

データの読み込み ¶ (https://www.kaggle.com/murakawa/prediction-binary-cat-insurance-

data#%E3%83%87%E3%83%BC%E3%82%BF%E3%81%AE%E8%AA%AD%

```
In [1]:
        # This Python 3 environment comes with many helpful analytics libraries
         installed
        # It is defined by the kaggle/python docker image: https://github.com/ka
        ggle/docker-python
        # For example, here's several helpful packages to load in
        import numpy as np # linear algebra
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
        # Input data files are available in the "../input/" directory.
        # For example, running this (by clicking run or pressing Shift+Enter) wi
        11 list the files in the input directory
        import os
        print(os.listdir("../input"))
        import seaborn as sns
        # Any results you write to the current directory are saved as output.
        ['DSS_DMC_Description.pdf', 'carInsurance_train.csv', 'carInsurance_te
        st.csv']
```

```
In [2]:
    train = pd.read_csv('../input/carInsurance_train.csv')
    test = pd.read_csv('../input/carInsurance_test.csv')
```

In [3]:
 train.head()

Out[3]:

	ld	Age	Job	Marital	Education	Default	Balance	HHInsurance	CarLoan	Comm
0	1	32	management	single	tertiary	0	1218	1	0	telepho
1	2	32	blue-collar	married	primary	0	1156	1	0	NaN
2	3	29	management	single	tertiary	0	637	1	0	cellula
3	4	25	student	single	primary	0	373	1	0	cellula
4	5	30	management	married	tertiary	0	2694	0	0	cellula
4										•

In [4]:
 test.head()

Out[4]:

	ld	Age	Job	Marital	Education	Default	Balance	HHInsurance	CarLoan	Со
0	4001	25	admin.	single	secondary	0	1	1	1	Nal

1	4002	40	management	married	tertiary	0	0	1	1	cell
2	4003	44	management	single	tertiary	0	-1313	1	1	cell
3	4004	27	services	single	secondary	0	6279	1	0	cell
4	4005	53	technician	married	secondary	0	7984	1	0	cell
4										-

データの確認

```
In [5]:
        train.isna().sum()
Out[5]:
                                0
        Age
                                0
        Job
                               19
        Marital
                                0
        Education
                              169
        Default
                                0
        Balance
                                0
        HHInsurance
                                0
        CarLoan
                                0
        Communication
                              902
        LastContactDay
                                0
        {\tt LastContactMonth}
                                0
        NoOfContacts
                                0
        DaysPassed
                                0
        PrevAttempts
                                0
        Outcome
                             3042
        CallStart
                                0
        CallEnd
                                0
        CarInsurance
                                0
        dtype: int64
In [6]:
        test.isna().sum()
Out[6]:
        Ιd
                                0
                                0
        Age
        Job
                                5
        Marital
                                0
        Education
                               47
        Default
                                0
        Balance
                                0
        HHInsurance
                                0
        CarLoan
                                0
        Communication
                              221
        LastContactDay
                                0
        LastContactMonth
                                0
        NoOfContacts
                                0
        DaysPassed
```

```
PrevAttempts
                        0
Outcome
                      757
CallStart
                        0
CallEnd
                        0
CarInsurance
                    1000
```

dtype: int64

```
In [7]:
         train.shape
Out[7]:
         (4000, 19)
In [8]:
         test.shape
Out[8]:
         (1000, 19)
```

欠損値の対応

```
In [9]:
          train.Job.unique()
 Out[9]:
          array(['management', 'blue-collar', 'student', 'technician', 'admin.',
                   'services', 'self-employed', 'retired', nan, 'housemaid',
                   'entrepreneur', 'unemployed'], dtype=object)
In [10]:
          train[train.Job != train.Job].head()
Out[10]:
                ld
                    Age
                          Job
                                 Marital
                                         Education
                                                   Default
                                                           Balance
                                                                   HHInsurance
                                                                                CarLoan
                                                                                         Commun
          27
               28
                    45
                          NaN
                                divorced
                                         NaN
                                                           0
                                                                   0
                                                                                0
                                                                                         cellular
          239
               240
                    41
                          NaN
                                single
                                         NaN
                                                           942
                                                                   0
                                                                                0
                                                                                         cellular
          486
               487
                          NaN
                                married
                                        primary
                                                           981
                                                                   0
                                                                                0
                                                                                         cellular
          536
               537
                    33
                          NaN
                                single
                                         secondary
                                                           1522
                                                                   0
                                                                                         cellular
               606
                    53
                                                           732
                                                                   0
                                                                                0
                                                                                         cellular
```

```
In [11]:
         train.Job.fillna('unknown', inplace=True)
         test.Job.fillna('unknown', inplace=True)
In [12]:
         train.Education.unique()
Out[12]:
```

NaN

married

primary

605

In [13]:

```
array(['tertiary', 'primary', 'secondary', nan], dtype=object)
```

```
train.Education.fillna('other', inplace=True)
         test.Education.fillna('other', inplace=True)
In [14]:
         train.Communication.fillna('other', inplace=True)
         test.Communication.fillna('other', inplace=True)
In [15]:
         train.Outcome.fillna('unknwon', inplace=True)
         test.Outcome.fillna('unknwon', inplace=True)
In [16]:
         train.dtypes
Out[16]:
         Ιd
                                int64
                                int64
         Age
         Job
                              object
         Marital
                               object
         Education
                               object
         Default
                                int64
         Balance
                                int64
         HHInsurance
                                int64
         CarLoan
                                int64
         Communication
                               object
         LastContactDay
                                int64
         LastContactMonth
                              object
         NoOfContacts
                                int64
         DaysPassed
                                int64
                                int64
         {\tt PrevAttempts}
         Outcome
                               object
         CallStart
                               object
         CallEnd
                               object
                                int64
         CarInsurance
         dtype: object
In [17]:
         cat_cols = ['Marital', 'Education', 'Job', 'Communication',
                      'LastContactMonth', 'Outcome', 'CallStart', 'CallEnd']
In [18]:
         from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         for col in cat_cols:
              train[col] = le.fit_transform(train[col])
In [19]:
         train.head()
Out[19]:
               Age
            ld
                    Job
                         Marital
                               Education
                                         Default
                                               Balance
                                                        HHInsurance
                                                                  CarLoan
                                                                           Communication
                         2
                                         0
                                                1218
                                                                  0
                                                                           2
```

1	2	32	1	1	1	0	1156	1	0	1
2	3	29	4	2	3	0	637	1	0	0
3	4	25	8	2	1	0	373	1	0	0
4	5	30	4	1	3	0	2694	0	0	0
4										>

```
In [20]:
         X = train.drop('CarInsurance', axis=1)
         y = train.CarInsurance
In [21]:
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.
         3, random_state=0)
In [22]:
         import xgboost as xgb
         dtrain = xgb.DMatrix(X_train, y_train)
         dval = xgb.DMatrix(X_test, y_test)
         eval_list = [(dval, 'eval'), (dtrain, 'train')]
In [23]:
         param = {'max_depth': 3,
                  'eta': 0.3,
                  'silent': 1,
                  'objective': 'binary:logistic',
                  'nthread' : 4,
                  'eval_metric' : 'auc'}
In [24]:
         num_round = 250
         bst = xqb.train(param, dtrain, num_round, eval_list, early_stopping_ro
         unds=2)
         [0]
                 eval-auc:0.695181
                                          train-auc:0.697895
         Multiple eval metrics have been passed: 'train-auc' will be used for e
         arly stopping.
         Will train until train-auc hasn't improved in 2 rounds.
         [1]
                 eval-auc:0.716765
                                          train-auc:0.717916
         [2]
                 eval-auc:0.719608
                                          train-auc:0.720543
         [3]
                 eval-auc:0.729629
                                          train-auc:0.733879
         [4]
                 eval-auc:0.736563
                                          train-auc:0.749381
         [5]
                 eval-auc:0.743144
                                          train-auc:0.754882
         [6]
                 eval-auc:0.749341
                                          train-auc:0.758067
         [7]
                 eval-auc:0.748643
                                          train-auc:0.768482
         [8]
                 eval-auc:0.744592
                                          train-auc:0.773661
         [9]
                 eval-auc:0.746565
                                          train-auc:0.78172
         [10]
                 eval-auc:0.752592
                                          train-auc:0.787233
         [11]
                 eval-auc:0.754994
                                          train-auc:0.788592
         [12]
                 eval-auc:0.756681
                                          train-auc:0.792386
         [13]
                 eval-auc:0.759272
                                          train-auc:0.804491
                 0401 04010 760226
```

train 200.0 000001

[11]

