

哈希表示学习

Hashing Representation Learning

吴志勇 清华大学深圳国际研究生院

■ The Problem

- Large scale image search
 - We have a candidate image
 - Want to search a large database to find similar images
 - Search the internet to find similar images
- Fast
- Accurate

- Large Scale Search in Database
 - Find similar images in a large database

Internet Large Scale Search

Internet contains billions of images

Search the Internet

- The Challenge:
 - Need way of measuring similarity between images (distance metric learning)
 - Needs to scale to Internet (how?)

- Large Scale Search
 - Representation must fit in memory (disk too slow)
 - (for 2010) Facebook has ~ 10 billion images (10¹⁰)
 - PC has ~10 Gbytes of memory (10¹¹ bits)
 - → Budget of 10¹ bits/image

- Nearest Neighbor Search (Retrieval) for Big Data
 - Given a query point q, return the points closest (similar) to q in the dataset (e.g., image database)

- Challenges in big data applications
 - Query speed
 - Storage cost
 - Curse of dimensionality

Requirements for Search

- Search must be both fast, accurate and scalable to large data set
- Fast
 - Kd-trees: tree data structure to improve search speed
 - Locality Sensitive Hashing: hash tables to improve search speed
 - Small code: small binary code (010101101)

Scalable

- Require very little memory, enabling their use on standard hardware or even on handheld devices
- Accurate
 - Learned distance metric

- Existing Large Scale Search Algorithms: Categorization
 - Tree Based Structure
 - Spatial partitions (i.e. kd-tree) and recursive hyper plane decomposition provide an efficient means to search low-dimensional vector data exactly
 - Hashing
 - Locality-sensitive hashing offers sub-linear time search by hashing highly similar examples together
 - Small binary Code
 - Compact binary code, with a few hundred bits per image

Tree Based Structure

- Kd-tree
 - The kd-tree is a binary tree in which every node is a k-dimensional point

Hashing

Hashing

- By using hash-code to construct index, we can achieve constant or sub-linear search time complexity
- Two stages:
 - Projection stage
 - ➤ Projected with real-valued projection function
 - Fiven a point \mathbf{x} , each projected dimension i will be associated with a real-valued projection function $f_i(\mathbf{x})$, e.g. $f_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x}$
 - Quantization stage
 - ➤Turn real into binary

Hashing: Data-Independent Methods

- The hash function family is defined independently of the training dataset
 - Locality Sensitive Hashing (LSH)
 - 1. A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB, 1999.
 - 2. A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. *Commun. ACM*, 51(1):117-122, 2008.
 - 3. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In *ACM SOCG*, 2004.
 - 4. P. Jain, B. Kulis, and K. Grauman. Fast Image Search for Learned Metrics. In CVPR, 2008.
 - 5. B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In ICCV, 2009.
- Hash function: random projections or manually constructed

Hashing: Data-Dependent Methods (Learning to Hash)

- Hash functions are learned from a given training dataset
 - Compared with data-independent methods, data-dependent methods (also called learning to hash methods) can achieve comparable or even better accuracy with shorter binary codes

Seminal papers

- 1. R. Salakhutdinov and G. Hinton. Semantic Hashing. In *SIGIR workshop on Information Retrieval and applications of Graphical Models*, 2007.
- 2. R. Salakhutdinov and G. Hinton. Semantic hashing. *Int. J. Approx. Reasoning*, 50(7):969-978, 2009.
- 3. A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for recognition. In *CVPR*, 2008.
- 4. Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, 2008.

- Locality Sensitive Hashing
 - Hashing methods to do fast Nearest Neighbor (NN) search
 - Sub-linear time search by hashing highly similar examples together in a hash table
 - Take random projections of data
 - Quantize each projection with few bits
 - Strong theoretical guarantees

Small Binary Code

- Binary?
 - -0101010010101010101
 - Only use binary code (0/1)
- Small?
 - A small number of bits to code each image
 - i.e. 32 bits, 256 bits
- How could this kind of small code improve the image search speed?

- Details of These Algorithms
 - Locality sensitive hashing (LSH)
 - Basic LSH
 - LSH for learned metric
 - Small binary code
 - Basic small code idea
 - Spectral hashing

Locality Sensitive Hashing

局部敏感哈希

Locality Sensitive Hashing (LSH)

- The basic idea behind LSH is to project the data into a low-dimensional binary (Hamming) space; that is, each data point is mapped to a b-bit vector, called the *hash key*
- For a group of hash functions H, each hash function h ($h \in H$) must satisfy the *locality sensitive hashing* property:

$$P[h(x_i)=h(x_j)] = sim(x_i, x_j)$$

where $sim(x_i, x_i) \in [0,1]$ is the similarity function of interest

■ LSH Functions for Dot Products

The hashing function of LSH to produce Hash Code

$$h_{r}(x) = \begin{cases} 1, & if \ r^{T}x \ge 0 \\ 0, & otherwise \end{cases}$$

 $r^Tx \ge 0$ is a hyper-plane separating the space

Locality Sensitive Hashing (LSH)

• Take random projection of data r^Tx

Quantize each projection with few bits

No learning involved

Feature vector

How to Search from Hash Table?

