



# Проект 9. Распознавание эмоций на видео

Итоговое задание для курса "Профессия ML-инженер"



### Актуальность работы



Распознавание эмоций на видео может использоваться для:

- Персонализированной рекламы.
- Робота-психолога
- Робота-консультанта
- Получение обратной связи от клиентов без опросов
- Анализа реакции аудитории на фильм/сериал и т.д.

### Цели и задачи



#### Цель:

Обучить модели для распознавания эмоции на видео

#### Задачи:

- Реализация модуля поиска лица на видео
- Обучение модели распознавания не менее 5 эмоций
- Реализация интерфейса, позволяющий считывать эмоции человека с видео или веб-камеры, с выводом результата и вероятностью эмоций

### Применяемые технологии



- Pytorch построение моделей
- <u>Ultralytics</u> модель Yolo11n
- <u>Moviepy</u> сохранение полученного видео в формате mp4
- OpenCV- модуль детекции лица(<u>haarcascade frontalface default.xml</u>), работа с кадрами и датасетом
- <u>Gradio</u> создание веб-интерфейса
- ONNX, ONNX Runtime конвертирование моделей в формат .onnx и ускорение вывода модели
- <u>Hugging Face</u> деплой веб-интерфейса

### Этапы работы над проектом



- 1. Анализ существующих решений, подбор и загрузка релевантного датасета
- 2. Выбор моделей для обучения
- 3. Обучение моделей
- 4. Оценка качества моделей
- 5. Экспорт моделей в формат .onnx
- 6. Создание веб-интерфеса для работы с моделями
- 7. Деплой приложение на <u>HuggingFace</u>

# Анализ существующих решений, подбор и загрузка релевантного датасета



Существует множество различных моделей и датасетов для распознавания эмоций на видео.

Для данной работы был выбран датасет <u>FER2013</u>. Он состоит из 35887 черно-белых изображений размером 48х48



#### Выбор моделей для обучения



Ha сайте <u>Paperswithcode</u> представлены модели с лучшими тестовыми показателями на выбранном датасете.

Для данной работы было решено обучить модели EfficientNet, ResNet18. В качестве эксперимента было также обучена модель Yolo11n

#### Facial Expression Recognition (FER) on FER2013





Датасет разбит только на тестовую (7178) и обучающую (28709) выборки.

Датасет для тестирования составляет примерно 20% от общего количества изображений. Возьмём 20% от обучающего датасета и создадим из неё валидационную выборку(5748).



Аугментация датасета с помощью torchvision.transforms.

```
train_transform = transforms.Compose(
    [transforms.Resize(size=(224, 224)),
    v2.RandomHorizontalFlip(p=0.5),
    v2.RandomVerticalFlip(p=0.4),
    v2.RandomRotation(degrees=(0, 90)),
    v2.ColorJitter(brightness=random.uniform(1,0.5), contrast=random.random()),
    transforms.ToTensor()[]
)

val_transform = transforms.Compose(
    [transforms.Resize(size=(224, 224)),
    transforms.ToTensor()]
)
```

### Визуализация датасета





#### Диаграмма пайплайна обучения (EfficientNet, ResNet18)





## Оценка качества моделей(EfficientNet)





| Classification | Report:   |        |          |         |
|----------------|-----------|--------|----------|---------|
|                | precision | recall | f1-score | support |
| angry          | 0.63      | 0.55   | 0.59     | 958     |
| disgusted      | 0.52      | 0.55   | 0.53     | 111     |
| fearful        | 0.55      | 0.43   | 0.48     | 1024    |
| happy          | 0.86      | 0.88   | 0.87     | 1774    |
| neutral        | 0.58      | 0.69   | 0.63     | 1233    |
| sad            | 0.55      | 0.56   | 0.55     | 1247    |
| surprised      | 0.78      | 0.79   | 0.79     | 831     |
|                |           |        |          |         |
| accuracy       |           |        | 0.67     | 7178    |
| macro avg      | 0.64      | 0.64   | 0.63     | 7178    |
| weighted avg   | 0.67      | 0.67   | 0.67     | 7178    |
|                |           | ·      |          |         |

