ДИСЦИПЛИНА	Системы синхронизированного планирования ресурсов предприятия
ИНСТИТУТ	(полное наименование дисциплины без сокращений) информационных технологий
КАФЕДРА	корпоративных информационных систем
ВИД УЧЕБНОГО МАТЕРИАЛА	полное наименование кафедры Методические указания к практической работе (в соответствии с пп.1-11)
ПРЕПОДАВАТЕЛЬ	Демидова Лилия Анатольевна
(фамилия, имя, отчество) СЕМЕСТР 2 семестр (весенний), 2023 – 2024 учебны (семестр обучения, учебный год)	

Методические указания к практической работе 1

(практические занятия 1, 2, 3, 4)

1. Решить задачу коммивояжера (ручной просчет, MS Excel), предполагая, что необходимо минимизировать значение некоторого параметра, выбираемого из таблицы 1 в соответствии с вариантом задания.

Таблица 1

Вариант	Параметр	
1	время поездки	
2	стоимость поездки	
3	пройденное расстояние	

- 2. Решить задачу коммивояжера (программная реализация) классическими методами. Определить максимальное число городов, которое может посетить коммивояжер с учетом сложности решения комбинаторной задачи. Оценить время решения задачи.
- 3. Решить задачу коммивояжера (программная реализация) популяционным алгоритмом оптимизации, выбираемым из таблицы 2 в соответствии с вариантом задания. Оценить время решения задачи.

Таблица 2

Вариант	Популяционный алгоритм	
1	Генетический алгоритм	
2	Алгоритм дифференциальной эволюции	
3	Алгоритм роя частиц	
4	Алгоритм косяка рыб	
5	Пчелиный алгоритм	
6	Муравьиный алгоритм	

4. Выполнить сравнительный анализ решений, полученных в п. 2 и 3.

Методические указания к практической работе 2

(практические занятия 5, 6, 7, 8)

Методические указания к работе 2

(практические занятия 5, 6, 7, 8)

Задача о рюкзаке (Knapsack problem)

Дано *N* предметов.

Предмет n_i имеет массу w_i (w_i >0) и стоимость p_i (p_i >0). Необходимо выбрать из этих предметов такой набор, чтобы суммарная масса не превосходила заданной величины W, определяющей вместимость рюкзака, а суммарная стоимость была максимальна.

- 1. Решить задачу о рюкзаке (ручной просчет, MS Excel), предполагая, что необходимо максимизировать суммарную стоимость предметов, попавших в рюкзак, ограничив максимальное количество предметов числом М, выбираемым из таблицы 1 в соответствии с вариантом задания). Число предметов N, из которых осуществляется выбор, выбирается из таблицы 1 в соответствии с вариантом задания).
- а. Каждый предмет выбирается один раз (ограниченный рюкзак).
- b. Каждый предмет выбирается не более, чем b_i раз (ограниченный рюкзак). b_i выбирается из таблицы 1 в соответствии с вариантом задания.
- с. Каждый предмет выбирается любое число раз (неограниченный рюкзак).
- 2. Решить задачу о рюкзаке (ручной просчет, MS Excel) так, чтобы суммарная масса предметов не превосходила заданной величины W, определяющей вместимость рюкзака (W выбирается из таблицы 1 в

соответствии с вариантом задания), а суммарная стоимость предметов, попавших в рюкзак, была максимальна. Каждый предмет выбирается один раз.

- а. Каждый предмет выбирается один раз (ограниченный рюкзак).
- b. Каждый предмет выбирается не более, чем b_i раз (ограниченный рюкзак). b_i выбирается из таблицы 1 в соответствии с вариантом задания.
- с. Каждый предмет выбирается любое число раз (неограниченный рюкзак).

Таблица 1

Вариант	Число	Число предметов	Вместимость	b_i
	предметов М	N, из которых	рюкзака W	
		осуществляется		
		выбор		
1	15	300	32	7
2	16	250	30	6
3	17	200	28	5
4	18	150	26	4
5	19	100	24	3

- 3. Сравнить результаты, полученные в п. 1 и 2: вывести число предметов, названия предметов и их вес.
- 4. Решить задачу о рюкзаке (программная реализация) классическими методами. Вывести число предметов, названия предметов и их вес. Оценить время решения задачи.
 - а. Каждый предмет выбирается один раз (ограниченный рюкзак).
 - b. Каждый предмет выбирается не более, чем b_i раз (ограниченный рюкзак). b_i выбирается из таблицы 1 в соответствии с вариантом задания.
 - с. Каждый предмет выбирается любое число раз (неограниченный рюкзак).
- 5. Решить задачу о рюкзаке (программная реализация) популяционным алгоритмом оптимизации, выбираемым из таблицы 2 в соответствии с

вариантом задания. Вывести число предметов, названия предметов и их вес. Оценить время решения задачи.

