Time Series Analysis

Topics

- Component Factors of the Time-Series Model
- Smoothing of Data Series
 - Moving Averages
 - Exponential Smoothing
- Least Square Trend Fitting and Forecasting
 - Linear, Quadratic and Exponential Models
- Autoregressive Models
- Choosing Appropriate Models
- Monthly or Quarterly Data

What Is Time-Series

- A Quantitative Forecasting Method to Predict Future Values
- Numerical Data Obtained at Regular Time Intervals
- Projections Based on Past and Present Observations
- Example:

Year: 1994 1995 1996 1997 1998

Sales: 75.3 74.2 78.5 79.7 80.2

Time-Series Components

Trend Component

Overall Upward or Downward Movement

Cyclical Component

- Upward or Downward Swings
- May Vary in Length

Seasonal Component

- Upward or Downward Swings
- Regular Patterns

Random or Irregular Component

- Erratic, Nonsystematic, Random, 'Residual'
 Fluctuations
- Due to Random Variations of
 - Nature
 - Accidents

Short Duration and Non-repeating

Multiplicative Time-Series Model

- Used Primarily for Forecasting
- Observed Value in Time Series is the product of Components
- •For Annual Data:

$$Y_i = T_i \times C_i \times I_i$$

For Quarterly or Monthly Data:

$$Y_i = T_i \times S_i \times C_i \times I_i$$

 $T_i = Trend$

 $C_i = Cyclical$

 $I_i = Irregular$

 S_i = Seasonal

Moving Averages

- Used for Smoothing
- Series of Arithmetic Means Over Time
- Result Dependent Upon Choice of L, Length of Period for Computing Means
- For Annual Time-Series, L Should be Odd
- Example: 3-year Moving Average

- First Average:
$$MA(3) = \frac{Y_1 + Y_2 + Y_3}{3}$$

- Second Average:
$$MA(3) = \frac{Y_2 + Y_3 + Y_4}{3}$$

Moving Average Example

John is a building contractor with a record of a total of 24 single family homes constructed over a 6 year period.

Provide John with a Moving Average Graph.

Year 	Units Ave	Moving
1994	2 –) NA
1995	5	3
1996	2 -	J 3
1997	2—	3.67
1998	7	5
1999	6—	J _{NA}

Moving Average Example Solution

Year	Resp	_	Moving ve
1994	2	<u> </u>	JA
1995	5	- 3	
1996	2		3
1997	2		67
1998	7	5	—
1999	6		
			ν

Exponential Smoothing

- Weighted Moving Average
 - Weights Decline Exponentially
 - Most Recent Observation Weighted Most
- Used for Smoothing and Short Term Forecasting
- Weights Are:
 - Subjectively Chosen
 - Ranges from 0 to 1
 - Close to 0 for Smoothing
 - Close to 1 for Forecasting

Exponential Weight: Example

$$Y_{N+1} = \alpha X_N + (1-\alpha) Y_N$$

	Α	В	С	D
1		Alpha =	0.2	
2				
3	n	X	Y	formula/comment
4	0	0.66	-	
5	1	0.58	0.66	= B4 { first point }
6	2	0.39	0.64	'=C\$1*B5+(1-C\$1)*C5
7	3	0.7	0.59	'=C\$1*B6+(1-C\$1)*C6
8	4	0.05	0.62	'=C\$1*B7+(1-C\$1)*C7
9	5	0.99	0.5	'=C\$1*B8+(1-C\$1)*C8
10	6	0.79	0.6	'=C\$1*B9+(1-C\$1)*C9

$$\begin{array}{lll} Y_1 = X_0 \\ Y_2 = \alpha X_1 + (1 - \alpha) Y_1 &= \alpha X_1 + (1 - \alpha) X_0 \\ Y_3 = \alpha X_2 + (1 - \alpha) Y_2 &= \alpha X_2 + (1 - \alpha) (\alpha X_1 + (1 - \alpha) X_0) &= \alpha X_2 + \alpha (1 - \alpha) X_1 + (1 - \alpha)^2 X_0 \\ Y_4 = \alpha X_3 + (1 - \alpha) Y_3 &= \dots &= \alpha X_3 + \alpha (1 - \alpha) X_2 + \alpha (1 - \alpha)^2 X_1 + (1 - \alpha)^3 X_0 \end{array}$$

Exponential Weight: Example Graph

The Linear Trend Model

Year	Co	ded Sales
94	0	2
95	1	5
96	2	2
97	3	2
98	4	7
99	5	6

Excel Output

	Coefficients
Intercept	2.14285714
X Variable	0.74285714

The Quadratic Trend Model

Year	Coded	Sales
94	0	2
95	1	5
96	2	2
97	3	2
98	4	7
99	5	6

$$\hat{Y}_{i} = b_{0} + b_{1}X_{i} + b_{2}X_{i}^{2}$$

	Coefficients
Intercept	2.85714286
X Variable 1	-0.3285714
X Variable 2	0.21428571

Excel Output
$$\hat{Y}_i = 2.857 - 0.33 X_i + .214 X_i^2$$

Autogregressive Modeling

- Used for Forecasting
- Takes Advantage of Autocorrelation
 - 1st order correlation between consecutive values
 - 2nd order correlation between values 2 periods apart
- Autoregressive Model for pth order:

$$Y_i = A_0 + A_1 Y_{i-1} + A_2 Y_{i-2} + \cdots + A_p Y_{i-p} + \delta_i$$

Random

Error

Autoregressive Model: Example

The Office Concept Corp. has acquired a number of office units (in thousands of square feet) over the last 8 years. Develop the 2nd order Autoregressive models.

Year	Units
92	4
93	3
94	2
95	3
96	2
97	2
98	4
99	6

Autoregressive Model: Example Solution

- Develop the 2nd order table
- Use Excel to run a regression model

Excel Output

	Coefficients	
Intercept	3.5	
X Variable 1	0.8125	
X Variable 2	-0.9375	

Year	Y_i	\mathbf{Y}_{i-1}	Y _{i-2}	
92	4			
93	3	4		
94	2	3	4	
95	3	2	3	
96	2	3	2	
97	2	2	3	
98	4	2	2	
99	6	4	2	

$$Y_i = 3.5 + .8125 Y_{i-1} - .9375 Y_{i-2}$$

Autoregressive Model Example: Forecasting

Use the 2nd order model to forecast number of units for 2000:

$$Y_i = 3.5 + .8125 Y_{i-1} - .9375 Y_{i-2}$$

$$Y_{2000} = 3.5 + .8125 Y_{1999} - .9375 Y_{1998}$$

= $3.5 + .8125 \times 6 - .9375 \times 4$
= 4.625

Autoregressive Modeling Steps

- 1. Choose p: Note that df = n 2p 1
- 2. Form a series of "lag predictor" variables
- Y_{i-1} , Y_{i-2} , ... Y_{i-p}
- 3. Use Excel to run regression model using all p variables
- 4. Test significance of AR_p

Selecting A Forecasting Model

- Perform A Residual Analysis
 - Look for pattern or direction
- Measure Sum Square Errors SSE (residual errors)
- Measure Residual Errors Using MAD
- Use Simplest Model
 - Principle of Parsimony

Residual Analysis

Measuring Errors

Sum Square Error (SSE)

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Mean Absolute Deviation (MAD)

$$MAD = \frac{\sum_{i=1}^{n} |Y_i - \hat{Y_i}|}{n}$$

Further Study

- Introduction to AR
- https://www.youtube.com/watch?
 v=AN0a58F6cxA

 Time Series Forecasting Using Neural Network and Statistic Models

 https://www.youtube.com/watch? v=i40Road82No