

Learning Objectives

- Understand Spark Cluster Architecture
- Understand RDDs
- Understand Spark Application Execution
- Understand Data Partitioning

- Compute engine components
 - Driver
 - Launch spark applications
 - Can be run outside or inside the cluster

Executors

- Containers on the worker nodes
- Run units of work called tasks
- Allocated on a per-application basis
- Cluster Manager
 - Allocate compute resources (executors)

Cores

- Each executor runs a configurable number of threads called Cores
- Essentially, this is the number of slots available for running tasks
- The cluster, then, is composed of a number of cores, say N
- Each application can ask for a number of cores M <= N
 - Application will run with available cores if the requested number of cores are not available

Spark Context

Handle to the execution environment

- Cluster Manager
 - Local
 - Driver, Executor, etc. all run as threads in a single JVM
 - Standalone
 - Spark's own cluster manager
 - Spark Master
 - Driver works with the Master to allocate Executors on Worker nodes
 - Spark Worker
 - Manages Executor lifecycle
 - YARN
 - Mesos

Spark - REPL

• Spark comes with REPLs for Scala, Python, R and SQL

```
    □ ubuntu@ip-10-0-53-24: ~

ubuntu@ip-10-0-53-24:~$ dse spark
Welcome to
Using Scala version 2.10.3 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0 51)
Type in expressions to have them evaluated.
Type :help for more information.
Creating SparkContext...
Created spark context..
Spark context available as sc.
Type in expressions to have them evaluated.
Type :help for more information.
scala> val myRDD = sc.cassandraTable("tinykeyspace", "keyvaluetable")
myRDD: com.datastax.bdp.spark.CassandraRDD[com.datastax.bdp.spark.CassandraRow] = Cassan
draRDD[0] at RDD at CassandraRDD.scala:32
scala> myRDD.count()
res2: Long = 5
scala>
```


Learning Objectives

- Understand Spark Cluster Architecture
- Understand RDDs
- Understand Spark Application Execution

RDD - Definition

- Spark's abstraction for distributed memory
 - Read-only collection of objects distributed across a cluster
 - Data is divided into chunks called *partitions*
- Resilient
 - Partitions, if lost due to node failure, can be recreated
- Distributed
 - Partitions distributed across the cluster
 - So we can parallelize operations on large datasets
- Dataset
 - Handle for working with large datasets in-memory
- Ideal for iterative and interactive applications

RDD - Properties

- Immutable
 - Cannot be changed once created
- Two types of operations
 - Transformations
 - Specify operators to manipulate datasets
 - Create RDDs from data in stable storage
 - Create RDDs from other RDDs
 - Actions
 - Return a value to the application
 - Write data to stable storage
- Encapsulate metadata required to transform one RDD into another

RDD - Lineage

- Lineage
 - Each transformation encodes instructions needed to create a child RDD from parent RDD(s)
 - A series of such transformations construct a lineage
 - More formally, the series of transformations form a Directed Acyclic Graph (DAG)
 - Allows for portions of RDD to be reconstructed when they are lost due to node failure

RDD - Operations

- Transformations
 - Are evaluated lazily
 - Do not actually materialize data
 - They just construct the DAG
- Actions
 - Force the DAG to be evaluated
 - Walk up the graph and materialize all ancestor RDDs required to produce the result

RDD - Construction

RDD - Evaluation

RDD data garbage collected once the Action is complete

Driver

RDD - Workflow

- Typical minimal workflow for manipulating data
 - Read
 - Construct "Base" RDD by reading data from stable storage
 - Transform
 - Apply a series of transformations constructing the Lineage DAG
 - Write (Call an Action)
 - Evaluate the DAG materializing the RDDs
 - Write the result back to the application or to stable storage
- Extend this flow by applying more transformations and actions

RDD – Lazy Evaluation

- Implications
 - Pros
 - Affords opportunities for applying optimizations
 - Uses cluster resources more efficiently
 - Cons
 - Runtime errors in transformations will not show up until an action is run

