

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

Priority Paper
Steptoe
6-11-02

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

02000292.9

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office
Le Président de l'Office européen des brevets
p.o.

R C van Dijk

DEN HAAG, DEN
THE HAGUE, 12/02/02
LA HAYE, LE

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

Blatt 2 der Bescheinigung
Sheet 2 of the certificate
Page 2 de l'attestation

Anmeldung Nr.:
Application no.: **02000292.9**
Demande n°:

Anmeldetag:
Date of filing: **16/01/02**
Date de dépôt:

Anmelder:
Applicant(s):
Demandeur(s):
Damasko, Konrad
93092 Barbing
GERMANY

Bezeichnung der Erfindung:
Title of the invention:
Titre de l'invention:
Uhrwerk

In Anspruch genommene Priorität(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat:	DE	Tag:	15/02/01	Aktenzeichen:	DEA	10107499
State:	DE	Date:	08/03/01	File no.	DEA	10111150
Pays:	DE		03/04/01	Numéro de dépôt:	DEA	10116511

Internationale Patentklassifikation:
International Patent classification:
Classification internationale des brevets:

/

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE/TR
Etats contractants désignés lors du dépôt:

Bemerkungen:
Remarks:
Remarques:

Uhrwerk

- Die Erfindung bezieht sich auf ein mechanisches Uhrwerk gemäß Oberbegriff Patentanspruch 1 oder 11 und dabei bevorzugt, aber nicht ausschließlich auf ein
5 Uhrwerk für Taschen- und Armbanduhren.

Uhrwerke sind in zahlreichen Ausführungen bekannt. Zunehmender Beliebtheit erfreuen sich seit einigen Jahren wieder mechanische Uhrwerke, wobei insbesondere bei den Uhrwerken für Taschenuhren und Armbanduhren dort, wo ein niedriger
10 Reibungskoeffizient und auch ein Abrieb vermieden werden muß, d.h. insbesondere an den Lagern der Wellen sowie an Bereichen der Hemmung, d.h. an mit dem Ankerrad zusammenwirkenden Bereichen des Ankers und an mit dem Anker zusammenwirkenden Bereichen des Schwingungssystems (Unruh) synthetische Rubine verwenden, und zwar speziell als Lager für die Wellen, als Ankerpaletten oder
15 Ankersteine sowie als Hebelsteine an der Unruhwelle. Dies bedeutet zusätzlich, aufwendige Montageschritte.

- Weiterhin ist es speziell bei mechanischen Uhrwerken erforderlich, daß diese in bestimmten Zeitabschnitten überholt werden müssen, um die Ganggenauigkeit
20 wiederherzustellen, d.h. insbesondere müssen Öl- und Abriebrückstände ausgewaschen und die Lager neu geölt werden, was in der Regel auch ein zumindest teilweises Zerlegen des Uhrwerkes und ein anschließendes Neueinregulieren des Gangs erforderlich macht.
- 25 Aufgabe der Erfindung ist es, ein Uhrwerk aufzuzeigen, welches sich durch eine hohe Ganggenauigkeit auszeichnet und bei dem die bisher übliche Wartung praktisch nicht oder aber nur in sehr großen Zeitabständen erforderlich ist. Zur Lösung dieser Aufgabe ist ein Uhrwerk entsprechend dem Patentanspruch 1 oder 11 ausgebildet.
- 30 Unter „DLC-Beschichtung“ ist im Sinne der Erfindung eine Diamant-Like-Carbon-Hartstoffbeschichtung zu verstehen, die basierend auf dem Kohlenstoffelement eine

diamantartige Schicht mit hoher Mikrohärte und mit einem äußerst niedrigen Reibungskoeffizienten darstellt. Die Dicke dieser Beschichtung liegt beispielsweise im Bereich zwischen 2 bis 4μ . Die Härte einer solchen DLC-Schicht liegt in der Größenordnung von 2500 HV oder höher. Die Herstellung erfolgt durch Plasma

- 5 gestützte chemische Gasphasenabscheidung, beispielsweise bei einer Beschichtungstemperatur von ca. 150 - 220°C. Beim Abscheiden der Beschichtung können auch Silizium und Sauerstoff-Atome zugegeben werden, wodurch eine noch weiter reduzierte Reibung erhalten wird. Eine derartige DLC-Beschichtung und deren Herstellung ist beispielsweise in der

10 WO 98/59089 beschrieben.

„Funktionselemente“ im Sinne der Erfindung sind die Elemente des Schwingsystems (Unruh) und die Elemente der Hemmung insbesondere der Anker und das Hemmräder.