		Prediction binary cat in
[14]	eval-auc.v./ovozo	ו פטפטס.ט.טטס־וודם וו
[15]	eval-auc:0.762587	train-auc:0.813732
[16]	eval-auc:0.762656	train-auc:0.81744
[17]	eval-auc:0.760549	train-auc:0.820491
[18]	eval-auc:0.760891	train-auc:0.822419
[19]	eval-auc:0.762532	train-auc:0.825748
[20]	eval-auc:0.763818	train-auc:0.828178
[21]	eval-auc:0.765721	train-auc:0.835211
[22]	eval-auc:0.768948	train-auc:0.83791
[23]	eval-auc:0.770859	train-auc:0.841895
[24]	eval-auc:0.771118	train-auc:0.843803
[25]	eval-auc:0.770528	train-auc:0.84554
[26]	eval-auc:0.774272	train-auc:0.847045
[27]	eval-auc:0.775409	train-auc:0.847526
[28]	eval-auc:0.774368	train-auc:0.851024
[29]	eval-auc:0.776482	train-auc:0.854434
[30]	eval-auc:0.777776	train-auc:0.855469
[31]	eval-auc:0.774903	train-auc:0.857863
[32]	eval-auc:0.777768	train-auc:0.862475
[33]	eval-auc:0.78054	train-auc:0.868367
[34]	eval-auc:0.779721	train-auc:0.869234
[35]	eval-auc:0.780736	train-auc:0.870733
[36]	eval-auc:0.780802	train-auc:0.871111
[37]	eval-auc:0.780696	train-auc:0.871691
[38]	eval-auc:0.781193	train-auc:0.872157
[39]	eval-auc:0.785282	train-auc:0.878938
[40]	eval-auc:0.785719	train-auc:0.879086
[41]	eval-auc:0.788003	train-auc:0.8816
[42]	eval-auc:0.789107	train-auc:0.884406
[43]	eval-auc:0.792159	train-auc:0.886732
[44]	eval-auc:0.793712	train-auc:0.887952
[45]	eval-auc:0.793683	train-auc:0.89024
[46]	eval-auc:0.793962	train-auc:0.890456
[47]	eval-auc:0.795044	train-auc:0.89139
[48]	eval-auc:0.795015	train-auc:0.892265
[49]	eval-auc:0.795886	train-auc:0.893102
[50]	eval-auc:0.795012	train-auc:0.894438
[51]	eval-auc:0.793657	train-auc:0.89577
[52]	eval-auc:0.792455	train-auc:0.896475
[53]	eval-auc:0.792009	train-auc:0.89688
[54]	eval-auc:0.794986	train-auc:0.898259
[55]	eval-auc:0.798415	train-auc:0.901852
[56]	eval-auc:0.799062	train-auc:0.902795
[57]	eval-auc:0.799223	train-auc:0.905375
[58]	eval-auc:0.798961	train-auc:0.906283
[59]	eval-auc:0.799082	train-auc:0.906397
[60]	eval-auc:0.799968	train-auc:0.908464
[61]	eval-auc:0.804492	train-auc:0.912678
[62]	eval-auc:0.805033	train-auc:0.913046
[63]	eval-auc:0.805246	train-auc:0.913231
[64]	eval-auc:0.807371	train-auc:0.915818
[65]	eval-auc:0.807371	train-auc:0.917287
[66]	eval-auc:0.808812	train-auc:0.917287
[67]	eval-auc:0.807915	train-auc:0.91947
[68]	eval-auc:0.808027	train-auc:0.91947
[69]	eval-auc:0.808332	train-auc:0.920107
[70]	eval-auc:0.807072	train-auc:0.921676
[70]	eval-auc:0.806802	train-auc:0.922407
[71] [72]	eval-auc:0.800802	train-auc:0.922021
1771	eval-aucin 80////	ain-auc:0 9/436/

L / - J	0.41 440.0.00/LLL	crain additional year me
[73]	eval-auc:0.806983	train-auc:0.924595
[74]	eval-auc:0.807112	train-auc:0.926076
[75]	eval-auc:0.809157	train-auc:0.926806
[76]	eval-auc:0.808559	train-auc:0.928867
[77]	eval-auc:0.808254	train-auc:0.929176
[78]	eval-auc:0.80748	train-auc:0.930279
[79]	eval-auc:0.808303	train-auc:0.930843
[80]	eval-auc:0.807938	train-auc:0.931084
[81]	eval-auc:0.813164	train-auc:0.933673
[82]	eval-auc:0.813592	train-auc:0.934851
[83]	eval-auc:0.814191	train-auc:0.934973
[84]	eval-auc:0.814944	train-auc:0.936082
[85]	eval-auc:0.815485	train-auc:0.937128
[86]	eval-auc:0.815414	train-auc:0.937518
[87]	eval-auc:0.815604	train-auc:0.937653
[88]	eval-auc:0.815128	train-auc:0.939501
[89]	eval-auc:0.814179	train-auc:0.941096
[90]	eval-auc:0.815094	train-auc:0.941662
[91]	eval-auc:0.815706	train-auc:0.94207
[92]	eval-auc:0.81715	train-auc:0.944309
[93]	eval-auc:0.822414	train-auc:0.947442
[94]	eval-auc:0.823559	train-auc:0.94873
[95]	eval-auc:0.822923	train-auc:0.949173
[96]	eval-auc:0.824591	train-auc:0.951035
[97]	eval-auc:0.824134	train-auc:0.951356
[98]	eval-auc:0.824418	train-auc:0.951512
[99]	eval-auc:0.824531	train-auc:0.951993
[100]	eval-auc:0.824367	train-auc:0.952391
[101]	eval-auc:0.822969	train-auc:0.953228
[101]	eval-auc:0.821715	train-auc:0.953477
[102]	eval-auc:0.822931	train-auc:0.954154
[104]	eval-auc:0.823182	train-auc:0.954344
[104]	eval-auc:0.822693	train-auc:0.955018
	eval-auc:0.826035	train-auc:0.956926
[106]	eval-auc:0.826302	train-auc:0.956933
[107]		
[108]	eval-auc:0.827418	train-auc:0.958314
[109]	eval-auc:0.827473	train-auc:0.959437
[110]	eval-auc:0.828005	train-auc:0.960222
[111]	eval-auc:0.82856	train-auc:0.960485
[112]	eval-auc:0.828721	train-auc:0.960666
[113]	eval-auc:0.829561	train-auc:0.961082
[114]	eval-auc:0.830293	train-auc:0.962139
[115]	eval-auc:0.830438	train-auc:0.962489
[116]	eval-auc:0.831514	train-auc:0.96279
[117]	eval-auc:0.832305	train-auc:0.963713
[118]	eval-auc:0.833225	train-auc:0.964755
[119]	eval-auc:0.833858	train-auc:0.965132
[120]	eval-auc:0.834232	train-auc:0.965139
[121]	eval-auc:0.83456	train-auc:0.965365
[122]	eval-auc:0.833666	train-auc:0.965891
[123]	eval-auc:0.834244	train-auc:0.966339
[124]	eval-auc:0.835176	train-auc:0.966881
[125]	eval-auc:0.835026	train-auc:0.966951
[126]	eval-auc:0.835035	train-auc:0.967118
[127]	eval-auc:0.834813	train-auc:0.968371
[128]	eval-auc:0.832886	train-auc:0.969248
[129]	eval-auc:0.832774	train-auc:0.969466
[130]	eval-auc:0.836657	train-auc:0.971034
1		

