Multistage stochastic optimization and polyhedral geometry

PhD Defense Maël Forcier

advised by Stéphane Gaubert and Vincent Leclère, supervised by Jean-Philippe Chancelier.

December 14th 2022

- Need low-carbon energy to stop global warming
- Hydroelectricity is the only controllable renewable energy
- 82,6% of electricity is hydroelectric in Brazil, 17,1% in France and 92% in Norway

2 / 45

- u water hustled
- d demand
- c cost of unmet demand
- x_0/x_1 water in the reservoir
- \bullet \overline{x} capacity of the reservoir
- w rain and runoff

$$\min_{\mathbf{u},\mathbf{x}_1} c(d-\mathbf{u})$$

s.t.
$$0 \le u \le d$$

$$x_1 \leqslant x_0 - u + w$$

$$0 \leqslant x_1 \leqslant \overline{x}$$

 x_0 fixed

At step t

- u_t water hustled
- d_t demand
- ct cost of unmet demand
- x_t water in the reservoir
- \overline{x} capacity of the reservoir
- w_t rain and runoff

$$\min_{\mathbf{u}_{t}, x_{t}} \sum_{t=1}^{r} c_{t} (d_{t} - \mathbf{u}_{t})$$

$$s.t. \ 0 \leqslant \mathbf{u}_{t} \leqslant d_{t} \qquad , \ \forall t \in [T]$$

$$x_{t+1} \leqslant x_{t} - \mathbf{u}_{t} + w_{t} \quad , \ \forall t \in [T]$$

$$0 \leqslant x_{t} \leqslant \overline{x} \qquad , \ \forall t \in [T]$$

$$x_{0} \text{ fixed}$$

At step t

- u_t water hustled
- d_t demand
- ct cost of unmet demand
- x_t water in the reservoir
- \bullet \overline{x} capacity of the reservoir
- w_t rain and runoff

$$\min_{\boldsymbol{u}_t, \boldsymbol{x}_t} \sum_{t=1}^T c_t (d_t - \boldsymbol{u}_t)$$

$$s.t. \ 0 \leqslant u_t \leqslant d_t \qquad , \ \forall t \in [T]$$

$$x_{t+1} \leqslant x_t - u_t + w_t \quad , \ \forall t \in [T]$$

$$0 \leqslant x_t \leqslant \overline{x}$$
 , $\forall t \in [T]$

 x_0 fixed

$$\min_{\mathbf{x} \in \mathbb{R}^n} c^{\top}$$

s.t. $Ax \leq b$

$$\min_{x \in \mathbb{R}^n} c^\top x$$

s.t.
$$Ax \leq b$$

Definition

Polyhedron:

Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ of admissible solutions is a polyhedron.

$$A = \left(egin{array}{ccc} 1 & & 1 \ & & \end{array}
ight) b = \left(egin{array}{ccc} 1 & & & \ & & \end{array}
ight)$$

$$x_1 + x_2 \leqslant 1$$

- (5)(6)
- (7)

$$\min_{x \in \mathbb{R}^n} c^{\top} x$$

$$x \in \mathbb{R}^n$$
 s.t. $Ax \leqslant b$

Definition

Polyhedron:

Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ of admissible solutions is a polyhedron.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ & & \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ & \end{pmatrix} \qquad \begin{array}{c} x_1 + x_2 \leqslant 1 & (1) \\ x_1 - x_2 \leqslant 1 & (2) \\ & (3) \\ & (4) \\ & (5) \\ & (6) \\ \end{array}$$

$$x_1+x_2\leqslant 1 \qquad ($$

$$x_1 - x_2 \leqslant 1 \qquad (2)$$

- (6)
- (7)

$$\min_{x \in \mathbb{R}^n} c^\top x$$

s.t.
$$Ax \leq b$$

Definition

Polyhedron:

Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ of admissible solutions is a polyhedron.

(7)

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \begin{cases} x_1 + x_2 \leqslant 1 & (1) \\ x_1 - x_2 \leqslant 1 & (2) \\ -x_1 - x_2 \leqslant 1 & (3) \end{cases}$$

$$(4)$$

$$(5)$$

$$(6)$$

$$(7)$$

$$x_1 - x_2 \le 1$$
 (
- $x_1 - x_2 \le 1$ (

$$\min_{x \in \mathbb{R}^n} c^\top x$$

s.t.
$$Ax \leq b$$

Definition

Polyhedron:

Intersection of finite number of halfspaces

(6)(7)

The set $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ of admissible solutions is a polyhedron.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ -1 & 1 \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{cases} x_1 + x_2 \leqslant 1 & (1) \\ x_1 - x_2 \leqslant 1 & (2) \\ -x_1 - x_2 \leqslant 1 & (3) \\ -x_1 + x_2 \leqslant 1 & (4) \end{cases}$$

$$(5)$$

$$(6)$$

$$x_1 - x_2 \le 1$$
 (2)
 $-x_1 - x_2 \le 1$ (3)
 $-x_1 + x_2 \le 1$ (4)
(5)

$$\min_{x \in \mathbb{R}^n} c^\top x$$

s.t.
$$Ax \leq b$$

Definition

Polyhedron:

Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ of admissible solutions is a polyhedron.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ -1 & 1 \\ 1 & 0 \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \end{pmatrix} \begin{pmatrix} x_1 + x_2 \leqslant 1 & (1) \\ x_1 - x_2 \leqslant 1 & (2) \\ -x_1 - x_2 \leqslant 1 & (3) \\ -x_1 + x_2 \leqslant 1 & (4) \\ x_1 \leqslant 0.5 & (5) \end{pmatrix}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \mathbf{c}^{\top} \mathbf{x}$$

$$x \in \mathbb{R}^n$$

s.t. $Ax \leqslant b$

Definition

Polyhedron:

Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ of admissible solutions is a polyhedron.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ -1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \end{pmatrix} \begin{pmatrix} x_1 + x_2 \leqslant 1 & (1) \\ x_1 - x_2 \leqslant 1 & (2) \\ -x_1 - x_2 \leqslant 1 & (3) \\ -x_1 + x_2 \leqslant 1 & (4) \\ x_1 \leqslant 0.5 & (5) \\ x_2 \leqslant 0.5 & (6) \end{pmatrix}$$

$$\min_{x \in \mathbb{R}^n} \quad c^\top x$$

s.t. $Ax \leq b$

Definition

Polyhedron :

Intersection of finite number of halfspaces

The set $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ of admissible solutions is a polyhedron.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ -1.2 \end{pmatrix} \begin{pmatrix} x_1 + x_2 \leqslant 1 & (1) \\ x_1 - x_2 \leqslant 1 & (2) \\ -x_1 - x_2 \leqslant 1 & (3) \\ -x_1 + x_2 \leqslant 1 & (4) \\ x_1 \leqslant 0.5 & (5) & 7 \\ x_2 \leqslant 0.5 & (6) \\ x_1 \geqslant -1.2 & (7) \end{pmatrix}$$

But renewables are inherently stochastic!

Rain, runoff, cost and demand are random.

At step t

- u_t water hustled
- d_t demand
- c_t cost of unmet demand
- x_t water in the reservoir
- \bullet \overline{x} capacity of the reservoir
- w_t rain and runoff

$$\min_{\boldsymbol{u}_{t}, \boldsymbol{x}_{t}} \quad \sum_{t=1}^{T} c_{t} (d_{t} - \boldsymbol{u}_{t}) \\
s.t. \ 0 \leqslant \boldsymbol{u}_{t} \leqslant d_{t} \qquad , \ \forall t \in [T] \\
x_{t+1} \leqslant x_{t} - \boldsymbol{u}_{t} + w_{t} \qquad , \ \forall t \in [T] \\
0 \leqslant x_{t} \leqslant \overline{x} \qquad , \ \forall t \in [T]$$

 x_0 fixed

But renewables are inherently stochastic!

Rain, runoff, cost and demand are random.

At step t

- **u**_t water hustled
- d_t demand
- c_t cost of unmet demand
- Xt water in the reservoir
- \bullet \overline{x} capacity of the reservoir
- w_t rain and runoff

$$\begin{aligned} & \min_{\boldsymbol{u}_t, \mathbf{x}_t} \mathbb{E} \Big[\sum_{t=1}^{T} \boldsymbol{c}_t (\boldsymbol{d}_t - \boldsymbol{u}_t) \Big] \\ & s.t. \ 0 \leqslant \boldsymbol{u}_t \leqslant \boldsymbol{d}_t \end{aligned} , \ \forall t \in [T]$$

$$\mathbf{x}_{t+1} \leqslant \mathbf{x}_t - \mathbf{u}_t + \mathbf{w}_t$$
 , $\forall t \in [T]$
 $0 \leqslant \mathbf{x}_t \leqslant \overline{\mathbf{x}}$, $\forall t \in [T]$

$$\mathbf{x}_0 \equiv x_0$$
 given

$$\sigma(\mathbf{u_t}) \subset \sigma(\mathbf{c_{\tau}}, \mathbf{d_{\tau}}, \mathbf{w_{\tau}})_{\tau \leqslant t} \quad , \ \forall t \in [T]$$

$$\sigma(\mathbf{x}_t) \subset \sigma(\mathbf{c}_{\tau}, \mathbf{d}_{\tau}, \mathbf{w}_{\tau})_{\tau \leqslant t}, \ \forall t \in [T]$$

Measurability constraints

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \qquad \mathbb{E} \Big[\sum_{t=1}^T \boldsymbol{c}_t^\top \boldsymbol{x}_t \Big]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv x_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} \boldsymbol{c}_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant \boldsymbol{b}_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

$$\min_{(\boldsymbol{x}_t)_{t\in[T]}} \quad \mathbb{E}\left[\sum_{t=1}^{I} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t\right]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv x_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

$$\min_{(\boldsymbol{x}_t)_{t\in[T]}} \quad \mathbb{E}\left[\sum_{t=1}^{I} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t\right]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv x_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

$$\min_{\substack{(\mathbf{x}_t)_{t\in[T]} \\ \text{s.t.}}} \quad \mathbb{E}\left[\sum_{t=1}^{I} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t\right]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv x_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

$$\min_{\substack{(\mathbf{x}_t)_{t\in[T]} \\ \text{s.t.}}} \quad \mathbb{E}\left[\sum_{t=1}^{I} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t\right]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv x_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

$$\min_{\substack{(\mathbf{x}_t)_{t\in[T]} \\ \text{s.t.}}} \quad \mathbb{E}\left[\sum_{t=1}^{I} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t\right]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv x_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} \boldsymbol{c}_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant \boldsymbol{b}_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \qquad \mathbb{E} \Big[\sum_{t=1}^I oldsymbol{c}_t^ op \mathbf{x}_t \Big]$$
 $\mathrm{s.t.} \qquad oldsymbol{A}_t oldsymbol{x}_t + oldsymbol{B}_t oldsymbol{x}_{t-1} \leqslant oldsymbol{b}_t \qquad \forall t \in [T]$
 $\sigma(oldsymbol{x}_t) \subset \sigma(oldsymbol{c}_{ au}, oldsymbol{A}_{ au}, oldsymbol{B}_{ au}, oldsymbol{b}_{ au})_{ au \leqslant t} \qquad \forall t \in [T]$
 $oldsymbol{x}_0 \equiv x_0 \ \mathrm{given}$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

$$\min_{\substack{(\mathbf{x}_t)_{t \in [T]}}} \qquad \mathbb{E}\left[\sum_{t=1}^{I} \boldsymbol{c}_t^{\top} \boldsymbol{x}_t\right]$$
s.t.
$$\boldsymbol{A}_t \boldsymbol{x}_t + \boldsymbol{B}_t \boldsymbol{x}_{t-1} \leqslant \boldsymbol{b}_t \qquad \forall t \in [T]$$

$$\sigma(\boldsymbol{x}_t) \subset \sigma(\boldsymbol{c}_\tau, \boldsymbol{A}_\tau, \boldsymbol{B}_\tau, \boldsymbol{b}_\tau)_{\tau \leqslant t} \qquad \forall t \in [T]$$

$$\boldsymbol{x}_0 \equiv x_0 \text{ given}$$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} \boldsymbol{c}_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant \boldsymbol{b}_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \qquad \mathbb{E} \Big[\sum_{t=1}^I oldsymbol{c}_t^ op \mathbf{x}_t \Big]$$
 $\mathrm{s.t.} \qquad oldsymbol{A}_t oldsymbol{x}_t + oldsymbol{B}_t oldsymbol{x}_{t-1} \leqslant oldsymbol{b}_t \qquad \forall t \in [T]$
 $\sigma(oldsymbol{x}_t) \subset \sigma(oldsymbol{c}_{ au}, oldsymbol{A}_{ au}, oldsymbol{B}_{ au}, oldsymbol{b}_{ au})_{ au \leqslant t} \qquad \forall t \in [T]$
 $oldsymbol{x}_0 \equiv x_0 \ \mathrm{given}$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

$$\min_{(\mathbf{x}_t)_{t \in [T]}} \qquad \mathbb{E} \Big[\sum_{t=1}^I oldsymbol{c}_t^ op \mathbf{x}_t \Big]$$
 $\mathrm{s.t.} \qquad oldsymbol{A}_t oldsymbol{x}_t + oldsymbol{B}_t oldsymbol{x}_{t-1} \leqslant oldsymbol{b}_t \qquad \forall t \in [T]$
 $\sigma(oldsymbol{x}_t) \subset \sigma(oldsymbol{c}_{ au}, oldsymbol{A}_{ au}, oldsymbol{B}_{ au}, oldsymbol{b}_{ au})_{ au \leqslant t} \qquad \forall t \in [T]$
 $oldsymbol{x}_0 \equiv x_0 \ \mathrm{given}$

 $\boldsymbol{\xi}_t = (\boldsymbol{c}_t, \boldsymbol{A}_t, \boldsymbol{B}_t, \boldsymbol{b}_t)_{t \in [T]}$ is assumed to be stagewise independent.

At each time step: the present noise is revealed then we take a decision.

$$x_0 \rightsquigarrow \xi_1 \rightsquigarrow x_1 \rightsquigarrow \xi_2 \rightsquigarrow \cdots \rightsquigarrow x_{T-1} \rightsquigarrow \xi_T \rightsquigarrow x_T$$

Equivalent form

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} \boldsymbol{c}_1^\top x_1 + \mathbb{E}\left[\min_{x_2:\boldsymbol{A}_2x_2+\boldsymbol{B}_2x_1\leqslant \boldsymbol{b}_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:\boldsymbol{A}_Tx_T+\boldsymbol{B}_Tx_T-1\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

Maël Forcier PhD Defense 14/12/2022 5 / 45

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]\right]$$

We set
$$V_{T+1} \equiv 0$$
 and $V_t(x_{t-1}) := \mathbb{E} \begin{bmatrix} \min_{x_t \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^{\top} x_t + V_{t+1}(x_t) \\ \text{s.t.} & \boldsymbol{A}_t x_t + \boldsymbol{B}_t x_{t-1} \leqslant \boldsymbol{b}_t \end{bmatrix}$

$$\min_{x_1:A_1\times_1+B_1\times_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2\times_2+B_2\times_1\leqslant b_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \underbrace{\mathbb{E}\left[\min_{x_T:A_T\times_T+B_T\times_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]}_{V_T(x_{T-1})}\right]\right]$$

We set
$$V_{T+1} \equiv 0$$
 and $V_t(x_{t-1}) := \mathbb{E} \begin{bmatrix} \min_{x_t \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^{\top} x_t + V_{t+1}(x_t) \\ \text{s.t.} & \boldsymbol{A}_t x_t + \boldsymbol{B}_t x_{t-1} \leqslant \boldsymbol{b}_t \end{bmatrix}$

Maël Forcier PhD Defense 14/12/2022 6 / 45

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} c_1^\top x_1 + \mathbb{E}\left[\min_{x_2:A_2x_2+B_2x_1\leqslant b_2} \boldsymbol{c}_2^\top x_2 + \mathbb{E}\left[\cdots + \underbrace{\mathbb{E}\left[\min_{x_T:A_Tx_T+B_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^\top x_T\right]\right]}_{V_T(x_{T-1})}\right]$$

We set
$$V_{T+1} \equiv 0$$
 and $V_t(x_{t-1}) := \mathbb{E} \begin{bmatrix} \min_{x_t \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^{\top} x_t + V_{t+1}(x_t) \\ \text{s.t.} & \boldsymbol{A}_t x_t + \boldsymbol{B}_t x_{t-1} \leqslant \boldsymbol{b}_t \end{bmatrix}$

Maël Forcier PhD Defense 14/12/2022 6 / 45

$$\min_{x_1:A_1x_1+B_1x_0\leqslant b_1} \boldsymbol{c}_1^{\top} x_1 + \mathbb{E}\left[\min_{x_2:\boldsymbol{A}_2x_2+\boldsymbol{B}_2x_1\leqslant \boldsymbol{b}_2} \boldsymbol{c}_2^{\top} x_2 + \mathbb{E}\left[\cdots + \mathbb{E}\left[\min_{x_T:\boldsymbol{A}_Tx_T+\boldsymbol{B}_Tx_{T-1}\leqslant \boldsymbol{b}_T} \boldsymbol{c}_T^{\top} x_T\right]\right]\right]$$

We set
$$V_{T+1} \equiv 0$$
 and $V_t(x_{t-1}) := \mathbb{E} \begin{bmatrix} \min_{x_t \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^{\top} x_t + V_{t+1}(x_t) \\ \text{s.t.} & \boldsymbol{A}_t x_t + \boldsymbol{B}_t x_{t-1} \leqslant \boldsymbol{b}_t \end{bmatrix}$

Maël Forcier PhD Defense 14/12/2022 6/45

Dynamic programming: finite case

Dynamic programming: finite case

Continuous space : algorithms such as SDDP later discussed.

Dynamic programming: finite case

- Continuous space : algorithms such as SDDP later discussed.
- ➡ How to deal with continuous distributions ?

