Recherche opérationnelle

Recherche Opérationnelle R.O.

Partie 2: Programmation Linéaire P.L.

Pr. Abdessamad Kamouss

Cycle Ingénieur ENSAM Casablanca

Summary

Recherche opérationnelle

Abdessama Kamouss 80

Modélisation e

Notions de bases Quelques exemples d programmes linéaires

Résolution d'un PL

Méthode du simplexe

Simplexe

1 Modélisation et P.L.

- Notions de bases
- Quelques exemples de programmes linéaires
- 2 Résolution d'un PL
 - Méthode graphique
 - Méthode du simplexe
 - Solution de base
 - Simplexe

PLS - Solution de base

Recherche opérationnelle

Pr. Abdessamad Kamouss 81

Modélisation et P.L.

Notions de bases Quelques exemples d programmes linéaires

Résolution d'un PL

Méthode graphique Méthode du simplexe Solution de base Considérons un PL dans sa forme standard qui sera noté (PLS=) :

$$\text{Maximiser } z(x_1, x_2, ..., x_n) = \sum_{j=1}^n c_j x_j \\ \begin{cases} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \pm e_1 = b_1 \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \pm e_2 = b_2 \\ \\ a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \pm e_m = b_m \\ x_1, x_2, ..., x_n \in \mathbb{R}^+ \end{cases}$$

- *n* désigne le nombre de variables de décision $x_1, x_2, ..., x_n$.
- m le nombre des contraintes = le nombre de variables d'écart ou d'excédent $e_1, e_2, ..., e_m$.
- On obtient donc un système de m équations linéaires à n' = n + m inconnues (m < n'): infinité de solutions.

PLS - Solution de base

Recherche opérationnelle

Abdessamad Kamouss 82

Modélisation e P.L.

Notions de bases Quelques exemples de programmes linéaires

Résolution d'un PL

Méthode graphique
Méthode du simplexe
Solution de base
Simplexe

Définition (Solutions de base)

Une solution $(x_1, x_2, ..., x_n, e_1, e_2, ..., e_m)$ vérifiant les m contraintes de **(PLS=)** est dite **solution de base** de **(PLS=)** si au moins (n'-m) de ses variables sont égales à 0.

Les variables fixées à zéro sont appelées variables hors base et les autres variables en base.

Définition (Solutions de base admissible)

Une solution de base dont tout les coordonnées sont non négatives est dite solution de base admissible de (PLS=).

Recherche opérationnelle

Pr. Abdessamad Kamouss 83

Modélisation e

Notions de bases Quelques exemples de programmes linéaires

Résolution d'un PL

Méthode du simplex Solution de base • Système linéaire Ax = b

• A matrice de dimension $m \times n$ et rang $A = m \le n$

Base de la matrice A

sous-matrice B de rang m de A (n'est pas unique)

B matrice $m \times m$ avec det $B \neq 0$

Posons $A = (B \ N)$

$$Ax = b \Leftrightarrow (B \ N)x = b \Leftrightarrow Bx_B + Nx_N = b$$

$$\Leftrightarrow x_B = B^{-1}b - B^{-1}Nx_N$$

Solution de base associée à B

- $x_N = 0$: variables hors base
- $x_B = B^{-1}b$: variables de base

Problème : comment trouver une matrice B? et x_B ?

Recherche opérationnelle

Abdessama Kamouss 84

Modélisation e P.L.

Notions de bases

Quelques exemples d
programmes linéaires

Résolution d'un

Méthode graphique Méthode du simplexe

Solution de base Simplexe

$$\begin{cases} 2x + y + e_1 &= 8 \\ x + 2y + e_2 &= 7 \\ y + e_3 &= 3 \\ x, y, e_1, e_2, e_3 &\geq 0 \end{cases}$$

Pour trouver une base, en tenter une... Par exemple $\{e_1, e_2, e_3\}$

$$\begin{cases} 2x + y + e_1 &= 8 \\ x + 2y + e_2 &= 7 \\ y + e_3 &= 3 \end{cases} \Leftrightarrow \begin{cases} e_1 &= 8 - 2x - y \\ e_2 &= 7 - x - 2y \\ e_3 &= 3 - y \end{cases}$$

 $\{e_1, e_2, e_3\}$: variables de base et $\{x, y\}$ variables hors base

Recherche opérationnelle

Abdessama Kamouss 85

Modélisation e P.L.

