A note on duality for the weighted sparse group Lasso

M. Massias

November 21, 2019

Notation The positive part function is $(\cdot)_+ = \max(\cdot, 0)$, which acts entry-wise when applied to vectors. For two vectors of same length, inequality, multiplication and division are meant entry-wise. In the sequel $w \in \mathbb{R}^n_{++}$ is a fixed vector of strictly positive weights. The soft-thresholding of $x \in \mathbb{R}^n$ with weights w, is $ST(x, w) \in \mathbb{R}^n$, whose i-th entry is $(x_i - w_i)_+$. Let $||x||_{1,w} \triangleq \sum_{i=1}^n w_i |x_i|$ denote the weighted ℓ_1 -norm on \mathbb{R}^n (it is a norm since all w_i are positive).

Proposition 1. The dual norm of $\|\cdot\|_{1,w}$ is the weighted ℓ_{∞} -norm with inverse weights, $\|x\|_{\infty,1/w} \triangleq \max_i |x_i|/w_i$.

Proof Recall that the dual norm at x is given by $\sup_{\|u\|_{1,w} \le 1} x^{\top}u$. By Hölder's inequality,

$$x^{\top} u = (x/w)^{\top} (wu) \le ||x/w||_{\infty} ||wu||_{1} = ||x||_{\infty, 1/w} ||u||_{1,w} . \tag{1}$$

It remains to see that the value $||x||_{\infty,1/w}$ is attained, for u vanishing everywhere except $u_j = (\operatorname{sign} x_j)/w_j$ where $j = \operatorname{arg} \max_i |x_i|/w_i$.

1 Weighted epsilon norm

Definition 2. Let $x \in \mathbb{R}^n$. Let $R, \alpha \in \mathbb{R}_+$. The weighted epsilon norm of x is defined as the smallest positive solution in ν of

$$\sum_{i=1}^{n} (|x_i| - \nu \alpha w_i)_+^2 = (\nu R)^2 .$$
 (2)

Remark 3. Equation (2) can be rewritten $\|ST(x,\nu\alpha w)\|_2 = \nu R$. With the notation $h(x,\nu) \triangleq \|ST(x,\nu\alpha w)\|_2 - \nu R$, Equation (2) is also equivalent to $h(x,\nu) = 0$. When $x \neq 0$, it is clear that the solution is strictly positive, and if $\alpha \neq 0$ it is then the solution of:

$$\sum_{i=1}^{n} \left(\frac{|x_i|}{\alpha \nu} - w_i \right)_{+}^{2} = \frac{R^2}{\alpha^2} . \tag{3}$$

Remark 4. The cases R = 0 or $\alpha = 0$ are trivial:

- if R = 0, the smallest value making $\sum_{i=1}^{n} (|x_i| \nu \alpha w_i)_+^2$ vanish is $\nu = \max_i \frac{x_i}{\alpha w_i} = 0$
- if $\alpha = 0$, $\nu = \frac{\|x\|_2}{R}$.

In the following, we consider $\alpha > 0$ and R > 0.

Proposition 5. The solution of Equation (2) is unique.

Proof The function $\nu \mapsto h(x,\nu)$ is strictly decreasing, because its first term is nonincreasing and its second term is strictly decreasing. It is continuous, with h(x,0) = $||x||_2 \ge 0$ and $\lim_{\nu \to \infty} h(x,\nu) = -\infty$. Hence, $h(x,\cdot)$ takes the value 0 exactly once.

Remark 6. For $x \neq 0$, it is trivial to see that $\nu(x) < \frac{\|x\|_{\infty,1/w}}{\alpha}$, because $h(x, \frac{\|x\|_{\infty,1/w}}{\alpha}) < \infty$

Theorem 7. $\nu(\cdot)$ is a norm.

