Exercise No:1

- 1. Prove by giving suitable example that if AUB = A UC, then it is not necessary that B = C.
- 2. For the given sets A and B, there is a possibility that A-B = B-A, if yes, When?
- 3. For the two finite sets A and B, is it possible that

A-B = B? if yes, when? A-B = A? if yes, when?

- 4. Let A = {1,2,3} and S = A X A, define a relation R on S such that (a,b)R(a',b') if and only, if ab = a'b'. show that R is an equilvalence relation.
- 5. Prove the following using PMI: $1 + r + r^2 + r^3 + \dots + r^n = (r^n 1)/(r 1)$
- Find the path for the strings abb, abca, aa,abb, abbc in the finite automaton shown in the following figure.

- 7. Design a finite automaton M over {0,1} to accept all strings satisfying the following conditions:
 - a. Ending with 111 or 000
 - b. Starting with 111 or 000
 - c. Containing the substring 000 or 111
- 8. Design a finite automaton M over {0,1} to accept all strings satisfying the following conditions:
 - a. Containg exactly two 0's
 - b. Containing at least two 0's
 - c. Containing at the most two 0's
- 9. Design the DFA equivalent for the NFA given in the following table: Starting state is q_0 and ending state is q_3 .

Current state	Input Symbol	
	а	b
q_0	q ₀ , q ₁	q 0, q 2
$q_{\scriptscriptstyle 1}$	1	q ₃
q_2	q ₀ , q ₃	q ₁
q ₃	q_2	-

10. For the Mealy machine in the following table, find the equivalent Moore Machine. Starting state is q_0 .

Current	Input symbol			
state				
		а		b
	Next	Output	Next	Output
	State		State	
q ₀	Q_1	1	q ₃	1
q_1	q_1	0	q_0	1
q ₂	q_0	1	q ₂	0
q ₃	q ₃	0	q_1	1

 For the Moore Machine given in the following table. Find the equivalent Mealy Machine, Start state in q0.

Current	Input Symbol		output
state			
	a	b	
q_0	q_1	q_2	1
q ₁	q ₃	q ₄	1
q_2	q_4	\mathbf{q}_0	0
q ₃	q_1	q_2	0
q ₄	q ₃	\mathbf{q}_0	1

Exercise - 3

Regular Grammar & Regular Sets

Q 1: List all the strings of length up to five corresponding to the following regular expressions over {a,b}.

- (1) a(a+b)*
- (2) a(aa)*
- (3) (a+b)*c
- (4) (aa+bb)c(ab+ba)
- (5) (aa+bb)*c(ab+ba)

Q 2: For the following regular expressions, draw the corresponding finite automata:

- (1) (111+000)*1
- (2) (0+1)*0(0+11)*
- (3) 0+10*+001*00
- (4) (0+1)*(01+1110)

Q 3: Draw a finite automaton M accepting the grammar S -> $bS \mid aA, A -> bA \mid a$. Find the regular expression corresponding to M.

Q 4: For the following language over {a,b}, find the corresponding regular expression R.

- (1) Every word in the language contains exactly three a's.
- (2) Every word in the language contains minimum three a's.
- (3) Every word contains alternate 00s and 11s.
- (4) $L=\{a^mb^n \mid m,n>1\}$
- (5) Every word begins and ends with 00.

Q 5: For the finite automaton in the following figure find the corresponding regular expression.

Q 6: For the finite automaton in the following figure find the corresponding regular expression.

Regular Grammar & Regular Sets

Q 1: Construct the Non Deterministic Finite automata for the following regular expressions.

- (1) (a+b+c)*
- (2) (ab+bc)d
- (3) (ab+bc)*k*(d+e)
- (4) a+bb+cc

Q 2: Let M_1 and M_2 be two finite automata accepting the language L_1 and L_2 respectively as shown in following figure. Construct the finite automata to accept the language.

- (1) L₁ U L₂
- (2) $L_1 \cap L_2$
- (3) $L_1 L_2$
- (4) $L_2 L_1$

Q 3: For the finite automaton given in the following figure, find the corresponding regular expression.

Q 4: Design a finite automaton for the regular expression 10+(0+11)0*1. If it is an NFA, then convert it into its equivalent DFA.