# Оценка качества моделей(ResNet18)





| Classification | Report:   |        |          |         |
|----------------|-----------|--------|----------|---------|
|                | precision | recall | f1-score | support |
| angry          | 0.47      | 0.60   | 0.53     | 958     |
| disgusted      | 0.56      | 0.27   | 0.36     | 111     |
| fearful        | 0.48      | 0.33   | 0.39     | 1024    |
| happy          | 0.84      | 0.87   | 0.85     | 1774    |
| neutral        | 0.56      | 0.63   | 0.59     | 1233    |
| sad            | 0.51      | 0.47   | 0.49     | 1247    |
| surprised      | 0.72      | 0.73   | 0.73     | 831     |
|                |           |        |          |         |
| accuracy       |           |        | 0.62     | 7178    |
| macro avg      | 0.59      | 0.56   | 0.56     | 7178    |
| weighted avg   | 0.62      | 0.62   | 0.61     | 7178    |

### Перевод модели в формат ONNX



Формат ONNX
позволяет моделям
машинного
обучения работать
на разных
платформах

#### Диаграмма пайплайна инференса(EfficientNet, ResNet18)





#### Примеры распознавания(EfficientNet, ResNet18)















EfficientNet



Для обучения модели Yolo11n сократим кол-во изображений в обучающей выборке, чтобы сократить время обучения. Из каждого класса обучающего датасета возьмем не более 1500 фото. Кроме этого создадим новые папки test, train, validation. В них переместим изображения подпапку images, а в подпапку labels поместим файл с bounding box.



```
train path = images path / "train"
validation path = images path / "validation"
test path = images path / "test"
class_names = ['angry', 'disgusted', 'fearful', 'happy', 'neutral', 'sad', 'surprised']
for path in [train path, validation path, test path]:
    yolo images = path / "images"
    yolo labels = path / "labels"
    for dir name in class names:
        file count = 0
        dir path = path / dir name
        for root, dir, files in os.walk(dir path):
            for file in files:
                if file count >= 1500 and path == train path:
                    break
                if not os.path.exists(yolo_images):
                   os.makedirs(yolo images)
                if not os.path.exists(yolo labels):
                   os.makedirs(yolo labels)
                file count +=1
                shutil.copy(os.path.join(root, file), yolo images / f"{dir name} {file}")
                label file = open(yolo labels / f"{dir name} {os.path.splitext(file)[0]}.txt", "w+")
                label file.write(f"{class names.index(dir name)} 0.48 0.48 1.0 1.0")
                label file.close()
```



Подберем для модели гиперпараметры аугментации с помощью

model.tune()

```
search space = {
    "lr0": (1e-5, 1e-1),
    "degrees": (0.0, 90.0),
    "hsv h" : (0.0, 0.1),
    "hsv s" : (0.0, 0.9),
    "hsv_v" : (0.0, 0.9),
    "mosaic" : (0.0, 0.0),
   "fliplr": (0.0, 1.0),
    "mixup": (0.0, 0.0),
    "copy paste": (0.0, 0.0),
    "scale" : (0.0, 0.9)
results = model.tune(
   data="dataset.yaml",
   epochs=3,
   iterations=20,
   optimizer="AdamW",
   space=search space,
   plots=False,
   save=False,
   val=False,
```

```
lr0: 0.01
degrees: 0.0
hsv_h: 0.01525
hsv_s: 0.70708
hsv_v: 0.4063
mosaic: 0.0
fliplr: 0.5024
mixup: 0.0
copy_paste: 0.0
scale: 0.5
```

