Problema 35. Considerem l'anell $\mathbb{Z}[\sqrt{-2}] := a + b\sqrt{-2} : a, b \in \mathbb{Z} \subseteq \mathbb{C}$ i la seva norma $N = a + b\sqrt{-2} = a^2 + 2b^2, a, b \in \mathbb{Z}$. Proveu que $\mathbb{Z}[\sqrt{-2}]$ és un domini d'ideals principals.

Solució. Anomenem $A = \mathbb{Z}[\sqrt{-2}]$ i $K = \mathbb{Q}[\sqrt{-2}]$. Començarem demostrant que per a tot parell $x, y \in A \subseteq K, y \neq 0$, existeixen q i $r \in A$ tals que

$$x = qy + r$$
 amb $r = 0$ o bé $N(r) < N(y)$.

Definim $x = a + b\sqrt{-2}$ i $y = c + d\sqrt{-2}$ on $y \neq 0$ i $a, b, c, d \in \mathbb{Z}$.

$$\frac{a+b\sqrt{-2}}{c+d\sqrt{-2}} = \frac{a+b\sqrt{-2}}{c+d\sqrt{-2}} \cdot \frac{c-d\sqrt{-2}}{c-d\sqrt{-2}} = \frac{\alpha+\beta\sqrt{-2}}{c^2+2d^2} = p_1 + p_2\sqrt{-2}$$

on $\alpha = ab + 2cd$, $\beta = bc - ad$ i $p_1 = \frac{\alpha}{c^2 + 2d^2}$ i $p_2 = \frac{\beta}{c^2 + 2d^2}$ són de \mathbb{Q} , per tant, $p_1 + p_2\sqrt{-2} \in K$.

Siguin $q = q_1 + q_2\sqrt{-2}$ on $q_1, q_2 \in \mathbb{Z}$ tals que $|p_i - q_i| \le \frac{1}{2}$, $i = \{1, 2\}$ i $r = r_1 + r_2\sqrt{-2}$ tals que $\alpha = \beta \cdot q + r$, és a dir, $r = \alpha - \beta \cdot q$ amb $\alpha, \beta, q \in A$, per tant obtenim $r \in A$. Provada l'existència de $q, r \in A$, hem de veure que r = 0 o bé $N(r) < N(\beta)$:

- Si r=0: Implica que $p=p_1+p_2\in A$. Ja hem acabat.
- Si $r \neq 0$: Utilitzant $N(xy) = N(x) \cdot N(y)$, $\forall x, y \in A$, $N(r) = N(x y \cdot q) = N(\frac{x}{y} q) \cdot N(y) = N(p q) \cdot N(y).$

Com que
$$N(p-q) = (p_1 - q_1)^2 + 2(p_2 - q_2)^2 \le \left(\frac{1}{2}\right) + 2\left(\frac{1}{2}\right) = \frac{1}{4} + \frac{2}{4} = \frac{3}{4} < 1$$
, obtenim que $N(p-q) < 1 \Rightarrow N(r) < N(\beta)$.

Finalment hem de veure que A és un DIP, és a dir, qualsevol ideal de A és principal. Sigui $I \subseteq A$ un ideal:

- Si I = (0), llavors $I = 0 \cdot A$ i I és principal.
- Si I ≠ (0), llavors existeix β ∈ I amb β ≠ 0, i |N(β)| és el minim en I − 0.
 Com que I ∋ β ⊆ βA = I ⇒ βA ∈ I, i existeixen q, r ∈ A tals que α = β · q + r, però, com que N(r) < N(β) i N(β) és el mínim, llavors r ∈ I ⇒ r = 0.
 Per tant hem vist que I és principal.

Finalment tenim que $A = \mathbb{Z}[\sqrt{-2}]$ és un Domini d'ideals principals.