

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 December 2000 (28.12.2000)

PCT

(10) International Publication Number
WO 00/78953 A2

(51) International Patent Classification²: C12N 15/12,
5/10, C07K 14/47, 14/705, 16/18, 16/28, C12Q 1/68,
A61K 38/17, G01N 33/50, A01K 67/027

(21) International Application Number: PCT/US00/16668

(22) International Filing Date: 16 June 2000 (16.06.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/139,923 17 June 1999 (17.06.1999) US
60/148,177 10 August 1999 (10.08.1999) US
60/149,357 18 August 1999 (18.08.1999) US
60/162,287 28 October 1999 (28.10.1999) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

US	60/139,923 (CIP)
Filed on	17 June 1999 (17.06.1999)
US	60/148,177 (CIP)
Filed on	10 August 1999 (10.08.1999)
US	60/149,357 (CIP)
Filed on	18 August 1999 (18.08.1999)
US	60/162,287 (CIP)
Filed on	28 October 1999 (28.10.1999)

(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). YANG, Junming [CN/US]; 7125 Bark Lane, San Jose, CA 95129 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). HILLMAN, Jennifer, L.

[US/US]; 230 Monroe Drive, #12, Mountain View, CA 94040 (US). TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). BURFORD, Neil [GB/US]; 1308 4th Avenue, San Francisco, CA 94122 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). AZIMZAI, Yalda [US/US]; 2045 Rocksprings Drive, Hayward, CA 94545 (US). LU, Dyung, Aina, M. [US/US]; 55 Park Belmont Place, San Jose, CA 95136 (US). AU-YOUNG, Janice [US/US]; 233 Golden Eagle Lane, Brisbane, CA 94005 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way, #1, Menlo Park, CA 94025 (US).

(74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

WO 00/78953

(54) Title: HUMAN TRANSPORT PROTEINS

(57) Abstract: The invention provides human transport proteins (TPPT) and polynucleotides which identify and encode TPPT. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of TPPT.

HUMAN TRANSPORT PROTEINS

TECHNICAL FIELD

5 This invention relates to nucleic acid and amino acid sequences of human transport proteins and to the use of these sequences in the diagnosis, treatment, and prevention of transport, metabolic, neurological, cardiovascular, reproductive, and immune disorders, and cell proliferative disorders including cancer.

10

BACKGROUND OF THE INVENTION

Eukaryotic cells are surrounded and subdivided into functionally distinct organelles by hydrophobic lipid bilayer membranes. These membranes act as a barrier to most molecules, and maintain the essential differences between the cytosol, the extracellular environment, and the contents of each intracellular organelle. Transport of essential nutrients, certain metal ions, metabolic waste products, cell signaling molecules, macromolecules, and proteins across lipid membranes and between organelles must be mediated by a variety of transport molecules. Transport between the cytoplasm and the extracellular environment, and between the cytoplasm and luminal spaces of cellular organelles requires specific transport proteins. Each transport protein carries a particular class of molecule, such as ions, sugars, or amino acids, and often is specific to a certain molecular species of the class.

Cells and organelles require transport molecules to import and export essential nutrients and metal ions including K⁺, NH₄⁺, P_i, SO₄²⁻, sugars, and vitamins, as well as various metabolic waste products. Transport proteins also play roles in antibiotic resistance, toxin secretion, ion balance, synaptic neurotransmission, kidney function, intestinal absorption, tumor growth, and other diverse cell functions (Griffith, J. and C. Sansom (1998) The Transporter Facts Book, Academic Press, San Diego CA, pp. 3-29). Transport can occur by a passive concentration-dependent mechanism, or can be linked to an energy source such as ATP hydrolysis or an ion gradient. Proteins that function in transport include carrier proteins, which bind to a specific solute and undergo a conformational change that transfers the bound solute across the membrane, and channel proteins, which form hydrophilic pores that allow specific solutes to diffuse through the membrane down an electrochemical solute gradient.

Transport proteins are often multi-pass transmembrane proteins, which either actively transport molecules across the membrane or passively allow them to cross. Active transport involves directional pumping of a solute across the membrane, usually against an electrochemical gradient. 35 Active transport is tightly coupled to a source of metabolic energy, such as ATP hydrolysis or an electrochemically favorable ion gradient. Passive transport involves the movement of a solute down

its electrochemical gradient. Transport proteins can be further classified as either carrier proteins or channel proteins. Carrier proteins, which can function in active or passive transport, bind to a specific solute to be transported and undergo a conformational change which transfers the bound solute across the membrane. Channel proteins, which only function in passive transport, form hydrophilic pores across the membrane. When the pores open, specific solutes, such as inorganic ions, pass through the membrane down the electrochemical gradient of the solute. Examples include facilitative transporters, the secondary active symporters and antiporters driven by ion gradients, and active ATP binding cassette transporters involved in multiple-drug resistance and targeting of antigenic peptides to MHC Class I molecules. Transported substrates range from nutrients and ions to a broad variety of drugs, peptides and proteins.

Information on the action of ARL-6 (ADP-ribosylation like factor), an endoplasmic reticulum transmembrane protein, can be found in Greenfield, J.J. and S. High (1999; *J. Cell Sci.* 112:1477-1486). Information on reduced folate carrier transporter proteins can be found in Dixon, K.H. et al. (1994; *J. Biol. Chem.* 269:17-20) and Moscow, J.A. et al. (1995; *Cancer Res.* 55:5983-5987).

Carrier proteins which transport a single solute from one side of the membrane to the other are called uniporters. In contrast, coupled transporters link the transfer of one solute with simultaneous or sequential transfer of a second solute, either in the same direction (symport) or in the opposite direction (antiport). For example, intestinal and kidney epithelia contain a variety of symporter systems driven by the sodium gradient that exists across the plasma membrane. Sodium moves into the cell down its electrochemical gradient and brings the solute into the cell with it. The sodium gradient that provides the driving force for solute uptake is maintained by the ubiquitous Na⁺/K⁺ ATPase. Sodium-coupled transporters include the mammalian glucose transporter (SGLT1), iodide transporter (NIS), and multivitamin transporter (SMVT). All three transporters have twelve putative transmembrane segments, extracellular glycosylation sites, and cytoplasmically-oriented N- and C-termini.

Mitochondrial carrier proteins are transmembrane-spanning proteins which transport ions and charged metabolites between the cytosol and the mitochondrial matrix. Examples include the ADP, ATP carrier protein; the 2-oxoglutarate/malate carrier; the phosphate carrier protein; the brown fat uncoupling protein which transports protons from the cytosol into the matrix; the pyruvate carrier; the dicarboxylate carrier which transports malate, succinate, fumarate, and phosphate; the tricarboxylate carrier which transports citrate and malate; and the Grave's disease carrier protein, a protein recognized by IgG in patients with active Grave's disease, an autoimmune disorder resulting in hyperthyroidism (Stryer, L. (1995) *Biochemistry*, W.H. Freeman and Company, New York NY, p. 551; PROSITE PDOC00189 Mitochondrial energy transfer proteins signature; Online Mendelian Inheritance in Man (OMIM) *275000 Graves Disease).

This class of transporters also includes the mitochondrial uncoupling proteins, which create

proton leaks across the inner mitochondrial membrane, thus uncoupling oxidative phosphorylation from ATP synthesis. The result is energy dissipation in the form of heat. Mitochondrial uncoupling proteins have been implicated as modulators of thermoregulation and metabolic rate, and have been proposed as potential targets for drugs against metabolic diseases such as obesity (Ricquier, D. et al. 5 (1999) J. Int. Med. 245:637-642).

A number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes. For example, zinc is required for the function of enzymes such as the extracellular matrix metalloproteinases, and zinc ions stabilize several motifs commonly found in transcription factors, including zinc fingers, zinc 10 clusters, and LIM domains. Zinc and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Danks, D.M. (1986) J. Med. Genet. 23:99-106).

15 The largest and most diverse family of transport proteins known are the ATP-binding cassette (ABC) transporters. As a family, ABC transporters can transport substances that differ markedly in chemical structure and size, ranging from small molecules such as ions, sugars, amino acids, peptides, and phospholipids, to lipopeptides, large proteins, and complex hydrophobic drugs. ABC proteins consist of four modules: two nucleotide-binding domains (NBD), which hydrolyze ATP to supply the 20 energy required for transport, and two membrane-spanning domains (MSD), each containing six putative transmembrane segments. These four modules may be encoded by a single gene, as is the case for the cystic fibrosis transmembrane regulator (CFTR), or by separate genes. When encoded by separate genes, each gene product contains a single NBD and MSD. These "half-molecules" form homo- and heterodimers, such as Tap1 and Tap2, the endoplasmic reticulum-based major 25 histocompatibility (MHC) peptide transport system. Several genetic diseases are attributed to defects in ABC transporters, such as the following diseases and their corresponding proteins: cystic fibrosis (CFTR, an ion channel), adrenoleukodystrophy (adrenoleukodystrophy protein, ALDP), Zellweger syndrome (peroxisomal membrane protein-70, PMP70), and hyperinsulinemic hypoglycemia (sulfonylurea receptor, SUR). Overexpression of the multidrug resistance (MDR) protein, another 30 ABC transporter, in human cancer cells makes the cells resistant to a variety of cytotoxic drugs used in chemotherapy (Taglicht, D. and S. Michaelis (1998) Methods Enzymol. 292:131-163).

The nuclear pore complex (NPC) is a large multiprotein complex spanning the nuclear envelope which mediates the transport of proteins and RNA molecules between the nucleus and the cytoplasm, thus contributing to the regulation of gene expression. The NPC allows passive diffusion 35 of ions, small molecules, and macromolecules under about 60kD, while larger macromolecules are transported by facilitated, energy-dependent pathways. Nuclear localization signals (NLS), consisting

- of short stretches of amino acids enriched in basic residues, are found on proteins that are targeted to the nucleus, such as the glucocorticoid receptor. The NLS is recognized by the NLS receptor, importin, which then interacts with the monomeric GTP-binding protein Ran. This NLS protein/receptor/Ran complex navigates the nuclear pore with the help of the homodimeric protein
- 5 nuclear transport factor 2 (NTF2) (Nakielny, S. and G. Dreyfuss (1997) Curr. Opin. Cell Biol. 9:420-429; Gorlich, D. (1997) Curr. Opin. Cell Biol. 9:412-419). Four O-linked glycoproteins, p62, p58, p54, and p45, exist as a stable "p62 complex" that forms a ring localized on both nucleoplasmic and cytoplasmic surfaces of the NPC. The p62, p58, and p54 proteins all interact directly with the cytosolic transport factors p97 and NTF2, suggesting that the p62 complex is an important ligand
- 10 binding site near the central gated channel of the NPC (Hu, T. et al. (1996) J. Cell Biol. 134:589-601).
- Transport can also occur through intercellular bridges which connect the cytoplasms of sister cells, for example in the male and female germline of species ranging from fruit flies to humans. These bridges allow passage of cytoplasmic materials between cells during development.
- Intercellular bridges have also been found to connect somatic cells. The nurse cells and oocyte of a
- 15 Drosophila egg chamber, which are derived from a single precursor cell through four rounds of mitosis, are connected to each other through intercellular bridges called ring canals. The cells do not completely separate after mitosis; the mitotic cleavage furrows are transformed into ring canals by the addition of an actin cytoskeleton lining the tunnels between the cells. The Drosophila kelch protein functions in organizing actin in the ring canal. Mutations in kelch cause female sterility in
- 20 Drosophila. Kelch contains four protein domains: the NTR domain at the N-terminus, the BTB or POZ domain, the IVR or intervening region; and the kelch repeat domain, which contains six 50-amino acid kelch repeats. The BTB or POZ domain, a 120-amino acid motif that is also found in several zinc-finger containing transcription factors, may be important in dimerization of kelch. Kelch repeats are found in other proteins as well and may be important for actin binding (Robinson, D.N.
- 25 and L. Cooley (1997) J. Cell Biol. 138:799-810; Cooley, L. (1998) Cell 93:913-915).

Ion Channels

- The electrical potential of a cell is generated and maintained by controlling the movement of ions across the plasma membrane. The movement of ions requires ion channels, which form an ion-selective pore within the membrane. Ion channels share common structural and mechanistic themes.
- 30 The channel consists of four or five subunits or protein monomers that are arranged like a barrel in the plasma membrane. Each subunit typically consists of six potential transmembrane segments (S1, S2, S3, S4, S5, and S6). The center of the barrel forms a pore lined by α -helices or β -strands. The side chains of the amino acid residues comprising the α -helices or β -strands establish the charge
- 35 (cation or anion) selectivity of the channel. The degree of selectivity, or what specific ions are allowed to pass through the channel, depends on the diameter of the narrowest part of the pore. There

are two basic types of ion channels, ion transporters and gated ion channels. Ion transporters utilize the energy obtained from ATP hydrolysis to actively transport an ion against the ion's concentration gradient. Gated ion channels allow passive flow of an ion down the ion's electrochemical gradient under restricted conditions. Together, these types of ion channels generate, maintain, and utilize an electrochemical gradient that is used in 1) electrical impulse conduction down the axon of a nerve cell, 2) transport of molecules into cells against concentration gradients, 3) initiation of muscle contraction, and 4) endocrine cell secretion.

Transmembrane ATPases are divided into three families. The phosphorylated (P) class ion transporters, including Na⁺-K⁺ ATPase, Ca²⁺ ATPase, H⁺ ATPase, and Cu⁺⁺ ATPase, are activated by a phosphorylation event. P-class ion transporters are responsible for maintaining resting potential distributions such that cytosolic concentrations of Na⁺ and Ca²⁺ are low and cytosolic concentration of K⁺ is high. The vacuolar (V) class of ion transporters include H⁺ pumps on intracellular organelles, such as lysosomes and Golgi. V-class ion transporters are responsible for generating the low pH within the lumen of these organelles that is required for function. The coupling factor (F) class consists of H⁺ pumps in the mitochondria. F-class ion transporters utilize a proton gradient to generate ATP from ADP and inorganic phosphate (P_i).

Cu⁺⁺ ATPases export copper from cells (PROSITE PDOC00139 E1-E2 ATPases phosphorylation site). Mutations in one Cu⁺⁺ ATPase cause Wilson disease, in which toxic amounts of copper accumulate in a number of organs, particularly the liver and brain (Tanzi, R.E. et al. (1993) Nat. Genet. 5:344-350). Mutations in another Cu⁺⁺ ATPase cause Menkes disease and occipital horn syndrome. Menkes disease mutations block export of copper from the gastrointestinal tract, leading to skeletal abnormalities, severe mental retardation, neurologic degeneration, and mortality in early childhood (Harrison, M.D. and C.T. Dameron (1999) J. Biochem. Mol. Toxicol. 13:93-106). Occipital horn syndrome mutations cause connective tissue defects (Harrison, *supra*; Levinson, B. et al. (1996) Hum. Mol. Genet. 5:1737-1742).

The coupling factor (F) class of ion transporters consists of H⁺ pumps in mitochondria, chloroplasts, and bacteria. For example, the F₀F₁ ATPase utilizes a proton gradient across the inner mitochondrial membrane to generate ATP from ADP and inorganic phosphate (P_i). The F₀F₁ ATPase is composed of the F₀ complex, which is the transmembrane channel through which protons flow, and the F₁ complex, where ATP synthesis activity resides. F₀ has three subunits, A (also known as protein 6), B, and C (Lodish, H. et al. (1995) *Molecular Cell Biology*, Scientific American Books, New York NY, pp. 752-756; PROSITE PDOC00420 ATP synthase a subunit signature).

Voltage-gated Ca²⁺ channels are involved in presynaptic neurotransmitter release, and heart and skeletal muscle contraction. The voltage-gated Ca²⁺ channels from skeletal muscle (L-type) and brain (N-type) have been purified and, though their functions differ dramatically, they have similar subunit compositions. The channels are composed of three subunits. The α₁ subunit forms the

membrane pore and voltage sensor, while the $\alpha_1\delta$ and β subunits modulate the voltage-dependence, gating properties, and the current amplitude of the channel. These subunits are encoded by at least six α_1 , one $\alpha_2\delta$, and four β genes. A fourth subunit, γ , has been identified in skeletal muscle (Walker, D. et al. (1998) J. Biol. Chem. 273:2361-2367; and Jay, S.D. et al. (1990) Science 248:490-492). The 5 human $\beta 4$ subunit is homologous to the mouse epilepsy gene lethargic, and is a candidate for involvement in neurological disorders including ataxia and absence epilepsy (Escayg, A. et al. (1998) Genomics 50:14-22).

Ligand-gated channels open their pores when an extracellular or intracellular mediator binds to the channel. Neurotransmitter-gated channels are channels that open when a neurotransmitter 10 binds to their extracellular domain. These channels exist in the postsynaptic membrane of nerve or muscle cells. There are two types of neurotransmitter-gated channels. Sodium channels open in response to excitatory neurotransmitters, such as acetylcholine, glutamate, and serotonin. This opening causes an influx of Na^+ and produces the initial localized depolarization that activates the voltage-gated channels and starts the action potential. Chloride channels open in response to 15 inhibitory neurotransmitters, such as γ -aminobutyric acid (GABA) and glycine, leading to hyperpolarization of the membrane and the subsequent generation of an action potential.

Ion channels are expressed in a number of tissues where they are implicated in a variety of processes. CNG channels, while abundantly expressed in photoreceptor and olfactory sensory cells, are also found in kidney, lung, pineal, retinal ganglion cells, testis, aorta, and brain. Calcium-activated 20 K^+ channels may be responsible for the vasodilatory effects of bradykinin in the kidney and for shunting excess K^+ from brain capillary endothelial cells into the blood. They are also implicated in repolarizing granulocytes after agonist-stimulated depolarization (Ishi, T.M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:11651-11656). Another transmembrane protein, the leukotrine B4 receptor (BLT) appears to be involved in inflammation responses and host cell defense against infection. BLT also 25 functions as an HIV coreceptor (Izumi, T. et al. (1997) Nature 387:620-624; Martin, V. et al. (1999) J. Biol. Chem. 274:8597-8603).

Ion channels have been the target for many drug therapies. Neurotransmitter-gated channels have been targeted in therapies for treatment of insomnia, anxiety, depression, and schizophrenia. Voltage-gated channels have been targeted in therapies for arrhythmia, ischemic stroke, head trauma, 30 and neurodegenerative disease (Taylor, C.P. and L.S. Narasimhan (1997) Adv. Pharmacol. 39:47-98).

K^+ channels are located in all cell types, and may be regulated by voltage, ATP concentration, or second messengers such as Ca^{++} and cAMP. In non-excitable tissue, K^+ channels are involved in protein synthesis, control of endocrine secretions, and the maintenance of osmotic equilibrium across membranes. In neurons and other excitable cells, in addition to regulating action 35 potentials and repolarizing membranes, K^+ channels are responsible for setting resting membrane potential. The cytosol contains non-diffusible anions and, to balance this net negative charge, the cell

contains a Na⁺-K⁺ pump and ion channels that provide the redistribution of Na⁺, K⁺, and Cl⁻. The pump actively transports Na⁺ out of the cell and K⁺ into the cell in a 3:2 ratio. In channels in the plasma membrane allow K⁺ and Cl⁻ to flow by passive diffusion. Because of the high negative charge within the cytosol, Cl⁻ flows out of the cell. The flow of K⁺ is balanced by an electromotive force pulling K⁺ into the cell, and a K⁺ concentration gradient pushing K⁺ out of the cell. Thus, the resting membrane potential is primarily regulated by K⁺ flow (Salkoff, L. and T. Jegla (1995) *Neuron* 15:489-492). Information on NY-REN-45, a K⁺ channel integral membrane protein, can be found in Scanlan, M.J. et al. (1998; *Int. J. Cancer* 76:652-658). The emopamil-binding protein (EBP) shares structural features with both pro- and eukaryotic drug transport proteins (Hanner, M. et al. (1995) *J. Biol. Chem.* 270:7551-7557). The Na⁺ channel, transmembrane protein myelin protein zero (MPZ) may be responsible for some sporadic cases of Dejerine-Scottas disease (hereditary motor and sensory neuropathy type III) (Hayasaka, K. et al. (1993) *Nat. Genet.* 5:266-268).

K⁺ pore-forming subunits generally have six transmembrane-spanning domains with a short region between the fifth and sixth transmembrane regions that senses membrane potential; and the amino and carboxy termini are located intracellularly. In mammalian heart, the duration of ventricular action potential is controlled by a K⁺ current. Thus, the K⁺ channel is central to the control of heart rate and rhythm. K⁺ channel dysfunctions are associated with a number of renal diseases including hypertension, hypokalemia, and the associated Bartter's syndrome and Gitelman's syndrome, as well as neurological disorders including epilepsy. K⁺ channels have been implicated in Alzheimer's disease by observations that a significant component of senile plaques, beta amyloid or A beta, also blocks voltage-gated potassium channels in hippocampal neurons (Antes, L.M. et al. (1998) *Seminar Nephrol.* 18:31-45; Stoffel, M. and L.Y. Jan (1998) *Nat. Genet.* 18:6-8; Madeja, M. et al. (1997) *Eur. J. Neurosci.* 9:390-395; Good, T.A. et al. (1996) *Biophys. J.* 70:296-304).

Gated ion channels control ion flow by regulating the opening and closing of pores. These channels are categorized according to the manner of regulating the gating function. Mechanically-gated channels open pores in response to mechanical stress, voltage-gated channels open pores in response to changes in membrane potential, and ligand-gated channels open pores in the presence of a specific ion, nucleotide, or neurotransmitter.

Voltage-gated Na⁺ channels are responsible for electrical excitability of neurons, skeletal muscle, heart, and neuroendocrine tissues. For example, the sequential opening and closing of voltage-gated Na⁺ channels results in the propagation of action potentials down neuronal axons. Na⁺ channels isolated from rat brain tissue are heterotrimeric complexes composed of a 260 kDa pore forming α subunit that associates with two smaller auxiliary subunits, β 1 and β 2. The β 2 subunit is an integral membrane glycoprotein that contains an extracellular Ig domain, and its association with α and β 1 subunits correlates with increased function of the channel, a change in the channel's gating properties, as well as an increase in whole cell capacitance (Isom, L.L. et al. (1995) *Cell* 83:433-442).

Integral Membrane Proteins

The majority of known integral membrane proteins are transmembrane proteins (TM) which are characterized by an extracellular, a transmembrane, and an intracellular domain. TM domains are typically comprised of 15 to 25 hydrophobic amino acids which are predicted to adopt an α -helical conformation. TM proteins are classified as bitopic (Types I and II) and polytopic (Types III and IV) (Singer, S.J. (1990) Annu. Rev. Cell Biol. 6:247-96). Bitopic proteins span the membrane once while polytopic proteins contain multiple membrane-spanning segments. TM proteins that act as cell-surface receptor proteins involved in signal transduction include growth and differentiation factor receptors, and receptor-interacting proteins such as *Drosophila* pecanex and frizzled proteins, LIV-1 protein, NF2 protein, and GNS1/SUR4 eukaryotic integral membrane proteins. TM proteins also act as transporters of ions or metabolites, such as gap junction channels (connexins) and ion channels, and as cell anchoring proteins, such as lectins, integrins, and fibronectins. TM proteins act as vesicle organelle-forming molecules, such as calveolins, or as cell recognition molecules, such as cluster of differentiation (CD) antigens, glycoproteins, and mucins. Information on connexin can be found in Kanter, H.L. et al. (1994; J. Mol. Cell. Cardiol. 26:861-868).

Many membrane proteins (MPs) contain amino acid sequence motifs that target these proteins to specific subcellular sites. Examples of these motifs include PDZ domains, KDEL, RGD, NGR, and GSL sequence motifs, von Willebrand factor A (vWFA) domains, and EGF-like domains. RGD, NGR, and GSL motif-containing peptides have been used as drug delivery agents in cancer treatments which target tumor vasculature (Arap, W. et al. (1998) Science, 279:377-380.) Furthermore, MPs may also contain amino acid sequence motifs, such as the carbohydrate recognition domain (CRD), also known as the C-type lectin domain, that mediate interactions with extracellular or intracellular molecules.

G-protein coupled receptors (GPCR) comprise a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines, lipid mediators of inflammation, peptide hormones, and sensory signal mediators. The structure of these highly-conserved receptors consists of seven hydrophobic transmembrane regions, an extracellular N-terminus, and a cytoplasmic C-terminus. Three extracellular loops alternate with three intracellular loops to link the seven transmembrane regions. The most conserved parts of these proteins are the transmembrane regions and the first two cytoplasmic loops. Cysteine disulfide bridges connect the second and third extracellular loops. A conserved, acidic-Arg-aromatic residue triplet present in the second cytoplasmic loop may interact with G proteins. A GPCR consensus pattern is characteristic of most proteins belonging to this superfamily (ExPASy PROSITE document PS00237; and Watson, S. and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego CA, pp 2-6). Mutations and changes in transcriptional activation of GPCR-encoding genes have been

associated with neurological disorders such as schizophrenia, Parkinson's disease, Alzheimer's disease, drug addiction, and feeding disorders.

- Cytochromes are electron-transferring proteins that contain a heme prosthetic group, a porphyrin ring containing a tightly bound iron atom. Cytochromes act as oxidoreductases in such diverse cellular processes as respiration, photosynthesis, fatty acid metabolism, and neurotransmitter biosynthesis. The heme iron atom serves as the actual electron carrier by changing from the ferric to the ferrous oxidation state when accepting an electron. Cytochromes accept electrons from one substrate such as NADH or ascorbate and donate them to other electron carriers such as other cytochromes, ubiquinone, or semidehydroascorbic acid (Lodish, H. et al. (1995) Molecular Cell Biology, Scientific American Books, New York NY, pp. 759-770, 786-797; Sperling, P. et al. (1995) Eur. J. Biochem. 232:798-805; and Online Mendelian Inheritance in Man (OMIM) *600019 Cytochrome b561, CYB561).

- Cytochrome b5 is an electron donor in membrane-linked redox enzyme systems involved in lipid and drug metabolism. Cytochrome b5 has been found in Golgi, plasma, outer mitochondrial, endoplasmic reticulum (ER), and microbody membranes. Conserved amino acids in cytochrome b5 include eight invariant amino acids at W34, H51, P52, G53, G54, G63, F70, and H74, and fifteen conserved amino acids at L24, I35, S36, V41, Y42, N43, T45, W47, A48, L58, D65, T67, L85, T87, and G88 (numbering based on the sunflower cytochrome b5/delta-6 desaturase fusion protein; GI 1040729, Sperling, supra). The invariant residues H51PGG are involved in heme-binding.
- Cytochrome b5-like domains have also been found linked to other enzymes. For example, cytochrome b5-like domains are part of delta-9 fatty acid desaturases in yeast and Histoplasma capsulatum, nitrate reductase, sulfite reductase, flavocytochrome b2, Arabidopsis thaliana acyl lipid desaturase, and Borago officinalis (borage) and Helianthus annuus (sunflower) delta-6 desaturases (Sperling, supra; Sayanova, O. et al (1997) Proc. Natl. Acad. Sci. USA 94:4211-4216; and Mitchell, A.G. and C.E. Martin (1997) J. Biol. Chem. 272:28281-28288).

- Signal peptides are found on proteins that are targeted to the endoplasmic reticulum (ER). Signal peptides consist of stretches of amino acids enriched in hydrophobic residues. Signal peptides are usually found at the extreme N-terminus of the protein and are recognized by a cytosolic signal-recognition peptide (SRP). The SRP binds to the signal peptide and to an SRP receptor, an integral membrane protein in the ER. Once bound to the SRP receptor, the newly formed protein containing the signal peptide is translocated across the ER membrane. Proteins containing signal peptides may end up inserted into the lipid bilayer, or they may end up in the lumen of an organelle or secreted from the cell.

35 Disease Correlation

The etiology of numerous human diseases and disorders can be attributed to defects in the

transport of molecules across membranes. Defects in the trafficking of membrane-bound transporters and ion channels are associated with several disorders, e.g. cystic fibrosis, glucose-galactose malabsorption syndrome, hypercholesterolemia, von Gierke disease, and certain forms of diabetes mellitus. Single-gene defect diseases resulting in an inability to transport small molecules across 5 membranes include, e.g., cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease (van't Hoff, W.G. (1996) *Exp. Nephrol.* 4:253-262; Talente, G.M. et al. (1994) *Ann. Intern. Med.* 120:218-226; and Chillon, M. et al. (1995) *New Engl. J. Med.* 332:1475-1480).

Cystinuria is an inherited disease that results from the inability to transport cystine, the disulfide-linked dimer of cysteine, from the urine into the blood. Accumulation of cystine in the 10 urine leads to the formation of cystine stones in the kidneys.

Transthyretin (TTR), present in human plasma, binds to and transports the thyroid hormone thyroxine. Mutations in TTR result in the conversion of TTR to amyloid, an insoluble fibrillar structure. The resulting amyloid plaques have been shown to be the causative agent in the development of familial amyloid polyneuropathy and senile systemic amyloidosis (Miroy, G.J. et al. 15 (1996) *Proc. Natl. Acad. Sci. USA* 93:15051-15056).

Stomatin, a 31-kDa erythrocyte integral membrane protein has been linked to the hereditary anemia stomatocytosis. This anemia is characterized by red blood cells that lack stomatin and leak Na⁺ and K⁺. Thus, stomatin is presumed to play a role in the regulation of ion transport. Red blood cell ion transport defects are also linked to other disorders such as hypertension (Stewart, G.W. 20 (1997) *Int. J. Biochem. Cell Biol.* 29:271-274).

The discovery of new human transport proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of transport, metabolic, neurological, cardiovascular, reproductive, and 25 immune disorders, and cell proliferative disorders including cancer.

SUMMARY OF THE INVENTION

The invention features purified polypeptides, human transport proteins, referred to collectively as "TPPT" and individually as "TPPT-1," "TPPT-2," "TPPT-3," "TPPT-4," "TPPT-5," 30 "TPPT-6," "TPPT-7," "TPPT-8," "TPPT-9," "TPPT-10," "TPPT-11," "TPPT-12," "TPPT-13," "TPPT-14," "TPPT-15," "TPPT-16," "TPPT-17," "TPPT-18," "TPPT-19," "TPPT-20," "TPPT-21," "TPPT-22," "TPPT-23," "TPPT-24," "TPPT-25," "TPPT-26," "TPPT-27," "TPPT-28," "TPPT-29," "TPPT-30," "TPPT-31," "TPPT-32," "TPPT-33," "TPPT-34," "TPPT-35," "TPPT-36," "TPPT-37," "TPPT-38," "TPPT-39," "TPPT-40," "TPPT-41," "TPPT-42," and "TPPT-43." In one aspect, the 35 invention provides an isolated polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-

- 43, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-43.

The invention further provides an isolated polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-43. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:44-86.

Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a

- polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of an amino acid sequence
5 selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43.

The invention further provides an isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, b) a naturally occurring polynucleotide sequence having at least 70%
10 sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

Additionally, the invention provides a method for detecting a target polynucleotide in a
15 sample, said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, b) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary
20 to b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said
25 hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a method for detecting a target polynucleotide in a sample,
said target polynucleotide having a sequence of a polynucleotide comprising a polynucleotide sequence selected from the group consisting of a) a polynucleotide sequence selected from the group
30 consisting of SEQ ID NO:44-86, b) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:44-86, c) a polynucleotide sequence complementary to a), d) a polynucleotide sequence complementary to b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting
35 the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

The invention further provides a pharmaceutical composition comprising an effective amount of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and a pharmaceutically acceptable excipient. In one embodiment, the pharmaceutical composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The invention additionally provides 10 a method of treating a disease or condition associated with decreased expression of functional TPPT, comprising administering to a patient in need of such treatment the pharmaceutical composition.

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting 20 agonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional TPPT, comprising administering to a patient in need of such treatment the pharmaceutical composition.

25 Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting 30 antagonist activity in the sample. In one alternative, the invention provides a pharmaceutical composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional TPPT, comprising administering to a patient in

need of such treatment the pharmaceutical composition.

The invention further provides a method of screening for a compound that specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

The invention further provides a method of screening for a compound that modulates the activity of a polypeptide comprising an amino acid sequence selected from the group consisting of a) an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43, and d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1-43. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO:44-86, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

30

BRIEF DESCRIPTION OF THE TABLES

Table 1 shows polypeptide and nucleotide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone IDs), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding TPPT.

35 Table 2 shows features of each polypeptide sequence, including potential motifs, homologous sequences, and methods, algorithms, and searchable databases used for analysis of TPPT.

Table 3 shows selected fragments of each nucleic acid sequence; the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis; diseases, disorders, or conditions associated with these tissues; and the vector into which each cDNA was cloned.

- 5 Table 4 describes the tissues used to construct the cDNA libraries from which cDNA clones encoding TPPT were isolated.

Table 5 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.

10

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing 15 particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a 20 reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be 25 used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

30 DEFINITIONS

"TPPT" refers to the amino acid sequences of substantially purified TPPT obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of 35 TPPT. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TPPT either by directly interacting with

TPPT or by acting on components of the biological pathway in which TPPT participates.

An "allelic variant" is an alternative form of the gene encoding TPPT. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or 5 many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

- "Altered" nucleic acid sequences encoding TPPT include those sequences with deletions, 10 insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as TPPT or a polypeptide with at least one functional characteristic of TPPT. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding TPPT, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding 15 TPPT. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent TPPT. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of TPPT is retained. For example, 20 negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
- 25 The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
- 30 "Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity 35 of TPPT. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TPPT either by directly interacting with TPPT or by acting on components of the biological pathway in which TPPT

participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant.

Antibodies that bind TPPT polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

10 The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen 15 used to elicit the immune response) for binding to an antibody.

16 The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified 20 sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring 25 nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

26 The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic TPPT, or of any oligopeptide thereof, 30 to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'.

35 A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or

- amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding TPPT or fragments of TPPT may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be 5 deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (PE Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from 10 one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

- "Conservative amino acid substitutions" are those substitutions that are predicted to least 15 interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
20	Ala	Gly, Ser
	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
25	Cys	Ala, Ser
	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
30	Ile	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
35	Ser	Cys, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
	Tyr	His, Phe, Trp
	Val	Ile, Leu, Thr

- 40 Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide.

Chemical modifications of a polynucleotide sequence can include, for example, replacement of 5 hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

10 A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

A "fragment" is a unique portion of TPPT or the polynucleotide encoding TPPT which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a 15 fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected 20 from the first 250 or 500 amino acids (or first 25% or 50% of a polypeptide) as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:44-86 comprises a region of unique polynucleotide sequence that 25 specifically identifies SEQ ID NO:44-86, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:44-86 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:44-86 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:44-86 and the region of SEQ ID NO:44-86 to which the fragment corresponds are routinely 30 determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-43 is encoded by a fragment of SEQ ID NO:44-86. A fragment of SEQ ID NO:1-43 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-43. For example, a fragment of SEQ ID NO:1-43 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-43. The precise length of 35 a fragment of SEQ ID NO:1-43 and the region of SEQ ID NO:1-43 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended

purpose for the fragment.

A "full-length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full-length" polynucleotide sequence encodes a "full-length" polypeptide sequence.

5 "Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps 10 in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of 15 molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent 20 similarity" between aligned polynucleotide sequences.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at 25 <http://www.ncbi.nlm.nih.gov/BLAST/>. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at <http://www.ncbi.nlm.nih.gov/gorf/bl2.html>. The 30 "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

35 *Reward for match: 1*

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 11

5 *Filter: on*

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous 10 nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes 15 in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a 20 standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e 25 sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

30 Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (Apr-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

35 *Open Gap: 11 and Extension Gap: 1 penalties*

Gap x drop-off: 50

Expect: 10

Word Size: 3

Filter: on

- Percent identity may be measured over the length of an entire defined polypeptide sequence,
- 5 for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be
10 used to describe a length over which percentage identity may be measured.

“Human artificial chromosomes” (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for chromosome replication, segregation and maintenance.

- The term “humanized antibody” refers to an antibody molecule in which the amino acid
15 sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

- “Hybridization” refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity.
- 20 Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the “washing” step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill
25 in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml sheared, denatured salmon sperm DNA.

- Generally, stringency of hybridization is expressed, in part, with reference to the temperature
30 under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al.,
35 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking

- 5 reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency
10 conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C₀t or R₀t analysis) or formed between one
15 nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
20

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of TPPT which is
25 capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of TPPT which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides,
30 polypeptides, or other chemical compounds on a substrate.

The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.

The term "modulate" refers to a change in the activity of TPPT. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other
35 biological, functional, or immunological properties of TPPT.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide,

polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an TPPT may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of TPPT.

"Probe" refers to nucleic acid sequences encoding TPPT, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al., 1987, Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al., 1990, PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs

can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, *supra*. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be used to vaccinate a mammal wherein the recombinant nucleic acid is

expressed, inducing a protective immunological response in the mammal.

A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, 5 translation, or RNA stability.

"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

10 An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

15 The term "sample" is used in its broadest sense. A sample suspected of containing nucleic acids encoding TPPT, or fragments thereof, or TPPT itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

20 The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

25 The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.

30 A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

35 A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based

5 on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

10 A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a

15 recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants, and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection,

20 transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of

25 the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 95% or at least 98% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may

30 have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternative splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to

35 each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide

"polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% or greater sequence identity over a certain defined length of one of the polypeptides.

10 THE INVENTION

The invention is based on the discovery of new human transport proteins (TPPT), the polynucleotides encoding TPPT, and the use of these compositions for the diagnosis, treatment, or prevention of transport, metabolic, neurological, cardiovascular, reproductive, and immune disorders, and cell proliferative disorders including cancer.

15 Table 1 lists the Incyte clones used to assemble full length nucleotide sequences encoding TPPT. Columns 1 and 2 show the sequence identification numbers (SEQ ID NOs) of the polypeptide and nucleotide sequences, respectively. Column 3 shows the clone IDs of the Incyte clones in which nucleic acids encoding each TPPT were identified, and column 4 shows the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones and their corresponding cDNA
20 libraries. Clones for which cDNA libraries are not indicated were derived from pooled cDNA libraries. In some cases, GenBank sequence identifiers are also shown in column 5. The Incyte clones and GenBank cDNA sequences, where indicated, in column 5 were used to assemble the consensus nucleotide sequence of each TPPT and are useful as fragments in hybridization technologies.

25 The columns of Table 2 show various properties of each of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3 shows potential phosphorylation sites; column 4 shows potential glycosylation sites; column 5 shows the amino acid residues comprising signature sequences and motifs; column 6 shows homologous sequences as identified by BLAST analysis; and column 7 shows analytical
30 methods and in some cases, searchable databases to which the analytical methods were applied. The methods of column 7 were used to characterize each polypeptide through sequence homology and protein motifs.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding TPPT. The first column of Table 3 lists the nucleotide
35 SEQ ID NOs. Column 2 lists fragments of the nucleotide sequences of column 1. These fragments are useful, for example, in hybridization or amplification technologies to identify SEQ ID NO:44-86

and to distinguish between SEQ ID NO:44-86 and related polynucleotide sequences. The polypeptides encoded by these fragments are useful, for example, as immunogenic peptides. Column 3 lists tissue categories which express TPPT as a fraction of total tissues expressing TPPT. Column 4 lists diseases, disorders, or conditions associated with those tissues expressing TPPT as a fraction of total tissues expressing TPPT. Column 5 lists the vectors used to subclone each cDNA library.

5 Of particular interest is the expression of SEQ ID NO:50 exclusively in cardiovascular tissue, the expression of SEQ ID NO:56 in nervous and gastrointestinal tissues, the expression of SEQ ID NO:57 in gastrointestinal tissues, and the expression of SEQ ID NO:66 in nervous system tissues. Of 10 particular note is the tissue-specific expression of SEQ ID NO:75. Over 71% of the cDNA libraries expressing SEQ ID NO:75 are derived from lung tissue.

The columns of Table 4 show descriptions of the tissues used to construct the cDNA libraries from which cDNA clones encoding TPPT were isolated. Column 1 references the nucleotide SEQ ID NOS, column 2 shows the cDNA libraries from which these clones were isolated, and column 3 shows the tissue origins and other descriptive information relevant to the cDNA libraries in column 2.

15 SEQ ID NO:44 maps to chromosome 7 within the interval from 38.80 to 42.10 centiMorgans. SEQ ID NO:48 maps to chromosome X within the interval from 107.90 to 122.80 centiMorgans. SEQ ID NO:60 maps to chromosome 2 within the interval from 157.0 to 167.0 centiMorgans. SEQ ID NO:65 maps to chromosome 2 within the interval from 17.4 to 40.7 centiMorgans and to chromosome 5 within the interval from 61.1 to 69.6 centiMorgans. The interval on chromosome 5 20 from 61.1 to 69.6 centiMorgans also contains genes associated with Cockayne syndrome. SEQ ID NO:69 maps to chromosome 3 within the interval from 157.40 to 162.00 centiMorgans. SEQ ID NO:70 maps to chromosome 3 within the interval from 176.40 to 179.80 centiMorgans. SEQ ID NO:71 maps to chromosome 18 within the interval from the p-terminus to 52.30 centiMorgans. SEQ ID NO:73 maps to chromosome 17 within the interval from 75.70 to 84.20 centiMorgans, and to 25 chromosome 2 within the interval from 204.70 to 209.30 centiMorgans. SEQ ID NO:76 maps to chromosome 20 within the interval from 79.00 to 94.40 centiMorgans. SEQ ID NO:80 maps to chromosome 18 within the interval from 1.60 to 6.20 centiMorgans, and to chromosome 11 within the interval from 117.90 to 126.00 centiMorgans. SEQ ID NO:83 maps to chromosome 17 within the interval from 67.60 to 69.30 centiMorgans, and from 83.8 centiMorgans to the q-terminus, and to 30 chromosome 7 within the interval from 105.20 to 114.50 centiMorgans.

The invention also encompasses TPPT variants. A preferred TPPT variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the TPPT amino acid sequence, and which contains at least one functional or structural characteristic of TPPT.

35 The invention also encompasses polynucleotides which encode TPPT. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected

from the group consisting of SEQ ID NO:44-86, which encodes TPPT. The polynucleotide sequences of SEQ ID NO:44-86, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

- 5 The invention also encompasses a variant of a polynucleotide sequence encoding TPPT. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding TPPT. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:44-
10 86 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:44-86. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TPPT.

- 15 It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding TPPT, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the
20 polynucleotide sequence of naturally occurring TPPT, and all such variations are to be considered as being specifically disclosed.

- 25 Although nucleotide sequences which encode TPPT and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring TPPT under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding TPPT or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding TPPT and its derivatives without altering the encoded amino acid sequences
30 include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

- 35 The invention also encompasses production of DNA sequences which encode TPPT and TPPT derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding TPPT or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:44-86 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) *Methods Enzymol.* 152:399-407; Kimmel, A.R. (1987) *Methods Enzymol.*

- 5 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (PE Biosystems, Foster City CA), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI 10 CATALYST 800 thermal cycler (PE Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (PE Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 15 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding TPPT may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, 25 restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) *PCR Methods Applic.* 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) *Nucleic Acids Res.* 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent 30 to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) *PCR Methods Applic.* 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences 35 are known in the art. (See, e.g., Parker, J.D. et al. (1991) *Nucleic Acids Res.* 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo

Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, PE Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode TPPT may be cloned in recombinant DNA molecules that direct expression of TPPT, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express TPPT.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter TPPT-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULAR BREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or

improve the biological properties of TPPT, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

In another embodiment, sequences encoding TPPT may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, TPPT itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (PE Biosystems). Additionally, the amino acid sequence of TPPT, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)

In order to express a biologically active TPPT, the nucleotide sequences encoding TPPT or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding TPPT. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding TPPT. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding TPPT and its initiation codon and upstream regulatory sequences are inserted into

the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both 5 natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) *Results Probl. Cell Differ.* 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding TPPT and appropriate transcriptional and translational control 10 elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences 15 encoding TPPT. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or 20 animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509; Bitter, G.A. et al. (1987) *Methods Enzymol.* 153:516-544; Scorer, C.A. et al. (1994) *Bio/Technology* 12:181-184; Engelhard, E.K. et al. (1994) *Proc. Natl. Acad. Sci. USA* 91:3224-3227; Sandig, V. et al. (1996) *Hum. Gene Ther.* 7:1937-1945; Takamatsu, N. (1987) *EMBO J.* 6:307-311; Coruzzi, G. et al. (1984) *EMBO J.* 3:1671-1680; Broglie, R. et al. (1984) 25 *Science* 224:838-843; Winter, J. et al. (1991) *Results Probl. Cell Differ.* 17:85-105; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) *Proc. Natl. Acad. Sci. USA* 81:3655-3659; and Harrington, J.J. et al. (1997) *Nat. Genet.* 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences 30 to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) *Cancer Gen. Ther.* 5(6):350-356; Yu, M. et al., (1993) *Proc. Natl. Acad. Sci. USA* 90(13):6340-6344; Buller, R.M. et al. (1985) *Nature* 317(6040):813-815; McGregor, D.P. et al. (1994) *Mol. Immunol.* 31(3):219-226; and Verma, I.M. and N. Somia (1997) *Nature* 389:239-242.) The invention is not limited by the host cell employed.

35 In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding TPPT. For example, routine cloning,

subcloning, and propagation of polynucleotide sequences encoding TPPT can be achieved using a multifunctional *E. coli* vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSSPORT1 plasmid (Life Technologies). Ligation of sequences encoding TPPT into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of 5 transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for *in vitro* transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) *J. Biol. Chem.* 264:5503-5509.) When large quantities of TPPT are needed, e.g. for the production of 10 antibodies, vectors which direct high level expression of TPPT may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of TPPT. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast *Saccharomyces cerevisiae* or *Pichia pastoris*. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable 15 integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, *supra*; Bitter, *supra*; and Scorer, *supra*.)

Plant systems may also be used for expression of TPPT. Transcription of sequences encoding TPPT may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) *EMBO J.* 6:307-311). 20 Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, *supra*; Broglie, *supra*; and Winter, *supra*.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., *The McGraw Hill Yearbook of Science and Technology* (1992) McGraw Hill, New York NY, pp. 191-196.)

25 In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding TPPT may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses TPPT in host cells. (See, e.g., Logan, J. and T. Shenk (1984) *Proc. Natl. Acad. Sci. USA* 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

30 Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are 35 constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) *Nat. Genet.*

15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of TPPT in cell lines is preferred. For example, sequences encoding TPPT can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *par* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β -glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding TPPT is inserted within a marker gene sequence, transformed cells containing sequences encoding TPPT can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding TPPT under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding TPPT and that express TPPT may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or

chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

- Immunological methods for detecting and measuring the expression of TPPT using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and
- 5 fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on TPPT is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and
- 10 Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding TPPT

- 15 include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding TPPT, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety
- 20 of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

- Host cells transformed with nucleotide sequences encoding TPPT may be cultured under
- 25 conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode TPPT may be designed to contain signal sequences which direct secretion of TPPT through a prokaryotic or eukaryotic cell membrane.

- 30 In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "pro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity.
- 35 Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the

American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding TPPT may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric TPPT protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of TPPT activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the TPPT encoding sequence and the heterologous protein sequence, so that TPPT may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled TPPT may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

TPPT of the present invention or fragments thereof may be used to screen for compounds that specifically bind to TPPT. At least one and up to a plurality of test compounds may be screened for specific binding to TPPT. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

30 In one embodiment, the compound thus identified is closely related to the natural ligand of TPPT, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, Coligan, J.E. et al. (1991) *Current Protocols in Immunology* 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which TPPT binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the
35 compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express TPPT, either as a secreted

protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing TPPT or cell membrane fractions which contain TPPT are then contacted with a test compound and binding, stimulation, or inhibition of activity of either TPPT or the compound is analyzed.

- 5 An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with TPPT, either in solution or affixed to a solid support, and detecting the binding of TPPT to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a
- 10 labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

TPPT of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of TPPT. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for TPPT activity, wherein TPPT is combined with at least one test compound, and the activity of TPPT in the presence of a test compound is compared with the activity of TPPT in the absence of the test compound. A change in the activity of TPPT in the presence of the test compound is indicative of a compound that modulates the activity of TPPT. Alternatively, a test compound is combined with an

15 in vitro or cell-free system comprising TPPT under conditions suitable for TPPT activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of TPPT may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.

