

- »Гл. ас. д-р Георги Чолаков
- »Бази от данни

Релационна алгебра

Въведение

Третата и последна част на релационния модел (манипулативната част) се състои от множество от оператори, които образуват така наречената релационна алгебра. Тя дефинира теоретичен модел за манипулиране на данните чрез релационни оператори с цел извличане на полезна информация.

Codd дефинира 8 операции:

- > SELECT (RESTRICT)
- > PROJECT
- > UNION
- > INTERSECT
- > DIFFERENCE
- > PRODUCT
- > JOIN
- > DIVIDE

Затвореност

Релационната алгебра притежава свойството затвореност - резултатът от всяка релационна операция е отново релация (релационна затвореност).

- > Така всеки изход от една операция може да бъде вход на друга операция;
- > Ще е възможно да създаваме <u>вградени изрази</u> т.е. операндите могат да бъдат представени посредством изрази;

SELECT (RESTRICT)

Приложен върху една таблица (унарен) връща отново таблица, която съдържа всички колони от оригиналната и само записите, отговарящи на специфицираните условия (предикати).

T.e. операторът SELECT връща хоризонтално подмножество от таблицата, т.е. редовете, които имат стойности на атрибутите си, отговарящи на зададените условия.

SELECT – пример с таблицата PRODUCTS

PRODUCT_ID	NAME	PRICE	DESCR
1733	Външен хард диск ADATA Durable HD330	109.00	1ТВ, Shock Sensor, 2.5", USB 3.1, Черен
1734	Таблет Xiaomi mi Pad 4	206.00	Таблет Xiaomi mi Pad 4 ,3GB RAM 32 GB ROM ,black
1737	Таблет Samsung Tab3 T113	198.00	Таблет Samsung Tab3 T113 Lite Value Edition с проце
1739	USB памет Kingston DataTraveler 100 G3	9.00	6GB, USB 3.0
1742	Безжични слушалки I7s PLUS	15.00	Безжични слушалки I7s PLUS с кутия за зареждане
1743	Лаптоп 2 in 1 Lenovo YOGA Glass C930-13IKB	4800.00	Лаптоп 2 in 1 Lenovo YOGA Glass C930-13lKB with pro
1745	Таблет Lenovo Tab Yoga 3 YT3-X50M	349.00	Таблет Lenovo Tab Yoga 3 YT3-X50M, 10.1', Quad-Cor
1750	Монитор LED TN AOC 24.5	299.00	Монитор LED TN AOC 24.5", Full HD, FreeSync 144Hz
1763	Процесор AMD FX-8350	147.00	Процесор AMD FX-8350, 4.0GHz, 16MB, 125W, AM3+.
1768	Лаптоп 2 in 1 HP ENVY x360 13-ag0001nn	1845.00	Лаптоп 2 in 1 HP ENVY x360 13-ag0001nn с процесор

SELECT * FROM PRODUCTS WHERE PRODUCT_ID = 1745

SELECT * FROM PRODUCTS WHERE PRICE > 300

PRODUCT_ID	NAME	PRICE	DESCR
1745	Таблет Lenovo Tab Yoga 3 YT3-X50M	349.00	Таблет Lenovo Tab Yoga 3 YT3-X50М

PRODUCT_ID	NAME	PRICE	DESCR
1743 1745	Лаптоп 2 in 1 Lenovo YOGA Glass C930-13IKB	4800.00	Лаптоп 2 in 1 Lenovo YOGA Glas
1745	Таблет Lenovo Tab Yoga 3 YT3-X50M	349.00	Таблет Lenovo Tab Yoga 3 YT3
1768	Лаптоп 2 in 1 HP ENVY x360 13-ag0001nn	1845.00	Лаптоп 2 in 1 HP ENVY x360 13-а

PROJECT

Приложен върху една таблица (унарен) връща отново таблица, която съдържа всички стойности от редовете, но само за избраните колони от оригиналната.

