

Handbuch

HIMax®

X-AO 16 01

Analoges Ausgangsmodul

Alle in diesem Handbuch genannten HIMA Produkte sind mit dem Warenzeichen geschützt. Dies gilt ebenfalls, soweit nicht anders vermerkt, für weitere genannte Hersteller und deren Produkte.

HIQuad®, HIQuad®X, HIMax®, HIMatrix®, SILworX®, XMR®, HICore® und FlexSILon® sind eingetragene Warenzeichen der HIMA Paul Hildebrandt GmbH.

Alle technischen Angaben und Hinweise in diesem Handbuch wurden mit größter Sorgfalt erarbeitet und unter Einschaltung wirksamer Kontrollmaßnahmen zusammengestellt. Bei Fragen bitte direkt an HIMA wenden. Für Anregungen, z. B. welche Informationen noch in das Handbuch aufgenommen werden sollen, ist HIMA dankbar.

Technische Änderungen vorbehalten. Ferner behält sich HIMA vor, Aktualisierungen des schriftlichen Materials ohne vorherige Ankündigungen vorzunehmen.

Alle aktuellen Handbücher können über die E-Mail-Adresse documentation@hima.com angefragt werden.

© Copyright 2020, HIMA Paul Hildebrandt GmbH Alle Rechte vorbehalten.

Kontakt

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl

Tel.: +49 6202 709-0
Fax: +49 6202 709-107
E-Mail: info@hima.com

Revisions-	Änderungen	Art der Änderung		
index		technisch	redaktionell	
5.00	Aktualisierte Ausgabe zu SILworX V5	Х	Х	
10.00	Aktualisierte Ausgabe zu SILworX V10	Х	Х	
10.01	Geändert: Kapitel Register E/A-Submodul AO16_01		Х	
10.02	Geändert: Kapitel Beschaltung nicht benutzter Ausgänge	Х	Х	

X-AO 16 01 Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	5
1.1	Aufbau und Gebrauch des Handbuchs	5
1.2	Zielgruppe	5
1.3	Darstellungskonventionen	6
1.3.1 1.3.2	Sicherheitshinweise Gebrauchshinweise	6 7
2	Sicherheit	8
2.1	Bestimmungsgemäßer Einsatz	8
2.1.1 2.1.2	Umgebungsbedingungen ESD-Schutzmaßnahmen	8 8
2.2	Restrisiken	8
2.3	Sicherheitsvorkehrungen	8
2.4	Notfallinformationen	8
3	Produktbeschreibung	9
3.1	Sicherheitsfunktion	9
3.1.1	Reaktion im Fehlerfall	9
3.2	Lieferumfang	9
3.3	Typenschild	10
3.4	Aufbau	11
3.4.1	Blockschaltbild	11
3.4.2 3.4.3	Anzeige Modul-Statusanzeige	12 14
3.4.4	Systembusanzeige	15
3.4.5	E/A-Anzeige	15
3.5	Produktdaten	16
3.6	Connector Boards	18
3.6.1	Mechanische Codierung von Connector Boards	18
3.6.2 3.6.3	Codierung Connector Boards X-CB 014 0X Connector Boards mit Schraubklemmen	19 20
3.6.4	Klemmenbelegung Mono Connector Board mit Schraubklemmen	21
3.6.5	Klemmenbelegung redundantes Connector Board mit Schraubklemmen	22
3.6.6	Connector Boards mit Kabelstecker	23
3.6.7 3.6.8	Steckerbelegung Mono Connector Board mit Kabelstecker Steckerbelegung redundantes Connector Board mit Kabelstecker	24 25
3.7	Systemkabel X-CA 011	26
3.7.1	Codierung Kabelstecker	27
4	Inbetriebnahme	28
4.1	Montage	28
4.1.1	Beschaltung nicht benutzter Ausgänge	28
4.2	Einbau und Ausbau des Moduls	29
4.2.1 4.2.2	Montage eines Connector Boards Modul einbauen und ausbauen	29 31

HI 801 110 D Rev. 10.02 Seite 3 von 54

Inhaltsverzeichnis X-AO 16 01

4.3	Konfiguration des Moduls in SILworX	33
4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	Register Modul Register E/A-Submodul AO16_01 Register E/A-Submodul AO16_01: Kanäle Beschreibung Submodul-Status [DWORD] Beschreibung Diagnose-Status [DWORD]	34 35 36 37 38
4.4	Anschlussvarianten	39
4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6	Einkanalige Verschaltung Redundante Verschaltung (Serienschaltung) Regelung Anschluss über Field Termination Assembly Verhalten bei HART-Kommunikation Anschluss von Aktoren mit gedämpftem Stromanstieg	39 40 41 42 42 43
5	Betrieb	44
5.1	Bedienung	44
5.2	Diagnose	44
6	Instandhaltung	45
6.1 6.1.1 6.1.2	Instandhaltungsmaßnahmen Wiederholungsprüfung (Proof-Test) Laden weiterentwickelter Betriebssysteme	45 45 45
7	Außerbetriebnahme	46
8	Transport	47
9	Entsorgung	48
	Anhang	49
	Glossar	49
	Abbildungsverzeichnis	50
	Tabellenverzeichnis	51
	Index	52

Seite 4 von 54 HI 801 110 D Rev. 10.02

X-AO 16 01 1 Einleitung

1 Einleitung

Das vorliegende Handbuch beschreibt die technischen Eigenschaften des Moduls und seine Verwendung. Das Handbuch enthält Informationen über die Installation, die Inbetriebnahme und die Konfiguration in SILworX.

1.1 Aufbau und Gebrauch des Handbuchs

Der Inhalt dieses Handbuchs ist Teil der Hardware-Beschreibung des programmierbaren elektronischen Systems HIMax.

Das Handbuch ist in folgende Hauptkapitel gegliedert:

- Einleitung
- Sicherheit
- Produktbeschreibung
- Inbetriebnahme
- Betrieb
- Instandhaltung
- Außerbetriebnahme
- Transport
- Entsorgung

Zusätzlich sind die folgenden Dokumente zu beachten:

Dokument	Inhalt	Dokumenten-Nr.
HIMax Systemhandbuch	Hardware-Beschreibung HIMax System	HI 801 000 D
HIMax Sicherheitshandbuch	Sicherheitsfunktionen des HIMax Systems	HI 801 002 D
HIMax Wartungshandbuch	Beschreibung wichtiger Tätigkeiten zum Betrieb und Wartung	HI 801 170 D
Kommunikationshandbuch	Beschreibung der safe ethernet Kommunikation und der verfügbaren Protokolle	HI 801 100 D
Automation Security Handbuch	Beschreibung von Automation Security Aspekten bei HIMA Systemen	HI 801 372 D
SILworX Erste Schritte Handbuch	Einführung in SILworX	HI 801 102 D
SILworX Online-Hilfe (OLH)	SILworX Bedienung	

Tabelle 1: Zusätzlich geltende Handbücher

Die aktuellen Handbücher können über die E-Mail-Adresse <u>documentation@hima.com</u> angefragt werden. Für registrierte Kunden stehen die Produktdokumentationen im HIMA Extranet als Download zur Verfügung.

1.2 Zielgruppe

Dieses Dokument wendet sich an Planer, Projekteure, Programmierer und Personen, die zur Inbetriebnahme, zur Wartung und zum Betreiben von Automatisierungsanlagen berechtigt sind. Vorausgesetzt werden spezielle Kenntnisse auf dem Gebiet der sicherheitsbezogenen Automatisierungssysteme.

HI 801 110 D Rev. 10.02 Seite 5 von 54

1 Einleitung X-AO 16 01

1.3 Darstellungskonventionen

Zur besseren Lesbarkeit und zur Verdeutlichung gelten in diesem Dokument folgende Schreibweisen:

Fett Hervorhebung wichtiger Textteile.

Bezeichnungen von Schaltflächen, Menüpunkten und Registern im

Programmierwerkzeug, die angeklickt werden können.

Kursiv Parameter und Systemvariablen, Referenzen.

Courier Wörtliche Benutzereingaben.

RUN Bezeichnungen von Betriebszuständen (Großbuchstaben).
Kap. 1.2.3 Querverweise sind Hyperlinks, auch wenn sie nicht besonders

gekennzeichnet sind.

Im elektronischen Dokument (PDF): Wird der Mauszeiger auf einen Hyperlink positioniert, verändert er seine Gestalt. Bei einem Klick springt

das Dokument zur betreffenden Stelle.

Sicherheits- und Gebrauchshinweise sind besonders gekennzeichnet.

1.3.1 Sicherheitshinweise

Um ein möglichst geringes Risiko zu gewährleisten, sind die Sicherheitshinweise unbedingt zu befolgen.

Die Sicherheitshinweise im Dokument sind wie folgt dargestellt.

- Signalwort: Warnung, Vorsicht, Hinweis.
- Art und Quelle des Risikos.
- Folgen bei Nichtbeachtung.
- Vermeidung des Risikos.

