

Causal Inference Under Interference And Network Uncertainty

Rohit Bhattacharya, Daniel Malinsky, Ilya Shpitser { rbhattacharya@, malinsky@, ilyas@cs.}jhu.edu

Department of Computer Science

Motivation

- Classical causal and statistical inference assumes iid data.
- ► Homophily, contagion, and herd immunity are common happenings in a network that violate independence assumptions.
- ► Recent work utilizes LWF **Chain Graphs** to model interference but assumes the exact dependence structure is known.
- ► Studies involving stigmatized communities (e.g, IV drug users) or anonymized databases involve substantial **network uncertainty**.
- ► We tackle this problem under partial interference.

Causal effects e.g., PAOE under treatment assignments $\pi_i(\mathbf{a})$: $\frac{1}{m} \sum_{i=1}^{m} \sum_{\mathbf{A}} \mathbb{E}[Y_i(\mathbf{A})] \{ \pi_1(\mathbf{A}) - \pi_2(\mathbf{A}) \}$

Chain Graph Models And Model Selection

Statistical models of a CG G

$$p(\mathbf{V}) = \prod_{\mathbf{B} \in \mathcal{B}(\mathcal{G})} p(\mathbf{B} \mid pa_{\mathcal{G}}(\mathbf{B})) \text{ and}$$

$$p(\mathbf{B} \mid pa_{\mathcal{G}}(\mathbf{B})) = \frac{\prod_{\{\mathbf{C} \in \mathcal{C}((\mathcal{G}_{bd_{\mathcal{G}}(\mathbf{B})})^a): \mathbf{C} \not\subseteq pa_{\mathcal{G}}(\mathbf{B})\}} \phi_{\mathbf{C}}(\mathbf{C})}{Z(pa_{\mathcal{G}}(\mathbf{B}))}.$$

► Generalization of the g-formula for causal models of a CG:

$$p(V \setminus A|do(a)) = \prod_{B \in \mathcal{B}(G)} p(B \setminus A \mid pa(B), B \cap A) \Big|_{A=a}$$

- ▶ Our goal is to learn \rightarrow , assuming we know \rightarrow .
- ▶ BIC = $2\ln \mathcal{L}(\mathbf{D}; \mathcal{G}) k\ln(n)$ is a consistent model selection criterion for curved exponential families (Haughton, 1988).
- Common CG parametrizations are curved exponential.
- ▶ However, $Z(pa_{\mathcal{C}}(\mathbf{B}))$ is not easy to evaluate.
- Substitute the likelihood \mathcal{L} with the pseudolikelihood \mathcal{PL} .
- ▶ We prove that PBIC = $2\ln \mathcal{PL}(\mathbf{D}; \mathcal{G}) k\ln(n)$ is a consistent model selection criterion for curved exponential families.
- ▶ We also show that the PBIC is **decomposable** as follows:

- ▶ Let $\mathbf{B}_{loc} \equiv \mathbf{B}(V_i)$ if $V_i \rightarrow V_j$ and $\mathbf{B}_{loc} \equiv \mathbf{B}(\{V_i, V_j\})$ if $V_i V_j$.
- ► The change in PBIC for \mathcal{G} and \mathcal{G}' that differ by a single edge is given by $\sum_{V \in loc(V_i, V_j; \mathcal{G}) \cap \mathbf{B}_{loc}} \{s_V(\mathbf{D}; \mathcal{G}) s_V(\mathbf{D}; \mathcal{G}')\}$, where $s_V(.)$ denotes the component of the score for V.

Greedy Network Search

- Exhaustive search is infeasible.
- ▶ Local greedy search is consistent for DAGs (Chickering, 2002).
- ▶ Under a fixed causal ordering $L_i \rightarrow A_j$, $L_i \rightarrow Y_j$, $A_i \rightarrow Y_j$, and tier symmetry $L_i L_j$, $A_i A_j$, $Y_i Y_j$, for any units i, j; we propose the following greedy search procedure on network ties $(\rightarrow, -)$:

