Teoría de la Comunicación

Apuntes de clase

Javier Rodrigo López 1

20 de marzo de 2021

 $^{^{1}\}mathrm{Correo\ electr\'{o}nico:\ javiolonchelo@gmail.com}$

Introducción

Imagen de la portada: Le magie noire, por René Magritte.

Esta asignatura es básica para cualquier ingeniería de Telecomunicaciones. Se basa principalmente en las matemáticas explicadas en Señales y Sistemas. Por ello, para las prácticas de laboratorio usaremos MATLAB.

El Bloque 1 representa el $40\,\%$

La evaluación del laboratorio se realizará a partir de los informes de las prácticas (50%) y del examen (50%).

Teoría 90% + LAB 10%

Repasar presentación en powerpoint para completar introducción.

Índice general

	Introducción	. 2
1.	Modelo de sistema de comunicación	7
	1.1. Definiciones básicas	. 7
	1.2. Esquema funcional de un sistema de comunicación	. 7
	1.2.1. Fuentes de información	. 7
	1.2.2. Transmisor	. 8
2 .	Caracterización de señales	9
	2.1. Representaciones logarítmicas	. 9
	2.2. Caracterización Temporal	. 10
	2.3. Caracterización Espectral	
	2.3.1. Densidad espectral de potencia	. 10
	2.4. Señales habituales	. 10
	2.4.1. Señal triangular	
	2.4.2. Señal cuadrada	. 10
3.	Ruido térmico	11
	3.1. Caracterización del ruido térmico	
	3.2. Caracterización del ruido en cuadripolos y dipolos	
	3.3. Fórmula de Fris	
	3.4. Modelo de un Analizador de Espectros	. 11
4.	Distorsión	13
	4.1. Tipos de distorsión	
	4.2. Distorsión lineal	
	4.3. Distorsión no lineal	. 13
5.	Modulaciones analógicas	15
•	5.1. Concepto de modulación y tipos	
	5.2. Modulaciones lineales: AM, DBL	
	5.3. Modulaciones angulares: FM	
	5.4. Calidad	
	7.1. Candad	. 10
6.	Conversión A/D y codificación PCM	17
	6.1. Elementos de un sistema de comunicaciones	
	digitales	. 17
	6.2. Conversión A/D	. 17
	3.3. Cuatificación uniforme y no uniforme	
	6.4. Multiplez por División en el Tiempo (TDM)	. 17
7 .	Transmisión digital por canales de ancho de banda limitado	19
	7.1. Modelo de Transmisión Digital	. 19
	7.2. Ancho de banda de señales banda base	. 19
	7.3. Interferencia entre símbolos (ISI)	. 19
	7.4. Criterio de Nyquist	
	7.5. Filtrado en coseno alzado	
	7.6. Diagrama de ojos	. 19
	7.7. Códigos de línea	. 19
_		
8.	Transmisión digital banda base con ruido	21 . 21
	n enresentación geometrica de senaies	7.1

8.2.	Implementaciones del receptor: correlador, filtro	
	atrapado	2
8.3.	Teoría de la Detección (receptor binario óptimo)	2
8.4.	Probabilidad de error en sistemas binarios	2
8.5.	Ejemplos de expresiones de probabilidad de error para varias	
	señalizaciones binarias	2

ÍNDICE GENERAL

9.	Iodulaciones digitales	23
	1. Modulaciones lineales. Fórmulas básicas	23
	2. ASK	23
	3. PSK	23
	4. QAM y APK	23
	5. FSK	23
	6. Comparación entre modulaciones digitales	23

 $\mathbf{5}$

ÍNDICE GENERAL

6

Modelo de sistema de comunicación

1.1 Definiciones básicas

La ITU (Unión Internacional de Telecomunicaciones) nos indica la terminología que debemos usar en el ámbito de las telecomunicaciones.

Canal de transmisión: Conjunto de medios necesarios para asegurar la transmisión de señales en un sentido entre dos puntos.

Señal: Fenómeno físico en el cual pueden variar una o más características para representar información.

- Canal de frecuencia: Parte del espectro de frecuencias que se destina a ser utilizado para la transmisión de señales y que puede determinarse por su frecuencia central y el ancho de banda asociado.
- **Telecomunicación:** Tota transmisión, emisión o recepción de señales que representan signos, escritura, imágenes y sonidos o **información de cualquier naturaleza** por hilo, ondas electromagnéticas, medios ópticos u otros sistemas electromagnéticos.
- Teoría de la comunicación: Tiene por objeto encontrar las técnicas más adecuadas que, con los condicionantes económicos, tecnológicos... permiten optimizar el consumo de ancho de banda (BW) y potencia (P) para poder transmitir una determinada información con una calidad determinada.

