Study Group

Professor A. Manikas

Imperial College London

Comms-1

power of g(4)

* PM:
$$s(t) = A_c \cdot \cos(2\pi F_c t + k_p \cdot g(t))$$

$$= \Theta(t)$$

* FM: $s(t) = A_c \cdot \cos(2\pi F_c t + 2\pi k_f) g(t) du$

$$= \Theta(t)$$

* Angle modulation: $s(t) = A_c \cos(\Theta(t))$

* Angle modulation: $s(t) = A_c \cos(\Theta(t))$

FM: $\Theta(t) \stackrel{d}{=} 2\pi F_c t + 2\pi \kappa_f \int g(t) \cdot du$

$$= \frac{d\Theta(t)}{dt} = \Theta'(t) = 2\pi F_c + 2\pi \kappa_f g(t) = 2\pi (F_c + \kappa_f \cdot g(t))$$

* modulation index:

it is defined for sinewave messages

Ag. cos(2m Fgt)

Fg

PM: BpM = Kp. Ag

* Bandwidth-FM = 00

: CARLSON'S RULE =
$$B_{FM} = 2 \left(\mathcal{B}_{FM} + 1 \right) F_g$$

$$= 2 \left(\mathcal{B}_{FM} F_g + F_g \right)$$

$$= 2 \left(\mathcal{B}_{FM} F_g + F_g \right)$$

$$= 4 F_g$$

1) Over an interval $0 \le t \le 1$, an angle modulated signal is given by

$$\mathbf{5}(t) = 10\cos 13000t$$

The carrier frequency is $\omega_c = 10000$.

- (a) If this were a PM signal with $k_p = 1000$, determine Q(t) over $0 \le t \le 1$.
- (b) If this were an FM signal with $k_f = 1000$, determine $t \leq 1$.

PM:
$$S(t) = A_{c} \cdot \cos(2\pi F_{c} t + K_{p} g(t))$$

$$10 \qquad 13000t \qquad 9(4) \cdot v. ds$$

$$\Rightarrow 13kt = 10kt + 1000g(t) \Rightarrow 0$$

$$10k \qquad 1000$$

- (a) Determine the average transmitted power.
- (b) Is this an FM or PM signal? Expain.
- (c) Determine the frequency deviation Δf . [4000Hz]
- (d) Using Carson's rule, find the bandwidth of the modulated signal. [10kHz]

More on Bandwidth

I. Baseband signal (or Low Pass signal)

2. Band pass Signal:

Bandwidth= B=F2-F1

- 3. The message signal $o(t) = 10 sinc(400\pi t)$ frequency modulates the carrier $c(t) = 100 \cos(2\pi f_c t)$. The modulation index is $\beta = 6$.
 - (a) Write an expression for the modulated signal $\mathfrak{s}(t)$. [Hint: you need to find the value of k_f]
 - (b) What is the maximum frequency deviation of the modulation signal? [1200Hz]
 - (c) Using Carson's rule, find the bandwidth of the modulated signal. [2800Hz]

Baydwidth of message= max frequ of message (Fg)

$$G(f) = \frac{10}{400} \text{ vect} \left(\frac{f}{400}\right) = \frac{1}{400} \text{ vect} \left(\frac{f}{400}\right)$$

$$\frac{1}{400} \frac{G(f)}{4000}$$

Baydwidth = 20042

$$K_{J} = \frac{6 \times 200}{10} = 120 \frac{H_{Z}}{Volks}$$

$$(240\pi)$$

b)
$$F = K + Ag = 120 \times 10 = 1200$$

 $max(g(+))$

$$= \mathcal{B}.F_{g} = 6 \times 200 = 1200$$

$$C > B_{FM} = 2(3+1) + \frac{6+1}{5} = 2800 + 12$$