

Examen Calcul Scientifique

Durée: 1h30

ightharpoonup Exercice 1. Soit $A\in\mathcal{M}_{m,n}(\mathbb{R})$ de rang $r\geq 1$ telle que $m\leq n$. On pose

$$\Pi = I_n - A^T (AA^T)^+ A$$

avec $(AA^T)^+$ la matrice pseudo-inverse de (AA^T) .

- 1- On suppose r = m:
 - a- Montrer que AA^T est inversible.
 - b- Que vaut II?
- 2- On suppose r < m:
 - a- Montrer que Π est symétrique et calculer Π^2 . Conclure quant à Π .
 - b- Depuis $A=U\Sigma V^T$ la SVD de A, donner une expression de Π ne dépendant que de $U,\,V$ ou $\Sigma.$
- \triangleright Exercice 2. Soient $A \in \mathcal{M}_n(\mathbb{R})$ inversible et $b \in \mathbb{R}^n$. On cherche à résoudre le système Ax = b avec des méthodes itératives construites depuis l'algorithme 1:

Dans tout ce qui suit, on suppose que le test d'arrêt s'est activé à l'itération m:

$$\forall j = 1 \cdots m - 1, \quad h_{j+1,j} > 0 \text{ et } h_{m+1,m} = 0.$$

On pose:

- $V_m = [v_1, \cdots, v_m] \in \mathcal{M}_{n,m}(\mathbb{R}),$
- $H_m \in \mathcal{M}_m(\mathbb{R})$ telle que $[H_m]_{i,j} = h_{i,j}$ avec $1 \leq i, j \leq m$,
- $\bar{H}_m \in \mathcal{M}_{m+1,m}(\mathbb{R})$ telle que $[\bar{H}_m]_{i,j} = h_{i,j}$ avec $1 \leq i \leq m+1$ et $1 \leq j \leq m$.

Algorithm 1

- 1: Choisir $x_0 \in \mathbb{R}^n$ et $m \in \mathbb{N}^*$ tel que $m \le n$
- 2: $r_0 = b Ax_0$; $\beta = ||r_0||_2$
- 3: $v_1 = r_0/||r_0||_2$;
- 4: for j = 1, 2, ..., m do

5:
$$w_j = Av_j - \sum_{i=1}^j h_{i,j}v_i \text{ avec } h_{i,j} = v_i^T Av_j \quad \forall i = 1 \cdots j$$

- 6: $h_{j+1,j} = ||w_j||_2$
- 7: if $h_{j+1,j} = 0$ then
- 8: m = j
- 9: Arrêt
- 10: end if
- 11: $v_{j+1} = w_j/h_{j+1,j}$
- 12: end for

Etude de l'Algorithme 1

- 1- Quel processus est associé à cet algorithme ?
- 2- Comme vu en TP, proposer un algorithme réalisant l'étape 5 ? Vous l'expliciterez et justifierez votre choix.
- 3- Quelles sont les complexités calcul, à savoir le nombre d'opérations en virgule flottante, et mémoire obtenue après m itérations ?
 - 4- On suppose m=4 pour cette question. Représenter les matrices H_m et \bar{H}_m .
- ∠ 5- Montrer que les colonnes de V_{m+1} , et donc de V_m , sont orthonormales deux à deux.

On admet les relations suivantes :

$$AV_m = V_m H_m + h_{m+1,m} v_{m+1} e_m^T \tag{1}$$

$$AV_m = V_{m+1}\bar{H}_m \tag{2}$$

6- Montrer que $V_m^T A V_m = H_m$.

Un algorithme pour résoudre Ax = b

On suppose avoir réalisé m itérations de l'Algorithme 1 depuis $x_0 \in \mathbb{R}^n$ avec $r_0 = b - Ax_0$ et $\beta = ||r_0||_2$, avec m tel que

$$\forall j=1\cdots m, \quad h_{j+1,j}>0$$

- 7- Justifier que la matrice H_m est inversible.
- 8- On note $y_m \in \mathbb{R}^n$ la solution du système $H_m y = \beta e_1$ avec e_1 le premier vecteur de la base canonique de \mathbb{R}^n . Proposer un algorithme de résolution de ce système basé sur une factorisation de la matrice H_m . Vous donnerez la complexité calcul et mémoire de celui-ci.
- 9- On note $x_m = x_0 + V_m y_m$. Montrer que

$$||b - Ax_m||_2 = h_{m+1,m}|e_m^T y_m|$$

- 10- Justifier pourquoi cet algorithme converge en au plus n itérations vers la solution de Ax = b.
- 11- Donner la complexité calcul et mémoire de cette approche pour obtenir la solution x. Commenter l'intérêt de son utilisation vis-à-vis du gradient conjugué dans le cas où A est symétrique définie positive.