Q 5: For the finite automaton in the following figure find the corresponding regular expression.

Q 6: For the following regular expressions, draw an ϵ -NFA and convert them into their equivalent DFA.

- (1) (a+b)*(abb+ababab)(a+b)*
- (2) (a+b)(ba)*(abb)*

Context-free Grammars & Languages

Q 1: Identify the nonterminals and terminals in the following grammars.

- (2) $S \rightarrow XY1 \mid 0$ $X \rightarrow 00X \mid 1$ $Y \rightarrow 1X1$
- (3) S -> XY X -> YSY X -> YY | a Y -> aXb | b

Q 2: Convert the following CFG to CNF:

- (1) $S \rightarrow aAC$ $A \rightarrow aB \mid bAB$ $B \rightarrow b$ $C \rightarrow c$
- (2) $S \rightarrow OX1Y$ $X \rightarrow OX \mid 0$ $Y \rightarrow 1Y \mid 1$
- (3) $S \rightarrow abSab \mid a \mid aAAb \qquad A \rightarrow bS \mid aAAb \mid c$

Q 3: Identify and remove the nonreachable nonterminals from the following grammars:

- (1) $S -> XY1 \mid 0$ $X -> 00X \mid 1$ Y -> 1X1 Z -> 00
- (2) $S \rightarrow XZ \mid 0$ $X \rightarrow YA \mid 1$ $Y \rightarrow Z1 \mid A2 \quad A \rightarrow 01$ $B \rightarrow X \mid 2$

Q 4: Identify Language

- (1) L={ $a^ib^ic^i | i>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular

- (4) L={ $0^n1^m2^{m+n} \mid n,m>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular

- (2) L={ $a^ib^jc^j | I,j>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular
- (3) L={ $a^nb^nc^md^m | n,m>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular

- Q 5: Define Property
 - (1) CFLs are closed under
 - a. Union
 - b. Complementation
 - c. Intersection
 - d. All the above
 - (2) The CFLs and regular languages are both closed over
 - a. Union
 - b. Complementation

- c. Intersection
- d. None of the above
- (3) The CFLs and regular languages are both closed over
 - a. Difference
 - b. Intersection
 - c. Complement
 - d. Concatenation
- (4) CFLs are not closed under
 - a. Union
 - b. Concatenation
 - c. Intersection
 - d. Homomorphism
- Q 6:
- (1) The regular expression corresponding to the CFG S -> aS | bS | a | b is
 - a. a+b
 - b. (a+b)*

- c. (a+b)*(a+b)
- d. None of the above
- (2) The CFG corresponding to the language $L=\{0^k1^k \mid k>=1\}$ is
 - a. S -> OS1 | O1
 - b. $S -> OS1 | O1 | \epsilon$
 - c. S -> 0A1, A -> 01
 - d. All the above
- (3) The CFL L={aⁿbⁿ | n>0} can be generated by the following CFG:
 - a. $S \rightarrow \epsilon \mid ab \mid aSb$
 - b. S -> ab | aSb
 - c. $S \rightarrow \epsilon \mid aSb$
 - d. All of the above

Context-free Grammars & Languages

Q 1: Remove unit productions from the following grammars and generate equivalent grammar.

- (1) S -> ABC | 0, A -> 1, B -> C | 0, C -> D, D -> E, E -> 2
- (2) S -> ABCD | 0, A -> BC | 1, B -> C, C -> D, D -> d

Q 2: Convert the following CFGs to GNF:

- (1) $S \rightarrow XY1 \mid 0$ $A \rightarrow 00X \mid 1$ $Y \rightarrow 1X1$
- (3) S -> Xa X -> aY Y -> Xa | b

Q 3: Identify the nonterminals from the following grammers, which fail to generate terminal

- (1) $S -> XY1 \mid 0$ X -> 00X $Y -> 1X1 \mid 2$
- (2) $S \rightarrow XZ \mid 0$ $X \rightarrow YA \mid 1$ $Y \rightarrow Z1 \mid A2 \mid 3$ $Z \rightarrow 3Z$

Q 4: Consider the following grammar:

