

Business Analytics

Key Insights and Recommendations

Group 3

Agenda

1. Key Predictive Features

Comparison of Different Modeling Approaches

3. Conclusion

Data Sources

Star scheme from PowerBI

Relations between "transactions" and:

- Material_code ↔ item_code/ material
- Customer ↔ name/ customer
- Logistic_partner_code ↔ id/ logisticpartner
- Warehouse_code ↔ id/ warehouse

Recap - Key Predictive Features

Feature Selection


```
features = (['quantity'] +
 [col for col in transactions3.columns if col.startswith('Months_')] +
 [col for col in transactions3.columns if col.startswith('Weekday_')] +
 [col for col in transactions3.columns if col.startswith('price_category_')]);
```



```
['quantity',
'Months April',
'Months_August',
'Months December',
'Months February',
'Months January',
                       'price_category_0-20',
'Months_July',
                       'price_category_20-40',
'Months June',
                       'price category 40-60',
'Months_March',
                       'price category 60-80',
'Months May',
                       'price_category_80-100',
'Months November',
                       'price category 100-120',
'Months October',
                       'price_category_120-140',
'Months September',
                       'price_category_140-160',
'Weekday Friday',
                       'price_category_160-180',
'Weekday Monday',
                       'price category 180-200',
'Weekday Saturday',
                       'price category 200-220']
'Weekday_Sunday',
'Weekday_Thursday',
'Weekday Tuesday',
'Weekday Wednesday',
```

Comparison of Different Modeling Approaches

The best results?

Features:

Months

Depth: 80

Accuracy: 99.98 %

Precision: 100.00 %

Sensitivity: 99.97 %

Quantity

Typical case of Overfitting !!!

Management Summary

Features:

Training 80%

Model Comparison

Model Comparison (Test Size 20%)

Decision Tree

120.00%

Feature Engineering: Calculating *Distance_km*

Feature: Distance with Random Forest

Random Forest: Late Delivery Prediction (distance only) 600 0 -500 400 - 300 - 200 29 1 -665 - 100 0 1 Predicted label recall f1-score precision 0.19 0.02 0.04 306 0.69 0.96 0.80 694 accuracy 0.67 1000 0.44 0.49 0.42 1000 macro avg

weighted avg

0.54

0.67

0.57

1000

Conclusion

Final Thoughts and **Takeaways**

> 04. Avoid **Gradient Boosting** 02. Overfitting modelling gave us Clean Data the best results & categorize

01.

Data

Start with the

03. Test Train and validate data

Thank you for your attention

Ananta Das, 23595221

Timo Gottsche, 22801199

Wassilissa Golowatjuk, 23616466

Mario Sicaja, 23595293

Stefan Lößner, 23595260

