CS412 Office Hours

April 1, 2019

Administration Issues

- If you need an extension due to illness/travel etc. please reach out to the course staff via mcs-support@illinois.edu.
 - You will be taking the alternative exam
- We will release exam statistics and cover exam questions in next week's office hour
 - Tentative schedule is next Wednesday, please look out for notices
- Another extra credit assignment released!
- Extra credit assignment results are available on Compass. (Not Coursera as it does not support > 100% points)
- Programming assignment deadlines for this module cannot be extended

Kernel Functions and Kernel K-means

- Motivation for using kernel k-means: we want to cluster points that are not linearly separable in the input space (by means of Euclidean distance)
- Idea: project the points to another space (possibly high dimensional) by a function $\Phi(x)$. Then apply k-means to the projected data.

$$\mathcal{D}(\{\pi_j\}_{j=1}^k) = \sum_{j=1}^k \sum_{\mathbf{a} \in \pi_j} w(\mathbf{a}) \|\phi(\mathbf{a}) - \mathbf{m}_j\|^2$$

where
$$\mathbf{m}_j = \frac{\sum_{\mathbf{b} \in \pi_j} w(\mathbf{b}) \phi(\mathbf{b})}{\sum_{\mathbf{b} \in \pi_j} w(\mathbf{b})}.$$

This is the centroid of cluster j.

Note that this formula is for weighted k-means, that is every point is associated with a weight w(a). You can think of them as all equal to 1, then you get the basic k-means.

Quick review of k-means: In every iteration, we update the assignment π for all the clusters by assigning each point to the cluster with the closest centroid.

⇒ Need to compute the distance from each point to the centroid.

The Euclidean distance:
$$\| \phi(\mathbf{a}) - \frac{\sum_{\mathbf{b} \in \pi_j} w(\mathbf{b}) \phi(\mathbf{b})}{\sum_{\mathbf{b} \in \pi_j} w(\mathbf{b})} \|^2 = \phi(\mathbf{a}) \cdot \phi(\mathbf{a}) - \frac{2\sum_{\mathbf{b} \in \pi_j} w(\mathbf{b}) \phi(\mathbf{a}) \cdot \phi(\mathbf{b})}{\sum_{\mathbf{b} \in \pi_j} w(\mathbf{b})} + \frac{\sum_{\mathbf{b}, \mathbf{c} \in \pi_j} w(\mathbf{b}) w(\mathbf{c}) \phi(\mathbf{b}) \cdot \phi(\mathbf{c})}{(\sum_{\mathbf{b} \in \pi_j} w(\mathbf{b}))^2}.$$

Observation: All computations in this formula are in the form of a product of two projected points.

Observation: All computations in this formula are in the form of a product of two projected points.

We can define $K(x_1, x_2) = \Phi(x_1) \Phi(x_2)$. (We call this a kernel function).

Instead of computing the projection function and then taking the product, we can directly compute the value of the kernel function.

The advantage of using kernels: sometimes it's easier to compute the kernel function than the projection; kernels can express infinite dimension projections

Quadratic Kernel

$$m{\phi} : \mathbb{R}^d
ightarrow \mathbb{R}^{1+2d+\binom{d}{2}}$$
, where

$$\phi(\mathbf{x}) = \left(1, \sqrt{2}x_1, \dots, \sqrt{2}x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_1x_d, \dots, \sqrt{2}x_{d-1}x_d\right)$$

(Don't mind the $\sqrt{2}$'s...)

► Computing $\phi(x)^{\mathsf{T}}\phi(x')$ in O(d) time:

$$\phi(\boldsymbol{x})^{\mathsf{T}}\phi(\boldsymbol{x}') = (1 + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{x}')^{2}.$$

▶ Much better than d^2 time.

Gaussian Kernel

For any $\sigma > 0$, there is an infinite feature expansion $\phi \colon \mathbb{R}^d \to \mathbb{R}^\infty$ such that

We will see more of
Kernel functions in the
Support Vector
Machine lession.

$$oldsymbol{\phi}(oldsymbol{x})^{\! op}oldsymbol{\phi}(oldsymbol{x}') = \exp\left(-rac{\left\|oldsymbol{x}-oldsymbol{x}'
ight\|_2^2}{2\sigma^2}
ight),$$

which can be computed in O(d) time.

