The architecture of DIY Calculator

Summarized by Imre Varga

C. Maxfield, A. Brown:
A definitive guide to HOW COMUTERS DO MATH

The system

Bus system

Data bus: 8 bit Address bus: 16 bit Control bus: 2 (+4) bit

Memory

ROM & RAM

Capacity: 4kB Address: 12bit

Memory

Memory

Address bus size: 16bit

Address range: \$0000-\$FFFF (64kB)

CPU

Inside CPU

CPU: instruction register

CPU: accumulator register

(a) The accumulator is an 8-bit register in the CPU

(b) Accumulator bitnumbering scheme

CPU: status register

CPU: program counter register

CPU: index register

CPU: stack pointer

Input/Output ports

Peripheral

Workbench 1

8-Bit Switch Bank 1

8-Bit Switch Bank 2

7-Seg Un-Dec

7-Seg Dec

C. Maxfield, A. Brown: A definitive guide to HOW COMUTERS DO MATH

23

23

Dual 7-Seg Decoded

Signals & timing

Example: generic read cycle

