Transportes (grafos bipartidos)

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

19 de novembro de 2020

Transportes em grafos bipartidos

antes

Vimos as operações básicas do método simplex para grafos (redes).

Guião

- Vamos usar o algoritmo para resolver um exemplo definido sobre um grafo bipartido, usando a representação em quadro e em grafo.
- Um grafo G = (V, A) é bipartido se o conjunto de vértices V puder ser dividido em dois conjuntos disjuntos, V_1 e V_2 (*i.e.*, $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$), de tal modo que todos os arcos $(i, j) \in A$ tenham origem num vértice $i \in V_1$ e destino num vértice $j \in V_2$.
- O problema de afectação é um caso especial do problema de transportes em grafos bipartidos.

depois

• Aplicaremos o algoritmo simplex de redes em grafos (redes) gerais.

Transportes em grafos bipartidos: modelo

 Objectivo: minimizar o custo de transporte das unidades entre os pontos de produção (origens) e os pontos de consumo (destinos)

$$\begin{aligned} & \min \qquad & \sum_{i \in V_1} \sum_{j \in V_2} c_{ij} x_{ij} \\ & \text{suj. a} & \sum_{j \in V_2} x_{ij} = a_i \text{ , } \forall i \in V_1 \\ & \sum_{i \in V_1} x_{ij} = b_j \text{ , } \forall j \in V_2 \\ & x_{ij} \geq 0 \end{aligned}$$

Variáveis de decisão:

• x_{ij} - quantidade a transportar da origem i para o destino j.

Dados:

- c_{ij} : custo unitário de transporte no arco orientado (i,j);
- a_i: número de unidades oferecidas na origem i;
- b_j : número de unidades consumidas no destino j.

Aplicação 1: problema de produção - distribuição

- Cada origem é um local de produção com a capacidade indicada.
- Existe um excedente de capacidade, e é necessário decidir qual a capacidade usada em cada local de produção.

- O modelo pode incluir, para além dos custos unitários de transporte, os custos unitários de produção, usando, para o arco (i, j),
- o custo c_{ij} = t_{ij} + p_i, em que t_{ij} é o custo unitário de transporte e p_i
 o custo unitário de produção na origem i.

Aplicação 2: problema de afectação (assignment)

- O objectivo é afectar (atribuir) $|V_1| = |V_2| = n$ pessoas a um igual número de tarefas, de modo a minimizar os custos globais.
- É dado o custo c_{ij} associado à afectação da pessoa i à tarefa j, ∀i,j.

- Número de variáveis básicas positivas é $n \ll (2n-1)$: as soluções básicas são muito degeneradas.
- Há algoritmos combinatórios eficientes^(*).

^(*) O algoritmo húngaro é um algoritmo primal-dual, que não explora uma sequência de vértices, mas uma sequência de soluções duais admissíveis obedecendo à folga complementar, até encontrar uma solução primal admissível.

Aplicação 2: problema de afectação (exemplo)

ullet Os custos c_{ij} podem ser representados numa matriz quadrada.

• A solução óptima deste exemplo tem um custo total de 11, correspondendo à seguinte afectação: (a,A),(b,C),(c,D) e (d,B).

Aplicação 2: problema de afectação - modelo

• O problema de afectação pode ser formulado do seguinte modo:

$$\begin{aligned} & \min \qquad & \sum_{i \in V_1} \sum_{j \in V_2} c_{ij} x_{ij} \\ & \text{suj. a} \qquad & \sum_{j \in V_2} x_{ij} = 1 \ , \ \forall i \in V_1 \\ & \sum_{i \in V_1} x_{ij} = 1 \ , \ \forall j \in V_2 \\ & x_{ij} \ \text{binário,} \ \forall i \in V_1, \forall j \in V_2 \end{aligned}$$

Aplicação 3: conjunto de representantes

 Um caso particular do problema de afectação é: existe alguma solução que permita realizar todas as tarefas?

	Α	В	С	D		1 A 1
a	1	1	1	1	1	$\frac{1}{2}$
b	+∞	$+\infty$	1	1	1	B
С	+∞	$+\infty$	$+\infty$	1	1	1.0
d	+∞	$+\infty$	1	1	1	
	1	1	1	1	•	1, 1

- Trata-se de um problema de decisão, também conhecido por problema (da existência) de um emparelhamento perfeito.
- (*) Quando não há arco (i,j), $c_{jj} = \infty$. Na prática, usa-se um valor M suficientemente grande, que neste exemplo poderia ser 1000.

