

NOVA-CARD-3020 开发板参考手册 Reference manual of NOVA-CARD-3020

北京聚码科技有限公司 2015.12.28 更新

目录

简介	3
联系我们	
	

NOTES:

If you are customers from overseas, please contact hello@jumacc.com
for quotation and specifications of English version.

一、简介 Introduction

NOVA 是一个专门为 DIY 爱好者和智能家居等控制领域打造的低功耗蓝牙开 发板。开发板采用了 QFN 封装的 Nordic nRF51822 第四代蓝牙传输芯片、集 成了高低速晶振、一颗单色 LED 指示灯, 4 个强驱动能力的 MOS 管, 以及 两个 3V 电压输出可直接驱动 2 级电路板。开发板的尺寸仅为 30mm * 20mm 的矩形大小。该开发板引出 8 个 GPIO 且其中 5 个可兼容 ADC , 所 有 的 IO 口可以任意配置为 RX、TX、UART、SPI、I2C 等接口----这个是 nRF51822 芯片的优势,用户可自定义 GPIO 口。该开发板的焊盘采用圆形过孔工艺, 支持 DIP24 双列直插接口,能直接使用面包板,排针,杜邦线等进行电路调 试。JUMA 提供一系列基于 NOVA 开发的例程源码。

图 1. Smart Motion Platform 实物尺寸

二、产品特性

(1) 硬件:

- 符合蓝牙 4.0 (Bluetooth Low Energy) 标准;
- 高性能 32 位 ARM Cortex-MO 处理器, 256KB FLASH 和 16KB RAM;
- 灵敏度为 -92.5dB RX, 高达+4dBm 的输出功率, 场强 RSSI 检测;
- 支持 DIP24 双列直插接口,能直接用于面包板、排针、杜邦线;
- 板载 4 个 MOS 管, 无需外部电路, 直接驱动马达、LED、蜂鸣器等;
- 最多支持 5 路 10bit AD 转换;
- 适配多种电源输入,如锂电池(4v)、常用变压器(3v/4v/5v/6v/9v/12v);
- 支持 2 路 3V 电源输出, 方便驱动数字/模拟外设;

(2) 软件:

- 配套 JUMA SDK, 开发者无需了解蓝牙底层协议, 便可开发蓝牙产品;
- 无需外接 MCU, 用户代码区资源: 32KB 代码、4KB 内存;
- 支持更高效的嵌入式异步编程, 最多可调度 32 个异步任务;
- 支持有线(JLINK) 烧入和无线(手机蓝牙) 固件烧入/升级;

三、工作参数及原理图

1、电气参数

参数	典型值	备注
工作电压	4-12V	从 VI 引脚供电
工作电压	1.8~3.6V	从 3V3 引脚供电
工作频率	2400-2483MHz	可编程
调制方式	Q-QPSK	
发射功率	+4dBm	可编程
接收灵敏度	-93dBm	High gain mode
接收电流	13mA	Standard mode
发射电流	16mA	+4dBm
及别 电弧	7mA	-8dBm
MOS 引脚驱动电流	2000mA MAX	开漏输出
睡眠功耗	0.4μΑ	从 3V3 引脚供电
模块尺寸	20*30*2.0mm	

2、引脚参数

引脚号	名称	类型	说明
1	GND	POWER	接地
2	D25	I/O	数字 IO
3	D26	I/O	数字 IO
4	D27	I/O	数字 IO
5	A 0	I/O、A/D	模拟数字复合 IO
6	M28	MOS	开漏输出,最大 2A
7	M29	MOS	开漏输出,最大 2A
8	GND	POWER	接地

