Práctica del Tema 4: Procesado digital de datos del patrimonio cultural mediante MeshLab

Blanca María Pérez Soriano 16 de julio de 2024

${\rm \acute{I}ndice}$

1.	Carga de un archivo de puntos	3
2.	Eliminación del ruido	4
3.	Generación de las normales hacia fuera	6
4.	Obtención de la primera malla mediante Poisson	7
5.	Aplicación y explicación de sombras	10
	5.1. Primer sombreado: minnaert.gdp	10
	5.2. Segundo sombreado: Cook-Torrance.gdp	12
6.	Aplicación y explicación de filtros	14
	6.1. Primer filtro: Remove duplicate vertices	14
	6.2. Segundo filtro: Remove T-Vertices	15
7	Cantura de pantalla con Spanshot	17

1. Carga de un archivo de puntos

Para cargar un archivo de nube puntos haremos click en las siguientes secciones: $File \rightarrow Import\ Mesh$

Figura 1: Carga de un archivo de puntos

Este es el resultado tras la importación:

Figura 2: Fichero importado

2. Eliminación del ruido

Para eliminar el ruido podemos utilizar una herramienta de selección y eliminarlo directamente. Las herramientas de selección y eliminación se encuentran en esta zona del programa:

Figura 3: Selección y borrado

- El primer rectángulo tiene herramientas de selección
- El segundo rectángulo tiene herramientas de borrado

Tip: pasando el puntero por encima te pone qué selecciona y qué borra cada herramienta

Para poder trabajar sobre la malla, primero deberemos clonarla. Para ello hacemos *click derecho* sobre ella, y le damos a "Duplicate current layer". Ahora, en nuestro caso, queremos eliminar estas "nubes":

Figura 4: Ruido que queremos eliminar

Al ser una nube de puntos, deberemos utilizar la **primera herramienta de selección y borrado** (select vertices + delete selected vertices). El resultado seleccionar y borrar:

Figura 5: Ruido seleccionado

Figura 6: Ruido borrado

3. Generación de las normales hacia fuera

Para calcular las normales de luz de los puntos deberemos hacer click en las siguientes secciones: $Filters \rightarrow Normals$, Curvatures and $Orientation \rightarrow Compute normals for pointsets$:

Figura 7: Panel de selección

Tras esto se nos desplegará un panel, en el deberemos ir haciendo pruebas con el valor *Neighbour num*. Yo he encontrado que con valor 5 la pieza se ve bastante bien:

Figura 8: Neighbour num: 5

4. Obtención de la primera malla mediante Poisson

Para reconstruir mediante Screened Poisson tenemos que seguir la siguiente selección: $Filters \rightarrow Remeshing, Simplification and Reconstruction \rightarrow Surface Reconstruction: Screened Poisson:$

Figura 9: Panel de selección

Se nos abrirá entonces el siguiente panel y deberemos jugar con el parámetro $Reconstruction\ depth$, tenemos que intentar no perder número de puntos para no perder calidad, para este caso partimos de 158.373 vértices. Con el valor 8 se nos quedaba un poco corto, así que lo he subido a 9 y nos quedamos con 476.362 vértices y 952.724 caras:

Figura 10: Panel: Screened Poisson

Figura 11: Resultado de la reconstrucción

5. Aplicación y explicación de sombras

Como no tenemos un fichero de textura, vamos a generar sombreado mediante meshlab.

5.1. Primer sombreado: minnaert.gdp

Para aplicar este sombreado, nos dirigimos a $Render \to Shaders \to minnaert.gdp$. Nos aparecerá el siguiente panel con el que podremos probar distintos valores:

Figura 12: Panel de selección

Figura 13: Panel: minnaert.gdp

Figura 14: Resultado del sombreado con minnaert.gdp

5.2. Segundo sombreado: Cook-Torrance.gdp

Igual que antes, seleccionamos a $Render \to Shaders \to Cook-Torrance.gdp$ y ajustamos al gusto las varillas:

Figura 15: Panel de selección

Figura 16: Panel: Cook-Torrance.gdp

- $\, \bullet \,$ ${\bf C}:$ ilumina u oscurece las caras
- \bullet ni: ilumina u oscurece las aristas

Figura 17: Resultado del sombreado con Cook-Torrance.gdp

6. Aplicación y explicación de filtros

Tras generar una malla, esta puede tener algunas imperfecciones y deberemos limpiarla, para ello podemos servirnos de los distintos filtros que las herramientas ofrezcan.

6.1. Primer filtro: Remove duplicate vertices

En este primer filtrado eliminaré los vértices duplicados, para ello iré a las siguientes secciones: $Filters \rightarrow Cleaning \ and \ Repairing \rightarrow Remove \ duplicate \ vertices$. Este es el resultado:

Figura 18: Panel de selección

Figura 19: Resultado en el log

Pasamos de 476.362 vértices y 952.724 caras \rightarrow 476.357 vértices y 952.714 caras

6.2. Segundo filtro: Remove T-Vertices

Los T-Vértices son vértices que tocan a una arista. Para limpiar esta "malformación" tenemos que ir a $Filters \rightarrow Cleaning \ and \ Repairing \rightarrow Remove \ T-Vertices:$

Figura 20: Panel de selección

Se nos despliega el siguiente menú, el método utilizado para eliminarlas será " $Edge\ Collapse$ ":

Figura 21: Panel: Remove T-Vertices

Figura 22: Resultado en el log

Pasamos de 476.357 vértices y 952.714 caras \rightarrow 465.643 vértices y 931.278 caras.

7. Captura de pantalla con Snapshot

Mesh Lab ofrece una herramienta para hacer capturas de pantalla. Para utilizar la podemos ir a $File \rightarrow Save\ snapshot$:

Figura 23: Panel de selección

Tras esto se nos desplegará un recuadro en el que tendremos que seleccionar una carpeta en la que guardar el documento, y darle a "Save":

Figura 24: Panel: snapshot

Figura 25: Resultado snapshot