

ANSYS Composite PrepPost 19.0

Workshop 10.7 – Temperature-, Shear-, and Degradation-dependent Material Properties – Advanced Example

Prerequisites:

The user is familiar with

- Standard workflow in ANSYS Workbench and ANSYS Composite PrePost
- Composite Solid Modeling
- Basics of Composite Engineering

Motivation:

Account for the effect of

- temperature,
- shear due to ply-draping,
- and material degradation due to manufacturing or other artifacts, on your material elastic and strength properties.

Controllable material properties:

- Isotropic and orthotropic elasticity
- Orthotropic strain and stress limits
- Puck constants

Procedure:

- 1. Define material property-dependencies in Engineering Data
- 2. Set up analysis in Workbench
- 3. Define thermal condition
- 4. ACP-Pre
 - Perform draping analysis to assess ply-shearing
 - Define local material degradation based on a table
- 5. Perform analysis and postprocessing

16. Dependent Material Properties Simple Example: Compressor Blade

- A simplified compressor blade under pressure and rotational loading
- The blade is made up of a fictitious laminate

Note: The provided material data is NOT to be used with real analyses.

Step 1: Define Material Properties' Dependence

Activate required dependencies

Fill in property table

Table of Properties Row 28:							
А	В		С	D	Е	F	G
Degradation Factor 💄	Shear Angle (deg)			Young's	Young's	Young's	
0.8	0	1	Temperature (C)	Modulus X	Modulus Y	Modulus Z	isson's Ratio)
0.8	5		, .		direction	airection —	
0.8	10						
0.9	0						0.04
0.9	5	3		5.6202E+10	5.6202E+10	7.125E+09	0.038
0.9	10	4	65	5.4427E+10	5.4427E+10	6.9E+09	0.0368
1	0	*					
1							
1	10						
	A Degradation Factor 0.8 0.8 0.8 0.9 0.9	A B Degradation Factor → Shear Angle (deg) ▼ 0.8 0 0.8 5 0.8 10 0.9 0 0.9 5 0.9 10 1 0 1 5	A B Degradation Factor → Shear Angle (deg) → 0.8 0 1 1 0 0.8 5 0.8 10 0 0.9 0 0 0 0.9 0.9 5 0.9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A B Degradation Factor → Shear Angle (deg) → 0.8	A B Degradation Factor → Shear Angle (deg) ▼ 0.8 1 Temperature (C) → Modulus X direction (Pa) 0.8 10 0.9 0 0.9 5 0.9 10 1 2 2 22 3 45 5.6202E+10 4 65 5.4427E+10 *	A B Degradation Factor Shear Angle (deg) ✓ 0.8 0 0.8 5 0.8 10 0.9 0 0.9 5 0.9 10 1 4 1 5 1 5 1 1 1 1 2 2 2 2 3 45 5 5 4 65 5 5 4 65 5 5 4 65 5 5 4 65 5 5 4 65 5 6 6 5 6 6 7 6 9 6 1 6 1 6 1 6 1 6 1 6 1 6	A B Degradation Factor → Shear Angle (deg) ▼ 0.8

Step 2: Define Analysis as Usual

Coordinate Systems

Static Structural (C3)

, Rotational Velocity

Thermal Condition

Solution (C4)

🔎 Solution Information

🦚 Total Deformation

Thermal Condition

65. °C (ramped)

Fixed Support

Pressure

Analysis Settings

🏸 Mesh

Details of "Thermal Condition"

Scoping Method | Geometry Selection

1 Body

─ Scope

Geometry

Suppressed

Magnitude

Definition

Type

···· 🌉 Imported Plies ···· 😭 Named Selections

Step 3: Define Thermal Loading

Set the body temperature by environment and the environmental temperature

Step 4: Define Draping

Set up draping per modeling ply

The resulting shear due to draping will be considered automatically in subsequent analyses when evaluating local material properties.

ACP (Pre)

Geometry

Engineering Data

ACP (Pre)

ACP (Pre)

Geometry

Engineering Data

Step 5: Define Degradation

Use a 1D or 3D look-up table to define your degradation field

solid element. Thus the resolution of the degradation factor field is at element-level.

ACP (Post)

Failure-Analysis: Basic Data

At 22°C, without considering any ply-shearing or degrading of the blade, the root and notch regions experience higher loading with a few elements having an IRF above 0.75 (not critical).

Failure-Analysis: Basic Data

When activating the effect of draping, the edges of the root show increased IRFs due to ply-shearing in these regions. However, the effect of shear due to draping is not pronounced for this geometry.

Failure-Analysis: Basic Data

By adding the effect of increased temperature on the material properties, IRFs in the root and notch region further increase and for a first time become critical.

Failure-Analysis: Basic Data

Finally, by considering degraded material properties, the critical regions identified by the IRF extend clearly.

Summary

- ANSYS Composite PrePost R19.0 provides the ability to easily include elasticity and strength property-dependence of your material on <u>temperature</u>, <u>ply-shearing</u>, and <u>degradation</u>.
- The procedure works for shell- and solid based workflows.
- The effects can be activated or deactivated individually on material- and analysis-level.
- The key-challenge is to identify the material properties (elasticity and strengths) at different operating points (materials testing).

