Current
Expected
Credit Loss
(CECL)

Project Scope & Methodology

Project Scope Project Objective (Application of data analysis techniques along with building of risk model) Identifying better **Data Familiarity Understanding CECL** prediction model **Product** 30 years fixed rate mortgage loans Data 2001-2008, Fannie Mae (Acquisition Data, Performance Unemployment rate data data) Tools R, Python Excel

Project Methodology CECL **Understanding** Data Exploration and Cleaning Understanding of Loss calculation models Vintage model Markov chain and Logistic Regression Model Learning and Future outcomes

Why and What is CECL?

- Minimum cash reserve to maintain liquidity and fulfill commitment
- Prevent Situations like 2008 financial crisis

Issued by FASB	June 16th,2016
Purpose:	Estimate Expected loss over life of loan
Deadline	15th December 2019 for SEC filers 15th December 2020 for others

Key Distinguishing Parameters	Current GAAP	CECL
Loss Timing recognition	When incurred or probable	Doesn't wait for loss to happen
Loss Amount recognition	Already incurred loss amount	Current estimate of cashflows not expected to be collected
Data used to determine loss	Past data and current conditions	Reasonable and supportable future forecast along with past data and current conditions

Vintage model

Data Cleaning and Exploration

- Data Merging of Acquisition and Performance datasets using the LoanID
- Dropping columns with many null values (MorInsPerc, CoCreditScore, MortInsType)

Data **CECL Understanding** Exploration and Cleaning Understanding of Loss calculation models

Vintage model

Regression outcomes Model

Model Comparison

Moving Average

Average value of last n(12) months

Time Series

Pros: Capture the economic cycle

Cons: Missed Credit Cycle

Roll Rates

Rolling forward from month to next and till the delinquency.

Pros: Capture the economic cycle

Cons: Missed the Credit Cycle

Vintage Model

Time series of each vintage

Identifying Default rate, Attribution Attrition Rate, etc.

Pros: Captures both economic cycle and Credit life cycle

State Transition

Another version of roll rates model with scenarios in consideration

> Multi-nominal regression

Pros: More Actionable

Cons: Not accurate over vintage model

Discrete Time Survival

Monthly data

Uses Vintage Model to capture Lifecycle and environment variation

Data **CECL Understanding** Cleaning of Loss models

Vintage model

Markov chain and Logistic Regression Model

Learning and Future outcomes

Vintage Model

Measures Losses on the origination date based upon on the historical performance of loans with similar characteristics

		Loss Rat	es by Vintage					
	Y1	Y2	Y3	Y4	Y5	Y6		
2001	0.00%	0.05%	0 13%	0.13%	0.08%		0.06%	
2002		Predicted Lo	ss Rates	0.08%	0.06%		0.06%	
2003	0.00%	0.02%	0.05%	0.06%	0.07%		0.08%	
2004	0.00%	0.03%	0.07%	0.08%	0.08%	1	0.12%	
2005	0.00%	0.03%	0.07%	0.10%	7 0.13%		0.13%	
2006	0.01%	0.03%	0.09%	7 0.17%	0.14%		0.12%	
			1					
^a ν ετδυς	lusion _{.00%}	0.04%	0.08%	0.10%	0.09%		0.09%	
Q factor Hi	gh diffe	ence BE%	ween Pre	dicted and	1.44%		1.30%	
	tual Loss		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	dieced and				
	Y1	Y2 /	Y 3	/Y4 /	Y5 /	Y6		
> 2doæ	> 2duarge dependencies Rue Macroe conomic							
20f0a.	ctors		/		*	•	0.05%	
2003		count for	Downs	*	0.06%		0.07%	
2004	besii t ac	count for	Borrowe	0.11%	0.14%			
2005	naracteri	SUCS	0.13%	0.28%				
2006		0.09%	0.40%					

CECL Understanding Data Exploration and Cleaning

Understanding of Loss calculation models

Vintage model

Learning and Future outcomes

Markov chain

and Logistic

Regression

Model

Default Probability Estimation

Markov Chain Model

6 Statuses

- → -1 prepaid
- > 0 on performance
- 1 not performing for 30 days
- 2 not performing for 60 days
- 3 not performing for 90 days
- 4 not performing more than 90 days

Transition Probability & Logistic regression

- Y is the transition of delinquency status:
- X is Macro Economic Variables and credit score:

Unemployment rate, house price index, CPI 3-month treasury rate and FICO score

	-1	0	1	2	3	4
-1	1					
0	0.1742	0.2782	0.5477			
1		0.6072	0	0.3928		
2			0.1592	0	0.8408	
3				0.1075	0	0.8925
4						1

CECL Understanding

Results & Future Outlook

Results

- •State Transition Model appears to be most accurate model
- Calculations for all account is a better way for company to estimate its risk reserve.
- •Important to account for economic and credit cycle

CECL Understanding

Key Learnings

- •Exposure to CECL
- Data Analysis and Visualization
- Model selection is key to CECL as this will define the Loss Reserve
- •Increase in variables increases accuracy but with errors

Future Outlook

- •Modelling to account for floating rate type mortgage loans and credit card loans
- •Lag consideration for economic variables
- •Re-run with last 5 years dataset