Real problem

$$V_t(x) = \mathbb{E} ig[\hat{V}_tig(x, oldsymbol{\xi}_t ig) ig] = \mathbb{E} egin{bmatrix} \min & oldsymbol{c}_t^{ op} y + V_{t+1}(y) \ \mathrm{s.t.} & oldsymbol{A}_t y + oldsymbol{B}_t x \leqslant oldsymbol{b}_t \end{bmatrix}$$

 ξ_t continuous

Real problem

$$V_t(x) = \mathbb{E}\big[\hat{V}_t\big(x, \boldsymbol{\xi}_t\big)\big] = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^\top y + V_{t+1}(y) \\ \text{s.t.} & \boldsymbol{A}_t y + \boldsymbol{B}_t x \leqslant \boldsymbol{b}_t \end{bmatrix}$$

 ξ_t continuous

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

 ξ^1,\cdots,ξ^N drawn by Monte Carlo (ex Shapiro 2011)

SAA
$$N=20$$

Real problem

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^{n_t}} & c_t^{\top}y + V_{t+1}(y) \\ \text{s.t.} & A_t y + B_t x \leqslant b_t \end{bmatrix}$$

 $\boldsymbol{\xi}_t$ continuous

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

 ξ^1,\cdots,ξ^N drawn by Monte Carlo (ex Shapiro 2011)

SAA N=20

Partition-based

$$V_{t,\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \check{p}_{t,P} \hat{V}_t(x, \check{\xi}_{t,P})$$

with $\check{p}_{t,P} := \mathbb{P} \big[\boldsymbol{\xi}_t \in P \big]$ and $\check{\xi}_{t,P} := \mathbb{E} \big[\boldsymbol{\xi}_t \, | \, \boldsymbol{\xi}_t \in P \big]$

Partition-based

Real problem

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \boldsymbol{\xi}_t)\right] = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^{n_t}} & \boldsymbol{c}_t^{\top} y + V_{t+1}(y) \\ \text{s.t.} & \boldsymbol{A}_t y + \boldsymbol{B}_t x \leqslant \boldsymbol{b}_t \end{bmatrix}$$

E_t continuous

Sample Average Approximation (SAA)

$$V_{t,N}^{SAA}(x) := \frac{1}{N} \sum_{k=1}^{N} \hat{V}_t(x, \xi^k)$$

 ξ^1, \dots, ξ^N drawn by Monte Carlo (ex Shapiro 2011)

SAA N=20

Partition-based

$$V_{t,\mathcal{P}}(x) := \sum_{P \in \mathcal{P}} \check{p}_{t,P} \hat{V}_t(x, \check{\xi}_{t,P})$$

with $\check{p}_{t,P} := \mathbb{P}[\boldsymbol{\xi}_t \in P]$ and $\check{\xi}_{t,P} := \mathbb{E}[\boldsymbol{\xi}_t | \boldsymbol{\xi}_t \in P]$ If $\xi \mapsto \hat{V}(x,\xi)$ is convex, $V_{t,\mathcal{P}}(x) \leqslant V_t(x)$ (Jensen, Kuhn) Partition-based

Exact quantization

Definition

A MSLP admits a local exact quantization at time t on x if there exists a finitely supported $(\check{\xi}_t)_{t\in[T]}$ such that

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\left[\hat{V}_t(x, \check{\xi}_t)\right].$$

We call an exact quantization

- uniform if it is locally exact at all $x \in \mathbb{R}^{n_t}$, and all $t \in [T]$.
- universal if there exists a partition $\mathcal{P}_{t,x}$ such that the induced quantization is exact at time t on x, for all distributions of $(\xi_{\tau})_{\tau \in [T]}$.

Questions

- Under which condition does there exist an exact quantization ?
- ② Can we construct a uniform and universal exact quantization?

Exact quantization

Definition

A MSLP admits a local exact quantization at time t on x if there exists a finitely supported $(\check{\xi}_t)_{t\in[T]}$ such that

$$V_t(x) = \mathbb{E}\left[\hat{V}_t(x, \xi_t)\right] = \mathbb{E}\left[\hat{V}_t(x, \check{\xi}_t)\right].$$

We call an exact quantization

- uniform if it is locally exact at all $x \in \mathbb{R}^{n_t}$, and all $t \in [T]$.
- universal if there exists a partition $\mathcal{P}_{t,x}$ such that the induced quantization is exact at time t on x, for all distributions of $(\xi_{\tau})_{\tau \in [T]}$.

Questions:

- Under which condition does there exist an exact quantization ?
- Can we construct a uniform and universal exact quantization?

Conditions for the existence of an exact quantization?

Assume $V_{t+1} \equiv 0$ and denote $V := V_t$, $\hat{V} := \hat{V}_t$ and $\boldsymbol{\xi} := \boldsymbol{\xi}_t$ for now.

$$V(x) = \mathbb{E}\left[\hat{V}(x, \xi)\right] = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^n} & c^{\top}y \\ \text{s.t.} & Ay + Bx \leqslant b \end{bmatrix}$$

We have an exact quantization if and only if there exists a finitely supported noise $\check{\xi}$ such that

$$\mathbb{E}\big[\hat{V}(x,\boldsymbol{\xi})\big] = \mathbb{E}\big[\hat{V}(x,\boldsymbol{\check{\xi}})\big].$$

	A	(B , b)	с
Local	?	?	?
Uniform	?	?	?

	A	(B , b)	c
Local	?	?	?
Uniform	?	?	?

Let
$$\mathbf{A} = (-\mathbf{u})$$
, $\mathbf{B} \equiv (0)$, $\mathbf{b} \equiv (-1)$ where $\mathbf{u} \sim \mathcal{U}([1,2])$.

$$\hat{V}(x,\xi) = \frac{\min_{y \in \mathbb{R}} \quad y}{\text{s.t.} \quad uy \geqslant 1} = \frac{1}{u}$$

By strict convexity, for all partition ${\mathcal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\mathbf{u}}\right]$$

with $\check{p}_P = \mathbb{P}[\boldsymbol{\xi} \in P]$, $\check{\xi}_P = \mathbb{E}[\boldsymbol{\xi} | \boldsymbol{\xi} \in P]$.

- ➡ There is no partition-based (local, uniform or universal) exact quantization result for A non-finitely supported.
- For now on, A is deterministic: fixed recourse.

Maël Forcier PhD Defense 14/12/2022

	A	(B , b)	с
Local	?	?	?
Uniform	?	?	?

Let
$$\mathbf{A} = (-\mathbf{u})$$
, $\mathbf{B} \equiv (0)$, $\mathbf{b} \equiv (-1)$ where $\mathbf{u} \sim \mathcal{U}([1,2])$.

$$\hat{V}(x,\xi) = \frac{\min_{y \in \mathbb{R}} \quad y}{\text{s.t.} \quad uy \geqslant 1} = \frac{1}{u}$$

By strict convexity, for all partition ${\cal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\mathbf{u}}\right]$$

with $\check{p}_P = \mathbb{P}\big[\boldsymbol{\xi} \in P\big]$, $\check{\xi}_P = \mathbb{E}\big[\boldsymbol{\xi} \,|\, \boldsymbol{\xi} \in P\big]$.

- There is no partition-based (local, uniform or universal) exact quantization result for **A** non-finitely supported.
- For now on, A is deterministic: fixed recourse.

Maël Forcier PhD Defense 14/12/2022

	A	(B , b)	с
Local	?	?	?
Uniform	?	?	?

Let
$$\mathbf{A} = (-\mathbf{u})$$
, $\mathbf{B} \equiv (0)$, $\mathbf{b} \equiv (-1)$ where $\mathbf{u} \sim \mathcal{U}([1,2])$.

$$\hat{V}(x,\xi) = \frac{\min_{y \in \mathbb{R}} \quad y}{\text{s.t.} \quad uy \geqslant 1} = \frac{1}{u}$$

By strict convexity, for all partition ${\cal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\mathbf{u}}\right]$$

with $\check{p}_P = \mathbb{P}[\boldsymbol{\xi} \in P]$, $\check{\xi}_P = \mathbb{E}[\boldsymbol{\xi} \,|\, \boldsymbol{\xi} \in P]$.

- There is no partition-based (local, uniform or universal) exact quantization result for **A** non-finitely supported.
- For now on, A is deterministic: fixed recourse.

Maël Forcier PhD Defense 14/12/2022

	A	(B , b)	с
Local	×	?	?
Uniform	×	?	?

Let
$$\mathbf{A} = (-\mathbf{u})$$
, $\mathbf{B} \equiv (0)$, $\mathbf{b} \equiv (-1)$ where $\mathbf{u} \sim \mathcal{U}([1,2])$.

$$\hat{V}(x,\xi) = \frac{\min_{y \in \mathbb{R}} \quad y}{\text{s.t.} \quad uy \geqslant 1} = \frac{1}{u}$$

By strict convexity, for all partition ${\cal P}$

$$\sum_{P \in \mathcal{P}} \check{p}_P \hat{V}(x, \check{\xi}_P) < V(x) = \mathbb{E}\left[\frac{1}{\mathbf{u}}\right]$$

with $\check{p}_P = \mathbb{P}\big[\boldsymbol{\xi} \in P\big]$, $\check{\xi}_P = \mathbb{E}\big[\boldsymbol{\xi} \,|\, \boldsymbol{\xi} \in P\big]$.

- ➡ There is no partition-based (local, uniform or universal) exact quantization result for A non-finitely supported.
- ➤ For now on, A is deterministic: fixed recourse.

Maël Forcier PhD Defense 14/12/2022 11 / 45

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $Ay + Bx \leq b$

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $(x,y) \in P$

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $(x,y) \in P$

$$= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$$

with
$$Q^{\xi}(x,y) := c^{\top}y + \mathbb{I}_{(x,y) \in P}$$
.

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $(x,y) \in P$

$$= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$$

with
$$Q^{\xi}(x,y) := c^{\top}y + \mathbb{I}_{(x,y) \in P}$$
.

 $\hat{V}(\cdot,\xi)$ is polyhedral because epi $(\hat{V}(\cdot,\xi))$ is the projection of epi (Q^{ξ}) .

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $(x,y) \in P$

$$= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$$

with
$$Q^{\xi}(x,y) := c^{\top}y + \mathbb{I}_{(x,y)\in P}$$
.

 $\hat{V}(\cdot,\xi)$ is polyhedral because epi $(\hat{V}(\cdot,\xi))$ is the projection of epi(Q^{ξ}).

$$\operatorname{epi}(\hat{V}(\cdot,\xi))$$

$$z \longrightarrow c$$

$$p \mapsto \hat{V}(x,\xi)$$

$$V(x) = \mathbb{E}\left[\hat{V}(x, \xi)\right] = \sum_{\xi \in \mathsf{supp}(\check{\xi})} p_{\xi} \hat{V}(x, \xi)$$

 \rightarrow If the noise is finitely supported, then V is polyhedral

Maël Forcier PhD Defense 14/12/2022 12 / 45

$$\hat{V}(x,\xi) = \min_{y \in \mathbb{R}^m} c^{\top} y$$
s.t. $(x,y) \in P$

$$= \min_{y \in \mathbb{R}^m} Q^{\xi}(x,y)$$

with
$$Q^{\xi}(x,y) := c^{\top}y + \mathbb{I}_{(x,y)\in P}$$
.

 $\hat{V}(\cdot,\xi)$ is polyhedral because epi $(\hat{V}(\cdot,\xi))$ is the projection of epi (Q^{ξ}) .

$$\operatorname{epi}(\hat{V}(\cdot,\xi))$$

$$=\operatorname{pi}(\hat{V}(\cdot,\xi))$$

$$=\operatorname{pi}(\hat{V}(\cdot,\xi))$$

$$V(x) = \mathbb{E} \left[\hat{V}(x, \xi) \right] = \sum_{\xi \in \mathsf{supp}(\check{\xi})} p_{\xi} \hat{V}(x, \xi)$$

- \rightarrow If the noise is finitely supported, then V is polyhedral
- Existence of uniform exact quantization implies polyhedrality of *V*.

	A	$(\boldsymbol{B}, \boldsymbol{b})$	C
Local	×	?	?
Uniform	×	?	?

	A	(B , b)	c
Local	×	?	?
Uniform	×	?	?

Stochastic
$$m{B}$$
 $V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & \mathbf{u}x - y \leqslant 0 \\ & y \geqslant 1 \end{bmatrix}$ $= \mathbb{E} \left[\max(\mathbf{u}x, 1) \right]$ $= \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases}$

	A	(B , b)	с
Local	×	?	?
Uniform	×	?	?

$$\begin{aligned} & \text{Stochastic } \textbf{\textit{B}} \\ & V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & \textbf{\textit{u}} x - y \leqslant 0 \\ & y \geqslant 1 \end{bmatrix} & & \text{Stochastic } \textbf{\textit{b}} \\ & V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & y \geqslant \textbf{\textit{u}} \\ & x - y \leqslant 0 \end{bmatrix} \\ & = \mathbb{E} \big[\max(\textbf{\textit{u}} x, 1) \big] \\ & = \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases} & = \begin{cases} \frac{1}{2} & \text{if } x \leqslant 0 \\ \frac{x^2 + 1}{2} & \text{if } x \in [0, 1] \end{cases} \end{aligned}$$

Stochastic
$$m{b}$$

$$V(x) = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & y \geqslant \mathbf{u} \\ & x - y \leqslant 0 \end{bmatrix}$$

$$= \mathbb{E} \left[\max(x, \mathbf{u}) \right]$$

$$= \begin{cases} \frac{1}{2} & \text{if } x \leqslant 0 \\ \frac{x^2 + 1}{2} & \text{if } x \in [0, 1] \\ x & \text{if } x \geqslant 1 \end{cases}$$

	A	(B , b)	с
Local	×	?	?
Uniform	×	?	?

Stochastic
$$B$$
 $\begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & \mathbf{u}x - y \leqslant 0 \\ y \geqslant 1 \end{bmatrix}$

$$= \mathbb{E} \left[\max(\mathbf{u}x, 1) \right]$$

$$= \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases}$$

$$\begin{aligned} & \text{Stochastic } \textbf{\textit{B}} \\ & V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & \textbf{\textit{u}} x - y \leqslant 0 \\ & y \geqslant 1 \end{bmatrix} & & & & & & \\ & V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & y \geqslant \textbf{\textit{u}} \\ & & x - y \leqslant 0 \end{bmatrix} \\ & = \mathbb{E} \big[\max(\textbf{\textit{u}} x, 1) \big] & & & & \\ & = \begin{bmatrix} \mathbb{E} \big[\max(\textbf{\textit{x}}, \textbf{\textit{u}}) \big] \\ & & & \\ & & & \end{bmatrix} \\ & = \begin{bmatrix} \mathbb{E} \big[\max(\textbf{\textit{x}}, \textbf{\textit{u}}) \big] \\ & & & \\ & & & \\ & & & \end{bmatrix} \end{aligned}$$

V is not polyhedral \Rightarrow No uniform exact quantization for non-finitely supported \boldsymbol{B} and \boldsymbol{b} .

 \boldsymbol{u} is uniform on [0,1]

	A	(B , b)	С
Local	×	?	?
Uniform	×	×	?

Stochastic
$$m{B}$$

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & \mathbf{u}x - y \leqslant 0 \\ & y \geqslant 1 \end{bmatrix}$$

$$= \mathbb{E} \left[\max(\mathbf{u}x, 1) \right]$$

$$= \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases}$$

$$\begin{aligned} & \text{Stochastic } \textbf{\textit{B}} \quad \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & \textbf{\textit{u}} x - y \leqslant 0 \\ & y \geqslant 1 \end{bmatrix} \\ & = \mathbb{E} \left[\max(\textbf{\textit{u}} x, 1) \right] \\ & = \begin{cases} 1 & \text{if } x \leqslant 1 \\ \frac{x}{2} + \frac{1}{2x} & \text{if } x \geqslant 1 \end{cases} \end{aligned} \end{aligned} \qquad \begin{aligned} & \text{Stochastic } \textbf{\textit{b}} \quad \begin{bmatrix} \min_{y \in \mathbb{R}^m} & y \\ \text{s.t.} & y \geqslant \textbf{\textit{u}} \\ & x - y \leqslant 0 \end{bmatrix} \\ & = \mathbb{E} \left[\max(x, \textbf{\textit{u}}) \right] \\ & = \begin{cases} \frac{1}{2} & \text{if } x \leqslant 0 \\ \frac{x^2 + 1}{2} & \text{if } x \in [0, 1] \\ x & \text{if } x \geqslant 1 \end{cases} \end{aligned}$$

V is not polyhedral \Rightarrow No uniform exact quantization for non-finitely supported \boldsymbol{B} and \boldsymbol{b} .

 \boldsymbol{u} is uniform on [0,1]

$$V(x) = \mathbb{E} egin{bmatrix} \min & oldsymbol{c}^{ op} y \ \mathrm{s.t.} & oldsymbol{A} y + oldsymbol{B} x \leqslant oldsymbol{b} \end{bmatrix}$$

	A	(<i>B</i> , <i>b</i>)	c
Local	×	?	?
Uniform	×	×	?

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & \boldsymbol{c}^{\top} y \\ \text{s.t.} & \boldsymbol{A} y + \boldsymbol{B} x \leqslant \boldsymbol{b} \end{bmatrix}$$

	A	(B , b)	с
Local	×	?	√
Uniform	×	×	√

Theorem (FGL 2021)

If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & \boldsymbol{c}^{\top} y \\ \text{s.t.} & \boldsymbol{A} y + \boldsymbol{B} x \leqslant \boldsymbol{b} \end{bmatrix}$$

	A	(B , b)	c
Local	×	?	√
Uniform	×	×	√

Theorem (FGL 2021)

If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

Theorem (FL 2022)

If A is deterministic, then there exists a universal and local exact quantization.

$$V(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} & \boldsymbol{c}^{\top} y \\ \text{s.t.} & \boldsymbol{A} y + \boldsymbol{B} x \leqslant \boldsymbol{b} \end{bmatrix}$$

	A	(B , b)	c
Local	×	√	√
Uniform	×	×	✓

Theorem (FGL 2021)

If A, B and b are deterministic, then there exists a universal and uniform exact quantization.

Theorem (FL 2022)

If A is deterministic,

then there exists a universal and local exact quantization.

