Ficha 4: Aplicação da derivada

4.1 Teoremas com a derivada

Definição 4.1 (extremo local) Sejam f uma função, $I \subset D_f$ um intervalo $e \ x_0 \in I$.

- f admite um mínimo local em x_0 (ou x_0 é um minimizante local) se existe $\tau > 0$ tal que $\forall x \in I \cap B(x_0, \tau), \ f(x) \geq f(x_0)$.
- f admite um mínimo local estrito em x_0 (ou x_0 é um minimizante local estrito) se existe $\tau > 0$ tal que $\forall x \in I \cap B(x_0, \tau)$ e $x \neq x_0$, $f(x) > f(x_0)$.
- f admite um máximo local em x_0 (ou x_0 é um maximizante local) se existe $\tau > 0$ tal $que \ \forall x \in I \cap B(x_0, \tau), \ f(x) \leq f(x_0).$
- f admite um máximo local estrito em x_0 (ou x_0 é um maximizante local estrito) se existe $\tau > 0$ tal que $\forall x \in I \cap B(x_0, \tau)$ e $x \neq x_0$, $f(x) < f(x_0)$.

Chama-se extremo local (estrito) um máximo ou um mínimo local (estrito).

Teorema 4.1 (Fermat)

Seja f um função definida em]a,b[. Se $x_0 \in]a,b[$ é um extremo local e se f derivável em \bar{x} então $f'(\bar{x})=0$.

Teorema 4.2 (Rolle)

Seja f uma função contínua no intervalo [a,b], derivável em]a,b[. Se f(a)=f(b)=0 então existe $\bar{x} \in]a,b[$ tal que $f'(\bar{x})=0$.

Teorema 4.3 (Lagrange)

Seja f uma função contínua no intervalo [a,b], derivável em]a,b[. Então existe $\bar{x} \in]a,b[$ tal que $f(b)-f(a)=f'(\bar{x})(b-a)$.

Do mesmo modo, uma outra forma popular do teorema é obtida notando h = b - a, $x_0 = a$.

Corolário 4.1

Seja f uma função contínua no intervalo $[x_0, x_0 + h]$, derivável em $]x_0, x_0 + h[$. Então existe $\theta \in]0, 1[$ tal que $f(x_0 + h) = f(x_0) + hf'(x_0 + \theta h)$.

Proposição 4.1

Seja f uma função contínua no intervalo [a,b], derivável em]a,b[. Se $\forall x \in]a,b[$, f'(x)=0 então f \acute{e} uma função constante.

Proposição 4.2

Seja f uma função contínua no intervalo [a,b], derivável em [a,b].

- 1. f' é não negativa (resp. não positiva) \Leftrightarrow f é crescente (resp. decrescente).
- 2. f' é positiva (resp. negativa) \Rightarrow f é estritamente crescente (resp. decrescente).

Proposição 4.3 (Regra de Cauchy)

Sejam f e g duas funções contínuas em [a, b], deriváveis em]a, b[. Supomos além de mais que $q'(x) \neq 0$ no intervalo [a, b[, então existe $\bar{x} \in]a, b[$ tal que

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\bar{x})}{g'(\bar{x})}.$$

4.1.1 A regra de l'Hospital

Proposição 4.4 (Regra de l'Hospital)

Sejam f e g duas funções de $C^1(|x_0-\tau,x_0+\tau|)$ tal que

- f, g são não nulas exceto em x_0 e $f(x_0) = g(x_0) = 0$.
- $q'(x_0) \neq 0$

•
$$Se \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \ell$$
 $ent\tilde{a}o \lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell$. • $Se \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \pm \infty$ $ent\tilde{a}o \lim_{x \to x_0} \frac{f(x)}{g(x)} = \pm \infty$.

m NOTA~4.1~A prova mostra que a regra de l'Hospital também funciona com as derivadas laterais e derivadas de ordem superior.

