Москатов Евгений Анатольевич

Справочник по полупроводниковым приборам

Москатов Е. А. Справочник по полупроводниковым приборам. Издание 2. – Таганрог, 219 с., ил.

Издание 2

Лицензионное соглашение

Данный справочник разрешается копировать, размножать и печатать, если это делается на некоммерческой основе и не извлекается выгода. В случае его коммерческого применения, например, если Вы хотите продавать, сдавать в прокат, аренду весь справочник или любую его часть, то на это требуется согласие его (Москатова Евгения Анатольевича) автора составителя Перекомпоновка справочника запрещается. Запрещается изменять содержимое справочника, удалять сведения об авторстве. Справочник распространяется "как есть", то есть его автор не несёт ответственности за возможный ущерб, упущенную выгоду и прочее. В случае некоммерческой публикации (например, на сервере бесплатных материалов) следует поставить автора в известность, а также явно указать авторство и источник, с которого произведена публикация. Это же относится и к случаю публикации справочника на диске (или ином носителе информации) приложения к журналу.

Если Вам интересно, то можете посетить мой сайт http://www.moskatov.narod.ru, на котором можно найти технические программы, их исходные тексты, книгу «Электронная техника» [15], конспект лекций «Основы экономики», текстовые редакторы и много другой интересной информации. В книге «Электронная техника» описываются принципы действия полупроводниковых компонентов, система обозначений, рассматривается нахождение некоторых параметров транзисторов по статическим входной и выходной характеристикам, имеются простые методы расчётов некоторых цепей, и многое другое.

©Москатов Е. А.

1 Введение

Перед Вами справочник, в который сведены наиболее широко распространённые и наиболее часто используемые на территории России и СНГ полупроводниковые приборы. Он не претендует на всеобъемлющее изложение информации, но полезен как подручный материал, в котором легко быстро найти нужную информацию. Справочник может быть весьма полезен инженерно-техническим работникам, радиолюбителям, техникам, студентам технических колледжей и ВУЗов во время выполнения курсовых и дипломной работ. Важной особенностью справочника бесплатность ДЛЯ некоммерческого использования распространяется по freeware лицензии. Сведения, содержащиеся в справочнике, к разряду проверенных, достоверных материалов. Информация, представленная в справочнике, была многократно перепроверена. Однако, несмотря на это, полное отсутствие опечаток не гарантируется, хотя было сделано всё возможное для их исключения. В справочных данных, приведённых в литературе, часто параметры одной и той же детали имеют близкие, но не равные значения при одних и тех же условиях снятия показания. В этом случае я указывал те значения параметров, которые совпадали со значениями параметров, наибольшем количестве литературы. В редких случаях некоторые характеристики деталей измерялись заново на макетах. Необходимо понимать, что различные заводы – изготовители производят под одной и той же маркой детали, параметры которых могут несколько различаться. Поэтому увидев в данном справочнике деталь, параметры которой незначительно отличаются от параметров той же детали в другом справочнике – не удивляйтесь. Так, например, транзисторы типа КТ315 имеют, согласно литературе [29, стр. 288] одни габаритные размеры, согласно [30, стр. 669] – другие, а в данных [44] указаны третьи. Реальные транзисторы, купленные мною в магазине, имели четвёртые габаритные размеры, совпадающие с приведёнными в федеральных технических условиях [27].

Приведённые в справочнике рисунки являются именно рисунками, а не чертежами, и предназначены только для лучшего понимания внешнего вида, цоколёвок и размеров полупроводниковых приборов.

На написание первого издания данного справочника было затрачено шесть месяцев кропотливого труда, но значительно больше времени ушло на проверку содержащихся в нём данных. Надеюсь, что использование Вами справочника будет полезным и приятным.

Автор – составитель, Евгений Анатольевич Москатов moskatov@mail.ru

1.1 Основные стандарты на полупроводниковые приборы

Основные стандарты на полупроводниковые диоды

ΓΟCT 15133-77 ΓΟCT 2.730-73	Приборы полупроводниковые. Термины и определения. ЕСКД. Обозначения условные графические в схемах.
	Приборы полупроводниковые.
ГОСТ 18472-82	Приборы полупроводниковые. Основные размеры.
ΓΟCT 19613-80	Столбы и блоки выпрямительные полупроводниковые.
	Основные размеры.
ГОСТ 20859-79	Приборы полупроводниковые силовые. Общие технические
FOCT 20000 97	условия.
ГОСТ 20900-87	Приборы полупроводниковые силовые. Габаритные и
EOCT 25520 02	присоединительные размеры.
ГОСТ 25529-82	Приборы полупроводниковые. Термины, определения и буквенные обозначения параметров.
ГОСТ 24461-80	Приборы полупроводниковые силовые. Методы измерения
	и испытаний.
ГОСТ 18986.0-74	Приборы полупроводниковые. Методы измерения
	электрических параметров. Общие положения.
ГОСТ 18986.1-73	Приборы полупроводниковые. Метод измерения
1001 10700.1 75	постоянного обратного тока.
ГОСТ 18986.2-73	Приборы полупроводниковые. Метод измерения
1001 10700.2-73	постоянного обратного напряжения.
ГОСТ 18986.3-73	Приборы полупроводниковые. Методы измерения
1001 18980.3-73	постоянного прямого напряжения и постоянного прямого
ГОСТ 18986.4-73	тока.
	Приборы полупроводниковые. Методы измерения ёмкости.
ГОСТ 18986.5-73	Приборы полупроводниковые. Метод измерения времени выключения.
ГОСТ 18986.8-73	Приборы полупроводниковые. Метод измерения времени
1001 10700.0-73	обратного восстановления.
ГОСТ 18986.9-73	Приборы полупроводниковые. Метод измерения
1001 10700.7-73	импульсного прямого напряжения.
ГОСТ 18986.10-74	Приборы полупроводниковые. Методы измерения
1001 10700.10-74	индуктивности.
ГОСТ 18986.11-84	•
1001 10700.11-04	Приборы полупроводниковые. Метод измерения
ГОСТ 18986.12-74	последовательного сопротивления потерь.
1001 10700.12-74	Приборы полупроводниковые туннельные. Метод
FOCT 10007 12 74	измерения отрицательной проводимости перехода.
ГОСТ 18986.13-74	Приборы полупроводниковые туннельные. Метод

	измерения пикового тока, тока впадины, пикового напряжения, напряжения впадины, напряжения раствора.
ГОСТ 18986.14-85	Приборы полупроводниковые. Методы измерения дифференциального и динамического сопротивления.
ГОСТ 18986.15-75	Стабилитроны полупроводниковые. Метод измерения напряжения стабилизации.
ГОСТ 18986.16-72	Диоды полупроводниковые выпрямительные. Методы измерения среднего значения прямого напряжения и среднего значения обратного тока.
ГОСТ 18986.17-76	Стабилитроны полупроводниковые. Метод измерения температурного коэффициента напряжения стабилизации.
ГОСТ 18986.18-76	Варикапы. Метод измерения температурного коэффициента ёмкости.
ГОСТ 18986.19-73	Варикапы. Метод измерения добротности.
ΓΟCT 18986.20-77	Стабилитроны полупроводниковые прецизионные. Метод
	измерения времени выхода на режим.
ГОСТ 18986.21-78	Стабилитроны и стабисторы полупроводниковые. Метод
	измерения временной нестабильности напряжения стабилизации.
ГОСТ 19656.0-74	Диоды полупроводниковые СВЧ. Методы измерения электрических параметров. Общие положения.
ГОСТ 19656.1-74	
1001 19030.1-74	Диоды полупроводниковые СВЧ смесительные и детекторные. Метод измерения коэффициента стоячей волны.
ГОСТ 19656.2-74	Диоды полупроводниковые СВЧ смесительные. Метод
EOCT 10656 2 74	измерения среднего выпрямленного тока.
ГОСТ 19656.3-74	Диоды полупроводниковые СВЧ смесительные. Методы измерения выходного сопротивления на промежуточной частоте.
ГОСТ 19656.4-74	Диоды полупроводниковые СВЧ смесительные. Методы
1001 19030.4-74	измерения потерь преобразования.
ГОСТ 19656.5-74	Диоды полупроводниковые СВЧ смесительные и
	детекторные. Метод измерения шумового отношения.
ГОСТ 19656.6-74	Диоды полупроводниковые СВЧ смесительные. Метод
FOOT 10/5/ 5 54	измерения нормированного коэффициента шума.
ГОСТ 19656.7-74	Диоды полупроводниковые СВЧ детекторные. Метод измерения чувствительности по току.
ГОСТ 19656.10-88	Диоды полупроводниковые СВЧ переключательные и
	ограничительные. Методы измерения сопротивления потерь.
ГОСТ 19656.12-76	Диоды полупроводниковые СВЧ смесительные. Метод
FOCT 10454 12 74	измерения полного входного сопротивления.
ГОСТ 19656.13-76	Диоды полупроводниковые СВЧ детекторные. Метод измерения тангенциальной чувствительности.
ГОСТ 19656.15-84	Диоды полупроводниковые СВЧ. Методы измерения

теплового сопротивления переход-корпус и импульсного
теплового сопротивления. Излучатели полупроводниковые. Общие требования при измерении параметров.
Излучатели полупроводниковые. Методы измерения силы излучения и энергетической яркости.
Излучатели полупроводниковые. Метод измерения относительного спектрального распределения энергии излучения и ширины спектра излучения.
Диоды полупроводниковые инфракрасные излучающие. Методы измерения мощности излучения.
Диоды полупроводниковые инфракрасные излучающие. Метод измерения временных параметров импульса
излучения. Приборы полупроводниковые. Система условных обозначений.
Приборы полупроводниковые. Руководство по применению. Общие положения.
Приборы полупроводниковые оптоэлектронные. Руководство по применению.
Стабилитроны. Руководство по применению. Диоды импульсные. Руководство по применению.
Варикапы. Руководство по применению. Диоды выпрямительные, столбы высоковольтные. Руководство по применению.

Основные стандарты на биполярные и полевые транзисторы

Приборы полупроводниковые. Термины и определения.
Приборы полупроводниковые. Система условных
обозначений.
ЕСКД. Обозначения условные графические в схемах.
Приборы полупроводниковые.
Приборы полупроводниковые. Основные размеры.
Приборы полупроводниковые силовые. Транзисторы.
Габаритные и присоединительные размеры.
Транзисторы биполярные. Термины, определения и
буквенные обозначения параметров.
Транзисторы полевые. Термины, определения и буквенные
обозначения параметров.
Транзисторы биполярные. Общие требования при измерении
электрических параметров.
Транзисторы биполярные. Методы измерения постоянной
времени цепи обратной связи на высокой частоте.

ГОСТ 18604.2-80	Транзисторы биполярные. Методы измерения статического коэффициента передачи тока.
ГОСТ 18604.3-80	Транзисторы биполярные. Метод измерения ёмкости коллекторного и эмиттерного переходов.
ГОСТ 18604.4-74	Транзисторы. Методы измерения обратного тока коллектора.
ГОСТ 18604.5-74	Транзисторы. Методы измерения обратного тока коллектора – эмиттера.
ГОСТ 18604.6-74	Транзисторы. Метод измерения обратного тока эмиттера.
ГОСТ 18604.7-74	Транзисторы. Метод измерения коэффициента передачи тока.
ГОСТ 18604.8-74	Транзисторы. Метод измерения выходной проводимости.
ГОСТ 18604.9-82	Транзисторы биполярные. Методы определения граничной и предельной частот коэффициента передачи тока.
ГОСТ 18604.10-76	Транзисторы биполярные. Метод измерения входного сопротивления.
ГОСТ18604.11-76	Транзисторы биполярные. Метод измерения коэффициента шума на высоких и сверхвысоких частотах.
ГОСТ 18604.13-77	Транзисторы биполярные СВЧ генераторные. Метод измерения выходной мощности и определения коэффициента усиления по мощности и коэффициента полезного действия коллектора.
ГОСТ 18604.14-77	Транзисторы биполярные СВЧ генераторные. Метод измерения модуля коэффициента обратной передачи напряжения в схеме с общей базой на высокой частоте.
ГОСТ 18604.15-77	Транзисторы биполярные СВЧ генераторные. Методы измерения критического тока.
ГОСТ 18604.16-78	Транзисторы биполярные. Метод измерения коэффициента обратной связи по напряжению в режиме малого сигнала.
ГОСТ 18604.17-78	Транзисторы биполярные. Метод измерения плавающего напряжения эмиттер – база.
ГОСТ 18604.18-78	Транзисторы биполярные. Методы измерения статической крутизны прямой передачи.
ГОСТ 18604.19-78	Транзисторы биполярные. Методы измерения граничного напряжения.
ГОСТ 18604.20-78	Транзисторы биполярные. Методы измерения коэффициента шума на низкой частоте.
ГОСТ 18604.22-78	Транзисторы биполярные. Методы измерения напряжения насыщения коллектор – эмиттер и база – эмиттер.
ГОСТ 18604.23-80	Транзисторы биполярные. Метод измерения коэффициентов комбинационных составляющих.
ГОСТ 18604.24-81	Транзисторы биполярные высокочастотные генераторные. Метод измерения выходной мощности и определения коэффициента усиления по мощности и коэффициента

	полезного действия коллектора.
ГОСТ 18604.26-85	Транзисторы биполярные. Методы измерения временных
1001 10004.20 03	параметров.
ГОСТ 18604.27-86	Транзисторы биполярные мощные высоковольтные. Метод
100110001.27 00	измерения пробивного напряжения коллектор – база
	(эмиттер – база) при нулевом токе эмиттера (коллектора).
OCT 11 336.909.1-79	Транзисторы биполярные мощные высоковольтные. Методы
001 11 550.505.1 75	измерения граничного напряжения.
OCT 11 336.909.3-79	Транзисторы биполярные мощные высоковольтные. Методы
001 11 330.707.3 77	измерения скорости нарастания обратного напряжения.
ГОСТ 27264-87	Транзисторы силовые биполярные. Методы измерений.
ΓΟCT 20398.0-83	Транзисторы полевые. Общие требования при измерении
100120370.003	электрических параметров.
ГОСТ 20398.1-74	Транзисторы полевые. Метод измерения модуля полной
100120370.171	проводимости прямой передачи.
ГОСТ 20398.2-74	Транзисторы полевые. Метод измерения коэффициента
100120370.271	шума.
ГОСТ 20398.3-74	Транзисторы полевые. Метод измерения крутизны
100120370.371	характеристики.
ГОСТ 20398.4-74	Транзисторы полевые. Метод измерения активной
100120370.171	составляющей выходной проводимости.
ГОСТ 20398.5-74	Транзисторы полевые. Метод измерения входной,
100120370.371	проходной и выходной ёмкостей.
ГОСТ 20398.6-74	Транзисторы полевые. Метод измерения тока утечки
100120370.071	затвора.
ГОСТ 20398.7-74	Транзисторы полевые. Метод измерения порогового
100120370.771	напряжения и напряжения отсечки.
ГОСТ 20398.8-74	Транзисторы полевые. Метод измерения начального тока
100120370.071	стока.
ГОСТ 20398.9-80	Транзисторы полевые. Метод измерения крутизны
100120370.700	характеристики в импульсном режиме.
ГОСТ 20398.10-80	Транзисторы полевые. Метод измерения начального тока
1001200,01000	стока в импульсном режиме.
ГОСТ 20398.11-80	Транзисторы полевые. Метод измерения ЭДС шума.
ГОСТ 20398.12-80	Транзисторы полевые. Метод измерения остаточного тока
1001200,0.1200	стока.
ГОСТ 20398.13-80	Транзисторы полевые. Метод измерения сопротивления сток
	– исток.
OCT 11 336.916-80	Транзисторы полевые. Метод измерения выходной
	мощности, определения коэффициента усиления по
	мощности, определения коэффициента полезного действия
	стока.
OCT 11 336.907.0-79	Приборы полупроводниковые. Руководство по применению.
	Общие положения.

ОСТ 11 336.907.8-81 Транзисторы биполярные. Руководство по применению. ОСТ 11 336.935-82 Транзисторы полевые. Руководство по применению. ОСТ 11 ПО.336.001 Приборы полупроводниковые бескорпусные. Руководство по применению.

Основные стандарты на микросхемы

OCT 11 073.073-82	Приборы	полупроводниковые	И	микросхемы.	Метод
	контроля т	температуры полупрово	дни	ковых структур.	
ОСТИ 073.062-76	Микросхен	мы интегральные и при	лбор	ы полупроводн	иковые.
	Требовани	я и методы защиты от о	стат	ического электр	ичества
	в условиях	производства и примен	нени	IЯ.	

1.2 Классификация диодов

Классификация современных полупроводниковых приборов запечатлена в системе условных обозначений их типов. В соответствии с возникновением новых классификационных групп приборов совершенствуется и система их условных обозначений, которая за последние 30 лет трижды претерпевала изменения. Система обозначений современных полупроводниковых диодов, тиристоров и оптоэлектронных приборов установлена отраслевым стандартом ОСТ 11336.919 — 81 и базируется на ряде классификационных признаков этих приборов. В основу системы обозначений положен буквенно-цифровой код.

Первый элемент обозначает исходный полупроводниковый материал, на базе которого изготовлен прибор.

Для обозначения исходного материала используются буквы или цифры, приведённые ниже:

Г или 1 — для германия или его соединений;

К или 2 — для кремния или его соединений;

А или 3 — для соединений галлия (например, для арсенида галлия);

И или 4 — для соединений индия (например, для фосфида индия).

Второй элемент обозначения — буква, определяющая подкласс (или группу) приборов. Для обозначения подклассов приборов используется одна из следующих букв:

Д — диодов выпрямительных и импульсных;

Ц — выпрямительных столбов и блоков;

В — варикапов;

И — туннельных диодов;

А — сверхвысокочастотных диодов;

С — стабилитронов;

Г — генераторов шума;

Д — излучающих оптоэлектронных приборов;

О — оптронов;

Н — диодных тиристоров;

У — триодных тиристоров.

Третий элемент обозначения – это цифра, которая определяет основные функциональные прибора. возможности Для обозначения характерных функциональных эксплуатационных возможностей, признаков приборов используются следующие цифры применительно К различным подклассам приборов.

Диоды (подкласс Д):

- 1 для выпрямительных диодов с постоянным или средним значением прямого тока не более 0,3 А;
- 2 для выпрямительных диодов с постоянным или средним значением прямого тока более 0,3 A, но не выше 10 A;
- 4 для импульсных диодов с временем восстановления обратного сопротивления

более 500 нс;

- 5 для импульсных диодов с временем восстановления более 150 нс, но не свыше 500 нс:
- 6 для импульсных диодов с временем восстановления 30 ... 150 нс;
- 7 для импульсных диодов с временем восстановления 5 ... 30 нс;
- 8 для импульсных диодов с временем восстановления 1 ... 5 нс;
- 9 для импульсных диодов с эффективным временем жизни неосновных носителей заряда менее 1 нс.

Выпрямительные столбы и блоки (подкласс Ц):

- 1 для столбов с постоянным или средним значением прямого тока не более 0,3 А;
- 2 для столбов с постоянным или средним значением прямого тока 0,3 ... 10 А;
- 3 для блоков с постоянным или средним значением прямого тока не более 0,3 А;
- 4 для блоков с постоянным или средним значением прямого тока 0,3 ... 10 A.

Варикапы (подкласс В):

- 1 для подстроечных варикапов;
- 2 для умножительных варикапов.

Туннельные диоды (подкласс И):

- 1 для усилительных туннельных диодов;
- 2 для генераторных туннельных диодов;
- 3 для переключательных туннельных диодов;
- 4 для обращённых диодов.

Сверхвысокочастотные диоды (подкласс А):

- 1 для смесительных диодов;
- 2 для детекторных диодов;
- 3 для усилительных диодов;
- 4 для параметрических диодов;
- 5 для переключательных и ограничительных диодов;
- 6 для умножительных и настроечных диодов;
- 7 для генераторных диодов;
- 8 для импульсных диодов.

Стабилитроны (подкласс С):

- 1 для стабилитронов мощностью не более 0,3 Вт с номинальным напряжением стабилизации менее 10 В;
- 2 для стабилитронов мощностью не более 0,3 Вт с номинальным напряжением стабилизации 10 ... 100 В;
- 3 для стабилитронов мощностью не более 0,3 Вт с номинальным напряжением стабилизации более 100 В;
- 4 для стабилитронов мощностью 0,3 ... 5 Вт с номинальным напряжением стабилизации менее 10 В;
- 5 для стабилитронов мощностью 0,3 ... 5 Вт с номинальным напряжением стабилизации 10...100 В;
- 6 для стабилитронов мощностью 0,3 ... 5 Вт с номинальным напряжением стабилизации более 100 В;
- 7 для стабилитронов мощностью 5 ... 10 Вт с номинальным напряжением

стабилизации менее 10 В;

- 8 для стабилитронов мощностью 5 ... 10 Вт с номинальным напряжением стабилизации 10... 100 В;
- 9 для стабилитронов мощностью 5 ... 10 Вт с номинальным напряжением стабилизации более 100 В.

Генераторы шума (подкласс Г):

- 1 для низкочастотных генераторов шума;
- 2 для высокочастотных генераторов шума.

Излучающие оптоэлектронные приборы (подкласс Л):

Источники инфракрасного излучения:

- 1 для излучающих диодов;
- 2 для излучающих модулей.

Приборы визуального представления информации:

- 3 для светоизлучающих диодов;
- 4 для знаковых индикаторов;
- 5 для знаковых табло;
- 6 для шкал;
- 7 для экранов.

Оптроны (подкласс О):

- Р для резисторных оптронов;
- Д для диодных оптронов;
- У для тиристорных оптронов;
- Т для транзисторных оптронов.

Диодные тиристоры (подкласс Н):

- 1 для тиристоров с максимально допустимым значением прямого тока не более 0,3 А;
- 2 для тиристоров с максимально допустимым значением прямого тока более 0,3 A, но не свыше 10 A.

Триодные тиристоры (подкласс У):

Незапираемые тиристоры:

- 1 для тиристоров с максимально допустимым значением среднего тока в открытом состоянии не более 0,3 А или максимально допустимым значением импульсного тока в открытом состоянии не более 15 А;
- 2 для тиристоров с максимально допустимым значением среднего тока в открытом состоянии 0,3 ... 10 A или максимально допустимым значением импульсного тока в открытом состоянии 15 ... 100 A;
- 7 для тиристоров с максимально допустимым значением среднего тока в открытом состоянии более 10 А или максимально допустимым значением импульсного тока в открытом состоянии более 100 А.

Запираемые тиристоры:

- 3 для тиристоров с максимально допустимым значением среднего тока в открытом состоянии не более 0,3 А или максимально допустимым значением импульсного тока в открытом состоянии не более 15 А;
- 4 для тиристоров с максимально допустимым значением среднего тока в

открытом состоянии 0,3 ... 10 A или максимально допустимым значением импульсного тока в открытом состоянии 15 ... 100 A;

8 — для тиристоров с максимально допустимым значением среднего тока в открытом состоянии более 10 А или максимально допустимым значением импульсного тока в открытом состоянии более 100 А,

Симметричные тиристоры:

- 5 для тиристоров с максимально допустимым значением среднего тока в открытом состоянии не более 0,3 A или максимально допустимым значением импульсного тока в открытом состоянии не более 15 A;
- 6 для тиристоров с максимально допустимым значением среднего тока в открытом состоянии 0,3 ... 10 А или максимально допустимым значением импульсного тока в открытом состоянии 15 ... 100 А;
- 9 для тиристоров с максимально допустимым значением среднего тока в открытом состоянии более 10 А или максимально допустимым значением импульсного тока в открытом состоянии более 100 А.

Четвёртый элемент – число, обозначающее порядковый номер разработки технологического типа.

Для обозначения порядкового номера разработки используется двухзначное число от 01 до 99. Если порядковый номер разработки превысит число 99, то в дальнейшем используют трёхзначное число от 101 до 999.

Пятый элемент – буква, условно определяющая классификацию (разбраковку по параметрам) приборов, изготовленных по единой технологии.

В качестве классификационной литеры используют буквы русского алфавита (за исключением букв 3, О, Ч, Ы, Ш, Щ, Ю, Я, Ь, Ъ, Э).

В качестве дополнительных элементов обозначения используют следующие символы:

цифры 1 ... 9 для обозначения модификаций прибора, приводящих к изменению его конструкции или электрических параметров;

букву С для обозначения сборок – наборов в общем корпусе однотипных приборов, не соединенных электрически или соединенных одноименными выводами;

цифры, написанные через дефис, для обозначений следующих модификаций конструктивного исполнения бескорпусных приборов:

- 1 —с гибкими выводами без кристаллодержателя;
- 2 с гибкими выводами на кристаллодержателе (подложке);
- 3 с жёсткими выводами без кристаллодержателя (подложки);
- 4 с жёсткими выводами на кристаллодержателе (подложке);
- 5 с контактными площадками без кристаллодержателя (подложки) и без выводов;
- 6 с контактными площадками на кристаллодержателе без выводов.

Буква Р после последнего элемента обозначения — для приборов с парным подбором, буква Γ — с подбором в четвёрки, буква K — с подбором в шестёрки.

Для приборов, изготовленных до 1982 года действовала другая система обозначений. Условные обозначения состояли из двух или трёх элементов.

Первый элемент обозначения – буква Д, характеризующая весь класс

полупроводниковых диодов.

Второй элемент обозначения – число (номер), которое указывает на область применения:

- от 1 до 100 для точечных германиевых диодов;
- от 101 до 200 для точечных кремниевых диодов;
- от 201 до 300 для плоскостных кремниевых диодов;
- от 301 до 400 для плоскостных германиевых диодов;
- от 401 до 500 для смесительных СВЧ детекторов;
- от 501 до 600 для умножительных диодов;
- от 601 до 700 для видеодетекторов;
- от 701 до 749 для параметрических германиевых диодов;
- от 750 до 800 для параметрических кремниевых диодов;
- от 801 до 900 для стабилитронов;
- от 901 до 950 для варикапов;
- от 951 до 1000 для туннельных диодов;
- от 1001 до 1100 для выпрямительных столбов.

Третий элемент обозначения – буква, указывающая на разновидность групп однотипных приборов.

Для обозначения стабилитронов до 1981 года в качестве третьего и четвёртого элементов присваивались числа:

малой мощности ($P \le 0.3 \text{ Bt}$):

- от 101 до 199 с напряжением стабилизации 0,1 ... 9,9 В;
- от 210 до 299 с напряжением стабилизации 10 ... 99 В;
- от 301 до 399 —с напряжением стабилизации 100 ... 199 В;
- средней мощности (0,3 Bт < P \le 5 Bт):
- от 401 до 499 с напряжением стабилизации 0,1 ... 9,9 В;
- от 510 до 599 с напряжением стабилизации 10 ... 99 В;
- от 601 до 699 с напряжением стабилизации 100 ... 199 В;

большой мощности (P > 5 Вт):

- от 701 до 799 с напряжением стабилизации 0,1 ... 9,9 В;
- от 810 до 899 с напряжением стабилизации 10 ... 99 В;
- от 901 до 999 с напряжением стабилизации 100 ... 199 В.

Две последние цифры каждого числа соответствуют номинальному напряжению стабилизации стабилитронов данного типа, например КС175A — кремниевый стабилитрон малой мощности с напряжением стабилизации 7,5 В.

1.3 Классификация транзисторов

Условные обозначения биполярных транзисторов, выпущенных до 1964 года, состоят из букв (П или МП) и цифр, определяющих тип исходного материала, допустимую рассеиваемую мощность и граничную частоту:

- от 1 до 99 германиевые маломощные низкой частоты;
- от 101 до 199 кремниевые маломощные низкой частоты;
- от 201 до 299 германиевые мощные низкой частоты;
- от 301 до 399 кремниевые мощные низкой частоты;
- от 401 до 499 германиевые маломощные высокой и сверхвысокой частот;
- от 501 до 599 кремниевые маломощные высокой и сверхвысокой частот;
- от 601 до 699 германиевые мощные высокой и сверхвысокой частот;
- от 701 до 799 кремниевые мощные высокой и сверхвысокой частот.

После цифр может стоять буква, определяющая разбраковку транзисторов по параметрам.

После 1964 года маркировка проводилась по ГОСТ 10862 - 64, ГОСТ 10862 - 72, а затем по ОСТ 11.336.038 - 77, ОСТ 11.396.419 - 81. Согласно ГОСТ 10862 - 64 обозначения полупроводниковых приборов состоят из четырёх элементов.

Первая буква или цифра показывает тип материала полупроводника.

Вторая буква говорит о типе прибора, например, Т – транзистор.

Далее следует комбинация из трёх или четырёх цифр. Первая цифра этой комбинации определяет допустимую рассеиваемую мощность и граничную частоту транзистора в соответствии с таблицей 1.3.1.

Таблица 1.3.1. Определение допустимой рассеиваемой мощности и граничной частоты транзистора [15, стр. 31].

P \ f	< 3 МГц НЧ	3 30 МГц СрЧ	> 30 МГц ВЧ и СВЧ
Малой мощности < 0,3 Вт	1	2	3
Средней мощности 0,3 3 Вт	4	5	6
Мощные > 3 Вт	7	8	9

Четвёртый элемент – буква указывает на модификацию прибора в серии.

Если малые габаритные размеры приборов не позволяют использовать буквенное или цифровое обозначение, то на корпус наносится цветная маркировка (точка или цветные полосы). Цветной код указывается в технических условиях на соответствующий прибор.

Система обозначений транзисторов по системе JEDEC

За рубежом существуют различные системы обозначений полупроводниковых

приборов. Наиболее распространённой является система обозначений JEDEC, принятая объединённым техническим советом по электронным приборам США. По этой системе приборы обозначаются маркировкой, в котором первая цифра соответствует числу p-n переходов: 1 — диод; 2 — транзистор; 3 — тетрод (тиристор). За цифрой следуют буква N и серийный номер, который регистрируется ассоциацией предприятий электронной промышленности (EIA). За номером могут стоять одна или несколько букв, указывающих на разбивку приборов одного типа на типономиналы по различным параметрам или характеристикам. Однако цифры серийного номера не определяют тип исходного материала, частотный диапазон, мощность рассеяния или область применения.

Система обозначений транзисторов по системе Pro Electron

В Европе кроме JEDEC широко используется система, по которой обозначения полупроводниковым приборам присваиваются организацией Association International Pro Electron. По этой системе приборы для бытовой аппаратуры широкого применения обозначаются двумя буквами и тремя цифрами, для промышленной и специальной аппаратуры – тремя буквами и двумя цифрами. Так, у приборов широкого применения после двух букв стоит трёхзначный порядковый номер от 100 до 999. У приборов, применяемых в промышленной и специальной аппаратуре, третий знак – буква (буквы используются в обратном алфавитном порядке: Z, Y, X и так далее), за которой следует порядковый номер от 10 до 99.

Если в одном корпусе имеется несколько одинаковых приборов, то обозначение производится в соответствии с кодом (маркировкой) для одиночных дискретных приборов. При наличии в одном корпусе нескольких разных приборов в качестве второй буквы обозначения используется буква G. К основному обозначению может добавляться буква, указывающая на отличие прибора от основного типа по какимлибо параметрам или корпусу.

1.4 Классификация микросхем

Интегральная микросхема (ИМС) – это конструктивно законченное электронное изделие в миниатюрном исполнении высокой плотностью c размещения электрически соединенных элементов, компонентов (или) кристаллов, осуществляющее формирование, усиление, преобразование, обработку сигналов. Кристалл и компоненты ИМС, как правило, заключены в общий корпус – например, металлостеклянный, стеклянный, пластмассовый, керамический. герметизированных бескорпусных разновидности компаундом Бескорпусные ИМС обычно применяются в аппаратуре с высокой плотностью монтажа.

Элемент ИМС – это часть микросхемы, реализующая функцию какой-либо детали, радиоэлемента, которая выполнена нераздельно от кристалла или подложки и не может быть выделена как самостоятельное изделие.

Компонент ИМС — это часть микросхемы, реализующая функции какой-либо детали, радиоэлемента, которая может быть выделена как самостоятельное изделие.

Полупроводниковая ИМС – это микросхема, все элементы и внутренние соединения которой выполнены в объёме и на поверхности полупроводниковой пластинки.

Плёночная ИМС – это микросхема, все элементы и внутренние соединения которой выполнены в виде плёнок. Различаются толстоплёночные и тонкоплёночные ИМС.

Толстоплёночная ИМС — это микросхема, в которой все пассивные элементы, проводники и контактные площадки выполнены по толстоплёночной технологии на диэлектрическом основании, то есть подложке. Толстоплёночная технология — это вжигание резистивных, проводящих и диэлектрических паст в подложку. Толщина плёнок от 1 ... 2 до 10 ... 25 микрон.

Тонкоплёночная ИМС — это микросхема, в которой все пассивные элементы (проводники и контактные площадки) выполнены методом тонкоплёночной технологии на поверхности общего диэлектрического основания, подложки. Тонкоплёночная технология — напыление тонких плёнок в вакууме.

Гибридная интегральная микросхема (ГИС) — это микросхема, в которой кроме тонкоплёночных элементов (проводников и контактных площадок на диэлектрической подложке) расположены навесные, бескорпусные дискретные элементы — транзисторы, диоды, резисторы, конденсаторы, катушки индуктивности. Аналоговая ИМС — это микросхема, применяющаяся для усиления, преобразования и обработки сигналов, изменяющихся по закону непрерывной функции.

Цифровая ИМС — это микросхема, применяющаяся для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. Полярность выходного сигнала цифровой микросхемы с одним источником питания совпадает с полярностью последнего относительно "общего" провода. На выходах некоторых цифровых микросхем, питаемых от двух источников с разнополярным (двуполярным) питанием, можно получить напряжения различной полярности; выходное напряжение микросхемы зависит от полярности или (и) значения

входного сигнала. Цифровые микросхемы широко применяют в устройствах дискретной автоматики.

Микросборка — это миниатюрное изделие, входящее в состав серии ИМС, отличающееся тем, что его компоненты (например, транзисторы, диоды, резисторы) имеют самостоятельные внешние выводы, что позволяет каждый из выводов использовать раздельно.

Кристалл ИМС – это часть полупроводниковой пластины, изготовляемой обычно из монокристаллического кремния, в объёме и на поверхности которой созданы элементы полупроводниковой микросхемы, соединения элементов и контактные площадки.

Корпус ИМС – это часть конструкции микросхемы, предназначенная для её защиты от внешних (влага, излучение) воздействий, для соединения выводами с внешними цепями и, если элементом корпуса является радиатор, – от перегрева.

Степень интеграции ИМС – это показатель сложности микросхемы, определяемый числом содержащихся в ней элементов и компонентов (входящих в неё транзисторов, диодов, резисторов). Степень интеграции микросхемы определяется по формуле $K = \lg N$, где K - коэффициент, определяющий степень интеграции, округляемый до ближайшего большого целого числа; N -число входящих в микросхему элементов и компонентов.

ИМС, содержащая до 10 элементов — это ИМС первой степени интеграции; содержащая от 11 до 100 элементов — это ИМС второй степени интеграции; содержащая от 101 до 1000 элементов — это ИМС третьей степени интеграции и так далее.

Вместе с тем используются другие обозначения. ИМС, содержащая более 150 ... 200 элементов, называется "большой интегральной схемой" (БИС), а содержащая более 1000 элементов, – "сверхбольшой интегральной схемой" (СБИС).

Серия ИМС – это совокупность типов микросхем, которые могут выполнять различные функции, имеющих одинаковое конструктивное и технологическое исполнение и предназначенных для совместного использования.

Обозначения функций интегральных микросхем

Со времён бывшего СССР (с июля 1974 г.) действует ГОСТ 18682-73, который устанавливает классификацию и систему условных обозначений на вновь разрабатываемые и модернизируемые ИМС. В соответствии с этим ГОСТом по конструктивно-технологическому исполнению микросхемы подразделяются на три группы, которым присвоены следующие обозначения:

- 1; 5; 7 полупроводниковые микросхемы;
- 2; 4; 6; 8 гибридные микросхемы;
- 3 все прочие (вакуумные, керамические, плёночные и другие).

Условное обозначение типа микросхемы состоит из четырёх элементов.

Первый элемент – цифра, указывающая конструктивно-технологическое исполнение микросхемы (например, полупроводниковая или гибридная); второй элемент – две цифры, обозначающие порядковый номер разработки серии

микросхем (от 00 до 99);

третий элемент – две буквы, обозначающие функциональное назначение микросхемы (смотрите таблицу 1.4.1);

четвёртый элемент – порядковый номер разработки микросхемы по функциональному признаку в данной серии.

Номер серии микросхемы показывают совместно первый и второй элемент условного обозначения. В обозначении микросхем, разработанных до июля 1974 г., первая из трёх цифр стоит в начале обозначения типа, а вторая и третья — после буквенного индекса; буквенные обозначения функционального назначения микросхем этих серий соответствует нормали и приведены они в последней графе таблицы 1.4.1.

Таблица 1.4.1. Буквенное обозначение функций микросхем [31, стр. 20 – 23].

Финичин запиш с ом сти	Буквенное обозначение			
Функции микросхемы	По ГОСТ 18682-73	Принятое ранее		
Генераторы:				
гармонических сигналов	ГС	ГС		
прямоугольных сигналов ¹	ГГ			
линейно-изменяющихся сигналов	ГЛ			
сигналов специальной формы	ГФ	ГФ		
шума	ГМ			
прочие	ГП			
Детекторы:				
амплитудные	ДА	ДА		
импульсные	ДИ	ДИ		
частотные	ДС	ДС		
фазовые	ДФ	ДФ		
прочие	ДП	ДП		
Коммутаторы и ключи:				
тока	KT			
напряжения	КН			
прочие	КП	КП		
ключ транзисторный		KT		
ключ диодный		КД		
Логические элеме	нты:			
элемент И	ЛИ	ЛИ		

Филимина	Буквенное обозначение			
Функции микросхемы	По ГОСТ 18682-73	Принятое ранее		
элемент ИЛИ	ЛЛ	ЛЛ		
элемент НЕ	ЛН	ЛН		
элемент И-ИЛИ	ЛС	ЛС		
элемент И-НЕ, элемент ИЛИ-НЕ	ЛБ	ЛБ		
элемент И-ИЛИ-НЕ	ЛР	ЛР		
элемент И-ИЛИ-НЕ / И-ИЛИ	ЛК	ЛК		
элемент ИЛИ-НЕ / ИЛИ	ЛК	ЛК		
расширители	лд	ЛП		
прочие	ЛП	ЛЭ		
Модуляторы:				
амплитудные	MA	MA		
частотные	MC	MC		
фазовые	МФ	МФ		
импульсные	МИ	МИ		
прочие	МΠ	МΠ		
Преобразователи:				
частоты	ПС	ПС		
фазы	ПФ	ПФ		
длительности	ПД			
напряжения	ПН	ПН		
мощности	ПМ			
уровня сигнала (для согласования)	ПУ	ПУ		
формы сигнала		ПМ		
код – аналог	ПА	ПД		
аналог – код	ПВ	ПК		
код – код	ПР			
прочие	ПП	ПП		
Вторичные источники питания:				
выпрямители	EB	_		
преобразователи	EM	_		
стабилизаторы напряжения	EH	ЕН, ПП		
стабилизаторы тока	ET	ET		

Филичин запачовала г	Буквенное обозначение			
Функции микросхемы	По ГОСТ 18682-73	Принятое ранее		
прочие	ЕП			
Схемы задержки:				
пассивные	БМ			
активные	БР	_		
прочие	БП			
Схемы селекции и сра	авнения:			
амплитудные (уровня сигнала)	CA	CA		
временные	СВ	СВ		
частотные	CC	CC		
фазовые	СФ	СФ		
прочие	СП			
Триггеры:				
ЈК-типа	TB			
RS-типа	TP	TP		
D-типа	TM			
Т-типа	TT	TC		
динамические	ТД	ТД		
Шмидта	ТЛ	ТШ		
комбинированные (DT, RST и другие)	TK	ТК		
прочие	ТΠ			
Усилители:				
высокой частоты ²	УВ			
промежуточной частоты ²	УР			
низкой частоты ²	УН			
импульсных сигналов ²	УИ	УИ		
повторители	УЕ	УЭ		
считывания и воспроизведения	УЛ			
индикации	УМ	_		
постоянного тока ²	УТ	УТ		
синусоидальных сигналов ³	_	УС		
видеоусилители	_	УБ		
операционные и дифференциальные ²	УД			

Ф	Буквенное обозначение			
Функции микросхемы	По ГОСТ 18682-73	Принятое ранее		
прочие	УП			
Фильтры:				
верхних частот	ФВ	ФВ		
нижних частот	ΦН	ФН		
полосовые	ΦЕ	ФΠ		
режекторные	ФР	ФС		
прочие	ФΠ			
Формирователи	и:			
импульсов прямоугольной формы ⁴	АΓ			
импульсов специальной формы	АФ	_		
адресных токов ⁵	AA	_		
разрядных токов ⁵	AP			
прочие	АΠ			
Элементы запоминающих	устройств:			
матрицы-накопители ОЗУ	PM			
матрицы-накопители ПЗУ	PB	_		
матрицы-накопители ОЗУ со схемами управления	РУ			
матрицы-накопители ПЗУ со схемами управления	PE	_		
элементы памяти		ПК		
матрицы разного назначения	_	ЯМ		
прочие	РΠ	_		
Элементы арифметических и дис	кретных устройств:			
регистры	ИР	ИР		
сумматоры	ИМ	ИС		
полусумматоры	ИЛ	ИЛ		
счётчики	ИЕ	ИЕ		
шифраторы	ИВ	ИШ		
дешифраторы	ИД	ИД		
комбинированные	ИК	ИК		
прочие	ИП	ИП		
Многофункциональные м	икросхемы ⁶ :			
аналоговые	XA	ЖА		

Филичини манеторующи	Буквенное обозначение						
Функции микросхемы	По ГОСТ 18682-73	Принятое ранее					
цифровые	ХЛ	ЖЛ					
комбинированные	XK						
прочие	ΧП						
Микросборки:							
диодов	НД	НД					
транзисторов	HT	HT					
резисторов	HP	НС					
конденсаторов	HE	HE					
комбинированные	НК	НК					
прочие	НΠ	_					

- 1 Автоколебательные мультивибраторы, блокинг-генераторы и другие.
- 2 Усилители напряжения или мощности (в том числе малошумящие).
- 3 Независимо от рабочего диапазона частот.
- 4 Ждущие мультивибраторы, блокинг-генераторы и другие.
- 5 Формирователи напряжений и токов.
- 6 Микросхемы, выполняющие одновременно несколько функций.

Монтаж интегральных микросхем

Микросхемы монтируют на печатных платах, на возможно большем удалении от компонентов аппаратуры, выделяющих большое количество тепла, например электронных ламп, радиаторов транзисторов, вне магнитных полей дросселей, трансформаторов, магнитов головок громкоговорителей. Расстояние между корпусами соседних микросхем должно быть не менее 1,5 мм. Между корпусом микросхемы и монтажной платой должен быть зазор.

Формовку круглых и ленточных выводов микросхем и обжатие ленточных выводов микросхем следует производить с помощью монтажного инструмента так, чтобы исключить механическое напряжение на места крепления выводов. При этом радиус изгиба вывода должен быть не менее диаметра вывода, а расстояние от корпуса до центра окружности изгиба – не менее 1 мм.

При распайке выводов микросхем температура жала паяльника должна быть не более 280 °C, а для некоторых типов микросхем не более 265 °C (оговорено специально). Допустимое время касания паяльника к каждому выводу не более 3 с, расстояние от места пайки до корпуса микросхем по длине вывода не менее 1 мм, интервал между пайками не менее 10 с. Для обеспечения указанных температурных условий пайки применяют паяльники мощностью от 15 до 40 Вт. Более мощные паяльники применять нельзя, так как можно микросхемы вывести из строя. Ввиду

того, что микросхемы чувствительны к воздействию статического электричества, жало паяльника должно быть заземлено. Монтажник должен пользоваться заземляющим браслетом. Рекомендуется пользоваться низковольтным паяльником, включенным в электросеть через понижающий трансформатор с электростатическим экраном между его первичной и вторичной обмотками.

Корпусы и изоляторы выводов микросхем необходимо оберегать от брызг и паров паяльного флюса. После монтажа места пайки следует очистить от остатков флюса моющей жидкостью, не оказывающей негативного влияния на корпус и выводы микросхем. После очистки от флюса плату с микросхемами можно покрыть влагозащитным лаком.

Микросхемы рекомендуется использовать в облегчённых электрических и температурных режимах по сравнению с номинальными.

Система обозначений ИМС по системе Pro Electron

За рубежом существуют различные системы кодирования (обозначений и маркировки) ИМС. В европейских странах система кодирования ИМС аналогична системе, принятой для кодирования дискретных полупроводниковых приборов, и используется фирмами в различных странах (например, Англии, Бельгии, Италии, Испании, Нидерландов, Швеции, Франции, Германии и других). Суть кодирования данной системы, по которой обозначения присваиваются международной организацией Association International Pro Electron, указаны ниже.

Код состоит из трёх букв, за которыми следует серийный номер (например, TBA810, TDA2003).

Первая буква для одиночных схем отражает принцип преобразования сигнала в схеме: S – цифровое; T – аналоговое; U – смешанное (аналого-цифровое).

Вторая буква не имеет специального значения (выбирается фирмой-изготовителем), за исключением буквы H, которой обозначаются гибридные схемы. Для серий (семейств) цифровых микросхем первые две буквы (FA, FB, FC, FD, FE, FF, FJ, FI, FL, FQ, FT, FY, FZ, GA, GB, GD, GF, GM, GT, GX, GY, GZ, HB, HC) отражают технологические особенности схемы, например: FD, GD – МОП-схемы; FL, GF – стандартные ТТЛ-схемы; FQ – ДТЛ-схемы; FY – ЭСЛ-серия; GA – маломощные ТТЛ-схемы; GJ – быстродействующие ТТЛ-схемы; GM – маломощные с диодами Шотки ТТЛ-схемы; HB – комплементарные МОП-схемы серии 4000 А; HC – комплементарные МОП-схемы серии 4500 В.

Третья буква обозначает диапазон рабочих температур или, как исключение, иную важную характеристику: A — температурный диапазон не нормирован; B — от 0 до +70 °C; C — от -55 до +125 °C; D — от -25 до +70 °C; E — от -25 до +85 °C; F — от -40 до +85 °C; G — от -55 до +85 °C.

После комбинации из трёх букв следует серийный номер, состоящий минимум из четырёх цифр. Если он состоит менее чем из четырёх цифр, то число цифр увеличивается до четырёх добавлением нулей перед ними. Кроме того, за цифрами может следовать буква для обозначения разновидности основного типа. Типы корпусов могут обозначаться одной или двумя буквами, написанными после

серийного номера.

При двухбуквенном обозначении вариантов корпусов первая буква отражает конструкцию:

С – цилиндрический корпус;

D – с двухрядным параллельным расположением выводов (DIP);

Е – мощный с двухрядным расположением выводов (с внешним теплоотводом);

F – плоский (с двусторонним расположением выводов);

G – плоский (с четырёхсторонним расположением выводов);

К – корпус типа ТО-3;

М – многорядный (больше четырёх рядов);

О – с четырёхрядным параллельным расположением выводов;

R – мощный с четырёхрядным расположением выводов (с внешним теплоотводом);

S – с однорядным расположением выводов;

Т – с трёхрядным расположением выводов. Вторая буква показывает материал корпуса;

G – стеклокерамика;

M – металл;

Р – пластмасса;

Х – прочие.

При обозначении вариантов корпусов одной буквой:

С – цилиндрический;

D – керамический;

F – плоский;

L – ленточный кристаллодержатель;

Р – пластмассовой DIP;

Q – с четырёхрядным расположением выводов;

Т – миниатюрный пластмассовый;

U – бескорпусная ИМС.

В устаревшем коде, действовавшем до 1973 г., первые две буквы обозначают то же, что и в современном, а третья буква показывает функциональное назначение:

А – линейное усиление;

В – частотное преобразование и (или) демодуляция;

С – генерация колебаний;

Н – логические схемы;

J – двухстабильные или мультистабильные схемы (делители частоты, триггеры, счётчики, регистры и прочие элементы цифровой техники);

К – моностабильные схемы (одновибраторы);

L – цифровые преобразователи уровня (например, дешифраторы, драйверы);

М – схемы со сложной логической конфигурацией (например, сумматоры);

N – двухстабильные или мультистабильные схемы с длительным хранением информации;

Q - O3Y;

R – ПЗУ;

S – усилитель считывания с цифровым выходом;

Y – прочие схемы.

Следующие после этого первые две цифры указывают серийный номер (от 10 до 99), а третья цифра – диапазон рабочих температур:

```
0 – температурный диапазон не нормирован;
```

```
1 - \text{от } 0 \text{ до } +70 \, ^{\circ}\text{C};
```

$$2 - \text{от} -55 \text{ до} +125 \, ^{\circ}\text{C};$$

$$3 - \text{от} - 10 \text{ до} + 85 \,^{\circ}\text{C};$$

$$4 -$$
от $+15$ до $+55$ °C;

$$5 - \text{от} - 25 \text{ до} + 70 \,^{\circ}\text{C};$$

$$6 - \text{от} - 40 \text{ до} + 85 \,^{\circ}\text{C}.$$

Например, ИМС типа FYH123 является цифровой логической ИМС (буква H) и относится к семейству FY (ЭСЛ). Она совместима с другими ИМС этой серии то есть используется при таком же напряжении питания, при тех же входных и выходных уровнях, имеет то же быстродействие. Это третий прибор серии (цифра 12), работает в температурном диапазоне от -10 до +85 °C.

2 Список принятых сокращений

Диоды

Івыпр.ср.макс – максимальное значение среднего выпрямленного диодом тока.

Іобр – обратный ток через диод.

Іобр.ср – средний обратный ток через диод.

Іпр – прямой ток через диод.

Іпр.макс – максимальный прямой ток.

Іпр.и.макс – импульсный максимальный прямой ток.

Іпр.ср – средний прямой ток через диод.

Іпр.ср.макс – максимальное значение среднего прямого тока через диод.

Uобр.макс – максимальное постоянное обратное напряжение, приложенное к диоду.

Uобр.и.макс – максимальное импульсное обратное напряжение, приложенное к диоду.

Uпр – падение напряжения на диоде при его прямом включении.

Uпр.cp – среднее падение напряжения на диоде при его прямом включении.

fмакс – максимальная частота, на которой ещё сохраняется свойство односторонней проводимости диода.

Светодиоды

I — сила света. Отношение светового потока, распространяющегося от светодиода в рассматриваемом направлении внутри малого телесного угла, к величине этого телесного угла.

Iv — фотометрическая сила света. Измеряется в канделах и является основной фотометрической единицей в системе СИ.

*I*е – энергетическая сила света. Измеряется в ваттах на стерадиан.

 $Iпр_{Unp}$ – прямой ток через светодиод при напряжении Unp.

L – яркость. Величина, равная отношению силы света светодиода к площади светящейся поверхности.

Lv – фотометрическая яркость. Измеряется в канделах на метр квадратный.

λ – длина волны.

λмакс — максимум спектрального распределения. Длина волны светового излучения, соответствующая максимуму спектральной характеристики светодиода.

 Θ — угол раскрыва диаграммы направленности излучения. Угол раскрыва диаграммы направленности излучения светодиода, измеренный на уровне 0,5. τ — длительность импульса.

Оптроны

Івх – входной ток.

Івх.макс – максимальный постоянный входной ток оптопары.

Івх.и.макс – максимальный импульсный входной ток оптопары.

Івых – выходной ток.

Рср.макс – средняя рассеиваемая мощность.

Rт – тепловое сопротивление.

Uиз – напряжение изоляции оптопары.

Uком – коммутируемое напряжение оптопары.

Стабилитроны

Іс – номинальный ток стабилизации стабилитрона.

Іс.макс – максимальный ток стабилизации стабилитрона.

Іс.мин – минимальный ток стабилизации стабилитрона.

 Ic_{Uc} — ток стабилизации стабилитрона при соответствующем ему номинальном напряжении стабилизации Uc.

гд – динамическое сопротивление стабилитрона.

 $TKU 10^{-4} \, {}^{\circ}C^{-1}$ – температурный коэффициент стабилизации стабилитрона.

Uc – номинальное напряжение стабилизации стабилитрона.

Uc.макс – максимальное напряжение стабилизации стабилитрона.

Uc.мин – минимальное напряжение стабилизации стабилитрона.

t, Т – температура окружающей среды.

Варикапы

Сном – номинальная ёмкость при заданном обратном напряжении смещения.

Qв – добротность варикапа. Qв равна отношению ёмкостного сопротивления к эквивалентному последовательному сопротивлению.

Туннельные диоды

Сд.мин — минимальная общая ёмкость диода. Минимальная ёмкость между выводами диода при заданном режиме работы.

Сд.макс — максимальная общая ёмкость диода. Максимальная ёмкость между выводами диода при заданном режиме работы.

Ів – ток впадины. Значение прямого тока в точке минимума ВАХ, при котором дифференциальная активная проводимость равна нулю.

Іп – пиковый ток. Значение прямого тока в точке максимума ВАХ, при котором дифференциальная активная проводимость равна нулю.

Іпр.макс – максимальный постоянный прямой ток.

Іп / Ів – отношение пикового тока к току впадины.

Іобр.и – импульсный обратный ток. Наибольшее мгновенное значение обратного тока диода, обусловленное импульсным обратным напряжением.

Іобр.макс – максимальный обратный ток.

 Δ Iп — приращение пикового тока туннельного диода.

Lд – общая ёмкость туннельного диода.

Скор – индуктивность корпуса туннельного диода.

гп — последовательное сопротивление потерь. Суммарное эквивалентное активное сопротивление кристалла, контактных соединений и выводов диода.

Uп – напряжение пика. Пиковое напряжение, соответствующее пиковому току.

Uпр.макс – максимальное прямое напряжение при заданном прямом токе диода.

Тмакс – максимальное значение температуры.

Тиристоры

fy – частота управления.

Ізкр — ток в закрытом состоянии. Анодный ток при определённом напряжении в закрытом состоянии при определённом режиме в цепи управляющего электрода тиристора.

Ізс.п — повторяющийся импульсный ток в закрытом состоянии. Наибольшее мгновенное значение тока в закрытом состоянии, протекающего через тиристор, включая все повторяющиеся переходные напряжения.

Іобр – постоянный обратный ток. Постоянный анодный ток в непроводящем состоянии.

Іобр.п — повторяющийся импульсный обратный ток. Наибольшее мгновенное значение обратного тока, включая только повторяющиеся переходные напряжения.

Іос – основной постоянный ток в открытом состоянии.

Іос.и – импульсный ток в открытом состоянии.

Іос.макс – максимальный основной постоянный ток в открытом состоянии.

Іос.и.макс – максимальный основной импульсный ток в открытом состоянии.

