1 Funkční závislosti stanovené z dat

Pro danou relaci \mathcal{D} chceme najít, co možná nejmenší teorii T tak, že $\mathcal{D} \models A \Rightarrow B$ právě, když $T \models A \Rightarrow B$.

Definice 1. Teorie T se nazývá <u>báze \mathcal{D} , pokud pro každou $A \Rightarrow B$ platí $\mathcal{D} \models A \Rightarrow B$ p.k. $T \models A \Rightarrow B$.</u>

Poznámka. Bází \mathcal{D} je obecně hodně. Např. pokud T je báze \mathcal{D} a navíc $T \models A \Rightarrow B$ pro nějakou $A \Rightarrow B \notin T$, pak $T \cup \{A \Rightarrow B\}$ je opět báze.

Z definice báze je zřejmé, že budeme-li mít dvě báze, budou mít stejné sémantické důsledky, je proto žádoucí si takový jev pojmenovat.

Definice 2. Teorie T_1 a T_2 jsou sémanticky ekvivalentní, značeno $T_1 \equiv T_2$, jestliže pro libovolnou $A \Rightarrow B$ platí $\overline{T_1 \models A \Rightarrow B}$ právě, když $T_2 \models A \Rightarrow B$.

Sémanticky ekvivalentní teorie, pak mají úzký vztah k pojmu model teorie.

Věta 1 (o charakterizaci sémantické ekvivalence). Následující tvrzení jsou ekvivalentní:

- 1. $T_1 \equiv T_2$,
- 2. $\operatorname{Mod}(T_1) = \operatorname{Mod}(T_2),$
- 3. $\operatorname{Mod}_C(T_1) = \operatorname{Mod}_C(T_2)$,
- 4. Pro libovolnou $A \subseteq R$ máme $[A]_{T_1} = [A]_{T_2}$.

 $D\mathring{u}kaz$. $1 \Rightarrow 2$: Pro libovolnou $A \Rightarrow B$ máme $\operatorname{Mod}(T_1) \models A \Rightarrow B$ p.k. $T_1 \models A \Rightarrow B$ p.k. $T_2 \models A \Rightarrow B$ p.k. $\operatorname{Mod}(T_1) \models A \Rightarrow B$.

- $2 \Rightarrow 3$: Speciální případ.
- $3 \Rightarrow 4$: Stejné uzávěrové systémy mají stejné uzávěrové operátory.

 $4\Rightarrow 1$: Pro libovolnou $A\Rightarrow B$ máme $T_1\models A\Rightarrow B$ p.k. $B\subseteq [A]_{T_1}=[A]_{T_2}$ p.k. $T_2\models A\Rightarrow B.$

Důsledek. Pokud jsou T_1 a T_2 báze \mathcal{D} , pak $T_1 \equiv T_2$.

Pro snadnější charakterizaci pravdivosti v relaci si zavedeme operátor, který bude fungovat podobně jako sémantický uzávěr u teorie. Nejdříve však definujeme relaci na n-ticích.

Definice 3. Pro $\mathcal{D}\subseteq\prod_{y\in R}D_y$ a $M\subseteq R$ definujeme $E_{\mathcal{D}}:2^R\to 2^{\mathcal{D}\times\mathcal{D}}$ předpisem

$$E_{\mathcal{D}}(M) = \{ \langle t, t' \rangle \in \mathcal{D} \times \mathcal{D} \mid t(M) = t'(M) \}.$$

Poznámka. • Z definice $E_{\mathcal{D}}$ je hned zřejmé, že relace $E_{\mathcal{D}}(M)$ je ekvivalencí na \mathcal{D} což také znamená, že můžeme udělat rozklad.

- Význam vztahu $E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(M')$ je, že všechny dvojce n-tic, které se rovnají na M se také rovnají na M'.
- $E_{\mathcal{D}}$ je zřejmě antinonní, protože pokud $M_1 \subseteq M_2$, všechny n-tice, které se rovnají na M_2 se tím spíš musí rovnat na M_1 , tedy $E_{\mathcal{D}}(M_2) \subseteq E_{\mathcal{D}}(M_1)$.