Die Bedeutung der Signalworte ist:

- Warnung: Bei Missachtung droht schwere K\u00f6rperverletzung bis Tod.
- Vorsicht: Bei Missachtung droht leichte K\u00f6rperverletzung.
- Hinweis: Bei Missachtung droht Sachschaden.

SIGNALWORT

Art und Quelle des Risikos! Folgen bei Nichtbeachtung. Vermeidung des Risikos.

HINWEIS

Art und Quelle des Schadens! Vermeidung des Schadens.

Seite 6 von 54 HI 801 110 D Rev. 10.02

X-AO 16 01 1 Einleitung

1.3.2 Gebrauchshinweise Zusatzinformationen sind nach folgendem Beispiel aufgebaut: An dieser Stelle steht der Text der Zusatzinformation. Nützliche Tipps und Tricks erscheinen in der Form: TIPP An dieser Stelle steht der Text des Tipps.

HI 801 110 D Rev. 10.02 Seite 7 von 54

2 Sicherheit X-AO 16 01

2 Sicherheit

Sicherheitsinformationen, Hinweise und Anweisungen in diesem Dokument unbedingt lesen. Das Produkt nur unter Beachtung aller Richtlinien und Sicherheitsrichtlinien einsetzen.

Dieses Produkt wird mit SELV oder PELV betrieben. Vom Produkt selbst geht kein Risiko aus. Einsatz im Ex-Bereich nur mit zusätzlichen Maßnahmen erlaubt.

2.1 Bestimmungsgemäßer Einsatz

HIMax Komponenten sind zum Aufbau von sicherheitsbezogenen Steuerungssystemen vorgesehen.

Für den Einsatz der Komponenten im HIMax System sind die nachfolgenden Bedingungen einzuhalten.

2.1.1 Umgebungsbedingungen

Die in diesem Handbuch genannten Umgebungsbedingungen sind beim Betrieb des HIMax Systems einzuhalten. Die Umgebungsbedingungen sind in den Produktdaten aufgelistet.

2.1.2 ESD-Schutzmaßnahmen

Nur Personal, das Kenntnisse über ESD-Schutzmaßnahmen besitzt, darf Änderungen oder Erweiterungen des Systems oder den Austausch von Komponenten durchführen.

HINWEIS

Schäden am HIMax System durch elektrostatische Entladung!

- Für die Arbeiten einen antistatisch gesicherten Arbeitsplatz benutzen und ein Erdungsband tragen.
- Bei Nichtbenutzung Komponente elektrostatisch geschützt aufbewahren, z. B. in der Verpackung.

2.2 Restrisiken

Von einem HIMA System selbst geht kein Risiko aus.

Restrisiken können ausgehen von:

- Fehlern in der Projektierung.
- Fehlern im Anwenderprogramm.
- Fehlern in der Verdrahtung.

2.3 Sicherheitsvorkehrungen

Am Einsatzort geltende Sicherheitsbestimmungen beachten und vorgeschriebene Schutzausrüstung tragen.

2.4 Notfallinformationen

Ein HIMA System ist Teil der Sicherheitstechnik einer Anlage. Der Ausfall einer Steuerung bringt die Anlage in den sicheren Zustand.

Im Notfall ist jeder Eingriff, der die Sicherheitsfunktion des HIMA Systems verhindert, verboten.

Seite 8 von 54 HI 801 110 D Rev. 10.02

3 Produktbeschreibung

Das analoge Ausgangsmodul X-AO 16 01 ist für den Einsatz im programmierbaren elektronischen System (PES) HIMax bestimmt.

Das Modul ist mit 16 analogen Ausgängen mit einem Nennbereich von 4 ... 20 mA ausgestattet.

Bei redundanter Verschaltung von zwei Modulen stehen nur die 8 ungeraden Ausgänge zur Verfügung, siehe Kapitel 3.4.

Die analogen Ausgänge eignen sich zum Anschluss von ohmschen, induktiven und kapazitiven Lasten nach EN 61131-2.

Das Modul ist rückwirkungsfrei. Dies beinhaltet speziell EMV, elektrische Sicherheit, Kommunikation zu X-SB und X-CPU, und das Anwenderprogramm.

Modul und Connector Board sind mechanisch codiert, siehe Kapitel 3.6. Die Codierung schließt den Einbau eines nicht passenden Moduls aus.

Das Modul ist auf allen Steckplätzen im Basisträger einsetzbar, ausgenommen auf den Steckplätzen für die Systembusmodule, näheres im Systemhandbuch HI 801 000 D.

Das Modul ist TÜV zertifiziert für sicherheitsbezogene Anwendungen bis SIL 3 (IEC 61508, IEC 61511, IEC 62061 und EN 50156), sowie Kat. 4 und PL e (EN ISO 13849-1).

Die Zertifikate und die EU-Baumusterprüfbescheinigung befinden sich auf der HIMA Webseite.

3.1 Sicherheitsfunktion

Das Modul gewährleistet die Sicherheitsfunktion durch einen extra Sicherheitsschalter für jedes Kanalpaar, der im Fehlerfall geöffnet wird.

Die Sicherheitsfunktion ist gemäß SIL 3 ausgeführt.

3.1.1 Reaktion im Fehlerfall

Stellt das sicherheitsbezogene Prozessorsystem des Moduls während des Betriebs einen Modulfehler fest, geht das Modul nach maximal 16 ms in den sicheren Zustand und alle Ausgänge werden gemäß dem Ruhestromprinzip energielos geschaltet. Bei einem Kanalfehler werden nur die beiden Kanäle der betroffenen Kanalgruppe abgeschaltet.

Das Modul aktiviert die LED Error auf der Frontplatte.

3.2 Lieferumfang

Das Modul benötigt zum Betrieb ein passendes Connector Board. Bei Verwendung eines Field Termination Assembly (FTA) wird ein Systemkabel benötigt, um das Connector Board mit dem FTA zu verbinden. Die Connector Boards, Systemkabel und FTAs gehören nicht zum Lieferumfang des Moduls.

Die Beschreibung der Connector Boards erfolgt in Kapitel 3.7, die der Systemkabel in Kapitel 3.8. Die FTAs sind in eigenen Handbüchern beschrieben.

HI 801 110 D Rev. 10.02 Seite 9 von 54

3.3 Typenschild

Das Typenschild enthält folgende wichtige Angaben:

- Produktname
- Prüfzeichen
- Barcode (2D-Code oder Strichcode)
- Teilenummer (Part-No.)
- Hardware-Revisionsindex (HW-Rev.)
- Betriebssystem-Revisionsindex (OS-Rev.)
- Versorgungsspannung (Power)
- Ex-Angaben (wenn zutreffend)
- Produktionsjahr (Prod-Year:)

Bild 1: Typenschild exemplarisch

Seite 10 von 54 HI 801 110 D Rev. 10.02

3.4 Aufbau

Das Modul ist mit 16 analogen Stromausgängen (0/4 ... 20 mA) ausgestattet, die paarweise galvanisch von der Versorgungsspannung und den übrigen Kanalpaaren getrennt sind. Der analoge Stromwert wird durch einen D/A-Wandler eingestellt und durch zwei unabhängige interne Messeinrichtungen gemessen und funktional geprüft.

Bei redundanter Verschaltung von zwei Modulen stehen nur die 8 ungeraden Ausgänge (AO1, AO3 ... AO15) zur Verfügung. Die geraden Ausgänge (AO2, AO4 ... AO16) werden nicht genutzt.

Das Modul führt automatisch eine Diagnose auf Leitungsbruch (LB) durch, diese kann im Anwenderprogramm ausgewertet werden, siehe Kapitel 4.3.

Das sicherheitsbezogene 1002-Prozessorsystem des E/A-Moduls steuert und überwacht die E/A-Ebene. Die Daten und Zustände des E/A-Moduls werden über den redundanten Systembus den Prozessormodulen übermittelt. Der Systembus ist aus Gründen der Verfügbarkeit redundant ausgeführt. Die Redundanz ist nur gewährleistet, wenn beide Systembusmodule in den Basisträger gesteckt und in SILworX konfiguriert wurden.

3.4.1 Blockschaltbild

Nachfolgendes Blockschaltbild zeigt die Struktur des Moduls.

Bild 2: Blockschaltbild des Moduls

HI 801 110 D Rev. 10.02 Seite 11 von 54

3.4.2 Anzeige

Nachfolgende Abbildung zeigt die Frontansicht des Moduls mit den LEDs:

Bild 3: Anzeige

Die LEDs zeigen den Betriebszustand des Moduls an.

Seite 12 von 54 HI 801 110 D Rev. 10.02

Die LEDs des Moduls sind in drei Kategorien unterteilt:

- Modul-Statusanzeige (Run, Error, Stop, Init)
- Systembusanzeige (A, B)
- E/A-Anzeige (AO 1 ... 16, Field)

Nach dem Zuschalten der Versorgungsspannung erfolgt immer ein LED-Test, bei dem alle LEDs für mindestens 2 s leuchten. Bei zweifarbigen LEDs erfolgt während des Tests einmalig ein Farbwechsel.

