LECTURE 1 INTRODUCTION TO CODE-BASED CRYPTOGRAPHY DECODING A RANDOM CODE

Summer School: Introduction to Quantum-Safe Cryptography

Thomas Debris-Alazard

July 01, 2024

Inria, École Polytechnique

THE TEAM

- Maxime Bombar (Post-doc at CWI, Netherland)
 maxime.bombar@cwi.nl
- Thomas Debris-Alazard (Researcher at Inria, France)
 thomas.debris@inria.fr

COURSE CONTENT

Course Content:

- 1. An Intractable Problem Related to Codes, Decoding
- 2 Random Codes
- 3. Information Set Decoding (ISD) Algorithms and Duals Attacks
- 4. Duality, Fourier Theory and Decoding Self-Reducibility (Worst-to-Average Case Reduction)
- 5. McEliece and Alekhnovitch Encryption' Schemes (From Original Propositions to Instantiations)
 - \longrightarrow 3 lectures notes (long, for further reading): https://arxiv.org/pdf/2304.03541

Exercise Sessions:

- 1. Starting Exercises to Get Familiar with Linear Codes & Crypto
- 2. Programming Session: Implement Basic ISDs and Breaking Challenges
- 3. Advanced Exercises About Code-Based Cryptography and Duality
 - → 2 long exercise sheets: cryptanalyses of code-based encryption schemes

Code-Based Cryptography?

AN OLD HISTORY

AN OLD HISTORY

Shannon (1948/1949) introduced the following problem (decoding),

Aim:

Recover S

AN OLD HISTORY

Shannon (1948/1949) introduced the following problem (decoding),

 \longrightarrow Matrix \boldsymbol{A} and vectors $\boldsymbol{s},\boldsymbol{e}$ are binary ($\in\mathbb{F}_{2})$

THERE ARE TRAPDOORS (I)!

McEliece (1978):

A ← Trapdoor(): public-key

- With the trapdoor: easy to recover message if e "short" (with few 1, a lot of 0),
- · Without: hard

THERE ARE TRAPDOORS (II)!

- To encrypt b = 1, send
- u ← Unif

• To encrypt b = 0, send

e with few 1

But how to decrypt?

YOU SAID CODE?

Understanding what is a linear code: useful to

- 1. build trapdoors
- 2. understand the hardness of decoding

LINEAR CODES IN THE HISTORY

The first purpose of linear codes was not cryptography. . .

It was telecommunication!

→ Codes are at the core of information theory (and friends)

LINEAR CODES AND TELECOMMUNICATION

How to transmit *k* bits over a **noisy channel**?

LINEAR CODES AND TELECOMMUNICATION

How to transmit *k* bits over a noisy channel?

- 1. Fix C subspace $\subseteq \mathbb{F}_2^n$ of dimension k
- 2. Map $(m_1,\ldots,m_k)\longrightarrow \mathbf{c}=(c_1,\ldots,c_n)\in\mathcal{C}$ (adding n-k bits redundancy)
- 3. Send c across the noisy channel

 \longrightarrow from $c \oplus e$: how to recover e and then c?

(Decoding Problem)

HAMMING DISTANCE

Real life scenario:
$$\mathbf{c} + \mathbf{e}$$
 with $\mathbf{e} = (e_1, \dots, e_n)$ such that,

$$\forall i \in [1, n], \quad \mathbb{P}(e_i = 1) = p \text{ and } \mathbb{P}(e_i = 0) = 1 - p$$

 \longrightarrow Each bit of **c** is flipped with probability p

Given a received corrupted word y:

$$\mathbb{P}(\mathbf{c} \text{ was sent} \mid \mathbf{y} \text{ is received}) = p^{d_{\mathsf{H}}(\mathbf{c},\mathbf{y})} (1-p)^{n-d_{\mathsf{H}}(\mathbf{c},\mathbf{y})}$$

where
$$d_H(\mathbf{c}, \mathbf{y}) \stackrel{\text{def}}{=} \sharp \{i \in [1, n] : c_i \neq y_i\}$$
 (Hamming distance)

HAMMING DISTANCE

Real life scenario:
$$\mathbf{c} + \mathbf{e}$$
 with $\mathbf{e} = (e_1, \dots, e_n)$ such that,

$$\forall i \in [1, n], \quad \mathbb{P}(e_i = 1) = p \text{ and } \mathbb{P}(e_i = 0) = 1 - p$$

 \longrightarrow Each bit of **c** is flipped with probability p

Given a received corrupted word y:

$$\mathbb{P}$$
 (c was sent | y is received) = $p^{d_{\mathsf{H}}(\mathbf{c},\mathbf{y})}(1-p)^{n-d_{\mathsf{H}}(\mathbf{c},\mathbf{y})}$

where
$$d_H(\mathbf{c}, \mathbf{y}) \stackrel{\text{def}}{=} \sharp \{i \in [1, n] : c_i \neq y_i\}$$
 (Hamming distance)

Any decoding candidate $\mathbf{c} \in \mathcal{C}$ is even more likely as it is close to the received message \mathbf{v} for the Hamming distance.