Definice 4. Pro $\mathcal{D} \subseteq \prod_{y \in R} D_y$ a $M \subseteq R$ definujeme $C_{\mathcal{D}}: 2^R \to 2^R$ předpisem

$$C_{\mathcal{D}}(M) = \{ y \in R \mid E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(\{y\}) \}.$$

Poznámka. $C_{\mathcal{D}}(M)$ je vlastně množina atributů, na kterých jsou si rovny všechny dvojice n-tic z \mathcal{D} , které jsou si rovny na M. Důsledkem pak je, že $E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(C_{\mathcal{D}}(M))$. Důkaz je ponechán čtenáři.

Věta 2. $C_{\mathcal{D}}$ je uzávěrový operátor na R.

- $D\mathring{u}kaz$. (extenzivita): Pokud $y \in M$, pak $E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(\{y\})$, protože pokud jsou si t,t' rovny na všech atributech z M, tím spíš jsou si rovny na $y \in M$. Odtud dle definice $C_{\mathcal{D}}$ dostáváme $y \in C_{\mathcal{D}}(M)$.
 - (monotonie): Předpokládejme $M_1 \subseteq M_2$ a vezmeme $y \in C_{\mathcal{D}}(M_1)$. Poslední znamená, že $E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(\{y\})$. Z antitonie $E_{\mathcal{D}}$ dostáváme $E_{\mathcal{D}}(M_2) \subseteq E_{\mathcal{D}}(M_1) \subseteq E_{\mathcal{D}}(\{y\})$. Z definice $C_{\mathcal{D}}$ je $y \in C_{\mathcal{D}}(M_2)$.
 - (idempotence): $C_{\mathcal{D}}(M) \subseteq C_{\mathcal{D}}(C_{\mathcal{D}}(M))$ platí z extenzivity. Pro obrácenou inkluzi máme následující posloupnost argumentů:

$$E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(C_{\mathcal{D}}(M))$$
$$\{y \in R \mid E_{\mathcal{D}}(C_{\mathcal{D}}(M)) \subseteq E_{\mathcal{D}}(\{y\})\} \subseteq \{y \in R \mid E_{\mathcal{D}}(M) \subseteq E_{\mathcal{D}}(\{y\})\}$$
$$C_{\mathcal{D}}(C_{\mathcal{D}}(M)) \subseteq C_{\mathcal{D}}(M)$$

Věta 3 (o charakterizaci pravdivosti). Následující jsou ekvivalentní:

- 1. $\mathcal{D} \models A \Rightarrow B$
- 2. $E_{\mathcal{D}}(A) \subseteq E_{\mathcal{D}}(B)$
- 3. $B \subseteq C_{\mathcal{D}}(A)$

 $D\mathring{u}kaz$. $1 \Rightarrow 2$: Z definice $\mathcal{D} \models A \Rightarrow B$, pokud t(A) = t'(A), pak t(B) = t'(B), tzn. pokud $\langle t, t' \rangle \in E_{\mathcal{D}}(A)$, pak $\langle t, t' \rangle \in E_{\mathcal{D}}(B)$, tj. $E_{\mathcal{D}}(A) \subseteq E_{\mathcal{D}}(B)$.

 $2 \Rightarrow 3$: Předpokládejme $E_{\mathcal{D}}(A) \subseteq E_{\mathcal{D}}(B)$. Pro libovolný $y \in B$ pak z antitonie platí $E_{\mathcal{D}}(A) \subseteq E_{\mathcal{D}}(B) \subseteq E_{\mathcal{D}}(\{y\})$. To podle definice $C_{\mathcal{D}}$ znamená, že $y \in C_{\mathcal{D}}(A)$, tj. $B \subseteq C_{\mathcal{D}}(A)$.

