目 录 Centents

译者序			011	CLIP 1 What I I I I	
			2.1.1	CUDA 编程结构 ······ 19	
推荐序			2.1.2	内存管理 20	
自序			2.1.3	线程管理24	
作者简	介		2.1.4	启动一个 CUDA 核函数 29	
技术审	校者简介		2.1.5	编写核函数 30	
前言			2.1.6	验证核函数 31	
致谢			2.1.7	处理错误32	
tota			2.1.8	编译和执行 32	
第1章 基于 CUDA 的异构并行计算…1		2.2	给核	函数计时 35	
1.1	并行计算1		2.2.1	用 CPU 计时器计时 35	
	1.1.1 串行编程和并行编程2		2.2.2	用 nvprof 工具计时 39	
	1.1.2 并行性3	2.3	组织	并行线程40	
	1.1.3 计算机架构 4		2.3.1	使用块和线程建立矩阵索引 … 40	
1.2	异构计算6		2.3.2	使用二维网格和二维块对	
	1.2.1 异构架构7			矩阵求和44	
	1.2.2 异构计算范例 9		2.3.3	使用一维网格和一维块对	
	1.2.3 CUDA: 一种异构计算平台 10			矩阵求和47	
1.3	用 GPU 输出 Hello World12		2.3.4	使用二维网格和一维块对	
1.4	使用 CUDA C 编程难吗 ······· 15			矩阵求和48	
1.5	总结16	2.4	设备省		
1.6	习题16		2.4.1	使用运行时 API 查询 GPU	
tota - 1				信息 50	
第2章	CUDA 编程模型 ······ 18		2.4.2	确定最优 GPU 53	
2.1	CUDA 编程模型概述 ······ 18		2.4.3	使用 nvidia-smi 查询 GPU	

		信息53	3.6	动态并行104
	2.4.4	在运行时设置设备 54		3.6.1 嵌套执行105
2.5	总结	54		3.6.2 在 GPU 上嵌套 Hello World…106
2.6	习题	55		3.6.3 嵌套归约109
			3.7	总结113
第3	章 CI	J DA 执行模型56	3.8	习题113
3.1	CUD.	A 执行模型概述 ······ 56		
	3.1.1	GPU 架构概述 57	第4章	全局内存115
	3.1.2	Fermi 架构 ······ 59	4.1	CUDA 内存模型概述115
	3.1.3	Kepler 架构 61		4.1.1 内存层次结构的优点116
	3.1.4	配置文件驱动优化 65		4.1.2 CUDA 内存模型 ······117
3.2	理解组	线程束执行的本质67	4.2	内存管理124
	3.2.1	线程束和线程块67		4.2.1 内存分配和释放124
	3.2.2	线程束分化69		4.2.2 内存传输125
	3.2.3	资源分配 74		4.2.3 固定内存127
	3.2.4	延迟隐藏76		4.2.4 零拷贝内存128
	3.2.5	占用率78		4.2.5 统一虚拟寻址133
	3.2.6	同步		4.2.6 统一内存寻址134
	3.2.7	可扩展性 82	4.3	内存访问模式135
3.3	并行	性的表现 83		4.3.1 对齐与合并访问135
	3.3.1	用 nvprof 检测活跃的线程束 ··· 84		4.3.2 全局内存读取137
	3.3.2	用 nvprof 检测内存操作 ········· 85		4.3.3 全局内存写人145
	3.3.3	增大并行性 86		4.3.4 结构体数组与数组结构体147
3.4	避免	分支分化88		4.3.5 性能调整151
	3.4.1	并行归约问题 88	4.4	核函数可达到的带宽154
	3.4.2	并行归约中的分化 89		4.4.1 内存带宽154
	3.4.3	改善并行归约的分化 93		4.4.2 矩阵转置问题155
	3.4.4	交错配对的归约 95	4.5	使用统一内存的矩阵加法167
3.5	展开	循环97	4.6	总结171
	3.5.1	展开的归约97	4.7	习题172
	3.5.2	展开线程的归约 99	add.	and the Cally B
	3.5.3	完全展开的归约101	第5章	近 共享内存和常量内存 ······174
	3.5.4	模板函数的归约102	5.1	CUDA 共享内存概述174

	5.1.1	共享内存175	第6章	流和	和并发2	230
	5.1.2	共享内存分配176	6.1	流和雪	事件概述2	31
	5.1.3	共享内存存储体和访问		6.1.1	CUDA 流 ···································	
		模式176		6.1.2	流调度2	
	5.1.4	配置共享内存量181		6.1.3	流的优先级2	
	5.1.5	同步183		6.1.4	CUDA 事件····································	
5.2	共享区	内存的数据布局185		6.1.5	流同步2	
	5.2.1	方形共享内存185	6.2		内核执行2	
	5.2.2	矩形共享内存193	0.2	6.2.1	非空流中的并发内核2	
5.3	减少金	全局内存访问199		6.2.2	Fermi GPU 上的虚假	
	5.3.1	使用共享内存的并行归约199			依赖关系	242
	5.3.2	使用展开的并行归约202		6.2.3	使用 OpenMP 的调度操作 ······2	
	5.3.3	使用动态共享内存的		6.2.4	用环境变量调整流行为2	
		并行归约204		6.2.5	GPU 资源的并发限制2	
	5.3.4	有效带宽205		6.2.6	默认流的阻塞行为2	
5.4	合并的	的全局内存访问205		6.2.7	创建流间依赖关系2	
	5.4.1	基准转置内核205	6.3		内核执行和数据传输2	
	5.4.2	使用共享内存的矩阵转置207	0.5	6.3.1	使用深度优先调度重叠2	
	5.4.3	使用填充共享内存的		6.3.2	使用广度优先调度重叠2	
		矩阵转置210	6.4		GPU 和 CPU 执行 ···································	
	5.4.4	使用展开的矩阵转置211	6.5		周2	
	5.4.5	增大并行性214	6.6			
5.5	常量区	为存215	6.7			
	5.5.1	使用常量内存实现一维模板 …215		3,2		
	5.5.2	与只读缓存的比较217	第7章	调	整指令级原语	258
5.6	线程列	束洗牌指令219	7.1	CUD	A 指令概述	259
	5.6.1	线程束洗牌指令的不同		7.1.1	浮点指令	
		形式220		7.1.2	内部函数和标准函数	
	5.6.2	线程束内的共享数据222		7.1.3	原子操作指令	
	5.6.3	使用线程束洗牌指令的	7.2	程序值		
		并行归约226		7.2.1	单精度与双精度的比较2	
5.7	总结·	227		7.2.2	标准函数与内部函数的比较…2	
5.8	习题:	228		7.2.3	了解原子指令	272