Іос.ср – средний ток в открытом состоянии. Среднее за период значение тока в открытом состоянии.

Іос.удр — ударный не повторяющийся ток в открытом состоянии. Наибольший импульсный ток в открытом состоянии, протекание которого вызывает превышение максимально допустимой температуры перехода, но воздействие которого за время срока службы тиристора предполагается редким, с ограниченным числом повторений.

Іт.ср.макс – максимально допустимый средний ток, который тиристор выдерживает в открытом состоянии.

Iy.от — отпирающий постоянный ток управления. Наименьший постоянный ток управления, необходимый для включения тиристора.

Iy.от.и – отпирающий импульсный ток управления. Наименьший импульсный ток управления, необходимый для включения тиристора.

Iу.пр.и – прямой импульсный ток управления. Импульсный ток управления, соответствующий прямому импульсному напряжению управления.

Iyэ – постоянный ток через управляющий электрод тиристора.

Rразв – сопротивление гальванической развязки.

Ry – сопротивление управления.

тиристор включается импульсом тока управления. (Интервал времени измеряют от момента в начале импульса тока, когда основное напряжение понижается до заданного напряжения. Время включения может быть определено по нарастанию тока в открытом состоянии до заданного значения.)

tвыкл — время выключения. Наименьший интервал времени между моментом, когда основной ток после внешнего переключения основных цепей понизился до нуля, и моментом, когда тиристор способен выдерживать напряжение в закрытом

состоянии с определённой скоростью его нарастания.

tзд — время задержки. Интервал времени между заданным моментом в начале импульса тока управления и моментом, когда основное напряжение понижается до заданного значения, близкого к начальному.

tu – длительность импульса тока или напряжения в открытом состоянии.

thp — время нарастания. Интервал времени между моментом, когда основное напряжение понижается до значения, близкого к начальному, и моментом, когда оно достигает заданного низкого значения при включении тиристора импульсом тока управления. На практике принято считать началом импульса тока или напряжения управления момент, когда их значение достигает 0,1 от амплитуды. За время задержки считают интервал времени до момента спада напряжения до 0,9 от амплитуды или до момента возрастания тока до 0,1 от амплитуды. Время нарастания определяется в интервале спада напряжения от 0,9 до 0,1 от начального значения, а по току — от 0,1 до 0,9 от амплитуды. Время включения равно сумме времён задержки и нарастания.

ty – длительность импульса тока или напряжения управления.

Uвкл — напряжение включения. Основное напряжение на динисторе, при котором он переходит из закрытого состояния в открытое.

Uзс – постоянное напряжение, прикладываемое к тиристору в закрытом состоянии.

Uзс.и – импульсное напряжение в закрытом состоянии.

Uзс.п – повторяющееся импульсное напряжение в закрытом состоянии. Наибольшее мгновенное значение напряжения в закрытом состоянии, прикладываемого к тиристору, включая все повторяющиеся переходные напряжения.

Uобр.п – повторяющееся импульсное обратное напряжение. Наибольшее мгновенное значение обратного напряжения, включая только повторяющиеся переходные напряжения.

Uoc.и — импульсное напряжение в открытом состоянии. Наибольшее мгновенное значение напряжения в открытом состоянии, обусловленное импульсным током в закрытом состоянии заданного значения.

Uоткр.макс — максимальное напряжение в открытом состоянии. Напряжение на тиристоре при определённом токе в открытом состоянии.

Uт.обр.макс – максимальное напряжение, приложенное в обратном направлении к тиристору.

Uy – постоянное напряжение управления.

Uy.пр.и.макс – максимальное прямое импульсное напряжение управления.

Uy.от – отпирающее постоянное напряжение управления. Постоянное напряжение управления, соответствующее постоянному току управления.

Uyэ – постоянное напряжение, приложенное к управляющему электроду тиристора. |dUзc / dt|кр – критическая скорость нарастания напряжения в закрытом состоянии. Наибольшее значение скорости нарастания напряжения в закрытом состоянии, которое не вызывает переключения тиристора из закрытого состояния в открытое.

Биполярные транзисторы

fгр – граничная частота коэффициента передачи тока. Частота, при которой модуль

коэффициента передачи тока в схеме с общим эмиттером экстраполируется к единице. Частота, равная произведению модуля коэффициента передачи тока на частоту измерения, которая находится в диапазоне частот, где справедлив закон изменения модуля коэффициента передачи тока 6 дБ на октаву.

 fh_{21} — предельная частота коэффициента передачи тока биполярного транзистора. Частота, на которой модуль коэффициента передачи тока падает на 3 дБ по сравнению с его низкочастотным значением.

 h_{21} Э — статический коэффициент передачи тока биполярного транзистора. Отношение постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор — эмиттер и токе эмиттера в схеме с общим эмиттером.

 h_{219} — коэффициент передачи тока биполярного транзистора в режиме малого сигнала в схеме с общим эмиттером. Отношение изменения выходного тока к вызвавшему его изменению входного тока в режиме короткого замыкания выходной цепи по переменному току в схеме с общим эмиттером.

Ік – ток коллектора транзистора.

Ікбо – обратный ток коллектора. Ток через коллекторный переход при заданном обратном напряжении коллектор – база и разомкнутом выводе эмиттера.

Ік.макс – максимально допустимый постоянный ток коллектора транзистора.

Ік.и.макс – максимально допустимый импульсный ток коллектора транзистора.

Ікэк — обратный ток коллектор — эмиттер при короткозамкнутых выводах базы и эмиттера. Ток в цепи коллектор — эмиттер при заданном обратном напряжении коллектор — эмиттер и короткозамкнутых выводах эмиттера и базы.

Ікэо — обратный ток коллектор — эмиттер при разомкнутом выводе базы. Ток в цепи коллектор — эмиттер при заданном напряжении коллектор — эмиттер и разомкнутом выводе базы.

 $Iкэ_R$ — обратный ток коллектор — эмиттер при заданном сопротивлении в цепи база — эмиттер. Ток в цепи коллектор — эмиттер при заданном обратном напряжении коллектор — эмиттер и заданном сопротивлении в цепи база — эмиттер.

Ікэх — обратный ток коллектор — эмиттер заданном обратном напряжении база — эмиттер.

Іэ – ток эмиттера транзистора.

Іэбо – обратный ток эмиттерного перехода при разомкнутом выводе коллектора транзистора.

Іэ.макс – максимально допустимый постоянный ток эмиттера транзистора.

Іэ.и.макс – максимально допустимый импульсный ток эмиттера транзистора.

Кш – коэффициент шума транзистора. Для биполярного транзистора это отношение мощности шумов на выходе транзистора к той её части, которая вызвана тепловыми шумами сопротивления источника сигнала.

Рмакс – максимально допустимая постоянно рассеиваемая мощность.

Рк.макс — максимально допустимая постоянная мощность, рассеивающаяся на коллекторе транзистора.

Рк.и.макс – максимально допустимая импульсная мощность, рассеивающаяся на коллекторе транзистора.

Рк.ср.макс – максимально допустимая средняя мощность, рассеивающаяся на коллекторе транзистора.

О - скважность.

Rтп-с – тепловое сопротивление от перехода к окружающей среде.

Rтп-к – тепловое сопротивление от перехода к корпусу транзистора.

tвкл — время включения биполярного транзистора. Интервал времени, являющийся суммой времени задержки и времени нарастания.

твыкл — время выключения биполярного транзистора. Интервал времени между моментом подачи на базу запирающего импульса и моментом, когда напряжение на коллекторе транзистора достигнет значения, соответствующего 10 % его амплитудного значения.

Тмакс – максимальная температура корпуса транзистора.

Тп.макс – максимальная температура перехода транзистора.

tpас — время рассасывания биполярного транзистора. Интервал времени между моментом подачи на базу запирающего импульса и моментом, когда напряжение на коллекторе транзистора достигает заданного уровня.

Uкб – напряжение коллектор – база транзистора.

Uкбо.макс – максимально допустимое постоянное напряжение коллектор – база при токе эмиттера, равном нулю.

Uкбо.и.макс — максимально допустимое импульсное напряжение коллектор — база при токе эмиттера, равном нулю.

Uкэо.гр – граничное напряжение между коллектором и эмиттером транзистора при разомкнутой цепи базы и заданном токе эмиттера.

Uкэ_R.макс — максимальное напряжение между коллектором и эмиттером при заданном (конечном) сопротивлении в цепи база — эмиттер транзистора.

Uкэх.и.макс — максимально допустимое импульсное напряжение между коллектором и эмиттером при заданных условиях в цепи база — эмиттер.

Uкэ – напряжение коллектор – эмиттер транзистора.

Uкэ.нас – напряжение насыщения между коллектором и эмиттером транзистора.

Uэбо.макс − максимально допустимое постоянное напряжение эмиттер − база при токе коллектора, равном нулю.

Однопереходные транзисторы

Івкл – ток включения.

Івыкл – ток выключения.

Rб1б2 – межбазовое сопротивление б1 и б2 однопереходного транзистора.

Uб1б2 – напряжение между базами б1 и б2 однопереходного транзистора.

Uб1б2.макс — максимально допустимое напряжение между базами б1 и б2 однопереходного транзистора.

Uб2э.макс — максимально допустимое напряжение между второй базой и эмиттером однопереходного транзистора.

η – коэффициент передачи однопереходного транзистора. Отношение разности максимально возможного эмиттерного напряжения и падения напряжения на p-n переходе к приложенному межбазовому напряжению.

Полевые транзисторы

 C_{11} и — входная ёмкость полевого транзистора. Ёмкость между затвором и истоком при коротком замыкании по переменному току на выходе с общим истоком.

 C_{12} и — проходная ёмкость полевого транзистора. Ёмкость между затвором и стоком при коротком замыкании по переменному току на входе в схеме с общим истоком.

 C_{22} и — выходная ёмкость полевого транзистора. Ёмкость между стоком и истоком при коротком замыкании по переменному току на входе в схеме с общим истоком.

Сзи – ёмкость затвор – исток. Ёмкость между затвором и истоком при разомкнутых по переменному току остальных выводах.

Еш – электродвижущая сила шума полевого транзистора. Спектральная плотность эквивалентного шумового напряжения, приведённого ко входу, при коротком замыкании на входе в схеме с общим истоком.

 g_{22} и — активная составляющая выходной проводимости полевого транзистора в схеме с общим истоком.

Iз.ут – ток утечки затвора. Ток затвора при заданном напряжении между затвором и остальными выводами, замкнутыми между собой.

 $I_{\rm C}$ — ток стока полевого транзистора (не путать с номинальным током стабилизации стабилитрона). Ток, протекающий в цепи сток — исток при напряжении сток — исток, равном или большем, чем напряжение насыщения, при заданном напряжении затвор — исток.

Іс.макс – максимально допустимый постоянный ток стока.

Ic.нач – начальный ток стока. Ток стока при напряжении между затвором и истоком, равном нулю, и при напряжении на стоке, равном или превышающем напряжение насыщения.

Кур — коэффициент усиления по мощности полевого транзистора. Отношение мощности на выходе полевого транзистора к мощности на входе при определённой частоте и схеме включения.

Кш – коэффициент шума транзистора. Для полевого транзистора это отношение полной мощности шумов на выходе полевого транзистора к той её части, которая вызвана тепловыми шумами сопротивления источника сигнала.

Rcи.отк – сопротивление сток – исток в открытом состоянии полевого транзистора. Сопротивление между стоком и истоком в открытом состоянии транзистора при заданном напряжении сток – исток, меньшем напряжения насыщения.

Rc.мин — минимальное сопротивление канала сток — исток полевого транзистора в проводящем состоянии, включённого по схеме с общим истоком.

S – крутизна характеристики полевого транзистора. Отношение изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора в схеме с общим истоком.

Тк – температура корпуса транзистора. Температура в заданной точке корпуса транзистора.

U₃1₃2.макс – максимально допустимое напряжение между затворами.

Uзи – напряжение затвор – исток.

Uзи.макс – максимально допустимое напряжение затвор – исток.

Uзи.отс — напряжение отсечки полевого транзистора. Напряжение между затвором и истоком транзистора с p-n переходом или с изолированным затвором, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.

Uзи.пор — пороговое напряжение полевого транзистора. Напряжение между затвором и истоком транзистора с изолированным затвором, работающего в режиме обогащения, при котором ток стока достигает заданного низкого значения.

Uзс.макс – максимально допустимое напряжение затвор – сток.

Uси – напряжение сток – исток.

Uси.макс – максимально допустимое напряжение сток – исток.

Микросхемы

f1 – частота единичного усиления.

fвх – частота входного сигнала.

 I^{0} вх — входной ток логического нуля.

 I^1 вх — входной ток логической единицы.

 I^{1} вых — выходной ток логической единицы.

Івх – постоянный ток входа.

Ікз – значение тока, потребляемого микросхемой при замкнутом накоротко выходе.

Ін – постоянный ток нагрузки.

Ін.макс – максимальный ток нагрузки.

 Δ Ін.макс — диапазон изменения максимального выходного тока — тока, отдаваемого в нагрузку.

Іп – потребляемый ток.

 I^{1} п – ток потребления в режиме логической единицы.

К_D – минимальный коэффициент усиления.

 R_D вх – входное сопротивление.

 $tздр^{10}$ – время задержки при переходе из 1 в 0.

 $tздр^{01}$ – время задержки при переходе из 0 в 1.

 U^0 вых – выходное напряжение логического нуля.

U¹вых – выходное напряжение логической единицы.

Uвх – входное напряжение.

∆Uвх.макс – максимальное изменение входного напряжения.

Uвых – выходное напряжение.

Швых.мин – минимально допустимое выходное напряжение.

ΔUвых − максимальное изменение выходного напряжения − изменение Uвых, обусловленное изменением Iн.макс.

Uип – напряжение источника питания.

Uип.ном – номинальное напряжение источника питания.

Uпд – максимальное падение напряжения на стабилизаторе (Dropout Voltage) Uпд =

Uвх – Uвых.мин.

Uсм – напряжение смещения "нуля".

Uш – напряжение шумов.

Vu – скорость увеличения выходного напряжения.

 γ — абсолютный температурный коэффициент (температурная стабильность), мВ / °C, γ = Δ Uвых / Δ T — изменение выходного напряжения от изменения температуры окружающей среды при неизменных Uвх и Iн.

АМ – амплитудная модуляция.

АПЧГ – автоматическая подстройка частоты гетеродина.

АРУ – автоматическая регулировка усиления.

Вид цепи – вид цепи, в которую включён регулирующий элемент микросхемного стабилизатора напряжения.

ВЧ – высокая частота.

НЧ – низкая частота.

ПЧ – промежуточная частота.

ПЧЗ – преобразователь частоты звука.

ПЧИ – преобразователь частоты изображения.

СК – селектор каналов.

ФАПЧ – фазовая автоподстройка частоты.

ЧМ – частотная модуляция.

— – данные не нормируются или информация о данном параметре отсутствует.

ТУ – технические условия.

и – буква "и" рядом со значением параметра означает, что приведённая величина соответствует импульсному режиму работы транзистора.

т – буква "т" рядом со значением параметра означает, что приведённая величина является типовой.

Электроды транзисторов условно обозначаются первыми буквами соответствующего названия электродов. Например, затвор – буква "3", база – "Б".

Если не указана температура, при которой были получены параметры деталей, то предполагается, что эта температура – комнатная 25 °C.

Коэффициенты h_{21} Э и h_{21} указаны для соответствующих значений Uкэ (Uкб) и Iк (Iэ) биполярных транзисторов. Значения параметров Uзи и Uси указаны для соответствующих значений Iз.ут и S полевых транзисторов. Значение Рмакс полевых транзисторов указано для соответствующих значений T.

Цветные точки рядом с электродом транзистора в металлическом корпусе чаще всего обозначают вывод эмиттера.

3 Диоды

3.1 Диоды выпрямительные

Таблица 3.1.1. Диоды малой мощности.

	Uпр. при Іпр.; {Uпр.cp} при {Іпр.cp}		Іобр. {Іобр.ср} при Џобр.макс,	Предельные режимы		fмакс,	Devos
Тип диода				Предсланые режимы Иобр.макс, Івыпр.ср.макс;			
	{Onp.cp; npn {mp.cp;	{ Uобр.и.макс},			кГц	Рису- нок	
	В	мА	мкА	В	[Іпр.макс], мА	кіц	
АД110А	1,5	10	5·10-3	30	10	1000	1
ГД107A	1,3	10	20	15	20		2
ГД107А	0,4	1,5	100	20	2,5	_	2
, ,		5	100	30		100	3
Д2Б	1	9			{16}		3
Д2В	1		250	40	{25}	100	
Д2Г	1	2	250	75	{16}	100	3
Д2Д	1	4,5	250	75	{16}	100	3
Д2Е	1	4,5	250	100	{16}	100	3
Д2Ж	1	2	250	150	{8}	100	3
Д2И	1	2	250	100	{16}	100	3
Д7А	{0,5}	{300}	{100}	{50}	{300}	2	5
Д7Б	{0,5}	{300}	{100}	{100}	{300}	2	5
Д7В	{0,5}	{300}	{100}	{150}	{300}	2	5
Д7Г	{0,5}	{300}	{100}	{200}	{300}	2	5
Д7Д	{0,5}	{300}	{100}	{300}	{300}	2	5
Д9Б	1	90	250	10	125	_	9
Д9В	1	10	250	30	62	_	9
Д9Г	1	30	250	30	98	_	9
Д9Д	1	60	250	30	98	_	9
Д9Е	1	30	250	50	62	_	9
Д9Ж	1	10	250	100	48	_	9
Д9И	1	30	120	30	98	_	9
Д9К	1	60	60	30	98	_	9
Д9Л	1	30	250	100	48	_	9
Д101	2	2	10	75	30	150	4
Д101А	1	1	10	75	30	150	4
	I	1	1	l .	1		

Москатов Е. А. Справочник по полупроводниковым приборам. http://moskatov.narod.ru

	Uпр. пј	ри Іпр.;	I-6. (I-6)	Предельнь	іе режимы		
T	{Uпр.ср} п	ри {Іпр.ср}	Іобр. {Іобр.ср}	Uобр.макс ,	Івыпр.ср.макс;	f макс,	Рису-
Тип диода	D		при Џобр.макс,	{ Uобр.и.макс},	{Іпр.ср.макс};	кГц	нок
	В	мА	мкА	В	[Іпр.макс], мА		
Д102	2	2	10	50	30	150	4
Д102А	1	1	10	50	30	150	4
Д103	2	2	30	30	30	150	4
Д103А	1	1	30	30	30	150	4
Д206	{1}	{100}	{100}	100	100	_	5
Д207	{1}	{100}	{100}	200	100	_	5
Д208	{1}	{100}	{100}	300	100	_	5
Д209	{1}	{100}	{100}	400	100	_	5
Д210	{1}	{100}	{100}	500	100	_	5
Д211	{1}	{100}	{100}	600	100	_	5
Д223	1	50	1	{50}	50	20.103	4
Д223А	1	50	1	{100}	50	20·10 ³	4
Д223Б	1	50	1	{150}	50	20·10 ³	4
Д226Б	{1}	{300}	{100}	{400}	{300}	1	6
Д226В	{1}	{300}	{100}	{300}	{300}	1	6
Д226Г	{1}	{300}	{100}	{200}	{300}	1	6
Д226Д	{1}	{300}	{100}	{100}	{300}	1	6
КД102А	1	50	0,1	250	100	4	7
КД102Б	1	50	1	300	100	4	7
КД103А	1	50	0,5	50	100	_	7
КД103Б	1,2	50	0,5	50	100	_	7
КД104А	1	10	3	300	10	10	7
КД105Б	{1}	{300}	{100}	{400}	{300}	1	8
КД105В	{1}	{300}	{100}	{600}	{300}	1	8
КД105Г	{1}	{300}	{100}	{800}	{300}	1	8
МД217	{1}	{100}	{75}	{800}	{100}	1	5
МД218	{1}	{100}	{75}	{1000}	{100}	1	5

Ниже приведены рисунки к таблице 3.1.1.

На рисунке 5 для диодов типов Д7, Д206 - Д211 размер а составляет 16 мм, а для диодов МД217 и МД218 составляет 18 мм.

Диоды типов КД105 (рисунок 8) маркируются цветными точками на боковой поверхности: точка зелёного цвета — для КД105В, точка красного цвета — для КД105Г. У диодов типа КД105Б точка отсутствует. Полярность диодов обозначается полосой жёлтого цвета у плюсового вывода.

Диоды Д9 (рисунок 9) — германиевые точечные. Выпускаются в стеклянном корпусе и имеют гибкие выводы. Маркируются цветными точками [29] на средней части корпуса. Полярность диодов обозначается красной точкой со стороны плюсового вывода. Масса диода не более 0,3 г. Маркировка диодов: Д9Б — красная точка; Д9В — оранжевая; Д9Г — жёлтая; Д9Д — белая; Д9Е — голубая; Д9Ж — зелёная и голубая; Д9И — две жёлтые; Д9К — две белые; Д9Л — две зелёные точки.

На рисунке 10 показана статическая вольт-амперная характеристика (ВАХ) диода Д9В [1, стр. 137].

КД522А, КД522Б

Диоды кремниевые эпитаксиально — планарные в пластмассовом корпусе [6, стр. 154-155], [29, стр. 113-115]. Маркируются цветными полосами: КД522А — два кольца, КД522Б — три кольца. Масса диода не более 0,2 г.

Электрические параметры.

электри теские параметры.	
Постоянное прямое напряжение при Іпр = 100 мА не более	
при 25 °C	1,1 B
при -55 °C	1,5 B
Постоянный обратный ток при Uобр = Uобр.макс не более	
при 25 °C	
для КД522А	2 мкА
для КД522Б	5 мкА
при 85 °C	50 мкА
Ёмкость диода не более	4 пФ
Заряд переключения при Іпр = 50 мА,	е 400 пКл
Предельные эксплуатационные данные.	
Постоянное обратное напряжение:	
для КД522А	30 B
для КД522Б	50 B
Импульсное обратное напряжение при длительности импульса	
10 мкс и скважности не менее 10:	
для КД522А	40 B
для КД522Б	60 B
Средний выпрямленный ток ¹ :	
при температуре от -55 до 35 °C	100 мА
при 85 °C	50 мА
Импульсный прямой ток ¹ длительностью 10 мкс без превышени	Р
среднего выпрямленного тока:	
при температуре от -55 до 35 °C	1500 мА
при 85 °C	850 мА
Температура перехода	125 °C
Диапазон рабочей температуры окружающей среды	от -55 до +85 °C

1. В диапазоне температур от 35 до 85 $^{\circ}\mathrm{C}$ снижается линейно.

Таблица 3.1.2. Диоды средней мощности.

Uпр. при Іпр {Uпр.cp} при {I		_	Іобр. {Іобр.ср}	Предельнь Uобр.макс,	пе режимы Івыпр.ср.макс;	fмакс,	Рису-
Тип диода			при Џобр.макс,	{ Uобр.и.макс},	{Іпр.ср.макс};	кГц	нок
	В	A	мА	В	[Іпр.макс], А	,	
Д229В	{1}	{0,4}	{0,2}	{100}	{0,4}	1	3
Д229Г	{1}	{0,4}	{0,2}	{200}	{0,4}	1	3
Д229Д	{1}	{0,4}	{0,2}	{300}	{0,4}	1	3
Д229Е	{1}	{0,4}	{0,2}	{400}	{0,4}	1	3
Д229Ж	{1}	{0,7}	{0,2}	{100}	{0,7}	1	3
Д229И	{1}	{0,7}	{0,2}	{200}	{0,7}	1	3
Д229К	{1}	{0,7}	{0,2}	{300}	{0,7}	1	3
Д229Л	{1}	{0,7}	{0,2}	{400}	{0,7}	1	3
Д242	{1,2}	{10}	{3}	{100}	{10}	_	4
Д242А	{1}	{10}	{3}	{100}	{10}	_	4
Д242Б	{1,5}	{5}	{3}	{100}	{5}	_	4
Д243	{1,2}	{10}	{3}	{200}	{10}	_	4
Д243А	{1}	{10}	{3}	{200}	{10}	_	4
Д243Б	{1,5}	{5}	{3}	{200}	{5}	_	4
Д245	{1,2}	{10}	{3}	{300}	{10}	_	4
Д245А	{1}	{10}	{3}	{300}	{10}	_	4
Д245Б	{1,5}	{5}	{3}	{300}	{5}	_	4
Д246	{1,2}	{10}	{3}	{400}	{10}	_	4
Д246А	{1}	{10}	{3}	{400}	{10}	_	4
Д246Б	{1,5}	{5}	{3}	{400}	{5}	_	4
Д247	{1,2}	{10}	{3}	{500}	{10}	_	4
Д247Б	{1,5}	{5}	{3}	{500}	{5}	_	4
Д248Б	{1,5}	{5}	{3}	{600}	{5}	_	4
КД202А	{0,9}	{5}	{0,8}	35, {50}	{5}	1,2	2
КД202Б	{0,9}	{3,5}	{0,8}	35, {50}	{3,5}	1,2	2
КД202В	{0,9}	{5}	{0,8}	70, {100}	{5}	1,2	2
КД202Г	{0,9}	{3,5}	{0,8}	70, {100}	{3,5}	1,2	2
КД202Д	{0,9}	{5}	{0,8}	140, {200}	{5}	1,2	2
КД202Е	{0,9}	{3,5}	{0,8}	140, {200}	{3,5}	1,2	2
КД202Ж	{0,9}	{5}	{0,8}	210, {300}	{5}	1,2	2
КД202И	{0,9}	{3,5}	{0,8}	210, {300}	{3,5}	1,2	2

	Uпр. при Iпр.;		Logn (Logn on)	Предельные режимы			
Tyyr wysona	{Uпр.ср} п	ри {Іпр.ср}	Іобр. {Іобр.ср}	Uобр. макс,	Івыпр.ср.макс;	f макс,	Рису-
Тип диода	В	A	при Џобр.макс,	{ Uобр.и.макс },	{Іпр.ср.макс};	кГц	нок
	Б	A	мА	В	[Іпр.макс], А		
КД202К	{0,9}	{5}	{0,8}	280, {400}	{5}	1,2	2
КД202Л	{0,9}	{3,5}	{0,8}	280, {400}	{3,5}	1,2	2
КД202М	{0,9}	{5}	{0,8}	350, {500}	{5}	1,2	2
КД202Н	{0,9}	{3,5}	{0,8}	350, {500}	{3,5}	1,2	2
КД202Р	{0,9}	{5}	{0,8}	420, {600}	{5}	1,2	2
КД202С	{0,9}	{3,5}	{0,8}	420, {600}	{3,5}	1,2	2
КД203А	{1}	{10}	{1,5}	420, {600}	{10}	1	4
КД203Б	{1}	{10}	{1,5}	560, {800}	{10}	1	4
КД203В	{1}	{10}	{1,5}	560, {800}	{10}	1	4
КД203Г	{1}	{10}	{1,5}	700, {1000}	{10}	1	4
КД203Д	{1}	{10}	{1,5}	700, {1000}	{10}	1	4
КД204А	1,4	0,6	0,15	400, {400}	{0,3}	50	1
КД204Б	1,4	0,6	0,1	200, {200}	{0,35}	50	1
КД204В	1,4	0,6	0,05	50, {50}	{0,6}	50	1
КД206А	{1,2}	{10}	{0,7}	{400}	10	1,0	1
КД206Б	{1,2}	{10}	{0,7}	{500}	10	1,0	1
КД206В	{1,2}	{10}	{0,7}	{600}	10	1,0	1

Рисунки к таблице 3.1.2.

Таблица 3.1.3. Диоды [14], [28], [29], [30].

Тип диода	Іпр.макс, {Іпр.ср.макс}, А	Іпр.и.макс, А	Uобр.и.макс, B	Uобр.макс, B	Uпр, B	fмакс, {f}, кГц
2Д106А	0,3	_	100	100	1,0	50, {30}
2Д212А	1	50	200	200	1,0	100
2Д212Б	1	50	100	100	1,0	100
2Д411А	1	12	800	500	1,0	30
2Д411Б	1	12	800	500	1,5	30
2Д907А-1	0,05	0,7	60	40	1,0	_
2Д907Б-1	0,05	0,7	60	40	1,0	_
2Д907В-1	0,05	0,7	60	40	1,0	_
2Д907Г-1	0,05	0,7	60	40	1,0	_
2Д2990А	{20}	_	600	600	1,27	200
2Д2990Б	{20}	_	400	400	1,27	200
2Д2990В	{20}	_	200	200	1,27	200
2Д2992А	{30}	_	250	200	0,9	100
2Д2992Б	{30}	_	200	100	0,9	100
2Д2992В	{30}	_	100	50	0,9	100

Тип диода	Іпр.макс, {Іпр.ср.макс}, А	Іпр.и.макс, А	Uобр.и.макс, В	Uобр.макс , В	Uпр, B	fмакс, {f}, кГц
2Д2993А	{20}	_	250	200	0,88	_
2Д2993Б	{20}	_	200	100	0,88	_
2Д2995А	{20}	375	50	_	0,94	200
2Д2995Б	{20}	375	70	_	0,94	200
2Д2995В	{20}	375	100	_	0,94	200
2Д2995Г	{20}	375	150	_	0,94	200
2Д2995Д	{20}	375	200	_	0,94	200
2Д2995Е	{20}	375	100	_	0,94	200
2Д2995Ж	{20}	375	150	_	0,94	200
2Д2995И	{20}	375	200	_	0,94	200
2Д2997А	{30}	_	250	200	0,85	100
2Д2997Б	{30}	_	200	100	0,85	100
2Д2997В	{30}	_	100	50	0,85	100
2Д2998А	{20}	_	15	_	0,52	200
2Д2998Б	{30}	_	25	_	0,6	200
2Д2998В	{30}	_	35	_	0,6	200
Д18	0,016	0,05	_	20	1,0	_
Д219А	0,05	0,5	_	70	1,0	_
Д220	0,05	0,5	_	50	1,5	_
Д220А	0,05	0,5	_	50	1,5	_
Д220Б	0,05	0,5	_	100	1,5	_
Д220С	0,05	0,5	_	_	0,63	_
Д223С	0,05	0,5	_	_	0,64	_
Д311	0,04	0,5	30	30	0,4	_
Д311А	0,08	0,6	30	30	0,4	_
Д311Б	0,02	0,5	30	30	0,5	_
Д312	0,05	0,5	100	100	1,5	_
КД209А	{0,7}	15	400	400	1,0	{1}
КД209Б	{0,5}	15	600	600	1,0	{1}
КД209В	{0,3}	15	800	800	1,0	{1}
КД212А	1	50	200	200	1,0	100
КД212Б	1	50	200	200	1,2	100
КД212В	1	50	100	100	1,0	100
КД212Г	1	50	100	100	1,2	100

Тип диода	Іпр.макс, {Іпр.ср.макс}, А	Іпр.и.макс, А	Uобр.и.макс, B	Uобр.макс , В	Uпр, B	fмакс, {f}, кГц
КД213А	10	100	200	200	1,0	100
КД213Б	10	100	200	200	1,2	100
КД213В	10	100	200	200	1,0	100
КД213Г	10	100	100	100	1,2	100
КД221А	{0,7}	1	100	_	_	{1}
КД221Б	{0,5}	1	200	_	_	{1}
КД221В	{0,3}	1	400	_	_	{1}
КД411А	1	11	700	_	1,4	30
КД411Б	1	11	600	_	1,4	30
КД411В	1	11	500	_	1,4	30
КД411Г	1	11	400	_	2	30
КД411АМ	1	8	700	_	1,4	30
КД411БМ	1	8	750	_	1,4	30
КД411ВМ	1	12	600	_	1,4	30
КД411ГМ	1	12	500	_	2,0	30
КД520А	{0,02}	0,05	20	15	1,0	_
КД2991А	{60}	800	450	_	0,68	200
КД2994А	{20}	_	100	100	1,01	200
КД2995Б	{20}	_	70	_	1,1	200
КД2995В	{20}	_	100	_	1,1	200
КД2995Г	{20}	_	50	_	1,1	200
КД2995Д	{20}	_	70	_	1,1	200
КД2995Е	{20}	_	100	_	1,1	200
КД2996А	{50}	_	50	_	0,86	200
КД2996Б	{50}	_	70	_	0,86	200
КД2996В	{50}	_	100	_	0,86	200
КД2997В	30, {30}	_	100	50	1,0	100
КД2998А	{30}	_	15	_	0,52	200
КД2998Б	{30}	_	20	_	0,52	200
КД2998В	{30}	_	25	_	0,7	200
КД2998Г	{30}	_	35	_	0,7	200
КД2998Д	{30}		30	_	0,61	200
КД2999А	20, {20}	_	250	200	0,85	100
КД2999Б	20, {20}	_	200	100	0,85	100

Москатов Е. А. Справочник по полупроводниковым приборам. http://moskatov.narod.ru

Тип диода	Іпр.макс, {Іпр.ср.макс}, А	Іпр.и.макс, А	U обр.и.макс, В	Uобр.макс , В	Uпр, B	fмакс, {f}, кГц
КД2999В	20, {20}	_	100	50	0,85	100
КЦ106А	0,01	0,02	4000	_	35	50, {20}
КЦ106Б	0,01	0,02	6000	_	35	50, {20}
КЦ106В	0,01	0,02	8000	_	35	50, {20}
КЦ106Г	0,01	0,02	10000	_	35	{20}
КЦ106Д	0,01	0,02	2000	_	35	{20}
КЦ109А	0,3	_	6000	_	7,0	{15,6}

Диоды КД209 маркируются цветными точками и полосами: КД209А — точка отсутствует, полоса красного цвета; КД209Б — точка зелёного цвета, полоса красного цвета; КД209В — точка красного цвета, полоса красного цвета.

Таблица 3.1.4. Высоковольтные выпрямительные селеновые столбы [30, стр. 642].

Тип прибора	Uобр.макс, кВ	Івыпр.ср.макс*, мА	Длина столба L, мм, не более
3ГЕ130АФ	3,0	0,06	-
3ГЕ220АФ	5,0	0,06	135
5ГЕ40АФ	1,0	1,2	100
5ГЕ60АФ	1,5	1,2	106
5ГЕ80АФ	2,0	1,2	112
5ГЕ100АФ	2,5	1,2	120
5ГЕ140АФ	3,5	1,2	130
5ГЕ200АФ	5,0	1,2	150
5ГЕ600АФ	15,0	1,2	180

^{*} Максимально допустимое значение выпрямленного тока при использовании столба в однополупериодном выпрямителе с активной нагрузкой.

Столбы, обозначение которых начинается с цифры 3, имеют диаметр D Ø 4 мм, а с цифры 5-Ø 6 мм (5ГЕ600АФ имеет диаметр 9 мм). Габаритные размеры столбов показаны ниже.

3.2 Диодные сборки

Таблица 3.2.1. Диодные сборки (приборы не установлены на радиаторы).

Тип прибора	Іпр.ср.макс, А	U обр.и.макс, В	Uпр при Іпр.макс, B	fмакс, кГц
КЦ205А	0,5	500	1	5
КЦ205Б	0,5	400	1	5
КЦ205В	0,5	300	1	5
КЦ205Г	0,5	200	1	5
КЦ205Д	0,5	100	1	5
КЦ205Е	0,3	500	1	5
КЦ205Ж	0,5	600	1	5
КЦ205И	0,3	700	1	5
КЦ205К	0,7	100	1	5
КЦ205Л	0,7	200	1	5
КЦ402А	1	600	4	5
КЦ402Б	1	500	4	5
КЦ402В	1	400	4	5
КЦ402Г	1	300	4	5
КЦ402Д	1	200	4	5
КЦ402Е	1	100	4	5
КЦ402Ж	0,6	600	4	5
КЦ402И	0,6	500	4	5
КЦ403А	1	600	4	5
КЦ403Б	1	500	4	5
КЦ403В	1	400	4	5
КЦ403Г	1	300	4	5
КЦ403Д	1	200	4	5
КЦ403Е	1	100	4	5
КЦ403Ж	0,6	600	4	5
КЦ403И	0,6	500	4	5
КЦ404А	1	600	4	5
КЦ404Б	1	500	4	5
КЦ404В	1	400	4	5
КЦ404Г	1	300	4	5
КЦ404Д	1	200	4	5

Тип прибора	Іпр.ср.макс, А	U обр.и.макс, В	Uпр при Іпр.макс, B	fмакс, кГц
КЦ404Е	1	100	4	5
КЦ404Ж	0,6	600	4	5
КЦ404И	0,6	500	4	5
КЦ405А	1	600	4	5
КЦ405Б	1	500	4	5
КЦ405В	1	400	4	5
КЦ405Г	1	300	4	5
КЦ405Д	1	200	4	5
КЦ405Е	1	100	4	5
КЦ405Ж	0,6	600	4	5
КЦ405И	0,6	500	4	5
КЦ407А	0,5	300	2,5	20
КЦ410А	3	50	1,2	_
КЦ410Б	3	100	1,2	_
КЦ410В	3	200	1,2	_
КД906А	0,1	75	1	500
КД906Б	0,1	50	1	500
КД906В	0,1	30	1	500
КД906Г	0,1	75	1	500
КД906Д	0,1	50	1	500
КД906Е	0,1	30	1	500

Приборы КД205А – КД205Л – диоды кремниевые диффузионные. В пластмассовом корпусе собираются по два электрически не соединённых диода. Масса прибора не более 6 г.

Расположение выводов диодных сборок типов КЦ402, КЦ403, КЦ404, КЦ405 указано на корпусах сборок.

КЦ405А

Расположение выводов диодной сборки типа КЦ407А указано на следующем рисунке 1.

Диодные сборки КД906 состоят из 4 кремниевых диодов. Диоды сборок КД906А, КД906Б, КД906В соединены по схеме моста (смотрите ниже приведённый рисунок 2).

КЦ410А – КЦ410В – блоки из кремниевых диффузионных диодов [25, стр. 161]. Выпускаются в пластмассовом корпусе с гибкими выводами. Тип блока и схема соединения электродов с выводами приводятся на корпусе. Диоды в сборке собраны по однофазной мостовой схеме. Масса блока не более 20 г.

3.3 Светодиоды

Таблица 3.3.1. Светодиоды.

Свето-	λ, мкм	t окружающей среды, °С	τ фронта светово- го импульса, нс	т спада светово- го импульса, нс	Примечание	Рису- нок
АЛ103А	0,95	25	200 – 300	500	Инфракрасные	1
АЛ103Б	0,95	25	200 – 300	500	Инфракрасные	1
АЛ106А	0,920,935	25±10	10	20	Инфракрасные	2
АЛ106Б	0,920,935	25±10	10	20	Инфракрасные	2
АЛ106В	0,920,935	25±10	10	20	Инфракрасные	2
АЛ107А	0,91,2	-40+85	20	_	Инфракрасные	3
АЛ107Б	0,91,2	-40+85	20	_	Инфракрасные	3
АЛ109А	0,920,96	25	400 – 2400	1200	Бескорпусные	4

Рисунки к таблице 3.3.1.

Таблица 3.3.2. Светодиоды красного цвета свечения $[6, \mathrm{стp.}\ 202-203], [28, \mathrm{стp.}\ 114-117], [41].$

	Значения	н пара	аметро	ов при Т	C = 25 °C	Предель	ные значе	ния при	T =	= 25 °C
T	<i>I</i> v, мккд	I	Live	I	1,,,,,,,	I-m	I			U обр.
Тип прибора	(Lv, кд/м²)	Іпр,	_	Іпр _{Ипр} ,	λмакс,	Іпр.макс,	Іпр.и.	tи, мс	Θ	макс,
	[<i>I</i> e, мВт/ср]	мА	В	мА	MKM	мА	макс, мА			В
1П5А-К	900	10	2	10	0,650,67	12	_			2
1П5Б-К	2000	10	2	10	0,650,67	12	_			2
1П6А-К	900	10	2	10	0,650,675	12	_	_	_	2
1П6Б-К	2000	10	2	10	0,650,675	12	_	_	_	2
1П6А-П	700	10	2	10	0,650,675	12	_	_	_	2
1П6А-Л	4000	10	2	10	0,66	12	_	_	_	2
1П7А-К	900	10	2	10	0,650,675	12	_	_	_	2
1П7Б-К	2000	10	2	10	0,650,675	12	_	_	_	2
1П7А-П	700	10	2	10	0,650,675	12	_	_	_	2
1П7А-Л	4000	10	2	10	0,66	12	_	_	_	2
1П8А-К	600	10	2	10	0,650,675	12	_	_	_	2
1П8Б-К	1000	10	2	10	0,650,675	12	_	_	_	2
1П8А-П	700	10	2	10	0,650,675	12	_	_	_	2
1П8А-Л	1500	10	2	10	0,66	12	_	_	_	2
1П9А-К	600	10	2	10	0,650,675	12	_	_	_	2
1П9Б-К	1000	10	2	10	0,650,675	12	_	_	_	2
1П9А-П	700	10	2	10	0,650,675	12	_	_	_	2
1П9А-Л	1500	10	2	10	0,66	12	_	_	_	2
1П10А-К	900	10	2	10	0,650,675	12	_	_	_	2
1П10А-П	700	10	2	10	0,650,675	12	_	_	_	2
1П10А-Л	10000	10	2	10	0,66	12	_	_	_	2
1П10Б-К	2000	10	2	10	0,650,675	12	_	_	_	2
1П12А-П	700	10	2	10	0,650,68	12	_	_	_	2
1П16А-П	20000	10	2	10	0,66	12	_	_	_	2
1П18А-К	900	10	2	10	0,650,675	12	_	_	_	2
1П18А-Л	10000	10	2	10	0,66	12	_	_	_	2
1П18А-П	700	10	2	10	0,650,675	12	_	_	_	2
1П18Б-К	2000	10	2	10	0,650,675	12	_	_	_	2
1П19А-К	900	10	2	10	0,650,675	12	_	_	_	2
1П19А-Л	10000	10	2	10	0,650,675	12	_	_	_	2
1П19А-П	700	10	2	10	0,650,675	12	_	_	_	2
1П19Б-К	2000	10	2	10	0,650,675	12	_	_	_	2
3Л102А	20	5	3	5	0,69	20	60	2	10	2
3Л102Б	100	10	3	10	0,69	20	60	2	10	2

	Значения	я пара	аметро	ов при Т	C = 25 °C	Предель	ные значе	ния при	T =	= 25 °C
Тип прибора	<i>I</i> v, мккд	Іпр,	Uпр,	Іприпр,	λмакс,	Іпр.макс,	Іпр.и.	422.340	0	Шобр.
	(Lv, кд/м ²)	мА	В	мА	МКМ	мА	макс, мА	tи, мс	Θ	макс,
	[<i>I</i> e, мВт/ср]									В
3Л102Г	60	10	3	10	0,69	20	60	2	10	2
3Л102Д	200	20	3	20	0,69	20	60	2	10	2
3Л365А	[0,1]	20	2	20	0,675	30	100	20	10	_
АЛ102АМ	130	5	2,8	5	0,69	20	60	2	10	2
АЛ102БМ	200	10	2,8	10	0,69	20	60	2	10	2
АЛ102ГМ	400	10	2,8	10	0,69	20	60	2	10	2
АЛ112А	(1000)	10	2	10	0,68	12	_	_	_	_
АЛ112Б	(600)	10	2	10	0,68	12	_	_	_	_
АЛ112В	(250)	10	2	10	0,68	12	_	_	_	_
АЛ112Г	(350)	10	2	10	0,68	12	_	_	_	_
АЛ112Д	(150)	10	2	10	0,68	12	_	_	_	_
АЛ112Е	(1000)	10	2	10	0,68	12	_	_	_	_
АЛ112Ж	(600)	10	2	10	0,68	12	_		_	ı
АЛ112И	(250)	10	2	10	0,68	12	_	_	_	-
АЛ112К	(1000)	10	2	10	0,68	12	_	_	_	-
АЛ112Л	(600)	10	2	10	0,68	12	_	_	_	-
АЛ112М	(250)	10	2	10	0,68	12	_	_	_	_
АЛ301А-1	25	5	2,8	5	0,7	11	_	_	_	_
АЛ301Б-1	100	10	2,8	10	0,7	11	_	_	_	_
АЛ307АМ	200	10	2	10	0,665	22	100	2	10	2
АЛ307БМ	900	10	2	10	0,665	22	100	2	10	2
АЛ307КМ	2000	10	2	10	0,665	22	100	2	10	2
АЛ307ЛМ	6000	10	2	10	0,665	22	100	2	10	2
АЛ316А	800	10	2	10	0,67	20	_	_	_	_
АЛ316Б	250	10	2	10	0,67	20	_	-	_	_
АЛ310А	600	10	2	10	0,67	12	_	_	_	4
АЛ310Б	250	10	2	10	0,67	12	_	_	_	4
АЛ336А	6000	10	2	10	0,6550,68	20	100	2	10	2
АЛ336Б	20000	10	2	10	0,6550,68	20	100	2	10	2
АЛ336К	40000	10	2	10	0,6550,68	20	100	2	10	2
АЛЗ41А	150	10	2,8	10	0,690,71	20	60	2	10	2
АЛ341Б	500	10	2,8	10	0,690,71	20	60	2	10	2
АЛ341И	300	10	2	10	0,690,71	30	100	2	10	2
АЛ341К	700	10	2	10	0,690,71	30	100	2	10	2
ИПД04А-1К	15000	10	2	10	0,7	30	_	_	_	2
ИПД04Б-1К	10000	10	2	10	0,7	30	_	_	_	2

	Значения	я пара	аметро	ов при Т	C = 25 °C	Предель	ные значе	ния при	T =	= 25 °C
T	<i>I</i> v, мккд	т	TT	T	2	т	T			U обр.
Тип прибора	(Lv, кд/м²)	Іпр,		Іпр _{Ипр} ,	λмакс,	Іпр.макс,	Іпр.и.	tи, мс	Θ	макс,
	[<i>I</i> е, мВт/ср]	мА	В	мА	MKM	мА	макс, мА			В
ИПД13А-К	14000	10	17,5	10	0,660,675	25	55	2,5	5	40
ИПД14А-К	1000	5	2	5	0,67	20	100		10	3
ИПД14Б-К	2500	5	2	5	0,67	20	100		10	3
ИПД25А-К	11500	10	20	10	0,660,675	25	55	2,5	5	40
ИПМ01Б-1К	1000	20	2	20	0,7	30	60	2	10	5
КИПД02А-1К	400	5	1,8	4	0,7	20	100	2	10	3
КИПД02Б-1К	1000	5	1,8	4	0,7	20	100	2	10	3
КИПД05А-1К	200	5	1,8	5	0,7	6	20	2	10	2
КИПД06А-1К	4000	25	5,5	25	0,7	25	75	2	10	10
КИПД06Б-1К	6000	25	5,5	25	0,7	25	75	2	10	10
КИПД07А-К	400	5	1,8	5	0,67	20	100	1	10	3
КИПД07Б-К	150	5	1,8	5	0,67	20	100	1	10	3
КИПД14А-К	1000	5	2	5	0,67	20	100	1	10	3
КИПД14А1-К	1000	2	2	2	0,67	20	100	1	10	3
КИПД14Б-К	2500	5	2	5	0,67	20	100		10	3
КИПД17А-К	2000	10	2,5	10	0,66	20	_	_	_	3
КИПД17Б-К	1000	10	2,5	10	0,66	20	_	_	_	3
КИПД17В-К	500	10	2,5	10	0,66	20	_	_	_	3
КИПД21А-К	1000	10	2	10	0,650,67	30	100	2	10	2,2
КИПД21Б-К	4000	10	2	10	0,650,67	30	100	2	10	2,2
КИПД21В-К	8000	20	2	20	0,650,67	30	100	2	10	2,2
КИПД23А-К	200	2	2	2	_	20	100	1	10	_
КИПД23А1-К	700	2	2	2	_	20	100	1	10	_
КИПД23А2-К	400	2	2	2	_	20	100	1	10	_
КИПД24А-К	1000	5	2,5	5	_	20	100	1	10	3
КИПД24Б-К	2500	5	2,5	5	_	20	100	1	10	3
КИПД24В-К	4000	5	2,5	5	_	20	100	1	10	3
КИПДЗ1А-К	500	10	2	10	0,650,67	20	100	2	10	2
КИПД31Б-К	1000	10	2	10	0,650,67	20	100	2	10	2
КИПДЗ1В-К	2000	10	2	10	0,650,67	20	100	2	10	2
КИПДЗ1Г-К	4000	10	2	10	0,650,67	20	100	2	10	2
КИПД35А-К	1000	20	2	20	0,650,69	30	100	1	10	2,2
КИПД35Б-К	3000	20	2	20	0,650,69	30	100	1	10	2,2
КИПД35В-К	5000	20	2	20	0,650,69	30	100	1	10	2,2
КИПДЗ6А1-К	10000	20	2	20	_	30	100	1	10	2
КИПДЗ6Б1-К	15000	20	2	20	_	30	100	1	10	2

	Значения	н пара	аметро	ов при Т	C = 25 °C	Предель	ные значе	ния при	T =	= 25 °C
Тип прибора	<i>I</i> v, мккд	Іпр,	Uпр,	Іпр _{Ипр} ,	λмакс,	Іпр.макс,	Іпр.и.			U обр.
тип приоора	(Lv, кд/м²)	_	B		·	мА	-	tи, мс	Θ	макс,
	[<i>I</i> e, мВт/ср]	мА	Б	мА	MKM	MA	макс, мА			В
КИПМ01А-1К	400	10	2	10	0,7	30	60	2	10	5
КИПМ01Б-1К	1000	10	2	10	0,7	30	60	2	10	5
КИПМ02А-1К	400	10	2	10	0,7	30	60	2	10	5
КИПМ02Б-1К	1000	10	2	10	0,7	30	70	2	10	5
КИПМ03А-1К	400	10	2	10	0,7	30	70	2	10	5
КИПМ03Б-1К	1000	10	2	10	0,7	30	70	2	10	5
КИПМ04А-1К	400	10	2	10	0,7	30	70	2	10	5
КИПМ04Б-1К	1000	10	2	10	0,7	30	70	2	10	5
КИПМ05А-1К	800	10	1,9	10	_	30	60	1	10	4
КИПМ05А1-1К	500	10	1,9	10	_	30	60	1	10	4
КИПМ05Б-1К	1200	10	1,9	10	_	30	60	1	10	4
КИПМ05Б1-1К	800	10	1,9	10	_	30	60	1	10	4
КИПМ06А-1К	800	10	1,9	10	_	30	60	1	10	4
КИПМ06А1-1К	500	10	1,9	10	_	30	60	1	10	4
КИПМ06Б-1К	1200	10	1,9	10	_	30	60	1	10	4
КИПМ06Б1-1К	800	10	1,9	10	_	30	60	1	10	4
КИПМ07А-1К	800	10	1,9	10	_	30	60	1	10	4
КИПМ07А1-1К	500	10	1,9	10	_	30	60	1	10	4
КИПМ07Б-1К	1200	10	1,9	10	_	30	60	1	10	4
КИПМ07Б1-1К	800	10	1,9	10	_	30	60	1	10	4
КИПМ10А-1К	3000	10	2	10	_	30	_	_	_	_
КИПМ10Б-1К	2000	10	2	10	_	30	_	_	_	_
КИПМ10В-1К	1000	10	2	10	_	30	_	_	_	_
КИПМ10Г-1К	500	10	2	10	_	30	_	_	_	_
КИПМ11А-1К	3000	10	2	10	_	30	_	_	_	_
КИПМ11Б-1К	2000	10	2	10	_	30	_	_	_	_
КИПМ11В-1К	1000	10	2	10	_	30	_	_	_	_
КИПМ11Г-1К	500	10	2	10	_	30	_	_	_	_
КИПМ12А-1К	3000	10	2	10	_	30	_	_	_	_
КИПМ12Б-1К	2000	10	2	10	_	30	_	_	_	_
КИПМ12В-1К	1000	10	2	10	_	30	_	_	_	_
КИПМ12Г-1К	500	10	2	10	_	30	_	_	_	_
КИПМ13А-1К	3000	10	2	10	-	30	_	-	_	_
КИПМ13Б-1К	2000	10	2	10	_	30	_	_	_	_
КИПМ13В-1К	1000	10	2	10	-	30	_	_	_	_
КИПМ13Г-1К	500	10	2	10	-	30	_	_	_	_

Москатов Е. А. Справочник по полупроводниковым приборам. http://moskatov.narod.ru

	Значения	пара	аметро	в при Т	C = 25 °C	Пределы	ные значе	ния при	T =	= 25 °C
Тин наибова	<i>I</i> v, мккд	Inn	Ппр	Imp	Javorco	Inn Marca	Imp u			U обр.
Тип прибора	(Lv, кд/м²)	Iпр, мА	Uпр, В	Іпр _{Ипр} ,	λмакс,	Іпр.макс, мА	Іпр.и.	tи, мс	Θ	макс,
	[<i>I</i> е, мВт/ср]	MA	Б	MA	MKM	MA	макс, мА			В
КИПМ14А-1К	3000	10	2	10	_	30	_	_	-	_
КИПМ14Б-1К	2000	10	2	10	_	30	_	_	_	_
КИПМ14В-1К	1000	10	2	10	_	30	_	_	_	_
КИПМ14Г-1К	500	10	2	10	_	30	_	_	_	_
КИПМ15А-1К	3000	10	2	10	_	30	_	_	_	_
КИПМ15Б-1К	2000	10	2	10	_	30	_	_	_	_
КИПМ15В-1К	1000	10	2	10	_	30	_	_	_	_
КИПМ15Г-1К	500	10	2	10	_	30	_	_	_	_

Максимальная температура для светодиодов, приведённых в таблице 3.3.2-70 °C. Исключения: КИПД17А-К, КИПД17Б-К, КИПД17В-К — 85 °C и КИПД06-1К, КИПД06Б-1К — 55 °C.

Таблица 3.3.3. Светодиоды жёлтого цвета свечения [6, стр. 203 - 204], [28, стр. 117 - 118], [41].

