Wireless Electric Lock Hardware-nahe Systemprogrammierung

Aaron Winziers Benedikt Lüken-Winkels

8. August 2018

Inhaltsverzeichnis

1	Hardware	2
	1.1 WLAN-Modul	2
	1.2 Vorteile gegenüber Arduino	2
2	Programmierung	3
	2.1 Messen des Klingelrythmusses	3
	2.2 1602A (HD44780) LCD - Anzeige	

1 Hardware

1.1 WLAN-Modul

Lua Module V2 ESP8266 ESP-12E

- 4 MB Flash-Speicher
- Programmierung in C
- NodeMCU-Board
- ESP-12E
- Programmierung per Arduino möglich
- Selbstinduziertes Schlafen und Aufwecken des Chips (Stromsparen)

1.2 Vorteile gegenüber Arduino

- Höhere Taktfrequenz (80-160 Mhz)
- Vielfältige Speicherressourcen

2 Programmierung

2.1 Messen des Klingelrythmusses

Ideen

- Unterscheidung der verschiedenen Klingellängen durch Anpassung an den Klingler
 - Datenerhebung durch verschiedene Testpersonen, wie sich die Klingellängen bei lang und kurz unterscheiden
 - Bsp. $Time(Kurz) = \frac{2}{3}Time(Lang)$
 - ⇒ Dafür entweder Heuristik oder einmal lang, einmal kurz zum justieren.
- Orientierung für den Klingler durch visuelle Elemente
 - Display, das die Klingellänge durch Balken anzeigt 2.2
 - LED, das ein Tempo angibt

2.2 1602A (HD44780) LCD - Anzeige

5 Pixel breit und 8 Pixel hoch. Zwischen den Feldern sind Lücken, die 1 Pixel groß sind.

Idee Darstellung der Klingellänge als horizontal aufsteigende Balken

- Probleme bei der Darstellung
 - Dynamische Aktualisierung der Pixel
 - Custom Characters (keine Standardbelegung)