UPPSALA UNIVERSITET
MATEMATISKA INSTITUTIONEN
ERNST DIETERICH
CECILIA HOLMGREN
JIMMY KUNGSMAN

Vårterminen 2009 Civilingenjörsprogrammet X Gymnasielärarprogrammet Geokandidatprogrammet Fristående kurser

Prov i matematik Linjär algebra och geometri I, 5hp 2009-06-10

Skrivtid: 14.00–19.00. Inga hjälpmedel förutom skrivdon. Lösningarna skall åtföljas av förklarande text. Varje uppgift ger maximalt 5 poäng.

1. Lös ekvationssystemet

$$\begin{cases} 2y - z = 2 \\ 2x + 3y - 2z = 1 \\ 2w + 4x + 5y + z = 3 \end{cases}$$

2. Låt
$$S = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$$
 och $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- (a) Visa att S är inverterbar, och ange inversen till S.
- (b) Bestäm alla matriser X som uppfyller ekvationen $SXS^{-1} = 4I$.

3. Låt
$$A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$$
.

- (a) Finn elementärmatriser E_1, E_2, E_3 så att $E_3E_2E_1A = I$.
- (b) Skriv A som produkt av elementärmatriser.
- 4. (a) För vilka värden på x är matrisen

$$A = \left(\begin{array}{ccc} x & 1 & 1\\ 1 & x & 1\\ 1 & 1 & x \end{array}\right)$$

inverterbar?

(b) Bestäm A^{-1} för alla sådana x att A^{-1} finns.

- 5. Planet π går genom punkterna A = (0, 3, 3), B = (3, 0, 3) och C = (3, 3, 0).
- (a) Finn planets ekvation på formen ax + by + cz + d = 0.
- (b) Beräkna (det minsta) avståndet mellan origo och planet π .
- (c) Finn den punkt N i planet π som ligger närmast origo.
- 6. Givet är punkterna $A=(0,2,2),\ B=(2,0,2)$ och C=(2,2,0) i rymden. Beräkna
- (a) arean av triangeln med hörnpunkterna A, B, C;
- (b) volymen av parallellepipeden som späns upp av vektorerna $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC};$
- (c) vinkeln mellan vektorerna \overrightarrow{OA} och \overrightarrow{OB} .
- 7. Linjen $\ell:(x,y,z)=(0,1,1)+t(1,1,0),\ t\in\mathbb{R}$, speglas i planet $\pi:x+2y+z=0$ till sin spegelbild ℓ' . Finn ℓ' :s ekvation på parameterform.
- 8. Den sammansatta operatorn $h = gfg^{-1}$ på \mathbb{R}^3 ges av rotationen f kring x-axeln med vinkel α , moturs i yz-planet, och speglingen g i xz-planet. Finn h:s matris, och tolka h geometriskt.

LYCKA TILL!