Hands On

V_{Cl}⁺ at NaCl surface

POSCAR

Formation Energy

$$E_f(V_{cl}^+) = (E_{charged} + \mu_{cl}) - E_{pristine} + q\varepsilon_{VBM}$$

- ightharpoonup igh
- \triangleright E_{charged}: it is the total energy of the charged system.
- $> \mu_{Cl} \sim \left(\frac{1}{2}\right) E_{Cl2}$: it is the chemical potential of Cl atom (experimental or calculated).
- \triangleright E_{pristine}: it is the total energy of the pristine system.
- > q: the defect charge.
- $\triangleright \varepsilon_{VBM}$: it is the valence band maximum energy.

Formation Energy

$$E_f(V_{cl}^+) = E_{charged} + \mu_{cl} - E_{pristine} + q\varepsilon_{VBM}$$

> Energy correction (FNV)

FNV energy correction

$$E_f(V_{cl}^+) = (E_{charged} + E_{cor}) + \mu_{cl} - E_{pristine} + q\varepsilon_{VBM}$$

> SCPC method

Potential Alignment

$$E_f(V_{Cl}^+) = \left(E'_{charged} + q\Delta V\right) + \mu_{cl} - E_{pristine} + q\varepsilon_{VBM}$$
SCPC total energy

VCI+ Formation Energy

$$E_f(V_{cl}^+) = E_{charged} + \mu_{cl} - E_{pristine} + q\varepsilon_{VBM}$$

- CHARGED: the charged system calculation

 Check.bash: a bash script to check the final calculations
- Cl2: the calculation for the chemical potential FNV: the Freysoldt energy correction NEUTRAL: the neutral defect system calculation (for reference only)
- PRISTINE: the pristine system (formation energy + reference)

 SCPC-1: the SCPC method using the neutral defect as reference

 SCPC-2: the SCPC method using the pristine system as reference

Run the default VASP for the folders

CHARGED: the charged system calculation

Cl2: the calculation for the chemical potential

NEUTRAL: the neutral defect system calculation (for reference only)

PRISTINE: the pristine system (formation energy + reference)

Model Charge - Reference System

SCPC-1 (neutral system as reference)

- From NEUTRAL: copy the CHGCAR to REFCHG and LOCPOT to REFPOT files into the SCPC-1 folder
- From the converged CHARGED: copy the CHGCAR to CHGCAR and the WAVECAR to WAVECAR into the SCPC-1 folder
- ➤ Inside the SCPC-1 folder:

INCAR CHGCAR → from charged calc.

KPOINTS WAVECAR \rightarrow from charged calc.

POSCAR REFCHG → from neutral CHGCAR

POTCAR REFPOT → from neutral LOCPOT

SCPC-1 (neutral system as reference)

INCAR

```
# Initial Guess
 ISTART = 1 ; restart
  ICHARG = 1 ; charge read
# self-consistent charge-potential correction
  DOVCOR = T ; run SCPC
  INVCOR = 1; start in 1^{st} iter.
  VCQTOT = 1.0 ; defect charge (formal charge)
  VCZLOW = 0.22; interface
  VCZHIG = 0.53; interface
  VCDIEL = 2.46; dielectric
  VCBROAD = 0.40; broadning
```

free energy free energy	TOTEN TOTEN	=	-476.08786254 eV -476.50089403 eV	
free energy	TOTEN	=	-476.79910181 eV	
free energy	TOTEN	=	-477 . 45963458 eV	
free energy	TOTEN	=	-477 . 75583803 eV	
free energy	TOTEN	=	-477.87531303 eV	
free energy	TOTEN	=	-477 . 93211822 eV	
free energy	TOTEN	=	-477 . 96335990 eV	
free energy	T0TEN	=	-477 . 97299642 eV	
free energy	TOTEN	=	-477 . 97555935 eV	
free energy	T0TEN	=	-477 . 97818700 eV	
free energy	TOTEN	=	-477 . 97906335 eV	
free energy	T0TEN	=	-477 . 97933184 eV	
free energy	T0TEN	=	-477 . 97952972 eV	
free energy	TOTEN	=	-477 . 97969115 eV	
free energy	TOTEN	=	-477 . 97971030 eV	
free energy	TOTEN	=	-477.97971030 eV	
			E_{chg}	

- $\Delta_1 E = E_{SCPC-1}^1 E_{chg} = 0.18 \ eV$
- $\Delta_N E = E_{SCPC-1}^N E_{chg} = 0.17 eV$
- > Small effect of the SCF to the total correction.
- Localize defect characteristic.

