| Write your name here Surname                           | Other n                                                    | ames                |
|--------------------------------------------------------|------------------------------------------------------------|---------------------|
| Edexcel GCE                                            | Centre Number                                              | Candidate Number    |
| Chemistr                                               | У                                                          |                     |
|                                                        | ciples of Chemist<br>nd Further Organi<br>ynoptic assessme | c Chemistry         |
| Unit 4: General Prin<br>Equilibria ar                  | nd Further Organi<br>ynoptic assessme                      | nt) Paper Reference |
| Unit 4: General Prin<br>Equilibria ar<br>(including sy | nd Further Organi<br>ynoptic assessme<br>2 – Morning       | c Chemistry<br>nt)  |

## **Instructions**

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
  - there may be more space than you need.

### Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (\*) are ones where the quality of your written communication will be assessed
  - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

### **Advice**

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 3 9 3 0 8 A 0 1 2 4

Turn over ▶



# **SECTION A**

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box  $\boxtimes$ . If you change your mind, put a line through the box  $\boxtimes$  and then mark your new answer with a cross  $\boxtimes$ .

| 1 | Which of the following interacts with the nuclei of hydrogen atoms in a nuclear magnetic resonance spectrometer? |                                            |  |  |  |  |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|--|--|
|   | $\boxtimes$ A                                                                                                    | Gamma rays                                 |  |  |  |  |  |  |  |  |
|   | <b>■</b> B                                                                                                       | X-rays                                     |  |  |  |  |  |  |  |  |
|   | <b>区</b> C                                                                                                       | Microwaves                                 |  |  |  |  |  |  |  |  |
|   | <b>■</b> D                                                                                                       | D Radio waves                              |  |  |  |  |  |  |  |  |
|   |                                                                                                                  |                                            |  |  |  |  |  |  |  |  |
|   |                                                                                                                  | (Total for Question 1 = 1 mark)            |  |  |  |  |  |  |  |  |
| 2 | HPLC                                                                                                             | (Total for Question 1 = 1 mark) stands for |  |  |  |  |  |  |  |  |
| 2 | HPLC                                                                                                             |                                            |  |  |  |  |  |  |  |  |
| 2 |                                                                                                                  | stands for                                 |  |  |  |  |  |  |  |  |
| 2 |                                                                                                                  | stands for high pressure liquid column.    |  |  |  |  |  |  |  |  |

Use this space for any rough working. Anything you write in this space will gain no credit.

(Total for Question 2 = 1 mark)

3 Consider the equilibrium below.

$$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$$

(a) An increase in pressure by a factor of 2 will

(1)

- $\square$  **A** quadruple  $K_p$ .
- $\boxtimes$  **B** double  $K_p$ .
- $\square$  C have no effect on  $K_p$ .
- $\square$  **D** halve  $K_p$ .
- (b) The units of  $K_p$  are

(1)

- $\triangle$  A atm<sup>-2</sup>
- $\square$  **B** atm<sup>-1</sup>
- C atm
- $\square$  **D** atm<sup>2</sup>

## (Total for Question 3 = 2 marks)

4 Which of these will **not** improve the **overall** yield of the Haber process?

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
  $\Delta H = -92 \text{ kJ mol}^{-1}$ 

- **A** Increasing the pressure.
- **B** Liquefying then removing the ammonia from the reaction.
- $\square$  C Increasing the temperature.
- $\square$  **D** Recycling unreacted nitrogen and hydrogen.

## (Total for Question 4 = 1 mark)

- 5 The equation for the reaction between ethanoic acid and phosphorus(V) chloride is
  - $\square$  A CH<sub>3</sub>COOH + PCl<sub>5</sub>  $\rightarrow$  CH<sub>3</sub>COCl + POCl<sub>3</sub> + HCl
  - $\blacksquare$  **B** CH<sub>3</sub>COOH + PCl<sub>5</sub>  $\rightarrow$  CH<sub>3</sub>COOCl + PCl<sub>3</sub> + HCl
  - $\square$  C CH<sub>3</sub>COOH + PCl<sub>5</sub>  $\rightarrow$  CH<sub>3</sub>COCl + PCl<sub>3</sub> + HOCl
  - $\square$  **D** 2CH<sub>3</sub>COOH + PCl<sub>5</sub>  $\rightarrow$  (CH<sub>3</sub>CO)<sub>2</sub>O + PCl<sub>3</sub> + H<sub>2</sub>O + Cl<sub>2</sub>

