Mục lục

1	Cnu	an oi	- 1
	1.1	Kiến thức về giải tích	1
	1.2	Sai số làm tròn và số học máy tính	3
	1.3	Thuật toán và sự hội tụ	3
	1.4	Python: ngôn ngữ tính toán và lập trình	3
	1.5	Python + VS Code: giải tích và đai số	11
2	Giải	phương trình một biến	22
	2.1	Phương pháp chia đôi	22
	2.2	Phương pháp Newton và mở rộng	24
	2.3	Lặp điểm bất động	30
	2.4	Phân tích sai số của các phương pháp lặp	34
	2.5	Tăng tốc độ hội tụ	34
	2.6	Nghiệm của đa thức và phương pháp Müller	35
3	Nội	suy và xấp xỉ bằng đa thức	36
	3.1	Nội suy tổng quát	36
	3.2	Đa thức nội suy	37
	3.3	Xấp xỉ số liệu và phương pháp Neville	41
	3.4	Sai phân chia	41
	3.5	Nội suy Hermite	42
	3.6	Nội suy Newton	42
	3.7	Nội suy spline bậc ba	45
	3.8	Đường cong tham số	45
4	Đạo	hàm và tích phân bằng số	46
	4.1	Đạo hàm bằng số	47
	4.2	Ngoại suy Richardson	51
	4.3	Tích phân bằng số	51
	4.4	Tích phân Romberg	56

ii Mục lục

	4.5	Phương pháp câu phương thích ứng	56
	4.6	Cầu phương Gauss	56
	4.7	Tích phân bội	57
	4.8	Tích phân suy rộng	57
5	Bài t	oán giá trị ban đầu của phương trình vi phân thường	58
	5.1	Lý thuyết cơ bản về bài toán giá trị ban đầu	59
	5.2	Phương pháp Picard	60
	5.3	Phương pháp chuỗi Taylor	64
	5.4	Phương pháp Euler	67
	5.5	Phương pháp Taylor bậc cao	69
	5.6	Phương pháp Runge-Kutta	70
	5.7	Điều khiển sai số và phương pháp Runge-Kutta-Fehlberg	74
	5.8	Phương pháp đa bước	74
	5.9	Phương pháp đa bước với bước nhảy biến thiên	74
	5.10	Phương pháp ngoại suy	74
	5.11	Phương trình cấp cao và hệ phương trình vi phân	74
	5.12	Sự ổn định	74
	5.13	Phương trình vi phân cứng	74
6	Phư	ơng pháp trực tiếp giải hệ phương trình tuyến tính	68
	6.1	Hệ phương trình tuyến tính	68
	6.2	Chiến thuật chốt	69
	6.3	Đại số tuyến tính và ma trận nghịch đảo	69
	6.4	Định thức của ma trận	69
	6.5	Phân tích ma trận	69
	6.6	Các dạng ma trận đặc biệt	69
7	Kỹ th	nuật lặp trong đại số tuyến tính	70
	7.1	Chuẩn của véctơ và ma trận	70
	7.2	Giá trị riêng và véctơ riêng	72
	7.3	Lặp điểm bất động	72
	7.4	Kỹ thuật lặp Jacobi và Gauss–Seidel	76
	7.5	Ma trận nghịch đảo	79
	7.6	Kỹ thuật giảm dư giải hệ tuyến tính	80
	7.7	Giới hạn sai số và tinh chỉnh phép lặp	80
	7.8	Phương pháp gradient liên hợp	80

