Заключение

В настоящей диссертации исследуются фотон-нейтринные процессы в присутствии сильного магнитного поля и плазмы.

В диссертации представлены следующие результаты

- 1. Рассмотрен, в рамках стандартной модели, процесс нейтринного рождения лептонной пары $(\nu \to \nu \ell_1 \bar{\ell}_2)$ во внешнем электромагнитном поле. Получено сравнительно простое выражение для вероятности процесса, справедливое при произвольных значениях динамического параметра и удобное для численного анализа. Проанализированы возможные астрофизические приложения рассмотренного процесса.
- 2. Проведен общий анализ амплитуды n-вершинного однопетлевого процесса в сильном магнитном поле и рассмотрены фотон-нейтринные процессы γγ → νν̄ (в рамках модели с нарушенной лево правой симметрией) и γγ → νν̄ (в рамках стандартной модели). Показано, что различные типы эффективного нейтрино-электронного взаимо-действия ведут к различным зависимостям амплитуды от напряженности поля. В частности, при нечетном числе вершин и эффективной скалярной ννее-связи, которая существует в расширении стандартной модели с нарушенной лево-правой симметрией, амплитуда усиливается внешним магнитным полем, тогда как для четного числа вершин такое усиление наблюдается только в случае эффективной псевдоскалярной, векторной или аксиальной связи. Показано, что все типы амплитуд можно выразить через элементарные функции. Получены общие выражения для амплитуд процессов γγ → νν̄ и γγ → νν̄ γ, справедливые при произвольных энергиях фотонов.

В предельном случае больших энергий фотонов вычислено сечение процесса $\gamma\gamma \to \nu\bar{\nu}\gamma$. Получены оценки для нейтринной светимости фотонного газа в пределе малых и больших температур. Показано, что, в зависимости от температуры и величины магнитного поля, вклады в нейтринную светимость за счет рассматриваемых процессов могут как доминировать, так и оказаться подавленными по сравнению с вкладом процесса $\gamma\gamma \to \nu\bar{\nu}$, полученным в рамках стандартной модели.

3. Вычислена амплитуда процесса расщепления фотона $\gamma \to \gamma \gamma$ в сильно замагниченной плазме, проанализирована его кинематика и найдены правила отбора по поляризациям. Для разрешенных каналов расщепления вычислены соответствующие вероятности с учетом дисперсии и перенормировки волновых функций фотонов. Полученные результаты показывают, что присутствие плазмы, с одной стороны, существенным образом изменяет правила отбора по поляризациям по сравнению со случаем чистого магнитного поля. В частности, становится возможным новый канал расщепления $\gamma_2 \to \gamma_1 \gamma_1$, запрещенный в отсутствие плазмы. С другой стороны, горячая плазма оказывает подавляющее влияние на каналы $\gamma_1 \to \gamma_1 \gamma_2$ и $\gamma_1 \to \gamma_2 \gamma_2$. Тем не менее, холодная зарядово-симметричная плазма в сочетании с сильным магнитным полем способна усилить вероятность расщепления по этим каналам по сравнению с чистым магнитным полем.

Основные результаты диссертации опубликованы в работах [31, 32, 102-107,120]

Автор выражает глубокую благодарность научному руководителю Александру Васильевичу Кузнецову за постоянное внимание к работе, обсуждение полученных результатов, советы и помощь, оказанные ему при выполнении диссертации. Автору приятно поблагодарить Н.В. Михеева, М.В. Чистякова, А.А. Гвоздева, А.Я. Пархоменко, Е.Н. Нарынскую и И.С. Огнева за поддержку. Автор благодарит также проф. В.А. Рубакова за полезные обсуждения.

