- 1. Which of the following functions are negligible?
 - a. $n^{100}n^{-\log(n)}$
 - b. p(n)f(n), if f(n) is a negligible function and p(n) is a polynomial
 - c. $1/n^{100}$
 - d. 1/2n
 - e. 2ⁿ

Answer=a.b

- 2. Which of the following functions are negligible?
 - a. $1/1000n^4 + n^2 \log(n)$
 - b. f(n)-g(n), if f(n) is non-negligible and g(n) is negligible
 - c. 3^{-√n}
 - d. 1/n
 - e. 1/2

Answers=c

- 1. Which of the following functions are not negligible?
 - a. 2⁻ⁿ
 - b. $2^{-c \log(n)}$ for positive c.
 - c. 2^{-√n}
 - d. f(n)+g(n), if f(n) and g(n) are negligible functions
 - e. $2^{-n}+2^{-\sqrt{n}}$

Answer= b

Q - Let *f* be a **negligible function**. Defining below the overwhelming and noticeable functions:

Overwhelming function: A function is *f* is overwhelming if 1-*f* is negligible.

Noticeable function: A positive function f is noticeable if there exist a positive polynomial p and a number n_0 such that f(n) >= 1/p(n) for all $n >= n_0$

Now, consider the function Z(n):=1 for even and Z(n):=2⁻ⁿ for odd.

Then Z is? (Tick all those whose definition Z follows)

- A) Negligible function
- B) Overwhelming function
- C) Noticeable function
- D) Z is neither Negligible, Overwhelming nor Noticeable

Ans) D

- 1. Which one of these are commonly used methods to break substitution ciphers?
 - Reverse Substitution
 - Frequency Analysis
 - Man In The Middle Attack
 - Brute Force Attack
- Q Assume that there exists a new variant of the ROT-8 substitution, called the ROT{X}-8, where it is possible to shift the characters in the message string 8 places forward by a probability of 0.6, and 8 places backwards by a probability of 0.4 (so, if the character is A, the probability of it becoming I is 0.6 and the probability of it being S is 0.4). Assuming that you apply this new ROT{X} 8 substitution on the plaintext 10 times, what is the probability of the plaintext and the ciphertext being the same? The length of the plaintext is 5.
 - Numerical value answer
- Q Define a scheme K as follows We apply ROT-X on plaintext 26 times, where $X \in \{1, 2, 3, ..., 26\}$. So we apply ROT-1 first, then ROT-2, then ROT-3, ... ROT-26. Given the plaintext is "BLUEPRINTS", what is the ciphertext?
- Q In Shannon's equation, M equally likely messages, M >> 1, if the rate of information R > C, the probability of error is
 - a. Arbitrarily small
 - b. Close to unity
 - c. Not predictable
 - d. Unknown
- Q. Consider the one-time pad over the message space of 6-bit strings, where Pr[M=001000]=0.1~and~Pr[M=110111]=0.9. What is Pr[C=000000]?
 - a. 0.03125
 - b. 0.03333
 - c. 0.15625
 - d. 0.16667
- Q. Assume that hc(x) is the hardcore predicate of one-way function f(x), where $x \leftarrow \{0, 1\}^*$. It is given that $Pr[A(f(x) = hc(x)] <= \frac{1}{2} + g(n)$, where g(n) is any function on the value n. Tick all

possible choices for g(n). [if including this question in the test set, remove first question from negligible functions]

- 2^(-n)
- 1/n^2
- n/n!
- 1/log(n)

Q-Define g(x,r) = (f(x), r), where both $x,r \leftarrow \{0, 1\}^*$ - this means that, applying g on x and r is the same as applying f() on x (using r) whilst keeping r unchanged. Under what conditions will the bit $\bigoplus x_i.r_j$ be a hardcore predicate?

- |x| = |r|, f(x) = x^2 mod n, where n = p x q, and both p and q are prime.
- $|x| \ge |r|$, $f(x) = g^x \mod p$, where p is prime, g is generator of the multiplicative group Z_n .
- |x| ≤ |r|, f(x) = x² mod n, where n = p x q, and both p and q are coprime.
- |x| > |r|, $f(x) = g^x \mod p$, where p is prime, g is generator of the multiplicative group Z_p .

Q1:- Let F: $\{0,1\}^n * \{0,1\}^n$ be a secure PRF, where key space, input space and output space are all $\{0,1\}^n$, and n=128. Which of the following is secure PRF?

- 1. $F'(k,x) = F(k,x) \oplus F(k, x \oplus 1^n)$
- 2. $F'((k_1,k_2),x) = \{F(k_1,x), \text{ when } x \neq 0^n \\ k_2, \text{ otherwise. } \}$
- 3. $F'((k_1,k_2),x) = \{F(k_1,x) || F(k_2,x)\}$
- 4. None of these

Ans:- 2,3

13) Given two MAC schemes, out of which one is strongly secure, and the other is not strongly secure, how would one go about

creating a new MAC scheme that is strongly secure? Notice that you do not know which one of the two schemes are strongly secure.

