

AD-A143 468

DISTRIBUTIONS OF CENTRAL QUADRATIC FORMS
IN NORMAL VARIABLES:
A COMPARISON OF ALGORITHMS

Bruce Williams

Model-Based Measurement Laboratory
University of Illinois
Champaign, IL 61820

June 1984

Prepared under contract No. N00014-79C-0752, NR 154-445
and No. N00014-83K-0397, NR 150-518
with the Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research

Approved for public release: distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.

BEST
AVAILABLE COPY

84 07 27 056

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER Measurement Series 84-3	2. GOVT ACCESSION NO. 40414361	3. RECIPIENT'S CATALOG NUMBER .Y
4. TITLE (and Subtitle) Distributions of Central Quadratic Forms in Normal Variables: A Comparison of Algorithms		5. TYPE OF REPORT & PERIOD COVERED Technical Report
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Bruce Williams		8. CONTRACT OR GRANT NUMBER(S) N00014-79C-0752 N00014-83K-0397
9. PERFORMING ORGANIZATION NAME AND ADDRESS Model-Based Measurement Laboratory University of Illinois Champaign, IL 61820		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61153N RR042-04 NR 154-445 NR 150-518
11. CONTROLLING OFFICE NAME AND ADDRESS Personnel and Training Research Programs Office of Naval Research (Code 442PT) Arlington, VA 22217		12. REPORT DATE
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)		13. NUMBER OF PAGES 56
		15. SECURITY CLASS. (of this report)
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release: distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES University of Illinois, Department of Computer Science Thesis.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Distribution theory, numerical algorithm, latent trait theory, item response theory, item bias, local independence, goodness of fit test, chi square distribution, multivariate normal distribution, quadratic forms, normal random variables.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Quadratic functions of multivariate normal random variables arise with surprising frequency in certain social science theories. However, they seem to be rarely used in applications because of the numerical difficulties in computing their distribution functions. This thesis implements a new strategy for computing the distribution function for an arbitrary positive definite quadratic form in multivariate normal variables. Alternative algorithms are reviewed. Comparison trials are reported to show that the new algorithm is at least as accurate and reliable as the alternative algorithms.		

Table of contents

Page	Table	Page	Table
1.	1.	Quadratic form α -weights.	
2.	2.	F_{200} determined by series methods.	
	3.	N required for convergence of series.	
	4.	Partial sums of the power series before convergence.	
	5.	Error bounds for the series methods.	
	6.	Timing runs.	
	7.	F_{200} determined by DLT methods.	
	8.	N required for convergence of the 1st, 2nd, and 3rd order differences.	
	9.	Error bounds on 1st order differences ($\times 1,000,000$).	
	10.	Error bound at the convergence criterion.	
1.	INTRODUCTION	1	
2.	SERIES EXPANSIONS	1	
	2.1 Power series equations	4	
	2.2 x^2 series equations	5	
	2.3 Laguerre series equations	5	
	2.4 Description of the algorithms	6	
	2.5 Testing the algorithms	7	
	2.6 Summary	18	
3.	APPROXIMATING THE UNIT STEP FUNCTION	31	
	3.1 DLT algorithm	34	
	3.2 1st order differences	37	
	3.3 2nd order differences	41	
	3.4 3rd order differences	42	
	3.5 Testing the algorithms	43	
	3.6 Summary	50	
4.	APPENDIX	54	
	REFERENCES	56	

List of Tables

List of Figures

Figure 1. Partial sums of the Laguerre series as a function of N for set 4 .

Figure 2. The DLT approximation and the 1st, 2nd, and 3rd order differences as a function of N for set 1

Figure 3. The 1st order differences D_N and D_N^* , and the midpoint $(D_N + D_N^*)/2$ as a function of N for set 1 .

Accession For		A-1	
NTIS	CRAZI	By	
DTIC	TAB	Distribution/	
Unclassified		Availability Codes	
Junitrification		Avail and/or	
		Special	
Dist			

1. INTRODUCTION

A random variable \underline{Y} is a quadratic function of n independent, multivariate normal variables if for some positive definite matrix A and vector \underline{b} , \underline{Y} has the same distribution function as

$$(\underline{Z} - \underline{b})^T A (\underline{Z} - \underline{b})$$

where

$$\underline{Z}^T = \langle Z_1, Z_2, \dots, Z_n \rangle$$

\underline{Z} is a vector of independent standard normal variables. This thesis is restricted to the important "homogeneous" special case in which \underline{b} is zero. Without a loss of generality, A can be taken to be a diagonal matrix since for some orthogonal matrix U ,

$$\underline{Z}^T A \underline{Z} = (\underline{Z} U)^T A U (\underline{Z} U)^T$$

and $\underline{Z} U$ is "multinormal" whenever \underline{Z} is. Thus this thesis is concerned with a variable of the form

$$(1) \quad Y = \sum_{i=1}^n \alpha_i Z_i^2,$$

where the Z_i are independent, multivariate normal and the α_i are positive constants.

The distribution function of such variables has numerous applications. Johnson and Kotz (1970, Chapter 29, Sec. 10) list engineering applications. Levine (1983, 1984 - Proceeding of the Computerized Adaptive Testing Conference, David

Weiss, Editor) argues that such variables are important because they enable one to test the hypothesis that a multiple choice test item is equally hard for two ethnic groups. In addition he shows that such variables can be used to decide if a test item's properties have been affected by changes in educational practices or unauthorized use of the item. Finally, Levine (1984) proposes using such variables to statistically test the fundamental assumption of modern test theory, "local independence."

It is impractical to publish tables for these variables because the shapes of distribution function depend in a complicated way on the numbers α_i . Therefore, a numerical algorithm is needed to approximate the distribution function

$$F(y; \alpha_1, \alpha_2, \dots, \alpha_n) = \text{Prob}\{Y \leq y\}.$$

A satisfactory algorithm must be accurate and numerically stable for values of y and α_i that occur in actual social science applications.

The major published algorithms for computing F involve the "series expansions" of the distribution function, i.e., representations of the form

$$F(y) = \sum_{k=0}^{\infty} a_k g_k(y),$$

where $\{g_k(y)\}$ is a sequence of known functions of y and a_k is a coefficient of $g_k(y)$ which does not depend on y .

This thesis begins with a discussion of series expansion algorithms. It will be demonstrated that the series expansion algorithms fail in some important cases. Our alternative algorithm (DLT-algorithm) is then described, programmed, and evaluated.

2. SERIES EXPANSIONS

Johnson and Kotz (1970) obtain a unified treatment of the various series expansions by analyzing the derivative or "density" of F . To do this, they specified functions $h_k(y)$ and obtained coefficients a_k so that the expansion

$$f_N(y) = \sum_{k=0}^N a_k h_k(y)$$

converges to the density $f(y)$. A sequence of approximations $\{F_N\}$ of the distribution function can then be obtained by integrating the $f_N(y)$. Thus,

$$(2) \quad F_N(y) = \sum_{k=0}^N a_k g_k(y),$$

where $g_k(y)$ is obtained by integrating $h_k(y)$. Their method of obtaining the a_k is presented in Kotz, Johnson, and Boyd (1967) and is briefly summarized in the Appendix.

Three forms of $F_N(y)$ for central quadratic variables are tested here. These forms, the power series, Chi-square series, and the Laguerre series, are presented in Kotz, et al (1967) and displayed here as equations (3) - (9). In the power series, $g_k(y)$ is a power of y . In the Chi-square series, $g_k(y)$ is a x^2 distribution function with degrees of freedom which depends on k . Finally, in the Laguerre series, $g_k(y)$ is obtained from the Laguerre polynomial with degree k , presented in equation (9).

After the series expansions are presented (along with equations for the error bounds), algorithms for computing these expansions are developed. Convergence and stability of these algorithms were tested for data arising in applications (Tables 1 and 2). Tables 2 through 5 show the values of $F_N(y)$, along with the rate of convergence and the error bounds at various values of N .

2.1 Power series equations

The following series converges to $F(y)$:

$$(3) \quad F_N(y) = \left(\frac{y}{2}\right)^{n/2} \sum_{k=0}^N \frac{c_k (-1)^k (y/2)^k}{\Gamma(n/2 + k + 1)},$$

where n is the number of terms in $y = \sum_{i=1}^n \alpha_i z_i^2$ and c_k is obtained by the following recursive formulas:

$$(4) \quad c_0 = \prod_{j=1}^n \alpha_j^{-1/2} \quad c_k = \frac{1}{2k} \sum_{r=0}^{k-1} c_r \sum_{j=1}^n \alpha_j^{-(k-r)}.$$

Also, the difference between $F_N(y)$ and the actual $F(y)$ is bounded by

$$E_N(y) = \frac{\left(\frac{y}{2}\right)^{n/2+N+1}}{\Gamma(n/2+N+2)} \frac{c_{N+1}}{(N+1)!},$$

which decreases with N .

