Convolutional Neural Networks

Slides adapted from:

CS231N: Fei Li, Andrej Karpathy & Justin Johnson

MIT6874: Dana Erlich, Param Vir Singh, David Gifford, Alexander Amini, Ava Soleimany Daniel Cheng

Outline

Part 1

- Classical machine vision foundations
- Convolutional Neural Networks (CNN) Foundations
- CNN Architectures

Part 2

- Training CNNs
- Understanding and Visualizing CNNs

Part 3

Applications

Biological neuron and Perceptrons

Biologically Inspired Multi-layer Perceptrons

hidden layer input layer

Biological Inspiration & Architecture

Multi-layer Perceptron - A *non-linear* classifier

What computers 'see': Images as Numbers

What you see

Input Image

What you both see

Input Image + values

What the computer "sees"

157	153	174	168	150	152	129	151	172	161	155	156
156	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	166
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	216
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

Pixel intensity values ("pix-el"=picture-element)

- An image is just a matrix of numbers [0,255].i.e.,1080x1080x3 for an RGB image.
- Question: is this Lincoln? Washington? Jefferson? Obama?
- MLPs/NNs allow the computer to perceive not just numbers, but features

Levin Image Processing & Computer Vision

Learning a Hierarchy of Feature Extractors

- Classical computer vision techniques such as edge detection, Support Vector Machines (SVMs)/Knearest neighbors (KNNs), and texture analysis filters require expert knowledge
- Key Innovation: CNNs and ML allow the network training to automatically learn the features

Multi-layer Perceptrons, or Neural Networks

- Also known as MLPs, NNs, Artificial Neural Networks (ANNs)
- Training: find network weights \mathbf{w} to minimize the error between true training labels y_i and estimated

labels
$$f_{\mathbf{w}}(\mathbf{x}_{i})$$

$$E(\mathbf{w}) = \sum_{i=1}^{N} (y_{i} - f_{\mathbf{w}}(\mathbf{x}_{i}))^{2}$$

- Minimization can be done by gradient descent provided f is differentiable output layer

Convolutional Neural Networks

- Also known as CNNs, ConvNets
- Subset of NNs with the following features:
 - 1. Local connectivity
 - 2. Weight sharing
 - 3. Typically, handle multiple input channels

CNN: Local Connectivity

Hidden layer

Input layer

Global connectivity

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Global connectivity: $3 \times 7 = 21$
 - Local connectivity: $3 \times 3 = 9$

Local connectivity

CNN: Weight Sharing

Hidden layer

Input layer

Without weight sharing

- # input units (neurons): 7
- # hidden units: 3
- Number of parameters
 - Without weight sharing: $3 \times 3 = 9$
 - With weight sharing: $3 \times 1 = 3$

With weight sharing

CNN with multiple input channels

Single input channel

Multiple input channels

Putting them together

- Local connectivity
- Weight sharing
- Handling multiple input channels

- Now, how to assemble a simple CNN?
- Let's begin single Convolutional layer

32x32x3 image

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image 5x5x3 filter 32 convolve (slide) over all spatial locations 32

activation map

- We can create a single Convolutional layer
- Let's stack them together to get multiple feature/activation maps

consider a second, green filter

activation maps

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Note: CNNs are a sequence of Convolution Layers, interspersed with activation functions

Note: CNNs are a sequence of Convolution Layers, interspersed with activation functions

- We can get multiple feature/activation maps from previous layers
- What do those features look like?

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

- We can get simple features (lines, edges) from our input layers
- What do 2nd order features (from additional convolutional layer

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

- We can get more complex features (shapes, corners, crosses) from our input layers
- What do higher order features (from additional convolutional layer stacks) look like?

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

one filter =>
one activation map

Activations:

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image)

Real-world example: Object Classifcation RELU RELU RELU RELU RELU RELU CONV CONV CONV CONV CONV CONV FC car truck airplane ship horse

Context: Classical Computer Vision Features

HOG [Dalal and Triggs CVPR 05]

DPM [Felzenszwalb et al. PAMI 10]

Context: CNN Features

Key idea:

Learn hierarchy of features directly from the data

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

- We can get very complex features (textures, faces, objects) from our layers
- How do we balance the increasing layer complexity computationally?

Pooling layer

- Makes the representations smaller and more manageable
- Operates over each activation map independently:

Pooling layer

Single depth slice

- Max pooling is most common pooling operation
- Allows for "OR"/"any" detection behavior and learned invariances (i.e., rotation invariance)

max pool with 2x2 filters and stride 2

CNN Architecture

- We have many higher order features.
- How do we classify them?

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary NNs
- Typically used as final or last stage classifications (expensive to use throughout)
- Spatial Pooling used in conjunction to aid in scale invariant classification

CNN Architecture

- We have many pixel-wise classifications.
- How do we upscale them to their original resolutions?

