CLAIMS

What is claimed is:

508 BZ

- A method for collecting, assimilating and utilizing data from a variety of sources for determining the regulatory requirements and for generating the related compliance reports for an industry, the method comprising the steps of:
 - a. collecting external data required for compliance requirements of a compliance model;
 - b. collecting data from a user;
 - c. assimilating the external data and the user data in a processor to determine compliance by the user;
 - d. automatically generating a report unique to the user data containing required compliance information.
 - 2. The method of claim 1, wherein the external data is public data.
- 3. The method of claim 1 wherein the compliance model is a government agency compliance requirement.
- 4. The method of claim 1, further including the step of electronically submitting the generated report to a relevant agency.
 - 5. The method of claim 1, wherein the collected public data is industry specific.
 - 6. The method of claim 1, wherein the collected user data is facility specific.
 - 7. The method of claim 6, wherein the collected user data is equipment specific.
 - 8. The method of claim 6, wherein the collected user data is location specific.
- 9. The method of claim 1, further including the step of creating a library of available data from the collected public data and non-confidential portions of the collected

The method of claim 1, further including the steps of linking the public data to on-line databases and importing data from said databases into the collected public data.

- 11. The method of claim 1, wherein there is further included a mathematical database and wherein data in the collected public data and in the collected user data is imported into the mathematical database for calculating compliance data in the generation of a report.
- 12. The method of claim 11, wherein the mathematical database is an air module database for calculating hydrocarbon emissions from a crude oil storage tank.
- 13. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating hydrocarbon emissions from storage tanks:

following primary calculation formulas for calculations:
$$L_T = L_S + L_W$$

$$L_S = 365 V_V W_V K_E K_S$$

$$V_V = \frac{\pi}{4} D^2 (H_S - H_L + H_{RO})$$

$$W_V = \frac{M_V P_{VA}}{R T_{LA}}$$

$$T_{LA} = .044 T_{AA} + 0.56 T_B + 0.0079 a I$$

$$T_B = T_{AA} + 6a - 1$$

$$K_E = \frac{dT_V}{T_{LA}} + \frac{dP_V - dP_B}{P_A - P_{VA}}$$

$$dT_V = .072dT_A + 0.028I$$

$$K_{S} = \frac{1}{1 + 0.053 P_{VA} H_{VO}}$$

$$H_{VO} = H_S - H_L + H_{RO}$$

$$L_W = 0.0010 M_V P_{VA} Q K_N K_P$$

Symbol	Name	Description	Type	Source
Symbol	\			
π	Pi	Constant dimensionless factor = 3.1415	Numeric	Mathematical constant (given)
a	Tank paint solar absorbence factor	Dimensionless empirical factor which has been established through experience.	Numeric	Reference from Table 12.3-7 in AP42 reference and based on color. Stored in System Library.
D	Tank diameter	Gross sectional linear measurement of the cylindrical tank. Units=linear	Numeric	Client data stored in System Database
H _L	Liquid Height	Average daily tank gauge reading which shows how much is in the tank. Units=linear (e.g. ft)	Numeric	Client data stored in System Database
H _{RO}	Roof Outage	Linear measurement of tank roof height measured from the vertical edge of the tank shell to the top of the dome or coned roof. Units = linear (l)	Numeric	Client data stored in System Database
H_S	Shell Height	Linear measurement of tank height excluding the height of the roof section of the tank. Units = linear (l)	Numeric	Client data stored in System Database
H _{vo}	Vapor Space Outage	The height of the inside tank space minus the liquid level in linear units, e.g. ft	Numeric	Result of Equation 3.1.10
I	Daily solar insolation factor	Empirical factor based on tank materials and conditions. Units = BTU / ft ³ - day	Numeric	Referenced from Table 12.3-6 in AP42 reference. Stored in System Library.
K _E	Vapor space expansion factor	Dimensionless empirical factor used to calculate standing losses in Equation (1)	Numeric	Result of Equation 3.1.7
K _N	Turnover factor	Dimensionless empirical factor	Numeric	Taken from Figure 12.3-6 in AP42 reference. Stored in System Library.
K _P	Working loss product factor	Dimensionless empirical factor which is product specific, i.e. 0.75 for crude oil and 1.0 for all other organic liquids.	Numeric	Included by reference. Stored in System Library.
K _s	Vented Vapor Saturation Factor	Dimensionless factor used to calculate the Standing Storage Losses.	Numeric	Result of Equation 3.1.9

