Module 1 GÉNÉRALITÉS SUR LES BASES DE DONNÉES

Agenda

- Qu'est-ce qu'une base de données?
- Notion de modèle
- Qu'est-ce qu'un SGBD?
- Description de données
- Architecture fonctionnelle du SGBD

 C'est un ensemble cohérent et structuré d'informations concernant un domaine particulier, interrogeables par requêtes, mémorisées sur un support informatique

- Cohérent et structuré
 - Les données sont caractérisées par des propriétés et des relations (i.e. des liens) entre elles.
 - Ces données concernent un domaine particulier
 - Les données modélisent une partie du « monde réel »
 - On retrouve dans le modèle de données, les concepts du domaine
 - Question : Quels concepts pour la base de données d'une école?

- Interrogeable par requêtes
 - On doit pouvoir retrouver les données qui satisfont certains critères
 - On doit par ailleurs pouvoir retrouver la structure des données

- Support informatique
 - Représentation des données et des relations entre les données sous une forme « numérique », interprétable et manipulable par un ordinateur.
 - La Base de Données est une partie de la science informatique
 - Les données sont stockées sur les mémoires secondaires (Disque dur, CDRom, etc.) et on y accède grâce à des logiciels.

Construire une BD – Notion de modèle

- Construire une base de données sur un domaine c'est avant tout construire un modèle
 - Modèle d'un domaine = représentation abstraite de ce domaine
 - Abstraction signifie éloignement vis-à-vis des considération matérielles et logicielles

Construire une BD – Notion de modèle

- Pourquoi modéliser ?
 - Pour construire une représentation du domaine qui soit manipulable et interprétable par un ordinateur
 - La modélisation est une simplification de la réalité
 - Une modélisation relève toujours d'un point de vue ou d'un cadrage.
 - On ne garde que les éléments pertinents par rapport à ce point de vue
 - Aussi complète soit-elle, une modélisation est nécessairement « limitée ».

Construire une BD – Notion de modèle

- Représenter implique de :
 - choisir les objets, abstraits ou concrets, que l'on va décrire
 - nommer ces objets pour « pouvoir en parler »
 - Un modèle est avant tout un outil de communication
 - définir clairement
 - Pourquoi on choisit de décrire ces « objets »
 - Les **propriétés importantes** de ces objets
 - Un modèle doit pouvoir se justifier par rapport à des choix effectués par le concepteur, le client, etc.

Construire une BD – Petite synthèse

- Un modèle est :
 - une interprétation explicite par son utilisateur de la compréhension d'une situation ou plus exactement de l'idée que cet utilisateur se fait de la situation.
- Pour simplifier un modèle en informatique est :
 - une description d'entités et de relations entre ces entités
 - synonyme : représentation
- Modéliser, en quoi cela consiste ?
 - C'est d'une certaine manière élaborer une vue partielle, plus ou moins abstraite de l'existant
 - Principe de pertinence : supprimer des détails et ne garder que ce qui est important par rapport à l'objectif de la BDD
 - On fait un modèle dans un but précis, et on ne garde dans ce modèle que ce qui est pertinent par rapport à ce but.
 - Un modèle est correct s'il permet de répondre aux questions qu'on se pose.

Concept de modèle

La modélisation en informatique :

• c'est le passage du domaine du problème à celui de sa solution informatique.

La difficulté de modéliser

 Il est difficile d'appréhender la sémantique du monde réel et de la transformer en signes manipulables par des ordinateurs

Système de Gestion des Bases de Données

Qu'est-ce qu'un SGBD?

- Un SGBD est un ensemble de logiciels qui permet de créer, de gérer et d'interroger efficacement une base de données indépendamment du domaine d'application.
- Exemples :
 - Access de Microsoft™
 - Oracle ② http://www.oracle.com/
 - MySQL I http://www.mysql.com/
 - PostgreSQL

 http://www.postgresql.org/

SGBD – Les 3 couches

- Le SGBD se compose de 3 couches :
 - Le SGF : Système de Gestion de Fichier
 - Gestion des données sur les mémoire secondaires (disque dur, bande magnétique, etc.)
 - Le SGBD Interne
 - Il comprend le système d'accès aux données. Il est quasiment invisible pour l'utilisateur, depuis les programmes d'application.
 - Il gère les données dans les fichiers
 - Il s'occupe du placement et de l'assemblage des données
 - Il gère les liens entre les données et la structure de la base
 - Le SGBD externe assure
 - l'analyse et l'interprétation des requêtes des utilisateurs.
 - la mise en forme des données résultats