 $3 \Rightarrow 1$: Předpokládejme $B \subseteq C_{\mathcal{D}}(A)$. Dále mějme $t, t' \in \mathcal{D}$ takové, že t(A) = t'(A) a vezmeme libovolné $y \in B$. Pak nutně $\langle t, t' \rangle \in E_{\mathcal{D}}(A)$ a navíc $E_{\mathcal{D}}(A) \subseteq E_{\mathcal{D}}(\{y\})$. Důsledkem je, že t(y) = t'(y), tedy t(B) = t'(B).

Věta 4 (o charakterizaci báze). T je báze \mathcal{D} právě, když pro libovolné $A\subseteq R$ máme $C_{\mathcal{D}}(A)=[A]_T$.

Poznámka. Ekvivalentně $C_{\mathcal{D}}(M) = [M]_T = M_T^{\infty} = M_T^+$.

 $D\mathring{u}kaz$. " \Rightarrow ": Nechť T je báze \mathcal{D} . Pak $[M]_T \subseteq [M]_T$ p.k. $T \models M \Rightarrow [M]_T$ p.k. $\mathcal{D} \models M \Rightarrow [M]_T$ p.k. $[M]_T \subseteq C_{\mathcal{D}}(M)$. Obráceně máme $C_{\mathcal{D}}(M) \subseteq C_{\mathcal{D}}(M)$ p.k. $\mathcal{D} \models M \Rightarrow C_{\mathcal{D}}(M)$ p.k. $T \models M \Rightarrow C_{\mathcal{D}}(M)$ p.k. $C_{\mathcal{D}}(M) \subseteq [M]_T$. Dohromady tedy $C_{\mathcal{D}}(M) = [M]_T$.

"\(= \)": Pokud $C_{\mathcal{D}}$ má stejné pevné body jako $[\dots]_T$, pak $\mathcal{D} \models A \Rightarrow B$ p.k. $B \subseteq C_{\mathcal{D}}(A) = [A]_T$ p.k. $T \models A \Rightarrow B$.

Následující věta ukazuje, že pro libovolnou relaci existuje minimálně jedna báze.

Věta 5 (o existenci báze). $T = \{A \Rightarrow C_{\mathcal{D}}(A) \mid A \subseteq R\}$ je báze \mathcal{D} .

 $D\mathring{u}kaz$. Dle předchozí věty stačí ověřit, že $C_{\mathcal{D}}(M) = [M]_T$ pro libovolnou M, tzn. ověřit, že $M = C_{\mathcal{D}}(M)$ právě když $M \in \mathcal{M}_T$.

"⇒": Předpokládejme $M = C_{\mathcal{D}}(M)$ a vezmeme libovolnou $A \Rightarrow C_{\mathcal{D}}(A) \in T$ tak, že $A \subseteq M$. Z monotonie operátoru $C_{\mathcal{D}}$ dostaneme $C_{\mathcal{D}}(A) \subseteq C_{\mathcal{D}}(M) = M$. Dohromady tedy $\mathcal{D}_M \models A \Rightarrow C_{\mathcal{D}}(A)$ p.k. $\mathcal{D}_M \in \operatorname{Mod}_C(T)$ p.k. $M \in \mathcal{M}_T$.

"\(= \)": Předpokládejme, že $M \in \mathcal{M}_T$. To jest $\mathcal{D}_M \in \operatorname{Mod}_C(T)$. Speciálně pro $M \Rightarrow C_{\mathcal{D}}(M) \in T$ máme $\mathcal{D}_M \models M \Rightarrow C_{\mathcal{D}}(M)$. Odtud $C_{\mathcal{D}}(M) \subseteq M$ a přidáme-li extenzivitu $C_{\mathcal{D}}$ dostaneme $C_{\mathcal{D}}(M) = M$.

Když už víme, že báze vždy existuje, přesuneme pozornost na její velikost vzhledem k počtu FZ. Z předchozího textu vyplývá, že se budeme snažit najít bázi ekvivalentní, ale co nejmenší.

