Tonic Identification System for Hindustani and Carnatic Music

Sankalp Gulati, Justin Salamon and Xavier Serra

Music Technology Group
Universitat Pompeu Fabra

{sankalp.gulati, justin.salamon, xavier.serra}@upf.edu

Introduction: Tonic in Indian art music

- Anchored as 'Sa' swar in a performance (mostly)
- All the other notes used in the raga exposition derive their meaning in relation to this pitch value
- All other accompanying instruments are tuned using this pitch as reference

Role of Drone Instrument

- Performer and audience needs to hear this pitch throughout the concert
- Reinforces the tonic and establishes all harmonic and melodic relationships

Introduction: Tonal structure of Tanpura

- Four strings
- Tunings
 - Sa-Sa'-Sa'-Pa
 - Sa-Sa'-Sa'-Ma
 - Sa-Sa'-Sa'-Ni
- Special bridge with thread inserted (Jvari)
 - Violate Helmholtz law [2]
- □ Rich overtones [1]

Introduction: Goals and Motivation

- Automatic labeling of the tonic in large databases of Indian art music
- Devise a system for identification of
 - Tonic pitch for vocal excerpts
 - Tonic pitch class profile for instrumental excerpts
- Use all the available data (audio + metadata) to achieve maximum accuracy
- Confidence measure for each output from the system

Introduction: Goals and Motivation

- Fundamental information
- Tonic identification: crucial input for:
 - Intonation analysis
 - Raga recognition
 - Melodic motivic analysis

Relevant work: Tonic Identification

- Very little work done in the past
- Based on melody [4,5]
- Ranjani et al. take advantage of melodic characteristics of Carnatic music [4]

Relevant work: Summary

- Utilized only the melodic aspects
- Used monophonic pitch trackers for heterophonic data
- Limited diversity in database
 - Special raga categories, aalap sections, solo vocal recordings
- Unexplored aspects:
 - Utilizing background audio content comprising drone sound
 - Taking advantage of different types of available data, like audio and metadata
 - Evaluation on diverse database

Methodology: System Overview

Methodology: System Overview

- Culture specific characteristics for tonic identification
 - Presence of drone*
 - Culture specific melodic characteristics
 - Raga knowledge
 - Melodic Motifs
- Use variable amount of data that is sufficient enough to identify tonic with maximum confidence.
 - Audio data
 - Metadata (Male/Female, Hindustani/Carnatic, Raga etc.)

Methodology: Tonic Identification

Audio example:

- Utilizing drone sound
- Chroma or multi-pitch analysis

STFT

- STFT
 - Hop size: 11 ms
 - Window length: 46 ms
 - Window type: hamming
 - \blacksquare FFT = 8192 points

2500

Spectral Peak Picking

- Spectral peak picking
 - Absolute threshold: -60 dB
 - Relative threshold: -40 dB

Frequency/ Amplitude correction

- Frequency/Amplitude correction
 - Parabolic interpolation

Bin salience mapping Harmonic summation

- Harmonic summation [7]
 - Spectrum considered: 55-7200 Hz
 - Frequency range: 55-1760 Hz
 - Base frequency: 55 Hz
 - Bin resolution: 10 cents per bin (120 per octave)
 - Noctaves: 5
 - Maximum harmonics: 20
 - Alpha: 1
 - Beta: 0.8
 - Square cosine window across 50 cents

Multi-pitch histogram

- Tonic candidate generation
 - Number of salience peaks per frame: 5
 - Frequency range: 110-550 Hz
 - After candidate selection salience is no longer considered!!!!

Tonic Identification: Two sub-tasks

- Caters to both vocal and instrumental excerpts
 - Identify tonic pitch class (PC) using multi-pitch histogram
 - Estimate the correct octave using predominant melody
- Use predominant melody extraction approach proposed by Justin Salamon et al. [6]
- Tonic PCP
 - Peak Picking + Machine learning
- Tonic octave estimation
 - Rule based method + Classification based approach

Tonic Identification: PC identification

- Classification based template learning
- Two kind of class mappings
 - Rank of the highest tonic PC
 - Highest peak as Tonic or Non tonic
- \blacksquare Feature extracted # 20 (f₁-f₁₀, a₁-a₁₀)

Tonic Identification: PC identification

Decision Tree:

Tonic Identification: Octave Identification

- Tonic octave
 - Rule based method
 - Classification based approach
- 25 Features: a₁-a₂₅

Evaluation: Database

Subset of CompMusic database (>300 Cds) [3]