SubA'

i di

Symbol	Name	Description	Type	Source
$L_{\rm S}$	Standing Losses	Hydrocarbon air emissions from crude and condensate above ground storage tanks that are given off while the tank is standing idle (not filling and emptying) and contains some quantity of fluid. Measured in lbs/hr, lbs/day, and tons/year.	Numeric	Result of Equation 3.1.2
L_{T}	Total losses	Hydrocarbon air emissions from crude and condensate above ground storage tanks that are a sum of the working and standing losses as described above. Measured in lbs/hr, lbs/day, and tons/year.	Numeric	Result of Equation 3.1.1
L _w	Working Losses	Hydrocarbon air emissions from crude and condensate above ground storage tanks that are given off during operations (filling and emptying) and contains some quantity of fluid. Measured in lbs/hr, lbs/day, and tons/year.	Numeric	Result of Equation 3.1.11
Mv	Vapor Molecular Weight	Molecular weight or the weight of an Avogadro's number of molecules of the gases in the vapor space volume. Units = mass/mole (e.g. lb/lb mole)	Numeric	Taken from reference tables in the AP42 reference. Stored in System Library.
P _A	Atmospheric pressure	Standard ambient atmospheric pressure as measured via barometer, e.g. 14.7 psia	Numeric	Constant by reference. Stored in System Library.
dP _B	Breather vent pressure setting range.	The range in pressures at which the tank vent or hatch will relieve under the pressure of its contents.	Numeric	Client data stored in System Database. Otherwise the program will provide a default value if the user chooses.
dPv	Daily vapor pressure range	The range (or change) in the vapor pressure caused by the variance in maximum and minimum daily ambient temperatures. Provided by reference in pressure measurements.	Numeric	Derived from Figure 12.3-1 and Table 12.3-6 in AP42 reference. Stored in System Library.
P _{VA}	Vapor pressure	True vapor pressure of the liquid at the average liquid surface temperature. Units = force / unit area (f/l²) (lbs/ inch²)	Numeric	Vapor sample data stored in System Database or table in AP42 reference stored in System Library

Symbol	Name	Description	Type	Source
Q	Annual net production through-put	The annual volume of hydrocarbons, e.g. crude oil, that is stored in the tank being considered. This figure is taken from actual lease production volumes. Volumetric units, e.g. bbls	Numeric	Client data stored in System Database
R	Ideal Gas Constant	Ideal gas constant calculated as (standard atmospheric pressure - ideal molar volume of gas / mole - standard temperature) (e.g. psia - ft³ / lb-mole - °R (Rankine) = 10.731)	Numeric	Calculated from constants / Almost always used in USA as 10.731. Stored in System Library.
dT _A	Daily average temperature range (°R, °K)	The difference between daily minimum and maximum temperatures taken from Table 12.3-6 as determined by regional location.	Numeric	Taken from Table 12.3-6 in AP42 reference. Stored in System Library.
T _{AA}	Daily average ambient temperature	Average of daily maximum and minimum ambient temperatures. Measured in °R or °K.	Numeric	Table 12.3 in AP42 reference. Stored in System Library.
Тв	Liquid bulk temperature	Liquid bulk temperature at standard temp Units = °R or °K	Numeric	Result of Equation 3.1.6
T _{LA}	Daily average liquid surface temperature	The average temperature measured at the surface of the liquid in the tank. In this case the temperature is calculated from ambient temperatures rather that measured. Units = °R(Rankine)	Numeric	Result of Equation 3.1.5
dTv	Daily vapor temperature range	The daily range in temperature of the vapor in the vapor space of the tank as described above; calculated.	Numeric	Result of Equation 3.1.8
Vv	Vapor space volume	Volumetric calculation of the average amount of space in the tank (overhead) that is not occupied by liquids. Measurement = 1 ³	Numeric	Result of Equation 3.1.3
Wv	Vapor density	Calculated density of the gases(vapors) in the vapor space calculated in equation (1)(a) Units= mass/unit volume (m/l³) (e.g. lb/ft³)	Numeric	Result of Equation 3.1.4

14. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating hydrocarbon emissions from internal combustion engines:

$$\sum_{i=1 \text{ to n}} \frac{EF_i g}{1 hp hr} \times \frac{\text{Rated } hp_i}{1} \times \frac{24 \text{ hrs}}{\text{day}} \times \frac{365 \text{ days}}{\text{year}} \times \frac{1 \text{ lb}}{453.6 \text{ g}} \times \frac{1 \text{ ton}}{2,000 \text{ lbs}} = \frac{\text{Emissions tons}}{\text{year}}$$

Symbol	Name	Descripțion	Туре	Source
EF	Emission Factor g/hp/hr	The amount of an individual pollutant that will be generated per horse power hour of operation, e.g. 2.0 grams NOx generated in grams per hp per hour.	Numeric	Provided by the user or obtained from the equipment data base by the id number or model of compressor
HP (hp)	Horse power rating	The power rating of the compressor in horse power per hour	Numeric	Provided by the user or obtained from the equipment data base by the id number or model of compressor

15. The method of claim 14, wherein the primary formula is repeated for each of the following pollutants:

NOx	Nitrous Oxides	Nitrous oxide emissions	Calculated from AP-42 emission factors or manufacturers data.
СО	Carbon Monoxide	Carbon monoxide emissions	Calculated from AP-42 emission factors or manufacturers data.
SO ₂	Sulfur dioxide	Sulfur dioxide emissions	Calculated from AP-42 emission factors or manufacturers data.
PA or PM ₁₀	Particulates	Particulate emission from fuel combustion	Calculated from AP-42 emission factors or manufacturers data.
VOCnm	Non-methane Volatile Organic Compounds	Measurement of emissions of VOC's as tons per year.	AP-42 emission factors or manufacturers data.

16. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating hydrocarbon emissions from external combustion units:

$$\sum_{i=1 \text{ to n}} \frac{mmBTU_i}{hr} \times \frac{1 \text{ SCF}}{\text{Fuel Heat Value}} \times \frac{EF \text{ lbs}}{mmSCF} \times \frac{24 \text{ hrs}}{\text{day}} \times \frac{365 \text{ days}}{\text{year}} \times \frac{1 \text{ ton}}{2,000 \text{ lbs}} = \frac{\text{Emissions tons}}{\text{year}}$$

Symbol	Name	Description	Туре	Source
EF	Emission Factor lb / mmscf	Amount of pollutant species generated per unit of fuel used or burned, e.g. lbs (pounds) per mmscf (Million standard cubic feet) of gas burned.	Numeric	Client data stored in System Database
mmbtu	BTU rating of the unit	The size of the combustion unit as measured in BTU's per hour. mmbtu = million British Thermal Units	Numeric	Client data stored in System Database

17. The method of claim 16, wherein the primary formula is repeated for each of the following pollutants:

NOx	Nitrous Oxides	Nitrous oxide emissions	Calculated from AP-42 emission factors or manufacturers data.
СО	Carbon Monoxide	Carbon monoxide emissions	Calculated from AP-42 emission factors or manufacturers data.
SO ₂	Sulfur dioxide	Sulfur dioxide emissions	Calculated from AP-42 emission factors or manufacturers data.
PA or PM ₁₀	Particulates	Particulate emission from fuel combustion	Calculated from AP-42 emission factors or manufacturers data.
VOCnm	Non-methane Volatile Organic Compounds	Measurement of emissions of VOC's as tons per year.	AP-42 emission factors or manufacturers data.

