

Instituto Superior de Engenharia de Lisboa

Departamento de Matemática

Raciocínio Probabilístico e Simulação

Lista de exercícios das aulas n.º 06: Introdução aos integrais duplos

Exercício 1.

Represente a região plana R e calcule o valor dos integrais

$$\int_0^1 \int_1^2 \left(x + y^2 \right) dx \ dy$$

$$\int_{1}^{2} \int_{0}^{1} (x + y^{2}) dy dx.$$

Exercício 2.

Represente a região plana R e calcule o valor dos integrais

$$\int_{0}^{2} \int_{2}^{3} (3x^{2} - 2y) \, dy \, dx$$

$$\int_{2}^{3} \int_{0}^{2} (3x^{2} - 2y) dx dy.$$

Exercício 3.

Represente a região plana R e calcule o valor dos integrais

$$\int_{1}^{3} \int_{2}^{3} (xy + y - 1) \, dy \, dx$$

$$\int_{2}^{3} \int_{1}^{3} (xy + y - 1) \, dx \, dy.$$

Exercício 4.

Represente a região plana \mathcal{R} e calcule o valor do integral

$$\int_0^2 \int_0^1 xy^2 \ dx \ dy.$$

06 - Introdução aos integrais duplos

1/2

C. Fernandes & P. Ramos

Instituto Superior de Engenharia de Lisboa

Departamento de Matemática Raciocínio Probabilístico e Simulação

Exercício 5.

Considere a região plana \mathcal{R} limitada por $y \ge 1 - x$, $y \ge -1 + x$ e $y \le 1$. Escreva integrais que representem a área da região R por duas ordens de integração diferentes. Calcule a área resolvendo um dos integrais.

Considere a região plana \mathcal{R} limitada por $x \geqslant y^2$ e $y \geqslant -2 + x$. Escreva o integral

$$\iint\limits_{\mathcal{D}} f\left(x,y\right) dA$$

por duas ordens de integração diferentes.

06 - Introdução aos integrais duplos

2/2