2.2 χ^2 Series equations

The equation

$$(5) \quad F_N(y) = \sum_{k=0}^N c_k G(n + 2k; y/\beta)$$

also converges to $F(y)$. Here, 1) $G(n + 2k; y/\beta)$ is the χ^2 distribution of y/β at $n+2k$ degrees of freedom; 2) the c_k are obtained recursively by

$$(6) \quad c_0 = \prod_{j=1}^n (\beta/\alpha_j)$$

$$c_k = \frac{1}{2k} \sum_{r=0}^{k-1} c_r \sum_{j=1}^n [1 - \beta/\alpha_j]^{k-r};$$

and 3) β is a number which makes

$$\epsilon = \max_j |1 - \beta/\alpha_j|$$

as small as possible, which Ruben (1962) claimed to be near $\beta = 2\alpha_1 \alpha_n / (\alpha_1 + \alpha_n)$. Also, the expression

$$E_N(y) = \prod_{j=1}^n \left(\frac{\beta}{\alpha_j}\right)^{1/2} \frac{\Gamma(n/2+N+1)}{\Gamma(n/2)} \frac{\epsilon^{N-1}}{(N+1)!} (1-\epsilon)^{-n/2-N-1} G_N(\cdot),$$

where $G_N(\epsilon) = G[n+2N+2; (1-\epsilon)y/\beta]$, is an upper bound of the error of approximation when $\epsilon < 1$, which holds for $\beta = \beta^*$ whenever $\alpha_1 < 1$ (as was the case for all applications reported here).

2.3 Laguerre series equations

The series

$$f_N(y; \alpha) = g(n; y/\beta) +$$

$$(7) \quad \sum_{k=1}^N c_k \frac{(k-1)!}{r(\frac{n}{2}+k)} \left(\frac{y}{\beta}\right)^{n/2} e^{-\frac{y}{\beta}} L_{k-1}(\frac{y}{\beta})$$

converges to $f(y)$. Here,

$$(8) \quad c_0 = 1 \quad c_k = \frac{1}{2k} \sum_{r=0}^{k-1} c_r \sum_{j=1}^n (1-\alpha_j/\beta)^{k-r} .$$

Also, the term $L_{k-1}(n/2)(x)$ is the generalization of Laguerre polynomial defined by Rodrigues' formula

$$(9) \quad L_{k-1}^{(n)}(x) = \frac{1}{(k-1)!} x^{-\frac{n}{2}} \frac{d^{k-1}}{du^{k-1}} e^{-u} u^{k-1+\frac{n}{2}}|_{u=x} .$$

Finally, β minimizes $\epsilon = \max_j |1-\alpha_j/\beta|$ and (unlike the x^2 series representation) may depend on the α_j (for $\alpha_j \neq 1$, $\beta = 1/2(\alpha_1 + \alpha_n)$ makes $\epsilon = 0$ and $c_k = 0$ for $k \geq 1$). The equation

$$E_N(y) = \frac{n}{N+1} g(n+2; \frac{y}{\beta}) e^{y/4\beta} \frac{(1/\beta)^{N+2}}{(1-\sqrt{\epsilon})^{n/2+2}}$$

provides an error bound for the Laguerre series.

2.4 Description of the algorithms

The computing algorithms necessary to obtain approximations using equations (3) - (9) are not always easy to write. One problem is that a term can be represented as the product of two extreme values. For example, in equation (3), c_k increases without bound when α_j is very small whereas $(y/2)^k / r(n/2 + k + 1)$ decreases to zero for small y . The result is generally a product which is moderate in value.

However, the product of extreme values may be subject to round-off error, producing an erroneous approximation to the distribution. Some ingenuity is required to keep intermediate results within bounds.

The following algorithms attempt to keep roundoff error to a minimum. The series equations are rewritten in a way which can easily be translated to computer code. Whenever necessary the code which evaluates each term in the series is presented.

The required number of computations is also provided. The algorithms for the power series, x^2 series, and the Laguerre series are now discussed in that order.

Power series

Equation (3) can be expressed as

$$f_N(y) = \sum_{k=0}^N c'_k ,$$

where

$$(10) \quad c'_k = \frac{c_k (\frac{y}{2})^{\frac{n}{2}} (-\frac{y}{2})^k}{r(\frac{n}{2} + k + 1)} .$$

Substitution of (4) into (10) gives

$$c'_k = \frac{\frac{1}{2^k} \sum_{r=0}^{k-1} c_r \sum_{i=1}^n \alpha_i^{-(k-r)} (\frac{-y}{2})^{n/2} (-\frac{y}{2})^k}{r(\frac{n}{2} + k + 1)}$$

$$= \frac{1}{2^k} \sum_{i=1}^n \sum_{r=0}^{k-1} \frac{c'_r \alpha_i^{-(k-r)} (-\frac{y}{2})^{k-r}}{(\frac{n}{2}+k) \dots (\frac{n}{2}+r+1)},$$

which can be computed by the following modification of Horner's method:

$$c'_0 = \frac{\frac{n}{2} (\alpha_j^{-1/2}) (\frac{-y}{2})^{\frac{n}{2}}}{r(\frac{n}{2} + 1)}$$

```

DO 30 k=1, N
  sum=0
  DO 20 i=1, n
    p=c'_0 * (-y/2)/(n/2 + 1)
    DO 10 r=1, k-1
      p=(p + c'_r) * (-y/2)
    10   p=p/(n/2 + 1 + r)
    20   CONTINUE
    sum=sum+p/alpha_i
  30   CONTINUE
  c'_k = sum/2k

```

Intermediate results tend not to be extreme with this algorithm.

The number of computations required in the power series algorithm can be derived as follows. The c'_0 term requires 1) $n-1$ multiplications, n divisions $(1/\alpha_i)$, and n computations of the square root to obtain

$$c'_0 = \prod_{j=1}^n \alpha_j^{-1/2};$$

2) $\frac{n}{2} - 1$ multiplications to obtain $(\frac{-y}{2})^{n/2}$ if n is even, and $n/2$ multiplications if n is odd, or an average of $(n-1)/2$ multiplications; 3) $\frac{n}{2} - 1$ divisions and additions to obtain $\frac{(\frac{-y}{2})^{\frac{n}{2}}}{r(\frac{n}{2}+1)}$ if n is even, and $\frac{n}{2}$ divisions, $\frac{n}{2} - 1$ additions, and one square root evaluation if n is odd, or an average of $n - 1$ computations; and 4) one multiplication of the values obtained in 1) and 3) to obtain c'_0 , or a total of $\frac{9}{2}n - \frac{3}{2}$ computations. Each c'_k term ($k \geq 1$) requires 1) $2k$ divisions, k multiplications, and $2k$ additions for each of n iterations within the i-loop and 2) one multiplication and division (by $2k$) to obtain c'_k , or $5nk + 2$ computations. The calculation of all the c'_k thus requires $(\frac{9}{2}n - \frac{3}{2}) + (\frac{5}{2}n(N+1) + 2N)$ computations. Finally, N further additions of the c'_k terms are required to obtain $F_N(y)$, giving a total of $\frac{9}{2}n + \frac{5}{2}nN^2 + (\frac{5}{2}n+3)N - \frac{3}{2}$ computations.

Chi-square series

Unlike the power series, the factors of each term in the χ^2 series expansion (5) , c_k and $G(n+2k; y/\beta)$, were computed separately before being applied to (5) . This is because both factors decrease or remain steady with k . Equation (6) shows this to be true for c_k , since

$$|c_k| \leq \frac{n}{2k} \sum_{r=0}^{k-1} |c_r| \varepsilon^{k-r} ,$$

and β/α_j and thus ε are less than 1 whenever $\alpha_j < 1$ (as was the case for all data analyzed here). Also, the G functions decrease with k for constant y/β , since the variance of a χ^2 distribution increases with its degrees of freedom.

The c_k can be calculated according to (6) using the following modification of Horner's method:

```

DO 20 k=1, N
    sum=0
    DO 10 i=1, n
        p=c0
        DO 5 r=1, k-1
            p=p*[1-β/αj] + cr
            sum=sum + [1-β/αj] * p
        10 CONTINUE
        ck = sum/2k
    20 CONTINUE

```

The number of calculations can be determined as follows.

First, $c_0 = \sum_{i=1}^n (\beta/\alpha_i)$ requires n divisions and $n-1$ multi-

lications. Then a subtraction is performed to obtain each $1-\beta/\alpha_j$ term. Finally, for each c_k ($k \geq 1$) term, nk multiplications and nk additions are required through the i -loop and one multiplication and division by $2k$ are required to obtain c_k . Thus, all the c_k terms require $3n-1+3nN+3nN^2$ computations.

The distribution function $G(n+2k; y/\beta)$ was calculated from the following series (Abramowitz & Stegun, 1965). For odd v ,

$$1 - G(v; x^2) = 2[1-\phi(x)] + \left(\frac{2}{\pi}\right)^{1/2} e^{-x^2/2} \sum_{r=1}^{v-1} \frac{x^{2r-1}}{\Gamma(r+1/2)} ,$$

where $\phi(x)$ is the standard normal distribution function.

The value of $G(v; y)$ can then be computed from the following algorithm:

```

term=y1/2
sum=term
xn=1
DO 50 i=2, (v-1)/2
    xn = xn + 2
    term=term * (y/xn)
    sum = sum + term
50 CONTINUE
sum = 2*[1-φ(y1/2)] + (2/π)1/2*e-y/2*sum
G(v;y)=1-sum

```

An application of this algorithm for $G(n+2k; y/\beta)$ requires

- 1) one initial evaluation of the square root of y/β and one division of $n+2k-1$ by 2 ; 2) two additions, one multiplication, and one division for each iteration within the i -loop, or $2(n-1) + 4k - 1$ computations through the loop; and 3) two divisions, three multiplications, two subtractions, one addi-

tion, one square root evaluation, one exponentiation, and one evaluation of the standard normal distribution to obtain the distribution function, or a total of $2n + 4k + 10$ computations.

