General Purpose Input/Output RGB LED and User Switch DHT11 Sensor Light Dependent Resistor LDR Interfacing

Getting started with Input-Output Ports

e-Yantra Team

Embedded Real-Time Systems (ERTS) Lab Indian Institute of Technology, Bombay

Getting started with ATmega 2560 Overview of Ports GPIO header

• AVR architecture based micro-controller.

- AVR architecture based micro-controller.
- Manufactured by Atmel (later bought by Microchip).

- AVR architecture based micro-controller.
- Manufactured by Atmel (later bought by Microchip).
- Uses 8-bit RISC architecture.

- AVR architecture based micro-controller.
- Manufactured by Atmel (later bought by Microchip).
- Uses 8-bit RISC architecture.
- Combines 256KB ISP flash memory, 8KB SRAM, 4KB EEPROM.

- AVR architecture based micro-controller.
- Manufactured by Atmel (later bought by Microchip).
- Uses 8-bit RISC architecture.
- Combines 256KB ISP flash memory, 8KB SRAM, 4KB EEPROM.
- Consists of 100 pins.

- AVR architecture based micro-controller.
- Manufactured by Atmel (later bought by Microchip).
- Uses 8-bit RISC architecture.
- Combines 256KB ISP flash memory, 8KB SRAM, 4KB EEPROM.
- Consists of 100 pins.
- Consists of 6 timers/counters, PWM, 4 UARTs, 16-channel 10 bit A/D converter and much more.

• Junctions where peripheral devices are connected.

- Junctions where peripheral devices are connected.
- Out of 100 pins 86 pins are used as Input/Output pins.

- Junctions where peripheral devices are connected.
- Out of 100 pins 86 pins are used as Input/Output pins.
- Pins are grouped together and are called as Port.

- Junctions where peripheral devices are connected.
- Out of 100 pins 86 pins are used as Input/Output pins.
- Pins are grouped together and are called as Port.
 - ATmega 2560 has ten 8-bit Ports

Port x;
$$x = A$$
 to F and H, J, K, L

- Junctions where peripheral devices are connected.
- Out of 100 pins 86 pins are used as Input/Output pins.
- Pins are grouped together and are called as Port.
 - ATmega 2560 has ten 8-bit Ports

Port x; x = A to F and H, J, K, L

2 ATmega 2560 has one 6-bit Port

Port G;

- Junctions where peripheral devices are connected.
- Out of 100 pins 86 pins are used as Input/Output pins.
- Pins are grouped together and are called as Port.
 - ATmega 2560 has ten 8-bit Ports

Port x; x = A to F and H, J, K, L

ATmega 2560 has one 6-bit Port

Port G;

- Junctions where peripheral devices are connected.
- Out of 100 pins 86 pins are used as Input/Output pins.
- Pins are grouped together and are called as Port.
 - ATmega 2560 has ten 8-bit Ports

Port x:

x = A to F and H, J, K, L

2 ATmega 2560 has one 6-bit Port

Port G;

All Port pins can be individually configured as Input/Output.

GPIO header on eYFi-Mega

GPIO header on eYFi-Mega

• RGB LED Interfacing (Common Anode):

- RGB LED Interfacing (Common Anode):
 - $\bullet \quad \mathsf{PHx} = 1 \to \mathsf{LED} \; \mathsf{OFF}.$

- RGB LED Interfacing (Common Anode):

 - $\bullet \quad \mathsf{PHx} = \mathsf{0} \to \mathsf{LED} \; \mathsf{ON}.$

- RGB LED Interfacing (Common Anode):

 - $\bullet \quad \mathsf{PHx} = \mathsf{0} \to \mathsf{LED} \; \mathsf{ON}.$

- RGB LED Interfacing (Common Anode):

 - **b** $PHx = 0 \rightarrow LED ON.$
- Switch Interfacing:
 - $\bullet \quad \mathsf{PE7} = 1 \to \mathsf{Switch} \ \mathsf{not} \ \mathsf{pressed}.$

- RGB LED Interfacing (Common Anode):

 - **b** $PHx = 0 \rightarrow LED ON.$
- Switch Interfacing:

 - **b** PE7 = $0 \rightarrow$ Switch pressed.

Assignment 1

Assignment 1

Problem Statement:

Follow the following Diwali pattern on RGB LED:

- Red
- Green
- Blue
- Yellow (Red + Green)
- Cyan (Green + Blue)
- Magenta (Blue + Red)

Repeat the cycle continuously.

Overview
Working Principle
Interfacing
Assignment

DHT11 Overview

Measures temperature and humidity

Overview Working Principl Interfacing Assignment

- Measures temperature and humidity
- Temperature Range: 0 to 50 deg. C (+/- 2 deg. C)

- Measures temperature and humidity
- Temperature Range: 0 to 50 deg. C (+/- 2 deg. C)
- Humidity Range: 20 to 95 % (+/- 5 %)

- Measures temperature and humidity
- Temperature Range: 0 to 50 deg. C (+/- 2 deg. C)
- Humidity Range: 20 to 95 % (+/- 5 %)
- Sampling Rate: 1 Hz (one reading every sec.)

