TD entraînement : oscillateurs en RSF

Résonance d'un circuit bouchon

On considère le circuit RLC représenté ci-contre, composé d'un résistor, de résistance R, d'une bobine idéale d'inductance L, d'un condensateur idéal, de capacité C, alimenté par une source idéale de tension, de f.e.m. e(t) $e(t) = E_0 \cos(\omega t)$. On se place en régime sinusoïdal forcé.

- 1) Exprimer l'amplitude complexe \underline{U} de u(t) en fonction de E_0 , R, L, C et ω .
- 2) Établir qu'il existe un phénomène de résonance pour la tension u(t). Préciser la pulsation ω_0 à laquelle ce phénomène se produit et la valeur de l'amplitude réelle de u(t) à cette pulsation.
- 3) Mettre l'amplitude réelle U de u(t) sous la forme :

$$U = \frac{E_0}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$$

avec Q un facteur sans dimension à exprimer en fonction de R,L et C.

- 4) Exprimer la bande passante $\Delta\omega$ de cette résonance en fonction de Q et ω_0 .
- 5) En déduire les valeurs numériques de C et E_0 à l'aide du graphe ci-dessous représentant l'amplitude réelle de u(t) en fonction de la fréquence $f = \omega/2\pi$, sachant que L = 1 mH et $R = 1 \text{ k}\Omega$.

${ m II}$ | Filtre de Wien

On considère le circuit ci-contre avec $e(t) = E_m \cos(\omega t)$. On note $u(t) = U_m \cos(\omega t + \varphi)$ et on pose $H_m = U_m/E_m$.

1) Déterminer les valeurs limites de u(t) à basse et haute fréquences.

Les courbes représentatives de $H_m(\omega)$ et $\varphi(\omega)$ sont fournies par les figures ci-dessous.

- 2) Observe-t-on un phénomène de résonance en tension? Justifier.
- 3) Déterminer graphiquement la pulsation de résonance, les pulsations de coupure et la bande passante du filtre.
- 4) Après avoir associé certaines impédances entre elles, établir l'expression de $\underline{H} = \underline{u}/\underline{e}$. La mettre sous la forme :

$$\underline{H} = \frac{H_0}{1 + jQ\left(x - \frac{1}{x}\right)} \quad \text{avec} \quad x = \frac{\omega}{\omega_0}$$

avec H_0 , ω_0 et Q des constantes à exprimer en fonction (éventuellement) de R et C.

5) Déterminer graphiquement la valeur du produit RC.

♣ [III] Système à deux ressorts

Un point matériel M, de masse m, peut se déplacer sur une tige horizontale parallèle à l'axe Ox au sein d'un fluide visqueux qui exerce sur lui la force de frottement $\vec{f} = -h\vec{v}$ avec \vec{v} le vecteur vitesse de M dans le référentiel galiléen \mathcal{R} du laboratoire. Les frottements entre M et l'axe horizontal sont négligeables. On repère M par son abscisse x(t).

M est relié à deux parois verticales par deux ressorts de raideurs k_1 et k_2 , de longueurs à vide ℓ_{10} et ℓ_{20} . Celle de droite est immobile en x=L, celle de gauche, d'abscisse $x_0(t)$, est animée d'un mouvement d'équation horaire $x_0(t)=X_{0m}\cos(\omega t)$. On supposera que $L=\ell_{10}+\ell_{20}$.

- 1) Identifier les différentes forces s'exerçant sur M.
- 2) Déterminer la position d'équilibre x_{eq} de M lorsque la paroi de gauche est immobile en $x_0 = 0$.
- 3) On introduit $X(t) = x(t) x_{eq}$. Établir l'équation différentielle sur X(t) lorsque la paroi bouge.

Pour étudier le régime sinusoïdal forcé, on introduit les grandeurs complexes $\underline{x}_0(t) = X_{0m} \exp(\mathrm{j}\omega t)$, $\underline{X}(t) = X_m \exp(\mathrm{j}(\omega t + \varphi))$ et $\underline{v}(t) = V_m \exp(\mathrm{j}(\omega t + \varphi))$ associées à $x_0(t)$, X(t) et $v(t) = \dot{X}(t)$.

- 4) Définir les amplitudes complexes \underline{X}_0 , \underline{X} et \underline{V} de $x_0(t)$, X(t) et v(t).
- 5) En exprimant ω_0 , Q et α en fonction des données du problème, établir la relation :

$$\underline{V} = \frac{\alpha}{1 + jQ\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)} \underline{X}_0$$

6) Mettre en évidence l'existence d'une résonance de vitesse.