ADA Mini HW #7

Student Name: 林楷恩 Student ID: b07902075

Let the N pieces of land denoted as v_1, v_2, \ldots, v_N . Construct undirected graph $G = \langle V, E \rangle$ as follow:

- 1. $V = S \cup \{v_1, v_2, \dots, v_N\}$
- 2. $\forall i \in \{1, 2, ..., N\}$, there is an edge weighted W_i connecting S and v_i .
- 3. $\forall (i,j) \in \{1,2,\ldots,N\}^2$ and $i \neq j$, there is an edge weighted P_{ij} that connects v_i and v_j .

Then we run Kruskal's algorithm on this graph to compute the Minimum Spanning Tree and the answer would be the total weight of the result Minimum Spanning Tree.

Explanation of Correctness: The edges between S and v_i can be seen as "build a reservoir" on land v_i . And the construction of minimum spanning tree ensures that all nodes have a simple path to S (i.e. connected to a land with a reservoir).

Time Complexity Analysis: |V| = N + 1 = O(N), and there is an edge for each distinct pair of vertices, so $|E| = C_2^{N+1} = \frac{N(N+1)}{2} = \frac{N^2}{2} + \frac{N}{2} = O(N^2)$. The time complexity of *Kruskal's algorithm* where *disjoint-set-forest* is implemented with *union-by-rank* only is $O(E \log V) = O(N^2 \log N)$, which satisfies the requirement.