MAT301 Notes

QiLin Xue

May 20, 2021

Contents

1	Lecture Une	1
2	Lecture Two	3
3	Lecture Three	8
4	Lecture Four	10
5	Permutation Groups	14
6	Lecture Six	16

1 Lecture One

- Groups are everywhere in mathematics and nature in one of two forms:
 - as groups of symmetries
 - as groups of "numbers" or quantities
- We will call a subset $F \subseteq \mathbb{R}^n$ a **figure** in \mathbb{R}^n when we consider F not just as a set, but as a set together with the structure of its distance functions:

$$d: F \times F \to \mathbb{R}_{>0}, \quad d(x,y) = \|x - y\| \tag{1}$$

A figure is then defined as the pair (F, d).

Definition: A symmetry of a figure $F \subseteq \mathbb{R}^n$ is a bijection $\sigma : F \to F$ such that σ and σ^{-1} preserve distances:

$$\forall x, y, \in F, \quad d(\sigma(x), \sigma(y)) = d(x, y) \tag{2}$$

$$\iff d(\sigma^{-1}(x), \sigma^{-1}(y)) = d(x, y) \tag{3}$$

Therefore:

$$\mathsf{Sym}(F) \equiv \{\sigma: F \to F | \sigma \text{ is a symmetry}\} \tag{4}$$

• For example, any point, line, shape, or form is a figure. However, we are only interested in figures that have interesting symmetries.

Example 1: Let F be a square in \mathbb{R}^2 . There are four different lines of reflections:

and there are three rotations: R_1 , R_2 , and R_3 , which represent 90° , 180° , and 270° clockwise rotations. I

represents the identity transformation (do nothing).

We can combine symmetries. For example, what is $R_1 \circ V$? To do so, we can label the vertices:

Applying the computations:

$$(R_1 \circ V)(1) = R_1(V(1)) = R_1(2) = 3 \tag{5}$$

$$(R_1 \circ V)(2) = R_1(V(2)) = R_1(1) = 2 \tag{6}$$

$$(R_1 \circ V)(3) = 1 \tag{7}$$

$$(R_1 \circ V)(4) = 4$$
 (8)

Check that $V \circ R_1 = N$. Also notice that these operations are not commutative: $R_1 \circ V \neq V \circ R_1$.

- In the above example, how are we sure that these are all of the symmetries of a square? To answer this, we will need the
 following facts:
 - 1. A symmetry maps vertices to vertices. The vertices are the points of the square that are furthest from the center.
 - 2. Symmetries map adjacent vertices to adjacent vertices. If x, y are adjacent vertices, then $\sigma(x)$, $\sigma(y)$ are vertices, and $d(\sigma(x), \sigma(y)) = d(x, y) = \text{side length}$.
 - 3. A symmetry σ is completely determined by $(\sigma(1), \sigma(2))$. For example, suppose we have the symmetry σ on a square such that:

From this, we know that we must have y=3, from fact 1, as well as x=4.

4. For all $x, y \in \{1, 2, 3, 4\}$ such that x is adjacent to y, $\exists!$ symmetry σ of the square such that:

$$(\sigma(1), \sigma(2)) = (x, y) \tag{9}$$

By the above facts, we must count the ordered pairs (x,y) such that $x,y \in \{1,2,3,4\}$ and x is adjacent to y:

- There are 4 choices for x.
- For each choice of x, there are two choices of y. Therefore, there are $4 \times 2 = 8$ symmetries.

Since we listed 8 different symmetries of a square, we have therefore defined all of them.

2 Lecture Two

• Let X be a set with some **structures**. Then a symmetry of X (w.r.t. the structures) is a bijection $\sigma: X \mapsto X$, such that σ and σ^{-1} preserve the structures.

• The set of symmetries of X is denoted as Sym(X).

Example 2: We can consider a square not only with the structure of its distance function but with additional structure of its orientations. There are two orientations of a square:

A symmetry of the square with respect to its orientation is a bijection from the square to itself that maps each orientation to itself.

- Rotations preserve orientations, but reflections don't.

Therefore, the symmetries preserving orientations are $\{I, R_1, R_2, R_3\}$.

• In general:

0. If σ_1 , $\sigma_2:X\to X$ are symmetries, then:

$$\sigma_1 \circ \sigma_2 : X \to X \tag{10}$$

is also a symmetry. Consequently, composition of symmetries restrict a map:

$$\operatorname{Sym}(X) \times \operatorname{Sym}(X) \mapsto \operatorname{Sym}(X), \quad (\sigma_1, \sigma_2) \mapsto \sigma_1 \circ \sigma_2 \tag{11}$$

Remarks: A map $m: S \times S \to S$ is called a binary operation on S.

1. Associativity: For all $\sigma_1, \sigma_2, \sigma_3 \in \operatorname{Sym}(X)$, we have:

$$(\sigma_1 \circ \sigma_2) \circ \sigma_3 = \sigma_1 \circ (\sigma_2 \circ \sigma_3) \tag{12}$$

- 2. The identity id : $X \mapsto X$ is a symmetry and id $\in \mathrm{Sym}(X)$.
- 3. Immediately from the "definition," we have: $\sigma \in \mathrm{Sym}\,(X) \implies \sigma^{-1} \in \mathrm{Sym}\,(X)$
- The notion of a group is an abstraction of Sym(X) and its properties.

Definition: A group is an ordered pair (G,*) consisting of a set G and a binary operation $*: G \times G \to G$ such that:

1. * is associative, $\forall g_1, g_2, g_3 \in G$, we have:

$$(g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$$
(13)

- 2. There exists an element $e \in G$ such that for all $g \in G$, we have g * e = g = e * g.
- 3. For all $g \in G$, there exists an element $h \in G$ such that $g \star h = e = h \star g$.

These numberings are abstractions of the properties listed above.

- The binary operator * is called the **group law** or **group operation**. It is often denoted by a dot \cdot or by juxtaposition (gh instead of g*h).
- The *cardinality* of G, |G|, is called the **order** of G.
- It is common to denote e by 1 or I.

Warning: A common *misconceptions* is saying "G is a group" instead of "(G,*) is a group."

• These are equivalent statements:

$$(G,*)$$
 is a group (14)

$$\iff$$
 G is a group under $*$ (15)

Definition: A group (G, *) is **abelian** (or commutative) if for all $g, h \in G$, we have:

$$g * h = h * g \tag{16}$$

- Here are some examples of groups:
 - $(\operatorname{Sym}(X), \circ)$
 - $(\mathbb{Z},+)$
 - (\mathbb{R}^x, \cdot) where:

$$F^x = \{x \in F : \exists y \in F \text{ with } xy = 1 = yx\}$$

$$\tag{17}$$

- $(\mathbb{Q}_{>0},\cdot)$, $(\mathbb{R}_{>0},\cdot)$.
- (μ_n, \cdot) where for $n \in \mathbb{Z}_{>0}$, let

$$\mu_n = \{ z \in \mathbb{C} | z^n = 1 \} = \{ e^{2\pi ki/n} | k = 0, 1, \dots, n-1 \}$$
(18)

- $-(\mathbb{R}^n,+)$
- $(GL_n(F), \cdot)$ where $GL_n(F) = \{A \in Mat_{n \times n}(F) | A \text{ invertible} \}$, $F = \mathbb{Q}, \mathbb{R}, \mathbb{C}$. For all $n \geq 2$, $GL_n(F)$ is non-abelian. Note that GL stands for *general linear*
- $(\operatorname{SL}_n(F), \cdot)$ where $\operatorname{SL}_n(F) = \{A \in \operatorname{GL}_n(F) | \det A = 1\}$. Note that SL stands for special linear.
- $(\mathsf{Mat}_{n\times n}(F),+)$

and non-groups:

- (\mathbb{Z},\cdot)
- $-(\mathbb{Z}_{>0},+)$
- $-(\mathbb{Z},-), (\mathbb{Q}^x,\div).$
- $(\mathsf{Mat}_{n\times n}(F),\cdot)$

Proposition 1: Let (G,*) be a group. If $e,e'\in G$ such that $\forall g\in G$ we have

$$g * e = g = e * g \tag{19}$$

and

$$g * e' = g = e' * g, (20)$$

then e = e'.

