No.	SOLUTION
1a(i)	a = 200
	d = 225 - 200 = 25
	$T_{17} = 200 + 16(25)$
(ii)	=\$600
	$S_{17} = \frac{17}{2} \Big[2(200) + 16(25) \Big]$
	= \$6,800
	$S_n = \frac{n}{2} [2(200) + (n-1)25] = 20,000$
	n[2(200)+(n-1)25]=40000
	$375n^2 + 25n^2 - 40000 = 0$
	$n^2 + 15n - 1600 = 0$
	n = 33.19 or -33.195 (N.A.)
	On his 34 th birthday, the amount will first exceed 20000.
1(b)	$f(x) = \begin{cases} \frac{1}{2}x, & -4 \le x < -2\\ \sqrt{4 - x^2}, & -2 \le x \le 2\\ -1, & 2 < x \le 4 \end{cases}$

No.	SOLUTION
2a	$\frac{dx}{dt} = -\frac{2}{t^2}$
	$\frac{dy}{dt} = 2t$
	$\frac{dy}{dt} = 2t \times -\frac{t^2}{2}$
	$=-t^3$
(b)	$\frac{dy}{dt} = -t^3$
	$\frac{dy}{dy} = \frac{1}{2} \frac{dy}{dy}$
	$x = 2, \frac{dy}{dt} = -8$
	x = 2, t = 2
	$y = (2)^2 + 1 = 5$
	Gradient of normal = $\frac{1}{8}$
	$F_{\text{out}} = f_{\text{normal}} = f_{\text{out}} = \frac{1}{2} (1 - 2)$
	Equ of normal: $y-5=\frac{1}{8}(x-2)$
	8y - 40 = x - 2
	8y = x + 38
	Cut y-axis: $x=0, y = \frac{19}{4}$
	Coordinate the normal at $x=2$ cuts the y-axis at $(0, 19/4)$
(c)	2y-x(y-1)=2
	$2(t^2+1)-(\frac{2}{t}+1)(t^2+1-1)=2$
	$2t^2 + 2 - 2t - t^2 = 2$
	$t^2 - 2t = 0$
	t = 0 or t = 2
(d)	$x = \frac{2}{t} + 1 \Rightarrow t = \frac{2}{x - 1}$
	$y = \left(\frac{2}{x-1}\right)^2 + 1$
	$D = (-\infty, 1) \cup (1, \infty)$
	$R = (1, \infty)$

No.	SOLUTION
3a	
(;)	$\frac{w}{h} = \frac{16}{9}$
(i)	$h = \frac{9}{16} w \dots (1)$
	$n - \frac{16}{16}$ \dots \dots
	$d^2 = w^2 + h^2$
	$d^{2} = w^{2} + h^{2}$ $d = \sqrt{w^{2} + h^{2}} \text{ or } -\sqrt{w^{2} + h^{2}} \text{ (N. A.)}$
	From (1)
	$d = \sqrt{w^2 + \left(\frac{9}{16}w\right)^2}$
	$\left[\begin{array}{cc} 2 \left(1 & 81\right) \end{array}\right]$
	$=\sqrt{w^2\left(1+\frac{81}{256}\right)}$
	$=\frac{\sqrt{337}}{16}w$
	$=\frac{16}{16}$
(ii)	when $w = 16$,
	$\sqrt{337}$
	$d = \frac{\sqrt{337}}{16} (16)$
	$=\sqrt{337}$
	when $w = 24$,
	$d = \frac{\sqrt{337}}{16}(24)$
	$=\frac{3\sqrt{337}}{2}$
	_
	$R_d = \left[\sqrt{337}, \frac{3\sqrt{337}}{2} \right]$
(iii)	
	$\max w = 24$
	$\max h = \frac{9}{16}(24)$
	=13.5
	Min. wall space needed is $24 \times 13.5 = 324 \text{ in}^2$

No.	SOLUTION
3(b	$f(-x) = (-x)^4 - 2(-x)^2 + 1$
) (i)	$=x^4-2x^2+1$
(1)	
	$=f\left(x\right)$
	Hence, $f(x)$ is an even function
(ii)	
(11)	$f(-x) = \sin(-2x)$
	$=-\sin(2x)$
	=-f(x)
	Hence, $f(x)$ is an odd function
(iii)	$f\left(-x\right) = \frac{e^{-x} - 1}{e^{-x} + 1}$
(===)	
	$\frac{1}{r}$ -1
	$=\frac{e^{x}}{1}$
	$=\frac{\frac{1}{e^x}-1}{\frac{1}{e^x}+1}$
	$=\frac{1-e^x}{1+e^x}$
	$\left(e^{x}-1\right)$
	$=-\left(\frac{e^x-1}{e^x+1}\right)$
	=-f(x)
	<i>y</i> (30)
	Hence, $f(x)$ is an odd function
(c)	
	$let y = \frac{e^x - 1}{e^x + 1}$
	• • •
	$ye^x + y = e^x - 1$
	$e^{x}\left(y-1\right) = -1 - y$
	$e^x = \frac{-1 - y}{y - 1}$
	•
	$e^x = \frac{y+1}{1-y}$
	- 7
	$x = \ln\left(\frac{y+1}{1-y}\right) \Rightarrow f^{-1}(x) = \ln\left(\frac{x+1}{1-x}\right)$
	(1-y) $(1-x)$
L	

No.	SOLUTION
4a.	
(i)	$y = \frac{2x+3}{4x^2+7}$
	$dy_{-}(4x^2+7)(2)-(2x+3)(8x)$
	$\frac{dy}{dx} = \frac{(4x^2 + 7)(2) - (2x + 3)(8x)}{(4x^2 + 7)^2}$
	$=\frac{8x^2+14-16x^2-24x}{\left(4x^2+7\right)^2}$
	$=\frac{14-24x-8x^2}{\left(4x^2+7\right)^2}$
	$(4x^2+7)$
(ii)	$\frac{dy}{dx} = \frac{14 - 24x - 8x^2}{1}$
	$\frac{dy}{dx} = \frac{14 - 24x - 8x^2}{\left(4x^2 + 7\right)^2}$
	$-\frac{2(7-12x-4x^2)}{}$
	$=\frac{2(7-12x-4x^2)}{(4x^2+7)^2}$
	$= -\frac{2(4x^2 + 12x - 7)}{(4x^2 + 7)^2}$
	Since $4x^2 + 12x - 7 < 0$, then $\frac{dy}{dx}$ is always > 0 due to the negative sign and
	the perfect square at the denominator.
(iii)	$x = 0, y = \frac{3}{7}$
	$\frac{dy}{dx} = \frac{2}{7}$
	$y - \frac{3}{7} = \frac{2}{7}(x - 0)$
	Equ of tangent: $y = \frac{2}{7}x + \frac{3}{7}(1)$
	7 7 7(1)
	y = x + k(2). Solve (1) and (2):
	$\frac{14}{49}x + \frac{3}{7} = x + k$
	x = 1:
	$\frac{14}{49}(1) + \frac{3}{7} = 1 + k \implies k = -0.29$

No.	SOLUTION
4(b	$f\left(x\right) = 2x^2 - x + 5$
)	$f(x) = 2x^{2} - x + 5$ $f'(x) = \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} \right)$
	$f'(x) = \lim_{\Delta x \to 0} \left(\frac{2(x + \Delta x)^2 - (x + \Delta x) + 5 - (2x^2 - x + 5)}{\Delta x} \right)$
	$= \lim_{\Delta x \to 0} \left(\frac{2x^2 + 4x\Delta x + 2\Delta x^2 - x - \Delta x + 5 - 2x^2 + x - 5}{\Delta x} \right)$
	$= \lim_{\Delta x \to 0} \left(\frac{4x\Delta x + 2\Delta x^2 - \Delta x}{\Delta x} \right)$
	$= \lim_{\Delta x \to 0} (4x + 2\Delta x - 1)$ $= 4x - 1$
	- 4x - 1

