Sajnos a googletest nevezéktana következetlen:

googletest	ISTQB
teszt (test)	teszteset
teszteset (test case)	tesztkészlet

googletest

Dióhéiban a tesztelésről

Assertion (≈ állítás, követelés) Ellenőrizzük valamely elvárásunk teljesülését → siker (success), nem végzetes hiba (nonfatal failure), végzetes hiba (fatal failure). Makrók:

EXPECT_* nem végzetes hibát generál, ajánlott (több hiba jelezhető egyszerre) ASSERT * végzetes hibát generál, azonnal leállítja a tesztesetet (nincs értelme a folytatásnak; pl. ha két mátrix nem azonos méretű, nincs értelme az elemeiket összehasonlítgatni). Erőforrások felszabadítása, takarítás is elmarad!

Rontsuk el a kódot! ("Elfelejtjük" összegezni a szorzatokat.)

```
02/matrix02.h (02/matrix02test.cpp, 02/CMakeLists.txt)
      for (int r=0; r<i; r++) { // Matrix multiplication
45
        for(int c=0; c<i; c++) {
46
          for(int item=0; item<k; item++) {</pre>
47
             // res[r][c] += mtx[r][item]*right.mtx[item][c];
48
49
50
51
```

Kimenet

```
[=======] Running 1 test from 1 test case.
[-----] Global test environment set-up.
[-----] 1 test from MulTest
          ] MulTest.meaningful
/home/wajzy/Dokumentumok/gknb_intm006/GKxB_INTM006/02/matrix02test.cpp:25: Failure
     Expected: expected[row][col]
     Which is: 50
To be equal to: multiplied.get(row, col)
     Which is: 0
. . .
```

```
Kimenet
/home/wajzy/Dokumentumok/gknb_intm006/GKxB_INTM006/02/matrix02test.cpp:25: Failure
     Expected: expected[row][col]
     Which is: 130
To be equal to: multiplied.get(row, col)
     Which is: 0
  FAILED ] MulTest.meaningful (1 ms)
[-----] 1 test from MulTest (1 ms total)
[----- Global test environment tear-down
[========] 1 test from 1 test case ran. (1 ms total)
  PASSED 1 0 tests.
  FAILED 1 1 test, listed below:
  FAILED
          ] MulTest.meaningful
1 FAILED TEST
```

Most rontsuk el másképp a kódot! (Túl nagy lesz az eredmény mátrix.)

```
03/matrix03.h (03/CMakeLists.txt)

// Creating an empty result matrix
std::vector<std::vector<T>> res;
// Resizing and filling it with zeros
//res.resize(i, std::vector<T>(j, 0.));
res.resize(i*2, std::vector<T>(j, 0.));
```

```
03/matrix03test.cpp
21
      ASSERT EQ(expected.size(), multiplied.getRowCount())
22
        << "A sorok szama elter! Elvart: " << expected.size()</pre>
23
        << ", kapott: " << multiplied.getRowCount();</pre>
      ASSERT EQ(expected [0]. size (), multiplied.getColCount())
24
        << "Az oszlopok szama elter! Elvart: " << expected[0]. size()</pre>
25
26
        << ". kapott: " << multiplied.getColCount():</pre>
27
      for(unsigned row=0; row<expected.size(); row++) {</pre>
        for (unsigned col=0; col<expected[row].size(); col++) {
28
29
          EXPECT EQ(expected[row][col], multiplied.get(row, col))
            << "Nem egyezik az elemek erteke a [" << row << "]["</pre>
30
31
            << col << "] helven!":
32
33
```

googletest

```
Kimenet
[=======] Running 1 test from 1 test case.
[----] Global test environment set-up.
[---- ] 1 test from MulTest
[ RUN
         ] MulTest.meaningful
/home/wajzy/Dokumentumok/gknb_intm006/GKxB_INTM006/03/matrix03test.cpp:21: Failure
     Expected: expected.size()
     Which is: 3
To be equal to: multiplied.getRowCount()
     Which is: 6
A sorok szama elter! Elvart: 3. kapott: 6
  FAILED ] MulTest.meaningful (0 ms)
[-----] 1 test from MulTest (0 ms total)
[-----] Global test environment tear-down
[=======] 1 test from 1 test case ran. (0 ms total)
 PASSED 1 0 tests
  FAILED | 1 test. listed below:
[ FAILED ] MulTest.meaningful
1 FAILED TEST
```

- Az ASSERT EQ leállította a tesztesetet.
- Testreszabott hibaüzeneteket jelenítettünk meg.