	Значения	н пара	аметро	ов при Т	C = 25 °C	Предель	ные значе	ния при	T =	= 25 °C
Т б	L	I	I I	I	1	I	T			U обр.
Тип прибора	<i>I</i> v, мккд	Іпр,	Uпр,	$I\pi p_{U\pi p}$,	λмакс,	Іпр.макс,	Іпр.и.	tи, мс	Θ	макс,
	(Lv, кд/м ²)	мА	В	мА	MKM	мА	макс, мА			В
1П5А-Ж	400	20	2,8	20	0,580,6	22	_	_	_	2
1П5Б-Ж	1000	20	2,8	20	0,580,6	22	_	_	_	2
1П6А-Ж	400	20	2,8	20	0,580,6	22	_	_	_	2
1П6Б-Ж	1000	20	2,8	20	0,580,6	22	_	_	_	2
1П7А-Ж	400	20	2,8	20	0,580,6	22	_	_	_	2
1П7Б-Ж	1000	20	2,8	20	0,580,6	22	_	_	_	2
1П8А-Ж	400	20	2,8	20	0,580,6	22	_	_	_	2
1П8Б-Ж	1000	20	2,8	20	0,580,6	22	_	_	_	2
1П9А-Ж	400	20	2,8	20	0,580,6	22	_	_	_	2
1П9Б-Ж	1000	20	2,8	20	0,580,6	22	_	_	_	2
1П10А-Ж	400	20	2,8	20	0,580,6	22	_	_	_	2
1П10Б-Ж	1000	20	2,8	20	0,580,6	22	_	_	_	2
1П13А-Ж	400	20	2,8	20	0,580,6	22	_	_	_	2
1П13Б-Ж	1000	20	2,8	20	0,580,6	22	_	_	_	2
1П13В-Ж	2000	20	2,8	20	0,580,6	22	_	_	_	2
1П18А-Ж	400	20	2,8	20	0,580,6	22	_	_	_	2
1П18Б-Ж	1000	20	2,8	20	0,580,6	22	_	_	_	2
1П19А-Ж	400	20	2,8	20	0,580,6	22	_	_	_	2
1П19Б-Ж	1000	20	2,8	20	0,580,6	22	_	_	_	2
АЛ307ДМ	400	10	2,5	10	0,56; 0,7	22	60	2	10	2
АЛ307ЕМ	1500	10	2,5	10	0,56; 0,7	22	60	2	10	2
АЛ307ЖМ	6000	10	2,5	10	0,56; 0,7	22	60	2	10	2
АЛ310Д	600	10	3,5	10	0,67; 0,56	12	_	_	_	4
АЛЗ10Е	250	10	3,5	10	0,67; 0,56	12	_	_	_	4
АЛ336Д	4000	10	2,8	10	0,6750,702	20	60	2	10	2
АЛ336Е	10000	10	2,8	10	0,6750,702	20	60	2	10	2
АЛ336Ж	15000	10	2,8	10	0,6750,702	20	60	2	10	2
АЛ341Д	150	10	2,8	10	0,680,7;	22	22	2	10	2
, ,			,-		0,550,56				_	
АЛ341Е	500	10	2,8	10	0,680,7; 0,550,56	22	22	2	10	2
ипд13Б-ж	8000	10	17,5	10	0,5820,595	25	55	2,5	5	40
ипд25Б-ж	8000	10	20	10	0,5820,595	25	55	2,5	5	40
кипд02д-1ж	250	5	2,5	4	0,63	20	60	2	10	3

	Значения	я пара	аметро	ов при Т	C = 25 °C	Предель	ные значе	ния при	T =	= 25 °C
Тип прибора	Билически	Іпр,	Uпр,	Imp	λмакс,	Іпр.макс,	Іпр.и.			Uобр .
тип приоора	<i>I</i> v, мккд	_	1	Іпр _{Ипр} ,			1	tи, мс	Θ	макс,
	(Lv, кд/м ²)	мА	В	мА	МКМ	мА	макс, мА			В
КИПД02Е-1Ж	650	5	2,5	4	0,63	20	60	2	10	3
КИПД05В-1Ж	100	5	2,5	5	0,63	6	20	2	10	2
КИПД14Е-Ж	1000	10	2	10	_	20	60	1	10	3
КИПД14И-Ж	1500	10	2	10	_	20	60	1	10	3
КИПД17А-Ж	1500	10	3	10	0,58	18	_	_	_	3
КИПД17Б-Ж	750	10	3	10	0,58	18	_	_	_	3
КИПД17В-Ж	400	10	3	10	0,58	18	_	_	_	3
КИПД24А-Ж	1000	10	3	10	_	18	60	1	10	3
КИПД24Б-Ж	2500	10	3	10	_	18	60	1	10	3
КИПД24В-Ж	4000	10	3	10	_	18	60	1	10	3
КИПД35А-Ж	1000	20	2,8	20	0,5650,625	30	100	1	10	2,2
КИПД35Б-Ж	3000	20	2,8	20	0,5650,625	30	100	1	10	2,2
кипдз5в-ж	5000	20	2,8	20	0,5650,625	30	100	1	10	2,2
КИПДЗ6Д1-Ж	7000	30	3	30	_	30	100	1	10	2
КИПДЗ6Е1-Ж	10000	30	3	30	_	30	100	1	10	2
КИПМ05Д-1Ж	800	20	2,5	20	_	30	100	1	10	4
КИПМ05Д1-1Ж	500	20	2,5	20	_	30	60	1	10	4
КИПМ05Е-1Ж	1200	20	2,5	20	_	30	60	1	10	4
КИПМ05Е1-1Ж	800	20	2,5	20	_	30	60	1	10	4
КИПМ06Д-1Ж	800	20	2,5	20	_	30	60	1	10	4
КИПМ06Д1-1Ж	500	20	2,5	20	_	30	60	1	10	4
КИПМ06Е-1Ж	1200	20	2,5	20	_	30	60	1	10	4
КИПМ06Е1-1Ж	800	20	2,5	20	_	30	60	1	10	4
КИПМ07Д-1Ж	800	20	2,5	20	_	30	60	1	10	4
КИПМ07Д1-1Ж	500	20	2,5	20	_	30	60	1	10	4
КИПМ07Е-1Ж	1200	20	2,5	20	_	30	60	1	10	4
КИПМ07Е1-1Ж	800	20	2,5	20	_	30	60	1	10	4
КИПМ10И-1Ж	400	20	2,8	20	_	30	_	_	_	_
КИПМ10К-1Ж	750	20	2,8	20	_	30	_	_	_	_
КИПМ11И-1Ж	400	20	2,8	20	_	30	_	_	_	_
КИПМ11К-1Ж	750	20	2,8	20	_	30	_	_	_	_
КИПМ12И-1Ж	400	20	2,8	20	_	30	_	_	_	_
КИПМ12К-1Ж	750	20	2,8	20	_	30	_	_	_	_
КИПМ13И-1Ж	400	20	2,8	20	_	30	_	_	_	_
КИПМ13К-1Ж	750	20	2,8	20	_	30	_	_	_	_
КИПМ14И-1Ж	400	20	2,8	20	_	30	_	_	_	_

	Значения	н пара	аметро	ов при Т	C = 25 °C	Пределы	ные значен	ния при	T =	= 25 °C
Тип прибора	<i>I</i> v, мккд	Іпр,	Uпр,	Іпр _{Ипр} ,	λмакс,	Іпр.макс,	Іпр.и.			U обр.
	(Lv, кд/м²)	мА	В	мА	MKM	мА	макс, мА	tи, мс	Θ	макс,
							,			В
КИПМ14К-1Ж	750	20	2,8	20	_	30	_	_	_	_
КИПМ15И-1Ж	400	20	2,8	20	_	30	_	_	-	_
КИПМ15К-1Ж	750	20	2,8	20	_	30	_	_	-	_
КЛ101А	(10)	10	5,5	10	0,64	10	_	_	-	_
КЛ101Б	(15)	20	5,5	20	0,64	20	_	_	_	_
КЛ101В	(20)	40	5,5	40	0,64	40	_	_	_	_

Максимальная температура для светодиодов, приведённых в таблице 3.3.3-70 °C. Исключения: КИПД17А-Ж, КИПД17Б-Ж, КИПД17В-Ж-85 °C.

Таблица 3.3.4. Светодиоды оранжевого цвета свечения [6, стр. 203], [28, стр. 118 – 119].

	Значения	я пара	аметро	в при Т	$C = 25 ^{\circ}C$	Предель	ные значен	ния при	T =	= 25 °C
Тип прибора	<i>I</i> v, мккд	Іпр,	Uпр, В	Іпр _{Ипр} ,	λмакс, мкм	Іпр.макс, мА	Іпр.и. макс, мА	tи, мс	Θ	Иобр. макс,
1П5А О	400	20	2.0	20	0.62 0.65	22				B 2
1П5А-О		20	2,8	20	0,630,65		_	_	-	
1П5Б-О	1000	20	2,8	20	0,630,65	22	_	_	_	2
1П6А-О	400	20	2,8	20	0,630,65	22	_	_	_	2
1П6Б-О	1000	20	2,8	20	0,630,65	22	_	_	_	2
1П7А-О	400	20	2,8	20	0,630,65	22	_	_	_	2
1П7Б-О	1000	20	2,8	20	0,630,65	22	_	_	_	2
1П8А-О	400	20	2,8	20	0,630,65	22	_	_	_	2
1П8Б-О	1000	20	2,8	20	0,630,65	22	_	_	_	2
1П9А-О	400	20	2,8	20	0,630,65	22	_	_	_	2
1П9Б-О	1000	20	2,8	20	0,630,65	22	_	_	_	2
1П10А-О	400	20	2,8	20	0,630,65	22	_	_	_	2
1П10Б-О	1000	20	2,8	20	0,630,65	22	_	_	_	2
1П14А-О	400	20	2,8	20	0,630,65	22	_	_	ı	2
1П14Б-О	1000	20	2,8	20	0,630,65	22	_	_	_	2
1П14В-О	2000	20	2,8	20	0,630,65	22	_	_	-	2
1П18А-О	400	20	2,8	20	0,630,65	22	_	_	-	2
1П18Б-О	1000	20	2,8	20	0,630,65	22	_	_	_	2
1П19А-О	400	20	2,8	20	0,630,65	22	_	_		2
1П19Б-О	1000	20	2,8	20	0,630,65	22	_	-	-	2
КИПД36Ж1-Р	7000	30	3	30	_	30	100	1	10	2
КИПД36И1-Р	15000	30	3	30	_	30	100	1	10	2
КИПМ10Л-1Р	400	20	2,8	20	_	30	_	_	_	_
КИПМ10М-1Р	750	20	2,8	20	_	30	_	_	_	_
КИПМ11Л-1Р	400	20	2,8	20	_	30	_	_	_	_
КИПМ11М-1Р	750	20	2,8	20	_	30	_	_	_	_
КИПМ12Л-1Р	400	20	2,8	20	_	30	_	_	_	_
КИПМ12М-1Р	750	20	2,8	20	_	30	_	_	_	_
КИПМ13Л-1Р	400	20	2,8	20	_	30	_	_	_	_
КИПМ13М-1Р	750	20	2,8	20	_	30	_	_	_	_
КИПМ14Л-1Р	400	20	2,8	20	_	30	_	_	_	_
КИПМ14М-1Р	750	20	2,8	20	_	30	_	_	_	_
КИПМ15Л-1Р	400	20	2,8	20	_	30	_	_	_	_
КИПМ15М-1Р	750	20	2,8	20	_	30	_	_	_	_

Максимальная температура для всех светодиодов в таблице 3.3.4 равна 70 °C.

Таблица 3.3.5. Светодиоды зелёного цвета свечения [6, стр. 204 - 205], [28, стр. 119 - 121], [41].

	Значени	я пара	аметро	ов при Т	C = 25 °C	Предель	ные значе	ния при	T =	= 25 °C
Тип прибора		Іпр,	Uпр,	Іпр _{Ипр} ,	λмакс,	Іпр.макс,	Іпр.и.			U обр.
тип приоора	<i>I</i> v, мккд		_		•		-	tи, мс	Θ	макс,
		мА	В	мА	MKM	мА	макс, мА			В
1П5А-3	400	20	2,8	20	0,550,57	22	_	_	_	2
1П5Б-3	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П5А-И	400	20	2,8	20	0,550,57	22	_	_	_	2
1П5Б-И	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П6А-3	400	20	2,8	20	0,550,57	22	_	_	_	2
1П6А-И	400	20	2,8	20	0,550,57	22	_	_	_	2
1П6Б-3	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П6Б-И	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П7А-3	400	20	2,8	20	0,550,57	22	_	_	_	2
1П7А-И	400	20	2,8	20	0,550,57	22	_	_	_	2
1П7Б-3	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П7Б-И	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П8А-3	400	20	2,8	20	0,550,57	22	_	_	_	2
1П8А-И	400	20	2,8	20	0,550,57	22	_	_	_	2
1П8Б-3	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П8Б-И	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П9А-3	400	20	2,8	20	0,550,57	22	_	_	_	2
1П9А-И	400	20	2,8	20	0,550,57	22	_	_	_	2
1П9Б-3	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П9Б-И	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П10А-3	400	20	2,8	20	0,550,57	22	_	_	_	2
1П10А-И	400	20	2,8	20	0,550,57	22	_	_	_	2
1П10Б-3	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П10Б-И	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П15А-И	400	20	2,8	20	0,550,57	22	_	_	_	2
1П15Б-И	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П15В-И	2000	20	2,8	20	0,550,57	22	_	_	_	2
1П18А-3	400	20	2,8	20	0,550,57	22	_	_	-	2
1П18А-И	400	20	2,8	20	0,550,57	22	_	_	_	2
1П18Б-3	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П19А-3	400	20	2,8	20	0,550,57	22	_	_	_	2
1П19А-И	400	20	2,8	20	0,550,57	22	_	_	_	2
1П19Б-3	1000	20	2,8	20	0,550,57	22	_	_	_	2
1П19Б-И	1000	20	2,8	20	0,550,57	22	_	_	-	2

	Значени	я пара	аметро	ов при Т	$C = 25 ^{\circ}\mathrm{C}$	Предель	ные значе	ния при	T =	= 25 °C
Тип прибора		Іпр,	Uпр,	Іпр _{Ипр} ,	λмакс,	Іпр.макс,	Іпр.и.			Шобр .
тип приоора	Iv, мккд		B				1	tи, мс	Θ	макс,
		мА	В	мА	MKM	мА	макс, мА			В
3Л102В	250	20	2,8	20	0,53	22	60	2	10	2
АЛ102ВМ	450	20	2,8	20	0,56	22	60	2	10	2
АЛ102ДМ	600	20	2,8	20	0,56	22	60	2	10	2
АЛ307ВМ	400	20	2,8	20	0,567	22	60	2	10	2
АЛ307ГМ	1500	20	2,8	20	0,567	22	60	2	10	2
АЛ307НМ	6000	20	2,8	20	0,567	22	60	2	10	2
АЛ307ПМ	16000	20	2,8	20	0,567	22	60	2	10	2
АЛ310В	600	10	3,5	10	0,55	12	_	_	-	4
АЛ310Г	250	10	3,5	10	0,55	12		_	_	4
АЛ336В	10000	10	2,8	10	0,5540,572	20	60	2	10	2
АЛ336Г	15000	10	2,8	10	0,5540,572	20	60	2	10	2
АЛ336И	20000	10	2,8	10	0,5540,572	20	60	2	10	2
АЛ336И1	20000	10	2,8	10	0,5540,572	20	60	2	10	2
АЛ336Н	50000	10	2,8	10	0,5540,572	20	60	2	10	2
АЛ341В	150	10	2,8	10	0,550,56	22	60	2	10	2
АЛЗ41Г	500	10	2,8	10	0,550,56	22	60	2	10	2
ИПД01А-1Л	800	10	7	10	0,550,56	12	250	10	16	8
ипд13В-л	11500	10	17,5	10	0,5580,57	25	55	2,5	5	40
ИПД14В-Л	500	10	2,5	10	_	20	60	1	10	3
ИПД14Г-Л	1000	10	2,5	10	_	20	60	1	10	3
ипд14д-л	1500	10	2,5	10	_	20	60	1	10	3
ипд25В-Л	11500	10	20	10	0,5580,57	25	55	2,5	5	40
ипм01д-1л	2500	20	2,8	20	0,56	30	60	2	10	5
КИПД01А-1Л	800	10	7	10	0,550,56	12	250	10	16	8
КИПД01Б-1Л	600	10	7	10	0,550,56	12	250	10	16	8
КИПД02В-1Л	250	5	2,5	4	0,55	20	60	2	10	3
КИПД02Г-1Л	500	5	2,5	4	0,55	20	60	2	10	3
КИПД05Б-1Л	100	5	2,5	5	0,55	6	20	2	10	2
КИПД06В-1Л	3000	25	7,5	25	_	25	50	2	10	10
КИПД06Г-1Л	5000	25	7,5	25	_	25	50	2	10	10
КИПД14В-Л	500	10	2,5	10	_	20	60	1	10	3
КИПД14Г-Л	1000	10	2,5	10	_	20	60	1	10	3
КИПД14Д-Л	1500	10	2,5	10	_	20	60	1	10	3
КИПД17А-Л	1500	10	3	10	0,56	18	_	_	_	3
КИПД17Б-Л	750	10	3	10	0,56	18	_	_	_	3
КИПД17В-Л	400	10	3	10	0,56	18	_	_	_	3

	Значения	я пара	аметро	в при Т	C = 25 °C	Предель	ные значен	ния при	T =	= 25 °C
Тип прибора		Іпр,	Uпр,	Іпр _{Ипр} ,	λмакс,	Іпр.макс,	Іпр.и.			U обр.
тип приоора	Iv, мккд	мА	B	мА	Ź	мА	макс, мА	tи, мс	Θ	макс,
		MA	В	MA	МКМ	MA	Make, MA			В
КИПД24А-Л	1000	10	3	10	_	18	60	1	10	3
КИПД24Б-Л	2500	10	3	10	_	18	60	1	10	3
КИПД24В-Л	4000	10	3	10	_	18	60	1	10	3
КИПД35А-Л	1000	20	2,8	20	0,5350,59	30	100	1	10	2,2
КИПД35Б-Л	3000	20	2,8	20	0,5350,59	30	100	1	10	2,2
КИПД35В-Л	5000	20	2,8	20	0,5350,59	30	100	1	10	2,2
КИПД36В1-Л	7000	20	2,8	20	_	30	100	1	10	2
КИПД36Г1-Л	10000	20	2,8	20	_	30	100	1	10	2
КИПМ01В-1Л	400	20	2,8	20	0,56	30	60	2	10	5
КИПМ01Г-1Л	1000	20	2,8	20	0,56	30	60	2	10	5
КИПМ01Д-1Л	2500	20	2,8	20	0,56	30	60	2	10	5
КИПМ02В-1Л	400	20	2,8	20	0,56	30	70	2	10	5
КИПМ02Г-1Л	1000	20	2,8	20	0,56	30	70	2	10	5
КИПМ02Д-1Л	2500	20	2,8	20	0,56	30	70	2	10	5
КИПМ03В-1Л	400	20	2,8	20	0,56	30	70	2	10	5
КИПМ03Г-1Л	1000	20	2,8	20	0,56	30	70	2	10	5
КИПМ03Д-1Л	2500	20	2,8	20	0,56	30	70	2	10	5
КИПМ04В-1Л	400	20	2,8	20	0,56	30	70	2	10	5
КИПМ04Г-1Л	1000	20	2,8	20	0,56	30	70	2	10	5
КИПМ04Д-1Л	2500	20	2,8	20	0,56	30	70	2	10	5
КИПМ05В-1Л	800	20	2,8	20	-	30	60	1	10	4
КИПМ05В1-1Л	500	20	2,8	20	_	30	60	1	10	4
КИПМ05Г-1Л	1200	20	2,8	20	_	30	60	1	10	4
КИПМ05Г1-1Л	800	20	2,8	20	-	30	60	1	10	4
КИПМ06В-1Л	800	20	2,8	20	-	30	60	1	10	4
КИПМ06В1-1Л	500	20	2,8	20	_	30	60	1	10	4
КИПМ06Г-1Л	1200	20	2,8	20	_	30	60	1	10	4
КИПМ06Г1-1Л	800	20	2,8	20	_	30	60	1	10	4
КИПМ07В-1Л	800	20	2,8	20	-	30	60	1	10	4
КИПМ07В1-1Л	500	20	2,8	20	_	30	60	1	10	4
КИПМ07Г-1Л	1200	20	2,8	20	-	30	60	1	10	4
КИПМ07Г1-1Л	800	20	2,8	20	-	30	60	1	10	4
КИПМ10Д-1Л	2000	20	2,8	20	-	30		_	_	
КИПМ10Е-1Л	1000	20	2,8	20	_	30	_	_	_	_
КИПМ10Ж-1Л	500	20	2,8	20	-	30	_	_	_	_
КИПМ11Д-1Л	2000	20	2,8	20	_	30	_	_	_	_

Москатов Е. А. Справочник по полупроводниковым приборам. http://moskatov.narod.ru

	Значения параметров при T = 25 °C					Предельные значения при T = 25 °C					
Тип прибора		Іпр,	Uпр,	Іприпр,	λмакс,	Іпр.макс,	Іпр.и.	tи, мс		U обр.	
Tim iipiioop u	Iv, мккд	мА	B	MA	ŕ	мА	-		Θ	макс,	
		MA	Б	MA	МКМ	MA	макс, мА			В	
КИПМ11Е-1Л	1000	20	2,8	20	_	30	_	_	_	_	
КИПМ11Ж-1Л	500	20	2,8	20	_	30	_	_	_	_	
КИПМ12Д-1Л	2000	20	2,8	20	_	30	_	_	_	_	
КИПМ12Е-1Л	1000	20	2,8	20	_	30	_	_	_	_	
КИПМ12Ж-1Л	500	20	2,8	20	_	30	_	_	_	_	
КИПМ13Д-1Л	2000	20	2,8	20	_	30	_	_	_	_	
КИПМ13Е-1Л	1000	20	2,8	20	_	30	_	_	_	_	
КИПМ13Ж-1Л	500	20	2,8	20	_	30	_	_	_	_	
КИПМ14Д-1Л	2000	20	2,8	20	_	30	_	_	_	_	
КИПМ14Е-1Л	1000	20	2,8	20	_	30	_	_	_	_	
КИПМ14Ж-1Л	500	20	2,8	20	_	30	_	_	_	_	
КИПМ15Д-1Л	2000	20	2,8	20	_	30	_	_	_	_	
КИПМ15Е-1Л	1000	20	2,8	20	_	30	_	_	_	_	
КИПМ15Ж-1Л	500	20	2,8	20	_	30	_	_	_	_	

Максимальная температура для светодиодов, приведённых в таблице 3.3.5-70 °C. Исключения: КИПД17А-Л, КИПД17Б-Л, КИПД17В-Л – 85 °C и КИПД06В-1Л, КИПД06Г-1Л – 85 °C.

Таблица 3.3.6. Светодиоды синего цвета свечения [6, стр. 205], [28, стр. 121].

	Значения параметров при T = 25 °C					Предельные значения при T = 25 °C					
Тип прибора	<i>I</i> v, мккд	Іпр,	Uпр, В	Іпр _{Ипр} ,	λмакс, мкм	Іпр.макс, мА	Іпр.и. макс, мА	tи, мс	Θ	Uобр.макс,В	
КЛД901А	150	3	12	3	0,466	6	_	_	_	_	

Таблица 3.3.7. Светодиоды переменного (красного – зелёного) цвета свечения [6, стр. 205], [28, стр. 121].

	Значения параметров при T = 25 °C					Предельные значения при T = 25 °C					
Тип прибора	<i>I</i> v, мккд	Іпр,	Uпр, В	Іпр _{Ипр} ,	λмакс, мкм	Іпр.макс,	Іпр.и.	tи, мс	Θ	Uобр. макс, В	
1П17-К/З	1000; 400	10; 20	2; 2,8	10; 20	0,650,67; 0,550,57	12; 22	_	_	_	2	
1П21-К/3	1000; 1000	10; 20	2; 2,8	10; 20	0,650,67; 0,550,57	12; 22	_	_	_	2	
3ЛС331А	250	10	3	10	0,56; 0,7	20	70	2	10	2	
3ЛС331АМ	1000	10	3	10	0,56; 0,7	20	100; 60	2	10	2	
АЛС331АМ	1000	10	4	10	0,56; 0,7	20	100; 60	2	10	2	
КИПД18А-М	1000	10	2,4; 2,8	10	0,610,64; 0,5630,567	20	60	1	10	3	
КИПД18Б-М	3000	10	2,4; 2,8	10	0,610,64; 0,5630,567	20	60	1	10	3	
КИПД19А-М	2000	10	2,2; 2,8	10	_	20	100; 60	1	10	3	
КИПД19Б-М	4000	10	2,2; 2,8	10	_	20	100; 60	1	10	3	
КИПД37А-М	5000	20	2,2; 2,8	20	_	22	100; 60	1	10	3	
КИПД37А1-М	5000	20	2,2; 2,8	20	_	22	100; 60	1	10	3	

Таблица 3.3.8. Светодиоды переменного (красного, жёлтого и зелёного) цвета свечения [28, стр. 121].

	Значения	аметров п	Предельные значения при T = 25 °C							
Тип прибора		Iπn	Uпр,	Іпр _{Ипр} ,	λмакс,	Іпр.макс,	Іпр.и.			Uобр .
	<i>I</i> v, мккд	Іпр,		мА	MKM	мА	макс, мА	ти, мс	Θ	макс,
		мА								В
КИПДЗЗА-М	500; 500; 1000	10	2; 2,5; 2,8	10	_	20	90; 60; 90	2	10	4
КИПДЗЗБ-М	500; 500; 1000	10	2; 2,5; 2,8	10	_	20	90; 60; 90	2	10	4

Таблица 3.3.9. Светодиоды с антистоксовыми люминофорами зелёного цвета свечения [28, стр. 121].

	Значения	аметро	Предельные значения при T = 25 °C							
Тип прибора	<i>I</i> v, мккд	Іпр,	Uпр, В	Іпр _{Uпр} , мА	λмакс, мкм	Іпр.макс, мА	Іпр.и. макс, мА	tи, мс	Θ	Uобр.макс,В
АЛ360А	300	10	1,7	10	0,550,56	20	80	3	4	_
АЛЗ60Б	600	10	1,7	10	0,550,56	20	80	3	4	_
АЛ360А1	300	10	1,7	10	0,550,56	20	80	3	4	_
АЛ360Б1	600	10	1,7	10	0,550,56	20	80	3	4	_

Максимальная температура для всех светодиодов, приведённых в таблицах 3.3.6, 3.3.7 - 70 °C, а в таблицах 3.3.8 и 3.3.9 - 85 °C.

Для подавляющего большинства отечественных светодиодов, полярность которых определяется длинным выводом, последний является анодом.

АЛ102А, АЛ102Б, АЛ102В, АЛ102Г

Светодиоды фосфидогаллиевые эпитаксиальные [29, стр. 201, 202]. Масса светодиода не более 0,25 г.

Электрические и световые параметры.

Яркость свечения не менее:	
для АЛ102А	5 нт
для АЛ102Б	40 нт
для АЛ102В	20 нт
для АЛ102Г	10 нт

Цвет свечения:

для AJ1102A, AJ1102b, AJ11021	Красный
для АЛ102В	Зелёный
Постоянное прямое напряжение не более:	

Постоянное прямое напряжение не оолее:

для АЛ102А	3,2 B
для АЛ102Б, АЛ102В	4,5 B
для АЛ102Г	3,0 B

1. При Іпр = 2 мА для АЛ102Б, АЛ102В; Іпр = 5 мА для АЛ102А; Іпр = 10 мА для ΑЛ102Г.

Предельные эксплуатационные данные.

Постоянный прямой ток при температуре от -60 до 55 °C:	
для АЛ102А, АЛ102Г	10 мА
для АЛ102Б, АЛ102В	20 мА
Постоянный прямой ток при температуре от 50 до 70 °C:	
для АЛ102А, АЛ102Б, АЛ102Г	10 мА
для АЛ102В	20 мА
Импульсное обратное напряжение при длительности импульса	
не более 20 мкс и частоте не более 1 кГц	2 B
Рабочий диапазон температур окружающей среды	от -60 до 70 °C

3.4 Семисегментные индикаторы

На рисунке 1 показано соответствие между сегментами индикатора и буквенными обозначениями.

На рисунке 2 показан внешний вид светодиодного семисегментного индикатора VQE24F, имеющего зелёный цвет свечения. Нумерация его выводов показана на следующем рисунке 3.

На рисунке 4 показана нумерация выводов индикаторов АЛС324Б, АЛС321Б, АЛС333Б, АЛС333Г, АЛС334Б, АЛС335Б, АЛС335Г, ЗЛС338Б, ЗЛС338Г.

На рисунке 5 показана нумерация выводов индикаторов АЛС321A, АЛС324A, АЛС333A, АЛС333B, АЛС334A, АЛС334B, АЛС335A, АЛС335B, ЗЛС338A,

3ЛС338В.

Индикатор АЛС324Б имеет красный цвет свечения, номинальный прямой ток 20 мА, максимальный постоянный прямой ток 25 мА, максимальный импульсный прямой ток 300 мА, прямое падение напряжения 2,5 В, мощность рассеяния 500 мВт.

АЛ304А, АЛ304Б, АЛ304В, АЛ304Г

Индикаторы знакосинтезирующие, на основе соединения арсенид — фосфид — галлий, эпитаксиально — планарные [41, стр. 475 — 478]. Предназначены для отображения цифровой информации. Индикаторы имеют 7 сегментов и децимальную точку. Выпускаются в пластмассовом корпусе. Высота знака 3 мм. Масса прибора не более 0,25 г.

АЛ304А – АЛ304В: 1 – анод е (смотрите рисунок 1); 2 – анод d; 3, 8 – катод общий; 4 – анод c; 5 – анод h; 6 – анод b; 7 – анод a; 9 – анод g; 10 – анод f.

АЛЗ04Г: 1 – катод e; 2 – катод d; 3, 8 – анод общий; 4 – катод c; 5 – катод h; 6 – катод b; 7 – катод a; 9 – катод g; 10 – катод f.

Электрические и световые параметры.

Цвет свечения индикаторов:

АЛ304А, АЛ304Б, АЛ304Г АЛ304В

Красный Зелёный

АЛ304А	$140 \ кд \ / \ m^2$
АЛЗО4Б	80320 кд / м ²
АЛЗ04В при токе через сегмент 10 мА	$60 \ кд \ / \ m^2$
АЛ304Г	$350 \text{ кд} / \text{м}^2$
Неравномерность яркости между элементами	-60 %
Постоянное прямое напряжение при Іпр = 5 мА, не более:	
T = +25 и +70 °C для АЛ304А, АЛ304Б	2 B
Т = -60 для АЛ304А, АЛ304Б	2,4 B
$T = +25 \text{ и} +70 \text{ °C}$ для АЛ 304B , АЛ 304Γ	3 B
$T = -60$ для АЛ $304B$, АЛ 304Γ	3,6 B

Предельные эксплуатационные данные.

Постоянный прямой ток:

±	
через каждый сегмент	11 мА
через все сегменты	88 мА
Рассеиваемая мощность	264 мВт
Температура окружающей среды	-60 +70 °C

3.5 Оптроны

3ОТ110А, 3ОТ110Б, 3ОТ110В, 3ОТ110Г, АОТ110А, АОТ110Б, АОТ110В, АОТ110Г

Оптопары транзисторные, состоящие из излучающего диода на основе соединения мышьяк — галлий — алюминий и составного кремниевого фототранзистора. Предназначены для использования в качестве переключателя в гальванически развязанных электрических цепях радиоэлектронной аппаратуры [41, стр. 637 — 639]. Выпускаются в металлическом корпусе. Масса прибора не более 1,5 г.

Основные характеристики.

Входное напряжение при Івх = 25 мА, не более	2 B
Остаточное (выходное) напряжение при Івх = 25 мА, Івых = 100 мА	
для 3ОТ110Б, 3ОТ110В, АОТ110Б, АОТ110В, Івых = 200 мА	
для 3ОТ110А, 3ОТ110Г, АОТ110А, АОТ110Г, не более	1,5 B
Ток утечки на выходе при $Ibx = 0$, $T = +25$ °C,	
Uком = 15 В для $3OT110\Gamma$, $AOT110\Gamma$,	
Uком = 50 B для 3OT110A, 3OT110Б, 3OT110B,	
АОТ110А, АОТ110Б, АОТ110В, не более	110 мкА
Сопротивление изоляции при Uиз = 100 В, не менее	$10^{9} {\rm Om}$

Предельные эксплуатационные данные.

Коммутируемое напряжение:	
3OT110A, 3OT110B, AOT110A, AOT110B	30 B
3ОТ110Б, АОТ110Б	50 B
3OT110Γ, AOT110Γ	15 B
Напряжение изоляции	100 B

Обратное входное напряжение	0,7 B
Постоянный входной ток 1 при $T = -60 \dots +35$ °C	30 мА
Амплитуда входного тока ² при $tu \le 10$ мкс, $T = -60 \dots +35$ °C	100 мА
Постоянный выходной ток при $T = -60 \dots +35$ °C:	
3OT110A, 3OT110Γ, AOT110A, AOT110Γ	200 мА
3ОТ110Б, 3ОТ110В, AОТ110Б, AОТ110В	100 мА
Амплитуда выходного тока при $tu \le 10$ мс:	
3OT110A, 3OT110Γ, AOT110A, AOT110Γ	200 мА
3ОТ110Б, 3ОТ110В, AОТ110Б, AОТ110В	100 мА
Средняя рассеиваемая мощность ³ при $T = -60 \dots +35$ °C	360 мВт
Температура окружающей среды	-60+70 °C

- 1. В диапазоне температур окружающей среды $+35 \dots +70$ °C Івх.макс снижается линейно с коэффициентом 0,43 мА / °C.
- 2. При изменении длительности импульса от 10^{-5} до 10^{-2} с и температуры окружающей среды в диапазоне $+35 \dots +70$ °C Івх.и.макс определяется по формуле

$$Iex.u.$$
мак $c = \frac{70}{3} lg(\frac{10^{-2}}{tu}) - \frac{3}{7} T + 45$, мА.

3. При температуре окружающей среды свыше +35 °C допустимая рассеиваемая мощность определяется по формуле

$$Pcp.макc = Rt (80 - T), мBt,$$

где
$$R_T = 8.0 \text{ мB}_T / {}^{\circ}\text{C}$$
.

АОУ115А, АОУ115Б, АОУ115В, АОУ115Г, АОУ115Д

На следующем рисунке изображена цоколёвка оптрона АОУ115(А-Д).

Динисторные оптопары АОУ115А, АОУ115Б, АОУ115В, АОУ115Г, АОУ115Д состоят из арсенид — галлиевого инфракрасного излучателя и фотоприёмника — кремниевого фотодинистора, изолированных друг от друга [3], [41, том 3, стр. 666 — 668]. Данные оптроны изготавливают по гибридной технологии. Масса прибора — не более 0,8 г. Ключом при определении цоколёвки оптрона служит верхняя по рисунку часть корпуса, скошенная под углом 45°.

Основные характеристики.

Основные характеристики.	
Ток включения (ток излучателя), мА, не более, при напряжении на з	акрытом
фотодинисторе 10 В	20
Падение напряжения на излучателе, В, не более, при входном токе 20 мА	2
Время включения, мкс, не более	10
Время выключения, мкс, не более	200
Предельные эксплуатационные данные.	
Максимальный входной постоянный ток, мА	30
Максимальный входной импульсный ток, мА	60
Наибольшее прямое выходное напряжение на закрытом фотодинисторе, В,	для
АОУ115А	50
АОУ115Б, В	200
АОУ115Г, Д	400
Наибольшее постоянное обратное напряжение на фотодинисторе, В, для	
АОУ115В	200
АОУ115Д	400
Максимальный выходной постоянный ток, мА	100
Минимальное выходное напряжение на закрытом фотодинисторе, В	10
Напряжение изоляции, В	1500

3ОТ127А, 3ОТ127Б, АОТ127А, АОТ127Б, АОТ127В

Оптопары транзисторные, состоящие из излучающего диода на основе соединения галлий — алюминий — мышьяк и кремниевого фототранзистора [41, стр. 646 — 649]. Предназначены для бесконтактной коммутации цепей постоянного тока с гальванической развязкой между входом и выходом. Выпускаются в металлостеклянном корпусе с гибкими выводами. Масса прибора не более 2 г.

Электрические параметры

электрические параметры.	
Входное напряжение при Івх = 5 мА, не более	1,6 B
Остаточное (выходное) напряжение при Івх = 5 мА, Івых = 70 мА	
для 3OT127A, 3OT127Б, AOT127A	1,5 B
при Івх = 5 мА, Івых = 15 мА для АОТ127Б, АОТ127В	1,5 B
при Івх = 0,5 мА, Івых = 2,5 мА для 3ОТ127А	1,2 B
Ток утечки на выходе, не более:	
при Івх = 0, Uком = 30 В для ЗОТ127А, ЗОТ127Б,	
AOT127A, AOT127Б	10 мкА
при Івх = 0, Uком = 15 В для АОТ127В	10 мкА
Сопротивление изоляции при Uиз = 500 В, не менее	1011 Ом
Предельные эксплуатационные данные.	
Обратное постоянное или импульсное входное напряжение	1,5 B
Коммутируемое напряжение:	•

3ОТ127A, 3ОТ127Б, АОТ127A, АОТ127Б АОТ127В	30 B 15 B
Напряжение изоляции ¹	1000 B
Постоянный (импульсный при tu > 10 мкс) входной	
ток 2 при T \leq +35 °C:	
3ОТ127А, 3ОТ127Б	20 мА
AOT127A, AOT127Б, AOT127В	15 мА
Импульсный входной ток ³ при $tu \le 10$ мкс, $T \le +35$ °C:	
3ОТ127А, 3ОТ127Б	85 мА
AOT127A, AOT127Б, AOT127В	100 мА
Выходной ток ⁴ :	
3ОТ127А, 3ОТ127Б	100 мА
AOT127A, AOT127Б, AOT127В	70 мА
Температура окружающей среды	-60+85 °C

- 1. В диапазоне температур окружающей среды +35 ... +85 °C Uиз снижается линейно до 500 В.
- 2. В диапазоне температур окружающей среды $+35 \dots +85$ °C Івх.макс снижается линейно с коэффициентом 0.3 MA / °C.
- 3. В диапазоне температур окружающей среды $+35 \dots +85$ °C Івх.и.макс снижается линейно с коэффициентом 1,3 мА / °C. При изменении длительности импульса от $10^{-2} \dots 10^{-5}$ с Івх.и.макс определяется по формуле

$$lex.u.$$
мак $c=\frac{65\ lg(\frac{10^{-2}}{tu})}{3}+20,\$ м $A.$

$$Iex.u.макc = \frac{85 \ lg \, (\frac{10^{-2}}{tu})}{3} + 15, \ \textit{мA}.$$

4. В диапазоне температур окружающей среды +35 ... +85 °C Івх.макс снижается линейно с коэффициентом 1,6 мА / °C.

3.6 Стабилитроны

Таблица 3.6.1. Стабилитроны.

Тип	Номинальное н	апряжение ста	Ic,	гд,	TKU 10 ⁻⁴ °C ⁻¹	Іс.макс,		
стабилитрона	Минимум	Среднее	Максимум	мÁ	Ом	TRU 104 °C	мА	
Д808	7	_	8,5	5	6	7	33	
Д809	8	_	9,5	5	10	8	29	
Д810	9	_	10,5	5	12	9	26	
KC147	4,1	_	5,2	10	56	_	58	
KC158A	_	6,8	_	10	28	6	45	
KC162A*	_	6,2	_	10	35	_	22	
KC168B	_	6,8	_	10	28	_	20	
КС170А	_	7	_	10	20	_	20	
КС175А	_	7,5	_	5	16	_	18	
KC182A	_	8,2	_	5	14	_	17	
КС191А	_	9,1	_	5	18	_	15	
КС210Б	_	10	_	5	22	_	14	
КС213Б*	_	13	_	5	25	_	10	
КС211Б	11	_	12,6	10	_	2	33	
КС211В	9,3	_	11	10	_	-2	33	
КС211Г	9,9	_	12,1	10	_	±1	33	
КС211Д	9,9	_	12,1	10	_	±0,5	33	
КС215Ж	13,5	15	16,5	2	70	9,5	10	
КС433А	_	3,3	_	30	25	-10	191	
KC439A	_	3,9	_	30	25	-10	176	
КС447А	_	4,7	_	30	18	-8 +3	159	
KC456A	_	5,6	_	30	12	5	139	
KC468A	_	6,8	_	30	5	6,5	119	
КС533А	29,7	_	36,3	10	40	10	17	
KC620A	_	120	_	50	150	20	42	
KC650A	_	150	_	25	255	20	33	
KC680A	_	180	_	25	330	20	28	
2C920A	_	120	_	_	100	16	42	
2C930A	_	130	_	_	120	16	38	
2C950A	_	150	_	_	170	16	33	

Tv	ИΠ	Номинальное н	напряжение ста	Ic,	гд,	TKU 10 ⁻⁴ °C ⁻¹	Іс.макс,		
стабил	итрона	Минимум	Среднее	Максимум	мА	Ом	TKU IU C	мА	
2C9	80A	_	180	_	_	220	16	28	

В таблице 3.6.1. отмечены * двуанодные стабилитроны КС162А и КС213Б.

Таблица 3.6.2. Стабилитроны.

Тип стаби-	Uс.мин,	Uс.макс,	Icuc,	Іс.макс,	Іс.мин,	П
литрона	В	В	мА	мА	мА	Примечания
Д814А	7	8,5	5	40	_	
Д814Б	8	9,5	5	36	_	
Д814В	9	10,5	5	32	_	
Д814Г	10	12	5	29	_	
Д814Д	11,5	14	5	24	_	
Д815А	5	6,2	1000	1400	50	
Д815Б	6,1	7,5	1000	1150	50	У стабилитронов не имеющих в названии
Д815В	7,4	9,1	1000	950	50	буквы "П", корпус является
Д815Г	9	11	500	800	25	положительным электродом (например, Д815А). Стабилитроны, в названии
Д815Д	10,8	13,3	500	650	25	которых имеется буква "П" (например,
Д815Е	13,3	16,4	500	550	25	Д815АП) имеют обратную полярность.
Д815Ж	16,2	19,8	500	450	25	
Д811	10	12	_	23	3	
Д818Г	8,55	9,45	10	33	_	
Д818Д	8,55	9,45	10	33	_	
Д818Е	8,55	9,45	10	33	_	
Д818А	9,00	10,35	10	33	_	
Д818Б	7,65	9,00	10	33	_	
Д818В	8,10	9,90	10	33	_	
KC630A	117	143	5	38	_	
2C107A	0,57	0,73	1	100	1	Стабистор
2C156A	4,7	6,6	10	55	_	
КС133А	3,3	3,3	10	81	3	
KC139A	3,9	3,9	10	_	_	
Д811	10	12	_	23	3	
Д813	11,5	14		20	3	

Тип стаби-	Uс.мин, В	Uс.макс, В	Ic _{Uc} ,	Іс.макс,	Іс.мин,	Примечания
Д816А	19,6	24,2		230	10	
Д816Б	24,2	29,5	_	180	10	
Д816В	28,5	36	_	150	10	У стабилитронов не имеющих в названии
Д816Г	35	43	_	130	10	буквы "П", корпус является
Д816Д	42,5	51,5	_	110	10	положительным электродом (например, Д816А). Стабилитроны, в названии
Д817А	50,5	61,5	_	90	5	которых имеется буква "П" (например,
Д817Б	61	75	_	75	5	Д816БП) имеют обратную полярность.
Д817В	74	90	_	60	5	
Д817Г	90	110	_	50	5	
KC509A	13,8	15,6	_	42	0,5	Маркируются меткой красного цвета.
КС509Б	16,8	19,1	_	35	0,5	Маркируются меткой жёлтого цвета.
КС509В	18,8	21,2	_	31	0,5	Маркируются меткой зелёного цвета.
KC196A	9,6	9,6	_	20	3	Предназначены для использования в
КС196Б	9,6	9,6	_	20	3	качестве прецизионного источника опорного напряжения в цифровой
КС196В	9,6	9,6	_	20	3	технике.
KC482A	7,4	9	5	96	1	Температурный коэффициент
KC515A	13,5	16,5	5	53	1	напряжения стабилизации для КС482А
KC518A	16,2	19,8	5	45	1	равен 0,08 %/°С, а для КС515A, КС518A, КС522A и КС527A равен 0,1 %/°С.
KC522A	19,8	24,2	5	37	1	Стабильность величины напряжения
KC527A	24,3	29,7	5	30	1	стабилизации \pm 1,5 %.

KC520B, KC531B, KC547B, KC568B, KC596B

Стабилитроны кремниевые диффузионно – сплавные [29, стр. 167]. Предназначены для использования в качестве источников опорного напряжения.

Выпускаются в пластмассовом корпусе. Масса диодов КС520В, КС531В, КС547В 0,8 г. Масса диодов КС568В, КС596В 1,3 г.

Таблица 3.6.3. Размеры в миллиметрах (смотрите рисунок).

Тип прибора	L	l	Н	S
KC520B, KC531B, KC547B	11	7,5	5	5
KC568B, KC596B	14	10	6	6

Таблица 3.6.4. Электрические параметры.

Параметры	KC520B	KC531B	КС547В	KC568B	КС596В
Напряжение стабилизации ¹ , В:					
при 25 °C	1921	29,4532,55	44,6549,35	64,671,4	91,2100,8
при 100 °C	18,821,2	29,3332,67	44,2549,75	64,171,9	90,4101,5
Минимальный ток стабилизации, мА [35]	3	3	3	3	3
Максимальный ток стабилизации, мА [35]	22	15	10	10	7
Температурный коэффициент напряжения стабилизации ² не более, % / °C	±0,001	±0,005	±0,001	±0,001	±0,001
Дифференциальное сопротивление ¹ не более, Ом	120	50	280	400	560
Дифференциальное сопротивление, соответствующее минимальному току стабилизации 3 мА, не более, Ом	210	350	490	700	980

- 1. При Іст = 10 мА для КС531В; Іст = 5 мА для остальных типов стабилитронов.
- 2. Классификация стабилитронов произведена при T = 55 и 100 °C.

3.7 Варикапы

Таблица 3.7.1. Параметры варикапов [30, стр. 648].

Тип вари- капа	Сном*, пФ	Иобр.макс, В	Q в**, не менее	Іобр (при Uобр.макс, tокр = 25 °C), мкА, не более
Д901А	22 32	80	25	1,0
Д901Б	22 32	45	30	1,0
Д901В	28 38	80	25	1,0
Д901Г	28 38	45	30	1,0
Д901Д	34 44	80	25	1,0
Д901Е	34 44	45	30	1,0
Д902	6 12	25	30	_
KB101A	160 240	4	12	1,0
КВ102А	14 23	45	40	1,0
КВ102Б	19 30	45	40	1,0
KB102B	25 40	45	40	1,0
КВ102Г	19 30	45	100	1,0
КВ102Д	19 30	80	40	1,0
KB103A	18 32	80	50	10
КВ103Б	28 38	80	40	10
KB104A	90 120	45	100	5,0
КВ104Б	106 144	45	100	5,0
KB104B	128 192	45	100	5,0
КВ104Г	95 143	80	100	5,0
КВ104Д	128 192	80	100	5,0
KB104E	95 143	45	150	5,0
KB105A	400 600	90	500	50
КВ105Б	400 600	50	500	50
KB106A	20 50	120	40	20
КВ106Б	15 35	90	60	20
KB107A	10 40	5,5 16	20	100
КВ107Б	10 40	5,5 16	20	100
KB107B	30 65	13 31	20	100
КВ107Г	30 65	13 31	20	100
KB109A***	2,3 2,8	25	300	0,5
КВ109Б***	2,0 2,3	25	300	0,5

Тип вари- капа	Сном*, пФ	Uобр.макс, В	Q в**, не менее	Iобр (при Uобр.макс, tокр = 25 °C), мкА, не более
КВ109В***	8,0 17	25	160	0,5
КВ109Г***	8,0 17	25	160	0,5
КВ110А	12 18	45	300	1,0
КВ110Б	14 21	45	300	1,0
КВ110В	17 26	45	300	1,0
КВ110Г	12 18	45	150	1,0
КВ110Д	14 21	45	150	1,0
KB110E	17 26	45	150	1,0
KBC111A	≤ 33	30	200	1,0
КВС111Б	≤ 33	30	150	1,0

^{*} При Uобр = 0,8 В для КВ101А; Uобр = 25 В для КВ109А и КВ109Б; Uобр = 3 В для КВ109В и КВ109Г и Uобр = 4 В для варикапов остальных типов.

^{**} При f = 1 МГц для KB105A, KB105B; f = 10 МГц для KB104A - KB104E; $KB107A - KB107\Gamma$ и f = 50 МГц для варикапов остальных типов и при температуре 25 °C.

^{***} Варикапы КВ109А – КВ109Г предназначены для использования в резонаторах диапазона дециметровых волн (ДМВ).

3.8 Туннельные диоды

Таблица 3.8.1. Усилительные туннельные диоды [28, стр. 80], [29, стр. 187, 201 – 203].

		Іп АІп		Значения	параме	етров пр	ои T = 25 °	PC			ельные п		ния па- 25 °C
Тип прибора	Іп,	ΔІп,	Сд.мин, пФ	Сд.макс, пФ	Іп/Ів	Uп, мВ	Lд, {Lкор}, нГн	гп, Ом	Іобр.и, мкА	Uпр. макс, мВ	Іпр. макс, мА	Іобр. макс, мА	Тмакс, °С
1И102А	1,5	0,25	0,9	1,8	5	100	{0,35}	6	20	_	3	3	70
1И102Б	1,5	0,25	1,4	2,2	5	100	{0,35}	6	20	_	3	3	70
1И102В	1,5	0,25	1,8	3	5	100	{0,35}	4,5	20	_	3	3	70
1И102Г	2	0,3	1	2	5	90	0,35	6	25	_	4	4	70
1И102Д	2	0,3	1,6	2,6	5	90	0,35	6	25	_	4	4	70
1И102Е	2	0,3	2,2	3,2	5	90	0,35	4,5	25	_	4	4	70
1И102Ж	2,7	0,4	1,2	2,2	5	90	{0,35}	6	30	_	5,4	5,4	70
1И104А	1,5	0,2	0,8	1,9	4	90	0,13	6	100	400	1	1,5	70
1И104Б	1,5	0,2	0,6	1,4	4	90	0,13	6	100	400	1	1,5	70
1И104В	1,5	0,2	0,5	1,1	4	90	0,13	7	100	400	1	1,5	70
1И104Г	1,5	0,2	0,45	1	4	100	1,3	7	100	400	1	1,5	70
1И104Д	1,5	0,2	0,4	0,9	4	100	1,3	7	100	400	0,51	1,5	70
1И104Е	1,5	0,2	0,4	0,8	4	100	1,3	8	100	400	0,51	1,5	70
1И104И	2,7	0,4	1,8	2,7	5	90	{0,35}	4	30	_	5,4	5,4	70
1И104К	2,7	0,4	2,3	3,5	5	90	{0,35}	3	30	_	5,4	5,4	70
ГИ103А	1,5	0,3	1	2,1	4	90	0,35	6	100	400	1,5	1,5	70
ГИ103Б	1,5	0,3	0,8	1,6	4	90	0,35	6	100	400	1,5	1,5	70
ГИ103В	1,5	0,3	0,7	1,3	4	90	0,35	6	100	400	1,5	1,5	70
ГИ103Г	1,7	0,4	1	3,2	4	90	0,35	7	100	400	1,5	1,5	70
АИ101А	1	0,25	_	4	5	160	1,3	18	30	600	_	_	85
АИ101Б	1	0,25	2	8	5	160	1,3	16	30	600	_	_	85
АИ101В	2	0,3	_	5	6	160	1,3	16	40	600	_	_	85
АИ101Д	2	0,3	2,5	10	6	160	1,3	14	40	600	_	_	85
АИ101Е	5	0,5	_	8	6	180	1,3	8	80	600	_	_	85
АИ101И	5	0,5	4,5	13	6	180	1,3	7	80	600	_	_	85

Таблица 3.8.2. Генераторные туннельные диоды [28, стр. 80], [29, стр. 188].

	Ιп,	ц, ΔΙπ,	31	начения па	раметр	ов пр	и Т =	25 °C	C	Предельные значения параметров при T = 25 °C				
Тип прибора	мА	мА	Сд.мин, пФ	Сд.макс,	Ιп / Ів	Uп, мВ	Lд, нГн	гп, Ом	Іобр.и, мкА	Uпр.макс, мВ	Іпр.макс, мА	Іобр. макс, мА	Тмакс, °С	
3И202А	10	1	_	3	8	200	0,5	5	250	400	-	20	85	
3И202Б	10	1	1,5	3	8	200	0,5	4	250	400	_	20	85	
3И202В	10	1	2,3	4,8	8	200	0,5	4	250	400	_	20	85	
3И202Г	20	2	_	4	8	220	0,5	4	250	450	_	40	85	
3И202Д	20	2	2	45	8	220	0,5	3	250	450	_	40	85	
3И202Е	20	2	3	2,5	8	220	0,5	3	250	450	_	40	85	
3И202Ж	30	3	_	5	8	240	0,5	3	250	450	_	60	85	
3И202И	30	3	4	8	8	240	0,5	3	250	450	_	60	85	
3И202К	50	5	_	10	8	260	0,5	2	250	450	_	100	85	
3И203А	10	1	_	2	10	200	0,3	6	250	400	_	5	85	
3И203Б	10	1	1,5	3	10	200	0,3	4	250	400	_	5	85	
3И203Г	20	2	_	3	10	220	0,3	4	250	450	_	10	85	
3И203Д	20	2	1,5	_	10	220	0,3	3,5	250	450	_	10	85	
3И203Ж	30	3	_	3	10	240	0,3	3	250	450	_	15	85	
3И203И	30	3	2,5	4,5	10	240	0,3	2,5	250	450	_	15	85	
АИ201А	10	1	_	8	10	180	1,3	8	100	600	_	_	85	
АИ201В	10	1	_	8	10	180	1,3	8	100	600	_	_	85	
АИ201Г	20	2	_	10	10	200	1,3	5	100	600	_	_	85	
АИ201Е	20	2	6	20	10	200	1,3	4	100	450	_	_	85	
АИ201Ж	50	5	_	15	10	260	1,3	2,5	220	600	_	_	85	
АИ201И	50	5	10	30	10	260	1,3	2,5	220	600	_	_	85	
АИ201К	100	10	_	20	10	330	1,3	2,2	220	600	_	_	85	
АИ201Л	100	10	10	50	10	330	1,3	2,2	220	600	_	_	85	

3.9 Фотографии диодной сборки, диодов, стабилитрона, светодиода, оптрона

4 Тиристоры

4.1 Тиристоры импульсные

Д235А, Д235Б, Д235В, Д235Г

Тиристоры кремниевые диффузионно — сплавные структуры p-n-p-n триодные не запираемые [42, стр. 48 — 51]. Предназначены для применения в качестве переключающих элементов средней мощности. Выпускаются в металлическом корпусе с жёсткими выводами. Тип тиристора приводится на корпусе. Масса тиристора не более 16 г.

Электрические параметры.

