CPSVerification

By Jonathan

July 26, 2018

Contents

1	\mathbf{VC}	diffKAD	3
	1.1	Stack Theories Preliminaries: VC_KAD and ODEs	3
	1.2	VC_diffKAD Preliminaries	6
		1.2.1 (primed) dSolve preliminaries	6
		1.2.2 dInv preliminaries	12
		1.2.3 ODE Extras	14
	1.3	Phase Space Relational Semantics	17
	1.4	Derivation of Differential Dynamic Logic Rules	19
		1.4.1 "Differential Weakening"	19
		1.4.2 "Differential Cut"	19
		1.4.3 "Solve Differential Equation"	20
		1.4.4 "Differential Invariant."	27
	1.5	Rules Testing	36

1 VC_diffKAD

 $\begin{tabular}{l} \textbf{theory} \ VC\text{-}diffKAD\text{-}auxiliarities\\ \textbf{imports}\\ Main\\ afpModified/VC\text{-}KAD\\ Ordinary\text{-}Differential\text{-}Equations.ODE\text{-}Analysis\\ \end{tabular}$

begin

1.1 Stack Theories Preliminaries: VC_KAD and ODEs

To make our notation less code-like and more mathematical we declare:

```
no-notation Archimedean-Field.ceiling ([-])
and Archimedean-Field.floor ([-])
and Set.image ( ')
and Range-Semiring.antirange-semiring-class.ars-r (r)
```

```
notation p2r([-])
     and r2p(|-|)
     and Set.image (-(|-|))
     and Product-Type.prod.fst (\pi_1)
     and Product-Type.prod.snd (\pi_2)
     and List.zip (infixl \otimes 63)
     and rel-ad (\Delta^c_1)
This and more notation is explained by the following lemmata.
lemma shows [P] = \{(s, s) | s. P s\}
   and |R| = (\lambda x. \ x \in r2s \ R)
   and r2s R = \{x \mid x. \exists y. (x,y) \in R\}
   and \pi_1(x,y) = x \wedge \pi_2(x,y) = y
   and \Delta^{c_1} R = \{(x, x) | x. \not\exists y. (x, y) \in R\}
   and wp R Q = \Delta^{c}_{1} (R ; \Delta^{c}_{1} Q)
   and [x1, x2, x3, x4] \otimes [y1, y2] = [(x1, y1), (x2, y2)]
   and \{a..b\} = \{x. \ a \le x \land x \le b\}
   and \{a < ... < b\} = \{x. \ a < x \land x < b\}
   and (x \ solves \ ode \ f) \ \{0..t\} \ R = ((x \ has \ vderiv \ on \ (\lambda t. \ ft \ (x \ t))) \ \{0..t\} \land x \in A
\{\theta..t\} \to R
   and f \in A \to B = (f \in \{f. \ \forall \ x. \ x \in A \longrightarrow (fx) \in B\})
   and (x has-vderiv-on x')\{0..t\} =
      (\forall r \in \{0..t\}. (x \text{ has-vector-derivative } x' r) (\text{at } r \text{ within } \{0..t\}))
   and (x \text{ has-vector-derivative } x' r) (at r \text{ within } \{0..t\}) =
      (x \text{ has-derivative } (\lambda x. \ x *_R x' r)) \ (at \ r \ within \ \{0..t\})
apply(simp-all add: p2r-def r2p-def rel-ad-def rel-antidomain-kleene-algebra.fbox-def
  solves-ode-def has-vderiv-on-def)
apply(blast, fastforce, fastforce)
using has-vector-derivative-def by auto
Observe also, the following consequences and facts:
proposition \pi_1(|R|) = r2s R
by (simp add: fst-eq-Domain)
proposition \Delta^c_1 R = Id - \{(s, s) | s. s \in (\pi_1(R))\}
\mathbf{by}(simp~add:~image\text{-}def~rel\text{-}ad\text{-}def,~fastforce)
proposition P \subseteq Q \Longrightarrow wp R P \subseteq wp R Q
by (simp add: rel-antidomain-kleene-algebra.dka.dom-iso rel-antidomain-kleene-algebra.fbox-iso)
proposition boxProgrPred-IsProp: wp R \lceil P \rceil \subseteq Id
\mathbf{by}(simp\ add:\ rel-antidomain-kleene-algebra\ .a-subid'\ rel-antidomain-kleene-algebra\ .addual\ .bbox-def)
proposition rdom-p2r-contents:(a, b) \in rdom \lceil P \rceil = ((a = b) \land P \ a)
proof-
have (a, b) \in rdom \ [P] = ((a = b) \land (a, a) \in rdom \ [P]) using p2r-subid by
fast force
```

also have ... = $((a = b) \land (a, a) \in \lceil P \rceil)$ by simp

```
also have ... = ((a = b) \land P \ a) by (simp \ add: p2r-def)
ultimately show ?thesis by simp
qed
proposition rel-ad-rule1: (x,x) \notin \Delta^{c}_{1} \lceil P \rceil \Longrightarrow P x
by(auto\ simp:\ rel-ad-def\ p2r-subid\ p2r-def)
proposition rel-ad-rule2: (x,x) \in \Delta^{c_1} [P] \Longrightarrow \neg P x
by (metis ComplD VC-KAD.p2r-neg-hom rel-ad-rule1 empty-iff mem-Collect-eq p2s-neg-hom
rel-antidomain-kleene-algebra.a-one\ rel-antidomain-kleene-algebra.am1\ relcomp.relcompI)
proposition rel-ad-rule3: R \subseteq Id \Longrightarrow (x,x) \notin R \Longrightarrow (x,x) \in \Delta^{c_1} R
by(metis IdI Un-iff d-p2r rel-antidomain-kleene-algebra.addual.ars3
rel-antidomain-kleene-algebra.addual.ars-r-def rpr)
proposition rel-ad-rule 4:(x,x) \in R \Longrightarrow (x,x) \notin \Delta^{c_1} R
\mathbf{by}(metis\ empty-iff\ rel-antidomain-kleene-algebra.addual.ars1\ relcomp.relcompI)
proposition boxProgrPred-chrctrztn:(x,x) \in wp \ R \ \lceil P \rceil = (\forall \ y. \ (x,y) \in R \longrightarrow P
y)
by(metis boxProgrPred-IsProp rel-ad-rule1 rel-ad-rule2 rel-ad-rule3
rel-ad-rule4 d-p2r wp-simp wp-trafo)
lemma (in antidomain-kleene-algebra) fbox-starI:
assumes d p \leq d i and d i \leq |x| i and d i \leq d q
shows d p \leq |x^*| q
proof-
from \langle d | i \leq |x| | i \rangle have d | i \leq |x| | (d | i)
  using local.fbox-simp by auto
hence |1| p \le |x^*| i using \langle d | p \le d \rangle by (metis (no-types)
  local.dual-order.trans local.fbox-one local.fbox-simp local.fbox-star-induct-var)
thus ?thesis using \langle d | i \leq d | q \rangle by (metis (full-types)
  local.fbox-mult local.fbox-one local.fbox-seq-var local.fbox-simp)
qed
proposition cons-eq-zipE:
(x, y) \# tail = xList \otimes yList \Longrightarrow \exists xTail \ yTail. \ x \# xTail = xList \wedge y \# yTail
\mathbf{by}(induction\ xList,\ simp-all,\ induction\ yList,\ simp-all)
proposition set-zip-left-rightD:
(x, y) \in set (xList \otimes yList) \Longrightarrow x \in set xList \wedge y \in set yList
apply(rule\ conjI)
apply(rule-tac\ y=y\ and\ ys=yList\ in\ set-zip-leftD,\ simp)
apply(rule-tac \ x=x \ and \ xs=xList \ in \ set-zip-rightD, \ simp)
done
```

1.2 VC_diffKAD Preliminaries

definition $vdiff :: string \Rightarrow string (\partial - [55] 70)$ where

In dL, the set of possible program variables is split in two, the set of variables V and their primed counterparts V'. To implement this, we use Isabelle's string-type and define a function that primes a given string. We then define the set of primed-strings based on it.

```
(\partial x) = ''d[''@x@'']''
definition varDiffs :: string set where
varDiffs = \{y. \exists x. y = \partial x\}
proposition vdiff-inj:(\partial x) = (\partial y) \Longrightarrow x = y
by(simp add: vdiff-def)
proposition vdiff-noFixPoints: x \neq (\partial x)
by(simp add: vdiff-def)
lemma varDiffsI: x = (\partial z) \Longrightarrow x \in varDiffs
by(simp add: varDiffs-def vdiff-def)
lemma varDiffsE:
assumes x \in varDiffs
obtains y where x = "d["@y@"]"
using assms unfolding varDiffs-def vdiff-def by auto
proposition vdiff-invarDiffs:(\partial x) \in varDiffs
by (simp add: varDiffsI)
         (primed) dSolve preliminaries
1.2.1
This subsubsection is to define a function that takes a system of ODEs
(expressed as a list xfList), a presumed solution uInput = [u_1, \ldots, u_n], a
state s and a time t, and outputs the induced flow sol s[xfList \leftarrow uInput] t.
```

abbreviation varDiffs-to-zero ::real store \Rightarrow real store (sol) where

proposition varDiffs-to-zero-vdiff [simp]: (sol s) $(\partial x) = 0$

apply(simp add: varDiffs-def override-on-def vdiff-def)

 $sol \ a \equiv (override-on \ a \ (\lambda \ x. \ \theta) \ varDiffs)$

by auto

by fastforce

apply(simp add: override-on-def varDiffs-def)

proposition varDiffs-to-zero-beginning[simp]: take $2 \ x \neq "d" \Longrightarrow (sol \ s) \ x = s$

```
— Next, for each entry of the input-list, we update the state using said entry.
definition vderiv-of f S = (SOME f'. (f has-vderiv-on f') S)
primrec state-list-upd :: ((real \Rightarrow real \ store \Rightarrow real) \times string \times (real \ store \Rightarrow real) \times string \times (real \ store \Rightarrow real)
real)) list \Rightarrow
real \Rightarrow real \ store \Rightarrow real \ store \ \mathbf{where}
state-list-upd [] t s = s |
state-list-upd (uxf \# tail) t s = (state-list-upd tail t s)
      (\pi_1 \ (\pi_2 \ uxf)) := (\pi_1 \ uxf) \ t \ s,
    \partial (\pi_1 (\pi_2 uxf)) := (if t = 0 then (\pi_2 (\pi_2 uxf)) s
else vderiv-of (\lambda \ r. \ (\pi_1 \ uxf) \ r \ s) \ \{0 < .. < (2 *_R t)\} \ t))
abbreviation state-list-cross-upd ::real store \Rightarrow (string \times (real store \Rightarrow real)) list
(real \Rightarrow real \ store \Rightarrow real) \ list \Rightarrow real \Rightarrow (char \ list \Rightarrow real) \ (-[-\leftarrow] - [64,64,64])
63) where
s[xfList \leftarrow uInput] \ t \equiv state-list-upd \ (uInput \otimes xfList) \ t \ s
proposition state-list-cross-upd-empty[simp]: (s[[] \leftarrow list] \ t) = s
\mathbf{by}(induction\ list,\ simp-all)
\mathbf{lemma}\ inductive\text{-}state\text{-}list\text{-}cross\text{-}upd\text{-}its\text{-}vars:
assumes distHyp:distinct (map \pi_1 ((y, g) \# xftail))
and varHyp: \forall xf \in set((y, g) \# xftail). \pi_1 xf \notin varDiffs
and indHyp:(u, x, f) \in set (utail \otimes xftail) \Longrightarrow (s[xftail \leftarrow utail] t) x = u t s
and disjHyp:(u, x, f) = (v, y, g) \lor (u, x, f) \in set (utail \otimes xftail)
shows (s[(y, g) \# xftail \leftarrow v \# utail] t) x = u t s
using disjHyp proof
  assume (u, x, f) = (v, y, g)
  hence (s[(y, g) \# xftail \leftarrow v \# utail] t) x = ((s[xftail \leftarrow utail] t)(x := u t s,
  \partial x := if \ t = 0 \ then \ f \ s \ else \ vderiv-of \ (\lambda \ r. \ u \ r \ s) \ \{0 < .. < (2 *_R t)\} \ t)) \ x \ \mathbf{by}
  also have \dots = u \ t \ s by (simp \ add: vdiff-def)
  ultimately show ?thesis by simp
next
  assume yTailHyp:(u, x, f) \in set (utail \otimes xftail)
  from this and indHyp have 3:(s[xftail \leftarrow utail] \ t) \ x = u \ t \ s \ by fastforce
  from yTailHyp and distHyp have 2:y \neq x using set-zip-left-rightD by force
  from yTailHyp and varHyp have 1:x \neq \partial y
  using set-zip-left-rightD vdiff-invarDiffs by fastforce
  from 1 and 2 have (s[(y, g) \# xftail \leftarrow v \# utail] t) x = (s[xftail \leftarrow utail] t) x
by simp
  thus ?thesis using 3 by simp
qed
theorem state-list-cross-upd-its-vars:
```