Contents of the manuscript and articles

Chapter 3:

Chapter 4:

M. Forcier, S. Gaubert, V. Leclère

Exact quantization of multistage stochastic linear problems, arXiv preprint arXiv:2107.09566 (2021),

Best student paper, ECSO-CMS 2022, Venice.

Chapter 5:

M. Forcier, V. Leclère

Generalized adaptive partition-based method for two-stage stochastic linear programs: convergence and generalization,

Operation Research Letters, to appear (2022).

Chapter 6:

M. Forcier, V. Leclère

Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions,

HAL Id: hal-03683697 (2022).

Contents

- Universal Exact Quantization for cost
 - Local in 2-stage
 - Uniform in 2-stage
 - Uniform in multistage
 - Complexity results
- 2 Local and universal exact Quantization for constraints
 - Adaptive partition based methods
- Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

Contents

- Universal Exact Quantization for cost
 - Local in 2-stage
 - Uniform in 2-stage
 - Uniform in multistage
 - Complexity results
- 2 Local and universal exact Quantization for constraints
 - Adaptive partition based methods
- Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

Reformulation of V(x) highlighting the role of the fiber P_x

For a given x, (we still assume $V_{t+1} \equiv 0$)

$$V(x) := \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c^{\top} y \\ \text{s.t.} \quad Ay + Bx \leqslant b \end{bmatrix}$$

$$V(x) = \mathbb{E}\left[\min_{y \in P_x} \mathbf{c}^{\top} y\right]$$
 where $P_x := \{y \in \mathbb{R}^m \mid Ay + Bx \leqslant b\}$

Illustrative running example:

$$P_{x} := \{ y \in \mathbb{R}^{m} \mid ||y||_{1} \leqslant 1,$$
$$y_{1} \leqslant x, \ y_{2} \leqslant x \}$$

 Maël Forcier
 PhD Defense
 14/12/2022
 16 / 45

Reformulation of V(x) highlighting the role of the fiber P_x

For a given x, (we still assume $V_{t+1} \equiv 0$)

$$V(x) := \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c^{\top} y \\ \text{s.t.} \quad Ay + Bx \leqslant b \end{bmatrix}$$

$$V(x) = \mathbb{E}\left[\min_{y \in P_x} c^{\top} y\right]$$
 where $P_x := \{y \in \mathbb{R}^m \mid Ay + Bx \leqslant b\}$

Illustrative running example:

$$P_{x} := \{ y \in \mathbb{R}^{m} \mid ||y||_{1} \leqslant 1,$$
$$y_{1} \leqslant x, \ y_{2} \leqslant x \}$$

Maël Forcier PhD Defense 14/12/2022 16 / 45

Reformulation of V(x) highlighting the role of the fiber P_x

For a given x, (we still assume $V_{t+1} \equiv 0$)

$$V(x) := \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^m} c^{\top} y \\ \text{s.t.} \quad Ay + Bx \leqslant b \end{bmatrix}$$

$$V(x) = \mathbb{E}\left[\min_{y \in P_X} c^{\top} y\right]$$
 where $P_X := \{y \in \mathbb{R}^m \mid Ay + Bx \leqslant b\}$

Illustrative running example:

 Maël Forcier
 PhD Defense
 14/12/2022
 16 / 45

Normal fan $\mathcal{N}(P_x)$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(P_{\mathsf{x}}) := \{ N_{P_{\mathsf{x}}}(y) \, | \, y \in P_{\mathsf{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Maël Forcier PhD Defense 14/12/2022 17 / 45

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, y \in \textcolor{blue}{P_{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(P_{\mathsf{x}}) := \{ N_{P_{\mathsf{x}}}(y) \, | \, y \in P_{\mathsf{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Normal fan $\mathcal{N}(P_{\times})$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(P_{\mathsf{x}}) := \{ N_{P_{\mathsf{x}}}(y) \, | \, y \in P_{\mathsf{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Normal fan $\mathcal{N}(P_{\times})$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, y \in \textcolor{blue}{P_{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(P_{\mathsf{x}}) := \{ N_{P_{\mathsf{x}}}(y) \, | \, y \in P_{\mathsf{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Maël Forcier PhD Defense 14/12/2022 17 / 45

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(P_{\mathsf{x}}) := \{ N_{P_{\mathsf{x}}}(y) \, | \, y \in P_{\mathsf{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Normal fan $\mathcal{N}(P_{\times})$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(P_{\mathsf{x}}) := \{ N_{P_{\mathsf{x}}}(y) \, | \, y \in P_{\mathsf{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Normal fan $\mathcal{N}(P_{\times})$

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, \textcolor{blue}{y} \in \textcolor{blue}{P_{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Maël Forcier PhD Defense 14/12/2022 17 / 45

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(\textcolor{red}{P_{x}}) := \{ \textcolor{blue}{N_{\textcolor{blue}{P_{x}}}}(y) \, | \, \textcolor{blue}{y} \in \textcolor{blue}{P_{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Maël Forcier PhD Defense 14/12/2022 17 / 45

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(P_{\mathsf{x}}) := \{ N_{P_{\mathsf{x}}}(y) \, | \, y \in P_{\mathsf{x}} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

 P_x , y and $N_{P_x}(y)$ for x = 0.3

Definition

The normal fan of the fiber P_x is

$$\mathcal{N}(P_{\times}) := \{ N_{P_{\times}}(y) \mid y \in P_{\times} \}$$

with $N_{P_x}(y) = \{c \mid \forall y' \in P_x, \ c^\top(y'-y) \leqslant 0\}$ the normal cone of P_x at y.

Proposition

If P_x is bounded, $\{ri(N) \mid N \in \mathcal{N}(P_x)\}$ is a partition of \mathbb{R}^m .

 P_x and $\mathcal{N}(P_x)$ for x = 0.3

17 / 45

Maël Forcier PhD Defense 14/12/2022

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_{x} for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_{x} for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \boldsymbol{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_{x} for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_{x} for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in \underline{P_x}} \boldsymbol{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_{x} for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in \underline{P_x}} \boldsymbol{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \boldsymbol{c}^\top y\big]$$

For any $N \in \mathcal{N}(P_x)$, $-c \mapsto \underset{y \in P_x}{\operatorname{arg \, min}} c^\top y$ is constant for all $-c \in \operatorname{ri}(N)$.

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in \underline{P}_x} \boldsymbol{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in \underline{P}_{x}} \boldsymbol{c}^{\top}y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\big[\min_{y \in P_x} \mathbf{c}^\top y\big]$$

Cost -c and $\mathcal{N}(P_x)$ for x = 0.3

 P_x for x = 0.3

$$V(x) = \mathbb{E}\left[\min_{y \in P_x} \mathbf{c}^\top y\right]$$
$$= \sum_{N \in \mathcal{N}(P_x)} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in -\operatorname{ri} N} \min_{y \in P_x} \mathbf{c}^\top y\right]$$

$$\mathcal{N}(P_{\scriptscriptstyle X})$$

for x = 0.3

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \mathbf{c}^{\top} y\right]$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in - \operatorname{ri} N} \min_{y \in P_{x}} \mathbf{c}^{\top} y\right] \text{ where } y_{N}(x) \in \operatorname{arg\,min}_{y \in P_{x}} \underbrace{\mathbf{c}^{\top}}_{\in - \operatorname{ri} N} y.$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in - \operatorname{ri} N} \mathbf{c}^{\top}\right] y_{N}(x)$$

$$-c_{2}$$

$$\uparrow$$

$$-C_{1}$$

$$\mathcal{N}(P_{x}) \qquad \text{for } x = 0.3$$

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \mathbf{c}^{\top} y\right]$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in -\text{ri } N} \min_{y \in P_{x}} \mathbf{c}^{\top} y\right] \text{ where } y_{N}(x) \in \arg\min_{y \in P_{x}} \underbrace{\mathbf{c}^{\top}}_{\in -\text{ri } N} y.$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in -\text{ri } N} \mathbf{c}^{\top}\right] y_{N}(x)$$

$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \check{c}_{N}^{\top} y_{N}(x)$$

$$\mathcal{N}(P_x)$$
 and $p_N \check{c}_N$ for $x = 0.3$

For
$$N \in \mathcal{N}(P_x)$$
,

$$p_N := \mathbb{P}[\mathbf{c} \in -\operatorname{ri} N]$$

 $\check{c}_N := \mathbb{E}[\mathbf{c} \mid \mathbf{c} \in -\operatorname{ri} N]$

We replace the continuous cost c, by the discrete cost \check{c} .

19 / 45

Maël Forcier PhD Defense 14/12/2022

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \mathbf{c}^{\top}y\right]$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in -\text{ri }N} \min_{y \in P_{x}} \mathbf{c}^{\top}y\right] \text{ where } y_{N}(x) \in \arg\min_{y \in P_{x}} \underbrace{\mathbf{c}^{\top}}_{\in -\text{ri }N} y.$$

$$= \sum_{N \in \mathcal{N}(P_{x})} \mathbb{E}\left[\mathbb{1}_{\mathbf{c} \in -\text{ri }N} \mathbf{c}^{\top}\right] y_{N}(x)$$

$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \sum_{y \in P_{x}} p_{N$$

For
$$N \in \mathcal{N}(P_x)$$
,

$$p_N := \mathbb{P}[\mathbf{c} \in -\operatorname{ri} N]$$

 $\check{c}_N := \mathbb{E}[\mathbf{c} \mid \mathbf{c} \in -\operatorname{ri} N]$

We replace the continuous cost c, by the discrete cost \check{c} .

Contents

- Universal Exact Quantization for cost
 - Local in 2-stage
 - Uniform in 2-stage
 - Uniform in multistage
 - Complexity results
- 2 Local and universal exact Quantization for constraints
 - Adaptive partition based methods
- Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

$$P_x := \{ y \mid Ay + Bx \leqslant b \}$$
 and $P := \{ (x, y) \mid Ay + Bx \leqslant b \}$

P and P_x

What are the constant regions of $x \mapsto \mathcal{N}(P_x)$?

Proposition

There exists a collection $\mathcal{C}(P,\pi)$ called the chamber complex whose relative interior of cells are the constant regions of $x \mapsto \mathcal{N}(P_x)$.

I.e, for $\sigma \in \mathcal{C}(P, \pi)$ and $x, x' \in ri(\sigma)$, we have $\mathcal{N}(P_x) = \mathcal{N}(P_{x'}) =: \mathcal{N}_{\sigma}$

$$\mathcal{N}_{\sigma}$$
 for $\sigma=[-0.5,0]$ \mathcal{N}_{σ} for $\sigma=[0,0.5]$

$$\mathcal{N}_{\sigma}$$
 for $\sigma = [1, +\infty)$

Chamber complex

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$.

Chamber complex

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

where $\mathcal{F}(P)$ is the set of faces of P and π is the projection $(x, y) \mapsto x$.

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

 π P_{x} $\sigma_{P,\pi}(x)$

Definition

The chamber complex $C(P, \pi)$ of P along π is

$$\mathcal{C}(P,\pi) := \{ \sigma_{P,\pi}(x) \mid x \in \pi(P) \}$$

where

$$\sigma_{P,\pi}(x) := \bigcap_{F \in \mathcal{F}(P) \mid x \in \pi(F)} \pi(F)$$

Common Refinement of Normal Fans

We can quantize c on each chamber.

Common Refinement of Normal Fans

We can quantize c on each chamber.

We take the common refinement:

$$\mathcal{R} := \mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau} = \{ N \cap N' \mid N \in \mathcal{N}_{\sigma}, N' \in \mathcal{N}_{\tau} \}$$

For all
$$x \in ri(\sigma) \cup ri(\tau)$$
,

$$V(x) = \sum_{N \in \mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top} y$$

23 / 45

Maël Forcier PhD Defense 14/12/2022

Common Refinement of Normal Fans

We can quantize c on each chamber.

We take the common refinement:

$$\mathcal{R} := \mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau} = \{ N \cap N' \mid N \in \mathcal{N}_{\sigma}, N' \in \mathcal{N}_{\tau} \}$$

For all
$$x \in ri(\sigma) \cup ri(\tau)$$
,

$$V(x) = \sum_{N \in \mathcal{R}} p_N \min_{y \in P_x} \check{c}_N^\top y$$

23 / 45

Maël Forcier PhD Defense 14/12/2022

Uniform exact quantization for c

Let's sum up:

- local exact quantization at x induced by $\mathcal{N}(P_x)$,
- $x \mapsto \mathcal{N}(P_x)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$,
- ullet local exact quantization at $\operatorname{ri}(\sigma)$ induced by \mathcal{N}_{σ} ,
- local exact quantization at $ri(\sigma) \cup ri(\tau)$ induced by $\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}$.

Uniform exact quantization for c

Let's sum up:

- local exact quantization at x induced by $\mathcal{N}(P_x)$,
- $x \mapsto \mathcal{N}(P_x)$ is constant on each $\sigma \in \mathcal{C}(P, \pi)$,
- ullet local exact quantization at $\operatorname{ri}(\sigma)$ induced by \mathcal{N}_{σ} ,
- local exact quantization at $ri(\sigma) \cup ri(\tau)$ induced by $\mathcal{N}_{\sigma} \wedge \mathcal{N}_{\tau}$.

Theorem (FGL21, Uniform and universal quantization of the cost)

Let
$$\mathcal{R} = \bigwedge_{\sigma \in \mathcal{C}(P,\pi)} -\mathcal{N}_{\sigma}$$
, then for all $x \in \mathbb{R}^n$

$$V(x) = \sum_{R \in \mathcal{R}} \check{p}_R \min_{y \in P_x} \check{c}_R^\top y$$

where
$$\check{p}_R := \mathbb{P} \big[m{c} \in \mathsf{ri}(R) \big]$$
 and $\check{c}_R := \mathbb{E} \big[m{c} \, | \, m{c} \in \mathsf{ri}(R) \big]$

Polyhedral characterization of V

Theorem (F., Gaubert, Leclère 2021)

For all distributions of c, V is affine on each cell of $C(P, \pi)$.

Polyhedral characterization of V

Theorem (F., Gaubert, Leclère 2021)

For all distributions of c, V is affine on each cell of $C(P, \pi)$.

Theorem (F., Gaubert, Leclère 2021)

Under an affine change of variable, V is the support function of E

$$V(x) = \sigma_{\mathbf{E}}(b - Bx) = \sup_{\lambda \in \mathbf{E}} (b - Bx)^{\top} \lambda$$

Polyhedral characterization of V

Theorem (F., Gaubert, Leclère 2021)

For all distributions of c, V is affine on each cell of $C(P, \pi)$.

Theorem (F., Gaubert, Leclère 2021)

Under an affine change of variable, V is the support function of E

$$V(x) = \sigma_{\mathbf{E}}(b - Bx) = \sup_{\lambda \in \mathbf{E}} (b - Bx)^{\top} \lambda$$

where $\mathbf{E} := \mathbb{E}[D_{\mathbf{c}}] = \int D_{\mathbf{c}} \mathbb{P}(d\mathbf{c})$ is the weighted fiber polyhedron and $D_{\mathbf{c}} := \{\lambda \mid A^{\top}\lambda + \mathbf{c} = 0\}$ the dual admissible set.

The weighted fiber polyhedron is a Minkowski integral with respect to the distribution $d\mathbb{P}(c)$

→ extension of fiber polytope (uniform distribution) of

L. Billera, B. Sturmfels, Fiber polytopes, *Annals of Mathematics*, p527–549, 1992.

Explicit computation of the example

$$V(x) = \mathbb{E} egin{bmatrix} \min & oldsymbol{c}^{ op} y \ ext{s.t.} & \|y\|_1 \leqslant 1 \ & y_1 \leqslant x \ & y_2 \leqslant x \end{bmatrix}$$

Contents

- Universal Exact Quantization for cost
 - Local in 2-stage
 - Uniform in 2-stage
 - Uniform in multistage
 - Complexity results
- 2 Local and universal exact Quantization for constraints
 - Adaptive partition based methods
- Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

$$V_t(x) = \mathbb{E} egin{bmatrix} \min & oldsymbol{c}_t^ op y + oldsymbol{V}_{t+1}(y) \ ext{s.t.} & (x,y) \in oldsymbol{P}_t \end{bmatrix}$$
 epi (V_{t+1})

with
$$Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

$$V_t(x) = \mathbb{E}egin{bmatrix} \min_{y \in \mathbb{R}^{n_t}} & oldsymbol{c}_t^ op y + oldsymbol{z} \ ext{s.t.} & (x, y, oldsymbol{z}) \in \operatorname{epi}(Q_t) \end{bmatrix}$$
 epi (V_{t+1})

with
$$Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

$$V_t(x) = \mathbb{E}egin{bmatrix} \min_{y \in \mathbb{R}^{n_t}} & m{c}_t^ op y + z \ z \in \mathbb{R} & ext{s.t. } (x,y,z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

$$V_t(x) = \mathbb{E}egin{bmatrix} \min_{egin{subarray}{c} y \in \mathbb{R}^{n_t} \ z \in \mathbb{R} \end{bmatrix}} m{c}_t^ op y + z \ \mathrm{s.t.} \ (x,y,z) \in \mathrm{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x,y) := V_{t+1}(y) + \mathbb{I}_{(x,y)\in P_t}$$
.

- ▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$
- \wedge epi(Q_t) appears in the constraint and depends on c_{t+1}, \cdots, c_T !

$$V_t(x) = \mathbb{E} egin{bmatrix} \min_{y \in \mathbb{R}^{n_t} \ z \in \mathbb{R} \end{bmatrix} & m{c}_t^ op y + z \ ext{s.t. } (x,y,z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\text{epi}(Q_t), \pi_x^{x,y,z})$

 V_{t+1} affine on \mathcal{P}_{t+1} (by assumption)

$$V_t(x) = \mathbb{E} egin{bmatrix} \min_{y \in \mathbb{R}^{n_t} \ z \in \mathbb{R} \end{bmatrix} & c_t^ op y + z \ ext{s.t. } (x,y,z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\mathsf{epi}(Q_t), \pi_x^{x,y,z})$

$$egin{aligned} V_{t+1} & ext{affine on } \mathcal{P}_{t+1} & ext{(by assumption)} \\ \mathcal{Q}_t &:= (\mathbb{R}^{n_t} imes \mathcal{P}_{t+1}) \wedge \mathcal{F}(\cite{P_t}) \end{aligned}$$

$$V_t(x) = \mathbb{E} \begin{bmatrix} \min_{y \in \mathbb{R}^{n_t} \\ z \in \mathbb{R}} & c_t^ op y + z \\ ext{s.t. } (x, y, z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

- ▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

$$egin{aligned} V_{t+1} & ext{affine on } \mathcal{P}_{t+1} & ext{ (by assumption)} \ \mathcal{Q}_t := \left(\mathbb{R}^{n_t} imes \mathcal{P}_{t+1}\right) \wedge \mathcal{F}\left(egin{aligned} P_t \end{aligned}
ight) \ \mathcal{P}_t := \mathcal{C}(\mathcal{Q}_t, \pi_c^{\times, y}) \end{aligned}$$

$$V_t(x) = \mathbb{E} egin{bmatrix} \min_{y \in \mathbb{R}^{n_t} \ z \in \mathbb{R} \end{bmatrix} & oldsymbol{c}_t^ op y + z \ ext{s.t.} & (x,y,z) \in \operatorname{epi}(Q_t) \end{bmatrix}$$

with
$$Q_t(x, y) := V_{t+1}(y) + \mathbb{I}_{(x,y) \in P_t}$$
.

- ▶ V_t affine, $x \mapsto \mathcal{N}(P_x)$ constant on $\mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

$$V_{t+1}$$
 affine on \mathcal{P}_{t+1} (by assumption)

$$Q_t := (\mathbb{R}^{n_t} \times \mathcal{P}_{t+1}) \wedge \mathcal{F}(\frac{P_t}{})$$

$$\mathcal{P}_t := \mathcal{C}(\mathcal{Q}_t, \pi_{\mathsf{x}}^{\mathsf{x}, \mathsf{y}})$$

[FGL21, Lem. 4.1]: $\mathcal{P}_t \preceq \mathcal{C}(\operatorname{epi}(Q_t), \pi_x^{x,y,z})$

 $\rightarrow V_t$ affine on \mathcal{P}_t , $\mathcal{N}(P_x)$ constant on \mathcal{P}_t

Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

$$\begin{split} \mathcal{P}_{t,\xi} &:= \mathcal{C}\Big(\big(\mathbb{R}^{n_t} \times \mathcal{P}_{t+1}\big) \wedge \mathcal{F}\big(P_t(\xi)\big), \pi_{\mathsf{x}_{t-1}}^{\mathsf{x}_{t-1},\mathsf{x}_t}\Big) \\ \mathcal{P}_t &:= \bigwedge_{\xi_t \in \mathsf{supp}\, \boldsymbol{\xi}_t} \mathcal{P}_{t,\xi} \end{split}$$

Extension to multistage and stochastic constraints

Iterated chamber complexes by backward induction

$$\begin{split} \mathcal{P}_{t,\xi} &:= \mathcal{C}\Big(\big(\mathbb{R}^{n_t} \times \mathcal{P}_{t+1}\big) \wedge \mathcal{F}\big(P_t(\xi)\big), \pi_{\mathsf{x}_{t-1}}^{\mathsf{x}_{t-1},\mathsf{x}_t}\Big) \\ \mathcal{P}_t &:= \bigwedge_{\xi_t \in \mathsf{supp}} \xi_t \\ \end{split}$$

Theorem (F., Gaubert, Leclère 21)

All results generalizes to MSLP with finitely supported stochastic constraints.

- $(V_t)_t$ are affine on universal chamber complexes, i.e. independent of the law of $(c_t)_t$
- **▶** We have an uniform and universal exact quantization.

Contents

- Universal Exact Quantization for cost
 - Local in 2-stage
 - Uniform in 2-stage
 - Uniform in multistage
 - Complexity results
- 2 Local and universal exact Quantization for constraints
 - Adaptive partition based methods
- Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

Volume of a polytope

$$\mathsf{Vol}\left(\{z\in\mathbb{R}^d\,|\, Az\leqslant b\}\right) \;\mathsf{or} \; \mathsf{Vol}\left(\mathsf{Conv}(v_1,\cdots,v_n)
ight)$$

- #P-complete: Dyer and Frieze (1988)
- Polynomial for fixed dimensiond: Lawrence (1991)

Volume of a polytope

$$\mathsf{Vol}\left(\{z\in\mathbb{R}^d\,|\, Az\leqslant b\}
ight)$$
 or $\mathsf{Vol}\left(\mathsf{Conv}(v_1,\cdots,v_n)
ight)$

- #P-complete:Dyer and Frieze (1988)
- Polynomial for fixed dimension
 d: Lawrence (1991)

2-stage linear problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} c^{\top} \mathbf{x} + \mathbb{E} \begin{bmatrix} \min_{\mathbf{y} \in \mathbb{R}^m} \mathbf{q}^{\top} \mathbf{y} \\ \text{s.t. } T\mathbf{x} + W\mathbf{y} \leqslant h \end{bmatrix}$$
s.t. $A\mathbf{x} \leqslant b$

- #P-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed m?

Volume of a polytope

Vol
$$\left(\left\{z\in\mathbb{R}^d\,|\, Az\leqslant b\right\}\right)$$
 or Vol $\left(\mathsf{Conv}(v_1,\cdots,v_n)\right)$

- #P-complete:Dyer and Frieze (1988)
- Polynomial for fixed dimension
 d: Lawrence (1991)

2-stage linear problem

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} c^{\top} \mathbf{x} + \mathbb{E} \begin{bmatrix} \min_{\mathbf{y} \in \mathbb{R}^{m}} \mathbf{q}^{\top} \mathbf{y} \\ \text{s.t. } T\mathbf{x} + W\mathbf{y} \leqslant \mathbf{h} \end{bmatrix}$$
s.t. $A\mathbf{x} \leqslant \mathbf{b}$

- #P-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed *m*: FGL (2021)

Volume of a polytope

Vol
$$\left(\left\{z\in\mathbb{R}^d\,|\, Az\leqslant b\right\}\right)$$
 or Vol $\left(\mathsf{Conv}(v_1,\cdots,v_n)\right)$

- #P-complete: Dyer and Frieze (1988)
- Polynomial for fixed dimension
 d: Lawrence (1991)

2-stage linear problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} c^{\top} \mathbf{x} + \mathbb{E} \begin{bmatrix} \min_{\mathbf{y} \in \mathbb{R}^m} \mathbf{q}^{\top} \mathbf{y} \\ \text{s.t. } T\mathbf{x} + W\mathbf{y} \leqslant h \end{bmatrix}$$
s.t. $A\mathbf{x} \leqslant b$

- #P-hard: Hanasusanto, Kuhn and Wiesemann (2016)
- Polynomial for fixed *m*: FGL (2021)

 - → Approximated case

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2, \dots, n_T , are fixed.¹

Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an ε -solution² in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

¹No requirement for the first decision.

²Or asserts that MSLP is unfeasible.

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2, \dots, n_T , are fixed.¹

Assume that **c** admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an ε -solution² in polynomial time in $\log(\frac{1}{2})$ with probability 1.

► Can be adapted to exact complexity when we can compute exactly

$$\mathbb{E}\big[\boldsymbol{c}|\boldsymbol{c}\in\mathcal{C},(\boldsymbol{A}_t,\boldsymbol{B}_t,\boldsymbol{b}_t)\!=\!(A,B,b)\big] \text{ and } \mathbb{P}\big[\boldsymbol{c}\in\mathcal{C}|(\boldsymbol{A}_t,\boldsymbol{B}_t,\boldsymbol{b}_t)\!=\!(A,B,b)\big].$$

¹No requirement for the first decision.

²Or asserts that MSLP is unfeasible.

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2, \dots, n_T , are fixed.¹

Assume that $oldsymbol{c}$ admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an ε -solution² in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

ightharpoonup Can be adapted to exact complexity when we can compute exactly $\mathbb{E}\big[m{c}|m{c}\in\mathcal{C}, (m{A}_t, m{B}_t, m{b}_t) = (A, B, b)\big]$ and $\mathbb{P}\big[m{c}\in\mathcal{C}|(m{A}_t, m{B}_t, m{b}_t) = (A, B, b)\big].$

Proof based on ellipsoid (Grostchel, Lovasz, Schrijver) and upper bound theorems (McMullen, Stanley)

¹No requirement for the first decision.

²Or asserts that MSLP is unfeasible.

Theorem (FGL21: MSLP is polynomial for fixed dimensions)

Assume that T, n_2, \dots, n_T , are fixed.¹

Assume that c admits a density function with a bounded total variation.

Then, there exists an algorithm that finds an ε -solution² in polynomial time in $\log(\frac{1}{\varepsilon})$ with probability 1.

ightharpoonup Can be adapted to exact complexity when we can compute exactly $\mathbb{E}\big[m{c}|m{c}\in\mathcal{C}, (m{A}_t, m{B}_t, m{b}_t) = (A, B, b)\big]$ and $\mathbb{P}\big[m{c}\in\mathcal{C}|(m{A}_t, m{B}_t, m{b}_t) = (A, B, b)\big].$

Proof based on ellipsoid (Grostchel, Lovasz, Schrijver) and upper bound theorems (McMullen, Stanley)

By SAA, we can solve MSLP, up to precision ε , in pseudo-polynomial time, i.e. polynomial in $\frac{1}{\varepsilon}$, with probability $1-\alpha$, when T, n_1, \dots, n_T are fixed.

¹No requirement for the first decision.

²Or asserts that MSLP is unfeasible.

Contents

- Universal Exact Quantization for cost
 - Local in 2-stage
 - Uniform in 2-stage
 - Uniform in multistage
 - Complexity results
- 2 Local and universal exact Quantization for constraints
 - Adaptive partition based methods
- Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

Contents

- Universal Exact Quantization for cost
 - Local in 2-stage
 - Uniform in 2-stage
 - Uniform in multistage
 - Complexity results
- 2 Local and universal exact Quantization for constraints
 - Adaptive partition based methods
- Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

Back to the 2-stage problem

	A	(B , b)	С
Local	×	?	√
Uniform	×	×	√

Duality result

$$V(x) = \mathbb{E}\left[V(x, \boldsymbol{\xi})\right] = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^n} & c^{\top}y \\ \text{s.t.} & Ay + \boldsymbol{B}x \leqslant \boldsymbol{b} \end{bmatrix} = \mathbb{E}\begin{bmatrix} \max_{\lambda \in \mathbb{R}^{\ell}} & (\boldsymbol{B}x - \boldsymbol{b})^{\top}\lambda \\ \text{s.t.} & A^{\top}\lambda + c = 0 \end{bmatrix}$$

→ Back to the case with random cost

 \wedge The new cost depends on x: only local exact quantization

Back to the 2-stage problem

	A	(B , b)	С
Local	×	?	√
Uniform	×	×	√

Duality result

$$V(x) = \mathbb{E}\left[V(x, \boldsymbol{\xi})\right] = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^n} & c^{\top}y \\ \text{s.t.} & Ay + \boldsymbol{B}x \leqslant \boldsymbol{b} \end{bmatrix} = \mathbb{E}\begin{bmatrix} \max_{\lambda \in \mathbb{R}^{\ell}} & (\boldsymbol{B}x - \boldsymbol{b})^{\top}\lambda \\ \text{s.t.} & A^{\top}\lambda + c = 0 \end{bmatrix}$$

■ Back to the case with random cost

 \wedge The new cost depends on x: only local exact quantization

Back to the 2-stage problem

	A	(B , b)	С
Local	×	?	√
Uniform	×	×	✓

Duality result

$$V(x) = \mathbb{E}\left[V(x, \boldsymbol{\xi})\right] = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^n} & c^{\top}y \\ \text{s.t.} & Ay + \boldsymbol{B}x \leqslant \boldsymbol{b} \end{bmatrix} = \mathbb{E}\begin{bmatrix} \max_{\lambda \in \mathbb{R}^{\ell}} & (\boldsymbol{B}x - \boldsymbol{b})^{\top}\lambda \\ \text{s.t.} & A^{\top}\lambda + c = 0 \end{bmatrix}$$

➡ Back to the case with random cost

 \bigwedge The new cost depends on x: only local exact quantization

Back to the 2-stage problem

	A	(B , b)	С
Local	×	?	√
Uniform	×	×	√

Duality result

$$V(x) = \mathbb{E}\left[V(x,\xi)\right] = \mathbb{E}\begin{bmatrix} \min_{y \in \mathbb{R}^n} & c^{\top}y \\ \text{s.t.} & Ay + \mathbf{B}x \leqslant \mathbf{b} \end{bmatrix} = \mathbb{E}\begin{bmatrix} \max_{\lambda \in \mathbb{R}^{\ell}} & (\mathbf{B}x - \mathbf{b})^{\top}\lambda \\ \text{s.t.} & A^{\top}\lambda + c = 0 \end{bmatrix}$$

Back to the case with random cost

 \bigwedge The new cost depends on x: only local exact quantization.

random cost

Recall that for a fixed x,

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$
$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top} y$$

where,

$$p_N := \mathbb{P}[\boldsymbol{c} \in -\operatorname{ri} N]$$
 $\check{c}_N := \mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in -\operatorname{ri} N]$

$$P_{\mathsf{x}} := \{ y \in \mathbb{R}^m \, | \, Ay + Bx \leqslant b \}$$

random constraints

Similarly, for a given c and x,

$$V(x) = \mathbb{E}\left[\max_{\lambda \in D_c} (\boldsymbol{b} - \boldsymbol{B}x)^{\top} \lambda\right]$$
$$= \sum_{N \in \mathcal{N}(D_c)} p_{N,x} \max_{\lambda \in D_c} \psi_{N,x}^{\top} \lambda$$

where,

$$p_{N,x} := \mathbb{P}[\mathbf{b} - \mathbf{B}x \in ri N]$$

$$\psi_{N,x} := \mathbb{E}[\mathbf{b} - \mathbf{B}x \mid \mathbf{b} - \mathbf{B}x \in ri N]$$

random cost

Recall that for a fixed x,

$$V(x) = \mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$
$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top} y$$

where,

$$p_N := \mathbb{P}[\boldsymbol{c} \in -\operatorname{ri} N]$$
 $\check{c}_N := \mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in -\operatorname{ri} N]$

$$\frac{P_x}{} := \{ y \in \mathbb{R}^m \, | \, Ay + Bx \leqslant b \}$$

random constraints

Similarly, for a given c and x,

$$V(x) = \mathbb{E}\left[\max_{\lambda \in D_c} (\boldsymbol{b} - \boldsymbol{B}x)^{\top} \lambda\right]$$
$$= \sum_{N \in \mathcal{N}(D_c)} p_{N,x} \max_{\lambda \in D_c} \psi_{N,x}^{\top} \lambda$$

where,

$$p_{N,x} := \mathbb{P} \big[\boldsymbol{b} - \boldsymbol{B} \boldsymbol{x} \in \operatorname{ri} \boldsymbol{N} \big]$$

$$\psi_{N,x} := \mathbb{E} \big[\boldsymbol{b} - \boldsymbol{B} \boldsymbol{x} \mid \boldsymbol{b} - \boldsymbol{B} \boldsymbol{x} \in \operatorname{ri} \boldsymbol{N} \big]$$

$$\mathbf{D}_{\boldsymbol{c}} := \{ \lambda \in \mathbb{R}^{I} \mid A^{\top} \lambda + \boldsymbol{c} = 0 \}$$

Partitioned cost-to-go functions

Recall that

$$V(x) = \mathbb{E}\left[\hat{V}(x, \xi)\right]$$

$$V_{\mathcal{P}}(x) = \sum_{P \in \mathcal{P}} \mathbb{P}[P]\hat{V}(x, \mathbb{E}[\xi|P])$$

- $\hat{V}(x,\cdot)$ is convex $\rightsquigarrow V_{\mathcal{P}} \leqslant V$.
- $\hat{V}(\cdot, \mathbb{E}[\xi|P])$ is polyhedral $\rightsquigarrow V_{\mathcal{P}}$ is polyhedral.

Partitioned cost-to-go functions

Recall that

$$V(x) = \mathbb{E}\left[\hat{V}(x, \xi)\right]$$

$$V_{\mathcal{P}}(x) = \sum_{P \in \mathcal{P}} \mathbb{P}[P]\hat{V}(x, \mathbb{E}[\xi|P])$$

- $\hat{V}(x,\cdot)$ is convex $\rightsquigarrow V_{\mathcal{P}} \leqslant V$.
- $\hat{V}(\cdot, \mathbb{E}[\xi|P])$ is polyhedral $\rightsquigarrow V_{\mathcal{P}}$ is polyhedral.

Adapted partition

Definition

We say that a partition \mathcal{P} is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}\left[Q(x_0, \xi)\right]$$

Adapted partition

Definition

We say that a partition \mathcal{P} is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}\left[Q(x_0, \xi)\right]$$

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(D_q)$ a normal cone of D_q . We define

$$E_{N,x} := \{ \xi \in \Xi \mid b - Bx \in ri N \}$$

Theorem (FL 2021)

 $\mathcal{R}_x := \left\{ E_{N,x} \mid N \in \mathcal{N}(D_q) \right\}$ is adapted to x i.e. $V_{\mathcal{R}_x}(x) = V(x)$

In particular: if only \boldsymbol{B} and \boldsymbol{b} are stochastic,

then there exists a universal and local exact quantization.

