

COLOUR MONITOR

MODEL EUM-1491A

CAUTION

Before servicing this product, it is important that the serviceman reads the "SAFETY PRECAUTIONS" and "PRODUCT SAFETY NOTICE" in this service manual.

SPECIFICATIONS

• Picture tube

13" viewable, 90 degree deflection

0.28 mm trio dot pitch Tinted glass, Non-glare

P22, Medium-short persistence

Video

Band width

30 MHz

Resolution

RGB TTL/ANALOG

800 dots Horizontal 600 lines Vertical Composite Video 300 dots Horizontal

500 line Vertical

Input Signal

Comp. video: PAL

RGB: video: TTL Positive 8/16/64

Colours

Analogue 0.6 Vp-p positive

Sync.: Separate sync. TTL±HD, ±VD Comp. sync. TTL ±HD/VD

Comp. sync. on green video

Connector

BNC Jack D-Sub 9-pin D-Sub 25-pin

• Synchronization Horizontal: 15.6 kHz to 38 kHz

(Auto-Tracking)

Vertical: 45 Hz to 90 Hz (Auto-Tracking) Power Input

AC 220~240 V 50 Hz

Power

Consumption

85 watts

Dimension

362 mm(W)×328 mm(H)×383 mm(D)

14-1/4" ×12-29/32" ×15-5/64"

Unit Net Weight 14.5 kg (32.0 lbs)

Special Features

Automatic tracking of wide range horizontal and vertical scanning frequencies.

f(H): 15.6 ~ 38 kHz f(V): 45 ~ 90 Hz

* Size and position of the screen can be adjusted with external controls.

* High-resolution colour CRT, 0.28mm trio dot pitch, conductive coating, tinted glass.

* Diverse displays are obtainable by inputs of various signals such as composite video, RGB TTL, analogue and monochrome.

SAFETY PRECAUTIONS

NOTICE: Observe all cautions and safety related notes located inside the receiver cabinet and on the receiver chassis.

WARNING

- Operation of these receivers outside the cabinet or with the cover removed, involves a shock hazard from the receiver power supplies. Work on the receiver should not be attempted by anyone who is not throughly familiar with precautions necessary when working on high voltage equipment.
- 2. Do not install, remove or handle the picture tube in any manner unless shatter-proof goggles are worn. People not so equipped should be kept away while the picture tube is being handled. Keep the picture tube away from the body while handling.
- 3. When service is required, observe the original lead dress. Extra precaution should be given to assure correct lead dress in the high voltage area. Where a short-circuit has occurred, replace those components that indicate evidence of overheating.

LEAKAGE CURRENT COLD CHECK

Before returning the receiver to the customer, it is recommended that the leakage current be measured according to the following methods.

With the AC plug removed from the $220\sim240$ AC source, place a jumper across the two AC plug prongs. Turn the receiver AC switch on. Using on OHM-METER, connect one lead to the jumpered AC plug and touch the other lead to each exposed metal part (antennas, screwheads, etc.), particularly any exposed metal part having a return path to the chassis should have a minimum resistance reading of 1 megohm. Any resistance below this value indicates an abnormality which requires corrective action.

PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in colour monitor have special safety related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this service manual. Electrical components having such features are identified by shading on the schematic diagram and the parts list of this service manual and by marking on the supplementary sheet for this chassis to be issued subsequently. Therefore replacements for any safety parts should be identical in value and characteristics.

Disassembly

1. Place the monitor on a table with the face facing downward.

Caution: Cover the surface of the table with a cushion, blanket, or else so that the face shall not be scored.

2. Remove the back cover by unscrewing six screws.

(2 screws at the top of the back cover, two screws at two sides of the rear panel, and 2 screws on two sides at the bottom of the back

- 3. Set the monitor upright on the table.
- 4. Remove the SHIELD-PLATE-TOP by unscrewing six screws.

Remove the SHIELD-PLATE-REAR by slightly lifting upwards after removing two fastening screws.

5. Place a plate with a thickness of about 10 mm below the CABINET-BOTTOM for floating the rear of the monitor.

6. Remove two screws which fastening the bracket to the front panel on each side, and draw out the entire chassis to the operator side. Caution: Pull the chassis by paying attention

to the wires and other parts.

7. Remove two screws from the two sides of the SHIELD-PLATE-TERMINAL.

Loosen two screws fastening the bracket-POWER to the chassis. Raise the bracket slightly and turn it down to the left side.

- 8. Remove one screw which fastens the right bracket-DEFL to the flyback-trans, and turn down to the right side.
- 9. To check the rear side of the PCB-MAIN, loosen two screws fastening the SHIELD-PLATE-BOTTOM.

LEAD DRESSING

The lead wires to be clamped are listed in the table below.

Note: The inner wires are routed or clamped so that they do not come close to the heat generating or high-tension parts. After servicing route all wires in their original position.

The anode lead wires are routed so no tensile strength is applied to the anode cap. If the mounting angle of the anode cap and the route of the anode lead wires are changed, return them to the initial angle and route.

CONNECTOR LEAD FOR CLAMPER LIST

	
MARK	LEADS TO BE CLAMPED
(A)	DY
₿	SA
©	SA, B2, Blue lead from CRT-SUB
©	CV, Focus-Screen lead
(E)	CA, PX
Ē	VB
©	Focus-Screen lead
⊕	DY
①	PC, P1, P2, Blue lead from PCB POWER
0	P1, P2, PC, HC
®	B1, B2, VB, LB, P1, P2, HC
©	B1, B2, VB
®	HB, DV, HP, B1, DH, DS
N	HB, DV, HP
0	HB, DV, HP
®	B1, DH
0	B1, DH, DF

CLAMPER LIST FOR CONNECTOR LEAD

CONNECTOR LEAD	CLAMPER MARK
B1	Û-®-M-@-P
B2	①-®-©
CA	(E)
cv	0
DF	0
DH	P-Q-M
DS :	₩
DV	©- N - M
DY	⊕ -⊕
НВ	O-N-M
HC	③-®
HP	<u> </u>
LB	⊗
P1	⊕-9-®
P2	①-②-®
PC	① - ②
PX	(E)
SA	B -©
VB	Q
Focus-Screen lead	©-©
Blue lead from CRT-S	SUB ©
Blue lead from PCB-P	OWER ①

LOCATION OF CONTROLS ON PCB VR7F3 FV - 15 VR7F1 VR7F5 FV - ADJ LOW - LIMIT OTP34 TP33 0 **TP44** VR7F4 VR601 0 FV - 35 - 2FV - 35 - 1SUB - COLOR TP42 TP8A VR702 O TP41 0 V - BIAS L601 H VR201 VR703 SUB - BRT - C V - GAIN **⊕ ∞**^{TP36} \oplus **F (B) (P) (P)** VR631 VR401 V - HOLD - C VR/UI V - HOLD - R 0 OSC VR202 **TP45** VR771 € S – REG SUB - CONT - C S201 SERVICE HV - ADJ V - LIN VR6X1 VR6B0 SUB - BRT DRIVE - B R761 **-**∞-VR6X0 TO VR6G0 DRIVE - G SUB - CONT Screen --Focus T501 Flyback Transformer

PCB - MAIN

TIMING CHART

MODE				Timing		[µS]	Ver	mS (H)]		f _v				
		HP	HF	HD	НВ	HA	VP	VF	VD	VB	VA	(KHz)	(Hz)	
CGA		63.78 6.47 4.45 8.03 44.83 16.68 1.640 0.19 2.11 12.740											60	
EGA		45.75 - 0.14 4.924 1.65 39.316 16.75 0.044 0.595 0.100 16.011											59.7	
NTSC														
PAL												15.625	50	
480 line -	OVD -	31.778	0.636	3.813	1.907	25.42	16.6835	0.3495	0.06356	1.0169	15.2534	31.468	60	
P S / 2 400 line -	+	31.778	0.636	3.813	1.907	25.42	14.2683	0.4131	0.06356	1.0804	12.7112	31.468	70	
PS/2 350 line +	-	31.778	0.636	3.813	1.907	25.42	14.2683	1.2075	0.06356	1.8749	11.1223	31.468	70	
APPLE MAC — II SYNC ON GRE	APPLE							0.085	0.085	1.105	13.60	35.28	67	

INITIAL SETTING

* Before adjustment, set the following SWs and VRs as shown below. For each VR, select the set adjustment value.

Front panel

```
VR691 (BRIGHT - VR) ····· centre click
VR692 (CONTRAST - VR) ··· Full clockwise turn (MAX)
```

Back panel

PCB - MAIN

	(SUB - BRT - C) · · · · · · Mechanical centre
VR202	(SUB - CONT - C) · · · · · · Mechanical centre
VR501	(H - POSI - C) ············Full counterclockwise turn
VR6B0	(DRIVE - B) · · · · · Full clockwise turn (MAX)
	(DRIVE - G) · · · · Full clockwise turn (MAX)
VR6X0	(SUB - CONT) ······ Mechanical centre
	(SUB - BRT) · · · · · Mechanical centre
VR761	(HV - ADJ)45 Percent of turn from full counterclockwise position
VR7F5	(LOW - LIMIT) ······ Full counterclockwise turn

