# BỘ GIÁO DỤC & ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP. HỒ CHÍ MINH KHOA ĐIỆN – ĐIỆN TỬ

-----<u>\*</u>\<u>\*</u>-----

BỘ MÔN TỰ ĐỘNG ĐIỀU KHIỂN



## BÁO CÁO NHẬN DẠNG VÀ ĐIỀU KHIỂN HỆ THỐNG

GVHD: PSG.TS Vũ Văn Phong

SVTH: MSSV: Nguyễn Văn Pháp 21151303

Vũ Tiến Phát 21151309

Tp. Hồ Chí Minh, tháng 6 năm 2024

## DANH MỤC HÌNH ẢNH

| Hình | 1. Mô hình xe 2 bánh tự cân bằng trong mặt phẳng                              | 2   |
|------|-------------------------------------------------------------------------------|-----|
| Hình | 2. Tính $\theta, \psi, \phi$                                                  | 9   |
| Hình | 3. Kết quả $\theta, \psi, \phi$                                               | 9   |
| Hình | 4. Đặt các biến trạng thái                                                    | 9   |
| Hình | 5. Thông số mô hình                                                           | .10 |
| Hình | 6. Công thức tính ma trận A và B                                              | .10 |
| Hình | 7. Ma trận A và B theo các biến                                               | .11 |
| Hình | 8. Kết quả ma trận A và B                                                     | .11 |
| Hình | 9. Chọn ma trận Q và R                                                        | .12 |
| Hình | 10. Hàm LQR tính ma trận K                                                    | .12 |
| Hình | 11. Kết quả ma trận K                                                         | .12 |
| Hình | 12. Mô phỏng xe 2 bánh tự cân bằng                                            | .12 |
| Hình | 13. Khối Xe_2_Banh_Tu_Can_Bang                                                | .13 |
| Hình | 14. Matlab function                                                           | .13 |
| Hình | 15. Thông số ban đầu                                                          | .14 |
| Hình | 16. Kết quả mô phỏng                                                          | .14 |
| Hình | 17. Kết quả mô phỏng khí thay đổi $R_1 = R_2 = 1$                             | .15 |
| Hình | 18. Kết quả mô phỏng khí thay đổi $R_1 = R_2 = 100$                           | .15 |
| Hình | 19. Kết quả mô phỏng khí thay đổi $R_1 = R_2 = 1000$                          | .16 |
| Hình | 20. Kết quả mô phỏng khí thay đổi $Q_1 = Q_2 = 1000$                          | .17 |
| Hình | 21. Kết quả mô phỏng khí thay đổi $Q_1 = 10$ và $Q_2 = 1000$                  | .17 |
| Hình | 22. Kết quả mô phỏng khí thay đổi Q <sub>1</sub> = 1 và Q <sub>2</sub> = 1000 | .18 |
| Hình | 23. Kết quả mô phỏng khí thay đổi $Q_1 = 1000$ và $Q_2 = 10$                  | .18 |
| Hình | 24. Kết quả mô phỏng khí thay đổi $Q_1 = 1000$ và $Q_2 = 1$                   | .19 |
| Hình | 25. Kết quả mô phỏng khí thay đổi $Q_3 = 1$ và $Q_4 = 1$                      | .20 |
| Hình | 26. Kết quả mô phỏng khí thay đổi $Q_3 = 1000$ và $Q_4 = 1$                   | .20 |
| Hình | 27. Kết quả mô phỏng khí thay đổi $Q_3 = 100000$ và $Q_4 = 1$                 | .21 |
| Hình | 28. Kết quả mô phỏng khí thay đổi $Q_3 = 1$ và $Q_4 = 1000$                   | .21 |

| Hình | 29. Kết quả mô phỏng khí thay đổi $Q_3 = 1$ và $Q_4 = 100000$     | .22 |
|------|-------------------------------------------------------------------|-----|
| Hình | 30. Kết quả mô phỏng khí thay đổi $Q_5 = 10000$ và $Q_6 = 10000$  | .23 |
| Hình | 31. Kết quả mô phỏng khí thay đổi $Q_5 = 1000$ và $Q_6 = 10000$   | .23 |
| Hình | 32. Kết quả mô phỏng khí thay đổi $Q_5 = 10$ và $Q_6 = 10000$     | .24 |
| Hình | 33. Kết quả mô phỏng khí thay đổi $Q_5 = 10000$ và $Q_6 = 1000$   | .24 |
| Hình | 34. Kết quả mô phỏng khí thay đổi $Q_5 = 10000$ và $Q_6 = 100000$ | .25 |
| Hình | 35. Hệ trục tọa độ cho hệ xe con lắc ngược                        | .26 |
| Hình | 36. Mô phỏng Simulink mô hình xe con lắc ngược để lấy dữ liệu     | .29 |
| Hình | 37. Khối Xe_con_lac_nguoc                                         | .29 |
| Hình | 38. Tín hiệu cấp vào mô hình                                      | .30 |
| Hình | 39. Thông số mô hình                                              | .30 |
| Hình | 40. Chuyển dữ liệu vào struct out                                 | .30 |
| Hình | 41. Dữ liệu thu được trong struct out                             | .31 |
| Hình | 42. Lựa chọn dữ liệu theo miền thời gian                          | .32 |
| Hình | 43. Nhập dữ liệu vào Import Data                                  | .32 |
| Hình | 44. Lựa chọn ước lượng hàm truyền                                 | .33 |
| Hình | 45. Chọn 5 poles 3 zeros                                          | .33 |
| Hình | 46. Kết quả thu được                                              | .34 |
| Hình | 47. Hàm truyền thu được                                           | .34 |
| Hình | 48. Độ chính xác của ước lượng                                    | .34 |
| Hình | 49. Mô phỏng so sánh                                              | .35 |
| Hình | 50. Kết quả đầu ra giữa mô hình gốc và mô hình nhận dạng          | .35 |
| Hình | 51. Sai số giữa mô hình gốc và mô hình nhận dạng                  | .36 |
| Hình | 52. Thông số tự cho để ước lượng                                  | .37 |
| Hình | 53. Mô phỏng nhận dạng thông số                                   | .37 |
| Hình | 54. Khối Subsystem                                                | .38 |
| Hình | 55. Select Parameters                                             | .38 |
| Hình | 56. Select Experiments                                            | .39 |
| Hình | 57. Kết quả nhận dạng                                             | .39 |
|      |                                                                   |     |

| Hình | 58. Mô phỏng nhận dạng                                        | .40 |
|------|---------------------------------------------------------------|-----|
| Hình | 59. Sai số giữa mô hình gốc và mô hình nhận dạng              | .41 |
| Hình | 60. Đồ thị đầu ra giữa thông số mô hình và thông số ước lượng | .41 |
| Hình | 61. Mô phỏng có bộ điều khiển                                 | .44 |
| Hình | 62. Bộ điều khiển SMC                                         | .44 |
| Hình | 63. Đặt $\theta(0) = 1$                                       | .45 |
| Hình | 64. Kết quả mô phỏng                                          | .45 |
| Hình | 65. Kết quả mô phỏng K = 5                                    | .46 |
| Hình | 66. Kết quả mô phỏng K = 20                                   | .46 |
| Hình | 67. Kết quả mô phỏng K = 50                                   | .47 |
| Hình | 68. Kết quả mô phỏng $\lambda=20$                             | .48 |
| Hình | 69. Kết quả mô phỏng $\lambda=50$                             | .48 |
| Hình | 70. Kết quả mô phỏng $\lambda=100$                            | .49 |
|      |                                                               |     |

