COMP9020 Week 2 Sets, Relations, and Functions

• Textbook (R & W) - Ch. 1, Sec. 1.3-1.5

Summary of topics

- Recap of key definitions
- Set equality
- Laws of Set operations
- Derived laws
- Examples and Exercises

Defining Sets

- Explicitly list elements
- Take a subset of an existing set by restricting the elements
- Build up from existing sets using Set Operations

Set Operations

Definition

 $A \cup B$ – union (a or b):

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

 $A \cap B$ – intersection (a and b):

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

 A^c – **complement** (with respect to a universal set \mathcal{U}):

$$A^c = \{x : x \in \mathcal{U} \text{ and } x \notin A\}.$$

We say that A, B are **disjoint** if $A \cap B = \emptyset$

Set Operations

Other set operations

Definition

 $A \setminus B$ – **set difference**, relative complement (a but not b):

$$A \setminus B = A \cap B^c$$

 $A \oplus B$ – **symmetric difference** (a and not b or b and not a; also known as a or b exclusively; a xor b):

$$A \oplus B = (A \setminus B) \cup (B \setminus A)$$

Venn Diagrams

A simple graphical approach to reason about the algebraic properties of set operations.

Set Equality

Two sets are **equal** (A = B) if they contain the same elements

To show equality:

- Examine all the elements
- Show $A \subseteq B$ and $B \subseteq A$
- Use the Laws of Set Operations

Example

Show $\{3, 2, 1\} = (0, 4)$.

Example

Show $\{3, 2, 1\} = (0, 4)$.

$$(0,4) = \{1,2,3\} = \{3,2,1\}.$$

Example

Show $\{n:n\in\mathbb{Z} \text{ and } n^2<5\}=\{n:n\in\mathbb{Z} \text{ and } |n|\leq 2\}$

Example

Show
$$\{n:n\in\mathbb{Z} \text{ and } n^2<5\}=\{n:n\in\mathbb{Z} \text{ and } |n|\leq 2\}$$

$$\{n: n \in \mathbb{Z} \text{ and } n^2 < 5\} = \{-2, -1, 0, 1, 2\}$$

= $\{n: n \in \mathbb{Z} \text{ and } |n| \le 2\}$

Example

Show ${n: n \in \mathbb{Z} \text{ and } n^2 > 5} = {n: n \in \mathbb{Z} \text{ and } |n| > 2}$

Example

Show ${n: n \in \mathbb{Z} \text{ and } n^2 > 5} = {n: n \in \mathbb{Z} \text{ and } |n| > 2}$

Show:

- For all $n \in \mathbb{Z}$, if $n^2 > 5$ then |n| > 2; and
- For all $n \in \mathbb{Z}$, if |n| > 2 then $n^2 > 5$. ?

That is, show:

For all
$$n \in \mathbb{Z}$$
: $n^2 > 5$ if, and only if $|n| > 2$

Laws of Set Operations

```
For all sets A, B, C:
   Commutativity
                                       A \cup B = B \cup A
       交换律
                                       A \cap B = B \cap A
                               (A \cup B) \cup C = A \cup (B \cup C)
    Associativity
                               (A \cap B) \cap C = A \cap (B \cap C)
       结合律
                           A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
     Distribution
                           A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
       分配率
       Identity
                                          A \cup \emptyset = A
                                          A \cap \mathcal{U} = A
                                        A \cup (A^c) = \mathcal{U}
 Complementation
                                        A \cap (A^c) = \emptyset
```

Substitution

Because the laws hold for all sets, we can substitute complex expressions for each set symbol.

Example

$$A \cup B = B \cup A$$

Substitution

Because the laws hold for all sets, we can substitute complex expressions for each set symbol.

