HW 4

Exercise 1

a.
$$y_i = \beta_0 + \beta_1 x_i + \mathcal{E}$$

2. $y_i = \beta_0 + \beta_1 x_i + \mathcal{E}$

2. $y_i = \beta_0 + \beta_1 x_i + \mathcal{E}$

2. $y_i = \beta_0 + \beta_1 x_i + \mathcal{E}$

2. $y_i = \beta_0 + \beta_1 x_i + \mathcal{E}$

2. $y_i = \beta_0 + \beta_1 x_i + \mathcal{E}$

2. $y_i = \beta_0 + \beta_1 x_i + \mathcal{E}$

2. $y_i = \beta_0 + \beta_1 x_i + \mathcal{E}$

2. $y_i = \beta_0 + \beta_1 x_i + \mathcal{E}$

2. $y_i = \beta_0 + \beta_1 x_i + \mathcal{E}$

2. $y_i = \beta_0 + \beta_0 x_i + \beta_0 + \beta_0$

$$\begin{array}{c} = & 1 \\ & n \, 2 \, x_1^{\, 1} - \left(\, 2 \, x_1 \right)^{\, 1} \\ & n \, 2 \, x_1^{\, 1} - \left(\, 2 \, x_1 \right)^{\, 1} \\ & - n \, \bar{x} \quad n \, \end{array}] \begin{bmatrix} \Sigma_{1}^{\, 1} \\ \Sigma_{1}^{\, 1} \gamma_{1}^{\, 1} \end{bmatrix} \\ \begin{bmatrix} \Sigma_{1}^{\, 1} \\ \Sigma_{1}^{\, 1} \gamma_{1}^{\, 1} \end{bmatrix} \begin{bmatrix} \Sigma_{1}^{\, 1} \\ \Sigma_{1}^{\, 1} \gamma_{1}^{\, 1} \end{bmatrix} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{1}^{\, 1} \gamma_{1}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{1}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{2}^{\, 1} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{1}^{\, 2} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{1}^{\, 2} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{1}^{\, 2} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{1}^{\, 2} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{1}^{\, 2} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \gamma_{2}^{\, 2} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \\ & \Sigma_{1}^{\, 1} - 2 \, x_{1}^{\, 2} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \gamma_{1}^{\, 2} \gamma_{2}^{\, 2} \gamma_{2}^{$$

Exerci	se 2																				
y; =	Bo+ (δι X _{iI}	+ B2	X12 1	β3 >	(i3 t	Ei														
		1			1.				1				٢.			٠.	1				
	γ:	Υ,		× =	1,	Χu	χ,2	Χu		KX4		У,=	\ .	1	•••	1		_ чх	K		
		Y ₂			1	X 21	X 22	X 23	EK				×ιι	X21		Xnı	6	K .			
		:			:	:	•	:					Xız	X22		Xnz					
		[Y _n]			1	Χnι	X _{n2}	Xns					X(3	X23	•••	Xns.	<u> </u>				
	X	' X =	ſı	. 1		1		١	χu	χ,2	χ _ι		n	∑ , x;₁	Ź	X _{i2}	دنگ	۲,3			
			×	11 X2		Xnı		ı	X 21	X 22	X 23	=	٤x	il Ź	Xi1 ²	ع کے	(;(Xi	2 S	Xi1 Xi3	e R	4×4
			X	12 X2		Xnz		:	:	÷	:		٤Xi	, Ź	Xi2 Y	Kil 2	ِ ک X _{i2}	2	X12X13		
			X X X	3 X2		Xns		l	Χnι	Xnz	Xn3		٤٪	3 2	, X _{i3} Y	lil 2	ê Kiz	X ₁₂ :	2×13		
		115	X X X ₁	. Y.		y		Y.	=	41	v	A	D ₁	lx (
			1,	. N		^nı		:		۷ X د د	iL'I;	١	IV.								
			X	12 N2		^n1		Υ		41 X 5 x	12 Y;										
				.5 ^2	s ···	~h3		L '^.		۱۵۱	i2 li	J									

Exercise 3

a.
$$y = x \beta + 6$$
 \Rightarrow Gauss - Markov (andition; hold snow $\hat{\beta} = \beta + A \in \mathbb{R}$

Thun snow $\hat{\gamma} = x \beta + B \in \mathbb{R}$
 $\hat{\beta} = (x'x)^{-1} x' \gamma \Rightarrow \hat{\beta} = (x'x)^{-1} x' (x \beta + E)$
 $= (x'x)^{-1} x' \chi + B \in \mathbb{R}$
 $= (x'x)^{-1} \chi + B \in \mathbb{R}$
 $=$

We want to show
$$\hat{\beta}_{0} = \hat{\beta}_{0}^{+} = and \quad \hat{\beta}_{1} = \hat{\beta}_{1}^{+} = \frac{1}{1} + \frac{1}{1} +$$

