Travelers Case Competition

A Kangaroo Auto Insurance Company Modeling Problem

Xin (Amy) Ni Jun Sun Zhong (Verse) He Julie Shih

Objective: build a high accuracy predictive model and forecast the claim cost

Power: 1-2

Tweedie Distribution

300 - 150 -

Our Distribution

TRAVELERS

Compound Poisson Generalized Linear Model (CPGLM) with Tweedie

Our key variables are exposure, vehicle age.1, and agecat.1

There are four other variables we think could be useful.

Maximum Coverage &
Deductible

Claim History

Driving History (speeding tickets, etc)

We reconstructed a tweedie distribution.

Our theoretical basis: the Law of Large Numbers

Our assumption: three groups of drivers

Three Groups of Divers	Safe Driver	Normal Driver	Dangerous Driver 8%	
Claim Possibility	4%	6%		

Business Value

Choose Segmentation Variables

veh_value_bin	veh_body	veh_age	gender	area	agecat	Avg_monthly_cost	Count
0.6-0.9	HBACK	3	F	С	4	8.934837231	47
0.9-1.2	SEDAN	3	F	С	3	7.645400264	46
1.2-1.5	HBACK	2	F	С	4	153.1620101	46
0.6-0.9	SEDAN	4	F	С	4	117.1959183	45
1.2-1.5	HBACK	1	F	С	4	140.4875732	45
0.9-1.2	SEDAN	3	F	С	4	30.01457345	44
0.3-0.6	HBACK	4	F	С	4	9.328165426	43
0.3-0.6	HBACK	4	F	Α	4	30.02837979	42
1.2-1.5	SEDAN	3	F	С	4	83.70160116	41
0.3-0.6	SEDAN	4	F	С	4	14.67230575	37
0.9-1.2	HBACK	3	F	С	2	71.1220102	36
1.2-1.5	HBACK	2	F	С	2	8.458277035	36
1.2-1.5	SEDAN	3	F	В	4	30.24051351	36
0.9-1.2	HBACK	3	F	С	3	42.70048489	35

45239 observations in total.

Key variables from our model:

- Exposure
- Vehicle Age
- Agecat
- Area not that significant

Our target variable:

$$monthly cost = \frac{claimcst0}{(1 - exposure) * 12}$$

Assumption: the duration of each policy is one year

Area D has lowest Avg. claim cost while area F has the highest.

New Car

Key Variables

- Exposure
- Vehicle Age
- Agecat
- Area

Not New Car

The A to F represent different area. New car means the car in Veh age group 1.

Not New Car

The Avg. claim cost of new cars is lower than that of others.

New Car

Key Variables

- Exposure
- Vehicle Age
- Agecat
- Area

Highest Avg.claim cost vs. lowest Avg.claim cost

❖ Area F

❖ New Car

Area D

Appendix: Initial variables analysis

```
12.030 < 2e-16 ***
(Intercept)
                 4.550838
                            0.378296
veh_value
                 0.061599
                            0.064654
                                       0.953
                                              0.34073
                 1.040241
                            0.191415
                                       5.434 5.55e-08 ***
exposure
veh_body.BUS
                -0.274148
                            1.938056
                                      -0.141 0.88751
veh_body.CONVT -25.203052 270.264715
                                      -0.093
                                              0.92570
veh_body.COUPE
               0.617282
                            0.512558
                                       1.204
                                              0.22848
veh_body.HBACK 0.062010
                            0.251287
                                       0.247
                                              0.80509
                0.582772
veh_body.HDTOP
                            0.372184
                                       1.566
                                              0.11741
                            1.675582
                                      -0.567
                                              0.57094
veh_body.MCARA
                -0.949523
veh_body.MIBUS
                -0.032788
                            0.566677
                                      -0.058
                                              0.95386
                -0.356301
                            0.600310
                                      -0.594
                                              0.55283
veh_body.PANVN
                 0.077100
                            2.798439
                                       0.028
                                              0.97802
veh_body.RDSTR
veh_body.SEDAN
               0.150129
                            0.239812
                                       0.626
                                              0.53130
veh_body.STNWG
               0.001138
                            0.242296
                                       0.005
                                              0.99625
veh_body.TRUCK
                 0.203210
                            0.375793
                                       0.541
                                              0.58869
veh_body.UTE
                            0.223168
                       NA
                                          NA
                                                   NA
veh_age.1
                -0.585104
                            0.178980
                                      -3.269
                                              0.00108 **
veh_age. 2
                -0.136351
                            0.151462
                                      -0.900
                                              0.36801
veh_age.3
                -0.123507
                            0.115131
                                      -1.073
                                              0.28339
                            0.247040
veh_age.4
                       NA
                                          NA
                                                   NA
                -0.184545
                            0.251485
                                              0.46307
gender.F
                                      -0.734
                            0.241584
gender.M
                       NA
                                          NA
                                                   NA
                -0.425126
                            0.269297
                                      -1.579
                                              0.11443
area.A
area.B
                -0.319246
                            0.286641
                                      -1.114
                                              0.26540
                -0.428310
                            0.254831
                                      -1.681
                                              0.09282 .
area.C
                -0.491874
                            0.222485
                                      -2.211
                                              0.02706 *
area.D
                -0.542081
                            0.219602
                                      -2.468
                                              0.01358 *
area.E
                            0.220130
                                                   NA
area.F
                       NA
                                          NA
agecat.1
                 0.807305
                            0.240498
                                       3.357
                                              0.00079 ***
agecat. 2
                 0.586692
                            0.378296
                                       1.551
                                              0.12094
                            0.064654
                                       4.714 2.44e-06 ***
agecat.3
                 0.304782
                                       0.653 0.51403
agecat.4
                 0.124916
                            0.191415
agecat.5
                -0.185002
                            1.938056
                                      -0.095 0.92395
```