> Energy correction (FNV)

FNV energy correction

$$E_f(V_{cl}^+) = (E_{charged} + E_{cor}) + \mu_{cl} - E_{pristine} + q\varepsilon_{VBM}$$

CHARGED Cl2 NEUTRAL README.txt SCPC-1 Check.bash FNV PRISTINE SAVE SCPC-2

%cd FNV %ls *

O.LOCPOT 1.LOCPOT FNV Run.bash system.sx

Potentials

Script to run the method

FNV input

% vi ALIGNED.txt

0 = -1

--- Isolated

isolated energy = 3.97451990852 eV

periodic energy = 3.28943422032 eV

iso - periodic energy = 0.685085688205 eV

> SCPC-1 corrections

$$E_f(V_{cl}^+) = \left(E_{SCPC-1} + qV_{alig}\right) + \mu_{cl} - E_{pristine} + q\varepsilon_{VBM}$$

```
free energy
              TOTEN =
                            -477.80213469 eV
              TOTEN =
free energy
                            -477.80739658 eV
free energy
              TOTEN =
                            -477.81112623 eV
              TOTEN =
                            -477.81939857 eV
free energy
              TOTEN =
free energy
                            -477.81855768 eV
              TOTEN =
free energy
                            -477.81884042 eV
              TOTEN =
free energy
                            -477.81540833 eV
free energy
              TOTEN =
                            -477.81004213 eV
              TOTEN =
                            -477.81160178 eV
free energy
free energy
              TOTEN =
                            -477.81291841 eV
free energy
              TOTEN =
                            -477.81127037 eV
free energy
              TOTEN =
                            -477.81058322 eV
              TOTEN =
free energy
                            -477.81040836 eV
free energy
              TOTEN =
                            -477.81016729 eV
free energy
              TOTEN =
                            -477.80998014 eV
free energy
              TOTEN =
                            -477.80994540 eV
free energy
              TOTEN =
                            -477.80994540 eV
```

<<< SCPC Cycle: 17 >>>>

Potential Alignment (X,Y,Z): 0.030583

Checking the Calculation (Check.bash)

%Check.bash 1

```
**** Reference System set to NEUTRAL DEFECT ****
```

```
<<< VCl(+) Formation Energy (eV) >>>>
```

Plain Calculation : 1.64

Energy Correc. (FNV Method): 2.08

Self-cons. Pot Correc. : 1.84

- > SCPC-1 is not closer to the FNV correction results.
- > SCPC-1 uses NEUTRAL as reference but FNV uses PRISTINE as reference
- > The difference here comes from the SCF procedure and charge model

Using Another Reference

SCPC-2 (pristine system as reference)

- From PRISTINE: copy the CHGCAR→ REFCHG and LOCPOT→ REFPOT files into the SCPC-1 folder
- From the converged CHARGED: copy the CHGCAR → CHGCAR and the WAVECAR → WAVECAR into the SCPC-1 folder
- ➤ Inside the SCPC-2 folder:

INCAR

KPOINTS

WAVECAR → from charged calc.

WAVECAR → from charged calc.

POSCAR

REFCHG → from pristine CHGCAR

REFPOT → from pristine LOCPOT

SCPC-2 (pristine system as reference)

INCAR

```
# Initial Guess
ISTART = 1 ; restart
ICHARG = 1 ; charge read
```

➤ INCAR is similar to SCPC-1, the reference is controlled by **REFCHG** and **REFPOT**

```
# self-consistent charge-potential correction
DOVCOR = T ; run SCPC
INVCOR = 1 ; start in 1st iter.
VCQTOT = 1.0 ; defect charge (formal charge)
VCZLOW = 0.22 ; interface
VCZHIG = 0.53 ; interface
VCDIEL = 2.46 ; dielectric
VCBROAD = 0.40 ; broadning
```

Checking the Calculation (Check.bash)

%Check.bash 2

- SCPC-2 is closer to the FNV correction results.
- SCPC-2 and FNV use PRISTINE as reference
- > The difference here comes from the SCF procedure

Checking the Calculation (Check.bash)

%Check.bash 2

```
**** Reference System set to PRISTINE ****

<<< VCl(+) Formation Energy (eV) >>>

Plain Calculation : 1.64
Energy Correc. (FNV Method) : 2.08
Self-cons. Pot Correc. : 1.94
```