Az első teszprogram elkészítése

Dióhéjban a tesztelésről

Elemi követelmények

Végzetes hibákhoz	Nem végzetes hibákhoz	Követelmény
ASSERT_TRUE(feltétel)	EXPECT_TRUE(feltétel)	<i>feltétel</i> igaz értékű
ASSERT_FALSE(feltétel)	EXPECT_FALSE(feltétel)	<i>feltétel</i> hamis értékű

Relációs követelmények

googletest

Végzetes hibákhoz	Nem végzetes hibákhoz	Követelmény
ASSERT_EQ(val1, val2);	$EXPECT_{EQ}(\mathit{val1}, \mathit{val2});$	val1 == val2
ASSERT_NE(<i>val1, val2</i>);	EXPECT_NE(val1, val2);	<i>val1</i> != <i>val2</i>
ASSERT_LT(<i>val1, val2</i>);	EXPECT_LT(<i>val1, val2</i>);	val1 < val2
ASSERT_LE(<i>val1, val2</i>);	EXPECT_LE(val1, val2);	val1 <= val2
ASSERT_GT(<i>val1</i> , <i>val2</i>);	EXPECT_GT(val1, val2);	val1 > val2
ASSERT_GE(<i>val1, val2</i>);	EXPECT_GE(val1, val2);	<i>val1</i> >= <i>val2</i>

Az első teszprogram elkészítése Megjegyzések

- A feltüntetett operátoroknak definiáltnak kell lenniük val1 és val2 között. Lehetőségeink:
 - Felültöltjük az operátorokat.
 - 2 Az {ASSERT,EXPECT}_{TRUE,FALSE} makrókat használjuk, de ezek nem írják a kimenetre az elvárt/kapott értékeket.
- A paraméterek egyszer lesznek kiértékelve, de nem definiált sorrendben (mellékhatások).
- Az {ASSERT, EXPECT} _ EQ makrók mutatók esetén a címeket hasonlítja össze, nem az ott lévő tartalmat! C-stílusú karakterláncok kezeléséhez külön makrók léteznek. (string objektumokkal nincs gond.)
- C++11 szabványnak megfelelő fordító esetén NULL helyett nullptr-t használjunk (utóbbi nem konvertálható implicit módon int-té)!
- Lebegőpontos számok összehasonlításakor kerekítési hibák adódhatnak.

Készítsünk lebegőpontos számokból álló mátrixokat, majd teszteljük a szorzást ismét!

```
04/matrix04test.cpp (04/matrix04.h, 04/CMakeLists.txt)
31
   TEST(MulTest rounding) {
32
      std::vector<std::vector<double>> left = {
33
        {sqrt(2.), 0.},
34
        \{0...1./3.\}
35
36
      std::vector<std::vector<double>> right;
      right resize (2, std :: vector < double > (2, 1.)):
37
38
      std::vector<std::vector<double>> expected = {
        {1.414213562, 1.414213562},
39
        {0.333333333, 0.3333333333}
40
41
```

```
04/matrix04test.cpp
42
      szeMatrix :: Matrix < double > m1(left);
43
      szeMatrix :: Matrix < double > m2(right);
44
      szeMatrix :: Matrix < double > multiplied = m1.mul(m2);
     ASSERT EQ(expected.size(), multiplied.getRowCount());
45
     ASSERT EQ(expected [0]. size(), multiplied.getColCount());
46
47
      for(unsigned row=0; row<expected.size(); row++) {</pre>
        for(unsigned col=0; col<expected[row].size(); col++) {</pre>
48
          EXPECT EQ(expected[row][col], multiplied.get(row, col));
49
50
51
52
```

```
Kimenet
Γ RUN
          ] MulTest.rounding
/home/wajzy/Dokumentumok/gknb_intm006/GKxB_INTM006/04/matrix04test.cpp:49: Failure
Value of: multiplied.get(row, col)
 Actual: 1.41421
Expected: expected[row][col]
Which is: 1.41421
/home/wajzy/Dokumentumok/gknb_intm006/GKxB_INTM006/04/matrix04test.cpp:49: Failure
Value of: multiplied.get(row, col)
 Actual: 0.333333
Expected: expected[row][col]
Which is: 0 3333333
[ FAILED ] MulTest.rounding (0 ms)
. . .
```

A kerekítési hibák érzékelhetetlenek a kimeneten és a teszt sikertelen.

