HW #2

```
1.
        dir.path <- "C:\\Users\\thomas\\Documents\\Data"
cy <- read.GenePix(path=dir.path, name.Gf = "F532 Median", name.Gb = "B532 Median", name.Rf = "F635
Median", name.Rb = "B635 Median", name.W = "Flags")
    2.
        printtip1 <- maNorm(cy[,1], norm = "p", span=0.45)
        printtip2 <- maNorm(cy[,2], norm ="p", span=0.45)</pre>
        printtip3 <- maNorm(cy[,3], norm ="p", span=0.45)
        printtip4 <- maNorm(cy[,4], norm ="p", span=0.45)
        median1 <-maNorm(cy[,1], norm="median", span=0.45)
        median2 <-maNorm(cy[,2], norm="median", span=0.45)
        median3 <-maNorm(cy[,3], norm="median", span=0.45)
        median4 <-maNorm(cy[,4], norm="median", span=0.45)
        loess1 <-maNorm(cy[,1], norm="loess", span=0.45)
        loess2 <-maNorm(cy[,2], norm="loess", span=0.45)
        loess3 <-maNorm(cy[,3], norm="loess", span=0.45)
        loess4 <-maNorm(cy[,4], norm="loess", span=0.45)
        par(mfrow=c(4,1))
        maPlot(cy[,1], main = "MvA plot of Array 1 pre norm")
        maPlot(printtip1, main = "MvA plot of Array 1 print-tip")
        maPlot(median1, main = "MvA plot of Array 1 median")
        maPlot(loess1, main = "MvA plot of Array 1 Loess")
        par(mfrow=c(4,1))
        maPlot(cy[,2], main = "MvA plot of Array 2 pre norm")
        maPlot(printtip2, main = "MvA plot of Array 2 print-tip")
        maPlot(median2, main = "MvA plot of Array 2 median")
        maPlot(loess2, main = "MvA plot of Array 2 Loess")
        par(mfrow=c(4,1))
        maPlot(cy[,3], main = "MvA plot of Array 3 pre norm")
        maPlot(printtip3, main = "MvA plot of Array 3 print-tip")
        maPlot(median3, main = "MvA plot of Array 3 median")
        maPlot(loess3, main = "MvA plot of Array 3 Loess")
        par(mfrow=c(4,1))
        maPlot(cy[,4], main = "MvA plot of Array 4 pre norm")
        maPlot(printtip4, main = "MvA plot of Array 4 print-tip")
        maPlot(median4, main = "MvA plot of Array 4 median")
        maPlot(loess4, main = "MvA plot of Array 4 Loess")
```


3. logratio4 <- maM(cy[,4]) ar4<-na.omit(logratio4) median4log <- na.omit(maM(median4)) printtip4log <- na.omit(maM(printtip4)) loess4log <- na.omit(maM(loess4))

plot(density(ar4), lwd = 2, xlab = "",col = "red", xlim = c(-10, 15), ylim = c(0, 0.9),main = "Desnity plots of log-ratios M")

```
lines(density(printtip4log), col = "blue", lwd = 2)
lines(density(loess4log), col = "black", lwd = 2)
lines(density(median4log), col = "green", lwd = 2)
```

 $legend("topleft", legend = c("Pre-normalization", "print-tip loess", "loess", "loess", "median global"), \\ col=c("red", "blue", "black", "green"), \\ lty=1, \\ cex=0.8)$

