COMP90020: Distributed Algorithms

7. Consensus in DS with Byzantine Failures

Related Problems and Unfeasibility

Miquel Ramirez

Semester 1, 2019

Agenda

- Revision
- 2 BG & IC
- Impossibility Results
- 4 Biblio & Reading

Agenda

- Revision
- 2 BG & IC
- Impossibility Results
- 4 Biblio & Reading

Models of Non-Determinism

Both processes and comms channels can fail to show expected behaviour

- Omission failing to do something (Crash Failures)
- Timing failing to do something in a timely fashion
- Byzantine procs and channels show arbitrary behaviour (Most General Case)

Models of Non-Determinism

Both processes and comms channels can fail to show expected behaviour

- Omission failing to do something (Crash Failures)
- Timing failing to do something in a timely fashion
- Byzantine procs and channels show arbitrary behaviour (Most General Case)

Failure Models are useful to design robust algorithms for DS

- → Identify special cases which are easier to handle
- → Apply divide & conquer to design problem: see next slide

DS + DA = Transition Systems

Transition system $\mathcal{T} = \langle \mathcal{C}, \delta, \mathcal{I}, F \rangle$ abstracts DS under DA control

- C is set of configurations (global states) γ of DS,
- a transition function $\delta: \mathcal{C} \mapsto \mathcal{C}$, and
- a set initial configurations $\mathcal{I} \subseteq \mathcal{C}$,
- and terminal configurations $F \subset \mathcal{C}$, such that $\delta(f) = f$, $f \in F$.

An execution of DA over DS is a sequence

$$h = (\gamma_0, \gamma_1, \gamma_2, \ldots), \ \gamma_0 \in \mathcal{I}, \ \gamma_{i+1} = \delta(\gamma_i)$$

Configs γ^* reachable if exists $h=(\gamma_0,\ldots,\gamma_k)$, $\gamma_k=\gamma^*$, where k is finite.

Miquel Ramirez

Transition System + Condition = Problem

To sum up:

- DA's control the evolution through time of DS
- ullet Transition systems ${\mathcal T}$ describe behaviour of DS under DA control
- Requirements on behaviour formalised as logical conditions
 - → Safety: "something bad will never happen" (*Termination*)
 - → Liveness: "something good will eventually happen" (Agreement)
 - → Invariant: "safety from every beginning to every end" (Validity)

Point to Take Home

We formulate the problems DA's solve as the combination of transition systems and conditions .

Consensus from RTO-Multicast (Chandra & Toueg)

Consensus equivalent to reliable, totally ordered multicast.

Consensus from RTO-Multicast (Chandra & Toueg)

Consensus equivalent to reliable, totally ordered multicast.

How it works?

- All processes p_i form up a group q
- Every p_i makes a call to **RTO-multicast** (v_i,g)
- p_i sets d_i to m_i , first value coming via **RTO-delivers**()

Consensus from RTO-Multicast (Chandra & Toueg)

Consensus equivalent to reliable, totally ordered multicast.

How it works?

- All processes p_i form up a group g
- Every p_i makes a call to **RTO-multicast** (v_i,g)
- p_i sets d_i to m_i , first value coming via **RTO-delivers**()

Why it works?

- Termination guaranteed by reliability of RTO-multicast
- Agreement and Validity guaranteed by RTO-deliver
 - Delivery is totally ordered and reliable

Chandra & Toueg (1996) showed how to obtain RTO multicast from consensus

Dolev-Strong-Attiya-Welch Algorithm for Consensus

DSAW Consensus for process p_i

Initialization

$$V_i^1 \leftarrow \{v_i\}, \ V_i^0 \leftarrow \emptyset$$

In round $1 < r < |\mathcal{F}| + 1$

- 1. **B-multicast** $(V_i^r \setminus V_i^{r-1}, g)$
- 2. $V_i^{r+1} \leftarrow V_i^r$
 - * On **B-deliver** (V_j) from some p_j

a.
$$V_i^{r+1} \leftarrow V_i^{r+1} \cup V_j$$

After $|\mathcal{F}| + 1$ rounds

$$d_i \leftarrow \min V_i^{|\mathcal{F}|+1}$$

Assumptions:

Impossibility Results

- comms are synchronous,
- $\mathcal{F} \subset \mathcal{P}$ set of faulty procs.
- $f = |\mathcal{F}|$
- failures are crashes

Notes:

- Reentrant
- Round duration based on timer
- We use min because proposed values v_i do not change
- procs can crash but not generate arbitrary outputs

Correctness of DSAW

Termination

• Guaranteed by synchronous communication

Correctness of DSAW

Termination

• Guaranteed by synchronous communication

Agreement & Integrity (Proof Sketch)

- Let γ_l , l = f + 1, be cfg with $d_i \neq d_j$ for procs p_i , p_j ,
- this can happen iff in γ_{l-1} , a proc p_k sent v to p_i and crashed, before being able to send v to p_j ,
- if p_k had v, but p_j did not receive it, then in γ_{l-2} some other proc p_m sent v to p_k and crashed,
- easy to see path from γ_0 to γ_l requires f+1 crashes,
- which violates assumption that at most f procs crash.

