MAT1375, Classwork5, Fall2025

Ch5. Operations on Functions

1. Complete the definition of the Algebra of Functions:

(f-g) (x)

Let f(x) and g(x) be two functions with the domain D_f and D_g , respectively. We have sum, difference, product, and quotient of functions:

The Algebra of functions	Notation	Definition	Domain
Sum	(ftg)(x) ≔	$f \times (+ g \times)$	$D_{f+g} = \mathcal{D}_{f} \cap \mathcal{D}_{g}$
Difference	(f-g)(x) =	f(x) - g(x)	$D_{f-g} = \mathcal{D}_{f} \cap \mathcal{D}_{g}$
Product	(fg)(x) = 7	$f(x) \cdot g(x)$	$D_{f \cdot g} = \mathcal{D}_{f} \cap \mathcal{D}_{f}$
Quotient	$\left(\begin{array}{c} \frac{1}{2} \\ \end{array}\right)(x) := \begin{array}{c} \frac{1}{2} \\ \end{array}$	$\frac{2(\times)}{2(\times)}$, provided $\frac{2(\times)}{2(\times)} \neq 0$	$D_{\frac{f}{g}} = D_{f} \cap D_{g} \text{but}$ $2(X) \neq 0$

Here, $D_f \cap D_g = \{ x \mid \underline{\hspace{1cm}} \}$

2. Let $f(x) = x^2 + 5x + 6$ and g(x) = x + 2. Find the following functions and state their domains.

$$(f+g)(x) =$$

$$(f-g)(x) =$$

$$(f \cdot g)(x) =$$

$$\left(\frac{f}{g}\right)(x) =$$

3. Complete the definition of the Composition of Functions:

Let f(x) and g(x) be two functions. The composition of the function f with g is denoted by

and is defined by the equation

The domain of the composition of the function $f \circ g$ is the set of all x such that x is the _____ of g(x) and ____ is the domain of f(x).

The notation of the domain of the composition of the function $f \circ g$ is

- 4. Are f(g(x)) and g(f(x)) the same functions?
- 5. Find $(f \circ g)(x)$ for the following functions and state their domains.

a)
$$f(x) = x^2 + 2$$
 and $g(x) = x - 3$

b)
$$f(x) = \frac{2}{x-3}$$
 and $g(x) = x^2 + 2x$