$P(x) = 5x^3 + 2x^2 + 1 \rightarrow P(x) = \frac{2}{120} P_1 x^2$ so we can represent a polynomial with n+1 coefficients Epotop (po, p., p., ps ... Pm) For example the above poly can be written as [1,0,2,5] Fields and Rings To make sure our computation is always bounded to ment to the kyper system constrains the system with town more algebraic structures -> First, numbers in kyber are defined in the finite field: aF(q) = Z/9Z, here Z is a set of all integers. -> The field only contains integers - every operation to a number or phynomial coefficient will take a modu to gr in the end. -> ploty polynomials in kyloer are defined in another special structure called ring R= GF(q)[x]/x"+1 every polynomial operation will take modulo x"+1 in flu end However since our modulus is x"+1 then x" = -1 we can replace x" with -1 in the target

	Simply add each coefficient together modulo ay P(x) + Q(x) = 2 (Po + 90 moday) x'
	(53)
Subtraction:	Subtracting Q(x) from P(x) is equivalent to inverting
polynon	rial O(x). take modulo of to obtain non-negative
num bers	and do the addition from above
	and do the addition from above $P(x) - Q(x) = \frac{2}{120} (P_0 - q_0) \mod q x$
Multiplication:	PCK) and OCK) multiply every component D; X' in PCX)
with a Q(X) we need to take modulo	PCR) and QCx) multiply every component p; x' in PCx) and sum them up in the end. For the final result take modulo of for all the coefficient & and also need to F(x) = x"+1 So that we obtain a polynomical such that a result with degree n-1
with a Q(X) we need to take modulo	and sum them up in the end. For the final result take modulo of for all the coefficient frank also need to F(x) = x"+1 So that we obtain a polynomical such that
with a Q(X) we need to take modulo	and sum them up in the end. For the final result take modulo of for all the coefficient frank also need to F(x) = x"+1 So that we obtain a polynomical such that
with a Q(X) we need to take modulo	and sum them up in the end. For the final result take modulo of for all the coefficient frank also need to F(x) = x"+1 So that we obtain a polynomical such that
we need to take modulo	and sum them up in the end. For the final result take modulo of for all the coefficient frank also need to F(x) = x"+1 So that we obtain a polynomical such that
we need to take modulo	and sum them up in the end. For the final result take modulo of for all the coefficient frank also need to F(x) = x"+1 So that we obtain a polynomical such that