(Total for Question 5 = 1 mark)

6 An example of a polyester is

(a) The two monomers needed to form this polymer are

(1)

|     | Monomer One | Monomer Two                              |
|-----|-------------|------------------------------------------|
|     | ноос — Он   | HO(CH <sub>2</sub> ) <sub>2</sub> OH     |
| В   | ноос — Соон | HO(CH <sub>2</sub> ) <sub>2</sub> OH     |
|     | но — Он     | HOOC(CH <sub>2</sub> ) <sub>2</sub> COOH |
| ⊠ D | ноос — Соон | HOOC(CH <sub>2</sub> ) <sub>2</sub> COOH |

(b) The type of reaction to form this polymer is

(1)

- **A** addition.
- **B** substitution.
- C condensation.
- **D** hydrolysis.

(Total for Question 6 = 2 marks)

7 In which of these reactions is the hydrogensulfate ion, HSO<sub>4</sub><sup>-</sup>, behaving as a Brønsted-Lowry base?

$$\square$$
 A  $HSO_4^- + H_3O^+ \rightarrow H_2SO_4 + H_2O$ 

$$\square$$
 **B**  $HSO_4^- + Ba^{2+} \rightarrow BaSO_4 + H^+$ 

$$\square$$
 C  $HSO_4^- + H_2O \rightarrow SO_4^{2-} + H_3O^+$ 

$$\square$$
 **D** HSO<sub>4</sub><sup>-</sup> + CO<sub>3</sub><sup>2-</sup>  $\rightarrow$  SO<sub>4</sub><sup>2-</sup> + HCO<sub>3</sub><sup>-</sup>

(Total for Question 7 = 1 mark)

8 The reaction below is carried out at 25 °C. Use the equation and the data to answer the questions that follow.

$$SO_2(g) + 2H_2S(g) \rightarrow 3S(s) + 2H_2O(g)$$
  $\Delta H = -107.4 \text{ kJ mol}^{-1}$ 

| Substance | Standard molar entropy, $S^{\oplus}$<br>/ J mol $^{-1}$ K $^{-1}$ |
|-----------|-------------------------------------------------------------------|
| $SO_2(g)$ | 248                                                               |
| $H_2S(g)$ | 206                                                               |
| $H_2O(g)$ | 189                                                               |
| S(s)      | 32                                                                |

(a) The standard entropy change of the system, in J mol<sup>-1</sup> K<sup>-1</sup>, is

(1)

(b) The standard entropy change of the surroundings, in J mol<sup>-1</sup> K<sup>-1</sup>, is

(1)

$$\triangle$$
 **A** 107.4 × 1000 / 25

$$\blacksquare$$
 **B** -107.4 × 1000 / 25

$$\square$$
 **C** 107.4 × 1000 / 298

$$\square$$
 **D**  $-107.4 \times 1000 / 298$ 

(Total for Question 8 = 2 marks)

9 A halogenoalkane, RX, reacts with hydroxide ions, OH<sup>-</sup>, to form an alcohol.

$$RX + OH^- \rightarrow ROH + X^-$$

The rate equation for the reaction is rate = k[RX]. Which of these statements is **incorrect**?

- $\triangle$  A Rate  $\propto$  [RX].
- **B** RX is a primary halogenoalkane.
- $\square$  **C** The reaction mechanism is  $S_N1$ .
- **D** A carbocation intermediate forms in the reaction.

(Total for Question 9 = 1 mark)

10 The rate equation for the reaction between hydrogen gas and nitrogen monoxide gas is

rate = 
$$k[NO]^2[H_2]$$

If the concentration of both reactants is doubled, the rate will increase by a factor of

- $\triangle$  A 3
- $\mathbf{B}$  **B** 4
- **C** 6
- $\square$  D 8

(Total for Question 10 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

11 A reaction has the rate equation rate =  $k[X][Y]^2[Z]$ . The concentrations of each reactant are shown in the table below.