Transportes em grafos bipartidos: representações

	1	2	3
1	x ₁₁ _{c₁₁}	$x_{12}_{c_{12}}$	$x_{13}_{c_{13}}$
2	$x_{21}_{c_{21}}$	$x_{22}_{c_{22}}$	x_{23}
3	x ₃₁ _{c₃₁}	x ₃₂ _{c₃₂}	x ₃₃ _{c₃₃}
	b_1	b_2	<i>b</i> ₃

	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	<i>x</i> ₂₂	X ₂₃	<i>x</i> ₃₁	<i>X</i> 32	<i>X</i> 33		
origem 1	1	1	1							=	a_1
origem 2				1	1	1				=	a_2
origem 3							1	1	1	=	<i>a</i> ₃
destino 1	-1			-1			-1			= -	$\overline{-b_1}$
destino 2		-1			-1			-1		= -	$-b_2$
destino 3			-1			-1			-1	= -	- <i>b</i> ₃
min	c ₁₁	c ₁₂	c ₁₃	c ₂₁	c ₂₂	c ₂₃	c ₃₁	<i>c</i> ₃₂	<i>c</i> 33		

 a_1

 a_2

*a*₃

Exemplo

30 A	D 20
10 B	E 30
50 C	F 40

	x ₁₁	<i>X</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₂₁	X22	X23	<i>X</i> 31	<i>X</i> 32	<i>X</i> 33	
Α	1	1	1							= 30
В				1	1	1				= 10
C							1	1	1	= 50
D	-1			-1			-1			= -20
Ε		-1			-1			-1		= -30
F			-1			-1			-1	= -40
min	3	6	5	2	5	5	1	2	3	

30

10

Conteúdo (transportes em grafos bipartidos)

- Solução inicial
 - Método do canto NW
 - Método dos custos mínimos
- Pivôs (revisão)
- Teste de optimalidade
 - Método dos multiplicadores
- Resolução de um exemplo
- Apêndices
 - Degenerescência

Algoritmo (simplex) de transportes

Algoritmo

Obter uma quadro básico inicial (*i.e.*, solução básica inicial) Enquanto (quadro básico não óptimo) mudar para um quadro básico adjacente melhor

Dois métodos para obter um quadro básico inicial:

- Método do canto NW
- Método dos custos mínimos

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ocrtar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	D	E	F			
Α	3	6	5	30	<u>30</u> ★A	D 20
В	2	5	5	10	<u>10</u> →B	E 30
С	1	2	3	50	<u>50</u> €C	F 40
	20	30	40			

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	ı	þ	Ε	F			
Α	2	20 3	6	5	30	<u>30</u> ★A	
В		2	5	5	10	<u>10</u> ■	E 30
С		1	2	3	50	<u>50</u> ► C	F 40
		0	30	40			

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

- Olocar a maior quantidade possível na casa mais a NW ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ocrtar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

 Desvantagem: não toma em consideração os custos das casas, que podem ser muito elevados nas casas a NW.

- lacktriangle Colocar a maior quantidade possível na casa com custo mínimo \Rightarrow
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	D	Ε	F			
Α	3	6	5	30	<u>30</u> ★(A)	D 20
В	2	5	5	10	<u>10</u> →B	E 30
С	1	2	3	50	<u>50</u> €C	F 40
	20	30	40			

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	ı	Þ	Ε	F			
Α		3	6	5	30	<u>30</u> ♠	D 20
В		2	5	5	10		E 30
С	2	20 1	2	3	50	<u>50</u> €	F 40
		0	30	40	,		

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Ortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

	Þ	ŧ	F			
Α	3	6	5	30	<u>30</u> ►(A)	D 20
В	2	5	5	10	<u>10</u> ▶B	E 30
-C	20 1	30 2	3	50—	<u>50</u> €	F 40
	20	30	40			

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- ② Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

- Olocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- Cortar a linha ou a coluna (ou ambas)
- Repetir se ainda houver uma casa.

 Solução básica deve ter 5 variáveis básicas. Esta solução é admissível, mas ...

Solução inicial ... deve ter 5 variáveis básicas

- Considerar uma variável com valor nulo como variável básica.
- (neste caso, seleccionamos x_{AE}).
- A solução básica admissível é uma solução degenerada.

	D	Е	F			
Α	3	0 6	30 ₅	30	30 A	D 20
В	2	5	10 5	10	<u>10</u> ⋅ B	E 30
С	20 1	30 ₂	3	50	50 C	F 40
	20	30	40			

- Grafo associado à solução básica é uma árvore (depois de adicionar o arco).
- Desta forma, quando há vários componentes (floresta), em soluções degeneradas, também se pode associar à solução básica uma árvore.

