Druid for real-time analysis

Yann Esposito

7 Avril 2016

Abstract

Druid explained with high altitude point of view

Contents

1	Druid the Sales Pitch	4
2	Intro	4
	2.1 Experience	4
	2.2 Real Time?	4
	2.3 Demand	4
	2.4 Reality	5
3	Origin (PHP)	5
4	1st Refactoring (Node.js)	5
5	Return of Experience	6
6	Return of Experience	6
7	2nd Refactoring	6
8	2nd Refactoring (FTW!)	7
9	2nd Refactoring return of experience	8

10 Demo	8
11 Pre Considerations	8
11.1 Discovered vs Invented	8
11.2 In the End	8
12 Druid	8
12.1 Who?	8
12.2 Goal	9
12.3 Concepts	9
12.4 Key Features	9
12.5 Right for me?	9
13 High Level Architecture	9
13.1 Inspiration	9
13.2 Index / Immutability	9
13.3 Storage	10
13.4 Specialized Nodes	10
14 Druid vs X	10
14.1 Elasticsearch	10
14.2 Key/Value Stores (HBase/Cassandra/OpenTSDB)	10
14.3 Spark	10
14.4 SQL-on-Hadoop (Impala/Drill/Spark SQL/Presto)	10
15 Data	11
15.1 Concepts	11
16 Roll-up	11
16.1 Example	11
16.2 as SQL	11

17 Sha	arding	11
17.1	Segments	11
17.2	Core Data Structure	12
17.3	Dictionary	12
17.4	Columnn Data	12
17.5	Bitmaps	12
18 Dat	za	13
18.1	Indexing Data	13
18.2	Loading data	13
18.3	Querying the data	13
18.4	Columnar Storage	13
18.5	Index	13
18.6	Data Segments	13
18.7	Real-time ingestion	14
18.8	Batch Ingestion	14
18.9	Real-time Ingestion	14
19 Qu	erying	14
_	Query types	14
	Tip	15
	Query Spec	15
	Example(s)	15
19.5	Caching	15
	Load Rules	15
20 Co	mponents	16
		16
	Druid Components	16
	Real-time Nodes	16
	Historical Nodes	16
20.5	Overlord	16

	20.6 Middle Manager	. 16
	20.7 Broker Nodes	. 17
	20.8 Deep Storage	. 17
21	Considerations & Tools	17
	21.1 When not to choose Druid	. 17
	21.2 Graphite (metrics)	. 17
	21.3 Pivot (exploring data)	. 18
	21.4 Caravel (exploring data)	. 18

1 Druid the Sales Pitch

- Sub-Second Queries
- Real-time Streams
- Scalable to Petabytes
- Deploy Anywhere
- Vibrant Community (Open Source)
- Ideal for powering user-facing analytic applications
- Deploy anywhere: cloud, on-premise, integrate with Haddop, Spark, Kafka, Storm, Samza

2 Intro

2.1 Experience

• Real Time Social Media Analytics

2.2 Real Time?

Ingestion Latency: secondsQuery Latency: seconds

2.3 Demand

- Twitter: 20k msg/s, 1msg = 10ko during 24h
- Facebook public: 1000 to 2000 msg/s continuously
- Low Latency

2.4 Reality

• Twitter: 400 msg/s continuously, burst to 1500

• Facebook: 1000 to 2000 msg/s

3 Origin (PHP)

4 1st Refactoring (Node.js)

- $\bullet \;$ Ingestion still in PHP
- Node.js, Perl, Java & R for sentiment analysis
- MongoDB
- Manually made time series (Incremental Map/Reduce)
- Manually coded HyperLogLog in js

5 Return of Experience

6 Return of Experience

- Ingestion still in PHP (600 msg/s max)
- Node.js, Perl, Java (10 msg/s max)

7 2nd Refactoring

- Haskell
- Clojure / Clojurescript
- Kafka / Zookeeper
- Mesos / Marathon
- Elasticsearch
- Druid

Figure 1: Too Slow, Bored

8 2nd Refactoring (FTW!)

9 2nd Refactoring return of experience

- No limit, everything is scalable
- High availability
- Low latency: Ingestion & User faced querying
- Cheap if done correctly

Thanks Druid!

