Erzeugende der Thomschen Algebra n

Von

ALBRECHT DOLD

Einleitung. In [8] hat R. Thom eine Äquivalenzrelation zwischen kompakten (nicht notwendig zusammenhängenden) differenzierbaren Mannigfaltigkeiten eingeführt, die sich, grob gesprochen, folgendermaßen beschreiben läßt: Zwei differenzierbare Mannigfaltigkeiten sind genau dann äquivalent ("cobordantes"), wenn sie zusammen den Rand einer berandeten differenzierbaren Mannigfaltigkeit bilden. (Für eine präzise Definition und für das Folgende vgl. [8], Chap. IV.)

Die Äquivalenzklassen können in natürlicher Weise addiert und multipliziert werden und bilden einen Ring bezüglich dieser Verknüpfungen. Man erhält verschiedene Äquivalenzklassenmengen und verschiedene Ringe Ω oder \mathfrak{A} , je nachdem ob man orientierte oder nicht-orientierte Mannigfaltigkeiten betrachtet. Die topologische Dimension der Mannigfaltigkeiten defi-

niert eine Graduierung der Ringe
$$\Omega$$
 und \mathfrak{R} : $\Omega = \sum_{k=0}^{\infty} \Omega^k$, $\mathfrak{R} = \sum_{k=0}^{\infty} \mathfrak{R}^k$.

Die Struktur von $\mathfrak N$ ist verhältnismäßig einfach: $\mathfrak N$ ist ein Polynomring in abzählbar vielen Variablen x_i über dem Primkörper der Charakteristik 2; x_i wird repräsentiert durch eine geeignet gewählte i-dimensionale Mannigfaltigkeit P(i); i durchläuft alle natürlichen Zahlen, die nicht von der Form 2^l-1 sind.

In [8] hat Тном für alle geraden i und für i=5 Mannigfaltigkeiten P(i) angegeben, die die (nicht eindeutig festgelegten) Variablen x_i repräsentieren. In der vorliegenden Arbeit geschieht dies für die verbleibenden Fälle, d.h. für alle ungeraden $i \neq 2^l - 1$, i > 5 (s. Satz 3).

Die angegebenen Mannigfaltigkeiten P(i), i ungerade $\pm 2^{l}-1$, sind orientierbar. Sie definieren daher Elemente von Ω (und zwar von der Ordnung 2; s. H), die bei der natürlichen Abbildung $\Omega \to \mathfrak{N}$ in x_i übergehen. Dies liefert Aussagen über die nur teilweise bekannte Struktur (s. [8], S. 81) von Ω ; z.B. ergibt sich: Ω^k ist nicht trivial für $k \geq 8$, d.h. in jeder Dimension $k \geq 8$ gibt es nicht-berandende orientierbare kompakte differenzierbare Mannigfaltigkeiten (s. H).

Wir definieren und untersuchen nun zunächst eine Klasse von Mannigfaltigkeiten $\{P(m, n)\}$, unter denen die in der vorstehenden Einleitung genannten Mannigfaltigkeiten P(i) vorkommen.

A. Definition und erste Eigenschaften von P(m, n). S^m , $m \ge 0$, sei die Einheitssphäre des (m+1)-dimensionalen euklidischen Raumes mit den Koordinaten x_0, x_1, \ldots, x_m . $PC(n), n \ge 0$, sei der komplexe projektive Raum

von n komplexen Dimensionen; wir beschreiben ihn durch homogene Koordinaten z_0, z_1, \ldots, z_n .

Der topologische Raum $P(m, n)^1$) entsteht aus dem topologischen Produkt $S^m \times PC(n)$ durch die Identifikation $(x, z) = (-x, \overline{z})$. Dabei bezeichnet -x den Diametralpunkt von $x \in S^m$ und \overline{z} ist derjenige Punkt aus PC(n), dessen Koordinaten konjugiert komplex zu denen von $z \in PC(n)$ sind.

Bezüglich der Identifikationsabbildung $\Phi: S^m \times PC(n) \to P(m, n)$ ist $S^m \times PC(n)$ zweiblättrige Überlagerung von P(m, n); die nicht-triviale Deckbewegung φ ist durch

(1)
$$\varphi(x,z) = (-x,\overline{z}), \quad x \in S^m, \ z \in PC(n)$$
 gegeben.

 $S^m \times PC(n)$ kann — in der üblichen Weise — als (reell) analytische Mannigfaltigkeit aufgefaßt werden; φ ist dann eine analytische Abbildung. Vermöge der Abbildung Φ wird daher auch P(m,n) zur (reell) analytischen Mannigfaltigkeit, und Φ selbst ist analytisch.

Die Abbildung $(x,z) \to x$ von $S^m \times PC(n)$ auf S^m geht bei der Identifikation Φ in eine Abbildung $p: P(m,n) \to PR(m)$ (= m-dimensionaler reeller projektiver Raum) über. p ist Projektion eines (analytischen) Faserraumes $\{P(m,n), p, PR(m), PC(n), Z_2\}^2$) (s. [3], § 2); das nicht-triviale Element der Strukturgruppe Z_2 ist die Selbstabbildung $z \to \overline{z}$ von PC(n).

B. Zellenzerlegung und Homologie mod 2 von P(m, n). Wir geben bekannte Zellenzerlegungen von S^m und PC(n) an und gewinnen mit ihrer Hilfe eine Zellenzerlegung von P(m, n).