Mục lục iii

8	Lý tl	nuyết xấp xỉ	81
	8.1	Xấp xỉ bình phương nhỏ nhất	81
	8.2	Đa thức trực giao và xấp xỉ bình phương nhỏ nhất	85
	8.3	Đa thức Chebyshev và [Economization] chuỗi lũy thừa	86
	8.4	Xấp xỉ hàm hữu tỷ	86
	8.5	Xấp xỉ đa thức lượng giác	86
	8.6	Biến đổi Fourier nhanh	86
9	Xấp	xỉ giá trị riêng	84
	9.1	Đại số tuyến tính và giá trị riêng	84
	9.2	Ma trận trực giao và biến đổi đồng dạng	84
	9.3	Phương pháp lũy thừa	84
	9.4	Phương pháp Householder	84
	9.5	Thuật toán QR	84
	9.6	Phân tích giá trị kỳ dị	84
10	Ngh	iệm số của hệ phương trình phi tuyến	85
	10.1	Điểm bất động của hàm nhiều biến	85
	10.2	Phương pháp Newton	85
	10.3	Phương pháp tựa Newton	85
	10.4	Phương pháp độ dốc nhất	85
	10.5	Đồng luân và các phương pháp mở rộng	85
11	Bài	toán giá trị biên của phương trình vi phân thường	86
	11.1	Phương pháp bắn tuyến tính	86
	11.2	Phương pháp bắn cho bài toán phi tuyến	86
	11.3	Phương pháp sai phân hữu hạn cho bài toán tuyến tính	86
	11.4	Phương pháp sai phân hữu hạn cho bài toán phi tuyến	87
	11.5	Phương pháp Rayleigh–Ritz	87
12	Ngh	iệm số của phương trình đạo hàm riêng	88
	12.1	Phương trình đạo hàm riêng Elliptic	88
	12.2	Phương trình đạo hàm riêng Parabolic	89
	12.3	Phương trình đạo hàm riêng Hyperbolic	89
	12.4	Giới thiệu về phương pháp phần tử hữu hạn	89

Chương 7

Kỹ thuật lặp trong đại số tuyến tính

7.1 Chuẩn của véctơ và ma trân

Cho vécto $x \in (x_1, x_2, ..., x_n) \in \mathbb{R}^n$. Chuẩn $p \ (p \ge 1)$ của x là

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}.$$

Một số trường hợp đặc biệt:

a)
$$p = 2 \Rightarrow ||x||_2 = ||x|| = \sqrt{\sum_{i=1}^n |x_i|^2}$$
.

b)
$$p = 1 \Rightarrow ||x||_1 = \sum_{i=1}^n |x_i|.$$

c)
$$p = \infty \Rightarrow ||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$
.

Ví dụ 7.1. Tính các chuẩn p của x = (6, -2, 3) với $p = 1, 2, \infty$.

Giải.

$$||x|| = \sqrt{|6|^2 + |-2|^2 + |3|^2} = 7$$

 $||x||_1 = 6 + 2 + 3 = 11$
 $||x||_{\infty} = \max\{6, 2, 3\} = 6.$

```
import numpy as np
x = [6, -2, 3]

np.linalg.norm(x) # hoặc np.linalg.norm(x, 2)
np.linalg.norm(x, 1)
np.linalg.norm(x, np.inf)
```

Cho ma trận thực $A = (a_{ij})_{m \times n}$, chuẩn $p \ (p \ge 1)$ của A là

$$||A||_{p} = \sup_{x \neq \theta} \frac{||Ax||_{p}}{||x||_{p}}$$

trong đó $x \in \mathbb{R}^n$.

Các trường hợp đặc biệt

- a) $p = 2 \Rightarrow \|A\|_2 = \|A\| = \max_{1 \le i \le n} \sqrt{\lambda_i}$, trong đó λ_i là các giá trị riêng của $A^T A$.
- b) $p = 1 \Rightarrow ||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$
- c) $p = \infty \Rightarrow ||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$

Ví dụ 7.2. Tính các chuẩn
$$p$$
 của $A = \begin{bmatrix} 5 & 0 & 2 \\ 3 & -2 & -4 \end{bmatrix}$ với $p = 1, 2, \infty$.