T.e. операторът PROJECT връща вертикално подмножество от таблицата, т.е. всички редове, но само с избраните колони.

PROJECT – пример с таблицата PRODUCTS

PRODUCT_ID	NAME	PRICE	DESCR
1733	Външен хард диск ADATA Durable HD330	109.00	1ТВ, Shock Sensor, 2.5", USB 3.1, Черен
1734	Таблет Xiaomi mi Pad 4	206.00	Таблет Xiaomi mi Pad 4 ,3GB RAM 32 GB ROM ,black
1737	Таблет Samsung Tab3 T113	198.00	Таблет Samsung Tab3 T113 Lite Value Edition с проце
1739	USB памет Kingston DataTraveler 100 G3	9.00	6GB, USB 3.0
1742	Безжични слушалки I7s PLUS	15.00	Безжични слушалки I7s PLUS с кутия за зареждане
1743	Лаптоп 2 in 1 Lenovo YOGA Glass C930-13IKB	4800.00	Лаптоп 2 in 1 Lenovo YOGA Glass C930-13IKB with pro
1745	Таблет Lenovo Tab Yoga 3 YT3-X50M	349.00	Таблет Lenovo Tab Yoga 3 YT3-X50M, 10.1', Quad-Cor
1750	Монитор LED TN AOC 24.5	299.00	Монитор LED TN AOC 24.5", Full HD, FreeSync 144Hz
1763	Процесор AMD FX-8350	147.00	Процесор AMD FX-8350, 4.0GHz, 16MB, 125W, AM3+.
1768	Лаптоп 2 in 1 HP ENVY x360 13-ag0001nn	1845.00	Лаптоп 2 in 1 HP ENVY x360 13-ag0001nn с процесор

SELECT name FROM PRODUCTS

SELECT price, product_id FROM PRODUCTS

NAME
USB памет Kingston DataTraveler 100 G3
Безжични слушалки I7s PLUS
Външен хард диск ADATA Durable HD330
Лаптоп 2 in 1 HP ENVY x360 13-ag0001nn
Лаптоп 2 in 1 Lenovo YOGA Glass C930-13l
Монитор LED TN AOC 24.5
Процесор AMD FX-8350
Таблет Lenovo Tab Yoga 3 YT3-X50M
Таблет Samsung Tab3 T113
Таблет Xiaomi mi Pad 4

PRICE	PRODUCT_ID
9.00	1739
15.00	1742
109.00	1733
147.00	1763
198.00	1737
206.00	1734
299.00	1750
349.00	1745
1845.00	1768
4800.00	1743

PROJECT – примери

Съвместимост на типове

Нека разгледаме обединението:

- » В математиката обединението на две множества е множеството на всички елементи, принадлежащи към едно от двете оригинални множества;
- Понеже релацията е множество от записи възможно е да конструираме обединението на две релации;
- » Но възможно ли е да възникнат проблеми?

Резултат:

?	?	?	?
Стоян	Колев	Проф.	ФМИ
Петър	Иванов	Доц.	Право
Изкуствен интелект	20	424	
Венета	Георгиева	Ст.н.с.	Икономика
Спас	Петров	Доц.	ФМИ
Изкуствен интелект	20	424	

- » Въпреки, че резултатът е множество от (разнотипни) редове, той не е релация!
- » Релацията не може да съдържа смесени типове записи!
- » Искаме резултатът да е релация, за да запазим свойството затвореност;
- » Следователно, обединението в релационната алгебра не е идентично с математическото обединение;
- » По-скоро то е специален случай, при който изискваме двете входни релации да бъдат от един и същ тип.

Съвместимост на типове

- » Двете релации да имат идентични заглавни части т.е.:
 - > Да имат еднакви множества от имена на атрибутите;
 - Кореспондиращите атрибути да са дефинирани върху еднакви области.
- » Съвместимост по типове се изисква за операторите:
 - > Обединение (UNION)
 - > Ceчение (INTERSECT)
 - > Разлика (DIFFERENCE)

UNION

Създава релация, която се състои от всички записи, които се появяват във всяка една или и в двете релации.

