Zmanjševanje razsežnosti podatkov: izbira in tvorba napovednih spremenljiv

Ljupčo Todorovski

Univerza v Ljubljani, Fakulteta za upravo Institut Jožef Stefan, Odsek za tehnologije znanja (E-8)

Maj 2020

Pregled predavanja

Izbira napovednih spremenljivk

- Relevantnost in rangiranje
- Mere relevantnosti: enostavne in na modelih osnovane
- Od relevantnosti, preko rangiranja do izbire

Tvorba novih spremenljivk

- Tvorba novih spremenljivk in zmanjševanje razsežnosti
- Metoda glavnih komponent (Principal Component Analysis, PCA)

Naloga rangiranja spremenljivk

Vhodi

- Množica napovednih spremenljivk $X = \{X_1, X_2, \dots X_p\}$ z zalogami vrednosti $D_i : i = 1 \dots p$
- ullet Ciljna spremenljivka Y z zalogo vrednosti D_Y
- Podatkovna množica $S \subseteq D_1 \times D_2 \times \ldots \times D_p \times D_Y$

Izhod

Rangiranje π napovednih spremenljivk, kjer velja $\pi(X_i) < \pi(X_j)$ natanko takrat ko je X_i bolj relevantna od X_j za napovedovanje ciljne spremenljivke Y v podatkovni množici S.

4□ > 4□ > 4 = > 4 = > = 90

Relevantnost napovedne spremenljivke

Funkcija relevantnosti $r_S: X \to \mathbb{R}$

- ullet Za podano spremenljivko $X_i \in X$
- Izračuna relevantnost spremenljivke X_i za napoved Y
- V podatkovni množici S

Centralno vprašanje: kako izračunamo vrednost r_S?

Ko izračunamo relevantnost, postane problem rangiranja trivialno rešljiv.

Taksonomija mer relevantnosti

Mere relevantnosti brez modelov

- Nenadzorovane, izračunane iz $S_X = \{x : (x, y) \in S\}$
- Nadzorovane, izračunane iz S

Relevantnost na osnovi napovednih modelov

Izračun relevantnosti na osnovi napovednega modela $m: D_1 \times D_2 \times \dots D_p \to D_Y$.

Primer: podatkovna množica Arcene

Napovedovanje raka na osnovi masne spektrometrije

- Napovedne spremenljivke: koncentracije proteinov določene mase
- Ciljna spremenljivka: zdrava oseba ali pacient z rakom
- Problem dvojiškega razvrščanja

Velikost podatkovne množice

- 10.000 napovednih spremenljivk (7.000 realnih, 3.000 umetnih)
- 100 primerov, dodatnih 100 primerov v tesni množici

Varianca spremenljivke

Intuitivna razlaga

- Spremenljivke z majhno varianco nimajo napovedne moči
- Varianca torej pozitivno povezana z relevantnostjo
- POZOR: ista merska lestvica (ali pa vsaj normalizacija)

Izbira spremenljivk na osnovi variance: Arcene

V učni množici izberemo q najbolj relevantnih spremenljivk, q < p

- ullet Iz tako skrčene učne množice S_q se naučimo drevo T_q
- ullet Na testni množici izmerimo napovedno točnost drevesa T_q

Entropija spremenljivke

Varianta variance za diskretne spremenljivke

$$H(X_i) = -\sum_{v \in D_i} p_v \log_2 p_v, \ p_v = \frac{|S_{i,v}|}{|S|}$$

- $S_{i,v}$ je množica učnih primerov za katere velja $X_i = v$
- Po analogiji z varianco: višja entropija ustreza večji relevantnosti

4□ > 4□ > 4 = > 4 = > = 90

Maj 2020

9 / 47

Uni-variantne metode

Fokus na povezavi/asociaciji med X_i in Y

- Ker uporabljajo podatke o Y jim rečemo nadzorovane
- Ker ignorirajo vrednosti $X_i : j \neq i$ so uni-variantne

Mere in statistični testi povezanosti

Izbira odvisna od tipov spremenljivk X_i in Y

X_i in Y diskretni: χ^2 in vzajemna informacija

Vrednost χ^2 statistike

- ullet Kontingenčna tabela T dimenzij $|D_i| imes |Y|$
- ullet T_{ij} je število primerov z določeno kombinacijo vrednosti X_i in Y
- ullet Statistični test za merjenje povezanosti med D_i in Y

Vzajemna informacija $I(X_i; Y)$

$$I(X_i; Y) = H(X_i) + H(Y) - H(X_i, Y)$$

- $H(X_i, Y)$ je vzajemna entropija X_i in Y
- $H(X_i)$ in H(Y) pa entropiji X_i in Y

