SirepRAT Windows IoT Core

Abusing a Windows service for RCE

About Me

- 7+ years in InfoSec
- Security Researcher @Safebreach
- Presented at DEFCON, DEEPSEC, Hackfest...
- <u>@bemikre</u>

Contents

- 1. Windows IoT Core
- 2. Live SirepRAT Demonstration
- HLK Hardware Lab Kit
- 4. Debugging Setup
- 5. Reverse Engineering the Sirep Protocol
- 6. Microsoft Coordinated Disclosure
- 7. SirepRAT Tool Release

Windows IoT

Windows 10

Free

ARM

Supported Boards

DragonBoard 410c

Usage Stats

- Windows IoT 2nd largest share in IoT solutions development (22.9%)
- Most IoT solutions in development use ARM architecture
- Security is the top concern for developing IoT solutions

April 2018

Core / Enterprise

Core

ARM & x86_x64

UWP

Digital signage, Smart buildings, Smart homes, IoT gateways, Wearables

Enterprise

x86_x64

UWP & Win32

Industry tablets, POS, Kiosks, ATMs, Medical devices, Thin clients

Stock Image / Custom Image

- OS is installed using a bootable image
- Microsoft provides public stock images, per build
- One may build a custom image with a chosen set of features
- Building a custom image is a non-trivial process aimed for OEMs
 - Purchase a code-signing certificate from a Certificate Authority (CA)
 - Sign the final files
- " if you're looking to commercialize your device, you must use a custom FFU to optimize security for your device "

OEMInput.xml

Defines features to include

Goal: Control of the Device

Remotely Take Control of the Device

Web Device Portal (WDP)

http://192.168.3.17:8080/

Requires Administrator credentials (HTTP authentication)

SSH

> ssh Administrator@192.168.3.17

Requires Administrator credentials

PowerShell

- > Set-Item WSMan:\localhost\Client\TrustedHosts -Value 192.168.3.17
- > Enter-PSSession -ComputerName 192.168.3.17 -Credential 192.168.3.17\Administrator

Requires Administrator credentials

IoT Remote Server (Remote display)

- 1. Login to WDP on the IoT device
- 2. Enable Windows IoT Remote Server in the 'Remote' tab
- 3. Install Windows IoT Remote Client app on a Windows 10 machine
- 4. Connect to device using the installed app

Requires Administrator credentials (login to WDP)

Visual Studio Debugging

- 1. Login to WDP on the IoT device
- 2. Start the Visual Studio Remote Debugger in the 'Debugging' tab
- 3. Debug an IoT app using Visual Studio on a Windows 10 machine

Requires Administrator credentials (login to WDP)

install windows iot core raspberry pi

Videos Images News

Settings

About 2,050,000 results (0.48 seconds)

How to install Windows 10 IoT on the Raspberry Pi 3

- 1. Go to the Windows 10 developer center.
- 2. Click Get Windows 10 IoT Core Dashboard to download the necessary application.
- 3. Install the application and open it.
- 4. Select set up a new device from the sidebar.
- 5. Select the options as shown in the image below.

More items... • Jan 18, 2019

How to install Windows 10 IoT Core on Raspberry Pi 3 | Windows ... https://www.windowscentral.com/how-install-windows-10-iot-raspberry-pi-3

About this result

Feedback

People also ask

Can I install Windows on Raspberry Pi?

Is Windows 10 for IoT free?

Can you put windows on a Raspberry Pi 3?

What is IoT Raspberry Pi?

Feedback

Explore ~

Docs

Downloads

Samples

Community

Commercialize

Dashboard

Downloads and Tools

Get the tools you need to build with Windows 10 IoT Core

For new users, make sure to check out the Get Started section.

Essentials

Download Windows 10 IoT Core

The IoT Dashboard is essential for all users wanting to get started.

Get Windows 10 IoT Core Dashboard

by downloading and using the windows to lot Core Dashboard you agree to the license terms and privacy statement for Windows 10 IoT Core Dashboard.

Release notes

My devices

Set up a new device

Connect to Azure

Try some samples

Your SD card is ready.