Bonus: necessary and sufficient condition for a partition to be adapted

General framework for Adaptive Partition-based Methods

```
\begin{split} \mathcal{P}^0 \leftarrow \{\Xi\} \;; \\ \text{for } k &= 1 \cdots \infty \text{ do} \\ & \text{Let } x^k \text{ be an optimal solution } \min_{x \in X} c^\top x + V_{\mathcal{P}^{k-1}}(x) \;; \\ & \text{Let } \mathcal{P}_{x^k} \text{ a partition adapted to } x^k \;\;; \\ & \mathcal{P}^k \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^k} \;; \end{split}
```

end

Algorithm 1: General framework for APM.

$$\min_{x \in X} c^{\top} x + V_{\mathcal{P}}(x)$$

is equivalent to

$$\min_{x \in X, (y_P)_{P \in \mathcal{P}}} c^{\top} x + \sum_{P \in \mathcal{P}} \mathbb{P}[P] q^{\top} y_P$$

$$\mathbb{E}[\mathbf{B}|P] x + A y_P \leqslant \mathbb{E}[\mathbf{b}|P] \qquad \forall P \in \mathcal{P}$$

General framework for Adaptive Partition-based Methods

$$\begin{split} \mathcal{P}^0 &\leftarrow \{\Xi\} \;; \\ \text{for } k = 1 \cdots \infty \; \text{do} \\ & \mid \; \text{Let } x^k \text{ be an optimal solution } \min_{x \in X} c^\top x + V_{\mathcal{P}^{k-1}}(x) \;; \\ & \mid \; \text{Let } \mathcal{P}_{x^k} \text{ a partition adapted to } x^k \;\;; \\ & \mid \; \mathcal{P}^k \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^k} \;; \end{split}$$

end

Algorithm 1: General framework for APM.

$$\min_{x \in X} c^{\top} x + V_{\mathcal{P}}(x)$$

is equivalent to

$$\min_{x \in X, (y_P)_{P \in \mathcal{P}}} c^{\top} x + \sum_{P \in \mathcal{P}} \mathbb{P}[P] q^{\top} y_P$$

$$\mathbb{E}[\mathbf{B}|P] x + A y_P \leqslant \mathbb{E}[\mathbf{b}|P] \qquad \forall P \in \mathcal{P}$$

A (partial) comparison between partition based results

Paper	Song, Luedtke (2015)	Ramirez-Pico, Moreno (2020)	F., Leclère (2021)	
Non-finite supp(ξ)	×	✓	√	
Explicit oracle	✓	×	√	
Proof of convergence	✓	×	√	
Complexity result	×	×	√	
Fast iteration	✓	×	×	

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Theorem (Convergence and complexity results)

If $X \cap \text{dom}(V) \subset \mathbb{R}^+$ is contained in a ball of diameter $M \in \mathbb{R}^+$ and $x \to c^\top x + V(x)$ is Lipschitz with constant L then the partition based method finds an ε -solution in at most $\left(\frac{LM}{\varepsilon} + 1\right)^n$ iterations.

Numerical Results - ProdMix

k	x _k	z_L^k	z_U^k	Gap	$ \mathcal{P}_k^{max} $
1	(1333.33, 66.67)	-18666.67	-16939.71	9.3%	4
2	(1441.41, 59.57)	-17873.01	-17383.73	2.7%	9
3	(1399.05, 57.91)	-17789.88	-17659.19	0.74%	16
4	(1379.98, 56.64)	-17744.67	-17708.00	0.20%	25
5	(1371.36, 55.71)	-17718.96	-17709.05	0.056%	36
6	(1375.55, 56.21)	-17713.74	-17711.37	0.013%	49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100 times, each with 10 000 scenarios randomly drawn, yielding a 95% confidence interval centered in -17711, with radius 2.2.

Contents

- Universal Exact Quantization for cost
 - Local in 2-stage
 - Uniform in 2-stage
 - Uniform in multistage
 - Complexity results
- 2 Local and universal exact Quantization for constraints
 - Adaptive partition based methods
- 3 Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

History of stochastic dual dynamic programming (SDDP)

- Designed by Pereira and Pinto in 1991, used to manage brazilian hydroelectricity network
- Proof of asymptotic convergence in the linear case (Philpott and Guan 2008) and in the convex case (Girardeau, Leclère, Philpott 2015)
- Complexity proof (Lan 2020, Zhang and Sun 2022)
- Plenty of variants: trajectory following dynamic programming algorithms
- ➡ All with finitely supported distribution

First forward pass: computing trajectory

First forward pass: computing trajectory

First forward pass: computing trajectory

First forward pass: computing trajectory

First forward pass: computing trajectory

First forward pass: computing trajectory

First forward pass: computing trajectory

First forward pass: computing trajectory

First forward pass : computing trajectory

First forward pass : computing trajectory

First forward pass: computing trajectory

First forward pass: computing trajectory

First forward pass: computing trajectory

First forward pass: computing trajectory

First backward pass : refining approximation (adding cuts)

First backward pass : refining approximation (adding cuts)

First backward pass : refining approximation (adding cuts)

First backward pass : refining approximation (adding cuts)

First backward pass : refining approximation (adding cuts)

First backward pass : refining approximation (adding cuts)

First backward pass: refining approximation (adding cuts)

First backward pass : refining approximation (adding cuts)

second forward pass: computing trajectory

second forward pass: computing trajectory

second forward pass: computing trajectory

second forward pass: computing trajectory

second forward pass: computing trajectory

second forward pass: computing trajectory

second forward pass: computing trajectory

second backward pass: refining approximation (adding cuts)

second backward pass: refining approximation (adding cuts)

second backward pass: refining approximation (adding cuts)

second backward pass: refining approximation (adding cuts)

second backward pass: refining approximation (adding cuts)

second backward pass: refining approximation (adding cuts)

second backward pass: refining approximation (adding cuts)

third forward pass: computing trajectory

third forward pass: computing trajectory

third forward pass: computing trajectory

third forward pass: computing trajectory

third forward pass: computing trajectory

third forward pass: computing trajectory

third forward pass: computing trajectory

third forward pass: computing trajectory

third forward pass: computing trajectory

third forward pass: computing trajectory

third forward pass: computing trajectory

third forward pass: computing trajectory

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

third backward pass: refining approximation (adding cuts)

And so on...

Contributions on SDDP and its variants

- ➤ New framework called Trajectory Following Dynamic Programming (TFDP) encompassing at least 14 variants of SDDP
- Complexity proofs, new for most of those variants
- Do not require finite support assumption
- Allow approximation error
- Adapt to robust and risk averse cases

Some TFDP algorithms

Algorithm's name	Node selection: Choice $\boldsymbol{\xi}_t^k$	\mathcal{F}_t	\underline{V}_t^k	\overline{V}_t^k	Hypothesis	Complexity known
SDDP	Random sampling	Exact	Benders cuts	V_t	Convex	~
EDDP	Explorative	Exact	Benders cuts	V _t	Convex	~
APSDDP	Random sampling	Exact	Adaptive partition	V _t	Linear	*
SDDiP	Random sampling	Exact	Lagrangian or integer cuts	V _t	Mixed Integer Linear	×
MIDAS	Random sampling	Exact	Step cuts	V_t	Monotonic Mixed Integer	×
SLDP	Random sampling	Exact	Reverse norm cuts	V_t	Non-Convex	×
BDZ17	Problem child	Exact	Benders cuts	Epigraph as convex hull	Convex	×
BDZ18	Problem child	Exact	Benders × Epigraph	Hypograph × Benders	Convex-Concave	×
RDDP	Deterministic	Exact	Benders cuts	Epigraph as convex hull	Robust	×
ISDDP	Random sampling	Inexact	Inexact Lagrangian cuts	V _t	Convex	×
TDP	Problem child	Exact	Benders cuts	Min of quadratic	Convex	×
ZS19	Random or Problem	Regularized	Generalized conjugacy cuts	Norm cuts	Mixed Integer Convex	_
NDDP	Random or Problem	Regularized	Benders cuts	Norm cuts	Distributionally Robust	V
DSDDP	Random sampling	Exact	Benders cuts	Fenchel transform	Linear	×

Contents

- Universal Exact Quantization for cost
 - Local in 2-stage
 - Uniform in 2-stage
 - Uniform in multistage
 - Complexity results
- 2 Local and universal exact Quantization for constraints
 - Adaptive partition based methods
- Trajectory Following Dynamic Programming
- 4 Conclusion and perspectives

	A	(B , b)	с
Local	×	√	✓
Uniform	×	×	√

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- ullet Uniform and universal exact quantization for $oldsymbol{c}$ in MSLP (Chap.4).
 - Polynomial time complexity results.
- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5).
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6).

	A	(B , b)	с
Local	×	√	✓
Uniform	×	×	✓

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- Uniform and universal exact quantization for c in MSLP (Chap.4).
 Polynomial time complexity results.
- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5).
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6).

	A	(B , b)	с
Local	×	√	√
Uniform	×	×	√

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- Uniform and universal exact quantization for c in MSLP (Chap.4).
 - Polynomial time complexity results.
- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5).
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6).

	A	(B , b)	с
Local	×	√	√
Uniform	×	×	√

- Links with fundamental polyhedral geometry, regular subdivisions and fiber polytope (Chap. 3 and 4).
- Uniform and universal exact quantization for c in MSLP (Chap.4).
 - Polynomial time complexity results.
- Local exact quantization for **B** and **b**.
 - Adaptive Partition-based Methods (APM) for general distribution: solves small 2SLP with high precision (Chap. 5).
- Extension of Stochastic Dual Dynamic Programming algorithms and more generally all Trajectory Following Dynamic Programming algorithm for non finitely supported distribution (Chap. 6).

- Higher order simplex algorithm on the chamber complex for 2SLP.
- 2-time scale MSLP, nested fiber polyhedra and convex bodies.
- Reintroduce approximation or sampling.
- Exact quantization for stochastic integer linear problems
- Understanding the complexity of MSLP.

- Higher order simplex algorithm on the chamber complex for 2SLP.
- 2-time scale MSLP, nested fiber polyhedra and convex bodies.
- Reintroduce approximation or sampling.
- Exact quantization for stochastic integer linear problems
- Understanding the complexity of MSLP.

- Higher order simplex algorithm on the chamber complex for 2SLP.
- 2-time scale MSLP, nested fiber polyhedra and convex bodies.
- Reintroduce approximation or sampling.
- Exact quantization for stochastic integer linear problems
- Understanding the complexity of MSLP.

- Higher order simplex algorithm on the chamber complex for 2SLP.
- 2-time scale MSLP, nested fiber polyhedra and convex bodies.
- Reintroduce approximation or sampling.
- Exact quantization for stochastic integer linear problems
- Understanding the complexity of MSLP.

- Higher order simplex algorithm on the chamber complex for 2SLP.
- 2-time scale MSLP, nested fiber polyhedra and convex bodies.
- Reintroduce approximation or sampling.
- Exact quantization for stochastic integer linear problems
- Understanding the complexity of MSLP.

Thank you for listening! Any question?

M. Forcier, S. Gaubert, V. Leclère

Exact quantization of multistage stochastic linear problems.

arXiv preprint arXiv:2107.09566 (2021).

M. Forcier, V. Leclère

Generalized adaptive partition-based method for two-stage stochastic linear programs: convergence and generalization. Operation Research Letters, to appear (2022).

M. Forcier, V. Leclère

Convergence of Trajectory Following Dynamic Programming algorithms for multistage stochastic problems without finite support assumptions

HAL Id: hal-03683697 (2022).

Contents

- 5 Explicit formulas for general distributions
- 6 Details on GAPM
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- 8 Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

Explicit formulas for usual distributions

in the exact case, we need to compute the quantized probalities $\check{p}_S = \mathbb{P}[\mathbf{c} \in S]$ and the quantized cost $\check{c}_S = \mathbb{E}[\mathbf{\xi} \mid \mathbf{c} \in S]$ when S is a polyhedron.

Explicit formulas, valid for S full dimensional simplex or simplicial cone, which can be used through triangulation.

Distribution	Uniform on polytope	Exponential	
	$\frac{\mathbb{1}_{\xi \in Q}}{\operatorname{Vol}_d(Q)} \mathcal{L}_{\operatorname{Aff}(Q)}(d\xi)$	$\frac{e^{\theta^{\top}\xi}\mathbb{1}_{\xi\in\mathcal{K}}}{\Phi_{\mathcal{K}}(\theta)}\mathcal{L}_{Aff(\mathcal{K})}(d\xi)$	
Support	Polytope : Q	Cone: K	
ĎS	$\frac{\operatorname{Vol}_d(S)}{\operatorname{Vol}_d(Q)}$	$\frac{ \det(Ray(S)) }{\Phi_{\mathcal{K}}(\theta)} \prod_{r \in Ray(S)} \frac{1}{-r^{\top}\theta}$	$Ang(M^{-1}S)$
	$\frac{1}{d} \sum_{v \in Vert(S)} {}^{V}$	$\left(\sum_{r\in Ray(S)} \frac{-r_i}{r^{\top}\theta}\right)_{i\in[m]}$	

Explicit formulas for usual distributions

in the exact case, we need to compute the quantized probalities $\check{p}_S = \mathbb{P}[\mathbf{c} \in S]$ and the quantized cost $\check{c}_S = \mathbb{E}[\mathbf{\xi} \mid \mathbf{c} \in S]$ when S is a polyhedron.

Explicit formulas, valid for S full dimensional simplex or simplicial cone, which can be used through triangulation.

Distribution	Uniform on polytope	Exponential	Gaussian
$d\mathbb{P}(\xi)$	$rac{\mathbb{1}_{\xi\in Q}}{\operatorname{Vol}_d(Q)}\mathcal{L}_{\operatorname{Aff}(Q)}(d\xi)$	$\frac{e^{\theta^{\top}\xi}\mathbb{1}_{\xi\in\mathcal{K}}}{\Phi_{\mathcal{K}}(\theta)}\mathcal{L}_{Aff(\mathcal{K})}(d\xi)$	$\frac{e^{-\frac{1}{2}\xi^{\top}M^{-2}\xi}}{(2\pi)^{\frac{m}{2}}\det M}d\xi$
Support	Polytope : Q	Cone: K	\mathbb{R}^m
ĎS	$\frac{\operatorname{Vol}_d(S)}{\operatorname{Vol}_d(Q)}$	$\frac{ \det(Ray(S)) }{\Phi_{\mathcal{K}}(\theta)} \prod_{r \in Ray(S)} \frac{1}{-r^{\top}\theta}$	$Ang(M^{-1}S)$
čs	$\frac{1}{d} \sum_{v \in Vert(S)} v$	$\left(\sum_{r\inRay(S)}\frac{-r_i}{r^\top\theta}\right)_{i\in[m]}$	$\frac{\sqrt{2}\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m}{2})} M \operatorname{Ctr}\left(S \cap \mathbb{S}_{m-1}\right)$

Contents

- 5 Explicit formulas for general distributions
- 6 Details on GAPM
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- 8 Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

Contents

- Explicit formulas for general distributions
- Oetails on GAPM
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

$$\min_{\mathbf{x} \in \mathbb{R}^n_+} \qquad c^\top \mathbf{x} + \mathbb{E}\left[Q(\mathbf{x}, \boldsymbol{\xi})\right]$$
s.t. $A\mathbf{x} = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_{+}^{m}} q^{\top} y \qquad = \max_{\lambda \in \mathbb{R}^{n}} (h - Tx)^{\top} \lambda$$
s.t. $Tx + Wy = h$ s.t. $W^{\top} \lambda \leqslant q$

We define

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \}$$
 $D := \{ \lambda \in \mathbb{R}^\ell \mid W^\top \lambda \leqslant q \}$

Maël Forcier PhD Defense 14/12/2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{\mathbf{x} \in \mathbb{R}^n_+} \qquad c^{\top} \mathbf{x} + \mathbb{E}\left[Q(\mathbf{x}, \boldsymbol{\xi})\right]$$
s.t. $A\mathbf{x} = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_+^m} q^\top y \qquad \qquad = \max_{\lambda \in \mathbb{R}^n} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$ s.t. $W^\top \lambda \leqslant q$

We define

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \}$$
 $D := \{ \lambda \in \mathbb{R}^\ell \mid W^\top \lambda \leqslant q \}$

Maël Forcier PhD Defense 14/12/2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{x \in \mathbb{R}^n_+} \qquad c^\top x + \mathbb{E}\left[Q(x, \boldsymbol{\xi})\right]$$
s.t. $Ax = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_{+}^{m}} q^{\top} y \qquad \qquad = \max_{\lambda \in \mathbb{R}^{n}} (h - Tx)^{\top} \lambda$$
s.t. $Tx + Wy = h$ s.t. $W^{\top} \lambda \leqslant q$

We define

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \}$$
 $D := \{ \lambda \in \mathbb{R}^\ell \mid W^\top \lambda \leqslant q \}$

Maël Forcier PhD Defense 14/12/2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{x \in \mathbb{R}^n_+} \qquad c^\top x + \mathbb{E}\left[Q(x, \boldsymbol{\xi})\right]$$
s.t. $Ax = b$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_{+}^{m}} q^{\top} y \qquad \qquad = \max_{\lambda \in \mathbb{R}^{n}} (h - Tx)^{\top} \lambda$$
s.t. $Tx + Wy = h$ s.t. $W^{\top} \lambda \leqslant q$

We define

$$X := \{ x \in \mathbb{R}^n_+ \mid Ax = b \}$$
 $D := \{ \lambda \in \mathbb{R}^\ell \mid W^\top \lambda \leqslant q \}$

Maël Forcier PhD Defense 14/12/2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{x \in X} c^{\top} x + \mathbb{E}[Q(x, \boldsymbol{\xi})]$$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_+^m} q^\top y = \max_{\lambda \in D} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$

We define

$$X := \{x \in \mathbb{R}^n_+ \mid Ax = b\}$$
 $D := \{\lambda \in \mathbb{R}^\ell \mid W^\top \lambda \leqslant q\}$

Maël Forcier PhD Defense 14/12/2022

¹Can be extended to generic random q, and finitely supported W

$$\min_{\mathbf{x} \in \mathbf{X}} \quad c^{\top} \mathbf{x} + \mathbb{E} \left[\mathbf{Q}(\mathbf{x}, \boldsymbol{\xi}) \right]$$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_+^m} q^\top y = \max_{\lambda \in D} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$

We define

$$X := \{x \in \mathbb{R}^n_+ \mid Ax = b\}$$
 $D := \{\lambda \in \mathbb{R}^\ell \mid W^\top \lambda \leqslant q\}$

No direct formula to compute $V(x) := \mathbb{E}[Q(x, \xi)]$ even for fixed x.

