

ON THE SPECTRA OF SIMPLICIAL ROOK GRAPHS

JEREMY L. MARTIN AND JENNIFER D. WAGNER

ABSTRACT. The *simplicial rook graph* $SR(d, n)$ is the graph whose vertices are the lattice points in the n th dilate of the standard simplex in \mathbb{R}^d , with two vertices adjacent if they differ in exactly two coordinates. We prove that the adjacency and Laplacian matrices of $SR(3, n)$ have integral spectrum for every n . The proof proceeds by calculating an explicit eigenbasis. We conjecture that $SR(d, n)$ is integral for all d and n , and present evidence in support of this conjecture. For $n < \binom{d}{2}$, the evidence indicates that the smallest eigenvalue of the adjacency matrix is $-n$, and that the corresponding eigenspace has dimension given by the Mahonian numbers, which enumerate permutations by number of inversions.

1. INTRODUCTION

Let d and n be nonnegative integers. The *simplicial rook graph* $SR(d, n)$ is the graph with vertices

$$V(d, n) := \left\{ x = (x_1, \dots, x_d) : 0 \leq x_i \leq n, \sum_{i=1}^d x_i = n \right\}$$

with two vertices adjacent if they agree in all but two coordinates. This graph has $N = \binom{n+d-1}{d-1}$ vertices and is regular of degree $\delta = (d-1)n$. Geometrically, let Δ^{d-1} denote the standard simplex in \mathbb{R}^d (i.e., the convex hull of the standard basis vectors $\mathbf{e}_1, \dots, \mathbf{e}_d$) and let $n\Delta^{d-1}$ denote its n^{th} dilate (i.e., the convex hull of $n\mathbf{e}_1, \dots, n\mathbf{e}_d$). Then $V(d, n)$ is the set of lattice points in $n\Delta^{d-1}$, with two points adjacent if their difference is a multiple of $\mathbf{e}_i - \mathbf{e}_j$ for some i, j . Thus the independence number of $SR(d, n)$ is the maximum number of nonattacking rooks that can be placed on a simplicial chessboard with $n+1$ “squares” on each side. Nivasch and Lev [11] and Blackburn, Paterson and Stinson [2] showed independently that for $d = 3$, this independence number is $\lfloor (2n+3)/3 \rfloor$.

As far as we can tell, the class of simplicial rook graphs has not been studied before. For some small values of the parameters, $SR(d, n)$ is a well-known graph: $SR(2, n)$ and $SR(d, 1)$ are complete of orders $n+1$ and d respectively; $SR(3, 2)$ is isomorphic to the octahedron; and $SR(d, 2)$ is isomorphic to the Johnson graph $J(d+1, 2)$. On the other hand, simplicial rook graphs are not in general strongly regular or distance-regular, nor are they line graphs or noncomplete extended p -sums (in the sense of [5, p. 55]). They are also not to be confused with the *simplicial grid graph*, in which two vertices are adjacent only if their difference vector is exactly

Date: September 18, 2012.

2010 *Mathematics Subject Classification.* 05C50.

First author supported in part by a Simons Foundation Collaboration Grant and by National Security Agency grant no. H98230-12-1-0274.

FIGURE 1. The graph $SR(3,3)$.

$\mathbf{e}_i - \mathbf{e}_j$ (as opposed to some scalar multiple) nor with the *triangular graph* T_n , which is the line graph of K_n [3, p.23], [6, §10.1].

Let G be a simple graph on vertices $[n] = \{1, \dots, n\}$. The *adjacency matrix* $A = A(G)$ is the $n \times n$ symmetric matrix whose (i,j) entry is 1 if ij is an edge, 0 otherwise. The *Laplacian matrix* is $L = L(G) = D - A$, where D is the diagonal matrix whose (i,i) entry is the degree of vertex i . The graph G is said to be *integral* (resp. *Laplacian integral*) if all eigenvalues of A (resp. L) are integers. If G is regular of degree δ , then these conditions are equivalent, since every eigenvector of A with eigenvalue λ is an eigenvector of L with eigenvalue $\delta - \lambda$.

We can now state our main theorem.

Theorem 1.1. *For every $n \geq 1$, the simplicial rook graph $SR(3,n)$ is integral and Laplacian integral, with eigenvalues as follows:*

If $n = 2m + 1$ is odd:			
Eigenvalue of A	Eigenvalue of L	Multiplicity	Eigenvector
-3	$4m + 5 = 2n + 3$	$\binom{2m}{2}$	$\mathbf{H}_{a,b,c}$
$-2, -1, \dots, m - 3$	$3m + 5, \dots, 4m + 4$	3	\mathbf{P}_k
$m - 1$	$3m + 3$	2	\mathbf{R}
$m, \dots, 2m - 1 = n - 2$	$2m + 3, \dots, 3m + 2$	3	\mathbf{Q}_k
$4m + 2 = 2n$	0	1	\mathbf{J}

If $n = 2m$ is even:			
Eigenvalue of A	Eigenvalue of L	Multiplicity	Eigenvector
-3	$4m + 3 = 2n + 3$	$\binom{2m-1}{2}$	$\mathbf{H}_{a,b,c}$
$-2, -1, \dots, m - 4$	$3m + 4, \dots, 4m + 2$	3	\mathbf{P}_k
$m - 3$	$3m + 3$	2	\mathbf{R}
$m - 1, \dots, 2m - 2 = n - 2$	$2m + 2, \dots, 3m + 1$	3	\mathbf{Q}_k
$4m = 2n$	0	1	\mathbf{J}

Integrality and Laplacian integrality typically arise from tightly controlled combinatorial structure in special families of graphs, including complete graphs, complete bipartite graphs and hypercubes (classical; see, e.g., [13, §5.6]), Johnson graphs [8], Kneser graphs [9] and threshold graphs [10]. (General references on graph eigenvalues and related topics include [1, 3, 5, 6].) For simplicial rook graphs, lattice

geometry provides this combinatorial structure. To prove Theorem 1.1, we construct a basis of $\mathbb{R}^{\binom{n+2}{2}}$ consisting of eigenvectors of $A(SR(3, n))$, as indicated in the tables above. The basis vectors $\mathbf{H}_{a,b,c}$ for the largest eigenspace (Prop. 2.6) are signed characteristic vectors for hexagons centered at lattice points in the interior of $n\Delta^3$ (see Figure 2). The other eigenvectors $\mathbf{P}_k, \mathbf{R}, \mathbf{Q}_k$ (Props. 2.8, 2.9, 2.10) are most easily expressed as certain sums of characteristic vectors of lattice lines.

Theorem 1.1, together with Kirchhoff's matrix-tree theorem [6, Lemma 13.2.4] implies the following formula for the number of spanning trees of $SR(d, n)$.

Corollary 1.2. *The number of spanning trees of $SR(3, n)$ is*

$$\begin{cases} \frac{32(2n+3)^{\binom{n-1}{2}} \prod_{a=n+2}^{2n+2} a^3}{3(n+1)^2(n+2)(3n+5)^3} & \text{if } n \text{ is odd,} \\ \frac{32(2n+3)^{\binom{n-1}{2}} \prod_{a=n+2}^{2n+2} a^3}{3(n+1)(n+2)^2(3n+4)^3} & \text{if } n \text{ is even.} \end{cases}$$

Based on experimental evidence gathered using Sage [14], we make the following conjecture:

Conjecture 1.3. *The graph $SR(d, n)$ is integral for all d and n .*

We discuss the general case in Section 3. The construction of hexagon vectors generalizes as follows: for each permutohedron whose vertices are lattice points in $n\Delta^{d-1}$, its signed characteristic vector is an eigenvector of eigenvalue $-\binom{d}{2}$ (Proposition 3.1). This is in fact the smallest eigenvalue of $SR(d, n)$ when $n \geq \binom{d}{2}$. Moreover, these eigenvectors are linearly independent and, for fixed d , account for “almost all” of the spectrum as $n \rightarrow \infty$, in the sense that

$$\lim_{n \rightarrow \infty} \frac{\dim(\text{span of permutohedron eigenvectors})}{|V(d, n)|} = 1.$$

When $n < \binom{d}{2}$, the simplex $n\Delta^{d-1}$ is too small to contain any lattice permutohedra. On the other hand, the signed characteristic vectors of *partial permutohedra* (i.e., intersections of lattice permutohedra with $SR(d, n)$) are eigenvectors with eigenvalue $-n$. Experimental evidence indicates that this is in fact the smallest eigenvalue of $A(d, n)$, and that these partial permutohedra form a basis for the corresponding eigenspace. Unexpectedly, its dimension appears to be the *Mahonian number* $M(d, n)$ of permutations in \mathfrak{S}_d with exactly n inversions (sequence #A008302 in Sloane [12]). In Section 3.2, we construct a family of eigenvectors by placing rooks (ordinary rooks, not simplicial rooks!) on Ferrers boards.