Giải. a)
$$||A||_1 = \max\{|5| + |3|, |0| + |-2|, |2| + |-4|\} = \max\{8, 2, 6\} = 8.$$

b)
$$||A||_{\infty} = \max\{5+0+2, 3+2+4\} = 9.$$

c)
$$A^{T}A = \begin{bmatrix} 34 & -6 & -2 \\ -6 & 4 & 8 \\ -2 & 8 & 20 \end{bmatrix}$$
. Giải đa thức đặc trưng của $A^{T}A$: $P(\lambda) = -\lambda^{3} + 58\lambda^{2} - 4\lambda^{2}$

$$792\lambda=0 \Leftrightarrow \begin{bmatrix} \lambda=0\\ \lambda=22 \text{ , ta diroc } \|A\|=\max\{\sqrt{0},\sqrt{22},\sqrt{36}\}=6.\\ \lambda=36 \end{bmatrix}$$

```
import numpy as np

A = [[5, 0, 2], [3, -2, -4]]

np.linalg.norm(A, 1)

np.linalg.norm(A, np.inf)

np.linalg.norm(A, 2)
```

thinhnd@huce.edu.vn

[Drafting ⇒ Do not Print]

Nguyễn Đức Thinh

Ở đây lệnh np.linalg.norm(A) cho chuẩn Frobenius của A

$$||A||_F = ||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}.$$

7.2 Giá trị riêng và véctơ riêng

7.3 Lặp điểm bất động

Xét hệ

$$X = BX + g \tag{*}$$

trong đó $x=(x_1,x_2,\ldots,x_n)^T\in\mathbb{R}^n$, $B=\left(b_{ij}\right)_n$, $g=(g_1,g_2,\ldots,g_n)^T$. Phương trình này có dạng khai triển

$$\begin{cases} x_1 &= b_{11}x_1 + b_{12}x_2 + \cdots + b_{1n}x_n + g_1 \\ x_2 &= b_{21}x_1 + b_{22}x_2 + \cdots + b_{2n}x_n + g_2 \\ & & & & \\ x_n &= b_{n1}x_1 + b_{n2}x_2 + \cdots + b_{nn}x_n + g_n \end{cases}$$

hoặc tổng quát

$$\begin{cases} x_i = \left(\sum_{j=1}^n b_{ij} x_j\right) + g_i \\ i = \overline{1, n}. \end{cases}$$

Giả sử

$$q = \|B\|_{\infty} < 1. \tag{7.1}$$

Khi đó

- a) (*) có nghiệm duy nhất $x^* = (x_1^*, x_2^*, \dots, x_n^*)$.
- b) Xét dãy véctơ nghiệm xấp xỉ $x^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}\right)$:
 - i) $x^{(0)} \in \mathbb{R}^n$ bất kỳ, thường chọn $x^{(0)} = \theta$.
 - ii) Công thức lặp

$$x^{(k+1)} = Bx^{(k)} + g, \ k = 0, 1, ...$$
 (7.2)

thì

i)
$$\lim_{k\to\infty} x^{(k)} = x^*.$$

Nguyễn Đức Thịnh

[Drafting ⇒ Do not Print]

thinhnd@huce.edu.vn

ii) Công thức đánh giá sai số: $\forall k \geq 1$ ta có

$$||x^{(k)} - x^*||_{\infty} \le \frac{q^k}{1 - q} ||x^{(1)} - x^{(0)}||_{\infty} ||x^{(k)} - x^*||_{\infty} \le \frac{q}{1 - q} ||x^{(k)} - x^{(k-1)}||_{\infty}.$$
(7.3)

Giả sử trong công thức lặp đơn, tại mỗi bước, các thành phần vừa tính được dùng luôn để tính thành phần kế tiếp. Khi đó ta có công thức Seidel với tốc độ hội tụ nhanh hơn:

$$\begin{cases} x_i^{(k+1)} = \left(\sum_{j < i} b_{ij} x_j^{(k+1)} \right) + \left(\sum_{j \ge i} b_{ij} x_j^{(k)} \right) + g_i \\ i = \overline{1, n} \end{cases}$$
 (7.4)