1.2 Esquema funcional de un sistema de comunicación

FALTA AÑADIR IMAGEN

1.2.1. Fuentes de información

Las diferentes fuentes de información pueden clasificarse como:

- Analógica La información a transmitir es una señal continua en el tiempo. Cabe mencionar que las señales analógicas pueden digitalizarse. Por ejemplo, una forma de conseguirlo sería mediante cuantificación y codificación PCM (explicado más adelante, falta añadir una referencia cuando lleguemos a esa parte del temario, en el Tema 6).
- **Digital** La información consiste en símbolos pertenecientes a un alfabeto finito, que se envían secuencialmente en intervalos discretos de tiempo. Los **símbolos** son los posibles valores que puede tomar. Por ejemplo, una señal digital binaria tiene dos símbolos.

1.2.2. Transmisor

El transmisor convierte la señal de información (fuente) en señales eléctricas o electromagnéticas (formas de onda) adecuadas para su transmisión a través del medio físico (canal de comunicaciones).

Existen varios tipos de transmisiones:

- lacktriangle Transmisión banda base \longleftrightarrow Transmisión paso banda (modulación).
 - En banda base: Se emite la información en la misma banda que ocupa, como se generó la fuente.
 - Con modulación: La banda ocupada por la información se traslada a otra más alta. Esto se hace para:
 - o Adaptar la banda transmitida a los requerimientos del canal.
 - o Multiplexar señales. Es decir, permitir que varias compartan el mismo canal de comunicaciones. **FDM** (Multiplex por división en frecuencia).
- lacktriangle Transmisión **analógica** \longleftrightarrow Transmisión **digital**

Modulación

La señal moduladora modula una señal portadora (sinusoidal en nuestro caso)

$$S_{
m moduladora}(t)$$

$$x_p(t) = A \sin{(\omega t + \phi)}$$

$$\omega_c = 2\pi f_c$$

[Representación del espectro del seno]

Portadora	Analógica	Digital
	AM ¹	ASK
Senoidal	${ m FM}$	FSK
	PM	PSK
	PAM o PCM	
Cuadrada	PPM	
	PWM	

 $^{^1}$ Modulación en amplitud

Caracterización de señales

2.1 Representaciones logarítmicas

Ejercicio 1

Tenemos un canal de transmisión con un amplificador que ofrece una ganancia G de 32 dB y un cable muy largo que afecta aplicando una atenuación A de 20 dB a la señal. A la entrada del amplificador (punto 1), introducimos un tono con amplitud de pico 2 V. Sabemos que la resistencia es de $50\,\Omega$.

Rellena la tabla con los valores que se piden para cada parte del canal de transmisión.

Solución

Las respuestas han sido coloreadas de color verde en la tabla, y a continuación puedes observar la resolución del ejercicio. Existen numerosas formas de llegar al resultado. Esta solución es la que se me ocurrió según lo resolvía.

Magnitud	1	2	3
x_p [V]	2 V	79.62 V	7.96 V
p [W]	$0.04\mathrm{W}$	7.94 W	$0.794\mathrm{W}$
P [dBW]	$-14\mathrm{dBW}$	$18\mathrm{dBW}$	$-2\mathrm{dBW}$
P [dBm]	$16\mathrm{dBm}$	$48\mathrm{dBm}$	$18\mathrm{dBm}$

Podemos calcular p_1 sabiendo que la potencia de un tono es la siguiente:

$$p_1 = \frac{x_p^2}{2R} = \frac{2^2}{2 \cdot 50} = \boxed{0.04 \,\text{W}}$$

Por lo tanto:

$$\begin{split} P_1[\mathrm{dBW}] &= 10\log\left(0.04\right) = \boxed{-14\,\mathrm{dBW}} \\ P_1[\mathrm{dBm}] &= 10\log\left(40\right) = \boxed{16\,\mathrm{dBm}} \end{split}$$

