

cs4341 Digital Logic & Computer Design

Lecture Notes 8

Omar Hamdy

Assistant Professor

Department of Computer Science

Review: Karnaugh Map (K-Map)

- ➤ A K-map is a diagram made of a collection of adjacent squares:
 - > Each square represents a minterm
 - ➤ The collection of squares is a graphical representation of a Boolean function
 - > Adjacent squares differ in the value of one variable only
 - ➤ Alternative algebraic expressions for the same function are derived by recognizing patterns of squares
- > The K-map can be viewed as a reorganized version of the truth table

Review: Importance of K-Map

- > K-Maps provide means of:
 - > Finding optimum or near optimum
 - > SOP and POS standard forms
 - > Two-level AND/OR and OR/AND circuits
 - > Visualizing concepts related to manipulating Boolean expressions
 - > Demonstrating concepts used by computer-aided design programs to simplify large circuits

> If we represent each minterm as a box, then we have:

$$m_2 = xy'$$
 $m_3 = xy$

How to connect?

2-Variable K-Map Minimization

➤ Use K-Map to simplify the Boolean function expressed in the following truth table

Input	Function
Values	Value
(x,y)	F(x,y)
0 0	1
0 1	0
10	1
1 1	1

Step 1: represent the truth table in a K-Map diagram

xy	y = 0	y = 1
x = 0	1	0
x = 1	1	1

2-Variable K-Map Minimization

- > Using algebraic simplification:
 - $F(x,y) = m_0 + m_2 + m_3$
 - F = x'y' + xy' + xy
 - F = (x' + x)y' + xy = (y' + x)(y' + y) = x + y'

- ➤ Using K-Map simplification:
 - Two adjacent 1s means one of the two variables is not impacting the output and can be ignored

x	y = 0	y = 1
x = 0	1	0
x = 1	1	1

> F= sum of all the simplified terms (prime implicants).

$$F = x + y'$$

x variable can be Ignored. The output = y' y variable can be Ignored. The output = x

3-Variable Adjacency View

Combining Squares

- ➤ By finding largest possible 2ⁿ squares and by combining squares, we reduce number of literals in a product term, hence reducing the gate cost
- ➤ On a 3-variable K-Map:
 - > One square represents a minterm with 3 variables
 - > Two adjacent squares represent a term with 2 variables
 - > Four adjacent squares represent a term with 1 variable
 - > Eight adjacent square is the function 1 (no variables)

Minimization Example

 \triangleright Minimize (simplify) $F = \sum (2,3,6,7)$

$$F = \sum (2,3,6,7) = y$$

➤ Using Boolean algebra:

$$F = x'yz' + x'yz + xyz' + xyz$$

$$> = x'yz + xyz + x'yz' + xyz'$$

$$\Rightarrow$$
 = yz + yz' = y

Visual Simplification

Now we understand how to construct and read a k-map, we can simplify its visual to make it less busy diagram

Minimization Example

 \triangleright Describe F (x, y, z) in its minimized form

To Do List

- > Review lecture notes, and try the examples yourself
- ➤ Study chapter 2
- ➤ Work on assignment 1