Notions de bases Quelques exemples d programmes linéaires

Résolution d'un

Methode graphique
Méthode du simplexe
Solution de base

Solution de ba Simplexe $\{e_1, e_2, e_3\}$: variables de base et $\{x, y\}$ variables hors base

$$\begin{cases}
e_1 = 8 - 2x - y \\
e_2 = 7 - x - 2y \\
e_3 = 3 - y
\end{cases}$$

Pour calculer une solution de base :

- variables hors base = 0
- variables de base à calculer (si possible, c'est ok)

Recherche opérationnelle

Abdessama Kamouss 86

Modélisation e P.L.

Notions de bases Quelques exemples d programmes linéaires

Résolution d'un

Methode graphique Méthode du simplexe Solution de base $\{e_1,e_2,e_3\}$: variables de base et $\{x,y\}$ variables hors base

$$\begin{cases}
e_1 = 8 - 2x - y \\
e_2 = 7 - x - 2y \\
e_3 = 3 - y
\end{cases}$$

Pour calculer une solution de base :

- variables hors base = 0
- variables de base à calculer (si possible, c'est ok)

Pour x = y = 0, on trouve :

$$\begin{cases} e_1 = 8 - 2x - y = 8 \\ e_2 = 7 - x - 2y = 7 \\ e_3 = 3 - y = 3 \end{cases}$$

Recherche opérationnelle

Pr. Abdessamad Kamouss

Modélisation e P.L.

Notions de bases

Quelques exemples de programmes linéaires

PL Resolution d'u

Méthode graphique

Solution de base

Recherche opérationnelle

Abdessamad Kamouss 88

Modélisation e

Notions de bases Quelques exemples d programmes linéaires

Résolution d'un

Méthode du simplexe

Solution de base

s.c.	2 <i>x x</i>	+ 2	/ + /	<i>e</i> ₁	+ e ₂ + e ₃	= 8 $= 7$ $= 3$	
	х,	y	·,	$e_1,$	$e_2, \qquad e_3$	$_3 \geq 0$	
X	у	e_1	e_2	e_3	sol de base	admiss.	pt extrême
0	0	8	7	3	V	~	(0,0)
	8	0	-9	-5	✓	×	
<u>0</u>	3.5	4.5	0	-0.5	~		
<u>0</u> 4	3	5	1	0	V	V	(0,3)
4	0	0	3	3	~	V	(4,0)
7	0	-6	0	3	V	×	
	<u>0</u> 2			0	×	×	
3	2	0	0	1	V	V	(3,2)
2.5	3		-1.5	0	V	×	
1	3	<u>0</u> 3	0	0	V	V	(1,3)

{points extrêmes} ← {solutions de base admissibles}

Recherche opérationnelle

Solution de base

- Ax = b, x > 0 où $A = (B \ N)$
- $(x_B, 0)$ est est une solution de base admissible si $x_B > 0$
- Equivalence points de vue géométrique / algébrique : L'ensemble des points extrêmes du polyèdre sont les solutions de base admissibles du syst. lin.
- Nombre de points extrêmes (maximum) : (ⁿ/_m)
- Solutions de base dégénérés : lorsque certaines variables de base sont nulles
- Pratique : lorsque A est inversible, solution de base unique.

Recherche opérationnelle

Abdessama Kamouss 90

Modélisation e P.L.

Notions de bases Quelques exemples d programmes linéaires

Résolution d'un PL

Méthode du simplexe Solution de base

Base voisine et pivotage

Bases voisines

Deux sommets voisins correspondent à deux bases B et B' telles qu'on remplace une variable de B pour obtenir B'

▶ passer à un sommet voisin = changer de base (base voisine) principe du pivotage

Qui faire entrer dans la base?