Correctness of DSAW

Termination

Guaranteed by synchronous communication

Agreement & Integrity (Proof Sketch)

- Let γ_l , l = f + 1, be cfg with $d_i \neq d_j$ for procs p_i , p_j ,
- this can happen iff in γ_{l-1} , a proc p_k sent v to p_i and crashed, before being able to send v to p_j ,
- if p_k had v, but p_j did not receive it, then in γ_{l-2} some other proc p_m sent v to p_k and crashed,
- ullet easy to see path from γ_0 to γ_l requires f+1 crashes,
- ullet which violates assumption that at most f procs crash.

Lower bound for Synchronous Systems

Consensus will require f+1 rounds of message exchanges for any kind of Byzantine failure.

Agenda

- 1 Revision
- 2 BG & IC
- 3 Impossibility Results
- 4 Biblio & Reading

Why Consensus Matters?

Leading truck wants to go straight

Consensus DA guarantee trucks working correctly will follow leading truck

Lecture 7: Consensus in Byzantine DS

The Byzantine Generals Problem

DS Specification:

- $\mathcal{P} = \{p_1, \dots, p_N\}, E = \{(p_i, p_j), (p_j, p_i) \mid i \neq j\}$
- There is a leading process $p^* \in \mathcal{P}$ ("the general")
- Comms reliable, procs subject to Byzantine (anything goes) failures

12/28

The Byzantine Generals Problem

DS Specification:

- $\mathcal{P} = \{p_1, \dots, p_N\}, E = \{(p_i, p_j), (p_j, p_i) \mid i \neq j\}$
- There is a leading process $p^* \in \mathcal{P}$ ("the general")
- Comms reliable, procs subject to Byzantine (anything goes) failures

Local variables for each p_i :

- Proposed value $v(p^*) \in D$, $(v^* \text{ for short})$, v_i^j received values
- Decision variable $d(p_i) \in D \cup \{\bot\}$, $p_i \neq p^*$, $(d_i \text{ for short})$
- v^* is constant, d_i initially set to \bot

The Byzantine Generals Problem

DS Specification:

- $\mathcal{P} = \{p_1, \dots, p_N\}, E = \{(p_i, p_j), (p_j, p_i) \mid i \neq j\}$
- There is a leading process $p^* \in \mathcal{P}$ ("the general")
- Comms reliable, procs subject to Byzantine (anything goes) failures

Local variables for each p_i :

- Proposed value $v(p^*) \in D$, $(v^* \text{ for short})$, v_i^j received values
- Decision variable $d(p_i) \in D \cup \{\bot\}$, $p_i \neq p^*$, $(d_i \text{ for short})$
- ullet v^* is constant, d_i initially set to ot

DA Design Problem

Find DA that guarantees the following for every execution \boldsymbol{h}

- **1** Termination: eventually every correct p_i sets d_i to v^* .
- ② Agreement: for every correct (p_i, p_j) , $p_i \neq p^*$, $p_j \neq p^*$, eventually $d_i = d_j = v^*$.
- **3** Validity: if p^* correct, then every correct p_i , d_i eventually set to v^* .

Lamport-Shostak-Pease's Algorithm for $N \ge 4$, f < N/3

Process p^*

In round 1

B-multicast (v^*)

In round 2

Do Nothing

Process p_i

Initialization

-

In round 1

* On $\mathbf{B}\text{-deliver}(v^*)$ from p^*

 $v_i \leftarrow v^*$

 $v_i \leftarrow \bot$

In round 2

1. $\operatorname{send}(v_i, p_i)$ for $p_i \neq p^*$

* On receive (v^j) from p_j

 $v_i^j \leftarrow v^j$

2. $d_i = \text{majority}(v_i^1, \dots, v_i^N)$

 \rightarrow majority $(v_1, v_2, ..., v_n) = \operatorname{argmax}_{v_i} \sum_{v_i} I_{v_j = v_i}$

Example: majority $(1, 1, 3, 4, 4, 3, 5, 1, \bot) = 1$, majority (1, 2, 1, 2, 1, 2) = 1

Sample Execution

Miguel Ramirez

COMP90020

Lecture 7: Consensus in Byzantine DS

Implication of synchronous comms:

ullet if $\mathbf{send}(v_i,p_j)$ fails (times out), p_j will set v_j^i to \bot ,

