Data Structures and Algorithms

Tutorial 4. Solving recurrences

Today's topic is covered in detail in

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press 2009.

Foundations Introduction 3 The Role of Algorithms in Computing 5 Algorithms 5 Algorithms as a technology 11 Getting Started 16 Insertion sort 16 Analyzing algorithms 23 Designing algorithms 29 Growth of Functions 43 Asymptotic notation 43 Standard notations and common functions 53 Divide-and-Conquer 65 The maximum-subarray problem 68 Strassen's algorithm for matrix multiplication 75 The substitution method for solving recurrences 83 The recursion-tree method for solving recurrences 88 The master method for solving recurrences 93 Proof of the master theorem 97

Objectives

- Divide and Conquer
- Recurrences
- Solving recurrences: Substitution method
- Solving recurrences: Master method

Divide and Conquer

- 1. Divide
- 2. Conquer
- 3. Combine

$$T(n) = a \cdot T(n/b) + f(n)$$

Overall running time of a recursive function

Exercise: extracting recurrence relation

Exercise 4.1. Derive a recurrence to characterize the running time of the following recursive function:

```
SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, B)
  n = A.rows
   let C be a new n \times n matrix
  if n == 1
        c_{11} = a_{11} \cdot b_{11}
   else partition A, B, and C as in equations (4.9)
        C_{11} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{11})
             + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{21})
        C_{12} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{11}, B_{12})
             + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{12}, B_{22})
        C_{21} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{11})
8
             + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{21})
        C_{22} = \text{SQUARE-MATRIX-MULTIPLY-RECURSIVE}(A_{21}, B_{12})
             + SQUARE-MATRIX-MULTIPLY-RECURSIVE (A_{22}, B_{22})
   return C
```

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}, \tag{4.9}$$

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

Solution. We guess that $T(n) = O(n \log n)$.

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

Solution. We guess that $T(n) = O(n \log n)$. The substitution method requires us to prove that $T(n) \le c \cdot n \cdot \log n$ for an appropriate choice of c > 0.

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

Solution. We guess that $T(n) = O(n \log n)$. The substitution method requires us to prove that $T(n) \le c \cdot n \cdot \log n$ for an appropriate choice of c > 0.

Inductive hypothesis: for all m < n (including m = n/2) we have $T(m) \le c \cdot m \cdot \log m$.

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

Solution. We guess that $T(n) = O(n \log n)$. The substitution method requires us to prove that $T(n) \le c \cdot n \cdot \log n$ for an appropriate choice of c > 0. Inductive hypothesis: for all m < n (including m = n/2) we have $T(m) \le c \cdot m \cdot \log m$. So, T(n) =

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

Solution. We guess that $T(n) = O(n \log n)$. The substitution method requires us to prove that $T(n) \le c \cdot n \cdot \log n$ for an appropriate choice of c > 0. Inductive hypothesis: for all m < n (including m = n/2) we have $T(m) \le c \cdot m \cdot \log m$. So, T(n) = 2T(n/2) + n

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

Solution. We guess that $T(n) = O(n \log n)$. The substitution method requires us to prove that $T(n) \le c \cdot n \cdot \log n$ for an appropriate choice of c > 0. Inductive hypothesis: for all m < n (including m = n/2) we have $T(m) \le c \cdot m \cdot \log m$. So, $T(n) = 2T(n/2) + n < 2c \cdot n/2 \cdot \log (n/2) + n$

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

Solution. We guess that $T(n) = O(n \log n)$. The substitution method requires us to prove that $T(n) \le c \cdot n \cdot \log n$ for an appropriate choice of c > 0. Inductive hypothesis: for all m < n (including m = n/2) we have $T(m) \le c \cdot m \cdot \log m$. So, $T(n) = 2T(n/2) + n \le 2c \cdot n/2 \cdot \log (n/2) + n$ $= c \cdot n \cdot \log n - c \cdot n \cdot \log 2 + n$

