

වයඹ පළාත් අධාාපන දෙපාර්තමේන්තුව

Provincial Department of Education - NWP 10

0 S I

අධායන පොදු සහතික පනු (උසස් පෙළ) විභාගය - 2021

සංයුක්ත ගණිතය - පෙරහුරු පරීක්ෂණය

க**்** යුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

 අමතර කියවීම් කාලය
 - මිනිත්තු 10 යි

 மேலதிக வாசிப்பு நேரம்
 - 10 நிமிடங்கள்

 Additional Reading Time
 - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය			
------------	--	--	--

උපදෙස්:

- * මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;
 - A කොටස (පුශ්න 1 10) සහ B කොටස (පුශ්න 11 17).
- * A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

- # B samoa:
 - පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.
- * නියමිත කාලය අවසන් වූ පසු A කොවසෙහි පිළිතුරු පතුය, B කොවසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B **කොටස පමණක්** විභාග ශාලාචෙන් පිටකට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පියන අංකය	ලකුණු
	1	
	2	
	3	
	4	
A	5	
***	6	
	7	
	8	
	9	
	10	
	11	
	12	100
(3	13	
В	14	
1	15	
	16	
	17	
	එකතුව	

	එකතුව
ඉලක්කමෙන්	
අකුරින්	

	moama dom
උත්තර පතු පරීක්ෂ	a
පරීක්ෂා කළේ:	1 2
අධීක්ෂණය කළේ:	

${f A}$ කොටස

	හන මූලධර්මයෙන	, , , , , , , , , , , , , , , , , , , ,	, ((1), , 0, 0, 0, 0, 0, 0	
		••••••	•••••		
			•••••		
			•••••		
			•••••	••••••	
			•••••	••••••	
1/ X — 11 +			P		
12A 1 1	x ≤ 5 වන අගර	ය පරාසය මසාග	ෘන්ත.		
	x ≤ 5 වන අගං 	ය පරාසය මසාග	aන්න. 		
	x ≤ 5 වන අගර	ය පරාසය ඉසාං 	¹ න්න.		
	x ≤ 5 වන අගර	ය පරාසය මසාග 	 		
12% 111	x ≤ 5 වන අගර	ය පරාසය මසාග 			
12% 111	x ≤ 5 වන අගර	ය පරාසය මසාග 	³ න්න.		
12% 111	x ≤ 5 වන අගර	ය පරාසය මසාං	⁸ න්න.		
	x ≤ 5 වන අගර	ය පරාසය මසාග	 න්න.		
	x ≤ 5 වන අගර	ය පරාසය මසාග 	 න්න.		
	x ≤ 5 වන අගර	ය පරාසය මසාග 	³ න්න.		
	x ≤ 5 වන අගර	ය පරාසය මසාං	 න්න.		
	x ≤ 5 වන අගර	ය පරාසය මසාග	 න්න.		
	x ≤ 5 වන අගර	ය පරාසය මසාග 	 ආත්ත.		
	x ≤ 5 වන අගර	ය පරාසය මසාග	 න්න.		
	x ≤ 5 වන අගර	ය පරාසය මසාග 	 න්න.		
	x ≤ 5 වන අගර	ය පරාසය මසාග 	යන්න. 		
	x ≤ 5 වන අගර	ය පරාසය මසාග 	යන්න. 		
	x ≤ 5 වන අගර	ය පරාසය මසාග 	යන්න. 		

$ \left \frac{Z+1}{Z-1} \right \ge $					
තුළ Arg(Z) උපරිම වන ලක	ශ්ෂාගෙහි සංකීර්∙	ණ සංඛ්යාව සො	යන්න.	
					 ••••
					 ••••
					 ••••
••••••			•••••		 ••••
•••••			•••••		 ••••
		•••••			 ••••
					 ••••
$\lim_{x\to 0}$	$\left(\frac{1-\cos 4x}{x^2}\right) = 8$ බව	පෙන්වන්න.			
$\lim_{x\to 0}$	$\left(\frac{1-\cos 4x}{x^2}\right) = 8$ බව	පෙත්වන්න.			••••
$\lim_{x\to 0}$	$\left(\frac{1-\cos 4x}{x^2}\right) = 8$ බව	පෙත්වන්න.			

3xcost + 2x	vsint = 6 ລ	ව පෙනවන	ත. එම ලස	ශ්ෂාගයද අඳ	නු ලබන	අහල්මහලය	සමකරණය
සොයන්න.							
••••••		••••••	••••••				
••••••	•••••••••••	••••••	•••••	•••••	•••••		
••••••		••••••	•••••	•••••			
••••••			••••••	•••••		••••••	
							'- අක්ෂය වටා 2
$Y=rac{x}{\sqrt{x^2+4}}$ වලින් හුමණා							- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			'- අක්ෂය වටා 2
	ය වූවිට සැඉදා		තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			'- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			'- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			-ි අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			'- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			්- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			්- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			'- අක්ෂය වටා 2
	ය වූවිට සැඉදා	ත ඝත වස්:	තුවේ පරිම:	$\frac{\pi(4-\pi)}{2}$			්- අක්ෂය වටා 2