Upsampling + Residual Connections

- Reverse of pooling layer using bilinear interpolation (or similar)
- Residual connections from earlier in the CNNs aid with class localization
- Residuals also reduce vanishing gradients in deep networks
- FC layers can be used to aid in reconstruction, but are not required

CNN Architecture

We now have an end-to-end pixel-wise CNN classifier architecture!

CNN Architectures

We've learned 1 CNN architecture, but what about other CNN architectures,
 specifically, the feature extractor arhcitectures?

• What are their pros/cons for specific use cases?

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeNet-5

- Gradient Based Learning Applied To Document Recognition Y. Lecun, L. Bottou, Y. Bengio, P. Haffner; 1998
- Helped establish how we use CNNs today
- Replaced manual feature extraction

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

ResNet

- ILSVRC'15 classification winner (3.57% top 5 error, humans generally hover around a 5-10% error rate)
- Makes use of/popularized Residual connections to enable deep neural networks and reduce vanishing gradient problem

GoogleNet

- 22 layers
- Efficient "Inception" module strayed from the general approach of simply stacking conv and pooling layers on top of each other in a sequential structure
- No FC layers
- Only 5 million parameters!
- ILSVRC'14 classification winner (6.7% top 5 error)

GoogleNet

 "Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

UNet Family

- Well established and useful architecture
- Can use any feature extractor "head", and outputs classifications per pixel

Outline

Part 1

- Classical machine vision foundations
- Convolutional Neural Networks (CNN) Foundations
- CNN Architectures

Part 2

- Training CNNs
- Understanding and Visualizing CNNs

Part 3

Applications

Training Neural Networks

- We have architectures!
- How do we train them?
- Training (& Testing) Workflow
- Backpropagation + stochastic gradient descent with momentum
 - Neural Networks: Tricks of the Trade
- Dropout
- Data augmentation
- Batch normalization
- Initialization
 - Transfer learning

Training Workflow

Training (& Testing) Workflow

Training (& Testing) Workflow

- Testing ensures we are not overfitting on the training data/ learned function
- i.e., ensure we can generalize to new unseen data
- Testing is usually also done during training
- This is called validation, and is performed on 10-20% of reserved training data to ensure generalization while training

Training CNN with gradient descent

A CNN as composition of functions

$$f_{\mathbf{w}}(\mathbf{x}) = f_L(...(f_2(f_1(\mathbf{x}; \mathbf{w}_1); \mathbf{w}_2)...; \mathbf{w}_L)$$

Parameters

$$w = (w_1, w_2, ... w_L)$$

Empirical loss function

$$L(\mathbf{w}) = \frac{1}{f_{\mathbf{w}}(\mathbf{x_i})} \mathcal{I}(z_i, \mathbf{x_i})$$

Gradient descent (w/ optimizers such as Adam)

New weight
$$w^{t+1} = w^t - \eta_t \frac{\partial f}{\partial w}(w^t)$$
Old weight Learning rate Gradient

An Illustrative example

$$f(x,y) = xy, \qquad \frac{\partial f}{\partial x} = y, \frac{\partial f}{\partial y} = x$$

Example:

$$x = 4, y = -3 \Rightarrow f(x, y) = -12$$

Partial derivatives

$$\frac{\partial f}{\partial x} = -3, \qquad \frac{\partial f}{\partial y} = 4$$

Gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

$$f(x, y, z) = (x + y) \quad z = qz$$

$$\frac{q = x + y}{\frac{\partial q}{\partial x}} = 1, \qquad \frac{\partial q}{\partial y} = 1$$

$$\frac{\partial f}{\partial q} = z, \qquad \frac{\partial f}{\partial z} = q$$

Goal: compute the gradient

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]$$

$$f(x, y, z) = (x + y) \quad z = qz$$

$$\frac{q = x + y}{\frac{\partial q}{\partial x}} = 1, \qquad \frac{\partial q}{\partial y} = 1$$

$$\frac{f = qz}{\frac{\partial f}{\partial q}} = z, \qquad \frac{\partial f}{\partial z} = q$$

Chain rule: $\partial f \partial a$

$$\frac{1}{\partial x} = \frac{1}{\partial q} \frac{1}{\partial x}$$

```
x -2

-4

y 5

-4

x f -12

z -4
```

```
# set some inputs
x = -2; y = 5; z = -4

# perform the forward pass
q = x + y # q becomes 3
f = q * z # f becomes -12

# perform the backward pass (backpropagation) in reverse order:
# first backprop through f = q * z

dfdz = q # df/dz = q, so gradient on z becomes 3

dfdq = z # df/dq = z, so gradient on q becomes -4
# now backprop through q = x + y

dfdx = 1.0 * dfdq # dq/dx = 1. And the multiplication here is the chain rule!

- dfdy = 1.0 * dfdq # dq/dy = 1
```

Backpropagation (recursive chain rule)

Can be computed during forward pass

The gate receives this during backprop

Dropout

Dropout: A simple way to prevent neural networks from overfitting

[Srivastava JMLR 2014]

Intuition: successful conspiracies

- 50 people planning a conspiracy
- Strategy A: plan a big conspiracy involving 50 people
 - Likely to fail. 50 people need to play their parts correctly.
- Strategy B: plan 10 conspiracies each involving 5 people
 - Likely to succeed!

