Scientific Computing for Biologists Data as Vectors

Instructor: Paul M. Magwene

06 September 2011

Overview of Lecture

- Vector Geometry
 - Vectors are directed line segments
 - Vector length
- Vector Arithmetic
 - Addition, subtraction
 - Scalar multiplication
 - Linear combinations of vectors
 - Dot product and projection
- Vector representations of multivariate data
 - Variable space/Subject space representations
 - Mean as projection in subject space
 - Bivariate regression in geometric terms
 - Difference in group means as a regression problem

Hands-on Session

- Vector operations in R and Python
- Writing functions in R and Python
- Visualizing univariate distributions on R
- Linear regression and t-tests in R

Vector Geometry

Vectors are directed line segments.

All of the figures and algebraic formulas I show you apply to n-dimensional vectors.

Vector Geometry

Vectors have direction and length:

$$\vec{x} = [x_1, x_2]' = [2, 3]'; \ |\vec{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Often starting point is ignored, in which case $\vec{x} = \vec{y}$.

Scalar Multiplication of a Vector

Let k be a scalar.

$$k\vec{x} = \begin{bmatrix} kx_1 \\ kx_2 \\ \vdots \\ kx_n \end{bmatrix}$$

$$\vec{x} = [2, 1]'; \ 3\vec{x} = [6, 3]'.$$

Vector Addition

Let
$$\vec{x} = [2, 1]'; \ \vec{y} = [1, 3]'$$

$$\vec{z} = \vec{x} + \vec{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

Addition follows the 'head-to-tail' rule.

Vector Subtraction

Let
$$\vec{x} = [2, 1]'; \ \vec{y} = [1, 3]'$$

$$\vec{z} = \vec{x} - \vec{y} = \begin{bmatrix} x_1 - y_1 \\ x_2 - y_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Follow the addition rule for $-1\vec{y}$.

Linear Combinations of Vectors

A linear combination of vectors is of the form $z = b_1 \vec{x} + b_2 \vec{y}$

$$\vec{z} = 3\vec{x} - 0.5\vec{y} = 3 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 0.5 \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Dot Product

The dot (inner) product of two vectors, $\vec{x} \cdot \vec{y}$ is a scalar.

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$
$$= |\vec{x}| |\vec{y}| \cos \theta$$

where θ is the angle (in radians) between \vec{x} and \vec{y}

$$\vec{x} = [3, 2]', \vec{y} = [1, 3]'; \ \vec{x} \cdot \vec{y} = \sqrt{13}\sqrt{10}\cos\theta = 9$$

Useful Geometric Quantities as Dot Product

Length:

$$|\vec{x}|^2 = \vec{x} \cdot \vec{x} = x_1^2 + x_2^2 + \dots + x_n^2$$

 $|\vec{y}|^2 = \vec{y} \cdot \vec{y}$

Distance:

$$|\vec{x} - \vec{y}|^2 = \vec{x} \cdot \vec{x} + \vec{y} \cdot \vec{y} - 2\vec{x} \cdot \vec{y}$$

Angle:

$$\cos\theta = \vec{x} \cdot \vec{y} / (|x||y|)$$

Dot Product Properties

Some additional properties of the dot product that are useful to know:

$$\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$$
 (commutative)
 $\vec{x} \cdot (\vec{y} + \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$ (distributive)
 $(k\vec{x}) \cdot \vec{y} = \vec{x} \cdot (k\vec{y}) = k(\vec{x} \cdot \vec{y})$ where k is a scalar $\vec{x} \cdot \vec{y} = 0$ iff \vec{x} and \vec{y} are orthogonal

Vector Projection

The projection of \vec{y} onto \vec{x} , $P_{\vec{x}}(\vec{y})$, is the vector obtained by placing \vec{y} and \vec{x} tail to tail and dropping a line, perpendicular to \vec{x} , from the head of \vec{y} onto the line defined by \vec{x} .