1: GND >

2: D25 -

3: D26 -

4: D27 -

5: A0 -

6: M28 -

7: M29 -

8: GND -

9: Vin -

10: Vin -

引脚号	名称	类型	说明
9	Vin	POWER	电压输入,4~12V
10	Vin	POWER	电压输入, 4~12V
11	3V3	POWER	3.3V,可接 3V 电池
12	3V3	POWER	3.3V,可接 3V 电池
13	GND	POWER	接地
14	M12	MOS	开漏输出,最大 2A
15	M11	MOS	开漏输出,最大 2A
16	D3	I/O、A/D	模拟数字复合 IO
17	D4	I/O、A/D	模拟数字复合 IO
18	D5	I/O、A/D	模拟数字复合 IO
19	D6	I/O、A/D	模拟数字复合 IO
20	GND	POWER	接地

- 20: GND >
- 19: D6 -
- 18: D5 -
- 17: D4 -
- 16: D3 -
- 15: M11 -
- 14: M12 >
- 13: GND -
- 11: 3V3 >

3、原理图

图 2. nRF51822 主芯片部分

图 3. 单色 LED 指示灯部分(P0.02 脚)

图 4. MOS 管部分

图 5. NOVA 整体原理图

4、布局图和实物图

图 7. NOVA 尺寸图

图 7. NOVA 实物图

四、例程烧录

为了方便开发者可以更快的上手,特此以 Jlink OB 为例介绍一下 SMP 程序烧录过程。 (注: Jlink V8 调试器也可烧录,请找到对应管脚,在此不做介绍)

1、硬件连接

如图所示,分别将 JLink OB 的 VCC、SWDIO、SWCLK、GND 四个引脚线通过杜邦线与 NOVA 对应的引脚 连接, JLink OB 另一端与 PC 端的 USB 口连接即可。

2、烧录固件

注: 这里默认您开发环境已经搭好,因为需要用到 nordic 烧录程序 nrfprog.exe 和 JLink 的驱动,若没有,请移步这里参考

http://www.juma.io/sdk/boards/nordic/basic/dev_env_build.html

- (1)请下载 JUMA SDK(https://github.com/JUMA-IO/JUMA_SDK_Release/archive/v1.0.zip)
- (2) 在 SDK 中有 3 个压缩包---- Embedded、 Android 和 iOS , 分别代表嵌入式端、安卓端和 iOS 端的 SDK。我们解压 Embedded.zip。在 SDK 文件夹里面找到这样一个文件 Nordic/images/flash-ble-device-system.bat
- (3) 双击这个批处理文件,即可自动烧录固件到开发板中。

Tip: 使用蓝牙芯片需要先烧录固件,因为固件和应用层代码是分开的。

3、编写程序(keil 开发环境)

在这里,我们就不带着您编写程序了,如果想学习编程请下载源码学习我公司开发框架,了解更多函数功能接口(API)请移步网站 http://www.juma.io/sdk/introduction/index.html 深入学习。JUMA 有一系列的范例程序源码提供开发者免费下载。

范例源码下载地址:

https://github.com/JUMA-IO/JUMA-Samples/tree/master/Nordic/NOVA

4、烧录程序

按照如图所示, 依次编译链接下载即可。

5、检验成果

至此,嵌入式端代码已经完整的烧录进去开发板。

我们通过手机来检验一下是否可以蓝牙通信。以安卓手机为例。

(1)打开 SDK 文件夹,解压 android.zip 得到安卓的 SDK ,我们找到文件 apk/JumaBleHelper.apk ,这是 JUMA 蓝牙调试助手的安装文件。

- (2) 通过数据线将这个文件放进手机,在手机端找到并安装即可。
- (3) 打开调试助手,点击 Scan -> Start, 开始扫描找到嵌入式端自定义的设备名,选择之后点击 Connect 会进行自动连接,此时,屏幕上 UUID 下面的红线变成了绿线即表示连接成功。

五、开发及了解更多

- (1) JUMA SDK & 开发指南 http://www.juma.io/sdk/introduction/index.html
- (2) 了解更多硬件也可登录我们的淘宝店铺 http://shop123943370.taobao.com/

合作邮箱: hello@jumacc.com

六、联系我们

微信公众号: JUMA 智能硬件

聚码微博

官方网址: www.juma.io

合作邮箱: hello@jumacc.com