## DANH MỤC BẢNG

| Bảng 1. Ký hiệu và ý nghĩa của các đại lượng                               | 3  |
|----------------------------------------------------------------------------|----|
| Bảng 2. Ký hiệu các đại lượng vật lý của hệ xe con lắc ngược               | 26 |
|                                                                            |    |
| Bảng 3. Giá trị cụ thể của các đại lượng liên quan đến hệ xe con lắc ngược | 42 |

## MỤC LỤC

| BAI TC  | OAN 1: MODELING                                                            | 1   |
|---------|----------------------------------------------------------------------------|-----|
| 1.1.    | Xây dựng mô hình toán học                                                  | 1   |
| 1.2.    | Mô phỏng Matlab                                                            | 9   |
| BÀI TC  | OÁN 2: INDENTIFICATION                                                     | .26 |
| 2.1.    | Xây dựng mô hình toán học                                                  | .26 |
| 2.2.    | Mô phỏng Matlab để lấy dữ liệu                                             | .29 |
| 2.3.    | Sử dụng tool Identification của Matlab để tìm mô hình toán                 | .32 |
| 2.4.    | Sử dụng Parameter Estimation của Matlab để nhận dạng thông số cho hệ thống | .37 |
| 2.5.    | Thiết kế bộ điều khiển trượt cho hệ xe con lắc                             | .42 |
| TÀI LIÍ | ĴU THAM KHẢO                                                               | .50 |

#### **BÀI TOÁN 1: MODELING**

#### MÔ HÌNH ROBOT 2 BÁNH TỰ CÂN BẰNG SỬ DỤNG BỘ ĐIỀU KHIỂN LQR

#### 1.1. Xây dựng mô hình toán học

• Lý thuyết về LQR (Linear – quadratic regulator)

Đối tượng tuyến tính mô tả bởi phương trình trạng thái:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Ta phải thiết kế bộ điều khiển phản hồi trạng thái K sao cho hàm mục tiêu J là nhỏ nhất.

Xác định hàm chỉ tiêu chất lượng:

$$J = \int_0^\infty (x^T Q x + u^T R u + 2x^T N u) dt$$

Trong đó Q và R là các ma trận trọng số.

Quy tắc điều khiển phản hồi để giảm thiểu giá trị của hàm J là:

$$u(t) = -Kx(t)$$

K được xác định là:

$$K = R^{-1}B^TS$$

Khi S là hằng số thì S = 0 ta có phương trình Riccati như sau:

$$A^T S + SA - SBR^{-1}B^T S + Q = 0$$

• Sơ đồ và hệ quy chiếu xe 2 bánh tự cân bằng



Hình 1. Mô hình xe 2 bánh tự cân bằng trong mặt phẳng

Bảng 1. Ký hiệu và ý nghĩa của các đại lượng

| Ký hiệu                                          | Đơn vị           | Ý nghĩa                                          |
|--------------------------------------------------|------------------|--------------------------------------------------|
| m                                                | Kg               | Khối lượng của bánh xe                           |
| M                                                | Kg               | Khối lượng của Robot                             |
| R                                                | m                | Bán kính bánh xe                                 |
| W                                                | m                | Chiều ngang của Robot                            |
| D                                                | m                | Chiều rộng của Robot                             |
| Н                                                | m                | Chiều cao của Robot                              |
| L                                                | m                | Khoảng cách từ trọng tâm Robot đến trục bánh xe  |
| $f_{\mathrm{w}}$                                 |                  | Hệ số ma sát giữa bánh xe và mặt phẳng di chuyển |
| $f_{m}$                                          |                  | Hệ số ma sát giữa Robot và động cơ DC            |
| $J_{\rm m}$                                      | kgm <sup>2</sup> | Moment quán tính động cơ DC                      |
| R <sub>m</sub>                                   | Ω                | Điện trở động cơ DC                              |
| $K_b$                                            | Vs/rad           | Hệ số EMF của động cơ DC                         |
| Kt                                               | Nm/A             | Moment xoắn của động cơ DC                       |
| N                                                |                  | Tỉ số giảm tốc                                   |
| G                                                | m/s <sup>2</sup> | Gia tốc trọng trường                             |
| θ                                                | rad              | Góc trung bình của bánh trái và bánh phải        |
| $	heta_{l,r}$                                    | rad              | Góc của bánh trái và bánh phải                   |
| Ψ                                                | rad              | Góc nghiêng của phần thân Robot                  |
| $\phi$                                           | rad              | Góc xoay của Robot                               |
| X <sub>l</sub> , y <sub>l</sub> , Z <sub>l</sub> | m                | Tọa độ bánh trái                                 |
| $X_r, y_r, Z_r$                                  | m                | Tọa độ bánh phải                                 |
| X <sub>m</sub> , y <sub>m</sub> , Z <sub>m</sub> | m                | Tọa độ trung bình                                |
| $F_{\theta}, F_{\psi}, F_{\phi}$                 | Nm               | Moment phát động theo các phương khác nhau       |
| $F_{l, r}$                                       | Nm               | Moment phát động của động cơ bánh trái, phải     |
| $i_l, i_r$                                       | A                | Dòng điện động cơ bánh trái, phải                |
| Vı, Vr                                           | V                | Điện áp động cơ bánh trái, phải                  |

Sử dụng phương pháp Euler – Lagrange để xây dựng mô hình động học. Giả sử tại thời điểm t = 0, Robot di chuyển theo chiều dương trục x, ta có các phương trình sau:

$$\begin{bmatrix} \theta \\ \phi \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(\theta_l + \theta_r) \\ \frac{R}{W}(\theta_l - \theta_r) \end{bmatrix}$$
 (1.1)

Tọa độ trung bình của Robot trong hệ quy chiếu:

$$\begin{bmatrix} x_m \\ y_m \\ z_m \end{bmatrix} = \begin{bmatrix} \int \dot{x}_m dt \\ \int \dot{y}_m dt \\ R \end{bmatrix}$$
 (1.2)

Và

$$\begin{bmatrix} \dot{x}_m \\ \dot{y}_m \end{bmatrix} = \begin{bmatrix} R\dot{\theta}\cos\phi \\ R\dot{\theta}\sin\phi \end{bmatrix} \tag{1.3}$$

Tọa độ bánh trái trong hệ quy chiếu:

$$\begin{bmatrix} x_l \\ y_l \\ z_l \end{bmatrix} = \begin{bmatrix} x_m - \frac{W}{2}\sin\phi \\ y_m + \frac{W}{2}\cos\phi \end{bmatrix}$$
 (1.4)

Tọa độ bánh phải trong hệ quy chiếu:

$$\begin{bmatrix} x_r \\ y_r \\ z_r \end{bmatrix} = \begin{bmatrix} x_m + \frac{w}{2}\sin\phi \\ y_m - \frac{w}{2}\cos\phi \end{bmatrix}$$
 (1.5)

Tọa độ tâm đối xứng giữa hai động cơ trong hệ quy chiếu:

$$\begin{bmatrix} x_b \\ y_b \\ z_b \end{bmatrix} = \begin{bmatrix} x_m + L\sin\psi\cos\phi \\ y_m + L\sin\psi\sin\phi \\ z_m + L\cos\psi \end{bmatrix}$$
(1.6)

Phương trình động năng của chuyển động tịnh tiến:

$$T_1 = \frac{1}{2}m(\dot{x}_l^2 + \dot{y}_l^2 + \dot{z}_l^2) + \frac{1}{2}m(\dot{x}_r^2 + \dot{y}_r^2 + \dot{z}_r^2) + \frac{1}{2}M(\dot{x}_b^2 + \dot{y}_b^2 + \dot{z}_b^2)$$
(1.7)

