Regression Modeling with Actuarial and Financial Applications by Edward Frees

Ch. 4 notes

Categorical Variables

- Categorical variables provide labels for observations to denote membership in distinct groups, or categories.
- A binary variable is a special case of a categorical variable.
- To illustrate, a binary variable may tell us whether or not someone has health insurance.
- A categorical variable could tell us whether someone has (i) private individual health insurance, (ii) private group insurance, (iii) public insurance or (iv) no health insurance.
- For categorical variables, there may or may not be an ordering of the groups.
- However, for education, we may group individuals from a dataset For health insurance, it is difficult to say which is "larger," private individual versus public health insurance (such as Medicare).
 - Factor is another term used for a (unordered) categorical into "low," "intermediate" and "high" years of education.

Mulliple Linear Regression - I

explanatory variable.

The Rote of Binary Variables

Example. Term Life Insurance

- We studied y = LNFACE, the amount that the company will pay in the event of the death of the named insured (in logarithmic dollars), focusing on the explanatory variables
 - annual income of the family (LNINCOME, in logarithmic dollars),
- the number of years of EDUCATION of the survey respondent and
- the number of household members, NUMHH.
- MARSTAT, that is the marital status of the survey respondent. This We now supplement this by including the categorical variable,
- 1, for married
- 2, for living with partner
- divorced, widowed, never married and inapplicable, for persons age 0, for other (SCF actually breaks this category into separated, 17 or less or no further persons)

Categorical Variables

- A categorical variable with c levels can be represented using c binary variables, one for each category.
- · For example, from a categorical education variable, we could code one to indicate intermediate education and (3) one to indicate high c=3 binary variables: (1) a variable to indicate low education, (2) education.
 - These binary variables are often known as dummy variables.
- In regression analysis with an intercept term, we use only c-1 of these binary variables. The remaining variable enters implicitly through the intercept term.
- Through the use of binary variables, we do not make use of the ordering of categories within a factor.
- categories, for the model fit it does not matter which variable is Because no assumption is made regarding the ordering of the dropped with regard to the fit of the model.
 - However, it does matter for the interpretation of the regression

Frees (Regression Modeling)

Multiple Linear Regression - II

Example. Term Life Insurance

Table: Summary Statistics of Logarithmic Face By Marital Status

				Standard
	MARSTAT	Number	Mean	deviation
Other	0	57	10.958	1.566
Married	-	208	12.329	1.822
Living together	α	10	10.825	2.001
Total		275	11.990	1.871

- categories, you only enter in c-1 of the binary variables and then the one that is omitted is variables' slopes(or betas) are changes from automatically the baseline and the other For a binary variable with more than 2 that baseline.
- you include all variables, it will choose one for not be the one that you want or the one that you automatically as a baseline. But, it may level. Most statistical software programs, if The baseline is also known as the reference makes the best sense.

Example. Term Life Insurance

If we run a regression with the binary variables MAR0 and MAR2, then

- $\hat{y} = 2.605 + 0.452$ LNINCOME + 0.205EDUCATION + 0.248NUMHH -0.557MAR0 0.789MAR2.
- If you are married, then MAR0 = 0, MAR1 = 1 and MAR2 = 0, and
- $\hat{y}_m = 2.605 + 0.452$ LNINCOME + 0.205EDUCATION + 0.248NUMHH.
- If living together, then MAR0 = 0, MAR1 = 0 and MAR2 = 1, and

 $\hat{y}_{ll} = 2.605 + 0.452$ LNINCOME + 0.205EDUCATION + 0.248NUMHH - 0.789.

- The difference in these two equations is 0.789.
- Interpret the regression coefficient associated with MAR2 to be the difference in fitted value for someone living together, compared to a similar person who is married (the omitted category).
 - Similarly, interpret -0.557 to be the difference between the "other" category and the married category.
- -0.557 (-0.789) = 0.232 is the difference between the other and the living together category.