- In another embodiment, polynucleotides encoding TPPT or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred

to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

- Polynucleotides encoding TPPT may also be manipulated *in vitro* in ES cells derived from 5 human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) *Science* 282:1145-1147).

- Polynucleotides encoding TPPT can also be used to create "knockin" humanized animals 10 (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding TPPT is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. 15 Alternatively, a mammal inbred to overexpress TPPT, e.g., by secreting TPPT in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) *Biotechnol. Annu. Rev.* 4:55-74).

THERAPEUTICS

- Chemical and structural similarity, e.g., in the context of sequences and motifs, exists 20 between regions of TPPT and human transport proteins. In addition, the expression of TPPT is closely associated with neurological, cardiovascular, reproductive, gastrointestinal, and hematopoietic/immune tissues, and inflammation, cell proliferation, and cancer. Therefore, TPPT appears to play a role in transport, metabolic, neurological, cardiovascular, reproductive, and immune disorders, and cell proliferative disorders including cancer. In the treatment of disorders associated with increased TPPT expression or activity, it is desirable to decrease the expression or activity of 25 TPPT. In the treatment of disorders associated with decreased TPPT expression or activity, it is desirable to increase the expression or activity of TPPT.

- Therefore, in one embodiment, TPPT or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TPPT. Examples of such disorders include, but are not limited to, a transport disorder such as akinesia, 30 amyotrophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, 35 prostate cancer; cardiac disorders associated with transport, e.g., angina, bradycardia, tachyarrhythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline

myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis; neurological disorders associated with transport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia; and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease; a metabolic disorder such as Addison's disease, cerebrotendinous xanthomatosis, congenital adrenal hyperplasia, coumarin resistance, cystic fibrosis, diabetes, fatty hepatocirrhosis, fructose-1,6-diphosphatase deficiency, galactosemia, goiter, glucagonoma, glycogen storage diseases, hereditary fructose intolerance, hyperadrenalinism, hypoadrenalinism, hyperparathyroidism, hypoparathyroidism, hypercholesterolemia, hyperthyroidism, hypoglycemia, hypothyroidism, hyperlipidemia, hyperlipemia, lipid myopathies, lipodystrophies, lysosomal storage diseases, mannosidosis, neuraminidase deficiency, obesity, pentosuria phenylketonuria, and pseudovitamin D-deficiency rickets; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a cardiovascular disorder such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins,

thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve,

5 mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary

10 hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis,

15 pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, drug-induced lung disease, radiation-induced lung disease, and complications of lung transplantation; a

20 reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, an ectopic pregnancy, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; a disruption of spermatogenesis, abnormal sperm

25 physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and gynecomastia; an immune disorder such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis,

30 autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia,

35 irritable bowel syndrome, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis,

pancreatitis, polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, 5 fungal, parasitic, protozoal, and helminthic infections, trauma, and hematopoietic cancer including lymphoma, leukemia, and myeloma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, 10 myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus.

In another embodiment, a vector capable of expressing TPPT or a fragment or derivative 15 thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TPPT including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified 20 TPPT in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TPPT including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of TPPT may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TPPT including, but not limited to, those listed above.

In a further embodiment, an antagonist of TPPT may be administered to a subject to treat or 25 prevent a disorder associated with increased expression or activity of TPPT. Examples of such disorders include, but are not limited to, those transport, metabolic, neurological, cardiovascular, reproductive, and immune disorders, and cell proliferative disorders including cancer described above. In one aspect, an antibody which specifically binds TPPT may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to 30 cells or tissues which express TPPT.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding TPPT may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TPPT including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary 35 sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made

by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

- 5 An antagonist of TPPT may be produced using methods which are generally known in the art. In particular, purified TPPT may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind TPPT. Antibodies to TPPT may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and
10 fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with TPPT or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to
15 increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

- It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to TPPT
20 have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of TPPT amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
25 Monoclonal antibodies to TPPT may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and
30 Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda,
35 S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce TPPT-specific single

chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

- Antibodies may also be produced by inducing *in vivo* production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

- Antibody fragments which contain specific binding sites for TPPT may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

- Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between TPPT and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering TPPT epitopes is generally used, but a competitive binding assay may also be employed (Pound, *supra*).

- Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for TPPT. Affinity is expressed as an association constant, K_a, which is defined as the molar concentration of TPPT-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions.
- The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple TPPT epitopes, represents the average affinity, or avidity, of the antibodies for TPPT. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular TPPT epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10⁹ to 10¹² L/mole are preferred for use in immunoassays in which the TPPT-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10⁶ to 10⁷ L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of TPPT, preferably in active form, from the antibody (Catty, D. (1988) *Antibodies, Volume I: A Practical Approach*, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) *A Practical Guide to Monoclonal Antibodies*, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to

determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of TPPT-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al., supra.)

In another embodiment of the invention, the polynucleotides encoding TPPT, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding TPPT. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding TPPT. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totowa NJ.)

In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) *J. Allergy Clin. Immunol.* 102(3):469-475; and Scanlon, K.J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) *Blood* 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) *Pharmacol. Ther.* 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) *Br. Med. Bull.* 51(1):217-225; Boado, R.J. et al. (1998) *J. Pharm. Sci.* 87(11):1308-1315; and Morris, M.C. et al. (1997) *Nucleic Acids Res.* 25(14):2730-2736.)

In another embodiment of the invention, polynucleotides encoding TPPT may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) *Science* 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) *Science* 270:475-480; Bordignon, C. et al. (1995) *Science* 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) *Cell* 75:207-216; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:643-666; Crystal, R.G. et al. (1995) *Hum. Gene Therapy* 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) *Science* 270:404-410; Verma, I.M. and Somia, N. (1997) *Nature* 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated

cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) *Nature* 335:395-396; Poeschla, E. et al. (1996) *Proc. Natl. Acad. Sci. USA.* 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in TPPT expression or regulation causes disease, the expression of TPPT from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

In a further embodiment of the invention, diseases or disorders caused by deficiencies in TPPT are treated by constructing mammalian expression vectors encoding TPPT and introducing these vectors by mechanical means into TPPT-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) *Annu. Rev. Biochem.* 62:191-217; Ivics, Z. (1997) *Cell* 91:501-510; Boulay, J-L. and H. Récipon (1998) *Curr. Opin. Biotechnol.* 9:445-450).

Expression vectors that may be effective for the expression of TPPT include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). TPPT may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) *Proc. Natl. Acad. Sci. USA* 89:5547-5551; Gossen, M. et al. (1995) *Science* 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) *Curr. Opin. Biotechnol.* 9:451-456), commercially available in the T-REX plasmid (Invitrogen); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and H.M. Blau, supra), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding TPPT from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) *Virology* 52:456-467), or by electroporation (Neumann, E. et al. (1982) *EMBO J.* 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to TPPT expression are treated by constructing a retrovirus vector consisting of (i) the p lynucle tide encoding TPPT under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus *cis*-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent Number 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4⁺ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).

In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding TPPT to cells which have one or more genetic abnormalities with respect to the expression of TPPT. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544; and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.

In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding TPPT to target cells which have one or more genetic abnormalities with respect to the expression of TPPT. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing TPPT to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has

been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) *Exp. Eye Res.* 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant 5 HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) *J. Virol.* 73:519-532 and Xu, H. et al. (1994) *Dev. Biol.* 163:152-161, hereby incorporated by reference. The manipulation of cloned 10 herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to 15 deliver polynucleotides encoding TPPT to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) *Curr. Opin. Biotech.* 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full-length genomic RNA, 20 resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for TPPT into the alphavirus genome in place of the capsid-coding region results in the production of a large number of TPPT-coding RNAs and the synthesis of high levels of TPPT in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent 25 infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) *Virology* 228:74-83). The wide host range of alphaviruses will allow the introduction of TPPT into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating 30 infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it 35 causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have

been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

5 Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding TPPT.

10 Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of
15 candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.
20 Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding TPPT. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

25 RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, 30 and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding TPPT. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not 35 limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular

chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased TPPT expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding TPPT may be therapeutically useful, and in the treatment of disorders associated with decreased TPPT expression or activity, a compound which specifically promotes expression of the polynucleotide encoding TPPT may be therapeutically useful.

- 5 At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method
- 10 commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a
- 15 polynucleotide encoding TPPT is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding TPPT are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the
- 20 polynucleotide encoding TPPT. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide
- 25 can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide
- 30 nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved

using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) *Nat. Biotechnol.* 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a pharmaceutical composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest 10 edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such pharmaceutical compositions may consist of TPPT, antibodies to TPPT, and mimetics, agonists, antagonists, or inhibitors of TPPT.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, 15 intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

Pharmaceutical compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol 20 delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration 25 enhancers.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

Specialized forms of pharmaceutical compositions may be prepared for direct intracellular 30 delivery of macromolecules comprising TPPT or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, TPPT or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system 35 (Schwarze, S.R. et al. (1999) *Science* 285:1569-1572).

For any compound, the therapeutically effective dose can be estimated initially either in cell

culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

- 5 A therapeutically effective dose refers to that amount of active ingredient, for example TPPT or fragments thereof, antibodies of TPPT, and agonists, antagonists or inhibitors of TPPT, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose
10 lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with
15 little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

- 16 The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the
20 severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
25 Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells,
30 conditions, locations, etc.

DIAGNOSTICS

- 31 In another embodiment, antibodies which specifically bind TPPT may be used for the diagnosis of disorders characterized by expression of TPPT, or in assays to monitor patients being treated with TPPT or agonists, antagonists, or inhibitors of TPPT. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for TPPT include methods which utilize the antibody and a label to detect TPPT in human body fluids

r in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring TPPT, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of TPPT expression. Normal or standard values for TPPT expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibody to TPPT under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of TPPT expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding TPPT may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of TPPT may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of TPPT, and to monitor regulation of TPPT levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding TPPT or closely related molecules may be used to identify nucleic acid sequences which encode TPPT. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding TPPT, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the TPPT encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:44-86 or from genomic sequences including promoters, enhancers, and introns of the TPPT gene.

Means for producing specific hybridization probes for DNAs encoding TPPT include the cloning of polynucleotide sequences encoding TPPT or TPPT derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding TPPT may be used for the diagnosis of disorders

associated with expression of TPPT. Examples of such disorders include, but are not limited to, a transport disorder such as aknesia, amyotrophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer; cardiac disorders associated with transport, e.g., angina, bradycardia, tachyarrhythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis; neurological disorders associated with transport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia; and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease; a metabolic disorder such as Addison's disease, cerebrotendinous xanthomatosis, congenital adrenal hyperplasia, coumarin resistance, cystic fibrosis, diabetes, fatty hepatocirrhosis, fructose-1,6-diphosphatase deficiency, galactosemia, goiter, glucagonoma, glycogen storage diseases, hereditary fructose intolerance, hyperadrenalism, hypoadrenalism, hyperparathyroidism, hypoparathyroidism, hypercholesterolemia, hyperthyroidism, hypoglycemia, hypothyroidism, hyperlipidemia, hyperlipemia, lipid myopathies, lipodystrophies, lysosomal storage diseases, mannosidosis, neuraminidase deficiency, obesity, pentosuria phenylketonuria, and pseudovitamin D-deficiency rickets; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial

nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia,
5 catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a cardiovascular disorder such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon
10 angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus
15 erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease,
20 emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary
25 hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, drug-induced lung disease, radiation-induced lung disease, and complications of lung transplantation; a reproductive disorder such as a disorder of prolactin production, infertility, including tubal disease, ovulatory defects, and endometriosis, a disruption of the estrous cycle, a
30 disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, an endometrial or ovarian tumor, a uterine fibroid, autoimmune disorders, an ectopic pregnancy, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; a disruption of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the male breast, and
35 gynecomastia; an immune disorder such as inflammation, actinic keratosis, acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome,

allergies, ankylosing spondylitis, amyloidosis, anemia, arteriosclerosis, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, bursitis, cholecystitis, cirrhosis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema,
5 episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, paroxysmal nocturnal hemoglobinuria, hepatitis, hypereosinophilia, irritable bowel syndrome, mixed connective tissue disease (MCTD), multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, myelofibrosis, osteoarthritis, osteoporosis, pancreatitis,
10 polycythemia vera, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, primary thrombocythemia, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, trauma, and hematopoietic cancer including
15 lymphoma, leukemia, and myeloma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone,
20 bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus. The polynucleotide sequences encoding TPPT may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from
25 patients to detect altered TPPT expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding TPPT may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding TPPT may be labeled by standard methods and added to a fluid or tissue sample
30 from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding TPPT in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate
35 the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

- In order to provide a basis for the diagnosis of a disorder associated with expression of TPPT, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cellular extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding TPPT, under conditions suitable for hybridization or amplification.
- 5 Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
- 10 Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
- 15 With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development 20 or further progression of the cancer.
- Additional diagnostic uses for oligonucleotides designed from the sequences encoding TPPT may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced *in vitro*. Oligomers will preferably contain a fragment of a polynucleotide encoding TPPT, or a fragment of a polynucleotide complementary to the polynucleotide encoding 25 TPPT, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
- In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding TPPT may be used to detect single nucleotide polymorphisms (SNPs). SNPs are 30 substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding TPPT are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal 35 tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are

- detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed *in silico* SNP (iSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).
- 10 Methods which may also be used to quantify the expression of TPPT include radiolabeling or biotinyling nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described in Seilhamer, J.J. et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484, incorporated herein by reference. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

30 In another embodiment, antibodies specific for TPPT, or TPPT or fragments thereof may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above. Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-

2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.

- In another embodiment of the invention, nucleic acid sequences encoding TPPT may be used
- 5 to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a
- 10 chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) *Nat. Genet.* 15:345-355; Price, C.M. (1993) *Blood Rev.* 7:127-134; and Trask, B.J. (1991) *Trends Genet.* 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop
- 15 genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, e.g., Lander, E.S. and D. Botstein (1986) *Proc. Natl. Acad. Sci. USA* 83:7353-7357.)

Fluorescent *in situ* hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic

20 map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding TPPT on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

- In situ* hybridization of chromosomal preparations and physical mapping techniques, such as
- 25 linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely
- 30 localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) *Nature* 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
- 35 In another embodiment of the invention, TPPT, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug

screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between TPPT and the agent being tested may be measured.

- Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with TPPT, or fragments thereof, and washed. Bound TPPT is then detected by methods well known in the art. Purified TPPT can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding TPPT specifically compete with a test compound for binding TPPT. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with TPPT.

- In additional embodiments, the nucleotide sequences which encode TPPT may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

- The disclosures of all patents, applications and publications, mentioned above and below, in particular U.S. Ser. No. 60/139,923, U.S. Ser. No. 60/148,177, U.S. Ser. No. 60/149,357, and U.S. Ser. No. 60/162,287, are hereby expressly incorporated by reference.

EXAMPLES

I. Construction of cDNA Libraries

- RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) RNA was isolated

using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

- 5 In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic
10 oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g.,
15 PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), pcDNA2.1 plasmid (Invitrogen, Carlsbad CA), or pINCY plasmid (Incyte Genomics, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

- 20 Plasmids obtained as described in Example I were recovered from host cells by *in vivo* excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96
25 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in
30 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSCAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

- Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows.
35 Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (PE Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ

Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (PE Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VI.

The polynucleotide sequences derived from cDNA sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the tools, programs, and algorithms used and provides applicable descriptions, references, and threshold parameters. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score, the greater the homology between two sequences). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments were generated using the default parameters specified by the clustal algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and PFAM to acquire annotation using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and Hidden Markov Model (HMM)-based protein family databases such

as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) *Curr. Opin. Struct. Biol.* 6:361-365.)

- The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide sequence fragments from SEQ ID
5 NO:44-86. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs
10 from a particular cell type or tissue have been bound. (See, e.g., Sambrook, *supra*, ch. 7; Ausubel,
1995, *supra*, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer
15 search can be modified to determine whether any particular match is categorized as exact or similar.

The basis of the search is the product score, which is defined as:

$$\frac{\text{BLAST Score} \times \text{Percent Identity}}{5 \times \text{minimum}\{\text{length(Seq. 1)}, \text{length(Seq. 2)}\}}$$

- 20 The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair
25 (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced
30 either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding TPPT occurred. Analysis involved the categorization of cDNA libraries by
35 organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous,

reproductive, and urologic. The disease/condition categories included cancer, inflammation, trauma, cell proliferation, neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories.

Percentage values of tissue-specific and disease- or condition-specific expression are reported in

5 Table 3.

V. Chromosomal Mapping of TPPT Encoding Polynucleotides

The cDNA sequences which were used to assemble SEQ ID NO:44-49 and SEQ ID NO:54-86 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these 10 databases that matched SEQ ID NO:44-49 and SEQ ID NO:54-86 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 5). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a 15 mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

The genetic map locations of SEQ ID NO:44, SEQ ID NO:48, SEQ ID NO:60, SEQ ID NO:65, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:76, SEQ ID NO:80, and SEQ ID NO:83 are described in The Invention as ranges, or intervals, of human 20 chromosomes. More than one map location is reported for SEQ ID NO:65, SEQ ID NO:73, SEQ ID NO:80, and SEQ ID NO:83, indicating that previously mapped sequences having similarity, but not complete identity, to SEQ ID NO:65, SEQ ID NO:73, SEQ ID NO:80, and SEQ ID NO:83 were assembled into their respective clusters. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of 25 measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Diseases associated with the public and Incyte sequences located within the 30 indicated intervals are also reported in the Invention section where applicable. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (<http://www.ncbi.nlm.nih.gov/genemap/>), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.

VI. Extension of TPPT Encoding Polynucleotides

35 The full length nucleic acid sequences of SEQ ID NO:44-86 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this

fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

5 Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR 10 was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 15 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN 20 quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by 25 electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For 30 shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on 35 antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (PE Biosystems).

10 In like manner, the polynucleotide sequences of SEQ ID NO:44-86 are used to obtain 5' regulatory sequences using the procedure above, along with oligonucleotides designed for such extension, and an appropriate genomic library.

VII. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:44-86 are employed to screen cDNAs, 15 genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 µCi of [γ -³²P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase 20 (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

25 The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and 30 compared.

VIII. Microarrays

The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra), 35 mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), supra). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers.

Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., 5 Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The 10 array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorption and mass spectrometry may be used for detection of hybridization. The degree of 15 complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

Tissue or Cell Sample Preparation

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and 20 poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ μ l oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/ μ l RNase inhibitor, 500 μ M dATP, 500 μ M dGTP, 500 μ M dTTP, 40 μ M dCTP, 40 μ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)⁺ RNA with 25 GEMBRIGHT kits (Incyte). Specific control poly(A)⁺ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37 °C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85 °C to stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. 30 CLONTECH, Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μ l 5X SSC/0.2% SDS.

Microarray Preparation

35 Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification

uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 µg. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

5 Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.

10 Array elements are applied to the coated glass substrate using a procedure described in US Patent No. 5,807,522, incorporated herein by reference. 1 µl of the array element DNA, at an average concentration of 100 ng/µl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

15 Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60 °C followed by washes in 0.2% SDS and distilled water as before.

20 Hybridization

Hybridization reactions contain 9 µl of sample mixture consisting of 0.2 µg each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65 °C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 µl of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60 °C. The arrays are washed for 10 min at 45 °C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45 °C in a second wash buffer (0.1X SSC), and dried.

Detection

30 Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The 5 emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on 10 the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two 15 fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high 20 signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated 25 to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

IX. Complementary Polynucleotides

Sequences complementary to the TPPT-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring TPPT. Although use of oligonucleotides 30 comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of TPPT. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is 35 designed to prevent ribosomal binding to the TPPT-encoding transcript.

X. Expression of TPPT

Expression and purification of TPPT is achieved using bacterial or virus-based expression systems. For expression of TPPT in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express TPPT upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of TPPT in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant *Autographica californica* nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding TPPT by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect *Spodoptera frugiperda* (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, TPPT is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from *Schistosoma japonicum*, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from TPPT at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, *supra*, ch. 10 and 16). Purified TPPT obtained by these methods can be used directly in the assays shown in Examples XI and XV.

30 XI. Demonstration of TPPT Activity

TPPT transport activity is assayed by measuring uptake of labeled substrates into *Xenopus laevis* oocytes. Oocytes at stages V and VI are injected with TPPT mRNA (10 ng per oocyte) and incubated for 3 days at 18°C in OR2 medium (82.5mM NaCl, 2.5 mM KCl, 1mM CaCl₂, 1mM MgCl₂, 1mM Na₂HPO₄, 5 mM Hepes, 3.8 mM NaOH, 50µg/ml gentamycin, pH 7.8) to allow expression of TPPT. Oocytes are then transferred to standard uptake medium (100mM NaCl, 2 mM KCl, 1mM CaCl₂, 1mM MgCl₂, 10 mM Hepes/Tris pH 7.5). Uptake of various substrates (e.g., amino acids,

sugars, drugs, ions, and neurotransmitters) is initiated by adding labeled substrate (e.g. radiolabeled with ^3H , fluorescently labeled with rhodamine, etc.) to the oocytes. After incubating for 30 minutes, uptake is terminated by washing the oocytes three times in Na^+ -free medium, measuring the incorporated label, and comparing with controls. TPPT activity is proportional to the level of internalized labeled substrate.

XII. Functional Assays

TPPT function is assessed by expressing the sequences encoding TPPT at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT plasmid (Life Technologies) and pCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) *Flow Cytometry*, Oxford, New York NY.

The influence of TPPT on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding TPPT and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding TPPT and other genes of interest can be analyzed by northern analysis or microarray techniques.

XIII. Production of TPPT Specific Antibodies

TPPT substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) *Methods Enzymol.* 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

- 5 Alternatively, the TPPT amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, *supra*, ch. 11.)
- 10 Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (PE Biosystems) using Fmoc chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, *supra*.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-
15 TPPT activity by, for example, binding the peptide or TPPT to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIV. Purification of Naturally Occurring TPPT Using Specific Antibodies

- Naturally occurring or recombinant TPPT is substantially purified by immunoaffinity chromatography using antibodies specific for TPPT. An immunoaffinity column is constructed by
20 covalently coupling anti-TPPT antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing TPPT are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of TPPT (e.g., high ionic strength
25 buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/TPPT binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and TPPT is collected.

XV. Identification of Molecules Which Interact with TPPT

- TPPT, or biologically active fragments thereof, are labeled with ^{125}I Bolton-Hunter reagent.
30 (See, e.g., Bolton A.E. and W.M. Hunter (1973) *Biochem. J.* 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled TPPT, washed, and any wells with labeled TPPT complex are assayed. Data obtained using different concentrations of TPPT are used to calculate values for the number, affinity, and association of TPPT with the candidate molecules.
- 35 Alternatively, molecules interacting with TPPT are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989, *Nature* 340:245-246), or using commercially

available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).

TPPT may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent 5 No. 6,057,101).

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention.

Although the invention has been described in connection with certain embodiments, it should be

10 understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
1 44	264114	HNT2AGT01	028972R6 (SPLNFET01), 028972T6 (SPLNFET01), 264114H1 (HNT2AGT01), 45238T6 (TLYMN0T02), 736580R1 (TONSN0T01), 747955R6 (BRAITUT01), 936731R1 (CERVN0T01), 3206282H1 (PENCNOT03), 3344943H1 (SPLNN0T09), 3742964H1 (THYMN0T08), 4028320H1 (BRAINOT23), 4726757H1 (GBLADIT01), 5473562H1 (MCLRUNT01)	
2 45	1455669	COLNFET02	1455669H1 (COLNFET02), 2877376F6 (THYRN0T10), 3536452F6 (KIDNN0T25)	
3 46	2084989	PANCNOT04	1281527H1 (COLNN0T16), 1412985H1 (BRAINOT12), 2084989H1 (PANCNOT04), 2084989R6 (PANCNOT04), 2084989T6 (PANCNOT04), 2470481F6 (THPAIN0T03), 2539015F7 (BONRTUT01), 3109754F6 (BRSTTUT15), 3694831H1 (PANCNOT19), 3700647H1 (SININOT05)	
4 47	2501034	ADRETUT05	111466F1 (PITUN0T01), 111466R1 (PITTUN0T01), 414042R6 (BRSTNOT01), 687891H1 (UTRSN0T02), 2501034H1 (ADRETUT05)	
5 48	2745212	LUNGUT11	000802H1 (U937N0T01), 008963H1 (HMC1N0T01), 009314H1 (HMC1N0T01), 135428F1 (BMARN0T02), 723168X19 (SYNOOAT01), 1000842R1 (BRSTNOT03), 1370189H1 (BSTMNON02), 1374329H1 (BSTMNON02), 2745212H1 (LUNGUT11), 4920466H1 (TESTNOT11), SAI02182F1	
6 49	4833111	BRAVTXXT03	864776T1 (BRAITUT03), 1911267F6 (CONNUT01), 4833111H1 (BRAVTTX03), SARA02608F1, SARA02002F1	
7 50	876677	LUNGAST01	876677H1 (LUNGAST01), 876677R6 (LUNGAST01), SCDA08642V1	
8 51	2326143	OVARNOT02	867305R1 (BRAITUT03), 963058R2 (BRSTTUT03), 1715155F6 (UCMCNOT02), 1727927T6 (PROSN0T14), 2326143H1 (OVARNOT02), 2326143R6 (OVARNOT02), 3360563H1 (PROSTUT16)	
9 52	2786302	BRSTNOT13	2786302H1 (BRSTNOT13), 2958321X303D1 (ADREN0T09), ADREN0T09, 2958321X308D1 (ADREN0T09), 2958321X305D1	
10 53	3735780	SMCCNOS01	551126H1 (BEPINOT01), 2808373H1 (BLADTUT08), 3735780F6 (SMCCNOS01), 4760604T6 (BRAINOT01)	
11 54	039026	HUVENOB01	039026H1 (HUVENOB01), 159164F1 (ADENINB01), 159164R1 (ADENINB01)	
12 55	260607	HNT2RAT01	063159R6 (PLACN0B01), 260607R6 (HNT2RAT01), 1273069H1 (TESTTUT02), 1273069H1 (TESTTUT02), 2867453F6 (KIDDN0T20), 3082466H1 (BRAITUT01), 4796739H1 (LIVRTUT09), 4799318F6 (MYERPUT01), Q1424405	

Table 1 (cont.)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
13	56	1429651	SINTBST01	1429651H1 (SINTBST01), 1429651H1 (SINTBST01), 1501096F6 (SINTBST01), 1989621T6 (CORPNOT02), SXLA01343V1, SXLA01183V1,
14	57	2069971	ISLTNOT01	2069606F6 (ISLTNOT01), 2069971H1 (ISLTNOT01), 2374634F6 (ISLTNOT01), 2383754F6 (ISLTNOT01), 4171186T6 (SINTNOT21), SXLA01128V1, SXLA01348V1, SXLA01219V1, SXLA00260V1, SXLA00074V1
15	58	2329339	COLNNOT11	658662H1 (BRAINNOT03), 1544110R1 (PROSTUT04), 1657742F6 (URETTUT01), 1750523F6 (STOMTUT02), 2329339H1 (COLANNOT11), 2329339R6 (COLANNOT11), 3858671H1 (LNODNOT03), g1494061, g1891451
16	59	2540219	BONRTUT01	2540219H1 (BONRTUT01), 2540219T6 (BONRTUT01), 2554869F6 (THYMNOT03), g869197
17	60	2722462	LUNGUT10	883601R1 (PANCNOT05), 1525902F6 (UCMCIL5T01), 1525902X18C1 (UCMCIL5T01), 1525902X31L1D1 (UCMCIL5T01), 1527325T6 (UCMCIL5T01), 1544770X311D1 (BLADTUT04), 2417265H1 (HNT3AZT01), 2444786F6 (THP1NOT03), 2722462H1 (LUNGUT10), 4293114H1 (BRABDIRO1), 5070268T6 (PANCNOT23), SANA01850F1, SAJA01078R1, SANA02081F1, SAJA01813F1
18	61	2739264	OVARNOT09	000573H1 (U937NOT01), 494409F1 (HNT2NOT01), 494409R1 (HNT2NOT01), 2506506F6 (CONUTUT01), 2681059H1 (SINIUT01), 2744648F6 (BRSTTUT14), 2805590F6 (BLADTUT08), 3770643H1 (BRSTNOT25), 4204278H1 (BRAITUT29), SAEA02093F1
19	62	2758310	THPLAZS08	487309R7 (HNT2AGT01), 1361439F1 (LONDNOT12), 2758310H1 (THPLAZS08), SCFA05584V1, SCFA05594V1, SCFA05166V1, SCFA05135V1
20	63	2762348	BRSTNOT12	632097R6 (KIDNNNOT05), 632097T6 (KIDNNNOT05), 2762348H1 (BRSTNOT12), SCCA02837V1, SCCA05356V1, SCCA01377V1, SCCA05963V1, SCCA05364V1, SCCA02307V1, SCCA04327V1, SCCA02009V1
21	64	3715961	PENCNOT09	961523H1 (BRSTTUT03), 1863723F6 (PROSNOT19), 2265329H1 (UTRSNOT02), 2360619R6 (LUNGFET05), 2360619T6 (LUNGFET05), 2821718H1 (ADRETUT06), 3715961H1 (PENCNOT09), 5016160H1 (BRAXNOT03), 5499583H1 (BRABDIRO1)
22	65	5108194	PROSTUS19	1322651X35 (BLADNOT04), 1322651X36 (BLADNOT04), 3494841H1 (ADRETUT07), 4958978F6 (TLYMPNOT05), 5108194H1 (PROSTUS19), 91379009, g1527417
23	66	5503122	BRABDIR01	5503122F6 (BRABDIRO1), 5503122H1 (BRABDIRO1), 5503122R6 (BRABDIRO1)

Table 1 (cont.)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
24	67	5517972	LIVRDIR01	805957R1 (BSTMNOT01), 953622R1 (SCORNON01), 1501080F1 (SINTBST01), 1547381R6 (PROSTUT04), 2081843T6 (UTRSNOT08), 2811524F6 (OVARNOT10), 3212921H1 (BLADNOT08), 3250443H1 (SEMVNOT03), 3269479H1 (BRAINOT20), 3699955F6 (SININOT05), 3700568H1 (SININOT05), 4944050H1 (BRAIFEN05), 5517972H1 (LIVRDIR01)
25	68	5593114	COLCDIT03	2859465F6 (SININOT03), 2859465T6 (SININOT03), 3555656F6 (LUNGNOT31), 3555656T6 (LUNGNOT31), 4345952H1 (TLYMTXT01), 5593114H1 (COLCDIT03), 5874544H1 (COLTDIT04)
26	69	044775	TBLYNOT01	044775H1 (TBLYNOT01), 044775X3 (TBLYNOT01), 455640R1 (KERANOT01), 950702R1 (PANCNOT05), 2418550H1 (HNT3AZT01), 2798917H1 (NPOLNOT01), 2844696H1 (DRGLNOT01), 91718929
27	70	116588	KIDNNOT01	699714R6 (SYNORAT03), 831423R1 (PROSTUT04), 978875R1 (BRSTNOT02), 1350569F1 (LATRUTU02), 1447681R1 (PLACNOT02), 3177382F6 (UTRSTUT04), 3688796H1 (HEAANOT01), 3929008H1 (KIDNNOT19), 92106455, 92163092
28	71	875369	LUNGAST01	571573F1 (OVARNOT01), 571573R1 (OVARNOT01), 875369H1 (LUNGAST01), 875369R1 (LUNGAST01), 3569021H1 (HEAPNOT01)
29	72	1325518	LPARNOT02	1325518H1 (LPARNOT02), 1325518T6 (LPARNOT02), 1825553F6 (LSUBNOT03), SBA02035F1
30	73	2060987	OVARNOT03	1378947T1 (LUNGNOT10), 1453290F1 (PENITUT01), 1459818R1 (COLNFET02), 1967477H1 (BRSTNOT04), 2060987H1 (OVARNOT03), 2455371F6 (ENDANOT01), 2499967F7 (ADRETTUT05), 3093056T6 (BRSTNOT19), 32133366H1 (BLADNOT08), 4934158H1 (BRSTTUT20), SBYA01942U1
31	74	2172064	ENDCNOT03	2172064CT1 (ENDCNOT03), 2172064H1 (ENDCNOT03), SBIA01265F1
32	75	2219267	LUNGNOT18	2219267F6 (LUNGNOT18), 2219267H1 (LUNGNOT18), 3117478T6 (LUNGNOT13), 3126288T6 (LUNGNOT12), 3558495H1 (LUNGNOT31)
33	76	2308629	NGANNNOT01	469862F1 (MMLR1DT01), 469862R1 (MMLR1DT01), 1594203X11C1 (BRAINOT14), 2191933H1 (THYKTUT03)
34	77	2660038	LUNGUT09	1326594F1 (LPARNOT02), 2256143H1 (OVARTUT01), 2278689R6 (PROSNON01), 2528425H1 (GBLANOT02), 2660038H1 (LUNGUT09), 2660038T6 (LUNGUT09), 3449964H1 (UTRSNON03), 5099879H1 (PROSTUT20), G1886680, Q783969

Table 1 (cont.)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
35	78	2670745	ESOGTUT02	259200X12 (HNT2RAT01), 1266477F1 (BRAINNOT09), 23833364F6 (ISLTINOT01), 2670745H1 (ESOGTUT02), 3181526H1 (TLYJNNOT01)
36	79	2676443	KIDNNNOT19	607375R6 (BRSTTUT01), 17288626X15C1 (PROSNOT14), 1751773F6 (LIVRTUT01), 1751994T6 (LIVRTUT01), 1796032K14C1 (PROSTUT05), 2010172H1 (TESTNOT03), 2676443H1 (KIDNNNOT19)
37	80	3295764	TLYJINT01	063264H1 (PLACNOB01), 434468T6 (THYNNOT01), 487721H1 (HNT2AGT01), 907796R2 (COLNNNOT09), 1212556R7 (BRSTTUT01), 1251889H1 (LUNGFFET03), 16533370F6 (PROSTTUT08), 16533370X309D1 (PROSTUT08), 21927762F6 (THYRUTUT02), 2226786F6 (SEMVNOT01), 3295764H1 (TLYJINT01), 3384471H1 (ESOGNOT04), SASA01137F1
38	81	3438320	PENCNOT06	3438320H1 (PENCNOT06), 3501438H1 (PROSTUT13), 3745542H1 (THYMNOT08), 3751060H1 (UTRSNOT18), 4979750F6 (HELATXT04), SADA00043F1, SADA00087F1
39	82	3986488	UTRSTTUT05	1634141F6 (COLNNNOT19), 1692115X12C1 (PROSTUT10), 1731310F6 (BRSTTUT08), 2046232H1 (THP1T7T01), 3557951H1 (LUNGNOT31),
40	83	4378816	LUNGNOT37	4726788H1 (GBLADIT01)
41	84	4797137	LIVRTUT09	1318962H1 (BLADNOT04), 1520864F1 (BLADTUT04), 1684381F6 (PROSNOT15), 2055747R6 (BEPINOT01), 4378816H1 (LUNGNOT37)
42	85	5470806	MCLRUNT01	5470806H1 (MCLRUNT01), 5470806T6 (MCLRUNT01)
43	86	5473242	MCLRUNT01	5473242T6 (MCLRUNT01)

Table 2

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods & Databases
1 623	S521 S2 T3 S16 S99 S138 S144 T193 T264 T404 S448 S589 S151 T229 T337 T457 S562 S568	T3 S16 S99 S138 S144 T193 T264 T404 S448 S589 S151 T229 T337 T457 S562 S568	N97 N333	BTB domain: C44-F56 POZ domain: N10-Q211 Kelch repeat signature: E379-G392, T398-V412, L438-M452, T498-A512 Ring canal protein repeat: E122-P254	Ring canal protein [Drosophila melanogaster] g577276	MOTIFS BLIMPS-PRODOM BLAST-GenBank BLAST-PRODOM BLAST-DOMO
2 99	T17		N15	Signal peptide: M1-G36 Transmembrane region: S25-W45 MRP(2) MRP(1) repeat: C30-V74	Multi-drug resistance- associated protein (MRP)-like protein- 1 (MLP-1) [Rattus norvegicus] q3242458	MOTIFS BLAST-GenBank BLAST-PRODOM SPScan HMMER
3 374	T334 T33 S137 T146 S291 S311 T346	T33 S137 S291 S311 T146	N103 N127 N135 N138	Signal peptide: M1-N52	Tricarboxylate carrier [Rattus sp.] g545998	MOTIFS BLAST-GenBank SPScan
4 271	S234 T126 T169 Y141			Signal peptide: M1-C30 Transmembrane region: L233-F252	Weak similarity with honeybee ATP synthase A chain [Caenorhabditis elegans] q3878801	MOTIFS BLAST-GenBank SPScan HMMER
5 323	S99 S125 S192 T277 S307 S309 T110 Y212			Leucine zipper: L284-L305	Cu ²⁺ -transporting ATPase homolog [Arabidopsis thaliana] q2464854	BLAST-GenBank MOTIFS
6 274	S96 T198 S215 T29 S121 S164 S170			Mitochondrial energy transfer proteins: Signal peptide: M1-G17	Pet8p [Saccharomyces cerevisiae] g495307	BLAST-GenBank HMMER-PRODOM MOTIFS ProfileScan BLIMPS-BLOCKS BLIMPS-PRINTS BLAST-PRODOM BLAST-DOMO SPScan

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods & Databases
7 291	S6 T113 T173 T147 S230 T258	N226 N261		Signal peptide: M1-T42 Transmembrane domain: W29-I54 Band 7 protein family: C50-V62, K90-E224 Membrane stomatin: E14-N283	Stomatin [Homo sapiens] g1161562	MOTIFS BLAST-GenBank SPScan HHMMER BLIMPS-BLOCKS BLAST-DOMO BLAST-PRODOM
8 381	S2 S35 T57 S92 T104 S191 S302 S334 S335 S336 T43 T250 T255 T304 S311 S370 Y65	N218 N253 N259			K' channel modulatory factor DEBT-91 [Mus musculus] g4838557	MOTIFS BLAST-GenBank
9 190	T160 S17 T71 S77 T78 S111 S134 S142	N87		ABC transporter family: R79-K177 ATP/GTP-binding site motif A (P-loop): G102-S109	ABC2 transporter [Mus musculus] g495259	MOTIFS BLAST-GenBank BLAST-DOMO
10 297	S17 S114 T136 S16	N287		Mitochondrial carrier protein signature: E117-I297 Graves Disease carrier protein: P137-T157, L259-S279	Similar to human ADP/ATP carrier protein [C. elegans] g3879938	MOTIFS BLAST-GenBank HHMMER-PFAM BLIMPS-PRINTS
11 89	T37 T47 T60 S64				Mitochondrial import protein Tim9p [Saccharomyces cerevisiae] g3747026	BLAST-GenBank MOTIFS
12 115	T108 T84			Signal peptide: M1-G24 Transmembrane domain: G35-F57 Sodium neurotransmitter symporter signature: R7-S61		MOTIFS SPScan HHMMER ProfileScan

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods & Databases
13	675	T54 T50 S99 T127 S413 T558 S645 T654 T47 S242 T602 T611 Y501	N243 N247 N301 N601	Transmembrane domains: I29-V48, L103-I121, L177-G196, I210-M229, L417-W435, F481-Y501, Y521-W541 Sodium symporter family domain: Y58-G487 Sodium:solute symporter signature: Y35-G89, M111-R140, L173-G227, P460-G469	Sodium-glucose cotransporter [Oryctolagus cuniculus] g4733969	BLAST-GenBank MOTIFS HMMER BLIMPS-BLOCKS ProfileScan BLAST-PRODOM BLAST-DOMO
14	320	T84 S304 T11 S75 S80 S164 Y20	N162 N234	Transmembrane domains: I92-L112, I201-K219 Zinc transporter signature: A28-V142, D199-E303 Cation transporter domain: S48-L74	Zinc transporter ZnT-2 [Rattus norvegicus] 91256378	BLAST-GenBank MOTIFS HMMER BLIMPS-PRODOM BLAST-PRODOM BLAST-DOMO
15	462	S111 S145 S183 S233 T26 T185 S202 T243	N24 N279	Kelch repeat motifs: C299-N349; F350-R399 Y400-G446 BrB domain: F50-L117 POZ domain: Y27-E215	Ring canal protein [Drosophila melanogaster] g577276	BLAST-GenBank MOTIFS HMMER-PFAM BLIMPS-PRINTS BLAST-DOMO
16	98	T22 Y37		Signal peptide: M1-S17 Mitochondrial carrier proteins domain: C4-I89 Mitochondrial carrier proteins signature sequence: V6-G19, G19-A33, G63-E83	Carrier protein (c1) [Caenorhabditis elegans] g472902	BLAST-GenBank MOTIFS SPScan HMMER-PFAM ProfileScan BLIMPS-BLOCKS BLIMPS-PRINTS BLAST-DOMO

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods & Databases
17	748	S55 S196 T254 S307 S327 T491 T534 T550 T571 S635 S648 S677 T696 S283 S291 T314 S629 S701 Y556	N531 N543 N548 N627	Signal peptide: M1-A61 Transmembrane domains: L39-L56, I167-F186, C229-F252, G438-L455, M492-F509, L598-I618 Ion transport proteins signature: F85-V251, L369-I618	Voltage-gated calcium channel [Rattus norvegicus] g4586963	BLAST-GenBank MOTIFS SPScan HHMMER HHMMER-PFAM BLIMPS-PRINTS
18	507	T200 S183 T232 T284 T349 T150 T252 S253 S319 S383 Y454	N220 N250 N364 N496	Signal peptide: M1-G26	Nucleoporin p54 [Rattus norvegicus] g1537070	BLAST-GenBank MOTIFS SPScan
19	592	S460 S104 T178 S320 S321 T498 T531 Y365		ABC1 precursor signature: N153-Q162, F210-A229, G234-I254, V312-G332, T366-V378	ABC transporter [Methanobacterium thermo. I g2622773	BLAST-GenBank MOTIFS BLIMPS-PRODOM BLAST-PRODOM
20	841	T98 S120 S203 T214 T276 S388 T438 T700 T838 T167 T179 S280 T370 S435 S531 S539 S666 S693 S830	N368 N490 N624	Transmembrane domains: Y451-D469, M544-F562, F577-F597, G775-M797 Vacuolar ion transport subunit signature: M10-F831	Vacuolar H ⁺ /ATPase subunit [Rattus norvegicus] g206430 BLIMPS-PRODOM BLAST-PRODOM BLAST-DOMO	BLAST-GenBank MOTIFS HHMMER BLIMPS-PRODOM BLAST-PRODOM
21	253	S50 T139 T152 T177 S202 T143 Y55		Mitochondrial carrier proteins domain: Y31-S248 Mitochondrial energy transfer proteins signature sequence: I62-Q86, I110-G122	Mitochondrial uncoupling protein UCP-4 [Homo sapiens] g4324701	BLAST-GenBank MOTIFS HHMMER-PFAM BLIMPS-BLOCKS ProfileScan BLAST-PRODOM BLAST-DOMO

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Potential Motifs, and Domains	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods & Databases	
22	229	S69 S26 S109 T162 S178 S25 S64 S65 T210 S219		Signal peptide: M1-A47 Mitochondrial carrier proteins domain: Q32-G220	Grave's disease carrier protein [Bos taurus] g387	BLAST-GenBank MOTIFS SPScan HMMER-PFAM BLIMPS-BLOCKS ProfileScan BLIMPS-PRINTS BLAST-PRODOM BLAST-DOMO		
23	170	S26 S31 S149 S164 T22 T157	N66 N145	Mitochondrial carrier proteins signature: S36-T49, T49-V63, G92-E112, T144-T162, Y187-F205		BLAST-GenBank MOTIFS HMMER-PFAM BLIMPS-BLOCKS BLIMPS-PRINTS BLIMPS-PFAM BLAST-PRODOM BLAST-DOMO		
24	655	T194 S195 S232 T362 S655 S4 S88 T135 T153 S187 T214 S322 T345 S353 S443 T609 S261 S381 S384	N338 N418 N557 N596	Dihydroxypyridine-sensitive L-type calcium channel signature: Y2-A47, I49-V77, A83-N100, R106-E131 SH3 domain: V59-R122	Voltage-dependent calcium channel beta-4 subunit [Homo sapiens] g2058727	BLAST-GenBank MOTIFS HMMER-PFAM BLIMPS-BLOCKS BLIMPS-PRINTS BLIMPS-PFAM BLAST-PRODOM BLAST-DOMO		
25	184	T51 S29 T100 S138 S151 Y78	N27	Transmembrane domains: I396-K417, Y494-S522, T538-V556 ABC transporters domain: P73-G262 ABC transporter family signature sequence: I78-L89, V186-D217	Breast cancer resistance protein (multidrug transporter) [Homo sapiens] g4038352	BLAST-GenBank MOTIFS HMMER HMMER-PFAM BLIMPS-BLOCKS ProfileScan BLAST-PRODOM BLAST-DOMO		
26	154	S54 S42 S62 T78 Y104			Cation transport protein [E. coli] g495778	BLAST-GenBank MOTIFS		
				Mitochondrial energy transfer proteins signatures: P89-L97, M1-E41, M73-L152	Similar to carrier protein C2 [C. elegans] g3879669	MOTIFS HMMER-PFAM BLAST-PRODOM BLAST-DOMO BLAST-GenBank		
				Mitochondrial carrier protein domain: G2-L152				

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods & Databases
27	438	S170 T5 T51 T265 T300 S425	N50 N423	Transmembrane domains: C91-L111, L237-I257, I305-M332, M332-L354, L391-V408, I186-A204, g2635104	Multidrug efflux transporter [Bacillus subtilis]	MOTIFS HMMER BLAST-GenBank
28	237	S10 S47 T72 S28 T222 S6 S21 T32 T61 T192	N35	Nucleic acid-binding protein E5.1 domain: S6-K128	ARL-6 interacting protein-4 [Mus musculus] g4927204	MOTIFS BLAST-DOMO BLAST-GenBank
29	219	T66 S194 T200		Signal peptide: M1-R19 or M1-K15 Caseins alpha/beta signature: M1-N39	Surface antigen [Trypanosoma cruzi] g161956	MOTIFS HMMER SPScan ProfileScan BLAST-GenBank
30	707	S31 T6 T55 T263 T328 T546 T580 T594 S662 S673 T32 S50 S231 T244 T306 T385 S439 S476 S533 S553 S624	N343 N570 N638 N703	Potassium channel signature: A62-T81 Potassium channel integral membrane protein domain: S13-D117	NY-REN-45 antigen (similar to potassium channel protein) [Homo sapiens] g9360115	MOTIFS BLIMPS-PRINTS BLAST-DOMO BLAST-GenBank
31	279	T18 T245 T206	N181	Signal cleavage: M1-G45 Connexin domains: M1-V99 . V20-Y44 Connexin signatures: L33-V86, L152-F205, F51-P73, S76-L96, L133-Y159, C169-T189, I190-L218 Gap junction protein connexin transmembrane regions: F5-Y97, L133- M1-S130	Gap junction protein (similar to connexin) [Homo sapiens] 93006230	MOTIFS SPScan HMMER BLIMPS-BLOCKS BLIMPS-PRINTS BLAST-PFAM ProfileScan BLAST-PRODOM BLAST-DOMO BLAST-GenBank

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods & Databases
32	154	S114		Signal peptide: M1-A35 or M1-A14 Transmembrane domain: F83-L102	mBOCT (potent organic cation transporter) [Mus musculus] q4589468	MOTIFS HMMER SPSScan BLAST-GenBank
33	289	T83 T205 S269 T279	N60	Mitochondrial energy transfer proteins signatures: M1-G147, P17, P115, N185-K280, A101-Q181, Y184-I278 Mitochondrial carrier protein domains: M1-E176, N185-K280	Mitochondrial solute carrier [Onchocerca volvulus] g1518458	MOTIFS HMMER-PFAM BLAST-DOMO BLAST-PRODOM ProfileScan BLAST-GenBank
34	300	S189 S195 S204 T257		Mitochondrial transmembrane transport protein regions: P17-R182, P180-T278	YKL522=mitochondria 1 ADP/ATP carrier protein homolog [Saccharomyces cerevisiae] q254449	MOTIFS HMMER-PFAM ProfileScan BLAST-DOMO BLAST-GenBank
35	382	S34 S207 T221 S312 T40 S53 T112 T117 T277 S337	N96 N372	Kelch motifs: H191-G249, E250-D301	Similarity to Human host cell factor C1 [Homo sapiens] q3875291	MOTIFS HMMER BLAST-PFAM BLAST-GenBank

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods & Databases
36	287	T36 T118 S180 S230 T84 S168 T244		Mitochondrial energy transfer proteins signatures: P26-L34, P219-L227, L97-G193, W10-V89, D197-F281, P96-Y194 Mitochondrial carrier protein domain: A5-F281	Mitochondrial dicarboxylate carrier [Rattus norvegicus] 93646426	MOTIFS HMMER-PFAM BLIMPS-PRINTS BLAST-DOMO BLAST-GenBank
37	497	T65 T135 S147 T360 S8 T22 S45 S291	N63 N314 N414	Transmembrane domains: M114-T137, M364-M380, Y390-A413, A421-D444, P456-V478 Folate transporter domains: W30-H218, I253-K484	Reduced folate carrier [Homo sapiens] g1041934	MOTIFS HMMER BLAST-PRODOM SPScan BLAST-GenBank
38	228	T21 S124 T145 S158 T190 T95 S132 S137 T177		Heme-binding domain in cytochrome b5: Y19-G98 Cytochrome b5 family domain: H28-P75	cytochrome b5 containing fusion protein [Helianthus annuus] g1040729 P=1.2e-07	MOTIFS HMMER-PFAM BLAST-GenBank ProfileScan
39	273	T63 S158 T48	N214	Transmembrane domains: L85-N105, F180-Y200 Intermembrane space domain: L30-L251	Sqv-7-like protein (similar to nucleotide-sugar transporters) [Homo sapiens] g4008517	MOTIFS HMMER BLAST-DOMO BLAST-GenBank

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequences, Motifs, and Domains	Homologous Sequences	Analytical Methods & Databases
40	206	S187 S201	N158	Signal peptide: M1-G29 or M1-A27 Emopamil binding protein: G37-S187, L15-K203 Transmembrane domain: Y164-L183	C-8,7 sterol isomerase, aS11 [Arabidopsis thaliana] g2772934	MOTIFS HMMER ProfileScan BLAST-DOMO BLAST-GenBank
41	235	S192 S200 S56 T95 T146 S199 T207 S229 T53 T61 T69 T119 T148 Y70	N123	Transmembrane domain: F15-I34, M155-V174 Channel myelin protein: L18-M181 Sodium channel beta-2 subunit precursor: F15-E210 Immunoglobulin domain: I34-V136	Myelin protein zero (MPZ) [Homo sapiens] g2160399	MOTIFS HMMER BLIMPS-PRINTS BLAST-PRODOM BLAST-DOMO BLAST-GenBank
42	147	T79 T116 S3 S66 Y89 Y98	N118	Signal peptide: M1-G23 or M1-A20 Transthyretin signature: S28-S132 Transthyretin domain: G21-Q146	Transthyretin precursor [Sus scrofa] g1009702	MOTIFS HMMER ProfileScan BLAST-PRODOM BLAST-DOMO BLAST-GenBank BLIMPS-BLOCKS BLIMPS-PRINTS
43	147	T5 S88 T39		Globin domain: V2-H147 Heme oxygen transport protein domain: L32-H147	III beta-3 globin [Rattus norvegicus] g395943	MOTIFS HMMER-PFAM BLAST-PRODOM BLAST-DOMO BLIMPS-BLOCKS BLIMPS-PRINTS

Table 3

Nucleotide SEQ ID NO:	Selected Fragments	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
44	1567-1611 2107-2151	Gastrointestinal (0.203) Hematopoietic/Immune (0.188) Nervous (0.156)	Cell Proliferation (0.422) Inflammation (0.422)	PBLUESCRIPT
45	1-92 351-434	Endocrine (0.333) Gastrointestinal (0.167) Musculoskeletal (0.167) Reproductive (0.167)	Cell Proliferation and Cancer (0.833) Inflammation (0.167)	PINCY
46	920-964 1352-1396	Reproductive (0.304) Gastrointestinal (0.174) Cardiovascular (0.130) Hematopoietic/Immune (0.130) Nervous (0.130)	Cell Proliferation and Cancer (0.391) Inflammation (0.391)	PSPORT1
47	1-80 768-848	Nervous (0.273) Reproductive (0.273) Gastrointestinal (0.127) Hematopoietic/Immune (0.127)	Cell Proliferation and Cancer (0.564) Inflammation (0.400)	PINCY
48	111-194 687-758	Reproductive (0.221) Nervous (0.185) Gastrointestinal (0.124)	Cell Proliferation (0.343) Inflammation (0.343)	PINCY
49	1-97	Nervous (0.234) Hematopoietic/Immune (0.191) Gastrointestinal (0.149)	Cell Proliferation and Cancer (0.617) Inflammation (0.340)	PINCY
50	218-262	Cardiovascular (1.000)	Cancer (0.333) Inflammation/Trauma (0.333)	PSPORT1
51	811-855	Hematopoietic/Immune (0.180) Gastrointestinal (0.146) Reproductive (0.281)	Cancer (0.393) Inflammation/Trauma (0.333)	PSPORT1
52	595-639	Gastrointestinal (0.286) Reproductive (0.714)	Cell Proliferation (0.146) Cancer (0.429) Inflammation/Trauma (0.429)	PINCY
53	96-140	Cardiovascular (0.167) Hematopoietic/Immune (0.167) Nervous (0.250) Reproductive (0.167)	Cancer (0.250) Inflammation/Trauma (0.167) Cell Proliferation (0.167)	PINCY

Table 3 (cont.)