Nota: selecção da variável básica com valor 0

- Nem todas as variáveis podem ser escolhidas!
- No seguinte exemplo, escolher a variável x_{AE} dá origem a um grafo que não é uma árvore.

	D	E	F
Α	*	0	
В	*	*	
С			*

 Os arcos associados às variáveis formam um ciclo (i.e., as colunas do modelo de PL são linearmente dependentes, e portanto não formam uma base)

Pivô: variação das variáveis não-básicas

- Pivô: quadro inicial → quadro adjacente
- No movimento ao longo de uma aresta do poliedro do modelo de programação linear (de transportes):
- todas as variáveis não-básicas permanecem nulas, excepto uma única que aumenta de valor.

Pivô: como variam os valores das variáveis básicas?

• Exemplo: quando a variável x_{AF} (não-básica) aumenta de uma quantidade θ , como variam os valores das variáveis básicas?

	D	E	F	
Α	20 3	10 6	+ θ 5	30
В	2	10 5	5	10
С	1	10 2	40 3	50
	20	30	40	

Propriedades das árvores:

- Há 1 caminho (e 1 só) entre cada par de vértices. Porquê?
- A adição de 1 arco a uma árvore dá origem a 1 (e 1 só) ciclo.
 Porquê?

Pivô: variação dos valores das variáveis básicas

- O arco (A, F) (variável não-básica) forma um ciclo com os arcos (C, F), (C, E) e (A, E) (das variáveis básicas).
- Os arcos do ciclo formam um conjunto linearmente dependente.

	D	E	F		
Α	20 3	10 -0 6	+ θ 5	30	30 A 0 20
В	2	10 5	5	10	10 B E 30
С	1	10+ 0 ₂	40 -0 3	50	50 C F 40
	20	30	40		

- As variáveis básicas do ciclo são designadas por Stepping-stones.
- Os valores das variáveis básicas que ficam fora do ciclo não mudam.

Pivô: qual o aumento máximo de x_{AF} ?

	D	Ε	F			
Α	20 3	$10-\theta_{6}$	+ θ 5	30	30 A	\longrightarrow D $\stackrel{20}{\longrightarrow}$
В	2	10 5	5	10	10 ⋅ B	E 30
С	1	10+θ ₂	$40-\theta_{3}$	50	50 C	F 40
	20	30	40			

- Quanto pode aumentar a variável não-básica x_{AF} sem nenhuma das variáveis básicas se tornar negativa?
- $\theta_{max} = \min\{10, 40\} = 10$

Pivô: exemplo

	D	Е	F		20
Α	20 3	$10-\theta_6$	$+\theta$ 5	30	_30
В	2	10 5	5	10	_10
С	1	$10+\theta_2$	$40-\theta_{3}$	50	_50
	20	30	40	$\theta_{max} =$	min{1

• A variável x_{AF} entra na base e x_{AE} sai da base.

30

10

	D	Е	F
Α	20 3	6	10 5
В	2	10 5	5
С	1	20 2	30 3
	20	30	40

Teste de optimalidade: método dos multiplicadores

Multiplicadores associados às restrições:

- há um multiplicador u_i associado a cada linha i, i = 1,...,m;
- há um multiplicador v_j associado a cada coluna j, j = 1, ..., n.

Método dos multiplicadores:

- Fixar o valor de um qualquer multiplicador (e.g., no valor 0).
- Para as casas básicas $(ij \in \mathcal{B})$, fazer:

$$c_{ij} = u_i - v_j$$

② Para as casas não-básicas $(ij \in \mathcal{N})$, fazer:

$$\delta_{ij} = c_{ij} - (u_i - v_j)$$

Output do método dos multiplicadores:

cálculo dos δ_{ii} dá o mesmo resultado.

ullet os δ_{ij} de todas as casas não-básicas.

Nota: há livros que usam $c_{ij} = u_i + v_j$ em grafos bipartidos, o que equivale a usar os valores simétricos de v_j . É fácil de verificar que o

Exemplo: passo 0 do método dos multiplicadores

Método dos multiplicadores:

• Fixar o valor de um qualquer multiplicador (e.g., no valor 0).

$u_i^{V_j}$			
0	20 3	10 6	5
	2	10 5	5
	1	10 2	40 3

30 10 50

• fixar um multiplicador: $u_A = 0$.

