Módulo 2: Método simplex

Departamento MACC Matemáticas Aplicadas y Ciencias de la Computación Universidad del Rosario

Primer Semestre de 2021

Agenda

- Optimalidad
- Visión geométrica
- Cambio de base
- 4 Método simplex

Agenda

- Optimalidad
- Visión geométrica
- Cambio de base
- 4 Método simplex

Método Simplex - Puntos

- Idea básica: reconocer optimalidad basado en condiciones locales
- No hay que enumerar todas las soluciones básicas factibles
- Problema lineal en forma estándar:

min.
$$c'x$$

s.a. $Ax = b$
 $x \ge 0$

- $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $c \in \mathbb{R}^n$
- $b \in \mathbb{R}^m$, $b \ge 0$, $m \le n$, r(A) = m

Método Simplex - Optimalidad

- Solución básica factible: $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$
- Valor de la función objetivo: $z_0 = \begin{bmatrix} c_B' & c_N' \end{bmatrix} \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} = c_B'B^{-1}b$
- $\bullet \ \{1,\ldots,n\} = I_B \cup I_N$
- $Ax = Bx_B + Nx_N = b$
- $\bar{b} = B^{-1}b$
- $Nx_N = \sum_{j \in I_N} a_j x_j$

Región factible:

$$Ax = b$$

$$Bx_B + Nx_N = b$$

$$x_B + B^{-1}Nx_N = B^{-1}b$$

$$x_B = \bar{b} - B^{-1}\sum_{j \in I_N} a_j x_j$$

$$x_B = \bar{b} - \sum_{j \in I_N} y_j x_j$$

Función objetivo:

$$z = c'x = c'_{B}x_{B} + c'_{N}x_{N}$$

$$= c'_{B} \left(\bar{b} - \sum_{j \in I_{N}} y_{j}x_{j}\right) + \sum_{j \in I_{N}} c_{j}x_{j}$$

$$= z_{0} + \sum_{j \in I_{N}} (c_{j} - z_{j})x_{j} = z_{0} + \sum_{j \in I_{N}} \bar{c}_{j}x_{j}$$

- $z_0 = c_B' \bar{b}$
- $\bullet \ z_j = c_B' B^{-1} a_j, j \in I_N$
- $\bar{c}_j = c_j z_j$: costo reducido

- f.o.: $z = z_0 + \sum_{j \in I_N} \bar{c}_j x_j$
- ullet Derivada direccional: $rac{\partial z}{\partial x_j} = ar{c}_j, j \in I_N$
- Si $z=z_0$, luego es óptima
- Si $\bar{c}_j \geq 0$, $\forall j \in I_N$: toda solución cumple con $z \geq z_0$

Condición de optimalidad

Si $\bar{c}_j \geq 0$, $\forall j \in I_N$: solución actual es óptima

Ejemplo

min.
$$2x_1 - 3x_2$$

s.a. $x_1 + x_2 + x_3 = 6$
 $x_2 + x_4 = 3$
 $x_1, x_2, x_3, x_4 \ge 0$

•
$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$, $c' = \begin{bmatrix} 2 & -3 & 0 & 0 \end{bmatrix}$

Ejemplo

• Solución básica factible:
$$\hat{x} = \begin{bmatrix} 0 \\ 3 \\ 3 \\ 0 \end{bmatrix}$$

- ¿Es \hat{x} una solución óptima del problema?
- Solución gráfica

• Considere
$$\tilde{x} = \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \end{bmatrix}$$

Replantear el PL

min.
$$z = z_0 + \sum_{j \in I_N} \bar{c}_j x_j$$

s.a. $\sum_{j \in I_N} y_j x_j + x_B = \bar{b}$
 $x_j \ge 0, j \in I_N$
 $x_B \ge 0$

- x_B como variables de holgura
- PL en el espacio de las variables no básicas
- n restricciones

