Practical Aspects of Adaptive MQAM MIMO and Space/Time Communications

Lecture Outline

- Finite Constellations
- Update Rate in Adaptive Modulation
- Effects of Estimation Error on Adaptive MQAM
- Effects of Feedback Delay on Adaptive MQAM
- Introduction to MIMO Systems.
- Parallel Decomposition of MIMO Channels
- MIMO Channel Capacity

1. Finite Constellations

- Constellation restricted to finite set $\{M_0 = 0, M_1, \dots, M_{N-1}\}$
- Divide the fading range of γ into N discrete fading regions R_i .
- Within each region "conservatively" assign constellation $M_j: M_j \leq M(\gamma) \leq M_{j+1}$, where $M(\gamma) = \gamma/\gamma_K^*$ for some optimized γ_K^* .
- Power control based on channel inversion maintains constant BER within region R_i .
- Using large enough constellation set results in near-optimal performance.
- Additional power penalty of 1.5-2 dB if each constellation restricted to a single transmit power.

2. Update Rate in Adaptive Modulation

- Rate at which constellation size changes (should be much more than a symbol time).
- Approximate as the average dwell time in each of the fading regions R_i .
- Using a Markov model approximation for Rayleigh fading, this average dwell time is $\overline{\tau_j} = \pi_j/(N_{j+1} + N_j)$, where π_j is the probability of being in region R_j and and N_j (N_{j+1}) is the level crossing rate at the minimum (maximum) fade level in the region.

3. Effects of Estimation Error

- Can have estimation error at receiver, transmitter, or both.
- Receiver estimation generally more accurate, since doesn't need to be causal. Generally neglect this error for slowly changing channels.
- Transmitter estimate must be causal, so is generally less accurate. The effect on BER of imperfect transmitter channel estimates (assuming perfect receiver channel estimates) is BER($\gamma, \hat{\gamma}$) = .2[5BER₀] $^{\gamma/\hat{\gamma}}$, where γ is the true channel SNR, $\hat{\gamma}$ is its estimate at the receiver, and BER₀ is the target BER.
- The average BER is obtained by integrating this expression over the joint distribution of γ and $\hat{\gamma}$ or the distribution of the ratio $\gamma/\hat{\gamma}$. This distribution is not easy to obtain and depends on the estimation process.

4. Effects of Estimation Delay

- Assume a fixed estimation delay so that the transmitter and receiver are synchronized to the same constellation.
- BER degredataion due to delay i_d can be derived as BER $(\gamma[i], \gamma[i-i_d]) = .2[5BER_0]^{\gamma[i]/\gamma[i-i_d]}$.
- The average BER is obtained by integrating this expression over the joint distribution of $\gamma[i]$ and $\gamma[i-i_d]$.
- A closed-form expression for the ratio $\gamma[i]/\gamma[i-i_d]$ in Nakagami-m (and Rayleigh) fading is known.

5. MIMO Systems: Parallel Channel Decomposition

- MIMO systems have multiple antennas at both the transmitter and receiver.
- With perfect channel estimates at the transmitter and receiver, the MIMO channel decomposes into $R_{\mathbf{H}}$ independent parallel channels, where $R_{\mathbf{H}}$ is the rank of the channel matrix (min(M_t, M_r) for M_t transmit and M_r receive antennas under rich scattering).

6. MIMO Channel Capacity

- Capacity depends on whether the channel is static or fading, and what is known about the channel at the transmitter and receiver.
- For a static channel known at the transmitter and receiver capacity is given by

$$C = \max_{P_i: \sum_i P_i \leq P} \sum_i B \log_2 \left(1 + \frac{\sigma_i^2 P_i}{\sigma_n^2}\right) = \max_{P_i: \sum_i P_i \leq P} \sum_i B \log_2 \left(1 + \frac{P_i \gamma_i}{P}\right).$$

This leads to a water-filling power allocation in space.

• When channel is unknown at transmitter, uniform power allocation is optimal, but this leads to an outage probability since the transmitter doesn't know what rate to transmit at:

$$P_{out} = p\left(\mathbf{H} : B \log_2 \det \left[\mathbf{I}_{M_r} + \frac{\rho}{M_t} \mathbf{H} \mathbf{H}^H\right] > C\right).$$

- In fading, capacity with both transmitter and receiver knowledge is the average of the capacity for the static channel, with power allocated either by a short-term or long-term power constraint.
- Without transmitter knowledge, outage probability is the right metric for capacity.

Main Points

- Finite constellations has little impact on adaptive MQAM throughput
- Adaptive modulation need not update more frequently then every 10-100 symbols.
- Estimation error and delay in adaptive MQAM lead to irreducible error floors.
- Multiple antennas at both the transmitter and receiver greatly increase channel capacity or provide diversity gain.