Phương trình động năng của chuyển động quay:

$$T_2 = \frac{1}{2} J_w \dot{\theta}_l^2 + \frac{1}{2} J_w \dot{\theta}_r^2 + \frac{1}{2} J_\psi \dot{\psi}^2 + \frac{1}{2} J_\phi \dot{\phi}^2 + \frac{1}{2} n^2 J_m (\dot{\theta}_l - \dot{\psi})^2 + \frac{1}{2} n^2 J_m (\dot{\theta}_r - \dot{\psi})^2$$
(1.8)

Với  $\frac{1}{2}n^2J_m(\dot{\theta}_l-\dot{\psi})^2$  là động năng quay của phần ứng động cơ trái  $\frac{1}{2}n^2J_m(\dot{\theta}_r-\dot{\psi})^2$  là động năng quay của phần ứng động cơ phải

Phương trình thế năng:

$$U = mgz_l + mgz_r + Mgz_h (1.9)$$

Phương trình Lagrange:

$$L = T_1 + T_2 - U (1.10)$$

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = F_{\theta} \tag{1.11}$$

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\psi}} \right) - \frac{\partial L}{\partial \psi} = F_{\psi} \tag{1.12}$$

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\phi}} \right) - \frac{\partial L}{\partial \phi} = F_{\phi} \tag{1.13}$$

Lấy đạo hàm L theo các biến  $\theta$ ,  $\psi$ ,  $\phi$  ta được:

$$[(2m+M)R^2 + 2J_w + 2n^2J_m]\ddot{\theta} + (MLR\cos\psi - 2n^2J_m)\ddot{\psi} - MLR\dot{\psi}^2\sin\psi = F_{\theta} \quad (1.14)$$

$$(MLR\cos\psi - 2n^{2}J_{m})\ddot{\theta} + (ML^{2} + J_{\psi} + 2n^{2}J_{m})\ddot{\psi} - MgL\sin\psi - ML^{2}\dot{\phi}^{2}\sin\psi\cos\psi = F_{\psi}(1.15)$$

$$\left[\frac{1}{2}mW^2 + J_{\phi} + \frac{W^2}{2R^2}(J_w + n^2J_m) + ML^2\sin^2\psi\right]\ddot{\phi} + 2ML^2\dot{\psi}\dot{\phi}\sin\psi\cos\psi = F_{\phi} \quad (1.16)$$

Momen động lực do động lực DC sinh ra:

$$\begin{bmatrix} F_{\theta} \\ F_{\psi} \\ F_{\phi} \end{bmatrix} = \begin{bmatrix} F_l + F_r \\ F_{\psi} \\ \frac{W}{2R} (F_l - F_r) \end{bmatrix}$$
(1.17)

Và:

$$F_{l} = nK_{t}i_{l} + f_{m}(\dot{\psi} - \dot{\theta}_{l}) - f_{w}\dot{\theta}_{l}$$
(1.18)

$$F_r = nK_t i_r + f_m (\dot{\psi} - \dot{\theta}_r) - f_w \dot{\theta}_r \tag{1.19}$$

$$F_{\psi} = -nK_t i_l - nK_t i_r - f_m(\dot{\psi} - \dot{\theta}_l) - f_m(\dot{\psi} - \dot{\theta}_r)$$
 (1.20)

Sử dụng phương pháp PWM để điều khiển động cơ nên chuyển từ dòng điện sang điện áp động cơ:

$$L_m i_{l,r} = v_{l,r} + K_b (\dot{\psi} - \dot{\theta}_{l,r}) - R_m i_{l,r}$$
(1.21)

Xem điện cảm phần ứng tương đối nhỏ (gần bằng 0), có thể bỏ qua, suy ra:

$$i_{l,r} = \frac{v_{l,r} + K_b(\dot{\psi} - \dot{\theta}_{l,r})}{R_m}$$
 (1.22)

Từ đó, các moment lực sinh ra:

$$F_{\theta} = \alpha(v_l + v_r) - 2(\beta + f_w)\dot{\theta} + 2\beta\dot{\psi}$$
 (1.23)

$$F_{\psi} = -\alpha(v_l + v_r) + 2\beta\dot{\theta} - 2\beta\dot{\psi} \tag{1.24}$$

$$F_{\phi} = \frac{W}{2R}\alpha(v_l - v_r) - \frac{W}{2R}(\beta + f_w)\dot{\phi}$$
 (1.25)

Với 
$$\alpha = \frac{nK_t}{R_m}$$
 và  $\beta = \frac{nK_tK_b}{R_m} + f_m$ 

Thu được phương trình động lực học mô tả chuyển động của robot như sau:

$$[(2m + M)R^{2} + 2f_{w} + 2n^{2}J_{m}]\ddot{\theta} + (MLR\cos\psi - 2n^{2}J_{m})\ddot{\psi} - MLR\dot{\psi}^{2}\sin\psi$$

$$= \alpha(v_{l} + v_{r}) - 2(\beta + f_{w})\dot{\theta} + 2\beta\dot{\psi}$$
(1.26)

$$(MLR\cos\psi - 2n^{2}J_{m})\ddot{\theta} + (ML^{2} + J_{\psi} + 2n^{2}J_{m})\ddot{\psi} - MgL\sin\psi - ML^{2}\dot{\phi}^{2}\sin\psi\cos\psi$$

$$= -\alpha(v_{l} + v_{r}) + 2\beta\dot{\theta} - 2\beta\dot{\psi}$$
(1.27)

$$\left[\frac{1}{2}mW^{2} + J_{\phi} + \frac{W^{2}}{2R^{2}}(J_{w} + n^{2}J_{m}) + ML^{2}\sin^{2}\psi\right]\ddot{\phi} + 2ML^{2}\dot{\psi}\dot{\phi}\sin\psi\cos\psi$$

$$= \frac{W}{2R}\alpha(v_{l} - v_{r}) - \frac{W^{2}}{2R^{2}}(\beta + f_{w})\dot{\phi} \tag{1.28}$$

Tuyến tính hóa hệ thống

Giả sử ta đặt các biến trạng thái như sau:

 $x_1 = \theta$ ,  $x_2 = \dot{\theta}$ ,  $x_3 = \ddot{\theta}$  là góc quay và vận tốc góc quay bánh xe  $x_4 = \psi$ ,  $x_5 = \dot{\psi}$ ,  $x_6 = \ddot{\psi}$  là góc nghiêng và vận tốc nghiêng của thân Robot

 $\mathbf{x}_7 = \boldsymbol{\phi}$ ,  $\mathbf{x}_8 = \dot{\boldsymbol{\phi}}$ ,  $\mathbf{x}_9 = \ddot{\boldsymbol{\phi}}$  là góc xoay và vận tốc xoay của Robot

$$\Rightarrow \begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = x_{3} = f_{1}(x_{1}, x_{2}, x_{4}, x_{5}, x_{7}, x_{8}, v_{l}, v_{r}) \\ \dot{x}_{4} = x_{5} \\ \dot{x}_{5} = x_{6} = f_{2}(x_{1}, x_{2}, x_{4}, x_{5}, x_{7}, x_{8}, v_{l}, v_{r}) \\ \dot{x}_{7} = x_{8} \\ \dot{x}_{8} = x_{9} = f_{3}(x_{1}, x_{2}, x_{4}, x_{5}, x_{7}, x_{8}, v_{l}, v_{r}) \end{cases}$$

$$(1.29)$$

Với 
$$x = [x_1 \ x_2 \ x_4 \ x_5 \ x_7 \ x_8]^T = [\theta \ \dot{\theta} \ \psi \ \dot{\psi} \ \phi \ \dot{\phi}]^T$$