2. PROOF OF THE MAIN THEOREM

We begin by reviewing some basic algebraic graph theory; for a general reference, see, e.g., [6]. Let $G = (V, E)$ be a simple undirected graph with N vertices. The *adjacency matrix* $A(G)$ is the $N \times N$ matrix whose (i, j) entry is 1 if vertices i and j are adjacent, 0 otherwise. The *Laplacian matrix* is $L(G) = D(G) - A(G)$, where $D(G)$ is the diagonal matrix of vertex degrees. These are both real symmetric matrices, so they are diagonalizable, with real eigenvalues, and eigenspaces with different eigenvalues are orthogonal [6, §8.4].

Proposition 2.1. *The graph $SR(d, n)$ has $\binom{n+d-1}{d-1}$ vertices and is regular of degree $(d-1)n$. In particular, its adjacency and Laplacian matrices have the same eigenvectors.*

Proof. Counting vertices is the classic “stars-and-bars” problem (with n stars and $d-1$ bars). For each $x \in V(d, n)$ and each pair of coordinates i, j , there are $x_i + x_j$ other vertices that agree with x in all coordinates but i and j . Therefore, the degree of x is $\sum_{1 \leq i < j \leq n} (x_i + x_j) = (d-1) \sum_{i=1}^n x_i = (d-1)n$. \square

The matrices $A(d, n)$ and $L(d, n)$ act on the vector space \mathbb{R}^N with standard basis $\{\mathbf{e}_{ijk} : (i, j, k) \in V(d, n)\}$. We will sometimes consider the standard basis vectors as ordered lexicographically, for the purpose of showing that a collection of vectors is linearly independent.

In the rest of this section, we focus exclusively on the case $d = 3$, and regard n as fixed. We fix $N := \binom{n+2}{2}$, the number of vertices of $SR(3, n)$, and abbreviate $A = A(3, n)$.

2.1. Basic linear algebra calculations.

Define

$$\begin{aligned}\mathbf{X}_i &:= \sum_{j+k=n-i} \mathbf{e}_{ijk}, & \mathbf{J} &:= \sum_{i+j+k=n} \mathbf{e}_{ijk}, \\ \mathbf{Y}_j &:= \sum_{i+k=n-j} \mathbf{e}_{ijk}, & \mathcal{B}_n &:= \{\mathbf{X}_i, \mathbf{Y}_i, \mathbf{Z}_i : 0 \leq i \leq n\}, \\ \mathbf{Z}_k &:= \sum_{i+j=n-k} \mathbf{e}_{ijk}, & \mathcal{B}'_n &:= \{\mathbf{X}_i, \mathbf{Y}_i, \mathbf{Z}_i : 0 \leq i \leq n-1\}.\end{aligned}$$

The vectors $\mathbf{X}_i, \mathbf{Y}_j, \mathbf{Z}_k$ are the characteristic vectors of lattice lines in $n\Delta^2$; see Figure 2. Note that the symmetric group S_3 acts on $SR(3, n)$ (hence on each of its eigenspaces) by permuting the coordinates of vertices.

Lemma 2.2. *We have*

$$\mathbf{J} = \sum_{i=0}^n \mathbf{X}_i = \sum_{i=0}^n \mathbf{Y}_i = \sum_{i=0}^n \mathbf{Z}_i \quad \text{and} \quad n\mathbf{J} = \sum_{i=0}^n i(\mathbf{X}_i + \mathbf{Y}_i + \mathbf{Z}_i).$$

Proof. The first assertion is immediate. For the second, when we expand the sum in terms of the \mathbf{e}_{ijk} , the coefficient on each \mathbf{e}_{ijk} is $i + j + k = n$. \square

Proposition 2.3. *For every i, j, k , we have*

$$A\mathbf{e}_{ijk} = \mathbf{X}_i + \mathbf{Y}_j + \mathbf{Z}_k - 3\mathbf{e}_{ijk}, \tag{2.1a}$$

$$A\mathbf{J} = 2n\mathbf{J}, \tag{2.1b}$$

$$A\mathbf{X}_i = (n-i-2)\mathbf{X}_i + \sum_{j=0}^{n-i} [\mathbf{Y}_j + \mathbf{Z}_j], \tag{2.1c}$$

$$A\mathbf{Y}_i = (n-i-2)\mathbf{Y}_i + \sum_{j=0}^{n-i} [\mathbf{X}_j + \mathbf{Z}_j], \tag{2.1d}$$

$$A\mathbf{Z}_i = (n-i-2)\mathbf{Z}_i + \sum_{j=0}^{n-i} [\mathbf{X}_j + \mathbf{Y}_j]. \tag{2.1e}$$

Proof. Formula (2.1a) is immediate from the definition of A , and (2.1b) follows because $SR(3, n)$ is $(2n)$ -regular. For (2.1c), we have

$$\begin{aligned} A\mathbf{X}_i &= \sum_{j+k=n-i} A\mathbf{e}_{i,j,k} = \sum_{j+k=n-i} [X_i + Y_j + Z_k - 3\mathbf{e}_{i,j,k}] \\ &= (n-i+1)X_i - 3 \sum_{j+k=n-i} \mathbf{e}_{i,j,k} + \sum_{j+k=n-i} [Y_j + Z_k] \\ &= (n-i-2)X_i + \sum_{j=0}^{n-i} [Y_j + Z_j] \end{aligned}$$

and (2.1d) and (2.1e) are proved similarly. \square

For future use, we also record (without proof) some elementary summation formulas.

Lemma 2.4. *The following summations hold:*

$$\begin{aligned} \sum_{i=k+1}^{n-k-1} [4i - 2n] &= 0, & \sum_{i=k+1}^{n-k-1} [4i - 2k - 2 - n] &= (n-2k-1)(n-2k-2), \\ \sum_{i=k+1}^{n-j} [4i - 2n] &= 2(n-j-k)(k-j+1), & \sum_{i=k+1}^{n-j} [4i - 2k - 2 - n] &= (n-2j)(n-k-j). \end{aligned}$$

Lemma 2.5. *The following summations hold:*

$$\begin{aligned} \sum_{i=k}^{n-k} [4i - 2n] &= 0, & \sum_{i=k}^{n-k} [4i - 3n + 2k - 2] &= -(n-2k+1)(n-2k+2), \\ \sum_{i=k}^{n-j} [4i - 2n] &= 2(j-k)(-n+j+k-1), & \sum_{i=k}^{n-j} [4i - 3n + 2k - 2] &= (2j+2-4k+n)(-n+j+k-1). \end{aligned}$$

Having completed these preliminaries, we now construct the eigenvectors of $SR(3, n)$.

2.2. Hexagon vectors. Let $(a, b, c) \in V(3, n)$ with $a, b, c > 0$. The corresponding “hexagon vector” is defined as

$$\mathbf{H}_{a,b,c} := \mathbf{e}_{a-1,b,c+1} - \mathbf{e}_{a,b-1,c+1} + \mathbf{e}_{a+1,b-1,c} - \mathbf{e}_{a+1,b,c-1} + \mathbf{e}_{a,b+1,c-1} - \mathbf{e}_{a-1,b+1,c}.$$

Geometrically, this is the characteristic vector, with alternating signs, of a regular lattice hexagon centered at the lattice point (a, b, c) in the interior of $n\Delta^2$ (see Figure 2).

Proposition 2.6. *The vectors $\{\mathbf{H}_{a,b,c}: (a, b, c) \in V(d, n), a, b, c > 0\}$ are linearly independent, and each one is an eigenvector of A with eigenvalue -3 .*

Proof. The equality $A\mathbf{H}_{a,b,c} = -3\mathbf{H}_{a,b,c}$ is straightforward from (2.1a). The lexicographic leading term of $\mathbf{H}_{a,b,c}$ is $\mathbf{e}_{a-1,b,c+1}$, which is different for each (a, b, c) , implying linear independence. \square

Proposition 2.7. *Let $n \geq 1$ and let $\mathcal{H}_n = \{\mathbf{H}_{a,b,c}: 0 < a, b, c < n\}$. Then the spaces $\mathbb{R}\mathcal{H}_n$ and $\mathbb{R}\mathcal{B}_n$ spanned by \mathcal{H}_n and \mathcal{B}_n are orthogonal complements in \mathbb{R}^N . In particular, $\dim \mathbb{R}\mathcal{B}_n = \binom{n+2}{2} - \binom{n-1}{2} = 3n$, and the set \mathcal{B}'_n is a basis for $\mathbb{R}\mathcal{B}_n$ (and all linear relations on the $\mathbf{X}_i, \mathbf{Y}_i, \mathbf{Z}_i$ are generated by those of Lemma 2.2).*

FIGURE 2. (left) The graph $SR(3,3)$. (center) The vector \mathbf{X}_1 and the lattice line it supports. (right) $\mathbf{H}_{1,1,1}$.

