Generative Flow Networks, построение модели

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Введение

Эта задача посвящена моделям Generative Flow Networks (GFlowNets), которые являются одним из методов генерации дискретных объектов.

Формально задача генерации дискретных объектов формулируется так: у нас есть конечное множество объектов $\mathcal X$ и неотрицательная reward функция $\mathcal R(x)$ определенная для всех $x\in\mathcal X$. Задача состоит в том, чтобы построить и обучить модель, которая генерирует объекты из $\mathcal X$ из вероятностного распределения $\mathcal P(x)=\frac{1}{Z}\mathcal R(x)$ для $Z=\sum_{x\in\mathcal X}\mathcal R(x)$.

Генеративный процесс с помощью GFlowNet может быть рассмотрен как последовательность действий, при которой мы стартуем из некоторого пустого объекта и на каждом шаге добавляем некоторый компонент в него.

Определим процесс формально.

- Рассмотрим ориентированный ациклический граф (DAG) $G = (S, \mathcal{E})$, где S это множество состояний и $\mathcal{E} \subseteq S \times S$ это множество возможных переходов от одного состояния к следующему.
- В множестве состояний S есть ровно одна вершина исток s_0 (стартовое состояние), в которую не входит ни одного ребра. Гарантируется, что все вершины графа G достижимы из s_0 по ребрам.
- В множестве состояний S содержится множество финальных объектов $\mathcal{X} \subseteq S$, причем это множество в точности совпадает с множеством стоков графа (вершин, из которых не выходят ребра).
- Для каждого состояния $s \in \mathcal{S}$ рассмотрим множество возможных действий \mathcal{A}_s , а именно множество возможных состояний, в которые можно попасть из s. Формально $\mathcal{A}_s = \{s' \in \mathcal{S} | (s,s') \in \mathcal{E}\}$
- Генеративная модель GFlowNet \mathcal{F} задается как множество распределений для действий из каждого состояния. Формально для всех состояний $s \in \mathcal{S}$ и следующих состояний $s' \in \mathcal{A}_s$ мы знаем неотрицательные числа $\mathcal{F}(s \to s')$, в соответствии с которыми будут генерироваться действия.

Определим процесс генерации финальных объектов из множества \mathcal{X} с помощью заданной модели GFlowNet \mathcal{F} :

- Стартуем из стартового состояния $s := s_0$.
- До тех пор пока $s \notin \mathcal{X}$ генерируем следующее состояние $s' \in \mathcal{A}_s$ из вероятностного распределения $\mathcal{P}(s'|s) = \frac{1}{Z_s}\mathcal{F}(s \to s')$, где $Z_s = \sum_{s' \in \mathcal{A}_s} \mathcal{F}(s \to s')$. После этого делаем переход в сгенерированную вершину s := s'.
- Полученное финальное состояние $s \in \mathcal{X}$ в конце процесса генерации будет являться сгенерированным объектом.

На практике GFlowNet-ы могут быть применены следующим образом. Обычно нам известно некоторое множество объектов $\mathcal X$ и reward функция $\mathcal R$ из реальной жизни (например, это могут быть геномные строки или молекулярные графы и reward функция взятая из их химических или физических свойств). Задача состоит в том, чтобы задать процесс конструирования объектов (граф $\mathcal G$) и построить для него модель $\mathcal F$ так, что описанный генеративный процесс будет генерировать

объекты из желаемого распределения, заданного \mathcal{R} . Обычно в реальности множество объектов \mathcal{X} очень большое и распределения \mathcal{F} параметризуются нейронной сетью.

Задача

Вам полностью дан граф генеративных переходов \mathcal{G} , а также желаемое вероятностное распределение на финальных объектах $x \in \mathcal{X}$.

Постройте какую-нибудь GFlowNet модель \mathcal{F} , которая будет генерировать финальные объекты из заданного распределения.