- » Обединението на две релации A и B със <u>съвместими типове</u> поражда трета релация със:
 - > заглавна част като на А и В (трябва да бъдат съвместими);
 - > тяло множеството от всички записи, принадлежащи на A, B или на двете, като дубликатите се елиминират.

UNION – пример

PRODUCT_ID	NAME	PRICE
1734	Таблет Хіаоті mi Pad 4	206.00
(1749)	Монитор Acer Gaming LED IPS 23.8	237.00
3087	Монитор Gaming LED IPS LG 25	224.00

UNION =

UNION ALL

PRODUCT_ID	NAME	PRICE
1749	Монитор Acer Gaming LED IPS 23.8	237.00
2373	Таблет HUAWEI MediaPad Т3	256.00
2879	Дънна платка GIGABYTE Z370P D3	256.00
3087	Монитор Gaming LED IPS LG 25	224.00

PRODUCT_ID	NAME	PRICE
1734	Таблет Хіаоті ті Раd 4	206.00
(1749)	Монитор Acer Gaming LED IPS 23.8	237.00
2373	Таблет HUAWEI MediaPad Т3	256.00
2879	Дънна платка GIGABYTE Z370P D3	256.00
3087	Монитор Gaming LED IPS LG 25	224.00

PRODUCT_ID	NAME	PRICE
1734	Таблет Xiaomi mi Pad 4	206.00
1749	Монитор Acer Gaming LED IPS 23.8	237.00
1749	Монитор Acer Gaming LED IPS 23.8	237.00
2373	Таблет HUAWEI MediaPad Т3	256.00
2879	Дънна платка GIGABYTE Z370P D3	256.00
3087	Монитор Gaming LED IPS LG 25	224.00
3087	Монитор Gaming LED IPS LG 25	224.00

UNION – пример 2

UNION

UNION ALL

INTERSECT

Създава нова релация, състояща се от всички n-торки, които се появяват в двете релации едновременно.

- » Сечението на две релации A и B със съвместими типове поражда трета релация със:
 - > заглавна част като на А и В (трябва да бъдат съвместими);
 - > тяло множеството от всички записи, принадлежащи едновременно на A и B, т.е. общите за двете релации n-торки (записи).

INTERSECT - пример

PRODUCT_ID	NAME	PRICE
1734	Таблет Хіаоті mi Pad 4	206.00
(1749)	Монитор Acer Gaming LED IPS 23.8	237.00
3087	Монитор Gaming LED IPS LG 25	224.00

PRODUCT_ID	NAME	PRICE
1749	Монитор Acer Gaming LED IPS 23.8	237.00
3087	Монитор Gaming LED IPS LG 25	224.00

PRODUCT_ID	NAME	PRICE
1749	Монитор Acer Gaming LED IPS 23.8	237.00
2373	Таблет HUAWEI MediaPad Т3	256.00
2879	Дънна платка GIGABYTE Z370P D3	256.00
(3087)	Монитор Gaming LED IPS LG 25	224.00

INTERSECT – пример

INTERSECT – пример с IN

PL/SQL

T-SQL

DIFFERENCE

Създава нова релация, състояща се от всички записи, които се появяват в първата, но не и във втората релация.

- » Разликата на две релации A и B със съвместими типове поражда трета релация със:
 - > заглавна част като на А и В (трябва да бъдат съвместими);
 - > тяло множеството от всички записи, принадлежащи на A и непринадлежащи на B.