$\frac{d(a^x)}{dx} = a^2$								
••••••		••••••	•••••	•••••••		•••••••	•••••••	
		•••••	•••••			••••••	•••••	•••••
	•••••	•••••	•••••			••••••	•••••	•••••
		•••••						
			••••••	•••••••		••••••	••••••	••••••
•••••	•••••	••••••	•••••			•••••	•••••	•••••
. ABC තිුුුෙකා	්ණලය් AB, I	BC, CA පාද	වල සමීකර	ණ පිළිවෙ	ලින් 2y —	x + 4 =	0, y - 2 x	-1 =
	ේණ⊚ය් AB, I ⊂– 1 = 0 ල							
හා y + x	x - 1 = 0 @	වේ. B කෝ €	ක ියේ අභාාත	ත්තර කෝ	ණ සමච්ඡේ	දකගේ සමීක	තරණය මසා	යන්න.
හා y + x	x - 1 = 0 @	වේ. B කෝ €	ක යේ අභා ා ත	ත්තර කෝ	ණ සමච්ඡේ	දකගේ සමීක	තරණය මසා	යන්න.
හා y + x	x - 1 = 0 @	වේ. B කෝ €	ක යේ අභා ා ත	ත්තර කෝ	ණ සමච්ඡේ	දකගේ සමීක	තරණය මසා	යන්න.
හා y + x	x - 1 = 0 @	වේ. B කෝ €	ක යේ අභා ා ත	ත්තර කෝ	ණ සමච්ඡේ	දකගේ සමීක	තරණය මසා	යන්න.
හා y + x	x - 1 = 0 @	වේ. B කෝ €	ක යේ අභා ා ත	ත්තර කෝ	ණ සමච්ඡේ	දකගේ සමීක	තරණය මසා	යන්න.
හා y + x	x - 1 = 0 @	වේ. B කෝ €	ක යේ අභා ා ත	ත්තර කෝ	ණ සමච්ඡේ	දකගේ සමීක	තරණය මසා	යන්න.
හා y + x	x - 1 = 0 @	වේ. B කෝ €	ක යේ අභා ා ත	ත්තර කෝ	ණ සමච්ඡේ	දකගේ සමීක	තරණය මසා	යන්න.
හා y + x	x - 1 = 0 @	වේ. B කෝ €	ක යේ අභා ා ත	ත්තර කෝ	ණ සමච්ඡේ	දකගේ සමීක	තරණය මසා	යන්න.
හා y + x	x - 1 = 0 @	වේ. B කෝ €	ක යේ අභා ා ත	ත්තර කෝ	ණ සමච්ඡේ	දකගේ සමීක	තරණය මසා	යන්න.
නා y + x	x - 1 = 0 @	වේ. B කෝ ේ	ශ ාරේ අභායත	්තර කෝ -	ණ සමච්ඡේ	දකලය් සමීක	තරණය සො	යන්න.
. ABC තිුමකා හා y + x	x - 1 = 0 @	වේ. B කෝ ේ	ශ ාරේ අභායත	්තර කෝ -	ණ සමච්ඡේ	දකලය් සමීක	තරණය සො	යන්න.
නා y + x	x - 1 = 0 @	වේ. B කෝ ේ	ශ ාරේ අභායත	්තර කෝ -	ණ සමච්ඡේ	දකලය් සමීක	තරණය සො	යන්න.
නා y + x	x - 1 = 0 @	වේ. B කෝ ේ	ශ ාරේ අභායත	්තර කෝ -	ණ සමච්ඡේ	දකලය් සමීක	තරණය සො	යන්න.
නා y + x	x - 1 = 0 @	වේ. B කෝ ේ	ශ ාරේ අභායත	්තර කෝ -	ණ සමච්ඡේ	දකලය් සමීක	තරණය සො	යන්න.
නා y + x	x - 1 = 0 @	වේ. B කෝ ේ	ශ ාරේ අභායත	්තර කෝ -	ණ සමච්ඡේ	දකලය් සමීක	තරණය සො	යන්න.

පිහිටි අරය ඒක	21/2 200	00000000000000000000000000000000000000	8866	a.ca.ma^m		
පහට අටය එක්ක	ඛ ∠√∠ වන	වෘතිතමයහ ස	මෙකාටණාය ලේ	හයනන.		
			•••••			•••••
	•••••					•••••
	•••••					
	•••••	••••••	•••••			•••••
	•••••					•••••
	•••••		•••••			
	•••••	•••••	•••••			••••••
						•••••
				ක් ලියා දක්වන්	්ත. ඒනයින් ta	ın(2α) සදහ
). tan α හා tanβ පුකාශනයක් අෙ				ක් ලියා දක්වන්	්න. ඒනයින් ta	ın(2α) සදහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$	ක් ලියා දක්වන් ව පෙන්වන්න.	්න. ඒනයින් ta	ın(2α) සදහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		්න. ඒනයින් ta	in(2α) සදහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		්න. ඒනයින් ta	ın(2α) සදහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		්න. ඒනයින් ta	in(2α) සඳහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		්න. ඒනයින් ta	in(2α) සදහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		ීන. ඒනයින් ta	in(2α) සදහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		්න. ඒනයින් ta	in(2α) සදහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		ීන. ඒනයින් ta	in(2α) සඳහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		්න. ඒනයින් ta	in(2α) සඳහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		ීන. ඒනයින් ta	in(2α) සඳහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		්න. ඒතයින් ta	in(2α) සඳහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		ීන. ඒනයින් ta	in(2α) සඳහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		ින. ඒනයින් ta	in(2α) සදහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		'න. ඒනයින් ta	in(2α) සඳහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		ින. ඒනයින් ta	in(2α) සඳහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		'න. ඒනයින් ta	in(2α) සඳහ
			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		ින. ඒනයින් ta	in(2α) සඳහ
O. tan α හා tanβ පුකාශනයක් අම			$\frac{n\theta - tan^2\theta}{-3tan^2\theta}$		'න. ඒනයින් ta	in(2α) සඳහ

