

Variable compleja

Guía de asignatura

Última actualización: julio de 2022

1. Información general

Nombre de la asignatura	Variable compleja
Código	11310038
Tipo de asignatura	Obligatoria
Número de créditos	3
Tipo de crédito	1A+1B
Horas de trabajo semanal con	64
acompañamiento directo del	
profesor	
Horas semanales de trabajo	48
independiente del estudiante	
Prerrequisitos	Cálculo 3
Correquisitos	Ninguno
Horario	
Líder de área	Edwin Camilo Cubides
	Edwin.cubides@urosario.edu.co
Salón	

2. Información del profesor y monitor

Nombre del profesor	Carolina Albarracin Hernández
Perfil profesional	MATEMATICA.
	Doctora en ciencias Matemáticas
Correo electrónico institucional	carolina.albarracin@urosario.edu.co
Lugar y horario de atención	

3. Resumen y propósitos del curso

En este curso se aborda la estructura de los números complejos, las funciones de variable compleja, analíticas y elementales, la integral compleja y de Cauchy y sus propiedades. Brinda al alumno elementos fundamentales para un desempeño ágil y eficiente en conceptos propios de ecuaciones diferenciales, análisis numérico, probabilidad, estadística, física matemática y un amplio campo de trabajo en matemáticas puras y aplicadas.

4. Conceptos fundamentales

- 1. Números complejos
- 2. Funciones analíticas
- 3. Funciones elementales
- 4. Integración compleja
- 5. Representación por series de funciones analíticas
- 6. Teorema del residuo

5. Resultados de aprendizaje esperados (RAE)

- 1. Operar números complejos en sus distintas representaciones
- 2. Evaluar propiedades de funciones analíticas
- 3. Evaluar propiedades de funciones elementales.
- 4. Calcular integrales complejas y emplear correctamente el teorema de Cauchy
- 5. Representar funciones analíticas mediante series
- 6. Calcular integrales mediante el teorema del residuo

6. Modalidad del curso

Presencial

7. Estrategias de aprendizaje

- 1. Análisis de las definiciones de los conceptos claves de cada sesión.
- 2. Análisis de las demostraciones presentadas por el profesor.
- 3. Resolución de ejercicios de manera individual y en el tablero.
- 4. Comparación entre varios caminos de solución al mismo ejercicio.

8. Actividades de evaluación

Tema	Actividad de evaluación	Porcentaje	Fecha
Sesiones 1 a 7	Parcial 1	20	Semana 5
Sesiones 10 a 18	Parcial 2	20	Semana 10
Sesiones 21 a 27	Parcial 3	15	Semana 15
Todos los temas	Examen final	25	Semana 17
Todos	Talleres MATLAB	20	A lo largo del curso

9. Programación de actividades

Fecha	Tema	Trabajo independiente del estudiante	Recursos que apoyan la actividad (bibliografía y otros recursos de apoyo)
Sesión 1	El álgebra de los números complejos; Representación punto de los números complejos; Vectores y forma polar		[1, secs. 1.1,1.2 y 1.3]
Sesión 2	Laboratorio (MATLAB) y/o taller de ejercicios		
Sesión 3	La exponencial compleja; Potencias y raíces; Otras operaciones (Logaritmos, trigonométricas, hiperbólicas)		[1, secs. 1.4 y 1.5]
Sesión 4	Laboratorio (MATLAB) y/o taller de ejercicios		
Sesión 5	Conjuntos planares; La esfera de Riemann y la proyección estereográfica		[1, secs. 1.6 y 1.7]
Sesión 6	Laboratorio (MATLAB) y/o taller de ejercicios		
Sesión 7	Funciones de variable compleja; Límites y continuidad (Dar ejemplos de funciones polinómicas, racionales y trascendentes)		[1, secs. 2.1 y 2.2]
Sesión 8	Taller Preparcial I		

