

DATA SHEET

THICK FILM LEAD FREE

CHIP RESISTORS

SR_P series 0.5%, 1%, 5%, 10%, 20% sizes 0201/0402/0603/0805/1206

YAGEO

Chip Resistor Surface Mount

SR_P SERIES **0201/0402/0603/0805/1206**

SCOPE

This specification describes SR0201 to SR1206 chip resistors made by thick film process.

APPLICATIONS

- Total lead free without RoHS exemption
- Telecommunications
- Power supplies

<u>FEATURES</u>

- Superior to RC series in pulse withstanding voltage and surge withstanding voltage.
- MSL class: MSL I
- Halogen free epoxy
- Reduce environmentally hazardous waste
- High component and equipment reliability

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

SR XXXX X X X XX XXXX P (2) (3) (4) (5) (1) (6) (7)

(I) SIZE

0201/0402/0603/0805/1206

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $1 = \pm 5\%$

 $K = \pm 10\%$

 $M = \pm 20\%$

(3) PACKAGING TYPE

R = Paper taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Based on spec.

(5) TAPING REEL & POWER

07 = 7 inch dia, Reel 7W = 7 inch dia. Reel & 2 x standard power

7T = 7 inch dia. Reel & 3 x standard power

47 = 7 inch dia. Reel & $4 \times$ standard power

(6) RESISTANCE VALUE

 $|\Omega \le R \le |M\Omega|$

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter P is lead free (without RoHS exemption).

Resistance rule of global part		
Resistance coding rule	Example	
XRXX	$IR = I \Omega$	
(1 to 9.76 Ω)	$IR5 = 1.5 \Omega$	
(1 to 7.70 s2)	$9R76 = 9.76 \Omega$	
XXRX	$IOR = IO \Omega$	
(10 to 97.6 Ω)	$97R6 = 97.6 \Omega$	
XXXR (100 to 976 Ω)	100R = 100 Ω	
XKXX	IK = 1,000 Ω	
(1 to 9.76 K Ω)	$9K76 = 9760 \Omega$	
XXKX	10K = 10,000 Ω	
(10 to 97.6 K Ω)	97Κ6= 97,600 Ω	
XXXK (100 K Ω)	100K = 100,000 Ω	

ORDERING EXAMPLE

The ordering code for an SR0805 chip resistor, value $10 \text{ K}\Omega$ with ±5% tolerance, supplied in 7-inch tape reel is: SR0805JR-0710KP.

Chip Resistor Surface Mount

SR_P | SERIES | **0201/0402/0603/0805/1206**

<u>MARKING</u>

SR0201/0402

No Marking

SR0603

1%, 0.5%,E24 exception values 10/11/13/15/20/75 of E24 series

1%, 0.5%, E96 refer to EIA-96 marking method, including values 10/11/13/15/20/75 of E24 series

SR0805 /1206

Both E-24 and E-96 series: 4 digits, \pm 0.5% & \pm 1%

First three digits for significant figure and 4th digit for number of zeros

NOTE

For further marking information, please refer to data sheet "Chip resistors marking".

TAPING REEL & POWER

Table I

		PC	OWER, W (P70)		
TYPE			CODING		
	07	7W	7 T	47	
0201	1/20	1/10	-	1/5	
0402	1/16	1/8	1/5	-	
0603	1/10	1/5	1/4	-	
0805	1/8	1/4	1/3	1/2	
1206	1/4	1/2	3/4	-	

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a lead-free glass. The composition of the glaze is adjusted to give the approximately required resistance value. The whole element is covered by a protective overcoat. The top of overcoat is marked with the resistance value. Finally, the two external terminations (Ni/matte tin) are added, as shown in Fig.5.