EXEMPLO 4.1 Calcular o limite em $x_0 = 0$ de $\frac{\sin(x)}{x}$. Sejam $f(x) = \sin(x)$ e g(x) = x. Verificamos que ambos f(0) = g(0) = 0. Do outro lado, temos $g'(0) = 1 \neq 0$. Por consequência, podemos aplicar a regra de l'Hospital e temos

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1.$$

Tecnica de substituição Calcular o limite em $x_0 = 0$ de $\frac{\ln(1+x^3)}{x^3}$ Consideramos a substituição $y = x^3$. Temos $\lim_{x\to 0} y = 0$ logo

$$\lim_{x \to 0} \frac{\ln(1+x^3)}{x^3} = \lim_{y \to 0} \frac{\ln(1+y)}{y}.$$

Sejam $f(y) = \ln(1+y)$, g(y) = y, verificamos f(0) = g(0) = 0 assim que $g'(0) = 1 \neq 0$. Podemos usar a regras de l'Hospital e deduzimos

$$\lim_{y \to 0} \frac{1/(1+y)}{1} = 1.$$

Tecnica de separação Calcular o limite em $x_0 = 0^+$ de $\frac{\ln(1+x)}{x^3}$. Escrevemos a função em duas partes (separação) como

$$\frac{\ln(1+x)}{x^3} = \frac{\ln(1+x)}{x} \frac{1}{x^2} = \frac{f(x)}{g(x)} h(x).$$

Usando o caso anterior, temos

$$\lim_{x \to 0^+} \frac{\ln(1+x)}{x^3} = \lim_{x \to 0^+} \frac{\ln(1+x)}{x} \lim_{x \to 0^+} \frac{1}{x^2} = 1 \times +\infty = +\infty.$$

4.2 Extremos locais, concavidade, convexidade

Definição 4.2 (Ponto crítico) Seja $f \in C^1(I)$. $x_0 \in I$ é um ponto crítico se $f'(x_0) = 0$.

Proposição 4.5

Seja $f \in C^1(I)$ tal que f' é derivável em I e $x_0 \in I$. Temos as asserções seguintes

- 1. Se f admite um mínimo local em x_0 então $f'(x_0) = 0$ e $f''(x_0) \ge 0$.
- 2. Se f admite um máximo local em x_0 então $f'(x_0) = 0$ e $f''(x_0) \le 0$.
- 3. Se $f'(x_0) = 0$ e $f''(x_0) > 0$ então f admite um mínimo local estrito em x_0 .
- 4. Se $f'(x_0) = 0$ e $f''(x_0) < 0$ então f admite um máximo local estrito em x_0 .

NOTA 4.2 Se $f'(x_0) = 0$ e $f''(x_0) = 0$ nada podemos concluir com apenas estes dois argumentos.

Definição 4.3 (concavidade, convexidade) $Seja \ f \in C^0(I)$.

 $A \ função \ \'e \ concava \ em \ I \ se \ \forall x,y \in I, \ \forall \theta \in [0,1] \ temos \ f(\theta x + (1-\theta)y) \geq \theta f(x) + (1-\theta)f(y).$

A função é convexa em I se $\forall x, y \in I$, $\forall \theta \in [0, 1]$ temos $f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$.

Proposição 4.6

Seja $f \in C^2(I)$.

A função é concava em I se e somente se $\forall x \in]a, b[, f''(x) \leq 0.$

A função é concava em I se e somente se a função f' é decrescente em]a,b[.

A função é convexa em I se e somente se $\forall x \in]a, b[, f''(x) \ge 0.$

A função é convexa em I se e somente se a função f' é crescente em]a,b[.

Definição 4.4 (ponto de inflexão) Seja $f \in C^2(I)$. x_0 é um ponto de inflexão de f se $f''(x_0) = 0$.

4.3 Aproximação polinomial

Teorema 4.4 (desenvolvimento Taylor de ordem 2)

Seja uma função $f \in C^1([a,b])$ tal que $f^{(1)}$ é derivável em]a,b[. Então existe $\xi \in]a,b[$ tal que

$$f(b) = f(a) + \frac{f^{(1)}(a)}{1!}(b-a)^1 + \frac{f^{(2)}(\xi)}{2!}(b-a)^2.$$

Seja $a = x_0$ e $b = x_0 + h$, existe $\theta \in]0,1[$ tal que

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{f''(x_0 + \theta h)}{2}h^2.$$

A extensão do teorema de Taylor para qualquer ordem é a seguinte.