Qualités attendues des SGBD

- Les principaux objectifs des SGBD sont :
 - Indépendance physique des données
 - Indépendance logique
 - Manipulation des données par des non-informaticiens
 - Efficacité des accès aux données
 - Administration cohérente des données
 - Non redondance des données
 - Cohérence des données
 - Partageabilité des données
 - Sécurité de données
 - Il faut noter que les SGBD, même récents, n'atteignent que partiellement l'ensemble de ses objectifs

Qualités des SGBD - Indépendance physique

- Séparation entre le monde réel et le monde informatique
 - La représentation physique des informations au niveau des mémoires secondaires informatiques doit être indépendante de la représentation des informations dans le monde réel
 - Dans le monde réel, les informations sont organisées d'une certaine manière.
 - Pour des raisons d'efficacité d'accès et de manipulation, les informations ne sont pas organisés sur les mémoires secondaires de la même manière qu'elles sont organisées dans le monde réel.

Qualités des SGBD - Indépendance logique

- Toutes les informations n'ont pas la même importance selon l'utilisateur
- Tous les utilisateurs n'ont pas les mêmes droits sur les informations

Notion de vue

- Chaque type d'utilisateur à une certaine « **vue** » des données de la base
- Il est important qu'il y ait une **indépendance** entre cette « **vue** » propre à un utilisateur ou un groupe d'utilisateur et les données elle-même.
- C'est ce qu'on nomme l'indépendance logique.

Intérêt

- Chaque groupe d'utilisateur de la base a une vue sur les données correspondant à ces besoins
- On peut faire évoluer les vues existantes ou créer de nouvelles vues sans modifier la structure des données dans la base et vice versa.

Qualités des SGBD – Efficacité des accès

- Critère de performance dans l'accès et le stockage des données
 - Point de vue « utilisateur » du SGBD
 - Les bases de données doivent être « efficaces »
 - On utilise un SGBD pour gagner du temps. Si une recherche manuelle est plus rapide, le SGBD perd de son intérêt!
 - Il faut notamment des accès aux mémoires secondaires efficaces.
 - Point de vue « programmeur »
 - un SGBD doit pouvoir s'utiliser facilement avec un langage de programmation «classique»
 - Dans de nombreuses applications on peut avoir besoin d'accéder par programme à une base de données
 - par exemple, les langages PHP ou ASP couplés avec une base de données dans la création d'un site Web dynamique.

Qualités des SGBD – Manipulation des données

- Manipulation des données et de la base par des non-informaticiens
 - Les utilisateurs des BDD ne sont pas nécessairement des informaticiens
 - Il faut donc que le SGBD permette aux usagers d'accéder, de manipuler, de modifier, de mettre à jour les informations de la base facilement, sans une connaissance approfondie de la manière dont la base est « implémentée » sur la machine
 - Utilisation de langage de requête « simple », non-procéduraux comme QBE ou SQL.
 - Utilisation de requêtes effectuées « graphiquement »

Qualités des SGBD – Administration des données

- Deux fonctions essentielles liés à un SGBD
 - Définition des structures de stockage et des structures de données
 - Suivi de l'évolutions des données
- On parle d'administration des données

Qualités des SGBD – Non-redondance

- La non-redondance est liée à une administration cohérente des données
 - Il faut éviter la duplication « physique » des données
 - C'est-à-dire à la répétition en mémoire des mêmes informations
 - La redondance d'information entraîne
 - De la **perte** de mémoire secondaire
 - La nécessité de faire des mises à jour multiples
 - Des incohérences dans la base de données
 - La redondance d'information peut entraîner
 - Des incohérences dans la base et donc des incohérences dans les réponses aux requêtes
 - Des problèmes d'optimisation dans l'accès aux informations

Qualités des SGBD – Cohérence

- Respects des contraintes de définition des données
 - La vérification de la non-redondance des informations (transparent précédent) permet d'assurer une cohérence « structurelle » de la base
 - Les informations ne sont pas dupliquées et la structure de la base respecte certaines règles facilitant son administration.
 - Il s'agit ici de vérifier la cohérence « sémantique » des informations, c'est-à-dire la cohérence de leur valeur.
 - Chaque donnée stockée dans la base est définie par un certain nombre de propriétés elles-mêmes associées à des valeurs.
 - Ces valeurs ont un « domaine de définition », c'est-à-dire qu'elle respecte certaines contraintes
 - Un âge ne peut pas être un entier négatif

Qualités des SGBD – Partage des données

- « Partageabilité » des données
 - Partage des données simultanément/concurremment
 - Problématique de la **cohérence de la base**, mise à jour en même temps, etc.
 - Partage des données à des moments différents
 - Optimisation de la place mémoire utilisée
 - Problématique de cohérence des données, de non-duplication.
 - Il est important de savoir que plusieurs applications différentes peuvent modifier les mêmes données.

