15		Solution	Marks	Remarks
1.	(a)	O, A and B are collinear.	1M	
	(b)	$ \overrightarrow{OA} = \sqrt{3^2 + 4^2} = 5$		
		$\left \overrightarrow{OB} \right = \left \overrightarrow{OA} \right + \left \overrightarrow{AB} \right $		
		$20 = 5 + \left \overrightarrow{AB} \right $		
		$\left \overrightarrow{AB} \right = 15$		
		\overrightarrow{AB}		
		$= \overrightarrow{AB} \left(\frac{1}{5}(3\mathbf{i} + 4\mathbf{j})\right)$	1M	
		$=9\mathbf{i}+12\mathbf{j}$	1A (3)	
			(4.2	
2.	(a)	$\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$		
		$= \lim_{h \to 0} \frac{(\sqrt{x+h} - \sqrt{x})(\sqrt{x+h} + \sqrt{x})}{h(\sqrt{x+h} + \sqrt{x})}$	1M	
		$=\lim_{h\to 0}\frac{h}{h(\sqrt{x+h}+\sqrt{x})}$		
		$= \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}}$		
		$h \to 0 \sqrt{x + h} + \sqrt{x}$ $= \frac{1}{2\sqrt{x}}$	1A	
		$2\sqrt{x}$		
	(b)	$\frac{\mathrm{d}}{\mathrm{d}x}e^{\sqrt{x}}$		
		$= \lim_{h \to 0} \frac{e^{\sqrt{x+h}} - e^{\sqrt{x}}}{h}$	1M	
		$=\lim_{x\to\infty}\frac{e^{\sqrt{x}}\left(e^{\sqrt{x+h}-\sqrt{x}}-1\right)}{t}$		
		$ \begin{pmatrix} e^{\sqrt{x+h}-\sqrt{x}}-1\\ (\sqrt{x+h}-\sqrt{x}) \end{pmatrix} $		
		$=e^{\sqrt{x}}\lim_{h\to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}$	1M	
		$= \lim_{h \to 0} \frac{e^{\sqrt{x}} \left(e^{\sqrt{x+h} - \sqrt{x}} - 1 \right)}{h}$ $= e^{\sqrt{x}} \lim_{h \to 0} \frac{\left(\frac{e^{\sqrt{x+h} - \sqrt{x}} - 1}{h} \right) \left(\sqrt{x+h} - \sqrt{x} \right)}{h}$ $= e^{\sqrt{x}} \left(\lim_{h \to 0} \frac{e^{\sqrt{x+h} - \sqrt{x}} - 1}{\sqrt{x+h} - \sqrt{x}} \right) \left(\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \right)$		
		$ \sqrt{x} \cos \left(\frac{1}{x} \right) $		
		$= e^{\sqrt{x}} (1) \left(\frac{1}{2\sqrt{x}} \right) $ (by (a)) $= \frac{e^{\sqrt{x}}}{2\sqrt{x}}$		
		$=\frac{e^{\sqrt{x}}}{2\sqrt{x}}$	1A	f.t.
			(5)	
2024	-DSE	-MATH-EP(M2)-3		

15	Solution Solution	Marks	Remarks
3. (a)	$\left(x^{m} - \frac{2}{x}\right)^{24}$ $= (x^{m})^{24} + C_{1}^{24}(x^{m})^{23} \left(\frac{-2}{x}\right)^{1} + C_{2}^{24}(x^{m})^{22} \left(\frac{-2}{x}\right)^{2} + \dots + \left(\frac{-2}{x}\right)^{24}$ $= x^{24m} - 48x^{23m-1} + 1104x^{22m-2} + \dots + 2^{24}x^{-24}$ Thus, the first three terms are x^{24m} , $-48x^{23m-1}$ and $1104x^{22m-2}$.	1M	
(b)	The 19th term in the expansion $= C_{18}^{24} (x^m)^{24-18} \left(\frac{-2}{x}\right)^{18}$ $= 2^{18} C_{18}^{24} x^{6m-18}$	1M	
	6m - 18 = 0 $m = 3$	1A	
	The $(r+1)$ th term in the expansion $= C_r^{24} (x^3)^{24-r} \left(\frac{-2}{x}\right)^r$ $= (-2)^r C_r^{24} x^{72-4r}$ $72 - 4r = 60$ $r = 3$ The required coefficient $= (-2)^3 C_3^{24}$ $= -16 192$	1A(5)	
2024-DSI	E-MATH-EP(M2)–4		

