# Milky Way 2A

# China Upgraded MilkyWay 2 Supercomputer

- What is Supercomputer
- Previous version of MilkyWay
- MilkyWay 2A specs
- Usage & Challenges

## What is Supercomputer

computer with a high level of computing performance compared to a general-purpose computer.

Performance measurement – floating-point operations per second

| Name              | MilkyWay2A                                         | Intel Core i7 – 7700K                           |
|-------------------|----------------------------------------------------|-------------------------------------------------|
| Computing Power   | 9.497×10 <sup>16</sup> floating-point operations/s | 5.1×10 <sup>9</sup> floating-point operations/s |
| Power Consumption | 18×106W (5.28×10 <sup>9</sup> flops/W)             | 91W (5.26×10 <sup>7</sup> flops/W)              |

### Previous Version

Milky Way

 $4.7 \times 10^{15}$  floating-point operations/s

Oct 2009

Rank 48 (June 2017)

National University of Defense Technology Changsha, China

Milky Way 2

5.49×10<sup>16</sup> floating-point operations/s

May 2013

Rank 2 (June 2017)

National University of Defense Technology Changsha, China (cause the whole school black out)

National Supercomputer Center Guangzhou, China (Sun Yat-Sen University, Zhongshan University)

### MilkyWay 2A Specs

Upgrades 1

Intel Xeon Phi Knights Corner accelerators to Matrix-2000 accelerators

(February 2015, US Department of Commerce banned export)

Accelerator — computer hardware used to perform some functions more efficiently than is possible in a more general-purpose CPU (example Graphic Card)





## MilkyWay 2A Specs

Upgrades 2 & 3

16000 nodes to 17792 nodes

each node

uses two matrix-2000 accelerators and two Intel Core Ivy Bridge CPUs (12 cores clocked at 2.2 GHz)  $5.3376 \times 10^{12} \ flops$ 

35,584 Ivy Bridge CPUs + 35,584 Matrix-2000 accelerators total 4,981,760 compute cores

1.4PB DDR4 2400MHz memory to 3,4 PB DDR4 2400MHz memory

# Use Cases of Milky Way 2

Comac C919 Flight Aerodynamic outflow



Organic small compounds' binding affinity for Shanghai Institute of Materia Medica

Guangzhou electronic government management system

# Challenges

### Difficult to use

"the function of the supercomputer is still way behind, some users would need years or even a decade to write the necessary code"

Chi Xuebin, deputy director of the Computer Network and Information Center

### Low efficiency

Rmax(max calculation power)/Rpeak(theoretical calculation power)

Tianhe 2A – 64.0%

Piz Daint (rank 3)—77.4%

Titan (rank 4) - 64.9%

Sequoia (rank 5) -85.3%

### Oversupply

Building objective is always the rank

Built by supercomputer center sell calculation to users, however potential user:

Research University—have own supercomputers, impossible to go all the way to

Guangzhou

Military — Security of open computer center

Industries — slow software greatly reduce actual problem-solving ability