Part II

Concept Learning 2

(12 points) Structured questions. Answer in the space provided on the script.

- 1. (12 points) Consider the hypothetical task of learning the target concept MLGrade to understand the factors affecting the grades of students enrolled in an ML class and the hypothesis space H that is represented by a conjunction of constraints on input attributes, as previously described on page 7 of the "Concept Learning" lecture slides. Each constraint on an input attribute can be a specific value, don't care (denoted by '?'), and no value allowed (denoted by '0'), as previously described on page 5 of the "Concept Learning" lecture slides. Each input instance is represented by the following input attributes:
 - AttendClass (with possible values Always, Sometimes, Rarely),
 - FinalsGrade (with possible values Good, Average, Poor),
 - ProjectGrade (with possible values Good, Average, Poor), and
 - LoveML (with possible values Yes, No).

For example, a typical hypothesis in H is

 $\langle ?, Average, ?, Yes \rangle$.

Trace the CANDIDATE-ELIMINATION algorithm (reproduced below in Fig. 1) for the hypothesis space H given the sequence of positive (MLGrade = Pass) and negative (MLGrade = Fail) training examples from Table 1 below (i.e., show the sequence of S and G boundary sets).

- 1. $G \leftarrow$ maximally general hypotheses in H
- 2. $S \leftarrow$ maximally specific hypotheses in H
- 3. For each training example d
 - If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each $s \in S$ not consistent with d
 - * Remove s from S
 - * Add to S all minimal generalizations h of s s.t. h is consistent with d, and some member of G is more general than or equal to h
 - st Remove from S any hypothesis that is more general than another hypothesis in S
 - If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each $g \in G$ not consistent with d
 - $* \ \ \mathsf{Remove} \ g \ \mathsf{from} \ G$
 - * Add to G all minimal specializations h of g s.t. h is consistent with d, and some member of S is more specific than or equal to h
 - * Remove from G any hypothesis that is more specific than another hypothesis in G

Figure 1: CANDIDATE-ELIMINATION algorithm.

Example		Target Concept			
Student	AttendClass	FinalsGrade	ProjectGrade	LoveML	MLGrade
1. Ryutaro	Sometimes	Good	Poor	Yes	Pass
2. Haibin	Sometimes	Good	Average	Yes	Pass
3. Jinho	Rarely	Average	Average	No	Fail
4. Jingfeng	Sometimes	Poor	Average	No	Fail

Table 1: Positive (MLGrade = Pass) and negative (MLGrade = Fail) training examples for target concept MLGrade.

```
Solution:
 G_0 =
                \{\langle ?,?,?,?\rangle\}
  S_0 =
                \{\langle\emptyset,\emptyset,\emptyset,\emptyset\rangle\}
 G_1
         = G_0
  S_1
         = \{\langle Sometimes, Good, Poor, Yes \rangle\}
         = G_1
  S_2 = \{\langle S_3 \rangle = S_2 \}
               \{\langle Sometimes, Good, ?, Yes \rangle\}
                 \{\langle Sometimes, ?, ?, ?\rangle, \langle ?, Good, ?, ?\rangle, \langle ?, ?, ?, Yes \rangle\}
                  Recall that \forall g \in G_3 \ \exists s \in S_3 \ g \geqslant_g s.
                  That is, \forall g \in G_3 \ g \geqslant_g \langle Sometimes, Good, ?, Yes \rangle.
  S_4 = S_3
                \{\langle ?, Good, ?, ? \rangle, \langle ?, ?, ?, Yes \rangle\}
```

Suppose that the target concept c is in the hypothesis space H (i.e., $c \in H$) and an active learner has already observed the set D of 4 training examples in Table 1 above. State **every** possible input instance (i.e., assuming such a student exists) that the active learner can query next for the 5-th training example to reduce the version space $VS_{H,D}$ by at least half. Note that the active learner does not know the output label c(x) of any input instance x that it has not yet observed.

Hint: Draw the version space $VS_{H,D}$.

Solution: The student only needs to provide the following 6 input instances as answers: $\langle Always, Good, Good, Yes \rangle$, $\langle Always, Good, Average, Yes \rangle$, $\langle Always, Good, Poor, Yes \rangle$, $\langle Rarely, Good, Good, Yes \rangle$, $\langle Rarely, Good, Average, Yes \rangle$, $\langle Rarely, Good, Poor, Yes \rangle$.