| Reactant | Concentration / mol dm <sup>-3</sup> |  |  |  |  |  |  |  |
|----------|--------------------------------------|--|--|--|--|--|--|--|
| X        | 0.040                                |  |  |  |  |  |  |  |
| Y        | 0.20                                 |  |  |  |  |  |  |  |
| Z        | 0.12                                 |  |  |  |  |  |  |  |

(a) If the rate of reaction under these conditions has a value of 0.24 mol dm<sup>-3</sup> s<sup>-1</sup>, then the numerical value of k is

(1)

- $\triangle$  **A** 0.00080
- **B** 0.533
- **C** 1.875
- **D** 1250
- (b) The units for the rate constant, k, are

(1)

- $\square$  **A** mol<sup>-3</sup> dm<sup>9</sup> s<sup>-1</sup>
- $\square$  **B** mol<sup>3</sup> dm<sup>9</sup> s<sup>-1</sup>
- $\square$  C mol<sup>-3</sup> dm<sup>-9</sup> s<sup>-1</sup>
- $\square$  **D** mol<sup>3</sup> dm<sup>-9</sup> s<sup>-1</sup>

(Total for Question 11 = 2 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

| 12 | This question is shout the four organic substances shown helevy                            |      |
|----|--------------------------------------------------------------------------------------------|------|
|    | This question is about the four organic substances shown below.                            |      |
|    | A CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>0</sub> CHO                      |      |
|    | B CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COOH                                     |      |
|    | C CH <sub>3</sub> COCH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                        |      |
|    | D CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COCl                                     |      |
|    | Which substance will                                                                       |      |
|    | (a) give a positive result with both Brady's and Tollens' reagents?                        | (1)  |
|    | $oxed{oxed}$ A                                                                             | (1)  |
|    |                                                                                            |      |
|    | ⊠ C                                                                                        |      |
|    | ☑ D                                                                                        |      |
|    |                                                                                            |      |
|    | (b) be formed by the oxidation of a secondary alcohol?                                     | (1)  |
|    |                                                                                            |      |
|    | ☑ B                                                                                        |      |
|    | ☑ C                                                                                        |      |
|    | ☑ D                                                                                        |      |
|    | (c) form the most acidic solution when equal amounts are each mixed with 100 cm³ of water? |      |
|    | $oxed{\mathbb{Z}}$ A                                                                       | (1)  |
|    |                                                                                            |      |
|    | ☑ C                                                                                        |      |
|    |                                                                                            |      |
|    |                                                                                            |      |
|    | (d) form steamy fumes in the reaction with PCl <sub>5</sub> ?                              | (1)  |
|    | $oxed{oxed}$ A                                                                             |      |
|    |                                                                                            |      |
|    |                                                                                            |      |
|    | ☑ D                                                                                        |      |
|    | (Total for Question 12 = 4 ma                                                              | rks) |
|    |                                                                                            |      |



- 13 In order to make CH<sub>3</sub>CH<sub>2</sub>CONHCH<sub>3</sub>, you could use
  - $\triangle$  A CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>3</sub> + NH<sub>3</sub>
  - $\square$  **B** CH<sub>3</sub>CH<sub>2</sub>COCl + CH<sub>3</sub>NH<sub>2</sub>
  - $\square$  C CH<sub>3</sub>CH<sub>2</sub>COO<sup>-</sup>Na<sup>+</sup> + CH<sub>3</sub>NH<sub>2</sub>
  - $\square$  **D** CH<sub>3</sub>CH<sub>2</sub>CONH<sub>2</sub> + CH<sub>3</sub>NH<sub>2</sub>

(Total for Question 13 = 1 mark)

**TOTAL FOR SECTION A = 20 MARKS** 

### **SECTION B**

## Answer ALL the questions. Write your answers in the spaces provided.

- 14 In a pH titration, 30 cm³ of sodium hydroxide solution was added, in 1 cm³ portions, to 20 cm³ of ethanoic acid solution, CH<sub>3</sub>COOH(aq). The concentration of both solutions was 0.50 mol dm⁻³. After the addition of each 1 cm³, the pH was recorded using a pH meter.
  - (a) (i) Write the  $K_a$  expression for ethanoic acid.

(1)

(ii) Using your answer to (i), calculate the pH of the 0.50 mol dm<sup>-3</sup> ethanoic acid solution before the titration starts. Refer to page 18 of the data booklet.