The Role of Binary Variables

Example. Term Life Insurance

Table: Term Life Regression Coefficients with Marital Status

	Model 1	-	Model 2	2	Model 3	က
Explanatory						
Variable	Coefficient		Coefficient	t-ratio	_	t-ratio
LNINCOME	0.452		0.452	5.74		5.74
EDUCATION	0.205		0.205	5.30		5.30
NUMHH	0.248	3.57	0.248	3.57	0.248	3.57
Intercept	3.395		2.605	2.74		3.34
MARO	-0.557		0.232	0.44		
MAR1			0.789	1.59	0.557	2.15
MAR2	-0.789	-1.59			-0.232	-0.44

- Model 1 appears the best in the sense that the t-ratios are larger (in absolute value). The p-values are close to statistically significant (0.113 for -1.59 and 0.032 for -2.15).
 - Model 2 appears the worst in the sense that the t-ratios are smaller (in absolute value).
- Model 2 suggests that marital status is not statistically significant!!
 The three models are equivalent same estimates, same fitted values, as long as you keep your interpretations straight.

the Hole of Binary Variables

Example. Term Life Insurance

- Note that MAR0 + MAR1 + MAR2 = 1 there is a perfect linear dependency among the three.
- However, there is not a perfect dependency among any two of the three. It turns out that Cor(MAR0, MAR1) = -0.90,
 Cor(MAR0, MAR2) = -0.10 AND Cor(MAR1, MAR2) = -0.34.
- Any two out of the three produce the same model in terms of goodness of fit

Table: Term Life with Marital Status ANOVA Table

Mean Square	68.66	2.29	
df	5	269	274
Sum of Squares	343.28	615.62	948.90
Source	Regression	Error	Total

Residual standard error s = 1.513, $R^2 = 35.8\%$, $R_a^2 = 34.6\%$

Frees (Regression Modeling)

Multiple Linear Regression - II

Statistical inference for Several Coefficients The General Linear Hypothesis

Procedure for Testing the General Linear Hypothesis

Run the full regression and get the error sum of squares and mean square error, which we label as (Error SS)_{full} and S_{full}, respectively.

- Consider the model assuming the null hypothesis is true. Run a regression with this model and get the error sum of squares, which we label (Error SS)_{reduced}.
- Calculate

$$F - ratio = \frac{(Error SS)_{reduced} - (Error SS)_{tull}}{DS_c^2}$$

- Reject the null hypothesis in favor of the alternative if the F -ratio exceeds an F-value.
- The *F*-value is a percentile from the *F*-distribution with $df_1 = p$ and $df_2 = n (k+1)$ degrees of freedom.
 - Following our notation with the t-distribution, we denote this percentile as $F_{\rho,n-(k+1),1-\alpha}$, where α is the significance level.

Multiple Linear Regression - II

Sets of Regression Coefficients

- Consider the joint effect of regression coefficients.
- important? This examines all of the binary For example, is marital status (MARSTAT) variables at the same time.
- Introduce C, a generic matrix, where Cβ will denote a linear combination of regression coefficients.
- Test Ho: $C\beta=d$ (a known value, often 0).
- For MARSTAT, I would test Ho:

Example. Term Life Insurance

Our first (Chapter 3) regression

$$Ey = \beta_0 + \beta_1 LNINCOME + \beta_2 EDUCATION + \beta_3 NUMHH$$

yielded s = 1.525, $R^2 = 34.3\%$, $R_a^2 = 33.6\%$., Error SS = 630.43.

A regression with the binary variables MAR0 and MAR2,

Ey =
$$\beta_0 + \beta_1$$
 LNINCOME + β_2 EDUCATION + β_3 NUMHH + β_4 MAR0 + β_5 MAR2

yielded s = 1.513, $R^2 = 35.8\%$, $R_g^2 = 34.6\%$, Error SS = 615.62.

· Comparing the two, we have

$$F$$
-ratio = $\frac{(Error~SS)_{reduced} - (Error~SS)_{tull}}{\rho S_{tull}^2} = \frac{630.43 - 615.62}{2 \times 1.513^2} = 3.235.$

- Degrees of freedom are $df_1 = p = 2$ and $df_2 = n (k + p + 1) = 269$. At $\alpha = 5\%$, the *F*-value is $F_{0.95,2.269} = 3.029$.
- Thus, we reject H_0 . The *p*-value is $\Pr(F_{2.259} > 3.235) = 0.0409$.

