Steps for Item Based Collaborative Filtering

Item-based collaborative filtering

Item-based collaborative filtering

Basic idea:

Use the similarity between items (and not users) to make predictions

Example:

- Look for items that are similar to Item5
- Take Alice's ratings for these items to predict the rating for Item5

	ltem1	Item2	Item3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Similarity Measure

- Cosine Similarity Produces better results in item-to-item filtering
- · Ratings are seen as vector in n-dimensional space
- Similarity is calculated based on the angle between the rating vectors

$$sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| * |\vec{b}|}$$

User	Item	Rating
User 1	Item a	3
User 2	ltem a	4
User 1	Item b	4
User 2	Item b	3

Adjusted Cosine Similarity Measure

- Adjusted cosine similarity
 - take average user ratings into account, transform the original ratings
 - U: set of users who have rated both items a and b

$$sim(\vec{a}, \vec{b}) = \frac{\sum_{u \in U} (r_{u,a})(r_{u,b})}{\sqrt{\sum_{u \in U} (r_{u,a})^2} \sqrt{\sum_{u \in U} (r_{u,b})^2}}$$

$$sim(\vec{a}, \vec{b}) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u})(r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

Making predictions

Prediction function:

$$pred(u,p) = \frac{\sum_{i \in ratedItem(u)} sim(i,p) * r_{u,i}}{\sum_{i \in ratedItem(u)} sim(i,p)}$$

Neighborhood size is typically also limited to a specific size

Not all neighbors are taken into account for the prediction

Making predictions

$$pred(u,p) = \frac{\sum_{i \in ratedItem(u)} sim(i,p) * r_{u,i}}{\sum_{i \in ratedItem(u)} sim(i,p)} = \frac{0.99*5+0.94*4}{0.99+0.94} = 4.51$$

Data sparsity problems

- Cold start problem
 - How to recommend new items? What to recommend to new users?
- Straightforward approaches
 - Ask/force users to rate a set of items
 - Use another method (e.g., content-based, demographic or simply non-personalized) initially
- Alternatives
 - Use better algorithms (beyond nearest-neighbor approaches)
 - Example:
 - In nearest-neighbor approaches, the set of sufficiently similar neighbors might be too small to make good predictions

Memory-based and model-based approaches

- User-based CF is said to be "memory-based"
 - the rating matrix is directly used to find neighbors / make predictions
 - does not scale for most real-world scenarios
 - large e-commerce sites have tens of millions of customers and millions of items

- Model-based approaches
 - based on some pre-processing or "model-learning" phase
 - at run-time, only the learned model is used to make predictions
 - models are updated / re-trained periodically
 - item-based CF is an example for model-based approaches

Item based collaborative Filtering for Unary Ratings

- So far, we have seen how to use item-item over rating data
- This also works well for unary data mostly implicit ratings such as clicks, song plays, purchases etc.
- Matrix to represent data
 - Logical (1/0) user-item purchase matrix
 - Purchase Count Matrix
- Standard Mean Centering is not useful here as we have 1s and 0s
- Solution: Normalise User Vectors to unit vectors
- Weighted Average doesn't work for Unary Data so just sum the neighbour similarities

