Théorème 0.0.1 (σ sous additivité). Soit $(E_n)_{n\in\mathbb{N}}$ des ensembles, alors

$$mes(\bigcup_{n=1}^{\infty} E_n) \le \sum_{n=1}^{\infty} mes(E_n).$$

 $D\acute{e}monstration$. Soit $\epsilon > 0, n \in \mathbb{N}_{\geq 1}$, alors $\exists (I_{n,m}^{\epsilon})_{m=1}^{\infty}$ des intervalles ouverts tels que $E_n \subset \bigcup_{m=1}^{\infty} I_{n,m}^{\epsilon}$ et $\sum_{m=1}^{\infty} long(I_{n,m}^{\epsilon}) - \frac{\epsilon}{2} \leq mes(E_n)$

Alors $\bigcup_{n=1}^{\infty} E_n \subset \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} I_{n,m}^{\epsilon}$ on a donc $mes(\bigcup_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} long(I_{n,m}^{\epsilon})$ car $(I_{n,m}^{\epsilon})_{n,m=1}^{\infty}$ reste une famille dénombrable d'intervalles. Alors

$$mes(\bigcup_{n=1}^{\infty} E_n) \le \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} long(I_{n,m}^{\epsilon}).$$