Dropout

Main Idea: approximately combining exponentially many different neural network architectures efficiently

Model	Top-1 (val)	Top-5 (val)	$\begin{array}{c} \mathbf{Top-5} \\ (\mathbf{test}) \end{array}$
SVM on Fisher Vectors of Dense SIFT and Color Statistics	8	-	27.3
Avg of classifiers over FVs of SIFT, LBP, GIST and CSIFT	-	920	26.2
Conv Net + dropout (Krizhevsky et al., 2012)	40.7	18.2	=
Avg of 5 Conv Nets + dropout (Krizhevsky et al., 2012)	38.1	16.4	16.4

Dropout: A simple way to prevent neural networks from overfitting

[Srivastava JMLR 2014]

Table 6: Results on the ILSVRC-2012 validation/test set.

Data Augmentation

- Manually created training data is expensive/overfitting
- Create virtual training samples
 - Horizontal flip
 - Random crop
 - Color casting
 - Contrast/Brightnessenhancement
 - Geometric distortion*

Deep Image [Wu et al. 2015]

Batch Normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
           Parameters to be learned: \gamma, \beta
Output: \{y_i = BN_{\gamma,\beta}(x_i)\}
                                                    // mini-batch mean
                                                // mini-batch variance
                                                              // normalize
    y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)
                                                        // scale and shift
```

Main Idea: Allow for stochastic gradient descent within computational limits, since most GPUs can handle more than one but less than all of the training data (i.e., m ~= 2-32)

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [loffe and Szegedy 2015]

Understanding and Visualizing CNNs

- We've trained our CNN
- How do we know what's going on inside?
- Find images that maximize some class scores
- Individual neuron activation

Individual Neuron Activation

RCNN [Girshick et al. CVPR 2014]

Individual Neuron Activation

RCNN [Girshick et al. CVPR 2014]

Individual Neuron Activation

RCNN [Girshick et al. CVPR 2014]

Map activation back to the input pixel space

 What input pattern originally caused a given activation in the feature maps?

Layer 1

Layer 2

Layer 3

Layer 4 and 5

Network Dissection

Things to remember

- Convolutional neural networks
 - A cascade of conv + ReLU + pool
 - Automatic feature learning
 - Numerous architectures
 - Tricks for training CNNs
- Visualizing CNNs
 - Activation mapping
 - Dissection

Resources

- http://deeplearning.net/
 - Hub to many other deep learning resources
- https://github.com/ChristosChristofidis/awesome-deeplearning
 - A resource collection deep learning
- https://github.com/kjw0612/awesome-deep-vision
 - A resource collection deep learning for computer vision
- http://cs231n.stanford.edu/syllabus.html
 - Nice course on CNN for visual recognition

Additional Slides Implementation Details/Errata

activation map

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7x7 input (spatially) assume 3x3 filter applied with stride 3?

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

Output size: (N - F) / stride + 1

e.g.
$$N = 7$$
, $F = 3$:
stride $1 \Rightarrow (7 - 3)/1 + 1 = 5$
stride $2 \Rightarrow (7 - 3)/2 + 1 = 3$
stride $3 \Rightarrow (7 - 3)/3 + 1 = 2.33 \otimes$

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Common settings:

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

- K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

$$=>32x32x10=10240$$

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

Example: CONV layer in Torch

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.

SpatialConvolution

```
module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])
```

Applies a 2D convolution over an input image composed of several input planes. The input tensor in forward(input) is expected to be a 3D tensor (nInputPlane x height x width).

The parameters are the following:

- nInputPlane: The number of expected input planes in the image given into forward().
- noutputPlane: The number of output planes the convolution layer will produce.
- . kw : The kernel width of the convolution
- кн : The kernel height of the convolution
- dw: The step of the convolution in the width dimension. Default is 1.
- ан: The step of the convolution in the height dimension. Default is 1.
- padw: The additional zeros added per width to the input planes. Default is 0, a good number is (kw-1)/2.
- радн: The additional zeros added per height to the input planes. Default is радw, a good number is (кн-1)/2.

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up to the user to add proper padding in images.

If the input image is a 3D tensor $nInputPlane \times height \times width$, the output image size will be $nOutputPlane \times oheight \times owidth$ where

```
owidth = floor((width + 2*padW - kW) / dW + 1)
oheight = floor((height + 2*padH - kH) / dH + 1)
```


- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - \circ their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$O_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Common settings:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
 - their spatial extent F,
 - \circ the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$O_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

$$F = 2$$
, $S = 2$
 $F = 3$, $S = 2$