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

Solution. We guess that $T(n) = O(n \log n)$. The substitution method requires us to prove that $T(n) \le c \cdot n \cdot \log n$ for an appropriate choice of c > 0. Inductive hypothesis: for all m < n (including m = n/2) we have $T(m) \le c \cdot m \cdot \log m$. So, $T(n) = 2T(n/2) + n \le 2c \cdot n/2 \cdot \log (n/2) + n$ $= c \cdot n \cdot \log n - c \cdot n \cdot \log 2 + n \le c \cdot n \cdot \log n - c \cdot n + n$

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

Solution. We guess that $T(n) = O(n \log n)$. The substitution method requires us to prove that $T(n) \le c \cdot n \cdot \log n$ for an appropriate choice of c > 0. Inductive hypothesis: for all m < n (including m = n/2) we have $T(m) \le c \cdot m \cdot \log m$. So, $T(n) = 2T(n/2) + n \le 2c \cdot n/2 \cdot \log (n/2) + n$ $= c \cdot n \cdot \log n - c \cdot n \cdot \log 2 + n \le c \cdot n \cdot \log n - c \cdot n + n \le c \cdot n \cdot \log n \text{ (when } c > 1).$

- 1. Guess the form of solution.
- 2. Use mathematical induction to show that the solution works.

Example. Determine upper bound on the recurrence

$$T(n) = 2T(n/2) + n$$

Solution. We guess that $T(n) = O(n \log n)$. The substitution method requires us to prove that $T(n) \le c \cdot n \cdot \log n$ for an appropriate choice of c > 0. Inductive hypothesis: for all m < n (including m = n/2) we have $T(m) \le c \cdot m \cdot \log m$. So, $T(n) = 2T(n/2) + n \le 2c \cdot n/2 \cdot \log (n/2) + n$ = $c \cdot n \cdot \log n - c \cdot n \cdot \log 2 + n \le c \cdot n \cdot \log n - c \cdot n + n \le c \cdot n \cdot \log n$ (when c > 1). To complete the proof, we need to check the boundary conditions (base of induction).

Exercise: substitution method

Exercise 4.2. Show that the solution of T(n) = T(n-1) + n is $O(n^2)$.

Exercise 4.3. (*) Solve the recurrence $T(n) = 3T(\sqrt{n}) + \log n$. Consider change of variables $m = \log n$. Your solution should be asymptotically tight. Do not worry whether values are integral.

Attendance

https://baam.duckdns.org

Solving recurrences: the master method

The master theorem is a recipe that is easy to use for many naturally occurring divide-and-conquer recurrences.

All you have to do is **memorize** 3 cases of the master theorem.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Solving recurrences: the master method

The master theorem is a recipe that is easy to use for many naturally occurring divide-and-conquer recurrences.

All you have to do is **memorize** 3 cases of the master theorem.

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Exercise: the master method

Exercise 4.4. Apply the master method to the following recurrences:

- 1. T(n) = 2T(n/4) + 1
- 2. $T(n) = 2T(n/4) + \sqrt{n}$
- 3. T(n) = 2T(n/4) + n
- 4. $T(n) = 2T(n/4) + n^2$

Exercise: the master method

Exercise 4.5. Can the master method be applied to the following recurrence?

$$T(n) = 4T(n/2) + n^2 \log n$$

Why or why not? Give an asymptotic upper bound for this recurrence.

Exercise 4.6. (*) Consider the regularity condition $a \cdot f(n/b) \le c \cdot f(n)$ for some constant c < 1, which is part of case 3 of the master theorem. Give an example of constants $a \ge 1$ and b > 1 and a function f(n) that satisfies all the conditions in case 3 of the master theorem **except** the regularity condition.

Summary

- Divide and Conquer
- Recurrences
- Solving recurrences: substitution method
- Solving recurrences: the master method

Summary

- Divide and Conquer
- Recurrences
- Solving recurrences: substitution method
- Solving recurrences: the master method

See you next week!