МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Основы машинного обучения»

Тема: Изучение и предобработка данных Вариант 1

Студент гр. 1303	 Чубан Д.В.
Преподаватель	Жангиров Т.Р

Санкт-Петербург

Цель работы.

Изучить способы анализа предоставленных данных с помощью языка Python и библиотек Pandas, NumPy, Seaborn, Matplotlib, Scikit-learn. Научиться с помощью данных библиотек анализировать датафрейм.

Задание.

При выполнении лабораторной работы также будет оцениваться количество инструкций, которые были использованы для получения результата.

- 1. Изучение набора данных iris.csv с использованием Pandas и Seaborn:
 - 1.1. Загрузить данные из файла как Pandas DataFrame
 - 1.2. Вызвав у датафрейма метод head, проверить корректность загруженных данных
 - 1.3. Вызвав у датафрейма метод describe, получить характеристики. Опишите полученный результат.
 - 1.4. Видоизмените полученный датафрейм таким образом, чтобы метка классов были следующими: 0 Iris-setosa, 1 Iris-versicolor, 2 Iris-virginica. Сохраните полученный датафрейм в отдельный файл формата csv.
 - 1.5. Визуально оцените набор данных, построив изображение, содержащее графики ядерной оценки плотности каждого признака (кроме признака класса), диаграмму рассеяния и двумерную ядерную оценку плотности для каждых признаков. Наблюдения разных классов должны быть выделены отдельным цветом (рекомендуемая палитра 'tab10' или 'Set1'). Пример построения:
 - https://seaborn.pydata.org/examples/pair_grid_with_kde.html . Опишите полученный график, что на нем изображено, какие выводы о данных можно сделать.
 - 1.6. На одном изображении постройте гистограммы распределения для каждого признака (для построения нескольких диаграмм

на одном изображении, необходимо создать subplot из matplotlib, и для каждой диаграммы задать параметр ах, указав нужную ячейку. subplot возвращает два параметра: саму фигуру с изображением и список ячеек. Например, изображение с 4 ячейками записанных в ряд: fig, axs = plt.subplots(1,4). Указание ячейки в параметре диаграммы делается следующим образом: ax=axs[0]). Затем последовательно модифицируйте изображение:

- 1.6.1. Постройте гистограммы для разного количества столбцов: 5,10,15,20,30. Выберите на ваш взгляд такое количество столбцов, который лучшие образом описывает форму распределения признаков.
- 1.6.2. Сделайте на каждой гистограмме разделение по цвету согласно классу. Проведите это в двух режимах, когда гистограммы накладываются/суммируются и когда пересекаются. Далее используйте режим с пересечением.
- 1.6.3. Постройте гистограммы, чтобы вместо столбцов изображались ступеньки.
- 1.6.4. Добавьте на гистограммы график ядерной оценки плотности.
- 2. Изучение набора данных iris.csv с использованием NumPy:
 - 2.1. Загрузите данные из файла как массив NumPy
 - 2.2. Выведите первые 10 наблюдений набора данных.
 - 2.3. Рассчитайте характеристики полученные методом describe в п.1.3 с использованием методов NumPy
- 3. Изучение набора данных вашего варианта:
 - 3.1. Оцените и опишите набор данных вашего варианта с использованием методов в п. 1
- 4. Преобразование данных:
 - 4.1. Получите из датафрейма из п. 1.4 столбец с названием классов. Используя LabelEncoder и OneHotEncoder получите различные

- способы кодирования меток класса. В чем различия полученных кодировок?
- 4.2. Для датафрейма из п. 1.4, получите все столбцы признаков (столбцы не содержащие метки классов). Преобразуйте полученные столбцы в массив NumPy.
- 4.3. Для массива NumPy из п. 4.2 примените StandardScaler, MinMaxScaler, MaxAbsScaler и RobustScaler. Для каждого из результатов постройте гистограммы по каждому признаку без разделения по классам. В чем различия между такими преобразованиями данных?
- 4.4. Согласно варианту, самостоятельно реализуйте StandardScaler или MinMaxScaler с использованием NumPy. Проверьте корректность работы на вашем наборе данных, сравните результаты между вашей реализацией и реализацией из Sklearn, а также рассчитав минимальное, максимальное, среднее значение и дисперсию, после преобразования.
- 4.5. Для датафрейма из п. 1.4 получите новый, который содержит только классы Iris-versicolor и Iris-virginica, признаки "sepal length (cm)" и "petal length (cm)", и наблюдения, для которых значения признака "sepal width (cm)" лежат между квантилями 25% и 75%.