		,
[131]	eval-auc:0.836763	train-auc:0.971208
[132]	eval-auc:0.835204	train-auc:0.97146
[133]	eval-auc:0.83527	train-auc:0.972203
[134]	eval-auc:0.836082	train-auc:0.972473
[135]	eval-auc:0.836211	train-auc:0.972891
[136]	eval-auc:0.837445	train-auc:0.973243
[137]	eval-auc:0.838256	train-auc:0.973903
[138]	eval-auc:0.838662	train-auc:0.974633
[139]	eval-auc:0.841313	train-auc:0.975875
[140]	eval-auc:0.83997	train-auc:0.9762
[141]	eval-auc:0.840819	train-auc:0.976585
[142]	eval-auc:0.842403	train-auc:0.977549
[143]	eval-auc:0.840781	train-auc:0.977851
[144]	eval-auc:0.841748	train-auc:0.978645
[145]	eval-auc:0.841437	train-auc:0.979061
[146]	eval-auc:0.842389	train-auc:0.979404
[147]	eval-auc:0.842752	train-auc:0.979594
	eval-auc:0.842872	train-auc:0.980057
[148]	eval-auc:0.843169	train-auc:0.98027
[149]		train-auc:0.980336
[150]	eval-auc:0.843801	
[151]	eval-auc:0.84379	train-auc:0.980378
[152]	eval-auc:0.843194	train-auc:0.980438
[153]	eval-auc:0.842775	train-auc:0.980534
[154]	eval-auc:0.842933	train-auc:0.980654 train-auc:0.980933
[155] [156]	eval-auc:0.842596 eval-auc:0.842268	train-auc:0.980957
[157]	eval-auc:0.842383	train-auc:0.981218
[157]	eval-auc:0.843968	train-auc:0.981196
[159]	eval-auc:0.842987	train-auc:0.981407
[160]	eval-auc:0.843197	train-auc:0.981558
[161]	eval-auc:0.843171	train-auc:0.981657
[162]	eval-auc:0.842619	train-auc:0.981642
[163]	eval-auc:0.842438	train-auc:0.981931
[164]	eval-auc:0.841595	train-auc:0.982045
[165]	eval-auc:0.841736	train-auc:0.982354
[166]	eval-auc:0.84182	train-auc:0.982449
[167]	eval-auc:0.841679	train-auc:0.982654
[168]	eval-auc:0.84295	train-auc:0.983102
[169]	eval-auc:0.842907	train-auc:0.983235
[170]	eval-auc:0.843876	train-auc:0.983465
[171]	eval-auc:0.844932	train-auc:0.984307
[172]	eval-auc:0.845432	train-auc:0.98495
[173]	eval-auc:0.845774	train-auc:0.985269
[174]	eval-auc:0.845283	train-auc:0.98555
[175]	eval-auc:0.845582	train-auc:0.985811
[176]	eval-auc:0.845271	train-auc:0.985785
[177]	eval-auc:0.846853	train-auc:0.986212
[178]	eval-auc:0.846347	train-auc:0.986379
[179]	eval-auc:0.846281	train-auc:0.986476
[180]	eval-auc:0.844365	train-auc:0.986599
[181]	eval-auc:0.845234	train-auc:0.986931
[182]	eval-auc:0.845055	train-auc:0.98702
[183]	eval-auc:0.845271	train-auc:0.98712
[184]	eval-auc:0.845613	train-auc:0.987229
[185]	eval-auc:0.845461	train-auc:0.98731
[186]	eval-auc:0.845866	train-auc:0.987417
[187]	eval-auc:0.846298	train-auc:0.987602
[188]	eval-auc:0.846928	train-auc:0.987732

```
[189]
        eval-auc:0.846801
                                 train-auc:0.987731
[190]
        eval-auc:0.84666
                                 train-auc:0.987911
[191]
        eval-auc:0.84639
                                 train-auc:0.987988
[192]
        eval-auc:0.845947
                                 train-auc:0.988237
[193]
        eval-auc:0.845726
                                 train-auc:0.988308
[194]
        eval-auc:0.84559
                                 train-auc:0.988511
[195]
        eval-auc:0.845636
                                 train-auc:0.988753
[196]
        eval-auc:0.844779
                                 train-auc:0.988883
[197]
        eval-auc:0.844584
                                 train-auc:0.988891
[198]
        eval-auc:0.844425
                                 train-auc:0.989016
[199]
        eval-auc:0.844995
                                 train-auc:0.989119
[200]
        eval-auc:0.844811
                                 train-auc:0.989369
        eval-auc:0.845113
                                 train-auc:0.98974
[201]
[202]
        eval-auc:0.846203
                                 train-auc:0.990066
[203]
        eval-auc:0.84574
                                 train-auc:0.990109
[204]
        eval-auc:0.846902
                                 train-auc:0.990421
[205]
        eval-auc:0.847509
                                 train-auc:0.990742
                                 train-auc:0.990919
[206]
        eval-auc:0.848173
[207]
                                 train-auc:0.990924
        eval-auc:0.84851
[208]
        eval-auc:0.848976
                                 train-auc:0.991109
[209]
        eval-auc:0.849301
                                 train-auc:0.991292
[210]
        eval-auc:0.849818
                                 train-auc:0.991461
[211]
        eval-auc:0.84922
                                 train-auc:0.991518
[212]
        eval-auc:0.848861
                                 train-auc:0.991459
[213]
        eval-auc:0.84897
                                 train-auc:0.991507
Stopping. Best iteration:
[211]
        eval-auc:0.84922
                                 train-auc:0.991518
```

特徴エンジニアリング

```
In [25]:
    def read_and_fillna():
        train = pd.read_csv('../input/carInsurance_train.csv')
        test = pd.read_csv('../input/carInsurance_test.csv')
        train.Job.fillna('unknown', inplace=True)
        test.Job.fillna('unknown', inplace=True)
        train.Education.fillna('other', inplace=True)
        test.Education.fillna('other', inplace=True)
        train.Communication.fillna('other', inplace=True)
        test.Communication.fillna('other', inplace=True)
        test.Outcome.fillna('unknwon', inplace=True)
        return train, test
```

```
In [26]:
    def make_model(train, cat_cols):
        from sklearn.preprocessing import LabelEncoder
        from sklearn.model_selection import train_test_split
        import xgboost as xgb
le = LabelEncoder()
```

```
for col in cat_cols:
        train[col] = le.fit_transform(train[col])
   X = train.drop('CarInsurance', axis=1)
   y = train.CarInsurance
   X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                         test_size=0.3,
random_state=0)
   dtrain = xgb.DMatrix(X_train, y_train)
   dval = xgb.DMatrix(X_test, y_test)
   eval_list = [(dval, 'eval'), (dtrain, 'train')]
    param = {'max_depth': 3,
             'eta': 0.3,
             'silent': 1,
             'objective': 'binary:logistic',
             'nthread' : 4,
             'eval_metric' : 'auc'}
   num_round = 250
    bst = xgb.train(param, dtrain, num_round, eval_list, early_stoppin
g_rounds=2)
```

```
In [27]:
    train, test = read_and_fillna()
```

Age

```
In [28]:
          train.Age.describe()
Out[28]:
          count
                    4000.000000
          mean
                      41.214750
          std
                      11.550194
          min
                      18.000000
          25%
                      32.000000
          50%
                      39.000000
          75%
                      49.000000
                      95.000000
          max
          Name: Age, dtype: float64
In [29]:
          def make_AgeGroup(df):
               df["AgeGroup"] = df.Age.apply(lambda x : 0 if x >= 10 and x <= 19
          else
                                                   (1 if x >= 20 and x <= 29 else
                                                    (2 if x >= 30 and x <= 39 else
                                                     (3 if x >= 40 and x <= 49 else
                                                      (4 if x >= 50 and x <= 59 else
                                                       (5 \text{ if } x >= 60 \text{ and } x <= 69 \text{ else}
                                                         (6 if x >= 70 and x <= 79 els
                                                          (7 \text{ if } x >= 80 \text{ and } x <= 80 \text{ el}
          se 8))))))))
```

```
In [30]:
    make_AgeGroup(train)
    make_AgeGroup(test)

In [31]:
    pd.pivot_table(train[['AgeGroup', 'CarInsurance', 'Age']], columns=['CarInsurance'], index=['AgeGroup'], aggfunc=['count'])
```

