PAT-NO:

JP409293648A

DOCUMENT-IDENTIFIER: JP 09293648 A

TITLE:

MANUFACTURE OF POLARIZED ELECTRODE

PUBN-DATE:

November 11, 1997

INVENTOR-INFORMATION:

NAME

TAKAGI, SHINOBU SHIMIZU, TAKASUMI KODAMA, KENJI

ASSIGNEE-INFORMATION:

NAME

NEC CORP

DAIDO STEEL CO LTD

COUNTRY

N/A

N/A

APPL-NO: JP08107597

APPL-DATE:

April 26, 1996

INT-CL (IPC): H01G009/058, C08K003/00 , C08L101/00 ,

H01M004/02

ABSTRACT:

PROBLEM TO BE SOLVED: To lessen the added amount of water to a granulated powder mixture and to inhibit the generation of warpage of the mixture or the generation of distortion of the mixture subsequent to a heat treatment of the mixture by a method wherein with an extrusion molding performed in a molding process, granulated powder, which is led not only from a mixing process but from a granulating process, is used in the extrusion molding.

SOLUTION: Activated carbon powder is mixed with a thermosetting resin and a $\,$

solvent and the powder, the resin and the solvent are kneaded with each other.

The amount of the solvent to be added at this time is set in 100 parts weight

or lighter of solvent to 100 parts weight of the total amount of activated

carbon powder and thermosetting resin. After this kneading ends, the mixture

is subjected to a drying treatment to remove the solvent and is ground to

granulate into powder of a particle diameter of a prescribed size. That is, by

grinding the mixture by a ball mill or the like, the granulated powder is

granulated into powder of a mean particle diameter of 420μ m or shorter.

Then, for performing an extrusion molding on the granulated powder, a coupler

is added to the powder and is mixed with the powder. Then, this granulated

powder mixture is mixed with water and is subjected to extrusion molding.

After the extrusion molding, the mixture is heat-treated in an atmosphere of

inert gas, such as vacuum, Ar gas or N<SB>2</SB> gas, and the thermosetting

resin is carbonized to obtain an activated carbon polarized electrode.

COPYRIGHT: (C) 1997, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-293648

(43)公開日 平成9年(1997)11月11日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ		技術表示箇所			
H01G 9/058			H01G	9/00	301	A		
C08K 3/00			C 0 8 K 3/00					
C 0 8 L 101/00	KAA		C08L 10					
H 0 1 M 4/02			H01M	В				
			家查請求	未請求	請求項の数8	OL (全 6 頁)		
(21)出願番号	特願平8-107597		(71)出願人	0000042	237			
,, p								
(22)出願日	平成8年(1996)4	月26日		番1号				
			(71)出願人	0000037	713			
				大同特殊	殊鋼株式会社			
				愛知県名古屋市中区錦一丁目11番18号				
			(72)発明者	高木	思			
				愛知県	丹羽郡大口町大学	字余野字宮前58番地		
			(72)発明者	清水 🧦	孝純			
				愛知県	一宮市大字高田	字北門37		
			(72)発明者	小玉(建二			
				愛知県	名古屋市南区白海	水町8至誠寮		
			(74)代理人	弁理士	西澤 利夫			

(54) 【発明の名称】 分極性電極の製造方法

(57)【要約】

【課題】 水添加量が少なく、乾燥時間の短い押し出し成形により、成形後や熱処理後の反りや歪み、割れ等の不都合のない、生産性が高く、大容量で、かつ大電流での放電特性を持つことのできる活性炭分極性電極の製造を可能とする。

【解決手段】 活性炭粉末と熱硬化性樹脂とを混合し、次いで所定の大きさに造粒し、得られた造粒粉末から押し出し成形により所定形状の成形体を作製し、非酸化性雰囲気において熱処理する。

【特許請求の範囲】

【請求項1】 活性炭粉末と熱硬化性樹脂とを混合する 混合工程と、その後に所定の大きさに造粒する造粒工程 と、造粒粉末から所定形状の成形体を得る成形工程と、 成形体を非酸化性雰囲気において熱処理して活性炭電極 を得る熱処理工程とを含む分極性電極の製造方法であっ て、

