

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Ponta Grossa

Projeto de Estruturas de Dados II.

Prof. Saulo Queiroz

1. Sua equipe de até quatro integrantes receberá (possivelmente via Moodle) uma massa de dados de ≈4GB consistindo de alguns milhões de registros de dados de uma aplicação qualquer. Cada registro tem 1024 Bytes e obedece a especificação do seguinte tipo abstrato de dados:

```
struct registro
{
unsigned long chave;//Campo chave Valor nao se repete.
unsigned long naochave;//Campo qualquer. Valor pode repetir.
unsigned char outros[1008];//outros campos: 1008 bytes (dados)
};
```

Qual a missão?

Resposta curta: Fazer um programa que imprima na tela o(s) registro(s) correspondentes a um dado valor de entrada correspondente ao campo naochave. Note que como o valor dado não é chave pode haver mais de um registro. Todos os registros encontrados devem ser impressos na tela.

O que entregar?

(a) FONTES EM C

- i. programa em C compilável em ambiente Linux com gcc-5 (ou equivalente) que permita ao professor informar o valor naochave de entrada e escolher uma DENTRE DUAS ESTRATÉGIAS DE BUSCA DISTINTAS implementadas pela equipe (uma das estratégias deve, essencialmente, basear-se em estrutura de dados não estudada em sala). Como resposta o programa deverá imprimir na tela o(s) registro(s) e uma estimativa do tempo necessário para completar a busca.
- ii. bibliotecas E arquivos de cabeçalhos correspondentes à(s) estrutura(s) de dados utilizada(s) para resolver o problema. TODO O PROJETO DEVE SER MODU-LARIZADO EM BIBLIOTECAS.
- (b) Breve Relatório de projeto contendo:
 - i. Aspectos teóricos contendo ao menos: breve menção e explicação de ao menos uma estratégia que poderia resolver o problema mas que é inadequada no quesito eficiência. Explicar por que são inadequadas; Descrição das duas estratégia de busca adotadas. Acompanhada da descrição deve vir uma breve texto justificando a escolha da estrutura. AMBAS AS ESTRATÉGIAS DA EQUIPE DEVEM PRIORIZAR A REDUÇÃO DO TEMPO DE BUSCA E, EM SEGUNDO LUGAR, A ECONOMIA DE ESPAÇO.
 - ii. Aspectos práticos práticos contendo ao menos: breve explicação de como a estratégia foi implementada: lista de bibliotecas, arquivos e protótipos das funções mais importantes (explicar o que faz: entrada, processamento e saída); para cada função indicar seu responsável (somente 1 aluno pode ser o responsável independentemente de mais de um colaborar na mesma função);

- A. ajuste/definição de parâmetros [QUANDO PERTINENTE]. Se houver algum parâmetro nas estruturas escolhidas (muito comum em *hash*), explicar como foram definidos. Informar caso tenham feito testes preliminares para tomada de decisão.
- B. instruções de compilação do programa e das bibliotecas.
- C. explicação da metodologia para medição dos tempos de busca pedidos.
- D. projetar um ou mais testes comparativos para se ter ideia sobre qual das estratégias é mais eficiente. Ex.: Você pode estimar a melhor estrutura como sendo aquela que apresenta melhor desempenho para um determinado subconjunto de registros que caiba na memória RAM. Relembre suas aulas de estatística para determinar o tamanho desse conjunto. Não esqueça de descrever brevemente a metodologia adotada no relatório.
- E. outros aspectos que se manifestarem relevantes para o projeto (especialmente no quesito de desempenho) e que não tenham sido mencionados anteriormente.

Suposições e recomendações gerais:

- 1. BLOCO DE DISCO: 4096 bytes.
- 2. A memória RAM do computador do prof. não tem 4 GB sobrando para carregar o arquivo inteiro. Além disso, só será tolerada a varredura sequencial do arquivo para a construção do índice em RAM.
- 3. Os trabalhos serão corrigidos em ambiente Linux com gcc-5. Erros de compilação ou mal-funcionamento anularão a nota do projeto.