Complex Analysis Qualifying Exam Fall 1984

1. Let f be analytic on the open unit disc D = D(0,1) in the sense that f' exists and is continuous on D. Give an $ab\ inito$ proof that

$$\int_{\gamma} f(z)dz = 0$$

for every closed smooth curve γ in D.

HINT: Consider the derivative of

$$I(r) = \int_{r\gamma} f(z)dz,$$

where $(r\gamma)(t) = r \cdot \gamma(t)$.

2. Evaluate

$$\phi_{|z|=1} \frac{dz}{z^2 \sin z}$$

by means of the Cauchy Redidue Theorem.

3. Let f be analytic and bounded on the punctured disc

$$D_0 = \{ z \varepsilon \mathbb{C} : 0 < |z - z_0| < R \}.$$

Prove that f has a removable singularity at z_0 .

4. Prove that each polynomial *P* of the form

$$P(z) = z^{n} + a_{n-1}z^{n-1} + \dots + a_0$$

satisfies

$$\sup\{|P(z)| : |z| \le 1\} \ge 1.$$

5. Suppose that f is an entire function such that

$$Ref(z) \le |z|^n$$

for some natural number n and all z with sufficiently large |z|. Prove that f is a polynomial.

6. Let f be an entire function of finite order. Suppose f has only finitely many zeros. Prove that $f = Qe^P$ for some polynomials P and Q.

HINT: Use problem 5.

- 7. Let f be a continuous function on $(0,1] \times D$, where D = D(0,1). Suppose:
 - (i) For each t in [0,1], f(t,z)=0 has a unique soultion z in D, and
 - (ii) For each rational number t in [0,1], $f(t,\cdot)$ is analytic on D.

Prove that there exists a continuous function $t \to z(t) : [0,1] \to D$ such that f(t,z(t)) = 0 for all t in [0,1].

HINT: First show that for every t in [0,1], $f(t,\cdot)$ is analytic on D.

8. The Riemann zeta function is defined by

$$\zeta(z) = \sum_{n=1}^{\infty} n^{-z} \quad (\text{Re } z > 1),$$

where $n^{-z} = \exp(-z \log n)$ for all n. Prove that ζ is well-defined and analytic for Re z > 1.

- **9.** Prove or disprove the existence of a double sequence $(a_{k,n})$ of complex numbers such that
 - (a) $\sum_{k=1}^{\infty} |a_{k,n}| \leq C$ for all $n = 1, 2, \ldots$; and
 - (b) $\lim_n \sin\left(\sum_{k=1}^\infty a_{k,n} z^k\right) = 1$ for all z in K, where C is a finite constant and $K = \{1/2 + l/m : m = 3, 4, \dots\}$.

HINT: Montel's theorem.

10. Let G be a nonempty open connected subset of \mathbb{C} . State at least three conditions each of which is equivalent to the simple connectedness of G, and prove their equivalence.