Proof It is easy to check that $\nu(x) = 0 \Leftrightarrow x = 0$ and $x \mapsto \nu(x)$ is positively homogeneous. It remains to show that $x \mapsto \nu(x)$ satisfies the triangular inequality. Let $x, y \in \mathbb{R}^n$.

$$\begin{split} \|\mathrm{ST}(x+y,\alpha(\nu(x)+\nu(y))w)\|_2 &= \|(|x+y|-\alpha(\nu(x)+\nu(y))w)_+\|_2 \\ &\leq \|(|x|+|y|-\alpha(\nu(x)+\nu(y))w)_+\|_2 \\ &\leq \|(|x|-\alpha\nu(x)w+|y|-\alpha\nu(y)w)_+\|_2 \\ &\leq \|(|x|-\alpha\nu(x)w)_+\|_2 + \|(|y|-\alpha\nu(y)w)_+\|_2 \\ &= \nu(x)R + \nu(y)R, \end{split}$$

where we use the fact that $0 \le u \le v \Rightarrow ||u||_2 \le ||v||_2$, and the triangular inequality for $|\cdot|$ and $(\cdot)_+$. We just showed that $h(x+y,\nu(x)+\nu(y))\leq 0$. Since $h(x+y,\cdot)$ is decreasing and $h(x+y,\nu(x+y)) = 0$, this means $\nu(x+y) \ge \nu(x) + \nu(y)$.

Lemma 8. $\forall x \in \mathbb{R}^n, \exists ! (x^R, x^\alpha) \in \mathbb{R}^n, ||x^R|| = R\nu(x), ||x^\alpha||_{\infty, 1/w} = \alpha\nu(x), x = x^R + x^\alpha.$

Proof Let $x \in \mathbb{R}^n$. We assume x has all components positive, but the proof is similar in the general case. Define x^R and x^{α} by

$$x_i^R = \begin{cases} x_i - \nu(x)\alpha w_i , & \text{if } x_i - \nu(x)\alpha w_i > 0 ,\\ 0 , & \text{otherwise } . \end{cases}$$
 (4)

$$x_i^R = \begin{cases} x_i - \nu(x)\alpha w_i &, & \text{if } x_i - \nu(x)\alpha w_i > 0 \\ 0 &, & \text{otherwise } . \end{cases}$$

$$x_i^\alpha = \begin{cases} \nu(x)\alpha w_i &, & \text{if } x_i - \nu(x)\alpha w_i > 0 \\ x_i &, & \text{otherwise } . \end{cases}$$

$$(4)$$

It is clear that $x = x^R + x^{\alpha}$. Additionally, $||x^R||^2 = \sum_i (x_i - \nu(x)\alpha w_i)_+^2 = (\nu(x)R)^2$ and $||x^{\alpha}||_{\infty,1/w} = \alpha\nu(x)$ by Remark 6.

Now we show the uniqueness. Let v such that $||v||_{\infty,1/w} = \alpha \nu(x)$.

$$||x - v||^2 = ||x^R + x^\alpha - v||^2$$

$$= ||x^R||^2 + 2(x^R)^\top (x^\alpha - v) + ||x^\alpha - v||^2$$
(6)

But $(x^R)^{\top}(x^{\alpha}-v)$ is positive, as a sum of n terms which are either 0 (if $x_i-\nu(x)\alpha w_i \leq 0$), or positive (because $||v||_{\infty,1/w} = \alpha\nu(x)$). Hence

$$||x - v||^2 \ge ||x^R||^2 + ||x^\alpha - v||^2 = (R\nu(x))^2 + ||x^\alpha - v||^2 , \qquad (7)$$

and if v + (x - v) is a decomposition of x satisfying the imposed conditions, i.e. $||x - v|| = R\nu(x)$, then we must have $||x^{\alpha} - v|| = 0$.

Proposition 9 (Unit ball of weighted epsilon norm). The unit ball of the weighted epsilon norm is given by:

$$\{x \in \mathbb{R}^n : \nu(x) \le 1\} = \{u + v : u, v \in \mathbb{R}^n, ||u|| \le R, ||v||_{\infty, 1/w} \le \alpha\}$$
 (8)

Proof The left-right inclusion is proved by Lemma 8.

For the right-left inclusion, let $u, v \in \mathbb{R}^n$ s.t. $||u|| \leq R, ||v||_{\infty, 1/w} \leq \alpha$.

$$h(u+v,1) = \left(\sum_{i=1}^{n} (|u_i+v_i| - \alpha w_i)_+^2\right)^{\frac{1}{2}} - R$$

$$\leq \left(\sum_{i=1}^{n} (|u_i|_+)^2\right)^{\frac{1}{2}} + \left(\sum_{i=1}^{n} (|v_i| - \alpha w_i)_+^2\right)^{\frac{1}{2}} - R$$

$$= ||u|| - R$$

$$< 0.$$
(9)

Hence $\nu(u+v) \leq 1$.

Theorem 10. The dual norm of $\nu(\cdot)$ is $R\|\cdot\| + \alpha\|\cdot\|_{1,w}$.