Proof. Consider e * e'. By 19, we have:

$$e * e' = e' \tag{21}$$

Similarly, by 20, we have:

$$e * e' = e \tag{22}$$

Therefore, e = e * e' = e'.

- ullet We call the unique element $e \in G$ satisfying the second property in the definition of a group, the identity element of G.
- The **trivial group:** For any singleton $\{e\}$, there exists a unique binary operation \cdot such that:

$$\{e\} \times \{e\} \mapsto \{e\}, \quad (e,e) \mapsto e$$
 (23)

and $(\{e\},\cdot)$ is a group, called a trivial group.

Proposition 2: Let (G,*) be a group and let $g \in G$. If $h,h' \in G$ satisfies:

$$g * h = e = h * g \tag{24}$$

and

$$g * h' = e = h' * g \tag{25}$$

then h = h'. By 24, we have:

$$h * g = e. (26)$$

By 25, we have:

$$g * h' = e. (27)$$

Therefore:

$$h = h * e (property 2)$$

$$= h * (g * h') \tag{27}$$

$$= (h * g) * h'$$
 (property 1)

$$= e * h' \tag{26}$$

$$=h'$$
 (property 2) (32)

• For each $g \in G$, the unique element $h \in G$ such that g * h = e = h * g is called the inverse of g and denoted by g^{-1} .

Lemma 1: Let (G,*) be a group and let $x,y,z\in G$. Then, right cancellation tells us:

$$x * z = y * z \implies x = y \tag{33}$$

and left cancellation tells us:

$$z * x = z * y \implies x = y \tag{34}$$

Proof. If z * x = z * y, then:

$$z^{-1} * (z * x) = z^{-1} * (z * y)$$
(35)

$$\implies (z^{-1} * z) * x = (z^{-1} * z) * y \tag{36}$$

$$\implies e * x = e * y \tag{37}$$

$$\implies x = y \tag{38}$$

The other implication is similar.

Warning: The notation $\frac{a}{b}$ is ambiguous. Does it mean $a*b^{-1}$ or $b^{-1}*a$? These can be different in a non-abelian group.

Lemma 2: Let (G,*) be a group and let $g_1,\ldots,g_n\in G$. Every way of way inserting parentheses into $g_1*g_2*\cdots*g_n$ to determine a well defined product in G results in the same element of G.

• The consequence of the above lemma is that the notation $g_1 * g_2 * \cdots * g_n$ is unambiguous.

Definition: Let (G, *) be a group and let $n \in \mathbb{Z}$. We define:

$$g^{n} = \begin{cases} \underbrace{g * g * \cdots * g}_{n \text{ copies}}, & n > 0 \\ e, & n = 0 \\ \underbrace{g^{-1} * \cdots * g^{-1}}_{n \text{ copies}} = (g^{-1})^{-n}, & n < 0 \end{cases}$$
(39)

Lemma 3: Let (G,*) be a group. For all $g \in G$ and $m,n \in \mathbb{Z}$, we have:

$$g^m * g^n = g^{m+n} \tag{40}$$

and:

$$(g^m)^n = g^{mn} (41)$$

• To prove the above lemma, we can use induction.

Warning: If G is a non-abelian group and $a, b \in G$ and $n \in Z$, then it can happen that:

$$(ab)^n \neq a^n b^n \tag{42}$$

Lemma 4: Let G be a group and let $a, b \in G$. Then:

$$(ab)^{-1} = b^{-1}a^{-1} (43)$$

Proof. We just need to check the two conditions:

$$(ab)(b^{-1}a^{-1}) = aea^{-1} = aa^{-1} = e (44)$$

and:

$$(b^{-1}a^{-1})(ab) = b^{-1}eb = b^{-1}b = e$$
(45)

Therefore, it is the inverse.

• **Dihedral Groups**. Let $n \in \mathbb{Z}$, $n \ge 3$. Let P_n be a regular n-gon.

Definition: The group of symmetries of the regular n-gon P_n is called the dihedral group of order 2n and is denoted by D_n .

Warning: Some people use D_{2n} instead of D_n .

Lemma 5: The order of D_n is 2n.

Proof. Label the vertices of P_n by v_1, v_2, \ldots, v_n in some clockwise order. By the same reasoning from the case n=4 when we were considering a square, we have a bijection:

$$D_n = \operatorname{Sym}(P_n) \to \{(v_i, v_i) | v_i \text{ adjacent to } v_i\}$$
(46)

$$\sigma \mapsto (\sigma(v_1), \sigma(v_2)) \tag{47}$$

Note that $\{(v_i, v_j | v_i \text{ adjacent to } v_j)\} = \{(v_i, v_j) | j \equiv i \pm 1 \pmod{n}\}$. We have:

$$|D_n| = |\{(v_i, v_j)| j \equiv i \pm 1 \pmod{n}\}| = n \cdot 2 \tag{48}$$

• For example, consider D_5 . There are 5 lines of reflection, 4 rotational symmetries, and the identity. We can further compose transformations, for example:

$$rs = sr^4, \quad r^2s = sr^3, \quad r^3s = sr^2, \quad r^4s = sr, \quad r^5s = sr$$
 (49)

where s represents a reflection and r is a 72° clockwise rotation.

Lemma 6: Let P_n be a regular n-gon. Let r be either a clockwise or counterclockwise rotation about the center of P_n by $\frac{2\pi}{n}$, and let s be any reflectional symmetry of P_n . Then: 1. $r^n=1$, $s^2=1$

- 2. For all $k=0,1,\ldots,n-1$, sr^k is a reflection and:

$$sr^k = r^{-k}s = r^{n-k}s \tag{50}$$

- 3. $1,r,\ldots,r^{n-1},s,sr,\ldots,sr^{n-1}$ are all distinct. 4. $D_n=\{1,r,\ldots,r^{n-1},s,sr,\ldots,sr^{n-1}\}.$

Proof. We will prove all four:

- 1. r is a rotation by $2\pi/n$ CW or CCW so $r^n=1$. Since s is a reflection, $s^2=1$.
- 2. The composition of a reflection and a rotation in the plane is a reflection. Therefore, $\forall k=0,1,\ldots,n-1,\,sr^k$ is a reflection (orientation is not preserved). Therefore:

$$(sr^k)^2 = 1 (51)$$

$$sr^k sr^k = 1 (52)$$

$$sr^k s = r^{-k} (53)$$

$$sr^k = r^{-k}s^{-1} (54)$$

Since $s^2=1$, $s^{-1}=s$, this is proved. Furthermore, since $r^n=1$, we must also have:

$$sr^k = r^{n-k}s\tag{55}$$

3. Since r^k is a rotation CW or CCW by $2\pi k/n$, then $1, r, \ldots, r^{n-1}$ are all distinct. Since rotations preserve orientation and reflections do not, then $r^i \neq sr^j$ for all i, j. If $sr^i = sr^j$, then $r^i = r^j$ so i = j if $i, j \in \{0, \dots, n-1\}$.

Therefore, $1, r, \ldots, r^{n-1}, s, sr, \ldots, sr^{n-1}$ are distinct.

4. This follows directly from the previous property and the order of the dihedral group is $|D_n|=2n$.

3 Lecture Three

• **Notation:** Sometimes the group operation for an **abelian** group is denoted by +.

If (A,+) is an abelian group, then:

- The identity is denoted by $\boldsymbol{0}$
- $-a^{-1}$ is denoted by -a
- $-a^n$ is denoted by na
- a + (-b) is denoted by a b.
- \bullet One way to get a better understanding of a group G is to find a group "inside of" G that you understand better.