Out[31]:

	count		
	Age		
Carlnsurance	0	1	
AgeGroup			
0	4	11	
1	257	261	
2	980	558	
3	635	353	
4	454	247	
5	44	114	
6	17	43	
7	2	7	
8	3	10	

Job

Age Carlnsurance 0 1 Job admin. 274 185 blue-collar 540 219 entrepreneur 86 35 housemaid 72 37

count

management

retired	103	146
self-employed	86	54
services	218	112
student	44	87
technician	406	254
unemployed	56	74
unknown	10	9

```
In [35]:
    make_isWork(train)
    make_isWork(test)
```

```
In [36]:
    train.drop('Job', axis=1, inplace=True)
    test.drop('Job', axis=1, inplace=True)
```

Martial

```
In [37]:
    pd.pivot_table(train[['Marital', 'CarInsurance', 'Age']], columns=['Ca
    rInsurance'], index=['Marital'], aggfunc=['count'])
```

Out[37]:

	count			
	Age			
Carlnsurance	0	1		
Marital				
divorced	273	210		
married	1471	833		
single	652	561		

Education

Out[38]:

	count		
	Age		
Carlnsurance	0	1	
Education			
other	90	79	
primary	366	195	
secondary	1258	730	
tertiary	682	600	

Balance

```
In [39]:
    train.Balance = train.Balance.astype('float')
    test.Balance = test.Balance.astype('float')
```

```
In [40]:
     sns.distplot(train.Balance.values, kde=False, rug=False, bins=25)
```



```
In [41]:
     sns.jointplot('Balance', 'CarInsurance', data=train)
```

/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: Futu reWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[41]: <seaborn.axisgrid.JointGrid at 0x7ff4d918acf8>


```
In [42]:
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    train.Balance = sc.fit_transform(train.Balance.values.reshape(-1, 1))
    test.Balance = sc.fit_transform(test.Balance.values.reshape(-1, 1))
```

```
In [43]:
     sns.distplot(train.Balance.values, kde=False, rug=False, bins=25)
```



```
In [44]:
         train.Balance.describe()
Out[44]:
                   4.000000e+03
         count
         mean
                   4.639344e-17
                  1.000125e+00
         std
                  -1.307582e+00
         min
         25%
                  -4.049934e-01
                  -2.795310e-01
         50%
         75%
                  2.451222e-02
                  2.759433e+01
         max
         Name: Balance, dtype: float64
```

Communication

```
In [45]:
          train.Communication.unique()
Out[45]:
          array(['telephone', 'other', 'cellular'], dtype=object)
In [46]:
          pd.pivot_table(train[['Communication', 'CarInsurance', 'Age']], column
          s=['CarInsurance'], index=['Communication'], aggfunc=['count'])
Out[46]:
                      count
                      Age
         Carlnsurance
                            1
         Communication
                            1313
         cellular
                      1518
         other
                      734
                            168
         telephone
                      144
                            123
```

```
In [47]:
    train["isMobile"] = train.Communication.apply(lambda x : 1 if x == "Ce
    llular" or x == "telephone" else 0)
    test["isMobile"] = test.Communication.apply(lambda x : 1 if x == "Cell
    ular" or x == "telephone" else 0)
```

LastContactDay & Month

```
In [48]:
    pd.pivot_table(train[['LastContactMonth', 'CarInsurance', 'Age']], col
    umns=['CarInsurance'], index=['LastContactMonth'], aggfunc=['count'])
```

Out[48]:

	count		
	Age		
	5-		
Carlnsurance	0	1	
LastContactMonth			
apr	150	156	
aug	342	194	
dec	7	34	
feb	129	133	
jan	86	48	
jul	364	209	
jun	283	171	
mar	15	64	

may	760	289
nov	215	132
oct	27	91
sep	18	83

NoOfContacts

Out[49]:

	count	
	Age	
Carlnsurance	0	1
NoOfContacts		
1	912.0	773.0
2	671.0	414.0
3	311.0	205.0
4	156.0	81.0
5	114.0	52.0
6	62.0	26.0
7	34.0	15.0
8	27.0	14.0
9	18.0	2.0
10	13.0	5.0
11	7.0	8.0
12	11.0	NaN
13	6.0	2.0
14	6.0	1.0
15	2.0	1.0
16	3.0	NaN
17	9.0	2.0
18	3.0	NaN
19	3.0	NaN
20	4.0	NaN
21	3.0	1.0
22	3.0	NaN
23	3.0	NaN
24	2.0	1.0
25	4.0	NaN
26	1.0	NaN
27	1.0	NaN
28	1 Ո	MaN

20	1.0	INGIN
29	NaN	1.0
30	1.0	NaN
32	1.0	NaN
34	1.0	NaN
38	1.0	NaN
41	1.0	NaN
43	1.0	NaN

DaysPassed

```
In [50]:
         train.DaysPassed.value_counts()
Out[50]:
                  3042
          92
                    38
                    33
          182
          91
                    24
          183
                    24
          93
                    16
          95
                    16
          94
                    14
          97
                    13
          181
                    13
          189
                    12
          184
                    12
          90
                    11
                    10
          178
          370
                    10
          105
                     9
                     9
          196
          104
                     8
          350
                     8
                     8
          185
          188
                     8
          98
                     8
          169
                     8
                     7
          195
                     7
          187
          176
                     6
          175
                     6
          88
                     6
          168
                     6
          343
          310
          308
          474
          532
          127
          544
          191
```

```
141
115
           1
73
           1
71
67
65
61
           1
57
           1
53
49
43
37
           1
35
           1
27
21
15
13
854
775
828
728
690
558
842
```

Name: DaysPassed, Length: 330, dtype: int64

```
In [51]:
    sns.jointplot('DaysPassed', 'CarInsurance', data=train)
```

/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: Futu reWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

PrevAttempts

```
In [52]:
         train.PrevAttempts.value_counts()
Out[52]:
                3042
                 335
         1
         2
                 251
         3
                 125
                  79
         4
         5
                  60
         6
                  25
         7
                  21
         8
                  18
         10
                  10
         9
         14
                   5
         12
                   5
         13
         19
         11
         23
                   1
         18
                   1
         58
                   1
         30
         Name: PrevAttempts, dtype: int64
```

Out[53]:

	count	
	Age	
Carlnsurance	0	1
PrevAttempts		
0	1997.0	1045.0
1	149.0	186.0
2	109.0	142.0
3	47.0	78.0
4	33.0	46.0
5	26.0	34.0
6	9.0	16.0
7	6.0	15.0
8	4.0	14.0
9	5.0	4.0
10	NaN	10.0
11	1.0	2.0

12	1.0	4.0
13	2.0	2.0
14	3.0	2.0
18	1.0	NaN
19	2.0	2.0
23	1.0	NaN
30	NaN	1.0
58	NaN	1.0

Outcom

```
In [54]:
    train.Outcome.unique()

Out[54]:
    array(['unknwon', 'failure', 'other', 'success'], dtype=object)

In [55]:
    pd.pivot_table(train[['Outcome', 'CarInsurance', 'Age']], columns=['CarInsurance'], index=['Outcome'], aggfunc=['count'])
```

Out[55]:

	count	
	Age	
Carlnsurance	0	1
Outcome		
failure	261	176
other	103	92
success	35	291
unknwon	1997	1045

