Assignment-1

Geometric Transformation and Interpolation

Geometric transformation for mapping pixels.

$$(0,0) \times 2 \rightarrow (0,0)$$

$$(0,1) \times 2 \rightarrow (0,2)$$

$$(1,0) \times 2 \rightarrow (2,0)$$

$$(1,1) \times 2 \rightarrow (2,2)$$

Geometric transformation for mapping pixels.

$$(0,0) \times 2 \rightarrow (0,0)$$

$$(0,1) \times 2 \rightarrow (0,2)$$

$$(1,0) X 2 \rightarrow (2,0)$$

$$(1,1) \times 2 \rightarrow (2,2)$$

Forward

Transformation

Function

$$x' = 2x$$

$$y' = 2y$$

Review: Image Interpolation

Interpolation — Process of using known data to estimate unknown values

e.g., zooming, shrinking, rotating, and geometric correction

• Interpolation (sometimes called *resampling*) — an imaging method to increase (or decrease) the number of pixels in a digital image.

Some digital cameras use interpolation to produce a larger image than the sensor captured or to create digital zoom

http://www.dpreview.com/learn/?/key=interpolation

Geometric transformation for mapping pixels.

$$(0,0) \times 2 \rightarrow (0,0)$$

$$(0,1) \times 2 \rightarrow (0,2)$$

$$(1,0) \times 2 \rightarrow (2,0)$$

$$(1,1) \times 2 \rightarrow (2,2)$$

It is difficult to interpolate and fill missing value when applying forward geometric transformation.

Review: Geometric Transformation: Inverse lookup

1. Create an image of desired size

Review: Geometric Transformation: Inverse lookup

- 1. Create an image of desired size
- 2. For each pixel in the new image calculate which pixel it corresponds to in the original image (Inverse transformation)

Geometric Transformation: Inverse lookup

Inverse mapping pixels. $(0,0) \times 1/2 \rightarrow (0,0)$ $(0,1) \times 1/2 \rightarrow (0,0.5)$ $(0,2) \times 1/2 \rightarrow (0,1)$

Inverse **Transformation Function** x = 1/2 x'y = 1/2 y'

- Create an image of desired size
- 2. For each pixel in the new image calculate which pixel it corresponds to in the original image (Inverse transformation).

Geometric Transformation: Inverse lookup

Inverse mapping pixels. $(0,0) \times 1/2 \rightarrow (0,0)$ $(0,1) \times 1/2 \rightarrow (0,0.5)$ $(0,2) \times 1/2 \rightarrow (0,1)$ $(0,3) \times 1/2 \rightarrow (0,1.5)$

- 1. Create an image of desired size
- 2. For each pixel in the new image calculate which pixel it corresponds to in the original image.
- 3. Use values from nearby pixel to guess missing values

Rotate Image and Perform Interpolation

- 1. Forward rotate image
- 2. Inverse rotate image
- 3. Rotation with interpolation
 - 1. Nearest neighbour interpolation
 - 2. Bilinear interpolation

- Initial location = (x, y)
- After rotation
 - (x', y') = ?

- Initial location = (x, y)
- After rotation

•
$$(x', y') = ?$$

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$

- Initial location = (x, y)
- After rotation

•
$$(x', y') = ?$$

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- Initial location = (x, y)
- After rotation

•
$$(x', y') = ?$$

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = x \sin(\theta) + y \cos(\theta)$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
Rotation Matrix

- Given(x', y')that has
 - Undergone rotation by heta
- Find original location (x, y)

- Given(x', y')that has
 - Undergone rotation by θ
- Find original location (x, y)

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- Given(x', y')that has
 - Undergone rotation by heta
- Find original location (x, y)

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$if A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

- Given(x', y')that has
 - Undergone rotation by heta
- Find original location (x, y)

$$if A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$$

- Given(x', y')that has
 - Undergone rotation by heta
- Find original location (x, y)

$$if A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$$
$$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$$

- Given(x', y')that has
 - Undergone rotation by heta
- Find original location (x, y)

$$if A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$$

$$A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix}$$

- Given(x', y')that has
 - Undergone rotation by heta
- Find original location (x, y)

$$if A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Inverse of (2X2) matrix

$$if K = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Inverse of (2X2) matrix

$$ifK = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$KXK^{-1} = I \text{ (identity matrix)}$$

$$K^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Inverse of (2X2) matrix

$$if K = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$K X K^{-1} = I (identity matrix)$$

$$K^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

$$A^{-1} = \frac{1}{\cos^2\theta + \sin^2\theta} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}, \cos^2\theta + \sin^2\theta = 1$$

$$A^{-1} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

- Given(x', y')that has
 - Undergone rotation by θ
- Find original location (x, y)

$$\begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

- Given(x', y')that has
 - Undergone rotation by θ
- Find original location (x, y)

$$\begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$
Inverse rotation matrix