RDD - Dependencies

- Narrow
 - Each parent partition contributes data to a single child partition
 - Example: A filter operator
 - A sequence of operations involving narrow dependencies can be pipelined

RDD - Dependencies

- Wide
 - Each parent partition contributes data to multiple child partitions
 - Example: Aggregation operators like group by
 - Requires a shuffle
 - An expensive operation in a distributed system
 - Limits performance of the overall application

RDD - Caching

- RDDs in the lineage are garbage collected once the action is complete
- Not all RDDs are created equal
 - Some of them are expensive to create
 - RDDs created as a result of an expensive shuffle
 - RDDs created after an expensive read and extensive filtering process
 - Some, with a high out-degree, are reused multiple times
- For all such RDDs, it may be prudent to cache them
 - Spark can then terminate the DAG execution at the cached RDD

RDD - Caching

- Caching involves a time-space tradeoff
 - Cache too many and you will run out of space
 - Cache too little and you will spend too much time recreating them
- Caches managed using an LRU algorithm
- Cache can be in heap/off-heap memory and disk
 - In serialized and deserialized forms
- We will talk about memory management in much more detail in a separate module

RDD - Programmatic Creation

- Spark Context
 - Handle to the execution environment/cluster
 - Created by passing in a SparkConf object which contains
 - Cluster configuration information
 - Resource Manager location
 - Application execution parameters
 - Resources to be reserved for this application
 - Application package (executable jar, python script, etc.)
 - Application dependencies
 - Standalone applications must create this object
 - Spark REPL and Databricks Cloud create this object automatically and make it available as the variable *sc*

RDD - Programmatic Creation

Base RDDs

- Created from SparkContext
 - textFile
 - newAPIHadoopFile
 - objectFile
 - sequenceFile
 - wholeTextFiles
 - range
 - parallelize

Derived RDDs

Created by applying transformations on existing RDDs

RDD API Visual Guide and Lab

RDD - Transformations

- map vs. flatMap
 - map is a 1:1 transformation
 - flatMap is a 1:N transformation but then the N elements are flattened out
- reduce and reduceByKey are different
 - reduce is an action
 - Aggregation over all elements of a dataset
 - reduceByKey is a transformation
 - Aggregation over all values associated with a key

RDD – Partition Control Transformations

- coalesce
 - Used to handle data skew across partitions
 - Can increase or decrease number of partitions
 - Shuffle=false (default) causes no shuffle
 - Used to merge smaller partitions into bigger ones
 - Shuffle=true causes shuffle
 - Used to breakup large partitions into smaller ones using hash partitioner
- repartition
 - Implemented as coalesce(shuffle=true)

RDD - Transformations

- filter
 - Filter RDDs using a selector function
- filterByRange
 - Filter for elements within a range
 - Efficient if RDD already partitioned by RangePartitioner, otherwise same as filter
- glom
 - Merge all elements within each partition into an array
- keyBy
 - Create key-value pair RDD from a regular RDD
- zip
 - Create key-value pair RDD with key from first RDD and value from second RDD
 - Variations allow for
 - Running a function on the key-value pair
 - Associating the global element index with each element
 - Associating a generated unique ID with each element

- Following apply only when datasets are organized as key-value pairs
 - groupByKey
 - reduceByKey
 - aggregateByKey
 - foldByKey
 - combineByKey
 - sortByKey
 - join
 - cogroup

- Aggregation function dimensions
 - [K,V] -> [K,V] vs. [K,V] -> [K,W]
 - Change the type of value during aggregation
 - Whether to do a map-side combine or not
 - Whether the combiner function is the same as the reducer function or not
 - Whether an identity value is provided or not
 - Whether to just group things together or actually run an aggregation function

- reduceByKey
 - Apply an aggregation function on values of each key
 - Runs aggregation locally as well "combiner"
 - Aggregation function must be commutative and associative
 - Results in a shuffle using hash partitioner
 - If the parent is not already hash partitioned

- aggregateByKey RDD[K,V] -> RDD[K,U]
 - Generic aggregator that allows you to specify
 - A "zero" value
 - A "combiner" (U, V) -> U
 - Combine values within a partition
 - A "reducer" (U, U) -> U
 - Reduce values across partitions
 - Useful when you need to return a value type (U) different than the value type (V) of the source RDD