15 „Weitere Funktionselemente“ im Sinne der Erfindung sind auch die Räder des Räderwerks, die Zapfen und Lager des Uhrwerks.

Soweit es sich bei den DLC beschichteten Funktionselementen, Platinen oder Platinenelementen um solche aus Messing handelt, kann es zweckmäßig sein, auf die jeweilige Oberfläche zunächst eine dünne Schicht aus einem härteren Metall,

20 beispielsweise eine Chromschicht aufzubringen, um so eine bessere Haftung der DLC-Schicht zu erreichen.

Bei Funktionselementen, Platinen oder Platinenelementen usw. aus Stahl, insbesondere Edelstahl werden diese vor der DLC-Beschichtung vorzugsweise einer

25 Wärmebehandlung unterzogen, z.B. Vakuumhärten oder Plasma-Nitrieren.

Durch die Erfindung kann auf die bisher üblichen Einpreß-Lager aus synthetischen Rubin verzichtet werden. Die Lager sind dann beispielsweise direkt in die Platine und die Platinenelemente (Brücken) eingearbeitet und von DLC beschichteten

30 Lagerbohrungen oder aber bevorzugt von eingesetzten Metall-Lagern gebildet, die dann zumindest an ihren Lagerflächen ebenfalls DLC beschichtet sind.

Bei der Erfindung sind weiterhin vorzugsweise auch Zahnräder und Triebe samt Lagerzapfen DLC beschichtet, so daß sich auch hierdurch gegenüber herkömmlichen Uhrwerken eine wesentliche Reduzierung der Reibung des gesamten Räderwerks ergibt.

Bei dem erfindungsgemäßen Uhrwerk besteht weiterhin die Möglichkeit, speziell die Lagerzapfen der Unruhwelle sowie auch der Ankerwelle im Vergleich zu den bekannten Uhrwerken mit vergrößertem Durchmesser auszubilden, da sich durch die 10 DLC-Beschichtung dieser Lagerzapfen und der zugehörigen Flächen der Lager eine sehr niedrige Reibung ergibt, die ohne Beeinträchtigung der Funktion und Ganggenauigkeit eine Vergrößerung der Lagerzapfendurchmesser ermöglicht. Durch die Vergrößerung der Lagerzapfendurchmesser ergibt sich eine verbesserte Stoßsicherheit sowie eventuell auch die Möglichkeit, auf die bei herkömmlichen 15 Uhrwerken zur Stoßsicherung vorgesehenen Elemente (gefederte Lagerung der Unruhwelle) ganz oder teilweise zu verzichten.

Ein weiterer Vorteil besteht bei einem mechanischen Uhrwerk darin, daß die von synthetischen Steinen (Rubinen) gebildete Ankerpaletten oder Ankerstifte usw. nicht 20 erforderlich sind und damit auch die zum Herstellen dieser Paletten, Steine usw. und deren Montage bisher erforderlichen Arbeitsgänge entfallen können.

Die wesentlichen Vorteile der Erfindung lassen sich also, wie folgt, zusammenfassen:

- Synthetische Einpreßlager, Paletten, Ankersteine, Hebelsteine usw. aus Rubin sind 25 nicht mehr erforderlich.
- Das Uhrwerk bedarf keiner Schmierung, so daß auch die Gefahr eines Verhärtens von Ölen und eine Beeinträchtigung der Ganggenauigkeit hierdurch nicht besteht.
- Durch eine Verringerung der Reibung im gesamten System wird eine absolut stabile Ganggenauigkeit über eine lange Zeit erreicht.
- 30 - Eine Wartung des Uhrwerkes ist praktisch nicht mehr erforderlich, allenfalls erst nach einer Vielzahl von Jahren, beispielsweise nach fünf Jahren.

