

16	Dete
	Algorithm for non-restoring Druisian.
	Algorithm 70.
	Step 1: (Repeat ntimes)
	and the format of mon of a constant
900	left and Add M to A:
•	Now, if the sign of A is O, set goto 1; otherwise,
-	set g to D:
	Step 2 of the sign of A Ps 1, add M to A.
	Noy, &=1000 (Q) 3=11 (H)
	21s complanent of M =11101
	2 nitialy 0000 1000
	00011 CM.
125	Shift 00001 0000
ayer	Subtract 11101
	set 90 (B) 1 1 0 000 (D)
and	shift 11100 001011
vyde	Add 000 11
	sel 90. 01111 0000101
ard	Add 000 11
agele	set 90. 60001 0000
.10	shiff 000 10 MODEL
cycle.	Substract 1110
0	setgo. DIIII DOMO
	Quotient,
	1111111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Add	. 00011 Restore.
	00010 (Remainder)
	Teacher's Shirature

Explain Sequential circuit with example. Explain Binary explai multipuer with example. Ans: - Sequential Kultiplier is an old methord to multiply tow binary numbers. The multiplication between two operands a and b can be considered as add the operand a total b times Sequential Crowit Kultpries shift right 39n-11000/90 Rgister A cintiallyo) multiplient Q Add adder sequences Multiplicano M Sequential Kultiplication Algorithm. 1. of (LSB of a neglister == 1) 2. A = A+M (carry-out goes to 'c' register) 3. Treat the C, A and Q registers as one continous register and shift that register's contents register's contents 4 Repeat the following steps on times.

> 24 LLSB of Q regissster ==1) Shirt 2 and do 3.

From the above Si = xi Dy; D ci The above equation can be written as Citi = xiy: + (xity:) (i Citi = Cit Piai whene. hi=xiy: Pi=xity:

(ri > henerate function Pi > Propagate function

Shi and Pi are computed only from xi and A

Vi and not from Ci, thus they can be computed

in one gate delay after x and y are applied

to the inputs of the an n-bit adder. > Performing an n-bit addition in 4 gate delays independent of n is good only theorethally because of fan In constraints Ci+1 = 49 + Pihi-1 + PiPi-1 41-2 + PiPi-2 Pi-1 hi-3 +... + PPP-1. PINO + PPP-1. PCO. -> hast AND gate and OR gate require a fan-in of (n+1) for a n-bit adder. · For a 4-bit adder (n=4) fan-in of 5 is required.
· Practical limit for most gates. -> In order to add operands longer than 4 bits

we can conscade 4 bit carry lookahead adders.

Cascade of Carry - Lookahead adders is

called Blocked Carry - Lookahead adders.

