Project Report

Electrical Machines - Implementation of Modified Winding Function Theory in Synchronous Machines

Professor - Sobhan Mohamadian

Students - Tailei WANG

Venkata Yoganand KONDA

Sagar Bharadwaj

02/04/2022

Interdisciplinary L'Aquila
MASTER'S THE DOUBLE-MSC
INTERNATION
BRNO JOINT-MSC PROGRAMMETALISM
WWW.INTERMATHS.EUITALY CHAPTER
WWW.INTERMATHS.EUITALY CHAPTER
WWW.INTERMATHS.EUITALY CHAPTER
WALLEN APPLIED
EUTOPE
WWW.INTERMATHS.EUITALY CHAPTER
WATER AND CHAPTER
WATER CHAPTER
WATER CHAPTER
WATER CHAPTER
WATER CHAPTER
WATE

Data: Synchronous matan, Poles - P-4, Power - 475KW, 480V, 0.8 P.F. 48 Slots, 1=233.05mm, Y=422.656 mm, 9=2.54 mm, N=108 NS=3 thms/coil, Rs=0.1592 R RT=3632 R Slots Per Pole per phase = Total number of Slots = 49 = 1 Noof Poles X Phase = 41 X 3 Pole Pitch= \$\frac{4}{2}\land x \tau 180° = 60° Pole -1 4 ct cj			WII	10,6	UIII	MLI																											
\$\frac{\sqrt{\text{synchronous}}{\text{motorous}} \piotes - \text{P=4}, \text{Pawer} - \text{478KW} \text{480 V}, \text{0.8 PrF} \text{48 slots} \text{L=243.05mm} \text{V=422.656 mro}, \text{9=2.54 mro}, \text{Apr = 100} \text{NS=3 tums}/\text{coil}, \text{Rs=0.1592 \text{R}} \text{Rr=0.8632 \text{R}} \text{8/12 p/teh} \text{Slots fen Pole pen phase = Totalnum ben of Slots = \text{U=8} \text{Pole pitch= \text{9V/12 xl80}} \text{200} \text{Pole pitch= \text{3V/12 xl80}} \text{200} \text{200} \te	oindin	ng	an	an	ge.	me	nt	0	F	Ph	as		in	th	e 9	ta	ta	3 5	lot	3	ba	sec	1	on	EL	e .	dal	a					
\$\frac{\sqrt{\text{synchronous}}{\text{motorous}} \piotes - \text{P=4}, \text{Pawer} - \text{478KW} \text{480 V}, \text{0.8 PrF} \text{48 slots} \text{L=243.05mm} \text{V=422.656 mro}, \text{9=2.54 mro}, \text{Apr = 100} \text{NS=3 tums}/\text{coil}, \text{Rs=0.1592 \text{R}} \text{Rr=0.8632 \text{R}} \text{8/12 p/teh} \text{Slots fen Pole pen phase = Totalnum ben of Slots = \text{U=8} \text{Pole pitch= \text{9V/12 xl80}} \text{200} \text{Pole pitch= \text{3V/12 xl80}} \text{200} \text{200} \te	Dal	a																															
48 slots				nc	42	m	ou	5 1	ne	ta	1	P	010	5	P	-4		Pal	sen	-	47	sk	W	L	18	V	, 0	.8	P.	F	,		
Slots Per pole per phase = Total number of Slots 4 = 1 Noraf Pole x Phases 4 = Total number of Slots 4 = 1 Noraf Pole x Phases 4 = Total number of Slots 4 = 1 Noraf Pole x Phases 4 = 1 Pole -1										70 20		3 3		130	13.77			1000		4 338			30.5		130 3		1 28	1			1000		
Slots Per pole per phase = Total number of Slots 4 = 1 Noraf Pole x Phases 4 = Total number of Slots 4 = 1 Noraf Pole x Phases 4 x = 2 Pole -1				4	8 5	10	ts	,	L-	2 3	73	. 0	5 m	12)	٧z	4	22	45	67	mr	0,	9	2	3.	54	ותו	2	^	روا	= 1	08	-
Slots Pen Pole pen Phase = Total number of Slots 4 80 = 1 Nor of Poles x Phases 4 x 3 Pole Pitch = \$\frac{9}{12} \tau 1800 = 600 Pole - 1 \(\frac{1}{2} \) \(\frac{1}{2}	NS =	3 1	tun	· ·	marie .														G 68					5 3 3	018	53		100				1	
Pole Pitch = \$\frac{9}{12} \times \frac{1}{12}					-		1			0 -	9		3		1		K	-	3		,	-						1					
Pole Pitch = \$\frac{1}{2} \tau \tau 1800 = 600 \[\begin{array}{c c c c c c c c c c c c c c c c c c c																																	
