Practica 1.- Direccionamiento.

Paso 2

1.- ¿Cuál es el intervalo decimal y binario del primer octeto para todas las direcciones IP clase "B" posibles?

R= Decimal Desde: 128 Hasta: 191

Binario Desde: 10000000 Hasta: 10111111

- 2.- ¿Qué octeto u octetos representan la parte que corresponde a la red de una dirección IP clase C? R= Los 3 primeros octetos
- 3.- ¿Que octetos u octetos representan la parte que corresponde al host de una dirección IP clase A? R= Los últimos 3 octetos

Paso 3

1.- Completar la siguiente tabla.

				Dirección de broadcast	Mascara de subred por
Direcciones IP del Host	Clase	Dirección de red	Dirección de Host	de red	defecto
216.14.55.137	С	216.14.55.0	216.12.55.137	216.14.55.255	255.255.255.0
123.1.1.15	Α	123.0.0.0	123.1.1.15	123.255.255.255	255.0.0.0
150.127.221.224	В	157.127.0.0	157.127.1.1	157.127.255.255	255.255.0.0
194.125.35.199	С	194.125.35.0	194.125.35.1	194.125.35.255	255.255.255.0
175.12.239.244	В	175.12.0.0	175.12.1.1	175.12.255.255	255.255.0.0

- 2.- Dada una dirección IP 142.226.0.15
 - a) ¿Cuál es el equivalente binario del segundo octeto? R= 11100010
 - b) ¿Cuál es la clase de la dirección? R= Clase B
 - c) ¿Cuál es la dirección de re de esta dirección IP? R= 142.226.0.0
 - d) ¿Es esta una dirección de host válida? R= Si
 - e) ¿Por qué? R= Porque no es ni un id de red ni una dirección broadcast.
- 3.- ¿Cuál es la cantidad máxima de host que puede tener con una dirección de red de clase C?

R= 254 direcciones IP

4.- ¿Cuántas redes Clase B pueden haber?

R= 16.382 Redes

5.- ¿Cuántos hosts pueden tener cada red clase B?

R= 65534 hosts

6.- ¿Cuántos octetos hay en una dirección IP? R= 4 octetos ¿Cuántos bits puede haber por octeto? 8 bits.

Jonathan Arcos Ayala 4vc4

Paso 4

Dirección IP	¿La dirección es válida?	¿Por qué?
150.100.255.255	No	Es una dirección Broadcast
175.100.255.18	Si	Esta dentro del rango
195.234.253.0	No	Es una dirección ID de red
100.0.0.23	Si	Esta dentro del rango
188.258.221.176	No	El 258 no es posible representarlo con 8 bits
127.34.25.189	No	Es una dirección de red privada
224.156.217.73	No	Esta fuera del rango de direcciones clase C

Practica 2 Ejercicio de red clase C

Paso 5

1.- Completar la tabla que aparece a continuación y responda las siguientes preguntas.

			Valores binarios	
	Valor binario bits de	N.º de subred decimal y de	posibles de los bits de	Intervalo en decimales
N.º de subred	subred	los bit de subred	host	de subred
Subred 0	000	0 / 000	00001 - 11110	1 – 30
Subred 1	001	32 / 001	00001 - 11110	33 – 62
Subred 2	010	64 / 010	00001 - 11110	65 – 94
Subred 3	011	96 / 011	00001 - 11110	97 – 126
Subred 4	100	128 / 100	00001 - 11110	129 – 148
Subred 5	101	150 / 101	00001 - 11110	151 – 190
Subred 6	110	192 / 110	00001 - 11110	193 – 222
Subred 7	111	224 / 111	00001 – 11110	225 – 254

- 2.- ¿Qué octeto u octetos representan la parte que corresponde a la red de una dirección IP clase C? R= Los primeros 3 octetos
- 3.- ¿Qué octeto u octeros representan la parte que corresponde al host de una dirección IP clase C? R= El último octeto.
- 4.- ¿Cuál es el equivalente binario de la dirección de red clase C en el ejemplo (192.15.22.0) ? R = 11000011 .00001111 .00010110 .00000000
- 5.- ¿Cuántos bits de orden superior se pidieron prestados a los bits de host en el cuarto octeto? R= 3 bits
- 6.- ¿Cuál es la máscara de subred que debe usar (mostrar la máscara de subred en decimal y binario)?

R= Decimal: 255.255.255.224

Binario: 11111111 . 11111111 . 11111111 . 111000000

7.- ¿Cuál es la cantidad máxima de subred utilizable que se pueden crear con esta máscara de subred?

R= 8 subredes

9.- ¿Cuántos bits quedaron en el 4° octeto para los ID de hosts?

R=5 bits

10.- ¿Cuántos hosts por subred se pueden definir con esta máscara de subred?

R= 32 hosts

11.- ¿Cuál es la cantidad máxima de host s que se pueden definir en todas las subredes para este ejemplo?

R= 30 hosts

12.- ¿Es 197.15.22.63 una dirección IP de host para este ejemplo?

R= No

13.- ¿Por qué?

R= Es una dirección de broadcas de una subred

14.- ¿Es 197.15.22.160 una dirección IP de host válida para este ejemplo?

R = Si

15.- ¿Por qué?

