

Computer Vision – Lecture 12

Deep Learning III

17.06.2019

Bastian Leibe
Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition & Categorization
 - Sliding Window based Object Detection
- Local Features & Matching
- Deep Learning
 - Convolutional Neural Networks (CNNs)
 - Deep Learning Background
 - CNNs for Object Detection
 - CNNs for Semantic Segmentation
 - CNNs for Matching
- 3D Reconstruction

Topics of This Lecture

- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet
 - ResNet
- CNNs for Object Detection
 - > R-CNN
 - Fast R-CNN
 - Faster R-CNN
 - Mask R-CNN
 - > YOLO / SSD

CNN Architectures: LeNet (1998)

- Early convolutional architecture
 - 2 Convolutional layers, 2 pooling layers
 - Fully-connected NN layers for classification
 - Successfully used for handwritten digit recognition (MNIST)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.

ImageNet Challenge 2012

ImageNet

- ~14M labeled internet images
- 20k classes
- Human labels via Amazon Mechanical Turk

Challenge (ILSVRC)

- 1.2 million training images
- > 1000 classes
- Goal: Predict ground-truth class within top-5 responses

[Deng et al., CVPR'09]

CNN Architectures: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10⁶ images instead of 10³)
 - GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional Neural Networks</u>, NIPS 2012.

ILSVRC 2012 Results

- AlexNet almost halved the error rate
 - > 16.4% error (top-5) vs. 26.2% for the next best approach
 - ⇒ A revolution in Computer Vision
 - Acquired by Google in Jan '13, deployed in Google+ in May '13

CNN Architectures: VGGNet (2014/15)

K. Simonyan, A. Zisserman, <u>Very Deep Convolutional Networks for Large-Scale Image Recognition</u>, ICLR 2015

RWTHAACHEN UNIVERSITY

CNN Architectures: VGGNet (2014/15)

Main ideas

- Deeper network
- Stacked convolutional layers with smaller filters (+ nonlinearity)
- Detailed evaluation of all components

Results

- Improved ILSVRC top-5 error rate to 6.7%.
- 138M parameters (VGG16), most of those in the FC layers (102M)

ConvNet Configuration							
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	input (224 × 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
	maxpool						
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
maxpool							
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
	maxpool						
20.000				iviairii	/ used		
FC-4096							
FC-1000							
soft-max							

Comparison: AlexNet vs. VGGNet

Receptive fields in the first layer

AlexNet: 11×11, stride 4

Zeiler & Fergus: 7×7, stride 2

VGGNet: 3×3, stride 1

Why that?

- If you stack a 3×3 layer on top of another 3×3 layer, you effectively get a 5×5 receptive field.
- With three 3×3 layers, the receptive field is already 7×7 .
- ▶ But much fewer parameters: $3.3^2 = 27$ instead of $7^2 = 49$.
- In addition, non-linearities in-between 3×3 layers for additional discriminativity.

CNN Architectures: GoogLeNet (2014)

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Main ideas

- "Inception" module as modular component
- Learns filters at several scales within each module
- 1x1 convolutions ("bottleneck layers") for dimensionality reduction

C. Szegedy, W. Liu, Y. Jia, et al, <u>Going Deeper with Convolutions</u>, arXiv:1409.4842, 2014.

GoogLeNet Visualization

- No FC layers
- Only 5M parameters
- ILSVRC'14 winner with6.7% top-5 error

Auxiliary classification outputs for training the lower layers (deprecated)

Results on ILSVRC

Method	top 1 vol arror (%)	top-5 val. error (%)	top 5 tost error (%)
	top-1 val. error (%)	top-3 val. error (%)	top-3 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

- VGGNet and GoogLeNet perform at similar level
 - Comparison: human performance ~5% [Karpathy]

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

Residual Networks

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

RWTHAACHEN UNIVERSITY

Residual Networks

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

- Core component
 - Skip connections bypassing each layer
 - Better propagation of gradients to the deeper layers

17

Slide credit: FeiFei Li

ILSRVC Winners

PASCAL VOC Object Detection Performance

PASCAL VOC 2007 Object Detection mAP (%)

Comparing Complexity

A. Canziano, A. Paszke, E. Culurcello, <u>An Analysis of Deep Neural Network Models</u> <u>for Practical Applications</u>, arXiv 2017.

The Learned Features are Generic

state of the art level (pre-CNN)

- Experiment: feature transfer
 - Train AlexNet-like network on ImageNet
 - Chop off last layer and train classification layer on CalTech256
 - ⇒ State of the art accuracy already with only 6 training images!

Transfer Learning with CNNs

 Train on ImageNet

Transfer Learning with CNNs

 Train on ImageNet

3. If you have medium sized dataset, "finetune" instead: use the old weights as initialization, train the full network or only some of the higher layers.

Retrain bigger portion of the network

FC-4096
FC-4096

FC-1000

softmax

Topics of This Lecture

- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet
 - ResNet
- CNNs for Object Detection
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN
 - Mask R-CNN
 - > YOLO / SSD

Object Detection: R-CNN

R-CNN: Regions with CNN features

warped region

1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

aeroplane? no.

person? yes.