Pole Pitch = \$\frac{9}{12} \times \frac{1}{12}			S	lot	9	Pe	2	Pol	le	P	en	P	ha	3 6	. :	2	1	ot	al.	n 4	m	ber	0	6	ای	ot	3	-	4	8		,	1
Pole Pitch = \$\frac{1}{2} \times \frac{1}{2} \times						-												No	of	Po	10	5 7	4	ph.	as	25			4	×	3		
Pole - 1																																	
901e-1 4 ct c'			F	ole	2	Pi	te	4	=	8	VI	2	XI	8	0		. 1	0													2	×	1
(1 c) c's c's (5 G) (6) A,									-																						2		- Section
(S)	.4	-	+					PO	10	- 3	1									->												-	-
(S)	9		2	c's		ch		8	4	B.	SIB	Pho	SE	>	a'				1	A		C.					C		1		B		
By By A Ac As As () -> winding with current out the page (s) C1 Bi Bi Bi Bi 19 20 21 12 23 25 1 ABC -> 3p Rhase windings Fig winding distribution for 24 slots There we have used 'short pitch' winding i.e. \$ 8/12. For '48 slots' the slots per pole per phase is equal to 4. The coil span is 1-9. The is we use 9 slots gap between the coil that goes inside the slot and comes outside. The electrical angle" b/w Phases is "120". There fore the machanical	10		3			0	1	at	7	2	70	3	k	+			0		9	70	7	7 -					71	Total State of	o	_	1 -1		
By By A Ac As As () -> winding with current out the page (s) C1 Bi Bi Bi Bi 19 20 21 12 23 25 1 ABC -> 3p Rhase windings Fig winding distribution for 24 slots There we have used 'short pitch' winding i.e. \$ 8/12 . For '48 slots' the slots per pole per phase is equal to 4. The coil span is 1-9. The is we use 9 slots gap between the coil that goes inside the slot and comes outside. The electrical angle blu Phases is "120". There fore the machanical				1							1	1		1	0			2.0				11		1		1							
By By A Ac As As () -> winding with current out the page (s) C1 B B2 B3 B3 (q) 20 (1) 12 23 25 (q) 20 (2) 12 23 25 (q) 20 (2) 12 23 25 (e) Here we have used short pitch winding i.e. 8/12. For 48 stots to Stots per pole per phase is equal to 4. The coil span is 1-q. The is we use 9 stots gap between the coil that goes inside the stot and comes outside. The electrical angle blu Phases is "120". There fore the machanical	00	-				8		0		0	0	의	0			-	0	1	08			0	1	0	(او	0			1			
By By An Ac As As () -> winding with current out the p. (s) Cs (s) Bi Bi Bi Bi 19 20 21 12 23 25 1 ABC -> 3p Rhase windings Fig: winding distribution for 24 slots There we have used short pitch winding i.e., 8/12. For 48 slots" to Slots for pole per phase is equal to 4. The coil span is 1-9. The is we use 8 slots gap between the coil that goes inside the slot and comes outside. The electrical angle" b/w Phases is "120". There fore the machanical	-			1 30		AG		CI		6	C	3	دنا		-	-		-			1	-		AL	-				100	-		-	
(3) (4) (5) (6) (6) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8			14									+			,					11	L	13		רו		13	10		17		18		
(S)	B		~			A		As		A5,		,						0		->		w	'n	dir	19	wi	th	(4	מא	en	- 0	u	+
the page (5 (1) Bi Bi Bi Bi 19 20 11 12 23 24 1 ABC -> 3p Rhase windings Fig. winding distribution for 24 slots There we have used 'Short pitch winding i.e.s 8/12. For '48 slots' to slots per pole per phase is equal to 4. The coil span is 1-9. The is we use 8 slots gap between the coil that goes inside the slot and comes outside. The electrical angle blw Phases is "120". There fore the machanical	0	1	9	8		0		08	-	@								1000							138			15.1			Eh	e 1	ρ,