Nucleotide SEQ ID NO:	Selected Fragments	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
54	507-551	Reproductive (0.323) Gastrointestinal (0.154) Nervous (0.123)	Cancer (0.446) Inflammation/Trauma (0.308) Cell Proliferation (0.185)	PBLUESCRIPT
55	455-499	Urologic (0.333) Nervous (0.222)	Cancer (0.667) Cell Proliferation (0.333)	PBLUESCRIPT
56	1835-1879	Reproductive (0.222) Nervous (0.625) Gastrointestinal (0.375)	Inflammation/Trauma (0.375) Cancer (0.250) Neurological (0.250)	PINCY
57	811-855	Gastrointestinal (1.000)	Inflammation/Trauma (0.667)	PINCY
58	390-434	Reproductive (0.320) Nervous (0.240) Urologic (0.120)	Cancer (0.520) Inflammation/Trauma (0.240) Cell Proliferation (0.160)	PSPORT1
59	413-457	Gastrointestinal (0.333) Musculoskeletal (0.333) Nervous (0.333)	Cancer (0.333) Neurological (0.333)	PINCY
60	2021-2084	Nervous (0.197) Gastrointestinal (0.184) Reproductive (0.184)	Cancer (0.461) Inflammation/Trauma (0.316) Cell Proliferation (0.118)	PINCY
61	65-109	Nervous (0.226) Reproductive (0.208) Cardiovascular (0.113)	Cancer (0.528) Inflammation/Trauma (0.301) Cell Proliferation (0.208)	PINCY
62	379-423 1867-1911	Gastrointestinal (0.113) Reproductive (0.282) Nervous (0.154)	Cancer (0.538) Inflammation/Trauma (0.282) Cell Proliferation (0.103)	PSPORT1
63	362-406 1193-1237	Urologic (0.500) Reproductive (0.333) Cardiovascular (0.167)	Cancer (0.667) Inflammation/Trauma (0.333)	PINCY
64	394-438	Nervous (0.294) Reproductive (0.265) Cardiovascular (0.118)	Cancer (0.382) Inflammation/Trauma (0.235) Cell Proliferation (0.118)	PINCY

Table 3 (cont.)

Nucleotide SEQ ID NO:	Selected Fragments	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
65	768-812	Reproductive (0.300) Endocrine (0.200) Gastrointestinal (0.200) Hematopoietic/Immune (0.200)	Inflammation/Trauma (0.500) Cancer (0.400)	PINCY
66	77-121	Nervous (1.000)	Neurological (1.000)	
67	1999-2043	Reproductive (0.324) Nervous (0.265) Gastrointestinal (0.235)	Cancer (0.500) Inflammation/Trauma (0.294) Cell Proliferation (0.118)	PINCY
68	561-605	Hematopoietic/Immune (0.455) Gastrointestinal (0.182) Nervous (0.182)	Inflammation/Trauma (0.546) Cell Proliferation (0.182)	PINCY
69	679-729	Nervous (0.292) Gastrointestinal (0.208) Hematopoietic/Immune (0.125)	Cancer (0.250) Cell Proliferation (0.375) Inflammation/Trauma (0.416)	PBLUESCRIPT
70	95-366 1078-1185	Reproductive (0.206) Hematopoietic/Immune (0.186) Cardiovascular (0.127)	Cancer (0.373) Inflammation/Trauma (0.382) Cell Proliferation (0.176)	PBLUESCRIPT
71	33-152	Reproductive (0.275) Nervous (0.163) Gastrointestinal (0.137)	Cancer (0.438) Inflammation/Trauma (0.314) Cell Proliferation (0.176)	PSPORT1
72	81-779	Gastrointestinal (1.000)	Cancer (1.000)	PSPORT1
73	719-817 1202-1414	Reproductive (0.311) Hematopoietic/Immune (0.203) Gastrointestinal (0.122)	Cancer (0.459) Inflammation/Trauma (0.379) Cell Proliferation (0.203)	PINCY
74	1-848	Nervous (0.750) Dermatologic (0.250)	Cancer (0.250) Cell Proliferation (0.250) Inflammation/Trauma (0.500)	PINCY
75	1-478	Cardiovascular (0.714) Developmental (0.143) Hematopoietic/Immune (0.143)	Cancer (0.571) Cell Proliferation (0.143)	PINCY
76	1-134	Reproductive (0.253) Nervous (0.241) Gastrointestinal (0.127) Hematopoietic (0.127)	Cancer (0.494) Inflammation (0.215) Cell Proliferation (0.127)	PSPORT1

Table 3 (cont.)

Nucleotide SEQ ID NO:	Selected Fragments	Tissue Expression (Fraction of Total)	Disease or Condition (Fraction of Total)	Vector
77	510-719 960-1100	Reproductive (0.467) Cardiovascular (0.133) Gastrointestinal (0.133)	Cancer (0.467) Inflammation/Trauma (0.467)	pINCY
78	180-293	Reproductive (0.230) Nervous (0.225) Gastrointestinal (0.124)	Cancer (0.478) Inflammation/Trauma (0.292) Cell Proliferation (0.191)	pINCY
79	192-653 795-935	Reproductive (0.417) Gastrointestinal (0.292) Urologic (0.125)	Cancer (0.750) Cell Proliferation (0.125) Inflammation/Trauma (0.167)	pINCY
80	139-1044	Reproductive (0.245) Nervous (0.143) Developmental (0.122)	Cancer (0.490) Inflammation/Trauma (0.286) Cell Proliferation (0.224)	pINCY
81	233-916	Reproductive (0.667) Cardiovascular (0.167) Nervous (0.167)	Cancer (0.500) Cell Proliferation (0.333) Inflammation (0.167)	pINCY
82	1-153 760-816	Gastrointestinal (0.282) Hematopoietic/Immune (0.205) Reproductive (0.205)	Inflammation/Trauma (0.461) Cancer (0.308) Cell Proliferation (0.205)	pINCY
83	57-299	Nervous (0.179) Reproductive (0.179) Gastrointestinal (0.128)	Cancer (0.564) Cell Proliferation (0.256) Inflammation/Trauma (0.180)	pINCY
84	1-707	Gastrointestinal (0.500) Hematopoietic/Immune (0.500)	Cancer (0.500) Inflammation (0.500)	pINCY
85	451-594	Hematopoietic/Immune (1.000)	Cell Proliferation (1.000)	pINCY
86	8-124 161-187 407-472	Developmental (1.000)	Cell Proliferation (1.000)	pINCY

Table 4

SEQ ID NO:	Library	Library Comment
44	HNT2AGT01	Library was constructed at Stratagene (STR937233), using RNA isolated from the hNT2 cell line derived from a human teratocarcinoma that exhibited properties characteristic of a committed neuronal precursor. Cells were treated with retinoic acid for 5 weeks and with mitotic inhibitors for two weeks and allowed to mature for an additional 4 weeks in conditioned medium.
45	COLNFET02	Library was constructed using RNA isolated from the colon tissue of a Caucasian female fetus, who died at 20 weeks' gestation.
46	PANCNOT04	Library was constructed using RNA isolated from the pancreatic tissue of a 5-year-old Caucasian male, who died in a motor vehicle accident. Serology was positive for cytomegalovirus (CMV).
47	ADRETUT05	Library was constructed RNA isolated from adrenal tumor tissue removed from a 52-year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated a pheochromocytoma.
48	LUNGUT11	Library was constructed using RNA isolated from lung tumor tissue removed from the right lower lobe a 57-year-old Caucasian male during a segmental lung resection. Pathology indicated an infiltrating grade 4 squamous cell carcinoma. Multiple intrapulmonary peribronchial lymph nodes showed metastatic squamous cell carcinoma. Patient history included a benign brain neoplasm and tobacco abuse. Family history included spinal cord cancer, type II diabetes, cerebrovascular disease, and malignant prostate neoplasm.
49	BRAVITXT03	Library was constructed using RNA isolated from treated astrocytes removed from the brain of a female fetus who died after 22 weeks' gestation. The cells were treated with tumor necrosis factor (TNF) alpha and interleukin 1 (IL-1), 10ng/ml each for 24 hours.
50	LUNGAST01	Library was constructed using RNA isolated from the lung tissue of a 17-year-old Caucasian male, who died from head trauma. Patient history included asthma.
51	OVARNOT02	Library was constructed using RNA isolated from ovarian tissue removed from a 59-year-old Caucasian female who died of a myocardial infarction. Patient history included cardiomyopathy, coronary artery disease, previous myocardial infarctions, hypercholesterolemia, hypotension, and arthritis.
52	BRSTNOT13	Library was constructed using RNA isolated from breast tissue removed from the left medial lateral breast of a 36-year-old Caucasian female during bilateral simple mastectomy and total breast reconstruction. Pathology indicated benign breast tissue. Patient history included a breast neoplasm, depressive disorder, hyperlipidemia, chronic stomach ulcer, and an ectopic pregnancy. Family history included myocardial infarction, cerebrovascular disease, atherosclerotic coronary artery disease, hyperlipidemia, skin cancer, breast cancer, depressive disorder, esophageal cancer, bone cancer, Hodgkin's lymphoma, bladder cancer, and a heart condition.

Table 4 (cont.)

SEQ ID NO:	Library	Library Comment
53	SMCCNOS01	Library was constructed using 7.56 x 10 ⁶ clones from a coronary artery smooth muscle cell library and was subjected to two rounds of subtraction hybridization for 48 hours with 6.12 x 10 ⁶ clones from a control coronary artery smooth muscle cell library. The starting library for subtraction was constructed using RNA isolated from coronary artery smooth muscle cells removed from a 3-year-old Caucasian male. The cells were treated with TNF alpha & IL-1 beta 10ng/ml each for 20 hours. The hybridization probe for subtraction was derived from a similarly constructed library from RNA isolated from untreated coronary artery smooth muscle cells from the same donor.
54	HUVENOB01	Library was constructed using RNA isolated from HUV-EC-C (ATCC CRL 1730) cells
55	HNT2RAT01	Library was constructed at Stratagene (STR937231), using RNA isolated from the HNT2 cell line (derived from a human teratocarcinoma (committed neuronal precursor). Cells were treated with retinoic acid for 24 hours.
56	SINTBST01	Library was constructed using RNA isolated from ileum tissue obtained from an 18-year-old Caucasian female during bowel anastomosis. Pathology indicated Crohn's disease of the ileum, involving 15 cm of the small bowel. Family history included cerebrovascular disease and atherosclerotic coronary artery disease.
57	ISLTNOT01	Library was constructed using RNA isolated from a pooled collection of pancreatic islet cells.
58	COLNNOT11	Library was constructed using RNA isolated from colon tissue removed from a 60-year-old Caucasian male during a left hemicolectomy.
59	BONRTUT01	Library was constructed using RNA isolated from rib tumor tissue removed from a 16-year-old Caucasian male during a rib osteotomy and a wedge resection of the lung. Pathology indicated metastatic grade 3 (of 4) osteosarcoma, forming a mass involving the chest wall.
60	LUNGUTT10	Library was constructed using RNA isolated from lung tumor tissue removed from the left upper lobe of a 65-year-old Caucasian female during a segmental lung resection. Pathology indicated metastatic grade 2 myxoid liposarcoma and metastatic grade 4 liposarcoma. Patient history included soft tissue cancer, breast cancer, and secondary lung cancer.
61	OVARNOT09	Library was constructed using RNA isolated from ovarian tissue removed from a 28-year-old Caucasian female during a vaginal hysterectomy and removal of the fallopian tubes and ovaries. Pathology indicated multiple follicular cysts ranging in size from 0.4 to 1.5 cm in the right and left ovaries, chronic cervicitis and squamous metaplasia of the cervix, and endometrium in weakly proliferative phase. Family history included benign hypertension, hyperlipidemia, and atherosclerotic coronary artery disease.

Table 4 (cont.)

SEQ ID NO:	Library	Library Comment
62	THPIAZS08	Library was constructed using 5.76 million clones from a 5-aza-2'-deoxycytidine (AZ) treated THP-1 promonocyte cell line library. Starting RNA was made from THP-1 promonocyte cells treated for three days with 0.8 micromolar AZ. 5.76 million clones from the AZ-treated THP-1 cell library were then subjected to two rounds of subtractive hybridization with 5 million clones from the untreated THP-1 cell library. Subtractive hybridization conditions were based on the methodologies of Swaroop et al. (1991) Nucleic Acids Res. 19:1954, and Bonaldo et al. (1996) Genome Research 6:791. THP-1 (ATCC TIB 202) is a human promonocyte cell line derived from peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26:171).
63	BRSTNOT12	Library was constructed using RNA isolated from diseased breast tissue removed from a 32-year-old Caucasian female during a bilateral reduction mammoplasty. Pathology indicated nonproliferative fibrocytic disease. Family history included benign hypertension and atherosclerotic coronary artery disease.
64	PENCNTO9	Library was constructed using RNA isolated from penis right corpora cavernosa tissue.
65	PROSTUS19	Library was constructed using 2.36 million clones from a prostate tumor library which was subjected to two rounds of subtraction hybridization with 2.36 million clones from a normal prostate library. The starting library for subtraction was constructed using RNA isolated from prostate tumor tissue removed from a 59-year-old Caucasian male during a radical prostatectomy with regional lymph node excision. Pathology indicated adenocarcinoma (Gleason grade 3+3) involving the prostate peripherally with invasion of the capsule. Adenofibromatous hyperplasia was present. The patient presented with elevated prostate-specific antigen (PSA). Patient history included diverticulitis of the colon, asbestososis, and thrombophlebitis. Family history included benign hypertension, multiple myeloma, hyperlipidemia, and rheumatoid arthritis. The hybridization probe for subtraction was derived from a similarly constructed library, except that NotI-anchored oligo(dT) primer was used. Subtractive hybridization conditions were based on the methodologies of Swaroop et al. (1991) Nucleic Acids Res. 19:1954 and Bonaldo, et al. (1996) Genome Research 6:791.
66	BRABDIR01	Library was constructed using RNA isolated from diseased cerebellum tissue removed from the brain of a 57-year-old Caucasian male, who died from a cerebrovascular accident. Patient history included Huntington's disease, emphysema, and tobacco abuse.
67	LIVDIR01	Library was constructed using RNA isolated from diseased liver tissue removed from a 63-year-old Caucasian female during a liver transplant. Patient history included primary biliary cirrhosis. Serology was positive for anti-mitochondrial antibody.

Table 4 (cont.)

SEQ ID NO:	Library	Library Comment
68	COLCDIT03	Library was constructed using RNA isolated from diseased colon polyp tissue removed from the cecum of a 67-year-old female. Pathology indicated a benign cecum polyp. Pathology for the associated tumor tissue indicated invasive grade 3 adenocarcinoma that arose in tubulovillous adenoma forming a fungating mass in the cecum.
69	TBLYNNOT01	Library was constructed at Stratagene (STR937214) using RNA isolated from a hybrid of T-B lymphoblasts from an untreated leukemic cell line.
70	KIDNNNOT01	Library was constructed using RNA isolated from the kidney tissue of a 64-year-old Caucasian female, who died from an intracranial bleed. Patient history included rheumatoid arthritis and tobacco use.
71	LUNGAST01	Library was constructed using RNA isolated from the lung tissue of a 17-year-old Caucasian male, who died from head trauma. Patient history included asthma.
72	LPARNOT02	Library was constructed using RNA isolated from tissue obtained from the left parotid (salivary) gland of a 70-year-old male with parotid cancer.
73	OVARNOT03	Library was constructed using RNA isolated from ovarian tissue removed from a 43-year-old Caucasian female during a bilateral salpingo-oophorectomy. Pathology for the associated tumor tissue indicated grade 2 mucinous cyst adenocarcinoma. The patient presented with stress incontinence. Patient history included mitral valve disorder, pneumonia, and viral hepatitis. Family history included atherosclerotic coronary artery disease, cerebrovascular disease, breast cancer, and uterine cancer.
74	ENDCNOT03	Library was constructed using RNA isolated from dermal microvascular endothelial cells removed from a neonatal Caucasian male.
75	LUNGNOT18	Library was constructed using RNA isolated from left upper lobe lung tissue removed from a 66-year-old Caucasian female. Pathology for the associated tumor tissue indicated a grade 2 adenocarcinoma. Patient history included cerebrovascular disease, atherosclerotic coronary artery disease, and pulmonary insufficiency. Family history included a myocardial infarction and atherosclerotic coronary artery disease.
76	NGANNNOT01	Library was constructed using RNA isolated from tumorous neuroganglion tissue removed from a 9-year-old Caucasian male during a soft tissue excision of the chest wall. Pathology indicated a ganglioneuroma. Family history included asthma.
77	LUNGTUT09	Library was constructed using RNA isolated from lung tumor tissue removed from a 68-year-old Caucasian male during segmental lung resection. Pathology indicated invasive grade 3 squamous cell carcinoma and a metastatic tumor. Patient history included type II diabetes, thyroid disorder, depressive disorder, hyperlipidemia, esophageal ulcer, and tobacco use.

Table 4 (cont.)

SEQ ID NO:	Library	Library Comment
78	ESOGRTUT02	Library was constructed using RNA isolated from esophageal tumor tissue obtained from a 61-year-old Caucasian male during a partial esophagectomy, proximal gastrectomy, pyloromyotomy, and regional lymph node excision. Pathology indicated an invasive grade 3 adenocarcinoma in the esophagus. Family history included atherosclerotic coronary artery disease, type II diabetes, chronic liver disease, primary cardiomyopathy, benign hypertension, and cerebrovascular disease.
79	KIDNNNOT19	Library was constructed using RNA isolated from kidney tissue removed a 65-year-old Caucasian male during an exploratory laparotomy and nephroureterectomy. Pathology for the associated tumor tissue indicated a grade 1 renal cell carcinoma within the upper pole of the left kidney. Patient history included malignant melanoma of the abdominal skin, benign neoplasm of colon, cerebrovascular disease, and umbilical hernia. Family history included myocardial infarction, atherosclerotic coronary artery disease, cerebrovascular disease, and prostate cancer.
80	TLVJINT01	Library was constructed using RNA isolated from a Jurkat cell line derived from the T cells of a male. Patient history included acute T-cell leukemia. This is an uninduced Jurkat cell line library from the same donor.
81	PENCNOT06	Library was constructed using RNA isolated from penis corpora cavernosa tissue removed from a 3-year-old Black male. Pathology for the associated tumor tissue indicated invasive grade 4 urothelial carcinoma forming a soft tissue scrotal mass that invaded the cavernous body of the penis and encased both testicles. Right inguinal lymph node showed metastatic grade 4 urothelial carcinoma, with extranodal invasion.
82	UTRSTUT05	Library was constructed using RNA isolated from uterine tumor tissue removed from a 41-year-old Caucasian female during a vaginal hysterectomy with dilation and curettage. Pathology indicated uterine leiomyoma. The endometrium was secretory and contained fragments of endometrial polyps. Benign endo- and ectocervical mucosa were identified in the endocervix. Patient history included a ventral hernia and a benign ovarian neoplasm.
83	LUNGNOT37	Library was constructed using polyA RNA isolated from lung tissue removed from a 15-year-old Caucasian female who died from a closed head injury. Serology was positive for cytomegalovirus.
84	LIVRTUT09	Library was constructed using RNA isolated from an untreated C3A hepatocyte cell line which is a derivative of Hep G2, a cell line derived from a hepatoblastoma removed from a 15-year-old Caucasian male.
85	MCLRUNT01	Library was constructed using RNA isolated from untreated peripheral blood mononuclear cell tissue obtained from buffy coat, removed from a 60-year-old male.
86	MCLRUNT01	Library was constructed using RNA isolated from untreated peripheral blood mononuclear cell tissue obtained from buffy coat, removed from a 60-year-old male.

Table 5

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	PE Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	PE Biosystems, Foster City, CA; Parcel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	PE Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) <i>J. Mol. Biol.</i> 215:403-410; Altschul, S.F. et al. (1997) <i>Nucleic Acids Res.</i> 25:3389-3402.	<i>ESTs:</i> Probability value= 1.0E-8 or less <i>Full Length sequences:</i> Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, tfasta, fastx, ifasta, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) <i>Proc. Natl. Acad. Sci. USA</i> 85:2444-2448; Pearson, W.R. (1990) <i>Methods Enzymol.</i> 183:63-98; and Smith, T.F. and M.S. Waterman (1981) <i>Adv. Appl. Math.</i> 2:482-489.	<i>ESTs:</i> fasta E value=1.06E-6 <i>Assembled ESTs:</i> fasta Identity= 95% or greater and Match length=200 bases or greater; fasta E value=1.0E-8 or less <i>Full Length sequences:</i> fastx score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) <i>Nucleic Acids Res.</i> 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) <i>Methods Enzymol.</i> 266:88-105; and Atwood, T.K. et al. (1997) <i>J. Chem. Inf. Comput. Sci.</i> 37:417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and, if applicable, Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) <i>J. Mol. Biol.</i> 235:1501-1531; Sonhammer, E.L.L. et al. (1988) <i>Nucleic Acids Res.</i> 26:320-322.	Score=10-50 bits for PFAM hits, depending on individual protein families

Table 5 (cont.)

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score≥GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phil's Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
 - 5 a) an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43,
 - 10 b) a naturally occurring amino acid sequence having at least 90% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43,
 - 15 c) a biologically active fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43, and
 - 20 d) an immunogenic fragment of an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43,

NO:41, SEQ ID NO:42, and SEQ ID NO:43.

2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
9. A method for producing a polypeptide of claim 1, the method comprising:
 - a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and

b) recovering the polypeptide so expressed.

10. An isolated antibody which specifically binds to a polypeptide of claim 1.

5 11. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

a) a polynucleotide sequence selected from the group consisting of SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86,

15 b) a naturally occurring polynucleotide sequence having at least 70% sequence identity to a polynucleotide sequence selected from the group consisting of SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86,

20 c) a polynucleotide sequence complementary to a),
d) a polynucleotide sequence complementary to b), and
e) an RNA equivalent of a)-d).

12. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 11.

30

13. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:

35 a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and

- b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
14. A method of claim 13, wherein the probe comprises at least 60 contiguous nucleotides.
- 5
15. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:
- a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
- 10 b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
16. A pharmaceutical composition comprising an effective amount of a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
- 15
17. A pharmaceutical composition of claim 16, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:42, and SEQ ID NO:43.
- 25 18. A method for treating a disease or condition associated with decreased expression of functional TPPT, comprising administering to a patient in need of such treatment the pharmaceutical composition of claim 16.
19. A method for screening a compound for effectiveness as an agonist of a polypeptide of
- 30 claim 1, the method comprising:
- a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
- b) detecting agonist activity in the sample.
20. A pharmaceutical composition comprising an agonist compound identified by a method
- 35 of claim 19 and a pharmaceutically acceptable excipient.

21. A method for treating a disease or condition associated with decreased expression of functional TPPT, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 20.
- 5 22. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
b) detecting antagonist activity in the sample.
- 10 23. A pharmaceutical composition comprising an antagonist compound identified by a method of claim 22 and a pharmaceutically acceptable excipient.
- 15 24. A method for treating a disease or condition associated with overexpression of functional TPPT, comprising administering to a patient in need of such treatment a pharmaceutical composition of claim 23.
- 20 25. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of:
a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and
b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
- 25 26. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, said method comprising:
a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
30 c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
- 35 27. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method

comprising:

- a) exposing a sample comprising the target polynucleotide to a compound, and
- b) detecting altered expression of the target polynucleotide.

5 28. An isolated polynucleotide comprising a polynucleotide sequence of SEQ ID NO:83.

29. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 28.

10 30. A cell transformed with a recombinant polynucleotide of claim 29.

31. A transgenic organism comprising a recombinant polynucleotide of claim 29.

32. A method for producing a polypeptide comprising an amino acid sequence of SEQ ID NO:40, the method comprising:

- a) culturing the cell of claim 30 under conditions suitable for expression of the polypeptide, and
- b) recovering the polypeptide so expressed.

20 33. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 28, the method comprising:

- a) exposing a sample comprising the target polynucleotide to a compound, and
- b) detecting altered expression of the target polynucleotide.

SEQUENCE LISTING

<110> INCYTE GENOMICS, INC.

LAL, Preeti
YANG, Junming
YUE, Henry
HILLMAN, Jennifer L.
TANG, Y. Tom
BANDMAN, Olga
BURFORD, Neil
BAUGHN, Mariah R.
AZIMZAI, Yalda
LU, Dyung Aina M.
AU-YOUNG, Janice
PATTERSON, Chandra

<120> HUMAN TRANSPORT PROTEINS

<130> PF-0709 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/139,923; 60/148,177; 60/149,357; 60/162,287
<151> 1999-06-17; 1999-08-10; 1999-08-18; 1999-10-28

<160> 86

<170> PERL Program

<210> 1
<211> 623
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 264114CD1

<400> 1

Met	Ser	Thr	Gln	Asp	Glu	Arg	Gln	Ile	Asn	Thr	Glu	Tyr	Ala	Val
1														15
Ser	Leu	Leu	Glu	Gln	Leu	Lys	Leu	Phe	Tyr	Glu	Gln	Gln	Leu	Phe
														20
Thr	Asp	Ile	Val	Leu	Ile	Val	Glu	Gly	Thr	Glu	Phe	Pro	Cys	His
														35
Lys	Met	Val	Leu	Ala	Thr	Cys	Ser	Ser	Tyr	Phe	Arg	Ala	Met	Phe
														40
Met	Ser	Gly	Leu	Ser	Glu	Ser	Lys	Gln	Thr	His	Val	His	Leu	Arg
														50
Asn	Val	Asp	Ala	Ala	Thr	Leu	Gln	Ile	Ile	Ile	Thr	Tyr	Ala	Tyr
														65
Thr	Gly	Asn	Leu	Ala	Met	Asn	Asp	Ser	Thr	Val	Glu	Gln	Leu	Tyr
														80
Glu	Thr	Ala	Cys	Phe	Leu	Gln	Val	Glu	Asp	Val	Leu	Gln	Arg	Cys
														95
Arg	Glu	Tyr	Leu	Ile	Lys	Lys	Ile	Asn	Ala	Glu	Asn	Cys	Val	Arg
														110
Leu	Leu	Ser	Phe	Ala	Asp	Leu	Phe	Ser	Cys	Glu	Glu	Leu	Lys	Gln
														125
Ser	Ala	Lys	Arg	Met	Val	Glu	His	Lys	Phe	Thr	Ala	Val	Tyr	His
														140
Gln	Asp	Ala	Phe	Met	Gln	Leu	Ser	His	Asp	Leu	Leu	Ile	Asp	Ile
														155
Leu	Ser	Ser	Asp	Asn	Leu	Asn	Val	Glu	Lys	Glu	Glu	Thr	Val	Arg
														170
Glu	Ala	Ala	Met	Leu	Trp	Leu	Glu	Tyr	Asn	Thr	Glu	Ser	Arg	Ser
														185
														190
														195

Gln	Tyr	Leu	Ser	Ser	Val	Leu	Ser	Gln	Ile	Arg	Ile	Asp	Ala	Leu
200														210
215									220					225
Ser	Glu	Val	Thr	Gln	Arg	Ala	Trp	Phe	Gln	Gly	Leu	Pro	Pro	Asn
230									235					240
Asp	Lys	Ser	Val	Val	Val	Gln	Gly	Leu	Tyr	Lys	Ser	Met	Pro	Lys
245									250					255
Phe	Phe	Lys	Pro	Arg	Leu	Gly	Met	Thr	Lys	Glu	Glu	Met	Met	Ile
260									265					270
Phe	Ile	Glu	Ala	Ser	Ser	Glu	Asn	Pro	Cys	Ser	Leu	Tyr	Ser	Ser
275									280					285
Val	Cys	Tyr	Ser	Pro	Gln	Ala	Glu	Lys	Val	Tyr	Lys	Leu	Cys	Ser
290									295					300
Pro	Pro	Ala	Asp	Leu	His	Lys	Val	Gly	Thr	Val	Val	Thr	Pro	Asp
305									310					315
Asn	Asp	Ile	Tyr	Ile	Ala	Gly	Gly	Gln	Val	Pro	Leu	Lys	Asn	Thr
320									325					330
Lys	Thr	Asn	His	Ser	Lys	Thr	Ser	Lys	Leu	Gln	Thr	Ala	Phe	Arg
335									340					345
Thr	Val	Asn	Cys	Phe	Tyr	Trp	Phe	Asp	Ala	Gln	Gln	Asn	Thr	Trp
350									355					360
Phe	Pro	Lys	Thr	Pro	Met	Leu	Phe	Val	Arg	Ile	Lys	Pro	Ser	Leu
365									370					375
Val	Cys	Cys	Glu	Gly	Tyr	Ile	Tyr	Ala	Ile	Gly	Gly	Asp	Ser	Val
380									385					390
Gly	Gly	Glu	Leu	Asn	Arg	Arg	Thr	Val	Glu	Arg	Tyr	Asp	Thr	Glu
395									400					405
Lys	Asp	Glu	Trp	Thr	Met	Val	Ser	Pro	Leu	Pro	Cys	Ala	Trp	Gln
410									415					420
Trp	Ser	Ala	Ala	Val	Val	Val	His	Asp	Cys	Ile	Tyr	Val	Met	Thr
425									430					435
Leu	Asn	Leu	Met	Tyr	Cys	Tyr	Phe	Pro	Arg	Ser	Asp	Ser	Trp	Val
440									445					450
Glu	Met	Ala	Met	Arg	Gln	Thr	Ser	Arg	Ser	Phe	Ala	Ser	Ala	Ala
455									460					465
Ala	Phe	Gly	Asp	Lys	Ile	Phe	Tyr	Ile	Gly	Gly	Leu	His	Ile	Ala
470									475					480
Thr	Asn	Ser	Gly	Ile	Arg	Leu	Pro	Ser	Gly	Thr	Val	Asp	Gly	Ser
485									490					495
Ser	Val	Thr	Val	Glu	Ile	Tyr	Asp	Val	Asn	Lys	Asn	Glu	Trp	Lys
500									505					510
Met	Ala	Ala	Asn	Ile	Pro	Ala	Lys	Arg	Tyr	Ser	Asp	Pro	Cys	Val
515									520					525
Arg	Ala	Val	Val	Ile	Ser	Asn	Ser	Leu	Cys	Val	Phe	Met	Arg	Glu
530									535					540
Thr	His	Leu	Asn	Glu	Arg	Ala	Lys	Tyr	Val	Thr	Tyr	Gln	Tyr	Asp
545									550					555
Leu	Glu	Leu	Asp	Arg	Trp	Ser	Leu	Arg	Gln	His	Ile	Ser	Glu	Arg
560									565					570
Val	Leu	Trp	Asp	Leu	Gly	Arg	Asp	Phe	Arg	Cys	Thr	Val	Gly	Lys
575									580					585
Leu	Tyr	Pro	Ser	Cys	Leu	Glu	Glu	Ser	Pro	Trp	Lys	Pro	Pro	Thr
590									595					600
Tyr	Leu	Phe	Ser	Thr	Asp	Gly	Thr	Glu	Glu	Phe	Glu	Leu	Asp	Gly
605									610					615
Glu	Met	Val	Ala	Leu	Pro	Pro	Val							
620														

<210> 2
<211> 99
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 1455669CD1

<400> 2
Met Ala Ala Pro Ala Glu Pro Cys Ala Gly Gln Gly Val Trp Asn

1	5	10	15
Gln Thr Glu Pro Glu	Pro Ala Ala Thr	Ser Leu Leu Ser Leu Cys	
20	25	30	
Phe Leu Arg Thr Ala	Gly Val Trp Val	Pro Pro Met Tyr Leu Trp	
35	40	45	
Val Leu Gly Pro Ile	Tyr Leu Leu Phe Ile	His His His Gly Arg	
50	55	60	
Gly Tyr Leu Arg Met	Ser Pro Leu Phe Lys	Ala Lys Met Val Ala	
65	70	75	
Ala Ile Pro Gly Ser	Leu Glu Pro Gly Asn	Val Arg Gly Arg Gln	
80	85	90	
Gly Thr Gly Trp Asn	Leu Val Lys Ser		
95			

<210> 3

<211> 374

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2084989CD1

<400> 3

Met Glu Ser Lys Met Gly Glu Leu Pro Leu Asp Ile Asn Ile Gln		
1 5 10 15		
Glu Pro Arg Trp Asp Gln Ser Thr Phe Leu Gly Arg Ala Arg His		
20 25 30		
Phe Phe Thr Val Thr Asp Pro Arg Asn Leu Leu Ser Gly Ala		
35 40 45		
Gln Leu Glu Ala Ser Arg Asn Ile Val Gln Asn Tyr Arg Ala Gly		
50 55 60		
Val Val Thr Pro Gly Ile Thr Glu Asp Gln Leu Trp Arg Ala Lys		
65 70 75		
Tyr Val Tyr Asp Ser Ala Phe His Pro Asp Thr Gly Glu Lys Val		
80 85 90		
Val Leu Ile Gly Arg Met Ser Ala Gln Val Pro Met Asn Met Thr		
95 100 105		
Ile Thr Gly Cys Met Leu Thr Phe Tyr Arg Lys Thr Pro Thr Val		
110 115 120		
Val Phe Trp Gln Trp Val Asn Gln Ser Phe Asn Ala Ile Val Asn		
125 130 135		
Tyr Ser Asn Arg Ser Gly Asp Thr Pro Ile Thr Val Arg Gln Leu		
140 145 150		
Gly Thr Ala Tyr Val Ser Ala Thr Thr Gly Ala Val Ala Thr Ala		
155 160 165		
Leu Gly Leu Lys Ser Leu Thr Lys His Leu Pro Pro Leu Val Gly		
170 175 180		
Arg Phe Val Pro Phe Ala Ala Val Ala Ala Ala Asn Cys Ile Asn		
185 190 195		
Ile Pro Leu Met Arg Gln Arg Glu Leu Gln Val Gly Ile Pro Val		
200 205 210		
Ala Asp Glu Ala Gly Gln Arg Leu Gly Tyr Ser Val Thr Ala Ala		
215 220 225		
Lys Gln Gly Ile Phe Gln Val Val Ile Ser Arg Ile Cys Met Ala		
230 235 240		
Ile Pro Ala Met Ala Ile Pro Pro Leu Ile Met Asp Thr Leu Glu		
245 250 255		
Lys Lys Asp Phe Leu Lys Val Gly Asp Cys Thr Ser Leu Val Leu		
260 265 270		
Glu Trp Ala Met Ala Gly Arg Ser Asp Gln Ala Pro Thr Leu Ser		
275 280 285		
Pro Ala Ser Pro Asp Ser Leu Arg Leu Ala Ser Pro Ser Pro Asp		
290 295 300		
Pro Cys Thr Ala Ser Ser Thr Phe Val His Ser Ala Arg Met Asn		
305 310 315		
Trp Ala Gly Val Lys Glu Leu Cys Arg Gly Arg Arg Arg Gly Gln		
320 325 330		
Arg Lys Glu Thr Asn Phe Ile Ser Val Thr Pro Val Ala Ser Asp		

Thr	Gln	Lys	Gly	335	Thr	Val	Ile	Val	Met	Leu	Asp	Leu	Met	Leu	Ile
				350										345	
Leu	Leu	Pro	Pro	Ser	Ala	Ser	Ile	Leu	Arg	Gly	Thr	His	Gly	360	
				365										360	

<210> 4
<211> 271
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2501034CD1

<400> 4

Met	Gly	Asn	Gly	Gly	Arg	Ser	Gly	Leu	Gln	Gln	Gly	Lys	Gly	Asn
1	5							10				15		
Val	Asp	Gly	Val	Ala	Ala	Thr	Pro	Thr	Ala	Ala	Ser	Ala	Ser	Cys
								20			25			30
Gln	Tyr	Arg	Cys	Ile	Glu	Cys	Asn	Gln	Glu	Ala	Lys	Glu	Leu	Tyr
								35			40			45
Arg	Asp	Tyr	Asn	His	Gly	Val	Leu	Lys	Ile	Thr	Ile	Cys	Lys	Ser
								50			55			60
Cys	Gln	Lys	Pro	Val	Asp	Lys	Tyr	Ile	Glu	Tyr	Asp	Pro	Val	Ile
								65			70			75
Ile	Leu	Ile	Asn	Ala	Ile	Leu	Cys	Lys	Ala	Gln	Ala	Tyr	Arg	His
								80			85			90
Ile	Leu	Phe	Asn	Thr	Gln	Ile	Asn	Ile	His	Gly	Lys	Leu	Cys	Ile
								95			100			105
Phe	Cys	Leu	Leu	Cys	Glu	Ala	Tyr	Leu	Arg	Trp	Trp	Gln	Leu	Gln
								110			115			120
Asp	Ser	Asn	Gln	Asn	Thr	Ala	Pro	Asp	Asp	Leu	Ile	Arg	Tyr	Ala
								125			130			135
Lys	Glu	Trp	Asp	Phe	Tyr	Arg	Met	Phe	Ala	Ile	Ala	Ala	Leu	Glu
								140			145			150
Gln	Thr	Ala	Tyr	Phe	Ile	Gly	Ile	Phe	Thr	Phe	Leu	Trp	Val	Glu
								155			160			165
Arg	Pro	Met	Thr	Ala	Lys	Lys	Lys	Pro	Asn	Phe	Ile	Leu	Leu	
								170			175			180
Lys	Ala	Leu	Leu	Leu	Ser	Ser	Tyr	Gly	Lys	Leu	Leu	Leu	Ile	Pro
								185			190			195
Ala	Val	Ile	Trp	Glu	His	Asp	Tyr	Thr	Ser	Val	Cys	Leu	Lys	Leu
								200			205			210
Ile	Lys	Val	Phe	Val	Leu	Thr	Ser	Asn	Phe	Gln	Ala	Ile	Arg	Val
								215			220			225
Thr	Leu	Asn	Ile	Asn	Arg	Lys	Leu	Ser	Phe	Leu	Ala	Val	Leu	Ser
								230			235			240
Gly	Leu	Leu	Leu	Glu	Ser	Ile	Met	Val	Tyr	Phe	Phe	Gln	Ser	Met
								245			250			255
Glu	Trp	Asp	Val	Gly	Ser	Asp	Tyr	Ala	Ile	Phe	Lys	Ser	Gln	Asp
								260			265			270
Phe														

<210> 5
<211> 323
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2745212CD1

<400> 5

Met	Ala	Pro	Lys	Gln	Asp	Pro	Lys	Pro	Lys	Phe	Gln	Glu	Gly	Glu
1	5							10				15		
Arg	Val	Leu	Cys	Phe	His	Gly	Pro	Leu	Leu	Tyr	Glu	Ala	Lys	Cys
								20			25			30
Val	Lys	Val	Ala	Ile	Lys	Asp	Lys	Gln	Val	Lys	Tyr	Phe	Ile	His

Tyr	Ser	Gly	Trp	Asn	Lys	Asn	Trp	Asp	Glu	Trp	Val	Pro	Glu	Ser
35					50				40					45
Arg	Val	Leu	Lys	Tyr	Val	Asp	Thr	Asn	Leu	Gln	Lys	Gln	Arg	Glu
				65					70					60
Leu	Gln	Lys	Ala	Asn	Gln	Glu	Gln	Tyr	Ala	Glu	Gly	Lys	Met	Arg
				80					85					75
Gly	Ala	Ala	Pro	Gly	Lys	Lys	Thr	Ser	Gly	Leu	Gln	Gln	Lys	Asn
				95					95					90
Val	Glu	Val	Lys	Thr	Lys	Lys	Asn	Lys	Gln	Lys	Thr	Pro	Gly	Asn
				110					115					105
Gly	Asp	Gly	Gly	Ser	Thr	Ser	Glu	Thr	Pro	Gln	Pro	Pro	Arg	Lys
				125					130					120
Lys	Arg	Ala	Arg	Val	Asp	Pro	Thr	Val	Glu	Asn	Glu	Glu	Thr	Phe
				140					145					135
Met	Asn	Arg	Val	Glu	Val	Lys	Val	Lys	Ile	Pro	Glu	Glu	Leu	Lys
				155					160					150
Pro	Trp	Leu	Val	Asp	Asp	Trp	Asp	Leu	Ile	Thr	Arg	Gln	Lys	Gln
				170					175					165
Leu	Phe	Tyr	Leu	Pro	Ala	Lys	Lys	Asn	Val	Asp	Ser	Ile	Leu	Glu
				185					185					180
Asp	Tyr	Ala	Asn	Tyr	Lys	Lys	Ser	Arg	Gly	Asn	Thr	Asp	Asn	Lys
				200					205					195
Glu	Tyr	Ala	Val	Asn	Glu	Val	Val	Ala	Gly	Ile	Lys	Glu	Tyr	Phe
				215					220					210
Asn	Val	Met	Leu	Gly	Thr	Gln	Leu	Leu	Tyr	Lys	Phe	Glu	Arg	Pro
				230					235					225
Gln	Tyr	Ala	Glu	Ile	Leu	Ala	Asp	His	Pro	Asp	Ala	Pro	Met	Ser
				245					250					240
Gln	Val	Tyr	Gly	Ala	Pro	His	Leu	Leu	Arg	Leu	Phe	Val	Arg	Ile
				260					265					255
Gly	Ala	Met	Leu	Ala	Tyr	Thr	Pro	Leu	Asp	Glu	Lys	Ser	Leu	Ala
				275					280					270
Leu	Leu	Leu	Asn	Tyr	Leu	His	Asp	Phe	Leu	Lys	Tyr	Leu	Ala	Lys
				290					295					285
Asn	Ser	Ala	Thr	Leu	Phe	Ser	Ala	Ser	Asp	Tyr	Glu	Val	Ala	Pro
				305					310					300
Pro	Glu	Tyr	His	Arg	Lys	Ala	Val							315
				320										