For even v ,

$$1 - G(v; x^2) = e^{-x^2/2} \left[1 + \sum_{r=1}^{v/2} \frac{x^{2r}}{2 \cdot 4 \cdot 6 \cdots (2r)} \right].$$

The distribution function $G(v; y)$ can then be computed according to the algorithm

```

xn=0
sum=1
term=1
DO 50 i=1, (v-2)/2
  xn=xn + 2
  term=term * (y/xn)
  sum=sum + term
50 CONTINUE
G(v;y) = 1 - e^-y/2 * sum

```

An application of this algorithm for $G(n+2k; y/\beta)$ requires

- 1) one subtraction and one division to obtain $(n+2k-2)/2$;
- 2) two additions, one multiplication, and one division for each iteration within the i-loop, or $2(n-2) + 4k$ computations through the loop; and 3) one division, one multiplication, one subtraction, and one exponentiation to obtain the distribution function, or a total of $2n+4k+2$ computations.

However, the previous algorithm for calculating the χ^2 distribution is not accurate when the degrees of freedom exceeds 100. Furthermore, the usual normal approximation $\chi^2_v - N(v, 2v)$ is very poor at the tails. A better approximation is necessary, especially for the error bound, where the factor which depends on N ,

$$\frac{\Gamma(\frac{n}{2} + N + 1)}{\Gamma(\frac{n}{2}) (N + 1)!} \cdot \frac{\epsilon^{N+1}}{(1-\epsilon)^{n/2+N+1}}$$

13

14

may increase with N and must then be offset by the decreasing

$$G(n+2k+2; (1-\epsilon)y/\beta).$$

The Wilson and Hilferty (1931) cube root approximation $(\chi^2/v)^{1/3} \sim N(1 - \frac{2}{9v}, \frac{2}{9v^2})$ approaches zero much faster than either the χ^2 distribution approximation or the $N(v, 2v)$ approximation, and so was used whenever the degrees of freedom exceeds 100.

This requires 1) one multiplication and one division to compute $2/9v$; 2) three divisions, two subtractions, one square root computation, and one cube root computation for the cube root approximation; and 3) a computation of the standard normal distribution of the above approximation, or a total of 10 computations.

The evaluation of the χ^2 series thus requires

- 1) $3n + nN^2 + 3nN - 1$ computations for the c_k terms;
- 2) an average of $2n(N+1) + 2(N+1)(N+2) + 6$ computations in approximating the χ^2 distribution function if N is small or about $10N$ computations for the normal distribution function of the cube root approximation if N is large; and 3) $N+1$ multiplications and N additions in summing the $c_k * G(n+2, y/\beta)$ terms. The total number of computations is related to nN^2 , as opposed to $\frac{5}{2}nN^2$ for the power series.

Laguerre series

15

Equation (7) reduces to the following equation:

$$F_N(y) = G(n; y/\beta) + \sum_{k=1}^N \frac{c_k}{\Gamma(\frac{n}{2}+k)} \frac{d^{k-1}}{dx^{k-1}} e^{-x} x^{n/2+k-1} \Big|_{x=y/2\beta}$$

First, the c_k were calculated separately by an algorithm similar to that for the x^2 series. The c_k in (8) do not grow too large, since α_j/β ranges between $2/[1+\alpha_1/\alpha_n]$ and $2/[1+\alpha_n/\alpha_1]$ for $\beta=\frac{1}{2}(\alpha_1+\alpha_n)$. Also, comparison of equations (6) and (8) shows that the c_k for the two series differ only in that 1) $c_0=1$ for the Laguerre series and 2) c_k for the Laguerre series depends on powers of $1-\alpha_j/\beta$, whereas that for the x^2 series depends on powers of $1-\beta/\alpha_j$, so it can be argued that the evaluation of all the c_k requires $2n + 3nN + nN^2$ computations.

Second, $G(n; y/\beta)$ was evaluated using the x^2 distribution algorithm discussed previously. This requires on the average $2n+6$ computations.

Finally, the term

$$(11) \quad \frac{1}{\Gamma(\frac{n}{2}+k)} \frac{d^{k-1}}{dx^{k-1}} e^{-x} x^{n/2+k-1} \Big|_{x=y/2\beta}$$

can be evaluated by the following recursive algorithm. First

16

let

$$g_0(x) = \frac{e^{-x} x^{n/2}}{\Gamma(\frac{n}{2}+1)}$$

and

$$g_1(x) = \frac{x}{2+1} g_0(x)$$

Then the derivative of $g_1(x)$ is

$$\begin{aligned} g_1'(x) &= \frac{d}{dx} \frac{e^{-x} x^{n/2+1}}{\Gamma(\frac{n}{2}+2)} \\ &= g_0(x) - g_1(x) \end{aligned}$$

Similarly, if

$$g_k(x) = \frac{x}{2+k} g_{k-1}(x)$$

then

$$g_k'(x) = g_{k-1}(x) - g_k(x)$$

and

$$g_k^{(k)}(x) = g_{k-1}^{(k-1)}(x) - g_k^{(k-1)}(x)$$

Equation (11) is then just $g_{k-1}^{(k-1)}(y/2\beta)$.

The evaluation of the k th derivative of $g_k(x)$ thus requires 1) the $k-1$ derivatives of $g_{k-1}(x)$ and 2) the

(k-1)st derivative of $g_k(x)$. The former are stored in a separate vector and can be replaced by the k derivatives of $g_k(x)$ as they are calculated.

The computations required for the $g_k^{(k)}(x)$ can be broken down into the following. First, the calculation of $g_0(x)$ requires 1) one exponentiation and one division (by e^x) and 2) $n/2 - 1$ additions, multiplications, and divisions if n is even, or $n/2 - 1$ additions, $n/2$ multiplications and divisions, and one square root evaluation if n is odd, or a total of $\frac{3}{2}n + \frac{1}{2}$ computations. Next, given the $k-1$ derivatives of $g_{k-1}(x)$, the calculation of $g_k^{(k)}(x)$ requires 1) one addition, multiplication, and division in the calculation of

$$g_k(x) = \frac{x}{\frac{n}{2}+k} g_{k-1}(x)$$

and 2) k subtractions in the calculations of the k derivatives of $g_k(x)$. Or a total of $k+3$ computations. Thus, the total number of computations required for $g_0(x)$ and the $N-1$ $g_k^{(k)}(x)$ terms is $\frac{3}{2}n + \frac{N(N-1)}{2} + 3(N-1) + \frac{1}{2}$ on the average. The Laguerre series approximation can then be calculated from the equation

$$F_N(y) = G(n;y/\beta) + \sum_{k=1}^N c_k g_{k-1}^{(k-1)}(y/2\beta)$$

This requires 1) $2n + 3nN + N^2$ computations for the c_k terms; 2) $2n+6$ computations on the average for $G(n;y/\beta)$;

3) $\frac{3}{2}n + N^2/2 + \frac{5}{2}N - \frac{5}{2}$ computations for the $g_k^{(k)}(x)$ terms; and 4) N additions and N multiplications in combining the previous terms, or a total of $\frac{11}{2}n + (n+\frac{1}{2})N^2 + (3n+\frac{9}{2})N + \frac{7}{2}$ computations on the average. The dominating term, $(n+\frac{1}{2})N^2$, is smaller than that for either the power series $(\frac{5}{2}nN^2)$ or the x^2 series $[(n+2)N^2]$.

2.5 Testing the algorithms

The above algorithms were applied to testing the difference between pairs of curves obtained in item response theory. These curves relate the probability of an item response to a latent ability trait, and can be derived from response data by various methods (e.g., Lord, 1980). In one application, the sum of squared difference between such an item response curve and a particular three-parameter logistic curve was reduced to the form given by (1) by a method described in Levine (1984). In a second application, Levine (1983) obtained such a form for the sum of squared difference between response curves of an item given to two populations. Sets of values of α_1 , α_2 , α_3 , and

$$y = \sum_{i=1}^3 \alpha_i z_i^2$$

obtained from the two applications are presented in Tables 1 and 2. The first four sets pertain to the first application and the last two sets pertain to the item bias application. Sets 1 and 2 are based on responses to an 85-item Scholastic

Table 1
Quadratic Form α - Weights

<u>Set ID</u>	<u>α_1</u>	<u>α_2</u>	<u>α_3</u>	<u>α_1/α_3</u>
1	.023707	.0028379	.00067261	35.246
2	.043270	.0084118	.0044516	9.720
3	.036190	.012882	.00049934	72.476
4	.075770	.023986	.0010011	75.686
5	.0015294	.0074991	.00067151	2.276
6	.032791	.0061423	.0013066	25.096

Aptitude Test; sets 3 and 4 are based on responses to a 35 - item Armed Services Vocational Aptitude Battery (ASVAB), Form 8A, Word Knowledge; and sets 5 and 6 are based on responses to the Metropolitan Achievement Test, Form F, Reading Comprehension.