AGC -> 3\$ Rhase windings Fig. winding distribution for 24 slots Here we have used short pitch winding i.e., 8/12. For 48 slots" to slots for pole per phase is equal to 4. The coil span is 1-9. The is we use 8 slots gap between the coil that goes inside the slot and comes outside. The electrical angle" b/w Phases is "120". There fore the machanical	00			0		1		0				1						(X)	7	->		wi	no	ייון	9	w	th	04	カカ	en	ti	nt	
19 20 11 12 23 25 1 ABC -> 3\$ Rhase windings Fig. winding distribution for 24 slots There we have used 'short pitch winding i.e., 8/12. For '48 slots" to slots per pole per phase is equal to 4. The coil span is 1-9. The is we use 8 slots gap between the coil that goes inside the slot and comes outside. The electrical angle" b/w Phases is "120". There fore the machanical	1000		25	B		B;		Bi	1	31		1										t	he	Pe	g	2							
Fig. winding distribution for 24 slots There we have used short pitch winding i.e.s 8/12. For 48 slots" to slots for Pole for Phase is equal to 4. The coil span is 1-9. The is we use 8 slots gap between the coil that goes inside the slot and comes outside. The electrical angle" b/w Phases is "120". There fore the machanical	19		CONTRACTOR OF THE PARTY OF THE					23				1						AC	sc -	->	3	d RI	ha	se	w	in	din	95					
Here we have used 'short pitch winding i.e.s 8/12. For '48 slots" to slots per pole per phase is equal to 4. The coil span is 1-9. The is we use 8 slots gap between the coil that goes inside the stotant comes outside. The "electrical angle" b/w Phases is "120". There fore the machanical							1.																				(
is we use 8 slots gap between the coil that goes inside the slot and comes outside. The electrical angle" b/w Phases is "120". There fore the machanical	Fig	!-	wi	nd	in,	9	di	sto	Ni 7	41	10	2	fo	7	24	51	ot.	5															
is we use 8 slots gap between the coil that goes inside the slot and comes outside. The electrical angle" b/w Phases is "120". There fore the machanical	4		Hes	0	w	2	ha	ve	u	se	1"	< L	221		0 ' h	1	123			1			8	1.		-		1				,	,
is we use 8 slots gap between the coil that goes inside the stot and comes outside. The "electrical angle" b/w Phases is "120". There fore the machanical		-	-		1																												
is we use 8 slots gap between the coil that goes inside the stot and comes outside. The "electrical angle" b/w Phases is "120". There fore the machanical			510	ts	Pe	7	Pol	le	Pe	2	Pho	25	e	13	e	gu.	al l	to	4		T	he	C	011	S	PC	n	i's	1	-	9	. 7	. 1
-) The "electrical angle" b/w Phases is "120". There fore the machanical																																	
-) The "electrical angle" b/w Phases is "120". There fore the machanical			,	~		-		0	0	10 (2	0	ar	,) se	ωe	en		he	Col		Cha	C	goi	ట	in	Sid	e t	he	SI	ot	on	×
-) The "electrical angle" b/w Phases is "120". There fore the machanical			(01	me	5 (ou	ts	ide	e.																								
-) The electrical angle 6/w Phases is "120". There fore the machanical					-							11									,												The same
angle will be 400 (in) - 800		-)	T	he	e	lec	th	1'co	1	ar	191	e	6/	W	Ph	asa	2	is	"19	20		T	ver	2	603	4	the	M	ودرا	29	nic	01	
			0	ma	1-	-	1,		L .		4	0		1				P		1								100	-				

