CMI - 2020-2021: DS-Analysis Calculus-9

Maxima and minima of functions of several variables - 1

We will now consider maxima and minima of real valued functions of several variables.

Let $f: U \to \mathbb{R}$ be a function, where U is an open subset \mathbb{R}^n ; it is also possible that $U = \mathbb{R}^n$.

Definition 1 A point $x \in U$ is said to be a *local minimum* or *relative minimum* of f, if there is r > 0 such that $f(x) \leq f(y)$ for all $y \in U$ with ||y - x|| < r.

If f(x) < f(y) for all $y \in U$ with ||y - x|| < r, then x is called a *strict local minimum* of f.

A point $x \in U$ is said to be a *local maximum* or *relative maximum* of f, if there is r > 0 such that $f(x) \ge f(y)$ for all $y \in U$ with ||y - x|| < r.

If f(x) > f(y) for all $y \in U$ with ||y - x|| < r, then x is called a *strict local maximum* of f.

A 'local extreme/ extremum' means a local minimum or a local maximum.

Definition 2 A point $x \in U$ is said to be a global minimum or absolute minimum of f over U, if $f(x) \leq f(y)$ for all $y \in U$. In case f(x) < f(y) for all $y \in U$, then x is called a strict global minimum of f over U.

In a similar manner, a point $x \in U$ is said to be a global maximum or absolute maximum of f over U, if $f(x) \geq f(y)$ for all $y \in U$. In case f(x) > f(y) for all $y \in U$, then x is called a strict global maximum of f over U.

Clearly a global extremum is also a local extremum.

Definition 3 Let $f: U \to \mathbb{R}$ be a differentiable function. A point $x \in U$ is called a *critical point* or a *stationary point* of f, if $\nabla f(x) = 0$.

The following result, stated without proof, gives a first-order necessary condition for local extrema, as in the one-dimension.

Theorem 4 Let $f: U \to \mathbb{R}$ be a differentiable function. If $x \in U$ is a local extremum of f, then $\nabla f(x) = 0$; that is, any local extremum is a critical point of f.

However, the converse of the above theorem is not true, that is, a critical point need not be a local minimum or a local maximum. See Example 3 below.

Example 1: Let $f(x,y) = 2 - x^2 - y^2$, $(x,y) \in \mathbb{R}^2$. It is easy to verify that the origin (0,0) is the only critical point of f. It is also clear that $f(x,y) = 2 - x^2 - y^2 \le 2 = f(0,0)$. So in this case, (0,0) is not only a local maximum but also the global maximum.

Example 2: Let $f(x,y) = x^2 + y^2$, $(x,y) \in \mathbb{R}^2$. Again it is easily seen that (0,0) is the only critical point of f. Also note that $f(x,y) = x^2 + y^2 \ge 0 = f(0,0)$. So, (0,0) is not only a local minimum but also the global minimum. Example 3: Let f(x,y) = xy, $(x,y) \in \mathbb{R}^2$. Note that the origin (0,0) is a critical point of f. However, (0,0) is neither a local minimum nor a local maximum. Observe that for (x,y) in the first and the third quadrants, x and y have the same sign, giving f(x,y) > 0 = f(0,0); whereas, for (x,y) in the second and the fourth quadrants, x and y have opposite signs, resulting in f(x,y) < 0 = f(0,0). Therefore, for any r > 0, there are points (x,y) with ||(x,y) - (0,0)|| < r, at which f(x,y) is less that f(0,0), and points at which f(x,y) is greater than f(0,0).

To proceed further, as in the one-dimensional case we look at the analogue of the second derivative at a critical point, which is the Hessian at a critical point.

Let $f: U \to \mathbb{R}$ have all the first and second order partial derivatives; also, let all these be continuous. Let $x \in U$ be a critical point. The above theorem now implies $\nabla f(x) = 0$. Hence by the second order Taylor's formula (\ddagger) in Calculus - 8, we have

$$f(x+z) - f(x) = \frac{1}{2!}zH(x)z^t + R_3(z+x), ||z|| < r.$$
 (\bowtie)

Since $\lim_{||z||\to 0} (R_3(z+x)/||z||^2) = 0$, we may expect to obtain some information from $zH(x)z^t$.

Under our assumptions, note that H(x) is an $n \times n$ real, symmetric matrix. The following result from Linear Algebra is needed now.

Theorem 5 Let $A = ((a_{ij}))_{1 \leq i,j \leq n}$ be an $n \times n$ real, symmetric matrix. So all the eigenvalues of A are real numbers. Write

$$Q(z) = zAz^{t} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}z_{i}z_{j}, z \in \mathbb{R}^{n}.$$

Then we have:

- (i) Q(z) > 0 for all $z \neq 0$ if and only if all the eigenvalues of A are strictly positive, that is, A is strictly positive definite.
- (ii) Q(z) < 0 for all $z \neq 0$ if and only if all the eigenvalues of A are strictly negative, that is, A is strictly negative definite.

The following result, stated without proof, gives second order sufficient conditions for local extrema.

