FIAP - Faculdade de Informática e Administração Paulista

Nome do projeto:

Modelagem de IA da FarmTech Solutions (Capítulos 13 e 14)

Nome do grupo: Grupo 27

Integrantes:

• Fátima Vilela Candal – RM563003

Professores:

Tutor(a)

Leonardo Ruiz Orabona

Coordenador(a)

• André Godoi Chiovato

Descrição

Analisar a base de dados (Atividade_Cap_14_produtos_agricolas.csv) com informações de condições de solo e temperatura, relacionadas com o tipo de produto agrícola e construir alguns modelos preditivos e compará-los em termos da sua performance.

Estrutura de pastas

Os arquivos estão GITHUB no caminho: https://github.com/rm563003/FIAP/tree/main/FASE%203%20-%20CAP%2014/Repository

FIAP / FASE 3 - CAP 14 / Repository /

- assets: Imagem: VARIAVEIS.png | COMPARACAO.png
- **document**: Documentos do projeto: FatimaCandal_RM563003_fase3_cap14.html
- src: Código fonte criado e arquivo csv: FatimaCandal_RM563003_fase3_cap14.ipynb Atividade_Cap_14_produtos_agricolas.csv
- README.docx

✓ Como executar o código

- 1 No Jupyter Notebook fazer o Upload dos arquivos "FatimaCandal_RM563003_fase3_cap14.ipynb" e "Atividade_Cap_14_produtos_agricolas.csv";
- 2 Executar o arquivo "FatimaCandal_RM563003_fase3_cap14.ipynb" no Jupyter Notebook .

Comparação dos Modelos

Comparação de Acurácias:

Os modelos exibiram as seguintes acurácias:

Random Forest: 99%

SVM: 98%KNN: 97%

Regressão Logística: 94%Redes Neurais (MLP): 95%

Pontos Fortes e Limitações:

- Random Forest teve a melhor performance global, sendo robusto em diferentes classes. Seu desempenho é ótimo para capturar interações complexas entre variáveis, mas pode ser mais lento e menos interpretável.
- SVM demonstrou alta precisão, especialmente em classes bem separadas. No entanto, o custo computacional pode ser elevado conforme o tamanho do conjunto de dados cresce.
- KNN teve uma acurácia relativamente alta, mas apresenta desafios em termos de eficiência para conjuntos grandes, devido à necessidade de calcular distâncias para cada nova predição.
- Regressão Logística foi o modelo com menor acurácia, possivelmente devido à linearidade dos dados. Além disso, o aviso de ConvergenceWarning sugere que ajustes nos hiperparâmetros ou pré-processamento podem ser necessários.
- Redes Neurais (MLP) mostraram desempenho robusto, ficando acima da regressão logística, mas abaixo dos modelos de árvore. Dependem de um bom ajuste de hiperparâmetros para evitar problemas como overfitting.

Variáveis de Maior Impacto:

Embora os dados exatos das variáveis mais influentes não estejam explicitamente detalhados, modelos como Random Forest permitem análise de importância das variáveis. Em geral, fatores como clima, tipo de solo e características nutricionais tendem a ter maior peso na predição de cultivos.

Perfil Ideal e Relação com Diferentes Culturas

O perfil ideal identificado tende a favorecer cultivos específicos conforme suas necessidades ambientais. Algumas observações:

- Culturas como banana, coco e café mostram excelente classificação, sugerindo alta previsibilidade baseada nos fatores ambientais.
- Juta, lentilha e arroz apresentaram pequenas oscilações na precisão de alguns modelos, o que pode indicar maior sensibilidade a variações nos dados.
- O impacto dos fatores ambientais na previsão pode estar relacionado à regionalização da agricultura. Por exemplo, um modelo que capta padrões climáticos distintos pode ser mais eficiente na predição de cultivos em diferentes regiões.

Visualizações e Comentários Adicionais:

Uma análise gráfica pode revelar mais sobre o comportamento dos modelos

Gráfico de importância das variáveis no Random Forest.

Conclusão

Exploramos a base de dados, realizamos análises descritivas e implementamos cinco algoritmos de Machine Learning para prever o tipo de cultura agrícola.

Sua análise permitiu compreender melhor as condições ideais de solo e clima para diferentes culturas agrícolas, além de avaliar a eficácia dos métodos preditivos.

O desempenho dos modelos variou, e o Random Forest se destacou pela sua alta precisão.

MODELO GIT FIAP por Fiap está licenciado sobre Attribution 4.0 International.