Лабораторная работа №2 «Таймеры и обработка прерываний микроконтроллеров STM32»

1 Цель работы

Ознакомиться с программными средствами работы с таймерами и прерываниями микроконтроллеров STM32.

2 Теоретические сведения

2.1 Виды таймеров микроконтроллеров STM32

Встраиваемые устройства выполняют некоторые действия с учетом времени. Для достаточно простых И неточных задержек тэжом использоваться цикл большой длительности, однако использование ядра микроконтроллера для выполнения зависимых от времени действий является плохим решением. По этой причине все микроконтроллеры предоставляют отдельную аппаратную периферию - таймеры. Таймеры являются не только генераторами временного отсчета, НО И предоставляют дополнительных функций, используемых для взаимодействия между ядром и периферийными устройствами, как внутренними, так и внешними по отношению к микроконтроллеру.

Таймер — это автономный счетчик с частотой отсчета, составляющей часть его источника тактового сигнала. Частота отсчета может быть уменьшена с помощью отдельного предделителя для каждого таймера.

В зависимости от семейства и используемого корпуса, микроконтроллеры STM32 реализуют различное количество таймеров, каждый из которых имеет определенные характеристики. В отличие от других периферийных устройств таймеры имеют практически одинаковую реализацию во всех сериях STM32 и сгруппированы в девять различных категорий. Наиболее важными из них являются:

- базовые таймеры являются самым простым видом таймеров в микроконтроллерах STM32. Это 16-разрядные таймеры, используемые для генерации временного отсчета. Они не имеют выводов. Базовые таймеры также могут быть использованы в качестве ведущих для других таймеров.
- таймеры общего назначения 16/32-разрядные таймеры (в зависимости от серии STM32), обеспечивающие сравнение выходного сигнала, одноимпульсного режима, захвата входного сигнала, интерфейса датчика. Может быть использован в качестве генератора временного отсчета, как и базовый таймер. Таймеры общего назначения предоставляют четыре программируемых входных/выходных канала.
- таймеры расширенного управления являются наиболее полными в микроконтроллере STM32. В дополнение к функциям таймера общего назначения, они включают в себя несколько функций, относящихся к приложениям управления двигателем и цифрового преобразования энергии.

Таймеры общего назначения предназначены для управления продвинутыми возможностями, связанными со временем, такими как:

- режим захвата входного сигнала позволяет вычислять частоту внешних сигналов, подаваемых на каждый из 4 каналов таймера, при этом захват выполняется независимо для каждого канала;
- режим сравнения выходного сигнала позволяет управлять состоянием выходных каналов, когда регистр сравнения каналов (*TIMx CCRx*) совпадает с регистром счетчика таймера (*TIMx CNT*);
- режим генерации широтно-импульсной модуляции позволяет
 формировать через каналы таймера импульсы с различными
 коэффициентами заполнения на заданной частоте;
- одноимпульсный режим позволяет запускать счетчик в ответ на событие и генерировать импульс с программируемой длительностью после программируемой задержки.

Основные регистры таймеров общего назначения:

- $-TIMx_CR1$ (смещение 0x00) регистр управления, задает режим работы таймера;
- − TIMx_CR2 (смещение 0x04) регистр управления, задает режимы ведущего таймера и взаимодействия с DMA;
- $-TIMx_SMCR$ (смещение 0x08) регистр управления ведомым режимом таймера;
- $TIMx_DIER$ (смещение 0x0C) регистр разрешения прерываний и событий DMA;
- $-TIMx_SR$ (смещение 0x10) регистр состояния, содержит флаги прерываний;
- $-TIMx_EGR$ (смещение 0x14) регистр генерации событий, позволяет искусственно формировать события;
- $-TIMx_CCMR1$ (смещение 0x18), $TIMx_CCMR2$ (смещение 0x1C) регистры режимов захвата или сравнения сигналов;
- $-TIMx_CCER$ (смещение 0x20) регистр разрешения захвата или сравнения сигналов;
- *TIMx_CNT* (смещение 0x24) регистр счетчика, прямое обращение к регистру счетчика необходимо только в случае отслеживания времени без использования прерывания, циклическими проверками значения таймера;
 - *TIMx_PSC* (смещение 0x28) регистр предделителя;
 - -TIMx ARR (смещение 0x2C) регистр перезагрузки;
- $-TIMx_CCR1$ (смещение 0x34), $TIMx_CCR2$ (смещение 0x38), $TIMx_CCR3$ (смещение 0x3C), $TIMx_CCR4$ (смещение 0x40), регистр значения захвата или сравнения сигнала для соответствующего канала таймера;
- *TIMx_DCR* (смещение 0x48) регистр управления работой таймера с контроллером DMA;

 $-TIMx_DMAR$ (смещение 0x4C) - регистр адреса для последовательного режима DMA.