Results on PASCAL VOC Detection benchmark

Pre-CNN state of the art: 35.1% mAP [Uijlings et al., 2013]

33.4% mAP DPM

> R-CNN: 53.7% mAP

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR 2014

Classification

- Linear model with class-dependent weights
 - Linear SVM

$$f_c(x_{fc7}) = w_c^T x_{fc7}$$

- where
 - x_{fc7} = features from the network (fully-connected layer 7)
 - -c = object class

Bounding Box Regressors

- Prediction of the 2D box
 - Necessary, since the proposal region might not fully coincide with the (annotated) object bounding box
 - > Perform regression for location (x^*,y^*) , width w^* and height h^*

$$\frac{x^* - x}{w} = w_{c,x}^T x_{pool5}$$

$$\frac{y^* - y}{h} = w_{c,y}^T x_{pool5}$$

$$\ln \frac{w^*}{w} = w_{c,w}^T x_{pool5}$$

$$\ln \frac{h^*}{h} = w_{c,w}^T x_{pool5}$$

Where x_{pool5} are the features from the pool5 layer of the network.

Problems with R-CNN

- Ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)
- Training (3 days) and testing (47s per image) is slow.
 - Many separate applications of region CNNs
- Takes a lot of disk space
 - Need to store all precomputed CNN features for training the classifiers
 - Easily 200GB of data

Fast R-CNN

Forward Pass

Fast R-CNN

Forward Pass

Fast R-CNN

Forward Pass

Fast R-CNN Training

Backward Pass

Region Proposal Networks (RPN)

Idea

- Remove dependence on external region proposal algorithm.
- Instead, infer region proposals from same CNN.
- ⇒ Feature sharing
- ⇒ Object detection in a single pass becomes possible.
- Faster R-CNN = Fast R-CNN + RPN

Faster R-CNN

- One network, four losses
 - Joint training

43

Faster R-CNN (based on ResNets)

K. He, X. Zhang, S. Ren, J. Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016.

B. Leibe

45

Faster R-CNN (based on ResNets)

K. He, X. Zhang, S. Ren, J. Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016.

B. Leibe

Object Detection Performance

Runtime Comparison

R-CNN Test-Time Speed

Most Recent Version: Mask R-CNN

K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, arXiv 1703.06870.

48

Mask R-CNN Results

Detection + Instance segmentation

Detection + Pose estimation

Figure credit: K. He, G. Gkioxari, P. Dollar, R. Girshick

RWTHAACHEN UNIVERSITY

YOLO / SSD

- Idea: Directly go from image to detection scores
- Within each grid cell
 - Start from a set of anchor boxes
 - Regress from each of the B anchor boxes to a final box
 - Predict scores for each of C classes (including background)

50

YOLO-v3 Results

J. Redmon, S. Divvala, R. Girshick, A. Farhadi, <u>You Only Look Once: Unified</u>, <u>Real-Time Object Detection</u>, CVPR 2016.

Summary

- Object Detection
 - Find a variable number of objects by classifying image regions
 - Before CNNs: dense multiscale sliding window (HoG, DPM)
- Region proposal based detectors
 - Idea: Avoid dense sliding window with region proposals
 - R-CNN: Selective Search + CNN classification / regression
 - Fast R-CNN: Swap order of convolutions and region extraction
 - Faster R-CNN: Compute region proposals within the network
 - Mask R-CNN: Detection + instance segmentation + pose estimation
- Anchor box based detectors
 - Idea: Perform detection in a single step using grid of anchor boxes
 - YOLO, YOLO-v2, YOLO-v3
 - SSD

References and Further Reading

LeNet

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based</u> <u>learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.

AlexNet

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification</u> with <u>Deep Convolutional Neural Networks</u>, NIPS 2012.

VGGNet

K. Simonyan, A. Zisserman, <u>Very Deep Convolutional Networks for Large-Scale Image Recognition</u>, ICLR 2015

GoogLeNet

C. Szegedy, W. Liu, Y. Jia, et al, <u>Going Deeper with Convolutions</u>, arXiv:1409.4842, 2014.

References and Further Reading

ResNet

K. He, X. Zhang, S. Ren, J. Sun, <u>Deep Residual Learning for Image</u> <u>Recognition</u>, CVPR 2016.

References: Computer Vision Tasks

Object Detection

- R. Girshick, J. Donahue, T. Darrell, J. Malik, <u>Rich Feature</u> <u>Hierarchies for Accurate Object Detection and Semantic</u> <u>Segmentation</u>, CVPR 2014.
- S. Ren, K. He, R. Girshick, J. Sun, <u>Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks</u>, NIPS 2015.
- K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN, ICCV 2017.
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once:
 Unified, Real-Time Object Detection, CVPR 2016
- W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C-Y. Fu, A.C. Berg, SSD: Single Shot Multi Box Detector, ECCV 2016.