Stoornissen van taalbegrip bij afasie en de invloed van liplezen erop

Dörte Hessler CLCG, Rijksuniversiteit Groningen d.a.hessler@rug.nl

Achtergrond

- Taalperceptie = horen + zien
 - Maar hoezo zien?
 - In welke situaties wordt gebruik gemaakt van visuele informatie?
 - · Achtergrondgeluid
 - Afasie
 - · Cognitief veeleisende inhoud
 - Normale taalperceptie

Achtergrondgeluid

- Sumby & Pollack (1954):
 - Onderzoek naar begrip van woorden
 - Verschillende niveaus van achtergrondgeluid ("speech-tonoise ratios")
 - Alleen auditieve en audiovisuele presentatie
 - Woordbegrip wordt slechter als er meer achtergrondgeluid is
 - Dit is duidelijker voor alleen auditieve presentatie
 - Hoe meer achtergrondgeluid, hoe groter het verschil tussen 'alleen auditief" en audiovisueel

Afasie

- Buchman et al. (1986)
 - Review van 34 gevallen van woorddoofheid
 - Daarvan berichten 21 over invloedfactoren op taalbegrip
 - In 19 van 21: met liplezen beter dan zonder
- Shindo et al. (1991)
 - 4 patiënten
 - Begrip van woorden en zinnen
 - Alle 4: beter bij audiovisuele presentatie dan alleen auditieve

Afasie (2)

- Therapie-studies
 - Onderzoek naar effectiviteit van therapie die gebaseerd is op gebruiken van liplees-informatie
 - Bijv. Morris et al. (1996) of Hessler (2007)
 - Patiënten kunnen na therapie beter klanken discrimineren (ook zonder spreker te zien)
 - \rightarrow liplezen werd gebruikt als steun om klankanalyse te herstellen

nadat dit is gelukt, is liplezen niet meer absoluut nodig

Cognitief veeleisende inhoud

- Reisberg et al. (1987)
 - Goede kwaliteit geluid
 - Inhoud complex
 - Vergelijk auditief vs. audiovisueel:
 - Audiovisueel beter begrip (inhoudelijk)

Normale taalperceptie

- Achtergrondgeluid en afasie → visuele informatie misschien steun in bijzondere situaties
- Cognitief veeleisende inhoud → misschien maakt visuele informatie toch deel uit van normale taalperceptie (maar het is nog steeds een bijzonder situatie)
- MAAR: McGurk effect (McGurk & MacDonald, 1976)

Normale taalperceptie (McGurk)

- McGurk effect = bewijs, dat auditieve en visuele informatie allebei deel uitmaken van perceptie
- McGurk effect:
 - Dubbing van verschillende visuele en auditieve informatie:
 - Auditief: /ba/
 - Visueel: /ga/
 - Perceptie: /da/
 - Alleen verklaarbaar, doordat het mondbeeld de auditieve informatie heeft beïnvloed

Fonetische kenmerken • Elk fonem bestaat uit 3 fonetische kenmerken • Plaats van articulatie • Manier van articulatie • Stem • Fonemen kunnen in 1, 2 of alle 3 kenmerken verschillen: • huis – muis (3 kenmerken)

Modelle Taalverwerking • Ellis & Young model Auditory analysis **Auditory Input** Buffer Phonological Input Lexicon Semantic System

• land - band (2 kenmerken - plaats & manier)

• bad – pad (1 kenmerk – stem) • taal - kaal (1 kenmerk - plaats) ...

Afasie & McGurk effect

- Cambell et al. (1990):
 - 4 proefpersonen met hersenletsel (1 ervan met afasie)
 - De afatische patient had problemen met auditieve verwerking, maar kon liplezen
 - Hij liet McGurk effect voor medeklinkers zien, maar voor klinkers visuele reactie

Afasie & McGurk effect

- Julia Klitsch (2008)
 - 6 patienten met afasie
 - Onderzoeken van verschillende invloedfaktoren:
 - Lexicale status
 - Leeftijd

Afasie & McGurk effect

- Youse et al. (2004)
 - 1 afatische patient
 - Problemen met identificatie van lettergrepen voor
 - Audieve conditie
 - Visuele conditie
 - Audiovisuele conditie (congruent & McGurk)
 - Patient heeft 100% McGurk antworden (/di/) gegeven
 - Helaas: antwoord bias, in alle condities heel veel /di/ antwoorden!