<210> 6

<211> 274

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 4833111CD1

<400> 6

Met	Asp	Arg	Pro	Gly	Phe	Val	Ala	Ala	Leu	Val	Ala	Gly	Gly	Val
1				5					10					15
Ala	Gly	Val	Ser	Val	Asp	Leu	Ile	Leu	Phe	Pro	Leu	Asp	Thr	Ile
				20					25					30
Lys	Thr	Arg	Leu	Gln	Ser	Pro	Gln	Gly	Phe	Ser	Lys	Ala	Gly	Gly
				35					40					45
Phe	His	Gly	Ile	Tyr	Ala	Gly	Val	Pro	Ser	Ala	Ala	Ile	Gly	Ser
				50					55					60
Phe	Pro	Asn	Ala	Ala	Ala	Phe	Phe	Ile	Thr	Tyr	Glu	Tyr	Val	Lys
				65					70					75
Trp	Phe	Leu	His	Ala	Asp	Ser	Ser	Ser	Tyr	Leu	Thr	Pro	Met	Lys
				80					85					90
His	Met	Leu	Ala	Ala	Ser	Ala	Gly	Glu	Val	Val	Ala	Cys	Leu	Ile
				95					100					105
Arg	Val	Pro	Ser	Glu	Val	Val	Lys	Gln	Arg	Ala	Gln	Val	Ser	Ala
				110					115					120
Ser	Thr	Arg	Thr	Phe	Gln	Ile	Phe	Ser	Asn	Ile	Leu	Tyr	Glu	Glu
				125					130					135
Gly	Ile	Gln	Gly	Leu	Tyr	Arg	Gly	Tyr	Lys	Ser	Thr	Val	Leu	Arg

Glu	Ile	Pro	Phe	140	Ser	Leu	Val	Gln	Phe	145	Pro	Leu	Trp	Glu	Ser	Leu	150
				155						160						165	
Lys	Ala	Leu	Trp		Ser	Trp	Arg	Gln	Asp		His	Val	Val	Asp	Ser	Trp	
				170						175						180	
Gln	Ser	Ala	Val		Cys	Gly	Ala	Phe	Ala		Gly	Gly	Phe	Ala	Ala	Ala	
				185						190						195	
Val	Thr	Thr	Pro		Leu	Asp	Val	Ala	Lys		Thr	Arg	Ile	Thr	Leu	Ala	
				200						205						210	
Lys	Ala	Gly	Ser		Ser	Thr	Ala	Asp	Gly		Asn	Val	Leu	Ser	Val	Leu	
				215						220						225	
His	Gly	Val	Trp		Arg	Ser	Gln	Gly	Leu		Ala	Gly	Leu	Phe	Ala	Gly	
				230						235						240	
Val	Phe	Pro	Arg		Met	Ala	Ala	Ile	Ser		Leu	Gly	Gly	Phe	Ile	Phe	
				245						250						255	
Leu	Gly	Ala	Tyr		Asp	Arg	Thr	His	Ser		Leu	Leu	Leu	Glu	Val	Gly	
				260						265						270	
Arg	Lys	Ser	Pro														

<210> 7

<211> 291

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 876677CD1

<400> 7

Met	Asp	Ser	Arg	Val	Ser	Ser	Pro	Glu	Lys	Gln	Asp	Lys	Glu	Asn		
1				5				10						15		
Phe	Val	Gly	Val	Asn	Asn	Asn	Lys	Arg	Leu	Gly	Val	Cys	Gly	Trp	Ile	
					20					25					30	
Leu	Phe	Ser	Leu	Ser	Phe	Leu	Leu	Val	Ile	Ile	Thr	Phe	Pro	Ile		
					35				40						45	
Ser	Ile	Trp	Met	Cys	Leu	Lys	Ile	Ile	Lys	Glu	Tyr	Glu	Arg	Ala		
					50				55						60	
Val	Val	Phe	Arg	Leu	Gly	Arg	Ile	Gln	Ala	Asp	Lys	Ala	Lys	Gly		
				65				70							75	
Pro	Gly	Leu	Ile	Leu	Val	Leu	Pro	Cys	Ile	Asp	Val	Phe	Val	Lys		
				80				85							90	
Val	Asp	Leu	Arg	Thr	Val	Thr	Cys	Asn	Ile	Pro	Pro	Gln	Glu	Ile		
				95				100							105	
Leu	Thr	Arg	Asp	Ser	Val	Thr	Thr	Gln	Val	Asp	Gly	Val	Val	Tyr		
				110				115							120	
Tyr	Arg	Ile	Tyr	Ser	Ala	Val	Ser	Ala	Val	Ala	Asn	Val	Asn	Asp		
				125				130							135	
Val	His	Gln	Ala	Thr	Phe	Leu	Leu	Ala	Gln	Thr	Thr	Leu	Arg	Asn		
				140				145							150	
Val	Leu	Gly	Thr	Gln	Thr	Leu	Ser	Gln	Ile	Leu	Ala	Gly	Arg	Glu		
				155				160							165	
Glu	Ile	Ala	His	Ser	Ile	Gln	Thr	Leu	Leu	Asp	Asp	Ala	Thr	Glu		
				170				175							180	
Leu	Trp	Gly	Ile	Arg	Val	Ala	Arg	Val	Glu	Ile	Lys	Asp	Val	Arg		
				185				190							195	
Ile	Pro	Val	Gln	Leu	Gln	Arg	Ser	Met	Ala	Ala	Glu	Ala	Glu	Ala		
				200				205							210	
Thr	Arg	Glu	Ala	Arg	Ala	Lys	Val	Leu	Ala	Ala	Glu	Gly	Glu	Met		
				215				220							225	
Asn	Ala	Ser	Lys	Ser	Leu	Lys	Ser	Ala	Ser	Met	Val	Leu	Ala	Glu		
				230				235							240	
Ser	Pro	Ile	Ala	Leu	Gln	Leu	Arg	Tyr	Leu	Gln	Thr	Leu	Ser	Thr		
				245				250							255	
Val	Ala	Thr	Glu	Lys	Asn	Ser	Thr	Ile	Val	Phe	Pro	Leu	Pro	Met		
				260				265							270	
Asn	Ile	Leu	Glu	Gly	Ile	Gly	Gly	Val	Ser	Tyr	Asp	Asn	His	Lys		
				275				280							285	
Lys	Leu	Pro	Asn	Lys	Ala											

290

<210> 8

<211> 381

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2326143CD1

<400> 8

Met	Ser	Arg	His	Glu	Gly	Val	Ser	Cys	Asp	Ala	Cys	Leu	Lys	Gly
1				5					10				15	
Asn	Phe	Arg	Gly	Arg	Arg	Tyr	Lys	Cys	Leu	Ile	Cys	Tyr	Asp	Tyr
				20					25				30	
Asp	Leu	Cys	Ala	Ser	Cys	Tyr	Glu	Ser	Gly	Ala	Thr	Thr	Thr	Arg
				35					40				45	
His	Thr	Thr	Asp	His	Pro	Met	Gln	Cys	Ile	Leu	Thr	Arg	Val	Asp
				50					55				60	
Phe	Asp	Leu	Tyr	Tyr	Gly	Gly	Glu	Ala	Phe	Ser	Val	Glu	Gln	Pro
				65					70				75	
Gln	Ser	Phe	Thr	Cys	Pro	Tyr	Cys	Gly	Lys	Met	Gly	Tyr	Thr	Glu
				80					85				90	
Thr	Ser	Leu	Gln	Glu	His	Val	Thr	Ser	Glu	His	Ala	Glu	Thr	Ser
				95					100				105	
Thr	Glu	Val	Ile	Cys	Pro	Ile	Cys	Ala	Ala	Leu	Pro	Gly	Gly	Asp
				110					115				120	
Pro	Asn	His	Val	Thr	Asp	Asp	Phe	Ala	Ala	His	Leu	Thr	Leu	Glu
				125					130				135	
His	Arg	Ala	Pro	Arg	Asp	Leu	Asp	Glu	Ser	Ser	Gly	Val	Arg	His
				140					145				150	
Val	Arg	Arg	Met	Phe	His	Pro	Gly	Arg	Gly	Leu	Gly	Gly	Pro	Arg
				155					160				165	
Ala	Arg	Arg	Ser	Asn	Met	His	Phe	Thr	Ser	Ser	Ser	Thr	Gly	Gly
				170					175				180	
Leu	Ser	Ser	Ser	Gln	Ser	Ser	Tyr	Ser	Pro	Ser	Asn	Arg	Glu	Ala
				185					190				195	
Met	Asp	Pro	Ile	Ala	Glu	Leu	Leu	Ser	Gln	Leu	Ser	Gly	Val	Arg
				200					205				210	
Arg	Ser	Ala	Gly	Gly	Gln	Leu	Asn	Ser	Ser	Gly	Pro	Ser	Ala	Ser
				215					220				225	
Gln	Leu	Gln	Gln	Leu	Gln	Met	Gln	Leu	Gln	Leu	Glu	Arg	Gln	His
				230					235				240	
Ala	Gln	Ala	Ala	Arg	Gln	Gln	Leu	Glu	Thr	Ala	Arg	Asn	Ala	Thr
				245					250				255	
Arg	Arg	Thr	Asn	Thr	Ser	Ser	Val	Thr	Thr	Thr	Ile	Thr	Gln	Ser
				260					265				270	
Thr	Ala	Thr	Thr	Asn	Ile	Ala	Asn	Thr	Glu	Ser	Ser	Gln	Gln	Thr
				275					280				285	
Leu	Gln	Asn	Ser	Gln	Phe	Leu	Leu	Thr	Arg	Leu	Asn	Asp	Pro	Lys
				290					295				300	
Met	Ser	Glu	Thr	Glu	Arg	Gln	Ser	Met	Glu	Ser	Glu	Arg	Ala	Asp
				305					310				315	
Arg	Ser	Leu	Phe	Val	Gln	Glu	Leu	Leu	Leu	Ser	Thr	Leu	Val	Arg
				320					325				330	
Glu	Glu	Ser	Ser	Ser	Ser	Asp	Glu	Asp	Asp	Arg	Gly	Glu	Met	Ala
				335					340				345	
Asp	Phe	Gly	Ala	Met	Gly	Cys	Val	Asp	Ile	Met	Pro	Leu	Asp	Val
				350					355				360	
Ala	Leu	Glu	Asn	Leu	Asn	Leu	Lys	Glu	Ser	Asn	Lys	Gly	Asn	Glu
				365					370				375	
Pro	Pro	Pro	Pro	Pro	Leu									
					380									

<210> 9

<211> 190

<212> PRT

<213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2786302CD1

<400> 9

Met	Lys	Tyr	Gly	Asn	Glu	Ile	Met	Asn	Lys	Asp	Pro	Val	Phe	Arg
1				5				10					15	
Ile	Ser	Pro	Arg	Ser	Arg	Glu	Thr	His	Pro	Asn	Pro	Glu	Glu	Pro
					20				25				30	
Glu	Glu	Glu	Asp	Glu	Asp	Val	Gln	Ala	Glu	Arg	Val	Gln	Ala	Ala
					35				40				45	
Asn	Ala	Leu	Thr	Ala	Pro	Asn	Leu	Glu	Glu	Pro	Val	Ile	Thr	
					50				55				60	
Ala	Ser	Cys	Leu	His	Lys	Glu	Tyr	Tyr	Glu	Thr	Lys	Lys	Ser	Cys
					65				70				75	
Phe	Ser	Thr	Arg	Lys	Lys	Ile	Ala	Ile	Arg	Asn	Val	Ser	Phe	
					80				85				90	
Cys	Val	Lys	Lys	Gly	Glu	Val	Leu	Gly	Leu	Leu	Gly	His	Asn	Gly
					95				100				105	
Ala	Gly	Lys	Ser	Thr	Ser	Ile	Lys	Met	Ile	Thr	Gly	Cys	Thr	Lys
					110				115				120	
Pro	Thr	Ala	Gly	Val	Val	Val	Leu	Gln	Gly	Ser	Arg	Ala	Ser	Val
					125				130				135	
Arg	Gln	Gln	His	Asp	Asn	Ser	Leu	Lys	Phe	Leu	Gly	Tyr	Cys	Pro
					140				145				150	
Gln	Glu	Asn	Ser	Leu	Trp	Pro	Lys	Leu	Thr	Met	Lys	Glu	His	Leu
					155				160				165	
Glu	Leu	Tyr	Ala	Ala	Val	Glu	Arg	Leu	Gly	Gln	Lys	Arg	Cys	Cys
					170				175				180	
Ser	Gln	Tyr	Phe	Thr	Ile	Gly	Gly	Arg	Ser					
					185				190					

<210> 10

<211> 297

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3735780CD1

<400> 10

Met	Met	Asp	Ser	Glu	Ala	His	Glu	Lys	Arg	Pro	Pro	Ile	Leu	Thr
1				5				10					15	
Ser	Ser	Lys	Gln	Asp	Ile	Ser	Pro	His	Ile	Thr	Asn	Val	Gly	Glu
					20				25				30	
Met	Lys	His	Tyr	Leu	Cys	Gly	Cys	Cys	Ala	Ala	Phe	Asn	Asn	Val
					35				40				45	
Ala	Ile	Thr	Phe	Pro	Ile	Gln	Lys	Val	Leu	Phe	Arg	Gln	Gln	Leu
					50				55				60	
Tyr	Gly	Ile	Lys	Thr	Arg	Asp	Ala	Ile	Leu	Gln	Leu	Arg	Arg	Asp
					65				70				75	
Gly	Phe	Arg	Asn	Leu	Tyr	Arg	Gly	Ile	Leu	Pro	Pro	Leu	Met	Gln
					80				85				90	
Lys	Thr	Thr	Thr	Leu	Ala	Leu	Met	Phe	Gly	Leu	Tyr	Glu	Asp	Leu
					95				100				105	
Ser	Cys	Leu	Leu	His	Lys	His	Val	Ser	Ala	Pro	Glu	Phe	Ala	Thr
					110				115				120	
Ser	Gly	Val	Ala	Ala	Val	Leu	Ala	Gly	Thr	Thr	Glu	Ala	Ile	Phe
					125				130				135	
Thr	Pro	Leu	Glu	Arg	Val	Gln	Thr	Leu	Gln	Asp	His	Lys	His	
					140				145				150	
His	Asp	Lys	Phe	Thr	Asn	Thr	Tyr	Gln	Ala	Phe	Lys	Ala	Leu	Lys
					155				160				165	
Cys	His	Gly	Ile	Gly	Glu	Tyr	Tyr	Arg	Gly	Leu	Val	Pro	Ile	Leu
					170				175				180	
Phe	Arg	Asn	Gly	Leu	Ser	Asn	Val	Leu	Phe	Phe	Gly	Leu	Arg	Gly
					185				190				195	
Pro	Ile	Lys	Glu	His	Leu	Pro	Thr	Ala	Thr	Thr	His	Ser	Ala	His

Leu Val Asn Asp	200	Phe Ile Cys Gly Gly	205	Leu Leu Gly Ala Met	210	Leu
Gly Phe Leu Phe	215	Phe Pro Ile Asn Val	220	Lys Thr Arg Ile Gln	225	
Ser Gln Ile Gly	230	Gly Glu Phe Gln Ser	235	Phe Pro Lys Val Phe	240	Gln
Lys Ile Trp Leu	245	250	255	Ile Asn Leu Phe Arg	260	
Gly Ala His Leu	260	Glu Arg Asp Arg Lys	265	Ile Ser Trp Gly Ile	270	
Ile Asn Ala Thr	275	Tyr His Arg Ser	280	285		
	290	Glu Phe Leu Leu	295	Lys Val Ile		

<210> 11
<211> 89
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 039026CD1

Met Ala Ala Gln Ile Pro Glu Ser Asp Gln	1	Ile Lys Gln Phe Lys	15
	5	10	15
Glu Phe Leu Gly Thr Tyr Asn Lys Leu	20	Thr Glu Thr Cys Phe Leu	30
Asp Cys Val Lys Asp Phe Thr Thr Arg Glu	35	Val Lys Pro Glu Glu	45
Thr Thr Cys Ser Glu His Cys Leu Gln Lys	50	Tyr Leu Lys Met Thr	55
Gln Arg Ile Ser Met Arg Phe Gln Glu	65	60	
Tyr His Ile Gln Gln Asn	70	75	
Glu Ala Leu Ala Ala Lys Ala Gly Leu	80	Leu Gly Gln Pro Arg	85

<210> 12
<211> 115
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 260607CD1

Met Ala Leu Ile Pro Ser Arg Val Trp Leu	1	Pro Phe Ala Val Trp	15
	5	10	15
Val Val Asp Ser Ala Pro Val Arg Gly	20	Leu Val Arg Arg Glu Pro	30
Phe Leu Arg Thr Gly Ser Phe Ile Ala	35	Leu Phe Tyr Phe Pro Pro	45
Leu Leu Pro Val Leu Ile Asn Leu Phe	50	40	45
Ser Phe Trp Arg Gln Leu Gly Ala Ile	65	55	60
Leu Ala Glu Lys Thr Pro Phe Lys Thr	80	70	75
Asp Ala Leu Val Gly Ser Val Ser Ile	95	85	90
Arg Gln Thr Glu Ala Glu Arg Gly Cys	110	100	105
Ser			

<210> 13
<211> 675
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature

<223> Incyte ID No: 1429651CD1

<400> 13

Met Glu Ser Gly Thr Ser Ser Pro Gln Pro Pro Gln Leu Asp Pro
 1 5 10 15
 Leu Asp Ala Phe Pro Gln Lys Gly Leu Glu Pro Gly Asp Ile Ala
 20 25 30
 Val Leu Val Leu Tyr Phe Leu Phe Val Leu Ala Val Gly Leu Trp
 35 40 45
 Ser Thr Val Lys Thr Lys Arg Asp Thr Val Lys Gly Tyr Phe Leu
 50 55 60
 Ala Gly Gly Asp Met Val Trp Trp Pro Val Gly Ala Ser Leu Phe
 65 70 75
 Ala Ser Asn Val Gly Ser Gly His Phe Ile Gly Leu Ala Gly Ser
 80 85 90
 Gly Ala Ala Thr Gly Ile Ser Val Ser Ala Tyr Glu Leu Asn Gly
 95 100 105
 Leu Phe Ser Val Leu Met Leu Ala Trp Ile Phe Leu Pro Ile Tyr
 110 115 120
 Ile Ala Gly Gln Val Thr Thr Met Pro Glu Tyr Leu Arg Lys Arg
 125 130 135
 Phe Gly Gly Ile Arg Ile Pro Ile Ile Leu Ala Val Leu Tyr Leu
 140 145 150
 Phe Ile Tyr Ile Phe Thr Lys Ile Ser Val Asp Met Tyr Ala Gly
 155 160 165
 Ala Ile Phe Ile Gln Gln Ser Leu His Leu Asp Leu Tyr Leu Ala
 170 175 180
 Ile Val Gly Leu Leu Ala Ile Thr Ala Val Tyr Thr Val Ala Gly
 185 190 195
 Gly Leu Ala Ala Val Ile Tyr Thr Asp Ala Leu Gln Thr Leu Ile
 200 205 210
 Met Leu Ile Gly Ala Leu Thr Leu Met Gly Tyr Ser Phe Ala Ala
 215 220 225
 Val Gly Gly Met Glu Gly Leu Lys Glu Lys Tyr Phe Leu Ala Leu
 230 235 240
 Ala Ser Asn Arg Ser Glu Asn Ser Ser Cys Gly Leu Pro Arg Glu
 245 250 255
 Asp Ala Phe His Ile Phe Arg Asp Pro Leu Thr Ser Asp Leu Pro
 260 265 270
 Trp Pro Gly Val Leu Phe Gly Met Ser Ile Pro Ser Leu Trp Tyr
 275 280 285
 Trp Cys Thr Asp Gln Val Ile Val Gln Arg Thr Leu Ala Ala Lys
 290 295 300
 Asn Leu Ser His Ala Lys Gly Gly Ala Leu Met Ala Ala Tyr Leu
 305 310 315
 Lys Val Leu Pro Leu Phe Ile Met Val Phe Pro Gly Met Val Ser
 320 325 330
 Arg Ile Leu Phe Pro Asp Gln Val Ala Cys Ala Asp Pro Glu Ile
 335 340 345
 Cys Gln Lys Ile Cys Ser Asn Pro Ser Gly Cys Ser Asp Ile Ala
 350 355 360
 Tyr Pro Lys Leu Val Leu Glu Leu Leu Pro Thr Gly Leu Arg Gly
 365 370 375
 Leu Met Met Ala Val Met Val Ala Ala Leu Met Ser Ser Leu Thr
 380 385 390
 Ser Ile Phe Asn Ser Ala Ser Thr Ile Phe Thr Met Asp Leu Trp
 395 400 405
 Asn His Leu Arg Pro Arg Ala Ser Glu Lys Glu Leu Met Ile Val
 410 415 420
 Gly Arg Val Phe Val Leu Leu Leu Val Leu Val Ser Ile Leu Trp
 425 430 435
 Ile Pro Val Val Gln Ala Ser Gln Gly Gly Gln Leu Phe Ile Tyr
 440 445 450
 Ile Gln Ser Ile Ser Ser Tyr Leu Gln Pro Pro Val Ala Val Val
 455 460 465
 Phe Ile Met Gly Cys Phe Trp Lys Arg Thr Asn Glu Lys Gly Ala
 470 475 480
 Phe Trp Gly Leu Ile Ser Gly Leu Leu Leu Gly Leu Val Arg Leu

Val	Leu	Asp	Phe	Ile	Tyr	Val	Gln	Pro	Arg	Cys	Asp	Gln	Pro	Asp
485														495
500									505					510
Glu	Arg	Pro	Val	Leu	Val	Lys	Ser	Ile	His	Tyr	Leu	Tyr	Phe	Ser
515									520					525
Met	Ile	Leu	Ser	Thr	Val	Thr	Leu	Ile	Thr	Val	Ser	Thr	Val	Ser
530									535					540
Trp	Phe	Thr	Glu	Pro	Pro	Ser	Lys	Glu	Met	Val	Ser	His	Leu	Thr
545									550					555
Trp	Phe	Thr	Arg	His	Asp	Pro	Val	Val	Gln	Lys	Glu	Gln	Ala	Pro
560									565					570
Pro	Ala	Ala	Pro	Leu	Ser	Leu	Thr	Leu	Ser	Gln	Asn	Gly	Met	Pro
575									580					585
Glu	Ala	Ser	Ser	Ser	Ser	Ser	Val	Gln	Phe	Glu	Met	Val	Gln	Glu
590									595					600
Asn	Thr	Ser	Lys	Thr	His	Ser	Cys	Asp	Met	Thr	Pro	Lys	Gln	Ser
605									610					615
Lys	Val	Val	Lys	Ala	Ile	Leu	Trp	Leu	Cys	Gly	Ile	Gln	Glu	Lys
620									625					630
Gly	Lys	Glu	Glu	Leu	Pro	Ala	Arg	Ala	Glu	Ala	Ile	Ile	Val	Ser
635									640					645
Leu	Glu	Glu	Asn	Pro	Leu	Val	Lys	Thr	Leu	Leu	Asp	Val	Asn	Leu
650									655					660
Ile	Phe	Cys	Val	Ser	Cys	Ala	Ile	Phe	Ile	Trp	Gly	Tyr	Phe	Ala
665									670					675

<210> 14
<211> 320
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2069971CD1

Met	Tyr	His	Cys	His	Ser	Gly	Ser	Lys	Pro	Thr	Glu	Lys	Gly	Ala
1									10					15
Asn	Glu	Tyr	Ala	Tyr	Ala	Lys	Trp	Lys	Leu	Cys	Ser	Ala	Ser	Ala
									20	25				30
Ile	Cys	Phe	Ile	Phe	Met	Ile	Ala	Glu	Val	Val	Gly	Gly	His	Ile
									35	40				45
Ala	Gly	Ser	Leu	Ala	Val	Val	Thr	Asp	Ala	Ala	His	Leu	Leu	Ile
									50	55				60
Asp	Leu	Thr	Ser	Phe	Leu	Leu	Ser	Leu	Phe	Ser	Leu	Trp	Leu	Ser
									65	70				75
Ser	Lys	Pro	Pro	Ser	Lys	Arg	Leu	Thr	Phe	Gly	Trp	His	Arg	Ala
									80	85				90
Glu	Ile	Leu	Gly	Ala	Leu	Leu	Ser	Ile	Leu	Cys	Ile	Trp	Val	Val
									95	100				105
Thr	Gly	Val	Leu	Val	Tyr	Leu	Ala	Cys	Glu	Arg	Leu	Leu	Tyr	Pro
									110	115				120
Asp	Tyr	Gln	Ile	Gln	Ala	Thr	Val	Met	Ile	Ile	Val	Ser	Ser	Cys
									125	130				135
Ala	Val	Ala	Ala	Asn	Ile	Val	Leu	Thr	Val	Val	Leu	His	Gln	Arg
									140	145				150
Cys	Leu	Gly	His	Asn	His	Lys	Glu	Val	Gln	Ala	Asn	Ala	Ser	Val
									155	160				165
Arg	Ala	Ala	Phe	Val	His	Ala	Leu	Gly	Asp	Leu	Phe	Gln	Ser	Ile
									170	175				180
Ser	Val	Leu	Ile	Ser	Ala	Leu	Ile	Ile	Tyr	Phe	Lys	Pro	Glu	Tyr
									185	190				195
Lys	Ile	Ala	Asp	Pro	Ile	Cys	Thr	Phe	Ile	Phe	Ser	Ile	Leu	Val
									200	205				210
Leu	Ala	Ser	Thr	Ile	Thr	Ile	Leu	Lys	Asp	Phe	Ser	Ile	Leu	Leu
									215	220				225
Met	Glu	Gly	Val	Pro	Lys	Ser	Leu	Asn	Tyr	Ser	Gly	Val	Lys	Glu
									230	235				240

Leu Ile Leu Ala Val Asp Gly Val Leu Ser Val His Ser Leu His
 245 250 255
 Ile Trp Ser Leu Thr Met Asn Gln Val Ile Leu Ser Ala His Val
 260 265 270
 Ala Thr Ala Ala Ser Arg Asp Ser Gln Val Val Arg Arg Glu Ile
 275 280 285
 Ala Lys Ala Leu Ser Lys Ser Phe Thr Met His Ser Leu Thr Ile
 290 295 300
 Gln Met Glu Ser Pro Val Asp Gln Asp Pro Asp Cys Leu Phe Cys
 305 310 315
 Glu Asp Pro Cys Asp
 320
 <210> 15
 <211> 462
 <212> PRT
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte ID No: 2329339CD1

 <400> 15
 Met Ala Glu Glu Gln Glu Phe Thr Gln Leu Cys Lys Leu Pro Ala
 1 5 10 15
 Gln Pro Ser His Pro His Cys Val Asn Asn Thr Tyr Arg Ser Ala
 20 25 30
 Gln His Ser Gln Ala Leu Leu Arg Gly Leu Leu Ala Leu Arg Asp
 35 40 45
 Ser Gly Ile Leu Phe Asp Val Val Leu Val Val Glu Gly Arg His
 50 55 60
 Ile Glu Ala His Arg Ile Leu Leu Ala Ala Ser Cys Asp Tyr Phe
 65 70 75
 Arg Gly Met Phe Ala Gly Gly Leu Lys Glu Met Glu Gln Glu Glu
 80 85 90
 Val Leu Ile His Gly Val Ser Tyr Asn Ala Met Cys Gln Ile Leu
 95 100 105
 His Phe Ile Tyr Thr Ser Glu Leu Glu Leu Ser Leu Ser Asn Val
 110 115 120
 Gln Glu Thr Leu Val Ala Ala Cys Gln Leu Gln Ile Pro Glu Ile
 125 130 135
 Ile His Phe Cys Cys Asp Phe Leu Met Ser Trp Val Asp Glu Glu
 140 145 150
 Asn Ile Leu Asp Val Tyr Arg Leu Ala Glu Leu Phe Asp Leu Ser
 155 160 165
 Arg Leu Thr Glu Gln Leu Asp Thr Tyr Ile Leu Lys Asn Phe Val
 170 175 180
 Ala Phe Ser Arg Thr Asp Lys Tyr Arg Gln Leu Pro Leu Glu Lys
 185 190 195
 Val Tyr Ser Leu Leu Ser Ser Asn Arg Leu Glu Val Ser Cys Glu
 200 205 210
 Thr Glu Val Tyr Glu Gly Ala Leu Leu Tyr His Tyr Ser Leu Glu
 215 220 225
 Gln Val Gln Ala Asp Gln Ile Ser Leu His Glu Pro Pro Lys Leu
 230 235 240
 Leu Glu Thr Val Arg Phe Pro Leu Met Glu Ala Glu Val Leu Gln
 245 250 255
 Arg Leu His Asp Lys Leu Asp Pro Ser Pro Leu Arg Asp Thr Val
 260 265 270
 Ala Ser Gly Leu Met Tyr His Arg Asn Glu Ser Leu Gln Pro Ser
 275 280 285
 Leu Gln Ser Pro Gln Thr Glu Leu Arg Ser Asp Phe Gln Cys Val
 290 295 300
 Val Gly Phe Gly Gly Ile His Ser Thr Pro Ser Thr Val Leu Ser
 305 310 315
 Asp Gln Ala Lys Tyr Leu Asn Pro Leu Leu Gly Glu Trp Lys His
 320 325 330
 Phe Thr Ala Ser Leu Ala Pro Arg Met Ser Asn Gln Gly Ile Ala
 335 340 345

Val Leu Asn Asn Phe Val Tyr Leu Ile Gly Gly Asp Asn Asn Val
 350 355 360
 Gln Gly Phe Arg Ala Glu Ser Arg Cys Trp Arg Tyr Asp Pro Arg
 365 370 375
 His Asn Arg Trp Phe Gln Ile Gln Ser Leu Gln Gln Glu His Ala
 380 385 390
 Asp Leu Ser Val Cys Val Val Gly Arg Tyr Ile Tyr Ala Val Ala
 395 400 405
 Gly Arg Asp Tyr His Asn Asp Leu Asn Ala Val Glu Arg Tyr Asp
 410 415 420
 Pro Ala Thr Asn Ser Trp Ala Tyr Val Ala Pro Leu Lys Arg Glu
 425 430 435
 Val Tyr Ala His Ala Gly Ala Thr Leu Glu Gly Lys Met Tyr Ile
 440 445 450
 Thr Cys Gly Arg Lys Leu Ile Pro Phe Ser Glu Gly
 455 460

<210> 16

<211> 98

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2540219CD1

<400> 16

Met Arg Ala Cys Ala Val Trp Leu Ala Gly Gly Met Ala Gly Ala
 1 5 10 15
 Ile Ser Trp Gly Thr Ala Thr Pro Met Asp Val Val Lys Ser Arg
 20 25 30
 Leu Gln Ala Asp Gly Val Tyr Leu Asn Lys Tyr Lys Gly Val Leu
 35 40 45
 Asp Cys Ile Ser Gln Ser Tyr Gln Lys Glu Gly Leu Lys Val Phe
 50 55 60
 Phe Arg Gly Ile Thr Val Asn Ala Val Arg Gly Phe Pro Met Ser
 65 70 75
 Ala Ala Met Phe Leu Gly Tyr Glu Leu Ser Leu Gln Ala Ile Arg
 80 85 90
 Gly Asp His Ala Val Thr Ser Pro
 95

<210> 17

<211> 748

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2722462CD1

<400> 17

Met Asn Tyr Gln Glu Ala Ala Ile Tyr Leu Gln Glu Gly Glu Asn
 1 5 10 15
 Asn Asp Lys Phe Phe Thr His Pro Lys Asp Ala Lys Ala Leu Ala
 20 25 30
 Ala Tyr Leu Phe Ala His Asn His Leu Phe Tyr Leu Met Glu Leu
 35 40 45
 Ala Thr Ala Leu Leu Leu Leu Ser Leu Cys Glu Ala Pro
 50 55 60
 Ala Val Pro Ala Leu Arg Leu Gly Ile Tyr Val His Ala Thr Leu
 65 70 75
 Glu Leu Phe Ala Leu Met Val Val Phe Glu Leu Cys Met Lys
 80 85 90
 Leu Arg Trp Leu Gly Leu His Thr Phe Ile Arg His Lys Arg Thr
 95 100 105
 Met Val Lys Thr Ser Val Leu Val Val Gln Phe Val Glu Ala Ile
 110 115 120
 Val Val Leu Val Arg Gln Met Ser His Val Arg Val Thr Arg Ala
 125 130 135

Leu Arg Cys Ile Phe Leu Val Asp Cys Arg Tyr Cys Gly Gly Val
 140 145 150
 Arg Arg Asn Leu Arg Gln Ile Phe Gln Ser Leu Pro Pro Phe Met
 155 160 165
 Asp Ile Leu Leu Leu Leu Phe Phe Met Ile Ile Phe Ala Ile
 170 175 180
 Leu Gly Phe Tyr Leu Phe Ser Pro Asn Pro Ser Asp Pro Tyr Phe
 185 190 195
 Ser Thr Leu Glu Asn Ser Ile Val Ser Leu Phe Val Leu Leu Thr
 200 205 210
 Thr Ala Asn Phe Pro Asp Val Met Met Pro Ser Tyr Ser Arg Asn
 215 220 225
 Pro Trp Ser Cys Val Phe Phe Ile Val Tyr Leu Ser Ile Glu Leu
 230 235 240
 Tyr Phe Ile Met Asn Leu Leu Leu Ala Val Val Phe Asp Thr Phe
 245 250 255
 Asn Asp Ile Glu Lys Arg Lys Phe Lys Ser Leu Leu Leu His Lys
 260 265 270
 Arg Thr Ala Ile Gln His Ala Tyr Arg Leu Leu Ile Ser Gln Arg
 275 280 285
 Arg Pro Ala Gly Ile Ser Tyr Arg Gln Phe Glu Gly Leu Met Arg
 290 295 300
 Phe Tyr Lys Pro Arg Met Ser Ala Arg Glu Arg Tyr Leu Thr Phe
 305 310 315
 Lys Ala Leu Asn Gln Asn Asn Thr Pro Leu Leu Ser Leu Lys Asp
 320 325 330
 Phe Tyr Asp Ile Tyr Glu Val Ala Ala Leu Lys Trp Lys Ala Lys
 335 340 345
 Lys Asn Arg Glu His Trp Phe Asp Glu Leu Pro Arg Thr Ala Leu
 350 355 360
 Leu Ile Phe Lys Gly Ile Asn Ile Leu Val Lys Ser Lys Ala Phe
 365 370 375
 Gln Tyr Phe Met Tyr Leu Val Val Ala Val Asn Gly Val Trp Ile
 380 385 390
 Leu Val Glu Thr Phe Met Leu Lys Gly Gly Asn Phe Phe Ser Lys
 395 400 405
 His Val Pro Trp Ser Tyr Leu Val Phe Leu Thr Ile Tyr Gly Val
 410 415 420
 Glu Leu Phe Leu Lys Val Ala Gly Leu Gly Pro Val Glu Tyr Leu
 425 430 435
 Ser Ser Gly Trp Asn Leu Phe Asp Phe Ser Val Thr Val Phe Ala
 440 445 450
 Phe Leu Gly Leu Leu Ala Leu Ala Leu Asn Met Glu Pro Phe Tyr
 455 460 465
 Phe Ile Val Val Leu Arg Pro Leu Gln Leu Leu Arg Leu Phe Lys
 470 475 480
 Leu Lys Glu Arg Tyr Arg Asn Val Leu Asp Thr Met Phe Glu Leu
 485 490 495
 Leu Pro Arg Met Ala Ser Leu Gly Leu Thr Leu Leu Ile Phe Tyr
 500 505 510
 Tyr Ser Phe Ala Ile Val Gly Met Glu Phe Phe Cys Gly Ile Val
 515 520 525
 Phe Pro Asn Cys Cys Asn Thr Ser Thr Val Ala Asp Ala Tyr Arg
 530 535 540
 Trp Arg Asn His Thr Val Gly Asn Arg Thr Val Val Glu Glu Gly
 545 550 555
 Tyr Tyr Tyr Leu Asn Asn Phe Asp Asn Ile Leu Asn Ser Phe Val
 560 565 570
 Thr Leu Phe Glu Leu Thr Val Val Asn Asn Trp Tyr Ile Ile Met
 575 580 585
 Glu Gly Val Thr Ser Gln Thr Ser His Trp Ser Arg Leu Tyr Phe
 590 595 600
 Met Thr Phe Tyr Ile Val Thr Met Val Val Met Thr Ile Ile Val
 605 610 615
 Ala Phe Ile Leu Glu Ala Phe Val Phe Arg Met Asn Tyr Ser Arg
 620 625 630
 Lys Asn Gln Asp Ser Glu Val Asp Gly Gly Ile Thr Leu Glu Lys
 635 640 645

Glu Ile Ser Lys Glu Glu Leu Val Ala Val Leu Glu Leu Tyr Arg
 650 655 660
 Glu Ala Arg Gly Ala Ser Ser Asp Val Thr Arg Leu Leu Glu Thr
 665 670 675
 Leu Ser Gln Met Glu Arg Tyr Gln Gln His Ser Met Val Phe Leu
 680 685 690
 Gly Arg Arg Ser Arg Thr Lys Ser Asp Leu Ser Leu Lys Met Tyr
 695 700 705
 Gln Glu Glu Ile Gln Glu Trp Tyr Glu Glu His Ala Arg Glu Gln
 710 715 720
 Glu Gln Gln Arg Gln Leu Ser Ser Ser Ala Ala Pro Ala Ala Gln
 725 730 735
 Gln Pro Pro Gly Ser Arg Gln Arg Ser Gln Thr Val Thr
 740 745
 <210> 18
 <211> 507
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2739264CD1

<400> 18
 Met Ala Phe Asn Phe Gly Ala Pro Ser Gly Thr Ser Gly Thr Ala
 1 5 10 15
 Ala Ala Thr Ala Ala Pro Ala Gly Gly Phe Gly Gly Phe Gly Thr
 20 25 30
 Thr Ser Thr Thr Ala Gly Ser Ala Phe Ser Phe Ser Ala Pro Thr
 35 40 45
 Asn Thr Gly Thr Gly Leu Phe Gly Gly Thr Gln Asn Lys Gly
 50 55 60
 Phe Gly Phe Gly Thr Gly Phe Gly Thr Thr Gly Thr Ser Thr
 65 70 75
 Gly Leu Gly Thr Gly Leu Gly Thr Gly Leu Gly Phe Gly Gly Phe
 80 85 90
 Asn Thr Gln Gln Gln Gln Thr Thr Leu Gly Gly Leu Phe Ser
 95 100 105
 Gln Pro Thr Gln Ala Pro Thr Gln Ser Asn Gln Leu Ile Asn Thr
 110 115 120
 Ala Ser Ala Leu Ser Ala Pro Thr Leu Leu Gly Asp Glu Arg Asp
 125 130 135
 Ala Ile Leu Ala Lys Trp Asn Gln Leu Gln Ala Phe Trp Gly Thr
 140 145 150
 Gly Lys Gly Tyr Phe Asn Asn Asn Ile Pro Pro Val Glu Phe Thr
 155 160 165
 Gln Glu Asn Pro Phe Cys Arg Phe Lys Ala Val Gly Tyr Ser Cys
 170 175 180
 Met Pro Ser Asn Lys Asp Glu Asp Gly Leu Val Val Leu Val Phe
 185 190 195
 Asn Lys Lys Glu Thr Glu Ile Arg Ser Gln Gln Gln Leu Val
 200 205 210
 Glu Ser Leu His Lys Val Leu Gly Gly Asn Gln Thr Leu Thr Val
 215 220 225
 Asn Val Glu Gly Thr Lys Thr Leu Pro Asp Asp Gln Thr Glu Val
 230 235 240
 Val Ile Tyr Val Val Glu Arg Ser Pro Asn Gly Thr Ser Arg Arg
 245 250 255
 Val Pro Ala Thr Thr Leu Tyr Ala His Phe Glu Gln Ala Asn Ile
 260 265 270
 Lys Thr Gln Leu Gln Gln Leu Gly Val Thr Leu Ser Met Thr Arg
 275 280 285
 Thr Glu Leu Ser Pro Ala Gln Ile Lys Gln Leu Leu Gln Asn Pro
 290 295 300
 Pro Ala Gly Val Asp Pro Ile Ile Trp Glu Gln Ala Lys Val Asp
 305 310 315
 Asn Pro Asp Ser Glu Lys Leu Ile Pro Val Pro Met Val Gly Phe
 320 325 330

Lys Glu Leu Leu Arg Arg Leu Lys Val Gln Asp Gln Met Thr Lys
 335 340 345
 Gln His Gln Thr Arg Leu Asp Ile Ile Ser Glu Asp Ile Ser Glu
 350 355 360
 Leu Gln Lys Asn Gln Thr Thr Ser Val Ala Lys Ile Ala Gln Tyr
 365 370 375
 Lys Arg Lys Leu Met Asp Leu Ser His Arg Thr Leu Gln Val Leu
 380 385 390
 Ile Lys Gln Glu Ile Gln Arg Lys Ser Gly Tyr Ala Ile Gln Ala
 395 400 405
 Asp Glu Glu Gln Leu Arg Val Gln Leu Asp Thr Ile Gln Gly Glu
 410 415 420
 Leu Asn Ala Pro Thr Gln Phe Lys Gly Arg Leu Asn Glu Leu Met
 425 430 435
 Ser Gln Ile Arg Met Gln Asn His Phe Gly Ala Val Arg Ser Glu
 440 445 450
 Glu Arg Tyr Tyr Ile Asp Ala Asp Leu Leu Arg Glu Ile Lys Gln
 455 460 465
 His Leu Lys Gln Gln Glu Gly Leu Ser His Leu Ile Ser Ile
 470 475 480
 Ile Lys Asp Asp Leu Glu Asp Ile Lys Leu Val Glu His Gly Leu
 485 490 495
 Asn Glu Thr Ile His Ile Arg Gly Gly Val Phe Ser
 500 505
 <210> 19
 <211> 592
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2758310CD1

<400> 19

Met	Trp	Phe	Cys	Gly	Gln	Ser	Thr	Pro	Phe	Gly	Cys	Glu	Leu	His
1				5					10				15	
Asp	Thr	Cys	Val	Gln	Leu	Cys	His	Phe	His	Ser	Ala	Leu	Leu	His
							20		25				30	
Arg	Arg	Gln	Lys	Pro	Trp	Pro	Ser	Pro	Ala	Val	Phe	Phe	Arg	Arg
				35					40				45	
Asn	Val	Arg	Gly	Leu	Pro	Pro	Arg	Phe	Ser	Ser	Pro	Thr	Pro	Leu
				50					55				60	
Trp	Arg	Lys	Val	Leu	Ser	Thr	Ala	Val	Val	Gly	Ala	Pro	Leu	Leu
				65					70				75	
Leu	Gly	Ala	Arg	Tyr	Val	Met	Ala	Glu	Ala	Arg	Glu	Lys	Arg	Arg
				80					85				90	
Met	Arg	Leu	Val	Val	Asp	Gly	Met	Gly	Arg	Phe	Gly	Arg	Ser	Leu
				95					100				105	
Lys	Val	Gly	Leu	Gln	Ile	Ser	Leu	Asp	Tyr	Trp	Trp	Cys	Thr	Asn
				110					115				120	
Val	Val	Leu	Arg	Gly	Trp	Lys	Ser	Pro	Gly	Tyr	Leu	Glu	Val	Met
				125					130				135	
Ser	Ala	Cys	His	Gln	Arg	Ala	Ala	Asp	Ala	Leu	Val	Ala	Gly	Ala
				140					145				150	
Ile	Ser	Asn	Gly	Gly	Leu	Tyr	Val	Lys	Leu	Gly	Gln	Gly	Leu	Cys
				155					160				165	
Ser	Phe	Asn	His	Leu	Leu	Pro	Pro	Glu	Tyr	Thr	Arg	Thr	Leu	Arg
				170					175				180	
Val	Leu	Glu	Asp	Arg	Ala	Leu	Lys	Arg	Gly	Phe	Gln	Glu	Val	Asp
				185					190				195	
Glu	Leu	Phe	Leu	Glu	Asp	Phe	Gln	Ala	Leu	Pro	His	Glu	Leu	Phe
				200					205				210	
Gln	Glu	Phe	Asp	Tyr	Gln	Pro	Ile	Ala	Ala	Ala	Ser	Leu	Ala	Gln
				215					220				225	
Val	His	Arg	Ala	Lys	Leu	His	Asp	Gly	Thr	Ser	Val	Ala	Val	Lys
				230					235				240	
Val	Gln	Tyr	Ile	Asp	Leu	Arg	Asp	Arg	Phe	Asp	Gly	Asp	Ile	His
				245					250				255	

Thr Leu Glu Leu Leu Leu Arg Leu Val Glu Val Met His Pro Ser
 260 265 270
 Phe Gly Phe Ser Trp Val Leu Gln Asp Leu Lys Gly Thr Leu Ala
 275 280 285
 Gln Glu Leu Asp Phe Glu Asn Glu Gly Arg Asn Ala Glu Arg Cys
 290 295 300
 Ala Arg Glu Leu Ala His Phe Pro Tyr Val Val Val Pro Arg Val
 305 310 315
 His Trp Asp Lys Ser Ser Lys Arg Val Leu Thr Ala Asp Phe Cys
 320 325 330
 Ala Gly Cys Lys Val Asn Asp Val Glu Ala Ile Arg Ser Gln Gly
 335 340 345
 Leu Ala Val His Asp Ile Ala Glu Lys Leu Ile Lys Ala Phe Ala
 350 355 360
 Glu Gln Ile Phe Tyr Thr Gly Phe Ile His Ser Asp Pro His Pro
 365 370 375
 Gly Asn Val Leu Val Arg Lys Gly Pro Asp Gly Lys Ala Glu Leu
 380 385 390
 Val Leu Leu Asp His Gly Leu Tyr Gln Phe Leu Glu Glu Lys Asp
 395 400 405
 Arg Ala Ala Leu Cys Gln Leu Trp Arg Ala Ile Ile Leu Arg Asp
 410 415 420
 Asp Ala Ala Met Arg Ala His Ala Ala Ala Leu Gly Val Gln Asp
 425 430 435
 Tyr Leu Leu Phe Ala Glu Met Leu Met Gln Arg Pro Val Arg Leu
 440 445 450
 Gly Gln Leu Trp Gly Ser His Leu Leu Ser Arg Glu Glu Ala Ala
 455 460 465
 Tyr Met Val Asp Met Ala Arg Glu Arg Phe Glu Ala Val Met Ala
 470 475 480
 Val Leu Arg Glu Leu Pro Arg Pro Met Leu Leu Val Leu Arg Asn
 485 490 495
 Ile Asn Thr Val Arg Ala Ile Asn Val Ala Leu Gly Ala Pro Val
 500 505 510
 Asp Arg Tyr Phe Leu Met Ala Lys Arg Ala Val Arg Gly Trp Ser
 515 520 525
 Arg Leu Ala Gly Ala Thr Tyr Arg Gly Val Tyr Gly Thr Ser Leu
 530 535 540
 Leu Arg His Ala Lys Val Val Trp Glu Met Leu Lys Phe Glu Val
 545 550 555
 Ala Leu Arg Leu Glu Thr Leu Ala Met Arg Leu Thr Ala Leu Leu
 560 565 570
 Ala Arg Ala Leu Val His Leu Ser Leu Val Pro Pro Ala Glu Glu
 575 580 585
 Leu Tyr Gln Tyr Leu Glu Thr
 590

<210> 20

<211> 841

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2762348CD1

<400> 20

Met Ala Ser Val Phe Arg Ser Glu Glu Met Cys Leu Ser Gln Leu
 1 5 10 15
 Phe Leu Gln Val Glu Ala Ala Tyr Cys Cys Val Ala Glu Leu Gly
 20 25 30
 Glu Leu Gly Leu Val Gln Phe Lys Asp Leu Asn Met Asn Val Asn
 35 40 45
 Ser Phe Gln Arg Lys Phe Val Asn Glu Val Arg Arg Cys Glu Ser
 50 55 60
 Leu Glu Arg Ile Leu Arg Phe Leu Glu Asp Glu Met Gln Asn Glu
 65 70 75
 Ile Val Val Gln Leu Leu Glu Lys Ser Pro Leu Thr Pro Leu Pro
 80 85 90

