Assignment 4 - Jupyter Notebook

Yogesh Agarwala EE19B130

March 10, 2021

0.1 Assignment 4: Fourier Approximations

```
[1]: import numpy as np
  import math
  from scipy.integrate import quad
  import matplotlib.pyplot as plt
  import timeit
```

0.2 Q1. Defining Functions

```
[2]: # The functions e^x and cos(cos(x)) are defined as:
def exp(x):
    return np.exp(x)
```

```
[3]: def coscos(x): return np.cos(np.cos(x))
```

0.3 Function Plots

```
[4]: # for e^x

x1 = np.linspace(-2*np.pi,4*np.pi,300)
x2 = np.linspace(0,2*np.pi,100)
tiled = np.tile(x2,3)
exp_x = exp(x1)

#Since exp(x) grows rapidly, we use semilogy for that plot.
plt.semilogy(x1,exp_x,'-r',label='True value')
plt.semilogy(x1,exp(tiled),'-b',label='Expected by fourier series')
plt.grid(True)
plt.ylabel(r'$e^{x}\rightarrow$',fontsize=15)
plt.xlabel(r'x$\rightarrow$',fontsize=15)
plt.title('Semilog plot of $e^{x}$',fontsize=15)
plt.legend(loc='upper right')
plt.show()
```



```
[5]: # for cos(cos(x))

x1 = np.linspace(-2*np.pi,4*np.pi,300)
coscos_x = coscos(x1)

plt.plot(x1,coscos_x,'r')
plt.grid(True)
plt.xlabel(r'x$\rightarrow$',fontsize=15)
plt.ylabel(r'$\cos(\cos(x))\rightarrow$',fontsize=15)
plt.title('Plot of $\cos(\cos(x))$',fontsize=15)
plt.show()
```


0.4 Q2. Finding the Fourier series coefficients: Integration approach

```
[7]: #calculating first 51 fourier coefficients for the two functions

coeff_coscos = find_coeff(51,'cos(cos(x))')

coeff_exp = find_coeff(51,'exp(x)')
```

0.5 Q3. Semilog and Loglog plot for both functions

0.5.1 (a) For e^x

```
[8]: # semilogy plot
plt.semilogy(range(51),np.abs(coeff_exp),'ro')
plt.grid(True)
plt.xlabel(r'n$\rightarrow$',fontsize=15)
plt.ylabel(r'Coefficient Magnitude$\rightarrow$',fontsize=15)
plt.title('Semilog Plot of coefficients for $e^{x}$',fontsize=15)
plt.show()

# loglog plot
plt.loglog(range(51),np.abs(coeff_exp),'ro')
plt.grid(True)
plt.xlabel(r'n$\rightarrow$',fontsize=15)
plt.ylabel(r'Coefficient Magnitude$\rightarrow$',fontsize=15)
plt.title('Loglog Plot of coefficients of $e^{x}$',fontsize=15)
plt.show()
```


0.5.2 (b) For cos(cos(x))

```
[9]: # semilogy plot
plt.semilogy(range(51),abs(coeff_coscos),'ro')
plt.grid(True)
plt.xlabel(r'n$\rightarrow$',fontsize=15)
plt.ylabel(r'Coefficient Magnitude$\rightarrow$',fontsize=15)
plt.title('Semilog Plot of coefficients for $cos(cos(x))$',fontsize=15)
plt.show()

# loglog plot
plt.loglog(range(51),abs(coeff_coscos),'ro')
plt.grid(True)
plt.xlabel(r'n$\rightarrow$',fontsize=15)
plt.ylabel(r'Coefficient Magnitude$\rightarrow$',fontsize=15)
plt.title('Loglog Plot of coefficients of $cos(cos(x))$',fontsize=15)
plt.show()
```


0.6 Q4. Finding the Fourier series coefficients: Least Squares approach

```
[10]: x = np.linspace(0, 2*np.pi, 401)
      x = x[:-1]
      y = np.linspace(0,2*np.pi,400)
[11]: # We want to solve the matrix equation "Ac = b" where c are the fourier,
      →coefficients.
      """A"""
      A = np.zeros((400,51))
      A[:,0] = 1
      for i in range(1,26):
          A[:,2*i-1] = np.cos(i*x)
          A[:,2*i] = np.sin(i*x)
      b_{exp} = exp(x)
      b_{coscos} = coscos(x)
      """" (""""
      c_exp = np.linalg.lstsq(A,b_exp, rcond=None)[0]
      c_coscos = np.linalg.lstsq(A,b_coscos,rcond=None)[0]
[12]: #Runtime is calculated for comparison with the least squares method.
      """integration approach"""
      start1 = timeit.default_timer()
      coeff_exp = find_coeff(51,'exp(x)')
      elapsed1 = timeit.default_timer() - start1
      print('Runtime with integration approach = ',elapsed1)
      """linear square approach"""
      start2 = timeit.default timer()
      for i in range(1,26):
          A[:,2*i-1] = np.cos(i*x)
          A[:,2*i] = np.sin(i*x)
      b_exp = exp(x)
      c_exp = np.linalg.lstsq(A,b_exp, rcond=None)[0]
      elapsed2 = timeit.default_timer() - start2
      print('Runtime with linear square approach = ', elapsed2)
     Runtime with integration approach = 0.16507640000000023
```

