ECE 105 TIPS: POST MIDTERM

MOMENTUM:

- 1. Always conserve momentum before considering energy.
- 2. Do collisions in steps.
- 3. Be vary of relative velocities.
- 4. Centre of Mass:

1. Finding Com: +7

1. Put orion at mass 20th

Let origin be ct 2 M

- 2. Put axes + directions.
- 3. Find coordinates of other masses:

$$(2, 1, 5) = (-Lsin30°, Lcos30°) = (-\frac{L}{2}, \sqrt{3}L)$$

 $(a_2, y_2) = (0, 0)$

 $(23, 53) = (Lsin30°, Los30°) = (\frac{L}{2}, \frac{13}{2}L)$

4. CoM equation: split into components

$$x_{CM} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3} = 0$$

$$9cm = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3} = \frac{53}{4} L$$

2. Change via CoM:

CoM stays constat so if mass on one sive mous, other sive mass must also more.

S Kamp collision: consider them together! Por's separate.

6. Use momentum if objects jumping/separating from each other.

7. CoM movements:

[(m,+m2+M) 1x hout = mb 12b

L. Consider boat +ppl (station y) as lobject.

Problem:

 $\frac{1}{m}$ $\frac{1}{2m}$ $\frac{k}{4m}$

Find max compression of spring.

Consider in steps:

(D: collision of m and 2m: mv = 2mv (2m+m)v'

 $V' = \frac{mv}{3m} = \frac{V}{3}$

1 : Collision of 2m and 4 full system:

3m. = (m+2m+4m) v"

 $V'' = \frac{mv}{7m} = \frac{v}{7}$

Note the

systematic

Ley be took

in collibbr!

Step-by-step

(3: All collision finished. Consider energy:

 $\frac{1}{2} \left[m_1 + m_2 \right] v^{12} = \frac{1}{2} \left(m_1 + m_2 + m_3 \right) v^{2} + \frac{1}{2} k_{12}^{2}$ $3m \cdot \left(\frac{\sqrt{3}}{3} \right)^2 = \frac{1}{2} \cdot 7m \cdot \left(\frac{7}{7} \right)^2 + k_{12}^{2}$ $\frac{mv^2}{3} = \frac{mv^2}{7} + k_{12}^{2}$

Solve for a:

 $kx^2 = \frac{4mv^2}{2!}$ $x = \sqrt{\frac{4mv^2}{2!k}}$

hot	DIATION	
1.	Remember to use parallel axis theorem when Ip = Icm + mr2.	changing pivot.
	$I_p = I_{cm} + mr^2$.	
2.	. Yulleys:	
	Massless ! Hichonless: With mertia:	
	Ti Ti	
	$T_1 = T_2$ $T_2 = T_2$	TI X TZ
3.	Same cixle: sume angular valacity + acceleration	2.
	Same axle: same angular valocity + acceleration. Connected by cham/teeth: same linear valor	pointy. Connecting
4	If optobine: include optoboral energy	
h	Enot = 1/2 I w ² Conserve both angula + linear momentum Be able to find I cm of compaile/comp	linear motion
5 (Conserve both angula + linear momentum	m (L= bark mvL)
6.	Be able to tond Ich of compaile/com	plex objects.
	L Icm of equilatral triagle:	43 Pa = 273 2 sm60°
7	liber tells	1
(.	When taking energy, ux CoM for gran	ГУ.
Ex:	:/ Find & when car collids with rod-cy	linder when below:
A(-	> 3h shankmile of down books on down	11100 071/0111 500-
	his with at in sold and of I down where we	
	Imacon C. Mayı	rte:
	meer C Mexi	
1	1. Find Itotal	
	Itotal = Irod + I cyl + Icar	Could have used
	= 13 Mgl2 + mcyll2 + mcer.	point muss.
AT A	2. Conservation of ansular momentum:	
	mul = Itotal·W	
	3. Find new CoM:	
	acm = MR (=) + mox1 l + m	cer l
	Par + may 1 + m	

2. Crak equation, for linear + notational motion.

$$0: m_S - T_1 = m\alpha$$

$$0: r(T_1 - T_2) = I\alpha_p$$

3: Pivot on bottom: $2RT_2 = Ic \alpha \Rightarrow Eliminaled fs (con't reintrodul)$ Find Ic: $Ic = Icm + mR^2 = \frac{1}{2}m_c R^2 + m_c R^2$ $= \frac{3}{2}m_c R^2$

Φ: a = rap ⇒ Pulley connected to mass.