Arg Glu Met Ile Thr Leu Glu Thr Val Leu Glu Lys Leu Glu Gly
 95 100 105
 Glu Leu Gln Glu Ala Asn Gln Asn Gln Gln Ala Leu Lys Gln Ser
 110 115 120
 Phe Leu Glu Leu Thr Glu Leu Lys Tyr Leu Leu Lys Lys Thr Gln
 125 130 135
 Asp Phe Phe Glu Thr Glu Thr Asn Leu Ala Asp Asp Phe Phe Thr
 140 145 150
 Glu Asp Thr Ser Gly Leu Leu Glu Leu Lys Ala Val Pro Ala Tyr
 155 160 165
 Met Thr Gly Lys Leu Gly Phe Ile Ala Gly Cys Asp Pro Thr Gly
 170 175 180
 Lys Arg Met Ala Ser Phe Glu Arg Leu Leu Trp Arg Val Cys Arg
 185 190 195
 Gly Asn Val Tyr Leu Lys Phe Ser Glu Met Asp Ala Pro Leu Glu
 200 205 210
 Asp Pro Val Thr Lys Glu Glu Ile Gln Lys His Ile Phe Ile Ile
 215 220 225
 Phe Tyr Gln Gly Glu Gln Leu Arg Gln Lys Ile Lys Lys Ile Cys
 230 235 240
 Asp Gly Phe Arg Ala Thr Val Tyr Pro Cys Pro Glu Pro Ala Val
 245 250 255
 Glu Arg Arg Glu Met Leu Glu Ser Val Asn Val Arg Leu Glu Asp
 260 265 270
 Leu Ile Thr Val Ile Thr Gln Thr Glu Ser His Arg Gln Arg Leu
 275 280 285
 Leu Gln Glu Ala Ala Ala Asn Trp His Ser Trp Leu Ile Lys Val
 290 295 300
 Gln Lys Met Lys Ala Val Tyr His Ile Leu Asn Met Cys Asn Ile
 305 310 315
 Asp Val Thr Gln Gln Cys Val Ile Ala Glu Ile Trp Phe Pro Val
 320 325 330
 Ala Asp Ala Thr Arg Ile Lys Arg Ala Leu Glu Gln Gly Met Glu
 335 340 345
 Leu Ser Gly Ser Ser Met Ala Pro Ile Met Thr Thr Val Gln Ser
 350 355 360
 Lys Thr Ala Pro Pro Thr Phe Asn Arg Thr Asn Lys Phe Thr Ala
 365 370 375
 Gly Phe Gln Asn Ile Val Asp Ala Tyr Gly Val Gly Ser Tyr Arg
 380 385 390
 Glu Ile Asn Pro Ala Pro Tyr Thr Ile Ile Thr Phe Pro Phe Leu
 395 400 405
 Phe Ala Val Met Phe Gly Asp Cys Gly His Gly Thr Val Met Leu
 410 415 420
 Leu Ala Ala Leu Trp Met Ile Leu Asn Glu Arg Arg Leu Leu Ser
 425 430 435
 Gln Lys Thr Asp Asn Glu Ile Trp Asn Thr Phe Phe His Gly Arg
 440 445 450
 Tyr Leu Ile Leu Leu Met Gly Ile Phe Ser Ile Tyr Thr Gly Leu
 455 460 465
 Ile Tyr Asn Asp Cys Phe Ser Lys Ser Leu Asn Ile Phe Gly Ser
 470 475 480
 Ser Trp Ser Val Gln Pro Met Phe Arg Asn Gly Thr Trp Asn Thr
 485 490 495
 His Val Met Glu Glu Ser Leu Tyr Leu Gln Leu Asp Pro Ala Ile
 500 505 510
 Pro Gly Val Tyr Phe Gly Asn Pro Tyr Pro Phe Gly Ile Asp Pro
 515 520 525
 Ile Trp Asn Leu Ala Ser Asn Lys Leu Thr Phe Leu Asn Ser Tyr
 530 535 540
 Lys Met Lys Met Ser Val Ile Leu Gly Ile Val Gln Met Val Phe
 545 550 555
 Gly Val Ile Leu Ser Leu Phe Asn His Ile Tyr Phe Arg Arg Thr
 560 565 570
 Leu Asn Ile Ile Leu Gln Phe Ile Pro Glu Met Ile Phe Ile Leu
 575 580 585
 Cys Leu Phe Gly Tyr Leu Val Phe Met Ile Ile Phe Lys Trp Cys
 590 595 600

Cys Phe Asp Val His Val Ser Gln His Ala Pro Ser Ile Leu Ile
 605 610 615
 His Phe Ile Asn Met Phe Leu Phe Asn Tyr Ser Asp Ser Ser Asn
 620 625 630
 Ala Pro Leu Tyr Lys His Gln Gln Glu Val Gln Ser Phe Phe Val
 635 640 645
 Val Met Ala Leu Ile Ser Val Pro Trp Met Leu Leu Ile Lys Pro
 650 655 660
 Phe Ile Leu Arg Ala Ser His Arg Lys Ser Gln Leu Gln Ala Ser
 665 670 675
 Arg Ile Gln Glu Asp Ala Thr Glu Asn Ile Glu Gly Asp Ser Ser
 680 685 690
 Ser Pro Ser Ser Arg Ser Gly Gln Arg Thr Ser Ala Asp Thr His
 695 700 705
 Gly Ala Leu Asp Asp His Gly Glu Glu Phe Asn Phe Gly Asp Val
 710 715 720
 Phe Val His Gln Ala Ile His Thr Ile Glu Tyr Cys Leu Gly Cys
 725 730 735
 Ile Ser Asn Thr Ala Ser Tyr Leu Arg Leu Trp Ala Leu Ser Leu
 740 745 750
 Ala His Ala Gln Leu Ser Glu Val Leu Trp Thr Met Val Met Asn
 755 760 765
 Ser Gly Leu Gln Thr Arg Gly Trp Gly Ile Val Gly Val Phe
 770 775 780
 Ile Ile Phe Ala Val Phe Ala Val Leu Thr Val Ala Ile Leu Leu
 785 790 795
 Ile Met Glu Gly Leu Ser Ala Phe Leu His Ala Leu Arg Leu His
 800 805 810
 Trp Val Glu Phe Gln Asn Lys Phe Tyr Val Gly Asp Gly Tyr Lys
 815 820 825
 Phe Ser Pro Phe Ser Phe Lys His Ile Leu Asp Gly Thr Ala Glu
 830 835 840
 Glu

<210> 21
<211> 253
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3715961CD1

<400> 21
Met Ser Glu Cys Pro Leu Ile Leu Tyr Ile His Lys His Ile Asp
 1 5 10 15
 Thr Tyr Ser Gln Ser Tyr Leu Phe Asn Asp Leu Phe Tyr Pro Val
 20 25 30
 Tyr Ser Gly Gly Arg Met Val Thr Tyr Glu His Leu Arg Glu Val
 35 40 45
 Val Phe Gly Lys Ser Glu Asp Glu His Tyr Pro Leu Trp Lys Ser
 50 55 60
 Val Ile Gly Gly Met Met Ala Gly Val Ile Gly Gln Phe Leu Ala
 65 70 75
 Asn Pro Thr Asp Leu Val Lys Val Gln Met Gln Met Glu Gly Lys
 80 85 90
 Arg Lys Leu Glu Gly Lys Pro Leu Arg Phe Arg Gly Val His His
 95 100 105
 Ala Phe Ala Lys Ile Leu Ala Glu Gly Gly Ile Arg Gly Leu Trp
 110 115 120
 Ala Gly Trp Val Pro Asn Ile Gln Arg Ala Ala Leu Val Asn Met
 125 130 135
 Gly Asp Leu Thr Thr Tyr Asp Thr Val Lys His Tyr Leu Val Leu
 140 145 150
 Asn Thr Pro Leu Glu Asp Asn Ile Met Thr His Gly Leu Ser Ser
 155 160 165
 Leu Cys Ser Gly Leu Val Ala Ser Ile Leu Gly Thr Pro Ala Asp
 170 175 180

Val Ile Lys Ser Arg Ile Met Asn Gin Pro Arg Asp Lys Gln Gly
 185 190 195
 Arg Gly Leu Leu Tyr Lys Ser Ser Thr Asp Cys Leu Ile Gln Ala
 200 205 210
 Val Gln Gly Glu Gly Phe Met Ser Leu Tyr Lys Gly Phe Leu Pro
 215 220 225
 Ser Trp Leu Arg Met Thr Pro Trp Ser Met Val Phe Trp Leu Thr
 230 235 240
 Tyr Glu Lys Ile Arg Glu Met Ser Gly Val Ser Pro Phe
 245 250

<210> 22

<211> 229

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5108194CD1

<400> 22

Met Gly Asn Gly Val Lys Glu Gly Pro Val Arg Leu His Glu Asp
 1 5 10 15
 Ala Glu Ala Val Leu Ser Ser Ser Val Ser Ser Lys Arg Asp His
 20 25 30
 Arg Gln Val Leu Ser Ser Leu Leu Ser Gly Ala Leu Ala Gly Ala
 35 40 45
 Leu Ala Lys Thr Ala Val Ala Pro Leu Asp Arg Thr Lys Ile Ile
 50 55 60
 Phe Gln Val Ser Ser Lys Arg Phe Ser Ala Lys Glu Ala Phe Arg
 65 70 75
 Val Leu Tyr Tyr Thr Tyr Leu Asn Glu Gly Phe Leu Ser Leu Trp
 80 85 90
 Arg Gly Asn Ser Ala Thr Met Val Arg Val Val Pro Tyr Ala Ala
 95 100 105
 Ile Gln Phe Ser Ala His Glu Glu Tyr Lys Arg Ile Leu Gly Ser
 110 115 120
 Tyr Tyr Gly Phe Arg Gly Glu Ala Leu Pro Pro Trp Pro Arg Leu
 125 130 135
 Phe Ala Gly Ala Leu Ala Gly Thr Thr Ala Ala Ser Leu Thr Tyr
 140 145 150
 Pro Leu Asp Leu Val Arg Ala Arg Met Ala Val Thr Pro Lys Glu
 155 160 165
 Met Tyr Ser Asn Ile Phe His Val Phe Ile Arg Ile Ser Arg Glu
 170 175 180
 Glu Gly Leu Lys Thr Leu Tyr His Gly Phe Met Pro Thr Val Leu
 185 190 195
 Gly Val Ile Pro Tyr Ala Gly Leu Ser Phe Phe Thr Tyr Glu Thr
 200 205 210
 Leu Lys Ser Leu His Arg Glu Tyr Ser Gly Arg Lys Leu Ile Pro
 215 220 225
 Phe Ser Glu Gly

<210> 23

<211> 170

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5503122CD1

<400> 23

Met Tyr Asp Asn Leu Tyr Leu His Gly Ile Glu Asp Ser Glu Ala
 1 5 10 15
 Gly Ser Ala Asp Ser Tyr Thr Ser Arg Pro Ser Asp Ser Asp Val
 20 25 30
 Ser Leu Glu Asp Arg Glu Ala Ile Arg Gln Glu Arg Glu Gln
 35 40 45

Gln Ala Ala Ile Gln Leu Glu Arg Ala Lys Ser Lys Pro Val Ala
 50 55 60
 Phe Ala Val Lys Thr Asn Val Ser Tyr Cys Gly Ala Leu Asp Glu
 65 70 75
 Asp Val Pro Val Pro Ser Thr Ala Ile Ser Phe Asp Ala Lys Asp
 80 85 90
 Phe Leu His Ile Lys Glu Lys Tyr Asn Asn Asp Trp Trp Ile Gly
 95 100 105
 Arg Leu Val Lys Glu Gly Cys Glu Ile Gly Phe Ile Pro Ser Pro
 110 115 120
 Leu Arg Leu Glu Asn Ile Arg Ile Gln Gln Glu Gln Lys Arg Gly
 125 130 135
 Arg Phe His Gly Gly Lys Ser Ser Gly Asn Ser Ser Ser Ser Leu
 140 145 150
 Gly Glu Met Val Ser Gly Thr Phe Arg Ala Thr Pro Thr Ser Thr
 155 160 165
 Gly Glu Gly Cys Ser
 170

<210> 24
 <211> 655
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 5517972CD1

<400> 24

Met Ser Ser Ser Asn Val Glu Val Phe Ile Pro Val Ser Gln Gly
 1 5 10 15
 Asn Thr Asn Gly Phe Pro Ala Thr Ala Ser Asn Asp Leu Lys Ala
 20 25 30
 Phe Thr Glu Gly Ala Val Leu Ser Phe His Asn Ile Cys Tyr Arg
 35 40 45
 Val Lys Leu Lys Ser Gly Phe Leu Pro Cys Arg Lys Pro Val Glu
 50 55 60
 Lys Glu Ile Leu Ser Asn Ile Asn Gly Ile Met Lys Pro Gly Leu
 65 70 75
 Asn Ala Ile Leu Gly Pro Thr Gly Gly Lys Ser Ser Leu Leu
 80 85 90
 Asp Val Leu Ala Ala Arg Lys Asp Pro Ser Gly Leu Ser Gly Asp
 95 100 105
 Val Leu Ile Asn Gly Ala Pro Arg Pro Ala Asn Phe Lys Cys Asn
 110 115 120
 Ser Gly Tyr Val Val Gln Asp Asp Val Val Met Gly Thr Leu Thr
 125 130 135
 Val Arg Glu Asn Leu Gln Phe Ser Ala Ala Leu Arg Leu Ala Thr
 140 145 150
 Thr Met Thr Asn His Glu Lys Asn Glu Arg Ile Asn Arg Val Ile
 155 160 165
 Gln Glu Leu Gly Leu Asp Lys Val Ala Asp Ser Lys Val Gly Thr
 170 175 180
 Gln Phe Ile Arg Gly Val Ser Gly Gly Glu Arg Lys Arg Thr Ser
 185 190 195
 Ile Gly Met Glu Leu Ile Thr Asp Pro Ser Ile Leu Phe Leu Asp
 200 205 210
 Glu Pro Thr Thr Gly Leu Asp Ser Ser Thr Ala Asn Ala Val Leu
 215 220 225
 Leu Leu Leu Lys Arg Met Ser Lys Gln Gly Arg Thr Ile Ile Phe
 230 235 240
 Ser Ile His Gln Pro Arg Tyr Ser Ile Phe Lys Leu Phe Asp Ser
 245 250 255
 Leu Thr Leu Leu Ala Ser Gly Arg Leu Met Phe His Gly Pro Ala
 260 265 270
 Gln Glu Ala Leu Gly Tyr Phe Glu Ser Ala Gly Tyr His Cys Glu
 275 280 285
 Ala Tyr Asn Asn Pro Ala Asp Phe Phe Leu Asp Ile Ile Asn Gly
 290 295 300

Asp Ser Thr Ala Val Ala Leu Asn Arg Glu Glu Asp Phe Lys Ala
 305 310 315
 Thr Glu Ile Ile Glu Pro Ser Lys Gln Asp Lys Pro Leu Ile Glu
 320 325 330
 Lys Leu Ala Glu Ile Tyr Val Asn Ser Ser Phe Tyr Lys Glu Thr
 335 340 345
 Lys Ala Glu Leu His Gln Leu Ser Gly Gly Glu Lys Lys Lys Lys
 350 355 360
 Ile Thr Val Phe Lys Glu Ile Ser Tyr Thr Thr Ser Phe Cys His
 365 370 375
 Gln Leu Arg Trp Val Ser Lys Arg Ser Phe Lys Asn Leu Leu Gly
 380 385 390
 Asn Pro Gln Ala Ser Ile Ala Gln Ile Ile Val Thr Val Val Leu
 395 400 405
 Gly Leu Val Ile Gly Ala Ile Tyr Phe Gly Leu Lys Asn Asp Ser
 410 415 420
 Thr Gly Ile Gln Asn Arg Ala Gly Val Leu Phe Phe Leu Thr Thr
 425 430 435
 Asn Gln Cys Phe Ser Ser Val Ser Ala Val Glu Leu Phe Val Val
 440 445 450
 Glu Lys Lys Leu Phe Ile His Glu Tyr Ile Ser Gly Tyr Tyr Arg
 455 460 465
 Val Ser Ser Tyr Phe Leu Gly Lys Leu Leu Ser Asp Leu Leu Pro
 470 475 480
 Met Arg Met Leu Pro Ser Ile Ile Phe Thr Cys Ile Val Tyr Phe
 485 490 495
 Met Leu Gly Leu Lys Pro Lys Ala Asp Ala Phe Phe Val Met Met
 500 505 510
 Phe Thr Leu Met Met Val Ala Tyr Ser Ala Ser Ser Met Ala Leu
 515 520 525
 Ala Ile Ala Ala Gly Gln Ser Val Val Ser Val Ala Thr Leu Leu
 530 535 540
 Met Thr Ile Cys Phe Val Phe Met Met Ile Phe Ser Gly Leu Leu
 545 550 555
 Val Asn Leu Thr Thr Ile Ala Ser Trp Leu Ser Trp Leu Gln Tyr
 560 565 570
 Phe Ser Ile Pro Arg Tyr Gly Phe Thr Ala Leu Gln His Asn Glu
 575 580 585
 Phe Leu Gly Gln Asn Phe Cys Pro Gly Leu Asn Ala Thr Gly Asn
 590 595 600
 Asn Pro Cys Asn Tyr Ala Thr Cys Thr Gly Glu Glu Tyr Leu Val
 605 610 615
 Lys Gln Gly Ile Asp Leu Ser Pro Trp Gly Leu Trp Lys Asn His
 620 625 630
 Val Ala Leu Ala Cys Met Ile Val Ile Phe Leu Thr Ile Ala Tyr
 635 640 645
 Leu Lys Leu Leu Phe Leu Lys Lys Tyr Ser
 650 655

<210> 25

<211> 184

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5593114CD1

<400> 25

Met Trp Val Phe Gly Tyr Gly Ser Leu Ile Trp Lys Val Asp Phe
 1 5 10 15
 Pro Tyr Gln Asp Lys Leu Val Gly Tyr Ile Thr Asn Tyr Ser Arg
 20 25 30
 Arg Phe Trp Gln Gly Ser Thr Asp His Arg Gly Val Pro Gly Lys
 35 40 45
 Pro Gly Arg Val Val Thr Leu Val Glu Asp Pro Ala Gly Cys Val
 50 55 60
 Trp Gly Val Ala Tyr Arg Leu Pro Val Gly Lys Glu Glu Glu Val
 65 70 75

Lys Ala Tyr Leu Asp Phe Arg Glu Lys Gly Gly Tyr Arg Thr Thr
 80 85 90
 Thr Val Ile Phe Tyr Pro Lys Asp Pro Thr Thr Lys Pro Phe Ser
 95 100 105
 Val Leu Leu Tyr Ile Gly Thr Cys Asp Asn Pro Asp Tyr Leu Gly
 110 115 120
 Pro Ala Pro Leu Glu Asp Ile Ala Glu Gln Ile Phe Asn Ala Ala
 125 130 135
 Gly Pro Ser Gly Arg Asn Thr Glu Tyr Leu Phe Glu Leu Ala Asn
 140 145 150
 Ser Ile Arg Asn Leu Val Pro Glu Glu Ala Asp Glu His Leu Phe
 155 160 165
 Ala Leu Glu Lys Leu Val Lys Glu Arg Leu Glu Gly Lys Gln Asn
 170 175 180
 Leu Asn Cys Ile

<210> 26

<211> 154

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 044775CD1

<400> 26

Met Gly Ala Phe Glu Cys Val Arg Lys Val Tyr Gln Thr Asp Gly
 1 5 10 15
 Leu Lys Gly Phe Tyr Arg Gly Met Ser Ala Ser Tyr Ala Gly Ile
 20 25 30
 Ser Glu Thr Val Ile His Phe Val Ile Tyr Glu Ser Ile Lys Gln
 35 40 45
 Lys Leu Leu Glu Tyr Lys Thr Ala Ser Thr Met Glu Asn Asp Glu
 50 55 60
 Glu Ser Val Lys Glu Ala Ser Asp Phe Val Gly Met Met Leu Ala
 65 70 75
 Ala Ala Thr Ser Lys Thr Cys Ala Thr Thr Ile Ala Tyr Pro His
 80 85 90
 Glu Val Val Arg Thr Arg Leu Arg Glu Glu Gly Thr Lys Tyr Arg
 95 100 105
 Ser Phe Phe Gln Thr Leu Ser Leu Leu Val Gln Glu Glu Gly Tyr
 110 115 120
 Gly Ser Leu Tyr Arg Gly Leu Thr Thr His Leu Val Arg Gln Ile
 125 130 135
 Pro Asn Thr Ala Ile Met Met Ala Thr Tyr Glu Leu Val Val Tyr
 140 145 150
 Leu Leu Asn Gly

<210> 27

<211> 438

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 116588CD1

<400> 27

Met Leu Leu Val Thr Pro Arg Pro Glu Arg Gly Arg Gly Thr
 1 5 10 15
 Glu Leu Gly Glu Phe Cys Gly Thr Pro Leu Leu Phe Ser Ser Tyr
 20 25 30
 Phe Cys Tyr Asp Asn Pro Ala Ala Leu Gln Thr Gln Val Lys Arg
 35 40 45
 Asp Met Gln Val Asn Thr Thr Lys Phe Met Leu Leu Tyr Ala Trp
 50 55 60
 Tyr Ser Trp Pro Asn Val Val Leu Cys Phe Phe Gly Gly Phe Leu
 65 70 75

Ile Asp Arg Val Phe Gly Ile Arg Trp Gly Thr Ile Ile Phe Ser
 80 85 90
 Cys Phe Val Cys Ile Gly Gln Val Val Phe Ala Leu Gly Gly Ile
 95 100 105
 Phe Asn Ala Phe Trp Leu Met Glu Phe Gly Arg Phe Val Phe Gly
 110 115 120
 Ile Gly Gly Glu Ser Leu Ala Val Ala Gln Asn Thr Tyr Ala Val
 125 130 135
 Ser Trp Phe Lys Gly Lys Glu Leu Asn Leu Val Phe Gly Leu Gln
 140 145 150
 Leu Ser Met Ala Arg Ile Gly Ser Thr Val Asn Met Asn Leu Met
 155 160 165
 Gly Trp Leu Tyr Ser Lys Ile Glu Ala Leu Leu Gly Ser Ala Gly
 170 175 180
 His Thr Thr Leu Gly Ile Thr Leu Met Ile Gly Gly Val Thr Cys
 185 190 195
 Ile Leu Ser Leu Ile Cys Ala Leu Ala Leu Ala Tyr Leu Asp Gln
 200 205 210
 Arg Ala Glu Arg Ile Leu His Lys Glu Gln Gly Lys Thr Gly Glu
 215 220 225
 Val Ile Lys Leu Thr Asp Val Lys Asp Phe Ser Leu Pro Leu Trp
 230 235 240
 Leu Ile Phe Ile Ile Cys Val Cys Tyr Tyr Val Ala Val Phe Pro
 245 250 255
 Phe Ile Gly Leu Gly Lys Val Phe Phe Thr Glu Lys Phe Gly Phe
 260 265 270
 Ser Ser Gln Ala Ala Ser Ala Ile Asn Ser Val Val Tyr Val Ile
 275 280 285
 Ser Ala Pro Met Ser Pro Val Phe Gly Leu Leu Val Asp Lys Thr
 290 295 300
 Gly Lys Asn Ile Ile Trp Val Leu Cys Ala Val Ala Ala Thr Leu
 305 310 315
 Val Ser His Met Met Leu Ala Phe Thr Met Trp Asn Pro Trp Ile
 320 325 330
 Ala Met Cys Leu Leu Gly Leu Ser Tyr Ser Leu Leu Ala Cys Ala
 335 340 345
 Leu Trp Pro Met Val Ala Phe Val Val Pro Glu His Gln Leu Gly
 350 355 360
 Thr Ala Tyr Gly Phe Met Gln Ser Ile Gln Asn Leu Gly Leu Ala
 365 370 375
 Ile Ile Ser Ile Ile Ala Gly Met Ile Leu Asp Ser Arg Gly Tyr
 380 385 390
 Leu Phe Leu Glu Val Phe Phe Ile Ala Cys Val Ser Leu Ser Leu
 395 400 405
 Leu Ser Val Val Leu Leu Tyr Leu Val Asn Arg Ala Gln Gly Gly
 410 415 420
 Asn Leu Asn Tyr Ser Ala Arg Gln Arg Glu Glu Ile Lys Phe Ser
 425 430 435
 His Thr Glu

<210> 28
<211> 237
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 875369CD1

<400> 28

Met Ala His Val Gly Ser Arg Lys Arg Ser Arg Ser Arg Ser Arg
 1 5 10 15
 Ser Arg Gly Arg Gly Ser Glu Lys Arg Lys Lys Ser Arg Lys
 20 25 30
 Asp Thr Ser Arg Asn Cys Ser Ala Ser Thr Ser Gln Gly Arg Lys
 35 40 45
 Ala Ser Thr Ala Pro Gly Ala Glu Ala Ser Pro Ser Pro Cys Ile
 50 55 60

Thr Glu Arg Ser Lys Gln Lys Ala Arg Arg Arg Arg Thr Arg Ser Ser
 65 70 75
 Ser
 80 85 90
 Ser Ser Ser Ser Ser Ser Ser Asp Gly Arg Lys Lys Arg Gly
 95 100 105
 Lys Tyr Lys Asp Lys Arg Arg Lys Lys Lys Lys Arg Lys Lys
 110 115 120
 Leu Lys Lys Lys Gly Lys Glu Lys Ala Glu Ala Gln Gln Val Glu
 125 130 135
 Ala Leu Pro Gly Pro Ser Leu Asp Gln Trp His Arg Ser Ala Gly
 140 145 150
 Glu Glu Glu Asp Gly Pro Val Leu Thr Asp Glu Gln Lys Ser Arg
 155 160 165
 Ile Gln Ala Met Lys Pro Met Thr Lys Glu Glu Trp Asp Ala Arg
 170 175 180
 Gln Ser Ile Ile Arg Lys Val Val Asp Pro Glu Thr Gly Arg Thr
 185 190 195
 Arg Leu Ile Lys Gly Asp Gly Glu Val Leu Glu Glu Ile Val Thr
 200 205 210
 Lys Glu Arg His Arg Glu Ile Asn Lys Gln Ala Thr Arg Gly Asp
 215 220 225
 Cys Leu Ala Phe Gln Met Arg Ala Gly Leu Leu Pro
 230 235
 <210> 29
 <211> 219
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1325518CD1

<400> 29
 Met Lys Leu Leu Leu Trp Ala Cys Ile Val Cys Val Ala Phe Ala
 1 5 10 15
 Arg Lys Arg Arg Phe Pro Phe Ile Gly Glu Asp Asp Asn Asp Asp
 20 25 30
 Gly His Pro Leu His Pro Ser Leu Asn Ile Pro Tyr Gly Ile Arg
 35 40 45
 Asn Leu Pro Pro Pro Leu Tyr Tyr Arg Pro Val Asn Thr Val Pro
 50 55 60
 Ser Tyr Pro Gly Asn Thr Tyr Thr Asp Thr Gly Leu Pro Ser Tyr
 65 70 75
 Pro Trp Ile Leu Thr Ser Pro Gly Phe Pro Tyr Val Tyr His Ile
 80 85 90
 Arg Gly Phe Pro Leu Ala Thr Gln Leu Asn Val Pro Pro Leu Pro
 95 100 105
 Pro Arg Gly Phe Pro Phe Val Pro Pro Ser Arg Phe Phe Ser Ala
 110 115 120
 Ala Ala Ala Pro Ala Ala Pro Pro Ile Ala Ala Glu Pro Ala Ala
 125 130 135
 Ala Ala Pro Leu Thr Ala Thr Pro Val Ala Ala Glu Pro Ala Ala
 140 145 150
 Gly Ala Pro Val Ala Ala Glu Pro Ala Ala Glu Ala Pro Val Gly
 155 160 165
 Ala Glu Pro Ala Ala Glu Ala Pro Val Ala Ala Glu Pro Ala Ala
 170 175 180
 Glu Ala Pro Val Gly Val Glu Pro Ala Ala Glu Glu Pro Ser Pro
 185 190 195
 Ala Glu Pro Ala Thr Ala Lys Pro Ala Ala Pro Glu Pro His Pro
 200 205 210
 Ser Pro Ser Leu Glu Gln Ala Asn Gln
 215

<210> 30
 <211> 707
 <212> PRT
 <213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2060987CD1

<400> 30

Met Ala Ala Ala Ala Thr Ala Ala Glu Gly Val Pro Ser Arg Gly
 1 5 10 15
 Pro Pro Gly Glu Val Ile His Leu Asn Val Gly Gly Lys Arg Phe
 20 25 30
 Ser Thr Ser Arg Gln Thr Leu Thr Trp Ile Pro Asp Ser Phe Phe
 35 40 45
 Ser Ser Leu Leu Ser Gly Arg Ile Ser Thr Leu Lys Asp Glu Thr
 50 55 60
 Gly Ala Ile Phe Ile Asp Arg Asp Pro Thr Val Phe Ala Pro Ile
 65 70 75
 Leu Asn Phe Leu Arg Thr Lys Glu Leu Asp Pro Arg Gly Val His
 80 85 90
 Gly Ser Ser Leu Leu His Glu Ala Gln Phe Tyr Gly Leu Thr Pro
 95 100 105
 Leu Val Arg Arg Leu Gln Leu Arg Glu Glu Leu Asp Arg Ser Ser
 110 115 120
 Cys Gly Asn Val Leu Phe Asn Gly Tyr Leu Pro Pro Pro Val Phe
 125 130 135
 Pro Val Lys Arg Arg Asn Arg His Ser Leu Val Gly Pro Gln Gln
 140 145 150
 Leu Gly Gly Arg Pro Ala Pro Val Arg Arg Ser Asn Thr Met Pro
 155 160 165
 Pro Asn Leu Gly Asn Ala Gly Leu Leu Gly Arg Met Leu Asp Glu
 170 175 180
 Lys Thr Pro Pro Ser Pro Ser Gly Gln Pro Glu Glu Pro Gly Met
 185 190 195
 Val Arg Leu Val Cys Gly His His Asn Trp Ile Ala Val Ala Tyr
 200 205 210
 Thr Gln Phe Leu Val Cys Tyr Arg Leu Lys Glu Ala Ser Gly Trp
 215 220 225
 Gln Leu Val Phe Ser Ser Pro Arg Leu Asp Trp Pro Ile Glu Arg
 230 235 240
 Leu Ala Leu Thr Ala Arg Val His Gly Gly Ala Leu Gly Glu His
 245 250 255
 Asp Lys Met Val Ala Ala Ala Thr Gly Ser Glu Ile Leu Leu Trp
 260 265 270
 Ala Leu Gln Ala Glu Gly Gly Ser Glu Ile Gly Val Phe His
 275 280 285
 Leu Gly Val Pro Val Glu Ala Leu Phe Phe Val Gly Asn Gln Leu
 290 295 300
 Ile Ala Thr Ser His Thr Gly Arg Ile Gly Val Trp Asn Ala Val
 305 310 315
 Thr Lys His Trp Gln Val Gln Glu Val Gln Pro Ile Thr Ser Tyr
 320 325 330
 Asp Ala Ala Gly Ser Phe Leu Leu Leu Gly Cys Asn Asn Gly Ser
 335 340 345
 Ile Tyr Tyr Val Asp Val Gln Lys Phe Pro Leu Arg Met Lys Asp
 350 355 360
 Asn Asp Leu Leu Val Ser Glu Leu Tyr Arg Asp Pro Ala Glu Asp
 365 370 375
 Gly Val Thr Ala Leu Ser Val Tyr Leu Thr Pro Lys Thr Ser Asp
 380 385 390
 Ser Gly Asn Trp Ile Glu Ile Ala Tyr Gly Thr Ser Ser Gly Gly
 395 400 405
 Val Arg Val Ile Val Gln His Pro Glu Thr Val Gly Ser Gly Pro
 410 415 420
 Gln Leu Phe Gln Thr Phe Thr Val His Arg Ser Pro Val Thr Lys
 425 430 435
 Ile Met Leu Ser Glu Lys His Leu Ile Ser Val Cys Ala Asp Asn
 440 445 450
 Asn His Val Arg Thr Trp Ser Val Thr Arg Phe Arg Gly Met Ile
 455 460 465
 Ser Thr Gln Pro Gly Ser Thr Pro Leu Ala Ser Phe Lys Ile Leu

Ala	Leu	Glu	Ser	Ala	Asp	Gly	His	Gly	Gly	Cys	Ser	Ala	Gly	Asn
470				475										480
485				485				490						495
Asp	Ile	Gly	Pro	Tyr	Gly	Glu	Arg	Asp	Asp	Gln	Gln	Val	Phe	Ile
				500						505				510
Gln	Lys	Val	Val	Pro	Ser	Ala	Ser	Gln	Leu	Phe	Val	Arg	Leu	Ser
				515					520					525
Ser	Thr	Gly	Gln	Arg	Val	Cys	Ser	Val	Arg	Ser	Val	Asp	Gly	Ser
				530				535						540
Pro	Thr	Thr	Ala	Phe	Thr	Val	Leu	Glu	Cys	Glu	Gly	Ser	Arg	Arg
				545				550						555
Leu	Gly	Ser	Arg	Pro	Arg	Arg	Tyr	Leu	Leu	Thr	Gly	Gln	Ala	Asn
				560				565						570
Gly	Ser	Leu	Ala	Met	Trp	Asp	Leu	Thr	Thr	Ala	Met	Asp	Gly	Leu
				575				580						585
Gly	Gln	Ala	Pro	Ala	Gly	Gly	Leu	Thr	Glu	Gln	Glu	Leu	Met	Glu
				590				595						600
Gln	Leu	Glu	His	Cys	Glu	Leu	Ala	Pro	Pro	Ala	Pro	Ser	Ala	Pro
				605				610						615
Ser	Trp	Gly	Cys	Leu	Pro	Ser	Pro	Ser	Pro	Arg	Ile	Ser	Leu	Thr
				620				625						630
Ser	Leu	His	Ser	Ala	Ser	Ser	Asn	Thr	Ser	Leu	Ser	Gly	His	Arg
				635				640						645
Gly	Ser	Pro	Ser	Pro	Pro	Gln	Ala	Glu	Ala	Arg	Arg	Arg	Gly	Gly
				650				655						660
Gly	Ser	Phe	Val	Glu	Arg	Cys	Gln	Glu	Leu	Val	Arg	Ser	Gly	Pro
				665				670						675
Asp	Leu	Arg	Arg	Pro	Pro	Thr	Pro	Ala	Pro	Trp	Pro	Ser	Ser	Gly
				680				685						690
Leu	Gly	Thr	Pro	Leu	Thr	Pro	Pro	Lys	Met	Lys	Leu	Asn	Glu	Thr
				695				700						705
Ser	Phe													

<210> 31
<211> 279
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2172064CD1

Met	Cys	Gly	Arg	Phe	Leu	Arg	Arg	Leu	Leu	Ala	Glu	Glu	Ser	Arg
1				5				10						15
Arg	Ser	Thr	Pro	Val	Gly	Arg	Leu	Leu	Leu	Pro	Val	Leu	Leu	Gly
				20				25						30
Phe	Arg	Leu	Val	Leu	Leu	Ala	Ala	Ser	Gly	Pro	Gly	Val	Tyr	Gly
				35				40						45
Asp	Glu	Gln	Ser	Glu	Phe	Val	Cys	His	Thr	Gln	Gln	Pro	Gly	Cys
				50				55						60
Lys	Ala	Ala	Cys	Phe	Asp	Ala	Phe	His	Pro	Leu	Ser	Pro	Leu	Arg
				65				70						75
Ser	Trp	Val	Phe	Gln	Val	Ile	Leu	Val	Ala	Val	Pro	Ser	Ala	Leu
				80				85						90
Tyr	Met	Gly	Phe	Thr	Leu	Tyr	His	Val	Ile	Trp	His	Trp	Glu	Leu
				95				100						105
Ser	Gly	Lys	Gly	Lys	Glu	Glu	Glu	Thr	Leu	Ile	Gln	Gly	Arg	Glu
				110				115						120
Gly	Asn	Thr	Asp	Val	Pro	Gly	Ala	Gly	Ser	Leu	Arg	Leu	Leu	Trp
				125				130						135
Ala	Tyr	Val	Ala	Gln	Leu	Gly	Ala	Arg	Leu	Val	Leu	Glu	Gly	Ala
				140				145						150
Ala	Leu	Gly	Leu	Gln	Tyr	His	Leu	Tyr	Gly	Phe	Gln	Met	Pro	Ser
				155				160						165
Ser	Phe	Ala	Cys	Arg	Arg	Glu	Pro	Cys	Leu	Gly	Ser	Ile	Thr	Cys
				170				175						180
Asn	Leu	Ser	Arg	Pro	Ser	Glu	Lys	Thr	Ile	Phe	Leu	Lys	Thr	Met

Phe	Gly	Val	Ser	185	Gly	Phe	Cys	Leu	Leu	Phe	Thr	Phe	Leu	Glu	Leu
				200						205					210
Val	Leu	Leu	Gly		Leu	Gly	Arg	Trp	Trp	Arg	Thr	Trp	Lys	His	Lys
				215						220					225
Ser	Ser	Ser			Lys	Tyr	Phe	Leu	Thr	Ser	Glu	Ser	Thr	Arg	Arg
				230						235					240
His	Lys	Lys	Ala		Thr	Asp	Ser	Leu	Pro	Val	Val	Glu	Thr	Lys	Glu
				245						250					255
Gln	Phe	Gln	Glu		Ala	Val	Pro	Gly	Arg	Ser	Leu	Ala	Gln	Glu	Lys
				260						265					270
Gln	Arg	Pro	Val		Gly	Pro	Arg	Asp	Ala						
				275											

<210> 32

<211> 154

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2219267CD1

<400> 32

Met	Val	Thr	Gly	Leu	Ala	Ser	Leu	Leu	Leu	Leu	Ala	Gly	Ala	Gln	
				1	5				10					15	
Tyr	Leu	Pro	Gly	Trp	Thr	Val	Leu	Phe	Leu	Ser	Val	Leu	Gly	Leu	
					20				25					30	
Leu	Ala	Ser	Arg	Ala	Val	Ser	Ala	Leu	Ser	Ser	Leu	Phe	Ala	Ala	
					35				40					45	
Glu	Val	Phe	Pro	Thr	Val	Ile	Arg	Gly	Ala	Gly	Leu	Gly	Leu	Val	
					50				55					60	
Leu	Gly	Ala	Gly	Phe	Leu	Gly	Gln	Ala	Ala	Gly	Pro	Leu	Asp	Thr	
					65				70					75	
Leu	His	Gly	Arg	Gln	Gly	Phe	Phe	Leu	Gln	Gln	Val	Val	Phe	Ala	
					80				85					90	
Ser	Leu	Ala	Val	Leu	Ala	Leu	Leu	Cys	Val	Leu	Leu	Leu	Pro	Glu	
					95				100					105	
Ser	Arg	Ser	Arg	Gly	Leu	Pro	Gln	Ser	Leu	Gln	Asp	Ala	Asp	Arg	
					110				115					120	
Leu	Arg	Arg	Ser	Pro	Leu	Leu	Arg	Gly	Arg	Pro	Arg	Gln	Asp	His	
					125				130					135	
Leu	Pro	Leu	Leu	Pro	Pro	Ser	Asn	Ser	Tyr	Trp	Ala	Gly	His	Thr	
					140				145					150	
Pro	Glu	Gln	His												

<210> 33

<211> 289

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2308629CD1

<400> 33

Met	Val	Ala	Gly	Ala	Val	Ala	Gly	Ile	Leu	Glu	His	Cys	Val	Met	
					1	5			10					15	
Tyr	Pro	Ile	Asp	Cys	Val	Lys	Thr	Arg	Met	Gln	Ser	Leu	Gln	Pro	
					20				25					30	
Asp	Pro	Ala	Ala	Arg	Tyr	Arg	Asn	Val	Leu	Glu	Ala	Leu	Trp	Arg	
					35				40					45	
Ile	Ile	Arg	Thr	Glu	Gly	Leu	Trp	Arg	Pro	Met	Arg	Gly	Leu	Asn	
					50				55					60	
Val	Thr	Ala	Thr	Gly	Ala	Gly	Pro	Ala	His	Ala	Leu	Tyr	Phe	Ala	
					65				70					75	
Cys	Tyr	Glu	Lys	Leu	Lys	Lys	Thr	Leu	Ser	Asp	Val	Ile	His	Pro	
					80				85					90	
Gly	Gly	Asn	Ser	His	Ile	Ala	Asn	Gly	Ala	Ala	Gly	Cys	Val	Ala	

95		100		105
Thr Leu Leu His Asp	Ala Ala Met Asn	Pro Ala Glu Val Val	Lys	
110	115	115	120	
Gln Arg Met Gln Met	Tyr Asn Ser Pro	Tyr His Arg Val Thr	Asp	
125	130	130	135	
Cys Val Arg Ala Val	Trp Gln Asn Glu	Gly Ala Gly Ala Phe	Tyr	
140	145	145	150	
Arg Ser Tyr Thr	Thr Gln Leu Thr Met	Asn Val Pro Phe Gln	Ala	
155	160	160	165	
Ile His Phe Met Thr	Tyr Glu Phe Leu	Gln Glu His Phe Asn	Pro	
170	175	175	180	
Gln Arg Arg Tyr Asn	Pro Ser Ser His Val	Leu Ser Gly Ala	Cys	
185	190	190	195	
Ala Gly Ala Val	Ala Ala Ala Ala Thr	Thr Pro Leu Asp Val	Cys	
200	205	205	210	
Lys Thr Leu Leu Asn	Thr Gln Glu Ser	Leu Ala Leu Asn Ser	His	
215	220	220	225	
Ile Thr Gly His Ile	Thr Gly Met Ala	Ser Ala Phe Arg Thr	Val	
230	235	235	240	
Tyr Gln Val Gly Gly	Val Thr Ala Tyr	Phe Arg Gly Val Gln	Ala	
245	250	250	255	
Arg Val Ile Tyr Gln	Ile Pro Ser Thr Ala	Ile Ala Trp Ser	Val	
260	265	265	270	
Tyr Glu Phe Phe Lys	Tyr Leu Ile Thr	Lys Arg Gln Glu Glu	Trp	
275	280	280	285	
Arg Ala Gly Lys				

<210> 34
<211> 300
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2660038CD1

<400> 34

Met Asp Phe Leu Met	Ser Gly Leu Ala Ala Cys	Gly Ala Cys Val	
1	5	10	15
Phe Thr Asn Pro Leu	Glu Val Val Lys	Thr Arg Met Gln Leu	Gln
20	25	25	30
Gly Glu Leu Gln Ala	Pro Gly Thr Tyr	Gln Arg His Tyr Arg	Asn
35	40	40	45
Val Phe His Ala Phe	Ile Thr Ile Gly	Lys Val Asp Gly	Leu Ala
50	55	55	60
Ala Leu Gln Lys Gly	Leu Ala Pro Ala	Leu Leu Tyr Gln Phe	Leu
65	70	70	75
Met Asn Gly Ile Arg	Leu Gly Thr Tyr	Gly Leu Ala Glu Ala	Gly
80	85	85	90
Gly Tyr Leu His Thr	Ala Glu Ala Thr	His Ser Pro Ala Arg	Ser
95	100	100	105
Ala Ala Ala Gly Ala	Met Ala Gly Val	Met Gly Ala Tyr	Leu Gly
110	115	115	120
Ser Pro Ile Tyr Met	Val Lys Thr His	Leu Gln Ala Gln Ala	Ala
125	130	130	135
Ser Glu Ile Ala Val	Gly His Gln Tyr	Lys His Gln Gly	Met Phe
140	145	145	150
Gln Ala Leu Thr Glu	Ile Gly Gln Lys	His Gly Leu Val Gly	Leu
155	160	160	165
Trp Arg Gly Ala Leu	Gly Leu Pro	Arg Val Ile Val	Gly Ser
170	175	175	180
Ser Thr Gln Leu Cys	Thr Phe Ser Ser	Thr Lys Asp Leu	Leu Ser
185	190	190	195
Gln Trp Glu Ile Phe	Pro Pro Gln Ser	Trp Lys Leu Ala	Leu Val
200	205	205	210
Ala Ala Met Met Ser	Gly Ile Ala Val	Val Leu Ala Met	Ala Pro
215	220	220	225
Phe Asp Val Ala Cys	Thr Arg Leu Tyr	Asn Gln Pro	Thr Asp Ala

Gln	Gly	Lys	Gly	Leu	Met	Tyr	Arg	Gly	Ile	Leu	Asp	Ala	Leu	Leu
230				245					235					240
Gln	Thr	Ala	Arg	Thr	Glu	Gly	Ile	Phe	Gly	Met	Tyr	Lys	Gly	Ile
245				250					250					255
Gly	Ala	Ser	Tyr	Phe	Arg	Leu	Gly	Pro	His	Thr	Ile	Leu	Ser	Leu
260				265					265					270
Phe	Phe	Trp	Asp	Gln	Leu	Arg	Ser	Leu	Tyr	Tyr	Thr	Asp	Thr	Lys
275				290					280					285
									295					300

<210> 35
<211> 382
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2670745CD1

<400>	35													
Met	Leu	Arg	Trp	Thr	Val	His	Leu	Glu	Gly	Gly	Pro	Arg	Arg	Val
1	5						10							15
Asn	His	Ala	Ala	Val	Ala	Val	Gly	His	Arg	Val	Tyr	Ser	Phe	Gly
				20				25						30
Gly	Tyr	Cys	Ser	Gly	Glu	Asp	Tyr	Glu	Thr	Leu	Arg	Gln	Ile	Asp
				35				40						45
Val	His	Ile	Phe	Asn	Ala	Val	Ser	Leu	Arg	Trp	Thr	Lys	Leu	Pro
				50				55						60
Pro	Val	Lys	Ser	Ala	Ile	Arg	Gly	Gln	Ala	Pro	Val	Val	Pro	Tyr
				65				70						75
Met	Arg	Tyr	Gly	His	Ser	Thr	Val	Leu	Ile	Asp	Asp	Thr	Val	Leu
				80				85						90
Leu	Trp	Gly	Gly	Arg	Asn	Asp	Thr	Glu	Gly	Ala	Cys	Asn	Val	Leu
				95				100						105
Tyr	Ala	Phe	Asp	Val	Asn	Thr	His	Lys	Trp	Phe	Thr	Pro	Arg	Val
				110				115						120
Ser	Gly	Thr	Val	Pro	Gly	Ala	Arg	Asp	Gly	His	Ser	Ala	Cys	Val
				125				130						135
Leu	Gly	Lys	Ile	Met	Tyr	Ile	Phe	Gly	Gly	Tyr	Glu	Gln	Gln	Ala
				140				145						150
Asp	Cys	Phe	Ser	Asn	Asp	Ile	His	Lys	Leu	Asp	Thr	Ser	Thr	Met
				155				160						165
Thr	Trp	Thr	Leu	Ile	Cys	Thr	Lys	Gly	Ser	Pro	Ala	Arg	Trp	Arg
				170				175						180
Asp	Phe	His	Ser	Ala	Thr	Met	Leu	Gly	Ser	His	Met	Tyr	Val	Phe
				185				190						195
Gly	Gly	Arg	Ala	Asp	Arg	Phe	Gly	Pro	Phe	His	Ser	Asn	Asn	Glu
				200				205						210
Ile	Tyr	Cys	Asn	Arg	Ile	Arg	Val	Phe	Asp	Thr	Arg	Thr	Glu	Ala
				215				220						225
Trp	Leu	Asp	Cys	Pro	Pro	Thr	Pro	Val	Leu	Pro	Glu	Gly	Arg	Arg
				230				235						240
Ser	His	Ser	Ala	Phe	Gly	Tyr	Asn	Gly	Glu	Leu	Tyr	Ile	Phe	Gly
				245				250						255
Gly	Tyr	Asn	Ala	Arg	Leu	Asn	Arg	His	Phe	His	Asp	Leu	Trp	Lys
				260				265						270
Phe	Asn	Pro	Val	Ser	Phe	Thr	Trp	Lys	Lys	Ile	Glu	Pro	Lys	Gly
				275				280						285
Lys	Gly	Pro	Cys	Pro	Arg	Arg	Arg	Gln	Cys	Cys	Ile	Val	Gly	
				290				295						300
Asp	Lys	Ile	Val	Leu	Phe	Gly	Gly	Thr	Ser	Pro	Ser	Pro	Glu	Glu
				305				310						315
Gly	Leu	Gly	Asp	Glu	Phe	Asp	Leu	Ile	Asp	His	Ser	Asp	Leu	His
				320				325						330
Ile	Leu	Asp	Phe	Ser	Pro	Ser	Leu	Lys	Thr	Leu	Cys	Lys	Leu	Ala
				335				340						345
Val	Ile	Gln	Tyr	Asn	Leu	Asp	Gln	Ser	Cys	Leu	Pro	His	Asp	Ile
				350				355						360

