Задача 1. Разделение прямоугольника

Алена играет в настольную игру «Загадочное Герцогство».

Рассмотрим прямоугольное клетчатое поле размером $a \times b$.

Необходимо разделить его на m прямоугольников вертикальными или горизонтальными разрезами. Прямоугольники не обязательно должны получиться равными. Необходимо суммарно провести ровно k разрезов.

Каждый разрез представляет собой прямую линию от одного края поля до другого края поля. Разрезы разрешено делать только по границам клеток — линиям сетки.

Выведите, сколько провести горизонтальных $(0 \le h < a)$ и сколько вертикальных $(0 \le v < b)$ разрезов. Если поле можно разрезать несколькими способами, выведите тот, в котором горизонтальных разрезов меньше. Если поле нельзя разрезать требуемым образом, выведите -1.

Формат входных данных

В первой строке дано ровно одно целое число t — количество тестов ($1 \le t \le 100$).

В следующих t строках находится описание тестов: в i-й строке через пробел даны четыре целых числа: a, b, k, m — высота и ширина поля, количество разрезов и количество прямоугольников соответственно ($1 \le a, b \le 10^9, 0 \le k \le 2 \cdot 10^9, 1 \le m \le 10^{18}, k < m$).

Формат выходных данных

Для каждого теста выведите через пробел ровно два целых числа h и v — количество горизонтальных и количество вертикальных разрезов, если прямоугольное клетчатое поле можно разрезать требуемым образом, в противном случае выведите число -1.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	18	a = 1		первая ошибка
2	19	$1 \leqslant m \leqslant 10^5$		первая ошибка
3	20	$1\leqslant k\leqslant 10^5$	2	первая ошибка
4	21	$1 \leqslant m \leqslant 10^9$	2	первая ошибка
5	22	нет	1–4	первая ошибка

Пример

стандартный ввод	стандартный вывод
3	0 1
2 2 1 2	-1
1 2 2 3	2 3
3 5 5 12	

Пояснение к примеру

В приведенном примере содержится три теста:

1) В первом тесте поле можно разрезать, как показано на рисунке:

Иллюстрация к первому тесту:

$$a = 2, b = 2, k = 1, m = 2.$$

- 2) Во втором тесте поле нельзя разрезать требуемым образом.
- 3) В третьем тесте поле можно разрезать, как показано на рисунке:

Иллюстрация к третьему тесту:

$$a = 3, b = 5, k = 5, m = 12.$$

Задача 2. Произведение Фибоначчи

Напомним, что последовательность чисел Фибоначчи определяется следующим образом: $F_0=1,\ F_1=1,\ F_n=F_{n-2}+F_{n-1}.$ Последовательность чисел Фибоначчи начинается так: $1,1,2,3,5,8,13,21,34,\ldots$

Дано натуральное число n. Требуется посчитать количество способов представить его как произведение чисел Фибоначчи, каждое из которых больше 1.

Формат входных данных

Первая строка ввода содержит целое число t — количество тестов $(1 \le t \le 50)$ Следующие t строк содержат тесты, каждая строка содержит одно целое число n $(2 \le n \le 10^{18})$.

Формат выходных данных

Для каждого теста вывести одно число — искомое количество способов.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	15	$2 \leqslant n \leqslant 100$		первая ошибка
2	17	$2\leqslant n\leqslant 10^5$	1	первая ошибка
3	9	$n=2^k$ для некоторого k		первая ошибка
4	38	$2 \leqslant n \leqslant 10^9$	1, 2	первая ошибка
5	21	$2 \leqslant n \leqslant 10^{18}$	1–4	первая ошибка

Пример

стандартный ввод	стандартный вывод
5	1
2	0
7	2
8	2
40	3
64	

Пояснение к примеру

В примере:

- ullet число 2 можно представить в виде произведения чисел Фибоначчи единственным способом 2=2:
- число 7 нельзя представить в виде произведения чисел Фибоначчи;
- число 8 можно представить двумя способами: $8 = 2 \cdot 2 \cdot 2$ и 8 = 8;
- число 40 можно представить двумя способами: $40 = 2 \cdot 2 \cdot 2 \cdot 5$ и $40 = 5 \cdot 8$.

Задача 3. Робот-пылесос

Рассмотрим координатную плоскость, которую планируется очищать с использованием робота пылесоса. Робот-пылесос представляет собой квадрат размером $k \times k$ со сторонами, параллельными осям координат. Изначально левый нижний угол робота находится в точке (0,0), а правый верхний, соответственно — в точке (k,k).

Вам дана последовательность из n перемещений робота по плоскости, i-е перемещение характеризуется направлением d_i , принимающим значения 'N' (вверх, увеличение координаты Y), 'S' (вниз, уменьшение координаты Y), 'W' (влево, уменьшение координаты X) или 'E' (вправо, увеличение координаты X), и целым числом a_i — расстоянием, на которое робот перемещается.