Exercis	e s	5																					
Y= x8	3+6																						
Games	- M	arko	v (ww	i,	s h	wy																
By a	Whini	you:	Н	= X	(x')	۲)-۱	x'																
•																							
Lut	a Y		Snw	d. (n//kV	'nη	161	Urav	w	NIMP.	**	ve. it	n i	ww.	21	ON.	an	l a	M ot	nek			
yal							,,,		11.	, ,													
100	0,03																						
	۵÷	0						١.	Trure	. Iennaa													
	W-								11401	Ho		Γ		-	1	١,	1						
		١	_	714						F1 0						0	:	Н.					
		:		im	моу										1	;		Π.	i				
												L	6 - 1		J	L 0	J						
		0	J										haut Mau	χin									
									77	2iv	mea	2,01	H	λ	Will	be	eav	ώVα	uen	r to	tre	را	
										im	<u></u>	owr	nη	04	H								
In	ordu	(h	ري	w	Wp	ተ	re	im	las	www		we	WY	ite:									
			H.,																				
					j=I	- 31																	
Me	Ca	n a	umul	r a lv	ze i	wis.	, to	C	w	αM/	J. (4	luw	ın		(ox-	m al	ni X	н	ww	ω _M a.			
	000				١, 2			- 51	VI 1	001	7		1	Ì		,,,,,,,,,,							
				ì	,,-																		
	١,	/ ₁₁	_	, , u						v			11		(
								ρ												17.1			
		ı. H	λ =	(H)). Ø		me	, to	me	Fa	.Ur	H:	H	. (H ()	UΞ	l'	H (X =	1 14	ά		
								- \	dΜ	le t	n W	e v	YOY-	erti	es 01	, <i>f</i>	t, h	wre	rove	ટ :			
	<u> </u>	HI,) (A	=	(1),	a ·	=	' Δ															
								n															
	We	aus	۱ 0،	MOV	N	\' 0) = '	ي ۵			20	Sho	w٨	000	ove,	۵	a zi	Col	um	n '	ve Ut	0٢	
								151			WW	re	ONI	1 1	ve i	tn	ww	2i	one	w	١d	au	
												mer		•									
Th	wre y	nve.	:	کی م	li =	0 t	٠ ۲	: 11 .	+	0 =	1												

when we remove the intercept from the model, the definition of the does not mange, nowener the kirst column of X is no longer a column or is and the property #1=1 is no longer true. This puts a fault In the logic used above and means we are no longer able to know that the sum of the columns of the are equal to 1.

Question 5

With Intercept:

```
#Create the X matrix

X <- cbind(c(1,1,1), c(-1,0,1), c(1,-2,1))

#find the H (hat) matrix

H <- X %*% solve(t(X) %*% X) %*% t(X)

#find the column sums of H

colSums(H)
```

```
## [1] 1 1 1
```

Without Intercept:

```
#Create the X matrix
X <- cbind(c(-1,0,1), c(1,-2,1))

#find the H (hat) matrix
H <- X %*% solve(t(X) %*% X) %*% t(X)

#find the column sums of H
colSums(H)</pre>
```

```
## [1] -5.551115e-17 0.000000e+00 -5.551115e-17
```

Exercise
$$\[\omega \]$$

a. $\[H \in \mathbb{R}^{n \times n} \]$

ruld to $\[Snow : \] \[H_{ij} = H_{ii} \]$

Recaul: $\[\hat{Y} : \times \hat{\beta} = X(X'X)^{-1}X'Y \]$

So $\[H = X(X'X)^{-1}X' \in \mathbb{R}^{n \times n} \]$

Note:

Let $\[A \in \mathbb{R}^{n \times n} \]$
 $\[A \in \mathbb{R}^{n \times n} \]$

Note:

Let $\[A \in \mathbb{R}^{n \times n} \]$
 $\[A \in \mathbb{R}^{n$

$$= \frac{(A - x \hat{y})_1 (A - x \hat{y})_2 + (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}{(\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= \frac{\hat{y}_1 \times \hat{y}_2 - \hat{y}_1 \times (\hat{y} - \hat{y})_2}{(\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_1 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_1 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_1 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_1 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2 \times (\hat{y} - \hat{y})_2}$$

$$= (\hat{y}_1 \times \hat{y}_1 \times \hat{y}_1 \times \hat{y}_2 \times \hat{y}_1 \times \hat{y}_1 \times \hat{y}_2 \times \hat{y}_1 \times$$