Структура регистра управления *TIMx_CR1* приведена на рис. 1.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	D.				CKD	[1:0]	ARPE	CI	MS	DIR	OPM	URS	UDIS	CEN	
	Reserved					rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Рис.1 - Структура регистра управления таймера *TIMx CR1*

Флаги регистра имеют следующие значения:

- *CKD* задает значение делителя частоты таймера;
- ARPE определяет режим записи в регистр перезагрузки;
- *CMS* определяет режим для двунаправленного счета или разрешают счет только в одном направлении;
 - DIR задает направление счета: прямой или реверсивный;
 - *OPM* задает режим одиночного импульса;
- -URS задает формирование события перезагрузки таймера программно или от ведомого таймера;
- $-\ UDIS$ управляет разрешением автоматической перезагрузки счетчика;
 - *CEN* разрешает работу счетчика.

При работе с каналами таймеров общего назначения, необходимо выполнить настройку портов ввода-вывода, закрепленных, согласно технической спецификации микроконтроллера, за выбранным каналом таймера. Для микроконтроллеров семейства STM32F1, порты каналов таймеров используемые как входные должны быть сконфигурированы как входные - *GPIO_Mode_IPD*, порты каналов, используемые как выходные, должны быть определены как двухтактные выходы в режиме альтернативной функции - *GPIO_Mode_AF_PP*.

Номера портов ввода-вывода, закрепленных за каналами таймеров TIM2-TIM4, приведены в табл.1.

Табл.1 Порты ввода-вывода каналов таймеров

Номер таймера	Номер канала	Номер вывода			
	CH1	PA0			
TIM2	CH2	PA1			
111112	CH3	PA2			
	CH4	PA3			
	CH1	PA6			
TIM3	CH2	PA7			
111113	CH3	PB0			
	CH4	PB1			
	CH1	PB6			
TIM4	CH2	PB7			
1 11/14	CH3	PB8			
	CH4	PB9			

2.2 Обработка прерываний в микроконтроллерах STM32

Все микроконтроллеры предоставляют функцию, называемую прерываниями. Прерывание — это асинхронное событие, которое вызывает остановку выполнения текущего кода в приоритетном порядке.

Архитектура ARM различает два типа исключений: прерывания, вызываемые аппаратным обеспечением, и исключения, вызываемые программным обеспечением. В терминологии ARM прерывание — это тип исключения. Процессоры Cortex-M предоставляют модуль, предназначенный для управления исключениями - контроллер вложенных векторных прерываний (NVIC). Контроллер NVIC — это специальный аппаратный

модуль внутри микроконтроллеров на базе Cortex-M, отвечающий за обработку исключений.

Для работы с аппаратными прерываниями необходимо:

- разрешить глобальные прерывания микроконтроллера реализуется функцией *enable irq()*;
- разрешить прерывание в контроллере прерываний реализуется функцией $NVIC_EnableIRQ$, которая в качестве параметра принимает номер прерывания для номеров прерываний определено перечисление IRQn в файле stm32f10x.h;
 - настроить устройство на формирование прерывания;
- создать функцию обработки соответствующего прерывания объявления функций обработчиков прерываний находятся в файле startup_stm32f10x_md.s в секции Default_Handler.

2.3 Базовая настройка таймера

Для обеспечения работы таймера необходимо выполнить включение тактового сигнала модуля с использованием функции $RCC_APB1PeriphClockCmd$.

Для таймера необходимо выполнить базовую настройку: определяется структура базовой инициализации таймера - $TIM_TimeBaseInitTypeDef$, выполняется начальная инициализация данной структуры - функцией $TIM_TimeBaseStructInit$, после чего производится настройка параметров таймера (значений $TIM_Prescaler$, TIM_Period) и выполняется базовая инициализация таймера функцией $TIM_TimeBaseInit$.

Предделитель таймера (Prescaler) задает значение, используемое для деления тактового сигнала таймера на коэффициент в диапазоне от 1 до 65535. Регистр предделителя имеет 16-разрядное разрешение. Например, если шина, к которой подключен таймер, работает на частоте 72 МГц, то значение предделителя, равное 72, понижает частоту отсчета до 1 МГц.

Значение предделителя для таймера выбирается с учетом частоты тактирования. Для получения значения предделителя при известной частоте и требуемом значении отсчета следует воспользоваться следующей формулой:

$$Prescaler = F_{TIM} \times T_{CNT} \tag{1}$$

где:

- $-F_{TIM}$ частота тактового сигнала, Гц;
- $-T_{CNT}$ время одного отсчета таймера, с.

Значение предделителя, записываемое в регистр таймера, должно быть на 1 меньше рассчитанного.

