# ARITHMETIC Chapter 14





MINIMO COMUN MULTIPLO





### **MOTIVATING STRATEGY**

¿En que actividades o situaciones observas la aplicación del mínimo común múltiplo?

¿En algunas de tus actividades diarias aplicas el MCM?

### **HELICO THEORY**



### CONCEPTO

Dado un conjunto de números enteros positivos, su MCM es aquel número que cumple dos condiciones.

Es múltiplo común de dichos números.

Es el menor posible.



Sean los números 8 y 12

| #  | Múltiplos $Z^+$                                  |
|----|--------------------------------------------------|
| 8  | 8; 16; 24; 32; 40, 48;                           |
| 12 | 8; 16; 24; 32; 40; 48;<br>12; 24; 36; 48; 90; 72 |

### Múltiplos comunes de 8 y 12

24) 48; 72; 96;120 ...

MCM(8; 12) =



### MÉTODOS PARA DETERMINAR EL



### Por descomposición canónica



El MCM es igual al producto de exponentes posibles.

sus factores primos comunes y no comunes elevados a los mayores

### Dados los números A, B y C

Si 
$$A = 2^{4} \times 3 \times 5^{2}$$
  
 $B = 2^{2} \times 3^{4} \times 5^{3} \times 7^{2}$   
 $C = 2^{3} \times 3^{5} \times 5^{2} \times 7$ 

$$MCM(A,B,C) = 2^4 \times 3^5 \times 5^3 \times 7^2$$



3

### PROPIEDADES



### Dados A y B ∈ Z+ se cumple que :

\* Si A = B (múltiplo de B)

$$MCM(A, B) = A$$

Si A y B son PESI

$$MCM(A, B) = A x$$
B

\* Si MCM(A, B) = m,

$$m = A\alpha = B\beta$$

Donde  $\alpha$  y  $\beta$  son PESI



Dados A, B, C y D  $\in$  Z+

MCM(A, B, C, D) = MCM[MCM(A, C), MCM(B, D)]

= MCM[MCM(A, B), MCM(C, D)]



Si MCM(A, B, C) = m, entonces

$$MCM(An, Bn, Cn) = mn$$

$$MCM\left(\frac{A}{n}; \frac{B}{n}; \frac{C}{n}\right) = \frac{m}{n}$$
 ;  $n \in \mathbb{Z}+$ 

ত ব





### Calcule el MCM de 1200; 400; 600 y 2400.

$$\implies$$
 *MCM*(1200; 400; 600; 2400) =  $2^5 \times 3 \times 5^2$ 

### = 2400

### Resolución:

### Descomposición simultanea

$$1200 - 400 - 600 - 2400$$
  $100 = 2^2 \times 5^2$   $12 - 4 - 6 - 24$   $2$   $2$   $3 - 1 - 2 - 6 2 3 - 1 - 3 3  $1 - 1 - 1 - 1$$ 

$$100 = 2^2 \times 5^2$$

### observacion:

También se puede aplicar propiedad al ser 2400 múltiplo de los otros números.

RPTA:





El MCM de dos números consecutivos es 1640. Calcule la suma de los números.

### Resolución

## Dos números consecutivos son PESI, por lo tanto:

$$MCM(A; A + 1) = 1640$$

$$A \times (A + 1) = 1640$$

$$A \times (A + 1) = 40 \times 41$$

$$A = 40$$
  $(A + 1) = 41$ 

### La suma de los números

$$..$$
 40 + 41 = 81



81





Juan agrupa las manzanas que tiene de 7 en 7, de 4 en 4 y de 5 en 5 y siempre le sobran 3 manzanas. ¿Cuántas manzanas como mínimo tiene?

### Resolución:

Manzanas 
$$\begin{cases} = \overset{\circ}{7} + 3 \\ = \overset{\circ}{5} + 3 \\ = \overset{\circ}{4} + 3 \end{cases}$$

$$MCM(\mathring{7}; \mathring{4}; \mathring{5}) = 7 \times 4 \times 5$$

$$= 140$$

Sea M El Numero De Manzanas

$$M = \frac{\circ}{140} + 3$$

$$M = 140K + 3$$

$$M = 140(1) + 3 = 143$$

RPTA: 143



Si 
$$A = 2^4 \times 3^5 \times 5^2$$
  
 $B = 2^3 \times 3^4 \times 5^3 \times 7^2$   
 $C = 2^2 \times 3^3 \times 5^2 \times 7$   
¿cuántos divisores tiene  
el MCM de A, B y C?

$$CD(_{MCM(A,B,C)}) = (4 + 1)(5 + 1)(3 + 1)(2 + 1)$$
$$= 5 \times 6 \times 4 \times 3$$

= 360

### Resolución:

Aplicamos el método de descomposición canónica:

$$MCM(A, B, C) = 2^{4} \times 3^{5} \times 5^{3} \times 7^{2}$$

Nos piden : CD ( MCM(A,B,C) )







Si MCM(20k, 12k, 10k) = 4200, calcule  $k^2 + 1$ .

MCM(20k, 12k, 10k) = 4200

### Resolución:

### Descomposición simultanea

$$20k - 12k - 10k$$
 k  $20 - 12 - 10$  2  $2 - 60k$  5  $- 3 - 5 3$  5  $- 1 - 5$  5

### Piden:

$$k^2 + 1 = 70^2 + 1$$
  
= 4901

60k = 4200



6

Dos números son entre sí como 7 es a 11. Si la suma del MCM con el MCD de ellos es 4836, halle el número mayor. Resolución:

$$A = 7K$$

$$B = 11K$$

$$MCD = ?$$

$$7k - 11k$$
 k 7 pesi

$$\longrightarrow$$
 MCD $(7k, 11k) = K$ 

$$7k - 11k$$
 k
 $7 - 11$   $7_{11}$ 
 $1 - 11$ 

MCM = ?

$$MCM(7k, 11k) = 77K$$
  
 $MCD(7K, 11k) + MCM(7K, 11K) = 4836$ 

$$K$$
 +

$$77K = 4836$$

$$K = 62$$

NUMERO MAYOR: 
$$11K = 682$$

RPTA:

682



7

Rubén vive en la residencial San Felipe y desea enlosar el patio cuadrado de su casa con losetas de 20 cm de ancho y 28 cm de largo. ¿Cuántas losetas como mínimo necesitará

L = MCM (20cm; 28cm)

L = 140cm

Piden:

### Rubén? Resolución :



N°
Losetas
mínimo

CANT. LOSETAS HORIZONTAL

CANT.

X LOSETAS

VERTICAL

$$= \frac{140}{20} \times \frac{140}{28}$$

RPTA:





Se dispone de ladrillos de dimensiones 10 cm; 12 cm y 18 cm. ¿Cuántos ladrillos necesitamos para formar el menor cubo compacto posible?

### Resolución:



$$L = MCM (10cm;12cm;18cm)$$

$$L = 180cm$$

### Piden:

N° Ladrillos 
$$=\frac{180}{10} \times \frac{180}{12} \times \frac{180}{18}$$

$$=$$
 18 × 15 × 10

