Pravděpodobnost a statistika

Bodové odhady a intervaly spolehlivosti

Vilém Vychodil

KMI/PRAS, Přednáška 10

Vytvořeno v rámci projektu 2963/2011 FRVŠ

Přednáška 10: Přehled

- Úvod do teorie odhadu:
 - statistická inference, populace, parametr, výběr, odhad parametru,
 - bodové odhady, intervalové odhady,
 - náhodné výběry, statistiky, výběrová rozdělení.
- Bodové odhady:
 - bodové odhady parametrických funkcí,
 - nestranné bodové odhady, zkreslení,
 - nestranné odhady pro střední hodnoty a rozptyl,
 - metoda momentů, metoda maximálně věrohodného odhadu,
 - Weibullovo rozdělení.
- Intervaly spolehlivosti:
 - interval spolehlivosti, hladina spolehlivosti (konfidence),
 - kritické hodnoty standardního normálního rozdělení,
 - intervalu spolehlivosti pro střední hodnoty a rozptyly, Studentovo t-rozdělení,
 - velikost intervalů spolehlivosti, délka náhodného výběru.

Statistická inference

Populace:

- naivní pojem základní populace (PŘEDNÁŠKA 1);
- při statistickém usuzování: **populace** = náhodná veličina s jejím rozložením.

Základní úkol statistické inference:

- zajímáme se o **parametr** = číselnou hodnotu, jež platí pro celou populaci (například: střední hodnota μ_X , rozptyl σ_X^2 , hodnota p pro $b(n,p),\ldots$);
- používáme **výběr** (z populace) pro odhad $\mu_X, \sigma_X^2, p, \ldots$;
- odhad parametru = získání číselné hodnoty nebo intervalu hodnot z výběru cíl: odhad by měl být "dost blízko" skutečné hodnotě parametru.

Obvykle rozlišujeme dva druhy odhadů:

- bodové odhady (angl.: point estimates) = odhadem je jedna hodnota,
- intervalové odhady (angl.: interval estimates) = odhadem je interval hodnot.

Náhodný výběr

Definice (Náhodný výběr, angl.: random sample)

Mějme pravděpodobnostní prostor $\langle \Omega, \mathcal{F}, P \rangle$ a n nezávislých náhodných veličin X_1, X_2, \ldots, X_n v prostoru $\langle \Omega, \mathcal{F}, P \rangle$, které mají stejné rozdělení pravděpodobnosti, to jest $P(\{X_i \in A\}) = P(\{X_j \in A\})$ pro každé i, j a $A \in \mathcal{B}$. Označme toto rozdělení P_X . Pak náhodný vektor $\mathbf{X} \colon \Omega \to \mathbb{R}^n$ definovaný $\big(\mathbf{X}(\omega)\big)(i) = X_i(\omega)$ se nazývá **náhodný výběr** z rozdělení P_X .

- Náhodný výběr ${m X}\colon\Omega\to{\mathbb R}^n$ značíme ${m X}=\langle X_1,\ldots,X_n\rangle$, nebo jen X_1,\ldots,X_n ;
- posloupnost nezávislých náhodných veličin se stejným rozdělením;
- abstrakce pojmu *výběr* (PŘEDNÁŠKA 1):
 - místo konkrétních hodnot ve výběru máme náhodné veličiny;
 - má smysl uvažovat rozdělení $P_{\boldsymbol{X}}(A) = P(\{\boldsymbol{X} \in A\}).$
- dále se budeme zabývat statistikami: funkcemi náhodných výběrů.

Statistiky a výběrová rozdělení

Definice (Statistika a výběrové rozdělení)

Mějme pravděpodobnostní prostor $\langle \Omega, \mathcal{F}, P \rangle$, náhodný výběr $\boldsymbol{X} \colon \Omega \to \mathbb{R}^n$ a Borelovskou funkci $g \colon \mathbb{R}^n \to \mathbb{R}$. Pak náhodnou veličinu $\vartheta \colon \Omega \to \mathbb{R}$ definovanou $\vartheta = g(\boldsymbol{X})$ nazveme (**výběrová**) statistika nebo **výběrová charakteristika** (angl.: sample statistics) náhodného výběru \boldsymbol{X} . Rozdělení pravděpodobnosti $P_\vartheta \colon \mathcal{B} \to [0,1]$ veličiny ϑ nazýváme **výběrové rozdělení**, angl.: sampling distribution.

- \bullet Z definice složené funkce pro statistiku ϑ máme $\vartheta(\omega)=g(\boldsymbol{X}(\omega))\in\mathbb{R};$
- z definice rozdělení pravděpodobnosti: $P_{\vartheta}(A) = P(\{g(\boldsymbol{X}) \in A\});$
- Pro konkrétní výběr x_1, \ldots, x_n je $g(x_1, \ldots, x_n)$ konkrétní hodnota;
- Například: $\overline{X} = \frac{1}{n} \cdot \sum_{i=1}^n X_i$; $S^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (X_i \overline{X})^2$.

Bodové odhady parametrických funkcí

Definice (Bodový odhad)

Mějme pravděpodobnostní prostor $\langle \Omega, \mathcal{F}, P \rangle$ a náhodný výběr $\boldsymbol{X} = \langle X_1, \dots, X_n \rangle$ z rozdělení, které závisí na neznámých parametrech $\Theta_1, \dots, \Theta_k$. Pak **bodový odhad** (angl.: point estimate) parametrické funkce $\tau(\Theta_1, \dots, \Theta_k)$ na základě \boldsymbol{X} je libovolná statistika $\vartheta = g(\boldsymbol{X})$, kde g nezávisí na $\Theta_1, \dots, \Theta_k$.

- výše definovaný pojem sám o sobě nic neříká o "kvalitě odhadu", to jest o tom, jak jsou hodnoty dané odhadem blízko $\tau(\Theta_1,\ldots,\Theta_k)$;
- nejčastěji se zajímáme o jediný parametr Θ a parametrická funkce τ je identita:
 - to jest pokud $\tau(\Theta) = \Theta$,
 - potom bodový odhad značíme $\widehat{\Theta}$,
 - například: pro parametry μ a σ^2 jsou jejich bodové odhady značeny $\widehat{\mu}$ a $\widehat{\sigma^2}$.