Essayons avec y: quelle est la valeur max que pourra avoir y?

•
$$e_1 = 8 - 2x - y \ge 0 \Rightarrow y \le 8$$

•
$$e_2 = 7 - x - 2y \ge 0 \Rightarrow y \le 3.5$$

$$\bullet \ e_3 = 3 - y \ge 0 \Rightarrow y \le 3$$

Bilan : $y_{\text{max}}=3$, pour $y=y_{\text{max}}$ on a $e_1=5-2x$, $e_2=1-x$, et $e_3=0$

► candidat pour une nouvelle base :

$${e_1, e_2, e_3} \cup {y} \setminus {e_3} = {e_1, e_2, y}$$

$$(x, y, e_1, e_2, e_3) = (0, 3, 5, 1, 0)$$

Simplexe-introduction

Recherche opérationnelle

Pr. Abdessamad Kamouss 92

P.L.

Notions de bases

Quelques exemples d

Résolution d'un PL Méthode graphique

Méthode graphique
Méthode du simplexe
Solution de base

Vers un algorithme de résolution

Méthode de résolution "naïve" :

énumérer tous les sommets, calculer la fonction objective sur ces points, prendre le sommet pour lequel cette fonction est optimisée :

- nombre fini de sommets : fonctionne
- lorsque ce nombre est très grand (le cas rencontré en général) : limitation

L'algorithme du simplexe (G. B. Dantzig 1947) :

Algorithme itératif permettant de résoudre un problème de programmation linéaire.

L'algorithme du simplexe évite le plus souvent l'énumération exhaustive des solutions de base admissibles.

Simplexe

Recherche opérationnelle

Abdessama Kamouss 93

Modélisation e P.L.

Notions de bases Quelques exemples de programmes linéaires

Résolution d'un

Méthode graphique Méthode du simplex Solution de base

Algorithme du simplexe

- Dantzig, 1947
- Algo itératif de résolution de problème de programmation linéaire

Principe

A partir d'un sommet, chercher un sommet voisin qui améliore l'objectif.

Propriété du problème

Soit x_0 sommet non optimum. Alors il existe x, un sommet voisin de x_0 , tel que $f(x) > f(x_0)$.

Donc ça marche...

Recherche opérationnelle

Simplexe

$$\begin{array}{cccc} \textit{Max} & \textit{z} & = & 4x + 5y \\ 2x + y & \leq & 8 \\ x + 2y & \leq & 7 \\ & y & \leq & 3 \\ & x, y & \geq & 0 \end{array}$$

$$x_0 = (0,0)$$
 d'où $z = 0$

Recherche opérationnelle

Abdessama Kamouss 95

Modélisation e P.L.

Notions de bases Quelques exemples de programmes linéaires

Résolution d'un PL

Méthode du simplexe Solution de base

Simplexe

$$\begin{array}{cccc} \textit{Max} & \textit{z} & = & 4x + 5y \\ 2x + y & \leq & 8 \\ x + 2y & \leq & 7 \\ & y & \leq & 3 \\ & x, y & \geq & 0 \end{array}$$

$$x_0 = (0,0)$$
 d'où $z = 0$
 $x_1 = (0,3)$ d'où $z = 15$

Recherche opérationnelle

Abdessama Kamouss 96

Modélisation e P.L.

Notions de bases Quelques exemples de programmes linéaires

Résolution d'un

Méthode du simplex Solution de base Simplexe

$$\begin{array}{cccc} \textit{Max} & \textit{z} & = & 4x + 5y \\ 2x + y & \leq & 8 \\ x + 2y & \leq & 7 \\ & y & \leq & 3 \\ & x, y & \geq & 0 \end{array}$$

$$x_0 = (0,0)$$
 d'où $z = 0$
 $x_1 = (0,3)$ d'où $z = 15$
 $x_2 = (1,3)$ d'où $z = 19$

Recherche opérationnelle

Abdessama Kamouss 97

Modélisation e P.L.