 S^m : Die durch $x_{i+1} = x_{i+2} = \cdots = x_m = 0$, $x_i > 0$ ($x_i < 0$) definierte Punktmenge von S^m ist eine offene i-Zelle C_i^+ (C_i^-). Die Zellen C_i^\pm , $i = 0, 1, \ldots, m$, bilden eine Zellenzerlegung von S^m (CW-Komplex im Sinne von J. H. C. Whitehead [10]) und genügen bei geeigneter Orientierung den Berandungsrelationen $\partial C_i^+ = C_{i-1}^+ + C_{i-1}^-$, $\partial C_i^- = -(C_{i-1}^+ + C_{i-1}^-)$, $i = 1, 2, \ldots, m$. Im folgenden seien die Zellen C_i^\pm ein für alle Male mit einer festen Orientierung dieser Art ausgestattet.

Die Diametralpunktvertauschung $x \to -x$, $x \in S^m$, ist eine Selbstabbildung der m-Sphäre, die die Orientierung erhält oder umkehrt, je nachdem ob m ungerade oder gerade ist. Bezüglich der Zellenzerlegung $\{C_i^{\pm}\}$ ist sie eine Zellenabbildung und führt C_i^{\pm} in $(-1)^{i+1}C_i^{\mp}$ über.

PC(n): Die durch $z_j=1$, $z_{j+1}=z_{j+2}=\cdots=z_n=0$ definierte Punktmenge von PC(n) ist eine offene 2j-Zelle D_j . Die Zellen D_j , $j=0,1,\ldots,n$, die wir uns mit einer festen Orientierung versehen denken, bilden eine Zellenzerlegung (CW-Komplex) von PC(n) und genügen den Berandungsrelationen $\partial D_j=0$.

¹⁾ P(1, 2) ist die von Wu in [12], Nr. 3c betrachtete Mannigfaltigkeit.

²) Dies sieht man leicht ein — wir werden es im folgenden nicht benutzen — wenn man beachtet, daß Φ jede offene Menge von der Form $U \times PC(n)$ topologisch abbildet, wo U eine offene Menge aus S^m ist, die keine Diametralpunkte enthält.

Die Selbstabbildungen $z \to \overline{z}$ von PC(n) erhält die Orientierung oder kehrt sie um, je nachdem ob n gerade oder ungerade ist. [Dies erkennt man leicht, wenn man inhomogene Koordinaten $z_1z_0^{-1}, z_2z_0^{-1}, \ldots, z_nz_0^{-1}$ benutzt; die Funktionaldeterminante in einem "eigentlichen" Punkt $z_0 \neq 0$ ist $(-1)^n$.] Bezüglich der Zellenzerlegung $\{D_j\}$ ist sie eine Zellenabbildung und führt D_j in $(-1)^jD_j$ über.

 $S^m \times PC(n)$: Die Produktzellen $C_i^{\pm} \times D_j$ bilden eine Zellenzerlegung von $S^m \times PC(n)$ und genügen den Berandungsrelationen

(2)
$$\begin{cases} \partial (C_i^{\pm} \times D_j) = \pm (C_{i-1}^{+} \times D_j + C_{i-1}^{-} \times D_j) \\ \partial (C_0 \times D_j) = 0, \quad i = 1, 2, ..., m, \quad j = 0, 1, ..., n. \end{cases}$$

Die Selbstabbildung φ [s. (1)] von $S^m \times PC(n)$ ist eine Zellenabbildung und es gilt

(3)
$$\varphi\left(C_{i}^{\pm} \times D_{i}\right) = (-1)^{i+j+1} \left(C_{i}^{\mp} \times D_{i}\right).$$

P(m,n): Die Abbildung $\Phi: S^m \times PC(n) \to P(m,n)$ bildet die Zellen $C_i^{\pm} \times D_j$ topologisch ab (vgl. Fußnote 2). Die Zellen $\Phi(C_i^{+} \times D_j)$ — wir bezeichnen sie mit (C_i, D_j) — bilden daher und wegen (3) eine Zellenzerlegung von P(m,n), und Φ ist eine Zellenabbildung. Aus (2) erhält man durch Anwenden von Φ wegen (3) die Berandungsrelationen

(4)
$$\begin{cases} \partial(C_i, D_j) = (1 + (-1)^{i+j}) (C_{i-1}, D_j) \\ \partial(C_0, D_j) = 0, \quad i = 1, 2, ..., m, \quad j = 0, 1, ..., n. \end{cases}$$

Es bezeichne $H(m,n)=\sum_{\nu}H_{\nu}(m,n)$ die direkte Summe der Homologiegruppen mod 2, $H^*(m,n)=\sum_{\nu}H^{\nu}(m,n)$ den Kohomologiering mod 2 von P(m,n). Nach (4) sind alle Zellen (C_i,D_i) Zyklen mod 2. Ihre Homologieklassen $[C_i,D_i]$ bilden daher eine Basis von H(m,n).

 $H^*(m, n)$ ist seiner additiven Struktur nach nichts anderes als der Modul der Homomorphismen von H(m, n) in den Primkörper K der Charakteristik 2; $\langle k, h \rangle$ bezeichne den Wert der Kohomologieklasse k auf der Homologieklasse k. Die durch

(5)
$$\langle (c^i, d^j), \lceil C_\mu, D_\nu \rceil \rangle = \delta^i_\mu \cdot \delta^j_\nu, \quad i, \mu = 0, 1, \dots, m, \quad j, \nu = 0, 1, \dots, n,$$

definierten Kohomologieklassen (c^j, d^j) bilden eine Basis der additiven Struktur von $H^*(m, n)$.

