安徽大学 2016—2017 学年第二学期

《 高等数学 A(一) 、B(一) 》考试试卷(A 卷) 时间 120 分钟) (闭卷

考场登记表序号

题 号	_	1.1	=	四	五	总分
得 分						
阅卷人						

一、填空题(每小题3分,共15分)

得 分

手手

- 1. 设函数 $f(x) = x \sin(\frac{1}{x^2} + 1), x \neq 0$, 则 $\lim_{x \to 0} f(x) =$ ______
- 2. 曲线 $y=1+\arctan x$ 在 x=0 处的切线斜率是
- 3. 曲线 $y = \frac{x^2 + 3x + 2}{x^2 + 1}$ 的渐近线为 _____
- 4. y = y(x) 是由方程 $y = 1 + xe^y$ 确定的隐函数,则 $dy = ____$
- 5. $\int_{-1}^{1} \frac{x^3 \cos x + 1}{x^2 + 1} dx = \underline{\qquad}$
- 二、选择题(每小题3分,共15分)

得 分

- 6. 设函数 y = f(x) 有 $f'(x_0) = \frac{1}{2}$,则当自变量 $\Delta x \to 0$ 时,该函数在 $x = x_0$ 处的微分 dy 是 (
- A. 与 Δx 等价的无穷小 B. 与 Δx 同阶的无穷小
- C. 比 Δx 低阶的无穷小 D. 比 Δx 高阶的无穷小

7. 设 f(x) 在 $(-\infty,\infty)$ 内可导,且对任意的 x_1,x_2 ,当 $x_1 > x_2$ 时,有 $f(x_1) > f(x_2)$,则(

- A. 对任意的x,都有f'(x)>0 B. 对任意的x,都有f'(x)<0
- C. 对任意的x,都有 $f'(x) \ge 0$ D. 对任意的x,都有 $f'(x) \le 0$

8. F(x) 是 f(x) 的原函数,则 $\int \sin x f(\cos x) dx = ($

A. $F(\sin x) + C$

B. $-F(\sin x) + C$

C. $F(\cos x) + C$

D. $-F(\cos x) + C$

9. 设 f(x) 是连续函数,且 $F(x) = \int_{x}^{e^{-x}} f(t)dt$,则 F'(x) 等于()

- A. $-e^{-x}f(e^{-x})-f(x)$ B. $-e^{-x}f(e^{-x})+f(x)$
- C. $e^{-x} f(e^{-x}) f(x)$ D. $e^{-x} f(e^{-x}) + f(x)$

10. 具有特解 $y_1 = e^{-x}$, $y_2 = e^x$ 的二阶常系数齐次微分方程是(

- A. y'' y = 0 B. y'' y' y = 0
- C. y'' + y = 0 D. y'' + y' = 0

三、计算题(每小题7分,共56分)

得分

11. 计算极限 $\lim_{n\to\infty} (\sqrt{n+1} - \sqrt{n}) \sqrt{n+\frac{1}{2}}$

12. 计算极限
$$\lim_{x\to 1} \frac{x^m-1}{x^n-1}$$
 (m, n 为正整数)

13. 己知
$$y = \frac{x^2(x-3)}{(x-1)(x+3)^2}$$
用对数求导法求 $\frac{dy}{dx}$

14. 己知
$$\begin{cases} x = 1 + t^2 \\ y = t + t^2 \end{cases} \stackrel{d}{\Rightarrow} \frac{d^2 y}{dx^2}$$

15. 计算不定积分
$$\int \frac{x^3}{x+1} dx$$

16. 计算不定积分
$$\int \frac{\sin^2 x \cos x}{1 + \sin^2 x} dx$$

17. 计算定积分
$$\int_0^{+\infty} \frac{1}{x^2 + 2x + 2} dx$$

18. 用定积分计算:
$$\lim_{n\to\infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}} (p > 0)$$

四、应用题(每小题8分,共8分)

得分

19. 有一个半径为a的圆,圆心到一定直线的距离为b(b>a),求此圆绕定直线旋转所得旋转体的体积。

五、证明题(每小题8分,共8分)

得分

20. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f(a)f(b)>0 , $f(a)f(\frac{a+b}{2})<0$, 试证明: 至少存在一点 $\xi \in (a,b)$, 使得 $f'(\xi) = f(\xi)$ 。