Arg Trp Glu Leu Asn Ala Met Thr Thr Asn Ser Asn Ile Ser Arg
 365 370 375
 Pro Ile Val Ser Ser His Gly
 380

<210> 36

<211> 287

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2676443CD1

<400> 36

Met Ala Ala Glu Ala Arg Val Ser Arg Trp Tyr Phe Gly Gly Leu	
1 5 10 15	
Ala Ser Cys Gly Ala Ala Cys Cys Thr His Pro Leu Asp Leu Leu	
20 25 30	
Lys Val His Leu Gln Thr Gln Gln Glu Val Lys Leu Arg Met Thr	
35 40 45	
Gly Met Ala Leu Arg Val Val Arg Thr Asp Gly Ile Leu Ala Leu	
50 55 60	
Tyr Ser Gly Leu Ser Ala Ser Leu Cys Arg Gln Met Thr Tyr Ser	
65 70 75	
Leu Thr Arg Phe Ala Ile Tyr Glu Thr Val Arg Asp Arg Val Ala	
80 85 90	
Lys Gly Ser Gln Gly Pro Leu Pro Phe His Glu Lys Val Leu Leu	
95 100 105	
Gly Ser Val Ser Gly Leu Ala Gly Gly Phe Val Gly Thr Pro Ala	
110 115 120	
Asp Leu Val Asn Val Arg Met Gln Asn Asp Val Lys Leu Pro Gln	
125 130 135	
Gly Gln Arg Arg Asn Tyr Ala His Ala Leu Asp Gly Leu Tyr Arg	
140 145 150	
Val Ala Arg Glu Glu Gly Leu Arg Arg Leu Phe Ser Gly Ala Thr	
155 160 165	
Met Ala Ser Ser Arg Gly Ala Leu Val Thr Val Gly Gln Leu Ser	
170 175 180	
Cys Tyr Asp Gln Ala Lys Gln Leu Val Leu Ser Thr Gly Tyr Leu	
185 190 195	
Ser Asp Asn Ile Phe Thr His Phe Val Ala Ser Phe Ile Ala Gly	
200 205 210	
Gly Cys Ala Thr Phe Leu Cys Gln Pro Leu Asp Val Leu Lys Thr	
215 220 225	
Arg Leu Met Asn Ser Lys Gly Glu Tyr Gln Gly Val Phe His Cys	
230 235 240	
Ala Val Glu Thr Ala Lys Leu Gly Pro Leu Ala Phe Tyr Lys Gly	
245 250 255	
Leu Val Pro Ala Gly Ile Arg Leu Ile Pro His Thr Val Leu Thr	
260 265 270	
Phe Val Phe Leu Glu Gln Leu Arg Lys Asn Phe Gly Ile Lys Val	
275 280 285	
Pro Ser	

<210> 37

<211> 497

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3295764CD1

<400> 37

Met Asp Val Pro Gly Pro Val Ser Arg Arg Ala Ala Ala Ala	
1 5 10 15	
Ala Thr Val Leu Leu Arg Thr Ala Arg Val Arg Arg Glu Cys Trp	
20 25 30	

Phe Leu Pro Thr Ala Leu Leu Cys Ala Tyr Gly Phe Phe Ala Ser
 35 40 45
 Leu Arg Pro Ser Glu Pro Phe Leu Thr Pro Tyr Leu Leu Gly Pro
 50 55 60
 Asp Lys Asn Leu Thr Glu Arg Glu Val Phe Asn Glu Ile Tyr Pro
 65 70 75
 Val Trp Thr Tyr Ser Tyr Leu Val Leu Leu Phe Pro Val Phe Leu
 80 85 90
 Ala Thr Asp Tyr Leu Arg Tyr Lys Pro Val Val Leu Leu Gln Gly
 95 100 105
 Leu Ser Leu Ile Val Thr Trp Phe Met Leu Leu Tyr Ala Gln Gly
 110 115 120
 Leu Leu Ala Ile Gln Phe Leu Glu Phe Phe Tyr Gly Ile Ala Thr
 125 130 135
 Ala Thr Glu Ile Ala Tyr Tyr Ser Tyr Ile Tyr Ser Val Val Asp
 140 145 150
 Leu Gly Met Tyr Gln Lys Val Thr Ser Tyr Cys Arg Ser Ala Thr
 155 160 165
 Leu Val Gly Phe Thr Val Gly Ser Val Leu Gly Gln Ile Leu Val
 170 175 180
 Ser Val Ala Gly Trp Ser Leu Phe Ser Leu Asn Val Ile Ser Leu
 185 190 195
 Thr Cys Val Ser Val Ala Phe Ala Val Ala Trp Phe Leu Pro Met
 200 205 210
 Pro Gln Lys Ser Leu Phe Phe His His Ile Pro Ser Thr Cys Gln
 215 220 225
 Arg Val Asn Gly Ile Lys Val Gln Asn Gly Gly Ile Val Thr Asp
 230 235 240
 Thr Pro Ala Ser Asn His Leu Pro Gly Trp Glu Asp Ile Glu Ser
 245 250 255
 Lys Ile Pro Leu Asn Met Glu Glu Pro Pro Val Glu Glu Pro Glu
 260 265 270
 Pro Lys Pro Asp Arg Leu Leu Val Leu Lys Val Leu Trp Asn Asp
 275 280 285
 Phe Leu Met Cys Tyr Ser Ser Arg Pro Leu Leu Cys Trp Ser Val
 290 295 300
 Trp Trp Ala Leu Ser Thr Cys Gly Tyr Phe Gln Val Val Asn Tyr
 305 310 315
 Thr Gln Gly Leu Trp Glu Lys Val Met Pro Ser Arg Tyr Ala Ala
 320 325 330
 Ile Tyr Asn Gly Gly Val Glu Ala Val Ser Thr Leu Leu Gly Ala
 335 340 345
 Val Ala Val Phe Ala Val Gly Tyr Ile Lys Ile Ser Trp Ser Thr
 350 355 360
 Trp Gly Glu Met Thr Leu Ser Leu Phe Ser Leu Leu Ile Ala Ala
 365 370 375
 Ala Val Tyr Ile Met Asp Thr Val Gly Asn Ile Trp Val Cys Tyr
 380 385 390
 Ala Ser Tyr Val Val Phe Arg Ile Ile Tyr Met Leu Leu Ile Thr
 395 400 405
 Ile Ala Thr Phe Gln Ile Ala Ala Asn Leu Ser Met Glu Arg Tyr
 410 415 420
 Ala Leu Val Phe Gly Val Asn Thr Phe Ile Ala Leu Ala Leu Gln
 425 430 435
 Thr Leu Leu Thr Leu Ile Val Val Asp Ala Ser Gly Leu Gly Leu
 440 445 450
 Glu Ile Thr Thr Gln Phe Leu Ile Tyr Ala Ser Tyr Phe Ala Leu
 455 460 465
 Ile Ala Val Val Phe Leu Ala Ser Gly Ala Val Ser Val Met Lys
 470 475 480
 Lys Cys Arg Lys Leu Glu Asp Pro Gln Ser Ser Ser Gln Val Thr
 485 490 495
 Thr Ser

<210> 38
 <211> 228
 <212> PRT
 <213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3438320CD1

<400> 38

Met	Pro	Arg	Arg	Gly	Leu	Val	Ala	Gly	Pro	Asp	Leu	Glu	Tyr	Phe
1				5					10					15
Gln	Arg	Arg	Tyr	Phe	Thr	Pro	Ala	Glu	Val	Ala	Gln	His	Asn	Arg
					20				25					30
Pro	Glu	Asp	Leu	Trp	Val	Ser	Tyr	Leu	Gly	Arg	Val	Tyr	Asp	Leu
					35				40					45
Thr	Ser	Leu	Ala	Gln	Glu	Tyr	Lys	Gly	Asn	Leu	Leu	Leu	Lys	Pro
					50				55					60
Ile	Val	Glu	Val	Ala	Gly	Gln	Asp	Ile	Ser	His	Trp	Phe	Asp	Pro
					65				70					75
Lys	Thr	Arg	Asp	Ile	Arg	Lys	His	Ile	Asp	Pro	Leu	Thr	Gly	Cys
					80				85					90
Leu	Arg	Tyr	Cys	Thr	Pro	Arg	Gly	Arg	Phe	Val	His	Val	Pro	Pro
					95				100					105
Gln	Leu	Pro	Cys	Ser	Asp	Trp	Ala	Asn	Asp	Phe	Gly	Lys	Pro	Trp
					110				115					120
Trp	Gln	Gly	Ser	Tyr	Tyr	Glu	Val	Gly	Arg	Leu	Ser	Ala	Lys	Thr
					125				130					135
Arg	Ser	Ile	Arg	Ile	Ile	Asn	Thr	Leu	Thr	Ser	Gln	Glu	His	Thr
					140				145					150
Leu	Glu	Val	Gly	Val	Leu	Glu	Ser	Ile	Trp	Glu	Ile	Leu	His	Arg
					155				160					165
Tyr	Leu	Pro	Tyr	Asn	Ser	His	Ala	Ala	Ser	Tyr	Thr	Trp	Lys	Tyr
					170				175					180
Glu	Gly	Lys	Asn	Leu	Asn	Met	Asp	Phe	Thr	Leu	Glu	Glu	Asn	Gly
					185				190					195
Ile	Arg	Asp	Glu	Glu	Glu	Glu	Phe	Asp	Tyr	Leu	Ser	Met	Asp	Gly
					200				205					210
Thr	Leu	His	Thr	Pro	Ala	Ile	Leu	Leu	Tyr	Phe	Asn	Asp	Asp	Leu
					215				220					225
Thr	Glu	Leu												

<210> 39

<211> 273

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 3986488CD1

<400> 39

Met	Ala	Ala	Thr	Ile	Met	Ile	Leu	Tyr	Val	Ser	Lys	Leu	Asn	Lys
1					5				10					15
Ile	Ile	His	Phe	Pro	Asp	Phe	Asp	Lys	Lys	Ile	Pro	Val	Lys	Leu
					20				25					30
Phe	Pro	Leu	Pro	Leu	Leu	Tyr	Val	Gly	Asn	His	Ile	Ser	Gly	Leu
					35				40					45
Ser	Ser	Thr	Ser	Lys	Leu	Ser	Leu	Pro	Met	Phe	Thr	Val	Leu	Arg
					50				55					60
Lys	Phe	Thr	Ile	Pro	Leu	Thr	Leu	Leu	Leu	Glu	Thr	Ile	Ile	Leu
					65				70					75
Gly	Lys	Gln	Tyr	Ser	Leu	Asn	Ile	Ile	Leu	Ser	Val	Phe	Ala	Ile
					80				85					90
Ile	Leu	Gly	Ala	Phe	Ile	Ala	Ala	Gly	Ser	Asp	Leu	Ala	Phe	Asn
					95				100					105
Leu	Glu	Gly	Tyr	Ile	Phe	Val	Phe	Leu	Asn	Asp	Ile	Phe	Thr	Ala
					110				115					120
Ala	Asn	Gly	Val	Tyr	Thr	Lys	Gln	Lys	Met	Asp	Pro	Lys	Glu	Leu
					125				130					135
Gly	Lys	Tyr	Gly	Val	Leu	Phe	Tyr	Asn	Ala	Cys	Phe	Met	Ile	Ile
					140				145					150
Pro	Thr	Leu	Ile	Ile	Ser	Val	Ser	Thr	Gly	Asp	Leu	Gln	Gln	Ala

155		160		165
Thr Glu Phe Asn Gln Trp Lys Asn Val Val	Phe Ile Leu Gln Phe			
170	175	180		
Leu Leu Ser Cys Phe Leu Gly Phe Leu Leu	Met Tyr Ser Thr Val			
185	190	195		
Leu Cys Ser Tyr Tyr Asn Ser Ala Leu Thr	Thr Ala Val Val Gly			
200	205	210		
Ala Ile Lys Asn Val Ser Val Ala Tyr Ile	Gly Ile Leu Ile Gly			
215	220	225		
Gly Asp Tyr Ile Phe Ser Leu Leu Asn Phe	Val Gly Leu Asn Ile			
230	235	240		
Cys Met Ala Gly Gly Leu Arg Tyr Ser Phe	Leu Thr Leu Ser Ser			
245	250	255		
Gln Leu Lys Pro Lys Pro Val Gly Glu Glu	Asn Ile Cys Leu Asp			
260	265	270		
Leu Lys Ser				

<210> 40
<211> 206
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4378816CD1

<400> 40
Met Gly Ala Glu Trp Glu Leu Gly Ala Glu Ala Gly Gly Ser Leu
1 5 10 15
Leu Leu Cys Ala Ala Leu Leu Ala Ala Gly Cys Ala Leu Gly Leu
20 25 30
Arg Leu Gly Arg Gly Gln Gly Ala Ala Asp Arg Gly Ala Leu Ile
35 40 45
Trp Leu Cys Tyr Asp Ala Leu Val His Phe Ala Leu Glu Gly Pro
50 55 60
Phe Val Tyr Leu Ser Leu Val Gly Asn Val Ala Asn Ser Asp Gly
65 70 75
Leu Ile Ala Ser Leu Trp Lys Glu Tyr Gly Lys Ala Asp Ala Arg
80 85 90
Trp Val Tyr Phe Asp Pro Thr Ile Val Ser Val Glu Ile Leu Thr
95 100 105
Val Ala Leu Asp Gly Ser Leu Ala Leu Phe Leu Ile Tyr Ala Ile
110 115 120
Val Lys Glu Lys Tyr Tyr Arg His Phe Leu Gln Ile Thr Leu Cys
125 130 135
Val Cys Glu Leu Tyr Gly Cys Trp Met Thr Phe Leu Pro Glu Trp
140 145 150
Leu Thr Arg Ser Pro Asn Leu Asn Thr Ser Asn Trp Leu Tyr Cys
155 160 165
Trp Leu Tyr Leu Phe Phe Asn Gly Val Trp Val Leu Ile Pro
170 175 180
Gly Leu Leu Leu Trp Gln Ser Trp Leu Glu Leu Lys Lys Met His
185 190 195
Gln Lys Glu Thr Ser Ser Val Lys Lys Phe Gln
200 205

<210> 41
<211> 235
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 4797137CD1

<400> 41
Met Gln Gln Arg Gly Ala Ala Gly Ser Arg Gly Cys Ala Leu Phe
1 5 10 15
Pro Leu Leu Gly Val Leu Phe Phe Gln Gly Val Tyr Ile Val Phe

Ser	Leu	Glu	Ile	Arg	Ala	Asp	Ala	His	Val	Arg	Gly	Tyr	Val	Gly
20				35					40					45
Glu	Lys	Ile	Lys	Leu	Lys	Cys	Thr	Phe	Lys	Ser	Thr	Ser	Asp	Val
				50					55					60
Thr	Asp	Lys	Leu	Thr	Ile	Asp	Trp	Thr	Tyr	Arg	Pro	Pro	Ser	Ser
				65					70					75
Ser	His	Thr	Val	Ser	Ile	Phe	His	Tyr	Gln	Ser	Phe	Gln	Tyr	Pro
				80					85					90
Thr	Thr	Ala	Gly	Thr	Phe	Arg	Asp	Arg	Ile	Ser	Trp	Val	Gly	Asn
				95					100					105
Val	Tyr	Lys	Gly	Asp	Ala	Ser	Ile	Ser	Ile	Ser	Asn	Pro	Thr	Ile
				110					115					120
Lys	Asp	Asn	Gly	Thr	Phe	Ser	Cys	Ala	Val	Lys	Asn	Pro	Pro	Asp
				125					130					135
Val	His	His	Asn	Ile	Pro	Met	Thr	Glu	Leu	Thr	Val	Thr	Glu	Arg
				140					145					150
Gly	Phe	Gly	Thr	Met	Leu	Ser	Ser	Val	Ala	Leu	Leu	Ser	Ile	Leu
				155					160					165
Val	Phe	Val	Pro	Ser	Ala	Val	Val	Val	Ala	Leu	Leu	Leu	Val	Arg
				170					175					180
Met	Gly	Arg	Lys	Ala	Ala	Gly	Leu	Lys	Lys	Arg	Ser	Arg	Ser	Gly
				185					190					195
Tyr	Lys	Lys	Ser	Ser	Ile	Glu	Val	Ser	Asp	Asp	Thr	Asp	Gln	Glu
				200					205					210
Glu	Glu	Glu	Ala	Cys	Met	Ala	Arg	Leu	Cys	Val	Arg	Cys	Ala	Glu
				215					220					225
Cys	Leu	Asp	Ser	Asp	Tyr	Glu	Glu	Thr	Tyr					
				230					235					

<210> 42
<211> 147
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5470806CD1

Met	Ala	Ser	Leu	Arg	Leu	Phe	Leu	Leu	Cys	Leu	Ala	Val	Leu	Ile
1				5					10					15
Phe	Ala	Ser	Glu	Ala	Gly	Pro	Gly	Gly	Ala	Gly	Glu	Ser	Lys	Cys
				20					25					30
Pro	Leu	Met	Val	Lys	Val	Leu	Asp	Ala	Val	Arg	Gly	Ser	Pro	Ala
				35					40					45
Val	Asp	Val	Ala	Val	Lys	Val	Phe	Lys	Lys	Thr	Ala	Asp	Gly	Ser
				50					55					60
Trp	Glu	Pro	Phe	Ala	Ser	Gly	Lys	Thr	Ala	Glu	Ser	Gly	Glu	Leu
				65					70					75
His	Gly	Leu	Thr	Thr	Asp	Glu	Lys	Phe	Thr	Glu	Gly	Val	Tyr	Arg
				80					85					90
Val	Glu	Leu	Asp	Thr	Lys	Ser	Tyr	Trp	Lys	Ala	Leu	Gly	Ile	Ser
				95					100					105
Pro	Phe	His	Glu	Tyr	Ala	Glu	Val	Val	Phe	Thr	Ala	Asn	Asp	Ser
				110					115					120
Gly	His	Arg	His	Tyr	Thr	Ile	Ala	Ala	Leu	Leu	Ser	Pro	Tyr	Ser
				125					130					135
Tyr	Ser	Thr	Thr	Ala	Val	Val	Ser	Asn	Pro	Gln	Asn			
				140					145					

<210> 43
<211> 147
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5473242CD1

<400> 43

Met	Val	His	Leu	Thr	Asp	Ala	Glu	Lys	Ala	Thr	Val	Asn	Gly	Leu
1			5					10						15
Trp	Gly	Lys	Val	Asn	Pro	Val	Glu	Ile	Gly	Ala	Glu	Ser	Leu	Ala
								20						30
Ser	Leu	Leu	Ile	Val	Tyr	Pro	Trp	Thr	Gln	Arg	Tyr	Phe	Ser	Lys
								35						45
Phe	Gly	Asp	Leu	Ser	Ser	Val	Ser	Ala	Ile	Met	Gly	Asn	Pro	Gln
								50						60
Val	Lys	Ala	His	Gly	Glu	Lys	Val	Ile	Asn	Ala	Phe	Asp	Asp	Gly
					65				70					75
Leu	Lys	His	Leu	Asp	Asn	Leu	Lys	Gly	Thr	Phe	Ala	Ser	Leu	Ser
					80				85					90
Glu	Leu	His	Cys	Asp	Lys	Leu	His	Val	Asp	Pro	Glu	Asn	Phe	Arg
					95									105
Leu	Leu	Gly	Asn	Met	Ile	Val	Ile	Met	Met	Gly	His	His	Leu	Gly
					110				115					120
Lys	Glu	Phe	Thr	Pro	Ser	Ala	Gln	Ala	Ala	Phe	Gln	Lys	Val	Val
					125				130					135
Ala	Gly	Val	Ala	Ser	Ala	Leu	Ala	His	Lys	Tyr	His			
					140				145					

<210> 44

<211> 2701

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 264114CB1

<400> 44

gcggccggcgc	cagcttcctc	ggccggaggg	gaggcgagac	cccagggcag	gccgcggcgg	60
gagggccacg	cccccgacgc	cgcggccggag	ggggccactgt	tggacggggc	caccggctgg	120
agcgatccc	acacctccgg	accgagggac	gcggttactc	cacaggatcc	gtgtacata	180
ggatgttgc	acaaaatcta	cctctgttat	ttttcttctt	cactgtatgc	ctgcacaatt	240
gcagatttga	gcacaatgtc	tgcagactgt	gttggaaaaac	tctgttgcac	ctaattaaca	300
caggatgacc	taggagtgtat	tctaagtctg	tgtaacaaga	tattactcat	tagtgaatgt	360
gtcagtcttgc	gtactgtatgc	ctgcagataa	cagcaagttag	gttctccctt	atttctgtaa	420
tattcaacttgc	accttccat	agtaagacgg	acttttctaa	tctgttccgt	gagatattaa	480
ttggataacatgc	tcatgtccac	tcaagacgg	aggcagatca	atactgtata	tgctgtgtca	540
tttgttggaaac	agttgaaact	gttttatgaa	cagcgttgc	ttactgtatgc	agtgttattt	600
tttgaggggca	ctgaatttccc	ttgtcataag	atggttcttg	caacatgttag	cttttatttc	660
aggccatgt	ttatgtgttgc	actaagtgtaa	agcaaaacaaa	cccatgtaca	cctggaggaat	720
gtcgatgtgc	ccacccatca	gataataata	actttatgtat	acacgggtaa	cttggcaatg	780
aatgacagca	ctgttagaaact	gttttatgaa	acagcttgc	tccttacaggt	agaagatgtg	840
ttacaacgttgc	gtcgagaata	ttaattaaa	aaaataaaatg	cagagaatgttgc	tgtagcatttgc	900
tttagttttgc	ctgatctttgc	cagttgttgc	gaatggaaaac	agatgtctaa	aagaatgttgc	960
gaggcacaatgt	tcactgtctgt	gtatcatcg	gacgcgttca	tgtagctgtc	acatgacacta	1020
ctgatagata	ttcttcgtatgc	tgacaattttt	aatgttagaaaa	aggaagaaaac	cgttcgagaa	1080
gctgttatgc	tgtggctatgc	gtataacaca	gaatcacgt	cccagtattt	gtttctgttt	1140
cttagccaaa	tcagaatttgc	tgacttttca	gaagtaacac	agagagcttgc	gtttcaaggt	1200
ctggccaccca	atgataatgt	agtgggttgc	caagggtctgt	ataagtccat	gcccaagttt	1260
ttcaaaaccaa	gacttggatgc	gactaaagag	gaaatgtatgc	tttttatttttgc	agcatcttca	1320
gaaaatcccttgc	gtatgttttgc	ctttttgttc	tttttatttttgc	gcataaaagcc	atctttgggtt	1380
aagttagtgc	gtttttttttgc	ttttttttttgc	tttttatttttgc	ccgttgcacat	tccttataat	1440
gatatactaca	tagcagggggg	tcaagggttgc	ctgggggggg	aaaaacaaaa	tcacagtttttgc	1500
acaagcaaaatgt	tttcagactgc	tttcagaatgt	gttgcatttttgc	tttttatttttgc	tgatgcacat	1560
aaaaataacatgc	ggttttccaaatgc	gaccccaatgt	tttttatttttgc	tttttatttttgc	tttttatttttgc	1620
tgctgttgc	gttatatatgt	tgcaatttttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	1680
aggaccgtatgc	aaagatataatgt	cacttgcataatgt	tttttatttttgc	tttttatttttgc	tttttatttttgc	1740
tgtgtttttgc	aatgggttgc	agcagggttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	1800
aacctcatgt	actgttatttttgc	tccaaatgttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	1860
acttagtagtgc	ctttttttttgc	agctgttttttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	1920
tttgcatttttgc	tttgcatttttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	1980
gtaactgttgc	aaattttatgt	tgtgttttttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	2040
gctaagaggt	actctgttttttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	2100
tttatgttttttgc	aaacccacttgc	aaatgttttttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	2160
gaacttgatgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	tttttatttttgc	2220

agagattttc gatgcactgt gggaaaactc tatccatcct gccttgaaga gtctccatgg 2280
 aaaccaccaa cttatcttt ttcaacggat gggacagaag agtttaact ggatggagaa 2340
 atgggtgcac taccacctgt atagtgggaa agttcagggta gtgcacgcct gagtttatgtg 2400
 ctttgcatt ttcttgcta aacaaaagag gctatgaaag aactaaatat gagtacataa 2460
 aattctatct ttgataaaatt ttatTTTt gcccactta atatttgcatt cagtataata 2520
 tatatcagtg agtcttacag aaagatatgc ttccataata tgaaaatagat tattcaataa 2580
 ttgagaaaact ttatgtgtaa tcatgagagt ataagaatct ggattatcta acattgttag 2640
 ccctgtgtat gtacagttca aaaagttcat ttataaaaagt agtttctgt tcctagttga 2700
 t 2701

<210> 45
 <211> 736
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1455669CB1

<400> 45

gagacttagc gacagacaga cgctgggacc cacgacgaca gaaggcgccg atggccgc 60
 ctgctgagcc ctgcgcgggg cagggggtct ggaaccagac agagcctgaa cctgccc 120
 ccagcctgtct gaggcgtgtc ttccctgagaa cagcagggt ctgggtaccc cccatgttac 180
 tctgggtctt tggtccccatc tacccctct tcattccacca ccatggccg ggctaccc 240
 ggatgtcccc actcttcaaa gccaagatgg tagtgcaccc ccctgggagc ctggaaaccag 300
 gcaatgttcg ggggaggccg gggacaggct ggaacctggt gaagtcttaa agtagactcc 360
 tcctatcggtt gtttggaaagg gaaatctgtta atcaaacaga gcaatattag aaaggctaca 420
 gaggtcaact cagtgaaaca cggttctccc aaacagattt tggtaatccg aaaatccacg 480
 catgcgcacaa catacgacata cactccatc ttccctggaca gttttagt accataacct 540
 ggatTTTCC aaaacataacc atgttagactc ttggatcac aaggtaattt tagagccaca 600
 ttaggatgaa cctttaaaaa agttatgcatt ttatTTTt gttccccac tggctgtatt 660
 ataggacaat ttttatatgt gatatgttatt taccttagtg tggtaatcaa acactggcat 720
 tccaaagtgtt aaaaaaa 736

<210> 46
 <211> 1826
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2084989CB1

<400> 46

ccttaggcgc caggcacacg cgagcggtac ctggtcccg gcagcgagg tctttacca 60
 ccccaagtctt gtttctgacg ccctagctca ttccgcacaaat ttagggtttt ggctctggctt 120
 gttcccccctcc ggctcgaaacc acctttctc tgagccgacg cagctacccgg ggctccgtga 180
 attggccaccc cttccctgggc acccttgagg cttccgtggaa gggacgttac ggggcagagc 240
 gggacgttagg cctgagttt ctgcaggcggt gctctgtgtg ttggctgggt tctgccaatc 300
 cccgtgcaca ccgggtgggc gcccgcggga agtccctgccc cttccctgtt ggtcggcgtc 360
 acgcgtgacg tcccccgtga ttggctggag gcccgcggg cgacagcggaa ggcagagagg 420
 aaggcggttc tgagagcttc agagagcgtt gggaaagcaaa atgggtgaat tgcctttaga 480
 catcaacatc caggaacatc gctgggacca aactacttcc ctgggcagag cccggcactt 540
 tttactgtt actgatccctc gaaatctgtt gctgtccggg gcacagctgg aacttctcg 600
 gaacatcggtt cagaactaca gggccggcgtt ggtgacccca gggatccacgg aggaccagct 660
 gtggaggggcc aagtatgtt atgactccgc cttccatcccg gacacagggg agaagggtgt 720
 cctgattggc cgcgttgcac cccagggtgcc catgaacatg accatactg gctgtatgt 780
 cacattctac aggaagaccc caacccgtgtt gtttgcaccc tgggtgaatc agtccctcaa 840
 tgccattgtt aactactcca accgcgttgc tgacactccc atcaactgtt ggcagctggg 900
 gacagcctat gtgagtgcca ccactggagc ttgtggccacgg gcccgtggac tcaaatccct 960
 caccacgcac ctggccccc ttgtggccacgg atttgtgtccccc tttgcacgg tggcagctgc 1020
 caactgcacat aacatcccccc ttgttggccacgg gagagagctg caggtggcata cccgggtggc 1080
 tgatgaggca ggtcagaggc ttggctactc ggttgcactt gccaaggcagg gaatcttcca 1140
 ggttggattt tcaagaatctt gcatggcgat ttccgttgcaccc gccatccac cactgtatcat 1200
 ggacactctg gagaagaaaag acttccgtaa ggttggccacgg ttttgcaccc ttgttgcaccc 1260
 atggggcgtt gtttggggaa gtttgcaccc cccaaactctc tttccaccc cgcctgttcc 1320
 tctaaagactt gccaggccctt ctccgttgcaccc ctgcaccc gggcaggcactt tggttcattc 1380
 agcaagaatg aacttggcgtt gggtgaagggaa acttgcagg ggcaggagga gaggacaaag 1440

gaaggaaacc aacttcatca gtgttactcc agtggcttct gacacacaga aggggactgt 1500
 catagtcatg cttgatctca tgctcattct tttacccctt agtgcctcca tactgagagg 1560
 tacacacggg tgaacacgca cacacagaca tgaacaggac acgaaagcaa agcacaggaa 1620
 caagctctgg ctcattcaca gaatcatta ttccacaaatg tattgagtgc catgcaccag 1680
 gcatgtttta gggctgagga gatggcactg aacacaatgg ttatggcccc tgcctcatg 1740
 aagtttatag tctgatgcag aaaccaataa acaaggaggc acccacataa atacattctt 1800
 agaaaagtgtaa aaaataaaaaa aaaaaa 1826

<210> 47
 <211> 1325
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2501034CB1

<400> 47
 ccacgggtcc gggtctggac tgcagtttag tggaaatggg caacggcggg cgagcgccc 60
 tgccagcaggga aagggggaaac gtggatgggg tggcagcgc tcctactgt gcctcggcct 120
 cctgccgtt cagggtcatc gaatgcaacc aggaggccaa agagttgtac cgagactata 180
 accacgggtt gctgaagata accatctgtt aatctgcca gaaacctgtt gacaaatata 240
 tcgagttatgtt tcctgttatac atctgttata atgcttatatt gtgcaagct cagggctaca 300
 gacatattct tttcaataat caaaaataa ttcatggaaa actctgcata ttttgttgc 360
 ttttgtgaagc atacctgagg tggggcagc ttcagatggt caaccagaat actgcccctg 420
 atgacttgat cagatatgtt aaggaatggg atttcttagt aatgttgcg attgctgttt 480
 tagaacaac tgcctatttt attggcattt ttaccttccgtt gtttttagaa cggccatgt 540
 cgccaaaaaaaaaa aaagcccaac ttcattttgc tgctgaaagc attattatta tctagctacg 600
 gaaaacttctt gctgatttca gctgtcattt gggaaacatgtt ctacacatct gtgtgcctca 660
 aactcattaa agtattttt ttcatcatcaaa attttcaggc aatttagatgtt accctaaaca 720
 tcaaccgtaa gctctccctt ttggccgtgt tgagtggctt actgtggaa agcatcatgg 780
 tctacttctt ccagagtatg gaatgggatg ttggaaatgtt ttatggccatc tttaaatctc 840
 aggacttctg aagagttttt ttcttcttca ctatctgtgg catgaccaggc tttatctgaa 900
 agagaaaaaaga catgaaatataa aaccaacactt ctcatttttctt gttgagttttt atgaaagcaaa 960
 gattggaaac actttctgaa aagggaaagca atgataatag cggtggtatcc ccaccccccac 1020
 aaatgcaccc aagagacaag ccatttacat acatgttccatc acagtccacatc atagaaacac 1080
 ccacatggac acaaggaaatg ttgctgcaga gactgaatgtt catgaaacag gtggaaatgtt 1140
 atacgttata cacaaggcca ggttaagcgct cataattcac acataataaa acatcttagt 1200
 ttcatccctt tgacatgtttt atatctttt aattttaaatg ttgttactgg cttaaaaat 1260
 ttttgttctt tacaatagaa acgcttttaa taaagtcttt cagaataaac caaaaaaaaaaa 1320
 aaaaaa 1325

<210> 48
 <211> 1832
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2745212CB1

<400> 48
 tggctgtcg ttggctggag cagcggtcgc gcgggtcgcgt gtgtgttgcgt gtctgcggc 60
 gctggcaaat ccggcccaagg atgttagatgtt ggcagtgcctt gacggcgcgt ctgacgcgg 120
 gttgggtggg gtagagatgtt gggggcgtt gtcgggggtt gtgggagaag gaggaggcgg 180
 cgaatcaattt ataaatggcg ccgaagcagg accccgaagcc taaaattcccg gagggtgagc 240
 gagtgctgtt ctgttcatggg cctcttctt atgaaagcaaa gtgtgtaaatggttccat 300
 aggacaaaca aatggatgtt ttcatcatcattt acagtgggtt gaataaaaaat tggatgtt 360
 ggggtccggg gggccggatc ctcaaatatcg tggacacccaa tttgcagaaaa cagcgagaac 420
 ttcaaaaagc caatcaggatc cgtatgttccatc agggggatgtt gagggggctt gccccaggaa 480
 agaagacatc tggctgtccaa cggaaaaatgtt gttaaatgtt aacggaaaaag aacaaacaga 540
 aaacacctgg aatggatgtt ggtggcgtt ccgttgcgtt ccctcagcccttccgtt 600
 aaaggcccg ggttagatctt actgttgcgtt atgaggaaac attcatgttccatc agatgtt 660
 tttaaagtataa gattcctgtt gggccggatc cgtggcttgcgtt tgatgttccatc gactttaat 720
 ccaggccaaa acagctttt tatcttccatc ccaagaagaa tgggttccatc attcttgagg 780
 attatgttccatc ttacaatggatgtt ttcgttccatc acatgttccatc taaggatgtt ggggtt 840
 aatggatgttccatc aatggatgttccatc acatgttccatc taaggatgtt ggggtt 900
 aatggatgttccatc gctgaaatccatc ttcgttccatc cccatgttccatc 960

aggtgtatgg agcgcacat ctcctgagat tattttagac aattggagca atgttggctt 1020
 atacacccctct ggatgagaag agccttgctt tattactcaa ttatctcac gatttcctaa 1080
 agtacccggc aaagaattct gcaactttgt tcagtgcac cgattatgaa gtggctcc 1140
 ctgagtagcca tcggaaagct gtgtgagagg cactctact cacttatgtt tggatctccg 1200
 taaaacacatt ttgttcttca gttatctct tgacaaaacg atgtgtttg aagatgttag 1260
 tgtataacaa ttgtatgttgg tttctgtttt gattttaaac agagaaaaaa taaaaggggg 1320
 taatagctcc tttttcttc tttctttttt tttttcattt caaaaattgtt gccagtgtt 1380
 tcaatgatgg acaacagagg gatatgtgt agagtgtttt attgcctagt tgacaaagct 1440
 gctttgaat gctgggtgtt ctattccctt gacactacgc acttttataa tacatgttaa 1500
 tgcataatga caaaatgttcc tgattccctag tgccaaaagggt tcaattcagt gtatataact 1560
 gaacacactc atccattttgt gcttttggg ttttttattgg tgctttaaagt aaagagccca 1620
 tccttgcaa gtcatccatg ttgttcatca ggcattttat cttggctcaa attgttgaag 1680
 aatggtggtt tggatgttggg tttttgtatt tggtctaat gcacgtttaa acatgataga 1740
 cgcacatgtcat tggtagcta gtttctggaa aagtcaatc ttttaggaat tgttttcag 1800
 atcttcaata aaaaaaaaaa taaaatttca aa 1832

<210> 49
 <211> 1211
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 4833111CB1

<400> 49
 gacagaccgg cctcaaacat ggcggcgccc agcgcgcgag gacgtatcc gcttctgtc 60
 cggcttggat ttagccttg acgaggctg agcgaccatg gaccggccgg ggttctggc 120
 agcgctgggt gctgggggg tagcagggtt ttctgttgc ttgatattat ttccctctgga 180
 taccattaaa accaggctgc agagtccca aggatttagt aaggctgtg gttttcatgg 240
 aatatatgtt ggcgttccctt ctgctgttat tgatccctt ctaatgttgc ctgcattttt 300
 tattacccat gaatatgtta agtgggtttt gcatgtgtat tcatcttcgtt atttgacacc 360
 tatgaaacat atgttggctg cctctgttgg agaagtgggtt gcctgcctga ttgcgttcc 420
 atctgaatgtt gttaaaggcaga gggcacaagggt atctgttttca acaagaacat ttcatgtttt 480
 ctctaacatc ttatataatggaa agggatccaa agggttgc ttgaggctata aaagcacagt 540
 tttaagagag attccctttt ctttggtcca gtttcccttta tgggagttct taaaagccct 600
 ctggccttgg aggccaggatc atgtgttggaa ttcttggcag tcagcgttgc ttggagctt 660
 tgcagggttggaa ttggccgttgc cagtcaccac ccctcttagac gtggcaaaaga caagaattac 720
 gctggcaaaag gctggcttca gcactgttgc ttggaaatgtt ctctctgtcc tgcatgggt 780
 ctggcgttca caggggcttgc caggatttt tgcaagggttgc ttccctcgaa tggcagccat 840
 cagtcgttggaa ggtttcatct ttgtgggggc ttatgaccga acgcacagct tgctgttggaa 900
 agttggcaga aagatgttcc gaagcagaga caagcctcac ctccacttgc gtcaagagag 960
 gggcctgcag tgcacccctt cttccgttgc gcagctgttgc gaactatagg cccccactgtct 1020
 gaagaccagt tggatgttggaa taccggcatg gagattgttgc catccgttgc ataggctggc 1080
 tggatgttggaa tcaattggctt gtatgccaga gagctaagag aagaaaacgg ggtctgttgc 1140
 ggtactctgttca acaatttctt cagaacccatc taataaataa gtttggtaat gctgagaaaa 1200
 aaaaaaaaaa a 1211

<210> 50
 <211> 1046
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 876677CB1

<400> 50
 cccacgcgtc cgggaatgttc ttctacttcc tcataactttc tcctctcccc tctccaaagc 60
 acatctgagt tgctgcctgt ttccacact tagtccaaa cccatgaaaa attgccaagt 120
 ataaaaagctt ctcaagaatg agatggattc taggggtgtt tcacctgaga agcaagataa 180
 agagaatttc gtgggtgtca acaataaaccg gcttgggttgc tgggtgttgc tcctgtttt 240
 cctcttttc ctgttgggttgc tcattaccc cccatctcc atatggatgt gcttgaagat 300
 cattaaggag tatgaacgtt ctgttggatcc cctgttgggttgc cgcacccatc ctgacaaagc 360
 caagggccca ggtttgatcc tggccctgccc atgcataatgtt gttttgtca aagttgaccc 420
 ccgaacagtt acttgcacca ttccctccaca agatccctc accagagact ccgttaactac 480
 tcaggtagat ggatgttgc ttccctccaca agatccctc accagagact ccgttaactac 540
 caacgatgttca catcaagcaa catttctgttgc ggctcaaacc actctgagaa atgtctttagg 600

```

gacacagacc ttgtcccaaga tcttagctgg acgagaagag atcgcccata gcatccagac 660
tttacttgat gatgccacccg aactgtgggg gatccgggtg gcccgaatgg aaatcaaaga 720
tgtccggatt cccgtgcagt tgcagagatc catggcagcc gaggctgagg ccacccggga 780
agcgagagcc aaggtccttg cagctgaagg agaaatgaat gcttccaaat ccctgaagtc 840
agccctccatg gtgctggctg agtctccat agtctccag ctgcgtacc tgcaagacctt 900
gagcacggta gccaccgaga agaattctac gattgtttt cctctgccc tgaatatact 960
agagggcatt ggtggcgtca gctatgataa ccacaagaag cttccaaata aagcctgagg 1020
tcctcttgcg tagtcagct attgca 1046

```

<210> 51
<211> 1660
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2326143CB1

```

<400> 51
gctccccctgc ccaccccgcc cccgtggccg agccccggag tcgagtgaaa gtcggccggc 60
cgccgcgggc agccgtgacc cccgcggggg acactgcagc cggagccgg gaggggccgc 120
gcccgcaccg tctgaacttag gatgtccca catgaagggt tcagctgtga tgcatgtta 180
aaaggaaattt ttcgaggtcg cagatataag tgtttaattt gctacgatta cgatctttgt 240
gcatcttggt atgaaagggt tgcaacaaca aaaaaggcata caactgcaccc cccaatgcag 300
tgcatattaa caagggtaga ttttgattta tactatgggt gggaaatgtt ctctgttagag 360
cagccacagt cttttacttg tccctattgt ggaaaaatgg gctataccga gacatctt 420
caagaacatg ttacttctga acatgcagaa acatcaacag aagtgtttt tccaaatatgt 480
gcagcgttac ctggaggcga tcctaattcat gtcacggatg actttgcagc tcatacttaca 540
cttgaacaca gagccccctag agatttagat gaatcgagtg gfttcgaca tgcgttgc 600
atgtttcacc ctggccgggg attaggaggt ctctcgctc gtagatcaaa catgcacttt 660
actagcagtt ctactgggtt actttttctt ttcaggtttt catatttcc aagcaatagg 720
gaagccatgg atcctatacg tgagctttt ttcaggtttt caggagttag acgttctgca 780
ggaggacagc ttaatttccctc tggcccttcc gtttctcgt tacaacaact gcagatgcag 840
ctgcagcttag aacggcagca tgcccaggca gcacggcaac aactggagac cgacgcac 900
gcaacccggc gtactaacac aaggcgttc accactacaa tcacacaatc cacagcaaca 960
accaacatag ctaatacaga aaggcgttag cagactcttc agaatttcca gtttcttta 1020
acaagggtta atgatcctaa aatgtctgaa aaggagcgc agtccatgaa aagcggcgt 1080
gcagaccgca gcctgtttt ccaagagctc ctctgttca cttagtgcg tgaagagagc 1140
tcatccctcgt atgaggatga tcggggggag atggcagatt ttgggtctat gggtgtgt 1200
gatattatgc cttagatgt tgcttttagaa aacctaaatt taaaagagag taataaaagga 1260
aatgagccctc caccacccctc tctttgatga catcccaattt cgcagacaaat gtccctgt 1320
ctgtatttgc caatgaaatgg gacaacaac tatctgggt ttgtttgtt attgttaattt 1380
caggctgttc actcttggta cattgtgtac attttttttt aagagagaaa atatataatg 1440
taatcatttc cacttaacta atttttactt cttagcaggta aatgttaggtt gcagtgcagg 1500
ggtgatctct gcttcctgtt ctttgacatg caaaaggctc tcctaataact ccacattcaa 1560
actaagagg aaaattgaaa tctctaattga agtcgtgtg tgtattttatg aatattaatg 1620
aataaaaaact gtttggatgg tttacccctaa aaaaaaaaaa 1660

```

<210> 52
<211> 1110
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2786302CB1

```

<400> 52
ccttatttag agaaaagatg acctatctac cccttacttg gggaaagactc tctgttcaa 60
cagtttcttc tgcgtttctgc tcctggacat ggcataaaaa cggaaatggt agtatttcaa 120
ggataaaagaa taactctagg acaagatgtt ctttgggtt aaacctatct cctgtattca 180
tttagatttg gctttaaaatg cccatactat tttagatgt ctctttagtct tttaaaaatgt 240
ttttaaaaaaa attaatgtgg gctttttat ttttctcgt tgggggggtt agtttgaata 300
aacctttctt ccacatgaga agtattttac aagttgtttt tcaaaatttta aagaaaaatgt 360
tcaaatttcc aagaaaaatgt tcaaatttcc tgcataaaaaaa aaatggacaa atattccacca 420
ttgagtgtga atgcccattgtt gatgttattt ctgttattt ttcttttctt ttagccatac 480
ttcagagtg ttatgttccctt ttttgcata aggtgtctgg aaatgttataa tggaaatgt 540
ataatgttataa aagaccctgtt tttcagaatc tccacccggaa gtagagaaac tcataccat 600

```

```

ccggaaagac ccgaagaaga agatgaagat gttcaagctg aaagagtcca agcagcaaat 660
gcactcactg ctccaaactt ggaggaggaa ccagtcataa ctgcaagctg ttacacaag 720
aatattat agacaaagaa aagttgttt tcaacaagaa agaagaaaat agccatcaga 780
aattttcct tttgtttaaaaaggtaa gtttggtt tactaggaca caatggagct 840
ggtaaaagta cttccattaa aatgataact gggycacaa agccaactgc aggagtggg 900
gtgttacaag gcagcagagc atcagaagg caacagcatg aacaacaggc caagttctg 960
gggtactgcc ctcaggagaa ctcactgtgg cccaaacctt ccatgaaaga gcaacttggg 1020
ttgtatgcag ctgtggaaag actggggcaaaaagatgtct gctctcgat tttcacgatt 1080
ggtgggaggt cttaaagctcc aggaacaact 1110

<210> 53
<211> 1120
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3735780CB1

<400> 53
gaaatccagt tatcaaattt gactcaagaa gagagaacct aacagaacaa taacaatgg 60
agaatttggg aacattatca caaagcttac atcctgcca actccaggct cagatgtcac 120
agttaaaaaa aagtcccttca tgaaaaagaa agatcttaag cagcatgtat gattcagaag 180
ctcatgaaaaa gaggccacca attactaacat cttcaaaaca agatataatca cctcatat 240
caaattgttgg tgagatgaag cattacttgt gtggctgtc tgcagccctc aacaatgtcg 300
caatcacatt tcccatttcag aaggctctt ttcgacacaa gctgttatggc atcaaaacc 360
gggatgcaat acttcagttt agaaggatg gatttgcggg tttgtatcgat ggaatccctc 420
ccccattgtat gcagaaagaca actacgctt cacttatgtt tggctgtat gaggatttt 480
cctgccttcc cacaacgcat gtcagtgtc cagagttgc aaccaggcgtc gttggccg 540
gtctgcagg gacaacagaa gcaattttca ctccacttgc aagagttcag acattgttc 600
aagaccacaa acatcatgac aaattttacca acatttacca ggcttcaag gcactgaaat 660
gtcatggaaat tggagagttt tatcgaggtt tggtgcctt tctttccgg aatggactct 720
gcaatgtctt gttttcggc cttcgaggc ccattaagga gcatctgcct accgcacac 780
ctcacagtc tcatctggc aatgattttt tctgtggagg tctattgggt gccatgttgg 840
gattttgtt ttttccattt aatgttgc aacttcgc acagtctcag attggtgggg 900
aaatttcgc tttcccaag gttttccaa aaacttcgc ggaacgggac agaaaaactga 960
taaatctttt cagaggcgc catctgaaat accatcggtc cctcatctt tggggcataa 1020
tcaatgcaac ttatgagttc ttgtttaaagg ttatatggaa aaaaaacatcg ttaagtgc 1080
tttatcaact gaatagaccc tctaagaaga aaaaaaaaaa 1120

<210> 54
<211> 886
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 039026CB1

<400> 54
ggccgcggct cctgtccaga ccctgaccct ccctcccaag gctcaaccgt cccccaacaa 60
ccgcgcgcct tgtaactgtat tcggatgcga gaggctgtc ttaagtaaga atcaggcc 120
attggagaca ttcaagcaaa ggttggacaa ctactttcc agaacagaaa gggaaactcat 180
gcatcgaaaa aggtgactaa taaaggatcc agaagaatat ggctgcacaa ataccagaat 240
ctgtatcgat aaaaacgttt aaggatttc tggggaccta caataaactt acagagaccc 300
gtttttggc ctgtttttt gacttcacaa caagagaatg aaaacctgaa gagaccac 360
tttcagaacaa ttgttctacag aatattttaa aatgacaca aagaatatcc attagatttc 420
aggaaatataca tattcagcag aatgaagccc tggcagccaa agcaggactc cttggccaa 480
cacatcgatag aagtccgtat ggtatgcactt ttgatggaaag attgccaaca gctgtttat 540
cgaaaaatgg gactcatgt atagaatccc ctgaaagcag tagccaccat gttcaaccat 600
ttgtatcgat gttttggc aatggaaaccc ctggagaaac aaaattgtca tttaccagg 660
taaatcacaac tagaaaggct tatttttttgc tggagaaata agatgcacca ttgttgggg 720
cctttatgtt cagcagctt gtcacttgc tggagaaata aaccattttt tcttcattt 780
gtactgtttaa tttaaagca acttatgtgt tcgatcatgt atgagataga aaaaattttt 840
ttactcaaaat gggaaatatca ctggaaaaaaa aaaaaaa 886

<210> 55
<211> 2336

