Cours de Machine Learning Classification non supervisée

M2 Informatique pour la Science des Données –2020-2021 Université Paris Saclay, D. Jeannel

ML.M2.ISD.Orsay@gmail.com

Sommaire

- Objectif et Notions de base
 - Distance
 - Dissimilarité
- Algorithmes
 - Méthode classique : K-means
 - Méthodes robustes : PAM, CLARA
- Méthodes de validation de classification
- Applications numériques

Objectif et notions de base

- Objectif: déterminer une partition dans un jeu de données i.e. identifier des groupes de données dont les caractéristiques sont similaires
 - Exemple : en marketing, comportement d'achats de clients
- Conditions d'utilisation
 - Variables quantitatives

- Algorithmes de classification
 - Méthodes des k-means
 - Objectif : déterminer k groups distincts parmi un jeu de données
 - Fonctionnement :
 - Etape o : fixer le nombre de classes a priori K
 - Etape 1 :sélectionner aléatoirement K points appelés centres de classes Gk
 - Etape 2 : jusqu'à convergence répéter les phases suivantes :
 - Allocation : affecter chaque point xi au centre de classes Gk le plus proche
 - Représentation : réactualiser les centres des classes
 Gk à partir des données attachées
 - Répéter jusqu'à ce que les centres de classes ne changent plus

Classification non supervisée : notions de base

- Objectif: déterminer une partition dans un jeu de données i.e. identifier des groupes de données dont les caractéristiques sont similaires
 - Exemple : en marketing, comportement d'achats de clients
- Conditions d'utilisation
 - Variables quantitatives

- Notions de distance
 - Distance Euclidienne

$$d(x_i, y_i) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

- Distance de Manhattan

$$d(x_i, y_i) = \sum_{i=1}^{n} |x_i - y_i|$$

NB : Distance euclidienne plus sensible aux valeurs aberrantes que distance de Manhattan

Classification non supervisée : notions de base

- Notions de dissimilarités
 - Dissimilarité de Pearson

$$d_{corr}(x_i,y_i) = 1 - corr(x_i,y_i)$$

Si 2 observations sont assez semblables (très différentes), dissimilarité tend vers zéro (1 respectivement)

- Dissimilarité de Spearman

$$d_{rank}(x_i, y_i) = 1 - corr(rank(x_i), rank(y_i))$$

- En pratique
 - Transformation des données brutes en données centrées réduites

$$x_i
ightarrow rac{x_i - ar{x}}{\sigma_x}$$
 Moyenne Écart-type

- Distance Euclidienne très usitée mais sensibilité forte aux valeurs aberrantes
- Dissimilarité de Spearman privilégiée
- Choix dépend des données et des problématiques :
 - Génétique : distance de Manhattan
 - Marketing : recherche de profils dissimilarité de Spearman

- Algorithmes de classification
 - Méthodes des k-means
 - Objectif : déterminer k groups distincts parmi un jeu de données
 - Condition : variables quantitatives
 - Fonctionnement:
 - Etape o : fixer le nombre de classes a priori K
 - Etape 1 :sélectionner aléatoirement K points appelés centres de classes Gk
 - Etape 2 : jusqu'à convergence répéter les phases suivantes :
 - Allocation : affecter chaque point xi au centre de classes Gk le plus proche
 - Représentation : réactualiser les centres des classes Gk à partir des données attachées
 - Répéter jusqu'à ce que les centres de classes ne changent plus

- Fonctionnement de l'algorithme
 - On fixe K = 3 le nombre de classes

Etape o : sélection aléatoire des centres de classes

Etape 1 : allocation des points aux centres de classes

Etape 1 : actualisation des centres de classes

- Critère de sélection du nombre de classes
 - Définition inertie :
 - distance au carré d'un point par rapport à un autre (définition statistique)

- Théorème de Huygens
 - Inertie totale d'un nuage (T) =
 inertie des centres de classes par rapport au centre du nuage (B = inertie inter classe)
 - + somme des inerties des points d'une classe par rapport à leur centre de classe Gk (W = inertie intra classe)

Inertie totale = Inertie inter - classes + Inertie intra - classe

$$T = B + W$$

$$\sum_{i=1}^{n} d^{2}(i,G) = \sum_{k=1}^{K} n_{k} d^{2}(G_{k},G) + \sum_{k=1}^{K} \sum_{i=1}^{n_{k}} d^{2}(i,G_{k})$$

Dispersion des barycentres conditionnels autour du barycentre global. Indicateur de séparabilité des classes.

Dispersion à l'intérieur de chaque groupe. Indicateur de compacité des classes.

- Critère de sélection du nombre de classes
 - En paratique sélection du nombre de classes de telle sorte que

Ratio B/T à maximiser

Minimiser ratio W/TEtape o : sélection aléatoire des centres de classes

 Sélection du nombre de classes par analyse graphique en représentant le ratio W/T en fonction du nombre de classes (ou le ratio B/W)

 Convergence rapide de l'algorithme mais sensible aux valeurs aberrantes (défaut)

- Idée de base :
 - réduire l'impact de la sensibilité des valeur aberrantes de l'algorithme k-means
 - Introduction d'une fonction objective dans la détermination des classes
 - → PAM (Partioning Arround Medoids)

- Vocabulaire :
 - Médoïde : individu représentatif d'une classe (différent du barycentre d'une classe)
 - Silhouette : indice de qualité de la partition obtenue (inertie intra-classe pour l'algorithme k-means)

- Déroulement en 3 phases
- 1. Phase INIT
 - Choix aléatoire des k médoïdes (k fixé)
- 2. Phase BUILD
 - Identification des nœuds ou éléments représentatifs (médoïdes)
 - Construction de la partition
- 3. Phase SWAP
 - Amélioration du choix des médoïdes

- Phase INIT
 - Choix aléatoire des médoïdes

- Phase BUILD
 - Identification
 des médoïdes et
 des groupes

IDENTIFICATION DES MEDOÏDES

Gain

$$G = \sum_{j} C_{j,i} = \sum_{j} \left(D(j) - d(j,i) \right)$$

D(j) distance de l'individu j à son ancienne médoïde d(j,j) distance de l'individu j à la médoïde i

Individu j affecté à la médoïde i si D(j) > d(j,i) (gain positif)

Choix des médoïdes

→ maximisation du gain

$$\max_{\mathbf{i}} \sum_{j} C_{j,\mathbf{i}}$$

Exemples

Position par rapport à la médoïde i1 :

D(j) < d(j,i1) → gain négatif.

Individu j affecté à son ancienne médoïde i1

Position par rapport à la médoïde i2 :

D(j) > d(j,i2) → gain positif.

Individu j affecté à la nouvelle médoïde i2.

- Phase SWAP
 - Amélioration des médoïdes

AMELIORATION CHOIX DES MEDOÏDES

Coût

$$C = \sum_{j} C_{j,i,h} = \sum_{j} \left(d(j,h) - d(j,i) \right)$$

d(j,h) distance de l'individu j à la médoïde h d(j,i) distance de l'individu j à la médoïde i

→ minimisation du coût

$$\min_{\mathbf{i},\,\mathbf{h}} \sum_{j} C_{j,i,h}$$

Changement de médoïde si coût négatif

Plusieurs cas de figures

Considération de couples de médoïdes (i,h) avec

- i médoïde i sélectionné ;
- et h nouvelle médoïde candidate

- Phase SWAP
 - Amélioration des médoïdes

EFFET CHANGEMENT DE MEDOÏDE i EN h

d(j,i) ou d(j,h) > n'importe quel individu du groupe j.

Pas avantageux pour l'individu j d'être lié à la médoïde h au lieu de i

Coût nul

d(j,h) < d(j,i)

Coût négatif

Changement médoïde i en h

d(j,h) < d(j,i)

Coût négatif

Avantage à remplacer la médoïde i par h.

d(j,h) > d(j,i)

Coût positif

Pas changement de médoïde

Critère de qualité de la partition obtenue

Calcul de paramètre sk

• pour tout individu : calcul de
$$\mathbf{s_i}$$
 $s_i = \frac{b_i - a_i}{\max(b_i, a_i)}$

distance moyenne de l' individu i à tous les individus de la classe dans laquelle i appartient (a_i)

- - - distance moyenne de l' individu à tous les individus de la classe la plus proche ($\mathbf{b_i}$)

• par classe : calcul de sk

 \rightarrow $\mathbf{s_k}$: moyenne des $\mathbf{s_i} \in \grave{a}$ la classe k

• pour l'ensemble des classes : calcul de SC

→ SC: moyenne des sk

SC	Interprétation
0,71-1	Une structure forte a été trouvée.
0,51-0,70	Une structure raisonnable a été trouvée
0,26-0,50	La structure de partition est faible.
≤0,25	Pas de structure substantielle n'a été détectée

- CLARA : Clustering LARge Applications
 - Algorithme adapté pour les grands jeux de données
- Basé sur l'algorithme PAM

Description de l'algorithme

Classification non supervisée : validation

- Méthodes de validation :
 - Test statistique de Hopkins
 - Construction:
 - Jeu de données D
 - Tirage d'observations de D (p1, p2, ..., pn)
 - Pour chaque pi, calcul de la distance la plus proche / aux autres points pj $x_i = dist(p_i, p_j)$
 - Calcul de la somme des distances mini des observations (p1,..., pn) :
 - Tirage d'observations uniformément selon la même variation des données D (q1, q2, ..., qn)
 - Pour chaque qi, calcul de la distance la plus proche / aux autres points qj
 - Calcul de la somme des distances mini des observations (q1,..., qn) :

$$y_i = dist(q_i,q_j)$$

- Calcul statistique de test H :
 - H proche de o → il existe
 une partition dans D

$$H = \frac{\sum\limits_{i=1}^n y_i}{\sum\limits_{i=1}^n x_i + \sum\limits_{i=1}^n y_i}$$

Ho : D uniformément distribué ⇔ pas de partition distincte

H1 : D non uniformément distribué, présence de segmentation

Classification non supervisée : validation

- Méthodes de validation :
 - Représentation graphique (algorithme VAT : Visual Assessment of cluster Tendency)
 - Etapes de calcul :
 - Calcul des dissimilarités des observations entre elles → matrice DM
 - Ordonnancement des observations les plus proches par dissimilarités
 matrice ODM
 - Représentation graphique de la matrice ODM

Figure 1. Example of how VAT image suggests cluster tendency by the number of dark blocks along diagonal

Nombre de blocks le long de la diagonale de la matrice ODM

Applications numériques

Algorithme k-means

Nombre de classes a posteriori

```
library(cluster)
# kmeans
set.seed(123)
km.res <- kmeans(df, 4, nstart = 25)
print(km.res)</pre>
```

Nombre de répétition de l'algorithme avec génération de points initiaux (sélection de la meilleure partition en fonction du critère de minimisation de la variance intra-classe

Algorithmes PAM et CLARA

Nombre de classes

```
library(cluster)
# PAM
pam.res <- pam(df, 2)
pam.res$medoids

# CLARA
clara.res <- clara(df, 2, samples = 50, pamLike = TRUE)
clara.res$medoids</pre>
```

Méthodes de validation

```
# Test de Hopkins
library(clustertend)
hopkins(df, n = nrow(df)-1)
# Matrice VAT
fviz_dist(dist(df), show_labels = FALSE).
```

Test de Hopkins

Matrice VAT