CMPSC 464: Introduction to the Theory of Computation

(Date: 10/12/2022)

Recitation #6 Solution

Instructor: Dr. Young Kun Ko

TAs:

Problem 1

HW 3 problem.

Problem 2

- M = "On input $\langle a, b, c, p \rangle$, where $a, b, c, p \in \mathbb{N}$:
 - 1. $r \leftarrow 1$.
 - 2. Let $b = (b_1 \cdots b_k)_2$, where $b_i \in \{0, 1\}$, for $i = 1, 2, \cdots k$.
 - 3. For $i = 1, \dots k$:

If $b_i \equiv 0$: $r \leftarrow (r^2\%p)$. Else As tenment Project Exam Help 4. If $r \equiv c \pmod{p}$, accept. O.w., reject."

Proof of correctness: Notice that if $a \not\equiv r \pmod{p}$, then $a^2 \equiv r^2 \pmod{p}$. We repeatedly use this property. If $b_i = 0$, we just shift the the exponent to the right and multiply everything with a. This because:

$$\mathbf{W} = \begin{bmatrix} a^{(10)} & = (a^{(1)})^2 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} a^{(1)} & -1 \\ -1 & -1$$

Running time: The loop runs for k iterations and in each iteration we do poly-time operation. Therefore M decides MODEXP in polynomial time. Hence $MODEXP \in \mathcal{P}$.