```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
In [2]:
         plt.rcParams['font.size'] = 14
         plt.rcParams['lines.linewidth'] = 2
         plt.rcParams["figure.figsize"] = (8,5)
        sample_heat = pd.read_excel( 'data.xlsx' , sheet_name=0)
In [3]:
         room\_temp = 17
In [4]:
        sample_heat['T(*c) '] = sample_heat['T(*c) '] + room_temp
In [5]: sample_heat
Out[5]:
             Voltage Capacitance
                                     D T(*c)
                0.00
                             605 0.615
                                           17
          0
                0.15
                             570 0.640
                                           21
                             460 0.760
          2
                0.31
                                           25
          3
                             920 0.600
                0.59
                                           32
          4
                0.79
                             935 0.580
                                           37
                1.00
                            1255 0.065
                                           42
          6
                1.20
                            1260 0.058
                                           47
          7
                1.40
                             715 0.790
                                           52
          8
                             805 0.725
                1.61
                                           57
          9
                1.81
                             815 0.730
                                           62
         10
                2.02
                             845 0.705
                                           67
         11
                2.23
                            1315 0.069
                                           72
         12
                2.43
                            1330 0.070
                                           77
         13
                2.64
                             910 0.705
                                           82
         14
                            1400 0.085
                                           89
                2.93
         15
                3.07
                              20 4.000
                                           93
                              20 2.500
         16
                3.26
                                           97
         17
                3.39
                            1530 0.085
                                          100
         18
                3.95
                              35 3.000
                                          113
         19
                4.09
                              40 3.500
                                          117
```

20

21

4.30

4.50

175 3.000

246 3.000

122

127

22	4.71	385	2.450	132
23	4.91	630	1.730	137
24	5.12	900	1.230	142
25	5.32	1157	0.935	147
26	5.53	1330	0.725	152
27	5.73	1470	0.535	157
28	5.93	1523	0.414	162
29	6.13	1655	0.105	167
30	6.33	1555	0.107	172
31	6.54	1478	0.115	177
32	6.74	1421	0.130	182
33	6.94	1360	0.123	187
34	7.14	1300	0.175	192

```
In [6]: plt.plot( sample_heat['T(*c) '] , sample_heat['Capacitance'] )
    plt.scatter( sample_heat['T(*c) '] , sample_heat['Capacitance'])
    plt.xlabel(r'T($\degree C$)')
    plt.ylabel(r'Capacitance ($nF$)')
    plt.title(r'Capacitance (with $BaTiO_4$)vs Temperature for Heating Curve'
    plt.show()
```

Capacitance (with BaTiO₄)vs Temperature for Heating Curve


```
In [7]: plt.plot( sample_heat['T(*c) '] , sample_heat['D '] )
   plt.scatter( sample_heat['T(*c) '] , sample_heat['D '])
   plt.xlabel(r'T($\degree C$)')
   plt.ylabel(r'D')
```

plt.title(r'D (with \$BaTi0_4\$)vs Temperature for Heating Curve')
plt.show()


```
In [8]: sample_cool = pd.read_excel( 'data.xlsx' , sheet_name=1)
    room_temp = 17

In [9]: sample_cool['T(*c) '] = sample_cool['T(*c) '] + room_temp
    sample_cool
```

	Voltage	Capacitance	D	T(*c)
0	7.14	3110	0.170	192
1	6.94	1345	0.176	187
2	6.74	1395	0.183	182
3	6.54	1459	0.198	177
4	6.33	1520	0.214	172
5	6.13	1585	0.230	167
6	5.93	1665	0.255	162
7	5.70	1750	0.305	157
8	5.53	1810	0.352	152
9	5.32	1856	0.432	147
10	5.12	1863	0.546	142
11	4.91	1774	0.716	137
12	4.71	1581	0.938	132
13	4.50	1260	1.260	127
14	4.30	1008	1.321	122
15	4.09	780	1.345	117
16	3.89	604	1.461	112
17	3.68	466	1.623	107
18	3.47	343	1.860	102
19	3.26	220	2.220	97
20	3.06	163	2.450	92
21	2.85	125	2.620	87
22	2.64	95	2.600	82
23	2.43	35	2.100	77
24	2.22	27	1.900	72
25	2.02	25	1.600	67

Out[9]:

```
In [10]: plt.plot( sample_cool['T(*c) '] , sample_cool['Capacitance'] )
    plt.scatter( sample_cool['T(*c) '] , sample_cool['Capacitance'])
    plt.xlabel(r'T($\degree C$)')
    plt.ylabel(r'Capacitance ($nF$)')
    plt.title(r'Capacitance (with $BaTiO_4$)vs Temperature for Cooling Curve'
    plt.show()
```