For example, if $c(\langle Always, Good, Good, Yes \rangle) = 0$, then VS reduces to $\{\langle Sometimes, Good, ?, ? \rangle, \langle Sometimes, ?, ?, Yes \rangle, \langle Sometimes, Good, ?, Yes \rangle\}$. If $c(\langle Always, Good, Good, Yes \rangle) = 1$, then VS reduces to $\{\langle ?, Good, ?, ? \rangle, \langle ?, ?, ?, Yes \rangle, \langle ?, Good, ?, Yes \rangle\}$. Every of the 6 input instances reduces the version space VS by exactly half.

Part V

Neural Networks

(20 points) Structured questions. Answer in the space provided on the script.

1. (4 points) Supposing the weights w_1 and w_2 of a perceptron (see page 6 of "Neural Networks" lecture slides) are both set to the value of -1, derive the largest possible range of the values of w_0 that can be set for the perceptron to represent the NAND gate (i.e., NAND (x_1, x_2)). Assume that the inputs x_1 and x_2 and output $o(x_1, x_2)$ of the perceptron are Boolean with the values of 1 or -1. Show the steps of your derivation. No marks will be awarded for not doing so.

Solution:

• Case 1: Perceptron outputs false if both inputs are true (i.e., $o(x_1, x_2) = -1$ if $x_1 = 1 \land x_2 = 1$).

• Case 2: Perceptron outputs true if some input is false (i.e., $o(x_1, x_2) = 1$ if $x_1 = -1 \lor x_2 = -1$).

Therefore, $0 < w_0 \le 2$.

2. (8 points) Supposing the weights w_1, w_2, \ldots, w_n of a perceptron (see page 6 of "Neural Networks" lecture slides) are all set to the value of 1, derive the largest possible range of the values of w_0 (in terms of n) that can be set for the perceptron to represent the OR function. That is, the perceptron outputs false if all n Boolean inputs to the perceptron are false, and true otherwise. Assume that the inputs x_1, x_2, \ldots, x_n and output $o(x_1, x_2, \ldots, x_n)$ of the perceptron are Boolean with the values of 1 (i.e., true) or -1 (i.e., false). Show the steps of your derivation. No marks will be awarded for not doing so.

Solution:

• Case 1: Perceptron outputs false if all inputs are false (i.e., $o(x_1, \dots, x_n) = -1$ if $\bigwedge_{i=1}^n (x_i = -1)$).

$$\sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} -1 = -n$$

$$\Rightarrow w_{0} + \sum_{i=1}^{n} x_{i} = w_{0} - n \leq 0$$

$$\Rightarrow w_{0} = w_{0} = 0$$

$$\Rightarrow w_{0} \leq n.$$

• Case 2: Perceptron outputs true if at least one input is true (i.e., $o(x_1, \ldots, x_n) = 1$ if $\bigvee_{i=1}^n (x_i = 1)$).

Therefore, $n-2 < w_0 \le n$.

- 3. (8 points) Construct and draw a network of perceptron units with **only one hidden layer (of four units)** that implements $(x_1 \text{ XOR } x_2) \text{ XOR } x_3$ based on the following rules:
 - There should be only one (Boolean) output unit and an input unit for every (Boolean) input.
 - A Boolean is -1 if false, and 1 if true.
 - The activation function of every (non-input) unit is a −1 to 1 step function (refer to page 6 of the "Neural Networks" lecture slides), including that of the output unit.
 - Your weights must take on one of the following values: -1, 0, 1, 3.
 - You don't have to draw edges with weight 0.

Hint: Observe the truth table of $(x_1 \text{ XOR } x_2) \text{ XOR } x_3$.

Solution: For the first hidden unit to fire, $x_1 = 1 \land x_2 = 1 \land x_3 = 1$, which corresponds to first row of truth table.

For the second hidden unit to fire, $x_1 = -1 \land x_2 = -1 \land x_3 = 1$, which corresponds to second row of truth table.

For the third hidden unit to fire, $x_1 = -1 \land x_2 = 1 \land x_3 = -1$, which corresponds to third row of truth table.

For the fourth hidden unit to fire, $x_1 = 1 \land x_2 = -1 \land x_3 = -1$, which corresponds to fourth row of truth table.

x_1	x_2	x_3	$(x_1 \text{ XOR } x_2) \text{ XOR } x_3$
1	1	1	1
-1	-1	1	1
-1	1	-1	1
1	-1	-1	1
-1	-1	-1	-1
1	1	-1	-1
1	-1	1	-1
-1	1	1	-1

END OF PAPER