成形工程が押し出し成形で行われることを特徴とする分 極性電極の製造方法。

とに溶剤を添加しての混練工程と、その後の乾燥工程を 含む請求項1の分極性電極の製造方法。

【請求項3】 活性炭粉末は、比表面積が500~30 00m² /gの範囲のものとする請求項1または2の分 極性電極の製造方法。

【請求項4】 活性炭粉末は、平均粒径が50μm以下 である請求項1ないし3のいずれかの分極性電極の製造 法。

【請求項5】 熱硬化性樹脂は、熱処理工程において熱 処理した後の残炭率が5重量%以上となるように添加さ 20 るため、実用的な大きさの電気二重層コンデンサとして れる請求項1ないし4のいずれかの分極性電極の製造

【請求項6】 溶剤は、水または有機溶剤のうちの少く とも1種である請求項2の分極性電極の製造法。

【請求項7】 造粒工程では、平均粒径420μm以下 に造粒する請求項1ないし6のいずれかの分極性電極の 製造法。

【請求項8】 請求項1ないし7のいずれかの方法によ り製造された活性炭分極性電極を配備したことを特徴と する電気二重層コンデンサ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、分極性電極の製 造方法に関するものである。さらに詳しくは、この発明 は、電池電極や電気二重層コンデンサ等に有用な、活性 炭分極性電極の新しい製造方法と、これを用いた電気二 重層コンデンサに関するものである。

[0002]

【従来の技術】従来より、電池、エレクトロルミネッセ ンスディスプレイや電気二重層コンデンサに用いる活性 40 炭からの分極性電極が注目されている。たとえば、活性 炭の粉末あるいはその繊維とフェノール樹脂との混合物 を加熱して分極性電極を製造し、このものを電気二重層 コンデンサに用いることが提案されてもいる (特開昭6 3-226019号公報)。

【0003】この電気二重層コンデンサはメモリバック アップ用部品として広く用いられているもので、電極を 構成する導電体と電解質溶液との界面にそれぞれ符号の 異なる一対の電荷層(電気二重層)が生じることを利用 したものであり、充放電に伴う寿命劣化が生じ得ないと 50 【0009】

いう特徴を有している。そのため、たとえば、電池また は商用交流電源を直流に変換した電源と並列に電気二重 層コンデンサを接続し、電源の瞬断時に電気二重層コン デンサに蓄積された電荷により種々の部品のバックアッ

【0004】このような電気二重層コンデンサの電極と しては、上記の通り、活性炭粉末や活性炭繊維等が用い られていた。その理由は、電気二重層コンデンサの静電 容量は電気二重層に蓄えられる電荷量により決定される

プをするという形で使用されている。

【請求項2】 混合工程は、活性炭粉末と熱硬化性樹脂 10 ことから、電極の表面積が大きいほど大きな静電容量を 得ることができるため、高い導電性と比表面積とを有す る活性炭が電極材料として適していることにあった。た だ、活性炭は一般に粉末或いは繊維状であるため、電極 として用いる場合には、例えば金属ケース等に収納して 加圧することにより粉末或いは繊維間の電気的接触を確 保していた。したがって、大きな静電容量を得るために は、活性炭量を多くして表面積を大きくすると共にその 活性炭の電気的接触を一層確実にするために加圧力を高 くすることが必要となって金属ケースが極めて大きくな

> 【0005】このような問題を解決するために、上記の 通り、活性炭粉末や繊維を樹脂と混合し、所定形状に加 圧成形した後に加熱処理して樹脂成分を炭化し分極性電 極とする等の改善が試みられている。

> はせいぜい数F程度の静電容量しか得られないという問

[0006]

題があった。

【発明が解決しようとする課題】しかしながら、活性炭 の接触を増大させるために活性炭の粉末や繊維と樹脂と 30 を混合するとの手段は分極性電極の実用化への展望を拓 くものであったが、混合物の成形とその後の熱処理の工 程については、その後の検討にもかかわらず依然として 改善すべき点が残されていた。

【0007】すなわち、加圧成形の場合には導電率の増 大は加圧力に依存し、必ずしも適切なものとならず、ま た、おのずとその形状および大きさ、そして生産性等の 点に制約があった。一方、より簡便な成形法として押し 出し成形法の採用が考慮されるが押し出し成形の場合に は、流動性を増すために水分の添加量が多くなり、保形 性が悪く、乾燥時間が長くかかることや、成形時の、あ るいは熱処理後の反り、歪みが発生しやすいという欠点 があった。

【0008】そこで、この発明は、従来技術の欠点を解 消し、簡便な手段で、生産性に優れ、形状の拡大が容易 であるという押し出し成形法の特徴を生かし、しかも、 押し出し時に水分添加量が少なく、乾燥時間も短く、か つ、成形時あるいは乾燥後の反り、歪み等が発生しにく い改善された分極性電極の製造方法を提供することを目 的としている。

