Fractals - Math 370

Ben Kushigian

April 14, 2016

Contents

1	Introduction	2
		2
	1.2 Fractal Generation	3
2	Fractals in Nature	4
3	Sierpinski's Gasket	5
4	Measure Theory and Fractal Dimension	6
5	Complex Dynamics	7
In	\mathbf{dex}	8

Introduction

Written by Ben Kushigian

1.1 What are fractals?

In what follows we will be investigating fractals and some of their interesting properties. First we define a fractal.

Definition. A **fractal** is a curve or geometric figure, each part of which has the same statistical character as the whole.

What this means in layterms is that a fractal is a shape or set that has similar properties at all magnifications. We have a special self similarity. name for this property: A classic example is the Koch Curve (Fig 1.1) which looks identical at all levels of magnification. should note that there are certain degenerate cases which satisfy our definition such as a straight The distinction between a true fractal and degenerate case can be made with the notion of fractal dimension which we will touch upon in Chapter 4 which deals with measure theory.

Figure 1.1: The first few iterations in generating the Koch Curve

1.2 Fractal Generation

It is often useful to think of a fractal as a set of points.

However it is often difficult to explicitly state which

points are in our fractal. A standard technique for fractal generation is to describe the generation of a fractal iteratively or corecursively. Typically we start with a base case, usually a set A_0 , and define some sort of operation φ on a set and define $A_{i+1} = \varphi(A_i)$ for $i \in \mathbb{Z}^+$. In Fig 1.1 we see that our base case is a straight line and our operation φ replaces the middle third of each line segment in A_i with two line segments forming the top part of a triangle.

But at what point is our shape a fractal? A_0 obviously is not fractal - it is just a line segment and holds no interest for us. Likewise A_1 is not a fractal since it is just four line segments. What about A_{10} or A_{100} ? $A_{1,000,000}$? None of these are in fact fractals. They appear to be fractal since we can only see detail larger than a certain scale. In fact, any fractal you have ever seen has only been an approximation of a fractal; true fractals are self similar and look the same at all scales.

So how is our construction useful? Well at no finite stage have we created a fractal but we can steal the analytic notion of the limit. First we defined the distance between a point $\mathbf{x} = (x_1, x_2)$ and a set $S \subset \mathbb{R}^2$ as

$$d(\boldsymbol{x}, S) = \inf_{\boldsymbol{y} \in S} \{|x - y|\}.$$

Formally we define the Koch curve as the collection of points $\boldsymbol{x} \in \mathbb{R}^2$ so that for any given $\varepsilon > 0$ there exists an N > 0 with $d(\boldsymbol{x}, A_n) < \varepsilon$ for all n > N.

Fractals in Nature

Sierpinski's Gasket

Measure Theory and Fractal Dimension

Complex Dynamics

Index

fractal, 2 self similar, 2