

zesinsell' **eistici श्टार्टा Computagão**

Latches

Técnicas Digitais

1. Latch RS (ou SR)

Exemplo de diagrama de tempos

possível sequência de valores

	R	S	Q	$\overline{\mathbf{Q}}$
t=0	0	1	1	0
t=1	0	0	1	0
t=2	1	0	0	1
t=3	0	0	0	1
t=4	1	1	0	0

Obs: supomos que o atraso das portas NOR é 1 ns

Conclusões

• Q e \overline{Q} são complementares, exceto no caso R = 1, S = 1, que deve ser evitado.

- R e S são portanto entradas de controle deve-se ligar apenas uma delas a cada vez enquanto ambas estiverem desligadas, o latch mantém o valor anterior
- LATCH é um circuito sequencial assíncrono memória é obtida pela realimentação num circuito combinacional

Tabela -verdade do latch RS

R	S	Q	Q(next)	Q (next)
0	0	0	0	1
0	0	1	1	0
1	0	X	0	1
0	1	X	1	0
1	1	X	0	0

R	S	Qn+1
0	0	Qn
0	1	1
1	0	0
1	1	não usado

Técnicas Digitais

Usando NAND's

Possível sequência de valores

	S	R	Q	$\overline{\mathbf{Q}}$	
t=0	1	0	0	1	
t=1	1	1	0	1	
t=2	0	1	1	0	
t=3	1	1	1	0	
t=4	0	0	1	1	

Conclusões

• R = 1, S = 1 mantém estado anterior (ambas entradas inativas)

• R = 1, S = 0 "liga" o latch SET ativo em 0

• R = 0, S = 1 "desliga" o latch RESET ativo em 0

• R = 0, S = 0 deve ser evitado (ambas entradas ativas)

Tabela-verdade

S	R	Qn+1
0	0	não usado
0	1	1
1	0	0
1	1	Qn

2. Latch RS controlado

acrescentar sinal de controle que habilita a transição da saída

esquema equivalente

quando C = 1

latch opera conforme já visto

quando C = 0

alterações em R e S não afetam estado do latch

Latch RS controlado com NANDs

- quando C = 0 alterações não afetam estado
- quando C = 1

S	R	Qn+1
0	0	Qn
0	1	0
1	0	1
1	1	não usado

RESET ativo em 1 SET ativo em 1

inverteu a lógica devido ao NAND adicional na entrada

3. Latch tipo D

Problema do Latch RS: S = 1, R = 1

estado indeterminado

Solução: LATCH TIPO D

- uma entrada de dados apenas, ligada a S
- entrada R é sempre o complemento de S

Tabela - verdade

C	D	Qn+1	
0	X	Qn	
1	0	0	RESET
1	1	1	SET

- latch D responde imediatamente a qualquer mudança na entrada enquanto C = 1, latch está aberto \implies saída segue a entrada
- latch D fica fechado (mantém estado) enquanto C = 0

o latch é <u>sensível ao nível</u> do sinal de controle (sensível à fase do sinal de controle C (clock))

problema causado pela transparência

situação inicial

$$Q_1 = 0, \overline{Q}_1 = 1$$

 $Q_2 = 0, \overline{Q}_2 = 1$

- aplica-se $D_1 = 1$ na entrada
- o que se d<u>es</u>eja é

$$Q_1 = 1$$
, $Q_1 = 0$ após primeiro pulso de controle

$$Q_2 = 1$$
, $Q_2 = 0$ após segundo pulso de controle

• o que ocorre realmente

Q₂ também pode ir para 1 ainda no primeiro pulso do sinal de controle

- ou seja: enquanto C = 1 e os latches estiverem "abertos ", o valor de entrada (D_1) se propaga através de todos os latches
- solução aparente
 - fazer pulso de controle bem estreito
 - impraticável distribuir uniformemente um pulso estreito por um circuito muito grande, sem que ele sofra distorções devidas aos atrasos

• generalizando o problema: circuitos síncronos

enquanto controle = 1, devido à realimentação, novos valores nas saídas dos latches (próximo estado) podem passar pela lógica combinacional e afetar novamente as entradas dos latches, alterando o valor

esperado do estado

5. Soluções possíveis

- não controlar todos os latches pelo mesmo sinal de controle
 - usar relógio de várias fases
- não usar latches e sim flip-flops na construção de máquinas com diversos elementos de memória.
 - flip-flop mestre-escravo (master-slave) isola saída da entrada
 - entrada afeta estado num primeiro momento
 - estado afeta saída num segundo momento
 - flip-flop sensível à borda (edge-triggered)
 - alteração no estado é sensível à transição do sinal de controle, e não ao nível