SUBSETS

1. SUBSETS

If A and B are two sets such that every element of set A is also an element of B, we say that A is a subset of B and we write $A \subset B$.

i.e.
$$A \subset B \text{ if } a \in A \Rightarrow a \in B$$

Remarks:

- If A ⊂ B and A ≠ B , then A is called a proper subset of B and B is called superset of A.
- 2. If $A \subset B$ and = B, then A is called an improper subset of B.
- 3. If $A \subset B$ and $B \subset A$, then A = B.
- 4. If A is not a subset of B, then we write, $A \not\subset B$.
- 5. Every set A is a subset of itself i.e. $A \subset A$
- 6. The empty set is \emptyset a subset of every set.

Examples:

(i)
$$A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5\}$$

Here, A is a proper subset of B as $A \subset B$ and $A \neq B$. Also B is the super set of A.

(ii)
$$A = \{1, 2, 3\}, B = \{2, 3, 1\}$$

Here, A is an improper subset of B as $A \subset B$ and A = B

(iii)
$$A = \{1, 2, 3\}, B = \{1, 2, 4, 5\}$$

Here, A is not a subset of B i.e. $A \not\subset B$ as $3 \in A$ but $3 \notin B$.

NUMBER OF SUBSETS

Set	No. of Elements	Subsets	No. of subsets	
Ø	0	Ø	1	$1 = 2^0$
{a}	1	Ø, {a}	2	$2 = 2^1$
{ <i>a</i> , <i>b</i> }	2	$\emptyset, \{a\}, \{b\}, \{a, b\}$	4	$4 = 2^2$
$\{a,b,c\}$	3	\emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{b,c\}$, $\{c,a\}$, $\{a,b,c\}$	8	$8 = 2^3$
$\{a,b,c,d\}$	4	\emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{a,b\}$, $\{a,c\}$, $\{a,d\}$, $\{b,c\}$,	16	$16 = 2^4$
		${b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d}$		
		$\{a,b,c,d\}$		

Conclusion: The number of subsets of the set containing n elements is 2^n

The number of subsets of the set containing n elements is 2^n

Example-1

Write all possible subsets of the set $\{1,2,3\}$. How many of these are proper sub sets?

Solution:

Let $A = \{1, 2, 3\}$

The possible subsets of the given set A are

$$\emptyset$$
, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}, {1, 2, 3}

Since, $\{1, 2, 3\}$ is an improper set of A.

 \therefore The total number of proper subsets of A is 7.

2. POWER SET

The collection of all possible subsets of a set A is called the power set of A.

It is denoted by P(A). In P(A), every element is a set.

Example-2

Write the power set of the set $A = \{a, b, c\}$.

Solution:

Given $A = \{1, 2, 3\}$

The power set of A is

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}\}\$$

Example-3

How many elements has P(A), if $A = \emptyset$?

Solution:

Given $A = \emptyset$

 \therefore The subset of A is \emptyset

So, the power set of A is

$$P(A) = \{\emptyset\}$$

Thus, the number of elements in P(A) is 1.

3. UNIVERSAL SET

If all the sets under consideration are subsets of a fixed set U, then this fixed set U is called the Universal Set.

Example-4

If $A = \{1, 2, 3, 4\}$, $B = \{2, 3, 5\}$ and $C = \{6, 7\}$, then $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ is the universal set.

Example-5

Ιf

 $A = \{x: x \text{ is a student of class } IX \text{ of } KV \text{ } bkp \text{ } (Army)\},$

 $B = \{x: x \text{ is a student of class } X \text{ of } KV \text{ bkp } (Army)\},$

 $C = \{x: x \text{ is a student of class } XI \text{ of } KV \text{ } bkp \text{ } (Army)\} \text{ } and$

 $D = \{x: x \text{ is a student of class XII of KV bkp } (Army)\},$

Then,

 $U = \{x: x \text{ is a student of } KV \text{ } bkp \text{ } (Army)\} \text{ } is \text{ } the \text{ } universal \text{ } set.$

Remarks:

1. A set may behave like an element for another set. For example

$$A = \{1, \{2, 3\}, 4\}$$

Here, $\{2,3\}$ is an element of the set A.