4 D > 4 D >

Primera na množici heart

X-squared: 20.62333

X-squared: 6.347929

$$I = 0.05912517$$

I = 0.01580802

X_i in Y različnih tipov: Welchov t-test ali ANOVA

Welchov t-test

- Primerjamo povprečji numerične spremenljivke v dveh skupinah
- Vrednosti numerične spremenljivke razdelimo v dve skupini glede na vrednost diskretne spremenljivke
- Uporaben le v primeru, ko ima diskretna spremenljivka dve vrednosti

Test ANOVA

V primerih, ko ima diskretna spremenljivka več kot dve možni vrednosti.

Primera na množici Arcene

Izbira spremenljivk na osnovi t-testa: Arcene

V učni množici izberemo q najbolj relevantnih spremenljivk, q < p

- ullet Iz tako skrčene učne množice S_q se naučimo drevo T_q
- ullet Na testni množici izmerimo napovedno točnost drevesa T_q

X_i in Y numerični: korelacijski koeficienti

Mere linearne povezanosti med X_i in Y

Pearson

$$\rho^{2}(U,V) = \frac{(E[UV] - E[U]E[V])^{2}}{Var[U]Var[V]}$$

U in V ustrezata X_i in Y.

Sperman

Enako kot zgoraj, U in V sta rangiranji $\pi(D_i)$ and $\pi(Y)$.

Kendall

$$\rho(U, V) = \frac{2}{n(n-1)} \sum_{i < j} \operatorname{sgn}(u_i - u_j) \operatorname{sgn}(v_i - v_j)$$

Opazujemo ρ^2 , ker nas zanima moč (in ne smer) povezave.

Relief: ilustracija ideje

Na osnovi modela najbližjih sosedov

Relief: razlaga ideje

Za naključno izbran primer e iz S opazujemo najbližji

- Zadetek e_h: najbližji sosed e, ki pripada istemu razredu
- Zgrešek e_m : najbližji sosed e, ki ne pripada istemu razredu

Dva primera

- $|x_h x| \ll |x_m x|$ je dober znak za relevanco X_i
- ② $|x_h x| \gg |x_m x|$ je slab znak za relevanco X_i

 x_h , x_m in x so vrednosti X_i za primere e, e_h in e_v .

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Relief: algoritem

- **1** Nastavi $r_S(X_i) = 0$, za vse i = 1, 2, ... p
- Ponovi m krat (vrednost m določi uporabnik)
 - Izberi naključen primer $e \in S$
 - Poišči zadetek $e_H \in S$: najbližji sosed $e, y = y_H$
 - Poišči zgrešek $e_H \in S$: najbližji sosed $e, y \neq y_M$
- Posodobi za vse i

$$r_S(X_i) = r_S(X_i) - \frac{\delta(x_h, x) - \delta(x_m, x)}{m}$$

Relef: algoritem, nadaljevanje

Oznake

- x_h , x_m in x so vrednosti X_i za primere e, e_h in e_v .
- y_h , y_m in y so vrednosti Y za primere e, e_h in e_v .

Funkcija razdalje δ

- Za numerične X_i : $\delta(u, v) = |u v|/(\max(X_i) \min(X_i))$
- Za diskretne X_i : $\delta(u, v) = I(u \neq v)$

Izbira spremenljivk na osnovi Relief: Arcene

V učni množici izberemo q najbolj relevantnih spremenljivk, q < p

- ullet Iz tako skrčene učne množice S_q se naučimo drevo T_q
- ullet Na testni množici izmerimo napovedno točnost drevesa T_q

Relief za več kot dva razreda, $|D_Y| > 2$

Iščemo več zgreškov

- Po enega za vsako vrednost $y_m \in D_Y : y_m \neq y$
- Utežena vsota za vse zgreške $\sum_{y_m \in D_Y: y_m \neq y} p(y_m)/(1-p(y))\delta(x_m, x)$, ki zamenja $\delta(x_m, x)$ v zadnji vrstici algoritma
- $p(y_m)$ je pogostost vrednosti y_m v podatkovni množici S

Nadaljnjo posploševanje algoritma

- Iščemo k najbližjih zadetkov in zgreškov (namesto po enega)
- ullet Za njih računamo povprečen δ
- Vrednost parametra k je uporabniško določena
- Poveča robustnost metode na šumne podatke