Could We Improve LSH?

• In LSH, each hash function *h* must satisfy the *locality sensitive hashing* property:

$$P[h(x_i)=h(x_j)] = sim(x_i, x_j)$$

where $sim(x_i, x_i) \in [0,1]$ is the similarity function of interest

Metric Learning, 度量学习

Could We Improve LSH?

$$P[h(x_i)=h(x_j)] = sim(x_i, x_j)$$

- Could we utilize learned metric to improve LSH?
- How to improve LSH from learned metric?
- Assume we have already learned a distance metric A from domain knowledge
- X^TAX has better quantity than simple metrics such as Euclidean distance

Distance Metric Learning

Distance Metric

- "Generic" distances or low-dimensional representations are amenable to fast search, but may be inaccurate for a given problem
- Learned task-specific distance functions are more accurate, but current methods cannot guarantee fast search for them

• Goal:

- Develop approximate similarity search method for learned metrics
- Encode side-information into randomized locality-sensitive hash functions
- Applicable for a variety of image search tasks

Metric Learning

- There are various ways to judge appearance / shape similarity …
- But often we know more about (some) data than just their appearance
- Exploit partially labeled data and/or (dis)similarity constraints to construct more useful distance function

Example Sources of Similarity Constraints

Partially labeled image databases

Fully labeled image databases

User feedback

Detected video shots, tracked objects

Problem-specific knowledge

Mahalanobis Distance

• Distance parameterized by probability distribution $d \times d$ matrix **A**:

$$d_{\mathbf{A}}(x_i, x_j) = (x_i - x_j)^{\mathrm{T}} \mathbf{A} (x_i - x_j)$$

• Similarity measure is associated with generalized inner product (kernel)

$$s_{\mathbf{A}}(x_i, x_j) = x_i^{\mathrm{T}} \mathbf{A} x_j$$

Then how to learn the distance metric?

Information-Theoretic Metric Learning (ITML)

• Formulation (Log-Det Divergence):

$$min_A D_{ld}(A, A_0)$$

s.t.
$$(x_i - x_j)^T A(x_i - x_j) \le u$$
 if $(i, j) \in S$ [similarity constraints]
 $(x_i - x_j)^T A(x_i - x_j) \ge l$ if $(i, j) \in D$ [dissimilarity constraints]

- Advantages:
 - Simple, efficient algorithm
 - Can be applied in kernel space

How to Use Learned Distance Metric?

$$d(x,y)$$

$$= (x - y)^{T} \mathbf{A}(x - y)$$

$$= (x - y)^{T} \mathbf{A}^{\frac{1}{2}} \mathbf{A}^{\frac{1}{2}} (x - y)$$

$$= (\mathbf{A}^{\frac{1}{2}} x - \mathbf{A}^{\frac{1}{2}} y)^{T} (\mathbf{A}^{\frac{1}{2}} x - \mathbf{A}^{\frac{1}{2}} y)$$

- $A^{\frac{1}{2}}$ is a linear embedding function that embeds the data into a low-dimensional binary space
- Define $G = A^{\frac{1}{2}}$

■ LSH Functions for Learned Metrics

- Given learned metric with $\mathbf{A} = \mathbf{G}^T \mathbf{G}$
- G should be viewed a linear parametric function or a linear embedding function for data xData embedding
- Thus the LSH function could be:

$$h_{r,\mathbf{A}}(\mathbf{x}) = \begin{cases} 1, & \text{if } r \text{ } \mathbf{G} \mathbf{x} \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

ullet The key idea is first embed the data into a lower-dimensional binary space by ullet and then do LSH in the lower dimensional space

Toy Example

• 2D uniform distribution

Training Samples

LSH

An Example

$$A = (1,1)$$
 $B = (2,1)$ $C = (1,2)$
 $D = (2,2)$ $E = (4,2)$ $F = (4,3)$
data samples

$$v(A) = 10001000$$

 $v(B) = 11001000$
 $v(C) = 10001100$
 $v(D) = 11001100$
 $v(E) = 111111100$
 $v(F) = 11111110$

embed to low-dimensional binary space

do LSH in the lower dimensional space

Applications

- Near-duplicate detection (近似检测)
 - 通常运用在网页去重方面
 - 在搜索中往往会遇到内容相似的重复页面,它们中大多是由于网站之间转载造成的
 - 可以对页面计算LSH,通过 查找相等或相近的LSH值找 到Near-duplicate

Applications

- Content based audio retrieval (基于内容的音频检索)
 - 基于傅立叶变换提取音频指纹 (audio fingerprint)
 - ▶频率带宽、频谱中心、谐波成分、音调
 - 针对音频指纹数据库数据量大、数据维数高的特点,采用局部敏感哈希LSH作为近似最近邻的高维数据索引算法,用于音频指纹检索

Spectrogram of violin playing.

