

MLR-5 1/30

Barnes Quinn

Review

ANCOV

PC Regression

Overview

Multiple Linear Regression ANCOVA and PC Regression

Laura Barnes & Julianne Quinn

University of Virginia Charlottesville, VA

Agenda

MLR-5 2/30

Quinn

Review

ANCOV

Regression

- Review of Multiple Regression
- 2 Analysis of Covariance
- 3 Principal components regression
- 4 Overview of Multiple Linear Regression

Model Diagnostics

MLR-5 3/30

Barnes & Quinn

Review

ANCOV.

Regression

Graphical Diagnostics:

- Residuals vs. fitted
- Scale-Location plot of square root of absolute standardized residuals vs. fitted
- QQ plot of standardized residuals
- Residual-Leverage plot
- Analytical Diagnostics:
 - We can also diagnose problems in the regression by analyzing the results: coefficient values, performance tests.
 - Multicollinearity is apparent in the flipped signs for coefficients and for large changes in coefficient values with small changes to values in the observations.
 - Diagnosing Simpson's Paradox with coefficient values: coefficients show contradictory patterns; adding variables or replacing variables causes major changes to coefficient values.

When the Tests Fail

MLR-5 4/30

Barnes & Quinn

Review

ANCOVA

Regression
Overview

- Transform the response: Box-Cox plot
- Transform the predictors: second order model, interaction model, complete second order model
- Add new variables (i.e., new models) for Simpson's paradox and lack of fit;
- Remove or combine variables for multicollinearity;
- Principal components regression or ridge regression for multicollinearity; and
- Use robust methods for regression.

Qualitative Regression Models

MLR-5 5/30

Barnes & Quinn

Review

ANCOV

Regression

 Qualitative predictors require coding to use in regression models.

- The different values of the qualitative variable are called levels.
- Treatment contrasts or dummy variables:
 - If the qualitative variable has m levels then it can be encoded with m-1 dummy variables.
 - Each dummy variable represents a level of the qualitative variable.
 - Each dummy variable takes on one of two values: 0 or 1

Example Qualitative Regression Model

MLR-5 6/30

Barnes &

Review

- Consider MPG of different cars. Suppose we have cars in three brands: Toyota, Ford and Chevrolet.
- Code the brand variable with 2 dummy variables as follows:

$$X_1 = \begin{cases} 1 & \text{if Ford} \\ 0 & \text{else} \end{cases} X_2 = \begin{cases} 1 & \text{if Toyota} \\ 0 & \text{else} \end{cases}$$

 Another categorical variable Cylinder: Cylinder has two levels, more than 5 cylinders or not.

$$X_3 = \begin{cases} 1 & \text{if more than 5 cylinders} \\ 0 & \text{else} \end{cases}$$

Tests of Understanding

MLR-5 7/30

Barnes &

Review

 Write a linear, main effects model with MPG (Y) as a function of brand and cylinder.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

 Write a main effects plus interaction model with MPG (Y) as a function of brand and cylinder.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_1 x_3 + \beta_5 x_2 x_3 + \epsilon$$

Regression Results with Train Data

MLR-5 8/30

Barnes & Quinn

Review

ANCOV

Regression

Overview

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	169976	24368	6.975	3.82e-12 ***
CauseH	-100517	27384	-3.671	0.000247 ***
CauseM	-44111	29130	-1.514	0.130073
CauseS	-130979	60260	-2.174	0.029825 *
CauseT	11273	28265	0.399	0.690050

Model: ACCDMG ∼ Cause (5 levels: E, H, M, S, T)

• What is the base case?

Results:

• Interpret the above result, what's your conclusion?

Analysis of Variance

MLR-5 9/30 Barnes &

Review

PC Regression Overview

- ANOVA provides a method for multiple comparisons of means.
- A one-way ANOVA considers one predictor variable at multiple levels.
- ANOVA treats all predictors as qualitative variables or factors. So it converts quantitative variables to qualitative variables.
- This means it does not require the linear independence assumption but it does reduce the interpretability of the results. Both regression and ANOVA produce identical results for qualitative variables.
- Since regression gives us more information we will use it with both observational and experimental data.

ANOVA vs. Regression

MLR-5 10/30

Barnes 8

Review

ANCOVA

PC Regression

Analysis of Covariance

MLR-5

Barnes & Quinn

ANCOVA

PC Regression

- Recall that regression allows for association tests while controlling for the values of other variables in the equation.
- ANCOVA combines qualitative and quantitative predictors or explanatory variables.
- Why would we want to use ANCOVA? A fake drug testing example.