hay dạng khai triển

$$\begin{cases} x_1^{(k+1)} &= b_{11}x_1^{(k)} + b_{12}x_2^{(k)} + \cdots \\ x_2^{(k+1)} &= b_{21}x_1^{(k+1)} + b_{22}x_2^{(k)} + \cdots \\ x_3^{(k+1)} &= b_{31}x_1^{(k+1)} + b_{32}x_2^{(k+1)} + b_{33}x_3^{(k)} + \cdots \\ x_n^{(k+1)} &= b_{n1}x_1^{(k+1)} + b_{n2}x_2^{(k+1)} + \cdots \\ x_n^{(k+1)} &= b_{n1}x_1^{(k+1)} + b_{n2}x_1^{(k+1)} + \cdots \\ x_n^{(k+1)} &= b_{n1}x_1^{(k+1)} + b_{n2}x_1^{(k+1)} + \cdots \\ x_n^{(k+1)} &= b_{n1}x_1$$

Ví dụ 7.3. Cho hệ phương trình
$$\begin{cases} x_1 = -0.21x_1 - 0.28x_2 + 0.05x_3 - 0.9 \\ x_2 = 0.19x_1 + 0.01x_2 - 0.26x_3 + 3.8 \\ x_3 = 0.39x_1 - 0.12x_2 - 0.06x_3 - 2.9 \end{cases}$$

- a) Kiểm tra điều kiện thực hiện phương pháp.
- b) Cho xấp xỉ ban đầu $x^{(0)} = (0, 2, -1)$, tìm nghiệm gần đúng sau 3 bước lặp.
- c) Tìm sai số của các nghiệm gần đúng ở trên.
- d) Tìm nghiệm gần đúng với sai số 10^{-3} .
- e) Để đạt được nghiệm với sai số 10^{-8} , cần thực hiện bao nhiều bước lặp.
- f) Áp dụng công thức Seidel, tìm nghiệm gần đúng sau 4 bước.

Giải. a) Đặt
$$B = \begin{bmatrix} -0.21 & -0.28 & 0.05 \\ 0.19 & 0.01 & -0.26 \\ 0.39 & -0.12 & -0.06 \end{bmatrix}, g = \begin{bmatrix} -0.9 \\ 3.8 \\ -2.9 \end{bmatrix}.$$

Ta có $q = ||B||_{\infty} = 0.57 < 1$

```
1 import numpy as np
B = np.array([[-0.21, -0.28, 0.05],
       [ 0.19, 0.01, -0.26],
[ 0.39, -0.12, -0.06]] )
g = [-0.9, 3.8, -2.9]
6 q = np.linalg.norm(B, np.inf)
```

b) Công thức lặp

$$\begin{cases} x_1^{(k+1)} &= & -0.21x_1^{(k)} & - & 0.28x_2^{(k)} & + & 0.05x_3^{(k)} & - & 0.9\\ x_2^{(k+1)} &= & 0.19x_1^{(k)} & + & 0.01x_2^{(k)} & - & 0.26x_3^{(k)} & + & 3.8\\ x_3^{(k+1)} &= & 0.39x_1^{(k)} & - & 0.12x_2^{(k)} & - & 0.06x_3^{(k)} & - & 2.9 \end{cases}$$

```
1 x = [0, 2, -1]
2 for _ in range(3):
x = B.dot(x) + g
   print(x)
```

c) Công thức sai số $\|x^{(k)} - x^*\|_{\infty} \le \varepsilon_k = \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\|_{\infty}$.

Hoàn thiện bảng ở ý (b):

```
1 \times 0 = [0, 2, -1] # lutu x^{(k-1)}
2 for _ in range(3):
    x = B.dot(x0) + g # x^{(k)}
    ss = q / (1-q) * np.linalg.norm(x - x0, np.inf)
                  # tiến thêm 1 bước
  print(x, ss)
6
```

d) Ta thực hiện các bước lặp đến khi sai số nhỏ hơn 10^{-3} .

k	$X_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$arepsilon_{m{k}}$
4	-1.94678	4.50225	-3.94766	0.0429861
5	-1.94919	4.50153	-3.96265	0.0198678
8	-1.95001	4.50491	-3.96338	0.000459243

