# Particle spectrograph

## Wave operator and propagator



| $\tau_{1^{-}\alpha}^{\#2}$                        | 0                                     | 0                                          | 0                                           | 0                             | 0                            | 0                        | 0                            |
|---------------------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------|------------------------------|--------------------------|------------------------------|
| $^{\prime}$ $^{\#1}_{1}^{\alpha}$                 | 0                                     | 0                                          | 0                                           | 0                             | 0                            | 0                        | 0                            |
| $\sigma_{1^-lpha}^{\#1}$ $\sigma_{1^-lpha}^{\#2}$ | 0                                     | 0                                          | 0                                           | 0                             | 0                            | 0                        | 0                            |
| $\sigma_{1^-}^{\#1}{}_{\alpha}$                   | 0                                     | 0                                          | 0                                           | $\frac{1}{k^2 r_5}$           | 0                            | 0                        | 0                            |
| $\tau_1^{\#1}_+ _{\alpha\beta}$                   | $-\frac{i\sqrt{2}}{k r_5 + k^3 r_5}$  | $\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$ | $\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$      | 0                             | 0                            | 0                        | 0                            |
| $\sigma_{1}^{\#2}{}_{\alpha\beta}$                | $-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$ | $\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$     | $-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$ | 0                             | 0                            | 0                        | 0                            |
| $\sigma_{1}^{\#1}{}_{+}\alpha\beta$               | $\frac{1}{k^2 r_5}$                   | $-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$      | $\frac{i\sqrt{2}}{kr_5+k^3r_5}$             | 0                             | 0                            | 0                        | 0                            |
|                                                   | $\sigma_{1}^{\#1} + \alpha^{eta}$     | $\sigma_{1}^{#2} + \alpha^{\beta}$         | $\tau_{1}^{\#1} + \alpha \beta$             | $\sigma_{1}^{\#1} +^{\alpha}$ | $\sigma_{1}^{\#2} + ^{lpha}$ | $	au_{1}^{\#1} +^{lpha}$ | $\tau_{1}^{\#2} + ^{\alpha}$ |

| 1                                       |                                        |                                     |                                   |                                         |                                                 |                                          |                          |
|-----------------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------|
| $f_{1}^{#2}$                            | 0                                      | 0                                   | 0                                 | 0                                       | 0                                               | 0                                        | 0                        |
| $f_{1^-}^{\#1} \alpha$                  | 0                                      | 0                                   | 0                                 | 0                                       | 0                                               | 0                                        | 0                        |
| $\omega_{1^{\bar{-}}\alpha}^{\#2}$      | 0                                      | 0                                   | 0                                 | 0                                       | 0                                               | 0                                        | 0                        |
| $\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$ | 0                                      | 0                                   | 0                                 | $k^2 r_5$                               | 0                                               | 0                                        | 0                        |
| $f_{1}^{\#1}$                           | $\frac{1}{3}\bar{l}\sqrt{2}kt_2$       | <u>i kt2</u><br>3                   | $\frac{k^2 t_2}{3}$               | 0                                       | 0                                               | 0                                        | 0                        |
| $\omega_1^{\#2}{}_+\alpha\beta$         | $\frac{\sqrt{2} t_2}{3}$               | <del>t</del> 2<br>3                 | $-\frac{1}{3}\bar{l}kt_2$         | 0                                       | 0                                               | 0                                        | 0                        |
| $\omega_{1}^{\#1}{}_{\alpha\beta}$      | ~                                      | $\frac{\sqrt{2} t_2}{3}$            | $-\frac{1}{3}\bar{l}\sqrt{2}kt_2$ | 0                                       | 0                                               | 0                                        | 0                        |
|                                         | $\omega_1^{\#1} \dagger^{\alpha\beta}$ | $\omega_1^{\#_2^2} +^{\alpha\beta}$ | $f_1^{#1} + \alpha \beta$         | $\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$ | $\omega_{1^{\bar{-}}}^{\#2} {\dagger}^{\alpha}$ | $f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$ | $f_{1}^{\#2} +^{\alpha}$ |