Maël Forcier

¹Can be extended to generic random q, and finitely supported W

$$\min_{x \in X} c^{\top} x + \mathbb{E}[Q(x, \boldsymbol{\xi})]$$

where $\boldsymbol{\xi} = (\boldsymbol{T}, \boldsymbol{h})$ is random whereas q and W are deterministic¹

$$Q(x, \xi) := \min_{y \in \mathbb{R}_+^m} q^\top y = \max_{\lambda \in D} (h - Tx)^\top \lambda$$

s.t. $Tx + Wy = h$

We define

$$X := \{x \in \mathbb{R}^n_+ \mid Ax = b\}$$
 $D := \{\lambda \in \mathbb{R}^\ell \mid W^\top \lambda \leqslant q\}$

No direct formula to compute $V(x) := \mathbb{E}[Q(x, \xi)]$ even for fixed x. → need to discretize €

Maël Forcier

¹Can be extended to generic random q, and finitely supported W

Properties of partitioned cost-to-go Recall that

$$V(x) = \mathbb{E}\left[Q(x, \xi)\right]$$

$$V_{\mathcal{P}}(x) = \sum_{P \in \mathcal{P}} \mathbb{P}[P]Q(x, \mathbb{E}[\xi|P])$$

- $Q(x, \cdot)$ is convex $\rightsquigarrow V_{\mathcal{P}} \leqslant V$.
- $Q(\cdot, \mathbb{E}[\xi|P])$ is polyhedral $\rightsquigarrow V_{\mathcal{P}}$ is polyhedral.

Finally

$$\min_{\mathbf{x} \in X} c^{\top} \mathbf{x} + V_{\mathcal{P}}(\mathbf{x}) \tag{2SLP}_{\mathcal{P}}$$

is equivalent to

$$\min_{\mathbf{x} \in X, (y_P)_{P \in \mathcal{P}}} \quad c^{\top} \mathbf{x} + \sum_{P \in \mathcal{P}} \mathbb{P}[P] q^{\top} y_P$$

$$\mathbb{E}[\mathbf{T}|P] \mathbf{x} + W y_P \leqslant \mathbb{E}[\mathbf{h}|P] \qquad \forall P \in \mathcal{P}$$

Properties of partitioned cost-to-go Recall that

$$V(x) = \mathbb{E}\left[Q(x, \xi)\right]$$

$$V_{\mathcal{P}}(x) = \sum_{P \in \mathcal{P}} \mathbb{P}[P]Q(x, \mathbb{E}[\xi|P])$$

- $Q(x, \cdot)$ is convex $\rightsquigarrow V_{\mathcal{P}} \leqslant V$.
- $Q(\cdot, \mathbb{E}[\xi|P])$ is polyhedral $\rightsquigarrow V_{\mathcal{P}}$ is polyhedral.

Finally,

$$\min_{\mathbf{x} \in X} c^{\top} \mathbf{x} + \mathbf{V}_{\mathcal{P}}(\mathbf{x}) \tag{2SLP}_{\mathcal{P}}$$

is equivalent to

$$\min_{x \in X, (y_P)_{P \in \mathcal{P}}} c^\top x + \sum_{P \in \mathcal{P}} \mathbb{P}[P] q^\top y_P$$

$$\mathbb{E}[T|P] x + W y_P \leqslant \mathbb{E}[h|P] \qquad \forall P \in \mathcal{P}$$

Adapted partition

Definition

We say that a partition \mathcal{P} is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}\left[Q(x_0, \xi)\right]$$

Adapted partition

Definition

We say that a partition P is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}[Q(x_0, \xi)]$$

Definition

An partition oracle is a function taking a first stage decision x^k as argument and returning an partition of Ξ .

Adapted partition

Definition

We say that a partition P is adapted to x_0 if

$$V_{\mathcal{P}}(x_0) = V(x_0) := \mathbb{E}[Q(x_0, \xi)]$$

Definition

An partition oracle is a function taking a first stage decision x^k as argument and returning an partition of Ξ .

Definition

An adapted partition oracle is a function taking a first stage decision x^k as argument and returning an adapted to x^k partition of Ξ .

Refinement

$$\mathcal{R}$$
 refines \mathcal{P} ($\mathcal{R} \preccurlyeq \mathcal{P}$) if

$$\forall R \in \mathcal{R}, \exists P \in P, R \subset P$$

$$[\mathcal{R} \preccurlyeq_{\mathbb{P}} \mathcal{P} \text{ if } \mathcal{R} \text{ refines } \mathcal{P} \text{ up to } \mathbb{P}\text{-null sets.}]$$

Then,
$$\mathcal{R} \preccurlyeq_{\mathbb{P}} \mathcal{P} \Rightarrow V_{\mathcal{R}} \geqslant V_{\mathcal{P}}$$

Refinement

$$\mathcal{R}$$
 refines \mathcal{P} ($\mathcal{R} \preccurlyeq \mathcal{P}$) if

$$\forall R \in \mathcal{R}, \exists P \in P, R \subset P$$

 $[\mathcal{R} \preccurlyeq_{\mathbb{P}} \mathcal{P} \text{ if } \mathcal{R} \text{ refines } \mathcal{P} \text{ up to } \mathbb{P}\text{-null sets.}]$

Then,
$$\mathcal{R} \preccurlyeq_{\mathbb{P}} \mathcal{P} \Rightarrow V_{\mathcal{R}} \geqslant V_{\mathcal{P}}$$

The common refinement of \mathcal{P} and \mathcal{P}' is

$$\mathcal{P} \wedge \mathcal{P}' := \{ P \cap P' \mid P \in \mathcal{P}, P' \in \mathcal{P}' \}$$

Since $\mathcal{P} \wedge \mathcal{P}'$ refines \mathcal{P} and \mathcal{P}'

$$\max(V_{\mathcal{P}}, V_{\mathcal{P}'}) \leqslant V_{\mathcal{P} \wedge \mathcal{P}'}$$

$$\begin{aligned} k &\leftarrow 0, \ z_U^0 \leftarrow +\infty, \ z_L^0 \leftarrow -\infty, \ \mathcal{P}^0 \leftarrow \{\Xi\} \ ; \\ \textbf{while} \ z_U^k &- z_L^k > \varepsilon \ \textbf{do} \\ & k \leftarrow k+1; \\ & \text{Solve} \ z_L^k \leftarrow \min_{x \in X} c^\top x + V_{\mathcal{P}^{k-1}}(x) \ ; \\ & \text{and let} \ x^k \ \text{be an optimal solution} \ ; \\ & \text{Call an adapted partition oracle on} \ x^k \ \text{yielding} \ \mathcal{P}_{x^k} \ ; \\ & \mathcal{P}^k \leftarrow \mathcal{P}^{k-1} \wedge \mathcal{P}_{x^k} \ ; \\ & z_U^k \leftarrow \min \left(z_U^{k-1}, c^\top x^k + V_{\mathcal{P}^k}(x^k) \right) \ ; \end{aligned}$$

$$\mathbf{end}$$

Algorithm 1: Generic framework for APM.

Lemma (Song & Luedtke, 2015)

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

$$\forall P \in \mathcal{P}, \quad \exists \lambda_P \in D, \quad \forall \xi_k \in P, \qquad \lambda_P \in \operatorname*{argmax}_{\lambda \in D} (h^k - T^k x)^\top \lambda$$

Lemma (Song & Luedtke, 2015)

Let $\mathcal P$ a partition of Ξ . $\mathcal P$ is adapted at x iff for all set of scenarios $P \in \mathcal P$, there exists a common optimal multiplier λ_P , i.e.

$$\forall P \in \mathcal{P}, \quad \exists \lambda_P \in D, \quad \forall \xi_k \in P, \qquad \lambda_P \in \underset{\lambda \in D}{\operatorname{argmax}} (h^k - T^k x)^\top \lambda$$

Idea

- Sample a large number of scenario
- without loss of precision aggregate scenarios

Lemma (Song & Luedtke, 2015)

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

$$\forall P \in \mathcal{P}, \quad \exists \lambda_P \in D, \quad \forall \xi_k \in P, \qquad \lambda_P \in \underset{\lambda \in D}{\operatorname{argmax}} (h^k - T^k x)^\top \lambda$$

Idea

- Sample a large number of scenario
- without loss of precision aggregate scenarios

14/12/2022

Lemma (Song & Luedtke, 2015)

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

$$\forall P \in \mathcal{P}, \quad \exists \lambda_P \in D, \quad \forall \xi_k \in P, \qquad \lambda_P \in \underset{\lambda \in D}{\operatorname{argmax}} (h^k - T^k x)^\top \lambda$$

Idea

- Sample a large number of scenario
- without loss of precision aggregate scenarios

Lemma (Song & Luedtke, 2015)

Let \mathcal{P} a partition of Ξ . \mathcal{P} is adapted at x iff for all set of scenarios $P \in \mathcal{P}$, there exists a common optimal multiplier λ_P , i.e.

$$\forall P \in \mathcal{P}, \quad \exists \lambda_P \in D, \quad \forall \xi_k \in P, \qquad \lambda_P \in \underset{\lambda \in D}{\operatorname{argmax}} (h^k - T^k x)^\top \lambda$$

Lemma (Ramirez-Pico & Moreno, 2020)

Let $\mathcal P$ a partition of Ξ . If there exists $\lambda(\xi)$ such that, for all $P \in \mathcal P$,

$$\mathbb{E}[\boldsymbol{h}|P]^{\top}\mathbb{E}[\lambda(\boldsymbol{\xi})|P] = \mathbb{E}[\boldsymbol{h}^{\top}\lambda(\boldsymbol{\xi})|P]$$
$$\boldsymbol{x}^{\top}\mathbb{E}[\boldsymbol{T}|P]^{\top}\mathbb{E}[\lambda(\boldsymbol{\xi})|P] = \boldsymbol{x}^{\top}\mathbb{E}[\boldsymbol{T}^{\top}\lambda(\boldsymbol{\xi})|P]$$

then P is an adapted partition.

A (partial) comparison between partition based results

Paper	Song, Luedtke (2015)	Ramirez-Pico, Moreno (2020)	F., Leclère (2021)
Non-finite $supp(\boldsymbol{\xi})$	×	✓	√
Explicit oracle	✓	×	√
Proof of convergence	√	×	√
Complexity result	×	×	√
Fast iteration	✓	×	×

Contents

- 5 Explicit formulas for general distributions
- Oetails on GAPM
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- 8 Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

Local exact quantization and adapted partition

Local exact quantization

random cost

Recall that for a fixed x,

$$\mathbb{E}\left[\min_{y \in P_{x}} \boldsymbol{c}^{\top} y\right]$$

$$= \sum_{N \in \mathcal{N}(P_{x})} p_{N} \min_{y \in P_{x}} \check{c}_{N}^{\top} y$$

where,

$$p_N := \mathbb{P}[\boldsymbol{c} \in -\operatorname{ri} N]$$

 $\check{c}_N := \mathbb{E}[\boldsymbol{c} \mid \boldsymbol{c} \in -\operatorname{ri} N]$

$$P_x := \{ y \in \mathbb{R}^m \mid Ay + Bx \leqslant b \}$$

GAPM

random constraints

Similarly, for a given q, and all x,

$$V(x) := \mathbb{E}\left[Q(x, \boldsymbol{\xi})\right]$$

$$= \mathbb{E}\left[\max_{\lambda \in D_{\boldsymbol{q}}} (\boldsymbol{h} - \boldsymbol{T}x)^{\top}\lambda\right]$$

$$= \sum_{N \in \mathcal{N}(D_{\boldsymbol{q}})} p_{N} \max_{\lambda \in D_{\boldsymbol{q}}} \psi_{N,x}^{\top}\lambda$$

where,

$$p_{N} := \mathbb{P}[\mathbf{h} - \mathbf{T}x \in ri N]$$

$$\psi_{N,x} := \mathbb{E}[\mathbf{h} - \mathbf{T}x \mid \mathbf{h} - \mathbf{T}x \in ri N]$$

$$\mathbf{D}_{\mathbf{g}} := \{\lambda \in \mathbb{R}^{I} \mid \mathbf{W}^{\top}\lambda \leq \mathbf{g}\}$$

An explicit adapted partition

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(D_q)$ a normal cone of D_q . We define

$$E_{N,x} := \{ \xi \in \Xi \mid h - Tx \in ri N \}$$

Theorem (FL 2021)

$$\mathcal{R}_x := \{ E_{N,x} \mid N \in \mathcal{N}(D_q) \}$$
 is an adapted partition to x i.e. $V_{\mathcal{R}_x}(x) = V(x)$

Proof:

$$V(x) := \mathbb{E}\left[Q(x, \boldsymbol{\xi})\right]$$

$$= \sum_{N \in \mathcal{N}(D)} \mathbb{P}\left[\boldsymbol{h} - \boldsymbol{T}x \in \operatorname{ri} N\right] \min_{\lambda \in D} \mathbb{E}\left[\boldsymbol{h} - \boldsymbol{T}x \mid \boldsymbol{h} - \boldsymbol{T}x \in \operatorname{ri} N\right]^{\top} \lambda$$

$$= \sum_{N \in \mathcal{N}(D)} \mathbb{P}\left[\boldsymbol{\xi} \in E_{N,x}\right] Q\left(\mathbb{E}\left[\boldsymbol{\xi} \mid \boldsymbol{\xi} \in E_{N,x}\right], x\right) = V_{\mathcal{R}_x}(x)$$

Maël Forcier PhD Defense 14/12/2022 10 / 32

An explicit adapted partition

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(D_q)$ a normal cone of D_q . We define

$$E_{N,x} := \{ \xi \in \Xi \mid h - Tx \in ri N \}$$

Theorem (FL 2021)

$$\mathcal{R}_x := \{ E_{N,x} \mid N \in \mathcal{N}(D_q) \}$$
 is an adapted partition to x i.e. $V_{\mathcal{R}_x}(x) = V(x)$

Proof:

$$\begin{aligned} V(x) &:= \mathbb{E} \big[Q(x, \boldsymbol{\xi}) \big] \\ &= \sum_{N \in \mathcal{N}(D)} \mathbb{P} \big[\boldsymbol{h} - \boldsymbol{T} \boldsymbol{x} \in \operatorname{ri} \boldsymbol{N} \big] \min_{\lambda \in D} \mathbb{E} \big[\boldsymbol{h} - \boldsymbol{T} \boldsymbol{x} \, | \boldsymbol{h} - \boldsymbol{T} \boldsymbol{x} \in \operatorname{ri} \boldsymbol{N} \big]^{\top} \lambda \\ &= \sum_{N \in \mathcal{N}(D)} \mathbb{P} \big[\boldsymbol{\xi} \in E_{N,x} \big] \, Q \Big(\mathbb{E} \big[\boldsymbol{\xi} \, | \boldsymbol{\xi} \in E_{N,x} \big], \boldsymbol{x} \Big) = V_{\mathcal{R}_x}(\boldsymbol{x}) \end{aligned}$$

An explicit adapted partition

Consider $x \in \mathbb{R}^n$ and $N \in \mathcal{N}(D_a)$ a normal cone of D_a . We define

$$E_{N,x} := \{ \xi \in \Xi \mid h - Tx \in ri N \}$$

Theorem (FL 2021)

$$\mathcal{R}_x := \left\{ E_{N,x} \mid N \in \mathcal{N}(D_q) \right\}$$
 is an adapted partition to x i.e. $V_{\mathcal{R}_x}(x) = V(x)$

Proof:

$$\begin{split} V(x) &:= \mathbb{E} \big[Q(x, \boldsymbol{\xi}) \big] \\ &= \sum_{N \in \mathcal{N}(D)} \mathbb{P} \big[\boldsymbol{h} - \boldsymbol{T} \boldsymbol{x} \in \operatorname{ri} \boldsymbol{N} \big] \min_{\lambda \in D} \mathbb{E} \big[\boldsymbol{h} - \boldsymbol{T} \boldsymbol{x} \, | \boldsymbol{h} - \boldsymbol{T} \boldsymbol{x} \in \operatorname{ri} \boldsymbol{N} \big]^{\top} \lambda \\ &= \sum_{N \in \mathcal{N}(D)} \mathbb{P} \big[\boldsymbol{\xi} \in E_{N,x} \big] \, Q \Big(\mathbb{E} \big[\boldsymbol{\xi} \, | \boldsymbol{\xi} \in E_{N,x} \big], \boldsymbol{x} \Big) = V_{\mathcal{R}_x}(\boldsymbol{x}) \end{split}$$

Is it the coarsest one?

Conditions for a partition to be adapted

Theorem (FL 2021)

For $x \in \mathbb{R}^n$ and \mathcal{P} a partition of Ξ , there exists $\mathcal{R}_x \succcurlyeq_{\mathbb{P}} \mathcal{R}_x$ such that

$$\mathcal{P} \preccurlyeq_{\mathbb{P}} \overline{\mathcal{R}}_x \iff V_{\mathcal{P}}(x) = V(x).$$

- If ξ admits a density, $\mathcal{R}_x =_{\mathbb{P}} \overline{\mathcal{R}}_x$.
- An oracle is adapted if and only if it returns a partition \mathcal{P} refining $\overline{\mathcal{R}}_x$.

$$\overline{E}_{N,x} := \{ \xi \in \Xi \mid h - Tx \in N \}$$

$$\overline{\mathcal{R}}_x := \{ E_{N,x} \mid N \in \mathcal{N}(D_q)^{\text{max}} \}.$$

Subgradient of partition function

Recall that if $\mathcal{P} \preccurlyeq_{\mathbb{P}} \mathcal{R}_{\mathsf{x}}$ then

$$V_{\mathcal{R}_x}(x) = V_{\mathcal{P}}(x) = V(x)$$

$$V_{\mathcal{R}_x}(\cdot) \leqslant V_{\mathcal{P}}(\cdot) \leqslant V(\cdot)$$

Lemma

Let $x \in \text{dom}(V)$ and \mathcal{P} be a refinement of \mathcal{R}_x , i.e. $\mathcal{P} \preccurlyeq \mathcal{R}_x$, then

$$\partial V_{\mathcal{R}_x}(x) \subset \partial V_{\mathcal{P}}(x) \subset \partial V(x)$$

Furthermore, if $x \in ri dom(V)$,

$$\partial V_{\mathcal{R}_x}(x) = \partial V_{\mathcal{P}}(x) = \partial V(x)$$

Partition based method can be seen as a tangent cone method: a cutting plane method where we add all active cuts instead of a single one.

