Задача А. Где же мое призвание

 Имя входного файла:
 mission.in

 Имя выходного файла:
 mission.out

 Ограничение по времени:
 6 секунд

 Ограничение по памяти:
 64 мегабайта

n сурикатов стоят строем по возрастанию роста. Нам известен рост каждого из них. Некоторые из них зарываются в землю, некоторые забираются на холмики, ростом же считается расстояние от земли до затылка суриката, так что у некоторых рост может быть отрицательным. Так они стоят k дней. Каждый день к ним приходит один сурок. Рост сурка измеряется и сурок интересуется, на какое место в ряд его бы поставили (при этом его туда, разумеется, не ставят, он же сурок, в конце концов, а интересуется он лишь из праздного любопытства). Если его рост совпадает с ростом одного или нескольких сурикатов, то сурка интересует наименьшая возможная позиция. Помогите сурикатам отвечать на глупые вопросы сурков. Кстати, сурикаты нумеруют себя с нуля.

Формат входных данных

В первой строчке входного файла записаны два числа: размер n и k ($1 \le n, k \le 100001$) Во второй строке записано n целых чисел – рост каждого суриката в порядке строя. В третьей строке записаны k целых чисел – рост каждого пришедшего сурка. Все заданные числа по модулю не превосходят 10^9 .

Формат выходных данных

Для каждого из k сурков выведите соответствующие позиции в строю (каждую в отдельной строке).

Примеры

mission.in	mission.out
5 5	1
1 3 5 7 9	2
2 4 8 1 6	4
	0
	3

Задача В. Слишком умные школьники и сортировка

Имя входного файла: goodsolvers.in Имя выходного файла: goodsolvers.out Ограничение по времени: 4 секунды

Ограничение по времени. 4 секунды Ограничение по памяти: 4 мегабайта

В одной смене ЛКШ все без исключения школьники (в количестве m человек) очень хорошо решали задачи. А именно: каждый не решил не больше 1000 задач, а всего задач было ровно n (1000 $\leq n \leq 10^{18}$).

В те времена в ЛКШ не было сводной таблицы, в которой школьники упорядочивались по количеству решённых задач. Недавно вашим преподавателям стало интересно: а сколь-

ко задач было решено у 1-го, 2-го, . . . , *т*-го места. В образовательных целях удовлетворить любопытство преподавателей поручено именно Вам.

Формат входных данных

В первой строке записаны целые положительные числа n и m (1000 $\leqslant n \leqslant 10^{18}$, $1 \leqslant m \leqslant 2 \cdot 10^6$). Во второй строке записаны числа a_1, \ldots, a_m - количество задач, решенных школьниками ($n-1000 \leqslant a_i \leqslant n$).

Формат выходных данных

Выведите в единственной строке m чисел - количество задач, решённых школьниками, занявшими 1-е, 2-е, ..., m-е место, соответственно.

Примеры

goodsolvers.in	goodsolvers.out
1000 3	3 2 1
2 1 3	

Задача С. Слияние последовательностей

 Имя входного файла:
 merge.in

 Имя выходного файла:
 merge.out

 Ограничение по времени:
 2 seconds

 Ограничение по памяти:
 64 megabytes

Даны две бесконечные неубывающие последовательности A и B. Требуется найти kый элемент в неубывающей последовательности C, содержащей все элементы из A и B (включая повторы).

Последовательность A задается с помощью полинома $P(x) = x^3$:

$$a_1 = P(1) \bmod 12345$$
, $a_i = a_{i-1} + (P(i) \bmod 12345)$ при $i > 1$

Последовательность B задается с помощью полинома $Q(x)=x^2$:

$$b_1 = Q(1) \bmod 123, \quad b_i = b_{i-1} + (Q(i) \bmod 123)$$
 при $i > 1$

Формат входных данных

Входной файл содержит натуральное число $k \ (1 \leqslant k \leqslant 10^7)$.

Формат выходных данных

В выходной файл выведите одно число — ответ на задачу. Гарантируется, что ответ не превышает $2\cdot 10^9$.

Примеры

merge.in	merge.out
5	14

Задача D. Быстрая сортировка

 Имя входного файла:
 sort.in

 Имя выходного файла:
 sort.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Дан массив целых чисел. Ваша задача — отсортировать его в порядке неубывания с помощью алгоритма быстрой сортировки (qsort).

