Serie 4, Aufgabe 4

Let (X,\mathfrak{M},μ) be a measure space, $f_n,g_n,f,g\in\mathcal{L}_1(\mu),n\in\mathbb{N}$, with $f_n\to f,g_n\to g,n\to\infty$ pointwise nearly everywhere, $|f_n|\leq g_n,n\in\mathbb{N}$, and $\int_X g_n\,\mathrm{d}\mu\to\int_X g\,\mathrm{d}\mu,n\to\infty$. Show that

$$\int_X f_n \, \mathrm{d}\mu \to \int_X f \, \mathrm{d}\mu, n \to \infty.$$

Proof. For real-valued f, g, f_n, g_n , we have $g_n - f_n \ge 0$ for all n. The sequence $(g_n - f_n)_{n \in \mathbb{N}}$ converges to g - f nearly everywhere. By Fatou's Lemma, we obtain

$$\begin{split} \int_X g \, \mathrm{d}\mu - \int_X f \, \mathrm{d}\mu &= \int_X g - f \, \mathrm{d}\mu \\ &= \int_X \lim_{n \to \infty} g_n - f_n \, \mathrm{d}\mu \\ &\leq \liminf_{n \to \infty} \int_X g_n - f_n \, \mathrm{d}\mu \\ &= \liminf_{n \to \infty} \int_X g_n \, \mathrm{d}\mu + \int_X - f_n \, \mathrm{d}\mu \\ &= \int_X g \, \mathrm{d}\mu + \liminf_{n \to \infty} \int_X - f_n \, \mathrm{d}\mu \\ &= \int_X g \, \mathrm{d}\mu - \limsup_{n \to \infty} \int_X f_n \, \mathrm{d}\mu. \end{split}$$

Hence $\int_X f d\mu \ge \limsup_{n \to \infty} \int_X f_n d\mu$.

Similarly, $g_n + f_n \ge g - |f_n| \ge 0$ for all n. By the same logic, we obtain $\int_X f \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_X f_n \, \mathrm{d}\mu$. Hence $\int_X f \, \mathrm{d}\mu = \lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu$.

For complex-valued functions, note that $g_n \pm \operatorname{Re}(f_n) \ge 0$ and $g_n \pm \operatorname{Im}(f_n) \ge 0$. From the above, it follows that

$$\int_X \operatorname{Re}(f) \, \mathrm{d}\mu = \lim_{n \to \infty} \int_X \operatorname{Re}(f_n) \, \mathrm{d}\mu$$

and

$$\int_X \operatorname{Im}(f) \, \mathrm{d}\mu = \lim_{n \to \infty} \int_X \operatorname{Im}(f_n) \, \mathrm{d}\mu.$$

So $\int_X f d\mu = \lim_{n \to \infty} \int_X f_n d\mu$.