Devoir à la maison n°14

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1.

On considère la fonction $g: x \in]0, 1] \mapsto x \ln(x)$.

- 1. Montrer que g est prolongeable par continuité en 0. On note encore g ce prolongement.
- **2.** Etudier brièvement les variations de g sur [0, 1].
- **3.** On définit la suite $(t_n)_{n\in\mathbb{N}}$ par $t_0\in \left]\frac{e^{-1}}{3}, e^{-1}\right[$ et $t_{n+1}=-g(t_n)$ pour tout $n\in\mathbb{N}$. Montrer que pour tout $n\in\mathbb{N}$, $t_0\leq t_n\leq e^{-1}$.
- **4.** Montrer que pour tout $x \in [t_0, e^{-1}]$,

$$|g(x) - g(e^{-1})| \le \frac{|x - e^{-1}|^2}{2t_0}$$

5. En déduire que pour tout $n \in \mathbb{N}^*$,

$$\left|t_n - e^{-1}\right| \le 2t_0 \left(\frac{e^{-1} - t_0}{2t_0}\right)^{2^n}$$

6. En déduire la limite de la suite (t_n) .

EXERCICE 2.

- 1. On pose $S_n = \frac{1}{n} \sum_{k=1}^n \ln\left(1 + \frac{k}{n}\right)$ pour $n \in \mathbb{N}^*$. Montrer que la suite (S_n) converge vers un réel à préciser.
- **2.** On pose $u_n = \left(\frac{4^n n^n n!}{(2n)!}\right)^{\frac{1}{n}}$ pour $n \in \mathbb{N}^*$. Montrer que la suite (u_n) converge vers un réel à préciser.

Exercice 3.

- **1.** On considère la fonction $f: t \in]0,1] \mapsto -t \ln(t)$. Montrer qu'on peut prolonger f par continuité en 0. On notera encore f son prolongement. Etudier brièvement les variations de f sur [0,1].
- 2. On pose

$$\forall (n,t) \in \mathbb{N} \times \mathbb{R}, \; \mathbf{R}_n(t) = e^t - \sum_{k=0}^n \frac{t^k}{k!}$$

Montrer que

$$\forall t \in \mathbb{R}_+, \ |\mathbf{R}_n(t)| \le \frac{t^{n+1}e^t}{(n+1)!}$$

Dans la suite, on pose

$$\begin{aligned} \forall (p,q) \in \mathbb{N}^2, \ \mathbf{I}_{p,q} &= \int_0^1 x^p (\ln x)^q \ \mathrm{d}x \\ \mathbf{I} &= \int_0^1 e^{f(t)} \ \mathrm{d}t \end{aligned}$$

3. Montrer que

$$\left| \mathbf{I} - \sum_{k=0}^{n} \frac{(-1)^k}{k!} \mathbf{I}_{k,k} \right| \le \frac{e^{e^{-1}}}{e^{n+1}(n+1)!}$$

- **4.** Déterminer une relation entre $I_{p,q}$ et $I_{p,q-1}$ puis la valeur de $I_{p,q}$ pour $(p,q)\in\mathbb{N}^2$.
- 5. Montrer que la série $\sum_{n \in \mathbb{N}^*} \frac{1}{n^n}$ converge puis que $\sum_{n=1}^{+\infty} \frac{1}{n^n} = I$.