DIFFERENCE – пример

A

PRODU	CT_ID	NAME	PRICE
1734		Таблет Хіаоті ті Рад 4	206.00
1749		Монитор Acer Gaming LED IPS 23.8	237.00
3087		Монитор Gaming LED IPS LG 25	224.00

PRODUCT_ID	NAME	PRICE
1734	Таблет Хіаоті mi Pad 4	206.00

A-B

DIFFERENCE

B-A

B

PRODUCT_ID	NAME	PRICE
1749	Монитор Acer Gaming LED IPS 23.8	237.00
2373	Таблет HUAWEI Media Pad Т3	256.00
2879	Дънна платка GIGABYTE Z370P D3	256.00
3087	Монитор Gaming LED IPS LG 25	224.00

PRODUCT_ID	NAME	PRICE
2373	Таблет HUAWEI MediaPad Т3	256.00
2879	Дънна платка GIGABYTE Z370P D3	256.00

DIFFERENCE – пример

A

	PRODU	CT_ID	NAME	PRICE
	1734		Таблет Хіаоті ті Рад 4	206.00
ſ	1749		Монитор Acer Gaming LED IPS 23.8	237.00
١	3087		Монитор Gaming LED IPS LG 25	224.00

A-B

DIFFERENCE

B-A

B

PRODUCT_ID	NAME	PRICE
1749	Монитор Acer Gaming LED IPS 23.8	237.00
2373	Таблет HUAWEI Media Pad Т3	256.00
2879	Дънна платка GIGABYTE Z370P D3	256.00
3087	Монитор Gaming LED IPS LG 25	224.00

DIFFERENCE – пример 2

Α			
PRODU	CT_ID	NAME	PRICE
1734		Таблет Хіаоті ті Рад 4	206.00
1749		Монитор Acer Gaming LED IPS 23.8	237.00
3087		Монитор Gaming LED IPS LG 25	224.00

A-B

DIFFERENCE

B

B-A

(<u>11111111111111111</u>		
PRODUCT_ID	NAME	PRICE
1749	Монитор Acer Gaming LED IPS 23.8	237.00
2373	Таблет HUAWEI MediaPad Т3	256.00
2879	Дънна платка GIGABYTE Z370P D3	256.00
3087	Монитор Gaming LED IPS LG 25	224.00

PRODUCT (CARTESIAN)

Създава нова релация, състояща се от всички възможни комбинации от записи от двете релации.

- » Произведението (Декартово) на две релации A и B поражда трета релация със:
 - > заглавна част обединението на заглавните части на А и В;
 - > тяло множеството от всички записи t, където t е конкатенацията на всеки запис от A с всеки от B;
 - > степен на резултата сумата от степените на А и В;
 - > кардиналност на резултата произведението от кардиналностите на А и В.

PRODUCT – пример

A

REGION_ID	NAME
1	Източна Европа
3	Азия
5	Западна Европа

PRODUCT .

AxB

•		
ш	J	
_		-

COUNTRY_ID	NAME	REGION_ID
BG	България	1
CH	Швейцария	5
CN	Китай	3
DE	Германия	5

	REGION_ID	NAME	COUNTRY_ID	NAME	REGION_ID
1	1	Източна Европа	BG	България	1
2	1	Източна Европа	CH	Швейцария	5
3	1	Източна Европа	CN	Китай	3
4	1	Източна Европа	DE	Германия	5
5	3	Риг	BG	България	1
6	3	Риг	CH	Швейцария	5
7	3	Риг	CN	Китай	3
8	3	Риг	DE	Германия	5
9	5	Западна Европа	BG	България	1
10	5	Западна Европа	CH	Швейцария	5
11	5	Западна Европа	CN	Китай	3
12	5	Западна Европа	DE	Германия	5

JOIN

» Това е сред най-полезните оператори в релационната алгебра и е най-често използвания способ за комбиниране на данни от две или повече релации;

Ще разгледаме следните видове JOIN операции:

- » Natural join
- » Theta (Θ) join
- » Equi-join
- » Semi-join
- » Anti-join
- » Outer join