Time

```
In [56]:
    train['isCallStart'] = 0
    train['isCallEnd'] = 0
    test['isCallStart'] = 0
    test['isCallEnd'] = 0

for idx, time in enumerate(train.CallStart):
    (h, m, s) = time.split(':')
    result = int(h) * 3600 + int(m) * 60 + int(s)
    train.loc[idx, 'isCallStart'] = result

for idx, time in enumerate(train.CallEnd):
```

```
(h, m, s) = time.split(':')
             result = int(h) * 3600 + int(m) * 60 + int(s)
             train.loc[idx, 'isCallEnd'] = result
In [57]:
         def make_time_column(df):
             df["diffTime"] = df.isCallStart - df.isCallEnd
             df[['isCallStart', 'isCallEnd', 'diffTime']] = df[['isCallStart',
         'isCallEnd', 'diffTime']].astype("float")
             df.drop(['CallStart', 'CallEnd'], axis=1, inplace=True)
In [58]:
         make_time_column(train)
         make_time_column(test)
In [59]:
         from sklearn.preprocessing import StandardScaler
         sc = StandardScaler()
         train[['isCallStart', 'isCallEnd', 'diffTime']] = sc.fit_transform(tra
         in[['isCallStart', 'isCallEnd', 'diffTime']])
         test[['isCallStart', 'isCallEnd', 'diffTime']] = sc.fit_transform(test
         [['isCallStart', 'isCallEnd', 'diffTime']])
In [60]:
         cat_cols = ['Marital', 'Education', 'Communication',
                     'LastContactMonth', 'Outcome']
         make_model(train, cat_cols)
         [0]
                 eval-auc:0.805461
                                          train-auc:0.843845
         Multiple eval metrics have been passed: 'train-auc' will be used for e
         arly stopping.
         Will train until train-auc hasn't improved in 2 rounds.
         [1]
                 eval-auc:0.854935
                                          train-auc:0.878551
         [2]
                 eval-auc:0.861044
                                          train-auc:0.887408
         [3]
                 eval-auc:0.862193
                                          train-auc:0.88986
         [4]
                 eval-auc:0.86773
                                          train-auc:0.898391
         [5]
                 eval-auc:0.873595
                                          train-auc:0.903397
         [6]
                 eval-auc:0.875166
                                          train-auc:0.905741
         [7]
                 eval-auc:0.879566
                                          train-auc:0.909439
         [8]
                 eval-auc:0.885511
                                          train-auc:0.914387
         [9]
                 eval-auc:0.886972
                                          train-auc:0.917139
         [10]
                 eval-auc:0.88952
                                          train-auc:0.918847
                                          train-auc:0.921649
         [11]
                 eval-auc:0.890745
         [12]
                 eval-auc:0.892542
                                          train-auc:0.923362
         [13]
                 eval-auc:0.893384
                                          train-auc:0.924535
         [14]
                 eval-auc:0.895435
                                          train-auc:0.927988
         [15]
                 eval-auc:0.897425
                                          train-auc:0.929414
         [16]
                 eval-auc:0.897631
                                          train-auc:0.930781
         [17]
                 eval-auc:0.897595
                                          train-auc:0.932208
         [18]
                 eval-auc:0.89748
                                          train-auc:0.93341
         [19]
                 eval-auc:0.898585
                                          train-auc:0.934499
         [20]
                 eval-auc:0.901816
                                          train-auc:0.937007
         [21]
                 eval-auc:0.902859
                                          train-auc:0.938091
         [22]
```

DV21-211C-0 00287

train-auc.0 030001

		Prediction binary cat ins
[23]	eval-auc:0.90207	train-auc:0.941049
[24]	eval-auc:0.904511	train-auc:0.942365
[24]	eval-auc:0.905828	train-auc:0.943278
1 1	eval-auc:0.905926	train-auc:0.94393
[26]		
[27]	eval-auc:0.905302	train-auc:0.945311
[28]	eval-auc:0.905516	train-auc:0.945758
[29]	eval-auc:0.905237	train-auc:0.946369
[30]	eval-auc:0.905542	train-auc:0.946539
[31]	eval-auc:0.905686	train-auc:0.947442
[32]	eval-auc:0.905301	train-auc:0.948264
[33]	eval-auc:0.905076	train-auc:0.949809
[34]	eval-auc:0.906362	train-auc:0.950933
[35]	eval-auc:0.906819	train-auc:0.951552
[36]	eval-auc:0.906471	train-auc:0.952219
[37]	eval-auc:0.906581	train-auc:0.953686
[38]	eval-auc:0.906885	train-auc:0.954887
[39]	eval-auc:0.90738	train-auc:0.955329
[40]	eval-auc:0.907521	train-auc:0.955581
[41]	eval-auc:0.909183	train-auc:0.95686
[42]	eval-auc:0.909503	train-auc:0.957208
[43]	eval-auc:0.909126	train-auc:0.958158
[44]	eval-auc:0.909629	train-auc:0.959115
[45]	eval-auc:0.90977 eval-auc:0.910553	train-auc:0.959549
[46]	eval-auc:0.910553	train-auc:0.960308 train-auc:0.961035
[47] [48]	eval-auc:0.9111602	train-auc:0.961608
[49]	eval-auc:0.911832	train-auc:0.962787
[50]	eval-auc:0.911404	train-auc:0.963231
[51]	eval-auc:0.9108 train-a	
[52]	eval-auc:0.910699	train-auc:0.964128
[53]	eval-auc:0.910403	train-auc:0.965209
[54]	eval-auc:0.910676	train-auc:0.965479
[55]	eval-auc:0.910578	train-auc:0.966197
[56]	eval-auc:0.910351	train-auc:0.966588
[57]	eval-auc:0.910794	train-auc:0.966703
[58]	eval-auc:0.911059	train-auc:0.966934
[59]	eval-auc:0.911076	train-auc:0.96708
[60]	eval-auc:0.910823	train-auc:0.967371
[61]	eval-auc:0.911047	train-auc:0.96787
[62]	eval-auc:0.911502	train-auc:0.96834
[63]	eval-auc:0.912839	train-auc:0.968949
[64]	eval-auc:0.913187	train-auc:0.969706
[65]	eval-auc:0.913662	train-auc:0.970076
[66]	eval-auc:0.913552	train-auc:0.970497
[67]	eval-auc:0.913271	train-auc:0.970919
[68]	eval-auc:0.913458	train-auc:0.971182
[69]	eval-auc:0.913458	train-auc:0.971419
[70]	eval-auc:0.913291	train-auc:0.971667
[71]	eval-auc:0.913656	train-auc:0.971884
[72]	eval-auc:0.91411	train-auc:0.972523
[73]	eval-auc:0.914024 eval-auc:0.91399	train-auc:0.973027 train-auc:0.973126
[74] [75]	eval-auc:0.91399 eval-auc:0.914059	train-auc:0.973126
[75] [76]	eval-auc:0.914059	train-auc:0.973415
[77]	eval-auc:0.914933	train-auc:0.973998
[78]	eval-auc:0.914970	train-auc:0.974454
[79]	eval-auc:0.914712	train-auc:0.975192
[80]	eval-auc:0.914729	train-auc:0.975625
	/a/prediction-binary-cat-insurar	

