Data Models & Relational Model Characteristics

Lecture 2

Learning Outcomes

- In this chapter, you will learn:
 - terminologies related to database design
 - data models
 - relational database operators

Data Modeling

Data modeling

- It is the *first step* in designing a database
- It refers to the <u>process of creating</u> a specific data model for a problem domain

Data model

- It is a simple representation (usually graphical) of complex realworld data structures
- A model is an abstraction of complex real-world object

The Importance of Data Models

- Facilitate interaction among the <u>designer</u>, <u>programmer</u>, and the <u>end user</u>
- Data model is an abstraction ("blueprint")
 - A high-level description of your database.

Basic Building Blocks

- Entity: is a person, place, thing or event about which data will be collected and stored.
- Attribute: a characteristic of an entity
- Relationship: describes an association among entities
 - One-to-many (1:M)
 - Many-to-many (M:N or M:M)
 - One-to-one (1:1)
- Constraint: a restriction placed on the data
 - E.g., student's GPA must be between 0 and 4

Business Rules

- is a <u>brief</u>, <u>precise</u>, <u>unambiguous</u> description of a policy, procedure or principle within a specific organization
- Properly written business rules are used to define entities, attributes, relationships and constraints.
- Example:
 - An agent can serve many customers
 - A training session cannot be scheduled for fewer than 10 employees or for more than 30 employees

Evolution of Data Models

Hierarchical Model

- Data are represented as a tree-like structure
- The hierarchical structure contains levels
 - A higher layer is perceived as the parent of the level directly beneath it, which is called the child
- The hierarchical model depicts a set of one-to-many relationships between a parent and its children
 - Each parent can have many children, but each child has only one parent

Hierarchical Model

Lecturer ID	Firs	t Name	Last Na	ame	Dept	
L1001	Ben	1	Steven		FCI	111
L1002	Joh	n	Lincoln	1	FCI	
L1003	Ali		Abu		FCI	
Equipment T	уре	Serial N	0	User	(Lectur	er ID
Computer Computer	ype	X-123-W		0361	L1001	נטו וטן
•						
Monitor		M9878-	222		L1001	
Printer		P098900			L1001	

Network Model

- Unlike the hierarchical model (each child has only one parent), the network model allows a record to have more than one parent
 - Example: an order is related to both a customer who placed it and a salesperson who made the sale

Relational Model

- The basic data structure of the relational model is the table
 - Relation = table
- Allows designer to focus on the logical representation of the data and its relationships rather than on the physical storage details

Entity-Relationship Diagram

- Based on entities, attributes, and relationships
- Complements the relational data model concepts

Object-Oriented (00) Model

- Data and relationships are contained in a single structure known as an object
- An object:
 - is described by its factual content (just like entity)
 - Contains all operations that can be performed
- Unlike entity object includes information about
 - relationships between the facts within the object
 - its relationship with other objects
- OODM (object-oriented data model) is the basis for OODBMS

Object-Oriented (OO) Model

- Attributes describe the properties of an object
- Objects that share similar characteristics are grouped in classes
- Classes are organized in a class hierarchy
- Inheritance: object inherits methods and attributes of parent class
- UML based on OO concepts that describe diagrams and symbols

Object-Oriented (OO) Model

Emerging Data Models: Big Data and NoSQL

Big Data

- Find new and better ways to manage large amounts of Webgenerated data and derive business insight from it
- Relational approach does not always match the needs of organizations with Big D ata challenges

NoSQL databases

- Not based on the relational model, hence the name NoSQL
- Supports distributed database architectures
- Provides high scalability, high availability, and fault tolerance
- Supports very large amounts of sparse data

Relational Model

- Table and Their Characteristics

Student	t File				Attribute
					Field
Id No. 1	Name	Faculty	M	lajor	Column
1100 A	Αli	FIT	S	E	
1200 E	Bobby	FIT	M	IS	Entity Occurrence
1300 (Clement	FCM	M	M	Record
1400 [David	FCM	M	M	
1500 E	Evelyn	FOE	С	E	Row
	-		,		
	F	ntity File able		File prod	cual data modeling notation cessing Notation al Table Notation