assumes $distinctHyp:distinct (map \pi_1 xfList)$

```
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and its-var: (u,x,f) \in set (uInput \otimes xfList)
shows (s[xfList \leftarrow uInput] \ t) \ x = u \ t \ s
using assms apply(induct xfList uInput arbitrary: x rule: list-induct2', simp,
simp, simp)
by (clarify, rule inductive-state-list-cross-upd-its-vars, simp-all)
lemma override-on-upd:x \in X \Longrightarrow (override-on f \ g \ X)(x := z) = (override-on f \ g \ X)(x := z)
(g(x := z)) X)
by (rule ext, simp add: override-on-def)
\mathbf{lemma}\ inductive\text{-}state\text{-}list\text{-}cross\text{-}upd\text{-}its\text{-}dvars\text{:}
assumes \exists g. (s[xfTail \leftarrow uTail] \ \theta) = override-on \ s \ g \ varDiffs
and \forall xf \in set (xf \# xfTail). \pi_1 xf \notin varDiffs
and \forall uxf \in set (u \# uTail \otimes xf \# xfTail). \pi_1 uxf 0 s = s (\pi_1 (\pi_2 uxf))
\mathbf{shows} \ \exists \ g. \ (s[xf \ \# \ xfTail \leftarrow u \ \# \ uTail] \ \theta) = override \text{-}on \ s \ g \ varDiffs}
proof-
let ?gLHS = (s[(xf \# xfTail) \leftarrow (u \# uTail)] \theta)
have observ: \partial (\pi_1 \ xf) \in varDiffs by (auto simp: varDiffs-def)
from assms(1) obtain g where (s[xfTail \leftarrow uTail] \ 0) = override-on \ s \ g \ varDiffs
by force
then have ?gLHS = (override-on\ s\ g\ varDiffs)(\pi_1\ xf := u\ 0\ s,\ \partial\ (\pi_1\ xf) := \pi_2
xf s) by simp
also have ... = (override-on\ s\ g\ varDiffs)(\partial\ (\pi_1\ xf):=\pi_2\ xf\ s)
using override-on-def varDiffs-def assms by auto
also have ... = (override-on s (g(\partial (\pi_1 xf) := \pi_2 xf s)) varDiffs)
using observ and override-on-upd by force
ultimately show ?thesis by auto
qed
theorem state-list-cross-upd-its-dvars:
assumes lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp1: \forall uxf \in set (uInput \otimes xfList). (\pi_1 uxf) \ 0 \ s = s \ (\pi_1 \ (\pi_2 \ uxf))
shows \exists q. (s[xfList \leftarrow uInput] \theta) = (override-on s q varDiffs)
using assms proof(induct xfList uInput rule: list-induct2')
case 1
  have (s[[] \leftarrow []] \ \theta) = override-on \ s \ varDiffs
  unfolding override-on-def by simp
  thus ?case by metis
next
  case (2 xf xfTail)
  have (s[(xf \# xfTail) \leftarrow []] \ \theta) = override-on \ s \ varDiffs
  unfolding override-on-def by simp
  thus ?case by metis
  case (3 u utail)
  have (s[[]\leftarrow utail] \ \theta) = override-on \ s \ varDiffs
```

```
unfolding override-on-def by simp
  thus ?case by force
next
  case (4 xf xfTail u uTail)
 then have \exists q. (s[xfTail \leftarrow uTail] \theta) = override-on s q varDiffs by simp
  thus ?case using inductive-state-list-cross-upd-its-dvars 4.prems by blast
qed
lemma vderiv-unique-within-open-interval:
assumes (f has-vderiv-on f') \{0 < ... < t\} and t > 0
   and (f \text{ has-vderiv-on } f'')\{0 < .. < t\} and tauHyp:\tau \in \{0 < .. < t\}
shows f' \tau = f'' \tau
using assms apply(simp add: has-vderiv-on-def has-vector-derivative-def)
using frechet-derivative-unique-within-open-interval by (metis box-real(1) scaleR-one
tauHyp)
lemma has-vderiv-on-cong-open-interval:
assumes gHyp: \forall \tau > 0. f \tau = g \tau and tHyp: t>0
and fHyp:(f has-vderiv-on f') \{0 < .. < t\}
shows (g \text{ has-vderiv-on } f') \{0 < .. < t\}
proof-
from gHyp have \land \tau. \tau \in \{0 < ... < t\} \Longrightarrow f \ \tau = g \ \tau  using tHyp by force
hence eqDs:(f has-vderiv-on f') \{0 < ... < t\} = (g has-vderiv-on f') \{0 < ... < t\}
apply(rule-tac has-vderiv-on-cong) by auto
thus (g \text{ has-vderiv-on } f') \{0 < ... < t\} \text{ using } eqDs fHyp \text{ by } simp
qed
lemma closed-vderiv-on-cong-to-open-vderiv:
assumes gHyp: \forall \tau > 0. f \tau = g \tau
and fHyp: \forall t \geq 0. (f has-vderiv-on f') \{0..t\}
and tHyp: t>0 and cHyp: c>1
shows vderiv-of g \{0 < ... < (c *_R t)\} t = f' t
proof-
have ctHyp:c \cdot t > 0 using tHyp and cHyp by auto
from fHyp have (f has-vderiv-on f') \{0 < ... < c \cdot t\} using has-vderiv-on-subset
by (metis greaterThanLessThan-subseteq-atLeastAtMost-iff less-eq-real-def)
then have derivHyp:(g\ has-vderiv-on\ f')\ \{0<...< c\cdot t\}
using gHyp ctHyp and has-vderiv-on-cong-open-interval by blast
hence f'Hyp: \forall f''. (g \text{ has-vderiv-on } f'') \{0 < ... < c \cdot t\} \longrightarrow (\forall \tau \in \{0 < ... < c \cdot t\}.
f' \tau = f'' \tau
\mathbf{using}\ \mathit{vderiv-unique-within-open-interval}\ \mathit{ctHyp}\ \mathbf{by}\ \mathit{blast}
also have (g \text{ has-vderiv-on } (v \text{deriv-of } g \{0 < .. < (c *_R t)\})) \{0 < .. < c \cdot t\}
by(simp add: vderiv-of-def, metis derivHyp someI-ex)
ultimately show vderiv-of g \{0 < ... < c *_R t\} t = f' t \text{ using } tHyp \ cHyp \text{ by } force
qed
lemma vderiv-of-to-sol-its-vars:
assumes distinctHyp:distinct (map <math>\pi_1 xfList)
and lengthHyp:length xfList = length uInput
```

```
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp2: \forall t \geq 0. ((\lambda \tau. (sol s[xfList \leftarrow uInput] \tau) x)
has-vderiv-on (\lambda \tau. f (sol s[xfList \leftarrow uInput] \tau))) \{0..t\}
and tHyp: t>0 and uxfHyp:(u, x, f) \in set (uInput \otimes xfList)
shows vderiv-of (\lambda \tau. \ u \ \tau \ (sol\ s)) \{0 < .. < (2 *_R t)\} \ t = f \ (sol\ s[xfList \leftarrow uInput]
t)
apply(rule-tac\ f = (\lambda \tau.\ (sol\ s[xfList \leftarrow uInput]\ \tau)\ x) in closed\ vderiv\ on\ -conq\ -to\ -open\ -vderiv)
subgoal using assms and state-list-cross-upd-its-vars by metis
by(simp-all add: solHyp2 tHyp)
lemma inductive-to-sol-zero-its-dvars:
assumes eqFuncs: \forall s. \forall g. \forall xf \in set((x, f) \# xfs). \pi_2 xf(override-on s g varDiffs)
=\pi_2 xf s
and eqLengths:length ((x, f) \# xfs) = length (u \# us)
and distinct: distinct (map \pi_1 ((x, f) # xfs))
and vars: \forall xf \in set ((x, f) \# xfs). \pi_1 xf \notin varDiffs
and solHyp1: \forall uxf \in set ((u \# us) \otimes ((x, f) \# xfs)). \pi_1 uxf \theta (sol s) = sol s (\pi_1)
(\pi_2 \ uxf)
and disjHyp:(y, g) = (x, f) \lor (y, g) \in set xfs
and indHyp:(y, g) \in set \ xfs \Longrightarrow (sol \ s[xfs \leftarrow us] \ \theta) \ (\partial \ y) = g \ (sol \ s[xfs \leftarrow us] \ \theta)
shows (sol\ s[(x, f) \# xfs \leftarrow u \# us]\ \theta)\ (\partial\ y) = g\ (sol\ s[(x, f) \# xfs \leftarrow u \# us]\ \theta)
proof-
from assms obtain h1 where h1Def:(sol s[((x, f) # xfs)\leftarrow(u # us)] 0) =
(override-on (sol s) h1 varDiffs) using state-list-cross-upd-its-dvars by blast
from disjHyp show (sol\ s[(x, f) \# xfs \leftarrow u \# us]\ \theta)\ (\partial\ y) = g\ (sol\ s[(x, f) \# xfs \leftarrow u \# us])
xfs \leftarrow u \# us \mid \theta)
proof
  assume eqHeads:(y, g) = (x, f)
  then have g (sol \ s[(x, f) \# xfs \leftarrow u \# us] \ \theta) = f (sol \ s) using h1Def eqFuncs
by simp
  also have ... = (sol\ s[(x, f) \# xfs \leftarrow u \# us]\ \theta)\ (\partial\ y) using eqHeads by auto
  ultimately show ?thesis by linarith
next
  assume tailHyp:(y, g) \in set xfs
  then have y \neq x using distinct set-zip-left-rightD by force
  hence \partial x \neq \partial y by (simp \ add: \ vdiff-def)
  have x \neq \partial y using vars vdiff-invarDiffs by auto
  obtain h2 where h2Def:(sol\ s[xfs\leftarrow us]\ \theta) = override-on\ (sol\ s)\ h2\ varDiffs
 using state-list-cross-upd-its-dvars eqLengths distinct vars and solHyp1 by force
  have (sol\ s[(x, f) \# xfs \leftarrow u \# us]\ \theta)\ (\partial\ y) = g\ (sol\ s[xfs \leftarrow us]\ \theta)
  using tailHyp indHyp \langle x \neq \partial y \rangle and \langle \partial x \neq \partial y \rangle by simp
  also have ... = g (override-on (sol s) h2 varDiffs) using h2Def by simp
  also have ... = g (sol s) using eqFuncs and tailHyp by force
  also have ... = g (sol s[(x, f) \# xfs \leftarrow u \# us] \theta)
  using eqFuncs h1Def tailHyp and eq-snd-iff by fastforce
  ultimately show ?thesis by simp
  ged
qed
```

```
lemma to-sol-zero-its-dvars:
assumes funcsHyp:\forall s. \forall g. \forall xf \in set xfList. \pi_2 xf (override-on s g varDiffs)
=\pi_2 xfs
and distinctHyp:distinct (map <math>\pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp1: \forall uxf \in set (uInput \otimes xfList). (\pi_1 uxf) \ \theta (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (\pi_1 (\pi_2 uxf) uxf) (sol s) = (sol s) (s
uxf)
and ygHyp:(y, g) \in set xfList
shows (sol\ s[xfList \leftarrow uInput]\ \theta)(\partial\ y) = g\ (sol\ s[xfList \leftarrow uInput]\ \theta)
using assms apply(induct xfList uInput rule: list-induct2', simp, simp, simp, clar-
\mathbf{by}(rule\ inductive-to-sol-zero-its-dvars,\ simp-all)
\mathbf{lemma}\ inductive\mbox{-}to\mbox{-}sol\mbox{-}greater\mbox{-}than\mbox{-}zero\mbox{-}its\mbox{-}dvars:
assumes lengthHyp:length((y, q) \# xfs) = length(v \# vs)
and distHyp:distinct\ (map\ \pi_1\ ((y,\ g)\ \#\ xfs))
and varHyp: \forall xf \in set ((y, g) \# xfs). \pi_1 xf \notin varDiffs
and indHyp:(u,x,f) \in set \ (vs \otimes xfs) \Longrightarrow (s[xfs \leftarrow vs]t)(\partial \ x) = vderiv-of \ (\lambda r. \ u \ r
s) \{0 < ... < 2 *_R t\} t
and \textit{disjHyp}:(v,\ y,\ g)=(u,\ x,\ f)\ \lor\ (u,\ x,\ f)\in\textit{set}\ (\textit{vs}\ \otimes\textit{xfs}) and \textit{tHyp}:t>0
shows (s[(y, g) \# xfs \leftarrow v \# vs] t) (\partial x) = vderiv-of (\lambda r. u r s) \{0 < ... < 2 *_R t\} t
proof-
let ?lhs = ((s[xfs \leftarrow vs] \ t)(y := v \ t \ s, \ \partial \ y := vderiv - of \ (\lambda \ r. \ v \ r \ s) \ \{0 < .. < (2 \cdot t)\}
t)) (\partial x)
let ?rhs = vderiv-of (\lambda r. u r s) \{0 < .. < (2 \cdot t)\} t
have (s[(y, g) \# xfs \leftarrow v \# vs] t) (\partial x) = ?lhs using tHyp by simp
also have vderiv-of (\lambda r. u r s) \{0 < ... < 2 *_R t\} t = ?rhs by simp
ultimately have obs:?thesis = (?lhs = ?rhs) by simp
from disjHyp have ?lhs = ?rhs
proof
   assume uxfEq:(v, y, g) = (u, x, f)
   then have ?lhs = vderiv-of (\lambda \ r. \ u \ r. s) \{0 < ... < (2 \cdot t)\} \ t by simp
   also have vderiv-of (\lambda \ r. \ u \ rs) \{0 < ... < (2 \cdot t)\} \ t = ?rhs using uxfEq by simp
   ultimately show ?lhs = ?rhs by simp
    assume sygTail:(u, x, f) \in set (vs \otimes xfs)
   from this have y \neq x using distHyp set-zip-left-rightD by force
   hence \partial x \neq \partial y by (simp add: vdiff-def)
   have y \neq \partial x using varHyp using vdiff-invarDiffs by auto
   then have ?lhs = (s[xfs \leftarrow vs] \ t) \ (\partial \ x) \ using \ \langle y \neq \partial \ x \rangle \ and \ \langle \partial \ x \neq \partial \ y \rangle \ by \ simp
   also have (s[xfs \leftarrow vs] \ t) \ (\partial \ x) = ?rhs  using indHyp \ sygTail by simp
   ultimately show ?lhs = ?rhs by simp
qed
from this and obs show ?thesis by simp
qed
lemma to-sol-greater-than-zero-its-dvars:
assumes distinctHyp:distinct (map \pi_1 xfList)
```

```
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \ \pi_1 xf \notin varDiffs
and uxfHyp:(u, x, f) \in set (uInput \otimes xfList) and tHyp:t > 0
shows (s[xfList \leftarrow uInput] \ t) \ (\partial \ x) = vderiv - of \ (\lambda \ r. \ u \ r. s) \ \{0 < ... < (2 *_R t)\} \ t
using assms apply(induct xfList uInput rule: list-induct2', simp, simp, simp, clar-
\mathbf{by}(rule\text{-}tac\ f=f\ \mathbf{in}\ inductive\text{-}to\text{-}sol\text{-}greater\text{-}than\text{-}zero\text{-}its\text{-}dvars,\ auto)
1.2.2
              dInv preliminaries
Here, we introduce syntactic notation to talk about differential invariants.
no-notation Antidomain-Semiring.antidomain-left-monoid-class.am-add-op (infixl
no-notation Dioid.times-class.opp-mult (infixl \odot 70)
no-notation Lattices.inf-class.inf (infixl \sqcap 70)
no-notation Lattices.sup-class.sup (infixl \sqcup 65)
datatype trms = Const \ real \ (t_C - [54] \ 70) \ | \ Var \ string \ (t_V - [54] \ 70) \ |
                      Mns trms (\ominus - [54] 65) | Sum trms trms (infixl \oplus 65) |
                      Mult trms trms (infixl ⊙ 68)
primrec tval :: trms \Rightarrow (real \ store \Rightarrow real) (\llbracket - \rrbracket_t \ [55] \ 60) where
[\![t_C \ r]\!]_t = (\lambda \ s. \ r)|
[\![t_V \ x]\!]_t = (\lambda \ s. \ s \ x)
\llbracket \ominus \vartheta \rrbracket_t = (\lambda \ s. - (\llbracket \vartheta \rrbracket_t) \ s) |
\llbracket \vartheta \oplus \eta \rrbracket_t = (\lambda \ s. \ (\llbracket \vartheta \rrbracket_t) \ s + (\llbracket \eta \rrbracket_t) \ s)|
\llbracket \vartheta \odot \eta \rrbracket_t = (\lambda \ s. \ (\llbracket \vartheta \rrbracket_t) \ s \cdot (\llbracket \eta \rrbracket_t) \ s)
datatype props = Eq \ trms \ trms \ (infixr \doteq 60) \mid Less \ trms \ trms \ (infixr \prec 62) \mid
                        Leg trms trms (infixr \leq 61) | And props props (infixl \sqcap 63) |
                        Or props props (infixl \sqcup 64)
primrec pval ::props \Rightarrow (real \ store \Rightarrow bool) (\llbracket - \rrbracket_P \ [55] \ 60) where
\llbracket \vartheta \doteq \eta \rrbracket_P = (\lambda \ s. \ (\llbracket \vartheta \rrbracket_t) \ s = (\llbracket \eta \rrbracket_t) \ s) |
\llbracket \vartheta \prec \eta \rrbracket_P = (\lambda \ s. \ (\llbracket \vartheta \rrbracket_t) \ s < (\llbracket \eta \rrbracket_t) \ s)|
\llbracket \vartheta \preceq \eta \rrbracket_P = (\lambda \ s. \ (\llbracket \vartheta \rrbracket_t) \ s \le (\llbracket \eta \rrbracket_t) \ s)|
\llbracket \varphi \sqcap \psi \rrbracket_P = (\lambda \ s. \ (\llbracket \varphi \rrbracket_P) \ s \wedge (\llbracket \psi \rrbracket_P) \ s) |
\llbracket \varphi \sqcup \psi \rrbracket_P = (\lambda \ s. \ (\llbracket \varphi \rrbracket_P) \ s \lor (\llbracket \psi \rrbracket_P) \ s)
primrec tdiff :: trms \Rightarrow trms (\partial_t - [54] 70) where
(\partial_t t_C r) = t_C \theta
```

 $(\partial_t \ t_V \ x) = t_V \ (\partial \ x)|$ $(\partial_t \ominus \vartheta) = \ominus (\partial_t \ \vartheta)|$

 $(\partial_t \ (\vartheta \oplus \eta)) = (\partial_t \ \vartheta) \oplus (\partial_t \ \eta)|$

 $(\partial_P (\vartheta \doteq \eta)) = ((\partial_t \vartheta) \doteq (\partial_t \eta)) | (\partial_P (\vartheta \prec \eta)) = ((\partial_t \vartheta) \preceq (\partial_t \eta)) |$