【課題を解決するための手段】この発明は、上記の課題 を解決するものとして、活性炭粉末と熱硬化性樹脂とを 混合する混合工程と、所定の大きさに造粒する造粒工程 と、造粒粉末から所定形状の成形体を得る成形工程と、 成形体を非酸化性雰囲気において熱処理して活性炭電極 を得る熱処理工程とを含む分極性電極の製造方法であっ て、成形工程が押し出し成形で行われることを特徴とす る分極性電極の製造方法を提供する。

【0010】そしてまた、この発明は、上記方法におい て、混合工程は、活性炭粉末と熱硬化性樹脂とに溶剤を 10 添加しての混練工程と、その後の乾燥工程を含む方法 や、上記方法により製造された活性炭分極性電極を用い たことを特徴とする電気二重層コンデンサをも提供す

[0011]

【発明の実施の形態】この発明は、上記の通り、押し出 し成形を行うことと、この押し出し成形には、混合工程 だけでなく、造粒工程から導かれる造粒粉末を用いるこ とを特徴としている。この発明の製造方法についてさら 料とされる活性炭粉末については、ヤシガラ系、ピッチ 系等のものが用いられる。そして、この説明の活性炭粉 末は、その比表面積が500~3000m2/gの範囲 のもの、さらには1000~2500m2/gのものと するのが好ましい。

【0012】そして、その平均粒径は、50µm以下、 より好ましくは、1~30μmとする。熱硬化性樹脂と しては、水不溶性の各種の熱硬化性樹脂が使用され、た とえばフェノール系樹脂、エーテル系樹脂、不飽和ポリ エステル系樹脂、尿素系樹脂等がそれらの例として示さ れる。なかでもフェノール系樹脂、特にレゾール系樹脂 が好ましいものとして例示される。

【0013】これらの熱硬化性樹脂は、活性炭粉末に対 して、重量比で30~90(活性炭)/70~10(熱 硬化性樹脂)の割合、より好ましくは、40/60~8 0/20で配合する。そして熱硬化性樹脂は、熱処理工 程において熱処理した後の残炭率が5重量%以上、さら には15%以上となるように添加するのが好ましい。活 性炭粉末と熱硬化性樹脂との混合には、溶剤を添加する のが有効でもある。この場合には、溶剤を加えて混練 し、その後乾燥処理して溶剤を除去することになる。 【0014】溶剤としては、水または有機溶剤の少くと

も1種が用いられる。有機溶剤としては、たとえばアセ トン、メチルエチルケトン、シクロヘキサノン等のケト ン類、エタノール、プロパノール等のアルコール類、ジ メチルエーテル、テトラヒドロフラン等のエーテル類、 エチルアセテート等のエステル類、ベンゼン、ヘキサ ン、シクロヘキサン等の炭化水素の1種または2種のも のが用いられる。

る分極性電極の製造工程を例示したものであるが、活性 炭粉末は熱硬化性樹脂並びに溶剤と混合されて混練され る。この時の溶剤の添加量は、活性炭粉末と熱硬化性樹 脂との合計量100重量部に対して、100重量部以 下、より好ましくは20~50重量部の割合とする。こ の混練の終了後、乾燥処理して溶剤を除去する。この乾 燥では、熱硬化性樹脂の硬化が進むことになる。この乾 燥処理は、通常は、50~200℃、より好ましくは1 00℃以下で熱硬化性樹脂が硬化あるいは変質しない温 度で行うことが重要であり、この場合、真空乾燥も可能 である。乾燥処理後は、粉砕して、所定の大きさの粉末 に造粒する。ボールミル等による粉砕により、造粒粉末 は、その大きさが造粒工程では、平均粒径420μm以 下(約40メッシュアンダー)に造粒する。より好まし くは、その平均粒径は、50~150µmとする。

【0016】造粒粉末には、押し出し成形を行うために 結合剤を添加混合することが有効である。この結合剤と しては、たとえばメチルセルロース類、ポリオレフィン 類、ポリビニルアルコール類、アクリル類、ポリエチレ に詳しくその実施の形態について説明すると、まず、原 20 ン類等が例示される。これら結合剤は、押し出し時のグ リーンシートの厚みを均一にし、また保形性を確保する ために添加され、造粒粉末100重量部に対して、10 ~100重量部程度、より好ましくは25~67重量部 程度の添加が考慮される。