5. Понижение размерности:

5.1. Для набора данных iris.csv примените понижение размерности до 2, используя PCA и TSNE из Sklearn. Для каждого из результатов постройте диаграмму рассеяния с выделением разным цветом наблюдений разных классов. Объясните полученные результаты.

Выполнение работы.

- 1. Изучим данные из iris.csv, используя Pandas и Seaborn
 - 1.1. Загрузим данные из файла как Pandas DataFrame(read_csv) (см. листинг 1.1).

Листинг 1.1 – Загрузка датасета

Вызовем у датафрейма метод head и проверим корректность загруженных данных (см. листинг 1.2).
 Команда выведет первые 5 строк датафрейма. Вывод метода см. в таблице 1.1

Листинг 1.2 – Вызов *head*

df.head()

Таблица 1.1 – Вывод *head*

index	sepal length	sepal width	petal length	petal width	target
	(cm)	(cm)	(cm)	(cm)	
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

1.3. Вызвав у датафрейма метод *describe*, получим характеристики (см. листинг 1.3). Результаты выполнения метода представлены в таблице 1.2.

Листинг 1.3 – Вызов describe

df.describe()

Таблица 1.2 – вывод *describe*

	sepal	sepal width	petal	petal width	target
	length	(cm)	length	(cm)	
	(cm)		(cm)		
agunt	150.00000	150.00000	150.00000	150.00000	150.00000
count	0	0	0	0	0
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

Была выведена информация для каждого признака в датафрейме (см. таблицу 1.2).

В строках хранятся следующие данные:

- count количество непропущенных элементов.
- mean среднее значение.
- min минимальное значение.
- 25% значение нижний квартили.
- 50% значение медианы.

- 75% значение верхней квартили.
- тах максимальное значение.
 - 1.4. Видоизменим полученный датафрейм с помощью метода *replace* таким образом, чтобы метки классов были следующими: 0 Iris-setosa, 1 Iris-versicolor, 2 Iris-virginica (изменим значение признака target) и сохраним полученный датафрейм в отдельный файл new_iris.csv с помощью метода *to_csv* (см. листинг 1.4). Проверим получившийся датафрейм с помощью *head* (см. таблицу 1.3).

Листинг 1.4 – Изменение и сохранение датафрейма.

Таблица 1.3 – Измененный датафрейм.

index	sepal length	sepal width	petal length	petal width	target
	(cm)	(cm)	(cm)	(cm)	
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

1.5. Визуально оценим набор данных, построив изображение, содержащее графики ядерной оценки плотности каждого признака, диаграмму рассеяния и двумерную ядерную оценку плотности для каждого признаков (см. рисунок 1.1). Используем для этого библиотеку Seaborn (см. листинг 1.5)

Рисунок 1.1 – Графики iris.csv

Листинг 1.5 – Рисование и вывод графиков.

```
sns.set_theme(style="white")
sns.color_palette("tab10")
g = sns.PairGrid(df, diag_sharey=False, hue="target")
g.map_upper(sns.scatterplot, s=15)
g.map_lower(sns.kdeplot)
g.map_diag(sns.kdeplot, lw=2)
g.add_legend()
```

Каждый класс на графиках имеет свой цвет в соответствии с палитрой «tab10». Для реализации разных цветов в атрибут *hue* передается *target* (столбец классов). С помощью метода *scatterplot* на правой верхней части сетки рисуется диаграмма рассеивания, с помощью метода *kdeplot* на левой нижней части и по диагонали сети рисуется двумерная ядерная оценка плотности и ядерная оценка плотности. Из графиков (см. рисунок 1.1) можно заметить, что по всем признакам классы «Iris-versicolor» и «Iris-virginica» смешиваются, в отличии от класса «Iris-setosa». Самое сильное смешивание классов проявляется у признака «sepal width (cm)».

- 1.6. На одном изображении построим гистограммы распределения для каждого признака.
 - 1.6.1. Построим гистограммы для разного количества столбцов: 5, 10, 15, 20, 30 (см. рисунок 1.2). Из получившихся рисунков выберем наиболее лучше описывающий форму распределения признаков. Для рисования воспользуемся методом *histplot* и библиотеками Seaborne и Matplotlib (см. листинг 1.6).

Листинг 1.6 – Рисование и вывод гистограмм.