සියලුම හිමිකම ඇවීරිණි / All Rights reserved

වයඹ පළාත් අධාාපන දෙපාර්තමේන්තුව

Provincial Department of Education - NWP

10 S I

අධාsයන පොදු සහතික පනු (උසස් පෙළ) විභාගය - 2021 සංයුක්ත ගණිතය - පෙරහුරු පරීක්ෂණය

B කොටස

- 💠 පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.
- 11) (a) (i) $ax^2 + bx + c = 0$ හි මූල α හා β නම් $(\alpha \beta^2)(\beta \alpha^2)$ හි අගය සොයන්න. ඉහත වර්ගඡ සමීකරණයේ එක් මූලයක් අනෙක් මූලයේ වර්ගය වීම සඳහා අවශානාව අපෝහනය කරන්න.
 - (ii) $2x^2-(a+1)x+(a-1)=0$ වර්ගජ සමීකරණයේ මූල වල අන්තරය එහි මූල වල ගුණිතයට සමාන වීමට a ට තිබිය යුතු අගය සොයන්න.
 - (b) (i) (x-1) යන්න $f(x)=x^3+ax^2-x-3$ යන බහු පද ශුිතයේ සාධකයක් නම් a වල අගය සොයන්න. a මෙම අගය ගන්නා විට, f(x)=0 සමීකරණයේ මූල තීරණය කරන්න.
 - (ii) (x-2) සහ (x+3), $f(x)=2x^3+x^2+px+q$ යන බහු පදයේ සාධක නම් p හා q වල අගයන් සොයන්න. p හා q මෙම අගයන් ගන්නා විට f(x)=0 සමීකරණයේ මූල සොයන්න.
- 12) (a) ලොතරැයි මණ්ඩලයේ සංවත්සරය සඳහා විශේෂිත ලොතරැයියක් මුදුණය කරනු ලබයි. එහි මුල් අක්ෂරය, ඉංග්‍රීසි අක්ෂරයක් වන අතර ඒ සඳහා A සිට Z දක්වා ඕනෑම අක්ෂරයක් මුදුණය කළ හැකි ය. ඉතිරි සංඛාා හතර මුදුණය වන්නේ 0 සිට 9 දක්වා සංඛාාක 10 උපයෝගී කරගෙනය.
 - (i) එකම අංකය නැවත නැවත භාවිතා කරමින් ටිකට්පත් මුදුණය කළ හැකි නම් මුදුණය කළ හැකි ටිකට්පත් ගණන සොයන්න.
 - (ii) එක් අංකයක් එක් වරක් පමණක් භාවිතා කරන්නේ නම්, මෙලෙස මුදුණය වන ටිකට්පත් ගණන කොපමණද?
 - 2, 4, 6, 8 අංක හතරම කෙසේ හෝ මුදුණය වී, හා A, E, I, O, U අක්ෂර පහෙන් එකක් මුදුණය වූ ටිකට්පත් සඳහා විශේෂිත තාහග මුදලක් පිරිනමනු ලබයි. මෙලෙස මුදුණය කළ හැකි ටිකට්පත් ගණන කොපමණද ?

(b) $\frac{1}{r(r+1)}$ හින්න හාග සොයන්න. $(r \in \mathbf{Z}^+)$

එනයින්,

(i)
$$\frac{1}{(r+1)(r+2)}$$

(ii) $\frac{1}{(r+2)(r+3)}$ හින්න භාග අපෝහනය කරන්න.

3r + 1 = A(r + 3) + B(r + 1) වන පරිදි A හා B නියත ගණනය කරන්න.

එමඟින්
$$\frac{3r+1}{(r+1)(r+2)(r+3)}=4\left[f(r+1)-f(r+2)\right]+f(r+1)-f(r)$$
 වන පරිදි $f(r)$ ශිූතය ලියන්න.

එමහින් හෝ වෙනත් ආකාරයකින් ,

$$rac{4}{2.3.4}+rac{7}{3.4.5}+rac{10}{4.5.6}+\cdots$$
 ලේණියේ පද n පුමාණයක ඓකාසය S_n යන්න, $S_n=rac{5}{6}+rac{1}{n+2}-rac{4}{n+3}$ බව පෙන්වන්න.

මෙම ශ්ලේණියේ අභිසාරී බව පෙන්වා, පද ගණන අනන්තය දක්වා වැඩි වන විට එහි ඓකාၖය සොයන්න. තවද $\left|S_n-rac{5}{6}
ight|<rac{5}{14}$ වන පරිදි n හි අගය පරාසය සොයන්න.

13) (a)
$$A=\begin{bmatrix}2&1\\-1&3\end{bmatrix}$$
 සහ $\lambda,\mu\in\mathbb{R}$ යැයි ගනිමු.

 $A(\lambda\,A+\,\mu I)=\,I\,$ වන අයුරින් λ හා μ අගයන් සොයන්න.මෙහි I යනු 2×2 ඒකක නාහසය වේ. ඒ නයින් A^{-1} සොයන්න.

(b) Z_1 හා Z_2 යනු සංකීර්ණ සංඛාන දෙකකි.

(I)
$$Re(Z_1\overline{Z_2}) = Re(\overline{Z_1}Z_2)$$

(II)
$$|Z_1 - Z_2|^2 = |Z_1|^2 - 2Re(Z_1\overline{Z_2}) + |Z_2|^2$$
 බව පෙන්වන්න.

ඒ නයින්,

$$|1-Z_1\overline{Z_2}|^2-|Z_1-Z_2|^2=~(1-|Z_1|^2)(1-|Z_2|^2)$$
 බව අපෝහනය කරන්න.

(c) $\sqrt{5}+2i$ යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න. මෙහි $\sin\theta=\frac{2}{3}$ වන පරිදි වූ සුළු කෝණයකි.

ඒ නයින් සියලුම n සඳහා,

 $\left(\sqrt{5}+2i\right)^n+\left(\sqrt{5}-2i\right)^n$ තාත්වික බව පෙන්වන්න. n=6 විට මෙම පුකාශනයේ අගය සොයන්න.

