

Politechnika Krakowska

Instytut Technologii Maszyn i Automatyzacji Produkcji Grupa: L05 Grupa: Zespół*: P01

Rok akademicki: 2021/2022

LABORATORIUM MIKRO I NANOTECHNOLOGII

Ćwiczenie AWJM:

Dobór podstawowych parametrów procesu wycinania wysokociśnieniowym strumieniem wody.

1. Cel ćwiczenia

 Zapoznanie studentów z podstawami procesu cięcia (wycinania) wysokociśnieniowym strumieniem cieczy.

2. Wymagane wiadomości

- Podstawowe wiadomości z zakresu budowy i zasady działania systemów do wysokociśnieniowej obróbki wodnej i wodnościernej. Ściśliwość cieczy zasada wytwarzania wysokociśnieniowego strumienia cieczy.
- Wady i zalety obróbki wysokociśnieniowym strumieniem cieczy (obróbka wodna i wodnościerna, ograniczenia).
- 3. Przebieg ćwiczenia i zadania do wykonania. Wyniki pomiarów, ich analiza prace własne.
- 3.1 Uruchomić plik wjm.xls. Wybrać z wiersza "Material machinability" jedną z wartości i wykonać symulację zależności prędkości cięcia strugą wodnościerną jako funkcji ciśnienia strumienia cieczy i grubości materiału. Dla ustalonych pozostałych parametrów. Dla danego materiału należy określić zakres grubości, a następnie wybrać 10 wartości z tego przedziału i przeprowadzić symulacje. Symulacje należy wykonać dla trzech wartości ciśnienia 70, 80 i 90kPSI. Następnie należy sporządzić wykres. Dane na wykresie dodać w trzech seriach (dla każdej wybranej wartości ciśnienia przeliczonej na MPa, grubości wyrażonych w mm, a prędkość w mm/s). Dane na wykresie muszą być zaprezentowane w postaci 3 serii punktów z dopasowanymi do nich **odpowiednimi liniami trendu**. Dopasowanie linii trendu należy uzasadnić statystycznie np. na podstawie wartości współczynnika determinacji R². Na

podstawie wykresu należy wyciągnąć odpowiednie wnioski. Należy pamiętać, że odpowiednio wprowadzane wielkości w tabeli w pliku xls wyrażane są w calach i psi. W tabeli należy je podać także przeliczone na mm i Pa (z odpowiednim przedrostkiem). Prędkości cięcia należy także przeliczyć na mm/min.

4. Tabelaryczne zestawienie wartości wejściowych do symulacji. Wykresy.

Każdy zespół sporządza odpowiednio dla wybranych materiałów na osobnych arkuszach.

Na podstawie otrzymanych wyników sformułować odpowiednie wnioski !!!

Dane do symulacji:

Wycinanie strugą wodnościerną:

Materiał*:	Stal węglowa		
Ciśnienie strumienia cieczy [kPSI]:	70	80	90
Cieśnienie strumienia cieczy [MPa]:	482,63	551.5	620.53
Grubość materiału: [cal]	0,22	0,22	0,22
Grubość materiału: [mm]	5,588	5,588	5,588
Grubość materiału: [cal]	0,41	0,41	0,41
Grubość materiału: [mm]	10,414	10,414	10,414
Grubość materiału: [cal]	0,68	0,68	0,68
Grubość materiału: [mm]	17,272	17,272	17,272

Zastosowanie stali węglowej:

- Stal konstrukcyjna używana podczas tworzenia konstrukcji stalowych (mosty, szkielety nośne, belkowania), części urządzeń oraz maszyn
- Stal narzędziowa stosowana jest do produkcji np. wierteł, ostrzy, tarczy.
- Stale o szczególnych właściwościach fizycznych i chemicznych wykorzystywane są w specjalistycznych urządzeniach pracujących w wyjątkowo trudnych warunkach.

5. Wykres

6. Wnioski.

Po przeprowadzeniu badania i na podstawie rezultatów prezentowanych na wykresie można wywnioskować, że na wydajność przecinania prócz parametrów procesu mają wpływ również własności obrabianego materiału to znaczy rodzaj materiału i jego grubość. Ponadto można stwierdzić, że metoda wycinania strugą wodno-ścierną może być stosowana do przecinania tworzyw konstrukcyjnych o różnych strukturach i składach chemicznych z satysfakcjonującą wydajnością.