Baker Hughes INTEQ

Drilling Engineering Workbook

A Distributed Learning Course

80270H Rev. B December 1995

Baker Hughes INTEQ Training & Development 2520 W.W. Thorne Houston, TX 77073 United States of America 713-625-4415 This material cannot be reproduced in any manner or otherwise used in any presentation without the express written permission of Baker Hughes INTEQ

Drilling Engineering - A Distributed Learning Course

FORWARD

The *Drilling Engineering Workbook* is a correspondence (distributed learning) course which covers the important elements of drilling a well. The emphasis is on the theory behind these drilling elements in order to develop a greater understanding of the principles involved in drilling a well.

This is a lesson-by-lesson distributed learning course. Individuals should study each section and then answer the related questions at the end of the section. Supplementary reading is suggested throughout the text. This workbook, along with the related supplementary reading, should provide a sound basis for anyone involved in those services involved in drilling a well.

Comments or questions, regarding any of the course material, should be directed to the technical training department, either in Houston or Aberdeen.

Workbook 1 Confidential

PREFACE

At Baker Hughes INTEQ, we pride ourselves on our people and their level of professionalism, experience, responsiveness and adaptability at the wellsite, where time, money and effective operations depends on rapid, reliable information management. The INTEQ Field Advancement and Career Training System (IN-FACTS), is a system for training, developing and providing professional advancement for field operations personnel. It is the method behind these applications.

The IN-FACTS program provides a standardized career development path which utilizes a progression of both formal and hands-on learning, to turn potential into fully developed expertise. IN-FACTS is the tool that enables Baker Hughes INTEQ personnel to embark on, and develop successful careers within INTEQ, Baker Hughes, and the oil industry.

IN-FACTS is structured to provide an easily understood, orderly flow of learning experiences. These may or may not be in the same specialty, and allow our personnel to concentrate in one area, or to branch out into other disciplines. Movement through the IN-FACTS career progression is determined by industry experience, skills, and knowledge acquired through rigsite work and a variety of formal and informal training programs.

The training programs are modular, and are composed of formal course work, self-paced distributed learning packages, and on-the-job training.

Requirements for further advancement in our wellsite services includes increased knowledge and understanding of the various subjects involved in "wellbore construction and maintenance". This distributive learning package will focus on these topics.

INSTRUCTIONS ON COMPLETING THIS WORKBOOK

The aim of this distributive learning workbook is to provide you with the information on various drilling engineering topics that can best be studied outside a classroom. It is not the intention of the Training Department that you complete all the assignments as soon as possible. This workbook project should allow you to spend enough time on each particular subject in order to thoroughly understand those aspects of drilling engineering as they apply to every day wellsite operations. This workbook includes:

- Drilling Fluids and Hydraulics
- Casing and Cementing
- Bit Technology
- **Drillstring Basics**
- **Directional Drilling**
- Horizontal Wells
- Stuck Pipe
- Well Control
- Cost Analysis
- **Technical Writing**

At the end of each chapter there will be "Self-Check" exercises, which are designed to assist you in understanding the information covered in the chapter. It is recommended that you do not proceed until you are confident that you fully understand the concepts, calculations, and applications of the chapter's subject matter. Direct any questions you may have to the Technical Training Department or a local technical expert.

When you have completed the workbook, there will be a "Return" assignment (Appendix A). This is to be completed and returned to the regional/area Training Department or local administrator. Using this assignment, the training administrators will be able to assist you in the next step.

Upon satisfactory completion of the "Return" assignment, an "End-of-Project" test will be necessary to comply with IN-FACTS requirements. Passing requirement for this test is 70%. This test can be provided and administrated by the training department or the local administrator.

Workbook 3 Confidential

Summary

This workbook is designed to review those engineering principles that are unique to drilling a well and to increase your knowledge and understanding of how those principles apply to wellsite operations.

There is a lot to learn, and remember, the learning process will never end. There are no real shortcuts. You will be required to learn for yourself, with guidance and assistance from experienced field personnel, local experts and the Technical Training Department.

The aim of the training you receive at Baker Hughes INTEQ is to develop your individual skills and knowledge to make you a fully competent, reliable professional within the oil industry. IN-FACTS is designed to assist you in this.

Comments

The Technical Training staff at Baker Hughes INTEQ is interested in your comments and suggestions concerning this distributed learning workbook. We want to constantly improve our products and with your help, the improvements will be even better. Please take the time to contact us with your comments.

If possible, use the electronic mail system, E-Mail, to contact us. This way we can route the E-Mail to the appropriate department and get back to you more quickly. However, we will accept any type of communications.

We have enclosed a Comment form. If E-Mail is not available to you, please make copies of this form, add your comments and mail or fax it to us.

When you send us your comments, please ensure the page and paragraph references and the following information is included in your transmittal.

