Univariate Polynomials (Linear Algebra 2)

PACS numbers:

I. POLYNOMIALS OVER A FIELD

A. Basics and factorization over $\mathbb C$ and $\mathbb R$

Let $(\mathbb{F},\cdot,+)$ be a field. Most of this course we will work over infinite fields (indeed we will restrict mostly to $\mathbb{F} = \mathbb{R}, \mathbb{C}, \mathbb{Q}$). When working over infinite fields we can identify a polynomial with the polynomial function i.e. both contains the same information, which leads to the definition¹

Definition. A polynomial with coefficients in \mathbb{F} is a function $p: \mathbb{F} \to \mathbb{F}$ of the form

$$p(x) = \sum_{i=0}^{n} a_i x^i \qquad a_i \in \mathbb{F} \text{ for all } i$$
 (1)

we denote the set of all polynomial with coefficients in \mathbb{F} as $\mathbb{F}[x]$ and we define the degree $(\deg(p))$ of p as $n \in \mathbb{Z}_{\geq 0} \cup \{-\infty\}$ where n is the highest integer such that $a_n \neq 0$ and $\deg(p = 0) = -\infty$. We call then a polynomial monic if $a_n = 1$. Polynomials are entirely determined by its coefficients and so two polynomials being equal, means their coefficients are equal. We can define the following operations on polynomials:

- Addition: $(p+g)(x) = \sum_{i=0}^{\max(\deg(p),\deg(g))} (a_i + b_i)x^i$
- Product: $(p \cdot g)(x) = \sum_{i=0}^{\deg(p) + \deg(g)} \left(\sum_{j=0}^{i} a_i b_{j-i}\right) x^i$

one can the show that $(\mathbb{F}[x],\cdot,+)$ forms a commutative ring.

Theorem(division theorem). Let $p, d \in \mathbb{F}[x]$ with $d \neq 0$, then there exist a unique pair $q, r \in \mathbb{F}[x]$ such that

- p = qd + r
- $\deg(r) < \deg(d)$

Theorem (remainder theorem). Let $p \in \mathbb{F}[x]$ and $c \in \mathbb{F}$, then the remainder of dividing p by (x-c) is p(c).

Proposition. Let $p, g \in \mathbb{F}[x]$ then

- If c_1, \ldots, c_k are distinct roots of p, then $\prod_{i=1}^k (x-c_i)|p$.
- Let $n \in \mathbb{Z}_{>1}$, then if $\deg(p) = n$, p has at most n distinct roots.
- Let $n \in \mathbb{Z}_{\geq 1}$, and $\deg(p) \leq n$ and $\deg(g) \leq n$. If $p(x_i) = g(x_i)$ for $i = 1, \ldots, n+1$ with x_1, \ldots, x_{n+1} all distinct, then p = g.

Theorem(fundamental theorem of algebra). Let $p \in \mathbb{C}[x]$ with $\deg(p) \geq 1$, then p as at least one complex root.

Important consequences of this theorem are the following:

¹ The identification between a polynomial and a polynomial function is not 1-1 when working, for example, over finite fields. However, we will not go into details about finite fields, so identifying polynomial with its polynomial function is fine for us. See S.Lang *Undergraduate Algebra*, Chapter IV for a detailed explanation of the difference between these, if you are interested.

Theorem(factorization of a polynomial over \mathbb{C}). Let $p \in \mathbb{C}[x]$ with $\deg(p) \geq 1$, then p as a unique factorization (up to ordering of the factors) of the form:

$$p(x) = c \prod_{i=1}^{n} (x - \lambda_i) \qquad c, \lambda_1, \dots, \lambda_n \in \mathbb{C}$$
 (2)

Theorem(factorization of a polynomial over \mathbb{R}). Let $p \in \mathbb{R}[x]$ with $\deg(p) \geq 1$, then p as a unique factorization (up to ordering of the factors) of the form:

$$p(x) = c \left(\prod_{i=1}^{n} (x - \lambda_i) \right) \prod_{j=1}^{m} (x^2 + b_j x + c_j) \qquad c, \lambda_1, \dots, \lambda_n, b_1, \dots, b_m, c_1, \dots, c_m \in \mathbb{R}$$
 (3)

with $b_j^2 < 4c_j$ for all j.