14) (a) $x \neq 1$ සඳහා $f(x) = \frac{x(x+1)}{(x-1)^2}$ යැයි ගනිමු .

f(x)හි වායුක්පන්නය f'(x) යන්න $x \neq 1$ සඳහා $f'(x) = \frac{-(3x+1)}{(x-1)^3}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ඒ නයින් f(x) වැඩි වන පුාන්තරය හා f(x) අඩු වන පුාන්තර සොයන්න.

f(x) හි හැරුම් ලක්ෂායේ ඛණ්ඩාංක ද සොයන්න. $x \neq 1$ සඳහා $f^{//}(x) = rac{6(x+1)}{(x-1)^4}$ බව දී ඇත.

y=f(x) හි පුස්ථාරයේ නතිවර්තන ලක්ෂායේ බණ්ඩාංක සොයන්න.

ස්පර්ශෝන්මුඛ, හැරුම් ලක්ෂ හා නතිවර්තන ලක්ෂය දක්වමින් y=f(x) හි පුස්ථාරයේ දළ සටහනක් අදින්න.

(b) l(m) කම්බියක් කොටස් දෙකකට කපා පහත ආකාරයට පරිධිය x(m) වන වෘත්තාකාර රූපයක් හා පැත්තක දිග $\frac{l-x}{4}$ වන සමවතුරසුාකාර රූපයක් පහත ආකාරයට නිර්මාණය කර ඇත.

වෘත්තයේ අරය x ඇසුරින් සොයා, රූපවල වර්ගඵලවල ඓකාංය $A(x)=rac{x^2}{4\pi}+rac{(l-x)^2}{16}$ බව පෙන්වන්න.

රූප දෙකේ වර්ගඵලවල ඓකාෳය අවම වන්නේ සමවතුරසුයේ පාදයක දිග $\frac{l}{4+\pi}$ වනවිට බව පෙන්වන්න.

15) (a)
$$x - \frac{1}{x} = \sqrt{2} \tan \theta$$
 හා $x + \frac{1}{x} = \sqrt{2} \sec \theta$ නම්,
$$x^2 + \frac{1}{x^2} = 2 \sec^2 \theta = 2 \tan^2 \theta$$
 බව පෙන්වන්න.

$$I = \int \frac{x^2 + 1}{x^4 + 1} dx$$
 හා $J = \int \frac{x^2 - 1}{x^4 + 1} dx$ ලෙස දී ඇත.

 $\int rac{x^2}{1+x^4} dx = lpha I + eta J$ වන පරිදි lpha, eta නියන සොයන්න.

$$I=\int rac{1+rac{1}{x^2}}{x^2+rac{1}{x^2}} \ dx$$
 හා $J=\int rac{1-rac{1}{x^2}}{x^2+rac{1}{x^2}} \ dx$ ලෙස පරිවර්තනය කරමින් දී ඇති ආදේශ භාවිතා

කරමින් හෝ වෙනත් ආකාරයකින් $\int rac{x^2}{1+x^4} dx$ අගයන්න.

(b) කොටස් වශයෙන් අනුකලනය භාවිතයෙන් $\int_0^1 x \ln(x^2+1) \, dx = rac{1}{2} \left(\ln 4 - 1
ight)$ බව පෙන්වන්න.

(c) $\int_0^a f(x) dx = \int_0^a f(a-x) dx$ භාවිතයෙන් හෝ වෙනත් ආකාරයකින්,

$$I = \int_0^{\pi/2} \frac{\sin^3 x}{\sin x + \cos x} \ dx = \frac{1}{4} (\pi - 1)$$
 බව මෙන්වන්න.

16)

a) $l_1\equiv 6x-8y+7=0$ හා $l_2\equiv y-2=0$ රේඛාවල ඡේදන ලක්ෂාය වන A හි ඛණ්ඩාංක සොයන්න. එම රේඛා අතර සුළු කෝණ සමච්ඡේදකය වන l' හි සමීකරණය සොයන්න.

l' රේඛාව මත ඕනෑම ලක්ෂාායක ඛණ්ඩාංක, පරාමිතියක් මගින් $(rac{3}{2}+3\lambda$,2+ $\lambda)$ ආකාරයට ලිවිය හැකි බව පෙන්වන්න.

කේන්දුය l' මත පිහිටියා වූ ද y=2 රේඛාව ස්පර්ෂ කරන්නා වූ ද අරය ඒකක 6ක් වන S වෘත්තයේ සමීකරණය සොයන්න.

 ${
m S}=~0$ වෘත්තය මගින් $l_1~=0$ හා l_2 = 0 රේඛා ස්පර්ශ කරන ලක්ෂ පිළිවෙලින් P හා Q නම්, PQ ස්පර්ශ ජාායයේ සමීකරණය සොයන්න.

P හා Q හරහා ගමන් කරන S=0 මගින් පරිධිය සමච්ඡේදනය කරන S'=0 වෘත්තයේ සමීකරණය ද සොයන්න.

17) (I) tan x සහ tan y ඇසුරෙන් tan (x + y) සඳහා සූනුය සඳහන් කරන්න.

$$2x+y=rac{\pi}{4}$$
 නම්, $tan\ y=rac{1-2 an x-tan^2x}{1+2 an x-tan^2x}$ බව පෙන්වන්න. $t^2+2 an 1=0$ සමීකරණයේ මූලයක් $tanrac{\pi}{8}$ බව ද, එහි අගය $\sqrt{2}-1$ බව ද අපෝහනයකරන්න

(II) ඕනෑම තිකෝණයක් සඳහා කෝසයින් නීතිය පුකාශ කරන්න.

$$cos heta = rac{2\sqrt{bc}}{b+c} \cos rac{A}{2}$$
 සම්බන්ධයෙන් $heta$ (>0) කෝණය දෙනු ලැබේ. මෙහි A,b,c , රාශි ABC තිකෝණයක් සම්බන්ධයෙන් භාවිතා කරන සාමානා අර්ථ ගනී. $a=(b+c)sin heta$ බව සාධනය කරන්න .

