

planetmath.org

Math for the people, by the people.

spectral mapping theorem

 ${\bf Canonical\ name} \quad {\bf Spectral Mapping Theorem}$

Date of creation 2013-03-22 17:30:08

Last modified on 2013-03-22 17:30:08

Owner asteroid (17536)

Last modified by asteroid (17536)

Numerical id 4

Author asteroid (17536)

Entry type Theorem
Classification msc 46L05
Classification msc 47A60
Classification msc 46H30

Let \mathcal{A} be a unital http://planetmath.org/CAlgebra C^* -algebra. Let x be a normal element in \mathcal{A} and $\sigma(x)$ be its spectrum.

The continuous functional calculus provides a C^* -isomorphism

$$C(\sigma(x)) \longrightarrow \mathcal{A}[x]$$

 $f \mapsto f(x)$

between the C^* -algebra $C(\sigma(x))$ of complex valued continuous functions on $\sigma(x)$ and the C^* -subalgebra $\mathcal{A}[x] \subseteq \mathcal{A}$ generated by x and the identity of \mathcal{A} .

Spectral Mapping Theorem - Let $x \in \mathcal{A}$ be as above. Let $f \in C(\sigma(x))$. Then

$$\sigma(f(x)) = f(\sigma(x)).$$

Proof: Since $C(\sigma(x))$ and $\mathcal{A}[x]$ are isomorphic we must have

$$\sigma(f) = \sigma_{\mathcal{A}[x]}(f(x))$$

where $\sigma_{\mathcal{A}[x]}(f(x))$ denotes the spectrum of f(x) relative to the subalgebra $\mathcal{A}[x]$.

By the spectral invariance theorem we have $\sigma_{\mathcal{A}[x]}(f(x)) = \sigma(f(x))$. Hence

$$\sigma(f) = \sigma(f(x))$$

Thus, we only have to prove that $f(\sigma(x)) = \sigma(f)$.

f is defined on $\sigma(x)$ so $f(\sigma(x))$ is precisely the image of f.

Let $\lambda \in \mathbb{C}$. The function $f - \lambda$ is invertible if and only if $f - \lambda$ has no zeros.

Equivalently, $f - \lambda$ is not invertible if and only if $f - \lambda$ has a zero, i.e. $f(\lambda_0) = \lambda$ for some λ_0 .

The previous statement can be reformulated as: $\lambda \in \sigma(f)$ if and only if λ is in the image of f.

We conclude that $\sigma(f) = f(\sigma(x))$, and this proves the theorem. \square