Для полного балла также требуется, чтобы по каждому ребру существовала ненулевая вероятность пройти, то есть $\mathcal{F}(s \to s') > 0$ для всех $(s, s') \in \mathcal{E}$.

Формат входных данных

В первой строке находится единственное целое число $n\ (2 \leqslant n \leqslant 50)$ — количество состояний, то есть $n = |\mathcal{S}|$.

Для простоты пусть множество состояний будет $S = \{1, 2, \dots, n\}$, а стартовое состояние $s_0 = 1$.

В каждой из следующих n строк задаются возможные переходы из каждого состояния.

В строке с номером s сначала находится целое число k_s ($0 \le k_s \le n-s$) — количество возможных переходов из s, то есть $k_s = |\mathcal{A}_s|$. Затем следует k_s целых чисел $s_1', s_2', \ldots, s_{k_s}'$ ($s_j' > s$). Множество переходов задается как $\mathcal{A}_s = \{s_1', s_2', \ldots, s_{k_s}'\}$. Гарантируется, что заданные s_i' различны.

Заметим, что заданный ориентированный граф \mathcal{G} является ациклическим (поскольку все ребра ведут из вершин с меньшим номером в вершины с большим номером). Гарантируется, что все вершины достижимы из вершины 1 по ребрам.

Множество финальных объектов \mathcal{X} задается как множество стоков графа \mathcal{G} (множество состояний s, для которых $|\mathcal{A}_s| = 0$).

В последней строке задано n целых чисел w_1, w_2, \ldots, w_n ($0 \leqslant w_i \leqslant 10^6$). Гарантируется, что $w_i = 0$, если $i \notin \mathcal{X}$ и $w_i > 0$, иначе.

Желаемое вероятностное распределение на финальных объектах $x\in\mathcal{X}$ задается как $\mathcal{P}(x)=\frac{w_x}{n}$. $\sum\limits_{i=1}^{n}w_i$

Формат выходных данных

Выведите любую подходящую GFlowNet модель $\mathcal F$ в следующем формате:

Несколько строк, каждая строка содержит три **целых** числа s, s', $\mathcal{F}(s \to s')$ ($1 \leqslant s, s' \leqslant n$, $0 \leqslant \mathcal{F}(s \to s') < 10^{300}$) — начало и конец ребра из графа \mathcal{G} и значение GFlownet модели \mathcal{F} для него. Для всех строк (s,s') должно быть ребром графа \mathcal{G} , для каждого ребра должно быть не более одной строки с этим ребром. Для всех не выведенных ребер (s,s') будет считаться, что $\mathcal{F}(s \to s') = 0$. Ребра можно выводить в любом порядке.

Если рассмотреть подграф, построенный на ребрах (s,s'), таких что $\mathcal{F}(s \to s') > 0$, то все вершины из \mathcal{X} должны быть достижимы из 1, а также не должно существовать других стоков в нем. Для вершин, не достижимых в этом подграфе, можно не задавать значения \mathcal{F} (они могут быть все нулевыми).

- Выведенная GFlowNet модель \mathcal{F} должна генерировать в точности из заданного распределения. Если это не будет выполнено или ваш ответ не будет соответствовать формату в хотя бы одном из тестов, ваше решение получит 0 баллов.
- Если все ответы корректные, но в каком-то из тестов существует хотя бы одно ребро (s, s'), такое что $\mathcal{F}(s \to s') = 0$, то ваше решение получит 4 балла.
- Если во всех тестах для всех ребер $\mathcal{F}(s \to s') > 0$, ваше решение получит полные 10 баллов.

Можно показать, что в заданных ограничениях всегда существует ответ, получающий полный балл. Обратите внимание, что в данной задаче вам может потребоваться длинная арифметика.

Пример

стандартный ввод	стандартный вывод
5	3 5 5
4 3 4 5 2	1 3 9
0	1 4 4
2 5 4	3 4 4
0	1 5 5
0	1 2 6
0 3 0 4 5	