UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i	MAT-INF 1100 — Modellering og beregninger.
Eksamensdag:	Torsdag 7. desember 2006.
Tid for eksamen:	9:00 – 12:00.
Oppgavesettet er på 4	sider.
Vedlegg:	Formelark.
Tillatte hjelpemidler:	Godkjent kalkulator.
	oppgavesettet er komplett før ner å besvare spørsmålene.
Husk å fylle	e inn kandidatnummer under.
	Kandidatnr:
Du blir altså ikke "straffet tradisjonelle oppgaver. I de poeng. Den totale poengsu av eksamen må du begrun	e å krysse av på en oppgave, får du null poeng. " for å gjette. Andre del av eksamen består av enne delen teller hvert av de 6 delspørsmålene 12 mmen er altså maksimalt 100 poeng. I andre del ne hvordan du har kommet fram til resultatene runnet får 0 poeng selv om de er riktige!
Del 1: Flervalgsoppgaver	
$f(x) = x^2 - \cos x \text{ utviklet } 0$	en foran x^2 i Taylor polynomet til funksjonen om punktet $a=0$ er
□ 3/2 □	
\Box 1 \Box 1/2	
Oppgave 2. Taylorpoly: utviklet om punktet $a = 0$	nomet av grad 2 til funksjonen $f(x) = \sin(x^2)$ er gitt ved
$ \begin{array}{ccc} & x + x^2/2 \\ & x - x^2/2 \\ & -x^2 \\ & x^2 \end{array} $	
$-x^2$	
$\Box x^2$	

Oppgave 3. Differensialligningen y'' + 4y' + 4y = 0 har den generelle løsningen

- $y(x) = e^{-2x}(C\sin x + D\cos x)$

 $\operatorname{der} C \operatorname{og} D \operatorname{er} \operatorname{vilkårlige}$, reelle tall.

Oppgave 4. Differensialligningen $x^2y' + y = 1$, der x > 0, har den generelle løsningen

- $y(x) = x^2 + C$

 $\operatorname{der} C$ er et vilkårlig, reelt tall.

Oppgave 5. En partikulærløsning av differensialligningen y'' - 3y' = 1 er gitt ved

- $y(x) = -x^2/3$
- y(x) = -x/3

Oppgave 6. Vi har en bakteriekultur der antall bakterier, y, er en funksjon av tiden, t, som vi måler i timer. Vekstraten (den tidsderiverte av antallet) er proposjonal med antallet y. Videre vet vi at antallet bakterier fordobler seg i løpet av to timer. Hva er differensialligningen som beskriver veksten av bakteriekulturen?

Oppgave 7. Vi tilnærmer det bestemte integralet $\int_0^h f(x) dx$ med uttykket h(f(0) + f(h))/2 der vi antar at f, f' og f'' er kontinuerlige funksjoner. Da er feilen

$$\left| \int_0^h f(x) \, dx - \frac{h}{2} \big(f(0) + f(h) \big) \right|$$

begrenset av

Del 2

Husk at i denne delen må alle svar begrunnes!

Oppgave 1. Løs differensligningen

$$x_{n+2} - 3x_{n+1} + 2x_n = 1$$
, $x_0 = 0$, $x_1 = 0$.

Oppgave 2. Finn Taylor-polynomet av grad 3 om a = 0 for funksjonen

$$f(x) = \cos x + \sin x$$

og vis at restleddet $R_3 f(x)$ er begrenset ved

$$\left| R_3 f(x) \right| \le 0.1$$

på intervallet [0,1].

Oppgave 3. Det desimale tallet 12.125 skal konverteres fra ti-tall systemet til to-tall systemet (binær form). Alle stegene i konverteringen skal gjengis nøyaktig.

Oppgave 4. Vi har gitt differensligningen

$$x_n = \frac{x_{n-1}}{2} + \frac{1}{n}, \quad n \ge 1, \quad x_0 = 0.$$

Vis ved induksjon at $x_n \leq 1$ for alle heltall $n \geq 0$.

Oppgave 5. Vi har gitt differensialligningen

$$y' - \frac{y}{x} = \frac{1}{x^2}, \quad y(1) = \gamma,$$

der vi antar at x > 0. For hvilken verdi av γ vil $\lim_{x \to \infty} y(x) = 0$?

Oppgave 6.

Vi har gitt en funksjon $f(x) = x^{\beta}$, der β er et positivt, reelt tall. Ligningen f(x) = 0 har naturligvis løsningen x = 0, men vi ønsker å bruke den til en test av Newtons metode.

- a) Vi anvender Newtons metode på ligningen f(x) = 0 med startverdi $x_0 = a$ der a > 0. Vis at Newtons metode konvergerer for alle $\beta \ge 1$. Hva skjer når $\beta = 1/2$?
- **b)** Vi velger a=1 og $\beta=4$. Hvor mange iterasjoner må vi bruke for at feilen skal bli mindre enn 0.001?