ISS – Numerické cvičení / Numerical exercise 6

Honza Černocký, FIT VUT Brno, December 14, 2016

Číslicové filtry / Digital filters

Číslicový filtr je zadaný následujícím schématem / A digital filter is given by its scheme:

- 1. Najděte jeho diferenční rovnici / Determine its difference equation.
- 2. Provedte Z-transformaci této rovnice / Perform Z-transform of this equation.
- 3. Najděte přenosovou funkci filtru $H(z) = \frac{B(z)}{A(z)}$. / Find the transfer function of the filter $H(z) = \frac{B(z)}{A(z)}$.
- 4. Napište hodnoty koeficientů b_k čitatele a a_k jmenovatele / write values of coefficients b_k of the numerator and a_k of the denominator.
- 5. Upravte H(z) na tvar vhodný pro hledání kořenů polynomů. / Modify H(z) to allow for finding roots of polynomials.
- 6. Najděte kořeny polynomu v čitateli. / Find roots of polynomial in the numerator.
- 7. Najděte kořeny polynomu ve jmenovateli. / Find roots of polynomial in the denominator.
- 8. Převeďte H(z) do tvaru obsahujícího nulové body a póly / Convert H(z) to the form including zeros and poles.
- 9. Zakreslete nuly a póly do komplexní roviny z. Nezapomeňte vyznačit jednotkovou kružnici. / Draw the zeros and poles to complex plane z. Draw also the unit circle.
- 10. Ověřte stabilitu filtru / Check the stability of the filter.
- 11. Pro libovolnou normovanou kruhovou frekvenci $\omega_1 \in [0, \pi]$ graficky vyznačte, jak budete počítat hodnotu frekvenční charakteristiky pro tuto frekvenci. Pomůcka: vycházíme z H(z) přepsané pomocí nul a pólů. Nahradíme z za $e^{j\omega_1}$ a uvědomíme si, že bod $e^{j\omega_1}$ leží na jednotkové kružnici. Namalujeme vektory z nulových bodů $(e^{j\omega_1} n_i)$ jednou barvou a vektory z pólů $(e^{j\omega_1} p_i)$ jinou barvou. / Help: we depart from H(z) written with poles and zeros. We substitute z for $e^{j\omega_1}$ and remember that point $e^{j\omega_1}$ is on the unit circle. We draw vectors from zeros $(e^{j\omega_1} n_i)$ with one color and vectors from poles $(e^{j\omega_1} p_i)$ with a different color.
- 12. Určete modul a argument frekvenční charakteristiky filtru na normované kruhové frekvenci $\omega_1 = 0$ rad. / Estimate the magnitude and phase of the frequency response of the filter at normalized angular frequency $\omega_1 = 0$ rad.
- 13. Dtto pro $\omega_1 = \frac{\pi}{2}$ rad. / Dtto for $\omega_1 = \frac{\pi}{2}$ rad.
- 14. D
tto pro $\omega_1=0.999\pi$ rad. Proč ne π ? / D
tto for $\omega_1=0.999\pi$ rad. Why not π ?
- 15. Zakreslete od ruky celý průběh frekvenční charakteristiky a porovnejte jej s průběhem vypočítaným pomocí Matlabu (ukáže vyučující). / Try to draw the complete frequency response and compare it with the one computed by Matlab (shown by the tutor).

Náhodné procesy / Random processes

Následující příklady doporučuji počítat s podporou nějakého tabulkového procesoru — Microsoft Excel, Libre Office Calc, Google Sheets, atd. nebo se podívat do již hotového řešení. / For the following exercise, I recommend to use a spread-sheet foftware — Microsoft Excel, Libre Office Calc, Google Sheets, etc., or to consult the solution in:

https://docs.google.com/spreadsheets/d/1nHIagKkjWdiCtCwTyv89aYsroQm9q6r83algrz2OP0o/edit?usp=sharing

Souborové odhady parametrů / Ensemble estimates of parameters

Máme k disposici $\Omega=10$ realizací náhodného procesu s diskrétním časem. Pro čas n=5 měly realizace tyto hodnoty $\xi_{\omega}[n]$: / We have $\Omega=10$ realizations of a random process. For time n=5, the realizations had the following values $\xi_{\omega}[n]$: // 2.2 1.2 2.5 2.3 4.1 2.5 2.8 3.3 2.5 1.7

