Akademia Górniczo Hutnicza im. St. Staszica w Krakowie Laboratorium Optoelektroniki i Fotoniki, II rok EiT 2023/2024 Grupa Numer: Data wykonania ćwiczenia: Ćwiczenie numer: 5 18.04.2024 6 Czw. 13:15 Data wysłania sprawozdania: Analiza 27.04.2024 **Dawid Makowski** częstotliwościowa Miłosz Mynarczuk transoptorów **Ryszard Mleczko**

Wstęp:

Ćwiczenia laboratoryjne skupiały się na zbadaniu parametrów przełączania transoptorów. Jedną z funkcji transoptora jest przeniesienie sygnałów analogowych pomiędzy różnymi częściami układu elektronicznego z jednoczesną izolacją galwaniczną pomiędzy nimi.

Parametry dla grupy 6:

Rezystancja RD $[\Omega]$ = 100

Rezystancja RB $[\Omega]$ = 470 k

Rezystancja RL $[\Omega]$ = 4.7 k

Ustawiono częstotliwość 100 Hz i wypełnienie 50%.

Pomiary:

Następnie podłączyliśmy makietę pomiarową do oscyloskopu, wybierając powyższe rezystancję na potencjometrach i ustawiając wypełnienie na 50% przy częstotliwości 100 Hz.

1. Dla pierwszego transoptora z wyprowadzoną bazą:

Czasy narastania i opadania dla bazowych danych

Czasy narastania

	Czas [µs]	Czas narastania [µs]	
T1	-0,01	0.0224	
T2	0,0134	- 0,0234	

B) Wyjście

	Czas [µs]	Czas narastania [µs]	
T1	0,51	0.64	
T2	1,15	- 0,64	

Czas opadania

A) Wejście

	Czas [µs]	Czas opadania [µs]	
T1	498,9022	0,0404	
T2	498,9428		

B) Wyjście

	Czas [µs]	Czas opadania [μs]
T1	516	26.6
T2	542,6	26,6

2. Pomiar prądu nasycenia dla różnych rezystancji obciążenia. RL=1M

Czas narastania

A) Wejście

	Czas [µs]	Czas narastania [µs]
T1	-287,982	0.06
T2	-287,92	- 0,06

B) Wyjście

	Czas [µs]	Czas narastania [µs]	
T1	-287,58	0,59	
T2	-286,99		

Czas opadania

A) Wejście

	Czas [µs]	Czas opadania [µs]
T1	138,79	0.070
T2	138,869	0,079

B) Wyjście

	Czas [µs]	Czas opadania [µs]	
T1	151	427	
T2	244	7 43/	

3. Zależność rezystancji RB od czasu podtrzymania oraz wyłączania fototranzystora. RD = 50 RL = 22k

Wniosek: Wraz ze wzrostem rezystancji RB, rośnie także czas podtrzymywania w miarę liniowo. Natomiast czas wyłączania dramatycznie rośnie przy stosowaniu rezystorów 1M i większych.

4. Czas załączania oraz podtrzymania wyjścia przy odłączonym dolnym kluczu.

RD	RL	RB	Stan klucza	Czas załączania [ns]	Czas podtrzymania [ns]
100Ω	$4,7k\Omega$	$470k\Omega$	Floating	850	498
	.,		Sink(odłączony)	770	486

Wniosek: Z pomiarów wynika, że odłączenie dolnego klucza fototranzystora wyraźnie skraca czas załączania i marginalnie skraca czas podtrzymania.

5. Zależność czasu wyłączania transoptora od rezystancji obciążenia.

RD	RB	RL	Czas wyłączania [µs]
6200 47010	10 $k\Omega$	15,2	
620Ω	$470k\Omega$	$1k\Omega$	11,49

Wniosek: Z pomiarów wynika, że redukcja RL skraca czas wyłączenia obwodu. Spadek RL prowadzi do wzrostu prądu kolektora, przyspieszając proces rozładowywania pojemności i usuwania ładunków.

Dla drugiego transoptora (bez wyprowadzonej bazy):

Poprzez manipulację rezystancji obciążenia udało nam się uzyskać stan nasycenia i zatkania przy takich parametrach. Ustaliliśmy również, że zmiana rezystancji RB nie ma wpływu na działanie transoptora bez wyprowadzonej bazy (z 4 nóżkami).

	Stan tranzystora		
Parametry	Zatkania	Nasycenie	
RB	470 kΩ	470 kΩ	
RL	100 Ω	100 kΩ	
RD	100 Ω	100 Ω	
Uwe	534 mV	523 mV	
Uwy	1,38 V	624,9 mV	

Stosunek prądu wyjściowego do prądu wejCTR = lwy/lwe = 0,00119 [A/A]

Prąd diody przy jakim tranzystor wchodzi w stan nasycenia - ID = Uwe/RD = 5,24 mA