Discrete Riemann surfaces and the Ising model: notes

Jack Ceroni* (Dated: Monday 2nd October, 2023)

I. Introduction

The goal of these notes is to summarize and explain in greater detail the ideas outlined in Christian Mercat's paper Discrete Riemann surfaces and the Ising model.

II. Introducing the terminology of discrete surfaces

We begin by letting Σ be an oriented surface without boundary. In these notes, we will in addition assume that Σ is a smooth manifold (it has a smooth structure which has smooth transition maps). Let us begin by recalling a basic definition.

Definition II.1 (Equivalent definitions of an orientation). The most common definition for the orientation of a smooth manifold, and the one most likely known by the reader, is the following. Given a manifold M, an oriented atlas of M is an atlas of open neighbourhoods and associated coordinate charts, $(U_{\alpha}, \varphi_{\alpha})_{\alpha \in I}$ such that each transition map $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ (which is assumed to be C^{∞} as M is smooth) has positive Jacobian determinant everywhere. An orientation on a manifold is a smooth structure (a maximal smooth atlas) which is oriented.

Equivalently, TODO: fill this in

A. Introducing cell complexes

We now come to the first set of definitions. In particular, we develop a means of placing a discrete, lattice-like structure on an otherwise continuous surface, in such a way that the underlying geometry of the surface is repsected.

Definition II.2 (Cellular decomposition). Given Σ as defined above (an oriented surface without boundary), a *cellular decomposition* Γ of Σ is a partition of Σ into disjoint connected sets (which we call cells) of three different types:

- ullet A discrete set of points. We call these the *vertices* of Γ , and denote them by Γ_0
- A collection of non-intersecting sets of the form $\gamma((0,1))$, where $\gamma:[0,1] \to \Sigma$ is a bijective path such that $\gamma(0)$ and $\gamma(1)$, the endpoints of the path, are contained in Γ_0 . We will assume that any such γ is also smooth, in the sense that each $\varphi_{\alpha} \circ \gamma$ is smooth for $x \in \gamma((0,1)) \cap U_{\alpha}$, where $(U_{\alpha}, \varphi_{\alpha})$ is a coordinate chart of the smooth structure on Σ . We call these the *edges* of Γ and denote them by Γ_1 .
- A collection of topological discs of the form B (in other words, an embedding of an open ball B^2 in Σ) such that ∂B can be written as a finite union of elements of Γ_0 and Γ_1 (nodes and edges). We call these the *faces* of Γ , and denote them by Γ_2 .

A cellular decomposition is said to be *locally finite* if every compact subset C of Σ intersects only a finite number of elements of Γ .

^{*} jackceroni@gmail.com

FIG. 1. The left image depicts two faces F_1 and F_2 and their bounding, oriented edges (and vertices) of some cellular decomposition Γ. The right picture shows some of the cells of a cellular decomposition Γ of a genus-2 surface Σ.

Remark II.1 (Parameterizing Γ). Note that the vertices, edges and faces of a cellular decomposition Γ are all images of a 0-ball (a point), 1-ball (the interval (0,1)), and 2-ball (the set $\{x \in \mathbb{R}^2 \mid |x| < 1\}$), respectively, with respect to given parameterizations. This follows directly from the definition, with the edges being images of (0,1) and faces being embeddings of B^2 . Equivalently, we can choose parameterizations which map from each element of Γ to topological balls instead.

Remark II.2 (Orientation of Γ). Since each face in Γ is an open subset of Σ , each will naturally inherit the orientation of the larger surface Σ . On the other hand, the edges of Γ are not open in Σ : they, along with their vertex endpoints, make up the boundaries of the faces. Thus, the edges are not equiped with a canonical orientation, so we instead arbitrarily choose one of the *two possible* orientations (each edge is an orientable and path-connected manifold, so there are precisely two choices of orientation).

We continue by translating a well-known construction from standard differential geometry to its discrete counterpart.

Definition II.3. We define the space of *chains* on Γ , $C(\Gamma)$, as the \mathbb{Z} -module generated by taking formal linear combinations of cells of Γ . We define the space of k-chains on Γ , $C_k(\Gamma)$, to be the \mathbb{Z} -module generate by all dimension-k cells (when each cell individually is treated as a manifold). This leads to a natural collection of boundary operators, $\partial: C_k(\Gamma) \to C_{k-1}(\Gamma)$, so that we have the following complex

$$C_2(\Gamma) \xrightarrow{\partial} C_1(\Gamma) \xrightarrow{\partial} C_0(\Gamma).$$
 (1)

To be more specific, ∂ is a linear map which takes a formal linear combination of k-cells to a formal linear combination, with the same coefficients, of the corresponding boundaries

$$\partial(c_1 S_1 + \dots + c_k S_k) = c_1 \partial S_k + \dots + c_k \partial S_k \tag{2}$$

where $S_j \in \Gamma$ for each j. Note that $\partial \circ \partial = 0$, as given a formal sum of faces, edges and vertices, the boundary will be a formal sum of edges and vertices.

III. Discrete holomorphic functions

IV. A discrete deRham complex

V. A discrete Hodge star

VI. Hodge's theorem for discrete surfaces