- 16. Odhadněte střední hodnotu a[n] pro n=5 / Estimate the mean value a[n] for n=5.
- 17. Odhadněte rozptyl D[n] pro n=5 / Estimate the dispersion D[n] for n=5.
- 18. Odhadněte směrodatnou odchylku $\sigma[n]$ pro n=5 / Estimate the standard deviation (root mean square, RMS) $\sigma[n]$ for for n=5.
- 19. Předpokládejte, že je signál stacionární. Odhadněte tytéž parametry pro čas n = 7. / Suppose, that the signal is stationary. Estimate the same parameters for time n = 7.

Distribuční funkce / Cummulative probability distribution function

- 20. Odhadněte distribuční funkci F(x,n) pro n=5. Doporučený krok na ose x je 0.5. / Estimate the cumulative probability distribution function (CPDF) F(x,n) for n=5. The recommended step on x axis is 0.5.
- 21. Určete pravděpodobnost $P\{\xi[5] \geq 2.5\}$. / Determine the probability $P\{\xi[5] \geq 2.5\}$.

Funkce hustoty rozdělení pravděpodobnosti / Probability density function

- 22. Rozdělte osu x na intevaly ("chlívky"), spočítejte a do grafu nakrelete **počty hodnot (counts)** v jednotlivých chlívcích. Doporučená šířka chlívku je 0.5. / Divide the x axis into intervals, **count** and plot the counts of the values of $\xi[5]$ falling into these intervals. The recommended width of interval is 0.5.
- 23. Odhadněte a nakreslete **pravděpodobnosti**, že se bude hodnota $\xi[5]$ vyskytovat v daném chlívku. / Estimate and plot **probabilities** that the value $\xi[5]$ will occur in given interval.
- 24. Odhadněte a nakrelete **funkci hustoty rozdělení pravděpodobnosti** p(x, n) pro n = 5. / Estimate and plot **probability density function** p(x, n) for n = 5.
- 25. Ověřte numericky, že / Verify numerically that

$$\int_{-\infty}^{+\infty} p(x, n) dx = 1.$$

26. Numericky spočítejte střední hodnotu podle definičního vztahu / Numerically compute the mean value according to the definition formula

$$a[n] = \int_{-\infty}^{+\infty} xp(x, n)dx,$$

27. Numericky spočítejte rozptyl podle definičního vztahu / Numerically compute the dispersion according to the definition formula

$$D[n] = \int_{-\infty}^{+\infty} (x - a[n])^2 p(x, n) dx.$$

Sdružená funkce hustoty rozldělení pravděpodobnosti a korelační koeficient / Joint probability density function and correlation coefficient

Na $\Omega = 10000$ realizacích byly zjištěny pro $n_1 = 5$ a $n_2 = 10$ tyto sdužené výskyty hodnot, tj. že se hodnota $\xi[n_1]$ vyskytla v intervalu hodnot x_1 v řádku tabulky **a pro stejnou realizaci** se vyskytla $\xi[n_2]$ v intervalu hodnot x_2 ve sloupci tabulky. Tabulka obsahuje prakticky 2D histogram. / On $\Omega = 10000$ realizations, the following joints counts were found for $n_1 = 5$ and $n_2 = 10$. A joint occurrence means that $\xi[n_1]$ occurred in interval x_1 in the row of the table **and in the same realization**, $\xi[n_2]$ occurred in interval x_2 in the column of the table. The table actually contains a 2D histogram.

x_1 / x_2	-0.30.2	-0.20.1	-0.10	00.1	0.10.2	0.20.3
0.20.3						1000
0.10.2				500	1000	
0.00.1			500	1500	500	
-0.10		500	1500	500		
-0.20.1		1000	500			
-0.30.2	1000					

