

Q

Log In

Sign Up

Dashboard > Algorithms > Strings > Determining DNA Health

Determining DNA Health

Problem

Submissions

Leaderboard

Discussions

Editorial 🖴

DNA is a nucleic acid present in the bodies of living things. Each piece of DNA contains a number of *genes*, some of which are beneficial and increase the DNA's *total health*. Each gene has a *health value*, and the *total health* of a DNA is the sum of the health values of all the beneficial genes that occur as a substring in the DNA. We represent genes and DNA as non-empty strings of lowercase English alphabetic letters, and the same gene may appear multiple times as a susbtring of a DNA.

Given the following:

- An array of beneficial gene strings, $genes = [g_0, g_1, \dots, g_{n-1}]$. Note that these gene sequences are *not* guaranteed to be distinct.
- An array of gene health values, $health = [h_0, h_1, \dots, h_{n-1}]$, where each h_i is the health value for gene g_i .
- A set of s DNA strands where the definition of each strand has three components, first, last, and d, where string d is a DNA for which genes $g_{start}, \ldots, g_{end}$ are healthy.

Find and print the respective total healths of the *unhealthiest* (minimum total health) and *healthiest* (maximum total health) strands of DNA as two space-separated values on a single line.

Input Format

The first line contains an integer, n, denoting the total number of genes.

The second line contains n space-separated strings describing the respective values of $g_0, g_1, \ldots, g_{n-1}$ (i.e., the elements of *genes*).

The third line contains n space-separated integers describing the respective values of $h_0, h_1, \ldots, h_{n-1}$ (i.e., the elements of health).

The fourth line contains an integer, s, denoting the number of strands of DNA to process.

Each of the s subsequent lines describes a DNA strand in the form start end d, denoting that the healthy genes for DNA strand d are $g_{start}, \ldots, g_{end}$ and their respective correlated health values are $h_{start}, \ldots, h_{end}$.

Constraints

- $1 \le n, s \le 10^5$
- $0 \le h_i \le 10^7$
- $0 \le first \le last < n$
- $1 \le$ the sum of the lengths of all genes and DNA strands $\le 2 \times 10^6$
- It is guaranteed that each g_i consists of lowercase English alphabetic letters only (i.e., a to z).

Output Format

Print two space-separated integers describing the respective total health of the unhealthiest and the healthiest strands of DNA.

Sample Input 0

Sample Output 0

0 19

Explanation 0

In the diagrams below, the ranges of beneficial genes for a specific DNA on the left are highlighed in *green* and individual instances of beneficial genes on the right are bolded. The total healths of the s = 3 strands are:

1.

d = caaab, first = 1, last = 5												
indices	0	1	2	3	4	5]					
genes	a	b	С	aa	d	b	gene	c aaab	c aa ab	ca aa b	caaa b	caaa b
health	1	2	3	4	5	6	value	3	4	4	2	6

The total health of caaab is 3+4+4+2+6=19.

2.

d = xyz, first = 0, last = 4												
indices	0	1	2	3	4	5						
genes	а	b	С	aa	d	b	gene	xyz				
health	1	2	3	4	5	6	value	0				

The total health of xyz is 0, because it contains no beneficial genes.

3.

d = bcdybc, first = 2, last = 4												
indices	0	1	2	3	4	5] .					
genes	а	b	С	aa	d	b	gene	b c dybc	bc d ybc	bcdyb c		
health	1	2	3	4	5	6	value	3	5	3		

The total health of bcdybc is 3 + 5 + 3 = 11.

The unhealthiest DNA strand is xyz with a total health of **0**, and the healthiest DNA strand is caaab with a total health of **19**. Thus, we print 0 19 as our answer.

f in

Submissions: 1426

Max Score: 50

Difficulty: Hard

Rate This Challenge:

ななななな

Need Help? Get advice from the discussion forum for this challenge. Or check out the environments page

```
1  #include <bits/stdc++.h>
2
3  using namespace std;
4
5  int main(){
6  int n;
```

```
7
        cin >> n;
        vector<string> genes(n);
 8
        for(int genes_i = 0; genes_i < n; genes_i++){</pre>
 9 ▼
           cin >> genes[genes_i];
10 ▼
11
12
        vector<int> health(n);
        for(int health_i = 0; health_i < n; health_i++){</pre>
13 ▼
           cin >> health[health_i];
14 ▼
15
        }
16
        int s;
17
        cin >> s;
        for(int a0 = 0; a0 < s; a0++){
18 ▼
            int first;
19
            int last;
20
21
            string d;
22
            cin >> first >> last >> d;
23
            // your code goes here
24
25
        return 0;
26
27
                                                                                                                                      Line: 1 Col: 1
```

Test against custom input

Run Code

Submit Code

Copyright © 2017 HackerRank. All Rights Reserved

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Interview Prep | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature