Procédés sommatoires discrets

Feuille d'exercices #01

⊗ Partie A – Séries numériques

Exercice 1 — Étudier la nature de la série dont le terme général est le suivant :

$$a_{n} = \frac{n!}{n^{n}} \qquad b_{n} = \frac{e^{n}}{n!} \qquad c_{n} = e^{-\sqrt{\ln(n)}}$$

$$d_{n} = \frac{1}{n} (2 - \sqrt[n]{3})^{n} \qquad e_{n} = \arccos\left(\frac{n}{n+1}\right) \qquad f_{n} = \frac{1}{n\ln(n)}$$

$$g_{n} = \sin\left(\pi\sqrt{4n^{2}+1}\right) \qquad h_{n} = \sin\left(\pi\sqrt{n^{2}+1}\right) \qquad j_{n} = \sin\left(\frac{n^{2}}{n+1} \cdot \pi\right)$$

$$k_{n} = \frac{(-1)^{n}}{n\ln(n) + (-1)^{n}} \qquad p_{n} = (-1)^{n} \frac{(2n)!}{4^{n}(n!)^{2}} \qquad q_{n} = \sum_{k=n}^{+\infty} \frac{(-1)^{k}}{\sqrt{k}}$$

Exercice 2 — Étudier, éventuellement en fonction de $\alpha, \beta \in \mathbb{R}$, la nature de la série dont le terme général est le suivant :

$$a_{n} = \frac{\sqrt{n+1} - \sqrt{n}}{n} \quad b_{n} = \frac{n^{2\alpha}}{\alpha^{n} + \ln(n)} \qquad c_{n} = \frac{\ln(1 + n^{\beta})}{n^{\alpha}}$$

$$d_{n} = e^{-(\ln n)^{\alpha}} \qquad e_{n} = \frac{\pi}{2} - \arctan(n^{\alpha}) \qquad f_{n} = \frac{n^{\ln(n)}}{(\ln n)^{n}}$$

$$g_{n} = \frac{(-1)^{n}}{n^{\alpha} + (-1)^{n}} \qquad h_{n} = \int_{n\pi}^{(n+1)\pi} \frac{\sin^{2}(t)}{t^{2}} dt \quad j_{n} = \sum_{k=n}^{+\infty} \frac{(-1)^{k}}{k^{2}}$$

Exercice 3 — Pour $a, b, c \in \mathbb{R}$, déterminer la nature de la série de terme général :

$$u_n = \cos\left(\frac{a}{n}\right) + \sin\left(\frac{b}{n}\right) + \sin\left(\frac{c}{n}\right) - e^a \cdot \left(1 + \frac{b+c}{n}\right)^n$$

Exercice 4 — Séries de Bertrand

Étudier la nature de la série $\sum \frac{1}{n^{\alpha} \ln^{\beta}(n)}$ en fonction de $(\alpha, \beta) \in \mathbb{R}^2$.

Exercice 5 — Soit $(a, b) \in \mathbb{R}^2$. Déterminer la nature de la série :

$$\sum \left[\sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2} \right]$$

Calculer sa somme en cas de convergence.

Exercice 6 — Établir la convergence et calculer la somme des séries suivantes :

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+2)}; \quad \sum_{n=1}^{+\infty} \frac{1}{n(2n-1)}; \quad \sum_{n=1}^{+\infty} \frac{\lfloor \sqrt{n+1} \rfloor - \lfloor \sqrt{n} \rfloor}{n}$$

Exercice 7 — En utilisant l'égalité $\frac{1}{p+1} = \int_0^1 t^p \, dt$, calculer les sommes :

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}; \quad \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}; \quad \sum_{n=0}^{+\infty} \left(\frac{\pi}{4} - \sum_{k=0}^n \frac{(-1)^k}{2k+1}\right)$$

Exercice 8 —

- 1. Calculer, pour tout $n \in \mathbb{N}$, $1 + j^n + j^{2n}$ où $j = e^{\frac{2i\pi}{3}}$.
- 2. En déduire la valeur de $\sum_{n=0}^{+\infty} \frac{1}{(3n)!}$ dont on justifiera au préalable l'existence.

Exercice 9 — Règle de Raabe-Duhamel

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs vérifiant :

$$\frac{u_{n+1}}{u_n} = 1 + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right), \quad \text{où } \alpha \in \mathbb{R}$$

- 1. À quelle condition sur $\beta \in \mathbb{R}$ la suite $(\ln(n^{\beta}u_n))_{n \in \mathbb{N}^*}$ converge-t-elle?
- 2. En déduire la nature de $\sum u_n$ suivant la valeur de α .

Exercice 10 — On suppose que la suite réelle $(u_n)_{n\geqslant 1}$ est décroissante et que la série de terme général u_n converge. Montrer que $u_n = 0$ $\left(\frac{1}{n}\right)$.