Exemplo: passo 1 do método dos multiplicadores

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i - v_j$$

u_i

Λ

20 3	10 6	5
2	10 5	5
1	10 2	40 3

•
$$u_A - v_D = 3$$

$$\Rightarrow v_D =$$

- •
- •
- •
- •
- •

Exemplo: passo 1 do método dos multiplicadores

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i - v_j$$

30 OA	-3 D 20
	E 30
50 (C)	F) 40

•
$$u_A - v_D = 3$$

$$\Rightarrow v_D = -3$$

•
$$u_A - v_E = 6$$

$$\Rightarrow v_E =$$

- •
- .
- •
- •

Exemplo: passo 1 do método dos multiplicadores

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i - v_j$$

30 O	-3 D 20
10 B	-6 E 30
50 C	F 40

•
$$u_A - v_D = 3$$

$$\Rightarrow v_D = -3$$

•
$$u_A - v_E = 6$$

$$\Rightarrow v_E = -6$$

•
$$u_B - v_E = 5$$

$$\Rightarrow u_B =$$

- •
- •
- •

Exemplo: passo 1 do método dos multiplicadores

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i - v_j$$

$u_i^{V_j}$	-3	-6	
0	20 3	10 6	5
-1	2	10 5	5
	1	10 2	40 3

80	<u>30</u> (A)
.0	10^{-1} B
50	<u>50</u> €

•
$$u_A - v_D = 3$$

$$\Rightarrow v_D = -3$$

•
$$u_A - v_E = 6$$

$$\Rightarrow v_E = -6$$

•
$$u_B - v_E = 5$$

$$\Rightarrow u_B = -1$$

•
$$u_C - v_F = 2$$

$$\Rightarrow u_C =$$

Exemplo: passo 1 do método dos multiplicadores

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij} = u_i - v_j$$

$u_i^{v_j}$	-3	-6	
0	20 3	10 6	5
-1	2	10 5	5
-4	1	10 2	40 3

30	30 O	-3 D 20
10	10 B	-6 E 30
50	50 ⁻⁴ C	F 40

•
$$u_A - v_D = 3$$

$$\Rightarrow v_D = -3$$

•
$$u_A - v_F = 6$$

$$\Rightarrow v_E = -6$$

•
$$u_B - v_E = 5$$

$$\Rightarrow u_B = -1$$

•
$$u_C - v_F = 2$$

$$\Rightarrow u_C = -4$$

•
$$u_C - v_F = 3$$

$$\Rightarrow v_F =$$

Exemplo: passo 1 do método dos multiplicadores

Método dos multiplicadores:

Para as casas básicas, fazer:

$$c_{ij}=u_i-v_j$$

$u_i^{v_j}$	-3	-6	-7
0	20 3	10 6	5
-1	2	10 ₅	5
-4	1	10 2	40 3

30	30 OA	$\begin{array}{c} -3 \\ \hline \end{array}$
10	10 ⁻¹	-6 E 30
50	50 ⁻⁴ C	- 7 40

•
$$u_{\Delta} - v_{D} = 3$$

$$\Rightarrow v_D = -3$$

•
$$u_A - v_E = 6$$

$$\Rightarrow v_E = -6$$

$$\bullet \quad u_B - v_E = 5$$

$$\Rightarrow u_B = -1$$

•
$$u_C - v_E = 2$$

$$\Rightarrow u_C = -4$$

•
$$u_C - v_F = 3$$

$$\Rightarrow v_F = -7$$

• Será sempre possível calcular todos os multiplicadores? Porquê?

Exemplo: passo 2 do método dos multiplicadores

Método dos multiplicadores

V:

Para as casas não-básicas, fazer:

$$\delta_{ij} = c_{ij} - (u_i - v_j) = c_{ij} - u_i + v_j$$

u _i	-3	-6	-7
0	20 3	10 6	-2 5
-1	0 2	10 5	-1 5
-4	+2	10 2	40 3

30

•
$$\delta_{AF} = 5 - 0 - 7 = -2$$

•
$$\delta_{BD} = 2 - (-1) + (-3) = 0$$

•
$$\delta_{BF} = 5 - (-1) + (-7) = -1$$

•
$$\delta_{CD} = 1 - (-4) + (-3) = +2$$

• A variável não-básica x_{AF} é a mais atractiva.

nota: o valor de δ_{AF} pode também ser calculado assim:

	D	E	F		3	
Α	20 3	$10-\theta_{6}$	+ θ 5	30	30 A	$) \xrightarrow{20}$
В	2	10 5	5	10	10 B	<u>30</u>
С	1	$10+\theta_2$	40-θ ₃	50	50 C	F) 40
	20	30	40			

Por cada unidade de aumento da variável não-básica x_{AF} ,

- gastam-se mais 5 unidades em (A, F),
- economizam-se 3 unidades em (C,F),
- gastam-se mais 2 unidades em (C, E),
- economizam-se 6 unidades em (A, E),
- pelo que o valor da função objectivo diminui 2 unidades:

$$\delta_{AF} = +5 - 3 + 2 - 6 = -2 = +5 - (0 - (-7))$$

• É pouco eficiente repetir isto para todas as vars não-básicas^(*).

