FSAIN

Otros Modelos de Machine Learning II – bagging y boosting

João F. Serrajordia R. de Mello

Va a necesitar de...

Preparativos

- Abrir R
- Importar las bibliotecas
- Algo para hacer sus anotaciones

Agenda

Árboles de regresión

Son muy semejantes a los árboles de clasificación

Lo que cambia es el criterio de impureza

$$SQE = \sum_{i=1}^{N} (y_i - \widehat{y}_i)^2$$

Árboles de regresión

Problemas de predictivos y de clasificación

¿Cuál es la eficacia de una vacuna?

¿El cliente pagará el préstamo?

¿Cuánto petróleo tiene el pozo?

¿El cliente va a comprar mi producto?

¿Qué está haciendo la persona?

¿Cuán ecológico es ese vehículo?

CRISP-DM

Fuente: https://www.the-modeling-agency.com/crisp-dm.pdf

Clasificación de los algoritmos

Supervisados

- Regresión
- GLM
- GLMM
- Support vector machines
- Naive Bayes
- K-nearest neighbors
- Redes Neurales
- Decision Trees

No Supervisados

- K-Means
- Métodos jerárquicos
- Mezcla Gaussiana
- DBScan
- Mini-Batch-K-Means

¡Estamos aquí!

Clasificación de los algoritmos

Respuesta continua

- Regresión
- GLM
- GLMM
- Support vector machines
- K-nearest neighbors
- Redes Neurales
- Regression Trees

Respuesta discreta

- Regresión logística
- Clasification trees
- Redes Neurales
- GLM
- GLMM

¡Estamos aquí!

Clasificación de los algoritmos

Métodos Machinelárnicos

- Árboles de decisión
- Bagging
- Boosting
- K-NN
- Redes Neurales
- Support vector machines

Métodos Machinelárnicoestadísticos

- Regresión
- GLM
- GLMM
- ANOVA

¡Estamos aquí!

Ensemble

Un ensemble es cualquier mezcla de modelos ya existentes. Los principales tipos son:

Bagging

Boosting

Stacking

Ensemble - aggregation

Un aggregation consiste en una combinación (en general una media simple) de las previsiones de dos o más modelos previamente construidos.

Objetivo: aun siendo cada modelo un "weak learner", la combinación puede ser un "Strong learner" o un predictivo mejor que cada uno de los integrantes.

Ensemble – Hard Voting

Ensemble - aggregation

Un método de agregación simple pero poderoso consiste en obtener la media de varias previsiones.

Ensemble - aggregation

Queremos predictivos diferentes, pero que "apunten" para la misma variable respuesta. Una idea sería generar predictivos con alguna 'perturbación' aleatoria.

Bootstrapping para evaluar la media

¿Y si en vez de alterar el algoritmo, alteramos la base utilizando el mismo algoritmo?

Bootstrapping para evaluar la media

Tenemos un conjunto de datos de tamaño N

Queremos estimar el error estándar de un parámetro, por ejemplo, la media.

- 1) Retirar una muestra aleatoria de tamaño N de la base
 - 2) Calcular el parámetro, almacenar la información

Bootstrapping para evaluar la media

3) Repetimos eso M veces (digamos... M=10.000 veces)
4) Podemos calcular la media y el error estándar del estimador

Bootstrap – aggregation (bagging)

Bagging es un aggregation del mismo algoritmo en muestras bootstrap

Bootstrap – aggregation (bagging)

El bagging con árboles es el famoso Random Forest

RANDOM, FORREST, RANDOM!

Bagging y Pasting

Bagging

- Retirar una muestra aleatoria con reposición de tamaño N
- 2. Construir el modelo en esa muestra
- 3. Repetir 1 y 2 M veces

Pasting

- Retirar una muestra aleatoria SIN reposición de tamaño Q<N
- 2. Construir el modelo en esa muestra
- 3. Repetir 1 y 2 M veces

El *bagging* más famoso es *Random Forest*, que es realizado con árboles, de ahí el nombre.

Características

Bagging

- 1. Rueda en paralelo
- 2. También clasifica en paralelo
- 3. Normalmente tiene buen desempeño sin grandes ajustes

Si fuera un coche, diría que es un GMC Hummer H3.

Preguntas que tenía cuando aprendí

Random Forest

- 1. ¿Default es hacer 500 árboles?
- 2. ¿Tarda mucho para entrenar?
- 3. ¿Y para aplicar la regla? ¿Tengo que aplicar todo eso de regla? ¿Tarda?
- 4. ¿El algoritmo guarda todo eso de árbol?

Si fuera un coche, diría que es un GMC Hummer H3.

Los métodos de *boosting* son modelos secuenciales que intentan mejorar el error del modelo anterior

Gradient Boosting

• El *Gradiente Boosting* es una variación basada en árboles con algunos hiperparámetros que controlan el algoritmo

Learning rate

Learning Rate disminuye el impacto de cada iteración suele demandar más iteraciones, pero ayuda a alcanzar mejores resultados

Nombre corto para Extreme Gradient Boosting

Es una implementación del Gradient Boosting

Posee interfaces para R y Python

Se hizo famosa por ser utilizada por vencedores de competiciones

Creado por Tianqi Chen

XGBoosting

¿Qué hacer con mis nuevos superpoderes?

- Sugerencias de práctica además de la clase:
 - Intentar clasificar actividad humana por acelerómetro y giroscopio de celular

https://archive.ics.uci.edu/ml/datas ets/human+activity+recognition+usi ng+smartphones

Identificar enfermedad cardíaca https://archive.ics.uci.edu/ml/datas

Conclusiones

- Árboles son sólo el comienzo
- Hay INFINITAS formas de combinar modelos, esas son las más famosas
- Esos modelos son difíciles de interpretar
- El *cross-validation* 'entra en el lugar' del *stepwise*
- ¡PRACTIQUE!