 \longrightarrow It explains why historically the Hamming distance has been the considered metric when dealing with codes. . .

BASICS ON LINEAR CODES

 \mathbb{F}_q : finite field with q elements

Linear Code:

A linear code $\mathcal C$ of length n and dimension $k\left([n,k]_q\text{-code}\right)$:

subspace of \mathbb{F}_q^n of dimension k

First Examples:

- 1. $\{(f(x_1), \dots, f(x_n)): f \in \mathbb{F}_q[X] \text{ and } \deg(f) < k\}$ where the x_i 's are distinct elements of \mathbb{F}_q is an $[n, k]_q$ -code
- 2. $\{(\mathbf{u}, \mathbf{u} + \mathbf{v}) : \mathbf{u} \in U \text{ and } \mathbf{v} \in V\}$ where U (resp. V) is an $[n, k_U]_q$ -code (resp. $[n, k_V]_q$ -code) is an $[2n, k_U + k_V]_q$ -code

MINIMUM DISTANCE

Hamming Weight:

Given $\mathbf{x} \in \mathbb{F}_a^n$, its Hamming weight is:

$$|\mathbf{x}| \stackrel{\text{def}}{=} \sharp \left\{ i \in [1, n] : x_i \neq 0 \right\}$$

Minimum Distance:

The minimum distance of C is:

$$d_{\min}(\mathcal{C}) \stackrel{\text{def}}{=} \min \left\{ |\mathbf{c}| : \mathbf{c} \in \mathcal{C}, \ \mathbf{c} \neq \mathbf{0} \right\}$$

 $d_{\min}(\mathcal{C})$ is an important quantity:

"geometry" of ${\mathcal C}$; "efficiency" of ${\mathcal C}$; "security" of ${\mathcal C}$

HOW TO REPRESENT A CODE (I)?

$$C$$
 be an $[n, k]_q$ -code

Basis representation: g_1, \ldots, g_k basis of C,

$$\mathcal{C} = \left\{\mathsf{mG}: \ \mathsf{m} \in \mathbb{F}_q^k
ight\}$$
 where the rows of $\mathsf{G} \in \mathbb{F}_q^{k imes n}$ are the g_i

Reciprocally, any $\mathbf{G} \in \mathbb{F}_q^{k \times n}$ of rank k defines the $[n,k]_q$ -code,

$$\mathcal{C} \stackrel{\mathrm{def}}{=} \left\{ \mathsf{mG}: \; \mathsf{m} \in \mathbb{F}_q^k \right\}$$

Generator Matrix:

G is called a generator matrix

HOW TO REPRESENT A CODE (II)?

Dual Code:

Given C, its dual C^{\perp} is the $[n, n - k]_q$ -code,

$$\mathcal{C}^{\perp} \stackrel{\text{def}}{=} \left\{ \mathbf{c}^{\perp} \in \mathbb{F}_q^n : \ \forall \mathbf{c} \in \mathcal{C}, \ \mathbf{c} \cdot \mathbf{c}^{\perp} \stackrel{\text{def}}{=} \sum_{i=1}^n c_i \ c_i^{\perp} = \mathbf{0} \in \mathbb{F}_q \right\}$$

→ Wait Lecture 4 to understand the rational behind this definition!

HOW TO REPRESENT A CODE (II)?

Dual Code:

Given C, its dual C^{\perp} is the $[n, n - k]_q$ -code,

$$\mathcal{C}^{\perp} \stackrel{\text{def}}{=} \left\{ \mathbf{c}^{\perp} \in \mathbb{F}_q^n : \ \forall \mathbf{c} \in \mathcal{C}, \ \mathbf{c} \cdot \mathbf{c}^{\perp} \stackrel{\text{def}}{=} \sum_{i=1}^n c_i \ c_i^{\perp} = \mathbf{0} \in \mathbb{F}_q \right\}$$

→ Wait Lecture 4 to understand the rational behind this definition!

