JEMA NR.3 SPATIL EUCLIDIENE

I. She calculate productul scalar al vectorilor:

a) $\vec{v}_1 = (1, 3, -3, 4)$, $\vec{v}_2 = (4, -5, 3, 1)$ in \mathbb{R}^4 ;

b) $\vec{w}_1 = (3, 2, -4, 0, 1)$, $\vec{w}_2 = (-1, 1, -1, 4, -3)$ in \mathbb{R}^5 ; \vec{v} $\vec{A} = \begin{pmatrix} -1 & 2 \\ 0 & 3 \end{pmatrix}$, $\vec{B} = \begin{pmatrix} 0 & 2 \\ -2 & 1 \end{pmatrix}$ in $M_2(\mathbb{R})$,

Annother and an apaticle \mathbb{R}^4 is \mathbb{R}^5 funt injection of productul scalar standard (canonic), car productul scalar in spatial vectorial $M_1(\mathbb{R})$

produsil scalar in fratile rectorial $M_2(R)$ al maturalor patritice de ordenul dri ste data $A \cdot B = tr(A^TB) = \sum_{i=1}^{2} \sum_{k=1}^{2} Cl_{ki} b_{ki}$, oriente as f_i maturale $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ is $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ elementele numere reale, prin "tr" Intelegand urma maturale duta paranteze, adica suma elementelor de pe diagonala frincipala a maturale produs A^TB .

Raspuns. a) $\vec{v}_1 \cdot \vec{v}_2 = -16$; (4) $\vec{W}_1 \cdot \vec{W}_2 = 0$; (4) $\vec{A} \cdot \vec{B} = \vec{7}$.

In spatial enclideau \mathbb{R}^2 prevatut en produsal scalar standard (Canonic san year) se annéva vectorii $\vec{v}_1 = (1, 2\times)$ s $\vec{v}_2 = (\beta, -2)$, α , $\beta \in \mathbb{R}$. Când cei doi vectorii formeată o lață orto
Jonala? Fentin $\alpha = \beta = 1$ să se arate ca cei doi vectorii an lungimile egale (normele gal).

Răspuns, le impune conditia $\vec{v}_1 \cdot \vec{v}_2 = 0 \Rightarrow \beta = 4\times$.

Jagua M. 2 TEMA NR 3

3. Fie veitorii du 123:

a) $\vec{v}_1 = (1, -1, 1)$, $\vec{v}_2 = (0, 1, 1)$, $\vec{v}_3 = (\alpha, \beta, -1)$, $\alpha, \beta \in \mathbb{R}$; b) $\vec{W}_1 = (1, 0, -1)$, $\vec{W}_2 = (1, \lambda, 1)$, $\vec{W}_3 = (1, 2, \mu)$, $\lambda, \mu \in \mathbb{R}$. Sentue ce valori ale jarametulor reali α, β , respective λ , μ vectorii sistemului $\vec{v}_1, \vec{v}_2, \vec{v}_3$, respective $\vec{W}_1, \vec{W}_2, \vec{W}_3$ bunt ortogonali doi câte doi?

Ráspuns a) $\alpha = 2$, $\beta = 1$; b) $\alpha = -1$, $\mu = 1$.

4. Så se arate rå aplicatia ".": R2×12 → R, defenta prin

(*) $\vec{X} \cdot \vec{y} = x_1 y_1 + x_1 y_2 + x_2 y_1 + 2x_2 y_2$, unde $\vec{x} = (x_1, x_2)_B$, $y = (y_1, y_2)_B$ iar $B = \vec{1} \in \vec{1}$, $\vec{1} \in \vec{2}$ este $\vec{1}$ taxa $\vec{1}$ or $\vec{1}$ taxa $\vec{1}$ or $\vec{1}$ or $\vec{1}$ and $\vec{1}$ or $\vec{1}$ or $\vec{1}$ and $\vec{1}$ or $\vec{1}$ or

In Apatul euclidean (\mathbb{R}^2 , ""), unde produsul scalar et cel de mai sus, sa se calarleze produsul scalar al vectorilor $\vec{x} = (1,1)_B$ $\vec{y} = (-3,2)_B$, hormele (lungamile) acestora, precum si ungluel dantre ei

Ráspuns. Se aratá cá aplicatia (*) salisface axiomele den defenitia produculei scalar pe un spatiu vectorial (real (rej. notite airs). Apoi, $\vec{x} \cdot \vec{y} = \vec{H}$; $||\vec{x}|| = \sqrt{5}$; $||\vec{y}|| = \sqrt{5}$; $\omega_{(\vec{x}, \vec{y})} = \frac{\vec{x} \cdot \vec{y}}{||\vec{x}||||\vec{y}||} = \frac{4}{\sqrt{5}\sqrt{5}} = \frac{4}{5}$.

ragina m. 3 TEMA NR. 3

5. På se arate cà vectorii $f_1 = (1, 1, -1),$ $f_2 = (-1, 1, 1)$ si $f_3 = (1, 0, 1)$ sunt liniar
independenti si apoi ortonormati baja
formata in acestia in \mathbb{R}^3 .

si se stre cà malicea C are pe coloane coordonatele redordor fi, fz, fz in baja B. Deci

 $C = \begin{pmatrix} 1 & -1 & A \\ 1 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$

Se stre de asemenação B'esto baja in R > det C + 0.

