

DESCRIPTION

CM6206 is a highly integrated single chip USB audio solution. All essential analog modules are embedded in CM6206, including 8CH DAC and earphone buffer, 2CH ADC, microphone gain, PLL, regulator, and USB transceiver. It is very suitable for high end USB external audio box, USB multichannel headphone or USB audio interface multichannel speaker set application.

Many features are programmable with external EEPROM and MCU interface. In addition, MCU/EEPROM/GPIO control can easily via HID software interface. Better yet, CM6206 support stereo MIC, phone jack sense, S/PDIF I/O 48 KHz sampling rate. Moreover, unique patent driver can support world's first SPEAKER SHIFTER, Karaoke and Dolby AC-3 real-time encoder functions.

FEATURES

- USB spec. 2.0 full speed compliant
- USB audio device class spec. 1.0 and USB HID class spec. 1.1 compliant
- IEC60958 spec. compliant (consumer format S/PDIF input and output with loop-back support)
- SCMS (Serial Copy Management System) compliant
- Dolby® digital audio streaming via S/PDIF output interface
- USB remote wake-up support
- 8 channel DAC output with 16 bit resolution
- 3.1 Vpp (1.1 Vrms) biased at 2.25V output swing
- Volume control and mute function
- Earphone buffer
- Self power / Bus power selectable (by EEPROM)
- 2X interpolator for digital playback data to improve quality
- 2 channel ADC input with 16 bit resolution

BLOCK DIAGRAM

TABLE OF CONTENTS

1	Description and Overview							
2	Features							
3	Pin D	Descriptions	6					
	3.1	CM6206 LQFP 48Pin Table	6					
	3.2	CM6206 LQFP 48 PIN	7					
4	Orde	ring Information	9					
	4.1	CM6206 (LQFP48)	9					
5	Block	k Diagram	. 10					
6	Func	tion Descriptions Block Diagram of CM6206	. 10					
	6.1	Internal Register	. 10					
	6.2	MCU Interface	. 20					
	6.3	Serial EEPROM Content	. 22					
	6.4	Audio Interface Format In Codec Mode	. 23					
	6.5	Left Justified Mode	. 23					
	6.6	Power Management	. 23					
7	Volume Control							
	7.1	DAC Volume Control	. 24					
	7.2	ADC Volume Control	. 24					
	7.3	MIC / Line-in Monitor Volume Control	. 25					
8	Elect	rical Characteristics	. 26					
8.1	Maxi	mum Ratings	. 26					
8.2	Reco	mmended Operating Conditions	. 26					
8.3	Powe	er Consumption	. 26					
8.4	DC C	Characteristics (Digital)	. 26					
8.5	AC C	Characteristics (Digital)	. 27					
8.6	Analo	alog Performance						
9	Audi	o Performance Curves	. 28					
	9.1	10K loading (Line Out / Surround / Center LFE / Side Surround) Frequency Respon	nse					
		28						
	9.2	10K loading (Line Out / Surround / Center LFE / Side Surround) Passband Ripple	. 29					
	9.3	10K loading (Line Out / Surround / Center LFE / Side Surround) THD+N Curve	. 30					

High Integrated USB Audio I/O Controller

9.4	10K loading (Line Out / Surround / Center LFE / Side Surround) Dynamic Range	31
9.5	32 ohm Headphone Loading Frequency Response / Passband Ripple	32
9.6	32 ohm Headphone Loading THD+N Curve / Dynamic Range	32
9.7	A-D Line in FSIV / THD+N Curve	33
9.8	A-D Line in Frequency Response / Passband Ripple	33
9.9	A-D Mic in FSIV / THD+N Curve	34
9.10	A-D Mic in Frequency Response / Passband Ripple	34
Reference.		34

High Integrated USB Audio I/O Controller

1 Description and Overview

CM6206 is a highly integrated single chip USB audio solution. All essential analog modules are embedded in CM6206, including 8CH DAC and earphone buffer, 2CH ADC, microphone gain, PLL, regulator, and USB transceiver. It is very suitable for high end USB external audio box, USB multi-channel headphone or USB audio interface multi-channel speaker set application.

Many features are programmable with external EEPROM and MCU interface. In addition, MCU/EEPROM/GPIO control can easily via HID software interface. Better yet, CM6206 support stereo MIC, phone jack sense, S/PDIF I/O 48 KHz sampling rate. Moreover, unique patent driver can support world's first SPEAKER SHIFTER, Karaoke and Dolby AC-3 real-time encoder functions.

