Capstone Design in CSE

Feasibility Study

Current Stage on Software Development Life Cycle (SDLC)

- 1. Communication
- 2. Requirement gathering
- 3. Feasibility study
- 4. System analysis
- 5. Software design
- 6. Coding
- 7. Testing
- 8. Integration
- 9. Implementation
- 10. Operation and Maintenance
- 11. Disposition

Week 2 (Homework in Week 1)

Analysis and Design

- System Analysis
 - Planning and Scheduling
- Software Design

Planning

- Project planning
 - Scope management
 - Define the scope.
 - Divide the project into various smaller parts.
 - Project estimation
 - SW size estimation (e.g., # of components, lines of code, and # of function points)
 - Effort estimation (e.g., Man-hour)
 - Time estimation
 - (Cost estimation)

Scheduling

Project Scheduling

- roadmap of all activities to be done with specified order and within time slot allotted to each activity
- Define milestones (expected results for important activities)
- look for tasks that lie in critical path in the schedule (task interdependency)

Steps required

- Break down the project tasks into smaller, manageable form.
- Find out various tasks and correlate them.
 - You may use a PERT chart
- Estimate time frame required for each task
- Divide time into work-units
- Assign adequate number of work-units for each task
- Calculate total time required for the project from start to finish.
 - You may use a Gantt chart. (schedule on a weekly basis)
- Assign tasks for each person.
- Define criteria to evaluate the progress (for each week and for each team member).

Scheduling

- Useful tool 1: PERT chart
 - PERT (Program Evaluation & Review Technique) chart is a tool that depicts project as network diagram.
 - graphically representing main events of project in both parallel and consecutive way.
 - Events, which occur one after another, show dependency of the later event over the previous one.
 - Events are shown as numbered nodes. They are connected by labeled arrows depicting sequence of tasks in the project.

Scheduling

- Useful tool 2: Gantt chart
 - type of bar chart, devised by Henry Gantt in the 1910s, that illustrates a project schedule
 - It represents project schedule with respect to time periods. It is a horizontal bar chart with bars representing activities and time scheduled for the project activities.

Example 1

ID	Task Name	Predecessors	Duration	Jul 23, '06								Jul 30, '06							Aug 6, '06							Aug 13, '06						
				S	М	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	_	$\overline{}$	T	W	Т	F	S	S	М		W	Т	F	S
1	Start		0 days		•																											
2	a	1	4 days						h																							
3	b	1	5.33 days																													
4	С	2	5.17 days						Ĭ																							
5	d	2	6.33 days						İ											≒							_					
6	е	3,4	5.17 days																													
7	f	5	4.5 days																	Ě											-	
8	g	6	5.17 days																					Ĭ								L
9	Finish	7,8	0 days																												•	*

Example 2

COMPLETE

Software Design

- OOP design principles
 - Abstraction
 - Naming and explaining the functionality of SW parts
 - abstract data types
 - Encapsulation
 - Different components should not reveal the internal details
 - tract interface
 - Modularity

Design Tools

- SW analysis and design tools
 - Data Flow Diagram

source: http://www.tutorialspoint.com/ software_engineering/ software_analysis_design_tools.htm

- UML (Unified Modeling Language) diagram
 - Expresses the organization of a program, especially in OOP SW design.

UI Design

- UI requirements
 - User centric approach
 - easy to operate / easy navigation / simple interface
 - Provide default settings / Provide help information
 - Consistent UI elements / group based view settings
 - quick in response
 - effectively handling operational errors
 - Strategical use of color and texture

4주차 과제 (1)

- 팀별 주제 확정
 - 2주차의 개인별 발표 및, 3, 4주차 팀별 발표 내용과 의견들을 종합하여 팀별 주제 선정
- 제안서 작성
 - Deadline: 9/30 월요일 오후 3시
 - Technical report의 가이드라인을 준수할 것 (IEEE 프로젝트 계획서 양식 및 주어진 제안서 양식 참 고)
 - 간단 명료한 단어, 짧은 문장 사용
 - 최대한 많은 그림, 다이어그램, 표를 활용
 - 전체 문서, 장, 절, 문단, 문장에서 중요한 개념이 앞에, 설명이 뒤에 오게(두괄식) 작성: 서두에 요약 있으면 효과적임
 - 반드시 다음 사항을 포함할 것
 - Literature survey
 - 목표의 명확한 정의 (기능, 성능, 상세 구조, 정량 목표)
 - 최종 결과물에 대한 스케치: UI prototype, Flowchart for operations, Data Flow Diagram 등
 - Implementation platform (HW, OS, ...)
 - Required components (구성 요소)
 - Available open source libraries or APIs
 - 설치 후 정상동작하는 지 확인 (예) 해당 library 설치 후 hello world 라도 찍어볼 것
 - Available data sources
 - 기술적 사항 이외의 고려사항
 - 사례: 감시 카메라 응용에서 개인 정보 활용에 대한 법적 이슈, 윤리적 문제, 카메라 및 전력, 네트워크 설치 허용 여부 등

4주차 과제 (2)

- 팀별 진행상황 발표자료 upload
 - 9월 30일(월) 오후 3시까지
 - 제안서 내용을 설명할 것
 - 발표는 팀당 15분

향후 진행 계획

- 발표자료 upload 후 격주 발표
 - 배경 설명은 최대한 간단히 하고, 2주간의 진행 사항을 자세히 설명
 - Gantt chart 기반으로 설명할 것
 - 2주 별, 팀원 별 목표 결과물의 달성 여부 명시
 - 목표 달성 미비 시 문제점 확인
 - 다음 계획 설명
 - 발표는 팀당 15분 + 질의응답 5분