One Factor ANOVA Model

- Recall that factor is another term used for a (unordered) categorical explanatory variable.
- Although factors may be represented as binary variables in a linear regression model, we study one factor models as a separate unit because
- The method of least squares is much simpler, obviating the need to take inverses of high dimensional matrices
- The resulting interpretations of coefficients are more straightforward
- The one factor model is still a special case of the linear regression model. Hence, no additional statistical theory is needed to establish its statistical inference capabilities.

An illustration using data on age and memory

- Consider the data from an experiment conducted regarding "memory".
- Eysenck, M.W. (1974), Age differences in incidental learning, *Developmental Psychology*, Vol 10, pp. 936-941.
- Response variable will be the number of words recalled by the subject (words).
- A theory regarding memory is that verbal material is remembered as a function of the degree to which it was processed when initially presented.
- 50 Younger subjects and 50 Older (between 55 and 65 yrs old) were randomly assigned to one of five learning groups: Counting, Rhyming, Adjective, Imagery, Intentional.
- None of the first 4 groups was told they will be later asked to recall words; after experiment, subjects were asked to list the words they could remember.

The one-factor ANOVA model

We decompose the response as

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$
, for $j = 1, ..., J_i$, $i = 1, ..., I$.

The random errors follow usual assumptions:

$$E(\varepsilon_{ij}) = 0$$
 and $Var(\varepsilon_{ij}) = \sigma^2$.

• It is common to further decompose the parameter μ_i as

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}.$$

Description of the groups

- Counting group asked to read a list of words and count the number of letters in each word.
- Rhyming group asked to reach each word and think of word that rhymed with it.
- Adjective group asked to give adjective to describe each word in a list.
- Imagery group asked to form vivid images of each word.
- Intentional group asked to memorize words for later recall.

Possible restriction - drop a reference level

- Force one τ to be zero, say $\tau_1 = 0$.
- This corresponds to dropping one of the indicator variables - the level dropped is referred to as the baseline or reference level.
- The model equation becomes

$$Y_{ij} = \mu_1 + \tau_2 X_2 + \cdots + \tau_l X_l + \varepsilon_{ij},$$

so that the intercept term $\mu=\mu_1$ becomes the mean of the level dropped and each regression coefficient becomes

$$\tau_i = \mu_i - \mu_1$$
, for $i = 2, 3, ..., I$.

 Can drop any level, but the interpretation of the parameters depends on the variable dropped.

Confidence intervals/pairwise comparisons

• Mean of level i, μ_i , has \overline{Y}_i for point estimate with the following corresponding confidence interval:

$$\overline{Y}_i \pm t_{\alpha/2,n-l} \frac{s}{\sqrt{J_i}} = \overline{Y}_i \pm 2 \frac{s}{\sqrt{J_i}},$$

where the degrees of freedom is n-l, with n, the total number of observations and l, the number of levels.

 A pairwise comparison of levels i and j can be made using a CI for $\tau_i - \tau_j$ with:

$$(\hat{\tau}_{l} - \hat{\tau}_{j}) \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{1/J_{i} + 1/J_{j}}} = (\hat{\tau}_{i} - \hat{\tau}_{j}) \pm 2 \frac{s}{\sqrt{1/J_{i} + 1/J_{j}}}.$$

- \bullet Testing for $\tau_l=\tau_l$ is equivalent to seeing whether zero lies in the CI or not.
- However, because for multiple pairwise comparisons, this result may be too conservative: either make a Bonferroni adjustment or do the Tukey's honest significant difference (HSD).

Tukey's honest significant difference test

- If you have a random sample X_1, X_2, \dots, X_n from $N(\mu, \sigma^2)$, then $R/\hat{\sigma}$ has a studentized range distribution, where $R = \max_i X_i \min_i X_i$ is the range.
- The studentized range distribution $q_{n,\nu}$ where ν is the degrees of freedom used in estimating σ .
- The Tukey's confidence interval becomes

$$(\hat{ au}_i - \hat{ au}_j) \pm rac{q_{i,n-l}}{\sqrt{2}} \cdot rac{s}{\sqrt{1/J_i + 1/J_j}}$$

where $q_{l,n-l}$ is the $(1-\alpha)^{\text{th}}$ quantile of the studentized range distribution.