

SUPERIEUR ET DES ŒUVRES UNIVERSITAIRES (DGES)

DIRECTION DE l'ORIENTATION ET DES EXAMENS (DOREX)

Concours GE2I/GMEC session 2013

Composition : **Mathématiques 4** (analyse)

Durée : 4 Heures

Cette épreuve comporte deux pages

EXERCICE 1

1) On considère l'intégrale $\omega(\alpha,\beta) = \int_{\alpha}^{+\infty} e^{-\alpha x} \cos(\beta x) dx$.

Pour quelles valeurs de α et β cette intégrale converge - t - elle ? Pour ces valeurs trouvées, calculer cette intégrale. Démontrer que, quel que soit le nombre réel a on a

$$\int_{0}^{+\infty} \frac{\cos(ax)}{\cosh(x)} dx = 2 \sum_{n=0}^{+\infty} (-1)^{n} \frac{2n+1}{(2n+1)^{2} + a^{2}}$$

2) Pour n entier naturel, on pose $u_n = \frac{(-1)^n}{2n+1} \sum_{k=0}^n \frac{1}{4k+1}$. Etudier la nature de la série numérique $\sum_{n \geq 0} u_n$. Calculer la somme en cas de convergence.

EXERCICE 2

On considère la fonction f de la variable réelle telle que $f(x) = \sum_{n=1}^{+\infty} Arc tan \left(\frac{x}{n^2 + x^2} \right)$.

- 1) Quel est l'ensemble de définition D de f ? Etudier la parité de f.
- 2) Démontrer que f est continue sur D.

3) On pose
$$R_n(x) = \sum_{k=n+1}^{+\infty} Arc tan \left(\frac{x}{k^2 + x^2} \right)$$
.

Montrer que $R_n(2n) \ge nArctan\left(\frac{1}{4n}\right)$. Que peut – on en déduire pour la convergence uniforme

éventuelle sur \mathbb{R} de la série de fonctions de terme général $u_n: x \mapsto \operatorname{Arctan} \frac{x}{n^2 + x^2}$?

- 4) Démontrer que $\forall u > 0$, $\forall v \in \left[0, u\right]$ on a $\frac{v}{u} Arctanu \le Arctanv \le v$
 - a) Etablir que $\forall x \in]0; +\infty[$ on a: $\int_{1}^{+\infty} Arctan\left(\frac{x}{x^2+t^2}\right) \le f(x) \le \frac{\pi}{2}.$
 - b) En déduire que xArc $\tan \frac{1}{x}$ Arc $\tan x \le f(x) \le \frac{\pi}{2}$ pour tout x>0 et que f admet une limite finie en $+\infty$ $\left(\lim_{x\to 0} f(x)\right)$ que l'on déterminera. Déduisez en le résultat de la question 3).
- 5) $F est elle de classe C^1 sur \mathbb{R}$?

PROBLEME

- 1) On considère la série entière réelle $\sum_{n\geq 1} \frac{x^n}{4n^2-1}$.
 - a) Déterminer son rayon de convergence R.
 - b) Démontrer que cette série entière converge uniformément sur le segment [-R; R] et calculer sa somme.
- 2) Soit f la fonction réelle de la variable réelle définie sur l'ensemble des nombres réels $\mathbb R$ par :

$$\forall x \in \mathbb{R} , f(x) = \left| \sin \frac{x}{2} \right|.$$

Démontrer qu'il existe une suite $(a_n)_{n\in\mathbb{N}}$ de nombres réels telle que, si pour tout $n\in\mathbb{N}$ et tout $x\in\mathbb{R}$, on pose $W_n=a_n\cos nx$, la série de fonctions de terme général w_n converge absolument et

uniformément sur \mathbb{R} , et a pour somme $\sum_{n=0}^{+\infty} W_n = f$. Calculer a_n en fonction de n.

3) Soient a et b deux nombres réels tels a<b, et soit h une fonction réelle de la variable réelle, de classe C¹ sur le segment [a,b].

Pour tout réel λ posons $J(\lambda) = \int_a^b h(t) \left| \sin \frac{\lambda t}{2} \right| dt$.

- a) Démontrer que, lorsque $\lambda \to +\infty$, l'intégrale $I(\lambda) = \int_a^b h(t) \cos(\lambda t) dt$ tend vers une limite dont on déterminera la valeur.
- b) Démontrer que, pour tout $\lambda \in \mathbb{R}$, la série de terme général $a_n I(n\lambda)$ est absolument convergente et calculer sa somme.
- c) Soit ρ un nombre réel tel que $\rho > 0$. Démontrer qu'il existe $N \in \mathbb{N}$ tel que, quel que soit $\lambda \in \mathbb{R}$, on ait : $\left| \sum_{n=1}^{+\infty} a_n I(n\lambda) \right| \leq \left| \sum_{n=1}^{N} \left| a_n I(n\lambda) \right| \right| + \rho.$

En déduire que, lorsque $\lambda \to +\infty$, l'intégrale $J(\lambda)$ tend vers une limite dont on donnera l'expression en fonction de $\int\limits_{-\infty}^b h(t)dt$.

4) Les hypothèses sont celles de la question 3), soit q une fonction réelle de la variable réelle, périodique de période 2π , et continue sur \mathbb{R} .

Posons $\overset{-}{q} = \frac{1}{2\pi} \int\limits_0^{2\pi} q(t)dt$ et pour tout réel λ , $K(\lambda) = \int\limits_a^b h(t)q(\lambda t)dt$.

a) On fait l'hypothèse q = 0. Etudier, pour tout réel t fixé, la limite lorsque $\lambda \to +\infty$

de l'intégrale $v_t(\lambda) = \int\limits_0^t q(\lambda s) ds$ et en déduire la limite lorsque $\lambda \to +\infty$ de l'intégrale $K(\lambda)$.

b) On ne fait plus l'hypothèse q = 0. Etudier lorsque $\lambda \to +\infty$ la limite de $K(\lambda)$.