10 Demo

- Low Latency High Volume of Data Analysis
- Typically pulse

DEMO Time

11 Pre Considerations

11.1 Discovered vs Invented

Try to conceptualize a s.t.

- Ingest Events
- Real-Time Queries
- Scalable
- Highly Available

Analytics: timeseries, alerting system, top N, etc...

11.2 In the End

Druid concepts are always emerging naturally

12 Druid

12.1 Who?

Metamarkets

Powered by Druid

• Alibaba, Cisco, Criteo, eBay, Hulu, Netflix, Paypal...

12.2 Goal

Druid is an open source store designed for real-time exploratory analytics on large data sets.

hosted dashboard that would allow users to arbitrarily explore and visualize event streams.

12.3 Concepts

- Column-oriented storage layout
- distributed, shared-nothing architecture
- advanced indexing structure

12.4 Key Features

- Sub-second OLAP Queries
- Real-time Streaming Ingestion
- Power Analytic Applications
- Cost Effective
- High Available
- Scalable

12.5 Right for me?

- require fast aggregations
- exploratory analytics
- analysis in real-time
- lots of data (trillions of events, petabytes of data)
- no single point of failure

13 High Level Architecture

13.1 Inspiration

- Google's BigQuery/Dremel
- Google's PowerDrill

13.2 Index / Immutability

Druid indexes data to create mostly immutable views.

13.3 Storage

Store data in custom column format highly optimized for aggregation & filter.

13.4 Specialized Nodes

- A Druid cluster is composed of various type of nodes
- Each designed to do a small set of things very well
- Nodes don't need to be deployed on individual hardware
- Many node types can be colocated in production

14 Druid vs X

14.1 Elasticsearch

- resource requirement much higher for ingestion & aggregation
- No data summarization (100x in real world data)

14.2 Key/Value Stores (HBase/Cassandra/OpenTSDB)

- Must Pre-compute Result
 - Exponential storage
 - Hours of pre-processing time
- Use the dimensions as key (like in OpenTSDB)
 - No filter index other than range
 - Hard for complex predicates

14.3 Spark

- Druid can be used to accelerate OLAP queries in Spark
- Druid focuses on the latencies to ingest and serve queries
- $\bullet\,$ Too long for end user to arbitrarily explore data

14.4 SQL-on-Hadoop (Impala/Drill/Spark SQL/Presto)

- Queries: more data transfer between nodes
- Data Ingestion: bottleneck by backing store
- Query Flexibility: more flexible (full joins)

15 Data

15.1 Concepts

- Timestamp column: query centered on time axis
- Dimension columns: strings (used to filter or to group)
- Metric columns: used for aggregations (count, sum, mean, etc...)

16 Roll-up

16.1 Example

timestamp 2011-01-01T00:01:35Z 2011-01-01T00:03:63Z 2011-01-01T01:04:51Z 2011-01-01T01:01:00Z 2011-01-01T01:02:00Z 2011-01-01T02:03:00Z	Justin	Bieber Bieber Bieber	 add 10 15 32 17 43 12	6 2 2	eleted 65 62 45 37 99
timestamp 2011-01-01T00:00:00Z 2011-01-01T01:00:00Z 2011-01-01T01:00:00Z 2011-01-01T02:00:00Z	0 40 0 111	Bieber Bieber	 2	added 25 32 60 12	deleted 127 45 186 53

16.2 as SQL

```
GROUP BY timestamp, page, nb, added, deleted
:: nb = COUNT(1)
, added = SUM(added)
, deleted = SUM(deleted)
```

In practice can dramatically reduce the size (up to x100)

17 Sharding

17.1 Segments

sampleData_2011-01-01T01:00:00:00Z_2011-01-01T02:00:00Z_v1_0

```
2011-01-01T01:00:00Z Justin Bieber 1 20 45
2011-01-01T01:00:00Z Ke$ha 1 30 106
```