Inverse Rotation (Another way)

- Given(x', y')that has
 - Undergone rotation by θ
- Find original location (x, y)

Rotate (x', y') by $(-\theta)$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Inverse Rotation (Another way)

•
$$\binom{x}{y} = \begin{pmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{pmatrix} \binom{x'}{y'}$$

- Cos is even function: $cos(-\theta) = cos(\theta)$
- Sin is odd function: $sin(-\theta) = -sin(\theta)$

$$\bullet \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Inverse rotation matrix

Part 1: Forward Rotation

Input

Forward rotate by $\theta = 0.5$ radians (~28 deg)

Output

Forward Rotation

Forward rotate by $\theta = 0.5$ radians (~28 deg)

- Image
- Theta (θ) angle of rotation

Assumption

- To simplify,
 - We assume the following co-ordinate system
 - O-Origin

Assumption

- To simplify,
 - We assume the following co-ordinate system
 - Theta denote rotation from x-axis, towards y-axis

Rotate each pixel

• Let R be the rotated image and I the original image.

Rotate each pixel

- Let R be the rotated image and I the original image.
- For every pixel (i, j) in I
 - apply rotation by theta to get (i',j') in new image.

Rotate each pixel

- Let R be the rotated image and I the original image.
- For every pixel (i,j) apply rotation by theta to get (i',j') in new image.

What is the shape of the image I need to create

value amongst the (0)

 $cols = max_y - min_y = 24 - 0$

What is the shape of the final image that I need to create

- 2. Apply transformation
- 3. Image size
 - 1. Rows = max_x min_x = 14 0 $cols = max_y$ - min_y = 24 - 0

Size of rotated image = (rows, cols) = (14, 24)

0,24

- 1. Compute Rotation matrix
- 2. Rotate corners

Let I be the original image

- 1. Compute Rotation matrix
- 2. Rotate corners

 min_x = minimum of x value amongst the rotated corners

 min_y , max_x ...

- 1. Get (min_x, min_y) (top left of the image)
 - 1. Is also the new origin (N)
- 2. Get (max_x, max_y) (bottom right)

- 1. Compute Rotation matrix
- 2. Rotate corners
 - 1. Get (min_x, min_y) (top left of the image)
 - 2. Get (max_x, max_y) (bottom right)
 - 1. Rows = $max_x min_x$
 - 2. Cols = max_y min_y
 - 3. Size of rotated image = (rows, cols)

Create empty image

- 1. Compute Rotation matrix
- 2. Rotate corners
 - 1. Get (min_x, min_y) (top left of the image)
 - 2. Get (max_x, max_y) (bottom right)
 - 1. rows = $max_x min_x$
 - 2. $cols = max_y min_y$
 - 3. Size of rotated image = (rows, cols)
- 3. Create rotated image (R) of size (rows, cols)

Rotate each pixel

- 1. Compute Rotation matrix
- 2. Rotate corners
 - 1. Get (min_x, min_y) (top left of the image)
 - 2. Get (max_x, max_y) (bottom right)
 - 1. Rows = $max_x min_x$
 - 2. Cols = max_y min_y
 - 3. Size of rotated image = (rows, cols)
- 3. Create rotated image (R) of size (rows, cols)
- 4. For each (i, j) in original image:
 - 1. Compute rotated location (I', j')

Rotate each pixel

- 1. Compute Rotation matrix
- 2. Rotate corners
 - 1. Get (min_x, min_y) (top left of the image)
 - 2. Get (max_x, max_y) (bottom right)
 - 1. Rows = $max_x min_x$
 - 2. Cols = $max_y min_y$
 - 3. Size of rotated image = (rows, cols)
- 3. Create rotated image (R) of size (rows, cols)
- 4. For each (i, j) in original image:
 - 1. Compute rotated location (I', j')

Rotate each pixel

- 1. Compute Rotation matrix
- 2. Rotate corners
 - 1. Get (min_x, min_y) (top left of the image)
 - 2. Get (max_x, max_y) (bottom right)
 - 1. Rows = $max_x min_x$
 - 2. Cols = max_y min_y
 - 3. Size of rotated image = (rows, cols)
- 3. Create rotated image (R) of size (rows, cols)
- 4. For each (i, j) in original image:
 - 1. Compute rotated location (I', j')

Step 3: Compute new location with respect to

- 1. Compute Rotation matrix
- 2. Rotate corners
 - 1. Get (min_x, min_y) (top left of the image)
 - 2. Get (max_x, max_y) (bottom right)
 - 1. Rows = $max_x min_x$
 - 2. Cols = max_y min_y
 - 3. Size of rotated image = (rows, cols)
- 3. Create rotated image (R) of size (rows, cols)
- 4. For each (i, j) in original image:
 - 1. Compute rotated location (i', j')
 - 2. $i'_{N} = i' min_{x}, j'_{N} = j' min_{y}$