Nếu chon điểm làm việc là:

$$x_0 = [0 \ 0 \ 0 \ 0 \ 0]^T, u_0 = [0 \ 0]^T$$

Ta có thể tuyến tính hóa hệ thống về dạng:  $\dot{x} = Ax + Bu$ 

Với: 
$$u = \begin{bmatrix} v_l \\ v_r \end{bmatrix}$$

Tìm ma trận A như sau:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ \frac{\partial f_1}{\partial x_1}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_1}{\partial x_2}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_1}{\partial x_4}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_1}{\partial x_5}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_1}{\partial x_7}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_1}{\partial x_8}\Big|_{\substack{u=u_0 \\ x=x_0}} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \frac{\partial f_2}{\partial x_1}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_2}{\partial x_2}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_2}{\partial x_4}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_2}{\partial x_5}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_2}{\partial x_7}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_2}{\partial x_8}\Big|_{\substack{u=u_0 \\ x=x_0}} \\ 0 & 0 & 0 & 0 & 1 \\ \frac{\partial f_3}{\partial x_1}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_3}{\partial x_2}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_3}{\partial x_4}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_3}{\partial x_5}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_3}{\partial x_5}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_3}{\partial x_7}\Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_3}{\partial x_8}\Big|_{\substack{u=u_0 \\ x=x_0}} \\ \end{bmatrix}$$

Tìm ma trận B như sau:

$$B = \begin{bmatrix} 0 & 0 \\ \frac{\partial f_1}{\partial v_l} \Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_1}{\partial v_r} \Big|_{\substack{u=u_0 \\ x=x_0}} \\ 0 & 0 \\ \frac{\partial f_2}{\partial v_l} \Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_2}{\partial v_r} \Big|_{\substack{u=u_0 \\ x=x_0}} \\ 0 & 0 \\ \frac{\partial f_3}{\partial v_l} \Big|_{\substack{u=u_0 \\ x=x_0}} & \frac{\partial f_3}{\partial v_r} \Big|_{\substack{u=u_0 \\ x=x_0}} \end{bmatrix}$$

Lúc này ta có ma trận trọng số như sau:

$$Q = \begin{bmatrix} Q_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & Q_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & Q_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & Q_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & Q_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & Q_6 \end{bmatrix}$$
và 
$$R = \begin{bmatrix} R_1 & 0 \\ 0 & R_2 \end{bmatrix}$$

Với các thống số  $Q_1$ ,  $Q_2$ ,  $Q_3$ ,  $Q_4$ ,  $Q_5$ ,  $Q_6$ ,  $R_1$ ,  $R_2$  để tinh chỉnh cho bộ điều khiển LQR. Trong đó tham số  $Q_1$ ,  $Q_2$ ,  $Q_3$ ,  $Q_4$ ,  $Q_5$ ,  $Q_6$  được coi là trọng số tối ưu tương ứng cho 6 biến trạng thái  $\theta$ ,  $\dot{\theta}$ ,  $\dot{\psi}$ ,  $\dot{\psi}$ ,  $\dot{\phi}$ . Với mô hình hệ xe hai bánh ta có ma trận Q là ma trận 6x6 (tương ứng với 6 biến trạng thái) và R là 2x2 (tương ứng với 2 biến ngõ vào). Sau khi chọn được các tham số điều khiển tương ứng, chúng ta có thể xây dựng được tham số phản hồi K với tín hiệu điều khiển u = -Kx.

Thông số K được tính toán dựa vào phương trình Riccati. Tuy nhiên Matlab đã hỗ trợ việc tính toán thủ công bằng hàm LQR(A,B,Q,R) khi các ma trận A, B, Q, R đã được tìm ra.

#### 1.2. Mô phỏng Matlab

Từ phương trình (1.26), (1.27), (1.28) chuyển hết sang 1 vế, ta được:

#### Hình 2. Tính $\ddot{\theta}$ , $\ddot{\psi}$ , $\ddot{\phi}$

Sau khi dùng Matlab giải phương trình ta được  $x_3$ ,  $x_6$ ,  $x_9$  tương ứng với  $\ddot{\theta}$ ,  $\ddot{\psi}$ ,  $\ddot{\phi}$ :

```
x3 =

(J_psi*a*vl + J_psi*a*vr - 2*J_psi*beta*x2 + 2*J_psi*beta*x5 - 2*J_psi*fw*x2 + L^2*M*a*vl + L^2*M*a*vr - 2*L^2*M*beta*x2 + 2*L^2*M*beta*x5 - 2*L^2*M*fw*x2 - 4*Jm*fw*n^2*x2 + x6 =

-(2*Jw*a*vl + 2*Jw*a*vr - 4*Jw*beta*x2 + 4*Jw*beta*x5 + M*R^2*a*vl + M*R^2*a*vr - 2*M*R^2*beta*x2 + 2*M*R^2*beta*x5 + 2*R^2*a*m*vl + 2*R^2*a*m*vr + 4*Jm*fw*n^2*x2 - 4*R^2*beta*x3 + 2*M*R^2*beta*x5 + 2*R^2*a*m*vl + 2*R^2*a*m*vr + 4*Jm*fw*n^2*x2 - 4*R^2*beta*x4 + 2*M*R^2*beta*x5 + 2*R^2*a*m*vl + 2*R^2
```

#### Hình 3. Kết quả $\ddot{\theta}$ , $\ddot{\psi}$ , $\ddot{\phi}$

$$\text{Từ công thức (1.29), ta đặt} \begin{cases} y_1 = \dot{x}_1 = x_2 \\ y_2 = \dot{x}_2 = x_3 = f_1(x_1, x_2, x_4, x_5, x_7, x_8, v_l, v_r) \\ y_3 = \dot{x}_4 = x_5 \\ y_4 = \dot{x}_5 = x_6 = f_2(x_1, x_2, x_4, x_5, x_7, x_8, v_l, v_r) \\ y_5 = \dot{x}_7 = x_8 \\ y_6 = \dot{x}_8 = x_9 = f_3(x_1, x_2, x_4, x_5, x_7, x_8, v_l, v_r) \end{cases}$$

```
syms m M R Jm L n a beta fw g W J_psi Jw v1 vr J_phi x1 x2 x3 x4 x5 x6 x7 x8 x9
y1 = x2;
y2 = (J_psi*a*v1+J_psi*a*vr-2*J_psi*beta*x2+2*J_psi*beta*x5-2*J_psi*fw*x2+L^2*M*a*v1+L^2*M*a*vr-2*L^2*M*beta*x2+2*L^2*M*beta*x5-2*L^2*M*fw*x2-4*Jm*fw*n^2*x2+L^3*M^2*R*x5^2*sin(v)
y3 = x5;
y4 = -(2*Jw*a*v1 + 2*Jw*a*vr - 4*Jw*beta*x2 + 4*Jw*beta*x5 + M*R^2*a*v1 + M*R^2*a*vr - 2*M*R^2*beta*x2 + 2*M*R^2*beta*x5 + 2*R^2*a*m*v1 + 2*R^2*a*m*vr + 4*Jm*fw*n^2*x2 - 4*R^2*t
y5 = x8;
y6 = -(0*Jw*a*v1 + 2*Jw*a*vr + 4*Jw*beta*x5 + M*R^2*a*vr + 4*Jw*fw*n^2*x2 - 4*R^2*t
y5 = x8;
```