P(m, n) hat also mod 2 dieselben Homologiegruppen wie $PR(m) \times PC(n)$. In D werden wir sehen, daß auch die Kohomologieringe mod 2 dieser beiden Räume übereinstimmen.

- C. P(m, n) ist genau dann orientierbar, wenn $m \neq n$ (2) oder m = 0 ist. Denn genau dann ist nach (4) die einzige höchstdimensionale Zelle (C_m, D_n) ein Zykel.
- D. Der Kohomologiering mod 2 von P(m, n). Für $m' \le m$ und $n' \le n$ identifizieren wir $S^{m'} \times PC(n')$ mit der analytischen Untermannigfaltigkeit

 $x_{m'+1} = x_{m'+2} = \cdots = x_m = 0$, $z_{n'+1} = z_{n'+2} = \cdots = z_n = 0$ von $S^m \times PC(n)$ und P(m', n') mit der analytischen Untermannigfaltigkeit $\Phi(S^{m'} \times PC(n'))$ von P(m, n) (s. A). P(m', n') repräsentiert die Homologieklasse $[C_{m'}, D_{n'}] \in H(m, n)$ (s. B). Wir werden, um den Schnitt der Homologieklassen $[C_i, D_j]$ und $[C_{i'}, D_{j'}]$, $i, i' \leq m, j, j' \leq n$, zu bestimmen, die Mannigfaltigkeit P(i', j') in eine andere analytische Untermannigfaltigkeit von P(m, n) deformieren, die sich in allgemeiner Lage relativ zu P(i, j) befindet.

Es seien σ bzw. τ Permutationen der Zahlen 0, 1, 2, ..., m, bzw. 0, 1, 2, ..., n. Durch

(6)
$$x_0 \rightarrow \operatorname{sign}(\sigma) x_{\sigma(0)}, \ x_u \rightarrow x_{\sigma(u)}, \ \mu > 0,$$

(7)
$$z_0 \rightarrow \operatorname{sign}(\tau) z_{\tau(0)}, \quad z_{\nu} \rightarrow z_{\tau(\nu)}, \quad \nu > 0,$$

ist eine analytische Selbstabbildung $(\sigma \times \tau)$ von $S^m \times PC(n)$ gegeben, die mit φ [s. (1)] vertauschbar ist; $(\sigma \times \tau)$ induziert daher eine analytische Selbstabbildung (σ, τ) von P(m, n). Wir verbinden die Matrix der (in den Variablen x_i bzw. z_j linearen) Abbildung (6) bzw. (7) durch eine stetige Schar reeller orthogonaler Matrizen 0(t) bzw. 0'(t) mit der Einheitsmatrix. 0(t) und 0'(t) definieren dann eine Schar mit φ vertauschbarer Selbstabbildungen von $S^m \times PC(n)$ und damit eine Schar von Selbstabbildungen von P(m, n), die mit (σ, τ) beginnt und mit der Identität endet. (σ, τ) ist also in die Identität deformierbar und induziert daher den identischen Automorphismus der Homologiegruppe H(m, n).

Um den Schnitt $[C_i, D_j] \circ [C_{i'}, D_{j'}]$ zu bestimmen, betrachten wir die Permutationen

(8)
$$\begin{cases} \sigma \colon i' + \mu \to i + 1 - \mu; \\ \tau \colon j' + \nu \to j + 1 - \nu, & \mu = 0, 1, ..., m, & \nu = 0, 1, ..., n. \end{cases}$$

(Falls die in (8) auftretenden Zahlen nicht im Intervall [0, m] bzw. [0, n] liegen, sind sie mod m+1 bzw. mod n+1 abzuändern.)

Die Mannigfaltigkeit $(\sigma \times \tau) \left(S^{i'} \times PC(j') \right)$ wird durch die Gleichungen $x_{i+1-\mu} = 0, \ z_{j+1-\nu} = 0, \ \mu = 1, 2, \ldots, m-i', \ \nu = 1, 2, \ldots, n-j',$ beschrieben. Sie befindet sich relativ zu $S^i \times PC(j)$ in allgemeiner Lage (im Sinne von [1], Ch. VIII, § 2, Nr. 11) und ihr Durchschnitt mit $S^i \times PC(j)$ ist durch $x_{i+i'-m+1} = x_{i+i'-m+2} = \cdots = x_m = 0, \ z_{j+j'-n+1} = z_{j+j'-n+2} = \cdots = z_n = 0,$ gegeben, d.h.

$$\begin{aligned} (\sigma \times \tau) \left(S^{i'} \times PC(j') \right) &\cap S^{i} \times PC(j) \\ &= \left\{ \begin{array}{cc} S^{i+i'-m} \times PC(j+j'-n) & \text{für } i+i' \geq m, \ j+j' \geq n \\ \emptyset & \text{sonst.} \end{array} \right. \end{aligned}$$

Da Φ eine analytische Überlagerung ist, befindet sich auch (σ, τ) (P(i', j')) in allgemeiner Lage relativ zu P(i, j), und es ist

$$(\sigma, \tau) (P(i', j')) \cap P(i, j)$$

$$= \begin{cases} P(i + i' - m, j + j' - n) & \text{für } i + i' \ge m, \ j + j' \ge n \\ \emptyset & \text{sonst.} \end{cases}$$

Für den Schnitt ihrer Homologieklassen gilt daher (s. [1], Ch. VIII, § 2, Nr. 11)

