GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Ingeniería de Materiales

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Primer Semestre	190103	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer los fundamentos teóricos de la ciencia e ingeniería de materiales empleados en la manufactura a través de su comportamiento micro y macroscópico para evaluar su comportamiento físico, mecánico y químico.

TEMAS Y SUBTEMAS

1. Introducción a la Ciencia e Ingeniería de Materiales

- 1.1 Clasificación de materiales para la ingeniería
- 1.2 Materiales metálicos y sus aplicaciones
- 1.3 Materiales poliméricos y sus aplicaciones
- 1.4 Materiales cerámicos y sus aplicaciones
- 1.5 Materiales compuestos y sus aplicaciones
- 1.6 Diferencias entre materiales cristalinos y amorfos

2. Estructura atómica y cristalina de materiales

- 2.1 Sistemas cristalinos y redes de Bravais.
- 2.2 Estructuras cristalinas metálicas.
- 2.3 Posiciones, direcciones y planos de red.
- 2.4 Densidades lineal, planar y volumétrica de celdas unitarias.
- 2.5 Análisis de estructuras cristalinas (DRX).

3. Defectos cristalinos y difusión

- 3.1 Imperfecciones puntuales
- 3.2 Imperfecciones de línea
- 3.3. Imperfecciones de superficie
- 3.4 Imperfecciones volumétricas
- 3.5 Imperfecciones puntuales
- 3.6 Mecanismos de difusión
- 3.7 Leyes de Fick

4. Propiedades Mecánicas

- 4.1 Deformación elástica y teoría de esfuerzos en materiales cristalinos
- 4.2 Ecuaciones y modelos esfuerzo-deformación
- 4.3 Pruebas mecánicas: prueba de tensión y otras pruebas básicas
- 4.4 Mecánica de la Fractura

5. Transformaciones de Fase tiempo

- 5.1 Tipos de transformaciones de fase.
- 5.2 Movimiento de dislocaciones e interfases.
- 5.3 Nucleación y crecimiento
- 5.4 Solidificación.
- 5.5 Recristalización.
- 5.6 Precipitación.

6. Tratamientos térmicos

- 6.1 Tratamientos térmicos convencionales
- 6.2 Tratamientos térmicos isotérmicos
- 6.3 Templabilidad
- 6.4 Diagramas TTT y CTT
- 6.5 Tratamientos termoquímicos

7. Técnicas de caracterización de materiales para la manufactura

- 7.1 Interacción de la radiación con la materia
- 7.2 Difracción de rayos-X
- 7.3 microscopia electrónica de barrido (meb)
- 8. Técnicas nuevas de obtención de materiales

ACTIVIDADES DE APRENDIZAJE

Realizar investigaciones documentales, experimentales y de campo referentes a los temas.

Visitar empresas donde se observe la utilización u obtención de los diferentes materiales utilizados en ingeniería. Proponer prácticas en talleres donde se observen los fenómenos tratados, fomentar el trabajo grupal, tanto en actividades practicas como teóricas

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Evaluaciones parciales teórico-prácticas, evaluación final, participación en clase. Elaboración y exposición de trabajos de investigación, exámenes escritos, modelos didácticos elaborados, reportes de visitas a laboratorios o industrias, desarrollo y elaboración de reportes de prácticas y experimentos. Todo esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

Mechanical Behavior of Materials, Norman E. Dowling, Prentice-Hall 1st. edition, ISBN: 0-13-579046-8 Phase Transformations in Metals and Alloys, David A. Porter, Kenneth E. Easterling, Mohamed Sherif. CRC; 3 edition (February 10, 2009). ISBN: 978-1420062106.

Allen: Kinetics of Materials, Robert W. Balluffi, Samuel M. Wiley-Interscience; 1 edition (September 23, 2005). ISBN: 978-0471246893.

Physical Methods for Materials Characterization, Peter E.J. Flewitt and R.K. Wild, Taylor & Francis, 2nd edition, 2001; ISBN 13 978-0750308083

Libros complementarios:

Elements of X-Ray Diffraction, B. D. Cullity, S.R. Stock, Prentice Hall, Third Edition, 2001, ISBN 0-201-61091-4

Scanning Electron Microscopy and X-Ray Microanalysis, Joseph Goldstein, Dale E. Newbury, David C. Joy, and Charles E. Lyman, Springer, Third Edition, USA, 2003, ISBN 0-306-47292-9

Transmission Electron Microscopy: A Textbook for Materials Science, David B. Williams and C. Barry Carter, Plenum Press, New York, 2004, ISBN 0-306-45247-2

Materiales de Ingeniería y sus aplicaciones, Flinn y Trojan, Ed. Mc Graw-Hill

Ciencia de Materiales para ingeniería, Keyser, Carl A., Ed. Limusa

Fundamentos de ciencia de Materiales, Guy, A.G., Ed. Mc. Graw-Hill

Materiales para Ingeniería, Van Vlack, Lawrence H., Ed. CECSA

Manual del Ingeniero Mecánico, Marks Theodore B., Ed. Mc Graw-Hill

Procesos Básicos de Manufactura, Kazanas, Ed. Mc Graw-Hill

El Aluminio y sus Aleaciones, King Frank, Ed. Limusa

Estándares ASTM. www.sciencedirect.com

www.springerlink.com

Artículos científicos

PERFIL PROFESIONAL DEL DOCENTE

Estudios de Maestría o Doctorado en Manufactura.

