Intro to Econometrics Software: Excel

Dragos Ailoae

dailoae@gradcenter.cuny.edu

Advanced Economics and Business Statistics ECON-4400w

Brooklyn College Fall 2023

About You: Software experience

Excel

7 responses

About You: Software experience

R 8 responses

About You: Software experience

Python

8 responses

About You: Econometrics

This is my first econometrics course

8 responses

About You: Survey Results Intro to Excel Next Steps

Intro to Excel for Data Analysis

Excel Basics

[Excel live session]

Descriptive statistics not enough: important to visualize our data

https://www.autodesk.com/research/publications/same-stats-different-graphs

About You: Survey Results Intro to Excel Next Steps

Next Steps

Notation

Summation

Summation rules

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

$$\sum_{i=1}^{n} a = na$$

$$\sum_{i=1}^{n} ax_i = a \sum_{i=1}^{n} x_i$$

$$\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$

$$\sum_{i=1}^{n} (ax_i + by_i) = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} y_i$$

$$\sum_{i=1}^{n} (a + bx_i) = na + b \sum_{i=1}^{n} x_i$$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} f(x_i, y_j) = \sum_{i=1}^{n} [f(x_i, y_1) + f(x_i, y_2) + f(x_i, y_3)]$$

$$= f(x_1, y_1) + f(x_2, y_2) + f(x_2, y_3)$$

Expected value (mean) is just SUMPRODUCT()

KEY CONCEPT

Expected Value and the Mean

2.1

Suppose the random variable Y takes on k possible values, y_1, \ldots, y_k , where y_1 denotes the first value, y_2 denotes the second value, and so forth, and that the probability that Y takes on y_1 is p_1 , the probability that Y takes on y_2 is p_2 , and so forth. The expected value of Y, denoted E(Y), is

$$E(Y) = y_1 p_1 + y_2 p_2 + \dots + y_k p_k = \sum_{i=1}^k y_i p_i,$$
 (2.3)

where the notation $\sum_{i=1}^{k} y_i p_i$ means "the sum of $y_i p_i$ for i running from 1 to k." The expected value of Y is also called the mean of Y or the expectation of Y and is denoted μ_Y .