Nestranné bodové odhady

Bodové odhady, jejichž střední hodnoty jsou rovny hodnotám parametrických funkcí:

Definice (Nestranný / nezkreslený / nevychýlený bodový odhad)

Mějme pravděpodobnostní prostor $\langle \Omega, \mathcal{F}, P \rangle$ a náhodný výběr $\boldsymbol{X} = \langle X_1, \dots, X_n \rangle$ z rozdělení, které závisí na neznámých parametrech $\Theta_1, \dots, \Theta_k$. Bodový odhad $\vartheta = g(\boldsymbol{X})$ parametrické funkce $\tau(\Theta_1, \dots, \Theta_k)$ se nazývá **nestranný bodový odhad** (angl.: *unbiased estimate*), pokud platí $E(\vartheta) = \tau(\Theta_1, \dots, \Theta_k)$. Rozdíl hodnot $E(\vartheta) - \tau(\Theta_1, \dots, \Theta_k)$ se nazývá **zkreslení** nebo **vychýlení** (angl.: *bias*).

- Parametrická funkce $\tau(\Theta_1, \dots, \Theta_k)$ má obecně nekonečně mnoho odhadů;
- nestranný odhad = odhad, pro který klademe omezení na střední hodnotu;

Příklad (Nestranný odhad parametru p pro binomické rozdělení)

Problém: Výrobce automobilů testuje odolnost nárazníků vyhodnocením výsledků série n kontrolovaných srážek nárazníku s umělou překážkou. Výsledkem každého pokusu je *úspěch* (nárazník odolal) nebo *neúspěch* (neodolal).

Úkol: Uvažujme náhodnou veličinu X označující počet jednotlivých pokusů končících úspěchem. Stanovte nestranný bodový odhad pravděpodobnosti úspěchu jednotlivého testu.

Řešení: Každý jednotlivý pokus X_i má alternativní rozdělení s parametrem p. Počet (nezávislých) pokusů končících úspěchem je potom $X = \sum_{i=1}^n X_i$, přitom X má binomické rozdělení b(n,p). Dále platí:

$$E\left(\frac{X}{n}\right) = \frac{1}{n} \cdot E(X) = \frac{1}{n} \cdot n \cdot p = p.$$

Závěr: Pokud má X rozdělení b(n,p), potom je $\widehat{p} = \frac{X}{n}$ nestranný odhad p.

Nestranné bodové odhady pro střední hodnotu a rozptyl

Plyne z toho, co víme o střední hodnotě \overline{X} :

Věta (Nestranný bodový odhad pro střední hodnotu)

Mějme náhodný výběr X_1,\ldots,X_n , kde všechny X_i jsou náhodné veličiny se střední hodnotou μ . Potom je \overline{X} nestranný bodový odhad pro μ .

Dále máme:

Věta (Nestranný bodový odhad pro rozptyl)

Mějme náhodný výběr X_1, \ldots, X_n , kde všechny X_i jsou náhodné veličiny se střední hodnotou μ a rozptylem σ^2 . Potom je

$$\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (X_i - \overline{X})^2$$

nestranný bodový odhad pro σ^2 .

Důkaz (začátek).

Nejprve prokážeme:

$$\sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \sum_{i=1}^{n} (X_{i}^{2} - 2X_{i}\overline{X} + \overline{X}^{2})$$

$$= \sum_{i=1}^{n} X_{i}^{2} - 2\overline{X} \sum_{i=1}^{n} X_{i} + \sum_{i=1}^{n} \overline{X}^{2}$$

$$= \sum_{i=1}^{n} X_{i}^{2} - 2\overline{X} \left(n \frac{1}{n} \sum_{i=1}^{n} X_{i} \right) + \sum_{i=1}^{n} \overline{X}^{2}$$

$$= \sum_{i=1}^{n} X_{i}^{2} - 2\overline{X} (n\overline{X}) + n\overline{X}^{2}$$

$$= \sum_{i=1}^{n} X_{i}^{2} - 2n\overline{X}^{2} + n\overline{X}^{2} = \sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}.$$

Důkaz (pokračování).

S využitím předchozího a faktu, že $\sigma_Y^2 - E(Y)^2 = E(Y^2)$, máme:

$$E(S^2) = E\left(\frac{1}{n-1} \cdot \sum_{i=1}^n \left(X_i - \overline{X}\right)^2\right) = E\left(\frac{1}{n-1} \cdot \left(\sum_{i=1}^n X_i^2 - n \cdot \overline{X}^2\right)\right)$$

$$= \frac{1}{n-1} \cdot \left(\sum_{i=1}^n E(X_i^2) - n \cdot E(\overline{X}^2)\right) = \frac{1}{n-1} \cdot \left(n \cdot E(X_1^2) - n \cdot E(\overline{X}^2)\right)$$

$$= \frac{n}{n-1} \cdot \left(E(X_1^2) - E(\overline{X}^2)\right) = \frac{n}{n-1} \cdot \left(\sigma^2 - E(X_1)^2 - \left(\sigma_{\overline{X}}^2 - E(\overline{X})^2\right)\right)$$

Důkaz (dokončení).

$$= \frac{n}{n-1} \cdot \left(\sigma^2 - E(X_1)^2 - \left(\sigma_{\overline{X}}^2 - E(\overline{X})^2\right)\right) =$$

$$= \frac{n}{n-1} \cdot \left(\sigma^2 - \mu^2 - \left(\sigma_{\overline{X}}^2 - \mu_{\overline{X}}^2\right)\right) =$$

$$= \frac{n}{n-1} \cdot \left(\sigma^2 - \mu^2 - \left(\sigma_{\overline{X}}^2 - \mu^2\right)\right) =$$

$$= \frac{n}{n-1} \cdot \left(\sigma^2 - \sigma_{\overline{X}}^2\right) = \frac{n}{n-1} \cdot \left(\sigma^2 - \frac{\sigma^2}{n}\right) =$$

$$= \frac{n}{n-1} \cdot \left(\frac{n \cdot \sigma^2}{n} - \frac{\sigma^2}{n}\right) = \frac{n}{n-1} \cdot \left(\frac{n \cdot \sigma^2 - \sigma^2}{n}\right) =$$

$$= \frac{n}{n-1} \cdot \left(\frac{n-1}{n} \cdot \sigma^2\right) = \sigma^2.$$

Momenty náhodných výběrů

Budeme se zabývat tím, jak stanovit (nestranné) bodové odhady.

