

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

AMENDMENT "A"

APPLICANTS:

Shinichiro Yamada et al.

ATTY DOCKET NO: 09792909-4

09792909-4734

TC 12002

SERIAL NO.:

09/747,627

GROUP ART UNIT:

1745

DATE FILED:

December 22, 2000

EXAMINER:

J. Crepeau

INVENTION:

"METHODS OF PRODUCING NEGATIVE ELECTRODE

MATERIAL, NEGATIVE ELECTRODE, AND NON-AQUEOUS

ELECTROLYTE BATTERY"

Hon. Assistant Commissioner for Patents

Washington, DC 20231

COPY OF PAPERS ORIGINALLY FILED

SIR:

This Amendment "A" is filed in response to the Office Action of July 3, 2002. Please reconsider the application in view of the amendment and remarks presented below.

IN THE CLAIMS

Please amend claims 1, 2, 3, 4, 6, and 7 as follows:

1. (Amended) A method of producing a negative electrode material composed of a mixture of a non-carbon material and a carbon material, comprising the step of:

pulverizing and classifying each of the non-carbon material and the carbon material in an inert gas atmosphere,

wherein a ratio of an average particle size R_M of the non-carbon material in the negative electrode material to an average particle size R_C of the carbon material in the negative electrode material is in a range of $R_M/R_C \le 1$.

2. (Amended) A method of producing a negative electrode material composed of a mixture of a non-carbon material and a carbon material, comprising the step of:

mixing the non-carbon material and the carbon material in an inert gas atmosphere,

wherein a ratio of an average particle size R_M of the non-carbon material in the negative electrode material to an average particle size R_C of the carbon material in the negative electrode material is in a range of $R_M/R_C \le 1$.

Sul)

 O_{γ}