**(2)** 

(iii) Deduce the volume of sodium hydroxide solution required to reach the end point.

(1)

(iv) Calculate the pH of the solution after all of the sodium hydroxide is added.

(4)



(v) On the axes below sketch a graph to show how the pH changes during the titration.

(3)



Volume of sodium hydroxide /  $cm^3$ 

| Explain how this buffer solution resists a change in pH when a few drops of sodium hydroxide are added.                                              |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| sodium hydroxide are added.                                                                                                                          |     |
| sodium hydroxide are added.                                                                                                                          | (3) |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
|                                                                                                                                                      |     |
| would be added to $500 \text{ cm}^3$ of ethanoic acid, concentration $1.0 \text{ mol dm}^{-3}$ , in order to make a buffer solution of pH = $4.70$ . | (4) |

| O is sometimes known as melonal as it smells similar to watermelon. |                                                     |                                                                                                      |                         |      |  |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------|------|--|--|--|--|
| (a) Giv                                                             | e the systematic name for                           | melonal.                                                                                             |                         | (2)  |  |  |  |  |
| (b) (i)                                                             | formula of compound X                               | by the oxidation of a compoun<br>and the names or formulae of the                                    |                         |      |  |  |  |  |
|                                                                     | oxidize X.                                          |                                                                                                      |                         | (3)  |  |  |  |  |
| ompound                                                             | 1 X                                                 |                                                                                                      |                         |      |  |  |  |  |
|                                                                     |                                                     |                                                                                                      |                         |      |  |  |  |  |
|                                                                     |                                                     |                                                                                                      |                         |      |  |  |  |  |
| eagents r                                                           | needed for oxidation                                |                                                                                                      |                         |      |  |  |  |  |
|                                                                     |                                                     |                                                                                                      |                         |      |  |  |  |  |
| (ii)                                                                |                                                     | al measure to maximise the yiel                                                                      | d of melonal in (b)(i). |      |  |  |  |  |
|                                                                     | Justify your answer.                                |                                                                                                      |                         | (2)  |  |  |  |  |
|                                                                     |                                                     |                                                                                                      |                         |      |  |  |  |  |
|                                                                     |                                                     |                                                                                                      |                         |      |  |  |  |  |
|                                                                     |                                                     |                                                                                                      |                         |      |  |  |  |  |
|                                                                     |                                                     |                                                                                                      |                         |      |  |  |  |  |
| mo and                                                              | lecule. Use page 5 of the the identity of the bonds | o confirm the presence of funct<br>data booklet to suggest the posi<br>responsible which can confirm | tion of two absorptions |      |  |  |  |  |
| fun                                                                 | ctional groups in melonal.                          |                                                                                                      |                         | (2)  |  |  |  |  |
| Wa                                                                  | avenumber range / cm <sup>-1</sup>                  | Bond                                                                                                 | Functional group pres   | sent |  |  |  |  |
|                                                                     |                                                     |                                                                                                      |                         |      |  |  |  |  |
|                                                                     |                                                     |                                                                                                      |                         |      |  |  |  |  |

(d) The mass spectrum of melonal shows small peaks at m/e = 57 and m/e = 83.

Give the formula of each of the fragments most likely to have caused these peaks.

(2)

$$m/e = 57$$
....

$$m/e = 83$$
.....

(e) (i) On the displayed formula below, circle the hydrogen atom that has a triplet peak in the proton nmr spectrum of melonal.

(1)

(ii) On the displayed formula below, circle the atom that gives rise to a peak at a chemical shift of  $\delta = 9.65$  ppm in the proton nmr spectrum of melonal. Refer to page 7 of the data booklet.

(1)

- (f) Aldehydes react with HCN in the presence of CN<sup>-</sup> ions.
  - (i) Give the mechanism for this reaction, using the simplified displayed formula below.

(3)

$$R$$
  $C=0$ 

(ii) The product of this reaction has a chiral centre. Would you expect the reaction to produce a solution that rotates the plane of plane-polarized light? Explain your answer.