- Measures temperature and humidity
- Temperature Range: 0 to 50 deg. C (+/- 2 deg. C)
- Humidity Range: 20 to 95 % (+/- 5 %)
- Sampling Rate: 1 Hz (one reading every sec.)
- Operating Voltage: 3 to 5 V

- Measures temperature and humidity
- Temperature Range: 0 to 50 deg. C (+/- 2 deg. C)
- Humidity Range: 20 to 95 % (+/- 5 %)
- Sampling Rate: 1 Hz (one reading every sec.)
- Operating Voltage: 3 to 5 V
- Max. Current drawn: 2.5 mA (while measurement)

Working

Working

Working

Pinout

Overview
Working Principle
Interfacing
Assignment

Overview Working Princip Interfacing Assignment

Assignment 2

Problem Statement: Printing the values of DHT11 on Serial Monitor

- Problem Statement: Printing the values of DHT11 on Serial Monitor
 - DHT11 Data Pin » PA3 [25]

- Problem Statement: Printing the values of DHT11 on Serial Monitor
 - DHT11 Data Pin » PA3 [25]
- Code:

- Problem Statement:
 - Printing the values of DHT11 on Serial Monitor
 - DHT11 Data Pin » PA3 [25]
- Code:

- Problem Statement:
 - Printing the values of DHT11 on Serial Monitor
 - DHT11 Data Pin » PA3 [25]
- Code:

• It is an electronic device which is responsive to light

- It is an electronic device which is responsive to light
- The resistance values of LDR:

- It is an electronic device which is responsive to light
- The resistance values of LDR:
 - O Darkness: several mega-ohms

- It is an electronic device which is responsive to light
- The resistance values of LDR:
 - ① Darkness: several mega-ohms
 - ② Brightness: hundred ohms

- It is an electronic device which is responsive to light
- The resistance values of LDR:
 - ① Darkness: several mega-ohms
 - ② Brightness: hundred ohms

ADC Header LDR circuit diagram Assignment Assignment

ADC Header on eYFi-Mega Board

ADC Header LDR circuit diagran Assignment Assignment

ADC Header on eYFi-Mega Board

									_
	PF1	PF3	PF5	PF7	PK1	РК3	PK5	РК7	
	ADC1	ADC3	ADC5	ADC7	ADC9	ADC11	ADC13	ADC15	
	ADC0	ADC2	ADC4	ADC6	ADC8	ADC10	ADC12	ADC14	
П	PF0	PF2	PF4	PF6	PK0	PK2	PK4	PK6	Γ
	37 976 9 4	Son Son	Š Sv	3 5 7 2 4 6	9 11 13 8 10 12			N. S.	
SND PC3	S P	b ND C2	Í				G G GP PA		GN PA
PC1 PG1 PD7	™ P	C0 G0 D6						va 🗰	PA: PA: PA:
PD5 PL7 PL2	™ P	D4 L6 L1				AVR_RE		J5 \overline 🔍	PJE PJE
PL0 PH2		H7				·.K	PC	7	PO PC
5V GND	UART	V USEF	R_SW ₹			(0040/914) (0040/915)	RICCALPHX	SPI	5V
RX3		X3 X2		E IC:	SP D		MIŞ MQ	si()	PB:
				_ [=		sç ,		PB ‱

ADC Header LDR circuit diagram Assignment Assignment

Interfacing Diagram

Interfacing Diagram

ADC Header LDR circuit diagram Assignment Assignment

ADC Header LDR circuit diagramates Assignment Assignment

Assignment 3

Problem Statement: Printing the values of LDR in Serial Monitor

Problem Statement:

Printing the values of LDR in Serial Monitor

LDR Pin » A0

- Problem Statement: Printing the values of LDR in Serial Monitor
 - LDR Pin » A0
- Code:

- Problem Statement:
 - Printing the values of LDR in Serial Monitor
 - LDR Pin » A0
- Code:

```
//Select the input pin for LDR
SensorPin = A0;

//Getting LDR values using the function analogRead()
SensorVal = analogRead(SensorPin);

//Printing the values in Serial Monitor
Serial.println(SensorVal);
```


- Problem Statement:
 - Printing the values of LDR in Serial Monitor
 - LDR Pin » A0
- Code:

```
//Select the input pin for LDR
SensorPin = A0;

//Getting LDR values using the function analogRead()
SensorVal = analogRead(SensorPin);

//Printing the values in Serial Monitor
Serial.println(SensorVal);
```


ADC Header LDR circuit diagram Assignment Assignment

ADC Header LDR circuit diagram Assignment Assignment

Assignment 4

• Problem Statement: Setting threshold for turning the LED On or Off

Problem Statement:

- LDR Pin » A0
- LED Pin » 6

Problem Statement:

- LDR Pin » A0
- LED Pin » 6
- Code:

Problem Statement:

- LDR Pin » A0
- LED Pin » 6
- Code:

```
//setting led as output
pinMode(13, OUTPUT)

//logic for turning the led on or off
if(SensorVal < threshold)
=>> turn on led
else
=>> turn off led
```


Problem Statement:

- LDR Pin » A0
- LED Pin » 6
- Code:

```
//setting led as output
pinMode(13, OUTPUT)

//logic for turning the led on or off
if(SensorVal < threshold)
=>> turn on led
else
=>> turn off led
```


ADC Header LDR circuit diagran Assignment Assignment

Thank You!

Post your queries on: helpdesk@e-yantra.org