|                        | $\omega_0^{\#1}$ | $f_{0+}^{\#1}$ | $f_{0+}^{#2}$ | $\omega_{0}^{\#1}$ | ·                        | $\sigma_{0}^{\#_{1}}$ | $\tau_{0}^{\#_{1}}$ | $\tau_{0}^{\#2}$ | $\sigma_{0}^{\#1}$ |
|------------------------|------------------|----------------|---------------|--------------------|--------------------------|-----------------------|---------------------|------------------|--------------------|
| $\omega_{0}^{\#1}$ †   | -                |                | _             | 0                  | $\sigma_{0^{+}}^{\#1}$ † | 0                     | 0                   | 0                | 0                  |
| $f_{0}^{#1}$ †         | 0                |                |               | 0                  | $	au_{0^{+}}^{#1}$ †     | 0                     | 0                   | 0                | 0                  |
| ū                      |                  | 0              |               | 0                  | $	au_{0^{+}}^{#2}$ †     | 0                     | 0                   | 0                | 0                  |
| $f_{0+}^{#2} \dagger$  | U                |                |               | 0                  |                          |                       |                     |                  | 1                  |
| $\omega_{0}^{#_{1}}$ † | 0                | 0              | 0             | $k^2 r_2 + t_2$    | $\sigma_0^{\sharp 1}$ †  | U                     | 0                   | 0                | $k^2 r_2 + t_2$    |

| SO(3) irreps                                                                              | Multiplicities |
|-------------------------------------------------------------------------------------------|----------------|
| $\tau_{0}^{\#2} == 0$                                                                     | 1              |
| $\tau_{0}^{\#1} == 0$                                                                     | 1              |
| $\sigma_{0^{+}}^{\#1} == 0$                                                               | 1              |
| $\tau_{1}^{\#2\alpha} == 0$                                                               | 3              |
| $\tau_1^{\#1\alpha} == 0$                                                                 | 3              |
| $\sigma_{1^{-}}^{\#2\alpha} == 0$                                                         | 3              |
| $\overline{\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta}} == 0$ | 3              |
| $\sigma_{2}^{\#1\alpha\beta\chi} == 0$                                                    | 5              |
| $\tau_{2^{+}}^{\#1\alpha\beta} == 0$                                                      | 5              |
| $ \overline{\sigma_{2^{+}}^{\#1\alpha\beta}}=0 $                                          | 5              |
| Total constraints:                                                                        | 30             |

|                                                 | $\sigma_{2^{+}\alpha\beta}^{\#1}$ | $\tau_{2}^{\#1}_{\alpha_{i}}$         | $_{\beta}$ $\sigma_{2}^{\#}$ | -1<br>αβχ |   |
|-------------------------------------------------|-----------------------------------|---------------------------------------|------------------------------|-----------|---|
| $\sigma_{2}^{\#1} \dagger^{\alpha\beta}$        | 0                                 | 0                                     |                              | 0         |   |
| $\tau_{2^{+}}^{\sharp 1} \dagger^{\alpha\beta}$ | 0                                 | 0                                     |                              | 0         |   |
| $\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$      | 0                                 | 0                                     |                              | 0         |   |
|                                                 |                                   | $\omega_{2^{-}}^{\#1}\alpha\beta\chi$ | 0                            | 0         | 0 |
|                                                 |                                   | $\alpha\beta$                         | )                            |           |   |

# $\omega_{2}^{\#1} + \alpha \beta \qquad \omega_{2}^{\#1} + \alpha \beta \qquad 0 \qquad 0$ $\omega_{2}^{\#1} + \alpha \beta \qquad 0 \qquad 0$ $f_{2}^{\#1} + \alpha \beta \qquad 0 \qquad 0$ $\omega_{2}^{\#1} + \alpha \beta \chi \qquad 0 \qquad 0$

#### Massive and massless spectra



(No massless particles)

### Unitarity conditions