EXTRACTING
KEYPHRASES
AND
RELATIONS
FROM
SCIENTIFIC
PUBLICATIONS

Team No. 55
Introduction to NLP
Project Presentation

Team Members

Aakash Singh 2021201087

Mayank Mukundam 2021201057

Sourabh Patidar 2021201089

PROBLEM STATEMENT

- Our task is to present a method to extract keyword or keyphrases and relation between them from given piece of scientific text.
- This task can be classified further into 3 subtasks:
 - Extracting Keyphrases: Extract Key Scientific Phrases
 - Classify the Keyphrases: Classify the KeyPhrase in Process, Task & Material.
 - Identify the relationship: Identify the relations between Keyphrases

DATASET

- We have used the SemEval 2017 Task 10 dataset.
- The dataset is divided into train, validation and test set.
- Training set, Validation set and Test set contains of 350, 100 and 50 annotations and text file each.
- Text file contains the extract from some article, it's a 200-300 words paragraph.
- Annotation file contains the keyphrase boundaries and type of keyphrase.

DATA PREPROCESSING (FOR SUBTASK 1 AND 2)

Label with Description

Label	Description	
0	Not a Keyphrase/Keyword	
B-Process	Beginning of the Keyphrase of type Process	
I-Process	Inside of the Keyphrase of type Process	
B-Task	Beginning of the Keyphrase of type Task	
I-Task	Inside of the Keyphrase of type Task	
B-Material	Beginning of the Keyphrase of type Material	
I-Material	Inside of the Keyphrase of type Material	

DATA PREPROCESSING (FOR SUBTASK 3)

Label with Description (Subtask3)

Label	Description
0	No Relation
1	Hyponym-of
2	Synonym-of

METHODOLOGY (OVERVIEW)

- The task was divided into 3 subtask.
- We have combined the subtask1(i.e. Keyword extraction) and subtask2(i.e. Keyword Classification).
- And Subtask3(i.e. identifying relations) was performed and evaluated independent of the previous 2 subtasks.

METHODOLOGY(PART-1 AND PART-2)

- We have used the SciBERT, the variation of BERT model which is pretrained on the Scientific Data.
- The model is finetuned on the training set which has 55135 tokens.
- The model has been tested on the 18259 tokens.
- SciBERT -
 - Model architecture same as BERT-base model, just pre-trained on data of Scientific Domain
 - It has its own vocab, scivocab that is built to best match the scientific domain.

METHODOLOGY(PART-3)

- We had a pair of entities and relationship between them.
- Using sentence-transformer library, we have calculated the embeddings of each entities.
- Each embedding vector is of size 384.
- Concatenated both the entities, to get a vector of size 768.
- Trained a sym classifier on training data (around 1350 datapoints).

EVALUATION (SUBTASK 1 & 2)

Confusion Matrix

EVALUATION (SUBTASK 1 & 2)

• Classification Report

	precision	recall	f1-score	support	
0	0.97	1.00	0.98	32628	
B-Task	0.40	0.03	0.05	72	
I-Task	0.42	0.30	0.35	336	
B-Process	0.48	0.17	0.25	211	
I-Process	0.39	0.18	0.25	288	
B-Material	0.35	0.10	0.15	193	
I-Material	0.40	0.06	0.10	172	
accuracy			0.96	33900	
macro avg	0.49	0.26	0.31	33900	
weighted avg	0.95	0.96	0.96	33900	

EVALUATION (SUBTASK 1 & 2)

• Precision, Recall and F1-score

For subtask1 and subtask2

Score Type	Values
F1 Score	0.31
Precision Score	0.48
Recall Score	0.26

EVALUATION (SUBTASK 3)

Confusion Matrix

EVALUATION (SUBTASK 3)

• Classification Report

	precision	recall	f1-score	support
No Relation Hyponym-of Synonym-of	0.50 0.50 0.64	0.41 0.41 0.74	0.45 0.45 0.69	95 95 224
accuracy macro avg weighted avg	0.55 0.58	0.52 0.59	0.59 0.53 0.58	414 414 414

EVALUATION (SUBTASK 3)

• Precision, Recall and F1-score

For subtask3

Score Type	Values
F1 Score	0.53
Precision Score	0.55
Recall Score	0.52

SAMPLE RESULTS

Process Task Material

[CLS] the study outlines a trial of transient response analysis on full - scale motor ##way bridge structures to obtain informa tion concerning the steel — concrete interface and is part of a larger study to assess the long - term sustained benefits offer ed by imp ##ressed current cath ##odic protection (icc ##p) after the interruption of the protective current [1] . these st ructures had previously been protected for 5 — 16 ##years by an icc ##p system prior to the start of the study . the protective current was interrupted , in order to assess the long - term benefits provided by icc ##p after it has been turned off . this p aper develops and examines a simplified approach for the on - site use of transient response analysis and discusses the potential advantages of the technique as a tool for the assessment of the corrosion condition of steel in reinforced concrete structures . [SEP]

CONCLUSION

- The Scientific domain has very few annotated datasets available, SemEval 2017 task 10 was a sweet and short attempt to make dataset available for research purposes in scientific research domain.
- All the submissions of the task are based on RNNs and LSTMs, so we tried to solve the problem using transformers.
- For the same purpose we have used the pretrained SciBERT which is a scientific domain variation of BERT to solve the first 2 subtasks and also used ever reliable SVM to solve the 3rd subtask.

THANK YOU