February 27-March 3: Advanced machine learning and data analysis for the physical sciences

Morten Hjorth-Jensen^{1,2}

¹Department of Physics and Center for Computing in Science Education, University of Oslo, Norway ²Department of Physics and Astronomy and Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan, USA

February 27-March 3, 2023

Plans for February 20-24

- Finalizing discussion of Convolutional Neural Networks (CNNs)
- Discussion of recurrent neural networks (RNNs)
- Video of lecture TBA
- Reading recommendations:
 - 1. For neural networks we recommend Goodfellow et al chapters 6 and 7. For CNNs, see Goodfellow et al chapter 9 and for RNNs, see chapter 10. See also chapter 11 and 12 on practicalities and applications
 - 2. Reading suggestions for implementation of CNNs and RNNs: Aurelien Geron's chapters 13 and 14.

Excellent lectures on CNNs and Neural Networks.

- Video on Deep Learning
- Video on Convolutional Neural Networks from MIT
- Video on CNNs from Stanford

 $_{\mathrm{m}}$

And Lecture material on CNNs.

- Lectures from IN5400 spring 2019
- Lectures from IN5400 spring 2021
- See also Michael Nielsen's Lectures

CNNs in more detail

Let assume we have an input matrix I of dimensionality 3×3 and a 2×2 filter W given by the following matrices

$$m{I} = egin{bmatrix} i_{00} & i_{01} & i_{02} \ i_{10} & i_{11} & i_{12} \ i_{20} & i_{21} & i_{22} \ \end{bmatrix},$$

and

$$\boldsymbol{W} = \begin{bmatrix} w_{00} & w_{01} \\ w_{10} & w_{11} \end{bmatrix}.$$

We introduce now the hyperparameter S stride. Stride represents how the filter W moves the convolution process on the matrix I. We strongly recommend the repository on Arithmetic of deep learning by Dumoulin and Visin

Here we set the stride equal to S=1, which means that, starting with the element i_{00} , the filter will act on 2×2 submatrices each time, starting with the upper corner and moving according to the stride value column by column.

Here we perform the operation

$$S(i,j) = (I * W)(i,j) = \sum_{m} \sum_{n} I(i-m, j-n)W(m, n),$$

and obtain

$$\boldsymbol{S} = \begin{bmatrix} i_{00}w_{00} + i_{01}w_{01} + i_{10}w_{10} + i_{11}w_{11} & i_{01}w_{00} + i_{02}w_{01} + i_{11}w_{10} + i_{12}w_{11} \\ i_{10}w_{00} + i_{11}w_{01} + i_{20}w_{10} + i_{21}w_{11} & i_{11}w_{00} + i_{12}w_{01} + i_{21}w_{10} + i_{22}w_{11} \end{bmatrix}.$$

We can rewrite this operation in terms of a matrix-vector multiplication by defining a new vector where we flatten out the inputs as a vector \mathbf{I}' of length 9 and a matrix \mathbf{W}' with dimension 4×9 as

$$m{I'} = egin{bmatrix} i_{00} \\ i_{01} \\ i_{02} \\ i_{10} \\ i_{11} \\ i_{12} \\ i_{20} \\ i_{21} \\ i_{22} \end{bmatrix},$$

and the new matrix

$$\boldsymbol{W}' = \begin{bmatrix} w_{00} & w_{01} & 0 & w_{10} & w_{11} & 0 & 0 & 0 & 0 \\ 0 & w_{00} & w_{01} & 0 & w_{10} & w_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & w_{00} & w_{01} & 0 & w_{10} & w_{11} & 0 \\ 0 & 0 & 0 & 0 & w_{00} & w_{01} & 0 & w_{10} & w_{11} \end{bmatrix}.$$

We see easily that performing the matrix-vector multiplication $\mathbf{W}'\mathbf{I}'$ is the same as the above convolution with stride S=1, that is

$$S = (\boldsymbol{W} * \boldsymbol{I}),$$

is now given by W'I' which is a vector of length 4 instead of the originally resulting 2×2 output matrix.

The collection of kernels/filters W defining a discrete convolution has a shape corresponding to some permutation of (n, m, k_1, \ldots, k_N) , where

 $n \equiv$ number of output feature maps, $m \equiv$ number of input feature maps, $k_j \equiv$ kernel size along axis j.

The following properties affect the output size o_j of a convolutional layer along axis j:

- 1. i_j : input size along axis j,
- 2. k_j : kernel/filter size along axis j,
- 3. stride (distance between two consecutive positions of the kernel/filter) along axis j,
- 4. zero padding (number of zeros concatenated at the beginning and at the end of an axis) along axis j.

For instance, the above examples shows a 2×2 kernel/filter \boldsymbol{W} applied to a 3×3 input padded with a 0×0 border of zeros using 1×1 strides.