Definition der Blinkfrequenzen

In der folgenden Tabelle sind die Blinkfrequenzen definiert:

Definition	Blinkfrequenz	
Blinken1	Lang (600 ms) an, lang (600 ms) aus.	
Blinken2	Kurz (200 ms) an, kurz (200 ms) aus, kurz (200 ms) an, lang (600 ms) aus.	
Blinken-x	Ethernet-Kommunikation: Aufblitzen im Takt der Datenübertragung.	

Tabelle 2: Blinkfrequenzen der LEDs

Einige LEDs signalisieren Warnungen (Ein) und Fehler (Blinken1), siehe nachfolgende Tabellen. Die Anzeige von Fehlern hat Priorität gegenüber der Anzeige von Warnungen. Bei der Anzeige von Fehlern können Warnungen nicht angezeigt werden.

HI 801 110 D Rev. 10.02 Seite 13 von 54

3.4.3 Modul-Statusanzeige

Diese LEDs sind oben auf der Frontplatte angeordnet.

LED	Farbe	Status	Bedeutung
Run	Grün	Ein	Modul im Zustand RUN, Normalbetrieb.
		Blinken1	Modul im Zustand
			STOPP / BS WIRD GELADEN
		Aus	Modul nicht im Zustand RUN,
			weitere Status LEDs beachten.
Error	Rot	Ein	Systemwarnung, z. B.:
			Fehlende Lizenz für Zusatzfunktionen
			(Kommunikationsprotokolle), Testbetrieb.
		Dlinkond	Temperaturwarnung Sustantialian
		Blinken1	Systemfehler, z. B.: Durch Selbsttest festgestellter interner Modulfehler
			 Durch Selbsttest festgestellter interner Modulfehler, z. B. Hardware-Fehler oder Fehler der
			Spannungsversorgung.
			 Fehler beim Laden des Betriebssystems
		Aus	Kein Fehler festgestellt
Stop	Gelb	Ein	Modul im Zustand
			STOPP / GÜLTIGE KONFIGURATION
		Blinken1	Modul in einem der folgenden Zustände:
			 STOPP / FEHLERHAFTE KONFIGURATION
			STOPP / BS WIRD GELADEN
		Aus	Modul nicht im Zustand STOPP,
			weitere Status LEDs beachten.
Init	Gelb	Ein	Modul im Zustand INIT
		Blinken1	Modul in einem der folgenden Zustände:
			• LOCKED
			STOPP / BS WIRD GELADEN
		Aus	Modul in keinem der beschriebenen Zustände,
			weitere Status LEDs beachten.

Tabelle 3: Modul-Statusanzeige

Seite 14 von 54 HI 801 110 D Rev. 10.02

3.4.4 Systembusanzeige

Die LEDs für die Systembusanzeige sind mit Sys Bus gekennzeichnet.

LED	Farbe	Status	Bedeutung		
Α	Grün Ein		Physikalische und logische Verbindung zum Systembusmodul in Steckplatz 1.		
		Blinken1	Keine Verbindung zum Systembusmodul in Steckplatz 1.		
	Gelb	Blinken1	Physikalische Verbindung zum Systembusmodul in Steckplatz 1 hergestellt.		
			Keine Verbindung zu einem (redundanten) Prozessormodul im Systembetrieb.		
В	Grün	Ein	Physikalische und logische Verbindung zum Systembusmodul in Steckplatz 2.		
		Blinken1	Keine Verbindung zum Systembusmodul in Steckplatz 2.		
	Gelb	Blinken1	Physikalische Verbindung zum Systembusmodul in Steckplatz 2 hergestellt.		
			Keine Verbindung zu einem (redundanten) Prozessormodul im Systembetrieb.		
		Keine physikalische und keine logische Verbindung zu den Systembusmodulen in Steckplatz 1 und 2.			

Tabelle 4: Systembusanzeige

3.4.5 E/A-Anzeige

Die LEDs der E/A-Anzeige sind mit *Channel* überschrieben.

LED	Farbe	Status	Bedeutung		
AO	Gelb	Ein	High-Pegel liegt an, Strom ≥ 4 mA		
1 16		Blinken2	Blinken2 Kanalfehler, Strom ungleich Einstellwert		
		Aus	Low-Pegel liegt an, Strom < 4 mA		
Field	Rot	Blinken2	Feldfehler bei mindestens einem Kanal oder Speisung (z. B. Leitungsbruch, Überstrom)		
		Aus	Kein Feldfehler wird angezeigt		

Tabelle 5: E/A-Anzeige

HI 801 110 D Rev. 10.02 Seite 15 von 54

3.5 Produktdaten

Allgemein			
Versorgungsspannung	24 VDC, -15 +20 %, w _s ≤ 5 %,		
	SELV, PELV		
Stromaufnahme	600 mA bei 24 VDC (Ausgänge abgeschaltet)		
	1,3 A bei 24 VDC (Ausgänge belastet)		
Stromaufnahme pro Kanalpaar	80 mA		
Zykluszeit des Moduls	2 ms		
Schutzklasse	Schutzklasse III nach IEC/EN 61131-2		
Umgebungstemperatur	0 +60 °C		
Transport- und Lagertemperatur	-40 +85 °C		
Feuchtigkeit	Max. 95 % relative Feuchte, nicht kondensierend		
Verschmutzung	Verschmutzungsgrad II nach IEC/EN 60664-1		
Aufstellhöhe	< 2000 m		
Schutzart	IP20		
Abmessungen (H x B x T) in mm	310 x 29,2 x 230		
Masse	Ca. 1,2 kg		

Tabelle 6: Produktdaten

Bild 4: Ansichten

Seite 16 von 54 HI 801 110 D Rev. 10.02

Analoge Ausgänge	
Anzahl der analogen Ausgänge	16 bei einkanaliger Verschaltung. 8 bei redundanter Verschaltung. Jeweils 2 dieser Ausgänge (AO1 und AO2; AO3 und AO4 AO15 und AO16) besitzen ein gemeinsames Massepotenzial. Zu den übrigen Kanalpaaren und der Versorgungsspannung besteht eine galvanische Trennung.
Nennbereich	4 20 mA
Gebrauchsbereich	0 23 mA
Digitale Auflösung	16 Bit (10 000 Digit in SILworX)
Wert des LSB	≤ 2 µA
Ohmsche Belastung	Max. 600 Ω
Induktive Belastung	Max. 1 mH
Kapazitive Belastung	Max. 100 µF parallel zur ohmschen Last
Leitungsbruch-Schwelle	≥ 18,5 V
Einschwingzeit	5 ms
Abschaltzeit im Fehlerfall	16 ms
(Übergang in den sicheren Zustand)	
Messtechnische Genauigkeit	
Typische Messtechnische Genauigkeit bei 25 °C	±0,2 % vom Endwert
Messtechnische Genauigkeit über gesamten Temperaturbereich	±0,5 % vom Endwert
Temperaturkoeffizient	±0,05 %/K vom Endwert
Messtechnische Genauigkeit bei aktiver HART-Kommunikation	±2 % vom Endwert
Linearitätsfehler	±0,1 % vom Endwert

Tabelle 7: Technische Daten der analogen Ausgänge

HI 801 110 D Rev. 10.02 Seite 17 von 54

3.6 Connector Boards

Ein Connector Board verbindet das Modul mit der Feldebene. Modul und Connector Board bilden zusammen eine funktionale Einheit. Vor dem Einbau des Moduls, Connector Board auf dem vorgesehenen Steckplatz montieren.

Folgende Connector Boards sind für das Modul verfügbar:

Connector Board	Beschreibung
X-CB 014 01	Connector Board mit Schraubklemmen
X-CB 014 02	Redundantes Connector Board mit Schraubklemmen
X-CB 014 03	Connector Board mit Kabelstecker
X-CB 014 04	Redundantes Connector Board mit Kabelstecker

Tabelle 8: Verfügbare Connector Boards

3.6.1 Mechanische Codierung von Connector Boards

E/A-Module und Connector Boards sind ab Hardware-Revisionsindex (HW-Rev.) 10 mechanisch codiert. Durch die Codierung werden fehlerhafte Bestückungen ausgeschlossen und damit Rückwirkungen auf redundante Module und das Feld verhindert. Zusätzlich dazu hat eine fehlerhafte Bestückung keinen Einfluss auf das HIMax System, da nur in SILworX korrekt konfigurierte Module in RUN gehen.

E/A-Module und die zugehörigen Connector Boards sind mit einer mechanischen Codierung in Form von Keilen versehen. Die Codierkeile in der Federleiste des Connector Boards greifen in Aussparungen der Messerleiste des E/A-Modulsteckers ein, siehe Bild 5.

Codierte E/A-Module können nur auf die zugehörigen Connector Boards aufgesteckt werden.

