congruenties

Als x_1 en x_2 gehele getallen zijn en m een positief natuurlijk getal is dan zijn x_1 en x_2 congruent modulo m als en slechts als x_1 - x_2 deelbaar is door m. we noteren dit als $x_1 \equiv x_2 \pmod m$

de equivalentieklassen in deze equivalentierelatie worden congruentieklassen modulo m of restklassen genoemd. Dit betekend dus dat \mathbf{x}_1 en \mathbf{x}_2 dezelfde rest hebben bij deling door m

$$x_1 = x_2 + mt$$

de verzameling van de kleinste repressentanten in elke restklasse is gelijk aan [0, m-1]

veronderstel dat m een positief natuurlijk getal is en dat x_1 , x_2 , y_1 , y_2 gehele getallen zijn zodat

$$x_1 \equiv x_2 \pmod{m}$$
, $y_1 \equiv y_2 \pmod{m}$.

Dan gelden de volgende eigenschpapen

(1)
$$x_1 + y_1 \equiv x_2 + y_2 \pmod{m}$$

(2)
$$x_1y_1 \equiv x_2y_2 \pmod{m}$$

bewijs

(1) Uit het gegeven volgt dat er gehele getallen t en t' bestaan zodanig dat

$$x_1 - x_2 = mt$$
, $y_1 - y_2 = mt$

bijgevolg geldt

$$(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2)$$

=mt + mt'

$$=m(t+t')$$

bijgevolg zijn $x_1 + y_1$ en $x_2 + y_2$ congruent modulo m

(2) merk op dat

$$x_1y_1 - x_2y_2 = (x_1 - x_2)y_1 + x_2(y_1 - y_2)$$

 $=mty_1 + x_2mt'$

$$=m(ty_1 + x_2t')$$

bijgevolg zijn x₁y₁ en x₂y₂ congruent modulo m