Clase 2. Jerarquía de la Computabilidad.

M sí w no

Iremos probando formalmente las distintas fronteras del mapa de la computabilidad

(representados por lenguajes)

2: conjunto de los lenguajes RE: conjunto de los lenguajes recursivamente numerables (o enumerables)

R : conjunto de los lenguajes recursivos

Nuestro artefacto para el estudio de la computabilidad: MT con K cintas. L(M) = {w | M acepta w}. La MT M acepta, o reconoce, el lenguaje L(M).

- Se asume un alfabeto universal de símbolos: $\Sigma = \{a_1, a_2, a_3, ...\}$
- Σ* es el conjunto de todas las cadenas finitas formadas con símbolos de Σ
- $\mathfrak L$ es el conjunto de todos los lenguajes formados con cadenas de Σ^* :

 $\mathfrak{L} = P(\Sigma^*)$, es decir que \mathfrak{L} es el conjunto de partes de Σ^*

- Todo L_i de $\mathfrak L$ es un subconjunto de Σ^* , p.ej. $\{a_1, a_5a_{10}a_8, a_2a_2a_2a_2a_2a_2\}$
- Todo lenguaje L_i representa un **problema de decisión**
- Ejemplo de lenguaje L_i: {G | G es un grafo que tiene un camino del vértice v₁ al vértice v_n}

Un lenguaje L es **recursivamente numerable** (L \in RE) si y sólo si existe una MT M_L que **lo acepta**, es decir L(M_L) = L. Por lo tanto, para toda cadena w de Σ^* :

Si $w \in L$, entonces M_l a partir de w para en su estado q_A

Si w ∉ L, entonces M_L a partir de w para en su estado q_R o no para

Un lenguaje L es **recursivo** (L \in R) si y sólo si existe una MT M_L que **lo acepta y para siempre** (también se puede decir directamente que **lo decide**). Por lo tanto, para toda cadena w de Σ^* :

Si $w \in L$, entonces M_L a partir de w para en su estado q_A

Si w ∉ L, entonces M_L a partir de w para en su estado q_R

Se cumple por definición que $R \subseteq RE \subseteq \Omega$ (ejercicio)

Probaremos entre esta clase y la que viene que R \subset RE $\subset \mathfrak{L}$

Algunas propiedades de la clase R

R es **cerrada** con respecto a las operaciones de complemento, intersección, unión y concatenación. Es decir:

- Si L \in R, entonces L^C \in R, siendo L^C el complemento de L con respecto a Σ^* , con: L^C = {w | w \in $\Sigma^* \land$ w \notin L}, o en otras palabras: L^C = Σ^* L
- Si $L_1 \in R$ y $L_2 \in R$, entonces $L_1 \cap L_2 \in R$
- Si $L_1 \in R$ y $L_2 \in R$, entonces $L_1 \cup L_2 \in R$
- Si L₁ ∈ R y L₂ ∈ R, entonces L₁ L₂ ∈ R, siendo L₁ L₂ el lenguaje concatenación o producto de L₁ con L₂, con:

$$L_1 \cdot L_2 = \{ w \mid w = w_1 w_2, \text{ con } w_1 \in L_1 \text{ } y \text{ } w_2 \in L_2 \}$$

Lema 1. Si $L \in R$, entonces $L^C \in R$

Prueba.

1. Idea general.

Dada una MT M_L que acepta L y para siempre (hipótesis), la idea es construir una MT M_L que acepte L^C y pare siempre.

En la nueva MT se permutan los estados finales de la MT original

2. Construcción.

Si $M_L = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R)$, entonces $M_L^C = (Q, \Sigma, \Gamma, \delta', q_0, q_A, q_R)$, tal que δ y δ' son idénticas salvo que con los estados q_A y q_R **permutados**

Formalmente:

Para todos los estados q y q´, símbolos a y a´, y movimientos d de {L, R, S}:

- Si $\delta(q, a) = (q', a', d)$, siendo $q' \neq q_A y q_R$, entonces $\delta'(q, a) = (q', a', d)$
- Si $\delta(q, a) = (q_A, a', d)$, entonces $\delta'(q, a) = (q_B, a', d)$
- Si $\delta(q, a) = (q_R, a', d)$, entonces $\delta'(q, a) = (q_A, a', d)$

3. Prueba de correctitud de la construcción.

• M₁ ^C para siempre:

M_L para siempre y M_L^C sólo difiere de M_L en que para en el estado opuesto

• L(M_L^c) = L^c (vamos a probarlo por doble inclusión de conjuntos):

 $w \in L(M_1^C) \leftrightarrow por definición$:

con input w, $M_L{}^C$ para en $q_A \leftrightarrow$ por construcción:

con input w, M_L para en $q_R \leftrightarrow$ por definición:

 $w \notin L(M_1) \leftrightarrow por definición:$

w ∉ L ↔ por definición:

 $w \in L^C$

Lema 2. Si $L_1 \in R$ y $L_2 \in R$, entonces $L_1 \cap L_2 \in R$ Prueba.