PCB - DEFL

S571 (H - CENT) ······ centre of raster

ALIGNMENT PROCEDURE

ADJUSTING ITEM	ADJUSTING POINT	ADJUSTING METHOD
Horizontal F – V converter adjustment	VR7F1 VR7F2 VR7F3 VR7F4 (PCB – MAIN)	 Full turn VR7F5 (LOW - LIMIT) counterclockwise. Input the APPLE MAC - II (fh 35.28KHz, fv 67Hz) signal into the analogue terminal. Connect a digital voltmeter between TP33 and GND. Adjust VR7F1 (FV - ADJ) to 9.2 ± 0.05 V. Connect a digital voltmeter between TP33 and TP34. Adjust VR7F2 (FV - 35 - 1) to 0 ± 50 mV. Short the lead between TP8A and TP8B. While watching the screen set VR 7F4 (FV - 35 - 2) where the display synchronizes. Input the CGA signal into the TTL terminal. While watching the screen set VR 7F3 (FV - 15) where the display synchronizes. Remove the lead cable between TP8A and TP8B. If proper synchronism is unavailable after several times of this adjustment, adjust the composite horizontal synchronism.
Vertical F - V converter adjustment	VR701 (PCB - MAIN)	1. Input the CGA (fv = 60Hz) signal into the TTL terminal. 2. Short the lead between TP31 and TP32. 3. Connect the frequency counter between TPfv and GND, then set at 54 ± 1 Hz with VR701 (V - HOLD - R). 4. Remove the lead between TP31 and TP32.
Horizontal sync. of composite	VR7F5 (PCB - MAIN)	 Carry out this adjustment on completion of the Horizontal F - V converter adjustment. Full turn VR7F5 (LOW - LIMIT) counterclockwise. Input the composite signal into the VIDEO IN terminal. Short TP8A and TP8B with a lead wire. Connect the frequency counter between TP - fh and GND, then set at 15.625 ± 25 Hz with VR7F5 (LOW - LIMIT). Remove the lead between TP8A and TP8B.
Vertical sync. of composite	VR401 (PCB - MAIN)	 Input the composite signal into the VIDEO IN terminal. Short the lead between TP31 and TP32. Connect the frequency counter between TP - fh and GND, then set at 45 ± 1 Hz with VR401 (V - HOLD - C). Remove the lead between TP31 and TP32.
B4 adjustment	SCREEN VR (flyback transformer) VR901 (PCB - POWER)	 Input the total white raster signal of EGA into the TTL terminal. Shift S201 (service SW) to FRONT. (The screen shows one horizontal line.) Set the SCREEN VR (T501) at the point where brightness becomes noticeable. Release S201. Connect a digital voltmeter between L650 (or L955) and ground. Set VR901 at 172 ± 2 V.

ADJUSTING ITEM	ADJUSTING POINT	ADJUSTING METHOD
High – voltage adjustment	VR761 (PCB - MAIN) VR290 (PCB - SW) Connector DF (PCB - DEFL)	*This VR is fixed by bond in factory to prevent unnecessary adjustment. The following steps have to be performed only if an flyback transformer or picture tube is replaced. I Input the EGA crosshatch signal into the TTL terminal. Fully turn VR290 (H - SIZE) counterclockwise. Connect a digital voltmeter to connector DF pin 3. Set VR761 (HV - ADJ) at 68 ± 1V. * Adjust the VR692 (CONTRAST) and T501 (SCREEN VR) to obtain such a brightness that the raster is suppressed and faint signal are seen. After adjusting VR761 (HV - ADJ), seal the adjustment as to make this adjustment unavailable.
Vertical lineality adjustment	VR290 (V - POSI, V - SIZE) (PCB - SW) VR402 (PCB - MAIN)	 Input the EGA crosshatch signal into the TTL terminal. Adjust VR290 (V - POSI) to place the image at the centre of bezel. Adjust VR290 (V - SIZE) to make the vertical width 186 mm. Adjust VR402 (V - LIN) to obtain the best crosshatch linearity.
Side – PCC adjustment	VR290 (H - SIZE) (PCB - SW) VR5A1 VR5A2 (PCB - DEFL)	1. Input the PS/2 480 line crosshatch signal into the TTL terminal. 2. Set VR290 (H - SIZE) at the mechanical centre. 3. Adjust VR5A1 (PCC - PHASE) and VR5A2 (PCC - AMP) alternately to straighten both sides. Function of PCC - AMP Function of PCC - PHASE (VR5A2) (VR5A1) Note) The vertical size in this case is about the correct value. 4. Check that variation is available without any trouble through the turning of VR290 (H - SIZE).
Horizontal width adjustment	BRIGHT (VR691) VR290 (H - POSI, H - SIZE) VR5A3 VR5A4 (PCB - DEFL)	* Before doing this adjustment, complete the "Static Regulation". 1. Input the PS/2 480 line total white raster signal into the TTL terminal. 2. Set the VR691 (BRIGHT) at MAX. 3. Set the raster largely at the centre of bezel by adjusting S571 (H - CENT) switch and selecting connector HL or HR. HL Shifts the raster to the left. HR Shifts the raster to the right. Bezel Raster L1 L2 < 2 mm After the adjustment, the VR691 (BRIGHT) is set to the centre.

AD III COMMON CO		
ADJUSTING ITEM	ADJUSTING POINT	ADJUSTING METHOD
		 Adjust VR290 (H - POSI) to centre the horizontal position in the centre of raster. Fully turn VR290 (H - SIZE) counterclockwise. Adjust VR5A3 (UNDER H - SIZE) to make the horizontal width 245 ± 1 mm. Input the CGA total white raster signal. Adjust VR5A4 (OVER H - SIZE) for a horizontal width of 245 ± 1.5 mm.
Vertical width adjustment (Constant vertical width circuit)	VR702 VR703 (PCB - MAIN)	 Input the EGA total white raster signal into the analogue terminal. Connect a digital voltmeter between TP35 and TP36, then set VR702 (V - BIAS) at 0 ± 0.1 V. Set S292 (V - SCAN) to "AUTO". Adjust VR290 (V - SIZE) to make the vertical size approx. 186 mm. Input PS/2 400 - line signal into the analogue terminal. Adjust VR703 (V - GAIN) to make the vertical size approx. 186 mm. Input the PS/2 480 - line signal into the analogue terminal. Check that the vertical size is about the same as that shown in step 6 above. If the deviation is 3 mm or larger, repeat steps 4 ~ 6.
Vertical Height adjustment (V – SCAN)	VR290 (V - SIZE) (PCB - SW)	Shift S292 (V - SCAN) to AUTO. Shift S290 (signal select switch) to ANALOG. 1. Input PS/2 480 - line signal in the analogueue terminal. 2. Adjust VR290 (V - SIZE) to make the vertical size 186 ± 1.5 mm. 3. Input the PS/2 400 - line signal. 4. Check that the vertical size is 186 ± 4 mm. 5. Input the PS/2 350 - line signal. 6. Check that the vertical size is 186 ± 4 mm.
Horizontal width adjustment (Composite)	VR290 (PCB - SW)	 Shift S290 (signal select switch) to VIDEO. Input the colour bar signal into the VIDEO IN terminal. Adjust horizontal size VR293 (TV - H - SIZE) for optimum size. Check that the horizontal side - Pcc is not saturated when the VR691 (BRIGHT) and / or VR692 (CONTRAST) are/is varied.
Vertical position adjustment	VR292 (PCB - SW)	Input the colour bar signal into the VIDEO IN terminal. Adjust VR292 (TV - V - POSI) to set the vertical position at the centre.
Vertical width adjustment (Composite)	VR294 (PCB – SW)	 Input the colour bar signal into the VIDEO IN terminal. Adjust the vertical width with VR294 (TV - V - SIZE) for optimum size.

ADJUSTING ITEM	ADJUSTING POINT	ADJUSTING METHOD
RGB TTL white adjustment	VR650 VR651 VR652 VR653 (PCB - CRT) VR6X1 VR6G0 VR6B0 (PCB - MAIN) SCREEN VR (Flyback transformer)	* Perform the adjustment after minimum of 30 minutes of warm – up running. 1. Shift S290 (signal select switch) to TTL. 2. Input the EGA total white raster signal into the TTL terminal. 3. Set VR650, VR651 and VR652 (R, G, B – CUT – OFF) at full counterclockwise position. 4. Set VR6X1 (SUB – BRT) at the mechanical centre. 5. Fully turn VR6G0 and VR6B0 (G, B – DRIVE) full clockwise. 6. Set VR691 (BRIGHT) at click stop position and VR692 (CONTRAST) at maximum position. 7. Set SCREEN control (Flyback Transformer) at full counterclockwise position. Set VR653 (G1) at clockwise position. 8. Shift S201 (service switch) to FRONT side of the set. (The screen shows one horizontal line.) 9. Adjust SCREEN control (Flyback transformer) until any of the red, blue or green horizontal line appear on the screen. 10. Adjust VR650, VR651 and VR652 (R, G, B – CUT – OFF) to produce a white horizontal line. 11. Release S201. 11. Maintain white by adjusting VR680 and VR6G0 (G, B – DRIVE) while watching the screen.
RGB analogue white adjustment		 Shift S290 (signal select switch) to ANALOG. Input the EGA gray scale of 16 graduations signal into the analogue terminal. Adjust VR6X1 (SUB – BRT) to optimum brightness. Note: Check overall black and white tone through the normal brightness and contrast range. If necessary, repeat steps RGB TTL white adjust 8, to analogue white adjust 3.
RGB beam current adjustment	VR290 (PCB – SW) VR6X0 (PCB – MAIN)	* Start the adjustment after minimum of 30 minutes of warm – up running. 1. Input the EGA total white raster (all intensity: High) into the TTL terminal. 2. Connect connector TP (pin ①: +, pin @: -). 3. Fully turn VR290 (H – SIZE) counterclockwise. 4. Set the beam current at 650 ± 20 µ A with VR6X0 (SUB – CONT).
Focus adjustment	Focus VR (flyback transformer)	 * Start the adjustment after minimum of 30 minutes of warm – up running. 1. Input the EGA total white H – letter signal into the TTL terminal. 2. Control the focus VR, while balancing the focus around the centre of screen, for the best vertical and horizontal H – letter balance and focus. If necessary, readjust the static convergence.

