#### ET<sub>E</sub>X command declarations here.

```
In [1]: from __future__ import division

# plotting
%matplotlib inline
from matplotlib import pyplot as plt;
import seaborn as sns
import pylab as pl
from matplotlib.pylab import cm
import pandas as pd

# scientific
import numpy as np;

# ipython
from IPython.display import Image
```

# **EECS 545: Machine Learning**

# **Lecture 13: Information Theory and Exponential Families**

• Instructor: Jacob Abernethy

• Date: March 7, 2016

Lecture Exposition Credit: Benjamin Bray & Saket Dewangan

# Midterm performance: Not Bad!



• Mean: 25.79, Median: 25.5, StdDev: 6.47

# **Optional Final Project**

- Project is very optional. Students should only do project if they are serious and enthusiastic.
- Groups encouraged, up to 4 per group (effort should scale accordingly!)
- 1-page proposal due March 23rd, final project due April 21
- Projects can involve (a) new algorithms and experiments, (b) a new and exciting application, (c) literature survey, (d) a replication of published work.
- Do not submit projects from other courses! We can tell...

# **Optional Final Project Grading Policy**

Students submitting a project are subject to alternative grading scheme.

|            | Basic Scheme | With Project |
|------------|--------------|--------------|
| Midterm    | 25%          | 18%          |
| Final Exam | 25%          | 18%          |
| Project    | 0%           | 18%          |

- Project can help your grade, but it can also hurt!
- Students must commit to Project grading, but can withdraw up to April 11th.

#### **Review of Bias-Variance Tradeoff**

#### **Bias and Variance Formulae**

- Recall  $y=f+\epsilon$ , where  $\epsilon$  is some 0-mean noise with var.  $\sigma^2$
- Alg receives dataset S and outputs  $\hat{f}$  , prediction of y. The error is:

$$\mathbb{E}[(y - \hat{f})^2] = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{\text{Var}[\hat{f}]}_{\text{Variance}} + \underbrace{\mathbb{E}[f - \mathbb{E}_S[\hat{f}]]^2}_{\text{Bias}^2}$$

- Break error into two terms relating to  $\mathbb{E}_S[\hat{f}]$  the "average" estimate over random datasets S.

  - Bias of an estim.:  $\operatorname{Bias}(\hat{f}) = (\mathbb{E}_S[\hat{f}] f)$  Variance of estim.:  $\operatorname{Var}(\hat{f}) = \mathbb{E}[(\hat{f} \mathbb{E}_S[\hat{f}])^2]$

### An example to explain Bias/Variance and illustrate the tradeoff

· Consider estimating a sinusoidal function.

(Example that follows is inspired by Yaser Abu-Mostafa's CS 156 Lecture titled "Bias-Variance Tradeoff"

```
In [2]: RANGEXS = np.linspace(0., 2., 300)
    TRUEYS = np.sin(np.pi * RANGEXS)

def plot_fit(x, y, p, show,color='k'):
    xfit = RANGEXS
    yfit = np.polyval(p, xfit)
    if show:
        axes = pl.gca()
        axes.set_xlim([min(RANGEXS),max(RANGEXS)])
        axes.set_ylim([-2.5,2.5])
        pl.scatter(x, y, facecolors='none', edgecolors=color)
        pl.hold('on')
        pl.xlabel('x')
        pl.ylabel('y')
```

```
In [3]: def calc_errors(p):
    x = RANGEXS
    errs = []
    for i in x:
        errs.append(abs(np.polyval(p, i) - np.sin(np.pi * i)) **
2)
    return errs
```

```
In [4]: def calculate bias variance(poly coeffs, input values x, true va
        lues y):
            # poly coeffs: a list of polynomial coefficient vectors
            # input values x: the range of xvals we will see
            # true values v: the true labels/targes for v
            # First we calculate the mean polynomial, and compute the pr
        edictions for this mean poly
            mean coeffs = np.mean(poly coeffs, axis=0)
            mean predicted poly = np.poly1d(mean coeffs)
            mean predictions y = np.polyval(mean predicted poly, input v
        alues x)
            # Then we calculate the error of this mean poly
            bias errors across x = (mean predictions y - true values y)
            # To consider the variance errors, we need to look at every
        output of the coefficients
            variance errors = []
            for coeff in poly coeffs:
                predicted poly = np.poly1d(coeff)
                predictions y = np.polyval(predicted poly, input values
        x)
                # Variance error is the average squared error between th
        e predicted values of y
                # and the *average* predicted value of y
                variance error = (mean predictions y - predictions y)**2
                variance errors.append(variance error)
            variance errors across x = np.mean(np.array(variance error))
        s),axis=0)
            return bias errors across x, variance errors across x
```

```
In [5]: def polyfit sin(degree=0, iterations=100, num points=5, show=Tru
        e):
            total = 0
            l = []
            coeffs = []
            errs = [0] * len(RANGEXS)
            colors=cm.rainbow(np.linspace(0,1,iterations))
            for i in range(iterations):
                np.random.seed()
                x = np.random.choice(RANGEXS, size=num points) # Pick ran
        dom points from the sinusoid
                y = np.sin(np.pi * x)
                p = np.polyfit(x, y, degree)
                y poly = [np.polyval(p, x i)  for x i  in x]
                plot fit(x, y, p, show,color=colors[i])
                 total += sum(abs(y_poly - y) ** 2) # calculate Squared E
        rror (Squared Error)
                coeffs.append(p)
                 errs = np.add(calc errors(p), errs)
             return total / iterations, errs / iterations, np.mean(coeff
        s, axis = 0), coeffs
```