(III)
$$\sin^{-1} x + \cos^{-1} \frac{x}{2} = \frac{5\pi}{6}$$
 සමීකරණය විසඳන්න.

වයඹ පළාත් අධාාපන දෙපාර්තමේන්තුව

Provincial Department of Education - NWP

S

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය - 2021

கு ஆன்ற மூற்றம் இணைந்த கணிதம் Combined Mathematics 10(S)

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග	අංකය						1
		1000	8 8	it come	ALTERNA DE	332414	,

උපදෙස්:

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සීගලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටහෙහි පිළිතුරු පතුය, B කොටහෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංකය	ලකුණු
	1	504-10090
	2	
	3	
	4	-100000-1007
A	5	
41	6	
	7	
	8	CONTRACTOR OF THE PARTY OF THE
	9	
	10	ed the even
	11	
8	12	
	13	
В	14	
	15	
	16	1000
	17	
	එකතුව	

	එකතුව
ඉලක්කමෙන්	
අකුරින්	

ළු පරික්ෂක පරික්ෂක පරික්ෂා කළේ: 1 2 අධීක්ෂණය කළේ:

A	කොට	20
		··

	11 0 2000 0
01.	ස්කන්ධ පිළිවෙලින් $4m$ හා $8m$ වූ A හා B අංශු දෙකක්සුමට තිරස් මේසයක් මත තබා එකිනෙක දෙසට පිළිවෙලින් $3vms^{-1}$ හා vms^{-1} පුවේග වලින් පුක්ෂේප කරනු ලබන්නේ අංශු එකිනෙක සමග සරල
	ලෙස ගැටෙන පරිදිය. ගැටුමෙන් පසු A හි පුවේගය විරුද්ධ දිශාවට $rac{v}{3}$ වේ නම් ගැටුමෙන් පසු B හි පුවේගයද, අංශු
	අතර පුතාාගති සංගුණකය හා ගැටුමේ ආවේගයද සොයන්න.
02.	තිරසට ආනතියක් සහිත ව v_1 පුවේගයෙන් පුක්ෂේපනය කරන ලද අංශුවක එක්තරා මෙහොතක අයත් කරගන්නා
02.	තිරසට ආනතියක් සහිත ව v_1 පුවේගයෙන් පුක්ෂේපනය කරන ලද අංශුවක එක්තරා මෙහොතක අයත් කරගන්නා v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.
02.	v_2 පුවේගය, v_1 පුවේගයට ලම්බ වේ. u යනු අංශුවේ උපරිම උස සහිත ලක්ෂායේ දී පුවේගය වේ.

03.	ස්කන්ධ $3\ kg$ බැගින් වූ A හා B නම් අංශු දෙකක් දිග $1\ m$ ට වඩා වැඩි වූ සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවරට සම්බන්ධකොට තන්තුව බුරුල්ව පවතිනසේ A අංශුව රූපයේ පරිදි මේසයේ දාරයේ තබා ඇත්තේ AB දාරයට ලම්බක වන පරිදිය. A අංශුව නිශ්චලතාවයේ සිට සීරුවෙන් පහළට මුදා හැරෙ. අංශුව $0.45\ m$ ක දුරක් සිරස්ව පහළට වැටුණු පසු තන්තුව තද වේ. B අංශුව චලිතය ආරම්භ කරන පුවේගය හා තන්තුවේ ආවේගී ආතතිය සොයන්න.
04.	ස්කන්ධය මෙට්ටුික් ටොන් එකක් වන කාරයක් ති්රසට $sin^{-1}rac{1}{10}$ ආනතියකින් යුතු මාර්ගයක් දිගේ $20\ ms^{-1}$ ක
04.	ස්කන්ධය මෙට්ටුික් ටොන් එකක් වන කාරයක් ති්රසට $sin^{-1} - \frac{1}{10}$ ආනතියකින් යුතු මාර්ගයක් දිගේ $20~ms^{-1}$ ක සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝචොට් වලින්
04.	10
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~ m N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින්
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ
04.	සතත පුවේගයෙන් ඉහළට ගමන් කරයි. චලිතයට පුතිරෝධය $400~N$ නම්, එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න. මාර්ගය ඉහළ දී තිරස් වේ නම් හා එන්ජිමේ ජවය හා පුතිරෝධය නොවෙනස් වේ නම්, තිරස් මාර්ගයේ

05	a දිග අවිතනා තන්තුවක එක් කෙළවරක් අචල ව O ලඤාගයට යා කොට ඇති අතර, අනෙක් නිදහස් කෙළවරේ
05.	
	ස්කන්ධය m වන P අංශුවක් දරා සිටියි. O සිට $a\cos\beta$ දුරින් O සමඟ එකම තිරස් මට්ටමේ P අංශුව
	නිශ්චලතාවයෙන් මුදාහරී. තන්තුව තිරසට $sin^{-1}(sin^3eta)$ කෝණයකින් ආනත පහිටීමේ දී P අංශුව සුණික
	නිශ්චලතාවයට පත්වන බව පෙන්වන්න.
06	
06.	$ \underline{a} =\sqrt{3}, \underline{b} =\sqrt{2}$ සහ $ \underline{a}-\underline{b} =2$ නම්, $\underline{a}.\underline{b}$ සොයා \underline{a} හා \underline{b} අතර කෝණය සොයන්න.
06.	
06.	
06.	
06.	
06.	
06.	
06.	
06.	
06.	
06.	
06.	
06.	
06.	
06.	
06.	

