

2020國立臺北科技大學電機系專題競賽

題目:基於UWB定位之主動攝像機

指導教授:練光祐 組員:吳又新、葉奕宏、楊立任

專題摘要:

本次專題的目標是設計一套系統,讓攝影機能夠在特定範圍內能夠自動跟隨使用者;我們使用四組Arduino Pro Mini加上DWM1000做為Anchor,並將四個Anchor放在四個角落,四個DWM1000發出的UWB訊號所涵蓋的範圍為可定位範圍,再使用一組Arduino Pro Mini加上DWM1000搭配HC-05做為Tag讓使用者配戴在身上;使用者在定位範圍內移動過程中,Tag會分別測量到四個Anchor的距離,並透過藍芽將距離資料傳回電腦,經過運算後,可以得到使用者的位置,再將定位位置轉換成雲台馬達所需旋轉的角度,達到攝影機可以自動跟隨使用者的目標。

系統架構圖:

系統場景示意圖

系統訊號圖

UWB定位系統:

將四個Anchor架設在場地四處並給定座標,透過使用者配戴Tag,及時量測Tag至各Anchor距離,來計算定位點;在定位上使用Golden Section Search演算法來快速決定搜尋點,並搭配三角定位演算法來計算搜尋點誤差,達迭代次數後,最小誤差點即為使用者位置。

Golden Section Search 收斂示意圖

測距誤差處理:

將Anchor放至一高1.3公尺的腳架上,分別在水平距離Tag 1到10公尺內每隔0.5公尺量測一次數據,並計算出實際距離與量測距離兩者間倍率關係。將倍率經由曲線擬合後,可得出在相對應距離的校正倍率。

馬達端韌體架構:

由nRF24L01+接收來自電腦端所計算之 定位點資料,並進行解析,接著透過固定的 攝像機位置及定位點資料搭配餘弦定理來計 算角度,計算出所需旋轉值,並透過記錄前 次角度來判斷旋轉方向。

旋轉角度計算示意圖

定位實驗結果:

實驗結果圖 Tag:實際位置 Test:量測位置

Anchor: Anchor放置位置

測試點	實際位置	測試位置	誤差(m)
1	4.60, -0.30	4.64, -0.29	0.038
2	8.80, 3.25	8.67, 2.96	0.316
3	4.65, 7.50	4.77, 8.08	0.591
4	-0.30, 3.00	-0.29, 3.06	0.056
5	4.80, 1.80	4.61, 1.77	0.189
6	6.90, 2.75	6.83, 2.80	0.085
7	6.90, 5.60	6.95, 5.67	0.085
8	4.40, 5.60	4.45, 5.54	0.081
9	2.20, 5.60	2.12, 5.64	0.092
10	2.25, 3.00	2.15, 2.84	0.189
11	4.40, 3.70	4.37, 3.65	0.062