Рисунок 1.2 – Графики гистограмм (построчно, сверху вниз: 5, 10, 15, 20, $30\ \mathrm{столбцов})$

Из полученных графиков гистограмм (см. рисунок 1.2) можно увидеть, что вариант с 20 столбцами лучше всего описывает распределения всех признаков, т.к. количество пустых промежутков

оптимально мало, а пики распределений наглядно видно. Следовательно, далее для рисования гистограмм будет использоваться 20 столбцов.

1.6.2. Распределим на гистограмме классы по цветам и рассмотрим режимы, когда они накладываются (см. рисунок 1.3) и пересекаются (см. рисунок 1.4)

Листинг 1.7 – Рисование гистограмм с наложением.

```
fig, axs = plt.subplots(1, len(df.columns[:-1]),
figsize=(20, 5))
for i, column in enumerate(df.columns[:-1]):
    sns.histplot(df, x=column, hue="target", bins=20,
ax=axs[i],
    multiple="stack")
```


Рисунок 1.3 – Гистограммы с наложением.

Листинг 1.8 – Рисование гистограмм с пересечением.

```
fig, axs = plt.subplots(1, len(df.columns[:-1]),
figsize=(20, 5))
for i, column in enumerate(df.columns[:-1]):
    sns.histplot(df, x=column, hue="target", bins=20,
ax=axs[i])
```


Рисунок 1.4 – Гистограммы с пересечением.

Для реализации наложения гистограмм (см. листинг 1.7 и 1.8) друг на друга в атрибут *multiple* внесено значение *stack*. Для пересечения достаточно использовать атрибут *hue*.

Из графиков пересечения гистограмм (см. рисунок 1.4), можно сделать вывод о схожести смешивания классов полученных графиков с графиками ядерной оценки плотности по каждому признаку.

1.6.3. Построим гистограммы, чтобы вместо столбцов изображались ступеньки (см. рисунок 1.5).

Рисунок 1.5 – Гистограммы в виде ступенек.

Листинг 1.9 – Рисование гистограмм в виде ступенек.

```
fig, axs = plt.subplots(1, len(df.columns[:-1]),
figsize=(20, 5))
for i, column in enumerate(df.columns[:-1]):
```

Графики гистограмм приведены в ступенчатый вид с помощью передачи в *element* значения step (см. листинг 1.9). Воспользуемся графиками ступенчатых гистограмм для дальнейшего построения на их основе графиков оценки плотности.

1.6.4. Добавим на гистограммы график ядерной оценки плотности (см. рисунок 1.6).

Рисунок 1.6 – Гистограммы с графиком ядерной оценки плотности.

Листинг 1.10 — Рисование гистограмм с графиком ядерной оценки плотности.

График ядерной оценки плотности был добавлен к гистограмме с помощью изменения атрибута *kde* на *True* (см. листинг 1.10). Из рисунка 1.6 видно, что построенные с учетом гистограмм графики совпадают с графиками ядерной оценки плотности из рисунка 1.1. Таким образом, можно сказать, что графики плотности дают более четкое понимание о

распределении признаков, чем гистограммы, так как оценка плотности точнее показывает максимумы и колебания на графике.

- 2. Изучим набор данных iris.csv с использованием NumPy
 - 2.1. Загрузим данные из файла как массив NumPy. Для этого воспользуемся методом *genfromtxt* (см. листинг 2.1)

Листинг 2.1 – Загрузка датасета в виде массива NumPy.

```
df_arr = np.genfromtxt("iris.csv", delimiter=",",
dtype=float, filling_values=0, names=True,
usecols=(1, 2, 3, 4, 5))
```

Для корректной загрузки следующим атрибутам были заданы значения:

- *delimeter* = "," данные разделяются по запятой.
- *dtype* = *float* определение типа данных для загружаемых вещественных чисел.
- $filling_values = 0$ все пропущенные значения заполняются нулями.
- names = True для считывания имен признаков.
- usecols = (1, 2, 3, 4, 5) какие стобцы загружаются из файла.
 - 2.2. Выведем первые 10 наблюдений набора загруженных данных с помощью среза массива (см. листинг 2.2). Результат вывода запишем в таблицу 2.1.

Листинг 2.2 – Вывод первых 10 строк.

```
df_arr[:10]
```

Таблица 2.1 – Результат вывода данных.

sepal_length_cm sepal_width_cm	petal_length_cm	petal_width_cm	target
----------------------------------	-----------------	----------------	--------

5.1	3.5	1.4	0.2	0.0
4.9	3.0	1.4	0.2	0.0
4.7	3.2	1.3	0.2	0.0
4.6	3.1	1.5	0.2	0.0
5.0	3.6	1.4	0.2	0.0
5.4	3.9	1.7	0.4	0.0
4.6	3.4	1.4	0.3	0.0
5.0	3.4	1.5	0.2	0.0
4.4	2.9	1.4	0.2	0.0
4.9	3.1	1.5	0.1	0.0

По таблице 2.1 можно подтвердить, что данные были загружены корректно.