На рисунке приведены примеры возможных перемещений робота в каждом направлении.

Робот в каждый момент времени убирает всю площадь под собой. Иными словами, точка считается убранной тогда и только тогда, когда она в какой-то момент времени принадлежала квадрату размера $k \times k$, на котором находился робот.

По заданным перемещениям робота посчитайте суммарную площадь всей убранной поверхности.

Формат входных данных

В первой строке ввода через пробел даны два целых числа: размер робота k и количество команд $n\ (1\leqslant k\leqslant 10^4;\ 1\leqslant n\leqslant 10^5).$

В i-й из следующих n строк через пробел даны направление i-го перемещения d_i и его расстояние a_i (d_i — буква 'N', 'S', 'W' или 'E'; $1 \le a_i \le 10^9$).

Формат выходных данных

Выведите суммарную площадь убранной роботом поверхности.

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	9	$k = 1, n \leqslant 10, a_i \leqslant 10$		первая ошибка
2	10	$k \leqslant 10, n \leqslant 10, a_i \leqslant 100$	1	первая ошибка
3	11	$k \leqslant 1000, \ n \leqslant 1000, \ a_i = 1$		первая ошибка
4	8	$k \leqslant 10^4, \ n \leqslant 10^5, \ a_i = k$		первая ошибка
5	14	$k = 1, n \leqslant 1000, a_i \leqslant 10^9$	1	первая ошибка
6	15	$k \leqslant 10^4, \ n \leqslant 1000, \ a_i \leqslant 10^9$	1–3, 5	первая ошибка
7	16	$k = 1, n \leqslant 10^5, a_i \leqslant 10^9$	1, 5	первая ошибка
8	17	$k \leqslant 10^4, n \leqslant 10^5, a_i \leqslant 10^9$	1-7	первая ошибка

Примеры

стандартный ввод	стандартный вывод
1 5	17
E 2	
N 2	
W 4	
S 4	
E 4	
3 4	27
W 2	
N 1	
W 1	
N 2	

Пояснение к примеру

Ниже приведены иллюстрации к перемещениям робота согласно примерам из условия. Клетки, которые робот посетил за время своих перемещений, затемнены.

Задача 4. Разноцветные точки

Рассмотрим n точек на плоскости, пронумерованных от 1 до n, обозначим их как P_1, P_2, \ldots, P_n , координаты i-й точки (x_i, y_i) .

Рассмотрим следующий процесс. Выберем номер navaльной точки i и номер cnedyroweй за ней точки j ($i \neq j$), а также целое число t. После этого номер npuyenьной точки k вычисляется по следующему алгоритму. Рассмотрим вектор $\overrightarrow{P_iP_j}$, направленный из точки P_i в точку P_j . Упорядочим все точки, кроме j-й, по углу, отсчитывая против часовой стрелки от направления вектора, равного $\overrightarrow{P_iP_j}$, отложенного из точки j. При равенстве угла будем упорядочивать точки по возрастанию расстояния до точки j. В качестве точки k выбирается точка, являющаяся t-й в данном порядке при нумерации с единицы. Далее точка j становится начальной, а точка k — следующей за ней, после чего, пользуясь тем же алгоритмом, вычисляется номер прицельной точки. Этот процесс повторяется до бесконечности.

Для лучшего понимания процесса рассмотрим следующий пример. Пусть имеются 6 точек, изображенных на рисунке 1, а t=4. Пусть номер начальной точки равен 1, а номер следующей за ней точки равен 2. Отложим вектор $\overline{P_1P_2}$ от точки P_2 и отсортируем все точки, кроме точки P_2 , по углу, отсчитывая против часовой стрелки от направления данного вектора. На рисунке 2 отложенный вектор обозначен пунктирной линией, а также для удобства проведены векторы из точки P_2 во все остальные точки.

Рисунок 2: Вектор $\overrightarrow{P_1P_2}$, а также векторы из точки P_2 во все остальные точки

Точки будут упорядочены следующим образом: P_3 , P_5 , P_1 , P_6 , P_4 . Таким образом, номер прицельной точки равен 6. Далее точка 2 становится начальной, а точка 6 — следующей.

На рисунке 3 изображен процесс для начальной точки 2 и следующей точки 6. Точки будут упорядочены следующим образом: P_4 , P_3 , P_2 , P_1 , P_5 . Обратите внимание, что точка P_1 в этом списке находится раньше, чем точка P_5 , так как расстояние от точки P_1 до точки P_6 меньше, чем расстояние от точки P_5 до точки P_6 . Прицельная точка будет иметь номер 1.