RRelief za regresijo, Y numerična

Verjetnostna interpretacija Relief

$$r_S(X_i) = P(raz X_i|zadetki) - P(raz X_i|zgreski)$$

- lacktriangle Verjetnost, da ima zadetek e_h različno vrednost X_i od primera e
- $oldsymbol{0}$ Verjetnost, da ima zgrešek e_m različno vrednost X_i od primera e

Ocenjevanje teh verjetnosti iz najbližjih sosedov od e

- $P(raz X_i|zadetki) = (1 P(raz Y|raz X_i)) \cdot P(raz X_i)/P(raz Y)$
- $P(raz X_i|zgreski) = P(raz Y|raz X_i) \cdot P(raz X_i)/P(raz Y)$

Ocena P(raz Y) za regresijo

Iz porazdelitve vrednosti $y_n - y$ za k najbližjih sosedov e_n od e

4 D > 4 A > 4 B > 4 B > B = 90

Razumljivi modeli in relevantnost

Iz učne množice se naučimo **razumljiv** model *m*

Iz modela *m* **preberemo** relevantnosti napovednih spremenljivk.

Linearni modeli

- ullet $r_{\mathcal{S}}(X_i)$ je proporcionalna absolutni vrednosti ustrezne uteži $|w_i|$
- Lahko upoštevamo še intervale zaupanja, če smo jih izračunali

Odločitvena drevesa, možni oceni

- ullet Število vozlišč v drevesu, kjer test sloni na X_i
- 2 Povprečno zmanjševanje nečistoče (IR) v vozliščih s testom X_i

4 D > 4 D > 4 E > 4 E > E 99 C

Naključni gozdovi in relevantnost: IR

Relevantnost napovedne spremenljivke X v odločitvenem drevesu t

IR(t, X) je povprečna vrednost zmanjševanja nečistosti IR v notranjih vozliščih drevesa, ki testirajo vrednost neodvisne spremenljivke X.

Relevantnost spremenljivke X v ansamblu M

$$IR(M,X) = \frac{1}{r} \sum_{i=1}^{r} IR(m_i,X)$$

- Povprečje relevantnosti X v vseh sestavinah ansambla
- Normalizacija: največja vrednost pomena enaka 1 (ali 100%)

4 D > 4 B > 4 B > 4 B > 9 Q P

Naključni gozdovi in relevantnost: zmanjševanje točnosti

Izračunamo razliko $D = Err(M, S_P) - Err(M, S)$ med

- Napako modela M na množici S
- Napako modela M na množici S_P , kjer so vrednosti X naključna permutacija pravih vrednosti X v S
- POZOR: Modela nam ni treba znova graditi, za ocenjevanje Err(M, S_P) uporabimo trik OOB

Vrednost razlike D je povečanje napake (in zmanjševanje točnosti)

- Visoka, če je X za napoved relevantna spremenljivka
- Nizka, če je X nepomembna za napovedovanje

4 D > 4 A > 4 B > 4 B > B = 900

Zmanjševanje točnosti za poljuben model

Rahlo drugačen izračun $D = Err(M_P, S) - Err(M, S)$

- Napaka modela M na množici S
- Napaka modela M_P naučenega na množici S_P , kjer so vrednosti X naključna permutacija pravih vrednosti X v S
- ullet POZOR: Moramo zgraditi dva modela M in M_P

Tak trik "permutacije" lahko uporabimo v kombinaciji s poljubnim modelom oz. algoritmom za strojno učenje.

Metodi filtriranja

Filtriranje s pragom (spodnjo mejo) relevantnosti r_T

- Izberi le spremenljivke $X_i : r_S(X_i) \ge r_T$
- Priporočena vrednost za *Relief*: $r_T = 1/\sqrt{\alpha p}$, kjer je α verjetnost, da med relevantne izberemo irelevantno spremenljivko X_i

Filtriranje q najbolj relevantnih spremenljivk

Pri obeh si običajno pomagamo z rangirnim grafom

- x-os: spremenljivke urejen po padajoči vrednosti $r_S(X_i)$
- y-os: relevantnost spremenljivk

Rangirni grafi: Arcene

Hitro izračunljivi

Opazovanje napovedne napake: Arcene

Računsko zahtevni, a bolj informativni

Primerjava mer relevantnosti: Arcene

Korelacije med merami relevantnosti: Arcene

-0.24

Znani algoritmi in implementacije

Relief (Kira in Rendell 1992)

Osnovni Relief za dvojiško razvrščanje.

RRelief (Robnik-Šikonja in Kononenko 2003)

Različne nadgradnje osnovnega algoritma, tudi za regresijo.

