Results are obtained with h_0^P estimated

	h_0^Q IS UNC UNDER P, UPDATED UNDER Q 1 YEAR, THEN FROZEN								
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
ω	8.5020e - 08	9.2713e - 06	1.9239e - 07	2.2129e - 06	1.9389e - 06	4.1610e - 07	5.9988e - 07	3.5296e - 07	5.5798e - 07
std	(4.4877e - 07)	(2.7968e - 05)	(1.0856e - 06)	(6.4184e - 06)	(6.6239e - 06)	(2.4952e - 06)	(2.9189e - 06)	(2.0142e - 06)	(2.7147e - 06)
median	4.8556e - 10	1.1201e - 09	8.3045e - 10	1.6349e - 09	1.4218e - 09	1.6699e - 09	8.8906e - 10	3.3972e - 10	5.5461e - 10
α	2.5053e - 05	2.0773e - 05	1.8857e - 05	1.3866e - 05	1.3628e - 05	1.3613e - 05	1.3838e - 05	8.6221e - 06	1.5568e - 05
std	(2.2286e - 05)	(2.0915e - 05)	(1.6575e - 05)	(1.1518e - 05)	(8.5509e - 06)	(5.8573e - 06)	(8.0132e - 06)	(5.2512e - 06)	(9.8830e - 06)
median	1.6946e - 05	1.8770e - 05	1.2068e - 05	1.2723e - 05	1.3239e - 05	1.2849e - 05	1.3228e - 05	8.5732e - 06	1.4242e - 05
9	0.4924	0.3370	0.4751	0.2745	0.1057	0.1755	0.2466	0.1769	0.2081
$egin{array}{c} eta \ \mathbf{std} \end{array}$	(0.3262)	(0.3216)	0.4751 (0.3449)	0.3745 (0.3822)	0.1857 (0.2931)	0.1755 (0.2334)	0.2466 (0.3159)	0.1768 (0.3270)	(0.3076)
median	0.5759	0.3823	0.5676	0.3025	0.0003	0.0008	0.0018	0.0001	0.0008
γ^*	150.2212	214.4353	173.9764	268.9184	254.1627	222.3940	210.4781	296.4724	200.0720
$\operatorname{\mathbf{std}}$	(138.1818)	(168.3789)	(143.1116)	(295.6025)	(239.9854)	(41.1800)	(73.6564)	(189.9753)	(141.3388)
median	110.8449	155.9251	143.9621	170.7408	196.1680	228.8470	208.6253	252.7287	161.0031
h_0^Q	1.2468e - 04	1.5814e - 04	8.6791e - 05	6.4327e - 05	6.4325e - 05	0.0001	9.5618e - 05	4.2789e - 05	1.0871e - 04
n_0 std	(8.4854e - 05)	(1.0317e - 04)	(4.2726e - 05)	(3.0386e - 05)	(3.7746e - 05)	(5.4010e - 05)	(6.6049e - 05)	(2.5624e - 05)	(9.0224e - 05)
median	1.0398e - 04	1.3624e - 04	7.8012e - 05	5.3266e - 05	5.2214e - 05	8.5698e - 05	7.4335e - 05	3.6616e - 05	6.9818e - 05
persistency	0.8233	0.8361	0.7863	0.7230	0.6842	0.7936	0.7599	0.6817	0.6598
std	(0.1875)	(0.1268)	(0.2318)	(0.2418)	(0.2203)	(0.0951)	(0.1551)	(0.2158)	(0.2299)
median	0.8873	0.8444	0.8856	0.7596	0.7232	0.7919	0.7344	0.6894	0.6789
MSE	13.1341	29.7013	11.0076	10.4282	20.4248	21.2395	26.0305	26.8897	50.6471
median MSE	4.0691	6.5356	5.3875	6.5788	9.0235	11.1964	17.4622	23.3996	25.9681
IVRMSE	0.1878	0.2385	0.1550	0.1445	0.1694	0.1849	0.2030	0.1592	0.2025
MAPE	0.2247	0.2822	0.2447	0.2502	0.3205	0.3755	0.3917	0.3454	0.3334
OptLL Norm	-1.9442	-2.2278	-1.9144	-1.9134	-2.1584	-2.0968	-2.3777	-2.2153	-2.6961
${ m OptLL}$	-106.9859	-133.9125	-130.3126	-179.9202	-217.0199	-256.8779	-361.9741	-370.2197	-508.0336
AIC	117.0836	141.9125	140.9188	187.9202	225.0199	264.8779	369.9741	378.2197	537.2017
AICc	117.8877	142.6812	141.5534	188.3942	225.4700	265.2412	370.2611	378.4804	537.4204
BIC			~~~-						