Variável não-básica que entra na base: selecção

 Seleccionar a variável não-básica com maior variação da função objectivo por unidade de incremento da variável não-básica, ou seja:

A variável não-básica a entrar na base é:

- a variável não-básica com δ_{ij} mais negativo (em problemas de minimização).
- Esta escolha visa atingir a solução óptima mais rapidamente.
- Em caso de empate, a escolha é arbitrária.

Resolução do exemplo: diapositivo repetido da iteração 1

	D	Е	F			
Α	20 3	$10-\theta_{6}$	+ θ 5	30	30 A	\bigcirc D $\stackrel{20}{\longrightarrow}$
В	2	10 5	5	10	10 B	E 30
С	1	$10+\theta_2$	$40-\theta_{3}$	50	50 C	F 40
	20	30	40	$\theta_{ extit{max}}$ =	$= \min\{10, 40\} = 10$	

30

10

50

• A variável x_{AF} entra na base e x_{AE} sai da base.

	D	E	F
Α	20 3	6	10 5
В	2	10 5	5
С	1	20 2	30 3
	20	30	40

Quadro 2: teste de optimalidade

• A variável não-básica mais atractiva é a variável x_{BD} : $\delta_{BD} = -2$.

Iteração 2

	D	Е	F			
Α	20-θ ₃	6	10+θ ₅	30	30 A	D 20
В	+ θ 2	$10-\theta_5$	5	10	10 B	E 30
С	1	20+θ ₂	$30-\theta_3$	50	50 C	F 40
	20	30	40	$\theta_{max} =$	$min\{10,20,30\}=10$	

30

10

50

ullet A variável x_{BD} entra na base e x_{BE} sai da base.

	D	E	F
Α	10 3	6	20 5
В	10 2	5	5
С	1	30 2	20 3
	20	30	40

Quadro 3: teste de optimalidade

- Solução óptima.
- \bullet Custo da solução óptima: 10(3)+20(5)+10(2)+30(2)+20(3)=270
- Há soluções óptimas alternativas, porque $\delta_{CD} = 0$.

Uma solução óptima alternativa

	D	Ε	F			
Α	$10-\theta_3$	6	20+ <i>θ</i> ₅	30	30 A	D 20
В	10 2	5	5	10	10 B	E 30
С	+0 1	30 2	$20-\theta_{3}$	50	50 C	F 40
	20	30	40	$ heta_{ extit{max}}$	$= \min\{10, 20\} = 10$	

30

10

50

• O custo da seguinte solução é o mesmo. Porquê?

	D	E	F
Α	3	6	30 ₅
В	10 2	5	5
С	10 1	30 2	10 3
	20	30	40

Conclusão

- O algoritmo apresentado é uma especialização do algoritmo simplex para um problema que é representado num grafo bipartido.
- Este problema é, por vezes, designado por problema de Hitchcock^(†), que apresentou um modelo matemático e um procedimento para a sua resolução.
- Os grafos bipartidos são uma classe de grafos, e o algoritmo pode ser generalizado para grafos gerais.

(†) - Frank. L. Hitchcock, The distribution of a product from several sources to numerous localities, J. Math. Physics, 20 (1941), 224-230.

Apêndices

Degenerescência

Degenerescência: pivô degenerado

ullet Com degenerescência, regras são semelhantes, mas $heta_{max}$ pode ser 0.

• A variável x_{BD} entra na base (com valor nulo) e x_{AE} sai da base.

30

10

50

3	6	30 ₅
0 2	5	10 5
20 1	30 ₂	3
20	30	40

20

30

Degenerescência: saída do vértice degenerado

O pivô anterior designa-se por pivô degenerado:
 a base é diferente, mas a solução básica (vértice) é a mesma.

	-2	-3	-5		
0	+1 3	+3	30 ₅	30	30 A
0	$0+\theta_2$	+2 5	$10-\theta_{5}$	10	10 B
-1	$20-\theta_{1}$	30 ₂	$^{-1}$ $+\theta$ 3	50	50 C
	20	30	40	θ_{max} =	$min\{10, 20\} = 10$
	-2	-3	-5		
0	-2 +1 3	-3 +3 6	-5 30 ₅	30	30 A
0	+1	+3		30 10	30 A 10 B
	+1 3	+3 6 +2	30 ₅	10	A

Fim