Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018

Instructor: Dr. Sateesh Mane

© Sateesh R. Mane 2018

Midterm 1 Spring 2018 (grade boost)

Students who scored F in midterm 1 are not eligible for a grade boost

due Friday March 9, 2018, 11:59 pm

- <u>NOTE</u>: It is the policy of the Computer Science Department to issue a failing grade to any student who either gives or receives help on any test.
- This is an open-book test.
- Any problem to which you give two or more (different) answers receives the grade of zero automatically.
- This is a take home exam.

Please submit your solution via email, as a file attachment, to Sateesh.Mane@qc.cuny.edu. The file name should have either of the formats:

StudentId_first_last_CS361_midterm1_boost_Mar2018

StudentId_first_last_CS761_midterm1_boost_Mar2018

Acceptable file types are txt, doc/docx, pdf (also cpp, with text in comment blocks).

- Submit your programming code as part of your solution.
- You will be graded on your code as well as your numerical calculations.
- Answer ALL questions to be eligible for a grade boost.

8 Question 8

• In this question, we compute the following sum:

$$S(x) = \frac{1}{N} \sum_{j=0}^{N-1} \cos\left(x \sin\frac{j\pi}{N}\right). \tag{8.1}$$

- Set N=20 in this question.
- Define the following function

$$f(x) = 5 - \frac{1}{S(x)}. (8.2)$$

- Consider only values x > 0 in this question.
- Find brackets of size not less than 0.1 which enclose the first 6 positive roots of f(x), i.e. where f(x) = 0.
- Find brackets of size not less than 0.1 which enclose the first 6 discontinuities of f(x), i.e. $|f(x)| \to \infty$.
- Using the bisection algorithm and your brackets above, calculate the values of the first, third and fifth positive roots of f(x) to an accuracy of three decimal places.
- Solutions which compute roots other than the first, third and fifth will receive a score of zero.

i	x_i	$f(x_i)$
0	x_0	
1	x_1	
2	$x_2 = (x_0 + x_1)/2$	
:	:	
	converged to 3 d.p.	

- Using the bisection algorithm and your brackets above, calculate the locations of the second, fourth and sixth discontinuities of f(x) (for x > 0) to an accuracy of three decimal places. Terminate the iteration if $|f(x)| > 10^6$ in the iteration. State your reason for terminating the iteration ("converged in x" or "function value $|f(x)| > 10^6$ ").
- Solutions which compute discontinuities other than the second, fourth and sixth will receive a score of zero.

i	$ x_i $	$f(x_i)$	reason for termination
0	x_0		
1	x_1		
2	$x_2 = (x_0 + x_1)/2$		
:	:		
	final answer		(converged in x) or $(f(x) > 10^6)$

Solution Question 8

- Finding an initial bracket (for bisection) or an initial iterate (for Newton–Raphson) is the hardest part of the calculation.
 - 1. There is no general procedure how to do it.
 - 2. We could, for example, calculate the value of f(x) in steps of $\Delta x = 10^{-6}$.
 - 3. That that would locate the roots and discontinuities to an accuracy of 0.5×10^{-6} .
 - 4. However, that is computationally expensive, especially as the sixth positive root of f(x) has a value > 37.
- Since the question asks for initial brackets of size not less than 0.1, let us plot a graph of f(x) in steps of $\Delta x = 0.1$.
 - 1. The graph is displayed in Fig. 1.
 - 2. Fig. 1 reveals at a glance the approximate locations of the first six positive roots and the first six discontinuities of f(x).
- Now we can employ bisection by determining some initial brackets.
- A suitable set of initial brackets for the first six positive roots of f(x) is as follows.

i	x_{low}	$x_{ m high}$
1	2.0	2.1
2	6.1	6.2
3	7.8	7.9
4	12.9	13.0
5	13.7	13.8
6	37.6	37.7

• A suitable set of initial brackets for the locations of the first six positive discontinuities of f(x) is as follows.

i	x_{low}	$x_{ m high}$
1	2.4	2.5
2	5.5	5.6
3	8.6	8.7
4	11.7	11.8
5	14.9	15.0
6	18.0	18.1

- Other choices for the brackets are also acceptable.
- However, each bracket should enclose only one root, or discontinuity, else bisection may not converge to the intended value. Fig. 1 will reveal what are suitable values for $x_{\rm low}$ and $x_{\rm high}$ for each case.

- Different students submitted different choices for the initial brackets.
- The values of the iterates will depend on your initial bracket.
- Hence is is not possible to say what is a "correct" set of iterates.
- Here is a table of the first, third and fifth positive roots of f(x).

i	$x_{ m root}$
1	2.042
3	7.874
5	13.739

- Here is a table of the locations of the second, fourth and sixth positive discontinuities of f(x).
- For the discontinuities, it is also not possible to say if the iteration terminated because it "converged in x" or because $|f(x_i)| > 10^6$ for some iterate x_i .
- The answer depends on your choice of the initial bracket, because that determines the iterates.

i	$x_{ m discontinuity}$
2	5.520
4	11.792
6	18.071

- Your numbers might differ in the last decimal place.
 - 1. That is acceptable.
 - 2. The point of the exercise is to demonstrate you know what you are doing.
 - 3. Experience has shown that different computers and compilers (run time libraries?) yield slightly different answers.

Figure 1: Graph of function f(x) in Question 8.

9 Question 9

• The derivative of f(x) is given by

$$f'(x) = \frac{S'(x)}{(S(x))^2}. (9.1)$$

- Use Newton-Raphson to compute the values of the first, third and fifth positive roots of f(x) to an accuracy of three decimal places.
- Your starting iterate must be at a distance not less than 0.2 from the root.
- Hence if a root is located at x = 1.234 then your starting iterate must be $x_0 < 1.034$ or $x_0 > 1.434$.
- Solutions which compute roots other than the first, third and fifth will receive a score of zero.

i	x_i	$f(x_i)$
0	x_0	
1	x_1	
:	:	
	converged to 3 d.p.	

- It is not possible to say much for the solution of Question 9.
- The only way to know what is a suitable value for the initial iterate x_0 is to read the answers in Question 8 and back off by ≥ 0.2 .
- Do not back off too far or Newton-Raphson may not converge to the desired root.
- Basically, I did not want you to set x_0 equal to the root from Question 8, else there would be nothing to iterate.
- Hence use a "minimum distance of 0.2" from the root and display a few iteration steps.
- Here is a table of suitable values for x_0 for the first, third and fifth positive roots of f(x).

i	x_0
1	1.8
3	7.6
5	13.5

- Other choices are acceptable.
- The table of the first, third and fifth positive roots of f(x) is the same as in Question 8.