Afasie & McGurk effect

- Klitsch (2008)
 - Vergelijk aantal McGurk antwoorden
 - Afasie (43%) \approx leeftijdsgematched (45%) > studenten
 - → Afasie geen invloed, leeftijd wel!
 - Invloed lexicale status
 - Meer McGurk antwoorden als "input" nonwoord en "output" bestaand woord (kijd + pijd = tijd)

Mijn onderzoek - vragen?

- Welke fonetische kenmerken worden in audiovisuele verwerking geintegreerd?
- Hoe is AV-integratie bij mensen met afasie?
 - Is er misschien minder invloed van visuele info?
 - Of juist meer?
- Hoe wordt integratie in de hersenen verwerkt?

Mijn onderzoek - overzicht

- 3 experimenten
 - Discriminatie taak
- **→**Afgerond
- Identificatie taak ERP experiment
- →Afgerond→In uitvoering

- 2 pilot-studies
 - Evaluatie materiaal
- →Afgerond

Materiaal

- Algemeen:
 - Niet-bestaande woorden: CVC(C) structuur
 - Verschillende condities: alleen auditief (AO), audiovisueel (AV), alleen visueel (VO) en McGurk
 - Opname video's
 - Mannelijke moedertaalspreker van Nederlands
 - Stille ruimte
 - · Audio via externe microfoon
 - Bewerking video's
 - Elk video 3 sec lang, spreker in rustpositie voor 480 ms in begin
 - Om AO en VO te maken werden beeld of geluid weggehaald
 - McGurk items door combinatie beeld & geluid van verschillende opnames

Pilot 1 - resultaten

• 12 deelnemers, gemiddelde leeftijd 41,33 (26 – 67)

		McGurk (incl. diff. Voice)	audio	video	Else
All	Average	29,06%	36,75%	23,93%	10,26%
	Range	0% - 61,54 %	2,56% - 69,22%	2,56% - 58,97%	0%-30,77%
>50 (n=4)	Average	44,87%	20,51%	27,56%	7,05%
	Range	23,08%-61,54%	2,56%-35,90%	2,56%-58,97%	0%-17,95%
<50 (n=8)	Average	21,16%	44,87%	22,12%	11,86%
	Range	0%-61,54%	10,26%-69,22%	7,69%-38,46%	2,56%-30,77%

Pilot - Resultaten

- Aantal McGurk antwoorden verglijkbaar met Klitsch (2008)
- 4 (van 39) items zonder enkel McGurk antwoord
- 7 items commentaar van deelnemers over kwaliteit of synchroniciteit

Deelnemers

- 14 gezonde controle personen:
- 7 vrouwen
- Leeftijd: 49 68 (gemiddeld 56,29)
- 6 afatische proefpersonen:
- 3 vrouwen
- Leeftijd: 47 64 (gemiddeld 52,33)

Identificatie Taak - Discussie

- Patiënten slechter & langzamer dan controles
- Voor patiënten: AV beter dan AO
- Kwalitative verschillen:
 - Voor controles invloed van antwoord bij McGurk items
 - Reactietijd longest als McGurk antwoord wordt gegeven
 - Voor geen van de patienten invloed van antwoord type!
 - Verklaring?
 - · Controles herkennen vaak mismatch
 - · Patienten alleen audomatische verwerking

Discriminatie Taak - Discussie

- Patiënten slechter dan controles
- Voor patiënten: verschil tussen de drie condities:
 - AV beter dan AO en VO
 - AO beter dan VO
- Aantal kenmerken heeft invloed op performance
 - Hoe meer kenmerken verschillen hoe beter
- Type kenmerk heeft ook invloed op performance
 - Stem meeste fouten
 - Tegenstrijdig met Klitsch (2008), maar komt overeen met Csépe et al (2001)

ERP onderzoek

Door ERP reacties van de hersenen onderzoeken:

• specifieker: Mismatch Negativity (MMN)

Vragen ERP onderzoek

- Zijn er verschillen in hersenreacties op McGurk effect tussen afatische en gezonde proefpersonen?
- Is er een verschil tussen de hersenactivaties van de patiënten en hun offline reacties?
- Wordt informatie in de hersenen geintegreerd zelfs als dit niet in de performance van de patiënt te zien is?