První ideou je ostranit z teorie nějaké FZ tak, že je pořád bází. Pokud už nejde zmenšit je tzv. neredundantní.

Definice 5. Teorie T je <u>neredundantní báze</u> relace \mathcal{D} , pokud T je báze \mathcal{D} a pro každou $T' \subset T$ platí, že T' není báze \mathcal{D} .

Tato definice má i ekvivalentní formulaci, která vede na jednoduchý algoritmus transformace báze na bázi neredundandní.

Věta 6 (o charakterizaci neredundantní báze). Teorie T je neredundantní báze relace \mathcal{D} právě, když T je báze a žádná $A \Rightarrow B \in T$ sémanticky neplyne z $T \setminus \{A \Rightarrow B\}$.

 $D\mathring{u}kaz$. " \Rightarrow ": Vezmeme libovolnou $A\Rightarrow B\in T$. Z předpokladu, že T je báze, vyplývá, že $T\setminus\{A\Rightarrow B\}$ není báze, a tedy není ekvivalentní T. Pak existuje model $T\setminus\{A\Rightarrow B\}$, který není modelem T, a tedy není v něm pravdivá $A\Rightarrow B$, což znamená, že $T\setminus\{A\Rightarrow B\}\not\models A\Rightarrow B$.

"\(= \)": Vezmeme libovolnou $T' \subset T$. Pak nutně existuje $A \Rightarrow B \in T$ tak, že $A \Rightarrow B \notin T'$, a díky předpokladu máme $T' \not\models A \Rightarrow B$. Tudíž T a T' nejsou sémanticky ekvivalentní.

 ${\bf K}$ tomu, abychom definovali konkrétní neredundantní bázi využijeme následující množinu.

Definice 6. Pro relaci \mathcal{D} nad R uvažujeme množinu $P_{\mathcal{D}} \subseteq 2^R$, která je definovaná předpisem:

$$P_{\mathcal{D}} = \{ P \neq C_{\mathcal{D}}(P) \mid \forall Q \in P_{\mathcal{D}} : \text{ pokud } Q \subset P, \text{ pak } C_{\mathcal{D}}(Q) \subseteq P \}.$$

Prvkům z této množiny se někdy říká pseudo-uzávěry. Koresponduje to s tím, že to nejsou sice uzavřené množiny, ale mají uzávěrovou vlastnost vzhledem ke všem ostatním prvkům z této množiny.

Definice 7. GD bází \mathcal{D} nazveme teorii definovanou následujícím předpisem:

$$GD(\mathcal{D}) = \{ P \Rightarrow C_{\mathcal{D}}(P) \mid P \in P_{\mathcal{D}} \}.$$

Poznámka. Teorie je nazvaná podle francouzkých vědců Guigues a Duquenne, kteří ji prvně definovali v kontextu formální konceptuální analýzy.

Věta 7. GD báze relace \mathcal{D} je bází \mathcal{D} .

 $D\mathring{u}kaz$. $GD(\mathcal{D})$ je báze právě, když $C_{\mathcal{D}}$ a $[\dots]_{GD(\mathcal{D})}$ mají stejné pevné body, tedy $M = C_{\mathcal{D}}(M)$ právě, když $M \in \mathcal{M}_{GD(\mathcal{D})}$ pro každou $M \subseteq R$.

"⇒": Víme, že $T' = \{A \Rightarrow C_{\mathcal{D}}(A) \mid A \subseteq R\}$ je báze a vidíme, že $T \subseteq T'$, z čehož vyplývá, že $\mathcal{M}_{T'} \subseteq \mathcal{M}_T$. Nechť $M = C_{\mathcal{D}}(M)$. Pak $M \in \mathcal{M}_{T'}$, a tedy z předchozího $M \in \mathcal{M}_T$.