The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating emissions for valves, flanges piping and compressor seals:

$$\sum_{i=1 \text{ to n}} \frac{EF_i \ lb}{hr_i} \times \frac{VOC\%_i}{1} \times \frac{24 \text{ hrs}}{\text{day}} \times \frac{365 \text{ days}}{\text{year}} \times \frac{1 \text{ ton}}{2,000 \text{ lbs}} = \frac{\text{Emissions tons}}{\text{year}}$$

19. The method of claim 18, wherein the primary formula is repeated for each fitting in each piece of equipment:

Symbol	Name	Description	Type	Source
EF	Emission Factor	Amount of volatile organic emissions generated per fugitive component or source. E.G. lbs / hour / source	Numeric	Provided by reference from AP42 and SOCMI.

Luk Ad

27/33

Symbol	Name	Description	Type	Source
No. of components, (src)	Number of components	Actual number of each source component at the facility, e.g 355 valves, etc.	Numeric	Provided by the user or obtained from Client data stored in System Database or equipment data stored in System Library
VOC%	VOC Concentration in the affected stream	The concentration of VOC (volatile organic hydrocarbon compounds) defined as any compound with C3+ hydrocarbons as identified in the gas analysis and as calculated by volume %.	Numeric	Calculated from the gas analysis for this facility.

The method of claim 18, wherein the mathematical database includes the primary 20. calculation formula for calculating emissions for glycol dehydration units, wherein:

Symbol	Name	Description	Type	Source
	Unit Description	Case name and case description used to retrieve case files from the GRI program. This name will also be identified by a facility ID number and an equipment ID number.	Text	Provided by the user or taken from the facility data base as a facility name.
	Annual Hours of Operation	Number of hours the unit operates annually, e.g 8760 hrs = 1 year	Numeric	Input by user or user data base.
	Gas Composition	Percentages of all components in the gas stream. Individual values input separately from gas analysis.	Numeric and text	Gas analysis provided by user or from Client data stored in System Database
mmscf / day	Dry gas flow rate	The volumetric flow of the sales gas stream in volumetric units per day (e.g. mmscf/day or million standard cubic feet per day)	Numeric	Production data from user or Client data stored in System Database
lb / mmwscf	Dry gas water content	The target final concentration of water in the sales gas stream, in the USA the default value is 7.0 lb / mmscf	Numeric	Client data stored in System Database or accepted by default
	Absorber stages	Number of actual equilibrium stages in the contactor; may be chosen, if known, by the user as an alternative entry to the dry gas water content described above.	Numeric	Chosen by user

28/33

Symbol	Name	Description	Type	Source
	Lean TEG/ EG flow rate	The pumping rate of the lean or fresh tri-ethylene glycol (or ethylene glycol) solution in gallons per minute	Numeric	Client data stored in System Database
	Water content	The allowable water concentration in the lean or fresh glycol stream. A default value of 1.5% may be chosen if the user does not have this value	Numeric	Client data stored in System Database or chosen by default
	Re-circulation ratio	The gallons of glycol solution circulated per pound of water removed from the wet gas stream if known. May be chosen in place of the lean TEG/EG flow rate. Default value of 0.3 may be chosen in the program.	Numeric	Client data stored in System Database
	Wet Gas Temperature	Temperature of the incoming wet gas stream in °F.	Numeric	Client data stored in System Database
	Wet gas pressure	Pressure of the incoming wet gas stream in psig.	Numeric	Client data stored in System Database
	Glycol pump type	May be gas driven or electric	Text	Client data stored in System Database
ACFM / gal	Gas driven pump volume ratio	ACFM (air cubic feet per minute) gas / gallon per minute glycol pumped (only for gas driven pumps) May choose default values of 0.03 for wet gas pressures greater than 40 psig and 0.08 for units with wet gas pressures less than 400 psig.	Numeric	Client data stored in System Database
	Flash Tank	Yes or no question. Is a flash tank involved with this unit.	Text	Client data stored in System Database
	Flash tank temperature	Operating temperature of the flash tank if used in °Fahrenheit (°F)	Numeric	Client data stored in System Database
PSIG	Flash tank pressure	Operating pressure of the flash tank if used. Psig (pounds per square inch gauge)	Numeric	Client data stored in System Database
	Stripping gas option	Yes or no question. Is a gas stream used to remove the hydrocarbons from the glycol vent stream?	Text \	Client data stored in System Database
	Stripping gas flow rate	Flow rate of the stripping gas stream, scfm	Numeric	Client data stored in Systèm Database
	Control device option	Choose a control device as either a vent condenser or vapor incinerator, or choose no control device.	Text	Client data stored in System Database