On pourra s'intéresser à $S_{2n} - S_n$ après avoir posé $S_n = \sum_{k=1}^n u_k$.

Exercice 11 — Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs.

Montrer que $\sum u_n$ et $\sum \frac{u_n}{1+u_n}$ ont même nature.

Exercice 12 — Étudier la convergence de la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \sum_{k=1}^n \frac{1}{\sqrt{1+k^2}} - \ln(n)$$

Exercice 13 — On pose pour tous entiers naturels $n, p, I_n(p) = \int_0^1 (1 - x^p)^n dx$.

- 1. On suppose qu'une suite (u_n) vérifie $u_{n+1} u_n = -\frac{1}{np} + O\left(\frac{1}{n^2}\right)$. Montrer que la suite $(u_n + \ln(n)/p)_{n \in \mathbb{N}^*}$ converge.
- 2. Établir une relation de récurrence sur $(I_n(p))_{n \in \mathbb{N}^*}$ pour tout $p \in \mathbb{N}$.
- 3. Montrer l'existence d'un réel b tel que $I_n(p) \sim \frac{b}{n^{1/p}}$.
- 4. Déterminer le réel *b*.

Exercice 14 — Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par $u_0 \in \mathbb{R}$ et pour $n \in \mathbb{N}$, $u_{n+1} = \frac{e^{-u_n}}{n+1}$.

- 1. Déterminer les limites de u_n et nu_n .
- 2. Préciser la nature de la série $\sum (-1)^n u_n$.

Exercice 15 — Soient $\alpha > 0$ et la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par :

$$u_1 > 0$$
 et pour tout $n \in \mathbb{N}^*$, $u_{n+1} = u_n + \frac{1}{n^{\alpha} u_n}$

1. Pour $\alpha > 1$, montrer que (u_n) converge vers une limite ℓ et donner un équivalent de $u_n - \ell$.

2. Pour $\alpha \in]0,1]$, montrer que la suite (u_n) diverge et donner un équivalent de u_n à l'aide de la suite $u_{n+1}^2 - u_n^2$.

Exercice 16 — Transformations d'Abel

Soit $\sum u_n$ une série convergente.

- 1. Justifier la convergence de $\sum \frac{u_n}{n}$.
- 2. On suppose dans cette question que $\sum |u_{n+1} u_n|$ converge. Établir la convergence de la série $\sum u_n^2$ converge.

Exercice 17 — Soit $\sum a_n$ une série à termes positifs convergente.

On pose, pour tout $n \in \mathbb{N}$, $R_n = \sum_{k=n+1}^{+\infty} a_k$.

Montrer que $\sum R_n$ converge si et seulement si $\sum na_n$ converge puis justifier qu'en cas de convergence, les sommes sont égales.

longitude Exercice 18 — Donner un équivalent en +∞ de u_n et v_n avec :

$$u_n = \sum_{k=1}^n \frac{1}{k^{\alpha}} \quad (\alpha \in \mathbb{R}) \quad \text{et} \quad v_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \quad (\alpha > 1)$$

Exercice 19 — On pose, pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{1}{k + \sqrt{k}}$.

- 1. Donner un équivalent simple de S_n .
- 2. Montrer que $S_n = \ln(n) + \alpha + o(1)$, où $\alpha \in \mathbb{R}$.

Exercice 20 —

- 1. Soit $(u_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$ telle que $\frac{u_{n+1}}{u_n}\xrightarrow[n\to+\infty]{}0$. Montrer que $\sum u_n$ converge et que le reste au rang n est équivalent à u_{n+1} .
- 2. En déduire un équivalent de $\sum_{k=n+1}^{+\infty} e^{-k^2}$.

Exercice 21 —

1. Donner un équivalent simple de $\frac{\ln(2n)}{2n} - \frac{\ln(2n+1)}{2n+1}$.

- 2. Encadrer $\sum_{k=n}^{n+p} \frac{\ln(k)}{k^2}$ à l'aide d'intégrales pour tous $n, p \in \mathbb{N}^*$.
- 3. Prouver la convergence de $\sum_{n\geq 2} (-1)^n \frac{\ln(n)}{n}$ et donner un équivalent du reste.

Exercice 22 — On pose, pour tout $n \in \mathbb{N}^*$, $u_n = \frac{\ln(n+1) - \ln(n)}{n}$.

