الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

دورة: 2021

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (04 نقاط)

 F_2 و F_1 و امرأتان F_3 و F_3 و F_4 و امرأتان F_3 و F_4 و امرأتان F_4 و امرأتان F_4 و F_4 و امرأتان F_4

" عضوا اللجنة من جنسين مختلفين B

عضو في اللجنة ". H_1 " C

الترتيب. A احتمال A و B على الترتيب. p(B) ، p(A) الترتيب.

 $\frac{2}{5}$ يساوي C يساوي p(C) احتمال الحدث

2) المتغير العشوائي X يرفق بكلّ إمكانية اختيار لعضوين عدد الرّجال في اللّجنة.

 $\{0\,;1\,;2\}$ هي X ان مجموعة قيم X

E(X) عين قانون احتمال المتغير العشوائي X و احسب أمله الرياضياتي

التمرين الثاني: (04 نقاط)

أجب بصح أو خطأ مع التبرير في كل حالة من الحالات التالية:

 $f(x) = x + \frac{2}{e^x + 1}$ الدّالة العددية f معرّفة على (1

f(x) + f(-x) = 2 دينا: x عدد حقيقي عدد عديقي

 $S_n = u_0 + u_1 + \dots + u_n$ نضع: ، نضع: $\frac{1}{3}$ بحدّها الأول 2 وأساسها $\frac{1}{3}$ ، نضع: \mathbb{N} متتالية هندسية معرّفة على \mathbb{N}

 $3 - \frac{1}{3^{n+1}}$ هي: S_n عبارة S_n عبارة عدد طبيعي

 $g(x) = x + \ln(e^x + 1)$ بالدّالة العددية g المعرّفة على $g(x) = x + \ln(e^x + 1)$ بالدّالة العددية والمعرّفة على $g(x) = x + \ln(e^x + 1)$

تمثيلها البياني (C) في المستوي المنسوب إلى معلم يقبل مستقيما مقاربا مائلا y=2x معادلة له.

y'-3y=1 الدّالة العددية h المعرّفة على \mathbb{R} بـ: \mathbb{R} بـ: h الدّالة العددية المعادلة التفاضلية h

اختبار في مادة: الرياضيات/ الشعبة: علوم تجريبية / بكالوريا 2021

التمرين الثالث: (05 نقاط)

$$u_n = -4n+3$$
 :ب کمرّفة على المتتالية العددية (u_n) معرّفة على المتتالية العددية العددية المعرّفة على المعرّفة على المعرّفة على المعرّفة المعرفة المعرّفة المعرّفة المعرفة ال

- u_0 بيّن أنّ المتتالية u_n حسابية يُطلب تعيين أساسها u_n وحدّها الأول (1
 - $S_n = u_0 + u_1 + \dots + u_n$ نضع: n نضع عدد طبیعي n نصع (2

$$S_n = -2n^2 + n + 3$$
 : n عدد طبیعی عدد طبیعی أنّه من أجل كلّ عدد طبیعی

$$S_n = -30132$$
 :حيث عين قيمة العدد الطبيعي n حيث

- $u_n = \ln(v_n) : n$ عدد طبيعي المتتالية العددية (v_n) عدودها موجبة تماما و من أجل كلّ عدد طبيعي
 - $\cdot n$ بدلالة v_n بدلالة أ. اكتب عبارة الحد العام

$$\cdot e^{-}$$
 المتتالية $\left(v_{n}
ight)$ هندسية أساسها \cdot

$$S'_n = \ln[v_0(1-\frac{1}{2})] + \ln[v_1(1-\frac{1}{3})] + \dots + \ln[v_n(1-\frac{1}{n+2})]$$
 نصب من أجل كل عدد طبيعي n نضع: n نضع: n نضع: n احسب n بدلالة n بدلالة n

التمرين الرابع: (07 نقاط)

- $g(x) = 2x^3 2x^2 + 3x 2$ بـ: \mathbb{R} معرّفة على g معرّفة على (I
 - \mathbb{R} بيّن أنّ الدّالة g متزايدة تماما على \mathbb{R}
- $0,7 < \alpha < 0,8$: يَن أَنّ المعادلة g(x) = 0 تقبل حلا وحيدا α يُحقِّق (2
 - g(x) باستنتج حسب قيم العدد الحقيقى x إشارة

$$f(x) = 2x - 1 + \ln\left(1 + \frac{1 - x}{x^2}\right)$$
 :ب] $-\infty; 0$ [\cup] $0; +\infty$ [معرّفة على f معرّفة على (II)

