8 重積分

重積分の意味

2 変数関数 f(x,y) の領域 D 上での積分;

$$\iint_D f(x,y) \, dx dy = (D \, の範囲で \, z = f(x,y) \, \, と \, \, xy$$
-平面とで囲まれる部分の体積)

- 累次積分

重積分を1変数関数の積分の繰り返し帰着させる計算方法.

 \square 積分領域 D が長方形領域 $[a,b] \times [c,d]$ の場合

問題 8.1. 次の積分を求めよ.

$$(1) \int_0^1 \left(\int_0^1 \frac{y^2}{1+x} \, dy \right) dx$$

$$(2) \iint_D \frac{1}{(1+x+y)^2} dx dy, \quad D = [1,3] \times [0,2]$$

$$(3) \iint_D (x+y)^2 dx dy, \quad D = [0,1] \times [0,1]$$

$$(4) \int_0^1 \left(\int_0^x e^{x-y} \, dy \right) dx$$

□ 一般の領域での重積分

・重積分
$$I = \iint_D f(x,y) \, dx dy$$
 の計算 -

(1) 積分領域を $\{(x,y) \mid a \le x \le b, \varphi(x) \le y \le \psi(x)\}$ の形に表す.

(2)
$$I = \int_a^b \left(\int_{\varphi(x)}^{\psi(x)} f(x,y) \, dy \right) dx$$
 の形に表し、括弧の中身から積分の計算をする.

問題 8.2. 次の領域 D を図示し、積分 $\iint_D f(x,y) dxdy$ を求めよ.

- (1) D は原点, (π,π) , $(0,\pi)$ を頂点とする三角形の内部, $f(x,y) = \sin(x-y)$.
- (2) D は y = x, $y = x^2$ によって囲まれる領域, f(x,y) = 2x + 5y.
- (3) D は y = x 2, $x + y^2 = 4$ によって囲まれる領域, f(x,y) = xy.