$$P_{\vec{x}}(\vec{y}) = \left(\frac{\vec{x} \cdot \vec{y}}{|\vec{x}|}\right) \frac{\vec{x}}{|\vec{x}|} = \left(\frac{\vec{x} \cdot \vec{y}}{|\vec{x}|^2}\right) \vec{x}$$

The component of \vec{y} in \vec{x} , $C_{\vec{x}}(\vec{y})$, is the length of $P_{\vec{x}}(\vec{y})$.

$$C_{\vec{x}}(\vec{y}) = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}|} = |\vec{y}| \cos \theta$$

Vector Projection II

 \vec{y} can be decomposed into a a vector parallel to \vec{x} , $\hat{y} = P_{\vec{x}}(\vec{y})$, and a vector perpendicular to \vec{x} , \hat{y}_{\perp} .

$$\vec{y} = \hat{y} + \hat{y}_{\perp}$$

- \widehat{y}_{\perp} is orthogonal to \widehat{y} and \vec{x} .
- \hat{y} is the closest vector to \vec{y} in the subspace defined by \vec{x}

Vector Geometry of Simple Statistics

Variable Space Representation of a Data Set

Consider a data set in which we've measured variables $\mathbf{X} = X_1, X_2, \dots, X_p$, on a set of subjects (objects) a_1, \dots, a_n .

Such data is most often represented by drawing the objects as points in space of dimension p. This is the *variable space representation* of the data.

Subject Space Representation of a Data Set

An alternate representation is to consider the variables in the space of the subjects. This is the *subject space* representation.

trickier to visualize because high dimensional

How then do we come up with a useful representation of variables in subject space?

- Any pair of non-parallel vectors (of arbitrary dimension) defines a plane.
- Let the variables be represented by centered vectors
 - lengths of vectors are proportional to standard deviation
 - angle between vectors represents association or similarity

Geometry of the Mean in Subject Space

The mean, as you know, is the 'optimal' (in a least square sense) single number summary of a variable of interest.

- The mean, \bar{x} , minimizes the quantity $\sum_{i=1}^{n} (x_i \bar{x})^2$.
- The above can be written as $|\vec{\mathbf{x}} \vec{\mathbf{1}}\bar{\mathbf{x}}|^2$ where $\vec{\mathbf{1}} = [1, 1, \dots, 1]'$
- We are looking, therefore, for the scalar multiple, \bar{x} , of the unit vector that minimizes $|\vec{x} \vec{1}\bar{x}|^2$

Geometry of the Mean in Subject Space II

Geometric derivation of the sample mean:

Geometry of the Mean in Subject Space III

Recall that:

$$P_{\vec{\mathbf{1}}}(\vec{\mathbf{x}}) = \vec{\mathbf{1}}\bar{x} \text{ for some } \bar{x}$$
 (1)

$$(\vec{\mathbf{x}} - P_{\vec{\mathbf{1}}}(\vec{\mathbf{x}})) \cdot \vec{\mathbf{1}} = 0 \tag{2}$$

Substituting (1) into (2):

$$(\vec{\mathbf{x}} - \vec{\mathbf{1}}\bar{\mathbf{x}}) \cdot \vec{\mathbf{1}} = 0 \tag{3}$$

$$\vec{\mathbf{x}} \cdot \vec{\mathbf{1}} = \bar{\mathbf{x}} (\vec{\mathbf{1}} \cdot \vec{\mathbf{1}}) \tag{4}$$

Expanding (4):

$$x_1 + x_2 + \cdots + x_n = n\bar{x} \tag{5}$$

$$\sum x_i = n\bar{x} \tag{6}$$

$$\bar{x} = (1/n) \sum x_i \tag{7}$$

Geometry of Sample Variance

- $|\vec{e}|^2$ is the sum of squared errors (SSE).
- What is the dimensionality of \vec{e} ?
 - Because \vec{e} is orthogonal to the *n*-dimensional unit vector $\vec{\mathbf{I}}$, it must lie in a subpace of dimensionality n-1.
- The mean squared error (MSE) is the average error 'per dimension'

$$MSE = |\vec{e}|^2/(n-1)$$

$$= \frac{1}{(n-1)} \sum (x_i - \bar{x})^2 \leftarrow$$
 Sample Variance!