4. Looking through all the plots it seems like print-tip loess is the most preferred for this data set. Loess and print tip loess seem to produce almost similar normalized results, but I believe print-tip loess shows to be the better out of the two.

```
5.

for(i in 1:4){
    name <- paste("sample", i, sep = ".")
    bg <- maRb(cy[,i])
    fg <- maRf(cy[,i])
    diff <- fg - bg
    diff[diff < 0] <- NA
    assign(name, log2(diff))
}
```

```
#Data separated for each array:
data.median1 <- apply(sample.1, 2,median, na.rm = T)
data.median2 <- apply(sample.2, 2, median, na.rm = T)
data.median3 <- apply(sample.3, 2, median, na.rm = T)
data.median4 <- apply(sample.4, 2, median, na.rm = T)
data.norm1 <- sweep(sample.1, 2, data.median1)
data.norm2 <- sweep(sample.2, 2, data.median2)
data.norm3 <- sweep(sample.3, 2, data.median3)
data.norm4 <- sweep(sample.4, 2, data.median4)
#matrix for all 4 arrays together:
data.prenorm <- cbind(sample.1, sample.2, sample.3, sample.4)
data.median <- apply(data.prenorm, 2, median, na.rm = T)
data.norm <- sweep(data.prenorm, 2, data.median)
colnames(data.norm) <- c("Array 1", "Array 2", "Array 3", "Array 4")
   6.
       yL1<- na.omit(data.loess2[,1])
       yL2<- na.omit(data.loess2[,2])
       yL3<- na.omit(data.loess2[,3])
       yL4<- na.omit(data.loess2[,4])
       xL1<- na.omit(data.loess2[,1])
       xL2<- na.omit(data.loess2[,2])
       xL3<- na.omit(data.loess2[,3])
       xL4<- na.omit(data.loess2[,4])
       corr1 <- cor.test(x=xL1, y=yL2, method ="spearman",exact=FALSE)</pre>
       corr2 <- cor.test(x=xL1, y=yL3, method ="spearman",exact=FALSE)
       corr3 <- cor.test(x=xL1, y=yL4, method ="spearman",exact=FALSE)
       corr4<- cor.test(x=xL2, y=yL3, method ="spearman",exact=FALSE)
       corr5 <- cor.test(x=xL2, y=yL4, method ="spearman",exact=FALSE)
       corr6 <- cor.test(x=xL3, y=yL4, method ="spearman",exact=FALSE)
                  Spearman's rank correlation rho
       data: xL1 and yL2
       S = 4.3032e+12, p-value < 2.2e-16
       alternative hypothesis: true rho is not equal to O
       sample estimates:
               rho
       0.6952404
                   Spearman's rank correlation rho
        data: xL1 and yL3
        S = 3.3213e+12, p-value < 2.2e-16
        alternative hypothesis: true rho is not equal to
        sample estimates:
                rho
        0.7647799
```

Spearman's rank correlation rho

```
data: xL1 and yL4
S = 4.1802e+12, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to O
sample estimates:
       rho
0.7039508
         Spearman's rank correlation rho
data: xL2 and yL3
S = 3.9045e+12, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to O
sample estimates:
      rho
0.723478
         Spearman's rank correlation rho
data: xL2 and yL4
S = 4.0887e+12, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to O
sample estimates:
       rho
0.7104355
         Spearman's rank correlation rho
data: xL3 and yL4
S = 3.4476e+12, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to O
sample estimates:
       rho
0.7558382
y1 <- data.norm[,1]
y2 < -data.norm[,2]
y3 <- data.norm[,3]
y4 <- data.norm[,4]
x1 < -data.norm[,1]
x2 < -data.norm[,2]
x3 < -data.norm[,3]
x4 <- data.norm[,4]
corr <- cor.test(x=x2, y=y2, method ="spearman",exact=FALSE)</pre>
```

```
cor(data.frame(na.omit(data.norm)), method = "spearman")
                            Array.2
                                       Array.3
                                                    Array.4
                  Array.1
      Array.1 1.0000000 0.8957946 0.8784760 0.8985979
      Array.2 0.8957946 1.0000000 0.8758774 0.9075121
      Array.3 0.8784760 0.8758774 1.0000000 0.8848059
      Array.4 0.8985979 0.9075121 0.8848059 1.0000000
      data.loess <- cbind(loess1, loess2, loess3, loess4)
      data.loess2 <- data.matrix(data.loess)
      colnames(data.loess2) <- c("Array 1", "Array 2", "Array 3", "Array 4")
      cor(data.frame(data.loess2),method = "spearman")
                      Array.2
           Array.1
                                  Array.3
                                             Array.4
Array.1 1.0000000 0.6952404 0.7647799 0.7039508
Array.2 0.6952404 1.0000000 0.7234780 0.7104355
Array.3 0.7647799 0.7234780 1.0000000 0.7558382
Array.4 0.7039508 0.7104355 0.7558382 1.0000000
```

pairs(data.norm, pch=21,col=1,main="Global median normalization from using\n subtracted Cy5 background values",cex=0.4)

