Using Sequential Traces for Attacker Behavior Analysis

Azqa Nadeem

PhD candidate Cyber Analytics Lab

Dynamic observables

- Program execution → observable data
- Network traffic, software logs, intrusion alerts, ...

Dynamic observables

- Program execution → observable data
- Network traffic, software logs, intrusion alerts, ...
- Proxy to attacker intent

Sequential traces (Dynamic)

- Patterns in temporal data
- Limited data required → insightful patterns

Challenges:

- Curse of dimensionality
- Visualization?
- Distance measure?
- Performance
- Outliers are interesting

• ...

USE CASE I

Problem scenario

- Alert fatigue: Security analysts handle >1M intrusion alerts/day*
- How to make alert analysis easier?
 - By answering "How did an attack happen?"

What's already out there?

- "Alert correlation" groups related alerts
 - But how did the attack happen?
- Attack graph generation (MulVAL*)
 - Require: network structure + vulnerability reports
- Attack model generation (Process mining^)
 - Visual summary of alerts

SAGE: Attack graph generator

 Goal: Visualize attacker strategies from intrusion alerts

- Extract targeted attack graphs
- Discover attacker strategies
 - Without prior knowledge
 - From heaps of alerts
 - Without losing alerts

SAGE: Pipeline

TUDelft

Alerts → Actions

```
_sourcetype': 'suricata:alert'
'alert': {
              category: 'Attempted Information Leak',
              'severity': 2,
             'signature': 'ET POLICY Python-urllib\\/
                          'Suspicious User Agent'},
'dest ip': '169.254.169.254'
'dest port': 80,
'src ip': '10.0.0.20',
src port': 56952.
timestamp': '2018-11-03T13:51:58.205548+0000'
```

IDS alerts

Alert Sequences

TUDelft sorted by start time

Alerts → Actions

```
_sourcetype': 'suricata:alert'
'alert': {
             category: 'Attempted Information Leak',
             'severity': 2,
             'signature': 'ET POLICY Python-urllib\\/
                          'Suspicious User Agent'},
'dest ip': '169.254.169.254'
'dest port': 80,
'src ip': '10.0.0.20',
src port': 56952.
timestamp': '2018-11-03T13:51:58.205548+0000'
```

$$Action = \begin{cases} start\ time, \\ end\ time, \\ attack\ stage, \\ targeted\ service \end{cases}$$

IDS alerts

TUDelft sorted by start time

Action sub-sequences

Action sequence: $attacker_i \rightarrow victim_i$

Scan	Scan	Scan	Scan	Exploit	Exploit	Scan	Scan	Exploit
------	------	------	------	---------	---------	------	------	---------

Action sub-sequences

Suffix Tree

S-PDFA

- Suffix-based Probabilistic
 Deterministic Finite Automaton
- State colors
 - Severe | Medium | Low
- Context modelling

SAGE: Pipeline

Encoding action sequences

Threat model and Dataset

- CPTC '18: Pen. testing competition¹
- Moskal's Attack-Intent framework²
 - Alert signature → Attack stage
- Distributed multi-stage attacks

CPTC dataset: https://www.nationalcptc.org/

^{2.} S. Moskal and S. J. Yang, "Framework to describe intentions of a cyber attack action," arXiv preprint arXiv:2002.07838, 2020.

Results: Workload reduction

Table 1: Workload reduction in the CPTC-2018 dataset.

	# alerts (raw)	# alerts (filtered)	#actions	#AS/ #ASQ	#ASS	#AGs
T1	81373	26651	655	103	108	53
T2	42474	4922	609	86	92	7
T5	52550	11918	622	69	74	51
T7	47101	8517	576	63	73	23
T8	55170	9037	439	67	79	33
T9	51602	10081	1042	69	110	30

330,270 alerts \rightarrow 93 AGs!

AG Analysis [1/3]

AG Analysis [2/3]

 Attackers follow shorter paths after discovering longer ones

AG Analysis [3/3]

 Near-identical strategies appear as highly similar AGs

SAGE: Open issues

- Attack path prioritization
- Missing paths in AGs
- Adversarial robustness(?)

USE CASE II

Problem scenario

Malware labels are inconsistent and black-box

Problem scenario

- Malware labels are inconsistent and black-box
- How to discover behaviors?

Network trace collection

Malware infected machine generates network traffic

Network trace collection

Malware infected machine generates network traffic

Network trace collection

Behavior discovery

Dynamic Time Warping

$$D(i,j) = |A_i - B_j| + \min(D(i-1,j), D(i,j-1), D(i-1,j-1))$$

Behavior discovery

Malware Behavior Profiles

	В	C	D	DL	GE	GI	R	Z	ZP	ZPa	Zv1	ZVA
SSDP traffic	1	1	1	1	1	1	/	/	-	1	-	1
Broadcast traffic	1	/	-	1	-	1	1	-	1	-	1	1
LLMNR traffic	1	/	-	1	-	1	-	-	-	-	-	-
System. port scan	1	/	-	-	-	1	1	-	-	-	-	1
Random. port scan	1	/	-	-	-	1	1	-	-	-	-	1
In conn spam	-	-	-	-	-	1	-	-	-	-	-	-
Out conn spam	-	-	-	-	-	1	-	-	-	-	-	-
Malicious Subnet	-	-	-	-	-	-	-	-	-	-	-	1
In HTTPs	-	/	-	1	-	1	-	-	-	1	-	-
Out HTTPs	-	-	-	-	-	1	-	-	-	1	-	-
C&C reuse	1	-	-	-	-	-	-	-	-	1	-	-
	/	//	_	/	_	/	_	/	_	/	_	/

Wrap-up

- Sequence of dynamic observables → attacker intent
- 2 use-cases
 - Intrusion alerts → Attacker strategy attack graphs
 - Network traffic → Malware behavior profiles
- Input: observables | Output: Intelligence
- Unsupervised setting with limited prior knowledge

Thank you! Questions?

Sequence of dynamic observables → attacker intent

2 use-cases

Intrusion alerts → Attacker strategy attack graphs

Network traffic → Malware behavior profiles

Input: observables | Output: Intelligence

Unsupervised setting with limited prior knowledge

azqa.nadeem@tudelft.nl

https://cyber-analytics.nl/

Action extraction