Algorithm 1 GreedyNetworkSearch ($\mathcal{G}^{\text{init}}$, **D**)

$$\begin{split} \mathcal{G}^* &\leftarrow \mathcal{G}^{\text{init}} \\ \text{score change} &\leftarrow \text{True} \\ \textbf{while} \text{ score change } \textbf{do} \\ \text{score change} &\leftarrow \text{False} \\ \mathcal{E}_{\mathcal{N}}^* &\leftarrow \text{network ties } (\rightarrow, -) \text{ in } \mathcal{G}^* \\ E_{max} &\leftarrow \text{argmax}_{E \in \mathcal{E}_{\mathcal{N}}^*} \operatorname{PBIC}(\textbf{D}; \mathcal{G}^* \setminus E) \\ \textbf{if } \operatorname{PBIC}(\textbf{D}; \mathcal{G}^* \setminus E_{max}) &> \operatorname{PBIC}(\textbf{D}; \mathcal{G}^*) \textbf{ then} \\ \mathcal{G}^* &\leftarrow \mathcal{G}^* \setminus E_{max} \\ \textbf{return } \mathcal{E}_{\mathcal{N}}^* \end{split}$$

Algorithm 2 Heterogenous $(\mathcal{G}^{complete}, \mathbf{D})$

 $\mathcal{G}^{\textbf{L}}, \mathcal{G}^{\textbf{A}}, \mathcal{G}^{\textbf{Y}} \leftarrow \text{conditional MRFs on } \textbf{L}, \textbf{A}, \textbf{Y} \text{ formed from } \mathcal{G}^{\text{complete}} \\ \mathcal{E}^*_{\mathcal{N}_{\textbf{L}}} \leftarrow \text{GreedyNetworkSearch}(\mathcal{G}^{\textbf{L}}, \textbf{D}) \\ \mathcal{E}^*_{\mathcal{N}_{\textbf{A}}} \leftarrow \text{GreedyNetworkSearch}(\mathcal{G}^{\textbf{A}}, \textbf{D}) \\ \mathcal{E}^*_{\mathcal{N}_{\textbf{Y}}} \leftarrow \text{GreedyNetworkSearch}(\mathcal{G}^{\textbf{Y}}, \textbf{D}) \\ \textbf{return } \mathcal{E}^*_{\mathcal{N}_{\textbf{L}}} \cup \mathcal{E}^*_{\mathcal{N}_{\textbf{A}}} \cup \mathcal{E}^*_{\mathcal{N}_{\textbf{Y}}} \\ \end{pmatrix}$

- Further efficiency can be gained through parameter sharing.
- ► For example, the pattern of connection can be assumed to be uniform for any units *i*, *j* that are adjacent.
- ▶ Alg. 3 and Alg. 4 in Bhattacharya et al. (2019) are procedures that exploit such **homogeneity**.

Estimation Of Causal Effects

- ▶ p(Y(a)) is identified as $\sum_{L} p(Y|A = a, L)p(L)$.
- ► The population average overall effect (PAOE) is identified as:

$$\frac{1}{m}\sum_{i=1}^m\sum_{\mathbf{L},\mathbf{A}}\mathbb{E}[Y_i|\mathbf{A},\mathbf{L}]p(\mathbf{L})\{\pi_1(\mathbf{A})-\pi_2(\mathbf{A})\}.$$

- ► The above can be estimated using the **auto-g computation** algorithm described by Tchetgen Tchetgen et al. (2017).
- Estimates obtained after structure learning exhibit lower variance than utilizing the complete graph, and are unbiased asymptotically.

Experiments

Estimation using learned vs complete network.

Block Size	Complete	Homogenous	Heterogenous
4	.009, 9.2e-5	.008, 8.1e-5	.009, 9.7e-5
8	.007, 6.6e-5	.006, 4.1e-5	.006, 4.5e-5
16	.006, 3.8e-5	.005, 1.9e-5	X
32	.007, 6.1e-5	.002, 7.6e-6	X

References

Rohit Bhattacharya, Daniel Malinsky, and Ilya Shpitser. Causal inference under interference and network uncertainty. In *UAI*, 2019. (forthcoming).

David Maxwell Chickering. Optimal structure identification with greedy search. *Journal of machine learning research*, 3 (Nov):507–554, 2002.

Dominique MA Haughton. On the choice of a model to fit data from an exponential family. *The Annals of Statistics*, 16(1): 342–355, 1988.

Eric J Tchetgen Tchetgen, Isabel Fulcher, and Ilya Shpitser. Auto-g-computation of causal effects on a network. *arXiv* preprint arXiv:1709.01577, 2017.