Solving multivariate polynomial systems over finite fields: Hybrid approach

Luk Bettale¹, Jean-Charles Faugère, Ludovic Perret

LIP6 - SALSA UPMC, CNRS, INRIA Paris-Rocquencourt

Journées Nationales du Calcul Formel Luminy, Mai 2010

1/24

Luk Bettale

¹author partially supported by DGA/MRIS (french secretary of defense)

Outline

Introduction

Motivations PoSSo problem

Polynomial system solving

Gröbner bases
Algorithms and complexity

Hybrid approach

Presentation of the hybrid approach Complexity analysis

Application to multivariate cryptography

Presentation of Multivariate Cryptography Cryptanalysis of UOV Security analysis of multivariate signature schemes

Conclusion

Luk Bettale 2/24

Introduction

Motivations

- Algebraic cryptanalysis
- General algorithms
- Design of cryptographic schemes.

Polynomial System Solving

Given $f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)$ of $\mathbb{F}_q[x_1,\ldots,x_n]$, does there exist $z_1,\ldots,z_n\in\mathbb{F}_q^n$ such that:

$$\begin{cases} f_1(z_1, \dots, z_n) = 0 \\ \vdots \\ f_m(z_1, \dots, z_n) = 0 \end{cases}$$

Polynomial System Solving

Given $f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)$ of $\mathbb{F}_q[x_1,\ldots,x_n]$, does there exist $z_1,\ldots,z_n\in\mathbb{F}_q^n$ such that:

$$\begin{cases} f_1(z_1, \dots, z_n) = 0 \\ \vdots \\ f_m(z_1, \dots, z_n) = 0 \end{cases}$$

- Polynomial System Solving is NP-hard
- Hard in practice for generic polynomials.

Known methods

- Exhaustive search
- Gröbner bases
- Gröbner bases with field equations

Known methods

- Exhaustive search
- Gröbner bases
- Gröbner bases with field equations

Algorithms

- Buchberger : the historical algorithm
- F₄ : linear algebra on matrices
- F₅: no useless computations for semi-regular systems

Jean-Charles Faugère.

A new efficient algorithm for computing Gröbner bases (F_4) .

Journal of Pure and Applied Algebra 139, June 1999.

Jean-Charles Faugère.

A new efficient algorithm for computing Gröbner bases without reduction to zero (F_5).

ISSAC 2002, July 2002.

Algorithms

- Buchberger : the historical algorithm
- \bullet F_4 : linear algebra on matrices
- F₅: no useless computations for semi-regular systems

$$\begin{split} & \mathbf{F_5}:\,\mathcal{O}\left(\left(m\cdot\binom{n+d_{\mathrm{reg}}-1}{d_{\mathrm{reg}}}\right)\right)^{\omega}\right), \quad \mathbf{FGLM}:\,\mathcal{O}\left(n\cdot D^w\right), \\ & \text{with } 2\leqslant\omega\leqslant3, \qquad \qquad D \text{ the number of solutions in } \overline{\mathbb{K}}. \end{split}$$

Magali Bardet, Jean-Charles Faugère, Bruno Salvy and Bo-Yin Yang.

Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Polynomial Systems.

MEGA 2005.

Algorithms

ullet F_5 : no useless computations for semi-regular systems

$$\begin{split} \mathbf{F_5}: \ \mathcal{O}\left(\left(m \cdot \binom{n + d_{\mathrm{reg}} - 1}{d_{\mathrm{reg}}}\right)\right)^{\omega}\right), \quad \mathbf{FGLM}: \mathcal{O}\left(n \cdot D^w\right), \\ \text{with } 2 \leqslant \omega \leqslant 3, \qquad \qquad D \text{ the number of solutions in } \overline{\mathbb{K}}. \end{split}$$

Semi-regular systems

- A system of unrelated polynomials
- The degree of regularity (d_{reg}) can be known a priori
- ullet The more equations we have, the more d_{reg} decrease.

(e.g. for quadratic systems)
$$m:n\to n+1 \qquad \qquad d_{reg}:n+1\to \lceil\frac{n+1}{2}\rceil$$

Algorithms

ullet F_5 : no useless computations for semi-regular systems

$$\begin{split} \mathbf{F_5}: \ \mathcal{O}\left(\left(m \cdot \binom{n + d_{\mathrm{reg}} - 1}{d_{\mathrm{reg}}}\right)\right)^{\omega}\right), \quad \mathbf{FGLM}: \mathcal{O}\left(n \cdot D^w\right), \\ \text{with } 2 \leqslant \omega \leqslant 3, \qquad \qquad D \text{ the number of solutions in } \overline{\mathbb{K}}. \end{split}$$

Semi-regular systems

- A system of unrelated polynomials \approx a random system
- ullet The degree of regularity (d_{reg}) can be known a priori
- ullet The more equations we have, the more d_{reg} decrease.

