Ford-Fulkerson Algorithm

Admin

- Assignment 6 is due next Wed 11 pm
 - Office and TA hours today
 - Come to get an early start
- Question 1 (Bookshelf dynamic programming question)
 - Review book partitioning question from class
 - Similar problem, different cost functions; no restriction on number of shelves/partitions

Story So Far

- Defined the max-flow and min-cut problem
- Relationship between flows and cuts. Let f be any s-t flow and (S,T) be any s-t cut then $v(f) \le c(S,T)$
 - Key idea in proof: when v(f) = c(S, T)?
 - When $f_{in}(S) = 0$ and $f_{out}(S) = c(S, T)$
 - That is no flow is entering cut S and all edges leaving it are fully saturated
- Max-flow min-cut theorem. Given any flow network G, there exists a feasible (s,t)-flow f and a (s,t)-cut (S,T) s.t., v(f)=c(S,T), and f is the max flow and (S,T) is the min cut

- Today: we will prove the max-flow min-cut theorem constructively
- We will design a max-flow algorithm and show that there is a s-t cut s.t. value of flow computed by algorithm = capacity of cut
- Let's start with a greedy approach
 - Push as much flow as possible down a *s-t* path
 - This won't actually work
 - But gives us a sense of what we need to keep track off to improve upon it

- Greedy strategy:
 - Start with f(e) = 0 for each edge
 - Find an $s \sim t$ path P where each edge has f(e) < c(e)
 - "Augment" flow (as much as possible) along path P
 - Repeat until you get stuck
- Let's take an example

- Start with f(e) = 0 for each edge
- Find an $s \leadsto t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \leadsto t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \leadsto t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path $m{P}$
- Repeat until you get stuck

Is this the best we can do?

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

- Start with f(e) = 0 for each edge
- Find an $s \leadsto t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path ${\it P}$
- Repeat until you get stuck

max-flow value = 19

- Start with f(e) = 0 for each edge
- Find an $s \sim t$ path P where each edge has f(e) < c(e)
- "Augment" flow (as much as possible) along path P
- Repeat until you get stuck

max-flow value = 19

Why Greedy Fails

- Problem: greedy can never "undo" a bad flow decision
- Consider the following flow network

Why Greedy Fails

- Problem: greedy can never "undo" a bad flow decision
- Consider the following flow network
 - Unique max flow has $f(v \rightarrow w) = 0$
 - Greedy could choose $s \to v \to w \to t$ as first P

Summary: Need a mechanism to "undo" bad flow decisions

Ford-Fulkerson Algorithm

Ford Fulkerson: Idea

- Want to make "forward progress" while letting ourselves undo previous decisions if they're getting in our way
- Idea: keep track of where we can push flow
 - Can push more flow along an edge with remaining capacity
 - Can also push flow "back" along an edge that already has flow down it
- Need a way to systematically track these decisions

Residual Graph

- Given flow network G = (V, E, c) and a feasible flow f on G, the residual graph $G_f = (V, E_f, c_f)$ is defined as:
 - Vertices in G_f same as G
 - (Forward edge) For $e \in E$ with residual capacity $c_r = c(e) f(e) > 0$ create $e \in E_f$ with capacity c_r
 - (Backward edge) For $e \in E$ with f(e) > 0, create $e_{\text{reverse}} \in E_f$ with capacity f(e)

original flow network G

Flow Algorithm Idea

- Now we have a residual graph that lets us make forward progress or push back existing flow
- We will look for $s \leadsto t$ paths in G_f rather than G
- Once we have a path, we will "augment" flow along it similar to greedy
 - find bottleneck capacity edge on the path and push that much flow through it in $G_{\!f}$
- When we translate this back to G, this could mean either
 - We increment existing flow on an edge
 - Or we decrement flow on an edge ("push back existing flow")

Augmenting Path & Flow

- An augmenting path P is a simple $s \leadsto t$ path in the residual graph G_f
- The **bottleneck capacity** b of an augmenting path P is the minimum capacity of any edge in P.

The path P is in G_f

```
AUGMENT(f, P)
```

 $b \leftarrow$ bottleneck capacity of augmenting path P.

FOREACH edge $e \in P$:

IF $(e \in E, that is, e is forward edge)$

Increase f(e) in G by b

ELSE

Decrease f(e) in G by b

RETURN f.

Updating flow in G

Ford-Fulkerson Algorithm

- Start with f(e) = 0 for each edge $e \in E$
- Find a simple s
 ightharpoonup t path P in the residual network G_f
- Augment flow along path P
- Repeat until you get stuck

```
FORD–FULKERSON(G)

FOREACH edge e \in E: f(e) \leftarrow 0.

G_f \leftarrow residual network of G with respect to flow f.

WHILE (there exists an s \sim t path P in G_f)

f \leftarrow \text{AUGMENT}(f, P).

Update G_f.

RETURN f.
```


residual network Gf

P in residual network Gf

residual network Gf

P in residual network Gf

residual network Gf

P in residual network Gf

residual network Gf

Analysis: Ford-Fulkerson

Analysis Outline

- Feasibility and value of flow:
 - Show that each time we update the flow, we are routing a feasible s-t flow through the network
 - And that value of this flow increases each time by that amount
- Optimality:
 - Final value of flow is the maximum possible
- Running time:
 - How long does it take for the algorithm to terminate?
- Space:
 - How much total space are we using

