Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-223. Вариант 29

- 1. Пусть $z=\sqrt{3}+i$. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{1+\sqrt{3}i}$ имеет аргумент $\frac{13\pi}{42}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-6+9i) + y(2-12i) = -150 - 240i \\ x(-9+11i) + y(6+9i) = 150 - 62i \end{cases}$$

- 3. Найти корни многочлена $-5x^6+20x^5-15x^4+90x^3+1330x^2-17800x+39000$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=4+2i, x_2=-1+5i, x_3=3$.
- 4. Даны 3 комплексных числа: 19+6i, -19-30i, -30+5i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = \sqrt{3} + i$, $z_2 = -\sqrt{3} + i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+3+4i| < 2\\ |arg(z-1-3i)| < \frac{\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-1, 1, -1), b = (-6, 4, -6), c = (4, 0, 7). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(4,7,-1) и плоскость P:-20x-4y-4z+320=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-1,-10,-2), $M_1(-3,-179,0)$, $M_2(12,1,0)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -5x - 2y - 5z + 100 = 0 \\ -18x + 14y + 7z + 66 = 0 \end{cases} \qquad L_2: \begin{cases} 13x - 16y - 12z + 4017 = 0 \\ 19x + 18y + 19z - 2211 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.