Reações Orgânicas

Fábio Lima

Fábio Lima 1 (45)

Sumário

- 1 Reações Orgânicas
- 2 Alcanos
- 3 Alcenos
- 4 Alcinos
- 5 Aromáticos

Fábio Lima 2 (45)

Reações Orgânicas

Reações Orgânicas

Reações orgânicas são formas de transformação de moléculas orgânicas em outras moléculas orgânicas. São tipos de reações orgânicas:

- Reações de adição
- Substituição
- Oxidação
- Redução
- Eliminação.

Fábio Lima 4 (45

Alcanos

- Carbono e hidrogênio têm eletronegatividades bem semelhantes, logo, a ligação C - H é basicamente apolar.
- Oconsequentemente, compostos contendo ligações C C e C H são estáveis e apresentam uma tendência muito baixa para reagir com outras substâncias.
- A adição de grupos funcionais (por exemplo, C-O-H) introduz reatividade às moléculas orgânicas.
- Suas reações envolvem a formação de radicais, formados em altas temperaturas ou na presença de radiação UV.

Fábio Lima 6 (45

Formação de Radicais

Radicais: espécies químicas que apresentam um elétron desemparelhado.

$$R_3C-X \longrightarrow R_3C \cdot + \cdot X$$
 {1}

Fábio Lima 7 (45)

Halogenação

- Sob condições adequadas sofrem reação de substituição com halogênios.
- A substituição de um H por um halogênio é denominada halogenação.

Fábio Lima 8 (45)

Mecanismo de cloração do Metano $\Delta H^{*} = -242.7 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$ (1) Propagação $\begin{cases} \mathsf{C}\ell \cdot + \mathsf{CH_4} \longrightarrow \cdot \mathsf{CH_3} + \mathsf{HC}\ell & \Delta H^+ = -3.4 \, \mathsf{kJ} \, \mathsf{mol}^{-1} \\ \cdot \mathsf{CH_2} + \mathsf{C}\ell_2 \longrightarrow \mathsf{CH_3}\mathsf{C}\ell + \cdot \mathsf{C}\ell & \Delta H^+ = -106.7 \, \mathsf{kJ} \, \mathsf{mol}^{-1} \end{cases}$ (2)

Fábio Lima 9 (45)

- Todos os outros alcanos reagem com os halogênios da mesma maneira que o metano.
- O Quanto maior o número de carbonos, maior será o número de possíveis compostos mono e polialogenados formados.

Fábio Lima 10 (45

Oxidação

Os alcanos e outros hidrocarbonetos queimam na presença O₂, sendo tal reação de oxidação denominada combustão.

Fábio Lima 11 (45)

Reação de pirólise

 Pirólise é um tipo de reação de decomposição ou análise, em que uma substância é decomposta em outras, pela ação do calor do fogo.

bib Lima 12 J(4

Reação de isomerização

Fábil-Lima 19 (45,

Reação de adição

 \odot Os alcenos participam de reações de adição, nas quais os fragmentos da quebra de pequenas moléculas, tais como, H_2 , $C\ell_2$, $HC\ell$ e H_2O , se adicionam aos carbonos que estabeleciam ligação dupla e que após a reação, passam a estabelecer ligação simples.

Fábio Lima 15 (45)

 O termo carbocátion foi sugerido por George A. Olah para designar qualquer espécie catiônica do carbono. Os carbocátions têm deficiência de elétrons, com apenas 6 elétrons na camada de valência e, por causa disto, são ácidos de Lewis.

Adição de hidrogênio ou higrodenação catalítica

- Consiste na reação do alceno com gás H₂, que é catalisada por níquel (Ni), platina (Pt) ou paládio (Pd).
- Atuação do catalisador na hidrogenação: adsorve tanto as moléculas de H₂ como do alceno, provocando o enfraquecimento das ligações, tornando a reação mais fácil.

Fábio Lima 17 (45)

- Uma aplicação industrial da hidrogenação catalítica é na fabricação de margarinas a partir de óleos vegetais.
- Oleos Vegetais: misturas de ésteres do glicerol com ácidos graxos. Tais ésteres são denominados triacilglicerídeos.

Fábio Lima

 Com a hidrogenação parcial das ligações duplas dos triacilglicerídeos, o óleo vegetal é convertido em um material de consistência pastosa denominado margarina.

Fábio Lima 19 (45)

Adição de halogênios

Fábio Lima 20 (45)

Adição de haletos de hidrogênio (HX)

Fábio Lima 21 (45)

Adição de água

Fábio Lima 22 (45)

Regra de Markovnikov

○ Ao realizar a adição de HX (X = halogênio) ou H₂O a um alceno, se a molécula da substância orgânica não for simétrica em relação à dupla C == C, poderemos pensar na possibilidade de dois produtos diferentes.

