CS 188: Artificial Intelligence

Learning II: Decision Tree & Logistic Regression

Instructors: Stuart Russell and Dawn Song

University of California, Berkeley

Recap: Supervised learning

- To learn an unknown target function f
- Input: a *training set* of *labeled examples* (x_i, y_i) where $y_i = f(x_i)$
 - E.g., x_i is an image, $f(x_i)$ is the label "giraffe"
 - E.g., x_i is a seismic signal, $f(x_i)$ is the label "explosion"
- Output: hypothesis h that is "close" to f, i.e., predicts well on unseen examples ("test set")
- Many possible hypothesis families for h
 - Linear models, logistic regression, neural networks, decision trees, examples (nearest-neighbor), grammars, kernelized separators, etc etc
- Classification = learning f with discrete output value
- Regression = learning f with real-valued output value

Training data

Example	Input Attributes									
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	<i>30–60</i>
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30
\mathbf{x}_{5}	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	ltalian	0–10
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	ltalian	10–30
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60

Goal WillWait $y_1 = \textit{Yes}$ $y_2 = No$ $y_3 = Yes$ $y_4 = \textit{Yes}$ $y_5 = No$ $y_6 = \mathit{Yes}$ $y_7 = No$ $y_8 = Yes$ $y_9 = No$ $y_{10} = No$ $y_{11} = No$ $y_{12} = \textit{Yes}$

Learning a Decision Tree

Goal

- Given training data of a list of attributes & label
- Hypothesis family H: decision trees
- Find (approximately) the smallest decision tree that fits the training data
- Iterative process to choose the next attribute to split on

Choosing an attribute: Information gain

 Idea: measure contribution of attribute to increasing "purity" of labels in each subset of examples; find most distinguishing feature

Patrons is a better choice: gives information about classification;
 more distinguishing feature

Information

- Information answers questions
- The more clueless I am about the answer initially, the more information is contained in the answer
- Scale: 1 bit = answer to Boolean question with prior (0.5, 0.5)
- For a coin with probability p heads, entropy $H(\langle p,1-p\rangle) = -plog p (1-p)log (1-p)$
- Convenient notation: $B(p) = H(\langle p, 1-p \rangle)$

Information

• Information in an answer when prior is $\langle p_1, ..., p_n \rangle$ is

$$H(\langle p_1,...,p_n\rangle) = \sum_i -p_i \log p_i$$

- This is the entropy of the prior
- Entropy was initially proposed in physics (thermodynamics)
- Shannon developed information theory, using entropy to measure information

Information gain from splitting on an attribute

- Suppose we have p positive and n negative examples at the root
 - = => _____ bits needed to classify a new example
 - E.g., for 12 restaurant examples, p = n = 6 so we need _____ bit
- An attribute splits the examples E into subsets E_k, each of which (we hope) needs less information to complete the classification
 - For an example in E_k we expect to need _____ more bits
 - Probability a new example goes into E_k is
 - Expected number of bits needed after split is
 - Information gain = _____

Information gain from splitting on an attribute

- Suppose we have p positive and n negative examples at the root
 - = => B(p/(p+n)) bits needed to classify a new example
 - E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit
- An attribute splits the examples E into subsets E, each of which (we hope) needs less information to complete the classification
 - For an example in E_k we expect to need $B(p_k/(p_k+n_k))$ more bits

 - Probability a new example goes into E_k is $(p_k + n_k)/(p + n)$ Expected number of bits needed after split is $\sum_{k} (p_k + n_k)/(p + n) B(p_k/(p_k + n_k))$
 - Information gain = $B(p/(p+n)) \sum_{k} (p_k + n_k)/(p+n) B(p_k/(p_k + n_k))$

Example

Information gain?

Example

$$1 - [(2/12)B(0) + (4/12)B(1) + (6/12)B(2/6)]$$

= 0.541 bits

$$1 - [(2/12)B(1/2) + (2/12)B(1/2) + (4/12)B(2/6) + (4/12)B(1/2)]$$
= 0 bits

Results for restaurant data

Decision tree learned from the 12 examples:

Simpler than "true" tree!

Decision tree learning

```
function Decision-Tree-Learning(examples, attributes, parent_examples) returns a tree
if examples is empty then return Plurality-Value(parent_examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return Plurality-Value(examples)
else A \leftarrow \operatorname{argmax}_{a \in attributes} Importance(a, examples)

tree \leftarrow a new decision tree with root test A
     for each value v of A do
          exs \leftarrow the subset of examples with value v for attribute A
           subtree \leftarrow Decision-Iree-Learning(exs, attributes - A, examples)
           add a branch to tree with label (A = v_{k}) and subtree subtree
```

Plurality-Value selects the most common output value among a set of examples

Training and Testing

A few important points about learning

- Data: labeled instances, e.g. emails marked spam/ham
 - Training set
 - Held out set
 - Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Compute accuracy of test set
 - Very important: never "peek" at the test set!
- Evaluation
 - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - Want a classifier which does well on test data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - Underfitting: fits the training set poorly

Training Data

Held-Out Data (Validation set)

> Test Data

A few important points about learning

- What should we learn where?
 - Learn parameters from training data
 - Tune hyperparameters on different data
 - Why?
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data
- What are examples of hyperparameters?