Список литературы

- [1] Raffelt G.G. Stars as Laboratories for Fundamental Physics. Chicago: University of Chicago Press, 1996. 664 p.
- [2] Хлопов М.Ю. Основы космомикрофизики. М.: Едиториал УРСС, 2004. 368 с.
- [3] Клапдор-Клайнгротхаус Г.В., Цюбер К. Астрофизика элементарных частиц. М.: Редакция журнала "Успехи физических наук", 2000. 496 с.
- [4] Kouveliotou C., Strohmayer T., Hurley K. et al. Discovery of a magnetar associated with the Soft Gamma Repeater SGR 1900+14 // Astrophys. J. 1999. V. 510. No. 2. P. L115-L118.
- [5] Hurley K., Cline T., Mazets E. et al. A giant, periodic flare from the soft gamma repeater SGR1900+14 // Nature 1999. V. 397. P. 41-43.
- [6] Kouveliotou C., Dieters S., Strohmayer T. et al. An X-ray pulsar with a superstrong magnetic field in the soft γ -ray repeater SGR1806 20 //Nature. 1998. V. 393. P.235-237.
- [7] Kouveliotou C., Strohmayer T., Hurley K. et al. Discovery of a magnetar associated with the soft gamma repeater SGR 1900+14 Astrophys. J. Lett. 1999. V. 510. P. L115-L118.
- [8] Kouveliotou C., Tennant A., Woods P.M. et al. Multiwavelength observations of the soft gamma repeater SGR 1900+14 during its 2001 april activation Astrophys. J. Lett. 2001. V. 558. P. L47-L50.

- [9] Israel G.L., Belloni T., Stella L. et al. Discovery of rapid X-ray oscillations in the tail of the SGR 1806-20 hyperflare. Preprint astroph/0505255.
- [10] Бисноватый-Коган Г.С. Взрыв вращающейся звезды как механизм сверхновой // Астрон. журн. 1970. Т. 47. С. 813.
- [11] Duncan R.C., Thompson C. Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts // Astrophys. J. 1992. V. 392. No. 1. P. L9-L13.
- [12] Bocquet P., Bonazzola S., Gourgoulhon E., Novak J. Rotating neutron star models with magnetic field // Astron. Astrophys. 1995. V. 301. No. 9. P. 757-775.
- [13] Cardall C.Y., Prakash M., Lattimer J.M. Effects of strong magnetic fields on neutron star structure // Astrophys. J. 2001. V. 554. No. 1. P. 322-339.
- [14] Vachaspati T. Magnetic fields from cosmological phase transitions // Phys. Lett. 1991. V. B265. No. 3,4. P. 258-261.
- [15] Ambjørn J., Olesen P. Electroweak magnetism, W-codensation and anti-screening // In: Proc. of 4th Hellenic School on Elementary Particle Physics, Corfu, 1992 (preprint hep-ph/9304220).
- [16] Grasso D., Rubinstein H.R. Magnetic fields in the early Universe // Phys. Rep. 2001. V. 348. No. 3. P. 163-266.

- [17] В. И. Ритус, в сб. Квантовая электродинамика явлений в интенсивном поле, Труды ФИАН СССР, 111 (Наука, Москва, 1979), с. 5; А. И. Никишов, там же, с. 152.
- [18] Скобелев В.В. Поляризационный оператор фотона в сверхсильном магнитном поле // Изв. вузов. Физика. 1975. № 10. С. 142-143.
- [19] Loskutov Yu.M., Skobelev V.V. Nonlinear electrodynamics in a superstrong magnetic field // Phys. Lett. 1976. V. A56. No. 3. P. 151-152.
- [20] Скобелев В.В. Фотогенерация нейтрино и аксионов на при стимулирующем влиянии сильного магнитного поля // ЖЭТФ. 2001. Т. 120. № 4. С. 786-796.
- [21] Gvozdev A.A., Mikheev N.V., Vassilevskaya L.A. The radiative decay of a massive neutrino in the external electromagnetic fields // Phys. Rev. 1996. V. D54. No. 9. P. 5674-5685.
- [22] Mikheev N.V., Parkhomenko A.Ya., Vassilevskaya L.A. Axion in an external electromagnetic field // Phys. Rev. 1999. V. D60. No. 3. P. 035001 (1-11).
- [23] Байер В.Н., Катков В.М. Рождение пары нейтрино при движении электрона в магнитном поле // ДАН СССР. 1966. Т. 171. № 2.
 С. 313-316.
- [24] Чобан Э.А., Иванов А.Н. Рождение лептонных пар высокоэнергетическими нейтрино в поле сильной электромагнитной волны // ЖЭТФ. 1969. Т. 56. № 1. С. 194-200.

