

What is Arduino?

- It's an open source electronics prototyping platform:
 - Open source: resources that can be used, redistributed or rewritten free of charge, often software or hardware.
 - Electronics: technology which makes use of the controlled motion of electrons through different media.
 - Prototyping: an original form that can serve as a basis or standard for other things.
 - Platform: hardware architecture with software framework on which other software can run.

Basic Arduino program- LED

```
int d1 = 1;
int d2 = 2:
int tipkalo = 3;
void setup() {
 // put your setup code here, to run once:
 pinMode(d1, OUTPUT);
 pinMode(d2, OUTPUT);
 pinMode(tipkalo, INPUT);
void loop() {
 // put your main code here, to run repeatedly:
 int a = digitalRead(tipkalo);
 if (a == HIGH) {
    stisnuto();
 else {
    otpusteno();
```

```
void stisnuto() {
  digitalWrite(d1, HIGH);
  digitalWrite(d2, LOW);
  delay(1000);
  digitalWrite(d2, HIGH);
  digitalWrite(d1, LOW);
  delay(1000);
void otpusteno()
  digitalWrite(d1, HIGH);
  digitalWrite(d2, HIGH);
  delay(50);
  digitalWrite(d2, LOW);
  digitalWrite(d1, LOW);
  delay(50);
```

Explanation of the code-declaring pins

```
int d1 = 1;
int d2 = 2;
int tipkalo = 3;
```

 We determine and declare pins which we will be using in our program

Input/Output

```
void setup() {
  // put your setup code here, to run once:
  pinMode(d1, OUTPUT);
  pinMode(d2, OUTPUT);
  pinMode(tipkalo, INPUT);
}
```

 In the void setup we determine our Inputs and Outputs

 We chose for d1 and d2 to be the outputs while we chose "tipkalo" to be the input

Void loop & IF-ELSE loop

```
void loop() {
  // put your main code here, to run repeatedly:
  int a = digitalRead(tipkalo);
  if (a == HIGH) {
    stisnuto();
  }
  else {
    otpusteno();
}
```

- In the void loop we write the program which we want to run forever, in other words infinitely(in loops).
- In the code we are checking if the "tipkalo" is pressed or not.
- After that, we have a IF-ELSE loop with 2 subprograms, one for the case in which "tipkalo" is pressed and one for the case in which "tipkalo" is not pressed.

```
void stisnuto() {
 digitalWrite(d1, HIGH);
  digitalWrite(d2, LOW);
 delay(1000);
  digitalWrite(d2, HIGH);
  digitalWrite(d1, LOW);
  delay(1000);
```

- If the "tipkalo" is pressed the LEDs will alternately light up.
- The delay is that which makes the LED blink, it puts the LED in a state of doing nothing and hence the light turns off making the illusion of blinking. We chose the delay to be 1000 microseconds, in other words 1 second.

```
void otpusteno()
 digitalWrite(d1, HIGH);
 digitalWrite(d2, HIGH);
  delay(50);
 digitalWrite(d2, LOW);
 digitalWrite(d1, LOW);
  delay(50);
```

 If the "tipkalo" is not pressed both LEDs will blink at the same time

 They will blink in the span of 50ms.

Connecting example

•In the program "Fritzing", you can simulate how the physical connecting of the Arduino components will look like.

Project X (Motors controlled by sensors)

Made of:

- 1) H-bridge dual motor control
- 2)Arduino UNO board
- 3) Ultrasonic sensor
- 4) Electromotors
- 5)Breadbord

Parts - H-bridge dual motor control

H - Bridge dual motor control serves as an aid in the process of connecting so as not to have to connect transistors, resistors and capacitors. (It replaces a large amout of breadboards)

Parts – Arduino UNO board

Arduino UNO is a microcontroller which connects a PC to the outside world.

Parts – Ultrasonic sensor

A ultrasonic sensors purpose is to detect obstacles and to control the direction of wheels if a obstacle is detected.

Parts - Electromotor

Electromotors serve for moving and changing the direction of wheels.

Parts - Breadboard

Breadboard is a extension which is used when more pins are needed.

Electromotor controlled by sensors

```
int pwm1 = 2;
int pwm2 = 3;
int dir1 = 8;
int dir2 = 9;
int trigger = 6;
int echo = 7;
int pistanje = 30;
int kocenje = 20;
int buzzer = 11:
void setup() {
 // put your setup code here, to run once:
 pinMode(pwm1, OUTPUT);
 pinMode(pwm2, OUTPUT);
 pinMode(dir1, OUTPUT);
 pinMode(dir2, OUTPUT);
 Serial.begin (9600);
 pinMode(trigger, OUTPUT);
 pinMode(echo, INPUT);
```

- We determine and declare the pins that will be used during the program
- Determine inputs and outputs.
- Trigger ultrasonicsensor
- Echo Beep

Voidloop

```
void loop() {
   // put your main code here, to run repeatedly:
   digitalWrite(trigger, LOW);
   delayMicroseconds(2);

   digitalWrite(trigger, HIGH);
   delayMicroseconds(10);

   digitalWrite(trigger, LOW);
   int duration = pulseIn(echo, HIGH);
   //Calculate the distance (in cm) based on the speed of sound.
   int distance = duration / 58.82;
   Serial.println(distance);
```

The main code that will constantly repeat

 It serves to activate ultrasonic sensors and sound at a certain distance from obstacles.

IF ELSE

```
if(distance>pistanje and distance>kocenje){
  naprijed();
else if (distance <= pistanje and distance > kocenje) {
  ptc();
  naprijed();
else if(distance<=kocenje){</pre>
  stani();
  tisina();
```

IF-ELSE loop determines the order of execution of seven subprograms which are used to:

- -Move forward
- -Move backward
- -Break
- -Silence (Sound off)
- -Turn left
- -Turn right

```
void naprijed() {
  digitalWrite(dir1, HIGH);
  analogWrite(pwm1, 255);
  digitalWrite(dir2, LOW);
  analogWrite(pwm2, 255);
}
```

1.) The first subroutine is used to start the engine in the first (and only) gear

```
void stani() {
  digitalWrite(dir1, LOW);
  analogWrite(pwm1, 0);
  digitalWrite(dir2, HIGH);
  analogWrite(pwm2, 0);
}
```

2. subroutine is used to stop the engine

```
void stani() {
  digitalWrite(dir1, LOW);
  analogWrite(pwm1, 0);
  digitalWrite(dir2, HIGH);
  analogWrite(pwm2, 0);
```

3. Used for stopping the motor

```
void ptc() {
  tone (buzzer, 1000);
  delay(100);
  noTone (buzzer);
  delay(100);
void tisina() {
  noTone (buzzer);
```

4.) Used for repeated activation of sound5.) For silence

```
void desno() {
  digitalWrite(dir1, HIGH);
  analogWrite(pwm1, 255);
  digitalWrite(dir2, HIGH);
  analogWrite(pwm2,255);
void lijevo(){
  digitalWrite(dir1,LOW);
  analogWrite (pwm1, 255);
  digitalWrite (dir2, LOW);
  analogWrite(pwm2,255);
```

6. & 7. Subroutine used to turn to the left or to the right