(e.g. for quadratic systems)
$$m:n\to n+1 \qquad \qquad d_{reg}:n+1\to \lceil\frac{n+1}{2}\rceil$$

Solving a system – General approach

$$f_i \in \mathbb{F}_q[x_1, \dots, x_n] \text{ for } 1 \leqslant i \leqslant n$$

$$\begin{cases} f_1(x_1, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, \dots, x_n) = 0 \end{cases}$$

$$f_i \in \mathbb{F}_q[x_1, \dots, x_n] \text{ for } 1 \leqslant i \leqslant n$$

$$\begin{cases} f_1(x_1, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, \dots, x_n) = 0 \end{cases}$$

Specificity (m = n)

- Random systems $\Rightarrow d_{reg} = n(d-1) + 1$
- Square systems $\Rightarrow d^n$ solutions in the algebraic closure.
- ullet \mathbb{F}_q is finite and rather big (no field equations).

Solving a system – Hybrid approach

Solution

We specialize k variables of the system (exhaustive search)

- ⇒ the system becomes over-defined
 - + The degree of regularity decreases
 - + The number of solutions is 0 or 1
 - We have to compute q^k Gröbner bases.

Luk Bettale, Jean-Charles Faugère and Ludovic Perret. Hybrid approach for solving multivariate systems over finite fields. In Journal of Mathematical Cryptology, Volume 3, issue 3. Sep 2009.

Solving a system – Hybrid approach

Solution

We specialize k variables of the system (exhaustive search)

- ⇒ the system becomes over-defined
 - + The degree of regularity decreases
 - + The number of solutions is 0 or 1
 - We have to compute q^k Gröbner bases.

Luk Bettale, Jean-Charles Faugère and Ludovic Perret. Hybrid approach for solving multivariate systems over finite fields. In Journal of Mathematical Cryptology, Volume 3, issue 3. Sep 2009.

A tradeoff between exhaustive search and Gröbner bases computation.

Proposition

Let \mathbb{F}_q be a finite field and $\{f_1,\ldots,f_n\}\subset \mathbb{F}_q[x_1,\ldots,x_n]$ be a semi-regular system of equations of degree d.

$$\mathcal{O}\left(\underbrace{\min_{\substack{0\leqslant k\leqslant n\\ \textit{tradeoff}}}}_{\textit{tradeoff}}\left(\underbrace{q^k}_{\textit{exh. search}}\underbrace{\left(n\cdot\binom{n-k-1+\operatorname{d}_{\operatorname{reg}}(n-k,n,d)}{\operatorname{d}_{\operatorname{reg}}(n-k,n,d)}\right)\right)^{\omega}}_{F_5}\underbrace{+n\cdot D^{\omega}}_{FGLM}\right)\right),$$

where $2 \leqslant \omega \leqslant 3$.

 $\mathbf{d}_{\rm reg}(n,m,d)$ is the d_{reg} of a semi-regular system of m equations of degree d in n variables.

Proposition

Let \mathbb{F}_q be a finite field and $\{f_1,\ldots,f_n\}\subset \mathbb{F}_q[x_1,\ldots,x_n]$ be a semi-regular system of equations of degree d.

$$\mathcal{O}\left(\underbrace{\min_{0\leqslant k\leqslant n}}_{\text{tradeoff}}\left(\underbrace{q^k}_{\text{exh. search}}\underbrace{\left(n\cdot\binom{n-k-1+\operatorname{d_{reg}}(n-k,n,d)}{\operatorname{d_{reg}}(n-k,n,d)}\right)\right)^{\omega}}_{F_5}\underbrace{+n\cdot D^{\omega}}_{FGLM}\right)\right),$$

where $2 \leqslant \omega \leqslant 3$.

 $\mathbf{d}_{\mathrm{reg}}(n,m,d)$ is the d_{reg} of a semi-regular system of m equations of degree d in n variables.

The degree of regularity can be computed exactly.

Proposition

Let \mathbb{F}_q be a finite field and $\{f_1,\ldots,f_n\}\subset \mathbb{F}_q[x_1,\ldots,x_n]$ be a semi-regular system of equations of degree d.

$$\mathcal{O}\left(\underbrace{\min_{\substack{1 \leqslant k \leqslant n \\ \textit{tradeoff}}} \left(\underbrace{q^k}_{\textit{exh. search}}\underbrace{\left(n \cdot \binom{n-k-1+\operatorname{d_{reg}}(n-k,n,d)}{\operatorname{d_{reg}}(n-k,n,d)}\right)\right)^{\omega}}_{\textit{f}_{5}}\right)\right),$$

where $2 \leqslant \omega \leqslant 3$.

