

# LEMBAR KERJA 3 UJI HIPOTESIS 1 – ONE SAMPLE Z-TEST PROGRAM STUDI S1 INFORMATIKA UNIVERSITAS DIPONEGORO

|       | Oleh: |
|-------|-------|
| Nama  | :     |
| NIM   | :     |
| Kelas | :     |

Untuk bisa mengakses lembar kerja ini, buka link berikut:

https://s.id/jCUIs

#### **Aturan Umum:**

- Print Lembar Kerja ini
- Kerjakan menggunakan tulisan tangan untuk setiap item pertanyaan berikut ini
- Kumpulkan Lembar Kerja ini pada pertemuan selanjutnya disertai dengan pengumpulan file kode program dengan nama file "LK3\_Nim\_NamaDepan.ipynb" ke email dari pengampu <a href="r.kusumaningrum81@gmail.com">r.kusumaningrum81@gmail.com</a> (Dosen Pengampu: Dr. Retno Kusumaningrum, S.Si., M.Kom.) atau <a href="sandyk@lecturer.undip.ac.id">sandyk@lecturer.undip.ac.id</a> (Dosen Pengampu: Sandy Kurniawan, S.Kom., M.Kom.)

#### **Aturan Penulisan Kode Program:**

• Gunakan Google Collaboratory untuk mengerjakan lembar kerja terkait.

#### Soal 1

Buatlah data simulasi berupa 100 kali lemparan dadu yang tidak adil, dimana angka 6 memiliki kemungkinan 2x lebih besar untuk muncul pada setiap lemparan. Gunakan Z-Test untuk mengetahui apakah simulasi lemparan dadu tersebut kemungkinan besar berasal dari dadu yang adil, jika diketahui rata-rata lemparan dadu yang diharapkan adalah 3.5?

## Langkah #1: Import Z-Test function dari statsmodel library.

| Python | from statsmodels.stats.weightstats import ztest    |  |
|--------|----------------------------------------------------|--|
| Code   | Tiom Statsmoders. Stats. werghtstats import 2 test |  |

## <u>Langkah #2:</u> Buat simulasi data 100 kali lemparan dadu, dimana angka 6 memiliki 2x kemungkinan lebih sering muncul dibandingkan angka-angka lainnya

```
Python
Code

import random
import pandas as pd

# Simulasi 100x lemparan dadu, angka 6 lebih sering muncul 2x
simulasi = []
for i in range(100):
    lemparan = random.choice([1, 2, 3, 4, 5, 6, 6])
    d = {"lemparan:": lemparan}
    simulasi.append(d)

# Convert data simulasi ke dalam data frame
df = pd.DataFrame(simulasi)
```

Jika ada yang salah dengan code tersebut, maka seharusnya:



#### Langkah #3: Menampilkan hasil data simulasi

| Python | df |
|--------|----|
| Code   |    |

<u>Langkah #4:</u> Buat simulasi data 100 kali lemparan dadu, dimana angka 6 memiliki 2x kemungkinan lebih sering muncul dibandingkan angka-angka lainnya

```
# Menerapkan one-sample Z-test
Python
Code
           # Langkah 1: Mendefinisikan Hipotesis Nol dan Hipotesis Alternatif
            # HO:Simulasi mungkin berasal dari dadu yang adil
           # H1:Simulasi kemungkinan tidak berasal dari dadu yang adil
            # Langkah 2 dan 3: Menghitung Nilai Z-Test dan p-Value
           z test, p value = ztest(df["lemparan"], value=3.5)
           # Print the results
           print("Z-Test:", z_test)
           print("P-value:", p_value)
            # Langkah 4: Tarik Kesimpulan
           alpha = 0.05 # Significance level
           if p value < alpha:</pre>
               print("HO Ditolak: Simulasi kemungkinan tidak berasal dari dadu yang adil.")
               print("HO Diterima: Simulasi mungkin berasal dari dadu yang adil.")
```

## Bagaimana output dari Langkah 4 tersebut?



## Langkah #5: Simulasikan kembali data dan lakukan Z-Test kembali!

| Z-Test =     | 1.4448587434894375                                         |
|--------------|------------------------------------------------------------|
| p-Value =    | 0.14849756676362552                                        |
| Kesimpulan : | H0 Diterima: Simulasi mungkin berasal dari dadu yang adil. |

## Langkah #6: Simulasikan kembali data dan lakukan Z-Test kembali!

| Z-Test =     | Z-Test: 2.354525203448743                                           |  |  |  |
|--------------|---------------------------------------------------------------------|--|--|--|
| p-Value =    | P-value: 0.018546385952984395                                       |  |  |  |
| Kesimpulan : | H0 Ditolak: Simulasi kemungkinan tidak berasal dari dadu yang adil. |  |  |  |