Proof. The scalar product $\mathbf{H}_{a,b,c} \cdot \mathbf{X}_i$ is clearly zero if the two vectors have disjoint supports (i.e., $i \notin \{a-1, a, a+1\}$) and is $-1 + 1 = 0$ otherwise (geometrically, this corresponds to the statement that any two adjacent vertices in the hexagon occur with opposite signs in $\mathbf{H}_{a,b,c}$; see Figure 2). Therefore \mathbb{RH}_n and \mathbb{RB}_n are orthogonal subspaces of \mathbb{R}^N , and $\dim \mathbb{RB}_n \leq 3n$. For the opposite inequality, we induct on n . In the base case $n = 1$, the vectors X_0, Y_0, Z_0 form a basis of \mathbb{R}^3 . For larger n , let M_n be the matrix with columns $X_n, Y_n, Z_n, \dots, X_0, Y_0, Z_0$ and rows ordered lexicographically, and let \tilde{M}_n be M_n with the columns reordered as

$$X_0, Y_n, Z_n, X_n, Y_{n-1}, Z_{n-1}, \dots, X_1, Y_0, Z_0.$$

For example,

	X_0	Y_3	Z_3	X_3	Y_2	Z_2	X_2	Y_1	Z_1	X_1	Y_0	Z_0
003	1	0	1	0	0	0	0	0	0	0	1	0
012	1	0	0	0	0	1	0	1	0	0	0	0
021	1	0	0	0	1	0	0	0	1	0	0	0
030	1	1	0	0	0	0	0	0	0	0	0	1
$\tilde{M}_3 =$	102	0	0	0	0	0	1	0	0	0	1	1
	111	0	0	0	0	0	0	1	1	1	0	0
	120	0	0	0	0	1	0	0	0	1	0	1
	201	0	0	0	0	0	0	1	0	1	0	1
	210	0	0	0	0	0	0	1	1	0	0	1
	300	0	0	0	1	0	0	0	0	0	1	1

If $a > 0$, then the entries of M_n in row (a, b, c) and columns X_i, Y_i, Z_i equal the entries of M_{n-1} in row $(a-1, b, c)$ and columns X_{i-1}, Y_i, Z_i respectively. Hence \tilde{M}_n has the block form $\begin{bmatrix} U & * \\ 0 & M_{n-1} \end{bmatrix}$, where the entries of $*$ are irrelevant and

$$U = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

Since $\text{rank } U = 3$, it follows by induction that $\text{rank } M_n \geq \text{rank } M_{n-1} + 3 = 3n$. Using Lemma 2.2, one can solve for each of \mathbf{X}_n , \mathbf{Y}_n , and \mathbf{Z}_n as linear combinations

of the vectors in \mathcal{B}'_n . It follows that \mathcal{B}'_n is a basis, and that the linear relations of Lemma 2.2 generate all linear relations on the vectors $\{\mathbf{X}_i, \mathbf{Y}_i, \mathbf{Z}_i\}$. \square

2.3. Non-Hexagon Eigenvectors. We now determine the other eigenspaces of A . The vector \mathbf{J} spans an eigenspace of dimension 1; in addition, we will show that there is one eigenspace of dimension 2 (Prop. 2.8) and two families of eigenspaces of dimension 3 (Props. 2.9 and 2.10). Together with the hexagon vectors, these form a complete decomposition of \mathbb{R}^N into eigenspaces of A . Throughout, let σ and ρ denote the permutations $(1\ 2\ 3)$ and $(1\ 2)$ (written in cycle notation), respectively, so that

$$\sigma(\mathbf{X}_i) = \mathbf{Y}_i, \quad \sigma(\mathbf{Y}_j) = \mathbf{Z}_j, \quad \sigma(\mathbf{Z}_k) = \mathbf{X}_k, \quad \rho(\mathbf{X}_i) = \mathbf{Y}_i, \quad \rho(\mathbf{Y}_j) = \mathbf{X}_j, \quad \rho(\mathbf{Z}_k) = \mathbf{Z}_k.$$

Proposition 2.8. *Let $n \geq 1$ and $k = \lfloor n/2 \rfloor$. Then*

$$\mathbf{R} := \mathbf{X}_k - \mathbf{Y}_k - \mathbf{X}_{k+1} + \mathbf{Y}_{k+1}$$

is a nonzero eigenvector of A with eigenvalue $n - k - 3 = (n - 6)/2$ if n is even, or $n - k - 2 = (n - 3)/2$ if n is odd. Moreover, the \mathfrak{S}_3 -orbit of \mathbf{R} has dimension 2.

Proof. By (2.1c)...(2.1e),

$$\begin{aligned} A\mathbf{R} &= (n - k - 2)(\mathbf{X}_k - \mathbf{Y}_k) + \sum_{j=0}^{n-k} [\mathbf{Y}_j - \mathbf{X}_j] + (n - k - 3)(\mathbf{Y}_{k+1} - \mathbf{X}_{k+1}) + \sum_{j=0}^{n-k-1} [\mathbf{X}_j - \mathbf{Y}_j] \\ &= (n - k - 2)(\mathbf{X}_k - \mathbf{Y}_k) + (\mathbf{Y}_{n-k} - \mathbf{X}_{n-k}) + (n - k - 3)(\mathbf{Y}_{k+1} - \mathbf{X}_{k+1}) \\ &= \begin{cases} (n - k - 2)(\mathbf{X}_k - \mathbf{Y}_k) + (\mathbf{Y}_k - \mathbf{X}_k) + (n - k - 3)(\mathbf{Y}_{k+1} - \mathbf{X}_{k+1}) & \text{if } n \text{ is even,} \\ (n - k - 2)(\mathbf{X}_k - \mathbf{Y}_k) + (\mathbf{Y}_{k+1} - \mathbf{X}_{k+1}) + (n - k - 3)(\mathbf{Y}_{k+1} - \mathbf{X}_{k+1}) & \text{if } n \text{ is odd} \end{cases} \\ &= \begin{cases} (n - k - 3)(\mathbf{X}_k - \mathbf{Y}_k) + (n - k - 3)(\mathbf{Y}_{k+1} - \mathbf{X}_{k+1}) & \text{if } n \text{ is even,} \\ (n - k - 2)(\mathbf{X}_k - \mathbf{Y}_k) + (n - k - 2)(\mathbf{Y}_{k+1} - \mathbf{X}_{k+1}) & \text{if } n \text{ is odd} \end{cases} \\ &= \begin{cases} (n - k - 3)\mathbf{R} & \text{if } n \text{ is even,} \\ (n - k - 2)\mathbf{R} & \text{if } n \text{ is odd} \end{cases} \end{aligned}$$

as desired. The vectors \mathbf{R} and $\sigma(\mathbf{R}) = \mathbf{Y}_k - \mathbf{Z}_k - \mathbf{Y}_{k+1} + \mathbf{Z}_{k+1}$ are linearly independent; on the other hand, $\rho(\mathbf{R}) = \mathbf{R}$ and $\mathbf{R} + \sigma(\mathbf{R}) + \sigma^2(\mathbf{R}) = 0$, so the \mathfrak{S}_3 -orbit of \mathbf{R} has dimension 2. \square

Proposition 2.9. *For all integers k with $0 \leq k \leq \lfloor \frac{n-3}{2} \rfloor$, the vector*

$$\mathbf{P}_k := -(n - 2k - 1)(n - 2k - 2)\mathbf{Z}_{n-k} + \sum_{i=k+1}^{n-k-1} [2(i - k - 1)\mathbf{Z}_i + (2i - n)(\mathbf{X}_i + \mathbf{Y}_i)]$$

is a nonzero eigenvector of A with eigenvalue $k - 2$. Moreover, the \mathfrak{S}_3 -orbit of \mathbf{P}_k has dimension 3.

