

Gyrogroup Batch Normalization

Ziheng Chen, Yue Song, Xiao-Jun Wu, Nicu Sebe

Motivation

Manifold-valued Measurements in Applications

Medical Imaging (Chakraborty et al.,

NLP, Graph... (Ganea et al., 2018)

Action Recognition (Vemulapalli et al.,

(Huang et al., 2018)

Vision-Language Models (Huang et al., 2018)

Euclidean Normalization: controlling mean and variance

$$\forall i \leq N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta$$

- Centering

Existing Riemannian Normalization:

Fails to normalize statistics in a general manner

Method	Controllable Statistics	Applied Geometries	Incorporated by GyroBN
SPDBN (Brooks et al., 2019)	M	SPD manifolds under AIM	•
SPDBN (Kobler et al., 2022b)	M+V	SPD manifolds under AIM	
SPDDSMBN (Kobler et al., 2022a)	M+V	SPD manifolds under AIM	
ManifoldNorm (Chakraborty, 2020, Algs. 1-2)	N/A	Riemannian homogeneous space	X
ManifoldNorm (Chakraborty, 2020, Algs. 3-4)	M+V	Matrix Lie groups under the distance $d(X, Y) = \left\ \operatorname{mlog} (X^{-1}Y) \right\ $	
RBN (Lou et al., 2020, Alg. 2)	N/A	Geodesically complete manifolds	X
LieBN (Chen et al., 2024b)	M+V	General Lie groups	
GyroBN	M+V	Pseudo-reductive gyrogroups with gyro isometric gyrations	N/A

Gyro Structures

Definition 2.1 (Gyrogroups (Ungar, 2009)). Given a nonempty set G with a binary operation $\oplus:G imes G imes G$, $\{G,\oplus\}$ forms a gyrogroup if its binary operation satisfies the following axioms for any $a, b, c \in G$:

- (G1) There is at least one element $e \in G$ called a left identity (or neutral element) such that $e \oplus a = a$. Gyro inner product: $\langle P, Q \rangle_{\mathrm{gr}} = \langle \mathrm{Log}_E(P), \mathrm{Log}_E(Q) \rangle_E$, (G2) There is an element $\ominus a \in G$ called a left inverse of a such that $\ominus a \oplus a = e$.
- (G3) There is an automorphism $gyr[a,b]: G \to G$ for each $a,b \in G$ such that

 $a \oplus (b \oplus c) = (a \oplus b) \oplus \text{gyr}[a, b]c$ (Left Gyroassociative Law).

The automorphism gyr[a, b] is called the gyroautomorphism, or the gyration of G generated by a, b. (G4) Left reduction law: $gyr[a, b] = gyr[a \oplus b, b]$.

Gyro addition: $P \oplus Q = \operatorname{Exp}_P(\operatorname{PT}_{E \to P}(\operatorname{Log}_E(Q)))$, Gyro scalar product: $t \odot P = \operatorname{Exp}_E(t \operatorname{Log}_E(P))$, Gyro norm: $||P||_{gr} = \langle P, P \rangle_{gr}$,

Gyrodistance: $d_{gry}(P,Q) = \|\ominus P \oplus Q\|_{gr}$, $M = \text{FM}(\{P_i\}) = \underset{Q \in \mathcal{M}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} d_{\text{gry}}^2 (P_i, Q)$

Examples

Geometry	Symbol	$P\oplus Q \text{ or } x\oplus y$	E	$\ominus P \text{ or } \ominus x$	Lie group	Gyrogroup	References
AIM \mathcal{S}^n_{++}	\oplus^{AI}	$P^{rac{1}{2}}QP^{rac{1}{2}}$	I_n	P^{-1}	X	✓	(Nguyen, 2022b)
LEM \mathcal{S}^n_{++}	\oplus^{LE}	$\operatorname{mexp}(\operatorname{mlog}(P) + \operatorname{mlog}(Q))$	I_n	P^{-1}	✓	✓	(Arsigny et al., 2005) (Nguyen, 2022b)
LCM \mathcal{S}^n_{++}	\oplus^{LC}	$\psi_{\mathrm{LC}}^{-1}(\psi_{\mathrm{LC}}(P) + \psi_{\mathrm{LC}}(Q))$	I_n	$\psi_{\mathrm{LC}}(-\psi_{\mathrm{LC}}(P))$	√	√	(Lin, 2019) (Nguyen, 2022b) (Chen et al., 2024e)
$\widetilde{\mathrm{Gr}}(p,n)$ $\mathrm{Gr}(p,n)$	$\widetilde{\oplus}^{\mathbf{Gr}}_{\mathbf{Gr}}$	$\operatorname{mexp}(\Omega)Q\operatorname{mexp}(-\Omega) \\ \operatorname{mexp}(\Omega)V$	$\widetilde{I}_{p,n}$ $I_{p,n}$	$ \max_{\text{mexp}(-\Omega)\widetilde{I}_{p,n}} \max_{\text{p}(\Omega)} (\Omega) $ $ \max_{\text{p}(-\Omega)I_{p,n}} (\Omega) $	×	Non-reductive	(Nguyen, 2022a) (Nguyen & Yang, 2023)
\mathcal{M}_K	\oplus_K	$\frac{\left(1{-}2K\langle x,y\rangle{-}K\ y\ ^2\right)x{+}\left(1{+}K\ x\ ^2\right)y}{1{-}2K\langle x,y\rangle{+}K^2\ x\ ^2\ y\ ^2}$	0	-x	X (√ for <i>K</i> =0)	•	(Ungar, 2009) (Ganea et al., 2018) (Skopek et al., 2019)

