

Facultad de Medicina Centro Universitario de Investigaciones Biomédicas Laboratorio de fisiología del músculo esquelético

Diseños experimentales con animales: Modelo de diabetes y modelo de preeclampsia

Presentan: Julio Cesar Alcaraz Siqueiros Hector Mariano Jimenez Leal Minerva Silvia Marquez Villar

Bibliografía

Teoría del conocimiento

Epistemología Desarrollo del conocimiento a través de la época

1. Posibilidad del conocimiento

Escepticismo

Dogmatismo

2. Naturaleza del conocimiento

Idealismo

Realismo

3. Obtención del conocimiento

Empírico

Filosófico

Científico

Investigación científica

Proceso razonamiento-cuestionamiento

- Comienza con la abstracción.
- Hecho nuevo, poco conocido, explicación insuficiente, necesidad de confirmación.
- Cada característica se ordena y clasifica como observación.
- Cada observación se valora con un enfoque deductivo o inductivo.
- Teoriza y propone hipótesis para explicar el hecho.

Tipos de investigación

Una vez que las cuestiones están bien establecidas, se fija el criterio del diseño a utilizar para la obtención de datos del mundo real. Las estrategias seguidas en un plan de investigación difieren ampliamente de acuerdo con las medidas que se toman en cuanto a la aleatorización y, por lo tanto, a la validez de las conclusiones que se obtienen.

Los distintos tipos de investigación definidos por estas estrategias pueden resumirse en:

- Investigación básica
- Investigación aplicada
- Investigación documental
- Investigación de campo
- Investigación experimental

Descriptivos

- Reporte de casos
- Serie de casos
- Estudios de corte transversal
- Estudios poblacionales, ecológicos
- Estudios correlacionales

Observacionales

Analíticos

- Estudios de casos y controles
- Estudios de Cohorte
- Estudios de pruebas diagnósticas
- Revisión sistemática
- Metaanálisis
- Umbrella Review

Experimentales

- Preclínica/Modelos animales
- Ensayo clínico
- Cuasi experimentales

¿Qué es un experimento?

Elegir o realizar una acción y después observar las consecuencias.

Es un estudio en el que se **manipulan intencionalmente** una o más **variables independientes** (supuestas causas-antecedentes), para analizar las **consecuencias** que la manipulación tiene sobre una o más **variables dependientes** (supuestos efectos-consecuentes), dentro de una situación de control para el investigador.

Se **manipulan** tratamientos, estímulos, influencias o intervenciones (variables independientes) para **observar sus efectos** sobre otras variables (las dependientes) en una situación de control.

Requisitos para un experimento

1.- Manipulación intencional de una o más variables independientes.

2.- Que la variables, dependiente e independiente, sean medibles.

3.- Control o validez interna

1.- Manipulación intencional de una o más variables independientes.

Requisitos para un experimento

Variable independiente

 X_1

 X_2

 X_3

1 variable: X Niveles: n

:

 X_n

Variable dependiente

Y

1.- Manipulación intencional de una o más variables independientes.

Variables independientes

 X_1

 X_2

*X*₃

2 variables: X, W

Niveles X:

Niveles W:

 X_n

 W_1

 W_2

 W_3

 W_m

Variables dependientes

В

Factorial:

hasta $n \times m$ interacciones

1.- Manipulación intencional de una o más variables independientes.

Variables independientes

 W_m

 $\begin{array}{c} X_1 \\ X_2 \\ \\ \textbf{2 variables:} \ X, W \\ \\ \textbf{Niveles } X \text{:} \quad n \\ \\ \textbf{Niveles } W \text{:} \quad m \\ \\ \\ W_1 \\ \\ W_2 \\ \\ W_3 \\ \end{array}$

Variables dependientes

Y A D

Ь

:

1.- Manipulación intencional de una o más variables independientes.

Variable independiente

Variable dependiente

Diabetes₀
Diabetes₁

Amplitud de PMPM

1 variable: Diabetes

Niveles: 2

Requisitos para un experimento

1.- Manipulación intencional de una o más variables independientes.

