Instituto Dr. Carlos Federico Mora Ciencias Naturales Física Fundamental Tercero Básico PEM. en Física y Matemática Favian Leonardo Díaz Graves

Primera Fase Segundo Trimestre "Guías de autoaprendizaje"

Instrucciones:

Lee detenidamente las indicaciones establecidas con la finalidad de entregar un excelente trabajo de la primera fase:

- **1.** Adjunta carátula al trabajo de la primera Fase, con datos de la institución y tus datos personales. (Nombre, clave, sección)
- 2. Trabaja todas las actividades bajo el formato que se te presenta en el ejemplo adjunto.

Instituto Dr. Carlos Federico Mora Física Fundamental PEM Y TUTOR VIRTUAL FAVIAN LEONARDO DÍAZ NOMBRE: Clave: VECTORES	Instituto Dr. Carlos Federico Mora Física Fundamental PEM Y TUTOR VIRTUAL FAVIAN LEONARDO DÍAZ NOMBRE: Clave: VECTORES Tema VECTORES Actividad (según el tema)	Formato ejemplo (Cada sesión de aprendizaje tiene una actividad diferente)	Número de actividad
Física Fundamental PEM Y TUTOR VIRTUAL FAVIAN LEONARDO DÍAZ NOMBRE: Clave: VECTORES	Física Fundamental PEM Y TUTOR VIRTUAL FAVIAN LEONARDO DÍAZ NOMBRE: Clave: VECTORES Tema Actividad (según el tema) Y Indulo Sentido Origen	entificación	
	Y Dirección Sentido Origen	Física Fundamental PEM Y TUTOR VIRTUAL FAVIAN LEONARDO DÍAZ NOMBRE:	1
Y	Origen		Actividad (según el tema)
	Origen	Y	
— x			

- *Por cada actividad puede utilizar el número de hojas necesario.
- 3. Realiza todas las actividades en hojas tamaño carta cuadros o blanco, escrito todo a mano.
- 4. Al terminar el trabajo de la primera fase, escanéalo (no se aceptan fotografías) y enviarlo en documento PDF a través de los medios indicados, en este caso *Classroom*, según el código indicado por sección.

- 5. Es una guía relacionada al análisis vectorial II y III, de igual forma a la introducción de MRU.
- 6. Fecha límite y única de entrega: Se indicará en la plataforma Classroom
- 7. No se acepta fuera de fecha en formato digital o presencial.

PEM. Favian Leonardo Díaz Graves – Tercero G

Para comodidad de su proceso de aprendizaje, cada uno de los temas se desarrollarán en sesiones de aprendizaje sincrónicas, por medio de ZOOM, los días miércoles de 9:30 am a 11:00 am. El enlace estará en la plataforma de *Classroom* y en la presente guía.

IMPORTANTE: Las sesiones de ZOOM, no son obligatorias, pero si ideales, por ser una asignatura numérica.

Toma Nota del siguiente reglamento a implementarse en la plataforma de ZOOM.

Enlace para unirse a ZOOM

Se compartirá por medio de Classroom.

Instituto Dr. Carlos Federico Mora

Física Fundamental

PEM Y TUTOR VIRTUAL Favian Leonardo Díaz

Tercero Básico

Vectores

Lea detenidamente la información y resuelve la sección de ejercicios de aplicación y repaso de vectores, en hojas tamaño carta cuadriculada, con procedimiento y adjunta la respuesta subrayada. Para una excelente presentación utiliza regla.

ANÁLISIS VECTORIAL II

SUMA DE VECTORES PARALELOS Y/O COLINEALES

Ejemplo:

Hallar el vector resultante para el sistema de vectores.

Si:
$$A = 2\mu$$
 $B = 3\mu$ $C = 1\mu$ $D = 1\mu$
 $E = 3\mu$ $F = 5\mu$

Sol.: En este caso procedemos del siguiente modo:

 Los que tienen el mismo sentido se suman, es decir:

$$\overline{A}$$
, \overline{C} y \overline{F} : \overline{A} + \overline{C} + \overline{F} = 2+1+5 = 8(\rightarrow)

$$\bar{B}, \bar{D}, \bar{E}: \bar{B} + \bar{D} + \bar{E} = 3 + 1 + 3 = 7 (\leftarrow)$$

■ Luego $\overline{R} = 8 - 7 = 1(\rightarrow)$ (Sentidos opuestos se restan).

Resuelve:

Hallar el V. Resultante.

🦫 <u>Método del Paralelogramo</u>

Este método se usa cuando dos vectores forman un ángulo diferente de cero entre sí.