Для определения таймера частоты тактового сигнала при моделировании ОНЖОМ воспользоваться отображением параметров тактирования через модуль управления питанием, сигналами сброса и тактирования (Power, Reset and Clock Control - PRCC). Для доступа к данному модулю выберите пункт меню Peripherials, далее пункт Power, Reset and Clock Control. В открывшемся окне, частота тактирующего сигнала таймеров описывается параметром *TIMXCLK*.

Структуры данных и функции для работы с таймерами для микроконтроллеров семейства STM32F1, предоставляемые библиотекой SPL, представлены в файлах $stm32f10x_tim.h$ и $stm32f10x_tim.c$.

2.4 Работа таймера в режиме захвата сигнала

Для задания параметров таймера в режиме захвата сигнала используется структура *TIM_ICInitTypeDef*. Поля структуры определяют:

- *TIM_Channel* используемый канал таймера;
- TIM_ICPolarity активный фронт входного сигнала;
- TIM_ICSelection отображение входных каналов на каналы таймера;

- *TIM_ICPrescaler* предделитель заданного входного канала задает количество событий между срабатываниями захвата;
- *TIM_ICFilter* частота отбора входного сигнала для защиты от дребезга.

Начальное заполнение структуры выполняется функцией *TIM_ICStructInit*. После инициализации структуры выполняется ее настройка. После чего выполняется инициализация режима захвата сигнала таймера с использованием функции *TIM_ICInit*, которая в качестве параметров принимает указатель на структуру таймера *TIM_TypeDef* и указатель на структуру режима *TIM_ICInitTypeDef*.

Порт ввода-вывода, закрепленный за каналом таймера, должен быть проинициализирован в режиме входа.

Для включения прерывания таймера по получении фронта сигнала необходимо определить в качестве источника прерывания TIM_IT_CCx , где вместо x указывается номер используемого канала таймера. При возникновении прерывании, в регистр CCRx (x - номер используемого канала) записывается значение регистра CNT в момент возникновения прерывания.

Для получения значения периода сигнала необходимо зафиксировать моменты прихода двух передних фронтов сигнала и рассчитать разницу между полученными значениями. Для повышения точности измерения можно обнулять счетный регистр перед выделением очередного периода.

По завершении обработки прерывания необходимо снять бит необработанного прерывания функцией *TIM_ClearITPendingBit*.

2.5 Работа таймера в режиме широтно-импульсной модуляции

Широтно-импульсная модуляция (ШИМ, Pulse-width modulation, PWM) – метод, используемый для генерации нескольких импульсов с различными коэффициентами заполнения в заданный период времени или на заданной частоте.

Основное применение ШИМ:

- управление выходным напряжением (током);
- кодирование (модулирование) сообщения на несущем сигнале.

Основными характеристиками сигналов широтно-импульсной модуляции являются период сигнала, длительность импульса и коэффициент заполнения.

Длительность импульса — это продолжительность времени внутри одного периода, когда сигнал имеет активный уровень.

Коэффициент заполнения – это процент от периода сигнала, в течение которого сигнал имеет активный уровень.

Для нахождения коэффициента заполнения используется формула:

$$D = \frac{W}{T} \times 100\% \tag{2}$$

где:

- -D коэффициент заполнения;
- -W длительность сигнала;
- -T период сигнала.

Для задания параметров таймера в режиме генерации широтноимпульсной модуляции используется структура TIM_OCInitTypeDef. Для режима широтно-импульсной модуляции необходимо определить следующие поля структуры:

- *TIM_OCMode* режим работы: сравнение выходного сигнала или широтно-импульсная модуляция;
- TIM_OutputState состояние для выхода должно быть определено TIM OutputState Enable;
- *TIM_Pulse* значение, загружаемое в регистр *CCRx* для режима широтно-импульсной модуляции определяет длительность импульса.

Начальное заполнение структуры выполняется функцией $TIM_OCStructInit$. После инициализации структуры выполняется ее настройка. После чего выполняется инициализация режима с использованием функции $TIM_OCIInit$, которая в качестве параметров принимает указатель на структуру таймера $TIM_TypeDef$ и указатель на структуру режима $TIM_OCInitTypeDef$.

Порт ввода-вывода, закрепленный за соответствующим каналом таймера, должен быть проинициализирован в режиме выхода альтернативной функции.

Для включения прерывания таймера по получении фронта сигнала необходимо определить в качестве источника прерывания *TIM_IT_Update*. При возникновении прерывании, для изменения длительности сигнала широтно-импульсной модуляции необходимо записать в регистр *CCRx* (x - номер используемого канала) новое значение длительности сигнала.

По завершении обработки прерывания необходимо снять бит необработанного прерывания функцией *TIM ClearITPendingBit*.

3 Задание

Разработать программу для микроконтроллера STM32F103RB, реализующую захват входного сигнала, настройку выходного сигнала согласна параметрам входного: длительность сигнала широтно-импульсной модуляции равна периоду входного сигнала, выдачу выходного сигнала широтно-импульсной модуляции с постоянной частотой.

