

AWGA – ADDITIVE WHITE GAUSSIAN NOISE MAP – MAXIMUM A POSTERIORI (BCJR – BAHL, COCKE, JELINEK AND RAVIV [3]) SOVA – SOFT OUTPUT VITERBI ALGORITHM

2/4

 $FIG.\ \mathcal{Z}$ COMPUTATION OF MEAN SEP (METHOD 1)

 $FIG.\ 3$ COMPUTATION OF MEAN SEP (METHOD 2)

BALACHANDRAN 15–43 US SERIAL NO. 09 / 724,231 REPLACEMENT SHEET

3/4

FIG. 4

USE OF MEAN BEP OR SEP FOR RATE ADAPTATION AND POWER CONTROL

FIG. 6

MEAN BIT ERROR PROBABILITY ESTIMATE FOR DIFFERENT ENVIRONMENTS AND MOBILE SPEEDS; HT3 REPRESENTS THE CHANNEL MODEL FOR A MOBILE SPEED OF 3 km /h IN A HILLY TERRAIN ENVIRONMENT