Questions?

- Is Hashing fast enough?
- Is sub-linear search time fast enough?
- Is it scalable enough? (adapt to the memory of a PC?)

■ NO!

- Small binary code could do better
- Cast an image to a compact binary code, with a few hundred bits per image
- Small code is possible to perform real-time searches with millions from the Internet using a single large PC
- Fast: Within 1 second! (for 80 million data → 0.146 sec)
- Scalable: 80 million data (~300G) → 120M

Small Binary Code

小二值编码

Small Binary Code

- First introduced in text search/retrieval
- [Salakhutdinov and Hintion, 2007, 2009] introduced it for text documents retrieval
 - R. Salakhutdinov and G. Hinton. Semantic Hashing. In *SIGIR workshop on Information Retrieval and applications of Graphical Models*, 2007.
 - R. Salakhutdinov and G. Hinton. Semantic hashing. *International Journal of Approximate Reasoning*, 50(7):969-978, 2009.
- [Torralba et al, 2008] Introduced to computer vision
 - A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for recognition. In *CVPR*, 2008.

Semantic Hashing

R. Salakhutdinov and G. Hinton. Semantic Hashing. In *SIGIR workshop* on Information Retrieval and applications of Graphical Models, 2007.

R. Salakhutdinov and G. Hinton. Semantic hashing. *Int. J. Approx. Reasoning*, 50(7):969-978, 2009.

Semantic Hashing

 Similar points are mapped into a similar small code

 Then store these codes into memory and compute Hamming distance (very fast, carried out by hardware)

Overall Query Scheme

- Searching Framework
 - Produce binary code (01010011010)
 - Store these binary code into the memory
 - Use hardware to compute the Hamming distance (very fast)
 - Sort the Hamming distances and get final ranking results

- How to Learn Small Binary Code?
 - Simplest method (use median)
 - LSH are already able to produce binary code
 - Restricted Boltzmann Machines (RBM)
 - Optimal small binary code by spectral hashing

- 1. Simple Binarization Strategy
 - Set threshold (unsupervised), e.g. use median

2. Locality Sensitive Hashing

- LSH is ready to generate binary code (unsupervised)
- Talk random projections of data
- Quantize each projection with few bits

No learning involved

Feature vector

■ 3. RBM to Generate Code

- Use a deep neural network to train small code
 - Learn the nonlinear transformation from the input MNIST image to a lowdimensional feature space in which Knearest neighbor classification performs will
- Supervised method

Learning Similarity Metric

R. Salakhutdinov and G. E. Hinton. Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure. In AISTATS, 2007.

■ 3. RBM to Generate Code

- For any given distance metric D, measure similarity between two input vectors $\mathbf{x}_a, \mathbf{x}_b \in X$ by computing $D[f(\mathbf{x}_a|W), f(\mathbf{x}_b|W)]$
- Where $f(\mathbf{x}|W)$ is a function $f:X \rightarrow Y$ mapping the input vectors in X into a feature space Y and is parameterized by W

Learning Similarity Metric

- Pretraining with a stack of RMBs
- Introduce Neighbourhood Component Analysis (NCA) as the classification error

$$O_{NCA} = \sum_{a=1}^{N} \sum_{b:c^a=c^b} p_{ab}$$

$$p_{ab} = \frac{\exp(-d_{ab})}{\sum_{z \neq a} \exp(-d_{az})}, \qquad p_{aa} = 0$$

$$d_{ab} = \parallel f(\mathbf{x}^a|W) - f(\mathbf{x}^b|W) \parallel^2$$

Pretraining

Fine-tuning

Toy Example

• 2D uniform distribution

Training Samples

RBM (two hidden layers)

LabelMe Retrieval

- LabelMe is a large database with human annotated images
 - First generate small code
 - Use hamming distance to search for similar images
 - Sort the results to produce final ranking

LabelMe Retrieval

 12 closest neighbors under different distance metrics

4. Spectral Hashing

Y. Weiss, A. Torralba, and R. Fergus. Spectral Hashing. In NIPS, 2008.

- Closely related to the problem of spectral graph partitioning
- What makes a good code?
 - easily computed for a novel input
 - requires a small number of bits to code the full dataset
 - maps similar items to similar binary code words

Spectral Hashing

 To simplify the problem, first assume that the items have already been embedded in a Euclidean space

- Try to embed the data into a Hamming space
- Hamming space is binary space 010101001...

