TD 8 : DÉNOMBREMENT

Exercice 1. Dans un jeu de 52 cartes, on choisit 5 cartes au hasard (ces 5 cartes s'appellent une main).

- 1. Combien de mains contiennent exactement 2 dames et 1 roi ? $\begin{pmatrix} 4 \\ 2 \end{pmatrix} \times \begin{pmatrix} 4 \\ 1 \end{pmatrix} \times \begin{pmatrix} 44 \\ 2 \end{pmatrix}$
- 2. Combien de mains contiennent au moins 3 rois? $\binom{4}{3} \times \binom{48}{2} + \binom{4}{4} \times \binom{48}{1}$

Exercice 2. Soit A une partie d'un ensemble E à n éléments. On pose p = Card A.

- 1. Combien y-a-t-il de parties X de E contenant A?
 - Premier raisonnement combinatoire Chaque partie X de E contenant A peut avoir $p, p+1, p+2, \ldots, n$ éléments. Ainsi, si X contient A et a (p+k) éléments avec $k \in \{0,1,\ldots,n-p\}$, les k éléments qui s'ajoutent à ceux de A seront choisis parmi les (n-p) éléments de E-A. Le nombre de choix possible de k éléments parmi les (n-p) éléments est C(n-p,k). Le nombre de parties X de E contenant A est alors : $\sum_{k=0}^{n-p} C(n-p,k) = \sum_{k=0}^{n-p} C(n-p,k) \times 1^k \times 1^{n-p-k} = (1+1)^{n-p} = 2^{n-p}$
 - Deuxième raisonnement combinatoire Chaque partie X de E contenant A est obtenue par la réunion de A et d'un sous-ensemble de E-A. Les sous-ensemble de E-A constitutent son ensemble des parties $\mathcal{P}(E-A)$. Le nombre de sous ensembles de E-A est donc 2^{n-p} , avec Card(E-A)=n-p. Donc la réponse cherchée est : 2^{n-p} .
- 2. Combien y-a-t-il de parties X de E à m éléments contenant $A, m \in \{p, \ldots, n\}$? On a m = p + k avec $k \in \{0, 1, \ldots, n p\}$. Les k éléments qui s'ajoutent à ceux de A seront choisis parmi les (n p) éléments de E A. Le nombre de choix possible de k éléments parmi les (n-p) éléments est C(n-p,k). D'où le nombre de parties X de E à m éléments contenant A est alors : C(n-p,m-p)
- 3. Combien y-a-t-il de couples (X,Y) de parties de E tels que $X\cap Y=A$? Les éléments de E-A qui s'ajoutent à A pour former X sont distincts de ceux qui s'ajoutent à A pour former Y car $X\cap Y=A$. Si X contient m éléments incluant ceux de A (C(n-p,m-p) possibilités), alors Y peut contenir jusqu'à (n-m) éléments en plus de ceux de A. On a donc $\sum_{i=0}^{n-m} C(n-m,i) = \sum_{k=0}^{n-m} C(n-m,k)1^i1^{n-m-i} = (1+1)^{n-m} = 2^{n-m}$ possibilités de constitution de Y connaissant les m éléments de X. Le nombre de couples (X,Y) de parties de E tels que $X\cap Y=A$ est alors : $\sum_{m=p}^{n} C(n-p,m-p) \times 2^{n-m} = \sum_{k=0}^{n-p} C(n-p,k) \times 2^{n-(k+p)} = \sum_{k=0}^{n-p} C(n-p,k) \times 2^{(n-p)-k} = \sum_{k=0}^{n-p} C(n-p,k) \times 2^{(n-p)-k} \times 1^k = (2+1)^{n-p} = 3^{n-p}$

Exercice 3. Soit la relation : $k \times C(n, k) = n \times C(n - 1, k - 1)$

1. Démontrez la relation.

Demonstrez la relation.
$$C(n,k) = \frac{n!}{(n-k)! \times k!} = \frac{n(n-1)!}{(n-k)! \times k(k-1)!}.$$

En multipliant les deux membres par k puis en simplifiant le membre de gauche par k on a: $k \times C(n,k) = \frac{n(n-1)!}{(n-k)! \times (k-1)!} = \frac{n(n-1)!}{(n-k-1+1)! \times (k-1)!} = \frac{n(n-1)!}{[(n-1)-(k-1)]! \times (k-1)!} = n \times C(n-1,k-1)$

