基于卷积神经网络的常用网络模型介绍

发展状况

AlexNet ,引入 GPU加速,细节优化 VGG,连续的卷积 层增加,更深的网络 结构

2012

2014

1998

LetNet-5,提出了卷 积神经网络的基本概 念 2014

NIN, 提出利用1X1 卷积层

发展状况

GoogleNet-BN,提 出添加归一化层的结 构

2015.2

ResNet,引入恒等映射,网络层数突破100层

2016

2014

GoogleNet,更宽的, 更深的网络结构 2015.12

GoogleNet-V2, 卷 积分解,实现网络加速 现在

LetNet-5

LetNet-5

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				Χ	Χ	Χ			Χ	Χ	Χ	Χ		Χ	Χ
1	X	Χ				Χ	Χ	Χ			\mathbf{X}	Χ	Χ	Χ		X
2	X	Χ	Χ				Χ	Χ	Χ			Χ		Χ	Χ	Χ
3		Χ	Χ	Χ			Χ	Χ	Χ	Χ			Χ		Χ	Χ
4			Χ	Χ	Χ			Χ	Χ	Χ	Χ		Χ	Χ		Χ
5				Х	\mathbf{X}	\mathbf{X}			\mathbf{X}	\mathbf{X}	Χ	X		X	X	Χ

S2-C3

$$y_i = \sum_j (x_j - w_{ij})^2.$$

欧式径向基函数(Euclidean Radial Basis Function,RBF)

sigmoid函数

AlexNet

• ReLU激活函数 f(x)=max(0,x)

• 局部归一相应层
$$b_{x,y}^i = a_{x,y}^i / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^j)^2\right)^{\beta}$$

- 重叠池化
- 降低过拟合:增大数据集、Dropput

AlexNet

- 通道信息整合
- 降维处理

VGG-Net

ConvNet Configuration												
A	A-LRN	В	C	D	E							
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight							
layers			layers	layers	layers							
input (224×224 RGB image)												
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64							
	LRN	conv3-64	conv3-64	conv3-64	conv3-64							
maxpool												
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128							
		conv3-128	conv3-128	conv3-128	conv3-128							
maxpool												
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256							
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256							
			conv1-256	conv3-256	conv3-256							
					conv3-256							
	maxpool											
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
			conv1-512	conv3-512	conv3-512							
		conv3-512										
		max	pool									
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512							
			conv1-512	conv3-512	conv3-512							
conv3-512												
maxpool												
			4096									
			4096									
	FC-1000											
soft-max												

GoogleNet

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Figure 2: Inception module

GoogleNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	$112{\times}112{\times}64$	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14\!\times\!14\!\times\!512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14\!\times\!14\!\times\!512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1\times1\times1024$	0								
linear		$1\times1\times1000$	1							1000K	1M
softmax		$1\times1\times1000$	0								

GoogleNet

GoogleNet-BN

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbb{E}[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

GoogleNet-V2

GoogleNet-V2

GoogleNet-V2

ResNet

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2016:770-778.

ResNet

layer name output size		18-layer	34-layer	50-layer	101-layer	152-layer					
conv1 112×112		7×7, 64, stride 2									
		3×3 max pool, stride 2									
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$					
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$					
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\begin{bmatrix} 3\times3, 256 \\ 3\times3, 256 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$					
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$					
	1×1		ave	erage pool, 1000-d fc,							
FLO	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10 ⁹					

THANK YOU FOR YOUR ATTENTION