Nom et prénom:

Note:

Test 1, Signaux & Systèmes électroniques - T2-a/d

Conseils: a) inclure les calculs intermédiaires

- b) mettre des explications/développements
- c) mettre les réponses avec les unités
- 1) (1p) Avec le courant $i_{\mathcal{C}}(t)$ ci-contre passant dans le condensateur \mathcal{C} . Quel est la tension aux bornes du condensateur après 3ms ?

Remarque: le condensateur est considéré comme déchargé au démarrage.

avec la formule du condensateur : $u(t)=\frac{1}{c}\int i_C dt$ donc $u_C(3ms)=\frac{1}{16\mu F}\int_0^{2ms}100mA\,dt=\frac{1}{16\mu F}100mA\cdot 2ms=12.5V$

2) (2p) Avec le schéma ci-dessous en régime continu (toutes les tensions et courants constants) :

- a. Calculez le courant I_{R3} et la tension U_{R3}
- b. Calculez l'énergie accumulée dans le condensateur C

a) Avec la source de courant:

$$\begin{split} I_{R3I} &= I \frac{R_1}{R_1 + R_2 + R_3} = 100 mA \frac{20\Omega}{20\Omega + 10\Omega + 20\Omega} = 40 mA \\ U_{R3I} &= R_3 \cdot I_{R3I} = 20\Omega \cdot 40 mA = 0.8 V \end{split}$$

Avec la source de tension:

$$\begin{split} I_{R3U} &= -\frac{U}{R_1 + R_2 + R_3} = -\frac{10V}{20\Omega + 10\Omega + 20\Omega} = -200 mA \\ U_{R3U} &= R_3 \cdot I_{R3I} = 20\Omega \cdot -200 mA = -4V \end{split}$$

Donc au total:

$$\begin{split} I_{R3} &= I_{R3I} + I_{R3U} = 40mA - 200mA = -160mA \\ U_{R3} &= U_{R3I} + U_{R3U} = 0.8V - 4V = -3.2V \end{split}$$

b)
$$E_c = \frac{1}{2}C{U_C}^2$$
 et $U_C = U_{R3}$ donc $E_c = \frac{1}{2}100\mu F \cdot (-3.2V)^2 = 512\mu J$

17 novembre 2017 2

- 3) **(2p)** Avec le schéma ci-contre et en continu (toutes les tensions et courants constants):
 - a. Calculez les rapports $\frac{I_2}{I}$ et $\frac{U_2}{U}$ b. Calculez les schéma
 - b. Calculez les schéma équivalent de Thévenin et de Norton aux bornes a et b.

a)
$$\frac{I_2}{I} = \frac{R_3}{R_3 + R_4} = \frac{10\Omega}{10\Omega + 15\Omega} = \frac{2}{5} = 0.4$$

$$\frac{U_2}{U} = \frac{R_3//R_4}{(R_1//R_2) + (R_3//R_4)} = \frac{\frac{R_3R_4}{R_3 + R_4}}{\frac{R_1R_2}{R_1 + R_2} + \frac{R_3R_4}{R_3 + R_4}} = \frac{\frac{10\Omega \cdot 15\Omega}{10\Omega + 15\Omega}}{\frac{20\Omega \cdot 30\Omega}{20\Omega + 30\Omega} + \frac{10\Omega \cdot 15\Omega}{10\Omega + 15\Omega}} = \frac{6\Omega}{12\Omega + 6\Omega} = \frac{1}{3} = 0.333$$

b) Le schéma équivalent de Thévenin:

$$R_{Th} = R_N = R_1 / / R_2 / / R_3 / / R_4 = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}\right)^{-1} = \left(\frac{1}{20\Omega} + \frac{1}{30\Omega} + \frac{1}{10\Omega} + \frac{1}{15\Omega}\right)^{-1} = 4\Omega$$

$$U_{Th} = U_2 = U \cdot \frac{U_2}{U} = 15V \cdot \frac{1}{3} = 5V$$

Le schéma équivalent de Norton:

$$R_N = R_{Th} = 4\Omega$$

 $I_N = \frac{U}{R_1//R_2} = \frac{15V}{12\Omega} = 1.25A$

4) (1p) Calculez la résistance équivalente R_{ab} vue depuis les bornes a et b du schéma ci-dessous:

Pour faire la résistance équivalente, il faut utiliser kennelly pour avoir le schéma suivant:

$$\begin{split} R_a &= R_2 + R_4 + \frac{R_2 + R_4}{R_5} = 20\Omega + 40\Omega + \frac{20\Omega \cdot 40\Omega}{30\Omega} = 86.7\Omega \\ R_b &= R_2 + R_5 + \frac{R_2 + R_5}{R_4} = 20\Omega + 30\Omega + \frac{20\Omega \cdot 30\Omega}{40\Omega} = 65\Omega \\ R_c &= R_4 + R_5 + \frac{R_4 + R_5}{R_2} = 40\Omega + 30\Omega + \frac{40\Omega \cdot 30\Omega}{20\Omega} = 130\Omega \end{split}$$

