Barcoded RT-PCR B-cell receptor IsoTyper amplification from RNA from mice

Primers

Reverse RT primer mix (10uM per primer): these should be mixed in an equimolar manner to a final concentration of 10uM per primer for the PCR reaction.

Primer ID	Primer
MusM_IGHGA_BC	GATACGGCGACCAATGTNNNNTNNNNTNNNNCAGGGACCAAGGGATAGAC
MusM_IGHGB_BC	GATACGGCGACCAATGTNNNNTNNNNTNNNNCAGGGGCCAGTGGATAG
MusM_IGHA_BC	GATACGGCGACCAATGTNNNNTNNNNTNNNNTGTCAGTGGGTAGATGGTG
MusM_IGHM_BC	GATACGGCGACCAATGTNNNNTNNNNTNNNNCATGGCCACCAGATTCT
MusM_IGHE_BC	GATACGGCGACCAATGTNNNNTNNNNNNNNAAGGGGTAGAGCTGAGGG
MusM_IGHD_BC	GATACGGCGACCAATGTNNNNTNNNNTNNNNGGCTTTGCACTCTGAGAG

PCR reverse primer:

Primer ID	Primer
UNIB	GATACGGCGACCAATGT

Forward primer mix (10uM per primer): this refers to the current forward primers used in the PCR reaction that bind to FR1 region of human IgH sequences. These can be mixed in an equimolar manner to a final concentration of 10uM per primer for the PCR reaction:

Primer ID	Primer sequence*	<u>.</u>
VH-for11	CAGATKCAGCTTMAGGAGTC	
VH-for13	CAGGTTCACCTACAACAGTC	
VH-for15	GARGTGMAGCTGKTGGAGAC	
VH-for2	CAGGTGCAAMTGMAGSAGTC	Group 1 forward primers
VH-for5	GAKGTGCAGCTTCAGSAGTC	
VH-for8	GAGGTGMAGCTASTTGAGWC	
VH-for1	GAGGTTCDSCTGCAACAGTY	
VH-for12	CAGGCTTATCTGCAGCAGTC	
VH-for14	CAGGTGCAGCTTGTAGAGAC	Group 2 forward primers
VH-for3	GAVGTGMWGCTGGTGGAGTC	
VH-for7	CAGRTCCAACTGCAGCAGYC	

^{*} Using standard ambiguity codes

Reagents:

Manufacturer	Reagent	Cat No.
KAPA Biosystems	Real-time PCR library amplification	KK2702
Life technologies	SuperScript III	18080-044
Thermo Scientific	RNaseOUT™ Recombinant Ribonuclease Inhibitor	10777-019

And library preparation kit for MiSeq sequencing.

Reaction volumes are given per reaction.

RT-PCR

Add the following reagents using between up to 500ng RNA, where the total RNA volume is diluted to give 14ul:

Reagent:	Volume (ul)
Barcoded reverse primer, 10uM	1
10mM dNTP Mix	1
Lymphocyte RNA template (Xug)	14
Total volume	16

Heat to 65°C for 5 minutes and incubate on ice for at least 1 minute. Then add the following to the tube/plate well:

Reagent:	Volume (ul)
5X First-Strand Buffer	4
1ul 0.1 M DTT	1
1ul RNaseOUT	1
1ul SuperScript III RT	1
Aliquot	7

Incubate 50'C for 60mins and 70'C for 15mins.

cDNA clean up

- 1. Shake AMP XP beads.
- 2. Add 36uL (or corrected amount, see table below) of beads to cDNA and pipette mix 10 times.

RT Reaction Volume (μL)	AMPure Volume (μL)
10	18
20	36
50	90

- 3. Incubate for 8 minutes at RT.
- 4. Place plate/tubes on the Magnet plate. Wait for 2 minutes.
- 5. Aspirate the cleared solution from the reaction plate and discard.
- 6. Take plate from the Magnet. Spin plate.
- 7. Place it in the Magnet. Aspirate and discard flow through.
- 8. Add 50uL of H2O. Pipette up and down 10 times.
- 9. Place plate on the Magnet. Wait for 2 minutes. Take the cDNA (eluted from beads).

PCR reaction:

Split cDNA into two equimolar aliquots, and perform two PCRs using the the following reaction mixture:

Group 1 forward primers Group 2 forward primers Volume (ul) Volume (ul) 2x KAPA buffer 25 25 Forward primer mix A or B (10uM per primer) 1 1 Universal const. reverse (UNIB) (10uM) 1 27 27 Aliquot of PCR mix cDNA template 23 23 50 50 Total volume

PCR program:

1 cycle:	95oC	5min
5 cycles:	98oC	5sec
	72oC	2min
5 cycles:	98oC	5sec
	65oC	10sec
	72oC	2min
30 cycles:	98oC	20sec
	60oC	1min
	72oC	2min
Final extension:	72oC	7min

Combine the group 1 and group 2 primer PCR products per sample, and can proceed for library preparation and sequencing, performing the DNA cleanup first:

cDNA clean up

- 1. Shake AMP XP beads.
- 2. Add 36uL (or corrected amount, see table below) of beads to cDNA and pipette mix 10 times.

RT Reaction Volume (μL)	AMPure Volume (μL)
10	18
20	36
50	90

- 3. Incubate for 8 minutes at RT.
- 4. Place plate/tubes on the Magnet plate. Wait for 2 minutes.
- 5. Aspirate the cleared solution from the reaction plate and discard.
- 6. Take plate from the Magnet. Spin plate.
- 7. Place it in the Magnet. Aspirate and discard flow through.
- 8. Add 50uL of H2O. Pipette up and down 10 times.
- 9. Place plate on the Magnet. Wait for 2 minutes. Take the cDNA (eluted from beads).