§1. Analyse combinatoire Solutions du TD no. 1

1. (a)
$$A_{26}^6 = \frac{26!}{20!} = 165765600$$

(b)
$$A_{26}^4 = \frac{26!}{22!} = 358\,800$$

(c)
$$26^4$$

2.
$$2 \times \binom{8}{4} = 140$$

3.
$$5! = 120$$

4.
$$3! \times 4! = 144$$

5. Il y a $10 \times 9 \times 8 = 720$ boules avec des numéros différents. Chaque triple de numéros peuvent être disposés en 3! = 6 façons, et une seule de ces façons est dans l'ordre croissant. Ainsi, le nombre total de boules dans l'ordre croissant est 720/6 = 120.

6.
$$A_{365}^{20} = 365 \times 364 \times \cdots \times 346$$

7. (a)
$$\binom{14}{2} = 1001$$

(b)
$$\binom{6}{2}\binom{8}{2} = 420$$

8. (a)
$$26^2 \times 10^5$$

(b)
$$A_{26}^2 \times A_{10}^5 = 19656000$$

9. (a)
$$4! = 24$$

(b)
$$2! \times 2! = 4$$

10.
$$4! \times 3! \times 3! \times 3! = 5184$$

11. Supposons qu'on a 3 garçons et 3 filles.

(a)
$$6! = 720$$

(b)
$$3! \times 3! \times 2! = 72$$

(c)
$$3! \times 4! = 144$$

(d)
$$3 \times 3 \times 2 \times 2 \times 2 = 72$$

12. (a)
$$5! = 120$$

(b)
$$\frac{7!}{4} = 1260$$

(b)
$$\frac{7!}{4} = 1260$$
 (c) $\frac{11!}{4! \times 4! \times 2} = 34650$ (d) $\frac{7!}{4} = 1260$

(d)
$$\frac{7!}{4} = 1260$$

13. Un enfant possède 12 cahiers: 6 noirs, 4 rouges, 1 blanc et 1 bleu.

(a)
$$\frac{12!}{6!4!1!1!} = 27720$$

(b)
$$\frac{7!}{4!1!1!1!} = 210$$

14.
$$\binom{10}{5} \binom{5}{2} \binom{3}{3} = 2520$$

15.
$$\frac{10!}{5!5!2!} = 126$$

(b)
$$2 \times 7!$$

(c)
$$2 \times (4!)^2$$

(d)
$$5! \times 4!$$

(e)
$$4! \times (2)^4$$

17. (a)
$$\binom{2}{0} \binom{6}{5} + \binom{2}{1} \binom{6}{4} = 36$$

(b)
$$\binom{2}{0} \binom{6}{5} + \binom{2}{2} \binom{6}{3} = 26$$

18.
$$(3x^2+y)^5 = 243x^{10} + 405x^8y + 270x^6y^2 + 90x^4y^3 + 15x^2y^4 + y^5$$

19.
$$\binom{12}{3}\binom{9}{4}\binom{5}{5} = 27720$$

20. (a)
$$4^8$$

(b)
$$\binom{8}{2} \binom{6}{2} \binom{4}{2} \binom{2}{2} = 2550$$

21.
$$\binom{5}{2}\binom{6}{2}\binom{4}{3} = 600$$

22. (a)
$$\binom{10}{7} = 120$$

(b)
$$\binom{5}{3}\binom{5}{4} + \binom{5}{4}\binom{5}{3} + \binom{5}{5}\binom{5}{2} = 110$$

23. (a)
$$\binom{12}{4}$$

(b)
$$\binom{3}{1}\binom{3}{3} + \binom{3}{2}\binom{9}{2} + \binom{3}{3}\binom{9}{1}$$

(c)
$$\binom{3}{2} \binom{9}{2}$$

24. (a)
$$\binom{6}{2} + \binom{7}{2} + \binom{4}{2} = 42$$

(b)
$$6 \cdot 7 + 6 \cdot 4 + 7 \cdot 4 = 94$$

25. Montrer les identités suivantes:

(a)
$$\binom{n+m}{r} = \binom{n}{0} \binom{m}{r} + \binom{n}{1} \binom{m}{r-1} + \dots + \binom{n}{r} \binom{m}{0}$$

Sì on a m hommes et n femmes, de combien de façons peut choisir un groupe de r personnes parmi les n+m.

(b)
$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}$$
. On utilise (a) avec $m = n$ ainsi que l'identité $\binom{n}{k} = \binom{n}{n-k}$.

(c)
$$\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}$$
 .On pose $f(x) = (1+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k$, puis on calcule $f'(1)$