(9)
$$[C_{i'}, D_{j'}] \circ [C_i, D_j] = \begin{cases} [C_{i+i'-m}, D_{j+j'-n}] & \text{für } i+i' \ge m, \ j+j' \ge n \\ 0 & \text{sonst.} \end{cases}$$

Durch Übergang zum Dualen erhalten wir nun aus (9) die multiplikative Struktur des Kohomologieringes $H^*(m,n)$. Der Wert der zu $[C_{m-i},D_{n-j}]$ dualen Kohomologieklasse $\Delta[C_{m-i},D_{n-j}]$ auf $[C_{\mu},D_{\nu}]$, $i,\mu=0,1,\ldots,m$, $j,\nu=0,1,\ldots,n$, ist gleich der Schnittzahl von $[C_{\mu},D_{\nu}]$ mit $[C_{m-i},D_{n-j}]$ (=0 für $\mu+2\nu+i+2j$). Daher folgt aus (5) und (9)

(10)
$$\Delta[C_{m-i}, D_{n-j}] = (c^i, d^j), \quad i = 0, 1, ..., m, j = 0, 1, ..., n.$$

Satz 1. Der Kohomologiering mod 2 von P(m, n), $H^*(m, n)$, wird von den 1- bzw. 2-dimensionalen Klassen $c = (c^1, d^0)$ und $d = (c^0, d^1)$ [s. (5)] erzeugt. Es bestehen die definierenden Relationen $c^{m+1} = 0$, $d^{n+1} = 0$.

Bezeichnen c' und d' die entsprechend definierten Erzeugenden von $H^*(m', n')$, ist $m' \le m$, $n' \le n$ und $f^*: H^*(m, n) \to H^*(m', n')$ der durch die Injektion $P(m', n') \to P(m, n)$ (s. D) induzierte Homomorphismus, so gilt $f^*(c) = c'$, $f^*(d) = d'$.

Der erste Teil von Satz 1 folgt aus (9) und (10), weil beim Übergang zum Dualen, Δ , die Schnittbildung in H(m, n) in das \cup -Produkt in $H^*(m, n)$ übergeht.

Für den zweiten Teil hat man zu beachten, daß P(m', n') nichts anderes ist als die Vereinigung derjenigen Zellen (C_i, D_j) (s. B) von P(m, n), für die $i \le m'$ und $j \le n'$ ist; die Behauptung folgt dann aus der Definition von c, c', d, d'.

Bemerkung. Satz 1 läßt sich auch mit Hilfe der spektralen Kohomologiefolge des Faserraums $\{P(m,n),p,PR(m),PC(n),Z_2\}$ (s. A) gewinnen: Man kann die Kohomologie von Basis und Faser als bekannt voraussetzen. Es läßt sich unschwer zeigen, daß die spektrale Kohomologiefolge mod 2 von P(m,n) trivial ist, d.h. daß die Faser mod 2 total nicht nullhomolog ist (s. [2], Chap. III, 7). Dann erhält man die Struktur von $H^*(m,n)$ vermöge [2], Chap. III, Prop. 9.

E. Die "squares" in P(m,n). Die Steenrodschen Sq^i -Kohomologie-operationen") in $H^*(m,n)$ können wegen Satz 1 und wegen der Cartanschen Produktformel $Sq^i(xy) = \sum_{r+\mu=i} Sq^r x Sq^\mu y$ durch die $Sq^r c$ und $Sq^r d$ ausgedrückt werden. Es gilt

(11)
$$Sq^0c = c$$
, $Sq^1c = c^2$, $Sq^ic = 0$ für $i > 1$.

(12)
$$Sq^{0}d = d$$
, $Sq^{1}d = cd$, $Sq^{2}d = d^{2}$, $Sq^{j}d = 0$ für $j > 2$.

Während der Kohomologiering mod 2 von P(m, n) nach Satz 1 mit dem von $PR(m) \times PC(n)$ übereinstimmt, fallen die Sq^i nach (12) verschieden aus:

³) Mit Sq^i bezeichnen wir diejenige "square"-Operation, mod 2 (s. [4] oder [5]), die die Dimension um i erhöht.

In $PR(m) \times PC(n)$ ist $Sq^1x = 0$ für jede 2-dimensionale Kohomologieklasse x, in P(m,n) ist $Sq^1d = cd \neq 0$ für $m,n \geq 1$. Diese Gleichung, $Sq^1d = cd$, ist die einzige unter den Gln. (11) und (12), die wir beweisen müssen; die anderen sind bekannt (s. [4] oder [5]). Die Kohomologieoperation Sq^1 in $H^*(m,n)$ ist nach [5], Nr. 3 und 4 der zur exakten Folge $0 \rightarrow Z_2^2 \rightarrow Z_4 \rightarrow Z_2 \rightarrow 0$ gehörige Bockstein-Homomorphismus δ^* : $H^*(m,n) \rightarrow H^*(m,n)$; Z_r bezeichnet die zyklische Gruppe der Ordnung r. Nach (4) ist $\partial(C_1, D_1) = \partial(C_0, D_1)$, $m \geq 1$, $n \geq 1$, und im Rand anderer Zellen als (C_1, D_1) kommt (C_0, D_1) nicht vor. Daraus folgt: $\partial^*(c^0, d^1) = (c^1, d^1)$ [s. (5)], d.h. aber $Sq^1d = (c^1, d^1) = cd$, letzteres wegen (9) und (10). Diese Gleichung ist auch noch richtig für m = 0 oder n = 0; beide Seiten sind dann 0 [für m = 0, weil dann $H^3(m,n)$ trivial ist].