2 Features

- USB spec. 2.0 full speed compliant
- USB audio device class spec. 1.0 and USB HID class spec. 1.1 compliant
- IEC60958 spec. compliant (consumer format S/PDIF input and output with loop-back support)
- SCMS (Serial Copy Management System) compliant
- Dolby® digital audio streaming via S/PDIF out S/PDIF output interface
- USB remote wake-up support
- 8 channel DAC output with 16 bit resolution
- 3.1 Vpp (1.1 Vrms) biased at 2.25V output swing
- Volume control and mute function
- Earphone buffer
- 2X interpolator for digital playback data to improve quality
- 2 channel ADC input with 16 bit resolution
- 3.2 Vpp (or 4.0 Vpp programmed by vendor driver) biased at 2.25V input swing
- Volume control and mute function
- Additional headphone output with selectable source and phone jack sense
- Isochronous transfer using adaptive synchronization with internal PLL
- Stereo MIC support with 33dB maximum capability
- Recording source select from S/PDIF, MIC, Line-in and summation of MIC, Line-in and front channel
- MIC, Line-in monitor from front channel (all channels optional) with volume control and mute function
- Master volume control by default; per-channel volume control by C-Media driver
- Playback with soft-mute function
- Support 48 / 44.1 KHz sampling rate for both playback and recording
- MCU support with two-wire serial interface
- Serial EEPROM support for customized VID/PID

High Integrated USB Audio I/O Controller

- MCU / EEPROM / GPIO control via HID software interface
- Volume up / volume down / playback mute HID button
- LED indicator pins: operation / recording mute / SCMS protection
- C-Media value added software (multi-channel positional 3D sound, AC-3 encoder, etc.)
- Embedded USB transceiver and power on reset circuit
- Microsoft Vista Premium Level Compliant
- Single 12MHz crystal input with embedded PLL
- Single 5V power supply with embedded 5V to 3.3V regulator
- Industry standard LQFP-48 package
- C-Media value added patent software driver:

Xear 3D sound

Earphone Plus

SPEAKER SHIFTER

Environment sound effects

Room Size Mode

Graphic Equalizer

Karaoke Function

Dolby Digital Real-Time Content Encoder (Optional)

3 Pin Descriptions

3.1 CM6206 LQFP 48Pin Table

PIN#	Signal Name	PIN#	Signal Name	PIN#	Signal Name
1	PDSW	17	DW	33	RSOL
2	ΧI	18	USBDP	34	RSOR
3	хо	19	USBDM	35	FROL
4	DVSS1	20	REGV	36	FROR
5	SDAT	21	DVDD1	37	AVDD2
6	SCLK	22	AVSS3	38	SSOL
7	TEST	23	MICL	39	SSOR
8	MCLK	24	MICR	40	CENO
9	MINT	25	LINL	41	LFEO
10	GPIO1	26	LINR	42	AVSS2
11	LEDO	27	AVDD1	43	VOLUP
12	LEDR	28	VREF	44	VOLDN
13	PHONES	29	VBIAS	45	SPDIFI
14	cs	30	AVSS1	46	MUTER
15	SK	31	HPOL	47	MUTEP
16	DR	32	HPOR	48	SPDIFO

Figure 1. CM6206 LQFP 48 Pin Assignments (Top View)

3.2 CM6206 LQFP 48 PIN

Pin #	Symbol	Туре	Description				
			Power down switch control (for PMOS polarity)				
1	PDSW	DO	0: normal mode				
			1: power down mode				
2	ΧI	DI	12MHz crystal, or oscillator input				
3	ХО	DO	12MHz crystal output				
4	DVSS1	Р	Digital ground				
5	SDAT	DIO	External MCU serial bus data pin				
6	SCLK	DI	External MCU serial bus clock pin				
7	TEST	DI	Test mode select pin; pull low in normal operation				
			External MCU clock pin; clock frequency is programmable				
8	MCLK	DO	(12MHz, 6MHz, 3MHz, 1.5MHz)				
			Default is 1.5 MHz				
	MINT		External MCU interrupt pin (active L)				
9		T DO	When internal register address 0 ~ 3 or external serial EEPROM is				
7			accessed,				
			MINT is set low; after MCU read, MINT is reset to H				
10	GPIO1	DIO	GPIO pin #1				
11	LEDO	DO	LED for operation; output H for power on; toggling for data transmit				
12	LEDR	DO	LED for mute recording indication; output H when recording is muted				
13	PHONES	DI	Phone jack sense pin for line out Tri-state; an internal register bit will be				
13		DI	set when activated (active H)				
14	CS	DO	EEPROM interface chip select				
15	SK	DO	EEPROM interface clock				
16	DR	DO	EEPROM interface data read				
17	DW	DI	EEPROM interface data write				
18	USBDP	AIO	USB data D+				
19	USBDM	AIO	USB data D-				
20	REGV	AO	3.3V reference output for internal 5 → 3.3V regulator				
21	DVDD1	Р	5V power supply to internal regulator				
22	AVSS3	Р	Analog ground				
23	MICL	Al	Microphone input left channel				
24	MICR	Al	Microphone input right channel				

