Nome, cognome, matricola

Calcolatori Elettronici (12AGA) - esame del 13.7.2017 - A

Domande a risposta chiusa (è necessario rispondere correttamente ad almeno 6 domande). Non è possibile consultare alcun tipo di materiale. Si utilizzi esclusivamete il foglio fornito. Tempo: 15 minuti.

1	Si consideri un circuito sequenziale sincrono con 2: ingressi, 70 uscite e 54 stati. Qual è il numero minimo d flip flop necessari per la sua implementazione?		
2	Si consideri il meccanismo della Memoria Virtuale: chi	Il memory controller	A
	esegue la traduzione degli indirizzi logici in fisici?	La MMU	В
		Il cache controller	С
		Il Sistema Operativo	D
3	Si consideri una cache con le seguenti caratteristiche	7 bit	A
	• 128 linee da 16 byte	21 bit	В
	Meccanismo set associative a 8 vie con sostituzione	23 bit	С
	LRU.	24 bit	D
	Assumendo che gli indirizzi emessi dal processore siano si		
	32 bit, qual è la dimensione del campo tag associato a ogn		
	linea?		
4	Si consideri un sistema che utilizza il meccanismo del	Attraverso una qualsiasi istruzione che fa accesso alla	A
	memory mapped per accedere alle periferiche: come è	memoria	
	possibile eseguire in tale caso le operazioni di I/O?	Attraverso le sole istruzioni IN e OUT	В
		Attraverso l'interrupt	С
		Attraverso il DMA	D
5	Quale valore assume il parametro CPI (Clocks Pe	Un numero variabile sempre maggiore di 1	A
	Instruction) per i processori superscalari?	K, dove K è il numero di stadi di pipeline	В
		Un numero variabile ma normalmente minore di 1	С
		Sempre 1	D
6	Si scriva l'espressione booleana minimizzata per la funzione nella mappa di Karnaugh rappresentata qui sotto.		
	c d a b 00 01 11 10		
	00 0 - 0 0		
	01 - 1 0 0		
	11 1 - 1 1		
	10 0 0		
7	Quale dei seguenti meccanismi permette a un DMAC d	i Burst Transfer	A
	garantire la massima velocità di trasferimento?	Cycle Stealing	В
		Transparent Mode	С
		I vari meccanismi sono sostanzialmente equivalenti	D

8	Quale tra le seguenti istruzioni x86 richiede il maggior numero di colpi di clock per essere eseguita?	SUB [SI], 5	A	
	numero di cospi un viconi per cossito congunui.	ADD AX, 15	В	
		MOV AX, [BX+4]	С	
		MUL CX	D	
9	Si scriva un frammento di codice in Assembler x86 che esegue un ciclo che decrementa AX sino a che AX raggiunge il valore -3. Si assuma che il valore iniziale di AX sia positivo.			

Risposte corrette

1	2	3	4	5	6	7	8	9
6	В	D	A	С		A	D	

Domanda 6 a'b + cd oppure a'd + cd

Domanda 9 (esempio di soluzione)

L1: CMP AX, -3 JLE L2 DEC AX JMP L1 L2:

Ion	ne, cognome, matricola
	Domande a risposta aperta (sino a 5 punti per ogni domanda) – Non è possibile consultare alcun materiale - Tempo: 40 minuti. A
0	Progettare un circuito contatore circolare sincrono su 2 bit, avente due ingressi I1 e I2 configurati nel seguente modo: • se I1=1 e I2=0 il contatore viene incrementato ad ogni colpo di clock • se I1=0 e I2=1 il contatore viene decrementato ad ogni colpo di clock • se I1=0 e I2=0, il valore memorizzato non cambia. • la configurazione I1=1 e I2=1 non è mai applicata.
	Si richiede di riportare i passaggi principali e le funzioni ottimizzate che rappresentano gli ingressi dei flip flop.
	Si disegni una memoria composta da 4 Mparole di 16 bit ciascuna, utilizzando moduli da 512Kparole da 8 bit ciascuna.
	Statisegin and memoria composit at 170 of classical, annization model at 5121parote at 5 of classical

12	Si scrivano le microistruzioni (inclusive della fase di fetch) eseguite da un processore avente l'architettura in figura durante l'esecuzione dell'istruzione SUB [R2], R3, R1
	Tale istruzione sottrae al contenuto di R3 il contenuto di R1, e scrive il risultato nella locazione di memoria il cui indirizzo è memorizzato in R2.
13	Si descriva il funzionamento del modo 1 dell'8255 in caso di utilizzo della porta B in modalità di output. Si richiede il disegno di uno schema di interconnessione tra CPU, 8255 e dispositivo periferico.

Nome, cognome, matricola

Esercizio di programmazione

Sino a 12 punti. È possibile consultare solamente l'instruction set Intel fornito. Tempo: 60 minuti

Sia data una matrice di byte contenente solo valori 0 e 1, di dimensione fissata dalle due costanti (strettamente positive) NRIGHE e NCOLONNE. Le celle contenenti il valore 1 corrispondono ai punti di una linea (o percorso) sul piano. Si scriva una procedura **seguiPercorso** in linguaggio Assembly 8086 in grado di seguire un percorso a partire da una cella data e lungo celle contigue contenenti il valore 1, finché possibile. Il percorso non presenta biforcazioni, e lo spostamento può avvenire soltanto verso destra o verso il basso. Nell'esempio seguente, la casella di partenza è (1, 0), il percorso è lungo 6 celle e la casella finale è (3, 3):

La procedura riceve:

- l'offset della matrice tramite stack
- l'indice della riga di partenza (compreso tra 0 e NRIGHE-1) attraverso il registro DL
- l'indice della colonna di partenza (compreso tra 0 e NCOLONNE-1) attraverso il registro DH.

La procedura restituisce la lunghezza del percorso tramite stack. Si noti che il percorso è lungo 0 se la cella di partenza ha valore 0.

Non è ammesso l'uso di variabili.

Di seguito un esempio di programma chiamante:

```
NRIGHE EQU 4
NCOLONNE EQU 6
.MODEL small
.STACK
.DATA
matrice DB 0, 0, 0, 0, 0
        DB 1, 1, 0, 0, 0, 0
        DB 0, 1, 1, 1, 0, 0
        DB 0, 0, 0, 1, 0, 0
.CODE
.STARTUP
PUSH OFFSET matrice
SUB SP, 2
MOV DL, 1
MOV DH, 0
CALL seguiPercorso
POP AX
ADD SP, 2
.EXIT
```