- (C) . $(C;\vec{i},\vec{j})$ المتعامد المتعامد المتعامد المستوي المنسوب إلى المعلم المتعامد المتجانس .
 - أ. بيّن أنّ: $\infty + = \lim_{x \to 0} f(x) = +\infty$ ثم فسّر النتيجة هندسيا. (1

$$\lim_{x\to +\infty} f(x)$$
 و $\lim_{x\to -\infty} f(x)$ ب. احسب

$$f'(x) = \frac{g(x)}{x(x^2 - x + 1)}$$
 : x عدد حقیقي غیر معدوم : x عدد عقیقي غیر معدوم : x

$$[0;lpha]$$
 ومتناقصة تماما على كلّ من $[\alpha;+\infty[$ و $]-\infty;0[$ و على كلّ من على المتنتج أنّ $[\alpha;+\infty[$

- f شكّل جدول تغيّرات الدّالة f
- (Δ) بيّن أنّ المستقيم (C) ذا المعادلة y=2x-1 مقارب مائل لـ(C) ثمّ ادرس وضعية (Δ) بالنسبة إلى (Δ)
 - له. القاصلة 2 ثمّ اكتب معادلة له. (C) بيّن أنّ (C) يقبل مماسا (T) موازيا له (D) في النّقطة (D) بيّن أنّ
 - -0.5 < eta < -0.4 : بيّن أنّ eta يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها eta تُحقِّق (C) بيّن أنّ
 - . ($f(\alpha) \approx 0.87$: نأخذ:) (C) و المنحنى (C) و المنحنى (Δ

انتهى الموضوع الأول

الموضوع الثانى

التمرين الأول: (04 نقاط)

صندوق به 9 بطاقات متماثلة لا نفرّق بينها باللمس، مكتوب على كلّ منها سؤال واحد، منها ثلاثة أسئلة في الهندسة مرقمة بناء 1، 2، 3 و 4 وسؤالين في التحليل مرقمين بناء 1 و 2 نسحب عشوائيا بطاقة واحدة من الصندوق ونعتبر الحوادث التالية:

"سحب سؤال في الهندسة "، B "سحب سؤال في التحليل " و C "سحب سؤال في الجبر يحمل رقما زوجيا".

- احسب (A) و (C) و (B) احتمال الحوادث (B) الترتيب. (B)
 - 2) احسب احتمال سحب سؤال رقمه مختلف عن 1.
 - لمتغيّر العشوائي X يرفق بكلّ بطاقة مسحوبة رقم السؤال المسجل عليها. X

$$\{1;2;3;4\}$$
 هي $\{X;2;3;4\}$.

 $oldsymbol{\psi}$. عين قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب E(X) أمله الرّياضياتي.

ج. استنتج قيمة (E(2021X + 1442)

التمرين الثاني: (04 نقاط)

لكلّ سؤال جواب واحد فقط صحيح من بين الأجوبة الثلاثة المقترحة، عينه مع التعليل.

2 التكن (u_n) متتالية حسابية معرّفة على $\mathbb N$ بحدّها الأول u_n متتالية حسابية المعرّفة على u_n

:نفىع من أجل كلّ عدد طبيعي
$$P_n=e^{u_0} imes e^{u_1} imes \cdots imes e^{u_n}:n$$
 عبارة $e^{-n(n+1)}$ (غيد من أجل كلّ عدد طبيعي $e^{(n+1)^2}$ (ب

الدّالة العددية f معرّفة على \mathbb{R} بـ: \mathbb{R} الدّالة العددية f معرّفة على \mathbb{R} الدينا:

$$f(-x) = f(x)$$
 ($f(2-x) = f(x)$ ($f(-2-x) = f(x)$

:ساوي $\lim_{x \to +\infty} \left[\ln(x+1) - \ln(x+2) \right]$ (3

 $v_n = \ln w_n$ متتالیة هندسیة معرفة علی \mathbb{N} حدودها موجبة تماما وأساسها عدد حقیقی $v_n = \ln w_n$ معرفة علی $v_n = \ln w_n$

: هـى متتالية (v_n)

التمرين الثالث: (05 نقاط)

 $u_{n+1} = \frac{3}{8}(u_n + 5)$: n معرفة بحدّها الأوّل $u_0 = 0$ حيث: $u_0 = 0$ ومن أجل كلّ عدد طبيعي (u_n) معرفة بحدّها الأوّل

- $u_n < 3$: n برهن بالتراجع أنّه من أجل كلّ عدد طبيعي (1
 - بيّن أنّ (u_n) متزايدة تماما ثمّ استنتج أنّها متقاربة.