De aquí, podemos obtener el resto de potencias logarítmicas:

$$P_2[dBW] = P_1 + G = -14 + 32 = \boxed{18 \, dBW}$$

$$P_2[dBm] = P_1 + G = 16 + 32 = \boxed{48 \, dBm}$$

$$P_3[dBW] = P_1 - A = 18 - 20 = \boxed{-2 \, dBW}$$

$$P_3[dBm] = P_1 - A = 48 - 20 = \boxed{18 \, dBm}$$

He decidido obtener los valores restantes de potencia lineal p a partir de las potencias logarítmicas P^1 :

$$p_2 = 10^{\frac{18}{20}} = \boxed{7.94 \,\text{W}}$$

 $p_3 = 10^{\frac{-2}{20}} = \boxed{0.794 \,\text{W}}$

Por último, nos queda averiguar los dos restantes valores de pico x_p . Haremos uso de la ganancia en tensión g_v :

$$g = \frac{p_2}{p_1} = \frac{V_2^2/R}{V_1^2/R} = \left(\frac{V_2}{V_1}\right)^2 = g_v^2 \implies g_v = \sqrt{g}$$

Sabiendo que la atenuación es simplemente una ganancia negativa, podemos obtener los valores de pico:

$$\begin{split} x_{p2} &= x_{p1} \cdot g_v = x_{p1} \cdot \sqrt{g} = 2 \cdot \sqrt{10^{\frac{32}{10}}} = \boxed{79.62\,\mathrm{V}} \\ x_{p_3} &= x_{p2} \cdot a = 79.62 \cdot \sqrt{10^{-\frac{20}{10}}} = \boxed{7.962\,\mathrm{V}} \end{split}$$

2.2 Caracterización Temporal

2.3 Caracterización Espectral

2.3.1. Densidad espectral de potencia

La densidad espectral de potencia $G_x(f)$ mide la potencia de la señal por unidad de ancho de banda (W / Hz).

En un sistema LTI con respuesta en frecuencia H(f), la densidad espectral a la salida se puede calcular como:

$$G_y(f) = G_x(f) \cdot |H(f)|^2$$

Ancho de banda

El ancho de banda a 3 dB se mide entre las frecuencias donde la potencia es la mitad con respecto al máximo.

el **ancho de banda equivalente** es el ancho de un espectro rectangular ficticio que contendría la misma potencia que la señal original. Es decir, que tiene potencia equivalente. [añadir imagen]

El **ancho de banda entre nulos** se explicará con más detalle en el Tema 7 [falta referencia]

Ejercicio 2

2.4 Señales habituales

2.4.1. Señal triangular

2.4.2. Señal cuadrada

Ruido térmico

3.1	Caracterización del ruido térmico
3.2	Caracterización del ruido en cuadripolos y dipolos
3.3	Fórmula de Fris
3 1	Modelo de un Analizador de Espectros

12 Ruido térmico

Distorsión

4.1	Tipos	de	dist	orsión
-----	-------	----	------	--------

- 4.2 Distorsión lineal
- 4.3 Distorsión no lineal

14 Distorsión

Modulaciones analógicas

5.1	Concepto de modulación y tipos
5.2	Modulaciones lineales: AM, DBL
Demo	odulador no coherente de AM
Demo	odulador coherente para modulaciones lineales
5.3	Modulaciones angulares: FM
5.4	Calidad

6.3

Conversión A/D y codificación PCM

6.2	Conversión A/D		
	digitales		
0.1	Elementos de un sistema	de comunicaciones	

6.4 Multiplez por División en el Tiempo (TDM)

Cuatificación uniforme y no uniforme

Transmisión digital por canales de ancho de banda limitado

$\frac{7.1}{}$	Modelo de Transmisión Digital
7.2	Ancho de banda de señales banda base
7.3	Interferencia entre símbolos (ISI)
7.4	Criterio de Nyquist
7.5	Filtrado en coseno alzado
7.6	Diagrama de ojos
7.7	Códigos de línea

Transmisión digital banda base con ruido

- 8.1 Representación geométrica de señales
- 8.2 Implementaciones del receptor: correlador, filtro atrapado
- 8.3 Teoría de la Detección (receptor binario óptimo)
- 8.4 Probabilidad de error en sistemas binarios
- 8.5 Ejemplos de expresiones de probabilidad de error para varias señalizaciones binarias

Modulaciones digitales

9.1	Modulaciones lineales. Fórmulas básicas
9.2	ASK
9.3	PSK
9.4	QAM y APK
9.5	FSK
96	Comparación entre modulaciones digitales