- [25] Борисов А.В., Жуковский В.Ч., Лысов Б.А. Рождение электрон позитронной пары нейтрино в магнитном поле // Изв. вузов. Физика. 1983. № 8. С. 30-34.
- [26] Книжников М.Ю., Татаринцев А.В. Рождение электрон позитронной пары нейтрино в постоянном внешнем поле // Вестн. МГУ. Физ., астрон. 1984. Т. 25. № 3. С. 26-30.
- [27] Borisov A.V., Ternov A.I., Zhukovsky V.Ch. Electron-positron pair production by a neutrino in an external electromagnetic field // Phys. Lett. 1993. V. B318. No. 3. P. 489-491.
- [28] Kuznetsov A.V., Mikheev N.V. Neutrino energy and momentum loss through the process $\nu \to \nu e^- e^+$ in a strong magnetic field // Phys. Lett. 1997. V. B394. No. 1,2. P. 123-126.
- [29] Кузнецов А.В., Михеев Н.В. Нейтринное рождение электрон-позитронных пар в магнитном поле // ЯФ. 1997. Т. 60. № 11. С. 2038-2047.
- [30] Борисов А.В., Заморин Н.Б. Рождение электрон позитронной пары в распаде массивного нейтрино в постоянном внешнем поле // ЯФ. 1999. Т. 62. № 9. С. 1647-1656.
- [31] Kuznetsov A.V., Mikheev N.V., Rumyantsev D.A. Lepton pair production by high-energy neutrino in an external electromagnetic field // Mod. Phys. Lett. 2000. V. A15. No. 8. P. 573-578.
- [32] Кузнецов А.В., Михеев Н.В., Румянцев Д.А. Нейтринное рождение лептонных пар во внешнем электромагнитном поле // ЯФ. 2002.
 Т. 65. № 2. С. 303-306.

- [33] Баталин И.А., Шабад А.Е. Функция Грина фотона в постоянном однородном электромагнитном поле общего вида. // ЖЭТФ. 1971.
 Т. 60. № 3. С. 894-900.
- [34] Tsai W.-Y. Vacuum polarization in homogeneous magnetic fields // Phys. Rev. 1974. V. D10. No. 8. P. 2699-2702.
- [35] Shabad A.E. Photon dispersion in a strong magnetic field // Ann. Phys. (N.Y.). 1975. V. 90. No. 1. P. 166-195.
- [36] Шабад А.Е. Поляризация вакуума и квантового релятивистского газа во внешнем поле // Тр. ФИАН СССР "Поляризационные эффекты во внешних калибровочных полях". М.: Наука, 1988. Т. 192. С. 5-152.
- [37] Гальцов Д.В., Никитина Н.С. Фотонейтринные процессы в сильном поле // ЖЭТФ. 1972. Т. 62. № 6. С. 2008-2012.
- [38] Скобелев В.В. О реакциях $\gamma \to \nu \bar{\nu}$ и $\nu \to \gamma \nu$ в сильном магнитном поле // ЖЭТФ. 1976. Т. 71. № 4. С. 1263-1267.
- [39] DeRaad Jr. L.L., Milton K.A., Hari Dass N.D. Photon decay into neutrinos in a strong magnetic field // Phys. Rev. 1976. V. D14. No. 12. P. 3326-3334.
- [40] Gvozdev A.A., Mikheev N.V., Vassilevskaya L.A. The magnetic catalysis of the radiative decay of a massive neutrino in the standard model with lepton mixing // Phys. Lett. 1992. V. B289. No. 1,2. P. 103-108.

- [41] Василевская Л.А., Гвоздев А.А., Михеев Н.В. Распад массивного нейтрино $\nu_i \to \nu_j \gamma$ в скрещенном поле // Ядер. физ. 1994. Т. 57. N 1. С. 124-127.
- [42] Скобелев В.В. Распад массивного нейтрино в сильном магнитном поле // ЖЭТФ. 1995. Т. 108. № 1. С. 3-13.
- [43] Zhukovsky V.Ch., Eminov P.A., Grigoruk A.E. Radiative decay of a massive neutrino in the Weinberg - Salam model with mixing in a constant uniform magnetic field // Mod. Phys. Lett. 1996. V. A11. No. 39-40. P. 3119-3126.
- [44] D'Olivo J.C., Nieves J.F., Pal P.B. Cherenkov radiation by massless neutrinos // Phys. Lett. 1996. V. B365. No. 1-4. P. 178-184.
- [45] Ioannisian A.N., Raffelt G.G. Cherenkov radiation by massless neutrinos in a magnetic field // Phys. Rev. 1997. V. D55. No. 11. P. 7038-7043.
- [46] Gvozdev A.A., Mikheev N.V., Vassilevskaya L.A. Resonance neutrino bremsstrahlung $\nu \to \nu \gamma$ in a strong magnetic field // Phys. Lett. 1997. V. B410. No. 2-4. P. 211-215.
- [47] Kuznetsov A.V., Mikheev N.V., Vassilevskaya L.A. Photon splitting $\gamma \to \nu \bar{\nu}$ in an external magnetic field // Phys. Lett. 1998. V. B427. No. 1,2. P. 105-108.
- [48] Василевская Л.А., Кузнецов А.В., Михеев Н.В. Индуцированное магнитным полем нейтрино-фотонное ννγ-взаимодействие // ЯФ. 1999. Т. 62. № 4. С. 715-722.

