

http://www.csg.lcs.mit.edu/6.827

Pattern Matching

http://www.csg.lcs.mit.edu/6.827

L10-3 Arvind

Pattern Matching: Syntax & Semantics

Let us represent a case as (case e of C) where C is

```
C = P \rightarrow e \mid (P \rightarrow e), C

P = x \mid CN_0 \mid CN_k(P_1, ..., P_k)
```

The rewriting rules for a case may be stated as follows:

```
(case e of P \rightarrow e1, C)
\Rightarrow e1 \qquad if match(P,e)
\Rightarrow \qquad if \sim match(P,e)
(case e of P \rightarrow e1)
\Rightarrow e1 \qquad if match(P,e)
\Rightarrow \qquad if \sim match(P,e)
http://www.csg.lcs.mit.edu/6.827
```

造世

The match Function

2

L10-5 Arvind

pH Pattern Matching

http://www.csg.lcs.mit.edu/6.827

L10-6

Pattern Matching: bind Function

L10-7 Arvind

Refutable vs Irrefutable Patterns

Patterns are used in binding for destructuring an expression---but what if a pattern fails to match?

what if e2 evaluates to []?
e3 to a one-element list?

Should we disallow refutable patterns in bindings? Too inconvenient!

Turn each binding into a case expression

http://www.csg.lcs.mit.edu/6.827

L10-8 Arvind

Arrays

Cache for function values on a regular subdomain

Selection: x!ireturns the value of the ith slot

Bounds: (bounds x) returns the tuple containing the bounds

Efficiency is the Motivation for Arrays

L10-9 Arvind

(f i)is computed once and stored

x!i is simply a fetch of a precomputed value and should take constant time

http://www.csg.lcs.mit.edu/6.827

A Simple Example

6 7

15

x = mkArray (1,10) (plus 5)

Type
 x :: (ArrayI t)

f :: Int -> t

assuming

L10-11 Arvind

Array: An Abstract Data Type

```
module ArrayI (ArrayI, mkArray, (!), bounds)
  where

infix 9 (!)

data ArrayI t
  mkArray ::(Int,Int) -> (Int-> t) -> (ArrayI t)
  (!) ::(ArrayI t) -> Int -> t
  bounds ::(ArrayI t) -> (Int,Int)
```

Selection: x!i returns the value of the ith slot
Bounds: (bounds x) returns the tuple containing

the bounds

http://www.csg.lcs.mit.edu/6.827

Vector Sum


```
Vector Sum - Error Behavior

vs a b = let
esum i = a!i + b!i
in
mkArray (bounds a) esum

Suppose

1. b a

2. b

http://www.csg.lcs.mit.edu/6.827
```


L10-19 Arvind

Inner Product: $\sum a_i b_i$

http://www.csg.lcs.mit.edu/6.827

Index Type Class

pH allows arrays to be indexed by any type that can be regarded as having a contiguous enumerable range

range: Returns the list of *index* elements between a lower and an upper bound

index: Given a *range* and an *index*, it returns an integer specifying the position of the index in the range based on 0

inRange : Tests if an index is in the range
http://www.csg.lcs.mit.edu/6.827

L10-21 Arvind

Examples of Index Type

```
data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
```

An index function may be defined as follows:

```
index (Sun,Sat) Wed = 3
index (Sun,Sat) Sat = 6
...
```

A two dimentional space may be indexed as followed:

```
index ((li,lj), (ui,uj)) (i,j) = (i-li)*((uj-lj)+1) + j - lj
```

This indexing function enumerates the space in the *row major* order

http://www.csg.lcs.mit.edu/6.827

L10-22 Arvind

Arrays With Other Index Types

```
Thus,
```

```
type ArrayI t = Array Int t
type MatrixI t = Array (Int,Int) t
```


L10-23 Arvind

Higher Dimensional Arrays

10-24

Array of Arrays

http://www.csg.lcs.mit.edu/6.827

```
(Array a (Array a t)) ≢ (Array (a,a) t)
```

This allows flexibility in the implementation of higher dimensional arrays.


```
Matrices

add (i,j) = i + j

mkArray ((1,1),(n,n)) add ?

j

http://www.csg.lcs.mit.edu/6.827
```

```
Transpose

transpose a =
let
    ((11,12),(u1,u2)) = bounds a
    f (i,j) = (j,i)

in
    mkArray ((12,11),(u2,ui)) f
```

L10-27 Arvino

The Wavefront Example

$$X_{i,j} = X_{i-1,j} + X_{i,j-1}$$

1	1	1	1	1	1	1	1
1							
1							
1							
1							
1							
1							
1							

http://www.csg.lcs.mit.edu/6.827

Compute the least fix point.

1	1	1	1	1	1	1	1
1	工	\perp	丄	\perp	\perp	\perp	T
1	上	T	丄	\perp	\perp	\perp	T
1	_	\perp	\perp	\perp	\perp	\top	\perp
1	L	T	丄	丄	\perp	Т	T
1	上	T	丄	丄	\perp	丄	T
1	_	T	丄	丄	\perp	Т	T
1			上	T	\perp	Т	T

