Dynamische Erde I

Übung 7 Magmatische Gesteine und Prozesse

Lernziele:

- ⇒ Die Studierenden können Vulkanite, Plutonite und Ganggesteine unterscheiden
- ⇒ Die Studierenden können magmatische Gesteine nach der Streckeisen-Systematik benennen
- ⇒ Die Studierenden können die Fraktionierungsreihe nach Mineralogie/SiO₂-Gehalt erklären
- ⇒ Die Studierenden verstehen die Bowen'sche Differentiationsreihe

I. Klassifikation der magmatischen Gesteine

Klassifikation nach Streckeisen

Aufgabe 1:

Worauf beruht die Klassifikation nach Streckeisen (S. 5)? Vergleiche die Einteilung mit dem unten aufgeführten Schema (nach Washington und Adams, 1939). Ordne zudem 3 Handstücke in das Streckeisen-Diagramm ein.

Abbildung 1: Washington-Adams-Diagramm (Press & Siever, S. 94)

II. Magmatische Fraktionierungsreihe

Aufgabe 2:

Ordne die ausgeteilten Vulkanite und Plutonite in zwei Reihen zunehmenden SiO₂-Gehaltes und liste daneben die beobachteten Mineralien auf. Damit hast Du die Fraktionierungsreihe nach Bowen skizziert!

Abbildung 3: Die Bowen'sche Reaktionsreihe liefert eine Modellvorstellung für die fraktionierte Kristallisation

III. Mechanismen zur Bildung magmatischer Schmelzen

Aufgabe 3:

In der untenstehenden Figur ist das Phasendiagramm von Peridotit in Abhängigkeit von Druck (Tiefe), Temperatur und Wassergehalt dargestellt. Beantworte dazu die Fragen auf der Folgeseite.

_		-	~	_	-	
r	r	а	g	ρ	n	٦

\Rightarrow	Welche drei Möglichkeiten gibt es, um ein Gestein aufzuschmelzen? In welchen plattentektonischen Milieus treten die verschiedenen Prozesse auf?
\Rightarrow	Diskutiere das unterschiedliche Verhalten von wasserfreien und wassergesättigten Schmelzen. Welche Schmelzen enthalten viel/wenig Wasser?
\Rightarrow	Welche Merkmale weist ein Gestein auf, das aus einer wasserhaltigen Schmelze kristallisiert ist?

Streckeisen-Diagramme zur Klassifikation magmatischer Gesteine

Q: Si02-Minerale, vornehmlich Quarz; A: Alkalifeldspate (Orthoklas, Mikroklin, Perthit, Sanidin und Natronsanidin, Anorthoklas, sowie Albit Ano - An5); P: Plagioklas An5 - Anwo, sowie Skapolith; F Foide (Leucit und Pseudoleucit: Nephelin, Sodalith, Nosean, Hauyn, Cancrinit, Analcim, usw)

Quelle: Skript zur "Mineral- und Gesteinsbestimmung für Studierende", Stosch et al., 2003, Uni Karlsruhe

Nomenklatur plutonischer Gesteine, bestehend aus Plagioklas, Olivin, Pyroxenen und Hornblende.

Nomenklatur von Ultramafititen; (a) für Gesteine, die vorwiegend aus Olivin [OI], Orthopyroxen [Opx] und Klinopyroxen [Cpx] bestehen; (b) für Gesteine mit überwiegend Olivin, Pyroxen [Px] und Hornblende [Hbl].