## Let's return to fitting polynomials

- Here we generate some samples x, y, with  $y = \sin(2\pi x)$
- We then fit a degree-0 polynomial (i.e. a constant function) to the samples



# We can do this over many datasets

- Let's sample a number of datasets
- How does the fitted polynomial change for different datasets?

In [8]: # Estimate two points of sin(pi \* x) with a constant 5 times
\_, \_, \_, \_ = polyfit\_sin(0, 5)



# What about over lots more datasets?

In [9]: # Estimate two points of sin(pi \* x) with a constant 100 times
\_, \_, \_, \_ = polyfit\_sin(0, 25)



In [10]: MSE, errs, mean\_coeffs, coeffs\_list = polyfit\_sin(0, 100,num\_poi
 nts = 3,show=False)
 biases, variances = calculate\_bias\_variance(coeffs\_list,RANGEXS,
 TRUEYS)
 plot\_bias\_and\_variance(biases,variances,RANGEXS,TRUEYS,np.polyva
 l(np.polyld(mean\_coeffs), RANGEXS))



• Decomposition: 
$$\mathbb{E}[(y - \hat{f})^2] = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{Var[\hat{f}]}_{\text{Variance}} + \underbrace{\mathbb{E}[f - \hat{f}]^2}_{\text{Bias}^2}$$

- Blue curve: true f
- Black curve:  $\hat{f}$  , average predicted values of y
- Yellow is error due to Bias, Red/Pink is error due to Variance

### Bias vs. Variance

• We can calculate how much error we suffered due to bias and due to variance

Out[11]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fd59974b828>



# Let's now fit degree=3 polynomials

Let's sample a dataset of 5 points and fit a cubic poly

In [12]: MSE, \_, \_, \_ = polyfit\_sin(degree=3, iterations=1)



# Let's now fit degree=3 polynomials

• What does this look like over 5 different datasets?



# Let's now fit degree=3 polynomials

• What does this look like over 50 different datasets?

In [14]: # Estimate two points of sin(pi \* x) with a line 50 times
\_, \_, \_, \_ = polyfit\_sin(degree=3, iterations=50)



In [15]: MSE, errs, mean\_coeffs, coeffs\_list = polyfit\_sin(3,500,show=Fal
 se)
 biases, variances = calculate\_bias\_variance(coeffs\_list,RANGEXS,
 TRUEYS)
 plot\_bias\_and\_variance(biases,variances,RANGEXS,TRUEYS,np.polyva
 l(np.polyld(mean\_coeffs), RANGEXS))



$$\mathbb{E}[(y - \hat{f})^2] = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{\text{Var}[\hat{f}]}_{\text{Variance}} + \underbrace{\mathbb{E}[f - \hat{f}]^2}_{\text{Bias}^2}$$

- Blue curve: true f
- Black curve:  $\mathbb{E}[f]$ , average prediction of y
- Yellow is error due to Bias, Red/Pink is error due to Variance

# Bias and Variance for different degree sizes

Out[16]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fd5985ef358>



High degree polys have lower bias but much greater variance!

