Componentes de un PC

Componentes de un ordenador I: RAM

Unidad de Trabajo 3

 Frecuencia: Nos indica el número de operaciones que puede realizar por segundo. Se mide en Hz. 1 MHz = 1 millón de operaciones/s.

Ejemplo: 1GHz=1000MHz.

- Ancho del bus: el número de bits con los que puede trabajar de forma simultánea. Actualmente el bus de datos por el que viaja la información de la memoria es de 64 bits=8bytes.
- Velocidad de transferencia: Cantidad de información transferida en un segundo. Se mide en MB/s.

V= frecuencia (MHz) x ancho (bytes)

 Latencia CAS: es el tiempo de espera entre el acceso a un dato y el comienzo de la transferencia. Se mide en ciclos de reloj.

1. Memoria RAM (Ramdom Access Memory)

- Cuanto mayor es la velocidad mayor es el precio.
- Almacena instrucciones y datos de manera temporal, necesarios para realizar tareas.
- Es uno de los componentes más importantes de los ordenadores y su aumento en velocidad y capacidad ha permitido a los ordenadores crecer en potencia de trabajo y rendimiento
- La CPU ordena cargar datos del HD a la RAM y trabaja con los datos de la RAM.
- Esquema de jerarquía de memoria en un computador

1. Memoria RAM

 Las diferencias entra la RAM y el HD es la capacidad, la velocidad de acceso y la volatilidad

	RAM	Disco Duro
Capacidad	GB	TB
Volatilidad	Sí	No
Velocidad de Acceso	ns	ms

 La velocidad de acceso a la RAM se mide en MHz o nanosegundos (10⁻⁹s), indica la rapidez con la que el módulo de memoria puede responder a una solicitud

- Se refiere a la forma física de la tarjeta en las que se colocan las pastillas del RAM
- El factor de forma define el tamaño y la configuración de Pins.
- Generalmente las placas tienen slots de memoria que pueden aceptar sólo un factor de forma.
- El número de conectores depende del bus de datos del microprocesador
- Existen dos grupos principalmente:
 - RIMM (Rambus In-Line Memory Module)
 - SIMM (Single In-Line Memory Module)
 - DIMM (Dual In-Line Memory Module)

1.1.1. SIMM

- Se presentan en dos configuraciones 30 ó 72 contactos.
- Los de 30 contactos sólo manejan 8 bits cada vez, por lo que en un 386 ó 486 (que tiene bus de datos de 32 bits) era necesario usarlos de 4 en 4 módulos iguales.
- Los de 72 contactos manejan 32 bits
 - En 486 de uno en uno
 - En pentium (bus de datos de 64 bits) se usan de 2 en 2 módulos iguales.
- Los zócalos suelen ser de color blanco.

1.1.1. **SIMM**

• SIMM de 30 y sus bancos correspondientes

SIMM de 72 y sus bancos correspondientes

- Son más alargadas con 168 contactos y zócalos generalmente negros.
- Lleva dos muescas para facilitar su correcta colocación en la placa base.
- Transfieren 64 bits de datos a la vez.
- Existen DIMM para voltaje estándar (5V) y reducido (3,3V)
- Los tipos más comunes de DIMM son:
 - DIMMs de 72 contactos, SO DIMM (Portátiles 32 bits)
 - DIMMs de 144 contactos, SO DIMM (Portátiles 64 bits)
 - DIMM de 168 contactos, SDRAM
 - DIMM de 184 contactos, DDR SDRAM
 - DIMM de 240 contactos, DDR2 SDRAM

Módulos SO-DIMM (Small Outline DIMM) Se utilizan en ordenadores portátiles. De 144 contactos para memoria SDRAM De 200 contactos para memoria DDR y DDR2

 DIMM de 168 (SDRAM) y sus bancos

 DIMM de 184 (DDR sus bancos sus bancos)

 Comparativa entre DIMM 168 y 184

 DIMM de 240 (DDR2 SDRAM) y sus bancos

Comparativa entre DIMM 184 y 240

Placa base con DIMM 184 y 240

SDRAM: DRAM sincronizada con el reloj del sistema. Tienen la capacidad de trabajar a la misma velocidad que la placa base a la que se conectan.

PC XXX ↓ Frecuencia de operación MHz

Ejemplo: PC133. Esto significa que tiene una frecuencia de133 MHz

Nombre del modulo	Frecuencia de trabajo	Velocidad de transferencia
PC-133	133 MHz	1.066 MB/s
PC-100	A rellenar por el alumno	
	Ancho de bus de	e 64 bits (8 bytes)

La frecuencia de reloj coincide con la de trabajo.

