Домашнее задание 3

Отношение с атрибутами:

StudentId, StudentName, GroupId, GroupName, CourseId, CourseName, LecturerId, LecturerName, Mark.

1. Функциональные зависимости в данном отношении:

StudentId → StudentName
GroupId → GroupName
CourseId → CourseName
LecturerId → LecturerName

StudentId → GroupId
StudentId CourseId LecturerId → Mark
GroupId CourseId → LecturerId

2. Ключи

Возьмем множество атрибутов

StudentId, StudentName, GroupId, GroupName, CourseId, CourseName, LecturerId, LecturerName, Mark.

Воспользуемся первыми пяти функциональными зависимостями. По транзитивности: StudentId, CourseId, LecturerId, Mark

Воспользуемся шестой и седьмой функциональной зависимостью $StudentId \Rightarrow GroupId$

⇒GroupId →GroupId (самоопределение)

 \Rightarrow GroupId CourseId (дополнение)

⇒ LecturerId (транзитивность)

Аналогично из StudentId, CourseId выводится Mark Получили ключ {StudentId, CourseId}

3. Неприводимое множество функциональных зависимостей для данного отношения

- а) Расщипить правые части наших $\Phi 3$ мы не можем. Так как все правые части и так содержат по одному атрибуту
 - б) Рассмотрим правило GroupId CourseId → LecturerId:

 $GroupId_{S}^{+}=\{GroupId, GroupName\}$

 $CourseId_{S}^{+} = \{CourseId, CourseName\}$

Как мы видим оба замыкания не содержат LecturerId, следовательно данное правило упростить нельзя

в) Рассмотрим правило $StudentId\ CourseId\ LecturerId
ightarrow Mark$

 $StudentId_{S}^{+} = \{SudentId, StudentName, GroupId, GroupName\}$

То очевидно что это прависло можно сократить до

StudentId CourseId → Mark

Новых правил не появилось, все старые атрибуты так же выводятся.

г) Ни одно правило удалить нельзя.

Получаем неприводимое множество функциональных зависимостей.

StudentId → StudentName
GroupId → GroupName
CourseId → CourseName
LecturerId → LecturerName
StudentId → GroupId
GroupId CourseId → LecturerId
StudentId CourseId → Mark