MATH 2164 Test 2 Review

Your Name: _____

Solutions to be posted July 27, 2022

1. Given that A and B are two 5×5 matrices, $\det(A) = -1$, and $\det(B) = 2$, find the following:

$$\det(A^4B^2) = \underline{\hspace{1cm}}$$

$$\det(-2A) = \underline{\hspace{1cm}}$$

$$\det((AB)^{-1}) = \underline{\hspace{1cm}}$$

$$\det(2A+B) = \underline{\hspace{1cm}}$$

- 2. Let A be a 4×4 matrix whose determinant is 13 and let
 - A_1 be the matrix obtained from A by the row operation $-13R_1 + R_4 \rightarrow R_4$.
 - A_2 be the matrix obtained from A by the row operation $R_1 \leftrightarrow R_4$
 - A_3 be the matrix obtained from A by the row operation $5R_2 \to R_2$
 - A_4 be the matrix obtained from A by the following four row operations consecutively: the first operation is $R_1 \leftrightarrow R_3$, followed by the operation $4R_2 + R_3 \rightarrow R_3$, then the operation $-2R_4 \rightarrow R_4$, and finally the operation $R_2 \leftrightarrow R_4$.

then
$$\det(A_1) = \underline{\hspace{1cm}}, \det(A_2) = \underline{\hspace{1cm}}, \det(A_3) = \underline{\hspace{1cm}},$$

$$\det(A_4) = \underline{\hspace{1cm}}$$

- 3. Select all statements below which are true for all invertible $n \times n$ matrices A and B.
 - $\bigcirc \det(A B) = \det(A) \det(B).$
 - \bigcirc kB is invertible for any scalar k that is not zero.
 - $(AB)^{-1} = B^{-1}A^{-1}$.
 - $\bigcirc \det(A^{-1}B^2) = \frac{(\det(B))^2}{\det(A)}$
 - \bigcap A^k is invertible for any positive integer k and $(A^k)^{-1} = (A^{-1})^k$.
 - $\bigcirc \det(5B) = 5\det(B).$
 - $(A+B)^2 = A^2 + 2AB + B^2.$
 - \bigcirc The equation $A\mathbf{x} = \mathbf{b}$ always has a unique solution for any vector \mathbf{b} .
 - \bigcirc A may have an echelon form with fewer than n pivots.
 - $\bigcirc A + B$ is always invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$

4. Find the inverse of the matrix
$$\begin{bmatrix} -2 & -7 & -9 \\ 2 & 5 & 6 \\ 1 & 3 & 4 \end{bmatrix}$$
 Write your answer in the blank space below.

5. Given that
$$\mathbf{v_1} = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 3\\4\\-2 \end{bmatrix}$, and $\mathbf{v_3} = \begin{bmatrix} 1\\-2\\1 \end{bmatrix}$, choose the correct statements.

- \bigcirc The span of $\mathbf{v_1}$, $\mathbf{v_2}$, and $\mathbf{v_3}$ has dimension 2.
- \bigcirc Any vector in \mathbb{R}^3 can be written as a linear combination of $\mathbf{v_1}$, $\mathbf{v_2}$, and $\mathbf{v_3}$.
- \bigcirc $\mathbf{v_1}$, $\mathbf{v_2}$, and $\mathbf{v_3}$ are linearly independent.
- \bigcirc The span of $\mathbf{v_1}$, $\mathbf{v_2}$, and $\mathbf{v_3}$ is \mathbb{R}^3 .
- \bigcirc $\mathbf{v_1}, \mathbf{v_2},$ and $\mathbf{v_3}$ are linearly dependent.

6. Let
$$\mathbf{u} = \begin{bmatrix} -1\\2\\3\\-2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -1\\1\\-3\\5 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -5\\3\\-27\\39 \end{bmatrix}$. Determine if \mathbf{b} is a linear combination of \mathbf{u} and \mathbf{v} .

If it is, find the coefficients a_1 and a_2 such that $a_1\mathbf{u} + a_2\mathbf{v} = \mathbf{b}$. If not, simply write "None" in the spaces provided.

$$a_1 =$$

$$a_2 =$$

- 7. Use the row reduction method to find the dimension and a basis for the vector space $W = \text{Span}(\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3})$, where $u_1 = 1 x 2x^2 + x^3$, $u_2 = 3 3x 7x^2 + 2x^3$, and $u_3 = -4 + 4x + 9x^2 3x^3$
 - \bigcirc dim(W) = 3 and a basis is { $\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}$ }.
 - \bigcirc dim(W) = 2 and a basis is $\{\mathbf{u_1}, \mathbf{u_2}\}$.
 - \bigcirc dim(W) = 1 and a basis is {**u**₃}.
 - \bigcirc dim(W) = 1 and a basis is { $\mathbf{u_1}$ }.
 - \bigcirc dim(W) = 2 and a basis is { $\mathbf{u_1}$, $\mathbf{u_3}$ }.