Derive the strings 010, 111, 00101, 11100 using both left and right derivation

Q 5: Define Property

- (1) A CFL is accepted by a
 - a. Pushdown Automata
 - b. Finite Automata
 - c. Turing Machine
 - d. None of the above
- (2) A Pumping lemma is used for proving that
 - a. A language is context free
 - b. A language is not context free
 - c. Two CFLs are the same
 - d. Two CFLs are different
- (3) A CFG is a
 - a. Type 0 Grammar
 - b. Type 1 Grammar

- c. Type 2 Grammar
- d. Type 3 Grammar
- (4) The intersection of a CFL and regular language is a
 - a. Regular language
 - b. CFL
 - c. Neither CFL nor regualr
 - d. Cannoy say

Q 6:

- (1) Which of the following CFGs can also be recognized by a FSM?
 - a. S -> aS | Bs | aa | b
 - b. S -> aS | bS | a | b
 - c. S -> aS | bSb | a | b
 - d. All of the above
- (2) Let G be a CFG in GNF and L be the corresponding CFL. Let there be string $z \in L$. The number of productions used in deriving z is
 - a. |z|
 - b. 2|z|
 - c. |z+1|
 - d. |z|+1
- (3) Let $L_1=\{0^n1^n2^m\mid n,m>=1\}$ and $L_2=\{0^m1^n2^n\mid n,m>=1\}$; given m>n, the intersection of L_1 and L_2 is the language
 - a. $L=\{0^m1^n2^m|n,m>=1\}$
 - b. $L=\{0^m1^m2^m | m>=1\}$
 - c. L= $\{0^n1^n2^n | n>=1\}$
 - d. None of the above

Pushdown Automata

Q 1: Design a PDA to accept the language L over $\Sigma = \{a,b\}$ consisting of all the string with equal number of a's and b's.

Q 2: Design a PDA corresponding to the following CFGs.

a.	S -> 0S0 1S1 A	A -> 2B3	B -> 23 31
b.	S -> bX aY	A -> bXX aS a	Y -> aYY bS b
c.	S -> 0Y 1X	X -> 0S 1XX 0	Y -> 1S 0YY 1

Classify these PDA into deterministic and nondeterministic categories.

Q 3: Why cannot the following language be implemented on PDA?

$$L=\{a^mb^m | m>=1\} U \{a^mb^{2m} | m>=1\}$$

Q 4: Design a top-down parser to implement the following CFG and parse the string 0102313010

Q 5: Convert the following grammar to LL(a) type.

$$S -> S + A$$
 $S -> A$ $A -> A/B$ $A -> B$ $B -> a1|a2|a3$

Where $\{a,1,2,3,+,/\}$ is the set of terminals.

Q 6:

- (1) The production of the type A -> $A\alpha$ involves
 - a. Left recursion
 - b. Right recursion
 - c. Left factoring
 - d. Right factoring
- (2) The production of the type A -> $\alpha\beta |\alpha g|\alpha\delta$ involves
 - e. Left recursion
 - f. Right recursion
 - g. Left factoring
 - h. Right factoring
- (3) Shift process in shift-reduce parsing involves
 - a. Popping of a terminal from pushdown store
 - b. Popping of a nonterminal from pushdown store
 - c. Pushing of a nonterminal from pushdown store

- d. Pushing of a terminal from pushdown store
- (4) The language $L=\{a^nb^n|n>=1\}$
 - a. Cannot be accepted by a PDA
 - b. Can be accepted by a PDA of null store type only
 - c. Can be accepted by a PDA of final state type only
 - d. Can be accepted by a PDA of both types, null store and final state type.

Turing Machines

- Q 1: Design a Turing Machine M over $\{0,1\}$ such that $L(M)=\{w \mid w \text{ contains equal numbers 0s and 1s}\}$.
- Q 2: Design a Turing Machine M over $\{0,1\}$ such that $L(M)=\{0^n1^{2n}|n>=1\}$
- Q 3: Design a Turing Machine M over $\{0,1,2\}$ such that $L(M)=\{0^n1^{2n}2^n|n>=1\}$
- Q 4: Design a Post Machine M over $\{a,b\}$ such that $L(M)=\{0^n1^n0^n|n>=1\}$
- Q 5: Design a Turing Machine M to find the predecessor of a positive integer.
- Q 6: Design a Turing Machine M over $\{a,b\}$ such that $L(M)=\{x \mid length of x is odd\}$

Context-free Grammars & Languages

Q 1: Identify the nonterminals and terminals in the following grammars.