Step 3: Assign pixel value

- 1. Compute Rotation matrix
- 2. Rotate corners
 - 1. Get (min_x, min_y) (top left of the image)
 - 2. Get (max_x, max_y) (bottom right)
 - 1. Rows = $max_x min_x$
 - 2. Cols = max_y min_y
 - 3. Size of rotated image = (rows, cols)
- 3. Create rotated image (R) of size (rows, cols)
- 4. For each (i, j) in original image:
 - 1. Compute rotated location (i', j')
 - 2. $i'_{N} = i' min_{x}, j'_{N} = j' min_{y}$
 - 3. $R(i'_N, j'_N) = I(i, j)$

Step 3: Assign pixel value

- 1. Compute Rotation matrix
- 2. Rotate corners
 - 1. Get (min_x, min_y) (top left of the image)
 - 2. Get (max_x, max_y) (bottom right)
 - 1. Rows = $max_x min_x$
 - 2. Cols = max_y min_y
 - 3. Size of rotated image = (rows, cols)
- 3. Create rotated image (R) of size (rows, cols)
- 4. For each (i, j) in original image:
 - 1. Compute rotated location (i', j')
 - 2. $i'_{N} = i' min_{x}, j'_{N} = j' min_{y}$
 - 3. $R(i'_N, j'_N) = I(i, j)$

Part 2: Reverse Rotation

Reverse rotate by $\theta = 0.5$ radians (~28 deg)

Output

Input:

- 1. Rotated image
- 2. Theta: the angle by which the image was rotated
- 3. Origin $(O = (O_i, O_j))$: the origin of the original image with respect to the origin of rotated image
- 4. Original shape: Shape of the original image before rotation

Input:

- 1. Rotated image
- 2. Theta: the angle by which the image was rotated
- 5. Origin $(O = (O_i, O_j))$: the origin of the original image with respect to the origin of rotated image
- 4. Original shape: Shape of the original image

Let R be rotated image

1. Compute inverse rotation matrix

Create empty image with original shape

- 1. Compute inverse rotation matrix
- 2. Create image (I) of shape (original shape)

- 1. Compute inverse rotation matrix
- 2. Create image (I) of shape (original shape)
- 3. For (i'_N, j'_N) in rotated image
 - 1. Calculate location with respect to O

- 1. Compute inverse rotation matrix
- 2. Create image (I) of shape (original shape)
- 3. For (i'_N, j'_N) in rotated image
 - 1. Calculate location with respect to O $i' = i'_N O_i, j' = j'_N O_i$

- 1. Compute inverse rotation matrix
- 2. Create image (I) of shape (original shape)
- 3. For (i'_N, j'_N) in rotated image
 - 1. Calculate location with respect to O $i' = i'_N O_i, j' = j'_N O_i$
 - 2. Compute inverse rotation on (i', j') to get (i, j)

- 1. Compute inverse rotation matrix
- 2. Create image (I) of shape (original shape)
- 3. For (i'_N, j'_N) in rotated image
 - 1. Calculate location with respect to O $i' = i'_N O_i, j' = j'_N O_i$
 - 2. Compute inverse rotation on (i', j') to get (i, j)

Assign values

- 1. Compute inverse rotation matrix
- 2. Create image (I) of shape (original shape)
- 3. For (i'_N, j'_N) in rotated image
 - 1. Calculate location with respect to O $i' = i'_N O_i, j' = j'_N O_i$
 - 2. Compute inverse rotation on (i', j') to get (i, j)
 - 3. $I(i,j) = R(i'_N, j'_N)$

Output

Forward rotation

- Missing Pixel Values
- Perform interpolation to fill in missing values.

Part 3: Rotation with Interpolation

Part 3: Rotation with interpolation

Input

Rotation with interpolation $\theta = 0.5$ radians (~28 deg)

Output

Part 3: Forward Rotation

Input

Rotation with interpolation $\theta = 0.5$ radians

(~28 deg)

Output

Input:

- 1. Image
- 2. Theta
- 3. Type of interpolation

Part 3: Forward Rotation

• Solution: Combination of Part 1 and 2

Idea

Let I be the original image

Assuming R is the image obtained after rotation.

Idea

Let I be the original image

Assuming R is the image obtained after rotation.

- 1. For (i'_N, j'_N) in rotated image R.
 - 1. Determine its location (i, j) before rotation in the original image

Idea

Let I be the original image

Assuming R is the image obtained after rotation.