Полученные гиперпараметры

#### Диаграмма пайплайна обучения(Yolo11n)





### Оценка качества моделей (Yolo11n)



| Class     | Images | Instances | Box(P | R     | mAP50 | mAP50-95): |
|-----------|--------|-----------|-------|-------|-------|------------|
| all       | 7178   | 7178      | 0.584 | 0.658 | 0.654 | 0.651      |
| angry     | 958    | 958       | 0.506 | 0.627 | 0.608 | 0.604      |
| disgusted | 111    | 111       | 0.544 | 0.613 | 0.614 | 0.612      |
| fearful   | 1024   | 1024      | 0.448 | 0.493 | 0.469 | 0.463      |
| happy     | 1774   | 1774      | 0.863 | 0.837 | 0.905 | 0.903      |
| neutral   | 1233   | 1233      | 0.548 | 0.656 | 0.641 | 0.636      |
| sad       | 1247   | 1247      | 0.491 | 0.542 | 0.518 | 0.514      |
| surprised | 831    | 831       | 0.691 | 0.836 | 0.825 | 0.823      |

Оценка на тестовой выборке



## Оценка качества моделей (Yolo11n)





Оценка на тестовой выборке

### Перевод модели в формат ONNX



```
model.export(format="onnx")

Ultralytics 8.3.163  Python-3.11.13 torch-2.6.0+cu124 CPU (Intel Xeon 2.20GHz)

PyTorch: starting from 'EmotionRec_Yolo11.pt' with input shape (1, 3, 640, 640) BCHW and output shape(s) (1, 11, 8400) (5.1 MB)

ONNX: starting export with onnx 1.18.0 opset 19...

ONNX: slimming with onnxslim 0.1.59...

ONNX: export success  2.6s, saved as 'EmotionRec_Yolo11.onnx' (10.1 MB)

Export complete (3.0s)

Results saved to /content

Predict: yolo predict task=detect model=EmotionRec_Yolo11.onnx imgsz=640

Validate: yolo val task=detect model=EmotionRec_Yolo11.onnx imgsz=640 data=dataset.yaml

Visualize: https://netron.app

'EmotionRec_Yolo11.onnx'
```

Формат ONNX позволяет моделям машинного обучения работать на разных платформах

#### Диаграмма пайплайна инференса(Yolo11n)





#### Примеры распознавания(Yolo11n)





fearful 0.9 ngry\_im1060.png

Настоящие классы

Предсказанные классы

#### Создание веб-интерфейса с помощью Gradio



```
gitattributes Safe
☐ EfficientNet.onnx  Safe

    README.md 
    Safe

Page ResNet18.onnx  

■ Safe
app.py ⊗ Safe
haarcascade_frontalface_default.xml Safe
requirements.txt Safe
```

```
gradio==5.35.0
gradio_client==1.10.4
moviepy==2.2.1
torch==2.7.1
ultralytics==8.3.40
opencv-python==4.11.0.86
onnx==1.18.0
onnxruntime==1.22.0
numpy==2.1.3
```

Файл requirements.txt

#### Создание веб-интерфейса с помощью Gradio



- Создается новое space в Hugging Face. Оно с помощью Git копируется на компьютер.
- В файле app.py пишется код интерфейса: функции для распознавания эмоций, нанесения результатов на кадр видео, сохранения нового видео и сам код интерфейса Gradio.
- Добавляется файл .gitingnore, в котором указываются расширения файлов, что не нужно добавлять в репозиторий
- Добавляются модуль детекции лица haarcascade\_frontalface\_default.xml и модели в формате ONNX
- В файле requirements.txt указываются все необходимые для работы библиотеки

#### Деплой веб-интерфейса



С помощью Git загружаем все файлы на Hugging Face. Ссылка



#### Заключение



- С помощью haarcascade\_frontalface\_default.xml можно эффективно детектировать лица на кадрах видео
- Были обучены три модели распознающие 7 эмоций
- Лучшие метрики на тестовой выборке дала EfficientNet (Test loss: 0.915, Test accuracy: 0.669)
- Все модели дали относительно похожие результаты
- ONNXRuntime значительно уменьшил время инференса моделей
- Был создан веб-интерфейс с помощью Gradio, который выводит считанные эмоции и процент уверенности. Его можно <u>посмотреть на Hugging Face</u>
- Для просмотра кода обучения и видео примеров работы распознавания моделей перейти в <u>GitHub репозиторий</u>



Спасибо за внимание!