TABLE 4.1

Characteristics of a Relational Table

1	A table is perceived as a two-dimensional structure composed of rows and columns.
2	Each table row (tuple) represents a single entity occurrence within the entity set.
3	Each table column represents an attribute, and each column has a distinct name.
4	Each intersection of a row and column represents a single data value.
5	All values in a column must conform to the same data format.
6	Each column has a specific range of values known as the attribute domain.
7	The order of the rows and columns is immaterial to the DBMS.
8	Each table must have an attribute or combination of attributes that uniquely identifies each row.

FIGURE 3.1

STUDENT table attribute values

Study this table carefully

Table name: STUDENT

Database name: Ch03_TinyCollege

STU_NUM	STU_LNAME	STU_FNAME	STU_INIT	STU_DOB	STU_HRS	STU_CLASS	STU_GPA	STU_TRANSFER	DEPT_CODE	STU_PHONE	PROF_NUM
321452	Bowser	William	С	12-Feb-1975	42	So	2.84	No	BIOL	2134	205
324257	Smithson	Anne	K	15-Nov-1981	81	Jr	3.27	Yes	CIS	2256	222
324258	Brewer	Juliette		23-Aug-1969	36	So	2.26	Yes	ACCT	2256	228
324269	Oblonski	Walter	Н	16-Sep-1976	66	Jr	3.09	No	CIS	2114	222
324273	Smith	John	D	30-Dec-1958	102	Sr	2.11	Yes	ENGL	2231	199
324274	Katinga	Raphael	P	21-Oct-1979	114	Sr	3.15	No	ACCT	2267	228
324291	Robertson	Gerald	T	08-Apr-1973	120	Sr	3.87	No	EDU	2267	311
324299	Smith	John	В	30-Nov-1986	15	Fr	2.92	No	ACCT	2315	230

= Student number STU NUM STU LNAME = Student last name STU FNAME = Student first name STU INIT = Student middle initial STU DOB = Student date of birth STU HRS = Credit hours earned STU CLASS = Student classification STU GPA = Grade point average

STU_TRANSFER = Student transferred from another institution

DEPT CODE = Department code

STU_PHONE = 4-digit campus phone extension

PROF_NUM = Number of the professor who is the student's advisor

Primary key – is an attribute that uniquely identifies any given row or an entity

- Key ensures that each row in a table is uniquely identifiable
- Primary key an attribute that uniquely identifies any given row (e.g., STU_Num)
- Key is based on the concept of determination
 - If you know the value of attribute A, you can determine the value of attribute B
 - E.g., STU_NUM determines STU_NAME, STU_DOB, etc.

Functional Dependence

- The value of one or more attributes determines the value of one or more other attributes
- Notation:

Keys are basically the determinants in functional dependencies

Composite Key

a key that is composed of more than one attribute

```
(STU_LNAME, STU_FNAME, _____ STU_HRS STU_INIT, STU_PHONE)
```

Superkey

- a key that can uniquely identify any row in the table
 - STU_NUM
 - (STU_LNAME,STUFNAME,STU_INIT,STU_PHONE)

Candidate Key

- It is a minimal superkey that is superkey without any unnecessary attributes
 - STU_NUM
 - (STU_LNAME,STU_FNAME,STU_INIT,STU_PHONE)
 - (STU_NUM, STU_LNAME)

Secondary Key

- A key that is used strictly for data retrieval purposes
 - Customer's phone number

Foreign key

• is the primary key of one table that has been placed into another table to create a common attribute