Convergence

Table 2 shows the approximation $F_N(y)$ obtained by the power series, x^2 series, and the Laguerre series algorithms at $N=200$ (the value of y corresponding to each set is shown in the second column). This value is correct in at least four decimal places for all sets except set 1. Here, the power series converges to a value way outside the acceptable [0,1], and the Laguerre series approximation is correct at only two decimal places when N is 200 and breaks down at a larger N before converging.

Set 1 can be distinguished from the other sets in that both of the following conditions are true. First, the value of F is relatively high (-.93644 obtained by other methods). Second, the ratio of variances α_1/α_n , which Gideon and Gurland (1976) calls the spread factor, is also relatively high (-.35).

These two conditions alone do not always affect accuracy, since sets 3 and 4 are characterized by a very high spread factor (>.70, as indicated in the last column of Table 1) and sets 2 and 5 induce F values greater than .97. However, when the value in one condition is high, there is good reason to believe that increasing the value in the other

Table 2

F₂₀₀ Determined by Series Methods¹

<u>Set</u>	<u>y</u>	<u>Power series</u>	<u>x^2 series</u>	<u>Laguerre series</u>
1	.085373	-3	.93644355	.92917662
2	.23052	.97458525	.97459032	.97459032
3	.0026888	.04955647	.04955538	.04955538
4	.020667	.20233724	.20233253	.20233253
5	.035680	.99998839	.99999735	.99999735
6	.048292	.72613215	.72613215	.72613215

¹_{n=3}

²_{B=($\alpha_1 + \alpha_3$)/2}

³outside the interval [0,1]

condition will deleteriously affect convergence. For example, increasing y from .0026888 to .26888 in set 3

($\alpha_1/\alpha_n \sim 72$) results in a breakdown of both the power serie and the Laguerre series algorithms. Also, the addition of $\alpha_4 = .0000697$ to all sets, which increases the spread factor, degrades the performance of all three algorithms.

The two conditions of high spread factor and high F can individually affect speed of convergence. Table 3 shows the N required for convergence at five decimal places. First, note that convergence of the power series is slower for set 5, which induces an F value near 1.0. Also, note that convergence of the Laguerre series is slower for sets 3 and 4, which are characterized by high spread factors (see Figure 1, which compares the Laguerre series with the 1st order difference algorithm discussed later). Finally, although the x^2 series converges to the correct value for set 1, the required N is larger than that for the other sets.

The cause of nonconvergence or slow convergence may depend on the algorithm. For the power series, a breakdown may result from extreme values of the partial sums which induce roundoff error. Since $c_k > 0$ for all k due to positive α_i in equation (4), the c'_k term in (10) is alternately positive and negative, so the F_N fluctuate about the true value F. These fluctuations can be large before convergence when α_i is small, as in set 6 (see Table 4), in which F_N does not even fall within acceptable bounds until N=41. Roundoff error generally occurs when the partial sums are astronomical (e.g., $\pm 10^{24}$ for set 1).

Table 3
N Required For Convergence Of Series¹

<u>Set</u>	<u>Approximation</u>		
	<u>Power series</u>	<u>χ^2 series</u>	<u>Laguerre series²</u>
1	-3	49	- ⁴
2	11	23	26
3	11	8	219
4	36	15	221
5	77 ⁵	13	3
6	53	21	66

¹Agreement with the correct value at 5 decimal places

² $\beta = (\alpha_1 + \alpha_3)/2$

³Does not converge to value within [0,1]

⁴Does not converge at all

⁵Does not converge to correct value at 5 decimal places

Figure 1

Table 4

Partial Sums of the Power Series Before Convergence¹

<u>N</u>	<u>F_N</u>	<u>N</u>	<u>F_N</u>
1	-19.969	28	2050.241
2	-78.344	29	-1195.068
3	-250.705	30	676.940
4	-705.275	31	-370.253
5	-1725.121	32	-198.350
6	3743.199	33	-101.586
7	-7268.411	34	52.243
8	12777.252	35	-24.523
9	-20498.397	36	12.780
10	30247.525	37	-4.883
11	-41305.339	38	3.272
12	52497.234	39	-401
13	-62388.877	40	1.214
14	65629.252	41	.520
15	-73243.098	42	.811
16	72862.732	43	.692
17	-68747.932	44	.740
18	61691.240	45	.721
19	-52772.204	46	.728
20	43132.243	47	.725
21	-33746.481	48	.726
22	25324.977	49	.726
23	-18256.005	50	.726
24	12664.770	51	.726
25	-8463.937	52	.726
26	5459.748	53	.726
27	-3400.437		

¹Set 6For the Laguerre series, the fluctuations of the partial sums about F are smaller (see Figure 1 for the set 4), and

so they may merely affect speed of convergence. The breakdown seems to occur for set 1 because the $g_{k-1}^{(k-1)}$ grow large, perhaps from roundoff error of the differences calculated to obtain them, while the c_k decrease with k (the $g_{k-1}^{(k-1)}$ and c_k , however, are generally not as extreme as the corresponding terms in (10) for the power series).

The slowdown in the x^2 series for large spread factor and F may be due to the effects on β . When α_1 is held fixed, $\beta=2\alpha_1\alpha_n/(\alpha_1+\alpha_n)$ decreases as α_n decreases, implying that y/β increases for fixed y . If y is relatively large to begin with, then the factor $6(n+2k;y/\beta)$ in (5) decreases more slowly with k , so a larger N is required for convergence.

The convergence behavior of the x^2 series does have the following desirable property not shared by either the power series or the Laguerre series. For all sets except set 5, convergence of the x^2 series is monotonically increasing due to positive c_k 's. But even for set 5, where the c_k 's alternate in sign but decrease quickly in absolute value toward zero, F_N never deviates from F by more than .1. Thus, the convergence of the x^2 series is less affected by extreme intermediate results.

In summary, convergence of the three algorithms is relatively poor when both F and the spread factor are high.

The power series and the Laguerre series algorithms both break down under these conditions, whereas the x^2 series algorithm

merely slows down. Specifically how the two conditions interact with equations (3), (5) and (7) is not exactly known.

Error bounds

The error bounds tend to be more informative for the power series than for the other two series. The error bounds start out high for the power series (see the top part of Table 5), but decrease rapidly to 0 for all sets soon after F_N is stabilized at either the correct or incorrect (sets 1, 5) value. However, for the x^2 series, the rather sharp drop-off from an astronomical value to 0 (middle of Table 5) does not occur until after N exceeds 100 for most sets, even though F_N converges at $N < 50$. Also, the error bounds for the Laguerre series decrease slowly and are often greater than 1 at $N=200$ (bottom of Table 5), even though the obtained F_{200} are always correct to at least two decimal places. Thus, for the latter two series, the error bounds do not always decrease in the same way as the deviation of F_N from F .

Timing runs

Each of the series algorithms was run 5, 10, and 15 times at $n=4$ and $N=120$. The slope and intercept of the function relating computation to the number of approximations are presented in Table 6. The intercepts do not differ greatly from 0. The slopes indicate that an approximation using the power series algorithm is slower than that using the x^2 or Laguerre series algorithms, in accordance with the dominating terms of the equation relating number of computations to n and N ($5/2nN^2$ vs. nN^2). Note that these timing runs

Table 5
Error Bounds¹

N	Power Series					
	Set 1	Set 2	Set 3	Set 4	Set 5	Set 6
20	8	8	8	8	8	8
40	8	8	8	8	8	8
60	8	8	8	8	8	8
80	8	8	8	8	8	8
100	8	8	8	8	8	8
120	8	8	8	8	8	8
140	229 x 10 ⁹	0	0	0	0	0
160	5643 x 10 ¹	0	0	0	0	0
180	118 x 10 ⁻⁷	0	0	0	0	0
200	0	0	0	0	0	0

¹ $n=3$, + means greater than 10^{-10} , .0 means less than 10^{-10}

$$2\beta = 1/(2(a_1 + a_3))$$

$n=3$, ∞ means greater than 10^{-10} , .0 means less than 10^{-10}

N	1	2	3	4	5	6
40	.25945 $\times 10^4$.11555 $\times 10^1$.97869 $\times 10^3$.74445 $\times 10^4$.42631 $\times 10^{-10}$.36282 $\times 10^3$
80	.42204 $\times 10^3$.94082 $\times 10^{-2}$.28526 $\times 10^3$.22212 $\times 10^4$.0	.37276 $\times 10^2$
120	.90793 $\times 10^2$.10131 $\times 10^{-3}$.10996 $\times 10^3$.87652 $\times 10^3$.0	.50648 $\times 10^1$
160	.21929 $\times 10^2$.12248 $\times 10^{-5}$.47587 $\times 10^2$.38832 $\times 10^3$.0	.77259
200	.56447 $\times 10^1$.15782 $\times 10^{-7}$.21949 $\times 10^2$.18335 $\times 10^3$.0	.12561

Set

Error Bounds¹
Table 5 (cont.)

Laguerre Series²

$n=3$, ∞ means greater than 10^{-10} , .0 means less than 10^{-10}

N	1	2	3	4	5	6
40	∞	∞	∞	∞	.0	∞
80	∞	∞	∞	∞	∞	∞
120	∞	∞	∞	∞	∞	∞
160	∞	∞	∞	∞	∞	.0232
200	.30782 $\times 10^2$.0	.0	.0	.0	.0

Set

Error Bounds¹
Table 5 (cont.)

