Основные теоретические сведения и формулы теории вероятностей

Глава первая. Случайные события

1. Классическое определение вероятности

Вероятностью наступления события A в некотором испытании называют отношение $P(A) = \frac{m}{n}$, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A.

2. Геометрическое определение вероятности

Вероятность наступления события А в испытании равна отношению

 $P(A) = \frac{g}{G}$, где G — геометрическая мера (длина, площадь, объем), выражающая общее число всех возможных и равновозможных исходов данного испытания, а g — мера, выражающая количество благоприятствующих событию A исходов.

3. Статистическое определение вероятности

Вероятность наступления некоторого события A — есть относительная частота

 $W(A) = \frac{m}{n}$, где n — общее число фактически проведённых испытаний, а m — число испытаний, в которых появилось событие A .

4. Полная группа событий

Сумма вероятностей событий A_1 , A_2 , A_3 , ..., A_n , образующих полную группу, равна единице: $P(A_1) + P(A_2) + P(A_3) + ... + P(A_n) = 1$

5. Теорема сложения вероятностей противоположных событий

Сумма вероятностей противоположных событий A, \overline{A} равна единице:

$$P(A) + P(\overline{A}) = 1$$

7. Теорема сложения вероятностей несовместных событий

Вероятность появления одного из двух несовместных событий A или B (без разницы какого), равна сумме вероятностей этих событий:

$$P(A+B) = P(A) + P(B)$$

Аналогичный факт справедлив и для бОльшего количества несовместных событий, например, для трёх:

$$P(A + B + C) = P(A) + P(B) + P(C)$$

8. Теорема сложения вероятностей совместных событий (используется редко)

Вероятность появления *хотя* бы одного из двух совместных событий A, B равна сумме вероятностей этих событий без вероятности их совместного появления:

$$P(A+B) = P(A) + P(B) - P(AB)$$

9. Теорема умножения вероятностей независимых событий

Вероятность совместного появления двух независимых событий A и B равна произведению вероятностей этих событий:

$$P(AB) = P(A) \cdot P(B)$$

Данный факт справедлив и для б Ольшего количества событий, например, для трёх: $P(ABC) = P(A) \cdot P(B) \cdot P(C)$

10. Теорема умножения вероятностей зависимых событий

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного события на условную вероятность другого события:

 $P(AB) = P(A) \cdot P_A(B)$, где $P_A(B)$ — вероятность появления события B при условии, что событие A уже произошло.

Данный факт справедлив и для бОльшего количества событий, например, для трёх: $P(ABC) = P(A) \cdot P_A(B) \cdot P_{AB}(C)$, где $P_{AB}(C)$ – вероятность появления события C при условии, что события A и B уже произошли.

11. Формула полной вероятности

Вероятность события A, которое может наступить лишь при условии появления одного из несовместных событий B_1 , B_2 , B_3 , ..., B_n , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующие условные вероятности события A:

$$P(A) = P(B_1) \cdot P_{B_1}(A) + P(B_2) \cdot P_{B_2}(A) + P(B_3) \cdot P_{B_3}(A) + \dots + P(B_n) \cdot P_{B_n}(A)$$

12. Формулы Байеса

Пусть в результате осуществления одной из гипотез $B_1, B_2, B_3, ..., B_n$ событие A произошло. Тогда:

$$P_{A}(B_{1}) = \frac{P(B_{1}) \cdot P_{B_{1}}(A)}{P(A)}$$
 — вероятность того, что имела место гипотеза B_{1} ;

$$P_{\!\scriptscriptstyle A}(B_{\!\scriptscriptstyle 2}) = \frac{P(B_{\!\scriptscriptstyle 2}) \cdot P_{\!\scriptscriptstyle B_{\!\scriptscriptstyle 2}}(A)}{P(A)} \, - \text{вероятность того, что имела место гипотеза } B_{\!\scriptscriptstyle 2}\,;$$

$$P_{A}(B_{3}) = \frac{P(B_{3}) \cdot P_{B_{3}}(A)}{P(A)}$$
 — вероятность того, что имела место гипотеза B_{3} ;

. . .

$$P_A(B_n) = \frac{P(B_n) \cdot P_{B_n}(A)}{P(A)}$$
 — вероятность того, что имела место гипотеза B_n .

