Parametrs for this particular study

Table 1. Basic model parameters and derived quantities. $T_{\mathrm{eff},s_{\mathrm{min}}}$ $R_{\star,s_{\min}}$ P_{puls} model M_{\star} n_x^5 $C_{T \text{fac}}$ $\log g_{s_{\min}}$ $x_{outerbox}$ $x_{innerbox}$ $t_{\rm avg}$ (M_{\odot}) (M_{\star}) (L_{\odot}) (R_{\odot}) (R_{\odot}) (d) (R_{\odot}) (K) (yr) cgs 599^{3} st28gm06n050 510 0.182 7049 0.75 54.61 2823 1.0 4858 2340 351 -0.656 7030 679^{3} st28gm06n052 0.181 6386 0.7757.78 2806 545 1.0 2640 355 -0.665 559^{3} 6702 st28gm05n033 0.298 0.721.5 3454 1581 27.70 304 2993 -0.358 297

 The stellar parameter sets of the 3D models presented here were chosen to fall into two different regimes: according to results from 1D DARWIN simulations, model st28gm06n052 is expected to develop a pronounced dustdriven wind, while the 1D counterpart of model st28gm05n033 fails to produce an outflow

Parametrs for this particular study

able 1. Basic model parameters and derived quantities.												Q LOO
model	M_{\star}	$M_{ m env}$	L_{\star}	n_x^3	x_{outerbox}	$x_{\rm innerbox}$	$C_{T ext{fac}}$	$t_{\rm avg}$	$R_{\star,s_{\min}}$	$T_{\mathrm{eff},s_{\min}}$	$\log g_{s_{\min}}$	$P_{ m puls}$
	(M_{\odot})	(M_{\star})	(L_{\odot})		(R_{\odot})	(R_{\odot})		(yr)	(R_{\odot})	(K)	cgs	(d)
st28gm06n050	1.0	0.182	7049	599 ³	4858	2340	0.75	54.61	351	2823	-0.656	510
st28gm06n052	1.0	0.181	7030	679^{3}	6386	2640	0.77	57.78	355	2806	-0.665	545
st28gm05n033	1.5	0.298	6702	559 ³	3454	1581	0.72	27.70	304	2993	-0.358	297

The stellar parameter sets of the 3D models presented here were chosen to fall into two different regimes: according to results from 1D DARWIN simulations, model st28gm06n052 is expected to develop a pronounced dustdriven wind, while the 1D counterpart of model st28gm05n033 fails to produce an outflow