Math 531 Homework 5

Theo Koss

February 2021

1 Section 3.3

- Problem 10: Construct a group of order 12 that is not abelian. The dihedral group D_6 , the symmetries of an regular hexagon.
- Problem 12:
 - (a) Let $C_1 = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} | a = b\}$. Show that C_1 is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.

Proof.

Theorem 1 (Subgroup Test). Let G be a group and let H be a nonempty subset of G. If for all $a, b \in H$, $ab^{-1} \in H$, then $H \leq G$. Proof of 1 here. Using the above theorem, consider two elements of C_1 , (a, b), $(c, d) \in C_1$, N2S: $(a, b) - (c, d) \in C_1$. By definition, a = b, c = d, thus a - c = b - d, therefore $(a, b) - (c, d) = (a - c, b - d) \in C_1$. As required. Thus, C_1 is a subgroup. QED

- (b) Show that $C_n = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} | a \equiv b \mod n \}$ is a subgroup of $\mathbb{Z} \times \mathbb{Z}$.
 - *Proof.* Again using Theorem 1, consider 2 elements in C_n : (a,b), (c,d), similarly, we N2S: $(a,b)-(c,d) \in C_n$. Since subtraction of congruence classes is well defined, this is true. $(a \equiv b \mod n, c \equiv d \mod n, \text{ so } a-c \equiv b-d \mod n = (a,b)-(c,d) \in C_n)$. QED
- (c) Show that every proper subgroup of $\mathbb{Z} \times \mathbb{Z}$ that contains C_1 has the form C_n , for some pos. int. n.

- Problem 14: Let G_1 and G_2 be groups, and let G be the direct product $G_1 \times G_2$. $H = \{(x_1, x_2) \in G_1 \times G_2 | x_2 = e\}$ and $K = \{(x_1, x_2) \in G_1 \times G_2 | x_1 = e\}$
 - (a) Show that H and K are subgroups of G.

Proof. By the subgroup test, if $ab^{-1} \in H, K$, then $H \leq G$ and $K \leq G$.

 ab^{-1} in H is the direct product of (a,e) and (b^{-1},e) , which is equal to $(ab^{-1},e) \in H$. Therefore $H \leqslant G$. Similarly, ab^{-1} in K is the direct product of (e,a) and (e,b^{-1}) , which is $(e,ab^{-1}) \in K$. Therefore $K \leqslant G$.

(b) Show that HK = KH = G.

Proof. The direct product HK is defined as the direct product $(x_1, e) \times (e, x_2) = (x_1 e, ex_2) = (x_1, x_2) = G$. Similarly, KH is defined as the direct product $(e, x_2) \times (x_1, e) = (ex_1, x_2 e) = (x_1, x_2) = G$. QED

(c) Show that $H \cap K = (e, e)$.

Proof. The intersection of two groups is the elements they share. In this case, the direct products (x_1, e) and (e, x_2) share one and only one element, namely when both $x_1 = x_2 = e$. This is the element (e, e), and it occurs in both H and K, and is the only element for which this is true. QED

2 Section 3.4

• Problem 4: Show that \mathbb{Z}_{10}^{\times} is isomorphic to the additive group \mathbb{Z}_4 .

Proof. We have an isomorphism $\phi: \mathbb{Z}_4 \to \mathbb{Z}_{10}^{\times}$ via the mapping:

- \bullet 0 \rightarrow 1
- 1 → 3
- $2 \rightarrow 5$
- $3 \rightarrow 7$

Since 3 is a generator of \mathbb{Z}_{10}^{\times} , ϕ is a surjection. and since we laid out the mapping, it is easy to see that ϕ is an injection as well. (I just realized this is problem 1, whoops!)

• Problem 4: Show that \mathbb{Z}_5^{\times} is not isomorphic to \mathbb{Z}_8^{\times} by showing that the first group has an element of order 4 but the second does not.

Proof. \mathbb{Z}_5^{\times} :

- 1, |1| = 1
- 2, |2| = 4
- 3, |3| = 4
- 4, |4| = 2

 \mathbb{Z}_8^{\times} :

- 1, |1| = 1
- $2, |2| = \infty$
- 3, |3| = 2
- $4, |4| = \infty$
- 5, |5| = 2
- 6, $|6| = \infty$
- 7, |7| = 2

QED

• Problem 5: Show that the group $(\mathbb{Q}, +)$ is not isomorphic to the group (\mathbb{Q}^+, \cdot) .

Proof. The group $(\mathbb{Q}, +)$ has one, and only one, element of finite order, namely 0. \mathbb{Q}^+ , on the other hand, has two elements of finite order, -1, 1. Therefore, by proposition 3.4.3 in the book, there exists no isomorphism between these two.

• Problem 9: Prove that any group with three elements must be isomorphic to \mathbb{Z}_3 .

Proof. Consider some arbitrary group (G, *) with 3 distinct elements. Then it is safe to say that the elements are $G = \{e, a, b\}$. Since

$$ab = a \implies b = e \text{ and } ab = b \implies a = e$$

we can conclude that

$$ab = e$$

Also, since

$$a^2 = a \implies a = e \text{ and } a^2 = e \implies a = e$$

we can conclude that

$$a^2 = b$$

and thus

$$a^3 = a^2 a = ba = e$$

Therefore, a generates the whole set, so G is cyclic, and since |G| = 3, (G, +) must be isomorphic to \mathbb{Z}_3 . QED

• Problem 14: Let G be the following matrices over \mathbb{R} .

$$e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, a = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, c = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Show that G is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. It is easy to see that |e|=1, |b|=2, |c|=2, |d|=2. The group $\mathbb{Z}_2 \times \mathbb{Z}_2$ has 4 elements, if their orders are 1, 2, 2, 2, then there exists an isomorphism, by proposition 3.4.3 in the book. The elements of $\mathbb{Z}_2 \times \mathbb{Z}_2$ are as follows:

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (1,0), (0,1), (1,1)\}$$

We check:

$$|e = (0,0)| = 1.$$

$$|(1,0)| = 2$$
, since $(1,0) + (1,0) = (2,0) = (0,0) \mod 2 = e$.

$$|(0,1)| = 2$$
, since $(1,0) + (1,0) = (2,0) = (0,0) \mod 2 = e$.

$$|(1,1)| = 2$$
, since $(1,1) + (1,1) = (2,2) = (0,0) \mod 2 = e$.

Thus, by proposition 3.4.3 in the book, G is isomorphic is $\mathbb{Z}_2 \times \mathbb{Z}_2$.

QED