- Durch die hohe Oberflächenhärte wird ein mechanischer Abrieb weitestgehend vermieden. Auch dies trägt zur Erhöhung der Langzeit-Gangstabilität sowie zur Verlängerung der wartungsfreien Zeit bei.
 - Durch Vereinfachung der konstruktiven Ausbildung des Uhrwerks ergibt sich eine wesentliche Reduzierung der Fertigungskosten.
 - Durch die DLC-Beschichtung wird weiterhin auch ein Korrosionsschutz erreicht und damit Beeinträchtigungen der Ganggenauigkeit sowie auch des Zustandes des Uhrwerks insgesamt selbst bei eingedrungener Feuchtigkeit vermieden.
- 10 Bei einer bevorzugten Ausführung der Erfindung sind die miteinander zusammenwirkenden Flächen, beispielsweise die Lagerflächen und/oder die miteinander zusammenwirkenden Flächen im Bereich der Hemmung, beispielsweise im Bereich der Ankerpalette, so ausgeführt, daß eine dieser Flächen jeweils die DLC-Beschichtung aufweist und die andere der zusammenwirkenden Flächen von
- 15 Siliziumcarbid (SiC) gebildet ist. So sind beispielweise die Lager der Wellen des Uhrwerks von Lagersteinen aus Siliziumcarbid gebildet, während die mit diesen Lagersteinen zusammenwirkenden Flächen der Wellen die DLC-Beschichtung aufweist. In ähnlicher Weise sind dann beispielsweise die Ankerpaletten aus Siliziumcarbid gefertigt, während die mit diesen Paletten zusammenwirkenden Flächen
- 20 des Anker- oder Hemmrades 1 DLC beschichtet sind. Es hat sich gezeigt, daß sich durch die Kombination DLC-Beschichtung und Siliziumcarbid extrem niedrige Reibungskoeffizienten in der Größenordnung von 0,05 - 0,02 ergeben, und dies in sehr überraschender Weise, obwohl beispielsweise die Kombination Siliziumcarbid/Siliziumcarbid einen wesentlich höheren Reibungskoeffizienten aufweist
- 25 und Siliziumcarbid daher als Lagerstein bei mechanischen Uhren generell als ungeeignet anzusehen ist.
- Weitere Vorteile und Besonderheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung einer möglichen Ausführungsform des
- 30 erfindungsgemäßen Uhrwerks. Die Erfindung wird im Folgenden anhand der Figuren an einem Ausführungsbeispiel näher erläutert. Es zeigen:

Fig. 1 in vereinfachter Funktions-Darstellung die Anker-Hemmung einer mechanischen Taschen- oder Armbanduhr gemäß der Erfindung;

Fig. 2 in vereinfachter schematischer Darstellung einen Teilschnitt durch die

Werkplatine sowie durch eine an dieser Platine vorgesehene Brücke, und zwar im Bereich der Unruh;

Fig. 3 und 4 in vergrößerter Teildarstellung als weitere mögliche Ausführungsformen der Erfindung die Lagerung der Unruh-Welle bzw. des Unruh-Wellenzapfens.

- 10 Die Figur 1 zeigt als mögliche Ausführungsform die Anker-Hemmung eines ansonsten in dieser Figur nicht näher dargestellten mechanischen Uhrwerks einer Taschen- oder Armbanduhr. Diese Hemmung besteht in an sich bekannter Weise aus dem mit dem restlichen Uhr- oder Räderwerk in antriebsmäßiger Verbindung stehenden Anker- oder Hemmrad 1, welches mittels seines Lagerzapfens 2 in der in der Figur 1 nicht
15 dargestellten Platine des Uhrwerkes gelagert ist und antriebsmäßig mit den übrigen, ebenfalls nicht dargestellten Funktionselementen des Uhrwerks verbunden ist, sowie aus dem Anker 3, der um seinen ebenfalls in der Platine gelagerten Lagerzapfen 4 schwenkbar ist, und zwar mit einer durch die Unruh 5 vorgegebenen Schwingungsfrequenz. Der Anker 3 wird hierfür mit seinem an dem Ankerarm 3' vorgeesehenen Gabelende 3'' mit einem an einer Hebelescheibe 6 der Unruhwelle 7 vorgeesehenen Mitnehmer 8 zusammen.

- Der Anker 3 besitzt weiterhin zwei mit dem Ankerrad 1 bzw. Mit den dortigen Zähnen 11 zusammenwirkende Paletten, nämlich die Eingangspalette 9 und die
25 Ausgangspalette 10. Die Besonderheit dieser Ankerhemmung besteht u.a. darin, daß der Anker 3 mit den zugehörigen Paletten 9 und 10 einstückig aus Metall, vorzugsweise gehärtet aus Edelstahl gefertigt ist, und zumindest an den mit den Zähnen 11 zusammenwirkenden Flächen der Paletten 9 und 10 DLC beschichtet ist, und daß das Hemmrad 1 zumindest an den mit den Paletten 9 und 10
30 zusammenwirkenden Zähnen 11 ebenfalls DLC beschichtet ist. Weiterhin ist der Anker 3 zumindest an seinem mit dem Mitnehmer 8 der Hebelescheibe 6

zusammenwirkenden Gabelende 3'' DLC beschichtet. Eine DLC-Beschichtung weist auch der von einem Stift aus Metall, beispielsweise aus Stahl gebildete Mitnehmer 8 auf.