Potřebujeme nový pojem – výběrový moment.

Připomeňme: r-tý moment X je očekávaná hodnota $E(X^r)$.

Definice (r-tý moment náhodného výběru)

Mějme náhodný výběr X_1, \ldots, X_n , pak r-tý moment náhodného výběru, angl.: rth sample moment je náhodná veličina

$$\frac{1}{n} \cdot \sum_{i=1}^{n} X_i^r.$$

Poznámka: pokud rozdělení závisí na parametrech $\Theta_1, \dots, \Theta_k$, pak momenty $E(X^r)$ rovněž závisí na těchto parametrech; momenty náhodných výběrů však nikoliv.

Získání bodových odhadů: metoda momentů

Princip metody momentů

Mějme náhodný výběr $\langle X_1,\ldots,X_n\rangle$ z rozdělení, které závisí na neznámých parametrech Θ_1,\ldots,Θ_k . Potom momentové odhady $\widehat{\Theta}_1,\ldots,\widehat{\Theta}_k$ pro parametry Θ_1,\ldots,Θ_k získáme jako řešení soustavy k rovnic, ve kterých klademe do rovnosti i-té momenty K a i-té moment náhodného výběru.

Vede na soustavy rovnic ve tvaru:

$$\frac{1}{n} \cdot \sum_{i=1}^{n} X_i^1 = E(X^1),$$

$$\vdots \qquad \vdots$$

$$\frac{1}{n} \cdot \sum_{i=1}^{n} X_i^k = E(X^k).$$

Příklad (Stanovení bodových odhadů pro parametry rozdělení Γ)

Funkce hustoty rozdělení
$$\Gamma$$
: $f_X(x) = \frac{1}{\Gamma(\alpha) \cdot \theta^{\alpha}} \cdot x^{\alpha-1} \cdot e^{\frac{-x}{\theta}}$ (Přednáška 7).

Úkol: Stanovte bodové odhady pro parametry

- α (počet změn),
- θ (střední doba čekání na jednu změnu).

 $\check{\mathbf{R}}$ ešení: První a druhý moment veličiny X mají následující tvary.

$$E(X^{1}) = \alpha \cdot \theta,$$

$$E(X^{2}) = \theta^{2} \cdot (\alpha + 1) \cdot \alpha.$$

Použitím metody momentů tedy stačí stanovit α a θ z rovnic

$$\frac{1}{n} \cdot \sum_{i=1}^{n} X_i^1 = E(X^1) = \alpha \cdot \theta, \quad \frac{1}{n} \cdot \sum_{i=1}^{n} X_i^2 = E(X^2) = \theta^2 \cdot (\alpha + 1) \cdot \alpha.$$

Příklad (Stanovení bodových odhadů pro parametry rozdělení Γ)

Použitím metody momentů stanovíme odhady pro parametry α a θ z rovnic

$$\frac{1}{n} \cdot \sum_{i=1}^{n} X_i^1 = \alpha \cdot \theta,$$

$$\frac{1}{n} \cdot \sum_{i=1}^{n} X_i^2 = \theta^2 \cdot (\alpha + 1) \cdot \alpha.$$

Vyjádřením bodových odhadů $\widehat{\alpha}$ a $\widehat{\theta}$ dostáváme:

$$\widehat{\alpha} = \frac{\overline{X}^2}{\frac{1}{n} \cdot \sum_{i=1}^{n} X_i^2 - \overline{X}^2},$$

$$\widehat{\theta} = \frac{\frac{1}{n} \cdot \sum_{i=1}^{n} X_i^2 - \overline{X}^2}{\overline{X}}.$$

Získání BO: princip maximálně věrohodného odhadu

Mějme náhodný výběr $\boldsymbol{X} = \langle X_1, \dots, X_n \rangle$ z rozdělení, které závisí na neznámých parametrech $\Theta_1, \dots, \Theta_k$. Potom:

- sdružená pravděp. funkce (nebo funkce hustoty) f_X závisí na $\Theta_1, \dots, \Theta_k$;
- pro libovolný výběr y_1,\ldots,y_n lze uvažovat funkci L_{x_1,\ldots,x_n} v proměnných Θ_1,\ldots,Θ_k definovanou $L_{x_1,\ldots,x_n}(\Theta_1,\ldots,\Theta_k)=f_{\boldsymbol{X}}(x_1,\ldots,x_n;\Theta_1,\ldots,\Theta_k)$.

Definice (Maximálně věrohodný odhad)

Pokud existují funkce $g_i\colon \mathbb{R}^n \to \mathbb{R}$ takové, že pro libovolný výběr x_1,\dots,x_n je

$$\langle g_1(x_1,\ldots,x_n),\ldots,g_k(x_1,\ldots,x_n)\rangle$$

bodem maxima funkce L_{x_1,\dots,x_n} , pak se statistiky $\widehat{\Theta}_1 = g_1(\boldsymbol{X}),\dots,\widehat{\Theta}_k = g_k(\boldsymbol{X})$ nazývají **maximálně věrohodné odhady** (angl.: *maximum likelihood estimators*) pro parametry Θ_1,\dots,Θ_k .