Proof The value of the dual norm at $y \in \mathbb{R}^n$ is

$$\max_{\nu(x) \le 1} y^{\top} x = \max_{\substack{\|u\| \le R \\ \|v\|_{\infty, 1/w} \le \alpha}} y^{\top} (u+v)$$

$$= \max_{\|u\| \le R,} y^{\top} u + \max_{\|v\|_{\infty, 1/w} \le \alpha} y^{\top} v$$

$$= R \|y\| + \alpha \|y\|_{1,w}.$$

2 Computing the weighted epsilon norm

Without loss of generality we assume that for all $i = 1, ..., n, x_i \ge 0$. Let $(x_{(1)}, ..., x_{(n)})$ be a reordering of $(x_1, ..., x_n)$ such that $x_{(i)}/w_{(i)}$ is a non-increasing sequence.

Theorem 11. With the convention $x_{(n+1)}/w_{(n+1)} = 0$, and for $a_j \triangleq \sum_{i=1}^j \left(\frac{x_{(i)}w_{(j)}}{x_{(j)}} - w_{(i)}\right)^2$, there exists an index $i_0 \in [1, n]$ such that

$$R^2/\alpha^2 \in [a_{i_0}, a_{i_0+1}]$$
 (10)

Furthermore, this index can be computed in $\mathcal{O}(n \log n)$ operations.

Proof Since the intervals $[x_{(i+1)}/w_{(i+1)}, x_{(i)}/w_{(i)}]$ form a partition of $[0, x_{(1)}/w_{(1)}]$, and $\alpha\nu(x) < ||x||_{\infty,1/w} = x_{(1)}/w_{(1)}$ (Remark 6), there exists an index $i_0 \in [1, n]$ such that

$$\nu(x) \in \left[\frac{x_{(i_0+1)}}{\alpha w_{(i_0+1)}}, \frac{x_{(i_0)}}{\alpha w_{(i_0)}} \right] . \tag{11}$$

Since the function $f: \nu \mapsto \sum_{1}^{n} (\frac{x_{(i)}}{\alpha \nu} - w_{(i)})_{+}^{2}$ is decreasing,

$$f(\nu(x)) \in \left[f\left(\frac{x_{(i_0)}}{\alpha w_{(i_0)}}\right), f\left(\frac{x_{(i_0+1)}}{\alpha w_{(i_0+1)}}\right) \right[$$
 (12)

Moreover, $f(\nu(x)) = \sum_{1}^{n} (\frac{x_{(i)}}{\alpha \nu(x)} - w_{(i)})_{+}^{2} = \frac{R^{2}}{\alpha^{2}}$, and for every index $i \in [1, n]$, $i \ge i_{0} \implies \frac{x_{(i)}}{w_{(i)}} \le \frac{x_{(i_{0})}}{w_{(i_{0})}} \implies \frac{x_{(i)}}{x_{(i_{0})}/w_{(i_{0})}} - w_{(i)} \le 0$, hence

$$f\left(\frac{x_{(i_0)}}{\alpha w_{(i_0)}}\right) = \sum_{i=1}^{n} \left(\frac{x_{(i)}}{x_{(i_0)}/w_{(i_0)}} - w_{(i)}\right)_{+}^{2}$$

$$= \sum_{i=1}^{i_0} \left(\frac{x_{(i)}w_{(i_0)}}{x_{(i_0)}} - w_{(i)}\right)^{2}$$

$$= a_{i_0} , \qquad (13)$$

which proves Equation (10). If we define $S_j^{x^2} \triangleq \sum_{i=1}^{j} x_{(i)}^2$, $S_j^{xw} \triangleq \sum_{i=1}^{j} x_{(i)} w_{(i)}$ and $S_j^{w^2} \triangleq \sum_{i=1}^{j} w_{(i)}^2$, then we have:

$$a_{i_0} = \frac{w_{(i_0)}^2}{x_{(i_0)}^2} S_{i_0}^{x^2} - 2 \frac{w_{(i_0)}}{x_{(i_0)}} S_{i_0}^{xw} + S_{i_0}^{w^2} .$$
(14)

Thus, Equation (14) enables us to compute i_0 in $\mathcal{O}(n \log(n))$ operations at most: sorting the values x_i/w_i , and then incrementally computing a_1 , a_2 , etc. until a value larger than R^2/α^2 is reached. Proposition 14 shows that the cost is in fact lower.

