Série d'exercices

Exercice 1

- 1 Répondre par vrai ou faux
- Le mouvement et le repos sont des concepts relatifs
- Lors du mouvement circulaire uniforme le vecteur vitesse instantanée est constant.
- Lors du mouvement rectiligne uniforme le module de la vitesse instantanée est égale à la valeur de la vitesse moyenne.
- Pour décrire avec précision le mouvement curviligne d'un mobile, en doit choisir un repère d'espace unidimensionnel.
- **9** La période du mouvement circulaire uniforme est la durée pendant laquelle le mobile parcoure la distance $d = 2\pi R$. Où R est le rayon de trajectoire.
- La trajectoire est l'ensemble des positions occupées par le mobile au cours de son mouvement.
- La distance parcourue par une véhicule roule à la vitesse v = 45m/s pendant une demiheure est : d = 50m.
- **•** La vitesse ongulaire s'exprime par la relation suivante : $\omega = R.V$.

Exercice 2

Une voiture parcoure une distance d = 200km pendant une durée $\Delta t = 2h20min10s$ par rapport un référentiel terrestre.

3 Calculer la distance parcourue par cette voiture pendant un quart-d'heur?

Exercice 4

Une moto se déplace selon une trajectoire rectiligne avec un vitesse constante v = 120km/h par rapport à un référentiel terrestre.

- Quelle est la nature du mouvement de la moto?
- 2 Déterminer l'équation horaire du mouvement de la moto. Sachant qu'elle part d'un point d'abscisse $x_0 = 25m$ à l'instant $t_0 = 0s$.
- Déduire la distance parcourue par cette moto après 30min de départ .

Exercice 4

Le mouvement d'un cavalier sur une table à coussin d'air horizontale, a donné l'enregistrement suivant :

\vec{l}	<i>M</i> ₀	M ₁	M ₂	<i>M</i> ₃	M_4 χ
0	< 3cm >				

- Quelle est la nature du mouvement du cavalier ?
- ② Déterminer le module de la vitesse instantanée aux points M_1 et M_3 . On donne l'intervalle du temps séparant l'enregistrement de deux positions consécutives est : $\tau = 35ms$.
- **3** Calculer la vitesse moyenne du cavalier entre les points M_0 et M_4 et conclure ?
- ① Le cavalier part du point M_0 à la date $t_0 = 0s$. Déterminer l'équation horaire du mouvement du cavalier.

Série d'exercices

Exercice 5

On considère deux voitures A et B (supposées ponctuelles) en mouvement uniforme dans le même sens, sur une route rectiligne. La figure dessus.

On étudie le mouvement de deux voitures par rapport à un repère $R(0,\vec{t})$ lié à la route et d'origine 0 et d'axe des abscisses (0,x) orienté selon la direction du mouvement de deux voitures.

Les valeurs respectivement de leurs vitesses sont : $V_A = 100km/h$ et $V_B = 140km/h$. À l'instant $t_0 = 0s$, la voiture B se trouve au point O, tandis que la voiture A se trouve en un point D dont l'abscisse est D00D1.

- **1** Donner les valeurs des vitesses V_A et V_B en m/s.
- 2 Écrire l'équation horaire du mouvement de chacune des voitures.
- § Les deux voitures atteignent un point C à un instant t_C . Déterminer la date t_C et déduire l'abscisse x_C du point C

Exercice 6

Le mouvement d'un cavalier sur une table à coussin d'air horizontale, a donné l'enregistrement ci-contre :

- Quelle est la nature de la trajectoire entre les positions M_0 et M_3 , et entre les positions M_4 et M_6 ?
- 2 Calculer les valeurs de la vitesse instantanée du cavalier aux points M_1 , M_2 , M_4 et M_6 .
- © Quelle est la nature du mouvement entre les positions M_1 et M_2 , et entre les positions M_5 et M_6 .
- **1** Représenter les vecteurs vitesses instantanées aux positions M_1 et M_5 .

Données

- La distance entre deux positions successives : $M_iM_{i+1} = 1cm$
- La durée entre deux enregistrements successifs : $\tau = 20ms$

Exercice 7

La figure ci-contre représente l'évolution temporelle de l'abscisse x de éclateur central d'un autoporteur en mouvement sur une table à coussin d'air horizontale.

- 🛚 Quelle est la nature du mouvement de l'éclateur ?
- **2** Déterminer la valeur de la vitesse de l'éclateur .
- 3 Déduire l'équation horaire du mouvement de l'éclateur.
- ① Déterminer l'abscisse de l'éclateur à la date t = 40ms.
- **5** À quelle date l'abscisse de l'éclateur vaut x = 120cm

Physique TC Page 46