PROD_CODE	PROD_DESCRIPT		PROD_PRICE	OD_PRICE PROD_ON_HAND VENE		VEND_C	ODE
001278-AB	Claw hammer				23		232
123-21UUY	Houselite chain say	w, 16-in. bar	189.99		4		235
QER-34256	Sledge hammer, 16	-lb. head	18.63		6		231
SRE-657UG	Rat-tail file	t-tail file		15			232
ZZX/3245Q	Steel tape, 12-ft. le	ngth	6.79	8			235
	i	VEND_COD	E VEND_CON	link	Lucus as	EACODE	VEND_PHONE
		VENU COD	- I VEND COL	MACI	I VENU AR	CALUUE	A PLAD LI LOIAE
Table name:	VENDOR	100000000000000000000000000000000000000	30 Shelly K. Sm		VEND_AR	EACODE	555-1234
Table name: Primary key		2		nithson		EACODE	
Primary key	: VEND_CODE	2	30 Shelly K. Sm	nithson son	608	EACODE	555-1234
Primary key	: VEND_CODE	2 2 2	30 Shelly K. Sm 31 James John	nithson son ystall	608 615	EACODE	555-1234 123-4536
	: VEND_CODE	2 2 2 2 2	30 Shelly K. Sm 31 James John 32 Annelise Cr	nithson son ystall llace	608 615 608	EACODE	555-1234 123-4536 224-2134

Summary

3.3

Relational Database Keys

KEY TYPE	DEFINITION
Superkey	An attribute (or combination of attributes) that uniquely identifies each row in a table.
Candidate key	A minimal (irreducible) superkey. A superkey that does not contain a subset of attributes that is itself a superkey.
Primary key	A candidate key selected to uniquely identify all other attribute values in any given row. Cannot contain null entries.
Secondary key	An attribute (or combination of attributes) used strictly for data retrieval purposes.
Foreign key	An attribute (or combination of attributes) in one table whose values must either match the primary key in another table or be null.

Integrity Rules

- Many RDBMs enforce integrity rules automatically
- Application design must conform to the integrity rules:
 - entity integrity
 - referential integrity

Integrity Rules (cont'd.)

Entity integrity

- is the condition in which each row in the table has its own unique identity
- To ensure entity integrity, the primary key has two requirements:
 - All of the values in the primary key must be unique
 - No null value (i.e., absence of any data value) is allowed in any part of the primary key
 - □ Null values can create logical problems when tables are linked

Integrity Rules (cont'd.)

Referential integrity

- is the condition in which every foreign key must either be:
 - null (providing that it does not form part of its table's primary key)

or

 an entry which matches the primary key value in the table to which it is related

Integrity Rules (cont'd.)

Table name: CUSTOMER Database name: Ch03_InsureCo

Primary key: CUS_CODE Foreign key: AGENT_CODE

CUS_CODE CUS_L	NAME CUS_FNAME	CUS_INITIAL	CUS_AREACODE	CUS_PHONE	CUS_INSURE_TYPE	CUS_INSURE_AMT	CUS_RENEW_DATE	AGENT_CODE
10010 Ramas	Alfred	A	615	844-2573	T1	100.00	05-Apr-2010	502
10011 Dunne	Leona	K	713	894-1238	T1	250.00	16-Jun-2010	501
10012 Smith	Kathy	W	615	894-2285	S2	150.00	29-Jan-2011	502
10013 Olowsk	i Paul	F	615	894-2180	S1	300.00	14-Oct-2010	
10014 Orlando	Myron		615	222-1672	T1	100.00	28-Dec-2010	501
10015 O'Brian	Amy	В	713	442-3381	T2	850.00	22-Sep-2010	503
10016 Brown	James	G	615	297-1228	S1	120.00	25-Mar-2011	502
10017 William	s George		615	290-2556	S1	250.00	17-Jul-2010	503
10018 Farriss	Anne	G	713	382-7185	T2	100.00	03-Dec-2010	501
10019 Smith	Olette	K	615	297-3809	S2	500.00	14-Mar-2011	503

Table name: AGENT

Primary key: AGENT_CODE

Foreign key: none

AGENT_CODE	AGENT_AREACODE	AGENT_PHONE	AGENT_LNAME	AGENT_YTD_SLS
501	713	228-1249	Alby	132735.75
502	615	882-1244	Hahn	138967.35
503	615	123-5589	Okon	127093.45

Relationships within a Relational Database

- 1:M relationship
- 1:1 relationship
- M:N relationships

The 1:M Relationship

- The norm in any relational database design
 - 1:M relationship between painter and painting

