GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA

Termodinámica

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
	02 (12 B2 B () () () () ()	1 TOTAL DE HORAO
Cuarto Semestre	170401	85
	110401	00

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al alumno los conocimientos fundamentales de la termodinámica en equilibrio, así como algunas de sus aplicaciones importantes a problemas de máquinas térmicas, sistemas químicos como soluciones débiles y fuertes, reacciones químicas, etc. .

TEMAS Y SUBTEMAS

1. Conceptos fundamentales y ley cero de la termodinámica

- 1.1 Sistemas termodinámicos cerrados, abiertos y aislados, frontera (o paredes) y alrededores. Tipos de paredes: aislantes, adiabáticas, diatérmicas.
- 1.2 Variables termodinámicas (extensivas e intensivas).
- 1.3 Volumen, volumen específico, densidad, densidad relativa y peso específico.
- 1.4 Equilibrio térmico.
- 1.5 Ley cero de la termodinámica.
- 1.6 Concepto de temperatura.
- 1.7 Propiedades termométricas, termómetros, escalas de temperaturas.

2. Sistemas termodinámicos simples

- 2.1 Equilibrio termodinámico.
- 2.2 Ecuación de estado.
- 2.3 Sistemas hidrostáticos.
- 2.4 Coeficiente de dilatación volumétrica y coeficiente compresibilidad isotérmica.
- 2.5 Diferenciales exactas de las variables termodinámicas.
- 2.6 Otros sistemas termodinámicos alambres estirados, láminas de líquido estiradas, losas dieléctricas, celdas electroquímicas, varillas paramagnéticas.

3. Trabajo en termodinámica

- 3.1 Definición de trabajo en Mecánica Clásica.
- 3.2 Proceso cuasi estático.
- 3.3. Trabajo al cambiar el volumen de un sistema hidrostático.
- 3.4 Interpretación gráfica del trabajo en el diagrama P-V
- 3.5 El trabajo hidrostático depende de la trayectoria.
- 3.6 Calculo de $\int PdV$ para procesos cuasi-estáticos.
- 3.7 Trabajo en algunos sistemas termodinámicos (trabajo mecánico al estirar un alambre, trabajo al variar el área de una película líquida superficial, trabajo eléctrico, trabajo magnético, trabajo químico.)
- 3.8 Trabajo termodinámico generalizado.

4. Energía y primera ley de la termodinámica

- 4.1 Trabajo y calor.
- 4.2 Energía interna.
- 4.3 Trabajo adiabático.
- 4.4 Primera ley de la termodinámica.
- 4.5 Capacidad calorífica y su medición.
- 4.6 Ecuaciones para un sistema hidrostático.

COORDINACIÓN

GENERAL DE EDUCACIÓN

MEDIA SUPERIOR Y SUPERIOR

.E.E.P.D

5. Aplicaciones de la primera ley de la termodinámica

- Ecuación de estado de un gas en general. 5.1
- 5.2 Condiciones para definir el gas ideal.
- 5.3 Ecuación de estado del gas ideal.
- Determinación de las capacidades caloríficas. 5.4
- Ecuaciones de energía del sistema (ecuación energética). 5.5
- 5.6 Energía interna de un gas ideal.
- 5.7 Lev de Joule.
- 5.8 Proceso adiabático en un gas ideal.
- Representación X-Y y su aplicación a otros sistemas termodinámicos. 5.9
- 5.10 Máquinas térmicas. Rendimiento y eficacia.
- 5.11 Ciclo de Carnot,
- 5.12 Refrigerador de Carnot.

6. Segunda ley de la termodinámica

- 6.1 Transformación de trabajo en calor y viceversa.
- 6.2 Enunciados de Kelvin-Planck y de Clausius de la segunda ley de la termodinámica.
- Equivalencia de los enunciados Kelvin-Planck y Clausius.
- Teorema y corolario de Carnot. Escala termodinámica de temperaturas.
- Cero absoluto de temperaturas y eficiencia de Carnot. 6.5
- 6.6 Teorema de Clausius, Entropía.
- 6.7 Principio de Caratheodory.
- 6.8 Entropía de un gas ideal.
- 6.9 Diagrama TS.
- 6.10 Entropía en procesos reversibles e irreversibles.
- 6.11 Calor y entropía en procesos irreversibles.
- 6.12 Principio del incremento de entropía.
- 6.13 Entropía de una mezcla de gases ideales no reaccionantes.
- 6.14 Entropía y desorden.

7. Potenciales termodinámicos: Energía interna, entalpía, energía libre de Helmholtz y energía libre de Gibbs dependientes de la composición

- 7.1 Entalpía.
- 7.2 Energía libre de Helmholtz y Energía libre de Gibbs.
- 7.3 Relaciones de Maxwell
- 7.4 Ecuaciones TdS.
- Ecuaciones de energía interna.
- 7.6 Tercera ley de la termodinámica o principio de Nernst.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso. Además se considerará el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- Heat and Thermodynamic, Zemansky, M. W., Dittman, H. H., sevenus equality and the specific problem.
 Introducción a la termodinámica clásica, García Colín Scherer, L., terces adición: trillas.
 Problemario de termodinámica clásica: García Colín Scherer, L. Por problem.
 Tribaculários Castellan G. W., segunda edición 1987: Addison-Wesley III.

MEDIA SUPERIOR Y SUPERIOR

Libros de Consulta:

- 1. **De la Máquina de vapor al cero absoluto (calor y entropía)**, García Colín Scherer, L., tercera edición: Fondo de Cultura Económica.
- 2. Lecciones de Física: Ortega Girón, M. R., Ibáñez Mengual, J. A., Departamento de Física Aplicada Universidad de Córdoba.
- 3. Thermodynamic and an introduction to thermostatics, Callen, H. second edition: John Wiley & Sons, U. S. A.

PERFIL PROFESIONAL DEL DOCENTE

Maestría en Física, Doctorado en Física con experiencia en docencia.

