Università degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE220

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi

Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

Tutorato 4 (7 Aprile 2011) Spazi di Hausdorff e Compattezza

- 1. Dimostrare che l'essere T_1 (rispettivamente T_2) è una proprietà topologica per uno spazio X.
- 2. Dimostrare che uno spazio X è di Hausdorff se e solo se la diagonale $\Delta = \{(x, x) : x \in X\}$ è chiusa in $X \times X$.
- 3. Sia X uno spazio topologico. Dimostrare che se X è dotato della topologia cofinita allora X è compatto.
- 4. Date due topologie $\mathcal T$ e $\mathcal W$ su X con $\mathcal W<\mathcal T$ dire quali delle seguenti affermazioni è vera, motivando la risposta:
 - (a) se (X, \mathcal{T}) è compatto $\Rightarrow (X, \mathcal{W})$ è compatto;
 - (b) se (X, W) è compatto $\Rightarrow (X, T)$ è compatto.
- 5. Dire quali tra i seguenti spazi topologici sono compatti:
 - (a) lo spazio proiettivo reale $\mathbb{P}^n(\mathbb{R})$;
 - (b) \mathbb{R} rispettivamente con le topologie i_d, j_d, i_s, j_s .
- 6. Sia $X = D^2 \setminus \{(0,0)\}$:
 - (a) dimostrare che X non è compatto senza usare il corollario 9.13.
 - (b) dimostrare che X/ρ è compatto, dove $x \rho y \Leftrightarrow \exists \lambda \neq 0$ tale che $y = \lambda x$.
- 7. Sia X uno spazio topologico e siano K_1, \ldots, K_n sottoinsiemi di X. Dimostrare che, se K_1, \ldots, K_n sono compatti, allora $K_1 \cup \ldots \cup K_n$ è compatto.
- 8. Sia $X = M_2(\mathbb{R})$ lo spazio delle matrici 2×2 con la topologia indotta dall'omeomorfismo $M_2(\mathbb{R}) \approx \mathbb{R}^4$ che fa corrispondere la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ al vettore (a, b, c, d).

Siano $Y\subseteq X$ l'insieme delle matrici invertibili e $Z\subseteq X$ l'insieme delle matrici ortogonali. Provare che Y è un aperto e Z è un compatto.

9. Sia $f:X\to Y$ un'applicazione d'insiemi; il grafico di f è

$$\Gamma_f = \{(x, f(x)) \in X \times Y : x \in X\} \subsetneq X \times Y.$$

Dimostrare che se X e Y sono spazi topologici, Y di Hausdorff, ed f è continua, il grafico Γ_f è chiuso in $X \times Y$.

10. Sia $(\mathbb{R}, \mathcal{T})$ lo spazio topologico indotto dalla distanza $\underline{d} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ così definita:

$$\underline{d}(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|, \, \forall x,y \in \mathbb{R}.$$

- (a) Verificare che la successione $\{\frac{n}{n+1}\}_{n\in\mathbb{N}}$ converge a 1 in $(\mathbb{R},\underline{d})$.
- (b) Verificare che la successione $\{n\}_{n\in\mathbb{N}}$ non converge in $(\mathbb{R},\underline{d})$.