Leinster - Basic Category Theory - Selected problem solutions for Chapter 6

Adam Barber

May 18, 2025

6.2.20

(a)

$$\begin{array}{ccc}
X & \xrightarrow{1} & X \\
\downarrow_{1} & & \downarrow_{\alpha} \\
X & \xrightarrow{\alpha} & Y
\end{array} \tag{1}$$

where X, Y are functors in the category [A, S]

By Lemma 5.1.32 α is monic in [A, S] if and only if the above square is a pullback. Using Theorem 6.2.5 there is a pullback whose image under the evaluation functor ev_A is a pullback for each $A \in \mathbf{A}$ in S. So by the lemma α_A is monic for all $A \in \mathcal{A}$. The other direction holds by virtue of the same theorem, that there is only one way to extend the pullback on S for each S, to a pullback on S a pullback on S for each S and S is monic for all S in S is monic for all S is monic for all S is monic for all S in S in S is monic for all S is monic for all S in S in S in S in S is monic for all S in S in

(b) Monics in $[A^{op}, Set]$ are epics in [A, Set] and vice versa.

6.2.21

(a) Use a cardinality argument as follows. There is only one identity map represented by the left hand side of the following expresssion. $H_A(A) \cong X(A) + Y(A)$, for all A in A. Which means that either X(A) or Y(A) must be the empty set for all A in A.

6.2.22

The category of elements can be represented by $(1 \to X)$, where 1 is a single element set. The comma category commuting diagram becomes

$$\begin{array}{ccc}
1 & \longrightarrow & x \\
\downarrow & \downarrow & \chi_f \\
x'
\end{array} \tag{2}$$

where $x \in X(A)$, and $x' \in X(A')$, and $f : A' \to A$. The above diagram shows under our choice of comma category that Xf(x) = x' as required.

6.2.23

A category of elements with a terminal object by definition is equivalent to the definition of a representation as a universal element in (4.6).

6.2.24

Let E be a functor in the functor category $[\mathbf{A}^{op}, \mathbf{Set}]$ and $E \to X$ be an object of the slice category, where X is a presheaf on \mathbf{A} . We need an equivalence functor to map $E \to X$ to some $[\mathbf{B}^{op}, \mathbf{Set}]$. For a given A, and consider $\alpha_A : E(A) \to X(A)$. For a $x \in X(A)$ back out the definition of E with

$$\beta_A(x) = \{e : \alpha_A(e) = x\} \tag{3}$$

where $e \in E(A), x \in X(A)$.

So now we have (A, x) pairs as in the definition of the category of elements in Definition 6.2.16, and can construct a functor using them informally as $(A, x) \to \beta_A(x)$. However we do need to show that $\beta_A(x)$ and $\beta_{A'}(x)$ induce an f such that (Xf)(x') = x. Because the morphism of E to X is a natural transformation we know that with $f: A \to A'$, that $\alpha_A(e) = (Xf)(\alpha_{A'}e')$ taken with (3) means (Xf)(x') = x as required.

In the other direction, if E is a presheaf on the category of elements,

$$E(a) = \bigsqcup_{x \in X(a)} E(a, x) \tag{4}$$

and for $e \in E(a), x \in X(a)$ define f(e) = x.

Source of ideas for this proof.¹

6.2.25

(a) i. Functoriality of $Lan_F X$

 $^{^{1}} https://math.stackexchange.com/questions/3633646/every-slice-of-a-presheaf-category-is-again-a-presheaf-category$

Let the diagram given for our colimit be $D_B := X$, with $(A, FA \to B)$ in $(F \Rightarrow B)$. To prove $\operatorname{Lan}_F X$ is a functor we need to consider $\operatorname{Lan}_F X$ on morphisms $f : B \to B'$, and $f' : B' \to B''$. f and f' induce the maps presented below:

$$D_{B} \xrightarrow{p_{I}} Lan_{F}(B)$$

$$\downarrow^{D(f)} \qquad \downarrow^{L(f)}$$

$$D_{B'} \xrightarrow{p_{I'}} Lan_{F}(B')$$

$$\downarrow^{D(f')} \qquad \downarrow^{L(f')}$$

$$D_{B''} \xrightarrow{p_{I''}} Lan_{F}(B'')$$

$$(5)$$

The map from $\operatorname{Lan}_F B \to \operatorname{Lan}_F B''$ is a unique map by the colimit property of $\operatorname{Lan}_F B$ and hence L(f')L(f) = L(f'f) as required.

(a) ii. Bijection between $\operatorname{Lan}_F X \to Y$ and $X \to YF$.

Consider the cocone $(X(A) \xrightarrow{p_I} \operatorname{Lan}_F X(B))_{\{FA \to B\}}$, for all $(A, FA \to B)$ in $(F \Rightarrow B)$. To form the bijection required, make the canonical choice of $1_{F(A)}$ in $(F \Rightarrow F(A))$ and reevaluate p_I above which now becomes $X(A) \to \operatorname{Lan}_F XF(A)$. With this choice there is a single base of the cocone X(A) for every $\operatorname{Lan}_F XF(A)$ so we can form the required bijection between $\operatorname{Lan}_F X \to Y$ and $X \to YF$. The task remaining is to prove naturality between $\operatorname{Lan}_F X$ and X.