Network Flow

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more ...

Minimum Cut Problem

Flow network.

- Abstraction for material flowing through the edges.
- G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- All nodes have at least ne incident edge.
- c(e) = capacity of edge e.

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$

- [capacity]
- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ [conservation] e in to ve out of v

Def. The value of a flow f is: $v(f) = \sum f(e)$. e out of s

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$

- [capacity]
- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ [conservation]
 - e in to ve out of v

Def. The value of a flow f is: $v(f) = \sum f(e)$. e out of s

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf.
$$v(f) = \sum_{e \text{ out of } s} f(e)$$
by flow conservation, all terms
$$= \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = $30 \Rightarrow \text{Flow value} \leq 30$

Relationship between flows and cuts

Weak duality. Let f be any flow and (A, B) be any cut. Then, $v(f) \le cap(A, B)$. Pf.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$\leq cap(A, B)$$

value of flow = 27

 \leq

capacity of cut = 30

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28 \sim Flow value \leq 28

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

 \nearrow locally optimality \Rightarrow global optimality

Residual Graph

Original edge: $e = (u, v) \in E$.

Flow f(e), capacity c(e).

Residual edge.

- "Undo" flow sent.
- e = (u, v) and $e^{R} = (v, u)$.
- Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

Residual graph: $G_f = (V, E_f)$.

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Augmenting path

Def. An augmenting path is a simple $s \sim t$ path in the residual network G_f .

Def. The bottleneck capacity of an augmenting path P is the minimum residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G_f . Then, after calling AUGMENT, the resulting f' is a flow and $v(f') = v(f) + bottleneck(G_f, P)$.

$$AUGMENT$$
 (f, c, P)

 $b \leftarrow \text{bottleneck capacity of path } P.$ FOREACH edge $e \in P$ $\text{IF } (e \in E) \ f[e] \leftarrow f[e] + b.$

ELSE $f[e^{\text{reverse}}] \leftarrow f[e^{\text{reverse}}] - b$.

RETURN f.

Ford-Fulkerson augmenting path algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an s \sim t path P in the residual network G_f
- Augment flow along path P.
- Repeat until you get stuck.

```
Ford-Fulkerson(G, s, t, c) {
   foreach e ∈ E f(e) ← 0
   G<sub>f</sub> ← residual graph

while (there exists augmenting path P) {
   f ← Augment(f, c, P)
     update G<sub>f</sub>
   }
   return f
}
```


Computing a minimum cut from a maximum flow

To compute a min cut (A, B) from a max flow f^* :

- By augmenting path theorem, no augmenting paths in G_{f^*} .
- Compute A = set of nodes reachable from s in G_{f^*} .

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

- Pf. The following three conditions are equivalent for any flow f
 - (i) There exists a cut (A, B) such that v(f) = cap(A, B).
 - (ii) Flow f is a max flow.
 - (iii) There is no augmenting path relative to f.
- (i) \Rightarrow (ii) This was the corollary to weak duality lemma.
- (ii) \Rightarrow (iii) We show contrapositive.
 - Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of $f, t \notin A$.

edge e = (v, w) with $v \in B$, $w \in A$ must have f(e) = 0

$$v(f) = \sum_{\substack{e \text{ out of } A \\ e \text{ out of } A}} f(e) - \sum_{\substack{e \text{ in to } A \\ e \text{ out of } A}} f(e)$$
$$= \sum_{\substack{e \text{ out of } A \\ e \text{ out of } A}} c(e)$$
$$= cap(A, B) \quad \blacksquare$$

edge e = (v, w) with $v \in A, w \in B$ must have f(e) = c(e)

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \le nC$ iterations. Pf. Each augmentation increase value by at least 1. \blacksquare

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. •

Ford-Fulkerson augmenting path algorithm can be implemented to run in O(mnC) time.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an s \sim t path P in the residual network G_f
- Augment flow along path P.
- Repeat until you get stuck.

```
Ford-Fulkerson(G, s, t, c) {
    foreach e \in E f(e) \leftarrow 0
    G_f \leftarrow residual graph

O(nC)

while (there exists augmenting path P) {
    f \leftarrow Augment(f, c, P)
        update G_f

return f
}
```

 $O(m+n) \Rightarrow O(m)$ since each node has an incident edge, then $m \ge n/2$

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]

- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .

Capacity Scaling

CAPACITY-SCALING (G)

```
FOREACH edge e \in E: f[e] \leftarrow 0.
\Delta \leftarrow largest power of 2 \leq C.
WHILE (\Delta \geq 1)
      G_f(\Delta) \leftarrow \Delta-residual network of G with respect to flow f.
     WHILE (there exists an s \sim t path P in G_f(\Delta))
           f \leftarrow AUGMENT (f, c, P).
           Update G_f(\Delta).
     \Delta \leftarrow \Delta / 2
```

RETURN f.

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow. Pf.

- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- Upon termination of Δ = 1 phase, there are no augmenting paths. ■

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times. Pf. Initially $C/2 < \Delta \le C$. Δ decreases by a factor of 2 each iteration. \blacksquare

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow is at most $v(f) + m \Delta$. \leftarrow proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- L2 \Rightarrow v(f*) \leq v(f) + m (2 Δ).
- Each augmentation in a Δ -phase increases v(f) by at least Δ . ■

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time. •

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then value of the maximum flow is at most $v(f) + m \Delta$.

Pf. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a Δ -phase, there exists a cut (A, B) such that $cap(A, B) \leq v(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of $A, s \in A$.
- By definition of $f, t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta$$

$$= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta$$

$$\geq cap(A, B) - m\Delta$$

edge e = (v, w) with $v \in B$, $w \in A$ must have $f(e) < \Delta$

edge e = (v, w) with $v \in A, w \in B$ must have $f(e) > c(e) - \Delta$