- 2. If $a \in A$, then $\{a\} \subset A$
- 3. If $a \in A$, $b \in A$, $b \in A$ then $\{a, b, c\} \subset A$
- 4. If $\emptyset \notin A$, but $\emptyset \subset A$
- 5. If $A = \{\emptyset, 1, \{2, 3\}, 4\}$, then $\emptyset \in A$ and $\{\emptyset\} \subset A$

4. INTERVALS

Let $a, b \in R$ such that a < b. Then we define

- (i) **Open Interval**: The set of real numbers $\{x: a < x < b\}$ is called an open interval and is denoted by (a, b).
- (ii) Closed Interval: The set of real numbers $\{x: a \le x \le b\}$ is called a closed interval and is denoted by [a,b]
- (iii) Left Half Open Interval: The set of real numbers $\{x: a < x \le b\}$ is called a closed interval and is denoted by $\{a,b\}$
- (iii) **Right Half Open Interval**: The set of real numbers $\{x: a \le x < b\}$ is called a closed interval and is denoted by [a,b)

Examples:

(i) $(-3,5) = \{x: x \in \mathbb{R}, -3 < x < 5\}$ is an open interval from -3 to 5, which contains all real numbers between -3 and 5.

(ii) $[-3,5] = \{x: x \in \mathbb{R}, -3 \le x \le 5\}$ is a closed interval from -3 to 5, which contains all real numbers between -3 and 5 including -3 and 5.

(iii) $(-3,5] = \{x: x \in \mathbb{R}, -3 < x \le 5\}$ is a left half open interval from -3 to 5, which contains all real numbers between -3 and 5 including 5 and excluding -3.

(iv) $[-3,5) = \{x: x \in \mathbb{R}, -3 \le x < 5\}$ is a right half open interval from -3 to 5, which contains all real numbers between -3 and 5 including -3 and excluding 5.

Remarks:

1. $(-\infty, \infty)$ = The set of all real numbers.

2. $(0, \infty)$ = The set of all positive real numbers.

3. $[0,\infty)$ = The set of all non-negative real numbers.

4. $(-\infty,0)$ = The set of all negative real numbers.

Example-6

Write the following as intervals:

(a) $\{x: x \in \mathbb{R}, \ 0 < x < 5\}$

(b) $\{x: x \in R, -2 < x \le 7\}$

(c) $\{x: x \in R, 2 \le x < 9\}$

(d) $\{x: x \in R, -5 \le x \le 0\}$

Solution:

(a) $\{x: x \in \mathbb{R}, \ 0 < x < 5\} = (0, 5)$

(b) $\{x: x \in \mathbb{R}, -2 < x \le 7\} = (-2, 7]$

(c) $\{x: x \in \mathbb{R}, 2 \le x < 9\} = [2, 9)$

(d) $\{x: x \in \mathbb{R}, -5 \le x \le 0\} = [-5, 0]$

Example-7

Write the following as intervals in set-builder form:

(a) [-1, 4]

(b) [3, 11)

(d) (-2,8) (d) (-4,0]

Solution:

(a) $[-1, 4] = \{x : x \in \mathbb{R}, -1 \le x \le 4\}$

(b) $[3, 11) = \{x : x \in \mathbb{R}, 3 \le x < 11\}$

(c) $(-2,8) = \{x: x \in \mathbb{R}, -2 < x < 8\}$

(d) $(-4,0] = \{x: x \in \mathbb{R}, -4 < x \le 0\}$

VENN DIAGRAMS

1. VENN DIAGRAMS

Most of the relationships between sets can be represented by means of diagrams, which are known as *venn diagrams*. Venn diagrams are named after the English logician John Venn (1834-1883).

These diagrams consist of rectangles and closed curves usually circles. The universal set is represented usually by a rectangle and its subsets by circles. In venn diagrams, the elements of the sets are written in their respective circles.

Examples:

1. Represent the following sets using venn diagrams $U = \{1, 2, 3, ..., 10\}$ and $A = \{3, 4, 6, 7, 9\}$

2. Represent the following sets using venn diagrams $U = \{1, 2, 3, ..., 10\}, A = \{2, 3, 4, 6, 7, 8\} \text{ and } B = \{3, 6, 7\}$

OPERATIONS ON SETS

1. UNION OF SETS

Let A and B be any two sets. The union of A and B is the set which consists of all the elements of A and all the elements of B, the common elements being taken only once.

The union of A and B is symbolically denoted by AUB and is read as "A union B"

Thus,

$$AUB = \{x : x \in A \text{ or } x \in B\}$$

Note:

1.
$$x \in (AUB) \Rightarrow x \in A \text{ or } x \in B$$

2.
$$x \notin (AUB) \Rightarrow x \notin A \text{ and } x \notin B$$

Venn Diagram of AUB

The shaded region in pink coloured represents AUB

Example-1

Let
$$A = \{2, 3, 4, 6, 8\}$$
 and $B = \{1, 2, 3, 4, 5\}$

Then,
$$A \cup B = \{1, 2, 3, 4, 5, 6, 8\}$$

Example-2

Let
$$A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4, 5\}$

It is clear that $A \subset B$

Then,
$$A \cup B = \{1, 2, 3, 4, 5\} = B$$

Conclusion:

If $A \subset B$, then $A \cup B = B = (superset)$