

Graphs – An Introduction

http://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919

WASHINGTON, D.C. METRO SYSTEM MAP/GRAPH

AIRLINE ROUTE MAP/GRAPH (U.S.)

GRAPH APPLICATIONS OVERVIEW

SEDGWICK 4.1

Graph	Vertex	Edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	street intersection, airport	highway, airway route
internet	class C network	connection
game	board position	legal move
social	relationship person, actor	friendship, movie cast
neural network	neuron	synapse
protein	network protein	protein-protein interaction
chemical compound	molecule	bond

- Graph consists of a set of <u>vertices</u> and a set of <u>edges</u> that connect those vertices.
 - Denoted G(V,E)
 - Edges a.k.a. <u>arcs</u>, Vertices a.k.a. <u>nodes</u>
 - Cardinality is the number of elements in a set
 - |V| = number of vertices
 - |E| = number of edges

TERMS: TYPES OF GRAPHS

- Directed vs. Undirected
 - having or not having directed edges
- Weighted vs. Unweighted
 - having or not having edge weights
- Cyclic vs. Acyclic
 - having or not having a cycle
- DAGs
 - directed acyclic graphs
- The example on the right is a Directed Graph, or Digraph, with weighted edges and cycles

(WEISS, FIG. 14.1)

- The graph has seven vertices: $V = \{V_0, V_1, V_2, V_3, V_4, V_5, V_6\}$
- The graph has 12 edges:

$$E = \begin{cases} (V_0, V_1, 2), (V_0, V_3, 1), (V_1, V_3, 3), (V_1, V_4, 10) \\ (V_3, V_4, 2), (V_3, V_6, 4), (V_3, V_5, 8), (V_3, V_2, 2) \\ (V_2, V_0, 4), (V_2, V_5, 5), (V_4, V_6, 6), (V_6, V_5, 1) \end{cases}$$

GRAPHS (WEISS, FIG. 14.1)

- A path in a graph is a sequence of vertices connected by edges
- Example: (V_0, V_3, V_5) is a path from node V_0 to V_5

GRAPHS (WEISS, FIG. 14.1)

- |V| = 7, |E| = 12
- The <u>degree of a vertex</u> is the number of edges incident to it
- In a digraph, vertices v and w are adjacent <u>iff</u> (v, w) ∈ E
- The vertices v, w are an <u>ordered pair</u>, its edge has <u>direction</u>
- Example: $(V_2, V_0) \in E$, but (V_5, V_1) is not

(WEISS, FIG. 14.1)

- If the edges have no weights, the <u>unweighted path length</u> is the number of edges along the path
- If they have weights, the <u>weighted path length</u> is the sum of the edge weights on the path
- Example: the unweighted length of (V_0, V_3, V_5) is 2, but the weighted length of (V_0, V_3, V_5) is 1+8=9

(WEISS, FIG. 14.1)

- A <u>simple path</u> is one in which all vertices are distinct, except the first and last can be the same
- A <u>cycle</u> in a directed graph is a path that begins and ends at the same vertex and has at least one edge
- A cycle can be simple or not
- Example: a cycle: (V_2, V_0, V_3, V_2)

TERMS: TYPES OF GRAPHS

- When most of the possible edges are present, $|E| = \Theta(|V|^2)$, and the graph is considered <u>dense</u>
- Most applications have relatively few edges
- Examples: transportation systems, computer networks
- When there are few edges, $|E| = \Theta(|V|)$, and the graph is sparse

TREES

- A Graph is connected if there is a path from every vertex to every other vertex.
- A Graph that is not connected consists of a set of connected components
- A tree is an acyclic, connected graph
- A graph is a tree iff has the following properties
 - G has |V| 1 edges and no cycles
 - G has |V| 1 edges and is connected
 - G is connected and removing any edge disconnects
 - G is acyclic and adding any edge creates a cycle
 - Exactly one simple path connects each pair vertices

TREE EXAMPLE

Is this definition consistent with our previous definition of trees?

A tree

WHAT KINDS OF THINGS WOULD WE LIKE TO KNOW FROM A GRAPH?

- Are Nebraska and Oklahoma adjacent to each other?
- How can you get from California to Virginia?
- What is the fewest number of states you can travel through to get from Oregon to Maine?
- What is the population of Texas?

End of Graphs – An Introduction

Please proceed to the next course activity now or at a later time