Puis:

$$\begin{split} R_{ab} &= R_b / / \left[\left(R_a / / (R_1 + R_3) \right) + \left(R_c / / (R_6 + R_7) \right) \right] = \left(\frac{1}{R_b} + \frac{1}{\frac{R_a (R_1 + R_3)}{R_a + (R_1 + R_3)} + \frac{R_c (R_6 + R_7)}{R_c + (R_6 + R_7)}} \right)^{-1} \\ R_{ab} &= \left(\frac{1}{65\Omega} + \frac{1}{22.3\Omega + 36.1\Omega} \right)^{-1} = 30.8\Omega \end{split}$$

- 5) **(1p)** Soit le phaseur complexe en tension $\underline{U} = 1 + j2$ avec une fréquence f = 100 Hz.
 - a. Calculez sa valeur de crête \hat{U} et déterminez son déphasage α en radian.
 - b. Ecrivez la partie réelle de cette tension u(t) sous sa forme trigonométrique.
 - c. Calculez la valeur efficace de U.

a)
$$\hat{U} = |\underline{U}| = \sqrt{1^2 + 2^2} = 2.24 [V]$$
 $\alpha = arctg(\frac{2}{1}) = 1.11 [rad]$ (soit 63.4°)

b)
$$u(t) = \hat{U}cos(\omega t + \alpha) = 2.24 \cdot cos(2\pi 100t + 1.11)$$

c)
$$U_{eff} = \frac{\hat{U}}{\sqrt{2}} = 1.6 [V]$$

- 6) **(1p)** Soit le schéma électrique ci-dessous en régime sinusoïdal avec $\underline{U}_1 = 3e^{j2\pi 50t}[V]$:
 - a. Calculez Z_{in}
 - b. Calculer la tension U_2 (phaseur U_2)

a)
$$\underline{Z}in = X_L + X_c //R = j\omega 100mH + \frac{\frac{1}{j\omega 1\mu F} 20\Omega}{\frac{1}{j\omega 1\mu F} + 20\Omega}$$
 où $\omega = 2\pi 50Hz$
$$\underline{Z}in = j2\pi 50 \cdot 100mH + \frac{\frac{1}{j2\pi 50 \cdot 1\mu F} 20\Omega}{\frac{1}{j2\pi 50 \cdot 1\mu F} + 20\Omega} = j2\pi 50 \cdot 100mH + 20 - j0.126 = 20 + j31.3$$
 ou $37.1e^{j1}$

b)
$$\underline{U}_2 = \underline{U}_1 \frac{X_c / / R}{X_L + X_c / / R} = 3 \cdot \frac{20 - j0.126}{\underline{Z}in} = 0.86 - j1.37$$
 ou $1.62e^{-j1.01} [V]$

- 7) (1p) Soit le schéma ci-dessous :
 - a. Calculez le courant \underline{I}_{eff} (phaseur \underline{I}_{eff})
 - b. Déterminez l'angle de déphasage φ en radian. Qu'en concluez-vous?

a)
$$\underline{I}_{eff} = \frac{\underline{U}_{eff}}{R + \frac{1}{j\omega C} + j\omega L} = \frac{\underline{U}_{eff}}{100\Omega + \frac{1}{j2\pi 50 \cdot 100 \mu F} + j2\pi 50 \cdot 100 mH} = 2.3 + j0.0095$$
 soit en polaire $\underline{I}_{eff} = 2.3A \cdot e^{j0.004}$

b)
$$\varphi = \alpha - \beta = 0 - arctg\left(\frac{0.0095}{2.3}\right) = -0.004 \ [rad]$$

Le courant est presque purement réel car G_c est presque égale à G_L (donc X_c est presque égale à X_L) et s'annulent. Donc l'impédance totale est presque égale uniquement la résistance R .

17 novembre 2017 5

- 8) (1p) Soit une charge RC ci-dessous que l'on veut brancher sur le réseau électrique :
 - a. Calculez la puissance active P_L , puissance réactive Q_L et la puissance apparente S_L que cette charge aura si on la branche sur le réseau électrique. Donnez les unités de chacune de ces puissances.
 - b. Déterminez le $cos(\varphi)$ de la charge. Est-ce que c'est un $cos(\varphi)$ adapté pour le réseau électrique? Justifiez.

a)
$$\underline{I}_L = \frac{230}{R_L + \frac{1}{j\omega C_L}} = \frac{230}{1K\Omega + \frac{1}{j2\pi 50 \cdot 1\mu F}} = 69maA \cdot e^{j1.27}$$

d'où
$$\varphi = \alpha - \beta = 0 - 1.27 = -1.27$$

donc:

$$P_L = 230 \cdot 0.069 \cdot cos(-1.27) = 4.7 \ [W]$$

 $Q_L = 230 \cdot 0.069 \cdot sin(-1.27) = -15.2 \ [VAR]$
 $S_L = 230 \cdot 0.069 = 15.87 \ [VA]$

b) Le $cos(\varphi)$ est $cos(-1.27) \cong 0.3$.