 $(\partial_t \ (\vartheta \odot \eta)) = ((\partial_t \ \vartheta) \odot \eta) \oplus (\vartheta \odot (\partial_t \ \eta))$

primrec $pdiff :: props \Rightarrow props (\partial_P - [54] 70)$ where

```
(\partial_P (\vartheta \leq \eta)) = ((\partial_t \vartheta) \leq (\partial_t \eta))|
(\partial_P (\varphi \sqcap \psi)) = (\partial_P \varphi) \sqcap (\partial_P \psi)|
(\partial_P (\varphi \sqcup \psi)) = (\partial_P \varphi) \sqcap (\partial_P \psi)
primrec trmVars :: trms \Rightarrow string set where
trmVars\ (t_C\ r) = \{\}
trm Vars (t_V x) = \{x\}
trm Vars \ (\ominus \ \vartheta) = trm Vars \ \vartheta
trm Vars (\vartheta \oplus \eta) = trm Vars \vartheta \cup trm Vars \eta
trm Vars (\vartheta \odot \eta) = trm Vars \vartheta \cup trm Vars \eta
fun substList :: (string \times trms) \ list \Rightarrow trms \Rightarrow trms \ (-\langle - \rangle \ [54] \ 80) where
xtList\langle t_C \ r \rangle = t_C \ r |
[\langle t_V | x \rangle = t_V | x |
((y,\xi) \# xtTail)\langle Var x \rangle = (if x = y then \xi else xtTail\langle Var x \rangle)
xtList \langle \ominus \vartheta \rangle = \ominus (xtList \langle \vartheta \rangle)
xtList\langle\vartheta\oplus\eta\rangle = (xtList\langle\vartheta\rangle)\oplus (xtList\langle\eta\rangle)|
xtList\langle\vartheta\odot\eta\rangle = (xtList\langle\vartheta\rangle)\odot(xtList\langle\eta\rangle)
proposition substList-on-compl-of-varDiffs:
assumes trmVars \eta \subseteq (UNIV - varDiffs)
and set (map \ \pi_1 \ xtList) \subseteq varDiffs
shows xtList\langle \eta \rangle = \eta
using assms apply(induction \eta, simp-all add: varDiffs-def)
by(induction xtList, auto)
lemma substList-help1:set (map <math>\pi_1 ((map (vdiff \circ \pi_1) xfList) \otimes uInput)) \subseteq
apply(induct xfList uInput rule: list-induct2', simp-all add: varDiffs-def)
by auto
lemma substList-help2:
assumes trmVars \ \eta \subseteq (UNIV - varDiffs)
shows ((map\ (vdiff\ \circ\ \pi_1)\ xfList)\otimes uInput)\langle\eta\rangle=\eta
using assms substList-help1 substList-on-compl-of-varDiffs by blast
\mathbf{lemma}\ \mathit{substList-cross-vdiff-on-non-ocurring-var}:
assumes x \notin set\ list1
shows ((map\ vdiff\ list1)\otimes list2)\langle t_V\ (\partial\ x)\rangle = t_V\ (\partial\ x)
using assms apply(induct list1 list2 rule: list-induct2', simp, simp, clarsimp)
\mathbf{by}(simp\ add:\ vdiff\text{-}def)
primrec prop Vars :: props \Rightarrow string set where
prop Vars \ (\vartheta \doteq \eta) = trm Vars \ \vartheta \cup trm Vars \ \eta
prop Vars (\vartheta \prec \eta) = trm Vars \vartheta \cup trm Vars \eta
prop Vars (\vartheta \leq \eta) = trm Vars \vartheta \cup trm Vars \eta
prop Vars (\varphi \sqcap \psi) = prop Vars \varphi \cup prop Vars \psi
prop Vars (\varphi \sqcup \psi) = prop Vars \varphi \cup prop Vars \psi
```

```
primrec subspList :: (string \times trms) \ list \Rightarrow props \Rightarrow props \ (-\lceil -\lceil \lceil 54 \rceil \mid 80) \  where xtList \lceil \vartheta \doteq \eta \rceil = ((xtList \langle \vartheta \rangle)) \doteq (xtList \langle \eta \rangle)) \rceil xtList \lceil \vartheta \prec \eta \rceil = ((xtList \langle \vartheta \rangle) \prec (xtList \langle \eta \rangle)) \rceil xtList \lceil \vartheta \preceq \eta \rceil = ((xtList \langle \vartheta \rangle) \preceq (xtList \langle \eta \rangle)) \rceil xtList \lceil \varphi \sqcap \psi \rceil = ((xtList \lceil \varphi \rceil) \sqcap (xtList \lceil \psi \rceil)) \rceil xtList \lceil \varphi \sqcup \psi \rceil = ((xtList \lceil \varphi \rceil) \sqcup (xtList \lceil \psi \rceil))
```

1.2.3 ODE Extras

For exemplification purposes, we compile some concrete derivatives used commonly in classical mechanics. A more general approach should be taken that generates this theorems as instantiations.

named-theorems ubc-definitions definitions used in the locale unique-on-bounded-closed

```
declare unique-on-bounded-closed-def [ubc-definitions]
and unique-on-bounded-closed-axioms-def [ubc-definitions]
and unique-on-closed-def [ubc-definitions]
and compact-interval-def [ubc-definitions]
and compact-interval-axioms-def [ubc-definitions]
and self-mapping-def [ubc-definitions]
and self-mapping-axioms-def [ubc-definitions]
and continuous-rhs-def [ubc-definitions]
and closed-domain-def [ubc-definitions]
and global-lipschitz-def [ubc-definitions]
and interval-def [ubc-definitions]
and nonempty-set-def [ubc-definitions]
and lipschitz-def [ubc-definitions]
```

 ${\bf named-theorems}\ poly-deriv\ temporal\ compilation\ of\ derivatives\ representing\ galilean\ transformations$

 ${\bf named-theorems} \ galilean-transform \ temporal \ compilation \ of \ vderivs \ representing \ qalilean \ transformations$

named-theorems galilean-transform-eq the equational version of galilean-transform

```
lemma vector-derivative-line-at-origin:(op · a has-vector-derivative a) (at x within T)
by (auto intro: derivative-eq-intros)
```

lemma [poly-deriv]: $(op \cdot a \ has\text{-}derivative \ (\lambda x.\ x *_R a)) \ (at\ x\ within\ T)$ using vector-derivative-line-at-origin unfolding has-vector-derivative-def by simp

```
lemma quadratic-monomial-derivative: ((\lambda t::real.\ a\cdot t^2)\ has\text{-}derivative\ (\lambda t.\ a\cdot (2\cdot x\cdot t)))\ (at\ x\ within\ T) apply(rule-tac g'1=\lambda\ t.\ 2\cdot x\cdot t in derivative-eq-intros(6)) apply(rule-tac f'1=\lambda\ t.\ t in derivative-eq-intros(15)) by (auto intro: derivative-eq-intros)

lemma quadratic-monomial-derivative2: ((\lambda t::real.\ a\cdot t^2\ /\ 2)\ has\text{-}derivative\ (\lambda t.\ a\cdot x\cdot t))\ (at\ x\ within\ T)
```

```
apply(rule-tac f'1 = \lambda t. a \cdot (2 \cdot x \cdot t) and g'1 = \lambda x. \theta in derivative-eq-intros(18))
using quadratic-monomial-derivative by auto
lemma quadratic-monomial-vderiv[poly-deriv]:((\lambda t.\ a\cdot t^2 / 2) has-vderiv-on op \cdot
a) T
apply(simp add: has-vderiv-on-def has-vector-derivative-def, clarify)
using quadratic-monomial-derivative2 by (simp add: mult-commute-abs)
lemma galilean-position[galilean-transform]:
((\lambda t. \ a \cdot t^2 \ / \ 2 + v \cdot t + x) \ has-vderiv-on \ (\lambda t. \ a \cdot t + v)) \ T
apply(rule-tac f'1=\lambda x. \ a \cdot x + v \text{ and } g'1=\lambda x. \ 0 \text{ in } derivative-intros(173))
apply(rule-tac f'1=\lambda x. a \cdot x and g'1=\lambda x. v in derivative-intros(173))
using poly-deriv(2) by (auto intro: derivative-intros)
lemma [poly-deriv]:
t \in T \Longrightarrow ((\lambda \tau. \ a \cdot \tau^2 \ / \ 2 + v \cdot \tau + x) \ has-derivative \ (\lambda x. \ x *_R (a \cdot t + v)))
(at\ t\ within\ T)
using galilean-position unfolding has-vderiv-on-def has-vector-derivative-def by
simp
lemma [galilean-transform-eq]:
t > 0 \Longrightarrow \textit{vderiv-of} \ (\lambda t. \ a \cdot t \, \hat{} \, 2 \ / \ 2 + v \cdot t + x) \ \{0 < .. < 2 \cdot t\} \ t = a \cdot t + v
proof-
let ?f = vderiv - of(\lambda t. \ a \cdot t^2 / 2 + v \cdot t + x) \{0 < .. < 2 \cdot t\}
assume t > 0 hence t \in \{0 < ... < 2 \cdot t\} by auto
have \exists f. ((\lambda t. \ a \cdot t^2 / 2 + v \cdot t + x) \ has-vderiv-on f) \{0 < ... < 2 \cdot t\}
using galilean-position by blast
hence ((\lambda t. \ a \cdot t^2 / 2 + v \cdot t + x) \ has-vderiv-on ?f) \{0 < ... < 2 \cdot t\}
unfolding vderiv-of-def by (metis (mono-tags, lifting) someI-ex)
using qalilean-position by simp
ultimately show (vderiv-of (\lambda t.\ a \cdot t^2 / 2 + v \cdot t + x) {0 < ... < 2 \cdot t}) t = a \cdot t
apply(rule-tac f' = ?f and \tau = t and t = 2 \cdot t in vderiv-unique-within-open-interval)
using \langle t \in \{0 < ... < 2 \cdot t\} \rangle by auto
qed
lemma t > 0 \Longrightarrow vderiv\text{-}of (\lambda t.\ a \cdot t^2 / 2 + v \cdot t + x) \{0 < ... < 2 \cdot t\}\ t = a \cdot t
+ v
unfolding vderiv-of-def apply(subst\ some1-equality[of - (\lambda t.\ a\cdot t + v)])
apply(rule-tac a=\lambda t. a \cdot t + v in ex1I)
apply(simp-all add: galilean-position)
apply(rule\ ext,\ rename-tac\ f\ 	au)
\mathbf{apply}(\mathit{rule-tac}\,f = \lambda t.\ a \cdot t^2 \ / \ 2 + v \cdot t + x \ \mathbf{and}\ t = 2 \cdot t \ \mathbf{and}\ f' = f \ \mathbf{in}\ vderiv-unique-within-open-interval)
apply(simp-all add: qalilean-position)
oops
```

```
lemma galilean-velocity[galilean-transform]:((\lambda r. a \cdot r + v) has-vderiv-on (\lambda t. a))
apply(rule-tac f'1=\lambda x. a and g'1=\lambda x. 0 in derivative-intros(173))
unfolding has-vderiv-on-def by(auto intro: derivative-eq-intros)
lemma [galilean-transform-eq]:
t > 0 \Longrightarrow vderiv - of(\lambda r. \ a \cdot r + v) \{0 < ... < 2 \cdot t\} \ t = a
proof-
let ?f = vderiv - of(\lambda r. a \cdot r + v) \{0 < ... < 2 \cdot t\}
assume t > \theta hence t \in \{\theta < ... < \theta \cdot t\} by auto
have \exists f. ((\lambda r. a \cdot r + v) has-vderiv-on f) \{0 < ... < 2 \cdot t\}
using galilean-velocity by blast
hence ((\lambda r. \ a \cdot r + v) \ has-vderiv-on ?f) \{0 < ... < 2 \cdot t\}
unfolding vderiv-of-def by (metis (mono-tags, lifting) someI-ex)
also have ((\lambda r. \ a \cdot r + v) \ has-vderiv-on \ (\lambda t. \ a)) \ \{0 < ... < 2 \cdot t\}
using galilean-velocity by simp
ultimately show (vderiv-of (\lambda r.\ a\cdot r + v) {0 < ... < 2 \cdot t}) t = a
apply(rule-tac f' = ?f and \tau = t and t = 2 \cdot t in vderiv-unique-within-open-interval)
using \langle t \in \{0 < ... < 2 \cdot t\} \rangle by auto
qed
lemma [galilean-transform]:
((\lambda t.\ v \cdot t - a \cdot t^2 / 2 + x)\ has-vderiv-on\ (\lambda x.\ v - a \cdot x))\ \{0..t\}
apply(subgoal-tac ((\lambda t. - a \cdot t^2 / 2 + v \cdot t + x)) has-vderiv-on ((\lambda x. - a \cdot x + x))
v)) \{0..t\}, simp)
by(rule galilean-transform)
lemma [galilean-transform-eq]:t > 0 \implies vderiv-of(\lambda t. \ v \cdot t - a \cdot t^2 / 2 + x)
\{0 < ... < 2 \cdot t\} \ t = v - a \cdot t
apply(subgoal-tac vderiv-of (\lambda t. - a \cdot t^2 / 2 + v \cdot t + x) \{0 < ... < 2 \cdot t\} t = -a
\cdot t + v, simp)
\mathbf{by}(rule\ galilean-transform-eq)
lemma [galilean-transform]:
((\lambda t. \ v - a \cdot t) \ has-vderiv-on \ (\lambda x. - a)) \ \{0..t\}
apply(subgoal-tac ((\lambda t. - a \cdot t + v) has-vderiv-on (\lambda x. - a)) {0..t}, simp)
by(rule qalilean-transform)
lemma [galilean-transform-eq]:t > 0 \implies vderiv-of (\lambda r. \ v - a \cdot r) \ \{0 < ... < 2 \cdot t\}
t = -a
\mathbf{apply}(\textit{subgoal-tac vderiv-of }(\lambda t. - a \cdot t + v) \{\theta < ... < 2 \cdot t\} \ t = -a, \ \textit{simp})
\mathbf{by}(rule\ galilean-transform-eq)
lemma [simp]:(\lambda x. \ case \ x \ of \ (t, \ x) \Rightarrow f \ t) = (\lambda \ x. \ (f \circ \pi_1) \ x)
\mathbf{by} auto
end
theory VC-diffKAD
\mathbf{imports}\ \mathit{VC-diffKAD-auxiliarities}
```

1.3 Phase Space Relational Semantics

```
definition solvesStoreIVP :: (real \Rightarrow real store) \Rightarrow (string \times (real store \Rightarrow real))
list \Rightarrow
real\ store \Rightarrow bool
((- solvesTheStoreIVP - withInitState - ) [70, 70, 70] 68) where
solvesStoreIVP \varphi_S xfList s \equiv
(* F sends vdiffs-in-list to derivs. *)
(\forall t \geq 0. (\forall xf \in set xfList. \varphi_S t (\partial (\pi_1 xf)) = \pi_2 xf (\varphi_S t)) \land
(* F preserves the rest of the variables and F sends derives of constants to 0.*)
(\forall y. (y \notin (\pi_1(set xfList)) \cup varDiffs \longrightarrow \varphi_S \ t \ y = s \ y) \land 
       (y \notin (\pi_1(set xfList)) \longrightarrow \varphi_S \ t \ (\partial \ y) = \theta)) \land
(* F solves the induced IVP. *)
(\forall xf \in set xfList. ((\lambda t. \varphi_S t (\pi_1 xf)) solves-ode (\lambda t.\lambda r.(\pi_2 xf) (\varphi_S t))) \{0..t\}
UNIV \wedge
\varphi_S \ \theta \ (\pi_1 \ xf) = s(\pi_1 \ xf))
lemma solves-store-ivpI:
assumes \forall t \geq 0. \forall xf \in set xfList. (\varphi_S t (\partial (\pi_1 xf))) = (\pi_2 xf) (\varphi_S t)
  and \forall t \geq 0. \forall y. y \notin (\pi_1(set xfList)) \cup varDiffs \longrightarrow \varphi_S \ t \ y = s \ y
  and \forall t \geq 0. \forall y. y \notin (\pi_1(set xfList)) \longrightarrow \varphi_S t (\partial y) = 0
  and \forall t \geq 0. \ \forall xf \in set \ xfList. \ ((\lambda t. \varphi_S \ t \ (\pi_1 \ xf)) \ solves-ode \ (\lambda t.\lambda \ r.(\pi_2 \ xf))
(\varphi_S t))) \{\theta..t\} UNIV
  and \forall xf \in set xfList. \varphi_S \ \theta \ (\pi_1 xf) = s(\pi_1 xf)
shows \varphi_S solvesTheStoreIVP xfList withInitState s
apply(simp add: solvesStoreIVP-def, safe)
using assms apply simp-all
\mathbf{by}(force, force, force)
{f named-theorems} solves-store-ivpE elimination rules for solvesStoreIVP
lemma [solves-store-ivpE]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s
shows \forall t \geq 0. \forall y. y \notin (\pi_1(set xfList)) \cup varDiffs \longrightarrow \varphi_S t y = s y
  and \forall t \geq 0. \forall y. y \notin (\pi_1(set xfList)) \longrightarrow \varphi_S t (\partial y) = 0
  and \forall t \geq 0. \forall xf \in set xfList. (\varphi_S t (\partial (\pi_1 xf))) = (\pi_2 xf) (\varphi_S t)
  and \forall t \geq 0. \ \forall xf \in set xfList. ((\lambda t. \varphi_S t (\pi_1 xf)) solves-ode (\lambda t.\lambda r.(\pi_2 xf))
(\varphi_S t))) \{\theta..t\} UNIV
  and \forall xf \in set xfList. \varphi_S \ \theta \ (\pi_1 xf) = s(\pi_1 xf)
using assms solvesStoreIVP-def by auto
lemma [solves-store-ivpE]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s
shows \forall y. y \notin varDiffs \longrightarrow \varphi_S \ \theta \ y = s \ y
\mathbf{proof}(clarify, rename-tac \ x)
fix x assume x \notin varDiffs
```

```
from assms and solves-store-ivpE(5) have x \in (\pi_1(set xfList)) \Longrightarrow \varphi_S \ 0 \ x = s
x by fastforce
also have x \notin (\pi_1(set xfList)) \cup varDiffs \Longrightarrow \varphi_S \ \theta \ x = s \ x
using assms and solves-store-ivpE(1) by simp
ultimately show \varphi_S \theta x = s x using \langle x \notin varDiffs \rangle by auto
qed
named-theorems solves-store-ivpD computation rules for solvesStoreIVP
\mathbf{lemma}\ [solves\text{-}store\text{-}ivpD]\text{:}
assumes \varphi_S solvesTheStoreIVP xfList withInitState s
 and t \geq \theta
 and y \notin (\pi_1(set xfList)) \cup varDiffs
shows \varphi_S t y = s y
using assms solves-store-ivpE(1) by simp
lemma [solves-store-ivpD]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s
 and t > \theta
 and y \notin (\pi_1(set xfList))
shows \varphi_S t(\partial y) = 0
using assms solves-store-ivpE(2) by simp
lemma [solves-store-ivpD]:
\mathbf{assumes}\ \varphi_S\ solves The Store IVP\ xfList\ with Init State\ s
 and t \geq \theta
 and xf \in set xfList
shows (\varphi_S \ t \ (\partial \ (\pi_1 \ xf))) = (\pi_2 \ xf) \ (\varphi_S \ t)
using assms solves-store-ivpE(3) by simp
lemma [solves-store-ivpD]:
assumes \varphi_S solves The Store IVP xfList with InitState s
 and t \geq \theta
 and xf \in set xfList
shows ((\lambda \ t. \ \varphi_S \ t \ (\pi_1 \ xf)) \ solves-ode \ (\lambda \ t.\lambda \ r.(\pi_2 \ xf) \ (\varphi_S \ t))) \ \{\theta..t\} \ UNIV
using assms solves-store-ivpE(4) by simp
lemma [solves-store-ivpD]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s
 and (x,f) \in set xfList
shows \varphi_S \ \theta \ x = s \ x
using assms solves-store-ivpE(5) by fastforce
lemma [solves-store-ivpD]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s
 and y \notin varDiffs
shows \varphi_S \ \theta \ y = s \ y
using assms solves-store-ivpE(6) by simp
```

```
definition guarDiffEqtn :: (string × (real store \Rightarrow real)) list \Rightarrow (real store pred) \Rightarrow real store rel (ODEsystem - with - [70, 70] 61) where ODEsystem xfList with G = \{(s, \varphi_S \ t) \mid s \ t \ \varphi_S. \ t \geq 0 \ \land \ (\forall \ r \in \{0..t\}. \ G \ (\varphi_S \ r)) \land solvesStoreIVP \ \varphi_S \ xfList \ s\}
```

