import pandas as pd

 $\verb|path="C:\TANUJA HARISH\Desktop\ML and DL Summer| \\$

Internship\\diabetes.csv"

dataset=pd.read_csv(path)

dataset.head()

Out[11]:

	Pregna ncies	Glucose	BloodPr essure	SkinThi ckness	Insulin	ВМІ	Diabete sPedigr eeFunct ion	Age	Outcom e	
0	6	148	72	35	0	33.6	0.627	50	1	
1	1	85	66	29	0	26.6	0.351	31	0	
2	8	183	64	0	0	23.3	0.672	32	1	
3	1	89	66	23	94	28.1	0.167	21	0	
4	0	137	40	35	168	43.1	2.288	33	1	

In [12]:

```
(768, 9)
```

In [13]:

```
import numpy as np
x=np.array(dataset.iloc[:,0:8])
y=np.array(dataset[["Outcome"]])
print(x.shape)
print(y.shape)
(768, 8)
(768, 1)
```

In [14]:

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_norm=sc.fit_transform(x)
print(x_norm.shape)
```

(768, 8)

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x_norm,y,test_size=0.2)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(614, 8)
(614, 8)
(614, 1)
```

In [16]:

```
from sklearn.neural_network import MLPClassifier
mlpclassifier=MLPClassifier(hidden_layer_sizes=(5), max_iter=500, activation=
"tanh", solver="sgd", random_state=42)
mlpclassifier.fit(x_train, y_train)
```

C:\Users\TANUJA

(154, 1)

HARISH\anaconda3\lib\site-packages\sklearn\neural_network_multilayer_perceptr on.py:1109: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example

```
using ravel().
 y = column or 1d(y, warn=True)
                                              Out[16]:
MLPClassifier(activation='tanh', hidden_layer_sizes=5, max_iter=500,
         random state=42, solver='sgd')
                                               In [17]:
y_pred=mlpclassifier.predict(x_test)
print(y_pred)
0 1 0 0 0 1]
                                               In [18]:
from sklearn.metrics import
classification_report,confusion_matrix,accuracy_score
cm=np.array(confusion_matrix(y_test,y_pred,labels=[0,1]))
print(cm)
confusion=pd.DataFrame(cm,index=["Diabetics","No
Diabetics"],columns=["Diabetics","No Diabetics"])
print(confusion)
```

print(classification_report(y_test,y_pred,labels=[0,1]))
acc=accuracy_score(y_test,y_pred)
print(acc)

[[87 11] [27 29]]

	Diabetics	No Diabet	ics	
Diabetics	87		11	
No Diabetics	27		29	
	precision	recall	f1-score	support
0	0.76	0.89	0.82	98
1	0.72	0.52	0.60	56
accuracy			0.75	154
macro avg	0.74	0.70	0.71	154
weighted avg	0.75	0.75	0.74	154

0.7532467532467533

In []: