Pushdown Automata

CENG 280

Course outline

- Preliminaries: Alphabets and languages
- Regular languages
- Context-free languages
 - Context-free grammars
 - Parse trees
 - Push-down automaton
 - Push-down automaton context-free languages
 - Languages that are and that are not context-free, Pumping lemma
- Turing-machines

- What feature do we need to add to FSA so that it can recognize a CFL?
- Consider $a^n b^n$, ww^R .

Pushdown Automata

- What feature do we need to add to FSA so that it can recognize a CFL?
- Consider $a^n b^n$, ww^R .
- MEMORY!

Input tape, reading head, internal state, STACK (or pushdown store)

- Read at most one symbol at a time
- Read/write only the top of the stack
- Remove from top check against the current input
- The word is accepted, if when it is read, the automaton is in accepting state and the stack is empty.

Definition

Pushdown automaton is a sextuple $M = (K, \Sigma, \Gamma, \Delta, s, F)$ where

- K is a finite set of states,
- Σ is an alphabet (input symbols)
- Γ is an alphabet (stack symbols)
- $s \in K$ is the initial state
- $F \in K$ is the set of final states, and,
- $\Delta \subset (K \times (\Sigma \cup \{e\}) \times \Gamma^*) \times (K \times \Gamma^*)$ is a finite transition relation.

Definition

Pushdown automaton is a sextuple $M = (K, \Sigma, \Gamma, \Delta, s, F)$ where

- K is a finite set of states.
- Σ is an alphabet (input symbols)
- Γ is an alphabet (stack symbols)
- $s \in K$ is the initial state
- $F \in K$ is the set of final states, and,
- $\Delta \subset (K \times (\Sigma \cup \{e\}) \times \Gamma^*) \times (K \times \Gamma^*)$ is a finite transition relation.
- If $((p, a, \delta), (q, \gamma)) \in \Delta$, then when M is in state p, if it reads $a \in \Sigma$ (or if a is e without reading a symbol) and if the top of the stack is δ , it enters state q and replaces δ with γ .
- $((p, a, \delta), (q, \gamma))$ is called a transition of M.
- Since Δ is a relation, several transitions can be applicable at a point. The machine chooses non-deterministically from the applicable transitions

CENG 280 5/1

Push/Pop transitions

• ((p, a, e), (q, b)): **push** transition, read a push b to the top of the stack.

• ((p, a, b), (q, e)): **pop** transition, read a pop b from the top of the stack.

- The **configuration** of a pushdown automaton is a member of $K \times \Sigma^* \times \Gamma^*$: the current state, unread part of the input type, the contents of the stack (read top-down).
- A configuration (p, x, α) of M yields (q, y, ζ) (shown as $(p, x, \alpha) \vdash_M (q, y, \zeta)$) if there is a transition $((p, a, \beta), (q, \gamma))$ such that
 - $\bullet x = ay$,
 - $\alpha = \beta \nu$,
 - $\zeta = \gamma \nu$ for some $\nu \in \Gamma^*$.

- The reflexive transitive closure of \vdash_M is denoted by \vdash_M^* .
- M accepts a word $w \in \Sigma^*$ if and only if for some $f \in F$

$$(s, w, e) \vdash_{M}^{\star} (f, e, e)$$

- Any sequence C_0, \ldots, C_n with $C_i \vdash_M C_{i+1}$ is called a **computation** of M. It has length n (or n steps).
- The language accepted by M, L(M) is the set of strings accepted by M.

Transition diagram

Show $((p, a, \alpha), (q, \beta))$ using an arrow from p to q with label " $a - \alpha/\beta$ "

8/1

Example

PDA for $L = \{wcw^R \mid w \in \{a, b\}^*\}$. Accepting computation over abcba

Example

PDA for $L = \{wcw^R \mid w \in \{a, b\}^*\}$. Accepting computation over abcba

10/1

Example

Write a PDA for $L = \{ww^R \mid w \in \{a, b\}^{\star}\}$, and computations over abba

Example

Write a PDA M such that $L(M) = \{w \in \{a, b\}^* \mid w \text{ has the same number of } a's \text{ and } b's\}(Grammar?).$

12/1

Example

Write a PDA M such that $L(M) = \{w \in \{0,1\}^* \mid \sum_{i=0}^{|w|} w_i \leq \frac{|w|}{2}\}.$

13/1

Example

Given
$$G = (V, \Sigma, R, S)$$
 with $V = \{S, (,), [,]\}$, $\Sigma = \{(,), [,]\}$, and R :

$$S \rightarrow e \mid (S) \mid [S] \mid SS$$

Construct a PDA M such that L(M) = L(G).