Parity-check representation: h_1, \ldots, h_{n-k} basis of \mathcal{C}^{\perp} ,

$$\mathcal{C} = \left\{c \in \mathbb{F}_q^n: \; Hc^\intercal = 0\right\} \text{ where the } \underset{rows}{\text{rows of }} H \in \mathbb{F}_q^{(n-k) \times n} \text{ are the } h_i$$

Reciprocally, any $H \in \mathbb{F}_q^{(n-k)\times n}$ of rank n-k defines the $[n,k]_q$ -code,

$$\mathcal{C} \stackrel{\text{def}}{=} \left\{ \mathbf{c} \in \mathbb{F}_q^n : \ \mathbf{H} \mathbf{c}^\mathsf{T} = \mathbf{0}
ight\}$$

Parity-Check Matrix:

H is called a parity-check matrix

A REMARK

- $\bullet \ \ \mathbf{G} \in \mathbb{F}_q^{k \times n} \ \text{generator matrix of} \ \mathcal{C} \ \left(\textit{i.e., } \mathcal{C} = \left\{\mathbf{mG}: \ \mathbf{m} \in \mathbb{F}_q^k\right\}\right), \mathbf{S} \in \mathbb{F}_q^{k \times k} \ \text{non-singular,}$
 - \longrightarrow SG still generator matrix of ${\mathcal C}$

- $\mathbf{H} \in \mathbb{F}_q^{(n-k) \times n}$ parity-check matrix of \mathcal{C} (i.e., $\mathcal{C} = \left\{ \mathbf{c} \in \mathbb{F}_q^n : \mathbf{H} \mathbf{c}^\mathsf{T} = \mathbf{0} \right\}$), $\mathbf{S} \in \mathbb{F}_q^{(n-k) \times (n-k)}$ non-singular,
 - \longrightarrow SH still parity-check matrix of ${\mathcal C}$

FROM ONE REPRESENTATION TO THE OTHER?

$$\mathbf{G} \in \mathbb{F}_q^{k \times n} \text{ generator matrix} \quad \overset{\textbf{easy to compute?}}{\longleftrightarrow} \quad \mathbf{H} \in \mathbb{F}_q^{(n-k) \times n} \text{ parity-check matrix}$$

FROM ONE REPRESENTATION TO THE OTHER?

$$\mathbf{G} \in \mathbb{F}_q^{k \times n} \text{ generator matrix} \quad \overset{\textbf{easy to compute?}}{\longleftrightarrow} \quad \mathbf{H} \in \mathbb{F}_q^{(n-k) \times n} \text{ parity-check matrix}$$

Yes!

- 1. Show that if $\mathbf{H} \in \mathbb{F}_q^{(n-k) \times n}$ has rank n-k and $\mathbf{GH^T} = \mathbf{0}$, then \mathbf{H} parity-check (exercise)
- 2. Perform a Gaussian elimination: $SG = (I_k \mid A)$, then $H = (-A^T \mid I_{n-k})$ is a parity-check matrix

 $Would \ you \ rather \ choose \ generator \ or \ parity-check \ representation?$

 $Would \ you \ rather \ choose \ generator \ or \ parity-check \ representation?$

Sorry for the team generator matrix :(

Usually, the parity-check representation is more convenient

Let C_{Ham} be the [7, 4]₂-code of generator matrix:

$$\mathbf{G} \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\mathbf{H} \stackrel{\text{def}}{=} \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

has rank 3 and verifies $GH^T = 0$.

Let
$$\mathbf{c} + \mathbf{e}$$
 where
$$\begin{cases} \mathbf{c} \in \mathcal{C}_{\text{Ham}} \\ |\mathbf{e}| = 1 \end{cases}$$
: how to easily recover \mathbf{e} ?

MODULO THE CODE

Given $\mathbf{c} + \mathbf{e}$: recover \mathbf{e}

 \longrightarrow Make modulo \mathcal{C} to extract the information about **e**

Coset Space: $\mathbb{F}_q^n/\mathcal{C}$

$$\text{Given an } [n,k]_q\text{-code }\mathcal{C},\quad \sharp \ \mathbb{F}_q^n/\mathcal{C}=q^{n-k}\quad \text{and}\quad \mathbb{F}_q^n/\mathcal{C}=\left\{\mathbf{x}_i+\mathcal{C}\ :\ 1\leq i\leq q^{n-k}\right\}$$

A natural set of representatives via a parity-check H: syndromes

$$\mathbf{x}_i + \mathcal{C} \in \mathbb{F}_q^n / \mathcal{C} \longmapsto \mathbf{H} \mathbf{x}_i^\mathsf{T} \in \mathbb{F}_q^{n-k}$$
 (called a syndrome)

is an isomorphism

C be an $[n, k]_q$ -code of parity-check matrix H

- $\bullet \ \text{From} \ c + e \text{:} \ \ \mathsf{H}(c + e)^\mathsf{T} = \mathsf{H}c^\mathsf{T} + \mathsf{H}e^\mathsf{T} = \mathsf{H}e^\mathsf{T}$
- From He^T : compute with linear algebra y s.t

$$Hy^{\intercal} = He^{\intercal} \iff H(y-e)^{\intercal} = 0 \iff y-e \in \mathcal{C} \iff y=c+e$$