Notions de bases Quelques exemples de programmes linéaires

Résolution d'un

Méthode du simplexe Solution de base Simplexe

$$\begin{array}{cccc} \textit{Max} & \textit{z} & = & 4x + 5y \\ 2x + y & \leq & 8 \\ x + 2y & \leq & 7 \\ & y & \leq & 3 \\ & x, y & \geq & 0 \end{array}$$

$$x_0 = (0,0)$$
 d'où $z = 0$
 $x_1 = (0,3)$ d'où $z = 15$
 $x_2 = (1,3)$ d'où $z = 19$
 $x_3 = (3,2)$ d'où $z = 22$

Recherche opérationnelle

Abdessama Kamouss 98

Modélisation e P.L.

Notions de bases Quelques exemples de programmes linéaires

Résolution d'un

Méthode du simplexe Solution de base

Simplexe

$$\begin{cases} \text{Maximizer } z &= 4x + 5y \\ 2x + y &\leq 8 \\ x + 2y &\leq 7 \\ y &\leq 3 \\ x, y &\geq 0 \end{cases} \Leftrightarrow \begin{cases} \text{Maximizer } z &= 4x + 5y \\ 2x + y + e_1 &= 8 \\ x + 2y + e_2 &= 7 \\ y + e_3 &= 3 \\ x, y, e_1, e_2, e_3 &\geq 0 \end{cases}$$

Recherche opérationnelle

Abdessama Kamouss 99

Modélisation e P.L.

Notions de bases Quelques exemples d programmes linéaires

Résolution d'ur

Méthode du simplexe Solution de base Simplexe

$$\begin{cases} \text{Maximizer } z &=& 4x + 5y \\ 2x + y &\leq& 8 \\ x + 2y &\leq& 7 \\ y &\leq& 3 \\ x, y &\geq& 0 \end{cases} \Leftrightarrow \begin{cases} \text{Maximizer } z &=& 4x + 5y \\ 2x + y + e_1 &=& 8 \\ x + 2y + e_2 &=& 7 \\ y + e_3 &=& 3 \\ x, y, e_1, e_2, e_3 &\geq& 0 \end{cases}$$

Pour trouver une base, en tenter une...

Par exemple $\{e_1, e_2, e_3\}$

$$\begin{cases} 2x + y + e_1 &= 8 \\ x + 2y + e_2 &= 7 \\ y + e_3 &= 3 \end{cases} \Leftrightarrow \begin{cases} e_1 &= 8 - 2x - y \\ e_2 &= 7 - x - 2y \\ e_3 &= 3 - y \end{cases}$$

 $\{e_1, e_2, e_3\}$: variables de base et $\{x, y\}$ variables hors base

Recherche opérationnelle

Abdessama Kamouss 100

Modélisation e P.L.

Notions de bases Quelques exemples de programmes linéaires

Résolution d'un PL

Méthode du simplex Solution de base Pour calculer une solution de base :

- variables hors base = 0
- variables de base à calculer (si possible, c'est ok)
- Valeur de z

 $\{e_1,e_2,e_3\}$: variables de base et $\{x,y\}$: variables hors base

Recherche opérationnelle

Abdessama Kamouss

Modélisation e P.L.

Notions de bases Quelques exemples de programmes linéaires

Résolution d'un PL

Méthode du simplex Solution de base Pour calculer une solution de base :

- variables hors base = 0
- variables de base à calculer (si possible, c'est ok)
- Valeur de z

 $\{e_1,e_2,e_3\}$: variables de base et $\{x,y\}$: variables hors base

x = y = 0, on trouve :

$$\begin{cases} e_1 &= 8 - 2x - y = 8 \\ e_2 &= 7 - x - 2y = 7 \\ e_3 &= 3 - y = 3 \end{cases}$$

et
$$z = 4x + 5y = 0$$

Recherche opérationnelle

Abdessama Kamouss 102

Modélisation e

Notions de bases

Quelques exemples o
programmes linéaires

Résolution d'ur

Méthode graphique Méthode du simplex Solution de base Regardons bien : z = 4x + 5y

On peut faire augmenter z en faisant entrer x ou y dans la base

Essayons y: quelle est la valeur maximale que pourra avoir y?

$$\begin{cases} e_1 &= 8 - 2x - y \ge 0 \Rightarrow y \le 8 \\ e_2 &= 7 - x - 2y \ge 0 \Rightarrow y \le 3.5 \\ e_3 &= 3 - y \ge 0 \Rightarrow y \le 3 \end{cases}$$

Le max de y est 3, pour y = 3, on obtenons $e_1 = 5 - x$, $e_2 = 1 - x$ et $e_3 = 0$.