CORELearn

Implementacija Relief in RRelief v R.

Naloga zmanjševanja razsežnosti

Vhodi

- Množica spremenljivk $X = \{X_1, X_2, \dots X_p\}$ z zalogami vrednosti D_i
- Podatkovna množica $S \subseteq D_1 \times D_2 \times \ldots \times D_p$
- Pozor: ni ciljne spremenljivke Y, nenadzorovani scenarij

Izhod

- ullet Množica spremenljivk $Z=\{Z_1,Z_2,\dots Z_q\}$ z zalogami vrednosti D_i^Z
- ullet Transformirani prostor nižje razsežnosti, q < p, pogosto $q \ll p$
- Običajno linearna transformacija oblike Z = XW

Zmanjševanje razsežnosti in izbira spremenljivk

Izbira spremenljivk je tudi linearna transformacija oblike Z=XW

$$W = \left[\begin{array}{c} I_{q \times q} \\ 0_{(p-q) \times q} \end{array} \right]$$

- ullet Matrika W je matrika dimenzij p imes q
- Predpostavka: spremenljivke X urejene po padajoči relevantnosti

Izbira spremenljivk in tvorba novih spremenljivk

• Levo: izbira spremenljivk

• Desno: tvorba novih spremenljivk

Naloga

Iščemo W za transformacijo Z = XW z omejitvama

- **1** Matrika W je ortogonalna, velja torej $W^TW = WW^T = I$
- 2 Dimenzije Z pojasnijo čim več variance osnovnih podatkov

Predpostavimo

Vse spremenljivke X imajo povprečje 0, kovariančna matrika je torej X^TX

Osnovna ideja: od variance do lastnih vektorjev

- Kovariančna matrika $C = X^T X$
- Opazujmo iteracijo $w \leftarrow Cw$
- Za poljuben začetni vektor (1)
- Iteracija zapelje vektor v smer največje variance
- Torej za smer w največje variance velja $Cw = \lambda w$

Lastni vektorji in lastne vrednosti

Spomnimo se (LA): za lastni vektor w matrike C velja

$$Cw = \lambda w$$

w je lastni vektor matrike C pri lastni vrednosti λ

Kovariančna matrika C je simetrična, torej $C^T = C$

Izberimo dva lastna vektorja u in v pri lastnih vrednostih λ in $\mu \neq \lambda$

$$(\lambda - \mu) \langle u, v \rangle = \lambda u^T v - \mu u^T v$$

= $(\lambda u)^T v - u^T (\mu v) = (Cu)^T v - u^T (Cv)$
= $u^T C^T v - u^T Cv = 0$

Njihov skalarni produkt $\langle u,v\rangle=0$, lastna vektorja sta torej ortogonalna.

4 D > 4 B > 4 E > E 990

Algoritem za izračun W

Za podan S izračunamo kovariančno matriko C

Če imajo vse spremenljivke iz X povprečje 0, je to S^TS

Za C izračunamo lastne vektorje w_i in lastne vrednosti λ_i

$$W = [w_1 w_2 \cdots w_p], \ \Lambda = diag(\lambda_1, \lambda_2, \cdots \lambda_p)$$

- Ker je C simetrična, velja $W^TW = I$
- Velja tudi $C = W \Lambda W^T$

Matrika W in glavne komponente

Glavne komponente so stolpci matrike W

Torej lastni vektorji matrike C.

 λ_i pove koliko variance pojasni komponenta w_i

Lastne vrednosti matrike *C* pretvorimo v deleže celotne variance.

Matrika W in zmanjševanje razsežnosti

$$Z = XW_q$$

Izberemo prvih q glavnih komponent (lastnih vektorjev)

- ullet W_q je matrika dimenzij $p \times q$
- Vsebuje je prvih q stolpcev matrike W

Kako izberemo vrednost q?

Hevristike za izbiro q

Najprej nariši graf scree (naslednja prosojnica)

Izberi q, kjer je

- Kumulativna pojasnjena varianca večja od podanega praga (običajno je vrednost praga 80% ali 90%)
- Prispevek k pojasnjeni varianci še vedno večji od podanega praga (običajno je vrednost praga 5% ali 10%)
- Prvo vidno koleno v krivulji scree

Primer grafa scree: Arcene

Prva hevristika q = 42, druga in tretja q = 3

44 / 47

Izbira glavnih komponent: Arcene

Glavne komponente in vizualizacija: Arcene

Implementacija

prcomp

Vgrajena funkcija v R implementira metodo glavnih komponent.