Agenda

- Optimalidad
- Visión geométrica
- Cambio de base
- 4 Método simplex

Visión geométrica del método Simplex

PL en el espacio de las variables no básicas

min.
$$z = z_0 + \sum_{j \in I_N} \bar{c}_j x_j$$

s.a. $\sum_{j \in I_N} y_j x_j \le \bar{b}$
 $x_j \ge 0, j \in I_N$

- Región factible: intersección de n semi-espacios: m del tipo \leq , n-m de no-negatividad
- Con cada restricción se puede asociar una variable: con las primeras m una básica, con las otras n-m una no básica

Visión geométrica del método Simplex (cont.)

min.
$$z = z_0 + \sum_{j \in I_N} \bar{c}_j x_j$$

s.a. $\sum_{j \in I_N} y_j x_j \le \bar{b}$
 $x_j \ge 0, j \in I_N$

- $x_j = 0$ si la restricción se cumple con igualdad (punto en el hiperplano)
- $x_j > 0$ si la desigualdad se cumple estrictamente (punto a un lado del hiperplano)
- $\sum_{j \in I_N} y_j x_j \leq \bar{b}$: x_B igual o mayor que cero
- $x_i \ge 0, j \in I_N$: x_N igual o mayor que cero

Visión geométrica del método Simplex (cont.)

Ejemplo gráfico

min.
$$2x_1 - 3x_2$$

s.a. $x_1 + x_2 + x_3 = 6$
 $x_2 + x_4 = 3$
 $x_1, x_2, x_3, x_4 \ge 0$

Visión geométrica del método Simplex (cont.)

- Ejemplo gráfico
- Parado en el origen, fije p-1 (p=n-m) variables no básicas en cero y defina una dirección de movimiento (x_i)
- ullet F.o. cambia a tasa $rac{\partial z}{\partial x_j}=ar{c}_j$
- Método simplex en cada iteración: LP en el espacio de las variables no-básicas actuales
- ullet Simplex: casco convexo de p+1 puntos no coplanares en \mathbb{R}^p (no en el mismo hiperplano)

Agenda

- Optimalidad
- Visión geométrica
- Cambio de base
- 4 Método simplex

Método Simplex

Ejemplo

min.
$$2x_1 - 3x_2$$

s.a. $x_1 + x_2 + x_3 = 6$
 $x_2 + x_4 = 3$
 $x_1, x_2, x_3, x_4 \ge 0$

•
$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$, $c' = \begin{bmatrix} 2 & -3 & 0 & 0 \end{bmatrix}$

Cambio de base

- Solución básica factible x
- PL:

min.
$$z = z_0 + \sum_{j \in I_N} \bar{c}_j x_j$$

s.a. $\sum_{j \in I_N} y_j x_j + x_B = \bar{b}$
 $x_j \ge 0, j \in I_N$
 $x_B \ge 0$

• Si $\bar{c}_j \geq 0$, $\forall j \in I_N$: x es óptima, $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} \bar{b} \\ 0 \end{bmatrix}$

- De lo contrario, escoja x_k : $\bar{c}_k < 0$, para un $k \in I_N$
- $x_j = 0, j \in I_N \{k\}$:
 - $z = z_0 + \bar{c}_k x_k$
 - $x_B = \bar{b} y_k x_k$

$$\bullet \begin{bmatrix} x_{B_1} \\ \vdots \\ x_{B_m} \end{bmatrix} = \begin{bmatrix} \bar{b}_1 \\ \vdots \\ \bar{b}_m \end{bmatrix} - \begin{bmatrix} y_{1k} \\ \vdots \\ y_{mk} \end{bmatrix} x_k$$

- $x_k \geq 0$
- $y_{ik} \le 0$? $y_{ik} > 0$?
- Incrementar x_k hasta que algún $x_{B_i} = 0$ $(y_{ik} > 0)$