F. Die STIEFEL-WHITNEYSCHE Klasse von P(m,n). Ist $\mathfrak{B} = \{B, p, P, S^{r-2}, 0_r\}$ ein Faserraum mit einem Polyeder P als Basis, der (r-1)-Sphäre als Faser und der orthogonalen Gruppe 0_r als Strukturgruppe, so bezeichnet $W_j(\mathfrak{B})$ die mod 2 reduzierte j-te STIEFEL-WHITNEYSCHE Klasse von $\mathfrak{B}, j=0,1,\ldots,r$ (s. [3], § 38). $W(\mathfrak{B}) = \sum_{j=0}^{r} W_j(\mathfrak{B})$ bezeichnen wir als die STIEFEL-WHITNEYSCHE Klasse von \mathfrak{B} schlechthin.

Ist insbesondere P = P(m, n) (s. A) und \mathfrak{B} der Faserraum der Tangenteneinheitsvektoren (bezüglich irgendeiner RIEMANNschen Metrik) so schreiben wir $W_i(m, n)$ statt $W_i(\mathfrak{B})$ und W(m, n) statt $W(\mathfrak{B})$.

Satz 2. Die Stiefel-Whitneysche Klasse von P(m, n) ist gegeben durch

$$W(m,n) = (1+c)^m (1+c+d)^{n+1}.4$$

[Definition von P(m, n) s. A, von c und d s. Satz 1.]

Beweis durch Induktion nach m und n: Satz 2 ist richtig für m=n=0. Sei nun m>0 oder n>0.

Für n>0 ist P(m,n-1) bezüglich der in D definierten Injektion eine analytische Untermannigfaltigkeit von P(m,n) und repräsentiert die Homologieklasse $[C_m,D_{n-1}]\in H(m,n)$. Die hierzu duale Kohomologieklasse ist $d=(c^0,d^1)$ [s. (10)]. N sei der Faserraum der zu P(m,n-1) normalen Einheitsvektoren von P(m,n). Nach Thom (s. [7] oder [9], Chap. III, Nr. II) gilt

$$\psi^*(\dot{W}_j(N)) = Sq^j d.$$

Dabei ist $\psi^*: H^*(m, n-1) \to H^*(m, n)$ der zur Injektion $P(m, n-1) \to P(m, n)$ gehörige "Umkehrhomomorphismus"; er genügt der Beziehung (s. [9], Introduct. VI)

(14)
$$\psi^*(f^*(y)) = y d, \quad y \in H^*(m, n);$$

⁴⁾ Den Satz 2 und damit einen gegenüber dem ursprünglichen erheblich vereinfachten Beweis von Satz 3 verdanke ich Herrn D. Puppe, der W(m,n) mit der Methode von Wu [12] berechnet hat.

 f^* : $H^*(m, n) \rightarrow H^*(m, n-1)$ der durch die Injektion induzierte Homomorphismus.

 f^* ist eine Abbildung auf (Satz 1); wir wählen $W_i \in H^*(m, n)$ so, daß $f^*(W_i) = W_i(N)$ ist. Aus (13) und (14) folgt dann $W_i d = Sq^i d$. Hieraus und aus (12) $W_0 \equiv 1$, $W_1 \equiv c$, $W_2 \equiv d \mod d^n$ und somit

(15)
$$W(N) = f^*(1 + c + d).$$

Ist T der Faserraum der Tangenteneinheitsvektoren von P(m, n), T' der über P(m, n-1) gelegene Teil von T, so gilt (s. [3], 35.7)

(16)
$$W(T') = f^*W(T) = f^*W(m, n).$$

Nach der Whitneyschen Dualitätsformel (s. [11], § 3) ist

(17)
$$W(T') = W(m, n-1) W(N).$$

Die Induktionsvoraussetzung über W(m, n-1) besagt wegen Satz 1

(18)
$$W(m, n-1) = f^*((1+c)^m (1+c+d)^n).$$

Einsetzen von (15), (16) und (18) in (17) ergibt

d.h.
$$f^*W(m,n) = f^*((1+c)^m (1+c+d)^{n+1}),$$

(19)
$$W(m,n) \equiv (1+c)^m (1+c+d)^{n+1} \bmod d^n.$$

Diese Formel ist trivialerweise auch richtig für n=0.

Als Zweites betrachten wir die Injektion $P(m-1, n) \to P(m, n)$, falls m > 0. P(m-1, n) repräsentiert die Homologieklasse $[C_{m-1}, D_n] \in H(m, n)$ (s. D); hierzu dual ist die Kohomologieklasse $c = (c^1, d^0)$ [s. (10)]. Eine zur vorangehenden genau analoge Betrachtung ergibt nun

(15')
$$W(M) = f^*(1+c)$$

und

(19')
$$W(m,n) \equiv (1+c)^m (1+c+d)^{n+1} \bmod c^m.$$

Dabei bezeichnet $f^*: H^*(m, n) \to H^*(m-1, n)$ wieder den durch die Injektion induzierten Homomorphismus und M ist der Faserraum der auf P(m-1, n) normalen Einheitsvektoren von P(m, n).