ADJUSTING ITEM	ADJUSTING POINT	ADJUSTING METHOD
Chroma OSC adjustment	VR290 (COLOR) (PCB - SW) VR631 (PCB - MAIN)	 Shift S290 (signal select switch) to VIDEO. Input the colour bar signal into the VIDEO IN terminal. Set VR290 (COLOR) at the centre. Short TP41 and TP42 with a short lead wire (10 cm or less). Connect R - C 1/4W 270k Ω between TP43 and TP44. Set VR631 (OSC) where colours come out from where no colour comes out. Remove the resistor (R - C 1/4W 270k Ω).
VECTOR adjustment	VR601 (PCB - MAIN)	1. Shift S290 (signal select switch) to VIDEO. 2. Receive a PAL G - card signal. 3. Set the oscilloscope to the X - Y mode. Connect TP46 (B - Y OUT) and TP45 (R - Y OUT) to the oscilloscope horizontal and vertical inputs respectively to display a vector parttern on the screen. 4. Adjust VR291 (COLOR) so that Y axis becomes 3.0 Vp - p. 5. Observing the outermost dots which correspond to normal colour bar, adjust the VR601 (SUB - COLOR) and L633 alternately to almost coincide the double dot pattern equally for all colour points on the scope. 6. Observing around the centre dots, adjust the coil L601 so that the movable points on X axis or Y axis may come up to the nearest points of the centre bright dot. 7. Repeat step 5. and 6. above so that the outer and center dots are converged. 8. Detune L601 so that the movable dots may be shifted and distinguished from the centre bright point. 9. Observing the movable dots, AA' and BB', adjust VR601 (SUB - COLOR) so that the double dots shifted in step 8. may come up to the nearest points X or Y axis. 10. Adjust L633 slightly so that the outermost dots are converged again. 11. If the colour of both sides are prominent slighly sdjust the coil L601 so that the colour of both sides is less on the average.

ADJUSTING ITEM	ADJUSTING POINT	ADJUSTING METHOD
Chroma level adjustment	VR290 (COLOR) (PCB – SW)	Vector Pattern of G - card Signal 1. Input the colour bar signal into the VIDEO IN terminal. 2. Connect an oscilloscope to TP45, and control VR 290 (COLOR) to secure 2.5 ± 0.1 Vp - p. Setting of oscilloscope Probe: 10:1 CH1: Vertical axis 50 [mV/DIV] DC Horizontal axis 10 [μ sec/DIV]
		2.5±0.1 Vp-p
Black level beam current adjustment	VR201 VR202 (PCB - MAIN)	 * Start the adjustment after minimum of 30 minutes of warm – up running. 1. Input the monoscope signal into the VIDEO IN terminal. 2. Adjust VR201 (SUB – BRT – C) to make black level 10 %. 3. Connect a digital voltmeter to connector TP, and set VR202 (SUB – CONT – C) at 510 ± 20 μ A. * If the black level deviated, repeat steps 2 and 3.
Static regulation adjustment	VR771 (PCB – MAIN)	* Start the adjustment after minimum of 30 minutes of warm – up running and beam current setting. 1. Input the PS/2 480 – line total white raster signal into the analogue terminal. 2. Adjust VR771 (S – REG) to equalize the horizontal width when the VR692 (CONTRAST) is at the maximum level to that when it is at the minimum level. 3. Input the CGA, EGA, and APPLE MAC – If total white signal, and check that the difference in horizontal width between the maximum and minimum CONTRAST levels is 2 mm or less. * If the difference exceeds 2 mm, repeat steps 2 and 3.
CHECK AFTER ADJUSTMENT		Test of X-radiation protector circuit 1. Set input signal select switch at the "VIDEO" position. Do not supply video signal. 2. Turn off the POWER switch. 3. Connect a 180k Ω-J (R-composite 1/4W) resistor with R761 (Flyback Transformer side) to GND. 4. Turn on the POWER switch. 5. Make sure that X-radiation protector has worked ,(horizontal oscillation circuit has turned off.) 6. Turn off the POWER switch. 7. Remove the resistor (item 3).

Adjustment in Installation

Purity, Convergence, and Focus Adjustment

This section is edited in the operating procedure. After replacing the CRT or deflection yoke, perform adjustment in this sequence. For adjustment without part replacement, take necessary steps only. Caution) Start the adjustment after minimum of 30 minutes of warm – up running.

 Removal of deflection yoke, convergence, and purity assemblies

After removing the convergence and purity assemblies from the CRT, remove the wedges. Then, remove the deflection yoke, and adhesive that remained on the CRT.

② Installation
of deflection
yoke, convergence,
and purity
assemblies

After for deflect convergence,
to the

After fully inserting the new deflection yoke forward, fix the convergence and purity assemblies to the specified positions. The wedges are installed after completing adjustment of dynamic convergence.

- Adjustment of degaussing, cut - off, and white balance
- Demagnetize the front face of CRT, and right and left sides of cabinet with a degaussing coil.
- · Take the specified adjusting procedure.
- Presetting
- 1. The bow offsetting 4 pole magnet close at the vertical position (3 o'clock).
- S Rough adjustment of Focus

Roughly adjust to optimize the focus around the range from the centre of screen to the upper left end by using the crosshatch signal.

® Rough adjustment of static convergence Roughly adjust the static convergence at the centre of screen in accordance with step §.

- Preliminary adjustment of colour purity
- 1. Set S293 (OVER/UNDER) at "OVER".
- 2. Set the signal source input at solid colour of green or red (EGA TTL).

 Display a green (red) ball by loosening the deflection yoke neck tightening screw and pushing the deflection yoke onto the CRT.

- 4. Adjust the purity ring to position the green (red) ball at the horizontal and vertical centre of the screen.
- 5. Shift the deflection yoke backward, set it at the intermediate point in the range where the entire screen becomes green (red), then temporarily fix it with a tightening screw, while paying attention to the rotation (horizontalness) of screen.

Caution) If any other colour appears, repeat steps 3, 4 and 5.

8 Regular adjustment of colour purity Observe the centre and 4 corners of CRT with a microlens and adjust the deflection yoke and purity ring to eliminate other colour.

Caution) If colour purity is unachievable, offset it by sticking magnets. Then, demagnetize the CRT, check the offset condition, then readjust the purity ring. After completing the adjustment, fix the magnets with tape. After colour purity adjustment, tighten the deflection yoke tightening screw and paint – lock the purity ring. When fixing the deflection yoke, take care not to rotate the rester.

* Magnet: Eliminated from the specifications (461D033020 or 461D002020)

Magnet sticking range (oblique - lined) on CRT neck

Focus adjustment

- 1. Input the EGA crosshatch signal into the TTL terminal.
- Control the focus VR, while balancing the focus around the centre of screen, for the best vertical and horizontal line balance and focus. If necessary, readjust the static convergence.

Note) After adjusting the ITC, readjust focus and check the static convergence.

Regular adjustment of static convergence

- 1. Receive crosshatch signal. Set the BRIGHT control to the centre click, and CONTRAST control at the maximum position.
- 2. Set UNDERSCAN, and VR290 (H SIZE) and VR290 (V SIZE) to secure 250 \pm 5 mm of horizontal width and 170 \pm 5 mm of vertical width.
- Adjust the 4-pole magnet tabs open angle and rotation angle, align both beams "B" and "R" at the centre of screen. Note) Input signal are "R" and "B" only.
- 4. After adding the GREEN signal and adjust the 6 pole magnet tabs open angle and rotation angle, align the already aligned both side beams "B" and "R" at the centre of screen with central beam "G".
- 5. If necessary, repeat steps 2 and 3.
 - Cautions) * For 4 pole magnet, both side beams move in opposite directions to each other by the same distance.
 - * For 6 pole magnet, both side beams move the same direction by the same distance.
 - * For 4 and 6 pole magnet, the central beam does not shift.

- (a) Before adjustment
- (b) Adjustment with 4 pole magnet
- (c) Adjustment with 6 pole magnet

Example operation of convergence and purity assemblies

① Adjustment of convergence over entire screen (Deflection yoke swinging)

- 1. Receive the magenta crosshatch signal.
- 2. Observe points T and B on the screen, and vertically swing the deflection yoke to align the vertical lines of both side beams "B" and "R" (to eliminate the horizontal cross) (YH adjustment).
- 3. Similarly, observe points T and B, and swing the deflection yoke to the right and left to align both side beam transverse lines (YV adjustment).
- 4. After completing adjustment steps 2 and 3, insert a wedge into the upper deflection yoke, while making adjustment steps 2 and 3 again.
- 5. After completing steps 2 and 4, adjust the BOW offset magnet ring in accordance with the "BOW Offsetting Procedure" if there is any Blue Bow (XV) in the vertical direction of points L and R through the CRT gun rotation, (deflection yoke fixed).
- 6. Similarly, if there is faulty convergence such as a crossing (XV) in the vertical direction of points L and R or failure in meeting the raster size (XH) of points L and R due to deviation of deflection yoke axis, adjust the differential coil, and stick a magnetic plate in accordance with the "Procedure taken for axis deviation".
- 7. After steps 2~6, insert 4 wedges at approx. right angles vertically and horizontally allowing no loosness. Wedges are affixed by peeling off the separator on the back.
- 8. Receive the white crosshatch signal.
- 9. Check convergence over the screen is satisfactory or balanced. Similarly, set OVERSCAN to check for faulty convergence on the outermost periphery, then fix 4 wedges with silicone rubber (RTV).

12 BOW offset

 \ast Perform the following offset only when any Blue – Bow is noticeable (Check that the deflection yoke has not rotated.)

Receive the magenta crosshatch signal.

 If there is any Blue – Bow in XV, adjust the deflection yoke Blue – Bow offsetting 4 – pole magnet ring tabs open angle inaccordance with the degree of Bow.

Caution)

In such a case, the line for halving the distance between the two Bow offsetting magnet tabs is on the X-axis in principle. In addition, the maximum opening angle is 90° (0.25 \sim 0.3 mm of offset is available) and the opening is in the direction of 3 o'clock (zero offset) viewed from the rear tube when the tabs are closed (see Fig. (b) and (d)).

- 2. Readjust the static convergence by using the 4 pole magnet of convergence and purity assemblies. Check that the Blue Bow disappears. If offset is insufficient or excessive, repeat step 1 above (see Fig. (c))
 - * After completing the adjustment, paint lock the clearance between the 2 rings and deflection yoke body (2 positions) < see Fig. (d) >.

(a) A Blue Bow is noticeable. (b) Make deviation once in the reverse direction to the blue bow with an offsetting magnet ring.