- 28. Odhadněte sdružené pravděpodobnosti, že se hodnota $\xi[n_1]$ vyskytla v intervalu hodnot x_1 v řádku tabulky **a zároveň** se vyskytla $\xi[n_2]$ v intervalu hodnot x_2 ve sloupci tabulky. / Estimate joint probabilities, that $\xi[n_1]$ occurred in interval x_1 in the row of the table **and in the same realization**, $\xi[n_2]$ occurred in interval x_2 in the column of the table.
- 29. Odhadněte sdruženou funkci hustoty rozdělení pravděpodobnosti $p(x_1, x_2, n_1, n_2)$. / Estimate joint probability density function $p(x_1, x_2, n_1, n_2)$.
- 30. Ověřte numericky že / Verify numerically that:

$$\int_{x_1} \int_{x_2} p(x_1, x_2, n_1, n_2) dx_1 dx_2 = 1$$

31. Odhadněte korelační koeficient R(5, 10) pomocí: / Estimate correlation coefficient R(5, 10) with the help of:

$$R[n_1, n_2] = \int_{x_1} \int_{x_2} p(x_1, x_2, n_1, n_2) x_1 x_2 dx_1 dx_2$$

Časové odhady / Temporal estimates

Jedna realizace ergodického náhodného signálu má N=6 vzorků o hodnotách (pro n=0...5) / One realization of random signal has values (for n=0...5):

$$x[n] = 2 \quad 4 \quad 2 \quad 0 \quad -2 \quad -4$$

- 32. * Odhadněte jeho střední hodnotu / Estimate its mean value
- 33. * Odhadněte jeho varianci / Estimate its dispersion
- 34. * Odhadněte jeho směrodatnou odchylku / Estimate its standard deviation.
- 35. Provedte vychýlený odhad jeho korelačních koeficientů / Perform biased estimation of its correlation coefficients.

$$\hat{R}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n+k]$$

36. Provedte nevychýlený odhad jeho korelačních koeficientů. Komentujte spolehlivost tohoto odhadu pro velká k. / Perform unbiased estimation of its correlation coefficients. Comment on the reliability of this estimate for big values of k.

$$\hat{R}[k] = \frac{1}{|N-k|} \sum_{n=0}^{N-1} x[n]x[n+k]$$

Spektrální hustota výkonu (PSD) / Power spectral density

V tabulce jsou dány koeficienty DFT zadaného signálu x[n] a její moduly / The table gives the DFT coefficients of x[n] and their magnitudes:

k	X[k]	$ X[k] ^2$
0	2.0000 + 0.0000j	4
1	2.0000 + 10.3923j	112
2	2.0000 + 3.4641j	16
3	2.0000 + 0.0000j	4
4	2.0000 - 3.4641j	16
5	2.0000 -10.3923j	112

37. Odhadněte spektrální hustotu výkonu pomocí DFT. Nakrelete ji pro použitelné frekvence, tedy normované frekvence od 0 do $\frac{1}{2}$. Na vodorovné ose nechť jsou normované frekvence. / Estimate power spectral density with the help of DFT. Plot it for useable frequencies, i.e. for normalized frequency from 0 to $\frac{1}{2}$. Put normalized frequency on the horizontal axis.

$$G(\frac{k}{N}) = \frac{|X[k]|^2}{N}$$

- 38. Určete, na které normované frekvenci leží maximum spektrální hustoty výkonu. / Determine the normalized frequency of maximum PSD.
- 39. Ověřte, že frekvence odpovídá zhruba tomu, jak je x[n] periodický. / Verify, that this frequency approximately corresponds to how x[n] is periodic.

Průchod náhodného signálu filtrem / Filtering of a random signal

40. Signál x[n] je filtrován filtrem s přenosovou funkcí $H(z) = 1 - z^{-1}$. Určete, zda a jak se změní maximum jeho PSD. / Signal x[n] is filtered by a filter with transfer function $H(z) = 1 - z^{-1}$. Determine, if and how the maximum of its PSD will change.

Help:

ω [rad]	$1 - e^{-j\omega}$	$ 1-e^{-j\omega} ^2$
0	0.0000 + 0.0000j	1
$\frac{2\pi}{6}$	0.5000 + 0.8660j	2
$\frac{6}{4\pi}$	1.5000 + 0.8660j	3
$\frac{6}{6\pi}$	2.0000 + 0.0000j	4