Introduction to virtualization

Heavy virtualization

Introduction

- A set of techniques to enable several Operating Systems (guests) on a physical machine (host)
 - Not to be confused with multi-boot
- Use of a specific program called Hypervisor or Virtual Machine Monitor (VMM)

Hardware

Hypervisor Zoo

- For servers
 - VMware ESXI
 - Nutanix AHV
 - Microsoft Hyper-V
 - Citrix Hypervisor (IBM)
 - QEMU/KVM
- For Clients
 - Oracle VirtualBox
 - VMWare player
 - Parallels Desktop

Why virtualization

- In the 90s, cost of servers decreased gradually
- Software editors (Microsoft, distribution Linux) advocate one application/service per server for mission critical services
 - One DNS server
 - One mail server
 - One NFS server
- Each server with specific OS version and libraries
- Servers isolation

Why virtualization

- Consequences
 - Plenty of servers in datacenters
 - But low usage
 - 80% have utilization < 10%
 - Maintenance/operation costs increase with number of servers
 - Lack of space in datacenters
 - Energy costs skyrocket

Why virtualization

- Compared to 90s, servers are very cheap and more powerful
 - 64 bits multi-core with 100s of GB of RAM
- Using one server per service is a waste of resources
- Placing multiple services on the same server
 - Makes economical/ecological sense
 - But must maintain isolation.
- Virtualization ensures
 - Cost reduction (20 to 40%) by reducing number of servers
 - More space in server room
- And virtualization brings new functionalities

New functionalities

Migrating VMs

- Migration of VM from one host to another
- Useful for
 - Planed downtime (physical server upgrade)
 - VM consolidation

1) Pause VII -> princete -> unpoux l'destroy original Down time 2) Copy von while running - destroy original inconsistent memory

copy MM while running pouse MM copy Modified wemory

Snapshoting VMs

- Save the complete state of the VM
 - OS and apps
- Useful for
 - Testing updates
 - Backups

Vertical scaling

- On the fly reconfiguration of VMs
 - Add CPU, memory, disks to the VM
 - Need support from the guest OS and application
- Aka Hot Add
 - Supported by RedHat Enterprise Linux, Windows Server

Hypervisors

Bare metal hypervisor

- Hypervisor comes in 2 types
- Bare Metal (Type 1)
- Run directly on top of hardware
 - Machine boots on hypervisor
 - Hypervisor starts OS
- Used in production servers and data centers
- Examples
 - VMware ESXI
 - Nutanix AHV
 - Microsoft Hyper-V
 - Citrix Hypervisor (IBM)

Host-based

- Host-based (type 2)
- Hypervisor is an application running inside an existing OS

• Typically deployed on end-user-machines

Light virtualization

Container-based

- Rather than using an hypervisor, the container approach shares the Kernel among VM
- Lightweight
- On a typical server
 - 10-100 VMs
 - 100-1000 Containers
- Containers engines
 - LXC (Linux Container, 2008)
 - Docker (2013)

VM

Container

Containers in Linux

- Dockers and LXC relies on kernel support
- A container is a group of process
 - Running on the host
 - In an isolated environment
- Specific mecanisms
 - namespaces to isolate processes
 - cgroups to assign resources (CPU share, memory limit...)

Containers vs VMs

- Containers
 - Look like a VM from inside
 - Look like a normal process from outside
- VM
 - Contains a complete operating system
- On the host
 - Heavy virtualization will hide processes with "top" or "ps"
 - With containers, application processes will be visible

Containers vs VM

• Source : *lost ...*

• Ships withing means physical delivery or download

	Ships within	Manual deployment takes	Automated deployment takes	Boots in
Bare Metal	days	hours	minutes	minutes
Virtualization	minutes	minutes	seconds	less than a minute
Lightweight Virtualization	seconds	minutes	seconds	seconds

Management

Management of VMs

- Management of VMs
 - Vmware, Nutanix, IBM can offer management of a handful nodes of the same vendor
- Vagrant: Management of VMs a hypervisor independent approach
 - Notion of images (boxes in Vagrant)
 - Provisioning of VM: Puppet, Chef, Ansible to configure automatically the VMs
 - A single file that includes everything

Vagrantfile (excerpt)

```
# -*- mode: rubv -*-
# vi: set ft=rubv :
# All Vagrant configuration is done below. The "2" in Vagrant.configure
# configures the configuration version (we support older styles for
# backwards compatibility). Please don't change it unless you know what
# vou're doing.
Vagrant.configure(2) do | config|
  # The most common configuration options are documented and commented below.
  # For a complete reference, please see the online documentation at
  # https://docs.vagrantup.com.
  # Every Vagrant development environment requires a box. You can search for
  # boxes at https://atlas.hashicorp.com/search.
  config.vm.box = "ubuntu/vivid64"
  # Disable automatic box update checking. If you disable this, then
  # boxes will only be checked for updates when the user runs
  # `vagrant box outdated`. This is not recommended.
  # config.vm.box check update = false
  # Create a forwarded port mapping which allows access to a specific port
  # within the machine from a port on the host machine. In the example below,
  # accessing "localhost:8080" will access port 80 on the guest machine.
   config.vm.network "forwarded port", quest: 5001, host: 5001
  # Create a private network, which allows host-only access to the machine
  # using a specific IP.
  # config.vm.network "private network", ip: "192.168.33.10"
```

Create a public network, which generally matched to bridged network.
Bridged networks make the machine appear as another physical device on

your network.

config.vm.network "public network"

Cloud platforms

- Manage VMs at larger scale
- Openstack
 - Each function (management of VM, network, volumes...) is a component
 - Components interact through REST API
 - Can manage mixed hypervisors

Orchestration of containers

- Manage containers
 - On a single host : Docker, LXC
 - On several hosts : Docker Swarm, Kubernetes

With Docker Swarm