Teorema 4.5 (desenvolvimento Taylor de ordem k)

Seja uma função $f \in C^k([a,b])$ tal que $f^{(k)}$ é derivável em]a,b[. Então existe $\xi \in]a,b[$ tal que

$$f(b) = \sum_{i=0}^{k} \frac{f^{(i)}(a)}{i!} (b-a)^{i} + \frac{f^{(k+1)}(\xi)}{(k+1)!} (b-a)^{k+1}.$$

Em particular, seja $a=x_0$ e $b=x_0+h$, existe $\theta\in]0,1[$ tal que

$$f(x_0 + h) = \sum_{i=0}^{k} \frac{f^{(i)}(x_0)}{i!} h^i + \frac{f^{(k+1)}(x_0 + \theta h)}{(k+1)!} h^{k+1}.$$

Definição 4.5 As funções
$$p_k(h;x_0) = \sum_{i=0}^k \frac{f^{(i)}(x_0)}{i!} h^i$$
 $e \ R_k(h;x_0) = \frac{f^{(k+1)}(x_0+\theta h)}{(k+1)!} h^{k+1}$

são respetivamente o polínomio e o resto de Taylor de ordem k. $p_k(h; x_0)$ representa uma aproximação de f de ordem k na vizinhança do ponto x_0 .

EXEMPLO 4.2 Dar uma aproximação de ordem 3 no ponto $x_0 = 0$ da função $f(x) = e^x$. Calculamos as derivadas áte o ordem 3 e temos f(0) = f'(0) = f''(0) = f'''(0) = 1 e deduzimos $p(h) = p_3(h;0) = 1 + h + \frac{h^2}{2} + \frac{h^3}{6}$. Podemos verificar que $p(h) \approx e^h$ quando h < 0.1.

EXEMPLO 4.3 Determinar $\lim_{x\to 0}\frac{\cos(x)-1}{x^2}$ usando o desenvolvimento de Taylor de ordem 2. Temos $f(x)=f^{(0)}(x)=\cos(x)-1,\ f^{(1)}(x)=-\sin(x),\ f^{(2)}=-\cos(x),\ f^{(3)}(x)=\sin(x).$ O polinómio e o resto de Taylor escreve-se

$$p_2(h;0) = \frac{f^{(0)}(0)}{0!}h^0 + \frac{f^{(1)}(0)}{1!}h^1 + \frac{f^{(2)}(0)}{2!}h^2 = -\frac{h^2}{2}, \quad R_2(h;0) = \frac{f^{(3)}(\theta h)}{h!}h^3, \quad \theta \in]0,1[.$$

Usando o desenvolvimento de Taylor $f(h) = p_2(h; 0) + R_2(h; 0)$ deduzimos

$$\lim_{h \to 0} \frac{f(h)}{h^2} = \lim_{h \to 0} \frac{-h^2/2 + \sin(\theta h)h^3/6}{h^2} = -\frac{1}{2} + \lim_{h \to 0} \frac{h}{6}\sin(\theta h) = -\frac{1}{2}.$$

4.4 Exercícios

Exercício 1 Demonstrar que se f'(x) > 0 no intervalo a, b então a, b estritamente crescente no intervalo a, b então a, b estritamente crescente no intervalo a, b então a, b estritamente crescente no intervalo a, b então a, b então

Exercício 2 Demonstrar que $x \to y = f(x)$ é uma equação da reta no intervalo [a, b] se e somente se f'(x) é constante no intervalo [a, b] usando o teorema de Lagrange.

Exercício 3 Usando a regra de l'Hospital, determine os limites seguintes.

1.
$$\lim_{x \to 0} \frac{\sinh(x)}{x}$$
, $\lim_{x \to 0} \frac{\ln(1-x)}{x}$, $\lim_{x \to 0^+} \frac{\tan(x)}{\sqrt{x}}$, $\lim_{x \to 0} \frac{\exp(2x) - 1}{3x}$.

2.
$$\lim_{x \to 0} \frac{e^{x^2} - 1}{x}$$
, $\lim_{x \to 0} \frac{\sin(x)}{\arcsin(x)}$, $\lim_{x \to 0} \frac{\arg \sinh(x)}{x}$, $\lim_{x \to 1} \frac{\cos(x - 1) - 1}{x - 1}$.