THE WORST-CASE DECODING PROBLEM

Two formulations for the worst-case decoding:

Problem (Noisy Codeword Decoding):

- Given: $G \in \mathbb{F}_q^{k \times n}$ of rank $k, t \in [0, n]$, $\mathbf{y} \in \mathbb{F}_q^n$ where $\mathbf{y} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} = \mathbf{m} G$ for some $\mathbf{m} \in \mathbb{F}_q^k$ and $|\mathbf{e}| = t$
- Find: e (or equivalently m)

Problem (Syndrome Decoding):

- Given: $H \in \mathbb{F}_q^{(n-k)\times n}$ of rank $n-k, t \in [0, n]$, $\mathbf{s} \in \mathbb{F}_q^{n-k}$ where $H\mathbf{e}^\mathsf{T} = \mathbf{s}^\mathsf{T}$ with $|\mathbf{e}| = t$
- Find: e

→ These problems are equivalent!

n length; k dimension; t decoding distance

Let, \mathcal{A} be an algorithm such that $\mathcal{A}(\mathsf{G},\mathsf{mG}+\mathsf{e})\longmapsto\mathsf{e}$

Given (H, He^T) : our aim, recover e using A

- 1. Compute with linear algebra **G** (rank k) such that $\mathbf{GH}^{\mathsf{T}} = \mathbf{0}$
- 2. Compute (again) with linear algebra y such that $Hy^T = He^T$
- 3. Notice that $H(y-e)^T=0\iff y-e=mG$ for some $m\in\mathbb{F}_q^k$
- 4. Feed (G, y) to \mathcal{A} : it recovers e

Exercise: show that the reciprocal holds

In what follows, we will mainly keep the parity-check representation!

NP-COMPLETENESS

Worst-Case Decisional Decoding Problem

- Input: $\mathbf{H} \in \mathbb{F}_q^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_q^{n-k}$ where $n, k \in \mathbb{N}$ with $k \le n$ and an integer $t \le n$.
- Decision: it exists $\mathbf{e} \in \mathbb{F}_a^n$ of Hamming weight t such $\mathbf{He}^{\mathsf{T}} = \mathbf{s}^{\mathsf{T}}$?

This problem is NP-complete

Is it useful?

Be careful of the input set!

DRAWBACK OF THE NP-COMPLETENESS

The above NP-completeness shows that (if $P \neq NP$)

We cannot easily solve the decoding problem for all codes and all decoding distances. . .

→ There are codes for which decoding is hard!

Not a safety guarantee for cryptographic applications!

Is decoding hard for all codes?

No! (remember Hamming code...)

Generalized Reed-Solomon (GRS) Codes:

Given
$$\mathbf{z} \in (\mathbb{F}_q^{\star})^n$$
 and $\mathbf{x} \in \mathbb{F}_q^n$ s.t $x_i \neq x_j$ (in particular $n \leq q$) and $k \leq n$.

The code $GRS_k(x, z)$ is defined as:

$$\mathrm{GRS}_k(\mathbf{x},\mathbf{z}) \stackrel{\mathrm{def}}{=} \Big\{ \Big(z_1 f(x_1), \ \dots, \ z_n f(x_n) \Big) : \ f \in \mathbb{F}_q[X] \ \ \text{and} \ \ \ \mathrm{deg}(f) < k \Big\}$$

---- GRS are used in QR-codes!

Exercise: $GRS_k(x, z)$ has generator matrix:

$$\mathbf{G} \stackrel{\mathrm{def}}{=} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ x_1^k & x_2^k & \cdots & x_n^k \end{pmatrix} \begin{pmatrix} z_1 & & & & 0 \\ & z_2 & & & \\ & & \ddots & & \\ 0 & & & z_n \end{pmatrix}$$

BERLEKAMP-WELSH ALGORITHM

Decoding Algorithm:

Given,
$$\mathsf{GRS}_k(x,z)$$
 and $c+e$ such that $\left\{ \begin{array}{c} c \in \mathsf{GRS}_k(x,z) \\ |e| \leq \left\lfloor \frac{n-k}{2} \right\rfloor \end{array} \right.$

Then, we can recover (c, e) in polynomial time in the size of inputs, i.e., $O(n^{\ell})$ for some ℓ .

