

## Week 8

FIT5202 Big Data Processing

Collaborative Filtering using ALS By CM Ting (April 2025)



## Week 8 Agenda

- Week 7 Review
  - K-means clustering
  - Model Selection
  - Model Persistence
- Collaborative Filtering
- Use case : Music Recommendation

SETU FEEDBACK



## Recommender Approaches





## Implicit vs Explicit Feedback

- Explicit :
  - when we have some sort of Rating (i.e. users provide items' rating explicitly)
- Implicit:
  - data is gathered from user behaviour, e.g. how many times a song is played or a movie is watched.
  - Advantage : more data
  - Disadvantage: Noisy data, negative preferences are not known



## **Matrix Factorization**





## Matrix Factorization – with Explicit Rating

Item **Rating Matrix** as a product of its factors 2 F1 1 3 3 1 User 0 F2 F2 2 5 3 1 2 3 3 2 3 3 5 3 (3x1) + (2x0)(3x1) + (2x1)**DOT PRODUCT** 



Rating Matrix

## Matrix Factorization – with Implicit Feedback



Rating matrix, R

Predicted rating matrix  $\hat{R}$ 



## Alternating Least Square (ALS) – Implicit Rating

- Confidence:  $c_{ui} = 1 + \alpha r_{ui}$ 
  - Quantify confidence of how much user *u* **likes** the item *i* of the user from the implicit rating data **r** (e.g., play counts)
- Alpha α
  - The rate (linear scaling) of confidence increases
- Optimizing alternately to find U, V
  - Randomly initialize U and V
  - Iterating the following steps:
    - Fixing U → Optimizing V
    - Fixing V → Optimizing U



Based on paper 'Collaborative Filtering for Implicit Feedback Datasets' by Yifan Hu et al.

$$\min_{x_{\star}, y_{\star}} \sum_{u, i} c_{ui} (p_{ui} - x_u^T y_i)^2 + \lambda \left( \sum_{u} ||x_u||^2 + \sum_{i} ||y_i||^2 \right)$$

 $\lambda$  = regularization parameter (regParam)

p = preference of user u for an item i

$$p_{ui} = \begin{cases} 1 & r_{ui} > 0 \\ 0 & r_{ui} = 0 \end{cases}$$



#### **Train/Test Split**



 1
 X
 X
 2

 1
 2
 X
 X

 1
 1
 1
 1

 3
 3
 X
 X

Training Dataset

| 3 |   | 2 |   |
|---|---|---|---|
|   | 4 | 4 |   |
|   |   |   |   |
|   |   | 4 | 2 |

#### Train/Test Split

```
#Write your code here
(train, test) = df_user_artist.randomSplit([0.8, 0.2])
```

https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.recommendation.ALS.html

**Testing Dataset** 

```
|user id|artist id|playcount|
1059637
         1000010
1059637
         1000049
1059637
         1000056
         1000062
                        11
1059637
1059637
         1000094
1059637
         1000112
                       423
1059637
         1000113
                        5
1059637
         1000114
1059637
         1000123
                     19129
         1000130
1059637
1059637
         1000139
1059637
         1000241
1059637
         1000263
                       180
1059637
         1000289
1059637
         1000305
1059637
         1000320
1059637
         1000340
1059637
         1000427
1059637
         1000428
         1000433
only showing top 20 rows
```

+----

df\_user\_artist

#### Model Building and Prediction using ALS (See Demo)

#### Evaluate prediction performance based on RMSE:

https://towardsdatascience.com/recsys-implementation-on-variants-of-svd-based-recommender-system-a3dc1d059c83

#### **Evaluation metrics**

## 0% 100% Most desirable Least desirable

#### For explicit feedback

#### For implicit feedback

Sorted predicted ratings for user u

# $RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$

ROEM (Rank Ordering Error Metric)

$$\overline{rank} = \frac{\sum_{u,i} r_{ui}^t rank_{ui}}{\sum_{u,i} r_{ui}^t}$$
 (8)

