Unit 1 - Vectors and spaces

Francisco Dall' Oglio Scorsato

May 12th 2024

1 Lesson 1: Vectors

1.1 Vector intro for linear algebra

A vector has magnitude and direction. If someone is going at "5km/h", that isn't a vector. However, if someone is going at "5km/h east", since there is magnitude and direction, that is a vector.

A vector will have a x and y component, and can be described like this:

$$\vec{v} = (x, y)$$

For the sake of this course, the matrix representation will be used more commonly. That is:

$$\vec{v} = \begin{bmatrix} x \\ y \end{bmatrix}$$

A vector $\vec{v} = (3,4)$ could be drawn the following way:

Notice that it's magnitude, per the Pythagorean Theorem, will be 5.

1.2 Real coordinate spaces

We can represent the 2-dimensional real coordinate space (a.k.a the cartesian plane) as \mathbb{R}^2 . That will be all possible real-valued "2-tuples". In our case, these "2-tuples" are the vectors that have two values. All possible combinations of x and y, both real, make \mathbb{R}^2 .

 \mathbb{R}^3 would be the 3D real coordinate space, with all real-valued 3-tuples. Or, 3 dimensional vectors. In general, \mathbb{R}^n represents an n-dimensional real coordinate space with n-tuples.

1.3 Adding vectors algebraically & graphically

Let
$$\vec{a} = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} -4 \\ 4 \end{bmatrix}$

$$\vec{a} + \vec{b} = \begin{bmatrix} 6 + (-4) \\ -2 + 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Graphically, this is:

Theorem 1.1. The sum of two vectors \vec{a} and \vec{b} such that $\vec{a} = (x_1, y_1)$ and $\vec{b} = (x_2, y_2)$ is $\vec{a} + \vec{b} = (x_1 + x_2, y_1 + y_2)$.