Příklad (Maximálně věrohodný odhad parametru θ)

Uvažujme náhodný výběr $\pmb{X}=\langle X_1,\ldots,X_n\rangle$ z exponenciálního rozdělení s parametrem $\theta=\lambda^{-1}$. Z nezávislosti X_1,\ldots,X_n dostáváme, že

$$L_{x_1,\dots,x_n}(\lambda) = f_{\mathbf{X}}(x_1,\dots,x_n;\lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n \exp\left(-\lambda \sum_{i=1}^n x_i\right).$$

Zlogaritmováním $f_{\boldsymbol{X}}$ dostáváme $\ln \left(f_{\boldsymbol{X}}(x_1,\ldots,x_n;\lambda) \right) = n \ln \lambda - \lambda \sum_{i=1}^n x_i.$ Využitím faktu, že $f_{\boldsymbol{X}}(x_1,\ldots,x_n;\lambda)$ má stejné extrémy jako $\ln \left(f_{\boldsymbol{X}}(x_1,\ldots,x_n;\lambda) \right)$ vyjádříme bod maxima

$$\lambda = \frac{n}{\sum_{i=1}^{n} x_i} = \frac{1}{\overline{X}}$$
, to jest $\hat{\lambda} = \frac{1}{\overline{X}}$.

Poznámka (Interpretace hodnot $L_{x_1,...,x_n}(\Theta_1,\ldots,\Theta_k)$)

Pokud je X_1,\ldots,X_n náhodný výběr z diskrétního rozdělení, pak je $L_{x_1,\ldots,x_n}(\Theta_1,\ldots,\Theta_k)$ je pravděpodobnost, že x_1,\ldots,x_n vzniklo výběrem při použití parametrů Θ_1,\ldots,Θ_k (chceme maximalizovat).

Příklad (Maximálně věrohodné odhad parametrů $N(\mu, \sigma^2)$)

Pokud je X_1,\ldots,X_n náhodný výběr z normálního rozdělení $N(\mu,\sigma^2)$, pak maximálně věrohodné odhady parametrů μ a σ^2 jsou

$$\widehat{\mu} = \overline{X},$$
 $\widehat{\sigma}^2 = \frac{1}{n} \cdot \sum_{i=1}^n (X_i - \overline{X})^2.$

Poznámka (Maximálně verohodný odhad není obecně nestranný)

V předchozím případě platí

 $\mbox{maximálně věrohodný odhad} \quad \neq \quad \mbox{nestranný odhad} \ ,$

protože nestranný odhad parametru σ^2 je

$$\widehat{\sigma^2} = S^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (X_i - \overline{X})^2.$$

Weibullovo rozdělení

Definice (Náhodná veličina s Weibullovým rozdělením)

Spojitá náhodná veličina X s hustotou f_X má Weibullovo rozdělení pokud existují reálná čísla $\lambda>0$ a k>0 tak, že f_X je ve tvaru

$$f_X(x) = \exp\left(-\left(\frac{x}{\lambda}\right)^k\right) \cdot \frac{k}{\lambda} \cdot \left(\frac{x}{\lambda}\right)^{k-1}$$
 pokud $x \ge 0$,

a $f_X(x) = 0$ jinak.

- Parametry λ a k určují škálu a tvar (+ někdy se zavádí posunutí θ);
- pro k=1 přejde Weibullovo rozdělení v exponenciální rozdělení;
- pro k=3.4 je Weibullovo rozdělení zhruba podobné normálnímu rozdělení;
- využívá se v aplikacích pro analýzu životnosti komponent.

Příklad (Příklady f_X pro Weibullovo rozdělení)

Weibullovo rozdělení lze použít pro modelování poměru selhání, které

- se v čase snižuje (pro k < 1); nebo
- ② je neměnné v čase (pro k = 1); nebo
- \bullet se v čase zvyšuje (pro k > 1).

Příklady funkcí hustoty Weibullova rozdělení:

Příklad (Maximálně věrohodný odhad parametrů Weibullova rozdělení)

Problém: Máme výběr x_1, \ldots, x_n zaznamenávající n časů životnosti, po kterých selhala každá z n nezávislých součástek stejného typu.

Úkol: Předpokládejte, že výběr x_1, \ldots, x_n pochází z Weibullova rozdělení a metodou maximálně věrohodných odhadů stanovte jeho parametry.

Řešení: Sdružená funkce hustoty f_{vecX} je ve tvaru:

$$f_{\mathbf{X}}(x_1,\ldots,x_n;\lambda,k) = \prod_{i=1}^n \left(\exp\left(-\left(\frac{x_i}{\lambda}\right)^k\right) \cdot \frac{k}{\lambda} \cdot \left(\frac{x_i}{\lambda}\right)^{k-1} \right).$$

Hledáme proto řešení $\widehat{\lambda}$ a \widehat{k} následujících rovnic:

$$\ln\left(\frac{\partial f_{\mathbf{X}}(x_1,\ldots,x_n;\lambda,k)}{\partial \lambda}\right) = 0, \qquad \ln\left(\frac{\partial f_{\mathbf{X}}(x_1,\ldots,x_n;\lambda,k)}{\partial k}\right) = 0.$$

Analytické řešení je komplikované (používají se numerické metody).

Příklad (Stanovení parametrů Weibullova rozdělení na základě výběru)

Problém: Uvažujme následující výběr (životnost komponenty v hodinách):

$$x_1 = 92$$
, $x_2 = 35$, $x_3 = 14$, $x_4 = 123$, $x_5 = 52$, $x_6 = 77$.

Úkol: Metodou maximálně věrohodného odhadu stanovte parametry Weibullova rozdělení, ze kterého výběr pochází. Poté stanovte pravděpodobnost, že náhodně zvolená komponenta vydrží běžet alespoň 15 hodin.

Numerickým řešením soustavy dvou nelineárních rovnic pro x_1, \ldots, x_6 dostáváme:

$$\widehat{\lambda} \approx 73.6935$$
, $\widehat{k} \approx 1.8539$.

To znamená, že

$$P({X \ge 15}) = 1 - P({X < 15}) = e^{-(\frac{15}{\lambda})^k} = e^{-(\frac{15}{73.6935})^{1.8539}} \approx 0.9490.$$

Pravděpodobnost, že součástka vydrží alespoň 15 hodin je 0.94.

Intervaly spolehlivosti: Motivace

Problémy s bodovými odhady:

- bodový odhad je (jediné) číslo
- neposkytuje informaci o spolehlivosti odhadu
 (to jest o pravděpodobnosti, že odhad je blízko skutečné hodnotě parametru)
- ullet typická otázka: "Jak blízko je \overline{X} (nestranný odhad) hodnotě μ ?"

