

Multi-class Spectral Clustering with Overlaps for Speaker Diarization

Desh Raj, Zili Huang, Sanjeev Khudanpur

Center for Language and Speech Processing, Johns Hopkins University

MotivationWhat is speaker diarization?

Task of "who spoke when"

Input: recording containing multiple speakers

Output: homogeneous speaker segments

Motivation

What is speaker diarization?

Task of "who spoke when"

Input: recording containing multiple speakers

Output: homogeneous speaker segments

Number of speakers may be unknown

Overlapping speech may be present

SAD extracts speech segments from recordings

Embeddings extracted for small subsegments

Pair-wise scoring of subsegments

PLDA scoring
Cosine scoring

Clustering based on the affinity matrix, followed by optional resegmentation

Agglomerative hierarchical clustering

Spectral clustering

Variational Bayes (VBx)

Clustering paradigm assumes single-speaker segments

So overlapping speakers are completely ignored!

Overlap-aware spectral clustering

Results on AMI Mix-Headset eval

12.0% relative improvement over spectral clustering baseline

System	DER
Spectral clustering	26.9
AHC	28.3
VBx	26.2
Overlap-aware SC	24.0

Park et al., "Auto-tuning spectral clustering for speaker diarization using normalized maximum eigengap," IEEE Signal Processing Letters, 2020.

Garcia-Romero et al., "Speaker diarization using deep neural network embeddings," ICASSP 2017.

Dîez et al., "Speaker diarization based on Bayesian HMM with eigenvoice priors," Odyssey 2018.

Results on AMI Mix-Headset eval

Comparable with other overlap-aware diarization methods

System	DER	
VB-based overlap assignment	23.8	
Region proposal networks	25.5	
Overlap-aware SC	24.0	

Bullock, et al., "Overlap-aware diarization: resegmentation using neural end-toend overlapped speech detection," ICASSP 2020.

Huang et al., "Speaker diarization with region proposal network," ICASSP 2020.

Does not require **matching training data** or **initialization** with other diarization systems.

End of Highlight

Overview

- Overlap-aware spectral clustering
 - Estimating number of speakers
 - Reformulation of the clustering problem
 - Incorporating overlap detector output
- HMM-DNN overlap detector: Overview
- More Results
 - Error analysis on AMI

The basic clustering problem: a graph view

Cosine similarity

The basic clustering problem: a graph view

The basic clustering problem: a graph view

Edge weights within a group

maximize

Edge weights across groups

The basic clustering problem: a graph view

Edge weights within a group

maximize

Edge weights across groups

maximize
$$e(X) = \frac{1}{K} \sum_{k=1}^{K} \frac{X_k^T \mathbf{A} X_k}{X_k^T \mathbf{D} X_k}$$
 subject to $X \in \{0,1\}^{N \times K}$, $X = \mathbf{1}_N$.

The basic clustering problem: a graph view

This problem is NP-hard!

maximize
$$\epsilon(X) = \frac{1}{K} \sum_{k=1}^{K} \frac{X_k^T \mathbf{A} X_k}{X_k^T \mathbf{D} X_k}$$
 subject to $X = \{1, 1\}^{N \times K}, X_k =$

Remove the discrete constraints to make the problem solvable

Relaxed problem has a set of solutions

Now we need to discretize this solution!

Find a matrix which is **discrete** and also close to any one of the **orthonormal transformations** of the relaxed solution

Here we use the overlap detector output

Suppose we have v_{OL}

Non-maximal suppression: for overlapping segments, select top 2 speakers

How does it compare with ...

... VB-based overlap assignment

Bullock, et al., "Overlap-aware diarization: resegmentation using neural end-toend overlapped speech detection," ICASSP 2020.

Overlap-aware SC	VB based overlap assignment	
Uses external overlap detector	Uses external overlap detector	
No initialization required	Needs initialization, e.g. from AHC system	
Does segment-level assignment (coarse)	Does frame-level assignment (fine-grained)	

How does it compare with EEND, RPN, TS-VAD

Overlap-aware SC	RPN, EEND, TS-VAD	
Uses external overlap detector	Includes overlap detection/assignment	
Matched training data not required	Requires matched (simulated) training data	

Fujita et al., "End-to-end neural diarization: Reformulating speaker diarization as simple multi-label classification," ArXiv.

SLT 2021

Medennikov, et al., "Target speaker voice activity detection: a novel approach for multispeaker diarization in a dinner party scenario," Interspeech 2020.

Hybrid HMM-DNN overlap detector

(Now merged as a ***KALDI recipe)

Viterbi decoding used for inference

Results: DER breakdown on AMI eval

System	Missed speech	False alarm	Speaker conf.	DER
AHC/PLDA	19.9	0.0	8.4	26.9
Spectral/cosine	19.9	0.0	7.0	28.3
VBx	19.9	0.0	6.3	26.2
VB-based overlap assignment		3.6	7.2	23.8
RPN	9.5	7.7	8.3	25.5
Overlap-aware SC	11.3	2.2	10.5	24.0

Results: DER breakdown on AMI eval

Missed speech decreases significantly

System	Missed speech	False alarm	Speaker conf.	DER
AHC/PLDA	19.9	0.0	8.4	26.9
Spectral/cosine	19.9	0.0	7.0	28.3
VBx	19.9	0.0	6.3	26.2
VB-based overlap assignment	13.0	3.6	7.2	23.8
RPN	9.5	7.7	8.3	25.5
Overlap-aware SC	11.3	2.2	10.5	24.0

Results: DER breakdown on AMI eval

Speaker confusion increases

System	Missed speech	False alarm	Speaker conf.	DER
AHC/PLDA	19.9	0.0	8.4	26.9
Spectral/cosine	19.9	0.0	7.0	28.3
VBx	19.9	0.0	6.3	26.2
VB-based overlap assignment		3.6	7.2	23.8
RPN	9.5	7.7	8.3	25.5
Overlap-aware SC	11.3	2.2	10.5	24.0

Future work: train a more robust x-vector extractor

T-SNE plot of x-vector embeddings

More results: DER on LibriCSS

Try out the code!

Acknowledgments:

Paola Garcia, for helpful discussions and insights.

Takuya Yoshioka, for simulation script for generating LibriCSS training data.