(c)
Readjustment ofstatic
(upper andlower)
convergence with a
4 - pole magnet ring
eliminates the Blue Bow.

Zero offset point (opening

Maximum offset (opening

Paint - locking positions

(opening (opening point angle: 0°) angle: 90°)

(d) Bend offsetting 4 - pole magnet ring position

Blue Bow offsetting procedure

③ Axis deviation correcting procedure

Perform a regular adjustment in accordance with steps 2 and 3 in paragraph (1) Adjustment of Convergence on Entire Screen so that YH and YV are adjusted.

For XV adjustment, adjust the horizontal differential coil (core position adjustment), and for XH adjustment, control the magnet - plate.

* This adjustment is unnecessary when no offset is required. XV adjust :

YV adjust:

Type of Misconvergence	Stick a magnet to the illustrated position
B B R	magnet First
B G R B	

Offset of misconversion at corner

If the corner misconversion grade is low, offset it by using a magnet (attached with pressure sensitive adhesive double coated tape 461D017010).

Place magnet on the upper deflection yoke bobbin opening, and balance the convergence to minimize the PQH and PQV components. To offset seciton A on the screen, place magnet as Ilustrated.

* Use one magnet as each corner in principle to prevent distortion.

Magnet sticking position (Rear view of deflection yoke).

(§) Offset of north – south unbalance of geomagnetism tolerance due to CRT inclination

Attach 4 magnets (461D033020) to the illustrated positions. Attach them by making the N-pole side (marked with a white line) face the CRT funnel. Then, fix them with cotton tape.

* Start the offsetting after landing adjustment in principle. Be sure not to cover the CRT label.

16 Part fixing

1. After adjustment, sufficiently fix each tightening screw, and insert a wedge into 3 positions having no anode button at angles of about 120° without allowing any rattling. When nstalling the wedges, apply silicone rubber.

Cautions) In this case, convergence must be held under the adjusted condition. Paint – locking is required for the positions so indicated on the assembly drawing.

INPUT SIGNAL SPECIFICATIONS

1. Composite Video Signal.

STANDARD (PAL) video signal.

a.	Input Level					•	 		-				-				1 '	Vρ	-p
b.	Input Inpedance .						 											.75	Ω
c.	Signal Polarity						 					•				F	o	siti	ve
d.	Connector						 								В	RN	ıc	tvr	26

2. RGB TTL SIGNAL

TABLE(A)

D-Sub 9 Pin Assignments and Signal Levels

Connector D-Sub 9-pin

	COLO	UR GRAPHICS TTL 16 COLOURS
	Input signal	Polarity
1	GND	
2	Unused	
3	Red video	TTL positive
4	Green video	TTL positive
5	Blue video	TTL positive
6	Intensity	TTL positive
7	Unused	
8	H-sync	TTL positive
9	V-sync	TTL positive

	ENHANCED GRAPH	HICS TTL 64/16 COLOURS
	Input signal	Polarity
1	GND	
2	Secondary Red video	TTL positive
3	Primary Red video	TTL positive
4	Primary Green video	TTL positive
5	Primary Blue video	TTL positive
6	Secondary green video/Intensity	TTL positive
7	Secondary blue video	TTL positive
8	H-sync	TTL positive
9	V-sync	TTL negative

		MONOCHROME
	Input signal	Polarity
1	GND	
2	Unused	
3	Unused	
4	Unused	
5	Unused	
6	High Intensity	TTL positive
7	Video	TTL positive
8	H-sync	TTL positive
9	V-sync	TTL negative

3. RGB ANALOGUE SIGNAL

D-Sub 25 Pin assignment and signal levels.

				TABLE(I
Conr	pical necting nples	Pin No.	Signal	Specification
Α	В			
Х	Х	1	Sync. GND	
X	Х	2	Red video	0,6 Vp-p
X	Х	3	Red video GND	75 ohms Positive
Х	X	4	Green video	0.6 Vp-p
×	Х	5	Green video GND	75 ohms Positive
	Х	6	Superimpose control	Low; 0~0.2 V Composite video
	Х	7	Superimpose GND	High; 1~2 V RGB Analog 75 ohms High speed switching
	Х	8	Video input select	Low or open; BNC Input video High: Pin 9 Video
	Х	9	Comp. video in	1.0 Vp-p
	X	10	Comp. video GND	75 ohms Sync. negative
	Х	11	Comp. video out	1,0 Vp-p
	Х	12	Comp. video GND	75 ohms Sync. negative
X		13	PGA mode control	Low; 400 lines, High or open: 480 lines
X	X	14	Blue video	0,6 Vp-p
X	X	15	Blue video GND	75 ohms Positive
X	X	16	Horizontal Sync./Comp	TTL level
X	Х	17	Vertical Sync.	TTL level
		18	NC	
		19	NC	
		20	NC	
		21	INT	(+5V)
		22	Comp./RGB select	Low; RGB, High or open: composite
		23	Analog/TTL select	Low; TTL, High or open: Analog
		24	Remote	Low; Mode Switch is invalid
		25	GND (shield)	

Notes: 1. For particulars of Typical Connecting Samples, please refer to the Section of "USING THE SPECIAL FEATURES".

2. For using methods of Pins No. 22, 23 and 24, please refer to the Section of "USING THE SPECIAL FEATURES".

USING THE SPECIAL FEATURES

With the following special function equipped, this monitor can be used in versatile ways.

1. Superimpose:

It is possible to superimpose RGB analogue signal on a composite video signal, e.g. VCR, TV Tuner, etc.

The method is as on the following 2 procedures:

a) Superimpose by feeding the composite video signal to the VIDEO INPUT and adding on thru the 25-pin terminal the RGB analogue signal.

In this case, the composite video signal fed to the VIDEO INPUT and the same signal from Pin 11 of the ANALOG INPUT are used as synchronizing signal for superimposing purposes.

b) Superimpose by inputting both RGB analogue signal and composite video signal from the 25-pin terminal.

In this case, either you short-circuit pins 8 and 21, or elevate pin 8 to high conditions.

Note: Please use the optional (C) cable, Model SC-25F.

Refer to the typical connecting sample "B" on page 26.

2. Remote Control of Input Selecting Signal:

Normally each input signal is selected by means of the INPUT SIGNAL SELECT SWITCH, however, it can be also selected electrically.

In this case, each input signal can be selected by putting Pins No. 22, 23 and 24 of the D-Sub 25-pin Connector in conditions shown in the table below.

D-SUB 25 Pin ASSIGNMENT

	Pin No. 22 23 24		SPECIFICATION
22			SPECIFICATION
0	0	0	DEPEND ON I.S.S.S.
0	0/G	G	SUPERIMPOSE/COMPOSITE
G	0	G	RGB ANALOGUE
G	G	G	RGB TTL

Note: I.S.S.S → Input Signal Select Switch

 $0 \rightarrow OPEN$

G → GROUND

PARTS LIST

MODEL: EUM - 1491A

In order to expedite delivery of replacement part orders.

Specify: 1. Model number / Serial number

2. Part number and Description

3. Quantity

Unless full information is supplied, delay in execution of orders will result.

