DS1_C5_S1_PRACTICE

```
In [27]: #Import the required Liberary
    import pandas as pd
    import warnings
    warnings.filterwarnings('ignore')
    import matplotlib.pyplot as plt
    import statistics as st
In [28]: student = pd.read_csv('DS1_C4_S5_Students_Scores_Data_Practice.csv')
student
```

Out[28]:

	Name	Statistics	Python	Tableau
0	David	62	89	56
1	James	47	87	86
2	Robert	55	67	77
3	Thomas	74	55	45
4	Steven	31	47	73
5	Paul	77	72	62
6	Gary	85	76	74
7	Justin	63	79	89
8	Patrick	42	44	67
9	Tyler	32	99	67
10	Peter	71	99	97
11	Bryan	63	69	68

```
In [29]: sd = student.iloc[:,-3:]
sd
```

Out[29]:

	Statistics	Python	Tableau
0	62	89	56
1	47	87	86
2	55	67	77
3	74	55	45
4	31	47	73
5	77	72	62
6	85	76	74
7	63	79	89
8	42	44	67
9	32	99	67
10	71	99	97
11	63	69	68

```
In [30]: sd.isnull().sum()
```

Out[30]: Statistics 0
Python 0

Tableau 6 dtype: int64

In [31]: **for** x **in** sd: print (x)

Statistics Python Tableau

```
In [33]: #declare 3 list of mean ,median ,mode
         mean =[]
         mode =[]
         median =[]
         for col in sd:
             mean.append(st.mean(sd[col]))
             mode.append(st.mode(sd[col]))
             median.append(st.median(sd[col]))
         row_head = ['mean', 'mode', 'median']
         col_name = ['Statistics', 'Python', 'Tableau']
         # create dataframe of mean , median ,mode
         d_data = pd.DataFrame ([mean, mode, median], columns = col_name)
         d_data
         # insert column
         d_data.insert(0,"Measures", row_head)
         d_data
```

Out[33]:

	Measures	Statistics	Python	Tableau
0	mean	58.5	73.583333	71.75
1	mode	63.0	99.000000	67.00
2	median	62.5	74.000000	70.50

```
In [34]: mean= []
         SD =[]
         CV=[]
         # iterate each column
         for col in sd:
             col_mean= sd[col].mean()
                                        #creating mean of each column
                                               #storing the calculated mean in mean named folder
             mean.append(col mean)
             col_std= sd[col].std()
                                        #calculating standard deviation of each column
             SD.append(col std)
                                               #storing the calculated SDin SD name folder
             CV.append(col_std/col_mean*100)
         row head = ['mean', 'SD', 'CV']
         col_name = ['Statistics', 'Python', 'Tableau']
         # create dataframe of mean , median , mode
         d_data1 = pd.DataFrame ([mean, SD, CV], columns = col_name)
         d data1
         # insert column
         d_data1.insert(0,"Measures", row_head)
         d data1
```

Out[34]:

	Measures	Statistics	Python	Tableau
0	mean	58.500000	73.583333	71.750000
1	SD	17.500649	18.436418	14.429295
2	CV	29.915640	25.055155	20.110515

```
In [45]: for subject in sd:
             LO =[]
             []= OU
             marks1 = pd.Series(sd[subject])
             Min = min(marks1)
             Max = max(marks1)
             Range = Max-Min
         # calculate IQR
             Q1 = marks1.quantile(0.25)
             Q3 = marks1.quantile(0.75)
             IQR = Q3 - Q1
             UF = Q3+1.5*IQR
                                                 # Upper Fence
             LF = 01-1.5*IOR
                                                 # Lower fence
         #To check outlier and store in empty folder
             for marks2 in sd[subject]:
                 if(marks2 < LF):</pre>
                     LO.append(marks2)
                 if(marks2 > UF):
                     UO.append(marks2)
         # Storing all information in folder
                 if(subject == 'Statistics'):
                     Statistics=['Statistics', Min, Max, Range, Q1, Q3, IQR, UF, LF, [LO,U0]]
                 elif(subject == 'Python'):
                     Python=['Python', Min, Max, Range, Q1, Q3, IQR, UF, LF, [L0,U0]]
                 else :
                     Tableau=['Tableau', Min, Max, Range, Q1, Q3, IQR, UF, LF, [L0,U0]]
         col_names =[ 'Subject', 'Min','Max',' Range', 'Q1', 'Q3',' IQR', 'Lower Fence', 'Upper Fence', 'Outlier']
         d data7 = pd.DataFrame([Statistics,Python,Tableau], columns = col names)
         d data7
```

Out[45]:

	Subject	Min	Max	Range	Q1	Q3	IQR	Lower Fence	Upper Fence	Outlier
0	Statistics	31	85	54	45.75	71.75	26.0	110.75	6.75	[[], []]

	Subject	Min	Max	Range	Q1	Q3	IQR	Lower Fence	Upper Fence	Outlier
1	Python	44	99	55	64.00	87.50	23.5	122.75	28.75	[[], []]
2	Tableau	45	97	52	65.75	79.25	13.5	99.50	45.50	[[45], []]

```
In [47]: Statistics_data = sd['Statistics'].tolist()
    Python_data = sd['Python'].tolist()
    Tableau_data = sd['Tableau'].tolist()
```

```
In [48]: plt.boxplot([Statistics_data, Python_data, Tableau_data], vert=0)
plt.yticks([1,2,3],['Statistics', 'Python', 'Tableau'])
```


Task 5

In [52]: from scipy.stats import norm

Out[53]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [54]: from scipy.stats import kurtosis
    print(kurtosis(Statistics_data))
    print(kurtosis(Python_data))
    print(kurtosis(Tableau_data))
```

- -1.0438440476747421
- -1.0159472252820538
- -0.4356912494591376