Fábio Lima 23 (45)

- Em 1869, o químico Vladimir Markovnikov enunciou uma regra empírica, isto é, baseada em fatos experimentais, conhecida como Regra de Markovnikov
- REGRA: na adição de HX ou H₂O a uma ligação dupla C=C, o átomo de H se adiciona preferencialmente ao carbono da dupla que já contém mais hidrogênio, ou seja, o H se adiciona ao carbono mais hidrogenado.

Fábio Lima 24 (45)

Exemplos

Fábio Lima 25 (45)

Reações de Adição

 A ligação tripla dos alcinos comporta-se como a dupla dos alcenos, porém pode sofrer uma ou duas adições, dependendo da quantidade do outro reagente.

Fábio Lima 27 (45)

Adição de H₂ ou Hidrogenação Catalítica

 \bigcirc A adição de H_2 , se for realizada na proporção em mols de 1:1 (um mol de alcino para um mol de H_2), produzirá um alceno. Se a proporção for de 1:2, o alceno formado também sofrerá adição, produzindo um alcano.

Adição de hidrogênio

○ 1 mol de alcino e 1 mol de H₂ produz um mol de alceno.

$$HC = CH + H_2 \xrightarrow{Ni} H_2C = CH_2$$

o que pode reagir com 1 mol de alceno produzindo um mol de alcano.

$$H_2C \longrightarrow CH_2 + H_2 \xrightarrow{Ni} H_3C \longrightarrow CH_3$$

Fábio Lima 28 (45

Adição de Halogênios

 \bigcirc A adição de C ℓ_2 ou Br $_2$ segue os mesmos moldes da hidrogenação.

Fábio Lima 29 (45

Adição de Haletos de Hidrogênio (HX)

- Neste caso a reação também pode parar no produto com ligação dupla ou continuar até o produto saturado.
- A Regra de Markovnikov direciona as reações.

Di-haleto geminal (2 halogênio no mesmo carbono)

Adição de Água

 Na hidratação de um alcino não acontece a segunda adição, pois o produto da primeira adição, um enol, tão logo formado, se transforma em um aldeído ou cetona, dependendo do alcino utilizado.

Reações de Substituição I

Fábio Lima 33 (45)

Reações de Substituição II

Nome	Exemplo
Halogenação	$Ar \longrightarrow H + X_2 \longrightarrow Ar \longrightarrow X$
Nitração	$Ar \longrightarrow H + HNO_3 \xrightarrow{H_2SO_4} Ar \longrightarrow NO_2$
Sulfonação	$Ar \longrightarrow H + SO_3 \xrightarrow{H_2SO_4} Ar \longrightarrow SO_3H$
Alquilação de Friedel-Crafts	$Ar \longrightarrow H + R_2 \xrightarrow{A\ell X_3} Ar \longrightarrow R$
	0
Alquilação de Friedel-Crafts	$Ar \longrightarrow H + RCOX \longrightarrow Ar \longrightarrow C \longrightarrow R$

Fábio Lima 34 (45)

Halogenação

 \bigcirc Os compostos A ℓ C ℓ_3 , FeC ℓ_3 ou FeBr $_3$ são catalisadores.

Fábio Lima 35 (45)

Nitração e Sulfonação

Nitração: H₂SO₄ concentrado é o catalisador.

Sulfonação: necessita de H₂SO₄ fumegante, isto é, contendo SO₃ dissolvido.

Alquilação e Acilação de Friedel-Crafts I

cloreto de metila

$$H_3C \longrightarrow CH_2 \longrightarrow C\ell$$

cloreto de etila

cloreto de etanoíla (acetila)

cloreto de propanoíla

Fábio Lima 37 (45)

Alquilação e Acilação de Friedel-Crafts II

 \bigcirc É necessário catalisador apropriado geralmente A ℓ C ℓ_3 , FeC ℓ_3 ou FeBr₃.

Fábio Lima 38 (45)

Alquilação e Acilação de Friedel-Crafts III

Li<mark>o</mark>na 39 <mark>(45)</mark>

Dirigência da Substituição I

○ Grupos como o ─OH, que dirigem a reação para que ocorra nas posições orto e para, são chamados de orto-para-dirigentes e grupos como o ─CHO, que dirigem a reação para a posição meta, são chamados meta-dirigentes.

Orto-para dirigentes

$$-F$$
 $-C\ell$ $-Br$ $-I$ $-OH$ $-NH_2$ $-OCH_3$ $-N(CH_3)_2$ $-CH_3$ $-CH_2$ $-CH_3$

Meta-dirigentes

Fábio Lima 40 (45

Diregência de Substituição-Orto

Fábio Lima 42 (45)

Fábio Lima 43 (45)

Diregência de Substituição-Meta

Fabio Lima 44 (45)

Fábio Lima 45 (45)