2.3. Рассчитаем характеристики, полученные методом describe в пункте. 1.3 с использованием методов NumPy (см. листинг 2.3). Полученный результат вывода запишем в таблицу 2.2.

Листинг 2.3 – Вывод характеристики массива NumPy.

```
numeric data = df arr.view((float, len(df arr.dtype.names)))
print("\t^+"\t".\t^-join(df arr.dtype.names))
print("count\t" +
"".join([f"{np.count nonzero(~np.isnan(numeric data[:,
i:i+1])):.6f}\t"
for i in range(len(df arr.dtype.names))]))
print("mean\t" + "".join([f"{np.mean(numeric data[:,
i:i+1]):.6f}\t"
for i in range(len(df arr.dtype.names))]))
print("std\t" + "".join([f"{np.std(numeric data[:,
i:i+1]):.6f}\t"
for i in range(len(df arr.dtype.names))]))
print("min\t" + "".join([f"{np.amin(numeric data[:,
i:i+1]):.6f}\t"
for i in range(len(df arr.dtype.names))]))
print("25%\t" + "".join([f"{np.percentile(numeric data[:,
i:i+1], 25):.6f}\t"
for i in range(len(df arr.dtype.names))]))
print("50%\t" + "".join([f"{np.percentile(numeric data[:,
i:i+1], 50):.6f}\t"
```

```
for i in range(len(df_arr.dtype.names))]))
print("75%\t" + "".join([f"{np.percentile(numeric_data[:,
i:i+1], 75):.6f}\t"
for i in range(len(df_arr.dtype.names))]))
print("max\t" + "".join([f"{np.amax(numeric_data[:,
i:i+1]):.6f}\t"
for i in range(len(df_arr.dtype.names))]))
```

Таблица 2.2 – Результат вывода характеристики.

	sepal_length_cm	sepal_width_cm	petal_length_c m	petal_width_ cm	target
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

Полученные данные для *count, mean, 25%, 50%, 75%, max* полностью совпали с выводом *describe* (см. таблицу 1.2), значение для *std* имеют небольшие отклонения.

- 3. Изучим набор данных варианта 1.
 - 3.1. Загрузим данные из файла как Pandas DataFrame (*read csv*) (см. листинг 3.1)

Листинг 3.1 – Загрузка датасета

```
df_var1 = pd.read_csv("iris.csv")
```

3.2. Вызовем у датафрейма метод *head* и проверим корректность загруженных данных (см. листинг 3.2/ Вывод метода см. в таблице 3.1

Листинг 3.2 – Вызов *head*

df_var1.head()

Таблица 3.1 – Вывод *head*

	first	second	third	fourth	label
0	0.342494	-4.170293	-0.427134	5.285126	0
1	2.506861	1.536588	3.311512	3.455109	1
2	-0.723178	-2.866860	-1.778395	3.604657	0
3	2.413882	3.921118	2.923352	2.768869	1
4	-0.377760	-2.471150	-2.796839	3.968686	0

3.3. Вызвав у датафрейма метод *describe*, получим характеристики (см. листинг 3.3). Результаты выполнения метода представлены в таблице 3.2.

Листинг 3.3 – Вызов describe

df_var1.describe()

Таблица 3.2 – вывод *describe*

	first	second	third	fourth	label
count	200.00000	200.00000	200.00000	200.00000	200.00000
mean	-0.079295	0.056456	-0.078393	3.019419	0.500000

std	3.199506	3.026384	3.285926	1.055298	0.501255
min	-6.200980	-4.808300	-6.728692	0.523930	0.000000
25%	-3.150403	-2.655759	-3.176466	2.350288	0.000000
50%	0.708355	-0.549150	-0.120588	2.986238	0.500000
75%	2.775412	2.894577	2.872863	3.763799	1.000000
max	5.443596	5.361941	6.107679	6.353969	1.000000

Была выведена информация для каждого признака в датафрейме (см. таблицу 3.2). По ней можно сказать, что датафрейм хранит по 200 значений для каждого признака. Также видно, что наблюдения для классов 1 и 0 распределены примерно поровну.