Avene det $C = 4 \neq 0 \Rightarrow B'$ ste baja in R^3 de la sostemul de vectori B' trecene
la stotemul de vectori B'' = 1 G_1 , G_2 , G_3 ai caror vectori dorine sa fre ostogenali
doi cate doi. Nu ne impiedica ninic sa bian

 $\begin{cases}
\vec{f}_{1} = \vec{f}_{1} \\
\vec{f}_{2} = \vec{f}_{2} - \alpha_{21} \vec{f}_{1} \\
\vec{g}_{1} = \vec{f}_{3} - \alpha_{31} \vec{f}_{$

Thepunand condities $\vec{J}_1 - \vec{\chi}_{32}\vec{J}_2$ Thepunand condities $\vec{J}_1 + \vec{J}_2$ in $\vec{J}_1 + \vec{J}_3$, $\vec{J}_2 + \vec{J}_3$

 $\frac{1}{16MA} \frac{1}{NR3}$ Impuma condition obtaine $\alpha_{21} = \frac{\vec{f_2} \cdot \vec{f_1}}{||\vec{f_1}||^2}$ $= \frac{-1}{3} = -\frac{1}{3} \Rightarrow \vec{g_2} = \vec{f_2} + \frac{1}{3}\vec{f_1} = (-1, 1, 1) + \frac{1}{3}$ $+\left(\frac{4}{3},\frac{1}{3},-\frac{1}{3}\right)=\left(-\frac{2}{3},\frac{4}{3},\frac{2}{3}\right)$. Asadar $f_2 = \left(-\frac{2}{3}, \frac{4}{3}, \frac{2}{3}\right) = \frac{2}{3}(4, 2, 1)$ Refulta 11 \$\varphi_2 11 = \frac{2}{3} \varphi_{-1/2+2^2+1^2} = \frac{2}{3} \varphi_6. Impunand conditible de vrogenalitate $g_1 \perp g_2 = 0$ $f_1 = 0$ $f_2 = 0$ $f_3 = 0$ $f_4 + f_3 = 0$ obtinen $f_4 = 0$ $f_5 = 0$ $f_6 = 0$ $f_7 = 0$ $\alpha_{31} = \frac{9}{11711^2} = 0$, $\alpha_{32} = \frac{0}{117211^2} = 0$, prin urware $\vec{f}_3 = \vec{f}_3$ to $||\vec{f}_3|| = ||\vec{g}_3|| = ||\vec{g}_3|$ Vectorii 1 Ji, Jz, J3 9 Sunt ortogonali doi câte doi, usa me au normele gale en unitatea den R; 119,11=11,11= V3; $||g_2|| = \frac{2}{3}\sqrt{6} ||f_3|| = ||f_3|| = \sqrt{2}$ Trecen la sortemul de vectori ortonormat pun $\vec{u}_1 = \frac{\mathcal{G}_1}{\|\vec{g}_1\|}$, $\vec{u}_2 = \frac{\mathcal{J}_2}{\|\vec{g}_2\|}$ s' ris = 33 Oldenen $\int \vec{\mathcal{U}}_{1} = \frac{1}{\sqrt{3}} (1, 1, -1) = \frac{1}{\sqrt{3}} \vec{e_{1}} + \frac{1}{\sqrt{3}} \vec{e_{2}} - \frac{1}{\sqrt{3}} \vec{e_{3}}$ $\vec{u}_2 = \frac{1}{\sqrt{6}} (-1, 2, 1) = -\frac{1}{\sqrt{6}} \vec{e}_1 + \frac{2}{\sqrt{6}} \vec{e}_2 + \frac{1}{\sqrt{6}} \vec{e}_3$ $\left(\vec{u}_3 = \frac{1}{\sqrt{2}}(1,0,1) = \frac{1}{\sqrt{2}}\vec{a} + \frac{1}{\sqrt{2}}\vec{a}\right)$ bata canonica du Ro la matrica de trecere de la ortogonata

pagena m. 5 TEMA NR. 3

6. Determinati valorile hii $\lambda \in \mathbb{R}$ pentu care vectorii $\vec{f}_1 = (1, 1, 0), \vec{f}_2 = (1, -1, 0), \vec{f}_3 = (0, 0, \lambda)$ formeafa o bafa ii \mathbb{R}^3 .