(3)

| <br> |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| <br> |
| <br> |
| <br> |

(Total for Question 15 = 19 marks)

16 Iodine reacts with propanone in the presence of an acid catalyst.

$$CH_3COCH_3(aq) + I_2(aq) \rightarrow CH_3COCH_2I(aq) + HI(aq)$$

An experiment was carried out to investigate the kinetics of this reaction by monitoring the concentration of iodine. The progress of the reaction was followed by mixing together the reagents, removing samples of the mixture every five minutes, quenching the reaction and then titrating to find the concentration of iodine at a given time.

| ( | a) | (i             | ) | Suggest a | suitable | reagent  | with      | which   | vou | could | titrate | the  | iodine   |
|---|----|----------------|---|-----------|----------|----------|-----------|---------|-----|-------|---------|------|----------|
| 1 | α, | \ <del>-</del> | , | 2455000   | Saration | 10050111 | * * 1 011 | ******* | 100 | Coura |         | CIIO | 10 41110 |

(1)

| (ii) | State and | explain | how you | would | quench | the reaction |
|------|-----------|---------|---------|-------|--------|--------------|
|------|-----------|---------|---------|-------|--------|--------------|

**(2)** 

(b) (i) Data obtained from the experiment are shown in the table below. Use the data to plot a suitable graph to determine the order of the reaction with respect to iodine and state this order.

(3)

| Time / mins | $[I_2(aq)]$ / mol dm <sup>-3</sup> |
|-------------|------------------------------------|
| 5           | $9.74 \times 10^{-4}$              |
| 10          | $9.50 \times 10^{-4}$              |
| 15          | $9.25 \times 10^{-4}$              |
| 20          | $9.03 \times 10^{-4}$              |
| 25          | $8.80 \times 10^{-4}$              |
| 30          | $8.55 \times 10^{-4}$              |



Time / minutes

Order with respect to iodine

 $\begin{array}{c} \left[I_2(aq)\right]/\\ mol\ dm^{-3} \end{array}$ 



| (ii) Explain how you determined the order using your graph.                                             | (2)          |
|---------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                         |              |
| (c) State an alternative practical procedure that could be used to monitor the concentration of iodine. | (1)          |
| (Total for Question 1                                                                                   | 6 = 9 marks) |

| 17 The ester CH <sub>3</sub> CH <sub>2</sub> COOCH <sub>3</sub> can be formed from the reaction between propanoic acid and methanol with an acid catalyst. CH <sub>3</sub> CH <sub>2</sub> COOH + CH <sub>3</sub> OH ⇒ CH <sub>3</sub> CH <sub>2</sub> COOCH <sub>3</sub> + H <sub>2</sub> O |     |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|--|--|
| (a) (i) Name the ester.                                                                                                                                                                                                                                                                      | (1) |  |  |  |  |  |  |  |  |  |  |
| (ii) The same product can be made using propanoyl chloride instead of propanoic acid. Suggest an additional hazard that could occur using this reagent and describe how you would minimise this risk.                                                                                        | (2) |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                              |     |  |  |  |  |  |  |  |  |  |  |



(b) Complete the table below to show the amounts of each substance present at equilibrium. Use your values to calculate the equilibrium constant,  $K_c$ , for the reaction.

(3)

|                             | CH <sub>3</sub> CH <sub>2</sub> COOH | CH <sub>3</sub> OH | CH <sub>3</sub> CH <sub>2</sub> COOCH <sub>3</sub> | H <sub>2</sub> O |
|-----------------------------|--------------------------------------|--------------------|----------------------------------------------------|------------------|
| Initial<br>amounts<br>/ mol | 0.52                                 | 0.37               | 0                                                  | 1.2              |
| Equilibrium amounts / mol   |                                      |                    | 0.21                                               |                  |

(Total for Question 17 = 6 marks)

TOTAL FOR SECTION B = 52 MARKS

### **SECTION C**

Answer ALL the questions. Write your answers in the spaces provided.

- 18 This question is about the solubility of some Group 1 halides.
  - (a) Potassium fluoride is a soluble, white, crystalline solid used in etching glass. A Hess cycle can be used to calculate its enthalpy of solution, using data including enthalpies of hydration of ions.

Define the term enthalpy of hydration of an ion.

**(2)** 

(b) Consider the Hess cycle below.



(i) Complete the cycle by filling in the empty box.