Hình 4. Đặt các biến trạng thái

Tiếp theo, khai báo các thông số của mô hình:

```
%% Thông số hệ thống xe 2 bánh tư cân bằng dùng LOR
m = 0.0345; %Khoi luong banh xe
M = 0.875; %Khoi luong robot
R = 0.0325; %ban kinh ban xe
W = 0.225; %Chieu rong robot
D = 0.084; %Chieu sau robot
H = 0.132; %Chieu cao robot
L = 0.091; %khoang cach tu trong tam den truc banh xe
fw = 0.18; %He so ma sat giua banh xe voi mat phang
fm = 0.002; %he so ma sat giua dong co va robot
Jm = 0.000082; %moment quan tinh cua dong co
Jw = m*R^2/2;
J psi = M*L^2/3;
J phi = M*(W^2+D^2)/12;
Rm = 13; %Dien tro dong co DC
Kb = 1.91; %he so emf cua dong co
Kt = 0.216; %Momen xoan cua dong co DC
n = 33.64; %Ty so giam toc
g = 9.81; %Gia toc trong truong
alpha = n*Kt/Rm; beta=n*Kt*Kb/Rm+fm; a =alpha;
T=0.01;
```

Hình 5. Thông số mô hình

Hình 6. Công thức tính ma trận A và B

#### Tính ra được ma trận A và B theo các biến:

Hình 7. Ma trận A và B theo các biến

#### Thế số vào, ta được:

A =

$$B =$$

Hình 8. Kết quả ma trận A và B

#### Chọn Q và R như sau:

```
R__ = [100 0; 0 100] %Chọn R__ vì ở trên đã có R là bán kính bánh xe rồi
Q = [ 1000 0 0 0 0 0;
0 10 0 0 0 0;
0 0 10000 0 0 0;
0 0 0 1 0 0;
0 0 0 0 100000 0;
0 0 0 0 0 10]
```

Hình 9. Chọn ma trận Q và R

Tính toán ma trận K theo hàm LQR:

$$K = lqr(A,B,Q,R_{\underline{\phantom{A}}})$$

Hình 10. Hàm LQR tính ma trận K

Hình 11. Kết quả ma trận K

Mô phỏng mô hình xe 2 bánh trong Simulink như sau:



Hình 12. Mô phỏng xe 2 bánh tự cân bằng



Hình 13. Khối Xe 2 Banh Tu Can Bang

```
function [teta_dd,psi_dd,phi_dd] = fcn(vl,vr,teta,teta_d,psi,psi_d,phi_d)
%% Thông số hệ thống xe 2 bánh tự cân bằng dùng LQR
m = 0.0345; %Khoi luong banh xe
M = 0.875; %Khoi luong robot
R = 0.0325; %ban kinh ban xe
W = 0.225; %Chieu rong robot
D = 0.084; %Chieu sau robot
₩ = 0.132; %Chieu cao robot
 L = 0.091; %khoang cach tu trong tam den truc banh xe
 fw = 0.18; %He so ma sat giua banh xe voi mat phang
 fm = 0.002; %he so ma sat giua dong co va robot
Jm = 0.000082; %moment quan tinh cua dong co
 Jw = m*R^2/2;
 J_psi = M*L^2/3;
 J_phi = M*(W^2+D^2)/12;
 Rm = 13; %Dien tro dong co DC
Kb = 1.91; %he so emf cua dong co
Kt = 0.216; %Momen xoan cua dong co DC
n = 33.64; %Ty so giam toc
g = 9.81; %Gia toc trong truong
alpha = n*Kt/Rm; beta=n*Kt*Kb/Rm+fm; a =alpha;
T=0.01;
 \begin{array}{l} \text{teta\_dd} = ( \text{J\_psi*a*v1} + \text{J\_psi*a*vr} - 2*\text{J\_psi*beta*teta\_d} + 2*\text{J\_psi*beta*psi} \text{ d} - 2*\text{J\_psi*fw*teta\_d} + \text{L^2*M*a*v1} + \text{L^2*M*a*vr} - 2*\text{L^2*M*beta*teta\_d} + 2*\text{I\_psi*dd} \\ \text{psi\_dd} = -(2*\text{Jw*a*v1} + 2*\text{Jw*a*vr} - 4*\text{Jw*beta*teta\_d} + 4*\text{Jw*beta*psi\_d} + \text{M*R^2*a*v1} + \text{M*R^2*a*vr} - 2*\text{M*R^2*beta*teta\_d} + 2*\text{M*R^2*beta*psi\_d} + 2*\text{R^2*a*v1} \\ \text{psi\_dd} = -(2*\text{Jw*a*v1} + 2*\text{Jw*a*vr} - 4*\text{Jw*beta*teta\_d} + 4*\text{Jw*beta*psi\_d} + \text{M*R^2*a*v1} + \text{M*R^2*a*vr} - 2*\text{M*R^2*beta*teta\_d} + 2*\text{M*R^2*beta*psi\_d} \\ \text{psi\_dd} = -(2*\text{Jw*a*v1} + 2*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} \\ \text{psi\_dd} = -(2*\text{Jw*a*vr} + 2*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} \\ \text{psi\_dd} = -(2*\text{Jw*a*vr} + 2*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} \\ \text{psi\_dd} = -(2*\text{Jw*a*vr} + 2*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*vr} \\ \text{psi\_dd} = -(2*\text{Jw*a*vr} + 2*\text{Jw*a*vr} - 4*\text{Jw*a*vr} - 4*\text{Jw*a*v
phi_dd = -(W^2*beta*phi_d + W^2*fw*phi_d + R*W*a*vl - R*W*a*vr + 4*L^2*M*R^2*psi_d*phi_d*cos(psi)*sin(psi))/(2*J_phi*R^2 + Jm*W^2 + Jm*W^2*n^2 + R^2*
```

Hình 14. Matlab function

#### Đặt các giá trị ban đầu như sau:

```
% Chọn thông số ban đầu
x1_init = 0.001; x2_init = -0.0012; x4_init = 0.002; x5_init = -0.002; x7_init = 0.002; x8_init=-0.0014;
```

Hình 15. Thông số ban đầu

Sau khi chạy mô phỏng Simulink trong Matlab, kết quả thu được:



Hình 16. Kết quả mô phỏng

**Nhận xét:** Tín hiệu đáp ứng của hệ thống tương đối tốt, các biến trạng thái của xe cân bằng tại 0, không có sai số xác lập, thời gian đạt xác lập nhanh, có xuất hiện vọt lố nhưng không đáng kể.