3.4. Видоизменим полученный датафрейм с помощью метода *replace* таким образом, чтобы метки классов были следующими: 0 - Zero, 1 - One и сохраним полученный датафрейм в отдельный файл new_lab1_var1.csv с помощью метода *to_csv* (см. листинг 1.4). Проверим получившийся датафрейм с помощью *head* (см. таблицу 1.3).

Листинг 3.4 – Изменение и сохранение датафрейма.

Таблица 3.3 – Измененный датафрейм.

	first	second	third	fourth	label
0	0.342494	-4.170293	-0.427134	5.285126	Zero
1	2.506861	1.536588	3.311512	3.455109	One
2	-0.723178	-2.866860	-1.778395	3.604657	Zero
3	2.413882	3.921118	2.923352	2.768869	One
4	-0.377760	-2.471150	-2.796839	3.968686	Zero

3.5. Визуально оценим набор данных, построив изображение, содержащее графики ядерной оценки плотности каждого признака, диаграмму рассеяния и двумерную ядерную оценку плотности для каждого признаков (см. рисунок 3.1). Используем для этого библиотеку Seaborn (см. листинг 3.5)

Рисунок 3.1 – Графики lab1_var1.csv

Листинг 3.5 – Рисование и вывод графиков.

```
sns.set_theme(style="white")
sns.color_palette("tab10")
g = sns.PairGrid(df_var1, diag_sharey=False, hue="label")
g.map_upper(sns.scatterplot, s=15)
g.map_lower(sns.kdeplot)
g.map_diag(sns.kdeplot, lw=2)
g.add_legend()
```

Из графиков (см. рисунок 3.1) можно заметить, что по всем признакам классы «Zero» и «Оne» имеют выбросы точек из скопления одного класса в другой. Графики ядерной оценки плотности для признака «fourth» для двух классов являются практически эквивалентными.

- 3.6. На одном изображении построим гистограммы распределения для каждого признака.
 - 3.6.1. Сделаем на каждой гистограмме разделение по классам разными цветами, отображение ступенек вместо столбцов (см. рисунок 3.2) и для сравнения добавим график ядерной оценки плотности к гистограммам (см. рисунок 3.3). Код для реализации рисования графиков можно увидеть в листинге 3.6 и 3.7.

Листинг 3.6 – Рисование и вывод ступенчатых гистограмм.

```
fig, axs = plt.subplots(1, len(df_var1.columns[:-1]),
figsize=(20, 5))
for i, column in enumerate(df_var1.columns[:-1]):
    sns.histplot(df_var1, x=column, hue="label", bins=20,
ax=axs[i], element="step")
```


Рисунок 3.2 – Графики ступенчатых гистограмм.

Листинг 3.7 – Рисование гистограмм с графиком ядерной оценки плотности.

```
fig, axs = plt.subplots(1, len(df_var1.columns[:-1]),
figsize=(20, 5))
for i, column in enumerate(df_var1.columns[:-1]):
    sns.histplot(df_var1, x=column, hue="label", bins=20,
ax=axs[i], kde=True, element="step")
```


Рисунок 3.3 – Гистограммы с графиком ядерной оценки плотности.

Из рисунка 3.3 видно, что построенные графики плотности с учётом гистограмм совпадают с графиками ядерной оценки плотности из рисунка 3.1. Таким образом, можно сделать вывод, что признак «fourth» не годится для классификации данных с помощью «Zero» и «One» из-за схожести двух графиков плотности.

- 4. Преобразуем данные полученные в new_iris.csv (см. листинг 1.4)
 - 4.1. Закодируем классы используя *LabelEncoder* и *OneHotEncoder* (см. листинг 4.1 и 4.2). Результат внесем в таблицу 4.1 и 4.2.

Листинг 4.1 – Кодирование *LabelEncoder*.

```
new_df = pd.read_csv("new_iris.csv")
le = LabelEncoder()
new_df["target"] = le.fit_transform(new_df["target"])
new_df
```

Таблица 4.1 – Результат кодирования *LabelEncoder*.

Iris-setosa	0
Iris-versicolor	1
Iris-virginica	2

Листинг 4.2 – Кодирование *OneHotEncoder*.

```
new_df = pd.read_csv("new_iris.csv")
ohe = OneHotEncoder()
ohe_df =
pd.DataFrame(ohe.fit_transform(new_df[["target"]]).toarra
y())
new_df.drop("target", axis=1, inplace=True)
new_df = pd.concat([new_df, ohe_df], axis=1)
new_df
```

Таблица 4.2 – Результат кодирования *OneHotEncoder*.

