Parton Distribution Functions

Alexander Huss

July 21, 2025

Contents

1	Introduction	1
2	Evaluating PDFs	1
3	The quantum numbers of the proton	2
4	Momentum sum rules	3
5	Comparison of different PDF sets	4

1 Introduction

We will call the LHAPDF library from python to evaluate parton distribution functions and play around with them a bit.

2 Evaluating PDFs

Let's have a look at one specific PDF set PDF4LHC21_40

```
import lhapdf
import numpy as np

lhapdf.setVerbosity(0)
pdf = lhapdf.mkPDF("PDF4LHC21_40", 0)
if qlog:
    xs = [x for x in np.logspace(-5, 0, 50)]
else:
    xs = [x for x in np.linspace(0, 1, 50)]
res = np.empty([len(xs),6])
for ix, x in enumerate(xs):
    fac = 1. #1./x
    res[ix,0] = x
    res[ix,1] = q
    res[ix,2] = fac*(pdf.xfxQ(2, x, q) - pdf.xfxQ(-2, x, q)) # valence up-quark
    res[ix,3] = fac*(pdf.xfxQ(1, x, q) - pdf.xfxQ(-1, x, q)) # valence down-quark
    res[ix,4] = fac*(pdf.xfxQ(0, x, q)) # gluon (or `21`)
```


• Change the scale in the figure from 10 to 100 GeV or even to 1 TeV; adjust the scaling factor as necessary. How does the distributions change? Does it correspond to the expectation of the QCD improved parton model?

3 The quantum numbers of the proton

The quantum numbers of the proton are determined by the valence quarks, p=(uud). Given that PDFs are *number densities* for the constituent partons, the following flavour sum rules hold:

$$\int_{0}^{1} dx \left(f_{\mathbf{u}|\mathbf{p}}(x) - f_{\bar{\mathbf{u}}|\mathbf{p}}(x) \right) = 2, \qquad \qquad \int_{0}^{1} dx \left(f_{\mathbf{d}|\mathbf{p}}(x) - f_{\bar{\mathbf{d}}|\mathbf{p}}(x) \right) = 1, \qquad (1)$$

$$\int_{0}^{1} dx \left(f_{\mathbf{q}|\mathbf{p}}(x) - f_{\bar{\mathbf{q}}|\mathbf{p}}(x) \right) = 0 \quad \forall q \notin \{\mathbf{u}, \mathbf{d}\} \tag{2}$$

Let's see if these hold for one of the global PDF sets:

```
import lhapdf
import math
import scipy
lhapdf.setVerbosity(0)
pdf = lhapdf.mkPDF("PDF4LHC21_40", 0)
res = list()
for id, label in [(1,"d"),(2,"u"),(3,"s"),(4,"c"),(5,"b")]:
    int_res = scipy.integrate.quad(lambda x : (pdf.xfxQ(id, x, q)-pdf.xfxQ(-id, x, q))/x, 1e-6, 1, limit=100, epsrel=1e-#print(int_res)
    res.append( (label, int_res[0]) )
return res
```

```
d 0.9867274422876253
u 1.9924213767549757
s 0.003708032343248529
c -0.00018756880668405516
b -8.819432616746102e-05
```

4 Momentum sum rules

The parton a carries a momentum fraction x_a of the parent hadron, $p_a^{\mu} = x_a P^{\mu}$. Therefore, the momentum density associated with that parton is given by $x_a f_{a|H}(x_a)$. Since the sum over all parton momenta must sum back up to the parent hadron one, the PDF sets satisfy a momentum sum rule (in $\overline{\text{MS}}$):

$$\sum_{a} \int_{0}^{1} dx_{a} x_{a} f_{a|H}(x_{a}) = 1$$
 (3)

Let's see how the momenta are distributed across different flavours

```
import lhapdf
import math
import scipy
lhapdf.setVerbosity(0)
pdf = lhapdf.mkPDF("PDF4LHC21_40", 0)
res = list()
int_sum = [0.,0.]
for id, label in [(-5,"bb"),(-4,"cb"),(-3,"sb"),(-2,"ub"),(-1,"db"),(0,"g"),(1,"d"),(2,"u"),(3,"s"),(4,"c"),(5,"b")]:
    int_res = scipy.integrate.quad(lambda x : pdf.xfxQ(id, x, q), 1e-6, 1, limit=100, epsrel=1e-3)
    int_sum[0] += int_res[0]
    int_sum[1] += int_res[1]**2
    #print(int_res)
    res.append( (label, "{:.0f}%".format(int_res[0]*100.)) )
res.append( ("SUM", "{:.0f}%".format(int_sum[0]*100.)) )
return res
```

So the gluon actually carries almost 50% of the proton's momentum! The up quark, with $\sim 20\%$, has the second largest contribution, followed by the down-quark \$~\$half the size of the up (which makes sense as p=(uud)).

```
1%
bb
        2\%
cb
        3\%
sb
        4\%
ub
db
        4\%
        47\%
g
d
        11%
        22\%
u
        3%
        2\%
\mathbf{c}
        1%
b
SUM
        100\%
```

• Vary the scale and see how the momentum composition of the proton changes. How robust are the numbers?

5 Comparison of different PDF sets

In order to get a sense on how well these PDFs are constrained, it is useful to compare the PDF sets as determined by different groups.

```
import lhapdf
import numpy as np

lhapdf.setVerbosity(0)
pdfs = [ lhapdf.mkPDF(pdf_name, 0) for pdf_name in ["PDF4LHC21_40", "CT18NNL0", "MSHT2Onnlo_as118", "NNPDF40_nnlo_as_01:
    if qlog:
        xs = [x for x in np.logspace(-5, 0, 50)]
else:
        xs = [x for x in np.linspace(0, 1, 50)]
res = np.empty([len(xs),2+len(pdfs)])
for ix, x in enumerate(xs):
    res[ix,0] = x
    res[ix,1] = q
    for ip, pdf in enumerate(pdfs):
        res[ix,2+ip] = pdf.xfxQ(a, x, q)
return res.tolist()
```


Overall, the PDFs are determined at the level of a few percent in the intermediate $x\$ -range.

- Try changing the parton type in the above plot.
- The PDF sets also come with error sets to determine the error of the PDF sets. Try to adjust the above script to add error bands for the indivudial PDFs.