♠: Critical components

MARK	В	С	D	F	G	J	К
TOLERANCE (%)	± 0.1	± 0.25	± 0.5	± 1	± 2	± 5	± 10

MARK	М	N	٧	X	Z	Р	a
TOLERANCE (%)	± 20	± 30	+ 10 - 10	+ 40 - 20	+ 80 - 20	+ 100 - 0	+ 30 - 10

MARK	В	С	D	F	G
TOLERANCE (pF)	± 0.1	± 0.25	± 0.5	± 1	± 2

_					1 1					
Ľ	SYMBO NO.	L PARTS NO.	PARTS NAME	DESCRIPTION	S	YMB NO.		PARTS NO.	PARTS NAME	DESCRIPTION
						0 29	2	260P455010	TRANSISTOR	DTC124EF
ĺ			TUBES			0 293	3	260P455010	TRANSISTOR	DTC124EF
						0 294	4	260P455010	TRANSISTOR	DTC124EF
Δ	V 291	255B802003	CRT ASSY	AT14A9SRB22-E		D 2A0)	260P455010	TRANSISTOR	DTC124EF
		1	NTEGRATED CIRCUITS			Q 2A1	1	260P419030	TRANSISTOR	2SC2724-D
						Q 2M0)	260P139030	TRANSISTOR	2SA564-Q
	10290	263P053020	IC	TC4053BP	11	Q 2M1		260P139030	TRANSISTOR	2SA564-Q
	IC2A0	266P016010	IC	LA7016		Q 2M2		260P139030	TRANSISTOR	2SA564-Q
	IC2A1	266P015010	IC	LA7016		Q 2XC)	260P416030	TRANSISTOR	2SC2274-F
İ		266P982010	10	ANGO8P						2002214
	IC2A3	266P982010	IC	AN608P		Q 2X1		260P416030	TRANSISTOR	2SC2274-F
						Q 2X2)	260P387030	TRANSISTOR	2SC2236-Y
	1C2X0	267P011010	IC	STK192	11 (Q 2X3		260P416030	TRANSISTOR	2SC2274-F
		272P027010	IC	AN5862K		0 2X4		260P455010	TRANSISTOR	DTC124EF
	IC2X2	272P055010	IC	AN5860	1 1	Q 2X5		260P419030	TRANSISTOR	2SC2724-D
	IC401	266P405010	IC	AN5521					7111110101011	2302124 0
	IC5A1	272P226010	IC	TDA4950	(Q 2X6	;	260P254010	TRANSISTOR	2SA1175-E
					1 1	0 471		260P418020	TRANSISTOR	2SC2481-0, Y
Δ	IC5X1	267P013010	10	STR50330		0 571		260P422010	TRANSISTOR	2SC2482
$\overline{\mathbb{A}}$		266P150010	IC	TA7698AP	1 1	0 572		260P572010	TRANSISTOR	2SD1556
$\overline{\mathbb{A}}$		267P103010	IC	STK181B		0 573		260P674010	TRANSISTOR	
$\overline{\Delta}$		267P103010	IC	STK181B	4	- 413	•	-001014010	MUICICIAN	2SK1156
		267P103010	IC	STK181B	,	0 5A1		260P455010	TRANSISTOR	DTC124CC
-				5711,010	1 1	0 5A3		260P559010		DTC124EF
	1C6X0	272P081010	IC	M51387P	1 1	0 5A5		260P455010	TRANSISTOR	2SC1740S-Q
		266P091010	IC	SN74LS221N	1 1				TRANSISTOR	DTC124EF
		266P844010	IC	SN74LS123N		0 5A6 0 5X1		260P582010	TRANSISTOR	2SK656
		263P053020	ic	TC4053BP	Η,	T DVI	4	260P469020	TRANSISTOR	2SA1321
		266P419010	IC	M5223P		1 EV2		1600105020	TRANSISTOR	
	.0104	2001 41 50 10	10	MUZZOF	1 1—	1 5X2		260P385020	TRANSISTOR	2SC2229-Y
	IC705	266P844010	IC	SN74LS123N	1 1	1 6B0		260P582010	TRANSISTOR	2SK656
Λ		266P419030	IC	M5223L	II.	1 6G0		260P582010	TRANSISTOR	2SK656
د		266P091010	IC	SN74LS221N	-	2 6R0		260P582010	TRANSISTOR	2SK656
		272P225010	ic	IR9331	۱ ا	6X0	4	260P582010	TRANSISTOR	2SK656
		266P419010	ic	M5223P		1 6V1	•	0000000000	7044040700	*****
	10712	2001 413010	10	m3223F		6X1		260P582010	TRANSISTOR	2SK656
	1C7F3	266P419010	IC -	M5223P	,	701		60P560040	TRANSISTOR	2SA933S-S
		266P727010	IC	μ PC339C/MC3302P		702		60P560040	TRANSISTOR	2SA933S-S
		266P842010	ic	SN74LS42N		704	_	60P455010	TRANSISTOR	DTC124EF
		266P853020	IC	SN74LS08N	l u	705	2	60P559010	TRANSISTOR	2SC1740S-Q
		266P478010	IC					00000000		
	10750	2001470010	10	SN74LS86N	1	706		60P559010	TRANSISTOR	2SC1740S-Q
	10751	266P256010	IC	CNTAL COOM		707	_	60P455010	TRANSISTOR	DTC124EF
		266P840020	IC	SN74LS09N		711		60P559010	TRANSISTOR	2SC1740S-Q
		266P468010	IC	SN74LSOON	1	712		60P559010	TRANSISTOR	2SC1740S-Q
		267P921010		SN74LS157N	1 0	713	2	60P455010	TRANSISTOR	DTC124EF
			IC	STR59041			_			
۷.	I C961	266P932010	10	NJM7805A/AN7805		715		60P582010	TRANSISTOR	2SK656
٨	1007-	17100 40040	10	11500		716		60P582010	TRANSISTOR	2SK656
17	IC971	272P240010	10	M5237L		731	_	60P582010	TRANSISTOR	2SK656
			Th. 110.1 Amount		0	740		60P559010	TRANSISTOR	2SC1740S-Q
			TRANSISTORS		0	7M1	2	60P455010	TRANSISTOR	DTC124EF
(0 201	260P419030	TRANSISTOR	2SC2724-D	n	7M5	2	60P455010	TRANSISTOR	DTC124EF
(0 202	260P419030	TRANSISTOR	2SC2724-D	- I	7M6		60P455010	TRANSISTOR	DTC124EF
		260P419030	TRANSISTOR	2SC2724-D	1	7MA		60P455010	TRANSISTOR	
		260P455010	TRANSISTOR	DTC124EF		7MB	_	60P455010	TRANSISTOR	DTC124EF DTC124EF
(260P455010	TRANSISTOR	DTC124EF		7MC		60P455010	TRANSISTOR	DTC124EF
ť	0 207	260P455010	TRANSISTOR	DTC124EE	1 .	7340		PADA99- 4	TRANSPORT	
		260P560040	TRANSISTOR	DTC124EF		7MD		60P632010	TRANSISTOR	DTC124ES
		260P582010		2SA933S-S		7V1		60P559010	TRANSISTOR	2SC1740S-Q
		260P562010	TRANSISTOR TRANSISTOR	2SK656				60P559010	TRANSISTOR	2SC1740S-Q
		260P455010		2SA933S-S	A 0			60P387030	TRANSISTOR	2SC2236-Y
	4 LJU ,	200F 4330 I U	TRANSISTOR	DTC124EF	△ 0	902	26	60P387030	TRANSISTOR	2SC2236-Y
r	291	260P455010	TRANSISTOR	DTC124EF	A n	971	26	50P464030	TRANSISTOR	2SA940-AB, AC

SYMBO NO.	L PARTS NO.	PARTS NAME	DESCRIPTION	SYMBO NO.	L PARTS NO.	PARTS NAME	DESCRIPTION
	110.			D 702		DIODE	1S2471
		DIODES		D 703		DIODE	1S2471
D 201	264P045040	DIODE	1\$2471	D 710	264P045040	DIODE	1S2471
	264P045040	DIODE	1\$2471	D 712	264P045040	DIODE	1S2471
		DIODE	1S2471	1	264P045040	DIODE	1S2471
D 204	264P045040	DIODE	1S2471		264P045040	DIODE	1S2471
D 205	264P045040	DIODE	1S2471	D 715	264P220060	DIODE	MZ310B/EQA02-10CDA
D 210	264P045040	DIODE	152471		264P484070	DIODE	RD6. 2FB2
D 211	264P045040	DIODE	152471	D 717		DIODE	1S2471
D 212		DIODE	1\$2471	1	264P045040	DIODE	1S2471
D 213	264P045040	DIODE	1\$2471	D 719		DIODE	152471
D 214	264P045040	DIODE	1\$2471	D 720	264P045040	DIODE	1\$2471
D 215	264P045040	DIODE	1S2471	D 721	264P045040	DIODE	1\$2471
D 216	264P220030	DIODE	MZ306/EQA02-06CDA	△ D 722	264P045040	DIODE	1S2471
D 217	264P460060	DIODE	EQA02-05C	D 7F1	264P045040	DIODE	1S2471
D 220	264P045040	DIODE	152471	D 7F2	264P483080	DIODE	RD5. 1FB2
D 290	264P220010	DIODE	MZ307B	D 7F3	264P483080	DIODE	RD5. 1FB2
D 291	264P220010	DIODE	MZ307B	D 7M1	264P045040	DIODE	1\$2471
D 293	264P220010	DIODE	MZ307B	D 7M2	264P045040	DIODE	1S2471
D 2B0	264P220010	DIODE	MZ307B	D 7M3	264P045040	DIODE	1S2471
D 2G0	264P220010	DIODE	MZ307B	D 7M4	264P045040	DIODE	1S2471
D 2R0	264P220010	DIODE	MZ307B	D 7M5	264P045040	DIODE	1S2471
D 2X0	264P220010	DIODE	MZ307B	D 7M6	264P045040	DIODE	1\$2471
D 2X1	264P220010	DIODE	MZ307B	D 7M7	264P045040	DIODE	1S2471
D 2X2	264P220010	DIODE	MZ307B	D 7MA	264P045040	DIODE	1S2471
D 2X3	264P045040	DIODE	1S2 4 71	D 7MC	264P045040	DIODE	1S2471
D 2X4	264P045040	DIODE	1S2471	D 7MD	264P045040	DIODE	1S2471
D 2X5	264P484040	DIODE	RD5. 6FB3	D 750	264P045040	DIODE	1\$2471
D 2X6	264P045040	DIODE	1\$2471	D 7S1	264P045040	DIODE	1\$2471
D 2X7	264P045040	DIODE	1S2471	D 7S2	264P045040	DIODE	1S2471
D 2X9	264P045040	DIODE	1S2 4 71	D 7S3	264P045040	DIODE	152471
D 401	264P285010	DIODE	S5500D/EM 1Z	D 7V1	264P045040	DIODE	1S2471
D 501	264P487080	DIODE	RD12FB2	D 7V2	264P045040	DIODE	1S2471
⚠ D 502	264P045040	DIODE	1S2471		264P220010	DIODE	MZ307B
⚠ D 503	264P244020	DIODE	HZT33-02		264P220010	DIODE	MZ307B
D 504	264P045040	DIODE	1\$2471	3	264P220010	DIODE	MZ307B
D 560	264P285010	DIODE	S5500D/EM 1Z	D 7X3	264P220010	DIODE	MZ307B
D 571	264P533010	DIODE	RS 4FS	△ D 901	264P512020	DIODE	RBV-40C
⚠ D 572		DIODE	RU 3M	⚠ D 902	264P295020	DIODE	TVRIG/ES 1
⚠ D 573	264P102040	DIODE	RU 3M	⚠ D 903	264P295020	DIODE	TVRIG/ES 1
	264P465080	DIODE	EQA02-13A/RD13EB3	⚠ D 904	264P295020	DIODE	TVRIG/ES 1
⚠ D 575	264P533010	DIODE	RS 4FS	⚠ D 905	264P295020	DIODE	TVRIG/ES 1
D 5A1	264P045040	DIODE	1\$2471	⚠ D 906		DIODE	RU 1P
	264P045040	DIODE	1S2471	⚠ D 951	264P102040	DIODE	RU 3M
D 5A3	264P465080	DIODE	EQA02-13A/RD13EB3	⚠ D 952		DIODE	RU 3M
D 5A4	264P488020	DIODE	RD13ED1		264P358090	DIODE	RM 4YX
⚠ D 5X1	264P102020	DIODE	RU 3B	⚠ D 954	264P358090	DIODE	RM 4YX
<u> </u>	264P295020	DIODE	TVRIG/ES 1	⚠ D 955	264P102020	DIODE	RU 3B
⚠ D 5X3	264P295020	DIODE	TVRIG/ES 1	⚠ D 956	264P102020	DIODE	RU 3B
D 650	264P295020	DIODE	TVRIG/ES 1	⚠ D 971	264P045040	DIODE	1S2471
D 651	264P295020	DIODE	TVRIG/ES 1		264P045040	DIODE	1S2471
D 652	264P295020	DIODE	TVRIG/ES 1	△ D 991	264P393020	LIGHT EMITTING DIODE	SLC-26GG5F
D 656	264P295020	DIODE	TVRIG/ES 1				
D 691	264P045040	DIODE	1S2471				
D 701	264P045040	DIODE	1S2471				