- $x_k = \min_{1 \le i \le m} \left\{ \frac{\bar{b}_i}{y_{ik}} : y_{ik} > 0 \right\} = \frac{\bar{b}_r}{y_{rk}}$: criterio de la razón mínima
- $r = \operatorname{argmin}_{1 \le i \le m} \left\{ \frac{\bar{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$
- Si x_B no es degenerada:
 - $\bar{b}_r > 0 \longrightarrow x_k = \frac{\bar{b}_r}{y_{rk}} > 0$
 - $z = z_0 + \bar{c}_k x_k \longrightarrow z < z_0$
 - La función objetivo mejora estrictamente

Cambio de solución básica factible/base:

- Sale x_{B_r} , entra x_k a la base
- $ullet \ x_k: 0 o rac{ar{b}_r}{y_{rk}}$
- $x_{B_r}: \bar{b}_r \to 0$
- A lo sumo m variables diferentes de 0
- Nueva base: $[a_{B_1} \dots a_{B_{r-1}} \ a_k \ a_{B_{r+1}} \dots a_{B_m}]$: linealmente independiente si y solo si $y_{rk} \neq 0$
- → nueva solución básica factible

- Si $y_{ik} \le 0$, x_k se puede incrementar ilimitadamente y la solución mantiene factibilidad
- Si $y_{ik} \leq 0$, $\forall 1 \leq i \leq m$?
- $\Rightarrow x_k$ se puede incrementar ilimitadamente y la solución mantiene factibilidad
- ⇒ el problema no tiene óptimo finito

Agenda

- Optimalidad
- Visión geométrica
- Cambio de base
- 4 Método simplex

Iteración simplex

Se tiene una solución básica factible

- Determinar si la solución actual es óptima
- Si no, escoger una variable candidata para entrar a la base (costo reducido negativo)
- Determinar si, al entrar esta variable, el problema no tiene óptimo finito
- De lo contrario, escoger la variable que sale de la base
- Actualizar la base: nueva solución básica factible
- Repetir hasta que la solución actual sea óptima o se encuentre que el problema no tiene óptimo finito

Método simplex

- Se tiene una base inicial B, asociada a una solución básica factible
- Resuelva $Bx_B = b$

•
$$x_B = B^{-1}b = \bar{b}$$

- $x_N = 0$
- $z_0 = c_B' x_B$

Método simplex (cont.)

- ② Resuelva $wB = c_B$
 - $\bar{c}'_N = c'_N z'_N = c'_N w'N = c'_N c'_B B^{-1}N$
 - $\bar{c}_k = \min_{j \in I_N} \{\bar{c}_j\}$
 - Si $\bar{c}_k \geq 0$, STOP: solución básica factible actual es óptima
 - Si no, x_k es candidata para entrar a la base

Método simplex (cont.)

- - $y_k = B^{-1}a_k$
 - Si $y_k \le 0$, STOP: el problema no tiene óptimo finito
 - Si no, $r = \operatorname{argmin}_{1 \leq i \leq m} \left\{ \frac{\bar{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$: prueba de la razón mínima
 - x_{B_r} sale de la base
 - Actualice la base:
 - $I_B \leftarrow I_B \{B_r\} + \{k\}.$
 - $I_N \leftarrow I_N \{k\} + \{B_r\}$
 - Vuelva al paso 1

Ejemplo - Óptimo finito

min.
$$x_1 + x_2$$

s.a. $x_1 + 2x_2 \le 4$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$

- Base inicial: $B = [a_1 \ a_2]$
- Gráfica para este problema

min.
$$x_1 + x_2$$

s.a. $x_1 + 2x_2 + x_3 = 4$
 $x_2 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

Datos del problema:

$$\bullet \ A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

•
$$b = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

•
$$c' = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$$

Iteración 1 - Paso 1:

•
$$I_B = \{1, 2\}, I_N = \{3, 4\}$$

$$\bullet \ B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \ B^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$

•
$$x_B = B^{-1}b = \begin{bmatrix} 2\\1 \end{bmatrix}$$
, $x = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}$

