Fall 2021, Math 328, Homework 2

Due: End of day on 2021-09-24

1 (10 points)

Compute the order of each of the elements in the following groups: D_6 , D_8 , D_{10} .

2 (10 points)

For n = 3, 4, write out all elements of S_n in cycle notation, and compute the order of each element.

3 (10 points)

Given a group G, an element $g \in G$ is called *central* provided that for all $h \in G$, one has $g \cdot h = h \cdot g$. The identity element is clearly central.

- 1. Prove that the product of two central elements is central.
- 2. Prove that the inverse of a central element is central.
- 3. Find all central elements in the following groups: S_4 , Q_8 , D_{2n} (arbitrary $n \geq 3$).

4 (10 points)

Suppose that σ is an element of S_n which has the form

$$\sigma = (a_1, a_2, \dots, a_m).$$

Let i be any integer. Prove that $\sigma^i(a_k) = a_r$ where $r \equiv k + i \mod m$. Determine the order of the element σ .

5 (10 points)

Let $\varphi:G\to H$ be a homomorphism of groups and let $g\in G$ be given. Prove that $\varphi(g^a)=\varphi(g)^a$ for all $a\in\mathbb{Z}$.

6 (10 points)

- 1. Prove that S_3 and D_6 are isomorphic.
- 2. Prove that S_4 and D_{24} are not isomorphic.
- 3. For a pair of groups G and H, prove that $G \times H$ and $H \times G$ are isomorphic.
- 4. Let G be a group, and let Aut(G) be the set of automorphisms of G. Prove that Aut(G) is a group under composition of automorphisms.
- 5. Suppose that G and H are isomorphic. Prove that Aut(G) is isomorphic to Aut(H).