Exercise 7

Load data and see the first 6 rows

```
a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics100C/jura.txt", header=TRU
E)
#See the first six rows of the data:
head(a)</pre>
```

```
y Landuse Rock
                               Cd
                                     Co
                                          Cr
                                                Cu
                                                     Νi
                                                                 Zn
## 1 2.672 3.558 3
                          5 1.570 8.28 37.12 18.60 18.60 38.20
                                                               65.2
## 2 3.589 4.443
                     3
                          1 2.045 10.80 40.80 11.48 21.52 33.36 112.8
                     2
## 3 4.010 4.713
                          1 1.203 12.00 53.20 13.04 23.92 26.56
                     2 5 0.490 10.92 23.40 5.64 14.60 25.88
## 4 2.942 3.137
                                                               41.2
                     3
## 5 1.409 2.748
                          3 0.692 8.12 27.16 10.32 14.64 31.16
                                                               50.4
## 6 3.978 2.910
                          2 1.750 9.12 35.48 8.36 26.40 37.72 63.2
```

Create the X and Y matrices (assuming an intercept):

```
X <- as.matrix(cbind(rep(1, nrow(a)),a$Cd, a$Cu, a$Zn))
Y <- as.matrix(cbind(a$Pb))</pre>
```

1a. Compute (X'X)

```
xx <- t(X) %*% X
xx
```

```
##
                      [,2]
                            [,3]
                                            [,4]
            [,1]
## [1,]
         359.000
                   462.4770
                             8467.184
                                        27241.60
        462.477
                   860.0015 11922.631
                                        40964.38
## [2,]
## [3,] 8467.184 11922.6310 377220.935 803949.53
## [4,] 27241.600 40964.3842 803949.534 2407169.16
```

1b. Compute (X'X)^-1

```
xx_inverse <- solve(xx)
xx_inverse</pre>
```

```
## [1,] 0.0216942476 0.0018266062 1.554642e-04 -3.285175e-04

## [2,] 0.0018266062 0.0075924443 1.334245e-04 -1.944384e-04

## [3,] 0.0001554642 0.0001334245 1.225894e-05 -8.124196e-06

## [4,] -0.0003285175 -0.0001944384 -8.124196e-06 1.015543e-05
```

1c. Compute (X'Y)

```
xy <- t(X) %*% Y
xy
```

```
## [,1]

## [1,] 19612.52

## [2,] 27548.77

## [3,] 680026.00

## [4,] 1731176.69
```

2. Compute B Hat (the beta_hat vector)

```
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% Y
beta_hat</pre>
```

```
## [,1]
## [1,] 12.7974915
## [2,] -0.8881627
## [3,] 0.9967046
## [4,] 0.2565816
```

3. Compute H (the hat matrix)

```
hat <- X %*% solve(t(X) %*% X) %*% t(X) head(hat[,1])
```

```
## [1] 0.0047820244 0.0001749063 -0.0001138486 0.0030733254 0.0029572837 ## [6] 0.0050189629
```

4. Compute Y hat (the fitted values)

```
Yhat <- X%*% beta_hat
head(Yhat)</pre>
```

```
## [,1]

## [1,] 46.67090

## [2,] 51.36578

## [3,] 48.22894

## [4,] 28.55487

## [5,] 35.40059

## [6,] 35.79162
```

5. Compute e (the residuals)

```
e <- Y - Yhat
head(e)
```

```
## [,1]

## [1,] -8.470904

## [2,] -18.005776

## [3,] -21.668938

## [4,] -2.674869

## [5,] -4.240589

## [6,] 1.928383
```

```
Exercise 8
      SSE = e'e = (Y - x\hat{\beta})'(Y - x\hat{\beta}) = \mathcal{L}(y_i - x_i\hat{\beta})^2
      SSE, = (Y-Xc)' (Y-XC)
  WANT h Show: SSE_1 - SSE = (\hat{\beta} - C)' \times \times \times (\beta' - C)^*
   Recause if AER mxm
                                                                              VER MXI V'AV 2 0
                                 is positive, durinite, then for au
                            and V \in \mathbb{R}^{m \times l} \setminus 0 V : AV > 0
                                             Textualing 0
    uaim:
              X'X is positive, dufinite
                  Thurefore * is snowing that SSE \( \Leq \text{SSE}, \text{ for any } \text{CER}^{\text{P}}
      SSE, = (Y- XC)' (Y- XC) = (Y-XB+ xB-XC)' (Y-XB+ XB-XC)
                                          = (e + x ( \hat{\beta} - c)) '(\epsilon + x (\hat{\beta} - c))
                                          = e'e + e' \times (\hat{\beta} - c) + (\hat{\beta} - c)' \times 'e + (\hat{\beta} - c)' \times ' \times (\hat{\beta} - c)
SSE \qquad " \qquad 0 \qquad 0
                                           = SSE + (\hat{\beta}-c)' \chi' \times (\hat{\beta}-c)
                                                => SSE, -SSE = (g-c)'x'x (B-c) =0
              Recam HWI Exercise 5
                                                                                                transpose of
                                                                                                      0 2i 0
                 x'x ERPXP and is symmetric of columns are independent
                                  when x is full-column rank, and is
                                           symmutric = 7 x is positive definite
```