Note that strides constitute a form of **subsampling**. As an alternative to being interpreted as a measure of how much the kernel/filter is translated, strides can also be viewed as how much of the output is retained. For instance, moving the kernel by hops of two is equivalent to moving the kernel by hops of one but retaining only odd output elements.

Pooling

In addition to discrete convolutions themselves, *pooling* operations make up another important building block in CNNs. Pooling operations reduce the size of feature maps by using some function to summarize subregions, such as taking the average or the maximum value.

Pooling works by sliding a window across the input and feeding the content of the window to a *pooling function*. In some sense, pooling works very much like a discrete convolution, but replaces the linear combination described by the kernel with some other function. Poolin provides an example for average pooling, and does the same for max pooling.

The following properties affect the output size o_j of a pooling layer along axis j:

- 1. i_j : input size along axis j,
- 2. k_i : pooling window size along axis j,
- 3. s_j : stride (distance between two consecutive positions of the pooling window) along axis j.

The analysis of the relationship between convolutional layer properties is eased by the fact that they don't interact across axes, i.e., the choice of kernel size, stride and zero padding along axis j only affects the output size of axis j. Because of that, we will focus on the following simplified setting:

- 1. 2-D discrete convolutions (N=2),
- 2. square inputs $(i_1 = i_2 = i)$,
- 3. square kernel size $(k_1 = k_2 = k)$,
- 4. same strides along both axes $(s_1 = s_2 = s)$,
- 5. same zero padding along both axes $(p_1 = p_2 = p)$.

This facilitates the analysis and the visualization, but keep in mind that the results outlined here also generalize to the N-D and non-square cases.

No zero padding, unit strides

The simplest case to analyze is when the kernel just slides across every position of the input (i.e., s = 1 and p = 0).

For any i and k, and for s = 1 and p = 0,

$$o = (i - k) + 1.$$

Zero padding, unit strides

To factor in zero padding (i.e., only restricting to s = 1), let's consider its effect on the effective input size: padding with p zeros changes the effective input size from i to i + 2p. In the general case, we can infer the following relationship

For any i, k and p, and for s = 1,

$$o = (i - k) + 2p + 1.$$

Half (same) padding

Having the output size be the same as the input size (i.e., o = i) can be a desirable property:

For any i and for k odd $(k = 2n + 1, n \in \mathbb{N})$, s = 1 and $p = \lfloor k/2 \rfloor = n$,

$$o = i + 2\lfloor k/2 \rfloor - (k-1)$$
$$= i + 2n - 2n$$
$$= i.$$

Full padding

While convolving a kernel generally decreases the output size with respect to the input size, sometimes the opposite is required. This can be achieved with proper zero padding:

For any i and k, and for p = k - 1 and s = 1,

$$o = i + 2(k-1) - (k-1)$$

= $i + (k-1)$.

This is sometimes referred to as full padding, because in this setting every possible partial or complete superimposition of the kernel on the input feature map is taken into account.

Pooling arithmetic

In a neural network, pooling layers provide invariance to small translations of the input. The most common kind of pooling is **max pooling**, which consists in splitting the input in (usually non-overlapping) patches and outputting the maximum value of each patch. Other kinds of pooling exist, e.g., mean or average pooling, which all share the same idea of aggregating the input locally by applying a non-linearity to the content of some patches.

Since pooling does not involve zero padding, the relationship describing the general case is as follows:

For any i, k and s,

$$o = \left\lfloor \frac{i - k}{s} \right\rfloor + 1.$$

Strategies for CNNs

Building convolutional neural networks in Tensorflow and Keras

As discussed above, CNNs are neural networks built from the assumption that the inputs to the network are 2D images. This is important because the number of features or pixels in images grows very fast with the image size, and an enormous number of weights and biases are needed in order to build an accurate network.

As before, we still have our input, a hidden layer and an output. What's novel about convolutional networks are the **convolutional** and **pooling** layers stacked in pairs between the input and the hidden layer. In addition, the data is no longer represented as a 2D feature matrix, instead each input is a number of 2D matrices, typically 1 for each color dimension (Red, Green, Blue).

Setting it up

It means that to represent the entire dataset of images, we require a 4D matrix or **tensor**. This tensor has the dimensions:

 $(n_{inputs}, n_{pixels, width}, n_{pixels, height}, depth).$

The MNIST dataset again

The MNIST dataset consists of grayscale images with a pixel size of 28×28 , meaning we require $28 \times 28 = 724$ weights to each neuron in the first hidden layer.

If we were to analyze images of size 128×128 we would require $128 \times 128 = 16384$ weights to each neuron. Even worse if we were dealing with color images, as most images are, we have an image matrix of size 128×128 for each color dimension (Red, Green, Blue), meaning 3 times the number of weights = 49152 are required for every single neuron in the first hidden layer.