"\(\infty\)": Nechť $M \in \mathcal{M}_T$, pak $\mathcal{D}_M \models P \Rightarrow C_{\mathcal{D}}(P)$ pro každou $P \in P_{\mathcal{D}}$, což znamená, že pokud $P \subseteq M$, pak $C_{\mathcal{D}}(P) \subseteq M$. Nyní sporem dokážeme, že $M = C_{\mathcal{D}}(M)$. Nechť tedy $M \neq C_{\mathcal{D}}(M)$. Pak díky předchozímu je $M \in P_{\mathcal{D}}$, a tedy z předpokladu plyne, že $\mathcal{D}_M \models M \Rightarrow C_{\mathcal{D}}(M)$. Jelikož ale $M \subseteq M$, pak $C_{\mathcal{D}}(M) \subseteq M$. Navíc z extenzivity uzávěrového operátoru $C_{\mathcal{D}}$ máme $M \subseteq C_{\mathcal{D}}(M)$, což dohromady dává $M = C_{\mathcal{D}}(M)$.

Věta 8. GD báze relace \mathcal{D} je neredundantní bází \mathcal{D} .

Důkaz. Vezmeme libovolnou $T \subset GD(\mathcal{D})$ a ukážeme, že T není báze. Díky předpokladu existuje $P \Rightarrow C_{\mathcal{D}}(P) \in GD(\mathcal{D})$, která není v T. Z definice $P_{\mathcal{D}}$ je vidět, že \mathcal{D}_P je modelem T. Jelikož však není modelem $GD(\mathcal{D})$, nemohou být T a $GD(\mathcal{D})$ sémanticky ekvivalentní, což dohromady s tím, že $GD(\mathcal{D})$ je báze \mathcal{D} dává, že T není báze \mathcal{D} .

Jako motivaci pro zbytek sekce vezmeme následující příklad.

Příklad 1. Mějme $R = \{a, b, c\}$ a teorie $T_1 = \{\{a\} \Rightarrow \{b, c\}\}$ a $T_2 = \{\{a\} \Rightarrow \{b\}, \{a\} \Rightarrow \{b\}\}$. Při bližším prozkoumání zjistíme, že $T_1 \equiv T_2$ a navíc, že jsou obě neredundantní, ale $|T_1| < |T_2|$.

Z příkladu je patrné, že kompaktnější verze teorií nelze získat pouze ostraněním redundantních FZ. Jelikož chceme najít teorii s nejmenší kardinalitou, definujeme následující pojem.

Definice 8. Pokud teorie T je báze \mathcal{D} a pro libovolnou T', která je také bází \mathcal{D} , platí, že $|T| \leq |T'|$, pak se T nazývá minimální báze \mathcal{D} .

Ukazuje se, že GD báze je také minimální bazí, ale abychom byli schopni to potvrdit, je potřeba prozkoumat vzájemné vlastnosti mezi množinou $P_{\mathcal{D}}$ a operátorem $C_{\mathcal{D}}$.

Poznámka. Fakt, že $|T| \leq |T'|$ intuitivně chápeme, ale přesnou matematickou definicí je, že existuje injektivní zobrazení $f: T \to T'$. Pro připomenutí, zobrazení f je injektivní, jestliže pro každé $x_1, x_2 \in T$ platí, že pokud $f(x_1) = f(x_2)$, pak $x_1 = x_2$, nebo-li neexistují dva prvky, které se zobrazí na to samé, a tedy pro konečné množiny platí, že T má menší nebo stejný počet prvků jako T'. Této definice využijeme u důkazu, že GD báze je minimální.

Jednou ze základních vlastností pseudo-uzávěrů je, že přidáme-li jeden z nich do uzávěrového systému generovaným operátorem $C_{\mathcal{D}}$, pak je výsledná množina zase uzávěrovým systémem.

Věta 9. Pokud $P \in P_{\mathcal{D}}$ a $A \subseteq R$ tak, že $P \not\subseteq C_{\mathcal{D}}(A)$, pak $C_{\mathcal{D}}(A) \cap P = C_{\mathcal{D}}(C_{\mathcal{D}}(A) \cap P)$.