Напряжение в открытом состоянии при Ioc = 2 A,

1 1 ,	
Iy.ot = 50 мA, не более:	
T = +25 °C	2 B
T = -60 °C	2,5 B
Отпирающее импульсное напряжение управления	
при U3c = 10 B и T = -60 °C, не более	5 B
Постоянный ток в закрытом состоянии при	
Uзc = Uзc.макс, не более:	
$T = +25 \text{и} -60 ^{\circ}\text{C}$	2 мА
$T = +100 \text{ °C}, T_{K} = +80 \text{ °C}$	3 мА
Постоянный обратный ток при Uобр = Uобр.макс, не более:	
T = +25 и -60 °C	2 мА
$T = +100 \text{ °C}, T_K = +80 \text{ °C}$	3 мА
Отпирающий постоянный ток управления при U3c = 10 B,	
не более:	
T = +25 °C	30 мА
T = -60 °C	50 мА

Отпирающий импульсный ток управления при $U3c = 10 B$: $T = -60 ^{\circ}C$, не более $T = +100 ^{\circ}C$, не менее	250 мА 0,5 мА
Предельные эксплуатационные данные.	
Обратное постоянное напряжение управления	1 B
Постоянное напряжение в закрытом состоянии:	
при $T = +25$ °C:	
Д235А, Д235В	50 B
Д235Б, Д235Г	100 B
при $T = -60 \text{ и} + 100 \text{ °C}$:	
Д235А, Д235В	40 B
Д235Б, Д235Г	80 B
Постоянное обратное напряжение:	
при $T = +25$ °C:	
Д235В	50 B
Д235Г	100 B
при $T = -60 \text{ и} + 100 \text{ °C}$:	
Д235В	40 B
Д235Г	80 B
Постоянный ток в открытом состоянии при $T\kappa = -60 \dots +70 ^{\circ}\mathrm{C}^{1}$	2 A
Импульсный ток в открытом состоянии:	
при $loc.cp \le 1$ A и $tu \le 10$ мс	10 A
при одиночных импульсах длительностью до 50 мкс	60 A
Постоянный ток управления при Тк = -60 +100 °C	150 мА
Импульсный ток управления при $tu = 50$ мкс и $Tk = -60 \dots +100$ °C	350 мА
Средняя рассеиваемая мощность при $T_K = -60 \dots +70 {}^{\circ}C^1$	4 B _T
Температура окружающей среды -60 Тк =	+100 °C

1. При $T_K = +70 \dots +100$ °C максимально допустимые постоянный ток в открытом состоянии и средняя рассеиваемая мощность определяются по формулам:

$$Ioc.makc = \frac{102 - T\kappa}{16}$$
; $Pcp.makc = \frac{102 - T\kappa}{8}$.

Д238А, Д238Б, Д238В, Д238Г, Д238Д, Д238Е

Тиристоры кремниевые диффузионно – сплавные триодные не запираемые [42, стр. 52-54]. Предназначены для применения в качестве переключаемых элементов большой мощности. Выпускаются в металлическом корпусе с гибкими выводами. Тип тиристора приводится на корпусе. Масса тиристора с крепёжным фланцем не более 42,5 г, масса крепёжного фланца не более 6,5 г.

Электрические параметры.	
Напряжение в открытом состоянии при Ioc = 10 A,	
Іу.от ≥ 150 мА, не более:	
T = +25 °C	2 B
T = -60 °C	2,5 B
Отпирающее импульсное напряжение управления	
при Uзc = 10 B , fy = $50 \dots 100 \Gamma$ ц, tи = 10 мкc , не более	8 B
Постоянный ток в закрытом состоянии при	
U зс = U зс.макс и $ dU$ зс / $dt $ кр \leq 5 B / мкс, не более:	
T = +25 и -60 °C	20 мА
$T = +100 {}^{\circ}\text{C}$	30 мА
Постоянный обратный ток при Uобр = Uобр.макс, не более:	
T = +25 и -60 °C	20 мА
$T = +100 {}^{\circ}\text{C}$	30 мА
Отпирающий постоянный ток управления при U3c = 10 B,	
T = -60 и + 25 °C, не более:	150 мА
Отпирающий импульсный ток управления при U3c = 10 B,	
$fy = 50 \dots 100 \Gamma ц$, $tu = 10 мкс$, не более:	150 мА
Предельные эксплуатационные данные.	
Постоянное напряжение в закрытом состоянии:	
Д238А, Д238Г	50 B
Д238Б, Д238Д	100 B
Д238В, Д238Е	150 B
Постоянное обратное напряжение:	
Д238Г	50 B
Д238Д	100 B
Д238Е	150 B
Обратное постоянное напряжение управления	1 B
Критическая скорость нарастания напряжения в закрытом	
состоянии при U3c = U3c.макс, fy = 50Γ ц, Iy.от.и ≥ 150 мA, не менее	5 В / мкс
Средний ток в открытом состоянии при Тк ≤ +70 °C	5 A
Постоянный ток в открытом состоянии при $T\kappa \le +40 {}^{\circ}\mathrm{C}^{1}$	10 A
Импульсный ток в открытом состоянии при	
$Ioc.cp \le 0,5 A$ и $tu \le 50$ мкс	100 A

Прямой постоянный ток управления 350 мA Средняя рассеиваемая мощность при $T\kappa \le +40 \, ^{\circ}\text{C}^{1}$ $20 \, \text{Bt}$ Температура окружающей среды $-60 \dots T\kappa = +100 \, ^{\circ}\text{C}$

1. При $T_K = +40 \dots +100$ °C максимально допустимые постоянный ток в открытом состоянии и средняя рассеиваемая мощность определяются по формулам:

$$Ioc.makc = \frac{100 - T\kappa}{6}$$
; $Pcp.makc = \frac{100 - T\kappa}{3}$.

КУ101А, КУ101Б, КУ101Г, КУ101Е

Тринисторы кремниевые [29, стр. 217, 218], [42, стр. 54 – 58] диффузионно – сплавные р-типа триодные не запираемые. Предназначены для применения в качестве переключающих элементов. Выпускаются в металлостеклянном герметичном корпусе с гибкими выводами. Тип прибора приводится на корпусе. Масса не более 2,5 г.

Электрические параметры.

Ток утечки, не более, мА	0,3
Обратный ток утечки, не более, мА	0,3
Ток спрямления при Uпр = 10 В, мА	0,05 7,5
Предельные эксплуатационные данные.	
Постоянный или средний прямой ток при температуре	
от -55 до +50 °C, мА	75
Прямой ток управляющего электрода, мА	15
Прямое импульсное напряжение, В:	
для КУ101А, КУ101Б	50
для КУ101Г	50
для КУ101Е	50
Обратное напряжение, В:	
для КУ101А	10
для КУ101Б	50
для КУ101Г	80
для КУ101Е	150

2У103В, КУ103А, КУ103В

Тиристоры кремниевые мезапланарные р-типа триодные не запираемые [29, стр. 219], [42, стр. 62, 63]. Предназначены для применения в качестве переключающих элементов малой мощности. Выпускаются в металлостеклянном корпусе с гибкими выводами. Тип прибора указывается на корпусе. Со стороны катодного вывода ставится маркировочная точка. Масса тиристора не более 2,5 г.

Электрические параметры.

Напряжение в открытом состоянии при Ioc = 1 мA, Iy.oт = 10 мA, не более:

T = +25 °C	3 B
T = -60 °C для 2У103В	10 B
T = -45 °C для КУ103А, КУ103В	10 B
Ток утечки в прямом направлении для КУ103А, КУ103В не более:	
при +25 °C	0,3 мА
при +55 °C	0,5 мА
при -40 °C	0,4 мА
Обратный ток утечки ² не более:	
при +25 °C	0,3 мА
при +55 °C	0,5 мА
при -40 °C	0,4 мА
Прямое напряжение на управляющем электроде при f = 50 Гц	
для 2У103В	0,42,0 B
для КУ103А, КУ103В	0,32,0 B
Остаточное напряжение (пиковое значение)	5 B
Ёмкость тиристора при $f = 5 \cdot 10^6$ Гц не более	50 пФ

- 1. При предельных прямых напряжениях.
- 2. При предельных обратных напряжениях.

Предельные эксплуатационные данные.

Постоянное напряжение в закрытом состоянии и постоянное обратное напряжение:

2У103B 300 B

КУ103А, КУ103В	150 B
Обратное постоянное напряжение управления	2 B
Средний ток в открытом состоянии	1 мА
Средний обратный ток	1 мА
Прямой постоянный ток управления	40 мА
Средняя рассеиваемая мощность	150 мВт
Диапазон рабочих частот коммутируемых сигналов	5010000 Гц
Температура окружающей среды:	
для 2У103В	-60+70 °C
для КУ103А, КУ103В	-45+85 °C

2У107А, 2У107Б, 2У107В, 2У107Г, 2У107Д, 2У107Е

Тиристоры кремниевые планарные p-типа триодные не запираемые. Предназначены для применения в качестве переключающих элементов малой мощности. Выпускаются в металлическом корпусе с гибкими выводами. Тип прибора приводится на корпусе. Масса тиристора не более 2 г.

Электрические параметры.

Постоянное напряжение в открытом состоянии при Ioc = Ioc.макс,	
$T = -60 \dots +25$ °C, не более	1,5 B
Отпирающее постоянное напряжение управления при U3c = 10 B:	
T = +25 °C	0,350,55 B
$T = +125 ^{\circ}\text{C}$, не менее	0,55 B
T = -60 °C, не более	0,8 B
Напряжение включения при Uзc = Uвкл, не менее:	
2У107А, 2У107Б	350 B
2У107В, 2У107Γ	200 B
2У107Д, 2У107Е	75 B
Импульсное напряжение в открытом состоянии при Іос.и = 20 А,	
не более:	
2У107А, 2У107Б	30 B
2У107В, 2У107Г, 2У107Д, 2У107Е	25 B
Ток удержания, не более:	
2У107A	0,3 мА
2У107Б	0,6 мА

2У107В 2У107Г, 2У107Д 2У107Е		0,5 мА 1 мА 0,15 мА
	Предельные эксплуатационные данные	

Постоянное напряжение в закрытом состоянии при Uy = -10 B,	
Ry = 551 кОм:	
2У107А, 2У107Б	250 B
2У107В, 2У107Γ	150 B
2У107Д, 2У107Е	60 B
Постоянное обратное напряжение	10 B
Обратное постоянное напряжение управления	10 B
Постоянный ток в открытом состоянии при $T = -60 \dots +65 ^{\circ}C^{1}$	100 мА
Прямой постоянный ток управления при $T = -60 \dots +65 ^{\circ}C^{1}$	40 мА
Импульсный ток в открытом состоянии при $T = -60 \dots +65$ °C ¹ :	
$2У107A$, $2У107Б$ при $Pt \le 0.02 A^2 \cdot c$	25 A
2У107В, 2У107Г, 2У107Д, 2У107Е при f^2 t \leq 0,05 A^2 ·c	45 A
Скорость нарастания напряжения в закрытом состоянии	
при $T = -60 \dots +65 ^{\circ}C$	10 В / мкс
Средняя рассеиваемая мощность при $T = -60 \dots +65 {}^{\circ}C^{1}$	$200 \mathrm{~mBr}$
Температура окружающей среды	-60 +125 °C

1. При T = +65 ... +125 °C максимально допустимый постоянный ток в открытом состоянии снижается линейно на 0,8 мА / °С; максимально допустимый прямой ток управления снижается линейно на 0,3 мА / °С; максимально допустимый импульсный ток снижается линейно на 5 мА / °С; максимально допустимая средняя рассеиваемая мощность снижается линейно на 2,4 мВт / °С.

КУ202А, КУ202Б, КУ202В, КУ202Г, КУ202Д, КУ202Е, КУ202Ж, КУ202И, КУ202К, КУ202Л, КУ202М, КУ202Н

Тринисторы кремниевые [29, стр. 221 - 223]. Выпускаются в металлическом герметичном корпусе. Масса не более 25 г.

Предельные эксплуатационные данные.	
Постоянный или средний прямой ток при t = 50 °C, А	10
Прямой ток управляющего электрода, мА	300
Прямое напряжение тринистора, В:	
для КУ202А, КУ202Б	25
для КУ202В, КУ202Г	50
для КУ202Д, КУ202Е	100
для КУ202Ж, КУ202И	200
для КУ202К, КУ202Л	300
для КУ202М, КУ202Н	400
Обратное напряжение, В:	
для КУ202Б	25
для КУ202Г	50
для КУ202Е	100
для КУ202И	200
для КУ202Л	300
для КУ202Н	400

Для других групп подача обратного напряжения не допускается.

КУ208А, КУ208Б, КУ208В, КУ208Г

Тринисторы кремниевые планарно – диффузионные [29, стр. 225 – 227]. Предназначены для работы в качестве симметричных управляемых ключей средней мощности для схем автоматического регулирования в коммутационных цепях силовой автоматики на переменном токе. Выпускаются в металлическом герметичном корпусе с винтом, масса не более 18 г.

Электрические параметры.

Ток утечки, не более, мА	5
Ток выключения при Uпр = 10 В и температуре -55 °C, не более, мА	150

Предельные эксплуатационные данные.

1	
Прямой ток управляющего электрода, мА	500
Обратное или прямое напряжение, В:	
для КУ208А	100
для КУ208Б	200
для КУ208В	300
для КУ208Г	400
Амплитуда тока перегрузки:	
при температуре от -55 °C до + 50 °C, А	30
при температуре 70 °C, А	15

2У221A (ТИЧ5-100-8-12), 2У221Б (ТИЧ5-100-8-21), 2У221В (ТИЧ5-100-6-23), КУ221A, КУ221Б, КУ221В, КУ221Г, КУ221Д

Тиристоры кремниевые диффузионные структуры p-n-p-n триодные не запираемые импульсные высокочастотные [42, стр. 153-159]. Предназначены для применения в телевизионных приёмниках цветного изображения при частоте до 30 кГц. Выпускаются в металлостеклянном корпусе с жёсткими выводами. Тип тиристора приводится на корпусе. Масса тиристора не более $7\,\Gamma$.

Электрические параметры.

Импульсное напряжение в открытом состоянии при 10c.u = 20 A, tu = 40...60 мкс, 1y.пр.u = 0,15...1 A, ty = 10...100 мкс и 10c.u = 20 A, 10c.u = 20 A, 10c.u = 10 A, 10c.u = 10 A, 10c.u = 10 A, 10c.u = 10 B, 10c.u = 10

для 2У221А – 2У221В для КУ221А – КУ221В	100 мА 150 мА
Предельные эксплуатационные данные.	
Импульсное напряжение в закрытом состоянии:	
2У221А, 2У221Б	800 B
2У221В, КУ221Г	600 B
КУ221А, КУ221В	700 B
КУ221Б	750 B
КУ221Д	500 B
Постоянное напряжение в закрытом состоянии:	500 D
2Y221A, 2Y221B	500 B
2Y221B	400 B
КУ221А – КУ221Д	300 B
Импульсное обратное напряжение	50 B 10 B
Минимальное напряжение в закрытом состоянии	10 В
Обратное импульсное напряжение управления 2У221A, 2У221B, КУ221A, КУ221Г, КУ221Д	10 B
2У221A, 2У221B, КУ221A, КУ221I , КУ221Д 2У221Б, КУ221В	30 B
Не повторяющееся импульсное напряжение в закрытом состоянии:	30 D
КУ221А, КУ221В	750 B
КУ221Б	800 B
КУ221Г	700 B
КУ221Д	600 B
Импульсный ток в открытом состоянии:	
пилообразная форма импульсов тока при $tu = 27$ мкс и $f = 16$ к Γ ц	
для 2У221А – 2У221В, КУ221А – КУ221В	8 A
синусоидальная форма импульсов тока при $tu = 13$ мкс и $f = 16$ к Γ ц	
для 2У221А – 2У221В, КУ221А – КУ221В	15 A
синусоидальная форма импульсов тока при $tu = 50$ мкс и $f = 50$ Γ ц	100 A
прямоугольная форма импульсов тока при tu = 2 мкс,	
dU зс / $dt \ge 100$ A / мкс и $f = 20$ к Γ ц	4 = 4
для 2У221А — 2У221В	15 A
экспоненциальная форма импульсов тока при tu = 1,5 мс,	
thp = 80 мкс и f = 3 Гц	70 4
для КУ221А — КУ221Д	70 A
Средний ток в открытом состоянии в однофазной однополупериодной схеме с активной нагрузкой и	
синусоидальной форме тока при $f = 50 \Gamma \mu$ и $\beta = 180^{\circ}$	3,2 A
Скорость нарастания напряжения в закрытом состоянии:	3,2 A
2У221А	700 В / мкс
КУ221А	700 B / мкс 500 B / мкс
2У221Б, 2У221В, КУ221Б – КУ221Д	200 В / мкс
Прямой импульсный ток управления	2 A

Минимальный импульсный ток управления:

2У221A – 2У221B, КУ221A – КУ221B КУ221Г, КУ221Д 0,1 A

Минимальная длительность импульса прямого тока управления:

 2У221A – 2У221В
 0,5 мкс

 КУ221A – КУ221Д
 2 мкс

Температура окружающей среды:

Таблица 4.1.1. Тиристоры серии BStB.

Тиристор	Uт.обр.макс, B	Іт.ср.макс, А	Uyэ, В	Іуэ, мА
BStB0106	100	0,8	2	10
BStB0113	200	0,8	2	10
BStB0126	400	0,8	2	10
BStB0133	500	0,8	2	10
BStB0140	600	0,8	2	10
BStB0146	700	0,8	2	10
BStB0206	100	3	2	10
BStB0213	200	3	2	10
BStB0226	400	3	2	10
BStB0233	500	3	2	10
BStB0240	600	3	2	10
BStB0246	700	3	2	10

Таблица 4.1.2. Отечественные аналоги болгарским тиристорам.

Болгарский тиристор	Отечественный аналог
T7-025A	КУ202А, КУ202Б
T7-025	КУ202А, КУ202Б
T7-05A	КУ202В, КУ202Г
T7-05	КУ202В, КУ202Г
T7-1A	КУ202Е, КУ202Д
T7-1	КУ202Е, КУ202Д
T7-2A	КУ202Ж, КУ202И
T7-2	КУ202Ж, КУ202И
T7-3	КУ202К, КУ202Л
T7-4	КУ202М, КУ202Н

4.2 Диодные тиристоры

Таблица 4.2.1. Диодные тиристоры (динисторы) [30, стр. 656].

Тип прибора	Іос.ср.макс, мА	Ізкр, мкА, не более	Іобр, мА, не более	Ивкл, В	Uоткр.макс, В	Іос.и.макс (при Іос = 200 мА, ти = 10 мс), А
КН102А	200	100	0,5	20	10	2,0
КН102Б	200	100	0,5	28	10	2,0
КН102В	200	100	0,5	40	10	2,0
КН102Г	200	100	0,5	56	10	2,0
КН102Д	200	100	0,5	80	10	2,0
КН102Ж	200	100	0,5	120	10	2,0
КН102И	200	100	0,5	150	10	2,0

4.3 Оптотиристоры

Таблица 4.3.1. Оптотиристоры [38, стр. 176 – 179].

	Пр	едельн	ные знач	ения пар	раметро	ов режі	има			Элег	стриче	ские и в	ремені	ные па	араметр	ы		
Тип	При	Тп.маг	кс = 110	°C	Іу.пр	о.и, А	I Iv rm v			При	$T_{\Pi} = 2$	25 °C			При Тг	.макс =	= 110 °C	Рису-
прибора	Ioc.cp.	Uзс.	U обр.	Ioc.	Мин	Макс	Uу.пр.и. макс, В	Uoc.	Ioc.	Іу.от,	Uy.	Кразв ,	tвкл,	tзд,	tвыкл,	Ізс.п,	Іобр.п,	нок
	макс, А	п, В	п, В	удр, А	мин	Make	макс, Б	и, В	и, А	мА	от, В	МОм	мкс	мкс	мкс	мА	мА	
TO125-12,5-1	12,5	100	100	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-2	12,5	200	200	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-3	12,5	300	300	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-4	12,5	400	400	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-5	12,5	500	500	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-6	12,5	600	600	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-7	12,5	700	700	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-8	12,5	800	800	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-9	12,5	900	900	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-10	12,5	1000	1000	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-11	12,5	1100	1100	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-12	12,5	1200	1200	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-13	12,5	1300	1300	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1
TO125-12,5-14	12,5	1400	1400	350	0,1	0,8	4	1,4	38,2	80	2,5	1000	10	5	100	3	3	1

4.4 Фотографии разных тиристоров

2У101Е

КУ103А 2У107В

КУ221А

КУ202Н

Д235Г

5 Транзисторы

5.1 Биполярные транзисторы

Таблица 5.1.1. Транзисторы p-n-p малой мощности (Рк.макс $\leq 0,3$ Вт) низкой частоты (frp ≤ 3 МГц) [39].

		Пре	дельные значе	ения			Значен	ия пара	метро	ЭВ		
m -		парамо	етров при Тп =	= 25 °C			при	$T_{\Pi}=2$	5°C			Ри-
Тип прибо- ра	Ік.макс,	Ік.и.макс,	Uкэ _R .гр, {Uкэо.макс}, В	Uэбо. макс,	Рк.макс, {Рк.и.макс}, мВт	$h_{219},$ $\{h_{21}\Im\}$	Uкб, {Uкэ}, В	Іэ, {Ік}, мА	Uкэ. нас, В	Ікбо, мкА	frp, {f _{h21} }, МГц	су-
1T102	6	_	5	5	30	20	5	1	_	10	1	1
1TM115A	100	_	40	50	50	2060	1	25	0,2	50	{1}	2
1ТМ115Б	100	_	40	50	50	50150	1	25	0,15	50	{1}	2
ГТ108А	50	_	_	_	75	2050	5	1	_	10	{0,5}	3
ГТ108Б	50	_	_	_	75	3580	5	1	_	10	{1}	3
ГТ108В	50	_	_	_	75	60130	5	1	_	10	{1}	3
ГТ108Г	50	_	_	_	75	111250	5	1	_	10	{1}	3
ГТ109Б	20	_	6	_	30	3580	5	1	_	5	{1}	4
ГТ115А	30	_	_	20	150	2080	1	25	_	40	1	5
ГТ124А	50	100	{20}	10	75	{2856}	{0,5}	100	0,5	15	1	5
ГТ125А	100	300	{30}	20	150	2856	{5}	25	0,3	50	1	6
ГТ125Б	100	300	{30}	20	150	4590	{5}	25	0,3	50	1	6
ГТ125В	100	300	{30}	20	150	71140	{5}	25	0,3	50	1	6
ГТ125Г	100	300	{30}	20	150	120200	{5}	25	0,3	50	1	6
ГТ125Д	100	300	{30}	20	150	{2856}	{0,5}	{100}	0,3	50	1	6
ГТ125Е	100	300	{30}	20	150	{4590}	{0,5}	{100}	0,3	50	1	6
ГТ125Ж	100	300	{30}	20	150	{71140}	{0,5}	{100}	0,3	50	1	6
ГТ125И	100	300	40	20	150	{2856}	{0,5}	{100}	0,3	50	1	6
ГТ125К	100	300	40	20	150	{4590}	{0,5}	{100}	0,3	50	1	6
ГТ125Л	100	300	40	20	150	{71140}	{0,5}	{100}	0,3	50	1	6
KT214E-1	50	100	{20}	20	50	40	1	0,04	0,6	1	_	7
M5A	70	150	{15}	10	75	{2050}	1	10	0,15	20	1	5
М5Б	70	150	{15}	10	75	{3580}	1	10	0,15	20	1	5
M5B	70	150	{15}	10	75	{60130}	1	10	0,15	20	2	5
М5Г	70	150	{15}	10	75	{110250}	1	10	0,15	20	3	5
М5Д	70	150	{15}	10	75	{2060}	1	10	0,15	20	1	5
МП13	20	150	15	15	150	12	5	1	_	200	0,5	6
МП13Б	20	150	15	15	150	2060	5	1	_	200	1	6
МП14	20	150	15	15	150	2040	5	1	_	200	1	6
МП14А	20	150	30	30	150	2040	5	1	_	200	1	6
МП14Б	20	150	30	30	150	3060	5	1	_	200	1	6

		Пре	дельные значе	ения			Значен	ия пара	метро	В		
		параме	етров при Тп =	= 25 °C			при	$T\pi = 2$	5°C			Ри-
Тип прибо- ра	_	_	Uкэ _к .гр,	 Иэбо.	Рк.макс,		Uкб ,	Iэ,	Икэ.		fгp,	cy-
pα	Ік.макс,	Ік.и.макс,	{Икэо.макс},	макс,	{Рк.и.макс},	h ₂₁₉ ,	{Uкэ},	{Iκ},	нас,	Ікбо,	$\{f_{h21}\},\$	нок
	мА	мА	В	В	мВт	$\{h_{21}\Im\}$	В	мА	В	мкА	МГц	
МП14И	20	150	30	30	150	2080	5	1	0,2	200	1	6
МП15	20	150	15	15	150	3060	5	1	_	200	2	6
МП15А	20	150	15	15	150	50100	5	1	_	200	2	6
МП15И	20	150	15	15	150	2080	5	1	1	200	2	6
МП16	100	300	15	_	200	{2035}	{1}	{10}	0,15	25	1	6
МП16А	100	300	15	_	200	{3050}	{1}	{10}	0,15	25	1	6
МП16Б	100	300	15	_	200	{45100}	{1}	{10}	0,15	25	1	6
МП20	100	300	{30}	50	150	50150	5	25	0,3	50	1	6
МП21	100	300	35	50	150	2060	5	25	0,3	50	1	6
МП21А	100	300	35	50	150	50150	5	25	0,3	50	1	6
МП21Б	100	300	40	50	150	2080	5	25	0,3	50	0,465	6
МП25	150	400	40	40	200	1025	20	2,5	_	75	0,25	6
МП25А	150	400	40	40	200	2050	20	2,5	_	75	0,25	6
МП25Б	150	400	40	40	200	3080	20	2,5	_	75	0,5	6
МП26	150	400	70	70	200	1025	35	1,5	_	75	0,25	6
МП26А	150	400	70	70	200	2050	35	1,5	_	75	0,25	6
МП26Б	150	400	70	70	200	3080	35	1,5	_	75	0,5	6
МП39	30	150	15	10	150	12	5	1	_	15	0,5	6
МП39Б	30	150	15	10	150	2060	5	1	_	15	0,5	6
МП40	30	150	15	10	150	2040	5	1	_	15	1	6
МП40А	30	150	30	10	150	2040	5	1	_	15	1	6
МП41	30	150	15	10	150	3060	5	1	_	15	1	6
МП41А	30	150	15	10	150	50100	5	1	_	15	1	6
МП42	100	200	15	_	200	{2035}	{1}	{10}	0,2	25	1	6
МП42А	100	200	15	_	200	{3050}	{1}	{10}	0,2	25	1	6
МП42Б	100	200	15	_	200	{45100}	{1}	{10}	0,2	25	1	6
П27	6	_	5	_	30	2090	5	0,5	_	3	1	6
П27А	6	_	5	_	30	2060	5	0,5	_	3	1	6
П27Б	6	_	5	-	30	42126	5	0,5	_	3	3	6
П39	20	150	15	5	150	12	5	1	_	15	0,5	6
П39Б	20	150	15	10	150	2060	5	1	_	15	0,5	6
П40	20	150	15	10	150	2080	5	1	_	15	1	6
П41	20	150	15	10	150	30100	5	1	_	15	1	6
П40А	20	150	30	5	150	2080	5	1	_	_	-	6

Таблица 5.1.2. Транзисторы n-p-n малой мощности (Рк.макс $\leq 0,3$ Вт) низкой частоты (frp ≤ 3 МГц) [39].

		Преде	ельные значе	ния			Значен	ния па	раметров			
		парамет	ров при Тп =	25 °C			при	₁ Тп =	25 °C			Ри-
Тип прибо- ра	Ік.макс,	Ік.и.макс,	Uкэ _R .макс, {Uкэо.гр}, В	Икбо. макс, В	Рк.макс, {Р макс}, мВт	$h_{219},$ $\{h_{21}\Im\}$	Uкб, {Uкэ}, В	Іэ, {Ік}, мА	Uкэ.нас, В	Ікбо, {Ікэ _R }, мкА	fгр, {f _{h21} }, МГц	су-
2T127A-1	50	_	{25}	25	15	{1560}	{5}	1	0,5	1	0,1	8
2Т127Б-1	50	_	{25}	25	15	{40200}	{5}	1	0,5	1	0,1	8
ГТ112А	20	150	{35}	35	{150}	{1545}	{5}	1	-	20	{1}	6
ГТ122Б	20	150	{20}	20	{150}	{1545}	{5}	1	-	20	{1}	6
ГТ122В	20	150	{20}	20	{150}	{3060}	{5}	1	-	20	{2}	6
ГТ122Г	20	150	{20}	20	{150}	{3060}	{5}	1	-	20	{2}	6
M3A	50	100	{15}	15	75	{1855}	1	10	0,5	{20}	1	2
МП9А	20	150	{15}	15	{150}	1545	5	1	-	30	{1}	6
МП10	20	150	{15}	15	{150}	1030	5	1	-	30	{1}	6
МП10А	20	150	{30}	30	{150}	1530	5	1	_	{30}	{1}	6
МП10Б	20	150	{30}	30	{150}	2550	5	1	_	{50}	{1}	6
МП11	20	150	{15}	15	{150}	2255	5	1	_	30	{2}	6
МП11А	20	150	{15}	15	{150}	45100	5	1	_	30	{2}	6
МП35	20	150	15	15	{150}	13125	5	1	_	30	{0,5}	6
МП36А	20	150	15	15	{150}	1545	5	1	_	30	{1}	6
МП37	20	150	15	15	{150}	1530	5	1	_	30	{1}	6
МП37А	20	150	30	30	{150}	1530	5	1	_	30	{1}	6
МП37Б	20	150	30	30	{150}	2550	5	1	_	30	{1}	6
МП38	20	150	15	15	{150}	2555	5	1	_	30	{2}	6
МП38А	20	150	15	15	{150}	45100	5	1	_	30	{2}	6
МП101	20	100	20	15	150	1025	5	1	_	{3}	{0,5}	6
МП101Б	20	100	20	15	150	1545	5	1	_	{3}	{0,5}	6
МП103А	20	100	10	10	{150}	1030	5	1	_	{3}	{1}	6
МП111	20	100	20	20	{150}	1025	5	1	_	3	{0,5}	6
МП111А	20	100	10	10	{150}	1030	5	1	_	1	{0,5}	6
МП111Б	20	100	20	20	{150}	1545	{5}	1	_	3	{0,5}	6
МП112	20	100	10	10	{150}	1545	5	1	_	3	{0,5}	6
МП113	20	100	10	10	{150}	1545	5	1	_	3	{1}	6
TM3A	50	100	{15}	15	75	{1855}	1	10	0,5	{20}	1	5

Таблица 5.1.3. Транзисторы p-n-p малой мощности (Рк.макс $\leq 0,3$ Вт) средней частоты (3 МГц < fгр ≤ 30 МГц) [39].

		Про	едельные знач	чения			Значе	ния п	араметрон	3		
T		парам	етров при Тп	= 25 °C	C		пр	и Тп =	= 25 °C			Ри-
Тип прибора ра	Ік.макс,	Ік.и.макс,	Uкэ _R , {Uкэо.макс}, В	Uкбо. макс, В	Рк.макс, {Рк.и.макс}, мВт	h_{21} 3, $\{h_{219}\}$	Uкб, {Uкэ}, В	Iэ, {Iк}, мА	Uкэ.нас, В	Ікбо, мкА	fгр, {f _{h21} }, МГц	су- нок
1Т101Б	10	_	15	15	50	{60120}	5	1	_	15	{5}	1
2T203B	10	50	15	15	150	{60200}	5	1	_	_	10	9
КТ207В	10	50	{15}	15	15	{30200}	5	1	0,5	0,05	5	10
КТ208Б	150	300	20	20	200	40120	1	30	0,4	_	5	11
KT209A	300	500	15	15	200	2060	1	30	0,4	_	5	12
КТ209Б	300	500	15	15	200	40120	1	30	0,4	_	5	12
КТ209В	300	500	15	15	200	80240	1	30	0,4	_	5	12
КТ209Г	300	500	30	30	200	2060	1	30	0,4	_	5	12
КТ209Д	300	500	30	30	200	40120	1	30	0,4	_	5	12
КТ209Е	300	500	30	30	200	80240	1	30	0,4	_	5	12
КТ209Ж	300	500	45	45	200	2060	1	30	0,4	_	5	12
КТ209И	300	500	45	45	200	40120	1	30	0,4	_	5	12
КТ209К	300	500	45	45	200	80160	1	30	0,4	_	5	12
КТ209Л	300	500	60	60	200	2060	1	30	0,4	_	5	12
KT209M	300	500	60	60	200	40120	1	30	0,4	_	5	12
П28	6	_	5	5	30	{33100}	5	0,5	_	3	{5}	6
П406	5	_	{6}	6	30	{20}	6	1	_	6	{10}	13
П407	5	_	{6}	6	30	{20}	6	1	_	6	{20}	13

Как определить тип и буквы транзисторов серии КТ203 в пластиковом корпусе? На боковой поверхности корпуса транзистора находится тёмно-красная точка. Буквенный индекс определяется по цвету точки на торце транзистора. Тёмно-красная точка – КТ203АМ; жёлтая – КТ203БМ; тёмно-зелёная – КТ203ВМ.

Как определить тип и буквы транзисторов серии КТ209 в пластиковом корпусе? На боковой поверхности корпуса транзистора находится серая точка. Буквенный индекс определяется по цвету точки на торце транзистора. Тёмно-красная точка – КТ209АМ; жёлтая — КТ209БМ; тёмно-зелёная — КТ209ВМ; голубая — КТ209ГМ; синяя — КТ209ДМ; белая — КТ209ЕМ; коричневая — КТ209ЖМ; серебристая — КТ209ИМ; оранжевая — КТ209КМ; светло-табачная — КТ209ЛМ; серая — КТ209ММ.

Таблица 5.1.4. Транзисторы n-p-n малой мощности (Рк.макс $\leq 0,3$ Вт) средней частоты (3 МГц < frp \leq 30 МГц) [39].

		Пре	едельные знач	чения			Значе	п кин	араметрон	3		
Тип прибо-		парам	етров при Тп	= 25 °C	C		пр	и Тп :	= 25 °C			Ри-
ра	Ік.макс, мА	Ік.и.макс,	Uкэ _к .макс,	Uкбо. макс, В	Рк.макс, мВт	h ₂₁₉	Икб, В	Іэ, мА	Uкэ.нас, В	Ікбо, мкА	fгр, МГц	су-
П307	30	120	80	80	250	1650	20	10	_	3	20	16
П307А	30	120	80	80	250	3090	20	10	_	3	20	16
П307Б	15	120	80	80	250	50150	20	10	-	3	20	16
П307В	30	120	60	60	250	50150	20	10	-	3	20	16
П307Г	15	120	80	80	250	1650	20	10	-	3	20	16
П308	30	120	120	120	250	3090	20	10	-	3	20	16
П309	30	120	120	120	250	1650	20	10	_	3	20	16

Таблица 5.1.5. Транзисторы p-n-p малой мощности (Рк.макс ≤ 0 ,3 Вт) высокой частоты (30 МГц < frp \leq 300 МГц) [39], [18, стр. 148-149].

			Предельные							•	етров			
		па	раметров при	и Тп = 2	25 °C	I		П	ри Тп	= 25	°C		Т	_
Тип прибора	Ік. макс, мА	Ік.и. макс, мА	Uкэ _R .макс, {Uкэо.гр}, [Uкэо.макс], В	Икбо. макс, В	Uэбо. макс, В	Рк.макс, мВт	h_{21} 3, $\{h_{219}\}$	Uкб, {Uкэ}, В	Іэ, {Ік}, мА	Uкэ. нас, В	Ікбо, мкА	fгр, {fмакс}, МГц	Кш, дБ	Ри- су- нок
1T305A	40	100	{12}	15	1,5	75	2580	1	10	0,5	6	140	_	14
1Т305Б	40	100	{12}	15	1,5	75	60180	1	10	0,5	6	160	_	14
1T305B	40	100	{12}	15	1,5	75	{40120}	5	5	0,5	6	160	_	14
1TM305A	40	100	{12}	15	1,5	75	2580	1	10	0,5	6	140	_	2
1ТМ305Б	40	100	{12}	15	1,5	75	60180	1	10	0,5	6	160	_	2
1TM305B	40	100	{12}	15	1,5	75	{40120}	5	5	0,5	6	160	_	2
1T308A	50	120	{15}	20	3	150	2575	1	10	1,5	5	100	_	15
1Т308Б	50	120	{15}	20	3	150	50120	1	10	1,2	5	120	_	15
1T308B	50	120	{15}	20	3	150	80150	1	10	1,2	5	120	8	15
1Т308Г	50	120	{15}	20	3	150	100300	1	10	_	5	120	6	15
1T335B	150	250	{10}	20	3	200	4070	3	50	1,5	10	300	-	16
1Т335Г	150	250	{10}	20	3	200	60100	3	50	1,5	10	300	-	16
1Т335Д	150	250	{10}	20	3	200	50100	3	50	1,5	10	300	_	16
2T326A	50	_	15	20	4	250	2070	1	10	0,3	0,5	250	_	17
2T360A-1	20	75	20	25	5	10	2570	5	10	0,35	1	300	-	18
2T392A-2	10	20	[40]	40	4	15	40180	5	2,5	_	0,5	300	5	19
2T3129A9	100	200	40	50	5	200	30120	5	2	0,2	0,5	200	_	20
2Т3129Б9	100	200	40	50	5	200	80250	5	2	0,2	0,5	200	-	20
2T3129B9	100	200	{20}	30	5	200	80250	5	2	0,2	0,5	200	-	20
2Т3129Г9	100	200	{20}	30	5	200	200500	5	2	0,2	0,5	200	-	20
2Т3129Д9	100	200	20	20	5	200	200500	5	2	0,2	0,5	200	-	20
2N2906	600	_	50	60	5	400	{25}	10	1	_	0,02	200	_	17
2N2906A	600	-	50	60	5	400	{40}	10	1	_	0,01	200	-	17
2N2907	600	_	50	60	5	400	{50}	10	1	_	0,02	200	_	17
2N2907A	600	_	50	60	5	400	{100}	10	1	_	0,01	200	_	17
ГТ305А	40	100	{12}	15	1,5	75	2580	1	10	0,5	6	140	-	14
ГТ305Б	40	100	{12}	15	1,5	75	60180	1	10	0,5	6	160	-	14
ГТ305В	40	100	{12}	15	1,5	75	{40120}	5	5	0,5	6	160	-	14
ГТ308А	50	120	{15}	20	3	150	2575	1	10	1,5	5	100	_	15
ГТ308Б	50	120	{15}	20	3	150	50120	1	10	1,2	5	120	_	15
ГТ308В	50	120	{15}	20	3	150	80150	1	10	1,2	5	120	8	15
ГТ308Г	50	120	{15}	20	3	150	90200	1	10	1,2	5	120	_	15
ГТ309А	10	_	10	_	_	50	2070	{5}	5	_	5	120	_	21
ГТ309Б	10	_	10	-		50	60180	{5}	5	_	5	120	6	21
ГТ309В	10	_	10	_	_	50	2070	{5}	5	_	5	80	_	21

			Предельные	значен	ия			Знач	ения	парам	етров			
		па	раметров при	и Тп = 2	25 °C			П	ри Тп	= 25	°C			
Тип прибора	Ік. макс, мА	Ік.и. макс, мА	Uкэ _R .макс, {Uкэо.гр}, [Uкэо.макс], В	Икбо. макс, В	Uэбо. макс, В	Рк.макс, мВт	h_{21} 3, $\{h_{219}\}$	Uкб, {Uкэ}, В	Iэ, {Iк}, мА	Uкэ. нас, В	Ікбо, мкА	fгр, {fмакс}, МГц	Кш, дБ	Ри- су- нок
ГТ309Д	10	-	10	_	_	50	2070	{5}	5	_	5	40	_	21
ГТ309Е	10	-	10	_	_	50	60180	{5}	5	_	5	40	_	21
ГТ310А	10	_	10	12	_	20	{2070}	5	1	_	_	160	3	4
ГТ310Б	10	-	10	12	_	20	{60120}	5	1	_	_	160	3	4
ГТ310В	10	-	10	12	_	20	{2070}	5	1	_	_	120	4	4
ГТ310Г	10	-	10	12	_	20	{60120}	5	1	_	_	120	4	4
ГТ310Д	10	-	10	12	_	20	{2070}	5	1	_	_	100	4	4
ГТ310Е	10	-	10	12	_	20	{60120}	5	1	_	-	100	4	4
ГТ320В	150	300	9	20	3	200	80250	1	10	2	10	200	_	22
ГТ322А	10	30	10	25	_	50	{30100}	{5}	{1}	_	4	80	4	23
ГТ322Б	10	-	6	25	_	50	50120	{5}	{1}	_	4	80	4	23
ГТ322В	10	30	10	25	_	50	{20120}	{5}	{1}	_	4	50	4	23
ГТ322Г	5	-	15	15	_	50	{50120}	{5}	1	_	4	50	_	23
ГТ322Д	5	-	15	15	_	50	{2070}	{5}	1	_	4	50	_	23
ГТ322Е	5	-	15	15	_	50	{50120}	{5}	1	_	4	50	_	23
ГТ328Б	10	-	15	15	0,25	50	40200	5	3	_	10	300	7	24
ГТ328В	10	-	15	15	0,25	50	1050	5	3	_	10	300	7	24
KT313A	35	-	5	6	5	300	30120	10	1	0,5	0,5	200	_	17
КТ313Б	35	-	5	6	5	300	80300	10	1	0,5	0,5	200	_	17
KT326AM	50	-	15	20	5	200	2070	2	10	0,3	0,5	250	_	25
КТ326БМ	50	ı	15	20	5	200	45160	2	10	0,3	0,5	250	-	25
КТ343А	50	150	17	20	4	150	30	0,3	10	0,3	1	300	_	17
КТ343Б	50	150	17	20	4	150	50	0,3	10	0,3	1	300	_	17
КТ343В	50	150	9	_	4	150	30	0,3	10	0,3	1	300	_	17
КТ343Г	50	150	17	_	4	150	20	1	150	1	1	300	_	17
КТ349А	10	40	15	20	4	200	2080	1	10	1,2	1	300		17
КТ349Б	10	40	15	20	4	200	40160	1	10	1,2	1	300		17
КТ349В	10	40	15	20	4	200	120330	1	10	1,2	1	300		17
KT350A	60	600	15	20	5	300	20200	1	500	_	1	100	_	26
KT351A	50	400	15	20	5	300	2080	1	300	0,6	1	200	_	26
КТ351Б	50	400	15	20	5	300	50200	1	300	0,6	1	200	_	26
KT352A	50	200	15	20	5	300	25120	1	200	0,6	1	200	_	26
КТ352Б	50	200	15	20	5	300	70300	1	200	0,6	1	200	_	26
KT357A	40	80	[6]	6	3,5	100	20100	0,5	{10}	0,3	5	300	_	27
КТ357Б	40	80	[6]	6	3,5	100	60300	0,5	{10}	0,3	5	300	_	27
КТ357В	40	80	[20]	20	3,5	100	20100	0,5	{10}	0,3	5	300	_	27
КТ357Г	40	80	[20]	20	3,5	100	60300	0,5	{10}	0,3	5	300	_	27
KT360A-1	20	75	20	25	5	10	2070	5	10	0,35	1	300	-	18

			Предельные	значен	ия		Значения параметров							
Тип прибора		па	раметров при	при Тп = 25 °C										
	Ік. макс, мА	Ік.и. макс, мА	Uкэ _к .макс, {Uкэо.гр}, [Uкэо.макс], В	Uкбо. макс, В	Uэбо. макс, В	Рк.макс, мВт	h_{21} 3, $\{h_{219}\}$	Uкб, {Uкэ}, В	Iэ, {Iк}, мА	Uкэ. нас, В	Ікбо, мкА	fгр, {fмакс}, МГц	Кш, дБ	Ри- су- нок
KT361A	50		25	25	4	150	2090	10	1	_	1	250	_	28
КТ361Б	50	-	20	20	4	150	50350	10	1	_	1	250	_	28
КТ361В	50	_	40	40	4	150	40160	10	1	_	1	250	_	28
КТ361Г	50		35	35	4	150	50350	10	1	_	1	250	_	28
КТ361Д	50		40	40	4	150	2090	10	1	_	1	250	_	28
KT361E	50	-	35	35	4	150	50350	10	1	_	1	250	_	28
KT380A	10	1	17	_	4	15	3090	{0,3}	10	0,3	1	300	_	29
КТ380Б	10	-	17	_	4	15	50150	{0,3}	10	0,3	1	300	_	29
КТ380В	10	25	9	_	4	15	3090	{0,3}	10	0,3	1	300	_	29
KT3104A	10	-	[30]	30	3,5	15	1590	{1}	2	1	1	200	8	18
КТ3104Б	10	-	[30]	30	3,5	15	50150	{1}	2	1	1	200	8	18
KT3104B	10	-	[30]	30	3,5	15	70280	{1}	2	1	1	200	8	18
КТ3104Г	10	-	[15]	15	3,5	15	1590	{1}	2	1	1	200	8	18
КТ3104Д	10	-	[15]	15	3,5	15	50150	{1}	2	1	1	200	8	18
KT3104E	10	-	[15]	15	3,5	15	70280	{1}	2	1	1	200	8	18
KT3107A	100	200	[45]	50	5	300	70140	5	2	0,5	0,1	200	10	26
КТ3107Б	100	200	[45]	50	5	300	120220	5	2	0,5	0,1	200	10	26
KT3107B	100	200	[25]	30	5	300	70140	5	2	0,5	0,1	200	10	26
КТ3107Г	100	200	[25]	30	5	300	120220	5	2	0,5	0,1	200	10	26
КТ3107Д	100	200	[25]	30	5	300	180460	5	2	0,5	0,1	200	10	26
KT3107E	100	200	[20]	25	5	300	120220	5	2	0,5	0,1	200	4	26
КТ3107Ж	100	200	[20]	25	5	300	180460	5	2	0,5	0,1	200	4	26
КТ3107И	100	200	[45]	50	5	300	180460	5	2	0,5	0,1	200	10	26
КТ3107К	100	200	[25]	30	5	300	380800	5	2	0,5	0,1	200	10	26
КТ3107Л	100	200	[20]	25	5	300	380800	5	2	0,5	0,1	200	4	26
KT3108A	200	-	60	60	5	300	50150	1	10	0,25	0,2	250	6	17
М4Д	40	100	{12}	15	1,5	75	50120	1	10	0,5	6	80	_	30
M4E	40	100	{12}	15	1,5	75	90200	1	10	0,5	6	80	_	30
П401	20	-	10	_	1	100	{16300}	5	5	_	10	{30}	_	22
П402	20	_	10	_	1	100	{16250}	5	5	_	5	{60}	_	22
П403	20	_	10	_	1	100	{30100}	5	5	-	5	{120}	_	22
П403А	20	-	10	_	1	100	{16200}	5	5	-	5	{120}	-	22
П414	10	30	10	10	1	100	{25100}	5	5	-	4	60	_	31
П414А	10	30	10	10	1	100	{60120}	5	5	_	4	60	_	31
П414Б	10	30	10	10	1	100	{100200}	5	5	-	4	{60}	_	31
П415	10	30	10	10	1	100	{25100}	5	5	_	4	{120}	_	31
П415А	10	30	10	10	1	100	{60120}	5	5	_	4	{120}	_	31
П415Б	10	30	10	10	1	100	{100200}	5	5	_	4	{120}	-	31

Москатов Е. А. Справочник по полупроводниковым приборам. http://moskatov.narod.ru

			Предельные	значен	ия		Значения параметров							
Тип прибора		па	раметров при	при Тп = 25 °C										
	Ік. макс, мА	Ік.и. макс, мА	Uкэ _R .макс, {Uкэо.гр}, [Uкэо.макс], В	Uкбо. макс, В	Uэбо. макс, В	Рк.макс,	$h_{21}\mathfrak{I}_{,}$ $\{h_{219}\}$	Uкб, {Uкэ}, В	Iэ, {Iк}, мА	Uкэ. нас, В	Ікбо,	fгр, {fмакс}, МГц	Кш, дБ	Ри- су- нок
П416	25	120	12	15	3	100	2580	5	5	2	5	40	_	22
П416А	25	120	12	15	3	100	60125	5	5	1,7	5	60	-	22
П416Б	25	120	12	15	3	100	90200	5	5	1,7	5	80	1	22
П417	10	_	{8}	-	0,7	50	{24100}	5	5	_	3	200	_	32
П417А	10	_	{8}	-	0,7	50	{65200}	5	5	_	3	200	_	32
П418И	10	_	{6,5}	-	0,3	50	60170	1	10	_	3	200	_	33
П418К	10	-	{6,5}	1	0,3	50	60170	1	10	_	3	200	1	33
П418Л	10	_	{7}	-	0,3	50	870	1	10	_	3	200	_	33
П418М	10	-	{7}	1	0,3	50	870	1	10	_	3	200	1	33
П422	20	-	10	1	_	100	{24100}	5	1	_	5	50	10	22
П423	20	_	10	Ī	_	100	{24100}	5	1	_	5	100	10	22
TM4A	40	100	{12}	15	1,5	75	2075	1	10	0,5	6	50	-	2

Как отличить транзисторы типов КТ315 от КТ361? У транзисторов серии КТ361 буква заключена в тире, а у КТ315 свободно стоит у края корпуса.

Как определить тип и буквы транзисторов серии КТ3107? На боковой поверхности корпуса транзистора находится голубая точка. Буквенный индекс определяется по цвету точки на торце транзистора. Розовая точка — А; жёлтая — Б; синяя — В; бежевая — Г; оранжевая — Д; электрик — Е; салатная — Ж; зелёная — И; красная — К; серая — Л.

Как определить тип и буквы транзисторов типов КТ326АМ и КТ326БМ? Эти транзисторы маркируются розовой и жёлтой точкой соответственно.

Транзисторы типа КТ350А в пластиковом корпусе маркируются точками серого и розового цветов.

Транзисторы типа КТ351А в пластиковом корпусе маркируются точками жёлтого и розового цветов, а транзисторы типа КТ351Б маркируются двумя жёлтыми точками.

Транзисторы типа КТ352A в пластиковом корпусе маркируются точками зелёного и розового цветов, а транзисторы типа КТ352Б маркируются точками зелёного и жёлтого цветов.

Транзисторы 2N2906, 2N2906A, 2N2907, 2N2907A имеют корпус TO-18. Длина выводов может быть 12,7 мм, а диаметр выводов — Ø0,48 мм. Ближайшие отечественные аналоги 2N2906, 2N2906A — КТ313A, а 2N2907, 2N2907A — КТ313Б.

Таблица 5.1.6. Транзисторы n-p-n малой мощности (Рк.макс $\leq 0,3$ Вт) высокой частоты (30 МГц < frp ≤ 300 МГц) [39, стр. 70-79], [18, стр. 134-135].

	Предельные значения						Значения параметров							
		па	раметров при	при Тп = 25 °C										
Тип прибора	Iк.	Ік.и.	Uкэ _к .макс,	Икбо .	Uэбо.	Рк.макс,	h ₂₁ Э,	Uкб,	Iэ,	Икэ.	Ікбо,	fгp,	Кш,	cy-
	макс,	макс,	{Икэо.макс},	макс,	макс,	{Рмакс},	-	{Uкэ},	{Iκ},	нас,	$\{I_{K}\mathfrak{I}_{R}\},$	$\{f_{h21}\},$	-	нок
	мА	мА	В	В	В	мВт	$\{h_{219}\}$	В	мА	В	мкА	МΓц	дБ	
2T3117A	400	800	60	60	4	{300}	40200	5	200	0,5	5	200	-	17
2Т3117Б	400	800	75	75	4	300	100300	{5}	200	0,6	10	250	-	17
2T3130B9	100	-	20	30	5	200	200500	5	{2}	0,2	0,1	_	-	20
2Т3130Г9	100	-	15	20	5	200	4001000	5	{2}	0,2	0,1	_	-	20
2Т3130Д9	100	-	20	30	5	200	200500	5	{2}	0,2	0,1	_	4	20
2T3130E9	100	-	15	20	5	200	4001000	5	{2}	0,2	0,1	_	-	20
2N2222	800	-	50	60	5	500	100300	10	150	_	0,01	250	-	17
SF136D	200	-	20	20	5	300	112280	1	10	_	0,1	300	7,8	17
SF136E	200	-	20	20	5	300	224560	1	10	_	0,1	300	7,8	17
SF136F	200	-	20	20	5	300	4501120	1	10	_	0,1	300	7,8	17
SF137D	200	-	40	40	5	300	112280	1	10	_	0,1	300	6,8	17
SF137E	200	-	40	40	5	300	224560	1	10	_	0,1	300	6,8	17
SF137F	200	-	40	40	5	300	4501120	1	10	_	0,1	300	6,8	17
ГТ311А	50	-	12	_	2	150	15180	3	15	0,3	5	_	-	34
ГТ311Б	50	-	12	_	2	150	30180	3	15	0,3	5	_	-	34
КТ312Б	30	60	35	_	4	{225}	25100	2	20	0,8	10	_	-	35
KT315A	100	I	25	_	6	150	2090	{10}	1	0,4	1	250	_	28
КТ315Б	100	-	20	_	6	150	50350	{10}	{1}	0,4	1	250	-	28
KT315B	100	-	40	_	6	150	2090	{10}	{1}	0,4	1	250	-	28
КТ315Г	100	-	35	_	6	150	50350	{10}	{1}	0,4	1	250	-	28
КТ315Д	100	-	40	_	6	150	2090	{10}	{1}	1	1	250	-	28
KT315E	100	-	35	_	6	150	50350	{10}	{1}	1	1	250	-	28
КТ315Ж	50	-	15	_	6	100	30250	{10}	{1}	0,5	1	150	_	28
КТ315И	50	-	60	_	6	100	30	{10}	{1}	_	1	250	_	28
КТ339А	25	-	{25}	40	4	260	25	10	7	_	1	300	_	117
KT339AM	25	-	{25}	40	4	260	25	10	7	_	1	300	-	118
КТ339Б	25	-	{12}	25	4	260	15	10	7	_	1	250	_	117
КТ339Г	25	-	{25}	40	4	260	40	10	7	_	1	250	_	117
КТ339Д	25	_	{25}	40	4	260	15	10	7	_	1	250	_	117
KT340A	50	200	{15}	-	5	{150}	100150	{1}	{10}	0,2	1	-	_	9
КТ340В	50	200	{15}	_	5	{150}	35	{2}	{200}	0,4	1	_	_	9
КТ340Г	75	500	{15}	15	5	{150}	16	{2}	{500}	0,6	1	300	_	9
КТ340Д	50	200	{15}	_	5	{150}	40	{1}	{10}	0,3	1	300	_	9
КТ342Б	50	200	25	_	5	150	200600	5	1	0,1	0,05	300	_	17
KT342B	50	300	10	_	-	250	1001000	{5}	1	0,1	0,05	_	_	17
КТ342Г	50	300	60	-	_	250	{50125}	{5}	{1}	0,2	0,05	300	_	17

Москатов Е. А. Справочник по полупроводниковым приборам. http://moskatov.narod.ru

			Предельные						ения п	1				
		пај	раметров при	$T\pi = 2$	25 °C			П	ри Тп	= 25 °	С			Ри-
Тип прибора	Ік.	Ік.и.	Uкэ _к .макс,	Икбо.	Uэбо.	Рк.макс,	h ₂₁ Э,	Uкб,	Iэ,	Икэ.	Ікбо,	fгp,	Кш,	cy-
	макс,	макс,	{Икэо.макс},	макс,	макс,	{Рмакс},	·	{Uкэ},	$\{I_K\},$	нас,	$\{I\kappa\mathfrak{I}_R\},$	$\{f_{h21}\},$,	нок
	мА	мА	В	В	В	мВт	$\{h_{219}\}$	В	мА	В	мкА	МΓц	дБ	
КТ358Б	30	60	30	-	4	{100}	25100	{5,5}	20	0,8	10	120	-	27
KT373A	50	200	30	-	5	150	100250	5	1	0,1	0,05	250	-	36
КТ373В	50	200	10	-	5	150	5001000	5	1	0,1	0,05	-	-	36
КТ373Г	50	200	60	-	5	150	50125	5	1	0,1	0,05	250	-	36
КТ375Б	100	200	30	30	5	200	50280	{2}	20	0,4	1	250	-	37
КТ379А	30	100	30	-	5	25	100250	5	{1}	0,1	0,05	250	-	35
КТ379Г	30	100	60	-	5	25	50125	5	{1}	0,2	0,05	-	-	35
KT3102A	100	200	{50}	50	5	{250}	100250	5	2	-	0,05	-	10	17
KT3102AM	200	_	50	-	-	250	100250	1	-	_	0,05	1	-	37
КТ3102Б	100	200	{50}	50	5	{250}	200500	5	2	-	0,05	-	10	17
КТ3102БМ	200	_	50	-	-	250	200500	-	-	-	0,05	-	-	37
KT3102B	100	200	{30}	30	5	{250}	200500	5	2	-	0,015	-	10	17
KT3102BM	200	_	30	-	-	250	200500	-	-	-	0,015	-	-	37
КТ3102Г	100	200	20	20	5	{250}	4001000	5	2	-	0,015	-	10	17
КТ3102ГМ	200	_	20	-	-	250	4001000	-	-	-	0,015	-	-	37
КТ3102Д	100	200	{30}	30	5	{250}	200500	5	2	-	0,015	-	4	17
КТ3102ДМ	200	_	30	-	-	250	200500	-	-	-	0,015	-	-	37
KT3102E	100	200	{50}	50	5	{250}	4001000	5	2	-	0,015	-	4	17
KT3102EM	200	_	20	-	-	250	4001000	-	-	-	0,015	-	-	37
КТ3102Ж	200	_	50	-	-	250	100250	-	_	-	0,05	_	_	37
КТ3102ЖМ	200	_	50	-	-	250	100250	1	-	_	0,05	1	_	37
КТ3102И	200	_	50	1	1	250	200500	1	_	-	0,05	1	-	37
КТ3102ИМ	200	_	50	-	1	250	200500	1	-	_	0,05	-	_	37
КТ3102К	200	_	30	1	1	250	200500	1	_	-	0,015	1	-	37
KT3102KM	200	_	30	-	1	250	200500	1	-	_	0,015	-	_	37
KT3117A	400	800	50	60	4	300	40200	5	200	0,6	10	200	_	17

Как определить тип и буквы транзисторов серии КТ3102 в пластиковом корпусе? На боковой поверхности корпуса транзистора находится зелёная точка. Буквенный индекс определяется по цвету точки на торце транзистора. Тёмно-красная точка — КТ3102AM; жёлтая — КТ3102БМ; тёмно-зелёная — КТ3102BM; голубая — КТ3102ГМ; синяя — КТ3102ДМ; белая — КТ3102ЕМ.

