

Esolution

Sticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- · Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Grundlagen Rechnernetze und Verteilte Systeme

Klausur: IN0010 / Hausaufgabe 2 Datum: Montag, 4. Mai 2020

Prüfer: Prof. Dr.-Ing. Georg Carle **Uhrzeit:** 00:01 – 23:59

Bearbeitungshinweise

- Bitte geben Sie bis spätestens Sonntag, den 10. Mai um 23:59 CEST über TUMexam ab.

 Bitte haben Sie Verständnis, wenn das Abgabesystem noch nicht reibungslos funktioniert. Wir arbeiten daran!
- Ihren persönlichen Link zur Abgabe finden Sie auf Moodle. Geben Sie diesen nicht weiter.
- Bitte haben Sie Verständnis, falls die Abgabeseite zeitweilig nicht erreichbar ist.

Bitte nehmen Sie die Hausaufgaben dennoch ernst:

- Neben der Einübung des Vorlesungsstoffs und der Klausurvorbereitung dienen die Hausaufgaben auch dazu, den Ablauf der Midterm zu erproben.
- Finden Sie einen für sich selbst praktikablen und effizienten Weg, die Hausaufgaben zu bearbeiten. Hinweise hierzu haben wir auf https://grnvs.net/homework_submission.pdf für Sie zusammengestellt.

Hörsaal verlassen von _	bis	_ /	Vorzeitige Abgabe um

Aufgabe 1 Quellenentropie (14 Punkte)

Gegeben sei eine binäre, gedächtnislose Nachrichtenquelle Q, welche voneinander statistisch unabhängige Zeichen aus dem Alphabet $\mathcal{X} = \{a, b\}$ emittiert. Wir modellieren diese Nachrichtenquelle als diskrete Zufallsvariable X. Die Wahrscheinlichkeit, dass die Quelle das Zeichen X = a emittiert, betrage $p_a = \Pr[X = a] = 0.25$.

Die	En	tro	nio	varie	d ~	101/	mia	r+		an.	D×L,		01	D	-Γ∨	<u></u>	1	0 =	ailt		lio r		ı m	مام	Ent		io k) otr		t do	hou		
		lro	pie	WII	u II	iaxi	me	π,	wei		_		<u> </u>		_									ale	EIII	ΙΟΡ	ne t	eu	ay	l ua	nei		
										_H _n	nax	_	2 ·	0.5	· lo) ₂ (C	.5)	= 1	bit,	/Ze	eich	en.											
																							+	+					+				
																													+				
Skizz t <i>p</i> .	ier	en	Sie	die	Q	uell	ene	ntr	opi	e H	eir		bin	äre	n Q	uel	le a	ıllge	eme	ein	in A	Abh	äng	gigk	eit	der	Au	ftrit	tsw	/ahi	rsch	nein	lich-
												H																					
											1.0	Ŧ	+				+	\vdash	+	+													
												1																			*		
												+	_			-			+	+										•			
												+								+													
											0.5	1																					
												+							+	+							-						
												+								-													
											0	1									p												
											J	0	1	ı I		0.5	1			1.0													
den	VO	n c	der	Que	elle	Q (emit	tie	rter	ıD	ata	nat																uuc	, ui	ese	r Ta	aisc	
Die									ket	te,	we	Ich	e ni	cht	s aı	nde	ch	Red	dun	dai ve	nz a	able	eite	n? ne l	Rea	lisi	eru	nge	en (der	Zui	falls	S+
varia	abl	e 2	K, k	ein	ha	tet	Red		ket	te,	we	Ich	e ni	cht	s aı	nde	ch	Red	dun	dai ve	nz a	able	eite	n? ne l	Rea	lisi	eru	nge	en (der	Zui	falls	S+
	abl	e 2	K, k	ein	ha	tet	Red		ket	te,	we	Ich	e ni	cht	s aı	nde	ch	Red	dun	dai ve	nz a	able	eite	n? ne l	Rea	lisi	eru	nge	en (der	Zui	falls	S+
varia	abl	e 2	K, k	ein	ha	tet	Red		ket	te,	we	Ich	e ni	cht	s aı	nde	ch	Red	dun	dai ve	nz a	able	eite	n? ne l	Rea	lisi	eru	nge	en (der	Zui	falls	S+
varia	abl	e 2	K, k	ein	ha	tet	Red		ket	te,	we	Ich	e ni	cht	s aı	nde	ch	Red	dun	dai ve	nz a	able	eite	n? ne l	Rea	lisi	eru	nge	en (der	Zui	falls	S+
varia	abl	e 2	K, k	ein	ha	tet	Red		ket	te,	we	Ich	e ni	cht	s aı	nde	ch	Red	dun	dai ve	nz a	able	eite	n? ne l	Rea	lisi	eru	nge	en (der	Zui	falls	S+

Aufgabe 2 Fourierreihe (15 Punkte)

Gegeben sei das folgende T-periodische Zeitsignal s(t):

a)* Finden Sie einen analytischen Ausdruck für s(t) im Intervall [0, T].

