

## **Automated and Connected Driving Challenges**

Section 2 – Sensor Data Processing

Localization

Introduction

Bastian Lampe

Institute for Automotive Engineering





## Ka



## Recap – Taxonomy of Self Perception

Use Sensor-Input to **estimate** the current state of the **ego-vehicle**:

- Dynamic vehicle state (e.g. current velocities and accelerations)
- Actuator control values (e.g. current steering angle)
- Current vehicle pose
  - in a global reference frame or relative to a previous vehicle pose

→ Vehicle Localization is sub-problem of self-perception







## Fundamentals - Definition of Robot Localization

Localization is defined as the **determination** of a position and orientation in a specific reference system

- In robotics the combination of position and orientation of a robot is defined as pose
  - A 2D-Pose can be defined as  $\mathbf{x} = [x, y, \psi]^T$







## Fundamentals - Definition of Robot Localization

Localization is defined as the **determination** of a position and orientation in a specific reference system

In robotics the **combination of position and orientation** of a robot is defined as **pose** A 3D-Pose can be defined as  $\mathbf{x} = [x, y, z, \varphi, \theta, \psi]^T$ 





## Motivation: Localization as a Prerequisite for Vehicle Guidance

Navigation

Guidance

Stabilization



Image: <u>businessrole.us</u>





## Motivation: Localization as a Prerequisite for Vehicle Guidance

Navigation

Guidance

Stabilization



Image: businessrole.us



Image: towardsdatascience.com



Image: univdatos.com



## Fundamentals - Digital Maps



- Lane network topology and geometry
  - Lane connections
  - Lane width, curvature
- Road and lane attributes
  - Road types (highway, urban road, ...)
  - Lane types (regular, carpool, bus, ...)
- Regulatory elements that may be occluded
  - Speed limits, warning signs
  - Traffic lights



Image: autonews



## Fundamentals - Digital Maps



#### Lane network topology and geometry

- Lane connections
- Lane width, curvature

#### Road and lane attributes

- Road types (highway, urban road, ...)
- Lane types (regular, carpool, bus, ...)

#### Regulatory elements that may be occluded

- Speed limits, warning signs
- Traffic lights



- Curbs, Walls
- Trees



Image: autonews

- → Digital maps can **increase robustness** of the system
- → Localization in the map necessary to utilize the map



## RWTHAACHEN UNIVERSITY

## Fundamentals – Taxonomy and Classification

Approaches for vehicle localization can be categorized into:

#### **Global Localization**

Determination of the vehicle pose in a global reference frame

#### **Common Approaches:**

- GNSS
- Landmark-Based Localization







## Fundamentals – Taxonomy and Classification

Approaches for vehicle localization can be categorized into:

#### **Global Localization**

Determination of the vehicle pose in a global reference frame

#### Common Approaches:

- GNSS
- Landmark-Based Localization

#### **Relative Localization**

Determination of the vehicle pose relative to an initial pose

### Common Approaches:

- Odometry
- Inertial Navigation







## Fundamentals – Taxonomy and Classification

Approaches for vehicle localization can be categorized into:

#### **Global Localization**

Determination of the vehicle pose in a global reference frame

#### Common Approaches:

- GNSS
- Landmark-Based Localization

#### **Relative Localization**

Determination of the vehicle pose relative to an initial pose

### Common Approaches:

- Odometry
- Inertial Navigation

# Simultaneous Localization and Mapping (SLAM)

Creation of a map with simultaneous location within it

- Common Approaches:
  - Kalman-Filter
  - Particle-Filter
  - Graph-based SLAM







## Fundamentals – Taxonomy and Classification

Approaches for vehicle localization can be categorized into:

#### **Global Localization**

Determination of the vehicle pose in a global reference frame

#### Common Approaches:

- GNSS
- Landmark-Based Localization

#### **Relative Localization**

Determination of the vehicle pose relative to an initial pose

### Common Approaches:

- Odometry
- Inertial Navigation

# Simultaneous Localization and Mapping (SLAM)

Creation of a map with simultaneous location within it

- Common Approaches:
  - Kalman-Filter
  - Particle-Filter
  - Graph-based SLAM





Source: Zekavat 2019

## Fundamentals - Sensors for Vehicle Localization

## **Exteroceptive Sensors**

- **GNSS** Receiver
- LiDAR
- Radar
- Cameras
- Compass





Image: Novatel

Image: Aeva

**Proprioceptive Sensors** 



## RWTHAACHEN UNIVERSITY

Source: Zekavat 2019

## Fundamentals - Sensors for Vehicle Localization

#### **Exteroceptive Sensors**

- GNSS Receiver
- LiDAR
- Radar
- Cameras
- Compass



Image: Novatel



Image: Aeva

## **Proprioceptive Sensors**

- Vehicle Motion Sensors
  - Velocity and Steering Encoder
  - Odometer
- Inertial Sensors
  - Inertial Measurement Unit (IMU)
    - Usually composed of three accelerometers and three gyroscopes



Image: Continental



Image: Bosch