CIR₂

TD de Maths Relations binaires

Exercice 1

Soit \mathcal{R} une relation binaire sur un ensemble E à la fois réflexive et transitive. On définit les nouvelles relations \mathcal{S} et \mathcal{T} par :

$$xSy \Leftrightarrow (xRy \text{ et } yRx) \text{ et } xTy \Leftrightarrow (xRy \text{ ou } yRx)$$

Les relations \mathcal{S} et \mathcal{T} sont-elles des relations d'équivalences?

Exercice 2

Soit E un ensemble et A une partie de E.

On définit une relation \mathcal{R} sur $\wp(E)$ par : $X\mathcal{R}Y \Leftrightarrow X \cup A = Y \cup A$

- a) Montrer que \mathcal{R} est une relation d'équivalence
- b) Décrire la classe d'équivalence de $X \in \wp(E)$

Exercice 3

On considère sur $\mathcal{F}(E,E)$ la relation binaire \mathcal{R} définie par :

$$f\mathcal{R}g \Leftrightarrow \exists \varphi \in \mathfrak{S}(E) \text{ telle que } f \circ \varphi = \varphi \circ g$$

- a) Montrer que \mathcal{R} est une relation d'équivalence.
- b) Décrire la classe d'équivalence d'une fonction donnée $f \in \mathfrak{S}(E)$.

Exercice 4

Soit \mathcal{R} une relation binaire réflexive et transitive.

On définit une relation S par : $xSy \Leftrightarrow xRy$ et yRx

Montrer que \mathcal{S} est une relation d'équivalence et que \mathcal{R} permet de définir une relation d'ordre sur les classes d'équivalences de \mathcal{S} .

Exercice 5

On définit une relation binaire \preccurlyeq sur $\mathbb{R}^{+\star}$ par :

$$x \preccurlyeq y \Leftrightarrow \exists n \in \mathbb{N}, y = x^n$$

Montrer que \leq est une relation d'ordre. Cet ordre est-il total?

Exercice 6

Soit \leq la relation définie sur $E = \{(x, y) \in \mathbb{R}^2 / x \leq y\}$ par

$$(x,y) \leq (x',y') \Leftrightarrow (x,y) = (x',y') \text{ ou } y \leq x'$$

Montrer que \leq est une relation d'ordre sur E.

Exercice 7

On définit une relation binaire \leq sur $\{z \in \mathbb{C}/\text{Im}(z) \geq 0\}$ par :

$$z \preceq z' \Leftrightarrow |z| < |z'|$$
 ou $(|z| = |z'|)$ et $\operatorname{Re}(z) \leqslant \operatorname{Re}(z')$

Montrer qu'il s'agit d'une relation d'ordre total.

Exercice 8

Soit E un ensemble ordonné par une relation \leq .

Un tableau à n lignes et p colonnes est formé d'éléments $a_{i,j} \in E$ avec i indice de ligne $(1 \le i \le n)$ et j indice de colonne $(1 \le j \le p)$.

On note le plus petit élément de chaque colonne et l'on prend le plus grand de ces plus petits :

$$\max_{1 \leqslant j \leqslant p} \left(\min_{1 \leqslant i \leqslant n} a_{i,j} \right)$$

On note aussi le plus grand élément de chaque ligne et l'on prend le plus petit de ces plus grands :

$$\min_{1\leqslant i\leqslant n} \left(\max_{1\leqslant j\leqslant p} a_{i,j} \right)$$

- a) Comparer ces deux nombres.
- b) Donner un exemple de non égalité.

Exercice 9

Soient A et B deux parties non vides et bornées de $\mathbb R$ telles que $A\subset B$. Comparer inf A, sup A, inf B et sup B.

Exercice 10

Soient A et B deux parties de \mathbb{R} non vides et majorées. Montrer que sup A, sup B et sup $(A \cup B)$ existent et

$$\sup(A \cup B) = \max(\sup A, \sup B)$$

Exercice 11

Soient E un ensemble et $f: E \to \mathbb{R}$ une application injective.

On définit sur E une relation binaire \leq par $x \leq y \Leftrightarrow f(x) \leq f(y)$

Montrer que \leq est une relation d'ordre sur E.