

DECEMBER - SATURDAY MINIFOS SMINIFOS	MONDAY • DECEMBER
1 2 3 4 5 6 7 8 9 10 H U n	1 2 3 4 5 6 7 1 9 10
M 15 16 17 18 19 20 21 22 23 24 25 27 27 28 29 20 21 18 29 20 21	1 2 1 2 5 70 30 F
W(49 (146-025)	04/34/
. The bound of the direction	= Nd exp (Ed-Eb)
The probability of finding. Unionized dondr atoms at	B KT
energy level Ed is given as:	21:25 12 (10) 15 11 201
	" With the assumption, Ex-EdeckT
	W(11) 100 5 550 1 P 15011 26 - Cd
" Nd = {(Ed)	-> Hance, from Not = n,
, NA	
= Nd [1- f(fa)]	we can write;
1. Ng+ + Ng = Ng	Ne KT = Nde KT
1 1/4 - 1/4	
	· on solving we get;
Md = concentration of dones	· on solving we get;
atoms in the donor level.	S CALL
	E = Ed + EC + KI IN NO
donox atoms.	5
7	* 4 7 3/2
Nd = concentration of un-ionized	but, Ne = 2 2 xm2 KT -12
06 SUNDAY donos a toms	b ²
1	63
Nd+= Nd 1-	so we get,
1 + exp (Ed-Et)	IE F KTIO Ndh3
2020 ET)	EF = Ed + CC + 2 (2 Tm xx T)

MONDAY DECEMBER WE WITH THE STAND	DECEMBER - SATURDAY	
Thus have electron in the conduction band would be conduction by exp (Ev-Et) Thus have conduction band would be conduction by exp (Ev-Et) This gives position of fermi level at modeyate temp. This gives position of fermi level at modeyate temp. This gives position of fermi level at modeyate temp. This gives position of fermi level at modeyate temp. This gives position of fermi level at modeyate temp. This gives position of fermi level at modeyate temp.	13345 W T F S S	MTWT 155 MTWT FS S MONDAY DECEMBED
Thus have electron in the conduction band would be with the conduction band would be conduction band would be with the conduction band would be conduction by conducti	211 29 30 31	11 12 13 14 15 16 17 18 19 20 21 22 21 24
Thus have electron in the conduction band would be $ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(147 019)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	=) 1/2 : 1/2:	(149-011)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 NA E-SEP + EV + EV	-> Thus free electron in the
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PT KT	· conduction band would be
E = $\frac{E_A + E_V - kT}{2} \frac{N_A}{N_V}$ Since, NV = $\frac{2}{2} \frac{(2\pi m_h^* kT)^{3/2}}{(2\pi m_h^* kT)^3}$ Define EA + $\frac{E_V - kT}{2} \frac{N_A}{N_V}$ Define EA + $\frac{E_V - kT}{2} \frac{N_A}{N_V}$ Define EA + $\frac{E_V - kT}{2} \frac{N_A}{N_V}$ Define EA + $\frac{E_V - E_V}{2} \frac{E_V - E_V}{2}$ Define EA + $\frac{E_V - kT}{2} \frac{N_A}{N_V}$ This gives bosition of fermion of the second conduction of the second conduction.	"	
E = $\frac{E_A + E_V - kT}{2} \frac{N_A}{N_V}$ Since, NV = $\frac{2}{2} \frac{(2\pi m_h^* kT)^{3/2}}{(2\pi m_h^* kT)^3}$ Define EA + $\frac{E_V - kT}{2} \frac{N_A}{N_V}$ Define EA + $\frac{E_V - kT}{2} \frac{N_A}{N_V}$ Define EA + $\frac{E_V - kT}{2} \frac{N_A}{N_V}$ Define EA + $\frac{E_V - E_V}{2} \frac{E_V - E_V}{2}$ Define EA + $\frac{E_V - kT}{2} \frac{N_A}{N_V}$ This gives bosition of fermion of the second conduction of the second conduction.	= 2tb= Ev+EA +-In NA	D = Ny exb (Ev-EL)
Since, Since, $N_V = 2 (2\pi m_h^* kT)^{3/2}$ $N_V = 2 (2\pi m$	KT KT NV	
Since, Since, $N_V = 2 (2\pi m_h^* kT)^{3/2}$ $N_V = 2 (2\pi m$		
Since, Since, $N_V = 2 (2\pi m_h^* kT)^{3/2}$ $N_V = 2 (2\pi m$	= EA + EV - KT IO NO	no substitutions the net:
Since, $N_V = 2 (2\pi m_h^* kT)^{3/2}$ $N_V = 2 (2\pi m_h^* kT)$	2 2 Nu	1
Since, $N_V = 2 (2\pi m_h^* kT)^{3/2}$ $N_V = 2 (2\pi m_h^* kT)$	3	2 6 6 10 10 10 10
Ny = $2(2\pi m_h^* kT)^{3/2}$ h^3 $p = N_V \exp \omega e get;$ $p = N_$		F) E = EA TEV - EI IN NA
$\frac{1}{12} = \frac{2(2\pi m_h^2 kT)}{h^2}$ $\frac{1}{12} = \frac{1}{12} = \frac{1}{1$	· Since,	2 2 197
$\frac{1}{12} = \frac{1}{12} $	1 2 /2 3/2	D P = Ny exp we get;
This gives bosition of fermi level at moderate temp. in b-type semiconductor.	1 NY = 5 (5/1 W/ KT)	3
This gives bosition of fermi level at moderate temp. in b-type semiconductor.	. 43	TO DE N. OV D/EV-FL
3 SUNDAY 2 2 2(27mh kg) = Nv exp (Ev - EA + Ev -		KI KI
This gives bosition of Fermi Level at moderate temb. in b-type semiconductor.	= Ex + EV BT IN NAh3	1 F. F. 1 F.
This gives bosition of Fermi level at moderate temp. in b-type semiconductor.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= Ny exp (CV - CATCO
in b-type semiconductor.	IS SUMMINE	1 1/2 11
in b-type semiconductor.	> This gives bosition of Fermi	
	level at moderate temp.	(7)
		2020
(1101 Val de at 1 = 0K 0)	(not you'lid at T = OK or T = OK)	100

DECEMBER • THURSDAY M T W T F S S M T W T F S M T W T F S M T W T F S M T W T F S S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T F S M T W T W T F S M T W T W T W T F S M T W T W T W T W T W T W T W T W T W T	IANUARY - 2021 MT T W T F S S M T W T F S S T 12 13 14 15 16 77 18 79 20 21 22 23 24 25 6 27 78 29 30 31
Por moderate magnetic fields the Hall coefficient is = RH = pun2 - nue e (pun+ nue)2 or equivalently,	Applications of Hall effect:- (1) Determination of the type 1) Of Semiconductors 2
PH = (P-Nb ²) e(p+nb) ² b = Lle Lh n = electron concentration p = hole concentration Lle = electron mobility Lln = hole mobility e = charge	(2) Calculation of carrier concentration RH = -1 (n-type) Pe (p-type) Pe (p-type) Determination of mobility La It the conduction is due to one type carriers, Le = or RH 2020

DECEMBER • SATURDAY WK 51	M T W T F S S M T W T F S 14 15 16 17 18 19 20 21 22 23 24 25 23 28 29 30 31
(4) Measurement 6 tlux density.	of magnetic
-> Ey = TxB	proportional
to the moranetic to the moranetic tor a given cur	L'Elux density
4 () d , d , d , d , d , d , d , d , d , d	
6 (+ + + +) /	47.