High Integrated USB Audio I/O Controller

25	LINL	Al Line-In inp	Line-In input left channel			
Pin #	Symbol	Туре	Description			
26	XLINER	Al	Line in right channel			
27	AVDD1	Р	5V analog power for analog circuit			
28	VREF	AO	Connecting to external decoupling capacitor for embedded band- gap circuit; 2.25V output			
29	VBIAS	AO	Microphone bias voltage supply (4.5V/2.25V)			
30	AVSS1	Р	Analog ground			
31	HPOL	AO	Headphone out left channel			
32	HPOR	AO	Headphone out right channel			
33	RSOL	AO	Line out surround (rear) left channel (For Vista definition @ 7.1 CH)			
34	RSOR	AO	Line out surround (rear) right channel (For Vista definition @ 7.1CH)			
35	FROL	AO	Line out front left channel			
36	FROR	AO	Line out front right channel			
37	AVDD2	Р	5V analog power for analog circuit			
38	SSOL AO		Line out side surround left channel (For Vista definition @ 5.1 / 7.1CH)			
39	SSOR	АО	Line out side surround right channel (For Vista definition @ 5.1 / 7.1 CH)			
40	CENO	AO	Line out center channel			
41	LFEO	AO	Line out LFE (subwoofer) channel			
42	AVSS2	Р	Analog ground			
43	VOLUP	DI	Volume up (edge trigger with de-bouncing)			
44	VOLDN	DI	Volume down (edge trigger with de-bouncing)			
45	SPDIFI	DI	S/PDIF input			
46	MUTER	DI	Mute recording (edge trigger with de-bouncing)			
47	MUTEP	DI	Mute playback (edge trigger with de-bouncing)			
48	SPDIFO	DO	S/PDIF output			

*Note 1: DI - digital input pad

DO - digital output pad DIO - digital bi-directional pad AI/AO/AIO - analog pad

P - power pad

For LQFP 48 package, PWRSEL1, PWRSEL1, MSEL1 and MSEL2 are internal bonding options; all of those 4 pins are *Note 2: notbounded in default state.

Ordering Information

4.1 CM6206 (LQFP48)

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

SYMBOLS	MIN.	MAX.			
A		1.6			
A1	0.05	0 15			
A2	1.35	1.45			
c1	0.09	0.16			
D	9.00 BSC				
D1	7.00 BSC				
E	9.0	00 BSC			
E1	7.0	DO BSC			
е	0.5	BSC			
ь	0.17 0.27				
L	0.45	0.75			
L1	1	REF			

NOTES:

NOTES:

1.JEDEC OUTLINE:MS-026 BBC

2.DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PER SIDE. D1 AND E1 ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS IMCLUDING MOLD MISMATCH.

3.DIMENSION & DOES NOT INCLUDE DAMBAR BEOTELISION.

DUES NOT INCLUDE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM & DIMENSION BY MORE THAN 0.08mm.

5 Block Diagram

Figure 2: Function Block Diagram of CM6206

6 Function Descriptions Block Diagram of CM6206

6.1 Internal Register

The internal registers of CM6206 can be divided to two parts. Some of them (REG0, REG1, REG2, REG3, REG4 and REG5) are 16-bit width and can be accessed via HID interface SET_RPT request. The others (REG8~ REG14) are 8-bit width and can be accessed by vendor requests.

To access registers via HID interface, users should issue a "Set Output Report" HID request. The four bytes of output report data is organized as below:

Byte [0]	Bit5 = 1 => Access internal register					
	Bit4 = 1 => read Bit4 = 0 => write					
Byte [1]	DATAL					
Byte [2]	DATAH					
Byte [3]	Register address (0, 1, 2, 3, 4, 5)					

In addition to internal registers, users can also access external serial EEPROM by the same way:

Byte [0]	Bit6 = 1 => Access EEPROM					
	Bit4 = 1 => read Bit4 = 0 => write					
Byte [1]	DATAL					
Byte [2]	DATAH					
Byte [3]	EEPROM address (0 ~ 8'h3f)					

	RE	G0		Add	ress:	0x00	
SPDIF	OUT chann	el status cont	rol	Reset	State:	0x2	000
15	14	13	12	11	10	9	8
DMA_Master		Sampling rat	e	Category Code[7:4]			
7	6	5	4	3	2	1	0
	Category	Code[3:0]		Emphasis	Copyright	Non-Audio	PRO/CON

Bit	Bit	Read/	Function
Number	Mnemonic	Write	
15	DMA_Master	R/W	1: SPDIFOUT as Master 0: DACs as Master
14-12	Sampling_rate	R/W	SPDIF out sample rate (48K: 3'b010; 96K: 3'b110)
11-4	Category code	R/W	SPDIF out category code depends on the equipment
11-4	Category code		type.
3	Emphasis	R/W	SPDIFOUT emphasis. 1: emphasis-CD_type
3	Emphasis		0: Emphasis is not indicated
2	Copyright	R/W	1: not asserted; 0: asserted
1	Non-audio	R/W	1: non-PCM audio data (like AC3) 0: PCM-data
0	Pro/con	R/W	1: professional format 0: consumer