Strong correlations

Images typically have strong local correlations, meaning that a small part of the image varies little from its neighboring regions. If for example we have an image of a blue car, we can roughly assume that a small blue part of the image is surrounded by other blue regions.

Therefore, instead of connecting every single pixel to a neuron in the first hidden layer, as we have previously done with deep neural networks, we can instead connect each neuron to a small part of the image (in all 3 RGB depth dimensions). The size of each small area is fixed, and known as a receptive.

Layers of a CNN

The layers of a convolutional neural network arrange neurons in 3D: width, height and depth. The input image is typically a square matrix of depth 3.

A **convolution** is performed on the image which outputs a 3D volume of neurons. The weights to the input are arranged in a number of 2D matrices, known as **filters**.

Each filter slides along the input image, taking the dot product between each small part of the image and the filter, in all depth dimensions. This is then

passed through a non-linear function, typically the **Rectified Linear (ReLu)** function, which serves as the activation of the neurons in the first convolutional layer. This is further passed through a **pooling layer**, which reduces the size of the convolutional layer, e.g. by taking the maximum or average across some small regions, and this serves as input to the next convolutional layer.

Systematic reduction

By systematically reducing the size of the input volume, through convolution and pooling, the network should create representations of small parts of the input, and then from them assemble representations of larger areas. The final pooling layer is flattened to serve as input to a hidden layer, such that each neuron in the final pooling layer is connected to every single neuron in the hidden layer. This then serves as input to the output layer, e.g. a softmax output for classification.

Prerequisites: Collect and pre-process data

```
# import necessary packages
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
# ensure the same random numbers appear every time
np.random.seed(0)
# display images in notebook
%matplotlib inline
plt.rcParams['figure.figsize'] = (12,12)
# download MNIST dataset
digits = datasets.load_digits()
# define inputs and labels
inputs = digits.images
labels = digits.target
# RGB images have a depth of 3
# our images are grayscale so they should have a depth of 1
inputs = inputs[:,:,:,np.newaxis]
print("inputs = (n_inputs, pixel_width, pixel_height, depth) = " + str(inputs.shape))
print("labels = (n_inputs) = " + str(labels.shape))
# choose some random images to display
n_inputs = len(inputs)
indices = np.arange(n_inputs)
random_indices = np.random.choice(indices, size=5)
for i, image in enumerate(digits.images[random_indices]):
    plt.subplot(1, 5, i+1)
    plt.axis('off')
    plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title("Label: %d" % digits.target[random_indices[i]])
```

```
plt.show()
```

Importing Keras and Tensorflow

```
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Sequential
                                                    #This allows appending layers to existing mod
from tensorflow.keras.layers import Dense
                                                    #This allows defining the characteristics of
from tensorflow.keras import optimizers
                                                    #This allows using whichever optimiser we wan
from tensorflow.keras import regularizers
                                                    #This allows using whichever regularizer we w
from tensorflow.keras.utils import to_categorical
                                                    #This allows using categorical cross entropy
#from tensorflow.keras import Conv2D
#from tensorflow.keras import MaxPooling2D
#from tensorflow.keras import Flatten
from sklearn.model_selection import train_test_split
# representation of labels
labels = to_categorical(labels)
# split into train and test data
# one-liner from scikit-learn library
train_size = 0.8
test_size = 1 - train_size
X_train, X_test, Y_train, Y_test = train_test_split(inputs, labels, train_size=train_size,
                                                    test_size=test_size)
```

Running with Keras

```
def create_convolutional_neural_network_keras(input_shape, receptive_field,
                                                n_filters, n_neurons_connected, n_categories,
                                                eta, lmbd):
    model = Sequential()
    model.add(layers.Conv2D(n_filters, (receptive_field, receptive_field), input_shape=input_shape
    activation='relu', kernel_regularizer=regularizers.12(lmbd)))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dense(n_neurons_connected, activation='relu', kernel_regularizer=regularizer
    model.add(layers.Dense(n_categories, activation='softmax', kernel_regularizer=regularizers.12
    sgd = optimizers.SGD(lr=eta)
    model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
    return model
epochs = 100
batch_size = 100
input_shape = X_train.shape[1:4]
receptive_field = 3
n_filters = 10
n_neurons_connected = 50
n_{categories} = 10
eta_vals = np.logspace(-5, 1, 7)
lmbd_vals = np.logspace(-5, 1, 7)
```

