Math 102 Final Exam Solutions

1. Factor as much as possible:

(a)
$$2qr^2 - 8q$$

Answer: $2q(r+2)(r-2)$

(b)
$$y(z+5) + a(z+5)$$

Answer: $(z+5)(y+a)$

(c)
$$z^2 + 9$$
 Answer: no factors

(d)
$$3m^3n - 3mn$$

Answer: $3mn(m-1)(m+1)$

2. If 2y - kx = 3 and 6x - 2y = 2 are parallel, what is k?

Answer: k = 6

3. Multiply and collect like terms: $(x^2 - xy - 4y^2)(x^2 + 4y^2)$.

Answer: $x^4 - x^3y - 4xy^3 - 16y^4$

4. Solve the following equations. If the solution is imaginary, say so. Otherwise, check at least one of your solutions in the original equations.

(a)
$$2x^2 - 1 = 4x$$

Answer: $1 \pm \frac{\sqrt{6}}{2}$

(b)
$$x^2 + 3x = 9$$

Answer: $\frac{-3\pm\sqrt{45}}{2}$

(c)
$$x^2 - 32 = -4x$$

Answer: $x = -8$, $x = 4$

Solve by completing the square:

(d)
$$x^2 - 3x + 1 = 0$$

Answer: $\frac{3\pm\sqrt{5}}{2}$

(e)
$$x^2 - 6x + 10 = 0$$

Answer: solutions are imaginary

5. Evaluate $(-8)^{-\frac{4}{3}}$.

Answer: $\frac{1}{16}$

6. Graph $y = x^2 + 3x - 4$, showing the roots and vertex.

The roots are x = -4, x = 1; the vertex is $-\frac{3}{2}$, $-\frac{25}{4}$. Graph:

7. Find the roots of:

(a)
$$y = x^3 - 4x^2 + 3x$$

Answer: $x = 0, 1, 3$

(b)
$$y = 3x^2 + x + 4$$

(b) $y = 3x^2 + x + 4$ Answer: no real roots (imaginary)

8. Solve the following equations. Check all solutions in the original equation.

If there are no solutions, or the answer is imaginary, say so.

(a)
$$\sqrt[3]{4 + (m-1)^2} + 1 = 3$$

Answer:
$$m = -1$$
, 3

(b)
$$\sqrt{4z^2 - 3} = 3$$

Answer: $z = \pm \sqrt{3}$

Answer:
$$z = \pm \sqrt{3}$$

(c)
$$8 - |y^3 - 5| = 4$$

Answer: $z = 1, \sqrt[3]{9}$

9. Simplify the following radical expressions:

(a)
$$\frac{\sqrt{48y^2z^5}}{\sqrt{2yz}}$$
Answer: $2|z|^2\sqrt{6y}$

(b)
$$\sqrt[3]{16x^{14}y} \cdot \sqrt[3]{5y^4}$$

Answer:
$$2x^4y\sqrt[3]{10x^2y^2}$$

10. Find the *x*-intercept(s) and *y*-intercept of $y = 2x^2 - x - 1$.

Answer: x-intercepts are $x = 1, -\frac{1}{2}$; y-intercept is -1.

11. True or false: a quadratic equation can have three different solutions.

Answer: false (a quadratic equation has at most two solutions)

- **12.** Find the equations of:
 - (a) The line perpendicular to 4x + 5y = 3 and passing through (-2,3) Answer: $y = \frac{5}{4}x + \frac{11}{2}$

(b) The following line:

Answer: $y = \frac{3}{5}x - \frac{11}{5}$

- **13.** A cat jumps off a 4-foot table, with a starting velocity of 0.
 - (a) Fill in the equation for its height *h* after *t* seconds have passed:

$$h(t) = -16t^2 + \boxed{0}t + \boxed{4}.$$

(b) How high is it after $\frac{1}{4}$ second?

Answer: 3 feet

(c) When does it reach the ground?

Answer: after $\frac{1}{2}$ second

14. Fill in the blanks:

(a)
$$\sqrt{3} \cdot \boxed{} = 9$$
 Answer: $\sqrt{27}$

(b)
$$\sqrt[6]{r^6} = r^2$$

Answer: 3

15. Solve the following system of equations, using *both* the graphical and algebraic methods. Check that your solutions from the two methods agree.

$$\begin{cases} 2x + y = 2\\ -3x + 2y = -10 \end{cases}$$

Answer: (2,-2)

16. Solve each of the following systems of equations algebraically. Check your solutions (if any) in both of the original equations.

(a)
$$\begin{cases} -2x + 6y = 0 \\ -x + 9y = 1 \end{cases}$$
Answer: $x = \frac{1}{2}$, $y = \frac{1}{6}$

Answer:
$$x = \frac{1}{2}$$
, $y = \frac{1}{6}$

(b)
$$\begin{cases} 2x - 2y = -4 \\ -3x + 3y = 6 \end{cases}$$

Answer: infinitely many solutions

17. The road outside the IC has a slope of 5%. One end of the block is 13 feet higher than the other. How long is the block?

Answer: 260 feet

Extra credit.

(a) Fill in the equation for the parabola pictured below:

Answer: $y = x^2 + \boxed{-10} x + \boxed{9}$ (roots are x = 1, x = 9)

(b) You are buying snacks for the Math 102 post-final party. Bagels cost 55ϕ each and bananas cost 35ϕ each. You need to purchase 18 items total, but don't want to spend more than \$8.50.

How much of each item should you buy if you want to spend exactly \$8.50?

Solve the system
$$\begin{cases} x + y = 18 \\ 0.55x + 0.35y = 8.50. \end{cases}$$

Answer: 11 bagels, 7 bananas.