Как определить тип и буквы транзисторов серии КТ342 в пластиковом корпусе? Транзистор типа КТ342AM имеет маркировку: прямоугольный треугольник и буква "А" или синяя метка на боковой поверхности и тёмно-красная на торце; КТ342БМ имеет маркировку: треугольник и буква "Б" или синяя метка на боковой поверхности и жёлтая на торце; КТ342ВМ имеет маркировку: треугольник и буква "В" или синяя метка на боковой поверхности и тёмно-зелёная на торце.

Транзисторы 2N2222, SF136D, SF136E, SF136F, SF137D, SF137E, SF137F имеют корпус ТО-18. Длина выводов может быть 12,7 мм, а диаметр выводов – Ø0,48 мм. Ближайшие отечественные аналоги 2N2222 - KT3117A, SF136D - KT342A, SF136E – КТ342Б, SF136F – КТ342В, SF137D – КТ342А, SF137E – КТ342Б, SF137F – KT342B.

Ниже показаны типовые входные характеристики транзисторов КТ315А, КТ315Б, КТ315В, КТ315Г и типовые выходные характеристики транзистора КТ315Г [27].

Рисунок 1. Типовые входные

среды (в схеме с общем эмиттером).

характеристики транзисторов типа КТ315А, КТ315Б, КТ315В, КТ315Г при различной температуре окружающей

Рисунок 2. Выходные характеристики транзистора типа КТ315Г (в схеме с общем эмиттером и при температуре окружающей среды 20 °C).

5 10 15 20 25 30 35 40 Uкэ, B

Таблица 5.1.7. Транзисторы p-n-p малой мощности (Рк.макс \leq 0,3 Вт) сверхвысокой частоты (fгр > 300 МГц) [39, стр. 80-83].

			Предельные	значен	ия				ения п	•	•			
		па	раметров при	$T\Pi = 2$	25 °C			пр	уи Тп	= 25 °	С		ı	Ри-
Тип прибора	Ік.	Ік.и. макс,	Uкэ _к .макс, {Uкэо.гр},	Икбо. макс,	Uэбо. макс,	Рк.макс, мВт	$h_{21}\Theta$	Uкб, {Uкэ},	Ιэ,	Uкэ. нас,	Ікбо,	frp,	Кш,	су-
	мА	мА	В	В	В	MDT		В	мА	В	мкА	ГГц	дв	
1T313A	50	1	{7}	12	0,7	100	10230	{3}	15	0,7	5	0,31	8	34
1Т313Б	50	-	{7}	12	0,7	100	1075	{3}	15	0,7	5	0,451	8	34
1T313B	50	_	{7}	12	0,7	100	30230	{3}	15	0,7	5	0,451	8	34
1T376A	10	-	{7}	7	0,25	35	10150	5	2	_	5	1	4	24
1T386A	10	ļ	{15}	15	0,3	40	10100	5	3	_	10	0,45	4	24
2Т326Б	50	-	15	20	4	250	45160	2	10	1,2	0,5	0,4	-	17
2Т360Б-1	20	75	15	20	4	10	40120	2	10	0,35	1	0,4	-	18
2T360B-1	20	75	15	20	4	10	80240	2	10	0,35	1	0,4	-	18
2T363A	30	50	15	15	4	150	2070	5	5	0,35	0,5	1,2	_	17
2Т363Б	30	50	12	15	4	150	40120	5	5	0,35	0,5	1,5	-	17
2T389A-2	300	ı	{25}	25	4	300	25100	1	200	0,6	1	0,45	_	47
ГТ313А	30	ı	15	15	0,7	150	20200	5	5	0,7	5	0,351	8	34
ГТ313Б	30	ı	15	15	0,7	150	20200	5	5	0,7	5	0,451	8	34
ГТ313В	30	ı	15	15	0,7	150	30170	5	5	0,7	5	0,351	8	34
ГТ328А	10	ı	{15}	15	0,25	50	20200	5	3	_	10	0,4	7	34
ГТ346А	10	ı	15	20	0,3	50	10150	10	2	_	10	0,7	7	24
ГТ346Б	10	-	15	20	0,3	50	10150	10	2	_	10	0,55	8	24
ГТ346В	10	-	15	20	0,3	50	15150	10	2	_	10	0,55	7	24
ГТ376А	10	-	{7}	7	0,25	35	10150	5	2	_	5	1	4	24
KT326A	50	-	15	20	4	200	2070	2	10	1,2	0,5	0,4	-	17
КТ326Б	50	-	15	20	4	200	45160	2	10	1,2	0,5	0,4	-	17
КТ337А	30	-	6	6	4	150	3070	{0,3}	10	0,2	1	0,5	-	17
КТ337Б	30	-	6	6	4	150	5075	{0,3}	10	0,2	1	0,6	-	17
КТ337В	30	-	6	6	4	150	70120	{0,3}	10	0,2	1	0,6	-	17
KT345A	200	300	20	20	4	100	2060	{1}	100	0,3	1	0,35	-	26
КТ345Б	200	300	20	20	4	100	5085	{1}	100	0,3	1	0,35	-	26
KT345B	200	300	20	20	4	100	70105	{1}	100	0,3	1	0,35	-	26
KT347A	50	110	15	15	4	150	30400	0,3	10	0,3	1	0,5	-	17
КТ347Б	50	110	9	9	4	150	30400	0,3	10	0,3	1	0,5	-	17
КТ347В	50	110	6	6	4	150	50400	0,3	10	0,3	1	0,5	-	17
КТ360Б-1	20	75	15	20	4	10	40140	2	10	0,35	1	0,4	_	18
KT360B-1	20	75	15	20	4	10	80240	2	10	0,35	1	0,4	-	18
КТ363А	30	50	15	15	4	150	2070	5	5	0,35	0,5	1,2	-	17
KT363AM	30	50	15	15	4	150	2070	5	5	0,35	0,5	1,2	_	26
КТ363Б	30	50	12	15	4	150	40120	5	5	0,35	0,5	1,5	_	17
КТ363БМ	30	50	12	15	4	150	40120	5	5	0,35	0,5	1,5	_	26

			Предельные	значен	ия			Значе	ения п	араме	тров			
		па	раметров при	$T_{\Pi} = 2$	25 °C			пр	и Тп =	= 25 °	C			Ри-
Тип прибора	Iк. макс, мА	Ік.и. макс, мА	Uкэ _R .макс, {Uкэо.гр}, В	Икбо. макс, В	Uэбо. макс, В	Рк.макс, мВт	h ₂₁ Э	Uкб, {Uкэ}, В	Iэ, мА	Uкэ. нас, В	Ікбо, мкА	fгр, ГГц	Кш, дБ	су-
КТ389Б-2	300	_	{25}	25	4	300	25100	1	200	0,6	1	0,45	_	47
KT3126A	20	_	20	20	3	150	25150	5	3	1,2	1	0,6	_	37
КТ3126Б	20		20	20	3	150	60180	5	3	1,2	1	0,6	_	37
KT3127A	20		20	20	3	100	25150	5	3	_	1	0,6	5	24
KT3128A	20		20	20	3	100	15150	5	3	_	1	0,8	5	24
П418Г	10		{7}	10	0,3	50	870	1	10	_	3	0,4	_	33
П418Д	10		{7}	10	0,3	50	870	1	10	_	3	0,4	_	33
П418Е	10	_	6,5	10	0,3	50	60170	1	10	_	3	0,4	_	33
П418Ж	10	_	6,5	10	0,3	50	60170	1	10	-	3	0,4	-	33

Таблица 5.1.8. Транзисторы n-p-n малой мощности (Рк.макс \leq 0,3 Вт) сверхвысокой частоты (frp > 300 МГц) [39].

			Предельные	значен	ИЯ			Значе	ения п	араме	тров			
		па	раметров при	$T\pi = 2$	25 °C			пр	ои Тп =	= 25 °	C			Ри-
Тип прибора	Iκ.	Ік.и.	Uкэ _к .макс,	Икбо.	Uэбо.	Рк.макс,		Uкб,	Iэ,	Икэ.	Ікбо,	frp,	Кш,	су-
	макс,	макс,	{Икэо.макс},	макс,	макс,	{Рмакс},	$h_{21}\Theta$	{Uкэ},	{Iκ},	нас,	мкА	ГГц	дБ	nok
	мА	мА	В	В	В	мВт		В	мА	В	WILL I	1114	дь	
1T311A	50	_	12	12	2	{150}	15180	3	15	0,3	5	0,3	8	34
1Т311Б	50	-	12	12	2	{150}	30180	3	15	0,3	5	0,3	_	34
1Т311Г	50	_	12	12	2	{150}	3080	3	15	0,3	5	0,45	_	34
1Т311Д	50	_	12	12	2	{150}	60180	3	15	0,3	5	0,6	_	34
1Т311К	50	_	12	12	2	{150}	60180	3	15	0,3	5	0,45	_	34
1Т311Л	50	_	12	12	2	{150}	150300	3	15	0,3	5	0,6	_	34
2T355A	30	60	15	15	4	{225}	80300	5	{10}	_	0,5	1,5	-	38
2T366B-1	45	70	{10}	15	4,5	{90}	50200	{1}	15	0,25	0,1	1	_	39
2T368A	30	60	15	15	4	{225}	50300	1	{10}	_	0,5	0,9	_	24
2Т368Б	30	60	15	15	4	{225}	50300	1	{10}	_	0,5	0,9	3,3	24
2T396A-2	40	40	10	15	3	{30}	40250	2	{5}	_	0,5	2,1	_	40
ГТ311В	50	_	12	12	2	150	1550	3	15	0,3	5	0,45	_	34
ГТ311Г	50	_	12	12	2	150	3080	3	15	0,3	5	0,45	_	34
ГТ311И	50	_	10	10	1,5	{150}	100300	3	15	0,3	10	0,45	_	34
KT306A	30	50	10	15	4	{150}	2060	{1}	10	0,3	0,5	0,3	8	41
KT316A	50	50	10	10	4	{150}	2060	{1}	10	0,4	0,5	0,6	_	9
КТ316Б	50	50	10	10	4	{150}	40120	{1}	10	0,4	0,5	0,8	_	9
KT316B	50	50	10	10	4	{150}	40120	{1}	10	0,4	0,5	0,8	_	9
КТ316Г	50	50	10	10	4	{150}	20100	{1}	10	0,4	0,5	0,6	_	9
КТ316Д	50	50	10	10	4	{150}	60300	{1}	10	0,4	0,5	0,8	_	9
KT325A	30	60	15	15	4	{225}	3090	5	{10}	_	0,5	0,8	2,5	42
КТ325Б	30	60	15	15	4	{225}	70210	5	{10}	_	0,5	0,8	_	42
КТ325В	30	60	15	15	4	{225}	160400	5	{10}	_	0,5	1	_	42
КТ366В	45	70	{10}	15	4,5	{90}	50200	{1}	15	0,25	0,1	1	_	39
КТ368А	30	60	15	15	4	{225}	50300	1	{10}	-	0,5	0,9	_	24
КТ368Б	30	60	15	15	4	{225}	50300	1	{10}	-	0,5	0,9	3,3	24
KT396A-2	40	40	10	15	3	{30}	40250	2	{5}	_	0,5	2,1	_	40

Транзисторы типа КТ396А-9 маркируются одной зелёной точкой.

Таблица 5.1.9. Транзисторы p-n-p средней мощности (0,3 Bт < Pк.макс \leq 1,5 Bт) низкой частоты (fгp \leq 3 МГц) [39].

		Пре	едельные	значе	ния			Значе	ения пара	метров			
		парам	етров при	₁ Тп =	25 °C			пр	ои Тп = 2	5°C			Ри-
Тип прибора	Ік.	Uкэ _R . макс,	Рк.макс,	T, °C	Тп. макс,	Тмакс,	h ₂₁ Э	Uкб, {Uкэ},	Іэ, мА	Ікбо, мкА	f _{h21} , МГп	Rтп-с, °С / Вт	су-
	A	В	D1		°C			В	1417 1	WIKZ	МПЦ	CIBI	
ГТ402А	0,5	25	0,6	_	85	55	3080	1	3	20	1	100	43
ГТ402Б	0,5	25	0,6	_	85	55	60150	1	3	20	1	100	43
ГТ402В	0,5	40	0,6	_	85	55	3080	1	3	20	1	100	43
ГТ402Г	0,5	40	0,6	_	85	55	60150	1	3	20	1	100	43
ГТ402Д	0,5	25	0,6	25	85	55	3080	1	3	25	1	100	43
ГТ402Е	0,5	25	0,6	25	85	55	60150	1	3	25	1	100	43
ГТ402Ж	0,5	40	0,6	25	85	55	3080	1	3	25	1	100	43
ГТ402И	0,5	40	0,6	25	85	55	60150	1	3	25	1	100	43
ГТ405А	0,5	25	0,6	25	85	55	3080	{1}	3	25	1	100	44
ГТ405Б	0,5	25	0,6	25	85	55	60150	{1}	3	25	1	100	44
ГТ405В	0,5	40	0,6	25	85	55	3080	{1}	3	25	1	100	44
ГТ405Г	0,5	40	0,6	25	85	55	60150	{1}	3	25	1	100	44
KT502A	0,15	25	0,35	25	125	85	40120	5	10	1	5	214	37
КТ502Б	0,15	25	0,35	25	125	85	80240	5	10	1	5	214	37
KT502B	0,15	40	0,35	25	125	85	40120	5	10	1	5	214	37
КТ502Г	0,15	40	0,35	25	125	85	80240	5	10	1	5	214	37
КТ502Д	0,15	60	0,35	25	125	85	40120	5	10	1	5	214	37
KT502E	0,15	80	0,35	25	125	85	40120	5	10	1	5	214	37

Как определить тип и буквы транзисторов серии КТ502? На боковой поверхности корпуса транзистора находится жёлтая точка. Буквенный индекс определяется по цвету точки на торце транзистора. Красная точка — А; жёлтая — Б; зелёная — В; голубая — Γ ; синяя — Д; белая — Е.

Таблица 5.1.10. Транзисторы n-p-n средней мощности $(0,3 \text{ Bt} < \text{Рк.макс} \le 1,5 \text{ Bt})$ низкой частоты (frp $\le 3 \text{ M}\Gamma$ ц) [39].

		Предел	ьные зн	ачени	Я			Зна	чения па	араметро	ЭВ		
		параметро	ов при Т	$\Gamma_{\Pi} = 25$	5°C			1	при Тп =	= 25 °C			Ри-
Тип прибора	Iк. макс, А	Uкэ _R .макс, {Uкэо.макс}, В	Рк. макс, Вт	T, °C	Тп. макс, °C	Тмакс, °С	h ₂₁ Э	Uкб, В	Iэ, {Iк}, мА	Ікбо, мкА	fгр, МГц	Rтп-с, °С / Вт	су-
ГТ404А	0,5	25	0,6	25	85	55	3080	1	3	25	1	100	43
ГТ404Б	0,5	25	0,6	25	85	55	60150	1	3	25	1	100	43
ГТ404В	0,5	40	0,6	25	85	55	3080	1	3	25	1	100	43
ГТ404Г	0,5	40	0,6	25	85	55	60150	1	3	25	1	100	43
ГТ404Д	0,5	25	0,6	25	85	55	3080	1	3	25	1	100	43
ГТ404Е	0,5	25	0,6	25	85	55	60150	1	3	25	1	100	43
ГТ404Ж	0,5	40	0,6	25	85	55	3080	1	3	25	1	100	43
ГТ404И	0,5	40	0,6	25	85	55	60150	1	3	25	1	100	43
KT503A	0,15	{25}	0,35	_	125	-	40120	5	{10}	1	5	214	37
КТ503Б	0,15	{25}	0,35	-	125	1	80240	5	{10}	1	5	214	37
KT503B	0,15	{40}	0,35	_	125	ı	40120	5	{10}	1	5	214	37
КТ503Г	0,15	{40}	0,35	_	125	Ī	80240	5	{10}	1	5	214	37
КТ503Д	0,15	{60}	0,35	_	125	ı	40120	5	{10}	1	5	214	37
KT503E	0,15	{80}	0,35	_	125	ı	40120	5	{10}	1	5	214	37

Транзисторы серии ГТ404 выпускаются в металлическом герметичном корпусе с гибкими выводами. Имеются два варианта корпусов, рассчитанные на предельную мощность 300 мВт и 600 мВт; соответственно масса 2 и 5 г.

Как определить тип и буквы транзисторов серии КТ503? На боковой поверхности корпуса транзистора находится белая точка. Буквенный индекс определяется по цвету точки на торце транзистора. Красная точка — А; жёлтая — Б; зелёная — В; голубая — Γ ; синяя — Д; белая — Е.

Таблица 5.1.11. Транзисторы p-n-p средней мощности (0,3 Bт < Pк.макс \leq 1,5 Bт) высокой частоты (30 М Γ ц < frp \leq 300 М Γ ц) [39].

			Предельные	значен	ия			Значен	ия пар	аметров			
		па	араметров при	и Тп = 2	25 °C			при	$T\pi = 2$	25 °C			
Тип прибора	Ік. макс, А	Ік.и. макс, А	Uкэо.гр, {Uкэо.макс}, [Uкэ _R .макс], В	Икбо. макс, В	Uэбо. макс, В	Рк.макс, {Рмакс}, Вт	h ₂₁ Э	Uкб, {Uкэ}, В	Іэ, {Iк}, мА	Uкэ.нас, В	Ікбо,	fгр, МГц	Ри- су- нок
2T313A	0,6	0,7	[50]	60	5	1,5	30120	10	1	0,5	0,5	200	9
2Т313Б	0,6	0,7	[50]	60	5	1,5	80300	10	1	0,5	0,5	200	9
2T629AM-2	1	_	50	50	4,5	1	2580	1,5	500	0,8	5	250	45
2T632A	0,1	0,35	[120]	120	5	0,5	50	{10}	1	0,5	1	200	46
KT629A	1	_	40	50	4,5	1	25150	5	200	1,0	5	250	47
KT629AM-2	1	_	[50]	50	4,5	1	25150	5	200	1	5	250	45
КТ632Б	0,1	_	[100]	_	5	0,5	30	{10}	1	0,8	10	200	46
KT644A	0,6	1	60	60	5	1	40120	10	150	0,4	0,1	200	48
КТ644Б	0,6	1	60	60	5	1	100300	10	150	0,4	0,1	200	48
КТ644В	0,6	1	40	60	5	1	40120	10	150	0,4	0,1	200	48
КТ644Г	0,6	1	40	60	5	1	100300	10	150	0,4	0,1	200	48
КТ668А	0,1	_	{45}	50	5	0,5	75140	5	2	0,3	15	200	37
КТ668Б	0,1	_	{45}	50	5	0,5	125250	5	2	0,3	15	200	37
КТ668В	0,1	_	{45}	50	5	0,5	220475	5	2	0,3	15	200	37
П607	0,3	0,6	25	30	1,5	{1,5}	2080	{3}	{250}	2	300	60	49
П607А	0,3	0,6	25	30	1,5	{1,5}	60200	{3}	{250}	2	300	60	49
П608	0,3	0,6	25	30	1,5	{1,5}	40120	{3}	{250}	2	300	90	49
П608А	0,3	0,6	25	30	1,5	{1,5}	80240	{3}	{250}	2	300	90	49
П608Б	0,3	0,6	40	50	1,5	{1,5}	40120	{3}	{250}	2	500	90	49
П609	0,3	0,6	25	30	1,5	{1,5}	40120	{3}	{250}	2	300	120	49
П609А	0,3	0,6	25	30	1,5	{1,5}	80240	{3}	{250}	2	300	120	49
П609Б	0,3	0,6	40	50	1,5	{1,5}	80240	{3}	{250}	2	500	120	49

Таблица 5.1.12. Транзисторы n-p-n средней мощности (0,3 Bт < Pк.макс \leq 1,5 Bт) высокой частоты (30 М Γ ц < fгp \leq 300 М Γ ц) [39].

			Предельные	значені	RN			Значен	ия пара	аметро	В		
		Па	араметров при	и Тп = 2	25 °C			при	$T_{\Pi}=2$	5°C			
Тип прибора	Ік. макс, А	Ік.и. макс, А	Uкэ _к .макс, {Uкэо.гр}, В	Икбо. макс, В	Uэбо. макс, В	Рк.макс, Вт	h ₂₁ Э	Uкб, {Uкэ}, В	Іэ, {Ικ}, мА	Uкэ. нас, В	Ікбо, {Ікэ _R }, [Ікэо], мкА	fгр, МГц	Ри- су- нок
2T603A	0,3	0,6	30	30	3	0,5	2080	2	150	0,8	3	200	50
2Т603Б	0,3	0,6	30	30	3	0,5	60180	2	150	0,8	3	200	50
2T603B	0,3	0,6	15	15	3	0,5	2080	2	150	0,8	3	200	50
2Т603Г	0,3	0,6	15	15	3	0,5	60180	2	150	0,8	3	200	50
2Т603И	0,3	0,6	30	30	3	0,5	20210	2	350	1,2	3	200	50
2T608A	0,4	0,8	60	60	4	0,5	2580	5	200	1	10	200	16
2Т608Б	0,4	0,8	60	60	4	0,5	50160	5	200	1	10	200	16
KT601A	0,03	-	100	100	2	0,5	16	{20}	10	_	{500}	40	16
KT601AM	0,03	-	100	100	2	0,5	16	{20}	10	_	{500}	40	58
KT603A	0,3	0,6	30	30	3	0,5	1080	2	150	1	10	200	50
КТ603Б	0,3	0,6	30	30	3	0,5	60	2	150	1	10	200	50
КТ603В	0,3	0,6	15	15	3	0,5	1080	2	150	1	5	200	50
КТ603Г	0,3	0,6	15	15	3	0,5	60	2	150	1	5	200	50
КТ603Д	0,3	0,6	10	10	3	0,5	2080	2	150	1	1	200	50
KT603E	0,3	0,6	10	10	3	0,5	60200	2	150	1	1	200	50
KT605A	0,1	0,2	250	300	5	0,4	1040	40	20	8	[20]	40	16
KT605AM	0,1	0,2	250	300	5	0,4	1040	40	20	8	[20]	40	58
КТ605Б	0,1	0,2	250	300	5	0,4	30140	40	20	8	[20]	40	16
КТ605БМ	0,1	0,2	250	300	5	0,4	30140	40	20	8	[20]	40	58
KT608A	0,4	0,8	60	60	4	0,5	2080	5	200	1	10	200	16
КТ608Б	0,4	0,8	60	60	4	0,5	40160	5	200	1	10	200	16
KT630A	1	2	{90}	120	7	0,8	40120	{10}	{150}	0,3	{1}	50	83
КТ630Б	1	2	{80}	120	7	0,8	80240	{10}	{150}	0,3	{1}	50	83
КТ630В	1	2	{100}	150	7	0,8	40120	{10}	{150}	0,3	{1}	50	83
КТ630Г	1	2	{60}	100	7	0,8	40120	{10}	{150}	0,3	{1}	50	83
КТ630Д	1	2	{50}	60	7	0,8	80240	{10}	{150}	0,3	{1}	50	83
KT630E	1	2	{50}	60	_	0,8	160480	{10}	{150}	0,3	{1}	50	83
KT645A	0,3	0,6	50	60	4	0,5	20200	2	150	0,5	10	200	51
КТ645Б	0,3	0,6	40	40	4	0,5	80	10	2	0,5	10	200	51
КТ646А	1	1,2	50	60	4	1	40200	5	200	0,85	10	200	48
КТ646Б	1	1,2	40	40	4	1	150200	5	200	0,85	10	200	48
КТ620Б	_	_	20	50	4	0,5	30100	5	{200}	1	5	200	16

Транзисторы КТ645 – это высокочастотные малошумящие транзисторы, которые используют в УНЧ, генераторах, преобразователях частоты, стабилизаторах.

Таблица 5.1.13. Транзисторы p-n-p большой мощности (Рк.макс > 1,5 Вт) низкой частоты (frp ≤ 3 МГц) [39].

			Предельные	значени	R				ения пар		ОВ		
		па	араметров при	$T\pi = 2$	5°C			П	ри Тп =	25 °C			
Тип прибора	Ік. макс, А	Ік.и. макс, А	Uкэо.гр, {Uкэо.макс}, [Uкэ _R .макс], В	Икбо. макс, В	Uэбо. макс, В	Рк.макс, {Рмакс}, Вт	h_{21} 3, $\{h_{219}\}$	Uкэ, {Uкб}, В	Ικ, {Ι϶}, Α	Uкэ. нас, В	Ікбо, {Ікэо}, мА	fгр, {f _{h21} }, МГц	Ри- су- нок
1T403A	1,25	_	{30}	45	20	4	{2060}	{5}	{0,1}	0,5	{5}	0,008	52
1Т403Б	1,25	_	{30}	45	20	4	{50150}	{5}	{0,1}	0,5	{5}	0,008	52
1T403B	1,25	_	{45}	60	20	5	{2060}	{5}	{0,1}	0,5	{5}	0,008	52
1Т403Г	1,25	_	{45}	60	20	4	{50150}	{5}	{0,1}	0,5	{5}	0,008	52
1Т403Д	1,25	_	{45}	60	20	4	{50150}	{5}	{0,1}	0,5	{5}	0,008	52
1T403E	1,25	-	{45}	60	20	5	30	{1}	{0,45}	0,5	{5}	0,008	52
1T702A	30	-	{60}	60	4	150	15100	{1,5}	30	1,2	12	0,12	53
1Т702Б	30	_	{60}	60	4	150	20100	{1,5}	30	0,6	12	0,12	53
1T702B	30	_	{40}	60	4	150	15100	{1,5}	30	0,6	12	0,12	53
2T818A	15	20	80	100	5	100	20	{5}	{5}	1	-	3	54
2T818A-2	15	20	80	100	5	40	20	{5}	{5}	1	-	3	55
2Т818Б	15	20	60	80	5	100	20	{5}	{5}	1	-	3	54
2Т818Б-2	15	20	60	80	5	40	20	{5}	{5}	1	-	3	55
2T818B	15	20	40	60	5	100	20	{5}	{5}	1	-	3	54
2T818B-2	15	20	40	60	5	40	20	{5}	{5}		-	3	55
ГТ403А	1,25	_	{30}	45	20	4	{2060}	{5}	{0,1}	0,5	{5}	0,008	52
ГТ403Б	1,25	_	{30}	45	20	4	{50150}	{5}	{0,1}	0,5	{5}	0,008	52
ГТ403В	1,25	-	{45}	60	20	5	{2060}	{5}	{0,1}	0,5	{5}	0,008	52
ГТ403Г	1,25	_	{45}	60	20	4	{50150}	{5}	{0,1}	0,5	{5}	0,008	52
ГТ403Ю	1,25	-	{30}	45	20	4	{3060}	{5}	{0,1}	0,5	{5}	0,008	52
ГТ701А	12	_	120	_	15	50	10	2	5	_	6	{0,05}	56
ГТ703А	3,5	-	[20]	_	_	15	3070	1	0,05	0,6	0,5	0,01	57
ГТ703Б	3,5	-	[20]	_	_	15	50100	1	0,05	0,6	0,5	0,01	57
ГТ703В	3,5	_	[30]	_	_	15	3070	1	0,05	0,6	0,5	0,01	57
ГТ703Г	3,5	-	[30]	_	_	15	50100	1	0,05	0,6	0,5	0,01	57
ГТ703Д	3,5	-	[40]	_	_	15	2045	1	0,05	0,6	0,5	0,01	57
KT814A	1,5	3	25	_	5	10	40	{2}	{0,15}	0,6	0,05	3	58
КТ814Б	1,5	3	40	_	_	10	40	{2}	{0,15}	0,6	0,05	3	58
KT814B	1,5	3	60	_	_	10	40	{2}	{0,15}	0,6	0,05	3	58
КТ814Г	1,5	3	80	_	_	10	30	{2}	{0,15}	0,6	0,05	3	58
KT816A	3	6	25	_	_	25	25	{2}	2	0,6	0,1	3	58
КТ816Б	3	6	45	_	_	25	25	{2}	2	0,6	0,1	3	58
KT816B	3	6	60	_	_	25	25	{2}	2	0,6	0,1	3	58
КТ816Г	3	6	80	_	_	25	25	{2}	2	0,6	0,1	3	58
KT818A	10	15	25	_	5	60	15	{5}	5	2	1	3	55

			Предельные	значени	R			Знач	ения пај	раметр	ОВ		
		П	праметров при	$T\pi = 2$	5°C			П	ри Тп =	25 °C			
Тип прибора	Ік. макс, А	Ік.и. макс, А	Uкэо.гр, {Uкэо.макс}, [Uкэ _R .макс], В	Икбо. макс, В	Uэбо. макс, В	Рк.макс, {Рмакс}, Вт	h_{21} 3, $\{h_{219}\}$	Uкэ, {Uкб}, В	Ικ, {Ι϶}, Α	Uкэ. нас, В	Ікбо, {Ікэо}, мА	fгр, {f _{h21} }, МГц	Ри- су- нок
KT818AM	15	20	25	_	5	100	20	5	5	1	_	3	54
КТ818Б	10	15	40	_	5	60	20	{5}	5	2	1	3	55
КТ818БМ	15	20	40	_	5	100	20	5	5	1	_	3	54
KT818B	10	15	60	_	5	60	15	{5}	5	2	1	3	55
KT818BM	15	20	60	_	5	100	20	5	5	1	_	3	54
КТ818Г	10	15	80	_	5	60	12	{5}	5	2	1	3	55
КТ818ГМ	15	20	80	_	5	100	20	5	5	1	-	3	54
KT820A-1	0,5	1,5	40	_	5	10	40	{2}	0,15	0,5	0,03	3	59
КТ820Б-1	0,5	1,5	60	_	5	10	40	{2}	0,15	0,5	0,03	3	59
KT820B-1	0,5	1,5	80	_	5	10	30	{2}	0,15	0,5	0,03	3	59
KT822A-1	2	4	45	_	_	20	25	2	1	0,6	0,05	3	59
КТ822Б-1	2	4	60	_	_	20	25	2	1	0,6	0,05	3	59
KT822B-1	2	4	80	_	_	20	25	2	1	0,6	0,05	3	59
KT835A	3	_	30	30	_	_	25	{1}	{1}	0,35	0,1	3	55
КТ835Б	7,5	_	30	45	4	-	10100	5	2	2,5	0,15	3,0	55
П4АЭ	5	_	[50]	60	_	{20}	5	10	2	_	0,5	0,15	60
П4ГЭ	5	_	[50]	60	_	{25}	1530	10	2	0,5	0,4	0,15	60
П4ВЭ	5	_	[35]	40	_	{25}	10	10	2	0,5	0,4	0,15	60
П4ДЭ	5	_	[50]	60	_	{25}	30	10	2	0,5	0,4	0,15	60
П201АЭ	1,5	2	[30]	45	_	{10}	40	10	0,2	2,5	0,4	0,2	61
П201Э	1,5	_	[30]	45	_	{10}	20	10	0,2	-	0,4	0,1	61
П202Э	2	2,5	[55]	70	_	{10}	20	10	0,2	2,5	0,4	0,1	61
П203Э	2	2,5	[55]	70	_	{10}	_	_	-	2,5	0,4	0,2	61
П207	25	_	{40}	_	_	100	515	_	-	_	16	-	62
П207А	25	_	{40}	_	_	100	512	_	-	_	16	-	62
П208	25	-	{60}	-	-	100	15	-	-	-	25	-	62
П208А	25	-	{60}	-	-	100	15	-	-	-	25	-	62
П209	12	_	{40}	-	_	60	15	-	-	-	8	{0,1}	63
П209А	12	-	{40}	-	-	60	15	-	-	-	8	{0,1}	63
П210	12	_	{60}	_	_	60	15	_	-	-	12	{0,1}	63
П210А	12	-	50	65	25	60	15	2	5	0,6	8	{0,1}	63
П210Б	12	-	{50}	65	25	45	10	2	5	-	15	{0,1}	63
П210В	12	-	{40}	45	25	45	10	2	5	-	15	{0,1}	63
П210Ш		9	50	_	25	{60}	1560	1	7	-	8	0,1	63
П213	5	_	{30}	45	_	{11,5}	2050	5	1	0,5	{20}	0,15	64
П213А	5	-	[30]	45	10	{10}	20	5	0,2	-	1	0,15	64
П213Б	5	_	[30]	45	10	{10}	40	5	0,2	2,5	1	0,15	64
П214	5	_	[45]	60	15	{10}	2060	5	0,2	0,9	{30}	0,15	64

			Предельные						ения пар	•	ОВ		
		па	раметров при	$T\pi = 2$	5°C			П	ри Тп =	25 °C			
Тип прибора	Ік.	Ік.и. макс,	Uкэо.гр, {Uкэо.макс},	Uкбо. макс,	Uэбо.	Рк.макс, {Рмакс},	h_{21} Θ ,	Uкэ, {Uкб},	Ік, {Іэ},	Uкэ. нас,	Ікбо, {Ікэо},	fгр, {f _{h21} },	Ри- су- нок
	A	A	[Uкэ _{к.} макс], В	В	В	Вт	$\{h_{219}\}$	В	A	В	мА	МΓц	
П214А	5	_	[55]	60	_	10	50150	5	0,2	0,9	{30}	0,15	64
П214Б	5	_	{45}	60	15	{11,5}	20150	5	0,2	0,9	{30}	0,15	64
П214В	5	-	[55]	60	_	{10}	20	5	0,2	2,5	{30}	0,15	64
П214Г	5	1	[55]	60	_	{10}	-	_	_	2,5	{30}	0,15	64
П215	5	Ī	{60}	80	15	{10}	20150	5	0,2	0,9	{30}	0,15	64
П216	7,5	-	{30}	40	15	{30}	18	0,75	4	0,75	{40}	0,1	64
П216А	7,5	-	{30}	40	15	{30}	{2080}	5	1	0,75	{40}	0,1	64
П216Б	7,5	-	[35]	35	15	{24}	10	3	2	0,5	1,5	0,1	64
П216В	7,5	-	[35]	35	15	{24}	30	3	2	0,5	2	0,1	64
П217	7,5	-	{45}	60	15	{30}	15	1	4	1	{50}	0,1	64
П217А	7,5	-	{45}	60	15	{30}	{2060}	5	1	1	{50}	0,1	64
П217Б	7,5	-	{45}	60	15	{30}	20	5	1	1	{50}	0,1	64
П217В	7,5	-	[60]	60	15	{24}	5	3	2	0,5	3	0,1	64
П302	0,5	-	30	30	_	7	10	{10}	{0,12}	_	0,1	{0,2}	65
П303	0,5	-	50	50	_	10	6	{10}	{0,12}	_	0,1	{0,1}	65
П303А	0,5	-	50	50	_	10	6	{10}	{0,12}	_	0,1	{0,1}	65
П304	0,5	-	65	65	_	10	5	{10}	{0,06}	-	0,1	{0,05}	65
П306	0,4	-	[60]	60	_	10	725	{10}	{0,1}	-	0,1	{0,05}	65
П306А	0,4	-	[80]	80	_	10	535	{10}	{0,05}	-	0,1	{0,05}	65

Таблица 5.1.14. Транзисторы n-p-n большой мощности (Рк.макс > 1,5 Вт) низкой частоты (fгр \leq 3 МГц) [39].

		Пр	оедельные знач	ения			Знач	ения па	рамет	ров		
		парам	метров при Тп	= 25 °C			П	ри Тп =	= 25 °C			
Тип прибора	Ік. макс, А	Ік.и.макс, А	Uкэо.гр, {Uкэ _R .макс}, [Uкэо.и.макс], В	Uэбо. макс, В	Рк.макс, Вт	h ₂₁ Э	Uкэ, {Uкб}, В	Ικ, Α	Uкэ. нас, В	Ікэо, {Ікбо}, [Ікэ _R], мА	fгр, МГц	Ри- су- нок
2TK235-40-0,5	25	40	40	6	{2000}	10	5	20	1,5	5	_	66
2TK235-40-1	25	40	90	6	{3300}	10	5	20	1,5	5	-	66
2T704A	2,5	4	[1000]	4	15	10100	15	1	5	[5]	3	67
2Т704Б	2,5	4	[700]	4	15	10100	15	1	5	[5]	3	67
2T713A	3	3	900	6	50	520	10	1,5	1	[1]	1,5	54
2T819A	15	20	80	5	100	20	{5}	5	1	[0,25]	3	54
2T819A-2	15	20	80	5	40	20	{5}	{5}	1	[3]	3	55
2Т819Б	15	20	60	5	100	20	{5}	5	1	-	3	54
2Т819Б-2	15	20	60	5	40	20	{5}	{5}	1	-	3	55
2T819B	15	20	40	5	100	20	{5}	5	1	-	3	54
2T819B-2	15	20	40	5	40	20	{5}	{5}	1	_	3	55
2T848A	15	_	400	7	35	20	5	15	1,5	5	3	57
2N3055	15	15	60	7	115	2070	4	4	_	[5]	0,8	115
2N3055E	15	15	60	7	115	2070	4	4	_	[1]	2,5	115
NJE3055	15	15	60	5	70	2070	4	4	_	[1]	2	113
KT704A	2,5	4	[1000]	4	15	10100	15	1	5	[5]	3	67
КТ704Б	2,5	4	[700]	4	15	10100	15	1	5	[5]	3	67
KT704B	2,5	4	[500]	4	15	10100	15	1	5	[5]	3	67
ГТ705А	3,5	_	{20}	_	15	3070	1	{0,05}	1	[1,5]	{0,01}	57
ГТ705Б	3,5	-	{20}	_	15	55100	1	{0,05}	1	[1,5]	{0,01}	57
ГТ705В	3,5	_	{30}	_	15	3070	1	{0,5}	1	[1,5]	{0,01}	57
ГТ705Г	3,5	-	{30}	_	15	50100	1	{0,5}	1	[1,5]	{0,01}	57
ГТ705Д	3,5	_	{20}	_	15	90250	1	{0,5}	1	[1,5]	{0,01}	57
KT815A	1,5	3	25	5	10	40	2	0,15	0,6	{0,05}	3	58
КТ815Б	1,5	3	40	5	10	40	2	0,15	0,6	{0,05}	3	58
KT815B	1,5	3	60	5	10	40	2	0,15	0,6	{0,05}	3	58
КТ815Г	1,5	3	80	5	10	30	2	0,15	0,6	{0,05}	3	58
KT817A	3	5	25	5	25	25	2	{1}	0,6	{0,1}	3	58
КТ817Б	3	5	45	5	25	25	2	{1}	0,6	{0,1}	3	58
KT817B	3	5	60	5	25	25	2	{1}	0,6	{0,1}	3	58
КТ817Г	3	5	80	5	25	25	2	{1}	0,6	{0,1}	3	58
KT819A	10	15	25	5	60	15	{5}	5	2	{1}	3	55
KT819AM	15	20	25	5	100	15	{5}	5	2	{1}	3	54
КТ819Б	10	15	40	5	60	20	{5}	5	2	{1}	3	55
КТ819БМ	15	20	40	5	100	20	{5}	5	2	{1}	3	54

		П	редельные знач	ения			Знач	ения па	арамет	ров		
		парал	метров при Тп	= 25 °C			П	ри Тп =	= 25 °C			
Тип прибора	Ік. макс, А	Ік.и.макс, А	Uкэо.гр, {Uкэ _R .макс}, [Uкэо.и.макс], В	Uэбо. макс, В	Рк.макс, Вт	h ₂₁ Э	Uкэ, {Uкб}, В	Ік, А	Uкэ. нас, В	Ікэо, {Ікбо}, [Ікэ _R], мА	fгр, МГц	Ри- су- нок
KT819B	10	15	60	5	60	15	{5}	5	2	{1}	3	55
KT819BM	15	20	60	5	100	15	{5}	5	2	{1}	3	54
КТ819Г	10	15	80	5	60	12	{5}	5	2	{1}	3	55
КТ819ГМ	15	20	80	5	100	12	{5}	5	2	5	3	54
KT821A-1	0,5	1,5	40	5	10	40	{2}	0,15	0,6	{0,03}	3	59
КТ821Б-1	0,5	1,5	60	5	10	40	{2}	0,15	0,6	{0,03}	3	59
KT821B-1	0,5	1,5	80	5	10	30	{2}	0,15	0,6	{0,03}	3	59
KT823A-1	3	4	45	5	20	25	2	1	0,6	{0,05}	3	68
КТ823Б-1	3	4	60	5	20	25	2	1	0,6	{0,05}	3	68
KT823B-1	3	4	80	5	20	25	2	1	0,6	{0,05}	3	68
KT838A	5	7,5	700	-	12,5	_	_	_	5	_	3	57
KT844A	10	16	{250}	4	50	1050	3	6	2,5	[3]	1	57
KT846A	5	-	{1500}		12	-	_	_	1	{1}	2	57
KT848A	15	_	400	15	35	20	5	15	2	5	ı	57

Транзисторы 2N3055 и 2N3055E оформлены в корпус типа TO-3, а NJE3055 — в корпус TO-220. Предназначены для применения в стабилизированных блоках питания. Аналог — КТ819ГМ. Выпускаются транзисторы 2N3055, имеющие размеры и цоколёвку, указанную на рисунке 54.

Таблица 5.1.15. Транзисторы p-n-p большой мощности (Рк.макс > 1,5 Вт) средней частоты (3 МГц < frp \le 30 МГц) [39].

		Пре	едельные знач	ения			Знач	нения і	параметро	В		
		параме	етров при Тп	= 25 °C			Ι	іри Тп	= 25 °C			
Тип прибо- ра	Ік.макс,	Ік.и.макс,	Uкэо.гр, {Uкэо.макс}, [Uкэ _R .макс], В	Uэбо. макс, В	Рк.макс, Вт	h ₂₁ Э	Uкэ, {Uкб}, В	Ικ, {Ι϶}, Α	Икэ.нас, В	Ікбо, {Ікэо}, [Ікэ _R], мА	fгр, МГц	Ри- су- нок
1T806A	20	25	40	2	30	10100	-	10	0,6	{12}	10	69
1Т806Б	20	25	65	2	30	10100	_	10	0,6	{12}	10	69
1T813A	30	40	60	2	50	1060	_	20	0,8	{16}	-	69
1T901A	10	_	40	-	15	2050	10	{5}	0,6	8	30	70
1Т901Б	10	_	30	_	15	40100	10	{5}	0,6	8	30	70
1T905A	3	7	65	_	6	35100	{10}	{3}	0,5	2	30	71
1T906A	10	-	65	1,4	15	30150	{10}	{5}	0,5	{8}	30	71
1Т910АД	10	20	25	_	35	50320	10	{10}	0,6	6	30	72
2T505A	1	2	250	5	5	25140	{10}	{0,5}	1,8	0,1	20	46
2Т505Б	1	2	200	5	5	25140	{10}	{0,5}	1,8	0,1	20	46
2T830A	2	4	25	12	5	2555	{1}	{1}	0,6	0,1	4	46
2Т830Б	2	4	45	5	5	2555	{1}	{1}	0,6	0,1	4	46
2T830B	2	4	60	5	5	2555	{1}	{1}	0,6	0,1	4	46
2T830B-1	2	4	60	5	25	25200	{2}	{1}	0,6	0,1	4	68
2Т830Г	2	4	80	5	5	2050	{1}	{1}	0,6	0,1	4	46
2Т830Г-1	2	4	80	5	25	25200	{2}	{1}	0,6	0,1	4	68
2T836A	3	4	80	5	5	20	{5}	{2}	0,6	0,1	4	73
2Т836Б	3	4	80	5	5	20	{5}	{2}	0,35	0,1	4	73
2T836B	3	4	40	5	5	20	{5}	{2}	0,45	0,1	4	73
2T842A	5	8	250	5	50	15	{15}	5	1,8	1	20	54
2T842A-1	5	8	250	5	30	10	{4}	{5}	1,8	1	10	55
2Т842Б	5	8	150	5	50	15	{15}	5	1,8	1	20	54
2Т842Б-1	5	8	150	5	30	10	{4}	{5}	1,8	1	10	55
2T860A	2	4	80	5	10	40160	{1}	{1}	0,35	0,1	10	46
2Т860Б	2	4	60	5	10	50200	{1}	{1}	0,35	0,1	10	46
2T860B	2	4	30	5	10	80300	{1}	{1}	0,35	0,1	10	46
2T883A	1	2	250	5	10	25	{10}	{0,5}	1,8	0,1	20	55
2Т883Б	1	2	200	5	10	25	{10}	{0,5}	1,8	0,1	20	55
2T932A	2	_	{80}	4,5	20	1580	3	1,5	1,5	[0,5]	30	54
ГТ804А	10	_	{100}	_	15	20150	10	5	0,4	{12}	10	71
ГТ804Б	10	_	{140}	_	15	20150	10	5	0,5	{12}	10	71
ГТ804В	10	-	{190}	_	15	20150	10	5	0,6	{12}	10	71
ГТ806А	15	_	{75}	1,5	30	10100	_	10	0,6	{15}	10	69
ГТ806Б	15	_	{100}	1,5	30	10100	_	10	0,6	{15}	10	69
ГТ806В	15	_	{120}	1,5	30	10100	_	10	0,6	{15}	10	69

		Пре	едельные знач	ения			Знач	нения	параметро	В		
		парам	етров при Тп	= 25 °C			Γ	іри Тп	= 25 °C			
Тип прибо- ра	Ік.макс,	Ік.и.макс,	Uкэо.гр, {Uкэо.макс}, [Uкэ _R .макс],	Uэбо. макс, В	Рк.макс, Вт	h ₂₁ Э	Uкэ, {Uкб}, В	Ικ, {Ι϶}, Α	Uкэ.нас, В	Ікбо, {Ікэо}, [Ікэ _R], мА	fгр, МГц	Ри- су- нок
ГТ806Г	15	_	{50}	1,5	30	10100	_	10	0,6	{15}	10	69
ГТ806Д	15	_	{140}	1,5	30	10100	_	10	0,6	{12}	10	69
ГТ810А	10	10	[200]	1,4	15	15	10	5	0,7	20	15	71
ГТ906А	10	_	75	1,4	15	30150	{10}	{5}	0,5	{8}	_	71
ГТ906АМ	10	_	75	1,4	15	30150	{10}	{5}	0,5	{8}	_	74
KT837A	7,5	_	{60}	15	30	1040	5	2	2,5	0,15	_	55
КТ837Б	7,5	_	{60}	15	30	1040	5	2	2,5	0,15	_	55
КТ837В	7,5	_	{60}	15	30	2080	5	2	2,5	0,15	_	55
КТ837Г	7,5	_	{45}	15	30	1040	5	2	0,5	0,15	_	55
КТ837Д	7,5	_	{45}	15	30	1040	5	2	0,5	0,15	_	55
КТ837Е	7,5	_	{45}	15	30	2080	5	2	0,5	0,15	_	55
КТ837Ж	7,5	_	{30}	15	30	1040	5	2	2,5	0,15	-	55
КТ837И	7,5	-	{30}	15	30	1040	5	2	2,5	0,15	_	55
КТ837К	7,5	-	{30}	15	30	2080	5	2	2,5	0,15	_	55
КТ837Л	7,5	-	{60}	5	30	1040	5	2	2,5	0,15	_	55
KT837M	7,5	_	{60}	5	30	2080	5	2	2,5	0,15	-	55
КТ837Н	7,5	-	{60}	5	30	50150	5	2	2,5	0,15	_	55
КТ837П	7,5	_	{45}	5	30	1040	5	2	0,9	0,15	5	55
KT837P	7,5	_	{45}	5	30	2080	5	2	0,9	0,15	_	55
KT837C	7,5	_	{45}	5	30	50150	5	2	0,9	0,15	_	55
КТ837Т	7,5	-	{30}	5	30	1040	5	2	0,5	0,15	_	55
КТ837У	7,5		{30}	5	30	2080	5	2	0,5	0,15	_	55
КТ837Ф	7,5	-	{30}	5	30	50150	5	2	0,5	0,15	_	55
KT851A	2		200	5	25	40200	10	0,5	1	[0,1]	20	75
КТ851Б	2	-	250	5	25	20200	10	0,5	1	[0,5]	20	75
KT851B	2	_	150	5	25	20200	10	0,5	1	[0,5]	20	75
KT855A	5	_	{250}	5	40	20	4	2	1	1	5	75
КТ855Б	5	_	{150}	5	40	20	4	2	1	0,1	5	75
KT855B	5	_	{150}	5	40	15	4	2	1	1	5	75
KT865A	10	_	160	6	100	40200	{4}	{2}	2	0,1	15	54
П601АИ	_	1,5	25	0,7	3	40100	3	0,5	2	1,5	20	76
П601БИ	-	1,5	25	0,7	3	80200	3	0,5	2	1,5	20	76
П601И	_	1,5	20	0,7	3	20	3	0,5	2	2	20	76
П602АИ	-	1,5	20	0,7	3	80200	3	0,5	2	1,5	30	76
П602И	-	1,5	25	0,7	3	40100	3	0,5	2	1,5	30	76
П605	0,5	1,5	35	1	3	2060	3	0,5	2	2	30	76
П605А	-	1,5	35	1	3	50120	3	0,5	2	2	30	76
П606	0,5	1,5	20	0,5	3	2060	3	0,5	2	2	30	76

		Пре	дельные знач	ения			Знач	нения і	параметро	ЭВ		
		парам	етров при Тп :	= 25 °C			Ι	іри Тп	= 25 °C			
Тип прибо- ра	Ік.макс,	Ік.и.макс, А	Uкэо.гр, {Uкэо.макс}, [Uкэ _R .макс], В	Uэбо. макс, В	Рк.макс, Вт	h ₂₁ Э	Uкэ, {Uкб}, В	Ік, {Іэ}, А	Uкэ.нас, В	Ікбо, {Ікэо}, [Ікэ _R], мА	fгр, МГц	Ри- су- нок
П606А	0,5	1,5	20	0,5	3	50120	3	0,5	2	2	30	76

Таблица 5.1.16. Транзисторы n-p-n большой мощности (Рк.макс > 1,5 Вт) средней частоты (3 МГц < frp ≤ 30 МГц) [39], [18, стр. 214 - 215, 252 - 253].