07.	තිරසට ආනතිය $lpha$ හා eta වන සුමට තල දෙකක් මත බර ඒකාකාර ගෝ $lpha$ සමතුලිතතාවයේ පවතී. $lpha$ දී ඇත්නම් හා එම තලය මත තෙරපුම ගො	
	බරෙන් අර්ධයක් නම්, $ aneta=rac{\sinlpha}{2-\coslpha}$ බව සාධනය කරන්න.	
08.	තිරසට ආනතිය $lpha$ වන රළු තලයක් මත w_1 හා w_2 භාරයන්	W_2
	දෙකක් තන්තුවකින් ඈඳා වැඩිතම බෑවුම් රේඛාව ඔස්සේ තබා ඇත. එම	
	භාරයන් හා තලය අතර ඝර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා	W_1
		w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1
	භාරයන් හා තලය අතර සර්ෂණ සංගුණක μ_1 හා μ_2 නම් හා $\mu_1< anlpha<\mu_2$ නම්, එම අංශු දෙකම සීමාකාරී සමතුලිතතාවයේ	w_1

09.	A සහ B යනු ස්වායත්ත සිද්ධි දෙකකි. A සහ B යන සිද්ධි දෙක ම සිදු වීමේ සම්භාවිතාව $\dfrac{1}{6}$ ද එම සිද්ධි
	දෙකෙන් එකක්වත් සිදු නොවීමේ සම්භාවිතාව $rac{1}{3}$ ද වේ. A සිද්ධිය සිදු වීමේ සම්භාවිතාව සොයන්න.
10.	ධන නිඛිල 5න් යුත් ඒකමාත සංඛාා කුලකයක අවයව ආරෝහණ පිළිවෙලට සැකසු විට කුඩාම සංඛාාව 31 වේ. මෙම සංඛාා 5 හි මධානාය 35 ද මධාස්ථය 36 ද වන අතර මාතය හා මධාස්ථය සමාන නොවේ. එවැනි කුලක
10.	
10.	මෙම සංඛාහ 5 හි මධානාසය 35 ද මධාසේථය 36 ද වන අතර මාතය හා මධාසේථය සමාන නොවේ. එවැනි කුලක
10.	මෙම සංඛාහ 5 හි මධානාසය 35 ද මධාසේථය 36 ද වන අතර මාතය හා මධාසේථය සමාන නොවේ. එවැනි කුලක
10.	මෙම සංඛාහ 5 හි මධානාසය 35 ද මධාසේථය 36 ද වන අතර මාතය හා මධාසේථය සමාන නොවේ. එවැනි කුලක
10.	මෙම සංඛාහ 5 හි මධානාසය 35 ද මධාසේථය 36 ද වන අතර මාතය හා මධාසේථය සමාන නොවේ. එවැනි කුලක
10.	මෙම සංඛාහ 5 හි මධානාසය 35 ද මධාසේථය 36 ද වන අතර මාතය හා මධාසේථය සමාන නොවේ. එවැනි කුලක

වයඹ පළාත් අධාාපන දෙපාර්තමේන්තුව

Provincial Department of Education - NWP 10

O S II

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය - 2021 පෙරහුරු පරීක්ෂණය

B කොටස

පුශ්ණ පහකට පමණක් පිළිතුරු සපයන්න.

P හා Q දුම්රිය පොළවල් 2 ක් $30\,km$ පරතරයකින් පිහිටා ඇත. $40\,kmh^{-1}$ වේගයෙන් P පසුකර යන A නම් දුම්රියක් $12\,km$ ක දුරක් යන තුරු මේ වේගය පවත්වාගෙන ඉක්බිති ඒකාකාර ලෙස මන්දනය වී Q හි දී නිශ්චලතාවයට පත්වෙයි. A දුම්රිය P පසු කර යාමට මිනිත්තු 12 කට පෙර Q හි දී නිශ්චලතාවයේ සිට පිටත්වන B නම් දුම්රියක් එක්තරා කාලයක් $300\,kmh^{-2}$ ත්වරණයකින් ඒකාකාර ලෙස ත්වරණය වී ඉක්බිති ඒකාකාර ලෙස මන්දනය වී P හි දී නිශ්චලතාවයට පත්වෙයි. A හා B දුම්රිය දෙකම එක ම මොහොතක දී පිළිවෙලින් Q හා P දුම්රිය පොළවල නිශ්චලතාවයට පැමිණේ නම්, A හා B හි චලිත සඳහා පුවේග කාල පුස්ථාරවල දළ සටහන් එක ම සටහනක ඇඳ දක්වන්න.

ඒ නයින් හෝ අන් අයුරකින් , ගමන සඳහා B දුම්රිය මිනිත්තු 84 ක් ගන්නා බව පෙන්වන්න. තවද B දුම්රියේ උපරිම වේගය පැයට කිලෝමීටර්වලින් සොයා මන්දනය ද සොයන්න.

- b. කාරයක් පොළවට සාපේඤව w ඒකාකාර වේගයෙන් උතුරු දිශාවට ගමන් කරයි. ලොරියක් උතුරින් නැගෙනහිරට $\frac{\pi}{6}$ කෝණයකින් ආනත ව ඒකාකාර වේගයෙන් ගමන් කරයි. එක්තරා මොහොතක දී ලොරියෙන් දකුණින් නැගෙනහිරට $\frac{\pi}{3}$ කෝණයකින් k දුරකින් කාරය පිහිටයි.
 - (i) කාරය හා ලොරිය එකිනෙක ගැටේ නම්, ලොරියේ පොළවට සාපේæ පුවේගය හා ගැටීමට ගතවන කාලය w හා k ඇසුරින් සොයන්න.
 - (ii) ලොරිය $\frac{\sqrt{5}w}{2}$ පුවේගයෙන් පොළවට සාපේඎව චලිත වේ නම්, කාරය හා ලොරිය අතර $\frac{k}{\sqrt{2}}$ ක අවම දුරක් පවත්වා ගැනීමට පොළවට සාපේඎව ලොරිය ගමන් කල යුතු දිශාව උතුරෙන් නැගෙනහිරට $\gamma\left(<\frac{\pi}{6}\right)$ කෝණයක් නම්, $\gamma=\frac{5\pi}{12}-\sin^{-1}\!\left(\frac{\sqrt{3}+1}{\sqrt{10}}\right)$ බව පෙන්වන්න.