Definition: Let $(G, *_G)$ be a group. A subset $H \subseteq G$ is a subgroup if:

1. For all $h_1, h_2 \in H$, $h_1 *_G h_2 \in H$, and therefore the operation of G:

$$*_G: G \times G \to G \tag{56}$$

restricts to a binary operation on H:

$$*_H: H \times H \to H, \quad (h_1, h_2) \mapsto h_1 *_H h_2 := h_1 *_G h_2$$
 (57)

- 2. $(H, *_H)$ is a group.
- We write $H \leq G$ as a shorthand for "H is a subgroup of G." If (G,*) is a group and $H \subseteq G$, we often denote the group operator for H by * as well.

Example 3: Let G be a group. Then $G \leq G$ and $\{e\} \leq G$. We call $\{e\}$ the trivial subgroup of G.

- If $H \leq G$ and $H \neq G$, we write H < G and call H a **proper subgroup** of G.

Example 4: Let D_n be the symmetric group of the regular n-gon with vertices $\{(\cos(2\pi k/n),\sin(2\pi k/n))|k=0,\ldots,n-1\}.$

From last lecture, we have $D_n = \{1, r, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s$. Then: $H := \{1, r, \dots, r^{n-1}\} \le D_n$.

Proposition 3: Let G be a group and $H \leq G$.

- 1. The identity of H is the identity of G.
- 2. For all $h \in H$, the inverse of h in H is the inverse of h in G.

Proof. 1. Let e_H be the identity of H and e_q is that of G. Since e_H is the identity of H, we have:

$$e_H e_H = e_H \tag{58}$$

Let x be the inverse of e_H in G, then:

$$e_H e_H x = e_H x \tag{59}$$

$$\implies e_H e_G = e_G$$
 (60)

$$\implies e_H = e_G \tag{61}$$

The first implication follows since x is the inverse of e_H in G and the second follows since e_G is the identity in G.

2. Let $h \in H$, let x be the inverse of h in H, and let y be the inverse of h in G. Then:

$$hx = e_H = e_G \tag{62}$$

and

$$xh = e_H = e_G \tag{63}$$

so x is the inverse of h in G.

Theorem: Two-step subgroup test: Let H be a nonempty subset of a group G. If:

1. $a,b \in H \implies ab \in H$ (H is closed under the group operator)

2. $a \in H \implies a^{-1} \in H$ (H is closed under taking inverses)

then H is a subgroup of G.

Proof. Assume that H is as in the theorem. We will prove that $(H, *_H)$ is a group.

- Associative: Let $h_1, h_2, h_3 \in H$

$$h_1 *_H (h_2 *_H h_3) = h_1 *_G (h_2 *_G h_3)$$
(64)

$$= (h_1 *_G h_2) *_G h_3 \tag{65}$$

$$= (h_1 *_H h_2) *_H h_3 \tag{66}$$

- H has an identity: Since $H \neq \phi$, there exists $x \in H$. By (2), we have $x^{-1} \in H$. By (1), we have $e_G = xx^{-1} \in H$ since $x, x^{-1} \in H$.

For all $h \in H$, we have:

$$he_G = h = e_G h \tag{67}$$

since e_G is the identity of G. Therefore e_G is an identity of H.

- H has inverses: Let $h \in H$. By (2), we have that $h^{-1} \in H$. Since h^{-1} is the inverse of h in G, we have $hh^{-1} = e_G = h^{-1}h$. Therefore h^{-1} is an inverse of h in H.

Theorem: One-step subgroup test: Let G be a group and let H be a nonempty subset of G. Suppose that:

1. $a, b \in H \implies ab^{-1} \in H$ then $H \leq G$.

Proof. Let H be as in the theorem statement. Since $H \neq \phi$, $\exists h \in H$. Taking a = b = h in (1) gives $e = hh^{-1} \in H$. Taking a = e, b = h in (1) gives $h^{-1} = eh^{-1} = ab^{-1} \in H$. Therefore, $h \in H \to h^{-1} \in H$.

Let $h_1,h_2\in H$. Then $h_2^{-1}\in H$. Taking $a=h,\ b=h_2^{-1}$ in (1) gives $h_1,h_2=ab^{-1}\in H$. Therefore, $h_1,h_2\in H\Longrightarrow h_1h_2\in H$. By the two-step subgroup test, $H\leq G$.

Example 5: Let G be an abelian group. Prove that $H = \{x \in G | x^2 = e\}$ is a subgroup of G.

Proof. Let $a, b \in H$. Then $a^2 = b^2 = e$. Since G is abelian:

$$(ab^{-1})^2 = a^2b^{-2} = a^2(b^2)^{-1} = ee^{-1} = e$$
(68)

Therefore, $ab^{-1} \in H$ by the one-step subgroup test, $H \leq G$.

Example 6: Prove that matrices in the form of $\begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix}$ where $x,y,z\in\mathbb{R}$ is a subgroup of $\mathsf{SL}_3(\mathbb{R})$ using either subgroup test.

Proof. Using the one-step subgroup test. Let $g_1=\begin{pmatrix}1&x_1&y_1\\0&1&z_1\\0&0&1\end{pmatrix}$ and $g_2=\begin{pmatrix}1&x_2&y_2\\0&1&z_2\\0&0&1\end{pmatrix}$. The inverse of g_2

is:

$$g_2^{-1} = \begin{pmatrix} 1 & -x & xz - y \\ 0 & 1 & -z \\ 0 & 0 & 1 \end{pmatrix}$$
 (69)

and carrying out the computation:

$$g_1 g_2^{-1} = I (70)$$

Since I is in the given group, we are done.

4 Lecture Four

• We begin with the Finite Subgroup Test

Theorem: Let G be a group and let H be a finite nonempty subset of G. If H is closed under the group operation of G, then $H \leq G$.

Proof. By the 2-step subgroup test, it suffices to prove that H is closed under taking inverses. Let $a \in H$:

- If a = e, then $a^{-1} = e \in H$.
- If $a \neq e$, consider the set:

$$\{a^n | n \ge 1\} = \{a, a^2, a^3, \dots\}$$
(71)

Since H is closed under the group operation and $a \in H$, we have $\{a^n | n \ge 1\} \subseteq H$ by a short induction argument. Since H is finite, so is $\{a^n | m \ge 1\}$. Therefore, $\exists m, n \ge 1, m \ne n$ such that:

$$a^m = a^n \tag{72}$$

WLOG, we may assume that m > n, so m - n > 0. We have:

$$a^{m-n} = e (73)$$

Since $a \neq e, m-n \neq 1$. Therefore, $m-n \geq 2$, so $m-n-1 \geq 1$. Thus:

$$a^{m-n-1} \in \{a^k | k \ge 1\} \subseteq H \tag{74}$$

and

$$a^{m-n-1}a = a^{m-n} = e (75)$$

so:

$$a^{m-n-1} = a^{-1} (76)$$

• We will look at a special class of subgroups: subgroups generated by one element.

Definition: Let G be a group and let $a \in G$. Define:

$$\langle a \rangle = \{ a^n | n \in \mathbb{Z} \} \tag{77}$$

We call $\langle a \rangle$ the subgroup of G generated by a.

• We propose that $\langle a \rangle \leq G$.

Proof. Since $e = a^0 \in \langle a \rangle$, we have $\langle a \rangle \neq \emptyset$.

If $g,h\in\langle a\rangle$, then $g=a^m$ and $h=a^n$ for some $m,n\in\mathbb{Z}$ and:

$$gh^{-1} = a^{m}(a^{n})^{-1} = a^{m}a^{-n} = a^{m-n} \in \langle a \rangle$$
(78)

Example 7: Let $G = (\mathbb{Z}/14\mathbb{Z})^{\times} = \{1, 3, 5, 9, 11, 13\}$. We have:

$$a = 3, a^2 = 9, a^3 = 27 = 13 = -1 = -1, a^4 = -3 = 11, a^5 = -9 = 5, a^6 = 15 = 1$$
 (79)

Similarly:

$$a^{0} = 1, a^{-1} = 5, a^{-2} = 11, a^{-3} = 13, a^{-4} = 9, a^{-5} = 3, a^{-6} = 1$$
 (80)

Therefore:

$$\langle a \rangle = \{1, 3, 5, 9, 11, 13\} = (\mathbb{Z}/14\mathbb{Z})^x$$
 (81)

Therefore, $(\mathbb{Z}/14\mathbb{Z})^{\times}$ is cyclic. **Remarks:** If $a^n=e$, then for all $k\in\mathbb{Z}$, we have:

$$a^{-k} = a^{n-k} \tag{82}$$

so we can easily figure out negative exponents.