Seite 18 von 54 HI 801 110 D Rev. 10.02

Bild 5: Beispiel einer Codierung

Codierte E/A-Module können auf uncodierte Connector Boards gesteckt werden. Uncodierte E/A-Module können nicht auf codierte Connector Boards gesteckt werden.

3.6.2 Codierung Connector Boards X-CB 014 0X

Folgende Tabelle zeigt die Position der Codierkeile am E/A-Modulstecker:

a7	a13	a20	a26	c7	c13	c20	c26
Χ	X				X	X	

Tabelle 9: Position der Codierkeile

HI 801 110 D Rev. 10.02 Seite 19 von 54

3.6.3 Connector Boards mit Schraubklemmen

Bild 6: Connector Boards mit Schraubklemmen

Seite 20 von 54 HI 801 110 D Rev. 10.02

3.6.4 Klemmenbelegung Mono Connector Board mit Schraubklemmen

Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	01a	AO1+	1	02a	AO2+
2	01b	AO1-	2	02b	AO2-
3	03a	AO3+	3	04a	AO4+
4	03b	AO3-	4	04b	AO4-
5	05a	AO5+	5	06a	AO6+
6	05b	AO5-	6	06b	AO6-
7	07a	AO7+	7	08a	AO8+
8	07b	AO7-	8	08b	AO8-
Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
Pin-Nr.	Bezeichnung 09a	Signal AO9+	Pin-Nr.	Bezeichnung 10a	Signal AO10+
	- U	-			•
1	09a	AO9+	1	10a	AO10+
1 2	09a 09b	AO9+ AO9-	1 2	10a 10b	AO10+ AO10-
1 2 3	09a 09b 11a	AO9+ AO9- AO11+	1 2 3	10a 10b 12a	AO10+ AO10- AO12+
1 2 3 4	09a 09b 11a 11b	AO9+ AO9- AO11+ AO11-	1 2 3 4	10a 10b 12a 12b	AO10+ AO10- AO12+ AO12-
1 2 3 4 5	09a 09b 11a 11b 13a	AO9+ AO9- AO11+ AO11- AO13+	1 2 3 4 5	10a 10b 12a 12b 14a	AO10+ AO10- AO12+ AO12- AO14+

Tabelle 10: Klemmenbelegung Mono Connector Board mit Schraubklemmen

Der Anschluss der Feldseite erfolgt mit Klemmensteckern, die auf die Stiftleisten des Connector Boards aufgesteckt werden.

Die Klemmenstecker besitzen folgende Eigenschaften:

Anschluss Feldseite	
Klemmenstecker	4 Stück, 8-polig
Leiterquerschnitt	0,2 1,5 mm² (eindrähtig) 0,2 1,5 mm² (feindrähtig) 0,2 1,5 mm² (mit Aderendhülse)
Abisolierlänge	6 mm
Schraubendreher	Schlitz 0,4 x 2,5 mm
Anzugsdrehmoment	0,2 0,25 Nm

Tabelle 11: Eigenschaften der Klemmenstecker

HI 801 110 D Rev. 10.02 Seite 21 von 54

3.6.5 Klemmenbelegung redundantes Connector Board mit Schraubklemmen

Pin-Nr.	Bezeichnung	Signal
1	01a	AO1+
2	01b	AO1-
3	03a	AO3+
4	03b	AO3-
5	05a	AO5+
6	05b	AO5-
7	07a	AO7+
8	07b	AO7-
Pin-Nr.	Bezeichnung	Signal
Pin-Nr.	Bezeichnung 09a	Signal AO9+
1	09a	AO9+
1 2	09a 09b	AO9+ AO9-
1 2 3	09a 09b 11a	AO9+ AO9- AO11+
1 2 3 4	09a 09b 11a 11b	AO9+ AO9- AO11+ AO11-
1 2 3 4 5	09a 09b 11a 11b 13a	AO9+ AO9- AO11+ AO13+

Tabelle 12: Klemmenbelegung redundantes Connector Board mit Schraubklemmen

Der Anschluss der Feldseite erfolgt mit Klemmensteckern, die auf die Stiftleisten des Connector Boards aufgesteckt werden.

Die Klemmenstecker besitzen folgende Eigenschaften:

E/A-Leitungen	
Klemmenstecker	2 Stück, 8-polig
Leiterquerschnitt	0,2 1,5 mm ² (eindrähtig) 0,2 1,5 mm ² (feindrähtig) 0,2 1,5 mm ² (mit Aderendhülse)
Abisolierlänge	6 mm
Schraubendreher	Schlitz 0,4 x 2,5 mm
Anzugsdrehmoment	0,2 0,25 Nm

Tabelle 13: Eigenschaften der Klemmenstecker

Seite 22 von 54 HI 801 110 D Rev. 10.02

3.6.6 Connector Boards mit Kabelstecker

Bild 7: Connector Boards mit Kabelstecker

HI 801 110 D Rev. 10.02 Seite 23 von 54

3.6.7 Steckerbelegung Mono Connector Board mit Kabelstecker

Zu diesem Connector Board stellt HIMA vorgefertigte Systemkabel bereit, siehe Kapitel 3.7. Die Kabelstecker und Connector Boards sind codiert.

Steckerbelegung!

Die folgende Tabelle beschreibt die Steckerbelegung der Kabelstecker des Systemkabels.

Die Aderkennzeichnung ist gemäß IEC 60304 ausgeführt. Es werden die Farbkurzzeichen gemäß IEC 60757 verwendet.

Dailea	С		b		а	а		
Reihe	Signal	Farbe	Signal	Farbe	Signal	Farbe		
1						YEBK		
2					Interne	GNBK		
3					Verwend- ung 1)	YERD		
4					ung	GNRD		
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17	AO16+	YEBU	AO16-	GNBU				
18	AO15+	YEPK	AO15-	PKGN				
19	AO14+	YEGY	AO14-	GYGN				
20	AO13+	BNBK	AO13-	WHBK				
21	AO12+	BNRD	AO12-	WHRD				
22	AO11+	BNBU	AO11-	WHBU				
23	AO10+	PKBN	AO10-	WHPK				
24	AO9+	GYBN	AO9-	WHGY				
25	AO8+	YEBN	AO8-	WHYE				
26	AO7+	BNGN	AO7-	WHGN				
27	AO6+	RDBU	AO6-	GYPK				
28	AO5+	VT	AO5-	BK				
29	AO4+	RD	AO4-	BU				
30	AO3+	PK	AO3-	GY				
31	AO2+	YE	AO2-	GN				
32	AO1+	BN	AO1-	WH				
1) Die Ac	dern müsser	n einzeln isolie	rt werden! E	ine weitere Ve	rwendung ist ver	boten!		

Tabelle 14: Steckerbelegung Mono Connector Board mit Kabelstecker

Seite 24 von 54 HI 801 110 D Rev. 10.02

3.6.8 Steckerbelegung redundantes Connector Board mit Kabelstecker

Zu diesem Connector Board stellt HIMA vorgefertigte Systemkabel bereit, siehe Kapitel 3.7. Die Kabelstecker und Connector Boards sind codiert.

Steckerbelegung!

Die folgende Tabelle beschreibt die Steckerbelegung der Kabelstecker des Systemkabels.

Die Aderkennzeichnung ist gemäß IEC 60304 ausgeführt. Es werden die Farbkurzzeichen gemäß IEC 60757 verwendet.

Daiba	С		b		а	
Reihe	Signal	Farbe	Signal	Farbe	Signal	Farbe
1						YEBK
2					Interne	GNBK
3					Verwend- ung 1)	YERD
4					arig	GNRD
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18	AO15+	YEPK	AO15-	PKGN		
19						
20	AO13+	BNBK	AO13-	WHBK		
21						
22	AO11+	BNBU	AO11-	WHBU		
23						
24	AO9+	GYBN	AO9-	WHGY		
25						
26	AO7+	BNGN	AO7-	WHGN		
27						
28	AO5+	VT	AO5-	BK		
29						
30	AO3+	PK	AO3-	GY		
31						
32	AO1+	BN	AO1-	WH		
1) Die Adere müssen einzeln isoliert werden! Eine weitere Verwandung ist verheten!						

¹⁾ Die Adern müssen einzeln isoliert werden! Eine weitere Verwendung ist verboten!

Tabelle 15: Steckerbelegung redundantes Connector Board mit Kabelstecker

HI 801 110 D Rev. 10.02 Seite 25 von 54

3.7 Systemkabel X-CA 011

Das Systemkabel X-CA 011 verbindet die Connector Boards X-CB 014 03/04 mit dem Field Termination Assembly.

Allgemein	
Kabel	LIYCY-TP 18 x 2 x 0,25 mm² (geschirmt)
Leiter	Feindrähtig
Mittlerer Außendurchmesser (d)	Ca. 12,7 mm, max. 20 mm für alle Systemkabel-Typen
Mindestbiegeradius	
fest verlegt	5 x d
frei beweglich	10 x d
Brennverhalten	Flammwidrig und selbstverlöschend nach IEC 60332-1-2, -2-2
Länge	8 30 m
Farbcodierung	In Anlehnung an DIN 47100, siehe Tabelle 14.