Chi-square Series

Table 6

do not indicate speed of convergence. For example, the power series is slower to compute than the Laguerre series--i.e., requires more computations, but it generally converges faster.

2.6 Summary

The series algorithms have the problem that convergence is affected by characteristics of the y and α_j , and that the error bounds are not always informative. Furthermore, the Laguerre series requires a "fudge" factor β which depends on the α_j in a complicated way. The value of β used in the analyses previously discussed may not have been correct, but the substitution of values $2/3(\alpha_1 + \alpha_3)$ and $.9(\alpha_1 + \alpha_3)$ did not result in faster convergence for set 1.

An algorithm is now presented which circumvents all these problems. The resulting approximation of the distribution function always converges monotonically to F for large N , and the algorithm never broke down for N up to 500 nor is convergence speed affected by F or the spread factor. Error bounds have always ranged between 10^{-3} and 10^{-8} for N between 2 and 200 and always decrease with N . Finally, the algorithm is faster than the power series algorithm but slower than the x^2 and the Laguerre series algorithms (last row of Table 6).

This algorithm involves approximating the unit step function. The computations were carefully selected so that numerically stable results were always attained. After these computations are discussed in detail, successive order differences of the approximation are presented which speed con-

	Method	Timing Runs ¹	
		Slope ²	Intercept ³
	Power series	.0815	.015
	Chi-square series	.0583	.003
	Laguerre series ⁴	.0564	.026
	DLT	.0626	.006

¹Seconds to compute one approximation at $N=120$

³Intercept of the equation relating time to number of approximations

$$\ast\beta=(\alpha_1+\alpha_3)/2$$

⁴ $n=4$

vergence considerably. Error bounds for these successive order differences are also presented. Finally, convergence speed and accuracy are discussed for the same data used to test the series algorithms.

3. APPROXIMATING THE UNIT STEP FUNCTION

An alternative to the series expansion algorithms can be obtained by developing an inversion formula for the Laplace transform, which is rigorously derived in Feller (1967, Section XIII.4, Theorem 2). An alternative derivation begins with an approximation of the unit step function

$$\begin{aligned} K(t;y) &= 1 \quad t \leq y \\ &= 0 \quad t > y . \end{aligned}$$

Our distribution can then be written as

$$F(y) = \int_0^\infty K(t;y) f(t) dt .$$

For fixed y , the sequence

$$K_N(t;y) = \sum_{k=0}^N \frac{(Nt/y)^k}{k!} e^{-Nt/y}$$

converges pointwise to $K(t;y)$ for $t \neq y$. Using K_N , one can obtain the following approximation to $F(y)$:

$$(12) \quad F_N(y) = \int K_N(t;y) f(t) dt .$$

A value for equation (12) can be obtained using derivatives of the Laplace transform

$$\phi(\lambda) = \int_0^\infty e^{-\lambda t} f(t) dt .$$

Since the k th derivative is

$$\phi^{(k)}(\lambda) = \int_0^\infty (-t)^k e^{-\lambda t} f(t) dt ,$$

one can prove that

$$\sum_{k=0}^N \frac{(-N/y)^k}{k!} \phi^{(k)}(N/y) = \int_0^\infty \sum_{k=0}^N \frac{(Nt/y)^k}{k!} e^{-Nt/y} f(t) dt ,$$

which is just $F_N(y)$. Thus, the approximation given in equation (12) is

$$(13) \quad F_N(y) = \sum_{k=0}^N \frac{(-N/y)^k}{k!} \phi^{(k)}(N/y) .$$

We will substitute λ for N/y from now on.

In order to approximate the distribution of variables of form (1) using (13), one must determine the Laplace transform of such variables. It can first of all be shown that if $X = Z^2$, where Z is a standard normal variable, then the Laplace transform of X is

$$\phi_X(\lambda) = (1+2\alpha\lambda)^{-1/2} .$$

Thus, for independent, standard normal variables Z_i , the Laplace transform of

$$\sum_{i=1}^n \alpha_i Z_i^2$$

can be expressed as the following product:

$$\phi(\lambda) = \prod_{i=1}^n (1+2\alpha_i\lambda)^{-1/2} .$$

There seems to have been little interest in using (13) to compute $F(y)$. One reason for this may be that (13) converges relatively slowly to $F(y)$. It can be shown that $|F_N(y) - F(y)|$ is $O(1/N)$. In fact, F_N can be shown to have the form

$$(14) \quad F_N(y) = F(y) + \frac{c_1(y)}{N} + \frac{c_2(y)}{N^2} + \frac{c_3(y)}{N^3} + \dots ,$$

where 1) the $c_i(y)$ do not depend on N and 2)

$\sum_{i=1}^\infty |c_i| < \infty$.

A complete proof is available for even n (Levine, personal communication), and there is no reason to suspect that the case for odd n is essentially different. Later, this representation of F_N will be used to accelerate convergence.

Another reason for the apparent lack of an algorithm may be that a calculation involving (13) requires carefully arranging the computations in order to avoid extreme intermediate results. The Derivatives of Laplace Transform (DLT) algorithm discussed below has produced stable results for N as large as 500.

3.1 DLT algorithm

The present algorithm calculates the terms in (13) by recursively evaluating $(-\lambda)^k / k!$ times the derivatives of successive products

$$\phi_m^*(\lambda) = \prod_{i=1}^m \phi_i(\lambda) ,$$

where

$$\phi_i(\lambda) = (1+2\alpha_i\lambda)^{-1/2} .$$

First, the values of $(-\lambda)^k / k! \phi_1^{(k)}(\lambda)$ are obtained at $\lambda=N/y$ for $k=0, 1, \dots, N$ using the recursive formula

$$(15) \quad \frac{(-\lambda)^k}{k!} \phi_1^{(k)} = \left(\frac{2k-1}{1+2\alpha_1\lambda} \right) \left(\frac{\alpha_1\lambda}{1+2\alpha_1\lambda} \right)^{k-1} \phi_1^{(k-1)} .$$

Then the values of $(-\lambda)^k / k!$ times the k th derivative of the product $\phi_1(\lambda)\phi_2(\lambda)$ are obtained for $k=0, 1, 2, \dots, N$, etc.

In general, the values of

$$\frac{(-\lambda)^k}{k!} \frac{d^k}{d\lambda^k} \phi_m^*$$

are obtained from the stored values involving derivatives of ϕ_{m-1}^* by the following application of Leibniz' formula:

$$(16) \quad \frac{(-\lambda)^k}{k!} \frac{d^k}{d\lambda^k} \phi_m^* = \frac{(-\lambda)^k}{k!} \sum_{j=0}^k (j) \left(\frac{d^j}{d\lambda^j} \phi_{m-1}^* \right) \phi_m^{(k-j)} .$$

The calculation of the terms in (16) requires the following computational trick. First, $\phi_m^* = \phi_{m-1}^* \phi_m$ is

and so on.

In general, $\frac{(-\lambda)^k}{k!} \frac{d^k}{d\lambda^k} \phi_m^*$ can be obtained recursively

calculated and stored as a value ψ_o . Next,

$$(-\lambda) \left(\frac{d}{d\lambda} \phi_m^* \right) = (-\lambda) \left[\left(\frac{d}{d\lambda} \phi_{m-1}^* \right) \phi_m + \phi_{m-1}^* \phi_m' \right]$$

is calculated by 1) multiplying the stored value of $(-\lambda) \left(\frac{d}{d\lambda} \phi_{m-1}^* \right)$ by ϕ_m and storing the result in ψ_1 ; 2) replacing the stored ψ_o by

$$(-\lambda) \phi_{m-1}^* \phi_m' = (-\lambda) \phi_{m-1}^* \left(\frac{-\alpha_m \lambda}{1+2\alpha_m \lambda} \right) \phi_m = \left(\frac{\alpha_m \lambda}{1+2\alpha_m \lambda} \right) \psi_o ;$$

and 3) adding ψ_o to ψ_1 . Next,

$$\frac{(-\lambda)^2}{2} \left(\frac{d^2}{d\lambda^2} \phi_m^* \right) = \frac{(-\lambda)^2}{2} \left[\left(\frac{d}{d\lambda} \phi_{m-1}^* \right) \phi_m + 2 \left(\frac{d}{d\lambda} \phi_{m-1}^* \right) \phi_m' + \phi_{m-1}^* \phi_m'' \right]$$

is obtained by the following steps:

$$\psi_2 = \frac{(-\lambda)^2}{2} \frac{d^2}{d\lambda^2} \phi_{m-1}^* \phi_m$$

$$\psi_1 = \frac{(-\lambda)^2}{2} \left[2 \left(\frac{d}{d\lambda} \phi_{m-1}^* \right) \phi_m' \right] = \left(\frac{2\alpha_m \lambda}{1+2\alpha_m \lambda} \right) \psi_1$$

$$\psi_o = \frac{(-\lambda)^2}{2} \phi_{m-1}^* \phi_m'' = \frac{3}{2} \frac{\alpha_m \lambda}{1+2\alpha_m \lambda} \psi_o$$

$$\frac{(-\lambda)^2}{2} \frac{d^2}{d\lambda^2} \phi_m^* = \psi_o + \psi_1 + \psi_2 ,$$

from the ψ_j terms in (16) for $\frac{(-k)^{k-1}}{(k-1)!} \frac{d^{k-1}}{d\lambda^{k-1}} \phi_{m-1}^*$. First, set

$$(17) \quad \psi_k = \left[\frac{(-\lambda)^k}{k!} \frac{d^k}{d\lambda^k} \phi_{m-1}^* \right] \phi_m ,$$

where the first factor has been previously computed and stored.

