Contents

I. Description of the
en Hartog R., Moles
di P., Rhee G., Gerbal D., Giuricin 8
II. The distribution of ers
R., Biviano A., , Gerbal D.,
, Moles M., Perea 31
49
102 casa D., Jones D.L.,
66 laxies
75
ds in the inner disk of
rcluster 353
ars and PHL 1657
ann P.L. 371
381
ft X-ray spectra ichter G.A., Kroll
384
. 401
Elliptical calibrators H., Paturel G. 412
n extragalactic radio
419
nno R. 715
ngellanic-type galaxy
ldi A. 722
in NGC 4565 Burillo S., Zylka R.,

The rotation curve of the cluster galaxy DC 1842–62 No. 24 does not decrease Amram P., Balkowski C., Boulesteix J., Cayatte V.,	727	Spectropolarimetry of symbiotic stars. On the binary orbit and the geometric structure of V 1016 Cygni Schild H., Schmid H.M.	211
Marcelin M., Sullivan III W.T. On the evolution of iron and oxygen abundances in the Large Magellanic Cloud	737	On the internal dynamics of turbulent plumes in the context of stellar convection Bonin P., Rieutord M.	221
Pilyugin L.S. Dynamical friction in head-on galaxy collisions. II. N-body simulations of radial and non-radial encounters Séguin P., Dupraz C.	751 757	Further characteristics of the young triple system TY Coronae Austrinae Corporon P., Lagrange A.M., Beust H. Spectropolarimetric orbits of symbiotic stars: SY Muscae	228
Galactic structure and dynamics		Harries T.J., Howarth I.D. Search for neutron star spin periods in X-ray bursts	235
The dynamics of planetary nebulae in the Galaxy. Evidence for a third integral	97	Jongert H.C., van der Klis M. Absorption line profiles in the early development of nova V 1500 Cygni	474
Durand S., Dejonghe H., Acker A. The evolution of D and ³ He in the Galactic disk Prantzos N.	106	Friedjung M., Mikolajewska J., Mikolajewski M. Three-body crystallization diagrams and the cooling of white dwarfs	477
Where are the hot horizontal branch stars in the Galactic Bulge? Partelli G. Prassan A. Chiosi C. Na V.K.	115	Segretain L. The Scenario Machine: restrictions on key parameters of	485
Bertelli G., Bressan A., Chiosi C., Ng Y.K. The chemical composition towards the galactic anti-centre. II. Differential abundance analyses and distance determinations	113	binary evolution Lipunov V.M., Postnov K.A., Prokhorov M.E. Probability imaging of a few double stars from one-dimen-	489
Smartt S.J., Dufton P.L., Rolleston W.R.J. Alpha-tensor and diffusivity tensor due to supernovae and superbubbles in the Galactic disk near the Sun	123	sional near-infrared speckle data Carbillet M., Ricort G., Aime C., Perrier C. The influence of a magnetic field of the secondary star on	508
Ferrière K. The galactic structure towards the Galactic Centre. III. A	438	dwarf nova outbursts	519
study of Baade's Window: discovery of the bar population? Ng Y.K., Bertelli G., Chiosi C., Bressan A.	771	evolved binary stars Melo C.H.F., De Medeiros J.R.	797
Stellar clusters and associations ROSAT X-ray observations of the young cluster IC 348	156	ROSAT X-ray observations of a complete, volume-limited sample of late-type giants Hünsch M., Schmitt J.H.M.M., Schröder KP., Reimers D.	801
Preibisch T., Zinnecker H., Herbig G.H.	456	Hybrid stars and the reality of "dividing lines" among G to K bright giants and supergiants	001
Formation, structure and evolution of stars (RN) VLA observations of the magnetic cataclysmic varia-		Reimers D., Hünsch M., Schmitt J.H.M.M., Toussaint F.	813
 ble BY Camelopardalis Mason P.A., Fisher P.L., Channugam G. A study on pulsar inner-gap sparking comparing inverse 	132	Infrared and millimeter observations of the galactic superluminal source GRS 1915+105 Chaty S., Mirabel I.F., Duc P.A., Wink J.E.,	
Compton scattering and curvature radiation processes <i>Zhang B., Qiao G.J.</i>	135	Rodríguez L.F. CCD photometry of a δ Scuti variable in an open cluster:	825
Variability of classical T Tauri stars. Its relation to the accretion process	1.12	V 650 Tau in the Pleiades Kim SL., Lee SW. Combined stellar structure and atmosphere models for mass	831
Fernández M., Eiroa C. The early-type multiple system η Orionis. II. Line profile variations in component Ab	143	Combined stellar structure and atmosphere models for massive stars. I. Interior evolution and wind properties on the main sequence Schaerer D., de Koter A., Schmutz W., Maeder A.	837