- groupByKey
 - Groups all values corresponding to a key
 - No ordering of values maybe different each run
 - Key and corresponding list of values must fit in memory on a single node
 - Could be expensive if all you need to do is run an aggregation function on grouped values

- combineByKey
 - Generic aggregator all other functions are implemented as
- sortByKey
 - Global sort using range partitioning

- join, leftOuterJoin, rightOuterJoin, fullOuterJoin
 - Join one dataset with another when they have a common key
- cogroup
 - Group values from each RDD separately and associate with key
 - Joins internally implemented using cogroup
- partitionBy
 - Use a custom partitioner

RDD - Types of RDDs

- HadoopRDD
- FilteredRDD
- MappedRDD
- PairRDD
- ShuffledRDD
- UnionRDD
- PythonRDD

- DoubleRDD
- JdbcRDD
- JsonRDD
- VertexRDD
- EdgeRDD

- CassandraRDD (DataStax)
- GeoRDD (ESRI)
- EsSpark (ElasticSearch)

 Each data source that wants to control how data is partitioned typically requires a new type of RDD to be implemented

RDD Fundamentals Lab

Learning Objectives

- Understand Spark Cluster Architecture
- Understand RDDs
- Understand Spark Application Execution
- Understand Data Partitioning

Spark - Application Execution

- Transformations build the DAG
- Actions result in execution of the DAG constructed so far
- But first we need to figure out an optimal execution plan
 - Narrow dependencies can be pipelined together
 - Wide dependencies mean that all partitions of the parent RDD(s) need to be computed before the execution can proceed

Spark - DAG Scheduling

```
rdd1 = sc.textFile("file1.txt").filter(...).map(...).groupByKey(...)
rdd2 = sc.textFile("file2.txt").map(...).reduceByKey(...)
rdd3 = rdd1.map(...)
rdd4 = rdd2.filter(...)
rdd5 = rdd3.join(rdd4)
rdd5.saveAsTextFile("staging.txt")
rdd6 = rdd5.map(...).reduceByKey(...)
rdd7 = rdd6.filter(...).map(...).reduceByKey(...)
rdd8 = rdd7.map(...).combineByKey(...)
rdd8.saveAsTextFile("report.txt")
```


Spark - Task Scheduling

- Stages operating on independent RDDs can be executed in parallel
- Task scheduling happens on the driver
- Each Task is bound to a partition
- Tasks are executed on the executors allocated to this application
- Executors are selected by the driver based on partition location awareness (data locality)
- An executor can run multiple tasks as multiple threads in the JVM each working on a different partition

Number of Tasks >>> Number of Cores

- Big Data = lots of partitions
- Lots of partitions = lots of tasks
- Tasks are launched in waves
- Number of tasks in each wave = number of cores available to the application

Spark - Location Awareness

- For Base RDDs, the driver gets location information from data source
 - This makes sense only when Spark is colocated with the distributed data store
- For derived RDDs, the driver keeps track of which executors have which partitions
- Spark will wait for a configurable amount of time for data-local scheduling
 - If the executor that has the partition is busy, then it allocates another executor
 - Network traffic is incurred

Learning Objectives

- Understand Spark Cluster Architecture
- Understand RDDs
- Understand Spark Application Execution
- Understand Data Partitioning

RDD - Partitioning

- RDD lineage information includes partitioning information as well
 - Partitioner
 - Number of Partitions
- Spark configuration parameter *spark.default.parallelism* controls the number of partitions in some cases
 - Can be set by user. If not, defaults to number of cores allocated to this application
- Base RDDs
 - RDDs created using parallelize are controlled by spark.default.parallelism
 - Partitioning depends on Data Source
 - HDFS files number of partitions = number of HDFS blocks
 - Parquet number of partitions = number of part files
 - Text files partitioned based on block size defined by hadoop configuration, typically means 64/128MB blocks
 - Default minimum partitions is 2