3.
$$\lim_{x \to 0} \frac{\tan(\pi x)}{\sin(x)}, \qquad \lim_{x \to 0} \frac{\ln(1+3x)}{x^3}, \qquad \lim_{x \to +\infty} \frac{e^x}{x}, \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x}.$$

4.
$$\lim_{x \to 0^+} \frac{\tan(x)}{x^3}$$
, $\lim_{x \to 0^+} \frac{\sinh(x^2)}{x^2}$, $\lim_{x \to 0} \frac{\tan(x^3)}{x}$.

Exercício 4 Determinar os extremos locais (relativos) das funções seguintes e precisar se são estritos ou não.

1.
$$f(x) = x - 3x^{1/3}$$
, $f(x) = x + \cos(x)$, $f(x) = x - \ln(x)$, $f(x) = (1+x)e^{-x}$,

2.
$$f(x) = |x^2 - x|$$
, $f(x) = \frac{x}{1 + x^2}$, $f(x) = x - \arctan(x)$ $f(x) = x \cosh(x)$.

Exercício 5 Determinar os pontos críticos, a natureza dos pontos críticos e os intervalos onde a função é concava ou convexa.

1.
$$f(x) = x \ln(x^2 + 1)$$
, $f(x) = \arctan(4x)$, $f(x) = x + \sin(x)$.

2.
$$f(x) = x \ln(|1+x|)$$
, $f(x) = e^{x^2+1}$.

Exercício 6 Determinar o desenvolvimento de Taylor de ordem k no ponto 0 das funções seguintes.

1.
$$f(x) = e^{3x} \operatorname{com} k = 3$$
, $f(x) = \sin(2x) \operatorname{com} k = 3$, $f(x) = \frac{1}{1-x} \operatorname{com} k = 4$.

2.
$$f(x) = \ln(1+x)$$
 com $k = 2$ e deduzir o limite $\lim_{x \to 0} \frac{\ln(1+x) - x}{x^2}$.

3.
$$f(x) = \ln(1 - 2x)$$
 com $k = 2$ e deduzir o limite $\lim_{x \to 0^+} \frac{f(x)}{x^2}$.

Exercício 7 Calcular uma aproximação usando o polinómio de Taylor.

- 1. $\exp(\frac{1}{10})$ com $p_3(h;0)$ da função $\exp(x)$.
- 2. $\ln(0.9)$ com $p_2(h; 0)$ da função $\ln(1-x)$.
- 3. $\sin(\pi/2 + \pi/10)$ com $p_3(h; 0)$ da função $\sin(\pi/2 + x)$.

Solução 1

Sejam $x, y \in I$ tal que x < y. O teorema de Lagrange implica que existe $z \in]x, y[$ tal que f(y) - f(x) = f'(z)(y-x). Como y-x>0 e f'(z)>0 por hipotese, temos f(y)-f(x)>0. Logo f é estritamente crescente.

Solução 2

 \Rightarrow Suposmos que $f'(z) = \alpha$, para qualquer $z \in I$ então seja x > a, existe $z \in]a,x[$ tal que $f(x) - f(a) = \alpha(x-a)$, seja $f(x) = \alpha x + f(a) - \alpha a$.

 \Leftarrow Se f é a equação de uma reta então $f(x) = \alpha x + \beta$ com $\alpha, \beta \in \mathbb{R}$. Logo $f'(x) = \alpha$.

Solução
$$\frac{3}{1}$$
. $\lim_{x \to 0} \frac{\sinh(x)}{x} = 1$, $\lim_{x \to 0} \frac{\ln(1-x)}{x} = -1$, $\lim_{x \to 0} \frac{\tan(x)}{\sqrt{x}} = 0$, $\lim_{x \to 0} \frac{\exp(2x) - 1}{3x} = \frac{2}{3}$.

2.
$$\lim_{x \to 0} \frac{e^{x^2} - 1}{x} = 0$$
, $\lim_{x \to 0} \frac{\sin(x)}{\arcsin(x)} = 1$, $\lim_{x \to 0} \frac{\arg \sinh(x)}{x} = 1$, $\lim_{x \to 1} \frac{\cos(x - 1) - 1}{x - 1} = 1$

3.
$$\lim_{x \to 0} \frac{\tan(\pi x)}{\sin(x)} = \pi, \qquad \lim_{x \to 0} \frac{\ln(1+3x)}{x^3} = +\infty, \qquad \lim_{x \to +\infty} \frac{e^x}{x} = +\infty, \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0.$$