De Mey K., Aerts C., Waelkens C., Van Winckel H. Rotational modulation and flares on RS Canum Venaticorum and BY Draconis stars. XIX. Simultaneous IUE, ROSAT, VLA, and visual observations of TY Pyxidis	164	A search for multiperiodic line profile variations in the Be star 48 Librae Floquet M., Hubert A.M., Hubert H., Janot-Pacheco	
Neff J.E., Pagano I., Rodonò M., Brown A., Dempsey R.C., Fox D.C., Linsky J.L.	173	E., Caillet S., Leister N.V. SIGMA hard X-ray observations of the Galactic Bulge source	849
The β Pictoris circumstellar disk. XXII. Investigating the model of multiple cometary infalls Beust H., Lagrange AM., Plazy F., Mouillet D.	181	SLX 1735–269 Goldwurn A., Vargas M., Paul J., Faisse S., Bouchet L., Borret V., Roques J.P., Mandrou P., Sunyaev R.,	
The masing environment of star-forming object IRAS 00338+6312: Disk, outflow, or both? Fiebig D., Duschl W.J., Menten K.M., Tscharnuter		Churazov E., Gilfanov M., Khavenson N., Dyachkov A., Sheikhet A., Kremnev R., Kovtunenko V.	857
W.M.	199		

The 218-day period of the peculiar late B-type star HD 101584		Diffuse matter in space (including $H\mbox{II}$ regions and planetary nebulae)	
Bakker E.J., Lamers H.J.G.L.M., Waters L.B.F.M., Waelkens C.	861	The filamentary structure of the interface between the atomic and the molecular phases in NGC 7023 Fuente A., Martín-Pintado J., Neri R., Rogers C.,	
Stellar atmospheres		Moriarty-Schieven G.	286
The ORFEUS FUV spectrum of the WN5 star EZ Canis Majoris Mandel H., Appenzeller I., Barnstedt J., Gölz M., Grewing M., Gringel W., Haas C., Hopfensitz W.,	220	Far-infrared emission of PAH molecules (14–40 µm): a preparation for ISO spectroscopy Moutou C., Léger A., d'Hendecourt L. The optical jet of RW Aurigae: excitation temperature and	297
Kappelmann N., Krämer G., Krautter J. Atmospheric models of flare stars: the flaring state of AD Leonis	239	ionization state from long-slit spectra Bacciotti F., Hirth G.A., Natta A. The ionization fraction in dense clouds	309
Mauas P.J.D., Falchi A.	245	de Boisanger C., Helmich F.P., van Dishoeck E.F.	315
The unusual circumstellar environment of the evolved star, U Equulei Prophysics C. Organt A. Marris M.	259	FUV irradiated molecular clumps: spherical geometry and density gradients	502
Barnbaum C., Omont A., Morris M. The radio spectrum of magnetic chemically peculiar stars	239	Störzer H., Stutzki J., Sternberg A.	592
Leone F., Umana G., Trigilio C. The chemical composition of the field blue stragglers	271	The shaping of aging planetary nebulae Xilouris K.M., Papamastorakis J., Paleologou E., Terzian Y.	603
Andrievsky S.M., Chernyshova I.V., Kovtyukh V.V. Determination of mass flow rates in AM Herculis binaries.	277	Spectral analysis of the multiple-shell planetary nebula LoTr 4 and its very hot hydrogen-deficient central star	
I. General method and application to UZ Fornacis Rousseau T., Fischer A., Beuermann K., Woelk U.	526	Rauch T., Köppen J., Werner K.	613
Linear spectropolarimetry of the H α emission line of ζ Puppis	320	Near-IR imaging and spectroscopy of DR 21: a case for supersonic turbulence <i>Davis C.J., Smith M.D.</i>	961
Harries T.J., Howarth I.D.	533	(RN) A search for HCCN in molecular clouds	
The β Pictoris circumstellar disk. XXI. Results from the December 1992 spectroscopic campaign Lagrange AM., Plazy F., Beust H., Mouillet D.,		McGonagle D., Irvine W.M. The Sun	970
Deleuil M., Ferlet R., Spyromilio J., Vidal-Madjar A.,			
Tobin W., Hearnshaw J.B., Clark M., Thomas K.W. Metal line strengths of blue stragglers towards the young galactic association Perseus OB 1	547	A search for formation-height oscillations in umbrae Berger B., Balthasar H., Schleicher H., Wiehr E., Wöhl H.	328
Kendall T.R., Dufton P.L., Lennon D.J.	564	The Sun as a polarimetric variable star Clarke D., Fullerton S.R.	331
ROSAT X-ray observations of the Wolf–Rayet star HD 50896 (WN 5)	577	$\it Erratum$: Stationary subalfvénic and low- β MHD flows in solar coronal loops and arcades	
Willis A.J., Stevens I.R. Fm-Am stars in open clusters as a tool for stellar physics	311	Surlantzis G., Démoulin P., Heyvaerts J., Sauty C.	351