pairs(data.loess2, pch=21,col=1,main="Loess normalization values",cex=0.4)


```
for(i in 1:4){
    name <- paste("samp", i, sep = ".")
    bg <- maRb(cy[,i])
    fg <- maRf(cy[,i])
    diff <- fg - bg
    assign(name, diff)
}
data.prelog <- cbind(samp.1, samp.2, samp.3, samp.4)
colnames(data.prelog) <- c("Array 1", "Array 2", "Array 3", "Array 4")

sorted <- apply(data.prelog, 2, sort)
meanValues1 <- rowMeans(data.frame(sorted[,1]),na.rm=T)
meanValues2 <- rowMeans(data.frame(sorted[,2]),na.rm=T)
```

```
meanValues3 <- rowMeans(data.frame(sorted[,3]),na.rm=T)
meanValues4 <- rowMeans(data.frame(sorted[,4]),na.rm=T)
data.meanValues <- cbind(meanValues1, meanValues2, meanValues3, meanValues4)

prelog1<- rank(data.prelog[,1], ties="first")
prelog2<- rank(data.prelog[,2], ties="first")
prelog3<- rank(data.prelog[,3], ties="first")
prelog4<- rank(data.prelog[,4], ties="first")

order1<- rank(data.meanValues[,1], ties="first")
order2 <- rank(data.meanValues[,2], ties="first")
order3 <- rank(data.meanValues[,3], ties="first")
order4 <- rank(data.meanValues[,4], ties="first")
data.order <- cbind(order1, order2, order3, order4)
#histogram distribution:
```


colnames(data.order) <- c("order1", "order2", "order 3", "order 4")

```
8. > orderLog <- log2(data.order)
    > cor(orderLog, method="spearman")
order1 order2 order
                                             3
                                                order 4
                                              1
    order1
                       1
                                  1
                                                         1
    order2
                       1
                                  1
                                              1
                                                         1
    order 3
                       1
                                  1
                                              1
                                                         1
    order 4
                       1
                                  1
                                              1
                                                         1
```

pairs(orderLog, pch=21,col=1,main="Scatter plot matrix",cex=0.4)

9. From looking at the data the normalization method that was the best is the quantile normalization method because when you see the spearman correlation numbers the datas are all normalized to each other. They are all at the value of 1.It means a perfect association between the ranks.

10.

```
f.parse <- function(path=getwd(), file="Inflammation_qRT-PCR.csv",out=out.fi) {
d <- read.table(paste(path,file,sep=""),skip=11,sep=",",header=T)
u <- as.character(unique(d$Name))
u <- u[u!=""]; u <- u[!is.na(u)];
ref <- unique(as.character(d$Name[d$Type=="Reference"]))
u <- unique(c(ref,u))
p <- unique(toupper(as.character(d$Name.1)))
p <- sort(setdiff(p,c("")))
mat <- matrix(0,nrow=length(u),ncol=length(p))
dimnames(mat) <- list(u,p)
for (i in 1:length(u)) {
print(paste(i,": ",u[i],sep=""))
tmp <- d[d$Name %in% u[i],c(1:3,6,9)]
g <- toupper(unique(as.character(tmp$Name.1)))
g <- sort(setdiff(g,c("",hg)))
for (j in 1:length(g)) {
v <- tmp[toupper(as.character(tmp$Name.1)) %in% g[j],5]
v <- v[v!=999]
v <- v[((v/mean(v))<1.5) & ((v/mean(v))>0.67)] #gene j vector
hv3 <- NULL
for (k in 1:length(hg)) { #housekeeping gene vector (each filtered by reps)
hv <- tmp[toupper(as.character(tmp$Name.1)) %in% hg[k],5]
hv <- hv[hv!=999]
hv3 <- c(hv3,hv[((hv/mean(hv))<1.5) & ((hv/mean(hv))>0.67)])
sv <- mean(as.numeric(v)) - mean(as.numeric(hv3)) #scaled value for gene j
if(i==1) { #reference sample only
mat[u[i],g[j]] <- sv
mat[u[i],g[j]] <- sv - mat[u[1],g[j]]
mat[1,][!is.na(mat[1,])] <- 0
fc <- 2^(-1 * mat)
write.table(t(c("Subject",dimnames(mat)[[2]])),paste(path,out,sep=""),quote=F,sep="\t",col.names=F,row.names
write.table(round(fc,3),paste(path,out,sep=""),quote=F,sep="\t",append=T,col.names=F)
pa <- "C:/Users/thomas/Documents/Inflammation_"
```

```
fi <- "qRT-PCR.csv"
out.fi <- "fold_chg_matrix.txt "
f.parse(pa,fi,out.fi)
```

patients<-read.delim("Inflammation_fold_chg_matrix.txt", header=T, row.names=1) data matrix of fold changes created in file Inflammation_fold_chg_matrix.txt:

