Dataset

```
california = fetch_california_housing()
california_df = pd.DataFrame(data=np.c_[california['target']], columns=california['feature_names'] + ['target'])
california_x = california.data
california_y = california.target
california_df
```

Out[2]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	target
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422
	•••									
	20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09	0.781
	20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21	0.771
	20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22	0.923
	20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32	0.847
	20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24	0.894

20640 rows × 9 columns

train_test_split

In [3]: california_x_train, california_x_test, california_y_train, california_y_test = train_test_split(california.data, california.target, test_size=0.3, random_state=1) california_x_train.shape, california_x_test.shape

Out[3]: ((14448, 8), (6192, 8))

BaggingRegressor

In [4]:
 br = BaggingRegressor(n_estimators=5, random_state=10)
 br.fit(california_x_train, california_y_train)

Out[4]: BaggingRegressor(n_estimators=5, random_state=10)

adb = AdaBoostRegressor(n_estimators=5, random_state=10) adb.fit(california_x_train, california_y_train)

Out[5]: AdaBoostRegressor(n_estimators=5, random_state=10)

ext = ExtraTreesRegressor(n_estimators=5, random_state=10)
ext.fit(california_x_train, california_y_train)

[6]: ExtraTreesRegressor(n_estimators=5, random_state=10)

rfr = RandomForestRegressor(n_estimators=5, random_state=10)
rfr.fit(california_x_train, california_y_train)

Out[7]: RandomForestRegressor(n_estimators=5, random_state=10)

gbr = GradientBoostingRegressor(n_estimators=5, random_state=10)
gbr.fit(california_x_train, california_y_train)

Out[8]: GradientBoostingRegressor(n_estimators=5, random_state=10)

models = [br, adb, ext, rfr, gbr]
metrics = [max_error, mean_absolute_error, mean_squared_error, median_absolute_error, mean_absolute_percentage_error]
ENSEMBLES(models, metrics, california_x_test, california_y_test, 5, 0.8)