Tabelle 16: Kabeldaten

1 Identische Kabelstecker

Bild 8: Systemkabel X-CA 011 01 n

Das Systemkabel ist in folgenden Standardlängen lieferbar:

Systemkabel	Beschreibung	Länge	Gewicht
X-CA 011 01 8	Codierte Kabelstecker	8 m	2,5 kg
X-CA 011 01 15	beidseitig.	15 m	4,5 kg
X-CA 011 01 30		30 m	9 kg

Tabelle 17: Verfügbare Systemkabel

Seite 26 von 54 HI 801 110 D Rev. 10.02

3.7.1 Codierung Kabelstecker

Die Kabelstecker sind mit drei Codierstiften ausgerüstet. Damit passen die Kabelstecker nur in Connector Boards und FTAs mit den entsprechenden Aussparungen, siehe Bild 7.

HI 801 110 D Rev. 10.02 Seite 27 von 54

4 Inbetriebnahme X-AO 16 01

4 Inbetriebnahme

Dieses Kapitel beschreibt die Installation und die Konfiguration des Moduls sowie dessen Anschlussvarianten. Für weitere Informationen siehe HIMax Systemhandbuch HI 801 000 D.

Die sicherheitsbezogene Anwendung (SIL 3 nach IEC 61508) der Ausgänge muss einschließlich der angeschlossenen Aktoren den Sicherheitsanforderungen entsprechen. Näheres im Sicherheitshandbuch HIMax HI 801 002 D.

4.1 Montage

Bei der Montage sind folgende Punkte zu beachten:

- Betrieb nur mit zugehörigen Lüfterkomponenten, siehe Systemhandbuch HI 801 000 D.
- Betrieb nur mit zugehörigem Connector Board, siehe Kapitel 3.6.
- Das Modul einschließlich seiner Anschlussteile so errichten, dass die Anforderungen der EN 60529:1991 + A1:2000 mit der Schutzart IP20 oder besser erfüllt werden.

HINWEIS

Beschädigung durch falsche Beschaltung!

Nichtbeachtung kann zu Schäden an elektronischen Bauelementen führen. Die folgenden Punkte sind zu beachten.

- Feldseitige Stecker und Klemmen:
 - Bei Anschluss der Stecker und Klemmen an die Feldseite auf geeignete Erdungsmaßnahmen achten.
 - Für jeden Messeingang abgeschirmtes Kabel mit paarweise verdrillten Adernpaaren (twisted pair) verwenden.
 - Die Abschirmung ist beidseitig aufzulegen. Auf der Seite des Moduls ist die Abschirmung auf die Kabel-Schirmschiene aufzulegen (Schirmanschlussklemme SK 20 oder gleichwertig einsetzen).
 - HIMA empfiehlt, bei mehrdrahtigen Leitungen Leitungsenden mit Aderendhülsen zu versehen. Die Anschlussklemmen müssen zum Unterklemmen der verwendeten Leitungsquerschnitte geeignet sein.
- Eine redundante Verschaltung ist über die entsprechenden Connector Boards zu realisieren, siehe Kapitel 3.6 und 4.3.1.

4.1.1 Beschaltung nicht benutzter Ausgänge

Nicht benutzte Ausgänge müssen abgeschlossen werden, z. B. durch Drahtbrücken oder Widerstände $\leq 600~\Omega$. Zur Vermeidung von Kurzschlüssen und Funken im Feld ist es nicht zulässig, Leitungen mit auf der Feldseite offenen Enden an den Connector Boards anzuschließen.

Seite 28 von 54 HI 801 110 D Rev. 10.02

X-AO 16 01 4 Inbetriebnahme

4.2 Einbau und Ausbau des Moduls

Dieses Kapitel beschreibt den Austausch eines vorhandenen oder das Einsetzen eines neuen Moduls.

Beim Ausbau des Moduls verbleibt das Connector Board im HIMax Basisträger. Dies vermeidet zusätzlichen Verdrahtungsaufwand an den Anschlussklemmen, da alle Feldanschlüsse über das Connector Board des Moduls angeschlossen werden.

4.2.1 Montage eines Connector Boards

Werkzeuge und Hilfsmittel:

- Schraubendreher Kreuz PH 1 oder Schlitz 0,8 x 4,0 mm.
- Passendes Connector Board.

Connector Board einbauen:

- 1. Connector Board mit der Nut nach oben in die Führungsschiene einsetzen (siehe hierzu nachfolgende Zeichnung). Die Nut am Stift der Führungsschiene einpassen.
- 2. Connector Board auf der Kabelschirmschiene auflegen.
- Mit den unverlierbaren Schrauben am Basisträger festschrauben. Zuerst die unteren, dann die oberen Schrauben eindrehen.

Connector Board ausbauen:

- 1. Unverlierbare Schrauben vom Basisträger losschrauben.
- 2. Connector Board unten von der Kabelschirmschiene vorsichtig anheben.
- 3. Connector Board aus der Führungsschiene herausziehen.

Bild 9: Einsetzen des Mono Connector Boards, exemplarisch

HI 801 110 D Rev. 10.02 Seite 29 von 54

4 Inbetriebnahme X-AO 16 01

Bild 10: Festschrauben des Mono Connector Boards, exemplarisch

Montageanleitung gilt ebenso für redundante Connector Boards. Je nach Typ des Connector Boards wird eine entsprechende Anzahl von Steckplätzen belegt. Die Anzahl der unverlierbaren Schrauben ist vom Typ des Connector Boards abhängig.

Seite 30 von 54 HI 801 110 D Rev. 10.02

X-AO 16 01 4 Inbetriebnahme

4.2.2 Modul einbauen und ausbauen

Dieses Kapitel beschreibt den Einbau und Ausbau eines HIMax Moduls. Ein Modul kann eingebaut und ausgebaut werden, während das HIMax System in Betrieb ist.

HINWEIS

Beschädigung von Steckverbindern durch Verkanten! Nichtbeachtung kann zu Schäden an der Steuerung führen. Modul stets behutsam in den Basisträger einsetzen.

Werkzeuge und Hilfsmittel:

- Schraubendreher, Schlitz 0,8 x 4,0 mm.
- Schraubendreher, Schlitz 1,2 x 8,0 mm.

Module einbauen:

- 1. Abdeckblech des Lüftereinschubs öffnen:
 - ✓ Verriegelungen auf Position *open* stellen.
 - ☑ Abdeckblech nach oben klappen und in Lüftereinschub einschieben.
- Modul an Oberseite in Einhängeprofil einsetzen, siehe
- 3. Modul an Unterseite in Basisträger schwenken und mit leichtem Druck einrasten lassen, siehe 2.
- 4. Modul festschrauben, siehe 3.
- 5. Abdeckblech des Lüftereinschubs herausziehen und nach unten klappen.
- 6. Abdeckblech verriegeln.

Module ausbauen:

- 1. Abdeckblech des Lüftereinschubs öffnen:
 - ☑ Verriegelungen auf Position open stellen
 - ☑ Abdeckblech nach oben klappen und in Lüftereinschub einschieben
- 2. Schraube lösen, siehe 3.
- 3. Modul an Unterseite aus Basisträger schwenken und mit leichtem Druck nach oben aus Einhängeprofil herausdrücken, siehe 2 und 1.
- 4. Abdeckblech des Lüftereinschubs herausziehen und nach unten klappen.
- 5. Abdeckblech verriegeln.

HI 801 110 D Rev. 10.02 Seite 31 von 54

4 Inbetriebnahme X-AO 16 01

- 1 Einsetzen/Herausschieben
- 2 Einschwenken/Ausschwenken

3 Befestigen/Lösen

Bild 11: Modul einbauen und ausbauen

Abdeckblech des Lüftereinschubs während des Betriebs des HIMax Systems nur kurz (< 10 min) öffnen, da dies die Zwangskonvektion beeinträchtigt.

Seite 32 von 54 HI 801 110 D Rev. 10.02

X-AO 16 01 4 Inbetriebnahme

4.3 Konfiguration des Moduls in SILworX

Das Modul wird im Hardware-Editor des Programmierwerkzeugs SILworX konfiguriert.

Bei der Konfiguration folgende Punkte beachten:

- Zur Diagnose des Moduls und der Kanäle können die Systemparameter zusätzlich zum Messwert im Anwenderprogramm ausgewertet werden. Nähere Informationen zu den Systemparametern sind in den nachfolgenden Tabellen zu finden.
- Wird eine Redundanzgruppe angelegt, so erfolgt die Konfiguration der Redundanzgruppe in deren Registern. Die Register der Redundanzgruppe unterscheiden sich von denen der einzelnen Modulen, siehe nachfolgende Tabellen.

Zur Auswertung der Systemparameter im Anwenderprogramm müssen den Systemparametern globale Variable zugewiesen werden. Diesen Schritt im Hardware-Editor in der Detailansicht des Moduls durchführen.