1.4 Derivation of Differential Dynamic Logic Rules

1.4.1 "Differential Weakening"

lemma wlp-evol-guard: $Id \subseteq wp$ (ODEsystem xfList with G) $\lceil G \rceil$ **by**(simp add: rel-antidomain-kleene-algebra.fbox-def rel-ad-def guarDiffEqtn-def p2r-def, force)

```
theorem dWeakening:

assumes guardImpliesPost: \lceil G \rceil \subseteq \lceil Q \rceil

shows PRE\ P\ (ODEsystem\ xfList\ with\ G)\ POST\ Q

using assms and wlp\text{-}evol\text{-}guard by (metis\ (no\text{-}types,\ hide\text{-}lams)\ d\text{-}p2r

order\text{-}trans\ p2r\text{-}subid\ rel\text{-}antidomain\text{-}kleene\text{-}algebra.fbox\text{-}iso})
```

theorem dW: wp (ODEsystem xfList with G) $\lceil Q \rceil = wp$ (ODEsystem xfList with G) $\lceil \lambda s. G s \longrightarrow Q s \rceil$ **unfolding** rel-antidomain-kleene-algebra. fbox-def rel-ad-def guarDiffEqtn-def by($simp\ add:\ relcomp.simps\ p2r$ -def, fastforce)

1.4.2 "Differential Cut"

```
lemma all-interval-guarDiffEqtn: assumes solvesStoreIVP \varphi_S xfList s \land (\forall r \in \{0..t\}. \ G \ (\varphi_S \ r)) \land 0 \le t shows \forall r \in \{0..t\}. \ (s, \varphi_S \ r) \in (ODEsystem xfList with G) unfolding guarDiffEqtn-def using atLeastAtMost-iff apply clarsimp apply(rule-tac x=r in exI, rule-tac x=\varphi_S in exI) using assms by simp
```

```
lemma condA fterEvol-remainsAlongEvol: assumes boxDiffC:(s, s) \in wp \ (ODEsystem \ xfList \ with \ G) \ \lceil C \rceil and FisSol:solvesStoreIVP \ \varphi_S \ xfList \ s \land \ (\forall \ r \in \{0..t\}. \ G \ (\varphi_S \ r)) \land 0 \le t shows \forall \ r \in \{0..t\}. \ G \ (\varphi_S \ r) \land C \ (\varphi_S \ r) proof—from boxDiffC have \forall \ c. \ (s,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow C \ c by (simp \ add: \ boxProgrPred-chrctrztn) also from FisSol have \forall \ r \in \{0..t\}. \ (s, \varphi_S \ r) \in (ODEsystem \ xfList \ with \ G) using all-interval-guarDiffEqtn by blast ultimately show ?thesis using FisSol \ atLeastAtMost-iff \ guarDiffEqtn-def by fastforce qed
```

```
theorem dCut:
```

```
assumes pBoxDiffCut:(PRE\ P\ (ODEsystem\ xfList\ with\ G)\ POST\ C) assumes pBoxCutQ:(PRE\ P\ (ODEsystem\ xfList\ with\ (\lambda\ s.\ G\ s\ \wedge\ C\ s))\ POST\ Q) shows PRE\ P\ (ODEsystem\ xfList\ with\ G)\ POST\ Q
```

```
apply(clarify, subgoal-tac\ a = b)\ defer
proof(metis d-p2r rdom-p2r-contents, simp, subst boxProgrPred-chrctrztn, clarify)
fix b y assume (b, b) \in [P] and (b, y) \in ODEsystem xfList with G
then obtain \varphi_S t where *:solvesStoreIVP \varphi_S xfList b \land (\forall r \in \{0..t\}. G (\varphi_S))
r)) \wedge \theta \leq t \wedge \varphi_S t = y
 using guarDiffEqtn-def by auto
hence \forall r \in \{0..t\}. (b, \varphi_S r) \in (ODEsystem xfList with G)
  using all-interval-guarDiffEqtn by blast
from this and pBoxDiffCut have \forall r \in \{0..t\}. C(\varphi_S r)
  using boxProgrPred-chrctrztn (b, b) \in [P] by (metis\ (no-types,\ lifting)\ d-p2r
subsetCE)
then have \forall r \in \{0..t\}. (b, \varphi_S r) \in (ODEsystem \ xfList \ with \ (\lambda s. \ G s \land C s))
 using * all-interval-guarDiffEqtn by (metis (mono-tags, lifting))
from this and pBoxCutQ have \forall r \in \{0..t\}. Q(\varphi_S r)
 using boxProgrPred-chrctrztn \langle (b, b) \in [P] \rangle by (metis\ (no-types,\ lifting)\ d-p2r)
subsetCE)
thus Q y using * by auto
qed
theorem dC:
assumes Id \subseteq wp (ODEsystem xfList with G) [C]
shows wp (ODEsystem xfList with G) [Q] = wp (ODEsystem xfList with (\lambda s.
G s \wedge C s) Q
proof(rule-tac f = \lambda x. wp x [Q] in HOL.arg-cong, safe)
 fix a b assume (a, b) \in ODEsystem xfList with G
 then obtain \varphi_S t where *:solvesStoreIVP \varphi_S xfList a \land (\forall r \in \{0..t\}. G (\varphi_S))
r)) \wedge \theta \leq t \wedge \varphi_S t = b
   using guarDiffEqtn-def by auto
 hence 1:\forall r \in \{0..t\}. (a, \varphi_S r) \in ODEsystem xfList with G
   by (meson all-interval-guarDiffEqtn)
  from this have \forall r \in \{0..t\}. C(\varphi_S r) using assms boxProgrPred-chrctrztn
   by (metis IdI boxProgrPred-IsProp subset-antisym)
  thus (a, b) \in ODEsystem xfList with (\lambda s. G s \wedge C s)
   using * guarDiffEqtn-def by blast
next
 fix a b assume (a, b) \in ODEsystem xfList with (\lambda s. G s \land C s)
 then show (a, b) \in ODEsystem xfList with G
 unfolding guarDiffEqtn-def by (clarsimp, rule-tac x=t in exI, rule-tac x=\varphi_S in
exI, simp)
qed
         "Solve Differential Equation"
```

```
{\bf lemma}\ prelim-dSolve:
assumes solHyp:(\lambda t. \ sol \ s[xfList \leftarrow uInput] \ t) solvesTheStoreIVP \ xfList \ withInit-
State s
and uniqHyp: \forall X. solvesStoreIVP \ X xfList \ s \longrightarrow (\forall t \geq 0. (sol \ s[xfList \leftarrow uInput]
t) = X t
and diffAssgn: \forall t \geq 0. G(sol\ s[xfList \leftarrow uInput]\ t) \longrightarrow Q(sol\ s[xfList \leftarrow uInput]\ t)
```

```
shows \forall c. (s,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow Q \ c
proof(clarify)
fix c assume (s,c) \in (ODEsystem \ xfList \ with \ G)
from this obtain t::real and \varphi_S::real \Rightarrow real store
where FHyp:t\geq 0 \land \varphi_S t=c \land solvesStoreIVP \varphi_S xfList s \land (\forall r \in \{0..t\}. G
(\varphi_S r)
using guarDiffEqtn-def by auto
from this and uniqHyp have (sol\ s[xfList \leftarrow uInput]\ t) = \varphi_S\ t by blast
then have cHyp:c = (sol\ s[xfList \leftarrow uInput]\ t) using FHyp by simp
from this have G (sol s[xfList \leftarrow uInput] t) using FHyp by force
then show Q c using diffAssgn FHyp cHyp by auto
qed
theorem dS:
assumes solHyp: \forall s. solvesStoreIVP (\lambda t. sol s[xfList \leftarrow uInput] t) xfList s
and uniqHyp: \forall s \ X. \ solvesStoreIVP \ X \ xfList \ s \longrightarrow (\forall t \geq 0. \ (sol\ s[xfList \leftarrow uInput]
t) = X t
shows wp (ODEsystem xfList with G) [Q] =
 [\lambda \ s. \ \forall \ t \geq 0. \ (\forall \ r \in \{0..t\}. \ G \ (sol \ s[xfList \leftarrow uInput] \ r)) \longrightarrow Q \ (sol \ s[xfList \leftarrow uInput] \ r)
t)
apply(simp add: p2r-def, rule subset-antisym)
unfolding guarDiffEqtn-def rel-antidomain-kleene-algebra.fbox-def rel-ad-def
using solHyp apply(simp add: relcomp.simps) apply clarify
apply(rule-tac \ x=x \ in \ exI, \ clarsimp)
apply(erule-tac \ x=sol \ x[xfList\leftarrow uInput] \ t \ in \ all E, \ erule \ disjE)
apply(erule-tac \ x=x \ in \ all E, \ erule-tac \ x=t \ in \ all E)
apply(erule\ impE,\ simp,\ erule-tac\ x=\lambda t.\ sol\ x[xfList\leftarrow uInput]\ t\ in\ allE)
apply(simp-all, clarify, rule-tac x=s in exI, simp add: relcomp.simps)
using uniqHyp by fastforce
theorem dSolve:
assumes solHyp: \forall s. \ solvesStoreIVP \ (\lambda t. \ sol \ s[xfList \leftarrow uInput] \ t) \ xfList \ s
and uniqHyp: \forall s. \forall X. solvesStoreIVP \ X xfList \ s \longrightarrow (\forall t \geq 0.(sol\ s[xfList \leftarrow uInput]))
and diffAssgn: \forall s. \ Ps \longrightarrow (\forall t \geq 0. \ G(sols[xfList \leftarrow uInput]\ t) \longrightarrow Q(sols[xfList \leftarrow uInput]
shows PRE P (ODEsystem xfList with G) POST Q
apply(clarsimp, subgoal-tac\ a=b)
apply(clarify, subst boxProgrPred-chrctrztn)
apply(simp-all add: p2r-def)
\mathbf{apply}(\mathit{rule-tac}\ \mathit{uInput} = \!\mathit{uInput}\ \mathbf{in}\ \mathit{prelim-dSolve})
apply(simp add: solHyp, simp add: uniqHyp)
by (metis (no-types, lifting) diffAssgn)
— We proceed to refine the previous rule by finding the necessary restrictions on
varFunList and uInput so that the solution to the store-IVP is guaranteed.
lemma conds4vdiffs-prelim:
assumes funcsHyp: \forall s \ g. \ \forall xf \in set \ xfList. \ \pi_2 \ xf \ (override-on \ s \ g \ varDiffs) = \pi_2 \ xf
```

```
and distinctHyp:distinct\ (map\ \pi_1\ xfList)
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and lengthHyp:length xfList = length uInput
and solHyp1: \forall uxf \in set (uInput \otimes xfList). (\pi_1 uxf) \ \theta (sol s) = (sol s) (\pi_1 (\pi_2 uxf) (\pi_1 uxf)) = (sol s) (\pi_1 (\pi_2 uxf) (\pi_2 uxf)) = (sol s) (\pi_2 uxf) = (sol s) (\pi_2 uxf) (\pi_2 uxf) (\pi_2 uxf) = (sol s) (\pi_2 uxf) (\pi_2 uxf) (\pi_2 uxf) = (sol s) (\pi_2 uxf) (\pi_2 uxf) (\pi_2 uxf) (\pi_2 uxf) = (sol s) (\pi_2 uxf) (\pi_2 uxf) (\pi_2 uxf) (\pi_2 uxf) = (sol s) (\pi_2 uxf) (\pi
uxf)
and solHyp2: \forall t \geq 0. ((\lambda \tau. (sol s[xfList \leftarrow uInput] \tau) x)
has-vderiv-on (\lambda \tau. f (sol s[xfList \leftarrow uInput] \tau))) \{0..t\}
and xfHyp:(x, f) \in set xfList and tHyp:t \geq 0
shows (sol\ s[xfList \leftarrow uInput]\ t)\ (\partial\ x) = f\ (sol\ s[xfList \leftarrow uInput]\ t)
proof-
from xfHyp obtain u where xfuHyp: (u,x,f) \in set (uInput \otimes xfList)
by (metis in-set-impl-in-set-zip2 lengthHyp)
show (sol\ s[xfList \leftarrow uInput]\ t)\ (\partial\ x) = f\ (sol\ s[xfList \leftarrow uInput]\ t)
     proof(cases t=0)
     case True
           have (sol\ s[xfList \leftarrow uInput]\ \theta)\ (\partial\ x) = f\ (sol\ s[xfList \leftarrow uInput]\ \theta)
           using assms and to-sol-zero-its-dvars by blast
           then show ?thesis using True by blast
      next
           case False
           from this have t > 0 using tHyp by simp
           hence (sol\ s[xfList \leftarrow uInput]\ t)\ (\partial\ x) = vderiv \cdot of\ (\lambda\ r.\ u\ r\ (sol\ s))\ \{0 < .. < (2)\}
           using xfuHyp assms to-sol-greater-than-zero-its-dvars by blast
       also have vderiv-of (\lambda r.\ u\ r\ (sol\ s)) \{0 < ... < (2 *_R t)\}\ t = f\ (sol\ s[xfList \leftarrow uInput]
t)
           using assms xfuHyp \langle t > 0 \rangle and vderiv-of-to-sol-its-vars by blast
           ultimately show ?thesis by simp
     qed
qed
lemma conds4vdiffs:
assumes funcsHyp:\forall s \ g. \ \forall xf \in set \ xfList. \ \pi_2 \ xf \ (override-on \ s \ g \ varDiffs) = \pi_2 \ xf
and distinctHyp:distinct (map \pi_1 xfList)
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and lengthHyp:length xfList = length uInput
and solHyp1: \forall uxf \in set (uInput \otimes xfList). (\pi_1 uxf) \ \theta (sol s) = (sol s) (\pi_1 (\pi_2 \cap xfList)) = (sol s) (sol s) = (sol s) (\pi_1 (\pi_2 \cap xfList)) = (sol s) (sol s) = (sol s) (\pi_1 (\pi_2 \cap xfList)) = (sol s) (sol s) = (sol s) (\pi_1 (\pi_2 \cap xfList)) = (sol s) (sol s) = (sol s) (\pi_1 (\pi_2 \cap xfList)) = (sol s) (sol s) = (sol s) (\pi_1 (\pi_2 \cap xfList)) = (sol s) (sol s) = (sol s) (sol
uxf)
and solHyp2: \forall t \geq 0. \ \forall \ xf \in set \ xfList. \ ((\lambda \tau. \ (sol \ s[xfList \leftarrow uInput] \ \tau) \ (\pi_1 \ xf))
has-vderiv-on (\lambda \tau. (\pi_2 \ xf) \ (sol\ s[xfList \leftarrow uInput]\ \tau))) \ \{0..t\}
shows \forall t \geq 0. \ \forall xf \in set \ xfList. \ (sol \ s[xfList \leftarrow uInput] \ t) \ (\partial \ (\pi_1 \ xf)) = (\pi_2 \ xf)
(sol\ s[xfList\leftarrow uInput]\ t)
apply(rule allI, rule impI, rule ballI, rule conds4vdiffs-prelim)
using assms by simp-all
lemma conds4Consts:
assumes varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
shows \forall x. x \notin (\pi_1(set xfList)) \longrightarrow (sol s[xfList \leftarrow uInput] t) (\partial x) = 0
```

```
using varsHyp apply(induct xfList uInput rule: list-induct2')
apply(simp-all add: override-on-def varDiffs-def vdiff-def)
by clarsimp
lemma conds4InitState:
assumes distinctHyp:distinct\ (map\ \pi_1\ xfList)
{\bf and}\ \mathit{lengthHyp:length}\ \mathit{xfList} = \mathit{length}\ \mathit{uInput}
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp1: \forall uxf \in set \ (uInput \otimes xfList). \ (\pi_1 \ uxf) \ 0 \ (sol \ s) = (sol \ s) \ (\pi_1 \ (\pi_2 \ uxf)) \ (sol \ s) = (sol \ s) = (sol \ s) \ (sol \ s) = (sol \ s) = (sol \ s) \ (sol \ s) = 
uxf))
and xfHyp:(x, f) \in set xfList
shows (sol s[xfList\leftarrowuInput] 0) x = s x
proof-
from xfHyp obtain u where uxfHyp:(u, x, f) \in set (uInput \otimes xfList)
by (metis in-set-impl-in-set-zip2 lengthHyp)
from varsHyp have toZeroHyp:(sol\ s)\ x = s\ x using override-on-def\ xfHyp by
auto
from uxfHyp and solHyp1 have u \ 0 \ (sol \ s) = (sol \ s) \ x by fastforce
also have (sol\ s[xfList \leftarrow uInput]\ \theta)\ x = u\ \theta\ (sol\ s)
using state-list-cross-upd-its-vars uxfHyp and assms by blast
ultimately show (sol\ s[xfList \leftarrow uInput]\ \theta) x=s\ x using toZeroHyp by simp
qed
lemma conds4RestOfStrings:
assumes x \notin (\pi_1(|set xfList|)) \cup varDiffs
shows (sol s[xfList\leftarrowuInput] t) x = s x
using assms apply(induct xfList uInput rule: list-induct2')
by(auto simp: varDiffs-def)
lemma conds4storeIVP-on-toSol:
assumes funcsHyp:\forall s \ g. \ \forall xf \in set \ xfList. \ \pi_2 \ xf \ (override-on \ s \ g \ varDiffs) = \pi_2 \ xf
and distinctHyp:distinct (map <math>\pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp1: \forall uxf \in set \ (uInput \otimes xfList). \ (\pi_1 \ uxf) \ 0 \ (sol \ s) = (sol \ s) \ (\pi_1 \ (\pi_2 \ uxf)) \ (sol \ s) = (sol \ s) \ (\pi_1 \ (\pi_2 \ uxf)) \ (sol \ s) = (sol \ s) \ (\pi_1 \ (\pi_2 \ uxf)) \ (sol \ s) = (sol \ s) \ (\pi_1 \ (\pi_2 \ uxf)) \ (sol \ s) = (sol \ s) \ (\pi_1 \ (\pi_2 \ uxf)) \ (sol \ s) = (sol \ s) (sol \ s
uxf))
and solHyp2: \forall t > 0. \forall xf \in set xfList.
((\lambda t. \ (sol\ s[xfList \leftarrow uInput]\ t)\ (\pi_1\ xf))\ has\text{-}vderiv\text{-}on\ (\lambda t.\ \pi_2\ xf\ (sol\ s[xfList \leftarrow uInput]\ t)))
t))) \{0..t\}
shows solvesStoreIVP (\lambda t. (sol s[xfList\leftarrowuInput] t)) xfList s
apply(rule\ solves-store-ivpI)
subgoal using conds4vdiffs assms by blast
subgoal using conds4RestOfStrings by blast
subgoal using conds4Consts varsHyp by blast
subgoal apply(rule allI, rule impI, rule ballI, rule solves-odeI)
     using solHup2 by simp-all
subgoal using conds4InitState and assms by force
done
```

```
theorem dSolve-toSolve:
assumes funcsHyp: \forall s \ g. \ \forall xf \in set \ xfList. \ \pi_2 \ xf \ (override-on \ s \ g \ varDiffs) = \pi_2 \ xf
and distinctHyp:distinct\ (map\ \pi_1\ xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp1: \forall s. \forall uxf \in set (uInput \otimes xfList). (\pi_1 uxf) \theta (sol s) = (sol s) (\pi_1 (\pi_2 uxf) \theta (sol s))
uxf))
and solHyp2: \forall s. \forall t \geq 0. \forall xf \in set xfList.
((\lambda t. (sol\ s[xfList \leftarrow uInput]\ t) (\pi_1\ xf))\ has-vderiv-on\ (\lambda t.\ \pi_2\ xf\ (sol\ s[xfList \leftarrow uInput]
t))) \{\theta..t\}
and uniqHyp: \forall s. \forall X. solvesStoreIVP X xfList s \longrightarrow (\forall t \geq 0. (sol s[xfList \leftarrow uInput]))
t) = X t
and postCondHyp: \forall s. \ P \ s \longrightarrow (\forall \ t \ge 0. \ Q \ (sol \ s[xfList \leftarrow uInput] \ t))
shows PRE P (ODEsystem xfList with G) POST Q
apply(rule-tac uInput=uInput in dSolve)
subgoal using assms and conds4storeIVP-on-toSol by simp
subgoal by (simp add: uniqHyp)
using postCondHyp postCondHyp by simp
— As before, we keep refining the rule dSolve. This time we find the necessary
restrictions to attain uniqueness.
lemma conds4UniqSol:
fixes f::real store \Rightarrow real
assumes tHyp:t \geq 0
and contHyp:continuous-on (\{0..t\} \times UNIV) (\lambda(t, (r::real)). f(\varphi_s t))
shows unique-on-bounded-closed 0 \{0..t\} \tau (\lambda t \ r. \ f \ (\varphi_s \ t)) UNIV (if \ t = 0 \ then
1 else 1/(t+1)
apply(simp add: unique-on-bounded-closed-def unique-on-bounded-closed-axioms-def
unique-on-closed-def compact-interval-def compact-interval-axioms-def nonempty-set-def
interval\text{-}def self\text{-}mapping\text{-}def self\text{-}mapping\text{-}axioms\text{-}def closed\text{-}domain\text{-}def global\text{-}lipschitz\text{-}def
lipschitz-def, rule conjI)
subgoal using contHyp continuous-rhs-def by fastforce
subgoal using assms continuous-rhs-def by fastforce
done
lemma solves-store-ivp-at-beginning-overrides:
assumes solvesStoreIVP \varphi_s xfList a
shows \varphi_s \ \theta = override - on \ a \ (\varphi_s \ \theta) \ varDiffs
apply(rule\ ext,\ subgoal-tac\ x\notin varDiffs\longrightarrow \varphi_s\ 0\ x=a\ x)
subgoal by (simp add: override-on-def)
using assms and solves-store-ivpD(6) by simp
```