Chen's model

Crow's foot model

This course follows Crows foot model

The 1:M Relationship

FIGURE 3.19

The implemented 1:M relationship between PAINTER and PAINTING

Table name: PAINTER

Primary key: PAINTER_NUM

Foreign key: none

Database name: Ch03_Museum

PAINTER_NUM	PAINTER_LNAME	PAINTER_FNAME	PAINTER_INITIAL
123	Ross	Georgette	P
126	ttero	Julio	G

Table name: PAINTING

Primary key: PAINTING_NUM Foreign key: PAINTER_NUM

PAINTING_NUM	PAINTING_TITLE	PAINTER_NUM
1338	Dawn Thunder	123
1339	Vanilla Roses To Nowhere	123
1340	Tired Flounders	126
1341	Hasty Exit	123
1342	Plastic Paradise	126

The 1:1 Relationship

- One entity related to only one other entity, and vice versa
- Could indicate that:
 - two entities actually belong in the same table
 - entity components were not defined properly

The 1:1 Relationship

The M:N Relationships

- Many-to-many (M:N) relationships associations among two or more entities in which one occurrence of an entity is associated with many occurrences of a related entity
- To avoid problems inherent to M:N relationships
 - need to break M:N relationships produce two sets of 1:M relationships using a composite entity

The M:N Relationship

Chen's model

Crow's foot model

Composite Entity for M:N Relationship

Composite Entity for M:N Relationship

Converting M:N into 1:M Relationships

Database name: Ch03_CollegeTry2

Table name: STUDENT Primary key: STU_NUM

Foreign key: none

STU_NUM	STU_LNAME
321452	Bowser
324257	Smithson

Table name: ENROLL

Primary key: CLASS_CODE + STU_NUM Foreign key: CLASS_CODE, STU_NUM

CLASS_CODE	STU_NUM	ENROLL_GRADE
10014	321452	С
10014	324257	В
10018	321452	A
10018	324257	В
10021	321452	С
10021	324257	С

Table name: CLASS

Primary key: CLASS_CODE Foreign key: CRS_CODE

CLASS_CODE	CRS_CODE	CLASS_SECTION	CLASS_TIME	CLASS_ROOM	PROF_NUM
10014	ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
10018	CIS-220	2	MVVF 9:00-9:50 a.m.	KLR211	114
10021	QM-261	1	M/VF 8:00-8:50 a.m.	KLR200	114

The Expanded ER Model

Chen's model

The Expanded ER Model

Crow's foot model

Relational Set Operators

Relational algebra

- Defines theoretical way of manipulating table contents using relational operators
- Use of relational algebra operators on existing relations produces new relations:
 - SELECT
 - PROJECT
 - UNION
 - INTERSECT

- DIFFERENCE
- JOIN
- PRODUCT
- DIVIDE

Select

- Yields values for all rows found in a table.
- It yields a horizontal subset of a table.

Project

- Produces a list of all values for selected attributes
- It yields a vertical subset of a table.

Union

- Combines all rows from two tables.
- The tables must be union compatible (same attribute characteristics).

Intersect

- Produces a listing that contains only the rows that appear in both tables.
- The tables must be union compatible (same attribute characteristics).

Difference

- Yields all row in one table that are not found in the other table, i.e. it subtracts one table from the other.
- The table must be union compatible.

Product

 Produces a list of all possible pairs of rows from two tables.