2. En déduire pour tout entier positif n, la somme :

$$\begin{split} C(n,1) + 2 \times C(n,2) + \dots + k \times C(n,k) + \dots + n \times C(n,n) \\ C(n,1) + 2 \times C(n,2) + \dots + k \times C(n,k) + \dots + n \times C(n,n) \\ &= n \times C(n-1,1-1) + n \times C(n-1,2-1) + \dots + n \times C(n,k-1) + \dots + n \times C(n-1,n-1) \\ &= n(C(n-1,0) + C(n-1,1) + \dots + C(n,k-1) + \dots + C(n-1,n-1)) \\ &= n \times \sum_{i=0}^{n-1} C(n-1,i) \\ &= n \times \sum_{i=0}^{n-1} C(n-1,i) \times 1^i \times 1^{n-1-i} \\ &= n \times (1+1)^{n-1} \\ &= n \times 2^{n-1} \end{split}$$

3. En déduire pour tout entier positif non nul n, la somme :

$$C(n,2) + \dots + (k-1) \times C(n,k) + \dots + (n-1) \times C(n,n)$$

$$C(n,2) + \dots + (k-1) \times C(n,k) + \dots + (n-1) \times C(n,n)$$

$$= (2 \times C(n,2) + \dots + k \times C(n,k) + \dots + n \times C(n,n)) - (C(n,2) + \dots + C(n,k) + \dots + C(n,n))$$

$$Or \ 2 \times C(n,2) + \dots + k \times C(n,k) + \dots + n \times C(n,n) = n \times 2^{n-1} - C(n,1),$$

$$donc \ C(n,2) + \dots + (k-1) \times C(n,k) + \dots + (n-1) \times C(n,n)$$

$$= n \times 2^{n-1} - C(n,1) - (C(n,2) + \dots + C(n,k) + \dots + C(n,n))$$

$$= n \times 2^{n-1} - (C(n,1) + C(n,2) + \dots + C(n,k) + \dots + C(n,n))$$

$$= n \times 2^{n-1} + C(n,0) - (C(n,0) + C(n,1) + C(n,2) + \dots + C(n,k) + \dots + C(n,n))$$

$$= n \times 2^{n-1} + 1 - 2^n$$

$$= 1 + (n-2) \times 2^{n-1}$$

Exercice 4. Combien y a-t-il d'entiers entre 1 et 400 qui ne sont divisibles ni par 2, ni par 3, ni par 4?

$$400 - \left| \frac{400}{2} \right| - \left| \frac{400}{3} \right| + \left| \frac{400}{2 \times 3} \right| = 133$$

Exercice 5. Calculez le coe icient de x^4y^7 dans le développement de $(2x-y)^{11}$. -(11) * 16 = -5280

Exercice 6. Dénombrement

(1) Quel est le coefficient de $a^3b^4c^3$ dans le développement de $(a+b+c)^{10}$? Dans le développement de

$$(a+b+c)^{10} = (a+b+c)(a+b+c)...(a+b+c)$$

on obtient un terme $a^3b^4c^3$ en choisissant trois a, quatre b et trois c.

Il y a $\binom{10}{3}$ choix possibles pour les facteurs dont viendront les a.

Après ce premier choix, il y a $\binom{7}{4}$ choix possibles pour les facteurs d'où viendront les b. Au total, il y a :

$$\binom{10}{3}\binom{7}{4} = 4200$$

termes $a^3b^4c^3$ dans ce développement.

(2) Même question avec $a_1^{k_1} a_2^{k_2} \dots a_p^{k_p}$ dans $(a_1 + a_2 + \dots + a_p)^n$. De même, on obtient $\frac{n!}{\prod_{i=1}^p k_i!}$ si $\sum_{i=1}^p k_p = n$ et 0 sinon.

Exercice 7. Pour $n \in \mathbb{N}^*$ et $p \in \mathbb{N}$, on note : $\sum_{n=0}^{p}$ le nombre de n-uplets $(x_1, x_2, ..., x_n) \in \mathbb{N}^n$ tel que $x_1 + x_2 + \dots + x_n = p.$

- 1. Déterminer $\sum_{n=0}^{\infty}$, $\sum_{n=0}^{\infty}$, $\sum_{n=0}^{\infty}$, $\sum_{n=0}^{\infty}$, $\sum_{n=0}^{\infty}$.

