Intelligent Systems - Final Exam (Block 2): Test (1.75 points)

ETSINF, Universitat Politècnica de València, December 19th, 2024

Group, surname(s) and name: 2,

Tick only one choice among the given options. Score: $\max(0, (\text{correct_answers-wrong_answers}/3) \cdot 1.75/9)$.

1 B Given the following conditional probability distribution for the 3 random variables

	A	0	0	0	0	1	1	1	1
	В	0	0	1	1	0	0	1	1
	\mathbf{C}	0	1	0	1	0	1	0	1
P(A	A, B C)	0.125	0.188	0.375	0.312	0.408	0.190	0.092	0.310

If P(C=0) = 0.72, which is the value of $P(A=0 \mid B=0, C=1)$? $P(A=0 \mid B=0, C=1) = 0.497$

A)
$$P(A=0 \mid B=0, C=1) \le 0.25$$

B)
$$0.25 < P(A=0 \mid B=0, C=1) \le 0.50$$

C)
$$0.50 < P(A=0 \mid B=0, C=1) \le 0.75$$

D)
$$0.75 < P(A=0 \mid B=0, C=1) \le 1.00$$

2 B The figure on the right represents the decision boundary and the two regions of a binary classifier. Which of the following weight vectors (in homogeneous notation) defines a classifier equivalent to the one of the figure?

A)
$$\mathbf{w}_1 = (-0.5, 0, 0)^t$$
 and $\mathbf{w}_2 = (0, -1, 0)^t$.

B)
$$\mathbf{w}_1 = (0.5, 0, 0)^t$$
 and $\mathbf{w}_2 = (0, 1, 0)^t$.

C)
$$\mathbf{w}_1 = (0, 1, 0)^t$$
 and $\mathbf{w}_2 = (0.5, 0, 0)^t$.

D) All the above weight vectors define an equivalent classifier.

3 B For a two-class classification problem of objects of type $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, we have the probability distributions shown in the table. Show the interval of the probability of error ε of the classifier $c(\mathbf{x})$ based on the discriminant function $g(\mathbf{x}) = 1.0 - x_1 + 0.5x_2$ defined as

$$c(\mathbf{x}) = \begin{cases} 1 & \text{if } g(\mathbf{x}) < 0\\ 2 & \text{otherwise} \end{cases}$$

x	$P(c \mid \mathbf{x})$		
$x_1 x_2$	$c = 1 \ c = 2$	$P(\mathbf{x})$	
0 0	0.9 0.1	0	$\varepsilon = 0.37$
0 1	0.8 0.2	0.1	$\varepsilon = 0.57$
1 0	0.1 - 0.9	0.5	
1 1	0.6 0.4	0.4	

A)
$$\varepsilon < 0.25$$
.

B)
$$0.25 \le \varepsilon < 0.50$$
.

C)
$$0.50 \le \varepsilon < 0.75$$
.

D)
$$0.75 \le \varepsilon$$
.

4 $\boxed{\mathrm{B}}$ The figure below shows a partition of 4 two-dimensional points in 2 clusters, ullet and \circ :

If point $(10,1)^t$ is transferred from one cluster to the other, a variation of the Sum of Square Errors (SSE) is produced, $\Delta J = J - J'$ (SSE after the transfer minus SSE before the transfer), such that:

A)
$$\Delta J < -7$$
.

$$\Delta J = 38.7 - 43.5 = -4.8$$

B)
$$-7 \le \Delta J < 0$$
.

C)
$$0 \le \Delta J < 7$$
.

D)
$$\Delta J \geq 7$$
.

5 D Let $g(\mathbf{x})$ be a classifier. Which function does *not* define an equivalent classifier (or choose the last option if all three previous functions define an equivalent classifier)?

