<u>Theorem</u>: For any k, $0 \le k \le r$, define

$$A_k = \sum_{j=1}^k \sigma_j u_j v_j^T$$

Then $||A - A_k||_2 = \inf_{rank(B) \le k} ||A - B||_2 = \sigma_{k+1}$

Pf: First, note that

$$A - A_k = \sum_{j=k+1}^r \sigma_j u_j v_j^T = \begin{bmatrix} u_1 & \cdots & u_m \end{bmatrix} \begin{bmatrix} 0 & & & & \\ & \sigma_{k+1} & & & \\ & & \ddots & & \\ & & & \sigma_r & \\ & & & 0 \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_n^T \end{bmatrix}$$

It is the SVD of $A - A_k$

$$||A-A_k||_2 = \sigma_{k+1}$$

Suppose $\exists B \text{ rank}(B) \leq k \text{ such that}$

$$||A - B||_2 < ||A - A_k||_2 = \sigma_{k+1}$$

Then \exists (n-k)-dim subspace W such that

$$w \in W \Rightarrow Bw = 0$$

Note A w = (A-B) w. Then

$$||Aw||_2 = ||(A-B)w||_2 \le ||A-B||_2 ||w||_2 < \sigma_{k+1} ||w||_2.$$

But \exists (k+1)-dim subspace V_{k+1} such that $||Av|| \ge \sigma_{k+1} ||v||$.

e.g.
$$V_{k+1} = \text{span} \{ v_1, v_2, \dots, v_{k+1} \}.$$

(Note:
$$A v_j = \sigma_j u_j$$
, $||A v_j|| = \sigma_j \ge \sigma_{k+1} ||v_j||$.)

But $dim(W) + dim(V_{k+1}) > n \rightarrow contradiction$.

Notes

$$\mathbf{1)} \quad A_{k} = \begin{bmatrix} u_{1} & \cdots & u_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & & \\ & \ddots & & \\ & & \sigma_{k} & \\ & & 0 \end{bmatrix} \begin{bmatrix} v_{1}^{T} \\ \vdots \\ v_{n}^{T} \end{bmatrix} = \begin{bmatrix} u_{1} & \cdots & u_{k} \end{bmatrix} \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{k} \end{bmatrix} \begin{bmatrix} v_{1}^{T} \\ \vdots \\ v_{k}^{T} \end{bmatrix}$$

$$= U_{k} \Sigma_{k} V_{k}^{T}$$

2) A_k is the best rank-k approximation of A. The error of approximation is σ_{k+1} (in L_2 -norm).

Application: Image compression

- An m×n image can be represented by m×n matrix A where A_{ij} = pixel value at (i,j).
- Compress the image by storing less than mn entries.
- Let $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$, the best rank-k approximation of A.

Keep the first k singular values and use A_k to approx. A; i.e. A_k = compressed image.

- E.g. m = 320, n = 200. To store A_k , only need store u_1, \ldots, u_k and $\sigma_1 v_1, \ldots, \sigma_k v_k \rightarrow (m+n)k$ words.
- To store A, one needs mn words.
- Compression ratio: $(m+n)k / mn \approx k/123$ (if m=320, n=200)

k	Rel error σ_{k+1}/σ_1	Compression ratio
3	0.155	2.4%
10	0.077	8.1%
20	0.040	16.3%

Two-phase process

Idea: First reduce the matrix to bidiagonal form. Then it is diagonalized.

Golub-Kahn Bidiagonalization

Apply Householder reflectors on the left and the right.

$$\begin{bmatrix}
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & \times & \times & \times \\
0 & \times & \times & \times
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
\times & \times & 0 & 0 \\
0 & \times & \times & \times \\
0 & \times & \times & \times \\
0 & \times & \times & \times
\end{bmatrix}
\longrightarrow
\begin{bmatrix}
\times & \times & 0 & 0 \\
0 & \times & \times & \times \\
0 & \times & \times & \times
\end{bmatrix}$$

$$A \qquad U_1^T A V_1$$

$$\begin{bmatrix}
\times & \times & 0 & 0 \\
0 & \times & \times & \times \\
0 & 0 & \times & \times
\end{bmatrix}
\longrightarrow
\vdots$$

$$U_1^T A V_1$$

$$U_1^T A V_1$$

$$U_2^T U_1^T A V_1 V_2$$

- n reflectors on the left, n-2 on the right.
- flops(bidiag) = $2 \times flops(QR) \sim 4mn^2 4/3 n^3$.

