Math 493 Lecture 19

Professor Andrew Snowden

Transcribed by Thomas Cohn

Bilinear Forms

Recall the dot product.

Given $v, w \in \mathbb{R}^n$, $v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$, $w = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}$, then their dot product is $v \cdot w = v_1 w_1 + \dots + v_n w_n$.

The dot product has three important properties:

- 1. Bilinearity: $(\alpha v + \beta v') \cdot w = \alpha(v \cdot w) + \beta(v' \cdot w)$ for $\alpha, \beta \in \mathbb{R}, v, v', w \in \mathbb{R}^n$ (and similarly in the second argument)
- 2. Symmetry: $v \cdot w = w \cdot v$
- 3. Positive Definite: $v \neq 0 \Rightarrow v \cdot v > 0$

We want to generalize the dot product to arbitrary vector spaces, and understand what that looks like.

Some setup: Let F be a field with $char(F) \neq 2$ (i.e. $2 \neq 0, 1 \neq -1$). Let V be a F-vector space with finite dimension.

Defn: A bilinear form on V is a function $\langle , \rangle : V \times V \to F$ s.t.

- $\langle \alpha v + \beta v', w \rangle = \alpha \langle v, w \rangle + \beta \langle v', w \rangle, \forall \alpha, \beta \in F, v, v', w \in V$
- $-\langle v, \alpha w + \beta w' \rangle = \alpha \langle v, w \rangle + \beta \langle v, w' \rangle, \forall \alpha, \beta \in F, v, w, w' \in V$

Defn: A bilinear form \langle , \rangle is said to be

- symmetric if $\langle v, w \rangle = \langle w, v \rangle, \forall v, w \in V$
- antisymmetric if $\langle v, w \rangle = -\langle w, v \rangle, \forall v, w \in V$

 $\mathbf{E}\mathbf{x}$:

- 1. $V = \mathbb{R}^n$, $\langle v, w \rangle = v \cdot w$ is symmetric.
- 2. $V = \text{anything}, \langle v, w \rangle = 0, \forall v, w \in V \text{ is symmetric and antisymmetric.}$
- 3. $V = F^n$, $\langle v, w \rangle = v_1 w_1 + \dots + v_n w_n$ is symmetric.
- 4. $V = F^n$, pick $\alpha_1, \ldots, \alpha_n \in F^n$, $\langle v, w \rangle = \alpha_1 v_1 w_1 + \cdots + \alpha_n v_n w_n$ is symmetric. 5. $V = F^2$, $\langle v, w \rangle = \det \begin{bmatrix} v_1 & w_1 \\ v_2 & w_n \end{bmatrix}$ is antisymmetric.

Let \langle , \rangle be a bilinear form on V, e_1, \ldots, e_n be a basis of V. Let $a_{i,j} = \langle e_i, e_j \rangle$. Given $v = v_1e_1 + \cdots + v_ne_n$, $w = w_1e_1 + \cdots + w_ne_n$ (for $v_i, w_i \in F$), we have

$$\langle v, w \rangle = \sum_{i,j=1}^{n} v_i w_j \langle e_i, e_j \rangle = \sum_{i,j=1}^{n} a_{i,j} v_i w_j$$

1

If n = 2, then this becomes $\begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$.

This works in general. Let $A = [a_{i,j}]_{1 \leq i,j \leq n}$, an $n \times n$ matrix. Then $\langle v, w \rangle = [v]_{\mathfrak{B}}^T A[w]_{\mathfrak{B}}$ (where $[v]_{\mathfrak{B}}$ is the vector v in the $\mathfrak{B} = (e_1, \ldots, e_n)$ basis).

Note: \langle , \rangle is symmetric iff A is symmetric, i.e., $A^T = A$. \langle , \rangle is antisymmetric iff $A^T = -A$.