Die nachfolgenden Tabellen enthalten die Systemparameter des Moduls in derselben Reihenfolge wie im Hardware-Editor.

TIPP

Zur Umwandlung der Hexadezimalwerte in Bitfolgen eignet sich z. B. der Taschenrechner von Windows[®] in der entsprechenden Ansicht.

HI 801 110 D Rev. 10.02 Seite 33 von 54

4 Inbetriebnahme X-AO 16 01

4.3.1 Register **Modul**

Das Register **Modul** enthält die folgenden Systemparameter des Moduls:

Systemparameter	Datentyp	S 1)	R/W	Beschreibung	
Name			W	Name des Mod	uls
Reservemodul	BOOL	J	W	Aktiviert: Im Basisträger fehlendes Modul der Redundanzgruppe wird nicht als Fehler gewertet. Deaktiviert: Im Basisträger fehlendes Modul der Redundanzgruppe wird als Fehler gewertet. Standardeinstellung: Deaktiviert Wird nur im Register der Redundanzgruppe angezeigt!	
Störaustastung	BOOL	J	W	Störaustastung durch Prozessormodul zulassen (Aktiviert/Deaktiviert). Standardeinstellung: Aktiviert Das Prozessormodul verzögert die Fehlerreaktion auf eine transiente Störung bis zur Sicherheitszeit. Der letzte gültige Prozesswert bleibt für das Anwenderprogramm bestehen. Details zur Störaustastung siehe Systemhandbuch HI 801 000 D.	
Systemparameter	Datentyp	S 1)	R/W	Beschreibung	
	, ,	r könn	en glob		ugewiesen und im Anwenderprogramm
Modul OK	BOOL	J	R	Redundanzbetr Module hat keir FALSE: Modulfehler Kanalfehler eine Modul ist nicht (Kein Modulfehler. rieb: Mindestens eines der redundanten nen Modulfehler (ODER-Logik). es Kanals (keine externen Fehler)
Modul-Status	DWORD	J	R	Status des Mod	luls
				Modul OK	Beschreibung Fehler des Moduls ²⁾ Temperaturschwelle 1 überschritten Temperaturschwelle 2 überschritten Temperaturwert fehlerhaft Spannung auf L1+ fehlerhaft Spannung auf L2+ fehlerhaft Interne Spannungen fehlerhaft keine Verbindung zum Modul ²⁾ er haben Auswirkung auf den Status und müssen nicht extra im programm ausgewertet werden.
Zeitstempel [µs]	DWORD	N	R		-Anteil des Zeitstempels. s der analogen Ausgänge abgeschlossen.
Zeitstempel [s]	DWORD	N	R		eil des Zeitstempels. s der analogen Ausgänge abgeschlossen.
1) Systemparameter wir	d vom Betri	ebssy	stem si	cherheitsbezoge	n behandelt, ja (J) oder nein (N).

Tabelle 18: Register **Modul** im Hardware-Editor

Seite 34 von 54 HI 801 110 D Rev. 10.02

X-AO 16 01 4 Inbetriebnahme

4.3.2 Register **E/A-Submodul AO16_01**

Das Register E/A-Submodul AO16_01 enthält die folgenden Systemparameter:

Systemparameter	Datentyp	S 1)	R/W	Beschreibung			
Name			W	Name des Moduls			
Ausgangs- Störaustastung	BOOL	J	W	Ausgangs-Störaustastung durch das Ausgangsmodul Aktiviert: Bei Diskrepanz zwischen Vorgabewert Rücklesewert eines Kanals wird die Abschaltung des Kanals unterdrückt. Details zur Ausgangs-Störaustastung siehe Systemhandbuch HI 801 000 D. Deaktiviert: Ausgangs-Störaustastung deaktiviert Beim An-/Abklemmen von Aktoren kann es zu transienten Störungen an den Ausgängen kommen, aktivieren Sie deshalb die Ausgangs-Störaustastung. Standardeinstellung: Deaktiviert			
Systemparameter	Datentyp	S 1)	R/W	Beschreibung			
Die folgenden Status und verwendet werden.	l Parameter k	können	globale	n Variablen zugewiesen und im Anwenderprogramm			
Diagnose-Anfrage	DINT	N	W	Zur Anforderung eines Diagnosewerts muss über den Parameter <i>Diagnose-Anfrage</i> die entsprechende ID (Codierung siehe Kapitel 4.3.5) an das Modul gesendet werden.			
Diagnose-Antwort	DINT	N	R	Sobald die <i>Diagnose-Antwort</i> die ID der <i>Diagnose-Anfrage</i> (Codierung siehe Kapitel 4.3.5) zurückliefert, enthält der <i>Diagnose-Status</i> den angeforderten Diagnosewert.			
Diagnose-Status	DWORD	N	R	Angeforderter Diagnosewert gemäß Diagnose- Antwort. Im Anwenderprogramm können die IDs der Diagnose-Anfrage und der Diagnose-Antwort ausgewertet werden. Erst wenn beide die gleiche ID enthalten, enthält der Diagnose-Status den angeforderten Diagnosewert.			
Hintergrundtest-Fehler	BOOL	N	R	TRUE: Hintergrundtest fehlerhaft FALSE: Hintergrundtest fehlerfrei			
Restart bei Fehler	BOOL	J	W	Jedes E/A-Modul, das aufgrund von Fehlern dauerhaft abgeschaltet ist, kann durch den Parameter Restart bei Fehler wieder in den Zustand RUN überführt werden. Dazu den Parameter Restart bei Fehler von FALSE auf TRUE stellen. Das E/A-Modul führt einen vollständigen Selbsttest durch und nimmt nur dann den Zustand RUN ein, wenn kein Fehler entdeckt wurde. Standardeinstellung: FALSE			
Submodul OK	BOOL	J	R	TRUE: Kein Submodulfehler, keine Kanalfehler. FALSE: Submodulfehler; Kanalfehler (auch externe Fehler) eines Kanals			
Submodul-Status	DWORD	J	R	Bitcodierter Status des Submoduls (Codierung siehe Kapitel 4.3.4)			
1) Systemparameter wird vom Betriebssystem sicherheitsbezogen behandelt, ja (J) oder nein (N).							

Tabelle 19: Register **E/A-Submodul AO16_01** im Hardware-Editor

HI 801 110 D Rev. 10.02 Seite 35 von 54

4 Inbetriebnahme X-AO 16 01

4.3.3 Register E/A-Submodul AO16_01: Kanäle

Das Register **E/A-Submodul AO16_01: Kanäle** enthält die folgenden Systemparameter für jeden analogen Ausgang.

Den Systemparametern mit -> können globale Variablen zugewiesen und im Anwenderprogramm verwendet werden. Die Werte ohne -> müssen direkt eingegeben werden.

Systemparameter	Datentyp	S 1)	R/W	Beschreibung
Kanal-Nr.			R	Kanalnummer, fest vorgegeben
Prozesswert [REAL] ->	REAL	J	R	Der <i>Prozesswert</i> wird mit Hilfe der zwei Stützstellen 4 mA und 20 mA auf den Ausgangsstromwert abgebildet. Ist der <i>Prozesswert</i> gleich dem Ausgangsstrom 4 20 mA oder wird der Kanal nicht verwendet, müssen die beiden Stützstellen auf die Standardeinstellungen 4 mA = 4.0 und 20 mA = 20.0 gesetzt sein.
				Liegt der Prozesswert 0.0 zwischen den beiden Stützstellen, führt dies zu einem Ausgangsstrom. Selbst dann, wenn keine Globale Variable mit dem Parameter <i>Prozesswert [REAL]</i> -> verbunden ist!
				Beispiel: Wertebereich einer physikalische Größe (-60 +60) auf Ausgangsstrom abbilden.
				Stützstelle 4 mA = -60.0 und Stützstelle 20 mA = +60.0. Bei Prozesswert 0.0 ist der Ausgangsstrom = 12 mA
4 mA	REAL	J	W	Stützstelle am unteren Skalenendwert (4 mA) des Kanals. Es ist der Wert des Prozesswertes anzugeben, für den 4 mA am Ausgang ausgegeben werden soll. Ist der Prozesswert gleich dem Ausgangsstrom 4 20 mA oder wird der Kanal nicht verwendet, muss die Standardeinstellung 4.0 eingetragen sein. Standardeinstellung: 4.0
20 mA	REAL	J	W	Stützstelle am oberen Skalenendwert (20 mA) des Kanals. Es ist der Wert des Prozesswertes anzugeben, für den 20 mA am Ausgang ausgegeben werden soll. Ist der Prozesswert gleich dem Ausgangsstrom 4 20 mA oder wird der Kanal nicht verwendet, muss die Standardeinstellung 20.0 eingetragen sein. Standardeinstellung: 20.0

Seite 36 von 54 HI 801 110 D Rev. 10.02

Systemparameter	Datentyp	S 1)	R/W	Beschreibung	
-> Kanal OK [BOOL]	BOOL	J	R	TRUE: Fehlerfreier Kanal	
				Der Ausgangswert ist gültig.	
				FALSE: Fehlerhafter Kanal.	
				Der Ausgangswert wird auf 0 gesetzt.	
-> Kanalspannung [DINT]	DINT	N	R	Aktuelle Spannung am Modulausgang des Kanals. 1 mV [10 000 Digit]	
-> LB [BOOL]	BOOL	J	R	TRUE: Es ist ein Leitungsbruch vorhanden.	
				FALSE: Es ist kein Leitungsbruch vorhanden.	
				Definiert durch LB-Limit.	
-> LB-Überwachung defekt [BOOL]	BOOL	N	R	TRUE: Leitungsbrucherkennung ist defekt oder nicht betriebsbereit.	
				FALSE: Leitungsbrucherkennung ist OK.	
				Bei einem Ausgangsstrom im Bereich von 0 mA wird ein Leitungsbruch nicht mehr erkannt!	
redund.	BOOL	J	W	Voraussetzung: Redundantes Modul muss angelegt sein.	
				Aktiviert: Kanalredundanz für diesen Kanal aktiviert	
				Deaktiviert: Kanalredundanz für diesen Kanal	
				deaktiviert	
				Standardeinstellung: Deaktiviert.	
¹⁾ Systemparameter wird vom Betriebssystem sicherheitsbezogen behandelt, ja (J) oder nein (N).					