Convergence of Iterative Methods

Richardson

The iteration matrix is given by:

$$G^{Rich} \equiv I - M_{Rich}^{-1} A = I - (\theta I) A = I - \theta A$$

Suppose (λ, v) is an eigenpair of A. Then

$$G^{Rich}v = (I - \theta A)v = v - \theta \lambda v = (1 - \theta \lambda)v$$

Hence $\mu \equiv 1 - \theta \lambda$ is an eigenvalue of G^{Rich} .

<u>Lemma</u>: Let λ_{min} and λ_{max} be the smallest and largest eigenvalue of A. Then

$$\rho(G^{Rich}) = \max\{|1 - \theta \lambda_{\min}|, |1 - \theta \lambda_{\max}|\}$$

Pf:
$$\lambda_{\text{min}} \leq \lambda \leq \lambda_{\text{max}}$$

$$1 - \theta \lambda_{\text{max}} \leq 1 - \theta \lambda \leq 1 - \theta \lambda_{\text{min}}$$

$$|\mu| \leq \max \left\{ |1 - \theta \lambda_{\text{min}}|, |1 - \theta \lambda_{\text{max}}| \right\}$$

Note

If $\lambda_{min} < 0$ and $\lambda_{max} > 0$, then

either
$$1 - \theta \lambda_{min} > 1$$
 $(\theta > 0)$ or $1 - \theta \lambda_{max} > 1$ $(\theta < 0)$

- $\Rightarrow \rho(G^{Rich}) > 1$
- ⇒ Richardson method diverges.

<u>Theorem</u>: Assume all eigenvalues of A are positive. Then Richardson converges if and only if

$$0 < \theta < 2/\lambda_{max}$$

Pf: If
$$0 < \theta < 2 / \lambda_{max}$$
, then $0 < \theta \lambda_{min} \le \theta \lambda_{max} < 2$ $-2 < -\theta \lambda_{max} \le -\theta \lambda_{min} < 0$ $-1 < 1 -\theta \lambda_{max} \le 1 -\theta \lambda_{min} < 1$ $\Rightarrow |1 -\theta \lambda_{max}| < 1, |1 -\theta \lambda_{min}| < 1$ $\Rightarrow \rho(G^{Rich}) < 1$

Now, assume $\rho(G^{Rich}) < 1$. Then

$$-1 < 1 - \theta \lambda_{\text{max}} \le \mu \le 1 - \theta \lambda_{\text{min}} < 1$$

Right inequality $\Rightarrow \theta > 0$.

Left inequality \Rightarrow 1 - θ λ_{max} > -1 \Rightarrow θ < 2 / λ_{max} .

Optimal θ

$$\theta_{\text{opt}}$$
: $-(1 - \theta \lambda_{\text{max}}) = 1 - \theta \lambda_{\text{min}}$

$$\theta_{\text{opt}} = 2/(\lambda_{\text{min}} + \lambda_{\text{max}})$$

$$\rho_{\text{opt}} = 1 - \theta_{\text{opt}} \lambda_{\text{min}}$$

$$= (\lambda_{\text{min}} - \lambda_{\text{max}}) / (\lambda_{\text{min}} + \lambda_{\text{max}})$$

$$= (\lambda_{\text{max}} / \lambda_{\text{min}} - 1) / (\lambda_{\text{max}} / \lambda_{\text{min}} + 1)$$

$$= (\kappa(A) - 1) / (\kappa(A) + 1)$$

Jacobi convergence

Theorem: If A and 2D - A are SPD, then Jacobi converges.

Pf: Let μ be an eigenvalue of $I - M_J^{-1} A = I - D^{-1} A$.

$$(I - D^{-1} A) v = \mu v \qquad \text{for some } v \neq 0$$

$$D^{-1} (D - A) v = \mu v$$

$$(D - A) v = \mu D v$$

$$v^{T} (D - A) v = \mu v^{T} D v$$

$$v^{T} D v - v^{T} A v = \mu v^{T} D v$$

$$0 < v^{T} A v = (1 - \mu) v^{T} D v \implies \mu < 1$$

Since 2D - A is SPD, v^{T} (2D - A) v > 0

Hence $-1 < \mu < 1$

$$\Rightarrow$$
 $\rho(I - D^{-1} A) < 1$

Gauss-Seidel & SOR

<u>Theorem</u>: If A is SPD, then GS & SOR (0< ω <2) converge.

Def: A is an M-matrix if

- (i) $a_{ii} > 0$
- (ii) $a_{ij} < 0$
- (iii) A^{-1} exists and $(A^{-1})_{ij} \ge 0$ \forall i, j.

Theorem: If A is an M-matrix, Jacobi and GS converge. Moreover,

$$\rho(I - M_{GS}^{-1}A) \le \rho(I - M_J^{-1}A) < 1$$

i.e. the convergence rate of GS is better than that of Jacobi.