- [49] Gell-Mann M. The reaction $\gamma\gamma\to\nu\bar{\nu}$ // Phys. Rev. Lett. 1961. V. 6. No. 2. P. 70-71.
- [50] Crewther R.J., Finjord J., Minkowski P. The annihilation process $\nu\bar{\nu} \rightarrow \gamma\gamma$ with massive neutrino in cosmology // Nucl. Phys. 1982. V. B207. No. 2. P. 269-287.
- [51] Dodelson S., Feinberg G. Neutrino two-photon vertex // Phys. Rev. 1991. V. D43. No. 3. P. 913-920.
- [52] Levine M.J. The process $\gamma + \gamma \rightarrow \nu + \bar{\nu}$ // Nuovo Cim. 1967. V. A48. No. 1. P. 67-71.
- [53] Dicus D.A. Stellar energy-loss rates in a convergent theory of weak and electromagnetic interactions // Phys. Rev. 1972. V. D6. No. 4. P. 941-949.
- [54] Dicus D.A., Repko W.W. Photon neutrino scattering // Phys. Rev. 1993. V. D48. No. 11. P. 5106-5108.
- [55] Rosenberg L. Electromagnetic interactions of neutrinos // Phys. Rev. 1963. V. 129. No. 6. P. 2786-2788.
- [56] Cung V.K., Yoshimura M. Electromagnetic interaction of neutrinos in gauge theories of weak interactions // Nuovo Cim. 1975. V. A29. No. 4. P. 557-564.
- [57] Kuznetsov A.V., Mikheev N.V. Compton-like interaction of massive neutrinos with virtual photons // Phys. Lett. 1993. V. B299. No. 3-4. P. 367-369.

- [58] Кузнецов А.В., Михеев Н.В. Амплитуда процесса ν_iγ* → ν_jγ* с виртуальными фотонами и тормозное излучение при рассеянии нейтрино в кулоновском поле ядра // ЯФ. 1993. Т. 56. № 6. С. 108-114.
- [59] Liu J. Low-energy neutrino-two-photon interactions // Phys. Rev. 1991. V. D44. No. 9. P. 2879-2891.
- [60] Shaisultanov R. Photon neutrino interactions in magnetic fields // Phys. Rev. Lett. 1998. V. 80. No. 8. P. 1586-1587.
- [61] Chyi T.K., Hwang C.-W., Kao W.F. et al. Neutrino photon scattering and its crossed processes in a background magnetic field // Phys. Lett. 1999. V. B466. No. 2-4. P. 274-280.
- [62] Chyi T.K., Hwang C.-W., Kao W.F. et al. The weak-field expansion for processes in a homogeneous background magnetic field // Phys. Rev. 2000. V. D62. No. 10. P. 105014 (1-13).
- [63] Dicus D.A., Repko W.W. Neutrino photon scattering in a magnetic field // Phys. Lett. 2000. V. B482. No. 1-3. P. 141-144.
- [64] Лоскутов Ю.М., Скобелев В.В. Двухфотонное рождение нейтрино в сильном внешнем поле // Вестн. МГУ: физ., астрон. 1981. Т. 22. № 4. С. 10-13.
- [65] Нгуен Ван Хьеу, Шабалин Е.П. О роли процесса $\gamma + \gamma \to \gamma + \nu + \bar{\nu}$ в нейтринном излучении звезд // ЖЭТФ. 1963. Т. 44. № 3. С. 1003-1007.