 $\mathbf{d}_{\mathrm{reg}}(n,m,d)$ is the d_{reg} of a semi-regular system of m equations of degree d in n variables.

The degree of regularity can be computed exactly.

Asymptotic analysis (d = 2)

Approximation of $d_{reg}(n-k, n, 2)$

$$d_{reg} \sim \frac{n+k}{2} - \sqrt{nk} + \mathcal{O}((n-k)^{1/3})$$

when $n \to \infty$.

Magali Bardet

Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie.

Ph.D. thesis, Université de Paris VI, 2004.

Approximation of the complexity

$$C_{Hyb} = \mathcal{O}\left(q^k \left(\frac{n}{\sqrt{2\pi}}\right)^\omega \left(\frac{\left(\frac{3n-k}{2}-1-\sqrt{nk}\right)^{(3n-k-1)/2-\sqrt{nk}}}{(n-k-1)^{(n-k-1/2)}\left(\frac{n+k}{2}-\sqrt{nk}\right)^{(n+k+1)/2-\sqrt{nk}}}\right)^\omega\right)$$

when $n \to \infty$.

Find the best tradeoff by solving $\frac{\partial \log(C_{Hyb})}{\partial k} = 0.$

$$\log(q) + \omega \left(\log(n-k-1) + \frac{1}{2(n-k-1)} \right)$$
$$-\frac{\omega}{2} (1 + \sqrt{n/k}) \left(\log\left(\frac{3n-k}{2} - 1 - \sqrt{nk}\right) + \frac{1}{2\left(\frac{3n-k}{2} - 1 - \sqrt{nk}\right)} \right)$$
$$-\frac{\omega}{2} (1 - \sqrt{n/k}) \left(\log\left(\frac{n+k}{2} - \sqrt{nk}\right) + \frac{1}{2\left(\frac{n+k}{2} - \sqrt{nk}\right)} \right) = 0.$$

Finding the best tradeoff (d=2)

Find the best tradeoff by solving $\frac{\partial \log(C_{Hyb})}{\partial k} = 0.$

$$k \approx \frac{n}{c^2}$$

$$8q(c-1)^{3c-3}e^{-3/2c\ln((3c+1)(c-1))}(c-1)^3(c+1)^3$$

$$-((3c+1)(c-1))^{3/2} = 0$$

\overline{q}	2	16	256	65521	2^{32}	2^{64}	2^{80}
c^2	1.23	3.07	9.15	37.13	160.37	678.32	1073.1

Borderline case (d=2)

Classical approach

$$(d_{reg} = n+1)$$

$$\mathcal{O}\left(\left(n \cdot {2n \choose n-1}\right)^{\omega}\right).$$

Hybrid approach with k=1 $(d_{reg} = \lceil \frac{n+1}{2} \rceil) \\ \mathcal{O}\left(q\left(n \cdot \binom{3(n-1)/2}{n-2}\right)^{\omega}\right).$

$Best\ tradeoff > 0$

$$\log_2(q) \leq 0.6226 \cdot \omega \cdot n + \mathcal{O}(\log_2(n))$$

when $n \to \infty$.

Borderline case (d=2)

Classical approach

$$(d_{reg} = n+1)$$

$$\mathcal{O}\left(\left(n \cdot {2n \choose n-1}\right)^{\omega}\right).$$

Hybrid approach with k = 1

$$(d_{reg} = \lceil \frac{n+1}{2} \rceil)$$

$$\mathcal{O}\left(q\left(n \cdot {\binom{3(n-1)/2}{n-2}}\right)^{\omega}\right).$$