40		Solution	Marks	Remarks
4.	(a)	$\csc 2x - \cot 2x$		
551%	()	$1 \cos 2x$		
		$=\frac{1}{\sin 2x} - \frac{1}{\sin 2x}$		
		$=\frac{1-\cos 2x}{\cos x}$		
		$\sin 2x$		
		$= \frac{2\sin^2 x}{1-x^2}$	1M	
		$=\frac{1}{2\sin x\cos x}$	1141	
		$=\frac{\sin x}{x}$		
		cosx	,	
		$= \tan x$	1	
	(b)	$(\csc 3\theta - \cot 3\theta)(\csc \theta - \cot \theta) = 1$		
		$\tan\frac{3\theta}{2}\tan\frac{\theta}{2} = 1$	1M	for using (a)
		$\frac{\tan \frac{\pi}{2} - 1}{2}$	1 IVI	for using (a)
		$\frac{\sin\frac{3\theta}{2}\sin\frac{\theta}{2}}{\cos\frac{3\theta}{2}\cos\frac{\theta}{2}} = 1$		
		$\frac{2}{3\theta} = \frac{2}{\theta} = 1$		
		$\cos \frac{3\sigma}{2} \cos \frac{\sigma}{2}$		
		1 (2008 20028)		
		$\frac{2}{2}(\cos \theta - \cos 2\theta) = 1$	1M	
		$\frac{\frac{1}{2}(\cos\theta - \cos 2\theta)}{\frac{1}{2}(\cos\theta + \cos 2\theta)} = 1$		
		$\cos\theta - \cos 2\theta = \cos\theta + \cos 2\theta$		
		$\cos 2\theta = 0$		
		$2\theta = \frac{\pi}{2}$ $\theta = \frac{\pi}{4}$		
		$\theta = \frac{\pi}{}$	1A	f.t.
		4	P. 0.541.17	
			(5)	
202	4-DSE	-MATH-EP(M2)-5	I	I

_		Solution	Marks	Remarks
5.	(a)	$\int \cos(k \ln x) dx$		
			1M	
		$= x \cos(k \ln x) - \int x \left(-\sin(k \ln x)\right) \left(\frac{k}{x}\right) dx$	IM	
		$= x\cos(k\ln x) + k\int \sin(k\ln x)dx$		
		$= x\cos(k\ln x) + kx\sin(k\ln x) - k\int x\cos(k\ln x)\left(\frac{k}{x}\right)dx$	1M	
		$= x\cos(k\ln x) + kx\sin(k\ln x) - k^2 \int \cos(k\ln x) dx$		
		$(1+k^2)\int \cos(k\ln x)dx = x\cos(k\ln x) + kx\sin(k\ln x) + \text{constant}$		
		$\int \cos(k \ln x) dx = \frac{x}{1+k^2} (\cos(k \ln x) + k \sin(k \ln x)) + \text{constant}$	1	
	(b)	$\int_{1}^{e} \sin^{2}(\pi \ln x) dx$		
		$= \frac{1}{2} \int_{1}^{e} (1 - \cos(2\pi \ln x)) dx$	1M	
		$= \frac{e-1}{2} - \frac{1}{2} \int_{1}^{e} \cos(2\pi \ln x) dx$		
		$= \frac{e-1}{2} - \frac{1}{2} \left[\frac{x}{1+4\pi^2} \left(\cos(2\pi \ln x) + 2\pi \sin(2\pi \ln x) \right) \right]_1^e$	1M	for using (a)
		$=\frac{2(e-1)\pi^2}{1+4\pi^2}$	1A	
		$1+4\pi^2$	(6)	
6.	(a)	The augmented matrix of (E) is $ \begin{pmatrix} 3 & 1 & -9 & & 0 \\ 2 & 1 & -7 & & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 & & 0 \\ 2 & 1 & -7 & & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 & & 0 \\ 0 & 1 & -3 & & 0 \end{pmatrix} $	1M	
		Thus, the solution set is $\{(2t, 3t, t): t \in \mathbb{R} \}$.	1A	
	(b)	Putting $x = 2t$, $y = 3t$ and $z = t$, we have		2 120 02 02 02 02 02 0
		$\sin 2t + \cos 3t - \cos t = 0$ $\sin 2t - 2\sin 2t \sin t = 0$	1M 1M	for using the result of (a)
		$(\sin 2t)(1-2\sin t)=0$	100455510	
		$\sin 2t = 0 \text{or} \sin t = \frac{1}{2}$	1M	
		Since $0 < t < \frac{\pi}{2}$, $\sin 2t > 0$.		
		$\therefore t = \frac{\pi}{6}$		
		Thus, the claim is agreed.	1A	f.t.
202	4-DSE	-MATH-EP(M2)-6		a.

	Solution	Marks	Remarks
. (a)	$x^2y + 2xy^2 + 8 = 0$		
	$2xy + x^2 \frac{dy}{dx} + 2y^2 + (2x)(2y)\frac{dy}{dx} = 0$	1M	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2y(x+y)}{x(x+4y)}$	1A	
	u = x(x+4y)		
(b)	The slope of the straight line is $\frac{-1}{2}$.		
	Let (h, k) be the coordinates of the point(s) of contact of the required		
	tangent(s). $-2k(h+k) = -1$		
	$\frac{-2k(h+k)}{h(h+4k)} = \frac{-1}{2}$	1M	
	$k^2 = \frac{h^2}{4}$		
	$k = \frac{h}{2} \text{or} k = \frac{-h}{2}$	1M	
	<i>h</i>		
	When $k = \frac{h}{2}$,		
	$h^2\left(\frac{h}{2}\right) + 2h\left(\frac{h}{2}\right)^2 + 8 = 0$		
	$h^3 = -8$ $h = -2$	1M	
	So, the tangent to C at the point $(-2, -1)$ is parallel to the straight line		
	x+2y+1=0.		
	-h		either one
	When $k = \frac{-h}{2}$,		
	$h^2\left(\frac{-h}{2}\right) + 2h\left(\frac{-h}{2}\right)^2 + 8$ $= 8$		
	= o ≠ 0		-
	Therefore, there is only one tangent to C which is parallel to the straight line $x+2y+1=0$.		
	Thus, the claim is disagreed.	1A	f.t.
		(0)	
)24-DS	E-MATH-EP(M2)-7		

