Задача 1. Рассмотрим последовательность «уголков»: \Box , \Box , \Box , \Box , \Box , ... Сколько клеток в k-том уголке и чему равна суммарная площадь первых k уголков?

Задача 2. а) Чему равно k-е нечётное число и сумма первых k нечётных чисел? б) Чему равно k-е чётное число и сумма первых k чётных чисел? в) Вычислите сумму 100 последовательных нечётных чисел, начиная с 179.

Задача 3. Чи<u>сла $T_1=1,\,T_2=3,\,T_3=6,\,T_4=10,\,\dots$ греческий математик Диофант называл *треугольными*:</u>

- а) Сложите из двух последовательных треугольных чисел квадрат.
- **б)** Что получится при сложении T_n с T_n ? **в)** Выразите T_n через n (и тем самым получите формулу для суммы $1+2+3+\cdots+n$).

Задача 4. Найдите сумму первой сотни натуральных чисел.

Задача 5. Докажите геометрически: **a)** $T_{m+n} = T_m + T_n + mn;$

6)
$$1+2+\cdots+(n-1)+n+(n-1)+\cdots+2+1=n^2$$
.

Задача 6. (Пифагорова таблица умножения) **а)** Докажите тождество mk = km (т. е. докажите, что $\underbrace{k+k+\ldots+k}_{m} = \underbrace{m+m+\ldots+m}_{k}$).

б) Каковы размеры и площадь таблицы на рисунке 1?

Задача 7. а) Сколько клеток в k-м, считая от левого верхнего угла пифагоровой таблицы, «толстом» уголке, «вершина» которого — квадрат $k \times k$ клеток, а стороны составлены из прямоугольников $1 \times k$, $2 \times k$, ..., $(k-1) \times k$ клеток? б) Найдите сумму $1^3 + 2^3 + \ldots + n^3$.

Рис. 1. Пифагорова таблица умножения чисел от 1 до n

Задача 8. Сформулируйте и докажите теорему, описывающую явление: $3+5=2^3$, $7+9+11=3^3$, $13+15+17+19=4^3$, . . .

Задача 9. Пятиугольные числа $P_1=1, P_2=5, P_3=12, P_4=22, \dots$ показаны на рисунке 2. Найдите разность P_k-P_{k-1} между последовательными пятиугольными числами. Выразите P_n через n.

Задача 10. Докажите геометрически, что сумма n-го треугольного и n-го четырёхугольного числа на n больше, чем n-ое пятиугольное число.

Рис. 2. Пятиугольные числа.

Задача 11*. Число k^2 можно представлять себе как объём параллелепипеда $1 \times k \times k$, а сумму $1^2 + 2^2 + \ldots + n^2$ — как объём пирамиды, сложенной из таких параллелепипедов. Будем обозначать эту пирамиду Sq(n) (на рисунке 3 изображена пирамида Sq(2) объёмом $1^2 + 2^2$). Сложите из шести пирамид Sq(n) параллелепипед. Каковы его размеры и объём? Выведите формулу для суммы $1^2 + 2^2 + \ldots + n^2$.

Задача 12. На рисунке справа изображены несколько пирамид высоты 4, каждая из них состоит из $T_1 + T_2 + T_3 + T_4$ кубиков. **a)** Выберите одну из пирамид на рисунке и нарисуйте её горизонтальные слои: нижний, второй снизу, ..., верхний. **б)** Нарисуйте передний, второй спереди, ..., задний слои выбранной пирамиды; **в)** Нарисуйте самый левый, второй слева, ..., самый правый слои выбранной пирамиды. **r)** Сложите из шести пирамид такого вида параллелепипед. Каковы его размеры?

тис. э. пирамида для т | 2

Рис. 4. Интересные пирамиды

д) Как сложить параллелепипед из шести пирамид аналогичного вида, но высоты n? Найдите формулу для суммы треугольных чисел $T_1 + T_2 + \cdots + T_n$ (эта сумма обозначается Π_n и называется n-ым пирамидальным числом).

е) Сложите из двух таких пирамид высоты n и высоты n-1 пирамиду Sq(n) и выведите формулу для суммы $1^2+2^2+\ldots+n^2$. ж) Докажите геометрически, что

 $T_1 + T_2 + \dots + T_n = 1 \cdot n + 2 \cdot (n-1) + 3 \cdot (n-2) + \dots + (n-1) \cdot 2 + n \cdot 1.$

Задача 13*. Найдите сумму квадратов первых n нечётных чисел.

Задача 14*. Найдите (каким-нибудь способом) формулу для суммы $\Pi_1 + \Pi_2 + \ldots + \Pi_n$.

Задача 15*. На рисунке справа изображена таблица умножения чисел $1, 2, \ldots, n$ на числа $1^2, 2^2, \ldots, n^2$. **а)** Найдите сумму всех чисел в этой таблице. **б)** Найдите сумму чисел, стоящих в выделенном уголке (представьте в виде многочлена от k). **в)** Выведите формулу для суммы $1^4 + 2^4 + \ldots + n^4$.

Интересно, какие ещё суммы можно найти с помощью геометрических рассуждений?

	1	2 a	2 6	2 B	3 a	3 6	3 B	4	5 a	5 б	6 a	6 6	7 a	7 б	8	9	10	 12 a	12 б		14	13	14	15 a	15 б	15 B
ĺ																										