Requisitos para un experimento

Variable independiente

 $Diabetes_0$

 $Diabetes_1$

Variable dependiente

Amplitud de PMPM

1 variable: Diabetes

Niveles: 2

Variables independientes Var

Variables dependientes

 $Diabetes_0$

 $Diabetes_1$

 $Ejercicio_0$

 $Ejercicio_1$

Amplitud de PMPM

Glucosa

MET

2 variables: Diabetes, Ejercicio

Niveles Diabetes: 2

Niveles Ejercicio: 2

Factorial: $2 \times 2 = 4$ interacciones

2.- Que las variables sean medibles

Requisitos para un experimento

Asegurar la medición sea adecuada, válida y confiable.

Validez

La medición debe **reflejar con precisión** el fenómeno que se quiere estudiar. Existen varios tipos de validez, como:

- •Validez de contenido: Asegura que la medición cubra todos los aspectos del concepto que se estudia.
- •Validez de criterio: Compara la medición con un estándar o criterio ya validado.
- •Validez de constructo: Evalúa si la medición está realmente midiendo el concepto teórico que se propone.

Confiabilidad

La medición debe ser **consistente** y **reproducible**. Esto implica que, si se repite el experimento o medición bajo las mismas condiciones, los resultados deberían ser muy similares.

- Confiabilidad test-retest
- Confiabilidad interevaluador

Requisitos para un experimento

Si en el experimento se observa que una o más variables independientes hacen variar a las dependientes, la variación en la dependiente se debe a la manipulación de las primeras y no a otros factores o causas.

Requisitos para un experimento

Si en el experimento se observa que una o más variables independientes hacen variar a las dependientes, la variación en la dependiente se debe a la manipulación de las primeras y no a otros factores o causas.

Suposición

El producto A elimina a las bacterias B

Requisitos para un experimento

Si en el experimento se observa que una o más variables independientes hacen variar a las dependientes, la variación en la dependiente se debe a la manipulación de las primeras y no a otros factores o causas.

Suposición El producto A elimina a las bacterias B

Experimento

Se expone a la bacteria B al producto A

Requisitos para un experimento

Si en el experimento se observa que una o más variables independientes hacen variar a las dependientes, la variación en la dependiente se debe a la manipulación de las primeras y no a otros factores o causas.

Suposición El producto A elimina a las bacterias B

Experimento
Se expone a la bacteria B al producto A

Observación 1 La bacteria B **sobrevive** después de la exposición al producto A

Requisitos para un experimento

Si en el experimento se observa que una o más variables independientes hacen variar a las dependientes, la variación en la dependiente se debe a la manipulación de las primeras y no a otros factores o causas.

Suposición El producto A elimina a las bacterias B

Experimento
Se expone a la bacteria B al producto A

Observación 1 La bacteria B **sobrevive** después de la exposición al producto A

¿El producto A es efectivo?

Requisitos para un experimento

Si en el experimento se observa que una o más variables independientes hacen variar a las dependientes, la variación en la dependiente se debe a la manipulación de las primeras y no a otros factores o causas.

Suposición El producto A elimina a las bacterias B

Experimento

Se expone a la bacteria B al producto A

Observación 1 La bacteria B **sobrevive** después de la exposición al producto A

¿El producto A es efectivo?

¡NO!

Requisitos para un experimento

Si en el experimento se observa que una o más variables independientes hacen variar a las dependientes, la variación en la dependiente se debe a la manipulación de las primeras y no a otros factores o causas.

Suposición

El producto A elimina a las bacterias B

Experimento

Se expone a la bacteria B al producto A

Observación 1

La bacteria B **sobrevive** después de la exposición al producto A

¿El producto A es efectivo?

¡NO!

Observación 2

La bacteria B **no sobrevive** después de la exposición al producto A

Requisitos para un experimento

Si en el experimento se observa que una o más variables independientes hacen variar a las dependientes, la variación en la dependiente se debe a la manipulación de las primeras y no a otros factores o causas.

Suposición

El producto A elimina a las bacterias B

Experimento

Se expone a la bacteria B al producto A

Observación 1

La bacteria B **sobrevive** después de la exposición al producto A

¿El producto A es efectivo?

¡NO!

Observación 2

La bacteria B **no sobrevive** después de la exposición al producto A

¿El producto A es efectivo?

Requisitos para un experimento

Si en el experimento se observa que una o más variables independientes hacen variar a las dependientes, la variación en la dependiente se debe a la manipulación de las primeras y no a otros factores o causas.

Suposición

El producto A elimina a las bacterias B

Experimento

Se expone a la bacteria B al producto A

Observación 1

La bacteria B **sobrevive** después de la exposición al producto A

¿El producto A es efectivo?