Řešení:

- uvažujeme interval pravděpodobných hodnot místo jediné hodnoty,
- bodové odhady ⇒ intervalové odhady.

Hlavní myšlenka:

- volíme hladinu spolehlivosti (danou v procentech);
- ② na základě znalosti rozdělení výběrové statistiky stanovíme interval [a,b] obsahující skutečnou hodnotu parametru (například μ_X) s danou spolehlivostí.

Intervaly spolehlivosti

Definice (Interval spolehlivosti / konfidenční interval)

Mějme náhodný výběr $\boldsymbol{X}=\langle X_1,\ldots,X_n\rangle$ z rozdělení, které závisí na neznámém parametru $\Theta\in\mathbb{R}$ a uvažujme číslo $\alpha\in[0,1]$. Pokud jsou $g(\boldsymbol{X})$ a $h(\boldsymbol{X})$ statistiky, pro které platí

$$P(g(\mathbf{X}) \le \Theta \le h(\mathbf{X})) = 1 - \alpha,$$

potom se (g(X), h(X)) nazývá $100(1-\alpha)\%$ interval spolehlivosti nebo též konfidenční interval (angl.: confidence interval). Číslo $1-\alpha$ (případně $100(1-\alpha)\%$) se nazývá hladina spolehlivosti nebo též konfidence, angl.: confidence coefficient.

Poznámka:

- $P(\{g(\boldsymbol{X}) \leq \Theta \leq h(\boldsymbol{X})\}) = P(\{g(\boldsymbol{X}) \leq \Theta\} \cap \{\Theta \leq h(\boldsymbol{X})\}),$ to jest $\{g(\boldsymbol{X}) \leq \Theta \leq h(\boldsymbol{X})\}$ je dobře definovaný jev;
- Intervaly spolehlivosti nejsou dány jednoznačně (snaha najít nejkratší).

Vlastnosti intervalů spolehlivosti

Typické hodnoty hladiny spolehlivosti (konfidence):

- 95%, 98%,...
- $\alpha=0$ a $\alpha=1$ nemají valný smysl (odpovídající intervaly jsou triviální).

Intervaly spolehlivosti = náhodné intervaly

- nejedná se o intervaly v klasickém slova smyslu,
- hranice intervalů jsou dány náhodnými veličinami,
- přejdou v klasické intervaly dosazením hodnot konkrétního výběru,
- pro různě dlouhé výběry dostaneme obecně různě dlouhé intervaly.

Poznámka (Monotonie: vyšší konfidence ⇒ delší intervaly)

Pro $\alpha \leq \beta$ platí, že $100(1-\alpha)\%$ konfidenční interval je podinterval $100(1-\beta)\%$ konfidenčního intervalu.

Základní metody stanovení intervalů spolehlivosti

Přesné × přibližné stanovení intervalu:

- přesné stanovení intervalu je možné při znalosti rozdělení,
- není obvykle možné, rozdělení závisí na odhadovaných parametrech.

Aproximace pomocí normálních rozdělení:

- využívá centrální limitní větu,
- využívá vlastnosti (percentilů) standardního normálního rozdělení.

Typické problémy:

- velké výběry × malé výběry (obvykle jiné techniky),
- ullet odhadování μ závisí na rozptylu σ^2 (může být znám imes nemusí být znám),
- otázky týkající se (dostačující) velikosti výběru.

Horní percentily standardního normálního rozdělení

Definice (Horní percentil, angl.: upper percentile)

Hodnotu $z_p \in \mathbb{R}$ takovou, že $\Phi(z_p) = 1 - p$ nazveme horní (100p)% percentil.

Z vlastností distribuční funkce Φ a kvantilové funkce Φ^{-1} :

- $1 \Phi(z_p) = P(\{Z \ge z_p\}) = p$, kde Z je veličina s rozdělením N(0,1);
- $z_p = \Phi^-(1-p)$: z_p je 100(1-p)% percentil.

Příklad (Motivace pro intervaly spolehlivosti pro střední hodnoty)

Pokud má Z rozdělení N(0,1), pak

$$P\left(\left\{-z_{\frac{\alpha}{2}} \le Z \le z_{\frac{\alpha}{2}}\right\}\right) = 1 - \alpha.$$

Věta (Int. spolehlivosti pro μ z normálního rozdělení pro dané σ^2)

Mějme náhodný výběr z normálního rozdělení s rozptylem $\sigma^2>0$ a jeho průměr \overline{X} . Pak $100(1-\alpha)\%$ interval spolehlivosti pro μ je

$$\left(\overline{X} - z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \, \overline{X} + z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right).$$

Důkaz (začátek).

Nechť X má rozdělení $N(\mu,\sigma^2)$. Z předchozích pozorování o vlastnostech normálních veličin víme, že \overline{X} má normální rozdělení se střední hodnotou μ a rozptylem σ^2/n . Odtud plyne, že náhodná veličina $W=(\overline{X}-\mu)/(\sigma/\sqrt{n})$ má standardní normální rozdělení N(0,1). Pomocí horních percentilů vyjádříme

$$P\left(\left\{-z_{\frac{\alpha}{2}} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z_{\frac{\alpha}{2}}\right\}\right) = P\left(\left\{-z_{\frac{\alpha}{2}} \le W \le z_{\frac{\alpha}{2}}\right\}\right) = 1 - \alpha.$$

Důkaz (dokončení).

Vynásobením obou stran nerovností ze

$$P\left(\left\{-z_{\frac{\alpha}{2}} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z_{\frac{\alpha}{2}}\right\}\right) = 1 - \alpha$$

zápornou nenulovou hodnotou $-\sigma/\sqrt{n}$ dostáváme

$$P\left(\left\{-z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \le \mu - \overline{X} \le z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right\}\right) = 1 - \alpha.$$

Přičtením \overline{X} ke všem stranám v předchozí nerovnosti dostáváme

$$P\left(\left\{\overline{X} - z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right\}\right) = 1 - \alpha,$$

což jsme měli dokázat.

