Math 501 Homework (§2.2)

Problem 1. Let A be ϵ -neighborhood of a, and let B be the ϵ -neighborhood of b. Show that if A and B are not disjoint, then their intersection is the ϵ -neighborhood of a real number.

Solution. From definition, $A=\{x\in\mathbb{R}:|x-a|<\epsilon\}$ and $B=\{x\in\mathbb{R}:|x-b|<\epsilon\},\epsilon>0$. Their intersection, $C=A\cap B$ is the set of $x\in\mathbb{R}$ such that:

$$|x - a| < \epsilon, |x - b| < \epsilon \tag{1.1}$$

Now take |(x+x)-(a+b)|=|(x-a)+(x-b)| which according to the Triangular Inequality

$$\leq |x-a|+|x-b|$$

$$< 2\epsilon \qquad \qquad \text{(using 1.1)}$$

$$\therefore |2x-(a+b)| < 2\epsilon$$

$$|x-\frac{a+b}{2}| < \epsilon \qquad \qquad \text{(dividing both sides by 2)}$$

$$C = \{x \in \mathbb{R} : |x-\frac{a+b}{2}| < \epsilon\},$$

This is the ϵ -neighborhood of $\frac{a+b}{2}$, a real number.