Theorem 6 Let $f: U \to \mathbb{R}$ have all continuous first and second order partial derivatives. Let H denote the Hessian of f. Let $x \in U$ be a critical point of f. Then we have the following.

- (i) If all the eigenvalues of H(x) are strictly positive, then f has a local minimum at x.
- (ii) If all the eigenvalues of H(x) are strictly negative, then f has a local maximum at x.

An idea of the proof: As $\lim_{|z|\to 0} (R_3(z+x)/||z||^2) = 0$ in (\bowtie) , one would get f(x+z) - f(x) > 0 if $zH(x)z^t > 0$ for all z close to 0; similarly, f(x+z) - f(x) < 0 if $zH(x)z^t < 0$ for all z close to 0. Of course, Theorem 5 provides sufficient conditions for these to happen.

In the two-dimensional case, that is, when n = 2, the above result can be given in a more convenient form.

Let the notation be as in Theorem 6. Let λ_1 , λ_2 be the 2 eigenvalues of H(x); note that λ_1 , λ_2 are both real numbers. For notational convenience, write

$$a_{11} = D_{11}f(x), \quad a_{22} = D_{22}f(x), \quad a_{12} = D_{12}f(x) = D_{21}f(x) = a_{21}. \quad (\spadesuit)$$

By the connection between the eigenvalues and the trace/ determinant of H(x) we have

$$\lambda_1 + \lambda_2 = a_{11} + a_{22},$$

 $\lambda_1 \lambda_2 = a_{11} a_{22} - (a_{12})^2.$

Suppose $\det H(x) > 0$. Then $a_{11}a_{22} > (a_{12})^2 \ge 0$; so a_{11} and a_{22} have the same sign. Note that $\det H(x) > 0$ also implies λ_1 and λ_2 have the same sign.

Suppose det H(x) > 0 and $a_{11} > 0$. Then both the eigenvalues are strictly positive. Hence f has a local minimum at the critical point x.

Next, suppose $\det H(x) > 0$ and $a_{11} < 0$. It follows that both the eigenvalues are strictly negative. Hence f has a local maximum at x.

Thus we have

Theorem 7 Let n = 2. Let $f: U \to \mathbb{R}$ be as in Theorem 6, with H denoting the Hessian of f. Let $x \in U$ be a critical point of f. Let a_{11} , $a_{12} = a_{21}$, a_{22} be given by (\spadesuit) above. Then the following hold:

- (i) If $\det H(x) > 0$ and $a_{11} > 0$, then f has a local minimum at x.
- (ii) If det H(x) > 0 and $a_{11} < 0$, then f has a local maximum at x.

We now look at a few examples.

Example 4: Let $f(x,y) = e^{-(x^2+y^2)}$, $(x,y) \in \mathbb{R}^2$.

It is easy to see that f has continuous first and second order partial derivatives. Note that for all $(x, y) \in \mathbb{R}^2$,

$$D_1 f(x,y) = -2xe^{-(x^2+y^2)}, \quad D_2 f(x,y) = -2ye^{-(x^2+y^2)}.$$

Hence $\nabla f(x,y) = (0,0)$ if and only if (x,y) = (0,0); so (0,0) is the only critical point of f.

Next, note that for all $(x, y) \in \mathbb{R}^2$,

$$D_{11}f(x,y) = (-2+4x^2) e^{-(x^2+y^2)},$$

$$D_{22}f(x,y) = (-2+4y^2) e^{-(x^2+y^2)},$$

$$D_{12}f(x,y) = D_{21}f(x,y) = 4xy e^{-(x^2+y^2)}.$$

From the above one can find H(x,y) for any $(x,y) \in \mathbb{R}^2$. It is clear that $D_{11}f(0,0) = D_{22}f(0,0) = -2$, and $D_{12}f(0,0) = D_{21}f(0,0) = 0$. Hence $\det H(0,0) = 4 > 0$, and $D_{11}f(0,0) = -2 < 0$. So by the preceding theorem it follows that (0,0) is a local maximum. As (0,0) is the only critical point of f, and as

$$\lim_{||(x,y)|| \to \infty} f(x,y) = 0,$$

it follows that f has unique global maximum at the critical point (0,0).

(Of course, in this case, as $x^2 + y^2 \ge 0$, $(x, y) \in \mathbb{R}^2$, it is clear that $f(x, y) \le 1 = f(0, 0), (x, y) \in \mathbb{R}^2$.)

Example 5: Let $f(x,y) = \log(1 + x^2 + y^2), (x,y) \in \mathbb{R}^2$.

Note that f(x,y) is well defined for all (x,y). Verify that for all $(x,y) \in \mathbb{R}^2$,

$$D_1 f(x,y) = \frac{2x}{1+x^2+y^2}, \quad D_2 f(x,y) = \frac{2y}{1+x^2+y^2}.$$

So $\nabla f(x,y) = (0,0)$ if and only if (x,y) = (0,0); that is, (0,0) is the only critical point of f.