اختبار في مادة: الرياضيات/ الشعبة: علوم تجريبية / بكالوريا 2021

$$v_n=3(3-u_n)$$
 :ب $\mathbb N$ معرّفة على معرّفة (v_n) المتتالية العددية

$$rac{3}{8}$$
 أ. احسب v_0 ثمّ بيّن أنّ المتتالية v_n هندسية أساسها

$$\cdot u_n = 3 - 3 \left(\frac{3}{8} \right)^n$$
 : n عبارة الحد العام v_n ثمّ استنتج أنّه من أجل كلّ عدد طبيعي v_n عبارة الحد العام v_n

$$\lim_{n\to+\infty}u_n \quad -\infty.$$

$$P_n = (3-u_0) \times (3-u_1) \times \cdots \times (3-u_n)$$
 : n عدد طبیعي (4 من أجل كلّ عدد طبیعي P_n بدلالة P_n

التمرين الرابع: (07 نقاط)

الدّالة العددية
$$g$$
 معرّفة على $\mathbb R$ بـ: $\mathbb R$ الدّالة العددية العددية العرفة على الدّالة العددية العرفة على العرفة على العرفة الع

الشكل المقابل) $(O; \vec{i}, \vec{j})$ المتعامد المت

$$g(-1)$$
 احسب (1

.
$$g(x)$$
 بقراءة بيانية، حدّد حسب قيم x إشارة (2

$$f\left(x
ight) = x - (x+1)e^{-x-1}$$
 بـ: $\mathbb R$ معرّفة على f معرّفة العددية f معرّفة على (II

$$\left(O; \overrightarrow{i}, \overrightarrow{j}
ight)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_f
ight)$

$$f(x) = x[1 - (1 + \frac{1}{x})e^{-x-1}]$$
 غير معدوم: (1 عدد حقيقي عدد حقيقي عدد عقيق) غير عدد عقيق (1

.
$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to -\infty} f(x)$ تُمّ احسب

$$f'(x) = g(x) : x$$
 عدد حقیقی عدد من أجل كل عدد ألله من أجل كل عدد عقیقی

$$-$$
ب. استنتج أنّ الدالة f متزايدة تماما على $-$ ا $+\infty$ ومتناقصة تماما على $-$ ا $-$ ثمّ شكّل جدول تغيّراتها.

اً. احسب
$$\lim_{x\to +\infty} (f(x)-x)$$
 ثمّ فسّر النّتيجة هندسيا. (3

$$y=x$$
 المعادلة $\left(\Delta
ight)$ بالنسبة إلى المستقيم المعادلة بالمعادلة بالمع

ج. بيّن أنّ
$$\left(C_{f}
ight)$$
 يقبل مماسا $\left(T
ight)$ موازيا للمستقيم $\left(C_{f}
ight)$ يُطلب كتابة معادلة له.

$$eta$$
 و $lpha$ أ. بيّن أنّ $\left(C_{f}
ight)$ يقطع حامل محور الفواصل في نقطتين فاصلتاهما $lpha$ و $lpha$

$$-1,9 < \beta < -1,8$$
 و $0,3 < \alpha < 0,4$

$$-2;+\infty$$
 ارسم المستقيمين Δ و Δ و Δ ارسم المنحنى و المخال على المجال على المجال Δ

$$h(x) = -|x| + (|x|-1)e^{|x|-1}$$
 :ب $[-2;2]$ بند المعرّفة على المجال المعرّفة على المجال (5

. تمثيلها البياني في المعلم السابق (
$$C_h$$
)

أ. بيّن أنّ الدّالة
$$h$$
 زوجية.

$$h(x)=f(x):\left[-2;0
ight]$$
 من المجال عدد حقيقي عدد حقيقي بين أنّه من أجل كلّ عدد حقيقي

ج. اشرح کیف یمکن رسم
$$\binom{C_h}{n}$$
 انطلاقا من $\binom{C_f}{n}$ ثمّ ارسمه.

التصحيح المفصل الموضوع الأول - شعبة العلوم التجريبية - بكالوريا دورة جوان 2021

التمرين الأول:

$$P(B) = \frac{C_3^1 \times C_2^1}{C_5^2} = \frac{3}{5}$$
 و $P(A) = \frac{C_3^2 + C_2^2}{C_5^2} = \frac{2}{5}$: ماب: .1
 $P(C) = \frac{C_4^1}{C_5^2} = \frac{2}{5}$: $P(C) = \frac{2}{5}$ نبات أن

2. X قيمه هي عدد الرجال في اللجنة

أ - قيم X هي 0 : اللَّجنة تتكون من امرأتان 1 : اللجنة تتكون من رجل و امرأة

2 : اللجنة تتكون من رجلين و منه قيم X هي $\{2;1;0\}$.

$$P(X=2) = \frac{C_3^2}{C_5^2} = \frac{3}{10}$$
 و $P(X=1) = \frac{6}{10}$ و $P(X=0) = \frac{1}{10}$: X ب تعيين قانون الاحتمال

x_i	0	1	2
$P(X=x_i)$	1	6	3
	10	10	10

 $E(X) = 0 \times \frac{1}{10} + 1 \times \frac{6}{10} + 2 \times \frac{2}{10} = 1$: الأمل ألرياضياتي

التمرين الثاني:

: $f(x)=x+\frac{2}{e^x+1}$ بـ \mathbb{R} المعرفة على f المعرفة على 1.