Tabelle 20: Register **E/A-Submodul AO16_01: Kanäle** im Hardware-Editor

4.3.4 Beschreibung **Submodul-Status [DWORD]**

Folgende Tabelle beschreibt die Codierung des Parameters Submodul-Status:

Codierung	Beschreibung
0x0000001	Fehler der Hardware-Einheit (Submodul)
0x00000002	Reset eines E/A-Busses
0x00000004	Fehler bei der Initialisierung der Hardware
0x00000008	Fehler bei der Überprüfung der Koeffizienten
0x01000000	Abgleichdaten wurden verfälscht
0x02000000	Fehler in einem FPGA-Header

Tabelle 21: Codierung Submodul-Status [DWORD]

HI 801 110 D Rev. 10.02 Seite 37 von 54

4 Inbetriebnahme X-AO 16 01

4.3.5 Beschreibung **Diagnose-Status [DWORD]**

Folgende Tabelle beschreibt die Codierung des Parameters Diagnose-Status:

ID	Beschreibung				
0	Diagnosewerte werden nacheinander angezeigt.				
100	Bitkodierter Temperaturstatus				
	0 = normal				
		Bit0 = 1 : Temperaturschwelle 1 überschritten			
		t1 = 1 : Temperaturschwelle 2 überschritten			
	Bit2 = 1 : Temperaturmessung fehlerhaft				
101		Temperatur (10 000 Digit/ °C)			
200	Bitkodierter Spannungsstatus				
	0 = normal				
	Bit0 = 1 : L1+ (24 V) ist fehlerhaft				
		(24 V) ist fehlerhaft			
201	Nicht verwendet!				
202	Ist-Wert der internen Betriebsspannung 3V3				
203	Ist-Wert der internen Core-Spannung				
204 207	Nicht verwendet!				
300	Komparator 24 V Unterspannung (BOOL)				
1001 1016	Kanalstatus der Kanäle 1 16				
	Codierung	Beschreibung			
	0x0001	Fehler der Hardware-Einheit (Submodul) aufgetreten			
	0x0002	Kanalfehler wegen internem Fehler			
	0x0020	Leitungsbruch erkannt			
	0x0040	Unerlaubter Zugriff auf den D/A-Wandler erkannt			
	0x0200	Limit-Werte sind über- oder unterschritten.			
	0x0400	Rücklesewert und Ausgangswert weichen, über die			
		sicherheitstechnische Genauigkeit hinaus, voneinander ab.			
	0x0800	Fehler beim Zurücklesen der Ausgänge.			
	0x2000	Gruppenschalter fehlerhaft, Rücklesewert über- oder unterschritten.			
	0x4000	Fehler bei der Überwachung der 3,3 V internen Betriebsspannung.			

Tabelle 22: Codierung Diagnose-Status [DWORD]

Seite 38 von 54 HI 801 110 D Rev. 10.02

4.4 Anschlussvarianten

Dieses Kapitel beschreibt die sicherheitstechnisch richtige Beschaltung des Moduls. Die folgenden aufgeführten Anschlussvarianten sind zulässig.

Die Verschaltung der Ausgänge erfolgt über Connector Boards.

4.4.1 Einkanalige Verschaltung

Bei der Verschaltung nach Bild 12 können die Connector Boards X-CB 014 01 (mit Schraubklemmen) oder X-CB 014 03 (mit Kabelstecker) verwendet werden.

Bild 12: Einkanalige Verschaltung

HI 801 110 D Rev. 10.02 Seite 39 von 54

4 Inbetriebnahme X-AO 16 01

4.4.2 Redundante Verschaltung (Serienschaltung)

Bei der redundanten Verschaltung nach Bild 13 stecken die Module nebeneinander auf einem gemeinsamen Connector Board im Basisträger. Es kann das Connector Board X-CB 014 02 oder das X-CB 014 04 verwendet werden. Die Konfiguration wird im SILworX Hardware-Editor über die Funktion *Redundanz Verknüpfung anlegen* durchgeführt.

Bild 13: Redundante Verschaltung (Serienschaltung)

Seite 40 von 54 HI 801 110 D Rev. 10.02

4.4.3 Regelung

Es gibt eine physikalische Kopplung zwischen dem Aktor des analogen Ausgangs AO und dem Messwertaufnehmer des analogen Eingangs AI. Die Messdaten des AI werden in dem Prozessormodul zu den neuen Stelldaten für den AO verarbeitet.

Bild 14: Regelungsverschaltung

 $\begin{tabular}{ll} \hline 1 & Verzögerungen durch die Prozessdatenverarbeitung der HIMax Steuerung sind zu berücksichtigen. \\ \hline \end{tabular}$

HI 801 110 D Rev. 10.02 Seite 41 von 54

4 Inbetriebnahme X-AO 16 01

4.4.4 Anschluss über Field Termination Assembly

Der Anschluss über das Field Termination Assembly X-FTA 002 01 erfolgt wie in Bild 15 dargestellt. Für weitere Informationen siehe Handbücher X-FTA 002 01 und X-FTA 009 02L.

Bild 15: Anschluss über Field Termination Assembly

4.4.5 Verhalten bei HART-Kommunikation

Zur HART-Kommunikation kann ein HART-Handheld parallel zum Aktor angeschlossen werden. Die durch die HART-Kommunikation bedingten Stromschwankungen werden vom analogen Ausgang weitgehend ausgeregelt, so dass der Restfehler vom eingestellten Strom maximal 2 % vom Endwert beträgt.

Erhöhter Restfehler bei HART-Kommunikation. HART-Terminal sofort nach der Diagnose entfernen!

Bild 16: HART-Handheld parallel zu Transmitter und Ausgangsmodul

Seite 42 von 54 HI 801 110 D Rev. 10.02

4.4.6 Anschluss von Aktoren mit gedämpftem Stromanstieg

Werden Aktoren mit Tiefpassverhalten bei 0 mA eingeschaltet, kann es zu einer Anstiegsverzögerung des Ausgangsstroms kommen, die länger als die Toleranzzeit des Moduls ist.

Kann der Ausgangsstrom innerhalb dieser Toleranzzeit nicht erreicht werden, reagiert das Modul mit der Abschaltung des betroffenen Kanals.

Um die Abschaltung eines Kanals zu vermeiden, müssen diese Aktoren über das Anwenderprogramm in Stufen eingeschaltet werden (z. B. erster HIMax Zyklus 4 mA, zweiter HIMax Zyklus-Prozesswert).

HI 801 110 D Rev. 10.02 Seite 43 von 54

5 Betrieb X-AO 16 01

5 Betrieb

Das Modul wird in einem HIMax Basisträger betrieben und erfordert keine besondere Überwachung.

5.1 Bedienung

Die Bedienung an dem Modul selbst ist nicht vorgesehen.

Eine Bedienung z. B. Forcen der analogen Ausgänge, erfolgt vom PADT aus. Einzelheiten hierzu in der Dokumentation von SILworX.

5.2 Diagnose

Der Zustand des Moduls wird über die LEDs auf der Frontseite des Moduls angezeigt, siehe Kapitel 3.4.2.

Die Diagnosehistorie des Moduls kann zusätzlich mit dem Programmierwerkzeug SILworX ausgelesen werden. In den Kapiteln 4.3.4 und 4.3.5 sind die wichtigsten Diagnosestatus beschrieben.

Wird ein Modul in einen Basisträger gesteckt, erzeugt es während der Initialisierung Diagnosemeldungen, die auf Fehlfunktionen wie falsche Spannungswerte hinweisen.

Diese Meldungen deuten nur dann auf einen Fehler des Moduls hin, wenn sie nach dem Übergang in den Systembetrieb auftreten.