B. Irreducibility and gcd

We can extend various properties of integers to commutative rings with no zero divisors such as $(\mathbb{F}[x],\cdot,+)$.

<u>Definition</u>. The **greatest common divisor** (gcd) between two nonzero polynomials $p, g \in \mathbb{F}[x]$ is a polynomial h = gcd(p, g) satisfying:

- h|p and h|g.
- For all $f \in \mathbb{F}[x]$ that divides p and q then f|h.

Note that, in this form, h = gcd(p, g) is only defined up to multiplication by a nonzero constant. One can alternatively add an extra requirement to h, we can require that is monic, then is unique.

<u>Definition.</u> $p \in \mathbb{F}[x]$ is said to be **irreducible over** \mathbb{F} if it cannot be written as f = hg with $h, g \in \mathbb{F}[x]$ nonconstant polynomials (i.e., the degree of h and g must be at least 1).

Note how important is to specify over which field we define irreducibility over. For example $x^2 + 1$ is irreducible over \mathbb{R} but reducible over \mathbb{C} .

Theorem(factorization of a polynomial over any field \mathbb{F}). Let $p \in \mathbb{F}[x]$ with $\deg(p) \geq 1$, then p as a unique factorization (up to ordering of the factors) of the form:

$$p(x) = c \prod_{i=1}^{m} p_i \tag{4}$$

where p_i , i = 1, ..., m are monic polynomials, irreducibles over \mathbb{F} .

This theorem is valid over any field \mathbb{F} , finite or infinite. When all nonconstant polynomials in $\mathbb{F}[x]$ have at least one root in \mathbb{F} ,, we say that \mathbb{F} is algebraically closed. We have only studied one algebraically closed field, namely \mathbb{C} . We can also write (4) as $p(x) = c \prod_{i=1}^k p_i^{m_i}$ with p_1, \ldots, p_k distinct, then m_i is called the multiplicity of p_i in p. So, if \mathbb{F} is algebraically closed, then all irreducibles are of degree 1 i.e. $p_i = x - \lambda_i$ and then m_i is called the multiplicity of the root λ_i (if m_i , is said to be a simple root and a multiple root otherwise).

C. Polynomials over $\mathbb Q$ or $\mathbb Z$

 \mathbb{Q} is a field, but note that \mathbb{Z} is not, yet is an integral domain. We call a polynomial $p \in \mathbb{Z}[x]$ **primitive** if all its coefficients are relatively prime (for example, if such p is monic, then is primitive). Note then, any $f \in \mathbb{Q}[x]$ can be multiplied by a constant $c \in \mathbb{Q}$ such that $cf \in \mathbb{Z}[x]$ and cf is primitive.

Lemma(Gauss). If $p, g \in \mathbb{Z}[x]$ are primitive, then so is pg.

Theorem(Gauss). Let $p \in \mathbb{Z}[x]$ be a primitive, nonconstant polynomial. Then, if p is reducible over \mathbb{Q} , then is reducible over \mathbb{Z} .

Corollary. Let $p \in \mathbb{Z}[x]$ be a primitive, nonconstant polynomial. Then, if p is irreducible over \mathbb{Z} , then is irreducible over \mathbb{Q} .

Note in this theorem and its corollary, the importance of specifying over which field we are stating irreducibility.

Theorem(Eisenstein's criteron). Consider a nonconstant polynomial $f \in \mathbb{Z}[x]$ of degree n,

$$f(x) = \sum_{i=1}^{n} a_i x^i \tag{5}$$

and suppose there exist a prime p such that

$$p \mid a_i \text{ for } i = 0, \dots, n-1 \qquad p \nmid a_n \qquad p^2 \nmid a_0$$
 (6)

then f is irreducible over \mathbb{Q} .

<u>Definition</u>. $a \in \mathbb{C}$ is called an **algebraic number** if a is the root of a polynomial with rational coefficients i.e. $\exists \ p \in \mathbb{Q}[x]$ such that p(a) = 0.

Proposition. For every algebraic number a, there exist a unique monic polynomial $p \in \mathbb{Q}[x]$ of lowest degree such that p(a) = 0. p is called the minimal polynomial of a. Moreover every polynomial $g \in \mathbb{Q}[x]$ satisfying g(a) = 0, is divisible by p and p is irreducible over \mathbb{Q} .