- а. Каждый предмет выбирается один раз (ограниченный рюкзак).
- b. Каждый предмет выбирается не более, чем b_i раз (ограниченный рюкзак). b_i выбирается из таблицы 1 в соответствии с вариантом задания.
- с. Каждый предмет выбирается любое число раз (неограниченный рюкзак).

Таблица 2

Вариант	Популяционный алгоритм
1	Генетический алгоритм
2	Алгоритм дифференциальной эволюции
3	Алгоритм роя частиц
4	Алгоритм косяка рыб
5	Пчелиный алгоритм
6	Муравьиный алгоритм

6. Выполнить сравнительный анализ решений, полученных в п. 4 и 5.

Теоретические сведения:

https://neerc.ifmo.ru/wiki/index.php?title=%D0%97%D0%B0%D0%B4%D 0%B0%D1%87%D0%B0_%D0%BE_%D1%80%D1%8E%D0%BA%D0%B7%D 0%B0%D0%BA%D0%B5

Методические указания к практической работе 3

(практические занятия 9, 10, 11, 12)

Задание

- 1. Для набора данных *cereals* разработать модели простой линейной и множественной регрессий по 2 признакам в соответствии с вариантом задания.
- 2. Построить диаграммы разброса данных. Найти коэффициенты регрессий.
- 3. Вычислить стандартную ошибку E_{CT} , ошибку относительно среднего значения \overline{y} , Q, Q_R , Q_E —общую квадратичную сумму, регрессионную квадратичную сумму и квадратичную сумму ошибки, коэффициент детерминации r^2 , коэффициент корреляции r, значение среднеквадратической ошибки E_{CKO} , σ_{b_1} , σ_{b_2} .
- 4. Выполнить оценку значимости регрессий с использованием t-критерия и F-критерия.
 - 5. Сделать выводы о качестве разработанных моделей.

Набор данных содержит следующие признаки.

- 1. наименование наименование продукта;
- 2. производитель производитель продукта;
- 3. *тип* заливается холодной или горячей водой;
- 4. *калорийность* содержание калорий в одной порции продукта;
 - 5. белок содержание белка, г;
 - 6. *жиры* содержание жиров, г;
 - 7. натрий содержание натрия, мг;
 - 8. волокна содержание пищевых волокон, г;

- 9. углеводы содержание углеводов, г;
- 10. сахар содержание сахара, г;
- 11. калий содержание калия, мг;
- 12. *витамины* содержание ежедневной рекомендуемой дозы витаминов (0,25 или 100 %);
 - 13. вес одной порции, г;
 - 14. вода количество чашек воды на порцию;
 - 15. N_2 витрины витрина, на которой расположен продукт;
 - 16. пищевая ценность продукта.

Зависимая переменная – пищевая ценность продукта.

Независимые определяем в соответствии с вариантом задания.

Варианты заданий

Номер варианта	Первый признак	Второй признак	Номера записей
			(строк)
			в выборке
1.	4	10	1 - 35
2.	5	11	34 - 77
3.	6	4	25 - 65
4.	7	5	40 - 75
5.	8	6	1 - 35
6.	9	7	34 - 77
7.	10	8	25 - 65
8.	11	9	40 - 75
9.	12	10	15 - 50
10.	13	11	1 - 35
11.	14	12	34 - 77
12.	4	13	25 – 65
13.	5	4	40 – 75

Окончание таблицы

14.	6	5	15 - 50
15.	7	6	1 - 35
16.	8	7	34 – 77
17.	9	8	25 - 65
18.	10	9	40 - 75
19.	11	10	15 – 50
20.	12	11	1 - 35
21.	13	12	34 - 77
22.	14	13	25 - 65
23.	4	14	40 - 75
24.	5	13	15 – 50
25.	6	14	1 - 35
26.	7	4	34 - 77
27.	8	5	25 - 65
28.	9	6	40 - 75
29.	10	7	15 – 50
30.	11	8	1 - 35
31.	12	9	34 - 77
32.	13	10	25 - 65
33.	14	11	40 – 75
34.	4	12	15 - 50
35.	5	13	1 - 35
36.	6	14	34 – 77
37.	7	4	25 - 65
38.	8	5	40 - 75
39.	9	6	15 – 50
40.	10	7	1 – 35
			-

6. Для набора данных *cereals* разработать модели множественной регрессий по 2 признакам в соответствии с вариантом задания 1, а также с учетом их расположения на витринах 1, 2, 3, введя фиктивные переменные.

Сделать выводы о качестве разработанных моделей.

Средства разработки: Python, Excel.