1. Insert your SD card into the device

Wi-Fi

Plug in your Wi-Fi adapter and boot up your device. See a list of supported Wi-Fi adapters

3. Find your device

Note: It will take a few minutes for your device to boot and appear in "My Devices"

Set up another device

Default Dev Features

IOT_WEBB_EXTN **Enables WDP Enables SSH** IOT_SSH-**Enables PowerShell** IOT POWERSHELL **Enables Remote Display** IOT NANORDPSERVER Enables **SIREP** service for TShell connectivity IOT SIREP

Dev friendly == Hacker friendly

Contents

- 1. Windows IoT Core
- 2. Live SirepRAT Demonstration
- HLK Hardware Lab Kit
- 4. Debugging Setup
- 5. Reverse Engineering the Sirep Protocol
- 6. Microsoft Coordinated Disclosure
- 7. SirepRAT Tool Release

DEMO

Contents

- 1. Windows IoT Core
- 2. Live SirepRAT Demonstration
- 3. HLK Hardware Lab Kit
- 4. Debugging Setup
- 5. Reverse Engineering the Sirep Protocol
- 6. Microsoft Coordinated Disclosure
- 7. SirepRAT Tool Release

HLK Hardware Lab Kit

What is HLK?

A testing framework for hardware devices & drivers

Targets Windows 10 & Server 2016

HCK (Hardware Certification Kit) successor

Windows Hardware Compatibility Program

HLK setup

- HLK test server and one or more test systems
- HLK server runs:
 - HLK Controller
 - HLK Studio
- HLK client runs the Sirep service
 - Windows IoT: Communication over TCP port 29820
 - Windows 10: Communication over TCP port 1771

Connection Types

IP over USB

Aries Ethernet-to-USB dongle

HLK Proxy Client

- Enables full support for testing on mobile/embedded devices
- May be the same machine as the test server or a dedicated machine

Setup Example #1 - Small Scale

Setup Example #2 - Mid Scale

Setup Example #3 - Large Scale

Contents

- 1. Windows IoT Core
- 2. Live SirepRAT Demonstration
- HLK Hardware Lab Kit
- 4. Debugging Setup
- 5. Reverse Engineering the Sirep Protocol
- 6. Microsoft Coordinated Disclosure
- 7. SirepRAT Tool Release

Kernel Debug Setup

Ethernet kernel debugging is not supported

USB to UART Cable (TTL)

Prolific USB To Serial Driver

Kernel Debug Setup

```
[RPi2 or RPi3]:

Pin #6 (GND) <-> Black (GND)

Pin #8 (TX) <-> White (RX)

Pin #10 (RX) <-> Green (TX)
```


- > bcdedit /store c:\EFIESP\EFI\Microsoft\Boot\BCD -dbgsettings debugtype serial
- > bcdedit /store c:\EFIESP\EFI\Microsoft\Boot\BCD -dbgsettings baudrate 921600
- > bcdedit /store c:\EFIESP\EFI\Microsoft\Boot\BCD -dbgsettings debug on

CPU Overheat

<u>Transistor-to-transistor logic (TTL), according to Whatls.com</u>:

"TTL is characterized by high switching speed, and relative immunity to noise. Its principle drawback is the fact that circuits **using TTL draw more current than equivalent circuits**."

RasPi CPU temp > 85° Celsius = downclocking or shutting down

Contents

- 1. Windows IoT Core
- 2. Live SirepRAT Demonstration
- HLK Hardware Lab Kit
- 4. Debugging Setup
- 5. Reverse Engineering the Sirep Protocol
- 6. Microsoft Coordinated Disclosure
- 7. SirepRAT Tool Release

The Sirep Protocol aka TShell aka WPCon

HKLM\...\FirewallPolicy\FirewallRules:

Sirep-Server-Protocol2 REG_SZ

v2.28|Action=Allow|Active=TRUE|Dir=In|Protocol=6|LPort=29820|App=%systemroot%\System32\svchost.exe|Name=Sirep Server (Protocol 2)|Desc=Sirep Server (Protocol 2)|EmbedCtxt=Sirep Server|

Sirep-Server-Ping REG_SZ

v2.28|Action=Allow|Active=TRUE|Dir=In|Protocol=6|LPort=29819|App=%systemroot%\System32\svchost.exe|Name=Sirep Server (Ping)|Desc=Sirep Server (Ping)|EmbedCtxt=Sirep Server|