Interdisciplinary L'Aquila -MSC PROGRAMMETALINA PPLIED EUROPE WWW.INTERMATHS.EUITALY

2) Fourier series of winding function (ND) Slot Pitch = 49 360 - 7.5 => 15° electrical.

Fourier Series Furmyla

The airgap flux setup by the 3 of stator winding carrying sinhusoidal currents.

The waveshape is non sinusoidal in nature-According to Fourier series analysis, any wave non-sinusoidal flux is equivalent to the number of sinusoidal flux es of fundamental and higher onder harmonics.

-) state the flux wave shafe have half wave symments, all even harmonics are absent in the Fourter series

Fig- Stator ad tubs function

- -) so, it takes 24 slot's to complete 1 complete mechanical notation.
- -) The Fourier series for nacp) (on be written as follows considering each SEE Step as 15. ic., as by sin (T)

where $\frac{\pi}{n}$ $\int_{-\pi}^{\pi} \left(\int_{0}^{\pi} 1 \sin(2ht) dt + \int_{0}^{\pi} 2 \sin(2ht) dt + \int_{0}^{\pi} 3 \sin(2ht) dt$

-- 5 20 (-3) Sin (2nt) dt + 5 (-1) Sin (2nt) dt + 5 (-1) Sin (2nt) dt)

Interdisciplinary L'Aquila
MASTER'S DOUDIE-MSC
NT-EWRY INTERNATION
BRIND JOINT-MSC MEMORY PROGRAMME TAMES
WWW.INTERMATHS. FUITALY POMERTA MARTINE PLITTALY PL

> similarly, phase of and of turns function are same as of a except that they are shirted by 60° and 120° mechanical respectively.

- Fig-3 stator phase \$6 & pc turns function
- -) we can't use the Fourier series formula to generate the turn function similar to for pb and gc i.e.s nb (p) and nc (p), we must consider the Phase Shift and Provide the limits accordingly-
- -) So, we implement mathematical process using matlab to geneate plots to find the connectness of the winding function.
- -) For na (d), nb(d), nc(d) we use only sin component of Founier series

1.e., E by sin (*x(2#))

T

T

LIP(1)

T

LIP(1)

T

LIP(1)

L

where by for na(q) is = = (Sisin(2nt) dt + Sisin(2nt) dt + ---

by shifting nalp) by 60° and 120° mech 120° me

D.I.S.I.M. - Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila (Italy)

Interdisciplinary L'Aquila MASTER'S TAMES DOUBLE-MSC INTERNATION TO THE STREET OF THE

- 3) Generate Inverse Augus function 9-1 (\$, 8m)
 - -) Airgap is the space blw the Stator and the notor. Where the RMF (Rotating magnatic field) can robe generated.
 - -) Being it's a salient pole notor, there is a uniform magnatiair gap in time period.

Staton

Roton

ain gaps

Dm=Do Fig:- Invesse ain gap function in case of Symmetric noton.

calculation for Inverse airgap $g^{-1} = \frac{1}{1.4} \times 1000 = 714.2$, min $g^{-1} = \frac{1}{2.7} \times 1000 = 370.3$

- -) here we consider am rotor position angle as a Bo initial or starting notor position
- -) Using the Fourier series we can generate the airgap function. since it is not an even add function the add harmonics are absent it., to sincterm is zero. So we consider only fundmental component as and obsine component an'.

- -) In the air gap function the squore wave represent's the Hair gap length bluthe stator and the rotor. P.
- -7 The complete time period for one pole out to take 90 mechanical is 180 electrical

D.I.S.I.M. - Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila (Italy)

