Université de Sidi Bel Abbes. Faculté des Sciences Exactes Département de Proba-Stat

2020/2021 MASTER SA STAT-NONPARAM

EXAMEN FINAL

Problème. On va s'intéresser au modèle de régression, où

$$Y_i = f(x_i) + \varepsilon_i, \quad i = 1, \dots, n$$

où $x_i \in [0,1]$ sont connus et les ε_i sont i.i.d centrés de même variances σ^2 , et on cherche à estimer f, fonction de [0,1] à valeurs dans \mathbb{R} . Supposant à présant \widehat{f} un estimateur linéaire de f tel que:

$$\forall x \in [0,1], \ \widehat{f}(x) = \sum_{i=1}^n W_{n,i}(x) Y_i, \quad \text{ où } \quad W_{n,i}(x) = \frac{K\left(\frac{x_i - x}{h_n}\right)}{\sum_{i=1}^n K\left(\frac{x_i - x}{h_n}\right)}$$

(i) Soient Z_i, \ldots, Z_n des v.a.r telles que $\exists \alpha > 0$ et C > 0 tels que pour tout $i = 1, \ldots, n$ on a: $\mathbb{E}(\exp(\alpha Z_i)) \leq C$. Montrer que

$$\mathbb{E}\left(\max_{1\leq i\leq n} Z_i\right) \leq \frac{1}{\alpha}\ln(Cn).$$

(ii) Soit $x \in [0,1]$, f continue, et qu'il esxiste $(h_n)_{n\geq 1}$ où $h_n \underset{n\to\infty}{\longrightarrow} 0$ telle que les deux conditions suivantes sont vérifiées:

(1)
$$\lim_{n \to \infty} \sum_{i=1}^{n} W_{n,i}^{2}(x) = 0.$$

(2) Pour tout $\delta > 0$, $\lim_{n \to \infty} \sum_{i=1}^{n} \mathbf{1}_{|x-x_i| > \delta} W_{n,i}(x) = 0$.

Montrez que
$$\lim_{n\to\infty} \mathbb{E}\left[\left(\widehat{f}(x) - f(x)\right)^2\right] = 0.$$

(iii) Supposons f continue, et que les deux conditions suivantes sont vérifiées :

(3)
$$\lim_{n \to \infty} \int_0^1 \sum_{i=1}^n W_{n,i}^2(x) dx = 0.$$

(4) Pour tout $\delta > 0$, $\lim_{n \to \infty} \sum_{i=1}^{n} \int_{|x-x_i| > \delta} W_{n,i}(x) dx = 0$.

Vérifie qu'on a:
$$\lim_{n\to\infty} \mathbb{E}\left[\int_0^1 \left(\widehat{f}(x) - f(x)\right)^2 dx\right] = 0.$$