Name: Suhaila Ahmed Hassan

Track: Al

Branch: Alexandria

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Introduction

Neural Machine Translation (NMT) aims to build a single, end-to-end neural network for translation, as opposed to traditional phrase-based systems made of many components.

Most NMT models use an encoder-decoder architecture where:

- The encoder converts the source sentence into a fixed-length vector.
- The decoder generates the translation from this vector.

Problem with Approach:

- It struggles to handle long sentences, especially those longer than seen during training.
- Performance deteriorates as sentence length increases

Proposed Model

Neural machine translation architecture combining:

- A bidirectional RNN encoder.
- A decoder that emulates searching through a source sentence during decoding a translation.

Decoder:

- Decoder in this model uses a different context vector for each output word.
- Context vector: Computed as a weighted sum of annotations from the encoder, using attention weights that indicate relevance of each source word to current target word.
- Attention scores: The weights are calculated using an alignment model, a small neural network trained jointly with the main model.
- Soft alignment (attention): Instead of selecting a single aligned word, the model computes a weighted average across all source words. This soft alignment allows for differentiable training via backpropagation.

Encoder:

- Uses a bidirectional RNN (BiRNN) where one RNN reads the sequence from left to right and another one reads it from right to left.
- To obtain annotations for each word, the model concatenates the forward and backward hidden states. These annotations capture context from both directions for past and future.

Experiment

 The model is evaluated on English-to-French translation using the WMT 2014 dataset.

- Training is done using only parallel corpora (no monolingual data).
- Models are trained on sentence lengths up to 30 and 50 words, and evaluated using BLEU scores.
- Models to compare: traditional RNN encoder-decoder and proposed RNNsearch.

Results

Proposed RNNsearch model significantly outperforms the traditional RNN Encoder Decoder. It achieves higher BLEU scores and shows better performance with longer sentences.