من أجل كل عدد حقيقي
$$f(x)+f(-x)=x+\frac{2}{e^x+1}-x+\frac{2}{e^{-x}+1}=\frac{2}{e^x+1}+\frac{2e^x}{1+e^x}$$
: x من أجل كل عدد حقيقي x

. إذن
$$f(x)+f(-x)=2$$
 و منه صحيحة $f(x)+f(-x)=\frac{2+2e^x}{1+e^x}$

 $S_n = u_0 + u_1 + ... + u_n$ و حدها الأول $u_0 = 2$ المتتالية $u_0 = 1$ هندسية أساسها $q = \frac{1}{3}$ هندسية أساسها .2

. فاطئة
$$S_n = -\frac{1}{3^n} + 3$$
 أي أن $S_n = u_0 \left[\frac{q^{n+1} - 1}{q - 1} \right] = 2 \frac{\left(\frac{1}{3}\right)^{n+1} - 1}{\frac{1}{3} - 1} = -3 \left[\left(\frac{1}{3}\right)^{n+1} - 1 \right]$

. الدالة العددية g المعرفة على $g(x) = x + \ln(e^x + 1)$ بـ $g(x) = x + \ln(e^x + 1)$. الدالة العددية والمعرفة على $g(x) = x + \ln(e^x + 1)$

الدينا $\lim_{x \to +\infty} [g(x) - 2x] = \lim_{x \to +\infty} [-x + \ln(e^x + 1)]$ و منه

y = 2x معادلة المستقيم المقارب مائل $\lim_{x \to +\infty} [g(x) - 2x] = \lim_{x \to +\infty} [\ln(e^{-x}) + \ln(e^x + 1)] = \lim_{x \to +\infty} \ln(1 + e^{-x}) = 0$

للمنحنى (C) جهة $\infty+$ و منه صحيحة .

$$y'-3y=1$$
 حل للمعادلة التفاضلية $h(x)=e^{3x}+\frac{1}{3}$. \mathbb{R} على h .4

. دينا
$$h'(x)-3h(x)=-1$$
 و منه خاطئة $h'(x)-3h(x)=3.e^{3x}-3.\left(e^{3x}+\frac{1}{3}\right)$ و منه خاطئة $h'(x)=3e^{3x}$

التمرين الثالث:

 $u_n = -4n + 3$ و $u_n = -4n + 3$ و معرفة من أجل كل عدد طبيعي u_n

متالية
$$u_{n+1}=u_n-4$$
 أي أن $u_{n+1}=u_n-4$ و منه $u_{n+1}=-4(n+1)+3=(-4n+3)-4$ و منه $u_n=u_n-4$ أي أن $u_n=u_n-4$ و منه $u_n=u_n-4$ و منه $u_n=u_n-4$ و حدها الأول $u_n=-4\times 0+3=3$

$$S_n = u_0 + u_1 + \dots + u_n$$
 Legi .2

إذن
$$S_n = \frac{n+1}{2}(3-4n+3) = \frac{(n+1)(-4n+6)}{2}$$
 و منه $S_n = \frac{n+1}{2}(u_0 + u_n)$: إذن $S_n = (n+1)(-2n+3)$ و هو المطلوب $S_n = (n+1)(-2n+3)$

ب تعيين قيم
$$n$$
 حتى يكون $2n^2+n+30132$: $S_n=-30132$: $S_n=-30132$ بحسب $-2n^2+n+30135=0$ بحسب المميز $\Delta=241081$ و منه $\Delta=241081$ و منه $\Delta=241081$ و منه $\Delta=241081$ و مقبول قيمة $\Delta=241081$.

 $u_n = \ln(v_n)$ و n عدد طبيعي n عدد طبيعي عدد موجبة تماماً من أجل كل عدد طبيعي n

$$v_n=e^{-4n+3}$$
 بالتعويض نجد $v_n=e^{u_n}$ التعويض نجد $u_n=\ln(v_n)$: n بالتعويض نجد أ.