Proof. The upper bound on k is equivalent to $n - 2k - 2 > 0$, so the coefficient of \mathbf{Z}_{n-k} in \mathbf{P}_k is nonzero, so $\mathbf{P}_k \neq 0$. By (2.1c) . . . (2.1e), we have

$$\begin{aligned}
A\mathbf{P}_k &= -(n-2k-1)(n-2k-2) \left((k-2)\mathbf{Z}_{n-k} + \sum_{i=0}^k [\mathbf{X}_i + \mathbf{Y}_i] \right) \\
&\quad + \sum_{i=k+1}^{n-k-1} \left[2(i-k-1) \left((n-i-2)\mathbf{Z}_i + \sum_{j=0}^{n-i} [\mathbf{X}_j + \mathbf{Y}_j] \right) \right. \\
&\quad \left. + (2i-n) \left((n-i-2)(\mathbf{X}_i + \mathbf{Y}_i) + \sum_{j=0}^{n-i} [\mathbf{X}_j + \mathbf{Y}_j + 2\mathbf{Z}_j] \right) \right] \\
&= -(n-2k-1)(n-2k-2)(k-2)\mathbf{Z}_{n-k} - (n-2k-1)(n-2k-2) \sum_{i=0}^k [\mathbf{X}_i + \mathbf{Y}_i] \\
&\quad + \sum_{i=k+1}^{n-k-1} \left[(2i-n)(n-i-2)(\mathbf{X}_i + \mathbf{Y}_i) + 2(i-k-1)(n-i-2)\mathbf{Z}_i \right] \\
&\quad + \sum_{i=k+1}^{n-k-1} \sum_{j=0}^{n-i} \left[(4i-2k-2-n)(\mathbf{X}_j + \mathbf{Y}_j) + (4i-2n)\mathbf{Z}_j \right].
\end{aligned}$$

Interchanging the order of summation in the double sum gives

$$\begin{aligned}
A\mathbf{P}_k &= -(n-2k-1)(n-2k-2)(k-2)\mathbf{Z}_{n-k} \\
&\quad - (n-2k-1)(n-2k-2) \sum_{i=0}^k [\mathbf{X}_i + \mathbf{Y}_i] \\
&\quad + \sum_{i=k+1}^{n-k-1} \left[(2i-n)(n-i-2)(\mathbf{X}_i + \mathbf{Y}_i) + 2(i-k-1)(n-i-2)\mathbf{Z}_i \right] \\
&\quad + \sum_{j=0}^k \sum_{i=k+1}^{n-k-1} \left[(4i-2k-2-n)(\mathbf{X}_j + \mathbf{Y}_j) + (4i-2n)\mathbf{Z}_j \right] \\
&\quad + \sum_{j=k+1}^{n-k-1} \sum_{i=k+1}^{n-j} \left[(4i-2k-2-n)(\mathbf{X}_j + \mathbf{Y}_j) + (4i-2n)\mathbf{Z}_j \right]
\end{aligned}$$

Applying the summation formulas of Lemma 2.4 gives

$$\begin{aligned}
A\mathbf{P}_k &= -(n-2k-1)(n-2k-2)(k-2)\mathbf{Z}_{n-k} - (n-2k-1)(n-2k-2) \sum_{i=0}^k [\mathbf{X}_j + \mathbf{Y}_j] \\
&\quad + \sum_{i=k+1}^{n-k-1} [(2i-n)(n-i-2)(\mathbf{X}_i + \mathbf{Y}_i) + 2(i-k-1)(n-i-2)\mathbf{Z}_i] \\
&\quad + \sum_{j=0}^k [(n-2k-1)(n-2k-2)(\mathbf{X}_j + \mathbf{Y}_j)] \\
&\quad + \sum_{j=k+1}^{n-k-1} [(2j-n)(k+j-n)(\mathbf{X}_j + \mathbf{Y}_j) + 2(j-n+k)(j-1-k)\mathbf{Z}_j] \\
&= -(n-2k-1)(n-2k-2)(k-2)\mathbf{Z}_{n-k} \\
&\quad + \sum_{i=k+1}^{n-k-1} [(2i-n)(k-2)(\mathbf{X}_i + \mathbf{Y}_i) + 2(i-k-1)(k-2)\mathbf{Z}_i] \\
&= (k-2) \left(-(n-2k-1)(n-2k-2)\mathbf{Z}_{n-k} + \sum_{i=k+1}^{n-k-1} [(2i-n)(\mathbf{X}_i + \mathbf{Y}_i) + 2(i-k-1)\mathbf{Z}_i] \right) \\
&= (k-2)\mathbf{P}_k
\end{aligned}$$

verifying that \mathbf{P}_k is an eigenvector, as desired.

Consider the vectors \mathbf{P}_k , $\sigma(\mathbf{P}_k)$, $\sigma^2(\mathbf{P}_k)$ as elements of the vector space $\mathbb{R}\mathcal{B}_n$, expanded in terms of the basis \mathcal{B}'_n (see Prop. 2.7). In these expansions, the basis vectors \mathbf{Z}_{n-k} , \mathbf{X}_{n-k} , \mathbf{Y}_{n-k} occur with nonzero coefficients only in \mathbf{P}_k , $\sigma(\mathbf{P}_k)$, $\sigma^2(\mathbf{P}_k)$ respectively. This shows that these three vectors are linearly independent. On the other hand, $\rho(\mathbf{P}_k) = \mathbf{P}_k$, so the \mathfrak{S}_3 -orbit of \mathbf{P}_k has dimension 3. \square

Define

$$\begin{aligned}
\mathbf{Q}_k &:= (n-2k+1)(n-2k+2)\mathbf{Z}_k \\
&\quad + \sum_{j=k}^{n-k} [(2j-n)(\mathbf{X}_j + \mathbf{Y}_j) - 2(n-j-k+1)\mathbf{Z}_j]
\end{aligned} \tag{2.2a}$$

$$\begin{aligned}
&= (n-2k+1)(n-2k)\mathbf{Z}_k + (2k-n)(\mathbf{X}_k + \mathbf{Y}_k) \\
&\quad + \sum_{j=k+1}^{n-k} [(2j-n)(\mathbf{X}_j + \mathbf{Y}_j) - 2(n-j-k+1)\mathbf{Z}_j].
\end{aligned} \tag{2.2b}$$

Both of these expressions for \mathbf{Q}_n will be useful in what follows.

Proposition 2.10. *For all integers k with $0 \leq k \leq \lfloor \frac{n-2}{2} \rfloor$, the vector \mathbf{Q}_k is a nonzero eigenvector of A with eigenvalue $n-k-2$. Moreover, the \mathfrak{S}_3 -orbit of \mathbf{Q}_k has dimension 3.*

Proof. The statement is vacuously true if $n < 2$. By (2.2a), the coefficient of \mathbf{Z}_k in \mathbf{Q}_k is $(n-2k+1)(n-2k)$. Provided that $k \leq \lfloor \frac{n-1}{2} \rfloor$, we have $n > 2k$, so this

coefficient is nonzero, as is the vector \mathbf{Q}_k . Applying (2.1c) . . . (2.1e), we have

$$\begin{aligned}
A\mathbf{Q}_k &= (n - 2k + 1)(n - 2k + 2) \left((n - k - 2)\mathbf{Z}_k + \sum_{j=0}^{n-k} [\mathbf{X}_j + \mathbf{Y}_j] \right) \\
&\quad + \sum_{i=k}^{n-k} \left[(2i - n) \left((n - i - 2)(\mathbf{X}_i + \mathbf{Y}_i) + \sum_{j=0}^{n-i} [\mathbf{X}_j + \mathbf{Y}_j + 2\mathbf{Z}_j] \right) \right. \\
&\quad \left. - 2(n - i - k + 1) \left((n - i - 2)\mathbf{Z}_i + \sum_{j=0}^{n-i} [\mathbf{X}_j + \mathbf{Y}_j] \right) \right] \\
&= (n - 2k + 1)(n - 2k + 2)(n - k - 2)\mathbf{Z}_k + (n - 2k + 1)(n - 2k + 2) \sum_{j=0}^{n-k} [\mathbf{X}_j + \mathbf{Y}_j] \\
&\quad + \sum_{i=k}^{n-k} \left[(2i - n)(n - i - 2)(\mathbf{X}_i + \mathbf{Y}_i) - 2(n - i - k + 1)(n - i - 2)\mathbf{Z}_i \right] \\
&\quad + \sum_{i=k}^{n-k} \sum_{j=0}^{n-i} \left[(2i - n)(\mathbf{X}_j + \mathbf{Y}_j + 2\mathbf{Z}_j) - 2(n - i - k + 1)(\mathbf{X}_j + \mathbf{Y}_j) \right]
\end{aligned}$$

Interchanging the order of summation in the double sum gives

$$\begin{aligned}
A\mathbf{Q}_k &= (n - 2k + 1)(n - 2k + 2)(n - k - 2)\mathbf{Z}_k + (n - 2k + 1)(n - 2k + 2) \sum_{j=0}^{n-k} [\mathbf{X}_j + \mathbf{Y}_j] \\
&\quad + \sum_{j=k}^{n-k} \left[(2j - n)(n - j - 2)(\mathbf{X}_j + \mathbf{Y}_j) - 2(n - j - k + 1)(n - j - 2)\mathbf{Z}_j \right] \\
&\quad + \sum_{j=0}^{k-1} \sum_{i=k}^{n-k} \left[(4i - 2n)\mathbf{Z}_j + (4i - 3n + 2k - 2)(\mathbf{X}_j + \mathbf{Y}_j) \right] \\
&\quad + \sum_{j=k}^{n-k} \sum_{i=k}^{n-j} \left[(4i - 2n)\mathbf{Z}_j + (4i - 3n + 2k - 2)(\mathbf{X}_j + \mathbf{Y}_j) \right]
\end{aligned}$$