```

<212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 260607CB1

<400> 55

taatacgtct actataggga atttggccct cgagcagtaa ttccggcacgaa ggaccatctc 60
 ttttaggatat atttttaaat tctttgaaac acataaccaaa aatggtttga ttcaactgact 120
 gactttgaag ctgcattctgc cagttacacc ccaaattggct ttaatccccct ctcgggtctg 180
 gttgcctttt gcagggtggg ttgtggactc agctcctgtg aggggtctgg ttaggagaga 240
 gccatttttt aggacaggga gtttatagc ccttttctac tttccccc tccctccca 300
 ccttatcaat tttttttctt ttttctgttgc cccctcttc tggaggcagt tggagactat 360
 ccttgccttat gcctcaat tggcagaaaaa gacccctttaaaaacccaga gaacactgga 420
 gggggatgtct ctagttgggt ctgtgtccat ttttctgtg cccaaagaga gacagacaga 480
 ggctgagaga ggctgttccctt gaatcaaagc aatagccagc tttcgacaca tacctggctg 540
 tctgaggagg aaggcctctt gaaaaactggg agctaaggc gaggcccttc ctttcagagg 600
 ctccctgggg atttaggtgt ggtgtttgc aagccaagggtt gtagggagcc gagaaattgg 660
 tctgtcggtt ctttgttgc ctttgttgcggg gtagggaggat tttttttttt caggttagctc 720
 cctgttgcgg gactgtctg tccctgtccctt ctactgcaga gatacgactc ccgagttccc 780
 ttccaggcttgc gtagacaggc agtggaggagg ggcctgttgc agtctcaag ggtgccttcc 840
 cctccctccca acccagacat accctctgc aactggaa ccacgcgttc tagtaactac 900
 ctcacagagc cccagaggcgtt ctttgtgc ctttgtgc ctttgtgc ctttgtgc 960
 cttaggcacc ctttccccc acctctcatc aggggtgggg gtttccctt tttttttttt 1020
 aagtgtttat gggggatgtt tagttggctt gccattttttt ccactcgact gtttgcctgt 1080
 ttcttgaaaaa ccagtagaaag gggaaacagca ctttgttgc ctttgttgc 1140
 aagaaaaatcccttccca acccagacat accctctgc aactggaa ccacgcgttc tagtaactac 1200
 aatttttagatg cagaacatcccttccca acccagacat accctctgc aactggaa ccacgcgttc tagtaactac 1260
 agtttttttc ctttgttgc acatcccttccca acccagacat accctctgc aactggaa ccacgcgttc tagtaactac 1320
 tcatgtctga agggggatttt agggggcgaga gccgcagccc tgacccttcgg tccctgtgcac 1380
 cgctttgggg cacatgttgc tggccttgc tggccttgc tagtatgttgc gactccggat 1440
 ggacaaaaga aaaaaaaaaat ttttttttttgc atggatgttgc agggatgttgc tggggagcat 1500
 gtgtttttgtat taaccgtgttgc atggatgttgc agggatgttgc ttttttttttgc atggatgttgc tggggagcat 1560
 cttacagtaa gatttggaaact aaggggcagggtt ctttgttgc ttttttttttgc atggatgttgc tggggagcat 1620
 ggacaaaatcccttccca acccagacat accctctgc aactggaa ccacgcgttc tagtaactac 1680
 ccaggatccc cccatgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 1740
 ctttttttttgc ccatgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 1800
 gtttttttttgc accatgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 1860
 tggatgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 1920
 gggggaaacca gagctgagac cttttcaaca gggtttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 1980
 gggcccttttgc ctttgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 2040
 ggatgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 2100
 gtatgttttttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 2160
 tcctcataga agcccccattt ctttgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 2220
 attaggttagt ggcagcttca ctttgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 2280
 aggaaaaaaaaa tattaccttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 2336

<210> 56
 <211> 2200
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 1429651CB1

<400> 56

gagaacttta cgcctggatc tcatcttact gacacagaaaa ccctgttaagg atccagagg 60
 ctcgttcagg accatggaga gccggcaccag cagccctcag cttccacagt tagatccccct 120
 ggtatgcgtttt ccccaaggat gcttggagcc tggggacatc gcggtgttag ttctgttactt 180
 cctctttgtc ctggctgttgc gactatggtgc cacatgttgc accaaaaagag acacatgttgc 240
 aggctacttc ctggctgttgc gggacatgttgc tgggtggccat ctttgcgttag ctatgttgc 300
 cagcaatgtt ggaatgttgc atttcttgc ctttgttgc ttttttttttgc atggatgttgc tggggagcat 360
 ttctgttacta gctttagtgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 420
 ctttccatc tacatgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 480
 cgggtggcattc agaatttttttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 540
 caagatctcg ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc ttttttttttgc atggatgttgc tggggagcat 600

tctgtacctg gccatagttg ggctactggc catcaactgct gtatacacgg ttgctggtg 660
 cctggctgt gtgatctaca cgatgcct gcagacgctg atcatgcta taggagcgt 720
 cacctttagt ggctacagtt tcgcgcggc tggggatg gaaggactga aggagaagta 780
 cttcttggcc ctggcttagca accggagtga gaacagcagc tgccggctgc cccggaaaga 840
 tgccttccat atttcccgag atccgctgac atctgatctc ccgtggccgg gggcttatt 900
 tggaatgtcc atccccatccc tctggtaactg gtgcacggat caggtgattt tccagcggac 960
 tctggctgcc aagaacactgt cccatgccaa aggagggtct ctgatggctg cataacctgaa 1020
 ggtgctgcc ctcttcataa tggtgttccc tggatgttc acggccatcc tttcccaga 1080
 tcaagtggcc tggcagatc cagagatctg ccagaagatc tgcagcaacc cttcaggctg 1140
 ttcggacatc gcgtatccca aactcgtgtc ggaactctg cccacaggc tccgtgggt 1200
 gatgatggct gtgatggtg cgctctcat gtccctccct acctccatct taaacagtgc 1260
 cagcaccatc ttcacccatgg actctggaa tcaacccctt cctccggat ctgagaaggaa 1320
 gctcatgatt gtgggcaggg tgggtgtgt gctgctgtc ctggcttcca tccctggat 1380
 ccctgtggc caggccagcc agggcggcca gcttccatc tatatccagt ccatcagctc 1440
 ctacctcgag ccgcctgtgg cgtgtgttcatc catatgggatgttcttga agaggaccaa 1500
 taaaaagggtt gccttctggg gcctgatctc gggcctgtc ctgggttgg ttaggctgg 1560
 cctggactt atttacgtgc acgctcgatc cgaccaggca gatgagcggc cggctctgg 1620
 gaagagcatt caactcttctt acttcttccat gatcctgtcc acggccatcc tcatcactgt 1680
 ctccaccgtg agctggttca cagagccacc ctccaaaggag atggcagcc acctgacctg 1740
 gtttacttgtt caccggcccg tggccaggaa ggaacaagca ccaccaggcag ctcccttgc 1800
 tcttacccctc ttcagaacgc ggttgcaga ggcaggcagc acggcagcc tccagttcga 1860
 gatgggttcaa gaaaacacgt ctaaaacccca cagctgttgc atgaccccaa agcagtccaa 1920
 agtgggtgaag gccatctgtt ggttctgtgg aatacaggag aaggcgaagg aagagctccc 1980
 ggccagagcga gaagccatca tagtttccctt ggaagaaaac cccttggta agaccctcc 2040
 ggacgtcaac ctcattttctt gctgttgc gcccattttt atctgggtt attttgc 2100
 gtgtgggggtt aacccagggg tccaaactctt gtttcttccat agtgcctcat ttttttaatg 2160
 aaaaaaaaaaa taataaaagct tttgtttacc aaaaaaaaaaa 2200

<210> 57
<211> 2823
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 2069971CB1

<400> 57
 gaaagacata cacacttcat gtaatgttac ctgcaagtct ccctagaaaaa gcagtttttg 60
 taggtggaaa caatgaagcc aggttatattt gcaaggaggc tggatatttta gcagacctac 120
 caacaacact gatgttaggaa gtcatttattt ttaatattctg gagctttta attttttctt 180
 tagaaagtgtt ataaatattt gcaatgttgc tttgtttcca aaactggca gtgagttcaa 240
 caacaacacgc aacaacacgc gcaatgttgc tttgtttcca tggatatttctg tgaaaagaacg 300
 tatcttgcata atgatataaggc tggcaagatg tttgtttca cactagaaaag aaggagctgc 360
 aatgttgcata ttcatacgaa tggcaatgc caacagaaaac cggtaatata agatcagtgt 420
 cccagagaga gaccagagga gctggatgtca ggaggcatgtt accactgttca cagtggctcc 480
 aagccacacag aaaagggggc gaatgttgc tttgtttcca tggatatttctg ctgttctgt 540
 tcagcaatattt gtttgcattt catgatttgc tttgtttca tggatatttctg tgctggagt 600
 ctttgcattt tcacatgtc tggccaccc tttgtttca ttttgcattt tgaccatgtt 660
 ctcttctccctt tgggttgc atcgaatgc ctttgcattt cccttcttca ggttgcattt tggatggcac 720
 cgagcagaga tccttgcattt ctttgcattt cccttcttca ttttgcattt tgctgggtt gactggcgtg 780
 ctatgttacc tggcatgtca gtcgttgc tttgtttca ttttgcattt tgaccatgtt 840
 atgtatcatcg tttccatgtt cgcgtggcg ttttgcattt cccttcttca ggcgttgc 900
 cagagatgccc ttggccacaa tcacaaggaa ttttgcattt gtttgcattt tgaccatgtt 960
 tttgttgcattt cccttgcattt ttttgcattt cccttcttca ggttgcattt tggatggcac 1020
 atttacttttta agccagatca taaaatagcc gacccatctt cccttcttca ttttgcattt 1080
 ctggcttgc ccagcaccat ctttgcattt cccttcttca ggttgcattt tgaccatgtt 1140
 gtggcaaaaga gcttgcattt ctttgcattt cccttcttca ggttgcattt tgaccatgtt 1200
 ctgttgcattt acggccatcc ttttgcattt cccttcttca ggttgcattt tgaccatgtt 1260
 catgttgcattt ctttgcattt cccttcttca ggttgcattt tgaccatgtt 1320
 cttagcaaaa gcttgcattt cccttcttca ggttgcattt tgaccatgtt 1380
 gaccccgact gcttgcattt ttttgcattt cccttcttca ggttgcattt tgaccatgtt 1440
 ctttgcattt cccttcttca ggttgcattt tgaccatgtt 1500
 aggaacccaaa ggaagaaaattt catgttgcattt cccttcttca ggttgcattt tgaccatgtt 1560
 tccatttgcattt atgttgcattt cccttcttca ggttgcattt tgaccatgtt 1620
 ctttgcattt cccttcttca ggttgcattt tgaccatgtt 1680
 aacagctgtt ttttgcattt cccttcttca ggttgcattt tgaccatgtt 1740
 agaacacata ggttgcattt cccttcttca ggttgcattt tgaccatgtt 1800

atagtcacaa aattttacca aaacattaga aacaaaaaat aaggagagcc aagtcaaggaa 1860
 taaaagtgac tctgtatgc aacgccacat tagaacttgg ttcttcacc aagctgtat 1920
 gtgatttttt tttctactct gaattggaaa tatgtatgaa tatacagaga agtgcctaca 1980
 actaattttt atttacttgt cacatttgg caataaatcc ctcttatttc taaatttcaa 2040
 cttgtttatt tcaaaaacttt atataatcac tgtaaaaaag gaaatatttt caccttaccag 2100
 agtgcttaaa cactggcacc agccaaagaa tgggttcta gagacccaga agtcttcaag 2160
 aacagccgac aaaaacattc gagttgaccc caccagggtt tgccacaga taatttagat 2220
 atttacctgc aggaaggaaat aaagcagatg caaccaattc attcagtcca cgagcatgat 2280
 gtgagcactg ctttgcata gacattggg ttagcatga aactataaaag aggaatcaga 2340
 cgcagcaagt gcttcgtgt tctggtagca actcaacact atctgtggag agtaaaactga 2400
 agatgtgcag gccaacattc tgaaaatccc atgtcactgg gtttgggtt gaaacctgga 2460
 ctttgcatt tttaaaagtt acccagagat gcttctaaag atgagccata gtctagaaga 2520
 ttgtcaacca cagggttca ttgagtgaaa cagctagata catacattgg cagctacaat 2580
 agtatcatga attgaatgaa tgtagtgaaa tataaaagga aagcgatgga tattgccgga 2640
 tgggcattggc cagtgttgc tcacgttgc gaggtgacag ctctgttgc ctttgaatta 2700
 catatggagg ctctccaggaa agacgaagaa gagaaggaca ttctaggca aaagaagact 2760
 aggccacaagg cacactttag tttgtctgtt agcttttagt tgaaaaagca agatacagg 2820
 tcg 2823

<210> 58
 <211> 1491
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2329339CB1

<400> 58
 cgcctccctc cagctgcgag tgccgcctcg gctggcggcg gcaccaggcc acagttgtaa 60
 gggatcttgc ggctgtcagg atggcagagg agcaggagtt caccagctc tgcaagttgc 120
 ctgcacaggc ctcacacccca cactgcgtga acaacaccta ccgcacgcga cagcactccc 180
 aggctctgtc cggagggtgt ctggctctcc gggacagcgg aatcccttc gatgttgc 240
 tgggtgtggg gggcagacac atcgaggccc atcgatccctc gatgttgc 240
 acttcagagg aatgtttgtc gggggattga aggagatgaa acaggaaagag gtcctgatcc 300
 acgggtgttc ctacaatgtc atgtgcacaa tcctacattt catatacacc tccgagctgg 420
 agctcagcgc gaggatgtc caagagacac tggtggctgc ctgcagctt cagatcccag 480
 aaatttacca ttctgtgtt gatccctca tgcctgggt ggacaaagag aacattctcg 540
 atgtctaccc gtcggcagag ctgtttgact tgagccgcct gactgagcaa ctggacacct 600
 atatccctaa aaactttgtc gccttcttc ggactgacaa gtaccgcag ctccattgg 660
 agaagggtcta ctccctccctc agcagcaatc gcccgggggt ctccctgcag accgaggat 720
 atggggggcc ctttcttctac cattatagcc tggagcagg tgcaggctgac cagatctcg 780
 tgcacgagcc cccaaagctc ctggagacag tgcgtttcc gctgatggaa gctgagggtcc 840
 tgcagcggct gcatgacaag ctggacccca gccccttgc ggcacacagt gccagcggcc 900
 tcatgtacca cggaaacggc agcgtacagc ccagctgca gagccgcac acggagctgc 960
 ggtcgactt ccagtgcgtt gtgggttgc gggcattca ctccacgcgg tccactgtcc 1020
 tcagcgacca gggcaagtat ctaaaccct tactgggaga gtggaaagcac ttcaactgc 1080
 ccctggccccc cccatgtcc aaccaggca tgcgggtgtc caacaacttc gtataactga 1140
 ttggggggca caacaatgtc caaggatttc gaggcaggatc ccgtatgtgg aggtatgacc 1200
 cacggcacaac ccgtgttgc cagatccgt ccctgcagca ggagcacgc gacctgtcc 1260
 tgggtgtgtt aggcaggatc attcacgtg tggcggggcg tgacttaccac aatgacctga 1320
 atgctgtgga ggcgtacgac cctgccccca actccctggc atacgtggcc ccaactcaaga 1380
 gggaggtgtt gcccacgc ggcgcacgc tggagggggaa gatgtatatac acctgcggac 1440
 gcaagcttat tccctttagt gagggtaat tttagcttgc actggccg 1491

<210> 59
 <211> 986
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2540219CB1

<400> 59
 ggacgccaac ctcgggttga agtccaggc agtggctcct gcccacagcc agcataccag 60
 gggccagtgc actgcattac aaccattgtg aggaatgagg gcctgtgccg tggctgttgc 120
 gggccggcatg gcaggagcaa ttcttgggg gacagcgact cctatggatc tcgtaaaaag 180

tcgactccaa gctgatgggg tttatTTaaa caaatataaa ggtgtcctgg actgttatctc 240
 ccagagttac cagaaggaag gtctttaagt gtttttcaga ggcacactg tgaacgcgt 300
 gccccggctc cccatgagtg cgccatgtt cttgggtac gagctgtcgc tgcaggctat 360
 ccgcggggac cacgcagtga cgagcccata agcgccagga ggtgaaacaca ggatgactac 420
 agtgttcccc tgggcctcat ctctgcatgt gaageccctga gagctgcaga tgTTTgcct 480
 ttggacccc aagtgcacat caattagcaa gcgtggcta ggatggtgca gacactgacg 540
 tggcccttct gatgcctggg atgcctcatg agtcaactgt tcaagccctc caaggTTctg 600
 atcccccaatg cccactctgc taggctggca tcaaagagct ttccaagaaa tgTTTggTcc 660
 agctgagaag tcctgaccat gaggcaccagg gagccagaaa ccacccagag aaacgttgc 720
 tcactccctc gtctgaggat ggggaggggc cagtgcgtc tgggtcgc cactccctcc 780
 agtctcaagt aacacgtccc cgtgcctcca gtctccttc agcaccgacc aggtttttcc 840
 cccgctctgc acccgtggat cctgaggaca gcggtagcgc cttccctcacc gcacgctgag 900
 tccagtgctg gtcctcaact gtgcacttat tagtgtctgt tgagtgatta aatcacatcc 960
 tcaggtctgc agcaaataaa tgaaag 986

<210> 60
 <211> 4023
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2722462CB1

<400> 60
 gtcggggggcg gcgcgtatgg cggcaactatg ccatccacga ctcccaggcc cccagtctca 60
 gctctgggg tgagagttcc ccctccagcc cccgacacaa ctggagatg aattaccaag 120
 aggccagcaat ctacctccag gaaggcgaga acaacgacaa gtttttcacc caccggcaagg 180
 atgccaaggc gctggcgcc taccttttg cacacacatc ctcttctac ctgatggagc 240
 tggccacggc cctgctgctg ctgctgctc ccctgtgcga ggccccggcc gtccccgcac 300
 tccggcttgg catctatgtc cacgcccaccc tggagctgtt tgcctgtatg gtggtagtgt 360
 ttgaactctg catgaaggta cgtggctgg gcctccacac ctteatccgg cacaagcgga 420
 ccatggtaaa gacctcggtg ctgggtggc agtttgcga ggcacatcgtg gtgttggta 480
 ggcagatgtc ccatgtcggtg gtgaccggag cactgcgtc cattttctg gtggactgtc 540
 ggtattgcgg tggcgcccg cgcaacccgtt ggcagatctt ccagcccttgc cccgcttca 600
 tggacatccct cctgctgctg ctgttcttca tgatcatctt tgccatcttc gtttctact 660
 tggatcccccc taacccctca gacccctact ttagcaccct ggagaacagc atcgtcgtc 720
 tggatcccccc tctgaccaca gccaatttcc cagatgtat gatgccctcc tactcccgga 780
 accccctggcc ctgcgttcc ttcatcggtt acctctccat cgagctgtat ttcatcatga 840
 acctgttctt ggctgtggg ttcgacacat tcaatgacat tgaaaacgc aagttcaagt 900
 ctttgcatact gcacaacgcg accgctatcc agcatgcctt ccgcgtcgc atcagccaga 960
 ggagggctgc cggcatctcc tacaggcagt ttgaaggccct catcgccctc tacaagcccc 1020
 gatgagtgc cagggagcgc tatcttacat tcaaggccctt gaatcagaac aacacacccc 1080
 tgctcagccct aaaggacttt tacatatatct acgaagttgc tgcttgaag tggaaaggcca 1140
 agaaaaaacag agagactgg tttgatgacg ttcccaggac ggcgtccttc atcttcaaag 1200
 gtattaaatat ccttgcgtgg tccaaaggct tccagttt catgactttt gtgggtggca 1260
 tcaacggggt ctggatctc gtggagacat ttatgctgaa agtttgggaaac ttcttctcca 1320
 agcacgtgc ctggagttac ctgcgtttc taactatctt tgggggtggag ctgttcttgc 1380
 aggttgcggg cctggggccct gtggagact tgccttccgg atgaaacttg tttgactttt 1440
 ccgtgcacatgt gttcgccttc ctgggactgc tggcgcttgc cctcaacatg gagcccttct 1500
 attttcatgtt ggtctcgcc cccctccagc tgctgagggtt gttttagttt aaggagcgc 1560
 accgcacatgt gtcggacacc atgttcgacg tgcgtcccg gatggccgc ctggggctca 1620
 ccctgtcat cttttactac tccctcgcca tgcgtggccat ggaggcttc tgcgggatcg 1680
 tcttccccca ctgctgcaac acgagttacag tggcagatgc ctaccgctgg cgcaaccaca 1740
 ccgtggccaa caggaccgtg gtggaggaag gctactatta tctcaataat ttgacaaca 1800
 tcttcaacaaat ctttgcgttcc ctgtttgacg tcacagttgt caacaactgg tacatcatca 1860
 tggaaaggcg caccttcgtt acctcccaact ggagccgcct ctacttcatg accttttaca 1920
 ttgtgaccat ggtgggtatc acgatcattt tgcctttat cctcgaggcc ttcgttcttc 1980
 gaatgaacta cagccgcaag aaccaggact cggaaatgttga tgggtccat acccttggaa 2040
 agggaaatctc caaagaagag ctgggtggcc tcttggagctt ctaccggag gCACGGGGGG 2100
 ccttcctcgga tgtcaccagg ctgctggaga ccctctccca gatggagaga taccagcaac 2160
 attccatgtt gtttctggga cggcgatcaa ggaccaagag cgacctgagc ctgaagatgt 2220
 accaggagga gatccaggag tggatgagg agcatgcgc ggagaagag cagcagcgc 2280
 aactcagcag cagtgcaccc cccgcccccc agcagcccccc aggcagccgc cagcgtccc 2340
 agaccgttac ctggccacgc gcccggaaagc cgtctcttct atgcaataac acaatagtt 2400
 tactctactg cgtatgtacgg aactcggttg tggatcacata tactcacgtt tatgcacata 2460
 ttatataca ggaagaaaaa agacagacaa gatggggctt ggttataac caccttgc 2520
 tgtcttctt aactccagaa gccagtttgg tgaggggtgg gggtgccgacc accaggtctg 2580

actgttttct	actgtggaaag	gctccagaag	gcccttcaca	aggagacccc	tcaccttgat	2640
ccagtcgact	gcggggcttg	ccccatcatgt	gggctggcct	ccatcgccca	cgtccaaagc	2700
tgtcaactgt	actgttccag	gctcacatcc	ccccgacactg	atggcgtgcc	cggccccctct	2760
ccctgcgccc	catggccacag	gtttctgtgt	tttgccttag	ggacagaacc	actttagaaaa	2820
gaaaagaactc	ccgggttcca	gggtggattat	tcagtgtctg	tgataatgtc	acgcaacaccc	2880
tcttcgggga	ccagtggcca	ggatctaattg	gaagcggaaat	tggggcaact	ggggccgtgt	2940
ggccagagct	cagttagcca	gtggccggcg	gccacagatt	acactgacca	atctcccttc	3000
ttggctctgc	aagccctcca	cccagccttc	tctggcttaa	cccttggtgg	cggaaaactct	3060
tccacagtgg	cctcccttggg	gacccagaac	ccggaggaaag	gggcatgagg	caggaagtgg	3120
ggccgatgtc	tgcaacccag	accacttcgt	ggaatggct	cttgaccaaa	tccccttttt	3180
ttgcgattta	cccggttcaag	caaaaacaacg	ttttgggttaa	ctaaggattg	tgctaaagcc	3240
gataccaggt	ccttcacacg	tgtgcactag	gaacaggagc	gaacagcaca	gagagacgct	3300
ccctgtggga	cgcagcagcc	ccgtggcccc	ggcccaagtcc	ccagcccccc	tccctggctc	3360
tgctcacacc	agagatttcc	atagcaggag	cggtttgtgc	agaagtaggt	tcagatgaac	3420
ctcgatgtac	gtcggccaccc	ctccctccac	catggtaccc	tgttaggagcc	ctgttatgaca	3480
tctgagcgtg	gtggaggatg	gagggttgc	agctgcagt	accctgcccac	agaggcaggg	3540
tcagtgcaga	ggtcgcttt	gttccggcttc	cctggggccac	agaaacggaaac	acagcataagg	3600
ttctgcagca	ggagccgcag	ttgcaggatg	gagggtgcga	agggcaaggaa	gtgcactgt	3660
gggcatttct	ggcccaaaaa	ggccctctgg	tgcctgttcc	ctgtgacttc	agaaggcagg	3720
tggacagagc	ctccccctgg	ccttgcctc	ttcccaagcca	cagaacgggc	agggtggcac	3780
ccgaccccaag	gggagcagta	cctgggtcccc	cacccctcc	tcccaaccac	ctccaaaggcc	3840
aagctgggtc	ccatagccag	cacggcatgg	ttctccctt	ccccccctcc	caggtcaggg	3900
gagttggaca	agttagcagg	gtttgtttt	aaagcacage	ccttgggaa	agcaacacat	3960
tatttgagact	cactgtgatt	ccccccgggag	tcagactggc	ttttgtctttt	tetetetggaa	4020
gggg						4023

<210> 61

<211> 2345

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 2739264CB1

<400> 61

aaaaaggagggc	ggaactcggt	gatctgactg	gcggtttccc	ggccggactg	agaaggggag	60
cgcgctgcgc	gtcgaggag	taacctactt	ggtctctgc	tttcgcgaca	tggcctcaa	120
ttttggggct	ccctcgggca	cctccggta	cgctcagcc	accggggccc	ccgcgggtgg	180
gtttgggaga	tttggacaa	catctacaaac	tgcagggttc	gcattcagct	tttctgc(ccc	240
aactaacaca	ggcactactg	gactctttgg	tggacttcag	aacaaagggtt	ttggatttg	300
tactggttt	ggcacaaaca	cgggaactag	tactggttt	ggtactgggtt	tgggaactgg	360
actgggattt	ggaggattta	atacacagca	gcagcagcaa	actacatttag	ttgtgtctt	420
cagttagcct	acacaagctc	ctacccagtc	caaccagctg	ataaaactgt	cgagtgtct	480
ttctgtctcca	acgctgttgg	gagatgagag	agatgttatt	ttggcaaaaat	ggaatcaact	540
gcaggcctt	tggggaaacag	aaaaagggtt	tttcaacaat	aatattccgc	cagtggattt	600
cacacaagaa	aatccctttt	ggcgattta	ggcagtaggt	tatagtgc	tgcccagtaa	660
taaagatgaa	gatgggcttag	tggtttttagt	tttcaaaaa	aaagaaaacag	agattcgaag	720
ccaacaacaa	cagttgttag	aatattgc	taaagtttt	ggagggaaacc	agacccttac	780
tgtaaatgt	gagggcacta	aaacattgc	agatgttca	acagaagttt	ttatattatgt	840
tgttggcggt	tcgccaat	gtacttcaag	aagagtcc	gctacaacgc	tatatgccca	900
ttttgaacaa	gccaataataa	aaacacaat	gcagcaactt	gggttaaccc	tttctatgac	960
tagaacagaa	ctttccctg	cacagatcaa	acagctttt	cagaatccct	ctgctgggt	1020
tgatccattt	atctggaaac	aggccaagg	agataaccct	gatttgtaaa	agttatattt	1080
tgtaccaatg	gtgggttta	aggaacttct	ccgaaagactg	aaggttcaag	atcagatgac	1140
taagcagcat	caaaccagat	tagatatcat	atctgaagat	attagtggac	tacaaaagaa	1200
tcaaactaca	tctgttagcc	aaattgcaca	atacaagagg	aaactcatgg	atctttccca	1260
tagaacttta	caggctctaa	tcaaaccagg	aatttcaagg	aaaggtgggtt	atgcccattca	1320
ggctgtatgaa	gaggcgttgc	gagttcagat	ggatagcatt	cagggtgaac	taaatgcacc	1380
tactcgttca	aaggccccac	taaatgaatt	gatgtcttca	atcaggatgc	agaatattt	1440
tggagcagtc	agatctgaag	aaagggttta	catagatgca	gatctgttac	gagaaaatcaa	1500
gcagcatttgc	aaacaacaac	aggaaaggcc	tagccattt	attagcatca	ttaaagacga	1560
tctagaatgt	ataaaagctgg	tgcacatgg	attgaatgaa	accatccaca	tcagaggtgg	1620
tgtctttatgt	tgacacatca	caaacttggt	taaagggtt	tgaaatgc	tttcttactg	1680
catcagactt	tctttaagaa	tgyaaaccgc	cacatgggg	aaaaaaagaaa	acaattctt	1740
cttggatttgg	ttttttggaa	agtttacttgc	caaaatctgt	ttcatcaaat	ctgaaaatagt	1800
cacctcacag	ctcttcaaaag	aaaaccttgc	aaagatttat	atctaaaagc	tgttattat	1860
ttaaaagaag	tgcataattt	ccaaaattgt	atgttactt	gtacattttt	acaacacgcat	1920

tttcttaaac	ataatctgtg	ttaatgatt	attgtccatt	gagcctgtac	tctgccttcc	1980
ataccaagta	aatatgaaat	aatctacttt	gcacataaca	gaacaaacta	taattacttg	2040
gctgttgagg	atttgtactt	gagtataaat	gtacaccagt	tttgtatTT	gtgaactcat	2100
ctgtgggagg	agtaaaaagaa	atccaaaagc	atthaatgtt	ttgtttttgt	tctataaaaga	2160
tatggaaaatg	tattttata	tatTTTact	tatttggaat	ttacagagca	cacctaagca	2220
attaggatAT	aacaaaacta	cttaaccatt	tttgcAACCA	tttggTTTT	taagccttt	2280
tatttctaaa	aagatgaaaa	cttataaata	aattcttaat	ttgttaattac	ttttaaaaaaaa	2340
aaaaaa						2345

<210> 62
<211> 2085
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2758310CB1

cggagatgt	gcgaccgtt	ctggcatcat	tctgagactc	ggcagttgt	tctcaactgt	60
gcggccggc	ctgtctgtt	gagctgcattc	cttcctcatct	gcaggcgctg	aaaaaccaga	120
cacgatcga	catcatgtt	gttctgcggc	caaagcacgc	ccttgggtt	tgaacttcat	180
gataacctgt	tgcacgtctg	tcatttccac	tctgctctgc	tgcacagaag	gcagaagccc	240
tggccgttcc	ctgtctgtt	cttcaggaga	aacgtcagggg	gccttcctcc	aaggttctcc	300
agccccacac	ccctgtggag	gaagggtctc	tccaccgcgg	tagtgggggc	gcccctgtctc	360
ctcggagccc	gctatgtcat	ggcagaggca	cgggagaaga	ggaggtatgc	gctctgttg	420
gatggcatgg	ggcgcttgg	cagggtctctg	aagggtcgcc	tgcagatctc	cctggactac	480
tggtgtgtca	ccaatgttgc	cttcgaggg	tggaaagagcc	caggctactt	ggaggtatgt	540
tctgcgttc	accagcgggc	ggctgatgcc	ctgggtgcag	ggccatcaag	caacgggggc	600
ctctacgtga	agctgggca	ggggctgtgc	tccttcaacc	acctgcttcc	ccccgagtat	660
acccggaccc	tgcgtgtc	agaggagacag	gcccctaagc	ggggcttcca	ggaggttgat	720
gagttgttcc	ttgaggactt	ccaggcccc	ccccacagac	tctccaggaa	gtttgactac	780
cagccaaatttgc	ctgcgcggcag	cctggcacag	gtgcacagag	ccaagctgc	cgatggcacc	840
agcgtggctg	tgaaggtgca	gtacatcgac	ctgggggacc	gctttgtatgg	ggacatccac	900
accctggagc	tcctgtgtcg	gtcgtttag	gtcatgcacc	ccagctttgg	cttcagcttg	960
gtcctccagg	acctaagggg	gaccctggcc	caggagctgg	acttcgagaa	tgagggccgc	1020
aacgcagac	gtgtgcgcg	ggagctggcg	cacttcccc	acgtcggtt	gccccgcgtg	1080
cactgggaca	agtccagcaa	ggcgcgtctc	actggccact	tctgcgcgg	ctgcaagggtc	1140
aacgatgtgg	agggccatcg	gagccagggg	ctggcaigtgc	atgacatagc	agaaaaggtc	1200
atcaaggcct	ttgctgagca	gatattttac	accggcttca	tccatctgg	ccccatcttc	1260
ggcaacgttc	ttgtgcggaa	aggccccggac	ggggaaagcg	agctgggtct	gtgggaccac	1320
gggccttacc	agtttcttgg	ggagaaggac	cgcgcagccc	tctgcctact	gtggcggggcc	1380
atcaatccgtc	gggacgacgc	cgccatgagg	gcccacgcag	ccgcacttgg	gttgcagac	1440
taccttctgt	tcgcccggat	gtctcatgcg	cgccccctgc	gcctggggca	gctgtggggc	1500
tcgcacccatc	tgaggcgcg	agaggcgccc	tacatggtg	acatggcccg	cgagcgcttc	1560
gaggccgtca	tggcggtgt	caggaggctg	ccggggccca	tgtgtctgtt	gtgcgcac	1620
atcaacaccg	tgcgcgctat	caacgtggcc	ctcgccgccc	ccgtggaccg	ctacttccct	1680
atggctaaaa	gggctgtccg	gggctggaggc	cgccctgggg	gcgccacgt	tcgggggtgtc	1740
tacggcacca	gccttctgtc	ccacgccaag	gtcgtctggg	agatgctcaa	tttgaagtg	1800
gwgctcggc	tggagaccc	ggccatgcgg	ctgaccccc	tcctggctcg	tgcctgtgtc	1860
cacctggac	tctgtcccc	agcgaggagg	ctctaccagg	acctggagac	ctagggtgca	1920
gcccggccagg	ggccgggggg	cccttttccac	cttgggtgt	cgaggatggc	ggggctagag	1980
gtgttagacac	cccgagcccc	gtgggactct	gcacgtgggg	gctgtgacag	cagctggggc	2040
aggaggccgt	gtaatgacca	cacactccctc	tcaaqaaaa	aaaaaa	2085	

<210> 63
<211> 3014
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2762348CB1

<400> 63
ggaggcaaa ggcaggctga ggatcagggt ggccccgggt gcagcgaaaa ggcgtgcatt 60
gctggaggt gtgcgtagtg cccgggtgcag gtgagccgggt cctgcggagt tgcggact 120
gcctgtctca gaccggaggct gggccaaat ggcgtctata trtcgtaaaggcg aggagatgtg 180

tttgtcacaa ctgtttctcc aggttggaaagc tgcataattgc tgtgtggctg agctcgagg 240
gctcgaggatt gttcagttca aagatttaaa tatgaatgtg aacagcttc aaaggaaat 300
tgtgaatgaa gtcagaaggt gtgaatcact ggagagaatc ctccgtttc tgaaagacga 360
gatcaaaat gagattgtag ttcatgtgc cgagaaaagc ccactgaccc cgctccacag 420
ggaaatgatt accctggaga ctgttctaga aaaactggaa ggagagttac aggaagccaa 480
ccagaaccag caggccttga aacaaagct cctagaactg acagaactga aataacctct 540
gaagaaaaacc caagacttct ttgagacggg aaccaatta gctgtatgg tcttactga 600
ggacacttct ggcctcctgg agtggaaagc agtgcctgc tatatgaccg gaaagtggg 660
gttcatagcc gggtgtgatc caacaggggaa gaggatggct tccttgagc ggttactgt 720
gctcgaggatc cgagaaacg tgtacttggaa gttcagtgag atgacgccc ctctggagga 780
tcctgtgacg aaagaagaaa ttcagaagca catattcatc atatttacc aaggagagaca 840
gctcaggcag aaaatcaaga agatctgtga tgggttgcg gcoactgtct acccttgccc 900
agagcctgcg tgggagcgcg gagagatgtt ggagagcgcg aatgtgaggc tggaaagatt 960
aatcaccgtc ataacacaaa cagatctca cccgcgcge ctgtcgagg aagccgctgc 1020
caactggcac tcctggctca tcaaggtgca gaagatggaa gctgttacc acatectgaa 1080
catgtgcac acatcgacgtca cccagcgtt gtcatacgcc gagatctgtt tccccgtggc 1140
agatgccaca cgtatcaaga gggcaactgg gcaaggcatg gaactaagtg gctctccat 1200
ggccccccatc atgaccacag tgcaatctaa aacagccccct cccacattta acaggaccaa 1260
taaaatccatc gctgcttcc agaataattgt tgatgcctat ggtgtggca gctaccggga 1320
gataaaccga gcccccttaca cccatcatcac tttcccttcc ctgttcgtcg tgatgtttgg 1380
agactgtggt catgaaacccg tgatgtccct ggctgcactt tgatgattc tgaatgagag 1440
acgcttgcctc tcccagaaga cagacaatgtg gatttggAAC accttcttcc acgggcgtca 1500
tctgatctca cttatggca tttctccat ctacacgggt tgatctaca atgactgtct 1560
cttccaagttc ttgacatctc ttggcttcc ttggagtgcc caacccatgt tcagaaacgg 1620
cacatggaat actcatgtaa tggaggaaag tctatatctg cagctggacc cagccatacc 1680
aggagtgtat ttggaaatc cataccctgt tggatgtat ccgatttggg acttggcttc 1740
aaacaaactc acatttctga actctgtataa atgaagatg tcggatgtcc tggaaattgt 1800
ccagatgtt tttgggtgtca ttctcagccct tttcaatcac atatacttca gaagaactct 1860
caacatcatt ctgcaattta tcccctgagat gatttttata ctgtgtctgt ttgatactct 1920
ggtttcatg atcattttca aatgggtgtc ttgtacgtc cactgtatctc agcacgcccc 1980
cagcatcttc atccacttca tcaacatgtt tctgtttaac tacagtgact cttccaacgc 2040
acccctctac aaacatcagc aagaagttca aagtttctt gtgttatgg ctttgatttc 2100
tgtggcggtt atgtttctga ttaaggccgtt tattcttaga gccagtcatac ggaatccca 2160
gctgcaggca tccaggatcc aagaagatgc cactgagaac attgaaggtg atagctccag 2220
cccttcttagc cggttctggcc agaggacttc tgcagatacc cacgggggtc tgacgacca 2280
tggagaagag ttcaactttg gagacgtctt tgccaccaa gccatccaca ccatcgagta 2340
ctggctggc tgcatttcaa acacagccctc ctacctgcgg ctctggggcc tcagctggc 2400
tcatgcacaa ctgtgtgaag tgctctggac tatggatgt aacagcggcc ttcaagacgcg 2460
aggctggggaa ggaatctgtc gggtttttat tattttgcc gtatgtctg tcctgacagt 2520
agccatcttt ctgatcatgg aggggctctc tgctttctg cacccctgc gactgcactg 2580
ggttgaggtc cagaacaagt tctatgtcg ggtgtttac aagtttctc cattctccctt 2640
taaacacatc ctggatggca cagccgagga gttaggtcgt ggtgtcacct cccacgggtt 2700
tcacatgtcc aatgtaaaggaa gttcagtcgtt gtctttgata tcagccccctg caaggcgctc 2760
aatggggagg ttgttcttgg ctccacctgaa gcatgaaact gtgtattatt tggacgtcag 2820
cctgtggatt tgatcatgact taacaccatgc agggaaaggta ctttggcaag tgatattgtc 2880
ttcatgtggg gtattaaattc tcaaataata aagtaattgt caaatgaggg gagaatgtcta 2940
aacagatgtc ttcttgcattttaata ttgtattgt gaaaataaaac atctgagtc 3000
ttcaaaaaaaaaaaaaaaa aaaa

<210> 64
<211> 1726
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 3715961CB1

<400> 64

tggaaaatgcc	tgctgcgtac	caaggtatgt	actaggccat	ctggggtaag	taaaaacaaa	60
cacatagagc	ctgcctggag	aagctcatgg	tctgatggaa	agataagcaa	gaagaggtaa	120
tttctaataca	atatgataaaa	aaggctcagag	agcaggttct	gaaaaacatg	tttttgagtt	180
gaggctctgaa	agacaaaggag	atgttagtaa	agcagagaag	ggagaattca	ttctagaaaag	240
atcagacagt	gtgtggaaag	ggcagagttc	gaaaagagca	tgcggccattt	ggagaagcat	300
caagaaggccc	acgtgtttaga	agcacccggcc	ccatgagaca	aaacacacagc	tagagagatt	360
gactaggcca	tgtcgaaatg	tccttttatt	ttatatacata	ataagacat	agatacatat	420
agccaaagtt	accttttaa	tgatctttt	taccctgt	attctggagg	tgcgatggtc	480
acatatgaac	atctccgaga	ggtgtgttt	ggcaaaagtg	aagatgagca	ttatccccctt	540

tggaaatca gtcattggagg gatgatggct ggtgttattt gccagttttt agccaatcca 600
actgacccat tgaaggttca gatgc当地 atgaaatg gaaggaaaaa ggaaacttggg aggaaaacca 660
ttgcgatttc gtgggttaca tc当地 cattt gcaaaaatct tagctgaagg aggaatacga 720
gggctttggg caggctgggt acccaatata caaagagcag cactggtaa tatgggagat 780
ttaaccactt atgatcacat gaaacactac ttggatttga atacaccact tgaggacaat 840
atcatgactc acggtttata aatgttatgt tctggactgg tagcttctat tctgggaca 900
ccagccatgatc tcatccaaag cagaataatg aatcaaccac gagataaaca aggaagggg 960
ctttgtata aatcatcgac tgactgttg attcaggctg ttcaagggtga aggatttcatg 1020
agtctatata aaggctttt accatcttgg ctgagaatg ccccttgggta aatgggttcc 1080
tggcttactt atgaaaaat cagagagatg agtggagtc gtc当地 aacccttcaa 1140
gatgcaaccc taaaagatac agtgttcatg attattgaaa tatgggcatc tgcaacacat 1200
accccctattt atttcttacat ctttaggaag acaccttac cacagagact gatttataagg 1260
ggggcagact ttatttttt ctggaaaaccc aagttcttct tgacttctct tttgtccaa 1320
aagtgtatctg gtc当地 acaaggccat ccaatgagac cccgc当地 attttcttcaa 1380
gaagaatcga agc当地 acca ctttccat gggcaaggaaag gtttggcctt tgagttgcta 1440
ttctatgctg aagggctgc tttagggagg agtaccagga gggagccagc atttcagatc 1500
tgaagttagac gatggaaatg tggaaagaaca catacatgt gcttaagaaa tacatcca 1560
ctgttatgttc agtattttt aatgaagttt gataatttccat tttctgtca ttgttaaagg 1620
gtacatactg taaaataaaag ggaggtgaat ggaaattaat gaataaacat ttgagtttc 1680
cctagtgttgc aaggaagggtg tactttttct tgc当地 aaaa 1726

<210> 65
<211> 899
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5108194CB1

<400> 65

gcggccggcga cgcgtccggg cc当地 gaggg ggccgc当地 ggcccaagcg 60
tc当地 gccccg cgc当地 tggg gctgaaatg gggccggg cccgaggc 120
ctggatggg taatgggtg aaggaaggcc ggaccgagtc tccctgc当地 cccgaggc 180
tc当地 tccctc gtc当地 tcaaaaggctg accacaggca agtgc当地 tccctgc当地 240
ctggggccctt ggctgggccc cttggccaaa cagcggtagc tccctggac cgaaccaaaa 300
tc当地 tccca aatgttccaa aaaagatttt ctgccaaggaa ggcccttccgg gtc当地 tctact 360
acaccttaccc caacaggaa ttttccatg tggccggcgg gaaatcgcc accatgggc 420
gc当地 gggcccttccatg tggccggcc atccaggatca ggc当地 acatccggc 480
gc当地 ctacta tggccggccatg ggagaaggccc tggccggccctt gc当地 ccccttgc当地 540
caactggctgg aacgacagcc gcttccatg ccttccatg ggacttggc agagc当地 600
tggccggtaac cccgaaggaa atgtacagca acatccatca tgc当地 tccatc cccatctcg 660
gagaaggagg gctgaaatg ct当地 accatg gatttgc当地 caccgtgctg ggggtcattt 720
cctacgctgg cctgaggctt ttc当地 accatg agacgcttca gagcttgc当地 agaggtaca 780
gc当地 cc当地 gcttatttcc ttttagtggg gtttatttca gtttggact ggccgtcg 840
ttacaacgtc gtactgggaa aaaccctggc gtttaccacatca ttaatcgcc tgc当地 caca 899

<210> 66
<211> 643
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5503122CB1

<400> 66

ctttaagctg tagctgtggg ttctgc当地 attttgc当地 tgc当地 ggggtct 60
ggatttacatc acctccatgt atgacaatttt gtaatgc当地 ggaatgtgagg actccggaggc 120
tggccatcg gattccatca caaggccaggcc gtc当地 gactcc gatgtctt当地 tggaaaggagg 180
ccgggaaggca attcgacagg agagagaaca gcaaggcagct atccagctt当地 agagagcaaa 240
gtccaaacccat gtagcatttgc cc当地 gagac aaatgtgagg tactccggc cccctggacga 300
ggatgtgc当地 gttccaaagca cagctatctc ctttgc当地 aaagactt当地 tacatattaa 360
agagaaaat aacaatgatg ggttggatagg aaggctgggtaa agagagggtt gttgaaatttgg 420
cttc当地 tccca agtccactca gattggaggaa catacgatc cagcaaggaa aaaaaggagg 480
acgttttccatc ggaggaaaat caagtggaaa ttcttccatca agtcttggag aaatgttac 540
tggacatcc cgagcaactc ccacatcaac aggtgagggt tgc当地 taaa ctcttttca 600
tacactgtat tccctttaaaa aatatttggaa cacacatgca agc 643

<210> 68
<211> 1571
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 5593114CB1

<400> 68
ggcgcggcgca cagcttagggt tcacggccac tggggcagag gagccgcgag aagatgtggg 60
tttttggta cgggtccctg atctgaaagg tggatttccc ctatcaggac aagctgtcg 120
gatacatcac caactacagc aggcgcttct ggcaggcgag cacggaccac cgccccgttcc 180
ccggcaagcc tggaagagtt gtgactcttq ttgaagatcc toccggatgtt ctatggata 240

ttgcttacag attgccagta ggaaaggaag aagaagtaaa agcatacctt gacttcagag 300
 aaaaaggagg ctacagaacc acaacagtca tttttatcc aaaagatccc acaacaaaac 360
 cattcagtgtt attgcatat attggAACAT gtataatcc tgattatctt ggtcctgcac 420
 ctctggaaaa cattgctgaa caaatTTTA atcgAGCTGG tccaAGTGG agaaaatacag 480
 aatatctttt tgaacttgca aattcttatta ggaACCTGTG gccAGAAGAA gcAGATGAGC 540
 atcttttCGC ttggaaaaaa ttagtAAAGG AACGTTAGA AGGGAAACAG AACCTCAATT 600
 gcatataatt tagtCTTCAG AGAATTAACT tcAGTGCACA ATGACAATAT GATTGAAA 660
 tacgtttact taaAGATCTT ATTtTTAATG TAGTGAGGAT ATTATTTAA CTTTATT 720
 aactggaaat gtcctgAAAC ACATTTAATTA AATATTGGGA TACAGTGGAA GAAAATTCA 780
 aatTTTAATA ACATAAAGAT TTCTTAACCT TATGTTATTG AACACTTACT CACTAGAAGT 840
 gagttcttta gaaaataca gtaaaggact cagttcAGTC TTGTTTTAT CAGAGTgATA 900
 atcatcctgt ttcacatccc aatactatTT tgaAAATTCTA AACAATTAAA CAAAATTCC 960
 aataaataat aggttatGCC ttcAATATAT TCCTATACAA TTCTGTAACC ATGGTTAAA 1020
 atacacaAGC taaaATAAAC ATGCTTAGAA ATACACAAATA ATATGAACAG TATTCAGCC 1080
 ttaattgtga atttcCTTGT TATTCAAGTG TAAATGAAA TCTTTGAGT TTTAGCCAA 1140
 aaattggcat ttTTAAATA CGAAAATTTC CTTGGATT TAATGTACTG TACCTCTTCT 1200
 ttttAAATA AAGGCATTT ACTATATGG AAATAACTCA CTAAAGCATA ATTACATTA 1260
 tacaatcat gatcaCTAT GATGTAgtCT GTCAATTCT TGTATTAA CTTATACAA 1320
 aactggaaaa gatgggCTGA tactacaat taatggcaca tataatgaaa ATTAGTTT 1380
 taaaacAGCT ttggAAATTc ttgtCTGTc actatCTCAA tttgtgtgtg TGTGTGTgA 1440
 tatacataaa tatacatata AAATTTTTT tttcttGCA GCCTGCGTCT GCCATCCC 1500
 caggctggaa agtGTAACCT CTGGCAGAAG CCAAGAACAG GCACCTCTG GAATTATAAT 1560
 tttgttttgt t 1571