Nghiêm gần đúng với sai số 10^{-3} là $x^{(8)} = (-1.95001, 4.50491, -3.96338)$.

```
1 \times 0 = [0, 2, -1]
2 k = 0
3 while True:
    x = B.dot(x0) + g
ss = q / (1-q) * np.linalg.norm(x - x0, np.inf)
x0 = x
k += 1
print(k, x, ss)
   if ss < 10**-3:
          break
```

e) Xét sai số theo công thức tiên nghiệm

$$\frac{q^{k}}{1-q} \|x^{(1)} - x^{(0)}\|_{\infty} < 10^{-8} \Rightarrow q^{k} < \frac{10^{-8} (1-q)}{\|x^{(1)} - x^{(0)}\|_{\infty}}$$
$$\Rightarrow k > \log_{q} \frac{10^{-8} (1-q)}{\|x^{(1)} - x^{(0)}\|_{\infty}} = 35.5744 \Rightarrow \text{ chọn } k = 36.$$

```
x0 = [0, 2, -1]

x1 = B.dot(x0) + g
3 from sympy import log
4 log( 10**-8 * (1-q) / np.linalg.norm(x1 - x0, np.inf)
```

f) Công thức Seidel

$$\begin{cases} x_1^{(k+1)} &= & -0.21x_1^{(k)} & - & 0.28x_2^{(k)} & + & 0.05x_3^{(k)} & - & 0.9 \\ x_2^{(k+1)} &= & 0.19x_1^{(k+1)} & + & 0.01x_2^{(k)} & - & 0.26x_3^{(k)} & + & 3.8 \\ x_3^{(k+1)} &= & 0.39x_1^{(k+1)} & - & 0.12x_2^{(k+1)} & - & 0.06x_3^{(k)} & - & 2.9 \end{cases}$$

$$k$$
 $x_1^{(k)}$ $x_2^{(k)}$ $x_3^{(k)}$ 002-11-1.513.7931-3.884072-1.839174.49835-3.924033-1.969514.49102-3.971594-1.942474.50845-3.96028

Kỹ thuật viết mã ở ý (b-e) của ví dụ này rất giống Ví dụ 2.5.

7.4 Kỹ thuật lặp Jacobi và Gauss-Seidel

Xét hệ

$$Ax = b \tag{*}$$

trong đó
$$x = (x_1, x_2, ..., x_n), A = (a_{ij})_n, b = (b_1, b_2, ..., b_n).$$

Giả sử *A chéo trội theo hàng*, tức là trên mỗi hàng, phần tử trên đường chéo chính có trị tuyệt đối lớn hơn tổng trị tuyệt đối các phần tử còn lại:

$$\begin{cases} |a_{ii}| > \sum_{j \neq i} |a_{ij}| \\ i = \overline{1, n} \end{cases}$$

Khi đó

$$(*) \Leftrightarrow \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, \ i = \overline{1, n}$$

$$\Leftrightarrow a_{ij} x_{i} = \left(-\sum_{j \neq i} a_{ij} x_{j} \right) + b_{i}, \ i = \overline{1, n}$$

$$\Leftrightarrow x_{i} = \left(-\sum_{j \neq i} \frac{a_{ij}}{a_{ii}} x_{j} \right) + \frac{b_{i}}{a_{ii}}, \ i = \overline{1, n}$$

Nguyễn Đức Thinh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn

Đặt

$$b_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}} & \text{n\'eu } i \neq j \\ 0 & \text{n\'eu } i = j \end{cases}, i, j = \overline{1, n}; \quad \text{v\`a}$$

$$g_i = \frac{b_i}{a_{ii}}, i = \overline{1, n}$$

$$(7.5)$$

thì

$$(*) \Leftrightarrow x_i = \left(\sum_{j=1}^n b_{ij} x_j\right) + g_i, \ i = \overline{1, n}$$
$$\Leftrightarrow x = Bx + g$$