ب. إثبات أن المتتالية هندسية
$$v_{n+1}=e^{-4(n+1)+3}\colon (v_n)$$
 و منه $v_{n+1}=e^{-4(n+1)+3}\colon (v_n)$ و منه $v_{n+1}=e^{-4(n+1)+3}$ و منه $v_{n+1}=e^{-4(n+1)+3}$ و منه المتتالية هندسية v_n أساسها v_n

$$S_n' = \ln \left[v_0 \cdot \left(1 - \frac{1}{2} \right) \right] + \ln \left[v_1 \cdot \left(1 - \frac{1}{3} \right) \right] + \dots + \ln \left[v_n \cdot \left(1 - \frac{1}{n+2} \right) \right] : n$$

$$\ln \left[v_n \cdot \left(1 - \frac{1}{n+2} \right) \right] = \ln(v_n) + \ln \left(1 - \frac{1}{n+2} \right) = u_n + \ln \left(\frac{n+1}{n+2} \right)$$

$$S_n' = \left[u_0 + u_1 + \dots + u_n \right] + \ln \left(\frac{1}{2} \right) + \ln \left(\frac{2}{3} \right) + \dots + \ln \left(\frac{n+1}{n+2} \right)$$

$$S_n' = -2n^2 + n + 3 + \ln \left(\frac{1}{n+2} \right)$$

$$\vdots$$

$$S_n' = S_n + \ln \left[\left(\frac{1}{2} \right) \cdot \left(\frac{2}{3} \right) \cdot \dots \cdot \left(\frac{n+1}{n+2} \right) \right]$$

$$\vdots$$

$$\vdots$$

التمرين الرابع:

 $g(x)=2x^3-2x^2+3x-2$ الدالة العددية g المعرفة على \mathbb{R}

$$g'(x)=6x^2-4x+3$$
 و منه المشتقة $g'(x)=6x^2-4x+3$ و منه المشتقة $g'(x)=6x^2-4x+3$

2. أ-إثبات أن g(x)=0 تقبل حل وحيد g(0,7)=-0.194 و g(0,7)=-0.194 و دالة g(x)=0 مستمرة ومتزايدة على g(x)=0 حسب مبر هنة القيم المتوسطة المعادلة تقبل حل و حيد α حيث $\alpha < 0.8$ حيث $\alpha < 0.8$ ب-إشارة $\alpha < 0.8$

X	-∞	0	γ		+∞
g(x) إشارة		_ ()	+	

$$f(x)=2x-1+\ln\left(1+\frac{1-x}{x^2}\right)$$
 ب $]-\infty;0[\cup]0;+\infty[$ على المعرفة على الدالة العددية f المعرفة على - II

1. أ-إثبات النهاية بما أن
$$= +\infty$$
 ا $\lim_{x \to 0} \left[\ln \left(1 + \frac{1-x}{x^2} \right) \right] = +\infty$ و منه $\lim_{x \to 0} \left[\ln \left(1 + \frac{1-x}{x^2} \right) \right] = +\infty$ و منه $\lim_{x \to 0} \left[\ln \left(1 + \frac{1-x}{x^2} \right) \right] = +\infty$ المنحنى $\lim_{x \to 0} \left[\ln \left(1 + \frac{1-x}{x^2} \right) \right] = +\infty$ المنحنى $\lim_{x \to 0} \left[\ln \left(1 + \frac{1-x}{x^2} \right) \right]$

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[2x \right] = +\infty \quad \lim_{x \to +\infty} \left[\ln \left(1 + \frac{1-x}{x^2} \right) \right] = 0 \quad \text{ فإن } \quad 0 = 0$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left[2x \right] = -\infty \quad \text{iim} \quad \lim_{x \to -\infty} \left[\ln \left(1 + \frac{1 - x}{x^2} \right) \right] = 0 \quad \text{iii} \quad \lim_{x \to -\infty} \left[\left(\frac{1 - x}{x^2} \right) \right] = 0$$
بما أن

يعني أن
$$f'(x) = 2 + \frac{\left(\frac{x^2 - 2x}{x^4}\right)}{\left(1 + \frac{1 - x}{x^2}\right)}$$
 أو أو إنبات عبارة المشتقة : $\left(1 + \frac{1 - x}{x^2}\right)$ أو أو إنبات عبارة المشتقة : $\left(1 + \frac{1 - x}{x^2}\right)$

$$f'(x) = \frac{2x^4 - 2x^3 + 3x^2 - 2x}{x^4 + x^2 - x^3}$$
 بتوحيد المقامات نجد
$$f'(x) = \frac{2x^4 - 2x^3 + 3x^2 - 2x}{x^4 + x^2 - x^3}$$
 و هو
$$f'(x) = \frac{g(x)}{x \cdot (x^2 - x + 1)}$$
 بالاختزال نجد
$$f'(x) = \frac{(2x^3 - 2x^2 + 3x - 2)x}{x \cdot (x^2 + 1 - x)}$$

x و g(x) و عاصل قسمة g(x) و ب-إشارة المشتقة و f'(x)

x	-∞)	α		8
g(x) إشارة			þ	+	
x إشارة	(+	\	+	
f'(x) إشارة	+		Ó	+	

و منه f متزایدهٔ علی المجالین $[\alpha;+\infty]$ و منه f متزایدهٔ علی المجال $[\alpha;+\infty]$

f تغیرات جدول تغیرات

X		0	α		+∞
f'(x)	+		0	+	
f(x)	+∞	+∞			+∞
			$f(\alpha)$		*

.
$$(C)$$
 مقارب مائل المنحنى $\lim_{|x| \to +\infty} [f(x) - (2x-1)] = \lim_{|x| \to +\infty} \ln (1 + \frac{1-x}{x^2}) = 0$. عما أن (Δ) : $y = 2x - 1$ فإن (Δ) : $y = 2x - 1$