 $\mathbf{lemma}\ ubcStoreUniqueSol:$

```
assumes tHyp:t > 0
assumes contHyp: \forall xf \in set xfList. continuous-on (\{0..t\} \times UNIV)
(\lambda(t, (r::real)). (\pi_2 xf) (sol s[xfList \leftarrow uInput] t))
and eqDerivs: \forall xf \in set xfList. \ \forall \tau \in \{0..t\}. \ (\pi_2 xf) \ (\varphi_s \tau) = (\pi_2 xf) \ (sol
s[xfList \leftarrow uInput] \tau
and Fsolves:solvesStoreIVP \varphi_s xfList s
and solHyp:solvesStoreIVP\ (\lambda\ \tau.\ (sol\ s[xfList\leftarrow uInput]\ \tau))\ xfList\ s
shows (sol\ s[xfList \leftarrow uInput]\ t) = \varphi_s\ t
proof
  fix x::string show (sol s[xfList\leftarrowuInput] t) x = \varphi_s t x
  \mathbf{proof}(\mathit{cases}\ x \in (\pi_1(\mathit{set}\ \mathit{xfList})) \cup \mathit{varDiffs})
  case False
    then have notInVars:x \notin (\pi_1(set xfList)) \cup varDiffs by simp
    from solHyp have (sol\ s[xfList \leftarrow uInput]\ t)\ x = s\ x
    using tHyp \ notInVars \ solves-store-ivpD(1) by blast
   also from Fsolves have \varphi_s t x = s x using tHyp notInVars solves-store-ivpD(1)
by blast
    ultimately show (sol s[xfList \leftarrow uInput] t) x = \varphi_s t x by simp
  next case True
    then have x \in (\pi_1(set xfList)) \lor x \in varDiffs by simp
    from this show ?thesis
    proof
      assume x \in (\pi_1(set xfList))
      from this obtain f where xfHyp:(x, f) \in set xfList by fastforce
      then have expand1: \forall xf \in set xfList.((\lambda \tau. \varphi_s \tau (\pi_1 xf)) solves-ode
      (\lambda \tau \ r. \ (\pi_2 \ xf) \ (\varphi_s \ \tau)) \{0..t\} \ UNIV \land \varphi_s \ 0 \ (\pi_1 \ xf) = s \ (\pi_1 \ xf)
      using Fsolves tHyp by (simp add:solvesStoreIVP-def)
      hence expand2: \forall xf \in set xfList. \ \forall \tau \in \{0..t\}. \ ((\lambda r. \varphi_s \ r \ (\pi_1 \ xf)))
       has-vector-derivative (\lambda r. (\pi_2 \ xf) \ (sol\ s[xfList \leftarrow uInput]\ \tau))\ \tau)\ (at\ \tau\ within
\{\theta..t\}
      using eqDerivs by (simp add: solves-ode-def has-vderiv-on-def)
      then have \forall xf \in set xfList. ((\lambda \tau. \varphi_s \tau (\pi_1 xf)) solves-ode
       (\lambda \tau \ r. \ (\pi_2 \ xf) \ (sol \ s[xfList \leftarrow uInput] \ \tau)))\{0..t\} \ UNIV \land \varphi_s \ 0 \ (\pi_1 \ xf) = s
      by (simp add: has-vderiv-on-def solves-ode-def expand1 expand2)
     then have 1:((\lambda \tau. \varphi_s \tau x) \text{ solves-ode } (\lambda \tau r. f (\text{sol s}[xfList \leftarrow uInput] \tau))) \{0..t\}
UNIV \wedge
      \varphi_s \ \theta \ x = s \ x  using xfHyp by fastforce
     from solHyp and xfHyp have 2:((\lambda \tau. (sol s[xfList \leftarrow uInput] \tau) x) solves-ode
      (\lambda \tau \ r. \ f \ (sol \ s[xfList \leftarrow uInput] \ \tau))) \ \{\theta..t\} \ UNIV \land (sol \ s[xfList \leftarrow uInput] \ \theta)
x = s x
      using solvesStoreIVP-def tHyp by fastforce
      from tHyp and contHyp have \forall xf \in set xfList. unique-on-bounded-closed 0
\{\theta..t\}\ (s\ (\pi_1\ xf))
```

```
(\lambda \tau \ r. \ (\pi_2 \ xf) \ (sol\ s[xfList \leftarrow uInput]\ \tau))\ UNIV\ (if\ t=0\ then\ 1\ else\ 1/(t+1))
      apply(clarify) apply(rule conds4UniqSol) by(auto)
        from this have 3:unique-on-bounded-closed 0 \{0..t\} (s x) (\lambda \tau r. f (sol))
s[xfList \leftarrow uInput] \tau)
      UNIV (if t = 0 then 1 else 1/(t+1)) using xfHyp by fastforce
      from 1 2 and 3 show (sol s[xfList\leftarrowuInput] t) x = \varphi_s t x
     using unique-on-bounded-closed.unique-solution using real-Icc-closed-segment
tHyp by blast
    next
      assume x \in varDiffs
      then obtain y where xDef: x = \partial y by (auto simp: varDiffs-def)
      show (sol s[xfList\leftarrow uInput] t) x = \varphi_s t x
      \mathbf{proof}(cases\ y \in set\ (map\ \pi_1\ xfList))
      case True
        then obtain f where xfHyp:(y, f) \in set xfList by fastforce
        from tHyp and Fsolves have \varphi_s t x = f(\varphi_s t)
        \mathbf{using}\ solves\text{-}store\text{-}ivpD(3)\ \mathit{xfHyp}\ \mathit{xDef}\ \mathbf{by}\ \mathit{force}
        also have (sol\ s[xfList \leftarrow uInput]\ t)\ x = f\ (sol\ s[xfList \leftarrow uInput]\ t)
        using solves-store-ivpD(3) xfHyp xDef solHyp tHyp by force
        ultimately show ?thesis using eqDerivs xfHyp tHyp by auto
      \mathbf{next} \mathbf{case} \mathit{False}
        then have \varphi_s t x = \theta
        using xDef solves-store-ivpD(2) Fsolves tHyp by simp
        also have (sol\ s[xfList \leftarrow uInput]\ t)\ x = 0
        using False solHyp tHyp solves-store-ivpD(2) xDef by fastforce
        ultimately show ?thesis by simp
      ged
    qed
  qed
qed
theorem dSolveUBC:
assumes contHyp:\forall s. \forall t \geq 0. \forall xf \in set xfList. continuous-on (\{0..t\} \times UNIV)
(\lambda(t, (r::real)). (\pi_2 xf) (sol s[xfList \leftarrow uInput] t))
and solHyp: \forall s. solvesStoreIVP (\lambda t. (sol s[xfList \leftarrow uInput] t)) xfList s
and uniqHyp: \forall s. \ \forall \ \varphi_s. \ \varphi_s \ solvesTheStoreIVP \ xfList \ withInitState \ s \longrightarrow
(\forall \ t \geq 0. \ \forall \ xf \in set \ xfList. \ \forall \ r \in \{0..t\}. \ (\pi_2 \ xf) \ (\varphi_s \ r) = (\pi_2 \ xf) \ (sol \ s[xfList \leftarrow uInput])
r))
and diffAssgn: \forall s. \ Ps \longrightarrow (\forall t \geq 0. \ G(sols[xfList \leftarrow uInput]\ t) \longrightarrow Q(sols[xfList \leftarrow uInput]\ t)
t))
shows PRE P (ODEsystem xfList with G) POST Q
apply(rule-tac\ uInput=uInput\ in\ dSolve)
prefer 2 subgoal proof(clarify)
fix s::real store and \varphi_s::real \Rightarrow real store and t::real
assume isSol:solvesStoreIVP \varphi_s xfList s and sHyp:0 \le t
from this and uniqHyp have \forall xf \in set xfList. \forall t \in \{0..t\}.
(\pi_2 \ xf) \ (\varphi_s \ t) = (\pi_2 \ xf) \ (sol \ s[xfList \leftarrow uInput] \ t) \ \mathbf{by} \ auto
```

```
also have \forall xf \in set xfList. continuous-on (\{0..t\} \times UNIV)
(\lambda(t, (r::real)). (\pi_2 \ xf) \ (sol\ s[xfList \leftarrow uInput]\ t)) using contHyp\ sHyp by blast
ultimately show (sol s[xfList\leftarrowuInput] t) = \varphi_s t
using sHyp isSol ubcStoreUniqueSol solHyp by simp
ged using assms by simp-all
theorem dSolve-toSolveUBC:
assumes funcsHyp:\forall s \ q. \ \forall xf \in set \ xfList. \ \pi_2 \ xf \ (override-on \ s \ q \ varDiffs) = \pi_2 \ xf
S
and distinctHyp:distinct (map <math>\pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp1: \forall s. \ \forall uxf \in set \ (uInput \otimes xfList). \ \pi_1 \ uxf \ 0 \ (sol \ s) = sol \ s \ (\pi_1 \ (\pi_2 \ uxf \ solHyp1: \forall s. \ \forall uxf \in set \ (uInput \ solHyp1: \forall s. \ \forall uxf \in set \ (uInput \ solHyp1: \forall s. \ \forall uxf \in set \ (uInput \ solHyp1: \forall s. \ \forall uxf \in set \ (uInput \ solHyp1: \forall s. \ \forall uxf \in set \ (uInput \ solHyp1: \ uxf \ uxf \ solHyp1: \ uxf \ solHyp1: \ uxf \ 
uxf)
and solHyp2: \forall s. \ \forall t \geq 0. \ \forall xf \in set \ xfList. \ ((\lambda t. \ (sol \ s[xfList \leftarrow uInput] \ t) \ (\pi_1 \ xf))
has-vderiv-on
(\lambda t. \ \pi_2 \ xf \ (sol \ s[xfList \leftarrow uInput] \ t))) \ \{0..t\}
and contHyp: \forall s. \forall t \geq 0. \forall xf \in set xfList. continuous-on (\{0..t\} \times UNIV)
(\lambda(t, (r::real)). (\pi_2 xf) (sol s[xfList \leftarrow uInput] t))
and uniqHyp: \forall s. \forall \varphi_s. \varphi_s  solvesTheStoreIVP xfList withInitState s \longrightarrow
(\forall \ t \geq 0. \ \forall \ xf \in set \ xfList. \ \forall \ r \in \{0..t\}. \ (\pi_2 \ xf) \ (\varphi_s \ r) = (\pi_2 \ xf) \ (sol \ s[xfList \leftarrow uInput])
r))
and postCondHyp: \forall s. \ P \ s \longrightarrow (\forall \ t \geq 0. \ Q \ (sol \ s[xfList \leftarrow uInput] \ t))
shows PRE P (ODEsystem xfList with G) POST Q
apply(rule-tac uInput=uInput in dSolveUBC)
using contHyp apply simp
apply(rule allI, rule-tac uInput=uInput in conds4storeIVP-on-toSol)
using assms by auto
                          "Differential Invariant."
1.4.4
{\bf lemma}\ solves Store IVP-could Be Modified:
fixes F::real \Rightarrow real \ store
assumes vars: \forall t \geq 0. \ \forall xf \in set \ xfList. \ ((\lambda t. \ F \ t \ (\pi_1 \ xf)) \ solves ode \ (\lambda t \ r. \ \pi_2 \ xf \ (F \ t))
t))) \{0..t\} UNIV
and dvars: \forall t \geq 0. \forall xf \in set xfList. (F t (\partial (\pi_1 xf))) = (\pi_2 xf) (F t)
shows \forall t \geq 0. \forall r \in \{0..t\}. \forall xf \in set xfList.
((\lambda \ t. \ F \ t \ (\pi_1 \ xf)) \ has-vector-derivative \ F \ r \ (\partial \ (\pi_1 \ xf))) \ (at \ r \ within \ \{0..t\})
proof(clarify, rename-tac\ t\ r\ x\ f)
fix x f and t r :: real
assume tHyp: 0 \le t and xfHyp:(x, f) \in set xfList and rHyp: r \in \{0..t\}
from this and vars have ((\lambda t. F t x) solves-ode (\lambda t r. f (F t))) \{0..t\} UNIV
using tHyp by fastforce
hence *:\forall r \in \{0..t\}. ((\lambda t. F t x) has-vector-derivative <math>(\lambda t. f (F t)) r) (at r within the following function for the first substitution of the following function for the first substitution of the first substitution o
\{\theta..t\}
by (simp add: solves-ode-def has-vderiv-on-def tHyp)
have \forall t \geq 0. \ \forall r \in \{0..t\}. \ \forall xf \in set xfList. (F r (\partial (\pi_1 xf))) = (\pi_2 xf) (F r)
using assms by auto
from this rHyp and xfHyp have (F r (\partial x)) = f (F r) by force
```

```
then show ((\lambda t. \ F \ t \ (\pi_1 \ (x, f))) \ has-vector-derivative \ F \ r \ (\partial \ (\pi_1 \ (x, f)))) \ (at \ r
within \{0..t\})
using * rHyp by auto
qed
\mathbf{lemma}\ derivation Lemma-base Case:
fixes F::real \Rightarrow real store
assumes solves:solvesStoreIVP\ F\ xfList\ a
shows \forall x \in (UNIV - varDiffs). \forall t \geq 0. \forall r \in \{0..t\}.
((\lambda \ t. \ F \ t \ x) \ has-vector-derivative \ F \ r \ (\partial \ x)) \ (at \ r \ within \ \{0..t\})
proof
\mathbf{fix} \ x
\mathbf{assume}\ x \in \mathit{UNIV}\ -\ \mathit{varDiffs}
then have notVarDiff: \forall z. x \neq \partial z  using varDiffs-def by fastforce
  show \forall t \geq 0. \ \forall r \in \{0..t\}. \ ((\lambda t. \ Ftx) \ has-vector-derivative Fr(\partial x)) \ (at r \ within
  \mathbf{proof}(cases \ x \in set \ (map \ \pi_1 \ xfList))
    case True
    from this and solves have \forall t \geq 0. \forall r \in \{0..t\}. \forall xf \in set xfList.
    ((\lambda \ t. \ F \ t \ (\pi_1 \ xf)) \ has-vector-derivative \ F \ (\partial \ (\pi_1 \ xf))) \ (at \ r \ within \ \{0..t\})
    apply(rule-tac\ solvesStoreIVP-couldBeModified)\ using\ solves\ solves-store-ivpD
by auto
    from this show ?thesis using True by auto
  \mathbf{next}
    case False
    from this not VarDiff and solves have const: \forall t \geq 0. F t x = a x
    using solves-store-ivpD(1) by (simp add: varDiffs-def)
     have constD: \forall t \geq 0. \ \forall r \in \{0..t\}. \ ((\lambda r. \ a \ x) \ has-vector-derivative \ 0) \ (at \ r. \ a \ x)
within \{\theta..t\})
    by (auto intro: derivative-eq-intros)
    \{ \mathbf{fix} \ t \ r :: real \}
      assume t \ge \theta and r \in \{\theta..t\}
      hence ((\lambda \ s. \ a \ x) \ has\text{-}vector\text{-}derivative \ \theta) (at r within \{\theta..t\}) by (simp add:
constD)
      moreover have \bigwedge s. \ s \in \{0..t\} \Longrightarrow (\lambda \ r. \ F \ r \ x) \ s = (\lambda \ r. \ a \ x) \ s
      using const by (simp add: \langle 0 < t \rangle)
      ultimately have ((\lambda \ s. \ F \ s \ x) \ has-vector-derivative \ \theta) \ (at \ r \ within \ \{\theta...t\})
      using has-vector-derivative-imp by (metis \langle r \in \{0..t\}\rangle)
    hence isZero: \forall t \geq 0. \forall r \in \{0..t\}. ((\lambda t. F t x) has-vector-derivative 0) (at r within
\{\theta..t\})by blast
    from False solves and notVarDiff have \forall t \geq 0. F t (\partial x) = 0
    using solves-store-ivpD(2) by simp
    then show ?thesis using isZero by simp
  qed
qed
lemma derivationLemma:
assumes solvesStoreIVP F xfList a
and tHyp:t \geq 0
```

```
and termVarsHyp: \forall x \in trmVars \ \eta. \ x \in (UNIV - varDiffs)
shows \forall r \in \{0..t\}. ((\lambda \ s. (\llbracket \eta \rrbracket_t) \ (F \ s)) has-vector-derivative (\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r)) (at r
within \{0..t\})
using termVarsHyp proof(induction \eta)
  case (Const r)
  then show ?case by simp
next
  case (Var\ y)
  then have yHyp:y \in UNIV - varDiffs by auto
  from this tHyp and assms(1) show ?case
  using derivationLemma-baseCase by auto
next
  case (Mns \eta)
  then show ?case
  apply(clarsimp)
  by(rule derivative-intros, simp)
next
  case (Sum \eta 1 \ \eta 2)
  then show ?case
  apply(clarsimp)
  \mathbf{by}(rule\ derivative\text{-}intros,\ simp\text{-}all)
\mathbf{next}
  case (Mult \eta 1 \ \eta 2)
  then show ?case
  apply(clarsimp)
  apply(subgoal-tac ((\lambda s. (\llbracket \eta 1 \rrbracket_t) (F s) *_R (\llbracket \eta 2 \rrbracket_t) (F s)) has-vector-derivative
  (\llbracket \partial_t \ \eta 1 \rrbracket_t) \ (F \ r) \cdot (\llbracket \eta 2 \rrbracket_t) \ (F \ r) + (\llbracket \eta 1 \rrbracket_t) \ (F \ r) \cdot (\llbracket \partial_t \ \eta 2 \rrbracket_t) \ (F \ r)) \ (at \ r \ within
\{0..t\}, simp
 apply(rule-tac f'1 = (\llbracket \partial_t \eta 1 \rrbracket_t) (F r) and g'1 = (\llbracket \partial_t \eta 2 \rrbracket_t) (F r) in derivative-eq-intros(25))
  by (simp-all add: has-field-derivative-iff-has-vector-derivative)
qed
lemma diff-subst-prprty-4terms:
assumes solves: \forall xf \in set xfList. F t (\partial (\pi_1 xf)) = \pi_2 xf (F t)
and tHyp:(t::real) \geq 0
and listsHyp:map \pi_2 xfList = map tval uInput
and termVarsHyp:trmVars \ \eta \subseteq (UNIV - varDiffs)
shows (\llbracket \partial_t \ \eta \rrbracket_t) (F \ t) = (\llbracket ((map \ (vdiff \circ \pi_1) \ xfList) \otimes uInput) \langle \partial_t \ \eta \rangle \rrbracket_t) (F \ t)
using termVarsHyp apply(induction \eta) apply(simp-all \ add: \ substList-help2)
using listsHyp and solves apply(induct xfList uInput rule: list-induct2', simp,
simp, simp)
\mathbf{proof}(clarify, rename\text{-}tac\ y\ g\ xfTail\ \vartheta\ trmTail\ x)
fix x y::string and \vartheta::trms and g and xfTail::((string \times (real\ store \Rightarrow real))\ list)
and trm Tail
assume IH: \Lambda x. \ x \notin varDiffs \Longrightarrow map \ \pi_2 \ xfTail = map \ tval \ trmTail \Longrightarrow
\forall xf \in set \ xfTail. \ F \ t \ (\partial \ (\pi_1 \ xf)) = \pi_2 \ xf \ (F \ t) \Longrightarrow
F \ t \ (\partial \ x) = (\llbracket (map \ (vdiff \circ \pi_1) \ xfTail \otimes trmTail) \langle t_V \ (\partial \ x) \rangle \rrbracket_t) \ (F \ t)
and 1:x \notin varDiffs and 2:map \ \pi_2 \ ((y, g) \# xfTail) = map \ tval \ (\vartheta \# trmTail)
and 3: \forall xf \in set ((y, g) \# xfTail). F t (\partial (\pi_1 xf)) = \pi_2 xf (F t)
```

```
hence *:(\llbracket (map\ (vdiff\ \circ\ \pi_1)\ xfTail\ \otimes\ trmTail) \langle Var\ (\partial\ x) \rangle \rrbracket_t)\ (F\ t) = F\ t\ (\partial\ x)
using tHyp by auto
show F \ t \ (\partial \ x) = (\llbracket ((map \ (vdiff \circ \pi_1) \ ((y, g) \ \# \ xfTail)) \otimes (\vartheta \ \# \ trmTail)) \ \langle t_V \ \rangle)
(\partial x) \rangle |_t (F t)
  \operatorname{\mathbf{proof}}(cases\ x\in set\ (map\ \pi_1\ ((y,\ g)\ \#\ xfTail)))
    case True
    then have x = y \lor (x \neq y \land x \in set (map \pi_1 xfTail)) by auto
    moreover
     {assume x = y
       from this have ((map\ (vdiff\ \circ\ \pi_1)\ ((y,\ g)\ \#\ xfTail))\otimes (\vartheta\ \#\ trmTail))\langle t_V
(\partial x)\rangle = \vartheta  by simp
       also from 3 tHyp have F t (\partial y) = g (F t) by simp
       moreover from 2 have (\llbracket \vartheta \rrbracket_t) (F t) = g (F t) by simp
       ultimately have ?thesis by (simp \ add: \langle x = y \rangle)}
    moreover
     {assume x \neq y \land x \in set (map \ \pi_1 \ xfTail)}
       then have \partial x \neq \partial y using vdiff-inj by auto
       from this have ((map\ (vdiff \circ \pi_1)\ ((y, g) \# xfTail)) \otimes (\vartheta \# trmTail)) \langle t_V \rangle
       ((map\ (vdiff\ \circ \pi_1)\ xfTail)\ \otimes\ trmTail)\ \langle t_V\ (\partial\ x)\rangle\ \mathbf{by}\ simp
       hence ?thesis using * by simp}
     ultimately show ?thesis by blast
  next
    case False
    then have ((map\ (vdiff\ \circ\ \pi_1)\ ((y,\ g)\ \#\ xfTail))\ \otimes\ (\vartheta\ \#\ trmTail))\ \langle t_V\ (\partial\ x)\rangle
= t_V (\partial x)
   using substList-cross-vdiff-on-non-ocurring-var by(metis(no-types, lifting) List.map.compositionality)
    thus ?thesis by simp
  qed
qed
lemma eqIn Vars-impl-eqIn Trms:
assumes term Vars Hyp:trm Vars \eta \subseteq (UNIV - varDiffs)
and initHyp: \forall x. \ x \notin varDiffs \longrightarrow b \ x = a \ x
shows (\llbracket \eta \rrbracket_t) a = (\llbracket \eta \rrbracket_t) b
using assms by (induction \eta, simp-all)
\mathbf{lemma}\ non\text{-}empty\text{-}funList\text{-}implies\text{-}non\text{-}empty\text{-}trmList\text{:}
shows \forall list.(x,f) \in set list \land map \ \pi_2 \ list = map \ tval \ tList \longrightarrow (\exists \ \vartheta.(\llbracket \vartheta \rrbracket_t) = f
\wedge \vartheta \in set \ tList)
\mathbf{by}(induction\ tList,\ auto)
lemma dInvForTrms-prelim:
\mathbf{assumes}\ \mathit{substHyp} \colon
\forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff\ \circ \pi_1)\ xfList) \otimes uInput)\ \langle \partial_t\ \eta \rangle \rrbracket_t)\ st = 0
and termVarsHyp:trmVars \eta \subseteq (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
shows (\llbracket \eta \rrbracket_t) a = 0 \longrightarrow (\forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow (\llbracket \eta \rrbracket_t) \ c =