Runtime with linear square approach = 0.00368279999999986

[13]: # CLearly, the runtime in lstsq approach is found to be 50 times less than the direct integration approach

0.6.1 Q5. Plots comparing the coefficients by "Integration" and "Least Square" approaches

0.6.2 (a) For e^x

```
[14]: # semilogy plot
      plt.semilogy(range(51),np.abs(coeff_exp),'ro',label='True Value (Integration)')
      plt.semilogy(range(51),np.abs(c_exp),'go',label='Predicted Value (Least_

→Squares)')
      plt.grid(True)
      plt.xlabel(r'n$\rightarrow$',fontsize=15)
      plt.ylabel(r'$Coefficient\rightarrow$',fontsize=15)
      plt.title('Semilog Plot of coefficients for $e^{x}$',fontsize=15)
      plt.legend(loc='upper right')
      plt.show()
      # loglog plot
      plt.loglog(range(51),np.abs(coeff_exp),'ro',label = 'True Value (Integration)')
      plt.loglog(range(51),np.abs(c_exp),'go',label='Predicted Value (Least Squares)')
      plt.grid(True)
      plt.xlabel(r'n$\rightarrow$',fontsize=15)
      plt.ylabel(r'$Coefficient\rightarrow$',fontsize=15)
      plt.title('Loglog Plot of coefficients of $e^{x}$',fontsize=15)
      plt.legend(loc='lower left')
      plt.show()
```


0.6.3 (b) For cos(cos(x))

```
[15]: # semilogy plot
      plt.semilogy(range(51), abs(coeff_coscos), 'ro', label='True Value (Integration)')
      plt.semilogy(range(51),abs(c_coscos),'go',label="Predicted Value (Least_

→Squares)")
      plt.grid(True)
      plt.xlabel(r'n$\rightarrow$',fontsize=15)
      plt.ylabel(r'$Coefficient\rightarrow$',fontsize=15)
      plt.title('Semilog Plot of coefficients for $cos(cos(x))$',fontsize=15)
      plt.legend(loc='upper right')
      plt.show()
      plt.loglog(range(51),abs(coeff_coscos),'ro',label='True Value (Integration)')
      plt.loglog(range(51),abs(c_coscos),'go',label="Predicted Value (Least Squares)")
      plt.grid(True)
      plt.xlabel(r'n$\rightarrow$',fontsize=15)
      plt.ylabel(r'Coefficient$\rightarrow$',fontsize=15)
      plt.title('Loglog Plot of coefficients of $cos(cos(x))$',fontsize=15)
      plt.legend(loc='upper right')
      plt.show()
```


0.7 Q6. Calculating the deviation b/w Least square and direct integration cofficients

```
[16]: deviation_exp = abs(coeff_exp - c_exp)
    deviation_coscos = abs(coeff_coscos - c_coscos)

[17]: max_dev_exp = np.max(deviation_exp)
    max_dev_coscos = np.max(deviation_coscos)
    print("Largest deviation b/w the two sets of coefficients of e^x =", max_dev_exp)
    print("Largest deviation b/w the two sets of coefficients of cos(cos(x)) =", \( \triangle \)
    \triangle max_dev_coscos)
```

Largest deviation b/w the two sets of coefficients of $e^x = 1.332730870335439$ Largest deviation b/w the two sets of coefficients of cos(cos(x)) = 2.674677035413032e-15

0.7.1 Q7. Plots compare the function values obtained by the "least squares" method with the "true" value

0.7.2 (a) For e^x

```
[18]: # Ac from the estimated values of c represents the function values
      """true"""
      x1 = np.linspace(-2*np.pi, 4*np.pi, 300)
      x2 = np.linspace(0,2*np.pi,100)
      tiled = np.tile(x2,3)
      """predicted"""
      x3 = np.linspace(0,2*np.pi,401)
      x3 = x3[:-1]
      predicted_exp = np.matmul(A,c_exp)
      plt.plot(x1,exp_x,'-r',label='True value')
      plt.semilogy(x1,exp(tiled),'-b',label='Expected by fourier series')
      plt.plot(x3,predicted_exp,'go',label="Predicted value")
      plt.grid(True)
      plt.xlabel(r'n$\rightarrow$',fontsize=15)
      plt.ylabel(r'$f(x)\rightarrow$',fontsize=15)
      plt.title('Plot of $cos(cos(x))$ and its Fourier approximation',fontsize=15)
      plt.legend(loc='upper right')
      plt.show()
```


0.7.3 (b) For cos(cos(x))

```
[19]: # Ac from the estimated values of c represents the function values
      """true"""
      x1 = np.linspace(-2*np.pi, 4*np.pi, 300)
      coscos_x = coscos(x1)
      """predicted"""
      x2 = np.linspace(0,2*np.pi,401)
      x2 = x2[:-1]
      predicted_coscos = np.matmul(A,c_coscos)
      plt.plot(x1,coscos_x,'-r',label='True value')
      plt.plot(x2,predicted_coscos,'go',label="Predicted value")
      plt.grid(True)
      plt.xlabel(r'n$\rightarrow$',fontsize=15)
      plt.ylabel(r'$f(x)\rightarrow$',fontsize=15)
      plt.title('Plot of $cos(cos(x))$ and its Fourier approximation',fontsize=15)
      plt.legend(loc='upper right')
      plt.show()
```