> 【0017】得られた押し出し用造粒粉末混合物は、成 形工程として押し出し成形される。この場合、押し出し 用造粒粉末混合物は、水と混合されて押し出し成形され る。そして、この発明においては、従来の混合工程だけ による混合粉末を用いる場合に比べて、造粒粉末を用い 30 ることにより、より少ない水分の添加量でよく、このた め乾燥時間を短くし、成形時、あるいは熱処理後の反り や、歪み、割れの発生を少なくすることができ、充分な 強度が確保できるという、優れた作用が得られる。

> 【0018】押し出し成形のための水添加量は、この発 明の場合には、造粒粉末と結合剤の合計量100重量部 に対して、30~100重量%程度の割合とすることが でき、従来の混合粉末の場合には100重量部以上の割 合の水の添加が必要であり、これに比べるとかなり少な い水添加量でよい。押し出し成形は、この発明において 40 は好ましくは真空またはAr(アルゴン)、N2 (窒 素)等の不活性ガス雰囲気下に行うこととする。押し出 し速度、押し出し形状等は、造粒粉末の組成や、成形品 の用途、次の熱処理条件等を考慮して決めることができ

【0019】押し出し成形の終了後は、真空またはAr (アルゴン)、N2 (窒素)等の不活性ガス雰囲気等の 非酸化性雰囲気条件下において熱処理し、熱硬化性樹脂 を炭化して所定の活性炭分極性電極を得る。熱処理に先 立って(真空)乾燥処理あるいは脱バインダー処理の工 【0015】図1は、この溶剤を用いるこの発明におけ 50 程を設けてもよい。たとえば、この場合には、100℃ 前後での0.5~3時間程度の(真空)乾燥処理あるい は400℃前後での0.5~3時間程度の脱バインダー 処理後、850~1050℃程度の温度において熱処理 することができる。

【0020】熱処理は、たとえば1~10℃/minで 所定温度まで昇温し、次いで10時間以内程度保持する ことが考慮される。なお、乾燥工程と脱バインダー処理 あるいは熱処理による焼結工程との間には、所定の平面 大きさに切断、分割するためのパンチング工程やカッテ 所定の寸法を得るために加工または研磨されてもよい。 【0021】以上の通りの方法により製造されるこの発 明の分極性電極は、電池電極や電気二重層コンデンサに 有用なものであって、大容量の分極性電極となる。電気 二重層コンデンサへの応用については、たとえば図2に 例示した構成として説明することができる。すなわち、 電気二重層コンデンサは、図2に例示したように、上記 の方法によって製造した2枚の活性炭分極性電極(1) をガラス繊維不織布等のセパレータ(2)を介して対向 配置し、その電極(1)の各々の外側に導電性ゴム等の 20 集電体(3)、端子板(4)そして固定板を設ける。両 端部には、熱可塑性樹脂等のガスケット(5)および支 持体(6)を設け、ボルトおよびナット(7)によって 組立て固定している。

【0022】このような構造としてこの発明の押し出し 成形による活性炭分極性電極は大容量であり、かつ大電 流の放電特性を実現することになる。以下、この発明の 実施例を示し、さらに具体的に説明する。

[0023]

【実施例】

実施例1~5

表1の通り、各種の比表面積を有する平均粒径20μm のヤシガラ系活性炭を、重量比40/60~90/10 の割合でレゾール系フェノール樹脂と、この両成分10 0重量部に対して、重量比で30重量部のアセトンとを 混合して混練した。

【0024】この混練物を真空中約60℃の温度におい て乾燥処理し、アセトンを除去して硬化させた。この硬 化物を、ボールミルで粉砕処理し、平均粒径100μm の100重量部に対して43重量部の割合でメチルセル ロース結合剤を混合し、さらに押し出し用として、その 総量100重量部に対して、26~59重量部の水を添 加混合した後、混練機を用いて粘土状態になるまで混練

【0025】以上の通りにして得られた押し出し用造粉 粉末混練物を用いて、真空押し出し成形機により幅10 Omm×厚み1mmで連続的に押し出し成形した。この ものを、約105℃において2時間乾燥し、パンチング マシンにより50mm×70mmの大きさに分割し、こ のものを、約900℃において2時間熱処理した。