Sesión 9	Parcial I –			
Sesión 10	Analiticidad; Ecuaciones de		[1, secs. 2.3 y 2.4]	
	Cauchy-Riemann		[1, 3ecs. 2.3 y 2.4]	
Sesión 11	Laboratorio (MATLAB) y/o taller de ejercicios			
Sesión 12	Contornos; Integrales de contorno		[1, secs. 4.1 y 4.2]	
Sesión 13	Laboratorio (MAT	LAB) y/o taller de eje	rcicios	
	Camino de independencia;			
Sesión 14	Teorema de la integral de Cauchy:		[1 4 2 v 4 4]	
Sesion 14	aproximación de la deformación		[1, secs. 4.3 y 4.4a]	
	de contornos			
Sesión 15	Laboratorio (MAT	Laboratorio (MATLAB) y/o taller de ejercicios		
Sesión 16	Teorema de la integral de Cauchy:		[1, sec. 4.4b]	
2621011 10	aproximación de análisis vectorial		[1, sec. 4.40]	
Sesión 17	Laboratorio (MATLAB) y/o taller de ejercicios			
	Fórmula de integral de Cauchy y			
Sesión 18	sus consecuencias, Cotas para las		[1, sec. 4.5 y 4.6]	
	funciones analíticas			
Sesión 19	Talle	Taller Preparcial II		
Sesión 20	1	Parcial II –		
Sesión 21	Sucesiones y series; Series de		[1, secs. 5.1 y 5.2]	
JC31011 Z1	Taylor		[1, 3ccs. 3.1 y 3.2]	
Sesión 22	Laboratorio (MATLAB) y/o taller de ejercicios			
Sesión 23	Series de potencias, Series de		[1, sec. 5.3,5.4 y 8.1]	
Je31011 23	Laurent, series de Fourier I		[1, 3ec. 3.3,3.4 y 6.1]	
Sesión 24	Laboratorio (MAT	Laboratorio (MATLAB) y/o taller de ejercicios		
Sesión 25	Series de potencias, Series de		[1, sec. 5.3,5.4 y 8.1]	
Je31011 2J	Laurent, séries de Fourier II		[1, Sec. 5.3,5.4 y 8.1]	
Sesión 26	Laboratorio (MATLAB) y/o taller de ejercicios			
Sesión 27	Teorema del residuo; Integrales		[1, secs. 6.1 y 6.2]	
	trigonométricas sobre $[0, 2\pi]$		[1, Secs. 0.1 y 0.2]	
Sesión 28	Taller Preparcial III			
Sesión 29	Parcial III –			
Soción 20	<u> </u>			
Sesión 30	Integrales impropias de algunas		[1, sec. 6.3, 6.4, y 8.2]	

	Integrales impropias que involucran funciones trigonométricas, Transformada de Fourier I		
Sesión 31	Laboratorio (MATLAB) y/o taller de ejercicios		
Sesión 32	Transformada de Fourier II		[1, sec 8.2]
EXAMEN FINAL			

10. Factores de éxito para este curso

A continuación, se sugieren una serie de acciones que pueden contribuir, de manera significativa, con el logro de metas y consecuentemente propiciar una experiencia exitosa en este curso:

- 1. Planificar y organizar el tiempo de trabajo individual que le dedicará al curso.
- 2. Organizar el sitio y los materiales de estudios.
- 3. Tener un grupo de estudio, procurar el apoyo de compañeros.
- 4. Cultivar la disciplina y la constancia, trabajar semanalmente, no permitir que se acumulen temas ni trabajos.
- 5. Realizar constantemente una autoevaluación, determinar si las acciones realizadas son productivas o si por el contrario se debe cambiar de estrategias.
- 6. Asistir a las horas de consulta del profesor, participar en clase, no quedarse nunca con la duda.
- 7. Utilizar los espacios destinados para consultas y resolución de dudas, tales como Salas Nash y Monitorias.
- 8. Propiciar espacios para el descanso y la higiene mental, procurar tener buenos hábitos de sueño.
- 9. Tener presente en todo momento valores como la honestidad y la sinceridad, al final no se trata solo de aprobar un examen, se trata de aprender y adquirir conocimientos. El fraude es un autoengaño.

11. Bibliografía y recursos

[1] Saff, E.B. & Snider, A.D. (1993) Fundamentals of Complex Analysis for Mathematics, Science and Engineering, 2a edición, Prentice Hall.

[2] Brown, J. & Churchill, R. (2013) Variable Compleja y Aplicaciones, 9a edición, McGraw Hill.

12. Bibliografía y recursos complementarios

- [2] Freitag, E. & Busam, R. (2009) Complex Analysis. Second Edition. Springer
- [3] Complex Analysis and Applications, Alan Jeffrey, CRC Press, 2005
- [4] Real and Complex Analysis, Christopher Apelian, Steve Surace, CRC Press, 2009

13. Acuerdos para el desarrollo del curso

No está permitido comer o usar dispositivos móviles dentro de clase. No se realizará aproximación de notas al final del semestre. Las notas solo serán cambiadas con base en reclamos OPORTUNOS dentro de los límites de tiempo determinados por el Reglamento Académico. Si por motivos de fuerza mayor el estudiante falta a algún parcial o quiz, deberá seguir el procedimiento regular determinado por el Reglamento Académico para presentar supletorios. No habrá acuerdos informales al respecto. No se eximirá a ningún estudiante de ningún examen.

Respeto y no discriminación

Si tiene alguna discapacidad, sea este visible o no, y requiere algún tipo de apoyo para estar en igualdad de condiciones con los(as) demás estudiantes, por favor informar a su profesor(a) para que puedan realizarse ajustes razonables al curso a la mayor brevedad posible. De igual forma, si no cuenta con los recursos tecnológicos requeridos para el desarrollo del curso, por favor informe de manera oportuna a la Secretaría Académica de su programa o a la Dirección de Estudiantes, de manera que se pueda atender a tiempo su requerimiento.

Recuerde que es deber de todas las personas respetar los derechos de quienes hacen parte de la comunidad Rosarista. Cualquier situación de acoso, acoso sexual, discriminación o matoneo, sea presencial o virtual, es inaceptable. Quien se sienta en alguna de estas situaciones puede denunciar su ocurrencia contactando al equipo de la Coordinación de Psicología y Calidad de Vida de la Decanatura del Medio Universitario (Teléfono o WhatsApp 322 2485756).