 - ∑_n⁰ = 1. Le seul n-uplet dont la somme des termes est zéro est : (0).
 ∑_n¹ = n. Les n-uplets contiennent n − 1 fois le chiffre 0 et seul chiffre 1. Il y a n façons de positionner le chiffre 1 dans un n-uplet.
 ∑_n² = n(n+1)/2. Les n-uplets contiennent un seul chiffre 2 et n − 1 zéros ou deux fois le chiffre 1 et n − 2 zéros. Il y a n façons de positionner le chiffre 2 dans un n-uplet et il y a $C(n,2) = \frac{n(n-1)}{2}$ façons de positionner deux fois le chiffre 1 dans un *n*-uplet. Le nombre

 - recherché est donc $n + \frac{n(n-1)}{2} = \frac{n(n+1)}{2}$ $\sum_{1}^{p} = 1$. On a (x_1) tel que $x_1 = p$. Le seul n-uplet possible est (p). $\sum_{2}^{p} = p + 1$. On a (x_1, x_2) tel que $x_1 + x_2 = p$. Soit $x_2 = p x_1$ et $(x_1, x_2) = (x_1, p x_1)$. Il y a p + 1 façons de choisir x_1 , soit $x_1 \in \{0, \dots, p\}$
- 2. Établir que $\forall n \in \mathbb{N}^*, \forall p \in \mathbb{N}, \sum_{n+1}^p = \sum_n^0 + \sum_n^1 + \dots + \sum_n^p$ Par définition, \sum_{n+1}^p est le nombre de (n+1)-uplets tels que $x_1 + x_2 + \dots + x_n + x_{n+1} = p$.
 C'est donc le nombre de n-uplets tels $x_1 + x_2 + \dots + x_n = p x_{n+1}$, soit $\sum_n^{p-x_{n+1}}$ (par définition).

On a $x_{n+1} \in \{0, \dots, p\}$, donc p+1 choix possibles de x_{n+1} .

Par suite,
$$\sum_{n=1}^{p} \sum_{n=1}^{p-0} \sum_{n=1}^{p-1} \sum_{n=$$

• Il est également possible de démontrer la relation par récurrence en montrant le cas de base

$$\sum_{1}^{0} + \sum_{1}^{1} + \dots + \sum_{1}^{p} = \underbrace{1 + 1 + \dots + 1}_{(p+1)fois} = p + 1 \text{ car } \sum_{1}^{k} = 1 \text{ avec comme seul uplet } (k). \text{ De}$$

plus on a $\sum_{1}^{p} = p + 1$ (question 1). Donc $\sum_{1}^{p} = \sum_{1}^{0} + \sum_{1}^{1} + \dots + \sum_{1}^{p}$.

3. En déduire que $\sum_n^p = C(n+p-1,p)$

Preuve par induction:

$$\sum_{1}^{p} = 1 = C(p, p) = C(1 - 1 + p, p)$$
. La relation est vraie pour $n = 1$.

$$\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{i=1}^{q} \sum_{j=1}^{q} \sum_{j=1}^{q} \sum_{i=1}^{q} \sum_{j=1}^{q} \sum_{j$$

$$\sum_{n=0}^{\infty} C(n+0-1,0) + C(n+1-1,1) + C(n+2-1,2) + \cdots + C(n+n-1,n)$$

$$\sum_{n=0}^{p-1} = C(n-1,0) + C(n,1) + C(n+1,2) + \cdots + C(n+n-1,n)$$

$$C(n-1,0) - C(n,0) \text{ done } \sum^{p} - (C(n,0) + C(n,1)) + C(n+1,2) + \dots + C(n+n-1,n)$$

$$\sum_{n=1}^{p} = C(n+2,2) + \cdots + C(n+p-1,p)$$

d'où
$$\sum_{n=1}^{p} = C(n+p,p)$$

On peut donc conclure que $\sum_{n=0}^{p} C(n+p-1,p)$.

Exercice 8. Soit E un ensemble à n éléments. On appelle dérangement de E toute permutation de E ne laissant aucun élément invariant. On notera D_n le nombre de dérangements de E. On pose $D_0 = 1$.

- 1. Si E comporte un seul élément, y-a-t-il des dérangements de E? En déduire D_1 . Réponse : Pas de dérangement. $D_1 = 0$.
- 2. Si E comporte deux éléments, combien y-a-t-il de dérangements de E ? En déduire D_2 . Réponse : 1 dérangement. $D_2 = 1$.
- 3. On suppose n quelconque, et on ecrit $E = \{a_1, ..., a_n\}$. Soit f une permutation de E. On suppose qu'elle laisse k éléments invariants. Combien y-a-t-il de telles permutations ? En déduire la formule suivante :

$$n! = \sum_{k=0}^{n} C(n,k) \times D_k$$

Réponse : Une permutation qui laisse k éléments invariants contient (n-k) dérangements, soit D_{n-k} .