80		Solution	Marks	Remarks
-		Solution	Marks	Remarks
8.	(a)	Note that $(1)(2^{-1}) = 2 - (1+2)(2^{-1}) = \frac{1}{2}$.		
		Therefore, the statement is true for $n=1$.	-1	
		m		
		Assume that $\sum_{r=1}^{m} r(2^{-r}) = 2 - (m+2)(2^{-m})$,		
		where m is a positive integer.	1M	
		m+1		
		$\sum_{r=1}^{m-1} r(2^{-r})$		
		$-\sum_{r=0}^{m} r(2^{-r}) + (m+1)(2^{-(m+1)})$		
		$= \sum_{r=1}^{m} r(2^{-r}) + (m+1)(2^{-(m+1)})$		
		$= 2 - (m+2)(2^{-m}) + (m+1)(2^{-(m+1)})$ (by induction assumption)	1M	for using induction assumption
		$=2-(2^{-(m+1)})(2(m+2)-(m+1))$		
		$=2-((m+1)+2)(2^{-(m+1)})$		
		So, the statement is true for $n = m + 1$ if it is true for $n = m$.	-10	
		By mathematical induction, the statement is true for all positive integers n .	1	
		1999		
	(b)	(i) $\sum_{r=1000} r(2^{-r})$		
		$= \sum_{r=1}^{1999} r(2^{-r}) - \sum_{r=1}^{999} r(2^{-r})$ = $\left(2 - (2\ 001)(2^{-1\ 999})\right) - \left(2 - (1\ 001)(2^{-999})\right)$		
		$= (2 - (2\ 001)(2^{-1999})) - (2 - (1\ 001)(2^{-999}))$		
		$=1\ 001(2^{-999})-2\ 001(2^{-1999})$	1A	
		(ii) $\sum_{r=0}^{1000} (2\ 000 - r) 2^r$		
		r=1		
		$= 1999(2^{1}) + 1998(2^{2}) + 1997(2^{3}) + \dots + 1000(2^{1000})$ = 1000(2 ¹⁰⁰⁰) + 1001(2 ⁹⁹⁹) + 1002(2 ⁹⁹⁸) + \dots + 1999(2 ¹)		
		$= 1000(2^{-1}) + 1001(2^{-1}) + 1002(2^{-1}) + \dots + 1999(2^{-1})$ $= (2^{2000}) (1000(2^{-1000}) + 1001(2^{-1001}) + 1002(2^{-1002}) + \dots + 1999(2^{-1002}) + \dots + 1999(2^{-1002}$	 -1999 	
		(2)(1000(2) 1000(2) 1002(2)	1M	
		$= (2^{2000}) \left(\sum_{r=1000}^{1999} r(2^{-r}) \right)$		
		$= (2^{2000}) \left(1001(2^{-999}) - 2001(2^{-1999}) \right)$		
		$=1\ 001(2^{1\ 001})-4\ 002$	1A (7)	
			(/)	
202	4-DSE	-MATH-EP(M2)-8		

	Solution	Marks	Remarks
9. (a)	$\tan \theta = \tan(\angle ACO - \angle BCO)$ $\tan \angle ACO - \tan \angle BCO$		
	$= \frac{1 + (\tan \angle ACO)(\tan \angle BCO)}{1 + (\frac{4t}{10})(\frac{t}{10})}$ $= \frac{4t - t}{1 + (\frac{4t}{10})(\frac{t}{10})}$	1M	
	$=\frac{15t}{2(t^2+25)}$	1	
(b)	(i) When $t = T$, $\tan \angle BAC = \tan \angle ACB$ $\frac{10}{4T} = \frac{15T}{2(T^2 + 25)}$ $T^2 + 25 = 3T^2$	1M	
	$T^2 = \frac{25}{2}$ $T = \frac{5\sqrt{2}}{2}$	1A	
	(ii) $\tan \theta = \frac{15t}{2(t^2 + 25)}$ $\sec^2 \theta \frac{d\theta}{dt} = \frac{15}{2} \left(\frac{t^2 + 25 - (t)(2t)}{(t^2 + 25)^2} \right)$	1M + 1M	
	$(1 + \tan^2 \theta) \frac{d\theta}{dt} = \frac{15(25 - t^2)}{2(t^2 + 25)^2}$		
	$\left(1 + \left(\frac{15t}{2(t^2 + 25)}\right)^2\right) \frac{d\theta}{dt} = \frac{15(25 - t^2)}{2(t^2 + 25)^2}$ $\frac{d\theta}{dt} = \frac{30(25 - t^2)}{4(t^2 + 25)^2 + 225t^2}$		
	$\frac{d\theta}{dt}\Big _{t=\frac{5\sqrt{2}}{2}} = \frac{30\left(25 - \left(\frac{5\sqrt{2}}{2}\right)^2\right)}{4\left(\left(\frac{5\sqrt{2}}{2}\right)^2 + 25\right)^2 + 225\left(\frac{5\sqrt{2}}{2}\right)^2} = \frac{2}{45}$		
	The required rate of change of θ is $\frac{2}{45}$ radians per second.	1A (7)	
2024-DSE-	-MATH-EP(M2)–9		

