CHAPITRE 2: INTEGRALES IMPROPRES

Intégrale impropre de seconde espèce :

Si f(x) n'est pas bornée seulement à l'extrémité x = a de l'intervalle $a \le x \le b$. Alors, on pose:

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x) dx$$

On dit que $\int_a^b f(x) dx$ est convergente si la limite existe.

On dit que $\int_a^b f(x) dx$ est divergente si la limite n'existe pas.

Si f(x) n'est pas bornée seulement à l'extrémité x = b de l'intervalle $a \le x \le b$. Alors, on pose:

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(x) dx$$

On dit que $\int_a^b f(x) dx$ est convergente si la limite existe.

On dit que $\int_a^b f(x) dx$ est divergente si la limite n'existe pas.

Si f(x) est non bornée seulement en un point intérieur $x = x_0$ de l'intervalle $a \le x \le b$. Alors, on pose:

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon_1 \to 0^+} \int_{a}^{x_0 - \varepsilon_1} f(x) dx + \lim_{\varepsilon_2 \to 0^+} \int_{x_0 + \varepsilon_2}^{b} f(x) dx$$

On dit que $\int_a^b f(x) dx$ est convergente si la limite existe.

On dit que $\int_a^b f(x) dx$ est divergente si la limite n'existe pas.

Valeur Principal de Cauchy:

Il peut arriver que les limites n'existent pas quand ε_1 et ε_2 tendent vers zéro indépendamment. En ce cas, il est possible que pose $\varepsilon_1 = \varepsilon_2 = \varepsilon$ alors :

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{x_{0} - \varepsilon} f(x) dx + \lim_{\varepsilon_{2} \to 0^{+}} \int_{x_{0} + \varepsilon}^{b} f(x) dx$$

Si cette limite existe on appelle cette valeur de limite : la valeur principale de Cauchy.

Intégrale impropre de seconde espèce de fonctions particulières :

- $ightharpoonup \int_a^b \frac{dx}{(b-x)^p} dx$ converge si p < 1, et diverge si $p \ge 1$.

Remarque: dans le cas où $p \le 0$ les intégrales sont propres.

Critères de convergence pour les intégrales impropres de seconde espèce :

- Critère de comparaison pour les intégrales avec intégrande non négatif :
 - a) Convergence : soit $g(x) \ge 0$ pour tout $a < x \le b$, et supposons que $\int_a^b g(x) \, dx$ converge. Alors, si $0 \le f(x) \le g(x)$ pour tout $a < x \le b$, donc $\int_a^b f(x) \, dx$ est converge.
 - b) divergence: soit $g(x) \ge 0$ pour tout $a < x \le b$, et supposons que $\int_a^b g(x) \, dx$ diverge. Alors, si $f(x) \ge g(x)$ pour tout $a < x \le b$, alors $\int_a^b f(x) \, dx$ est diverge.
- Critère du quotient pour les intégrales avec intégrande non négatif :
 - a) Si $f(x) \ge 0$ et $g(x) \ge 0$, pour tout $a < x \le b$, si $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = A \ne 0$ ou ∞ , alors $\int_a^b f(x) \, dx$ et $\int_a^b g(x) \, dx$ convergent toutes les deux ou divergent toutes les deux.
 - b) Si A = 0 dans (a) et si $\int_a^{+\infty} g(x) dx$ converge, alors $\int_a^{+\infty} f(x) dx$ converge.
 - c) Si $A = \infty$ dans (a) et si $\int_a^{+\infty} g(x) dx$ diverge, alors $\int_a^{+\infty} f(x) dx$ diverge.

Ce critère est relie au critère de comparaison dont il est une forme alternative très utile.

En particulier, en prenant $g(x) = \frac{1}{(x-a)^p}$, nous avons, à partir du comportement connu cette intégrale :

Théorème 2 : soit $\lim_{x \to +\infty} (x - a)^p f(x) = A$, alors :

- $\int_a^b f(x) dx$ converge si p < 1 et si A est fini.
- $\int_a^b f(x) dx$ diverge si $p \ge 1$ et si $A \ne 0$ (A peut-être infini).

Théorème 3 : soit $\lim_{x \to +\infty} (b-x)^p f(x) = B$, alors :

• $\int_a^b f(x) dx$ converge si p < 1 et si B est fini.

- $\int_a^b f(x) dx$ diverge si $p \ge 1$ et si $B \ne 0$ (A peut-être infini).
- Convergence absolue et semi-convergente : $\int_a^b f(x) dx$ est dite absolument convergente si : $\int_a^b |f(x)| dx$ converge si $\int_a^b f(x) dx$ converge mais que : $\int_a^b |f(x)| dx$ diverge, alors $\int_a^b f(x) dx$ est dite semi-convergente.