#### Info Theory + Exponential Familes -- References

#### Information Theory:

- [Shannon 1951] Shannon, Claude E... <u>The Mathematical Theory of Communication</u> (http://worrydream.com/refs/Shannon%20-%20A%20Mathematical%20Theory%20of%20Communication.pdf). 1951.
- [Pierce 1980] Pierce, John R.. An Introduction to Information Theory: Symbols, Signals, and Noise (http://www.amazon.com/An-Introduction-Information-Theory-Mathematics/dp/0486240614). 1980.
- [Stone 2015] Stone, James V.. <u>Information Theory: A Tutorial Introduction (http://jimstone.staff.shef.ac.uk/BookInfoTheory/InfoTheoryBookMain.html</u>). 2015.

#### Exponential Families:

- **[MLAPP]** Murphy, Kevin. <u>Machine Learning: A Probabilistic Perspective</u> (https://mitpress.mit.edu/books/machine-learning-0). 2012.
- [Hero 2008] Hero, Alfred O.. <u>Statistical Methods for Signal Processing</u> (http://web.eecs.umich.edu/~hero/Preprints/main 564 08 new.pdf). 2008.
- [Blei 2011] Blei, David. <u>Notes on Exponential Families</u>
  (https://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/exponential-families.pdf).
  2011.
- [Wainwright & Jordan 2008] Wainwright, Martin J. and Michael I. Jordan. <u>Graphical Models</u>. <u>Exponential Families</u>, and <u>Variational Inference</u> (<a href="https://www.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08\_FTML.pdf">https://www.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08\_FTML.pdf</a>). 2008.

## **Outline**

This lecture, we introduce some important background for Probabilistic Graphical Models.

- Information Theory
  - Information, Entropy, and Encoding
  - Relative Entropy, Mutual Information & Collocations
  - Maximum Entropy Distributions
- Exponential Family
  - Mean and Natural Parameterizations
  - Conjugate Priors & Maximum Likelihood

# **Information Theory**

Uses material from [MLAPP] §2.8, [Pierce 1980], [Stone 2015], and [Shannon 1951].

#### **Information Theory**

Information theory is concerned with

- Compression: Representing data in a compact fashion
- Error Correction: Transmitting and storing data in a way that is robust to errors

In machine learning, information-theoretic quantities are useful for

- manipulating probability distributions
- · interpreting statistical learning algorithms

#### What is Information?

Can we measure the amount of information we gain from an observation?

- Information is measured in *bits* (don't confuse with *binary digits*, 0110001...)
- Intuitively, observing a fair coin flip should give 1 bit of information
- Observing two fair coins should give 2 bits, and so on...

#### Information: Definition

The **information content** of an event E with probability p is

$$I(E) = I(p) = -\log_2 p = \log_2 \frac{1}{p} \ge 0$$

- Information theory is about probabilities and distributions
- · The "meaning" of events doesn't matter.
- Using bases other than 2 yields different units (Hartleys, nats, ...)

#### **Example: Fair Coin**

One Coin: If 
$$P(Heads) = 0.5$$
 and we observe heads, then  $I(Heads) = -\log_2 P(Heads) = 1$  bit

Two Coins: If we observe two heads in a row,

$$I(Heads, Heads) = -\log_2 P(Heads, Heads)$$
  
=  $-\log_2 P(Heads)P(Heads)$   
=  $-\log_2 P(Heads) - \log_2 P(Heads) = 2$  bits

#### **Example: Unfair Coin**

Suppose the coin has two heads, so P(H)=1. Then,  $I(Heads)=-\log_2 1=0$ 

If we know the coin is unfair, we gain no information by observing heads!

- Information is a measure of how **surprised** we are by an outcome.
- Observing heads when P(H) = 0 yields *infinite* information.

#### **Entropy: Definition**

The **entropy** of a discrete random variable X with distribution p is

$$H[X] = H[p] = E[I(p(X))] = -\sum_{x \in X} p(x) \log p(x)$$

Entropy is the expected information received when we sample from X.

• How surprised are we, on average?

## **Entropy: Coin Flip**

If X is binary, 
$$H[X] = -[p \log p + (1 - p) \log(1 - p)]$$

In [17]: p = np.linspace(0.01,0.99,100);plt.plot(p, -(p \* np.log(p) + (1-p)\*np.log(1-p)) / np.log(2));



## **Entropy & Surprisal**

Entropy is highest when  $\boldsymbol{X}$  is close to uniform.