- 5 Bei einer bevorzugten Ausführungsform der Erfindung sind ferner zumindest die Lagerzapfen 3 und 4 sowie die Unruhwelle 7 DLC beschichtet, wobei die zugehörigen Lager in der beispielsweise aus Stahl oder einem anderen geeigneten Metall gefertigten Platine im einfachsten Fall von einfachen Bohrungen gebildet und dann zumindest die die Lagerflächen bildenden Bereiche dieser Bohrungen DLC
10 beschichtet sind.

Durch diese Beschichtung ergeben sich extrem hohe Oberflächenhärten von ca. 2500 HV, so daß selbst ohne Schmierung ein merkbarer Verschleiß nicht auftritt. Speziell in Bezug auf die Ankerhemmung kann insbesondere auch auf die dort für die Paletten 9
15 und 10 sowie für den Mitnehmer 8 (Hebelstein) bisher üblichen synthetischen Rubine verzichtet werden, die einen zusätzlichen, aufwendigen Montageschritt erfordern. Der Anker 3 kann vielmehr einstückig mit den Paletten 7 aus Metall bzw. Stahl gefertigt werden. Weiterhin ist es auch möglich, den Mitnehmer 8 in besonders einfacher Weise aus Metall zu fertigen.

20 Die Figur 2 zeigt in vereinfachter Darstellung die an der Werkplatine 12 und einer weiteren Platine 13 (Brücke) gelagerte Unruh 5 mit der Unruhwelle 7. Wie in der Figur 2 dargestellt, sind die Werkplatine 12, die Brücke 13 sowie auch die Unruhwelle 7 jeweils auf der gesamten Oberfläche mit der DLC-Schicht 14 versehen, die sich auch
25 in die Lagerbohrungen 15 und 16 hineinerstreckt, welche für die Unruh-Welle 7 in der Platine 12 bzw. Brücke 13 vorgesehen sind. Da sowohl die Welle 7 als auch die von den Bohrungen 15 und 16 gebildeten Lagerflächen DLC beschichtet sind, ergibt sich weiterhin ein extrem niedriger Reibungskoeffizient, so daß der Unruhzapfen bzw. die Unruhwelle 7 im Vergleich zu bekannten Ausführungen auch im Bereich der Lager
30 stärker, beispielsweise mit einem Durchmesser von 0,2 mm anstelle des bisher üblichen Durchmessers von 0,1 mm ausgeführt werden kann. Hiermit ergibt sich auf

- jeden Fall eine verbesserte Stoßsicherheit, evtl. kann auch auf die bisher übliche Stoßsicherung durch die gefederte Lagerung der Unruhwelle 7 ganz verzichtet werden kann. Bevorzugt sind auch alle übrigen Wellen und Zapfen und die zugehörigen Lager des Uhrwerks DLC beschichtet, so daß auf die üblichen Lagersteine bzw. -rubine
- 5 verzichtet werden kann und hierdurch sich eine vereinfachte Herstellung bei gleichzeitiger Verringerung der Reibung im gesamten System und einer wesentlichen Verbesserung der Gangstabilität möglich ist, und zwar ohne eine Schmierung oder Nachschmierung der Lager.
- 10 Bevorzugt sind auch sämtliche Zahnräder zumindest an ihren Zähnen oder Zahnflanken mit der DLC-Beschichtung versehen, was ebenfalls u.a. zur Verringerung der Reibung, zur Erhöhung der Gangstabilität über eine lange Zeit sowie zur Vermeidung von Abrieb beiträgt.
- 15 Die DLC-Beschichtung hat aber weiterhin auch den Vorteil, daß sie einen sehr wirksamen Korrosionsschutz bildet, so daß auch Korrosionen an der Platine, an Wellen, an Zahnrädern sowie anderen Funktionselementen des Uhrwerks wirksam vermieden sind.
- 20 Mit 17 sind in der Figur 2 zwei Federn angedeutet, die zur Stoßsicherung dienen. Auch diese Federn 17 sind zumindest an ihrer der Welle 7 zugewandten Seite mit der DLC-Beschichtung versehen.
- Soweit für die vorbeschriebenen Elemente, beispielsweise für die Platine 12 und/oder
- 25 Brücke 13 oder für Zahnräder als Grundmaterial Messing verwendet ist, wird dieses vor der DLC-Beschichtung vorzugsweise mit einer Beschichtung aus einem härteren Metall, beispielsweise aus Chrom versehen. Bestehen Funktionselemente aus Stahl, beispielsweise Edelstahl, so erfolgt vor der DLC-Beschichtung vorzugsweise eine Wärmebehandlung, beispielsweise ein Vakuumhärteten und/oder Plasma-Nitrieren.
- 30