Ejemplo:

Solución:

 En este caso vamos a trasladar a uno de los vectores en forma paralela para que su punto inicial concuerde con el otro.

 Ahora trazaremos paralelas a cada vector a partir de los extremos (punto final del vector) y la figura formada se llama:

• Con ayuda de tu profesor encuentra el vector resultante (\overline{R}) .

iTen euidado! si: A = 3 B = 5

(ifalso!)

Esto no se cumple siempre.

Si deseamos obtener el módulo del vector resultante usaremos:

Ejemplo: Hallar el módulo del V. Resultante Si: $\cos 60^{\circ} = \frac{1}{2}$

Solución:

Obs.:

Si: $\theta = 0^{\circ} \Rightarrow \frac{\overline{A}}{\overline{B}}$

A la resultante obtenida se le conoce como:

Si: $\theta = 180^{\circ} \Rightarrow \frac{\overline{B}}{A}$

A la resultante obtenida se le conoce como:

• Si: θ = 90° (Vectores Perpendiculares)

Teorema de:

Ejemplo: Si: $R_{m\acute{a}x} = 7$ y $R_{m\'{i}n} = 1$ para dos vectores.

Hallar el módulo del vector resultante cuando dichos vectores son perpendiculares.

Si dos vectores tienen módulos iguales:

En este caso, R divide al ángulo en dos iguales, es decir, es una bisectriz.

Hallar el módulo de \overline{R} en función de x.

DIFERENCIA DE VECTORES (D)

Actividad a entregar

EJERCICIOS DE APLICACIÓN

 $B = 2\mu$

Hallar el módulo del vector resultante en los siguientes casos:

 $C = 4\mu$

 $B = 3\mu$

 $A = 3\mu$

1.

- a) 3 µ
- b) 9μ
- c) 1µ
- d) 5μ
- e) 7µ

2.

- a) 2 µ
- b) 3μ
- c) 5_µ
- d) 7μ
- e) 9µ

3.

- a) 2 µ
- b) 3μ
- c) 4µ
- d) 5μ
- e) 6 µ

- Si la $R_{m\acute{a}x}$ de 2 vectores es 17 y la resultante mínima 7. Hallar el módulo de dichos vectores.
 - a) 2 y 5
- b) 10 y 7
- c) 5 y 12

- d) 8 y 9
- e) 13 y 4
- Del problema anterior hallar el módulo de la los resultante si vectores son perpendiculares.
 - a) 10
- b) 11
- c) 12

- d) 13
- e) 14
- módulo del Hallar Resultante: $\cos 60^{\circ} = \frac{1}{2}$; $\cos 120^{\circ} = -\frac{1}{2}$

- b) 11
- c) 12
- d) 13
- e) 14

Hallar el módulo del V. Resultante:

- c) 7
- d) 15
- e) 14

4.

9. Hallar el módulo del V. Resultante:

10.

11.

12.

13.

14. Hallar el módulo de la resultante.

15.

1. Hallar el módulo del V. Resultante.

- 5. Si: $R_{m\acute{a}x}$ = 14 y el $R_{m\acute{i}n}$ = 2 para 2 vectores. Halle el módulo de cada vector.
 - a) 3 y 11
- b) 8 y 6
- c) 10 y 4

- d) 12 y 2
- e) 5 y 9
- Del problema anterior halle el módulo del vector resultante cuando sean perpendiculares.
 - a) 6
- b) 8 e) 11
- c) 9

d) 10

- Hallar el módulo de la resultante en los siguientes casos:
- 7. $\cos 37^{\circ} = \frac{4}{5}$
 - a) 3√2
 - b) 3√5
 - c) 7
 - d) 3
 - e) 4√5
- 5
- 8. $\cos\theta = \frac{5}{16}$
 - a) 2
 - b) 5
 - c) 6
 - d) 7

 - e) 8

- a) 2√3
- b) 3√3
- c) 6√3
- d) 9
- e) 12

- 10.
- a) 4
- b) 4√3
- c) 2√3
- d) 8
- e) 8√3

- 11.
- a) 5√3
- b) 5√2
- c) 6√2
- d) 4√3
- e) 5√3
- 12. $\cos\theta = \frac{11}{24}$
 - a) 2
 - b) 7
 - c) 6
 - d) 5
 - e) 8

- 13.
- a) 2√3
- b) 4√3
- c) 3√3
- d) 6
- e) 4

- 14.
- a) 15
- b) 5
- c) 5√3
- d) 4√3
- e) 2√3

3√2

- 15.
- a) 2
- b) 3
- c) 4
- d) 5
- e) 6

8

Instituto Dr. Carlos Federico Mora Física Fundamental PEM Y TUTOR VIRTUAL Favian Leonardo Díaz Tercero Básico

Vectores

Lea detenidamente la información y resuelve la sección de ejercicios de aplicación y repaso de vectores, en hojas tamaño carta cuadriculada, con procedimiento y adjunta la respuesta subrayada. Para una excelente presentación utiliza regla.