Feasibility of Flow

- Claim. Let f be a feasible flow in G and let P be an augmenting path in G_f with bottleneck capacity b. Let $f' \leftarrow \mathsf{AUGMENT}(f,P)$, then f' is a feasible flow.
- **Proof**. Only need to verify constraints on the edges of P (since f' = f for other edges). Let $e = (u, v) \in P$
 - If e is a forward edge: f'(e) = f(e) + b $\leq f(e) + (c(e) - f(e)) = c(e)$
 - If e is a backward edge: f'(e) = f(e) b $\geq f(e) - f(e) = 0$
- Conservation constraint hold on any node in $u \in P$:
 - $f_{in}(u) = f_{out}(u)$, therefore $f'_{in}(u) = f'_{out}(u)$ for both cases

Value of Flow: Making Progress

• Claim. Let f be a feasible flow in G and let P be an augmenting path in G_f with bottleneck capacity b. Let $f' \leftarrow \mathsf{AUGMENT}(f,P)$, then v(f') = v(f) + b.

Proof.

- First edge $e \in P$ must be out of s in G_f
- (P is simple so never visits s again)
- e must be a forward edge (P is a path from s to t)
- Thus f(e) increases by b, increasing v(f) by $b \blacksquare$
- Note. Means the algorithm makes forward progress each time!

Optimality

Ford-Fulkerson Optimality

- Recall: If f is any feasible s-t flow and (S,T) is any s-t cut then $v(f) \le c(S,T)$.
- We will show that the Ford-Fulkerson algorithm terminates in a flow that achieves equality, that is,
- Ford-Fulkerson finds a flow f^* and there exists a cut (S^*, T^*) such that, $v(f^*) = c(S^*, T^*)$
- Proving this shows that it finds the maximum flow (and the min cut)
- This also proves the max-flow min-cut theorem

Ford-Fulkerson Optimality

- **Lemma**. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f , then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.
- Proof.
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s-t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = u \rightarrow v$ with $u \in S^*, v \in T^*$, then what can we say about f(e)?

Recall: Ford-Fulkerson Example

Ford-Fulkerson Optimality

- **Lemma**. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f , then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.
- Proof.
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s-t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = u \rightarrow v$ with $u \in S^*, v \in T^*$, then what can we say about f(e)?
 - f(e) = c(e)

Ford-Fulkerson Optimality

- **Lemma**. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f , then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.
- Proof. (Cont.)
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s-t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = w \rightarrow v$ with $v \in S^*, w \in T^*$, then what can we say about f(e)?

Recall: Ford-Fulkerson Example

Ford-Fulkerson Optimality

- **Lemma**. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f , then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.
- Proof. (Cont.)
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Is this an *s-t* cut?
 - $s \in S, t \in T, S \cup T = V$ and $S \cap T = \emptyset$
- Consider an edge $e = w \to v$ with $v \in S^*, w \in T^*$, then what can we say about f(e)?
 - f(e) = 0

Ford-Fulkerson Optimality

- **Lemma**. Let f be a s-t flow in G such that there is no augmenting path in the residual graph G_f , then there exists a cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.
- Proof. (Cont.)
- Let $S^* = \{v \mid v \text{ is reachable from } s \text{ in } G_f\}$, $T^* = V S^*$
- Thus, all edges leaving S^{*} are completely saturated and all edges entering S^{*} have zero flow
- $v(f) = f_{out}(S^*) f_{in}(S^*) = f_{out}(S^*) = c(S^*, T^*) \blacksquare$
- Corollary. Ford-Fulkerson returns the maximum flow.

Ford-Fulkerson Algorithm Running Time

Ford-Fulkerson Performance

```
FORD—FULKERSON(G)

FOREACH edge e \in E : f(e) \leftarrow 0.

G_f \leftarrow residual network of G with respect to flow f.

WHILE (there exists an s \sim t path P in G_f)

f \leftarrow \text{Augment}(f, P).

Update G_f.

RETURN f.
```

- Does the algorithm terminate?
- Can we bound the number of iterations it does?
- Running time?

Ford-Fulkerson Running Time

- Recall we proved that with each call to AUGMENT, we increase value of flow by $b={\rm bottleneck}(G_f,P)$
- **Assumption**. Suppose all capacities c(e) are integers.
- Integrality invariant. Throughout Ford–Fulkerson, every edge flow f(e) and corresponding residual capacity is an integer. Thus $b \ge 1$.
- . Let $C = \max_{u} c(s \to u)$ be the maximum capacity among edges leaving the source s.
- It must be that $v(f) \le (n-1)C$
- Since, v(f) increases by $b \ge 1$ in each iteration, it follows that FF algorithm terminates in at most v(f) = O(nC) iterations.

