Прикладная теория графов

N#3(17)

ПРИКЛАДНАЯ ТЕОРИЯ ГРАФОВ

УДК 519.248, 519.176

СВЯЗНОСТЬ ПЛАНАРНОГО ГРАФА С ВЫСОКОНАДЁЖНЫМИ РЁБРАМИ

Г. Ш. Цицианивили, А.С. Лосев

Институт прикладной математики ДВО РАН, г. Владивосток, Россия

E-mail: Guram@iam.dvo.ru, A.S.Losev@yandex.ru

Приведены результаты вычислительных экспериментов по определению вероятности песвязности планарных графов с высоконадёжными ребрами. Полученные результаты подтверждают теоретическую, не более чем кубическую, оценку сложности проводимых вычислений, основанных на рассмотрении двойственных графов и построении асимптотических соотношений. Приведены результаты сравнения используемого методы с методом Монте-Карло, которые свидетельствуют о существенном сокращении числа арифметических операций и времени счета.

Ключевые слова: вероятность связности, двойственный граф, минимальный разрез.

Введение

В работе [1] доказаны асимптотические формулы вычисления вероятности несвязности планарного графа с высоконадёжными рёбрами, обобщающие известную формулу Буртина — Питтеля [2]. Параметрами доказанного соотношения являются минимальное число D рёбер в разрезах и число C разрезов с D рёбрами. Рассмотрение двойственных графов [3], в которых разрезы исходного графа порождают циклы, и использование известных алгоритмов перечисления циклов в произвольных графах [4] позволили сократить количество арифметических операций и получить сложность вычисления констант D,C не более чем кубическую от числа граней графа, а в частных

В настоящей работе рассмотрены отдельные случан планарных графов с минимальным числом рёбер в разрезах D=2,3,4,5, в том числе нанотрубка, имеющая прикладное значение. Для рассмотренных графов построены двойственные графы, точно вычислены константы D,C и получены асимптотические соотношения для вероятности несвязности. На основе полученных соотношений проведены вычислительные эксперименты, подтверждающие быстродействие предложенного алгоритма по сравнению с методом Монте-Карло.

1. Основные результаты

Рассмотрим неориентированный связный граф G с конечным множеством вершин U и рёбер W. Под разрезом графа понимается некоторое подмножество рёбер. после удаления которых граф перестает быть связным. Обозначим через d(L) объём разреза L (число его рёбер), D- минимальный объём разреза, C-число разрезов объёма D. Пусть ребра графа G отказывают независимо с вероятностями h.

Теорема 1. Для вероятности несвязности графа выполняется соотношение

$$\overline{P} \sim C h^D, h \rightarrow 0.$$
 (1

Данная теорема 1 является обобщением известной асимитотической формулы Буртина — Питтеля [2] и доказана в [1].

Предположим, что граф G является планарным и каждое ребро в нём принадлежит какому-либо простому циклу. Рёбра графа разбивают плоскость на грани. Сопоставны графу G двойственный граф G^* . Каждой грани z графа G соответствует вершина z^* графа G^* , каждому ребру w графа G, принадлежащему граням z_1, z_2 , соответствует ребро $w^{\bullet},$ соединяющее вершины $z_{1}^{\bullet},z_{2}^{\bullet}.$ Нас будут интересовать разрезы минимального объёма, а значит, двойственные им циклы минимальной длины.

Обозначим m число рёбер, n- число граней (включая внешнюю) в планарном графе G. Пусть элементы a_{ij} матрицы A определяют число ребер, содержащихся в пересечении граней $z_i \cap z_j$ $(i \neq j)$ графа G, $a_n = 0.$ Элементы стенени $A^l, l > 1,$ матрицы Aобозначим $a_{ij}^{(l)}$. В работе [4] получены формулы вычисления c_k — числа простых циклов длины $k,\,k=3,4,5,\,$ в двойственном графе, а в работе [1] — формула для c_2 :

$$c_2 = \frac{1}{4} \sum_{1 \le i,j \le n} a_{ij} (a_{ij} - 1), \quad c_3 = \frac{1}{6} \text{tr} A^3, \quad c_4 = \frac{1}{8} \left(\text{tr} A^4 - 2m - 2 \sum_{1 \le i \ne j \le n} a_{ij}^{(2)} \right),$$

$$c_5 = \frac{1}{10} \left(\text{tr} A^5 - 5 \text{tr} A^3 - 5 \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} - 2 \right) a_{ij}^{(3)} \right).$$

Из формулы Эйлера [5] в работе [1] получены соотношения

anepa [6] If place
$$C = C_1$$
 (2)
$$D \le 5, \quad D = \min(k : 2 \le k \le 5, c_k > 0), \quad C = c_D.$$

Из вышеизложенного следует, что вычисление асимптотических констант D,C произвольных планарных графов путём перехода к двойственным графам и с использованием известных алгоритмов перечисления их циклов имеет сложность не более чем кубическую, что значительно меньше, чем в прямых алгоритмах счёта. В частных случаях, когда любые две внутренние грани имеют не более одного общего ребра, сложность вычислений становится линейной. Последнее часто встречается в приложениях и имеет практическую значимость, в частности при создании и изучении различных наноматериалов, в основе которых лежат гексагональные структуры [3]. Одно из таких соединений рассмотрено далее в примере 2.

2. Вычислительный эксперимент

Пример 1. Приведём примеры планарных графов, минимальное число ребер в разрезах которых D=2,3,4,5. На рис. 1–4 построены графы G_1,G_2,G_3,G_4 с D=2,3,4,5соответственно и двойственные к ним графы $G_1^*, G_2^*, G_3^*, G_4^*$

Из формулы (2) нетрудно определить, что

$$C_{G_1} = 4$$
, $C_{G_2} = 7$, $C_{G_3} = 8$, $C_{G_4} = 12$,

где C_{G_i} имеет смысл константы C для графа $G_i,\ i=1,2,3,4.$ В свою очередь, из теоремы 1 следует:

гедует:
$$\overline{P}_{G_1}\sim 4h^2, \quad \overline{P}_{G_2}\sim 7h^3, \quad \overline{P}_{G_3}\sim 8h^4, \quad \overline{P}_{G_4}\sim 12h^5, \quad h\to 0.$$

Рис. 1. Пример графа с D=2 и двойственный ему (z_5- внениям грань)

Рис. 2. Пример графа с D=3 и даобственный ему $(z_5-$ внешияя грань)

Рис. 3. Прямер графа с D=4 и двойственный ему (z_{10} — внешияя грань)

Рис. 4. Пример графа с D=5 и двойственный ему (z_{20} —внешняя грань)

Сравним результаты вычисления вероятности несвязности \vec{P} по асимптотической \vec{P} по асимптотической \vec{P} с числом реализаций \vec{D} . Положим $\vec{b} = 0$ по Сравним результаты вычисления вероятности несвязности P по асимптотической формуле и методом Монте-Карло P с числом реализации 10^6 . Положим h=0.05,