- (1) $S \rightarrow Aba \mid b$ $A \rightarrow BB \mid aa$ $B \rightarrow bB \mid c$ $C \rightarrow cC \mid d$
- (2) $S \rightarrow XY1 \mid 0$ $X \rightarrow 00X \mid 1$ $Y \rightarrow 1X1$
- (3) S -> XY X -> YSY X -> YY | a Y -> aXb | b

Q 2: Convert the following CFG to CNF:

- (1) $S \rightarrow aAC$ $A \rightarrow aB \mid bAB$ $B \rightarrow b$ $C \rightarrow c$
- (2) $S \rightarrow OX1Y$ $X \rightarrow OX \mid 0$ $Y \rightarrow 1Y \mid 1$
- (3) $S \rightarrow abSab \mid a \mid aAAb \qquad A \rightarrow bS \mid aAAb \mid c$

Q 3: Identify and remove the nonreachable nonterminals from the following grammars:

- (1) $S > XY1 \mid 0$ $X > 00X \mid 1$ Y > 1X1 Z > 00
- (2) $S \rightarrow XZ \mid 0$ $X \rightarrow YA \mid 1$ $Y \rightarrow Z1 \mid A2 \quad A \rightarrow 01$ $B \rightarrow X \mid 2$

Q 4: Identify Language

- (1) L={ $a^ib^ic^i | i>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular
- (2) L={ $a^{i}b^{j}c^{j} | I,j>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular
- (3) L={ $a^nb^nc^md^m | n,m>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular

(4) L={ 0ⁿ1^m2^{m+n} | n,m>=1 }
a. Regular Language
b. CFL
c. Both CFL & Regular
d. Neither CFL nor Regular

Q 5: Define Property

- (1) CFLs are closed under
 - a. Union
 - b. Complementation
 - c. Intersection
 - d. All the above
- (2) The CFLs and regular languages are both closed over
 - a. Union
 - b. Complementation
 - c. Intersection
 - d. None of the above
- (3) The CFLs and regular languages are both closed over
 - a. Difference
 - b. Intersection
 - c. Complement
 - d. Concatenation
- (4) CFLs are not closed under
 - a. Union
 - b. Concatenation
 - c. Intersection
 - d. Homomorphism

Q 6:

- (1) The regular expression corresponding to the CFG S -> aS | bS | a | b is
 - a. a+b
 - b. (a+b)*
 - c. (a+b)*(a+b)
 - d. None of the above
- (2) The CFG corresponding to the language $L=\{0^k1^k \mid k>=1\}$ is
 - a. S -> OS1 | O1
 - b. $S -> 0S1 | 01 | \epsilon$
 - c. S -> 0A1, A -> 01
 - d. All the above

- (3) The CFL L= $\{anbn \mid n>0\}$ can be generated by the following CFG:
 - a. $S \rightarrow \epsilon \mid ab \mid aSb$
 - b. S -> ab | aSb
 - c. $S \rightarrow \epsilon \mid aSb$
 - d. All of the above

Exercise No:1

- 1. Prove by giving suitable example that if AUB = A UC, then it is not necessary that B = C.
- 2. For the given sets A and B, there is a possibility that A-B = B-A, if yes, When?
- 3. For the two finite sets A and B, is it possible that

A-B = B? if yes, when?

A-B = A? if yes, when?

- 4. Let $A = \{1,2,3\}$ and $S = A \times A$, define a relation R on S such that (a,b)R(a',b') if and only, if ab = a'b'. show that R is an equilvalence relation.
- 5. Prove the following using PMI: $1 + r + r^2 + r^3 + \dots + r^n = (r^n 1)/(r 1)$

Exercise No: 2

1. Find the path for the strings abb, abca, aa,abb, abbc in the finite automaton shown in the following figure.

- 2. Design a finite automaton M over {0,1} to accept all strings satisfying the following conditions:
 - (a) Ending with 111 or 000
 - (b) Starting with 111 or 000
 - (c) Containing the substring 000 or 111
- 3. Design a finite automaton M over {0,1} to accept all strings satisfying the following conditions:
 - (a) Containg exactly two 0's
 - (b) Containing at least two 0's
 - (c) Containing at the most two 0's
- 4. Design the DFA equivalent for the NFA given in the following table: Starting state is q_0 and ending state is q_3 .