**\Lambda** Khảo sát sự thay đổi của ma trận  $R = \begin{bmatrix} R_1 & 0 \\ 0 & R_2 \end{bmatrix}$ 

Với ma trận  $R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 



Hình 17. Kết quả mô phỏng khí thay đổi  $R_1 = R_2 = 1$ 

Với ma trận 
$$R = \begin{bmatrix} 100 & 0 \\ 0 & 100 \end{bmatrix}$$



Hình 18. Kết quả mô phỏng khí thay đổi  $R_1 = R_2 = 100$ 

Với ma trận 
$$R = \begin{bmatrix} 1000 & 0 \\ 0 & 1000 \end{bmatrix}$$



Hình 19. Kết quả mô phỏng khí thay đổi  $R_1 = R_2 = 1000$ 

**Nhận xét:** với  $R_1$  và  $R_2$  là các trọng số điện áp cấp cho bánh xe trái và bánh xe phải. Khi tăng giá trị các trọng số  $R_1$  và  $R_2$  ta quan sát được các biến trạng thái của xe vẫn cân bằng tại 0 và không có sai số xác lập. Tuy nhiên nhận thấy rằng các trọng số  $R_1$  và  $R_2$  càng lớn thì độ vọt lố giảm và thời gian đạt được xác lập lâu hơn.

$$V \acute{o}i \ Q_1 = Q_2 = 1000$$



Hình 20. Kết quả mô phỏng khí thay đổi  $Q_1 = Q_2 = 1000$ 

Với 
$$Q_1 = 10$$
 và  $Q_2 = 1000$ 



Hình 21. Kết quả mô phỏng khí thay đổi  $Q_1 = 10$  và  $Q_2 = 1000$ 

Với  $Q_1 = 1$  và  $Q_2 = 1000$ 



Hình 22. Kết quả mô phỏng khí thay đổi  $Q_1 = 1$  và  $Q_2 = 1000$ 

Với 
$$Q_1 = 1000 \text{ và } Q_2 = 10$$



Hình 23. Kết quả mô phỏng khí thay đổi  $Q_1 = 1000$  và  $Q_2 = 10$ 

Với  $Q_1 = 1000 \text{ và } Q_2 = 1$ 



Hình 24. Kết quả mô phỏng khí thay đổi  $Q_1 = 1000$  và  $Q_2 = 1$ 

**Nhận xét:** Với  $Q_1$  và  $Q_2$  là các trọng số của  $\theta$  và  $\dot{\theta}$  ảnh hưởng tới độ đáp ứng góc xoay của bánh xe. Qua khảo sát ta thấy được khi càng giảm giá trị của  $Q_1$  thì thời gian đạt được xác lập càng lâu, trái ngược đó khi giảm giá trị của  $Q_2$  thì thời gian đạt được xác lập nhanh hơn sau mỗi lần giảm.





Hình 25. Kết quả mô phỏng khí thay đổi  $Q_3 = 1$  và  $Q_4 = 1$ 

Với 
$$Q_3 = 1000 \text{ và } Q_4 = 1$$



Hình 26. Kết quả mô phỏng khí thay đổi  $Q_3 = 1000$  và  $Q_4 = 1$ 





Hình 27. Kết quả mô phỏng khí thay đổi  $Q_3 = 100000$  và  $Q_4 = 1$ 



Hình 28. Kết quả mô phỏng khí thay đổi  $Q_3 = 1$  và  $Q_4 = 1000$ 

Với 
$$Q_3 = 1$$
 và  $Q_4 = 100000$ 



Hình 29. Kết quả mô phỏng khí thay đổi  $Q_3 = 1$  và  $Q_4 = 100000$ 

**Nhận xét:** Với  $Q_3$  và  $Q_4$  là các trọng số của  $\psi$  và  $\dot{\psi}$  ảnh hưởng tới độ đáp ứng góc nghiêng của xe. Qua khảo sát thấy được khi tăng giá trị của  $Q_3$  và  $Q_4$  thì thời gian đạt được xác lập càng lâu và độ vọt lố cũng theo đó giảm xuống.

Với  $Q_5 = 10000 \text{ và } Q_6 = 10000$ 



Hình 30. Kết quả mô phỏng khí thay đổi  $Q_5=10000$  và  $Q_6=10000$  Với  $Q_5=1000$  và  $Q_6=10000$ 



Hình 31. Kết quả mô phỏng khí thay đổi  $Q_5 = 1000$  và  $Q_6 = 10000$ 

Với  $Q_5 = 10 \text{ và } Q_6 = 10000$ 



Hình 32. Kết quả mô phỏng khí thay đổi  $Q_5 = 10$  và  $Q_6 = 10000$ 

Với  $Q_5 = 10000 \text{ và } Q_6 = 1000$ 



Hình 33. Kết quả mô phỏng khí thay đổi  $Q_5 = 10000$  và  $Q_6 = 1000$ 

Với  $Q_5 = 10000 \text{ và } Q_6 = 100000$ 



Hình 34. Kết quả mô phỏng khí thay đổi  $Q_5 = 10000$  và  $Q_6 = 100000$ 

*Nhận xét:* Với  $Q_5$  và  $Q_6$  là các trọng số của  $\phi$  và  $\dot{\phi}$  ảnh hưởng tới độ đáp ứng góc xoay của xe. Qua khảo sát thấy được khi giảm giá trị của trọng số  $Q_5$  và khi tăng giá trị của trọng số  $Q_6$  thì thời gian đạt được xác lập càng lâu.

#### **BÀI TOÁN 2: INDENTIFICATION**

#### 2.1. Xây dựng mô hình toán học

Ở bài tập này, chúng em chọn mô hình xe con lắc ngược.



Hình 35. Hệ trục tọa độ cho hệ xe con lắc ngược

Bảng 2. Ký hiệu các đại lượng vật lý của hệ xe con lắc ngược

| Ký hiệu | Đơn vị            | Ý nghĩa                      |
|---------|-------------------|------------------------------|
| θ       | rad               | Góc nghiêng của con lắc      |
| Х       | m                 | Vị trí của xe trên trục x    |
| g       | m/s <sup>2</sup>  | Gia tốc trọng trường         |
| F       | N                 | Lực tác dụng lên xe          |
| M       | kg                | Khối lượng của xe            |
| m       | kg                | Khối lượng của thanh con lắc |
| l       | m                 | Chiều dài con lắc            |
| I       | kg/m <sup>2</sup> | Moment quán tính của con lắc |

Sử dụng phương pháp Euler – Lagrange để xây dựng mô hình toán học. Ta có phương trình Euler – Lagrange như sau:

$$L = T - U \tag{2.1}$$

$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\theta}_k} \right) - \frac{\partial L}{\partial \theta_k} = F_k \tag{2.2}$$

Với

T là tổng các thành phần động năng của hệ

U là tổng các thành phần thế năng của hệ

L là nhân tử Lagrangian

 $\theta_k$  là tọa độ tổng quát

 $F_k$  là tổng ngoại lực tác động lên hệ

Trong đó ta có:

$$\begin{cases} \theta_k = \begin{bmatrix} x \\ \theta \end{bmatrix} \\ F_k = \begin{bmatrix} F \\ 0 \end{bmatrix} \end{cases}$$
 (2.3)

Chọn mốc thế năng tại vị trí y = 0 nên thế năng của xe luôn luôn bằng 0. Do đó, thế năng của hệ chính là thế năng của con lắc:

$$U = mgy_k = mgLcos(\theta)$$
 (2.4)

Động năng của xe là:

$$T_{cart} = \frac{1}{2}M\dot{x}^2 \tag{2.5}$$

Động năng của thanh con lắc:

$$T_{pole} = \frac{1}{2}mv^2 \tag{2.6}$$

Vị trí cuối của thanh con lắc chiều lên hệ trục tọa độ:

$$\begin{cases} x_k = x + l\sin(\theta) \\ y_k = l\cos(\theta) \end{cases}$$
 (2.7)

Vận tốc của con lắc trên hệ trục tọa độ là đạo hàm của vị trí:

$$\begin{cases} v_{xk} = \dot{x} + l\dot{\theta}\cos(\theta) \\ v_{yk} = -l\dot{\theta}\sin(\theta) \end{cases}$$
 (2.8)