Some Definitions

• Let $\{y_i\}_{i=1}^n$ be the list of code words (binary vector of length k) for n data points

• $W(i,j) = \exp(-\|x_i - x_j\|^2/\epsilon^2)$ is the affinity matrix characterizing

similarities between data points

Objective Function

The average Hamming distance between similar points is minimal

minimize:
$$\sum_{ij} W_{ij} || y_i - y_j ||^2$$
subject to:
$$y_i \in \{-1, 1\}^k$$

$$\sum_i y_i = 0$$

$$\frac{1}{n} \sum_i y_i y_i^T = I$$

What does this objective function mean?

Objective of Spectral Hashing

Graph Illustration Near with each other Nearby points **Euclidean Space Hamming Space**

Spectral Graph Partitioning

- Given a graph G=(V,E) with <u>adjacency matrix</u> A, where an entry A_{ij} implies an edge between node i and j, and <u>degree matrix</u> D, which is a diagonal matrix, where each diagonal entry of a row i, D_{ii} , represents the node degree of node i. The <u>Laplacian matrix</u> is defined as L=D-A. Now, a ratio-cut partition for graph G=(V,E) is defined as a partition of V into disjoint U and W, such that cost of cut(U,W)/(|U| |W|) is minimized.
- In such a scenario, the second smallest eigenvalue (λ_2) of L, yields a lower bound on the optimal cost (c) of ratio-cut partition with $c \ge \lambda_2/n$. The eigenvector (V_2) corresponding to λ_2 , called the <u>Fiedler vector</u>, bisects the graph into only two communities based on the *sign* of the corresponding vector entry.

Spectral Graph Partitioning

		L=D-A			
Node id	1	2	3	4	5
1	3	-1	-1	-1	0
2	-1	2	-1	0	0
3	-1	-1	2	0	0
4	-1	0	0	2	-1
5	0	0	0	-1	1

Eigen value decomposition of L: (V)

Node id	1	2	3	4	5
1	-0.44721	0.201774	-0.317515	0	0.8114622
2	-0.44721	0.41931	0.242173	-0.707106	-0.255974
3	-0.44721	0.41931	0.24217	0.7071067	-0.2559747
4	-0.44721	-0.3379	-0.7030	0	-0.4375313
5	-0.447958	-0.70246	0.5362	0	0.13801875
	at the sectors				WHITE TARREST STATE

E=[0,

0.5188,

2.3111,

3.0000,

4.1701]

Spectral Relaxation

We obtain an easy problem whose solutions are simply the k
eigenvectors of D-W with minimal eigenvalues

$$minimize : \sum_{ij} W_{ij} || y_i - y_j ||^2$$

$$subject \ to : y_i \in \{-1, 1\}^k$$

$$\sum_{i} y_i = 0$$

$$\frac{1}{n} \sum_{i} y_i y_i^T = I$$

$$minimize : trace(Y^T(D - W)Y)$$

$$subject \ to : Y(i, j) \in \{-1, 1\}$$

$$Y^T 1 = 0$$

$$Y^T Y = I$$

$$D(i, i) = \sum_{j} W(i, j)$$

Spectral Relaxation

We obtain an easy problem whose solutions are simply the k
eigenvectors of D-W with minimal eigenvalues

```
minimize: trace(Y^T(D-W)Y) subject\ to: Y(i,j) \in \{-1,1\} Y^T 1 = 0 Y^T Y = I
```

- Observation: Similar with spectral graph partition
- Could be solved by computing generalized eigenvalue problem

- Results for Spectral Hashing
 - Synthetic results on uniform distribution

 LabelMe retrieval results using spectral hashing to produce small binary code

Toy Example Comparison

• 2D uniform distribution

Training Samples

Toy Example Comparison

Some Results on LabelMe

Observation: spectral hashing gets the best performance

Summary

- Image search should be
 - Fast
 - Accurate
 - Scalable
- Tree based methods
- Locality Sensitive Hashing (LSH)
- Small Binary Code (state-of-the-art)

References

- 1. M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-Sensitive Hashing Scheme Based on p-Stable Distributions. In *ACM SOCG*, 2004.
- 2. P. Jain, B. Kulis, and K. Grauman. Fast Image Search for Learned Metrics. In *CVPR*, 2008.
- 3. R. Salakhutdinov and G. Hinton. Semantic Hashing. In *SIGIR workshop on Information Retrieval and applications of Graphical Models*, 2007.
- 4. R. Salakhutdinov and G. Hinton. Semantic Hashing. *International Journal of Approximate Reasoning*, 2009.
- 5. A. Torralba, R. Fergus, and Y. Weiss. Small Codes and Large Image Databases for Recognition. In *CVPR*, 2008.
- 6. Y. Weiss, A. Torralba, and R. Fergus. Spectral Hashing. In *NIPS*, 2008.

Q&A?