•
$$z_0 = c'_B x_B = 3$$

Iteración 1 - Paso 2:

•
$$w' = c_B' B^{-1} = \begin{bmatrix} 1 & -1 \end{bmatrix}$$

•
$$ar{c}_{\mathcal{N}}'=c_{\mathcal{N}}'-z_{\mathcal{N}}'=c_{\mathcal{N}}'-w'\mathcal{N}=egin{bmatrix} -1 & 1\end{bmatrix}\Rightarrow$$
 no es óptima

• x_3 entra a la base, $\bar{c}_3 = -1 < 0$

Iteración 1 - Paso 3:

•
$$y_3 = B^{-1}a_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\bar{b} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

- $\bullet \ \ \tfrac{\bar{b}_r}{y_{rk}} = \min_{1 \leq i \leq 2} \left\{ \tfrac{\bar{b}_i}{y_{i3}} : y_{i3} > 0 \right\} = \min \left\{ \tfrac{2}{1} \right\} = 2$
- x₁ sale de la base
- x_3 entra a la base, $x_3=2$, aporta -1 por unidad \Rightarrow mejora en f.o. de -2

Iteración 2 - Paso 1:

•
$$I_B = \{3, 2\}, I_N = \{1, 4\}$$

•
$$B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
, $B^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$

•
$$x_B = B^{-1}b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $x = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}$

•
$$z_0 = c'_B x_B = 1$$

Iteración 2 - Paso 2:

•
$$w' = c'_B B^{-1} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

•
$$ar{c}_{\mathcal{N}}'=c_{\mathcal{N}}'-z_{\mathcal{N}}'=c_{\mathcal{N}}'-w'\mathcal{N}=egin{bmatrix}1 & -1\end{bmatrix}\Rightarrow$$
 no es óptima

• x_4 entra a la base, $\bar{c}_4 = -1$

Iteración 2 - Paso 3:

•
$$y_4 = B^{-1}a_4 = \begin{bmatrix} -2\\1 \end{bmatrix}$$
, $\bar{b} = \begin{bmatrix} 2\\1 \end{bmatrix}$

- $\bullet \ \ \frac{\bar{b}_r}{y_{rk}} = \min_{1 \leq i \leq 2} \left\{ \frac{\bar{b}_i}{y_{i4}} : y_{i4} > 0 \right\} = \min \left\{ \frac{1}{1} \right\} = 1$
- x2 sale de la base
- x_4 entra a la base, $x_4=1$, aporta -1 por unidad \Rightarrow mejora en f.o. de -1

Iteración 3 - Paso 1:

•
$$I_B = \{3,4\}, I_N = \{1,2\}$$

$$\bullet \ B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ B^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\bullet \ x_B = B^{-1}b = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \ x = \begin{bmatrix} 0 \\ 0 \\ 4 \\ 1 \end{bmatrix}$$

•
$$z_0 = c'_B x_B = 0$$

Iteración 3 - Paso 2:

•
$$w' = c'_B B^{-1} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

•
$$ar{c}_{N}'=c_{N}'-z_{N}'=c_{N}'-w'N=egin{bmatrix}1&1\end{bmatrix}\Rightarrow$$
 óptima, STOP

Método simplex - Ejemplo - Óptimos alternos

min.
$$-2x_1 - 4x_2$$

s.a. $x_1 + 2x_2 \le 4$
 $-x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

- Base inicial: $B = [a_1 \ a_4]$
- $I_N = \{2,3\}, \ \bar{c}'_N = [0\ 2]$
- Gráfica para este problema
- Óptimos alternos

Método simplex - Ejemplo - Óptimo no finito

min.
$$-x_1 - 3x_2$$

s.a. $x_1 - 2x_2 \le 4$
 $-x_1 + x_2 \le 3$
 $x_1, x_2 \ge 0$

- Base inicial: $B = [a_3 \ a_4]$
- Gráfica para este ejemplo
- Óptimo no finito