Příklad (Int. spolehlivosti pro μ z normálního rozdělení pro dané σ^2)

Problém: Předpokládejme, že máme čtyřprvkový náhodný výběr z normálního rozdělení s rozptylem $\sigma^2 = 9$.

Ukol: Stanovte 95% interval spolehlivosti pro μ .

Řešení:

$$\left(\overline{X} - z_{0.025} \cdot \frac{3}{\sqrt{4}}, \, \overline{X} + z_{0.025} \cdot \frac{3}{\sqrt{4}}\right) = \left(\overline{X} - 2.940, \, \overline{X} + 2.940\right).$$

Pro konkrétní čtyřprvkový výběr získáme konkrétní interval hodnot. Například pro

$$x_1 = 0.667,$$
 $x_2 = 4.692,$ $x_3 = 3.338,$ $x_4 = 9.189$

$$x_3 = 3.338,$$

$$x_4 = 9.189$$

dostáváme $\overline{x} = 4.472$, to jest (1.532, 7.412).

Zkrácení délky intervalů spolehlivosti

Obecný požadavek

Je žádoucí stanovovat co možná nejkratší intervaly spolehlivosti.

Intervaly spolehlivosti mohou být zúženy ("zkráceny") pomocí:

- **1** snížením hladiny spolehlivosti (to jest, zvětšením hodnoty α),
- použitím větších (delších) výběrů.

Příklad (Zmenšení intervalů spolehlivosti použitím větších výběrů)

Mějme náhodnou veličinu X s rozdělením N(5,9) a náhodný výběr X_1,\ldots,X_n .

- Pokud n=4, pak 95% interval spolehlivosti pro μ je $\left(\overline{X}-2.940,\overline{X}+2.940\right)$.
- Pokud n=25, pak 95% interval spolehlivosti pro μ je $\left(\overline{X}-1.176,\overline{X}+1.176\right)$.
- Pokud n=400, pak 95% interval spolehlivosti pro μ je $\left(\overline{X}-0.294,\overline{X}+0.294\right)$.

Intervaly spolehlivosti pro μ : velké n, známé $\sigma^2 > 0$

Zobecnění předchozího postupu

- X_1, \ldots, X_n je náhodný výběr z *libovolného rozdělení* s rozptylem $\sigma^2 > 0$;
- pokud je n dostatečně velké (typicky, $n \ge 30$ a větší), pak

$$P\bigg(\!\!\left\{-z_{\frac{\alpha}{2}}<\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}< z_{\frac{\alpha}{2}}\right\}\!\!\bigg) \approx 1-\alpha,$$

protože dle centrální limitní věty má $W=\dfrac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ přibližně rozdělení N(0,1).

Důsledek (Int. spolehlivosti pro μ při velkém n a pro dané σ^2).

 $100(1-\alpha)\%$ interval spolehlivosti pro μ je přibližně

$$\left(\overline{X} - z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \ \overline{X} + z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right).$$

Intervaly spolehlivosti pro μ : velké n, neznámé $\sigma^2 > 0$

Postup při neznámé hodnotě rozptylu σ^2 :

• Pokud je n dostatečně velké, lze použít S^2 (rozptyl náhodného výběru) místo σ^2 (neznámý rozptyl populace); pro

$$W = \frac{\overline{X} - \mu}{S/\sqrt{n}}, \text{ kde } S = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

má W přibližně rozdělení N(0,1).

Důsledek (Int. spolehlivosti pro μ při velkém n a pro neznámé σ^2).

 $100(1-\alpha)\%$ interval spolehlivosti pro μ je přibližně

$$\left(\overline{X} - z_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}, \ \overline{X} + z_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}\right).$$

• funguje dobře pro výběry, kde $n \ge 30$ (nebo $n \ge 50$ při vyšší šikmosti rozdělení).

Stanovení intervalů spolehlivosti z malých výběrů

Častá situace:

- rozptyl není znám,
- výběr, který je k dispozici je malý (jednotky pozorování),
- výběr není možné zvětšit (těžká opakovatelnost experimentu, náklady, ...).

Postup: Vyjádříme výběrové rozdělení

$$\frac{(n-1)\cdot S^2}{\sigma^2}$$
 , kde $\frac{1}{n-1}\cdot \sum_{i=1}^n (X_i-\overline{X})^2$.

Pomocí výběrového rozdělení stanovíme rozdělení veličiny $\frac{X-\mu}{S/\sqrt{n}}$.

- Musíme prozkoumat vztah \overline{X} a S^2 (a souvisejících rozdělení);
- ullet významnou roli zde hraje nové rozdělení odvozené z N(0,1) a $\chi^2(r)$.

Nezávislost výběrových charakteristik \overline{X} a S^2

Věta

Mějme n-prvkový náhodný výběr X_1,\ldots,X_n z rozdělení $N(\mu,\sigma^2)$. Pak pro

$$\overline{X} = \frac{1}{n} \cdot \sum\nolimits_{i=1}^n X_i \quad \text{a} \quad S^2 = \frac{1}{n-1} \cdot \sum\nolimits_{i=1}^n (X_i - \overline{X})^2,$$

platí

- $oldsymbol{0}$ \overline{X} a S^2 jsou nezávislé,
- $2 \frac{(n-1)\cdot S^2}{\sigma^2} \text{ má rozdělení } \chi^2(n-1).$

Důkaz (nebude vyžadován).

Netriviální (zejména část o nezávislosti \overline{X} a S^2).

Studentovo t-rozdělení

Definice (Studentovo t-rozdělení)

Mějme náhodnou veličinu T danou zlomkem,

$$T = \frac{Z}{\sqrt{U/r}},$$

kde Z má rozdělení N(0,1), U má rozdělení $\chi^2(r)$ a Z a U jsou nezávislé. Pak řekneme, že T má t-rozdělení s r stupni volnosti (angl.: t-distribution).

