1D-Discrete Dynamical Systems (Assignment Sheet 1)

Introduction to Chaos Applied to Systems, Processes, and Products (ETSIDI, UPM)

Alfonso Allen-Perkins, Juan Carlos Bueno, and Eduardo Faleiro

2025-02-14

Contents

Exercise 1																						•			
Exercise 2																									1
Exercise 3																								:	4
Exercise 4				 																				:	4
Exercise 5																								:	4
Exercise 6				 																					٠

Exercise 1

Consider the map:

$$x_{n+1} = \cos(x_n)$$

- Plot several orbits $(x_n \text{ vs } n)$ starting from the interval $[-\pi, \pi]$.
- Create a **cobweb** plot $(x_{n+1} \text{ vs } x_n)$ and identify the fixed points.

Exercise 2

For each of the following maps, generate a **cobweb plot** starting from an appropriate initial condition x_1 :

- $\begin{array}{lll} \bullet & x_{n+1} = x_n^2 \text{ for } x_1 \text{ in } [-1,1]. \\ \bullet & x_{n+1} = 3x_n x_n^3 \text{ for } x_1 \text{ in } [-2,2] \text{ and also for } x_1 = 2.1. \\ \bullet & x_{n+1} = e^{-x_n} \text{ for } x_1 \text{ in } [0,1]. \end{array}$

Exercise 3

Consider the simple linear map:

$$x_{n+1} = \mu \cdot x_n$$

- Find the fixed points and analyze their nature based on the value of μ .
- Extend this analysis to study the fixed points of the generic nonlinear map:

$$x_{n+1} = g(x_n, \mu)$$

Exercise 4

Analyze the stability of the fixed points for the maps given in **Exercise 2**.

Exercise 5

The logistic map:

$$x_{n+1} = \mu \cdot x_n (1 - x_n)$$

is a **paradigm of chaos** in the domain [0, 1].

- Identify the fixed points.
- Generate cobweb plots for the following values of μ : 2.0, 2.5, 3.0, 3.5, 3.7, 4.0.

Exercise 6

Plot the **bifurcation diagrams** for the following maps:

1.
$$x_{n+1} = \mu \sin(x_n)$$
.

2.
$$x_{n+1} = 3x_n - x_n^3$$
.

3.
$$x_{n+1} = e^{-\mu(1-x_n)}$$

4.
$$x_{n+1} = \mu \cdot x_n (1 - x_n)$$
 for μ in [2, 4]

5.
$$x_{n+1} = \mu \frac{x_n}{1+x^2}$$
.

1.
$$x_{n+1} = \mu \sin(x_n)$$
.
2. $x_{n+1} = 3x_n - x_n^3$.
3. $x_{n+1} = e^{-\mu(1-x_n)}$.
4. $x_{n+1} = \mu \cdot x_n(1-x_n)$ for μ in [2, 4].
5. $x_{n+1} = \mu \frac{x_n^2}{1+x_n^2}$.
6. $x_{n+1} = \mu \cdot x_n + x_n^3 - x_n^5$ for μ in [-2, 2].

Note: Ensure that your plots use sufficient iterations to observe long-term behavior.