Solução 4

- 1. (i) $f(x) = x 3x^{1/3}$: mínimo estrito em 1, (ii) $f(x) = x + \cos(x)$: pontos críticos $-\pi/2 + 2k\pi$, ponto de inflexão, (iii) $f(x) = x \ln(x)$: mínimo estrito em 1, (iv) $f(x) = (1+x)e^{-x}$: máximo estrito em 0,
- 2. (i) $f(x) = |x^2 x|$: mínimo estrito em 0 e 1, (ii) $f(x) = \frac{x}{1 + x^2}$: mínimo estrito em -1 e máximo estrito em 1, (iii) $f(x) = x \arctan(x)$: ponto de inflexão em 0, (iv) $f(x) = x \cosh(x)$: ponto de inflexão em 0.

Solução 5

- 1. (i) $f(x) = x \ln(x^2 + 1)$: ponto de infexão em 0, função convexa em \mathbb{R} , (ii) $f(x) = \arctan(4x)$: não há ponto crítico, função convexa em \mathbb{R} , (iii) $f(x) = x + \sin(x)$: pontos de inflexão em $\pi + 2k\pi$, função convexa em \mathbb{R} .
- 2. (i) $f(x) = x \ln(|1+x|)$: ponto de infexão em 0, concava se x < -2 e convexa se x > -2, (ii) $f(x) = e^{x^2+1}$: função convexa com mínimo estrito em 0.

Solução 6

1. (i)
$$p_3(h;0) = 1 + 3h + \frac{9}{2}h^2 + \frac{9}{2}h^3$$
 $e R_3(h;0) = \frac{27}{4}\exp(\theta h)h^4$, (ii) $p_3(h;0) = 2h - \frac{4}{3}h^2$ $e R_3(h;0) = \frac{3}{2}\sin(\theta h)h^4$, (iii) $P_4(h;0) = 1 + h + h^2 + h^3 + h^4$ $e R_4(h;0) = \frac{h^5}{1-\theta h}$.

2.
$$f(x) = \ln(1+x)$$
, $f^{(1)}(x) = \frac{1}{1+x}$, $f^{(2)}(x) = \frac{-1}{(1+x)^2}$, $f^{(3)}(x) = \frac{2}{(1+x)^3}$. $p_2(h;0) = h - \frac{h^2}{2}$ $e^{-h^2}(h;0) = \frac{h^3}{3(1+\theta h)^3}$.

$$\lim_{h\to 0}\frac{\ln(1+h)-h}{h^2}=\lim_{h\to 0}\frac{-h^2/2+\frac{h^3}{3(1+\theta h)^3}}{h^2}=\lim_{h\to 0}-1/2+\frac{h}{3(1+\theta h)^3}=-\frac{1}{2}.$$

3.
$$f(x) = \ln(1-2x)$$
, $f^{(1)}(x) = \frac{-2}{1-2x}$, $f^{(2)}(x) = \frac{-4}{(1-2x)^2}$, $f^{(3)}(x) = \frac{-16}{(1-2x)^3}$. $p_2(h;0) = -2h - 2h^2$
 $R_2(h,0) = -\frac{8}{3} \frac{h^3}{(1-2\theta h)^3}$

$$\lim_{h\to 0^+}\frac{\ln(1-2h)}{h^2}=\lim_{h\to 0^+}\frac{-2h-2h^2-8/3\frac{h^3}{(1-2\theta h)^3}}{h^2}==\lim_{h\to 0^+}-\frac{2}{h}-2-8/3\lim_{h\to 0^+}\frac{h}{(1-2\theta h)^3}=-\infty.$$

Solução 7

1.
$$p_3(h,0) = 1 + h + h^2/2 + h^3/6$$
 logo $exp(0.1) \approx p_3(1/10,0) = 1 + \frac{1}{10} + \frac{1}{200} + \frac{1}{6000} = \frac{6631}{6000}$.

2.
$$p_2(h,0) = -h - h^2 \log_0 \ln(0.9) \approx p_2(0.1,0) = -\frac{11}{100}$$

3.
$$p_3(h,0) = 1 - h^2/2 \log_0 \sin(\pi/2 + \pi/10) \approx \frac{200 - \pi^2}{200}$$
.