NATURAL JOIN

A

REGION_ID	NAME
1	Източна Европа
3	Азия
5	Западна Европа

	REGION_ID		COUNTRY_ID	NAME
1	1	Източна Европа	BG	България
2	5	Западна Европа	CH	Швейцария
3	3	Rия	CN	Китай
4	5	Западна Европа	DE	Германия

NATURAL JOIN

B

NAME	REGION_ID
България	1
Швейцария	5
Китай	3
Германия	5
	България Швейцария Китай

Създава нова релация от двете дадени релации, като:

- ✓ Заглавната част е обединението на двете заглавни части на операндите;
- ✓ Тялото съдържа всички възможни свързани двойки от записи, така че всяка двойка да има равенство на стойностите във всички атрибути с еднакви имена (общите) от двете релации.

NATURAL JOIN - 1.PRODUCT

» Може да бъде представен като: 1. Декартово произведение (PRODUCT), последвано от операциите 2. SELECT и 3. PROJECT.

A

REGION_ID	NAME
1	Източна Европа
3	Азия
5	Западна Европа

AxB

PRODUCT

B

COUNTRY_ID	NAME	REGION_ID
BG	България	1
CH	Швейцария	5
CN	Китай	3
DE	Германия	5

	REGION_ID	NAME	COUNTRY_ID	NAME	REGION_ID
1	1	Източна Европа	BG	България	1
2	1	Източна Европа	CH	Швейцария	5
3	1	Източна Европа	CN	Китай	3
4	1	Източна Европа	DE	Германия	5
5	3	Rия	BG	България	1
6	3	Rия	CH	Швейцария	5
7	3	Rия	CN	Китай	3
8	3	Азия	DE	Германия	5
9	5	Западна Европа	BG	България	1
10	5	Западна Европа	CH	Швейцария	5
11	5	Западна Европа	CN	Китай	3
12	5	Западна Европа	DE	Германия	5

NATURAL JOIN - 2. SELECT

	REGION_ID	NAME	COUNTRY_ID	NAME	REGION_ID
1	1	Източна Европа	BG	България	1
2	1	Източна Европа	CH	Швейцария	5
3	1	Източна Европа	CN	Китай	3
4	1	Източна Европа	DE	Германия	5
5	3	Ризия	BG	България	1
6	3	Ризия	CH	Швейцария	5
7	3	Ризия	CN	Китай	3
8	3	Ризия	DE	Германия	5
9	5	Западна Европа	BG	България	1
10	5	Западна Европа	CH	Швейцария	5
11	5	Западна Европа	CN	Китай	3
12	5	Западна Европа	DE	REGION	I ID NAME

A.REGION_ID = B.REGION_ID

REGION_ID	NAME	COUNTRY_ID	NAME	REGION_ID
1	Източна Европа	BG	България	1
5	Западна Европа	CH	Швейцария	5
3	Азия	CN	Китай	3
5	Западна Европа	DE	Германия	5

NATURAL JOIN - 3.PROJECT

REGION_ID	NAME	COUNTRY_ID	NAME	REGION_ID
1	Източна Европа	BG	България	1
5	Западна Европа	CH	Швейцария	5
3	Азия	CN	Китай	3
5	Западна Европа	DE	Германия	5

Без дубликати на колони

REGION_ID	NAME	COUNTRY_ID	NAME
1	Източна Европа	BG	България
5	Западна Европа	CH	Швейцария
3	Азия	CN	Китай
5	Западна Европа	DE	Германия

NATURAL JOIN - Пример

Забележки:

- ✓ Не всички SQL езици поддържат синтаксиса за NATURAL JOIN;
- ✓ От фигурата се вижда, че атрибутът REGION_ID участва само веднъж в резултата, за разлика от примера с PRODUCT.

O-JOIN

» Нека релациите A и B нямат общи атрибути и нека Θ е валиден оператор за сравнение (=, >, <, >=, <=, <>). Тогава Θ-join на релацията A върху атрибута X с релацията B върху атрибута Y е резултатът от изпълнението на израза:

 $(A \times B)$ WHERE X Θ Y

т.е. резултатната релация е със:

- » заглавна част като на Декартовото произведение на A и B, т.е. обединението на заглавните части на A и B;
- » тяло множеството на всички записи, принадлежащи на Декартовото произведение, за които X ⊕ Y е вярно.