Seite 44 von 54 HI 801 110 D Rev. 10.02

X-AO 16 01 6 Instandhaltung

6 Instandhaltung

Defekte Module sind gegen Module des gleichen Typs oder eines zugelassenen Ersatztyps auszutauschen.

Beim Austausch von Modulen sind die Angaben im Systemhandbuch HI 801 000 D und Sicherheitshandbuch HI 801 002 D zu beachten.

6.1 Instandhaltungsmaßnahmen

Für Module sind folgende Instandhaltungsmaßnahmen durchzuführen:

- Wiederholungprüfung (Proof-Test).
- Laden weiterentwickelter Betriebssysteme.

6.1.1 Wiederholungsprüfung (Proof-Test)

Für HIMax Module muss die Wiederholungsprüfung (Proof-Test) in einem Intervall erfolgen, welches dem applikationsspezifisch notwendigen Safety Integrity Level (SIL) entspricht. Für weitere Informationen siehe Sicherheitshandbuch HI 801 002 D.

6.1.2 Laden weiterentwickelter Betriebssysteme

Im Zuge der Produktpflege entwickelt HIMA die Betriebssysteme von Modulen weiter. HIMA empfiehlt, geplante Anlagenstillstände zu nutzen, um aktuelle Betriebssystemversionen auf die Module zu laden.

Die Betriebssystemversionen von Modulen werden im SILworX Control Panel angezeigt. Die Typenschilder zeigen die Version des ausgelieferten Stands, siehe Kapitel Typenschild.

Bevor Betriebssysteme auf Module geladen werden, müssen die Kompatibilitäten und Einschränkungen der Betriebssystemversionen auf das System geprüft werden. Dazu sind die jeweils gültigen Release-Notes zu beachten. Betriebssysteme werden mit SILworX auf Module geladen, die sich dazu im Zustand STOPP befinden müssen.

HI 801 110 D Rev. 10.02 Seite 45 von 54

7 Außerbetriebnahme X-AO 16 01

7 Außerbetriebnahme

Das Modul durch Ziehen aus dem Basisträger außer Betrieb nehmen. Einzelheiten dazu im Kapitel *Einbau und Ausbau des Moduls*.

Seite 46 von 54 HI 801 110 D Rev. 10.02

X-AO 16 01 8 Transport

8 Transport

Zum Schutz vor mechanischen Beschädigungen die Komponenten in Verpackungen transportieren.

Die Komponenten immer in den originalen Produktverpackungen lagern. Diese sind gleichzeitig ESD-Schutz. Die Produktverpackung allein ist für den Transport nicht ausreichend.

HI 801 110 D Rev. 10.02 Seite 47 von 54

9 Entsorgung X-AO 16 01

9 Entsorgung

Industriekunden sind selbst für die Entsorgung außer Dienst gestellter Hardware verantwortlich. Auf Wunsch kann mit HIMA eine Entsorgungsvereinbarung getroffen werden.

Alle Materialien einer umweltgerechten Entsorgung zuführen.

Seite 48 von 54 HI 801 110 D Rev. 10.02

X-AO 16 01 Anhang

Anhang

Glossar

Begriff	Beschreibung
Al	Analog Input: Analoger Eingang
AO	Analog Output: Analoger Ausgang
ARP	Address Resolution Protocol: Netzwerkprotokoll zur Zuordnung von Netzwerkadressen zu Hardware-Adressen
COM	Kommunikation (Modul)
CRC	Cyclic Redundancy Check: Prüfsumme
DI	Digital Input: Digitaler Eingang
DO	Digital Output: Digitaler Ausgang Digital Output: Digitaler Ausgang
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Normen
ESD	
	Electrostatic Discharge: Elektrostatische Entladung
FB	Feldbus
FBS	Funktionsbausteinsprache
HW	Hardware
ICMP	Internet Control Message Protocol: Netzwerkprotokoll für Status- und Fehlermeldungen
IEC	Internationale Normen für die Elektrotechnik
LS/LB	Leitungsschluss/Leitungsbruch
MAC	Media Access Control: Hardware-Adresse eines Netzwerkanschlusses
PADT	Programming and Debugging Tool (nach IEC 61131-3): PC mit SILworX
PELV	Protective Extra Low Voltage: Funktionskleinspannung mit sicherer Trennung
PES	Programmable Electronic System: Programmierbares Elektronisches System
R	Read: Auslesen einer Variablen
Rack-ID	Identifikation eines Basisträgers (Nummer)
rückwirkungsfrei	Eingänge sind für rückwirkungsfreien Betrieb ausgelegt und können in Schaltungen mit Sicherheitsfunktionen eingesetzt werden.
R/W	Read/Write: Spaltenüberschrift für Art von Systemvariable
SB	Systembus (-modul)
SELV	Safety Extra Low Voltage: Schutzkleinspannung
SFF	Safe Failure Fraction: Anteil der sicher beherrschbaren Fehler
SIL	Safety Integrity Level (nach IEC 61508)
SILworX	Programmierwerkzeug
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	System.Rack.Slot: Adressierung eines Moduls
SW	Software
TMO	Timeout
W	Write: Variable wird mit Wert versorgt, z. B. vom Anwenderprogramm
WD	Watchdog: Funktionsüberwachung für Systeme. Signal für fehlerfreien Prozess
	Watchdog-Zeit
WDZ	vvalcridog-zeri

HI 801 110 D Rev. 10.02 Seite 49 von 54

Anhang X-AO 16 01

Abbildu	ngsverzeichnis	
Bild 1:	Typenschild exemplarisch	10
Bild 2:	Blockschaltbild des Moduls	11
Bild 3:	Anzeige	12
Bild 4:	Ansichten	16
Bild 5:	Beispiel einer Codierung	19
Bild 6:	Connector Boards mit Schraubklemmen	20
Bild 7:	Connector Boards mit Kabelstecker	23
Bild 8:	Systemkabel X-CA 011 01 n	26
Bild 9:	Einsetzen des Mono Connector Boards, exemplarisch	29
Bild 10:	Festschrauben des Mono Connector Boards, exemplarisch	30
Bild 11:	Modul einbauen und ausbauen	32
Bild 12:	Einkanalige Verschaltung	39
Bild 13:	Redundante Verschaltung (Serienschaltung)	40
Bild 14:	Regelungsverschaltung	41
Bild 15:	Anschluss über Field Termination Assembly	42
Bild 16:	HART-Handheld parallel zu Transmitter und Ausgangsmodul	42

Seite 50 von 54 HI 801 110 D Rev. 10.02

X-AO 16 01 Anhang

Tabellenv	verzeichnis	
Tabelle 1:	Zusätzlich geltende Handbücher	5
Tabelle 2:	Blinkfrequenzen der LEDs	13
Tabelle 3:	Modul-Statusanzeige	14
Tabelle 4:	Systembusanzeige	15
Tabelle 5:	E/A-Anzeige	15
Tabelle 6:	Produktdaten	16
Tabelle 7:	Technische Daten der analogen Ausgänge	17
Tabelle 8:	Verfügbare Connector Boards	18
Tabelle 9:	Position der Codierkeile	19
Tabelle 10:	Klemmenbelegung Mono Connector Board mit Schraubklemmen	21
Tabelle 11:	Eigenschaften der Klemmenstecker	21
Tabelle 12:	Klemmenbelegung redundantes Connector Board mit Schraubklemmen	22
Tabelle 13:	Eigenschaften der Klemmenstecker	22
Tabelle 14:	Steckerbelegung Mono Connector Board mit Kabelstecker	24
Tabelle 15:	Steckerbelegung redundantes Connector Board mit Kabelstecker	25
Tabelle 16:	Kabeldaten	26
Tabelle 17:	Verfügbare Systemkabel	26
Tabelle 18:	Register Modul im Hardware-Editor	34
Tabelle 19:	Register E/A-Submodul AO16_01 im Hardware-Editor	35
Tabelle 20:	Register E/A-Submodul AO16_01: Kanäle im Hardware-Editor	37
Tabelle 21:	Codierung Submodul-Status [DWORD]	37
Tabelle 22:	Codierung Diagnose-Status [DWORD]	38

HI 801 110 D Rev. 10.02 Seite 51 von 54

Anhang X-AO 16 01

Index

Blockschaltbild	11	HART-Kommunikation	42
Connector Board		Modul-Statusanzeige	14
mit Kabelstecker	23	Produktdaten	
mit Schraubklemmen	20	Modul	16
Connector Boards	18	Sicherheitsfunktion	9
Diagnose	44	Technische Daten	
•		Ausgänge	17
Systembusanzeige		0 0	

Seite 52 von 54 HI 801 110 D Rev. 10.02

HANDBUCH X-AO 16 01

HI 801 110 D

Für weitere Informationen kontaktieren Sie:

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Germany

Telefon: +49 6202 709-0 +49 6202 709-107 Fax E-Mail: info@hima.com

Erfahren Sie online mehr über HIMax:

www.hima.com/de/produkte-services/himax/