Example

Commutativity

$$A \cup B = B \cup A$$

Therefore:

$$(C \cap D) \cup (D \oplus E) = (D \oplus E) \cup (C \cap D)$$

Example

Show that for all sets $A \cap (B \cap C) = C \cap (B \cap A)$:

Example

Show that for all sets $A \cap (B \cap C) = C \cap (B \cap A)$:

$$A \cap (B \cap C) = (A \cap B) \cap C$$
 [Associativity]
= $C \cap (A \cap B)$ [Commutativity]
= $C \cap (B \cap A)$ [Commutativity]

Important!

(Aim to) limit each step to a single application of a single rule

Other useful set laws

The following are all derivable from the previous 10 laws.

Idempotence $A \cap A = A$

 $A \cup A = A$

Double complementation $(A^c)^c = A$

Annihilation $A \cap \emptyset = \emptyset$

 $A \cup \mathcal{U} = \mathcal{U}$

de Morgan's Laws $(A \cap B)^c = A^c \cup B^c$

 $(A \cup B)^c = A^c \cap B^c$

 $A = A \cup \emptyset$

$$A = A \cup \emptyset$$
 (Identity)
= $A \cup (A \cap A^c)$ (Complementation)

$$A = A \cup \emptyset$$
 (Identity)
= $A \cup (A \cap A^c)$ (Complementation)
= $(A \cup A) \cap (A \cup A^c)$ (Distributivity)

$$A = A \cup \emptyset$$
 (Identity)
= $A \cup (A \cap A^c)$ (Complementation)
= $(A \cup A) \cap (A \cup A^c)$ (Distributivity)
= $(A \cup A) \cap \mathcal{U}$ (Complementation)

```
A = A \cup \emptyset \qquad \text{(Identity)}
= A \cup (A \cap A^c) \qquad \text{(Complementation)}
= (A \cup A) \cap (A \cup A^c) \qquad \text{(Distributivity)}
= (A \cup A) \cap \mathcal{U} \qquad \text{(Complementation)}
= (A \cup A) \qquad \text{(Identity)}
```

A useful result

Definition

If A is a set defined using \cap , \cup , \emptyset and \mathcal{U} , then dual(A) is the expression obtained by replacing \cap with \cup (and vice-versa) and \emptyset with \mathcal{U} (and vice-versa).

Theorem (Principle of Duality)

If you can prove $A_1 = A_2$ using the Laws of Set Operations then you can prove dual $(A_1) = dual(A_2)$

Example

Absorption law: $A \cup (A \cap B) = A$

Dual: $A \cap (A \cup B) = A$

Application (Idempotence of \cap)

Recall Idempotence of \cup :

$$\begin{array}{ll} A &= A \cup \emptyset & \text{(Identity)} \\ &= A \cup (A \cap A^c) & \text{(Complementation)} \\ &= (A \cup A) \cap (A \cup A^c) & \text{(Distributivity)} \\ &= (A \cup A) \cap \mathcal{U} & \text{(Complementation)} \\ &= (A \cup A) & \text{(Identity)} \end{array}$$

Application (Idempotence of \cap)

Invoke the dual laws!

$$\begin{array}{ll} A &= A \cap \mathcal{U} & \text{(Identity)} \\ &= A \cap (A \cup A^c) & \text{(Complementation)} \\ &= (A \cap A) \cup (A \cap A^c) & \text{(Distributivity)} \\ &= (A \cap A) \cup \emptyset & \text{(Complementation)} \\ &= (A \cap A) & \text{(Identity)} \end{array}$$

Exercises

Exercises

Show the following for all sets A, B, C:

- $B \cup (A \cap \emptyset) = B$
- $\bullet \ (C \cup A) \cap (B \cup A) = A \cup (B \cap C)$
- $\bullet (A \cap B) \cup (A \cup B^c)^c = B$

Exercises

Give counterexamples to show the following do not hold for all sets:

- $\bullet \ A \setminus (B \setminus C) = (A \setminus B) \setminus C$
- $\bullet \ (A \cup B) \setminus C = A \cup (B \setminus C)$
- $\bullet \ (A \setminus B) \cup B = A$