Ford-Fulkerson Performance

```
FORD—FULKERSON(G)

FOREACH edge e \in E : f(e) \leftarrow 0.

G_f \leftarrow residual network of G with respect to flow f.

WHILE (there exists an s \sim t path P in G_f)

f \leftarrow \text{AUGMENT}(f, P).

Update G_f.

RETURN f.
```

- Operations in each iteration?
 - Find an augmenting path in $G_{\!f}$
 - Augment flow on path
 - Update G_f

Ford-Fulkerson Running Time

- Claim. Ford-Fulkerson can be implemented to run in time O(nmC), where $m = |E| \ge n 1$ and $C = \max_{u} c(s \to u)$.
- Proof. Time taken by each iteration:
- Finding an augmenting path in G_f
 - G_f has at most 2m edges, using BFS/DFS takes O(m+n)=O(m) time
- Augmenting flow in P takes O(n) time
- Given new flow, we can build new residual graph in O(m) time
- Overall, O(m) time per iteration

[Digging Deeper] Polynomial time?

- Does the Ford-Fulkerson algorithm run in time polynomial in the input size?
- Running time is O(nmC), where $C = \max_{u} c(s \to u)$
- What is the input size?
 - *n* vertices, *m* edges, *m* capacities
 - C represents the magnitude of the maximum capacity leaving the source node
 - How many bits to represent C?
- Let us take an example

[Digging Deeper] Polynomial time?

- **Question**. Does the Ford-Fulkerson algorithm run in polynomial-time in the size of the input? $\leftarrow m, n, \text{ and } \log C$
- Answer. No. if max capacity is C, the algorithm can take $\geq C$ iterations. Consider the following example.

[Digger Deeper] Pseudo-Polynomial

- Input graph has n nodes and $m=O(n^2)$ edges, each with capacity c_e
- $C = \max_{e \in E} c(e)$, then c(e) takes $O(\log C)$ bits to represent
- Input size: $\Omega(n \log n + m \log n + m \log C)$ bits
- Running time: $O(nmC) = O(nm2^{\log C})$
 - Exponential in the size of C
- Such algorithms are called pseudo-polynomial
 - If the running time is polynomial in the magnitude but not size of an input parameter.
 - We saw this for knapsack as well!

Non-Integral Capacities?

- If the capacities are rational, can just multiply to obtain a large integer (massively increases running time)
- If capacities are irrational, Ford-Fulkerson can run infinitely!
 - Improvement at each step can be arbitrarily small
 - Can create bad instances where it doesn't terminate in finite steps

Network Flow: Beyond Ford Fulkerson

Edmond and Karp's Algorithms

- Ford and Fulkerson's algorithm does not specify which path in the residual graph to augment
- Poor worst-case behavior of the algorithm can be blamed on bad choices on augmenting path
- Better choice of augmenting paths. In 1970s, Jack Edmonds and Richard Karp published two natural rules for choosing augmenting paths
 - Widest path first: paths with largest bottleneck capacity
 - Shortest (in terms of edges) augmenting paths first (Dinitz independently discovered & analyzed this rule)

Widest Augmenting Paths First

- Ford Fulkerson can be improved with a greedy algorithm way of choosing augmenting paths:
 - Choose the augmenting path with largest bottleneck capacity
- Largest bottleneck path can be computed in $O(m \log n)$ time in a directed graph
 - Similar to Dijkstra's analysis
- How many iterations if we use this rule?
 - Won't prove this: but takes $O(m \log C)$ iterations
- Overall running time is $O(m^2 \log n \log C)$ (polynomial time!)
 - Still depends on $oldsymbol{C}$ though

Shortest Augmenting Paths First

- Choose the augmenting path with the smallest # of edges
- Can be found using BFS on G_f in O(m+n)=O(m) time
- Surprisingly, this resulting a polynomial-time algorithm independent of the actual edge capacities!
- Analysis looks at "level" of vertices in the BFS tree of $\emph{G}_{\!f}$ rooted at s —levels only grow over time
- Analyzes # of times an edge u o v disappears from $G_{\!f}$
- Takes O(mn) iterations overall
- Thus overall running time is $O(m^2n)$

Progress on Network Flows

1951	$O(m n^2 C)$	Dantzig
1955	$O(m \ n \ C)$	Ford-Fulkerson
1970	$O(m n^2)$	Edmonds-Karp, Dinitz
1974	$O(n^3)$	Karzanov
1983	$O(m n \log n)$	Sleator-Tarjan
1985	$O(m n \log C)$	Gabow
1988	$O(m n \log (n^2 / m))$	Goldberg-Tarjan
1998	$O(m^{3/2}\log\left(n^2/m\right)\log C)$	Goldberg-Rao
2013	O(m n)	Orlin
2014	$\tilde{O}(m n^{1/2} \log C)$	Lee-Sidford
2016	$\tilde{O}(m^{10/7} C^{1/7})$	Mądry
2017	$\tilde{O}(m^{10/7}\log W)$	Cohen-Mad For unit capacity
		networks

Summary

- Given a flow network with integer capacities, the **maximum** flow and minimum cut can be computed in O(mn) time.
- Next. Network flow applications!

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf)
 - Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)