Capacitance (with BaTiO₄)vs Temperature for Cooling Curve


```
In [11]: plt.plot( sample_cool['T(*c) '] , sample_cool['D '] )
   plt.scatter( sample_cool['T(*c) '] , sample_cool['D '])
   plt.xlabel(r'T($\degree C$)')
   plt.ylabel(r'D')
   plt.title(r'D (with $BaTiO_4$)vs Temperature for Cooling Curve')
   plt.show()
```

D (with BaTiO₄)vs Temperature for Cooling Curve


```
In [12]: commercial_heat = pd.read_excel('data.xlsx' , sheet_name=2)
    room_temp = 18
```

```
In [13]: commercial_heat['T(*c) '] = commercial_heat['T(*c) '] + room_temp
commercial_heat
```

Out[13]:		Voltage	Capacitance	D	T(*c)
	0	0.00	4875.00	0.011	18
	1	0.19	5605.00	0.014	23
	2	0.39	5972.00	0.013	28
	3	0.59	6133.00	0.012	33
	4	0.80	6128.00	0.011	38
	5	1.00	6003.00	0.010	43
	6	1.20	5783.00	0.009	48
	7	1.40	5504.00	0.009	53
	8	1.61	5175.00	0.008	58
	9	1.81	4812.00	0.008	63
	10	2.02	4450.00	0.007	68
	11	2.23	4075.00	0.007	73
	12	2.44	3711.00	0.007	78
	13	2.60	3490.00	0.007	82
	14	2.85	3187.00	0.007	88
	15	3.01	2920.00	0.007	92
	16	3.26	2612.00	0.006	98
	17	3.43	2417.00	0.007	102
	18	3.68	2190.00	0.008	108
	19	3.89	2014.00	0.008	113
	20	4.01	1920.00	0.009	116
	21	4.30	1730.00	0.011	123
	22	4.50	1.61	0.011	128

```
In [14]: plt.plot( commercial_heat['T(*c) '] , commercial_heat['Capacitance'])
    plt.scatter( commercial_heat['T(*c) '] , commercial_heat['Capacitance'])
    plt.xlabel(r'T($\degree C$)')
    plt.ylabel(r'Capacitance ($nF$)')
    plt.title(r'Capacitance (commercial) vs Temperature for Heating Curve')
    plt.show()
```

Capacitance (commercial) vs Temperature for Heating Curve


```
In [15]: plt.plot( commercial_heat['T(*c) '] , commercial_heat['D '] )
   plt.scatter( commercial_heat['T(*c) '] , commercial_heat['D '])
   plt.xlabel(r'T($\degree C$)')
   plt.ylabel(r'D')
   plt.title(r'D (commercial)vs Temperature for Heating Curve')
   plt.show()
```



```
In [16]: commercial_cool = pd.read_excel('data.xlsx' , sheet_name=3)
    room_temp = 18
```

```
In [17]: commercial_cool['T(*c) '] = commercial_cool['T(*c) '] + room_temp
commercial_cool
```

Out[17]:		Voltage	Capacitance	D	T(*c)
	0	4.50	1583	0.012	128
	1	4.30	1657	0.011	123
	2	4.01	1808	0.009	118
	3	3.89	1896	0.008	113
	4	3.68	2048	0.007	108
	5	3.43	2280	0.006	103
	6	3.26	2435	0.006	98
	7	3.01	2733	0.006	93
	8	2.85	2987	0.007	88
	9	2.60	3290	0.007	82
	10	2.44	3511	0.007	78
	11	2.23	3860	0.007	73
	12	2.02	4216	0.007	68

```
In [18]: plt.plot( commercial_cool['T(*c) '] , commercial_cool['Capacitance'])
   plt.scatter( commercial_cool['T(*c) '] , commercial_cool['Capacitance'])
   plt.xlabel(r'T($\degree C$)')
   plt.ylabel(r'Capacitance ($nF$)')
   plt.title(r'Capacitance (commercial) vs Temperature for Cooling Curve')
   plt.show()
```



```
In [19]: plt.plot( commercial_cool['T(*c) '] , commercial_cool['D '] )
   plt.scatter( commercial_cool['T(*c) '] , commercial_cool['D '])
   plt.xlabel(r'T($\degree C$)')
   plt.ylabel(r'D')
   plt.title(r'D (commercial)vs Temperature for Cooling Curve')
   plt.show()
```