Example 8: Let $G = \mathbb{Z}/12\mathbb{Z}$ and a = 2. We have:

$$-a = 10, 0a = 0, 2a = 4, 3a = 6, 4a = 8, 5a = 10, 6a = 12 = 0, 7a = 2$$
 (83)

so:

$$\langle a \rangle = \{0, 2, 4, 6, 8, 10\}. \tag{84}$$

Example 9: Let $G = \mathbb{R}$ and $a = 2\pi$. Here,

$$\langle a \rangle = \{ n2\pi | n \in \mathbb{Z} \} = 2\pi \mathbb{Z} \tag{85}$$

Definition: Let G be a group and $a \in G$. If there exists $n \in \mathbb{Z}_{>0}$ such that $a^n = e$, then we say that a has **finite** order and the order of a is defined to be the smallest $n \in \mathbb{Z}_{>0}$ such that $a^n = e$.

If there does not exist $n \in \mathbb{Z}_{>0}$ such that $a^n = e$, then we say that a has infinite order.

The order of a is denoted by o(a) or |a|. If a has infinite order, we write $o(a) = \infty$.

- Note that:
 - $-o(a)=1 \iff a=e$
 - If $o(a) = \infty$, then $a^n = e \iff n = 0$.
- Let G be a group and $a \in G$.
 - 1. If $o(a) = \infty$, then $\forall i, j \in \mathbb{Z}$ we have:

$$a^{i-j} = e \iff i - j = 0 \tag{86}$$

$$\iff i = j$$
 (87)

2. If $o(a) = n < \infty$, then $\forall_{i,j} \in \mathbb{Z}$ we have:

$$a^i = a^j \iff n|i-j \tag{88}$$

$$\iff i \equiv j \pmod{n}$$
 (89)

In particular, $a^i = e(=a^0) \iff n|i$.

Proof. Let $i, j \in \mathbb{Z}$. Note $a^i = a^j \implies a^{i-j} = e$.

- 1. Suppose $o(a) = \infty$. Then $a^{i-j} = e$ iff $i j = 0 \iff i = j$.
- 2. Suppose $o(a) = n < \infty$. We must show that $a^{i-j} = e \iff n|i-j$.

(Backwards): If n|i-j, then $\exists k \in \mathbb{Z}$ such that i-j=kn so $a^{i-j}=a^{kn}=(a^n)^k=e^k=e$.

(Forwards) Now suppose $a^{i-j} = e$. By the division algorithm, $\exists ! \ q \ \text{and} \ 0 \le r < n \ \text{such that}$:

$$i - j = qn + r \tag{90}$$

We have:

$$e = a^{i-j} = a^{qn+r} = a^{qn}a^r = (a^n)^q a^r = e^q a^r = a^r$$
(91)

Since n is the smallest positive integer with $a^n = e$ and $0 \le r < n$ and satisfies $a^r = e$, we must have r = 0.

Therefore, i - j = qn so n|i - j.

Corollary 1: Let G be a group and $a \in G$.

- 1. If $o(a)=\infty$, then $\ldots,a^{-2},a^{-1},e,a,a^2,\ldots$ are distinct (and $\langle a\rangle=\{a^n|n\in\mathbb{Z}\}$) 2. If $o(a)=n<\infty$, then e,a,\ldots,a^{n-1} are distinct and $\langle a\rangle=\{e,a,\ldots,a^{n-1}\}$.

Corollary 2: Let G be a group and $a \in G$. Then $o(a) = |\langle a \rangle|$ where $|\langle a \rangle| = \infty$ when $\langle a \rangle$ is infinite.

Corollary 3: Let G be a group and $a, b \in G$. If ab = ba and $o(a), o(b) < \infty$, then

$$o(ab)|o(a)o(b) \tag{92}$$

Proof. Suppose ab = ba and $o(a), o(b) < \infty$. Since:

$$(ab)^{o(a)o(b)} = a^{o(a)o(b)}b^{o(a)o(b)}$$
(93)

$$= (a^{o(a)})^{o(b)} (b^{o(b)})^{o(a)}$$
(94)

$$=e^{o(b)}e^{o(a)} \tag{95}$$

$$=e$$
 (96)

Therefore, o(ab)|o(a)o(b).

• Remarks about notation:

- $\mathbb{Z}/n\mathbb{Z}$ is sometimes denoted by \mathbb{Z}_n or $\mathbb{Z}/(n)$.
- $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{[a] \in \mathbb{Z}/n\mathbb{Z} | [b] \in \mathbb{Z}/n\mathbb{Z} \text{ with } [a][b] = 1\} = \{[a] | \gcd(n, a) = 1\}.$

Theorem: Let G be a group and $a \in G$ with $o(a) = n < \infty$. For any $k \in \mathbb{Z}$, we have:

$$o(a^k) = \frac{o(a)}{\gcd(o(a), k)} = \frac{n}{\gcd(n, k)}$$

$$(97)$$

Proof. By definition, $o(a^k)$ is the smallest $m \in \mathbb{Z}_{>0}$ such that

$$(a^k)^m = e \iff a^{mk} = e \tag{98}$$

$$\iff n|mk$$
 (99)

Since mk is a multiple of k, we have $n|mk \iff mk$ is common multiple of n and k.

If there exists $m \in \mathbb{Z}_{>0}$ such that $mk = \operatorname{lcm}(n,k)$, then $m = o(a^k)$. Recall that:

$$\frac{nk}{\gcd(n,k)} = \operatorname{lcm}(n,k) \tag{100}$$

Since $\gcd(n,k)|n,$ then $\frac{n}{\gcd(n,k)}\in\mathbb{Z}_{>0}$ with

$$\left(\frac{n}{\gcd(n,k)}\right)k = \operatorname{lcm}(n,k) \tag{101}$$

Therefore:

$$o(a^k) = \frac{n}{\gcd(n,k)} \tag{102}$$

Corollary 4: In a finite group G, the order of every element divides the order of the group:

$$\forall x \in G, \quad o(x) \Big| |G| \tag{103}$$

12

Example 10: $\mathbb{Z} = \langle 1 \rangle$ is an infinite cyclic group. Meanwhile, $\mathbb{Z}/n\mathbb{Z} = \langle 1 \rangle$ is a finite cyclic group.

- Next we will study subgroups of cyclic groups. Choose a generator $a \in G$ and $G = \langle a \rangle$.
- For each $k \in \mathbb{Z}$, $a^k \in \langle a \rangle$. Therefore $\langle a^k \rangle \subseteq \langle a \rangle$.

Proposition 4: Let G be a group and let $a \in G$. If $H \leq G$ and $a \in H$, then $\langle a \rangle \subseteq H$.

• One natural question is: Do we get every subgroup in this way? If $k, \ell \in \mathbb{Z}$, when is $\langle a^k \rangle = \langle a^\ell \rangle$?

Theorem: Classification of subgroups of cyclic groups: Let $G = \langle a \rangle$ be a cyclic group:

- 1. If $|G| = \infty$ ($\iff o(a) = \infty$) then every subgroup of G is of the from $\langle a^m \rangle$ for a unique $m \in \mathbb{Z}_{\geq 0}$. Remarks: $\langle a^m \rangle = \langle a^{-m} \rangle$.
- 2. If $|G| = n < \infty$ (\iff $o(a) = n < \infty$) then every subgroup of G is of the form $\langle a^m \rangle$ for a unique $m \in \mathbb{Z}_{>0}$ with m|n.

