# **Taylor Circle**

Jimena Razo<sup>1</sup>, razoji@uci.edu (last updated: April 24, 2022)

### 1 Introduction

Named after *Henry Martyn Taylor*, the *Taylor Circle* is a circle created by six concyclic points on a triangle. Taylor is well known for having transcribed many important scientific and mathematical works into Braille after he became blind in 1894. He is not *Brook Taylor*, who is well-known for the *Taylor Theorem* or *Taylor series*.

### 2 Definition of the Taylor Circle

#### **Definition 1. (Taylor Circle)**

Let  $\triangle ABC$  be the following triangle and let H be its orthocenter, which is the concurrent point of the three altitudes  $AH_A$ ,  $BH_B$ , and  $CH_C$ .

Let  $P_A, P_B, P_C, Q_A, Q_B, Q_C$  be the corresponding projections of  $H_A, H_B, H_C$  to the triangle's three sides.

Then these six points  $P_A$ ,  $P_B$ ,  $P_C$ ,  $Q_A$ ,  $Q_B$ ,  $Q_C$  are concyclic, creating the circle called the Taylor Circle.



This definition leaves the question: How do we know that these six points are concyclic? We shall prove this below.

<sup>&</sup>lt;sup>1</sup>The author thanks Dr. Zhiqin Lu for his help.

## 3 Anti-parallel Lines

Parallelism is one of the fundamental concepts in Euclidean geometry. Additionally, there is an interesting and useful concept called in triangle geometry known as *anti-parallel lines*. This concept is important to our proof.

#### **Definition 2. (Anti-Parallel Line)**

Anti-parallel lines must be defined with respect to a fixed reference angle. In the following picture, let  $\angle XAY$  be our fixed angle. Lines PQ, FG are considered anti-parallel lines, if  $\angle ADE = \angle AFG$ .



From the above diagram we know:

### Theorem 1. (First Property of Anti-parallel Lines)

PQ and RS are anti-parallel lines if and only if D, G, F, E are concyclic.

For the rest of the article, we shall use the following property of anti-parallel lines repeatedly.

#### Corollary 0.1

In the following picture, let  $AH_A$  be the altitude over BC, and  $BH_B$  be the altitude over CA. Then the line  $H_AH_B$  is anti-parallel to the third side AB.



Solution: Since  $\angle AH_BB = \angle AH_AB = 90^\circ$ ,  $A, B, H_A, H_B$  are concyclic. Therefore by Theorem 1,  $H_AH_B$  and AB are anti-parallel.

#### Theorem 2. (Transitivity Properties)

We have the following transitivity results pertaining to parallel and anti-parallel lines. Let  $L_1, L_2, L_3$  be three lines. Then

- 1. If  $L_1$  is parallel to  $L_2$ , and  $L_2$  is parallel to  $L_3$ , then  $L_1$  is parallel to  $L_3$ ;
- 2. If  $L_1$  is parallel to  $L_2$ , and  $L_2$  is anti-parallel to  $L_3$ , then  $L_1$  is anti-parallel to  $L_3$ ;
- 3. If  $L_1$  is anti-parallel to  $L_2$ , and  $L_2$  is parallel to  $L_3$ , then  $L_1$  is anti-parallel to  $L_3$ ;
- 4. If  $L_1$  is anti-parallel to  $L_2$ , and  $L_2$  is anti-parallel to  $L_3$ , then  $L_1$  is parallel to  $L_3$ .

**Proof of the Taylor Circle.** We first prove that  $P_B, Q_B, P_C, Q_C$  are concyclic.



Since  $H_AQ_C \perp AB$  and  $H_AP_B \perp AC$ , we know  $A,Q_C,H_A,P_B$  are concyclic. Thus we have  $\angle H_AQ_CP_B = \angle H_AAC$ . Thus  $\angle BQ_CP_B + \angle C = 90^\circ + \angle H_AQ_CP_B + \angle C = 180^\circ$ . As a result,  $Q_C,B,C,P_B$  are concyclic, and hence  $P_BQ_C$  is antiparallel to BC. On the other hand, by Corollary 0.1,  $H_BH_C$  is anti-parallel to BC, and  $P_BQ_B$  is anti-parallel to  $H_BH_C$ . Using Theorem 2, $P_CQ_B$  is anti-parallel to  $P_BQ_C$ . Therefore  $P_B,Q_B,P_C,Q_C$  are concyclic.

By the same reason,  $P_C$ ,  $Q_C$ ,  $P_A$ ,  $Q_A$  and  $P_A$ ,  $Q_A$ ,  $P_B$ ,  $Q_B$  are concyclic.

By the *Davis' Theorem* (see Topic 28), we conclude that the six points

$$P_A, P_B, P_C, Q_A, Q_B, Q_C$$

are concyclic.

3

# **4 Further Information**

The Taylor Circle belongs to the *Tucker Circles* family. In relation to the points on the Taylor circle, the hexagon  $Q_A P_B Q_C P_A Q_B P_C$  is called the *Tucker's Hexagon*. In the following Tucker Hexagon, the three black lines are parallel to the corresponding sides, while the three red lines are anti-parallel to the corresponding three side333s of the triangle. For more details of Tucker Circles, see Wolfram Math World or Topic 29.