Interdisciplinary L'Aquila
MASTER'S THE DOUBLE-IMSC
INTERNATIONAL PROGRAMME TALLED
WWW.INTERMATHS.EUITALY DEBUTED
WWW.INTERM

an =
$$\frac{9}{7}$$
 $\int_{0}^{t_{0}+7} f(t) \cdot \cos\left(\frac{2\pi nt}{r}\right) dt$ where $n = 0, 1, 2, 3 - \cdots$

$$= \frac{9}{7} \int_{0}^{\pi/L} \gamma_{L} \cos\left(2n\frac{L}{r}\right) dt + \int_{\pi/L}^{\pi/3} \gamma_{L} \cos\left(2n\frac{L}{r}\right) dt + \int_{\pi/L}^{\pi/2} \gamma_{L} \cos\left(2n\frac{L}{r}\right) dt + \int_{\pi/L}^{\pi/3} \gamma_{L} \cos\left(2n\frac{L}{r}\right) dt + \int_{\pi/L}^{\pi/2} \gamma_{L} \sin\left(2n\frac{L}{r}\right) dt + \int_{\pi/L}^{\pi/2} \gamma_{L} \sin\left(2n\frac{L}{r}\right) dt + \int_{\pi/L}^{\pi/2} \gamma_{L} \sin\left(2n\frac{L$$

$$= \frac{1}{n\pi} \left(\gamma_{1} \left(\sin \frac{2n\pi}{5} - 0 \right) + \left(\sin \frac{4n\pi}{3} - \sin \frac{2n\pi}{3} \right) + \left(\sin \frac{2n\pi}{3} - \sin \frac{5n\pi}{3} \right) \right)$$

$$+ \gamma_{2} \left[\left(\sin \frac{2n\pi}{3} \pi - \sin \frac{n\pi}{3} \right) + \left(\sin \frac{5n\pi}{3} - \sin \frac{4n\pi}{3} \right) \right]$$

-) The plots for the gilld is generated by using the matlab. The values of as & an are used for the math-

4) Roton Turns Function (NA)

- -) The noton turns function can be found similar to that of Statons turn function
- -) Rotor turns function in is a periodic function with time periodit
- -) So, we can use the Fourier series analysis. Further N's being an "odd fraction" all the "cas" and the "De" values are ignored.

-) so, The Fourier series used for the " At" can be written as follows

$$f(\phi) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi n}{\tau}\right)$$

$$b_n = \sum_{t=1}^{\infty} \int_{t_0}^{t_0+T} f(\phi) \cdot \sin\left(\frac{2\pi n}{\tau}\right) dt \quad \text{where } n = 1,2,3,----$$

$$\vdots \quad b_n = \sum_{t=1}^{\infty} \int_{\pi/\delta}^{\pi/\delta} (N_n) \sin\left(\frac{2\pi n}{\delta}\right) + \int_{0}^{\infty} (-N_n) \sin\left(\frac{2\pi n}{\delta}\right)$$

$$= \sum_{t=1}^{\infty} \int_{\pi/\delta}^{\pi/\delta} (N_n) \sin\left(\frac{2\pi n}{\delta}\right) + \cos\left(\frac{2\pi n}{\delta}\right) + \cos\left(\frac{5\pi n}{\delta}\right) - \cos\left(\frac{5\pi n}{\delta}\right)$$

$$= \sum_{t=1}^{\infty} \int_{\pi/\delta}^{\pi/\delta} (N_n) \sin\left(\frac{2\pi n}{\delta}\right) + \cos\left(\frac{5\pi n}{\delta}\right) - \cos\left(\frac{5\pi n}{\delta}\right) - \cos\left(\frac{5\pi n}{\delta}\right) = \cos\left(\frac{5\pi n}{\delta}\right)$$

calculations of self-inductance and mutual inductance

- In order to get the self-inductance and mutual be require the information of Stator turns function, inverse airgap function and modified winding function.
- -) We already have the stator turns function and air gap function from the above information. We now need to get the modified winding function.
- -) In the paper it is been mentioned that for the air gap with only "even harmonics", the modified winding function can be represented as

where can is the de value of the tunns function.