(1)

| (ii)    | Apply Hess's Law to obtain an expression for $\Delta H_{\rm sol}$ in terms of $\Delta H_{\rm 1}$ and $\Delta H_{\rm 2}$ . $\Delta H_{\rm sol} =$                                                                                                                                                                                                                     | (1) |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (iii)   | Give the name of the energy change $\Delta H_1$ .                                                                                                                                                                                                                                                                                                                    | (1) |
| (iv)    | Referring to page 12 of the data booklet and your answer to (ii), calculate the standard enthalpy of solution of potassium fluoride.                                                                                                                                                                                                                                 | (2) |
| (c) The | e standard enthalpy of solution of sodium chloride is + 3 kJ mol <sup>-1</sup> .  1 g of sodium chloride was added to 250 cm <sup>3</sup> of water in a beaker and stirred with a thermometer graduated in intervals of 1 °C. Describe and explain what would happen to the reading on the thermometer as the sodium chloride dissolves. No calculation is required. | (3) |
|         |                                                                                                                                                                                                                                                                                                                                                                      |     |

| under standard conditions. No calculation is required.                                                                                                                                                                                |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                                                       | (4)   |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                       |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     | a     |
| Lithium iodide is generally much more soluble in organic solvents than lithium chloride. Explain this observation using values of lattice energies from your dat booklet and your knowledge of the trend in ionic radii down Group 7. | a (4) |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     |       |
| chloride. Explain this observation using values of lattice energies from your dat                                                                                                                                                     | (4)   |



