Name 1: Datum:

Name 2: Platz Nr:

16 Interferenz und Beugung des Lichtes

1 a) Messung des Abstandes d zwischen den Maxima des Interferenzbildes hinter dem Biprisma:

So muss das Biprisma in den Halter geschoben werden.

1 b) Messung des Winkels β zwischen den interferierenden Parallelstrahlbündeln und Berechnung von λ :

2 a) Beugung am Draht (Ansicht von oben):

Drahtdicke b = Distanz S =

Abstand der Maxima, berechnet aus λ , b, und S: $d_{\text{ber.}} =$ Abstand der Maxima, gemessen: $d_{\text{gem.}} =$

2 b) Beugung am Spalt (Ansicht von oben):

Die Spaltbreite bei gleicher Distanz S zum Schirm so einstellen, dass der Abstand d zwischen den Maxima gleich ist wie beim Draht.

2 c) Ermittlung der Spaltbreite (Ansicht von oben):

Nun den Spalt mit den Linsen L2 und L1 (vergrössert) auf dem Schirm abbilden und aus der Breite dieses Bildes die Spaltbreite berechnen.

4 a) Durchmesser der Lochblende

Mikroskop: D =

4 b) Dicke eines Haares:

Analog zu Aufgabe 2. Diesmal wird der Abstand d der Maxima gemessen und die Haardicke b mit den Grössen λ , L und d berechnet.

L =			
Abstand zwisch	en den Ma	ximas d =	
Haardicke b =			