Said differently, the order of every subgroup of G divides n and for each $d \in \mathbb{Z}_{>0}$ with d|n there is a unique subgroup of G of order d, namely $\langle a^{n/d} \rangle$.

Proof. Let $H \leq G = \langle a \rangle$ with $H \neq \{e\}$. Then $\exists k \in \mathbb{Z} \setminus \{0\}$ such that a^k , $a^{-k} \in H$. Therefore, $a^{|k|} \in H$ so $\exists k' \in \mathbb{Z}_{>0}$ such that $a^{k'} \in H$. Let m be the smallest positive integer such that $a^m \in H$ (which exists by the well-ordering principle).

We will prove that $H = \langle a^m \rangle$. Since $a^m \in H$, we have $\langle a^m \rangle \subseteq H$. To prove $H \subseteq \langle a^m \rangle$, it suffices to prove:

- If $a^k \in H$ where $k \in \mathbb{Z}$, then m|k.

Let $k \in \mathbb{Z}$ and assume $a^k \in H$. By the division algorithm, $\exists !q, r \in \mathbb{Z}$ such that $0 \le r < m$ and:

$$k = qm + r \tag{104}$$

Then:

$$a^k = a^{qm+r} = (a^m)^q a^r \implies a^r = (a^m)^{-q} a^k$$
 (105)

Since $(a^m)^{-q}, a^k \in H$.

Since $\langle a^m \rangle \subseteq H$, $(a^m)^{-q} \in H$. We assumed $a^k \in H$. Therefore, $a^r \in H$.

Since m is the smallest positive integer with $a^m \in H$ and $a^r \in H$ and $0 \le r < m$, we have r = 0. Therefore k = qm so m|k.

If $|G|=n<\infty$, then o(a)=n, so $a^n=e\in H$. Therefore by the above point, m|n. Now we look at the two cases:

1. Suppose $|G| = \infty$. We prove that every nontrivial subgroup of G is of the form $\langle a^m \rangle$ for some $m \in \mathbb{Z}_{>0}$. Since $\{e\} = \langle a^0 \rangle$, we have that every subgroup of G is of the form $\langle a^m \rangle$ for some $m \in \mathbb{Z}_{>0}$.

To prove that m is unique, suppose $H \leq G$ and $H = \langle a^m \rangle = \langle a^{m'} \rangle$ for some $m, m' \in \mathbb{Z}_{>0}$.

Since $a^m \in \langle a^m \rangle = \langle a^{m'} \rangle$, $a^m \in \langle a^{m'} \rangle$, so $a^m = a^{m'k}$ for some $k \in \mathbb{Z}$. Since $o(a) = \infty$, we must have m = m'k so m'|m. Similarly, m|m'. Thus, m = m'.

- 2. Suppose $|G| = n < \infty$. Then o(a) = n, so $a^n = e$ and therefore $\{e\} = \langle a^n \rangle$. We proved above that every nontrivial subgroup of G is of the form $\langle a^m \rangle$ for some $m \in \mathbb{Z}_{>0}$ with m|n.
- 3. Therefore, every subgroup of G is of the form $\langle a^m \rangle$ for some $m \in \mathbb{Z}_{>0}$ with m|n.

To prove that m is unique, suppose $H \leq G$ with $H = \langle a^m \rangle = \langle a^{m'} \rangle$ where $m, m'' \in \mathbb{Z}_{>0}$ with $m, m' \mid n$. Then:

$$o(a^m) = |\langle a^m \rangle| = |\langle a^{m'} \rangle| = o(a \tag{106}$$

Since $o(a^k) = \frac{n}{\gcd(n,k)}$ for all $k \in \mathbb{Z}$, we got:

$$\frac{n}{\gcd(n,m)} = \frac{n}{\gcd(n,m')} \tag{107}$$

which implies gcd(n, m) = gcd(n, m'). Since $m, m' \mid n$ we have gcd(n, m) = m and gcd(n, m') = m' so m = m'.

Corollary 5: Criterion for $\langle a^i \rangle = \langle a^j \rangle$ and $o(a^i) = o(a^j)$.

Let $G = \langle a \rangle$ be a cyclic group and let $i, j \in \mathbb{Z}$.

- 1. If $|G| = \infty$, then $\langle a^i \rangle = \langle a^j \rangle$ if and only if $j = \pm k$.
- 2. If $|G| = n < \infty$, then the following are equivalent:
 - $-\langle a^i\rangle = \langle a^k\rangle$
 - $-o(a^i) = o(a^j)$
 - $-\gcd(n,i) = \gcd(n,j)$

Corollary 6: (The generators of a cyclic group) Let $G = \langle a \rangle$ be a cyclic group. The generators of G are:

$$\begin{cases}
\{a, a^{-1}\} & |G| = \infty \\
\{a^k | \gcd(n, k) = 1\} & |G| = n < \infty
\end{cases}$$
(108)

This corollary follows from the first corollary.

• If $G=\langle a \rangle$ is cyclic of order $n<\infty$, it follows that there are exactly $\phi(n)$ generators where $\phi(n)$ is Euler's Toitent function.

5 Permutation Groups

- Let X be a set. A is a symmetry of X as a set is just a bijection $\sigma: X \to X$ because there is no structure that σ should preserve.
- We call bijections $\sigma: X \to X$ permutations of X.

Definition: The **symmetric group** on X is the group of all permutations of X with group operation given by composition. It is denoted by S_x .

Example 11: Let $X=\{a,b,c\}$, where a,b,c distinct. The map $\sigma:X\to X$ defined by $\sigma(a)=b$, $\sigma(b)=a$, $\sigma(c)=c$ is a permutation of X, so $\sigma\in S_x$. Similarly, the map $\tau:X\to X$ defined by $\tau(a)=c$, $\tau(b)=a$, $\tau(c)=b$ is a permutation of X, so $\tau\in S_X$ also.

Proposition 5: For every finite set X, $|S_x| = |X|!$.

• To prove this proposition rigorously, we can prove this via induction on $n \in \mathbb{Z}_{\geq 0}$ with |X| = |Y| = n, the set $\{\sigma : X \to Y | \sigma \text{ is a bijection}\}$ has cardinality n!. Then apply that in the case X = Y.

Definition: A subgroup of S_x is called a permutation group on X.

- We are most interest in the case when $0 < |X| < \infty$.
- By choosing a linear ordering x_1, \ldots, x_n of the elements of X, then we can regard X as the set $\{1, \ldots, n\}$.
- We may as well, and we will, assume that $X = \{1, \dots, n\}$.
- ullet We denote $S_{\{1,\dots,n\}}$ by S_n and we call it the symmetric group on n letters.
- The identity of S_n is something denoted by id, 1, e, or ϵ .
- If $\sigma \in S_n$, we write:

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$
 (109)

Example 12: Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$$
 and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$. Then:
$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} and \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$
(110)

• For $n \geq 3$, S_n is non-abelian.

Proof. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 1 & 3 & \cdots & n \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 3 & 2 & \cdots & n \end{pmatrix}$. Then:

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 1 \cdots & n \end{pmatrix} \tag{111}$$

but

$$\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 3 & 1 & 2 & \cdots & n \end{pmatrix} \tag{112}$$

so $\sigma \tau \neq \tau \sigma$.

• We will now introduce the notion of a cycle

Definition: Let $r \in \mathbb{Z}$, $r \ge 2$. An **r-cycle** in S_n is a permutation $\gamma \in S_n$ with the following property: There exist r distinct elements $c_1, \ldots, c_r \in \{1, \ldots, n\}$ such that:

- (a) $\gamma(c_i) = c_i + 1$ for $1 \le i \le r 1$, and $\gamma(c_r) = c_1$.
- (b) $\gamma(k) = k$ for all $k \in \{1, \ldots, n\} \setminus \{c_1, \ldots, c_r\}$.