ControllerWSA::NameBroadcasterThread

ControllerWSA::SendBroadcastForDevice

ws2_32!sendto

```
WS2_32!sendto:
7730b260 e92d4ff0 push
                   {r4-r11,lr}
0: kd> db r1 L?0x74
0324f7e0 00 c0 ff ee 42 00 38 00-32 00 37 00 45 00 42 00 ....B.8.2.7.E.B.
      33 00 44 00 42 00 44 00-39 00 36 00 00 00 00 00 3.D.B.D.9.6.....
      0324f850 00 00 00 00
0: kd> k
# Child-SP RetAddr Call Site
00 0324f7c0 711b7cb8 WS2_32!sendto
01 0324f7c0 711b7e3c testsirepsvc!ControllerWSA::SendBroadcastForDevice+0xd0
02 0324f880 711b7abc testsirepsvc!ControllerWSA::NameBroadcasterThread+0xb0
03 0324fad8 77ae97e2 testsirepsvc!ControllerWSA::NameBroadcasterThreadProc+0xc
04 0324fae0 00000000 ntdll!RtlUserThreadStart+0x22
```

HLK on Windows IoT

Service DLL: C:\Windows\System32\testsirepsvc.dll

Device Advertisement:

- Periodic gratuitous UDP packets
- Unique device ID
- Ethernet connected subnets

PING:

- Listens on the Sirep-Server-Ping (29819) port
- Responds with a "PING" payload to every incoming TCP connection
- Terminates the connection with RST

```
Protoco Data Info
                        Destination
        1 172,16,4,110 172,16,4,111 TCP
                                                 50888 → 29819 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK PERM=1
                                                 29819 → 50888 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1460 WS=256 SACK PERM=1
        2 172.16.4.111 172.16.4.110 TCP
        3 172.16.4.110 172.16.4.111 TCP
                                                 50888 → 29819 [ACK] Seg=1 Ack=1 Win=65536 Len=0
        4 172.16.4.111 172.16.4.110
                                                 29819 → 50888 [PSH, ACK] Seq=1 Ack=1 Win=65536 Len=5
        5 172.16.4.110 172.16.4.111 TCP
                                                 50888 → 29819 [PSH, ACK] Seg=1 Ack=6 Win=65536 Len=8
        6 172.16.4.111 172.16.4.110 TCP
                                                 29819 → 50888 [RST. ACK] Seg=6 Ack=9 Win=0 Len=0
Frame 4: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface 0
  Ethernet II, Src: b8:27:eb:3d:bd:96, Dst: 68:f7:28:63:3e:31
  Internet Protocol Version 4, Src: 172.16.4.111, Dst: 172.16.4.110
 Transmission Control Protocol, Src Port: 29819, Dst Port: 50888, Seq: 1, Ack: 1, Len: 5
  Data (5 bytes)
0000 68 f7 28 63 3e 31 b8 27 eb 3d bd 96 08 00 45 00
                                                         h.(c>1.' .=....E.
               70 40 00 80 06 2c 5d ac 10 04 6f ac 10
                                                         .-mp@...,]...o..
0020 04 6e 74 7b c6 c8 05 a3 40 11 3c 79 0d bf 50 18
                                                         .nt{....@.<y..P.
```

Service TCP Banner ("Handshake"):

- Listens on the Sirep-Server-Protocol2 (29820) port
- Responds with a GUID string to every incoming TCP connection
- This is the 0x10 bytes long SirepProtocolVersionGuid

SirepProtocolVersionGuid = 2a 4c 59 a5 fb 60 04 47 a9 6d 1c c9 7d c8 4f 12

Incoming Connection Authorization:

- Listens on the Sirep-Server-Protocol2 (29820) port
- ControllerWSA::IsConnectionAllowed
- No authentication
- No identification