Interdisciplinary L'Aquila
MASTER'S TEAM DOUBLE-MSC
INTERNATIONAL THE SUPPLIES TO THE STATE OF T

-) so modified winding function M(\$,0)

m(\$0) = n(\$0) - 2m(0) >

to In our case < mco> = < m> i.e., de value of turns function which is equal

: < mc@>> = 0 (: < n> = 0)

-) M(\$0) = n(\$0)

-) so, as now we have the information of "stator turns function", "modified winding function" & "inverse airgap function". We can get the

self inductance by using

LAA = HOYL Sma(\$,0) MA(\$,0) g'(\$,0) d\$

mutual inductore by using

LBA = ABA = hort 5 no (x 0) Ma(x 0) o (x 0) dx

Similarly we can get the info of LBB Lee & LEA, LBC.

Matlab Plots

Figure 1- Stator Turns Function for Phase A, Phase B and Phase C The Highest Harmonic Order N = 5.

Figure 2- Inverse Air Gap Function The Highest Harmonic Order N = 2.

Figure 3- Rotor Turns Function
The Highest Harmonic Order N = 4.

Figure 4- Self -Inductance

Figure 4- Mutual -Inductance LAF

Appendix - Matlab Scripts

Code - Stator Turns Function

```
% Fourier series of Stator turns function % S_slots = 48; intv = 2*pi/S_slots; % mechanical angle of each slot

Ns = 3; % unit: turns per coil
T = pi; % here we consider the time period of n_A is pi.
N = 5; % the highest harmonic order

for i=1:N
% coefficient b_n of sin components %
bi = intg_sin2nfa(0,intv,i)+ 2*intg_sin2nfa(intv,2*intv,i)+ 3*intg_sin2nfa(2*intv,3*intv,i)+...
4*intg_sin2nfa(3*intv,8*intv,i)+...
3*intg_sin2nfa(8*intv,9*intv,i)+ 2*intg_sin2nfa(9*intv,10*intv,i)+ intg_sin2nfa(10*intv,11*intv,i)+...
(-1)*intg_sin2nfa(12*intv,13*intv,i)+ (-2)*intg_sin2nfa(13*intv,14*intv,i)+
(-3)*intg_sin2nfa(14*intv,15*intv,i)+...
(-4)*intg_sin2nfa(20*intv,21*intv,i)+ (-2)*intg_sin2nfa(21*intv,22*intv,i)+
```

```
(-1)*intg_sin2nfa(22*intv,23*intv,i);
  nA_b(i) = Ns*2*bi/T;
  % elimination of calculation error %
    if (abs(nA_b(i))-1e-10 < 0)
%
       nA_b(i) = 0;
%
     end
end
fa=0:0.01:2*pi; % mechanical angle in stationary frame (stator)
fs_na = zeros(size(fa)); % request memory
fs_nb = zeros(size(fa));
fs_nc = zeros(size(fa));
syms phi;
F_fsna = 0;
F_fsnb = 0;
F_fsnc = 0;
for i=1:N
  fs_na = fs_na + nA_b(i)*sin(2*pi*i*fa/T); % phase A
  fs_nb = fs_nb + nA_b(i)*sin(2*pi*i*(fa-2*pi/3)/T); % phase B
  fs_nc = fs_nc + nA_b(i)*sin(2*pi*i*(fa+2*pi/3)/T); % phase C
  F_fsna = F_fsna+nA_b(i)*sin(2*pi*i*phi/T); % symbolic function of this Fourier series
  F_{fsnb} = F_{fsnb} + nA_{b(i)} * sin(2*pi*i*(phi-2*pi/3)/T);
  F_fsnc = F_fsnc + nA_b(i)*sin(2*pi*i*(phi+2*pi/3)/T);
end
figure()
plot(fa,fs_na,fa,fs_nb,fa,fs_nc)
xlabel('\phi (rad)')
ylabel('n(\phi) (turns/coil)')
title('Fourier series of stator turns function')
legend('phase A', 'phase B', 'phase C')
```