	X1	183 AF	POBEC3B	B.ACTIN	CCL.24	CCL2	CCL	20 CCL2	2 DDX58.RIG.1	G1P2.ISG15	G1P3	GAPDH	IFI44	IFIT1	IFIT4 IL.10			INFAS	INFB1 IRF5										
434	1	1	1.000	1	1.000	1.000	1.0	00 1.00	0 1.000	1.000	1.000	1	1.000	1.000	1.000 1.000	NA 1.000	1.000	1.000	1.000 1.000	1.000 1.0	00 1.000	1.000	1.000	1.000	1.000	1.000 1	.000 1.00	1.000	1.000
434	15	1	4.796	1	1.801	0.471	0.7	24 0.89	6 5.309	0.913	0.814	1	0.765	1.415	4.613 2.954	NA 2.220	2.982	16.704	2.093 0.786	1.136 2.25	55 1.224	1.167	1.121	1.447	1.424	0.637 2	679 0.94	1.253	1.292
434	2	1	1.603	1	7.474	2.848	3 13.5	48 2.76	9 1.077	1.122	1.050	1	1.535	1.078	0.845 0.240	NA 4.461	4.338	0.473	1.213 1.222	1.098 4.8	32 1.486	1.755	1.111	1.416	0.968	5,604 0	609 0.60	1.283	1.334
434	14	1	1.147	1	2.263	4.161	16.3	54 0.77	1 0.783	1,275	0.982	1	0.982	0.765	0.620 0.371	NA 9.190	9.359	2.611	0.729 0.580	0.801 1.3	92 0.998	0.964	1.226	1.474	0.873	1.366 1	606 0.89	0.959	1.151
434	3	1	2.205	1	1.643	48.361	6.1	48 1.17	1 8.124	63.905	30.831	1	31.376	40.758	39.712 0.344	NA 5.496	4.004	6.598	5.368 1.914	9.806 4.69	97 18.473	33.381	1.520	19.658	4.882	3.598 0	997 1.10	12.953	3.701
434	13	1	0.602	1	0.818	1.070	6.5	05 3.24	3 5.259	3.940	0.559	1	6.499	1.771	2.218 0.439	NA 1.456	1.534	2.068	5.571 0.982	1.255 1.6	5 11.838	2.766	1.262	13.247	1.095	0.532 0	186 4.98	4.347	6.174
434	4	1	2.820	1	0.387	109.893	10.4	07 2.06	6 23.824	206,269	98.416	1	100.559	187.207	118.593 4.440	NA 4.801	4.396	6.688	10.497 3.168	17.375 1.35	56 46.339	89.118	1.842	62,788	12.495	2.141 1	258 1.97	29.496	3.558
434	12	1	3.761	1	1.097	51,407	7 36.4	99 0.98	6 25.852	279,518	67.244	1	60.775	286.822	386.654 1.802	NA 3.776	4.956	6482.234 2	123.549 2.014	15.753 8.3	14 21.484	84.557	1.186	64.225	17.884	4.123 1	717 2.32	37.847	8.976
434	5	1	2.251	1	1.091	21.467	24.7	87 2.10	1 1.661	8.495	4.965	1	9.029	5.638	5.698 1.605	NA 7.034	9.352	3.817	0.636 1.439	2.644 2.7	63 5.736	6.694	1.872	3.394	4.548	3.527 1	767 2.71	5.623	2.140
434	11	1	2.337	1	2.215	5.721	11.2	18 1.05	6 7.771	64.094	11.169	1	6.082	89.333	71.939 0.214	NA 6.671	4.469	2113.959	902.025 1.458	5.884 3.9	85 12.415	27.462	1.413	63.714	6.869	3.746 2	431 1.12	11.171	3.228
434	6	1	1.634	1	0.296	21.937	7 58.9	10 1.22	1 5.007	34.233	19.792	1	23.513	27.189	40.018 2.365	NA 8.774	10.855	3.565	1.360 1.323	6.795 1.83	85 8.512	23.610	0.982	11.357	3.710	1.139 2	655 1.16	12.934	3.187
434	10	1	2.008			4.424				19.828	10.410				20.727 1.890									5.565		0.515 1	747 1.39	7.744	1.737
434	7	1	1.707	1	0.196	26.541	1 38.4	79 1.28	6 8.043	68,663	53.424	1	30.633	55.688	63.582 1.452	NA 8.107	11.463	2.113	1.827 1.548	10.815 0.6	77 27.249	32.424	1.060	39,469	5.210	1.540 1	835 0.62	12.556	2.841
434	9	1	1.644	1	1.510	0.538	0.8	62 0.84	0.826	1.305	0.985	1	1.486	0.935	1.398 0.523	NA 0.985	0.897	3.582	2.339 0.948	1.225 1.6	12 1.704	1.188	1.173	1.881	1.287	0.836 1	422 D.63	1.521	1.367
434	8	1	1.909	1	1.265	51.919	9 5.1	20 1.74	6 10.926	56,498	43.425	1	43.512	53.432	35.451 0.820	NA 2.628	3.590	12.800	9.892 2.268	13.553 1.6	38 21.034	49.412	1.561	19.060	8.046	2.697 1	112 1.10	12.876	3.560

