Equações Diferenciais: Notas de Aula Introdução às EDOs

Prof: Felipe Figueiredo

http://sites.google.com/site/proffelipefigueiredo

Versão: 20150724

1 Objetivos de aprendizagem

Ao final desta aula o aluno deve saber identificar uma Equação Diferencial Ordinária (EDO), em comparação aos tipos de equações elementares já familiares ao aluno. O aluno também conhecerá as principais nomenclaturas para as EDOs e saber testar possíveis soluções.

2 Pré-requitos da aula

- 1. Derivação das funções polinomiais e exponenciais
 - (a) $y = x^2$
 - (b) $y = 5x^3$
 - (c) $y = e^{2x}$
 - (d) $y = 2e^{2x}$
- 2. Notações de derivada
 - (a) y'
 - (b) $\frac{\mathrm{d}y}{\mathrm{d}x}$

3 Conteúdo

O aluno deve consultar o PLT na seção 11.1 para se aprofundar no conteúdo desta aula.

3.1 Problema

Um CSI chega na cena de um assasinato à meia noite e introduz um termômetro no corpo, observando a temperatura 27°C. Duas horas depois, ele observa a temperatura 25°C. O ar condicionado mantém a temperatura ambiente em 19°C. Qual é a hora aproximada da morte?

3.2 Tipos de equações já familiares

Equações algébricas são as que envolvem apenas operações algébricas na variável. Nelas a variável representa um número.

3.2.1 Equação de primeiro grau

Equação: 3x - 6 = 0

Verificar candidato a solução: x=2

Resolução (observar o lado esquerdo da igualdade)

$$3(2) - 6 = 0$$

$$6 - 6 = 0$$

$$0 = 0$$

A igualdade é verdadeira, portanto x=2 satisfaz a equação. Dizemos que x=2 é uma solução.

3.2.2 Equação de segundo grau

Equação: $x^2 - 3x + 2 = 0$

Verificar candidato a solução: $x_1 = 1, x_2 = 3$

Resolução:

$$x_1$$
:
 $1^2 - 3(1) + 2 = 0$
 $1 - 3 + 2 = 0$
 $-2 + 2 = 0$
 $0 = 0$ (Satisfaz)
 x_2 :
 $3^2 - 3(3) + 2 = 0$
 $9 - 9 + 2 = 0$
 $0 + 2 = 0$
 $2 = 0$ (Não satisfaz)

3.2.3 Sistema de equações lineares

Sistema:
$$\begin{cases} 2x_1+4x_2=10\\ 3x_1+4x_2=12 \end{cases}$$
 Verificar candidato a solução: $\mathbf{x}{=}\{x_1=1,x_2=2\}$

Resolução:

Primeira equação: Segunda equação:
$$2(1) + 4(2) = 10$$

$$2 + 8 = 10$$

$$3(1) + 4(2) = 12$$

$$3 + 8 = 12$$

$$10 = 10 \text{ (Satizfaz a primeira equação)}$$

$$11 = 12 \text{ (Não satisfaz a segunda equação)}$$

3.2.4 Equação exponencial

Equação: $2^x = 4$

Verificar candidato a solução: x = 3

Resolução:

 $2^3 = 4$

8 = 4 (Não satisfaz)

Equações Diferenciais 3.3

Equações em que a variável representa uma função, y=y(x). Nesta equação aparecem tanto a função y como suas derivadas y', y'', etc.

Equação: y' = y + 1Equação: $y' = y - y^2$

Como verificar candidatos a soluções nesse caso? Como sempre, basta substituir na equação. Para isso, precisaremos derivar a função quantas vezes for necessário.

3.3.1 Exemplos

Equação: y' - 3y = 0

Testar os seguintes candidatos de solução: $y = x^3$, $y = e^{3x}$ e $y = 2e^{3x}$.

Resolução:

Primeiramente vamos reescrever a equação como:

$$y' - 3y = 0$$

$$y = e^{3x}$$

$$y' = 3e^{3x}$$
Substituindo na equação:
$$3x^{3x} - 3(e^{3x}) = 0$$

$$3x^{3x} - 3x^{3x} = 0$$

$$3x^{3x} - 3x^{3x} = 0$$

$$0 = 0$$

(Statisfaz para todo x)

$$y = 2e^{3x}$$

$$y' = 6e^{3x}$$
Substituindo na equação:
$$6e^{3x} - 3(2e^{3x}) = 0$$

$$6e^{3x} - 6e^{3x} = 0$$

$$0 = 0$$

$$0 = 0$$

(Statisfaz para todo x)

$$y = x^3$$

$$y = x^{3}$$

$$y' = 3x^{2}$$
Substituindo na equação:
$$3x^{2} - 3(x^{3}) = 0$$

$$3x^{2} - 3x^{3} = 0$$

$$3x^2 - 3x^3 = 0$$

(Não satisfaz para todo x!)