1. Idea general.

secuencialmente

dos MT originales

Dadas dos MT M₁ y M₂ que aceptan L₁ y L₂ y paran siempre (hipótesis), la idea es construir a partir de ellas una MT M que acepte $L_1 \cap L_2$ y pare siempre.

2. Construcción.

M tiene 2 cintas. Con el input w en la cinta 1, M hace:

- 1. Copia w en la cinta 2.
- 2. Ejecuta M_1 sobre w en la cinta 2. Si M_1 para en q_R , entonces M para en q_R .
- 3. Borra el contenido de la cinta 2 y copia w en la cinta 2.
- 4. Ejecuta M_2 sobre w en la cinta 2. Si M_2 para en q_A (q_R), entonces M para en q_A (q_R).

- Los pasos 2 y 4 pueden entenderse como invocaciones a subrutinas (que no son más que las funciones de transición δ₁ de M₁ y δ₂ de M₂ incluidas adecuadamente en la función de transición δ de M). Queda como ejercicio indicar cómo se implementaría copiar w en la cinta 2 y borrar el contenido de la cinta 2.
- También quedan como ejercicios:
 - ✓ Probar la correctitud de la construcción: (a) M para siempre. (b) $L(M) = L_1 \cap L_2$.
 - ✓ Probar las otras propiedades de clausura de R mencionadas anteriormente.

Algunas propiedades de la clase RE

RE es **cerrada** con respecto a las operaciones de intersección, unión y concatenación (<u>no con respecto al complemento</u>, como veremos luego). Es decir:

- Si $L_1 \in RE$ y $L_2 \in RE$, entonces $L_1 \cap L_2 \in RE$
- Si $L_1 \in RE$ y $L_2 \in RE$, entonces $L_1 \cup L_2 \in RE$
- Si $L_1 \in RE$ y $L_2 \in RE$, entonces $L_1 \cdot L_2 \in RE$

• Si L \in RE, no necesariamente L^C \in RE

Lema 3. Si $L_1 \in RE$ y $L_2 \in RE$, entonces $L_1 \cup L_2 \in RE$ **Prueba.**

1. Idea general.

Dadas por hipótesis dos MT M_1 y M_2 que aceptan L_1 y L_2 (no necesariamente paran

¡Problema! Si M₂ acepta w y M₁ no para sobre w, entonces M no acepta w (**error**).

La idea es ejecutar "en paralelo" M_1 y M_2 . Si en algún paso alguna de ellas acepta, entonces la MT M construida acepta.

2. Construcción.

M tiene 4 cintas. En la cinta 1 tiene el input w. En las cintas 2 y 3 ejecuta M₁ y M₂. En la cinta 4 tiene un contador i de pasos:

- 1. Copia w en las cintas 2 y 3, y en la cinta 4 hace i := 1.
- 2. Ejecuta a lo sumo i pasos de M_1 sobre w en la cinta 2, y a lo sumo i pasos de M_2 sobre w en la cinta 3. Si M_1 o M_2 aceptan, M acepta.
- 3. Borra el contenido de las cintas 2 y 3, copia w en ellas desde la cinta 1, suma 1 a i en la cinta 4, y vuelve al paso 2.

cinta 1
W
cinta 2
ejecución de M ₁
cinta 3
ejecución de M ₂
cinta 4
contador i de pasos

- M acepta o no para. M se puede optimizar rechazando en (2) cuando las 2 MT rechazan.
- En c/iteración M ejecuta las dos MT desde el paso 1. M se puede optimizar ejecutando en c/iteración sólo el paso siguiente (debería memorizar los estados y posiciones corrientes).
- Queda como ejercicio indicar cómo sumar 1 a i y cómo ejecutar i pasos de M₁ y M₂.
- También quedan como ejercicios probar la correctitud de la construcción (es decir la igualdad L(M) = L₁ U L₂) y las otras propiedades de clausura de RE mencionadas antes.

Jerarquía de la computabilidad

Ya se indicó que $R \subseteq RE \subseteq \mathfrak{L}$.

Probaremos entre esta clase y la que viene que $R \subset RE \subset \mathfrak{L}$.