Current state	Input Symbol	
	a	b
q_0	q ₀ , q ₁	q_0, q_2
q_1	-	q ₃
q_2	q ₀ , q ₃	q ₁
q ₃	q_2	-

5. For the Mealy machine in the following table, find the equivalent Moore Machine. Starting state is q_0 .

Current state		Input symbol		
	а	a b		
	Next State	Output	Next State	Output
q_0	Q ₁	1	q ₃	1
q ₁	q ₁	0	q 0	1
q ₂	q_0	1	q_2	0
q ₃	q ₃	0	q_1	1

6. For the Moore Machine given in the following table. Find the equivalent Mealy Machine, Start state in q0.

Current state	Input Symbol		output
	а	b	
q_0	q_1	q_2	1
$q_{\scriptscriptstyle 1}$	q ₃	q ₄	1
q_2	q_4	q_0	0
q ₃	q_1	q ₂	0
q_4	q ₃	q_0	1

1. Which of the following regular expression resembles the given diagram?

- a) {a}*{b}*{a,b}
- b) {a,b}*{aba}
- c) {a,b}*{bab}
- d) {a,b}*{a}*{b}*

2. Construct a turing machine which accepts a string with 'aba' as its substring.

- 3. The number of states required to automate the last question i.e. $\{a,b\}^*\{aba\}\{a,b\}^*$ using finite automata:
- a) 4
- b) 3
- c) 5
- d) 6
- 4. The machine accept the string by entering into hA or it can:
- a) explicitly reject x by entering into hR
- b) enter into an infinte loop
- c)Both (a) and (b)
- d) None of the mentioned
- 5.d(q,X)=(r,Y,D) where D cannot be:

- c) S
- d) None of the mentioned
- 6. Which of the following can accept even palindrome over {a,b}
- a) Push down Automata
- b) Turing machine
- c) NDFA
- d) All of the mentioned
- 7. Which of the functions can a turing machine not perform?
- a) Copying a string
- b) Deleting a symbol
- c) Accepting a pal
- d) Inserting a symbol
- 8. If T1 and T2 are two turing machines. The composite can be represented using the expression:
- a) T1T2
- b) T1 U T2
- c) T1 X T2
- d) None of the mentioned
- 9. The following turing machine acts like:

a) Copies a string

- b) Delete a symbol
- c) Insert a symbol
- d) None of the mentioned
- 10. What does the following transition graph shows:

- a) Copies a symbol
- b) Reverses a string
- c) Accepts a pal
- d) None of the mentioned

- 7.1 Design a Turing machine M over $\{0, 1\}$ such that $L(M) = \{w \mid w \text{ contains equal numbers 0s and 1s}\}$.
- 7.2 Design a Turing machine *M* to compute $\sum_{k=1}^{n} k$ for a given positive integer *n*.
- 7.3 Design a Turing machine *M* over $\{0, 1\}$ such that $L(M) = \{0^n 1^{2n} \mid n \ge 1\}$.
- 7.4 Design a Turing machine *M* over $\{0, 1\}$ such that $L(M) = \{0^{2n}1^n \mid n \ge 1\}$.
- 7.5 Design a Turing machine M over $\{0, 1, 2\}$ such that $L(M) = \{0^n 1^{2n} 2^n \mid n \ge 1\}$.
- 7.6 Design a Turing machine *M* over $\{0, 1, 2, 3\}$ such that $L(M) = \{0^{2n}1^n2^n3^{2n} \mid n \ge 1\}$.
- 7.7 Design a Post machine M over $\{a, b\}$ such that $L(M) = \{0^n 1^n 0^n \mid n \ge 1\}$.
- 7.8 Design a two-track Turing machine *M* to compute $\sum_{k=1}^{n} k$ for a given positive integer *n*.
- 7.9 Design a Turing machine M to find the predecessor of a positive integer.
- 7.10 Design a Turing machine M to find the successor of a positive integer.
- 7.11 Design a Turing machine M over $\{a, b\}$ such that $L(M) = \{x \mid \text{length of } x \text{ is odd}\}$.