```

```
\theta
proof(clarify)
fix c assume aHyp:(\llbracket \eta \rrbracket_t) a = 0 and cHyp:(a, c) \in ODEsystem xfList with G
from this obtain t::real and F::real \Rightarrow real store
where tcHyp:t\geq 0 \land F \ t = c \land solvesStoreIVP \ F \ xfList \ a \land (\forall r \in \{0..t\}. \ G \ (F \ r))
using guarDiffEqtn-def by auto
then have \forall x. \ x \notin varDiffs \longrightarrow F \ \theta \ x = a \ x \ using \ solves-store-ivpD(6) by blast
from this have (\llbracket \eta \rrbracket_t) a = (\llbracket \eta \rrbracket_t) (F \ \theta) using termVarsHyp\ eqInVars-impl-eqInTrms
hence obs1:(\llbracket \eta \rrbracket_t) (F \theta) = \theta using aHyp tcHyp by simp
from tcHyp have obs2: \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has-vector-derivative
(\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r)) \ (at \ r \ within \ \{0..t\}) \ using \ derivation Lemma \ term Vars Hyp \ by \ blast
have \forall r \in \{0..t\}. \forall xf \in set xfList. F r (\partial (\pi_1 xf)) = \pi_2 xf (F r)
using tcHyp\ solves-store-ivpD(3) by fastforce
hence \forall r \in \{0..t\}. (\llbracket \partial_t \ \eta \rrbracket_t) (F \ r) = (\llbracket ((map \ (vdiff \circ \pi_1) \ xfList) \otimes uInput) \ \langle \partial_t \ \eta \rrbracket_t)
\eta \rangle |_t \rangle (F r)
using tcHyp diff-subst-prprty-4terms termVarsHyp listsHyp by fastforce
also from substHyp have \forall r \in \{0..t\}. ([((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \langle \partial_t \rangle \}
\eta \rangle |_t \rangle (F r) = 0
using solves-store-ivpD(2) tcHyp by fastforce
ultimately have \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has-vector-derivative 0) (at r)
within \{0..t\})
using obs2 by auto
from this and tcHyp have \forall s \in \{0..t\}. ((\lambda x. (\llbracket \eta \rrbracket_t) (F x)) has-derivative (\lambda x. x)
*_R \theta))
(at s within \{0..t\}) by (metis has-vector-derivative-def)
hence ([\![\eta]\!]_t)(Ft) - ([\![\eta]\!]_t)(F0) = (\lambda x. \ x *_R 0)(t-0)
using mvt-very-simple and tcHyp by fastforce
then show (\llbracket \eta \rrbracket_t) c = \theta using obs1 tcHyp by auto
qed
theorem dInvForTrms:
assumes \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff\ \circ \pi_1)\ xfList) \otimes uInput)\ \langle \partial_t\ \eta \rangle \rrbracket_t)\ st = 0
and termVarsHyp:trmVars \eta \subset (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
and eta-f:f = (\llbracket \eta \rrbracket_t)
shows PRE (\lambda s. fs = 0) (ODEsystem xfList with G) POST (\lambda s. fs = 0)
using eta-f proof(clarsimp)
\mathbf{fix} \ a \ b
assume (a, b) \in [\lambda s. (\llbracket \eta \rrbracket_t) \ s = \theta] and f = (\llbracket \eta \rrbracket_t)
from this have aHyp: a = b \land (\llbracket \eta \rrbracket_t) \ a = 0 by (metis (full-types) \ d-p2r \ rdom-p2r-contents)
have (\llbracket \eta \rrbracket_t) a = 0 \longrightarrow (\forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow (\llbracket \eta \rrbracket_t) \ c =
using assms dInvForTrms-prelim by metis
from this and a Hyp have \forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow (\llbracket \eta \rrbracket_t) \ c
= 0 by blast
thus (a, b) \in wp \ (ODEsystem \ xfList \ with \ G \ ) \ [\lambda s. ([\![\eta]\!]_t) \ s = 0]
```

```
using aHyp by (simp add: boxProgrPred-chrctrztn)
qed
lemma diff-subst-prprty-4props:
assumes solves: \forall xf \in set xfList. F t (\partial (\pi_1 xf)) = \pi_2 xf (F t)
and tHyp:t \geq 0
and listsHyp:map \pi_2 xfList = map tval uInput
and prop VarsHyp:prop Vars \varphi \subseteq (UNIV - varDiffs)
shows (\llbracket \partial_P \varphi \rrbracket_P) (F t) = (\llbracket ((map \ (vdiff \circ \pi_1) \ xfList) \otimes uInput) \upharpoonright \partial_P \varphi \upharpoonright \rrbracket_P) (F t)
using prop VarsHyp apply(induction \varphi, simp-all)
using assms diff-subst-prprty-4terms apply fastforce
using assms diff-subst-prprty-4terms apply fastforce
using assms diff-subst-prprty-4terms by fastforce
lemma dInvForProps-prelim:
assumes substHyp:
\forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff\ \circ \pi_1)\ xfList) \otimes uInput)\ \langle \partial_t\ \eta \rangle \rrbracket_t)\ st \geq 0
and termVarsHyp:trmVars \eta \subseteq (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
shows (\llbracket \eta \rrbracket_t) a > 0 \longrightarrow (\forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow (\llbracket \eta \rrbracket_t) \ c >
\theta
and (\llbracket \eta \rrbracket_t) a \geq 0 \longrightarrow (\forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow (\llbracket \eta \rrbracket_t) \ c \geq 0)
proof(clarify)
fix c assume aHyp:(\llbracket \eta \rrbracket_t) a > 0 and cHyp:(a, c) \in ODEsystem xfList with G
from this obtain t::real and F::real \Rightarrow real store
where tcHyp:t\geq 0 \land F \ t = c \land solvesStoreIVP \ F \ xfList \ a \land (\forall r \in \{0..t\}. \ G \ (F \ r))
using guarDiffEqtn-def by auto
then have \forall x. \ x \notin varDiffs \longrightarrow F \ 0 \ x = a \ x \ using \ solves-store-ivpD(6) by blast
from this have (\llbracket \eta \rrbracket_t) a = (\llbracket \eta \rrbracket_t) (F \ \theta) using termVarsHyp\ eqInVars-impl-eqInTrms
hence obs1:(\llbracket \eta \rrbracket_t) \ (F \ \theta) > \theta using aHyp \ tcHyp by simp
from tcHyp have obs2: \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has-vector-derivative
(\llbracket \partial_t \ \eta \rrbracket_t) \ (Fr)) \ (at \ r \ within \ \{0..t\}) using derivationLemma termVarsHyp by blast
have (\forall t \geq 0. \ \forall \ xf \in set \ xfList. \ F \ t \ (\partial (\pi_1 \ xf)) = \pi_2 \ xf \ (F \ t))
using tcHyp solves-store-ivpD(3) by blast
hence \forall r \in \{0..t\}. (\llbracket \partial_t \ \eta \rrbracket_t) (F \ r) = (\llbracket ((map \ (vdiff \circ \pi_1) \ xfList) \otimes uInput) \ \langle \partial_t 
\eta \rangle |_t) (F r)
using diff-subst-prprty-4terms term VarsHyp tcHyp listsHyp by fastforce
also from substHyp have \forall r \in \{0..t\}. (\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \ (\partial_t x \in \{0..t\})
\eta \rangle |_t) (F r) \geq 0
using solves-store-ivpD(2) tcHyp by (metis atLeastAtMost-iff)
ultimately have *: \forall r \in \{0..t\}. (\llbracket \partial_t \eta \rrbracket_t) (F r) \ge 0 \text{ by } (simp)
from obs2 and tcHyp have \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has-derivative
(\lambda x. \ x *_R ((\llbracket \partial_t \eta \rrbracket_t) (Fr)))) (at \ r \ within \{0..t\}) by (simp \ add: has-vector-derivative-def)
hence \exists r \in \{0..t\}. ([\![\eta]\!]_t) (F t) - ([\![\eta]\!]_t) (F \theta) = t \cdot ([\![(\partial_t \eta)]\!]_t) (F r)
using mvt-very-simple and tcHyp by fastforce
```

```
then obtain r where (\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r) \geq 0 \ \land \ 0 \leq r \land r \leq t \land (\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ t) \geq 0
\wedge (\llbracket \eta \rrbracket_t) (F t) - (\llbracket \eta \rrbracket_t) (F \theta) = t \cdot ((\llbracket \partial_t \eta \rrbracket_t) (F r))
using * tcHyp by (meson atLeastAtMost-iff order-refl)
thus (\llbracket \eta \rrbracket_t) c > 0
using obs1 tcHyp by (metis cancel-comm-monoid-add-class.diff-cancel diff-qe-0-iff-qe
diff-strict-mono linorder-neqE-linordered-idom linordered-field-class.sign-simps(45)
not-le)
next
show 0 \le (\llbracket \eta \rrbracket_t) a \longrightarrow (\forall c. (a, c) \in ODEsystem \ xfList \ with \ G \longrightarrow 0 \le (\llbracket \eta \rrbracket_t) \ c)
\mathbf{proof}(clarify)
fix c assume aHyp:(\llbracket \eta \rrbracket_t) a \geq 0 and cHyp:(a, c) \in ODEsystem xfList with G
from this obtain t::real and F::real \Rightarrow real store
where tcHyp:t\geq 0 \land F t=c \land solvesStoreIVP F xfList a \land (\forall r \in \{0..t\}. G (F r))
using quarDiffEqtn-def by auto
then have \forall x. \ x \notin varDiffs \longrightarrow F \ 0 \ x = a \ x \ using \ solves-store-ivpD(6) by blast
from this have (\llbracket \eta \rrbracket_t) a = (\llbracket \eta \rrbracket_t) (F \ \theta) using termVarsHyp\ eqInVars-impl-eqInTrms
hence obs1:(\llbracket \eta \rrbracket_t) (F \theta) \geq \theta using aHyp tcHyp by simp
from tcHyp have obs2: \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has-vector-derivative
(\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r)) \ (at \ r \ within \ \{0..t\}) \ using \ derivation Lemma \ term Vars Hyp \ by \ blast
have (\forall t \ge 0. \ \forall \ xf \in set \ xfList. \ F \ t \ (\partial \ (\pi_1 \ xf)) = \pi_2 \ xf \ (F \ t))
using tcHyp solves-store-ivpD(3) by blast
from this and tcHyp have \forall r \in \{0..t\}. ([\![\partial_t \eta]\!]_t) (F r) =
(\llbracket ((map\ (vdiff\ \circ \pi_1)\ xfList) \otimes uInput)\ \langle \partial_t\ \eta \rangle \rrbracket_t)\ (F\ r)
using diff-subst-prprty-4terms term VarsHyp listsHyp by fastforce
also from substHyp have \forall r \in \{0..t\}. (\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \ \langle \partial_t \rangle
\eta \rangle |_t \rangle (F r) \geq 0
using solves-store-ivpD(2) tcHyp by (metis atLeastAtMost-iff)
ultimately have *: \forall r \in \{0..t\}. ([\![\partial_t \ \eta]\!]_t) (F \ r) \geq 0 by (simp)
from obs2 and tcHyp have \forall r \in \{0..t\}. ((\lambda s. (\[\[\[\]\]\]\]\) has-derivative
(\lambda x. \ x *_R (([\![\partial_t \eta]\!]_t) (Fr)))) (at \ r \ within \{0..t\})  by (simp \ add: has-vector-derivative-def)
hence \exists r \in \{0..t\}. ([\![\eta]\!]_t) (F t) - ([\![\eta]\!]_t) (F \theta) = t \cdot (([\![\partial_t \eta]\!]_t) (F r))
using mvt-very-simple and tcHyp by fastforce
then obtain r where (\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r) \geq 0 \ \land \ 0 \leq r \land r \leq t \land (\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ t) \geq 0
\wedge ([\![\eta]\!]_t) (F t) - ([\![\eta]\!]_t) (F \theta) = t \cdot (([\![\partial_t \eta]\!]_t) (F r))
using * tcHyp by (meson atLeastAtMost-iff order-refl)
thus (\llbracket \eta \rrbracket_t) c \geq 0
\textbf{using} \ obs1 \ tcHyp \ \textbf{by} \ (met is \ cancel-comm-monoid-add-class.diff-cancel \ diff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff
diff-strict-mono linorder-neqE-linordered-idom linordered-field-class.siqn-simps(45)
not-le)
qed
qed
lemma less-pval-to-tval:
assumes (\llbracket ((map\ (vdiff\ \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P\ (\vartheta \prec \eta) \upharpoonright \rrbracket_P) st
```

```
shows (\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \langle \partial_t\ (\eta \oplus (\ominus \vartheta)) \rangle \rrbracket_t) \ st \geq 0
using assms by (auto)
lemma leq-pval-to-tval:
assumes (\llbracket ((map\ (vdiff\ \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P\ (\vartheta \leq \eta) \upharpoonright \rrbracket_P) st
shows (\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \langle \partial_t\ (\eta \oplus (\ominus \vartheta)) \rangle \rrbracket_t) \ st \geq 0
using assms by (auto)
lemma dInv-prelim:
assumes substHyp: \forall st. \ G \ st \longrightarrow \ (\forall \ str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) =
\theta) \longrightarrow
(\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P \varphi \upharpoonright \rrbracket_P) \ st
and prop VarsHyp:prop Vars \varphi \subseteq (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
\mathbf{shows}\ (\llbracket \varphi \rrbracket_P)\ a \longrightarrow (\forall\ c.\ (a,c) \in (\mathit{ODEsystem}\ \mathit{xfList}\ \mathit{with}\ G) \longrightarrow (\llbracket \varphi \rrbracket_P)\ c)
proof(clarify)
fix c assume aHyp:(\llbracket \varphi \rrbracket_P) a and cHyp:(a, c) \in ODEsystem xfList with G
from this obtain t::real and F::real \Rightarrow real store
where tcHyp:t\geq 0 \land F \ t=c \land solvesStoreIVP \ F \ xfList \ a \ using \ guarDiffEqtn-def
by auto
from aHyp prop VarsHyp and substHyp show (\llbracket \varphi \rrbracket_P) c
\mathbf{proof}(induction \ \varphi)
case (Eq \vartheta \eta)
hence hyp: \forall st. \ G \ st \longrightarrow \ (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P\ (\vartheta \doteq \eta) \upharpoonright \rrbracket_P) \ st \ \mathbf{by} \ blast
then have \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList))) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \langle \partial_t\ (\vartheta \oplus (\ominus \eta)) \rangle \rrbracket_t) \ st = \theta \ by \ simp
also have trmVars (\vartheta \oplus (\ominus \eta)) \subseteq UNIV - varDiffs using Eq.prems(2) by simp
moreover have (\llbracket \vartheta \oplus (\ominus \eta) \rrbracket_t) a = \theta using Eq.prems(1) by simp
ultimately have (\forall c. (a, c) \in ODEsystem \ xfList \ with \ G \longrightarrow (\llbracket \vartheta \oplus (\ominus \eta) \rrbracket_t) \ c
= 0
using dInvForTrms-prelim listsHyp by blast
hence (\llbracket \vartheta \oplus (\ominus \eta) \rrbracket_t) (F t) = \theta using tcHyp \ cHyp by simp
from this have (\llbracket \vartheta \rrbracket_t) (F t) = (\llbracket \eta \rrbracket_t) (F t) by simp
also have (\llbracket \vartheta \doteq \eta \rrbracket_P) c = ((\llbracket \vartheta \rrbracket_t) (F t) = (\llbracket \eta \rrbracket_t) (F t)) using tcHyp by simp
ultimately show ?case by simp
\mathbf{next}
case (Less \vartheta \eta)
hence \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = \theta) \longrightarrow
0 \leq (\llbracket (map \ (vdiff \circ \pi_1) \ xfList \otimes uInput) \langle \partial_t \ (\eta \oplus (\ominus \vartheta)) \rangle \rrbracket_t) \ st
using less-pval-to-tval by metis
also from Less.prems(2)have trmVars\ (\eta \oplus (\ominus \vartheta)) \subseteq UNIV - varDiffs\ by\ simp
moreover have (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) a > \theta using Less.prems(1) by simp
ultimately have (\forall c. (a, c) \in ODEsystem \ xfList \ with \ G \longrightarrow (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) \ c
using dInvForProps-prelim(1) listsHyp by blast
hence (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) (F t) > \theta using tcHyp \ cHyp by simp
from this have (\llbracket \eta \rrbracket_t) (F t) > (\llbracket \vartheta \rrbracket_t) (F t) by simp
also have (\llbracket \vartheta \prec \eta \rrbracket_P) c = ((\llbracket \vartheta \rrbracket_t) (F t) < (\llbracket \eta \rrbracket_t) (F t)) using tcHyp by simp
```

```
ultimately show ?case by simp
next
case (Leq \vartheta \eta)
hence \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = \theta) \longrightarrow
0 \leq (\llbracket (map \ (vdiff \circ \pi_1) \ xfList \otimes uInput) \langle \partial_t \ (\eta \oplus (\ominus \vartheta)) \rangle \rrbracket_t) \ st \ using \ leq-pval-to-tval
also from Leq.prems(2) have trmVars\ (\eta \oplus (\ominus \vartheta)) \subseteq UNIV - varDiffs\ by\ simp
moreover have (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) a \geq \theta using Leg.prems(1) by simp
ultimately have (\forall c. (a, c) \in ODEsystem \ xfList \ with \ G \longrightarrow (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) \ c
using dInvForProps-prelim(2) listsHyp by blast
hence (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) (F t) \geq \theta using tcHyp \ cHyp by simp
from this have ((\llbracket \eta \rrbracket_t) \ (F \ t) \ge (\llbracket \vartheta \rrbracket_t) \ (F \ t)) by simp
also have (\llbracket \vartheta \preceq \eta \rrbracket_P) c = ((\llbracket \vartheta \rrbracket_t) (F t) \leq (\llbracket \eta \rrbracket_t) (F t)) using tcHyp by simp
ultimately show ?case by simp
next
case (And \varphi 1 \varphi 2)
then show ?case by (simp)
next
case (Or \varphi 1 \varphi 2)
from this show ?case by auto
qed
qed
theorem dInv:
assumes \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P \varphi \upharpoonright \rrbracket_P) \ st
and termVarsHyp:propVars \varphi \subseteq (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
and phi-p:P = (\llbracket \varphi \rrbracket_P)
shows PRE\ P\ (ODE system\ xfList\ with\ G)\ POST\ P
proof(clarsimp)
\mathbf{fix} \ a \ b
assume (a, b) \in [P]
from this have aHyp:a = b \land P a by (metis (full-types) d-p2r rdom-p2r-contents)
have P \ a \longrightarrow (\forall \ c. \ (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow P \ c)
using assms dInv-prelim by metis
from this and a Hyp have \forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow Pc by
blast
thus (a, b) \in wp \ (ODEsystem \ xfList \ with \ G) \ [P]
using aHyp by (simp add: boxProgrPred-chrctrztn)
qed
theorem dInvFinal:
assumes \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff\ \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P \varphi \upharpoonright \rrbracket_P)\ st
and termVarsHyp:propVars \varphi \subseteq (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
and impls: [P] \subseteq [F] \land [F] \subseteq [Q]
```

```
and phi-f:F = (\llbracket \varphi \rrbracket_P)

shows PRE\ P\ (ODEsystem\ xfList\ with\ G)\ POST\ Q

apply(rule\text{-}tac\ C = (\llbracket \varphi \rrbracket_P) in dCut)

apply(subgoal\text{-}tac\ \lceil F \rceil \subseteq wp\ (ODEsystem\ xfList\ with\ G)\ \lceil F \rceil,\ simp)

using impls and phi-f apply blast

apply(subgoal\text{-}tac\ PRE\ F\ (ODEsystem\ xfList\ with\ G)\ POST\ F,\ simp)

apply(rule\text{-}tac\ \varphi = \varphi and uInput = uInput\ in\ dInv)

prefer 5 apply(subgoal\text{-}tac\ PRE\ P\ (ODEsystem\ xfList\ with\ (\lambda s.\ G\ s\ \wedge\ F\ s))

POST\ Q,\ simp\ add:\ phi-f)

apply(rule\ dWeakening)

using impls\ apply\ simp

using assms\ by\ simp\text{-}all

end

theory VC\text{-}diffKAD\text{-}examples

imports VC\text{-}diffKAD
```

