Problem Set 9

Problem R-84I ($C_9H_{14}O_2$). Shown below is the partial NMR spectrum (100 MHz, CS_2 solvent, deuterium decoupled) of a deuterated cyclohexene derivative (the CH_3 resonances are not shown).

(a) Provide a complete interpretation of the signals shown. Give chemical, shifts and coupling constants. Assume first order analysis.

H ¹	_ δ, J =	_Hz, coupled to:	
H ²	δ, J =	_Hz, coupled to:	
H ³	δ, J =	_Hz, coupled to:	
H ⁴	δ, J =	_Hz, coupled to:	
H^5	δ. J=	Hz. coupled to:	

(b) Using this information, draw a good representation of the conformation of compound **R-84I**. Label the hydrogens (1, 2, etc.) of your structure. Are the CH_3 and CO_2CH_3 groups cis or trans? (Hint: which group is larger in a cyclohexane?)

Problem R-86F and R-86G. The 270 MHz ¹H spectra provided are of the compounds below:

(a) Analyze the multiplets and assign the signals by placing the data on the proper row (use the format δ 0.25, dt, J = 3, 9 Hz).

R-86F		R-86G		
H^1	δJ =	δJ =		
H^2	δJ =	δJ =		
H^3	δJ =	δJ =		
H^4	δJ =	δJ =		
H^5	δJ =	δJ =		
H^6	δJ =	δJ =		

(b) A typical conformation (MM2) of this type of molecule is shown below. Attach substituents and identify the spectrum (i.e., say $\mathbf{1} = 86F$ or $\mathbf{1} = 86G$). Briefly explain the basis for your choice. Discuss at least H^1 , H^2 and H^4 .

Note: either one of these conformations could be the enantiomer of the structures shown above.

(c) Explain why the lowest field signal at δ 6.1 in **86F** is only a doublet, whereas the one at δ 6.4 in **86G** is a doublet of doublets.

Problem R-65. The 300 MHz 1 H NMR spectrum of phenylsuccinic acid in CDCI $_{3}$ -DMSO-d $_{6}$ is shown below. From the line positions given, calculate the coupling constants J_{ax} , J_{bx} and J_{ab} (Source: Aldrich Spectral Viewer).

Phenylsuccinic acid partially labeled with 13 C at the carboxyl group marked gave the 100 MHz 1 H NMR spectrum below (δ 2.2-3.3, acetone-d₆). What is the fraction of 13 C incorporation? Estimate the carbon-proton couplings $^{3}J_{\text{C-Ha}}$ and $^{3}J_{\text{C-Hb}}$ from this spectrum.

Draw Newman projections for the three possible staggered conformations of phenylsuccinic acid and determine which is the major one in acetone- d_6 solution.

Problem R-256 ($C_{22}H_{20}O$). The 200 MHz ¹H spectrum of R-256 is provided.

(a)	DBE	
(a)		

(b) For each of the multiplets at δ 4.0, 3.1 and 2.8 show a "coupling tree" (work on the spectrum), indicate the type of multiplet and the coupling constants derived from each multiplet. Report them in the standard format

δ 4.0 _____

δ 3.1 _____

δ 2.8 _____

- (c) What type of pattern is this (e.g., AA'BB')?
- (d) Suggest a partial structure for the molecular fragment which includes these protons.

(e) There is a strong IR absorption at 1695 cm⁻¹. Suggest a structure for compound **R-256**. If you have more than one possible structure, circle the one you like best.