Qualités des SGBD – Sécurité des données

- Il est important de pouvoir protéger les données
 - Certaines données peuvent être « sensibles » et doivent n'être accessibles qu'à une certaine catégorie d'utilisateurs.
 - Il faut se prémunir contre les accès non autorisés et/ou mal intentionnés
 - C'est aussi un moyen de limiter les modifications accidentelles des données par des utilisateurs non avertis
- Il est donc nécessaire d'avoir une politique de sécurité
 - Problématique similaire à celle des systèmes d'exploitation
 - Présence de mécanismes pour autoriser, contrôler ou enlever les droits d'accès de n'importe quel usager (en général gérer par le(s) DBA)

Description des données - Principe

- Toute description de données consiste à définir les caractéristiques d'ensembles d'objets modélisés dans la base de données.
 - On modélise des ensembles d'objets des « classes » d'objets et non juste des objets particuliers.
 - Exemple dans une école, on modélise la classe d'objet « Etudiants » et non chaque étudiant en particulier
- Les objets particuliers sont définis par les programmes d'applications lorsque les utilisateurs insèrent ou mettent à jour des données.
 - Les objets particuliers doivent alors vérifier les propriétés de l'ensemble auquel ils appartiennent.

Description des données – Les ensembles

- Intuitivement un ensemble est une collection d'objets
 - On désigne souvent ces objets comme les éléments de l'ensemble
 - En général, un ensemble est formé d'éléments qui possèdent certaines propriétés communes.
 - C'est notamment le cas des ensembles que nous définirons dans le cadre des Bases de Données
- En informatique pour désigner un ensemble on utilise également souvent le terme de « classe ».

Description des données – Type d'objet

Notion de type d'objet

- Ensemble d'objets (ou classe d'objets) possédant des caractéristiques similaires et manipulables par des opérations identiques
 - exemple 1 : le type d'objet Entier
 - représente les entiers relatifs {0, +/-1, +/-2, ..., +/-N, ... +/-∞}
 - est associé aux opérations {+, -, /, *,}.
 - exemple 2 : le type d'objet Livre
 - représente un livre dans la base d'un centre de documentation.
 - est caractérisé par son titre, son ou ses auteurs, un numéro identifiant, etc.
 - est associé des opérations de création, modification, destruction, consultation, duplication.
 - Ces opérations sont des opérations standards sur de nombreux objets

Description des données – Instance d'objet

- Notion d'instance d'objet
 - Une instance d'objet est un élément particulier d'un ensemble d'objets.
 - Le terme "occurrence d'objet" est aussi parfois utilisé.
 - Par abus de langage on parle souvent directement d'« objet ».
 - Une instance est caractérisée par un identifiant, des propriétés et des valeurs pour ces propriétés
- Exemple 1 : l'entier 10 est une instance du type d'objet Entier
- Exemple 2 : le livre « Le nom de la rose » de Umberto Eco est une instance du type d'objet Livre.
 - caractérisé par les propriétés "titre", "auteur", etc.
 - pour cette instance particulière de livre, les valeurs pour les propriétés "titre" et "auteur" sont "Le nom de la rose" et "Umberto Eco".

Description des données – "Data Model"

- Modèle de description des données (Data Model)
 - Décrire des données se ramène à définir un type d'objet
 - Des éléments descriptifs permettent de décrire les propriétés d'ensembles d'objets :
 - Ces éléments descriptifs sont nommés caractéristiques, propriétés ou attributs
 - A partir de ces éléments descriptifs on compose un modèle de description de données qui peut se définir comme :
 - Un ensemble de concepts, et de règles de composition de ces concepts, permettant de décrire des données.