1		Prediction binary cat in
[81]	eval-auc:0.914568	train-auc:0.976236
[82]	eval-auc:0.914576	train-auc:0.976249
[83]	eval-auc:0.914576	train-auc:0.976395
[84]	eval-auc:0.914131	train-auc:0.976689
[85]	eval-auc:0.914309	train-auc:0.97674
[86]	eval-auc:0.914407	train-auc:0.977268
[87]	eval-auc:0.91443	train-auc:0.977814
[88]	eval-auc:0.915039	train-auc:0.978037
[89]	eval-auc:0.915034	train-auc:0.978582
[90]	eval-auc:0.915014	train-auc:0.978975
[91]	eval-auc:0.914438	train-auc:0.979451
[92]	eval-auc:0.914548	train-auc:0.979831
[93]	eval-auc:0.915062	train-auc:0.98008
[94]	eval-auc:0.914804	train-auc:0.980339
[95]	eval-auc:0.914864	train-auc:0.980585
[96]	eval-auc:0.914976	train-auc:0.98073
[97]	eval-auc:0.914973	train-auc:0.980925
[98]	eval-auc:0.914674	train-auc:0.981273
[99]	eval-auc:0.914326	train-auc:0.981357
[100]	eval-auc:0.913961	train-auc:0.981714
[101]	eval-auc:0.913952	train-auc:0.982042
[102]	eval-auc:0.913877	train-auc:0.982463
[103]	eval-auc:0.91401	train-auc:0.982884
[104]	eval-auc:0.913564	train-auc:0.983217
[105]	eval-auc:0.913411	train-auc:0.983539
[106]	eval-auc:0.913245	train-auc:0.984032
[107]	eval-auc:0.913161	train-auc:0.984507
[108]	eval-auc:0.912879	train-auc:0.98477
[109]	eval-auc:0.912623	train-auc:0.98514
[110]	eval-auc:0.912796	train-auc:0.985322
[111]	eval-auc:0.913325	train-auc:0.985503
[112]	eval-auc:0.913294	train-auc:0.985796
[113]	eval-auc:0.913601	train-auc:0.986048
[114]	eval-auc:0.914041	train-auc:0.986233
[115]	eval-auc:0.913734	train-auc:0.986426
[116]	eval-auc:0.913472	train-auc:0.986495
[117]	eval-auc:0.913565	train-auc:0.986901
[118]	eval-auc:0.913514	train-auc:0.987268
[119]	eval-auc:0.913404	train-auc:0.987481
[120]	eval-auc:0.913163	train-auc:0.98764
[121]	eval-auc:0.912674	train-auc:0.98779
[122]	eval-auc:0.912818	train-auc:0.987881
[123]	eval-auc:0.912772	train-auc:0.988072
[124]	eval-auc:0.912774	train-auc:0.988223
[125]	eval-auc:0.913432	train-auc:0.98833
[126]	eval-auc:0.913504	train-auc:0.988357
[127]	eval-auc:0.91365	train-auc:0.9887
[128]	eval-auc:0.913285	train-auc:0.988878
[129]	eval-auc:0.912917	train-auc:0.989188
[130]	eval-auc:0.91275	train-auc:0.989312
[131]	eval-auc:0.912434	train-auc:0.989549
[132]	eval-auc:0.912739	train-auc:0.98971
[133]	eval-auc:0.912816	train-auc:0.989802
[134]	eval-auc:0.912552	train-auc:0.989806
[135]	eval-auc:0.91298	train-auc:0.98998
[136]	eval-auc:0.913144	train-auc:0.990115
[137]	eval-auc:0.913213	train-auc:0.990296
[138]	eval-auc:0.913322	train-auc:0.990307

		r rediction billary eat inc
[139]	eval-auc:0.913202	train-auc:0.990428
[140]	eval-auc:0.91342	train-auc:0.990678
[141]	eval-auc:0.913371	train-auc:0.990774
[142]	eval-auc:0.91397	train-auc:0.990966
[143]	eval-auc:0.914171	train-auc:0.991238
[144]	eval-auc:0.91397	train-auc:0.991414
[145]	eval-auc:0.91401	train-auc:0.99149
[146]	eval-auc:0.9139 train-au	uc:0.991781
[147]	eval-auc:0.913967	train-auc:0.991849
[148]	eval-auc:0.914228	train-auc:0.99188
[149]	eval-auc:0.914294	train-auc:0.992087
[150]	eval-auc:0.914067	train-auc:0.992253
[151]	eval-auc:0.914565	train-auc:0.992425
[152]	eval-auc:0.914332	train-auc:0.992583
[153]	eval-auc:0.914596	train-auc:0.992739
[154]	eval-auc:0.914645	train-auc:0.992979
[155]	eval-auc:0.91472	train-auc:0.993045
[156]	eval-auc:0.914766	train-auc:0.993114
[157]	eval-auc:0.914389	train-auc:0.993178
[158]	eval-auc:0.914231	train-auc:0.99341
[159]	eval-auc:0.914631	train-auc:0.993534
[160]	eval-auc:0.91453	train-auc:0.993744
[161]	eval-auc:0.913955	train-auc:0.993844
[162]	eval-auc:0.91384	train-auc:0.993891
[163]	eval-auc:0.91334	train-auc:0.993993
[164]	eval-auc:0.913207	train-auc:0.994064
[165]	eval-auc:0.912971	train-auc:0.994087
[166]	eval-auc:0.91279	train-auc:0.994177
[167]	eval-auc:0.912641	train-auc:0.994285
[168]	eval-auc:0.91229	train-auc:0.994369
[169]	eval-auc:0.912413	train-auc:0.994427
[170]	eval-auc:0.91208	train-auc:0.99451
[171]	eval-auc:0.911873	train-auc:0.99461
[172]	eval-auc:0.911758	train-auc:0.994659
[173]	eval-auc:0.912005	train-auc:0.994814
[174]	eval-auc:0.911973	train-auc:0.994932
[175]	eval-auc:0.911706	train-auc:0.995033 train-auc:0.995099
[176]	eval-auc:0.911677 eval-auc:0.911542	train-auc:0.995099
[177]	eval-auc:0.911542 eval-auc:0.911257	train-auc:0.995217
[178] [179]	eval-auc:0.911257	train-auc:0.995333
[180]	eval-auc:0.911231	train-auc:0.995495
[181]	eval-auc:0.911424	train-auc:0.995529
[182]	eval-auc:0.911424	train-auc:0.995625
[183]	eval-auc:0.911338	train-auc:0.995676
[184]	eval-auc:0.911338	train-auc:0.995733
[185]	eval-auc:0.911323	train-auc:0.99574
[186]	eval-auc:0.911217	train-auc:0.995766
[187]	eval-auc:0.911349	train-auc:0.995791
[188]	eval-auc:0.911838	train-auc:0.995835
[189]	eval-auc:0.911821	train-auc:0.995996
[190]	eval-auc:0.911392	train-auc:0.996046
[191]	eval-auc:0.911657	train-auc:0.996067
[192]	eval-auc:0.911666	train-auc:0.996119
[193]	eval-auc:0.9117 train-au	
[194]	eval-auc:0.911706	train-auc:0.996237
[195]	eval-auc:0.91162	train-auc:0.996395
[196]	eval-auc:0.911519	train-auc:0.996499
-		

