Estadística y pronósticos para la toma de decisiones.

Profesor: Dr. Naím Manríquez

Universidad Tecmilenio

Objetivo del ejercicio: Calcular el coeficiente de correlación con el fin de medir la asociación entre dos variables cuantitativas, así como comprender el término de autocorrelación y comparar el uso en el pronóstico de los promedios móviles y suavizamiento exponencial.

Descripción del ejercicio: A través de esta actividad el alumno comprenderá los términos de correlación y autocorrelación además de utilizar datos de una muestra para el pronóstico por métodos simples como el promedio móvil y el suavizamiento exponencial.

Instrucciones:

Realiza las siguientes acciones:

- 1. Define lo que significan los siguientes términos:
 - a. Correlación
 - b. Autocorrelación
 - c. Promedio móvil
 - d. Suavizamiento exponencial
- 2. Busca información de 20 casas en venta en donde las variables sean Y (metros de construcción) y X (metros de terreno); lleva a cabo lo que se indica:
 - a. Realiza y describe el diagrama de dispersión.
 - b. Calcula e interpreta el coeficiente de correlación muestral r.
 - c. Responde a la siguiente cuestión en un terreno urbano. ¿A mayor cantidad en metros de construcción, mayor es el precio de la vivienda?
- 3. Busca información de los cetes a 28 días—semanal, periodicidad diaria y datos del Banco de México. Considera las últimas 20 cotizaciones de los cetes y realiza lo que se indica:
 - a. Determina el coeficiente de autocorrelación r1
 - b. Determina la prueba de hipótesis de lo siguiente:
 - I. Hipótesis nula: $H0 : \rho 1 = 0$ (La autocorrelación es igual a cero).
 - II. Hipótesis alternativa: Ha: $\rho 1 \neq 0$ (La autocorrelación es diferente de cero).
 - III. Donde ρ k es el coeficiente de autocorrelación poblacional en el lapso k.
 - c. ¿Existe autocorrelación entre los rendimientos de los CETES a 28 días?

4. Las llamadas de emergencia a un teléfono durante las últimas 24 semanas son éstas:

Semana	Llamadas	Semana	Llamadas	Semana	Llamadas
1	50	9	35	17	55
2	35	10	20	18	40
3	24	11	15	19	35
4	40	12	40	20	60
5	44	13	55	21	75
6	34	14	35	22	50
7	20	15	25	23	40
8	30	16	55	24	65

- a. Realiza y describe un diagrama de dispersión.
- b. Determina un promedio móvil con k=3 periodos y pronostica el valor para la semana 25.
- c. Considera un pronóstico inicial de 50 llamadas durante la primera semana, y utilizando un suavizamiento exponencial con α = 0.10, desarrolla los pronósticos para el periodo comprendido entre las semanas 1 a 24. ¿Cuál es el pronóstico para la semana 25? Pronostica nuevamente cada periodo utilizando α = 0.6. Obtén el valor para la semana 25.
- d. Las llamadas reales durante la semana 25 fueron 85. ¿Cuál de los tres métodos anteriores se acerca más?

Preguntas de discusión en el aula

Con los conceptos vistos y puestos en práctica, brinda una respuesta justificada a cada una de las siguientes cuestiones

- a. ¿Qué significa el coeficiente de correlación?
- b. ¿Cómo se interpreta el coeficiente de correlación?
- c. ¿Para qué sirve el coeficiente de autocorrelación?
- d. ¿Cuándo utilizarías el método de promedios móviles?
- e. ¿Cómo elegirías la constante suavizamiento en el método de suavización exponencial?

Nota para el alumno: Considera que tu actividad debe estar documentada (proceso) y fundamentada.