OUTLINES

DIMENSIONS

Table 2

TYPE	L (mm)	W (mm)	H (mm)	I ₁ (mm)	I ₂ (mm)
SR0201	0.60±0.03	0.30±0.03	0.23±0.03	0.12±0.05	0.15±0.05
SR0402	1.00±0.05	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
SR0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
SR0805	2.00±0.10	1,25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
SR1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.45±0.20

Chip Resistor Surface Mount | SR_P | SERIES | 0201/0402/0603/0805/1206

ELECTRICAL CHARACTERISTICS

Table 3

			CHARACTERISTICS				
TYPE	POWER	resistance range	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance
•	1/20W						$ \Omega \le R \le 0\Omega $
SR0201	1/10W			25V	50V	50V	-100~+350ppm°C 10Ω < R ≤ IMΩ
	1/5W		_				± 200 ppm°C
	I/I6W_						
SR0402	1/8W			75V	100V	/ 100V	
	1/5W						
	1/10W	F34 F9/ 109/ 309/			150V		$I\Omega \leq R \leq I0\Omega$
SR0603	1/5W	$1\Omega \le R \le 1M\Omega$ E24/E96 0.5%, 1%		75V		150V 150V	
	1/4W						
	1/8W	$I \Omega \le R \le IM \Omega$					± 200 ppm°C
SR0805	1/4W			150) (300V	00V 300V	I0Ω < R ≤ IMΩ ± I00 ppm°C
3KU8U3	1/3W			150V			
-	1/2W						
	1/4\						
SR1206	1/2W			200 V	400 V	500V	
	3/4W						

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 4 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	SR0201/0402	SR0603/0805/1206
Paper taping reel (R)	7" (178 mm)	10,000	5,000

NOTE

1. For paper/embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

YAGEO

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C: SR0201: I/20W, I/10W, I/5W SR0402: I/16W, I/8W, I/5W SR0603: I/10W, I/5W, I/4W SR0805: I/8W, I/4W, I/3W, I/2W SR1206: I/4W, I/2W, 3/4W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$

or max. working voltage whichever is less

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

10

PULSE LOAD BEHAVIOR

Chip Resistor Surface Mount

TESTS AND REQUIREMENTS

Table 5 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C Formula: R2-R1	Refer to table 3
		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$ Where	
		t_1 = +25 °C or specified room temperature t_2 = -55 °C or +125 °C test temperature	
		R_1 =resistance at reference temperature in ohms	
		R ₂ =resistance at test temperature in ohms	
Short Time Overload	IEC60115-1 8.1	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	±(2.0%+0.05 Ω)
High Temperature Exposure	MIL-STD-202 Method 108	1,000 hours at $T_A = 155$ °C ± 5 °C, unpowered	\pm (2.0%+0.05 Ω) for D/F tol \pm (3.0%+0.05 Ω) for J tol
Humidity	IEC 60115-1 10.4	Steady state for 1,000 hours at 40 °C / 95% R.H. RCWV applied for 1.5 hours on and 0.5 hour off	±(3.0%+0.05 Ω)
Life	IEC 60115-1 7.1 MIL-STD-202 Method 108	1,000 hours at 70±2 °C, RCWV applied for 1.5 hours on, 0.5 hour off, still-air required	\pm (2.0%+0.05 Ω) for D/F tol \pm (3.0%+0.05 Ω) for J tol
Resistance to Soldering Heat	MIL-STD- 202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time	\pm (1.0%+0.05 Ω) No visible damage
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	
Solderability Wetting	J-STD-002	Electrical Test not required Magnification 50X SMD conditions: Ist step: aging 4 hours at 155°Cdry heat 2nd step: method BI, leadfree solder bath at 245±3°C	Well tinned (≥95% covered) No visible damage
		Dipping time: 3±0.5 seconds	
Board Flex	IEC 60115-1 9.8	Chips mounted on a 100mm x 40mm glass epoxy resin PCB (FR4) Bending for 0402: 5mm 0603 & 0805: 3mm 1206 and above: 2mm Holding time: minimum 60 seconds	±(1.0%+0.05 Ω)

REVISION HISTORY

YAGEO

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Jan. 20, 2022	-	- Add size 0201
Version 0	Feb. 03, 2021	-	- New product datasheet

LEGAL DISCLAIMER

Chip Resistor Surface Mount

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

SERIES

SR_P

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

