Q1. &= (0,0,1), 2= (1,0,0), 1= (0,1,0)

 \hat{k} is orthogonal to $\hat{i}: \hat{k} \cdot \hat{i} = 0 \times 1 + 0 \times 0 + 1 \times 0 = 0$, so \hat{k} is orthogonal to $\hat{i}: \hat{k} \cdot \hat{j} = 0 \times 0 + 0 \times 1 + 1 \times 0 = 0$, so \hat{k} is orthogonal to $\hat{j}: \hat{k} \cdot \hat{j} = 0 \times 0 + 0 \times 1 + 1 \times 0 = 0$, so \hat{k} is orthogonal to \hat{j} .

$$A \times 13 = 11 \times 14) + 2 \times 0 + 24 \times 3$$

$$1 \times 8 - 4 \times 15 + 8 \times 14$$

$$1 \times 6 \cdot 4 \times 2 + 8 \times 0$$

$$1 \times 6 + 2 \times 2 + 2 \times 2 \times 0$$

$$12 \times 14) + 4 \times 0 + 16 \times 3$$

$$12 \times 8 + 4 \times 15 + 1 \times 14$$

$$12 \times 6 + 4 \times 2 + 1 \times 0$$

Or a. Assume $\vec{r} = (x, y)$, $|\vec{r}| = 1$. Since the angle between \vec{r} and \vec{r} is same as the angle between \vec{r} and \vec{r} . Thus we could have: $\frac{\vec{r} \cdot \vec{r}}{|\vec{r}| |\vec{r}|} = \frac{\vec{r} \cdot \vec{r}}{|\vec{r}| |\vec{r}|} = -\vec{r} \cdot \vec{r} \cdot \vec{r}$

Since $\vec{3}$ is the reflection of $\vec{3}$ across $\vec{7}$, so $\vec{7} = L - \frac{22}{65}Jis$, $\vec{5}$ 5Jis)

 $\cos \langle \vec{r}, \vec{r}, \vec{r} \rangle = \frac{|-2+6|}{\sqrt{15} \cdot \sqrt{5}} \left| \frac{4}{65} \right| \frac{4}{65}$ $\cos \langle \vec{r}, \vec{r}, \vec{r} \rangle = \frac{|-\frac{24}{65} \sqrt{15}|}{|-\sqrt{5}|} \left| \frac{4}{65} \frac{4}{\sqrt{15}} \right| = \frac{4}{65} \frac{4}{\sqrt{15}}$

(24 p=13,2,7) q=(1,-3,7) , r=(1,3,-1)qp=(2,5,0) , r=(2,-1,3)

To find the normalized normal vector so the plane containing these three points, we would have $3 = k(\sqrt{3} \times \sqrt{7}) = k(\sqrt{15}, -6, -12)$ Since 3 is normalized, $255k^2 + 36k^2 + 144k^2 = 1$, $k = \frac{1}{405}\sqrt{405}$ So one of 3 is $(\frac{15}{405}\sqrt{405}, -\frac{6}{405}\sqrt{405}, -\frac{12}{405}\sqrt{405})$.