.55	Solution	Marks	Remarks
-	1.134-40X6.\$\$192.50H	Marks	Remarks
10. (a)	Note that there are no vertical asymptotes of G .		
	$\lim_{x \to \pm \infty} \frac{2(x+2)^2}{2x^2 + 6x + 5}$		
	$= \lim_{x \to \pm \infty} \frac{2\left(1 + \frac{2}{x}\right)^2}{2 + \frac{6}{x} + \frac{5}{x^2}}$	1M	
	$2 + \frac{6}{x} + \frac{3}{x^2}$		
	$=$ $\tilde{1}$		
	Thus, the equation of the horizontal asymptote of G is $y = 1$.	1A	
		(2)	
(b)	$f(x) = \frac{2(x+2)^2}{2x^2 + 6x + 5} = 1 + \frac{2x+3}{2x^2 + 6x + 5}$		
	f'(x)		
	$=\frac{(2x^2+6x+5)(2)-(2x+3)(4x+6)}{(2x^2+6x+5)^2}$	1M	
	No. 10 Control of Control		
	$=\frac{-4(x^2+3x+2)}{(2x^2+6x+5)^2}$	1A	
		(2)	
(a)	f'(x) = 0		
(c)	$x^2 + 3x + 2 = 0$		
	(x+2)(x+1) = 0 x = -1 or $x = -2$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1M	for testing
	f(x) V 0 7 2 V		1550 0000000 1 00
	Thus, the maximum point and the minimum point of G are $(-1, 2)$		
	and $(-2,0)$ respectively.	1A+1A (3)	
2024-DSE	2-MATH-EP(M2)–10	I	

25	Solution	Marks	Remarks
11. (a)	Let $x = a \tan u$.	1M	
	$\frac{\mathrm{d}x}{\mathrm{d}u} = a\sec^2 u$	SAMON EN	
	$\int \frac{1}{x^2 + a^2} \mathrm{d}x$		
	3.5.5. 1.5.6.7.1		
	$= \int \frac{1}{a^2 \tan^2 u + a^2} \left(a \sec^2 u \right) du$	1M	
	$= \int \frac{1}{a} du$		
	$=\frac{u}{a}+C$		
	$=\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)+C$, where C is a constant	1A	f.t.
		(3)	
(b)	Let $x = -t$.	1M	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -1$		
	$\int_{-c}^{c} \frac{g(x)}{1 + e^{h(x)}} dx$		
	$= -\int_{c}^{-c} \frac{g(-t)}{1 + e^{h(-t)}} dt$		
	$= \int_{-c}^{c} \frac{g(t)}{1 + e^{-h(t)}} dt (\because g(x) \text{ is even and } h(x) \text{ is odd.})$	1M	
	$= \int_{-c}^{c} \frac{g(x)}{1 + e^{-h(x)}} dx$		
	$2\int_{-c}^{c} \frac{g(x)}{1 + e^{h(x)}} dx$		
	$= \int_{-c}^{c} \frac{g(x)}{1 + e^{h(x)}} dx + \int_{-c}^{c} \frac{g(x)}{1 + e^{-h(x)}} dx$	1M	
	$= \int_{-c}^{c} \frac{g(x)((1+e^{-h(x)})+(1+e^{h(x)}))}{(1+e^{h(x)})(1+e^{-h(x)})} dx$		
	$= \int_{-c}^{c} \frac{g(x)(2 + e^{-h(x)} + e^{h(x)})}{1 + e^{h(x)} + e^{-h(x)} + 1} dx$		
	$= \int_{-c}^{c} g(x) dx$		
	$=2\int_0^c g(x)dx \qquad (\because g(x) \text{ is even.})$		
	$\therefore \int_{-c}^{c} \frac{g(x)}{1 + e^{h(x)}} dx = \int_{0}^{c} g(x) dx$	1	
2024-DSE	-MATH-EP(M2)-12		

CONFIDENTIAL (FOR MARKER'S USE ONLY)				
Solution	Marks	Remarks		
$\int_{-c}^{c} \frac{g(x)}{1 + e^{h(x)}} dx = \int_{-c}^{0} \frac{g(x)}{1 + e^{h(x)}} dx + \int_{0}^{c} \frac{g(x)}{1 + e^{h(x)}} dx$	1M			
Let $x = -t$. $\frac{dx}{dt} = -1$	1M			
$\int_{-c}^{0} \frac{g(x)}{1 + e^{h(x)}} dx$				
$= -\int_{c}^{0} \frac{g(-t)}{1 + e^{h(-t)}} dt$				
$= \int_0^c \frac{g(t)}{1 + e^{-h(t)}} dt (\because g(x) \text{ is even and } h(x) \text{ is odd.})$	1M			
$= \int_0^c \frac{e^{h(t)}g(t)}{e^{h(t)} + 1} dt$				
$= \int_0^c \frac{e^{h(x)}g(x)}{1 + e^{h(x)}} dx$				
$\int_{-c}^{c} \frac{g(x)}{1 + e^{h(x)}} dx$				
$= \int_0^c \frac{e^{h(x)}g(x)}{1+e^{h(x)}} dx + \int_0^c \frac{g(x)}{1+e^{h(x)}} dx$				
$= \int_0^c \frac{e^{h(x)}g(x) + g(x)}{1 + e^{h(x)}} dx$				
$=\int_0^c g(x)dx$	1			
	(4)			