4. إثبات أنه يوجد مماس
$$f'(x) = 2$$
 للمنتقيم (Δ) موازي للمستقيم (Δ) يعني أن المعادلة $g(x) = 2x \cdot (x^2 - x + 1)$ يعني أن $g(x) = 2x \cdot (x^2 - x + 1)$ يعني أن $g(x) = 2x \cdot (x^2 - x + 1)$ يعني أن $g(x) = 2x \cdot (x^2 - x + 1)$ يعني أن $g(x) = 2x \cdot (x^2 - x + 1)$ يعني أن $g(x) = 2x \cdot (x^2 - x + 1)$ و منه $x = 2$

5. لدينا $f(x) = 2x - 1 + \ln\left(1 + \frac{1-x}{x^2}\right)$ و منه $f(x) = 2x - 1 + \ln\left(1 + \frac{1-x}{x^2}\right)$ بما أن الدالة مستمرة و متزايدة $f(x) = 2x - 1 + \ln\left(1 + \frac{1-x}{x^2}\right)$ على $f(x) = 2x - 1 + \ln\left(1 + \frac{1-x}{x^2}\right)$ على f(x) = 0 فحسب مبر هنة القيم المتوسطة يوجد عدد حقيقي وحيد f(x) = 0 فحسب مبر هنة القيم المتوسطة يوجد عدد حقيقي وحيد f(x) = 0 فحسب مبر هنة القيم المتوسطة يوجد عدد حقيقي وحيد f(x) = 0

. فاصلة نقطة تقاطع (C) مع حامل محور الفواصل eta

(C) و المنحنى (Δ) و (Δ) و (Δ) رسم

انتهى الموضوع الأول

التصحيح المفصل الموضوع الثاني - شعبة العلوم التجريبية - بكالوريا دورة جوان 2021

التمرين الأول:

$$P(C) = \frac{2}{9}$$
 و $P(B) = \frac{2}{9}$ و $P(A) = \frac{3}{9} = \frac{1}{3}$:1

$$P(D) = \frac{6}{9} = \frac{2}{3}$$
 : 1 عن 2. حساب احتمال سحب سؤال رقمه يختلف عن 2.

3. المتغير العشوائي X يرفق برقم البطاقة المسحوبة

 $X \in \{1; 2; 3; 4\}$ أ - و أرقام الأسئلة هي 1 أو 2 أو 3 أو 4 و منه

$$P(X=4)=\frac{1}{9}$$
 و $P(X=3)=\frac{2}{9}$ و $P(X=2)=\frac{3}{9}=\frac{1}{3}$ و $P(X=1)=\frac{3}{9}=\frac{1}{3}$ و باغزن الاحتمال هو $P(X=4)=\frac{1}{9}=\frac{1}{9}$

$x_i =$	1	2	3	4
$P(X = x_i)$	3	3	2	1
	9	9	9	9

.
$$E(X) = \frac{3+6+6+4}{9} = \frac{19}{9}$$
 الأمل ألرياضياتي

جـ-استنتاج (2021X +1442)

يانن
$$E(2021X+1442)=2021.\left(\frac{19}{9}\right)+1442$$
 و منه $E(2021X+1442)=E(2021X)+1442=2021E(X)+1442$ و منه $E(2021X+1442)=E(2021X)+1442=2021E(X)+1442$ و منه $E(2021X+1442)\approx 5,71$ أي أن $E(2021X+1442)\approx 5,71$

التمرين الثاني:

- . $P_n = e^{u_0} \times e^{u_1} \times ... \times e^{u_n}$ نضع r = 2 المتتالية الحسابية (u_n) معرفة على (u_n) بحدها الأول $u_0 = 1$ و أساسها $e^{u_0} \times e^{u_1} \times ... \times e^{u_n}$ نضع $P_n = e^{u_0 + u_1 + ... + u_n} = e^{u_0 + u_1 + ... + u_n} = e^{u_0 + u_1 + ... + u_n}$ و منه الإجابة $P_n = e^{u_0 + u_1 + ... + u_n} = e^{u_0 + u_1 + ... + u_n}$ الصحيحة هي ب)
- $f(x) = \ln(x^2 + 2x + 3)$ ب سرفة على f الدالة العددية f المعرفة على f بعني أن $f(-2-x) = \ln(x^2 + 4x + 4 4 2x + 3)$ أي أن $f(-2-x) = \ln((-2-x)^2 + 2(-2-x) + 3)$ يعني أن f(-2-x) = f(x) إذن f(-2-x) = f(x) و منه الإجابة الصحيحة هي أ)
- $\lim_{x\to +\infty} \left[\ln(x+1) \ln(x+2)\right] = \lim_{x\to +\infty} \ln\left(\frac{x+1}{x+2}\right) = \ln(1) = 0 \quad \text{im} \quad \left[\ln(x+1) \ln(x+2) \ln(x+2)\right] \quad .3$ الإجابة الصحيحة هي ج).
- 4. المتتالية الهندسية (w_n) معرفة على \mathbb{N} حدودها موجبة تماما أساسها العدد الحقيقي p الموجب تماماً و الذي يختلف $v_n = \ln(w_n)$ عن $v_n = \ln(w_n)$ عن $v_n = \ln(w_n)$ عن $v_n = \ln(w_n)$ غن $v_{n+1} = \ln(w_n) + \ln(q)$ أي أن $v_{n+1} = \ln(w_n) + \ln(q)$ و منه $v_{n+1} = \ln(w_n) + \ln(q)$ أساسها $v_n = \ln(w_n)$ إذن الإجابة الصحيحة هي ب)

التمرين الثالث:

 $u_{n+1} = \frac{3}{8}(u_n + 5)$: n معرفة على \mathbb{N} بحدها الأول $u_0 = 0$ و من أجل كل عدد طبيعي المتتالية العددية

1. البرهان بالتراجع:

محققة $u_0 < 3$

نفرض أن $u_{n+1} < 3$ نفرض أن $u_n < 3$ نفرض أن

 $u_{n+1} < 3$ إذن $u_n + 5 < 8$ محيحة $u_n + 5 < 8$ بإضافة 5 نجد $u_n + 5 < 8$ بالضرب في $u_n < 3$

 $u_n < 3$: n ومنه من أجل كل عدد طبيعي

ي إثبات أن المتتالية (u_n) متزايدة : لدينا $u_{n+1} - u_n = \frac{3}{8}(u_n + 5) - u_n$ يعني أن (u_n) متزايدة : لدينا (u_n)

 $u_{n+1}-u_n=-rac{5}{8}u_n+rac{15}{8}=-rac{5}{8}(u_n-3)$ موجب $u_{n+1}-u_n=-rac{5}{8}u_n+rac{15}{8}=-rac{5}{8}(u_n-3)$ تماماً إذن المتتالية (u_n) متزايدة .

بما أن المتتالية (u_n) متزايدة و محدود من الأعلى فهي متقاربة .

. $v_n = 3.(3 - u_n)$: \mathbb{N} المعرفة على (v_n) العددية العددية .3

. $v_0 = 3.(3 - u_0) = 9$ — i

إثبات أن المتتالية العددية (v_n) هندسية : $[3-\frac{3}{8}(u_n+5)]$: هندسية العددية ال

 $v_{n+1} = \frac{3}{8} [3.(3-u_n)]$ في أن $v_{n+1} = 3 \times 3. \left[\frac{3-u_n}{8} \right]$ و منه $v_{n+1} = 3 \left[3 - \frac{3}{8} u_n - \frac{15}{8} \right] = 3. \left[\frac{9-3u_n}{8} \right]$

 $v_0=9$ و منه المتتالية العددية $\left(v_n
ight)$ هندسية أساسها $\frac{3}{8}$ و حدها الأول $v_{n+1}=\frac{3}{8}v_n$

 $v_n=9.\left(rac{3}{8}
ight)^n$ و منه $v_n=v_0\left(rac{3}{8}
ight)^n$ ب كتابة عبارة الحد العام

 $u_n = 3 - 3. \left(\frac{3}{8}\right)^n$ و منه $v_n = 3 - \frac{v_n}{3}$ إذن $v_n = 3 - \frac{v_n}{3}$ إذن $v_n = 3. (3 - u_n)$ و

 $\lim u_n = \lim \left[3 - 3 \cdot \left(\frac{3}{8} \right)^n \right] = 3$

عساب $u_n = 3 - 3. \left(\frac{3}{8}\right)^n$ ومنه $u_n = 3 - 3. \left(\frac{3}{8}\right)^n$ لدينا $P_n = (3 - u_0).(3 - u_1)...(3 - u_n)$ د نضع (4. نضع (3. $u_n = 3 - 3. \left(\frac{3}{8}\right)^n$ عساب .4

$$P_n = \sqrt{3^{2(n+1)} \times \left(\frac{3}{8}\right)^{n(n+1)}} \text{ if } P_n = 3^{n+1} \times \left(\frac{3}{8}\right)^{\frac{n(n+1)}{2}} \text{ if } P_n = 3.\left(\frac{3}{8}\right).3.\left(\frac{3}{8}\right)^2...3.\left(\frac{3}{8}\right)^n = 3^{n+1} \times \left(\frac{3}{8}\right)^{1+2+...+n}$$

التمرين الرابع:

$$g(x)=1+x.e^{-x-1}$$
 بالدالة العددية g المعرفة على الدالة العددية - الدالة العددية - الدالة العددية - المعرفة على المعرفة ع

$$g(-1)=1-1.e^{1-1}=0$$
 — 1.

$$g(x)$$
 تحدید إشارة 2.