Como ayuda, definimos primero: CO-RE = {L | L $\in \Omega \land L^C \in RE$ }.

Es decir, CO-RE es el conjunto de los lenguajes tales que sus complementos están en RE.

Vamos a probar primero que se cumple R = RE ∩ CO-RE. Es decir que sólo en la clase R vale que si contiene el lenguaje L también contiene su complemento L^c. Llegaremos a lo siguiente:

y en definitiva a:

Lema 4. $R = RE \cap CO-RE$ **Prueba.**

La inclusión R ⊆ RE ∩ CO-RE se prueba fácilmente:

R ⊆ **RE**: se cumple por definición (ya visto antes)

 $R \subseteq CO$ -RE: $L \in R \rightarrow L^C \in R$ (por Lema 1) $\rightarrow L^C \in RE \rightarrow L \in CO$ -RE

Probaremos ahora la otra inclusión: RE ∩ CO-RE ⊆ R:

Hay que probar que si $L \in RE \cap CO$ -RE, entonces $L \in R$ En otras palabras: si $L \in RE$ y $L \in CO$ -RE, entonces $L \in R$ Lo que es lo mismo que: si $L \in RE$ y $L^C \in RE$, entonces $L \in R$ Vamos a construir una MT M que decida L (que lo acepte y pare siempre), a

Vamos a construir una MT M que decida L (que lo acepte y pare siempre), a partir de la hipótesis de que existen MT M_L y M_L^C que aceptan, resp., L y L^C:

Idea general

Que existan las MT M_L y M_L ^C que aceptan L y L^C, respectivamente, es **suficiente información** para obtener una MT M que decide L: **dado un input w**, $w \in L$ o bien $w \in L$ ^C, y por lo tanto M_L acepta w (en cuyo caso M acepta) o bien M_L ^C acepta w (en cuyo caso M rechaza). De este modo, ejecutando ambas MT "en paralelo" se logra lo buscado.

Queda como ejercicio la construcción de M, y la prueba de que: (a) M para siempre, (b) L(M) = L

Probaremos que:

R

RE (hay lenguajes recursivamente numerables que no son recursivos)

 ${\mathfrak L}$

CO-RE

3

RE

 $RE \subset \Omega$ (hay lenguajes que no son recursivamente numerables)

RE ≠ CO-RE (RE no es cerrada con respecto al complemento)

RE U CO-RE $\neq \Omega$ (hay lenguajes fuera de RE U CO-RE)

- Así las cosas, dado un lenguaje L veremos que existen 3 posibilidades:
- 1. L y L^c están en R. La clase R es la clase de lenguajes o problemas de menor "dificultad" (región 1) desde el punto de vista de la computabilidad.
- 2. L está en RE y L^c está en CO-RE. Los conjuntos RE R y CO-RE R le siguen en "dificultad" a R en la jerarquía de la computabilidad (regiones 2 y 3).
- 3. Tanto L como L^c están fuera de RE U CO-RE (¡no existen MT ni para uno ni para el otro!). La región \mathfrak{L} (RE U CO-RE) es la de mayor "dificultad" (región 4), es la que tiene a los lenguajes más "difíciles", y además la más amplia de la jerarquía.

Algunos ejemplos clásicos de problemas de decisión fuera de R

- Dada una ecuación diofántica (polinomio con coeficientes enteros), por ejemplo x³ + y³ = z³, ¿tiene una solución con números enteros? Está en RE R.
- Teselación del plano: dado un conjunto finito de formas poligonales, ¿se puede cubrir el plano con ellas? Está en RE R.
- Problema de Correspondencia de Post (PCP): dado un conjunto de pares de cadenas de 1 y 0, por ejemplo {(1101,11),(00110,0100),(1110,1100),(0101,1010)}, ¿hay una forma de disponer los pares (se pueden repetir) tal que concatenando las partes de la izquierda y las partes de la derecha se obtenga una misma cadena? Está en RE R.
- En la lógica de primer orden, dada una fórmula como por ejemplo (∀x) (∃y) P(x,y,8), ¿acaso la fórmula es válida? Está en RE R.
- En la teoría o axiomática de la aritmética, dada una fórmula como por ejemplo $(\forall x)$ $(\forall y)$ $(\forall z)$ f(x,y,z) = g(x,y,z), ¿acaso la fórmula es verdadera? ¡Está en $\mathfrak L$ (RE U CO-RE)!
- Halting Problem (Problema de la Parada de las Máquinas de Turing): dada una MT M y un input w,
 ¿acaso M para a partir de w? Está en RE R.

La prueba central de la clase que viene, para corroborar la jerarquía:

será la de R ⊂ RE, **encontrando un lenguaje L de RE – R**.