Pseudo-reductive Gyrogroups

Definition

Definition 3.1 (Pseudo-reductive Gyrogroups). A groupoid $\{G, \oplus\}$ is a pseudo-reductive gyrogroup if it satisfies axioms (G1), (G2), (G3) and the following pseudo-reductive law:

$$gyr[X, P] = 1$$
, for any left inverse X of P in G, (12)

where 1 is the identity map.

Theorem D.1 (First Pseudo-reductive Gyrogroups Properties). Let $\{G, \oplus\}$ be a pseudo-reductive gyrogroup. For any elements $P, Q, R, X \in G$, we have:

- 1. If $P \oplus Q = P \oplus R$, then Q = R (General Left Cancellation law; see (9) below). 2. gyr[E, P] = 1 for any left identity E in G. 3. gyr[X, P] = 1 for any left inverse X of P in G.
- 4. There is P left identity which is P right identity.
- 5. There is only one left identity.
- 6. Every left inverse is P right inverse. 7. There is only one left inverse, $\ominus P$, of P, and $\ominus (\ominus P) = P$.
- 8. The left cancellation law: $\ominus P \oplus (P \oplus Q) = Q$.
- 9. The gyrator identity: $gyr[P,Q]X = \ominus(P \oplus Q) \oplus \{P \oplus (Q \oplus X)\}.$ 10. gyr[P, Q]E = E.
- 11. $gyr[P,Q](\ominus X) = \ominus gyr[P,Q]X$.
- 12. gyr[P, E] = 1. 13. The gyrosum inversion law: $\ominus(P \oplus Q) = \text{gyr}[P,Q](\ominus Q \ominus P)$

Proposition 3.2. [\downarrow] Gr(p, n) and Gr(p, n) form pseudo-reductive and gyrocommutative gyrogroups. **Proposition 3.6.** [\downarrow] For every (pseudo-reductive) gyrogroup in <u>Tab. 2</u>, the gyrodistance is identical to the geodesic distance (therefore symmetric). The gyroinverse, any gyration and any left gyrotranslation are gyroisometries.

GyroBN

$$i \leq N, x_i \leftarrow \gamma \frac{x_i - \mu_b}{\sqrt{v_b^2 + \epsilon}} + \beta \qquad \qquad \forall i \leq N, \tilde{P}_i = \widehat{B} \oplus \left(\underbrace{\frac{Scaling}{s}}_{\text{Scaling}} \left(\underbrace{\frac{Scaling}{s}}_{\text{OM} \oplus P_i} \right) \right)$$

Theorem 4.1 (Homogeneity). [\downarrow] Supposing $\{\mathcal{M},\oplus\}$ is a pseudo-reductive gyrogroup with any gyration gyr $[\cdot,\cdot]$ as a gyroisometry, for N samples $\{P_{i...N} \in \mathcal{M}\}$, we have the following properties:

Properties

Algorithm

Euc. BN

LieBN

Recovers

Homogeneity of gyromean: $FM(\{B \oplus P_i\}) = B \oplus FM(\{P_i\}), \forall B \in \mathcal{M},$

Homogeneity of dispersion from E: $\frac{1}{N} \sum_{i=1}^{N} d_{gry}^{2}(t \odot P_{i}, E) = \frac{t^{2}}{N} \sum_{i=1}^{N} d_{gry}^{2}(P_{i}, E), \quad (17)$

Algorithm 1: Gyrogroup Batch Normalization (GyroBN)

: batch of activations $\{P_{1...N} \in \mathcal{M}\}$, small positive constant ϵ , and momentum $\eta \in [0,1]$, running mean M_r , running variance v_r^2 , biasing parameter $B \in \mathcal{M}$, scaling parameter $s \in \mathbb{R}$.