Final part

Final visualization

```
# visual representation of grid search
# uses seaborn heatmap, could probably do this in matplotlib
import seaborn as sns
sns.set()
train_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))
test_accuracy = np.zeros((len(eta_vals), len(lmbd_vals)))
for i in range(len(eta_vals)):
    for j in range(len(lmbd_vals)):
        CNN = CNN_keras[i][\bar{j}]
        train_accuracy[i][j] = CNN.evaluate(X_train, Y_train)[1]
        test_accuracy[i][j] = CNN.evaluate(X_test, Y_test)[1]
fig, ax = plt.subplots(figsize = (10, 10))
sns.heatmap(train_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Training Accuracy")
ax.set_ylabel("$\eta$")
ax.set_xlabel("$\lambda$")
plt.show()
fig, ax = plt.subplots(figsize = (10, 10))
sns heatmap(test_accuracy, annot=True, ax=ax, cmap="viridis")
ax.set_title("Test Accuracy")
ax.set_ylabel("$\eta$")
ax.set_xlabel("$\lambda$")
plt.show()
```

The CIFAR01 data set

The CIFAR10 dataset contains 60,000 color images in 10 classes, with 6,000 images in each class. The dataset is divided into 50,000 training images and

10,000 testing images. The classes are mutually exclusive and there is no overlap between them.

```
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

# We import the data set
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# Normalize pixel values to be between 0 and 1 by dividing by 255.
train_images, test_images = train_images / 255.0, test_images / 255.0
```

Verifying the data set

To verify that the dataset looks correct, let's plot the first 25 images from the training set and display the class name below each image.

Set up the model

The 6 lines of code below define the convolutional base using a common pattern: a stack of Conv2D and MaxPooling2D layers.

As input, a CNN takes tensors of shape (image height, $image_width$, $color_channels$), ignoring the batch size. If yet a constant of the property of the

```
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
# Let's display the architecture of our model so far.
model.summary()
```

You can see that the output of every Conv2D and MaxPooling2D layer is a 3D tensor of shape (height, width, channels). The width and height dimensions tend

to shrink as you go deeper in the network. The number of output channels for each Conv2D layer is controlled by the first argument (e.g., 32 or 64). Typically, as the width and height shrink, you can afford (computationally) to add more output channels in each Conv2D layer.

Add Dense layers on top

To complete our model, you will feed the last output tensor from the convolutional base (of shape (4, 4, 64)) into one or more Dense layers to perform classification. Dense layers take vectors as input (which are 1D), while the current output is a 3D tensor. First, you will flatten (or unroll) the 3D output to 1D, then add one or more Dense layers on top. CIFAR has 10 output classes, so you use a final Dense layer with 10 outputs and a softmax activation.

```
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
Here's the complete architecture of our model.
model.summary()
```

As you can see, our (4, 4, 64) outputs were flattened into vectors of shape (1024) before going through two Dense layers.

Compile and train the model

Finally, evaluate the model

```
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(test_acc)
```

Recurrent neural networks (RNNs): Overarching view

Till now our focus has been, including convolutional neural networks as well, on feedforward neural networks. The output or the activations flow only in one direction, from the input layer to the output layer.

A recurrent neural network (RNN) looks very much like a feedforward neural network, except that it also has connections pointing backward.

RNNs are used to analyze time series data such as stock prices, and tell you when to buy or sell. In autonomous driving systems, they can anticipate car trajectories and help avoid accidents. More generally, they can work on sequences of arbitrary lengths, rather than on fixed-sized inputs like all the nets we have discussed so far. For example, they can take sentences, documents, or audio samples as input, making them extremely useful for natural language processing systems such as automatic translation and speech-to-text.

A simple example first

```
# Start importing packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Dense, SimpleRNN, LSTM, GRU
from tensorflow.keras import optimizers
from tensorflow.keras import regularizers
from tensorflow.keras.utils import to_categorical
# convert into dataset matrix
def convertToMatrix(data, step):
X, Y = [], []
for i in range(len(data)-step):
 d=i+step
 X append(data[i:d,])
 Y.append(data[d,])
return np.array(X), np.array(Y)
step = 4
N = 1000
Tp = 800
t=np.arange(0,N)
x=np.sin(0.02*t)+2*np.random.rand(N)
df = pd.DataFrame(x)
df.head()
plt.plot(df)
plt.show()
values=df.values
train,test = values[0:Tp,:], values[Tp:N,:]
# add step elements into train and test
test = np.append(test,np.repeat(test[-1,],step))
```

```
train = np.append(train,np.repeat(train[-1,],step))
trainX,trainY =convertToMatrix(train,step)
testX,testY =convertToMatrix(test,step)
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
model = Sequential()
model.add(SimpleRNN(units=32, input_shape=(1,step), activation="relu"))
model.add(Dense(8, activation="relu"))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='rmsprop')
model.summary()
model.fit(trainX,trainY, epochs=100, batch_size=16, verbose=2)
trainPredict = model.predict(trainX)
testPredict= model.predict(testX)
predicted=np.concatenate((trainPredict,testPredict),axis=0)
trainScore = model.evaluate(trainX, trainY, verbose=0)
print(trainScore)
df = pd.DataFrame(x)
pred = pd.DataFrame(predicted)
plt.plot(df,c="b")
plt.plot(pred,c="r")
plt.show()
```