SYMBO	L PARTS		T	SYMBO	L PARTS		
NO.	NO.	PARTS NAME	DESCRIPTION	NO.	NO.	PARTS NAME	DESCRIPTION
	0	THER SEMICONDUCTORS		VR293	127C081000	VR-SEMIFIXED	1/5W B30KΩ-M
⚠ RP901	265P071050	POSITIVE THERMISTOR	PTH451C41BG180N	VR294	127C081000	VR-SEMIFIXED	1/5W B30KΩ-M
l				1	127C081040	VR-SEMIFIXED	1/10W 300K
İ		DELAY LINES			1270081020	VR-SEMIFIXED	1/5W B100KΩ-M
					1270080080	VR-SEM!FIXED	1/5W B10KΩ-M
	337P099030 337P090010	DELAY LINE DELAY LINE	ĺ		127C180080	VR-SEMIFIXED	1/10W B10KΩ-M
		00110			1270181030	VR-SEMIFIXED	1/5W B200KΩ-M
		COILS			127C181020	VR-SEMIFIXED	1/5W B100KΩ-M
	409B062060	DEGAUSSING COIL			127C180080 127C080050	VR-SEMIFIXED VR-SEMIFIXED	1/10W B10KΩ-M
1	411D014010	FERRITE CORE FILTER			1270080030	VR-SEMIFIXED	1/5W B2KΩ-M 1/5W B5KΩ-M
L 290	3250120070	PEAKING COIL	3. 3 µ H-K	711031	127000070	TH-SEMITTAED	1/ 34 D3K 25 - M
	3250120050	PEAKING COIL	2. 2 µ H-M	VR650	1270030090	VR-SEMIFIXED	1/5W B20KΩ-N
L 2B1	325C120050	PEAKING COIL	2. 2 µ H-M	1	1270030090	VR-SEMIFIXED	1/5W B20KΩ-N
					1270030090	VR-SEMIFIXED	1/5W B20KΩ-N
L 2G0	3250120050	PEAKING COIL	2. 2 µ H-M		127C031010	VR-SEMIFIXED	1/5W B50KΩ-N
	3250120050	PEAKING COIL	2. 2 µ H-M		1290112030	VR-PCB	0. 15W B5K Ω -15S
L 2R0	3250120050	PEAKING COIL	2. 2 µ H~M		2		2
L .	3250120050	PEAKING COIL	2. 2 µ H-M	VR692	1290112020	VR-PCB	0. 15W B5K Ω -15S
L 2X0	3210030090	RF COIL	4. 7 μ H-K	VR6B0	1270080090	VR-SEMIFIXED	1/5W B20KΩ-M
					1270080090	VR-SEMIFIXED	1/5W B20KΩ-M
	330P148020	DEFLECTION YOKE COIL		1	1270080080	VR-SEMIFIXED	1/5W B10KΩ-M
	3250122010	PEAKING COIL	47 μ H-K	VR6X1	1270090080	VR-SEMIFIXED	1/5W B10KΩ-M
	333P018080 409C054020	H-LIN. COIL S-C COIL	İ	10204	107000000	NO CONTRACTOR	A PRIN BARNA
	335P006030	H-WIDTH COIL		1	1270080080	VR-SEMIFIXED	1/5W B10KΩ-M
₩ F 913	3357000030	n-widin Cuil		1	127C080080 127C080090	VR-SEMIFIXED VR-SEMIFIXED	1/5W B10KΩ-M
1 574	4090055010	P-DRIVE COIL			129D130060	VR-SEMIFIXED	1/5W B20KΩ-M 1/4W B300KΩ-M
	409P152030	FILTER COIL			1270081030	VR-SEMIFIXED	1/10W B200KΩ-N
	351P037010	FILTER COIL		*****	1270001030	TH SEMILINED	1) 10# P500V 25 - M
	351P037010	FILTER COIL		VR7F1	1270080080	VR-SEMIFIXED	1/5W B10KΩ-M
L 601	349P141020	CHROMA CW COIL			127C080060	VR-SEMIFIXED	1/5W B3KΩ-M
				VR7F3	1270080090	VR-SEMIFIXED	1/5W B20KΩ-M
L 631		PEAKING COIL	33MHz		127C080080	VR-SEMIFIXED	1/5W B10KΩ-M
	3250121020	PEAKING COIL	8. 2 µ H-K	VR7F5	127C080070	VR-SEMIFIXED	1/5W B5KΩ-M
	349P141020	CHROMA CW COIL					
L 650 L 701	325C110090 325C120070	PEAKING COIL PEAKING COIL	4. 7 μ H- K 3. 3 μ H- K	△ VR901	127C081020	VR-SEMIFIXED	1/5₩ B100KΩ-M
L 702	321C010020	RF COIL	680 µ H-K			RESISTORS	
	351P031010	LINE FILTER		↑ R 415	103P378040	FUSE	1/4W 2.2Ω-J
	351P037010	FILTER COIL			103P378040	FUSE	1/4W 2. 2Ω-J
	351P037010	FILTER COIL		I —	103P391030	FUSE	1/2W 100Ω-J
⚠ L 954	351P037010	FILTER COIL			103P398000	FUSE	1/2W 1.0Ω-J
A				⚠ R 5AN	103P398040	FUSE	1/2W 2.2Ω-J
	351P037010	FILTER COIL					
_	351P037010	FILTER COIL			102P082090	CEMENT WIRE	10W 10Ω
	409P402040	EMI FILTER			103P438080	FUSE METAL	2W 4.7Ω-K/J
	409P402040	EMI FILTER			103P543070	NETWORK	1/8W 10KΩ-JX4
ZIZ LUBKI	409P402040	EMI FILTER			102P081040	CEMENT WIRE	7W 4.7Ω-K
		TRANSFORMERS			103P370080	FUSE	1/4W 39Ω-j
A T FOI	2240150010	EI VOACV		I	103P378000	FUSE	1/4W 1.0Ω-J
_	334P158010 336P009030	FLYBACK H. DRIVE		<u> ∧</u> K 954	103P378000	FUSE	1/4W 1.0Ω-J
	350P393010	POWER			CADA	CITORS AND TRIMMERS	
	350P350030	POWER			UAFA	CHIMMENS AND INTERNACIO	
				A C 5X5	185D052010	ELECTROLYTIC-C	180V 220 µ F-H-Q
	٧	ARIABLE RESISTORS			185D056040	ELECTROLYTIC-C	H400V 330 µ F-M
	1270080070	VR-SEMIFIXED	1/5W B5KΩ-M			SWITCHES	
	127C081010 129C127040	VR-SEMIFIXED	1/5W B50KΩ-M		4220052222	DUOL DWITCH	
	1290127040	VR-BLOCK VR-SEMIFIXED	830KX5		432P053030	PUSH SWITCH	OW D1410
VDZ 97	1210001000	THE DEMTE LACK	1/5W B30KΩ-M	S 201	129P007090	VR-CH-PRESETTER	SW-BAND