Next, it can be seen that

$$D_{11}f(x,y) = \frac{2(1+x^2+y^2)-4x^2}{(1+x^2+y^2)^2},$$

$$D_{22}f(x,y) = \frac{2(1+x^2+y^2)-4y^2}{(1+x^2+y^2)^2},$$

$$D_{12}f(x,y) = D_{21}f(x,y) = \frac{-4xy}{(1+x^2+y^2)^2}.$$

From the above, note that $D_{11}f(0,0) = 2 = D_{22}f(0,0)$, and $D_{12}f(0,0) = D_{21}f(0,0) = 0$. Therefore det H(0,0) = 4 > 0, and $D_{11}f(0,0) = 2 > 0$. So

by the preceding theorem it follows that (0,0) is a local minimum. As (0,0) is the only critical point, and as

$$\lim_{||(x,y)|| \to \infty} f(x,y) = +\infty,$$

it follows that f has unique global minimum at the critical point (0,0).

(Of course, in this case, $(1+x^2+y^2)\geq 1,\ (x,y)\in\mathbb{R}^2$. As log is an increasing function on $(0,\infty)$, note that $f(x,y)\geq 0=f(0,0),\ (x,y)\in\mathbb{R}^2$.) Example 6: Let $f(x,y)=x^3+x^2-y^3+y^2,\ (x,y)\in\mathbb{R}^2$.

Note that f has continuous first and second order partial derivatives. Also for any $(x, y) \in \mathbb{R}^2$,

$$D_1 f(x,y) = 3x^2 + 2x$$
, $D_2 f(x,y) = -3y^2 + 2y$.

Verify that $D_1 f(x,y) = 0 \Leftrightarrow x(3x+2) = 0 \Leftrightarrow x = 0$, or x = -2/3. In a similar manner verify that $D_2 f(x,y) = 0 \Leftrightarrow y = 0$, or y = 2/3. Therefore there are 4 critical points: (0,0), (0,(2/3)), ((-2/3),0), and ((-2/3),(2/3)).

Next, for all $(x, y) \in \mathbb{R}^2$

$$D_{11}f(x,y) = 6x + 2,$$

$$D_{22}f(x,y) = -6y + 2,$$

$$D_{12}f(x,y) = D_{21}f(x,y) = 0.$$

At the critical point (0,0): Clearly $D_{11}f(0,0) = 2 = D_{22}f(0,0)$, and $D_{12}f(0,0) = 0 = D_{21}f(0,0)$. Hence $\det H(0,0) = 4 > 0$, and $D_{11}f(0,0) = 2 > 0$ implying that f has a local minimum at (0,0).

At the critical point (0, (2/3)): Note that $D_{11}f(0, (2/3)) = 2$, $D_{22}f(0, (2/3)) = -2$, and the off- diagonal elements are 0. So det H(0, (2/3)) = -4 < 0. So, the preceding theorem does not help to get any further information.

At the critical point ((-2/3), 0): It can be verified that $\det H((-2/3), 0) = -4 < 0$. So in this case also, one can not say anything further.

At the critical point ((-2/3), (2/3)): Note that $D_{11}f((-2/3), (2/3)) = -2 = D_{22}f((-2/3), (2/3))$, and the off-diagonal elements are 0. So det $H((-2/3), (2/3)) = -2 = D_{22}f((-2/3), (2/3))$, and the off-diagonal elements are 0.

4 > 0, and $D_{11}f((-2/3), (2/3)) = -2 < 0$. Hence f has a local maximum at ((-2/3), (2/3)).

Finally observe that $\lim_{x\to\infty} f(x,0) = +\infty$, and $\lim_{y\to\infty} f(0,y) = -\infty$. Consequently the function f does not have global maximum or global minimum.

Example 7: Let $f(x,y) = x^2y^2$, $(x,y) \in \mathbb{R}^2$.

Clearly f has continuous first and second order partial derivatives. Note that for any $(x, y) \in \mathbb{R}^2$,

$$D_1 f(x, y) = 2xy^2, \quad D_2 f(x, y) = 2x^2y.$$

Clearly every point on x-axis or on y-axis is a critical point. In particular the origin (0,0) is a critical point.

Next, for any $(x, y) \in \mathbb{R}^2$,

$$D_{11}f(x,y) = 2y^{2},$$

$$D_{22}f(x,y) = 2x^{2},$$

$$D_{12}f(x,y) = D_{21}f(x,y) = 4xy.$$

It is now clear that H(0,0) is the 2×2 zero matrix, with all the entries 0. In particular det H(0,0) = 0. Hence in this case, the preceding theorem does not help.

However, note that $f(x,y) \ge 0 = f(0,0)$ for any $(x,y) \in \mathbb{R}^2$. Also note that f(x,0) = 0 = f(0,y), for any $x \in \mathbb{R}$, $y \in \mathbb{R}$. That is, f takes the minimum value at every point on x-axis, and at every point on the y-axis.

Remark: A careful preliminary look at the function and the domain on which it is defined, even before applying any procedure for finding maxima/minima, could indicate some very relevant/useful information.