Nach (19) und (19') ist $W(m,n) \equiv (1+c)^m (1+c+d)^{n+1} \mod c^m d^n$. Der homogene Bestandteil vom Grade m+2n auf der rechten Seite dieser Kongruenz ist $(m+1)(n+1)c^m d^n$. Andererseits ist (s. [3], 39.7) $W_{m+2n}(m,n) = N(m,n)c^m d^n$, wenn N(m,n) die Eulersche Charakteristik von P(m,n) bezeichnet. Der Beweis des Satzes 2 ist also vollendet, wenn wir noch gezeigt haben, daß $N(m,n) \equiv (m+1)(n+1) \mod 2$ ist. Aus der Struktur von $H^*(m,n)$ (s. Satz 1) ergibt sich aber durch einfache Rechnung

$$N(m, n) = \frac{1}{2} (1 + (-1)^m) (n + 1) \equiv (m + 1) (n + 1) \mod 2.$$

G. Die Erzeugenden von N.

Satz 3. Für jede natürliche Zahl i, die nicht von der Form 2^l-1 ist, seien die ganzen Zahlen r und s durch $i+1=2^r(2s+1)$ erklärt. Es sei

$$P(i) = \begin{cases} P(i, 0) = PR(i) & \text{für gerades } i \\ P(2^r - 1, s2^r) & \text{für ungerades } i \text{ (s. A)}. \end{cases}$$

P(i) ist eine i-dimensionale kompakte differenzierbare Mannigfaltigkeit; x_i bezeichne ihre Klasse in der Algebra \Re (s. [8], Chap. IV).

 \mathfrak{R} kann aufgefaßt werden als Polynomalgebra $K[x_2, x_4, x_5, ...]$ in den Variablen x_i , i=2,4,5,6,8,... über dem Primkörper K der Charakteristik 2.

NB. Satz 3 geht nur insofern über das Ergebnis von Тном (s. [8], S. 79 ff.) hinaus, als auch für die ungeraden Dimensionen i > 5 explizit repräsentierende Mannigfaltigkeiten für die Variablen x_i angegeben werden.

Beweis. Es seien $K[\iota]$ der Ring der Polynome über K in den Variablen $t_1, t_2, \ldots, t_\iota$, $S[\iota] \subset K[\iota]$ die Unteralgebra der symmetrischen Polynome, $S_j(\iota)$ die j-te elementarsymmetrische Funktion der t_{ν} , $j=0,1,\ldots,\iota$, und $S^h(\iota) = \sum_{i=1}^{\iota} t_{\nu}^h$, $h=0,1,\ldots$

Für jedes $\iota \geq i$ definieren wir einen gradtreuen Homomorphismus $\Psi_{i,\iota}$: $S[\iota] \rightarrow H^*(i)$ durch

(20)
$$\Psi_{i,i}(S_j(i)) = \begin{cases} W_j(i) & \text{für } j \leq i \\ 0 & \text{für } j > i. \end{cases}$$

Dabei bezeichnet $H^*(i)$ den Kohomologiering mod 2 und $W_j(i)$ die j-te Stiefel-Whitneysche Klasse von P(i).

 $\Psi_{i,\iota}$ führt $\prod_{\nu=1}^{\iota} (1+t_{\nu}) = \sum_{\nu=0}^{\iota} S_{\nu}(\iota)$ in $W(i) = \sum_{\nu=0}^{\iota} W_{\nu}(i)$ über und ist unter den gradtreuen Homomorphismen $S[\iota] \to H^*(i)$ dadurch charakterisiert.

Für den Beweis des Satzes 3 genügt es nach [8], Chap. IV, Nr. 7 zu zeigen, daß $\Psi_{i,i}(S^i(i)) \neq 0$ ist; wiederum nach [8] können wir uns dabei auf ungerades i beschränken. Wir beweisen nun zunächst die Gleichung

(21)
$$\Psi_{i,i}(S^h(\iota)) = \Psi_{i,i}(S^h(\iota)), \quad \iota \ge i$$

und zeigen dann $\Psi_{i,i+2}(S^i(i+2)) \neq 0$.

Um (21) zu erhalten, definieren wir einen gradtreuen Homomorphismus $p_{i,i}: K[i] \to K[i]$ durch $p_{i,i}(t_v) = \begin{cases} t_v & \text{für } v \leq i \\ 0 & \text{für } v > i \end{cases}$ Man bestätigt leicht, daß

(22)
$$p_{i,i}(S_j(i)) = \begin{cases} S_j(i) & \text{für } j \leq i \\ 0 & \text{für } j > i \end{cases}$$

und

(23)
$$p_{i,\iota}(S^h(\iota)) = S^h(i)$$

ist. Aus (22) und (20) folgt $\Psi_{i,i} \circ p_{i,\iota}(S_j(\iota)) = \Psi_{i,\iota}(S_j(\iota)), j = 0, 1, ..., \iota$, also $\Psi_{i,i} \circ (p_{i,\iota}|S[\iota]) = \Psi_{i,\iota}$. Wendet man auf (23) $\Psi_{i,i}$ an, so folgt hieraus (21).

Für die Berechnung von $\Psi_{i,i+2}(S^i(i+2))$ benötigen wir die Darstellung von $S^h(2)$ als Polynom in $S_1(2)$ und $S_2(2)$. Die bekannte Identität

(24)
$$\sum_{i=0}^{l} S_{i}(\iota) S^{h-i}(\iota) = 0, \quad h \ge \iota$$

[Beweis: Das Polynom $\prod_{\nu=1}^{t} (1+tt_{\nu}) = \sum_{j=0}^{t} S_{j}(\iota)t^{j}$ über $K[\iota]$ hat die Nullstellen $t_{\nu}^{-1}, \nu=1, 2, \ldots, \iota$. Man erhält also, wenn man t_{ν}^{-1} in dieses Polynom einsetzt und mit t_{ν}^{h} multipliziert: $0 = \sum_{j=0}^{t} S_{j}(\iota) t_{\nu}^{h-j}$ und hieraus durch Summation über ν die Gl. (24).]