Achtergrond MMN

Over MMN:

- ERP-component die door een zelden voorkomende audieve stimulus veroorzaakt wordt
- MMN wordt dus in (actieve & passieve) "oddball" designs gevonden, waarin 1 stimulus vaak voorkomt (80-90%) en een andere zelden (10-20%)
- MMN= een negatieve component, die voor de 'deviants' ten opzichte van de 'standards' wordt gevonden

Passive vs active oddball taken

- Passieve taken:
 - Alleen op 1 oor letten
 - Afleidende taak doen (stomme film kijken, boek lezen, tactile discriminatie)
- Actieve taken:
 - Deviants tellen
 - Knopje toetsen/vinger bewegen als je deviant tegenkomt

MMN & McGurk effect

- e.g. Colin et al. (2002,2004); Saint-Amour et al. (2007):
- Colin et al. (2004):
 - Passieve oddball (tactile discrimination task)
 - In McGurk conditie:
 - Standard & deviant zijn auditief identiek,
 - De deviant is echter beïnvloed door afwijkende visuele informatie
 - MAAR: geen MMN in VO conditie
 - → MMN in McGurk conditie niet door visuele of auditieve informatie, maar fusie van allebei

MMN voor McGurk stimuli

- Colin et al., 2002
 - 2002: standard /bi/[bi], deviant /bi/[gi] (see picture)

MMN in afasie onderzoek

- e.g. Aaltonen et al. (1993); Wertz et al. (1998); Csépe et al. (2001)
 - Correlaties tussen taalbegrip in offline taken en MMN voor lettergrepen
 - MMN voor 'pure tones' normaal

Csépe et al (2001)

- MMN data van 4 afatische proefpersonen
 - 2 Broca, 2 Wernicke
- 3 condities:
 - "Pure tones" (1000Hz vs 1050 & 1200 Hz)
 - Klinkers (/e:/ vs /i:/ & /ø:/)
 - Medeklinkers (/ba/ vs /ga/ & /pa/)

Csépe et al (2001)

- Afatische en gezonde proefpersonen niet verschillend voor "pure tones"
- Voor patienten afwijkende MMN voor medeklinkers, maar niet voor klinkers (op 1 patient na)
 - Correlatie met resultaten non-woord disciminatie

Mijn onderzoek

- Design: actieve oddball
 - Frequent stimuli (80%) en 2 verschillende deviants (each 10%)
 - vind deviant en toets knopje

Aftoop

- Condities (100 van elk deviant, 800 standards):
 - Pure Tone: 1000 Hz 1050 Hz & 1200 Hz (cf. Csépe et al., 2001)
 - Alleen auditief: /pa/ /ta/ & /ka/
 - Alleen visueel: [pa] [ta] & [ka]
 - Audiovisueel:

Audiovisuele Conditie

100 van elk deviant & 1200 standards (om 80% te houden):

- Standard: /pa/[pa]
- Deviants:
- /ka/[ka], /ta/[ta], /pa/[ka]
- Nadelen:
- 3 deviants in 1 experiment (hoewel 2 ervan als gelijk waargenomen moeten worden)
- Sets langer dan in andere condities

Procedure

- Stimuli lengte: 800ms, onset asynchrony: 1500ms
- Per conditie 100 + 100 deviant, 800 standard (100+100+100 deviant, 1200 standard voor AV)
- Sets max. 10 min. (cf. McGee et al., 2001)
 - → Elke conditie: opgesplits in 4 sets (6min 15sec/9min23 sec for AV)
- 2 dagen: 2 sets/conditie/dag → 10 sets/dag → recording tiid: 56min 15sec per dag
 - \bullet Plus voorbereidings tijd, pauzes, instructies, oefenitems...

Evaluation

- Alleen mensen met MMN in pure tone conditie in verdere analyse
- Algemeen: vergelijk standard met deviant
- In afatische groep vergelijk tussen:
 - standard en deviant (herkend)
 - standard en deviant (niet herkend)
 - deviant (herkend) en deviant (niet herkend)
- Vergelijk tussen afatische en controle groep
- Verder: correlatie analyse voor MMN en offline taken

Bedankt voor de aandacht!

Vragen en commentaar graag nu

(of later aan: d.a.hessler@rug.nl)

ERP onderzoek – stand van zaken

- Eerste proefpersonen (gezonde controles) zijn getest
- Nog geen analyses gedaan
- Nog steeds op zoek naar gezonde vrijwilligers tussen 45 en 75 jaar : informatie op http://doerte.eu/research/vrijwilligers

Dörte Hessler