- 1. For (i'_N, j'_N) in rotated image R.
 - 1. Determine its location (i, j) before rotation in the original image
 - 2. Use neighbors of (i, j) to perform either nearest neighbour or bilinear interpolation.
 - 3. $R(i'_N, j'_N) = interploted(i, j)$

Compute size of rotate image

- 1. Compute Rotation matrix
- 2. Compute Inverse Rotation matrix
- 3. Compute size of the rotated image

Create Empty Image

- 1. Compute Rotation matrix
- 2. Compute Inverse Rotation matrix
- 3. Compute size of the rotated image
- 4. Create rotated image (R) of size (rows, cols)

Calculate O

- 1. Compute Rotation matrix
- 2. Compute Inverse Rotation matrix
- 3. Compute size of the rotated image
- 4. Create rotated image (R) of size (rows, cols)
- 5. Calculate location O, with respect to N ($O = -\min_{x}$, $-\min_{y}$) (Computed from 4 corners)

Iterate and interpolate

Let I be the original image

- 1. Compute Rotation matrix
- 2. Compute Inverse Rotation matrix
- 3. Compute size of the rotated image
- 4. Create rotated image (R) of size (rows, cols)
- 5. Calculate location O, with respect to N ($O = -\min_{x}$, $-\min_{y}$)(Computed from 4 corners)
- 6. For (i'_N, j'_N) in rotated image
 - 1. Calculate location with respect to O $i' = i'_N O_i, j' = j'_N O_i$

2.

Iterate and interpolate

- 1. Compute Rotation matrix
- 2. Compute Inverse Rotation matrix
- 3. Compute size of the rotated image
- 4. Create rotated image (R) of size (rows, cols)
- 5. Calculate location O, with respect to N ($O = -\min_x$, $-\min_y$)(Computed from 4 corners)
- 6. For (i'_N, j'_N) in rotated image
 - 1. Calculate location with respect to O $i' = i'_N O_i, j' = j'_N O_i$
 - 2. Compute inverse rotation on (i',j') to get (i,j)

Nearest interpolate

Let I be the original image

- 1. Compute Rotation matrix
- 2. Compute Inverse Rotation matrix
- 3. Compute size of the rotated image
- 4. Create rotated image (R) of size (rows, cols)
- 5. Calculate location O, with respect to N ($O = -\min_x$, $-\min_y$)(Computed from 4 corners)
- 6. For (i'_N, j'_N) in rotated image
 - 1. Calculate location with respect to O $i' = i'_N O_i, j' = j'_N O_i$
 - 2. Compute inverse rotation on (i',j') to get (i,j)
 - 3. If using nearest neighbour interpolation
 - 1. nearest neighbour

$$(i_{nn}, j_{nn}) = (round(i), round(j))$$

2. $R(i'_{N}, j'_{N}) = I(i_{nn}, j_{nn})$

Bilinear interpolate

- 1. Compute Rotation matrix
- 2. Compute Inverse Rotation matrix
- 3. Compute size of the rotated image
- 4. Create rotated image (R) of size (rows, cols)
- 5. Calculate location O, with respect to N ($O = -\min_x$, $-\min_y$)(Computed from 4 corners)
- 6. For (i'_N, j'_N) in rotated image
 - 1. Calculate location with respect to O $i' = i'_N O_i, j' = j'_N O_i$
 - 2. Compute inverse rotation on (i',j') to get (i,j)
 - 3. If using bilinear interpolation
 - 1. Find **four** nearest neighbors to (i, j)

Bilinear interpolate

- 1. Compute Rotation matrix
- 2. Compute Inverse Rotation matrix
- 3. Compute size of the rotated image
- 4. Create rotated image (R) of size (rows, cols)
- 5. Calculate location O, with respect to N ($O = -\min_{x}$, $-\min_{y}$)(Computed from 4 corners)
- 6. For (i'_N, j'_N) in rotated image
 - 1. Calculate location with respect to O $i' = i'_N O_i, j' = j'_N O_j$
 - 2. Compute inverse rotation on (i',j') to get (i,j)
 - 3. If using bilinear interpolation
 - 1. Find **four** nearest neighbors to (i, j)
 - 2. perform bi-linear interpolated value(b)
 - 2. $R(i'_{N}, j'_{N}) = b$

Without Interpolation

Nearest neighbor Interpolation

Assignment - 1

- 1. Forward Rotate (20 Pts.)
- 2. Reverse Rotate (20 Pts)
- 3. Rotate with interpolation (35 Pts)

Total: 75 Pts.

Due Date: Sept 30th

Submission Instructions

- Must use the starter code available in Github
- Submission allowed only through Github
- You will receive an email with invitation to join Github classroom
- Start by reading the readme.md file.
- Instructions are available here
- Github will automatically save the last commit as a submission before the deadline