Product Name.

Drilling Engineering Workbook

Product Part Number.

P/N 80270 Rev B

When using the mail-in form, send or fax the form to:

Baker Hughes INTEQ
2520 WW Thorne
Barclayhill Place
Houston, Texas 77073
Aberdeen AB1 4PF
U.S.A.
Scotland
fax (713) 625-5890
fax (44) 224-782045

Attn.: Training & Developmer	nt Department		
Drilling Engineering Workboo	ok		
P/N 80270H			
Manual Date:		Today's Date:	
Your Name:			
District Office:		E-Mail Address:	
Street Address:			
City:	State:	Zip Code:	
Country:			
Comments:			

Table of Contents

Table of Contents

Chapter 1

Drilling	Fluids	And	Hyd	drau	lics
----------	--------	-----	-----	------	------

Drilling Fluids	1-2
Make-up of a Drilling Fluid	1-2
Normal Drilling Fluids	1-3
Special Drilling Fluids	1-4
Lime Base Muds	1-4
Lime-Treated Muds	1-5
Emulsion Muds - Oil in Water	1-5
Inhibited Muds	1-5
Gypsum Base Muds	1-6
Oil Based Muds	1-6
Inverted Emulsions	1-7
Salt Water Muds	
Silicate Muds	1-7
Low Solids Muds	
Drilling Fluid Classification Systems	
Drilling Fluid Additives	1-9
Material Balance Equations	1-12
Oil-Based Drilling Fluids	1-14
Electrical Stability	1-14
Oil: Water Ratio	1-14
Aniline Point	1-15
Drilling Fluid Economics	1-16
Drilling Fluid Properties	1-19
Pressure	1-20
Hydrostatic Pressure	1-20
Hydraulic Pressure	1-20
Imposed Pressure	1-22
Pressure Imposed By The Pump	
Pressure Imposed By The Formation	1-24
Pascal's Law	1-25

Drilling Fluid Report	26
Density1-7	26
Plastic Viscosity1-7	26
Yield Point	28
Gel Strength	30
pH1-7	30
Filtrate/Water Loss	31
Alkalinity, Mud Pm Alkalinity, Filtrate1-	33
Salt/Chlorides1-	33
Calcium	34
Sand Content	34
Solids Content	34
Funnel Viscosity	34
Hydraulics	36
Bingham Plastic Model	38
Power Law Model	39
Hydraulic Calculations	41
Surface Pressure Losses	
Pressure Loss in the Drillstring	
Drillstring Pressure Losses	
Annular Pressure Losses	
Reynolds Number and Critical Velocity	
Cuttings Transport	
Cuttings Slip Velocity	
•	
Bit Hydraulics And Optimization	
Jet Nozzles 1-4 Surface Horsepower 1-4	
Bottom Hole Horsepower	
Hydraulic Horsepower	
Hydraulic Impact Force	
Fixed Cutter Bit Hydraulics	
PDC Bit Hydraulics	
Diamond Bit Hydraulics	
Diamond Bit Flow Patterns	
Swab And Surge Pressures	
Swab and Surge Analysis Report	02
Mud Hydraulics Analysis Report	64
Self-Check Exercises1-6	67

Chapter 2

Casing And Cementing

Casing
Casing Standards
Casing Couplings2-4
Cementing
Introduction
Cement Slurries
Typical Field Calculations
Example Field Calculation:
Removal of the Drilling Fluid2-11
Cementing Nomenclature
Cement Additives
Casing and Cementing Analysis Report
Self-Check Exercises
Chapter 3
Bit Technology
Bit Technology
Rolling Cutter Rock Bits
Journal Angle3-2
Interfitting Teeth and Cone Offset
Circulation Systems
Cutting Structures
Steel Tooth Cutting Structures
Bearing Systems
Heat Treating
· ·
Polycrystalline Diamond Compact Bits
PDC Drill Blanks
Bit Design
PDC Bit Operating Parameters
PDC Bit Drilling Parameters
Diamond Bits
The Diamonds
The Diamond Bit
Uses of Diamond Bits
Diamond Bit Operating Parameters

General Diamond Bit Drilling Practices	3-24
Self-Check Exercises	3-26
Chapter 4 Drillstring Basics	
Tubulars. Introduction Drill Pipe Yield Strength and Tensile Strength Drill Pipe Grades Drill Pipe Classification. Tool Joints Make-Up Torque	4-2 4-2 4-2 4-3 4-4
Buoyancy & Hookload	4-6 4-7 4-9
BHA Weight & Weight-On-Bit Required BHA Weight For Rotary Assemblies. Running Drill Pipe In Compression. Critical Buckling Force. Calculating Critical Buckling Force Calculating BHA Weight With Drill Pipe In Compression. BHA Requirements When The Drillstring Is Not Rotated BHA Weight For Steerable Motor Assemblies Summary	4-11 4-13 4-14 4-14 4-15 4-16
Neutral Point Drillpipe Fatigue and Failure Bending Stress Fatigue Damage	4-28
Torque & Drag	4-30