Vorstehend wurde davon ausgegangen, daß die Lagerbohrungen 15 und 16 direkt in der Platine 12 bzw. Brücke 13 vorgesehen sind. In der praktischen Ausbildung wird es aber zweckmäßig sein, diese Lagerbohrungen in Lagerbuchsen 15' bzw. 16' vorzusehen, die aus Edelstahl oder härtbarem Stahl, vorzugsweise aus plasma-nitrierbarem Stahl (z.B. Edelstahl 4301 nach DIN 1.4301) durch spanabhebende Bearbeitung gefertigt und nach dem Härteln dann ebenfalls mit der DLC-Schicht 14 speziell auch an den Lagerflächen versehen sind und die in die Brücke 13 bzw. in die Platine 12 eingepreßt sind. Die Lagerbuchsen 15' bzw. 16' können aber auch in Hartmetall gefertigt sein.

10

Die Erfindung wurde vorstehend an einem Ausführungsbeispiel beschrieben. Es versteht sich, daß zahlreiche Änderungen und Abwandlungen möglich sind, ohne daß dadurch der der Erfindung zugrundeliegende Erfindungsgedanke verlassen wird. So ist es beispielsweise auch möglich, die bisher insbesondere bei mechanischen Uhren üblichen Lager aus synthetischen Rubinen zumindest teilweise beizubehalten und die mit diesen Lagern zusammenwirkenden Gegenflächen, nämlich die Flächen der Lagerzapfen mit der DLC-Beschichtung zu versehen.

Weiterhin ist es insbesondere auch möglich, Lagersteine aus Siliziumcarbid für die Wellen 2 bzw. 7 vorzusehen, während die Wellen selbst zumindest an ihren mit den Lagersteinen zusammenwirkenden Flächen die DLC-Beschichtung aufweisen. Es hat sich gezeigt, daß die DLC-Beschichtung in Kombination mit Siliziumcarbid zu extrem niedrigen Reibungskoeffizienten führt, und zwar bei trockener Luft, wie sie in einem geschlossenen Uhrwerk anzunehmen ist, ein Reibungskoeffizient in der Größenordnung von nur 0,02, und zwar bei hoher Verschleißfestigkeit sowohl der Lagersteine als auch der Wellen an ihren mit den Lagersteinen zusammenwirkenden Flächen.

Ferner besteht die Möglichkeit, die Eingangs- und Ausgangspaletten 9 bzw. 10 ebenfalls aus Siliziumcarbid zu fertigen, wobei dann das Anker- oder Hemmrad

zumindest an der mit diesen Paletten zusammenwirkenden Ankerradverzahnung die DLC-Beschichtung aufweist.

- Die Figur 3 zeigt nochmals in Teildarstellung und vergrößert die Lagerung der Unruh-
5 Welle 7 bzw. des oberen, im Durchmesser reduzierten Endes 7' dieser Welle. In gleicher Weise wie in dieser Figur dargestellt, ist auch das untere Ende der Welle 7 gelagert, und zwar in der in dieser Figur nicht dargestellten Werkplatine.

- Die Welle 7 ist aus Edelstahl gehärtet ausgeführt (beispielsweise plasma-nitriert) und
10 bei der dargestellten Ausführungsform zumindest im Bereich ihres Abschnittes 7' DLC- beschichtet oder mit einer anderen Beschichtung versehen, die ebenfalls eine harte Oberfläche mit geringem Reibungskoeffizienten für den Abschnitt 7' gewährleistet.

- Die Welle 7 ist mit ihrem Zapfenende 7' in der Brücke 13 gelagert. Hierfür ist in einer
15 dortigen Ausnehmung 18 ein spezielles Lager 19 vorgesehen, welches kugellagerartig ausgeführt ist und aus dem Lagerring 20 sowie den kugelartigen Lagerelementen 21 besteht, welch letztere unmittelbar mit dem Abschnitt 7' der Welle 7 zusammenwirken. Der Lagerring 20 ist in geeigneter Weise, beispielsweise durch Preßsitz in der Ausnehmung 18 gehalten. An der der Mitte der Welle 7 zugewandten
20 Unterseite bildet die Brücke 13 ringförmigen Steg 22 mit einer Öffnung 23, durch die das Zapfenende 7' hindurchgeführt ist und die einen Durchmesser aufweist, der etwas größer ist als der Durchmesser dieses Zapfenendes 7', aber kleiner als der Durchmesser der Ausnehmung 18.