	7.2.4	综合范例277	8.7	CUD	A 函数库的性能研究 ······310
7.3	总结:	279		8.7.1	cuSPARSE与MKL的比较310
7.4	习题.	280		8.7.2	cuBLAS 与 MKL BLAS
tota N		Appropriate State (14)			的比较311
第8章	E GI	PU 加速库和 OpenACC ····281		8.7.3	cuFFT 与 FFTW 及 MKL
8.1	CUD.	A 库概述282			的比较311
	8.1.1	CUDA 库支持的作用域283		8.7.4	CUDA 库性能小结······312
	8.1.2	通用的 CUDA 库工作流283	8.8	Open	ACC 的使用 ······312
8.2	cuSPA	ARSE 库285		8.8.1	OpenACC 计算指令的使用 ····· 315
	8.2.1	cuSPARSE 数据存储格式286		8.8.2	OpenACC 数据指令的使用321
	8.2.2	用 cuSPARSE 进行格式转换…289		8.8.3	OpenACC 运行时 API325
	8.2.3	cuSPARSE 功能示例······289		8.8.4	OpenACC 和 CUDA 库的
	8.2.4	cuSPARSE 发展中的重要			结合······327
		主题291		8.8.5	OpenACC 小结328
	8.2.5	cuSPARSE 小结291	8.9	总结	329
8.3	cuBL	AS 库292	8.10	习题	<u> </u>
	8.3.1	管理 cuBLAS 数据293			
	8.3.2	cuBLAS 功能示例294	第9章	多	GPU 编程331
	8.3.3	cuBLAS 发展中的重要主题…295	9.1	从一	个 GPU 到多 GPU ······332
	8.3.4	cuBLAS 小结 ······296		9.1.1	在多 GPU 上执行333
8.4	cuFF'	Γ库296		9.1.2	点对点通信 ······334
	8.4.1	使用 cuFFT API296		9.1.3	多 GPU 间的同步335
	8.4.2	cuFFT 功能示例 ······298	9.2	多GI	PU 间细分计算336
	8.4.3	cuFFT 小结 ······299		9.2.1	在多设备上分配内存336
8.5	cuRA	ND 库299		9.2.2	单主机线程分配工作337
	8.5.1	拟随机数或伪随机数的		9.2.3	编译和执行337
		选择299	9.3	多GI	PU 上的点对点通信 ······338
	8.5.2	cuRAND 库概述300		9.3.1	实现点对点访问338
	8.5.3	cuRAND 介绍303		9.3.2	点对点的内存复制339
	8.5.4	cuRAND 发展中的重要主题…306		9.3.3	统一虚拟寻址的点对点
8.6	CUD	A 6.0 中函数库的介绍 ······307			内存访问341
	8.6.1	Drop-In 库307	9.4	多 GF	PU 上的有限差分 ······342
	8.6.2	多 GPU 库 ······308			二维波动方程的模板计算342

	9.4.2	多 GPU 程序的典型模式343		10.1.2	优化因素367
	9.4.3	多 GPU 上的二维模板计算 344		10.1.3	CUDA 代码编译 ······370
	9.4.4	重叠计算与通信347		10.1.4	CUDA 错误处理 ······373
	9.4.5	编译和执行348	10.2	配置	文件驱动优化374
9.5	跨 GP	U 集群扩展应用程序350		10.2.1	使用 nvprof 寻找优化因素 ····375
	9.5.1	CPU 到 CPU 的数据传输351		10.2.2	使用 nvvp 指导优化 ······379
	9.5.2	使用传统 MPI 在 GPU 和		10.2.3	NVIDIA 工具扩展381
		GPU 间传输数据353	10.3	CUDA	A 调试383
	9.5.3	使用 CUDA-aware MPI 进行		10.3.1	内核调试383
		GPU 到 GPU 的数据传输356		10.3.2	内存调试390
	9.5.4	使用 CUDA-aware MPI 进行		10.3.3	调试小结395
		节点内 GPU 到 GPU 的数据	10.4	将C	程序移植到 CUDA C
		传输357		的案例	列研究396
	9.5.5	调整消息块大小358		10.4.1	评估 crypt ······396
	9.5.6	使用 GPUDirect RDMA 技术进		10.4.2	并行 crypt······397
		行 GPU 到 GPU 的数据传输 ··· 359		10.4.3	优化 crypt······398
9.6		361		10.4.4	部署 crypt ······404
9.7	习题.	362		10.4.5	移植 crypt 小结 ······407
left 10	de di	1. 产品和格里大学工	10.5	总结	407
第 10 1	草柏	是序实现的注意事项364	10.6	习题	407
10.1	CUI	DAC的开发过程 364			
	10.1.1	APOD 开发周期365	附录	推荐院	0读409