ENSA-ALHOCEIMA CP II.

ANALYSE 4 SEMESTRE 2 F.MORADI

Exercice 7:

Comme f est une fonction continue sur [a, b], alors

 $\exists (m, M) \in \mathbb{R}^2$: f([a, b]) = [m, M].

Par suite, $\forall x \in [a, b]$: $m \leq f(x) \leq M$.

Or, g est une fonction positive donc

$$\forall x \in [a, b]: mg(x) \le f(x)g(x) \le Mg(x)$$

Par passage à l'intégral, on trouve:

$$m \int_{a}^{b} g(x) dx \le \int_{a}^{b} f(x) g(x) dx \le M \int_{a}^{b} g(x) dx$$

Si $\int_a^b g(x) dx = 0$, alors d'après ce qui précède, $\int_a^b f(x)g(x) dx = 0$.

D'où la formule $\int_a^b f(x)g(x)dx = f(c)\int_a^b g(x)dx$ est valable pour tout $c \in [a, b]$.

Si $\int_a^b g(x)dx \neq 0$, alors

$$m \le \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx} \le M$$

Ce qui entraine que

$$\frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx} \in [m, M] = f([a, b])$$

Finalement,

$$\exists c \in [a,b]: \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx} = f(c)$$

D'où le résultat.

Exercice 8:

On a:

$$\left| \int_{-1}^{1} (f(x) + x^{2} f(-x)) dx \right| \leq \int_{-1}^{1} |f(x) + x^{2} f(-x)| dx \leq \int_{-1}^{1} |f(x)| dx + \int_{-1}^{1} x^{2} |f(-x)| dx \leq \int_{-1}^{1} M dx + \int_{-1}^{1} M x^{2} dx.$$

$$Car M = sup_{x \in [-1.1]} |f(x)| = sup_{x \in [-1.1]} |f(-x)|.$$

Par suite,

$$\left| \int_{-1}^{1} \left(f(x) + x^2 f(-x) \right) dx \right| \leq \frac{8}{3} M$$

Exercice 9:

1-Comme $(\forall x \in [0, \frac{\pi}{2}]) (\forall u \in [0, +\infty[): usinx \ge 0, alors)$

 $0 \le 1 - e^{-usinx} \le usinx$.

Par suite, $1 - usinx \le e^{-usinx} \le 1$.

En intégrant de 0 et $\frac{\pi}{2}$, on obtient:

 $\frac{\pi}{2} + \left[u \cos x \right]_0^{\frac{\pi}{2}} \le \int_0^{\frac{\pi}{2}} e^{-u \sin x} dx \le \frac{\pi}{2} \iff \frac{\pi}{2} - u \le \int_0^{\frac{\pi}{2}} e^{-u \sin x} dx \le \frac{\pi}{2}.$

Par passage à la limite, on trouve:

$$\lim_{u\to 0^+}\int_0^{\frac{\pi}{2}}e^{-u\sin x}dx=\frac{\pi}{2}$$

2- Montrons que: $\lim_{u\to 0^+} \int_u^{3u} \frac{\cos x}{x} dx = \ln 3$.

Comme $u \to 0^+$, on peut prendre $u \in \left[0, \frac{\pi}{6}\right]$ de telle sorte que [u, 3u] soit inclus dans $\left[0,\frac{\pi}{2}\right]$.

Or, la fonction: $x \mapsto \cos x$ est décroissante sur $\left[0, \frac{\pi}{2}\right]$, d'où:

 $\left(\forall u \in \left[0, \frac{\pi}{6}\right]\right) \left(\forall x \in [u, 3u]\right): \cos(3u) \leq \cos x \leq \cos u.$

Par suite, $(\forall u \in [0, \frac{\pi}{6}]) (\forall x \in [u, 3u])$: $\frac{\cos(3u)}{x} \leq \frac{\cos x}{x} \leq \frac{\cos u}{x}$.

Par passage à l'intégral, on obtient:

$$\cos(3u) \int_{u}^{3u} \frac{dx}{x} \le \int_{u}^{3u} \frac{\cos x}{x} dx \le \cos u \int_{u}^{3u} \frac{dx}{x}$$

Ce qui est équivalent à: $\ln 3. \cos(3u) \le \int_u^{3u} \frac{\cos x}{x} dx \le \ln 3. \cos u$.

