Аппроксимация фреймоподобными мульти-всплесками

Кривошеин Александр Владимирович Санкт-Петербургский государственный университет

krivosheinav@gmail.com

Секция: Вещественный и функциональный анализ

Квазипроекционный оператор, порождённый парой вектор-функций Φ , $\widetilde{\Phi}:\mathbb{R}^d\to\mathbb{C}^r$, имеет вид

 $Q_j(\Phi,\widetilde{\Phi},f) = \sum_{k \in \mathbb{Z}^d} \langle f,\widetilde{\Phi}_{jk} \rangle \Phi_{jk},$

где $\Phi_{jk} = |\det M|^{j/2} \Phi(M^j \cdot + k)$, $j \in \mathbb{Z}$, $k \in \mathbb{Z}^d$, M – матрица растяжения. Изучены аппроксимационные свойства таких операторов и получены оценки погрешности в L_2 -норме для широкого класса таких операторов.

Для масштабирующих вектор-функций Φ , $\widetilde{\Phi}$ квазипроекционные операторы $Q_j(f,\Phi,\widetilde{\Phi})$ связаны с двойственными системами мульти-всплесков. Хотя общая схема построения двойственных фреймов мульти-всплесков в многомерном случае известна, ее реализация на практике является сложной задачей из-за необходимости обеспечения некоторых дополнительных свойств. Предложена конструкция фреймоподобных мульти-всплесков с отказом от фреймовости, но с сохранением возможности разложения функций аналогичного разложению по фреймам. Это упрощает задачу построения фреймоподобных мульти-всплесков. Установлены аппроксимационные свойства фреймоподобных мульти-всплесков. Предложены алгоритмы построения фреймоподобных мульти-всплесков с заданным порядком аппроксимации.