: normalized batch $\{P_{1...N} \in \mathcal{M}\}$ 1 if training then

Compute batch mean M_b and variance v_b^2 of $\{P_{1...N}\}$; Update running statistics $M_r = \text{Bar}_{\gamma}(M_b, M_r), v_r^2 = \gamma v_b^2 + (1 - \gamma)v_r^2;$

$M_b(M,v^2)=(M_b,v_b^2)$ if training else (M_r,v_r^2) 6 $\forall i \leq N, ilde{P}_i = B \oplus \left(\frac{s}{\sqrt{v^2 + \epsilon}} \odot (\ominus M \oplus P_i) \right)$

Manifestations

Operator	$\mathrm{Gr}(p,n)$	\mathbb{P}^n_K
Identity element	$I_{p,n}$	$0 \in \mathbb{R}^n$
$P \oplus^{\operatorname{Gr}} Q \text{ or } x \oplus_K y$	$\operatorname{mexp}(\Omega)V$	$\frac{\left(1{-}2K\langle x,y\rangle{-}K\ y\ ^2\right)x{+}\left(1{+}K\ x\ ^2\right)y}{1{-}2K\langle x,y\rangle{+}K^2\ x\ ^2\ y\ ^2}$
$\ominus^{\operatorname{Gr}} P ext{ or } \ominus_K x$	$\max(-\Omega)I_{p,n}$	-x
$t\odot^{\operatorname{Gr}} P ext{ or } t\odot_K x$	$\operatorname{mexp}(t\Omega)I_{p,n}$	$\frac{1}{\sqrt{ K }}\tanh\left(t\tanh^{-1}(\sqrt{ K }\ x\)\right)\frac{x}{\ x\ }$
$\operatorname{Bar}^{\operatorname{Gr}}_{\gamma}(Q,P)$ or $\operatorname{Bar}^K_{\gamma}(y,x)$ Fréchet Mean	$\operatorname{Exp}_P^{\operatorname{Gr}}(\gamma\operatorname{Log}_P^{\operatorname{Gr}}(Q))$ Karcher Flow (Karcher, 1977)	$x \oplus_K (-x \oplus_K y) \odot_K t$ (Lou et al., 2020, Alg. 1)

Experiments

Table 3: Comparison of GyroBN against other Grassmannian BNs under GyroGr backbone.

BN	None		ManifoldNo	rm-Gr	RBN-C	3r	GyroBN-	-Gr
Acc.	Mean±std	Max	Mean±std	Max	Mean±std	Max	Mean±std	Max
HDM05	1		49.67±0.76					52.43
NTU60 NTU120	53.76±0.16		68.56±0.43 51.41±0.38					72.65 55.59

Table 4: Ablation of Grassmannian GyroBN under various network architectures.

		HDI	M05			NT	U 60			NTU	J120	
Architecture	1Block	2Block	3Block	4Block	1Block	2Block	3Block	4Block	1Block	2Block	3Block	4Block
GyroGr	49.23	49.09	47.02	27.36	70.32	70.14	70.23	65.03	53.96	54.1	54.59	47.59
GyroGrBN	52.43	50.62	51.56	30.29	72.65	71.93	72.25	66.67	55.59	56.15	54.63	48.9

Table 5: Comparison of HNN with or without GyroBN-H or RBN-H on the link prediction task. HNN-RBN-H HNN-GyroBN-H

5 n.A. A.A. l		1		
MMM	Cora	89.0 ± 0.1	93.5 ± 0.5	94.3 ± 0.2
'	Disease	75.1 ± 0.3	76.6 ± 2.2	81.2 ± 0.9
	Airport	90.8 ± 0.2	94.2 ± 0.4	95.4 ± 0.2
	Pubmed	94.9 ± 0.1	93.4 ± 0.2	95.8 ± 0.1
80 100		<u>- </u>		<u> </u>

Methods	$ \begin{array}{c} \text{HDM05} \\ (47 \times 10) \end{array}$	$\begin{array}{c} \text{NTU60} \\ (75 \times 10) \end{array}$	$\begin{array}{c} \text{NTU120} \\ (75 \times 10) \end{array}$
GyroGr	2.19	50.92	80.72
GyroGr-ManifoldNorm	4.98	242.12	409.48
GyroGr-RBN	5.16	242.63	410.08
GyroGr-GyroBN	3.10	59.55	108.92

Cora Disease Airport Pubmed 0.1215 0.3416 0.0883 HNN-GyroBN-H 0.0757 0.0842 0.119 0.3351