Applying the summation formulas of Lemma 2.5 gives

$$\begin{aligned}
A\mathbf{Q}_k &= (n-2k+1)(n-2k+2)(n-k-2)\mathbf{Z}_k + (n-2k+1)(n-2k+2) \sum_{j=0}^{n-k} [\mathbf{X}_j + \mathbf{Y}_j] \\
&\quad + \sum_{j=k}^{n-k} [(2j-n)(n-j-2)(\mathbf{X}_j + \mathbf{Y}_j) - 2(n-j-k+1)(n-j-2)\mathbf{Z}_j] \\
&\quad - \sum_{j=0}^{k-1} [(n-2k+1)(n-2k+2)(\mathbf{X}_j + \mathbf{Y}_j)] \\
&\quad + \sum_{j=k}^{n-k} [2(j-k)(-n+j+k-1)\mathbf{Z}_j + (2j+2-4k+n)(-n+j+k-1)(\mathbf{X}_j + \mathbf{Y}_j)] \\
&= (n-2k+1)(n-2k+2)(n-k-2)\mathbf{Z}_k \\
&\quad + \sum_{j=k}^{n-k} [(n-k-2)(2j-n)(\mathbf{X}_j + \mathbf{Y}_j) - 2(n-j-k+1)(n-k-2)\mathbf{Z}_j] \\
&= (n-k-2) \left((n-2k+1)(n-2k+2)\mathbf{Z}_k + \sum_{j=k}^{n-k} [(2j-n)(\mathbf{X}_j + \mathbf{Y}_j) - 2(n-j-k+1)\mathbf{Z}_j] \right) \\
&= (n-k-2)\mathbf{Q}_k
\end{aligned}$$

as desired.

We now show that the \mathfrak{S}_3 -orbit of \mathbf{Q}_k has dimension 3. Since $\rho(\mathbf{Q}_k) = \mathbf{Q}_k$, the orbit is spanned by the three vectors \mathbf{Q}_k , $\sigma(\mathbf{Q}_k)$, $\sigma^2(\mathbf{Q}_k)$. We consider two cases: $k = 0$ and $k > 0$.

First, if $k = 0$, then the expression (2.2a) for \mathbf{Q}_0 becomes (using Lemma 2.2)

$$\begin{aligned}
\mathbf{Q}_0 &= (n+1)(n+2)\mathbf{Z}_0 + \sum_{j=0}^n [(2j-n)(\mathbf{X}_j + \mathbf{Y}_j) - 2(n-j+1)\mathbf{Z}_j] \\
&= (n+1)(n+2)\mathbf{Z}_0 - \sum_{j=0}^n [n(\mathbf{X}_j + \mathbf{Y}_j) + (2n+2)\mathbf{Z}_j] + 2 \sum_{j=0}^n j[\mathbf{X}_j + \mathbf{Y}_j + \mathbf{Z}_j] \\
&= (n+1)(n+2)\mathbf{Z}_0 - (4n+2)\mathbf{J} + 2n\mathbf{J} = (n^2+3n+2)\mathbf{Z}_0 - (2n+2)\mathbf{J} \\
&= \sum_{i+j=n} (n^2+n)\mathbf{e}_{ij0} + \sum_{i,j,k: k \neq 0} (-2n-2)\mathbf{e}_{ijk}.
\end{aligned}$$

Accordingly we have

$$\begin{aligned}
\sigma(\mathbf{Q}_0) &= \sum_{j+k=n} (n^2+n)\mathbf{e}_{0jk} + \sum_{i,j,k: i \neq 0} (-2n-2)\mathbf{e}_{ijk}, \\
\sigma^2(\mathbf{Q}_0) &= \sum_{i+k=n} (n^2+n)\mathbf{e}_{i0k} + \sum_{i,j,k: j \neq 0} (-2n-2)\mathbf{e}_{ijk}.
\end{aligned}$$

Consider the $N \times 3$ matrix with columns $\mathbf{Q}_0, \sigma(\mathbf{Q}_0), \sigma^2(\mathbf{Q}_0)$. By the previous calculation, the 3×3 minor in rows $\mathbf{e}_{n00}, \mathbf{e}_{0n0}, \mathbf{e}_{00n}$ is

$$\begin{vmatrix} n^2 + n & -2n - 2 & n^2 + n \\ n^2 + n & n^2 + n & -2n - 2 \\ -2n - 2 & n^2 + n & n^2 + n \end{vmatrix} = -2(n+1)^3(n+2)^2(n-1)$$

which is nonzero (recall that $n \geq 2$, otherwise the proposition is vacuously true).

On the other hand, if $0 < k \leq \lfloor (n-2)/2 \rfloor$, then (2.2b) expresses $\mathbf{Q}_k, \sigma(\mathbf{Q}_k), \sigma^2(\mathbf{Q}_k)$ as column vectors in the basis \mathcal{B}'_n . Let $a = 2k - n$ and $b = (n - 2k)(n - 2k + 1)$; then the 3×3 minor in rows $\mathbf{X}_k, \mathbf{Y}_k, \mathbf{Z}_k$ is

$$\begin{vmatrix} a & a & b \\ a & b & a \\ b & a & a \end{vmatrix} = (2k-n)^3(n-2k-1)(n-2k+2)^2$$

which is nonzero because the assumption $k \leq \lfloor (n-2)/2 \rfloor$ implies $n \geq 2k+2$. \square

3. SIMPLICIAL ROOK GRAPHS IN ARBITRARY DIMENSION

We now consider the graph $SR(d, n)$ for arbitrary d and n , with adjacency matrix $A = A(d, n)$. Recall that $SR(d, n)$ has $N := \binom{n+d-1}{d-1}$ vertices and is regular of degree $(d-1)n$. If two vertices $a = (a_1, \dots, a_d)$, $b = (b_1, \dots, b_d) \in V(d, n)$ differ only in their i^{th} and j^{th} positions (and are therefore adjacent), we write $a \sim_{i,j} b$.

Let \mathfrak{S}_d be the symmetric group of order d , and let $\mathfrak{A}_d \subset \mathfrak{S}_d$ be the alternating subgroup. Let ε be the sign function

$$\varepsilon(\sigma) = \begin{cases} 1 & \text{for } \sigma \in \mathfrak{A}_d, \\ -1 & \text{for } \sigma \notin \mathfrak{A}_d. \end{cases}$$

Let $\tau_{ij} \in \mathfrak{S}_d$ denote the transposition of i and j . Note that $\mathfrak{S}_d = \mathfrak{A}_d \cup \mathfrak{A}_d\tau_{ij}$ for each i, j .

In analogy to the vectors $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ used in the $d = 3$ case, define

$$\mathbf{X}_\alpha^{(i,j)} = \mathbf{e}_\alpha + \sum_{\beta: \beta \sim_{i,j} \alpha} \mathbf{e}_\beta. \quad (3.1)$$

That is, $\mathbf{X}_\alpha^{(i,j)}$ is the characteristic vector of the lattice line through α in direction $\mathbf{e}_i - \mathbf{e}_j$. In particular, if $\alpha \sim_{i,j} \beta$, then $\mathbf{X}_\alpha^{(i,j)} = \mathbf{X}_\beta^{(i,j)}$. Moreover, the column of A indexed by α is

$$A\mathbf{e}_\alpha = -\binom{d}{2}\mathbf{e}_\alpha + \sum_{1 \leq i < j \leq d} \mathbf{X}_\alpha^{(i,j)}. \quad (3.2)$$

since e_α itself appears in each summand $\mathbf{X}_\alpha^{(i,j)}$.

3.1. Permutohedron vectors. We now generalize the construction of hexagon vectors to arbitrary dimension. The idea is that for each point p in the interior of $n\Delta^{d-1}$ and sufficiently far away from its boundary, there is a lattice permutohedron centered at p , all of whose points are vertices of $SR(d, n)$ (see Figure 3), and the signed characteristic vector of this permutohedron is an eigenvector of $A(d, n)$.

FIGURE 3. A permutohedron vector ($n = 6, d = 4$).

Proposition 3.1. Let $p, w \in \mathbb{R}^N$ be vectors such that $\{p + \sigma(w) : \sigma \in \mathfrak{S}_d\}$ are distinct vertices of $SR(d, n)$. (In particular, the entries of w must all be different.) Define

$$\mathbf{H}_{p,w} = \sum_{\sigma \in \mathfrak{S}_d} \varepsilon(\sigma) \mathbf{e}_{p+\sigma(w)}.$$

Then $\mathbf{H}_{p,w}$ is an eigenvector of A with eigenvalue $-\binom{d}{2}$. Moreover, for a fixed w , the collection of all such eigenvectors $\mathbf{H}_{p,w}$ is linearly independent.