→ See Exercise Session

IN SUMMARY

- There are codes for which decoding is hard (NP-Completeness)
- Decoding is easy for some family of codes (for instance Generalized-Reed-Solomon codes)

Is decoding hard for almost all codes?

THE AVERAGE DECODING PROBLEM

$$Sample: \qquad \qquad H \qquad \longleftarrow \ \, Unif\left(\mathbb{F}_q^{(n-k)\times n}\right), \qquad \qquad \times \qquad \longleftarrow \ \, Unif\left(z:|z|=t\right)$$

$$Input: \qquad \qquad H \qquad , \qquad s = \qquad H \qquad \qquad x$$

$$Recover: \qquad \qquad e \qquad s.t \qquad H \qquad \qquad e = \qquad s \qquad and \qquad e \in \left\{z:|z|=t\right\}$$

For a fixed R=k/n, with respect to au=t/n, the solution will be unique or not!

Let,
$$\varepsilon = \mathbb{P}_{H,x} \Big(\mathcal{A}(H,s = xH^T) = e$$
 such that $|e| = t$ and $eH^T = s \Big)$

Using the law of total probability:

$$\varepsilon = \frac{1}{q^{k \times (n-k)} \times (q-1)^t \binom{n}{t}} \sum_{\substack{\mathsf{x}_0 \in \mathbb{F}_q^n, \; |\mathsf{x}_0| = t \\ \mathsf{H}_0 \in \mathbb{F}_q^{(n-k) \times n}}} \mathbb{P}\Big(\mathcal{A}(\mathsf{H}_0, \mathsf{s} = \mathsf{x}_0 \mathsf{H}^\mathsf{T}) = \mathsf{e} \; \text{ s.t. } |\mathsf{e}| = \mathsf{t} \; \text{ and } \; \mathsf{e}\mathsf{H}^\mathsf{T} = \mathsf{s}\Big)$$

 $\longrightarrow \varepsilon$ is the average success probability of ${\mathcal A}$ over all fixed possible inputs

(above probabilities are computed over the internal randomness of ${\cal A}$)

Consequence:

If arepsilon is negligible, then ${\mathcal A}$ fails to decode almost all codes

Exponential Complexity for Decoding in Average:

For all known algorithms \mathcal{A} (T running time of one iteration \mathcal{A})

$$\frac{T}{\varepsilon}=2^{\alpha(q,R,\tau)}\,\,^{n(1+o(1))}$$
 for some $\alpha(q,R,\tau)\geq 0$

Figure 1: Hardness of DP(n, q, R, τ) as function of τ

Exponential Complexity for Decoding in Average:

For all known algorithms \mathcal{A} (T running time of one iteration \mathcal{A})

$$\frac{T}{\varepsilon} = 2^{\alpha(q,R,\tau)} \, n^{(1+o(1))}$$
 for some $\alpha(q,R,\tau) \geq 0$

Figure 1: Hardness of DP(n, q, R, τ) as function of τ

- McEliece encryption: $t = \tau n = \Theta\left(\frac{n}{\log n}\right)$
- ▶ Other encryptions: $t = \tau n = \Theta(\sqrt{n})$
- Authenticated protocols: $t = \tau n = Cn$ where C constant quite small
- Wave Signature: $t = \tau n = Cn$ where C large constant, $C \approx 0.95$

AND THE GENERATOR MATRIX REPRESENTATION?

 $\mathsf{DP}'(n,q,R,\tau)$. Let $k \stackrel{\mathsf{def}}{=} \lfloor Rn \rfloor$ and $t \stackrel{\mathsf{def}}{=} \lfloor \tau n \rfloor$

- Input: (G, $y \stackrel{\text{def}}{=} sG + x$) where G, s and x are uniformly distributed over $\mathbb{F}_q^{k \times n}$, \mathbb{F}_q^k and words of Hamming weight t in \mathbb{F}_q^n .
- Output: an error $\mathbf{e} \in \mathbb{F}_q^n$ of Hamming weight t such that $\mathbf{y} \mathbf{e} = \mathbf{m}\mathbf{G}$ for some $\mathbf{m} \in \mathbb{F}_q^k$.

Exercise Session:

For any algorithm ${\cal A}$ solving ${\sf DP}'$ with probability ${\varepsilon}$ and time ${\it T}$:

Describe an algorithm $\mathcal B$ solving DP in the pprox same time with probability $\geq \varepsilon - O\left(q^{-\min(k,n-k)}\right)$ (and the reciprocal)

 \longrightarrow Same average hardness with syndromes or noisy codewords formalism!