GPIO2_o

GPIO2_OEN

GPIO1_o

SPDIFMIX

REG1 Address: 0x01

GPIO1_OEN

Reset State: 0x3002

DIS_SPDIFO

SPDIFLOOP

15	14	13	12	11	10	9	8
Rsvd	SEL_CLK	PLLBINen	SOFTMUTEen	GPIO4_o	GPIO4_OEN	GPIO3_o	GPIO3_OEN
7	6	5	4	3	2	1	0

Valid

Bit	Bit	Read/	Function	
Number	Mnemonic	Write		
15	Rsvd	R/W	Reserved	
14	SEL_CLK	R/W	For test. Select 44.1k source for DACs 1=from 22.58M	
			0=from 24.576M	
13	PLLBINen	R/W	PLL binary search enable	
12	SOFTMUTEen	R/W	Soft mute enable	
11	GPIO4_o	R/W	Gpio4 signal	
10	GPIO4_OEN	R/W	Gpio4 output enable	
9	GPIO3_o	R/W	Gpio3 signal	
8	GPIO3_OEN	R/W	Gpio3 output enable	
7	GPIO2_o	R/W	Gpio2 signal	
6	GPIO2_OEN	R/W	Gpio2 output enable	
5	GPIO1_o	R/W	Gpio1 signal	
4	GPIO1_OEN	R/W	Gpio1 output enable	
3	VALID	R/W	SPDIFOUT Valid Signal 1=un-valid	
2	SPDIFLOOP	R/W	SPDIF loop-back enable	

SPDIF out disable

SPDIF in mix enable

1

0

DIS_SPDIFO

SPDIFMIX

R/W

R/W

REG2			Address: Reset State:		0x02 0x6004		
15	14	13	12	11	10	9	8
DRIVERON	HEADPSEL				PLAYMUTE		
7	6	5	4	3	2	1	0
	PLAYMUTE				EN_BTL	MCU	CLKSEL

Bit	Bit	Read/	-
Number	Mnemonic	Write	Function
			If (HEADPON = 1 and DRIVERON = 0) z
			All channels muted except Headphone channels
15	DRIVERON	R/W	Select Headphone source from Front channels Else
			Channel mute controlled by PLAYMUTE registers
			Headphone source selected by HEADPSEL registers
			Headphone source select
			11: Front channels
14~13	HEADPSEL	R/W	10: Center and Subwoofer
			01: Surround channels
			00: Side channels
			Channel mute control (high active)
			PLAYMUTE[0]: mute Left Front
			PLAYMUTE[1]: mute Right Front
			PLAYMUTE[2]: mute Center
			PLAYMUTE[3]: mute Subwoofer
12~3	PLAYMUTE	R/W	PLAYMUTE[4]: mute Side Surround Left
			PLAYMUTE[5]: mute Side Surround Right
			PLAYMUTE[6]: mute Rear Surround Left
			PLAYMUTE[7]: mute Rear Surround Right
			PLAYMUTE[8]: 0: mute Headphone Left
			PLAYMUTE[9]: 0: mute Headphone Right
2	EN_BTL	R/W	1 = BTL mode enable. This bit only useful for 2ch mode.
			MCU clock frequency
1~0	MCUCLKSEL	R/W	00: 1.5Mhz
			01: 3Mhz

			10: 6Mhz				
			11: 12Mhz				
	RE	G3		Add	ress:	0x	03
				Reset	State:	0x143f / 0x147f	
15	14	13	12	11	10	9	8
			FLYSPEED		VRAP25EN	MSEL1	SPDFI_F
							REQ[1]
7	6	5	4	3	2	1	0
SPDFI_F	PINSEL	FOE	ROE	CBOE	LOSE	HPOE	CANREC
REQ[0]							

Bit	Bit	Read/	Function
Number	Mnemonic	Write	
15-14	Rsvd	R	Reserved
13-11	FLYSPEED	R/W	Sensitivity to FLY tuner volume control VP/VD signal
10	VRAP25EN	R/W	Microphone bias voltage supply select 0: 4.5V 1: 2.25V
9	MSEL1	R	0: MICINL/R and LIL/R mix to LOFL and LOFR 1: MICINL/R and LIL/R mix to 8 channels
8-7	SPDFI_FREQ	R	SPDIF in sample rate 00: 44.1K 01: reserved 10: 48K 11: 32K
6	PINSEL	R	0: 100 pin package 1: 48 pin package
5	FOE	R/W	1: LOFL/LOFR enable 0: LOFL/LOFR disable (Hi Z)
4	ROE	R/W	1: LOLS/LORS enable 0: LOLS/LORS disable (Hi Z)
3	СВОЕ	R/W	1: LOCF/LOLFE enable 0: LOCF/LOLFE disable (Hi Z)
2	LOSE	R/W	1: LOSL/LOSR enable 0: LOSL/LOSR disable (Hi Z)
1	НРОЕ	R/W	1: HPOUTL/HPOUTR enable 0: HPOUTL/HPOUTR disable (Hi Z)
0	CANREC	R	SPDIF in recording status 0: SPDIF in can not be recorded 1: SPDIF in can be recorded