133 MHz (mil operaciones/s) x 8 bytes/operación ~ 1064 MB/s

PC-2700 (DDR-333) 2700 MB/s y 166 MHz

PC-3200 (DDR-400)

PC-4300 (DDR-533)

Memoria síncrona que envía los datos dos veces por cada ciclo de reloj. De este modo trabaja al doble de velocidad del bus del sistema, sin necesidad de aumentar la frecuencia de reloj. Se presenta en módulos **DIMM de 184** contactos en el caso de ordenador de escritorio y en módulos SO-DIMM de 200 contactos para los ordenadores portátiles

DIMM - DDR (184 contactos)

- Las memorias DDR, DDR2, DDR3, siguen la clasificación DDRxxx / PCyyyy. El primer número, xxx, indica la velocidad máxima (clock speed) que los chips de memoria soportan. Por ejemplo, las memorias DDR-400 trabajan a 400 MHz como máximo.
- El segundo número indica la velocidad de transferencia máxima que alcanza la memoria, en MB/s. Entonces, la DDR400 tiene una tasa de transferencia de datos de 3200 MB/s en la mayor parte y, por lo tanto, se etiquetan como PC3200

Nombre estándar	Reloj de Bus	Reloj de memoria	Datos transferidos por segundo	Nombre del módulo	Máxima capacidad de transferencia
DDR-200	100 MHz	100 MHz	200 Millones	PC-1600	1600 MB/s (1,6 GB/s)
DDR-266	133 MHz	133 MHz	266 Millones	PC-2100	2128 MB/s (2,1 GB/s)
DDR-333	166 MHz	166 MHz	333 Millones	PC-2700	2656 MB/s (2,6 GB/s)
DDR-400	200 MHz	200 MHz	400 Millones	PC-3200	3200 MB/s (3,2 GB/s)

Se utiliza la nomenclatura PC-XXXX, dónde se indica el ancho de banda del módulo y pueden transferir un volumen de información de 8 <u>bytes</u> en cada ciclo de reloj a las frecuencias descritas. Un ejemplo de cálculo para PC1600: 100 MHz x 2 (**D**ouble **D**ata **R**ate) x 8 \underline{B} = 1600 $\underline{MB/s}$ = 1 600 000 000 bytes por segundo.

Tecnologías de memoria DDR 2 SDRAM

DDR de segunda generación

Modelos

Capacidades de 512 MB, 1,2, 4 y 8GB **Características**

PC2-4200 o DDR2-533 (4200 MB/s y 533MHz) PC2-5300 o DDR2-667 PC2-6400 o DDR2-800 PC2-8600 o DDR2-1066

PC2-9000 o DDR2-1200

Memoria síncrona que envía los datos 4 veces por cada ciclo de reloj. Son una mejora de DDR. Se presenta en módulos DIMM de 240 contactos en el caso de ordenador de escritorio y en módulos SO-DIMM de 200 contactos para los ordenadores portátiles. Menor voltaje y por tanto menor consumo y menor disipación de calor.

DIMM - DDR 2 (240 contactos)

DDR 2 SO-DIMM (200 contactos

 Los módulos DDR2 funcionan con 4 bits por ciclo, es decir 2 de ida y 2 de vuelta en un mismo ciclo.

Nombre estándar		Datos transferidos por segundo	Nombre del módulo	Máxima capacidad de transferencia
DDR2- 400	100 MHz	400 millones	PC2-3200	3200 MB/s
DDR2- 533	133 MHz	533 millones	PC2-4200	4264 MB/s
DDR2- 600	150 MHz	600 millones	PC2-4800	4800 MB/s
DDR2- 667	166 MHz	667 Millones	PC2-5300	5336 MB/s
DDR2- 800	200 MHz	800 Millones	PC2-6400	6400 MB/s
DDR2- 1000	250 MHz	1000 Millones	PC2-8000	8000 MB/s
DDR2- 1066	266 MHz	1066 Millones	PC2-8500	8530 MB/s
DDR2- 1150	286 MHz	1150 Millones	PC2-9200	9200 MB/s
DDR2- 1200	300 MHz	1200 Millones	PC2-9600	9600 MB/s

Tecnologías de memoria DDR 3 SDRAM

DDR de tercera generación

<u> http://moourl.com/fu6cr</u>

Modelos

Capacidades de 512Mb, 1,2,4,8,16 y 32GB

Características

PC3-8500 o DDR3-1066

PC3-9600 o DDR3-1200

PC**3**-10600 o DDR**3**-1333

PC3-12800 o DDR3-1600

PC3-14900 o DDR3-1866

PC3-16000 o DDR3-2000

Es una mejora del tipo DDR2. Aumentan su velocidad hasta 2600 MHz a costa de aumentar los timings. Envía los datos 8 veces por cada ciclo de reloj. Se presenta en módulos DIMM de 240 contactos en el caso de ordenador de escritorio y en módulos SO-DIMM de 204 contactos para los ordenadores portátiles. Se vuelve a bajar voltaje y por tanto a mejorar el consumo y la disipación de calor.