			Предельные	е значения			Значе	ния пај	рамет	ров		
		I	параметров пр	ои Тп = 25 °C	C		прі	и Тп =	25 °C			
Тип прибора	Ік. макс, А	Ік.и. макс, А	Uкэо.гр, [Uкэ _R .макс], {Uкэо.макс}, В	Uкбо.макс, {Uкбо. и.макс}, В	Рк.макс, {Рк.ср.макс}, Вт	h ₂₁ Э	Uкэ, {Uкб}, В	Ικ, {Ι϶}, Α	Uкэ. нас, В	Ікбо, {Ікэ _R }, мА	fгр, МГц	Рису-
2Т504Б	1	2	150	250	10	15140	{5}	{0,5}	1	0,1	20	46
2T803A	10	_	[60]	_	60	1880	10	5	2,5	1	20	69
2T808A	10	_	[120]	_	50	1050	3	6	_	{3}	8,4	69
2T809A	3	5	[400]	_	40	15100	5	2	1,5	{3}	5,1	69
2T812A	10	17	[700] и	_	50	530	3	8	2,5	5	3,5	54
2Т812Б	10	17	[500] и	_	50	530	3	8	2,5	5	3,5	54
2T824A	10	17	350	_	50	5	2,5	8	2,5	5	3,5	67
2T824AM	10	17	350	-	50	5	2,5	8	2,5	5	3,5	57
2Т824Б	10	17	350	-	50	5	2,5	8	2,5	5	3,5	67
2Т824БМ	10	17	350	_	50	5	2,5	8	2,5	5	3,5	57
2T826A	1	1	500	_	15	10120	10	0,1	2,5	{2}	4	54
2Т826Б	1	1	600	_	15	10120	10	0,1	2,5	{2}	4	54
2Т826В	1	1	500	_	15	10120	10	0,1	2,5	{2}	6	54
2T828A	5	7,5	700	_	50	2,25	5	4,5	3	5	4	54
2T839A	10	10	700	1500	50	5	10	4	1,5	1	5	54
2T841A	10	15	350	600	25	1245	5	5	1,5	3	10	54
2T841A-1	10	15	350	600	25	10	{5}	{5}	1,5	3	10	55
2Т841Б	10	15	250	400	50	1245	5	5	1,5	3	10	54
2Т841Б-1	10	15	250	400	30	10	{5}	{5}	1,5	3	10	55
2T844A	10	20	250	_	50	1050	3	6	2,5	{3}	7,2	54
2T845A	5	7,5	400	_	40	15100	5	2	1,5	{3}	4,5	54
2T847A	15	25	360	_	125	825	3	15	1,5	5	15	54
2Т847Б	15	25	400	_	125	825	3	15	1,5	5	15	54
2T856A	10	12	450	1000	75	1030	5	5	1,5	3	10	54
2Т856Б	10	12	400	800	75	1060	5	5	1,5	3	10	54
2Т856В	10	1	300	600	75	1060	5	5	1,5	3	10	54
2T862A	15	30	250	450	70	10100	5	15	2	5	20	54
2Т862Б	15	25	250	450	50	10100	5	15	2	5	20	54
2T862B	10	15	350	600	50	1245	5	5	1,5	3	20	54
2Т862Г	10	15	400	600	50	1250	5	5	1,5	3	20	54
2T866A	20	20	100	200	30	15100	{10}	{10}	1,5	25	25	77
KU612	2	_	_	120	10	20	6	0,2	_	0,3	9	114
KUY12	10	_	_	210	70	10	1,7	8	_	1	9	115
KT506A	2	_	[800]	800	10	30150	{5}	{0,3}	0,6	1	10	46
KT801A	2	_	[80]	_	5	1350	5	1	2	{10}	10	78

			Предельные	е значения			Значе	ния пај	рамет	ров		
		I	параметров пр	ои Тп = 25 °C	C		прі	и Тп =	25 °C			
Тип прибора	Ік. макс, А	Ік.и. макс, А	Uкэо.гр, [Uкэ _R .макс], {Uкэо.макс}, В	Uкбо.макс, {Uкбо. и.макс}, В	Рк.макс, {Рк.ср.макс}, Вт	h ₂₁ Э	Uкэ, {Uкб}, В	Ικ, {Ι _Э }, Α	Uкэ. нас, В	Ікбо, {Ікэ _R }, мА	fгр, МГц	Рису- нок
КТ801Б	2	_	[60]	_	5	30150	5	1	2	{10}	10	78
KT802A	5	_	_	150	50	15	{10}	2	5	60	10	69
KT803A	10	_	[60]	-	60	1070	10	5	2,5	{5}	20	69
KT805A	5	8	[160]	_	{30}	15	10	2	2,5	{60}	20	69
КТ805Б	5	8	[135]	_	{30}	15	10	2	5	{70}	20	69
КТ805БМ	5	8	[135]	_	{30}	15	10	2	5	{70}	20	55
KT805BM	5	8	[135]	_	{30}	15	10	2	2,5	{70}	20	55
КТ807А	0,5	1,5	[100]	-	10	1545	5	0,5	1	{5}	5	79
KT807AM	0,5	1,5	[100]	_	10	1545	5	0,5	1	{5}	5	48
КТ807Б	0,5	1,5	[100]	_	10	30100	5	0,5	1	{5}	5	79
КТ807БМ	0,5	1,5	[100]	_	10	30100	5	0,5	1	{5}	5	48
KT808A	10	_	[120]	_	50	1050	3	6	_	{3}	8,4	69
KT808AM	10	12	130	250	60	20125	3	2	2	2	10	54
КТ808БМ	10	12	100	160	60	20125	3	2	2	{25}	30	54
KT808BM	10	12	80	135	60	20125	3	2	2	2	10	54
КТ808ГМ	10	12	70	80	60	20125	3	2	2	2	10	54
KT809A	3	5	[400]	_	40	15100	5	2	1,5	{3}	5,1	69
KT812A	8	12	[700] и	-	50	4	2,5	8	2,5	5	3,5	54
КТ812Б	8	12	[500] и	-	50	4	2,5	8	2,5	5	3,5	54
KT812B	8	12	[300] и	-	50	10125	5	2,5	2,5	5	3,5	54
KT826A	1	1	500	-	15	10120	10	0,1	2,5	{2}	6	54
КТ826Б	1	1	600	-	15	10120	10	0,1	2,5	{2}	6	54
KT826B	1	1	600	_	15	10120	10	0,1	2,5	{2}	6	54
KT839A	10	_	{1500}	1500	50	5	10	4	1,5	1	-	54
KT841A	10	_	_	600	50	1245	{5}	{5}	1,5	5	13	54
KT845A	5	7,5	[400]	_	40	15100	5	2	1,5	{3}	5,1	54
KT847A	15	_	{650}	_	125	825	3	15	1,5	3	15	54
KT854A	10	_	{500}	600	60	20	{4}	{2}	2	3	10	75
КТ854Б	10	_	{300}	400	60	20	{4}	{2}	2	3	10	75
KT859A	3	_	[800]	800	40	10	10	1	1,5	1	9,9	75
KT864A	10	_	160	200	100	40200	{4}	{2}	2	0,1	15	54
KT908A	10	_	[100]	140	50	860	2	10	1,5	{3}	8,4	69
КТ908Б	10	_	[60]	140	60	20	4	4	1	{50}	30	69
П701	0,5	1	[40]	40	10	1040	{10}	0,5	7	0,1	20	65
П701А	0,5	1	[60]	60	10	1560	{10}	0,2	7	0,1	20	65
П701Б	0,5	_	[40]	40	10	30100	{10}	0,5	7	0,1	20	65
П702	2	_	{60}	60	40	25	{10}	{1,1}	2,5	5	4	69
П702А	2	_	{60}	60	40	10	{10}	{1,1}	4	2,5	4	69

Mockatob E. A. Справочник по полупроводниковым приборам. http://moskatov.narod.ru

			Предельные	е значения			Значен	ия па	рамет	ров		
		I	параметров пр	ои Тп = 25 °C	C		при	т _П =	25 °C			
Тип прибора	Ік. макс, А	Ік.и. макс, А	Uкэо.гр, [Uкэ _R .макс], {Uкэо.макс}, В	Uкбо.макс, {Uкбо. и.макс}, В	Рк.макс, {Рк.ср.макс}, Вт	h ₂₁ Э	Uкэ, {Uкб}, В	Ικ, {Ι϶}, Α	Uкэ. нас, В	Ікбо, {Ікэ _R }, мА	fгр, МГц	Рису- нок
TK135-25-0,5	16	25	{30}	{50}	80	10100	5	12,5	2	10	6	54
TK135-25-1	16	25	{60}	{100}	80	10100	5	12,5	2	10	6	54
TK135-25-1,5	16	25	{90}	{150}	80	10100	5	12,5	2	10	6	54
TK135-25-2	16	25	{120}	{200}	80	10100	5	12,5	2	10	6	54
TK135-25-2,5	16	25	{150}	{250}	80	8	5	12,5	2	10	6	54
TK135-25-3	20	25	{180}	{300}	80	8	5	12,5	2	10	6	54
TK135-25-3,5	20	25	{210}	{350}	80	8	5	12,5	2	10	6	54
TK135-25-4	20	25	{240}	{400}	80	8	5	12,5	2	10	6	54
TK235-32-0,5	20	32	{30}	{50}	110	10100	5	16	2	10	4	66
ТК235-32-1	20	32	{60}	{100}	110	10100	5	16	2	10	4	66
TK235-32-1,5	20	32	{90}	{150}	110	10100	5	16	2	10	4	66

Ниже показаны типовая входная и выходные характеристики транзисторов типов КТ812A, КТ812Б [27].

Рисунок 1. Типовая входная характеристика транзисторов типа КТ812A, КТ812Б (в схеме с общей базой).

Рисунок 2. Выходные характеристики транзисторов типа КТ812A, КТ812Б (в схеме с общем эмиттером).

Транзистор KUY12 выпускается в корпусе TO-3 и имеет аналог KT812B. Транзистор KU612 выпускается в корпусе SOT-9 и имеет аналог KT801A. Транзистор KT805Б имеет аналог BDY12, выпускаемый в корпусе MD-17.

Таблица 5.1.17. Транзисторы p-n-p составные большой мощности (Рк.макс > 1,5 Вт) средней частоты (3 МГц < frp \leq 30 МГц) [39].

			Предельные	значени	Я			Значен	ия пар	раметров			
		па	араметров при	$T_{\Pi}=2$	5°C			при	$T_{\Pi} =$	25 °C			Ри-
Тип прибора	Ік.	Ік.и.	Uкэо.гр ,	Икбо .	Uэбо .	Рк.макс,		Икб ,	Ιк,	Uкэ.нас,	Ікбо,	fгp,	су- нок
	макс,	макс,	$\{U\kappa \mathfrak{I}_{R}.ma\kappa \mathfrak{c}\},$	макс,	макс,	Вт	h ₂₁ Э	{Uкэ},	A	В	мА	МΓш	
	A	A	В	В	В			В					
2T825A	20	40	80	_	5	160	75018000	10	10	2	_	4	54
2Т825Б	20	40	60	-	5	160	75018000	10	10	2	_	4	54
2T825B	20	40	45	_	5	160	75018000	10	10	2	-	4	54
2T825A-2	15	40	80	100	5	30	75018000	10	10	2	_	4	55
2Т825Б-2	15	40	60	80	5	30	75018000	10	10	2	_	4	55
2T825B-2	15	40	45	60	5	30	75018000	10	10	2	_	4	55
КТ825Г	20	30	70	_	5	125	750	10	10	2	_	4	54
КТ825Д	20	30	45	_	5	125	750	10	10	2	_	4	54
КТ825Е	20	30	25	_	5	125	750	10	10	2	_	4	54
KT852A	2,5	_	{100}	100	5	50	500	{4}	{2}	2,5	1	7	75
КТ852Б	2,5	_	{80}	80	5	50	500	{4}	{2}	2,5	1	7	75
KT852B	2,5	_	{60}	60	5	50	500	{4}	{2}	2,5	1	7	75
КТ852Г	2,5	_	{45}	45	5	50	500	{4}	{2}	2,5	1	7	75
KT853A	8	_	{100}	100	5	60	750	{3}	{3}	2	0,2	7	75
КТ853Б	8	_	{80}	80	5	60	750	{3}	{3}	2	0,2	7	75
KT853B	8	_	{60}	60	5	60	750	{3}	{3}	2	0,2	7	75
КТ853Г	8	_	{45}	45	5	60	750	{3}	{3}	2	0,2	7	75

Таблица 5.1.18. Транзисторы n-p-n составные большой мощности (Рк.макс > 1,5 Вт) средней частоты (3 МГц < fгр \leq 30 МГц) [39], [18, стр. 258 - 259].

			Предельные	значени	1Я			Значен	ия пар	раметров			
		па	праметров при	$T\pi = 2$	5°C			при	тп =	25 °C			Ри-
Тип прибора	Ік.	Ік.и. макс, А	Uкэо.гр, В	Икбо. макс, В	Uэбо. макс,	Рк.макс, Вт	h ₂₁ 3	Uкэ, В	Iк, А	Uкэ.нас, В	Ікэ _к ,	fгр, МГц	су-
200274	A 20	40	100	100	5	125	750 10000	3	10	2	3	4	54
2T827A			100		-	125	75018000				-		
2T827A-2	20	40	100	100	5	125	75018000	3	10	2	3	4	80
2T827A-5	20	40	100	100	5	125	75018000	3	10	2	3	4	81
2Т827Б	20	40	80	80	5	125	75018000	3	10	2	3	4	54
2Т827Б-2	20	40	80	80	5	125	75018000	3	10	2	3	4	80
2T827B	20	40	60	60	5	125	75018000	3	10	2	3	4	54
2T827B-2	20	40	60	60	5	125	75018000	3	10	2	3	4	80
2T834A	15	20	400	_	8	100	1503000	5	5	2	3	4	54
2Т834Б	15	20	350	_	8	100	1503000	5	5	2	3	4	54
2T834B	15	20	300	_	8	100	1503000	5	5	2	3	4	54
BD647	8	12	100	100	5	62,5	750	3	3	_	_	7	113
KT827A	20	40	100	100	5	125	75018000	3	10	2	3	4	54
КТ827Б	20	40	80	80	5	125	75018000	3	10	2	3	4	54
КТ827В	20	40	60	60	5	125	75018000	3	10	2	3	4	54
КТ829А	8	12	100	100	5	60	750	3	3	2	1,5	4	82
КТ829Б	8	12	80	80	5	60	750	3	3	2	1,5	4	82
КТ829В	8	12	60	60	5	60	750	3	3	2	1,5	4	82
КТ829Г	8	12	45	45	5	60	750	3	3	2	1,5	4	82
KT834A	15	20	400	_	8	100	1503000	5	5	2	3	4	54
КТ834Б	15	20	350	_	8	100	1503000	5	5	2	3	4	54
КТ834В	15	20	300	-	8	100	1503000	5	5	2	3	4	54

Транзистор BD647 имеет корпус TO-220; ближайший аналог – KT829A.

Таблица 5.1.19. Транзисторы составные p-n-p большой мощности (Pк.макс > 1,5 Вт) высокой частоты ($30 \text{ M}\Gamma\text{ц} < \text{frp} \le 300 \text{ M}\Gamma\text{ц}$) [39].

			Преде	льные	значен	кия				Зна	чения	пара	метро	В		
Тип		П	араметј	ов при	$T_{\Pi} = 1$	25 °C					при Т	$ \dot{\Pi} = 2$	5 °C			Ри-
прибора	Ік. макс, А	Uкэ _R . макс,	Икбо. макс, В	Uэбо. макс, В	Рк. макс, Вт	Тп. макс, °С	Тмакс, °С	h ₂₁ Э	Икб, В	Iэ, А	Uкэ. нас, В	Ікэ _к , мА	fгр, МГц	tpac,	Ртп-к, °С / Вт	су-
KT973A	4	60	60	5	8	150	85	750	3	1	1,5	1	200	0,2	15,6	48
КТ973Б	4	45	45	5	8	150	85	750	3	1	1,5	1	200	0,2	15,6	48

Транзисторы КТ973 серии содержат следующую схему:

Таблица 5.1.20. Транзисторы составные n-p-n большой мощности (Pк.макс > 1,5 Вт) высокой частоты ($30 \text{ M}\Gamma\text{ц} < \text{frp} \le 300 \text{ M}\Gamma\text{ц}$) [39].

			Преде	льные	значен	ия				Зна	чения	пара	метро	В		
Тип		П	араметр	ов при	и Тп =	25 °C					при Т	$\pi = 2$	5°C			Ри-
прибора	Ік. макс, А	Uкэ _к . макс,	Икбо. макс, В	Иэбо. макс,	Рк. макс, Вт	Тп. макс, °С	Тмакс, °С	h ₂₁ Э	Икб, В	Iэ,	Uкэ. нас,	Ікэ _к ,	fгр, МГц	tpac,	Ртп-к, °С / Вт	су-
KT972A	4	60	60	5	8	150	85	750	3	-	1,5	1	200	0,2	15,6	48
КТ972Б	4	45	45	5	8	150	85	750	3	-	1,5	1	200	0,2	15,6	48

Таблица 5.1.21. Транзисторы p-n-p большой мощности (Pк.макс > 1,5 Bт) высокой частоты (30 МГц < frp \le 300 МГц) усилительные и генераторные [39].

]	Предельные зн	ачения	I				Знач	ения пар	раметр	ОВ		
		пар	аметров при Т	$\Gamma_{\Pi} = 25$	°C				П	ри Тп =	25 °C			Ри-
Тип прибора	Iк. макс, А	Ік.и. макс, А	Uкэо.макс, В	Икбо. макс, В	Uэбо. макс, В	Рк. макс, Вт	Uкэ, В	Iк, А	Uкэ. нас, В	Ікэ _к , мА	fгр, МГц	Ск,	h ₂₁ Э	су-
2Т932Б	2	_	60	60	4,5	20	3	1,5	1,5	1,5	50	300	30120	54
2T933A	0,5	_	80	80	4,5	5	3	0,4	1,5	0,5	75	100	1580	83
2Т933Б	0,5	_	60	60	4,5	5	3	0,4	1,5	0,5	75	100	30120	83
KT932A	2	_	80	80	4,5	20	3	1,5	1,5	1,5	40	300	580	54
КТ932Б	2	_	60	60	4,5	20	3	1,5	1,5	1,5	60	300	30120	54
КТ932В	2	_	40	40	4,5	20	3	1,5	1,5	1,5	_	300	40	54
КТ933А	0,5	_	80	80	4,5	5	3	0,4	1,5	0,5	75	100	1580	84
КТ933Б	0,5	_	60	60	4,5	5	3	0,4	1,5	0,5	75	100	30120	84

Таблица 5.1.22. Транзисторы n-p-n большой мощности (Рк.макс > 1,5 Вт) высокой частоты (30 МГц < frp \le 300 МГц) усилительные и генераторные [39].

			Предельные	вначені	Я				Знач	ения пар	аметро)B		
		П	араметров при	$T_{\Pi} = 2$	5°C				П	ри Тп = 2	25 °C			
Тип	Ιк.	Ік.и.	Uкэ _{к.} макс, (Uкэо.гр),	Икбо .	 Иэбо.	Рк. макс,	Uкэ,	Iκ,	Uкэ.	Ікэ _к ,				Ри- су-
прибора	макс,	макс,	[Икэх.и.макс],	макс,	макс,	{Рк.ср.	(Икб),	(εI)	нас,	(Ікбо),	fгp,	Ск,	h_{21} Θ	нок
	A	A	{Икэо.макс},	В	В	макс},	В	A	В	[Ікэк],	МГц	пΦ		
			В			Вт				мА				
2T602A	0,075	0,5	(70)	120	5	2,8	(10)	(0,01)	3	(0,01)	150	4	2080	85
2T602AM	0,075	0,5	(70)	120	5	2,8	(10)	(0,01)	3	(0,01)	150	4	2080	48
2Т602Б	0,075	0,5	(70)	120	5	2,8	(10)	(0,01)	3	(0,01)	150	4	50200	85
2Т602БМ	0,075	0,5	(70)	120	5	2,8	(10)	(0,01)	3	(0,01)	150	4	50200	48
2T903A	3	10	60	_	4	30	10	2	2	2	120	_	1570	86
2Т903Б	3	10	60	_	4	30	10	2	2	2	120	-	4080	86
2T912A	20	-	70	_	5	30	{10}	5	_	50	90	-	1050	110
2Т912Б	20	_	70	_	5	30	{10}	5	_	50	90	-	20100	110
2T921A	3,5	-	65	_	4	{12,5}	10	1	_	10	90	-	1080	87
2T922B	3	9	60	_	4	{40}	5	0,5	0,6	20	300	-	10150	88
2Т950Б	7	-	[65]	_	4	{60}	10	5	-	30	90	-	10100	89
2T951A	5	-	[60]	_	4	{45}	10	2	-	(20)	150	-	15100	90
2Т951Б	3	_	[60]	_	4	{30}	10	2	_	20	90	ı	10100	90
KT602A	0,075	0,5	(70)	120	5	2,8	(10)	(0,01)	3	(0,07)	150	4	2080	85
KT602AM	0,075	0,5	(70)	120	5	2,8	(10)	(0,01)	3	(0,07)	150	4	2080	48
КТ602Б	0,075	0,5	(70)	120	5	2,8	(10)	(0,01)	3	(0,07)	150	4	50220	85
КТ602БМ	0,075	0,5	(70)	120	5	2,8	(10)	(0,01)	3	(0,07)	150	4	50220	48
KT602B	0,075	0,5	70	80	5	2,8	(10)	(0,01)	3	(0,07)	150	4	1580	85
КТ602Г	0,075	0,5	70	80	5	2,8	(10)	(0,01)	3	(0,07)	150	4	50	85
KT611A	0,1	-	180	150	3	3	(40)	(0,02)	8	[0,1]	60	5	1040	50
KT611AM	0,1	-	180	120	4	-	(40)	(0,02)	8	0,1	60	5	1040	48
КТ611Б	0,1	_	180	150	3	3	(40)	(0,02)	8	[0,1]	60	5	30120	50
КТ611БМ	0,1	_	180	120	4	-	(40)	(0,02)	8	0,1	60	5	30120	48
KT611B	0,1	_	150	150	3	3	(40)	(0,02)	8	[0,1]	60	5	1040	50
КТ611Г	0,1	_	150	150	3	3	(40)	(0,02)	8	[0,1]	60	5	30120	50
KT902A	5	-	110 и	_	5	30	10	2	2	(10)	35	-	15	69
KT902AM	5	_	110 и	_	5	30	10	2	2	(10)	35	-	15	55
КТ903А	3	10	60	_	4	30	10	2	2,5	10	120	ī	1570	69
КТ903Б	3	10	60	_	4	30	10	2	2,5	11	120	ī	4080	69
KT912A	20	-	70	-	5	{35}	10	5	_	50	90	_	1050	110
КТ912Б	20	_	70	_	5	{35}	10	5	_	50	90	ī	20100	110
КТ921А	3,5	_	65	_	4	{12,5}	10	1	_	10	90	ī	1080	87
КТ921Б	3,5	-	65		4	{12,5}	10	1	_	10	90	-	1080	87
КТ922В	3	9	65	_	4	{40}	_	-	_	40	300	_	_	88

Москатов Е. А. Справочник по полупроводниковым приборам. http://moskatov.narod.ru

			Предельные	значені	RN				Знач	ения пар	аметро	ЭВ		
		Па	араметров при	$T\Pi = 2$	25 °C				П	ри Тп = 2	25 °C			
Тип прибора	Ік. макс, А	Ік.и. макс, А	Uкэ _R .макс, (Uкэо.гр), [Uкэх.и.макс], {Uкэо.макс},	Uкбо. макс, В	Uэбо. макс, В	Рк. макс, {Рк.ср. макс}, Вт	Uкэ, (Uкб), В	Ικ, (Ιэ), Α	Uкэ. нас, В	Ікэ _R , (Ікбо), [Ікэк], мА	fгр, МГц	Ск,	$h_{21}\Theta$	Ри- су- нок
КТ922Д	3	9	65	_	4	{40}	_	_	_	40	250	_	-	88
KT940A	0,1	0,3	300	300	5	10	10	0,03	1	(5.10-5)	90	5,5	25	48
КТ940Б	0,1	0,3	250	150	5	10	10	0,03	1	(5.10-5)	90	5,5	25	48
КТ940В	0,1	0,3	160	150	5	10	10	0,03	1	(5.10-5)	90	5,5	25	48
КТ945А	15	25	150	_	5	50	7	15	_	_	51	_	1080	54
КТ961А	1,5	2	100	100	5	12,5	10	0,15	0,5	(0,01)	50	_	40100	48
КТ961Б	1,5	2	80	80	5	12,5	10	0,15	0,5	(0,01)	50	_	63160	48
КТ961В	1,5	2	60	60	5	12,5	10	0,15	0,5	(0,01)	50	-	100250	48
КТ961Г	2	3	40	40	5	12,5	10	0,15	0,5	(0,01)	50	-	20500	48
КТ969А	0,1	0,2	(250)	300	5	6	10	0,015	1	(5.10-5)	60	1,8	50250	48

Транзистор КТ945A изготовлен по эпитаксиальной технологии и имеет аналог 2N3442.

Таблица 5.1.23. Транзисторы p-n-p большой мощности (Рк.макс > 1,5 Вт) сверхвысокой частоты (frp > 300 МГц) усилительные и генераторные [39].

			Предельные	значені	Я				Значе	ения пар	аметро	ЭВ		
Тип		Па	араметров при	$T_{\Pi}=2$	25°C				пр	ри Тп = 2	25 °C			Ри-
прибора	Ік.	Ік.и.	Uкэо.макс, В	Uкбо. макс,	Uэбо. макс,	Рк. макс,	Uкэ, В	Iк, А	Uкэ. нас,	Ікэ _к , мА	fгр, ГГц	Ск,	h ₂₁ Э	су- нок
	A	A		В	В	Вт			В		,			
2T914A	0,8	1,5	65	_	4	7	5	0,25	0,6	2	0,35	12	1060	87
КТ914А	0,8	1,5	65	_	4	7	5	0,25	0,6	2	0,35	12	1060	87

Таблица 5.1.24. Транзисторы p-n-p большой мощности (Pк.макс > 1,5 Bт) высокой частоты (frp > 300 МГц) переключательные и импульсные [39].

			Предельные	значені	RN				Знач	ения пар	аметр	ОВ		
Тип		Па	араметров при	$T_{\Pi}=2$	25 °C				пј	у и Тп = 2	25 °C			Ри-
прибора	Iκ.	Ік.и.	Uкэ _к .макс,	Икбо .	Uэбо.	Pĸ.	Икэ,	Iκ,	Икэ.	Ікбо,	fгp,	Ск,		cy-
приоора	макс,	макс,	{Uкэо.гр},	макс,	макс,	макс,	{Икб},	{εI}	нас,	иА	пр,	пФ	h_{21} Θ	нок
	A	A	В	В	В	Вт	В	A	В	MA	МПЦ	ПΨ		
ГТ905А	3	7	{65}	75	_	6	{10}	{3}	0,5	2	60	200	35100	74
ГТ905Б	3	7	{65}	60	_	6	{10}	{3}	0,5	2	60	200	35100	74
KT626A	0,5	1,5	45	45	_	6,5	2	0,15	1	0,15	75	150	40250	48
КТ626Б	0,5	1,5	60	60	_	6,5	2	0,15	1	0,15	75	150	30100	48
КТ626В	0,5	1,5	80	80	_	6,5	2	0,15	1	0,15	45	150	1545	48
КТ626Г	0,5	1,5	20	20	_	6,5	2	0,15	1	0,15	45	150	1580	48
КТ626Д	0,5	1,5	20	20	_	6,5	2	0,15	1	0,15	45	150	40250	48

5.2 Однопереходные транзисторы

Таблица 5.2.1. Транзисторы однопереходные с n- базой малой мощности (Рк.макс. ≤ 0.3 Вт) [39], [30, стр. 688].

		Преде	льные зі	начения				Значе	ния па	раметро	В			
Тип	П	араметр	ов при	$\Gamma_{\Pi} = 25^{\circ}$	°C			пр	и Тп =	25 °C				Рису-
прибора	Iэ. макс, мА	Іэ.и. макс, мА	Uб1б2. макс, В	Uб2э. макс, В	Рмакс,	η	U6162, B	Uкэ. нас.,	Івкл, мкА	Івыкл,	Rб1б2, кОм	tвкл, мкс	fмакс, кГц	нок
2T117A	50	1000	30	30	300	0,50,7	10	5	20	1	47,5	2	200	91, 92
2Т117Б	50	1000	30	30	300	0,650,85	10	5	20	1	47,5	3	200	91, 92
2T117B	50	1000	30	30	300	0,50,7	10	5	20	1	69	3	200	91, 92
2Τ117Γ	50	1000	30	30	300	0,650,85	10	5	20	1	69	3	200	91, 92
KT117A	50	1000	30	30	300	0,50,7	10	5	20	1	49	3	200	91, 92
КТ117Б	50	1000	30	30	300	0,650,9	10	5	20	1	49	3	200	91, 92
КТ117В	50	1000	30	30	300	0,50,7	10	5	20	1	812	3	200	91, 92
КТ117Г	50	1000	30	30	300	0,650,9	10	5	20	1	812	3	200	91, 92

5.3 Двухэмиттерные транзисторы

КТ118А, КТ118Б, КТ118В

Транзисторы кремниевые двухэмиттерные планарно — эпитаксиальные p-n-p типа. Предназначены для работы в схемах модуляторов [29, стр. 242, 243], [30, стр. 667, 688]. Выпускаются в металлическом герметичном корпусе и имеют гибкие выводы. Масса не более 0,7 г.

Габаритные размеры и цоколёвка транзистора показаны на рисунке 116.

Электрические параметры. Падение напряжения на открытом ключе при I6 = 0.5 мA, I₃ = 1.5 мA: для КТ118А, КТ118Б не более 0.2 MBдля КТ118В не более 0,15 MBСопротивление отпертого ключа при I6 = 2 мA, $I_3 = 2$ мA: для КТ118А, КТ118Б не более 100 Ом для КТ118В не более 120 Ом при Iб = 40 мA, $I_{9} = 20 \text{ мA}$: для КТ118А, КТ118Б не более 20 Om для КТ118В не более 40 Om Ток запертого ключа: при $R\kappa\delta = 10 \kappa Om$, $U \ni 1 \ni 2 = 30 B$ для KT118A не более 0,1 мкА при Ккб = 10 кОм, Uэ1э2 = 15 В для КТ118Б, КТ118В не более 0.1 мкА Напряжение на управляющих коллекторных переходах при Іб = 20 мА не более 1,3 B Обратный ток коллектор – база при Uк = 15 В не более 0,1 мкА Относительная ассиметрия сопротивления отпертого ключа при I6 = 40 мA, $I_9 = 20 \text{ мA}$ не более 20 % Предельные эксплуатационные данные. Запирающее напряжение управления коллектор – база 1 или коллектор – база 2 при Ркб не более 10 кОм 15 B Напряжение на запертом ключе эмиттер 1 – эмиттер 2 при напряжении на управляющих переходах, равном нулю: для КТ118А 30 B для КТ118Б, КТ118В 15 B Напряжение на эмиттер – база (эмиттер 1 – база 1 или эмиттер 2 – база 2): для КТ118А 31 B для КТ118Б, КТ118В 16 B Ток коллектора 50 мА Ток эмиттера (одного) 25 mA

Ток базы (одной) 25 мА Рассеиваемая мощность на коллекторе 100 мВт Тепловое сопротивление межде переходом и окружающей средой 0,4 °C / мВт Диапазон рабочей температуры окружающей среды от -60 до +125 °C

1. При температуре окружающей среды от -60 до +110 °C. При повышении температуры до +125 °C значение мощности рассчитывается по формуле

$$P\kappa$$
.мак $c = \frac{150 - T \, ^{\circ}C}{0,4}$, м Bm

5.4 Фототранзисторы

Таблица 5.4.1. Фототранзисторы.

Тип	Рабочее напря-	,	Долговечность,	Габари	ты, мм
прибора	жение, Ua, В	Іт, мкА	Ч	Длина	Диаметр
ФТ-1К	5	3	2000	10,0	3,90
ФТ-2К	5	1	2000	10,0	3,90
ΦΤΓ-3	5	50	10000	6,3	8,70

При отключённом от цепей фототранзисторе его нельзя держать на свету!

5.5 Полевые транзисторы

Таблица 5.5.1. Транзисторы полевые малой мощности ($P \le 0.3$ Bt) с p-n переходом и каналом p — типа [39, стр. 188 - 190].

			П	ределі	ьные зн	начени	я параі	метров				Значения	пара	метров при	1 T = 2	5 °C		
Тип	Р]	При Т	= 25 °C	2	Т			Із.								Ри-
прибора	макс,	T,	Иси.	Изс.	Изи.	Ic.	макс,	Uзи.отс,	g ₂₂ и,		Uзи,	S,	Иси,	Іс.нач,	С11и,	С12И,	Кш,	cy-
приоора	макс,	°C	макс,	макс,	макс,	макс,	°C	В	мкСм	ут,	В	мА/В	В	мА	пФ	пФ	дБ	нок
	MDI		В	В	В	мА	C			нд								
2П101А*	50	-	10	10	10	-	125	5	190 т	10	5	0,3	5	0,31	12	2,5 т	5	93
2П101Б*	50	-	10	10	10	_	125	5	50 т	10	5	0,3	5	0,72,2	12	2,5 т	5	93
2П101В*	50	-	10	10	10	-	125	8	12 т	10	5	0,5	5	0,55	12	2,7 т	10	93
2П103А	120	25	10	15	10	-	85	0,52,2	40	10	5	0,72,1	10	0,551,2	17	8	3	94
2П103АР	120	25	10	15	10	-	85	0,52,2	40	10	5	0,72,1	10	0,551,2	17	8	3	94
2П103Б	120	25	10	15	10	-	85	0,83	50	10	5	0,82,6	10	12,1	17	8	3	94
2П103БР	120	25	10	15	10	-	85	0,83	50	10	5	0,82,6	10	12,1	17	8	3	94
2П103В	120	25	10	15	10	-	85	1,44	80	10	5	1,45,5	10	1,73,8	17	8	3	94
2П103ВР	120	25	10	15	10	-	85	1,44	80	10	5	1,45,5	10	1,73,8	17	8	3	94
2П103Г	120	25	10	17	10	_	85	26	130	10	5	1,85,8	10	36,6	17	8	3	94
2П103ГР	120	25	10	17	10	_	85	26	130	10	5	1,85,8	10	36,6	17	8	3	94
2П103Д	120	25	10	17	10	_	85	2,87	160	10	5	24,4	10	5,412	17	8	3	94
2П103ДР	120	25	10	17	10	_	85	2,87	160	10	5	24,4	10	5,412	17	8	3	94
КП101Г*	50	-	10	10	10	2	85	5	_	10	5	0,15	5	0,3	12	_	5	93
КП101Д*	50	_	10	10	10	5	85	10	_	50	5	0,3	5	0,3	12	_	10	93
КП101Е*	50	_	10	10	10	5	85	10	_	50	5	0,3	5	0,3	12	_	-	93
КП102Е	-	_	15	15	10	_	70	2,8	_	1,5	10	0,250,7	10	_	10	5	-	94, 95
КП102Ж	-	_	15	15	10	_	70	4	_	1,5	10	0,30,9	10	_	10	5	-	94, 95
КП102И	-	-	15	15	10	-	70	5,5	-	1,5	10	0,351	10	-	10	5	-	94, 95
КП102К	-	-	15	15	10	-	70	7,5	-	1,5	10	0,451,2	10	_	10	5	-	94, 95
КП102Л	-	-	15	15	10	-	70	10	-	1,5	10	0,651,3	10	_	10	5	-	94, 95
КП103Е	7	85	10	15	-	-	85	0,41,5	5	20	10	0,42,4	10	0,32,5	20	8	3	94, 96
КП103ЕР	7	85	10	15	-	_	85	0,41,5	5	20	10	0,42,4	10	0,32,5	20	8	3	94, 96
КП103Ж	12	85	10	15	-	_	85	0,52,2	10	20	10	0,53,8	10	0,353,8	20	8	3	94, 96
КП103ЖР	12	85	10	15	_	_	85	0,52,2	10	20	10	0,53,8	10	0,353,8	20	8	3	94, 96
КП103И	21	85	12	15	_	_	85	0,83	15	20	10	0,82,6	10	0,81,8	20	8	3	94, 96
КП103ИР	21	85	12	15	-	-	85	0,83	15	20	10	0,82,6	10	0,81,8	20	8	3	94, 96
КП103К	38	85	10	15	-	-	85	1,44	20	20	10	13	10	1,05,5	20	8	3	94, 96
КП103КР	38	85	10	15	-	-	85	1,44	20	20	10	13	10	15,5	20	8	3	94, 96
КП103Л	66	85	12	17	_	_	85	26	40	20	10	1,83,8	10	1,86,6	20	8	3	94, 96
КП103ЛР	66	85	12	17	-	-	85	26	40	20	10	1,83,8	10	1,86,6	20	8	3	94, 96
КП103М	120	85	10	17	-	-	85	2,87	70	20	10	1,34,4	10	312	20	8	3	94, 96
КП103МР	120	85	10	17	_	_	85	2,87	70	20	10	1,34,4	10	312	20	8	3	94, 96

^{*} При T = 25 °C C_{22} и = 0,4 п Φ .

Таблица 5.5.2. Транзисторы полевые малой мощности ($P \le 0,3$ Вт) с p-n переходом и каналом n — типа [39, стр. 192-197].

			Ι	Іредел	ьные з	начени	ія пара	метров				Значен	ия пај	раметров	при Т	= 25	°C	
				При Т	= 25 °C	C			R си.								E	Ри-
Тип	P	- m				_	T	**	отк,	I3.	**		**				Еш,	
прибора	макс,	T,	Иси.	Uзс.	Uзи.	Ic.	макс,	Uзи.отс,	Ом,	ут,	Uзи,	S,	Uси,	Іс.нач,	С11И,	С ₁₂ и,	нВ/√Гц,	cy-
	мВт	°C	макс,	макс,	макс,	макс,	°C	В	{g ₂₂ и,	нА	В	мА/В	В	мА	пФ	пΦ	{Кш,	нок
			В	В	В	мА			мкСм}								дБ}	
2П302А	300	25	20	20	10	24	125	13,5	_	10	10	512	7	324	20	8	{3}	97
2П302А-1	300	25	20	20	10	24	125	13,5	_	10	10	512	7	324	20	8	{3}	98
2П302Б*	300	25	20	20	10	43	125	2,54,5	150	10	10	714	7	1843	20	8	_	97
2П302Б-1 *	300	25	20	20	10	43	125	2,54,5	150	10	10	714	7	1843	20	8	-	98
2П302В **	300	25	20	20	12	-	125	36	100	10	10	-	-	3366	20	8	-	97
2П302В-1 **	300	25	20	20	12	-	125	36	100	10	10	_	-	3366	20	8	_	98
2П303А	200	25	25	30	30	20	125	0,53	1	1	10	14	10	0,52,5	6	2	30	99
2П303Б	200	25	25	30	30	20	125	0,53	-	1	10	14	10	0,52,5	6	2	20	99
2П303В	200	25	25	30	30	20	125	14	-	1	10	25	10	1,55	6	2	20	99
2П303Г	200	25	25	30	30	20	125	8	ı	0,1	10	37	10	312	6	2	_	99
2П303Д	200	25	25	30	30	20	125	8	I	1	10	2,6	10	39	6	2	{4}	99
2П303Е	200	25	25	30	30	20	125	8	ı	1	10	4	10	520	6	2	{4}	99
2П303И	200	25	25	30	30	20	125	13	ı	0,1	10	26	10	1,55	6	2	{4}	99
2П307А	250	25	25	30	30	30	125	0,53	ı	1	10	49	10	39	5	1,5	20	99
2П307Б	250	25	25	30	30	30	125	15	I	1	10	510	10	515	5	1,5	2,5	99
2П307В	250	25	25	30	30	30	125	15	I	1	10	510	10	515	5	1,5	{6}	99
2П307Г	250	25	25	30	30	30	125	1,56	{200}	1	10	612	10	824	5	1,5	2,5	99
2П307Д	250	25	25	30	30	30	125	1,56	-	1	10	612	10	824	5	1,5	{6}	99
2П333А	250	25	50	45	45	_	125	18	1500	0,2	10	45,8	10	_	6	_	20	93
2П333Б	250	25	40	40	35	-	125	0,64	1500	100	35	25	10	_	6	-	20	93
КП302А	300	25	20	20	10	24	100	5	-	10	10	5	7	324	20	8	_	97
КП302АМ	300	25	20	20	10	24	100	15	-	10	10	512	7	324	20	8	{3}	93
КП302Б	300	25	20	20	10	43	100	7	150	10	10	7	7	1843	20	8	_	97
КП302БМ	300	25	20	20	10	43	100	2,57	150	10	10	714	7	1843	14	8	-	93
КП302В	300	25	20	20	10	_	100	10	100	10	10	_	-	_	20	8	_	97
КП302ВМ	300	25	20	20	10	-	100	310	100	10	10	-	_	66	16	8	-	93
КП302Г	300	25	20	20	10	_	100	27	150	10	10	714	7	1565	14	8	-	97
КП302ГМ	300	25	20	20	10	-	100	27	150	10	10	714	7	1565	14	8	-	93
КП303А	200	25	25	30	30	20	85	0,53	-	1	10	14	10	0,52,5	6	2	30	99
КП303Б	200	25	25	30	30	20	85	0,53	-	1	10	14	10	0,52,5	6	2	20	99
КП303В	200	25	25	30	30	20	85	14	-	1	10	25	10	1,55	6	2	20	99
КП303Г	200	25	25	30	30	20	85	8	-	0,1	10	37	10	312	6	2	_	99
КП303Д	200	25	25	30	30	20	85	8	-	1	10	2,6	10	39	6	2	{4}	99
КП303Е	200	25	25	30	30	20	85	8	-	1	10	4	10	520	6	2	{4}	99
КП303Ж	200	25	25	30	30	20	85	0,33	-	5	10	14	10	0,33	6	2	100	99
КП303И	200	25	25	30	30	20	85	0,52	-	5	10	26	10	1,55	6	2	100	99
КП307А	250	25	25	25	27	27	85	0,53	-	1	10	49	10	39	5	1,5	20	99
КП307Б	250	25	25	25	27	27	85	15	-	1	10	510	10	515	5	1,5	2,5	99

			I	Іредел	ьные з	начени	я пара	метров				Значен	ия пар	аметров	при Т	= 25 °	°C	
				При Т	= 25 °C	C			R си.								Еш,	Ри-
Тип	P	T,	Иси.	Изс.	Изи.	Ic.	T	Изи.отс,	отк,	Із.	Изи,	S.	Иси,	Іс.нач,	С11и,	С ₁₂ и,	нВ/√Гц,	cy-
прибора	макс,	°C	макс,	макс,	макс,	макс,	макс,	B	Ом,	yт,	В	мА/В	В	мА	пФ	пΦ	{Кш,	нок
	мВт		В	В	В	мА	°C		{g ₂₂ и,	нА				1			дБ}	
									мкСм}								Λ=)	
КП307В	250	25	25	25	27	27	85	15	-	1	10	510	10	515	5	1,5	{6}	99
КП307Г	250	25	25	25	27	27	85	1,56	_	1	10	612	10	824	5	1,5	2,5	99
КП307Д	250	25	25	25	27	27	85	1,56	_	1	10	612	10	824	5	1,5	{6}	99
КП307Е	250	25	25	25	27	27	85	2,5	_	1	10	38	10	1,55	5	1,5	20	99
КП307Ж	250	25	25	25	27	27	85	7	-	0,1	10	4	10	325	5	1,5	-	99
КП314А	200	35	35	30	30	_	85	_	-	-	_	4	10	2,520	6	2	_	93

^{* –} При T = 25 °C C_{22} и = 10 пФ. ** – При T = 25 °C C_{22} и = 14 пФ.

Таблица 5.5.3. Транзисторы полевые малой мощности ($P \le 0,3$ Вт) с изолированным затвором и каналом n-типа [39, стр. 198 - 199].

	П	оеде	льные	значен	ния пар	аметр	ОВ				Зна	чения пара	аметр	ов пр	ои T = 25	°C				
Тип	р]	При Т	= 25 °C	2	Т	Uзи.												Ри-
прибора	макс,	T,	Иси.	Изс.	Изи.	Ic.	макс,	отс.	g ₂₂ и,	Із.ут,	Uзи,	S,	Иси,	I _C ,	Іс.нач,	С11и,	С ₁₂ и,	Кш,	f,	cy-
PP	мВт	°C	макс,	макс,	макс,	макс,	°C	В	мкСм	нА	В	мА/В	В	мА	мА	пФ	пΦ	дБ	МГц	нок
			В	В	В	мА														
2П305А	150	40	15	30	30	15	125	6	150	1	30	610	10	5	_	5	0,8	6,5	250	100
2П305Б	150	40	15	30	30	15	125	6	150	0,001	30	610	10	5	_	5	0,8	-	250	100
2П305В	150	40	15	30	30	15	125	6	150	1	30	610	10	5	-	5	0,8	6,5	250	100
2П305Г	150	40	15	30	30	15	125	6	150	1	30	610	10	5	-	5	0,8	_	250	100
2П310А	80	25	8	10	10	20	125	_	_	3	10	36	5	5	0,035	2,5	0,5	6	1000	101
2П310Б	80	25	8	10	10	20	125	_	_	3	10	36	5	5	0,035	2,5	0,5	7	1000	101
2П313А	120	35	15	15	10	15	85	6	_	10	30	510	10	5	_	6,8	0,8	-	_	102
2П313Б	120	35	15	15	10	15	85	6	-	10	30	510	10	5	-	6,8	0,8	_	_	102
2П313В	120	35	15	15	10	15	85	6	_	10	30	510	10	5	_	6,8	0,8	-	_	102
КП305Д	150	25	15	15	15	15	125	6	150	1	30	5,210,5	10	5	_	5	0,8	7,5	250	100
КП305Е	150	25	15	15	15	15	125	6	150	5	30	48	10	5	_	5	0,8	-	250	100
КП305Ж	150	25	15	15	15	15	125	6	150	1	30	5,210,5	10	5	_	5	0,8	7,5	250	100
КП305И	150	25	15	15	15	15	125	6	150	1	30	410,5	10	5	_	5	0,8	-	250	100
КП313А	75	25	15	15	10	15	85	6	-	10	10	4,510,5	10	5	_	7	0,9	7,5	250	102
КП313Б	75	25	15	15	10	15	85	6	_	10	10	4,510,5	10	5	-	7	0,9	7,5	250	102
КП313В	75	25	15	15	10	15	85	6	-	10	10	4,510,5	10	5	_	7	0,9	7,5	250	102

Таблица 5.5.4. Транзисторы полевые малой мощности ($P \le 0,3$ Вт) с изолированным затвором и каналом p – типа [39, стр. 200-201].

	Пј	реде	льные	значе	ния пар	раметр	ОВ			3	начен	ия пара	метро	в пр	и T = 2:	5 ℃				
]	При Т	= 25 °C	C			g ₂₂ и,											Ри-
Тип прибора	Р макс, мВт	т, °С	Uси. макс, В	Uзс. макс, В	Uзи. макс, В	Iс. макс, мА	Т макс, °С	Uзи. пор, В	мкСм, {Rси. отк, Ом}	Iз. ут, нА	Uзи, В	S, mA/B	Uси, В	I _C ,	Іс.нач, мкА	C ₁₁ и, пФ	С ₂₂ и, пФ	С ₁₂ и, пФ	Кш, дБ	су-
2П301А	200	25	20	_	30	15	85	2,75,4	150	0,3	30	12,6	15	5	0,5	3,5	3,5	0,7	5	101
2П301А-1	200	25	20	_	30	15	85	2,75,4	150	0,3	30	12,6	15	5	0,5	3,5	3,5	0,7	5	101
2П301Б	200	25	20	_	30	15	85	2,75,4	150	0,3	30	12,6	15	5	0,5	3,5	3,5	0,7	5	101
2П301Б-1	200	25	20	_	30	15	85	2,75,4	150	0,3	30	12,6	15	5	0,5	3,5	3,5	1	_	101
2П301В	200	25	20	_	30	15	85	2,7	130	0,3	30	1	15	5	0,5	3,5	3,5	1	_	101
2П301В-1	200	25	20	_	30	15	85	2,7	130	0,3	30	1	15	5	0,5	3,5	3,5	1	_	101
2П304А	200	55	25	30	30	30	125	5	{100}	20	30	4	10	10	0,2	9	6	1	_	100
КП301Б	200	25	20	-	30	15	85	2,75,4	150	0,3	30	1	15	5	0,5	3,5	3,5	1	9,5	101
КП301В	200	25	20	-	30	15	85	2,75,4	250	0,3	30	2	15	5	0,5	3,5	3,5	1	9,5	101
КП301Г	200	25	20	-	30	15	85	2,75,4	100	0,5	30	0,5	15	5	0,5	3,5	3,5	1	9,5	101
КП304А	200	25	25	30	30	30	85	5	{100}	20	30	4	10	10	0,1	9	6	1	_	100

Таблица 5.5.5. Транзисторы полевые большой мощности (P > 1,5 Bt) с p-n переходом и каналом n — типа [39, стр. 200 - 203].

		Предельные значения параметров							Зна	чени	я пара	метров при	$\Gamma = 25$	°C		
Тип	Р	Τκ,		При Т	= 25 °C		Т	Изи.	Rси.	Із.						Ри-
прибора	макс,	{T},	Иси.	Изс.	Изи.	Ic.	макс,	отс,	отк,	ут,	Uзи,	S,	Uси,	I _C ,	Іс.нач,	cy-
приоора	Вт	°C	макс,	макс,	макс,	макс,	°C	В	Ом,	нА	В	мА/В	В	A	мА	нок
	Di		В	В	В	A		Б	OM	117 \$						
2П601А	2	{25}	20	20	15	_	125	49	_	10	15	5087	10	_	400	97
2П601Б	2	{25}	20	20	15	_	125	612	_	10	15	5087	10	_	400	97
2П702А	50	35	300	310	30	16	125	_	1	_	_	8002100	20	2,5	10	103
2П802А	40	25	500	535	35	2,5	125	25	3	300	35	8002000	20	3,5	_	106
2П903А	6	25	20	20	15	0,7	125	512	9,8	100	15	85140	10	_	700	104
2П903Б	6	25	20	20	15	0,7	125	16,5	21	100	15	50130	10	_	480	104
2П903В	6	25	20	20	15	0,7	125	110	10	100	15	60140	10	_	600	104
2П914А	2,5	{25}	50	80	30	_	125	830	50	100	8	1030	10	_	250	97
КП601А	2	{25}	20	_	15	_	70	49	_	10	15	4087	10	_	400	97
КП601Б	2	{25}	20	_	15	_	70	612	_	10	15	4087	10	_	400	97
КП903А	6	25	20	20	15	0,7	100	512	9,8	100	15	85140	10	_	700	104
КП903Б	6	25	20	20	15	0,7	100	16,5	21	100	15	50130	10	_	480	104
КП903В	6	25	20	20	15	0,7	100	110	10	100	15	60140	10	_	600	104

Таблица 5.5.6. Транзисторы полевые большой мощности (P > 1,5 Вт) с изолированным затвором и каналом n- типа [39, стр. 202-207].

	Пј	реде.	пьные	значен	ния пар	аметр	ОВ	Значения параметров при T = 25 °C												
Тип прибора	Р макс.	Τκ,] Иси.	При Т Изс.	= 25 °C Uзи.	Ic.	Тк.	Rси.	Iз. ут,	Uзи,	S,	Иси,	I _C ,	Іс.	Сзи, {С ₁₁ и},	С22и,	С ₁₂ и,	Кур,	f,	Ри- су-
приоора	Вт	°C	макс,	макс,	макс,	макс,	°C	Ом	мА	В	мА/В	В	A	мА	пΦ	пФ	пΦ	дБ	МГц	нок
2П701А	40	35	500	510	25	5	125	2,8	_	_	8002100	30	2,5	30	1200	140	30	_	_	103
2П701Б	40	35	400	410	25	5	125	3,5	_	-	8002100	30	2,5	30	1200	140	30	-	_	103
2П901А	20	25	70	85	30	4	125	_	-	_	50160	20	0,5	200	100	-	10	7	100	105
2П901Б	20	25	70	85	30	4	125	_	_	_	60170	20	0,5	200	100	_	10	-	-	105
2Π902A ¹	3,5	25	50	-	30	0,2	125	30 т	3	30	1025	20	0,05	10	{11}	11	0,6	6,6	250	105
2П902Б	3,5	25	50	-	30	0,2	125	30 т	3	30	1025	20	0,05	10	{11}	11	0,6	6,6	250	105
2П904А	75	25	70	90	30	10	125	_	_	_	250520	20	1	350	300	-	_	13	60	108
2П904Б	75	25	70	90	30	5	125	_	-	_	250520	20	1	350	300	_	-	13	60	108
КП901А	20	25	70	85	30	4	100	_	-	_	50160	20	0,5	200	100	_	10	7	100	105
КП901Б	20	25	70	85	30	4	100	_	-	-	60170	20	0,5	200	100	-	10	7	-	105
КП902А 1	3,5	25	50	-	30	0,2	85	30 т	3	30	1025	50	0,05	10	{11}	11	0,6	6,6	250	105
КП902Б 1	3,5	25	50	-	30	0,2	85	30 т	3	30	1025	50	0,05	10	{11}	11	0,6	6,6	250	105
КП902В 2	3,5	25	50	-	30	0,2	85	30 т	3	30	1025	50	0,05	10	{11}	11	0,8	6,6	250	105
КП904А	75	25	70	90	30	16	100	-	_	-	250510	20	1	350	300	_	-	13	60	108
КП904Б	75	25	70	90	30	5	100	-	_	_	250510	20	1	350	300	-	-	13	60	108

^{1.} При T = 25 °C Кш = 6 дБ.

^{2.} При T = 25 °C Кш = 8 дБ.

Таблица 5.5.7. Транзисторы полевые малой мощности ($P \le 0.3$ Вт) с двумя изолированными затворами и каналом n- типа [39, стр. 206-209].

		Предельные значения параметров										Значения параметров при T = 25 °C								
Тип	Р				Пр	и T = 2	5 ℃			Т	Uз1и.	I31.								Ри-
прибора	-	T,	Иси.	Uз1с.	U32c.	Uз1и.	Uз2и.	U3132.	Ic.				Uз1и,	S1,	Иси,	I _C ,	Кш,	Кур,	f,	cy-
приоора	макс,	°C	макс,	макс,	макс,	макс,	макс,	макс,	макс,	макс, °С	отс, В	ут,	В	мА/В	В	мА	дБ	дБ	МΓц	нок
	мы		В	В	В	В	В	В	мА	Ò	Б	HA								
2П306А	150	35	20	20	20	20	20	25	20	125	0,84	1	20	38	15	5	6	10	200	109
2П306Б	150	35	20	20	20	20	20	25	20	125	0,24	1	20	38	15	5	6	10	200	109
2П306В	150	35	20	20	20	20	20	25	20	125	1,36	1	20	38	15	5	6	10	200	109
2П306Г	150	35	20	20	20	20	20	25	20	125	0,84	1	20	38	15	5	8	10	200	109
2П306Д	150	35	20	20	20	20	20	25	20	125	0,24	1	20	38	15	5	8	10	200	109
2П306Е	150	35	20	20	20	20	20	25	20	125	1,36	1	20	38	15	5	8	10	200	109
2П350А	200	25	15	_	_	15	15	_	30	85	0,176	5	15	611	10	10	6	-	_	109
2П350Б	200	25	15	_	_	15	15	_	30	85	0,176	5	15	611	10	10	6	-	_	109
КП306А	150	35	20	20	20	20	20	25	20	125	0,84	5	20	38	15	5	6	-	_	109
КП306Б	150	35	20	20	20	20	20	25	20	125	0,24	5	20	38	15	5	6	-	_	109
КП306В	150	35	20	20	20	20	20	25	20	125	1,36	5	20	38	15	5	6	-	_	109
КП327А	200	60	18	21	6	6	_	_	_	85	2,7	50	5	11	10	10	4,5	12	_	-
КП327Б	200	60	18	21	6	6	-	_	-	85	2,7	50	5	11	10	10	3	18	_	-
КП350А	200	25	15	21	15	15	15	_	30	85	0,76	5	15	613	10	10	7	-	_	109
КП350Б	200	25	15	21	15	15	15	_	30	85	0,76	5	15	613	10	10	6	-	_	109
КП350В	200	25	15	21	15	15	15	_	30	85	0,76	5	15	610	10	10	8	_	_	109

Таблица 5.5.8. ПСИТ транзисторы большой мощности (P > 1,5 Вт) с каналом n-типа [35].