Change of basis: Say $\mathfrak{C} = (f_1, \dots, f_n)$ is a second basis. Let $Q \in GL_n(F)$ be the change of basis matrix, so $[v]_{\mathfrak{B}} = Q[v]_{\mathfrak{C}}.$

Let A be the matrix for $\langle \ , \ \rangle$ with respect to the $\mathfrak B$ basis. $A_{i,j} = \langle e_i, e_j \rangle$. Let A' be the matrix for $\langle \ , \ \rangle$ with respect to the $\mathfrak C$ basis. $A'_{i,j} = \langle f_i, f_j \rangle$. Then

$$\langle v,w\rangle = [v]_{\mathfrak{B}}^TA[w]_{\mathfrak{B}} = [v]_{\mathfrak{C}}^TA'[w]_{\mathfrak{C}} = (Q[v]_{\mathfrak{B}})^TA'(Q[w]_{\mathfrak{B}}) = [v]_{\mathfrak{B}}^T(Q^TA'Q)[w]_{\mathfrak{B}}$$

So $[v]_{\mathfrak{B}}^TA[w]_{\mathfrak{B}}=[v]_{\mathfrak{B}}^T(Q^TA'Q)[w]_{\mathfrak{B}}, \forall v,w\in V.$ So we have $a^TAb=a^T(Q^TA'A)b, \forall a,b\in F^n$, and thus, $A=Q^TA'Q$ (we can take a and b to be the standard basis vectors e_i,e_j , then $a^TAb=A_{i,j}$). We've just proved:

Prop: Let \langle , \rangle be a bilinear form on V. Let A be the matrix of \langle , \rangle in some basis. Then the matrix in an arbitrary basis has the form Q^TAQ for $Q \in GL_n(F)$.

From now on, focus on the case where the bilinear form is symmetric.

Defn: A quadratic space is a pair (V, \langle , \rangle) where V is a finite dimensional F-vector space and \langle , \rangle is a symmetric bilinear form on V.

Defn: Let V, W be quadratic spaces. An **isometry** from V to W is a linear isomorphism $T: V \to W$ such that $\langle Tv, Tv' \rangle = \langle v, v' \rangle, \forall v, v' \in V.$

Problem: classify quadratic spaces up to isometry.

 $\{n\text{-dimensional quadratic spaces}\}\/\ \text{isometry} \cong \{n\times n \text{ symmetric matrices}\}\/\ \sim$

where $A \sim B$ if $A = Q^T B Q$ for some $Q \in GL_n(F)$. Reason:

- Given a quadratic spaces V, we get the elements of $M_n(F)/\sim$ by taking matrix of form (?)
- If $T:V\to W$ is an isometry, let e_1,\ldots,e_n be a basis for V. Then Te_1,\ldots,Te_n is a basis for W. Because T is an isometry, $\langle Te_i, Te_j \rangle = \langle e_i, e_j \rangle$, which tells us that the matrices are the same.

Invariants of Quadratic Spaces

- Dimension of V not a complete invariant. Consider I_n and 0_n (matrix of zeros). These are not
- Discriminant: Let $A, B \in M_n(F)$ s.t. $A \sim B$. Then $\exists Q \in GL_n(F)$ s.t. $A = Q^TBQ$, so det $A = Q^TBQ$ $(\det Q)^2 \det B$, so $\det(A) = \det(B)$ in $F/(F^{\times})^2 = \{0\} \cup F^{\times}/(F^{\times})^2$.

Defn: The discriminant of a bilinear form or a quadratic spaces is the determinant of the matrix as an element of $F/(F^{\times})^2$.

Note: It's well-defined!

Ex: $F = \mathbb{Q}$, $V = \mathbb{Q}^2$, p is a prime.

- 1. $\langle v,w\rangle=v_1w_1+v_2w_2$ has matrix $\begin{bmatrix}1&0\\0&1\end{bmatrix}$, so the discriminant is 1. 2. $(v,w)=v_1w_1+pv_2w_2$ has matrix $\begin{bmatrix}1&0\\0&p\end{bmatrix}$, so the discriminant is p.