spearman<-cor(data.frame(patients),method="spearman")

```
[1] "1: 434 1"
[1] "2: 434 15"
```

[1] "3: 434 2"

[1] "4: 434 14"

[1] "5: 434 3"

[1] "6: 434 13" [1] "7: 434 4"

[1] "8: 434 12"

[1] "9: 434 5"

[1] "10: 434 11"

[1] "11: 434 6"

[1] "12: 434 10"

[1] "13: 434 7"

[1] "14: 434 9"

[1] "15: 434 8"

	X188	APOBEC3B						DDX58.RIG.			GAPDH	IF144	IFIT1		IL.10			IL1B	INFAS	INFB1
X18S	1	NA			ia na							NA	NA		NA	NA	NA	NA.	NA.	NA
APOBEC3B					71 0.389285714										0.428571429		0.039285714			
B.ACTIN	NA	NA			NA NA							NA.	NA		NA.	NA	NA.	NA.	NA.	NA
CCL.24 CCL2		0.06428571			0 1.000000000										-0.635714286 0.203571429		0.025000000			
CCL20		-0.03928571			0 1.0000000000 7 0.478571429										0.203571429		0.428571429			
CCL22		-0.15357143			6 0.307142857										0.003571429		0.021428571			
DDX58.RIG.1		0.63214286			4 0.746428571										0.278571429		0.082142857			
G1P2. ISG15		0.46428571			6 0.875000000										0.150000000		0.317857143			
G1P3		0.47500000			0 0.921428571										0.282142857		0.303571429			
GAPDH	NA	NA.			IA NA							NA	NA.		NA.	NA	NA.	NA	NA.	
IFI44	NA	0.36071429	N.	-0.517857	4 0.928571429	0.3714285	7 0.417857143	0.7928571	0.8821429	0.89285714	NA	1.00000000	0.8464286	0.7964286	0.300000000	NA	0.160714286	0.32142857	0.31785714	0.528571429
IFIT1	NA	0.61428571	N.S	-0.382142	6 0.828571429	0.3785714	3 0.260714286	0.91071429	0.9285714	0.87142857	NA	0.84642857	1.0000000	0.9678571	0.264285714	NA	0.225000000	0.41071429	0.56785714	0.700000000
IFIT4	NA	0.65714286	N.S	-0.442857	14 0.767857143	0.3785714	3 0.110714286	0.8571428	6 0.9178571	0.84642857	NA	0.79642857	0.9678571	1.0000000	0.367857143	NA	0.242857143	0.42500000	0.61428571	0.675000000
IL.10		0.42857143			9 0.203571429										1.000000000		-0.114285714			-0.003571429
IL.6	NA	NA			OA NA							NA.	NA		NA.	1		NA	NA.	NA
IL1A		0.03928571			0 0.428571429										-0.114285714		1.000000000			
IL1B		0.18214286			0 0.535714286										0.103571429		0.917857143			
INFA5		0.78214286			0 0.410714286										0.171428571		0.167857143			
INFB1		0.48214286			7 0.425000000										-0.003571429		-0.214285714			
IRF5		0.50357143			71 0.917857143										0.178571429		0.167857143			
IRF7 LPL		0.53928571			9 0.889285714 6 0.103571429										0.350000000 -0.271428571		0.167857143			
LY6E		0.41785714			6 0.828571429										0.192857143		0.160714286			
MX1		0.52857143			6 0.910714286										0.228571429		0.178571429			
NK4.IL.32.		0.42142857			7 0.460714286										-0.025000000		-0.007142857			
OASS		0.48571429			9 0.767857143										0.064285714		0.260714286			
OASL	NA	0.71428571			6 0.825000000							0.82857143	0.9464286	0.9392857	0.325000000	NA	0.167857143	0.33571429	0.71428571	0.696428571
