(4) Seja G um grafo simples não orientado, com matriz de custos (ou pesos)

	1	2	3	પ	5	6	
	0	20	20	10	∞	∞	
2	20	O	∞	∞	30	30	
<i>C</i> –	3 20	∞	0	20	∞	∞	
U =	4 10	∞	20	0	10	60	
Ė	5 ∞	30	∞	10	0	40	
6	1 0 20 20 20 10 ∞	30	∞	60	40	0	

a) Indique um subgrafo H de G com 5 vértices que seja bipartido e conexo (apresente uma figura com o subgrafo, identificando os vértices). Determine uma bipartição de H. Justificando H.

Não tem ciclos Le comprimento impost

Sofrage SHE um substrates de SHOW V(H) CV(S) e E(H) CE(H). Alem disso tem 5 veitiens. E comexo

perque para quaisquer dois vértices $x_1 \in V(H)$, existe eux H um comistro a unix $x \in Y$. $H \in bipartido perque <math>V(H)$ admite a bipartiçõe eux (V_1,V_2) , com $V_1 = \{1,5,6\} \cdot V_2 = \{2,73\} \times tal$ que toda a avoita de $H \in incidente num révisee de <math>V_1 \in num$ révisee de V_2 .

c) Considere o subgrafo F de G induzido pelo subconjunto de arestas $E' = \{12, 13, 14, 25, 34, 45\}$. Determine o número de árvores abrangentes de F, aplicando a fórmula recursiva e indicando em cada passo a aresta selecionada.

(2) Utilizando séries de potências formais, determine o número de maneiras de distribuir 8 bolas não distinguíveis por 5 caixas numeradas de modo que a primeira caixa recebe no máximo 2 bolas.

Podemos esvideras a série (en função)
gradana exrita na farma

$$\mathcal{H} = (1+x+x^2)(1+x+x^2+...+x^8)^4$$

ou na farma
 $\mathcal{H} = (1+x+x^2)(1+x+x+...+x+...)$

O mémero de distribuix

maneiras de distribuix

rai

as 8 belas caincide

rai

com o coeficiente

de 28 quando

se efetuam es produtes em oto.

Termos de erdeur superior a 8. Não vão aletar a este prophera a este maldand

Consideranos $A = (1+x+x^2)(1+x+x^2+...)^4.$ $\sum_{n=0}^{\infty} x^n$

$$= \sum_{K=0}^{\infty} x^{K} - \sum_{K=0}^{\infty} x^{K+3}$$

$$= \sum_{K=0}^{\infty} x^{K} - \sum_{K=0}^{\infty} x^{K} = (1-x^{3}) \left(\sum_{K=0}^{\infty} x^{K} \right)$$

$$= \sum_{K=0}^{\infty} x^{K} - \sum_{K=0}^{\infty} x^{K} = (1-x^{3}) \left(\sum_{K=0}^{\infty} x^{K} \right)$$

$$= (1-x^{3}) \left(\sum_{K=0}^{\infty} x^{K} \right) \left(\sum_{i=0}^{\infty} x^{K} \right) \left(\sum_{i=0}^{\infty} x^{K} \right)$$

$$= (1-x^{3}) \left(\sum_{K=0}^{\infty} x^{K} \right) \left(\sum_{i=0}^{\infty} x^{K} \right) \left(\sum_{i=0}^{\infty} x^{K} \right)$$

$$= \sum_{i=0}^{\infty} (3\pi i) x^{K+i} - \sum_{i=0}^{\infty} (3\pi i) x^{K+i} = \sum_{i=0}^{\infty} (3\pi i) x^{i}$$

$$= \sum_{i=0}^{\infty} (3\pi i) x^{K+i} - \sum_{i=0}^{\infty} (3\pi i) x^{K+i+3} = \sum_{i=0}^{\infty} (3\pi i) x^{i}$$

$$= \sum_{i=0}^{\infty} (3\pi i) x^{K+i+3} = x^{2} + \sum_{i=0}^{\infty} (3\pi i) x^{K+i+3} = x^$$

OBS: vous super que tinhaves que determinar a señe apradona.

$$\int b = (1-z^3) \left(\sum_{\kappa=0}^{\infty} z^{\kappa} \right) \left(\sum_{n=0}^{\infty} z^{n} \right)$$

$$= 1$$

$$(1-z)^{4} = 1$$

$$1-y = 0$$

$$= \frac{1-x^3}{(1-x)^5}$$

série gerodora (escrita na forma racional istor, quociento de folinómios. Ex: 1+x+x2 2+x

Ex: $1+x+x^2$, $\frac{z+x}{z^2+x^3}$) (2+2)(1+2), etc.) 1-z