х	-∞	-1		+∞
g(x) إشارة		 0	+	

 $f(x)=x-(x+1)e^{-x-1}$ بـ \mathbb{R} المعرفة على f المعددية المعرفة على - II

.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} [x] = +\infty$$
 بما أن $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x+1) \cdot e^{-x-1} = \lim_{x \to +\infty} x \cdot e^{-x-1} = 0$ بما أن

$$\lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} x \left[1 - \left(1 + \frac{1}{x}\right) e^{-x-1} \right] = +\infty \quad \text{if} \quad \lim_{x\to -\infty} \left[1 - \left(1 + \frac{1}{x}\right) e^{-x-1} \right] = -\infty \quad \text{if} \quad \text{if} \quad \lim_{x\to -\infty} \left[1 - \left(1 + \frac{1}{x}\right) e^{-x-1} \right] = -\infty$$

و منه
$$f(x)=x-(x+1)e^{-x-1}$$
 الدینا: $f'(x)=g(x)$: x عدد حقیقی عدد حقیقی $f'(x)=1+x..e^{-x-1}=g(x)$ عدد $f'(x)=1-x..e^{-x-1}=g(x)$ أي أن $f'(x)=1-x..e^{-x-1}=x..e^{-x-1}$

ب-بما أن g(x)=g(x) و من جدول إشارة g(x) نستنتج أن f متزايدة على المجال g(x)=g(x) و متناقصة على المجال g(x)=g(x) .

جدول التغيرات

3. أ- حساب

المائل المائل y = x معادلة المستقيم المقارب المائل $\lim_{x \to +\infty} [f(x) - x] = \lim_{x \to +\infty} (x+1)e^{-x-1} = 0$ المنحنى (C_x) .

ب-دراسة وضعية
$$(C_f)$$
 بالنسبة للمستقيم $(\Delta): y=x$ ناسبة للمستقيم ناسبة للمستقيم $(\Delta): y=x$

(x+1)

X	-∞	-1	+∞
إشارة x+1		0	+
الوضعية	(Δ) يقع تحت (C_f)		$\left(\Delta ight)$ يقع فوق $\left(C_{f} ight)$
		$/$ و (Δ) ينقاطعان (C_f)	

4. أ- لدينا f(0,3)=0.05 و f(0,3)=-0.05 و الدالة متزايدة و مستمرة على المجال f(0,3;0,4)=0.05 صب مبر هنة القيم المتوسطة f(0,3)=0.05 يقطع حامل محور الفواصل في نقطة فاصلتها g(0,3)=0.05 على المجال g(0,3)=0.05 و الدالة متناقصة و مستمرة على المجال g(0,3)=0.05 حسب ولدينا g(0,3)=0.05 و الدالة متناقصة و مستمرة على المجال g(0,3)=0.05 حسب مبر هنة القيم المتوسطة g(0,3)=0.05 يقطع حامل محور الفواصل في نقطة فاصلتها g(0,3)=0.05 حيث g(0,3)=0.05 مبر هنة القيم المتوسطة g(0,3)=0.05 على المجال g(0,3)=0.05

 $h(x) = -|x| + (|x|-1)e^{|x|-1}$. [-2; 2] معرفة على $h(x) = -|x| + (|x|-1)e^{|x|-1}$.5

 $h(-x) = -|-x| + (|-x|-1)e^{|-x|-1} = -|x| + (|x|-1)e^{|x|-1} = h(x)$: [-2;2] من x من x عدد حقیقی x من x عدد حقیقی x من x من x دانة زوجیة .

h(x)=f(x) : [-2;0] من x عدد حقیقی عدد عدد من أجل كل عدد حقیقی |x|=-x : [-2;0] من أجل كل عدد حقیقی x من أجل كل عدد حقیقی x

h(x)=f(x) و منه $h(x)=x-(x+1)e^{-x-1}$ و منه $h(x)=-|x|+(|x|-1)e^{|x|-1}=x+(-x-1)e^{-x-1}$ من أجل كل عدد حقيقي x من أجل كل عدد حقيقي x من أجل كا

[-2;0] منطبقان على المجال (C_h) و (C_f) ومنه h(x)=f(x): [-2;0] من x منطبقان على المجال (C_h) و بما h دالة زوجية فإن (C_h) متناظر بالنسبة لحامل محور التراتيب

انتهى الموضوع الثاني