Systems analysis and decision making

Exercises – List No. 4

Authors: A. Gonczarek, J. Tomczak

Exemplary problem

A guest of a bar drinks x litres of a beer by his first visit, and y liters of a beer by the second visit. The following quantities were observed for three random customers of the bar:

x	1	2	3
y	1	1	3

Tabela 1: Data for three clients.

We aim at predicting how many liters y a client will drink for the second visit if he drank x liters for the first time.

Linear regression: maximum likelihood estimation

Feature extraction

Feature extraction is as in least squares problem.

Model

Let us assume the following model:

$$y = \phi(x)^{\mathrm{T}} \mathbf{w} + \varepsilon,$$

where $\varepsilon \sim \mathcal{N}(\varepsilon|0,\sigma^2)$ is a random variable (noise)

Task 1: Learning

For given data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$:

- Task 1A: Write negative log-likelihood function $\ell_{ML}(\mathbf{w})$
- Task 1B: Derive maximum likelihood estimator for model parameters w
- Task 1C: Derive maximum likelihood estimator for σ^2 given model parameters $\hat{\mathbf{w}}_{ML}$ from Task 1B. What kind of information does this parameter provide?

Task 2: Prediction

Use formulas derived in Task 1 to calculate (numerically) values of \mathbf{w} (model parameters), σ (standard deviation) and $\overline{\mathbf{y}}$ (model prediction). Use input data that is provided in Table 1.

Linear regression: maximum a posteriori estimation

Feature extraction

Feature extraction is as in least squares problem.

Model

Let us assume the following model:

$$p(y|\mathbf{x}, \mathbf{w}) = \mathcal{N}(y|\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\mathbf{w}, \sigma^2)$$

with the a priori distribution on parameters **w**:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0, \alpha^2 \mathbf{I}),$$

where α^2 i σ^2 are known.

Task 3: Learning

For given data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$:

- Task 3A: Write negative log-likelihood function $\ell_{ML}(\mathbf{w})$
- \bullet Task 3B: Derive maximum a posteriori estimator for model parameters ${\bf w}$
- Task 3C: Derive maximum a posteriori estimator for σ^2 given model parameters $\hat{\mathbf{w}}_{MAP}$ from Task 3B. What kind of information does this parameter provide?

Task 4: Prediction

Use formulas derived in Task 3 to calculate (numerically) values of \mathbf{w} (model parameters), σ (standard deviation) and $\overline{\mathbf{y}}$ (model prediction). Use input data that is provided in Table 1 and $\lambda = 10^{-3}$.

HANDOUT FOR LINEAR REGRESSION (LISTS 3 & 4)

Bernoulli distribution:

$$B(x|\theta) = \theta^x (1-\theta)^{1-x}, \text{ where } x \in \{0,1\} \text{ i } \theta \in [0,1]$$

$$\mathbb{E}[x] = \theta$$

$$Var[x] = \theta (1-\theta)$$

Categorical (Multinoulli) distribution:

$$M(\mathbf{x}|\boldsymbol{\theta}) = \prod_{d=1}^{D} \theta_d^{x_d}, \text{ where } x_d \in \{0,1\} \text{ i } \theta_d \in [0,1] \text{ for all } d = 1, 2, \dots, D, \sum_{d=1}^{D} \theta_d = 1$$

$$\mathbb{E}[x_d] = \theta_d$$

$$\operatorname{Var}[x_d] = \theta_d(1 - \theta_d)$$

Normal distribution:

$$\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

$$\mathbb{E}[x] = \mu$$

$$\operatorname{Var}[x] = \sigma^2$$

Multivariate normal distribution:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\Big\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\Big\},\,$$

where \mathbf{x} is D-dimensional vector, $\boldsymbol{\mu}$ – D-dimensional vector of means, $\boldsymbol{\Sigma}$ – $D \times D$ covariance matrix

$$\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu}$$

$$\mathrm{Cov}[\mathbf{x}] = \Sigma$$

Beta distribution:

$$Beta(x|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1},$$

where
$$x \in [0, 1]$$
 and $a > 0$ i $b > 0$, $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$
 $\mathbb{E}[x] = \frac{a}{a+b}$
 $\operatorname{Var}[x] = \frac{ab}{(a+b)^2(a+b+1)}$

Marginal distribution:

In the continuous case:

$$p(x) = \int p(x, y) \mathrm{d}y$$

and in the discrete case:

$$p(x) = \sum_{y} p(x, y)$$

Conditional distribution:

$$p(y|x) = \frac{p(x,y)}{p(x)}$$

Marginal distribution and conditional distribution for multivariate normal distribution:

Assume $\mathbf{x} \sim \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where

$$\mathbf{x} = \left[egin{array}{c} \mathbf{x}_a \ \mathbf{x}_b \end{array}
ight], \qquad \quad oldsymbol{\mu} = \left[egin{array}{c} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{array}
ight], \qquad \quad oldsymbol{\Sigma} = \left[egin{array}{c} oldsymbol{\Sigma}_a & oldsymbol{\Sigma}_c \ oldsymbol{\Sigma}_c^T & oldsymbol{\Sigma}_b \end{array}
ight],$$

then we get the following dependencies:

$$\begin{split} p(\mathbf{x}_a) &= \mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_a), \\ p(\mathbf{x}_a | \mathbf{x}_b) &= \mathcal{N}(\mathbf{x}_a | \hat{\boldsymbol{\mu}}_a, \hat{\boldsymbol{\Sigma}}_a), \text{ where} \\ \hat{\boldsymbol{\mu}}_a &= \boldsymbol{\mu}_a + \boldsymbol{\Sigma}_c \boldsymbol{\Sigma}_b^{-1} (\mathbf{x}_b - \boldsymbol{\mu}_b), \\ \hat{\boldsymbol{\Sigma}}_a &= \boldsymbol{\Sigma}_a - \boldsymbol{\Sigma}_c \boldsymbol{\Sigma}_b^{-1} \boldsymbol{\Sigma}_c^T. \end{split}$$

Bayes' rule:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

Maximum likelihood estimator:

There are given N independent examples of \mathbf{x} from the identical distribution $p(\mathbf{x}|\theta)$, $\mathcal{D} = {\mathbf{x}_1 \dots \mathbf{x}_N}$. The likelihood function is the following function:

$$p(\mathcal{D}|\theta) = \prod_{n=1}^{N} p(\mathbf{x}_n|\theta).$$

The logarithm of the likelihood function $p(\mathcal{D}|\theta)$ is given by the following expression:

$$\log p(\mathcal{D}|\theta) = \sum_{n=1}^{N} \log p(\mathbf{x}_n|\theta).$$

Maximum likelihood estimator of the parameters θ_{ML} minimizes the likelihood function:

$$p(\mathcal{D}|\theta_{ML}) = \max_{\theta} p(\mathcal{D}|\theta).$$

Maximum *a posteriori* estimator:

There are given N independent examples of **x** from the identical distribution $p(\mathbf{x}|\theta)$, $\mathcal{D} = \{\mathbf{x}_1 \dots \mathbf{x}_N\}$.

4

Maximum a posteriori (MAP) estimator of the parameters θ_{MAP} minimizes the a posteriori distribution:

$$p(\theta_{MAP}|\mathcal{D}) = \max_{\theta} p(\theta|\mathcal{D}).$$

Risk in the decision making:

Risk (expected loss) is defined as follows:

$$\mathcal{R}[\overline{y}] = \iint L(y, \overline{y}(\mathbf{x})) \ p(\mathbf{x}, y) d\mathbf{x} dy,$$

where $L(\cdot, \cdot)$ is the loss function.

Chosen properties of matrix calculus:

For given vectors \mathbf{x} , \mathbf{y} and a matrix \mathbf{A} , which is symmetric and positive definite, the following equations hold true:

$$\bullet \ \frac{\partial}{\partial \mathbf{y}} (\mathbf{x} - \mathbf{y})^T \mathbf{A} (\mathbf{x} - \mathbf{y}) = -2\mathbf{A} (\mathbf{x} - \mathbf{y})$$

$$\bullet \ \frac{\partial (\mathbf{x} - \mathbf{y})^T \mathbf{A}^{-1} (\mathbf{x} - \mathbf{y})}{\partial \mathbf{A}} = -\mathbf{A}^{-1} (\mathbf{x} - \mathbf{y}) (\mathbf{x} - \mathbf{y})^T \mathbf{A}^{-1}$$

$$\bullet \ \frac{\partial \ln \det(\mathbf{A})}{\partial \mathbf{A}} = \mathbf{A}^{-1}$$