Basics of RNNs with examples: Ordinary differential equation

An extrapolation example

The following code provides an example of how recurrent neural networks can be used to extrapolate to unknown values of physics data sets. Specifically, the data sets used in this program come from a quantum mechanical many-body calculation of energies as functions of the number of particles.

```
# For matrices and calculations
import numpy as np
# For machine learning (backend for keras)
import tensorflow as tf
# User-friendly machine learning library
# Front end for TensorFlow
import tensorflow.keras
# Different methods from Keras needed to create an RNN
# This is not necessary but it shortened function calls
# that need to be used in the code.
from tensorflow.keras import datasets, layers, models
from tensorflow.keras.layers import Input
from tensorflow.keras import regularizers
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Dense, SimpleRNN, LSTM, GRU
# For timing the code
from timeit import default_timer as timer
```

Formatting the Data

The way the recurrent neural networks are trained in this program differs from how machine learning algorithms are usually trained. Typically a machine learning algorithm is trained by learning the relationship between the x data and the y data. In this program, the recurrent neural network will be trained to recognize the relationship in a sequence of y values. This is type of data formatting is typically used for time series forecasting, but it can also be used in any extrapolation (time series forecasting is just a specific type of extrapolation along the time axis). This method of data formatting does not use the x data and assumes that the y data are evenly spaced.

For a standard machine learning algorithm, the training data has the form of (x,y) so the machine learning algorithm learns to associate a y value with a given x value. This is useful when the test data has x values within the same range as the training data. However, for this application, the x values of the test data are outside of the x values of the training data and the traditional method of training a machine learning algorithm does not work as well. For this reason, the recurrent neural network is trained on sequences of y values of the form ((y1,y2),y3), so that the network is concerned with learning the pattern of the y data and not the relation between the x and y data. As long as the pattern of y data outside of the training region stays relatively stable compared to what was inside the training region, this method of training can produce accurate extrapolations to y values far removed from the training data set.

```
# FORMAT_DATA

def format_data(data, length_of_sequence = 2):

"""

Inputs:
    data(a numpy array): the data that will be the inputs to the recurrent neural network

length_of_sequence (an int): the number of elements in one iteration of the sequence patter. For a function approximator use length_of_sequence = 2.

Returns:
    rnn_input (a 3D numpy array): the input data for the recurrent neural network. It dimensions are length of data - length of sequence, length of sequence, dimnsion of data
    rnn_output (a numpy array): the training data for the neural network

Formats data to be used in a recurrent neural network.

"""
```

```
X, Y = [], []
   for i in range(len(data)-length_of_sequence):
        # Get the next length_of_sequence elements
       a = data[i:i+length_of_sequence]
        # Get the element that immediately follows that
       b = data[i+length_of_sequence]
        # Reshape so that each data point is contained in its own array
        a = np.reshape (a, (len(a), 1))
       X.append(a)
       Y.append(b)
   rnn_input = np.array(X)
   rnn_output = np.array(Y)
   return rnn_input, rnn_output
# ## Defining the Recurrent Neural Network Using Keras
# The following method defines a simple recurrent neural network in keras consisting of one input
def rnn(length_of_sequences, batch_size = None, stateful = False):
        Inputs:
            length_of_sequences (an int): the number of y values in "x data". This is determined
                when the data is formatted
            batch_size (an int): Default value is None. See Keras documentation of SimpleRNN.
            stateful (a boolean): Default value is False. See Keras documentation of SimpleRNN.
            model (a Keras model): The recurrent neural network that is built and compiled by thi
                method
       Builds and compiles a recurrent neural network with one hidden layer and returns the mode
    # Number of neurons in the input and output layers
    in_out_neurons = 1
    # Number of neurons in the hidden layer
   hidden_neurons = 200
    # Define the input layer
    inp = Input(batch_shape=(batch_size,
                length_of_sequences,
                in_out_neurons))
    # Define the hidden layer as a simple RNN layer with a set number of neurons and add it to
    # the network immediately after the input layer
   rnn = SimpleRNN(hidden_neurons,
                   return_sequences=False,
                    stateful = stateful,
                   name="RNN")(inp)
    # Define the output layer as a dense neural network layer (standard neural network layer)
    #and add it to the network immediately after the hidden layer.
   dens = Dense(in_out_neurons,name="dense")(rnn)
    # Create the machine learning model starting with the input layer and ending with the
    # output layer
   model = Model(inputs=[inp],outputs=[dens])
    # Compile the machine learning model using the mean squared error function as the loss
    # function and an Adams optimizer.
   model.compile(loss="mean_squared_error", optimizer="adam")
   return model
```