Next, replace ψ_j by

$$\begin{aligned} \psi_j &= \binom{k}{j} \frac{(-\lambda)^k}{k!} \left(\frac{d^j}{d\lambda^j} \phi_{m-1}^* \right) \phi_m^{(k-j)} \\ &= \binom{k}{j} \frac{(-\lambda)^k}{k!} \left(\frac{d^j}{d\lambda^j} \phi_{m-1}^* \right) [2(k-j)-1] \frac{-\alpha_m}{1+2\alpha_m} \phi_m^{(k-j-1)} \\ (18) \quad &= (2 - \frac{1}{k-j}) \frac{\lambda \alpha_m}{1+2\alpha_m} \binom{k-1}{j-1} \frac{[(k-1)!}{d\lambda^j} \frac{d^j}{d\lambda^j} \phi_{m-1}^* \phi_m^{(k-j-1)} \\ &= (2 - \frac{1}{k-j}) \frac{\lambda \alpha_m}{1+2\alpha_m} \psi_j \end{aligned}$$

for $j=0,1,2,\dots,k-1$. Finally, add the ψ_j .

The amount of storage required in the DLT algorithm is $2(N+1)$ cells - $N+1$ for terms involving the derivatives of ϕ_m^* and $N+1$ for the ψ_j .

The required number of computations in the DLT algorithm can be broken down into the following. The terms involving the derivatives of ϕ_1 [obtained from (15)] require first the one-time only computations of 1) one multiplication and one division to obtain $\lambda \alpha_1 = N \alpha_1 / y$; 2) one addition, one multiplication, one division, and one square root calculation to obtain $\phi_1(\lambda)$;

and 3) one addition and two divisions to obtain

$$\frac{\alpha_1 \lambda}{1+2\alpha_1 \lambda} = \frac{1}{2 + \frac{1}{\alpha_1 \lambda}}$$

Then, for $1 \leq k \leq N$, an application of (15) requires 1) one subtraction, one multiplication, and one division to obtain $\frac{2k-1}{k}$ and 2) two multiplications of the three factors in (15). Thus, the calculation of $(-\lambda)^k / k! \phi_1^{(k)}$, $k=0,1,\dots,N$, requires a total of $5N+9$ computations.

The calculation of terms involving the N derivatives of ϕ_m^* requires first the one-time calculation of 1) $N \alpha_m / y$, 2) ϕ_m , and 3)

$$\frac{1}{2 + \frac{1}{\alpha_m \lambda}},$$

which requires nine computations as in (15). Next, the calculation of a term involving the k th derivative of ϕ_m^* requires 1) one multiplication in (17) to obtain ψ_k ; 2) two subtractions and one division to obtain $2 - \frac{1}{k-j}$; $j=0,1,\dots,k-1$; 3) two multiplications in (18) to obtain each of $\psi_0, \psi_1, \dots, \psi_{k-1}$; and 4) k additions of the ψ_j , or a total of $6k+1$ computations. Thus, the calculation of terms involving N derivatives of ϕ_m^* requires a total of $3N^2 + 4N + 10$ computations, which includes the initial multiplication in $\phi_{m-1}^* \phi_m$.

Thus, $5N+9$ computations are required to obtain terms involving the N derivatives of ϕ_1 ; $(n-1)(3N^2 + 4N + 10)$ computations are required for terms involving the N derivatives of ϕ_m^* , $m=2, \dots, n$; and N further additions are required in applying equation (13). So the approximation $F_N(y)$ requires $10n + 3(n-1)N^2 + (4n+2)N - 1$ computations. The dominating term, $3(n-1)N^2$, is larger than that for the χ^2 series and Laguerre series, but smaller than that for the power series.

As was mentioned previously, F_N converges slowly. However, the representation (14) of F_N as a series in $1/N$ can be used to accelerate convergence and obtain error bounds.

3.2 1st order differences

Manipulation of (14) shows that the first order difference

$$D_N = NF_N - (N-1)F_{N-1}$$

has the expansion

$$D_N = F + \left(\frac{1}{N} - \frac{1}{N-1}\right)c_2 + \left(\frac{1}{N^2} - \frac{1}{(N-1)^2}\right)c_3 + \dots$$

For N sufficiently large, the terms after the second are negligible. Since $(\frac{1}{N} - \frac{1}{N-1})c_2$ is monotone in N , D_N will be eventually monotone. Furthermore, since the c_1 term above cancelled out, $D_N - F$ is $O(1/N^2)$, so D_N con-

verges much faster than F_N . An error bound is computed for D_N as follows. The difference

$$D_N^* = (N+1)D_{N+1} - ND_N$$

also converges monotonically to F , but in opposite direction from D_N . Basically,

$$D_N^* = F + \frac{c_2}{N(N-1)} + \dots,$$

so the c_2 term of D_N^* is opposite in sign from the c_2 term of D_N . Furthermore, the midpoint $(D_N + D_N^*)/2$ is $F + O(1/N^3)$ (the c_2 terms cancel). Thus, an error bound is $|D_N - D_N^*|/2$.

3.3 2nd order differences

The quantity

$$E_N = \frac{N}{2}D_N - \frac{N-2}{2}D_{N-1}$$

converges in $1/N^3$, since

$$E_N = F + \frac{c_3}{N(N-1)(N-2)} + \dots$$

(in fact, the midpoint $(D_N + D_N^*)/2$ is equal to E_{N+1}). Also, the quantity $(2E_N + E_N^*)/3$ converges in $1/N^4$, where

$$E_N^* = (N+1)E_{N+1} - NE_N$$

converges monotonically in the opposite direction from E_N ,

so an error bound for E_N is

$$\left| E_N - \frac{2E_N + E_N^*}{3} \right| = \left| \frac{E_N - E_N^*}{3} \right| .$$

3.4 3rd order differences

A similar argument can be used to show that 1)

$$G_N = \frac{N}{3} E_N - \frac{N-3}{3} E_{N-1}$$

converges to F monotonically and in fact equals

$$(2E_{N-1} + E_{N-1}^*)/3 ; 2) G_N - F is O(1/N^4); 3)$$

$$G_N^* = (N+1)G_{N+1} - NG_N$$

converges monotonically in the opposite direction; 4) the quantity $(3G_N + G_N^*)/4$ is $F + O(1/N^5)$; and 5) $|G_N - G_N^*|/4$ is an error bound for G_N .

3.5 Testing the algorithms

Table 7 shows the values of F_{200} obtained by the DLT algorithm and the 1st and 2nd order differences. The 2nd order differences have all converged to the correct values at 5 decimal places by $N=200$, and the 1st order differences have converged for all sets except set 5, where F_{200} is correct at only 4 decimal places. However, the DLT approximation is correct at only 2 decimal places for sets 2, 4 and 6; three decimal places for sets 1 and 3; and four decimal places for set 5. Thus, higher order differences are more likely to have converged by $N=200$.

Table 7

F_{200} Determined by DLT Methods¹

Set	Approximation		
	Original	DLT	2nd order difference
1	.93633128	.93644196	.93644345
2	.97435573	.97458867	.97459031
3	.04984353	.04955660	.04955647
4	.20313927	.20233819	.20233724
5	.99999642	.99999745	.99999735
6	.72660912	.72613241	.72613215

¹ $n=3$

Convergence is faster for higher order differences as well. Table 8 shows that the 2nd order differences have all converged by $N=50$, and that the 3rd order differences have converged by $N=20$. Figure 2 illustrates this for set 1 - the top relatively flat curve represents the 3rd order difference, below which lies the 2nd order difference, then the 1st order difference, and finally the DLT approximation, which converges the slowest.

The monotonic behavior of the convergence varies with the sets. All approximations increase monotonically toward F for sets 1 and 2 as is illustrated in Figure 2 for set 1. However, the approximations decrease toward F for sets 3 and 4, and the DLT and 1st order difference approximation increase monotonically while the 2nd and 3rd order approximations decrease monotonically toward F for sets 5 and 6 (in fact, the 2nd order difference for set 5 first decreases, then increases, toward F , illustrating the fact that convergence is monotone only for large N).

An illustration of the error bound of the 1st order difference is presented in Figure 3 for set 1. The bottom line represents D_N , the top line represents D_N^* , and the relatively flat line in the middle represents the midpoint $(D_N + D_N^*)/2$. The distance between D_N and its projection onto the middle line is seen to decrease with N . In fact, Table 9 shows that the error bound decreases with N for all six sets. Furthermore, the error bounds start out relatively low - never more than .001.

