Pokok Bahasan : Gerak dalam Bidang Datar

Pertemuan : 6

TIU : Mahasiswa dapat menjelaskan tentang benda yang bergerak

dalam bidang datar dan melingkar

Tujuan Instruksional Khusus:

Setelah mempelajari bab ini, mahasiswa dapat :

❖ Menentukan posisi dan kecepatan benda di setiap titik dari gerak peluru

❖ Menghitung aplikasi gerak dalam bidang datar

GERAK PARABOLA

Gerak parabola disebut juga lintasan peluru terdiri dari dua gerak lurus yaitu :

1. Gerak lurus beraturan ($a_x = 0$) pada arah horizontal.

2. Gerak lurus berubah beraturan $(a_y = -g)$ pada arah vertical.

Komponen vector kecepatan awal pada arah sumbu X yaitu $v_{ox} = v_o \cos \theta_o$ dan sepanjang sumbu Y yaitu $v_{oy} = v_o \sin \theta_o$.karena tidak ada percepatan pada arah horizontal $(a_x = 0)$ maka v_x adalah tetap.Jadi dapat di tulis yaitu $v_{ox} = v_o \cos \theta_o$ dan sepanjang sumbu Y yaitu $v_{oy} = v_o \sin \theta_o$.karena tidak ada percepatan pada arah horizontal $(a_x = 0)$ maka v_x adalah tetap.jadi dapat di tuliskan : $v_x = v_o \cos \theta_o$(8)

Komponen y dari vector kecepatan v_y akan berubah dengan waktu sesuai dengan gerak lurus vertikal dengan percepatan tetap $a_y = -g$.

Gambar: 3

Jadi di peroleh : $v_y = v_o \sin \theta_o - gt$

Besarnya kecepatan resultant pada tiap saat di berikan oleh :

$$v = v_x^2 + v_y^2$$

sedang sudut θ ' yang di bentuk oleh vector v dg sumbu X di berikan oleh : tg $\theta = v_y$

Absis dari partikel pada setiap saat adalah:

$$x = (v_0 \cos \theta_0)t$$

Sedang koordinatnya adalah:

$$y = (v_0 \sin \theta_0)t - \frac{1}{2} gt^2$$

Dengan mengganti waktu t dari kedu persamaan di atas, di peroleh persamaan lintasan,

$$y = (tg \theta_o)x - g x^2$$

$$2(v_o \cos \theta_o)^2$$

Karena θ_0 , v_0 dan g masing-masing adalah tetap maka persamaan (12) diatas dapat ditulis sebagai :

 $y=bx-cx^2$ yang merupakan bentuk parabola.

Contoh soal:

Sebuah bomber terbang horizontal dengan kecepatan tetap sebesar 385 km/jam pada ketinggian 300 meter menuju ke suatu titik tepat diatas sasaran.Berapa sudut penglihatan θ agar bom yang dilepaskan mengenai sasaran, percepatan gravitasi g=10 m/det².Gerak bom pada saat dilepaskan adalah sama dengan gerak pesawat terbang.Kecepatan awal bom sama dengan kecepatan pesawat terbang yaitu

$$Vox = 385 \text{ km/jam}$$

$$V \circ y = 0$$

waktu yang di perlukan oleh bom itu mencapai sasaran dapat di hitung dari persamaan:

$$y = v_{oy}t - \frac{1}{2} gt^{2}$$

$$-300 = 0 - \frac{1}{2} (9.8)t^{2}$$

$$t = 600$$

$$9.8$$

$$= 7.83 \text{ detik.}$$

Jarak horizontal yang ditempuh bom adalah:

$$x = v_{ox}t$$

= (106,94) . (7,83)
= 837,34 meter

Sudut penglihatan θ dapat dihitung yaitu :

Tg
$$\theta$$
 = x/-y atau θ = arc tg (x/-y)
= arc tg (837,34)
 $\overline{-300}$
= -70°17`

soal soal latihan

- 1. Seorang pemain bola, menendang bola sehingga bola terpental denag sudut 37° dari horizontal dengan laju awal 20 m/s.Anggap bola melambung dalam bidang vertical.
- a) Tentukan waktu t₁,ketika bola mencapai titik tertinggi dari lintasannya?
- b) Berapakah ketinggian melambungnya bola?
- c) Berapakah jangkauan bola dan berapa lama bola melambung di udara?
- d) Berapakah kecepatan bola ketika tiba kembali ditanah?
- 2. Sebuah peluru yang massanya 5 gram diembakkan dari atas tanah dengan sudut elevasi 30° . Jika peluru tersebut kembali ke tanah setelah 4 detik, hitunglah besarnya energi potensial yang dialami peluru pada saat tinggi maksimum, $g = 10 \text{ m/det}^2$?

Daftar Pustaka:

- 1. Sutrisno & Tan Ik Gie; Fisika Dasar, Jurusan Fisika FMIPA UI, 1984.
- 2. Dauglas C. Giancoli; General Physics; ITB, 1979; 1984.
- 3. Resnniick & Hallidday; Fisika; Erlangga, 1986.
- 4. D.L. Tobing, Fisika Dasar I, Gramedia Pustaka Utama, 1996
- 5. Sears & Zemansky, 1981, University Phisics.