The E*C TRAK Torque and Drag Module	1
General Uses	
<i>Inputs Required</i>	
Outputs4-3	
Typical Drillstring - Wellbore Friction Factors	
Use Of Torque & Drag Programs For BHA Weight Evaluation4-32	
Self-Check Exercises 4-3:	3
Chapter 5	
Directional Drilling	
Applications Of Directional Drilling 5-	2
Definition of Directional Drilling5-	2
Applications	2
Multiple wells from offshore structures	2
Relief Wells5-	3
Controlling Vertical Wells5-	3
Sidetracking	4
Inaccessible locations	4
Fault Drilling5-:	5
Salt Dome Drilling5-:	5
Shoreline Drilling5-	6
Well Planning	7
Introduction	7
Reference Systems and Coordinates5-	7
Depth References	7
Inclination References	8
Azimuth Reference Systems	8
Field Coordinates5-10	0
Direction Measurements	1
Planning The Well Trajectory	3
<i>The Target</i>	3
Types of Directional Patterns5-1:	3
Catenary Curve Well Plan5-1	7
Horizontal wells5-1	7
Allocation of slots to targets5-1	7
Kick-off Point and Build-Up Rate5-1	8
Tangent Section	8
<i>Drop-off section</i>	8

	The horizontal projection	5-18
	Lead angle	5-19
Nudgi	ng	
	Techniques for "nudging"	5-20
	Planning a nudge program	5-20
Proxir	mity (anti-collision) analysis	
Downhole M	otors	5-21
	ve Displacement Motors	
	By-Pass Valve	
	Motor Section	
	Connecting rod assemblies	
	Bearing Section	
	Types of Positive Displacement Motors	
	PDM Observations	
	Characteristics	
	Navi-Drill Mach 1C	
	Navi-Drill Mach 2	
	Navi-Drill Mach 1 P/HF	
	Navi-Drill Mach 1/AD	
	Motor Orientation/Control	
Turbii	nes	
	Drive Section	
	Bearing Section	
	Directional Turbine	
	Turbine Observations	
	Turbine Characteristics	
Deflection to	ols and techniques	5-38
	stocks	
· ·P	Standard removable Whipstock	
	Circulating Whipstock	
	Permanent Casing Whipstock	
Jetting	j	
	Requirements for jetting	
	Jetting Assemblies	
	Nozzling the Jetting Bit	
	Procedure for Jetting	
	Advantages of Jetting	
	Disadvantages of Jetting	

Downhole motor and bent sub	5-46
Reactive torque	5-47
Running Procedures	
PDMs vs Turbines with a Bent Sub	5-48
Downhole Motor and Bent Sub Combination	5-49
PDM with Kick-Off Subs	
Toolface Orientation	5-50
Directional Control with Rotary Assemblies	5-52
Side Force and Tilt Angle	5-52
Factors Affecting Bit Trajectory	5-53
Basic Directional Control Principles	
The Fulcrum Principle	5-53
The Stabilization (Packed Hole) Principle	5-59
The Pendulum Principle	
Summary and Recommended Practices	5-66
Bit Type Effects on Rotary Assemblies	5-70
Roller Cone Bits	
PDC Bits	5-71
Stiffness of drill collars	5-71
Effects of Drill Collar O.D	5-73
Formation Effects on Bit Trajectory	5-74
	5-75
Relationship Between Dip Angle and Deviation Force	5-75
Effective Dip Angle in a Deviated Hole	
Formation Hardness	5-78
Summary of Formation Effects	
Navigation Drilling Systems	5-80
Advantages of NDS	5-80
Steerable Turbines	5-80
The DTU Navigation Drilling System	5-81
Modes of Operation	
DTU Basic Components	5-82
Theoretical geometric dogleg severity	5-85
Adjustable Kick-Off (AKO) Motor	
Adjustable Kick Off Housing	
Dogleg Capabilities	
Tilt Angle	
First String Stabilizer	