Iris-setosa	1	0	0
Iris-versicolor	0	1	0
Iris-virginica	0	0	1

Таким образом, *LabelEncoder* кодирует каждую метку класса числовым значением по порядку, из-за чего не всегда ясна связь данных меток классов. *OneHotEncoder*, кодирует каждую метку класса вектором, состоящим из 0 и 1, где каждый столбец говорит о принадлежности признака к классу (да - 1, нет - 0), что дает возможности избежать проблем связи в случае *LabelEncoder*.

4.2. Преобразуем датафрейм new_iris.csv из пункта 1.4 в массив NumPy (см. листинг 4.3)

Листинг 4.3 – Загрузка датасета в виде массива NumPy.

```
changed_df = pd.read_csv("changed_iris.csv")
attributes = ["sepal length (cm)", "sepal width (cm)",
"petal length (cm)", "petal width (cm)"]
data = new_df[attributes].to_numpy()
```

Для преобразования только нужных признаков был создан массив *attributes* и использован метод *to numpy*.

4.3. Для массива NumPy из п. 4.2 применим StandardScaler, MinMaxScaler, MaxAbsScaler и RobustScaler (см. листинг 4.4, 4.5, 4.6, 4.7, 4.8). Для каждого из результатов построим гистограммы по каждому признаку без разделения по классам (см. рисунки 4.1, 4.2, 4.3, 4.4, 4.5).

Листинг 4.4 – Рисование гистограмм без нормирования.

```
fig, axs = plt.subplots(1, data.shape[1], figsize=(20,
5))
for i in range(data.shape[1]):
    sns.histplot(data[:, i:i+1], bins=20, ax=axs[i],
legend=False).set(title=attributes[i])
```


Рисунок 4.1 – Гистограммы без нормирования.

Листинг 4.5 – Рисование гистограмм с *StandartScaler*.

```
scaler = StandardScaler()
scale_data = scaler.fit_transform(data)
fig, axs = plt.subplots(1, scale_data.shape[1],
figsize=(20, 5))
for i in range(scale_data.shape[1]):
    sns.histplot(scale_data[:, i:i+1], bins=20,ax=axs[i],
legend=False).set(title=attributes[i])
```


Рисунок 4.2 – Гистограммы с *StandartScaler*.

Листинг 4.6 – Рисование гистограмм с *MinMaxScaler*.

```
scaler = MinMaxScaler()
scale_data = scaler.fit_transform(data)
fig, axs = plt.subplots(1, scale_data.shape[1],
figsize=(20, 5))
for i in range(scale_data.shape[1]):
    sns.histplot(scale_data[:, i:i+1], bins=20,
ax=axs[i], legend=False).set(title=attributes[i])
```


Рисунок 4.2 – Гистограммы с *MinMaxScaler*.

Листинг 4.7 – Рисование гистограмм с *MaxAbsScaler*.

```
scaler = MaxAbsScaler()
scale_data = scaler.fit_transform(data)
fig, axs = plt.subplots(1, scale_data.shape[1],
figsize=(20, 5))
for i in range(scale_data.shape[1]):
    sns.histplot(scale_data[:, i:i+1], bins=20,
ax=axs[i], legend=False).set(title=attributes[i])
```


Рисунок 4.2 – Гистограммы с *MaxAbsScaler*.

```
scaler = RobustScaler()
scale_data = scaler.fit_transform(data)
fig, axs = plt.subplots(1, scale_data.shape[1],
figsize=(20, 5))
for i in range(scale_data.shape[1]):
    sns.histplot(scale_data[:, i:i+1], bins=20,
ax=axs[i], legend=False).set(title=attributes[i])
```


Рисунок 4.2 – Гистограммы с RobustScaler.

При нормировании в листинге 4.5 использовался StandardScaler. Данная нормировка преобразует данные так, чтобы среднее значением стало равным или приближенным нулю, а стандартное отклонение равным 1. Такое преобразование можно охарактеризовать формулой 4.1.

$$\widehat{X} = \frac{X - E(X)}{\sigma X} \tag{4.1}$$

Где E(X) – мат. ожидание, а σX – стандартное отклонение.

При нормировании в листинге 4.6 использовался MinMaxScaler. Данная нормировка преобразует данные так, чтобы значения находились в определённом диапазоне (обычно от 0 до 1). Такое преобразование можно охарактеризовать формулой 4.2.

$$\widehat{X} = \frac{X - \min(X)}{\max(X) - \min(X)} \tag{4.2}$$

Где min(X) – минимальное, а max(X) – максимальное значения.