 $p \neq 1$ on $\mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2$, so (V, \langle , \rangle) and (V, (,)) are not isometric.

Another invariant: Let V be a quadratic space. The **kernel** of V is $\{v \in V \mid \langle v, w \rangle = 0, \forall w \in V\}$. This is a subspace of V, and $\dim \ker(V)$ is an invariant.

Defn: Let V be a quadratic space, and let $a \in F$. We say V represents a if $\exists v \in V \setminus \{0\}$ s.t. $\langle v, v \rangle = a$. The set of all elements of F represented by V is an isometry invariant of V.

Ex: $F = \mathbb{R}$, $V = \mathbb{R}^2$, $\langle v, w \rangle = v \cdot w = v_1 w_1 + v_2 w_2$, $(v, w) = v_1 w_1 - v_2 w_2$. Then (V, \langle , \rangle) represents positive real numbers, but (V, \langle , \rangle) represents all real numbers. So they're not isometric.

Defn: Let V and W be quadratic spaces. Their **orthogonal direct sum** is $V \perp W$.

- The vector space is $V \oplus W$.
- The form is $\langle v+w,v'+w'\rangle=\langle v,v'\rangle+\langle w,w'\rangle$ for $v,v'\in V,w,w'\in W.$

If V is a quadratic space, and $U,W\subseteq V$ are subspaces, then $V=U\perp W$ if $V=U\oplus W$ and they're orthogonal, i.e., $\forall u\in U,w\in W,\,\langle u,w\rangle=0$.

Lemma: Let V be a quadratic space s.t. $\langle \ , \ \rangle \neq 0$. Then $\exists v \in V$ s.t. $\langle v, v \rangle \neq 0$. Proof: By the assumption, $\exists u, w \in V$ s.t. $\langle u, w \rangle \neq 0$. If $\langle u, u \rangle \neq 0$ or $\langle w, w \rangle \neq 0$, we're done. If $\langle u, u \rangle = \langle w, w \rangle = 0$, then compute

$$\langle u+w,u+w\rangle = \langle u,u\rangle + \langle u,w\rangle + \langle w,u\rangle + \langle w,w\rangle = 2\,\langle u,w\rangle = 2\,\langle u,w\rangle \neq 0$$

Defn: Let V be a quadratic space, and $W \subseteq V$ a subspace. Define $W^{\perp} = \{v \in V \mid \langle v, w \rangle = 0, \forall w \in W\}.$

By our lemma, if $\langle , \rangle \neq 0$, then $\exists v \text{ s.t. } v \notin (Fv)^{\perp} = (\operatorname{span}(v))^{\perp}$.

Assume $\langle \ , \ \rangle \neq 0$. Pick v s.t. $\langle v, v \rangle \neq 0$. Then $\operatorname{span}(v)^{\perp} = \ker \begin{pmatrix} V \to F \\ w \mapsto \langle v, w \rangle \end{pmatrix}$.

So $\dim(\operatorname{span}(v)^{\perp}) = \dim V - 1$, so $\dim(\operatorname{span}(v)) = 1$, so $\operatorname{span}(v) \cap \operatorname{span}(v)^{\perp} = \{0\}$.

Thus, $V = \operatorname{span}(v) \perp \operatorname{span}(v)^{\perp}$, and we conclude that if $\langle , \rangle \neq 0$, then we have a $V \cong L \perp V'$, where $\dim(L) = 1$ and $\dim(V') = \dim(V) - 1$. This conclusion is obvious if $\langle , \rangle = 0$ also.

By induction on dim V = n, we can find L_1, \ldots, L_n , each dimension 1 quadratic spaces, such that $V \cong L_1 \perp \cdots \perp L_n$.

Alternative statement 1: Given a quadratic space V, there is an orthogonal basis e_1, \ldots, e_n where $\langle e_i, e_j \rangle = 0$ if $i \neq j$.

Alternative statement 2: Given an $n \times n$ symmetric matrix $A, \exists Q \in GL_n(F)$ s.t. Q^TAQ is diagonal.