Reproducible analysis pipelines using containers and data exploration using R/Shiny

Máster en bioinformática y bioestadística

Luis Morís Fernández

The reproducibility problem

"Only when certain events recur in accordance with rules or regularities, as is the case with repeatable experiments, can our observations be tested — in principle — by anyone. [...] Only by such repetitions can we convince ourselves that we are not dealing with a mere isolated 'coincidence'[...]"

— Karl R. Popper. The Logic of Scientific Discovery (1959)

The reproducibility problem

"Only when certain events recur in accordance with rules or regularities, as is the case with repeatable experiments, can our observations be tested — in principle — by anyone. [...] Only by such repetitions can we convince ourselves that we are not dealing with a mere isolated 'coincidence'[...]"

— Karl R. Popper. The Logic of Scientific Discovery (1959)

The reproducibility problem

"Only when certain events recur in accordance with rules or regularities, as is the case with repeatable experiments, can our observations be tested — in principle — by anyone. [...] Only by such repetitions can we convince ourselves that we are not dealing with a mere isolated 'coincidence'[...]"

— Karl R. Popper. The Logic of Scientific Discovery (1959)

Results

Targets microarray analysis pipeline: Steps

- 1. Data Loading
- 2. Quality Control
- 3. Differential Expression Analysis
- 4. Gene Set enrichment Analysis

Targets microarray analysis pipeline: Advantages

- ▶ Step behavior is defined by a list of parameters
- Each step has an specific list of parameters
- ▶ All parameters are packed in a single section of the pipeline
- User can focus exclusively on the parameter lists instead of modyfing the pipeline itself

Targets microarray analysis pipeline: Advantages

► Code is based on small multiples

```
tar_target(
  name = qc_raw_boxplot_file,
command = do.call(
```

Discussion

A targets containerized microarray pipeline

- Users can concentrate on a smaller portion of the script for their changes
- Target declaration complexity was minimized by using small multiples
- ▶ Easily reproducible and automatic tracking of dependencies

Containerizing in a Docker

- Easily generalized to other pipelines
- Easy to archive and use in the future
- ▶ Helpful solving the reproducibility problem

An interactive application for data exploration using R/Shiny

- ➤ Simple but effective in reducing the data-analyst vs data-decision-makers loops
- ► Reusable can composable

Conclusions

List of achieved objectives

- 1. Describe the reproducibility problem in bioinformatics
- Explore containers and workflow tools as a mean to improve the reproducibility of bioinformatics pipelines
- Explore interactive tools as a mean to improve the decision making loop in clinical settings
- 4. Create a microarray analysis pipeline using containers that produce a report

Future lines of work

A targets containerized microarray pipeline

- Modifications to the maUEB package could be done to allow implementing an interactive report
- A more extensive manual on the pipeline could be written
- ▶ Additional versions of this pipeline could be written for other analyses
- ► Another strategies for creating the parameters list could be explored

Containerizing in a Docker

- Data analysis could be included in the Docker
- ▶ Docker image could be uploaded to a Docker image repository for direct use by researchers

An interactive application for data exploration using R/Shiny

- Run refinement sessions with users to prioritize new functionalities, for example:
 - Download only genes that are significant in several comparisons
 Provide more links to external databases with information

The end

Thanks for your time and attention