Predicting New Points With A Trained Recurrent Neural Network

```
def test_rnn (x1, y_test, plot_min, plot_max):
        Inputs:
             x1 (a list or numpy array): The complete x component of the data set
             y_test (a list or numpy array): The complete y component of the data set
             plot_min (an int or float): the smallest x value used in the training data plot_max (an int or float): the largest x value used in the training data
            None.
        Uses a trained recurrent neural network model to predict future points in the
        series. Computes the MSE of the predicted data set from the true data set, saves
        the predicted data set to a csv file, and plots the predicted and true data sets w
        while also displaying the data range used for training.
    # Add the training data as the first dim points in the predicted data array as these
    # are known values.
    y_pred = y_test[:dim].tolist()
    # Generate the first input to the trained recurrent neural network using the last two
    # points of the training data. Based on how the network was trained this means that it # will predict the first point in the data set after the training data. All of the
    # brackets are necessary for Tensorflow.
next_input = np.array([[[y_test[dim-2]], [y_test[dim-1]]]])
    # Save the very last point in the training data set. This will be used later. last = [y_test[dim-1]]
    # Iterate until the complete data set is created.
    for i in range (dim, len(y_test)):
         # Predict the next point in the data set using the previous two points.
        next = model.predict(next_input)
        # Append just the number of the predicted data set
        y_pred.append(next[0][0])
        # Create the input that will be used to predict the next data point in the data set.
        next_input = np.array([[last, next[0]]], dtype=np.float64)
        last = next
    # Print the mean squared error between the known data set and the predicted data set.
    print('MSE: ', np.square(np.subtract(y_test, y_pred)).mean())
    # Save the predicted data set as a csv file for later use
    name = datatype + 'Predicted'+str(dim)+'.csv'
    np.savetxt(name, y_pred, delimiter=',')
    # Plot the known data set and the predicted data set. The red box represents the region that
    # for the training data.
    fig, ax = plt.subplots()
    ax.plot(x1, y_test, label="true", linewidth=3)
    ax.plot(x1, y_pred, 'g-.',label="predicted", linewidth=4)
    # Created a red region to represent the points used in the training data.
    ax.axvspan(plot_min, plot_max, alpha=0.25, color='red')
    plt.show()
# Check to make sure the data set is complete
assert len(X_tot) == len(y_tot)
# This is the number of points that will be used in as the training data
# Separate the training data from the whole data set
```

```
X_train = X_tot[:dim]
y_train = y_tot[:dim]
# Generate the training data for the RNN, using a sequence of 2
rnn_input, rnn_training = format_data(y_train, 2)
# Create a recurrent neural network in Keras and produce a summary of the
# machine learning model
model = rnn(length_of_sequences = rnn_input.shape[1])
model.summary()
# Start the timer. Want to time training+testing
start = timer()
# Fit the model using the training data genenerated above using 150 training iterations and a 5%
# validation split. Setting verbose to True prints information about each training iteration.
hist = model.fit(rnn_input, rnn_training, batch_size=None, epochs=150,
                 verbose=True, validation_split=0.05)
for label in ["loss", "val_loss"]:
    plt.plot(hist.history[label],label=label)
plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("The final validation loss: {}".format(hist.history["val_loss"][-1]))
plt.legend()
plt.show()
# Use the trained neural network to predict more points of the data set
test_rnn(X_tot, y_tot, X_tot[0], X_tot[dim-1])
# Stop the timer and calculate the total time needed.
end = timer()
print('Time: ', end-start)
```

