DNS over CoAP (DoC) & DNS messages in CBOR

[draft-ietf-core-dns-over-coap, draft-lenders-dns-cbor]

Martine S. Lenders, Christian Amsüss, Cenk Gündoğan, Thomas C. Schmidt, Matthias Wählisch IETF 115 CoRE Meeting, 2022-11-07

Outline

Draft 1: DNS over CoAP (DoC)

Next Steps for draft-ietf-core-dns-over-coap

Draft 2: A Concise Binary Object Representation (CBOR) of DNS Messages

Next Steps for draft-lenders-dns-over-coap

1

Motivation for DNS over CoAP

Attack Scenario

Countermeasure: Encrypt name resolution triggered by IoT devices against eavesdropping

Our Proposal: DNS over CoAP (DoC), draft-ietf-core-dns-over-coap

- Encrypted communication based on DTLS or OSCORE
- Block-wise message transfer to overcome Path MTU problem (DNS over DTLS)
- Share system resources with CoAP applications
 - · Same socket and buffers can be used
 - · Re-use of the CoAP retransmission mechanism

Changes to DoC Draft Since IETF 114

- + Add security considerations on ID=0 in unencrypted use
 - · Replace layer violating statement for CON with statement of fact
- Remove "DoC Server Considerations" (moved to draft-lenders-dns-cns)

Open Discussions on DoC

Feedback from DNSOP (thanks!):

- Why isn't DoH via CoAP gateway sufficient? The draft should explain.
- Explain why TTL rewriting proposed is notably different from DoH.
- Does DoC live at a URI path? If so, consider defining a default path, if this is a common practice in CoAP.
- Recommendation to add a section describing how to bootstrap DoC in a SVCB-DNS record. May require to allocate a new ALPN ID for CoAP/DTLS.

Next Steps

DoC

- · Address feedback where possible
- · Pick ID for application/dns-message Content-Format

Guidance on DNS in constrained networks

- · Details see draft-lenders-dns-cns
- Do we see value in such guidance?

Draft 2: A Concise Binary Object

Representation (CBOR) of DNS Messages

Drawback of DNS in Constrained Networks

Packet size exceeds 802.15.4 PDU depending on queried name length

 \Rightarrow Fragmentation

Drawback of DNS in Constrained Networks

Packet size exceeds 802.15.4 PDU depending on queried name length

⇒ Fragmentation

Objectives of draft-lenders-dns-cbor (application/dns+cbor)

Reduce packet sizes of DNS queries and replies:

- 1. Encoding of DNS messages in CBOR
- 2. Omit (redundant) DNS fields in DNS queries and responses
- 3. Address and name compression using packed CBOR (optional)

DNS Query

```
Using CDDL (RFC8610)
domain-name = tstr
type-spec = (
  record-type: uint,
  ? record-class: uint,
dns-question = (
  ? id: uint.
  name: domain-name,
  ? type-spec.
dns-query = [dns-question]
```

CBOR array:

- At minimum containing text string domain name (IDNA encoded)
- Optional ID and record type specification (ID defaults to 0, record-type to AAAA, record-class to IN)

DNS Resource Record

```
rr = (
   ? name: domain-name,
   ttl: uint,
   ? type-spec,
   rdata: bstr / domain-name,
)
dns-rr = [rr]
```

CBOR array:

- At minimum containing TTL and resource data
- Optional name and record type specification (both default to question values)

DNS Response

```
extra-sections = (
  ? authority: [+ dns-rr],
  additional: [+ dns-rr]
sections = ((
  ? id: uint,
  answer: [+ dns-rr]
) // (
  ? id: uint.
  question: dns-query,
  answer: [+ dns-rr],
  ? extra-sections.
))
dns-response = [sections]
```

CBOR array of arrays:

- At minimum containing answer section (array of DNS resource records)
- Generally assumes that transport can map query to response!
 (original question and ID may be amended optionally)

Simple Example

```
Query IPv6 address for example.org
(13 bytes vs. 52 bytes wire-format: compression 400%)

["example.org"]

Corresponding response (24 bytes vs. 68 bytes wire-format: compression 283.3%):

[[[3600, h'20010db80000000000000000000001']]]
```

A More Complex Example

```
Query ANY record for example.org (cf. DNS-SD)
(17 bytes vs. 52 bytes wire-format: compression 305.9%)
["example.org", 255, 255]
Corresponding response (200 bytes vs. 195 bytes wire-format: compression 97.5%):
  ["example.org". 12. 1].
  [[3600, "_coap._udp.local"]],
  [[3600, 2, "ns1.example.org"], [3600, 2, "ns2.example.org"]],
    [" coap. udp.local". 3600. 28. h'20010db8000000000000000000000011].
    ["ns1.example.org", 3600, 28, h'20010db800000000000000000000000035'].
    ["ns2.example.org". 3600. 28. h'20010db800000000000000000003535']
```

A More Complex Example

```
Query ANY record for example.org (cf. DNS-SD)
(17 bytes vs. 52 bytes wire-format: compression 305.9%)
["example.org", 255, 255]
Corresponding response (200 bytes vs. 195 bytes wire-format: compression 97.5%):
  ["example.org". 12. 1].
 [[3600, "_coap._udp.local"]],
  [[3600, 2, "ns1.example.org"], [3600, 2, "ns2.example.org"]],
    [" coap. udp.local". 3600. 28. h'20010db800000000000000000000001'].
    ["ns1.example.org", 3600, 28, h'20010db800000000000000000000000035'].
    ["ns2.example.org". 3600. 28. h'20010db800000000000000000003535']
⇒ Larger than wire-format! Address and name compression needed
```

A More Complex Example

```
Packed CBOR (draft-ietf-cbor-packed) comes
  with prefix- and suffix-based compression.
```

Our Proposal: Name and Address Compression Using Packed CBOR

- Optional packed CBOR support for responses negotiated using parameter application/dns+cbor;packed=1 (own media type in draft -01)
- · Make shared value and argument tables one list for that media type

```
compr-dns-response = any # TBD; how to express packed CBOR in CDDL?
packed-dns-response = [[pack-table], compr-dns-response]
pack-table = any
```

Response becomes another CBOR array of two arrays:

- 1. Packing table (combined shared value and argument table)
- Compressed dns-response (structure as defined before: CBOR array of sections)

16

16

- · Pre-defined rule sets needed between client and server
- Not generally provided in DNS client/server relationship
- · Only few global compression contexts in DNS, e.g., TLDs

Example: ANY Record Response in application/dns+cbor; packed=1

Original CBOR response (200 bytes)

```
[["example.org", 12, 1],
[[3600, "_coap._udp.local"]],
[[3600, 2, "ns1.example.org"],
[3600, 2, "ns2.example.org"]],
[["_coap._udp.local", 3600, 28,
    h'20010db80000000000000000000000001'],
["ns1.example.org", 3600, 28,
    h'20010db80000000000000000000000035'],
["ns2.example.org", 3600, 28,
    h'20010db800000000000000000000003535']]]
```

Packed CBOR response (119 bytes)

```
" coap. udp.local", "example.org",
 3600, 28, 2
[[simple(2), 12, 1],
 [[simple(3), simple(1)]],
 [[simple(2), simple(5), 219("ns1.")].
  [simple(2), simple(5), 219("ns2.")]],
 [[simple(1). simple(3). simple(4). 6(h'0001')].
  [219("ns1."), simple(3), simple(4), 6(h'0035')],
  [219("ns2."), simple(3), simple(4), 6(h'3535')]
 111
```

(cmp. 195 bytes wire-format: compression 163.9%)

Example: ANY Record Response in application/dns+cbor; packed=1

Original CBOR response (200 bytes)

Packed CBOR response (119 bytes)

```
" coap. udp.local", "example.org",
 3600, 28, 2
[[simple(2), 12, 1],
 [[simple(3), simple(1)]],
 [[simple(2), simple(5), 219("ns1.")].
  [simple(2), simple(5), 219("ns2.")]],
 [[simple(1). simple(3). simple(4). 6(h'0001')].
  [219("ns1."), simple(3), simple(4), 6(h'0035')],
  [219("ns2."), simple(3), simple(4), 6(h'3535')]
 111
```

(cmp. 195 bytes wire-format: compression 163.9%)

Implied DNS-specific table entries for global compression contexts (e.g. TLDs) enable potential for more elision

Next Steps

Define more details on using packed CBOR:

- How to construct packing table?
- · Global compression contexts, DNS-specific implied table entries
- \cdot (Your thoughts.)