Incoming Connection Authorization:

```
🗾 🚄 🖼
; Attributes: bp-based frame
 int fastcall ControllerWSA::IsConnectionAllowed(#20 * hidden this, unsigned int)
public: int cdecl ControllerWSA::IsConnectionAllowed(unsigned int)
var 28= -0x28
var 20= -0x20
var 1C= -0x1C
PUSH.W
                {R4,R5,R11,LR}
ADD.W
                R11, SP, #8
                security push cookie
               SP, SP, #0x10
MOV
                R3, R1
                R5, R0 ; The ControllerWSA object
MOV
MOV
                RO. R3
                R3, = imp qetsockname
LDR
MOUS
                R2, #0x10
STR
                R2, [SP,#0x28+var 28]
LDR
                R3, [R3]
MOV
                R2. SP
ADD
                R1, SP, #0x28+var 20
MOUS
                R4, #0
BLX
CBZ
                R0, loc 100094C8
```

Incoming Connection Authorization:

```
loc_188894C8
ADD R1, SP, #8x28+var_20
ADD.W R0, R5, #8x2C; this
BL NetworkInterfaces::IsInterestingAddress(sockaddr_in *); R0 - socket address
CBNZ R0, loc_188894E8; SUCCESS = r0 non-zero
```

How come that the authorization criterion is so permissive?

Protocol Name Ambiguity

No official explanation available. Our best guess:

Commands Interface:

A service routine accepts incoming command buffers:

```
SirepPipeServiceRoutine
```

Directs execution to right path in code, in a switch manner

```
BL
                SirepProtocol2ReceivePacketWithTimeout
                R4. R0 : if receive succeeded, r0=0
MOU
CMP
                R4. #0
                RecvPacketFailed ; branch if recv above failed
BLT
                R3, [SP,#8]; first packet byte (command type)
LDR
CMP
                R3, #0x1E
                SwitchCommandsSet ; branch to first set of commands
BGT
BEQ
                SwitchGetFile ; branch to get file command
                R3, #0xA
CMP
                SwitchLaunch; branch to launch command
BEQ
CMP
                R3, #0x14
                SwitchPutFile ; branch to put file command
BEQ
CMP
                R3, #0x17
                SwitchPutFile2; branch to put file command #2
BEQ
CMP
                R3, #0x18
                SwitchPipeClose; branch to pipe close command
BNE
```

```
SwitchCommandsSet

CHP R3, #9x28

BEQ SwitchPipeClose2; branch to pipe close command #2

CHP R3, #8x32

BEQ SwitchGetSystemInfo; branch to get sys info command

CHP R3, #8x3C

BNE SwitchPipeClose; branch to pipe close command

LDR R1, [SP, #8x6]

MOU R8, R5

BL SirepGetFileInformationFromDevice(void *,ulong)

B loc_1886D35C
```

Packet Structure

TLV

00	01	02	03	04	05	06	07	08		<payload length=""></payload>
Co	omma	nd Ty	ре	Pa	ayload	l Leng	th		Comma	nd Data

Command Structure - Types

- 1. GetSystemInformationFromDevice
- 2. GetFileFromDevice
- 3. GetFileInformationFromDevice
- 4. PutFileOnDevice
- 5. LaunchCommandWithOutput

1. GetSystemInformationFromDevice

00	01	02	03 04		05	06	07		
Co	omma	nd Ty	ре	Payload Length					
32	00	00	00	00	00	00	00		

2. GetFileFromDevice

00	01	02	03	04	05	06	07	08		47			
Co	omma	nd Ty	ре	Pa	ayload	l Leng	ıth	Remote Path					
1E	00	00	00	40	00	00	00	С	C:\Windows\System32\hostname.exe				

3. GetFileInformationFromDevice

00	01	02	03	04	05	06	07	08		47			
Co	omma	nd Ty	ре	Pa	ayload	l Leng	th	Remote Path					
3C	00	00	00	40	00	00	00	С	:\Windows\System32\hostname.ex	œ			

4. PutFileOnDevice

00	01	02	03	04	05	06	07	08		47	
Co	omma	nd Ty	ре	Pa	ayload	I Leng	th	Remote Path			
14	00	00	00	40	00	00	00	C:\Windows\System32\hostname.exe			
48	49	4A	4B	4C	4D	4E	4F	50		67	
Wri	iteRec	ord T	ype	I	Data L	_ength	1	Data			
15	00	00	00	18	00	00	00	HELLO WORLD!			

