

If $A \cap B = \emptyset$, then $P[A \cup B] = P[A] + P[B]$ Consequences of these axioms:

 $P[\emptyset] = 0$

 $P[A^c] = 1 - P[A]$

 $P[A \cup B] = P[A] + P[B] - P[A \cap B]$

4. If $A \subseteq B$, then $P[A] \leq P[B]$

Union bound: $P[A \cup B] \leq P[A] + P[B]$ More probability

Conditional probability: $P[A|B] \triangleq \frac{P[A \cap B]}{P[B]}$,

 $P[A|B] \ge 0$

P[S|B] = 1

c) If $A = A_1 \cup A_2 \cup \cdots$ with $A_i \cap A_i = \emptyset$ for $i \neq j$, then $P[A|B] = P[A_1|B] + P[A_2|B] + \cdots$

Law of total probability: $P[B] = \sum_{i=1}^{n} P[B|A_i]P[A_i]$ Bayes' Theorem: $P[A_i|B] = \frac{P[B|A_i]P[A_i]}{P[B_i]}$

Independence: $P[A \cap B] = P[A]P[B]$ Disjoint: $P[A \cap B] = P[\emptyset] = 0$

INDEPENDENT EVENTS AIN'T DISJOINT AND VICE VERSA Bernoulli trials: Find probability of an outcome after n trials Reliability Problem (series): If one fails, whole thing fails Reliability Problem (parallel): If all fails, whole thing fails

Conditioning continuous RV

Cond. PDF: $f_{X|B}(x) = \begin{cases} \frac{f_X(x)}{P[B]} & x \in B \\ 0 & otherwise \end{cases}$, $E[X|B] = \int_{-\infty}^{\infty} x f_{X|B}(x) dx$, $VAR[X|B] = E[X^2|B] - E[X|B]^2$ Memoryless property: Let X be an exponential RV

 $f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & otherwise \end{cases}, F_X(x) = 1 - e^{-\lambda x} \quad x \ge 0$

Then we have P[X > x + h|X > x] = P[X > h]

Discrete random variables Probability mass function: Range of an RV: $S_X \subseteq \mathbb{R}$ Range of an RV: $S_X \subseteq \mathbb{R}$ $p_X(x) = P[X = x]$ Discrete RV: $S_X = \{x_z, x_2, \dots\}$ 1. For any $x, p_X(x) \ge 0$ Continuous RV: S_X is an $2. \quad \sum_{x \in S_X} p_X(x) = 1$ uncountable set 3. For any event $B \subseteq S_X$, Mixed RV: If it has $P[B] = \sum_{x \in B} p_X(x)$ elements of both