¡NO!

Observación 2

La bacteria B **no sobrevive** después de la exposición al producto A

¿El producto A es efectivo?

Probablemente...

Requisitos para un experimento

1.- Manipulación intencional de una o más variables independientes.

2.- Que la variables, dependiente e independiente, sean medibles.

3.- Control o validez interna

Requisitos para un experimento <u>con animales</u>

1.- Manipulación intencional de una o más variables independientes.

- 2.- Que la variables, dependiente e independiente, sean medibles.
- 3.- Control o validez interna

- 4.- Bienestar del animal (Bioética)
- 5.- Acuerdos internacionales (Acuerdos ARRIVE)

Animal Research: Reporting of In Vivo Experiments

Modelo de diabetes experimental

Diabetes

Enfermedad que ocurre cuando la glucosa en la sangre es demasiado alta: mayor o igual a 126mg/dl

- Alteraciones en metabolismo de glucosa
 - Deficiencia de insulina (tipo 1)
 - Resistencia a la insulina (tipo 2)
- Síntomas: poliuria, polifagia, polidipsia y pérdida de peso
- Largo plazo: daño en ojos, riñones, nervios y corazón

Estimación del número de adultos (20-79 años) con diabetes por región en 2021 y 2045 (en millones)

Modelo diabético

Gran importancia tanto en la investigación básica como en la preclínica

Ayudan a:

- comprender el mecanismo de la enfermedad
- evaluar nuevas terapias (monoterapia o terapia combinada) con potencial terapéutico

Pandey, S., & Dvorakova, M. C. (2020)

BB (BioBreeding)

- Ratas Wistar exogámicas
- Causa autoimmune espontánea
- Desarrollo justo despues de pubertad (entre 8 o 16 semanas de edad)
- Fenotipo: hiperglucemia, hipoinsulinemia, pérdida de peso y cetonuria
- **Desventaja**: linfopenia (T CD4+ y CD8+)

ZDF (Zucker Diabetic-Fatty)

- Producida en 1961 tras un cruce entre ratas Merck (cepa M) y Sherman
- Receptor de leptina mutado, induce hiperfagia, obesas a las 4 semanas de edad
- Hiperinsulinemia, hiperlipidemia, hipertensión y resistencia a insulina (T2DM)
- **Desventaja**: infertilidad en machos obesos

Diabetic Animals and PUBMED Publication (2009-2018)

Inducción por estreptozotocina (STZ)

- Aislada inicialmente de *Streptomyces* achromogenes en 1960
- Agente citotóxico altamente selectivo de las células β de los islotes pancreáticos
- Dos partes: grupo **glucopiranosilo** y grupo **nitrosourea**
- Deficiencia/Resistencia a la insulina, hiperglucemia, poliuria y polidipsia

Dosis

Relación entre la dosis de estreptozotocina y glucosa circulante en ayunas

Relación entre la dosis de estreptozotocina y el contenido de insulina pancreática

	Sex	Strain	Intervention	Route of STZ administra- tion	Reference
Type 1 diabetes					
Single high dose of STZ	Male	Wistar	STZ (50 and 60 mg/kg)	IV	Gajdosík et al., 1999
	Male	Sprague- Dawley	STZ (50, 60, and 70 mg/kg)	IV	Ar'Rajab and Ahrén, 1993
	Male/ female	Wistar	STZ (40 mg/kg)	IP	Mythili et al., 2004
Multiple low- dose of STZ	Male	Sprague- Dawley	STZ (15 mg/kg for 5 days)	IV	Rossini et al., 1977a
Type 2 diabetes					
HFD/low-dose of STZ	Male	Sprague- Dawley	STZ (50 mg/kg) after two weeks on HFD (40 % of to- tal kcal from fat)	IV	Reed et al., 2000
	Male	Sprague- Dawley	STZ (35 mg/kg) after two weeks on HFD (58 % of to- tal kcal from fat)	IP	Srinivasan et al., 2005
STZ-NA	Male	Wistar	STZ (65 mg/kg) + NA (230 mg/kg, IP) 15 min before STZ injection	IV	Masiello et al., 1998
Neonatal STZ	1		1		
n0-STZ	NR	Sherman	100 mg/kg	IV	Portha et al., 1974
n2-STZ	n2-STZ Male Sprague- Dawley		90 mg/kg	IP	Weir et al., 1981
n5-STZ	Male/ female	Wistar	100 mg/kg	IP	Wang et al., 1996

HFD, high-fat diet; NA, nicotinamide; IV, intravenous injection; IP, intraperitoneal injection; n0-STZ, n2-STZ, and n5-STZ, streptozotocin-injected at the day of birth, two days after birth, and five days after birth, respectively.