In this case, we write the r-cycle γ as:

$$\gamma = \begin{pmatrix} c_1 & c_2 & \dots & c_r \end{pmatrix} \tag{113}$$

That is, γ is an r-cycle if it moves precisely r elements of $\{1, \dots, n\}$ in a cyclic pattern (and leaves every other element fixed).

Example 13: Let $\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 5 & 3 & 2 & 6 & 9 & 7 & 4 & 8 \end{pmatrix} \in S_9$. We claim that γ is a 6-cycle.

Note that γ fixes 1, 3, 7. We then need to show that the remaining elements are mapped by γ in a cyclic pattern:

$$2 \mapsto 5 \mapsto 6 \mapsto 9 \mapsto 8 \mapsto 4 \mapsto 2 \tag{114}$$

Therefore, $\gamma = \begin{pmatrix} 2 & 5 & 6 & 9 & 8 & 4 \end{pmatrix}$. Note that this is also equivalent to:

$$\gamma = \begin{pmatrix} 5 & 6 & 9 & 8 & 4 & 2 \end{pmatrix}. \tag{115}$$

Proposition 6: Let $r \geq 2$ and let $\gamma = (c_1 \quad c_2 \quad \cdots \quad c_r)$ be an r-cycle in S_n .

1. For all $2 \le i \le r$ we have:

$$\gamma = \begin{pmatrix} c_i & c_{i+1} & \dots & c_r & c_1 & c_2 & \dots & c_{i-1} \end{pmatrix}$$
(116)

2. The inverse γ^{-1} is given by:

$$\gamma^{-1} = \begin{pmatrix} c_r & c_{r-1} & \dots c_1 \end{pmatrix} \tag{117}$$

Proof. We prove both parts of the above proposition.

- 1. Exercise left to reader.
- 2. Let $\delta = (c_r \quad c_{r-1} \quad \dots c_1)$. To show that $\delta = \gamma^{-1}$, it suffices to show that $\delta \gamma = \text{id}$. (since S_n is a group). To do so, we must prove that $\forall i \in \{1, \dots, n\}$, we have $\delta \gamma(i) = i$.

By definition of cycles, we have:

$$\gamma(k) = \begin{cases} k & k \notin \{c_1, \dots, c_r\} \\ c_{i+1} & k = c_i, 1 \le i \le r - 1 \\ c_1 & k = c_r \end{cases}$$
 (118)

and:

$$\delta(k) = \begin{cases} k & k \notin \{c_1, \dots, c_r\} \\ c_{i-1} & k = c_i, 2 \le i \le r \\ c_r & k = c_1 \end{cases}$$
(119)

We can then check for $k \notin \{c_1, \ldots, c_r\}$, we have:

$$\delta\gamma(k) = \gamma(k) = k \tag{120}$$

For $k = c_i$, $1 \le i \le r - 1$, we have:

$$\delta\gamma(k) = \delta\gamma(c_i) = \delta(c_{i+1}) = c_i = k \tag{121}$$

For $k = c_r$, we have:

$$\delta\gamma(k) = \delta(c_1) = c_r = k. \tag{122}$$

• Let us investigate the product of two cycles.

Example 14: Let $\gamma = \begin{pmatrix} 1 & 3 & 2 & 4 \end{pmatrix}$ and $\delta = \begin{pmatrix} 2 & 6 & 3 \end{pmatrix}$ where $\gamma, \delta \in S_8$. Then:

$$\delta \gamma = \begin{pmatrix} 1 & 3 & 2 & 4 \end{pmatrix} \begin{bmatrix} 2 & 6 & 3 \end{bmatrix} \tag{123}$$

$$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 5 & 2 & 7 & 8 \end{pmatrix}$$
 (124)

Notice that:

$$1 \mapsto 3 \mapsto 4 \mapsto 1 \tag{125}$$

However, the other elements are not fixed since $6\mapsto 2$. Therefore, $\gamma\delta$ is not a cycle.

6 Lecture Six

• We continue our investigation of permutations.

Definition: Let $\sigma \in S_n$. Define:

$$Fix(\sigma) = \{k \in \{1, \dots, n\} | \sigma(k) = k\}$$
(126)

Definition: Let $\sigma, \tau \in S_n$. We say that σ and τ are disjoint if for all $k \in \{1, ..., n\}$,

$$\sigma(k) \neq k \implies \tau(k) = k \tag{127}$$

which means that $k \in Fix(\tau)$. Similarly:

$$\tau(k) \neq k \implies \sigma(k) = k \tag{128}$$

which means that $k \in Fix(\sigma)$.

• Note that two cycles $\gamma = \begin{pmatrix} c_1 & \cdots & c_r \end{pmatrix}$ and $\delta = \begin{pmatrix} d_1 & \cdots & d_s \end{pmatrix}$ are disjoint if and only if:

16

$$\{c_1,\ldots,c_r\}\cap\{d_1,\ldots,d_s\}=\emptyset\tag{129}$$

• This is because

$$\operatorname{Fix}\left(c_{1} \quad \cdots \quad c_{r}\right) = \left\{1, \dots, n\right\} \setminus \left\{c_{1}, \dots, c_{r}\right\} \tag{130}$$

and:

$$\operatorname{Fix} (d_1 \quad \cdots \quad d_s) = \{1, \dots, n\} \setminus \{d_1, \dots, d_s\}. \tag{131}$$

Lemma 7: Let $\sigma \in S_n$. Then:

- 1. If $k \in \text{Fix}(\sigma)$, then $k \in \text{Fix}(\sigma^m)$ for all $m \in \mathbb{Z}$.
- 2. If $k \notin \text{Fix}(\sigma)$, then $\sigma^m(k) \notin \text{Fix}(\sigma)$ for all $m \in \mathbb{Z}$.

Proof. We will prove both of the above:

1. Let $k \in \text{Fix}(\sigma)$, i.e. $\sigma(k) = k$. Then $k = \sigma^{-1}(\sigma(k)) = \sigma^{-1}(k)$. Therefore, we have $k \in \text{Fix}(\sigma^{-1})$. It follows by a simple induction argument that $k \in \text{Fix}(\sigma^m)$ for all $m \in \mathbb{Z}_{\geq 0}$ and $k \in \text{Fix}(\sigma^m)$ for all $m \in \mathbb{Z}_{\leq 0}$.

The induction argument involves the fact that $\sigma(\sigma(k)) = \sigma(k) = k$.

2. Let $k \notin \text{Fix}(\sigma)$. It suffices to prove that $\sigma(k) \notin \text{Fix} \sigma$. It suffices to prove that:

$$\sigma(k), \sigma^{-1}(k) \notin \text{Fix}(\sigma)$$
 (132)

To show why, suppose that $\sigma(k), \sigma^{-1}(k) \notin \operatorname{Fix}(\sigma)$. Then, the idea is that we cannot have $\sigma^2(k) \in \operatorname{Fix}(\sigma)$ since $\sigma(\sigma(k)) = \sigma(k) \notin \operatorname{Fix}(\sigma)$.

Alternatively, we can have a direct proof. Let $k \notin \text{Fix}(\sigma)$. Let $m \in \mathbb{Z}$. Suppose for the sake of contradiction that $\sigma^m(k) \in \text{Fix}(\sigma)$. Then:

$$\sigma(\sigma^m(k)) = \sigma^m(k) \tag{133}$$

Therefore, applying σ^{-m} on both sides gives $\sigma(k)=k$. This contradicts $k\notin \mathrm{Fix}(\sigma)$. Therefore, $\sigma^m(k)\notin \mathrm{Fix}(\sigma)$.

Theorem: (Disjoint permutations commute) Let $\sigma, \tau \in S_n$ be disjoint. Then $\sigma \tau = \tau \sigma$.

Proof. Let $k \in \{1, \ldots, n\}$, and let $\sigma, \tau \in S_n$ be disjoint.

For the first case, suppose $k \in \text{Fix}(\sigma) \cap \text{Fix}(\tau)$. Then $\sigma(k) = k = \tau(k)$. Therefore:

$$\sigma\tau(k) = \sigma(k) = k \tag{134}$$

and:

$$\tau\sigma(k) = \tau(k) = k \tag{135}$$

so $\sigma \tau(k) = \tau \sigma(k)$.