Theorem (Convergence and complexity results)

If $X \cap \text{dom}(V) \subset \mathbb{R}^+$ is contained in a ball of diameter $M \in \mathbb{R}^+$ and $x \to c^\top x + V(x)$ is Lipschitz with constant L then the partition based method finds an ε -solution in at most $\left(\frac{LM}{\varepsilon} + 1\right)^n$ iterations

Numerical Results - LandS

Results given by GAPM for LandS problem²

Maël Forcier PhD Defense 14/12/2022

²illustration from Ramirez-Pico and Moreno

Numerical Results - ProdMix

k	x_k	z_L^k	z_U^k	Gap	$ \mathcal{P}_k^{max} $
1	(1333.33, 66.67)	-18666.67	-16939.71	9.3%	4
2	(1441.41, 59.57)	-17873.01	-17383.73	2.7%	9
3	(1399.05, 57.91)	-17789.88	-17659.19	0.74%	16
4	(1379.98, 56.64)	-17744.67	-17708.00	0.20%	25
5	(1371.36, 55.71)	-17718.96	-17709.05	0.056%	36
6	(1375.55, 56.21)	-17713.74	-17711.37	0.013%	49

Table: Results for problem Prod-Mix

To compare our approach with SAA, we solved the same problem 100 times, each with 10 000 scenarios randomly drawn, yielding a 95% confidence interval centered in -17711, with radius 2.2.

Contents

- 5 Explicit formulas for general distributions
- 6 Details on GAPM
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- 8 Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

Synthesis of local and uniform quantization results

	W	(T, h)	q
Local	Ø	\mathcal{R}_{x}	$\mathcal{N}(P_{\scriptscriptstyle X})$
Uniform	Ø	Ø	$\bigwedge_{\sigma \in \mathcal{O}(D_{\sigma})} \mathcal{N}_{\sigma}$
			$\sigma \in \mathcal{C}(P,\pi)$

Stochastic cost and recourse

- We have shown a local exact quantization result for random T, h, and deterministic q, W.
- If q and W are finitely supported random variable:
 - **①** compute an exact quantization \mathcal{N}_{ξ} for every element of the support;
 - 2 take the common refinement.

We have seen that we can deal with non-finitely supported q through the chamber complexes.

Can we do the same here?

Stochastic cost and recourse

- We have shown a local exact quantization result for random T, h, and deterministic q, W.
- If q and W are finitely supported random variable:
 - **1** compute an exact quantization \mathcal{N}_{ξ} for every element of the support;
 - 2 take the common refinement.

We have seen that we can deal with non-finitely supported q through the chamber complexes.

⇒ Can we do the same here ?

Adapted partition for general q

We define coupling constraint and fiber for the dual.

$$D_{q} := \left\{ \lambda \in \mathbb{R}^{\ell} \mid W^{\top} \lambda \leqslant q \right\}$$

$$\Delta := \left\{ (\lambda, q) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m} \mid W^{\top} \lambda \leqslant q \right\}$$

$$\mathcal{R}_{x,q} := \left\{ E_{N,x} \mid N \in \mathcal{N}(D_{q}) \right\}$$

Recall that $q \mapsto \mathcal{N}(D_q)$ is piecewise constant on $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda, q})$ and so is $\mathcal{R}_{x, q}$. \Longrightarrow we can take the common refinement of a finite number of $\mathcal{R}_{x, q}$!!

More precisely:

- The chamber complex $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda, q}) = \Sigma \operatorname{-fan}(W)^3$.
- For $S \in \Sigma$ -fan(W) define $\mathcal{R}_{x,S} := \mathcal{R}_{x,q}$ for any $q \in ri(S)$.
- ightharpoons $\left\{ \operatorname{ri}(S) \times R \,|\, S \in \Sigma \operatorname{-fan}(W), R \in \mathcal{R}_{x,S} \right\}$ is an adapted partition to x.

 $^{^{3}}$ The well studied secondary fan of W

Adapted partition for general q

We define coupling constraint and fiber for the dual.

$$D_{q} := \left\{ \lambda \in \mathbb{R}^{\ell} \mid W^{\top} \lambda \leqslant q \right\}$$

$$\Delta := \left\{ (\lambda, q) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m} \mid W^{\top} \lambda \leqslant q \right\}$$

$$\mathcal{R}_{x,q} := \left\{ E_{N,x} \mid N \in \mathcal{N}(D_{q}) \right\}$$

Recall that $q\mapsto \mathcal{N}(D_q)$ is piecewise constant on $\mathcal{C}(\Delta,\pi_\lambda^{\lambda,q})$ and so is $\mathcal{R}_{x,q}$. \Longrightarrow we can take the common refinement of a finite number of $\mathcal{R}_{x,q}$!!

More precisely:

- The chamber complex $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda, q}) = \Sigma \operatorname{-fan}(W)^3$.
- For $S \in \Sigma$ -fan(W) define $\mathcal{R}_{x,S} := \mathcal{R}_{x,q}$ for any $q \in ri(S)$.
- ightharpoons $\left\{ \operatorname{ri}(S) \times R \,|\, S \in \Sigma \operatorname{-fan}(W), R \in \mathcal{R}_{x,S} \right\}$ is an adapted partition to x.

 $^{^{3}}$ The well studied secondary fan of W

Adapted partition for general q

We define coupling constraint and fiber for the dual.

$$D_{q} := \left\{ \lambda \in \mathbb{R}^{\ell} \mid W^{\top} \lambda \leqslant q \right\}$$

$$\Delta := \left\{ (\lambda, q) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m} \mid W^{\top} \lambda \leqslant q \right\}$$

$$\mathcal{R}_{x,q} := \left\{ E_{N,x} \mid N \in \mathcal{N}(D_{q}) \right\}$$

Recall that $q \mapsto \mathcal{N}(D_q)$ is piecewise constant on $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda, q})$ and so is $\mathcal{R}_{x,q}$. \rightarrow we can take the common refinement of a finite number of $\mathcal{R}_{x,q}$!!

More precisely:

- The chamber complex $\mathcal{C}(\Delta, \pi_{\lambda}^{\lambda,q}) = \Sigma \operatorname{-fan}(W)^3$.
- For $S \in \Sigma$ -fan(W) define $\mathcal{R}_{x,S} := \mathcal{R}_{x,q}$ for any $q \in ri(S)$.
- ightharpoonup { ri(S) × R | S ∈ Σ-fan(W), R ∈ $\mathcal{R}_{x,S}$ } is an adapted partition to x.

 $^{^3}$ The well studied secondary fan of W

Contents

- 5 Explicit formulas for general distributions
- 6 Details on GAPM
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- 8 Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

Dual problem

$$V(x) := \mathbb{E} \begin{bmatrix} \inf_{y} & \boldsymbol{c}^{\top} y \\ \text{s.t.} & Ax + By \leqslant b \end{bmatrix} = \mathbb{E} [\inf_{y \in P_{x}} \boldsymbol{c}^{\top} y]$$

where $P_x = \{x \mid Ax + By \leq b\}$

$$V(x) := \mathbb{E} egin{bmatrix} \sup_{\mu} & (Ax - b)^{\top} \mu \\ \mathrm{s.t.} & B^{\top} \mu + oldsymbol{c} = 0 \\ & \mu \geqslant 0 \end{bmatrix} = \mathbb{E} ig[\sup_{\mu \in D_{oldsymbol{c}}} (Ax - b)^{\top} \muig]$$

where $D_c = \{ \mu \mid B^\top \mu + c = 0, \mu \geqslant 0 \}$

Minkowski sum:

$$E + F = \{x + x' | x \in E, x' \in F\}$$

Definition

The fiber polyhedron E of the bundle $(D_c)_{c \in \text{supp}(c)}$ is the Minkowsky integral of all the fiber at c when c varies according to its probability distribution:

$$\underline{E} := \int D_c \mathbb{P}(dc) = \left\{ \int \mu(c) \mathbb{P}(dc) \, | \, \mu(c) \in \underline{D}_c \quad a.s., \, \, \mu \in L_{\infty}(\mathbb{R}^m, \mathbb{R}^l) \right\}$$

$$V(x) = \mathbb{E}\left[\sup_{\mu \in D_{\mathbf{c}}} (Ax - b)^{\top} \mu\right]$$
$$= \begin{cases} \sup_{\mu(\cdot)} & (Ax - b)^{\top} \mathbb{E}\left[\mu(\mathbf{c})\right] \\ \text{s.t.} & \mu(\mathbf{c}) \in D_{\mathbf{c}} \text{ a.s.} \end{cases}$$

Maël Forcier PhD Defense 14/12/2022 20 / 32

Minkowski sum:

$$E + F = \{x + x' | x \in E, x' \in F\}$$

Definition

The fiber polyhedron E of the bundle $(D_c)_{c \in \text{supp}(c)}$ is the Minkowsky integral of all the fiber at c when c varies according to its probability distribution:

$$E := \int D_c \mathbb{P}(dc) = \left\{ \int \mu(c) \mathbb{P}(dc) \, | \, \mu(c) \in D_c \quad \text{a.s.}, \, \, \mu \in L_\infty(\mathbb{R}^m, \mathbb{R}^l) \right\}$$

$$V(x) = \mathbb{E} \left[\sup_{\mu \in \mathcal{D}_{\boldsymbol{c}}} (Ax - b)^{\top} \mu \right]$$
$$= \begin{cases} \sup_{\mu(\cdot)} & (Ax - b)^{\top} \mathbb{E} \left[\mu(\boldsymbol{c}) \right] \\ \text{s.t.} & \mu(\boldsymbol{c}) \in \mathcal{D}_{\boldsymbol{c}} \text{ a.s.} \end{cases}$$

Maël Forcier PhD Defense 14/12/2022 20 / 32

Minkowski sum:

$$E + F = \{x + x' | x \in E, x' \in F\}$$

Definition

The fiber polyhedron E of the bundle $(D_c)_{c \in \text{supp}(c)}$ is the Minkowsky integral of all the fiber at c when c varies according to its probability distribution:

$$E := \int D_c \mathbb{P}(dc) = \left\{ \int \mu(c) \mathbb{P}(dc) \, | \, \mu(c) \in D_c \quad \text{a.s.}, \, \, \mu \in L_\infty(\mathbb{R}^m, \mathbb{R}^l) \right\}$$

$$V(x) = \mathbb{E}\left[\sup_{\mu \in \mathbf{D_c}} (Ax - b)^{\top} \mu\right]$$
$$= \begin{cases} \sup_{\mu(\cdot)} & (Ax - b)^{\top} \mathbb{E}\left[\mu(\mathbf{c})\right] \\ \text{s.t.} & \mathbb{E}\left[\mu(\mathbf{c})\right] \in \mathbf{E} \end{cases}$$

Minkowski sum:

$$E + F = \{x + x' | x \in E, x' \in F\}$$

Definition

The fiber polyhedron E of the bundle $(D_c)_{c \in \text{supp}(c)}$ is the Minkowsky integral of all the fiber at c when c varies according to its probability distribution:

$$\underline{E} := \int D_c \mathbb{P}(dc) = \left\{ \int \mu(c) \mathbb{P}(dc) \, | \, \mu(c) \in \underline{D}_c \quad a.s., \, \, \mu \in L_{\infty}(\mathbb{R}^m, \mathbb{R}^l) \right\}$$

$$V(x) = \mathbb{E} \left[\sup_{\mu \in \mathbf{D}_{\boldsymbol{c}}} (Ax - b)^{\top} \mu \right]$$

$$= \begin{cases} \sup_{\mu(\cdot)} & (Ax - b)^{\top} \mathbb{E} \left[\mu(\boldsymbol{c}) \right] \\ \text{s.t.} & \mathbb{E} \left[\mu(\boldsymbol{c}) \right] \in \boldsymbol{E} \end{cases}$$

$$= \sup_{\mu(\cdot)} (Ax - b)^{\top} \lambda$$

Maël Forcier PhD Defense 14/12/2022

The Fiber Polyhedron is a finite Minkowski sum

Theorem

There exists a chamber complex $\mathcal R$ depending on A such that

$$oldsymbol{E} = \int D_c \mathbb{P}(dc) = \sum_{R \in \mathcal{R}} \check{p}_R D_{\check{c}_R}$$

where $\check{p}_R := \mathbb{P}[\mathbf{c} \in ri(R)]$ and $\check{c}_R := \mathbb{E}[\mathbf{c} \mid \mathbf{c} \in ri(R)]$.

Alternative proof of the quantization result

$$V(x) = \sigma_E(Ax - b) = \sum_{R \in \mathcal{R}} \check{p}_R \sigma_{D_{\check{c}_R}}(Ax - b) = \sum_{R \in \mathcal{R}} \check{p}_R \min_{y \in P_x} \check{c}_R^\top y$$

 Maël Forcier
 PhD Defense
 14/12/2022
 21 / 32

The Fiber Polyhedron is a finite Minkowski sum

Theorem

There exists a chamber complex $\mathcal R$ depending on A such that

$$oldsymbol{E} = \int oldsymbol{D_c} \mathbb{P}(dc) = \sum_{R \in \mathcal{R}} reve{p}_R oldsymbol{D}_{reve{c}_R}$$

where $\check{p}_R := \mathbb{P}[\mathbf{c} \in ri(R)]$ and $\check{c}_R := \mathbb{E}[\mathbf{c} \mid \mathbf{c} \in ri(R)]$.

Alternative proof of the quantization result

$$V(x) = \sigma_E(Ax - b) = \sum_{R \in \mathcal{R}} \check{p}_R \sigma_{D_{\check{c}_R}}(Ax - b) = \sum_{R \in \mathcal{R}} \check{p}_R \min_{y \in P_x} \check{c}_R^\top y$$

Nested Fiber Polyhedra for Multistage

$$V_t(x_{t-1}) = \mathbb{E} \begin{bmatrix} \min_{x_t \in \mathbb{R}^{n_t}} \mathbf{c}_t^\top x_t + V_{t+1}(x_t) \\ \text{s.t. } A_t x_t + B_t x_{t-1} \leqslant b_t \end{bmatrix}$$

Definition

We define by induction the following nested fiber polyhedra

$$V_t(x_{t-1}) = \sigma_{\mathbf{E}_t}(B_t x_{t-1} - b_t, -b_{[t+1:T]})$$

Nested Fiber Polyhedra for Multistage

$$V_t(x_{t-1}) = \mathbb{E} \begin{bmatrix} \min\limits_{x_t \in \mathbb{R}^{n_t}} oldsymbol{c}_t^ op x_t + V_{t+1}(x_t) \\ ext{s.t. } A_t x_t + B_t x_{t-1} \leqslant b_t \end{bmatrix}$$

Definition

We define by induction the following nested fiber polyhedra

$$V_t(x_{t-1}) = \sigma_{E_t}(B_t x_{t-1} - b_t, -b_{[t+1:T]})$$

2-time scale MSLP reduced to Quadratic Problem

We consider a MSLP where the dynamic depends on parameters p we have to optimize

$$\min_{p \in \mathbb{R}^m, (\mathbf{x}_t) \in \mathbb{R}^{n_t}} \quad q^\top p + \mathbb{E} \left[\sum_{t=1}^T \mathbf{c}_t^\top \mathbf{x}_t \right]$$
s.t. $Dp \leqslant d$

$$A_t \mathbf{x}_t + B_t \mathbf{x}_{t-1} + C_t p \leqslant h_t \quad \text{a.s.} \qquad \forall t \in [T]$$

$$\mathbf{x}_t \prec \sigma(\mathbf{c}_1, \cdots, \mathbf{c}_t) \qquad \forall t \in [T]$$

If we know the fiber polyhedron, it reduces to a finite dimensional quadratic problem

$$egin{aligned} \min_{p \in \mathbb{R}^m} q^{ op} p + \sup_{(\lambda_t)_{t \in [T]}} \sum_{t=1}^T (C_t p - h_t)^{ op} \lambda_t \ ext{s.t.} \ Dp \leqslant d \ (\lambda_1, \cdots, \lambda_T) \in E_1 \end{aligned}$$

Contents

- 5 Explicit formulas for general distributions
- 6 Details on GAPM
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- 8 Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

$$\min_{x \in \mathbb{R}^n} c^{\top} x$$
s.t. $Ax \leq b$

$$A=\left(egin{array}{ccc} 1 & & 1 \ & & \end{array}
ight)\,b=\left(egin{array}{ccc} 1 & \ & \ \end{array}
ight)$$

$$x_1 + x_2 \leqslant 1$$

$$\min_{x \in \mathbb{R}^n} c^{\top} x$$
s.t. $Ax \leq b$

Example: $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$

$$A=\left(egin{array}{cccc} 1 & & 1 \ & & \end{array}
ight) b=\left(egin{array}{cccc} 1 \ & 1 \ \end{array}
ight) & x_1+x_2\leqslant 1 \ x_1-x_2\leqslant 1 \ \end{array}$$

$$+ x_2 \leq 1$$

$$- x_2 \leq 1$$

$$x_2$$

$$x_1$$

$$\min_{x \in \mathbb{R}^n} c^{\top} x$$
s.t. $Ax \leq b$

$$A = \begin{pmatrix} 1 & 1 \\ & & 1 \\ & & &$$

$$\min_{x \in \mathbb{R}^n} c^{\top} x$$
s.t. $Ax \leq b$

$$A = \left(\begin{array}{ccc} 1 & & 1 \\ & & \\ & & \\ \end{array} \right) b = \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ \end{array} \right) \left(\begin{array}{c} x_1 + x_2 \leqslant 1 \\ x_1 - x_2 \leqslant 1 \\ -x_1 - x_2 \leqslant 1 \\ -x_1 + x_2 \leqslant 1 \end{array} \right)$$

$$\min_{x \in \mathbb{R}^n} c^{\top} x$$
s.t. $Ax \leq b$

$$A = \begin{pmatrix} 1 & 1 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \end{pmatrix}$$

$$\begin{aligned} x_1 + x_2 \leqslant 1 \\ x_1 - x_2 \leqslant 1 \\ -x_1 - x_2 \leqslant 1 \\ -x_1 + x_2 \leqslant 1 \\ x_1 \leqslant 0.5 \end{aligned}$$

$$\min_{x \in \mathbb{R}^n} c^{\top} x$$
s.t. $Ax \leq b$

$$A = \begin{pmatrix} 1 & 1 \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ \end{pmatrix} \begin{pmatrix} x_1 + x_2 \leqslant 1 \\ x_1 - x_2 \leqslant 1 \\ -x_1 - x_2 \leqslant 1 \\ -x_1 + x_2 \leqslant 1 \\ x_1 \leqslant 0.5 \\ x_2 \leqslant 0.5 \end{pmatrix}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad c^{\top} \mathbf{x}$$
s.t. $A\mathbf{x} \leqslant b$

$$A = \begin{pmatrix} 1 & 1 \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0.5 \\ 0.5 \\ 0.5 \\ -1.2 \end{pmatrix} \begin{pmatrix} x_1 + x_2 \leqslant 1 \\ x_1 - x_2 \leqslant 1 \\ -x_1 + x_2 \leqslant 1 \\ -x_1 + x_2 \leqslant 1 \\ x_1 \leqslant 0.5 \\ x_2 \leqslant 0.5 \\ x_1 \geqslant -1.2 \end{pmatrix}$$