- 25 Während die Platine bzw. die Brücke 13 beispielsweise aus Messing gefertigt ist, besteht der Lagerring 20 aus gehärtetem Edelstahl und ist beispielsweise zumindest an den mit den Lagerelementen 21 zusammenwirkenden Flächen in geeigneter Weise beschichtet, beispielsweise DLC-beschichtet. Die Lagerelemente 21 bestehen aus Siliziumcarbid oder aus synthetischem Rubin oder aus einer Keramik, beispielsweise
30 aus Al_2O_3 -Keramik. Der Durchmesser der Lagerelemente liegt in der Größenordnung des Zapfenendes 7', d. h. bei der dargestellten Ausführungsform beträgt der

Durchmesser der Lagerelemente etwa 0,3 mm und der Außendurchmesser des Zapfenendes 7' etwa 0,5 mm.

An der der nicht dargestellten Werkplatine abgewandten Oberseite der Brücke 13 ist
5 das Lager 19 durch die Feder 17 abgeschlossen, die beispielsweise aus Edelstahl
gehärtet und DLC-beschichtet oder aber aus Siliziumcarbid oder synthetischem Rubin
hergestellt ist. Gegen die Feder 17 stützt sich das Zapfenende 7' ab.

Als Material und/oder Beschichtung der Feder kann auch ein anderes Material
10 verwendet sein, beispielsweise Siliziumcarbid, synthetischer Rubin oder Al_2O_3 .

Die in der Figur 3 dargestellte Lagerung 19 zeichnet sich durch eine Konstruktion aus,
die leicht und kostengünstig realisiert werden kann, insbesondere sind die
Lagerelemente 21 aus Siliziumcarbid, aus Keramik oder synthetischem Rubin in der
15 erforderlichen Kugelform leicht herstellbar. Trotz des im Vergleich zum
Lagerzapfenende 7' relativ großen Durchmessers der Lagerelemente 21 ist das Lager 19
problemlos montierbar.

Die Figur 4 zeigt als weitere mögliche Ausführungsform ein Lager 19a, welches sich
20 vom Lager 19 im wesentlichen dadurch unterscheidet, daß der Lagerring 20
schwimmend, d. h. in Richtung der Ringachse axial beweglich in der Öffnung 18
angeordnet und durch zwei Federelemente, die bei der dargestellten Ausführungsform
von den Tellerfedern 24 und 25 gebildet sind, axial in der Öffnung 18 gehalten ist. Das
in der Figur 4 obere Federelement 24 stützt sich gegen die Feder 17 oder eine
25 entsprechende an der Brücke 13 vorgesehene Platte ab und das untere Federelement
25 an der der Platte bzw. der Feder 17 zugewandten Oberseite des Steges 22.

Die Welle 7a ist mit einem dem Zapfenende 7' entsprechenden Zapfenende 7a'
ausgebildet, welches sich kegelstumpfförmig zum freien Ende hin verjüngt, und zwar
30 mit einem Kegelwinkel von 40° . Die beiden Federelemente 24 und 25 sind so
ausgebildet, daß die Kraft des Federelementes 24 etwas größer ist als die Kraft des

Federelementes 25, so daß die kugelförmigen Lagerelemente 21 mit geringer Kraft gegen die kegelförmige Mantelfläche des Zapfenendes 7a' der Unruh-Welle 7a anliegen.

- 5 Bei dem in der Figur 4 dargestellten Lager 19a sind als Federelemente 24 und 25 achsgleich mit der Achse der Welle 7a angeordnete Tellerfedern vorgesehen. Anstelle dieser Tellerfedern können auch andere geeignete Federelemente, beispielsweise gewellte Scheibenfedern verwendet sein. Die Welle 7a besteht wiederum aus Edelstahl gehärtet und ist zumindest an den Enden 7a' DLC-beschichtet.

10

- Selbstverständlich ist es auch möglich, weitere Teile oder Funktionselemente des Uhrwerks mit der DLC-Beschichtung zu versehen, beispielsweise Innenflächen eines Federgehäuses, und zwar insbesondere dort, wo die Feder mit ihrem Federende an der Innenfläche des Federgehäuses anliegt und beim Aufziehen des Uhrwerks bzw. der 15 Feder von dem sich hierbei drehenden Federgehäuse mitgenommen wird. Durch die DLC-Beschichtung kann dann hier auf das bisherige Ölen verzichtet werden.