8. Solve the linear equation system

$$\begin{cases} 3x_1 - 4x_2 = a \\ 7x_1 - 9x_2 = b \end{cases}$$

using Cramer's rule. Write your answers in terms of a and b.

9. Determine the value of k so that the vectors $\begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} k & 1 \\ 0 & 1 \end{bmatrix}$, and $\begin{bmatrix} 2 & -2 \\ 0 & 3 \end{bmatrix}$ are linearly dependent.

 $k = \underline{\hspace{1cm}}$

- 10. Let V be the vector space of all 3×3 matrices with real number entries. Let H_1 be the subset of V that contains all 3×3 triangular matrices with at most one nonzero entry and H_2 be the subset of V that contains all 3×3 matrices whose traces are integers. Choose all statements that are correct.
 - \bigcirc H_1 is a subspace of V.
 - \bigcirc H_2 is a subspace of V.
 - \bigcirc H_1 is closed under scalar multiplication.
 - \bigcirc H_2 is closed under scalar multiplication.
 - \bigcirc H_1 is closed under matrix addition.
 - \bigcirc H_2 is closed under matrix addition.
- 11. Select all of the following statements that are true.
 - \bigcirc If $V = \operatorname{Span}\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}\}$, then $\dim(V) = 4$.
 - \bigcirc If $V = \operatorname{Span}\{\mathbf{u_1}, \mathbf{u_2}\}$, and $\mathbf{u_1}$ and $\mathbf{u_2}$ are linearly independent, then $\dim(V) = 2$.
 - \bigcirc If $\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}$, and $\mathbf{u_4}$ are linearly independent and $V = \mathrm{Span}\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}\}$, then $\dim(V) < 4$.
 - \bigcirc \mathbb{R}^5 cannot be spanned by less than five vectors.
- 12. If W is a subspace of the vector space V and we know that $\dim(V) = 4$, and we also know that $W \neq V$, what are the possible dimensions of W?
 - \bigcirc 1 or 3
 - \bigcirc 2
 - \bigcirc 1, 2, or 3
 - \bigcirc 0, 1, 2, 3, or 4
 - \bigcirc 0 or 3

13. Find the LU factorization of the matrix $\begin{bmatrix} 6 & 9 \\ 4 & 5 \end{bmatrix}$. Write your answer in the space below.

- 14. Use the given LU factorization $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -4 & 3 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & -4 & -3 \\ 0 & -3 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ to solve the equation
 - $A\mathbf{x} = \mathbf{b} \text{ where } \mathbf{b} = \begin{bmatrix} 1 \\ 7 \\ 0 \\ 3 \end{bmatrix}.$

15. Write the standard matrix if the linear transformation T where $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the vertical x_2 axis and then rotates points (about the origin) through $\pi/2$ radians (counterclockwise).

- 16. If an $n \times n$ matrix A can be row reduced to I_n , what can you say about A? Select all that are true
 - \bigcirc The columns of A are linearly independent.
 - \bigcirc The columns of A are linearly dependent.
 - \bigcirc The determinant of A is zero.
 - \bigcirc The determinant of A cannot be determined by this information.
 - \bigcirc The transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by T(x) = Ax is one-to-one.
 - \bigcirc The transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ defined by T(x) = Ax is onto.

17. Assume that A_{11} is invertible and that the following matrices are partitioned comfortably for multiplication. Find X and Y such that. $\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ X & I \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & S \end{bmatrix} \begin{bmatrix} I & Y \\ 0 & I \end{bmatrix}$ where $S = A_{22} - A_{21}A_{11}^{-1}A_{21}$ is called the Schur complement of A_{11} .

18. Compute the following determinant by combining the methods of row reduction and cofactor

expansion. $\begin{vmatrix} -1 & 2 & 3 & 0 \\ 3 & 4 & 3 & 0 \\ 11 & 4 & 6 & 6 \\ 4 & 2 & 4 & 3 \end{vmatrix}$