ANCOVA Example

MLR-5 12/30

medication are shown by the red dots. Did it work? Simpson's paradox strikes again! **ANCOVA**

Patients who received an inflammation reducing

Quantitative Variable Added

MLR-5 13/30

Barnes & Quinn

ANCOVA

PC Regression

- Recall the train accident problem. We built a model: ACCDMG ~ CAUSE (five levels: E,H,M, S,T)
- Train speed (TRNSPD) may predict damages and we want to add this quantitative variable to the model. This is the essence of ANCOVA.
- Write the main effects models: ACCDMG ~ CAUSE and ACCDMG ~ CAUSE+TRNSPD and the interaction model.
- How can we compare them?
 - In general we test interactions using the Partial F test.
 - Regardless of the encoding we test a qualitative variable using the Partial F test.

Quantitative Variable Added

MLR-5 14/30

Barnes & Quinn

Review

ANCOVA

PC Regression

- Look at the main effects and the interaction results that follow. Use Partial F tests to make a recommendation.
- Look at the t-tests. Do we ever remove a variable in an interaction term from the main effects part of the model?

Main Effects Results ANCOVA

MLR-5 15/30

Barnes & Quinn

Reviev

ANCOVA

Regression

O

Model.cause: log(ACCDMG + 1) ∼ CAUSE

Result:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	10.847752	0.073335	147.921	< 2e-16 ***
CauseH	-0.442112	0.082411	-5.365	8.79e-08 ***
CauseM	-0.387382	0.087666	-4.419	1.03e-05 ***
CauseS	-0.620046	0.181352	-3.419	0.000638 ***
CauseT	0.004585	0.085064	0.054	0.957014

Residual standard error: 1.196 on 2715 degrees of freedom Multiple R-squared: 0.03051, Adjusted R-squared: 0.02908 F-statistic: 21.36 on 4 and 2715 DF, p-value: < 2.2e-16

Main Effects Results ANCOVA

MLR-5 16/30

Barnes & Quinn

Review

ANCOVA

Regression

 Model.cause+trnspd: log(ACCDMG + 1) ~ CAUSE + TRNSPD

Result:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	10.562932	0.075696	139.544	< 2e-16 ***
CauseH	-0.246274	0.082213	-2.996	0.00276 **
CauseM	-0.418358	0.085631	-4.886	1.09e-06 ***
CauseS	-0.409950	0.177980	-2.303	0.02133 *
CauseT	0.088169	0.083361	1.058	0.29029
TRNSPD	0.016968	0.001464	11.592	< 2e-16 ***

Residual standard error: 1.168 on 2714 degrees of freedom Multiple R-squared: 0.07624, Adjusted R-squared: 0.07454

F-statistic: 44.8 on 5 and 2714 DF, p-value: < 2.2e-16

Interaction Results ANCOVA

MLR-5 17/30

Barnes & Quinn

Review

ANCOVA

Regression

Overviev

Model.interaction: log(ACCDMG + 1) ∼
 CAUSE + TRNSPD + CAUSE : TRNSPD

Result:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	10.531683	0.096002	109.703	< 2e-16 ***
CauseH	-0.308234	0.107096	-2.878	0.00403 **
CauseM	-0.180733	0.113306	-1.595	0.11081
CauseS	-0.470313	0.247140	-1.903	0.05714.
CauseT	-0.040416	0.109184	-0.370	0.71129
TRNSPD	0.018830	0.003862	4.875	1.15e-06 ***
CauseH:TRNSPD	0.015913	0.006995	2.275	0.02299 *
CauseM:TRNSPD	-0.012950	0.004378	-2.958	0.00312 **
CauseS:TRNSPD	0.018941	0.036969	0.512	0.60844
CauseT:TRNSPD	0.011615	0.004673	2.486	0.01299 *

Residual standard error: 1.155 on 2710 degrees of freedom Multiple R-squared: 0.0979, Adjusted R-squared: 0.0949 F-statistic: 32.68 on 9 and 2710 DF, p-value: < 2.2e-16

Partial F Tests ANCOVA

MLR-5 18/30

Barnes Ouinn

Review

ANCOVA

Regression

• Model.cause vs. Model.cause+trnspd:

Analysis of Variance Table

Model 1: log(ACCDMG + 1)∼ Cause

Model 2: log(ACCDMG + 1) ∼Cause + TRNSPD

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
1	2715	3883.9				
2	2714	3700.7	1	183.23	134.37	< 2.2e-16 ***

