Chapter 2

Integral Calculus

2.1 Differentiation Under Integration

2.1.1 Leibniz Integral Rule

•
$$\frac{d}{dx} \Big[\int_a^b f(x,t) dt \Big] = \int_a^b \frac{\partial}{\partial x} f(x,t) dt.$$

$$\bullet \ \frac{d}{dx} \Big[\int_{a(x)}^{b(x)} f(x,t) dt \Big] = f(x,b(x)) \frac{d}{dx} b(x) - f(x,a(x)) \frac{d}{dx} a(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t) dt.$$

•
$$\frac{d}{dx} \left[\int_{a(x)}^{b(x)} f(t)dt \right] = f(x, b(x)) \frac{d}{dx} b(x) - f(x, a(x)) \frac{d}{dx} a(x).$$

2.1.2 A Working Procedure

▶ Suppose $g(x) = \int_x^{x^2} f(t)dt$ then to find g'(x), we take $\int f(t)dt = \phi(t) \Rightarrow \phi'(t) = f(t)$. Now $g(x) = \phi(x^2) - \phi(x) \Rightarrow g'(x) = 2x\phi'(x^2) - \phi'(x) = 2xf(x^2) - f(x)$.

[Do It Yourself] 2.1. If $F(x) = \int_{x^3}^4 \sqrt{4 + t^2} dt$, $x \in \mathbb{R}$. Then F'(1) equals $(A) -3\sqrt{5}$. $(B) -2\sqrt{5}$. $(C) 2\sqrt{5}$. $(D) 3\sqrt{5}$.

[Do It Yourself] 2.2. Let $f: [0,1] \to \mathbb{R}$ be a function defined as $f(t) = t^3 \left[1 + \frac{1}{5} \cos(\ln t^4) \right]$, for $t \in (0,1]$. Let $F: [0,1] \to \mathbb{R}$ be defined as $F(x) = \int_0^x f(t) dt$, $x \in \mathbb{R}$ Then F''(0) equals (A) 0. (B) 3/5. (C) -5/3. (D) 1/5.

[Do It Yourself] 2.3. If $\int_0^x f(t)dt = x^2 \sin x + x^3$. Then find $f(\pi/2)$.

[Do It Yourself] 2.4. Let $f:[0,1] \to \mathbb{R}$ be defined by

$$f(t) = \begin{cases} 0 & \text{if } 0 < t \le 1\\ e^{x^2} - e & \text{if } t = 0 \end{cases}$$

Now, define $F:[0,1] \to \mathbb{R}$. by $F(x) = \int_0^x f(t)dt$. Then F''(0) equals to (A) 0. (B) $\frac{3}{5}$. (C) $-\frac{5}{3}$. (D) $\frac{1}{5}$.

[Do It Yourself] 2.5. Let $F(x) = \int_0^x e^t(t^2 - 3t - 5)dt$, x > 0. Then find the number of roots of F(x) = 0 in the interval (0, 4). (Ans: 0)

[Do It Yourself] 2.6. The value of the limit $\lim_{x\to \frac{1}{2}} \frac{\int_{\frac{1}{2}}^{x} \cos^{2}(\pi t) dt}{\frac{e^{2x}}{2} - e(x^{2} + \frac{1}{4})}$ is (A) 0. (B) π/e . (C) $\pi^{2}/2e$. (D) $-\pi^{2}/2e$.

2.2 Application of Integration

- ▶ We will study the computation of area, length of a curve, surface integral, volume integral and surface of revolution.
- ▶ Tangent of the curve y = f(x) at (α, β) : $(y \beta) = \frac{dy}{dx}|_{(\alpha, \beta)}(x \alpha)$.
- Asymptote: We will understand this concept using graphs. Sometimes asymptotes are helpful to draw graphs e.g. y = 1/x, $y = \frac{1}{x} + 1$.
- ▶ The curve f(x,y) = 0 is known as implicit form. The curve y = f(x) or, x = g(y) is known as explicit form. The curve $x = f_1(t)$, $y = f_2(t)$ is known as parametric form.
- ▶ Suppose we want to draw the curve f(x, y) = 0.
- ▶ Rule 1: If y^2 is present \Rightarrow curve is symmetric about x axis.
- ▶ Rule 2: Try to find its asymptotes.
- Rule 3: If the curve is unchanged under $x, y \Rightarrow$ curve is symmetric about the line y = x.
- Rule 4: Try to find some point on x axis, y axis by putting y = 0, x = 0. Also check the position of origin (0,0).
- ▶ Rule 5: For explicit curve you can check about its monotonicity.

2.2.2 Curve Plotting

▶ A Circle:
$$x^2 + y^2 = a^2$$
, $x^2 + y^2 = 2^2$, $(x - 2)^2 + y^2 = 3^2$, $(x - 1)^2 + (y - 2)^2 = 3^2$.

► A Parabola:
$$y^2 = \pm 4ax$$
, $x^2 = \pm 4.2.y$, $(y-1)^2 = \pm 4.3.(x-2)$.

▶ A Ellipse:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$, $\frac{x^2}{2^2} + \frac{y^2}{3^2} = 1$.

▶ A Hyperbola:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $\frac{x^2}{3^2} - \frac{y^2}{2^2} = 1$, $\frac{x^2}{2^2} - \frac{y^2}{3^2} = 1$, $x^2 - y^2 = 1$, $xy = 2^2$.

Figure 2.1: Identify The Curves: Circle, Parabola, Ellipse, Hyperbola.

- ▶ B Catenary: $y = a \cosh(\frac{x}{a})$. Parametric form: $x = c \ln(\sec t + \tan t)$, $y = c \sec t$.
- ▶ B Folium of Descartes: $x^3 + y^3 = 3axy$. Parametric form: $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$.
- ▶ B Astroid: $x^{2/3} + y^{2/3} = a^{2/3}$. Parametric form: $x = a \cos^3 t$, $y = a \sin^3 t$.
- ▶ B Cissoid: $y^2(a-x) = x^3$. Parametric form: $x = \frac{at^2}{1+t^2}$, $y = \frac{at^3}{1+t^2}$.
- ▶ B Strophoid: $(x^2 + y^2)x = a(x^2 y^2)$, a > 0. Parametric form: $x = \frac{a(1-t^2)}{1+t^2}$, $y = \frac{at(1-t^2)}{1+t^2}$.
- ▶ B Semi-cubical Parabola: $ay^2 = x^3$, (a > 0). [From Catenary to Inverted Cycloid: a = 2]
- ▶ B Witch of Agnesi: $xy^2 = 4a^2(2a x)$.
- ▶ B Cycloid: Parametric form: $x = a(t \sin t), y = a(1 \cos t).$
- ▶ B Inverted Cycloid: Parametric form: $x = a(t + \sin t), y = a(1 \cos t).$

Figure 2.2: The Curves are: Catenary, Folium of Descartes, Astroid, Cissoid, Strophoid, Semi-cubical Parabola, Witch of Agnesi, Cycloid, Inverted Cycloid. Also see the asymptotes.

- ▶ C A two parameter curve: $a^3y^2 = x^4(b+x)$, a = 2, b = 3.
- ▶ C A one parameter curve: $x^2y^2 = a^2(y^2 x^2)$, a = 2.
- ▶ Now we will study some polar curve. For each curve we assume a = 2.
- ▶ C Cardiode: $r = a(1 \cos \theta)$ [In figure], $r = a(1 + \cos \theta)$.
- ightharpoonup Circle: $r = 2a \sin \theta$.
- ▶ C Lemniscate of Bernoulli: $r^2 = a^2 \cos 2\theta$.
- ▶ C Rose Petals: $r = a \sin n\theta$. If $n = odd \Rightarrow No$. of leaves = n and if $n = even \Rightarrow No$. of leaves = 2n
- ▶ C Some Petals: $r = a \sin 2\theta$, $r = a \sin 3\theta$, $r = a \cos 2\theta$, $r = a \cos 3\theta$.

Figure 2.3: The Curves are: Two parameter, One Parameter, Cardiode, Circle, Lemniscate, Petals. In Image 6, the length of leaves within the st. line is a.

- \blacksquare Although petals are polar curves but here I will give an overview w.r.t. x and y-axis.
- Here $r = a \sin 2\theta$ gets 4 leaves so each co-ordinate gets one leaves <u>but not on axes</u>. For $r = a \sin 4\theta$ gets 8 leaves so each co-ordinate gets two leaves and so on.
- Here $r = a \sin 3\theta$ gets 3 leaves with one leaves on <u>negative</u> y-axis and other 2 distributed over whole region. For $r = a \sin 5\theta$ gets 5 leaves with one leaves on <u>positive</u> y axis and other 4 distributed over whole region and so on.
- Here $r = a \cos 2\theta$ gets 4 leaves so each co-ordinate gets one leaves and each on axes. For $r = a \sin 4\theta$ gets 8 leaves so each 4 axes gets 4 leaves and rest 4 are distributed on gaps and so on.
- Here $r = a \cos 3\theta$ gets 3 leaves with one leaves on positive x axis and other 2 distributed

over whole region. For $r = a \sin 5\theta$ gets 5 leaves with one leaves on positive x - axis and other 4 distributed over whole region and so on.