Próbálkozzunk a beépített, lebegőpontos számokat összehasonlító makrókkal!

```
for (unsigned row=0; row<expected.size(); row++) {
    for (unsigned col=0; col<expected[row].size(); col++) {
        //EXPECT_EQ(expected[row][col], multiplied.get(row, col));
        EXPECT_DOUBLE_EQ(expected[row][col], multiplied.get(row, col));
}
}</pre>
```

Kimenet

```
[ RUN
          ] MulTest.rounding
/home/wajzy/Dokumentumok/gknb_intm006/GKxB_INTM006/05/matrix05test.cpp:50: Failure
Value of: multiplied.get(row, col)
 Actual 1 4142135623730951
Expected: expected[row][col]
Which is: 1.414213562
/home/wajzy/Dokumentumok/gknb_intm006/GKxB_INTM006/05/matrix05test.cpp:50: Failure
Value of: multiplied.get(row, col)
  Actual: 0.3333333333333333333
Expected: expected[row][col]
Which is: 0.33333333300000001
[ FAILED ] MulTest.rounding (0 ms)
. . .
```

Most már látszik, hogy az értékek közötti különbség nagyobb, mint 4 ULP (Units in the Last Place), ezért tekinti őket a teszt különbözőnek.

Növeljük meg a számok közötti legnagyobb megengedett eltérést!

```
for (unsigned row=0; row<expected.size(); row++) {
    for (unsigned col=0; col<expected[row].size(); col++) {
        //EXPECT_EQ(expected[row][col], multiplied.get(row, col));
        //EXPECT_DOUBLE_EQ(expected[row][col], multiplied.get(row, col));
        EXPECT_NEAR(expected[row][col], multiplied.get(row, col), 1e-9);
}
}</pre>
```

```
Kimenet
[=======] Running 2 tests from 1 test case.
 -----] Global test environment set-up.
         -1 2 tests from MulTest
          ] MulTest.meaningful
[ RUN
       OK ] MulTest.meaningful (0 ms)
          ] MulTest.rounding
[ RUN
       OK ] MulTest.rounding (0 ms)
   ------- 2 tests from MulTest (1 ms total)
[-----] Global test environment tear-down
[=======] 2 tests from 1 test case ran. (1 ms total)
  PASSED 1 2 tests.
```

Lebegőpontos számokkal szemben támasztható követelmények

Végzetes hibákhoz	Nem végzetes hibákhoz	Követelmény
ASSERT_FLOAT_EQ(val1, val2);	EXPECT_FLOAT_EQ(val1, val2);	float típusú értékek 4 ULP- n belül
ASSERT_DOUBLE_EQ(<i>val1</i> , <i>val2</i>);	EXPECT_DOUBLE_EQ(val1, val2);	<i>double</i> típusú értékek 4 ULP-n belül
ASSERT_NEAR(val1, val2, abs_error);	EXPECT_NEAR(val1, val2, abs_error);	a két érték különbségének abszolút értéke nem na- gyobb <i>abs_error</i> -nál

Próbáljuk meg a mátrixok elemenkénti összehasonlítása helyett a teljes mátrixokat összehasonlítani!

```
07/matrix07test.cpp (07/matrix07.h, 07/CMakeLists.txt)
```

```
31
    TEST(MulTest, equality) {
32
      std::vector<std::vector<double>> left = {
33
        {11, 12, 13, 14}.
34
        {21, 22, 23, 24},
35
        {31, 32, 33, 34}
36
37
      std::vector<std::vector<double>> right;
38
      right resize (4. \text{ std} :: \text{vector} < \text{double} > (3. 1.)):
      std::vector<std::vector<double>> expected = {
39
40
        {50. 50. 50}.
        {90, 90, 90}.
41
42
        {130, 130, 130}
43
```

```
07/matrix07test.cpp
     szeMatrix :: Matrix < double > m1(left);
44
     szeMatrix :: Matrix < double > m2( right );
45
46
     szeMatrix :: Matrix < double > mexp(expected);
     szeMatrix :: Matrix < double > multiplied = m1.mul(m2);
47
     ASSERT EQ(mexp.getRowCount(), multiplied.getRowCount());
48
     ASSERT EQ(mexp.getColCount(), multiplied.getColCount());
49
     ASSERT EQ(mexp, multiplied);
50
51
```

googletest

Kimenet

Dióhéiban a tesztelésről

Probléma: az 50. sor ASSERT_EQ(mexp, multiplied); utasítása feltételezi az == operátor felültöltését a Matrix osztályhoz.