2024-DSE-MATH-EP(M2)-13

(c) Let $g(x) = \frac{3^x + 3^{-x}}{9^x + 9^{-x} + 7}$. $g(-x) = \frac{3^{-x} + 3^{-x}}{9^{-x} + 9^{-x} + 7} = g(x)$ Therefore, $g(x)$ is an even function. Let $h(x) = \sin^3 x$. $h(-x) = \sin^3 (-x) = -\sin^3 x = -h(x)$ Therefore, $h(x)$ is an odd function. $\int_{-1}^{1} \frac{3^x + 3^{-x}}{4(1 + e^{\sin^2 x})(9^x + 9^{-x} + 7)} dx$ $= \int_{0}^{1} \frac{3^x + 3^{-x}}{9^x + 9^{-x} + 7} dx$ $= \int_{0}^{1} \frac{3^x + 3^{-x}}{3^{2x} - 3^{-2x} + 7} dx$ $= \int_{0}^{1} \frac{3^x + 3^{-x}}{(3^x - 3^{-x})^2 + 9} dx$ $= \frac{1}{\ln 3} \int_{0}^{3} \frac{1}{u^2 + 3^2} du \qquad \text{(by letting } u = 3^x - 3^{-x} \text{)}$ IM for using (b) $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{3}$ $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{3}$ IM for using the result of (a) 1A(5)	Solution Solution	Marks	Remarks
Therefore, $g(x)$ is an even function. Let $h(x) = \sin^3 x$. $h(-x) = \sin^3 (-x) = -\sin^3 x = -h(x)$ Therefore, $h(x)$ is an odd function. $\int_{-1}^{1} \frac{3^x + 3^{-x}}{(1 + e^{\sin^3 x})(9^x + 9^{-x} + 7)} dx$ $= \int_{0}^{1} \frac{3^x + 3^{-x}}{9^x + 9^{-x} + 7} dx$ $= \int_{0}^{1} \frac{3^x + 3^{-x}}{3^{2x} + 3^{-2x} + 7} dx$ $= \int_{0}^{1} \frac{3^x + 3^{-x}}{(3^x - 3^{-x})^2 + 9} dx$ $= \frac{1}{\ln 3} \int_{0}^{\frac{8}{3}} \frac{1}{u^2 + 3^2} du \qquad \text{(by letting } u = 3^x - 3^{-x} \text{)}$ $= \frac{1}{3 \ln 3} \left[\tan^{-1} \frac{u}{3} \right]_{0}^{\frac{8}{3}}$ $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$ IM for using (b) IM for using the result of (a) $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$	Section and Company Co		
Let $h(x) = \sin^3 x$. $h(-x) = \sin^3 (-x) = -\sin^3 x = -h(x)$ Therefore, $h(x)$ is an odd function. $\int_{-1}^{1} \frac{3^x + 3^{-x}}{(1 + e^{\sin^3 x})(9^x + 9^{-x} + 7)} dx$ $= \int_{0}^{1} \frac{3^x + 3^{-x}}{9^x + 9^{-x} + 7} dx$ $= \int_{0}^{1} \frac{3^x + 3^{-x}}{3^{2x} + 3^{-2x} + 7} dx$ $= \int_{0}^{1} \frac{3^x + 3^{-x}}{3^{2x} + 3^{-2x} + 7} dx$ $= \frac{1}{\ln 3} \int_{0}^{\frac{8}{3}} \frac{1}{u^2 + 3^2} du \qquad \text{(by letting } u = 3^x - 3^{-x} \text{)}$ $= \frac{1}{3\ln 3} \left[\tan^{-1} \frac{u}{3} \right]_{0}^{\frac{8}{3}}$ $= \frac{1}{3\ln 3} \tan^{-1} \frac{8}{9}$ IM for using the result of (a) $= \frac{1}{3\ln 3} \tan^{-1} \frac{8}{9}$	ALCOHOLOGICAL CONTRACTOR CONTRACT		
Therefore, $h(x) = \sin^3(-x) = -\sin^3 x = -h(x)$ Therefore, $h(x)$ is an odd function. $ \int_{-1}^{1} \frac{3^x + 3^{-x}}{(1 + e^{\sin^3 x})(9^x + 9^{-x} + 7)} dx $ $ = \int_{0}^{1} \frac{3^x + 3^{-x}}{9^x + 9^{-x} + 7} dx $ $ = \int_{0}^{1} \frac{3^x + 3^{-x}}{3^{2x} + 3^{-2x} + 7} dx $ $ = \int_{0}^{1} \frac{3^x + 3^{-x}}{(3^x - 3^{-x})^2 + 9} dx $ $ = \frac{1}{\ln 3} \int_{0}^{\frac{8}{3}} \frac{1}{u^2 + 3^2} du \qquad \text{(by letting } u = 3^x - 3^{-x} \text{)} $ $ = \frac{1}{3 \ln 3} \left[\tan^{-1} \frac{u}{3} \right]_{0}^{\frac{8}{3}} $ $ = \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9} $ IM for using the result of (a) $ = \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9} $	Therefore, $g(x)$ is an even function.		}
