Artificial Intelligence

Perceptron Learning Algorithm

BỞI HCMUT-CNCP

Pham Viet Cuong
Dept. Control Engineering & Automation, FEEE
Ho Chi Minh City University of Technology

✓ Proposed by Minsky and Papert in 1969

✓ A single perceptron can only be used to implement linearly separable functions

✓ OR function using a Perceptron

x_1	x_2	OR	MOACNCA
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$

$$w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0$$
 $w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 > -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 > -w_0$
 $w_0 + w_1 \cdot 1 + w_2 \cdot 1 \ge 0 \implies w_1 + w_2 > -w_0$

One possible solution is

$$w_0 = -1, w_1 = 1.1, w_2 = 1.1$$

$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$

where,
$$x_0 = 1$$
 and $w_0 = -\theta$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

$$\mathbf{w} = [w_0, w_1, w_2, ..., w_n]$$
$$\mathbf{x} = [1, x_1, x_2, ..., x_n]$$

$$\mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathrm{T}} \mathbf{x} = \sum_{i=0}^{n} w_i * x_i$$

Algorithm

Goal: Find vector w that can perfectly classify positive inputs and

Algorithm: Perceptron Learning Algorithm

negative inputs

```
\begin{array}{c} P \leftarrow inputs & with & label & 1; \\ N \leftarrow inputs & with & label & 0; \end{array}
                                                                   Initialize w randomly:
                                                                       while !convergence do
                                                                         Pick random \mathbf{x} \in P \cup N;
                 y = 1 if \sum w_i * x_i \ge 0 Lift x \in P \cup N;
                                                          вот немит-сис\mathbf{w} = \mathbf{w} + \mathbf{x};
                   =0 \quad if \sum_{i=0} w_i * x_i < 0
                                                                           if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then
                                                                              \mathbf{w} = \mathbf{w} - \mathbf{x};
                                                                           end
where, x_0 = 1 and w_0 = -\theta
                                                                       end
                                                                        //the algorithm converges when all the
                                                                        inputs are classified correctly
```


✓ Angle between 2 vectors

 \mathbf{w}

 p_3

- ✓ When x belongs to P
 - \bullet We want $\mathbf{w}.\mathbf{x} \ge 0$
 - $\alpha \leq 90^{\circ}$
- ✓ When x belongs to N
 - **♦** We want **w**.**x** < 0
 - $\Leftrightarrow \alpha > 90^{\circ}$

✓ References

https://towardsdatascience.com/perceptron-learning-algorithm-

d5db0deab975