- [66] Лоскутов Ю.М., Скобелев В.В. Эффективный лагранжиан $A^3(\nu\bar{\nu})$ взаимодействия и процесс $\gamma\gamma\to\gamma(\nu\bar{\nu})$ в двумерном приближении квантовой электродинамики // ТМФ. 1987. Т. 70. № 2. С. 303-308.
- [67] Dicus D.A., Repko W.W. Photon neutrino interactions // Phys. Rev. Lett. 1997. V. 79. No. 4. P. 569-571.
- [68] Harris M., Wang J., Teplitz V.L. Astrophysical effects of $\nu\gamma \to \nu\gamma\gamma$ and its crossed processes. Preprint astro-ph/9707113.
- [69] Abada A., Matias J., Pittau R. Five-leg photon-neutrino interactions // In: Proc. XXIX ICHEP (Vancouver). Preprint hep-ph/9809418.
- [70] Abada A., Matias J., Pittau R. Inelastic photon-neutrino interactions using an effective Lagrangian // Phys. Rev. 1999. V. D59. No. 1. P. 013008 (1-7).
- [71] Abada A., Matias J., Pittau R. Direct computation of inelastic photonneutrino processes in the Standard Model // Nucl. Phys. 1999. V. B543. No. 1-2. P. 255-268.
- [72] Abada A., Matias J., Pittau R. Low-energy photon-neutrino inelastic processes beyond the Standard Model // Phys. Lett. 1999. V. B450. No. 1-3. P. 173-181.
- [73] Dicus D.A., Kao C., Repko W.W. $\gamma\nu \to \gamma\gamma\nu$ and crossed processes at energies below m_W // Phys. Rev. 1999. V. D59. No. 1. P. 013005 (1-6).
- [74] Кузнецов А.В., Михеев Н.В. Фоторождение нейтрино на ядрах в сильном магнитном поле // Письма в ЖЭТФ. 2002. Т. 75. № 9.
 С. 531-534.

- [75] Папанян В.О., Ритус В.И. Трехфотонное взаимодействие в интенсивном поле // Тр. ФИАН СССР "Проблемы квантовой электродинамики интенсивного поля". М.: Наука, 1986. Т. 168. С. 120-140.
- [76] Adler S.L., Schubert C. Photon splitting in a strong magnetic field: recalculation and comparison with previous calculations // Phys. Rev. Lett. 1996. V. 77. No. 9. P. 1695-1698.
- [77] Baier V.N., Milstein A.I., Shaisultanov R.Zh. Photon splitting in a very strong magnetic field // Phys. Rev. Lett. 1996. V. 77. No. 9. P. 1691-1694.
- [78] Байер В.Н., Мильштейн А.И., Шайсултанов Р.Ж. Расщепление фотона в сверхсильном магнитном поле // ЖЭТФ. 1997. Т. 111. № 1.
 С. 52-62.
- [79] Chistyakov M.V., Kuznetsov A.V., Mikheev N.V. Photon splitting above the pair creation threshold in a strong magnetic field // Phys. Lett. 1998. V. B434. No. 1. P. 67-73.
- [80] Кузнецов А.В., Михеев Н.В., Чистяков М.В. Расщепление фотона на два фотона в сильном магнитном поле // ЯФ. 1999. Т. 62. № 9.
 С. 1638-1646.
- [81] Baring M.G. Magnetic photon splitting: The S-matrix formulation in the Landau representation //Phys. Rev. 2000. V. D62. P. 016003 (1-16).
- [82] Weise J.I., Baring M.G., Melrose D.B. Photon splitting in strong magnetic fields: S-matrix calculations //Phys. Rev. 1998. V. D57. P. 5526-5538; Erratum //Phys. Rev. 1999. V. D60. P. 099901 (1-2).

- [83] Wilke C., Wunner G. Photon splitting in strong magnetic fields: asymptotic approximation formulas versus accurate numerical results //Phys. Rev. 1997. V. D55. P. 997-1000.
- [84] Weise J.I. Photon splitting in the electromagnetic vacuum // Phys. Rev. 2004. V. D69. P. 105017 (1-16).
- [85] Chistyakov M.V., Kuznetsov A.V., Mikheev N.V. The transitions $\gamma\gamma \to \nu\bar{\nu}$ and $\gamma \to \gamma\gamma$ in a strong magnetic field // In: Proceedings of the Ringberg Euroconference "New Trends in Neutrino Physics", Ringberg Castle, Tegernsee, Germany, 1998. Edited by B. Kniehl, G. Raffelt and N. Schmitz. World Scientific Publishing Co., 1999. P. 245-254.
- [86] Chistyakov M.V., Kuznetsov A.V., Mikheev N.V. Photon splitting in a strong magnetic field // In: Proceedings of the 10th International Seminar "Quarks-98", Suzdal, Russia, 1998. Edited by F.L. Bezrukov et al. Inst. Nucl. Res., Moscow, 1999. V. 1. P. 299-308.
- [87] Melrose D.B. A relativistic quantum theory for processes in collisionless plasmas //Plasma Phys. 1974. V. 16. P. 845-864.
- [88] Де Ля Инсера В., Феррер Э., Шабад А.Е. Однопетлевые вычисления расщепления фотона в релятивистской квантовой плазме методом функций Грина // Тр. ФИАН СССР. М.: Наука, 1986. Т. 169. С. 183-198.
- [89] Adler S.L. Photon splitting and photon dispersion in a strong magnetic field // Ann. Phys. (N.Y.). 1971. V. 67. No. 2. P. 599-647.
- [90] Bulik T. Photon splitting in strongly magnetized plasma // Acta Astronomica. 1998. V. 48. P. 695-710.