Therefore, $h(x) = \sin^3(-x) = -\sin^3 x = -h(x)$ Therefore, $h(x)$ is an odd function. $ \int_{-1}^{1} \frac{3^x + 3^{-x}}{(1 + e^{\sin^3 x})(9^x + 9^{-x} + 7)} dx $ $ = \int_{0}^{1} \frac{3^x + 3^{-x}}{9^x + 9^{-x} + 7} dx $ $ = \int_{0}^{1} \frac{3^x + 3^{-x}}{3^{2x} + 3^{-2x} + 7} dx $ $ = \int_{0}^{1} \frac{3^x + 3^{-x}}{(3^x - 3^{-x})^2 + 9} dx $ $ = \frac{1}{\ln 3} \int_{0}^{\frac{8}{3}} \frac{1}{u^2 + 3^2} du \qquad \text{(by letting } u = 3^x - 3^{-x} \text{)} $ $ = \frac{1}{3 \ln 3} \left[\tan^{-1} \frac{u}{3} \right]_{0}^{\frac{8}{3}} $ $ = \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9} $ IM for using the result of (a) $ = \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9} $	Let $h(x) = \sin^3 x$.		for both
$\int_{-1}^{1} \frac{3^{x} + 3^{-x}}{(1 + e^{\sin^{3} x})(9^{x} + 9^{-x} + 7)} dx$ $= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{9^{x} + 9^{-x} + 7} dx$ $= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{3^{2x} + 3^{-2x} + 7} dx$ $= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{(3^{x} - 3^{-x})^{2} + 9} dx$ $= \frac{1}{\ln 3} \int_{0}^{\frac{8}{3}} \frac{1}{u^{2} + 3^{2}} du \qquad \text{(by letting } u = 3^{x} - 3^{-x} \text{)}$ $= \frac{1}{3 \ln 3} \left[\tan^{-1} \frac{u}{3} \right]_{0}^{\frac{8}{3}}$ $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$ $1M \qquad \text{for using the result of (a)}$			į
$= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{9^{x} + 9^{-x} + 7} dx$ $= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{3^{2x} + 3^{-2x} + 7} dx$ $= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{(3^{x} - 3^{-x})^{2} + 9} dx$ $= \frac{1}{\ln 3} \int_{0}^{\frac{8}{3}} \frac{1}{u^{2} + 3^{2}} du \qquad \text{(by letting } u = 3^{x} - 3^{-x} \text{)}$ $= \frac{1}{3 \ln 3} \left[\tan^{-1} \frac{u}{3} \right]_{0}^{\frac{8}{3}}$ $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$ $1M$ for using the result of (a) $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$	Therefore, $h(x)$ is an odd function.	1M	withhold 1M if this step is skippe
$= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{3^{2x} + 3^{-2x} + 7} dx$ $= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{(3^{x} - 3^{-x})^{2} + 9} dx$ $= \frac{1}{\ln 3} \int_{0}^{\frac{8}{3}} \frac{1}{u^{2} + 3^{2}} du \qquad \text{(by letting } u = 3^{x} - 3^{-x} \text{)}$ $= \frac{1}{3 \ln 3} \left[\tan^{-1} \frac{u}{3} \right]_{0}^{\frac{8}{3}}$ $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$ $1M$ for using the result of (a)			
$= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{3^{2x} + 3^{-2x} + 7} dx$ $= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{(3^{x} - 3^{-x})^{2} + 9} dx$ $= \frac{1}{\ln 3} \int_{0}^{\frac{8}{3}} \frac{1}{u^{2} + 3^{2}} du \qquad \text{(by letting } u = 3^{x} - 3^{-x} \text{)}$ $= \frac{1}{3 \ln 3} \left[\tan^{-1} \frac{u}{3} \right]_{0}^{\frac{8}{3}}$ $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$ $1M$ for using the result of (a)	$= \int_{0}^{1} \frac{3^{x} + 3^{-x}}{9^{x} + 9^{-x} + 7} dx$	1M	for using (b)
$= \frac{1}{\ln 3} \int_{0}^{\frac{8}{3}} \frac{1}{u^{2} + 3^{2}} du \qquad \text{(by letting } u = 3^{x} - 3^{-x} \text{)}$ $= \frac{1}{3 \ln 3} \left[\tan^{-1} \frac{u}{3} \right]_{0}^{\frac{8}{3}}$ $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$ 1M for using the result of (a) 1A	$= \int_0^1 \frac{3^x + 3^{-x}}{3^{2x} + 3^{-2x} + 7} \mathrm{d}x$		
$= \frac{1}{3 \ln 3} \left[\tan^{-1} \frac{u}{3} \right]_0^{\frac{8}{3}}$ $= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$ 1M for using the result of (a) 1A			
$= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$ 1A	17.00	1M	
		1M	for using the result of (a)
	$= \frac{1}{3 \ln 3} \tan^{-1} \frac{8}{9}$	-	
		(5)	
24-DSE-MATH-EP(M2)–14			