R= Porque no es un broadcast o un ip de red

Jonathan Arcos Ayala 4vc4

16.- El host "A" tiene una dirección IP 197.15.22.16. El host "B" tiene una direccion IP

197..15.22.129. ¿Estos host están ubicados en la misma subred

R= No porque los host se encuentran en subredes diferentes.

Paso 2

1.- ¿Cuál es el equibalente en número binario de la dirección de clase B 150.193.0.0 del ejercicio? R= 10100000 . 11000001 . 000000000

2.- ¿Cuál es el octeto y octetos, y cuántos bits se utilizan para representar la posición de red de esta dirección de red clase B?

R= Los primeros 2 octetos y los 6 primeros bits del 3° octeto

3.- ¿Cuál es el octeto y octetos, y cuántos bits se utilizan para representar la posición de host de esta dirección de red clase B?

R= Los últimos 3 bits del 3° octeto y el 4° octeto

4.- ¿Cuántas redes Clase B originales hay?

R=1 red

5.- ¿Cual es la cantidad total de host que se pueden crear en una dirección de red Clase B si está no se ha subdividido?

R= 65534 hosts

6.-¿Cuántos bits debe pedir prestadoa a la porción de host de la dirección de red para suministrar por lo menos 50 subredes y 750 hosts por subred?

R = 6 bits

- 7.- ¿Cuál será la mascara de subred basándose en la cantidad de bits que se pidieron en el paso 6? R= 255.255.252.0
- 8.- ¿Cuál es el equivalente en número binario de la máscara de subred a la que se hace referencia anteriormente?

Practica 3.- Direccionamiento.

1.- Tabla

N.º de				Intervalo de direcciones IP de	Dirección de	
subred	Dirección de red	Máscara de subred	Dirección de subred	host posibles	broadcast	:Utilizar
0	144.1.0.0	255.255.252.0	144.1.0.0	144.1.0.1 – 144.1.3.254	144.1.3.255	no
1	144.1.0.0	255.255.252.0	144.1.4.0	144.1.4.1 – 144.1.7.254	144.1.7.255	si
2	144.1.0.0	255.255.252.0	144.1.8.0	144.1.8.1 – 144.1.11.254	144.1.11.255	si
3	144.1.0.0	255.255.252.0	144.1.12.0	144.1.12.1 – 144.1.15.254	144.1.15.255	si
4	144.1.0.0	255.255.252.0	144.1.16.0	144.1.16.1 – 144.1.19.254	144.1.19.255	si
5	144.1.0.0	255.255.252.0	144.1.20.0	144.1.20.1 – 144.1.23.254	144.1.23.255	si
6	144.1.0.0	255.255.252.0	144.1.24.0	144.1.24.1 – 144.1.27.254	144.1.27.255	si
7	144.1.0.0	255.255.252.0	144.1.28.0	144.1.28.1 – 144.1.31.254	144.1.31.255	si
8	144.1.0.0	255.255.252.0	144.1.32.0	144.1.32.1 – 144.1.35.254	144.1.35.255	si
9	144.1.0.0	255.255.252.0	144.1.36.0	144.1.36.1 – 144.1.39.254	144.1.39.255	si

2.- Asigne una dirección IP y una máscara de subred a la interfaz de rouer A y escríbala aquí

Dirección IP : 144.1.7.254 Máscara: 255.255.252.0

3.- Asigne una dirección y una máscara de subred IP a la interfaz del router B y escríbala aquí

Dirección IP : 144.1.15.254 Máscara: 255.255.252.0

4.- Asigne una dirección y una máscara de subred IP a la interfaz del router C y escríbala aquí

Dirección IP : 144.1.27.254 Máscara: 255.255.252.0

6.- ¿Cuál es el resultado del proceso de AND para el host X?

Dir. Ip del host X en decimal: 144.1.5.1

Resultado de AND en decimal: 144.1.4.0

7.- ¿Cuál es el resultado del proceso de AND para el host Z?

Dir. Ip del host Z en decimal: 144.1.25.1

Resultado de AND en decimal: 144.1.24.0

- 8.- El resultado del AND en número decimal para la pregunta 6 es la red/subred en la que se encuentra el Host X. El resultado del AND en números decimales para la pregunta 7 es la red/subred en la que se encuentra el Host Z. ¿El Host X y el Host X están en la misma red/subred? R= No
- 9.- ¿Qué es lo que hará ahora el Host X con el paquete?

 R= Enviar el paquete a la dirección de gateway de la subred a la que esta asignado.

Practica 4.- Direccionamiento.

Paso 1

¿Cuámtos bits se pidieron prestados de la porción de host de está dirección?

R=16 bits

¿Cuál es la máscara de subred?

Decimal: 255.255.255.0

¿Cuántas subredes utilizables hay?

R= 65536 subredes

¿Cuántos host utilizables hay en cada subred?

R= 254 hosts

¿Cuál es el rango de host para la subred 16?

R = 10.0.16.1 - 10.0.16.254

¿Cuál es la dirección de red de la subred 16?

R = 10.0.16.0

¿Cuál es la dirección de broadcast de la subred 16?

R= 10.0.16.255

¿Cuál es la dirección de broadcast de la ultima subred?

R= 10.255.255.255

¿Cuál es la dirección de broadcast de la red principal?

R= 10.255.255.255