Statistical distributions vignette

Contents

1	Pur	rpose	1
2	Ref	erence	2
3	Lib	raries	2
4	Normal distribution		
	4.1	Generate the data	2
	4.2	$\operatorname{prob} \left(z < a \ \operatorname{certain} \ \operatorname{point} \right) \ \ldots \ $	3
	4.3	Get point where prob = 0.95	3
	4.4	Now for a diff mean	3
5	t distribution		3
	5.1	Generate data	3
	5.2	$\operatorname{prob} \; (t < a \; \operatorname{certain} \; \operatorname{point}) \; \ldots \; $	4
	5.3	Get point where prob = 0.95	4
6	Q-Q plot (Normal)		5
	6.1	Default	5
	6.2	Add a line	5
7	Simulations: Normal, Uniform, Exponential, t distributions		6
8	Normality tests		
	8.1	Q-Q plot	7
	8.2	Shapiro test	8

1 Purpose

This vignette aims to introduce you statistical distributions using R.

2 Reference

 $\label{eq:com_vatch} Dr.\ Bharatendra\ https://www.youtube.com/watch?v=rsfV57N7Uns\&list=PL34t5iLfZddtUUABMikey6NtL05hPAp42\&index=7$

3 Libraries

4 Normal distribution

4.1 Generate the data

```
z <- pretty(c(-5, 5), 100)
ht <- dnorm(z)
# plot type line
plot(z, ht, type='l')</pre>
```


4.2 prob (z < a certain point)

```
# P(z < -2)
pnorm(-2)
```

[1] 0.02275013

4.3 Get point where prob = 0.95

At what point will I have 95%

```
\# P(z < ?) = 0.95
qnorm(.95)
```

[1] 1.644854

4.4 Now for a diff mean

```
# Where mean is 0.2 and sigma is 0.5 qnorm(.95, 2, 0.5)
```

[1] 2.822427

5 t distribution

5.1 Generate data

```
t <- pretty(c(-5, 5), 100)

ht <- dt(t, 3)

# plot type line
plot(t, ht, type='l')</pre>
```


5.2 prob (t < a certain point)

With 3 degrees of freedom

```
# P(z < -2) pt(-2, 3)
```

[1] 0.06966298

5.3 Get point where prob = 0.95

At what point will I have 95%, with 3 degrees of freedom

```
# P(z < ?) = 0.95
qt(.95, 3)
```

[1] 2.353363

6 Q-Q plot (Normal)

6.1 Default

x <- rnorm(10)
qqnorm(x)</pre>

Normal Q-Q Plot

6.2 Add a line

qqnorm(x) qqline(x)

Normal Q-Q Plot

7 Simulations: Normal, Uniform, Exponential, t distributions

 $Reference: Dr.\ Bharatendra\ https://www.youtube.com/watch?v=XyBfmm1pk8g\&list=PL34t5iLfZddtUUABMikey6NtL05hlindex=5$

```
n <- rnorm(1000)
u <- runif(1000)
e <- rexp(1000)
t <- rt(1000, 3)

# Plot 2 x 2 plots
par(mfrow=c(2, 2))
hist(n)
hist(u)
hist(e)
hist(t)</pre>
```

Histogram of n

Histogram of u

Histogram of e

Histogram of t

8 Normality tests

8.1 Q-Q plot

```
par(mfrow=c(1, 1))
x <- rnorm(10)
qqnorm(x)
qqline(x)</pre>
```

Normal Q-Q Plot

The result is subjective. This is a small dataset. So how do we know if this is Normal?

8.2 Shapiro test

```
# Do a Null Hypothesis test with Shapiro tests.
# Look at the p-value. If p-value > 0.05 then accept the NULL hypothesis.
shapiro.test(x)

##
## Shapiro-Wilk normality test
##
## data: x
## W = 0.93596, p-value = 0.509
```

Now we can look at the p-value.

If p-value > 0.05, then the distribution is NOT significantly different from a Normal distribution. That is the null hypothesis is possible.