Natural Join

 Links tables by selecting rows with common values in common attribute(s)

FIGURE 3.11

Two tables that will be used in join illustrations

Table name: CUSTOMER

CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE
1132445	√Valker	32145	231
1217782	Adares	32145	125
1312243	Rakowski	34129	167
1321242	Rodriguez	37134	125
1542311	Smithson	37134	421
1657399	Vanloo	32145	231

Table name: AGENT

AGENT_CODE	AGENT_PHONE
125	6152439887
167	6153426778
231	6152431124
333	9041234445

1st step: Product

FIGURE 3.12

Natural join, Step 1: PRODUCT

CUS_CODE	CUS_LNAME	CUS_ZIP	CUSTOMER.AGENT_CODE	AGENT.AGENT_CODE	AGENT_PHONE
1132445	Walker	32145	231	125	6152439887
1132445	Walker	32145	231	167	6153426778
1132445	Walker	32145	231	231	6152431124
1132445	Walker	32145	231	333	9041234445
1217782	Adares	32145	125	125	6152439887
1217782	Adares	32145	125	167	6153426778
1217782	Adares	32145	125	231	6152431124
1217782	Adares	32145	125	333	9041234445
1312243	Rakowski	34129	167	125	6152439887
1312243	Rakowski	34129	167	167	6153426778
1312243	Rakowski	34129	167	231	6152431124
1312243	Rakowski	34129	167	333	9041234445
1321242	Rodriguez	37134	125	125	6152439887
1321242	Rodriguez	37134	125	167	6153426778
1321242	Rodriguez	37134	125	231	6152431124
1321242	Rodriguez	37134	125	333	9041234445
1542311	Smithson	37134	421	125	6152439887
1542311	Smithson	37134	421	167	6153426778
1542311	Smithson	37134	421	231	6152431124
1542311	Smithson	37134	421	333	9041234445
1657399	Vanloo	32145	231	125	6152439887
1657399	Vanloo	32145	231	167	6153426778
1657399	Vanloo	32145	231	231	6152431124
1657399	Vanloo	32145	231	333	9041234445

- 2nd step: Select
- Select operation performed on the output of the 1st step, shows only the rows for which the common attribute values match.

FIGURE 3.13

Natural join, Step 2: SELECT

CUS_CODE	CUS_LNAME	CUS_ZIP	CUSTOMER.AGENT_CODE	AGENT.AGENT_CODE	AGENT_PHONE
1217782	Adares	32145	125	125	6152439887
1321242	Rodriguez	37134	125	125	6152439887
1312243	Rakowski	34129	167	167	6153426778
1132445	Walker	32145	231	231	6152431124
1657399	Vanloo	32145	231	231	6152431124

- 3rd step: **Project**
- Performed to yield a single copy of each attribute, thereby eliminating the duplicate columns.

Outer join

- Matched pairs are retained and any unmatched values in other table are left null
- Two types:
 - Left outer join
 - Right outer join

Example - Left Outer Join

Table name: CUSTOMER

CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE
1132445	√Valker	32145	231
1217782	Adares	32145	125
1312243	Rakowski	34129	167
1321242	Rodriguez	37134	125
1542311	Smithson	37134	421
1657399	Vanloo	32145	231

Table name: AGENT

AGENT_CODE	AGENT_PHONE
125	6152439887
167	6153426778
231	6152431124
333	9041234445

FIGURE 3.15

Left outer join

CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE	AGENT_PHONE
1217782	Adares	32145	125	6152439887
1321242	Rodriguez	37134	125	6152439887
1312243	Rakowski	34129	167	6153426778
1132445	Walker	32145	231	6152431124
1657399	Vanloo	32145	231	6152431124
1542311	Smithson	37134	421	

Example - Right Outer Join

Table name: CUSTOMER

CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE
1132445	√Valker	32145	231
1217782	Adares	32145	125
1312243	Rakowski	34129	167
1321242	Rodriguez	37134	125
1542311	Smithson	37134	421
1657399	Vanloo	32145	231

Table name: AGENT

AGENT_CODE	AGENT_PHONE
125	6152439887
167	6153426778
231	6152431124
333	9041234445

FIGURE 3.16

Right outer join

CUS_CODE	CUS_LNAME	CUS_ZIP	AGENT_CODE	AGENT_PHONE
1217782	Adares	32145	125	6152439887
1321242	Rodriguez	37134	125	6152439887
1312243	Rakowski	34129	167	6153426778
1132445	Walker	32145	231	6152431124
1657399	Vanloo	32145	231	6152431124
			333	9041234445

Divide

 Requires the use of one-single column table and one twocolumn table.

