Interactive Dimensionality Reduction

Interactivity + DR: Tasks

- As we discussed: many design decisions regarding visual encodings and interactions. What to choose?
- Design should be driven by user tasks.
 - Understand clusters, trends, and outliers in data.
 - Model fit, and model deviation.
 - Model selection: visualize data under different views of the model.

iPCA

Types of Tasks in iPCA

- Find an outlier. (what is an outlier?)
- Find two dimensions with high correlation, along with a point that does not fit such correlation.
- What dimension least impacts PCA?
- Include/exclude a specific dimension, how does the projection change?

iPCA Notebook

Steering PCA

- iPCA allows us to weight individual dimensions.
- But what guidance are we given on adjusting dimensions?
- How can we provide the user some insight on what would be of interest to change in PCA? Subsets of data?
 Dimensions?

Dual Space

[Turkay et al. 2011]

Brushing Dimensions

Focus+Context

- Recomputed values: in focus
- Prior values: remain in context

- Other options:
 - instantaneous change
 - animation
 - What are trade-offs?

Dimension Space

Full Workflow

Example: Microarray Data

- Data:
 - item: gene
 - dimension: tissue sample
- Statistics: PCA loadings (eigenvectors weighted by eigenvalues)
- High loadings: indicate tissues that are important, leads to reduction in outliers.

Dimensionality Reduction: What-ifs

- What if I perturb an input point?
 - What happens to the projection?
- What if I perturb a projected point?
 - What does this correspond to in the input?
- Forward and Inverse Projections

[Cavallo & Demiralp 2018]

Forward Projection

Forward What-ifs

- Don't want the user to manually specify perturbations!
- Instead: sample each attribute, associate each attribute with a curve (PCA: line) that corresponds to attribute range.
 - Need: min, max, mean, standard deviation
 - Uniformly sample between min & max using standard deviation

Forward Projection: Sampling

Forward Projection: Prolines

Backward Projection

Unconstrained Projection

- Problem: find a high-dimensional point that, upon projection, maps to a given low-dimensional point.
- Ill-posed! Many such points could satisfy this.
- Least-norm: $\min \|\mathbf{x}\|$ s.t. $P\mathbf{x} = \mathbf{y}$ $P \in \mathbb{R}^{2xd}$
- The solution: $\mathbf{x}^* = P^T (PP^T)^{-1} \mathbf{y}$
- Why? $P(\mathbf{x} \mathbf{x}^*) = \mathbf{y} (PP^T)(PP^T)^{-1}\mathbf{y} = 0$

$$(\mathbf{x} - \mathbf{x}^*)^T \mathbf{x}^* = (\mathbf{x} - \mathbf{x}^*)^T P^T (PP^T)^{-1} \mathbf{y}$$

$$= (P(\mathbf{x} - \mathbf{x}^*))^T (PP^T)^{-1} \mathbf{y}$$

$$= 0$$

$$(\|\mathbf{a} + \mathbf{b}\|^2 = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 - 2\mathbf{a}^T \mathbf{b})$$

PCA Pseudoinverse

 Eigenvectors are orthogonal! No need to explicitly perform inversion:

$$\mathbf{x}^* = P^T (PP^T)^{-1} \mathbf{y} = P^T \mathbf{y}$$

Backward Projection: Feasibility

Feasibility: Constrained Projection

- Linear subspace spanned by orthogonal eigenvectors does not help us out in this case.
- Need to solve the following:

$$\min_{\mathbf{x}} ||P\mathbf{x} - \mathbf{y}||^2 \quad \text{s.t.} \quad C\mathbf{x} = \mathbf{d} \ , \ \mathbf{l} \le \mathbf{x} \le \mathbf{u}$$

 Further implications: user needs to set constraints, so we need a way to visualize the original, high-dimensional data.

Forward Projection Example

Backward Projection: Example

Alternative Design: Unconstrained Projection

Showing tabular data directly is ok. Alternatives?

Steering Computational Resources

- Multidimensional Scaling
- Input: set of pairwise distances between points
- Output: a projection whose Euclidean distance best matches the input pairwise distance
- Typical objective: stress

$$Stress = \frac{\sum_{i < j} (d_{ij} - p_{ij})^2}{\sum_{i < j} p_{ij}^2}$$

MDS: Types

- Classic Multidimensional Scaling: Euclidean distances
 - Can be solved as an eigenvalue problem
- Metric Multidimensional Scaling
 - Function of Euclidean distances: often solved via stress majorization, or just gradient descent
- Nonmetric Multidimensional Scaling
 - We are not given distances, but just general dissimilarities

MDS Challenges

- Classic Multidimensional Scaling: Euclidean distances
 - Can be solved as an eigenvalue problem
- Metric Multidimensional Scaling
 - Function of Euclidean distances: often solved via stress majorization, or just gradient descent
- Nonmetric Multidimensional Scaling
 - We are not given distances, but just general dissimilarities

Issues with scalability

Landmark MDS

[de Silva & Tenenbaum 2004]

- Algorithm:
 - Select a small set of landmark points
 - Compute MDS on these landmarks
 - Perform scattered data interpolation to recover the rest of the points

Landmark MDS: Example

Landmark MDS: Limitations

- How do we select the landmarks?
- In [de Silva & Tenenbaum 2004], this is done automatically via farthest point sampling (or random sampling...).
- How do we have the human involved?

MDSteer

[Williams & Munzner 2004]

 Progressively perform MDS, having the user steer the points with which to perform optimization.

MDSteer: Bins

 Progressively subdivide the 2D plane on which the points are to be placed

- User controls what bins to subdivide
- If they do nothing: full MDS
- But, as computation progresses, they can observe, and adjust which bins to subdivide

MDSteer: Example

