Econometria 1

Pedro Henrique Rocha Mendes*

Lista 2

(Texto para as questões 1 e 2) A equação abaixo explica o desempenho no ENEM 2013, "nota_ENEM", de um aluno que concluiu ensino médio no ano de 2013 em função do valor da mensalidade, "mensalidade", da escola em que o aluno cursou o ensino médio. o valor da mensalidade é uma proxy para a qualidade da escola. Apenas alunos que estudaram em escolas particulares são considerados.

$$Nota_ENEM_i = \beta_0 + \beta_1 \ mensalidade_i + u_i$$

- 1) Selecione um fator (variável aleatória) que você acredita explicar o desempenho do ENEM, mas que, estando omitido da equação, é captado pelo termo de perturbação, u_i . Explique com detalhe porque este fator influencia a variável dependente.
- 2) Verifique se a propriedade de ausência de viés do estimador do coeficiente de uma regressão linear simples se mantém caso a hipótese de expectativa condicional zero, i.e., de que $E\left(u_i|X\right)=0, i=1,\ldots,N,$ for substituída pela hipótese de que $E\left(u_i|X\right)=\alpha_0+\alpha_1X_i, i=1,\ldots,N,$ $\alpha_0\neq 0,$ $\alpha_1\neq 0.$ Em sua resposta, apresente os passos lógicos necessários para estabelecer o resultado de ausência de viés sob as hipóteses convencionais, apenas tomando o cuidado de utilizar a hipótese aqui requerida. Para fins de fixação do conteúdo que seguirá nas próximas aulas, acrescenta-se que a hipótese $E\left(u_i|X\right)=0$ é também referida como "exogeneidade".
- 3) Um analista trainee do setor bancário estimou, como parte de uma exploração descritiva dos dados da PNAD anual 2015, a regressão simples reportada na tabela abaixo. Teve-se como objetivo investigar a relação entre nível educacional e remuneração horária. Essas duas variáveis estavam disponíveis nos dados na forma de características individuais de pessoas empregadas em 2015.

^{*}RA: 11201811516

Parâmetro	Estimativa pontual	Unidade de medida
Intercepto	3,67	R\$/hora
Coeficiente	0,69	R\$/hora/ano de estudo

- a. O que significa exatamente o valor numérico da estimativa pontual do intercepto? Informe a leitura correta de tal número, tendo em vista o objetivo da análise.
- b. O que significa exatamente o valor numérico da estimativa pontual do coeficiente? Informe a leitura correta de tal resultado, tendo em vista o objetivo da análise.
- c. O analista também estimou a especificação alternativa na tabela abaixo, em que as duas variáveis foram incorporadas à regressão simples em forma logarítmica. Qual é a interpretação correta da estimativa pontual do valor numérico coeficiente neste caso? Não deixe de considerar o objetivo da análise e tenha atenção à unidade de medida.

Parâmetro	Estimativa pontual	Unidade de medida	
Intercepto	1,73	Log (R\$/hora) ou porcentagem	
Coeficiente	0,25	Log (R\$/hora) / Log (anos de estudo) ou	
		porcentagem/porcentagem	

- 4) Para esta questão você utilizará a planilha "dados_lista_2.xlsx". Nela se encontram dados para duas variáveis, Y ≡ medida padronizada para o superávit de altura-paraidade para crianças com menos do que cinco anos (z_nutri) e X ≡ renda domiciliar (renda_percapita) a variável id_dom é o código que identifica univocamente os domicílios. Utilizando o Excel ou o software gratuito R (este último é objeto dos vídeos lab.1/lab.2/lab.3), realize as tarefas a seguir:
- a. Calcule a estimativa pontual para o coeficiente da regressão simples $Y = \beta_0 + \beta_1 X + u$. Para isso, aplique a fórmula do estimador em questão aos dados, sendo ela:

$$\hat{\beta}_1 = \frac{N^{-1} \sum_{i=1}^{N} (y_i - \bar{y}) (x_i - \bar{x})}{N^{-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

Uma versão alternativa da fórmula acima é a seguinte:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} \tilde{y}_{i} \tilde{x}_{i}}{\sum_{i=1}^{N} (\tilde{x}_{i})^{2}}$$

Em que $\tilde{y}_i = y_i - \bar{y}$ e $\tilde{x}_i = x_i - \bar{x}$.

b. Julgue, de maneira justificada, se a estimativa pontual obtida no item anterior faz sentido e interprete-a. Considere que Y é medida em desvios padrão e X em R\$.¹

¹Nota: a variável dependente é uma medida de nutrição e não de desnutrição, pois se trata da seguinte diferença:

- c. Calcule a estimativa pontual para o intercepto da regressão simples $Y=\beta_0+\beta_1X+u$. Para isso, aplique a fórmula do estimador em questão aos dados, sendo ela: $\hat{\beta}_0=\bar{y}-\hat{\beta}_1\bar{x}$.
- d. Julgue, de maneira justificada, se a estimativa pontual obtida no item anterior faz sentido e interprete-a.
- 5) Com base na planilha dados_lista_2.xlsx e considerando a mesma regressão da questão anterior:
- a. Calcule a fórmula para o coeficiente de determinação, conforme segue:

$$R^{2} = 1 - \frac{SQR}{SQT} = 1 - \frac{\sum_{i=1}^{N} \left(y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i} \right)^{2}}{SQT} = 1 - \frac{\sum_{i=1}^{N} \left(\hat{u}_{i} \right)^{2}}{\sum_{i=1}^{N} \left(\tilde{y}_{i} \right)^{2}}$$

Em que \hat{u}_i é o resíduo.

- b. Interprete o valor numérico do coeficiente de determinação.
- 6) Um aluno da disciplina de econometria I armazenou os dados utilizados para estimar uma regressão simples em uma pasta temporária no disco duro de seu computador.
- a. O aluno procurou calcular de maneira semi-manual a soma dos quadrados dos resíduos. Para isso ele fez as nove operações abaixo e, antes de realizar a última operação, o Windows automaticamente reiniciou o computador para instalar uma atualização. Ao reiniciar o software estatístico, os dados não estavam mais disponíveis. Complete o cálculo para o aluno, informando (i) o resíduo da décima observação, (ii) o quadrado do resíduo referente à décima observação e (iii) a soma dos quadrados dos resíduos, utilizando uma das propriedades algébricas da regressão linear simples.

Observação	Nível educacional (X)	Resíduo (A)	Resíduo ao quadrado ($B = A^2$)
1	8	-2,027923995	4,112475731
2	11	-1,309013586	1,713516569
3	11	0,996611414	0,99323431
4	15	4,242337959	17,99743136
5	0	-0,403581087	0,162877694
6	15	-0,994722041	0,989471938
7	11	-2,896600586	8,390294956
8	0	-0,403581087	0,162877694
9	11	-1,862363586	3,468398127
10	5	Não disponível	Não disponível

altura observada - altura de referência para a idade.

- b. Agora ajude o estudante a calcular a covariância amostral entre a variável dependente e o resíduo, dada por $\frac{1}{N}\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(\hat{u}_{i}-\bar{u}\right)$. Utilize, para isso, uma segunda propriedade algébrica de regressão linear simples. Confirme o resultado obtido algebricamente fazendo o cálculo numérico com base na tabela acima.
- 7) Derive o estimador de mínimos quadrados ordinários do seguinte modelo sem intercepto $Y_i = \beta_1 X_i + u_i$ (1). Agora verifique que, se o modelo populacional possui um intercepto β_0 diferente de zero, assumindo forma $Y_i = \beta_0 + \beta_1 X_i + u_i$, então o estimador de β_1 da equação (1) é viesado.