República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología "Antonio José de Sucre"

Carrera: Informática

Materia: Investigación de Operaciones.

Sede: Caracas.

Ejercicio II corte 10%

Profesor: Estudiante:

Daniel Ruiz. Helaines Ardiles.

C.I.: 30.407.480

Ejercicio

Un joyero en Venezuela fabrica dos tipos de joyas. La unidad de tipo A se hace con 1 g de oro y 1,5 g de plata y se vende a 25 \$. La de tipo B se vende a 30 \$ y lleva 1,5 g de oro y 1 g de plata. Si solo se dispone de 750 g de cada metal, ¿cuántas joyas ha de fabricar de cada tipo para obtener el máximo beneficio?:

	TIPO A	TIPO B	DISPONIBILIDAD
ORO	1	1.5	750
PLATA	1.5	1	750
BENEFICIOS	25	30	

Fase 1

Maximizar: Z = 25x1 + 30x2

Sujeto a:

x1 + 1.5x2 <= 750

x1 + x2 <= 750

x1, x2 >= 0

Método M agregando variable artificial (x3) a la primera restricción y (x4) a la segunda.

$$Z = 25x1 + 30x2 - M(x3 + x4)$$

El valor de M debe ser lo suficientemente grande como para que el algoritmo simplex seleccione una solución que no tenga variables artificiales. En este caso, podemos elegir M = 1000

Variable	Coeficiente	Valor Básico	Razón de salida
X1	1	0	0
X2	1,5	0	0
X3	-M	750	500
X4	-M	750	750
Z	-M	0	

La variable básica de salida es x4, ya que tiene la mayor razón de salida. Para eliminar x4 de la base, calculamos utilizando el método de la eliminación de Gauss-Jordan. Quedando de la siguiente manera:

Variable	Coeficiente	Valor Básico	Razón de salida
X1	1	0	0
X2	1	750	500
Х3	-M	0	0
Z	-M	-750	

La variable básica de salida es ahora x3, ya que tiene la mayor razón de salida. Para eliminar x3 de la base, calculamos utilizando el método de la eliminación de Gauss-Jordan. La nueva solución es la siguiente:

Variable	Coeficiente	Valor Básico	Razón de salida
X1	1,5	500	0
X2	0,5	250	0
Z	25	1250	

Todas las variables básicas tienen una razón de salida.

Fase 2

Eliminamos las variables artificiales x3 y x4, y modificamos la función objetivo de la siguiente manera:

$$Z = 25x1 + 30x2$$

Variable	Coeficiente	Valor básico	Razón de salida
x1	1.5	500	1
x2	0.5	250	2
Z	25	1250	

La variable básica de salida es x2, ya que tiene la mayor razón de salida. Para eliminar x2 de la base, calculamos utilizando el método de la eliminación de Gauss-Jordan. Quedando de la siguiente manera:

Variable	Coeficiente	Valor básico	Razón de salida
x1	0.5	250	0
x2	1	500	0
Z	30	1750	

Como todas las variables básicas tienen una razón de salida igual a 0, hemos encontrado la solución óptima. La solución óptima es la siguiente:

x1 = 250

x2 = 500

Z = 1750

El joyero debe fabricar 250 unidades de tipo A y 500 unidades de tipo B para obtener el máximo beneficio, que es de \$1750.

Análisis de dualidad

El problema dual se obtiene a partir del problema original intercambiando las variables de decisión por las restricciones y viceversa. En este caso, las variables de decisión son los precios máximos (x, y) y las restricciones se derivan de las cantidades disponibles de cada metal.

Minimizar: w1(750) + w2(750)

Sujeto a:

$$x + 1.5y >= 25$$

$$x + y >= 30$$

$$x, y >= 0$$

lo que significa que:

$$x = 5 \$/g$$

$$y = 20 \$/g$$

La solución óptima del problema dual es x = 5 y y = 20. Esto significa que el precio máximo que el joyero puede pagar por un gramo de oro es de \$5 y por un gramo de plata es de \$20.