Das Signal s(t) lässt sich als Fourierreihe entwickeln, d. h.

$$s(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(k\omega t) + b_k \sin(k\omega t) \right). \tag{1}$$

Die Koeffizienten a_k und b_k lassen sich wie folgt bestimmen:

$$a_k = \frac{2}{T} \int_0^T s(t) \cdot \cos(k\omega t) \ dt \ \text{und} \ b_k = \frac{2}{T} \int_0^T s(t) \cdot \sin(k\omega t) \ dt. \tag{2}$$

b)* Welcher Koeffizient in Formel (1) ist für den Gleichanteil von s(t) verantwortlich?

Der Gleichanteil entsteht ausschließlich durch a_0 , denn alle anderen Koeffizienten bestimmen die Amplitude einer Sinus- oder Kosinusschwingung.

Achtung: Gemäß Formel 1 ist der Gleichanteil $\frac{a_0}{2}$!

0 1 2

c) Bestimmen Sie rechnerisch den Gleichanteil des Signals s(t).

-1/4 1 1:	11		1	一丁・リュー くいっしょう マー・レール	<i>by inspection</i> erahnen könne	0
711° H3	tta man dae	Fraganie alie a	iar varnaraananaan	I ANII AAAAA AIIAA I	nv inenaction arannan konne	ימב
u, iic	ille illali uas					

Ja: Das Signal s(t) nimmt ausschließlich Werte größer Null an. Es kann daher nicht gleichanteilsfrei sein. Aus der Steigung der einzelnen Sägezähne lässt sich leicht erahnen, dass der zeitliche Mittelwert des Signals bei A/2 liegen muss.

0

e)* Bestimmen Sie die Koeffizienten a_k.

Hinweis: Sie benötigen hier keine Rechnung. Vergleichen Sie stattdessen die Symmetrie von s(t) mit einer Kosinus-Schwingung. Kann ein gewichteter Kosinus einen Beitrag zum Gesamtsignal liefern?

0 1 2 3

Intuitiv

Der Sägezahn s(t) ist in Phase mit einer Sinus-Schwingung: Zu Vielfachen der Periodendauer T besitzt s(t) Nulldurchgänge (den Gleichanteil einmal abgezogen). Dies entspricht genau dem Verhalten einer Sinusschwingung. Falls Sie das nicht sehen, stellen Sie sich den abrupten Pegelwechsel an Vielfachen von T leicht abgeschrägt vor.

Ein kosinus-förmiges Signal hingegen hätte an diesen Stellen stets den Wert ± 1 . Da dies allerdings nicht der Form des Sägezahns entspricht, müssen die Kosinus-Anteile entfernt werden. Dies wird durch $a_k = 0$, $\forall k > 0$ erreicht.

Mathematisch

Da $\sin(x) = -\sin(-x)$ handelt es sich hierbei um eine ungerade (also punktsymmetrische) Funktion. Das Signal s(t) ist, wenn man den Gleichanteil abzieht, ebenfalls punktsymmetrisch zum Koordinatenursprung (andernfalls ist der Symmetriepunkt lediglich entlang der Ordinate verschoben). Der Kosinus hingegen ist eine gerade bzw. achsensymmetrische Funktion, weswegen er nicht zu s(t) beisteuern kann.

Anschaulich

In der untenstehenden Abbildung sind s(t), $\cos(2\pi t)$ und $\sin(2\pi t)$ eingezeichnet. Man sieht, dass der Sinus bei Vielfachen von π das Signal s(t) genau in seinen Mittelwerten kreuzt, während der Kosinus Extremwerte ungleich $s(k\pi)$ für $k \in \mathbb{Z}$ annimmt.

f)* Bestimmen Sie die Koeffizienten b_k .

Hinweise: $\int_0^1 t \sin(ct) dt = \frac{\sin(c) - c \cdot \cos(c)}{c^2} \text{ und } \omega = 2\pi/T.$

g) Skizzieren Sie mit Hilfe der bisherigen Ergebnisse den Gleichanteil $a_0/2$, die ersten beiden Harmonischen sowie deren Summe für $A = \pi$ in einem Koordinatensystem.

Für $A = \pi$ erhalten wir:

$$\frac{a_0}{2} = \frac{\pi}{2} \approx 1.6, \ b_1 = -1, \ b_2 = -\frac{1}{2}.$$

Die ersten beiden Harmonischen lauten

 $h_1(t) = b_1 \sin(2\pi t) = -\sin(2\pi t)$, und $h_2(t) = b_2 \sin(4\pi t) = -\frac{1}{2} \sin(4\pi t)$.

