1-3 任意角的三角函數

一、廣義角(任意角)

1. 標準位置角

將有向角的頂點與直角坐標系的原點重合,始邊置於x軸正向上,所形成之角即稱為「標準位置角」,通常以 θ 表示。

- 2. 象限角
 - (1) 第一象限角 滿足 $0^{\circ} < \theta < 90^{\circ}$ 的角即稱為第一象限角,即滿足 (n為整數)。
 - (2) 第二象限角 滿足 $90^{\circ} < \theta < 180^{\circ}$ 的角即稱為第二象限角,即滿足______(n為整數)。
 - (3) 第三象限角 滿足 $180^{\circ} < \theta < 270^{\circ}$ 的角即稱為第三象限角,即滿足______(n為整數)。
 - (4) 第四象限角 滿足 $270^{\circ} < \theta < 360^{\circ}$ 的角即稱為第四象限角,即滿足______(n為整數)。
- 3. 軸上角 當θ角的終邊落在軸上時稱為「軸上角」。

二、廣義角三角函數

1. 定義

(1)
$$\sin \theta = \frac{y}{r}$$
 (2) $\cos \theta = \frac{x}{r}$ (3) $\tan \theta = \frac{y}{x} \ (x \neq 0)$

(4)
$$\cot \theta = \frac{x}{y} \ (y \neq 0)$$
 (5) $\sec \theta = \frac{r}{x} \ (x \neq 0)$ (6) $\csc \theta = \frac{r}{y} \ (y \neq 0)$

正負由P點的x、y決定。(原因:

三、象限角的函數

1. 象限角的正負號

〈才字記法〉

	I	II	III	IV
$\sin \theta \cdot \csc \theta$				
$\cos \theta \cdot \sec \theta$				
$\tan \theta \cdot \cot \theta$				

2. 軸上角的函數

	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\cot \theta$	$\sec \theta$	$\csc \theta$
0°						
90°						
180°						
270°						

四、廣義角化簡至銳角

假設平面上有一個廣義角A:

Stepl. 將角A化成 $90^{\circ} \times n \pm \theta$ 的形式(n為整數)。

Step3. θ角照抄。

Step4. 依原函數決定正負號。

- e.g. 將下列三角函數的廣義角化簡至銳角,並求出其三角函數值。
- (1) $\sin 450^{\circ}$ (2) $\tan 570^{\circ}$ (3) $\cos(-390^{\circ})$