<210> 69
 <211> 1549
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 044775CB1

<400> 69
 cgcgcttagg caggccgtgg cgccgctgg gtcGCCGCGGG gaggGCTGTG ccGGTTGCTT 60
 tctgcagccg catctcgGCC agctctcCTC gccgtccccG gggcGCTGTG cgtctccAGT 120
 ccggggaccga agccgCCTGC cgtAGCGGGC ggCCAGATCC gCgtcccccc tcAGCGGCCG 180
 gaggacatgc gggagagaga atAGGCCAGA gggACACGCT ggtGcatCTG tttGCCGGAG 240
 gatgtgggtg tacAGTGGGA GCTATTCTG catGTCCTACT ggaAGTTGTA AAAACACGAC 300
 tgcagtcatc ttctgtGACG CTTTATATT ctGAAGTCA GCTGAACACCC ATGGCTGGAG 360
 ccAGTGTCAA CCGAGTAGTG TCTCCGGAC CTCTTCATTG CCTAAAGGTG ATCTTGGAAA 420
 aagaAGGGCC TCGTTCTTG TTAGAGGAC tagGCCCAA TTTAGTGGGG GtagCCCCCT 480
 CCAGAGCAAT ATACCTTGCT GCTTATTCAA ACTGCAAGGA AAAGTTGAAT GATGTATTTG 540
 atccCTGATTC TACCCAAAGTA CATATGATT CAGCTGCAAT GGCAGGCATT TACTGTACAT 600
 ttctccccGAG AAAAGAGTGA GATCGTGTCA TCTCATGTC CCCATCCGCA GGTCACTTCC 660
 tGTagAAATA TGGACTTAACt TAAACCTCGT TTTACTGCA TcacAGCAAC CAACCCCAT 720
 tggcttataa agactCGGTT ACAGCTTGTAT GCAAGGAACC GCGGGAAAAG GCGAATGGGT 780
 GCTTTGAAT GTGTTGTAAG AGTGTATCAG ACAGATGGAC TAAAAGGATT TTATAGGGC 840
 ATGTCTGCTT CATATGCTGG TATATCAGAG ACTGTTATCC ATTtTTGTTAT TTATGAAAGT 900
 AtaaaACAAA AACTACTGGA ATATAAGACT GCTTCTACAA TGGAAAATGA TGAAGAGTCT 960
 GTGAAAGAAG CATCAGATT TGTGGGAATG ATGCTAGCT CTGCCACCTC AAAAACTTGT 1020
 GCCACAACTA TAGCATATCC ACATGAAGTT GTAAGAACAA GACTACGTG AGAGGGAACA 1080
 AAATACAGAT CTTTTTCA GACTCTATCT TTGCTTGTTC AAGAAGAAGG TTATGGGTCT 1140
 CTTTATCGTG GTCTGACAAC TCTATCTAGTG AGACAGATTC CAAACACAGC CATTATGATG 1200
 GCCACCTATG AATTGGTGGT TTACCTACTC AATGGATAGC AGCACGAGGA CTGCTGTACT 1260
 GCAAAAGAAA AAGACCAAAA GATTACAGTG GACCATGGGA TACAGAACCC AGCATGGCAG 1320
 ACAGAAGAAA AATAGTTGG GAACATGTAAC TCTTCTAAG TGGAAAGTTT GTTGTAGGAA 1380
 TTATAGTAAT CACACCAT TACTTGGCCT TTGCGTAATG TGAAAAAAAG AAAAAGACCT 1440
 CAGAGCCTCC AAGGAATGC CTTAGAAGC ACTCCTCTCT CAAAATTGCC ATTtTCTCTA 1500
 CCATGTCCCC CAGACACAGT TGGTTTTGT TGATTATGG CAGTCTCT 1549

<210> 70
 <211> 2237
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature

<223> Incyte ID No: 116588CB1

<400> 70

gtcactgggtg ccacggggcc tcagcgcact tctgtcttaa gtccttggc ctccttattt 60
 tcccctttgc gatcgattcc agccacaccc gtggatgtt ctggatgtt cgcgtccgg 120
 acgtggaggt cgaggactg actggggca gttttgtggc actcccttgc ttttcagcag 180
 ctattttgc tatgataatc ctgtgtccct tcagactcaa gttaaacgag atatgcaagt 240
 gaataaccacg aaattcatgc tgctgtatgc ctggtatct tggcccaatg tagtttgg 300
 ttcttttgtt ggcttttgta tagaccgagt atttggata cgatggggca caatcatttt 360
 tagctgtttt gtttgcattt gacagggtt gtttgcctt ggtggatatt ttaatgtctt 420
 ttggctgtatg gaatttggaa gattttgtatt tgggatttggt ggcgatgtt tagcgttgc 480
 ccagaataaca tatgtgtga gctgggttaa aggcaaaagaa taaaacctgg tggggact 540
 tcaacttagc atggcttagaa ttggaaagtac agtaaacatg aacccatgg gatggctgt 600
 ttctaaagatt gaagctttgt taggttctgc tggtcacaca accctcgggc tcacactt 660
 gattgggggt gtaacgtgtt ttctttactt aatctgtgc ttggcttctt cctacttgg 720
 tcagagagca gagagaatcc ttcataaaga acaaggaaaa acaggtgaag ttataaaatt 780
 aactgtatgtt aaggacttctt ctttaccctt gtggcttata ttatcatgt gtgtctgt 840
 ttatgttgc gtgtttttttt ttatggact tggaaagtt ttctttacag agaaaatttgg 900
 atttttttcc caggcagcaa gtgcattaa cagtgttgc tatgtcatat cagctcccat 960
 gtccccgggtt ttggctcc ttgggttataa aacaggaaag aacatcatct gggtttctt 1020
 cgcagtagca gccacttgc ttgtcccacat gatgtgcgc ttacatgtt ggaaccctt 1080
 gattgtatgt tttttttttt gacttcttcta ctcattgtt gcctgtcat tggggcaat 1140
 ggtggcattt gttagttctg aacatcagct gggaaactgca tatgttca tgcagtccat 1200
 tcagaatctt ggggtggcca tcattttccat cattgttgc ttgttgcattt cttttttttt 1260
 gtattttgtt ttggaaagtgt ttcttatttgc ctgtgttttctt ttgttactttt tttttttttt 1320
 cttaactctat ttgggttataa gttggccaggg tggaaaccta aattattctg caagacaaag 1380
 ggaagaaaataa aaattttccc atactgtatg agaattttttt atgaatgtt catgagaatg 1440
 ggcttaaacac atcgttgggtt tggaaacttgc cattttttttt aattttttttt ttagtcat 1500
 gaaaaaaataa tggactggaa agttatattt atatccaaat atacttattt caaagtgtat 1560
 ttgtgaggcc ttgttttagcc ttgtgtttttt gtattgtgtt ttgttactttt tttttttttt 1620
 tagtaggtcta atcaacaatg aaagggttag aaaattgtt gttttttttt tttttttttt 1680
 caggaaagac agtggaaat gggaaacgtt ggagcttgc ttggataat ctttattttttt 1740
 tatatatatctt agggatatacg cttttttttt atcttatacg agggaaaaaaa aactttttttt 1800
 ggaaatataaa gggctcggtt acacaaaataa aacaatggca ttgttcatagg cttttttttt 1860
 acttagtaggg cataatgtca gggaaatatgtt gaagatgtt ttatgttgc tttttttttt 1920
 cacacacaat agtttgcgtt ctacttctgtt gttatgttgc ttggccagca atgaccctt 1980
 tcaattttctt attttttttt tactgaggac ctttattttttt tttttttttt 2040
 ataaactttt tttttttttt tttttttttt tttttttttt 2100
 gataatttgc ttgttactgtt tttttttttt tttttttttt 2160
 aaaaaaaaaaaa aaaaaatgttagt gggccgcaag ctttattttttt tttttttttt 2220
 ctttgcactg ggcgtcg 2237

<210> 71

<211> 1114

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 875369CB1

<400> 71

tgggaacggg gcagccccgg gggcccccctt gaggcggcga ggccgcgaag ggccggggcc 60
 tgggggttag gaggcgcgg gaaagcgccc cagacgcac tcgcggcggc cggcgccag 120
 ttcccagggg tttggagccg gcccggggcc ccatggctca cgtcggttcc cgcaagcgct 180
 cgaggagtcc cagccgtcc cggggcggg ggtcgaaagg gagaagaag aagagcagga 240
 aagacacccctt gaggactgc tcggcttca catcccaagg tcgcggccccc agcacggccc 300
 ctggggcggg ggcctcacct tttttttttt tttttttttt 360
 ggagaacaag atccagctcc ttcccttctt cttccatgtt ttcttagtcc tttttttttt 420
 ctcgttccctt ctcccttcc tccatgtatg gccggaaagaa gcgggggaag tacaaggaca 480
 agaggaggaa gaagaagaag aagaggaaaga agctgaagaa gaagggcaag gagaaggcgg 540
 aacacacacca ggtggaggctt ctggggggcc cttcgcttgc ccagtgccac cgatcgttgc 600
 gggaggaaaga ggtggccca gtcttgcgg atgaggcaga gttttttttt 660
 agcccatgac caaggaggag tggatgttcc ggcagacatc catccgcacat gttttttttt 720
 ctggagacggg ggcgaccagg ttatattttt gatggcga gttttttttt 780
 ccaaaagaacac acacacacac atcaacaaccc aagccaccccg agggactgc ctggcccttcc 840
 agatgcgaccc tgggttgctt cccttggggcc ccccgcttgc caaggctgt ggacgcacgtt 900
 ggcggcccccag ctttggcagg ttttggggaa ccagtggggaa gcctgttgc tgctggggc 960

cttttcccg tggattggtc tctggcccag cccagtcctc ttcaggggc agggggtgga 1020
 gggtggggtc accggcctgc ttggcacccc catctgaaag agcagcactt ctcagctatt 1080
 aaaggcccc tggatagaca aaaaaaaaaaaa aaaa 1114

 <210> 72
 <211> 998
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte ID No: 1325518CB1

 <400> 72
 gactaaaaaa gccatgttatt ctttcgttcc tctctaaaag aagaaaaata taatttaaaa 60
 atacatttgcg tattttctaa aacaataaaat ttatagtgtt aatattcata gggtcaatca 120
 aaatgaagct ttccttttgg gcctgcattt gatgtttgc ttttgcagg aagagacggt 180
 tcccccttcat tggtagggat gacaatgacg atggtcaccc acttcatcca tctctgaata 240
 ttcccttatgg catacgaaat taccaccc ctcttttatta tgcggcagtg aatacagttc 300
 ccaggtaacc tgggaaatact tacactgaca cagggttacc ttgtatccc tggattctaa 360
 ctttctctgg attcccttat gtctatcaca tccgtgttt tcccttagct actcagtgttga 420
 atgttccctcc ttccttcctt aggggtttc cgtttgtccc tccttcaagg tttttttccag 480
 cagctgcagc acccgctgcc ccaccttattt cagctgagcc tgctgcagct gcaccttca 540
 cageccacacc tgtagcagct gaggctgtcg cagggggccc tggtagcagct gagcctgtcg 600
 cagaggccacc tggttggact gaggctgtcg cagaggccacc tggtagcagct gagcctgtcg 660
 cagaggccacc tggttggact gaggctgtcg cagaggaaacc ttcaaccagct gagcctgtcta 720
 cagccaaagcc tgctgccccca gaaacctcacc ttctccctc tcttgaacag gcaaatcag 780
 gaaattctct agaagagttac catgggttca ttctataact gatgcagaaa taagtgaat 840
 ctacaaaagt ttctttctt ttccaaagac tatttcattt tggtagtattc agagttatca 900
 tctcaactaca ttgattttgtt tggtagtattt ttcttcttga cttaattttt attgaaaaaa 960
 cattgataat taaaataataaaat aatagataaaat ttttagaca 998

 <210> 73
 <211> 2348
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte ID No: 2060987CB1

 <400> 73
 gggccagccg gtcggcccg gggccatggc agcagcggct actgcagccg agggggtccc 60
 cagtccgggg cctccgggg aagtcatccca tctgaatgtg ggaggcaaga gattcgtac 120
 ctctcgccag actctcaccct ggatccaga ctcccttttc tccagtcttc tgagcggac 180
 catctcgacg ctgaaagatg agaccggagc aattttcatac gacaggagacc atacagtctt 240
 cgccccccatc ctcaacttcc tgcgcaccaa agatggat cccagggtg tccacgggtc 300
 cagctccctc catgaagccc agttctatgg gtcacttctt ctgggtcg 360
 tcggagggag ttggatcgat cttcttgcgg aaacgttctc ttcaatgggtt acctgtcc 420
 accagtgttc ccagtgaagc ggccggaaacc gcacaggctt gtggggcttc 480
 aggacggccca gcccctgtcc gacggagca ccatgtcccc cccaaacctt gcaatgcagg 540
 gctgctgggc cgaatgttgg atgagaaaaac ccctccctca ccctcaggac 600
 gccggggatg gtgcgcctgg tggtagaca ccataattgg atcgtgtgg aacctgtagg 660
 gtttctagtcc tgcctacagg tgaaggaagc ctctggctgg cagctgggtt cctataccca 720
 ccgcttggac tggcccatcg aacgactggc gtcacagcc cgggtgcattt tttccagccc 780
 gggtaacat gacaatgtt tggcagcagg caccggcagg gagatcttc tatgggtctt 840
 gcaggcgggg ggcgggggtt ccggatagg ggtcttcat ctgggggtgc ctgtggaggc 900
 ctgtttcttc tgcggggaaacc agctcatttc tacaaggccac acaggggcga tgggggtgt 960
 gaatgccgtc accaagact ggcaagggttca ggaggtgcg cccatccaca gttatgcac 1020
 ggcaggctcc ttcccttc tgggtgtca caacggctcc atttactac tggatgtgca 1080
 gaagtcccccc ttgcgcatga aagacaacga cctcctgtc aegcagctt atcgggaccc 1140
 agcggggat ggggtccaccg ccctcagtgt ctacctcacc cccaaagacca gtgacagtgg 1200
 gaacttggatc gagatcgccct atggcaccag ctcaggggc gtgcgggtca tcgtgcagca 1260
 cccggagact tggggtctgg ggccctcaggat cttccagacc ttcaactgtgc acccgagccc 1320
 tgcaccaag atcatgtgtt cggagaagca ctcatctca gtctgtccg acaacaacca 1380
 cgtgcggaca tggctgtga ctccgttccg cggcatgatt tccacccaccc cgggtccac 1440
 cccactcgtt tcccttaaga tcctggctct ggagtcggca gatggggcatg gggctcag 1500
 tgcgtggcaat gacattggcc ctcacgggtga gggggacgac cagcaagtgt tcatccagaa 1560

ggtgtgtgcc agtgcgcagcc agctttcgt gctgtctca tctactgggc agcgggtgtg 1620
 ctccgtgcgc tccgtggacg gtcacccac gacggccctc acagtgcgtg agtgcgagg 1680
 ctcggcgccc ctggctc gggccggcg ctacctgc tc actggccagg ccaacggcag 1740
 cttggccatg tggaccta cccacccat ggacggcctc ggccaggccc ctgcagggtgg 1800
 cctgacggag caagagctga tgaacagct gaaacactgt gagctggccc cgccggctcc 1860
 ttcatgggtt tcatgggtt gtctccctc cccctcaccc cgcacatcccc tcaccagcct 1920
 ccactcagcc tccagcaaca cctccttgc tggccacccgt gggagcccaa gccccccgca 1980
 ggctgaggcc cggcggcgtg gtggggcag ctttgtgaa cgctgcagg aactgggtcg 2040
 gagtgaggcc gacccggcag gggccacccac accagcccg tggccctcca ggggtctcg 2100
 cactccccctc acaccccca agatgaagct caatgaaact tcctttgaa caacgcagct 2160
 gccatgtgc ctggatgc cttggctctg gggactcag gtgcctccct gattcctgtg 2220
 ggaacccccc gttcagggcc agggcctctt tggaaaataat gtttattgtt actaggccc 2280
 caccccttccct ctttctgaa acccaaagtcc acccccccataaaagtccct cactgccaaa 2340
 aaaaaaaaaa 2348

<210> 74
 <211> 1139
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2172064CB1

<400> 74
 ctcgagctgg gatgtgtggc aggttccctgc ggcggctgct ggcggaggag agccggcgct 60
 ccaccccccgt gggcgccctc ttgttccctc tgctccttggg attccgcctt gtgctgtgg 120
 ctgcccagtgg gcttggagtc tatgttgcgat agcagatgtt attcgtgtt cacacccac 180
 agccgggctg caaggctgccc tgcttcgtat cttccaccc ccttcctcccg ctgcgttccct 240
 gggcttccca ggtcatcttgc gtggctgtac ccagccctt ctatatgggt ttcactctgt 300
 atcacgtatc ctggcacttgc gaattatcag gaaaggggaa ggaggaggag accctgtatcc 360
 agggacgggg gggcaacaca gatgtccctc gggctgaaag cctcaggctg ctctgggctt 420
 atgtggctca gtcgggggat cggcttgcgat tggagggggc agccctgggg ttgcagtacc 480
 acctgtatgg gttcccgatg cccagctctt tgcatgtcg ccgagaacat tgccttggta 540
 gtataaacctg caatctgtcc cggccctctg agaagacat tttcttcaag accatgtttt 600
 gagtcagcgg tttctgtctc ttgtttactt ttttgagct tgcgttctg gttttgggaa 660
 gatgtgtggag gacctgaaag cacaatctt cctcttctaa atacttcata acttcagaga 720
 gcaccagaag acacaagaaa gcaaccgata gcctcccaat ggtgaaacc aaagagcaat 780
 ttcaagaaggc agtcccgaggc agaagcttag cccaggaaaa acaaagacca gttggaccca 840
 gagatgcctg agttggagat gaacttggc caactttctt catcaccata cttaaaatcc 900
 tgtccaaggg gtagcttattt caccattttca tatacatgtt acatatgtt cagcataacc 960
 gacaacttggg actgcgttgc ctgtacttca cctctacata caatgactca gctaaccaga 1020
 ctaataaaag ccatgttgc accattgtctc agggaggcat tgcttgggg aattattccc 1080
 atgtccctcc ttacttatcg caagtaataa aaatccctg ggaatccctc aaaaaaaaaa 1139

<210> 75
 <211> 863
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2219267CB1

<400> 75
 tcagagcttag ctccggccgc agcctggcac ctcaggtgcc gaccttctac ctgcctact 60
 tcctggaggc cggcctggag ggcgcagcc tggctttctt gtcctgtacg gcagattgt 120
 gtggacggcc cccctgtctg ctgttggca ccattgttac aggcctggca tccctgtgtc 180
 tcctcgctgg gccccagttat ctggcaggct ggactgtgtt gttcttctt gtcttggggc 240
 tcctggccctc cggggctgtg tccgcactca cgcacccctt cgcggccgag gtcttccca 300
 cggtgatcag gggggccggg ctggccctgg tgctggggc cgggttccctg ggccaggcag 360
 cggggccccc gtagacccctg cacggccggc agggcttctt cctgcaacaa gtcgttctcg 420
 cctcccttgc tgccttgc ctgttgcgtt tcctgtgtt gcctgtgttgc cgaagccggg 480
 ggctgccccca gtcactgtcag gacggccacc gcctgtgttgc ctccccactc ctgcggggcc 540
 gccccccgcca ggaccacccgt cctctgtgtc cgccttccaa ctctacttgg gccggccaca 600
 cccccggagca gcactagtcc tgcttggtgg ccctggggc caggatggg cttaaagtcaa 660
 ggcttggggc atggctgtt accccgacgc tgccttgcag ggcagacaca ttccctctcag 720
 aagccctgtt ctcactgtcag gtggagccgt ggggacagcgt tgaagggtgtc tccagccagg 780

ccccaggcac tgggagggccc tgggtctccc cccagccaca cccagtaggt gtggaggata 840
aaggcttctg tggaaaaaaaaaaa aaa 863

<210> 76
<211> 1322
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2308629CB1

<400> 76

ccggggggcc	ggcgcgcccc	gaggccgggg	cctgcaggcc	cccggtacga	caagatccgg	60
actccggccc	ggactaacgag	gcgctgcccc	ctggagccac	tgtcaccacg	cacatggttt	120
caggcgcgt	ggcagggatc	ctggagact	gcgtatgtta	cccccattcac	tgcgtcaaga	180
ccggatca	gagttctacag	cctgaccagg	ctgcccctta	tcgcaatgtt	ttggaggccc	240
tctggatgt	tataagaacg	gagggccctat	ggagggccat	gagggggctg	aacgtcacag	300
caacaggcgc	aggggcttgc	cacggccctt	attttgcctg	ctacggaaaag	ttaaaaaaaga	360
cattgagtga	tgtaatccac	cctgggggca	atagccat	tgccaatgtt	gccccccgggt	420
gtgtggcaac	attacttcat	gatgcagcca	tgaacccctgc	ggaagtggtc	aagcagagga	480
tgcagatgt	caactcacca	taccacccggg	tgacagactg	tgatccggca	gtgtggcaaa	540
atgaaggggc	cggggccctt	tacccgagct	acaccaccca	gctgaccatg	aacgttccct	600
tccaaggccat	tcacccatcg	acctatgaat	tcctgcagga	gcactttAAC	ccccagagac	660
ggtacaaccc	aagctccac	gtcctctctg	gagtttgcgc	aggagctgtt	gtgcggcag	720
ccacaacccc	actggacgtt	tgcaccaaac	tgctcaacac	ccaggaggtcc	ttggcttta	780
actcacacat	tacaggacat	atcacacggc	tggctatgc	cttcaggacg	gtatatcaag	840
taggtgggt	gaccgcctat	ttccggagggg	tgccaggccag	agtaattttac	cagatcccc	900
ccacagccat	cgcattggct	gtgtatgagt	tcttcaata	cctaattac	aaaaggcaag	960
aagagtggag	ggcttggcaag	tgaagtagca	ctgaacgaag	ccaggggttc	agatgacat	1020
gctgcatctt	ggtcacattc	tctgtctctt	ggaatgtcc	cacctcaagt	ggagtttagaa	1080
ggaaggtaga	ggggctctcc	cccaaggattt	tggtgttttgc	actaacacca	gttcctgcca	1140
acctctgttg	ccaccacattt	tctttccagg	ccctaagcac	gtgcagcaaa	gcacaccaca	1200
gcaccttta	taaccctctt	ccatctggg	cctgtatgacc	tgctcttagac	tgttatagag	1260
ggataagcag	ctcattcccc	tggttcctta	taaaaaggctt	ttaaattttaaa	aaaaaaaaaa	1320
aa						1322

<210> 77
<211> 1869
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte ID No: 2660038CB1

<400> 77

caggggacgct	cattcctggc	caagagtccgt	acttttttct	cgatcgaga	tctcggttgc	60
ggctcgagga	aatcacccggc	tcttcctcccg	gatccctttt	ttctctca	tgcgttgc	120
cttcttcctg	cctccccggc	ttccatctcc	caaccccccgg	atcccttct	ctactcccg	180
gtctccgtcg	ccccggcatcc	tgagccatcc	cacccgtcaac	tttctgtctt	ttgccccctcc	240
ttgtacatcg	agggttctgc	cttaagcttc	tcaccagaat	ctcttagatt	tctatctctt	300
ccctgttgc	cagcttgc	ctcccaaaatt	ccagctgacg	tttgaccact	tgacatttg	360
ccctgacacc	cttgcactgc	aatcttaaatt	tttatcttct	gcaacctgt	ctgctgaaac	420
agggccttccc	cctgttcc	aaccccgctt	tctgcacacc	attttactt	tcttacttct	480
gggtcagttc	ctgtacacgc	tatccccacca	tggacttctt	gtatggggc	ctggcagecc	540
ggggggccgt	tgtatccacc	aatccccctgg	aggtgtgaa	gaccaggatg	cagttgcaag	600
gagaactgca	ggccccggc	acataccaggc	ggcaactaccg	aatatgttcc	catgccttca	660
ccaccatcg	caagggtggat	ggcccttgcgt	ccctgcgaaa	aggccctggcc	ccgcggccctct	720
ctgtaccagg	cctgtatgaat	ggcatccggac	tgggcaccta	tgggtggct	gagggtgggg	780
cttacctgca	cacagccgaa	ggcacccacca	ttctcgcccg	cagcggcaga	gttggggcca	840
gggtctgggg	catggggagcc	tacttgggaa	gccccatcta	catggtgaag	acacacctgc	900
aggcacaggc	agcctctagaa	attgtctgtag	ggcaccagta	taagcatcag	ggcatgtttc	960
ggggcgcttaac	cgagattggc	cagaaacatc	gtctgggtgg	gttatggcgt	ggggctctgg	1020
ccggccctgc	ccgaggattatc	gtcgggttct	ccacccacgt	gtgcaccccttc	tcatccacca	1080
gggacactct	gagccagtgg	gagatcttc	ctttttccagag	cttggaaagtgg	ggcgctgtgtt	1140
tgcccatgat	gagtggcatt	gcatgttgc	tggccatggc	accctttgtat	tgggccctgc	1200
aaggctctca	caaccagcccc	acagatgcac	agggcaaggg	cctcatgtac	cggggggatac	1260

tggacgcctc gtcgcagaca gctcgccgagg agggcatttt tggcatgtac aagggtatag 1320
 gtgcctccta cttccgcctc ggccccaca ccatcctc ccttcttc tgggaccagc 1380
 tgcgcctcct ctactacaca gacactaaat aacagccgct ttcccagtct ccaccaaatg 1440
 agcaactcctt gcgcacttgt gcctccacca ctatgtctg gtgactactg attaggtgac 1500
 ctttatecca tccatgggg acagccaaacc ccactccca tctgttctca gggttgaatc 1560
 actacaagag atgagtttcc cttcttctc tgggtgttgc tttaaacctt ccctaccat 1620
 tcccgggta actcacaccc ctctctcagg gctgaacgag tcataccaaa gtgtatccc 1680
 tcccactcac cactgccacc cttgagttcc tcctgtcttcc atgcacagtt taaaactcct 1740
 ccctccaaaa ccaaaggaa tcgagagacc caattccag gcgtctgggcccaggtgtc 1800
 ctgttagatt caaaggcaca gagattatat tgattataaa gcaagtttat tctgaaaaaa 1860
 aaaaaaaaaa 1869

<210> 78
 <211> 1881
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2670745CB1

<400> 78
 gaagaaccga gcttggctgt gtttatctcg ttggggacta aggctcggt tggcgccaa 60
 cgggttctag gtcgcaggca gtcgaggac ccggggcccc gccccggctc ggcctggcag 120
 atagcagagg cagcaggccg tgccgggggg gcatgttgc gtaaccagtg gcccaggaa 180
 ttttacgggt gacagtgcac ctggaggccg ggcccccgcag ggtgaaacct gtcgcgttg 240
 ctgtcgggca tcgggtatac tccttcgggg gttactgtc tggtaagac tatgagacac 300
 tgcgtcagat agatgtgcac atttcaatg cagtgtctt cgttggaca aagctgccc 360
 cggtaagtc tgccatccgt gggcaagctc ctgtggtacc ctacatgcgc tatggacact 420
 caaccgtcct catcgacgac acagtcttcc ttggggccg gccaatgac accgaaggaa 480
 cctgcaatgt gctctatgcc ttgacgtca atacgcacaa gtggttcaca ccccgagtgt 540
 cagggacagt tcctggggcc cgggatggac attcagctg tgccttaggc aagatcatgt 600
 acatttttg gggctacgag cagcaggccg actgttttc caatgacatt cacaagctag 660
 ataccagcac catgacatgg actcttatct gtacaaaggc cagccctgca cgctggaggg 720
 acttccactc agccacaatg ctgggaagtc acatgtatgt ctttggggcc cgtccgacc 780
 gcttggggcattccatcc aacaatgaga ttactgcaaa ccgcattcga gtcttgaca 840
 ccagaactga ggcttggctg gactgtcccc cgactccagt gtcgtctgag gggcgccgaa 900
 gccactcggc ctttgctac aatggggagc tgcatactt tgggtttt aatgcaaggc 960
 tgaaccggca cttccatgac ctctggaaatg ttaatctgt tgccttacc tggaaaaaaa 1020
 ttgaaaccgaa ggggaagggg ccattgtcccc gccggccca gtgtgtctgt attgttggg 1080
 acaagattgt cctctttggg ggtaccagtc catctctgaa ggaaggctg ggagatgaat 1140
 ttgaccttat agatcttct gacttacaca ttttggactt tagccttagt ctgaagactc 1200
 tgcacaaact ggccgtgatt cagtataacc tagaccgtc ctgtttgcct catgatata 1260
 ggtgggagct gaatggcatg accaccaaca gcaatattcg tcgcctccatc gtctccccc 1320
 atgggttagga ggaagtttct gccacctccc ctccctgagcc tgctgtcatc ttcactgccc 1380
 ctgcccacat gtcaccacc tgccttttgc accccctggac ttggtataacc tccatgtgaa 1440
 gttgttgggc gagagggtt ctctgtgtg tgaattcaatg ggggagctgt agcgggggtgg 1500
 gggcttaggtt cttcccccct tggggcggg gccccccccc cttgtgtctc tgcctccatc 1560
 cacctccctt cagctgtcc tgggcctcag ctctggccag ggccagccag gttctgtctgg 1620
 gaagggaaagg gaatggggag aaggggaaagc caagcgtgt ctgacccatc ggagctccc 1680
 cttcccccctt tgcctatccc ctccccctcg cttagccctt gaccccttgc tggggagctga 1740
 aaggagttgc agctgtggc atgagacctc ctctccccc tttttggggag gttggggacca 1800
 gcaagataaat cccacccttc cttgagctgt cgctgtactc tgaagttcag ccagctcaga 1860
 ttttataaaa attaattaaa a 1881

<210> 79
 <211> 2004
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 2676443CB1

<400> 79
 aatcgcaagg ggcgtggct agcggtcccc ccccccggggc ggcgcgcgcg attggctgtg 60
 cgggggtgcgg ggcgcggggc ggcgtttga accggggcgcg gggcgccggg cgccgggcgc 120
 tgccggccggt acacgcccgg gtagggccgg ggtcgccgg tggtcggccccc gggattggggc 180

tctcctggc	catggcagcc	gaggcgcg	tgtcgcgctg	gtacttcggg	gggctggcct	240
cctgcggggc	cgcctgctgc	acgcacccgc	tggacctgt	caagggtcat	ctgcagacgc	300
agcaggagg	gaagctgcgc	atgacgggc	tggcgctgc	ggtggcggt	accgacggca	360
tcctggact	ctacagcggc	ctgagcgct	cgctgtcg	acagatgacc	tactccctga	420
ctcggttgc	catctacag	actgtgcggg	accgcgtgc	caagggcage	caggggcctc	480
tcccttc	cgagaagg	ttgctggct	ccgtcagcg	tttagctgga	gcgttcgtgg	540
ggacggccc	agacttggt	aacgtcagg	tgcagaacga	cgtaaagctg	ccccagggtc	600
agcggcgcaa	ctacggccat	gctggat	gcctgtacc	cgtagctcgt	gaagagggtc	660
tcaggaga	gttctcggt	gcaaccat	catecagcg	agggcccta	gtcaactgtgg	720
gccagctgtc	ctgtacac	caggccaag	agctggct	tagcaccgg	tacctctctg	780
acaacatctt	cactca	gtcgccag	ttattgcagg	tggatgtg	acgttccctgt	840
gccagccct	ggatgtgt	aagactcgcc	tgtaaactc	caaggggag	tatcagggcg	900
tttccactg	cgccgtgg	acagcgaag	tcgggcct	ggcccttta	aagggcctcg	960
tcccgactg	catccgc	atccccaca	ccgtgctac	ttttgtgtt	ctggAACAGC	1020
tacgaaaaaa	cttggatc	aaagtggcat	cctgaccag	cgtggaaatg	gtggggctgc	1080
caggccagac	acgctagg	cttccaaaga	gtcccaagcc	cagcacatgc	tcctggggcc	1140
acgacccccc	tggcgctgc	cacccatct	ccgcagcagg	ccccctgtgt	ccccccac	1200
gctggctgag	ctcctcctgg	cctcgcccc	tctcagetgt	agtcacca	cccccgctct	1260
ggttaccagg	ctctccggc	tgggactgc	gtggcctgc	ccctctccc	ctggcagctc	1320
ctcaggggaa	cagggtctac	cagaggctga	tttctccct	ctccctggcc	aggggaggg	1380
tattatccc	gcctccatgc	cccgtatccc	aaagcagcat	tttcacagcac	tttccatcg	1440
ggacttgggt	ggcagagatgt	gggtgcagcc	tggctgtgc	tcacccaatg	gttagctctg	1500
cacttcgtgt	ctgctgagag	caacccagacc	ttccatgtcc	tcggcagct	gcaactcccc	1560
gcgagacccc	gcagctgggt	gggatgaaca	agcaacgcag	accacaagcg	agtgcctgg	1620
agggagttgc	ccagggttgt	tctggagcca	ttgtgggtga	gggtcgaggg	ccaccgaggt	1680
cccgccacc	gtgcctgc	ctgcagtgcc	tttaacagtt	agtttgccca	aagcctctcc	1740
actcaccagg	aggcggtcc	tgttctcagg	gattgtgcct	gcgtccctcg	gacacctgg	1800
cccccccgct	tggctccctg	ggggatggc	ccaggcgggc	cgcgttccct	ccttagggcc	1860
ttctccccga	caaggagtcc	gacggggccg	atgtgcata	ctctgcctcc	ctggtcgtg	1920
ggcttcaccc	cacctggaa	ggcagtg	ctctgtgggg	gctgcaatca	ataaatgccc	1980
gagctgcca	aaaaaaaaaa	aaaaaa				2004

<210> 80
<211> 3555
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 3295764CB1

<400> 80						
gaccgtggc	gagtccagaa	cgtctggcc	ttacagggag	aaggcgtcac	tcgcggttac	60
aagtgcctg	ccctca	ctcc	ggaggagaag	gaaggggccg	ggccgggtcc	120
cctccccc	cgccccc	gat	ggcccggtgt	ctcgccggc	ggcggccggc	180
gcggccactg	tgctctgc	gaccgctcg	gtccgtcg	aatgtgggtt	tttgcgacc	240
gcgtgtctct	gccc	cttctcgcc	agcctcaggc	cgtcggagcc	tttgcgacc	300
cgttac	tgccggc	caagaacctg	accgagaggg	aggcttcaa	tgttttttat	360
ccagtatgg	cttactt	cctgtgtca	ctgtttcc	tgttcttgc	cacagactac	420
ctccgttata	aac	tctactgtt	gggtcagcc	ttatttttac	atggttatg	480
ctgctctatg	cccaggact	gtgtgtcc	caatttctag	aattttttt	tggcatcgcc	540
acagccactg	aaatgc	ttacttcttat	atctacagt	tgttgcac	gggcgtat	600
cagaaa	caagtta	tgcagg	actttgg	gttttacagt	gggtctgtc	660
ctagggcaaa	tccttgc	agtggcagg	ttgtcgctgt	tcagcctgaa	tgtcatctc	720
tttac	tttactgt	tttgcgt	gcctgg	tacctatg	acagaagagc	780
cttcttttcc	accacatcc	tttacatgc	cagagatgt	atggcatcaa	gttacaaaat	840
ggtggcattg	ttactg	cccaat	aaccac	ctggcg	ggacattgag	900
teaaaaatcc	ctctaaat	ggaggagcc	cccgtgg	aacccaacc	caagccagac	960
cgttcctt	tattgaa	actatgg	gatttctg	tgtgtactc	ctctcgccct	1020
tttctctgt	ggtctgt	gtggcc	tctac	gtat	ttgtgtac	1080
tacacacagg	gcctgtgg	gaaatgtat	ccttctcg	atgtctat	ctataatgtt	1140
ggcgtggagg	ccgttcaac	ttactgg	gtgttgc	tgtttgc	tgtttatata	1200
aaaatatcc	ggtcaact	gggaaaat	acattat	tctttct	cctgattgt	1260
gctgcagtgt	atatcat	ca	aacatttgg	tgtgtatgc	atcctatgtt	1320
gtcttcagaa	tcatctacat	ttactc	acgatag	ttttcaat	tgtgc	1380
ctcagcatgg	aacgtatgc	cctgtat	gtgtaaata	ccttcattgc	cctggcactg	1440
cagacgtgc	tcactcta	tgtgttagat	gccagtggcc	ttggattaga	aattaccat	1500
cattttttga	tctatgc	ttat	ttgttgc	tggtttcc	ggccagtgg	1560

gcagtcagtg ttatgaagaa atgttagaaaag ctggaaagatc cacaatcaag ttctcaagta 1620
 accacttcat aataactgc tgaaggcgt cttcttatag caagaactct gcacagcaac 1680
 tgccctggatg tatttgattt ttaaagcgat agacatatat ttatgaatgt gcatttcttg 1740
 acttcacagc agccacttga ctaatacacct gtgttccggg aataaacatga tactattcag 1800
 aggagccaga agtaaaagttt atttcatgaa ttatttatga gagctaattt aaggatgact 1860
 tttttctga tc当地aaagtg aacttgattt taaaaccag tcaagagcaa tcaaaggcgc 1920
 acatgggtt gtataacttca tttagcaagtg agtttgggtt ttataggtc acatatgtct 1980
 gtatctactt agccagatgc ttggcctggg gggaccaggc ctccacagag gcccacaaaat 2040
 gttgcaagtc atgatggatg gaaatattca ctaacagcat ctgcctctat tcaatttaat 2100
 tcttattttct gtgttactca tgc当地attgg tctttctaca taggttattt atcaactggca 2160
 atatttgc当地 tggtttagtg ttctgtattt taagggttac gtatcatttc taatttttaag 2220
 ttatattttaaa aaaatttcatc atatgaatgt tcttgggtcc cattgtgacg attattttattt 2280
 tctgtaaaat ttgtttagaa gtacgtttt gcattattca tatgttccc agagaagctc 2340
 attttagttttaggaaaataaaaggc aagttttgaa gcctgtaaa tgaagagact taagaaaagct 2400
 taaggtagcgc ttgctgtct ttaaatctt aatatgaaagg acttatttattt ccaagattaa 2460
 aagttcatat ataggctaaa gatgtacta ggccattttt atttgttcc ccttttattt 2520
 cccaaaataaa atgaaaaatc tttttttat aatttcatcc ctattttatag ttttttattt 2580
 aattttgtttt tcttaccca gtaaaagatgt caataggaaat tgcatggatc caaggcctt 2640
 ttccataaact gggccctttt tcaatttattt caatgggaca ggaacttagga tagatgtgat 2700
 tcctgc当地 ttttaccca aatctgcctt tggttctaaa ggttagatcat cttgaatattt 2760
 tgctttaaat tgctgttgc当地 ttcttacca agtacttgc当地 aaaaatgttc tatatgcatt 2820
 taatttctgaa atcgttctac caaggggctg ctgtatatttgc当地 aaacttattt 2880
 aaagctgact ttgttgc当地 atcttgc当地 gaatctgat aggtgtttt aactggggta 2940
 ttaactttt tagaatttgc当地 cagctgaaaca gtgttataaa tagtgtgtca agattgcaaa 3000
 gtcgacatac tcatttgggta taaggcaggaa tccttgc当地 aaatggatgg ggataagaat 3060
 aggtcattttt ctatttccacca tccttacta ttaaggggaaa ggaaaagaac actagctaa 3120
 gaaggggaaaag ggaaggata tcaataaaaat agcaacccctt attttacattt ctgtctgtt 3180
 ttctttttt gctttttt gtttgc当地 atttgggaaat tggttacttcc gaaacaagta 3240
 gaaaagtgtt gtttggggta ttttattttaa tcttttttta atggaatgtt gtacaaaattt 3300
 ttcatgttac caaagcaata tttccctgggta atttaatttca aagtttgc当地 catacaacct 3360
 gagcccttttcc ttatataaga caagaatatgt ttcacatctt ggtatgtggc catattttata 3420
 gaatgttgc当地 ctcaatgtgc aagtttgc当地 gtatgc当地 ttgttataaa gtgaaaataaa 3480
 ttgttgc当地 tttttatttca attctgttataa gattataaaa ttatattttat taaataaaata 3540
 ttttacagta tattt 3555

<210> 81
 <211> 1293
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte ID No: 3438320CB1

<400> 81
 atatgc当地 cggggactc atactacgtt tcccgtgaac acgtgc当地 caaacccccc 60
 ccctgatatt tatctc当地 gacggggcc ggaaaaggac aatggttcc atgtc当地ggg 120
 ataaacgc当地 tcccctc当地 tcccggacgc gacggaggcc gtagttagtag ttagtacgtg 180
 ctggaggaggcc aaggagtaac caagagatcc agtggccgac agagcaagag ccatgccc当地 240
 cggggccctg gtggctggc cagacttgggat gtattttccat cgtc当地tatttccatg 300
 ggagggtggcc caacataaca gggccgaa gctctgggta tcttacccctt gacggcgtgtt 360
 cgacctaactc tcatttggccat aggaataaca gggggacccctt ctgttgc当地 420
 agtttgc当地 caggatataca gccc当地tgggta tgatccaaatccatg accagagaca tccgcaagca 480
 catagatccg ctgaccggcc gcttgc当地tgggta ctgc当地ccccc cggggccgct ttgtgc当地gtt 540
 tccgc当地tccatg ctggccctggcc cggacttggcc caacgattttt gggaaaggccctt ggtggcagg 600
 gtc当地tattt gagggtggcc ggttgc当地tccatg caagaccggcc agcatccgca tcttacac 660
 gtc当地acgtcc caggaggccat cacttggggat gggggcttccatg gaggccatataat gggaaatccct 720
 acaccgctat ctccccccata actccatgc tggccatccatg acgtggaaat atgaaggggaa 780
 gaacctgaaac atggattttt cccttggaa gatggggat ccggatggagg aggaagaattt 840
 tgactatctc agtatggccg gtacacttca cacaccccttca atacttctgtt acttcaatgtt 900
 tgatctc当地 gagtttgc当地tgggatg tacacttccatg tagactcaag acgttatttcc 960
 agtttggccctt ttcttgc当地 ttggggaaaat gtggggcc cggggccgtc ctggaccctt 1020
 atctccactc ctctccaggaa gcttagccctgt gccc当地tctga agtgttccatg cccttatttcc 1080
 tggcccttattt acagtttgc当地 tggggaaaat tagtgc当地tgggaa atgatacaag 1140
 aagatcaatgtt accttggccctt agggagatgt agaagagat agtcaatgtt caggccgaaac 1200
 tgtttgc当地 ttaagagaga gtagtttccatg aggggtggggat gatggaaaggat cttttttggc 1260
 aatgatggaa atgagatgtc tgcaggat ggg 1293


```

<220>
<221> misc_feature
<223> Incyte ID No: 4797137CB1

<400> 84
ggatgcagca gagaggagca gctggaagcc gtggctgcgc tcttcccct ctgctggcg 60
tcctgttctt ccagggtgtt tatatcgctc ttcccttggaa gattcgtgca gatgcccatg 120
tccgaggtta tggtggagaa aagatcaagt taaaatgcac ttcaaatgtca acttcagatg 180
tcaactgacaa gtttactata gactggacat atgcgcctcc cagcagcagc cacacagtat 240
caatatttca ttatcagtct ttccctgttcc caaccacagc aggacatctt cggtatcgga 300
tttccctgggt tggaaatgtt tacaaggggg atgcatctat aagtataagc aaccctacca 360
taaaggacaa tgggacatcc agctgtgtc tgaagaatcc cccagatgtg caccataata 420
ttccccatgac agagctaaca gtcacagaaaa ggggttttgg caccatgtt tccctgtgg 480
cccttcttcc catccctgtc ttgtgtccctt cagccgtgtt gggtgtctg ctgctgggt 540
gaatggggag gaagggtgtt gggctgaaga agaggagcag gtctggctat aagaagtcat 600
ctattgaggt ttccctgtac actgtatggg aggaggaaga ggcgtgtatg gcgaggctt 660
gtgtccgttg cgctgagtgc ctggatttcg actatgaaga gacatattgtt taaaatgtc 720
tatgacacaa gaagagtcaac ctaaaagacag gaaacatccc attccactgg cagctaaagc 780
ctgtcagaga aagtggagct ggcctggacc atagcgatgg acaatcctgg agatcatca 840
taaagactt aggaaccact tattttattgtt ataaatgtt ttgtgttatttataaactgt 900
tcaggaatc tcataagaga ctcatgactt ccccttcaa tgaattatgc tgaatttggaa 960
tgaagaaaatc 970

<210> 85
<211> 594
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5470806CB1

<400> 85
gacaggatgg ctcccttcg cctgttccctc ctctgcctcg ctgtactgtat atttgcgtct 60
gaagctggcc ctgggggtgc tggagaatcc aagtgtccctc tgatggtaa agtcctggat 120
gtgtcccgag gcagccctgc tggatgttgc gccgtgaaag tgttcaaaaaa gactgcagac 180
ggaagctggg agccgtttgc ctctggaaag accggccaggt ctggagagct gcacgggctc 240
accacagatc agaaggtaac ggaagggggtg tacagggttag aactggacac caaatcgta 300
tggaaaggctc ttggcatttc cccattccat gaatacgcag aggtggttt cacagccaa 360
gactctggtc atcgccacta caccatcgca gcccgtctca gcccgtactc ctacagcacc 420
actgtctgtc tcaatggggcc ccagaactgtt gggaccggc ccagtaggac caggatctt 480
ccaaagcagt agcttccat ttgtactgtt acagtgttct tgctctataa accgtgttag 540
caactcggga agatggcggtt aaacgatctt attaaaccac ctgtgatgcc aaaa 594

<210> 86
<211> 618
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte ID No: 5473242CB1

<400> 86
gtgttgcgtc gcaacccatc gaacagacac catggtgcac ctaactgtat ctgagaaggc 60
tactgttaat ggcctgtggg gaaagggtgaa ccctgttggaa attggcgctg agtcccttgc 120
cagtcgtctg attgtctacc ctggaccca gaggtacttt tctaaatttt gggacctgtc 180
ctctgtctct gctatcatgg gtaaccccca ggttggggcc catggcaaaa aggtgataaaa 240
cgcccttcgtat gatggcctga aacacttggaa caacctcaag ggcacccctt ccagcctcag 300
tgaactccac tggacaaggc tgcgttggaa tcctggaaac ttcaatgttcc tggggcaat 360
gattgttattt atgtggggcc accacccctggg caagggatcc acccccgatgtt cacaggctgc 420
cttccagaag gtgggtggctg gagtggccag tggccctggct cacaagtacc actaaacctc 480
ttttccctgtt ctgttcttgc tggcaatggcc aattgttccc aagagagctt ctgtcagttt 540
ttgtcaaaat gacaaagacc ttggaaaatc tggctacta attaaagcat ttgggttcaag 600
tgttctgttg agatacc 618

```