

Birzeit University Faculty of Engineering & Technology Department of Electrical & Computer Engineering

Accelerated Cloud Native DLRM-based E-commerce Recommendation System

Prepared By: Ibraheem Alyan Mohammad Abu-Shelbaia Nidal Zabadi

Supervised By: Dr. Ahmed Shawahna

A Graduation Project submitted to the Department of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of B.Sc. in Computer Engineering

Birzeit December, 2023

Abstract

Write here

المستخلص أكتب هنا

Table of Contents

\mathbf{E}_{1}	nglisl	h Abst	ract]						
\mathbf{A}	rabic	Abstr	ract	I						
Ta	able (of Con	tents	III						
Li	ist of	Table	\mathbf{s}	V						
Li	ist of	Figur	es	\mathbf{V}						
1	Introduction and Motivation									
	1.1	Motiv	ation	. 1						
	1.2	Proble	em Statement	. 2						
	1.3	Metho	odology	. 2						
	1.4	Contr	ibution	. 2						
	1.5	Repor	t Outline	. 2						
2	Background 3									
	2.1	Transf	former	. 3						
		2.1.1	Model Architecture	. 3						
		2.1.2	Scaled Dot–Product Attention							
		2.1.3	Multi-Head Attention	. 3						
		2.1.4	Self–Attention and Multi–Head Self–Attention	. 3						
		2.1.5	Feed Forward Network	. 3						
	2.2	Vision	Transformer (ViT)	. 3						
	2.3	weight ViT								
3	${ m Lit}\epsilon$	erature	e Review—ViT Acceleration Techniques	۷						
	3.1	Pruni	ng	. 4						
	3.2	Quant	tization							

	3.3	Low-Rank Approximation	4				
	3.4	Knowledge Distillation	4				
	3.5	Lightweight ViT	4				
	3.6	Transformer Acceleration on Hardware	4				
4	Pro	posed Work	5				
5	5 Project Plan						
6	6 Conclusion and Future Work						
\mathbf{B}^{i}	Bibliography						

List of Tables

List of Figures

Introduction and Motivation

Contents

1.1	Motivation	
1.2	Problem Statement	
1.3	Methodology	
1.4	Contribution	
1.5	Report Outline	

1.1 Motivation

The exponential growth of e-commerce has introduced an enormous amount of choice, where consumers face overwhelming product options. To address this challenge, personalized recommendation systems have become essential for enhancing the shopping experience, and increasing the conversion rate for any e-commerce platform.

In contrast to conventional collaborative filtering[1], content-based[1], or popularity-based recommendation systems, our AI-based solution offers distinct advantages. Firstly, AI makes it possible to provide per-user personalized recommendations, which are tailored to their unique preferences and behaviors, enhancing user engagement and satisfaction. AI systems can also intelligently recommend comparable or complementary products or content to increase revenue through cross-selling. Furthermore, AI takes into account the impressions and interactions of users with items, allowing for a more dynamic and accurate understanding of user preferences. Using AI leads to improved recommendation accuracy and relevancy, leading to increased conversion rates and business growth.

Statistics from different use cases of recommendation systems:

- On average, an intelligent recommender system delivers a 22.66% lift in conversions rates [2] for web products.
- IKEA experienced a 30% increase in click-through rate, 2% surge in average order value [3] using Google Recommendations AI [4]
- Lotte Mart <u>increased new product purchases by 1.7x</u> [5] using Amazon Personalize [6]

In summary, our project's motivation is elevating the e-commerce experience, driving business success, and harnessing cutting-edge AI technologies to create a recommendation system that is both high-performing and scalable.

- 1.2 Problem Statement
- 1.3 Methodology
- 1.4 Contribution
- 1.5 Report Outline

Background

Conte	ents	5		
	2.1	Trar	nsformer	3
		2.1.1	Model Architecture	3
		2.1.2	Scaled Dot–Product Attention	3
		2.1.3	Multi–Head Attention	3
		2.1.4	Self–Attention and Multi–Head Self–Attention	3
		2.1.5	Feed Forward Network	3
	2.2	Visi	on Transformer (ViT) \dots	3
	2.3	\mathbf{Ligh}	ntweight ViT	3
2.1	Tr	ansf	former	
2.1.1	Model Architecture			
2.1.2	Scaled Dot-Product Attention			
2.1.3	M	Iulti–	-Head Attention	
2.1.4	Self-Attention and Multi-Head Self-Attention			
2.1.5	Feed Forward Network			
2.2	Vision Transformer (ViT)			
2.3	Li	ghtw	veight ViT	

Literature Review—ViT Acceleration Techniques

Cont	ents						
	3.1	3.1 Pruning					
	3.2 Quantization						
	3.3	Low-Rank Approximation					
	3.4	Knowledge Distillation					
	3.5	Lightweight ViT					
	3.6	Transformer Acceleration on Hardware 4					
3.1	Pruning						
3.2	Qu	Quantization					
3.3	Low-Rank Approximation						
3.4	Knowledge Distillation						
3.5	Lightweight ViT						
3.6	Transformer Acceleration on Hardware						

Proposed Work

Project Plan

Conclusion and Future Work

Bibliography

- [1] Nvidia Glossary, "Recommendation System." https://www.nvidia.com/en-us/glossary/data-science/recommendation-system/. Accessed: 2023-12-19.
- [2] Salesforce Marketing Cloud, "Predictive intelligence benchmark report." https://brandcdn.exacttarget.com/sites/exacttarget/files/deliverables/etmc-predictiveintelligencebenchmarkreport.pdf, 2014.
- [3] Google Cloud Summit, "Ikea's approach to building a powerful recommendations engine." by Google Cloud Events https://www.youtube.com/watch?v=PyjCOwRRtBg, 2021.
- [4] Google Cloud, "Google Recommendations AI." https://cloud.google.com/recommendations. Accessed: 2023-11-9.
- [5] Sungoh Park and Kyoungtae Hwang, "Increasing customer engagement and loyalty with personalized coupon recommendations using Amazon Personalize," AWS Machine Learning Blog, 2020.
- [6] AWS, "AWS Personalize." https://aws.amazon.com/personalize/, accessed: 2023-10-4.