|                                | 0 (8) | (18)<br>4.0<br><b>He</b><br>hettium<br>2 | 20.2           | Ne            | neon<br>10                     | 39.9 | Ar | argon<br>18      | 83.8 | 호      | krypton<br>36                        | 131.3 | Xe       | xenon<br>54                 | [222] | R.    | radon<br>86     |       | P                                                       |              |       |                     |                         |    |       |          |                               |
|--------------------------------|-------|------------------------------------------|----------------|---------------|--------------------------------|------|----|------------------|------|--------|--------------------------------------|-------|----------|-----------------------------|-------|-------|-----------------|-------|---------------------------------------------------------|--------------|-------|---------------------|-------------------------|----|-------|----------|-------------------------------|
|                                | 7     | (71)                                     | 19.0           | ш             | fluorine<br>9                  | 35.5 | บ  | chlorine<br>17   | 6.62 |        | bromine<br>35                        | 126.9 | _        | iodine<br>53                | [210] | At    | astatine<br>85  |       | en reporte                                              |              | 175   | 2                   | lutetium                | 7  | [257] | ۲        | lawrencium<br>103             |
|                                | 9     | (16)                                     | 16.0           | 0             | 5.                             | 32.1 |    | sulfur o         | 79.0 | 77.5   | selenium b                           | 127.6 | <u>е</u> | tellurium<br>52             | [506] |       | polonium 84     | 40000 | 16 have be                                              | cated        | 173   | Υb                  | Ē                       | 70 | [254] |          | nobelium la                   |
|                                | 2     | (15)                                     | 14.0           | z             | uei                            | 31.0 | ۵  | phosphorus<br>15 | 74.9 |        | arsenic se                           | 121.8 |          | antimony to                 | 209.0 |       | bismuth p       |       | bers 112-11                                             | ty autilelle | 169   | T                   | -                       | 69 | [526] |          | mendelevium n                 |
|                                | 4     | (14)                                     | 12.0           | U             | carbon r                       | 28.1 | Si | silicon ph       | 72.6 |        | germanium<br>32                      | 118.7 |          | tin<br>50                   | ~     | - 188 | lead t          |       | Elements with atomic numbers 112-116 have been reported | מר ווסר ומי  | 167   | Ę,                  | F                       | 89 | [253] |          | 100 m                         |
|                                | က     | (13)                                     | 10.8           | В             | boron<br>5                     | 27.0 | Ι¥ | aluminium<br>13  | 7.69 |        | gallium ge                           | 114.8 | 드        | indium<br>49                | 204.4 | F     | thallium<br>81  |       | nts with at                                             | 7.           | 165   | 운                   | E                       | 29 | [254] | 100      | 200                           |
| ents                           |       |                                          | _              |               |                                | 9    |    | (12) al          | 65.4 | Zu     | zinc<br>30                           | 112.4 | Ъ        | cadmium<br>48               | 900   | Τœ    |                 | 200   | Eleme                                                   |              | 163   | Δ                   |                         | 99 | [251] | ָל       | californium einsteinium 98 99 |
| :leme                          |       |                                          |                |               |                                |      |    | (11)             | 63.5 | n<br>O | copper<br>29                         | 107.9 | Ag       |                             | 197.0 |       | gold<br>79      | [272] | Rg                                                      | 111<br>111   | 159   |                     | E                       | 65 | [245] | BK       | 97                            |
| e of I                         |       |                                          |                |               |                                |      |    | (01)             | 58.7 | ź      | nickel<br>28                         | 106.4 | Pq       | palladium<br>46             | 195.1 | 7     | platinum<br>78  |       | Ds                                                      | 110          | 157   |                     | E                       | 64 |       |          | mnm<br>96                     |
| Tabl                           |       |                                          |                |               |                                |      |    | (6)              | 58.9 | ပိ     | cobalt<br>27                         | 102.9 |          | rhodium p                   | 192.2 |       | iridium<br>77   | [368] | Mt                                                      | 109          | 152   | E                   | Ē                       | 63 | [243] | Am       | mencium<br>95                 |
| iodic                          |       | 1.0<br><b>H</b><br>hydrogen              |                |               |                                |      |    | (8)              | 55.8 | Fe     | iron<br>26                           | 101.1 | Ru       | ruthenium<br>44             | 190.2 | os    | osmium<br>76    | [277] |                                                         | 108          | 150   | Sm                  | Ę                       | 62 | [242] | Pu       | 94                            |
| The Periodic Table of Elements |       |                                          |                |               |                                |      |    | (7)              | 54.9 | Wn     | nanganese<br>25                      | [86]  |          |                             | 186.2 | Re    | rhenium<br>75   | [264] | Bh                                                      | 107          | [147] | Pa                  |                         | 61 | [237] | Np Pu Am | 93                            |
| ⊨                              |       |                                          | ve atomic mass | lo            | name<br>atomic (proton) number |      |    | (9)              | 52.0 | င်     | chromium r                           | 95.9  | Wo       | molybdenum technetium 42 43 | 183.8 | >     | tungsten<br>74  | [366] | Sg                                                      | 106          | 144   | PN                  | neodymium p             | 9  |       |          | uranıum ir                    |
|                                |       | Key                                      |                | atomic symbol |                                |      |    | (2)              | 50.9 | >      | vanadium chromium manganese 23 24 25 | 92.9  |          | niobium n<br>41             | 180.9 |       | tantalum<br>73  | _     | g<br>G                                                  | 105          | 141   | P                   | praseodymium promethium | 59 | [231] |          | protactinium<br>91            |
|                                |       |                                          | relativ        | aton          | atomic                         |      |    | (4)              | 47.9 |        | titanium<br>22                       | 91.2  | Zr       | zirconium<br>40             | 178.5 | Ŧ     | hafnium<br>72   | [261] | Æ                                                       | 104          | 140   | Ç                   | F                       | 28 | 232   |          | mnucum<br>60                  |
|                                |       |                                          |                |               |                                |      |    | (3)              | 45.0 | Sc     | scandium<br>21                       | 88.9  |          | yttrium<br>39               | 138.9 | La*   | lanthanum<br>57 | [227] | Ac*                                                     | -            |       | S                   |                         |    |       |          |                               |
|                                | 2     | (2)                                      | 9.0            | Be            | beryllium<br>4                 | 24.3 | Mg | magnesium<br>12  | 40.1 |        | calcium<br>20                        | 97.8  | S        | strontium<br>38             | 137.3 |       | barium<br>56    | [526] | Ra                                                      | 88           |       | * Lanthanide series | * Actinide series       |    |       |          |                               |
|                                | -     | (5)                                      | 6.9            | :             | E                              | 23.0 | Na | sodium<br>11     | 39.1 | ×      | potassium<br>19                      | 85.5  |          | rubidium<br>37              | 132.9 | S     | caesium<br>55   | [223] | Fr                                                      | 87           |       | * Lanth             | * Actinic               |    |       |          |                               |
|                                |       |                                          |                |               |                                |      |    |                  |      |        |                                      |       |          |                             |       |       |                 |       |                                                         |              |       |                     |                         |    |       |          |                               |