Apuntes de clase

José Antonio de la Rosa Cubero

Observación 1. Los isomorfismos conservan el orden de un elemento:

$$\operatorname{ord}(f(a)) = \operatorname{ord}(a)$$

Proposición 1. Sea G un grupo y $a \in G$. Si $n = \operatorname{ord}(a) > 0$ entonces $\langle a \rangle = \{1, a, \dots, a^{n-1}\}, \ y \ \text{si} \ \operatorname{ord}(a) = \infty, \ entonces \ \langle a \rangle \cong \mathbb{Z}.$

Demostración. Dado k por división entera, k = nq + r y a^r pertenece al conjunto de la derecha.

En particular:

$$|\langle a \rangle| = \operatorname{ord}(a)$$

En el caso infinito, no existe ningún k no nulo tal que $a^k = 1$. Definimos $f(k) := a^k$. Trivialmente de las propiedades de las potencias se sigue el resultado.

Corolario 1. Sea G un grupo finito y $a \in G$. Entonces el orden de a divide al orden de G.

Corolario 2. Dos grupos cíclicos finitos son isomorfos si y solo si su orden es igual. Un representante es μ_n

Definición 1. De forma abstracta, representaremos al grupo cíclico de orden n por C_n y escribimos

$$C_n := \langle a | a^n = 1 \rangle$$

Teorema 1. Sea G un grupo con |G| = p un número primo. Entonces $G \cong C_p$. Consecuentemente, cualesquiera dos grupos de orden p son isomorfos.

Demostración. Tenemos que $\operatorname{ord}(a)|p$ y por tanto $\operatorname{ord}(a)=p$. Pero entonces $|\langle a\rangle|=p=|G|$ luego $\langle a\rangle=G$