13. Формула Бернулли

$$P_n^m = C_n^m p^m q^{n-m}$$
, где:

n – количество независимых испытаний;

p — вероятность появления события A в каждом испытании и q = 1 - p — непоявления;

 P_n^m — вероятность того, что в n испытаниях событие A появится ровно m раз.

 $(C_{n}^{m}$ – биномиальный коэффициент *(см. Приложение Формулы Комбинаторики)*).

14. Формула Пуассона для приближённого расчёта вероятностей P_n^m (п. 13):

$$P_m pprox rac{\lambda^m}{m!} \cdot e^{-\lambda}$$
 , где $\lambda = np$, где:

n – количество независимых испытаний;

p — вероятность появления события A в каждом испытании;

 $P_{\scriptscriptstyle m}$ – вероятность того, что в n испытаниях событие A появится ровно m раз,

при этом количество испытаний должно быть достаточно велико (сотни, тысячи и больше), а вероятность появления события в каждом испытании весьма мала (сотые, тысячные и меньше), в противном случае приближение к точному результату P_n^m будет плохим.

15. Локальная теорема Лапласа

Пусть проводится достаточно большое (> 50-100) количество n независимых испытаний, в каждом из которых событие A может появиться с вероятностью p. Тогда вероятность $P_n(m)$ того, что в n испытаниях событие A наступит ровно m раз, приближённо равна:

$$P_n(m) \approx \frac{1}{\sqrt{npq}} \cdot \varphi(x)$$
, где $\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}$ — функция Гаусса, а $x = \frac{m-np}{\sqrt{npq}}$ $(q=1-p)$.

Значения функции Гаусса можно найти с помощью калькулятора, по таблице либо в MS Excel (*Калькулятор*, *Пункт 4*).

Теорема обеспечивает хорошее приближение к точному результату P_n^m (см. п. <u>13</u>) при условии $npq > 10 \ (\approx 10)$, в противном случае значение $P_n(m)$ будет далеко от истины.

16. Интегральная теорема Лапласа

Если вероятность p появления случайного события A в каждом независимом испытании постоянна, то вероятность того, что в n испытаниях событие A наступит не менее m_1 и не более m_2 раз, приближённо равна:

$$P_n(m_1 \le m \le m_2) \approx \Phi(x_2) - \Phi(x_1)$$
, где:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int\limits_0^x e^{-\frac{z^2}{2}} dz \ - \text{функция Лапласа}, \ \ x_2 = \frac{m_2 - np}{\sqrt{npq}}, \quad \ x_1 = \frac{m_1 - np}{\sqrt{npq}}$$

Значения функции Лапласа можно найти с помощью таблицы либо в MS Excel (*Калькулятор*, *Пункт 5*).

Теорема применима при тех же условиях: количество испытаний должно быть достаточно велико (n > 50-100) и произведение npq > 10 (≈ 10). В противном случае точность приближения будет неудовлетворительной.

Точное значение можно рассчитать по формуле:

$$P_n(m_1 \le m \le m_2) = P_n^{m_1} + P_n^{m_1+1} + P_n^{m_1+2} + \ldots + P_n^{m_2-1} + P_n^{m_2}$$
 , где $P_n^{m_i} = C_n^{m_i} p^{m_i} q^{n-m_i}$ (см. п. $\underline{13}$)

Глава вторая. Случайные величины

17. Случайную величину можно однозначно задать функцией распределения:

F(x) = P(X < x) — вероятность того, что случайная величина X примет значение, СТРОГО МЕНЬШЕЕ, чем *переменная* x, которая «пробегает» все действительные значения от «минус» до «плюс» бесконечности.

Функция распределения изменяется в пределах $0 \le F(x) \le 1$ и является неубывающей.

У дискретной случайной величины функция разрывна и имеет «ступенчатый» вид (график), у непрерывной случайной величины функция непрерывна на всей числовой прямой.