5. LaunchCommandWithOutput

CreateProcess / CreateProcessAsUser

5. LaunchCommandWithOutput

- LocalSystem / logged on user impersonation
 - "<AS_LOGGED_ON_USER>" prefix
- Error / Output streams
- lpApplicationName
- lpCommandLine
- lpCurrentDirectory

5. LaunchCommandWithOutput

00	01	02	03	04	05	06	06 07		08	09	0A	0B	0C	00) (Œ	0F
С	Command Type Pa					d Len	gth		Return Output Flag				Return Error Flag				
0A	00	00	00	AE	00	00	00		01	00	00	00	01	00	C	0	00
10	11	12	13	14	15	16	16 17		18	19 1A		1B	1C	10) /	1E	1F
Ap	pplicati	on Off	set	Ар	plication	on Le	ngth		Con	nmand	Line	Offset	Con	nmar	nd Lin	e Le	ength
24	00	00	00	66	00	00	00		8A	00	00	00	06	00	C	0	00
20	2	:1	22	23	2	24	25	5	26 27		27	28	29	29 2			2B
	Base	Direct	ory Offs	et		Base Direc				ngth			Se	epara	itor		
90	0	0	00	00	1	Е	00)	00 00		00	00	00		00		00
2C		</td <td>Application</td> <td>Length></td> <td>92</td> <td colspan="2">92 <0</td> <td colspan="3">Command Line Length></td> <td>98</td> <td colspan="3"> <base directory="" length=""/></td>	Application	Length>	92	92 <0		Command Line Length>			98	<base directory="" length=""/>					
Application						Command Line						Base Directory					
<as_logged_on_user>C:\ Windows\System32\hostname.e xe</as_logged_on_user>						/?						C:\Users\Public					

Result Packet Structure

Returned as one or more result records.

Command	Record Type	Code	Remarks
GetSystemInformationFromDevice	SystemInformation	0x33	
	HResult	0x01	Mandatory, represents the HRESULT
LaunchCommandWithOutput	OutputStream	0x0B	Optional, can't be set if error stream is not set
	ErrorStream	0x0C	Optional
GetFileFromDevice	File	0x1F	
PutFileOnDevice	HResult	0x01	represents the HRESULT
GetFileInformationFromDevice	FileInformation	0x3D	

Result Packet Structure

Result example for LaunchCommandWithOutput:

We got 3 records: HResult, OutputStream, ErrorStream

Contents

- 1. Windows IoT Core
- 2. Live SirepRAT Demonstration
- HLK Hardware Lab Kit
- 4. Debugging Setup
- 5. Reverse Engineering the Sirep Protocol
- 6. Microsoft Coordinated Disclosure
- 7. SirepRAT Tool Release

MSRC Response

"The engineering group has determined this report will not be addressed because T-Shell (Sirep) is an optional feature on IoTCore for retail images and our documentation calls out it is a test package..."

"We plan to update the documentation to mention that images running the TestSirep package allow anyone with network access to the device to execute any command as SYSTEM without *any* authentication and that this is by design."

Contents

- 1. Windows IoT Core
- 2. Live SirepRAT Demonstration
- 3. HLK Hardware Lab Kit
- 4. Debugging Setup
- 5. Reverse Engineering the Sirep Protocol
- 6. Microsoft Coordinated Disclosure
- 7. SirepRAT Tool Release

SirepRAT Remote control your Windows IoT

Features

- First tool to run programs as SYSTEM on Windows IoT Core
 - Remote
 - Requires no authentication
 - Requires no installation on target device
 - Supports impersonation
- The only requirement is TCP access (29820) to the cable-connected device

Features

- Supports all of Sirep/TShell commands
 - GetSystemInformationFromDevice
 - GetFileFromDevice
 - GetFileInformationFromDevice
 - PutFileOnDevice
 - LaunchCommandWithOutput

Usage

- > git clone https://github.com/SafeBreach-Labs/SirepRAT.git
- > cd SirepRAT
- > python SirepRAT.py <iot_device_ip> GetSystemInformationFromDevice

Future Research

- Use the service DLL as an off the shelf backdoor? For PCs?
- Check attack against Windows Mobile

Q&A