Формат входных данных

В первой строке входного файла содержится число N ($1 \le N \le 100\,000$) — количество элементов в массиве. Во второй строке находятся N целых чисел, по модулю не превосхолящих 10^9 .

Формат выходных данных

В выходной файл надо вывести этот же массив в порядке неубывания, между любыми двумя числами должен стоять ровно один пробел.

Примеры

sort.in	sort.out
10	1 1 2 2 3 3 4 6 7 8
1 8 2 1 4 7 3 2 3 6	

Замечание

В этой задаче обязательно использовать быструю сортировку.

Задача Е. Инвентаризация

 Имя входного файла:
 sort.in

 Имя выходного файла:
 sort.out

 Ограничение по времени:
 8 секунды

 Ограничение по памяти:
 64 мегабайта

В связи с модернизацией производства на заводе зубных щеток в Тау Кита было решено переписать список роботов, обслуживающих завод. Каждый робот имеет 2 номера: основной и вспомогательный. Новый список должен удовлетворять следующим правилам:

- 1. Если один робот в новом списке находится раньше другого, то основной номер первого меньше или равен основному номеру второго.
- Если основные номера роботов равны, то они расположены в таком же порядке, как и в исходном списке.

Тау Китяне обратились к Вам с просьбой переписать список. Помогите модернизации организаций!

Формат входных данных

В первой строке входного файла содержится число N ($1 \le N \le 100\,000$) — количество роботов на заводе. На каждой следующей строке находятся 2 числа — основной и вспо-

могательный номера очередного робота. Оба номера неотрицательны и не превосходят 10^9 .

Формат выходных данных

Выведите N строчек, i-ая содержит 2 числа — основной и вспомогательный номер i-го робота в новом списке.

Примеры

sort.in	sort.out
10	1 8
1 8	1 11
8 9	2 10
2 10	2 23
1 11	3 11
4 2	3 3
7 2	4 2
3 11	6 7
2 23	7 2
3 3	8 9
6 7	

Задача F. Футбольный турнир

 Имя входного файла:
 football.in

 Имя выходного файла:
 football.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

В ЛКШ прошел турнир по футболу. Теперь физруку Саше необходимо подвести результаты и составить итоговую таблицу. Турнир прошел в один круг, т. е. каждая команда сыграла с каждой ровно один раз. За победу команда получала 3 очка, за ничью 1 очко, а за поражение 0 очков. Кроме того в таблице учитывается разница пропущенных и забитых мячей. Требуется упорядочить команды по невозрастанию набранных очков, а при равенстве очков раньше в таблице должна идти команда, у которой разница забитых и пропущенных мячей больше.

Формат входных данных

В первой строке вводится единственное число N ($1 \le N \le 100\,000$) — количество команд, участвовавших в турнире. Во второй строке записаны N неотрицательных целых чисел — количество очков, набранных каждой командой. В третьей строке содержатся N чисел — разница забитых и пропущенных мячей каждой команды.

Формат выходных данных

Выведите N чисел — номера команд в порядке, в котором они будут записаны в итоговой таблице. Если количество очков и разница забитых и пропущенных мечей для каких-то команд совпадают, то их относительный порядок должен быть тем же, что и во входных данных.

Примеры

football.out
2 3 5 1 4

Задача G. Точки и отрезки

 Имя входного файла:
 segments.in

 Имя выходного файла:
 segments.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Дано n отрезков на числовой прямой и m точек на этой же прямой. Для каждой из данных точек определите, скольким отрезкам она принадлежит. Точка x считается принадлежащей отрезку с концами a и b, если выполняется двойное неравенство $\min(a,b)\leqslant x\leqslant \max(a,b)$.

Формат входных данных

Первая строка содержит два целых числа n ($1 \leqslant n \leqslant 10^5$) — число отрезков и m ($1 \leqslant m \leqslant 10^5$) — число точек. В следующих n строках записаны по два целых числа a_i и b_i — координаты концов соответствующего отрезка. В последней строке записаны m целых чисел — координаты точек. Все числа во входном файле не превосходят по модулю 10^9 .

Формат выходных данных

В выходной файл выведите m чисел — для каждой точки выведите количество отрезков, в которых она содержится.

Примеры

segments.in	segments.out
2 2 0 5	1 0
7 10 1 6	
1 3 -10 10 -100 100 0	0 0 1