Remark 12. In the definition of a_j , the sum could stop at j-1 since the last term is 0. We keep it in order to have only i_0 as index in Equation (14).

Theorem 13. With $\Delta \triangleq \alpha^2 (S_{i_0}^{xw})^2 - (\alpha^2 S_{i_0}^{w^2} - R^2) S_{i_0}^{x^2}$, we have

$$\nu(x) = \begin{cases} \frac{\alpha^2 S_{i_0}^{xw} - \sqrt{\Delta}}{\alpha^2 S_{i_0}^{w^2} - R^2} , & \text{if } (\alpha^2 S_{i_0}^{w^2} - R^2) \neq 0 ,\\ \frac{S_{i_0}^{x^2}}{2\alpha S_{i_0}^{xw}} , & \text{otherwise } . \end{cases}$$

Proof By the proof of Theorem 11, i_0 is the largest index such that $x_{(i_0)}/\nu \ge \alpha w_{(i_0)}$, we have

$$R^{2} = \sum_{i=1}^{i_{0}} \left(\frac{x_{(i)}}{\nu} - \alpha w_{(i)} \right)^{2}$$
$$= \frac{1}{\nu^{2}} S_{i_{0}}^{x^{2}} - \frac{2}{\nu} \alpha S_{i_{0}}^{xw} + \alpha^{2} S_{i_{0}}^{w^{2}}.$$

or equivalently

$$\nu^2 \left(\alpha^2 S_{i_0}^{w^2} - R^2 \right) - 2\nu \alpha S_{i_0}^{xw} + S_{i_0}^{x^2} = 0 .$$

Proposition 14. We have the following lower bound for $\nu(x)$: $\nu(x) \geq ||x||_{\infty,1/(R+\alpha w)}$, hence when computing i_0 we can ignore indices such that x_i/w_i is smaller than $\alpha ||x||_{\infty,1/(R+\alpha w)}$ (hence sort a smaller vector).

Proof Let $k \in \arg\max_i \frac{x_i}{R + \alpha w_i}$ i.e., $||x||_{\infty, 1/(R + \alpha w)} = \frac{x_k}{R + \alpha w_k}$. We have

$$R^{2} = \sum_{i=1}^{n} \left(\frac{x_{i}}{\nu(x)} - \alpha w_{i} \right)_{+}^{2} \ge \left(\frac{x_{k}}{\nu(x)} - \alpha w_{k} \right)_{+}^{2} . \tag{15}$$

Assume $\nu(x) < \|x\|_{\infty,1/(R+\alpha w)}$, then by definition of k, one has $\nu(x) < \frac{x_k}{R+\alpha w_k}$ or equivalently $(\frac{x_k}{\nu(x)} - \alpha w_k) = (\frac{x_k}{\nu(x)} - \alpha w_k)_+ > R > 0$. This leads to a contradiction in Equation (15), so $\nu(x) \ge \|x\|_{\infty,1/(R+\alpha w)}$.

Algorithm 1 Computation of Weighted Epsilon Norm

```
input : x, w, \alpha, R
     1 if \alpha = 0 then
     2 Trivial case
     3 if R=0 then
  4 | Trivial case

5 Sort (x_1, \ldots, x_n) and (w_1, \ldots, w_n) by decreasing values of \frac{x_i}{w_i}

6 S_1^{x^2} = x_{(1)}^2 S_1^{w^2} = w_{(1)}^2 S_1^{xw} = x_{(1)}w_{(1)}

7 for i = 2, \ldots, n+1 do

8 | S_i^{x^2} = S_{i-1}^{x^2} + x_{(i)}^2

9 | S_i^{w^2} = S_{i-1}^{w^2} + w_{(i)}^2

10 | S_i^{xw} = S_{i-1}^{xw} + x_{(i)}w_{(i)}

11 | if R^2/\alpha^2 \le a_i \triangleq \frac{w_{(i)}^2}{x_{(i)}^2} S_i^{x^2} - 2\frac{w_{(i)}}{x_{(i)}} S_i^{xw} + S_i^{w^2} then

12 | i_0 = i-1

13 | break
     4 | Trivial case
 12
                                  break
14 if \alpha^2 S_{i_0}^{w^2} - R^2 \neq 0 then

15 \nu = \frac{\alpha^2 S_{i_0}^{w^2} - \sqrt{\Delta}}{\alpha^2 S_{i_0}^{w^2} - R^2}
 16 else
```

18 return ν