Two wave one	Рмакс,	Uси.макс ,	Uзи.макс ,	Uзс.макс ,	Іс.макс,	Rc.мин,	Із.ут,	Develope
Тип прибора	Вт	В	В	В	A	Ом	мА	Рисунок
КП931А	20	800	5	800	5	_	3	111
КП931Б	20	600	5	600	5	_	3	111
КП931В	20	450	5	450	5	_	3	111
КП934А	40	450	5	_	10	_	_	107
КП934Б	40	400	5	_	10	_	_	107
КП934В	40	300	5	_	10	_	_	107
КП937А	50	450	20	475	17	_	_	107
КП938А	50	500	5	500	12	_	_	107
КП938Б	50	500	5	500	12	_	_	107
КП938В	50	450	5	450	12	_	_	107
КП938Г	50	400	5	400	12	_	_	107
КП938Д	50	300	5	300	12	_	_	107
КП946А	40	500	5	_	15	0,15	0,1	112
КП946Б	40	300	5	_	15	0,15	0,1	112
КП948А	20	800	5	_	5	0,15	0,1	112
КП948Б	20	800	5	_	5	0,15	0,1	112
КП948В	20	600	5	_	5	0,15	0,1	112
КП948Г	20	600	5	_	5	0,15	0,1	112

Транзисторы серии КП948 заменяют транзисторы серии КТ812 при той же схеме включения (затвор подключается как база, сток — как коллектор, а исток — как эмиттер).

КП921А

Транзистор кремниевый эпитаксиально — планарный полевой с изолированным затвором и вертикальным индуцированным каналом n-типа [23, стр. 160 — 162]. Предназначен для применения в быстродействующих переключающих устройствах. Выпускается в пластмассовом корпусе с гибкими выводами. Тип прибора указывается на корпусе. Масса транзистора не более 10 г.

Цоколёвка, габаритные и присоединённые размеры транзистора КП921А показаны на рисунке 111.

Электрические параметры.

Сопротивление сток – исток в открытом состоянии	
при Ic = 0,5 A, Uзи = 15 B	0,08*0,1*0,13 Ом
Крутизна характеристики при Ucu = 25 B, Ic = 1 A	0.81*1.5* A / B
Начальный ток стока при Ucu = 40 B, Uзи = 0,	
$T = -45 + 85 ^{\circ}C$	0,02*0,1*2,5 мА
Ток утечки затвора при Uзи = 15 B	0,01*0,05*10 мкА

Предельные эксплуатационные данные.

Постоянное напряжение сток – исток	45 B
Импульсное напряжение сток – исток	
при $tu = 2$ мкс, $Q = 1000$	60 B
Импульсное напряжение затвор – исток	
при $tu = 2$ мкс, $Q = 1000$	40 B
Ток стока	10 A
Постоянная рассеиваемая мощность 1:	
$T = -45 + 25 ^{\circ}C$	15 Bt
T = +85 °C	8 BT
Температура окружающей среды	-45 +85 °C

1. В диапазоне температур +25 ... +85 °C мощность снижается линейно на 117 мВт на 1°C.

Звёздочкой отмечены значения параметров, приведённые в справочных данных ТУ.

Пайка выводов допускается не ближе 5 мм от корпуса транзистора при температуре +235 °C в течение времени не более 5 с.

5.6 Рисунки цоколёвок транзисторов

5.7 Фотографии разных транзисторов

П217Б

ГТ905А

KD617

КТ940А1 КП303Е

П401, П403

6 Интегральные микросхемы

6.1 Микросхемные стабилизаторы напряжения

Таблица 6.1.1. Микросхемные стабилизаторы напряжения, рассчитанные на одно фиксированное напряжение [2, стр. 69 - 71], [9], [21].

Тин минторуом	Ивых,	Ін.макс,	Рмакс,	Рууг уулгу	Programor (Vangua)
Тип микросхемы	В	A	Вт	Вид цепи	Рисунок, {Корпус}
7805	5	1,5*	10	плюсовая	4, {TO-220}
7806	6	1,5*	10	плюсовая	4, {TO-220}
7885	8,5	1,5*	10	плюсовая	4, {TO-220}
7809	9	1,5*	10	плюсовая	4, {TO-220}
7812	12	1,5*	10	плюсовая	4, {TO-220}
7815	15	1,5*	10	плюсовая	4, {TO-220}
7818	18	1,5*	10	плюсовая	4, {TO-220}
7824	24	1,5*	10	плюсовая	4, {TO-220}
7905	5	1,5*	10	минусовая	5, {TO-220}
7906	6	1,5*	10	минусовая	5, {TO-220}
7908	8	1,5*	10	минусовая	5, {TO-220}
7909	9	1,5*	10	минусовая	5, {TO-220}
7912	12	1,5*	10	минусовая	5, {TO-220}
7915	15	1,5*	10	минусовая	5, {TO-220}
7918	18	1,5*	10	минусовая	5, {TO-220}
7924	24	1,5*	10	минусовая	5, {TO-220}
78L05	5	0,1	0,5	плюсовая	1, {TO-92}
78L62	6	0,1	0,5	плюсовая	1, {TO-92}
78L82	8	0,1	0,5	плюсовая	1, {TO-92}
78L09	9	0,1	0,5	плюсовая	1, {TO-92}
78L12	12	0,1	0,5	плюсовая	1, {TO-92}
78L15	15	0,1	0,5	плюсовая	1, {TO-92}
78L18	18	0,1	0,5	плюсовая	1, {TO-92}
78L24	24	0,1	0,5	плюсовая	1, {TO-92}
79L05	5	0,1	0,5	минусовая	2, {TO-92, KT-26}
79L06	6	0,1	0,5	минусовая	2, {TO-92, KT-26}
79L12	12	0,1	0,5	минусовая	2, {TO-92, KT-26}

Тип микросхемы	Ивых,	Ін.макс,	Рмакс,	D	D (III)
тип микросхемы	В	A	Вт	Вид цепи	Рисунок, {Корпус}
79L15	15	0,1	0,5	минусовая	2, {TO-92, KT-26}
79L18	18	0,1	0,5	минусовая	2, {TO-92, KT-26}
79L24	24	0,1	0,5	минусовая	2, {TO-92, KT-26}
78M05	5	0,5	7,5	плюсовая	4, {TO-202, TO-220}
78M06	6	0,5	7,5	плюсовая	4, {TO-202, TO-220}
78M08	8	0,5	7,5	плюсовая	4, {TO-202, TO-220}
78M12	12	0,5	7,5	плюсовая	4, {TO-202, TO-220}
78M15	15	0,5	7,5	плюсовая	4, {TO-202, TO-220}
78M18	18	0,5	7,5	плюсовая	4, {TO-202, TO-220}
78M20	20	0,5	7,5	плюсовая	4, {TO-202, TO-220}
78M24	24	0,5	7,5	плюсовая	4, {TO-202, TO-220}
79M05	5	0,5	7,5	минусовая	5, {TO-220}
79M06	6	0,5	7,5	минусовая	5, {TO-220}
79M08	8	0,5	7,5	минусовая	5, {TO-220}
79M12	12	0,5	7,5	минусовая	5, {TO-220}
79M15	15	0,5	7,5	минусовая	5, {TO-220}
79M18	18	0,5	7,5	минусовая	5, {TO-220}
79M20	20	0,5	7,5	минусовая	5, {TO-220}
79M24	24	0,5	7,5	минусовая	5, {TO-220}
KP142EH5A	5,0	2	10	плюсовая	4, {KT-28-2}
КР142ЕН5Б	6,0	2	10	плюсовая	4, {KT-28-2}
KP142EH5B	5	1,5	10	плюсовая	4, {KT-28-2}
КР142ЕН5Г	6	1,5	10	плюсовая	4, {KT-28-2}
KP142EH8A	9	1,5	10	плюсовая	4, {KT-28-2}
КР142ЕН8Б	12	1,5	10	плюсовая	4, {KT-28-2}
KP142EH8B	15	1,5	10	плюсовая	4, {KT-28-2}
КР142ЕН8Г	9	1	10	плюсовая	4, {KT-28-2}
КР142ЕН8Д	12	1	10	плюсовая	4, {KT-28-2}
KP142EH8E	15	1	10	плюсовая	4, {KT-28-2}
KP142EH9A	20	1,5	10	плюсовая	4, {KT-28-2}
КР142ЕН9Б	24	1,5	10	плюсовая	4, {KT-28-2}
KP142EH9B	27	1,5	10	плюсовая	4, {KT-28-2}
КР142ЕН9Г	20	1	10	плюсовая	4, {KT-28-2}
КР142ЕН9Д	24	1	10	плюсовая	4, {KT-28-2}

T.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Uвых ,	Ін.макс,	Рмакс,	D	Drygryggy (Waggyyg)
Тип микросхемы	В	A	Вт	Вид цепи	Рисунок, {Корпус}
КР142ЕН9Е	27	1	10	плюсовая	4, {KT-28-2}
КР1157ЕН5А; КР1157ЕН5Б	5	0,1	0,5	плюсовая	3, {KT-27-2}
КР1157ЕН9А; КР1157ЕН9Б	9	0,1	0,5	плюсовая	3, {KT-27-2}
КР1157ЕН12А; КР1157ЕН12Б	12	0,1	0,5	плюсовая	3, {KT-27-2}
КР1157ЕН15А; КР1157ЕН15Б	15	0,1	0,5	плюсовая	3, {KT-27-2}
КР1157ЕН18А; КР1157ЕН18Б	18	0,1	0,5	плюсовая	3, {KT-27-2}
КР1157ЕН24А; КР1157ЕН24Б	24	0,1	0,5	плюсовая	3, {KT-27-2}
КР1157ЕН5В; КР1157ЕН5Г	5	0,25	1,3	плюсовая	3, {KT-27-2, TO-126}
КР1157ЕН9В; КР1157ЕН9Г	9	0,25	1,3	плюсовая	3, {KT-27-2, TO-126}
КР1157ЕН12В; КР1157ЕН12Г	12	0,25	1,3	плюсовая	3, {KT-27-2, TO-126}
КР1157ЕН15В; КР1157ЕН15Г	15	0,25	1,3	плюсовая	3, {KT-27-2, TO-126}
КР1157ЕН18В; КР1157ЕН18Г	18	0,25	1,3	плюсовая	3, {KT-27-2, TO-126}
КР1157ЕН24В; КР1157ЕН24Г	24	0,25	1,3	плюсовая	3, {KT-27-2, TO-126}
КР1157ЕН501А; КР1157ЕН501Б	5	0,1	0,5	плюсовая	2, {KT-26}
КР1157ЕН601А; КР1157ЕН601Б	6	0,1	0,5	плюсовая	2, {KT-26}
КР1157ЕН801А; КР1157ЕН801Б	8	0,1	0,5	плюсовая	2, {KT-26}
КР1157ЕН901А; КР1157ЕН901Б	9	0,1	0,5	плюсовая	2, {KT-26}
КР1157ЕН1201А; КР1157ЕН1201Б	12	0,1	0,5	плюсовая	2, {KT-26}
КР1157ЕН1501А; КР1157ЕН1501Б	15	0,1	0,5	плюсовая	2, {KT-26}
КР1157ЕН1801А; КР1157ЕН1801Б	18	0,1	0,5	плюсовая	2, {KT-26}
КР1157ЕН2401А; КР1157ЕН2401Б	24	0,1	0,5	плюсовая	2, {KT-26}
КР1157ЕН502А; КР1157ЕН502Б	5	0,1	0,5	плюсовая	1, {KT-26}
КР1157ЕН602А; КР1157ЕН602Б	6	0,1	0,5	плюсовая	1, {KT-26}
КР1157ЕН802А; КР1157ЕН802Б	8	0,1	0,5	плюсовая	1, {KT-26}
КР1157ЕН902А; КР1157ЕН902Б	9	0,1	0,5	плюсовая	1, {KT-26}
КР1157ЕН1202А; КР1157ЕН1202Б	12	0,1	0,5	плюсовая	1, {KT-26}
КР1157ЕН1502А; КР1157ЕН1502Б	15	0,1	0,5	плюсовая	1, {KT-26}
КР1157ЕН1802А; КР1157ЕН1802Б	18	0,1	0,5	плюсовая	1, {KT-26}
КР1157ЕН2402А; КР1157ЕН2402Б	24	0,1	0,5	плюсовая	1, {KT-26}
КР1157ЕН2702А; КР1157ЕН2702Б	27	0,1	0,5	плюсовая	1, {KT-26}
КР1162ЕН5А; КР1162ЕН5Б	5	1,5	10	минусовая	5, {KT-28-2}
КР1162ЕН6А; КР1162ЕН6Б	6	1,5	10	минусовая	5, {KT-28-2}
КР1162ЕН8А; КР1162ЕН8Б	8	1,5	10	минусовая	5, {KT-28-2}
КР1162ЕН9А; КР1162ЕН9Б	9	1,5	10	минусовая	5, {KT-28-2}

Москатов Е. А. Справочник по полупроводниковым приборам. http://moskatov.narod.ru

T	Ивых,	Ін.макс,	Рмакс,	D	D (11)
Тип микросхемы	В	A	Вт	Вид цепи	Рисунок, {Корпус}
КР1162ЕН12А; КР1162ЕН12Б	12	1,5	10	минусовая	5, {KT-28-2}
КР1162ЕН15А; КР1162ЕН15Б	15	1,5	10	минусовая	5, {KT-28-2}
КР1162ЕН18А; КР1162ЕН18Б	18	1,5	10	минусовая	5, {KT-28-2}
КР1162ЕН24А; КР1162ЕН24Б	24	1,5	10	минусовая	5, {KT-28-2}
KP1168EH5	5	0,1	0,5	минусовая	2**, {KT-26}
KP1168EH6	6	0,1	0,5	минусовая	2**, {KT-26}
KP1168EH8	8	0,1	0,5	минусовая	2**, {KT-26}
KP1168EH9	9	0,1	0,5	минусовая	2**, {KT-26}
KP1168EH12	12	0,1	0,5	минусовая	2**, {KT-26}
KP1168EH15	15	0,1	0,5	минусовая	2**, {KT-26}
KP1179EH05	5	1,5	10	минусовая	5, {TO-220}
KP1179EH06	6	1,5	10	минусовая	5, {TO-220}
KP1179EH08	8	1,5	10	минусовая	5, {TO-220}
KP1179EH12	12	1,5	10	минусовая	5, {TO-220}
KP1179EH15	15	1,5	10	минусовая	5, {TO-220}
KP1179EH24	24	1,5	10	минусовая	5, {TO-220}
КР1180ЕН5А; КР1180ЕН5Б	5	1,5	10	плюсовая	4, {KT-28-2}
КР1180ЕН6А; КР1180ЕН6Б	6	1,5	10	плюсовая	4, {KT-28-2}
КР1180ЕН8А; КР1180ЕН8Б	8	1,5	10	плюсовая	4, {KT-28-2}
КР1180ЕН9А; КР1180ЕН9Б	9	1,5	10	плюсовая	4, {KT-28-2}
КР1180ЕН12А; КР1180ЕН12Б	12	1,5	10	плюсовая	4, {KT-28-2}
КР1180ЕН15А; КР1180ЕН15Б	15	1,5	10	плюсовая	4, {KT-28-2}
КР1180ЕН18А; КР1180ЕН18Б	18	1,5	10	плюсовая	4, {KT-28-2}
КР1180ЕН24А; КР1180ЕН24Б	24	1,5	10	плюсовая	4, {KT-28-2}

^{*} Выпускают также разновидности на ток нагрузки до 1 А.

LM7805CK

Размеры и цоколёвка микросхемного стабилизатора напряжения LM7805CK, рассчитанного на одно фиксированное напряжение, приведены на рисунке 9.

Постоянное выходное напряжение Ивых, В	5
Максимальный ток нагрузки Ін.макс, А	1
Входное напряжение, В	7 20
Падение напряжения на стабилизаторе Uпд, В	2

^{**} Была выпущена опытная партия с цоколёвкой, соответствующей рисунку 1.

Δ Uвых (при Δ Uвх.макс), мВ	\leq 50
Ивых (при ΔІвых.макс), мВ	\leq 50
γ, MB / °C	0,6
Rтп-c, °С / Вт	35
Потребляемый микросхемой ток, мА	≤ 8
Uш, мкB	40

Таблица 6.1.2. Микросхемные стабилизаторы напряжения, обеспечивающие регулируемое выходное напряжение [2, стр. 69 - 71], [21].

Тип микросхемы	Ивых , В		Ivy vegyes A	Dreams Dr	Deve warre	Dyrayyay (Vanyya)	
	Минимум	Максимум	Ін.макс, А	Рмакс, Вт	Вид цепи	Рисунок, {Корпус}	
LM317L	1,2	37	0,1	0,625	плюсовая	6, {TO-92}	
LM337LZ	1,2	37	0,1	0,625	минусовая	6, {TO-92}	
LM317T	1,2	37	1,5	15	плюсовая	7, {TO-220}	
LM337T	1,2	37	1,5	15	минусовая	8, {TO-220}	
KP142EH12A	1,2	37	1,5	10	плюсовая	7, {KT-28-2}	
КР142ЕН12Б	1,2	37	1,0	10	плюсовая	7, {KT-28-2}	
KP142EH18A	1,3	26,5	1,0	10	минусовая	8, {KT-28-2}	
КР142ЕН18Б	1,3	26,5	1,5	10	минусовая	8, {KT-28-2}	
KP1157EH1	1,2	37	0,1	0,6	плюсовая	6, {KT-26}	
KP1168EH1	1,2	37	0,1	0,5	минусовая	6, {KT-26}	

В отличие от стабилизаторов с фиксированным выходным напряжением, регулируемые без нагрузки не работают.

Рисунок 1. Простейшая схема подключения стабилизатора напряжения, обеспечивающего регулируемое выходное напряжение.

Сопротивление резистора R1 на схеме рисунка 1 примерно равно 4,7 кОм, а R2-200 Ом.

6.2 Операционные усилители

Таблица 6.2.1. Параметры некоторых операционных усилителей [5], [21].

Тип прибора	Uип, B	Uип.	$K_D \times 10^3$	Іп, мА	Исм,	ТКИсм,	fl,	Vu,	R _D BX,	
		ном, В			мВ	мкВ / К	МΓц	В / мкс	МОм	Аналог
К140УД1А, КР140УД1А	_	2 × 6,3	0,5	6	7	20	3	0,2	0,004	μΑ702
К140УД1Б, КР140УД1Б	_	2 × 12,6	1,3	12	7	20	8	0,5	0,004	μΑ702
К140УД5A ¹⁾	2×(613)	2 × 12	0,5	12	10	35	5	6	0,05	
К140УД5Б ¹⁾	2×(613)	2 × 12	1	12	7	10	10	6	0,003	
К140УД6, КР140УД608	2×(520)	2 × 15	30	3	8	20	1	2	1	MC1456C
К140УД7, КР140УД708	2×(520)	2 × 15	30	2,8	9	10	0,8	0,3	0,4	μΑ741
К140УД8, КР140УД8	_	2 × 15	50	5	50	50	1	2	10	μΑ740
К140УД9	2×(918)	2 × 12,6	35	8	5	20	1	0,2	0,3	_
К140УД10	2×(518)	2 × 15	50	10	5	50	15	30	0,4	LM118
К140УД11, КР140УД1101	2×(518)	2 × 15	30	8	10	50	15	50	0,4	LM318
К140УД12, КР140УД1208 ²⁾	2×(1,518)	2 × 3 / 15	25 / 50	0,03/0,17	6	5 / 6	0,2 / 1	0,1 / 0,8	50 / 5	μΑ776
К140УД14, КР140УД1408	2×(518)	2 × 15	50	1	5	20	0,5	0,1	30	LM308
К140УД17	2×(318)	2 × 15	200	5	0,25	1,3	0,4	0,1	30	OP-07E
К140УД18	2×(618)	2 × 15	25		10	_	2,5	5	10 ⁶	LF-355
К140УД20	2×(520)	2 × 15	50	3	5	2	0,5	0,3	0,4	μΑ747
К153УД1	2×(918)	2 × 15	15	6	7,5	30	1	0,2	0,2	μΑ709
К153УД2	2×(518)	2 × 15	25	3	7,5	30	1	0,5	0,3	LM101
К153УД3	2×(918)	2 × 15	25	4	2	15	1	0,2	0,4	μΑ709Α
К153УД4	2×(39)	2 × 6	5	0,8	5	50	0,7	0,1	0,2	WCC188
К153УД5	2×(516)	2 × 15	500	3,5	2	10	0,2	0,01	1	μΑ725
К153УД6	2×(518)	2 × 15	50	3	2	15	0,7	0,5	0,3	LM301A
К154УД1	2×(418)	2 × 15	150	0,15	5	30	1	10	1	HA2700
К154УД2	2×(518)	2 × 15	100	6	2	20	15	+150/-75 ³⁾	0,5	_
К154УД3	2×(518)	2 × 15	8	7	10	30	15	80	1	AD509
К154УД4	2×(517)	2 × 15	8	7	6	50	30	400	1	HA2520
К157УД1	2×(320)	2 × 15	50	9	5	50	0,5	0,5	1	_
К157УД2	2×(318)	2 × 15	50	7	10	50	1	0,5	0,5	2×LM301
К544УД1, КР544УД1	2×(816,5)	2 × 15	50	3,5	20	50	1	3	10	μΑ740
К544УД2, КР544УД2	2×(617)	2 × 15	20	7	50	50	15	20	10	CA3130
К551УД1	2×(516,5)	2 × 15	500	5	1,5	5	0,8	0,01	1	_
КМ551УД1	2×(516,5)	2 × 15	500	5	2	10	0,8	0,01	1	μΑ725
КМ551УД2	2×(516,5)	2 × 15	5	10	5	20	1	0,25	0,5	μΑ739
К553УД1	2×(918)	2 × 15	10	6	7,5	30	1	0,2	0,2	μΑ709
К553УД2	2×(518)	2 × 15	20	3	7,5	30	1	0,5	0,3	LM301
К553УД3	2×(918)	2 × 15	30	4	2	15	1	0,2	0,3	μΑ709Α
К574УД1, КР574УД1	_	2 × 15	50	8	50	50	10	50	10	AD513
К574УД2, КР574УД2	-	2 × 15	25	10	50	30	2	10	10 ⁴	TL0837

Тип прибора	Uип, B	Иип.	$K_D \times 10^3$	Іп, мА	Исм,	ТКИсм,	f1,	Vu,	R _D BX,	Аналог
		ном, В			мВ	мкВ / К	МΓц	В / мкс	МОм	
К574УД3, КР574УД3	2×(316,5)	2 × 15	20	7	5	5	15	30	10^4	_
К1401УД1	415	2 × 15	2	8	5	30	2,5	0,5	1	LM2900
К1401УД2	2×(215)	2 × 15	25	3	5	30	1	0,5	-	LM324
К1407УД1, КР1407УД1	2×(312)	2 × 5	10	8	10	50	20	10	-	_
К1407УД2, КР1407УД2	2×(1,213,2)	2 × 12	50	0,1	0,5	_	3	0,5	-	LM4250
К1407УД3, КР1407УД3	2×(212)	2 × 12	10	2	5	20	5	5	-	_
КФ1407УД4	2×(1,56)	2 × 5	3	2	5	_	1	1	-	_
К1408УД1, КР1408УД1	2×(740)	2 × 27	70	5	8	_	0,5	2	1	LM343
К1408УД2	2×(520)	2 × 15	50	2,8	4	_	0,8	0,7	0,4	μΑ747С
К1409УД1	2×(515)	2 × 15	20	6	15	_	1	4	10 ⁵	CA3140

- 1) Данные микросхемы имеют две пары входных выводов: высокоомный вход -8 и 11, низкоомный -9 и 10. Параметры для К140УД5Б указаны для низкоомного входа (вывод 8 соединён с 9, а 10-c 11).
- 2) Параметры указаны для двух значений управляющего тока Іупр = 1,5 / 15 мкА.
- 3) Значения параметра для положительного перепада выходного напряжения и отрицательного неодинаковы.

6.3 Микросхемы серии К174

Микросхемы серии К174 выполнены по планарно – эпитаксиальной технологии. Они предназначены для работы в низкочастотных трактах бытовой радиоаппаратуры (телевизоры, радиоприёмники) [20], [21], [27].

Микросхемы серии К174 оформлены в прямоугольном пластмассовом корпусе.

 $K174\Gamma Л1A$ — формирование сигналов кадровой развёртки, регулировка амплитуды и линейности кадровой пилы, усиление мощности. Напряжение питания от 22 до 27 В. Потребляемый микросхемой ток — 180 мА. Максимальный выходной ток 1,1 А [21, стр. 8-4]. Корпус — 2104.12-1. Аналог — TDA1170. Выполняется по 6K0.348.249 ТУ.

К174ГЛЗ — генерирование колебаний с частотой кадров, формирование пилообразного напряжения с регулировкой амплитуды и линейности, усиления мощности для обеспечения тока в отклоняющей системе. При напряжении питания 12 В потребляемый микросхемой ток составляет от 5 до 14 мА. При напряжении питания 20 В потребляемый микросхемой ток составляет от 80 до 170 мА. Выходной ток от 0,4 до 0,9 А [21, стр. 8-4]. Корпус — 2102.16-А. Выполняется по АДБК.431110.585 ТУ.

К174КН2 — 8-канальный коммутатор напряжения с кольцевым счётом. Выполняется по бК0.348.869 ТУ.

 $K174K\Pi1$ — переключатель датчиков низкочастотных сигналов. Выполняется по бK0.348.688 ТУ.

К174КПЗ – схема управления выборкой программ телевизионных приёмников с индикацией. Напряжение питания равно 12 В, потребляемый ток 50 мА, количество каналов – 8. Корпус – 2121.28-12. Применяется в селекторах каналов. Выполняется по АДБК.431160.083 ТУ.

К174ПС1, КМ174ПС1, КФ174ПС1 — двойные балансные смесители для преобразования частоты в УКВ — диапазоне. Напряжение питания 9,0 В, коэффициент шума 8 дБ. Потребляемый ток: КМ174ПС1 — 3,0 мА, К174ПС1 — 2,5 мА, КФ174ПС1 — 3,0 мА. Частота входного сигнала для КМ174ПС1 — 200 МГц, для К174ПС1 и КФ174ПС1 — 100 МГц. Частота опорного сигнала для КМ174ПС1 — 210,7 МГц, для К174ПС1 и КФ174ПС1 — 110,7 МГц. Коэффициент ослабления входного сигнала для всех трёх ИМС равен 30 дБ. Крутизна преобразования для КМ174ПС1 — 5,0 мА / В, для К174ПС1 и КФ174ПС1 — 4,5 мА / В. Корпус у К174ПС1 — 201.14-1, корпус у КМ174ПС1 — 201.16-13, корпус у КФ174ПС1 — 4304.10-1. Аналог — S042P. К174ПС1 выполняется по бК0.348.678 ТУ; КМ174ПС1 выполняется по бК0.348.678 ТУ.

К174ПС2 — балансный смеситель .Напряжение питания 6,0 В. Потребляемый ток -3,5 мА. Частота входного сигнала — 500 МГц. Частота опорного сигнала — 510,7 МГц. Коэффициент ослабления входного сигнала — 30 дБ. Крутизна преобразования — 5,0 мА / В. Корпус — 201.14-10. КМ174ПС2 выполняется по АДБК.431320.194 ТУ.

К174УН4 (А, Б) – усилитель мощности только звуковых трактов. Выполняется

по бК0.348.032 ТУ.

К174УН5 – усилитель мощности низкой частоты. Имеет корпус 238.12-1.

К174УН7 — усилитель мощности низкой частоты. Имеет корпус 238.12-1. Выполняется по бК0.348.171 ТУ.

К174УН9 — усилитель мощности низкой частоты. Выходная мощность 5,0 Вт, напряжение питания 15 В, потребляемый ток в отсутствии сигнала не более 60 мА, коэффициент гармоник 0,5 %. Корпус — 201.12-1. Выполняется по бК0.348.339 ТУ.

К174УН10 (A, Б) – двухканальный усилитель с электронной корректировкой частотной характеристики. Выполняется по бК0.348.475 ТУ.

К174УН12 — двухканальный регулятор громкости и баланса в стереоаппаратуре. Выполняется по бК0.348.556 ТУ.

K174УН14, K174УН14А — усилители мощности низкой частоты. Выполняется по бK0.348.820 ТУ. Корпус — 1501.5-1. Выходная мощность 5,5 Вт, напряжение питания 15 В, потребляемый ток в отсутствии сигнала не более 80 мА, коэффициент гармоник 0,5 %. Выполняются по бK0.348.824 ТУ.

К174УН18 — двухканальный усилитель мощности низкой частоты. Выполняется по бК0.348.879 ТУ.

K174УH19 — усилитель мощности низкой частоты. Выходная мощность 15 Вт, напряжение питания \pm 15 В, потребляемый ток в отсутствии сигнала не более 56 мА, коэффициент гармоник 0,5 %. Корпус — 1501.5-1. Выполняется по бК0.348.981 ТУ.

К174УН24 — двухканальный усилитель мощности низкой частоты. Выходная мощность 0,6 Вт, напряжение питания 6,0 В, потребляемый ток в отсутствии сигнала не более 10 мА, коэффициент гармоник 1,0 %. Корпус — 2101.8-1. Выполняется по АДБК.431120.422 ТУ.

K174УH25 — усилитель мощности низкой частоты. Выходная мощность 9 Вт, напряжение питания от 8,0 до 14,4 В, потребляемый ток в отсутствии сигнала не более 15 мА, коэффициент гармоник 1,0 %. Корпус — 1502.11-1. Выполняется по АДБК.431120.468 ТУ.

К174УН27 — двухканальный усилитель мощности низкой частоты. Выходная мощность 9 Вт, напряжение питания от 8,0 до 14,4 В, потребляемый ток в отсутствии сигнала не более 15 мА, коэффициент гармоник 1,0 %. Корпус — 1502.11-1. Выполняется по АДБК.431120.482 ТУ.

K174УH29 — двухканальный усилитель мощности низкой частоты. Напряжение питания от 8,0 до 26,0 В, потребляемый ток в отсутствии сигнала не более 150 мА, коэффициент гармоник 0,5 %. Корпус — 1502.11-1. Выполняется по АДБК.431120.518 ТУ.

K174УH30 — усилитель мощности низкой частоты. Выходная мощность 32 Вт, напряжение питания \pm 18 В, потребляемый ток в отсутствии сигнала не более 90 мА, коэффициент гармоник 0,5 %. Корпус — 1501.5-1. Выполняется по АДБК.431120.519 ТУ.

K174УH33 — усилитель мощности низкой частоты. Выходная мощность 20 Вт, напряжение питания \pm 16 В, потребляемый ток в отсутствии сигнала не более 70 мА, коэффициент гармоник 0,5 %. Корпус — 1501.5-1. Выполняется по

АДБК.431120.666 ТУ.

K174УР1 — усилитель промежуточной частоты канала звукового сопровождения. Корпус — 201.14-6.

K174УР2 — усилитель промежуточной частоты канала изображения чёрно — белых и цветных телевизионных приёмников. Корпус 2103.16-9 имеет К174УР2Б, а 238.16-3 имеет К174УР2. Аналог К174УР2Б — ТDA440. Напряжение питания равно $12\pm1,2$ В, потребляемый ток — 75 мА. Размах полного выходного сигнала положительной полярности при максимальной модуляции от 2,6 В до 4,2 В. Чувствительность не хуже 500 мкВ для К174УР2А и 300 мкВ для К174УР2Б. Диапазон регулировки усиления (АРУ) не менее 50 дБ. Ширина полосы пропускания видеочастот на уровне 3 дБ от 7,5 МГц до 10 МГц. Промежуточная частота 38 МГц. ИМС применяется в блоках радиоканала. К174УР2Б выполняется по бК0.348.192 ТУ.

К174УРЗ — усиление промежуточной частоты ЧМ сигнала, ограничение, частотное детектирование, предварительное усиление низкой частоты. Напряжение питания равно от 5 до 9 В, потребляемый ток — 13 мА, коэффициент гармоник равен 2 %, коэффициент ослабления амплитудной модуляции равен 40 дБ. Корпус 210.14-1. Аналог К174УРЗ — ТВА120. Применяется для радиосвязи в ЧМ трактах. Выполняется по бК0.348.292 ТУ.

К174УР4 — усиление и ограничение ПЧЗ, частотное детектирование, электронная регулировка выходного сигнала. Корпус — 210.14-1. Аналог К174УР4 — ТВА120V. Напряжение питания равно 12 В. Применяется в блоках радиоканала. Выполняется по бК0.348.615 ТУ.

К174УР5 — усиление ПЧИ, фиксация уровней сигналов "чёрного" и "белого", АПЧГ. Усиление ПЧЗ с АРУ, детектирование сигналов изображения и звука, предварительное усиление звукового сигнала низкой частоты в квазипараллельном канале. Корпус — 238.16-2. Аналог К174УР5 — TDA2541. Напряжение питания равно 12 В. Применяется в блоках радиоканала. Выполняется по бК0.348.606 ТУ.

К174УР7 – усилитель – ограничитель промежуточной частоты ЧМ – тракта с балансным ЧМ – декодером и предусилителем. Выполняется по бК0.348.811 ТУ. Осуществляет усиление промежуточной частоты ЧМ сигнала, ограничение, частотное детектирование, предварительное усиление низкой частоты. Напряжение питания равно от 5 до 10 В, потребляемый ток – 0,6 мА, коэффициент гармоник равен 0,8 %, коэффициент ослабления амплитудной модуляции равен 30 дБ. Корпус 238.16-1. Аналог – ТСА770. Применяется для радиосвязи в ЧМ трактах.

КМ174УР7 — осуществляет усиление промежуточной частоты ЧМ сигнала, ограничение, частотное детектирование, предварительное усиление низкой частоты. Напряжение питания равно от 5 до 10 В, потребляемый ток — 0,8 мА, коэффициент гармоник равен 2,5 %, коэффициент ослабления амплитудной модуляции равен 30 дБ. Корпус 201.16-13. Аналог — ТСА770. Применяется для радиосвязи в ЧМ трактах. Выполняется по АДБК.431130.153 ТУ.

К174УР8 — усилитель промежуточной частоты звука в квазипараллельном канале. Выполняется по бК0.348.891 ТУ. Корпус — 2103.16-9. Аналог К174УР8 — TDA2545. Напряжение питания равно 12 В. Применяется в блоках радиоканала.

К174УР10 – усиление сигналов промежуточных частот изображения и звука. Выполняется по бК0.348.929 ТУ.

К174УР11 — усиление сигнала промежуточной частоты звука и осуществление регулировок громкости и тембра по низким и высоким частотам. Выполняется по бК0.348.930 ТУ. Корпус — 2104.18-4. Аналог К174УР11 — TDA1236. Напряжение питания равно 12 В. Применяется в блоках радиоканала.

К1УС744 – усилитель мощности. Корпус – 201.9-1.

К174XA1M – коммутация и ограничение сигнала SECAM, а также выделение цветоразностного сигнала и запирание канала цветности при приёме чёрно – белого изображения. Выполняется по бК0.348.248 ТУ.

К174ХА2 — однокристальный АМ — приёмник (усиление сигналов высокой частоты с АРУ, преобразование частот, усиление промежуточной частоты с АРУ). Напряжение питания равно 9 В, потребляемый ток 17 мА, отношение сигнал / шум равно 54 дБ. Корпус ИМС К174ХА2 — 238.16-1, а корпус КМ174ХА2 — 201.16-13. Аналог — ТСА440. Микросхема применяется в АМ — трактах. К174ХА2 выполняется по бК0.348.318 ТУ; КМ174ХА2 выполняется по АДБК.431260.056 ТУ.

K174XA4 — схема фазовой автоподстройки частоты. Выполняется по $6K0.347.175~{\rm TY}.$

К174XA5 — многофункциональная схема для УКВ ЧМ приёмников (усиление промежуточной частоты, ограничение, частотное детектирование). Выполняется по бК0.347.175 ТУ2. Напряжение питания равно 12 В, потребляемый ток — 30 мА. Корпус 238.18-1. Аналог — TDA1047. Применяется для радиосвязи в ЧМ трактах.

К174XA6 — многофункциональная схема с усилением, ограничением и детектированием ЧМ — сигнала. Выполняется по бК0.348.555 ТУ.

К174ХА7 — многофазный перемножитель сигналов для выделения одной боковой частоты. Выполняется по бК0.347.175 ТУ4. КМ174ХА7 имеет следующие параметры. Напряжение питания 9,0 В. Потребляемый ток — 25 мА. Частота входного сигнала — 5,0 МГц. Частота опорного сигнала — 5,0 МГц. Коэффициент ослабления входного сигнала — 22 дБ. Корпус — 201.16-13. Применяется в балансных смесителях.

К174ХА10 — многофункциональная схема для однокристального АМ — ЧМ радиоприёмника. Выполняется по бК0.348.602 ТУ. ИМС обеспечивает усиление ВЧ, ПЧ и НЧ сигналов, преобразование и демодуляцию АМ и ЧМ сигналов. Напряжение питания — 9 В, потребляемый ток — 17 мА, коэффициент ослабления амплитудной модуляции — 3,5 %, коэффициент ослабления частотной модуляции — 2,5 %, отношение сигнал / шум 20 дБ. Корпус — 238.16-2. Аналог — TCA1083.

К174ХА11 — амплитудная селекция синхросигнала, автоматическая подстройка частоты и фазы, формирование импульсов строчной развёртки, формирование синхроимпульсов кадровой развёртки и стробирующих импульсов, выделение цветовой поднесущей. Напряжение питания равно 12 В. Потребляемый микросхемой ток 60 мА. Корпус — 2103.16-9. Аналог — TDA2593. Выполняется по бК0.348.605 ТУ.

К174XA14 — схема для стереодекодера системы с полярной модуляцией. Выполняется по бК0.348.739 ТУ.

К174XA15 — многофункциональная микросхема для УКВ — блока; усиление сигналов высокой частоты; преобразование сигналов высокой частоты в сигналы промежуточной частоты; генерация колебаний гетеродина. Выполняется по бК0.348.795 ТУ.

К174ХА16 — декодер цветности SECAM, усиление сигналов цветности, выделение сигналов опознавания цвета, демодуляция с получением на выходе цветоразностных сигналов, ФАПЧ. Корпус — 2121.28-12. Аналог К174ХА16 — TDA3520В. Напряжение питания равно 12 В. Применяется в блоках цветности. Выполняется по бК0.348.837 ТУ.

К174ХА17 — схема формирования сигналов цветности, регулировки яркости, контрастности и насыщенности, фиксации уровня "чёрного". Выполняется по бК0.348.838 ТУ. Корпус — 2121.28-12. Аналог К174ХА17 — TDA3501. Напряжение питания равно 12 В. Применяется в блоках цветности.

К174XA19 — формирование стабилизирующего, управляющего напряжения настройки и обработки сигналов автоподстройки частоты в блоках УКВ радиоприёмника. Напряжение питания от 9 до 16 В, потребляемый ток 7,5 мА. Корпус — 2103.16-9. Аналог — TDA1093B. Выполняется по бК0.348.882 ТУ.

К174XA27 — корректор (обостритель) фронтов сигналов цветности, яркостная линия задержки. Корпус — 2104.18-2. Аналог К174XA27 — TDA4565. Напряжение питания равно 12 В. Применяется в блоках цветности. Выполняется по бК0.349.050 ТУ.

К174XA28 — декодер сигналов цветности РАL. Корпус — 2120.24-5. Аналог К174XA28 — TDA3510A. Напряжение питания равно 12 В. Применяется в декодерах. Выполняется по бК0.349.060 ТУ.

К174ХАЗ1 — декодер цветности SECAM. Корпус — 2121.28-12. Аналог — TDA3530. Напряжение питания равно 12 В. Выполняется по бК0.349.076 ТУ.

K174XA32 — четырёхканальный декодер сигналов цветности PAL / SECAM / NTSC — 3,58; NTSC — 4,43. Корпус — 2121.28-12. Аналог K174XA32 — TDA4555. Напряжение питания равно 12 В. Применяется в декодерах. Выполняется по АДБК.431260.017 ТУ.

К174XA32A — декодер сигналов цветности PAL / SECAM (без NTSC). Корпус — 2121.28-12. Аналог К174XA32A — TDA4555. Напряжение питания равно 12 В. Применяется в декодерах. Выполняется по АДБК.431260.017 ТУ.

К174XA33 — видеопроцессор с автоматической регулировкой баланса "чёрного", демодулятор, ЧМ-тракт, регулировка яркости, обработка сигналов. Корпус — 2121.28-12. Аналог К174XA33 — TDA3505. Напряжение питания равно 12 В. Применяется в блоках радиоканала. Выполняется по АДБК.431260.018 ТУ.

K174XA34 — осуществляет усиление промежуточной частоты ЧМ сигнала, ограничение, частотное детектирование, предварительное усиление низкой частоты. Напряжение питания равно 3 ± 10 % В, потребляемый ток — 10 мА, коэффициент гармоник равен 2,5 %, коэффициент ослабления амплитудной модуляции равен 30 дБ. Корпус 2103.16-2. Аналог — TCA7021. Применяется для радиосвязи в ЧМ трактах. Выполняется по АДБК.431260.120 ТУ / 02.

К174ХА35 – стереодекодер с полярной модуляцией для отечественной

системы радиовещания. Напряжение питания равно 6 В, потребляемый ток -11 мА, коэффициент гармоник равен 0,5 %, отношение сигнал / шум 60 дБ. Корпус 238.18-3. Применяется в стереодекодерах. Выполняется по АДБК.431260.129 ТУ / 02.

К174ХА36А, Б — генерация и преобразование частот, усиление промежуточной частоты, демодуляция, предварительное усиление низкой частоты, выход на индикацию. Для группы А: напряжение питания от 2,0 до 9,0 В, потребляемый ток 10 мА. Для группы Б: напряжение питания от 2,0 до 3,3 В, потребляемый ток 8 мА. Коэффициент гармоник для групп А и Б равен 3 % при входном напряжении 10 мВ. Корпус — 238.16-1. Аналог — ТЕА5570. Применяется в АМ — трактах. К174ХА36А выполняется по АДБК.431260.147 ТУ; К174ХА36Б выполняется по АДБК.431260.147 ТУ / 02.

К174XA38, К174XA38A — обработка сигналов изображения и звука, АРУ и АРУ на СК, генерация строчных и кадровых импульсов цветного изображения. Корпус — 2121.28-12. Аналог К174XA38 — TDA8305A. Напряжение питания равно 12 В. Применяется в блоках радиоканала. К174XA38 и К174XA38A выполняются по АДБК.431260.150 ТУ.

К174ХАЗ9 — обработка телевизионных сигналов изображения и звука, генерация строчных и кадровых импульсов, ЧМ-тракт, детектирование сигналов цветного изображения, схема АРУ. Чувствительность — 120 мкВ. Корпус — 2121.28-12. Аналог К174ХАЗ9 — TDA4502A. Напряжение питания равно 12 В. Применяется в блоках радиоканала. Выполняется по АДБК.431260.151 ТУ.

K174XA41 — двухканальная схема выборки переключения режима работы с выходными каскадами. Напряжение питания — 12 В, потребляемый ток — 15 мА, коэффициент гармоник — 0,5 %, напряжение шумов, приведённое ко входу, — 20 мВ. Корпус — 2104.18-4. Аналог — TDA3810. Выполняется по АДБК.431260.282 ТУ.

К174ХА46 — радиоприёмное устройство для приёма и обработки АМ и ЧМ сигналов. Напряжение питания — 3 В, потребляемый ток при обработке АМ колебаний — 19 мА, потребляемый ток при обработке ЧМ колебаний — 23 мА, коэффициент ослабления амплитудной модуляции — 1,5 %, коэффициент ослабления частотной модуляции — 0,5 %, отношение сигнал / шум 40 дБ. Корпус — 2120.24-3. Аналог — ТЕА5592. Применяется в АМ / ЧМ трактах. Выполняется по АДБК.431260.426 ТУ.

K174XA48 — регулятор тембра, стерео-баланса и громкости. Напряжение питания от 8,5 до 16,5 В, потребляемый ток от 17 до 25 мА. Диапазон регулировки тембра: низких частот — не менее \pm 12 дБ, высоких частот — не менее \pm 12 дБ. Диапазон регулировки громкости не менее 65 дБ. Диапазон регулировки баланса не менее 30 дБ. Корпус — 2104.18-6. Аналог — TLA1524. Выполняется по АДБК.431260.549 ТУ.

К174ХБ5Р, К174ХБ5АР — микросхема предназначена для работы в телевизионных приёмниках (К174ХБ5Р — в цветных, К174ХБ5АР — в чёрно — белых) в качестве задающих генераторов строчной и кадровой развёрток, переключателей внешнего видеосигнала. Корпус — 2121.28-12. Напряжение питания равно 12 В. Применяется в блоках радиоканала. Выполняется по АДБК.431260.886 ТУ.

КБ174УН36-1 – малошумящий усилитель низкой частоты. Выполняется по

АДБК.431120.729 ТУ.

На базе микросхемы К174УН7 серии К174 можно создать законченный усилитель звуковой частоты. В её монокристалле кремния, заключённом в пластмассовый корпус размерами $21.5 \times 6.8 \times 4$ мм, работает 17 транзисторов разных структур, 5 диодов и 16 резисторов, которые вместе с внешними деталями, подключаемыми к микросхеме при монтаже, образуют несколько каскадов предварительного усиления сигнала и двухтактный усилитель мощности. Транзисторы каскада усиления мощности имеют тепловой контакт с металлической пластиной, выступающей из корпуса. Она выполняет функцию небольшого радиатора, отводящего тепло от транзисторов. При необходимости более эффективного охлаждения транзисторов выходного каскада К выступающим частям пластины привинчивают дополнительную пластину, изогнутую в виде перевернутой буквы "П" с вырезом по корпусу. Дополнительный радиатор не должен касаться выводов микросхемы. Внешний вид принципиальной схемы усилителя звуковой частоты, который на её базе можно построить, показан на рисунке 3.

Рисунок 1. Габаритные размеры и цоколёвка ИМС К174УН7.

Полный аналог микросхемы К174УН7 – А210Е и ТВА810.

Назначение выводов К174УН7:

- 1 питание + Uип;
- 4 цепь обратной связи для регулировки коэффициента усиления по напряжению;
- 5 коррекция;
- 6 обратная связь;
- 7 фильтр;
- 8 вход;
- 9 общий провод Иип;
- 10 эмиттер выходного транзистора;
- 12 выход.

Таблица 6.3.1. Параметры некоторых микросхем – усилителей мощности.

Параметр	К174УН5	К174УН7	К1УС744А	К174УС744Б
Номинальная выходная мощность на нагрузке 4 Ом, Вт	2	4,5	1	0,7
Коэффициент усиления ¹	80 120	_	4 40	4 40
Диапазон рабочих частот, Гц	30 20000	40 20000	30 20000	30 20000
Коэффициент гармоник ¹ , не более, %	1	2,0 10,0 [12, стр. 7]	2	2
Входное сопротивление, не менее, кОм	10	50	10	10
Напряжение источника питания, В	$12 \pm 1,2$	$15 \pm 1,5$	5,4 9,9	5,4 9,9
Ток, потребляемый в отсутствии сигнала, не более, мА	30	20	10	10

1. При номинальном напряжении питания, частоте сигнала 1 к Γ ц и выходном напряжении 2,85 В (К174УН5), 4,25 В (К174УН7), 2 В (К1УС744А), 1,7 В (К1УС744Б).

Дополнительные данные на ИМС К174УН7

Электрические параметры.

Максимальное входное напряжение при Uип = 15 В,	
$U_{\text{Вых}} = 3,16 \text{ B}, \text{ fbx} = 1 \text{ к}\Gamma\text{ц}, \text{ Pвых} = 2,5 \text{ Bt}$	30 70 мВ.
Коэффициент гармоник К174УН7 при Иип = 15 В, fвх = 1 кГц:	
$U_{\text{Вых}} = 4,25 \text{ B}, P_{\text{Вых}} = 4,5 \text{ B}_{\text{T}}$	< 10 %
$U_{\text{Вых}} = 0.45 \text{ B}, P_{\text{Вых}} = 0.05 \text{ B}_{\text{Т}}$	< 2 %
$U_{\text{Вых}} = 3,16 \text{ B}, P_{\text{Вых}} = 2,5 \text{ Br}$	< 2 %
Коэффициент усиления по напряжению при T= -10 +55 °C	45
Коэффициент полезного действия при Рвых = 4,5 Вт	50 %
Предельно допустимые режимы эксплуатации.	
Амплитуда входного напряжения	< 2,0 B
Постоянное напряжение:	
на выводе 7	< 15 B
на выводе 8	0,3 2,0 B
Тепловое сопротивление:	
кристалл – корпус	20 °С / Вт
кристалл — среда	100 °C / B _T
Температура окружающей среды	-10+55 °C
Температура кристалла	+85 °C

Рисунок 2. Принципиальная схема внутренних цепей ИМС К174УН7.

В схеме усилителя, изображённой на рисунке 3, выводы 2, 3 и 11 микросхемы не используются.

Рисунок 3. Принципиальная схема подключения ИМС К174УН7.

При напряжении источника питания 9 В выходная мощность усилителя составляет $1 \dots 1,5$ Вт; при $12 B - 2 \dots 2,5$ Вт.

Принцип работы усилителя, изображённого на рисунке 2. Усиливаемый сигнал подаётся на вход усилителя, на конденсатор С1. Через разделительный конденсатор С1 сигнал подаётся на вход (вывод 8) микросхемы DA1. С выхода микросхемы (вывод 12) сигнал звуковой частоты, усиленный всеми её каскадами, поступает через конденсатор С9 к нагрузке Rн (например, динамической головке). Напряжение питания на микросхему подаётся через выводы 1 и 10. Через резистор R1 на базу p-n-p транзистора первого каскада микросхемы подаётся открывающее отрицательное напряжение смещения. Конденсатор C4 несколькими элементами микросхемы образуют фильтр, через который питаются транзисторы первых каскадов усилителя. Конденсатор C2 и резистор R2 входят в цепь отрицательной обратной связи, улучшающей частотную характеристику Конденсатор С6 и резистор R3 элементы «вольтдобавки», позволяющей более полно использовать по мощности выходные транзисторы микросхемы. Конденсаторы С3 и С5 и цепочка R4, С8 служат для коррекции усилителя по высшим частотам звукового диапазона. Конденсатор С7 шунтирует источник питания по переменному току.

Общие рекомендации по применению ИМС К174УН7.

Не допускается эксплуатация микросхемы без дополнительного теплоотвода при мощности в нагрузке более 0,27 Вт. При температуре корпуса выше 60 °С максимальная рассеиваемая мощность рассчитывается по формуле

$$P = \frac{150 - T\kappa}{20}$$
, Вт (с теплоотводом),

где Тк — температура на поверхности теплоотвода у основания пластмассового корпуса микросхемы.

Допускается кратковременное (в течение 3 минут) увеличение напряжения питания до 18 В. Подача постоянного напряжения от внешнего источника на выводы 5, 6 и 12 микросхемы недопустима.

6.4 Цифровые микросхемы

Микросхемы серии К155

Транзисторно – транзисторные логические схемы [29]. Изготовлены по планарно – эпитаксиальной технологии на кристалле кремния с изоляцией элементов p-n переходом. Корпус – прямоугольный пластмассовый с 14 выводами. Масса 1 г.

Состав серии

К1ЛБ551 — два четырёхвходовых логических элемента И-НЕ.

К1ЛБ552 — восьмивходовой логический элемент И-НЕ.

К1ЛБ553 — четыре двухвходовых логических элемента И-НЕ.

К1ЛБ554 — три трёхвходовых элемента И-НЕ.

К1ЛБ556 — два четырёхвходовых логических элемента И-НЕ с большим коэффициентом разветвления на выходе.

К1ЛБ557 — два четырёхвходовых элемента И-НЕ с открытым коллекторным выходом и повышенной нагрузочной способностью (для элементов индикации).

К1ЛБ558 — четыре двухвходовых логических элемента И-НЕ с открытым коллекторным выходом (для элементов контроля).

К1ЛР551 — два логических элемента 2И-2ИЛИ-НЕ, один расширяемый по ИЛИ.

К1ЛР553 — логический элемент 2-2-2-3И-4ИЛИ-НЕ с возможностью расширения по ИЛИ.

К1ЛР554 — логический элемент 4-4И-2ИЛИ-НЕ с возможностью расширения по ИЛИ.

К1ЛП551 — два четырёхвходовых расширителя по ИЛИ.

К1ЛП553 — восьмивходовой расширитель по ИЛИ.

К1ТК551 — ЈК-триггер с логикой на входе 3И.

К1ТК552 — два D-триггера.

К1ЖЛ551 — формирователь разрядной записи, усилитель воспроизведения и схема установки нуля.

К1ИЕ551 — декадный счётчик с фазоимпульсным представлением информации.

Эксплуатационные данные

Диапазон рабочей температуры

от -10 до +70 °C

Напряжение питания всех микросхем

 $+5 B \pm 5 \%$

К155ЛА3

Цоколёвка микросхемы показана на рисунке 10, логическая организация – ниже.

Напряжение питания подаётся на 14 вывод – это "+" 5 В и на 7 вывод – это общий провод.

Микросхемы серии К161

Тип логики: МОП-структуры (р-канал). Состав серии:

К161ИД1 — дешифратор двоичного 3-разрядного кода.

К161ИЕ1 — реверсивный одноразрядный двоичный счётчик со сквозным переносом.

К161ИЕ2 — комбинированный двоичный счётчик со сквозным переносом на 3 разряда.

К161ИЕЗ — 4-разрядный суммирующий двоичный счётчик с десятичным модулем счёта и сквозным переносом.

К161ИМ1 — комбинационный сумматор.

К161ИР1 — реверсивный статический регистр сдвига на 2 разряда.