Bình phương vận tốc trung bình của thanh con lắc:

$$v^{2} = v_{xk}^{2} + v_{vk}^{2} = \dot{x}^{2} + 2l\dot{x}\dot{\theta}\cos(\theta) + l^{2}\dot{\theta}^{2}$$
(2.9)

Suy ra động năng của thanh con lắc:

$$T_{pole} = \frac{1}{2}m\dot{x}^2 + ml\dot{x}\dot{\theta}\cos(\theta) + \frac{1}{2}ml^2\dot{\theta}^2$$
 (2.10)

Vậy động năng của hệ là:

$$T = T_{cart} + T_{pole} = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}m\dot{x}^2 + ml\dot{x}\dot{\theta}\cos(\theta) + \frac{1}{2}ml^2\dot{\theta}^2$$
 (2.11)

Hàm Euler – Lagrange có dạng như sau:

$$L = T - U = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}m\dot{x}^2 + ml\dot{x}\dot{\theta}\cos(\theta) + \frac{1}{2}ml^2\dot{\theta}^2 - mgl\cos(\theta)$$
 (2.12)

Ta có:

$$\begin{cases}
\frac{\partial L}{\partial \dot{x}} = (m+M)\dot{x} + ml\dot{\theta}\cos(\theta) \\
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}}\right) = (m+M)\ddot{x} + ml\ddot{\theta}\cos(\theta) - ml\dot{\theta}^{2}\sin(\theta) \\
\frac{\partial L}{\partial x} = 0 \\
\frac{\partial L}{\partial \dot{\theta}} = ml\dot{x}\cos(\theta) + ml^{2}\dot{\theta} \\
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) = ml\left[\ddot{x}\cos(\theta) - \dot{x}\dot{\theta}\sin(\theta)\right] + ml^{2}\ddot{\theta} \\
\frac{\partial L}{\partial \theta} = mgl\sin(\theta) - ml\dot{x}\dot{\theta}\sin(\theta)
\end{cases} \tag{2.13}$$

Thay vào hệ phương trinhd Euler – Lagrange ta được hệ xe con lắc ngược như sau:

$$\begin{cases} (m+M)\ddot{x} + ml\ddot{\theta}\cos(\theta) - ml\dot{\theta}^2\sin(\theta) = F\\ ml\ddot{x}\cos(\theta) + ml^2\ddot{\theta} - mgl\sin(\theta) = 0 \end{cases}$$
(2.14)

Lần lượt rút  $\ddot{x}$  và  $\ddot{\theta}$  ra, ta được:

$$\begin{cases} \ddot{x} = \frac{F + ml\dot{\theta}^2 \sin(\theta) - mg\cos(\theta)\sin(\theta)}{M + m - m\cos^2(\theta)} \\ \ddot{\theta} = \frac{F\cos(\theta) - (M + m)g\sin(\theta) + ml\cos(\theta)\sin(\theta)\dot{\theta}^2}{ml\cos^2(\theta) - (M + m)l} \end{cases}$$
(2.15)

### 2.2. Mô phỏng Matlab để lấy dữ liệu



Hình 36. Mô phỏng Simulink mô hình xe con lắc ngược để lấy dữ liệu



Hình 37. Khối Xe\_con\_lac\_nguoc

• Tín hiệu lực cấp vào mô hình xe con lắc ngược là khối Step

Hình 38. Tín hiệu cấp vào mô hình

Cancel

Help

Apply

OK

Giả sử thông số hệ thống cần lấy dữ liệu như sau:

M=1; m=0.1; l=0.5;

Hình 39. Thông số mô hình

Sau khi chạy mô phỏng, ta thu được bộ dữ liệu.

Để tiện cho việc tìm mô hình toán sử dụng tool Indentification của Matlab, ta dùng lệnh sau để chuyền dữ liệu vào cùng một struct:

```
>> out.F=out.F.signals.values out.teta=out.teta.signals.values
```

Hình 40. Chuyển dữ liệu vào struct out

out =

#### Simulink.SimulationOutput:

F: [3001x1 double]
teta: [3001x1 double]
theta: [1x1 timeseries]
tout: [3001x1 double]

Hình 41. Dữ liệu thu được trong struct out

### 2.3. Sử dụng tool Identification của Matlab để tìm mô hình toán

Đầu tiên, mở cửa sổ System Identification bằng lệnh "ident" nhập trong Command Window.



Hình 42. Lựa chọn dữ liệu theo miền thời gian

• Sau đó, nhập dữ liệu thu thập được vào input và output



Hình 43. Nhập dữ liệu vào Import Data

• Tiếp theo lựa chọn Transfer Function Models:



Hình 44. Lựa chọn ước lượng hàm truyền



Hình 45. Chọn 5 poles 3 zeros

### • Kết quả thu được



Hình 46. Kết quả thu được

Hình 47. Hàm truyền thu được

• Ước lượng phù hợp 99.78% so với dữ liệu:

```
Status:
Estimated using TFEST on time domain data "mydata".
Fit to estimation data: 99.78% (stability enforced)
FPE: 0.03794, MSE: 0.03751
```

Hình 48. Độ chính xác của ước lượng

• Tiến hành mô phỏng so sánh giữa mô hình nhận dạng và mô hình gốc:



Hình 49. Mô phỏng so sánh

Sau khi chạy mô phỏng, ta thu được kết quả sau:



Hình 50. Kết quả đầu ra giữa mô hình gốc và mô hình nhận dạng



Hình 51. Sai số giữa mô hình gốc và mô hình nhận dạng

**Nhận xét:** Mô hình gốc và mô hình nhận dạng tuy có hơi lệch nhau nhưng nhìn chung sai số ở mức có thể chấp nhận được ( $\sim 1\%$ ).

# 2.4. Sử dụng Parameter Estimation của Matlab để nhận dạng thông số cho hệ thống

Hình 52. Thông số tự cho để ước lượng

• Mô phỏng ước lượng giống với mô phỏng để lấy số liệu, chỉ thay các thông số động cơ bằng các thông số tự cho để ước lượng.



Hình 53. Mô phỏng nhận dạng thông số



Hình 54. Khối Subsystem

• Chọn công cụ Parameter Estimator để tiến hành nhận dạng thông số M, m, l



Hình 55. Select Parameters



#### Copy dữ liệu thu thập được bỏ vào đây:

Hình 56. Select Experiments

Vẽ biểu đồ sau đó bắt đầu nhận dạng, kết quả sau khi chạy xong như sau:



Hình 57. Kết quả nhận dạng

Các thông số nhận dạng được như sau:

- M = 2.1534
- -1 = 0.30319
- m = -0.91927

Thực hiện so sánh giữa mô hình gốc và mô hình nhận dạng:



Hình 58. Mô phỏng nhận dạng



Hình 59. Sai số giữa mô hình gốc và mô hình nhận dạng



Hình 60. Đồ thị đầu ra giữa thông số mô hình và thông số ước lượng

**Nhận xét:** Tuy thông số nhận dạng được khá lệch so với thông số để lấy số liệu, nhưng tổng quan sai số giữa 2 mô hình là chấp nhận được, rơi vào khoảng  $\pm 4$  rad.