Other Things to Try

Changing the size of the recurrent neural network and its parameters can drastically change the results you get from the model. The below code takes the simple recurrent neural network from above and adds a second hidden layer, changes the number of neurons in the hidden layer, and explicitly declares the activation function of the hidden layers to be a sigmoid function. The loss function and optimizer can also be changed but are kept the same as the above network. These parameters can be tuned to provide the optimal result from the network. For some ideas on how to improve the performance of a recurrent neural network.

```
Builds and compiles a recurrent neural network with two hidden layers and returns the mod
    # Number of neurons in the input and output layers
    in_out_neurons = 1
    # Number of neurons in the hidden layer, increased from the first network
    hidden_neurons = 500
    # Define the input layer
    inp = Input(batch_shape=(batch_size,
                length_of_sequences,
                in_out_neurons))
    # Create two hidden layers instead of one hidden layer. Explicitly set the activation
    # function to be the sigmoid function (the default value is hyperbolic tangent)
    rnn1 = SimpleRNN(hidden_neurons,
                    return_sequences=True, # This needs to be True if another hidden layer is to
                    stateful = stateful, activation = 'sigmoid',
                    name="RNN1")(inp)
    rnn2 = SimpleRNN(hidden_neurons,
                    return_sequences=False, activation = 'sigmoid',
                    stateful = stateful,
                    name="RNN2")(rnn1)
    # Define the output layer as a dense neural network layer (standard neural network layer)
    #and add it to the network immediately after the hidden layer.
    dens = Dense(in_out_neurons,name="dense")(rnn2)
    # Create the machine learning model starting with the input layer and ending with the
    # output layer
    model = Model(inputs=[inp], outputs=[dens])
    # Compile the machine learning model using the mean squared error function as the loss
    # function and an Adams optimizer.
    model.compile(loss="mean_squared_error", optimizer="adam")
    return model
# Check to make sure the data set is complete
assert len(X_tot) == len(y_tot)
# This is the number of points that will be used in as the training data
dim=12
# Separate the training data from the whole data set
X_train = X_tot[:dim]
y_train = y_tot[:dim]
# Generate the training data for the RNN, using a sequence of 2
rnn_input, rnn_training = format_data(y_train, 2)
# Create a recurrent neural network in Keras and produce a summary of the
# machine learning model
model = rnn_2layers(length_of_sequences = 2)
model.summary()
# Start the timer. Want to time training+testing
start = timer()
 \textit{\# Fit the model using the training data generated above using 150 training iterations and a 5\% } \\
# validation split. Setting verbose to True prints information about each training iteration.
hist = model.fit(rnn_input, rnn_training, batch_size=None, epochs=150,
                 verbose=True, validation_split=0.05)
# This section plots the training loss and the validation loss as a function of training iteratio
```

```
# This is not required for analyzing the couple cluster data but can help determine if the network
# being overtrained.
for label in ["loss","val_loss"]:
    plt.plot(hist.history[label],label=label)

plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("The final validation loss: {}".format(hist.history["val_loss"][-1]))
plt.legend()
plt.show()

# Use the trained neural network to predict more points of the data set
test_rnn(X_tot, y_tot, X_tot[0], X_tot[dim-1])
# Stop the timer and calculate the total time needed.
end = timer()
print('Time: ', end-start)
```

Other Types of Recurrent Neural Networks

Besides a simple recurrent neural network layer, there are two other commonly used types of recurrent neural network layers: Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). For a short introduction to these layers see https://medium.com/mindboard/lstm-vs-gru-experimental-comparison-955820c21e8b and https://medium.com/mindboard/lstm-vs-gru-experimental-comparison-955820c21e8b.

