```
In [1]: import pandas as pd
import seaborn as sns
import numpy as np
```

- In [2]: import matplotlib.pyplot as plt
 import warnings
- In [3]: warnings.filterwarnings("ignore")
- In [6]: from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
- In [7]:
 data_set_name=sns.get_dataset_names()
 print(data_set_name)

['anagrams', 'anscombe', 'attention', 'brain_networks', 'car_crashes', 'di amonds', 'dots', 'dowjones', 'exercise', 'flights', 'fmri', 'geyser', 'glu e', 'healthexp', 'iris', 'mpg', 'penguins', 'planets', 'seaice', 'taxis', 'tips', 'titanic', 'anagrams', 'anagrams', 'anscombe', 'anscombe', 'attent ion', 'attention', 'brain_networks', 'brain_networks', 'car_crashes', 'car_crashes', 'diamonds', 'dots', 'dots', 'dowjones', 'dowjones', 'exercise', 'exercise', 'flights', 'flights', 'fmri', 'fmri', 'geyser', 'g eyser', 'glue', 'glue', 'healthexp', 'healthexp', 'iris', 'iris', 'mpg', 'penguins', 'penguins', 'planets', 'planets', 'seaice', 'seaice', 'taxis', 'taxis', 'tips', 'tips', 'titanic', 'titanic', 'anagrams', 'anscombe', 'attention', 'brain_networks', 'car_crashes', 'diamonds', 'dots', 'dowjones', 'exercise', 'flights', 'fmri', 'geyser', 'glue', 'healthexp', 'iris', 'mpg', 'penguins', 'planets', 'seaice', 'taxis', 'tips', 'titanic']

```
In [9]: df = sns.load_dataset("titanic")
```

In [10]: df.head()

Out[10]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ma
0	0	3	male	22.0	1	0	7.2500	S	Third	man	Trı
1	1	1	female	38.0	1	0	71.2833	С	First	woman	Fals
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	Fals
3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fals
4	0	3	male	35.0	0	0	8.0500	S	Third	man	Trı
4											>

```
In [11]: df.tail()
```

Out[11]:

adult_n	who	class	embarked	fare	parch	sibsp	age	sex	pclass	survived	
٦	man	Second	S	13.00	0	0	27.0	male	2	0	886
F	woman	First	S	30.00	0	0	19.0	female	1	1	887
F	woman	Third	S	23.45	2	1	NaN	female	3	0	888
٦	man	First	С	30.00	0	0	26.0	male	1	1	889
٦	man	Third	Q	7.75	0	0	32.0	male	3	0	890
•											4

In [13]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
```

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	889 non-null	object
8	class	891 non-null	category
9	who	891 non-null	object
10	adult_male	891 non-null	bool
11	deck	203 non-null	category
12	embark_town	889 non-null	object
13	alive	891 non-null	object
14	alone	891 non-null	bool
dtyp	es: bool(2),	category(2), flo	at64(2), int64(4), object(5)
memo	ry usage: 80.	7+ KB	

In [15]: df["sex"].value_counts(normalize=True)

Out[15]: male 0.647587 female 0.352413

Name: sex, dtype: float64

In [16]: df.describe()

Out[16]:

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [17]: df["deck"].value_counts(normalize=True)

Out[17]: C

- C 0.290640
- B 0.231527
- D 0.162562
- E 0.157635
- A 0.073892
- F 0.064039
- G 0.019704

Name: deck, dtype: float64

In [18]: df.drop(["deck"], axis=1)

Out[18]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult
0	0	3	male	22.0	1	0	7.2500	S	Third	man	
1	1	1	female	38.0	1	0	71.2833	С	First	woman	
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	
3	1	1	female	35.0	1	0	53.1000	S	First	woman	
4	0	3	male	35.0	0	0	8.0500	S	Third	man	
886	0	2	male	27.0	0	0	13.0000	S	Second	man	
887	1	1	female	19.0	0	0	30.0000	S	First	woman	
888	0	3	female	NaN	1	2	23.4500	S	Third	woman	
889	1	1	male	26.0	0	0	30.0000	С	First	man	
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	

891 rows × 14 columns

In [20]: df1 = df.drop(["embarked", "class", "who", "adult_male", "deck", "embark_to