(25)
$$S^{h}(2) = S_{1}(2) S^{h-1}(2) + S_{2}(2) S^{h-2}(2), \quad h \ge 2.$$

Hieraus folgt durch Induktion nach h

(26)
$$S^{h}(2) = \sum_{p+2} b(p+q-1,q) (S_{1}(2))^{p} (S_{2}(2))^{q}, \quad h=1,2,\ldots$$

Dabei ist b(p+q-1,q) der Binomialkoeffizient $\binom{p+q-1}{q} \mod 2$ (=1 für q=0, =0 für q<0 oder $p< q \neq 0$), und es wird über alle nicht negativen ganzen p,q mit p+2q=h summiert.

(26) ist richtig für h=1, 2, denn $S^1(2)=S_1(2)$ und $S^2(2)=(S_1(2))^2$. Für h>2 ergeben (25) und die Induktionsvoraussetzung

$$\begin{split} S^{h}(2) &= \sum_{p+2} \sum_{q=h-1} b\left(p+q-1,q\right) \left(S_{1}(2)\right)^{p+1} \left(S_{2}(2)\right)^{q} + \\ &+ \sum_{p+2} \sum_{q=h-2} b\left(p+q-1,q\right) \left(S_{1}(2)\right)^{p} \left(S_{2}(2)\right)^{q+1} \\ &= \sum_{p+2} \sum_{q=h} \left(b\left(p+q-2,q\right) + b\left(p+q-2,q-1\right)\right) \left(\left(S_{1}(2)\right)^{p} \left(S_{2}(2)\right)^{q} \\ &= \sum_{p+2} \sum_{q=h} b\left(p+q-1,q\right) \left(\left(S_{1}(2)\right)^{p} \left(S_{2}(2)\right)^{q}, \end{split}$$

letzteres wegen der bekannten Additionsformel für Binomialkoeffizienten.

Durch die Festsetzungen

$$\begin{array}{ll} \Psi(t_{2\nu-1}+t_{2\nu})=c \\ \Psi(t_{2\nu-1}t_{2\nu}) &=d \\ \Psi(t_{2n+2+\mu}) &=c \end{array} \} \quad \begin{array}{ll} \nu=1,2,\ldots,n+1, & \mu=1,2,\ldots,m, \\ n=s\,2^{r}, & m=2^{r}-1 & \text{(s. Satz 3)} \end{array}$$

definieren wir einen gradtreuen Homomorphismus der von den $(t_{2\nu-1}+t_{2\nu})$, $(t_{2\nu-1}t_{2\nu})$ und $t_{2\nu+2+\mu}$ erzeugten Unteralgebra von K[i+2] in $H^*(i)=H^*(m,n)$. Ψ führt das Polynom

$$\begin{split} \prod_{\varrho=1}^{i+2} (\mathbf{1} + t_{\varrho}) &= \prod_{\nu=1}^{n+1} (\mathbf{1} + t_{2\nu-1}) \; (\mathbf{1} + t_{2\nu}) \prod_{\mu=1}^{m} (\mathbf{1} + t_{2n+2+\mu}) \\ &= \prod_{\nu=1}^{n+1} (\mathbf{1} + (t_{2\nu-1} + t_{2\nu}) + t_{2\nu-1} t_{2\nu}) \cdot \prod_{\mu=1}^{m} (\mathbf{1} + t_{2n+2+\mu}) \end{split}$$

in $(1+c+d)^{n+1}(1+c)^m = W(m, n) = W(i)$ über. Die Einschränkung von Ψ auf S[i+2] stimmt also mit $\Psi_{i,i+2}$ überein. Daher ist

$$\begin{split} \varPsi_{i,i}\big(S^{i}(i)\big) &= \varPsi_{i,i+2}\big(S^{i}(i+2)\big) = \varPsi\big(S^{i}(i+2)\big) = \varPsi\Big(\sum_{\varrho=1}^{i+2} t_{\varrho}^{i}\Big) \\ &= (n+1)\,\varPsi(t_{1}^{i}+t_{2}^{i}) + m\,\varPsi(t_{i+2}^{i}) = (n+1)\,\varPsi\big(S^{i}(2)\big) + m\,\varPsi(t_{i+2}^{i}) \\ &= (n+1)\,\varPsi\Big(\sum_{\varrho+2\,q=i} b\,(\varrho+q-1,q)\,\big(S_{1}(2)\big)^{\varrho}\big(S_{2}(2)\big)^{q}\big) + m\,\varPsi(t_{i+2}^{i}) \\ &= (n+1)\,\sum_{\varrho+2\,q=i} b\,(\varrho+q-1,q)\,c^{\varrho}\,d^{q} + m\,c^{i}. \end{split}$$

Wegen i > m ist $c^i = 0$ (s. Satz 1). Ferner ist $c^p d^q$ für p + 2q = i nur dann von 0 verschieden, wenn p = m und q = n ist (Satz 1). Beachtet man noch, daß $n + 1 \equiv 1(2)$ ist, so ergibt sich $\Psi_{i,i}(S^i(i)) = b(m + n - 1, n)c^m d^n$. Nun ist $m + n - 1 = s2^r + (2^r - 2)$ und $n = s2^r$. Daraus geht hervor, daß die dyadische Entwicklung von n in der von m + n - 1 enthalten ist, d.h. (s. [6], Lemma 2.2), daß b(m + n - 1, n) = 1 und $\Psi_{i,i}(S^i(i)) = c^m d^n \neq 0$ ist, w.z.b.w.