Proof. By linearity and (3.2), we have

$$\begin{aligned} A\mathbf{H}_{p,w} &= \sum_{\sigma \in \mathfrak{S}_d} \varepsilon(\sigma) \left(-\binom{d}{2} \mathbf{e}_{p+\sigma(w)} + \sum_{1 \leq i < j \leq d} \mathbf{X}_{p+\sigma(w)}^{(i,j)} \right) \\ &= -\binom{d}{2} \mathbf{H}_{p,w} + \sum_{\sigma \in \mathfrak{S}_d} \varepsilon(\sigma) \sum_{1 \leq i < j \leq d} \mathbf{X}_{p+\sigma(w)}^{(i,j)} \\ &= -\binom{d}{2} \mathbf{H}_{p,w} + \sum_{1 \leq i < j \leq d} \sum_{\sigma \in \mathfrak{S}_d} \varepsilon(\sigma) \mathbf{X}_{p+\sigma(w)}^{(i,j)} \\ &= -\binom{d}{2} \mathbf{H}_{p,w} + \sum_{1 \leq i < j \leq d} \sum_{\sigma \in \mathfrak{A}_d} [\varepsilon(\sigma) \mathbf{X}_{p+\sigma(w)}^{(i,j)} + \varepsilon(\sigma \tau_{ij}) \mathbf{X}_{p+\sigma \tau_{ij}(w)}^{(i,j)}] \\ &= -\binom{d}{2} \mathbf{H}_{p,w}. \end{aligned}$$

(The summand vanishes because $\varepsilon(\sigma) = -\varepsilon(\sigma \tau_{ij})$ and because changing α_i and α_j does not change $\mathbf{X}_{\alpha}^{(i,j)}$.) For linear independence, it suffices to observe that the lexicographic leading term of $\mathbf{H}_{p,w}$ is $\mathbf{e}_{p+\tilde{w}}$, where \tilde{w} denotes the unique increasing permutation of w , and that these leading terms are different for different p . \square

This result says that we can construct a large eigenspace by fitting many congruent permutohedra into the dilated simplex. Depending on the parity of d , the centers of these permutohedra will be points in \mathbb{Z}^d or $(\mathbb{Z} + \frac{1}{2})^d$.

Let d be a positive integer. The *standard offset vector* in \mathbb{R}^d is defined as

$$\mathbf{w} = \mathbf{w}_d = ((1-d)/2, (3-d)/2, \dots, (d-3)/2, (d-1)/2) \in \mathbb{R}^d. \quad (3.3)$$

Note that $\mathbf{w} \in \mathbb{Z}^d$ if d is odd, and $\mathbf{w} \in (\mathbb{Z} + \frac{1}{2})^d$ if d is even.

Proposition 3.2. *There are*

$$\binom{n - \frac{(d-1)(d-2)}{2}}{d-1}$$

distinct vectors p such that $\mathbf{H}_{p,\mathbf{w}}$ is an eigenvector of $A(d, n)$ (and these eigenvectors are all linearly independent by Prop. 3.1).

Proof. First, suppose that $d = 2c + 1$ is odd. In order to satisfy the conditions of Prop. 3.1, it suffices to choose a lattice point $p = (a_1, \dots, a_d)$ so that $\sum a_i = n$ and $c \leq a_i \leq n - c$ for all i . Subtracting c from each a_i gives a bijection to compositions of $n - cd$ with d nonnegative parts and no part greater than $n - 2c$ (that latter condition is extraneous for $d \geq 2$). The number of these compositions is

$$\binom{n - cd + d - 1}{d-1} = \binom{n - \frac{(d-1)(d-2)}{2}}{d-1}.$$

Second, suppose that $d = 2c$ is even. Now it suffices to choose a point $p = (a_1 + 1/2, \dots, a_d + 1/2) \in (\mathbb{Z} + \frac{1}{2})^d$ such that $a_1 + \dots + a_d = n - c$ and, for each i , $a_i + 1/2 + (1-d)/2 \geq 0$ and $a_i + 1/2 + (d-1)/2 \leq n$, that is, i.e., $c - 1 \leq a_i \leq n - c$. Subtracting $c - 1$ from each a_i gives a bijection to compositions of $n - c - d(c - 1) = n - d(d - 1)/2$ with d nonnegative parts, none of which can be greater than $n - d + 1$ (again, the last condition is extraneous). The number of these compositions is

$$\binom{n - d(d - 1)/2 + d - 1}{d-1} = \binom{n - \frac{(d-1)(d-2)}{2}}{d-1}.$$

□

The permutohedron vectors account for “almost all” of the eigenvectors in the following sense: if $\mathcal{H}_{d,n} \subseteq \mathbb{R}^N$ be the linear span of the eigenvectors constructed in Props. 3.1 and 3.2, then for each fixed d , we have

$$\lim_{n \rightarrow \infty} \frac{\dim \mathcal{H}_{d,n}}{|V(d, n)|} = \lim_{n \rightarrow \infty} \frac{\binom{n - \frac{(d-1)(d-2)}{2}}{d-1}}{\binom{n+d-1}{d-1}} = 1. \quad (3.4)$$

On the other hand, the combinatorial structure of the remaining eigenvectors is not clear.

The next result is a partial generalization of Proposition 2.7.

Proposition 3.3. *Every $\mathbf{H}_{p,\mathbf{w}}$ is orthogonal to every $\mathbf{X}_\alpha^{(i,j)}$.*

Proof. By definition we have

$$\mathbf{X}_\alpha^{(i,j)} \cdot \mathbf{H}_{p,\mathbf{w}} = \left(\mathbf{e}_\alpha + \sum_{\beta: \beta \sim \alpha_{i,j}} \mathbf{e}_\beta \right) \cdot \left(\sum_{\sigma \in \mathfrak{S}_d} \varepsilon(\sigma) \mathbf{e}_{p+\sigma(\mathbf{w})} \right) = \sum_{\sigma: p+\sigma(\mathbf{w}) \sim \alpha_{i,j}} \varepsilon(\sigma).$$

The index set of this summation admits the fixed-point-free involution $(\beta, \sigma) \leftrightarrow (\tau\beta, \tau\sigma)$, and $\varepsilon(\tau\sigma) = -\varepsilon(\sigma)$, so the sum is zero. \square

Geometrically, Proposition 3.3 says that if a lattice line meets a lattice permutohedron of the form of Prop. 3.1, then it does so in exactly two points, whose corresponding permutations have opposite signs.

Conjecture 3.4. *The vectors $\mathbf{X}_\alpha^{(i,j)}$ span the orthogonal complement of $\mathcal{H}_{d,n}$.*

This conjecture is equivalent to the statement that every other eigenvector of $A(d, n)$ can be written as a linear combination of the $\mathbf{X}_\alpha^{(i,j)}$. For $n < \binom{d}{2}$, the conjecture is that the $\mathbf{X}_\alpha^{(i,j)}$ span all of \mathbb{R}^N . We have verified this statement computationally for $d = 4$ and $n \leq 11$, and for $d = 5$ and $n = 7, 8, 9$. Part of the difficulty is that it is not clear what subset of the $\mathbf{X}_\alpha^{(i,j)}$ ought to form a basis (in contrast to the case $d = 3$, where \mathcal{B}'_n is a natural choice of basis; see Prop. 2.7).

3.2. The smallest eigenvalue. For a matrix M with real spectrum, let $\tau(M)$ denote its smallest eigenvalue, and for a graph H , let $\tau(G) = \tau(A(G))$. The invariant $\tau(G)$ of a graph is important in spectral graph theory; for instance, it is related to the independence number [6, Lemma 9.6.2].

Proposition 3.5. *Suppose that $d \geq 1$ and $n \geq \binom{d}{2}$. Then $\tau(SR(d, n)) = -\binom{d}{2}$.*

Proof. By the construction of Proposition 3.2, there is at least one eigenvector with eigenvalue $-\binom{d}{2}$ when $n \geq \binom{d}{2}$. The following argument that $-\binom{d}{2}$ is in fact the smallest eigenvalue was suggested to the authors by Noam Elkies. The edges of $SR(d, n)$ in direction (i, j) form a spanning subgraph $SR(d, n)_{i,j}$ isomorphic to $K_{n+1} + K_n + K_{n-1} + \cdots + K_1$, where $+$ means disjoint union. The eigenvalues of K_n are $n - 1$ and -1 , and the spectrum of $G + H$ is the union of the spectra of G and H , so $\tau(SR(d, n)_{i,j}) = -1$. Since the edge set of $SR(d, n)$ is the disjoint union of the edge sets of the $SR(d, n)_{i,j}$, we have $A(d, n) = \sum_{(i,j)} A(SR(d, n)_{i,j})$, and in general $\tau(M + N) \geq \tau(M) + \tau(N)$, so $\tau(SR(d, n)) \geq -\binom{d}{2}$ as desired. \square

The case $n < \binom{d}{2}$ is more complicated. Experimental evidence indicates that the smallest eigenvalue of $SR(d, n)$ is $-n$, and moreover that the multiplicity of this eigenvalue equals the number $M(d, n)$ of permutations in \mathfrak{S}_d with exactly n inversions. The numbers $M(d, n)$ are well known in combinatorics as the *Mahonian numbers*, or as the coefficients of the q -factorial polynomials; see [12, sequence #A008302]. In the rest of this section, we construct $M(d, n)$ linearly independent eigenvectors of eigenvalue $-n$; however, we do not know how to rule out the possibility of additional eigenvectors of equal or smaller eigenvalue.

