SF1626 Flervariabelanalys

Föreläsning 14

Henrik Shahgholian

Vid Institutionen för matematik, KTH

VT 2018, Period 3

Vektoranalys

Dagens Lektion, Avsnitt 15.3-15.4

- Kurvintegraler
- Kurvintegraler av vektorfält
- Beräkna kurvintegraler med parametrisering/potential

Kurvintegraler

Kurvintegraler/linjeintegraler

Båglängd: Börja med avsnitt 11.3 (boken) samt Anteckningar F2 sidan 16-24.

Hur bestämmer vi massan för en metalltråd γ med täthet f?

Låt metalltrådet γ vara en begränsad, slät kurva i \mathbf{R}^3 (eller \mathbf{R}^2) och täthetsfunktionen f som är definierad och kontinuerlig på γ . Då kan vi definiera kurvintegralen (massan)

$$\int_{\mathcal{V}} f(x,y,z) \, ds$$

som gränsvärdet av Riemannsummor

$$\sum f(x_j^*,y_j^*,z_j^*)\,|\Delta\mathbf{r}_j|.$$

Kurvintegraler

Kurvintegralen kan beräknas genom

$$\int_{\mathcal{Y}} f(x, y, z) ds = \int_{a}^{b} f(\mathbf{r}(t)) |\mathbf{r}'(t)| dt$$

där $\mathbf{r}(t)$, $a \le t \le b$, är en parametrisering av γ

Exempel 1:

Beräkna kurvintegralen

$$\int_{\gamma} y \, ds$$

där γ är övre halvan av enhetscirkeln, som börjar i (1,0) och slutar i (0,-1).

Svar: 2

Kurvintegraler av vektorfält

Om ${\bf F}=(P,Q)$ är ett kontinuerligt plant vektorfält och γ en orinterad slät kurva så ges kurvintegralen av den tangentiella komponenten av ${\bf F}$ längs γ av

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{\gamma} P \, dx + Q \, dy.$$

Om $\mathbf{r}(t) = (x(t), y(t)), \ a \le t \le b$, parametriserar γ , så kan kurvintegralen beräknas genom

$$\int_{a}^{b} (P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t)) dt$$

Motsvarande för vektorfält i R³

Exempel: kurvintegraler av vektorfält

Exempel 2: Beräkna kurvintegralen $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r}$ a fallen nedan

A: $\mathbf{F}(x,y) = (x,-y)$ och γ är den del av kurvan $y = 1 - x^2$ som ligger i första kvadranten, genomlöpt från (1,0) till (0,1).

B: $\mathbf{F}(x,y) = (x,-y)$ och γ är den del av enhetscirkeln som ligger i första kvadranten, genomlöpt från (1,0) till (0,1).

Svar: Samma svar i båda fallen: -1.

Genomfört arbete i detta fall är oberoende av vägen.

Quiz (här):

Beräkna kurvintegralen $\int_{\gamma} \mathbf{H} \cdot d\mathbf{r}$ a fallen nedan

A: $\mathbf{H}(x,y) = (-y,x)$ och γ är den del av kurvan $y = 1 - x^2$ som ligger i första kvadranten, genomlöpt från (1,0) till (0,1).

B: $\mathbf{H}(x,y) = (-y,x)$ och γ är den del av enhetscirkeln som ligger i första kvadranten, genomlöpt från (1,0) till (0,1).

Svar: För H olika svar: 4/3 resp $\pi/2$!

Genomfört arbete i detta fall är beroende av vägen. Förklaringen kommer snart.

Kurvintegraler av konservativa vektorfält

Om **F** är ett konservativt vektorfält med potentialfunktion φ och γ är en orinterad slät kurva som startar i (x_0, y_0) och slutar i (x_1, y_1) så gäller att

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \varphi(x_1, y_1) - \varphi(x_0, y_0)$$

Bevis: Vi har $\mathbf{F} = \nabla \varphi$, och därför kan vi skriva

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{\gamma} \nabla \varphi \cdot d\mathbf{r} = \int_{t_0}^{t_1} \frac{d}{dt} \varphi((x(t), y(t))) dt = \varphi(x(t_1), y(t_1)) - \varphi(x(t_0), y(t_0))$$

där $x_0 = x(t_0), y_0 = y(t_0),$ etc...

Exempel Tentaproblem 2015-08-20

Betrakta det plana vektorfältet F som ges av

$$\mathbf{F}(x,y) = \left(x + \frac{y}{2} + 3, \frac{x}{2} + y + 5\right)$$

- A. Vad innebär det att ett vektorfält är konservativt?
- B. Visa att vektorfältet F är konservativt.
- C. Använd vetskapen att vektorfältet är konservativt för att beräkna kurvintegralen

$$\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{\gamma} \left(x + \frac{y}{2} + 3 \right) dx + \left(\frac{x}{2} + y + 5 \right) dy$$

där γ är någon slät kurva som börjar i (-2,0) och slutar i (-2,-4).

Sats i ℝ²:

Om $\mathbf{F} = (P, Q)$ är ett glatt plant vektorfält på en öppen enkelt sammanhängande mängd D, så är följande påståenden ekvivalenta:

- 1. **F** är konservativt i D
- 2. $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = 0$ för alla styckvis släta slutna kurvor γ i *D*
- 3. Alla kurvintegraler av **F** är oberoende av vägen i D

4.
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 i D

Sats i ℝ³:

Om $\mathbf{F} = (P, Q, R)$ är ett glatt vektorfält på en öppen enkelt sammanhängande mängd D, så är följande påståenden ekvivalenta:

- 1. **F** är konservativt i D
- 2. $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = 0$ för alla styckvis släta slutna kurvor γ i *D*
- 3. Alla kurvintegraler av **F** är oberoende av vägen i D

4.
$$\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}$$
, $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$, $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ i D

Minitenta 1: 2013-08-22

Betrakta kurvintegralen $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} \, \mathrm{d}\mathbf{r} \, \mathbf{F}(x,y,z) = (yz,xz,xy)$ och kurvan γ parametriseras av $(x,y,z) = (\cos t,\sin t,t)$ då t löper från 0 till $\pi/4$.

- a. Beräkna kurvintegralen genom att använda kurvans parametrisering.
- Bestäm en potentialfunktion och beräkna kurvintegralen med hjälp av den.

Minitenta 2: 2014-05-26

Beräkna kurvintegralen

$$\int_{\gamma} -2y \, dx + x^2 \, dy$$

där γ är en fjärdedel av cirkelbågen med centrum i (1,0) och radie 1, med start i (2,0) och slut i (1,1)

Minitenta 3: 2016-03-21

Vektorfältet **F** i planet ges av $\mathbf{F}(x,y) = (y^2,2xy+1)$.

- a. Avgör om F är konservativt och bestäm om möjligt en potentialfunktion.
- b. Beräkna kurvintegralen $\int_C \mathbf{F} \cdot d\mathbf{r}$ där C är kurvan som parametriseras av $\mathbf{r}(t) = (te^t, e^{t-1})$ då $0 \le t \le 1$.

Se till att du kan dessa

- 1 Hur beräknar man kurvintegraler av vektorfält?
 - a. med parametrisering av kurvan
 - b. med potentialfunktion
- När får man byta väg i en kurvintegral?