#### 2.5. Thiết kế bộ điều khiển trượt cho hệ xe con lắc

| ?                                                           | ,                   |
|-------------------------------------------------------------|---------------------|
| Bảng 3. Giá trị cụ thể của các đại lượng liên quan đến h    | 1. 🗘 1 🗙            |
| - Κανσ 3 (τια τει ειι τηρ ειια εαε ααι πεανσιμέν απαν αρν ι | ne ve con lac nowac |
| Dang 3. Gia in chi inc cha cac aai mong nen quan ach i      | ie ae con ide nguee |

| Ký hiệu | Giá trị | Đơn vị            | Ý nghĩa                      |
|---------|---------|-------------------|------------------------------|
| θ       |         | rad               | Góc nghiêng của con lắc      |
| X       |         | m                 | Vị trí của xe trên trục x    |
| g       | 9.81    | m/s <sup>2</sup>  | Gia tốc trọng trường         |
| F       |         | N                 | Lực tác dụng lên xe          |
| M       | 1       | kg                | Khối lượng của xe            |
| m       | 0.1     | kg                | Khối lượng của thanh con lắc |
| l       | 0.5     | m                 | Chiều dài con lắc            |
| I       |         | kg/m <sup>2</sup> | Moment quán tính của con lắc |

Từ những giá trị của bảng 3, ta tiến hành đặt các biến trạng thái như sau (bỏ qua vị trí của xe, chỉ xét góc nghiêng của con lắc):

$$\begin{cases} x_1 = \theta \\ x_2 = \dot{x}_1 = \dot{\theta} \end{cases} \tag{2.16}$$

Tiến hành hạ bậc hệ thống ta được phương trình trạng thái hệ thống như sau:

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = \ddot{\theta} = \frac{F\cos(\theta) - (M+m)g\sin(\theta) + ml\cos(\theta)\sin(\theta)\dot{\theta}^2}{ml\cos^2(\theta) - (M+m)l} \end{cases}$$
(2.17)

Đặt:

$$f(\theta, \dot{\theta}) = \frac{-(M+m)g\sin(\theta) + ml\cos(\theta)\sin(\theta)\dot{\theta}^2}{ml\cos^2(\theta) - (M+m)l}$$
$$g(\theta, \dot{\theta}) = \frac{\cos(\theta)}{ml\cos^2(\theta) - (M+m)l}$$

#### Các bước thiết kế bộ điều khiển trượt

Bước 1: Chọn mặt trượt

$$\sigma = \lambda e + \dot{e}$$

Trong đó:  $e = \theta - \theta_d \text{ là sai số giữa } \theta \text{ và } \theta_d$   $\dot{e} = \dot{\theta} - \dot{\theta}_d \text{ là sai số giữa } \dot{\theta} \text{ và } \dot{\theta}_d$   $\theta_d \text{ và } \dot{\theta}_d \text{ là tín hiệu đặt}$   $\lambda \text{ là hằng số dương}$ 

Chọn giá trị  $\lambda = 20$ 

Bước 2: Tính đạo hàm của mặt trượt:

$$\dot{\sigma} = \lambda \dot{e} + \ddot{e} = \lambda \dot{e} + f(\theta, \dot{\theta}) + g(\theta, \dot{\theta})u + d(t) - \ddot{\theta}_d$$

<u>Bước 3:</u> Biểu thức bộ điều khiển trượt gồm 2 thành phần:

$$u = u_{eq} + u_r$$

Trong đó:  $u_{eq}$  được tính khi cho  $\dot{\sigma}=-K\sigma,\,d(t)=0$ 

$$u_{eq} = -\frac{1}{g(\theta, \dot{\theta})} (\lambda \dot{e} + f(\theta, \dot{\theta}) + K\sigma - \ddot{\theta}_d)$$

Và:

$$u_r = -\frac{1}{g(\theta, \dot{\theta})} \eta sign(\sigma)$$

Chọn  $\eta$  sao cho  $\eta \ge ||d(t)||_{\infty}$ 

Chọn  $\eta = 5$ 

Chọn K = 5

#### Tiến hành mô phỏng bộ điều khiển



Hình 61. Mô phỏng có bộ điều khiển

Trong đó tín hiệu đặt sẽ là  $\theta = 0$ 

$$\dot{\theta} = 0$$

$$\ddot{\theta} = 0$$

```
function [F, sigma] = teta(tetad, tetad_dof, teta, teta_dof, tetad_dd)

m = 0.1;
l = 0.5;
M = 1;
g = 9.81;
lamda = 20;
K = 5;
eta = 5;
e = teta - tetad;
e_d = teta_dof - tetad_dof;
sigma = lamda*e + e_d;

f_k = (-(M+m)*g*sin(teta)+m*l*cos(teta)*sin(teta)*teta_dof^2)/(m*l*cos(teta)^2-(M+m)*l);
g_k = (cos(teta))/(m*l*cos(teta)^2-(M+m)*l);
F = -(1/g_k)*(f_k+K*sigma+lamda*e_d+eta*sign(sigma)-tetad_dd);
```

Hình 62. Bộ điều khiển SMC

Đặt góc theta bằng 0 tại t=0:



Hình 63. Đặt  $\theta(0) = 1$ 

Kết quả khi chạy mô phỏng là:



Hình 64. Kết quả mô phỏng

**Nhận xét:** Hệ thống hoạt động ổn định, thời gian xác lập nhanh, không có sai số xác lập. Tuy nhiên, hệ thống xuất hiện dao động lúc xác lập nhưng không đáng kể.

## Khảo sát sự thay đổi của K:

Với 
$$K = 5$$
 và  $\lambda = 20$ 



Hình 65. Kết quả mô phỏng K = 5

Với K = 
$$20$$
 và  $\lambda = 20$ 



Hình 66. Kết quả mô phỏng K = 20





Hình 67. Kết quả mô phỏng K = 50

Nhận xét: Qua khảo sát thấy được sự thay đổi của K ảnh hưởng đối với hệ thống. Khi tăng giá trị của K ta nhận thấy thời gian để đạt được xác lập nhanh hơn, trong quá trình xác lập tuy có duy động nhưng không ảnh hưởng tới hệ thống.

## Khảo sát sự thay đổi của $\lambda$ :

Với 
$$K = 5$$
 và  $\lambda = 20$ 



Hình 68. Kết quả mô phỏng  $\lambda = 20$ 

Với K = 5 và 
$$\lambda$$
 = 50



Hình 69. Kết quả mô phỏng  $\lambda = 50$ 

Với K = 5 và  $\lambda = 100$ 



Hình 70. Kết quả mô phỏng  $\lambda = 100$ 

Nhận xét: Qua khảo sát thấy được sự thay đổi của  $\lambda$  ảnh hưởng đối với hệ thống. Khi tăng giá trị của  $\lambda$  lên thì không ảnh hưởng đến thời gian xác lập nhiều nhưng lại tạo ra dao động với biên độ lớn dần sau mỗi lần tăng. Tuy nhiên biên độ dao động rất nhỏ không ảnh hưởng đến hệ thống.

#### TÀI LIỆU THAM KHẢO

- 1. RIC LAB, HỌC TĂNG CƯỜNG: Điều khiển trượt hệ SISO Sliding Mode Control SISO SMC SISO, https://www.youtube.com/watch?v=binrBw93XV4, 21/6/2024.
- 2. Nguyen Van Dong Hai, điều khiển LQR xe hai bánh tự cân bằng, <a href="https://www.youtube.com/watch?v=81GAAs486a8">https://www.youtube.com/watch?v=81GAAs486a8</a>, 21/6/2024.
- 3. Nguyen Van Dong Hai, *Hướng dẫn điều khiển LQR cho hệ xe hai bánh tự cân bằng\_ĐHSPKT TPHCM*, <a href="https://www.youtube.com/watch?v=eeaqPCHMAXg">https://www.youtube.com/watch?v=eeaqPCHMAXg</a> 21/6/2024.