RDD - Partitioning

- Derived RDDs
 - For narrow dependencies and wide dependencies generated by unary operators
 - Number of partitions and the partitioner carry forward
 - For wide dependencies generated by n-ary operators
 - Most transformations that cause a shuffle take an argument called numPartitions/numTasks so programmers can control this
 - If not set, then if all parents are copartitioned, use that partition count
 - Otherwise, use sum(parent partition count)
 - Available partitioners
 - Range
 - Hash
 - Custom partitioners can be specified
 - Transformations *coalesce* and *repartition* let programmers resize RDDs

RDD - Custom Partitioners

- Custom partitioners can be implemented
- If a data store has a custom partitioning mechanism, a custom partitioner can be used to implement data-local save
- For Example, Cassandra has a specific way of partitioning data
 - If you want to save an RDD to Cassandra, repartitioning using Cassandra token ranges ensure data-local save

Partitioning Lab/Demo

RDD - Level of Parallelism

- Are you using the cluster resources efficiently?
 - Level of parallelism
 - How many parallel threads of execution (cores) do I have in the entire cluster?
 - How many of them are available to my application?
 - What size partitions make sure that each task spends a reasonable amount of time processing?
 - Make sure it takes significantly more time to process a partition than it takes to schedule a task
 - Task scheduling takes ~10-20ms
 - Task processing time should be >50ms, ideally ~200ms
 - Aggregation typically reduces that amount of data in each partition
 - May need to *repartition* to make sure each task has enough data to process

RDD – Shuffle managers

hash

- Default Spark < 1.2.0
- Each mapper creates a number of files equal to the number of reducers
- Pros
 - Fast no sorting or hash table maintenance
 - No memory overhead for sorting
 - Positive I/O characteristics
 - Map output doesn't have to fit memory
 - Each file written/read exactly once
- Cons
 - Potential for creating too many files thereby approaching file system limits
 - May result in random I/O which can be inefficient

RDD – Shuffle managers

• sort

- Default Spark >= 1.2.0
- Assigns each reducer an ID, assigns reducer ID to each record and sorts data based on reducer ID
- Stores all data in a single file indexed by reducer ID
- Falls back on hash if the number of reducers < a threshold
- Pros
 - More efficient I/O because it is sequential
 - When map output fits memory
 - Does not create too many files like hash shuffle manager
- Cons
 - Sort penalty
 - I/O performance degradation when map outputs do not fit memory
 - Spills need to be managed

RDD – Shuffle managers

- tungsten-sort
 - Available in Spark >= 1.4.0
 - Operate directly on sun.misc.Unsafe memory
 - NUMA-aware data structures and algorithms
 - May use off-heap storage

Fault Tolerance

- Executor failure
 - Driver asks the Cluster Manager to allocate new Executor
 - Driver uses the DAG to recreate lost partitions on the new Executor
- Driver failure
 - Driver failure can be catastrophic
 - Run Driver using --cluster and --supervise
- Failure of Cluster Manager components is handled by each Cluster Manager differently
 - Worker failures are handled by masters
 - Master failures are handled by having standby masters running and electing a new one using ZooKeeper

Review Questions

- What is Spark?
- What is an RDD?
- What are the properties of an RDD?
- What kinds of operations are supported on an RDD?
- What is Lazy Evaluation?
- What are narrow and wide dependencies?
- What are the components of the Spark Compute Engine?
- What are the responsibilities of the Driver?
- What is a Job, Stage, Task?
- What is the SparkContext?

Summary

- Spark is a distributed compute engine for data-parallel applications
- Spark divides the compute environment into three components the driver, the cluster manager and the executor
- RDD is Spark's abstraction for distributed memory
- RDDs support two types of operations transformations and actions
- Applying a series of transformations results in an RDD DAG
- Actions result in this DAG being evaluated and the RDDs in the DAG being materialized
- Narrow dependency each parent partition feeds data to one child partition
- Wide dependency each parent partition feeds data to multiple child partitions
- DAG construction and scheduling happens on the driver
- Task scheduling also happens on the driver
- Task execution is farmed out to the executors

