Github.com/styluck/sas
80% darm >0% homeworks
Refu: A set is a collection of objects. These objects are called
elements or members.
A set with no objects is called the empty set, denoted &
Defn: For a set A, if x is an element of A, we write MEA
if x is not an element of A, we write 7 \$A
Marine II I was a second
O Well-definedness 27 (8 either XEA or 8#A Distinct elements A = 21,6,38 B = 21,6,6,38
$A = \{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
3 Unordered $\{1,6,3\} = \{3,1,6\} = \{1,3,6\}$
Curely brackets.
Set - builder notation: {x: x has property P}
₹x x has property P\$
{n: n<2} {n: n<2} {n∈0} {n∈0} {n∈2}
21. 2. 2. 1)
Defn: Set Operation: Union: AUB:=? N: XEA or XEB}
Union: AUD = 2 S. NETT OF NED)
intersection: ANB:= { r: x ∈ A and x ∈ B}
1001 年(101 · H(10 · ~ (11 · 1) C/1 · 4)(4 / C ·)
Set difference: A\B:= {x:x∈A and x \€B}
"保管海底" — 8 下
Complement: AC:= { x \in S: x \in A}
补集
$A^{c} = S A$

disjoint: ANB = Ø
J /
Number systems.
Hatural Humbers IN 30,1,2,3,5
Jutegers 12 8 7 2 2 3, -2, -1, 0, 1, 2, 3 3
Rational Humbers Q ? m. n E Z, n +0 }
Ratio INCZCQ combet \$+\$
⊆ subset oqual 3-34
Defn: If A is the subset of B, then
YX¢A → XEB
$\phi \in A$
Ordered set
Defn: Let S be a set. An order on S is a relation, denote by
~, with the following properties.
TA 1/3 1/2 ordered
$x \prec \lambda$ $y = \lambda$ $\lambda \prec \lambda$
(3) = 45 transitivity
\mathfrak{D} For any $x, y, z \in S$, if $x \prec y$, and $y \prec Z$, $\Rightarrow x \prec 2$.
Example 1: (Q, >) O Ordered: for any x, y = Q x>y or x=y oryx
(3) Trans : for any xey, 2 ∈ (1), if xzy, y>2 ⇒ x>2.
Excuple 2: (D, Z) (D Not ordered: + have exists x, y EQ
x z y , and , x = y . and y > x
refined, nej, and 791

Detn: An ordered set is a set that is endow with an order "<" Denoted by (5, L) Defn: (Upper bound) Consider an ordered set S and ECS, Ef \$. There exists y & S such that for any xEE, we have x = y. Then y is called the upper bound of E. Example: S=(Z, 4) == ? ., 1,2 CS 3 is an upper bound Defn: (Least uppor bound) Suppose 3 is an ordered set, and \$7ECS is bounded above. Suppose there exists XES such that Od is an appor bound of E 1 For any BLd, BES, B is not an uppor bound of E. Then & is called the least upper bound of E is S. or the supremum X = SUPE If supremum exists, then it is unique. That is if a=supE, and B=supE, then we have a=B S=(Q,c), E={0,1,2}CQ +la upper bound is {xEQ:x>2} the supremum is >. Lemma: There is no national number REQ, satisfying x222 3 fa for Proof: Suppose x & Cx such that x2=2. x= m with in and n coprime $\chi = \frac{m}{n}$ $\chi^2 = 2$ \Rightarrow $(\frac{m}{n})^2 = 2 \Rightarrow$ $m^2 = 2n^2$ m² is divisible by 2 => m is divisible by 2. Write m=2k $(2k)^2 = 2n^2 = 2k^2 = n^2 = m, n$ not coprime . => contradiction.

Example: S=(Q, <) €={n∈Q: x>0, p2<2} There is no supremum d= Esup such that dEQ F= 2 p= Q: p>0, p² > 2 Fixed any pEF then p is an upper bound of E Construct $q = p - x(p^2 - 2)$ $x \in Q$, then $q \in Q$ We used to prove q = F, that is 9,20, 9,2>2 Take $x = \frac{1}{p+2}$ $p-q = \frac{1}{p+3}(p^2-2) > 0$ $q = p - \chi(p^2 - 2) = p - \frac{p^2 - 2}{p + 2} = \frac{p^2 + 2p - p^2 + 2}{p + 2} = \frac{2p + 2}{p + 2}$ $q^2 = (p - \chi cp^2 - 2)^2 = \left(\frac{2(p+1)^2}{p+2}\right)^2 > 2 \iff 4(p+1)^2 > 2(p+2)^2$ <=> 4(p2+2p+1)>2 (p2+4p+4) 4p2+8p+4 > 2p2+8p+8 => 2p2 > 6 => p2>2 Then we proved go and g>> > QEF Defn (Least upper bound property) An ordered set is said to have the Least upper bound Property, if any nonemity subset E bounded above has a least upper bound in S Example: a has no least upper-bound property. Defn (Lower bound) Consider an ordered set S and OFECS If those exists yes such that for any xet, we have xxy. Then Zis said to be bounded below. and y is a lower bound

Defin (Greatest lower bound) - Suppose Sis an ordered set, and
\$ 1E CS is bounded below, Suppose there exists a ES such that
Oxis a lower bound of E
€ For any β > α, than β is not a lower bound of E.
d is called infimum 7 7/2 7
$\alpha = iut E$
The infimum is unique.
the tall them is shifted.
Thun (treatest lower bound property).
(Mary street by come property)
$\left(\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
L B
a = inf B
2={x∈S: xis a lower bound of B}
C (W Colored & (D)
then sup 1 = int B both exist
5497 - 100/10 00/10
Tield: A field is a set endowed with two promitions:
Field: A field is a set endowed with two operations: O addition +
@ multiplication x ., which satisfy the following axioms
e minimization is, united the following whitems
Axioms for addition
O For any x, y EF, => x+y EF
② Commutative 24 8 7 9 9 9 9 9 9 9 9 9 9
Associative (177) + 2 = 17 + (472)
(G) Contains 0, That is 18+0=x
1) For each XET, there exist an element -XET, X+(-x)=0
$\frac{1}{\lambda - \lambda} = x + (-\lambda)$

Axioms for multiplication:
O For any x, y ∈ F, x-y ∈ F
(2) Commutative Y-y=y-x
3) (time 1) and what x 1 = x 1 = x 1
3 Contains 1. such that 8-1=x for all xeF
\mathcal{G} If $x \in F$, $x \notin O$, there exists an element $\frac{1}{x} \in F$, such that $x \cdot \frac{1}{x} = I$
Distribution (aw 530 =
7-14+3> = x-y + x-2 & x,y,z EF
$\lambda - \frac{\lambda}{1} = \frac{\lambda}{\lambda}$ $\lambda \cdot \lambda = \lambda_2$
, ,

H: for all