Bezugszeichenliste

1	Anker- oder Hemmrad
5 2	Ankerwelle
3	Anker
3'	Ankerhebel
3''	Gabelende
4	Ankerlagerzapfen
10 5	Unruh
6	Hebelscheibe
7	Unruhwelle oder -zapfen
8	Hebelstein oder Mitnehmer
9	Eingangspalette
15 10	Ausgangspalette
11	Ankerradverzahnung
12	Werkplatine
13	Brücke
14	DLC-Schicht
20 15, 16	Lagerbohrung
15', 16'	Hartmetall-Lager
17	Feder
18	Ausnehmung
19	Lager
25 20	Lagerring
20', 20''	Lagerringabschnitt
21	kugelförmiges Lagerelement
22	Bohrung

Patentansprüche

1. Mechanisches Uhrwerk, insbesondere für Taschen- und Armbanduhren, mit einer mit einem mechanischen Schwingsystem zusammenwirkenden mechanischen
5 Hemmung, die als Funktionselemente wenigstens ein Hemmrad (1) sowie einen Anker (3) aufweist, dadurch gekennzeichnet, daß die Funktionselemente der Hemmung zumindest an einem Teil ihrer zusammenwirkenden Flächen mit einer DLC-Beschichtung (14) versehen sind.
- 10 2. Uhrwerk nach Anspruch 1, dadurch gekennzeichnet, daß das Hemmrad (1) zumindest an seinen mit dem Anker (3) zusammenwirkenden Bereichen, beispielsweise an seinen mit dem Anker (3) zusammenwirkenden Hemmrad-Zähnen (11) und/oder der Anker (3) an seinen mit dem Hemmrad zusammenwirkenden Bereichen, beispielsweise an seinen Ankerpaletten oder
15 Ankerzapfen mit der DLC-Beschichtung versehen ist.
3. Uhrwerk nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Anker (3) zumindest an seinen mit dem Hemmrad (1) zusammenwirkenden Bereichen aus Metall, beispielsweise aus Stahl gefertigt ist,
20 wobei beispielsweise der Anker (3) einstückig mit den mit dem Hemmrad (1) zusammenwirkenden Bereichen (9, 10) hergestellt ist; und/oder wobei beispielsweise die mit dem Hemmrad (1) zusammenwirkenden Bereich Ankerpaletten (9, 10) oder Ankerstifte sind.
- 25 4. Uhrwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Anker (3) an seinem mit dem Schwingsystem, beispielsweise mit einer Unruh (5) zusammenwirkenden Bereich (3'') und/oder der mit dem Anker (3) zusammenwirkende Teil, beispielsweise ein als Hebelstein wirkender Mitnehmer (8) mit der DLC-Schicht versehen sind.

30

5. Uhrwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Welle (7) der als Schwingsystem dienenden Unruh (5) zumindest an ihrem in der Platine (12, 13) gelagerten Bereichen mit der DLC-Beschichtung versehen ist,
 - 5 wobei beispielsweise die Lager für die Unruhwelle (7) von Lagerbohrungen gebildet sind, die zumindest im Bereich der Lagerflächen mit der DLC-Beschichtung versehen sind,
und/oder
wobei beispielsweise die Lagerbohrungen in Lagerbuchsen (15', 16') vorgesehen sind, die aus Edelstahl oder härtbarem Stahl, vorzugsweise aus plasma-nitrierbarem Stahl (z.B. Edelstahl 4301 nach DIN 1.4301) gefertigt und mit der DLC-Schicht (14) versehen sind
- 10 6. Uhrwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zumindest ein Teil der Zahnräder des Uhrwerks wenigstens im Bereich der Zähne oder Zahnflanken mit der DLC-Beschichtung versehen sind.
- 15 7. Uhrwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Funktionselemente des Uhrwerks jeweils auf ihrer gesamten Oberfläche mit der DLC-Beschichtung versehen sind.
- 20 8. Uhrwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es für die Lagerung von Funktionselementen Platinen (12) und Platinenelemente (13) aufweist, und daß wenigstens eine Platin (12) oder ein weiteres Platinenelement (13) wenigstens an Lager für Funktionselemente des Uhrwerks bildenden Flächen mit einer DLC-Beschichtung (14) versehen sind, wobei beispielsweise die wenigstens eine Platin (12) und die Platinenelemente (13) auf ihrer gesamten Oberfläche mit der DLC-Beschichtung versehen sind und diese Beschichtung z.B. auch in die als Lager dienenden Bohrungen (15, 16) hineinreicht und die Innenflächen dieser Bohrungen vollständig abdeckt.
- 25 30

9. Uhrwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Funktionselemente aus Messing an den beschichteten Bereichen mit einer Zwischenschicht aus harten Metall, beispielsweise mit einer Zwischenschicht aus Chrom versehen sind,
- 5 und/oder
daß Funktionselemente aus Stahl, vorzugsweise Edelstahl vor dem DLC-Beschichten einer Wärmebehandlung unterzogen sind, beispielsweise einem Vakuum-Härten und/oder einem Plasma-Nitrieren,
und/oder
- 10 daß zumindest ein Lager des Uhrwerks aus einem Lagerstein beispielsweise aus synthetischem Rubin besteht und die mit diesem Lager zusammenwirkende Gegenfläche, beispielsweise die Fläche eines Lagerzapfens die DCL-Beschichtung aufweist,
und/oder
- 15 daß von wenigstens zwei zusammenwirkenden und aneinander gleitenden Flächen des Uhrwerks eine Fläche von Siliziumcarbid und die zweite Fläche von der DCL-Beschichtung gebildet ist,
und/oder
daß zumindest ein Lager des Uhrwerks, beispielsweise ein dieses Lager bildender
- 20 Lagerstein aus Siliziumcarbid besteht und zumindest die mit diesen Lager zusammenwirkende Gegenfläche, beispielsweise die Fläche eines Lagerzapfens die DCL-Beschichtung aufweist,
und/oder
daß die mit einem Hemm- oder Ankerrad (1) des Uhrwerks zusammenwirkenden
- 25 Elemente, beispielsweise Paletten (9, 10) aus Siliziumcarbid bestehen, und daß die Gegenflächen des Hemmrades die DCL-Beschichtung aufweisen,
und/oder
daß ein Hebelstein oder Mitnehmer einer Hemmung des Uhrwerks aus
- 30 Siliziumcarbid besteht und die mit diesem Hebelstein (8) zusammenwirkende Gegenfläche beispielsweise eines Ankers (2) die DCL-Beschichtung aufweist.

10. Uhrwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Federgehäuse zumindest an einem Teil seiner Innenfläche DLC-beschichtet ist.
- 5 11. Uhrwerk, insbesondere für Taschen- oder Armbanduhren mit an einer Platine (12) und/oder an einem weiteren Platinenelement (13) beidseitig gelagerten Unruh-Welle (7), dadurch gekennzeichnet, daß die Unruh-Welle (7, 7a) wenigstens an einem Ende in einem Lager (19, 19a) gelagert ist, welches einen Lagerring (20) sowie in diesem Lagerring (20) angeordnete und die Unruh-Welle (7, 7a) umgebende Lagerelemente (21) aufweist, und daß die Lagerelemente (21) aus Siliziumcarbid oder einer Keramik, vorzugsweise einer Aluminiumoxid-Keramik oder aus künstlichen Rubinien bestehen, wobei beispielsweise die Lagerelemente (21) kugelförmig ausgebildet sind und/oder
- 10 die Unruh-Welle (7, 7a) mit einem im Querschnitt reduzierten Zapfenende (7', 7a') in dem Lager (19) gelagert ist und/oder der Durchmesser der Lagerelemente (21) in der Größenordnung des Durchmessers des Zapfenendes (7', 7a') der Unruh-Welle (7, 7a) liegt,
- 15 und/oder die Unruh-Welle (7, 7a) zumindest an ihrem im Lager (19, 19a) gelagerten Bereich mit einer harten Oberfläche ergebenden Beschichtung, vorzugsweise mit einer DLC-Beschichtung versehen ist.
- 20 12. Uhrwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Lagerring (20) und die in diesem Ring angeordneten Lagerelemente (21) an der der Unruh abgewandten Seite des Lagers (21) durch eine Feder (17) abgedeckt sind, gegen die die Unruh-Welle mit ihrem freien Ende anliegt, wobei beispielsweise die Feder (17) gehärtet und zumindest an ihrer eine Anlage
- 25 für die Unruh-Welle bildenden Fläche mit der DLC-Beschichtung oder mit einer

Keramikbeschichtung versehen ist.

13. Uhrwerk nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
daß der Lagerring (20) durch wenigstens ein Federelement (24) in Richtung der
Achse der Unruh-Welle (7a) axial vorgespannt ist, so daß der Lagerring (20) mit
den Lagerelementen (21) gegen das Zapfenende (7a') federnd anlieg,
wobei beispielsweise der Lagerring (20) wenigstens durch zwei Federelemente (24,
25) axial gehalten ist und/oder der Lagerzapfen (7a) an seinem Zapfenende (7a')
kegelstumpfförmig ausgebildet ist.

5
10

EPO - Munich
67
16. Jan. 2002

Zusammenfassung

Die Erfindung bezieht sich auf ein neuartiges Uhrwerk, insbesondere für Taschen- oder Armbanduhren, mit an wenigstens einer Platine und weiteren Platinenelementen
5 gelagerten und miteinander zusammenwirkenden Funktionselementen.

EPO - Munich
67
16.Jan. 2002

911.02

33-0116

Figs