Partial F Tests ANCOVA

MLR-5 19/30

ANCOVA

• Model.cause+trnspd vs. Model.interaction:

Analysis of Variance Table

Model 1: log(ACCDMG + 1)∼ Cause + TRNSPD

Model 2: log(ACCDMG + 1) ∼Cause + TRNSPD+Cause:TRNSPD

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
1	2714	3700.7				
2	2710	3613.9	4	86.751	16.263	3.6e-13 ***

Principal Components Regression

MLR-5 20/30

Barnes &

Regression

- We talked about how to select variables.
- Remove or combine variables for multicollinearity.
- Rather than select variables for the model, principal components puts weights on the variables. How are those weights chosen?
- By definition the principal components are orthogonal. Hence, the combinations of principal components eliminates multicollinearity problems.
- The loadings on the principal components can reveal latent variables or "factors". These are higher order variables that represent possible contributors to the response.

PC Regression Steps

MLR-5 21/30

Barnes & Quinn

neview

ANCOVA

PC Regression

- Find the principal components for the quantitative variables in the data set after removing the response variable.
- Determine how many principal components explain a sufficient amount of the variance (e.g., 90%). Select these components as the predictors.
- Ompute the principal components scores or values for each observation. This is a matrix product of the principal component with each observation matrix. Call this the principal component data matrix.
- Regress the response variable against the principal component data matrix.

PC Regression Example: Rail Accident PC Biplot

MLR-5 22/30

Barnes &

Review

ANCOV

PC Regression

Overvier

PC Regression Example: Rail Accident PC Loadings

MLR-5 23/30

Barnes 8

Review

ANCOV

PC Regression

PC Regression Example: Rail Accident Results

MLR-5 24/30

Barnes &

PC

Regression

	# of PC	R^2	BIC
50% Variance	2	0.8748	77674.11
75% Variance	3	0.09097	77671.59
90% Variance	5	0.09138	77686.19

- What else methods can we use to compare the above three models?
- What about comparing PC regression models with the main effect model?

Multiple Linear Regression

MLR-5 25/30

Barnes & Quinn

Review

.....

Regression

- Concept of multiple linear regression
- Least square estimate
- Model assumptions
- Variable selections
- Model diagnostics
- Nonlinear variables
- Qualitative variables
- ANOVA and ANCOVA

How to Build Multiple Linear Regression Models?

MLR-5 26/30

Barnes 8 Quinn

neview

PC Regression

- Building multiple linear regression model is not as simple as typing lm(r ~ ., data = acts11) in R!
- Begin with graphical analysis;
- Select variables (both quantitative and qualitative variables) for multiple linear regression models;
- Measure the performance of models: F tests, R², AIC, BIC, etc.;
- Diagnose models: graphical and analytical;
- Adjust models: transformations, higher order models, variable selection, PC regression, etc.;
- Repeat the above steps as necessary;
- Get several alternative models, select the best model(s) for recommendation.

Model Selections

MLR-5 27/30

Barnes &

- Model selection means choosing the model or models to use as the basis for our analysis and ultimately our recommendations.
- Model selection consists of choosing variables, transformations, and combinations among the variables and levels in qualitative variables.
- Model selection is important, but why?

Reason for Model Selections

MLR-5 28/30

Barnes & Quinn

Review ANCOV/

PC Regression Overview

- Okham's (Occam's) Razor.
- Extra terms can add noise to the predictions. More data is not necessarily better.
- Multicollinearity.
- Leaving out variables causes inaccurate understanding and predictions. This is Simpson's paradox.
- It can cost more to get data on more variables.
- We have to make recommendations. If models give competing answers, we need to pick from among these.

Approaches to Model Selection

MLR-5 29/30

Barnes & Quinn

Review ANCOV

PC Regression Overview

- t-tests. This is not a good approach because of multiplicity.
- Partial F test results. This is a good approach, but not for non-nested models.
- Criterion based also good but with limits.
- Automated selection, forward, backward, and stepwise.
 Quick and dirty.
- Principal components can provides variable extraction versus selection.

Approaches to Model Selection

MLR-5 30/30

Barnes & Quinn

Review

AIVOOVA

Regression

- Test sets when we have enough data.
- Cross-validation when we don't have enough data.
- Choose models based on diagnostics.
- Bootstrapping when nonparametric methods are needed.
- Model selection is hard! Focus on the problem (not the mechanics). This is why good systems engineers are in such demand.