Θ-JOIN – Пример 1

» Нека имаме следните релации A и B, съдържащи съответно преподаватели и университети, в които те преподават и нека в случая Θ е операторът за сравнение '='. Тогава резултатната релация ще съдържа само записите от Декартовото произведение, оцветени в жълто:

Α	TEACH_IN	FName	LName	Title
	101	Стоян	Колев	Проф.
	102	Петър	Иванов	Доц.
	101	Венета	Георгиева	Ст.н.с.

В	UNI_ID	Name	Short
	101	Пловдивски университет	ПУ
	102	Софийски университет	СУ

(A \times B) WHERE A.TEACH_IN Θ B.UNI_ID

TEACH_IN	FName	LName	Title	UNI_ID	Name	Short
101	Стоян	Колев	Проф.	101	Пловдивски университет	ПУ
101	Стоян	Колев	Проф.	102	Софийски университет	СУ
102	Петър	Иванов	Доц.	101	Пловдивски университет	ПУ
102	Петър	Иванов	Доц.	102	Софийски университет	СУ
101	Венета	Георгиева	Ст.н.с.	101	Пловдивски университет	ПУ
101	Венета	Георгиева	Ст.н.с.	102	Софийски университет	СУ

Θ-JOIN − Пример 2

EQUI-JOIN

» Това е частен случай на Θ -join, в който операторът Θ е само операторът за сравнение =.

SEMI-JOIN

- » Връща редовете от първата релация, за които има поне един съвпадащ от втората релация;
- » Разликата между него и досега описаните е, че редовете от първата релация ще участват в резултата най-много по веднъж;
- Дори втората релация да има два съвпадащи за ред от първата, само едно копие на реда ще бъде върнато в резултата;
- » Реализира се с предикатите EXISTS или IN.

SEMI-JOIN - Пример

» Ще използваме таблиците REGIONS и COUNTRIES за демонстрация

SEMI-JOIN - Пример

» Ще покажем всички региони, за които има поне една въведена държава:

Ясно се вижда, че редовете за регионите се повтарят толкова пъти, колкото държави има в региона.

Също се вижда, че регион с REGION_ID = 6 не участва в резултата, защото няма държави в този регион.

Дубликатите могат да бъдат елиминирани с ключовата дума DISTINCT, но това ще повлияе само на визуализацията им, не и на ефективността на извличане на данните.

SEMI-JOIN - Пример

» Следните заявки ще извлекат същите данни, но без дубликати и по-ефективно:

Тук броят върнати редове във вложената заявка се проверява дали е 0 или повече, също така няма значение какви колони връща тя.

Тук за всеки ред от REGIONS се проверява стойността на REGION_ID дали е измежду върнатите от вложената заявка.

ANTI-JOIN

» Операторът ANTI-JOIN между две релации върши обратното на SEMI-JOIN: връща редовете от първата релация, които нямат съвпадения във втората.

» По своята природа това е операторът за разлика (MINUS), но може да бъде реализиран и с предикатите NOT EXISTS или NOT IN.

ANTI-JOIN - Пример

» Следните заявки извличат регионите, които нямат държави:

INNER/OUTER JOIN

» Изброените дотук видове JOIN операции (NATURAL JOIN, Θ-JOIN) реализират т.нар. <u>вътрешни съединения</u>, характерни с това, че в резултата участват <u>само</u> редовете от двете релации, които имат съвпадения.

» За случаите, в които ще се налага от една от двете или и от двете релации да бъдат запазени всички редове в резултатната релация, се използват външни съединения.

