Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

12 Aprile	2021 -	9:00
ESAME	ONLI	VE.

-		α	
		~ ~	0
	_	. 1	Я

$$I_n := \int_0^1 \frac{x^n}{x+10} \, dx$$

Scrivere lo script Matlab es1.m in cui

- a) si approssima I_n , n = 1, ..., 30 utilizzando la formula dei trapezi composita su N sottointervalli equispaziati, determinando automaticamente il valore di N affinché il resto della formula di quadratura composita sia minore di tol = 1.e 6;
 - Punti: 5
- b) si approssima I_n , $n=1,\ldots,30$ con il valore y_n , $n=1,\ldots,30$ ottenuto dall'algoritmo ricorsivo

$$y_1 = log(11) - log(10)$$

 $y_{n+1} = \frac{1}{n} - 10 y_n, \quad n = 1, \dots, 29$

Punti: 3

c) si approssima $I_n, n=1,\ldots,30$ con il valore $z_n, n=1,\ldots,30$ ottenuto dall'algoritmo ricorsivo

$$z_{31} = 0$$

 $z_n = \frac{1}{10} \left(\frac{1}{n} - z_{n+1} \right), \quad n = 30, \dots, 1$

Punti: 3

- d) si rappresenti in un grafico in scala semilogaritmica sulle y (comando semilogy)
 - l'andamento dell'errore relativo tra y_n e I_n ,
 - l'andamento dell'errore relativo tra z_n e ${\cal I}_n,$

al variare di n = 1, ..., 30, assumendo come valore esatto per I_n quello calcolato al punto a);

Punti: 3

e) osservando il grafico ottenuto in d), si stabilisca quale tra gli algoritmi in b) e c) risulta essere più stabile.

Totale: 16