Table 8

Set	N Required For Convergence		
	1st order difference	2nd order difference	3rd order difference
1	84	22	12
2	112	24	12
3	-	44	17
4	71	12	6
5	30	26	16
6	63	17	11

47

Figure 2

48

Figure 3

Error Bound On 1st Order Differences ($\times 1,000,000$)

<u>N</u>	<u>Set</u>				
	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>
10	453.	560.	52.2	390.	139.
20	140.	152.	12.9	96.3	24.3
30	60.8	69.5	5.74	42.6	8.66
40	35.1	39.7	3.22	24.0	4.24
50	22.8	25.6	2.07	15.3	2.47
60	16.0	17.9	1.43	10.6	1.61
70	11.8	13.2	1.05	7.81	1.12
80	9.12	10.2	.807	5.98	.824
90	7.23	8.05	.636	4.72	.631
100	5.88	6.53	.516	3.82	.498
110	4.87	5.41	.427	3.16	.402
120	4.10	4.55	.359	2.65	.331
130	3.51	3.88	.305	2.26	.278
140	3.01	3.35	.263	1.95	.236
150	2.64	2.92	.230	1.70	.204
160	2.33	2.56	.202	1.49	.177
170	2.06	2.27	.179	1.32	.156
180	1.84	2.03	.159	1.18	.136
190	1.65	1.82	.143	1.06	.121
200	1.50	1.65	.129	.954	.111

The error bounds decrease more quickly with N for higher order differences.

However, they become difficult to calculate due to roundoff error of the higher order differences. The

original DLT approximation is accurate at only a finite number of decimal places, and the difference between N_{F_N} and $(N-1)_{F_{N-1}}$ becomes even less accurate with large N.

Compounding these differences for higher order differences results in even a further loss of accuracy. The third order approximations, fortunately, do not break down at five decimal places for N as large as 200, but the error bounds of the 2nd and 3rd order differences, which are on the order $10^{-6} - 10^{-8}$, no longer are monotone for $N > 100$.

The error bounds, however, are monotonically decreasing at N near the convergence criterion. Table 10 compares the error bounds of the 1st, 2nd and 3rd order differences at criterion values of N (listed in Table 8). First, the error bounds are never greater than 10^{-5} , consistent with the definition of convergence (at five decimal places). Second, for most sets, the error bound of the 3rd order difference is less than that of the 2nd order difference, which is less than the error bound of the 1st order difference, despite the fact that the convergence criterion is smallest for higher order differences.

3.6 Summary

Several results show that the DLT algorithm and its successive order differences are superior to the series expansion algorithms discussed earlier. First, convergence is always

Table 10
Error At Convergence Criterion¹

Set	1st order difference	2nd order difference	3rd order difference
1	.8285 x 10 ⁻⁵	.7222 x 10 ⁻⁵	.5561 x 10 ⁻⁵
2	.5217 x 10 ⁻⁵	.4547 x 10 ⁻⁵	.3851 x 10 ⁻⁵
3	²	.2079 x 10 ⁻⁷	.1718 x 10 ⁻⁷
4	.7589 x 10 ⁻⁵	.7152 x 10 ⁻⁵	.6775 x 10 ⁻⁵
5	.8661 x 10 ⁻⁵	.2203 x 10 ⁻⁵	.2251 x 10 ⁻⁵
6	.2909 x 10 ⁻⁵	.6271 x 10 ⁻⁵	.4520 x 10 ⁻⁵

¹5 decimal places, as indicated in Table 5

²Does not converge at N = 200 , where error is .129 x 10⁻⁶

monotone for large N , so fluctuations do not slow convergence or produce roundoff error. Second, 3rd order differences converge faster than the series expansions for most of the sets analyzed here.

Third, convergence seems unaffected by such conditions as high spread factor or high F , unlike the series methods - in fact, the DLT algorithm has never failed for N as large as 500 . Fourth, no fudge factor is required, unlike the Laguerre series, where β can be difficult to compute. Finally, the error bounds are small, whereas those for the series expansions sometimes start out astronomical and are still larger than 1 at N=200 .

The superiority of the DLT method is shown by an extreme example in which y=7.0 , $\alpha_1=1.0$, $\alpha_2=.001$, $\alpha_3=.000001$, and thus the spread factor is 100,000 . The 2nd order difference converges at .99184 when N=27 , with an error bound of .3564 x 10⁻⁶ . However, the series algorithms fail miserably.

Much of the time, however, the higher order differences require more time to compute at convergence than do the series expansions. First, the DLT algorithm requires a time between that of the x^2 series and the power series for a given N (see Table 6). Second, the DLT algorithm must be applied to, let's say, four successive values of N in order to obtain the 3rd order difference. Thus, convergence of the 3rd order difference at N=20 requires the number of calculations equivalent for N about 80 , which is more than N required for the convergence of the x^2 series for all sets (see Table 2).

a_k can be determined from the recursive equation

$$a_k = \frac{1}{k} \sum_{r=0}^{k-1} b_{k-r} a_r .$$

REFERENCES

Abramowitz, M., & Stegun, I. A. Handbook of mathematical functions. Dover Publications, Inc. New York, 1965.

Feller, W. An introduction to probability theory and its applications. Vol II, 3rd Edition. John Wiley and Sons, Inc. New York, 1967.

Gideon, R. A. & Gurland, J. Series expansions for quadratic forms in normal variables. Journal of the American Statistical Association, 1976, 71, 227-232.

Johnson, N. L., & Kotz, S. Distributions in statistics: Continuous univariate distributions-2. Houghton-Mifflin Company, Boston, 1970.

Kotz, S.; Johnson, N. L., & Boyd, D. W. Series representations of distributions of quadratic forms in normal variables. I. Central case. Annals of Mathematical Statistics, 1962, 38, 823-837.

Levine, M. V. Identifying different item response curves. Air Force Human Relations Lab Technical Report TP-83-33, 1983.

Levine, M. V. The trait in latent trait theory. Proceedings of the Third Computerized Adaptive Testing Conference, David Weiss, Editor, 1984, in press.

Lord, F. M. Applications of item response theory to practical testing problems. Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey, 1980.

Ruben, H. Probability content of regions under spherical normal distributions, IV: The distribution of homogeneous and non-homogeneous quadratic functions of normal variables. Annals of Mathematical Statistics, 1962, 33, 542-570.

Wilson, E. B., & Hilferty, M. M. The distribution of Chi-square. Proceedings of the National Academy of Sciences, 1931, 17, 684-88.

53 But, despite the greater computing costs, the higher order differences seem to be more reliable and the error bounds seem to be more informative.

54 4. APPENDIX
This appendix discusses a method for obtaining a_k in the expansion

$$f_N(y) = \sum_{k=0}^N a_k h_k(y)$$

Katz, Johnson, and Boyd (1967) proved that a_k must satisfy the equality

$$\sum_{k=0}^{\infty} a_k t^k = \frac{\phi_f[\zeta(t)]}{\xi[\zeta(t)]}$$

for $\operatorname{Re} \zeta(t) > C$, where ϕ_f is the Laplace transform of f and the Laplace transform of h_k satisfies

$$\phi_{h_k}(\lambda) = \xi(\lambda) [\zeta^{-1}(\lambda)]^k$$

for $\operatorname{Re} \lambda > C$ and analytic ζ and ξ . Then, for given $h_k(y)$, the a_k can be determined as follows. If $\phi_f[\zeta(t)]/\xi[\zeta(t)]$ is obtained directly and

$$\sum_{k=1}^{\infty} \frac{b_k t^k}{k} = \log \sum_{k=0}^{\infty} a_k t^k$$

is obtained by expanding its logarithm, then, since one can differentiate both sides of the above equation to show that

$$\sum_{k=1}^{\infty} b_k t^{k-1} = (\sum_{k=1}^{\infty} k a_k t^{k-1}) / (\sum_{k=1}^{\infty} a_k t^k),$$

Navy

1 Dr. Nick Bond
Office of Naval Research
Liaison Office, Far East
APO San Francisco, CA 96503

1 Dr. Robert Breaux
NAVTRAEOUIPCEN
Code N-095R
Orlando, FL 32813

1 Dr. Robert Carroll
NAVOP 115
Washington , DC 20370

1 Dr. Stanley Collyer
Office of Naval Technology
800 N. Quincy Street
Arlington, VA 22217

1 CDR Mike Curran
Office of Naval Research
800 N. Quincy St.
Code 270
Arlington, VA 22217

1 Dr. John Ellis
Navy Personnel R&D Center
San Diego, CA 92252

1 Dr. Richard Elster
Department of Administrative Sciences
Naval Postgraduate School
Monterey, CA 93940

1 DR. PAT FEDERICO
Code P13
NPRDC
San Diego, CA 92152

1 Mr. Dick Hoshaw
NAVOP-135
Arlington Annex
Room 2834
Washington , DC 20350

1 Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. James McBride
Navy Personnel R&D Center
San Diego, CA 92152

Navy

1 Dr William Montague
NPRDC Code 13
San Diego, CA 92152

1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

1 Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

6 Personnel & Training Research Group
Code 442PT
Office of Naval Research
Arlington, VA 22217

1 Dr. Carl Ress
CNET-PDCD
Building 90
Great Lakes NTC, IL 60088

1 Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152

1 Mary Schratz
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Richard Snow
Liaison Scientist
Office of Naval Research
Branch Office, London
Box 39
FPO New York, NY 09510

1 Dr. Frederick Steinheiser
CNO - OP115
Navy Annex
Arlington, VA 20370

1 Mr. Brad Sympson
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Frank Vicino
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Edward Wegman
Office of Naval Research (Code 411S&P)
800 North Quincy Street
Arlington, VA 22217

Navy

1 Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152

1 DR. MARTIN F. WISKOFF
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Mr John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