- 1. Take individual bits of both the output tags and bitwise AND them to produce the output.
- 2. Take individual bits of both the output tags and bitwise OR them to produce the output.
- 3. Take individual bits of both the output tags and bitwise XOR them to produce the output.
- 4. Concatenate both the output tags into a new tag.
- 14- The CCA indistinguishability experiment $PrivK_{A,II}^{cca}(n)$:
 - a. A key k is generated by running Gen(1ⁿ).
 - b. The adversary A is given input 1^n and oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$. It outputs a pair of message m_0, m_1 of the same length.
 - c. A random bit $b \leftarrow \{0,1\}$ is chosen, and then a ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A. We call c the challenge ciphertext.
 - d. The adversary A continues to have oracle access to $Enc_k(\cdot)$ and $Dec_k(\cdot)$, but is not allowed to query the latter on the challenge ciphertext itself. Eventually, A outputs a bit b'.
 - e. The output of the experiment is defined to be 1 if b'=b, and 0 otherwise.

Jumble the above steps and ask students to arrange them in order of CCA indistinguishability experiment.

15 - Which of the following are good candidates for a one-way function?

- a. f(p, q) = pq, for randomly chosen primes p,q
- b. $f(x) = x^2$
- c. If $f:\{0,1\}^n \to \{0,1\}^n$ is a one-way function, then $g:\{0,1\}^{2n} \to \{0,1\}^{2n}$ defined as $g(x) = 0_n||f(x_{[1:n]})$.
- d. Identity function f(x)=x.

16) In class, the 4 basic modes of operations of block ciphers (ECB, CBC, OFB, Counter) are analyzed w.r.t. consequence on ciphertext blocks by changing a single plaintext block are discussed.

For all 4 modes of operation, analyze the effect on the decryption of remaining blocks if for the sequence of ciphertext blocks $c_1, c_2, ..., c_n$ some ciphertext block c_i is error $1 \le j < n$.

Specify which of plaintext blocks x_j , x_{j+1} , x_{j+2} ,..., x_n are received correctly.

Assume ciphertext c₁ is incorrect.

1) For ECB mode:

- a) Only x₁ is decrypted incorrectly
- b) Only x_1, x_2 are decrypted incorrectly
- c) Only x_1, x_2, x_3 are decrypted incorrectly
- d) All blocks are decrypted incorrectly.

Ans) a

2) For CBC mode:

- a) Only x₁ is decrypted incorrectly
- b) Only x_1, x_2 are decrypted incorrectly
- c) Only x_1, x_2, x_3 are decrypted incorrectly
- d) All blocks are decrypted incorrectly.

Ans) d

17)

1)Identify the mode of operation in the below diagram:

- a) CBC mode
- b) CTR mode
- c) ECB mode
- d) OFB mode

Ans) d

18 - Which of the following statements are true

- (a) Kerckhoff's principle asks us to never reveal the encryption algorithm
- (b) Caesar cipher follows the Kerckhoff's principle
- (c) Every algorithms that follows Kerckhoff's principle is secure
- (d) Caesar cipher does not follow the Kerckhoff's principle

ANS: (d)

- 19 Generalizing the computation of LSB(x), given g^x mod p, which of the following is true?
 - (a) If m divides (p-1), It is possible to compute x mod m in O(m polylog p) time
 - (b) It is easy to solve DLP if (p-1) does not have a prime factor greater than polylog(p)
 - (c) DLP for Fermat primes (primes of the form 2^k + 1) are always easy
 - (d) Therefore, it is best to choose p such that (p-1)/2 is a prime too ANS: a,b,c,d
- 20 Assuming that DLP is hard for p=19, g=2, and MSB(x) is its hard-core predicate, what are the first few bits output by a PRG designed from the above for the seed/key 5:

```
(a) 0 1 0 0 ...
```

(b) 0 0 1 1 ...

(c) 0 1 1 0 ...

(d) 0 1 0 1 ...

ANS (a)

- 21 An attack on basic CBCMAC requires:
 - (a) Tags for two messages of same length
 - (b) Tags for millions of messages of same length
 - (c) Tags for any two messages of different lengths
 - (d) Tags for specifically chosen two messages of different lengths ANS (d)
- 22 Given a CPA-secure encryption scheme and a secure MAC scheme, it is easy to design a CCA-secure encryption scheme as follows:
 - (a) Authenticate the message and then encrypt the outcome
 - (b) Encrypt the message and then authenticate the ciphertext
 - (c) Separately encrypt the message and authenticate the message

(d) The key trick is to use the same secret key for both encryption and authentication

ANS (b)