Bottomhole Assemblies Recommended Guidelines When Kick Interval drilling	5-90 5-90 ing Off 5-92 5-93 5-94 5-95
Self-Check Exercises	5-96
Chapter 6 Horizontal Wells Self-Check Exercises	6-3
Chapter 7 Stuck Pipe	
Recognizing Problem Situations Mechanics of Differential Sticking Determining the Variables in the Stuck	7-2
Self-Check Exercises	7-17
Chapter 8 Well Control	
Introduction	8-2
Recognition of Kicks	
Surface Pressures	

ix

Procedural Complexity Kick Control Methods The Driller's Method The Engineer's Method The Concurrent Method	8-12 8-14 8-16
Pressure Control Theory	8-20
Special Kick Problems And Procedures Excessive Casing Pressure Kick Occurs While Running Casing or Liner Parted or Washed-Out Drillstring Stuck Pipe Plugged or Packed-Off Bit. Underground Blowout Lost Circulation Weighted Plugs Bullheading Kick and Kill Analysis Self-Check Exercises	8-32 8-34 8-35 8-35 8-36 8-37 8-38 8-38
Chapter 9 Cost Analysis	
Introduction	
Cost-Per-Foot Analysis. Cost Per Foot Calculations Including Downhole Target Cost Per Foot and Target ROP Calculation of Target ROP	e Motors
Breakeven Cost Analysis	9-11
Drilling Optimization Drill-Off Tests Surface Indicators Torque Pump Pressure Pump Strokes	9-16 9-18 9-18 9-20

Workbook

Table of Contents	Drilling Engineering
Pulling the Drill Bit	
Self-Check Exercises	9-23
Chapter 10 Technical Writing	
Technical Writing Techniques	
Grammar Review	
Final Well Report	
Self-Check Exercises	
Appendix A End Of Manual Return Exercises Appendix B	
Answers to Self-Help Exercises	
Chapter 1 - Drilling Fluids And Fluid Hydraulics	B-1
Chapter 2 - Casing and Cementing	B-4
Chapter 3 - Bit Technology	B-5
Chapter 4 - Drillstring Basics	В-6
Chapter 5- Directional Drilling	B-7
Chapter 6 - Horizontal Wells	B-11
Chapter 7 - Stuck Pipe	B-13
Chapter 8 - Well Control	B-14

Chapter 10 - Technical Writing......B-17

Drilling Fluids And Hydraulics

Upon completion of this chapter, you should be able to:

- Recognize the components in the various types of drilling fluids.
- Explain the advantages and disadvantages of the most common types of drilling fluids.
- Provide an explanation of mud properties as they are reported on a "morning report".
- Calculate barite and water volumes when changes are made to a pre-existing mud system.
- Calculate PV and YP from Fann viscometer readings.
- Perform hydraulic optimization using the Power Law Model.

Additional Review/Reading Material

EXLOG, MS-3026 Theory And Applications Of Drilling Fluid Hydraulics Baker Hughes INTEQ, Drilling Fluids Manual, 1991

API, *The Rheology of Oil-Well Drilling Fluids*, Bulletin 13D,2nd Edition, May 1985

API, Recommended Practice for Drilling Mud Report Form, Report 13G, 2nd Edition, May 1982

Chilingarian, G.V. and Vorabutr, P., *Drilling and Drilling Fluids*, Elsevier Science Publishers, 1983

Bourgoyne Jr., Adam, et al; *Applied Drilling Engineering*, SPE Textbook Series, Vol. 2, 1986

Moore, Preston; *Drilling Practices Manual*, 2nd Edition, PennWell Publishing Co.; Tulsa; 1986

Rogers, Walter F., *Composition and Properties of Oil Well Drilling Fluids*, Gulf Publishing Company, 1963

Drilling Fluids

A drilling fluid is any fluid which is circulated through a well in order to remove cuttings from a wellbore. This section will discuss fluids which have water or oil as their continuous phase. Air, mist and foam, which can be used as drilling fluids, will not be discussed at this time.

A drilling fluid must fulfill many functions in order for a well to be drilled successfully, safely, and economically. The most important functions are:

- 1. Remove drilled cuttings from under the bit
- 2. Carry those cuttings out of the hole
- 3. Suspend cuttings in the fluid when circulation is stopped
- 4. Release cuttings when processed by surface equipment
- 5. Allow cuttings to settle out at the surface
- 6. Provide enough hydrostatic pressure to balance formation pore pressures
- 7. Prevent the bore hole from collapsing or caving in
- 8. Protect producing formations from damage which could impair production
- 9. Clean, cool, and lubricate the drill bit

Occasionally, these functions require the drilling fluid to act in conflicting ways. It can be seen that items #1-3 are best served if the drilling fluid has a high viscosity, whereas items #4-5 are best accomplished with a low viscosity. Items #6 & 8 are often mutually exclusive because drilled solids will tend to pack into the pore spaces of a producing formation.

Make-up of a Drilling Fluid

In its most basic form a drilling fluid is composed of a liquid (either water or oil) and some sort of viscosifying agent. If nothing else is added, whenever the hydrostatic pressure is greater than the formation pore pressure (and the formation is porous and permeable) a portion of the fluid will be flushed into the formation. Since excessive filtrate can cause borehole problems, some sort of filtration control additive is generally added. In order to provide enough hydrostatic pressure to balance abnormal pore pressures, the density of the drilling fluid is increased by adding a weight material (generally barite).

Figure 1-2