INNER/OUTER JOIN

INNER JOIN LEFT OUTER JOIN RIGHT OUTER JOIN FULL OUTER JOIN

OUTER JOIN

» Външното съединение генерира релация, в която записите, които нямат съвпадения в двете релации, могат също да участват в резултата;

» Видове:

- Left Outer Join: съединение, в което записите от L, които нямат съответни в R (сравнение в общите атрибути), също ще участват в резултатната релация.
- 2. Right Outer Join: съединение, в което записите от R, които нямат съответни в L, също ще участват в резултатната релация.
- 3. Full Outer Join: съединение, в което записите от L, които нямат съответни в R, ще участват в резултатната релация, както и тези от R, които нямат съответни в L, също ще участват в резултатната релация.

LEFT OUTER JOIN - Пример

RIGHT OUTER JOIN – Пример

FULL OUTER JOIN – Пример

DIVIDE

DIVIDE – от две релации генерира нова релация, която съдържа всички стойности на атрибута А от първата релация, които съответстват (равни в другия атрибут В) на всички стойности на атрибута В от втората релация.

DIVIDE

» Нека релациите A и B имат заглавни части {X1, ..., Xm, Y1, ..., Yn} и {Y1, ..., Yn}, т.е. атрибутите {Y1, ..., Yn} са общи за двете релации, а B няма други атрибути. Допускаме, че общите атрибути са дефинирани върху общи домейни. Нека разглеждаме {X1, ..., Xm} – като X, {Y1, ..., Yn} – като Y.

A DIVIDE В е релация със:

- **>** заглавна част {X};
- > тяло множеството на всички записи {X:x} така, че един запис {X:x, Y:y} се появява в A за всички записи {Y:y}, появяващи се в B.

Накратко:

- > операторът за деление дели една релация A от степен m+n на друга релация B от степен n и създава нова релация от степен m;
- > (m+i)-тият атрибут на A и i-тият атрибут на B трябва да са дефинирани върху един и същ домейн.

DIVIDE - Пример 1

Искаме да извлечем всички студенти, които са завършили поставените им задачи по Бази от данни и ще бъдат допуснати до изпит.

Completed

Student	Task
Стоян Колев	БД - самостоятелна работа
Стоян Колев	БД – упражнения
Венета Георгиева	БД – упражнения
Венета Георгиева	Курсов проект СИ
Венета Георгиева	БД - самостоятелна работа
Иван Пенев	БД – упражнения
Иван Пенев	Компютърна графика

Projects

DIVIDE – Пример 2

Да извлечем всички служители, отговарящи на изброените изисквания.

EMPS

REQUIREMENTS

Алгебрични свойства на операторите

Асоциативност:

- > UNION: (A UNION B) UNION C \Leftrightarrow A UNION (B UNION C)
- > INTERSECTION: (A INSTERSECT B) INTERSECT C A INTERSECT (B INTERSECT C)
- > PRODUCT: (A TIMES B) TIMES C \Leftrightarrow A TIMES (B TIMES C)
- > JOIN: (A JOIN B) JOIN C \Leftrightarrow A JOIN (B JOIN C) \Leftrightarrow A JOIN B JOIN C

Комутативност:

- > UNION: A UNION B = B UNION A
- > INTERSECTION: A INSTERSECT B = B INTERSECT A
- > PRODUCT: A TIMES B \Leftrightarrow B TIMES A
- > JOIN: A JOIN B \Leftrightarrow B JOIN A

За какво е релационната алгебра?

Демонстрираните примери бяха предимно за извличане на данни, но това не означава, че релационната алгебра е приложима само при извличане. Нейната основна цел е да позволи писането на изрази, които да послужат за:

- Дефиниране на обхват за извличани данни задаване на условия, на които да отговарят резултатите;
- Дефиниране на обхват за промяна на данни при въвеждане, промяна и изтриване;
- > Дефиниране на (именувани) виртуални релации изгледи, напр.;
- > Дефиниране на правила за сигурност;
- > Дефиниране на правила за цялостност;
- > И др.