googletest

Dióhéiban a tesztelésről

```
08/matrix08.h (08/matrix08test.cpp, 08/CMakeLists.txt)
    template < class T>
 6
    class Matrix {
10
      public:
19
        template < class U>
20
        friend bool operator == (const Matrix < U> &m1, const Matrix < U> &m2);
21
58
    template < class U>
59
    bool operator==(const Matrix < U> &m1, const Matrix < U> &m2) {
60
      return m1.mtx == m2.mtx:
61
```

Kimenet

Dióhéiban a tesztelésről

```
wajzy@wajzy-notebook:~/Dokumentumok/gknb_intm006/GKxB_INTM006/08$ make
[100%] Built target runTests
wajzy@wajzy-notebook: ~/Dokumentumok/gknb_intm006/GKxB_INTM006/08$ ./runTests
[=======] Running 3 tests from 1 test case.
          -] Global test environment set-up.
[-----] 3 tests from MulTest
[ RUN
          ] MulTest.meaningful
       OK ] MulTest.meaningful (0 ms)
Γ RUN
           ] MulTest.equality
       OK ] MulTest.equality (1 ms)
          ] MulTest.rounding
[ RUN
       OK ] MulTest.rounding (0 ms)
          -1 3 tests from MulTest (1 ms total)
   ----- Global test environment tear-down
\Gamma = = = = = = = 1 3 tests from 1 test case ran. (1 ms total)
  PASSED 1 3 tests.
```

Teszteljük le a print() tagfüggvény kimenetét!

Függvény	Funkció
CaptureStdout()	Megkezdi az stdout-ra írt tartalom rögzítését
<pre>GetCapturedStdout()</pre>	Lekérdezi a rögzített tartalmat és leállítja a rögzítést
CaptureStderr()	Megkezdi az stderr-re írt tartalom rögzítését
<pre>GetCapturedStderr()</pre>	Lekérdezi a rögzített tartalmat és leállítja a rögzítést

Belső tagfüggvények, használatuk nem javasolt (googletest forráskód).

09/matrix09.cpp (09/matrix09.h, 09/CMakeLists.txt)

```
76
   TEST(MulTest, print) {
      std::vector<std::vector<double>> right;
77
      right resize (2, std :: vector < double > (2, 1.));
78
79
     szeMatrix :: Matrix < double > m2(right);
     const char* expected = "1\t1\t\n1\t1\t\n";
80
     testing::internal::CaptureStdout():
81
82
     m2 print();
83
     std::string output = testing::internal::GetCapturedStdout();
84
     ASSERT EQ(expected output c str());
85
```

Which is: 0x475e6a

FAILED] MulTest.print (0 ms)

Dióhéjban a tesztelésről

```
Kimenet
[ RUN
           ] MulTest.print
/home/wajzy/Dokumentumok/gknb_intm006/GKxB_INTM006/09/matrix09test.cpp:84: Failure
Value of: output.c_str()
  Actual: 0x1bb1f28
Expected: expected
```

Probléma: a C-stílusú karakterláncok címeit hasonlítja össze, nem az ott lévő tartalmat!