(S: a = 2Rxc ⇒ atop = 2 x acm (rolling)

Find h such that ball makes to top of loop.

1. Investigate constraints via uniform circula moto.

N+ ms =
$$\frac{mv^2}{R}$$
 \notin Min @ N=0
 $v = \sqrt{8R}$
Change to bell cm b/c rolling of $v = \sqrt{8R}$

2. Energy: $m_S(h+r) = m_S(2R-r) + l_2 mv^2 + l_2 I w^2$ We know rolling whout slip = V=rw

a) Find acceleration on ramp:

b) Find the ansular speed when ball start to roll. 1. Find the condition for roll: V = rw 2. Divide into linear + angular speeds. on ranp $Vf = V; + at \xrightarrow{} Find t when Vf = Wf$ $Wf = W; + dt \xrightarrow{} Find t when Vf = Wf$ Find vi => mg(B-r) = 1/2 mv2 V2 = 2g (R-r) € inital velocity SPRE Find d ⇒ Putting point of pivot on middle: Is heavon: a is defined who wir Include Me in this equation too $\alpha = \frac{T}{I} = \frac{M_{ll} \, m_{s} \cos \theta \, r}{2r_{s} \, m_{s}^{2}}$ = Sur my cout 3. Equale Vf = W+ to fond t: Suk ms cost t J25 (B-r) + (Sunt + ME 5000+) += 4. Solve for t + plug in. OSE STATIC EQUIEBRIUM 1. How to solve a state equilibrium problem. a) Draw a FBD: gravity, nomal, hinge fore. b) find angles to the protom c) 2 equations:

D & T = 0 @ 2f = 0 d) Solve. 2. FBD: hinge form in component internal hinge form DME Hinge fores DNE intenally

SIMPLE HARMONIC MOTION 1. Undestad simple harmonic motor diagram. 1. Determingns 5HM equations. 2. Find possible & values La Look of vill function.

- · Max velocity: origin. Max acceleration: amplitures.
- 2. Types of problem.
 - 1. Write down the equation + put in knowns.
 - Look at original & xelt) function 7

I Plus in points
I that you already know.

- 2. Prove that smth is in SHM.
- 1. Defining: $\alpha = -\omega^2 \alpha$ OR $\alpha = -\omega^2 \theta$
 - 2. Use torque/forces to determine equation, (morrent of ineta)
 - 3. Find energy change from equilibrium + differenticle.
 - 4. Keep at equilibrium change. Approximate!

Find the forguency of the ball morning.

FRO:

- 2. Torque/fores mg sinb (R-r) = IN & Pivol at bottom.
- 3. Solve for d: mg sint (B-r) = (2gmr2 + m (Abo)) \a ms sind (R-1)= 3 mr2 x - Ss sint & in small angl.

$$\alpha = \begin{bmatrix} -\frac{SS}{7(R-r)} & 6 \\ 7(R-r) & \infty \end{bmatrix}$$

3. Enersy:

- 1. Use equation to convert enery to spew (max).
- 2. Esp. uschil w/ 2 block. If not attached, block will remove itself of equilibrium.

· Ex: // A $[m, m_2]$

a) mz detacto at equilibrium. Find its speed.

$$\frac{1}{2}kA^{2} = \frac{1}{2}m_{1}v^{2} + \frac{1}{2}m_{2}v^{2}$$

$$kA^{2} = (m_{1}v + m_{2})v_{2}$$

V= \[\frac{\kappa A2}{m_{11}m_{2}} \]

b) Itom for aport are object when fully stretched. Initial enery: energy of m,

Time:

At amplitude: 1/4 of period

$$= \sqrt{\frac{1}{4}}$$

$$= \sqrt{\frac{kA^2}{m_1+m_2}} \cdot \frac{1}{4} \cdot 2\pi \sqrt{\frac{m}{k}}$$

$$= \sqrt{\frac{kA^2}{m_1+m_2}} \cdot \frac{1}{4} \cdot 2\pi \sqrt{\frac{m}{k}}$$