Discrete logarithm in finite fields of small characteristic

Édouard Rousseau Université de Versailles

June 1, 2017

CONTENTS

INTRODUCTION

The discrete logarithm problem Terminology Historical background

INDEX CALCULUS

Overview

An example

QUASI-POLYNOMIAL ALGORITHMS
Barbulescu, Gaudry, Joux and Thomé algorithm
Granger, Kleinjung and Zumbrägel algorithm

CONTEXT

- $G = \langle g \rangle$ cyclic group generated by g
- $ightharpoonup N = \operatorname{Card} G$.

We have a bijection

$$\exp_g: \ \mathbb{Z}/N\mathbb{Z} \to G$$

$$\bar{n} \mapsto g^n$$

- $\log_g := \exp_g^{-1}$
- ▶ Compute g^n from n: easy
- ightharpoonup Compute *n* from g^n : hard (discrete logarithm problem)

DEFINITIONS

Notation:

$$L_N(\alpha) = \exp((c + o(1))(\log N)^{\alpha}(\log\log N)^{1-\alpha}).$$

Two families of algorithms:

- ► The *generic* algorithms (complexity : $O(\sqrt{N})$)
- ▶ The *index calculus* algorithms, using group structure

Terminology:

- ▶ *small characteristic* : \mathbb{F}_q with $q = p^k$ and $p \ll q$
- *quasi-polynomial* complexity : $\log q^{O(\log \log q)}$

HISTORICAL BACKGROUND

- ► First appearance in [DH76]
- ► First sub-exponential algorithm [A79] : L(1/2)
- ▶ Between 1984 and 2006 : algorithms in L(1/3)

And more recently, in finite fields of small characteristic:

- ▶ New algorithm with L(1/4) complexity [Joux13]
- ▶ Quasi-polynomial algorithm [BGJT14]
- ► Second quasi-polynomial algorithm [GKZ14]

OVERVIEW

Goal: find $log_g(h)$

- 0. first choose $F \subset G$ with $\langle F \rangle = G$
- 1. find multiplicative relations between elements in *F*
- 2. solve the associated linear system
- 3. express *h* as a product of elements in *F*

The steps 1 and 3 depends on the representation of the finite field, and give different complexities.

Context:

- $G = \mathbb{F}_p^{\times}$ for a prime p and N = |G|
- ▶ $F = \{f \mid f \leq B, f \text{ prime}\}$ for a chosen integer B

Step 1: relations generation

- ▶ randomly choose $e \in \mathbb{Z}/N\mathbb{Z}$
- test if g^e is B-smooth
- ▶ if it is the case, it yields a relation in *G* :

$$g^e = \prod_{f \in F} f^{e_f}$$
, où $e_f \in \mathbb{N}$

that can be written

$$e = \sum_{f \in F} e_f \log_g(f).$$

AN EXAMPLE

Step 2 : linear algebra : solve the linear system Step 3 : express h in function of the elements in F :

- ▶ randomly choose $e \in \mathbb{Z}/N\mathbb{Z}$
- test if hg^e is B-smooth
- if it is the case, it yields a relation :

$$\log_g(h) = \sum_{f \in F} e_f \log_g(f) - e$$

Depends on B:

- ▶ *B* large : easier to find relations
- ▶ *B* large : need more relations to solve the system

Complexity : L(1/2)

BARBULESCU, GAUDRY, JOUX AND THOMÉ ALGORITHM

Context:

- ▶ $\mathbb{K} = \mathbb{F}_{q^{2k}} = \mathbb{F}_{q^2}[X]/(I_X)$ with I_X irreducible polynomial of degree k dividing $h_1X^q h_0$ and deg $h_i \leq 2$.
 - **heuristic**: existence of h_i
- $ightharpoonup F = \{ degree one polynomials \}$

Idea: descent process:

$$P \rightsquigarrow O(q^2k) P_i$$

with $\deg P_j \leq \left\lceil \frac{1}{2} \deg P \right\rceil$

► Complexity : $(q^2k)^{O(\log k)}$.

Based on the equation:

$$X^{q}Y - XY^{q} = Y \prod_{a \in \mathbb{F}_{q}} (X - aY) = \prod_{\alpha \in \mathbb{P}^{1}(\mathbb{F}_{q})} (X - \alpha Y)$$
 (1)

Substitute X by aP + b and Y by cP + d in (1), with $a, b, c, d \in \mathbb{F}_{q^2}$, use $X^q = \frac{h_0}{h_1} \mod I_X$:

$$\frac{1}{h_1^D} \mathcal{L}_{a,b,c,d} = \lambda \prod_{\alpha \in \mathbb{P}^1(\mathbb{F}_q)} (P - \mu_{\alpha})$$

where $\lambda, \mu_{\alpha} \in \mathbb{F}_{q^2}$ and $\deg \mathcal{L}_{a,b,c,d} \leq 3 \deg P$

- ▶ keep only the equations $(E_{a,b,c,d})$ where $\mathcal{L}_{a,b,c,d}$ is $\left\lceil \frac{\deg P}{2} \right\rceil$ -smooth
- combine these equations to keep only *P* in the right hand side.
- ▶ left hand side : irreducible polynomials of degree $\leq \left\lceil \frac{\deg P}{2} \right\rceil$.
- heuristics:
 - ► The existence of the combination
 - ▶ The smoothness of the polynomials $\mathcal{L}_{a,b,c,d}$

GRANGER, KLEINJUNG AND ZUMBRÄGEL ALGORITHM

Context:

▶ $\mathbb{K} = \mathbb{F}_{q^k} = \mathbb{F}_q[X]/(I_X)$ with I_X irreducible polynomial of degree k dividing $h_1X^q - h_0$.

Ideas:

- descent process
- "on the fly" elimination

"ON THE FLY" ELIMINATION

Input:

▶ $Q \in \mathbb{F}_{q^m}[X]$ and $\deg Q = 2$

Output:

▶ $Q \rightsquigarrow O(q) \ Q_i$ with deg $Q_i = 1$ and $Q_i \in \mathbb{F}_{q^m}[X]$

Ideas:

▶ $P = X^{q+1} + aX^q + bX + c$ splits completly in $\mathbb{F}_{q^m}[X]$ for $\approx q^{m-3}$ triples (a, b, c).

"ON THE FLY" ELIMINATION

$$P = \frac{1}{h_1}((X+a)h_0 + (bX+c)h_1) \mod I_X$$

▶ if $Q|(X+a)h_0 + (bX+c)h_1$ (degree 3), we have $h_1P = QL \mod I_X$

where *L* is of degree 1 and *P* splits completly.

 $Q \in \mathbb{F}_q[X]$ irreducible of degree 2*d*, we have

$$Q = \prod_{i=0}^{d-1} Q_i = \prod_{i=0}^{d-1} Q_0^{[i]}$$

with

- ▶ Q_i irreducible of degree 2 in $\mathbb{F}_{q^d}[X]$
- $Q_i = Q_0^{[i]}$ conjugate of Q_0

- "on the fly" elimination: $Q_0^{[i]} \leadsto O(q) \ P_i^{[i]}$
- $ightharpoonup Q \leadsto O(q) \ N_j \ \text{with} \ N_j = \prod_{i=0}^{d-1} P_j^{[i]}$

 $N_j = R_j^{e_j}$ with $R_j \in \mathbb{F}_q[X]$ irreducible of degree f_j and $e_j f_j = d$

- ▶ $Q \leadsto O(q) R_j$ with deg $R_j \mid d$
- complexity: $q^{O(\log q)}$.