Global Objective

During this practical session you will implement several Bandit algorithms and the needed framework to compare them on artificial data.

Thereafter you have up to **Tuesday 29**, **November at 8pm** to submit a short report which resumes your opinion about these algorithms (see requirements bellow).

This submission has to be done through Moodle corresponding link.

Source Code

Requisites

- Python3
- numpy and scipy for tensor manipulation
- matplotlib for graphics
- Jupyter-Notebook for the tutorial

Initial

Moodle contains an initial version of the source code. It has been split in three files:

- player.py: some bandit algorithms implemented as objects with three functions
 - choose next arm() -> unsigned int : choose the next arm to pull
 - o update(unsigned int: arm, float: reward) -> void : update stored informations
 given that the arm arm was pulled * restart() -> void : erase player's memory
- arm.py: some standard arms implemented as objects with two functions
 - draw() -> float: return a random value given the probability distribution corresponding to the arm
 - mean() -> float: return the expected reward corresponding to the probability distribution of the arm
- exp.py: a few useful functions to run experiments and plot results.

Note that for each setting (set of arms & algorithm), the algorithm is run against the environnement

nb_games times and the logs (matrices) at index [i,j] contains the logged value at time-step j during game i. We store

- the index of the chosen arm,
- the reward obtained,
- the expected reward of the chosen arm,
- the expected reward of the best arm.

The four corresponding matrices are stored in a dictionary (take a look at line 44).

Mandatory Job During the Practical Session

In almost chronological order:

Phase 0: Discover the APIs

- Read tutorial.ipynb, fill the missing code lines, and run.
- Take a look at already implemented players and arms.

Phase 1: UCB1

- Implement the UCB1 strategy.
- Compare ε_n -greedy, UCB1, and Thompson Sampling behavior
 - focus on the cumulative regret curve (given time-step)
 - fix the environment to two arms {Bernoulli(0.2), Bernoulli(0.5)}, with horizon 300
 - optimise the ε_n -greedy parameter and the UCB parameter
 - plot results of the selected parameters
- Do the same job against the set of two arms {Bernoulli(0.2), Bernoulli(0.9)}, with horizon 300 * are the best parameters the same? How behave the parameters selected during previous optimization
- Idem with horizon 10,000

Bonus

- Implement Bernoulli arms.
- Compare Algorithms with more divers environments (more arms, Bernoulli arms...).
- Look for the worst set of 10 arms for Explore Then Commit (with horizon 300). How behave UCB1 and ε_n -greedy against that setting ?
- Look for the worst set of 10 arms for UCB / ε_n -greedy.

Report Contain

- Compare ε_n -greedy, UCB1, and Thompson Sampling behavior on your personal set of arms given in Moodle.
- Submit the corresponding report in pdf format.
- · The report should
 - \circ express the choice of hyper-parameter for ε_n -greedy strategy,
 - compare all the algorithms,
 - include comments regarding the behavior of these algorithms.