REG4 Address: 0x04

Reset State: 0x0000

15	14	13	12	11	10	9	8
CDIO12 o	GDIO12	CDIO11 o	GDIO11	GDIO10 o	CDIO10	CDIO0 o	GDIO0

 GPIO12_o
 GPIO12_
 GPIO11_o
 GPIO11_
 GPIO10_o
 GPIO10_
 GPIO9_o
 GPIO9_o

 OEN
 OEN
 OEN
 OEN
 OEN
 OEN

7	6	5	4	3	2	1	0
GPIO8_o	GPIO8_	GPIO7_o	GPI07_	GPIO6_o	GPIO6_	GPIO5_o	GPIO5_
	OEN		OEN		OEN		OEN

Bit	Bit	Read/	Function
Number	Mnemonic	Write	
15	GPIO12_o	R/W	Gpio12 signal
14	GPIO12_OEN	R/W	Gpio12 output enable
13	GPIO11_o	R/W	Gpio11 signal
12	GPIO11_OEN	R/W	Gpio11 output enable
11	GPIO10_o	R/W	Gpio10 signal
10	GPIO10_OEN	R/W	Gpio10 output enable
9	GPIO9_o	R/W	Gpio9 signal
8	GPIO9_OEN	R/W	Gpio9 output enable
7	GPIO8_o	R/W	Gpio8 signal
6	GPIO8_OEN	R/W	Gpio8 output enable
5	GPIO7_o	R/W	Gpio7 signal
4	GPIO7_OEN	R/W	Gpio7 output enable
3	GPIO6_o	R/W	Gpio6 signal
2	GPIO6_OEN	R/W	Gpio6 output enable
1	GPIO5_o	R/W	Gpio5 signal
0	GPIO5_OEN	R/W	Gpio5 output enable

REG5 0x05 Address:

0x3000 Reset State:

15	14	13	12	11	10	9	8
Rs	vd	DA_RST	AD_RST	AD2SPD	SPD	O_SEL	CODEM
		N	N	0			
7	6	5	4	3	2	1	0
EN_HPF	T_SEL_	T_SEL_	T_SEL_	T_SEL_		T_SEL_DSAC)
	DSDA4	DSDA3	DSDA2	DSDA1			

Bit	Bit	Read/	Function
Number	Mnemonic	Write	
15-14	Rsvd	R	Reserved
13	DA_RSTN	R/W	DAC delta-sigma reset signal
12	AD_RSTN	R/W	ADC delta-sigma reset signal
11	AD2SPDO	R/W	1: enable ADC data to SPDIFOUT
10-9	SPDO_SEL	R/W	SPDIFOUT channel selector
			00: Front; 01: Side_Sur; 10: CEN/LFE; 11: Rear_Sur
8	CODECM	R/W	0: USB mode; 1: CODEC mode
7	EN_HPF	R/W	1: Enable DAC high pass filter
6	T_SEL_DSDA4	R/W	1: Loopback ADC 1-bit delta-sigma data to RearSurround DAC
5	T_SEL_DSDA3	R/W	1: Loopback ADC 1-bit delta-sigma data to CEN/LFE DAC
4	T_SEL_DSDA2	R/W	1: Loopback ADC 1-bit delta-sigma data to SideSurround DAC
3	T_SEL_DSDA1	R/W	1: Loopback ADC 1-bit delta-sigma data to Front DAC
2-0	T_SEL_DSAD	R/W	Select delta-sigma 1-bit input source to AD digital filter.
			000: normal; 100: Front; 101: SSurround; 110: Cen/LFE;
			111: RSurround

CM6206 supports two vendor specific requests. The formats of vendor requests are shown below:

Vendor command writes

Offset	Field	Size	Value (H)	Description
0	bmRequestType	1	43	
1	bRequest	1	01	
2	wValue_L	1	Data	Write data
3	wValue_H	1	00	
4	wIndex	2	Address	Write address
6	wLength	2	0000	

Vendor command reads

Offset	Field	Size	Value (H)	Description
0	bmRequestType	1	C3	
1	bRequest	1	81	
2	wValue	2	0000	
4	wIndex	2	Address	Read address
6	wLength	2	Length	Length must less than or equal to 4

There are only two registers can be accessed via vendor requests.

REG8 Address: 0x08
Reset State: 0xb2

7 6 5 4 3 2 1 0

UNENCRDATA

Bit	Bit	Read/	Function
Number	Mnemonic	Write	
7-0	UNENCRDATA	R/W	Raw data for encryption (write) or after encryption (read)

REG9 0x09 Address:

Reset State:

7	6	5	4	3	2	1	0
MSEL1	SEL 3	SEL 2	PINSEL	MSEL2	HIDEN	SEL 1	SEL 0

Bit	Bit	Read/	Function		
Number	Mnemonic	Write			
7	MSEL1	R	MSEL1 bonding option value		
6	SEL3	R	SEL3 bonding option value		
5	SEL2	R	SEL2 bonding option value		
4	PINSEL	R	PINSEL bonding option value		
3	MSEL2				
2	HIDEN	R	0: No HID Function		
			1: With HID Function		
1	SEL1	R	SEL1 bonding option value		
0	SEL0	R	SEL0 bonding option value		

REG10 Address: 0x0a

> Reset State: 0x05

7	6	5	4	3	2	1	0
			CHIP-I	D			

Bit	Bit	Read/	Function
Number	Mnemonic	Write	
7-0	CHIP-ID	R	Low byte of CHIP ID

Bit

Number

Bit

Mnemonic

Read/

Write

REG11				Address: 0x0					
				Reset State: 0x					
7	6	5	4	3	2	1	0		
	CHIP-ID								

Function

7-0	CHIP-ID	R	High byte	of CHIP ID						
REG12					Address:		0x0c			
			Reset State: 0x0				0x00			
7	6	5	4	3	2	1	0			
FDBK1										