For the second case, suppose $k \notin \operatorname{Fix}(\sigma)$. Since σ and τ are disjoint, we have $k \in \operatorname{Fix}(\tau)$. Therefore $\tau(k) = k$ and $\sigma\tau(k) = \sigma(k)$. Since $k \notin \operatorname{Fix}(\sigma)$, we have $\sigma(k) \notin \operatorname{Fix}(\sigma)$ by part (2) of the above lemma. Since σ and τ are disjoint and $\sigma(k) \notin \operatorname{Fix}(\sigma)$, we have $\sigma \in \operatorname{Fix}(\tau)$.

Therefore, $\tau \sigma(k) = \sigma(k)$. As a result:

$$\tau\sigma(k) = \sigma\tau(k) \tag{136}$$

For the last case, we consider $k \notin Fix(\tau)$. It can be handled in the same way as the second case.

• We now introduce the notion of an orbit.

Definition: Let $\sigma \in S_n$. For each $k \in \{1, ..., n\}$, the set:

$$O_{\sigma}(k) = \{ \sigma^{m}(k) | m \in \mathbb{Z} \}$$
(137)

$$= \{\dots, \sigma^{-2}, \sigma^{-1}, k, \sigma(k), \dots \}$$
 (138)

is called the **orbit** of k under the set σ .

• Note that $|O_{\sigma}(k)| = 1$ if and only if $O_{\sigma}(k) = \{k\}$ if and only if $k \in Fix(\sigma)$.

Proposition 7: Let $\sigma \in S_n$. For all $k \in \{1, ..., n\}$, there exists $\ell \in \mathbb{Z}_{>0}$ such that $\sigma^{\ell}(k) = k$.

If ℓ is the smallest positive integer such that $\sigma^{\ell} = k$, then $k, \sigma(k), \sigma^{2}(k), \dots, \sigma^{\ell-1}(k)$ are distinct and:

$$O_{\sigma}(k) = \{k, \sigma(k), \dots, \sigma^{\ell-1}(k)\}. \tag{139}$$

Warning: The smallest $\ell \in \mathbb{Z}_{>0}$ such that $\sigma^{\ell}(k) = k$ is not necessarily the order of σ , which is the smallest $m \in \mathbb{Z}_{>0}$ such that:

$$\sigma^m(j) = j \tag{140}$$

for all $j \in \{1, ..., n\}$.

Proof. The subset $\{\sigma^m(k)|m\in\mathbb{Z}\}$ of $\{1,\ldots,n\}$ is finite.

Therefore, there exist $m_1, m_2 \in \mathbb{Z}$ with $m_1 < m_2$ such that $\sigma^{m_1}(k) = \sigma^{m_2}(k)$. Then $\sigma^{m_2-m_1}(k) = k$ and $m_2 - m_1 \in \mathbb{Z}_{>0}$.

Let $\ell \in \mathbb{Z}_{>0}$ be the smallest positive integer such that $\sigma^{\ell}(k) = k$. This exists by the well ordering principle.

If $m_1, m_2 \in \{0, 1, \dots, \ell - 1\}$, $m_1 < m_2$, and $\sigma^{m_1}(k) = \sigma^{m_2}(k)$, then $0 < m_2 - m_1 < \ell$ and $\sigma^{m_2 - m_1}(k) = k$, contradicting the definition of ℓ .

Thus, $k, \sigma(k), \ldots, \sigma^{\ell-1}(k)$ are distinct. All we have to do now is to prove all the element sin the orbit of k is one of these.

Let $m \in \mathbb{Z}$. While $m = q\ell + r$ for unique $q, \ell \in \mathbb{Z}$ with $0 \le r < \ell$ by the division algorithm. Now,

$$\sigma^m(k) = \sigma^{q\ell+r}(k) \tag{141}$$

$$= (\sigma^{\ell})^q \sigma^r(k) \tag{142}$$

$$= \sigma^r (\sigma^\ell)^q (k) \tag{143}$$

$$=\sigma^r(k) \tag{144}$$

We are able to go through these steps by noting $\sigma^{\ell}(k) = k \implies (\sigma^{\ell})^{q}(k) = k$. Therefore $\sigma^{m}(k) = \sigma^{r}(k) = \{k, \sigma(k), \dots, \sigma^{\ell-1}(k)\}$ and:

$$O_{\sigma}(k) = \{k, \sigma(k), \dots, \sigma^{\ell-1}(k)\}. \tag{145}$$

Proposition 8: Let $\sigma \in S_n$.

- 1. For all $k \in \{1, ..., n\}$, then $j \in O_{\sigma}(k)$, if and only if $O_{\sigma}(j) = O_{\sigma}(k)$.
- 2. Distinct orbits of σ are disjoint. If $O_{\sigma}(j) \neq O_{\sigma}(k)$, then:

$$O_{\sigma}(j) \cap O_{\sigma}(k) = \emptyset. \tag{146}$$

Consequently, the orbits of σ partition $\{1, \ldots, n\}$.

Proof. Again, we prove both parts.

1. Let $k \in \{1, ..., n\}$. Suppose $j \in O_{\sigma}(k)$. Then there exists $m \in \mathbb{Z}$ such that $\sigma^m(k) = j$. Therefore, for all $r \in \mathbb{Z}$, $\sigma^r(j) = \sigma^{m+r}(k) \in O_{\sigma}(k)$. Thus, we have proved that:

$$j \in O_{\sigma}(k) \implies O_{\sigma(k)} \subseteq O_{\sigma}(j).$$
 (147)

Now since $j=\sigma^m(k)$, we have $k=\sigma^{-m}(j)\in O_\sigma(j)$. Therefore, $O_\sigma(k)\subseteq O_\sigma(j)$ by the same argument. Thus, $O_\sigma(j)=O_\sigma(k)$.

Note that we also have to prove the reverse direction. We know that $j \in O_{\sigma}(k)$ since $j \in O_{\sigma}(j)$.

2. We will prove the contrapositive. Suppose $O_{\sigma}(j) \cap O_{\sigma}(k) \neq \emptyset$. Then, there exist $m_1, m_2 \in \mathbb{Z}$ such that:

$$\sigma^{m_1}(j) = \sigma^{m_2}(k). \tag{148}$$

Therefore, $j = \sigma^{m_2 - m_1}(k) \in O_{\sigma}(k)$. By part (1), we have $O_{\sigma}(j) = O_{\sigma}(k)$.

• We introduce the cycle attached to an orbit of $\sigma \in S_n$.

- Let $\sigma \in S_n$ and let O be an orbit of σ . Let $\ell = |O|$. Assume $\ell \geq 2$.
- Choose a $k \in O$. Then $O = O_{\sigma}(k)$ (by part (1) in the proposition.) By an earlier proposition:

$$O = O_{\sigma}(k) = \{k, \sigma(k), \dots, \sigma^{\ell-1}(k)\}.$$
(149)

- We can define a cycle $\gamma_O = \begin{pmatrix} k & \sigma(k) & \cdots & \sigma^{\ell-1}(k) \end{pmatrix}$ which is an ℓ -cycle in S_n .
- The ℓ -cycle γ_O does not depend on the choice of $k \in O$. Proof is left as an exercise.
- Note: If O, O' are distinct orbits of σ , then they are disjoint so the cycles γ_O and $\gamma_{O'}$ are disjoint as well. Therefore, these two cycles commute.

Theorem: (Cycle Decomposition Theorem) Every non-identity permutation can be written as a product of mutually disjoint cycles, i.e. there exist cycles γ_1,\ldots,γ_r such that γ_i and γ_j are disjoint if $i\neq j$ and $\sigma=\gamma_1\cdots\gamma_r$. Moreover, if $\gamma_1, \ldots, \gamma_r$ are as above, then $\{\gamma_1,\ldots,\gamma_r\}=\{\gamma_0:O \text{ is an orbit of }\sigma \text{ and }|O|\geq 2.$ In particular, the set $\{\gamma_1,\ldots,\gamma_r\}$ is unique.

