ZAD 1.

Mamy ułamek okresowy, czyli

Rozpisując rzędy wielkości w tym ułamku

100	10	1	-	0,1	0,01	0,001	
5	1	2	,	3	5	3	

Zaokrąglanie do części setnych oznacza, że część z 0,01 chcemy jeszcze zachować, ale już następne cyfry nie są nam potrzebne, więc je ucinamy. Dostajemy 512, 35, ale musimy jeszcze popatrzeć co się dzieje dalej w tym ułamku. Jeżeli za miejscem gdzie ucieliśmy byłaby cyfra co najmniej 5, to musimy zwiększyć nasz ułamek o 0,01 (czyli dostalibyśmy 512, 36). Na szczęście, w tym konkretnym przypadku mamy

a więc ucieliśmy przed cyfrą mniejszą od 5, więc zostaje odpowiedź

C. 512, 35

ZAD 2. OK

ZAD 3.

$$\frac{(-2a^3b^2)^2}{-4ab^2} = \frac{(-2)^2(a^3)^2(b^2)^2}{-4ab^2} = \frac{4a^6b^4}{-4ab^2} = -\frac{4}{4}a^{6-1}b^{4-2} = -a^5b^2 = -(-2)^5\Big(-\frac{1}{4}\Big)^2 = \frac{2^5}{(2^2)^2} = \frac{2^5}{2^4} = 2 : A.$$

ZAD 4. OK

ZAD 5.

Dostajemy poniższą zależność:

Pomnóżmy pierwsze równanie przez 4, a drugie przez 3:

Zauważamy, że różnica między pierwszym a drugim odpowiada cenie 7 kg jabłek, które kosztowałyby 118, 60 - 93, 90 = 24.5, czyli cena jednego kg jabłek to $\frac{24.5}{7} = 3, 5$: A.

ZAD 6. OK

ZAD 7.

JERZYK	$2500 \frac{m}{min} = 2500 \frac{m}{\frac{1}{60}h} = 2500 \cdot 60 \frac{m}{h} = 150 \frac{km}{h}$
ZAJĄC	$20\frac{m}{s} = 20\frac{m}{\frac{1}{3600}h} = 20 \cdot 3600\frac{m}{h} = 72\frac{km}{h}$
KOŃSKA MUCHA	120 km h
PANTERA	$1, 1 \frac{\text{km}}{\text{min}} = 1, 1 \frac{\text{km}}{\frac{1}{60}\text{h}} = 66 \frac{\text{km}}{\text{h}}$

Czyli najszybszy jest jerzyk - A.

ZAD 8.

Odległość między A a punktem 0 to |-7| = 7, a między 0 a punktem B - |11| = 11. W takim razie odległość między A a B to suma tych odległości, bo leżą po dwóch osobnych stronach punktu 0, czyli

$$|AB| = 7 + 11 = 18 \neq 11 - |-7| = 11 - 7 = 4$$
: F.

a jeśli byłyby po tej samej stronie, to zawsze zadziała wzór

$$|AB| = B - A$$
.

czyli od najbardziej prawego punktu odejmujemy punkt najbardziej lewy.

Skoro już wiemy, że odległość między tymi punktami to 18, możemy podzielić ją na pół, otrzymując $\frac{18}{2}$ = 9. To daje nam odległość środka od dowolnego z krańców, czyli środek to punkt o współrzędnych

$$-7 + 9 = 2 = 11 - 9$$
: P.

ZAD 9.

To nie jest oś symetrii - oś symetrii powinna dzielić prostokąt na dwie identyczne, ale odbite jak w lustrze, części. Tutaj zostawiam znalezienie odpowiedzi Tobie - narysuj 3 prostokąty i zaznacz sytuację z podpunktów A, B i D i przekonaj się która daje oś symetrii.

ZAD 10.

Odpowiedź B odpada od razu, bo mimo że pole się zgadza, to jednak 2 jest liczbą pierwszą, nawet jedyną liczbą pierwszą parzystą. W odpowiedzi A odpada liczba pierwsza 5, w odpowiedzi D odpada liczba 1, która nie jest ani pierwsza ani złożona. Zostaje nam więc C i faktycznie $4 = 2 \cdot 2$ oraz $10 = 2 \cdot 5$, obie są więc złożone.

ZAD 11.

Figura składa się z dwóch prostokątów ustawionych jeden na drugim. Górny ma boki a i b, czyli jego pole to ab, natomiast dolny ma boki a i 2b, bo drugie b "spada" z góry. Daje to pole 2ab, co sumarycznie wychodzi 2ab + ab = 3ab.

ZAD 12. OK

ZAD 13.

Obwód tego trójkąta to: Obw = 20 + 14 + 16 = 50. Najdłuższy bok, czyli 20, stanowi $\frac{20}{50} = \frac{40}{100} = 40\%$ całego obwodu: P. Tutaj pytamy czy różnica długości średniego i najkrótszego boku (16 - 14 = 2) stanowi 12% długości tego najkrótszego. Mamy $\frac{2}{14} = \frac{1}{7} \approx 0.143 \neq 0,12 = 12\%$.

ZAD 14.

Podpowiedź: co jeśli narysujemy przekrój po przekątnej jednej ze ścian? Jeden bok takiego przekroju to wysokość ściany, ale drugi?

ZAD 15.

Wrócimy później, ale warto popatrzeć jak wyglądają figury symetrycznośrodkowe.

ZAD 16.

Zajęcia, bo tam jest Pitagoras.