SYMBO NO.	DL PARTS NO.	PARTS NAME	DESCRIPTION	SYMBOL NO.	PARTS NO.	PARTS NAME	DESCRIPTION
S 290 S 291	431C081010 431C081010	SLIDE SWITCH SLIDE SWITCH			ОТН	ER CRITICAL COMPONEN	ITS
	431C082010	SLIDE SWITCH		/\ C 530	181P205010	C-ELECTROLYTIC	50V 1 µ F-M
0 -0-	.0,0002010	SE10E 310		⚠ C 574	172P170020	C-M-PLASTIC-PP	1600V 1200pF-J
S 293	431C082010	SLIDE SWITCH		⚠ C 575	172P171020	C-M-PLASTIC-PP	1600V 1200pF-J
	129P007090	VR-CH-PRESETTER	SW-BAND	⚠ C 576	172P088000	C-PLASTIC-PP	
0 3/1	1251 001050	THE GITTIESETTEN	SW-DAND	⚠ C 578	154P251080	C-CERAMIC	630V 0.012 µ F-J R2KV 1000pF-K
		MISCELLANEOUS					
	2200000000	4011 40011			189P102040	C-M-PLASTIC-PP	200V 5.6 μ F-J
•	338P032010	CPM ASSY			189P026030	C-ELECTROLYTIC-BP	50V 22 μ F-M
$\stackrel{ extstyle \Delta}{ extstyle \Delta}$	451D046010	AC POWER JACK (3P)		⚠ C 581	172P088000	C-PLASTIC-PP	630V 0.012 µ F-J
$\overline{\mathcal{A}}$	4490081010	CRT SOCKET		⚠ C 586	172P082080	C-PLASTIC-PP	630V 560pF-J
A ACCE4	6410758010	WEDGE		△ C 760	142P021070	C-CERAMIC	B50V 4700pF-K
<u>∧</u> AG651	224P001010	AIR-GAP	DSP-301N	△ C 761	181P1 42030	C-ELECTROLYTIC-NP	16V 10 µ F-M
△ AG6R1	224P001010	AIR-GAP	DSP-301N	△ C 901	189P103060	C-M-POLYESTER-AC	AC250V 0. 47 µ F-M
⚠ AG6G1	224P001010	A IR-GAP	DSP-301N	△ C 902	189P103060	C-M-POLYESTER-AC	
⚠ AG6B1	224P001010	AIR-GAP	DSP-301N		189P067050	C-CERAMIC-AC	AC250V 0.47 µ F-M
⚠ F 901	283D024060	FUSE	3. 15A-T		189P067050	C-CERAMIC-AC	F VA1 2200pF-M
<u>∧</u> F 951	283D024060	FUSE	3. 15A-T	CD 0 304	1035001030	U~UENAMIU~AU	F VA1 2200pF-M
-3. 001		703E	o. Ion I	△ C 905	189P067050	C-CERAMIC-AC	F VA1 2200pF-M
⚠ PC571	268P033010	PHOTO COUPLER	ON3161-R	△ C 907	181P187040	C-ELECTROLYTIC	
X 601	285P011010	CRYSTAL RESONATOR	4. 434MHz		181P183010	C-ELECTROLYTIC	100V 10 µ F-M 105° C
,, 001	200. 01.1010	STRUTTLE HEDDITATOR	TOTIMILE		172P165050		25V 100 µ F-M 105° C
	PRINT	ED CIRCUIT BOARD ASSY'S	s		172P165050 172P087070	C-TF C-PLASTIC-PP	50V 0.022 μF-J 630V 0.047 μF-J
							3001 0.041 0
\triangle	9300232010	CRT PCB ASSY			154P251080	C-CERAMIC	R2KV 1000pF-K
$\stackrel{igstyle \Delta}{\Delta}$	9200309010	DEFL PCB ASSY			189P067050	C-CERAMIC-AC	F VA1 2200pF-M
Δ	930B437006	MAIN PCB ASSY		⚠ C 932	189P067050	C-CERAMIC-AC	F VA1 2200pF-M
Δ	9200281010	POWER PCB ASSY		△ C 935	189P067050	C-CERAMIC-AC	F VA1 2200pF-M
	9300231020	SW PCB ASSY			189P067050	C-CERAMIC-AC	F VA1 2200pF-M
		MECHANICAL PARTS		△ C 951	181 P201070	C-ELECTROLYTIC	10V 470 ⊭ F-M
					181P204090	C-ELECTROLYTIC	35V 470 µ F-M
	669D221040	SCREW	SCREW-TB(10P)		181P204060	C-ELECTROLYTIC	35V 100 µ F-M
	669D221080	SCREW	4X25(10P)		181P203080	C-ELECTROLYTIC	25V 1000 µ F-M
	669D212010	SCREW	(10P)		181P203060	C-ELECTROLYTIC	25V 330 µ F-M
	669D212020	SCREW	D=3 L=8 83A	2 0 000	1011 200000	O ECCOMOCITIO	237 330 P 1 M
	700B103050	BASE UNIT	0 0 0 0 00.	△ C 960	181P202080	C-ELECTROLYTIC	16V 1000 µ F-M
					181P352070	C-ELECTROLYTIC	16V 470 µ F-M
		COSMETIC PARTS		1	181P203030	C-ELECTROLYTIC	25V 47 μ F-M
					181P192090	C-ELECTROLYTIC	200V 100 μ F-M/Q
À	2420795090	AC POWER CORD			181P192050		
7	7000117060	BACK COVER ASSY		477 C 202	1017132030	C-ELECTROLYTIC	200V 10 μ F-M/Q
_	761D494010	BUTTON POWER	1	A C 067	1910101020	C_ELECTROL VT LO	160V 100 F 11/0
Δ	701A374050	FRONT PANEL			181P191030	C-ELECTROLYTIC	160V 100 µ F-M/Q
<u>_</u>	761D495010	VR KNOB			181P191000	C-ELECTROLYTIC	160V 22 µ F-M/Q
	1010433010	TH NHOD			181P203060	C-ELECTROLYTIC	25V 330 µ F-M
	PACKIN	NG PARTS AND ACCESSORY		_	189P027040 189P027040	C-CERAMIC-AC C-CERAMIC-AC	B VA1 1000pF-K B VA1 1000pF-K
	000110000	DAOVING AUGUSAN					
	803A185010	PACKING CUSHION	MO-13		154P251080	C-CERAMIC	R2KV 1000pF-K
	8710244070	INSTRUCTION BOOK			172P1 65050	C-TF	50V 0. 022 μ F-J
	8310061010	PACKING BAG			172P167050	C-TF	50V 1 μ F-J
	8010045090	PACKING CASE			181P192090	C-ELECTROLYTIC	200V 100 µ F-M/Q
				△ C 5X7	189D133010	C-ELECTROLYTIC	50V 22 μ F-M 105° C
				△ C 5X9	172P165050	C-TF	50V 0.022 µ F-J
					181P205060	C-ELECTROLYTIC	50V 22 μ F-M

					,			
	SYMBOL		PARTS NAME	DESCRIPTION	SYMBOL	PARTS	PARTS NAME	DESCRIPTION
	NO.	NO.			NO.	NO.	FANTS NAME	DESCRIPTION
	⚠ R 429	103P413010	R-CARBON	1/4W 3.3KΩ-J			· · · · · · · · · · · · · · · · · · ·	
	<u>∧</u> R 530	103P463030	R-METAL	1/4W 2.2KΩ-F				
	⚠ R 531	103P463070	R-METAL	1/4W 3.3KΩ-F				
	⚠ R 760	101P103D30	R-COMPOSITION	1/2W 10KΩ-K				
	⚠ R 761	103P415050	R-CARBON	1/4W 330KΩ-J				
	_			7, 111 0001122 0				
	<u>∧</u> R 765	103P413030	R-CARBON	1/4W 4.7KΩ~J				
	<u>∧</u> R 766	103P411030	R-CARBON	1/4W 100Ω-J				
	⚠ R 767	103P414090	R-CARBON	1/4W 100KΩ-J				
	⚠ R 772	103P413030	R-CARBON	1/4W 4.7KΩ-J				
	IR 901	109D031090	R-COMPOSITION	1/2W 470KΩ-J				
	12:311 901	1035031030	n comi osti ton	1/2# 410858-5				
	<u>∧</u> R 908	1030190080	R-METAL	3W 39Ω-J				
	⚠ R 909	1030180060	R-METAL					
i	⚠ R 910	103P412050		2W 27Ω-J	į			
	⚠ R 911		R-CARBON	1/4W 1KΩ-J				
		103P412050	R-CARBON	1/4W 1KΩ-J				
i	<u>∧</u> R 912	1030190070	R-METAL	3W 33Ω-J	İ			
ł	A P 010	1020104070	D METAL	OW 000 :	l			
ı	⚠ R 913	103C194070	R-METAL	3W 68Ω-J				
١		103P415040	R-CARBON	1/4W 270KΩ-J				
		103P414010	R-CARBON	1/4W 22KΩ-J				į
		103P410070	R-CARBON	1/4W 33Ω-				
ı	<u>∧</u> R 917	1030197040	R-METAL	3₩ 0.33Ω-J				
1								
		103P415030	R-CARBON	1/2W 220KΩ-J				
1	⚠ R 919	103P415030	R-CARBON	1/2W 220KΩ-J				
١	⚠ R 972	103P466050	R-METAL	1/4W 47KΩ-F				
١	⚠ R 973	103P464030	- R-METAL	1/4W 5. 6KΩ-F				
Ì	<u>∧</u> R 974	103P411070	R-CARBON	1/4W 220Ω-J				j
1								ļ
-	<u>∧</u> R 975	103P412010	R-CARBON	1/4W 470Ω-J				
		1030190070	R-METAL	3W 33Ω-J				ľ
ı		1030170030	R-METAL	1W 15Ω-J				
		1030171060	R-METAL	1W 180Ω-J				İ
		103P413070	R-CARBON	1/4W 10KΩ-J				
1				1,411 101.22 0				
İ	⚠ R 5X7	103P413020	R-CARBON	1/4W 3. 9KΩ°-J				l
		103P414000	R-CARBON	1/4W 18KΩ-J				I
		103P412050	R-CARBON	1/4W 1KΩ-J				
		103P413070	R-CARBON	1/4W 10KΩ-J				į
		102P082090	R-CEMENT-WIRE	10W 10Ω-K/J				i
ľ			TO CEMENT TO THE	104 1032 173				
ı								
ľ								
ı								
I								
ı								i
ĺ				11				
I				1.1				i
ı								ľ
ı								1
ı								i i
ı								1
ı								ŀ
L				11				1
I				[]				
								1
ı								1
l]
ĺ				11				j
1								1
								[
								İ
ı								
_				1 1				

SYMBOL NO.	ADDRESS		SYMBOL NO.	ADDRESS
D571	D- 5	Ш		
D572	D- 5		L571	F- 6
D573	E- 5		L572	D- 6
D574	F- 5		L573	E- 4
D575	E- 5		L574	F- 4
D5A1	F- 5		L575	F- 6
D5A2	F- 16		L5X1	B- 5
D5A3	F~ 6		L5X2	A- 6
D5A4	G- 5		L901	F- 2
D5X1	B- 6		L952	B- 3
D5X2	B- 7		L953	B- 3
D5X3	B- 6		L954	B- 2
D5X4	C- 6		L955	B- 1
D901	E- 2		L956	B- 1
D902	D- 4			
D903	E- 3		0471	E~ 7
D904	E- 2		0571	D- 5
D905	D- 2		0572	D- 5
D906	D- 2		0573	E- 5
D951	C- 3		Q5A1	F- 4
D952	C- 3		Q5A3	F- 5
D953	C- 3		Q5A5	F- 6
D954	C- 2		Q5A6	G- 6
D955	C- 1		Q5X1	C- 6
D956	C- 2		Q5X2	C- 6
D957	A- 1		0901	E- 2
D971	B- 2		0902	E- 2
D972	B- 2	1	0971	B- 2
		1		
F901	G- 1	1	VR5A1	F- 7
F951	B- 3		VR5A2	F- 7
			VR5A3	F- 7
IC5A1	F- 6		VR5A4	F- 7
IC5X1	C- 6		VR901	D- 3
10901	D- 2			
IC961	B- 2			
IC971	A- 2			