Implication of synchronous comms:

ullet if $\mathbf{send}(v_i, p_j)$ fails (times out), p_j will set v_j^i to \bot ,

When less than N/3 processes are faulty,

- every correct process p_i receives (2N/3) 1 replicas of v^* ,
- majority will filter out messages from faulty procs

Implication of synchronous comms:

ullet if $\mathbf{send}(v_i,p_j)$ fails (times out), p_j will set v_j^i to \bot ,

When less than N/3 processes are faulty,

- every correct process p_i receives (2N/3) 1 replicas of v^* ,
- majority will filter out messages from faulty procs

When commander proc p^* fails and all procs correct,

• correct procs p_i will reach consensus (to something),

Implication of synchronous comms:

ullet if $\mathbf{send}(v_i,p_j)$ fails (times out), p_j will set v_j^i to \bot ,

When less than N/3 processes are faulty,

- every correct process p_i receives (2N/3) 1 replicas of v^* ,
- majority will filter out messages from faulty procs

When commander proc p^* fails and all procs correct,

ullet correct procs p_i will reach consensus (to something),

If p^* failures are fair, sends values equally often

• if all correct, procs p_i will set d_i to \perp

Self-Diagnosing Commander is Faulty

Question: "Unfair" Byzantine failures

Question!

Commander faulty, but sends v to p4 rather than w. What are the values of d_i for p_2 , p_3 and p_4 ?

(A):
$$d_2 = d_3 = d_4 = \bot$$

(B):
$$d_2 = u, d_3 = v, d_4 = w$$

(C):
$$d_2 = v$$
, $d_3 = u$, $d_4 = v$

(D):
$$d_2 = d_3 = d_4 = v$$

Question: "Unfair" Byzantine failures

Question!

the subordinate processes

Commander faulty, but sends v to p4 rather than w. What are the values of d_i for p_2 , p_3 and p_4 ?

(A):
$$d_2 = d_3 = d_4 = \bot$$
 (B): $d_2 = u, d_3 = v, d_4 = w$

(C):
$$d_2 = v$$
, $d_3 = u$, $d_4 = v$ (D): $d_2 = d_3 = d_4 = v$

ightarrow (D): Note that it is quite easy for a hacker taking over p_1 to "poison the well" for

Interactive Consistency

DS Specification:

- $\mathcal{P} = \{p_1, \dots, p_N\}, E = \{(p_i, p_j), (p_j, p_i) \mid i \neq j\}$
- Comms reliable, procs subject to Byzantine (anything goes) failures

Local variables for each p_i :

- *Proposed* value $v(p_i) \in D$, $(v_i \text{ for short})$
- Decision vector $d(p_i) \in D^{N-1} \cup \{\bot\}^{N-1}$, $(\vec{d_i} \text{ for short})$
- v_i is constant, d_i^j initially set to \perp

DA Design Problem

Find DA that guarantees the following for every execution h

- **1** Termination: eventually every correct p_i sets d_i^j to $x \neq \bot$.
- ② Agreement: for every correct (p_i,p_j) , eventually $\vec{d_i}=\vec{d_j}$.
- **3** Validity: if $v_i = x$ for every correct p_i then $d_i^i = x$.

Relating C, BG and IC

Under some conditions we can reuse DA's for C, BG & IC

• Assumption: Faulty procs send only one (wrong) value

Relating C, BG and IC

Under some conditions we can reuse DA's for C, BG & IC

• Assumption: Faulty procs send only one (wrong) value

$C_i(v_1,\ldots,v_N)$ DA for Consensus

ullet returns d_i of proc p_i solving Consensus from vals v_1,\ldots,v_N

$BG_i(j, v)$ DA for Byzantine Generals

• return d_i for proc p_i , commander $p^* = p_j$ proposing v

$IC_i(v_1,\ldots,v_N)$

- returns vector $\vec{d_i}$ for proc p_i ,
- v_1, \ldots, v_N are proposed values of processes \mathcal{P} ,
- and $IC_i(v_1,\ldots,v_N)^j$ is j-th value of $\vec{d_i}$.

Putting it Together

Interactive Consistency from Byzantine Generals

• Run BG_i N times, once with each p_j acting as p^*

$$IC_i(v_1,\ldots,v_N)^j = BG_i(j,v)$$

Putting it Together

Interactive Consistency from Byzantine Generals

• Run BG_i N times, once with each p_j acting as p^*

$$IC_i(v_1,\ldots,v_N)^j = BG_i(j,v)$$

Consensus from Interactive Consistency

- Run IC_i , obtain $\vec{d_i} = IC_i(v_1, \dots, v_N)$
- ullet Apply suitably chosen function to select d_i