Выполнить формирование входного сигнала через файл сценария с сигнальной функцией. Сигнальная функция должна обеспечивать изменение периода входного сигнала для значений: 2 мс, 4 мс, 6 мс, 12 мс, 20 мс. Смену периода выполнять через фиксированное количество импульсов - 20 и более.

Период таймера широтно-импульсной модуляции задать равным 32 мс.

Параметры программы выбираются согласно варианту и приведены в табл. 2.

Табл. 2 Варианты заданий к лабораторной работе №2

Номер	Тайме	р захвата с	игнала	Таймер ШИМ			
варианта	Номер	Номер	Значение	Номер	Номер	Значение	
	таймера	канала	отсчета	таймера	канала	отсчета	
1	TIM4	CH2	1 мкс	TIM3	CH1	10 мкс	
2	TIM4	CH4	50 мкс	TIM3	СН3	100 мкс	
3	TIM4	CH3	5 мкс	TIM3	CH1	20 мкс	
4	TIM4	CH1	10 мкс	TIM3	СНЗ	50 мкс	
5	TIM3	CH4	1 мкс	TIM2	CH1	10 мкс	
6	TIM3	СНЗ	10 мкс	TIM2	CH2	100 мкс	
7	TIM3	CH2	1 мкс	TIM2	СНЗ	10 мкс	
8	TIM3	CH1	5 мкс	TIM2	CH4	100 мкс	
9	TIM4	CH1	10 мкс	TIM2	CH1	100 мкс	
10	TIM4	CH2	5 мкс	TIM2	CH2	10 мкс	
11	TIM4	СНЗ	1 мкс	TIM2	CH1	2 мкс	
12	TIM4	CH4	20 мкс	TIM2	CH2	50 мкс	
13	TIM3	CH1	2 мкс	TIM4	CH1	10 мкс	
14	TIM3	CH2	20 мкс	TIM4	CH2	100 мкс	
15	TIM3	CH2	10 мкс	TIM4	СНЗ	100 мкс	
16	TIM3	CH1	1 мкс	TIM4	CH4	5 мкс	
17	TIM2	CH1	1 мкс	TIM3	CH1	10 мкс	
18	TIM2	CH2	1 мкс	TIM3	СНЗ	2 мкс	
19	TIM2	СНЗ	50 мкс	TIM3	CH1	100 мкс	
20	TIM2	CH4	10 мкс	TIM3	СНЗ	20 мкс	

4 Порядок выполнения работы

- 4.1 Получить вариант задания у преподавателя.
- 4.2 Рассчитать значение предделителя каждого таймера.

- 4.3 Создать проект в среде *Keil uVision5* для микроконтроллера *STM32F103RB*.
 - 4.4 Выбрать программные компоненты:
 - CMSIS/Core;
 - Device/Startup;
 - Device/StdPeriph Drivers/Framework;
 - Device/StdPeriph Drivers/GPIO;
 - Device/StdPeriph Drivers/RCC;
 - Device/StdPeriph Drivers/TIM.
 - 4.5 Выполнить настройку режима отладки для проекта.
 - 4.6 Разработать файл сценария.
 - 4.7 Разработать программу согласно варианту задания, реализующую:
 - инициализацию портов ввода-вывода;
 - инициализацию таймера в режиме захвата сигнала;
 - инициализацию таймера в режиме широтно-импульсной модуляции;
 - обработку прерываний таймеров.
- 4.8 Выполнить симуляцию разработанной программы с использованием функций отладки. Зафиксировать параметры обрабатываемых и формируемых сигналов.
- 4.9 Рассчитать коэффициент заполнения по полученным сигналам широтно-импульсной модуляции.
 - 4.10 Сделать выводы по проделанной работе и оформить отчет.

5 Содержание отчета

Отчет по результатам работы должен включать:

- используемые периферийные модули микроконтроллера;
- словесное описание алгоритма работы разработанной программы;
- расчет значения предделителя каждого таймера;
- текст файла сценария имитации входного сигнала;

- текст разработанной программы;
- результаты работы разработанной программы в режиме отладки в симуляторе с временными характеристиками сигналов;
- расчет коэффициентов заполнения для полученных сигналов широтно-импульсной модуляции.

6 Контрольные вопросы

- 1. Основные виды таймеров в микроконтроллерах STM32?
- 2. Назначение предделителя таймера?
- 3. Режимы работы таймеров общего назначения?
- 4. Назначение и принцип работы режима захвата сигнала таймера?
- 5. Назначение и принцип работы режима широтно-импульсной модуляции таймера?
- 6. Как определить коэффициент заполнения для сигнала широтно-импульсной модуляции?