REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

··-·		ONID 110. 0701 0100
	stimated to average 1 hour per response, including the time for reviewing instructions	
	this collection of information. Send comments regarding this burden estimate or any	
including suggestions for reducing this burden to Departmen	nt of Defense, Washington Headquarters Services, Directorate for Information Opera	tions and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respond	ents should be aware that notwithstanding any other provision of law, no person shal	I be subject to any penalty for failing to comply with a
collection of information if it does not display a currently vali	d OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE	ADDRESS.
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE		3. D	ATES COVERED (From - To)
4. TITLE AND SUB	TITLE	Technical Paper		5a.	CONTRACT NUMBER
				5b.	GRANT NUMBER
				5c.	PROGRAM ELEMENT NUMBER
C AUTUOD(C)				54	PROJECT NUMBER
6. AUTHOR(S)					
				5e.	TASK NUMBER
				5f. ¹	WORK UNIT NUMBER
7. PERFORMING O	RGANIZATION NAME	(S) AND ADDRESS(ES)			PERFORMING ORGANIZATION PORT
	ERC				
	0				
9. SPONSORING /	MONITORING AGENC	Y NAME(S) AND ADDRE	SS(ES)		SPONSOR/MONITOR'S RONYM(S)
Air Force Researd	ch Laboratory (AFM	C)			
AFRL/PRS 5 Pollux Drive					SPONSOR/MONITOR'S NUMBER(S)
Edwards AFB CA	A 93524-7048				
12. DISTRIBUTION	/ AVAILABILITY STA	TEMENT	****		
Approved for put	olic release; distribut	ion unlimited.			
13. SUPPLEMENT	ARY NOTES				
		·			
14. ABSTRACT					
			_		
			2	በበኃሳስ	10 167
				UUZ IU	10 10/
15. SUBJECT TER	MS	-		· · · · · · · · · · · · · · · · · · ·	
16. SECURITY CL	ASSIFICATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE
			OF ABSTRACT	OF PAGES	PERSON Leilani Richardson
a. REPORT	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER
Unclassified	Unclassified	Unclassified	A	1	(include area code) (661) 275-5015

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

2 items enclosed = 212+211

"Effects on Processing by Drop-in Modifiers in Nano-Composite Polymers "

Patrick Ruth,

Senior Technician, AFRL/PRSM Air Force Research Lab, Edwards Brent Viers, Rusty Blanski, and Andre Lee

1 Paper Rec'd After 30-day, Depoline = \ 22 days whil Depoline

MEMORANDUM FOR PRS (In-House Contractor Publication)

FROM: PROI (STINFO)

03 Sept 2002

Patrick Ruth (ERC) et al., "Effects on Processing by Drop-in Modifiers in Nano-Composite Polymers" SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-VG-2002-212 (viewgraphs)

POSS Nanotechnology Conference (Huntington Beach, CA, 25-27 September 2002) (<u>Deadline: 25 Sept 02)</u>

(Statement A)

POSS As a Drop-in Modifier-Introduction

What is POSS? (Simplified)

1. Structure

2. Functional Groups and Dropping-in

3. Proposed and Actual uses

Making Samples

1. Material Selection and Preparation

2. Blending

3. Sample Production

Anatomy of a Polyhedral Oligomeric Silsesquioxane (POSS™) Molecule

Precise three-dimensional structure for molecular level reinforcement of polymer segments and coils.

POSS Chemically Incorporated into Plastics

POSS-Kapton

POSS-EPOXY

H. O. H. O.

POSS-PMMA

POSS Blended into Plastics

Materials Selection: Polypropylene and POSS

atactic polypropylene

syndiotactic polypropylene

Methyl₈T₈

isotactic Polypropylene

i-PP/Me₈T₈ Processing Studies

Prof. Andre Lee - Michigan State University

	Dow data	Neat i-PP (processed)	i-PP blended 2 wt% Methyl ₈ T ₈	i-PP blended 5 wt% Methyl ₈ T ₈	i-PP blended 10 wt% Methyl ₈ T ₈
Tensile Strength @ Yield; ASTM D638	5000 psi (34.5 MPa)	4800 psi (33.0 MPa)	5000 psi (34.5 MPa)	5100 psi (35.1 MPa)	5200 psi (35.8 MPa)
Flexural Modulus (0.05 in/min, 1% secant); ASTM D790A	240,000 psi (1.655 GPa)	235,000 psi (1.620 GPa)	251,000 psi (1.730 GPa)	255,000 psi (1.757 GPa)	262,000 psi (1.80 GPa)
HDT @ 66 psi, as injected; ASTM D648	210 °F (99 °C)	210 °F (99 °C)	221 °F (105 °C)	239 °F (115 °C)	255 °F (124 °C)
Impact Izod @25C ASTM D256A	0.5 ft-lb/in	0.55 ft-lb/in	0.55 ft-lb/in	0.62 ft-lb/in	0.75 ft-lb/in

The above data (other than Dow's data) is an average of at least 10 samples for each test with acceptable S.D. of 5% or better.

Polymer Processing Lab

Polymer Processing Parameters

❖Time (10 Min)

*Pressure (Varied)

❖Temperature (216C)

Procedure

❖ DSC (Establish processing and drying temperatures)

❖ Drying (Vacuum Oven)

❖DACA (Mixing)

Press (Forming samples)

*Tests to compare properties

DACA Twin-screw Extruder

DACA Twin Screw Processing Parameters for Me8T8/iPP nanocomposite blends.

-												
	Materia Percentage	Material entage			Load (N)				Torque (Nm)	(m)		
Mix												
#	ЬЬ		Me ₈ T ₈		Mix Duration (min)	tion (mir	(1		Mix Du	Mix Duration (Min)	(lin	
		ţcN		ţ				·				
	Dried	Dried	Dried	Dried	0	_	2	3	0	_	7	3
-		100			3500	3200	3100	3000	4.65	4.50	4.30	4.10
2	100				3500	3100	3000	2900	4.60	4.45	4.25	4.05
3	90		10		3200	3000	3000	2850	4.80	4.40	4.25	4.20
4	90			10	3200	3100	3100	2900	4.60	4.45	4.20	4.25
5		90	10		3500	3250	3200	3000	5.00	4.55	4.45	4.30
9		06		10	3400	3200	3100	3000	4.60	4.45	4.34	4.00

Polypropylene/Megtg Extrudates

Hot Press

4 X4 Inch Mold

Pressed Film of DACA Extruded POSS/PP **Blend Variants**

1 Not Dried PP

2 Dried PP

3 Dried PP, Dried POSS

4 Dried PP, Not Dried POSS

5 Not Dried PP, Dried POSS 6 Not Dried PP, Not Dried POSS

SUMMARY

Drying plays a role in making Me₈T₈ compatible with isotactic polypropylene Load/torque to mix the polymer with the POSS is increased if either of the components is not dried. Visually, the most compatible of the mixes is where both POSS and PP components were dried. The extruded rod and pressed thin film are nearly as clear as pure polypropylene in the melt.

ACKNOWLEDGEMENTS

AFRL/PRSM: Dr. Brent Viers, Dr. Rusty Blanski, and Dr. Andre Lee Air Force Research Lab Polymer Working Group

Hybrid Plastics: Dr. Joe Lichtenhan, Dr. Joe Schwab, and Mr. Michael J Carr This talk is as much about me learning my work as it is making samples. A great deal of thanks goes to the people who do similar work and have shown me tricks to make the technician look clever.