$$C_i(v_1, \ldots, v_N) = \text{majority}(\vec{d_i})$$

Putting it Together

Interactive Consistency from Byzantine Generals

• Run BG_i N times, once with each p_j acting as p^*

$$IC_i(v_1,\ldots,v_N)^j = BG_i(j,v)$$

Consensus from Interactive Consistency

- Run IC_i , obtain $\vec{d_i} = IC_i(v_1, \dots, v_N)$
- Apply suitably chosen function to select d_i

$$C_i(v_1,\ldots,v_N) = \text{majority}(\vec{d_i})$$

Byzantine Generals from Consensus

- Commander $p^* = p_k$, send v to itself and other procs p_i
- Every proc p_i (including p^*) runs C_i with v_1, \ldots, v_N

$$BG_i(k, v) = C_i(v_1, \dots, v_N)$$

Efficiency in the Byzantine Failure Model

How many rounds necessary for Consensus?

Miquel Ramirez

COMP90020

Efficiency in the Byzantine Failure Model

How many rounds necessary for Consensus?

- We have shown f + 1 to be a lower bound,
- so we cannot do better than that!

How many rounds necessary for Consensus?

- We have shown f + 1 to be a lower bound,
- so we cannot do better than that!

How many messages need to be sent?

How many rounds necessary for Consensus?

- We have shown f+1 to be a lower bound,
- so we cannot do better than that!

How many messages need to be sent?

- Pease et al. sends exponential nr. messages $O(N^{f+1})$,
- but that's an upper bound.

How many rounds necessary for Consensus?

- We have shown f+1 to be a lower bound,
- so we cannot do better than that!

How many messages need to be sent?

- Pease et al. sends exponential nr. messages $O(N^{f+1})$,
- but that's an upper bound.

Improvements on $O(N^{f+1})$

How many rounds necessary for Consensus?

- We have shown f+1 to be a lower bound,
- so we cannot do better than that!

How many messages need to be sent?

- ullet Pease et al. sends exponential nr. messages $O(N^{f+1})$,
- but that's an upper bound.

Improvements on $O(N^{f+1})$

- Use Digital Signatures, messages bound by $O(N^2)$,
- Exploit knowledge on source of failures

Agenda

- Revision
- 2 BG & IC
- Impossibility Results
- 4 Biblio & Reading

Consensus with Byzantine failures not possible for many DS's

- Proportion of faulty too big for consensus to be well-defined
- Comms asynchronous

Consensus with Byzantine failures not possible for many DS's

- Proportion of faulty too big for consensus to be well-defined
- Comms asynchronous

What does that mean?

Consensus with Byzantine failures not possible for many DS's

- Proportion of faulty too big for consensus to be well-defined
- Comms asynchronous

What does that mean?

- Re-design DS, add redundancy (replication)
- or simulate synchronous comms (e.g. Synchronous API mode for TCP/IP),
- or require digital signatures on every message.

Consensus with Byzantine failures not possible for many DS's

- Proportion of faulty too big for consensus to be well-defined
- Comms asynchronous

BG & IC

What does that mean?

- Re-design DS, add redundancy (replication)
- or simulate synchronous comms (e.g. Synchronous API mode for TCP/IP),
- or require digital signatures on every message.

Hope for the best

Relax expectations on DA's, conditions guaranteed with p>0

Counterexample #1 for Lamport-Shostak-Pease Algorithm

Impossibility Results

0000

Miguel Ramirez

COMP90020

Lecture 7: Consensus in Byzantine DS

Miquel Ramirez

COMP90020

Generalization for $N \leq 3f$ (Lamport-Shostak-Pease)

- 1. Assume DA exist for $N \leq 3f$.
- 2. Divide procs \mathcal{P} into disjoint sets S, T and U, $p^* \in S$.
- 3. Three cases possible when running DA:
 - Case #1: all faulty in U, $S \cup T$ reach Consensus, $p_i \in U$ agree with $p_j \in T$ if not faulty.
 - Case #2: all faulty in T, $S \cup U$ reach Consensus, $p_i \in T$ agree with $p_j \in U$ if not faulty.
 - Case #3: all faulty in S, including p^* too.
 - a. S propagates v to T, $d_i = d_j$, $p_i \in S$, $p_j \in T$.
 - b. S propagates w to U, $d_i = d_j$, $p_i \in S$, $p_j \in U$.
- 4. Contradiction: We found scenario where DA incorrect.

Agenda

- Revision
- 2 BG & IC
- Impossibility Results
- Biblio & Reading

Further Reading

Coulouris et al. Distributed Systems: Concepts & Design

- Chapter 2, Section 2.4.2
- Chapter 15, Section 15.5

Wan Fokkink's Distributed Algorithms: An Intuitive Approach

- Chapter 2 Introduction & Preliminaries
- Chapter 12 Consensus with Crash Failures
- Chapter 13 Consensus with Byzantine Failures