Lze ukázat, že funkce hustoty a distribuční funkce jsou v následujících tvarech:

$$f_T(t) = \frac{\Gamma\left(\frac{r+1}{2}\right)}{\sqrt{\pi \cdot r} \cdot \Gamma\left(\frac{r}{2}\right) \cdot \left(1 + \frac{t^2}{r}\right)^{(r+1)/2}},$$

$$F_T(t) = \frac{1}{\sqrt{\pi} \cdot \Gamma\left(\frac{r}{2}\right)} \cdot \int_0^\infty \left[\int_{-\infty}^{t \cdot \sqrt{u/r}} \frac{e^{-z^2/2}}{2^{(r+1)/2}} dz \right] \cdot u^{\frac{r}{2}-1} \cdot e^{-\frac{u}{2}} du.$$

Intervaly spolehlivosti založené na t-rozdělení

Uvažujme n-prvkový náhodný výběr X_1, \ldots, X_n z normálního rozdělení. Použitím předchozí věty a tvaru veličiny mající t-rozdělení dostáváme, že

$$T = \frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) \cdot S^2}{\sigma^2}}} = \frac{\overline{X} - \mu}{S / \sqrt{n}}.$$

T má t-rozdělení s r=n-1 stupni volnosti. To jest:

Důsledek (Int. spolehlivosti pro μ při malém n a pro neznámé σ^2).

Pokud je X_1,\ldots,X_n z normálního rozdělení, pak $100(1-\alpha)\%$ int. spolehl. pro μ je

$$\left(\overline{X} - t_{\frac{\alpha}{2}}(n-1) \cdot \frac{S}{\sqrt{n}}, \, \overline{X} + t_{\frac{\alpha}{2}}(n-1) \cdot \frac{S}{\sqrt{n}}\right),$$

kde $t_p(k)$ označuje **horní** (100p)% **percentil** t-rozdělení s k stupni volnosti.

Jednostranné intervaly spolehlivosti

Možný tvar intervalů spolehlivosti:

- doposud ve tvaru (a,b), kde $a,b \in \mathbb{R}$;
- další možnost: $(-\infty, b)$ nebo (a, ∞) (jednostranné intervaly).

Příklad (Určení jednostranného intervalu spolehlivosti)

Pokud je X_1,\dots,X_n náhodný výběr z normálního rozdělení s rozptylem $\sigma^2>0$, pak

$$1 - \alpha = P\left(\left\{\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha}\right\}\right) = P\left(\left\{\overline{X} - z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}} \le \mu\right\}\right).$$

To jest, $100(1-\alpha)\%$ jednostranné intervaly spolehlivosti pro μ (levý a pravý) jsou

$$\left(-\infty, \overline{X} + z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}\right), \qquad \left(\overline{X} - z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}, \infty\right).$$

Analogicky se postupuje v ostatních případech (σ^2 neznámé,...)

Příklad (Int. spolehlivosti pro μ z normálního rozdělení pro dané σ^2)

Problém: Předpokládejme, že máme čtyřprvkový náhodný výběr z normálního rozdělení s rozptylem $\sigma^2=9$.

Úkol: Stanovte 95% oboustranný a jednostranné intervaly spolehlivosti pro μ .

Řešení:

$$\left(\overline{X} - z_{0.025} \cdot \frac{3}{\sqrt{4}}, \overline{X} + z_{0.025} \cdot \frac{3}{\sqrt{4}}\right) = \left(\overline{X} - 2.940, \overline{X} + 2.940\right),$$

$$\left(-\infty, \overline{X} + z_{0.05} \cdot \frac{3}{\sqrt{4}}\right) = \left(-\infty, \overline{X} + 2.467\right),$$

$$\left(\overline{X} - z_{0.05} \cdot \frac{3}{\sqrt{4}}, \infty\right) = \left(\overline{X} - 2.467, \infty\right),$$

Pro konkrétní výběr $x_1=0.667, \ x_2=4.692, \ x_3=3.338, \ x_4=9.189$ získáváme intervaly (1.532,7.412) , $(-\infty,6.939)$ a $(2.005,\infty)$.

Intervaly spolehlivosti pro rozdíly středních hodnot

Problém porovnání středních hodnot μ_X a μ_Y dvou výběrů:

- ullet náhodný výběr X_1,\ldots,X_n z normálního rozdělení $N(\mu_X,\sigma_X^2)$;
- ullet náhodný výběr Y_1,\ldots,Y_m z normálního rozdělení $N(\mu_Y,\sigma_Y^2)$;
- (neznámé) střední hodnoty μ_X a μ_Y jsou dost blízko, pokud je interval spolehlivosti pro $\mu_X \mu_Y$ dost malý (a obsahuje 0).

Rozbor: Průměry \overline{X} a \overline{Y} mají rozdělení $N(\mu_X,\sigma_X^2/n)$ a $N(\mu_Y,\sigma_Y^2/m)$; to jest lineární kombinace $W=\overline{X}-\overline{Y}$ má rozdělení $N(\mu_X-\mu_Y,\sigma_X^2/n+\sigma_Y^2/m)$.

Odtud dostáváme:

$$P\left(\left\{-z_{\frac{\alpha}{2}} \le \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{\sigma_X^2/n + \sigma_Y^2/m}} \le z_{\frac{\alpha}{2}}\right\}\right) = 1 - \alpha,$$

z toho můžeme ekvivalentně vyjádřit

$$P(\{(\overline{X} - \overline{Y}) - z_{\frac{\alpha}{2}} \cdot \sigma_W \le \mu_X - \mu_Y \le (\overline{X} - \overline{Y}) + z_{\frac{\alpha}{2}} \cdot \sigma_W\}) = 1 - \alpha.$$

Horní percentily rozdělení χ^2

Podobně jako u standardního normálního a t-rozdělení uvažujeme horní percentily rozdělení χ^2 s r stupni volnosti:

Definice (Horní percentily rozdělení χ^2)

Nechť X je náhodná veličina z rozdělením $\chi^2(r)$ a $p \in (0,1)$. Pak hodnotu $\chi^2_p(r) \in \mathbb{R}$ takovou, že $F_X\left(\chi^2_p(r)\right) = 1-p$ nazveme **horní** $(\mathbf{100}p)\%$ **percentil** rozdělení χ^2 s r stupni volnosti.