trong đó

$$q = ||B||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |b_{ij}| = \max_{1 \le i \le n} \sum_{j \ne i} \left| -\frac{a_{ij}}{a_{ii}} \right| = \max_{1 \le i \le n} \frac{1}{|a_{ii}|} \sum_{j \ne i} |a_{ij}| < 1,$$

nên (*) giải được theo phương pháp lặp đơn.

```
a) (*) \Leftrightarrow \begin{cases} x = 0.0649351y + 0.409091z - 1.94805 \\ y = 0.388889x - 0.305556z + 2.31481 \\ z = 0.150943x - 0.333333y - 0.628931 \end{cases}
B = \begin{bmatrix} 0 & 0.0649351 & 0.409091 \\ 0.388889 & 0 & -0.305556 \\ 0.150943 & -0.333333 & 0 \end{bmatrix} \Rightarrow q = ||B||_{\infty} = 0.694444 < 1.
1 A = [[-15.4, 1, 6.3], [-4.2, 10.8, 3.3], [-2.4, 5.3, 15.9]]
2 b = [30, 25, -10]
3 m = lambda i, j: -A[i][j] / A[i][i] if i != j else 0
4 import numpy as np
g = [ b[i] / A[i][i] for i in range(3) ]
```

7 # Các lệnh tiếp theo giống Ví dụ 7.3, lưu ý xấp xỉ ban đầu
$$x_0 = y_0 = z_0 = 0$$

b–d) Công thức lặp

$$\begin{cases} x_{k+1} &= 0.0649351y_k &+ 0.409091z_k &- 1.94805 \\ y_{k+1} &= 0.388889x_k &- 0.305556z_k &+ 2.31481 \\ z_{k+1} &= 0.150943x_k &- 0.333333y_k &- 0.628931 \end{cases}$$

và sai số
$$\|X_k - X^*\|_{\infty} \le \frac{q}{1-q} \|X_k - X_{k-1}\|_{\infty}$$
, trong đó $X_k = (x_k, y_k, z_k), X^* = (x^*, y^*, z^*).$

k	x_k	Уk	Z_k	$\varepsilon_{\pmb{k}}$
0	0	0	0	
1	-1.94805	2.31481	-0.628931	5.26094
2	-2.05503	1.74941	-1.69458	2.42193
3	-2.52769	2.03343	-1.52226	1.07423
4	-2.43875	1.79696	-1.68828	0.537424
5	-2.52203	1.88227	-1.59603	0.209651
14	-2.49051	1.84063	-1.61858	0.000927176

Nghiệm gần đúng với sai số 10^{-3} là

$$x_{14} = -2.49051$$
, $y_{14} = 1.84063$, $z_{14} = -1.61858$.

e) Ta có

$$\begin{split} \frac{q^k}{1-q} \|X_1 - X_0\|_{\infty} < 10^{-8} \Rightarrow q^k < \frac{10^{-8} (1-q)}{\|X_1 - X_0\|_{\infty}} \\ \Rightarrow k > \log_q \frac{10^{-8} (1-q)}{\|X_1 - X_0\|_{\infty}} = 56.0703 \Rightarrow \text{ chọn } k = 57. \end{split}$$

f) Công thức Seidel

$$\begin{cases} x_{k+1} &= & 0.0649351 y_k & + & 0.409091 z_k & - & 1.94805 \\ y_{k+1} &= & 0.388889 x_{k+1} & - & 0.305556 z_k & + & 2.31481 \\ z_{k+1} &= & 0.150943 x_{k+1} & - & 0.3333333 y_{k+1} & - & 0.628931 \end{cases}$$

Nguyễn Đức Thinh

[DRAFTING ⇒ DO NOT PRINT] thinhnd@huce.edu.vn

k	x_k	Уk	Z_k
0	0	0	0
1	-1.94805	1.55724	-1.44206
2	-2.43686	1.80777	-1.59935
3	-2.48494	1.83714	-1.6164
4	-2.49001	1.84038	-1.61824

