

Discrete Mathematics BCSC 0010

Module 2 Normal Forms

Normal forms

• If the number of variables, involved in a given statement are more, then the construction of truth tables may not be practical, therefore, we consider other method known as reduction to **normal form.**

- In this method, we use the word
- "product" in place of "conjunction"
- "sum" in place of "disjunction"

Some Basic terms Related to Normal Form

- **Elementary Product:** A product of the variables and their negations is called an elementary product.
- Eg: Let p and q be any two variables, then p, q, p Λ q, ~ p Λ ~ q, p Λ ~q, ~p Λ q..... etc. are elementary products.
- **Elementary Sum:** A Sum of the variables and their negations is called an elementary sum.
- Eg: p, q, pVq, pV ~ q, ~ p V ~ q, ~pVq..... etc. are elementary sums.

Types of Normal Form

Disjunctive Normal Form(DNF)

Conjunctive Normal Form(CNF)

Disjunctive Normal Form(DNF)

 A statement which consists of a sum of elementary products of propositional variables and is equivalent to the given compound statement, is called a disjunctive normal form of the given statement.

This form is not unique for the given statement.

Method to obtain disjunctive normal form

• **Step1.** replace \rightarrow and \leftrightarrow by \land , \lor , and \sim in the statement.

• Step 2. Manipulate to get an equivalent form which is the sum of elementary product terms.

Obtain DNF of (p□q)^~q

- Solution:
- (p □ q)^~q
- (~pvq)^~q By logical equivalence
- $(^p^q)v(q^q)$ By Distributive law

This is the required DNF

Conjunctive Normal Form(CNF)

• A statement which consists of a product of elementary sums of propositional variables and is equivalent to the given compound statement, is called a Conjunctive normal form of the given statement.

This form is not unique for the given statement.

Method to obtain conjunctive normal form

• **Step1.** replace \rightarrow and \leftrightarrow by \land , \lor , and \sim in the statement.

• **Step 2.** Manipulate to get an equivalent form which is the product of elementary sum terms.

Obtain CNF of (p□q)^~q

- Solution:
- (p □ q)^~q
- (~pvq)^~q By logical equivalence

This is the required CNF

• Obtain DNF of $pv(\sim p \square (qv(q \square \sim r)))$

```
• pv(~p □ (qv(q □ ~r)))
```

pv(~p □ (qv(~q v ~r)))
By logical equivalence

• pv (~p □ (qv~q)v~r))) Rearranged

• p v p v q v ~q v ~r By logical equivalence

This is the required DNF

Minterms

- Let p and q be two propositional variables.
- All possible formulas which consist of product of p or its negation and product of q or its negation, but should not contain both the variable and its negation in any one of the formula are called minterms of p and q.
- Eg: For two variables p and q, there are $2^2 = 4$ minterms, namely, $p\Lambda q$, $p\Lambda \sim q$, $\sim p\Lambda q$, $\sim p\Lambda \sim q$
- If there are n variables then number of minterms = 2^n

Maxterms

• Let p and q be two propositional variables.

- All possible formulas which consist of sum of p or its negation and sum of q or its negation, but should not contain both the variable and its negation in any one of the formula are called maxterm of p and q.
- Eg: For two variables p and q, there are $2^2 = 4$ maxterms, namely, pVq, $pV\sim q$, $\sim pVq$, $\sim pV\sim q$.
- If there are n variables then number of maxterms = 2^n

Principal disjunctive normal form(PDN

- For a given formula, an equivalent formula consisting of disjunction of minterms only is known as its Principal disjunctive normal form (PDNF) or Sum of products canonical form.
- Each minterm has truth value T for exactly one combination of truth values
- A formula which is tautology will have all minterms
- A formula which is contradiction will have no minterms

Method to find PDNF

- 1. Construct truth table for the given formula.
- 2. Identify the rows in which the formula has true as truth value.
- 3. Construct minterms from each such rows by taking
- (i) the variable with true as variable itself and
- (ii) the variable with false as negated variable.
- 4. Sum of these minterms will be the required PDNF.

P	q	$p \rightarrow q$	
Т	Т	Т	
T	F	F	
F	T	T	
F	F	T	

p	q	$p \leftrightarrow q$
T	Т	Т
T	F	F
F	T	F
F	F	Т

PDNF for $p \square q$ will be $(p^q)v(-p^q)v(-p^-q)$ PDNF for $p \leftrightarrow q$ will be $(p^q)v(-p^-q)$

Obtain PDNF of $(p^q)v(p^r)v(q^r)$

р	q	r	~ p	p^q	~p^r	q^r	(p^q)v(~p^r)	(p^q)v(~p^r)v(q^r)
Т	Т	Т	F	Т	F	Т	Т	Т
Т	Т	F	F	Т	F	F	Т	Т
Т	F	T	F	F	F	F	F	F
Т	F	F	F	F	F	F	F	F
F	Т	Т	Т	F	Т	Т	Т	Т
F	Т	F	Т	F	F	F	F	F
F	F	Т	Т	F	Т	F	Т	Т
F	F	F	Т	F	F	F	F	F

PDNF: $(p ^q^r)v(p^q^r)v(p^q^r)v(p^q^r)v(p^q^r)$

Principal conjunctive normal form(PCNF)

- For a given formula, an equivalent formula consisting of **conjunction of maxterms** only is known as its Principal disjunctive normal form(PCNF) or product of sums canonical form.
- Each maxterm has truth value F for exactly one combination of truth values

- A formula which is tautology will have no maxterms
- A formula which is contradiction will have all maxterms

Method to find PCNF

- 1. Construct truth table for the given formula.
- 2. Identify the rows in which the formula has false as truth value.
- 3. Construct maxterm from each such row by taking
- (i) the variable with true -as negated variable and
- (ii) the variable with false- as the variable itself.
- 4. Product of these maxterms will be the required PCNF.

p	q	$p \rightarrow q$
Т	Т	Т
T	F	F
F	T	T
F	F	T

p	q	$p \leftrightarrow q$
T	Т	Т
T	F	F
F	T	F
F	F	T

PCNF for $p \square q$ will be $(-p \vee q)$ PCNF for $p \leftrightarrow q$ will be $(-p \vee q)^{\hat{}}(p \vee -q)$

Obtain PCNF of (p^q)v(~p^r)v(q^r)

р	q	r	~p	p^q	~p^r	q^r	(p^q)v(~p^r)	(p^q)v(~p^r)v(q^r)
Т	Т	Т	F	Т	F	Т	Т	Т
Т	Т	F	F	Т	F	F	Т	Т
Т	F	T	F	F	F	F	F	F
Т	F	F	F	F	F	F	F	F
F	Т	T	Т	F	Т	Т	Т	Т
F	Т	F	Т	F	F	F	F	F
F	F	Т	Т	F	Т	F	Т	Т
F	F	F	Т	F	F	F	F	F

PCNF: (~pvqv~r)^(~pvqvr)^(pv~qvr)^(pvqvr)

Obtain PCNF of (pvq)^~p□~q

• Obtain CNF of \sim (pvq) \leftrightarrow (p \wedge q)

• Obtain DNF of \sim (pvq) \leftrightarrow (p \wedge q)

Next Topic

Predicate and Quantifiers