К161ИР2 — параллельный статический регистр на 3 разряда.

К161ИР3 — квазистатический последовательный регистр сдвига на 16 разрядов.

К161ИР4 — два квазистатических реверсивных последовательных регистра на 4 разряда.

К161ИР5 — квазистатический последовательный регистр сдвига на 12 разрядов.

К161ИР6 — квазистатический реверсивный последовательный регистр сдвига на 4 разряда.

К161ИР7 — квазистатический последовательный регистр сдвига на 8 разрядов.

K161ИР8 — квазистатический реверсивный последовательный регистр сдвига на 4 разряда.

К161ИР9 — квазистатический регистр сдвига на 8 разрядов.

К161ИР10 — квазистатический комбинированный регистр на 4 разряда.

К161ЛЕ1 — три элемента 2ИЛИ – НЕ и элемент НЕ.

К161ЛЕ2 — два элемента ЗИЛИ – НЕ с двумя общими входами и элемент ЗИЛИ – НЕ / ЗИЛИ.

К161ЛЛ1 — элемент 6ИЛИ и элемент 2ИЛИ – НЕ / 2ИЛИ.

К161ЛП1 — три логических повторителя и три элемента НЕ с повышенной нагрузочной способностью.

К161ЛП2 — четыре элемента «Запрет» с общим инверсным входом и элемент НЕ.

К161ЛР1 — три элемента 2И – 2ИЛИ – НЕ.

К161КН1 — 7-канальный коммутатор с инверсными входами.

К161КН2 — 7-канальный коммутатор с прямыми входами.

К161ПР1 — преобразователь кода 8–4–2–1, 2–4–2–1 в позиционный код сегментных цифросинтезирующих индикаторов.

К161ПР2 — преобразователь кода 8–4–2–1 в позиционный код сегментных цифросинтезирующих индикаторов.

К161ПР3 — преобразователь кода 8-4-2-1 в позиционный код индикатора.

Корпус: прямоугольный пластмассовый 201.14—1 (корпус 238.16-1 для К161КН1, К161КН2, К161ПР1, К161ПР2, К161ПР3). Выводы: общий — 1, Uип1 — 8, Uип2 — 7 (для К161КН1, К161КН2, К161ПР1, К161ПР2, К161ПР3, Uип — 9). Напряжение источника питания: —27 В \pm 10% (для К161КН1, К161КН2, К161ПР1, К161ПР2, К161ПР3); Uип1 = -12,6 В \pm 10%, Uип2 = -27 В \pm 10% (для остальных микросхем).

К161ИД1

Микросхемы серии К511

Корпус: прямоугольный металлостеклянный 201.14-7. Выводы: общий -7, Uип -14. Напряжение источника питания: +15 B \pm 10 %.

Цоколёвка микросхем К511ЛА1 и К511ЛА5 показана на рисунке 10, логическая организация – ниже.

Таблица 6.4.1. Электрические параметры микросхем К511ЛА1, К511ЛА2, К511ЛА4, К511ЛА3, К511ЛА5, К511ЛИ1, К511ПУ1, К511ПУ2.

Параметр	К511ЛА1	К511ЛА2	К511ЛА4	К511ЛА3	К511ЛА5	К511ЛИ1	К511ПУ1	К511ПУ2
Іп, не более, мА	30	22,5	15	15	30	9	24	_
I^1 п, не более, мА	10	7,5	5	5	10	_	10	10
Івх, по расширительным входам, мА	-1,33	-1,33	-1,33	-1,33	-1,33	-1,33	-1,33	_
I ⁰ BX, MA	-0,48	-0,48	-0,48	-0,48	-0,48	-0,48	-0,48	_
U ⁰ вых, не более, В	1,5	1,5	1,5	1,5	1,5	_	0,45	_
U^1 вых, В	12	12	12	12 ¹⁾	12 ¹⁾	_	_	-
I¹вых, мА	_	_	_	_	_	0,1	0,1 ²⁾	_
I¹BX, MA	0,005	0,005	0,005	0,005	0,005	0,005	0,005	_
Ікз, не более, мА	-25	-25	-25	-2,5	-2,5	_	_	25
tздр ¹⁰ , нс	150	150	150	150	150	200	150	150 ³⁾
tздр ⁰¹ , нс	300	300	300	400	400	250	300	300 ³⁾

 $^{^{1)}}$ U^{1} вых микросхемы К511ЛА3 измеряется при Івых = -0,05 мА.

²⁾ При U^0 вх = 6,0 В.

³⁾ При U^1 вх = 4,5 В.

Предельно допустимые электрические режимы эксплуатации

 Напряжение источника питания, не более
 22 В

 Входное напряжение:
 20 В

 максимальное
 20 В

 минимальное
 -0,5 В

 Максимальная ёмкость нагрузки
 680 пФ

Зарубежные аналоги микросхем серии К561

Таблица 6.4.2. Зарубежные аналоги микросхем серии К561.

Отечественные ИМС	Зарубежные ИМС
К561ИД1	CD4028
К561ИЕ8	CD4017
К561ИЕ9	CD4022
К561ИЕ10	CD4520
К561ИЕ11	CD4516
К561ИЕ16	CD4020
К561ИМ1	CD4008
К561ИП2	CD4585
К561ИР2	CD4015
К561ИР6	CD4034
К561ИР9	CD4035
К561ИР12	CD40108
К561КП1	CD4052
К561КП2	CD4051
K561KT1	CD4016
K561KT3	CD4066
К561ЛА7	CD4011
К561ЛА8	CD4012
К561ЛА9	CD4023
К561ЛЕ5	CD4001
К561ЛЕ6	CD4002
К561ЛЕ10	CD4025
К561ЛН1	CD4502
К561ЛН2	CD4049
K561CA1	CD4531
K561TB1	CD4027
К561ТЛ1	CD4093
K561TM2	CD4013
K561TM3	CD4042
K561TP2	CD4043

6.5 Рисунки цоколёвок микросхем

6.6 Фотографии разных микросхем

К140УД2 К133ЛА7 7805С К

K561TM2

7 Номера ТУ некоторых приборов

Указанные ниже технические условия были действительны 25 марта 2005 года.

Таблица 7.1.1. Технические условия некоторых диодов [27].

Тип прибора	Номер технических условий
КД2997А, КД2997Б, КД2997В	аА0.336.647 ТУ
КД2998А, КД2998Б, КД2998В, КД2998Г	аА0.336.629 ТУ
КД2999А, КД2999Б, КД2999В	аА0.336.646 ТУ

Таблица 7.1.2. Технические условия некоторых транзисторов малой мощности высокой частоты [27].

Тип прибора	Номер технических условий
1ТМ305A, 1ТМ305Б, 1ТМ305В	ЩТ3.365.021-2 ТУ
1Т305А, 1Т305Б, 1Т305В	ЩТ3.365.021-5 ТУ (дополнение к ЩТ3.365.021-2 ТУ)
1Т308А, 1Т308Б, 1Т308В	ЖК3.365.120 ТУ
1Т311А, 1Т311Б, 1Т311Г, 1Т311Д, 1Т311К, 1Т311Л	ЖК3.365.158 ТУ
1Т313А, 1Т313Б, 1Т313В	ЖК3.365.161 ТУ
1Т320А, 1Т320Б, 1Т320В	ШПЗ.365.011 ТУ
1Т321А, 1Т321Б, 1Т321В, 1Т321Г, 1Т321Д, 1Т321Е	ЩТ3.365.027 ТУ
1Т329А, 1Т329Б, 1Т329В	ЩТ3.365.057 ТУ
1Т330А, 1Т330Б, 1Т330В, 1Т330Г	ЖК3.365.185 ТУ
1Т335А, 1Т335Б, 1Т335В, 1Т335Г, 1Т335Д	ШП3.365.015 ТУ
1Т341А, 1Т341Б, 1Т341В	ЩТ3.365.065 ТУ
1T362A	ЖК3.365.239 ТУ
1T374A	ЖК3.365.248 ТУ
1T376A	ПЖ0.336.023 ТУ
1T386A	ПЖ0.336.024 ТУ
1T387A-2	Б13.365.001 ТУ
2П301А, 2П301Б	ЖК3.365.202 ТУ
2П302А, 2П302Б, 2П302В	ЖК3.365.204 ТУ
2П303А, 2П303Б, 2П303В, 2П303Г, 2П303Д, 2П303Е, 2П303И	Ц23.365.003 ТУ
2П304А	СБ3.365.106 ТУ
2П305А, 2П305Б, 2П305В, 2П305Г	ТФ0.336.001 ТУ
2П305А-2, 2П305Б-2, 2П305В-2, 2П305Г-2	аА0.339.070 ТУ
2П306А, 2П306Б, 2П306В	ТФ0.336.003 ТУ
2П307А, 2П307Б, 2П307В, 2П307Г, 2П307Д	Ц23.365.008 ТУ
2П308А-1, 2П308Б-1, 2П308В-1, 2П308Г-1, 2П308Д-1	Ц23.365.006 ТУ
2П308А-9, 2П308Б-9, 2П308В-9, 2П308Г-9, 2П308Д-9, 2П308Е-9	аА0.339.618 ТУ
2П312А, 2П312Б	ЖК3.365.262 ТУ
2П313А, 2П313Б, 2П313В	ТФ0.336.008 ТУ
3П320А-2, 3П320Б-2	аА0.339.167 ТУ
3П321А-2	аА0.339.206 ТУ
3П322А	аА0.339.215 ТУ
3П324А-2, 3П324Б-2	аА0.339.265 ТУ

Тип прибора	Номер технических условий
3П325А-2	аА0.339.355 ТУ
3П325А-5	аА0.339.355 ТУ / Д1
3П326А-2	aA0.339.314 TY
3П326А-5, 3П326Б-5	аА0.339.314 ТУ / Д1
3П328А-2	aA0.339.424 TY
3П328А-5	аА0.339.424 ТУ / Д1
3П330А-2, 3П330Б-2, 3П330В-2	аА0.339.485 ТУ
3П331А-2	аА0.339.659 ТУ
3П331А-5	аА0.339.659 ТУ / Д1
2П333А, 2П333Б	аА0.339.511 ТУ
2П337АР, 2П337БР	аА0.339.595 ТУ
2П338АР-1	аА0.339.610 ТУ
3П339А-2	аА0.339.615 ТУ
3П339А-5	аА0.339.615 ТУ / Д1
2П341А, 2П341Б	аА0.339.789 ТУ
3П343А-2	аА0.339.720 ТУ
3П343А-5	аА0.339.720 ТУ / Д1
3П344А-2	аА0.339.725 ТУ
3П344А-5	аА0.339.725 ТУ / Д1
3П345А-2	аА0.339.765 ТУ
2П350А, 2П350Б	ЖК3.365.215 ТУ
ГТ308А, ГТ308Б, ГТ308В	ЩП3.365.009 ТУ
ГТ309А, ГТ309Б, ГТ309В, ГТ309Г, ГТ309Д, ГТ309Е	ЩТ3.365.022-3 ТУ
ГТ310А, ГТ310Б, ГТ310В, ГТ310Г, ГТ310Д, ГТ310Е	Г93.365.008 ТУ
ГТ311Е, ГТ311Ж, ГТ311И	ЖК3.365.201 ТУ
ГТ313А, ГТ313Б	ЖК3.365.162 ТУ
ГТ320А, ГТ320Б, ГТ320В	ЩП3.365.014 ТУ
ГТ321А, ГТ321Б, ГТ321В, ГТ321Г, ГТ321Д, ГТ321Е	ЩТ3.365.054 ТУ
ГТ322А, ГТ322Б, ГТ322В, ГТ322Г, ГТ322Д, ГТ322Е	ЖК3.365.170 ТУ
ГТ328А, ГТ328Б, ГТ328В	ПЖ0.336.018 ТУ
ГТ329А, ГТ329Б, ГТ329В, ГТ329Г	ЩТ3.365.057-2 ТУ
ГТ330Д, ГТ330Ж, ГТ330И	ЖК3.365.217 ТУ
ГТ341А, ГТ341Б, ГТ341В	ЩТ0.336.009 ТУ
ГТ346А, ГТ346Б, ГТ346В	ПЖ0.336.021 ТУ
ГТ362А, ГТ362Б	ЖК3.365.244 ТУ

Тип прибора	Номер технических условий
КП301Б	ЖК3.365.220 ТУ
КП302А, КП302Б, КП302В, КП302Г	ЖК3.365.233 ТУ
КП303А, КП303Б, КП303В, КП303Г, КП303Д, КП303Е, КП303Ж, КП303И	Ц20.336.601 ТУ
КП304А	СБ3.365.109 ТУ
КП305Д, КП305Е, КП305Ж, КП305И	ТФ0.336.000 ТУ
КП306А, КП306Б, КП306В	ТФ0.336.002 ТУ
КП307А, КП307Б, КП307В, КП307Г, КП307Д, КП307Е, КП307Ж	аА0.336.046 ТУ
КП308А, КП308Б, КП308В, КП308Г, КП308Д	аА0.336.027 ТУ
КП312А, КП312Б	аА0.336.167 ТУ
КП313А, КП313Б, КП313В	аА0.336.118 ТУ
КП350А, КП350Б, КП350В	ЖК3.365.250 ТУ
КТ301, КТ301А, КТ301Б, КТ301В, КТ301Г, КТ301Д, КТ301Е, КТ301Ж	ΓΟCT 5.1041-71
КТ306А, КТ306Б, КТ306В, КТ306Г, КТ306Д	СБ0.336.028 ТУ
КТ307А, КТ307Б, КТ307В, КТ307Г	СБ0.336.016 ТУ
КТ312А, КТ312Б, КТ312В	ГОСТ 5.912-71
КТ313А, КТ313Б	аА0.336.131 ТУ
КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Д, КТ315Е	ЖК3.365.200 ТУ
КТ316А, КТ316Б, КТ316В, КТ316Г, КТ316Д	СБ0.336.030 ТУ
КТ317А, КТ317Б, КТ317В	Ге3.365.011 ТУ
КТ318А, КТ318Б, КТ318В, КТ318Г, КТ318Д, КТ318Е	Ге0.336.004 ТУ
КТ324А, КТ324Б, КТ324В, КТ324Г, КТ324Д, КТ324Е	СБ0.336.031 ТУ
КТ325А, КТ325Б, КТ325В	СБ0.336.047 ТУ
КТ326А, КТ326Б	ГОСТ 5.1562-75
КТ333А, КТ333Б, КТ333В, КТ333Г, КТ333Д, КТ333Е	аА0.336.015 ТУ
КТ336А, КТ336Б, КТ336В, КТ336Г, КТ336Д, КТ336Е	СБ0.336.029 ТУ
КТ337А, КТ337Б, КТ337В	ЩТ3.365.058-4 ТУ
КТ343А, КТ343Б, КТ343В	ЖКЗ.365.234 ТУ
КТ347А, КТ347Б, КТ347В	ЖК3.365.226 ТУ
КТ349А, КТ349Б, КТ349В	ЩТ3.365.058-2 ТУ
KT350A	ЩТ3.365.058-5 ТУ
КТ351А, КТ351Б	ЩТ3.365.058-6 ТУ
КТ352А, КТ352Б	ЩТ3.365.058-7 ТУ
КТ354А, КТ354Б	аА0.336.019 ТУ

Тип прибора	Номер технических условий
KT355A	СБ3.365.104 ТУ
КТ357А, КТ357Б, КТ357В, КТ357Г	И93.365.022 ТУ
КТ358А, КТ358Б, КТ358В	И93.365.014 ТУ
КТ360А, КТ360Б, КТ360В	ЩТ0.336.012 ТУ
КТ361А, КТ361Б, КТ361В, КТ361Г, КТ361Д, КТ361Е	ФЫ0.336.201 ТУ
КТ363А, КТ363Б	ЩТ0.336.014 ТУ
КТ364А, КТ364Б, КТ364В	ЩТ0.336.011 ТУ
КТ368А, КТ368Б	аА0.336.025 ТУ
КТ369А, КТ369Б, КТ369А-1, КТ369Б-1, КТ369В-1, КТ369Г-1	Я53.369.000 ТУ
KT371A	аА0.336.112 ТУ
КТ372А, КТ372Б, КТ372В	аА0.336.032 ТУ
КТ373А, КТ373Б, КТ373В, КТ373Г	аА0.336.004 ТУ
КТ375А, КТ375Б	аА0.336.022 ТУ
КТ379А, КТ379Б, КТ379В, КТ379Г	аА0.336.030 ТУ
КТ380А, КТ380Б, КТ380В	аА0.336.028 ТУ
KT384A, KT384AM	аА0.336.154 ТУ
KT385A, KT385AM	аА0.336.155 ТУ
КТ388Б-2	аА0.336.300 ТУ
КТС393А, КТС393Б	аА0.336.099 ТУ
КТС394А, КТС394Б	аА0.336.067 ТУ
КТС395А, КТС395Б	аА0.336.068 ТУ
KT396A	аА0.336.144 ТУ
KT397A-2	аА0.336.145 ТУ
КТС398А-1, КТС398Б-1	аА0.336.212 ТУ
KT399A	аА0.336.257 ТУ
KT3101A-2	аА0.336.237 ТУ
КТ3102А, КТ3102Б, КТ3102В, КТ3102Г, КТ3102Д, КТ3102Е	аА0.336.122 ТУ
КТ3104А, КТ3104Б, КТ3104В, КТ3104Г, КТ3104Д, КТ3104Е	аА0.336.128 ТУ
KT3106A-2	аА0.336.236 ТУ
КТ3107А, КТ3107Б, КТ3107В, КТ3107Г, КТ3107Д, КТ3107Е, КТ3107Ж	аА0.336.170 ТУ
KT3117A	аА0.336.262 ТУ
KT3120A	аА0.336.268 ТУ
КТ3123АМ, КТ3123БМ, КТ3123ВМ	аА0.336.415 ТУ
KT3127A	aA0.336.429 TY

Тип прибора	Номер технических условий
П401, П402, П403	ЩТ3.365.016 ТУ
П401, П402, П403, П403А	ЩТ3.365.040 ТУ
П410, П410А, П411, П411А	СБ0.336.011 ТУ
H416 H4164 H416F	ЩП3.365.001 ТУ,
П416, П416А, П416Б	ГОСТ 14876-72
П417, П417А	ЖК3.365.080 ТУ
П418Г, П418Д, П418Е, П418Ж, П418И, П418К, П418Л, П418М	ЖК3.365.081 ТУ
П422, П423	ЩТ0.336.001 ТУ
ТМ-4А, ТМ-4Б, ТМ-4В, ТМ-4Г, ТМ-4Д, ТМ-4Е	ЩТ3.365.021 ТУ
М4А, М4Б, М4В, М4Г, М4Д, М4Е	ЩТ3.365.022-4 ТУ (Дополнение №1 к ЩТ3.365.021 ТУ)
ТМ-10, ТМ-10A, ТМ-10Б, ТМ-10B, ТМ-10Г, ТМ-10Д, ТМ-10Е, ТМ-10Ж	ЖК0.005.013 ТУ
М10, М10А, М10Б, М10В, М10Г, М10Д, М10Е, М10Ж	Дополнение №1 к ЖК0.005.013 ТУ

Таблица 7.1.3. Технические условия некоторых транзисторов большой мощности низкой частоты [27].

Тип прибора	Номер технических условий
2П701А, 2П701Б	аА0.339.497 ТУ
2П702А	аА0.339.524 ТУ
2Т704А, 2Т704Б	ЖКЗ.365.245 ТУ
2Т708А, 2Т708Б, 2Т708В	аА0.339.143 ТУ
2Т709А, 2Т709Б, 2Т709В	аА0.339.144 ТУ
2Т709А2, 2Т709Б2, 2Т709В2, 2Т716А1, 2Т716Б1, 2Т716В1	аА0.339.628 ТУ
2T713A	аА0.339.492 ТУ
2Т716А, 2Т716Б, 2Т716В	аА0.339.645 ТУ
ГТ701А	ГОСТ 16947-71
ГТ703А, ГТ703Б, ГТ703В, ГТ703Г, ГТ703Д	ЮФ3.365.019 ТУ
ГТ705А, ГТ705Б, ГТ705В, ГТ705Г, ГТ705Д	аА0.336.044 ТУ
КТ704А, КТ704Б, КТ704В	аА0.336.031 ТУ
П4АЭ, П4БЭ, П4ВЭ, П4ГЭ	СИЗ.365.005 ТУ
П4АЭ, П4БЭ, П4ВЭ, П4ГЭ, П4ДЭ	ЩБ3.365.014 ТУ
Π 213, Π 213A, Π 213Б, Π 214, Π 214A, Π 214Б, Π 214B, Π 214 Γ , Π 215	СИ3.365.012 ТУ
П216, П216А, П216Б, П216В, П216Г, П216Д, П217, П217А, П217Б, П217В, П217Г	СИЗ.365.017 ТУ

Таблица 7.1.4. Технические условия некоторых транзисторов большой мощности средней частоты [27].

Тип прибора	Номер технических условий
2П802А	аА0.339.578 ТУ
1Т806А, 1Т806Б, 1Т806Б	ЮФ3.365.009 ТУ
1Т813А, 1Т813Б, 1Т813В	ЮФ3.365.026 ТУ
2T803A	ГЕЗ.365.008 ТУ
2Т812А, 2Т812Б	аА0.339.193 ТУ
2Т818А, 2Т818Б, 2Т818В	аА0.339.141 ТУ
2Т818А-2, 2Т818Б-2, 2Т818В-2, 2Т819А-2, 2Т819Б-2, 2Т819В-2	аА0.339.557 ТУ
2Т819А, 2Т819Б, 2Т819В	аА0.339.142 ТУ
2Т825А, 2Т825Б, 2Т825В	аА0.339.054 ТУ
2T825A2, 2T825B2, 2T825B2	аА0.339.556 ТУ
2Т826А, 2Т826Б, 2Т826В	аА0.339.058 ТУ
2T826A-5	аА0.339.579 ТУ
2Т827А, 2Т827Б, 2Т827В	аА0.339.119 ТУ
2T827A-5	аА0.339.460 ТУ
2Т828А, 2Т828Б	аА0.339.120 ТУ
2Т830А, 2Т830Б, 2Т830В, 2Т830Г	аА0.339.139 ТУ
2T830B-1, 2T830Γ-1	аА0.339.406 ТУ
2Т831А, 2Т831Б, 2Т831В, 2Т831Г	аА0.339.140 ТУ
2T831B-1, 2T831Γ-1	аА0.339.407 ТУ
2Т832А, 2Т832Б	аА0.339.145 ТУ
2Т834А, 2Т834Б, 2Т834В	аА0.339.209 ТУ
2Т836А, 2Т836Б, 2Т836В	аА0.339.164 ТУ
2Т837А, 2Т837Б, 2Т837В, 2Т837Г, 2Т837Д, 2Т837Е	аА0.339.411 ТУ
2T839A	аА0.339.224 ТУ
2Т841А, 2Т841Б	аА0.339.267 ТУ
2Т841А1, 2Т841Б1	аА0.339.625 ТУ
2Т842А, 2Т842Б	аА0.339.319 ТУ
2Т842А1, 2Т842Б1	аА0.339.626 ТУ
2TC843A	аА0.339.325 ТУ
2T844A	аА0.339.340 ТУ
2T845A	аА0.339.341 ТУ
2Т847А, 2Т847Б	аА0.339.361 ТУ
2T848A	аА0.339.512 ТУ

Тип прибора	Номер технических условий
2Т856А, 2Т856Б, 2Т856В	аА0.339.383 ТУ
2Т860А, 2Т860Б, 2Т860В	аА0.339.412 ТУ
2Т861А, 2Т861Б, 2Т861В	аА0.339.413 ТУ
2Т862А, 2Т862Б, 2Т862В, 2Т862Г, 2Т862Д	аА0.339.417 ТУ
2T866A	аА0.339.431 ТУ
2T867A	аА0.339.439 ТУ
2Т874А, 2Т874Б	аА0.339.571 ТУ
2Т880А, 2Т880Б, 2Т880В, 2Т880Г	аА0.339.594 ТУ
2Т881А, 2Т881Б, 2Т881В, 2Т881Г, 2Т881Д	аА0.339.644 ТУ
2Т882А, 2Т882Б, 2Т882В	аА0.339.558 ТУ
2Т883А, 2Т883Б	аА0.339.623 ТУ
2Т884А, 2Т884Б	аА0.339.624 ТУ
ГТ806А, ГТ806Б, ГТ806В, ГТ806Г, ГТ806Д	ЮФ3.365.021 ТУ
КТ801А, КТ801Б	ЩЫЗ.365.001 ТУ
KT802A	ЖК3.365.156 ТУ
KT803A	ЖК3.365.206 ТУ
КТ805А, КТ805Б	ГОСТ 18354-73
КТ805АМ, КТ805БМ, КТ805ВМ	аА0.336.341 ТУ
КТ807А, КТ807Б	ГЕЗ.365.005 ТУ
KT808A	ГЕЗ.365.020 ТУ
KT809A	аА0.365.003 ТУ
КТ812A, КТ812Б, КТ812В	аА0.336.052 ТУ
KT814A, KT814B, KT814Γ	аА0.336.184 ТУ
КТ815A, КТ815Б, КТ815B, КТ815Г	аА0.336.185 ТУ
КТ816А, КТ816Б, КТ816В, КТ816Г	аА0.336.186 ТУ
КТ817A, КТ817Б, КТ817B, КТ817Г	аА0.336.187 ТУ
КТ818A, КТ818Б, КТ818B, КТ818Г, КТ818АМ, КТ818БМ, КТ818ВМ, КТ818ГМ	аА0.336.188 ТУ
КТ820А-1, КТ820Б-1, КТ820В-1	аА0.336.192 ТУ
КТ821А-1, КТ821Б-1, КТ821В-1	аА0.336.193 ТУ
КТ822А-1, КТ822Б-1, КТ822В-1	аА0.336.194 ТУ
КТ823А-1, КТ823Б-1, КТ823В-1	аА0.336.195 ТУ
КТ835А, КТ835Б	аА0.336.402 ТУ
П702, П702А	ЩБ3.365.000 ТУ

Таблица 7.1.5. Технические условия некоторых микросхем [27].

Тип прибора	Функциональное назначение	Номер ТУ		
Серия 153				
153УД3	Операционный усилитель	бК0.347.010 ТУ2		
153УД5 (А, Б)	Операционный усилитель	бК0.347.010 ТУ4		
153УД6	Операционный усилитель	бК0.347.010 ТУ2		
	Серия 154			
154УД1	Операционный усилитель	бК0.347.206 ТУ1		
154УД3	Операционный усилитель	бК0.347.206 ТУ3		
154УД4А	Операционный усилитель	бК0.347.206 ТУ4		
154УД4Б	Операционный усилитель	бК0.347.206 ТУ4		
	Серия 159			
159HT1A	Базовая схема дифференциального усилителя	XM3.456.014 TY		
159НТ1Б	Базовая схема дифференциального усилителя	ХМ3.456.014 ТУ		
159HT1B	Базовая схема дифференциального усилителя	ХМ3.456.014 ТУ		
159НТ1Г	Базовая схема дифференциального усилителя	ХМ3.456.014 ТУ		
159НТ1Д	Базовая схема дифференциального усилителя	ХМ3.456.014 ТУ		
159HT1E	Базовая схема дифференциального усилителя	ХМ3.456.014 ТУ		
	Серия 162	•		
162KT1A	Интегральный прерыватель	И63.088.049 ТУ		
162КТ1Б	Интегральный прерыватель	И63.088.049 ТУ		
	Серия 171			
171УВ1А	Широкополосный регулируемый усилитель	бК0.347.198 ТУ1		
171УВ1Б	Широкополосный регулируемый усилитель	бК0.347.198 ТУ1		
171УБ2	Видеоусилитель	бК0.347.198 ТУ2		
171УР1	Усилитель промежуточной частоты с электронной регулировкой усиления	бК0.347.198 ТУ3		
	Серия 175			
175УВ1 (А, Б)	Широкополосный усилитель	бК0.347.036 ТУ		
175УВ2 (А, Б)	Универсальная усилительная схема	бК0.347.036 ТУ		
175УВЗ (А, Б)	Экономичная усилительная схема	бК0.347.036 ТУ		
175УВ4	Усилитель – преобразователь высокой частоты	бК0.347.036 ТУ		
175ДА1	Детектор АМ сигналов и детектор АРУ с УПТ	бК0.347.036 ТУ		
175ПК1	Регенеративный аналоговый делитель частоты	бК0.347.246 ТУ		

Тип прибора	Функциональное назначение	Номер ТУ			
	Серия 189				
189БР2	Схема регулируемой задержки	бК0.348.138 ТУ			
	Серия 190				
190KT1	Пятиканальный коммутатор	бК0.347.013 ТУ			
190KT2	Четырёхканальный коммутатор	бК0.347.013 ТУ			
	Серия 198				
198УН1 (А, Б, В)	Универсальный линейный каскад	ШП0.348.002 ТУ			
198УТ1 (А, Б)	Многофункциональный дифференциальный усилитель	ШП0.348.002 ТУ			

Приложения

Приложение №1. Расшифровка кодов некоторых тиристоров, транзисторов и ИМС стабилизаторов

Многие приборы маркируются буквенно — цифровыми кодами и псевдографическими изображениями, нанесёнными на корпуса приборов. Для определения типа прибора удобно пользоваться следующими данными.

Таблица П1.1. Расшифровка некоторых маркировок тиристоров, транзисторов и ИМС стабилизаторов.

Транзистор	Код	Цветная точка сбоку	Цвет торца		
Для корпуса типа КT – 26					
КП103		_	_		
КП364	A	Табачная	_		
КП501		_	_		
KP1157EH5	A5	_	_		
KP1168EH15	Б15	_	_		
KP1170EH6	Γ6	_	_		
KP1171EH3	В3	-	_		
KT203	4	Тёмно – красная	_		
KT208	•	-	_		
KT209	• или 🔷	Серая	_		
KT313		Оранжевая	_		
КТ326		Коричневая	_		
КТ339		Голубая	_		
KT368AM	_	Одна белая или красная	_		
КТ368БМ	_	или красные точки сверху	_		
КТ399		Две белых полосы	_		

Транзистор	Код	Цветная точка сбоку	Цвет торца
KT502		Жёлтая	_
KT503		Белая	_
КТ632	_	Серебристая	_
KT638	_	Оранжевая	_
КТ645	Оили	Белая	_
KT680		_	_
KT681		-	_
КТ698	П	_	_
KT3102		Тёмно — зелёная	_
КТ3107	_	_	_
КТ3117		Белая полоса	_
KT3126	или 🔲	Зелёная	_
КТ3127	L	_	_
KT3157		_	_
KT3166	1	_	_
	Дл	я корпуса типа КТ – 27	
KT814	4	-	Серо – бежевый
KT815	5	1	Сиренево – фиолетовый
KT816	6	_	Розово – красный
KT817	7	_	Серо – зелёный
KT683	8		Фиолетовый
KT9115	9		Голубой
КУ112	12		
КТ940	40	_	_
KT972A	_		_
КТ972Б	I	_	_
KT973A		_	_

Транзистор	Код	Цветная точка сбоку	Цвет торца
КТ973Б		_	_
KT646A		_	_
КТ646Б	• 🛦	_	-

Таблица П1.2. Расшифровка кодов дат выпуска приборов.

Год выпуска	Код	Месяц выпуска	Код
1986	U	Январь	1
1987	V	Февраль	2
1988	W	Март	3
1989	X	Апрель	4
1990	A	Май	5
1991	В	Июнь	6
1992	С	Июль	7
1993	D	Август	8
1994	Е	Сентябрь	9
1995	F	Октябрь	О
1996	Н	Ноябрь	N
1997	I	Декабрь	D
1998	K	_	_
1999	L	_	_
2000	M	_	_

Рисунок 1. Расшифровка маркировки транзистора в корпусе КТ-26.

Рисунок 2. Расшифровка маркировки транзистора в корпусе КТ-27.

Исходя из выше сказанного, можно по маркировке определить тип прибора. В следующей таблице П1.3 показано, как могут маркироваться различные транзисторы.

Таблица П1.3. Примеры маркировок транзисторов.

Тип транзистора	Маркировка
КП103Е1	⊥Б1АМ
КП303А	3AF7
КП303Б	3AF8
KT313AM	⊥AF3
KT680A	ГАА7
КТ814Г	4ГВ1
КТ815Г	ΓU5
КТ816Г	6ГА1

Букву транзистора в корпусе KT-26 можно определить по цветной точке сбоку (смотрите таблицу $\Pi1.4$).

Таблица П1.4 Цветовая маркировка транзисторов в корпусе КТ-26.

Буква	Цвет точки	
A	Тёмно – красная	
Б	Жёлтая	
В	Тёмно – зелёная	
Γ	Голубая	
Д	Синяя	
Е	Белая	
Ж	Тёмно – коричневая	

Приложение №2. Расшифровка кодов некоторых диодов

Большинство выпрямительных и импульсных диодов, стабилитронов и стабисторов, выпускаемых промышленностью на данный момент, имеют цветовую маркировку. Приборы оформлены в малогабаритном стеклянном корпусе и имеют гибкие выводы.

Стабилитроны и стабисторы

Таблица П2.1. Расшифровка некоторых маркировок стабилитронов и стабисторов.

Тип	Метка у выводов		Назначение	Рисунок
прибора	Катод	Анод	прибора	K A
2C107A	чёрная метка на торце корпуса + красное кольцо	_	_	
2C133A	белое кольцо	чёрное кольцо	_	
2C139A	зелёное кольцо	чёрное кольцо	_	
2C147A	-	чёрное кольцо	_	
2C156A	-	чёрное кольцо	_	
2C168A	красное кольцо	чёрное кольцо	_	
2C516A	зелёное кольцо	чёрное кольцо	_	
2С516Б	жёлтое кольцо	чёрное кольцо	_	
2C516B	серое кольцо	чёрное кольцо	_	
Д814А1	-	чёрное широкое кольцо	_	
Д814АБ1	_	чёрное широкое кольцо + чёрное узкое кольца	_	
Д814А2	-	белое кольцо	_	
Д814Б2	-	синее кольцо	_	
Д814В1	_	чёрное узкое кольцо	_	
Д814В2	-	зелёное кольцо	_	
Д814Г1	_	два узких чёрных кольца	_	
Д814Г2	-	жёлтое кольцо	_	
Д814Д1	-	три узких кольца	_	
Д814Д2	-	серое кольцо	_	
Д818А	чёрная метка на торце + белое кольцо	_	_	

Тип	Метка у выводов	Назначение	Рисунок	
прибора	Катод	Анод	прибора	K A
Д818Б	чёрная метка на торце корпуса + жёлтое кольцо	-	_	
Д818В	чёрная метка на торце корпуса + голубое кольцо	-	_	
Д818Г	чёрная метка на торце корпуса + зелёное кольцо	-	_	
Д818Д	чёрная метка на торце корпуса + серое кольцо	-	_	
Д818Е	чёрная метка на торце корпуса + оранжевое кольцо	-	_	
KC115A	чёрная метка на торце корпуса + голубое кольцо	_	_	
KC126A	красное широкое + фиолетовое узкое + белое узкое кольца	-	_	
КС126Б	оранжевое широкое + чёрное узкое + белое узкое кольца	-	_	
KC126B	оранжевое широкое + оранжевое узкое + белое узкое кольца	-	_	
КС126Г	оранжевое широкое + белое узкое + белое узкое кольца	-	_	
КС126Д	жёлтое широкое + фиолетовое узкое + белое узкое кольца	-	_	
KC126E	зелёное широкое + голубое узкое + белое узкое кольца	-	_	
КС126Ж	голубое широкое + красное узкое + белое узкое кольца	1	_	
КС126И	голубое широкое + серое узкое + белое узкое кольца	-	_	
КС126К	фиолетовое широкое + зелёное узкое + белое узкое кольца	-	_	
КС126Л	серое широкое + красное узкое + белое узкое кольца	_	_	
KC126M	белое широкое + коричневое узкое + белое узкое кольца		_	
KC207A	коричневое широкое + чёрное узкое + чёрное узкое кольца		_	
КС207Б	коричневое широкое + коричневое узкое + чёрное узкое кольца	_	_	
КС207В	коричневое широкое + красное узкое + чёрное узкое кольца	-	_	
KC133A	голубое кольцо	белое кольцо	_	

Тип	Метка у выводов		Назначение	Рисунок
прибора	Катод	Анод	прибора	K A
КС133Г	оранжевая метка на торце корпуса	-	_	
KC139A	зелёное кольцо	белое кольцо	_	
КС139Г	серая метка на торце корпуса	_	_	
KC147A	серое или синее кольцо	белое кольцо	_	
КС147Г	зелёная метка на торце корпуса	_	_	
KC156A	серое или синее кольцо	белое кольцо	_	
КС156Г	красная метка на торце корпуса	_	_	
KC162A2	чёрное широкое кольцо	-	двуханодный стабилитрон	
KC168A	красное кольцо	белое кольцо	_	
KC168B2	чёрное широкое + чёрное узкое кольца	-	двуханодный стабилитрон	
KC175A2	два чёрных узких кольца	-	двуханодный стабилитрон	
КС175Ж*	белое кольцо	_	_	
KC182A2	три чёрных узких кольца	-	двуханодный стабилитрон	
КС182Ж*	жёлтое кольцо	-	_	
КСК191А2	чёрное узкое кольцо	-	двуханодный стабилитрон	
КС191Ж*	красное кольцо	-	_	
КС210Б2	два чёрных широких кольца	-	двуханодный стабилитрон	
КС210Ж*	зелёное кольцо	-	_	
КС211Ж*	серое кольцо	-	_	
КС212Ж*	оранжевое кольцо	_	_	
КС213Б2	чёрное широкое + два чёрных узких кольца	-	двуханодный стабилитрон	
КС213Ж*	чёрное кольцо	_	_	
КС215Ж*	белое кольцо	чёрное кольцо	_	
КС216Ж*	жёлтое кольцо	чёрное кольцо	_	
КС218Ж*	красное кольцо	чёрное кольцо	_	
КС220Ж*	зелёное кольцо	чёрное кольцо	_	
КС222Ж*	серое кольцо	чёрное кольцо		
КС224Ж*	оранжевое кольцо	чёрное кольцо	_	
KC405A	чёрная метка на торце корпуса + красное кольцо	чёрное кольцо	_	

Тип	Метка у выводов	Назначение	Рисунок	
прибора	Катод	Анод	прибора	KA
KC406A	чёрная метка на торце корпуса + серое кольцо	белое кольцо	_	
КС406Б	чёрная метка на торце корпуса + белое кольцо	оранжевое кольцо	_	
KC407A	чёрная метка на торце корпуса + красное кольцо	голубое кольцо	_	
КС407Б	чёрная метка на торце корпуса + красное кольцо	оранжевое кольцо	_	
KC407B	чёрная метка на торце корпуса + красное кольцо	жёлтое кольцо	_	
КС407Г	чёрная метка на торце корпуса + красное кольцо	зелёное кольцо	_	
КС407Д	чёрная метка на торце корпуса + красное кольцо	серое кольцо	_	
КС411А	белое кольцо	чёрное кольцо	_	
КС411Б	синее кольцо	чёрное кольцо	_	
KC508A	чёрная метка на торце корпуса + оранжевое кольцо	зелёное кольцо	_	
КС508Б	чёрная метка на торце корпуса + жёлтое кольцо	белое кольцо	_	
KC508B	чёрная метка на торце корпуса + красное кольцо	зелёное кольцо	_	
КС508Г	чёрная метка на торце корпуса + голубое кольцо	белое кольцо	_	
КС508Д	чёрная метка на торце корпуса + зелёное кольцо	белое кольцо	_	
KC510A	оранжевое кольцо	зелёное кольцо	_	
KC512A	жёлтое кольцо	зелёное кольцо	_	
KC514A	белое кольцо	зелёное кольцо	_	
KC518A	голубое кольцо	зелёное кольцо	_	
KC522A	серое кольцо	зелёное кольцо	_	
KC572A	чёрное кольцо	зелёное кольцо	_	

^{*} Стабилитроны этой серии (группа Ж) с маркировкой 2С дополнительно помечаются голубой меткой на торце корпуса со стороны катода.

Выпрямительные и импульсные диоды

Таблица П2.2. Расшифровка некоторых маркировок выпрямительных и импульсных диодов.

	Цвет корпуса или метка на корпусе	Метка у выводов		Рисунок
Тип диода		Анода (+)	Катода (-)	A (+) K (-)
Д9Б	_	красное кольцо	_	
Д9В	_	оранжевое или красное кольцо + оранжевое	_	
Д9Г	-	жёлтое или красное + жёлтое кольцо	_	
Д9Д	_	белое или красное + белое кольцо	_	
Д9Е	_	голубое или красное + голубое кольцо	_	
Д9Ж	_	зелёное или красное + зелёное кольцо	_	
Д9И	_	два жёлтых кольца	_	
Д9К	_	два белых кольца	_	
Д9Л	_	два зелёных кольца	_	
Д9М	_	два голубых кольца	_	
КД102А	_	зелёная точка	_	
КД102Б	_	синяя точка	_	
2Д102А	_	жёлтая точка	_	
2Д102Б	_	оранжевая точка	_	
КД103А	чёрный	синяя точка	_	
КД103Б	зелёный	жёлтая точка	_	
2Д103А	_	белая точка	_	
КД105Б	точка отсутствует	белая или жёлтая полоса	_	
КД105В	зелёная точка	белая или жёлтая полоса	_	
КД105Г	красная точка	белая или жёлтая полоса	_	
КД105Д	белая или жёлтая точка	белая или жёлтая полоса	_	
КД208А	жёлтая точка	чёрная, зелёная или жёлтая точка	_	
КД208Б	_	зелёная полоса	_	

	II	Метка у выводов		Рисунок
Тип диода	Цвет корпуса или метка на корпусе	Анода (+)	Катода (-)	A (+) K (-)
КД209А	-	чёрная, зелёная или жёлтая точка	_	
КД209Б	белая точка	чёрная, зелёная или жёлтая точка	_	
КД209В	чёрная точка	чёрная, зелёная или желтая точка	_	
КД209Г	зелёная точка	чёрная, зелёная или жёлтая точка	_	
2Д209А	_	красная полоса на торце корпуса	_	
2Д209Б	зелёная точка	красная полоса на торце корпуса	_	
2Д209В	красная точка	красная полоса на торце корпуса	_	
2Д209Г	белая точка	красная полоса на торце корпуса	_	
КД221А	_	голубая точка	_	
КД221Б	белая точка	голубая точка	_	
КД221В	чёрная точка	голубая точка	_	
КД221Г	зелёная точка	голубая точка	_	
КД221Д	бежевая точка	голубая точка	_	
КД221Е	жёлтая точка	голубая точка	_	
КД226А	_	-	оранжевое кольцо	
КД226Б	_	_	красное кольцо	
КД226В	_	_	зелёное кольцо	
КД226Г	_	_	жёлтое кольцо	
КД226Д	_	-	белое кольцо	
КД226Е	_	-	голубое кольцо	
КД243А	_	_	фиолетовое кольцо	
КД243Б	_	_	оранжевое кольцо	
КД243В	_	_	красное кольцо	
КД243Г	_	_	зелёное кольцо	
КД243Д	-	-	жёлтое кольцо	

	Цвет корпуса или метка на корпусе	Метка у выводов		Рисунок
Тип диода		Анода (+)	Катода (-)	A (+) K (-)
КД243Е	_	_	белое кольцо	
КД243Ж	_	_	голубое кольцо	
КД247А	_	-	два оранжевых кольца	
КД247Б	_	_	два красных кольца	
КД247В	_	_	два зелёных кольца	
КД247Г	_	_	два жёлтых кольца	
КД247Д	_	_	два белых кольца	
КД247Е	_	_	два фиолетовых кольца	
КД410А	_	красная точка	_	
КД410Б	_	синяя точка	_	
КД509А	_	синее узкое кольцо	синее широкое кольцо	
2Д509А	_	синие точка и кольцо	синее широкое кольцо	
КД510А	_	два зелёных узких кольца	зелёное широкое кольцо	
2Д510А	_	зелёные точка и кольцо	зелёное широкое кольцо	
КД521А	_	два синих узких кольца	синее широкое кольцо	
КД521Б	_	два серых узких кольца	серое широкое кольцо	
КД521В	_	два жёлтых узких кольца	жёлтое широкое кольцо	
КД521Г	_	два белых узких кольца	белое широкое кольцо	
КД522А	_	чёрное широкое кольцо	чёрное узкое кольцо	
КД522Б	_	чёрное широкое кольцо	два чёрных узких кольца	
2Д522А	_	чёрное широкое кольцо	чёрная точка	
1N4148	_	_	чёрное кольцо	
КД906	белая полоса у 4 вывода	_	_	2 3 1 4

	Цвет корпуса или метка на корпусе	Метка у выводов		Рисунок
Тип диода		Анода (+)	Катода (-)	A (+) K (-)
КДС111А	красная точка	_	_	
КДС111Б	зелёная точка	_	_	
КДС111Б	жёлтая точка	_	_	
КЦ422А	точка отсутствует	_	чёрная точка	
КЦ422Б	белая точка	_	чёрная точка	-
КЦ422В	чёрная точка	_	чёрная точка	- +
КЦ422Г	зелёная точка	_	чёрная точка	

Литература

- 1. Баркан В. Ф., Жданов В. К. Радиоприёмные устройства. Издание 5-е переработанное и дополненное. М.: Советское радио, 1979. 464 стр., ил.
- 2. Бирюков С. Микросхемные стабилизаторы напряжения широкого применения. Радио, №2, 1999.
- 3. Бирюков С. Оптроны серии АОУ115А. Радио, №5, 2000.
- 4. Богданович Б. М., Ваксер Э. Б. Краткий радиотехнический справочник. Минск: Беларусь, 1976. 335 с., ил.
- 5. Горелов С. Операционные усилители. Радио, 1989, №10, с. 91 94 и №12, с. 83.
- 6. Диоды: Справочник / Григорьев О. П., Замятин В. Я., Кондратьев Б. В., Пожидаев С. Л. М.: Радио и связь, 1990. 336 с., ил. (Массовая радиобиблиотека. Выпуск 1158).
- 7. Замятин В. Я. и др. Мощные полупроводниковые приборы. Тиристоры: Справочник / В. Я. Замятин, Б. В. Кондратьев, В. М. Петухов. М.: Радио и связь, 1987. 576 с., ил.
- 8. Интегральные микросхемы: микросхемы для импульсных источников питания и их применение. Издание 2-е. М.: ДОДЭКА, 2000. 608 с., ил.
- 9. Интегральные микросхемы: микросхемы для линейных источников питания и их применение. Издание 2-е, исправленное и дополненное. М.: ДОДЭКА, 1998. 400 с., ил.
- 10. Кизлюк А. И. Справочник по устройству и ремонту телефонных аппаратов зарубежного и отечественного производства. М.: Антелком, 2000.
- 11.Киселёв В. Транзисторы серий КТ520 и КТ521. Радио, №9, 2001.
- 12. Ломакин Л. Транзисторы серии КП705. Радио, №7, 1996.
- 13. Ломакин Л. Транзисторы серии 2П706. Радио, №7, 1996.
- 14. Митрофанов А. В., Щеголев А. И. Импульсные источники вторичного электропитания в бытовой радиоаппаратуре. М.: Радио и связь, 1985 72 с., ил.
- 15. Москатов Е. А. Электронная техника. Таганрог, 2004. 121 с., ил. ftp://ftp.radio.ru/pub/2005/04/Electronic_technician.pdf http://www.moskatov.narod.ru/Books/Electronic_technician.pdf http://www.grz.ru/books/free/electronic/Electronic_technician.zip
- 16. Мощные полупроводниковые приборы. Транзисторы: Справочник. Бородин Б. А., Ломакин В. М., Мокряков В. В. и другие. Под редакцией Голомедова А. В. М.: Радио и связь, 1985 560 с., ил.
- 17. Нефедов А. В., Гордеева В. И. Отечественные полупроводниковые приборы и их зарубежные аналоги. М.: Энергия, 1978 208 с., ил.
- 18. Нефедов А. В., Гордеева В. И. Отечественные полупроводниковые приборы и их зарубежные аналоги: Справочник. 3 издание переработанное и дополненное. М.: Радио и связь, 1990 400 с., ил. (Массовая радиобиблиотека; выпуск 1154).
- 19.Овсянников Н. Транзисторы КТ972А, КТ972Б. Радио, №10, 1985.
- 20.Отраслевой руководящий документ. Микросхемы интегральные. Серия К174 (К174УН10, К174УН12). Руководство по применению РД II 342.919-82.

- 21.Перечень интегральных микросхем, рекомендованных для применения при разработке и модернизации аппаратуры народнохозяйственного назначения, 2003 176 с. ФГУП "ЦКБ Дейтон".
- 22.Петухов В. М. Биполярные транзисторы средней и большой мощности сверхвысокочастотные и их зарубежные аналоги. Справочник. Т.4 М.: КУбК-а, 1997. 544 с., ил.
- 23.Петухов В. М. Транзисторы и их зарубежные аналоги. Полевые и высокочастотные биполярные транзисторы средней и большой мощности. Справочник. В 4 томах. Издание второе, исправленное. М.: ИП РадиоСофт, 2000. 672 с., ил.
- 24.Полупроводниковые приборы. Диоды выпрямительные, стабилитроны, тиристоры: Справочник 2 е издание стереотипное. / А. Б. Гитцевич, А. А. Зайцев, В. В. Мокряков и др. Под ред. А. В. Голомедова. М.: КУбК-а, 1994 528 стр., ил.
- 25.Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы. Справочник. Под общей редакцией Н. Н. Горюнова. Издание 3-е, переработанное. М.: Энергоатомиздат, 1987, ил.
- 26.Полупроводниковые приборы: Транзисторы. Справочник. Аронов В. А., Баюков А. В., Зайцев А. А. и другие. Под общей редакцией Н. Н. Горюнова. М.: Энергоиздат, 1982. 904 с., ил.
- 27.Полупроводниковые приборы. Справочник. Тома с I по XVIII. ВНИИ МЭП СССР. Издание 2.
- 28.Ровдо А. А. Полупроводниковые диоды и схемы с диодами. М.: Лайт Лтд., 2000. 288 с., ил.
- 29. Справочник по полупроводниковым диодам, транзисторам и интегральным схемам. Горюнов Н. Н., Клейман А. Ю., Комков Н. Н. и др. Под общей редакцией Н. Н. Горюнова. 5-е изд., стереотипное. М.: Энергия, 1979. 744 с., ил.
- 30.Справочник радиолюбителя конструктора. Составитель Роман Михайлович Малинин. Изд. 2 е, переработанное и дополненное. М.: Энергия, 1978. 752 с., ил.
- 31. Справочник по интегральным микросхемам. Тарабрин Б. В., Якубовский С. В., Барканов Н. А., Вородин Б. А., Кудряшов Б. П., Назаров Ю. В., Смирнов Ю. Н. Редактор Р. М. Малинин. М.: Энергия, 1977. 584 с., ил.
- 32.Справочные данные по стабилитронам. http://www.akik.com.ua/techinfo/files/105.pdf
- 33.Справочные данные по стабилитронам. http://www.rlocman.com.ru/comp/koz/diodes/dih10.htm
- 34.Справочные данные по стабилитронам. http://www.chipinfo.ru/dsheets/diodes/stabpr.html
- 35.Справочные данные по стабилитронам и транзисторам. http://kazus.ru/
- 36.Справочные данные по транзисторам. http://www.semiconductors.philips.com/acrobat_download/datasheets/BC546_547_4.pdf
- 37.Справочные данные по биполярным транзисторам. http://www.grz.ru/reference/kozak/BIPOL/bih13.htm

- 38. Тиристоры: Справочник / Григорьев О. П., Замятин В. Я., Кондратьев Б. В., Пожидаев С. Л. М.: Радио и связь, 1990. 272 с., ил.
- 39. Транзисторы: Справочник / Григорьев О. П., Замятин В. Я., Кондратьев Б. В., Пожидаев С. Л. М.: Радио и связь, 1989. 272 с., ил.
- 40.Хрулев А. К., Черепанов В. П. Диоды и их зарубежные аналоги. Справочник. В 3 томах. М.: ИП РадиоСофт, 2001. 640 с., ил.
- 41. Хрулев А. К., Черепанов В. П., Савельев Ю. Н. Диоды и их зарубежные аналоги. Справочник. В 3 томах. М.: ИП РадиоСофт, 2000. 704 с., ил.
- 42. Черепанов В. П., Хрулев А. К. Тиристоры и их зарубежные аналоги. Справочник. В 2-x томах. М.: ИП РадиоСофт, 2002.-608 с., ил.
- 43.Шило В. Л. Популярные цифровые микросхемы: Справочник. 2-е издание, исправленное. М.: Радио и связь, 1989. 352 с., ил. (Массовая радиобиблиотека; выпуск 1145).
- 44. Шульгин О. А., Шульгина И. Б., Воробьёв А. Б. Справочник по полупроводниковым приборам. Версия 1.02. Том 6. 61,2 Мб.
- 45.Юшин А. Двуразрядные цифровые светодиодные индикаторы. Радио, №7, №9, 2001.

Оглавление

1 Введение	3
1.1 Основные стандарты на полупроводниковые приборы	4
1.2 Классификация диодов	10
1.3 Классификация транзисторов	15
1.4 Классификация микросхем	17
2 Список принятых сокращений	27
3 Диоды	36
3.1 Диоды выпрямительные	36
3.2 Диодные сборки	47
3.3 Светодиоды	50
3.4 Семисегментные индикаторы	67
3.5 Оптроны	70
3.6 Стабилитроны	75
3.7 Варикапы	79
3.8 Туннельные диоды	81
3.9 Фотографии диодной сборки, диодов, стабилитрона,	
светодиода, оптрона	83
4 Тиристоры	84
4.1 Тиристоры импульсные	84
4.2 Диодные тиристоры	95
4.3 Оптотиристоры	96
4.4 Фотографии разных тиристоров	97
5 Транзисторы	98
5.1 Биполярные транзисторы	98
5.2 Однопереходные транзисторы	137
5.3 Двухэмиттерные транзисторы	138
5.4 Фототранзисторы	140
5.5 Полевые транзисторы	141
5.6 Рисунки цоколёвок транзисторов	151
5.7 Фотографии разных транзисторов	167
6 Интегральные микросхемы	168
6.1 Микросхемные стабилизаторы напряжения	168
6.2 Операционные усилители	173
6.3 Микросхемы серии К174	175
6.4 Цифровые микросхемы	186
6.5 Рисунки цоколёвок микросхем	190
6.6 Фотографии разных микросхем	192
7 Номера ТУ некоторых приборов	193
Приложения	204
Приложение №1. Расшифровка кодов некоторых тиристоров,	
транзисторов и ИМС стабилизаторов	204
Приложение №2. Расшифровка кодов некоторых диодов	208
Литература	216
Оглавление	219