7.5 Ma trận nghịch đảo

Cho ma trận khả nghịch A. Để tìm $X = A^{-1}$, ta áp dụng công thức tương tự công thức lặp khi tìm nghịch đảo của số thực

$$X_{n+1} = X_n (2I - AX_n)$$

trong đó chọn X_0 thỏa mãn $|I - AX_0| < 1$, thường là nghiệm gần đúng thu được khi tính A^{-1} theo phương pháp Gauss. Ta cũng có

$$\begin{split} I - AX_{n+1} &= I - A \cdot X_n \left(2I - AX_n \right) = \left(I - AX_n \right)^2 \\ \Rightarrow I - AX_n &= \left(I - AX_0 \right)^{2^n} \Rightarrow A^{-1} - X_n = A^{-1} (I - AX_0)^{2^n} \\ \Rightarrow \left\| A^{-1} - X_n \right\| \leq \left\| A^{-1} \right\| \cdot \left\| I - AX_0 \right\|^{2^n} \xrightarrow[n \to \infty]{} 0 \Rightarrow X_n \xrightarrow[n \to \infty]{} A^{-1}. \end{split}$$

Ví dụ 7.5. Tính gần đúng
$$A^{-1}$$
 với $A = \begin{bmatrix} -2.9 & -4.5 & 3.5 \\ 1.1 & 0.3 & 3.3 \\ -1.4 & -4.8 & 3.6 \end{bmatrix}$, lặp tới khi hai ma trận xấp xỉ

liên tiếp của A^{-1} giống nhau tới năm chữ số thập phân tại mọi vị trí.

Giải. Chọn
$$X_0 = \begin{bmatrix} -0.6 & 0 & 0.6 \\ 0.3 & 0.2 & -0.5 \\ 0.2 & 0.3 & -0.1 \end{bmatrix}$$
, ta có $X_1 = \begin{bmatrix} -0.618 & 0.018 & 0.576 \\ 0.315 & 0.205 & -0.484 \\ 0.167 & 0.267 & -0.166 \end{bmatrix}$.

Sau 5 bước, hai ma trận đã giống nhau tới năm chữ số thập phân tại mọi vị trí

$$A^{-1} \simeq X_5 = \begin{bmatrix} -0.61599 & 0.0218436 & 0.578855 \\ 0.312363 & 0.201689 & -0.488569 \\ 0.176933 & 0.277414 & -0.148536 \end{bmatrix}.$$

```
import numpy as np
A = np.array( [[-2.9, -4.5, 3.5],
```

thinhnd@huce.edu.vn

[Drafting \Rightarrow Do not Print]

Nguyễn Đức Thinh

- 7.6 Kỹ thuật giảm dư giải hệ tuyến tính
- 7.7 Giới hạn sai số và tinh chỉnh phép lặp
- 7.8 Phương pháp gradient liên hợp

Tài liệu tham khảo

- [1] Phạm Kỳ Anh. Giải tích số. Đại học Quốc gia Hà Nội, 2002. 284 trang.
- [2] Richard L. Burden, Douglas J. Faires and Annette M. Burden. Numerical Analysis. phiên bản 10. Cengage Learning, 2016. 918 trang.
- [3] NumPy community. *NumPy User Guide*. phiên bản 1.22.0. 531 trang. URL: https://numpy.org/doc/stable.
- [4] SciPy community. *SciPy Reference Guide*. phiên bản 1.8.1. 3584 trang. URL: https://docs.scipy.org/doc.
- [5] Phan Văn Hạp **and** Lê Đình Thịnh. *Phương pháp tính và các thuật toán*. Nhà xuất bản Giáo dục, 2000. 400 trang.
- [6] Doãn Tam Hòe. Toán học tính toán. Đại học Quốc gia Hà Nội, 2009. 240 trang.
- [7] Matplotlib development team. *Matplotlib documentation*. phiên bản 3.5.1. URL: https://matplotlib.org/3.5.1/tutorials/index.html.
- [8] SymPy Development Team. *SymPy Documentation*. phiên bản 1.8. 2750 trang. URL: https://github.com/sympy/sympy/releases.

Tài liệu tham khảo