Approach 2: #540, 3min (PCP) + 238, full recordings (Octave)

Evaluation: Database

Tonic distribution

- Statistics (for 364 vocal excerpts)
 - Male (80 %), Female (20%), Hindustani (38%), Carnatic (62%), Unique artist (#36)
- Statistics (for 540 vocal and instrumental excerpts)
 - Hindustani (36%), Carnatic (64%), Unique artist (#55)

Evaluation: Annotations

- Annotations done by the author
- Extracted 5 tonic candidates from multi-pitch histograms between 110-370 Hz
- Matlab GUI to speed up the annotation procedure

Evaluation: Accuracy measures

- Output correct within 50 cents of the ground truth
- 10 fold cross validation + rule based classification
- Weka: data mining tool
- Feature selection: CfsSubsetEval (features > 80% folds)
- Classifier: J48 decision tree
- Performs better than
 - SVM-polynomial kernel (6% difference in accuracy)
 - K* classifier (5% difference in accuracy)

Results

Approach\(%)	Map	#folds	Class EQ	# Features	Tonic pitch	Tonic PCP	5 th	4 th	Other
AP1_EXP1	-	-	-	-	-	85	10.7	0.93	3.3
AP1_EXP2	M1	1	no	1, S2	-	93.7	1.48	8.9	0.9
AP1_EXP3	M1	10	no	4, S3	-	92.9	1.9	3.5	1.7
AP1_EXP4	M1	10	yes	4, S4	-	74.2	11	7.6	6.7
AP1_EXP5	M2	1	no	1, S2	-	91	3.3	3	2.7
AP1_EXP6	M2	10	no	2, \$5	-	91.8	2.2	3	3
AP1_EXP7	M2	10	yes	2, \$5	-	87.8	4.2	4	3.9

■ M1: tonic PCP rank, M2: highest peak tonic or non-tonic

 \square S1: $[f_2, f_3, f_5]$, S2: $[f_2]$, S3: $[f_2, f_4, f_6, a_5]$, S4: $[f_2, f_3, a_3, a_5]$, S5: $[f_2, f_3]$

Results

- Approach 2, Octave identification
 - Rule based approach 99 %
 - Classification based approach 100%

Discussion: PCP Identification

- AP-1: Performance for male singers (95%), female singers (88%)
- Error cases
 - Mostly Ma tuning songs
 - More female singers
- Sensitive to selected frequency range for tonic candidates, a range of 110-370 Hz works optimal

Discussion: Octave Identification

- Challenges faced by rule based approach
 - Hindustani musicians go roughly -500 cents below tonic
 - Carnatic musicians generally don't go that below tonic
 - Melody estimation errors at low frequency
 - Concept of Madhyam shruti

Conclusions and Future Work

- Drone sound in the background provides an important cue for the identification of tonic and can be utilized to automatically perform this task
- System should be fed with more information to differentiate between 'Pa' and 'Ma' tuning
- Future Work:
 - Exploring melodic characteristics for tonic identification
 - Deeper analysis of confidence measure concept
 - Study influence of cultural background on human performance for this task

REFERENCES

- 1. B. C. Deva. The Music of India: A Scientific Study. Munshiram Manoharlal Publishers, Delhi, 1980.
- 2. C. V. Raman. On some Indian stringed instruments. In Indian Association for the Cultivation of Science, volume 33, pages 29-33, 1921.
- 3. X. Serra. A multicultural approach in music information research. In 12th Int. Soc. for Music Info. Retrieval Conf., Miami, USA, Oct. 2011.
- 4. R. Sengupta, N. Dey, D. Nag, A. K. Datta, and A. Mukerjee, "Automatic Tonic (SA) Detection Algorithm in Indian Classical Vocal Music," in *National Symposium on Acoustics*, 2005, pp. 1-5.
- 5. T. V. Ranjani, H.G.; Arthi, S.; Sreenivas, "Carnatic music analysis: Shadja, swara identification and rAga verification in AlApana using stochastic models," Applications of Signal Processing to Audio and Acoustics (WASPAA), IEEE Workshop, pp. 29-32, 2011.
- 6. J. Salamon and E. G'omez. Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Transactions on Audio, Speech, and Language Processing, 20(6):1759–1770, Aug. 2012.
- 7. J. Salamon, E. G'omez, and J. Bonada. Sinusoid extraction and salience function design for predominant melody estimation. In Proc. 14th Int. Conf. on Digital Audio Effects (DAFX-11), pages 73–80, Paris, France, Sep. 2011.

Thank you

Questions?

