System modelling and simulation

Jakub Buias Dawid Dworak

https://github.com/ddworak/formin

formin

Lab 2

Configuration

- 1. **FSE** foraminifera start energy; $FSE \in [0,1] \&\& FSE \in R$.
- 2. **FRC** foraminifera Reproduction Cost; FRC ∈ [0,1] && FRC ∈ R.
- 3. **FRT** foraminifera reproduction threshold; $FRT \in [0,1] \&\& FRT \in R$.
- 4. **FMC** foraminifera movement cost; FMC \in [0,1] && FMC \in R.
- 5. **ARF** algae reproduction frequency; $ARF \in N$.
- 6. **AEC** algea energetic capacity; AEC ∈ [0,1] && AEC ∈ R.
- 7. **SSR** signal speed ratio; $SSR \in [0,1] \&\& SSR \in R$.
- 8. **DFF** diffraction factor; DFF \in [0,1] && DFF \in R.
- 9. **ATF** attenuation factor; ATF \in N.
- 10. **SPF** global suppression factor of the signal; SPF \in [0,1] && SPF \in R.
- 11. **GS** grid size; $GS \in N$, where map size is GSxGS.
- 12. **FAR** starting foraminifera algae ratio; FAR ∈ [0,1] && FAR ∈ R.

Assumptions

Additional assumptions to those from articles: 'Dynamic Assignment of Tasks to Mobile Robots in Presence of Obstacles' and 'Agent-oriented Foraminifera Habitat Simulation':

- 1. Cell state(algae/foraminifera/nothing/obstacle) is in the central sub cell [x,y] = [0,0].
- 2. Algae after reproduction randomly picks one empty cell from its surroundings and puts a descendant there.
- 3. Algae is immortal. It disappears only when eaten.
- 4. If algae cannot reproduce because of lack of free cells around it, it pauses. This results in reproducing action(ARF reset).
- 5. Foraminifera during reproduction picks randomly one free cell from surroundings and puts a descendant there.

Questions

- 1. Does foraminifera change their size on energy increase?
- 2. Does foraminifera disintegrate during reproduction?
- 3. Does foraminifer die with energy level insufficient to make any action? Does it have a vegetation cost?