OPN.SPP1.	NA	0.31071429	N3	0.392857	4 0.535714286	0.4607142	9 0.160714286	0.3714285	7 0.4464286	0.53214286	NA	0.37500000	0.4535714	0.3500000	-0.378571429	NA	0.478571429	0.48214286	0.37500000	0.225000000
PBEF	NA	0.51071429			9 0.003571429										0.467857143		0.339285714			
PI3		0.26785714			71 0.350000000										0.335714286		-0.064285714			
PRKR		0.50357143			9 0.875000000										0.292857143		0.207142857			
TNF.ALPHA	NA	0.30000000			0 0.682142857										0.000000000	NA	0.078571429	0.15357143	0.47142857	0.757142857
X188		IRF5 NA	IRF7	LPL	LY6E NA	HX1 NA	NK4.IL.32.	OAS3 NA	OASL	OPN.SPP1.	I	BEF NA	PI3 NA	PRKR TNF	'. ALPHA NA					
APOBEC3B	0.50				0.417857143						E1021									
B. ACTIN	0.30	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	. 51071	NA 0.20703	NA 0.50	NA U.SU	NA.					
CCL.24	-n 33				-0.482142857 -						160716									
CCTS					0.828571429															
CCL20					0.317857143															
CCL22	0.38	214286 0.2	785714	0.05000000	0.382142857	0.3428571	0.325000000 0	.15357143 (0.1392857 (0.16071429 -0	.367851	143 0.35000	00000 0.24	642857 0.37	142857					
DDX58.RIG.1	0.82	142857 0.8	892857	0.25000000	0.882142857	0.8928571	0.335714286 0	.83214286 (0.8857143 (37142857 0	.071428	571 0.37500	00000 0.83	928571 0.79	642857					
G1P2.ISG15					0.928571429															
G1P3	0.93	214286 0.9			0.835714286						.121428									
GAPDH		NA	NA.	NA.	NA	NA	NA.	NA	NA	NA		NA	NA	NA	NA					
IFI44					0.907142857															
IFIT1					0.917857143															
IFIT4					0.875000000															
IL.10 IL.6	0.17	857143 0.3 NA	500000 - NA	O.27142857	0.192857143 NA	0.2285714	0.025000000 0 NA	.06428571 (NA	3.3250000 -0 NA	0.37857143 O NA	.46785	143 0.33571 NA	14286 0.29 NA	285714 0.00 Na	NA NA					
IL1A	0.16				0.160714286						339289									
IL1B					0.303571429															
INFA5					0.425000000															
INFB1					0.721428571															
IRF5	1.00	0000000 0.9	142857	0.16071429	0.878571429	0.9535714	0.485714286 0	.77857143	.9000000	.55714286 -0	.046428	571 0.35000	00000 0.87	857143 0.69	285714					

11. x1<-patients[1,]

x3<-patients[3,]

x2<-patients[2,]

x4<-patients[4,]

x5<-patients[5,]

```
x6<-patients[6,]
x7<-patients[7,]
x8<-patients[8,]
x9<-patients[9,]
x10 < -patients[10,]
x11<-patients[11,]
x12<-patients[12,]
x13<-patients[13,]
x14<-patients[14,]
x15<-patients[15,]
cor.test(x=as.numeric(x5), y=as.numeric(x15), method="spearman")
> cor.test(x=as.numeric(x5), y=as.numeric(x15), method="spearman")
          Spearman's rank correlation rho
 data: as.numeric(x5) and as.numeric(x15)
 S = 124, p-value < 2.2e-16
 alternative hypothesis: true rho is not equal to O
 sample estimates:
        rho
 0.9694581
So the patients 434_3 and patient 434_8 were shown to be the most correlated.
plot(patient, main="Scatter plot for 434_3 vs 434_8")
```

