20th CSEC – Past Year Paper Solution 2018-2019 Sem 1 MH 1812 – Discrete Mathematics

1)

a) The inverse of $\neg p \rightarrow \neg q$ is $p \rightarrow q$

p	q	$\neg p$	$\neg q$	$\neg p \rightarrow \neg q$	p o q
Т	Т	F	F	Т	Т
Т	F	F	Т	Т	F
F	Т	Т	F	F	Т
F	F	Т	Т	Т	Т

As we can see, the truth table for $\neg p \to \neg q$ and $p \to q$ is different. Therefore, we conclude that for $\neg p \to \neg q$ and $p \to q$ are not logically equivalent.

b)	$(q \land (p \to \neg q)) \to \neg p$	
	$= (q \land (\neg p \lor \neg q)) \to \neg p$	[Conversion Theorem]
	$= ((q \land \neg p) \lor (q \land \neg q)) \to \neg p$	[Distributivity]
	$= ((q \land \neg p) \lor (False)) \rightarrow \neg p$	[Contradiction]
	$= (q \land \neg p) \to \neg p$	[Unity]
	$= \neg(q \land \neg p) \lor \neg p$	[Conversion Theorem]
	$= (\neg q \lor p) \lor \neg p$	[DeMorgan's]
	$= \neg q \lor (p \lor \neg p)$	[Commutative; Associative]
	= True	[Tautology]

2) Direct Proof:

$$\sum_{j=n}^{2n-1} (2j+1) = (2n+1) + (2(n+1)+1) + \dots + (2(2n-1)+1)$$

$$= (2n+1) + (2n+3) + \dots + (2n+(2n-1))$$

$$= (n \times 2n) + (1+3+\dots+2n-1)$$

$$= 2n^2 + n^2 \qquad [Since 1+3+\dots+(2n-1) = n^2]$$

$$= 3n^2$$

Proof by induction:

For
$$n = 1$$

 $LHS: \sum_{j=n}^{2n-1} (2j+1) = (2 \times 1) + 1 = 3$
 $RHS: 3n^2 = 3 \times 1 = 3$
 $\Rightarrow LHS = RHS$

For the purpose of induction, assume that for $n=k o \sum_{j=k}^{2k-1} (2j+1) = 3k^2$

For n=k+1, we want to proof $\sum_{j=k+1}^{2(k+1)-1}(2j+1)=3(k+1)^2$, for the induction to be complete

$$\sum_{j=k+1}^{2(k+1)-1} 2j + 1 = \left[\sum_{j=k}^{2k-1} (2j+1)\right] - (2k+1) + (2(2k)+1) + (2(2k+1)+1)$$

$$= 3k^2 - 2k - 1 + 4k + 1 + 4k + 3$$

$$= 3k^2 + 6k + 3$$

20th CSEC – Past Year Paper Solution 2018-2019 Sem 1 MH 1812 – Discrete Mathematics

$$= 3(k^2 + 2k + 1) = 3(k + 1)^2$$

3)
$$a_n = a_{n-1} + 2n + 1 = a_{n-2} + 2(n-1) + 1 + 2n + 1$$

 $= a_{n-3} + 2(n-2) + 1 + \dots + 2n + 1$
 $= a_{n-4} + 2(n-3) + 1 + \dots + 2n + 1$
...
$$= a_{n-k} + 2(n-k+1) + 1 + \dots + 2n + 1$$

$$= a_0 + 2(1) + 1 + 2(2) + 1 + \dots + 2n + 1$$

$$= 2 + 2(1 + 3 + \dots + n) + (1 \times n)$$

$$\therefore a_n = n^2 + 2n + 2$$

4)

a)
$$\sum_{i=1}^k x_i = n \rightarrow x_1 + x_2 + \dots + x_k = n$$

Let * denotes n

The question is similar to partition n into k different groups. Consider T as a barrier for each group.

As we can see, there are n-1 available slots to put the barrier (T) between groups. Moreover, to divide n into k different groups, we only need k-1 barriers. Therefore, there are $\binom{n-1}{k-1}$

b) This problem can be solved similarly as above, the number of distinct tuples is

$$\binom{n+k-1}{k-1}$$

c) Consider X as 01. Therefore, we have 4 X and 5 1's. Number of possible combinations:

5)
$$\overline{(A-B)\cup(B-A)}=(A\cap B)\cup(\overline{A}\cap\overline{B})$$

<u> </u>			<u> </u>	, , ,			
A	В	A - B	B-A	$\overline{(A-B)\cup(B-A)}$	$(A \cap B)$	$(\overline{A} \cap \overline{B})$	$(A \cap B) \cup (\overline{A} \cap \overline{B})$
F	F	F	F	T	F	T	Т
F	Т	F	Т	F	F	F	F
Т	F	T	F	F	F	F	F
Т	Т	F	F	Т	Т	F	Т

6)

a) R is symmetric because
$$3^x \equiv 3^y \mod 5$$
 implies $3^y \equiv 3^x \mod 5$
Proof: $3^x = 5k + 3^y \rightarrow 3^y = 5(-k) + 3^x \rightarrow 3^y \equiv 3^x \mod 5$

R is reflexive because $3^x \equiv 3^x \mod 5$. Obviously because $3^x = (5 \times 0) + 3^x$

R is transitive. Proof:

$$3^{x} \equiv 3^{y} \mod 5, 3^{y} \equiv 3^{z} \mod 5$$

 $3^{x} = 5k_{1} + 3^{y} \mod 3^{y} = 5k_{2} + 3^{z}$

20th CSEC – Past Year Paper Solution 2018-2019 Sem 1 MH 1812 – Discrete Mathematics

$$3^x = 5(k_1 + k_2) + 3^z$$

 $3^x = 3^z \mod 5$

Therefore, we have x R y and y R z implies x R z

Since R is reflexive, transitive, and symmetric, R is an equivalence relation.

b)
$$[0] = [0,4,8]$$

$$[1] = [1,5,9]$$

$$[2] = [2,6]$$

$$[3] = [3,7]$$

7)

a) Range of the function = $\{5, 6, 9, 14, 21\}$

b)
$$y = x^2 + 5 \rightarrow x^2 = y - 5 \rightarrow x = -\sqrt{y - 5}$$

 $\therefore f^{-1}(x) = -\sqrt{x - 5}$

--End of Answers--

Solver: Kevin Tarjono