*N* - # entries in test set

RMSE may not be appropriate for measuring prediction for implicit feedback

| user_id   | artist_id   | playcount | prediction   |
|-----------|-------------|-----------|--------------|
| +         | +           | +         | ++           |
| 1001440   | 463         | 2         | -0.6025843   |
| 1046559   | 463         | 782       | 0.6918464    |
| 1059765   | 463         | 793       | -0.045939725 |
| 1024631   | 833         | 5         | 0.8736501    |
| 2010008   | 833         | 185       | 1.0421734    |
| 1029563   | 833         | 3         | 0.38790843   |
| 2010008   | 2366        | 4         | 0.16086206   |
| 2023686   | 3175        | 1         | 0.19943924   |
| 2102019   | 1004021     | 28        | 0.043972284  |
| 1059765   | 1007972     | 21        | 0.46731347   |
| 1024631   | 1012617     | 1         | 0.03206493   |
| 1024631   | 1014191     | 3         | 0.38790256   |
| 2023686   | 1014191     | 3         | 0.16714399   |
| 2023686   | 1014690     | 2         | 0.24097718   |
| 1017610   | 1019303     | 68        | 0.42512476   |
| 1024631   | 1028228     | 1         | 0.1952564    |
| 1059637   | 1048726     | 1         | 0.0038849264 |
| 2069889   | 1048726     | 2         | -0.032158498 |
| 1072684   | 1076507     | 2         | 0.97082245   |
| 2023686   | 1084951     | 1         | -0.027778534 |
| +         |             |           |              |
| only show | ving top 20 | nows      |              |

 $r_{ui}^t$ - true rating of user u for item i in test set  $rank_{ui}$  - percentile-ranking of item i within an ordered list of all items for user u

From paper 'Collaborative Filtering for Implicit Feedback Datasets'

Lower values of  $\overline{rank}$  are more desirable, as they indicate ranking actually watched shows closer to the top of the recommendation lists. Notice that for random predictions, the expected value of  $rank_{ui}$  is 50% (placing i in the middle of the sorted list). Thus,  $\overline{rank} \geqslant 50\%$  indicates an algorithm no better than random.

| user_id a   | rtist_id | playcount | prediction | percent_rank        |
|-------------|----------|-----------|------------|---------------------|
| 1059637 1   | 233770   | 613       | 6.226111   | 0.0                 |
| 2020513 7   | 754      | 993       | 4.6966453  | 2.032520325203252E- |
| 1072684 1   | 1330     | 54        | 4.677941   | 4.065040650406504E  |
| 1059334 2   | 228      | 12        | 4.4809046  | 6.097560975609756E  |
| 1059637 1   | 1000130  | 19129     | 3.7980416  | 8.130081300813008E  |
| 2069889   1 | 1000263  | 177       | 3.6094182  | 0.00101626016260162 |
| 1070641 1   | 1004294  | 2         | 3.5892177  | 0.00121951219512195 |
| 1007308 3   | 93       | 12        | 3.5190763  | 0.00142276422764227 |
| 2023686 1   | 1285410  | 3         | 3.4317646  | 0.00162601626016260 |
| 1047812 7   | 718      | 10        | 3.3937335  | 0.0018292682926829  |
| 1031009 4   | 163      | 17        | 3.271598   | 0.0020325203252032  |
| 1055449 4   | 107      | 39        | 3.1267304  | 0.00223577235772357 |
| 1055449 1   | 194      | 119       | 3.109819   | 0.00243902439024390 |
| 2023686 2   | 884      | 1         | 3.0556219  | 0.00264227642276422 |
| 1058890 1   | 1233770  | 38        | 3.0266361  | 0.00284552845528455 |
| 2023686 1   | 1270     | 26        | 3.0264745  | 0.00304878048780487 |
| 2005710 1   | 001412   | 1575      | 2.981335   | 0.00325203252032520 |
| 2062243 1   | 1000323  | 241       | 2.9571671  | 0.00345528455284552 |
| 1059637 1   | 1000926  | 1         | 2.9293735  | 0.00365853658536585 |
| 2023686 1   | 1002262  | 39        | 2.9215589  | 0.00386178861788617 |

#### **Cold-Start Problem**

- Cold-start: New users will have no to little information about them to be compared with other users.
- Cold starts occur when we attempt to predict a rating for users and/or items in the test dataset that were not present during training the model

#### Two strategies for handling this problem:

"NaN" - return an empty variable.

- Spark assigns NaN predictions during ALSModel.transform when a user and/or item factor is not present in the model.
- In development however, this result prevents us from calculating a performance metric to evaluate the system.

"drop" - this option simply removes the row/column from the predictions that contain NaN values. Our result will therefore only contain valid numbers that can be used for evaluation.



## **Use Case: Music Recommendation**



### **Thank You!**

See you next week.