CSE 6220 INTRODUCTION TO HIGH PERFORMANCE COMPUTING PREFIX SUMS

Ümit V. Çatalyürek
School of Computational Science and Engineering
Georgia Institute of Technology

Prefix Sums Problem

Input n numbers: $x_0, x_1, x_2, \dots, x_{n-1}$

Output: $S_0, S_1, S_2, \dots, S_{n-1}$

$$S_i = \sum_{j=0}^l x_j$$

Best sequential algorithm

• $T(n,1) = \Theta(n)$

$$S_0 = X_0$$

for i = 1 to n-1
 $S_i = S_{i-1} + X_i$

Prefix Sums in Parallel

Assume n = p = power of 2

Algorithm Alg-0:

How many processors do we need?

•
$$p = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

What is the execution time?

•
$$T\left(n, \frac{n(n+1)}{2}\right) = \Theta(\log n)$$

•
$$T(n, \Theta(n^2)) = \Theta(\log n)$$

•
$$T(n,p) = \Theta\left(\frac{n^2 \log n}{p}\right)$$

Use divide-and-conquer to develop new algorithm

Base case

• To merge $S_{\frac{n}{2}-1}$ needs to be communicated to all procs on the right.

•
$$T(n,n) = T\left(\frac{n}{2}, \frac{n}{2}\right) + \Theta(\log n)$$

•

•
$$T(n,n) = \Theta(\log^2 n)$$

• Can we reduce this to $T(n,n) = \Theta(\log n)$?

Parallel Prefix Sum Algorithm (Alg-2)

```
Algorithm (for P_i)
total_sum ← prefix_sum ← local_number
for j=0 to d-1 do
   rank' ← rank XOR 2<sup>j</sup>
   send total_sum to rank'
   receive received_sum from rank'
   total_sum ← total_sum + received_sum
   if (rank > rank')
      prefix_sum \( \) prefix_sum \( + \) received_sum
endfor
```

Parallel Prefix Sum

- $T(n,n) = \Theta(\log n)$
- What if n > p ?

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	P_0			P ₁				P ₂				P_3				
S. S	x_0	x_1	x_2	x_3	χ_4	x_5	<i>x</i> ₆	x_7	<i>x</i> ₈	<i>x</i> ₉	x_{10}	x_{11}	x_{12}	<i>x</i> ₁₃	x_{14}	<i>x</i> ₁₅
C_{1} C_{2} C_{3} C_{4} C_{5}																
30 31 32 33 34 35 36 37 38 39 310 311 312 313 314 31	S_0	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}	S_{12}	S_{13}	S ₁₄	S_{15}

- Use Brent's Lemma?
- $T(n,p) = \Theta\left(\frac{n}{p}\log n\right)$

- Compute prefix sum locally on each processor
- Perform parallel prefix sum (Alg-2) using the last local prefix sum on each processor
- Add the result of parallel prefix sum on a processor to each of its local prefix sum

Computation time =
$$\Theta\left(\frac{n}{p} + \log p\right)$$

Communication time = $\Theta((\tau + \mu) \log p)$

Is this algorithm correct?

- What are we adding (on step 3) on each processor?
 - P_0 adds S_3
 - P_1 adds S_7
 - P₂ adds S₁₁
 - P₃ adds S₁₅
- Multiple alternative solutions, but here is a good/generic one:
 - Modify Alg-2 to start with prefix_sum ← 0

- What if n is not divisible by p?
 - Assign max $\left\lceil \frac{n}{p} \right\rceil$ to each processor: some processors will have 1 more element than the others.

What if p is not a power of 2.

Find
$$p'$$
 = a power of 2 such that $\frac{p'}{2}$

Parallel Prefix when p is not power of 2

What if p is not power of 2.

Find p' = a power of 2 such that $\frac{p'}{2}$

Run your code like you have p' processors.

Ignore communications to/from non-existing processors, i.e., rank $\geq p$.