1^o Teste de Geometria Analítica e Álgebra Linear - $2021/\mathrm{I}$

Profa. Lana Mara Rodrigues dos Santos

Matrícula: 102026

1. Dado $A = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$, a matriz $2A - AA^T =$

- (a) $\begin{bmatrix} 1 & -2 \\ 4 & 1 \end{bmatrix}$
- (b) $\begin{bmatrix} 1 & 4 \\ 4 & -1 \end{bmatrix}$
- $(c) \begin{bmatrix} -1 & 4 \\ 0 & -1 \end{bmatrix}$
- (d) $\begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix}$
- (e) não sei
- 2. O determinante da matriz $D = \begin{pmatrix} 1 & 0 & 0 & -1 \\ -1 & 2 & -2 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix}$
 - (a) -4
 - (b) 0
 - (c) -6
 - (d) 2
 - (e) não sei
- 3. Foram realizadas as seguintes operações elementares sobre as linhas de uma matriz A: $l_1 \leftarrow 2l_1, l_2 \leftarrow l_1$ e $l_2 \leftarrow l_2 2l_1$, obtendo a matriz B. Se det B = -2, então det A =
 - (a) 4
 - (b) -2
 - (c) 1
 - (d) -1
 - (e) não sei

4. Uma matriz B é obtida de uma matriz A por meio da seguinte sequência de operações elementares sobre as linhas de A: $l_1 \leftarrow 2l_1$, $l_2 \leftarrow l_1$ e $l_2 \leftarrow l_2 - 2l_1$.

Se
$$A = \begin{bmatrix} -1 & 2 \\ 1 & 1 \end{bmatrix}$$
, então $B =$

- (a) $\begin{bmatrix} 4 & -1 \\ 3 & 0 \end{bmatrix}$
- (b) $\begin{bmatrix} 1 & 0 \\ 2 & -2 \end{bmatrix}$
- $(c) \begin{bmatrix} -2 & 1 \\ 2 & -2 \end{bmatrix}$
- $(d) \begin{bmatrix} 1 & 1 \\ -4 & 2 \end{bmatrix}$
- (e) não sei
- 5. A soma dos elementos da primeira linha da matriz inversa de $A = \begin{bmatrix} -1 & 0 & -1 \\ 0 & -1 & 0 \\ 2 & 0 & 3 \end{bmatrix}$.
 - (a) 2
 - (b) -1
 - (c) 3
 - (d) 0
 - (e) não sei
- 6. Sejam $a, b \in \mathbb{R}$ e as afirmações a respeito de um sistema linear S, com representação matricial Ax = B

e matriz ampliada
$$AB = \begin{pmatrix} 1 & -1 & 3 & 1 \\ 0 & 1 & 0 & a \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (I) Se b = 0, então S tem infinitas soluções.
- (II) Se $b \neq 0$, então S tem única solução.
- (III) Se $a \neq 0$, então S não tem solução.

As afirmativas corretas são:

- (a) I e II
- (b) II e III
- (c) I e III
- (d) Todas
- (e) não sei

7. Considere as afirmações:

- (I) Se u e v são soluções da equação matricial Ax=b, em que $b\neq 0,$ então w=u+3v é solução da equação Ax=b.
- (II) Se u e v são soluções da equação matricial Ax=0 (matriz nula), então w=u+3v é solução da equação Ax=0.
- (III) Se um vetor u é solução da equação matricial Ax=b, em que $b\neq 0$, e v é solução da equação Ax=0 (vetor nulo), então o vetor u+3v é solução da equação Ax=b.

As afirmativas corretas são:

- (a) I e II
- (b) II e III
- (c) I e III
- (d) todas
- (e) não sei

- 8. O conjunto solução do sistema $S: \begin{cases} x-y=1\\ x+z=2\\ y+z=1 \end{cases}$
 - (a) $\{(2-a, 1-a, a), a \in \mathbb{R}\}$
 - (b) $\{(1+a, a, a-1), a \in \mathbb{R}\}$
 - (c) $\{(a, a 1, a), a \in \mathbb{R}\}$
 - (d) $\{(1-a, a, a+1), a \in \mathbb{R}\}$
 - (e) não sei
- 9. Uma caixa com notas de 1, 5 e 10 reais tem 15 notas em um total de 100 reais. O menor intervalo que contém todas as possíveis quantidades z de notas de 10 reais é:
 - (a) $0 \le z \le 5$
 - (b) $5 \le z \le 15$
 - (c) $0 \le z \le 15$
 - (d) $5 \le z \le 9$
 - (e) não sei
- 10. Na decomposição LU da matriz $A = \begin{bmatrix} -1 & 1 \\ 4 & 1 \end{bmatrix}$, em que $L = (l_{ij})$, o elemento $l_{21} =$
 - (a) 1
 - (b) -4
 - (c) -2
 - (d) 4
 - (e) não sei