На рисунке 4 изображен процесс для начальной точки 6 и следующей точки 1. Обратите внимание, что в данном случае вектор $\overrightarrow{P_6P_1}$, отложенный из точки P_1 совпадает с вектором $\overrightarrow{P_1P_5}$, отложенным из точки P_1 . Эти векторы изображены сплошной линией. Точки будут упорядочены следующим образом: P_5 , P_6 , P_4 , P_2 , P_3 . Прицельная точка будет иметь номер 2. Таким образом, далее процесс начнется для начальной точки 1 и следующей точки 2 и зациклится.

Рисунок 4: Процесс для начальной точки 6 и следующей точки 1

Покрасим каждую из n точек в один из трех цветов. Цвет i-й точки определяется следующим образом:

- Пусть существует такая точка j, что, выбрав точку i в качестве начальной, а точку j в качестве следующей, в результате описанного процесса точка i побывает начальной бесконечное количество раз. В этом случае точка i будет покрашена в **зеленый** цвет.
- Пусть точка i не была покрашена в зеленый цвет и существует такая точка j, что, выбрав точку i в качестве начальной, а точку j в качестве следующей, в результате описанного процесса точка i побывает начальной еще хотя бы один раз. В этом случае точка i будет покрашена в **синий** цвет.
- Пусть точка i не была покрашена ни в зеленый, ни в синий цвет. В этом случае точка i будет покрашена в **красный** цвет.

Для каждой точки определите, в какой цвет ее нужно покрасить.

Формат входных данных

Первая строка содержит два целых числа n и t $(2 \le n \le 1\,000, 1 \le t \le n-1).$

Каждая из следующих n строк содержит два целых числа x_i и y_i ($-10^9 \leqslant x_i, y_i \leqslant 10^9$). Гарантируется, что никакие две точки не совпадают.

Формат выходных данных

Выведите строку, состоящую из n символов: i-й символ строки должен обозначать цвет i-й точки. Для зеленой точки выведите букву «G», для синей точки — букву «В», а для красной точки — букву «R».

Система оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	10	$n\leqslant 10,\ m Bce\ точки$ расположены на одной прямой		первая ошибка
2	15	все точки расположены на одной прямой	1	первая ошибка
3	10	$n \leqslant 10$, гарантируется, что нет синих точек		первая ошибка
4	10	$n \leqslant 10$	1, 3	первая ошибка
5	15	$n \leqslant 100$, гарантируется, что нет синих точек	3	первая ошибка
6	15	$n \leqslant 100$	1, 3, 4, 5	первая ошибка
7	5	$n\geqslant 3$, все точки являются вершинами строго выпуклого многоугольника и даны в порядке обхода против часовой стрелки		первая ошибка
8	20	нет	1–7	первая ошибка

Примеры

стандартный ввод	стандартный вывод
6 4	GGBBRG
-1 -1	
1 -2	
4 -2	
2 -4	
2 3	
-4 -5	
2 1	GG
1 1	
2 2	

Пояснение к примеру

Рассмотрим некоторые точки из первого примера.

Точка P_1 окрашены в зеленый цвет, потому что можно выбрать точку P_2 в качестве следующей, и процесс посетит точку P_1 бесконечное количество раз. Данный пример был рассмотрен выше в условии задачи.

Можно показать, что точка P_3 не является зеленой, однако она является синей, так как можно выбрать точку 1 в качестве следующей, точка 3 окажется начальной еще хотя бы один раз. Процесс для начальной точки 1 и следующей точки 3 проиллюстрирован на рисунках 5, 6 и 7 ниже.

Для начальной точки 3 и следующей точки 1 точки будут упорядочены следующим образом: P_6, P_4, P_2, P_3, P_5 . Точка с номером 3 становится прицельной. Далее для начальной точки 1 и следующей точки 3 точки будут упорядочены следующим образом: P_5, P_1, P_2, P_6, P_4 . Точка с номером 6 становится прицельной. Наконец, для начальной точки 3 и следующей точки 6 точки будут упорядочены следующим образом: P_4, P_3, P_2, P_1, P_5 . Точка с номером 1 становится прицельной. Далее

процесс продолжится с начальной точкой 6 и следующей точкой 1. Из примера, описанного выше в условии задачи, мы знаем, что процесс зациклится, посещая точки с номерами 6, 1 и 2.

Рисунок 5: Процесс для начальной точки 3 и следующей точки 1

Рисунок 6: Процесс для начальной точки 1 и следующей точки 3

Рисунок 7: Процесс для начальной точки 3 и следующей точки 6

Во втором примере из условия легко показать, что если одна из точек является начальной, а другая — следующей, то прицельной станет точка, которая являлась начальной. Поэтому обе точки будут окрашены в зеленый цвет.