- [91] Elmfors P., Skagerstam B. Thermally induced photon splitting // Phys. Lett. 1998. V. B427. No 1-2. P. 197-205.
- [92] Gies H. QED effective action at finite temperature: Two-loop dominance //Phys. Rev. 2000. V. D61. P. 085021 (1-18).
- [93] Martinez Resco J. M., Valle Basagoiti M. A. Matter-induced vertices for photon splitting in a weakly magnetized plasma // Phys. Rev. 2001. V. D64. P. 016006 (1-6).
- [94] Борисов А.В., Вшивцев А.С., Жуковский В.Ч., Эминов П.А. Фотоны и лептоны во внешних полях при конечных температуре и плотности //УФН. 1997. Т. 167. № 3. С. 241-267.
- [95] Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. М.: Наука, 1979. 528 с.
- [96] Фрадкин Е.С. Метод функций Грина в теории квантованных полей и квантовой статистике // Тр. ФИАН СССР. М.: Наука, 1965. Т. 29. С. 7-138.
- [97] Лифшиц Е.М., Питаевский Л.П. Статистическая физика, ч.2. М.: Наука, 1978. 448 с.
- [98] Берестецкий В.Б., Лифшиц Е.М., Питаевский Л.П. Квантовая электродинамика. М.: Наука, 1989. 728 с.
- [99] Имшенник В.С., Надежин Д.К. Сверхновая 1987А в Большом Магеллановом Облаке: наблюдения и теория // УФН. 1988. Т. 156. № 4. С. 561-651.

- [100] Nadyozhin D.K. Five year anniversary of Supernova 1987A in the Large Magellanic Cloud // In: Particles and Cosmology, Proc. Baksan Int. School, ed. by V.A. Matveev et al. Singapore: World Sci., 1992. P. 153-190.
- [101] Боровков М.Ю., Кузнецов А.В., Михеев Н.В. Однопетлевая амплитуда перехода $j \to f\bar{f} \to j'$ во внешнем электромагнитном поле // ЯФ. 1999. Т. 62. № 9. С. 1714-1722.
- [102] Кузнецов А.В., Михеев Н.В., Румянцев Д.А. Процесс $\gamma\gamma\to\nu\bar{\nu}$ в сильном магнитном поле // ЯФ. 2003. Т. 66. № 2. С. 319-327.
- [103] Кузнецов А.В., Михеев Н.В., Румянцев Д.А. Обобщенная амплитуда *п*-вершинного однопетлевого процесса в сильном магнитном поле // ЯФ. 2004. Т. 67. № 2. С. 324-331.
- [104] Кузнецов А.В., Михеев Н.В., Румянцев Д.А. Превращение фотонной пары в нейтрино в сильном магнитном поле // Актуальные проблемы физики. Выпуск 3: Сборник научных трудов молодых ученых, аспирантов и студентов. Ярославль. Яросл. гос. ун-т. 2001. С.31-36.
- [105] Кузнецов А.В., Михеев Н.В., Румянцев Д.А. Процесс $\gamma\gamma \to \nu\bar{\nu}$ в сильно замагниченной электрон-позитронной плазме // Актуальные проблемы физики. Выпуск 4: Сборник научных трудов молодых ученых, аспирантов и студентов. Ярославль. Яросл. гос. ун-т. 2003. С.28-34.
- [106] Кузнецов А.В., Михеев Н.В., Румянцев Д.А. Обобщенная амплитуда n-вершинного однопетлевого процесса в сильном магнитном