```
In [21]: df1['sex'].mode()[0]
Out[21]: 'male'
In [22]: df1['age'].mode
Out[22]: <bound method Series.mode of 0
                                               22.0
                 38.0
         2
                 26.0
         3
                 35.0
         4
                 35.0
                 . . .
         886
                 27.0
         887
                 19.0
         888
                  NaN
         889
                 26.0
         890
                 32.0
         Name: age, Length: 891, dtype: float64>
In [23]: |df1['age'].mean
Out[23]: <bound method NDFrame._add_numeric_operations.<locals>.mean of 0
                                                                                   22.0
         1
                 38.0
                 26.0
         2
         3
                 35.0
          4
                 35.0
                 . . .
         886
                 27.0
                 19.0
         887
         888
                  NaN
         889
                 26.0
         890
                 32.0
         Name: age, Length: 891, dtype: float64>
In [24]: df1.loc[:,"sex"].mode()
Out[24]: 0
               male
         Name: sex, dtype: object
In [25]: df1.min()
Out[25]: survived
                           0
         pclass
                           1
                      female
          sex
                        0.42
          age
          sibsp
                           0
                           0
         parch
         fare
                         0.0
         alive
                          no
         dtype: object
In [26]: bool_series = pd.notnull(df1["sex"])
```

In [27]: df1

Out[27]:

	survived	pclass	sex	age	sibsp	parch	tare	alive
0	0	3	male	22.0	1	0	7.2500	no
1	1	1	female	38.0	1	0	71.2833	yes
2	1	3	female	26.0	0	0	7.9250	yes
3	1	1	female	35.0	1	0	53.1000	yes
4	0	3	male	35.0	0	0	8.0500	no
886	0	2	male	27.0	0	0	13.0000	no
887	1	1	female	19.0	0	0	30.0000	yes
888	0	3	female	NaN	1	2	23.4500	no
889	1	1	male	26.0	0	0	30.0000	yes
890	0	3	male	32.0	0	0	7.7500	no

891 rows × 8 columns

```
In [28]: df1.fillna(df1['age'].mean,inplace=True)
```

```
In [29]: #Q2
ip = "a4b4c4d1"

op = ""
i = 0
while i < len(ip):
    char = ip[i]
    count = int(ip[i + 1])
    op += char * count
    i += 2</pre>
print("op =", op)
```

op = aaaabbbbccccd

```
In [30]:
         from collections import Counter
         test_list = [[3, 5, 4],
                      [6, 2, 4],
                      [1, 3, 6]]
         flattened_list = [item for sublist in test_list for item in sublist]
         frequency = dict(Counter(flattened_list))
         print("The original list:", test_list)
         print("The list frequency of elements is:", frequency)
         The original list: [[3, 5, 4], [6, 2, 4], [1, 3, 6]]
         The list frequency of elements is: {3: 2, 5: 1, 4: 2, 6: 2, 2: 1, 1: 1}
In [32]: #Q4
         list1 = [1, 2, 3, 4, 5]
         list2 = [4, 5, 3, 7, 8]
         common_elements = [element for element in list1 if element in list2]
         print("Common elements:", common_elements)
```

Common elements: [3, 4, 5]

Input list

words = ['Sohan', 'Mohan', 'Rohan']

Extracting the first letter of each word

first_letters = [word[0] for word in words]

Output the result

print("Op:", first_letters)

```
In [33]:
         words = ['Sohan', 'Mohan', 'Rohan']
         first_letters = [word[0] for word in words]
         print("Op:", first_letters)
         Op: ['S', 'M', 'R']
In [34]:
         #06
         from collections import Counter
         lst = ['pandas', 'numpy', 'flask', 'python', 'python']
         counts = Counter(1st)
         duplicates = [item for item, count in counts.items() if count > 1]
         print("Op:", duplicates)
         Op: ['python']
In [35]:
         my_string = "santosh kawade"
         length = len(my_string)
         print("OP: count for string is", length)
         OP: count for string is 14
In [36]: # Q8
         lis = [1, 2, 5, 3, 4, 8, 9, "lis", "a"]
         length = len(lis)
         print("OP: count for list is", length)
         OP: count for list is 9
 In [ ]:
 In [ ]:
```