[197]	eval-auc:0.911364	train-auc:0.996578
[198]	eval-auc:0.91103	train-auc:0.996764
[199]	eval-auc:0.911493	train-auc:0.996839
[200]	eval-auc:0.911387	train-auc:0.996847
[201]	eval-auc:0.91128	train-auc:0.99688
[202]	eval-auc:0.911116	train-auc:0.996968
[203]	eval-auc:0.911375	train-auc:0.997098
[204]	eval-auc:0.911413	train-auc:0.997213
[205]	eval-auc:0.911404	train-auc:0.997273
[206]	eval-auc:0.911758	train-auc:0.997307
[207]	eval-auc:0.911755	train-auc:0.997325
[208]	eval-auc:0.911775	train-auc:0.997392
[209]	eval-auc:0.911283	train-auc:0.997469
[210]	eval-auc:0.911323	train-auc:0.997464
[211]	eval-auc:0.91097	train-auc:0.997533
[212]	eval-auc:0.910869	train-auc:0.997584
[213]	eval-auc:0.91086	train-auc:0.997643
[214]	eval-auc:0.910509	train-auc:0.997707
[215]	eval-auc:0.910734	train-auc:0.997765
[216]	eval-auc:0.910662	train-auc:0.997818
[217]	eval-auc:0.910765	train-auc:0.997831
[218]	eval-auc:0.910852	train-auc:0.997916
[219]	eval-auc:0.910929	train-auc:0.997948
[220]	eval-auc:0.910826	train-auc:0.997963
[221]	eval-auc:0.910906	train-auc:0.997982
[222]	eval-auc:0.910714	train-auc:0.997974
[223]	eval-auc:0.910811	train-auc:0.998037
[224]	eval-auc:0.910734	train-auc:0.99805
[225]	eval-auc:0.910734	train-auc:0.998053
[226]	eval-auc:0.910659	train-auc:0.998092
[227]	eval-auc:0.910512	train-auc:0.998103
[228]	eval-auc:0.910386	train-auc:0.99811
[229]	eval-auc:0.910478	train-auc:0.99815
[230]	eval-auc:0.910415	train-auc:0.998232
[231]	eval-auc:0.91032	train-auc:0.998274
[232]	eval-auc:0.910242	train-auc:0.99828
[233]	eval-auc:0.910627	train-auc:0.99834
[234]	eval-auc:0.910553	train-auc:0.998371
[235]	eval-auc:0.910003	train-auc:0.99841
[236]	eval-auc:0.910058	train-auc:0.998438
[237]	eval-auc:0.910256	train-auc:0.998543
[238]	eval-auc:0.910187	train-auc:0.99856
[239]	eval-auc:0.910276	train-auc:0.998609
[240]	eval-auc:0.910285	train-auc:0.998617
[241]	eval-auc:0.910075	train-auc:0.998671
[242]	eval-auc:0.909747	train-auc:0.998732
[243]	eval-auc:0.909773	train-auc:0.99878
[244]	eval-auc:0.909629	train-auc:0.998835
[245]	eval-auc:0.909678	train-auc:0.998866
[246]	eval-auc:0.909822	train-auc:0.998892
[247]	eval-auc:0.909923	train-auc:0.998888
[248]	eval-auc:0.909908	train-auc:0.998873
Stopping	g. Best iteration:	
[246]	eval-auc:0.909822	train-auc:0.998892

In [61]:

ιιαπιιιιεαυ(*)*

Out[61]:

	ld	Age	Marital	Education	Default	Balance	HHInsurance	CarLoan	Communication	La
0	1	32	2	3	0	-0.089700	1	0	2	28
1	2	32	1	1	0	-0.107359	1	0	1	26
2	3	29	2	3	0	-0.255179	1	0	0	3
3	4	25	2	1	0	-0.330371	1	0	0	11
4	5	30	1	3	0	0.330692	0	0	0	3
4										-

モデル作成

```
In [62]:
         def make_model(train, cat_cols, dtrain, dval):
             eval_list = [(dval, 'eval'), (dtrain, 'train')]
             param = {'max_depth': 4,
                      'min_child_weight' : 1,
                       'gamma' : 1,
                       'subsample' : 1,
                       'colsample_bytree' : 1,
                       'alpha' : 0.5,
                      'labmda' : 0.5,
                      'nthread' : 5,
                      'eta': 0.15,
                      'silent': 1,
                      'objective': 'binary:logistic',
                       'eval_metric' : 'auc'}
             num_round = 300
             bst = xgb.train(param, dtrain, num_round, eval_list, early_stoppin
         g_rounds=2)
             return bst
In [63]:
         from sklearn.preprocessing import LabelEncoder
         from sklearn.model_selection import train_test_split
         le = LabelEncoder()
         for col in cat cols:
             train[col] = le.fit_transform(train[col])
             test[col] = le.fit_transform(test[col])
In [64]:
         from sklearn.preprocessing import LabelEncoder
         from sklearn.model_selection import train_test_split
         X = train
         y = train.CarInsurance
         X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                              test_size=0.3, ran
         dom ctate=0)
```

uom_state-oj

```
In [65]:
         test_id = X_test.Id.values
         test_carInsurance = X_test.CarInsurance.values
         X_train.drop(['Id', 'CarInsurance'], axis=1, inplace=True)
         X_test.drop(['Id', 'CarInsurance'], axis=1, inplace=True)
         /opt/conda/lib/python3.6/site-packages/pandas/core/frame.py:3697: Sett
         ingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: http://pandas.pydata.org/pandas-
         docs/stable/indexing.html#indexing-view-versus-copy
           errors=errors)
In [66]:
         import xgboost as xgb
         dtrain = xgb.DMatrix(X_train, y_train)
         dval = xgb.DMatrix(X_test, y_test)
In [67]:
         cat_cols = ['Marital', 'Education', 'Communication',
                     'LastContactMonth', 'Outcome']
         bst = make_model(train, cat_cols, dtrain, dval)
         [0]
                 eval-auc:0.843711
                                          train-auc:0.873992
         Multiple eval metrics have been passed: 'train-auc' will be used for e
         arly stopping.
         Will train until train-auc hasn't improved in 2 rounds.
         [1]
                 eval-auc:0.857401
                                          train-auc:0.888068
         [2]
                 eval-auc:0.858789
                                          train-auc:0.889743
         [3]
                 eval-auc:0.868222
                                          train-auc:0.898518
         [4]
                 eval-auc:0.86839
                                          train-auc:0.900772
         [5]
                 eval-auc:0.868581
                                          train-auc:0.902292
         [6]
                 eval-auc:0.869914
                                          train-auc:0.90469
         [7]
                 eval-auc:0.87459
                                          train-auc:0.908159
         [8]
                 eval-auc:0.880214
                                          train-auc:0.911055
         [9]
                 eval-auc:0.882404
                                          train-auc:0.914217
         [10]
                 eval-auc:0.882466
                                          train-auc:0.914551
         [11]
                 eval-auc:0.883489
                                          train-auc:0.915835
         [12]
                 eval-auc:0.885043
                                          train-auc:0.918721
         [13]
                 eval-auc:0.885757
                                          train-auc:0.919617
         [14]
                 eval-auc:0.887242
                                          train-auc:0.920942
         [15]
                 eval-auc:0.888807
                                          train-auc:0.922525
         [16]
                 eval-auc:0.890478
                                          train-auc:0.924871
         [17]
                 eval-auc:0.891534
                                          train-auc:0.926951
                                          train-auc:0.928164
         [18]
                 eval-auc:0.892957
         [19]
                 eval-auc:0.895962
                                          train-auc:0.930997
         [20]
                 eval-auc:0.897326
                                          train-auc:0.932759
         [21]
                 eval-auc:0.897847
                                          train-auc:0.93358
         [22]
                 eval-auc:0.898956
                                          train-auc:0.934713
         [23]
                 eval-auc:0.901668
                                          train-auc:0.937263
         [24]
                 eval-auc:0.901987
                                          train-auc:0.938511
```