Results for restaurant data

Linear Regression

Linear regression = fitting a straight line/hyperplane

Prediction: $h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{x}$

Berkeley house prices, 2009

Prediction error

Error on one instance: $y - h_w(x)$

Least squares: Minimizing squared error

- L2 loss function: sum of squared errors over all examples
 - Loss = $\Sigma_i (y_i h_w(x_i))^2 = \Sigma_i (y_i (w_0 + w_1 x_i))^2$
- We want the weights w* that minimize loss
- At w* the derivatives of loss w.r.t. each weight are zero:

 - ∂ Loss/ ∂ w₁ = -2 Σ_{i}^{i} (y_i (w₀ + w₁x_i)) x_i = 0
- Exact solutions for N examples:
 - $w_1 = [N\Sigma_j x_j y_j (\Sigma_j x_j)(\Sigma_j y_j)]/[N\Sigma_j x_j^2 (\Sigma_j x_j)^2]$ and $w_0 = 1/N [\Sigma_j y_j w_1 \Sigma_j x_j]$
- For the general case where x is an n-dimensional vector
 - X is the data matrix (all the data, one example per row); y is the column of labels
 - $w^* = (X^T X)^{-1} X^T y$

Linear Classifiers

Feature Vectors

f(x)Hello, **SPAM** Do you want free printr or cartriges? Why pay more FROM_FRIEND : 0 when you can get them ABSOLUTELY FREE! Just PIXEL-7,12 : 1 PIXEL-7,13 : 0 ... NUM_LOOPS : 1

Some (Simplified) Biology

Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

```
# free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

w
f(x_1)
# free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...
```

Dot product $w \cdot f$ positive means the positive class

$$(x_2)$$
 # free : 0 YOUR_NAME : 1 MISSPELLED : 1 FROM_FRIEND : 1

Threshold perceptron as linear classifier

Binary Decision Rule

- A threshold perceptron is a single unit that outputs
 - $y = h_w(x) = 1$ when w.x ≥ 0 = 0 when w.x < 0
- In the input vector space
 - Examples are points x
 - The equation w.x=0 defines a *hyperplane*
 - One side corresponds to y=1
 - Other corresponds to y=0

Example


```
w<sub>0</sub> : -3
w<sub>free</sub> : 4
w<sub>money</sub> : 2
```

 $\begin{array}{c} \mathbf{x}_0 & \mathbf{:} & \mathbf{1} \\ \mathbf{x}_{\text{free}} & \mathbf{:} & \mathbf{1} \\ \mathbf{x}_{\text{money}} & \mathbf{:} & \mathbf{1} \end{array}$

Dear Stuart, I'm leaving Macrosoft to return to academia. The money is is great here but I prefer to be free to do my own research; and I really love teaching undergrads!

Do I need to finish my BA first before applying?

Best wishes

Bill

$$\mathbf{w.x} = -3x1 + 4x1 + 2x1 = 3$$

Weight Updates

Perceptron learning rule

- If true $y \neq h_w(x)$ (an error), adjust the weights
- If w.x < 0 but the output should be y=1</p>
 - This is called a false negative
 - Should *increase* weights on *positive* inputs
 - Should decrease weights on negative inputs
- If w.x > 0 but the output should be y=0
 - This is called a false positive
 - Should decrease weights on positive inputs
 - Should increase weights on negative inputs
- The perceptron learning rule does this:

•
$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (\mathbf{y} - \mathbf{h}_{\mathbf{w}}(\mathbf{x})) \mathbf{x}$$

Example

x₀ : 1
x_{free} : 1
x_{money} : 1

Dear Stuart, I wanted to let you know that I have decided to leave Macrosoft and return to academia. The money is is great here but I prefer to be free to pursue more interesting research and I really love teaching undergraduates! Do I need to finish my BA first before applying?

Best wishes
Bill

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (\mathbf{y} - \mathbf{h}_{\mathbf{w}}(\mathbf{x})) \mathbf{x}$$

 $\alpha = 0.5$

$$\mathbf{w} \leftarrow (-3,4,2) + 0.5 (0 - 1) (1,1,1)$$

= $(-3.5,3.5,1.5)$

 $\mathbf{w.x} = -3x1 + 4x1 + 2x1 = 3$

Perceptron convergence theorem

- A learning problem is *linearly separable* iff there is some hyperplane exactly separating +ve from –ve examples
- Convergence: if the training data are separable, perceptron learning applied repeatedly to the training set will eventually converge to a perfect separator

Separable

Non-Separable

Perceptron convergence theorem

- A learning problem is *linearly separable* iff there is some hyperplane exactly separating +ve from –ve examples
- Convergence: if the training data are separable, perceptron learning applied repeatedly to the training set will eventually converge to a perfect separator
- Convergence: if the training data are *non-separable*, perceptron learning will converge to a minimum-error solution provided the learning rate α is decayed appropriately (e.g., $\alpha=1/t$)

Separable

Non-Separable

Perceptron learning with fixed a

71 examples, 100,000 updates fixed $\alpha = 0.2$, no convergence

Perceptron learning with decaying a

71 examples, 100,000 updates decaying $\alpha = 1000/(1000 + t)$, near-convergence

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Non-Separable Case: Probabilistic Decision

How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(w)$ ry positive \square want probability going to 1
- If $z = w \cdot f(w)$ ry negative \square want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

A 1D Example

The Soft Max

$$P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}}$$

Best w?

• Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

= Logistic Regression

Separable Case: Deterministic Decision – Many Options

Separable Case: Probabilistic Decision – Clear Preference

Multiclass Logistic Regression

Recall Perceptron:

- ullet A weight vector for each class: w_y
- Score (activation) of a class y: $w_y \cdot f(x)$
- Prediction highest score wins $y = \arg\max_{y} w_y \cdot f(x)$

How to make the scores into probabilities?

$$z_1,z_2,z_3 \to \underbrace{\frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}},\frac{e^{z_2}}{e^{z_1}+e^{z_2}+e^{z_3}},\frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}}_{\text{original activations}},\underbrace{\frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}},\frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}}_{\text{softmax activations}}$$

Best w?

• Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:
$$P(y^{(i)}|x^{(i)};w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression