CHE261A Patent Application

Applicant: National Chemicals Limited [NCL]

CEO: Sidhant Thalor(221055)

Inventors: C Zoliansangi(220303), Kushagra Tiwari (220574), Prince Yadav (200725), Mohit

Rajpoot(220665), Harshit Kumar (220440)

Chemical Formula: C₁₃H₁₉N₂OBr₂Cl

Chemical Name: Ambroxol

Process Title: Production of Ambroxol using Toluene

Process Description: Reaction is happening in the following 3 steps:-

• Condensation: In this step, we use 2-amino-3,5-dibromo benzaldehyde and Trans-4-Aminocyclohexanol, stir in a solvent, and get Schiff bases solution.

- Reduction: In The Schiff bases solution add sodium borohydride or lithium aluminium hydride (we are using sodium borohydride) to get the Trans broncho alkaline solution.
- Salify: With the Trans broncho alkaline solution cooling that step b obtains, regulate pH value with the hydrochloric acid solution under the agitation condition, the temperature control reaction is filtered, and washes and drying gets Ambroxol HCI. The yield of the step-1 reaction is 90.16% The yield of the step-2 reaction is 71.17% The final purity is 83%.

Block diagram

Unit operation and operation condition

1. Solid-State Reaction (SSR Reaction):

- Unit Operation: Solid-state reaction.
- Operating Conditions:
- Temperature: Typically conducted at elevated temperatures suitable for solid-state reactions.
 - Pressure: Atmospheric pressure.
 - Catalysts: Not specified.

- Input:
 - 2-Amino-3,5-dibromobenzaldehyde
 - Trans-4-Aminocyclohexanol
 - Toluene
- By-Product: None
- 2. Centrifuge (Toluene MLR):
 - Unit Operation: Centrifugation.
 - Operating Conditions:
 - Rotation Speed: Sufficient to separate the desired product from the toluene mixture.
 - Time: As required for complete separation.
 - Input: Toluene mixture.
 - By-Product: Toluene is sold to an authorised party.
- 3. Sodium Borohydride and Water (Ambroxol stage I):
 - Unit Operation: Reaction with sodium borohydride and water.
 - Operating Conditions:
 - Temperature: Reaction temperature suitable for the specific chemistry involved.
 - Pressure: Atmospheric pressure.
 - Input:
 - Sodium borohydride
 - Water
 - Intermediate compounds
 - By-Product: None

4. Centrifuge

- **Unit operation** For Separation
- Input: intermediate compound
- **By-Product**: Waste water sent to Effluent Treatment Plant (ETP).

5. Methanol and Charcoal (GLR):

- Unit Operation: Reaction with methanol and charcoal.

- Operating Conditions:

- Temperature: Reaction temperature suitable for the specific chemistry involved.
- Pressure: Atmospheric pressure.
- Input:
 - Methanol
 - Charcoal
 - Intermediate compounds
- By-product: Spent carbon (filtered charcoal).

6. Concentration (Conc. Hel.):

- Unit Operation: Concentration.

-Operating Conditions:

- Temperature: Controlled temperature to evaporate solvent (if any) from the solution.
- Pressure: Atmospheric pressure.
- Evaporation Rate: Controlled as per concentration requirements.
- Input: Ambroxol HCl solution.
- **By-Product**: None.

7. **<u>Drying</u>**:

- Unit Operation: Drying.

- Operating Conditions:

- Temperature: Controlled temperature suitable for drying the product.
- Pressure: Atmospheric pressure.
- **Input**: Ambroxol HCl solution.
- Product: Ambroxol HCI (final product).

Material Balances:

The reaction takes place in 2 stages:

1. The yield of the step-1 reaction is 90.16% (in reference plant). For calculation, we will use 90%.

For the production of 3.44kmol/day of intermediate production with 90% actual yield, we need 3.82kmol/day of ADBA i.e.1066.4kg/day of ADBA required.

We need the 3.82 Kmol/day of TACH also, but in general industrial practices, it is taken in some extra amount, typically 1.5 times ADBA so we need 658.95kg/day of TACH.

The amount of water generated is 3.44kmol/day, i.e. 61.92 litres/day.

2. The yield of the step-2 reaction is 71.17% (in reference plant). For calculations, we will use 70%.

We need to produce 1000 kg/day of ambroxol, i.e. 2.41kmol/day with 70% actual yield we need 3.44kmol/day of intermediate.

In industrial practices, NABH $_4$ is taken 3.5-4 times stage intermediate; we are taking 3.75 times, so for our plant production, we need 12.9kmol/day of NaBH $_4$ i.e. 490.2kg/day required.

In industrial practices, HCl is taken roughly the same quantity as stage intermediate, we need 125.56kg/day of HCl for our plant. $NaBH_2$ produced is 12.9kmol/day, i.e. 464.4kg/day. $NaBH_2$ produced is 12.9kmol/day, i.e. 464.4kg/day.

Capital cost (only for the reactor): 20,500 \$

Equipment	Design Capacity (L)	No. of units	Cost/unit (\$ for year 2014)	Total Cost (\$ for year 2014)
Solid state reactor (Jacketed and non-agitated)	2470 L	1	20,500	20,500

References:

- 1. http://www.matche.com/equipcost/Reactor.html
- 2. https://patents.google.com/patent/CN103012167A/en
- 3. https://sphinxsai.com/Vol.3No.1/pharm_jan-mar11/pdf/JM11(PT=53)%20pp%20309-3 13.pdf
- 4. http://repository-tnmgrmu.ac.in/348/1/BALAJI%20%20P.pdf
- 5. https://www.researchgate.net/publication/266742851 Formulation and Characterization of Ambroxol Hydrochloride Loaded Ethyl Cellulose Microparticles for Sustained Release
- 6. https://doktori.bibl.u-szeged.hu/id/eprint/9882/1/Disszertacio GYULAI%20ORSOLYA.p

 df

List the contributions of each author:

- Kushagra has done material balance for a scaled-up process plant with a 1000 kg/day capacity.
- Prince Yadav has provided unit operation and operation conditions after getting information from the flow diagram.
- C Zoliansangi made the block diagram in accordance with the unit operation
- Mohit and Harshit calculated the design capacity of the reactor from the material balance and the capital cost.

Name	Roll No	Signature
CEO Name	221055	Sidhant Thalor
First Author - Prince Yadav	200725	Prince Yadav
Second author -C Zoliansangi	220303	C Zoliansangi
Third author -Kushagra Tiwari	220574	Kushagra Tiwari
Fourth author -Mohit Rajpoot	220665	Mohit Rajpoot
Fifth author - Harshit Kumar	220440	Harshit Kumar