ANÁLISIS VECTORIAL III

DESCOMPOSICIÓN VECTORIAL

Recordemos la <u>suma</u> de vectores por el método del polígono.

Ahora haremos el paso contrario.

Dado un vector cualquiera, vamos a: reemplazar al vector \overline{R} , por otros llamados ______, y que tengan como resultante al vector inicial.

_ R =

R =

Dado un vector se puede <u>descomponer</u> en otros vectores llamados <u>componentes</u> de dicho vector, de tal manera que estos en su conjunto sean capaces de <u>reemplazar</u> al vector dado.

 \overline{M} , \overline{N} , \overline{P} y \overline{Q} son components del vector \overline{R} .

Como vemos un vector puede descomponerse en dos o más vectores, todos en conjunto tendrán una misma resultante el vector \overline{R} .

Ejm.: Descomponer al vector \overline{x} siguiendo los caminos descritos:

_ ×=

X =

- -

Recuerda:

Todos los vectores que reemplazan al vector x se llaman componentes.

Ejercicio:

Hallar el vector resultante en función de x.

Solución:

Sabemos que: $\overline{R} = \overline{A} + \overline{B} + \overline{x}$(1)

1. Vamos a reemplazar al vector \overline{A} por otros 2, de tal forma que uno de ellos pase por \overline{x} así:

Vemos que: $\overline{A} = \overline{x} + \overline{C}$

2. Hacemos lo mismo para \overline{B} .

Observa que \$\overline{C}\$ y \$\overline{D}\$ son colineales y del mismo módulo (tamaño). Luego \$\overline{C}\$ y \$\overline{D}\$ son vectores opuestos es decir:

$$\overline{C} = -\overline{D}$$

Reemplazando en (1)

$$\overline{R} = (\overline{x} + \overline{C}) + (\overline{x} + \overline{D}) + \overline{x}$$

$$\overline{R} = \overline{x} + \overline{C} + \overline{x} + \overline{D} + \overline{x}$$

$$\overline{R} = 3\overline{x} + \overline{C} + \overline{D}$$

Pero: $\overline{C} = -\overline{D}$

$$\Rightarrow \overline{R} = 3\overline{x} + (-\overline{D}) + \overline{D}$$

$$\overline{R} = 3\overline{x} - \overline{D} + \overline{D}$$

$$\overline{R} = 3\overline{x}$$

b DESCOMPOSICIÓN RECTANGULAR

Ahora vamos a reemplazar a un vector por otros 2 que sean perpendiculares llamados

Donde:

 \overline{A}_X : Componente de \overline{A} en el eje x.

 \overline{A}_y : Componente de \overline{A} en el eje y.

En forma práctica: Usa triángulos rectángulos

Obs.:

Recordemos algunos triángulos notables:

Además en todo triángulo rectángulo se cumple:

Ejemplo: Hallar las componentes de \overline{A} sobre los ejes perpendiculares.

$$\overline{A}_{\vee} =$$

$$A_{V} =$$

EJERCICIOS DE APLICACIÓN

- Un aeroplano vuela de la ciudad A, a la ciudad B, 300Km en una dirección hacia el oeste. Luego vuela de la ciudad B a la ciudad C, 400 Km en una dirección de 36° al noreste. ¿Cuál es el desplazamiento resultante del aeroplano entre la ciudad A y la ciudad C?
- 2. Un submarino se sumerge a un ángulo de 36° con respecto a la horizontal y sigue una trayectoria recta hasta alcanzar una distancia total de 70 m. ¿Qué tan lejos está el submarino de la superficie?
- Un superhéroe se lanza desde lo alto de un edificio. Se desplaza 80m en dirección 35° al sureste. Encuentra las componentes horizontal y vertical del desplazamiento.
- 4. Un perro que anda en busca de un hueso se mueve 3m hacia el norte, después 7m a un ángulo de 20° al sureste y finalmente 12m al oeste. Encuentra el vector desplazamiento resultante, en forma gráfica y analítica.
- Un excursionista inicia un recorrido caminando primero 20 Km hacia el noreste, partiendo desde su campamento.
 El siguiente día camina 30 Km en una dirección de 30° al sureste llegando a su destino.
 - a) Determina las componentes rectangulares del desplazamiento del excursionista en los dos días.
 - b) Determina la magnitud y la dirección del desplazamiento total.