begin

1.5 Rules Testing

In this section we test the recently developed rules with simple dynamical systems.

```
— Example of hybrid program verified with the rule dSolve and a single differential equation: x' = v.
```

```
lemma motion-with-constant-velocity: PRE\ (\lambda\ s.\ s''y'' < s\ ''x''\ \land\ s''v'' > 0) \\ (ODE system\ [(''x'',(\lambda\ s.\ s\ ''v''))]\ with\ (\lambda\ s.\ True)) \\ POST\ (\lambda\ s.\ (s\ ''y'' < s\ ''x'')) \\ \text{apply}(rule-tac\ uInput=[\lambda\ t\ s.\ s\ ''v''\cdot t\ +\ s\ ''x'']\ \textbf{in}\ dSolve-toSolveUBC)} \\ \text{prefer}\ 9\ \textbf{subgoal}\ \textbf{by}(simp\ add:\ wp-trafo\ vdiff-def\ add-strict-increasing2)} \\ \text{apply}(simp-all\ add:\ vdiff-def\ varDiffs-def)} \\ \text{prefer}\ 2\ \text{apply}(clarify,\ rule\ continuous-intros)} \\ \text{prefer}\ 2\ \text{apply}(simp\ add:\ solvesStoreIVP-def\ vdiff-def\ varDiffs-def)} \\ \text{apply}(clarify,\ rule-tac\ f'1=\lambda\ x.\ s\ ''v''\ \textbf{and}\ g'1=\lambda\ x.\ 0\ \textbf{in}\ derivative-intros(173))} \\ \text{apply}(rule-tac\ f'1=\lambda\ x.\ 0\ \textbf{and}\ g'1=\lambda\ x.\ 1\ \textbf{in}\ derivative-intros(176))} \\ \text{by}(auto\ intro:\ derivative-intros)} \\
```