We review some basics of rook theory; for a general reference, see, e.g., [4]. For a sequence of positive integers $c = (c_1, \dots, c_d)$, the *skyline board* $\text{Sky}(c)$ consists of a sequence of d columns, with the i^{th} column containing c_i squares. A *rook placement* on $\text{Sky}(c)$ consists of a choice of one square in each column. A rook placement is *proper* if all d squares belong to different rows.

An *inversion* of a permutation $\pi = (\pi_1, \dots, \pi_d) \in \mathfrak{S}_d$ is a pair i, j such that $i < j$ and $\pi_i > \pi_j$. Let $\mathfrak{S}_{d,n}$ denote the set of permutations of $[d]$ with exactly n inversions.

Definition 3.6. Let $\pi \in \mathfrak{S}_{d,n}$. The *inversion word* of π is $a = a(\pi) = (a_1, \dots, a_d)$, where

$$a_i = \#\{j \in [d]: i < j \text{ and } \pi_i > \pi_j\}.$$

Note that a is a weak composition of n with d parts, hence a vertex of $SR(d, n)$. A permutation $\sigma \in \mathfrak{S}_{d,n}$ is π -admissible if σ is a proper skyline rook placement on $\text{Sky}(a_1 + 1, \dots, a_d + d)$; that is, if

$$x(\sigma) = a(\pi) + \mathbf{w} - \sigma(\mathbf{w}) = a(\pi) + \text{id} - \sigma$$

is a lattice point in $n\Delta^{d-1}$. Note that the coordinates of $x(\sigma)$ sum to n , so admissibility means that its coordinates are all nonnegative. The set of all π -admissible permutations is denoted $\text{Adm}(\pi)$; that is,

$$\text{Adm}(\pi) = \{\sigma \in \mathfrak{S}_d: a_i - \sigma_i + i \geq 0 \quad \forall i = 1, \dots, d\}.$$

The corresponding *partial permutohedron* is

$$\text{Parp}(\pi) = \{x(\sigma): \sigma \in \text{Adm}(\pi)\}.$$

That is, $\text{Parp}(\pi)$ is the set of permutations corresponding to lattice points in the intersection of $n\Delta^{d-1}$ with the standard permutohedron centered at $a(\pi) + \mathbf{w}$. The *partial permutohedron vector* is the signed characteristic vector of $\text{Parp}(\pi)$, that is,

$$\mathbf{F}_\pi = \sum_{\sigma \in \text{Parp}(\pi)} \varepsilon(\sigma) \mathbf{e}_{x(\sigma)}.$$

Example 3.7. Let $d = 4$ and $\pi = 3142 \in \mathfrak{S}_d$. Then π has $n = 3$ inversions, namely 12, 14, 34. Its inversion word is accordingly $a = (2, 0, 1, 0)$. The π -admissible permutations are the proper skyline rook placements on $\text{Sky}(2+1, 0+2, 1+3, 0+4) = \text{Sky}(3, 2, 4, 4)$, namely 1234, 1243, 2134, 2143, 3124, 3142, 3214, 3241 (see Figure 4). The corresponding lattice points $x(\sigma)$ can be read off from the rook placements by counting the number of empty squares above each rook, obtaining respectively 2010, 2001, 1110, 1101, 0120, 0102, 0030, 0003; these are the neighbors of a in $\text{Parp}(\pi)$. Thus $\mathbf{F}_\pi = \mathbf{e}_{2010} - \mathbf{e}_{2001} - \mathbf{e}_{1110} + \mathbf{e}_{1101} - \mathbf{e}_{0120} + \mathbf{e}_{0102} + \mathbf{e}_{0030} - \mathbf{e}_{0003}$; see Figure 5.

FIGURE 4. Rook placements on the skyline board $\text{Sky}(3, 2, 4, 4)$.

Theorem 3.8. Let $\pi \in \mathfrak{S}_{d,n}$ and $A = A(d, n)$. Then \mathbf{F}_π is an eigenvector of A with eigenvalue $-n$. Moreover, for every pair d, n with $n < \binom{d}{2}$, the set $\{\mathbf{F}_\pi: \pi \in \mathfrak{S}_{d,n}\}$ is linearly independent. In particular, the dimension of the $(-n)$ -eigenspace of A is at least the Mahonian number $M(d, n)$.

Proof. **First**, we show that the \mathbf{F}_π are linearly independent. This follows from the observation that the lexicographically leading term of \mathbf{F}_π is $\mathbf{e}_{a(\pi)}$, and these terms are different for all $\pi \in \mathfrak{S}_{d,n}$.

FIGURE 5. The partial permutohedron $\text{Parp}(3142)$ in $SR(4,3)$.

Second, let $\sigma \in \text{Adm}(\pi)$. Then the coefficient of $e_{x(\sigma)}$ in \mathbf{F}_π is $\varepsilon(\sigma) \in \{1, -1\}$. We will show that the coefficient of $e_{x(\sigma)}$ in $A\mathbf{F}_\pi$ is $-n\varepsilon(\sigma)$, i.e., that

$$\varepsilon(\sigma) \sum_{\rho} \varepsilon(\rho) = -n, \quad (3.5)$$

the sum over all ρ such that $\rho \sim \sigma$ and $\rho \in \text{Parp}(\pi)$. (Here and subsequently, \sim denotes adjacency in $SR(d, n)$.) Each such rook placement ρ is obtained by multiplying σ by the transposition $(i \ j)$, that is, by choosing a rook at (i, σ_i) , choosing a second rook at (j, σ_j) with $\sigma_j > \sigma_i$, and replacing these two rooks with rooks in positions (i, σ_j) and (j, σ_i) . For each choice of i , there are $(a_i + i) - \sigma_i$ possible j 's, and $\sum_i (a_i + i - \sigma_i) = n$. Moreover, the sign of each such ρ is opposite to that of σ , proving (3.5).

Third, let $y = (y_1, \dots, y_d) \in V(d, n) \setminus \text{Parp}(\pi)$. Then the coefficient of $e_{x(\sigma)}$ in \mathbf{F}_π is 0. We will show that the coefficient of $e_{x(\sigma)}$ in $A\mathbf{F}_\pi$ is also 0, i.e., that

$$\sum_{\sigma \in N} \varepsilon(\sigma) = 0. \quad (3.6)$$

where $N = \{\rho : x(\rho) \sim y\} \cap \text{Parp}(\pi)$. In order to prove this, we will construct a sign-reversing involution on N .

Let $a = a(\pi)$ and let $b = (b_1, \dots, b_d) = (a_1 + 1 - y_1, a_2 + 2 - y_2, \dots, a_d + d - y_d)$. Note that $b_i \leq a_i + i$ for every i ; therefore, we can regard b as a rook placement on $\text{Sky}(a_1 + 1, \dots, a_d + d)$. (It is possible that $b_i \leq 0$ for one or more i ; we will consider that case shortly.) To say that $y \notin \mathbf{F}_\pi$ is to say that b is not a proper π -skyline rook placement; on the other hand, we have $\sum b_i = \binom{d+1}{2}$ (as would be the case if b were proper). Hence the elements of N are the proper π -skyline rook skyline placements obtained from b by moving one rook up and one other rook down, necessarily by the same number of squares. Let $b(i \uparrow q, j \downarrow r)$ denote the rook placement obtained by moving the i^{th} rook up to row q and the j^{th} rook down to row r .

We now consider the various possible ways in which b can fail to be proper.

Case 1: $b_i \leq 0$ for two or more i . In this case $N = \emptyset$, because moving only one rook up cannot produce a proper π -skyline rook placement.

Case 2: $b_i \leq 0$ for exactly one i . The other rooks in b cannot all be at different heights, because that would imply that $\sum b_i \leq 0 + (2 + \dots + d) < \binom{d+1}{2}$. Therefore,

either $N = \emptyset$, or else $b_j = b_k$ for some j, k and there are rooks at all heights except q and r for some $q, r < b_j = b_k$.

Then $b(i \uparrow q, j \downarrow r)$ is proper if and only if $b(i \uparrow q, k \downarrow r)$ is proper, and likewise $b(i \uparrow r, j \downarrow q)$ is proper if and only if $b(i \uparrow r, k \downarrow q)$ is proper. Each of these pairs is related by the transposition $(j \ k)$, so we have the desired sign-reversing involution on N .

