Домашняя работа по дискретной математике №20

Михайлов Никита Маратович, БПМИ-167

1. Решение. а) Да, такое множество перечислимо. Можем составить алгоритм перечисления данного множества, например, на языке программирования C++:

```
void Func(std::vector<int> pi) {
    size_t i = 4;
    while(true) {
        for (int j = 4; j >= 0; --j) {
            std::cout << pi[i - j];
        }
        std::cout << std::endl;
        ++i;
    }
}</pre>
```

Данная функция будет печатать все пятерки подряд идущих цифр в числе π . Примечание. В нашей функции размер массива не имеет границ, так как число π – иррациональное.

- **б)** Заметим, что 1) данное множество подмножество всех различных пятерок цифр; 2) множество всех различных пятерок цифр конечно \Rightarrow все его подмножества конечны, а значит разрешимы.
- 2. Решение. Да. Перечислимо. Если множество X перечислимо ⇒ есть алгоритм, перечисляющий все элементы множества X. По мере перечисления, будем вычислять за конечное число шагов сумму цифр у данного числа. Если сумма ранва 10, то выпишем число, иначе перейдем к следующему. Почему мы выпишем все? Потому, что $Y \subseteq X$ и мы затронем точно все элементы множества Y.

- **3. Решение.** Пронумеруем все элементы множества \mathbb{A} и множества \mathbb{B} начиная с 0. Тогда для всех натуральных k будем выписывать пары элементов $(A_k, B_0), (A_k, B_1), ..., (A_k, B_k), (A_1, B_k), (A_2, B_k), ..., (A_k, B_k)$, проверяя при каждом выписывании не выписали ли мы эту пару раньше. Если же нет элемента с таким индексом, то просто "проглатываем" эту итерацию и переходим к следующей, ничего не делая.
- **4. Решение.** Пусть мн-во значений равно $\mathbb{X} \subseteq \mathbb{N}$. Из условия следует, что если $a > b \Leftrightarrow f(a) > f(b)$. Отсортируем в поряде возрастания мн-во \mathbb{X} , тогда $f(0) = \mathbb{X}_0, f(1) = \mathbb{X}_1, ..., f(1000) = \mathbb{X}_{1000}, ...$
- **5. Решение.** Известно, что существует неразрешимое подмножество натуральных чисел (приводился пример на семинаре). Пусть такое мн-во равно \mathbb{Y} , а $\mathbb{X} = \mathbb{N}$. Тогда $\mathbb{X} \cup \mathbb{Y} = \mathbb{N}$ разрешимо, при неразрешимом \mathbb{Y} .
- **6. Решение.** Так как S разрешимо, то S перечсислимо, следовательно, есть алгоритм, перечисляющий все его элементы. Переберем все прослые делители каждого элемента S. Выпишем простой делитель, если его не выписывали до этого. Заметим, что так мы выпешем в точности все простые делители.
- **7. Решение.** Нам нужно вычислить $f^{-1}(x)$. Так как f и f^{-1} биекции, то существует (единственный) такой y, что f(y) = x. Поэтому будем перебирать все натуральные числа, пока не встретим такой y, что f(y) = x. Этот y и будет значением функции $f^{-1}(x)$.