Sentre 2 = 1, ortonormati lata respectiva

Ráspiens. a ER* = R 1/09.

Bafa ortonormata care te va gati ple când de le bafa (se ia $\lambda=1$) $f_1=(1,1,0), f_2=(1,-1,0), f_3=(0,0,1)$

este

 $-\overline{U}_{1} = \frac{1}{\sqrt{2}}(1, 1, 0) = \frac{1}{\sqrt{2}}\overline{e}_{1} + \frac{1}{\sqrt{2}}\overline{e}_{2}$ $\overline{U}_{2} = \frac{1}{\sqrt{2}}(1, -1, 0) = \frac{1}{\sqrt{2}}\overline{e}_{1} - \frac{1}{\sqrt{2}}\overline{e}_{2}$ $\overline{U}_{3} = (0, 0, 1) = \overline{e}_{3}.$

Observatie Bafn B'= 1 u1, u2, u3 (care este ortonormati) se obtine du taja canonica B=1=(1,0,0), e2=(0,1,0), e3=(0,0,1) , de asemeni ortonormati, puntr-o rotatie de 45° in junt lui e3 + care duja cunc se vede du raspuny ramane noschuntat in procesul de ortonormane.

7. Aratati ca vectorii $\vec{f}_1 = (1,1,0)$, $\vec{f}_2 = (1,-2,0)$ si $f_3 = (0,0,1) = \vec{e}_3$ for meata a taga in \mathbb{R}^3 . Ortonormati but serpectiva.

Raspuns. $\vec{f}_1 = \vec{f}_1$; $\vec{f}_2 = \vec{f}_2 - \alpha_{21} \vec{f}_1 = (3,-3,0)$, $\vec{f}_3 = \vec{f}_3$; iar bate ortonormati sti $\vec{u}_1 = \frac{1}{\sqrt{2}}(1,1,0)$, $\vec{u}_2 = \frac{1}{3\sqrt{2}}(3,-3,0)$, $\vec{u}_3 = \frac{1}{3\sqrt{2}}(3,-3,0)$

If i se determine andita in case vectorii $f_1 = (1, 1, \lambda)$, $f_2 = (1, \lambda, 1)$, $f_3 = (\mu, 1, 1)$ formed to a bath in \mathbb{R}^3 . Sentue $\lambda = -1$ or $\mu = 0$ to be ortonormed to be a respective $\lambda = -1$ or $\mu = 0$ to $\mu = \frac{1}{\sqrt{3}}(1,1,-1)$, $\mu_2 = \frac{1}{\sqrt{3}}(2,-1,1)$ respective $\mu_3 = \frac{1}{\sqrt{3}}(1,1,-1)$, $\mu_4 = \frac{1}{\sqrt{3}}(1,1,-1)$, $\mu_5 = \frac{1}{\sqrt{3}}(2,-1,1)$

pagina 6 TEMA NR.3

D. a) Så se arate nà daca norma unu vector provine dinti-un produs scalar si 1171=1171 atuna (x-J) L (x+y). b) Explicati regulatul. Ráspuns a) le arati ça (x-J/(x+J) = ||x||^2 - ||y||^2 = 0 23 (x+y) b) Inti-un romb diagonalile sunt perpendiculare vezi desenul dui stringa. 10. Så se anate ca daca $||\vec{x}|| = \sqrt{(\vec{x},\vec{x})}$, unde

prin (\vec{x}, \vec{y}) am notat produme scalar al vectorulor x & J dunti-un fratin vectorial endidian real, iar 11x11 este norma (lungimea) vectorului Z, atunci

 $(\vec{x}, \vec{y}) = \underbrace{2} (||\vec{x} + \vec{y}||^2 - ||\vec{x}||^2 - ||\vec{y}||^2)$

date o interpreture geometrica rejultatului.

Ai amentit-va de teorema connumbrie $\frac{\vec{x}+\vec{y}}{\vec{x}}$ $\frac{\vec{y}}{\vec{x}}$ $\frac{\vec{y}}{\vec{y}}$ $\frac{\vec{y}}{\vec{x}}$ $\frac{\vec$ M. Så se demonstreje ca entr-un spatin euclidian real V are loc galitatea 11 x + f 12 + 11 x - f 11 = 2(11x 112 + 11 y 112). Ja se dea o interpretere geometrica rejultatului Raspiers I tudiati desemil. Ce tigura geometrica represents ABCD?