Contents

- 5 Explicit formulas for general distributions
- 6 Details on GAPM
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- 8 Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

Definition

We denote by $\mathcal{I}(A,b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \mid Ax \leqslant b\}$$

$$I_{A,b}(x) = \emptyset$$

$$\mathcal{I}(A, b) = \{\emptyset,$$

Definition

We denote by $\mathcal{I}(A,b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \mid Ax \leqslant b\}$$

$$I_{A,b}(x) = \{5\}$$

$$\mathcal{I}(A,b) = \{\emptyset, 5,$$

Definition

We denote by $\mathcal{I}(A,b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \mid Ax \leqslant b\}$$

$$I_{A,b}(x) = \{1,5,6\}$$

$$\mathcal{I}(A,b) = \{\emptyset, 5, 156,$$

Definition

We denote by $\mathcal{I}(A,b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \mid Ax \leqslant b\}$$

$$I_{A,b}(x) = \{6\}$$

$$\mathcal{I}(A,b) = \{\emptyset, 5, 156, 6,$$

Definition

We denote by $\mathcal{I}(A,b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \mid Ax \leqslant b\}$$

$$I_{A,b}(x) = \{4,6\}$$

$$\mathcal{I}(A,b) = \{\emptyset, 5, 156, 6, 46,$$

Definition

We denote by $\mathcal{I}(A, b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \mid Ax \leqslant b\}$$

$$I_{A,b}(x) = \{4\}$$

$$\mathcal{I}(A,b) = \{\emptyset, 5, 156, 6, 46, 4, \}$$

Definition

We denote by $\mathcal{I}(A,b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \mid Ax \leqslant b\}$$

$$I_{A,b}(x) = \{3,4\}$$

$$\mathcal{I}(A, b) = \{\emptyset, 5, 156, 6, 46, 4, 34, \}$$

Definition

We denote by $\mathcal{I}(A,b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \mid Ax \leqslant b\}$$

$$I_{A,b}(x) = \{3\}$$

To ease the notation, we write:

$$\mathcal{I}(A,b) = \{\emptyset, 5, 156, 6, 46, 4, 34, 3,$$

Definition

We denote by $\mathcal{I}(A,b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \mid Ax \leqslant b\}$$

$$I_{A,b}(x) = \{2,3\}$$

To ease the notation, we write:

$$\mathcal{I}(A, b) = \{\emptyset, 5, 156, 6, 46, 4, 34, 3, 23, \}$$

Definition

We denote by $\mathcal{I}(A,b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \,|\, Ax \leqslant b\}$$

$$I_{A,b}(x) = \{2\}$$

To ease the notation, we write:

$$\mathcal{I}(\textit{A},\textit{b}) = \{\emptyset, 5, 156, 6, 46, 4, 34, 3, 23, 2, \quad \}$$

Definition

We denote by $\mathcal{I}(A,b)$, the collection of sets of active constraints as :

$$\mathcal{I}(A,b) = \{I_{A,b}(x) \mid Ax \leqslant b\}$$

with
$$I_{A,b}(x) := \{i \in [q] \mid A_i x = b_i\}$$

$$P = \{x \in \mathbb{R}^n \mid Ax \leqslant b\}$$

$$I_{A,b}(x) = \{2,5\}$$

To ease the notation, we write:

$$\mathcal{I}(A,b) = \{\emptyset, 5, 156, 6, 46, 4, 34, 3, 23, 2, 25\}$$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^I = \{x \in P \mid A_I x = b_I\}$$

We have $\dim(P^I) = n - \operatorname{rg}(A_I)$ Example for $I = \emptyset$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^I = \{x \in P \mid A_I x = b_I\}$$

We have $dim(P^I) = n - rg(A_I)$ Example for $I = \{5\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^{I} = \{x \in P \mid A_{I}x = b_{I}\}$$

We have $dim(P^I) = n - rg(A_I)$ Example for $I = \{1, 5, 6\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^{I} = \{x \in P \mid A_{I}x = b_{I}\}$$

We have $dim(P^I) = n - rg(A_I)$ Example for $I = \{6\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^I = \{x \in P \mid A_I x = b_I\}$$

We have $dim(P^I) = n - rg(A_I)$ Example for $I = \{4, 6\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^{I} = \{x \in P \mid A_{I}x = b_{I}\}$$

We have $dim(P^I) = n - rg(A_I)$ Example for $I = \{4\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^{I} = \{x \in P \mid A_{I}x = b_{I}\}$$

We have $dim(P^I) = n - rg(A_I)$ Example for $I = \{3, 4\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^I = \{x \in P \mid A_I x = b_I\}$$

We have $dim(P^I) = n - rg(A_I)$ Example for $I = \{3\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^{I} = \{x \in P \mid A_{I}x = b_{I}\}$$

We have $dim(P^I) = n - rg(A_I)$ Example for $I = \{2, 3\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^{I} = \{x \in P \mid A_{I}x = b_{I}\}$$

We have $dim(P^I) = n - rg(A_I)$ Example for $I = \{2\}$

Definition

Let $I \in \mathcal{I}(A, b)$, we denote by P^I the face of P such that:

$$P^{I} = \{x \in P \mid A_{I}x = b_{I}\}$$

We have $dim(P^I) = n - rg(A_I)$ Example for $I = \{2, 5\}$

Lineality space, vertices and bases

Definition (Lineality space)

$$\mathsf{Lin}(C) := \{ u \in C \mid \forall t \in \mathbb{R}, \ \forall x \in C, \ x + tu \in C \}.$$

If
$$P = \{x \in \mathbb{R}^n | Ax \leq b\},$$
then Lin(P) = Ker(A)

Definition (Bases and vertices)

A basis B is a subset of [p] such that $A_B = (A_{i,j})_{i \in B, 1 \le j \le n}$ is invertible. A vertex of P is a face of dimension 0. Vert(P) is the set of vertices.

 $Vert(P) \neq \emptyset \Leftrightarrow A \text{ admits at least one basis } \Leftrightarrow rg(A) = n \Leftrightarrow Lin(P) = \{0\}$

We make this assumption without loss of generality.

Contents

- Explicit formulas for general distributions
- Operation of the control of the c
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- 8 Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

Link with regular subdivisions

Definition (DLRS10)

$$\mathcal{S}(A^\top,b) := \{ I_F \, | \, F \in \mathcal{F}_{\mathrm{low}}\big(LC_{A^\top,b}\big) \}$$

$$LC_{A^{\top},b} := \operatorname{Cone}\left(\begin{pmatrix} a_i \\ b_i \end{pmatrix}_{i \in [q]}\right)$$

 $I_F := \{i \in [q] \mid (a_i, b_i) \in F\}.$

$$\mathcal{S}(A^{\top},b) = \mathcal{I}(A,b)$$

 $\mathcal{I}(W^{\top},q) = \mathcal{I}_{com} \cup \{\{5\},\{4,5\},\{1,5\}\}$

Link with regular subdivisions

Definition (DLRS10)

$$\mathcal{S}(A^\top,b) := \{I_F \,|\, F \in \mathcal{F}_{\mathrm{low}}\big(LC_{A^\top,b}\big)\}$$

$$LC_{A^{\top},b} := \operatorname{Cone}\left(\begin{pmatrix} a_i \\ b_i \end{pmatrix}_{i \in [q]}\right)$$

$$I_F := \{i \in [q] | (a_i, b_i) \in F\}.$$

$$\mathcal{S}(A^{\top},b) = \mathcal{I}(A,b)$$

Link with regular subdivisions

Definition (DLRS10)

$$\mathcal{S}(A^\top,b) := \{ I_F \, | \, F \in \mathcal{F}_{\mathrm{low}}\big(LC_{A^\top,b}\big) \}$$

$$LC_{A^{\top},b} := \operatorname{Cone}\left(\begin{pmatrix} a_i \\ b_i \end{pmatrix}_{i \in [q]}\right)$$

$$I_F := \{i \in [q] | (a_i, b_i) \in F\}.$$

$$\mathcal{S}(A^{\top},b) = \mathcal{I}(A,b)$$

Contents

- Explicit formulas for general distributions
- 6 Details on GAPM
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- 8 Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

Maël Forcier PhD Defense 14/12/2022 29/32

Contents

- 5 Explicit formulas for general distributions
- 6 Details on GAPM
 - Recalls on APM
 - A novel APM algorithm
 - Extension of GAPM to general costs
- Nested fiber polyhedra
- 8 Polyhedral toolbox for stochastic optimizers
 - Active constraints
 - Link with regular subdivisions
 - Correspondences for parametric linear programming
 - Correspondences for 2SLP

Proof of normal equivalence

$$\mathcal{G}_{\mathsf{X}} := \{ G \in \mathcal{F}(P) \, | \, \mathsf{X} \in \mathsf{ri}\left(\pi(G)\right) \}$$

Let $\sigma \in \mathcal{C}(P, \pi)$, for all $x, x' \in ri(\sigma)$, we have

$$\mathcal{G}_{\sigma}:=\mathcal{G}_{\mathsf{x}}=\mathcal{G}_{\mathsf{x}'}$$

By the correspondences,

$$\mathcal{I}_{\sigma} := \mathcal{I}(W, h - Tx) = \mathcal{I}(W, h - Tx')$$
 $\mathcal{N}_{\sigma} := \mathcal{N}(P_x) = \mathcal{N}(P_{x'})$

Maël Forcier PhD Defense 14/12/2022 30 / 32

Proof of normal equivalence

$$\mathcal{G}_{\mathsf{x}} := \{ G \in \mathcal{F}(P) \, | \, \mathsf{x} \in \mathsf{ri} \left(\pi(G) \right) \}$$

Let $\sigma \in \mathcal{C}(P, \pi)$, for all $x, x' \in ri(\sigma)$, we have

$$\mathcal{G}_{\sigma} := \mathcal{G}_{x} = \mathcal{G}_{x'}$$

By the correspondences,

$$\mathcal{I}_{\sigma} := \mathcal{I}(W, h - Tx) = \mathcal{I}(W, h - Tx')$$
 $\mathcal{N}_{\sigma} := \mathcal{N}(P_{x}) = \mathcal{N}(P_{x'})$

Maël Forcier PhD Defense 14/12/2022 30 / 32

Let $I \in \mathcal{I}((T, W), h)$ be a set of indices

$$x \in \pi(P^I) \iff \begin{cases} \exists y \in \mathbb{R}^m, & (x,y) \in P^I \end{cases}$$

Let $I \in \mathcal{I}((T, W), h)$ be a set of indices

$$x \in \pi(P^I) \iff \begin{cases} \exists y \in \mathbb{R}^m, & T_I x + W_I y = h_I \\ \forall j \in [q] \setminus I, & T_j x + W_j y \leqslant h_j \end{cases} \iff I \in \mathcal{I}(W, h - Tx)$$

Let $I \in \mathcal{I}((T, W), h)$ be a set of indices

$$x \in \operatorname{ri} \pi(P^I) \iff \begin{cases} \exists y \in \mathbb{R}^m, & T_I x + W_I y = h_I \\ \forall j \in [q] \backslash I, & T_j x + W_j y < h_j \end{cases} \iff I \in \mathcal{I}(W, h - Tx)$$

Let $I \in \mathcal{I}((T, W), h)$ be a set of indices from which we can extract a basis (i.e. $rg(W_I^\top) = m$) and let B such a basis

$$x \in \operatorname{ri} \pi(P^{I}) \iff \begin{cases} \exists y \in \mathbb{R}^{m}, & T_{B}x + W_{B}y = h_{B} \\ \forall i \in I \backslash B, & T_{i}x + W_{i}y = h_{i} \\ \forall j \in [q] \backslash I, & T_{j}x + W_{j}y < h_{j} \end{cases} \iff I \in \mathcal{I}(W, h - Tx)$$

Let $I \in \mathcal{I}((T, W), h)$ be a set of indices from which we can extract a basis (i.e. $rg(W_I^\top) = m$) and let B such a basis

$$x \in \operatorname{ri} \pi(P^{I}) \iff \begin{cases} \exists y \in \mathbb{R}^{m}, & y = W_{B}^{-1}(h_{B} - T_{B}x) \\ \forall i \in I \backslash B, & T_{i}x + W_{i}y = h_{i} \\ \forall j \in [q] \backslash I, & T_{j}x + W_{j}y < h_{j} \end{cases} \iff I \in \mathcal{I}(W, h - Tx)$$

Maël Forcier PhD Defense 14/12/2022 32 / 32

Let $I \in \mathcal{I}((T, W), h)$ be a set of indices from which we can extract a basis (i.e. $rg(W_I^\top) = m$) and let B such a basis

$$x \in \operatorname{ri} \pi(P^{I}) \iff \begin{cases} \forall i \in I \backslash B, & T_{i}x + W_{i}W_{B}^{-1}(h_{B} - T_{B}x) = h_{i} \\ \forall j \in [q] \backslash I, & T_{j}x + W_{j}W_{B}^{-1}(h_{B} - T_{B}x) < h_{j} \end{cases}$$

Let $I \in \mathcal{I}((T, W), h)$ be a set of indices from which we can extract a basis (i.e. $rg(W_I^\top) = m$) and let B such a basis

$$x \in \operatorname{ri}(\pi(P^I)) \iff \begin{cases} \forall i \in I \backslash B, & (v_i^B)^\top x = u_i^B \iff I \in \mathcal{I}(W, h - Tx) \\ \forall j \in [q] \backslash I, & (v_j^B)^\top x < u_j^B \end{cases}$$

where

$$v_i^B := (T_i - W_i W_B^{-1} T_B)^{\top}$$

 $u_i^B := h_i - W_i W_B^{-1} h_B$

H-representation of chambers

Let $\sigma \in \mathcal{C}(P,\pi)$

$$x \in \bigcap_{I \in \overline{\mathcal{I}_{\sigma}}} \operatorname{ri} \left(\pi(P^{I}) \right) \iff \begin{cases} \forall I \in \mathcal{I}_{\sigma}, \\ \forall i \in I \backslash B_{I}, \quad (v_{i}^{B_{I}})^{\top} x = u_{i}^{B_{I}} \iff \mathcal{I}(W, h - Tx) = \mathcal{I}_{\sigma} \\ \forall j \in [q] \backslash I, \quad (v_{j}^{B_{I}})^{\top} x < u_{j}^{B_{I}} \end{cases}$$

where

$$v_i^B := (T_i - W_i W_B^{-1} T_B)^{\top}$$

 $u_i^B := h_i - W_i W_B^{-1} h_B$

with B_I basis $\subset I$ and

$$\mathcal{G}_{\sigma} := \{ F \in \mathcal{F}(P) \mid \operatorname{ri}(\sigma) \subset \operatorname{ri}\left(\pi(F)\right) \}$$

 $\mathcal{I}_{\sigma} := \{ I \in \mathcal{I}((T, W), h) \mid \operatorname{ri}(\sigma) \subset \operatorname{ri}\left(\pi(P^I)\right) \}$

We have $\sigma = \bigcap_{G \in \mathcal{G}_{\sigma}} \pi(G) = \bigcap_{I \in \mathcal{I}_{\sigma}} \pi(P^I)$

Maël Forcier PhD Defense 14/12/2022

32 / 32

H-representation of chambers

Let $\sigma \in \mathcal{C}(P,\pi)$

$$x \in ri(\sigma) \iff \begin{cases} \forall I \in \overline{\mathcal{I}_{\sigma}}, \\ \forall i \in I \setminus B_{I}, \quad (v_{i}^{B_{I}})^{\top} x = u_{i}^{B_{I}} \iff \mathcal{I}(W, h - Tx) = \mathcal{I}_{\sigma} \\ \forall j \in [q] \setminus I, \quad (v_{j}^{B_{I}})^{\top} x < u_{j}^{B_{I}} \end{cases}$$

where

$$v_i^B := (T_i - W_i W_B^{-1} T_B)^{\top}$$

 $u_i^B := h_i - W_i W_B^{-1} h_B$

with B_I basis $\subset I$ and

$$\mathcal{G}_{\sigma} := \{ F \in \mathcal{F}(P) \mid \operatorname{ri}(\sigma) \subset \operatorname{ri}\left(\pi(F)\right) \}$$

 $\mathcal{I}_{\sigma} := \{ I \in \mathcal{I}((T, W), h) \mid \operatorname{ri}(\sigma) \subset \operatorname{ri}\left(\pi(P^I)\right) \}$

We have $\sigma = \bigcap_{G \in \mathcal{G}_{\sigma}} \pi(G) = \bigcap_{I \in \overline{\mathcal{I}_{\sigma}}} \pi(P^I)$

Maël Forcier PhD Defense 14/12/2022

32 / 32