12. a.

රුපයේ දැක්වෙන පරිදි ස්කන්ධය m වන P අංශුවක් තිරසට 30^0 ආනත ඝර්ෂණ සංගුණකය $\frac{1}{\sqrt{3}}$ වන රඵ තලයක් මත තබා එයට ඇඳූ සැහැල්ලු අවිතනා තන්තුවක් ආනත තලය මුදුනේ ඇති සුමට අවල A කප්පිය මතින් දමා සවල ස්කන්ධය M වන සුමට B කප්පිය යටින් දමා ඉන් පසු C සුමට අවල කප්පිය මතින් දමා තිරසට 60^0 ක් ආනත සුමට තලය මුදුනේ D සුමට අවල කප්පිය යටින් දමා ආනත තලය මත ඇති ස්කන්ධය 2m වන Q අංශුවට සවිකර ඇත. පද්ධතිය නිශ්චලතාවයෙන් මුදා හැරේ. පසුව ඇතිවන චලිතයේ දී තන්තුවේ ආතතිය $\frac{(6+\sqrt{3})Mmg}{(3M+8m)}$ බව පෙන්වන්න.

b. රූපයේ දැක්වෙන පරිදි දිග 3а වන සැහැල්ලූ අවිතතා තන්තුවක එක් කෙළවරක් අචල ${
m O}$ ලඎයකට ගැටගසා අනෙක් කෙළවරට ස්කන්ධය m වූ අංශුවක් සම්බන්ධකොට සමතුලිතතාවේ තිරස් තබා u පුවේගයෙන් අංශුව පුක්ෂේප කෙරේ. අංශුව පහළම මට්ටමේ සිට සිරස් ලෙෂ h උසකින් පිහිටන විට එහි පුවේගය $\sqrt{u^2-2gh}$ බවත් තන්තුවේ ආතතිය $rac{m}{3g}(u^2-3gh+3ag)$ මගින් දෙනු ලබන බවත් පෙන්වන්න. තව ද අංශුව පහළම මට්ටමේ සිට සිරස් ලෙස 5a උසක දී වෘත්තාකාර චලිතයෙන් ඉවත් වේ නම් එම අවස්ථාවේ අංශුවේ පුවේගය සොයා ඉන්පසු අංශුව ලඟාවන උපරිම ලඤෳායට පහළම මට්ටමේ සිට ඇති උස a ඇසුරින් සොයන්න.

13. ස්කන්ධය ඇති නම් අංශුවක් ස්වභාවික දිග හා ප්‍රතාස්ථතා මාපාංකය වූ ප්‍රතාස්ථ තන්තුවක මධා ලස්‍යායට ගැට ගසා තන්තුවෙහි දෙකෙළවර තිරස් සුමට මේසයක් මත එකිනෙක දුරින් පිහිටි හා අවල ලස්‍යාය 2 ට ගැට ගසා ඇත. ආරම්භයේ දී අංශුව දෙසට ප්‍රවේගයෙන් ප්‍රක්ෂේප කෙරේ. කාලයේ දී නම් සඳහා අංශුවේ චලිත සමීකරණය මඟින් දෙනු ලබන බව පෙන්වන්න.

ලෙස යෙදීමෙන් ඉහත චලින සමීකරණය ලෙස ලියා දක්වන්න. මෙහි වේ. ඉහත සමීකරණයේ විසඳුම ලෙස උපකල්පනය කොට නියතවල අගයන් සොයන්න.

ඒනයින් විට අංශුවේ පුවේගය බව පෙන්වන්න.

තව දුරටත් සඳහා හි චලිත සමීකරණය බව පෙන්වා බවද පෙන්වන්න.

අංශුව සෂණික නිශ්චලතාවයට පැමිණීමට ගත් කල මුඵ කාලය පෙන්වන්න.

- 14. a. තිකෝණයක ද ද යැයි ගනිමු. හා ලක්ෂායන් පිළිවෙලින් හා මත පිහිටා ඇත්තේ හා වන සේ ය. හා රේඛා ලක්ෂායේ දී හමු වේ.
 ලෙස පුකාෂ කරන්න. මෙහි හා අදිශ වේ. හා වල අගයයන් සොයන්න.
 - b. අක්ෂ පද්ධතියේ සහ ලක්ෂාවල ඛණ්ඩාංක පිළිවෙලින් සහ වේ. සහ යන ඒකතල බල පද්ධතියක් මෙම චතුරසුයේ අදාළ පාද ඔස්සේ කිුියා කරයි.
 - i. එක් එක් බලය සහ දෛශක ඇසුරෙන් පුකාශ කරන්න. ඒ නයින් පද්ධතියේ සම්පුයුක්තය ආකාරයට දක්වන්න.