Same hybrid program verified with dSolve and the system of ODEs: x' = v, v' = a. The uniqueness part of the proof requires a preliminary lemma.

```
lemma flow-vel-is-galilean-vel:
```

```
assumes solHyp:\varphi_s solvesTheStoreIVP\ [(x, \lambda s.\ s.\ v),\ (v, \lambda s.\ s.\ a)] withInitState\ s. and tHyp:r \le t and rHyp:0 \le r and distinct:x \ne v \land v \ne a \land x \ne a \land a \notin varDiffs shows \varphi_s\ r\ v = s\ a \cdot r + s\ v proof—from assms have 1:((\lambda t.\ \varphi_s\ t\ v)\ solves-ode\ (\lambda t\ r.\ \varphi_s\ t\ a))\ \{0..t\}\ UNIV\ \land \varphi_s\ 0\ v = s\ v
```

```
by (simp add: solvesStoreIVP-def)
from assms have obs: \forall r \in \{0..t\}. \varphi_s r a = s a
  by(auto simp: solvesStoreIVP-def varDiffs-def)
have 2:((\lambda t. \ s \ a \cdot t + s \ v) \ solves-ode \ (\lambda t \ r. \ \varphi_s \ t \ a)) \ \{0..t\} \ UNIV
  unfolding solves-ode-def apply(subgoal-tac ((\lambda x. \ s \ a \cdot x + s \ v)) has-vderiv-on
(\lambda x. s a) \{0..t\}
  using obs apply (simp add: has-vderiv-on-def) by(rule galilean-transform)
have 3:unique-on-bounded-closed \theta \{0..t\} (s v) (\lambda t r. \varphi_s t a) UNIV (if t = \theta then
1 else 1/(t+1)
   apply(simp add: ubc-definitions del: comp-apply, rule conjI)
   using rHyp \ tHyp \ obs \ apply(simp-all \ del: comp-apply)
  apply(clarify, rule continuous-intros) prefer 3 apply safe
  apply(rule continuous-intros)
  apply(auto intro: continuous-intros)
  by (metis continuous-on-const continuous-on-eq)
thus \varphi_s r v = s a \cdot r + s v
  apply(rule-tac\ unique-on-bounded-closed.unique-solution[of\ 0\ \{0..t\}\ s\ v
   (\lambda t \ r. \ \varphi_s \ t \ a) \ UNIV \ (if \ t = 0 \ then \ 1 \ else \ 1 \ / \ (t + 1)) \ (\lambda t. \ \varphi_s \ t \ v)])
   using rHyp \ tHyp \ 1 \ 2 and 3 \ by \ auto
qed
lemma motion-with-constant-acceleration:
      PRE (\lambda s. s "y" < s "x" \land s "v" \ge 0 \land s "a" > 0)
      (ODE system \ [("x",(\lambda s. s "v")),("v",(\lambda s. s "a"))] \ with \ (\lambda s. \ True))
      POST (\lambda s. (s "y" < s "x"))
\mathbf{apply}(\textit{rule-tac uInput} = [\lambda \ t \ s. \ s \ "a" \cdot t \ \hat{\ } 2/2 \ + \ s \ "v" \cdot t \ + \ s \ "x",
  \lambda \ t \ s. \ s \ ''a'' \cdot t + s \ ''v'' in dSolve-toSolve UBC)
prefer 9 subgoal by(simp add: wp-trafo vdiff-def add-strict-increasing2)
prefer \theta subgoal
   apply(simp\ add:\ vdiff-def,\ clarify,\ rule\ conjI)
   \mathbf{by}(rule\ galilean-transform)+
prefer \theta subgoal
   apply(simp add: vdiff-def, safe)
   apply(rule continuous-intros)
   by(auto intro: continuous-intros)
prefer \theta subgoal
   apply(simp add: vdiff-def, safe)
   subgoal for s \varphi_s t r apply(rule flow-vel-is-galilean-vel[of \varphi_s "x" - - - - t])
     by(simp-all add: varDiffs-def vdiff-def)
   apply(simp add: solvesStoreIVP-def vdiff-def varDiffs-def) done
by(auto simp: varDiffs-def vdiff-def)
Example of a hybrid system with two modes verified with the equality dS.
We also need to provide a previous (similar) lemma.
lemma flow-vel-is-galilean-vel2:
assumes solHyp:\varphi_s solvesTheStoreIVP [(x, \lambda s. s. v), (v, \lambda s. - s. a)] withInitState
   and tHyp:r \leq t and rHyp:0 \leq r and distinct:x \neq v \land v \neq a \land x \neq a \land a \notin s
```

varDiffs

```
shows \varphi_s r v = s v - s a \cdot r
proof-
from assms have 1:((\lambda t. \varphi_s t v) solves-ode (\lambda t r. - \varphi_s t a)) {0..t} UNIV \wedge \varphi_s
0 \ v = s \ v
 by (simp add: solvesStoreIVP-def)
from assms have obs: \forall r \in \{0..t\}. \varphi_s \ r \ a = s \ a
  by(auto simp: solvesStoreIVP-def varDiffs-def)
have 2:((\lambda t. - s \ a \cdot t + s \ v) \ solves-ode \ (\lambda t \ r. - \varphi_s \ t \ a)) \ \{0..t\} \ UNIV
 unfolding solves-ode-def apply(subgoal-tac ((\lambda x. - s \ a \cdot x + s \ v) has-vderiv-on
(\lambda x. - s \ a)) \{\theta..t\}
  using obs apply (simp add: has-vderiv-on-def) by(rule galilean-transform)
have 3:unique-on-bounded-closed 0 \{0..t\} (s\ v) (\lambda t\ r. - \varphi_s\ t\ a) UNIV (if\ t=0)
then 1 else 1/(t+1)
   apply(simp add: ubc-definitions del: comp-apply, rule conjI)
   using rHyp tHyp obs apply(simp-all\ del:\ comp-apply)
  apply(clarify, rule continuous-intros) prefer 3 apply safe
  apply(rule continuous-intros)
  apply(auto intro: continuous-intros)
  by (metis continuous-on-const continuous-on-eq)
thus \varphi_s r v = s v - s a \cdot r
   apply(rule-tac\ unique-on-bounded-closed.unique-solution[of\ 0\ \{0..t\}\ s\ v
  (\lambda t \ r. - \varphi_s \ t \ a) \ UNIV \ (if \ t = 0 \ then \ 1 \ else \ 1 \ / \ (t + 1)) \ (\lambda t. \ \varphi_s \ t \ v)])
   using rHyp \ tHyp \ 1 \ 2 and 3 \ by \ auto
qed
lemma single-hop-ball:
     PRE(\lambda s. 0 \le s "x" \land s "x" = H \land s "v" = 0 \land s "q" > 0 \land 1 \ge c \land c
\geq 0
     (((ODEsystem \ [(''x'', \lambda \ s. \ s \ ''v''), (''v'', \lambda \ s. - s \ ''g'')] \ with \ (\lambda \ s. \ 0 \le s \ ''x'')));
     (IF (\lambda s. s "x" = 0) THEN ("v" := (\lambda s. - c \cdot s "v")) ELSE ("v" := (\lambda s. - c \cdot s "v"))
s. s "v") FI)
     POST (\lambda's. 0 \le s "x" \wedge s "x" \le H) apply(simp, subst dS[of [\lambda t s. - s "g" \cdot t \hat{} 2/2 + s "v" \cdot t + s "x", \lambda t
s. - s "g" \cdot t + s "v"])
      — Given solution is actually a solution.
    apply(simp add: vdiff-def varDiffs-def solvesStoreIVP-def solves-ode-def has-vderiv-on-singleton,
safe)
     apply(rule galilean-transform-eq, simp)+
     apply(rule\ galilean-transform)+
       — Uniqueness of the flow.
     apply(rule ubcStoreUniqueSol, simp)
     apply(simp add: vdiff-def del: comp-apply)
     apply(auto intro: continuous-intros del: comp-apply)[1]
     apply(rule\ continuous-intros)+
     apply(simp add: vdiff-def, safe)
     apply(clarsimp) subgoal for s X t \tau
     apply(rule\ flow-vel-is-galilean-vel2[of\ X\ ''x''])
     by(simp-all add: varDiffs-def vdiff-def)
     apply(simp add: vdiff-def varDiffs-def solvesStoreIVP-def)
```

```
apply(simp add: vdiff-def varDiffs-def solvesStoreIVP-def solves-ode-def
        has-vderiv-on-singleton galilean-transform-eq galilean-transform)
      — Relation Between the guard and the postcondition.
      by(auto simp: vdiff-def p2r-def)
— Example of hybrid program verified with differential weakening.
\mathbf{lemma}\ system\text{-}where\text{-}the\text{-}guard\text{-}implies\text{-}the\text{-}postcondition}:
      PRE(\lambda s. s''x'' = 0)
      (ODEsystem [("x",(\lambda's. s "x" + 1))] with (\lambda s. s "x" \geq 0))
      POST \ (\lambda \ s. \ s \ "x" \ge 0)
using dWeakening by blast
\mathbf{lemma}\ system\text{-}where\text{-}the\text{-}guard\text{-}implies\text{-}the\text{-}postcondition2:}
      PRE (\lambda s. s''x'' = 0)
      (ODE system [("x",(\lambda s. s "x" + 1))] with (\lambda s. s "x" \ge 0))
      POST (\lambda s. s''x'' > 0)
apply(clarify, simp add: p2r-def)
apply(simp add: rel-ad-def rel-antidomain-kleene-algebra.addual.ars-r-def)
apply(simp add: rel-antidomain-kleene-algebra.fbox-def)
apply(simp add: relcomp-def rel-ad-def guarDiffEqtn-def solvesStoreIVP-def)
by auto
— Example of system proved with a differential invariant.
lemma circular-motion:
      PRE \ (\lambda \ s. \ (s \ ''x'') \cdot (s \ ''x'') + (s \ ''y'') \cdot (s \ ''y'') - (s \ ''r'') \cdot (s \ ''r'') = 0)
      (ODE system [("x", (\lambda s. s "y")), ("y", (\lambda s. - s "x"))] with G)
      POST(\lambda \ s. \ (s \ "x") \cdot (s \ "x") + (s \ "y") \cdot (s \ "y") - (s \ "r") \cdot (s \ "r") = 0)
\mathbf{apply}(\textit{rule-tac}\ \eta = (t_V \ ''x'') \odot (t_V \ ''x'') \oplus (t_V \ ''y'') \odot (t_V \ ''y'') \oplus (\ominus (t_V \ ''r'') \odot (t_V \ ''y'')))
 and uInput=[t_V "y", \ominus (t_V "x")] in dInvForTrms)
apply(simp-all add: vdiff-def varDiffs-def)
apply(clarsimp, erule-tac x=''r'' in allE)
by simp
— Example of systems proved with differential invariants, cuts and weakenings.
declare d-p2r [simp del]
\mathbf{lemma}\ motion\text{-}with\text{-}constant\text{-}velocity\text{-}and\text{-}invariants:
      PRE (\lambda s. s''x'' > s''y'' \wedge s''v'' > 0)
      (ODE system [("x", \lambda s. s. "v")] with (\lambda s. True))
      POST (\lambda s. s "x" > s "y")
\mathbf{apply}(\textit{rule-tac } C = \lambda \textit{ s. } \textit{s "v"} > 0 \textit{ in } \textit{dCut})
apply(rule-tac \varphi = (t_C \ \theta) \prec (t_V \ ''v'') and uInput = [t_V \ ''v'']in dInvFinal)
apply(simp-all\ add:\ vdiff-def\ varDiffs-def,\ clarify,\ erule-tac\ x="v"\ in\ all E,\ simp)
apply(rule-tac C = \lambda \ s. \ s \ ''x'' > s \ ''y'' in dCut)
apply(rule-tac \varphi=(t_V "y") \prec (t_V "x") and uInput=[t_V "v"] and
 F = \lambda \ s. \ s \ "x" > s \ "y" \ in \ dInvFinal)
apply(simp-all\ add:\ vdiff-def\ varDiffs-def,\ clarify,\ erule-tac\ x="y"\ in\ all E,\ simp)
using dWeakening by simp
```

```
\textbf{lemma} \ \textit{motion-with-constant-acceleration-and-invariants}:
      PRE (\lambda s. s "y" < s "x" \land s "v" \ge 0 \land s "a" > 0)
      (ODE system [("x", (\lambda s. s "v")), ("v", (\lambda s. s "a"))] with (\lambda s. True))
      POST (\lambda s. (s "y" < s "x"))
\mathbf{apply}(\mathit{rule-tac}\ C = \lambda\ s.\ s\ ''a'' > 0\ \mathbf{in}\ \mathit{dCut})
\mathbf{apply}(\mathit{rule-tac}\ \varphi = (t_C\ \theta) \prec (t_V\ ''a'')\ \mathbf{and}\ \mathit{uInput} = [t_V\ ''v'',\ t_V\ ''a''] \mathbf{in}\ \mathit{dInvFinal})
apply(simp-all\ add:\ vdiff-def\ varDiffs-def,\ clarify,\ erule-tac\ x=''a''\ in\ all E,\ simp)
apply(rule-tac C = \lambda \ s. \ s''v'' \ge 0 \ \text{in} \ dCut)
apply(rule-tac \varphi = (t_C \ \theta) \leq (t_V \ "v") and uInput=[t_V \ "v", t_V \ "a"] in dInvFi-
apply(simp-all add: vdiff-def varDiffs-def)
\mathbf{apply}(\mathit{rule-tac}\ C = \lambda\ s.\ s\ ''x'' > \ s\ ''y''\ \mathbf{in}\ dCut)
apply(rule-tac \varphi = (t_V "y") \prec (t_V "x") and uInput = [t_V "v", t_V "a"]in dInv-
apply(simp-all\ add:\ varDiffs-def\ vdiff-def,\ clarify,\ erule-tac\ x="y"\ in\ all E,\ simp)
using dWeakening by simp
— We revisit the two modes example from before, and prove it with invariants.
{f lemma}\ single-hop-ball-and-invariants:
      PRE(\lambda s. 0 \le s "x" \land s "x" = H \land s "v" = 0 \land s "g" > 0 \land 1 \ge c \land c
      (((ODEsystem [("x", \lambda s. s"v"), ("v", \lambda s. - s"g")] with (\lambda s. 0 \le s "x")));
      (IF (\lambda s. s "x" = 0) THEN ("v" := (\lambda s. - c \cdot s "v")) ELSE ("v" := (\lambda s. - c \cdot s "v"))
s. s "v") FI)
      POST \ (\lambda \ s. \ 0 \le s \ ''x'' \land s \ ''x'' \le H)
      apply(simp add: d-p2r, subgoal-tac rdom \lceil \lambda s. \ 0 \le s \ ''x'' \land s \ ''x'' = H \land s
"v" = 0 \land 0 < s "g" \land c \le 1 \land 0 \le c
    \subseteq wp \ (ODEsystem \ [("x", \lambda s. \ s "v"), ("v", \lambda s. - s "g")] \ with \ (\lambda s. \ 0 \le s "x")
         [inf (sup (-(\lambda s. s "x" = 0)) (\lambda s. 0 \le s "x" \wedge s "x" \le H)) (sup (\lambda s. s = 0))
''x'' = 0 (\lambda s. \ 0 < s \ ''x'' \land s \ ''x'' < H))])
      apply(simp add: d-p2r, rule-tac C = \lambda \ s. \ s \ ''g'' > \theta \ in \ dCut)
       apply(rule-tac \varphi = (t_C \ \theta) \prec (t_V \ ''g'') and uInput = [t_V \ ''v'', \ominus t_V \ ''g'']in
dInvFinal)
      apply(simp-all add: vdiff-def varDiffs-def, clarify, erule-tac x=''g'' in all E,
      \operatorname{apply}(rule\text{-}tac\ C = \lambda\ s.\ s\ ''v'' \leq 0\ \operatorname{in}\ dCut)
      apply(rule-tac \varphi = (t_V "v") \preceq (t_C \ \theta) and uInput = [t_V "v", \ominus t_V "g"] in
dInvFinal)
      apply(simp-all add: vdiff-def varDiffs-def)
      \mathbf{apply}(\mathit{rule-tac}\ C = \lambda\ s.\ s\ ''x'' \le\ H\ \mathbf{in}\ dCut)
      apply(rule-tac \varphi = (t_V "x") \leq (t_C H) and uInput = [t_V "v", \ominus t_V "g"]in
dInvFinal)
      apply(simp-all add: varDiffs-def vdiff-def)
      using dWeakening by simp
declare d-p2r [simp]
```

 \mathbf{end}