The first network created below is similar to the previous network, but it replaces the SimpleRNN layers with LSTM layers. The second network below has two hidden layers made up of GRUs, which are preceded by two dense (feeddorward) neural network layers. These dense layers "preprocess" the data before it reaches the recurrent layers. This architecture has been shown to improve the performance of recurrent neural networks (see the link above and also https://arxiv.org/pdf/1807.02857.pdf.

```
def lstm_2layers(length_of_sequences, batch_size = None, stateful = False):
        Inputs:
            length_of_sequences (an int): the number of y values in "x data". This is determined
                when the data is formatted
            batch_size (an int): Default value is None. See Keras documentation of SimpleRNN.
            stateful (a boolean): Default value is False. See Keras documentation of SimpleRNN.
            model (a Keras model): The recurrent neural network that is built and compiled by thi
                method.
        Builds and compiles a recurrent neural network with two LSTM hidden layers and returns th
    # Number of neurons on the input/output layer and the number of neurons in the hidden layer
    in_out_neurons = 1
   hidden_neurons = 250
    # Input Layer
    inp = Input(batch_shape=(batch_size,
                length_of_sequences,
                in_out_neurons))
    # Hidden layers (in this case they are LSTM layers instead if SimpleRNN layers)
    rnn= LSTM(hidden_neurons,
                   return_sequences=True,
                    stateful = stateful,
```

```
name="RNN", use_bias=True, activation='tanh')(inp)
   rnn1 = LSTM(hidden_neurons,
                    return_sequences=False,
                    stateful = stateful,
name="RNN1", use_bias=True, activation='tanh')(rnn)
    # Output layer
   dens = Dense(in_out_neurons,name="dense")(rnn1)
    # Define the midel
   model = Model(inputs=[inp],outputs=[dens])
    # Compile the model
   model.compile(loss='mean_squared_error', optimizer='adam')
    # Return the model
   return model
def dnn2_gru2(length_of_sequences, batch_size = None, stateful = False):
        Inputs:
            length_of_sequences (an int): the number of y values in "x data". This is determined
                when the data is formatted
            batch_size (an int): Default value is None. See Keras documentation of SimpleRNN.
            stateful (a boolean): Default value is False. See Keras documentation of SimpleRNN.
        Returns:
            model (a Keras model): The recurrent neural network that is built and compiled by thi
                method
        Builds and compiles a recurrent neural network with four hidden layers (two dense followe
        two GRU layers) and returns the model.
    # Number of neurons on the input/output layers and hidden layers
    in_out_neurons = 1
   hidden_neurons = 250
    # Input layer
   inp = Input(batch_shape=(batch_size,
                length_of_sequences,
                in_out_neurons))
    # Hidden Dense (feedforward) layers
   dnn = Dense(hidden_neurons/2, activation='relu', name='dnn')(inp)
   dnn1 = Dense(hidden_neurons/2, activation='relu', name='dnn1')(dnn)
    # Hidden GRU layers
   rnn1 = GRU(hidden_neurons,
                    return_sequences=True,
                    stateful = stateful,
                    name="RNN1", use_bias=True)(dnn1)
   rnn = GRU(hidden_neurons,
                    return_sequences=False,
                    stateful = stateful,
name="RNN", use_bias=True)(rnn1)
    # Output layer
   dens = Dense(in_out_neurons,name="dense")(rnn)
    # Define the model
   model = Model(inputs=[inp],outputs=[dens])
    # Compile the mdoel
   model.compile(loss='mean_squared_error', optimizer='adam')
    # Return the model
   return model
# Check to make sure the data set is complete
assert len(X_tot) == len(y_tot)
# This is the number of points that will be used in as the training data
dim=12
```

```
# Separate the training data from the whole data set
X_train = X_tot[:dim]
y_train = y_tot[:dim]
# Generate the training data for the RNN, using a sequence of 2
rnn_input, rnn_training = format_data(y_train, 2)
# Create a recurrent neural network in Keras and produce a summary of the
# machine learning model
# Change the method name to reflect which network you want to use
model = dnn2_gru2(length_of_sequences = 2)
model.summary()
# Start the timer. Want to time training+testing
start = timer()
# Fit the model using the training data genenerated above using 150 training iterations and a 5%
# validation split. Setting verbose to True prints information about each training iteration.
hist = model.fit(rnn_input, rnn_training, batch_size=None, epochs=150,
                 verbose=True, validation_split=0.05)
# This section plots the training loss and the validation loss as a function of training iteration
# This is not required for analyzing the couple cluster data but can help determine if the networ
# being overtrained.
for label in ["loss","val_loss"]:
    plt.plot(hist.history[label],label=label)
plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("The final validation loss: {}".format(hist.history["val_loss"][-1]))
plt.legend()
plt.show()
# Use the trained neural network to predict more points of the data set
test_rnn(X_tot, y_tot, X_tot[0], X_tot[dim-1])
# Stop the timer and calculate the total time needed.
end = timer()
print('Time: ', end-start)
# ### Training Recurrent Neural Networks in the Standard Way (i.e. learning the relationship betw
# Finally, comparing the performace of a recurrent neural network using the standard data formatt
# Check to make sure the data set is complete
assert len(X_tot) == len(y_tot)
# This is the number of points that will be used in as the training data
# Separate the training data from the whole data set
X_train = X_tot[:dim]
y_train = y_tot[:dim]
# Reshape the data for Keras specifications
X_train = X_train.reshape((dim, 1))
y_train = y_train.reshape((dim, 1))
```

```
# Create a recurrent neural network in Keras and produce a summary of the
# machine learning model
# Set the sequence length to 1 for regular data formatting
model = rnn(length_of_sequences = 1)
model.summary()
# Start the timer. Want to time training+testing
start = timer()
\# Fit the model using the training data generated above using 150 training iterations and a 5%
# validation split. Setting verbose to True prints information about each training iteration.
hist = model.fit(X_train, y_train, batch_size=None, epochs=150,
                 verbose=True, validation_split=0.05)
# This section plots the training loss and the validation loss as a function of training iteratio
# This is not required for analyzing the couple cluster data but can help determine if the networ.
# being overtrained.
for label in ["loss","val_loss"]:
    plt.plot(hist.history[label],label=label)
plt.ylabel("loss")
plt.xlabel("epoch")
plt.title("The final validation loss: {}".format(hist.history["val_loss"][-1]))
plt.legend()
plt.show()
# Use the trained neural network to predict the remaining data points
X_pred = X_tot[dim:]
X_pred = X_pred reshape((len(X_pred), 1))
y_model = model.predict(X_pred)
y_pred = np.concatenate((y_tot[:dim], y_model.flatten()))
# Plot the known data set and the predicted data set. The red box represents the region that was
# for the training data.
fig, ax = plt.subplots()
ax.plot(X_tot, y_tot, label="true", linewidth=3)
ax.plot(X_tot, y_pred, 'g-.',label="predicted", linewidth=4)
ax.legend()
# Created a red region to represent the points used in the training data.
ax.axvspan(X_tot[0], X_tot[dim], alpha=0.25, color='red')
plt.show()
# Stop the timer and calculate the total time needed.
end = timer()
print('Time: ', end-start)
```