 $D\mathring{u}kaz$. Předpokládejme, že $P \not\subseteq C_{\mathcal{D}}(A)$ a tedy $P \not\subseteq C_{\mathcal{D}}(A) \cap P$. Nyní stačí ukázat, že $\mathcal{D}_{C_{\mathcal{D}}(A)\cap P}$ je modelem T, z čehož pak plyne $C_{\mathcal{D}}(A)\cap P\in \mathcal{M}_T$ a tedy, že $C_{\mathcal{D}}(A)\cap P=C_{\mathcal{D}}(C_{\mathcal{D}}(A)\cap P)$.

Vezmeme libovolnou $Q \in P_{\mathcal{D}}$ tak, že $Q \subseteq C_{\mathcal{D}}(A) \cap P$ a prokážeme, že $C_{\mathcal{D}}(Q) \subseteq C_{\mathcal{D}}(A) \cap P$. K tomu nám postačí fakt, že $C_{\mathcal{D}}(Q)$ je podmnožinou obou množin. Z předpokladů $Q \subseteq C_{\mathcal{D}}(A) \cap P$ a $P \not\subseteq C_{\mathcal{D}}(A)$ nutně plyne, že $Q \subset P$, a tedy z definice $P_{\mathcal{D}}$ pak $C_{\mathcal{D}}(Q) \subseteq P$. Druhý fakt je už jednoduchý, jelikož z předpokladu nutně plyne $Q \subseteq C_{\mathcal{D}}(A)$ a tedy využitím monotonie a idempotence operátoru $C_{\mathcal{D}}$ dostaneme $C_{\mathcal{D}}(Q) \subseteq C_{\mathcal{D}}(C_{\mathcal{D}}(A)) = C_{\mathcal{D}}(A)$.

Díky této vlastnosti můžeme dát do korespondence FZ GD báze a libovolné jiné báze. Přesněji, zaručí nám existenci injektivního zobrazení z množiny $P_{\mathcal{D}}$ do libovolné báze.

Věta 10. Nechť T je báze \mathcal{D} . Potom pro každou $P \in P_{\mathcal{D}}$ existuje $A \Rightarrow B \in T$ taková, že $C_{\mathcal{D}}(A) = C_{\mathcal{D}}(P)$ a $\mathcal{D}_P \not\models A \Rightarrow B$.

 $D\mathring{u}kaz$. Nechť $P \in P_{\mathcal{D}}$. Z toho plyne, že $P \neq C_{\mathcal{D}}(P)$ a jelikož T je báze, máme taky $P \notin \mathcal{M}_T$, tedy existuje $A \Rightarrow B \in T$ tak, že $\mathcal{D}_P \not\models A \Rightarrow B$. Nyní ukážeme, že $C_{\mathcal{D}}(A) = C_{\mathcal{D}}(P)$.

"
⊆": Jestliže $\mathcal{D}_P \not\models A \Rightarrow B$, pak nutně $A \subseteq P$ a zbytek plyne z monotonie operátoru $C_{\mathcal{D}}$.

"]": Stačí dokázat, že $P\subseteq C_{\mathcal{D}}(A)$, protože zbytek plyne z monotonie a idempotence operátoru $C_{\mathcal{D}}$. Tvrzení dokážeme sporem, tedy předpokládejme, že platí $P\not\subseteq C_{\mathcal{D}}(A)$. Jelikož $A\Rightarrow B\in T$, pak $T\models A\Rightarrow B$, dále pak $B\subseteq C_{\mathcal{D}}(A)=[A]_T$, protože T je báze. Dalším je, že $B\not\subseteq P$, protože $\mathcal{D}_P\not\models A\Rightarrow B$. Dohromady to znamená, že $C_{\mathcal{D}}(A)\not\subseteq P$, a když k tomu přidáme ještě předpoklad $P\not\subseteq C_{\mathcal{D}}(A)$ zjistíme, že $C_{\mathcal{D}}(A)\cap P\subset C_{\mathcal{D}}(A)$. Ze stejného předpokladu máme $A\subseteq P$, tedy $C_{\mathcal{D}}(A)\subseteq C_{\mathcal{D}}(P)$. Navíc $A\subseteq C_{\mathcal{D}}(A)$, což s předchozím dává $A\subseteq C_{\mathcal{D}}(A)\cap P$. Monotonií dostaneme $C_{\mathcal{D}}(A)\subseteq C_{\mathcal{D}}(C_{\mathcal{D}}(A)\cap P)$ a díky předchozí větě $C_{\mathcal{D}}(A)\subseteq C_{\mathcal{D}}(A)\cap P$, což je ale v rozporu s tím, že $C_{\mathcal{D}}(A)\cap P\subset C_{\mathcal{D}}(A)$.

