

## WHAT YOU CAN EXPECT FROM ME

## FEEDBACK IS A DIALOGUE

#### WHAT I AM SEEING

#### As of Oct 10:

- 20% of students turned in formative assignment 2
- far more students looked at solutions for assignment 1 (80%) than attempted it (50%)
- 50% of students have neither joined slack channel nor asked a question on Moodle
- 0% of the class have attended my consultation hour

### TODAY'S LECTURE

- correlations and correlation matrices
- simulating bivariate data
- relationship between correlation and regression

## **RELATIONSHIPS**



## **MULTIPLE RELATIONSHIPS**



## THE PERFECT RELATIONSHIP



#### THE CORRELATION COEFFICIENT

Typicaly denoted as ho (Greek symbol 'rho') or r

$$-1 \geq r \leq 1$$

- r > 0: positive relationship
- r < 0: negative relationship
- ullet r=0: no relationship

Estimated using Pearson or Spearman (rank) method.
In R: cor(), cor.test()

#### **ASSUMPTIONS**

- ullet relationship between X and Y is linear
- deviations from line of best fit are normally distributed

#### **MULTIPLE CORRELATIONS**

For n variables, you have

$$\frac{n!}{2(n-2)!}$$

unique pairwise relationships, where n! is the **factorial** of n.

In R: choose(n, 2).

### **CORRELATION MATRICES**

|                | IQ   | verbal fluency | digit span |
|----------------|------|----------------|------------|
| IQ             | 1.00 | 0.56           | 0.43       |
| verbal fluency | 0.56 | 1.00           | -0.23      |
| digit span     | 0.43 | -0.23          | 1.00       |

In R: corrr::correlate()

## CORRELATION MATRICES

|                | IQ   | verbal fluency | digit span |
|----------------|------|----------------|------------|
| IQ             |      |                |            |
| verbal fluency | 0.56 |                |            |
| digit span     | 0.43 | -0.23          |            |

#### SIMULATING CORRELATIONAL DATA

To simulate bivariate (or multivariate) data in R, use MASS::mvrnorm().

mvrnorm(n, mu, Sigma, ...)

You need the following information:

- ullet means of X and Y,  $ar{X}$  and  $ar{Y}$
- standard deviations of X and Y,  $\sigma_X$  and  $\sigma_Y$ .
- ullet correlation coefficient  $ho_{XY}$  .

### LET'S MAKE SYNTHETIC HUMANS

height and weight measurements for 435 people, taken from here



## LOG-TRANSFORMED DATA



## **SUMMARY STATISTICS**



| $\mid ar{X} \mid$ | 4.11 |
|-------------------|------|
| $ar{Y}$           | 4.74 |
| $\sigma_X$        | .26  |
| $\sigma_Y$        | .65  |
| $ ho_{XY}$        | .96  |

## **COVARIANCE MATRIX**

#### $\sum$

A square matrix that characterizes the variances and their interrelationships (covariances).

$$\left(egin{array}{ccc} {\sigma_x}^2 & 
ho_{xy} \sigma_x \sigma_y \ 
ho_{yx} \sigma_y \sigma_x & \sigma_y^2 \end{array}
ight)$$

Must be symmetric and positive definite

## CALCULATIONS

$$\left(egin{array}{ccc} {\sigma_x}^2 & 
ho_{xy} \sigma_x \sigma_y \ 
ho_{yx} \sigma_y \sigma_x & \sigma_y^2 \end{array}
ight)$$

| $\sigma_X$ | .26 |
|------------|-----|
| $\sigma_Y$ | .65 |
| $ ho_{XY}$ | .96 |

# SIMULATING WITH MASS::mvrnorm()

```
[,1] [,2]
[1,] 0.06760 0.16224
[2,] 0.16224 0.42250
```

```
height weight
[1,] 4.254209 5.282913
[2,] 4.257828 4.895222
[3,] 3.722376 3.759767
[4,] 4.191287 4.764229
[5,] 4.739967 6.185191
[6,] 4.058105 4.806485
```

#### TRANSFORM BACK TO RAW UNITS

The exp() function is the inverse of log().

```
height weight
[1,] 70.40108 196.94276
[2,] 70.65632 133.64963
[3,] 41.36254 42.93844
[4,] 66.10779 117.24065
[5,] 114.43045 485.50576
[6,] 57.86453 122.30092
```

## **OUR SYNTHETIC HUMANS**



# THE bivariate APP

http://shiny.psy.gla.ac.uk/Dale/bivariate

#### **CORRELATION AND THE GLM**

$$egin{align} Y_i &= eta_0 + eta_1 + e_i & eta_1 &= 
ho_{XY} rac{\sigma_Y}{\sigma_X} \ e_i &\sim N\left(0,\sigma^2
ight) & eta_0 &= ar{Y} - eta_1 ar{X} \ \end{pmatrix}$$