This is a nice geometric demonstration of why the degrees of freedom of the sample variance is n-1.

Correlation in Vector Geometric Terms

Let X and Y be mean centered variables, and let \vec{x} and \vec{y} be their corresponding vector representations in subject space.

$$cor(X, Y) = r_{XY} = cos \theta = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|}$$

Bivariate Regression as Projection

The standard bivariate regression equation relating one observed variable X (the predictor) to another observed variable of interest, Y (the outcome) is usually written as:

$$\widehat{Y} = a + bX$$
.

where \widehat{Y} is the predicted value of Y and a and b are scalar values chosen to minimize $|Y - \widehat{Y}|$.

Let's express this in vector terms, and work with mean-centered vectors so the equation becomes:

$$\vec{\hat{y}} = b\vec{x}$$

See Wickens Chapt 3 for the general derivation for uncentered variables.

Derivation: Bivariate Regression as Projection I

Regression equation for mean-centered vectors: $\vec{\hat{y}} = b\vec{x}$

- Our goal is to choose the scalar b such that the error vector $\vec{e} = \vec{y} \vec{y}$ is as small as possible.
- We've already seen this problem when we derived the mean. We're trying to solve for *b* in the equation:

$$(\vec{y} - b\vec{x}) \cdot \vec{x} = 0$$
$$\vec{x} \cdot \vec{y} = b(\vec{x} \cdot \vec{x})$$

Solving for b we get:

$$b = \frac{\vec{x} \cdot \vec{y}}{(\vec{x} \cdot \vec{x})} = \frac{\vec{x} \cdot \vec{y}}{|\vec{x}|^2}$$

Derivation: Bivariate Regression as Projection II

■ We can also rewrite $b = (\vec{x} \cdot \vec{y})/|\vec{x}|^2$ as

$$b = \frac{|x||y|\cos\theta}{|x|^2} = \cos\theta \frac{|y|}{|x|} = r_{XY} \frac{|y|}{|x|}$$

Geometry of Bivariate Regression

Geometric interpretation of regression as projection:

$$\vec{\hat{y}} = b\vec{x}$$

$$b = |x||y|\cos\theta/|x|^2$$

= \cos \theta(|y|/|x|)
= $r_{XY}(|y|/|x|)$

Bivariate Regression, Goodness of Fit

How well does our prediction agree with our outcome?

■ Measure the angle between $\vec{\hat{y}}$ and \vec{y} :

$$R = \cos \theta_{\vec{y}, \vec{\hat{y}}} = \frac{|\vec{\hat{y}}|}{|\vec{y}|}$$

- In the single-predictor case $R = r_{XY}$, but this is not generally true when we have multiple predictors.
- Note that $|\vec{y}|$ can be expressed as follows:

$$|\vec{\hat{y}}|^2 + |\vec{e}|^2 = |\vec{y}|^2$$

 $SS_{regression} + SS_{residual} = SS_{total}$

■ With simple substitution we can show that:

$$SS_{regression} = R^2 SS_{total}$$

 $SS_{residual} = (1 - R^2) SS_{total}$

Geometry of Goodness of Fit

Geometric interpretation of regression goodness-of-fit:

Two-group ANOVA as Regression

We can also use a geometric perspective to test whether the mean of a variable differs between two groups of subjects.

- Setup a 'dummy variable' as the predictor X_g . We assign all subjects in group 1 the value 1 and all subjects in group 2 the value -1 on the dummy variable. We then regress the variable of interest, Y, on X_g .
- When the means are different in the two groups, X_g will be a good predictor of the variable of interest, hence \vec{y} and $\vec{x_g}$ will have a small angle between them.
- When the means in the two groups are similar, the dummy variable will not be a good predictor. Hence the angle between \vec{y} and $\vec{x_g}$ will be large.

