Table L1. Selection of data splitting ratio for ML models.

ML model	Metrics	Data Splitting Ratio				
		90:10	80:20	70:30	60:40	50:50
IL/MOF composites- CO ₂ Uptake (mol/kg)	R ² -Train	0.98	0.97	0.93	0.97	0.85
	R ² -Test	0.70	0.70	0.69	0.71	0.64
	MAE-Train	1.03×10 ⁻¹	1.06×10^{-1}	1.81×10 ⁻¹	1.01×10 ⁻¹	2.77×10 ⁻¹
	MAE-Test	3.68×10^{-1}	3.88×10 ⁻¹	3.87×10 ⁻¹	3.73×10 ⁻¹	4.29×10^{-1}
	RMSE-Train	1.58×10^{-1}	1.69×10 ⁻¹	2.73×10 ⁻¹	1.73×10 ⁻¹	4.04×10^{-1}
	RMSE-Test	5.56×10 ⁻¹	5.62×10 ⁻¹	5.56×10 ⁻¹	5.29×10 ⁻¹	5.87×10 ⁻¹
IL/MOF composites- N ₂ Uptake (mol/kg)	SRCC-Train	0.99	0.99	0.98	0.99	0.94
	SRCC-Test	0.85	0.85	0.85	0.87	0.81
	R ² -Train	0.99	0.99	0.92	0.96	0.96
	R ² -Test	0.84	0.87	0.86	0.84	0.80
	MAE-Train	5.68×10 ⁻³	1.18×10 ⁻²	1.15×10 ⁻²	1.16×10 ⁻²	1.37×10 ⁻²
	MAE-Test	2.43×10 ⁻²	2.38×10 ⁻²	2.33×10 ⁻²	2.48×10 ⁻²	2.80×10 ⁻²
	RMSE-Train	1.08×10 ⁻²	1.98×10 ⁻²	2.68×10 ⁻²	1.73×10 ⁻²	1.92×10 ⁻²
	RMSE-Test	3.68×10 ⁻²	3.53×10 ⁻²	3.40×10 ⁻²	3.66×10 ⁻²	4.08×10 ⁻²
	SRCC-Train	0.99	0.98	0.98	0.99	0.98
	SRCC-Test	0.92	0.93	0.93	0.92	0.89
MOFs-CO ₂ Uptake (mol/kg) MOFs-N ₂ Uptake (mol/kg)	R ² -Train	0.94	0.97	0.92	0.99	0.97
	R ² -Test	0.72	0.76	0.69	0.72	0.73
	MAE-Train	1.80×10^{-1}	1.22×10 ⁻¹	2.07×10 ⁻¹	4.84×10^{-2}	1.24×10^{-1}
	MAE-Test	3.78×10 ⁻¹	3.74×10 ⁻¹	4.03×10 ⁻¹	3.82×10 ⁻¹	3.73×10 ⁻¹
	RMSE-Train	2.99×10 ⁻¹	2.12×10 ⁻¹	3.36×10 ⁻¹	1.03×10 ⁻¹	2.16×10^{-1}
	RMSE-Test	6.32×10 ⁻¹	6.08×10 ⁻¹	6.50×10 ⁻¹	5.96×10 ⁻¹	5.97×10^{-1}
	SRCC-Train	0.98	0.99	0.97	0.99	0.99
	SRCC-Test	0.91	0.91	0.89	0.89	0.88
	R ² -Train	0.97	0.99	0.97	0.99	0.98
	R ² -Test	0.91	0.90	0.88	0.78	0.78
	MAE-Train	8.33×10 ⁻³	4.23×10 ⁻³	8.90×10^{-3}	4.35×10 ⁻³	8.74×10^{-3}
	MAE-Test	1.94×10^{-2}	1.90×10^{-2}	2.15×10^{-2}	2.62×10 ⁻²	2.79×10^{-2}
	RMSE-Train	1.58×10^{-2}	1.06×10^{-2}	1.72×10 ⁻²	9.09×10^{-3}	1.48×10^{-2}
	RMSE-Test	3.03×10 ⁻²	3.17×10^{-2}	3.24×10^{-2}	4.53×10 ⁻²	4.47×10 ⁻²
	SRCC-Train	0.99	0.99	0.99	0.99	0.99
	SRCC-Test	0.95	0.94	0.93	0.91	0.89