$Best\ tradeoff > 0$

$$\log_2(q) \leq 0.6226 \cdot \omega \cdot n + \mathcal{O}(\log_2(n))$$

when $n \to \infty$.


```
Input: \mathbb{K} is finite, \{f_1,\ldots,f_m\}\subset\mathbb{K}[x_1,\ldots,x_n] is
    zero-dimensional, k \in \mathbb{N}.
Output: S = \{(z_1, ..., z_n) \in \mathbb{K}^n : f_i(z_1, ..., z_n) = 0, 1 \le i \le m\}.
   S := \emptyset
   for all (v_1,\ldots,v_k)\in\mathbb{K}^k do
       Find the set of solutions \mathcal{S}' \subset \mathbb{K}^{(n-k)} of
           f_1(x_1, \dots, x_{n-k}, v_1, \dots, v_k) = 0
\vdots
f_m(x_1, \dots, x_{n-k}, v_1, \dots, v_k) = 0
       using the zero-dim solving strategy.
       S := S \cup \{(z'_1, \dots, z'_{n-k}, v_1, \dots, v_k) : (z'_1, \dots, z'_{n-k}) \in S'\}.
    end for
    return S.
```

```
function HybridSolving(F,k)
    R := Universe(F); K := BaseRing(R); n := Rank(R);
    Rp<[x]> := PolynomialRing(K,n-k);
    Kev := VectorSpace(K,k);
    S := [];
    for e in Kev do
        v := Eltseq(e);
        fp := [ Evaluate(f,x cat v) : f in F ];
        Sp := VarietySequence(Ideal(fp));
        S cat:= [ s cat v : s in Sp ];
    end for:
    return S:
end function:
```

http://www-salsa.lip6.fr/~bettale/hybrid.html

Multivariate cryptography

Properties

- The public key is a quadratic system
- Very efficient (hardware)
- Resist quantum computers.

Examples

- C*, HFE
- UOV, SFLASH
- ...

Secret key

$$\begin{array}{cccc} \mathbf{F}: & \mathbb{F}_q^{n+r} & \to & \mathbb{F}_q^n & \mathsf{Easy to invert} \\ (x_1, \dots, x_{n+r}) & \to & (\underbrace{f_1}(x_1, \dots, x_{n+r}), \dots, \underbrace{f_n}(x_1, \dots, x_{n+r})) \end{array}$$

$$T \in \mathrm{GL}_{n+r}(\mathbb{F}_q)$$

Public key

$$\mathbf{G}: \quad \mathbb{F}_q^{n+r} \quad \to \quad \mathbb{F}_q^n \\ (x_1, \dots, x_{n+r}) \quad \to \quad (g_1(x_1, \dots, x_n), \dots, g_n(x_1, \dots, x_n))$$

$$G = \mathbf{F} \circ \mathbf{T} = \mathbf{F}(\mathbf{x} \cdot \mathbf{T}).$$
 Verify $\mathbf{G}(\mathbf{x})$: Evaluate $\mathbf{G}(\mathbf{x})$

Secret key

Public key

$$\mathbf{G}: \quad \mathbb{F}_q^{n+r} \quad \to \quad \mathbb{F}_q^n \\ (x_1, \dots, x_{n+r}) \quad \to \quad (g_1(x_1, \dots, x_n), \dots, g_n(x_1, \dots, x_n))$$

$$G = \mathbf{F} \circ T = \mathbf{F}(\mathbf{x} \cdot T).$$
 Verify_G (x): Evaluate $G(\mathbf{x})$

Signature of a message $\mathbf{m} = (m_1, \dots, m_n)$

- lacksquare Pick $(v_1,\ldots,v_r)\in\mathbb{F}_q^r$
- Solve the linear system

$$\begin{cases} f_1(x_1, \dots, x_n, v_1, \dots, v_r) - m_1 = 0 \\ \vdots \\ f_n(x_1, \dots, x_n, v_1, \dots, v_r) - m_n = 0 \end{cases}$$

$$\bullet$$
 $\mathbf{s} = (z_1, \dots, z_n, v_1, \dots, v_r) \cdot T^{-1}$

Verification of the signature $\mathbf{s} = (s_1, \dots, s_{n+r})$

$$\mathbf{m} = (g_1(s_1, \dots, s_{n+r}), \dots, g_n(s_1, \dots, s_{n+r}))$$

Signature of a message $\mathbf{m} = (m_1, \dots, m_n)$

- lacksquare Pick $(v_1,\ldots,v_r)\in\mathbb{F}_q^r$
- Solve the linear system

$$\begin{cases} f'_1(x_1, \dots, x_n) - m_1 = 0 \\ \vdots \\ f'_n(x_1, \dots, x_n) - m_n = 0 \end{cases}$$

$$\mathbf{s} = (z_1, \dots, z_n, v_1, \dots, v_r) \cdot T^{-1}$$

Verification of the signature $\mathbf{s} = (s_1, \dots, s_{n+r})$

$$\mathbf{m} = (g_1(s_1, \dots, s_{n+r}), \dots, g_n(s_1, \dots, s_{n+r}))$$

Signature forgery attack

Given a message $\mathbf{m}=(m_1,\ldots,m_n)$, find a signature (s_1,\ldots,s_{n+r}) such that $\mathbf{G}(\mathbf{x})=\mathbf{m}$.