Il y a C(n, k) façons d'avoir k éléments invariants.

Le nombre de permutations est donc $\sum_{k=0}^{n} C(n,k) \times D_{n-k}$.

Déduction : Le nombre de permutations de E est n!. On peut donc établir que $n! = \sum_{k=0}^{n} C(n,k) \times D_{n-k}$. $\sum_{k=0}^{n} C(n,k) \times D_{n-k} = C(n,0) \times D_n + C(n,1) \times D_{n-1} + \cdots + C(n,n-1) \times D_1 + C(n,n) \times D_0$

En considérant que C(n,k) = C(n,n-k), on a : $\sum_{k=0}^{n} C(n,k) \times D_{n-k} = C(n,n) \times D_n + C(n,n-1) \times D_{n-1} + \dots + C(n,1) \times D_1 + C(n,0) \times D_0$ D'où $n! = \sum_{k=0}^{n} C(n,k) \times D_k$.

4. En déduire D_3 , D_4 , D_5 .

Réponse : $D_3 = 2$ car $3! = \sum_{k=0}^{3} C(3,k) \times D_k$. En faisant une démarche analogue on obtient $D_4 = 9, D_5 = 44$.

Exercice 9. Marie possède cinq paires de gants et s'amuse à les porter de façon dépareillée; tout d'abord, elle sépare les gants pour la main gauche des gants pour la main droite. Ensuite, elle numérote les gants pour la main gauche de 1 à 5, et les gants pour la main droite de 1 à 5 (où la paire de gants assortis correspond au gant pour la main gauche $n^{\circ}x$ et au gant pour la main droite $n^{\circ}x$). Finalement, pour chaque gant pour la main droite, elle choisit au hasard un gant pour la main gauche pour finir la paire.

- 1. À chaque numéro de gant pour la main gauche, on associe le numéro du gant pour la main droite avec lequel il est en paire. Combien y a t-il d'associations possibles?
 - Réponse : Une telle association correspond à une permutation de $\{1,...,5\}$. Il y a 5! = 120 possibilités.
- 2. De combien de manières peut-on composer cinq paires de gants de sorte qu'aucune paire légitime ne soit reconstituée?
 - Réponse : Si aucune paire légitime n'est reconstituée, c'est qu'il y a un dérangement. Il y a $D_5 = 44$ possibilités (voir numéro précédent).
- 3. De combien de manières peut-on composer cinq paires de gants pour qu'une seule paire légitime soit reconstituée?
 - Réponse : Si une seule paire légitime est reconstituée, il y a 5 choix pour cette paire. Pour le reste, il faut un dérangement : il y a donc $5 \times D_4 = 45$ possibilités (voir numéro précédent).
- 4. De combien de manières peut-on composer cinq paires de gants pour qu'il y ait plus de paires illégitimes assorties que de paires légitimes ?

 Réponse :
 - On peut avoir trois (03) paires illégitimes et deux (02) paires légitimes. Or il y a C(5,3) = 10 choix de 2 paires légitimes parmi 5. Pour les 3 autres, il faut une association qui soit un dérangement D_3 . On a donc : $10 \times D_3 = 20$ possibilités (voir numéro précédent).
 - On peut avoir quatre (04) paires illégitimes et une (01) paire légitime. Ce cas est traité dans la question précédente (question 3.). On a donc : $5 \times D_4 = 45$ possibilités (voir numéro précédent).
 - On peut avoir cinq (05) paires illégitimes et zéro (0) paire légitime. Ce cas est traité dans la question 2. On a donc : $D_5 = 44$ possibilités (voir numéro précédent).

Le nombre d'associations où il y a plus de paires illégitimes que de paires légitimes est donc : 20 + 45 + 44 = 109.

Exercice 10. Parmi les permutations de l'ensemble $E = \{a, b, c, d, e, f\}$ (que l'on peut représenter par les mots de 6 lettres qui contiennent exactement une fois chaque lettre de E), combien y en a-t-il qui ne contiennent ni ab ni cd ni ef?

Première méthode

- Nombre de permutations qui contiennent ab.