Bit	Bit	Read/	Function
Number	Mnemonic	Write	

7-0	FDBK1	R/W	Lowest b	Lowest byte of Feedback information for ISO OUT						
REG13					Address:		0x0d			
				Reset State:						
7	6	5	4	3	2	1	0			
	FDBK2									

Bit	Bit	Read/	Function
Number	Mnemonic	Write	
7-0	FDBK2	R/W	Middle byte of Feedback information for ISO OUT

REG14 Address: 0x0e Reset State: 0x00 7 3 2 6 5 4 1 0 FDBK3

Bit	Bit	Read/	Function
Number	Mnemonic	Write	
7-0	FDBK3	R/W	Highest byte of Feedback information for ISO OUT

6.2 MCU Interface

CM6206 can communicate with external MCU via two-wire serial interface and act as a slave device. By this way, MCU can read four bytes from and write two bytes to USB host through CM6206. When MCU writes two bytes to CM6206, the data will be transferred to USB host via HID 'Input Report'. USB host will keep polling HID report every 1ms. CM6206 can also transfer four bytes from USB host to MCU. This is accomplished by a 'Set Output Report' HID request issued by USB host.CM6206 will then assert MINT to inform MCU to read them.

CM6206 has one input pin 'SCLK' to get serial clock from MCU, and one open-drain output pin 'SDAT' to send or receive serial signal to/from MCU. As shown below, 'SDAT' should be stable when 'SCLK' is high, and can have transition only when 'SCLK' is low.

Figure 6-1. IIC data to clock protocol

START and STOP conditions shown below are the exception. Every transaction begins from a START, and ends with a STOP, or another START (repeated START).

Figure 6-2. IIC start/stop condition protocol

The figure below demonstrates a transaction example. After every 8 bits sent by the transmitter, the receiver should send one bit low for positive acknowledgement or one bit high for negative acknowledgement. After the negative acknowledgement, a STOP or repeated START should follow.

Figure 6-3. IIC transaction example

The figure below shows typical transactions between MCU and CM6206. After a START, MCU should send 7-bit slave address (7'b0111000) first, and then the 8th bit denotes a read transfer when it's high; or a write transfer when it's low.

MCU write: S 8'h70 0 8'h01 0 Byte[1] Byte[2] 1 MCU read: S 8'h70 0 8'h00 1 S 8'h71 0 Byte[0] 0 Byte[1] 0 Byte[2] 0 Byte[3] 1 Ρ From CM6206 to MCU From MCU to CM6206 S START condition STOP condition 0 Positive acknowledge Negative acknowledge Byte One byte data

In a write transfer, MCU keeps acting as the transmitter. CM6206 regards the first DATA byte as start register address. The second and third DATA bytes are the content that MCU writes to the register addresses.

In a read transfer, two transactions are necessary. MCU resets start register address by the first transaction. Then MCU changes to be the receiver during the second transaction to get four bytes of data.

6.3 Serial EEPROM Content

CM6206 supports four-wire serial EEPROM interface. When an external serial EEPROM is detected, Vendor ID and Product ID reported within Device Descriptor will be derived from the content of serial EEPROM. The organization of serial EEPROM is shown below:

Address = 0	16'h434dX
Address = 1	Vendor ID
Address = 2	Product ID
Address = 3	String 1,String 0
Address = 4	String 3,String 2
Address = 5	String 5,String 4
Address = 6	String 7,String 6
Address = 7	String 9,String 8
Address = 8	String 11,String 10
Address = 9	String 13,String 12
Address = 10	String 15,String 14
Address = 11	String 17,String16
Address = 12	String 19,String 18
Address = 13	String 21,String 20
Address = 14	String 23,String 22
Address = 15	
Address = 16	
Address = 17	
Address = 18	
Address = 19	
Address = 20	{8'dx,MString 0}
Address = 21	{8'dx,MString 1}
Address = 22	{8'dx,MString 2}
Address = 23	{8'dx,MString 3}
Address = 24	{8'dx,MString 4}
Address = 25	{8'dx,MString 5}
Address = 26	{8'dx,MString 6}
Address = 27	{8'dx,MString 7}
Address = 28	{8'dx,MString 8}
Address = 29	{8'dx,MString 9}
Address = 30	{8'dx,MString 10}
Address = 31	{8'dx,MString 11}
Address = 63	16'hXXXX

Users can program serial EEPROM via HID interface, as described in the former section. The first word is a magic code. Only when it matches, CM6206 will regard the serial EEPROM valid.

6.4 Audio Interface Format In Codec Mode

In codec mode, audio data is applied to the internal DAC filters or output from ADC filters, via the Digital Audio Interface. 2 popular interface formats are supported: Left Justified mode and I²S mode. Both formats send the MSB first and note that the DAC filters only support 22-bit.

6.5 Left Justified Mode

In left justified mode, the MSB of DIN is sampled by RTKIPO on the first rising edge of DACBCLK following a DACLRCK transition. The MSB of the ADC data is output on DOUT and changed on the same falling edge of ADCBCLK as ADCLRCK and may be sampled on the rising edge of ADCBCLK. ADCLRCK and DACLRCK are high during the left samples and low during the right samples. The timing diagram is illustrated in Figure 5-16. The polarity of ADCBCLK/DACBCLK and ADCLRCK/DACLRCK can be inverted by SPI register 01h and 02h.