		Prediction binary cat in
[25]	eval-auc:0.902735	train-auc:0.939382
[26]	eval-auc:0.903814	train-auc:0.940139
[27]	eval-auc:0.904308	train-auc:0.941018
[28]	eval-auc:0.904941	train-auc:0.943245
[29]	eval-auc:0.90524	train-auc:0.943767
[30]	eval-auc:0.906739	train-auc:0.9445
[31]	eval-auc:0.90758	train-auc:0.945211
[32]	eval-auc:0.907701	train-auc:0.945981
[33]	eval-auc:0.907763	train-auc:0.946823
[34]	eval-auc:0.908723	train-auc:0.948778
[35]	eval-auc:0.909281	train-auc:0.949077
[36]	eval-auc:0.909593	train-auc:0.949645
[37]	eval-auc:0.909997	train-auc:0.950733
[38]	eval-auc:0.909675	train-auc:0.951515
[39]	eval-auc:0.910371	train-auc:0.952047
[40]	eval-auc:0.910199	train-auc:0.953082
[41]	eval-auc:0.909999	train-auc:0.953735
[42]	eval-auc:0.910571	train-auc:0.954585
[43]	eval-auc:0.910761	train-auc:0.954991
[44]	eval-auc:0.910699	train-auc:0.95594
[45]	eval-auc:0.910288	train-auc:0.956393
[46]	eval-auc:0.910279	train-auc:0.956551
[47]	eval-auc:0.910285	train-auc:0.956867
[48]	eval-auc:0.910929	train-auc:0.957337
[49]	eval-auc:0.911182	train-auc:0.958014
[50]	eval-auc:0.911919	train-auc:0.958921 train-auc:0.9594
[51] [52]	eval-auc:0.911936 eval-auc:0.912264	train-auc:0.960366
[52]	eval-auc:0.912376	train-auc:0.960858
[54]	eval-auc:0.913394	train-auc:0.961732
[55]	eval-auc:0.913947	train-auc:0.962622
[56]	eval-auc:0.914018	train-auc:0.963339
[57]	eval-auc:0.914254	train-auc:0.963866
[58]	eval-auc:0.914999	train-auc:0.964656
[59]	eval-auc:0.914545	train-auc:0.965208
[60]	eval-auc:0.914818	train-auc:0.966004
[61]	eval-auc:0.91485	train-auc:0.966996
[62]	eval-auc:0.915008	train-auc:0.967428
[63]	eval-auc:0.915643	train-auc:0.967847
[64]	eval-auc:0.915402	train-auc:0.968195
[65]	eval-auc:0.915764	train-auc:0.968901
[66]	eval-auc:0.915917	train-auc:0.969333
[67]	eval-auc:0.916017	train-auc:0.970077
[68]	eval-auc:0.916072	train-auc:0.970568
[69]	eval-auc:0.916069	train-auc:0.971027
[70]	eval-auc:0.915563	train-auc:0.971239
[71]	eval-auc:0.915802	train-auc:0.971581
[72]	eval-auc:0.915678	train-auc:0.971815
[73]	eval-auc:0.915707	train-auc:0.972114
[74]	eval-auc:0.916662	train-auc:0.972333
[75]	eval-auc:0.91776	train-auc:0.972977
[76]	eval-auc:0.918137	train-auc:0.973599
[77]	eval-auc:0.918894	train-auc:0.974045
[78]	eval-auc:0.918994	train-auc:0.974389
[79]	eval-auc:0.918779	train-auc:0.974714
[80]	eval-auc:0.918813	train-auc:0.974739
[81]	eval-auc:0.919342	train-auc:0.975209
[82]	eval-auc:0.919368	train-auc:0.975879
		1-4-

```
[83]
        eval-auc:0.918925
                                 train-auc:0.976141
[84]
        eval-auc:0.918868
                                 train-auc:0.976303
[85]
        eval-auc:0.918738
                                 train-auc:0.976604
[86]
        eval-auc:0.918839
                                 train-auc:0.976744
[87]
        eval-auc:0.918764
                                 train-auc:0.97708
[88]
        eval-auc:0.918865
                                 train-auc:0.977625
[89]
        eval-auc:0.919029
                                 train-auc:0.97817
[90]
        eval-auc:0.918954
                                 train-auc:0.978305
[91]
        eval-auc:0.918856
                                 train-auc:0.978581
[92]
        eval-auc:0.918894
                                 train-auc:0.978676
[93]
        eval-auc:0.918684
                                 train-auc:0.978837
[94]
        eval-auc:0.918525
                                 train-auc:0.978995
[95]
        eval-auc:0.918468
                                 train-auc:0.979489
[96]
        eval-auc:0.918707
                                 train-auc:0.979805
[97]
        eval-auc:0.919011
                                 train-auc:0.980142
[98]
        eval-auc:0.919109
                                 train-auc:0.980201
[99]
        eval-auc:0.919104
                                 train-auc:0.980199
[100]
        eval-auc:0.919457
                                 train-auc:0.980567
[101]
        eval-auc:0.919472
                                 train-auc:0.981132
[102]
        eval-auc:0.919627
                                 train-auc:0.981391
[103]
        eval-auc:0.919673
                                 train-auc:0.981657
[104]
        eval-auc:0.919748
                                 train-auc:0.981915
[105]
        eval-auc:0.91965
                                 train-auc:0.982071
[106]
        eval-auc:0.920076
                                 train-auc:0.982203
        eval-auc:0.920622
                                 train-auc:0.982273
[107]
[108]
        eval-auc:0.920507
                                 train-auc:0.982462
[109]
        eval-auc:0.920455
                                 train-auc:0.982735
[110]
        eval-auc:0.920455
                                 train-auc:0.982735
[111]
        eval-auc:0.920455
                                 train-auc:0.982735
Stopping. Best iteration:
[109]
        eval-auc:0.920455
                                 train-auc:0.982735
```

```
In [68]:
         dtest = xgb.DMatrix(X_test)
         predict = bst.predict(dtest)
In [69]:
         submissions = pd.DataFrame({"Id" : test_id, "PredValue" : predict, 'Ca
         rInsurance' : test_carInsurance})
In [70]:
         submissions.to_csv("./submissions.csv", index=False)
In [71]:
         def make_model_optuna(trial):
             from sklearn.preprocessing import LabelEncoder
             from sklearn.model_selection import train_test_split
             import xgboost as xgb
             import sklearn.datasets
             import sklearn.metrics
             le = LabelEncoder()
             for col in cat_cols:
                 train[col] = le.fit_transform(train[col])
                 test[col] = le.fit_transform(test[col])
```

```
X = train.drop(['Id', 'CarInsurance'], axis=1)
   y = train.CarInsurance
   X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                        test_size=0.3,
random_state=0)
   dtrain = xgb.DMatrix(X_train, y_train)
   dval = xgb.DMatrix(X_test, y_test)
   # eval_list = [(dval, 'eval'), (dtrain, 'train')]
```

This Notebook has been released under the Apache 2.0 open source license.

Did you find this Notebook useful? Show your appreciation with an upvote

Data

Data Sources

19 columns

DSS_DMC_Description.pdf

19 columns

Car Insurance Cold Calls

We help the guys and girls at the front to get out of Cold Call Hell

Last Updated: 2 years ago (Version 1)

About this Dataset

Introduction

Here you find a very simple, beginner-friendly data set. No sparse matrices, no fancy tools needed to understand what's going on. Just a couple of rows and columns. Super simple stuff. As explained below, this data set is used for a competition. As it turns out, this competition tends to reveal a common truth in data science: KISS - Keep It Simple Stupid

What is so special about this data set is, given it's simplicity, it pays off to use "simple" classifiers as well. This year's competition was won by a C5.0. Can you do better?

Description

We are looking at cold call results. Turns out, same salespeople called existing insurance customers up and tried to sell car insurance. What you have are details about the called customers. Their age, job, marital status, whether the have home insurance, a car loan, etc. As I said, super simple.

What I would love to see is some of you applying some crazy XGBoost classifiers, which we can square off against some logistic regressions. It would be curious to see what comes out on top. Thank you for your time, I hope you enjoy using the data set.

Acknowledgements

Thanks goes to the Decision Science and Systems Chair of Technical University of Munich (TUM) for getting the data set

■ submissions.csv

1	Id	PredValue	CarInsuran ce
2	2231	0.01446092 1	0
3	669	0.421857	1
4	3617	0.05994426 5	0
5	2364	0.28126207	0
6	143	0.00865555	0
7	539	0.61982554	1
8	1792	0.8545701	0
9	411	0.57173336	0
10	1151	0.02750595 7	0
11	1033	0.9008635	1
12	2179	0.01949213	0
13	225	0.00515167 46	0
14	2801	0.00543821 23	0
15	2282	0.24459662	0
16	3311	0.22591984	0
17	1747	0.35132027	1
18	2859	0.6926998	1
19	2407	0.79104865	0
20	3660	0.74910945	1
21	3028	0.00572839 4	0
22	3464	0.9128454	1
23	1372	0.83979803	1
24	966	0.7271425	1
25	1016	0.00573337 7	0
26	911	0.00232833	0

Comments (0)

Click here to comment...

* 🗵

© 2019 Kaggle Inc

Our Team Terms Privacy Contact/Support