Referencias

- International Diabetes Federation (2021). Epidemiology and research. Recuperado de: https://idf.org/about-diabetes/diabetes-facts-figures/
- Al-Awar, A., Kupai, K., Veszelka, M., Szűcs, G., Attieh, Z., Murlasits, Z., Török, S., Pósa, A., & Varga, C. (2016). Experimental Diabetes Mellitus in Different Animal Models. *Journal of diabetes research*, 2016, 9051426. https://doi.org/10.1155/2016/9051426
- Pandey, S., & Dvorakova, M. C. (2020). Future Perspective of Diabetic Animal Models. Endocrine, metabolic & immune disorders drug targets, 20(1), 25–38.
 https://doi.org/10.2174/1871530319666190626143832
- Furman, B. L. (2021). Streptozotocin-induced diabetic models in mice and rats. Current Protocols, 1, e78. doi: 10.1002/cpz1.78
- Ghasemi, A., & Jeddi, S. (2023). Streptozotocin as a tool for induction of rat models of diabetes: a practical guide. EXCLI journal, 22, 274–294. https://doi.org/10.17179/excli2022-5720

MODELOS ANIMALES PARA EL ESTUDIO DE LA PREECLAMPSIA

PREECLAMPSIA

Es un síndrome multisistémico del embarazo que se manifiesta después de la semana 20 de gestación.

- Afecta entre el 3-8% de los embarazos a nivel mundial
- Es una de las principales causas de morbilidad y mortalidad materna y perinatal.

PATOGENIA DE LA PREECLAMPSIA

IMPORTANCIA DE LOS MODELOS ANIMALES

Proporcionan un sistema controlado y permiten la manipulación de variables.

Estudio de Mecanismos fisiológicos

Permite la investigación de los procesos celulares y moleculares implicados en la preeclampsia.

Prueba de Terapias

Evaluación de nuevos fármacos y terapias para prevenir o tratar la preeclampsia.

Modelado de Factores de Riesgo

Permite investigar el papel de factores genéticos, inmunológicos y ambientales

4 Desarrollo de diagnósticos

Permite investigar biomarcadores y métodos de detección temprana de la preeclampsia

ELECCIÓN DEL MODELO ANIMAL

- Objetivo del estudio.
- Similitud fisiológica con los humanos.
- Facilidad de manejo.
- Disponibilidad y Costo.
- Métodos de evaluación y técnicas disponibles.
- Regulación ética.

ANIMALES MÁS USADOS

Pequeños y ciclo de vida corto

Mayor tamaño, facilidad para intervención quirúrgica y toma de muestras.

Disponibilidad de modelos transgénicos y knockout.
Ideales para el estudio de la genética y respuesta inmune de la preeclampsia.

Mayor parecido a la fisiología humana, ideal para estudiar la placenta y el desarrollo fetal.

Tipos de modelos animales

Sp	TIPO	MODELO	MÉTODO	VÍA IMPLICADA	ALTERACIONES	TERAPIAS PROBADAS
Rata	Quirúrgico	RUPP	Ligadura de arterias uterinas	Isquemia placentaria	↑MAP ↑proteinuria *FGR	Aspirina, Quercetina
Rata	Químico	L-NAME	Administración de L- Name	Disfunción endotelial		L-arginina
		TNF -α *ELABELA KO	Administración de TNF -α	Inflamación inmunitaria		Bloqueadores de vasoconstricción
Ratón	Genético		Mutante de línea germinal	Placentación anormal		Antioxidantes
		BPH/5	Cruza selectiva	Preeclampsia espontánea		Tempol (antioxidante sintético)

MODELO L-NAME

Ferroptosis

- Hipertensión
- Proteinuria

CAPSAICINA

"Los modelos animales son una valiosa herramienta para investigar y comprender la etiología y fisiopatología de las enfermedades humanas y para el desarrollo de tratamientos y la creación de métodos de diagnóstico eficaces."