- ii. ඉහත සම්පුයුක්තය y අක්ෂයට සමාන්තර වේ නම්, k හි අගය සොයන්න.
- iii. k=2 වන විට සම්පුයුක්තයේ විශාලත්වය, දිශාව හා කිුිිිිිිිිිිිිිිි සොයන්න.
- 15. a. දිග 2a ද බර W ද වන සමාන දඬු හතරක් ඒවායේ කෙළවරවල දී නිදහස් ලෙස සන්ධි කර ඇත්තේ ABCD සමචතුරසුය සෑදෙන පරිදි ය. එම හැඩය පවත්වා ගැනීම සඳහා BD සැහැල්ලු දණ්ඩක් යොදා නෙ ඇති අතර BD තිරස් වන පරිදි ත් C ට ඉහළින් A පවතින පරිදි ත් AB, AD දඬු එකම තිරස් මට්ටමේ 2b පරතරයෙන් පිහිටි සුමට නාදැති දෙකක් මත පවතින පරිදිත් සැකිල්ල සිරස් ව සමතුලිතතාවයේ පවතී. BD දණ්ඩ තුළ තෙරපුම සොයන්න. තව ද A සන්ධියේ පුතිකිුයා ව ද සොයන්න.

b. සැහැල්ලු දඬු හතක් ඒවායේ අන්තවල දී සුමට ලෙස සන්ධි කිරීමෙන් සාදන ලද රාමු සැකිල්ලක් පහත රූපයේ දැක්වේ. මෙහි AE = EB = BD = BC = l සහ $AB = ED = DC = \sqrt{2}l$ වේ. එම රාමු සැකිල්ල A හි දී සුමට ලෙස අසව් කර ඇති අතර E හි දී 2W භාරයක් දරා සිටියි. C හි දී කියා කරන P නම් තිරස් බලයක් මගින් EA තිරස් වන පරිදි රාමු සැකිල්ල සිරස් ව රඳවා ගනිමින් ඇත.

- (i) P හි අගය W ඇසුරෙන් සොයන්න.
- (ii) අසව්වේ පුතිකියාව සොයන්න.
- (iii) බෝ අංකනය භාවිතයෙන් රාමු සැකිල්ල සඳහා පුතාාබල සටහන ඇඳ දඬු සියල්ලේ ම පුතාාබල සොයා ඒවා ආතති ද තෙරපුම් ද යන්න සඳහන් කරන්න.

16. උස h වන ඒකාකාර සෘජු වෘත්ත කේතුවක ස්කන්ධ කේන්දුය එහි පතුලේ සිට $\frac{1}{4}h$ දුරකින් පිහිටන බව පෙන්වන්න.

උස h හා අරය r වන ඒකාකාර සෘජු වෘත්ත සිලින්ඩරයකින් සෘජු වෘත්ත කේතුවක් හාරා ඉවත් කරනු ලැබේ. කේතුවේ පතුල සිලින්ඩරයේ එක් අන්තයක් සමඟ ද කේතුවේ ශීර්ෂය O සිලින්ඩරයේ අනෙක් අන්තයේ කේන්දය සමඟ ද සමපාත වේ. සිලින්ඩරයේ ඉතිරි කොටසේ ස්කන්ධ කේන්දය O සිට $\frac{3}{8}h$ දුරකින් පිහිටන බව පෙන්වන්න.

මෙම කුහරය සහිත සිලින්ඩරය O ඉහළම ලක්ෂායේ පවතින පරිදි ලිස්සීම වැළැක්වීමට පුමාණවත් රළු බවක් සහිත කුම කුමයෙන් ආනතිය වැඩිකළ හැකි තිරස් තලයක් මත තබා ඇත. එම තලයේ තිරසට ආනතිය $an^{-1} \left(rac{8r}{5h}
ight)$ ඉක්මවා යන විට සිලින්ඩරය පෙරළෙන බව පෙන්වන්න.

- 17. a. එක්තරා කර්මාන්ත ශාලාවක නිෂ්පාදනය කරන ලද වීදුරු ගඩොල් දෝෂ සඳහා පරීඤා කෙරේ. නිපදවන ලද ඕනෑම ගඩොලක වායු බුබුළු තිබීමේ සම්භාවිතාව 0.025 වේ. වායු බුබුළු සහිත ගඩොලක් පලුදු වීමේ සම්භාවිතාව 0.40 වන අතර වායු බුබුළු රහිත ගඩොලක් පලුදු නොවීමේ සම්භාවිතාව 0.996 වේ.
 - (i) සසම්භාවී ලෙස තෝරා ගන්නා ලද ගඩොලක් පලුදු වීමේ සම්භාවිතාව සොයන්න.
 - (ii) සසම්භාවී ලෙස තෝරා ගත්තා ලද ගඩොලක් පලුදු වී තිබෙයි තම් එය වායු බුබුළු රහිත වීමේ සම්භාවිතාව සොයන්න.
 - (iii) ගඩොලක පලුදු සිදුවීම, වායු බුබුළු ඇති වීමෙන් ස්වායත්ත නොවන බව පෙන්වන්න.
 - b. එක්තරා ගොවිපොළක ඌරන්ගේ ස්කන්ධ ආසන්න කිලෝගුෑමයට මැන තිබෙයි. ලබා ගන්නා ලද දත්ත පහත දැක්වෙන සමූහිත සංඛ්‍යාත වගුවේ දැක්වේ.

ස්කන්ධ පරාසය / k g	ඌරන් ගණන
65 - 75	3
75 - 85	f_1
85 - 95	20
95 - 105	f_2
105 - 115	7

ස්කන්ධ පරාසය 75 - 85 හා 95 - 105 හි සංඛ්‍යාත වගුවෙහි දක්නට නොමැත. කෙසේ නමුත්, සමූහිත සංඛ්‍යාත ව්‍යාප්තියේ මධ්‍යස්ථය හා මාතය පිළිවෙලින් 90 kg හා 87.5 kg බව දනී. වගුවෙහි දක්නට නොමැති සංඛ්‍යාත ගණනය කර ඒ නයින් ස්කන්ධ මනින ලද මුළු ඌරන් ගණන ලබා ගන්න. සමූහිත සංඛ්‍යාත ව්‍යාප්තියේ මධ්‍යන්‍යය හා සම්මත අපගමනය සොයන්න.
agan anang concord dangera in adder 4000000 danang.