Así también valdrá RE $\subset \mathfrak{L}$, porque deberá ser L^C \notin RE (si L^C \in RE, como L \in RE, entonces L \in R), **por lo que habremos encontrado un lenguaje L^C de \mathfrak{L} – RE.**

Deberemos recurrir a una técnica distinta. Para probar que $L \in R$ o $L \in RE$ vimos que basta con **construir una MT**. En cambio, para probar que $L \notin R$ o $L \notin RE$ tendremos que utilizar otra técnica (usaremos **diagonalización** o **reducción**).

Ejercicio (Clase Práctica). Probar que la clase R es cerrada con respecto a la operación de concatenación, es decir que si $L_1 \in R$ y $L_2 \in R$, entonces también $L_1 \cdot L_2 \in R$.

<u>Idea general</u>.

El lenguaje L_1 , L_2 contiene todas las cadenas $w = w_1w_2$, tales que $w_1 \in L_1$ y $w_2 \in L_2$

Sea M_1 una MT que decide el lenguaje L_1 y M_2 una MT que decide el lenguaje L_2 . Hay que construir una MT M que decida el lenguaje L_1 , L_2 . Dado un input w con n símbolos, M hace:

- 1. M ejecuta M₁ a partir de los primeros 0 símbolos de w, y M₂ a partir de los últimos n símbolos de w
- 2. Si en ambos casos se acepta, entonces M acepta
- 3. Si no, M hace lo mismo que en (1) pero ahora con el 1er símbolo de w y los últimos (n 1) de w
- 4. Si en ambos casos se acepta, entonces M acepta
- 5. Si no, mientras M no acepte, M repite el paso (1) con:
 - 2 y (n-2) símbolos de w
 - 3 y (n 3) símbolos de w
 - y así siguiendo hasta llegar a n y 0 símbolos de w (si M nunca acepta, entonces rechaza)

Queda como ejercicio la construcción de M y la verificación de su correctitud

Ejercicio (Clase Práctica). Probar que también la clase RE es cerrada con respecto a la operación de concatenación, es decir que si $L_1 \in RE$ y $L_2 \in RE$, entonces también $L_1 \cdot L_2 \in RE$.

Idea general.

Tal como se hizo con los lenguajes recursivos, se tiene que construir una MT M que reconozca L_1 , L_2 ejecutando sobre un input w (de n símbolos) determinadas MT M_1 y M_2 (MT que reconocen L_1 y L_2 , respectivamente, las cuales ahora pueden loopear en casos negativos), primero a partir de 0 y n símbolos de w, después a partir de 1 y n – 1 símbolos de w, y así siguiendo hasta llegar a n y 0 símbolos de w, aceptando eventualmente.

La diferencia con el caso de los lenguajes recursivos está en que ahora, teniendo en cuenta los posibles loops de M₁ y M₂, M debe ejecutarlas "en paralelo":

M primero debe hacer ejecuciones de 1 paso de $\rm M_1$ y $\rm M_2$ con todas las posibles particiones de w, luego ejecuciones de 2 pasos, luego ejecuciones de 3 pasos, y así siguiendo hasta eventualmente aceptar

Queda como ejercicio la construcción de M y la verificación de su correctitud

Ejercicio (Clase Práctica). Probar que la clase RE es cerrada con respecto a la operación de unión, permitiendo como solución una MT no determinística (MTN).

Idea general y construcción.

Dados dos lenguajes L_1 y L_2 de RE, aceptados por MT M_1 y M_2 , con M_1 = (Q_1 , Σ_1 , Γ_1 , δ_1 , q_{10} , q_A , q_R) y M_2 = (Q_2 , Σ_2 , Γ_2 , δ_2 , q_{20} , q_A , q_R), vamos a construir una MTN M que acepta L_1 U L_2 :

Sea q₀ un estado que no está en Q₁ ni en Q₂. La MTN M es:

$$M = (Q_1 \cup Q_2 \cup \{q_0\}, \Sigma = \Sigma_1 \cup \Sigma_2, \Gamma = \Gamma_1 \cup \Gamma_2, \Delta, q_0, q_A, q_R), \text{ tal que:}$$

 $\Delta = \delta_1 \cup \delta_2 \cup \{(q_0, a, q_{10}, a, S), (q_0, a, q_{20}, a, S)\}$, considerando todos los símbolos a de Σ

Es decir, al comienzo la MTN M pasa no determinísticamente a la configuración inicial de M_1 o M_2 , y después se comporta como ellas.

Queda como ejercicio la verificación de la correctitud de la construcción de la MTN M