Alecian G. Lithium abundance in binaries of the Hyades open cluster	872	Proton transport in a magnetic loop and $H\alpha$ impact line linear polarization	
Barrado y Navascués D., Stauffer J.R.	879	Karlický M., Hénoux JC., Smith D.	629
Detection of C_2 , CN , and $NaID$ absorption in the AGB remnant of HD 56126		Sunspot irradiance deficit, facular excess, and the energy balance of solar active regions Steinegger M., Brandt P.N., Haupt H.F.	635
Bakker E.J., Waters L.B.F.M., Lamers H.J.G.L.M., Trams N.R., Van der Wolf F.L.A.	893	A nonlinear prediction of the smoothed monthly sunspot	000
Flare energetics: analysis of a large flare on YZ Canis Minoris observed simultaneously in the ultraviolet, optical and		numbers Zhang Q.	646
radio van den Oord G.H.J., Doyle J.G., Rodonò M., Gary		Determination of the line structure in solar <i>p</i> -mode frequency spectra. IPHIR data analysis	<i>CE</i> 1
D.E., Henry G.W., Byrne P.B., Linsky J.L., Haisch B.M., Pagano I., Leto G.	908	Gavryusev V.G., Gavryuseva E.A. The height distribution of non-thermal X-ray sources in	651
A first optical spectroscopic monitoring of the post-AGB star SAO 96709 = IRAS 07134+1005: pulsation and shock		impulsive solar flares Fletcher L.	661
waves Lèbre A., Mauron N., Gillet D., Barthès D.	923	Are solar flares random processes? Isliker H.	672
Quantitative analysis of carbon isotopic ratios in carbon stars. I. 62 N-type and 15 SC-type carbon stars	022	Dynamics of the solar granulation. V. The intergranular space	
Ohnaka K., Tsuji T. Bipolar flow in a slowly expanding circumstellar envelope	933	Nesis A., Hammer R., Hanslmeier A., Schleicher H., Sigwarth M., Staiger J.	973
around X Herculis Kahane C., Jura M.	952	Diffusion near the solar core Morel P., Schatzman E.	982

	Far-intrared properties of Hickson compact groups of galax-	
691	G.	700
001	Rotation of solar-like main sequence stars Stępień K., Geyer E.	700
992	Spectra of late-type stars from 4800 to 9000 Å	
		700
999	TU Bootis: an ambiguous W Ursae Majoris system Niarchos P.G., Hoffmann M., Duerbeck H.W.	701
1011	Evolutionary sequences of stellar models with new radiative opacities. VI. $Z = 0.0001$ Girardi L., Bressan A., Chiosi C., Bertelli G., Nasi E.	701
	Stark broadening of solar MgI lines	701
		/01
1021		701
1036	tions Hamaker J.P., Bregman J.D., Sault R.J.	702
	Understanding radio polarimetry. II. Instrumental calibration	
	of an interferometer array Sault R.J., Hamaker J.P., Bregman J.D.	702
341	Understanding radio polarimetry. III. Interpreting the IAU/IEEE definitions of the Stokes parameters	
101		702
080		
10/13		702
1045		/02
		703
699		
	spectra	
	Larson A.M., Irwin A.W.	703
	Parameter estimation in epoch folding analysis	
699		703
	of 790 AGNs	
699	Véron-Cetty MP., Véron P.	704
699		
	999 11011 11021 11036 341 686 61043 699 699	ies. I. High resolution IRAS maps and fluxes Allam S., Assendorp R., Longo G., Braun M., Richter G. Rotation of solar-like main sequence stars Stepień K., Geyer E. Spectra of late-type stars from 4800 to 9000 Å Serote Roos M., Boisson C., Joly M. TU Bootis: an ambiguous W Ursae Majoris system Niarchos P.G., Hoffmann M., Duerbeck H.W. Evolutionary sequences of stellar models with new radiative opacities. VI. Z = 0.0001 Girardi L., Bressan A., Chiosi C., Bertelli G., Nasi E. Stark broadening of solar Mg1 lines Dimitrijević M.S., Sahal-Bréchot S. X-ray all-sky monitoring and transient detection using a coded sphere telescope Bird A.J., Merrifield M.R. Understanding radio polarimetry. I. Mathematical foundations Hamaker J.P., Bregman J.D., Sault R.J. Understanding radio polarimetry. III. Instrumental calibration of an interferometer array Sault R.J., Hamaker J.P., Bregman J.D. Understanding radio polarimetry. III. Interpreting the IAU/IEEE definitions of the Stokes parameters Hamaker J.P., Bregman J.D. Optical design, modelling and tolerancing of a Fizeau interferometer dedicated to astrometry Loiseau S., Shaklan S. Digital stacking of Tech Pan films and the photometry of faint galaxies Schwartzenberg JM., Phillipps S., Parker Q. An efficient method for dealing with line haze in stellar spectra Larson A.M., Irwin A.W. Parameter estimation in epoch folding analysis Larsson S. Erratum: Astrometry with the Digitized Sky Survey. Position of 790 AGNs Véron-Cetty MP., Véron P.