## Langkah #7: Simulasikan kembali data dan lakukan Z-Test kembali!

| Z-Test =     | Z-Test: 1.669851941304266                                  |
|--------------|------------------------------------------------------------|
| p-Value =    | P-value: 0.09494866077996321                               |
| Kesimpulan : | H0 Diterima: Simulasi mungkin berasal dari dadu yang adil. |

| Langkah #8: Tuliskan kesimpulan anda dari beberapa kali simulasi yang anda lakukan! |                                                                                     |  |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
|                                                                                     |                                                                                     |  |  |  |
|                                                                                     |                                                                                     |  |  |  |
|                                                                                     |                                                                                     |  |  |  |
| Langkah #9                                                                          | : Untuk kondisi yang sama buat data simulasi lebih sedikit sebesar 50 data simulasi |  |  |  |
| Python<br>Code                                                                      |                                                                                     |  |  |  |
|                                                                                     |                                                                                     |  |  |  |
|                                                                                     |                                                                                     |  |  |  |
|                                                                                     |                                                                                     |  |  |  |
|                                                                                     |                                                                                     |  |  |  |

## Langkah #10: Terapkan Z-Test dan tuliskan hasilnya!

| Z-Test =     | Z-Test: 4.429796434002417                                           |
|--------------|---------------------------------------------------------------------|
| p-Value =    | P-value: 9.432207968011726e-06                                      |
| Kesimpulan : | H0 Ditolak: Simulasi kemungkinan tidak berasal dari dadu yang adil. |

## Langkah #11: Simulasikan kembali data dan lakukan Z-Test kembali!

| Z-Test =     | Z-Test: 4.093018374717378                                           |
|--------------|---------------------------------------------------------------------|
| p-Value =    | P-value: 4.257939644378193e-05                                      |
| Kesimpulan : | H0 Ditolak: Simulasi kemungkinan tidak berasal dari dadu yang adil. |

## Langkah #12: Simulasikan kembali data dan lakukan Z-Test kembali!

| Z-Test =     | Z-Test: 1.389368025920555                                  |
|--------------|------------------------------------------------------------|
| p-Value =    | P-value: 0.16472086791735963                               |
| Kesimpulan : | H0 Diterima: Simulasi mungkin berasal dari dadu yang adil. |

## Langkah #13: Simulasikan kembali data dan lakukan Z-Test kembali!

| Z-Test =     | Z-Test: 1.7365115354363712                                 |
|--------------|------------------------------------------------------------|
| p-Value =    | P-value: 0.08247342649711259                               |
| Kesimpulan : | H0 Diterima: Simulasi mungkin berasal dari dadu yang adil. |

<u>Langkah #14:</u> Untuk kondisi yang sama buat data simulasi lebih sedikit sebesar 10.000 data simulasi

| Python<br>Code |  |  |
|----------------|--|--|
| Code           |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |

## Langkah #15: Terapkan Z-Test dan tuliskan hasilnya!

| Z-Test =     | Z-Test: 17.447511755033446                                          |
|--------------|---------------------------------------------------------------------|
| p-Value =    | P-value: 3.595583449726953e-68                                      |
| Kesimpulan : | H0 Ditolak: Simulasi kemungkinan tidak berasal dari dadu yang adil. |

## Langkah #16: Simulasikan kembali data dan lakukan Z-Test kembali!

| Z-Test =     | Z-Test: 22.17755151793381                                           |
|--------------|---------------------------------------------------------------------|
| p-Value =    | P-value: 5.657514154326901e-109                                     |
| Kesimpulan : | H0 Ditolak: Simulasi kemungkinan tidak berasal dari dadu yang adil. |

## Langkah #17: Simulasikan kembali data dan lakukan Z-Test kembali!

| Z-Test =     | Z-Test: 22.17755151793381                                           |
|--------------|---------------------------------------------------------------------|
| p-Value =    | P-value: 5.657514154326901e-109                                     |
| Kesimpulan : | H0 Ditolak: Simulasi kemungkinan tidak berasal dari dadu yang adil. |

## Langkah #18: Simulasikan kembali data dan lakukan Z-Test kembali!

| Z-Test =     | Z-Test: 20.014351820092177                                          |
|--------------|---------------------------------------------------------------------|
| p-Value =    | P-value: 4.129729478261329e-89                                      |
| Kesimpulan : | H0 Ditolak: Simulasi kemungkinan tidak berasal dari dadu yang adil. |

Langkah #19: Tuliskan kesimpulan anda dengan mengubah perubahan jumlah data simulasi dan setiap pengulangan proses simulasi!

| L |  |  |
|---|--|--|
|   |  |  |
|   |  |  |