Efficient Parity Decision Trees and Their Connections to Logical Proofs and Total Search Problems in NP

Facoltà di Ingegneria dell'informazione, informatica e statistica Corso di Laurea in Informatica

Candidato: Simone Bianco

Relatore: Nicola Galesi Co-relatore: Massimo Lauria

Anno Accademico: 2023/2024

Problema di Ricerca

Un problema di ricerca è un qualsiasi problema il cui obiettivo è trovare una soluzione, proprietà o sotto-struttura all'interno di una specifica istanza del problema.

Esempio: Trovare una 5-clique all'interno di un grafo

Problema di Ricerca

FP = Problema di ricerca **risolvibili** in tempo polinomiale

FNP = Problema di ricerca **verificabili** in tempo polinomiale

TFNP = Problema di ricerca totali in FNP

Ogni istanza ha almeno una soluzione

Trovare una 5-clique all'interno di un grafo

→ Non Totale!

Trovare una fattorizzazione di un numero naturale ———— Totale!

Polynomial Pigeonhole Principle (PPP)

Data una funzione $f:[n] \rightarrow [n-1]$, trovare una collisione

Vincolo: la descrizione della funzione è esponenziale rispetto all'input del problema

Totalità garantita dal **Principio della Piccionaia**: Non può esistere una funzione $f:[n] \to [n-1]$ che sia anche iniettiva

Polynomial Parity Argument (PPA)

Dato un nodo con grado dispari etichettato da n bit, trovare un altro nodo di grado dispari

Vincolo: la descrizione del grafo è esponenziale rispetto all'input del problema

Totalità garantita dall'**Handshaking Lemma:**Ogni grafo possiede un numero pari di nodi con grado dispari

La Gerarchia TFNP

Il Modello Black-box

Ogni computazione svolta da una macchina dotata di oracolo può essere vista come un Decision Tree

Restringiamo il nostro interesse alla Query Complexity

La Classe FP^{pdt}

Un Parity Decision Tree effettua query di parità su k variabili

I PDT hanno un potere computazionale maggiore rispetto ai DT

Esempio: XOR($x_1, ..., x_n$) richiede un DT di altezza $\Omega(n)$ e un PDT di altezza O(1)

Dov'è collocata la nuova classe?

Legenda:

 $A \longrightarrow B \equiv A \subseteq B$ $A \longrightarrow B \equiv A \not\subseteq B$

Relazioni con la Proof Complexity

Ogni DT può essere codificato come una CNF insoddisfacibile che genera un problema di ricerca equivalente

$$\varphi_T = \bigwedge_{p \text{ : path in } T} \neg \varphi_p$$

Search(φ_T): Dato un assegnamento per $\mathsf{x}_1, ..., \mathsf{x}_n$, trovare la clausola falsificata

Otteniamo che
$$R \equiv \operatorname{Search}(\varphi_{T_R})$$

TFNP^{dt} equivale allo studio del Problema della Clausola Falsificata

TFNP^{dt} e Sistemi Logici di Dimostrazione

Legenda:

Riduzioni tramite Proof Systems

(Thm.) Un problema $R^{dt} \in \mathsf{TFNP}^{dt}$ è nella classe $S^{dt} \subseteq \mathsf{TFNP}^{dt}$ se e solo se φ_R è dimostrabile efficientemente in P_S

Idea: Passare tramite i proof system per ottenere inclusioni o separazioni tra le classi che essi caratterizzano

$$R \xrightarrow{\text{Codifica}} P_R \xrightarrow{\text{Simulazione}} P_S \xrightarrow{\text{Decodifica}} S$$

(Thm.) TreeRes \oplus caratterizza FP^{pdt}

Legenda:

 $A \longrightarrow B \equiv A \subseteq B$ $A \longrightarrow B \equiv A \nsubseteq B$

Ipotesi: l'inclusione può valere anche per PPA^{dt}

Legenda:

(Thm.) \mathbb{F}_2 -Nullstellensatz simula efficientemente TreeRes \oplus

Legenda:

 $A \longrightarrow B \equiv A \subseteq B$ $A \longrightarrow B \equiv A \not\subseteq B$

Lavori futuri

- Dimostrare inclusioni più forti per FP^{pdt}
- Delineare ogni separazione tra FP^{pdt} e le altre classi
- Generalizzare i risultati ottenuti per \mathbb{F}_q invece di \mathbb{F}_2
- Confrontare la gerarchia TFNP dt con la gerarchia TFNP pdt
- Riduzioni tramite PDT invece di DT

Grazie per l'attenzione

Tree-like Linear Resolution su \mathbb{F}_2

(Thm.) $\mathsf{FP}^{pdt}(\mathsf{Search}(\varphi)) = \Theta(\mathsf{TreeRes}_{\oplus}(\varphi))$

Simulare TreeRes_⊕ in **F**₂-NS