Marine Corps

1 Jerry Lehnus
CAT Project Office
HQ Marine Corps
Washington , DC 20380

1 Headquarters, U. S. Marine Corps
Code MPI-20
Washington, DC 20380

1 Special Assistant for Marine
Corps Matters
Code 100M
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

1 Major Frank Vohannan, USMC
Headquarters, Marine Corps
(Ccde MPI-20)
Washington, DC 20380

Army

1 Dr. Kent Eaton
Army Research Institute
5001 Eisenhower Blvd.
Alexandria , VA 22333

1 Dr. Myron Fischl
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Clessen Martin
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

1 Dr. William E. Nordbrock
FMC-ADCO Box 25
APO, NY 09710

1 Dr. Harold F. O'Neil, Jr.
Director, Training Research Lab
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Commander, U.S. Army Research Institute
for the Behavioral & Social Sciences
ATTN: PERI-BR (Dr. Judith Drasanu)
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Mr. Robert Ross
U.S. Army Research Institute for the
Social and Behavioral Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Robert Sasmor
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joyce Shields
Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Hilda Wing
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Air Force

1 Dr. Alfred R. Freygl
AFOSR/NL
Bolling AFB, DC 20332

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332

1 Dr. Patrick Kyllonen
AFHRL/MOE

Brooks AFB, TX 78235

1 Lt. Col. Dave Payne
AFHRL/MOE
Brooks AFB, TX 78235

1 Dr. Roger Pennell
Air Force Human Resources Laboratory
Lowry AFB, CO 80230

1 Dr. Malcolm Ree
AFHRL/MP
Brooks AFB, TX 78235

1 Major John Welsh
AFHRL/MOAN
Brooks AFB , TX 78223

Department of Defense

12 Defense Technical Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC

1 Military Assistant for Training and
Personnel Technology
Office of the Under Secretary of Defense
for Research & Engineering
Room 3D129, The Pentagon
Washington, DC 20301

1 Dr. W. Steve Sellman
Office of the Assistant Secretary
of Defense (MRA & L)
2B269 The Pentagon
Washington, DC 20301

1 Dr. Robert A. Wisher
DUSDRE (ELS)
The Pentagon, Room 3D129
Washington, DC 20301

Civilian Agencies

1 Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E Street NW
Washington, DC 20415

1 Mr. Thomas A. Ware
U. S. Coast Guard Institute
P. O. Substation 18
Oklahoma City, OK 73169

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Private Sector

1 Dr. James Algina
University of Florida
Gainesville, FL 32605

1 Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK

1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

1 Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
Israel

1 Dr. R. Darrell Bock
Department of Education
University of Chicago
Chicago, IL 60637

1 Dr. Robert Brennan
American College Testing Programs
P. O. Box 168
Iowa City, IA 52243

1 Dr. Glenn Bryan
6208 Poe Road
Bethesda, MD 20817

1 Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514

1 Dr. Norman Cliff
Dept. of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

1 Dr. Hans Crombag
Education Research Center
University of Leyden
Boerhaavelaan 2
2334 EN Leyden
The NETHERLANDS

1 CTR/McGraw-Hill Library
2500 Garden Road
Monterey, CA 93940

Private Sector

1 Dr. Walter Cunningham
University of Miami
Department of Psychology
Gainesville, FL 32611

1 Dr. Dattpradad Divgi
Syracuse University
Department of Psychology
Syracuse, NY 33210

1 Dr. Emmanuel Donchin
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Dr. Hei-Ki Dong
Ball Foundation
Room 314, Building B
800 Roosevelt Road
Glen Ellyn, IL 60137

1 Dr. Fritz Drasgow
Department of Psychology
University of Illinois
603 E. Daniel St.
Champaign, IL 61820

1 Dr. Susan Embertson
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
Lawrence, KS 66045

1 ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

1 Dr. Benjamin A. Fairbank, Jr.
McFann-Gray & Associates, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

1 Dr. Leonard Feldt
Lindquist Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Univ. Prof. Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA

Private Sector

1 Professor Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

1 Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01002

1 Dr. Robert Glaser
Learning Research & Development Center
University of Pittsburgh
3939 O'Hara Street
PITTSBURGH, PA 15260

1 Dr. Marvin D. Glock
217 Stone Hall
Cornell University
Ithaca, NY 14853

1 Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

1 DR. JAMES S. GREENO
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

1 Dr. Paul Horst
677 G Street, #1B4
Chula Vista, CA 90010

1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
603 East Daniel Street
Champaign, IL 61820

1 Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Private Sector

1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 Dr. Huynh Huynh
College of Education
University of South Carolina
Columbia, SC 29208

1 Dr. Douglas H. Jones
Advanced Statistical Technologies
Corporation
10 Trafalgar Court
Lawrenceville, NJ 08148

1 Dr. Marcel Just
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

1 Dr. Demetrios Karis
Department of Psychology
University of Illinois
603 E. Daniel Street
Champaign, IL 61820

1 Professor John A. Keats
Department of Psychology
The University of Newcastle
N.S.W. 2308
AUSTRALIA

1 Dr. William Koch
University of Texas-Austin
Measurement and Evaluation Center
Austin, TX 78703

1 Dr. Alan Lesgold
Learning R&D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

1 Dr. Michael Levine
Department of Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

Private Sector

1 Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Dude Boterstraat 23
9712GC Groningen
Netherlands

1 Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

1 Mr. Phillip Livingston
Systems and Applied Sciences Corporation
6811 Kenilworth Avenue
Riverdale, MD 20840

1 Dr. Robert Lockman
Center for Naval Analysis
200 North Beauregard St.
Alexandria, VA 22311

1 Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

1 Dr. James Lumsden
Department of Psychology
University of Western Australia
Nedlands W.A. 6009
AUSTRALIA

1 Dr. Don Lyon
P. O. Box 44
Higley , AZ 85236

1 Dr. Scott Maxwell
Department of Psychology
University of Notre Dame
Notre Dame, IN 46556

1 Dr. Samuel T. Mayo
Loyola University of Chicago
820 North Michigan Avenue
Chicago, IL 60611

1 Mr. Robert McKinley
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

Private Sector

1 Dr. Barbara Means
Human Resources Research Organization
300 North Washington
Alexandria, VA 22314

1 Dr. Robert Mislevy
711 Illinois Street
Geneva, IL 60134

1 Dr. W. Alan Nicewander
University of Oklahoma
Department of Psychology
Oklahoma City, OK 73069

1 Dr. Donald A Norman
Cognitive Science, C-015
Univ. of California, San Diego
La Jolla, CA 92093

1 Dr. James Olson
WICAT, Inc.
1875 South State Street
Orem, UT 84057

1 Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

1 Dr. James A. Paulson
Portland State University
P.O. Box 751
Portland, OR 97207

1 Dr. James W. Pellegrino
University of California,
Santa Barbara
Dept. of Psychology
Santa Barbara , CA 93106

1 Dr. Steven E. Poltrack
Bell Laboratories 2D-444
600 Mountain Ave.
Murray Hill, NJ 07974

1 Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243

Private Sector

1 Dr. Thomas Reynolds
University of Texas-Dallas
Marketing Department
P. O. Box 688
Richardson, TX 75080

1 Dr. Lawrence Rudner
403 Elm Avenue
Takoma Park, MD 20012

1 Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

1 PROF. FUMIKO SAMEJIMA
DEPT. OF PSYCHOLOGY
UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37916

1 Dr. Walter Schneider
Psychology Department
603 E. Daniel
Champaign, IL 61820

1 Lowell Schoer
Psychological & Quantitative
Foundations
College of Education
University of Iowa
Iowa City, IA 52242

1 Dr. Kazuo Shigematsu
7-9-24 Kugenuma-Kaigan
Fujisawa 251
JAPAN

1 Dr. William Sims
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

1 Dr. H. Wallace Sinaiko
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

1 Martha Stocking
Educational Testing Service
Princeton, NJ 08541

Private Sector

1 Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

1 Dr. William Stout
University of Illinois
Department of Mathematics
Urbana, IL 61801

1 Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Lab
252 Engineering Research Laboratory
Urbana, IL 61801

1 Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

1 Dr. Douglas Towne
Univ. of So. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

1 Dr. Robert Tsutakawa
Department of Statistics
University of Missouri
Columbia, MO 65201

1 Dr. Ledyard Tucker
University of Illinois
Department of Psychology
603 E. Daniel Street
Champaign, IL 61820

1 Dr. V. R. R. Uppuluri
Union Carbide Corporation
Nuclear Division
P. O. Box Y
Oak Ridge, TN 37830

Private Sector

1 Dr. David Vale
Assessment Systems Corporation
2233 University Avenue
Suite 310
St. Paul, MN 55114

1 Dr. Howard Wainer
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08540

1 Dr. Michael T. Waller
Department of Educational Psychology
University of Wisconsin--Milwaukee
Milwaukee, WI 53201

1 Dr. Brian Waters
HumRRO
300 North Washington
Alexandria, VA 22314

1 Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 Dr. Rand R. Wilcox
University of Southern California
Department of Psychology
Los Angeles, CA 90007

1 Dr. Bruce Williams
Department of Educational Psychology
University of Illinois
Urbana, IL 61801

1 Ms. Marilyn Wingersky
Educational Testing Service
Princeton, NJ 08541

1 Dr. Wendy Yen
CTB/McGraw Hill
Del Monte Research Park
Monterey, CA 93940