Kimenet és karakterláncok kezelése

Végzetes hibákhoz	Nem végzetes hibákhoz	Követelmény
ASSERT_STREQ(str1, str2);	EXPECT_STREQ(str1, str2);	A két C-stílusú karakter-
		lánc tartalma azonos
ASSERT_STRNE(<i>str1, str2</i>);	EXPECT_STRNE(<i>str1, str2</i>);	A két C-stílusú karakter-
		lánc tartalma eltérő
ASSERT_STRCASEEQ(<i>str1</i> , <i>str2</i>);	EXPECT_STRCASEEQ(str1, str2);	A két C-stílusú karakter-
		lánc tartalma a kis- és nagybetűk eltérésétől elte- kintve azonos
ASSERT_STRCASENE(str1, str2);	EXPECT_STRCASENE(str1, str2);	A két C-stílusú karakter- lánc tartalma a kis- és nagybetűk eltérését figyel- men kívül hagyva is eltérő

```
10/matrix10test.cpp (10/CMakeLists.txt)
76
   TEST(MulTest, print) {
      std::vector<std::vector<double>> right;
77
78
      right.resize(2, std::vector<double>(2, 1.));
79
     szeMatrix :: Matrix < double > m2(right);
     const char* expected = "1\t1\t\n1\t1\t\n";
80
81
     testing::internal::CaptureStdout();
82
     m2.print();
83
     std::string output = testing::internal::GetCapturedStdout();
84
     //ASSERT EQ(expected, output.c str());
     ASSERT STREQ(expected, output.c str());
85
86
```

```
#include < sstream >
   class Matrix {
11
      public:
16
        void print();
17
        std::string toString();
18
        const char* toCString();
24
```

```
10/matrix10.h
```

```
36
    template < class T>
37
    std::string Matrix<T>::toString() {
38
      std::stringstream ss;
39
      for(std::vector<T> row : mtx) {
40
        for (T elem : row) {
41
          ss << e|em << '\t':
42
43
        ss << std::endl:
44
45
      return ss.str();
46
47
48
    template < class T>
49
    const char* Matrix <T>:::toCString() {
50
      return toString() c str();
51
```

Dr. Hatwágner F. Miklós

```
10/matrix10test.cpp
```

```
88
     TEST(MulTest, toString) {
89
       std::vector<std::vector<double>> right;
90
       right resize (2, std :: vector < double > (2, 1)):
91
       szeMatrix :: Matrix < double > m2(right);
92
       std::string expected = "1\t1\t1\t1\t1\t1\t1\t1
93
       ASSERT EQ(expected, m2.toString()):
94
95
96
     TEST(MulTest toCString) {
97
       std::vector<std::vector<double>> right;
98
       right resize (2. \text{ std} :: \text{vector} < \text{double} > (2. 1.)):
       szeMatrix:: Matrix < double > m2(right);
99
       const char* expected = "1\t1\t1\t1\t1\t1\t1
100
       ASSERT STREQ(expected, m2.toCString());
101
102
```

```
10/matrix10test.cpp
76
    TEST(MulTest, print) {
77
      std::vector<std::vector<double>> right:
      right resize(2, std::vector<double>(2, 1,));
78
      szeMatrix:: Matrix < double > m2(right);
79
      80
88
    TEST(MulTest, toString) {
89
      std::vector<std::vector<double>> right:
90
      right resize (2. \text{ std} :: \text{vector} < \text{double} > (2. 1.)):
91
      szeMatrix:: Matrix < double > m2(right):
92
      96
    TEST(MulTest to CString) {
97
      std::vector<std::vector<double>> right;
      right resize (2, std :: vector < double > (2, 1.));
98
99
      szeMatrix:: Matrix < double > m2(right):
      const char* expected = "1\t1\t1\t1\t1\t1
100
```

Megoldás: teszt fixture-ök (≈alkatrész) használata

■ Származtassunk le egy osztályt a ::testing::Test-ből! Ha az Osztaly-t szeretnénk tesztelni, legyen a neve OsztalyTest!

2 Deklaráljuk a többször használt tagokat! Legyenek védettek, hogy a leszármazottakból is használhatók legyenek!

goog et est

- 3 A tagokat inicializáljuk az alapértelmezett konstruktorban vagy a (felüldefiniált) SetUp() tagfüggvényben!
- 4 Ha szükséges, készítsünk destruktort vagy (felüldefiniált) TearDown() tagfüggvényt az erőforrások felszabadítására!
- 5 Ha szükséges, írjunk függvényeket, amiket több teszteset is hívhat!

6 A tesztesetek definiálásakor a TEST helyett használjuk a TEST_F makrót!

goog et est

A tesztkészlet neve egyezzen meg a fixture osztály nevével (OsztalyTest)!

Megiegyzések

- Az osztálynak már a tesztesetek makrói előtt definiáltnak kell lennie.
- Könnyű elgépelni a SetUp() és TearDown() függvények neveit, használjuk az override kulcsszót (C++11)!
- Minden egyes tesztesethez új példány készül a fixture-ből (nem "interferálnak" a tesztesetek), majd:
 - $alapértelmezett konstruktor \rightarrow SetUp() \rightarrow TEST_F \rightarrow TearDown() \rightarrow destruktor.$

Mikor és miért érdemes konstruktort/destruktort használni?