Bemerkung. Die in Satz 3 getroffene Auswahl der Erzeugenden von \mathfrak{N} unter den Mannigfaltigkeiten P(m, n) ist nicht eindeutig festgelegt. Aus dem Beweis geht hervor, daß man z.B. in der Dimension 6 auch P(2, 2) statt P(6, 0) und in der Dimension 9 P(5, 2) statt P(1, 4) hätte nehmen können.

H. Anwendung auf die Algebra Ω . Für ungerades $i \neq 2^l - 1$ ist die Mannigfaltigkeit P(i) (s. Satz 3) orientierbar (s. C). Versehen wir sie mit einer festen Orientierung, so definiert sie ein Element $v_i \in \Omega^i$ (s. Einleitung oder [8], Chap. IV, 1), das beim natürlichen Homomorphismus $\Omega \to \mathfrak{N}$ in x_i übergeht. v_i ist also sicher nicht Null. Es gilt aber: Die Ordnung von $v_i \in \Omega^i$ ist 2.

Es gibt nämlich eine differenzierbare, orientierungsumkehrende Involution von P(i). Um dies einzusehen, betrachten wir das Produkt $S^m \times PC(n)$ mit $m=2^r-1$, $n=s2^r$ (s. Satz 3). Ist $x=(x_0, x_1, \ldots, x_m)$ ein Punkt aus S^m , so bezeichne \tilde{x} den Punkt $(x_0, x_1, \ldots, x_{m-1}, -x_m)$ aus S^m . Durch $\tilde{I}(x, z)=(\tilde{x}, z), x \in S^m, z \in PC(n)$, definieren wir eine differenzierbare Involution von $S^m \times PC(n)$ vom Grade -1. \tilde{I} ist mit der Deckbewegung φ [s. (1)] vertauschbar und induziert daher eine differenzierbare Involution I von P(m, n); I kann durch die Gleichung $I \circ \Phi = \Phi \circ \tilde{I}$ definiert werden. Φ hat als zweiblättrige Überlagerung den Grad ± 2 , also I wegen $I \circ \Phi = \Phi \circ \tilde{I}$ den Grad -1.

Hieraus folgt nun: Beim natürlichen Homomorphismus $\Omega \to \mathfrak{R}$ ist die von den x_i (s. Satz 3) mit ungeradem $i \neq 2^l - 1$ erzeugte Unteralgebra von \mathfrak{R} isomorphes Bild der von den v_i erzeugten Unteralgebra von Ω . Insbesondere ergibt sich, daß die Gruppen Ω^k nicht zu "klein" sein können; z.B. gilt: Für $k \geq 8$ ist Ω^k nicht trivial, d.h. in jeder Dimension $k \geq 8$ gibt es nicht-berandende kompakte orientierbare differenzierbare Mannigfaltigkeiten.

Zum Beweis genügt es (nach dem eben Gesagten und nach [8], Chap. IV, Nr. 8), ein Produkt von Räumen P(i), i ungerade $\pm 2^l - 1$, und komplexen projektiven Räumen PC(2j) gerader komplexer Dimension anzugeben, das

die Gesamtdimension k hat; d.h. wir haben eine Partition von k in ungerade natürliche Zahlen $\pm 2^l - 1$ und durch 4 teilbare natürliche Zahlen anzugeben. Für $k \equiv 3$ (4), $k \ge 11$, ist k = 11 + (k - 11), für $k \equiv 2$ (4), $k \ge 10$, ist k = 5 + 5 + (k - 10) und in allen anderen Fällen ist k = k eine solche Partition.

Literatur

[1] LEFSCHETZ, S.: Topology. Amer. Math. Soc. Colloq. Publ. 12 (1930). — [2] SERRE, J. P.: Homologie singulière des espaces fibrés; applications. Ann. of Math. 54, 425-505 (1951). — [3] STEENROD, N.: The topology of fibre bundles. Princeton Math. Ser. 14. — [4] STEENROD, N.: Products of cocycles and extensions of mappings. Ann. of Math. 48, 290—320 (1947). — [5] STEENROD, N.: Homology groups of symmetric groups and reduced power operations; cyclic reduced powers of cohomology classes. Proc. Nat. Acad. Sci. U.S.A. 39, 213—223 (1953). — [6] STEENROD, N., and J. H. C. WHITEHEAD: Vector fields on the n-sphere. Proc. Nat. Acad. Sci. U.S.A. 37, 58—63 (1951). — [7] Тном, R.: Variétés plongées et i-carrés. C. R. Acad. Sci. Paris 230, 507—508 (1950). — [8] Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv. 28, 17—87 (1954). — [9] Тном, R.: Espaces fibrés en sphères et carrés de Steenrod. Ann. Ecole norm. sup. (3) 69, 109—182 (1952). — [10] WHITEHEAD, J. H. C.: Combinatorial Homotopy. I. Bull. Amer. Math. Soc. 55, 213-245 (1949). - [11] Wu, Wen-Tsün: On the product of sphere-bundles and the duality theorem mod 2. Ann. of Math. 49, 641—653 (1948). — [12] Wu, Wen-Tsün: Classes caractéristiques et i-carrés. C. R. Acad. Sci. Paris 230, 508-511 (1950).

Heidelberg, Mathematisches Institut der Universität

(Eingegangen am 22. November 1955)