Comme $\lim_{u\to 0^+} (\ln 3.\cos(3u)) = \lim_{u\to 0^+} (\ln 3.\cos u) = \ln 3$, et d'après le théorème d'encadrement des limites, on déduit que:

$$\lim_{u\to 0^+}\int_u^{3u}\frac{\cos x}{x}dx=\ln 3$$

3- soit $C = \lim_{u \to +\infty} \int_0^{\pi} e^{-u \sin x} dx$

a- D'après la relation de Chales on a :

$$\int_0^{\pi} e^{-u \sin x} dx = \int_0^{\frac{\pi}{2}} e^{-u \sin x} dx + \int_{\frac{\pi}{2}}^{\pi} e^{-u \sin x} dx.$$

En utilisant le changement de variables $t=\pi-x$, pour la deuxième intégrale,

on obtient:
$$dt = -dx$$
 et $\begin{cases} x = \frac{\pi}{2} \\ x = \pi \end{cases} \iff \begin{cases} t = \frac{\pi}{2} \\ x = 0 \end{cases}$

Et par suite,

$$\int_{\frac{\pi}{2}}^{\pi} e^{-u\sin x} dx = -\int_{\frac{\pi}{2}}^{0} e^{-u\sin(\pi - t)} dt = \int_{0}^{\frac{\pi}{2}} e^{-u\sin t} dt = \int_{0}^{\frac{\pi}{2}} e^{-u\sin x} dx$$

D'où,
$$\int_0^{\pi} e^{-u \sin x} dx = 2 \int_0^{\frac{\pi}{2}} e^{-u \sin x} dx$$
.

b-Posons:
$$g(x) = \sin x - \frac{2x}{\pi}$$
 pour $x \in \left[0, \frac{\pi}{2}\right]$.

La fonction g est de classe C^{∞} sur $\left[0, \frac{\pi}{2}\right]$. Ses dérivées première et deuxième sont définies respectivement par:

$$g'(x) = \cos x - \frac{2}{\pi}$$
 et $g''(x) = -\sin x$

Il est clair que: $\forall x \in \left[0, \frac{\pi}{2}\right]$ $g''(x) \leq 0$. D'où le tableau de variation suivant, Avec $\alpha = Arccos\left(\frac{2}{\pi}\right)$

Х	0 α	$\frac{\pi}{2}$
g''(x)	_	_
g'(x)	$1 = \frac{2}{\pi}$	$-\frac{2}{\pi}$
g'(x)	+	_
g(x)	$g(\alpha)$	

Comme, $g(0) = g(\frac{\pi}{2}) = 0$, alors d'après le tableau ci dessus, g est positive $sur\left[0,\frac{\pi}{2}\right]$. D'où: $\forall x \in \left[0,\frac{\pi}{2}\right]$: $sin x \ge \frac{2x}{\pi}$.

c- D'après ce qui précède et grâce à la croissance de la fonction Exponentielle, on déduit que:

$$\left(\forall x \in \left[0, \frac{\pi}{2}\right]\right) \left(\forall u \in \left]0, +\infty\right[\right): \quad e^{-u \sin x} \leq e^{-\frac{2u}{\pi}x}$$

Et par passage à l'intégration, on aboutit à:

$$0 \le \int_0^{\frac{\pi}{2}} e^{-u \sin x} dx \le \int_0^{\frac{\pi}{2}} e^{-\frac{2u}{\pi}x} dx = \left[-\frac{\pi}{2u} e^{-\frac{2u}{\pi}x} \right]_0^{\frac{\pi}{2}} = -\frac{\pi}{2u} (e^{-u} - 1).$$

Puisque, $\lim_{u\to +\infty} \frac{\pi}{2u} (e^{-u} - 1) = 0$, alors d'après le théorème d'encadrement des

limites,
$$\lim_{u\to+\infty}\int_0^{\frac{\pi}{2}}e^{-\frac{2u}{\pi}x}dx=0.$$

Et par suite, $C = \lim_{u \to +\infty} \int_0^{\pi} e^{-u \sin x} dx = 0$.

4-Soit u > 0 et $0 \le x \le u$.

En multipliant par x qui est positif, on obtient l'encadrement suivant:

$$0 \le x^2 \le xu$$
.

Grâce à la croissance de l'Exponentielle et par passage à l'intégrale, on aboutit

à:
$$\int_0^u dx \le \int_0^u e^{x^2} dx \le \int_0^u e^{xu} dx \iff u \le \int_0^u e^{x^2} dx \le \frac{e^{u^2} - 1}{u}$$
.

$$ue^{-u^2} \le e^{-u^2} \int_0^u e^{x^2} dx \le \frac{1 - e^{-u^2}}{u}$$

Comme $\lim_{u\to +\infty} ue^{-u^2} = \lim_{u\to +\infty} \frac{1-e^{-u^2}}{u} = 0$ et d'après le théorème

d'encadrement des limites, on déduit que:

$$D = \lim_{u \to +\infty} e^{-u^2} \int_0^u e^{x^2} dx = 0$$