- поле // Исследования по теории элементарных частиц и твердого тела. Выпуск 4: Сборник трудов, посвященный 30-летию кафедры теоретической физики ЯрГУ. Ярославль. Яросл. гос. ун-т. 2003. C.47-54.
- [107] Kuznetsov A.V., Mikheev N.V., Rumyantsev D.A. General amplitude of the *n*-vertex one-loop process in a strong magnetic field. // In: Proceedings of the 12th International Seminar "Quarks'2002", edited by V.A. Matveev, V.A. Rubakov, S.M. Sibiryakov and A.N. Tavkhelidze. Moscow: Institute for Nuclear Research of Russian Academy of Sciences, 2004, P. 192-201.
- [108] Понтекорво Б.М. Универсальное взаимодействие Ферми и астрофизика // ЖЭТФ. 1959. Т. 36. № 5. С. 1615-1616.
- [109] Ландау Л.Д. О моменте системы из двух фотонов // ДАН СССР. 1948. Т. 60. С. 207.
- [110] Yang C.N. Selection rules for the dematerialization of a particle into two photons // Phys. Rev. 1950. V. 77. No. 2. P. 242-245.
- [111] Bég M.A.B., Budny R.V., Mohapatra R.N., Sirlin A. Manifest left-right symmetry and its experimental consequences // Phys. Rev. Lett. 1977. V. 38. No. 22. P. 1252-1255.
- [112] Eidelman S., Hayes K.G., Olive K.A. et al. (Particle Data Group). Review of Particle Physics // Phys. Lett. 2004. V. B592. No. 1-4. P. 1-1109.
- [113] Barbieri R., Mohapatra R.N. Limits on right-handed interactions from SN 1987A observations // Phys. Rev. 1989. V. D39. No. 4. P. 1229-1232.

- [114] Chistyakov M.V., Mikheev N.V. Photon neutrino interactions in strong magnetic field //Mod. Phys. Lett. 2002. V. A17. No. 39. P. 2553-2562.
- [115] Gies H., Shaisultanov R.Zh. Axial vector current in an electromagnetic field and low-energy neutrino-photon interactions. // Phys. Rev. 2000. V. D62. No. 7. P. 073003.
- [116] Harding A.C., Baring M.G., Gonthier P.L. Photon splitting cascades in gamma-ray pulsars and the spectrum of PSR1509-58 // Astrophys. J. 1997. V.476. P.246-260.
- [117] Baring M.G., Harding A.C. Radio-quiet pulsars with ultrastrong magnetic fields // Astrophys. J. Lett. 1998. V.507. P.L55-L58.
- [118] Bialynicka-Birula Z., Bialynicki-Birula I. Nonlinear effects in quantum electrodynamics. Photon propagation and photon splitting in an external field // Phys. Rev. 1970. V. D2. No. 10. P. 2341-2345.
- [119] Папанян В.О., Ритус В.И. Поляризация вакуума и расщепление фотонов в интенсивном поле // ЖЭТФ. 1971. Т. 61. № 6. С. 2231-2241.
- [120] Румянцев Д.А., Чистяков М.В. Расщепление фотона в сильно замагниченной плазме // Лептоны: Юбилейный сборник статей, посвященный 80-летию Э.М. Липманова. Ярославль. Яросл. гос. ун-т. 2004. С.171-179.
- [121] Kuznetsov A.V., Mikheev N.V. Electroweak processes in external electromagnetic fields. New York: Springer-Verlag, 2003.

- [122] Mikheev N.V., Parkhomenko A.Ya., Vassilevskaya L.A. Magnetic-field influence on radiative axion decay into photons of the same polarization //ЯФ. 2000. Т. 63 № 6. С. 1122-1125.
- [123] Schwinger J. On gauge invariance and vacuum polarization // Phys. Rev. 1951. V. 82. No. 5. P. 664-679.
- [124] Tsai W., Erber T. The propagation of photons in homogeneous magnetic fields: index of refraction. //Phys.Rev. 1975. V. D12. P. 1132-1137.
- [125] Melrose D.B., Stoneham R.J. Vacuum polarization and photon propagation in a magnetic field. //Nuovo Cim. 1976. V. A32. P.435-447.
- [126] Светозарова Г.И. Цытович В.Н. О пространственной дисперсии релятивистской плазмы в магнитном поле //Изв. вузов. Радиофизика. 1962. Т.5. № 4. С. 658-670.
- [127] Ахиезер А.И., Берестецкий В.Б. Квантовая электродинамика. М.: Наука, 1981. 432 с.