• Remarks: We can extend the theorem to the case where $\sigma = id$ if we define an empty product (or a product of 0 elements of S_n) to be id.

Proof. Let $\sigma \in S_n$ and $\sigma \neq \text{id}$. Let O_1, \ldots, O_s be the distinct orbits of σ of size at least 2. The cycles $\gamma_O, \ldots, \gamma_{O_s}$ are mutually disjoint because the orbits O_1, \ldots, O_s are mutually disjoint.

Define $\tau = \sigma_{O_1} \cdots \sigma_{O_S}$. We will prove that $\sigma = \tau$. Let O_{s+1}, \dots, O_t be the distinct orbits of σ of size 1. Then:

$$\{1,\ldots,n\} = \left(\dot{\bigcup}_{i=1}^s O_i\right) \dot{\bigcup} \left(\dot{\bigcup}_{j=s+1}^t O_j\right). \tag{150}$$

Let $k \in \{1, \dots, n\}$. We must show that $\sigma(k) = \tau(k)$. If $k \notin O_1 \dot{\cup} \cdots \dot{\cup} O_s$. Then $k \in O_j$ for some $j \in \{s+1, \dots, t\}$. Since O_j is an orbit of size 1, we must have $\sigma(k) = k$.

For each $i = \{1, \dots, s\}$, $k \notin O_i$, so $\gamma_{O_i}(k) = k$. Therefore:

$$\tau(k) = \gamma_{O_1} \dots \gamma_{O_s}(k) = k = \sigma(k) \tag{151}$$

If $k \in O_i$ for some $i \in \{1, ..., s\}$, then by the definition of γ_{O_i} , we have:

$$\gamma_{O_i}(k) = \sigma(k) \tag{152}$$

for all $j \neq i$. Since $\tau = \gamma_{O_i} \dots \gamma_{O_s} = \gamma_{O_i} \prod_{i \neq i} \gamma_{O_j}$.

We have:

$$\tau(k) = \gamma_{O_i} \prod_{j \neq i} \gamma_{O_j}(k)$$

$$= \gamma_{O_i}(k)$$
(153)

$$= \gamma_{O_i}(k) \tag{154}$$

$$=\sigma(k). \tag{155}$$

Therefore, $\sigma(k) = \tau(k)$ for all $k \in \{1, ..., n\}$, i.e. $\sigma = \tau$.

Now suppose that $\sigma=\gamma_1\cdots\gamma_r$ where γ_1,\ldots,γ_r are mutually disjoint cycles. We will prove that:

$$\{\gamma_1, \dots, \gamma_r\} = \{\gamma_O : O \text{ is an orbit of } \sigma \text{ and } |O| \ge 2\}. \tag{156}$$

Proof of \subseteq Let $i \in \{1, ..., r\}$ and write $\gamma_i = \begin{pmatrix} c_1 & ... & c_\ell \end{pmatrix}$. Since $\gamma_1, ..., \gamma_r$ are mutually disjoint, if $j \neq i$, then $\gamma_j(c_k) = c_k$ for all $k \in \{1, ..., \ell\}$. Therefore,

$$\sigma(c_k) = \gamma_i \prod_{j \neq i} \gamma_j(c_k) \tag{157}$$

$$=\gamma_i c_k \tag{158}$$

$$=\begin{cases} c_{k+1} & k < \ell \\ c_1 & k = \ell \end{cases}$$

$$(159)$$

for all $k \in \{1, ..., \ell\}$. Consequently, $\sigma(c_1) = c_2, \sigma^2(c_1) = c_3, ..., \sigma^{\ell-1}(c_1) = c_\ell, \sigma^\ell(c_1) = c_1$.

Therefore, $O_{\sigma}(c_1) = \{c_1, c_2, \dots, c_{\ell}\}$ and $\gamma_i = \gamma_{O_{\sigma}(c_1)}$.

Proof of \supseteq : Let O be an orbit of σ with $|O| \ge 2$. Let $k \in O$. Then as we have seen before, $O = O_{\sigma}(k)$. Since $|O| \ge 2$, we have $\sigma(k) \ne k$. Since $\sigma = \gamma_1 \cdots \gamma_r$ and $\sigma(k) \ne k$, there exists $i \in \{1, \dots, r\}$ such that:

$$\gamma_i(k) \neq k. \tag{160}$$

Let us write $\gamma_i = \begin{pmatrix} c_1 & \dots & c_\ell \end{pmatrix}$. Since $\gamma_i(k) \neq k$, we have $k = c_j$ for some $j \in \{1, \dots, \ell\}$. By relabelling c_1, \dots, c_ℓ , we may assume that $k = c_1$. We showed above that $\gamma_i = \gamma_{O_\sigma(c_1)}$.

Since
$$c_1 = k$$
, $O_{\sigma}(c_1) = O_{\sigma}(k) = O$. Therefore, $\gamma_i = \gamma_O$.

Lemma 8: If $\sigma, \tau \in S_n$ are disjoint, then so are σ^{m_1}, τ^{m_2} for all $m_1, m_2 \in \mathbb{Z}$.

Proof. Suppose $\sigma, \tau \in S_n$ are disjoint Let $m_1, m_2 \in \mathbb{Z}$.

If $k \in \{1, ..., n\}$ and $\sigma^{m_1}(k) \neq k$, then $\sigma(k) \neq k$. Therefore, $\tau(k) = k$ (since σ and τ are disjoint), and therefore $\tau^{m_2}(k) = k$.

Similarly, if
$$k \in 1, \ldots, n$$
 and $\tau^{m_2}(k) \neq k$, then $\sigma^{m_1}(k) = k$.

Theorem: (Order of a Permutation) Let $\sigma \in S_n$. Let $\sigma = \gamma_1 \cdots \gamma_r$ be the cycle decomposition of σ . (When $\sigma = \operatorname{id}, r = 0$ and σ is an empty product of mutually disjoint cycles.)

Then $o(\sigma) = \text{lcm}(o(\gamma_1), \dots, o(\gamma_r))$. (If $\sigma = \text{id}$, then $o(\sigma) = 1 = \text{lcm}(o(\emptyset))$.)

Proof. Since $\gamma_1, \ldots, \gamma_r$ commute, for all $m \in \mathbb{Z}$, we have:

$$\sigma^m = \gamma_1^m \cdots \gamma_n^m. \tag{161}$$

Let $m_i = o(\gamma_i)$ for each i and let $M = \operatorname{lcm}(m_1, \dots,)$. Since $m_i | M$ for each i, we have $\sigma^M = \sigma_1^M \cdots \sigma_r^M = \operatorname{id} \cdots \operatorname{id} = \operatorname{id}$. Let $m \in \mathbb{Z}$ and suppose $\sigma^m = \operatorname{id}$. Then $\gamma_1^m \cdots \gamma_r^m = \operatorname{id}$. Since $\gamma_1, \dots, \gamma_r$ are mutually disjoint, so are $\gamma_1^m, \dots, \gamma_r^m$ by the above lemma.

If $\gamma_i^m(k) \neq k$, then $\gamma_i^m(k) = k$ for all $j \neq i$, so:

$$\gamma_1^m \cdots \gamma_r^m(k) = \gamma_i^m(k) \neq k, \tag{162}$$

contradicting the fact that:

$$\gamma_1^m \cdots \gamma_r^m = \text{id.} \tag{163}$$

Therefore, $\gamma_i^m(k)=k$ for all i,k. So, $\gamma_i^m=\mathrm{id}$ for all i. Therefore $m_i=o(\gamma_i)|m$ for all i, Thus, $M=\mathrm{lcm}(m_1,\ldots,m_r)|m$. We proved that $\sigma^M=1$ and $\sigma^m=1 \implies M|m$. Since $M\in\mathbb{Z}_{>0}$, it follows that $M=o(\sigma)$.