SYMBOL NO.	ADDRESS	SYMBOL NO.	ADDRESS
D571	D- 5		
D572	D- 5	L571	F- 6
D573	E- 5	L572	D- 6
D574	F- 5	L573	E- 4
D575	E- 5	L574	F- 4
D5A1	F- 5	L575	F- 6
D5A2	F- 6	L5X1	B- 5
D5A3	F- 6	L5X2	A- 6
D5A4	G- 5	L901	F- 2
D5X1	B- 6	L952	B- 3
D5X2	B- 7	L953	B- 3
D5X3	B- 6	L954	B- 2
D5X4	C- 6	L955	B- 1
D901	E- 2	L956	B- 1
D902	D- 4		
D903	E- 3	0471	E- 7
D904	E- 2	0571	D- 5
D905	D- 2	0572	D- 5
D906	D- 2	0573	E- 5
D951	C- 3	Q5A1	F- 4
D952	C- 3	Q5A3	F- 5
D953	C- 3	Q5A5	F- 6
D954	C- 2	Q5A6	G- 6
D955	C- 1	Q5X1	C- 6
D956	C- 2	Q5X2	C- 6
D957	A- 1	0901	E- 2
D971	B- 2	0902	E- 2
D972	B- 2	0971	B- 2
F901	G- 1	VR5A1	F- 7
F951	B- 3	VR5A2	F- 7
		VR5A3	F- 7
1C5A1	F- 6	VR5A4	F- 7
1C5X1	C- 6	VR901	D- 3
10901	D- 2		
IC961	B- 2		
10971	A- 2		

SYMBOL NO.	ADDRESS
D650	A- 2
D651	A- 2
D652	A- 2
D653	A- 2
D654	A- 2
D655	B- 2
D656	A- 1
L650	A- 1
TP9Z	A- 1
VR650	A- 2
VR651	A- 2
VR652	A- 2
VR653	A- 1

PCB-CRT

SYMBOL NO.	ADDRESS
D290	A-4.
D291	A-4
D293	A-3
D691	B-4
D692	8-4
D991	A-2
IC290	B-1
L290	A-1
Q290	A-4
0291	A-4
0292	A-1
0293	A-1
0294	A-2
VR290	B-2
VR292	A-1
VR293	A-1
VR294	A-1
VR691	B-4
VR692	B-3

PCB-DEFL

Δ

SYMBOL NO.	ADDRESS	SYMBOL NO.	ADDRESS	SYMBOL NO.	ADDRESS	SYMBOL NO.	ADDRES
D201	A- 5	D7MD	B- 1	L701	A- 1	TP32	C- 2
D202	C- 1	D7S0	A- 4	L702	A- 3	TP33	D- 1
D203	A- 4	D7S1	A- 4			TP34	D- 1
D204	A- 3	D7S2	A- 3	LC6B1	C- 5	TP35	E- 2
D205	A- 4	D7S3	A- 4	LC6G1	C- 5	TP36	E- 2
D210	C- 3	D7V1	E- 1	LC6R1	C- 5	TP41	B- 2
D211	C- 3	D7V2	E- 1			TP42	B- 2
D212	C- 3	D7X0	C- 6	0201	A- 5	TP43	C- 2
D213	C- 3	D7X1	C- 6	0202	A- 5	TP44	B- 2
D214	_C- 3	D7X2	B- 6	0203	A- 5	TP45	C- :3
D215	C- 3	D7X3	B- 6	0204	A- 4	TP46	C- 3
D216	C- 3			0206	A- 4	TP8A	D- 52
D217	C- 3	DL201	A- 2	0207	A- 4	TP8B	D- 1
D220	E- 5	DL202	B- 2	0210	C- 3	TP8C	E- 1
D2B0	C- 6	DL631	A- 2	0211	C- 3	TP8D	E- 1
D2G0	C- 6	DEOST	A- 2			IFOU	E- 1
		10210		0212	E- 5	VD201	D 2
D2R0	C- 6	1C2A0	A- 5	0214	A- 2	VR201	B- 3
D2XO	B- 6	IC2A1	A- 2	Q2A0	A- 5	VR202	B- 3
D2X1 .	B- 6	IC2A2	A- 5	Q2A1	A- 5	VR401	D- 3
D2X2	C- 5	IC2A3	A- 2	Q2M0	A- 3	VR402	E- 3
D2X3	D- 5	IC2X0	D- 6	Q2M1	A- 3	VR501	D- 2
D2X4	D- 5	IC2X1	C- 6	Q2M2	A- 3	VR601	B- 2
D2X5	B- 5	IC2X2	C~ 5	Q2X0	C- 5	VR631	B- 3
D2X6	B- 5	1C401	E- 4	Q2X1	D- 5	VR6B0	B- 4
D2X7	D- 6	1C601	C- 2	Q2X2	C- 5	VR6G0	B- 4
D2X9	D- 6	IC680	D- 5	Q2X3	B- 5	VR6X0	B- 4
D401	E- 3	10660	C- 4	02X4	B- 5	VR6X1	B- 4
D501	D- 3	IC6R0	B- 3	Q2X5	B- 6	VR701	D- 3
D502	D- 3	IC6X0	C- 4	Q2X6	B- 6	VR702	E- 2
D503	D- 3	IC701	A- 1	0601	A- 2	VR703	D- 2
D504	D- 2	10702	D- 2	Q602	B- 2	VR761	E- 3
D560	E- 5	10703	D- 3	Q6B0	D- 4	VR771	D- 3
D701	A- 4	10704	E- 2	Q6G0	C- 4	VR7F1	E- 1
D702	A- '4	IC705	E- 2	Q6R0	B- 4	VR7F2	E- 1
D703	A- 4	10707	D- 3	Q6X0	C- 3	VR7F3	D- 1
D710	B- 3	10709	B- 3	Q6X1	C- 5	VR7F4	C- 2
D712	D- 3	IC7F1	E- 1	0701	A- 1	VR7F5	E- 1
D713	D- 3	IC7F2	D- 1	0702	A- 1		
D714	D- 3	IC7F3	D- 1	0704	B- 3	X601	B- 2
0715	D- 3	IC7M1	C- 1	0705	B- 3		
716	D- 3	1C7M2	B- 1	0706	B- 3		
717	C- 3	1C7M5	B- 1	0707	C- 3		
718	E- 2	10750	A- 4	0711	E- 2		
719	B- 3	10751	A- 4	0712	E- 3		
0720	D- 2	10752	A- 3	0713	E- 3		
721	A- 3	1C7X0	B- 5	0715	C- 3		
0722	D- 3			0716	A- 3		
D7F1	D- 1	L201	A- 5	0731	D- 2		
D7F2	E- 1	L2B0	C- 6	0740	D- 3		
D7F3	E- 1	L2B1	D- 6	Q7M1	C- 1		
D7M1	C- 1	L260	C- 6	Q7M5	A- 1	-	
D7M2	C- 1	L260					
	C- 1		D- 6	Q7M6	B- 1	 	
D7M3		L2R0	D- 6	Q7MA	B- 1		
D7M4	C- 1	L2R1	C- 6	Q7MB	B- 1		
D7M5	B- 1	L2X0	B- 4	Q7MC	B- 1		
D7M6	A- 1	L501	C- 2	Q7MD	D- 1	 	
7147	A- 1	L601	B- 2	Q7V1	E- 2		
D7MA	B- 1	L631	C- 1	Q7V2	E- 2		
D7MB D7MC	B- 1	L632	B- 2	ļ			
	B- 1	L633	B3	TP31	C- 2		

EUM-1491A(2/2)

M = 1000K ohms.

- 2. The wettage of resistor, if not specifically designated, is less than 1/4 watt.
- 3. Resistors, if not specifically designated, are carbon resistors.
- 4. The marks of resistors are as follows:

CE : Cemented resistor Metal oxide film resistor (type B)

Metal plate cement resistor

Fixed composition resistor Wire wound resistor Metal film resistor

5. The tolerance of resistor value is: Not specified = $\pm 5\%$, K = $\pm 10\%$ M = $\pm 20\%$

- 6. The unit of capacitance, if not specifically designated, is: a) μ F, for numbers less than 1 b) PF, for numbers more than 1
- 7. Capacitors, if not specifically designated are Ceramic capaci-
- tors except electrolytic capacitors.

8. The marks of capacitors are as follows:

Aluminus electrolytic capacitor Polyester capacitor Polypropylene film capacitos Tantalum capacitor

Twin film capacitor. Polyester polypropylene film capacitor. Metallize plastic film capacitor.

Non polarized electrolytic capacitor. (NP

: Electrolytic capacitor

- 9. The DC working voltage of capacitor, if not specifically designated is: 50V
- 10. The tolerance of capacitor value, if not specifically designated is: ±10% for polyester capacitor ±5% for ceramic capacitor

and $J = \pm 5\%$ K = $\pm 10\%$ M = $\pm 20\%$ P = $\frac{+100\%}{-0\%}$

C =±0.25PF D = ±0.5PF F =±1PF Z = $^{+80\%}_{-20\%}$ N = ±30%

SPECIFIC SYMBOL							
٠	Zener Diode	->-	Varistor				
***		- ∏+ 	Crystal unit				
**	Varicap		Air Gap				
€)	Posistor	-2003-	Part (resistor) attached				
\odot	Thermistor	TANA	on the copper-foil side				
ă	Fusible Resistor	불	of PCB				
•	· OBIDIO I IOSISCOI	#	Ceremic filter				

NOTE 2:

- 1. DC voltages were measured from points indicated to cuit ground with a high - 2 voltmeter.
- Waveforms were taken with offset rainbow color her
- to modification according to engineering improvement.
- 4. VOLTAGE () = TTL SIGNAL

Δ

SERVICING PRECAUTION

SYMBOLS INDICATE COMPONENTS HAVING SPECIAL CHARACTERISTICS IMPORTANT TO SAFETY AND PER-FORMANCE. THEREFOR REPLACEMENT OF ANY SAFE-TY PARTS SHOULD BE IDENTICAL IN VALUE AND CHAR-ACTERISTICS.

DON'T DEGRADE THE SAFETY OF THE RECEIVERS THROUGH IMPROPER SERVICING.

Printed in Japan

| CS62 | CS62 | CS674 | CS674 | CS674 | CS675

DY

Н

G

E

F

neach nu**ac**h from the first

1

J

7