Další vlastnost koresponduje s tou, kterou jsme nazvali základní. Přidáme-li do uzávěrového systému některé dva pseudo-uzávěry, zůstane pořád uzávěrovým systémem.

Věta 11. Pokud $P_1, P_2 \in P_{\mathcal{D}}, P_1 \not\subseteq P_2$ a $P_2 \not\subseteq P_1$, pak $C_{\mathcal{D}}(P_1 \cap P_2) = P_1 \cap P_2$.

Důkaz. Nejdříve položme

$$T_1 = GD(\mathcal{D}) \setminus \{P_1 \Rightarrow C_{\mathcal{D}}(P_1)\},$$

$$T_2 = GD(\mathcal{D}) \setminus \{P_2 \Rightarrow C_{\mathcal{D}}(P_2)\}.$$

Pak z definice $\mathcal{P}_{\mathcal{D}}$ máme, že \mathcal{D}_{P_1} je modelem T_1 a \mathcal{D}_{P_2} je modelem T_2 . Tím spíš jsou pak obě relace modely $T_1 \cap T_2$. Tím pádem i $\mathcal{D}_{P_1 \cap P_2}$ musí být model $T_1 \cap T_2$, protože $\mathcal{M}_{T_1 \cap T_2}$, je uzávěrový systém. Navíc $\mathcal{D}_{P_1 \cap P_2}$ je i modelem T_1 , protože z předpokladu $P_2 \not\subseteq P_1$ plyne $P_2 \not\subseteq P_1 \cap P_2$. To samé platí i pro T_2 , tedy $\mathcal{D}_{P_1 \cap P_2}$ je modelem $T_1 \cup T_2 = GD(\mathcal{D})$. To znamená, že $P_1 \cap P_2 = [P_1 \cap P_2]_{GD(\mathcal{D})}$, a jelikož $GD(\mathcal{D})$ je navíc báze \mathcal{D} , máme $[P_1 \cap P_2]_{GD(\mathcal{D})} = C_{\mathcal{D}}(P_1 \cap P_2)$. Dohromady tedy $C_{\mathcal{D}}(P_1 \cap P_2) = P_1 \cap P_2$.

Než přistoupíme k důkazu, že GD báze je minimální vzhledem k počtu FZ, je potřeba se zamyslet Použitím předchozích vlastností můžeme dokázat následující tvrzení.

Věta 12. GD báze \mathcal{D} je minimální báze \mathcal{D} .

Důkaz. K prokázání tvrzení nám stačí pro libovolnou bázi \mathcal{D} , označme ji T, najít injektivní zobrazení $f: \mathcal{P}_{\mathcal{D}} \to T$. Z předchozích tvrzení víme, že pro každou $P \in \mathcal{P}_{\mathcal{D}}$ existuje $A \Rightarrow B \in T$ tak, že platí $C_{\mathcal{D}}(A) = C_{\mathcal{D}}(P)$ a $\mathcal{D}_P \not\models A \Rightarrow B$. Položme tedy f(P) rovno takovéto $A \Rightarrow B$ a ukážeme, že se jedná o injektivní zobrazení.

