The Backbone of Agentic Al

Why Transformers?

What is Transformer?

- Introduced in paper Attention is All You Need
- Utilizes a "self-attention" mechanism
 - To process sequential input data
- A deep learning model architecture
- Primarily used for NLP and computer vision
- Process inputs in parallel

Understanding Transformer Models

- Can be used to:
 - Write stories, Essays, poems
 - Answer questions
 - Translate between languages
 - Chat with humans
- The phone can suggest the next word to use in a text message

Evolution from RNNs to LSTMs to Transformers

Introduction to Attention Mechanism

- Allows a neural network to weigh the importance of different parts of the input data
- It dynamically calculates "attention scores" for every input element relative to another.

Transformers Model Architecture

- Encoder
- Decoder
- Attention
- Feed-Forward Networks (FFN)
- Layer Normalisation
- Positional Encoding
- Follows an encoder-decoder structure
 - An input vector x is fed into an encoder
 - Resulting in a mapped representation z
 - With z, the decoder generates an output y

Transformers Model Architecture: Encoder

• N = multiple identical stacked layers

Transformers Model Architecture: Encoder

Overview of BERT, GPT, and LLMs in Al agent development

- LLMs act as the central reasoning engine for modern AI agents
 - Enabling them to understand, plan, and act.
- BERT:
 - The "Understanding" Engine
- GPT
 - The "Reasoning & Response" Engine
- The Modern Agentic Loop (LLMs Today)
 - Combine both strengths in a Reason → Act → Observe loop

Figure 1: The Transformer - model architecture.

BERT

- What it does
 - Uses bidirectional context to deeply understand the user's command.
- Role in Agents
 - Powers intent recognition and entity extraction
 - i.e., figuring out precisely what the user wants

GPT

- What it does
 - Uses auto-regressive generation to
 - Create plans
 - Reason
 - Produce text
- Role in Agents
 - Enables
 - Planning (chain-of-thought)
 - Tool use (calling APIs)
 - Generating natural responses

LLMs

- The Process:
 - Modern LLMs combine both strengths in a Reason → Act → Observe loop
- Reason:
 - The LLM creates a multi-step plan
- Act:
 - It executes a step by calling a tool (e.g., search, calculator)
- Observe:
 - It analyzes the result and repeats the loop

- The Impact
 - This transforms the LLM from a chatbot into a dynamic problem-solver that can accomplish complex tasks.

Pre-trained Models and Fine-tuning

Hugging Face

Open-source platform for machine learning

- Often called "The GitHub for AI,"
- Provides the tools and infrastructure to
 - Build, train, and deploy state-of-the-art models

Provides the common ground for the entire AI community to

- Share
- Collaborate
- Innovate

Core Libraries: The Developer's Toolkit

Hugging Face: Core Libraries

Transformers

• Provides simple, unified access to thousands of state-of-the-art models

Datasets

• Standardizes the process of loading and preparing data

Accelerate

• Simplifies scaling model training across any hardware (multi-GPU, TPU)

Tokenizers

Converts text into numerical tokens that a model can process

OpenAl APIs

Provides developers with programmatic access to OpenAl

Key Models

- GPT Models
 - Text understanding
 - Reasoning
 - Generation
- DALL-E Models
 - For generating unique images
- Whisper
 - Speech-to-text model
- Embedding Models
 - Convert text into a numerical vector representation

How Developers Interact: The Chat Completion API

Using transformers for text generation and classification

- For Text Classification (Understanding)
 - The Goal
 - To assign a label to a piece of text
 - (e.g., sentiment, topic, intent).
 - Analogy:
 - Reading a full product review to
 - Give it a 1-to-5-star rating
- For Text Generation (Creating)
 - The Goal
 - To create new, coherent text that follows a prompt
 - Analogy
 - Finishing a sentence by guessing the most logical next word, over and over

Transfer Learning & Domain Adaptation

- Don't train models from scratch.
- Leverage existing knowledge and adapt it
- The process of fine-tuning the pre-trained model on a smaller, specific dataset that is relevant to your unique "domain."

Hands-on

Using OpenAI's GPT API for text generation

• Fine-tuning a BERT model for sentiment analysis on real-world datasets

Generative Al

Introduction to OCI Generative Al Service

Enterprise-focused

Fully managed

Providing secure access to leading AI models

Designed for custom business needs

Deep integration with private data

Enables text generation, summarization, embeddings, and chat capabilities

Hands-on

- Prompt Engineering with OCI Generative AI Models
- Working with OCI GenAl Playground

Thanks