<u> </u>	Solution	Marks	Remarks
12. (a) (i)	Note that $\begin{vmatrix} 2 & 0 & 1 \\ -(2\lambda + 5) & \lambda & 0 \\ \lambda + 2 & 1 & -1 \end{vmatrix}$ $= -2\lambda - (2\lambda + 5) - \lambda(\lambda + 2)$ $= -\lambda^2 - 6\lambda - 5$ $= -(\lambda + 5)(\lambda + 1)$	1M	
	If (E) has a unique solution, then $\begin{vmatrix} 2 & 0 & 1 \\ -(2\lambda + 5) & \lambda & 0 \\ \lambda + 2 & 1 & -1 \end{vmatrix} \neq 0$.	1M	
	So, we have $-(\lambda + 5)(\lambda + 1) \neq 0$. Solving, we have $\lambda \neq -5$ and $\lambda \neq -1$. Thus, we have $\lambda < -5$, $-5 < \lambda < -1$ or $\lambda > -1$.	1A	
(ii)	$= \frac{\begin{vmatrix} -2 & 0 & 1 \\ -1 & \lambda & 0 \\ 0 & 1 & -1 \end{vmatrix}}{-(\lambda + 5)(\lambda + 1)}$ $= \frac{1 - 2\lambda}{(\lambda + 5)(\lambda + 1)}$	1M	for Cramer's rule -1
	$= \frac{\begin{vmatrix} 2 & -2 & 1 \\ -(2\lambda + 5) & -1 & 0 \\ \lambda + 2 & 0 & -1 \end{vmatrix}}{\begin{vmatrix} -(\lambda + 5)(\lambda + 1) \\ -(\lambda + 5)(\lambda + 1) \end{vmatrix}}$ $= \frac{-5\lambda - 14}{(\lambda + 5)(\lambda + 1)}$		any one
	$ \frac{z}{z} = \frac{\begin{vmatrix} 2 & 0 & -2 \\ -(2\lambda + 5) & \lambda & -1 \\ \lambda + 2 & 1 & 0 \end{vmatrix}}{-(\lambda + 5)(\lambda + 1)} $ $ = \frac{-2(\lambda^2 + 4\lambda + 6)}{(\lambda + 5)(\lambda + 1)} $	1A+1A	
	$(\lambda+5)(\lambda+1)$	(6)	1A for any one +1A for all
2024-DSE-MAT	H-EP(M2)–15	I	

	Solution	Marks	Remarks
(b) (i)	Let $\mathbf{v} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, where $x, y, z \in \mathbf{R}$.		
	Since v is perpendicular to $(h+2)\mathbf{i}+\mathbf{j}-\mathbf{k}$, we have $(h+2)x+y-z=0$.	1M	
	$\mathbf{u} \times \mathbf{v}$ $= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ h & 2h+5 & -2h \\ x & y & z \end{vmatrix}$ $= (2hy + (2h+5)z)\mathbf{i} - (2hx+hz)\mathbf{j} + (-(2h+5)x+hy)\mathbf{k}$	1M	
	So, we have $-(2hx+hz) = 2h$ and $-(2h+5)x+hy=-1$. Therefore, we have $2x+z=-2$ and $-(2h+5)x+hy=-1$.		
	Hence, x , y and z satisfies (E) where $\lambda = h$.		
	By (a)(ii), we have $x = \frac{1-2h}{(h+5)(h+1)}$, $y = \frac{-5h-14}{(h+5)(h+1)}$ and $z = \frac{-2(h^2+4h+6)}{(h+5)(h+1)}$.		
	Thus, $\mathbf{v} = \frac{1-2h}{(h+5)(h+1)}\mathbf{i} + \frac{-5h-14}{(h+5)(h+1)}\mathbf{j} + \frac{-2(h^2+4h+6)}{(h+5)(h+1)}\mathbf{k}$.	1M	for using the result of (a)(ii)
	$\mu = 2hy + (2h+5)z$ $= (2h) \left(\frac{-5h-14}{(h+5)(h+1)} \right) + (2h+5) \left(\frac{-2(h^2+4h+6)}{(h+5)(h+1)} \right)$ $= \frac{-4h^3 - 36h^2 - 92h - 60}{(h+5)(h+1)}$ $= \frac{-4(h+1)(h+3)(h+5)}{(h+5)(h+1)}$	1M	
	(h+5)(h+1) = $-4(h+3)$	1A	
(ii)	$\mathbf{u} \times \mathbf{v} = -4(h+3)\mathbf{i} + 2h \mathbf{j} - \mathbf{k}$		
	When the area of the parallelogram with adjacent sides u and v is 9, $ \mathbf{u} \times \mathbf{v} = 9$ $\sqrt{(-4(h+3))^2 + (2h)^2 + 1} = 9$ $5h^2 + 24h + 16 = 0$	1M	
	Since $5h^2 + 24h + 16 > 0$ for all $h > 0$, there does not exist a value of h such that the area of the parallelogram with adjacent sides \mathbf{u} and \mathbf{v} is 9 .	1A (7)	f.t.
2024-DSE-MAT	TH EP(M2)_16		
	W R		