【0026】得られた活性炭分極性電極について、電気 二重層コンデンサの容量およびESR特性を評価した。 すなわち、まず、静電容量(表1において「容量」と表 示)は、得られた活性炭分極性電極を用いて前記図2の 構造の電気二重層コンデンサを作製し、たとえば0.9 Vで30分定電圧充電後、0.45Vになるまで1Aで ィング工程が配置されてもよく、あるいは焼結工程後に 10 定電流放電し、下記式(但し、静電容量をC(F)、放 電電流をi(A)、電圧降下に要した時間を△t(se c)、電圧降下を ΔV (V)とする)より算出した。ま た、ESRは1KHzにおけるインピーダンスを測定し

$C = (i \times \Delta t) / \Delta V$

その結果を、押し出し成形性、並びに熱処理焼結後の不 良品率(サイズ外れ、反り、割れ、歪み、強度不足のい ずれか一つでも認められるものを不良品とした)の評価 結果とともに表1に示した。

【0027】次の比較例との対比からも明らかなよう に、上記実施例の場合には、少ない水添加量で良好な押 し出し成形性が実現され、焼結後の不良品率が低く、し かも電極としてのコンデンサ特性も良好であることが確 認された。

<u>比較例1~4</u>

上記実施例と同様に造粒粉末を用い、かつ、活性炭粉末 に対しての熱硬化性樹脂の割合を極めて少なくした場合 (比較例1)、そして、造粒粉末とせずに、活性炭粉末 と熱硬化性樹脂との混合粉末を用いた場合(比較例2~ 30 4)についても実施例と同様に押し出し成形を試みた。

【0028】比較例1の造粒粉末を用い、かつ熱硬化性 樹脂の割合を極めて少くした場合には、表1に示したよ うに残存率が3%と低すぎるために、焼結後の電極強度 が不足し、ボロボロの状態であった。比較例2の混合粉 末を用いた場合には、水添加量が89部でも少ないた め、押し出し成形性が悪く、焼結後の反り、割れ、歪み が大きい。比較例3の水添加量が133部では押し出し 成形は可能であるものの、水添加量の最適範囲が狭く、 また、実施例よりも水添加量は多く、このため、成形体 の造粒粉末にした。次いで、得られた造粒粉末には、そ 40 中の水分のバラツキが大きく、これが焼結後の反り、歪 みを生じさせ、不良率が大きくなっている。

> 【0029】さらに、水添加量が203部の混合粉末を 用いた場合には、水添加量が多すぎるために、押し出し 成形性が悪く、焼結後の反り、割れ、歪みが大きいこと が確認された。

[0030]

【表1】

8

1					0					
実施例 No.	活性炭の 比表面積 ㎡/g	重量比(注)	配合	状態	水添加量部	残 炭 率 (wt%)	押出し成形性	焼結後の 不良品率 %	コンデ: 容 量 F	ンサ特性 ESR mΩ
実施例1	1000	70/30	造	粒	37	20	0	0	158	21.3
実施例2	1500	70/30	造	粒	59	20	0	3	207	20.6
実施例3	2000	70/30	造	粒	59	20	0	8	221	23.5
実施例 4	1500	80/20	造	粒	59	13	0	5	230	21.4
実施例 5	1500	50/50	造	粒	59	34	0	9	202	20.3
実施例 6	500	90/10	造	粒	26	7	0	0	108	19.2
実施例 7	2500	50/50	造	粒	59	33	0	8	235	21.3
実施例8	3000	40/60	造	粒	59	39	0	. 9	202	23.8
比較例1	1500	95/5	造	粒	59	3	0	100	-	
比較例2	1500	70/30	混	合	89	20	×	100	-	-
比較例3	1500	70/30	渥	合	133	20	0	46	198	22.8
比較例 4	1500	70/30	混	合	203	20	×	100	_	-

(注) 重量比:活性炭/熱硬化性フェノール樹脂

残炭率:活性炭電極中に残留する炭化したフェノール樹脂分の炭素量を

電極に対する重量比で表わしたもの

[0031]

【発明の効果】以上詳しく説明した通り、この発明によ り、より少ない水添加量での押し出し成形が可能とさ れ、短い乾燥時間で、成形時や、熱処理後の反りや歪み の発生を抑えた、大容量の分極性電極の製造が可能とさ れる。

【図面の簡単な説明】

【図1】この発明の製造方法の工程を例示したブロック 30 6 ガスケット 図である。

【図2】この発明の製造方法により得られる分極性電極 を用いた電気二重層コンデンサの構成を例示した断面図*

*である。

【符号の説明】

- 1 活性炭分極性電極
- 2 セパレータ
- 3 集電体
- 4 端子板
- 5 固定板
- - 7 支持体
 - 8 ボルトナット

【図2】

. . . .

【図1】

