Probabilistic Approach to Diffusion-mediated Surface Phenomena

Director: Denis GREBENKOV Laboratoire PMC, Ecole Polytechnique

> Yilin YE May 10, 2023

Academic Training

 Undergraduate, Chemistry. Xiamen University, Xiamen, China 	2015.9 - 2019.6 92.34 /100.
• Diplôme de l'ENS. École Normale Supérieure, Paris, France	2019.9 - 2023.7
Research Assitant. Hunan University. Changsha. China	2020.9 - 2021.8

Master 1, Chemistry.
 École Normale Supérieure, Paris, France
 2021.9 - 2022.7
 15.60/20.

• Master 2, Physics, ICFP. 2022.9 - 2023.7 École Normale Supérieure, Paris, France (1st semester) 13.70/20, (2nd semester, without internship) 15.00/20.

• Theoretical Chemistry: Statistical Mechanics applied to Chemistry

Courses - M1

(Damien Laage & Guilluam Stirnemann)	16.00 /20.
 Bio-Inorganic Chemistry (Clotilde Policar) 	15.90 /20.
 Biophysical Chemistry of the Living Matter (Ludovic Jullien) 	14.00 /20.
Heterogenous Catalysis (Clément Guibert)	13.80 /20. et al.
 Introduction of QFT (Adel Bilal & Guilhem Semerjian) 	13.50 /20.
 Introduction of General Relativity (Marios Petropoulos) 	13.40 /20.

• Research Internship L3S2 (Jérémie Caillat)

Simulation of Vibrational ICD on Model Systems with Reduced Dimensions

Jun.~Jul. 2020

Juli.∼Jul. 2020

Research Internship M1S2 (Thomas Salez)

Brownian Motion near the Soft Surface

17.40/20. Feb.~Jul. 2022

Courses - M2

 Physics of Fluids and Nonlinear Physics (Arnaud Antkowiak & Camille Duprat) 	14.86 /20.
• Statistical Field Theory and applications (Adam Nahum & Xiangyu Cao)	14.44 /20.
 Computational and Data-Driven Physics (Alberto Rosso & Rémi Monasson) 	13.70 /20.
 Soft Matter Physics (Anke Lindner & Vincent Démery) 	13.00 /20.
 Advanced Statistical Physics for soft matter (Christophe Texier & Jean-Noël Aqua) 	12.50 /20.
Machine Learning (Marc Lelarge)	16.00 /20.
Advanced Topics in Markov-chain Monte Carlo (Werner Krauth)	15.00 /20.
 Statistical Physics 2: Disordered Systems and Interdisciplinary Application (Francesco Zamponi & Gregory Schehr) 	ns 15.00 /20.
 Conformal Field Theory (Benoît Estienne & Yacine Ikhlef) 	14.00 /20.

ElastoHydroDynamics interactions & Modified fluctuation-dissipation relation

Equations of motion (EOM) are non-linear coupled.

$$\ddot{\mathbf{X}_{\mathbf{G}}} + \frac{2\varepsilon\xi}{3} \frac{\dot{\mathbf{X}_{\mathbf{G}}}}{\sqrt{\Delta}} + \frac{\kappa\varepsilon\xi}{6} \left[\frac{19}{4} \frac{\dot{\Delta}\dot{\mathbf{X}_{\mathbf{G}}}}{\Delta^{7/2}} - \frac{\dot{\Delta}\dot{\Theta}}{\Delta^{7/2}} + \frac{1}{2} \frac{\ddot{\Theta} - \ddot{\mathbf{X}_{\mathbf{G}}}}{\Delta^{5/2}} \right] = 0$$

T. Salez, and L. Mahadevan, J. Fluid Mech. 2015, 779, 181-196

Add random force into EOM for modified fluctuation-dissipation relation.

$$\dot{v} + f(\Delta) \ v + \kappa \ g(\dot{v}, v, \Delta) = 0 \qquad \rightarrow \qquad \dot{v} = -\gamma_{\rm eff} \ v + \delta F/M$$

$$v_i = v_{i0} + \kappa \cdot v_{i1} \longrightarrow \langle v_{i0}v_{i1}\rangle (t, \kappa) \longrightarrow \\ \gamma_i = \gamma_{i0}(\Delta) + \kappa \cdot \gamma_{i1}(\Delta) \longrightarrow \text{noise correlator amplitude}$$

$$\delta F_i = \delta F_{i0} + \kappa \cdot \delta F_{i1} \longrightarrow \langle \delta F_{i0}\delta F_{i1}\rangle (\kappa)$$

$$\left| \langle \delta F_i(\tau_1) \delta F_i(\tau_2) \rangle \propto 2k_{\rm B} T \ m_i \ \gamma_{i0} \ \delta(\tau_1 - \tau_2) \cdot \left[1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \right] \right|$$

Numerical simulations with **fixed** height (Δ) - Effect of compliance ($\kappa \neq 0$)

Diffusion coefficient depends on vertical positions and soft wall modulus.

$$D(\kappa, \Delta) = D(0, \Delta) \left[1 - \kappa \cdot \frac{\gamma_{i1}(\Delta)}{\gamma_{i0}(\Delta)} \right]$$

How does the complicated environment affect diffusion-controlled reactions?

B. Augner, and D. Bothe. arXiv:1911.13030 (2019).

F. Zhao, et al. Small, 7(10), 1322-1337 (2011)

Geometry-adapted fast random walk

Find minimal radius & Diffuse uniformly

Thesis Project

$$\vec{x}_{k+1} = \vec{x}_k + \rho(\cos\theta, \sin\theta_k)$$

$$au=rac{\delta^2}{4D} \qquad \qquad t_{k+1}=t_k+ au \ \ell_{t_{k+1}}=\ell_{t_k}+\sqrt{rac{\pi}{2}D au}$$

- Local Time ℓ : How much time would one particle move near the complex surface?
- "Target-finding" diffusion near the surface;
- Collective effect of multiple independently diffusing particles;

D. Grebenkov, Y. YE

Y. Zhou, et al. Comm. Math. Sci., 15, 237-259 (2017).

Y. Lanoiselée, et al. Nature Commun. 9, 4398 (2018).

Programme

- Efficient numerical methods towards different cases:
- Diffusion on the surface & Local residence time;
- Reversible reactions controlled by diffusion on the surface;
- From 2D model to 3D model;

Thanks for your attention!

