

Series and Parallel Connections

Rama Komaragiri

Direction of Current Flow: Voltage Source

- If the wires is an ideal conductor (having no opposition to current flow), then the potential difference across the resistor $R(V_R)$ is equal to the supply voltage (V)
- Page 2. By convention, the direction of conventional current flow and electron current flow are opposite $V V_{\rm p}$
- Following the conventional current flow,
- a rise in the potential across the battery(- to +)
- a drop in the potential across the resistor(+ to -)

Series Connections

Series Connections

- Circuit is an arrangement of components (or circuit elements) that results in a continuous flow of charge, or current, through the configuration
- > Series Configuration: The current is same in the every point in the circuit

Resistors in Connected in Series

- > Series Configuration: The current is same in the every point in the circuit
 - In a circuit, if two elements are in series, the current must be same
 - If the currents are same in two adjoining circuit branches, the elements may or may not be in series

 R_2

Direction of Current in a Resistor

- The polarity of the voltage across a resistor is determined by the direction of current
- Current entering a resistor creates a voltage drop with polarity as shown

> The sign of current flow in a resistor when current flows from positive potential to negative potential is negative

Resistors in Connected in Series

The total resistance of a series configuration is the sum of the individual resistances as seen between the terminals "A" and "B"

- The largest resistor in the series combination will have most impact on the total resistance
- More resistors in series combination, the greater the resistance, no matter what the value of the resistor is

Resistors in Connected in Series

- **>** Let $R_1 = 1 kΩ$, $R_2 = 5 kΩ$, $R_3 = 1.5 kΩ$
- The total resistance $R_T = 7.5 \text{ k}\Omega$.
- > Current I through the circuit is

$$I = \frac{V}{R_T} = \frac{15V}{7.5k\Omega} = 2 mA$$

$$V = \frac{R_1}{R_2} = \frac{R_3}{R_3}$$

Voltage Sources Connected in Series

The net voltage is obtained by summing up the voltages with same polarity and subtracting voltages with opposite polarity

Voltage Sources Connected in Series

Kirchhoff's Voltage Law

- > A definition of closed path is required by starting at appoint and ending at the same point thus forming a closed loop
- > **Kirchhoff's Voltage Law (KVL):** The algebraic sum of the potential raises and drops around a closed path (closed loop) is zero

Kirchhoff's Voltage Law

- > Writing out the voltages in sequence by noting the sign convention,
 - V: with positive sign
 - $-V_1, V_2$: with negative sign
- > By applying KVL,

- Loop: "A"
$$\rightarrow$$
 "B" \rightarrow "C" \rightarrow "D" \rightarrow "A"

$$+V - V_1 - V_2 = 0$$

$$V = V_1 + V_2$$

$$\sum_{raises} V = \sum_{drops} V$$

Resistances Connected in Series-Voltage Divider Rule

To calculate the voltage drop across the each resistance in a series circuit

Current through the circuit *I* is given by

$$I = \frac{V}{R_T} = \frac{V_R}{R_T}$$

Resistances Connected in Series-Voltage Divider Rule

- > Voltage drop V_1 across resistor R_1 is given by $V_1 = IR_1$.
- \rightarrow Similarly, $V_2 = IR_2$, $V_3 = IR_3$
- $> IR_1 + IR_2 + IR_3 = IR_T = V$
- > Thus, voltage drop across R₁ is given by

$$V_{1} = IR_{1} = \frac{V}{R_{T}}R_{1} = \frac{R_{1}}{R_{T}}V$$

> Thus,
$$V = IR_1 + IR_2 + IR_3 = \left(\frac{R_1}{R_T} + \frac{R_2}{R_T} + \frac{R_3}{R_T}\right)V$$

The voltage drop is maximum across the largest resistor in the series combination

Resistances Connected in Series

To calculate the voltage drop across the each resistance in a series

circuit

$$R_1 = 1 \text{ k}\Omega$$
, $R_2 = 5 \text{ k}\Omega$, $R_3 = 1.5 \text{ k}\Omega$

$$V \xrightarrow{+} R_{T} \begin{cases} + \\ V_{R} \\ - \end{cases}$$

$$I = \frac{V}{R_{T}} = \frac{15V}{7.5k\Omega} = 2mA$$

$$V_1 = IR_1 = 2V$$
, $V_2 = IR_2 = 10V$, $V_3 = IR_3 = 3V$

$$R_2(5k\Omega) > R_3(1.5k\Omega) > R_1(1k\Omega)$$

$$V_2(10\ V) > V_3(3\ V) > V_1(2\ V)$$

$$V_R = V_1 + V_2 + V_3 = 2 + 10 + 3 = 15V = V$$

Parallel Connections

Parallel Connections

- > Two elements or circuits or branches are in **parallel** if they have two **points in common**
- The total current before branching is sum of currents in the individual branches

$$I = I_1 + I_2$$

Parallel Connections

- > Two elements or circuits or branches are in **parallel** if they have two **points in common**
- > Voltage across parallel elements is always same
- > If two elements are in parallel the voltage across them must be same.
- If the voltage across two neighbouring elements is the same, then the two elements may not be in parallel

Equivalent Resistance of a Parallel Combination

- > Let I be the total current and V_{AB} be the resistance between points A and B and R_T be the equivalent resistance between points A and B
- The total current I is given $I = \frac{V_{AB}}{R_T}$
- The total current $I = I_1 + I_2 + I_3$
- > Current through resistance R₁ is given by

$$I_1 = \frac{V_{AB}}{R_1}$$

Similarly,

$$I_2 = \frac{V_{AB}}{R_2} \qquad I_3 = \frac{V_{AB}}{R_3}$$

Equivalent Resistance of a Parallel Combination

> Thus

$$I = \frac{V_{AB}}{R_T} = I_1 + I_2 + I_3 = \frac{V_{AB}}{R_1} + \frac{V_{AB}}{R_2} + \frac{V_{AB}}{R_3}$$

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

The large the value of resistance is, less the effect it has

Current Division

 \rightarrow Current I₁ through resistance R₁ is given by

$$I_1 = \frac{V_{AB}}{R_1}$$

Substituting
$$I = \frac{V_{AB}}{R_T} \Rightarrow I_1 = \frac{IR_T}{R_1}$$

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \Longrightarrow R_T = \frac{R_1 R_2 R_3}{R_2 R_3 + R_3 R_1 + R_1 R_2}$$

> Thus,
$$I_1 = \frac{R_2 R_3}{R_2 R_3 + R_3 R_1 + R_1 R_2} I$$

Current Division

$$I_{1} = \frac{R_{2}R_{3}}{R_{2}R_{3} + R_{3}R_{1} + R_{1}R_{2}}I$$

$$I_{2} = \frac{R_{3}R_{1}}{R_{2}R_{3} + R_{3}R_{1} + R_{1}R_{2}}I$$

$$I_{3} = \frac{R_{1}R_{2}}{R_{2}R_{3} + R_{3}R_{1} + R_{1}R_{2}}I$$

The branch with largest resistance in a parallel combination has maximum current

Kirchhoff's Current Law

- The algebraic sum of currents entering and leaving a junction or region of a network is zero
- > Let I_i be the currents that enter in to a junction and let I_o be currents leaving a junction. Then **KCL** states

$$\Sigma I_i = \Sigma I_o$$

- I_1 , I_2 and I_5 are entering junction or node "A"
- \rightarrow I₃ and I₄ are leaving junction or node "A"
- Thus, as per KCL, $I_1 + I_2 + I_5 = I_3 + I_4$