Symbol	Name	Description	Туре	Source
	Vent condenser temperature	Operating temperature of the vent condenser (if used) in °F	Numeric	Client data stored in System Database
	Vent condenser pressure	Operating pressure of the vent condenser (if used) in absolute pressure, e.g. psia	Numeric	Client data stored in System Database
	Incinerator ambient air temperature	Average ambient air temperature for the location in °F	Numeric	Selected from climatic data stored in System Library
	Excess oxygen	% excess oxygen used in combustion process if a vapor incinerator is chosen as a control device.	Numeric	Provided by the manufacturer of the combustion unit and included in the System Library
	Combustion efficiency	% efficiency of the vapor control incinerator unit.	Numeric	Provided by the manufacturer of the combustion unit and included in the equipment data base.
VOCs	Volatile Organic Compounds	Measurement of emissions of VOC's as tons per year from the Glycalc Program Printout in tons/year	Numeric	Glycalc® program output
HAPs	Hazardous Air Pollutants	Volumetric measurement of a group of air constituents that have been determined by the Environmental Protection Agency (ERA) to be considered categorically hazardous to health and the human environment. Measured in tons/year	Numeric	Glycalc® program output or information gained from the EPA speciation program for HAP's.

21. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating flash emissions caused by the transfer of higher pressure liquids from a process vessel to a storage tank of less pressure:

$$\log R_{st} = 0.4896 - 4.916 \log \gamma_{ost} + 3.496 \log \gamma_{sp} + 1.501 \log P_{sp} - 0.9213 \log T_{sp}$$

and the Vasquez Beggs GOR Correlation.

$$GOR = C1 \times SG100 \times (P_{str} + P_{atm})^{C2} \times e^{\frac{C3 \times {}^{\circ}API}{T_{gas}} \circ F + 460}$$

$$SG100 = SG \times (1.0 + 5.912 \times 10^{-5} \times T_{gas} \circ F \times \log \frac{P_{sep} + P_{atm}}{114.7}$$

Sut A3

###

Sub A3

Name **Type** Source Symbol Description Stock Tank Gas Oil The ratio of the volume of gas Numeric Calculated by Black Rst generated per barrel of oil produced as Oil GOR equation, Ratio (GOR) 3.6.1 a result of the pressure drop between the pressurized separator and the oil storage (stock) tank. Units = volume gas / volume oil, e.g standard cubic feet / barrel Measurement of the ratio of the weight Numeric Calculated using the Stock Tank Oil γ_{ost} physical data of the of the oil relative to water at standard specific gravity materials being temperature and pressure. E.g. units = stored lb/gal per lb/gal or SG=6.5 lb/gal oil / $8.34\lb/gal\ water @STP = 0.78$ Numeric Calculated using the Measurement of the ratio of the weight Separator specific γ_{sp} physical data of the of the air relative to gravity gas being measured Measured at the The operating pressure of the vessel Numeric P_{sp} Separator pressure equipment by the used to separate the oil, water and gas user in the produced fluid stream Provided by the The operating temperature of the Numeric T_{sp} Separator user from field separator measured in °F temperature measurements The weight of one mole (or Numeric Determined by Vapor Molecular V_{MW} Avogadro's number of molecules) of reference or Weight the gas being measured. measurement. May use default value or actual gas analysis. Constants calculated for the use in this Provided by C1, C2, Numeric Vasquez Beggs reference to the Constants relationship using stastical empirical C3 relationship based data. Dimensionless on degree API gravity range of the crude being stored. Numeric Calculated using the SG Specific Gravity of Same as γ_{sp} or separator specific gravity as described above. physical data of the the gas gas being measured A calculated quantity based on the Numeric Result of equation SG100 Specific gravity of 3.6.3 the gas referenced to temperature and pressure measured at 100 psig the separator referenced to 100 pounds per square inch gauge (psig) pressure. Numeric Measured in the Pressure of the Pressure of the fluid stream as it leaves P_{str} the separator or the separator pressure. field by the user. upstream fluid Measured at the Atmospheric The measured pressure of ambient Numeric $\boldsymbol{P}_{\text{atm}}$ field location using pressure conditions or in the atmosphere outside a barometer or by the separator. default at ST&P.