При нормировании в листинге 4.7 использовался MaxAbsScaler. Данная нормировка преобразует данные так, чтобы значения находились в диапозоне от -1 до 1. Такое преобразование можно охарактеризовать формулой 4.3.

$$\widehat{X} = \frac{X}{\max(|X|)} \tag{4.3}$$

Где $\max(|X|)$ – максимальное значение по модулю.

При нормировании в листинге 4.8 использовался RobustScaler. Данная нормировка преобразует данные чтобы так, происходило масштабирование центрирование И на основе медианы Такое преобразование интерквартильного размаха. ОНЖОМ охарактеризовать формулой 4.4.

$$\widehat{X} = \frac{X - Q_2}{Q_3 - Q_1} \tag{4.4}$$

 Q_1 , Q_2 , $Q_3 - 1$, 2 и 3 квартили.

Из рисунков 4.1, 4.2, 4.3, 4.4, 4.5 можно сделать вывод, что внешний вид распределения не изменился, но изменилась ось X в зависимости от примененной нормировки.

4.4. Согласно варианту, реализуем MinMaxScaler с использованием NumPy. Код приведен в листинге 4.9.

Листинг 4.9 – Реализация нормирования *MinMaxScaler*.

```
def CustomMinMaxScaler(dataframe, feature_min,
  feature_max):
    dataframe_scaled = np.zeros(dataframe.shape)
    for i in range(dataframe.shape[1]):
        current_column = dataframe[:, i]
        dataframe_std = (dataframe - min(current_column)) /
    (max(current_column) - min(current_column))
        column_scaled = dataframe_std[:, i] * (feature_max - feature_min) + feature_min
        dataframe_scaled[:, i] = column_scaled
        return dataframe_scaled
```

Функция CustomMinMaxScaler (см. листинг 4.9) принимает на вход массив данных dataframe, минимальное и максимальное значения feature min и feature max, используемые для масштабирования данных. создаётся dataframe scaled, который заполняется нулями. В него вносятся нормированные данные. В цикле по всем столбцам с признаками функция вычисляет значение для каждого элемента в столбце путем вычитания минимального значения столбца из dataframe и деления на разницу между максимальным и минимальным значениями столбца. Полученный столбец умножается на разницу между feature max И feature min, a добавляется feature min затем восстановления оригинального масштаба данных. Затем вносим вычисленный столбец в dataframe scaled и возвращаем его. Для сравнения двух функций выпишем результат первых пяти строк в таблицы (см. таблица 4.3 и 4.4).

Таблица 4.3 – Результат *MinMaxScaler*

0.56193323	0.06273273	0.49091428	0.81666626
0.74780234	0.62386802	0.78216842	0.50277178
0.47041666	0.19089415	0.38564611	0.52842311
0.73981761	0.85832953	0.75192933	0.3850641
0.50008003	0.50008003		0.59086327

Таблица 4.4 – Результат *CustomMinMaxScaler*

0.56193323	0.06273273	0.49091428	0.81666626
0.74780234	0.62386802	0.78216842	0.50277178
0.47041666	0.19089415	0.38564611	0.52842311
0.73981761	0.85832953	0.75192933	0.3850641
0.50008003	0.2298028	0.30630564	0.59086327

Данные полученные с помощью *CustomMinMaxScaler* и *MinMaxScaler* совпали, значит реализованная функция правильно нормирует датафрейм. Рассчитаем минимальное, максимальное, среднее

значение и дисперсию, после преобразования (см. листинг 4.10). Рассчитанные результаты можно увидеть в таблице 4.5.

Листинг 4.10 – Вычисление характеристик.

```
print("min\t" + "".join([f"{np.amin(scale_data_my[:,
i:i+1]):.6f}\t" for i in range(len(scale_data_my[0]))]))
print("max\t" + "".join([f"{np.amax(scale_data_my[:,
i:i+1]):.6f}\t" for i in range(len(scale_data_my[0]))]))
print("mean\t" + "".join([f"{np.mean(scale_data_my[:,
i:i+1]):.6f}\t" for i in range(len(scale_data_my[0]))]))
print("var\t" + "".join([f"{np.var(scale_data_my[:,
i:i+1]):.6f}\t" for i in range(len(scale_data_my[0]))]))
```

Таблица 4.5 – Вычисленные характеристики.

min	0.000000	0.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000
mean	0.525711	0.478332	0.518082	0.428040
var	0.075118	0.088107	0.065201	0.032601

По данным из таблицы 4.5, можно подтвердить, что был применена нормировка MinMaxScaler со значениями диапазона 0 и 1, так как минимальное значение равно 0, а максимальное – 1 у всех признаков.