DIMM DDR 3 (240 contactos)

DDR 3 SO-DIMM (204 contactos

Nombre estándar	Velocidad del reloj	Datos transferidos por segundo	Nombre del módulo	Máxima capacidad de transferencia
DDR3-1066	133 MHz	1066 Millones	PC3-8500	8530 MB/s
DDR3-1200	150 MHz	1200 Millones	PC3-9600	9600 MB/s
DDR3-1333	166 MHz	1333 Millones	PC3-10600	10 664 MB/s
DDR3-1375	170 MHz	1375 Millones	PC3-11000	11 000 MB/s
DDR3-1466	183 MHz	1466 Millones	PC3-11700	11 700 MB/s
DDR3-1600	200 MHz	1600 Millones	PC3-12800	12 800 MB/s
DDR3-1866	233 MHz	1866 Millones	PC3-14900	14 930 MB/s
DDR3-2000	250 MHz	2000 Millones	PC3-16000	16 000 MB/s
DDR3-2200	350 MHz	2200 Millones	PC3-18000	18 000 MB/s

- Los módulos de memoria DDR4 SDRAM tienen un total de 288 pines <u>DIMM</u>
- Sus principales ventajas en comparación con <u>DDR2</u> y <u>DDR3</u> son una tasa más alta de frecuencias de reloj y de transferencias de datos

Nombre estándar	Velocidad del reloj	Operaciones por segundo	Nombre del módulo
DDR4-2133 ²¹ 22 23 24 25	266 MHz ²⁴	2133 millones ²¹ ²⁶ ²⁵	PC4-17000 ²¹ ²² ²³ ²⁴

- Desde la aparición de la tecnología DDR surge la configuración de doble canal (Dual Channel)
- Consiste en habilitar dos canales paralelos de transmisión de datos entre el controlador de memoria y la RAM
 - Se dobla el ancho de banda efectivo disponible para el sistema.
 - Agiliza el tráfico de información
- Los dos módulos de memoria han de se idénticos en capacidad, velocidad, latencias y fabricante.
- La placa y el chipset de admitir esta tecnología
- Por ejemplo, utilizando memoria DDR400 con doble canal, se alcanzan tasas de transferencias de 6400 MB/s (2 x 3200 MB/s)

Bancos de memoria de doble canal (DIMM 240)

Bancos de memoria de doble canal (DIMM 240)

Dos módulos componen el canal A (azul)

Dos módulos componen el canal B (negro)

- En estos sistemas los módulos están instalados en dos canales independientes
- Cada canal dispone de su propia ruta de acceso al controlador. Así, se duplica el ancho de banda máximo.

Actividad

Dada la siguiente información

Año de construcción	Tecnología	Frecuencia bus	Tasa máxima de transferencia
1987	FPM	50ns	230 MB/s
1995	EDO	50ns	400 MB/s
1996	PC66 (SDRAM)	66 MHz	533 MB/s
1998	PC100 (SDRAM)	100 MHz	800 MB/s
1999	PC133 (SDRAM)	133 MHz	1066 MB/s
1999	RDRAM	800 MHz	1600 MB/s
2000	DDR 266	133 MHz	2100 MB/s
2000	DDR 400	200 MHz	3200 MB/s
2004	DDR2 400	100 MHz	3200 MB/s
2004	DDR2 800	200 MHz	6400 MB/s

 ¿Qué tasa de transferencia alcanzaría una memoria DDR2 400 con doble canal?

Triple y quad chanel

- Para poder acceder a la memoria RAM utiliza un bloque denominado <u>controlador de memoria</u> que antiguamente se encontraba sobre la <u>placa base</u> y en los micros modernos ya está integrado.
- Tanto dual, triple o quad channel, también lo puedes encontrar como doble, triple o cuádruple canal son tecnologías que permiten acceder a varios módulos de memoria al mismo tiempo. De esta forma se consigue acelerar el acceso a esta. Para poder usarlo es necesario que tanto la placa base como el procesador lo soporten.

1.4. Triple canal

- En estos sistema los módulos están instalados en tres canales independientes
- Cada canal dispone de su propio acceso al controlador. Así, se triplica el ancho de banda máximo con respecto a los sistemas de canal único.
- Cabe señalar que el procesador Core i7 de Intel tiene el controlador de memoria integrado, lo que significa que desaparecen el bus frontal y su correspondiente latencia.

Memoria de triple canal

Los 3 zócalos azules componen el triple canal. El zócalo negro es para configuraciones flexibles

Actividad

- Busca en internet una placa que tenga triple canal y apunta la dirección
 - ¿Cuántos bancos tiene?
 - ¿Qué chipset tiene?
 - ¿Cuántos zócalos tiene? ¿De qué tipo? ¿De cuantos pines?
 - ¿Qué memoria admite? Tipo y velocidad
 - ¿Hasta cuantas Gigas de memoria admite el sistema?
- Busca en internet una placa que tenga cuádruple canal.

Enlaces de interés

Memorias

- http://www.intel.com/support/sp/motherboards/desktop/d850mv/sb/cs-009912.htm
- http://www.kingston.com/hyperx/default.asp
- http://www.offtek.es/ddr.php?subcat=59&subgroup=2&memtype=PC2700
- http://www.kingston.com/esroot/triplechannel/