log

Text

Standard unit

31/33

Symbol	Name	Description	Type	Source
$T_{\rm gas}$	Gas temperature at the separator	The measured temperature of the gas stream in the separator	Numeric	Measured at the field location by the user.
P _{sep}	Separator Pressure	The operating pressure of the separator measured in psig	Numeric	Measured at the field location by the user.
psig	Pounds per square inch gauge	Pressure measurement in units of pounds per square inch or in general units - f/l ² .	Numeric	Measured with a pressure measuring device at the equipment site.
°API	Degrees API gravity	The measured API gravity of the fluid (crude) being measured as calculated by a standard equation which ratios the specific gravity of the fluid to a referenced standard.	Numeric	Calculated using the physical data of the fluid.
°F	Degrees Fahrenheit	The standard temperature measurement using degrees Fahrenheit as a scale.	Numeric	Standard unit

22. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating loading loss emissions:

same number.

Mathematical relationship which equals the exponent value that the number 10 would be raised to get that

 $L_L = 12.46 \frac{SPM}{T}$

Logarithm

Symbol	Name	Description	Туре	Source
L _L	Loading losses - VOC	The Volatile Organic Compound (VOC) emissions quantity as determined in the above equation.	Numeric	Result of equation 3.7.1
S	Saturation factor	Empirical quantity for calculation	Numeric	AP-42 reference Table 5.2-1. Stored in System Library.
P	True liquid vapor pressure of the liquid being loaded	The true vapor pressure of the liquid being loaded which is the pressure at which the liquid is in equilibrium with the overhead vapors. Measured in pounds per square inch atmospheric (psia)	Numeric	By reference from AP-42 Figures 7.1-5, 7.1-6, 7.1-2. Stored in System Library.

Symbol	Name	Description	Туре	Source
М	Vapor Molecular Weight	The weight per mole of gases being emitted, e.g lb/lb mole. One mole = weight of 10 ²³ molecules (Avogadro's number) of the gas or 359 standard cubic feet. (SCF)	Numeric	By reference from AP-42 Table 7.1-2. Stored in System Library.
Т	Bulk Liquid Temperature	The temperature of the liquid being loaded in °R (Rankine) = °F +460.	Numeric	Supplied from the tank calculation data.

23. The method of claim 12, wherein the mathematical database includes the following primary calculation formulas for calculating emission fees:

$$\sum \text{Emissions} \frac{\text{tons}}{\text{year}} \times \$ \text{ per ton} = \text{Annual Emissions Fee}$$

Symbol	Name	Description	Туре	Source
\$	Price per ton	The dollar price per tons of emissions as established by the particular state of operation	Numeric	Established by law
NOx	Nitrous Oxides	Nitrous oxide emissions	Numeric	Calculated
СО	Carbon Monoxide	Carbon monoxide emissions	Numeric	Calculated
SO ₂	Sulfur dioxide	Sulfur dioxide emissions	Numeric	Calculated
PA or PM ₁₀	Particulates	Particulate emission from fuel combustion	Numeric	Calculated
VOCs	Volatile Organic Compounds	VOC emissions	Numeric	Calculated