Case 3: $b_i \geq 1$ for all i . Then the reason that b is not proper must be that some row has no rooks and some row has more than one rook. There are several subcases:

Case 3a: For some $q \neq r$, there are two rooks at height q , no rooks at height r , and one rook at every other height. But this is impossible because then $\sum b_i = \binom{d+1}{2} + q - r \neq \binom{d+1}{2}$.

Case 3b: There are four or more rooks at height q , or three at height q and two or more at height r . In both cases $N = \emptyset$.

Case 3c: We have $b_i = b_j = b_k$; no rooks at heights q or r for some $q < r$; and one rook at every other height. Then

$$N \subseteq \left\{ \begin{array}{l} b(i \uparrow r, j \downarrow q), \quad b(j \uparrow r, i \downarrow q), \quad b(k \uparrow r, i \downarrow q), \\ b(i \uparrow r, k \downarrow q), \quad b(j \uparrow r, k \downarrow q), \quad b(k \uparrow r, j \downarrow q). \end{array} \right\}$$

For each column of the table above, its two rook placements are related by a transposition (e.g., $(j \ k)$ for the first column) and either both or neither of those rook placements are proper (e.g., for the first column, depending on whether or not $b_i \leq r$). Therefore, we have the desired sign-reversing involution on N .

Case 3d: We have $b_i = b_j = q$; $b_k = b_\ell = r$, and one rook at every other height except heights s and t . Now the desired sign-reversing involution on N is toggling the rook that gets moved down; for instance, $b(j \uparrow s, k \downarrow t)$ is proper if and only if $b(j \uparrow s, \ell \downarrow t)$ is proper.

This completes the proof of (3.6), which together with (3.5) completes the proof that \mathbf{F}_π is an eigenvector of $A(d, n)$ with eigenvalue $-n$. \square

Conjecture 3.9. *If $n \leq \binom{d}{2}$, then in fact $\tau(SR(d, n)) = -n$, and the dimension of the corresponding eigenspace is the Mahonian number $M(d, n)$.*

We have verified this conjecture, using Sage, for all $d \leq 6$. It is not clear in general how to rule out the possibility of a smaller eigenvalue, or of additional $(-n)$ -eigenvectors linearly independent of the \mathbf{F}_π .

The proof of Theorem 3.8 implies that every partial permutohedron $\text{Parp}(\pi)$ induces an n -regular subgraph of $SR(d, n)$. Another experimental observation is the following:

Conjecture 3.10. *For every $\pi \in \mathfrak{S}_{d,n}$, the induced subgraph $SR(d, n)|_{\text{Parp}(\pi)}$ is Laplacian integral.*

We have verified this conjecture, using Sage, for all permutations of length $d \leq 6$. We do not know what the eigenvalues are, but these graphs are not in general strongly regular (as evidenced by the observation that they have more than 3 distinct eigenvalues).

4. COROLLARIES, ALTERNATE METHODS, AND FURTHER DIRECTIONS

4.1. The independence number. The independence number of $SR(d, n)$ can be interpreted as the maximum number of nonattacking “rooks” that can be placed on

a simplicial chessboard of side length $n+1$. By [6, Lemma 9.6.2], the independence number $\alpha(G)$ of a δ -regular graph G on N vertices is at most $-\tau N/(\delta - \tau)$, where τ is the smallest eigenvalue of $A(G)$. For $d = 3$ and $n \geq 3$, we have $\tau = -3$, which implies that the independence number $\alpha(SR(d, n))$ is at most $3(n+2)(n+1)/(4n+6)$. This is of course a weaker result (except for a few small values of n) than the exact value $\lfloor (3n+3)/2 \rfloor$ obtained in [11] and [2].

Question 4.1. What is the independence number of $SR(d, n)$? That is, how many nonattacking rooks can be placed on a simplicial chessboard?

Proposition 3.5 implies the upper bound

$$\alpha(SR(d, n)) \leq \frac{d(d+1)}{(2n+d)(d-1)} \binom{n+d-1}{d-1}$$

for $n \geq \binom{d}{2}$, but this bound is not sharp (for example, the bound for $SR(4, 6)$ is $\alpha \leq 21$, but computation indicates that $\alpha = 16$).

4.2. Equitable partitions. One approach to determining the spectrum of a graph uses the theory of *interlacing* and *equitable partitions* [7], [6, chapter 9]. Let $X = \{O_1, \dots, O_k\}$ be the set of orbits of vertices of G under the group of automorphisms of G . For each two orbits O_i, O_j , define $f(i, j) = |N(x) \cap O_j|$ for any $x \in O_i$. The choice of x does not matter, so that the function f is well-defined (albeit not necessarily symmetric); that is to say, the orbits form an *equitable partition* of $V(G)$. Let $P(G)$ be the $k \times k$ square matrix with entries $f(i, j)$. Then every eigenvalue of P is also an eigenvalue of $A(G)$ [6, Thm. 9.3.3].

When $G = SR(n, d)$, the spectrum of $P(G)$ is typically a proper subset of that of $A(G)$. For example, when $n = 3$ and $d = 3$, the matrix $A(G)$ has spectrum $6, 1, 1, 1, 0, 0, -2, -2, -2, -3$ by Theorem 1.1, but the automorphism group has only three orbits, so $P(G)$ is a 3×3 matrix and must have a strictly smaller set of eigenvalues. In fact its spectrum is $6, 1, -2$, which is not a tight interlacing of that of $A(G)$ in the sense of Haemers.

Therefore, these methods may not be sufficient to describe the spectrum of $SR(n, d)$ in general. On the other hand, in all cases we have checked computationally ($d = 4, n \leq 30$; $d = 5, n \leq 25$), the matrices $P(SR(n, d))$ have integral spectra, which is consistent with Conjecture 1.3.

Question 4.2. Is $SR(d, n)$ determined up to isomorphism by its spectrum?

ACKNOWLEDGEMENTS

The authors thank Cristi Stoica for bringing their attention to references [11] and [2], and Noam Elkies and several other members of the MathOverflow community for a stimulating discussion. The open-source software package Sage [14] was a valuable tool in carrying out this research.

REFERENCES

1. K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, and D. Stevanović, *A survey on integral graphs*, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. **13** (2002), 42–65 (2003). MR 1992839 (2004d:05122)
2. Simon R. Blackburn, Maura B. Paterson, and Douglas R. Stinson, *Putting dots in triangles*, J. Combin. Math. Combin. Comput. **78** (2011), 23–32. MR 2848066 (2012h:05018)
3. Andries E. Brouwer and Willem H. Haemers, *Spectra of graphs*, Universitext, Springer, New York, 2012. MR 2882891

4. Fred Butler, Mahir Can, Jim Haglund, and Jeffrey B. Remmel, *Rook theory notes*, available at <http://www.math.ucsd.edu/~remmel/files/Book.pdf>, retrieved 8/14/2012.
5. Dragoš M. Cvetković, Michael Doob, Ivan Gutman, and Aleksandar Torgašev, *Recent results in the theory of graph spectra*, Annals of Discrete Mathematics, vol. 36, North-Holland Publishing Co., Amsterdam, 1988.
6. Chris Godsil and Gordon Royle, *Algebraic graph theory*, Graduate Texts in Mathematics, vol. 207, Springer-Verlag, New York, 2001. MR 1829620 (2002f:05002)
7. Willem H. Haemers, *Interlacing eigenvalues and graphs*, Linear Algebra Appl. **226/228** (1995), 593–616. MR 1344588 (96e:05110)
8. Mike Krebs and Anthony Shaheen, *On the spectra of Johnson graphs*, Electron. J. Linear Algebra **17** (2008), 154–167. MR 2390366 (2008m:05306)
9. László Lovász, *On the Shannon capacity of a graph*, IEEE Trans. Inform. Theory **25** (1979), no. 1, 1–7. MR 514926 (81g:05095)
10. Russell Merris, *Degree maximal graphs are Laplacian integral*, Linear Algebra Appl. **199** (1994), 381–389. MR 1274427 (95e:05083)
11. Gabriel Nivasch and Eyal Lev, *Nonattacking queens on a triangle*, Math. Mag. **78** (2005), no. 5, 399–403.
12. N. J. A. Sloane, *The On-Line Encyclopedia of Integer Sequences*, 2012, published electronically at <http://oeis.org>.
13. Richard P. Stanley, *Enumerative combinatorics. Vol. 2*, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.
14. W. A. Stein et al., *Sage Mathematics Software (Version 5.0.1)*, The Sage Development Team, 2012, <http://www.sagemath.org>.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KS 66045
E-mail address: jmartin@math.ku.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, WASHBURN UNIVERSITY, TOPEKA, KS 66621
E-mail address: jennifer.wagner1@washburn.edu