Description des données – LDD

- Langage de description de données (LDD)
 - On parle aussi de langage de définition de données
 - Le modèle de description des données doit être exprimée par un langage
 - Le modèle de description de données est souvent représenté de manière graphique
 - Le modèle entité association par exemple fournit un tel formalisme graphique permettant de décrire des modèles de données.
 - Un langage de description de données est donc :
 - Un langage supportant un modèle et permettant de décrire les données d'une base de données d'une manière assimilable par une machine.

Description des données – schéma de données

- Schéma de données
 - La description d'un ensemble de données particulier, correspondant par exemple à une application, à l'aide d'un langage de description donne naissance à un schéma.
 - Un schéma est une description au moyen d'un langage déterminé d'un ensemble de données particulier.
 - C'est donc une **abstraction** résultant de l'application d'un **modèle de données** à l'univers réel.

- Afin d'assurer les objectifs d'indépendance logique et physique, on distingue 3 niveaux de description de données pour l'architecture fonctionnelle d'un SGBD :
 - Niveau externe
 - Niveau logique ou niveau conceptuel
 - Niveau interne ou niveau physique
- ces 3 niveaux de description de données sont définit par la norme AINSI/SPARC.

- La base conceptuelle est une abstraction de la base physique
- Les vues définies au niveau externe sont des abstractions de la base conceptuelle

Niveau conceptuel

- Il correspond à la structure canonique des données
- Il décrit :
 - les données qui sont actuellement stockées dans la base
 - les liens entre ces données,
 - ne se soucie pas de la manière dont cela doit être implantée sur la machine
- Il permet de définir :
 - Les types de données élémentaires qui définissent les attributs des objets que l'on souhaite modéliser.
 - Par exemple : nom, prénom, matricule etudiant, date de naissance, etc.
 - Les types de données composées qui permettent de décrire les entités et les associations du monde réel
 - Par exemple : Etudiants, Enseignants, Classes, Utilisateurs, etc.
 - Les éventuelles règles et contraintes d'intégrité.

Niveau physique

- Il correspond à la structure de stockage des données
- Il permet de décrire :
 - Les **fichiers** avec leur nom, leur organisation, leur localisation, etc.
 - Les articles de ces fichiers (longueur, champs, composants, etc.)
 - Les articles : ce qui est contenu dans ces fichiers
 - Les chemins d'accès aux données (index, chaînage, etc.)
- Attention: on est au niveau "implémentation", on se pose des questions d'ordre "technique

Administrateur de données

- La ou les personnes responsables de la définition de schémas de bases de données.
- Elle regroupe 3 rôles distincts :
 - Administrateur de bases de données : rôle de définition du schéma interne (i.e. de la base physique) et des règles de correspondance entre les schémas interne et conceptuel.
 - Administrateur d'entreprise : rôle de définition du schéma conceptuel.
 - Administrateur d'application : rôle de définition des schémas externes et des règles de correspondances entre les schémas externe et conceptuel.

Dictionnaire des données

 Ensemble des schémas et des règles de passage entre les schémas associés à une base de donnés, combinés à une description de la signification des données

Métabase

Dictionnaire de données organisé sous forme de base de données qui décrit les autres bases.

Architecture fonctionnelle des SGBD : En résumé...

- Un seul schéma interne, un seul schéma conceptuel, plusieurs schémas externes
 - Pour une BDD particulière, il existe un seul schéma interne et un seul schéma conceptuel, mais par contre il peut exister plusieurs schémas externes.
- Schéma conceptuel
 - Description des données d'une entreprise ou d'un domaine en terme de types d'objets et de liens logiques, indépendamment de toute représentation en machine.
 - Cette description correspond à une vue canonique globale de l'entreprise ou du domaine modélisé.
 - canonique signifie qui se conforme à un ensemble de règles.
 - vue canonique signifie donc une vue qui se conforme à un ensemble de règles propres à l'entreprise ou au domaine

Architecture fonctionnelle des SGBD : En résumé...

- Schéma interne
 - Description des données d'une base en termes de représentation physique en machine.
 - Cette description correspond à une spécification des structures de mémorisation et des méthodes de stockage et d'accès utilisées pour ranger et retrouver les données sur disques
- Schéma externe
 - Description d'une partie de la base de données,
 - Les vues sont extraites ou calculées à partir de la base physique,
 - Elles correspondent à la vision d'un programme ou d'un utilisateur
 - Un schéma externe correspond donc à un arrangement particulier de certaines données.

SEJEN

POWERING DECISION MAKING