Figure 6-4, Left Justified Mode Timing Diagram

6.6 Power Management

To meet suspend current specification of USB; CM6206 turns off most blocks when entering suspend. The only two exceptions are power-on-reset and regulator.

To meet un-configured current specification of USB, CM6206 provides a control signal PDSW to turn off external components. PDSW would be active when USB host does not configure CM6206. PDSW would also be active when CM6206 is suspended. If serial EEPROM is exist, notice that it should not be powered off anyway because it contains Vendor ID and Product ID which should be returned to USB host before CM6206 is configured.

7 Volume Control

7.1 DAC Volume Control

VOL_*_ <5:0>	Scale (linear)	VOL_*_<5:0>	Scale (linear)	VOL_*_<5:0>	Scale (linear)	VOL_*_<5:0>	Scale (linear)
00	1.000	10	0.724	20	0.448	30	0.171
01	0.973	11	0.696	21	0.420	31	0.144
02	0.944	12	0.669	22	0.392	32	0.116
03	0.917	13	0.641	23	0.365	33	0.088
04	0.890	14	0.613	24	0.337	34	0.061
05	0.862	15	0.586	25	0.309	35	0.033
06	0.834	16	0.558	26	0.282	36	0.006
07	0.807	17	0.530	27	0.254	37	mute
08	0.779	18	0.503	28	0.227		
09	0.751	19	0.475	29	0.199		

Note: VOL_*_stands for VOL_FL_, VOL_FR_, VOL_CF_, VOL_LFE_, VOL_LS_, VOL_RS_, VOL_SL_, VOL_SR_. The volume control is in

linear scale.

7.2 ADC Volume Control

Note: VOL_* stands for VOL_REC_L and VOL_REC_R . The volume control is in log scale.

USB Request Data (Hex)	VOL_*_<4:0>	Scale (log)	USB Request Data (Hex)	VOL_*_<4:0>	Scale (log)
0B7F~0B00	11111	+33dB	047F~0400	10001	+12dB
0AFF~0A80	11110	+31.5dB	03FF~0380	10000	+10.5dB
0A7F~0A00	11101	+30dB	037F~0300	01111	+9dB
09FF~0980	11100	+28.5dB	02FF~0280	01110	+7.5dB
097F~0900	11011	+27dB	027F~0200	01101	+6dB
08FF~0880	11010	+25.5dB	01FF~0180	01100	+4.5dB
087F~0800	11001	+24dB	017F~0100	01011	+3dB
07FF~0780	11000	+22.5dB	00FF~0080	01010	+1.5dB
077F~0700	10111	+21dB	007F~0000	01001	0dB
06FF~0680	10110	+19.5dB	FFFF~FC00	01000	-1.5dB
067F~0600	10101	+18dB	FBFF~F800	00111	-3dB
05FF~0580	10100	+16.5dB	F7FF~F400	00110	-4.5dB
057F~0500	10011	+15dB	F3FF~F000 / 8000	00101	-6dB
04FF~0480	10010	+13.5dB	EFFF~EC00	00100	-6dB

Note: VOL_*_ stands for VOL_REC_L_ and VOL_REC_R_. The volume control is in log scale.

7.3 MIC / Line-in Monitor Volume Control

VOL_*_<4:0>	Scale (log)						
00	+12.0dB	08	0.0dB	16	-12.0dB	24	-24.0dB
01	+10.5dB	09	-1.5dB	17	-13.5dB	25	-25.5dB
02	+9.0dB	10	-3.0dB	18	-15.0dB	26	-27.0dB
03	+7.5dB	11	-4.5dB	19	-16.5dB	27	-28.5dB
04	+6.0dB	12	-6.0dB	20	-18.0dB	28	-30.0dB
05	+4.5dB	13	-7.5dB	21	-19.5dB	29	-31.5dB
06	+3.0dB	14	-9.0dB	22	-21.0dB	30	-33.0dB
07	+1.5dB	15	-10.5dB	23	-22.5dB	31	mute

 $Note: VOL_*_ stands \ for \ VOL_MICM_L_, \ VOL_MICM_R_, \ VOL_LINEM_L_, \ VOL_LINEM_R_. \quad The \ volume \ control \ is \ in \ log \ scale.$

8 Electrical Characteristics

8.1 Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Digital power voltage	DVDD	4.5	5.5	٧
Analog power voltage	AVDD	4.5	5.5	٧
Digital Input Voltage	VIND	-0.5	3.6	٧
Analog Input Voltage	VINA	-0.5	5.5	٧
Operating temperature range	то	0	70	°C
Storage temperature range	TST	-40	125	°C
Power dissipation	PDMAX		900	mW

8.2 Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Digital Operating Voltage	DVDD	4.75	5	5.25	٧
Analog Operating voltage	AVDD	4.75	5	5.25	٧
Operating Ambient Temperature	то	0	25	70	°C

8.3 Power Consumption

Parameter	Min.	Тур.	Max.	Unit
Power Supply Current (Normal)				
AVDD (5.0V)	-	120	-	mA
DVDD (5.0V)	-	35	-	mA

