2019 IMO #5

Tristan Shin 17 July 2019

The Bank of Bath issues coins with an H on one side and a T on the other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly k>0 coins showing H, then he turns over the $k^{\rm th}$ coin from the left; otherwise, all coins show T and he stops. For example, if n=3 the process starting with the configuration THT would be $THT \to HHT \to HTT \to TTT$, which stops after three operations.

- (a) Show that, for each initial configuration, Harry stops after a finite number of operations.
- (b) For each initial configuration, let L(C) be the number of operations before Harry stops. For example, L(THT) = 3 and L(TTT) = 0. Determine the average value of L(C) over all 2^n possible initial configurations C.

The answer is $\frac{n(n+1)}{4}$.

Consider the directed graph G_n on the 2^n vertices that are length-n strings of H and T. Draw an edge from each string to the string that follows after operating on it.

The key claim is the following:

- Take a copy of G_{n-1} and append a T to each string in it.
- Take another copy of G_{n-1} , flip each char (H to T and vice versa) and reverse the string, and append a H to each string in it. As an example, HTHHT goes to THTTH then HTTHT and finally HTTHTH.
- Draw an edge from $HHH\cdots HH$ to $HHH\cdots HT$.
- The resulting graph is G_n .

We prove this claim by showing that each edge is correct (observe that the resulting graph has each of the 2^{n+1} length-(n+1) strings by construction).

- Operating on a string in the first copy does the same thing as it does in G_{n-1} because an extra T at the end does not affect the H count or the positions.
- Suppose that the string $a_1a_2\cdots a_{n-2}a_{n-1}$ has k heads. Then there is an edge $a_1\cdots a_{n-1}\to a_1\cdots a_{k-1}\overline{a}_ka_{k+1}\cdots a_{n-1}$ in G_{n-1} (here $\overline{H}=T$ and $\overline{T}=H$), so the corresponding edge in the second copy is

$$\overline{a}_{n-1}\cdots\overline{a}_11 \to \overline{a}_{n-1}\cdots\overline{a}_{k+1}a_k\overline{a}_{k-1}\cdots\overline{a}_11.$$

Since $\overline{a}_{n-1}\cdots \overline{a}_1H$ has n-k heads, operating on this flips the (n-k)th coin; equivalently the (k+1)th coin from the right. This gives $\overline{a}_{n-1}\cdots \overline{a}_{k+1}a_k\overline{a}_{k-1}\cdots \overline{a}_1H$, so the edges in the second copy are correct.

2019 IMO #5 Tristan Shin

• Operating on $HHH\cdots HH$ gives $HHH\cdots HT$.

So all edges are correct and thus the claim is true. In particular this proves (a).

Now we solve (b). Let E_n be the average value of L(C) over all 2^n possible strings of length n. Over the first copy of G_{n-1} , the set of L(C) is the same as those in G_{n-1} . Over the second copy, each L(C) is that of the corresponding string in G_{n-1} plus n (it takes n operations to go from $HHH\cdots H$ to $TTT\cdots T$). So

$$E_n = \frac{1}{2} \cdot E_{n-1} + \frac{1}{2} \cdot (E_{n-1} + n) = E_{n-1} + \frac{n}{2}.$$

Since $E_1 = \frac{1}{2}$ (T takes 0 operations while H takes 1 operation), we can induct to show that $E_n = \frac{n(n+1)}{4}$ as desired.