STAT 8003, Homework 7

Group # ... (Replace this) Members: ... (Replace this)

October 24, 2013

Due at 5:30pm on class on Thu., Oct. 31. Please submit one and only one pdf file for your group via blackboard. Each sup-problem is 10 points (Total points = 80).

Problem 1. Suppose that $X_1, ..., X_{25}$ form a random sample from a normal distribution having a variance of 80. Graph the power of the likelihood ratio test of $H_0: \mu = \mu_0$ versus $H_A: \mu = \mu_1$ as a function of μ_1 , at significance levels .10 and .05. Do the same for a sample size of 100. Compare the graphs and explain what you see.

Problem 2. Let X_1, \ldots, X_n be a random sample from an exponential distribution with the density function $f(x \mid \theta) = \theta \exp[-\theta x]$. Set the desired Type I error rate at 5%.

- a). Derive a generalized likelihood ratio test and show that the rejection region is of the form $\{\bar{X} \exp(-\theta_0 \bar{X}) \leq c\}$.
- b). Suppose $\theta_0 = 1$, n = 10. Show that the rejection region in a). is of the form $\{\bar{X} \leq x_0\} \cup \{\bar{X} \geq x_1\}$, where x_0 and x_1 are determined by c.
- c). Explain why $\sum_{i=1}^{n} X_i$ and hence \bar{X} follow gamma distributions when $\theta_0 = 1$. How could this knowledge be used to choose c?

Problem 3. Suppose, to be specific, that in Problem 2, the observed data are the following: Suppose your data oberved is:

1.07	0.88	0.66	0.55	1.15	0.65	3.45	3.55	3.51	0.48

- a). Based the result in Problem 2, will you reject H_0 ? What's your p-value?
- b). If we start from generalized likelihood ratio test, and use the asymptotical distribution of $2 \log GLR$, will you reject H_0 ? What's your p-value?
- c). Derive a Wald test of $H_0: \theta = 1$ versus $H_A: \theta \neq 1$. Do you reject H_0 ? What's your

p-value?

d). Derive a score test of $H_0: \theta=1$ versus $H_A: \theta\neq 1$. Do you reject H_0 ? What's your p-value?