Nechť P_1 a P_2 jsou prvky $\mathcal{P}_{\mathcal{D}}$ takové, že $f(P_1) = f(P_2)$. Z předchozí věty jsou tyto obrazy podle f rovny $A \Rightarrow B \in T$ a platí, že $C_{\mathcal{D}}(P_1) = C_{\mathcal{D}}(A) = C_{\mathcal{D}}(P_2)$. Nyní není možné, aby $P_1 \subset P_2$. Vskutku, kdyby to tak bylo, dle definice $\mathcal{P}_{\mathcal{D}}$ bychom měli $C_{\mathcal{D}}(P_1) \subseteq P_2$ a $P_2 \neq C_{\mathcal{D}}(P_2)$, což spolu s extenzivitou $C_{\mathcal{D}}$ dává $C_{\mathcal{D}}(P_1) \subset C_{\mathcal{D}}(P_2)$. To je však v rozporu s předchozím. Stejně tak nemůže

nastat $P_2 \subset P_1$. Navíc také nemůže nastat $P_2 \neq P_1$, jinak bychom měli spor s $C_{\mathcal{D}}(P_1) = C_{\mathcal{D}}(A)$, protože dle předchozí věty by pak $C_{\mathcal{D}}(P_1 \cap P_2) = P_1 \cap P_2$ a spolu s definicí f bychom měli $A \subseteq P_1$ a $A \subseteq P_2$, tedy $A \subseteq P_1 \cap P_2$, což by pak použitím monotonie operátoru $C_{\mathcal{D}}$ dalo $C_{\mathcal{D}}(A) \subseteq P_1 \cap P_2 \subset C_{\mathcal{D}}(P_1)$. Jedinná možnost je tedy, že $P_1 = P_2$, čímž jsme prokázali injektivitu f.

Jedinnou otázkou teď je, jak takovouto bázi najít. K tomu nám bude sloužit jemně upravený operátor \dots_T^∞ .

Definice 9. Pro $M \subseteq R$ zavedeme následující posloupnost podmnožin R:

$$\begin{split} &M^{(0)}_{GD(\mathcal{D})} = M, \\ &M^{(i+1)}_{GD(\mathcal{D})} = \bigcup \{B \mid A \Rightarrow B \in GD(\mathcal{D}) \text{ a } A \subset M^{(i)}_{GD(\mathcal{D})}\}, \\ &M^{(\infty)}_{GD(\mathcal{D})} = \bigcup_{i=0}^{\infty} M^{(i)}_{GD(\mathcal{D})}. \end{split}$$

I v tomto případě je jasné, že $M_{GD(\mathcal{D})}^{(\infty)}$ je konečná, protože R je konečná a díky tomu se růst posloupnosti někdy zastaví.

Cvičení 1. 1. Dokažte, že $\dots_{GD(\mathcal{D})}^{(\infty)}$ je uzávěrový operátor na R.

2. Pro každou množinu $M \subseteq R = \{a, b, c, d, e, f, g, h\}$ a teorii

$$T = \{\{a, b\} \Rightarrow \{c\},\$$

$$\{b\} \Rightarrow \{d\},\$$

$$\{c, d\} \Rightarrow \{e\},\$$

$$\{c, e\} \Rightarrow \{g, h\},\$$

$$\{g\} \Rightarrow \{a\}\}$$

vypočtěte $M_{GD(\mathcal{D})}^{(\infty)}$.

- 3. Dokažte, že platí $M^{(\infty)}_{GD(\mathcal{D})}=M$ právě, když platí buď $M=C_{\mathcal{D}}(M)$ nebo $M\in\mathcal{P}_{\mathcal{D}}.$
- 4. Naprogramujte operátor $\dots_{GD(\mathcal{D})}^{(\infty)}$. (hint: inspirujte se algoritmem CLOSURE)
- 5. Můžete zkusit naprogramovat generování $GD(\mathcal{D})$. (hint: jednoduše bruteforce procházení všech podmnožin R)