A)
$$f(g(\mathbf{x})) = ag(\mathbf{x}) + b$$
 $a > 0$

B)
$$f(g(\mathbf{x})) = a^{g(\mathbf{x})}$$
 $a > 1$

C)
$$f(g(\mathbf{x})) = ag(\mathbf{x})^3$$
 $a > 0$

- D) All three previous functions define an equivalent classifier.
- 6 A The figure below shows a partition of 4 two-dimensional points in 2 clusters, \bullet and \circ :

Indicate which of the following points is transferred from cluster to cluster when we apply the K-means algorithm by Duda and Hart, but not when we apply the conventional K-means algorithm:

- A) $(6,1)^t$
- B) $(4,0)^t$
- C) $(8,0)^t$
- D) $(5,0)^t$

- 7 B Let's suppose that we are applying the Perceptron algorithm, with learning rate $\alpha = 1$ and margin b = 0.1, to a set of 3 bidimensional learning samples for a problem of 2 classes. After processing the first 2 samples, the weight vectors $\mathbf{w}_1 = (0, 1, -2)^t$, $\mathbf{w}_2 = (0, -1, 2)^t$ were obtained. Next, the last sample (\mathbf{x}_3, c_3) is processed and the same weight vectors are obtained, which of the following samples is that last sample?
 - A) $((5,4)^t,1)$
 - B) $((1,1)^t,2)$
 - C) $((2,1)^t,1)$
 - D) $((1,4)^t,1)$
- 8 C Let us suppose that we have a box with 10 oranges containing 4 oranges Powell (P) and 6 Valencia (V) from which we draw two oranges, one after the other without replacement. Given the random variables:
 - O1: variety of the first drawn orange
 - O2: variety of the second drawn orange

Which of the following conditions is not true?

- A) $P(O2 = P) < P(O2 = P \mid O1 = V)$
- B) P(O1 = P, O2 = V) = P(O1 = V, O2 = P)
- C) $P(O1 = V) = P(O1 = V \mid O2 = P)$
- D) $P(O2 = P) > P(O2 = P \mid O1 = P)$
- 9 D Let \mathbf{x} be a object that we want to classify in one among C classes. Which expression is *not* a minimum error (error risk) classifier (or choose the last option if none of the first three classifiers is of minimum error)?
 - A) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg\,min}} e^{p(\mathbf{x},c)}$
 - B) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \log p(\mathbf{x}, c)$
 - C) $c(\mathbf{x}) = \underset{c=1}{\operatorname{arg \, min}} \log p(\mathbf{x}, c)$
 - D) None of three classifiers is of minimum error.

Intelligent Systems - Final Exam (Block 2): Problem (2 points)

ETSINF, Universitat Politècnica de València, December 19th, 2024

Group, surname(s) and name: 2,

Problem: Logistic regression

The following table shows per row a sample with 2 dimensions that belongs to one class:

In addition, the following table represents an initial weight matrix with the weights of each class per columns:

\mathbf{w}_1	\mathbf{w}_2
-0.5	0.5
-0.5	0.5
-0.5	0.5

Answer the following questions:

- 1. (0.25 points) Compute the vector of logits for the training sample.
- 2. (0.25 points) Apply the softmax function to the vector of logits for the training sample.
- 3. (0.25 points) Compute the neg-log-likelihood of the training sample with respect to the initial weight matrix.
- 4. (0.25 points) Classify the training sample. In case of a tie, choose any class.
- 5. (0.5 points) Compute the gradient of the function NLL at the point of the initial weight matrix.
- 6. (0.5 points) Update the initial weight matrix applying gradient descent with learning rate $\eta = 1.0$.

Solution:

1. Vector of logits for the training sample:

$$\begin{array}{c|cccc}
n & a_{n1} & a_{n2} \\
\hline
1 & -1.5 & 1.5
\end{array}$$

2. Applying the softmax function:

$$\begin{array}{c|cccc}
n & \mu_{n1} & \mu_{n2} \\
\hline
1 & 0.05 & 0.95
\end{array}$$

3. Computation of the neg-log-likelihood:

$$NLL(\mathbf{W}) = 0.05$$

4. Classification of the training sample:

$$\begin{array}{c|c} n & \hat{c}(x_n) \\ \hline 1 & 2 \end{array}$$

5. Gradient:

$$\begin{array}{c|cc} \mathbf{g}_1 & \mathbf{g}_2 \\ \hline 0.05 & -0.05 \\ 0.05 & -0.05 \\ 0.05 & -0.05 \\ \end{array}$$

6. Updated weight matrix:

$$\begin{array}{c|cc} \mathbf{w}_1 & \mathbf{w}_2 \\ \hline -0.55 & 0.55 \\ -0.55 & 0.55 \\ -0.55 & 0.55 \\ \end{array}$$