 ${\tt sampleData_2011-01-01T01:00:00:00Z_2011-01-01T02:00:00Z_v1_0}$

2011-01-01T01:00:00Z Justin Bieber 1 12 45 2011-01-01T01:00:00Z Ke\$ha 2 30 80

17.2 Core Data Structure

Timestamp Dimensions Metrics Timestamp Page Username | Gender | City Characters Added | Characters Removed 2011-01-01T01:00:00Z Justin Bieber Boxer Male San Francisco 1800 2011-01-01T01:00:00Z Justin Bieber Reach Male Waterloo 2912 42 2011-01-01T02:00:00Z 2011-01-01T02:00:00Z 1953 Ke\$ha Helz Male Calgary 17 170 Male 3194 Ke\$ha Xeno Taiyuan

- dictionary
- a bitmap for each value
- a list of the columns values encoded using the dictionary

17.3 Dictionary

```
{ "Justin Bieber": 0 , "Ke$ha": 1
```

17.4 Column Data

[0

, 0

, 1

, 1]

17.5 Bitmaps

one for each value of the column

```
value="Justin Bieber": [1,1,0,0]
value="Ke$ha": [0,0,1,1]
```

18 Data

18.1 Indexing Data

- Immutable snapshots of data
- data structure highly optimized for analytic queries
- Each column is stored separately
- Indexes data on a per shard (segment) level

18.2 Loading data

- Real-Time
- Batch

18.3 Querying the data

- JSON over HTTP
- Single Table Operations, no joins.

18.4 Columnar Storage

18.5 Index

• Values are dictionary encoded

```
{"USA" 1, "Canada" 2, "Mexico" 3, ...}
```

• Bitmap for every dimension value (used by filters)

```
"USA" -> [0 1 0 0 1 1 0 0 0]
```

• Column values (used by aggergation queries)

```
[2,1,3,15,1,1,2,8,7]
```

18.6 Data Segments

- Per time interval
 - $-\,$ skip segments when querying

- Immutable
 - Cache friendly
 - No locking
- Versioned
 - No locking
 - Read-write concurrency

18.7 Real-time ingestion

- Via Real-Time Node and Firehose
 - No redundancy or HA, thus not recommended
- Via Indexing Service and Tranquility API
 - Core API
 - Integration with Streaming Frameworks
 - HTTP Server
 - Kafka Consumer

18.8 Batch Ingestion

• File based (HDFS, S3, ...)

18.9 Real-time Ingestion

 $\begin{aligned} & \text{Minimum indexing slots} = \\ & \text{Data Sources} \times \text{Partitions} \times \text{Replicas} \times 2 \end{aligned}$

19 Querying

19.1 Query types

- Group by: group by multiple dimensions
- Top N: like grouping by a single dimension
- Timeseries: without grouping over dimensions

- Search: Dimensions lookup
- Time Boundary: Find available data timeframe
- Metadata queries

19.2 Tip

- Prefer topN over groupBy
- Prefer timeseries over topN
- Use limits (and priorities)

19.3 Query Spec

- Data source
- Dimensions
- Interval
- Filters
- Aggergations
- Post Aggregations
- Granularity
- Context (query configuration)
- Limit

19.4 Example(s)

TODO

19.5 Caching

- Historical node level
 - By segment
- Broker Level
 - By segment and query
 - group By is disabled on purpose!
- By default local caching

19.6 Load Rules

- Can be defined
- What can be set

20 Components

20.1 Druid Components

- Real-time Nodes
- Historical Nodes
- Broker Nodes
- Coordinator
- For indexing:
 - Overlord
 - Middle Manager
- Deep Storage
- Metadata Storage
- Load Balancer
- Cache

20.2 Coordinator

Manage Segments

20.3 Real-time Nodes

- Pulling data in real-time
- Indexing it

20.4 Historical Nodes

• Keep historical segments

20.5 Overlord

• Accepts tasks and distributes them to middle manager

20.6 Middle Manager

• Execute submitted tasks via Peons

20.7 Broker Nodes

- Route query to Real-time and Historical nodes
- Merge results

20.8 Deep Storage

• Segments backup (HDFS, S3, ...)

21 Considerations & Tools

21.1 When not to choose Druid

- Data is not time-series
- \bullet Cardinality is very high
- $\bullet~$ Number of dimensions is high
- Setup cost must be avoided

21.2 Graphite (metrics)

Graphite

21.3 Pivot (exploring data)

Pivot

21.4 Caravel (exploring data)

Caravel