 Pour une position fixe de ab, il y a : 4! possibilités de placer les autres lettres. Or il y a 5 positions possibles pour ab. Donc pour ab on a : 5 × 4! = 120 possibilités de permutations.
- Nombre de permutations qui contiennent cd. Le raisonnement est analogue au cas de ab. D'où $5 \times 4! = 120$ possibilités de permutations.
- Nombre de permutations qui contiennent ef. Le raisonnement est analogue au cas de ab. D'où $5 \times 4! = 120$ possibilités de permutations.
- Nombre de permutations qui contiennent ab et cd Pour une position fixe de ab et cd, il y a : 2! possibilités de placer les autres lettres. Il y a 5 positions possibles pour ab. Une fois ab placé, il y a 3, 2, 2, 2, 3 positions respectives pour cd. Soit 12 possibilités. Donc pour ab et cd on a : 12 × 2! = 24 possibilités de permutations.
- Nombre de permutations qui contiennent ab et ef Le raisonnement est analogue au cas de ab et cd. D'où $12 \times 2! = 24$ possibilités de permutations.
- Nombre de permutations qui contiennent cd et ef Le raisonnement est analogue au cas de ab et cd. D'où $12 \times 2! = 24$ possibilités de permutations.
- Nombre de permutations qui contiennent ab, cd et ef Il y a 3! = 6 possibilités de permutations.

Le résultat recherché est alors $6! - (3(5 \times 4!) - 3(12 \times 2!) + 3!) = 720 - 294 = 426$ possibilités de permutations.

Deuxième méthode

- Pour avoir ab seul on a : $5 \times 4! 42$ possibilités. Pareil pour cd seul ou ef seul. Au total on a : $3(5 \times 4! 42) = 234$ possibilités.
- Pour avoir ab et cd ensemble et sans ef on a : 18 possibilités. Pareil pour cd et ef sans ab puis ab et ef sans cd. Au total on a : 54 possibilités.
- Pour avoir ab, cd et ef ensemble on a : 6 possibilités.

Le résultat recherché est alors $6! - 3(5 \times 4! - 42) - (3 \times 18) - 6 = 426$ possibilités de permutations.

Exercice 11. Un mot long de n lettres compte l lettres différentes. La $i^{`eme}$ lettre apparaît n_i fois dans le mot, donc on a :

$$\sum_{i=1}^{l} n_i = n$$

Combien d'anagrammes du mot peut-on écrire?

- Si on considère toutes les lettres comme distinctes, même lorsqu'il s'agit de la même lettre de l'alphabet, il y a n! permutations. Chaque anagramme a une ou plusieurs permutations qui permet(tent) de l'obtenir.
- Quel que soit l'anagramme considéré, le nombre de permutations associées est $\prod_{i=1}^{l} (n_i!)$ (faire un exemple si nécessaire).

Donc il y a $\frac{n!}{\prod_{i=1}^{l} n_i!}$ anagrammes.

Exercice 12. On considère le mot MORPHEUS.

- 1. Dénombrer les anagrammes du mot. 8!
- 2. Dans chacun des cas suivants, dénombrer les anagrammes du mot :
 - 2.1. commençant et finissant par une voyelle; $6 \cdot 6!$
 - 2.2. commençant et finissant par une consonne;
 - 2.3. commençant par une consonne et finissant par une voyelle; 15.6
 - 2.4. commençant par une voyelle et finissant par une consonne. $15 \cdot 6!$

Exercice 13. Résoudre les relations de récurrence suivantes :

1.
$$a_n = 5a_{n-1} - 6a_{n-2}$$
; $a_0 = 1$ et $a_1 = 0$

Réponse :
$$a_n = 3 \times 2^n - 2 \times 3^n$$

2.
$$a_n = a_{n-1} + a_{n-2}$$
; $a_0 = 0$ et $a_1 = 1$
Réponse : $a_n = \left(\frac{-1+\sqrt{5}}{2}\right)^n + \frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^n$

3.
$$a_n = 2a_{n-1} - 2a_{n-2}$$
; $a_0 = 1$ et $a_1 = 3$

4.
$$a_n = 2a_{n-1} + a_{n-2} + 6a_{n-3}$$
; $a_0 = 1$, $a_1 = -4$ et $a_2 = -4$

5.
$$a_n = 7a_{n-1} - 16a_{n-2} + 12a_{n-3}$$
; $a_0 = 0$, $a_1 = 1$ et $a_2 = 2$ Réponse : $a_n = \left(2 + \frac{3n}{2}\right) \times 2^n - 2 \times 3^n$

Exercice 14. Donner un ordre de grandeur asymptotique pour T(n).

1.
$$T(n) = 4T(n/2) + n^3$$
. Réponse : $O(n^3)$

2.
$$T(n) = 8T(n/2) + n^2$$
. Réponse : $O(n^3)$

3.
$$T(n) = 2T(n/4) + n^2$$
.