Contents

1 Lecture 1 2

Numerical Analysis 1

1 Lecture 1

We have seen a limit before in Calculus. Intuitively, when we say $\lim_{x\to c} f(x) = L$, this means that $f(x) \approx L$ for x's close to c, but NOT at c (there can be a hole at c). To rigorize this:

Definition 1.1 (Limit)

For a function $f:[a,b] \to \mathbb{R}, c \in (a,b)$ and $L \in \mathbb{R}$

If for every $\epsilon > 0$ we have some $\delta > 0$ such that

$$0 < |x - c| < \delta \implies |f(x) - L| < \epsilon$$

then the limit as x approaches c of f(x) is L.

We denote this by

$$\lim_{x \to c} f(x) = L$$

The upper bound in this definition gives a window between $c - \delta$ and $c + \delta$ (but not including c), and we guarantee that the function lies within ϵ of the limiting value in this windowl.

For example, we know that

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

This means for small x, $\frac{\sin x}{x} \approx 1$. Or one could say $\sin(x) \approx x$.

Definition 1.2 (Continuity)

A function f is continuous at a point c if

$$\lim_{x \to c} f(x) = f(c)$$

Continuity gives us some nice properties.

Theorem 1.1 (Intermediate Value Theorem)

Let $f: [a, b] \to \mathbb{R}$ be continuous on [a, b].

If L is some value between f(a) and f(b) then there exists some $c \in (a, b)$ such that

$$f(c) = L$$

That is, f takes on every value between f(a) and f(b) at least once over the interval [a, b].

As a corollary, if a continuous function f changes sign in an interval, it must have a zero in that interval.

Now, let's think about tangent lines. As usual, we can form the slope of a secant line between two points x and c as $\frac{f(x)-f(x)}{x-c}$.

Definition 1.3 (Differentiability)

A function $f : [a, b] \to \mathbb{R}$ is differentiable at c if:

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

The function f' is termed the **derivative** of f.

This gives us a natural way to approximate f as a line:

$$f(x) \approx f'(c)(x-c) + f(c)$$

Numerical Analysis 2

We have a nice theorem, namely that on a closed interval [a, b], there is a tangent line with the same slope as the secant line between a and b.

Theorem 1.2 (Mean Value Theorem)

Let $f:[a,b]\to\mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then there exists $\xi\in(a,b)$ such that

$$f'(\epsilon) = \frac{f(b) - f(a)}{b - a}$$

The closed part of the interval only really enforces continuity at the endpoints, since:

Theorem 1.3

If f is differentiable at c, then f is continuous at c.

We also define the following sets:

Definition 1.4

$$C(\mathbb{R}) = \{f : f \text{ is continuous}\}$$

$$C^{1}(\mathbb{R}) = \{f : f' \text{ exists}, f' \in C(\mathbb{R})\}$$

$$C^{n}(\mathbb{R}) = \{f : f', f'', \dots, f^{(n)} \text{ exists}, f', f'', \dots, f^{(n)} \in C(\mathbb{R})\}$$

$$C^{\infty}(\mathbb{R}) = \{f : f^{(n)} \text{ exists}\}$$

Where clearly for m > n

$$C^m \subset C^n \subset C$$

Let's look at some counter-examples:

$$\frac{\mathrm{d}x^{1/2}}{\mathrm{d}x} = \frac{1}{2}x^{-1/2}$$

This derivative is not continuous at x = 0, but the original function is continuous at x = 0. We can attempt to get rid of this by restricting the domain, but we have to now introduce the GSI team.

Numerical Analysis 3