(This is called the *Gaussian kernel* with bandwidth σ .)

Clustering Pairwise Measures

- Four possibilities based on the agreement between cluster label and partition label
 - *TP*: true positive—Two points \mathbf{x}_i and \mathbf{x}_i belong to the same partition T, and they also in the same cluster C

Ground Truth T Cluster C,

$$TP = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i = y_i \text{ and } \hat{y}_i = \hat{y}_i\}|$$

where y_i : the true partition label, and \hat{y}_i : the cluster label for point \mathbf{x}_i

- FN: false negative: $FN = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i = y_i \text{ and } \hat{y}_i \neq \hat{y}_i\}|$
- FP: false positive $FP = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i \neq y_i \text{ and } \hat{y}_i = \hat{y}_i\}|$
- TN: true negative $TN = |\{(\mathbf{x}_i, \mathbf{x}_i) : y_i \neq y_i \text{ and } \hat{y}_i \neq \hat{y}_i\}|$
- Calculate the four measures:

Calculate the four measures:
$$N = \binom{n}{2}$$
 Total # of pairs of points $TP = \sum_{i=1}^{r} \sum_{j=1}^{k} \binom{n_{ij}}{2} = \frac{1}{2} ((\sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij}^{2}) - n) \quad FN = \sum_{j=1}^{k} \binom{m_{j}}{2} - TP$ $FP = \sum_{i=1}^{r} \binom{n_{i}}{2} - TP \quad TN = N - (TP + FN + FP) = \frac{1}{2} (n^{2} - \sum_{i=1}^{r} n_{i}^{2} - \sum_{i=1}^{k} m_{j}^{2} + \sum_{i=1}^{r} \sum_{j=1}^{k} n_{ij}^{2})$

Pairwise Measures: Jaccard Coefficient and Rand Statistic

- Jaccard coefficient: Fraction of true positive point pairs, but after ignoring the true negatives (thus asymmetric)
 - □ Jaccard = TP/(TP + FN + FP) [i.e., denominator ignores TN]
 - Perfect clustering: Jaccard = 1
- Rand Statistic:
 - \square Rand = (TP + TN)/N
 - Symmetric; perfect clustering: Rand = 1
- Fowlkes-Mallow Measure:
 - Geometric mean of precision and recall

$$FM = \sqrt{prec \times recall} = \frac{TP}{\sqrt{(TP + FN)(TP + FP)}}$$

 Using the above formulas, one can calculate all the measures for the green table (leave as an exercise)

C\T	T ₁	T ₂	T ₃	Sum
C_{1}	0	20	30	50
C_2	0	20	5	25
C_3	25	0	0	25
m_{j}	25	40	35	100

From Entropy to Info Gain: A Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random number
 - \Box Calculation: For a discrete random variable Y taking m distinct values $\{y_1, y_2, ..., y_m\}$

$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i) \text{ where } p_i = P(Y = y_i)$$

- ☐ Higher entropy → higher uncertainty
- Lower entropy → lower uncertainty
- Conditional entropy

$$H(Y|X) = \sum p(x)H(Y|X = x) H(X|Y) = -\sum_{i,j} p(x_i, y_j) \log \frac{p(x_i, y_j)}{p(y_j)}$$

Information Gain: An Attribute Selection Measure

- Select the attribute with the highest information gain (used in typical decision tree induction algorithm: ID3)
 Suppose we have A, B, ... N attributes and one response variable Y which are all random variables
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$
 At the root of the decision tree, expected info is H(Y).

Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$
 After we know the value of A, expected info is $H(Y|A)$.

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_{A}(D)$$

Example: Attribute Selection with Information Gain

- Class P: buys_computer = "yes"
- Class N: buys computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit \ rating) = 0.048$$

Course Structure

- Lesson 0: Classification in Data Mining: An Introduction
- Lesson 1: Decision Tree Induction
- Lesson 2: Bayes Classifier and Bayesian Networks
- Lesson 3: Model Evaluation, Selection and Improvements
- Lesson 4: Linear Classifier and Support Vector Machines
- Lesson 5: Neural Networks and Deep Learning
- Lesson 6: Pattern-Based Classification and K-Nearest Neighbors Algorithm