8.4 DC Characteristics (Digital)

PARAMETER	Symbol	Condition	Min.	Тур.	Max.	Unit
Input high voltage	VIH		2.0	-	VDD+0.3	٧
Input low voltage	VIL		-0.5	-	0.8	٧
Output high voltage	VOH	I _{OH} = 4mA	2.4	-	VDD	٧
Output low voltage	VOL	I _{OL} = -4mA	0.0	0.2	0.4	٧
Input Leakage Current	IIL	0 <vin<vdd< td=""><td>-70</td><td>-</td><td>70</td><td>μΑ</td></vin<vdd<>	-70	-	70	μΑ
Input Pin Capacitance	Cin		-	-	10	pF
Pin Inductance	Lpin		-	-	20	nH

8.5 AC Characteristics (Digital)

Parameter	Symbol	Condition	Min.	Max.	Units
Output Rise Slew Rate	SLEWr	0.2Vdd-0.6Vdd load	1	4	V/ns
Output Fall Slew Rate	SLEWf	0.6Vdd-0.2Vdd load	1	4	V/ns

8.6 Analog Performance

The measurements are performed under the circumstance as:

Tambient = 25° C, AVdd = $5.0V \pm 5\%$, DVdd = $3.3V \pm 5\%$, $10k\Omega/50pF$ external load. Input is 1 kHz sine wave; Sampling frequency = 48 kHz; Bandwidth = 20 to 20 kHz; 0dB attenuation; All sound effects such as 3D effects are disabled.

Parameter	Minimum	Typical	Maximum	Units
Full Scale Input Voltage:				
Line Inputs (Mixer)	-	1.1	1.25	Vrms
Line Inputs (A/D)	-	1.1	1.25	Vrms
Mic Inputs (33dB Maxinum)	-	0.1	1.25	Vrms
Full Scale Output Voltage:				
Front_Out	-	1.1	-	Vrms
Side_Surround_Out	-	1.1	-	Vrms
Center / LFE_out	-	1.1	-	Vrms
Back_Surround_Out	-	1.1	-	Vrms
SNR (Idle)				-
D/A	96	97	-	dBFSA
A/D	80	85	-	dBFSA
Dynamic Range (-60dB)				
D/A	-	96	-	dBFSA
A/D	-	91	-	dBFSA
THD+N				
D/A	-	-88	-	dBFS
A/D	-	-88	-	dBFS
Frequency Response				
D/A	16	-	19,200	Hz
A/D	16	-	19,200	Hz
Transition Band	19,200		28,800	Hz
Stop Band	28,800		8	Hz
Stop Band Rejection	-	-75	-	dB
Out-Of-Band Rejection	-	-65	-	dB
Power Supply Rejection Ratio	-	-40	-	dB
Master Volume Gain (38 steps)				
Step Size		Linear		
Control Range	-34.5		0	dB
Analog Input Gain (48 steps)				
Step Size		1.5		dB
Control Range	-36	-	+22.5	dB
Recording Gain (26 steps)				
Step Size		1.5		dB
Control Range	-6	-	+33	dB
Input Impedance				
Line-In, CD, MIC, PCSPK	-	20	-	ΚΩ
Vrefout	-	2.25	-	V

9 Audio Performance Curves

9.1 10K loading (Line Out / Surround / Center LFE / Side Surround) Frequency Response

Front out

Center LFE out

Surround out

Side Surround out

9.2 10K loading (Line Out / Surround / Center LFE / Side Surround) Passband Ripple

Audio Precision 10/18/06 15:38:05 40.5 40.5 40.6 40.7 4

9.3 10K loading (Line Out / Surround / Center LFE / Side Surround) THD+N Curve

Front out

Audio Precision 10/18/06 14:59:21

Center LFE Out

Surround out

Side Surround out

9.4 10K loading (Line Out / Surround / Center LFE / Side Surround) Dynamic Range

Front out

Center LFE Out

Surround out

Side Surround out

9.5 32 ohm Headphone Loading Frequency Response / Passband Ripple

9.6 32 ohm Headphone Loading THD+N Curve / Dynamic Range

9.7 A-D Line in FSIV / THD+N Curve

9.8 A-D Line in Frequency Response / Passband Ripple

9.9 A-D Mic in FSIV / THD+N Curve

9.10 A-D Mic in Frequency Response / Passband Ripple

Reference

USB-IF, USB Specification, Revision 1.1 and 2.0, and USB Audio Device Class Specification, Revision 1.0.

- End of Specifications -

C-MEDIA ELECTRONICS INC.

6F., 100, Sec. 4, Civil Boulevard, Taipei, Taiwan 106 R.O.C.

TEL: +886-2-8773-1100 FAX: +886-2-8773-2211

E-MAIL: sales@cmedia.com.tw

Disclaimer:
Information furnished by C-Media Electronics Inc. is believed to be accurate and reliable. However, no responsibility is assumed by C-Media Electronics Inc. for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of C-Media. Trademark and registered trademark are the property of their respective owners.

www.cmedia.com.tw

Copyright © C-Media Electronics Inc.

Rev. 2.3 | Page 35/37