 A const minősítővel ellátott tagváltozó csak a konstruktort követő inicializátor listával inicializálható. Jó ötlet a véletlen módosítások meggátolására.

goog et est

■ Ha a fixture osztályból származtatunk, az ős(ök) konstruktorának/destruktorának hívása mindenképpen végbemegy a megfelelő sorrendben. A SetUp()/TearDown() esetében erre a programozónak kell ügyelnie.

goog et est

A C++ nem engedi meg virtuális függvények hívását a konstruktorokban és destruktorokban, mert elvileg így meghívható lehetne egy inicializálatlan objektum metódusa, és ezt túl körülményes ellenőrizni. (Ha megengedi, akkor is csak az aktuális objektum metódusát hívja.)

- A konstruktorban/destruktorban nem használhatóak az ASSERT_* makrók. Megoldás:
 - SetUp()/TearDown() használata
 - 2 Az egész tesztprogramot állítjuk le egy abort() hívással.
- Ha a leállási folyamat során kivételek kelethezhetnek, azt a destruktorban nem lehet megbízhatóan lekezelni (definiálatlan viselkedés, akár azonnali programleállással).

googletest

Dióhéiban a tesztelésről

```
11/matrix11test.cpp (11/CMakeLists.txt, 11/matrix11.h)
```

```
6
    class MatrixTest : public :: testing :: Test {
     protected:
        szeMatrix:: Matrix < double >* mtx2by2;
9
        const char* expectedStr = "1\t1\t\n1\t1\t\n";
        void SetUp() override {
10
          std::vector<std::vector<double>> vec2bv2:
11
          vec2by2.resize(2, std::vector < double > (2, 1.));
12
          mtx2by2 = new szeMatrix::Matrix<double>(vec2by2);
13
14
15
        void TearDown() override {
          delete mtx2bv2:
16
17
18
```

```
11/matrix11test.cpp
90
     TEST F(MatrixTest, print) {
91
       testing :: internal :: CaptureStdout ();
92
       mtx2bv2 \rightarrow print():
93
       std::string output = testing::internal::GetCapturedStdout();
94
      ASSERT STREQ(expectedStr, output.c str());
95
96
97
     TEST F(MatrixTest, toString) {
98
       std::string expected = expectedStr:
99
      ASSERT EQ(expected, mtx2by2->toString());
100
101
102
     TEST F(MatrixTest, toCString) {
103
      ASSERT STREQ(expectedStr, mtx2by2->toCString());
104
```

googletest

Kimenet

Dióhéiban a tesztelésről

```
wajzy@lenovo:~/Dokumentumok/gknb_intm006/GKxB_INTM006/11$ ./runTests
[=======] Running 6 tests from 2 test cases.
[-----] Global test environment set-up.
[---- 3 tests from MulTest
Γ RIIN
          ] MulTest.meaningful
       OK ] MulTest.meaningful (0 ms)
Γ RIIN
          1 MulTest equality
       OK ] MulTest.equality (0 ms)
[ RUN
          1 MulTest.rounding
       OK ] MulTest.rounding (0 ms)
[-----] 3 tests from MulTest (0 ms total)
[-----] 3 tests from MatrixTest
Γ RIIN
          ] MatrixTest.print
       OK ] MatrixTest.print (0 ms)
[ RUN
          1 MatrixTest.toString
       OK ] MatrixTest.toString (0 ms)
Γ RIIN
          ] MatrixTest.toCString
       OK ] MatrixTest.toCString (0 ms)
[-----] 3 tests from MatrixTest (0 ms total)
[-----] Global test environment tear-down
[=======] 6 tests from 2 test cases ran. (1 ms total)
[ PASSED ] 6 tests.
```

Tesztelésről általában Ficsor Lajos, Kovács László, Kusper Gábor, Krizsán Zoltán: Szoftvertesztelés ISTQB CTFL Syllabus 2018 Szakkifejezések kereshető gyűjteménye

googletest Hivatalos Google tutorial, bevezető Hivatalos Google tutorial, feilett technikák googletest FAQ Ubuntu-specifikus részletek IBM tananvag a googletest-hez