Instituto Dr. Carlos Federico Mora

Física Fundamental

PEM Y TUTOR VIRTUAL Favian Leonardo Díaz

Tercero Básico

MRU

Lea detenidamente la información y resuelve la sección de ejercicios de aplicación y repaso de MRU, en hojas tamaño carta cuadriculada, con procedimiento y adjunta la respuesta subrayada. Para una excelente presentación utiliza regla, si fuese necesario.

MOVIMIENTO RECTILÍNEO UNIFORME I (MRU)

¿Qué es el movimiento? "El Concorde" El super-jet de pasajeros tiene una velocidad de Elemento del Movimiento 2500 km/h. "El Tren Bala" Este tren comercial de alta velocidad, levitación magnética, viaja Móvil con una rapidez cercana a 305 km/h. los Los ferrocarriles japoneses y alemanes están trabajando en trenes de levitación magnética que pueden Trayectoria alcanzar los 480 km/h. **PIENSA** Recorrido : __

Si de Lima a Ica hay aproximadamente 325 km. ¿En qué tiempo llegarías viajando en un "tren bala"? ¿y en un Concorde? Ejemplo: Hallar el recorrido

<u>Velocidad</u> :

Estos móviles no viajan en el mismo sentido. Por lo tanto no tienen la misma velocidad.

Rapidez :

En el ejemplo anterior : $r_1 = 3 \text{ m/s}$ $r_2 = 3 \text{ m/s}$

Aquí los valores de la rapidez si son iguales. Pero no tienen la misma velocidad.

Velocidades Comunes

- La luz 300 000 km/s
- El sonido 340 m/s
- Un automóvil
 100 km/h
- Un ser humano 50 cm/s
- Una hormiga5 mm/s
- Una tortuga
 20 mm/s
- Un caracol 1,5 mm/s

Algunas Trayectorias

Movimiento Rectilíneo Uniforme

6 m/s indica que en 1 s recorre 6 m

Características

- La trayectoria es rectilínea.
- La velocidad es constante (siempre apunta en la misma dirección y no cambia de valor).
- Se emplea la única fórmula.

donde:

d : distancia	m	km
V : velocidad	m/s	km/h
t: tiempo	S	h

iOBSERVACIÓN!

Conseguir que un auto tenga velocidad constante en las pistas de una ciudad es casi imposible, debido al uso continuo del acelerador y el freno. Sin embargo no es difícil obtener velocidad constante, ello se puede conseguir en una autopista de tráfico rápido y mejor aún si el tramo es una línea recta.

EJERCICIOS DE APLICACIÓN

- Hallar el recorrido de "A" hacia "B"
 - a) 3 m
 - b) 6 m
 - c) 12 m
 - d) 8 m
 - e) 9 m

- 2. Hallar el recorrido de "A" hacia "C"
 - a) 2 m
 - b) 5 m
 - 4 m
 - d) 6 m
 - 7 m

3. Indicar verdadero (V) ó falso (F)

- a) $V_A = V_B = V_C$ (velocidades)
 -)
- b) $r_A = r_B = r_C \text{ (rapidez)}$)
- c) Es un MRU
- d) La trayectoria es circular)
- e) La trayectoria es rectilínea)
- 4. Relacionar mediante una flecha
 - * Cuerpo en movimiento

Trayectoria

* Longitud de la trayectoria

MRU

* Unión de todos los puntos

Recorrido

por donde pasa el móvil

* Velocidad constante

Móvil

Indicar verdadero (V) ó falso (F):

- a) Es un MRU
-)
- b) La rapidez es constante
-)
- c) La velocidad es constante
- Indicar la rapidez del móvil (1) y (2)

- a) 2y4m/s
- d) 4 y 6 m/s
- b) 6y5m/s
- e) 3 y 4 m/s
- c) 3y5m/s
- 7. Hallar la distancia que recorre en 3 s.

- a) 2 m
- b) 36 m
- c) 24 m

- d) 48 m
- e) 12 m
- Hallar la distancia que recorre luego de 6 s.

9. Hallar el recorrido:

10. Hallar el recorrido :

11. Hallar "t":

12. Hallar "t":

13. Hallar la velocidad del móvil.

14. Hallar la velocidad del móvil.

15. Hallar tiempo de "A" hacia "D".