60	Solution	Marks	Remarks
13. (a)	$=\frac{1}{1-1}\begin{pmatrix} 2 & -2 \\ 1 & -2 \end{pmatrix}$	1M	
	$= \frac{1}{\begin{vmatrix} -2 & 2 \\ 1 & 2 \end{vmatrix}} \begin{pmatrix} 2 & -2 \\ -1 & -2 \end{pmatrix}$ $= \frac{-1}{6} \begin{pmatrix} 2 & -2 \\ -1 & -2 \end{pmatrix}$		
	$= \begin{pmatrix} -1 & -2 \end{pmatrix}$ $= \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{3} \end{pmatrix}$		
	$A - 6A^{-1}$		
	$= \begin{pmatrix} -2 & 2 \\ 1 & 2 \end{pmatrix} - 6 \begin{pmatrix} \frac{-1}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{3} \end{pmatrix}$		
	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	1A	
	$= \begin{pmatrix} -2 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} \frac{-1}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{3} \end{pmatrix}$		
	$= \begin{pmatrix} -6 & 6 \\ 6 & 12 \end{pmatrix} \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{3} \end{pmatrix}$	1M	
	$= \begin{pmatrix} 3 & 0 \\ 0 & 6 \end{pmatrix}$	1A	
2024-DSE	-MATH-EP(M2)-17		

85	Solution	Marks	Remarks
(b)	$ABA^{-1} = \begin{pmatrix} 3 & 0 \\ 0 & 6 \end{pmatrix}$	E W. Marchell Products	2 (24) 9510-400 7515-1515
()			
	$(ABA^{-1})^n = \begin{pmatrix} 3 & 0 \\ 0 & 6 \end{pmatrix}^n$		
	$AB^n A^{-1} = \begin{pmatrix} 3^n & 0 \\ 0 & 6^n \end{pmatrix}$	1M	
	$B^n = A^{-1} \begin{pmatrix} 3^n & 0 \\ 0 & 6^n \end{pmatrix} A$	1M	
	B^n		
	$= \begin{pmatrix} \frac{-1}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 3^n & 0 \\ 0 & 6^n \end{pmatrix} \begin{pmatrix} -2 & 2 \\ 1 & 2 \end{pmatrix}$		
	$= \begin{pmatrix} -3^{n-1} & \frac{6^n}{3} \\ \frac{3^n}{6} & \frac{6^n}{3} \end{pmatrix} \begin{pmatrix} -2 & 2 \\ 1 & 2 \end{pmatrix}$		
	$= \begin{pmatrix} 2(3^{n-1}) + \frac{6^n}{3} & -2(3^{n-1}) + \frac{2(6^n)}{3} \\ -3^{n-1} + \frac{6^n}{3} & 3^{n-1} + \frac{2(6^n)}{3} \end{pmatrix}$	1A	
	(3 3)	(3)	
2024-DSE-MATH-EP(M2)–18			

	Solution	Marks	Remarks
(c)	By (a), we have $A - 6A^{-1} = 0$ $A^2 - 6I = 0$ $A^2 = 6I$	1M	
	$A^{2} = 6I$ $(A^{2})^{-1} = (6I)^{-1}$ $(A^{-1})^{2} = \frac{1}{6}I$ $A^{2k}B^{2k}(A^{-1})^{2k}$ $= (A^{2})^{k}B^{2k}((A^{-1})^{2})^{k}$ $= (6I)^{k}B^{2k}\left(\frac{1}{6}I\right)^{k}$ $= B^{2k}$ $= \begin{pmatrix} 2(3^{2k-1}) + \frac{6^{2k}}{3} & -2(3^{2k-1}) + \frac{2(6^{2k})}{3} \\ -3^{2k-1} + \frac{6^{2k}}{3} & 3^{2k-1} + \frac{2(6^{2k})}{3} \end{pmatrix}$ $(ABA^{-1})^{2k}$	1 M	either one
	$= \begin{pmatrix} 3 & 0 \\ 0 & 6 \end{pmatrix}^{2k}$ $= \begin{pmatrix} 3^{2k} & 0 \\ 0 & 6^{2k} \end{pmatrix}$ Note that $-2(3^{2k-1}) + \frac{2(6^{2k})}{3} \neq 0$ for all positive integers k . Thus, there does not exist a positive integer k such that $A^{2k}B^{2k}(A^{-1})^{2k} = (ABA^{-1})^{2k}$.	1A	f.t.
(d)	$A^{999}B^{999}(A^{-1})^{999}$ $= (A^{998})AB^{999}A^{-1}(A^{-1})^{998}$ $= (A^{2})^{499}AB^{999}A^{-1}((A^{-1})^{2})^{499}$ $= (6I)^{499}AB^{999}A^{-1}\left(\frac{1}{6}I\right)^{499}$ $= AB^{999}A^{-1}$ $= (ABA^{-1})^{999}$	1M	
2024-DSE	$= (ABA^{-1})^{999}$ $= \begin{pmatrix} 3 & 0 \\ 0 & 6 \end{pmatrix}^{999}$ $= \begin{pmatrix} 3^{999} & 0 \\ 0 & 6^{999} \end{pmatrix}$ E-MATH-EP(M2)-19	1A (2)	f.t.