Signature forgery attack

Given a message $\mathbf{m}=(m_1,\ldots,m_n)$, find a signature (s_1,\ldots,s_{n+r}) such that $\mathbf{G}(\mathbf{x})=\mathbf{m}$.

Solve the system

$$\begin{cases} g_1(x_1, \dots, x_{n+r}) - m_1 = 0 \\ \vdots \\ g_n(x_1, \dots, x_{n+r}) - m_n = 0 \end{cases}$$

Signature forgery attack

Given a message $\mathbf{m}=(m_1,\ldots,m_n)$, find a signature (s_1,\ldots,s_{n+r}) such that $\mathbf{G}(\mathbf{x})=\mathbf{m}$.

Solve the system

```
\begin{cases} g_1(x_1, \dots, x_n, y_1, \dots, y_r) - m_1 = 0 \\ \vdots \\ g_n(x_1, \dots, x_n, y_1, \dots, y_r) - m_n = 0 \end{cases}
```

Signature forgery attack

Given a message $\mathbf{m}=(m_1,\ldots,m_n)$, find a signature (s_1,\ldots,s_{n+r}) such that $\mathbf{G}(\mathbf{x})=\mathbf{m}$.

Solve the system

$$\begin{cases} g'_1(x_1,...,x_n) - m_1 = 0 \\ \vdots \\ g'_n(x_1,...,x_n) - m_n = 0 \end{cases}$$

Signature forgery attack

Given a message $\mathbf{m}=(m_1,\ldots,m_n)$, find a signature (s_1,\ldots,s_{n+r}) such that $\mathbf{G}(\mathbf{x})=\mathbf{m}$.

Solve the system

$$\begin{cases} g'_1(x_1,...,x_n) - m_1 = 0 \\ \vdots \\ g'_n(x_1,...,x_n) - m_n = 0 \end{cases}$$

Parameters: $q = 2^4, n = 16$.

An Braeken, Bart Preneel, and Christopher Wolf A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes CT-RSA 05.

$Experimental\ results$

\overline{q}	n	k	T_{F_5}	mem. (MB)	Nop_{F_5}	Nop
4		1	$\approx 1 \; \text{h}$	3532	$2^{36.9}$	$2^{40.9}$
2^4	16	2	126 s	270	$2^{32.3}$	$2^{40.5}$
		3	9.41 s	38	$2^{28.7}$	$2^{40.7}$

Best tradeoff : k = 2. Broken in $\leq 9h$.

Jean-Charles Faugère, and Ludovic Perret.

On the security of UOV.

SCC 2008.

Analysis of several multivariate schemes

	n	q	expected security	Gröbner basis $(k=0)$	hybrid approach	mem.
UOV ₃₀	10	2^{8}	2^{80}	2^{41}	$2^{37} (k=1)$	2 MB
UOV ₆₀	20	2^{8}	2^{160}	2^{82}	$2^{66} (k=1)$	139 GB
enTTS					$2^{67} (k=2)$	12 GB
Rainbow	24	2^{8}	2^{192}	2^{98}	$2^{78} (k=1)$	10 TB
amTTS					$2^{79} (k=2)$	816 GB

Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp, and Christopher Wolf Time-Area Optimized Public-Key Engines: MQ-Cryptosystems as Replacement for Elliptic Curves?

CHES '08: Proceedings of the 10th international workshop on Cryptographic Hardware and Embedded Systems

Analysis of several multivariate schemes

	n	q	expected security	Gröbner basis $(k=0)$	hybrid approach	mem.
UOV_{30}	10	2^{8}	2^{80}	2^{41}	$2^{37} (k=1)$	2 MB
UOV_{60}	20	2^{8}	2^{160}	2^{82}	$2^{66} (k=1)$	139 GB
enTTS					$2^{67} (k=2)$	12 GB
Rainbow	24	2^{8}	2^{192}	2^{98}	$2^{78} (k=1)$	10 TB
amTTS		_			$2^{79} (k=2)$	816 GB

Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp, and Christopher Wolf Time-Area Optimized Public-Key Engines: MQ-Cryptosystems as Replacement for Elliptic Curves?

CHES '08: Proceedings of the 10th international workshop on Cryptographic Hardware and Embedded Systems

Conclusion

Applications in cryptography

- A general tool for solving random systems over finite field
- Reevaluate parameters of multivariate cryptosystems
- Natural generalization : Block hybrid approach
- Implementation in MAGMA.
 http://www-salsa.lip6.fr/~bettale/hybrid.html