- 1. Montrer que $\sum u_n$ converge. On pose alors pour $n \in \mathbb{N}$, $R_n = \sum_{k=n+1}^{+\infty} u_k$.
- 2. Trouver un équivalent de R_n en $+\infty$.
- 3. À l'aide d'un équivalent de $u_k \frac{1}{k(k+1)}$, trouver un développement asymptotique de R_n de la forme :

$$R_n = \frac{1}{n \to +\infty} \frac{1}{n} + \frac{\alpha}{n^2} + o\left(\frac{1}{n^2}\right)$$

4. En déduire un équivalent $\sum_{k=n+1}^{+\infty} \frac{\ln(k)}{k(k+1)}$.

Exercice 23 — Soit $\sum u_n$ une série à termes positifs convergente. On note R_n son reste au rang n. On suppose que $u_n \underset{n \to +\infty}{\sim} R_n^2$. Déterminer un équivalent simple de u_n .

Exercice 24 — Soit $\sum u_n$ une série à termes positifs divergente. On note alors S_n sa somme partielle au rang n.

Prouver que pour tout $\alpha > 1$, $\sum \frac{u_n}{S_n^{\alpha}}$ converge à l'aide d'une comparaison série/intégrale.

Partie B - Familles sommables

Exercice 25 — Pour quelles valeurs de $z \in \mathbb{C}$ les familles sont-elles sommables?

$$\left(\frac{z^p}{q!}\right)_{(p,q)\in\mathbb{N}^2} \qquad \left(\frac{z^{pq}}{p!q!}\right)_{(p,q)\in\mathbb{N}^2} \qquad \left(\frac{(p+q)!}{p!q!}z^{p+q}\right)_{(p,q)\in\mathbb{N}^2}$$

Exercice 26 — Étudier la sommabilité de la famille $\left(\frac{(-1)^p}{q^p}\right)_{p,q\geqslant 2}$.

Exercice 27 — Pour $p, q \in \mathbb{N}^*$, on pose $u_{p,q} = \begin{cases} \frac{1}{p^2(q-p)!} & \text{si } p \leq q \\ 0 & \text{sinon} \end{cases}$

- 1. Montrer la sommabilité de $(u_{p,q})_{(p,q)\in\mathbb{N}^*\times\mathbb{N}^*}$
- 2. Calculer sa somme. *On admet pour cela que* $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Exercice 28 — Soit $q \in \mathbb{C}$ avec |q| < 1.

- 1. Montrer que la famille $(q^{|n|})_{n\in\mathbb{Z}}$ est sommable et calculer sa somme.
- 2. Soit $r \in [0,1[$ et $\theta \in \mathbb{R}$. Justifier l'existence et calculer $\sum_{n \in \mathbb{Z}} r^{|n|} e^{in\theta}$.

Exercice 29 — Soient $\alpha \in \mathbb{R}$ et $(a, b) \in \mathbb{C}^2$. Étudier la sommabilité des familles :

$$\left(\frac{1}{(p+q+1)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^2} \quad \left(\frac{a^pb^q}{(p+q)!}\right)_{(p,q)\in\mathbb{N}^2} \quad \left(\frac{1}{p^{\alpha}+q^{\alpha}}\right)_{(p,q)\in(\mathbb{N}^*)^2}$$

Exercice 30 — On note p(n) le nombre de chiffres de l'entier n écrit en base 10.

- 1. Établir l'égalité $\sum_{k=1}^{+\infty} kx^k = \frac{x}{(1-x)^2}$ pour tout $x \in]-1,1[$.
- 2. Justifier la sommabilité et calculer la somme de $\left(\frac{p(n)}{n(n+1)}\right)_{n\geqslant 1}$.

Exercice 31 — Préciser la nature des séries :

$$\sum (-1)^n (\zeta(n) - 1) \qquad \sum \frac{\zeta(n) - 1}{n} \qquad \sum \frac{(-1)^n}{n} \zeta(n)$$

On montrera que pour tout $x \in]-1, 1[, \ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^n.$

On rappelle que $\gamma = \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right)$.

Exercice 32 — Soient $a, b \in \mathbb{C}$ distincts tels que |a| < 1 et |b| < 1.

Montrer que
$$\sum_{n=0}^{+\infty} \frac{a^{n+1} - b^{n+1}}{a - b} = \frac{1}{1 - a - b + ab}$$
.

Exercice 33 — Établir que pour $x \in]-1,1[$,

$$\sum_{n=1}^{+\infty} \frac{x^n}{1-x^n} = \sum_{n=1}^{+\infty} d(n)x^n$$

où l'on a noté d(n) le nombre de diviseurs positifs de n.

Exercice 34 — Justifier la convergence et calculer, pour tout $z \in \mathbb{C}$ vérifiant |z| < 1,

$$\sum_{n=0}^{+\infty} \frac{z^{2^n}}{1 - z^{2^{n+1}}}$$

Exercice 35 — Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels positifs sommable. On pose :

$$\forall n \in \mathbb{N}, \quad u_n = n \cdot \sum_{k=n}^{+\infty} \frac{a_k}{k(k+1)}$$

Montrer que (u_n) est définie, établir la convergence de $\sum u_n$ et calculer sa somme.