Nouvelle base candidate :

$$\{e_1, e_2, e_3\} \cup \{y\} \setminus \{e_3\} = \{e_1, e_2, y\}$$

Recherche opérationnelle

Simplexe

$$\begin{cases} e_1 = 8 - 2x - y \\ e_2 = 7 - x - 2y \\ e_3 = 3 - y \end{cases} \Leftrightarrow \begin{cases} e_1 = 5 - 2x + e_3 \\ e_2 = 1 - x + 2e_3 \\ y = 3 - e_3 \end{cases}$$

z en fonction des variables hors base :

$$z = 4x + 5y = 15 + 4x - 5e_3$$

Solution de base associée :

$$x = e_3 = 0$$

$$\begin{cases} e_1 = 5 - 2x + e_3 = 5 \\ e_2 = 1 - x + 2e_3 = 1 \\ y = 3 - e_3 = 3 \end{cases}$$
et $z = 15$.

Recherche opérationnelle

Abdessama Kamouss 104

Modélisation e

Notions de bases

Quelques exemples d
programmes linéaires

Résolution d'ur

Méthode du simplex Solution de base

$z = 15 + 4x - 5e_3$

Augmenter encore z? Faire entrer x

Quelle est la valeur maximale que pourra avoir x?

$$\left\{ \begin{array}{ll} e_1 &=& 5-2x+e_3 \geq 0 \Rightarrow x \leq 2.5 \\ e_2 &=& 1-x+2e_3 \geq 0 \Rightarrow x \leq 1 \\ y &=& 3-e_3 \geq 0 \Rightarrow \text{pas de contrainte} \end{array} \right.$$

Le max de x est 1, et e_2 peut sortir de la base

Nouvelle base candidate : $\{e_1, x, y\}$

$$\begin{cases} e_1 &= 3 + 2e_2 - 3e_3 \\ x &= 1 - e_2 + 2e_3 \\ y &= 3 - e_3 \\ z &= 19 - 4e_2 + 3e_3 \end{cases}$$

Recherche opérationnelle

Abdessamad Kamouss 105

Modélisation e

Notions de bases Quelques exemples d programmes linéaires

Résolution d'un PL

Méthode du simplex Solution de base

$z = 19 - 4e_2 + 3e_3$

Augmenter encore z? Faire entrer e_3

Quelle est la valeur maximale que pourra avoir e₃?

$$\left\{ \begin{array}{ll} e_1 &=& 3+2e_2-3e_3 \geq 0 \Rightarrow e_3 \leq 1 \\ x &=& 1-e_2+2e_3 \geq 0 \Rightarrow \text{pas de contrainte} \\ y &=& 3-e_3 \geq 0 \Rightarrow e_3 \leq 3 \end{array} \right.$$

Le max de e_3 est 1, et e_1 peut sortir de la base

Nouvelle base candidate : $\{e_3, x, y\}$

$$\begin{cases} e_3 &= 1 + 2/3e_2 - 1/3e_1 \\ x &= 3 + 1/3e_2 + 2/3e_1 \\ y &= 2 - 2/3e_2 + 1/3e_1 \\ z &= 22 - 2e_2 - e_1 \end{cases}$$

Recherche opérationnelle

$$z = 22 - 2e_2 - e_1$$

donc $z^* < 22$

Or la solution de base x = 3, y = 2 et $e_3 = 1$ permet d'obtenir le $\max z = 22$

Donc on a trouvé l'optimum