18. Функция плотности распределения вероятностей

определяется и однозначно определяет только непрерывную случайную величину:

$$f(x) = F'(x)$$
 , данная функция неотрицательна $(f(x) \ge 0)$ и обладает свойством $\int\limits_{-\infty}^{+\infty} f(x) dx = 1$,

которое означает, что в результате испытания случайная величина достоверно примет одно из действительных значений. График функции может быть как разрывным, так и непрерывным.

Если известна функция плотности f(x), то функцию распределения можно восстановить с

помощью интеграла
$$F(x) = \int_{-\infty}^{x} f(x) dx$$
.

19. Математическое ожидание

а) дискретной случайной величины:

$$M(X) = x_1 p_1 + x_2 p_2 + x_3 p_3 + ... + x_n p_n = \sum_{i=1}^n x_i p_i$$
, где:

 x_i — все возможные значения случайной величины и p_i — соответствующие вероятности.

б) непрерывной случайной величины:

 $M(X) = \int_{-\infty}^{+\infty} x f(x) dx$, где f(x) — функция плотности распределения этой случайной величины.

20. Дисперсия

 $D(X) = M[(X - M(X))^2]$ — есть математическое ожидание квадрата отклонения случайной величины от её математического ожидания.

а) Дисперсию дискретной случайной величины можно рассчитать по определению:

$$D(X) = M[(X - M(X))^{2}] = (x_{1} - M(X))^{2} p_{1} + (x_{2} - M(X))^{2} p_{2} + ... + (x_{n} - M(X))^{2} p_{n} = \sum_{i=1}^{n} (x_{i} - M(X))^{2} p_{i}$$

либо по формуле $D(X) = M(X^2) - (M(X))^2$, где $M(X^2) = \sum_{i=1}^n x_i^2 p_i$

б) и аналогичные способы для непрерывной случайной величины:

$$D(X) = \int_{-\infty}^{+\infty} [x - M(X)]^2 f(x) dx$$
 либо $D(X) = M(X^2) - (M(X))^2$, где $M(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx$

21. Среднее квадратическое (стандартное) отклонение

$$\sigma(X) = \sqrt{D(X)}$$

22. Вероятность того, что случайная величина X примет значение из промежутка P(a < X < b), $P(a \le X < b)$, $P(a \le X \le b)$ либо $P(a \le X \le b)$ рассчитывается по формуле*:

F(b) - F(a), где $F(x) - \phi$ ункция распределения данной случайной величины.

* Если хотя бы одно из значений a,b «попадает» в точку разрыва функции F(x) дискретной случайной величины, то формулу можно использовать лишь для неравенства $P(a \le X < b)$.

Для непрерывной случайной величины эти вероятности можно найти и другим способом – с помощью интеграла $\int\limits_{a}^{b} f(x)dx$, где f(x) — функция плотности распределения.

23. Распространённые виды распределений и их числовые характеристики

а) дискретные:

Название распределения	Формула расчёта вероятностей	Возможные значения <i>т</i>	Математическое ожидание	Дисперсия
Геометрическое	$P_m = q^{m-1}p$	1, 2, 3,, <i>n</i> ,	$\frac{1}{p}$	$\frac{q}{p^2}$
Биномиальное	$P_n^m = C_n^m p^m q^{n-m}$	0, 1, 2, 3,, <i>n</i>	np	npq
Пуассона	$P_m = \frac{\lambda^m}{m!} \cdot e^{-\lambda}$	1, 2, 3,, <i>n</i> ,	λ	λ
Гипергеометрическое	$P_m = \frac{C_M^m \cdot C_{N-M}^{n-m}}{C_N^n}$	$0, 1,, \min(M, n)$	$\frac{M}{N} \cdot n$	$\frac{M(N-M)n(N-n)}{N^2(N-1)}$

б) непрерывные:

Название распределения	Функция плотности $f(x) =$	Математическое ожидание	Дисперсия	
Равномерное	$\frac{1}{b-a}$ на промежутке от a до b и 0 вне этого промежутка	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$	
Показательное	$\lambda e^{-\lambda x}$, если $x \ge 0$ и 0 , если $x < 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	
Нормальное	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}, -\infty < x < +\infty$	а	σ^2	