Code - Inverse Air Gap Function

```
% Fourier series of inversed air gap function g^-1 y1 = 1000/2.7; % minimum value y2 = 1000/1.4; % maximum value alpha0 = 1/2*(4/3*y1+2/3*y2); % DC value in Fourier series

N = 2; % the highest harmonic order

for i=1:N
% coefficient a_n of cos components %
ivg_a(i) = 1/i/pi*(y1*(sin(2*i*pi/6)+sin(4*i*pi/3)-sin(2*i*pi/3)-sin(5*i*pi/3))...
+y2*(sin(2*i*pi/3)-sin(i*pi/3)+sin(5*i*pi/3)-sin(4*i*pi/3)));
end

fa = 0:0.01:2*pi; % mechanical angle in stationary frame (stator)
fs_ivg = alpha0*ones(size(fa)); % request memory and initialization

F_fsivg = 0;
syms theta; % rotor position
```

```
for i=1:N
    fs_ivg = fs_ivg + ivg_a(i)*cos(2*i*fa);
    F_fsivg = F_fsivg + ivg_a(i)*cos(2*i*(phi-theta));
end

figure()
plot(fa,fs_ivg)
xlabel("\phi (rad)")
title("Fourier series of inverse air gap function")
)
```

Code - Rotor Turns Function

```
% Calculate the Fourier series of Turns function n f
Nr = 108; % unit: turns/pole
N = 4; % the highest harmonic order
for i=1:N
  % coefficient b_n of sin components %
  nf_b(i) = Nr/\rho i/i*(cos(i*\rho i/3)-cos(2*i*\rho i/3)+cos(5*i*\rho i/3)-cos(4*i*\rho i/3));
end
fa = 0:0.01:2*pi; % mechanical angle in stationary frame (stator)
fs_nf = zeros(size(fa)); % request memory
F_fsnf = 0;
syms theta; % rotor position
for i=1:N
  fs_nf = fs_nf + nf_b(i)*sin(2*i*fa);
  F_f snf = F_f snf + nf_b(i) sin(2*i*(phi-theta));
end
figure()
plot(fa,fs_nf)
xlabel('\phi (rad)')
ylabel('n_f(\phi) (turns/pole)')
title('Fourier series of rotor turns function')
```

Code - Self and Mutual Inductances

```
mu0 = 4*pi*(1e-7); % permeability of vacuum
r = 422.656*(1e-3);
L = 273.05*(1e-3);
fcna = F_fsna*F_fsna*F_fsivg; % n_A*M_A*g^-1
fcnb = F_fsnb*F_fsnb*F_fsivg;
fcnc = F_fsnc*F_fsnc*F_fsivg;
```

```
fcnaf = F_fsnf*F_fsna*F_fsiva; % n_f*M_A*a^-1
fcnbf = F_fsnf*F_fsnb*F_fsivg;
fcncf = F_fsnf*F_fsnc*F_fsivg;
syms LAA(theta) LBB(theta) LCC(theta)
syms LAF(theta) LBF(theta) LCF(theta)
LAA(theta) = mu0*r*L*(int(fcna,phi,[0 2*pi])); % [lower bound, upper bound]
LBB(theta) = mu0*r*L*(int(fcnb,phi,[0 2*pi]));
LCC(theta) = mu0*r*L*(int(fcnc,phi,[0 2*pi]));
LAF(theta) = mu0*r*L*(int(fcnaf,phi,[0 2*pi]));
LBF(theta) = mu0*r*L*(int(fcnbf,phi,[0 2*pi]));
LCF(theta) = mu0*r*L*(int(fcncf,phi,[0 2*pi]));
% numerically approximate the integral by using vpa
LAA(theta) = vpa(LAA(theta));
LBB(theta) = vpa(LBB(theta));
LCC(theta) = vpa(LCC(theta));
LAF(theta) = vpa(LAF(theta));
LBF(theta) = vpa(LBF(theta));
LCF(theta) = vpa(LCF(theta));
figure()
plot(fa,LAA(fa),fa,LBB(fa),fa,LCC(fa))
xlabel("\theta (rad)")
ylabel('Inductance'(H)')
title('Stator magnetizing inductances')
legend('L_A_A','L_B_B','L_C_C')
figure()
plot(fa,LAF(fa),fa,LBF(fa),fa,LCF(fa))
xlabel("\theta (rad)")
ylabel('Inductance (H)')
title('Mutual inductances')
legend('L_A_F','L_B_F','L_C_F')
```