4.5. Для датафрейма из пункта 1.4 получим новый, который содержит только классы «Iris-versicolor» и «Iris-virginica», признаки «sepal length (cm)» и «petal length (cm)», и наблюдения, для которых значения признака «sepal width (cm)» лежат между квантилями 25% и 75% (см. листинг 4.11).

Листинг 4.11 – Получение нового датафрейма.

```
new_df = pd.read_csv("new_iris.csv")
new_df = new_df[(new_df["target"] == "Iris-versicolor") |
  (new_df["target"] == "Iris-virginica")]
```

```
new_df = new_df[["sepal length (cm)", "sepal width (cm)",
"petal length (cm)"]]

new_df = new_df[(new_df["sepal width (cm)"] >=
new_df["sepal width (cm)"].quantile(0.25)) &
(new_df["sepal width (cm)"] <= new_df["sepal width (cm)"].quantile(0.75))]</pre>
```

Для получение нового датафрейма со всеми условиями, во 2-й строке листинга 4.11 были отфильтрованы данные, чтобы остались только строки, где значение в столбце «target» равно «Iris-versicolor» или «Iris-virginica». В строке 3 были оставлены только данные столбцов «sepal length (cm)», «sepal width (cm)», «petal length (cm)». В строке 4 было проведена фильтрация данных по значению «sepal width (cm)», оставляя только строки, где значение этого столбца находится между 25% и 75% перцентилем этого столбца.

5. Понижение размерности.

5.1. Для набора данных iris.csv применим понижение размерности до 2-й, используя PCA и t-SNE из Sklearn (см. листинг 5.1 и 5.2). Для каждого из результатов построим диаграмму рассеяния с выделением разным цветом наблюдений разных классов (см. рисунок 5.1 и 5.2).

Листинг 5.1 – Понижение размерности РСА.

```
df = pd.read_csv("iris.csv")
pca = PCA(n_components=2)
new_df_pca = pca.fit_transform(df)
new_df_pca = pd.DataFrame(new_df_pca, columns=["first",
"second"])
new_df_pca.insert(loc=new_df_pca.shape[1],
column="target", value=df["target"])
sns.scatterplot(new_df_pca, x="first", y="second",
hue="target", palette='tab10')
```


Рисунок 5.1 – Диаграмма рассеивания после РСА.

Листинг 5.2 – Понижение размерности t-SNE.

```
df = pd.read_csv("iris.csv")
pca = PCA(n_components=2)
new_df_pca = pca.fit_transform(df)
new_df_pca = pd.DataFrame(new_df_pca, columns=["first",
"second"])
new_df_pca.insert(loc=new_df_pca.shape[1],
column="target", value=df["target"])
sns.scatterplot(new_df_pca, x="first", y="second",
hue="target", palette='tab10')
```


Рисунок 5.2 – Диаграмма рассеивания после t-SNE.

Алгоритмы PCA и t-SNE предназначены для выделения значимых признаков, отброса незначительных, устранение шума и визуализации многомерных пространств. Идея алгоритма PCA заключается в нахождении таких осей, на долю которых приходятся самые большие величины дисперсии в наборе данных. Такие оси называются главными компонентами. Данный алгоритм используют для устранения шумов и для линейной разделимости классов. Алгоритм t-SNE служит для понижения размерности, чтобы впоследствии визуализировать данные и использует одностороннее нелинейное преобразование.

Результаты работы двух алгоритмов различаются, потому что РСА стремится сохранить глобальную структуру данных, а t-SNE ориентирован на сохранение локальной структуры.

Вывод.

В ходе лабораторной работы были изучены способы анализа данных с применением библиотек Pandas и NumPy, с помощью которых считывались датафреймы и вычислялись характеристики их признаков. Для представления данных в виде графиков, диаграмм и гистограмм были использованы Seaborn и Matplotlib. По графикам был проведен анализ и сравнение. Было выяснено, что данные могут смешиваться и рассеиваться. Для преобразований датафреймов была использована библиотека Scikit-learn, с ее помощью данные были нормированы, закодированы, а их размерность была понижена. Также были изучены виды номировок: StandardScaler, MinMaxScaler, MaxAbsScaler и RobustScaler. Были изучены два вида кодировок – LabelEncoder и OneHotEncoder. Были изучены два метода понижения размерности исходного датафрейма: PCA и t-SNE.