Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Department of Computer Science and Engineering

Continuous Assessment Test - 4 Question Paper

SET III

Degree & Branch		BE (CSE)		Semester	VI
Subject Code & Name		UCS1602 Compiler Design		Regulation: 2018	
Sections		A, B &C	Academic Year	2020-2021	
Date:	30.04.202 1	Session: AN	Time: 1.15 pm – 3.15 pm	Max. mark	s: 50

Optimized three address code generation

K Level	Question	CO	
K3	Assume the operators are having the following Precedence and Associativity		
	Operators		
	+, -, * , / and ^		
	Precedence → ^ is lesser priority than + , -, *, /		
	Associativity \rightarrow + and - \rightarrow left , * and / \rightarrow right		
	Develop a front end of a compiler by generating the Intermediate code in the		
	form of Three Address Code sequence for the sample input program written		
	using assignment statements (involving ^ operator) . Further, optimize the		
	generated intermediate code using constant folding. Also develop a back end		
	of the compiler for an assignment statement. Following is the sample input		
	INPUT		
	x=10 * 20.5		
	x=x+5		
	y=a+b*c ^d		
	(1) Write the LEX specification to identify the tokens. (5)	CO1	
	(2) Write the YACC specification to check the syntax of the input source		

code is correct or not (10)	CO2
(3) Write the SDT in YACC to generate three address code (10)	
(4) Implement the code optimization segment in YACC (10)	
(5) Implement the code generation in YACC (5)	
(6) Integrate all the phases and generate optimized three address code for	CO4
the given source code. (15)	

Prepared By B. Bharathi D. Thenmozhi B. Prabavathy	Reviewed By	Approved By
Course Coordinator	PAC Team	HOD