Z vlastností distribuční funkce F_X a kvantilové funkce F_X^{-1} :

- $1 F_X(\chi_p^2(r)) = P(\{X \ge \chi_p^2(r)\}) = p$, kde X je veličina s rozdělením $\chi^2(r)$;
- $\chi_p^2(r) = F_X^-(1-p)$, to jest $\chi_p^2(r)$ je 100(1-p)% percentil.

Hodnoty $\chi_p^2(r)$ jsou v tabulkách (numerické aproximace).

Poznámka: Hodnoty $m_X - \chi_p^2(r)$ a $\chi_{1-p}^2(r)$ jsou obecně různé. (!!)

Příklad (Horní percentily rozdělení χ^2)

Uvažujme náhodnou veličinu X, která má rozdělení χ^2 s r=5 stupni volnosti.

Pak máme

$$\chi_{0.1}^2(5) = 9.236 = F_X^-(0.9),$$
 $\chi_{0.9}^2(5) = 1.610 = F_X^-(0.1).$

Věta (Interval spolehlivosti pro σ^2 z normálního rozdělení)

Mějme n-prvkový náhodný výběr z normálního rozdělení. Pak $100(1-\alpha)\%$ interval spolehlivosti pro σ^2 je

$$\left(\frac{(n-1)\cdot S^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)\cdot S^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)}\right).$$

Důkaz.

Mějme X_1,\ldots,X_n z rozdělení $N(\mu,\sigma^2)$. Dle předchozí věty, $((n-1)\cdot S^2)/\sigma^2$ má rozdělení $\chi^2(n-1)$, přitom S^2 je rozptyl náhodného výběru X_1,\ldots,X_n . S využitím horních percentilů můžeme psát:

$$P\left(\left\{\chi_{1-\frac{\alpha}{2}}^{2}(n-1) \leq \frac{(n-1)\cdot S^{2}}{\sigma^{2}} \leq \chi_{\frac{\alpha}{2}}^{2}(n-1)\right\}\right) = 1 - \alpha.$$

Ekvivalentním vyjádřením:

$$P\left(\left\{\frac{(n-1)\cdot S^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)} \le \sigma^{2} \le \frac{(n-1)\cdot S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}\right\}\right) = 1 - \alpha.$$

Příklad (Stanovení intervalů spolehlivosti pro rozptyl)

Problém: Předpokládejme, že náhodná veličina X má normální rozdělení.

Úkol: Najděte 90% interval spolehlivosti pro rozptyl σ_X^2 za předpokladu, že máme k dispozici následující třináctiprvkový výběr:

23.15, 15.16, 22.53, 20.83, 19.13, 11.05, 25.29, 18.16, 21.05, 17.19, 26.87, 11.06, 15.19.

Řešení: Nejprve spočteme výběrový průměr $\overline{x}=18.97$. Dále máme

$$(n-1) \cdot s^2 = 12 \cdot s^2 = \sum_{i=1}^{13} (x_i - \overline{x})^2 = 12 \cdot 24.85 = 298.23.$$

To jest, 90% interval spolehlivosti pro rozptyl σ_X^2 je

$$\left(\frac{12 \cdot s^2}{\chi_{0.05}^2(12)}, \frac{12 \cdot s^2}{\chi_{0.95}^2(12)}\right) = \left(\frac{298.23}{21.03}, \frac{298.23}{5.226}\right) = (14.18, 57.07).$$

Příklad (Stanovení potřebné velikosti výběru)

Problém: Uvažujme n-prvkový náhodný výběr z rozdělení se střední hodnotou μ a rozptylem σ^2 .

Úkol: Jsou dány hodnoty $\alpha \in (0,1)$ a $\varepsilon > 0$. Stanovte velikost n náhodného výběru tak, aby $100(1-\alpha)\%$ interval spolehlivosti pro μ byl $(\overline{X}-\varepsilon,\overline{X}+\varepsilon)$.

$$P\left(\left\{\overline{X} - z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right\}\right) \approx 1 - \alpha.$$

Odtud přímo dostáváme

$$\varepsilon = z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \text{ i.e. } n = \left(z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\varepsilon}\right)^2.$$

Příklady (Potřebné počty pozorování)

Velikosti výběrů při $1-\alpha=0.95$ (řádky $=\sigma^2$; sloupce $=\omega$)

	-		` •			• ,		
	8	7	6	5	4	3	2	1
5	0.55	0.63	0.73	0.88	1.10	1.46	2.19	4.38
15	0.95	1.08	1.27	1.52	1.90	2.53	3.80	7.59
25	1.22	1.40	1.63	1.96	2.45	3.27	4.90	9.80
35	1.45	1.66	1.93	2.32	2.90	3.87	5.80	11.60
45	1.64	1.88	2.19	2.63	3.29	4.38	6.57	13.15

Velikosti výběrů při $1-\alpha=0.99$ (řádky $=\sigma^2$; sloupce $=\omega$)

	8	7	6	5	4	3	2	1
5	0.72	0.82	0.96	1.15	1.44	1.92	2.88	5.76
15	1.25	1.43	1.66	2.00	2.49	3.33	4.99	9.98
25	1.61	1.84	2.15	2.58	3.22	4.29	6.44	12.88
35	1.90	2.18	2.54	3.05	3.81	5.08	7.62	15.24
45	2.16	2.47	2.88	3.46	4.32	5.76	8.64	17.28

Přednáška 10: Závěr

Pojmy:

- populace, parametr, parametrická funkce, výběrová statistika
- bodový odhad, nestranný odhad, zkreslení, maximálně věrohodný odhad
- intervaly spolehlivosti, práh spolehlivosti, konfidence, náhodný interval
- Weibullovo rozdělení, Studentovo t-rozdělení

Použité zdroje:

- Billingsley, P.: *Probability and Measure*John Wiley & Sons; 3. vydání, ISBN 978-0-471-00710-4.
- Gentle J. E.: *Random Number Generation and Monte Carlo Methods* Springer 2004, ISBN 978-0-387-00178-4.
- Hogg R. V., Tanis E. A.: *Probability and Statistical Inference* Prentice Hall; 7. vydání 2005, ISBN 978-0-13-146413-1.