- Large entropy  $\iff$  high uncertainty, more information from each new observation
- Low entropy  $\iff$  more knowledge about possible outcomes

The farther from uniform X is, the lower the entropy.

# **Break Time!**



# **Maximum Entropy Principle**

Suppose we sample data from an unknown distribution p, and

- we collect statistics (mean, variance, etc.) from the data
- ullet we want an *objective* or unbiased estimate of p

#### The **Maximum Entropy Principle** states that:

We should choose p to have maximum entropy H[p] among all distributions satisfying our constraints.

#### **Maximum Entropy: Examples**

Some examples of maximum entropy distributions:

| Constraints                         | Maximum Entropy Distribution         |
|-------------------------------------|--------------------------------------|
| $Min\ a$ , $Max\ b$                 | Uniform $U[a,b]$                     |
| Mean $\mu$ , Support $(0, +\infty)$ | Exponential $Exp(\mu)$               |
| Mean $\mu$ , Variance $\sigma^2$    | Gaussian $\mathcal{N}(\mu,\sigma^2)$ |

Later, Exponential Family Distributions will generalize this concept.

#### **Communication Channels**

For some intuition, consider a **communication channel**:

- 1. The **source** generates messages.
- 2. An **encoder** converts the message to a **signal** for transmission.
- 3. Signals are transmitted along a **channel**, possibly under the influence of **noise**.
- 4. A **decoder** attempts to reconstruct the original message from the transmitted signal.
- 5. The **destination** is the intended recipient.



#### **Encoding**

Suppose we draw messages from a distribution p.

- Certain messages may be more likely than others.
- For example, the letter e is most frequent in English

An **efficient** encoding minimizes the average message length,

- assign short codewords to common messages
- · and longer codewords to rare messages

# Interesting side note on Morse Code

At the time, newspaper printers had tiny metal copies of each letter, used for printing. A researcher apparently reasoned that they would have only as many copies of each letter as necessary to print a page, so he counted the number of copies of each letter they had and used that to estimate English letter frequencies.

Wikipedia reference (https://en.wikipedia.org/wiki/Morse\_code)

#### **Encoding: Morse Code**

This is precisely how Morse Code works!

Approximates **Huffman Coding**, which gives optimal binary codes.

In [19]: Image(filename="images/morse-code.jpg")

Out[19]:



### **Source Coding Theorem**

Claude Shannon proved that for discrete noiseless channels:

It is impossible to encode messages drawn from a distribution p with fewer than H[p] bits, on average.

Here, bits refers to binary digits, i.e. encoding messages in binary.

H[p] measures the optimal code length, in bits, for messages drawn from p

## **Cross Entropy & Relative Entropy**

Consider different distributions p and q

What if we use a code optimal for q to encode messages from p?

For example, suppose our encoding scheme is optimal for German text.

- What if we send English messages instead?
- Certainly, there will be some waste due to different letter frequencies, umlauts, ...

#### **Cross Entropy**

The **cross entropy** measures the average number of bits needed to encode messages drawn from p when we use a code optimal for q:

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \log q(x) = -E_p[\log q(x)]$$

Intuitively,  $H(p,q) \ge H(p)$ . The **relative entropy** is the difference H(p,q) - H(p).

#### **Relative Entropy: Definition**

The relative entropy or Kullback-Leibler divergence of q from p is

$$D_{KL}(p||q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$
$$= H(p,q) - H(p)$$

Measures the number of *extra* bits needed to encode messages from p if we use a code optimal for q.

#### **Mutual Information: Definition**

The **mutual information** between discrete variables X and Y is

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$= D_{KL}(p(x,y)||p(x)p(y))$$

- If X and Y are independent, p(x, y) = p(x)p(y)
- So, I(X; Y) measures how independent X and Y are!
- Related to correlation  $\rho(X, Y)$

A **collocation** is a sequence of words that co-occur more often than expected by chance.

- fixed expression familiar to native speakers (hard to translate)
- · meaning of the whole is more than the sum of its parts

See <a href="mailto:thmose-normalized-color: blue-normalized-color: https://www.eecis.udel.edu/~trnka/CISC889-11S/lectures/philip-pmi.pdf">pmi.pdf</a>) for more details

#### **Example: Collocation & PMI**

Substituting a synonym sounds unnatural:

- "fast food" vs. "quick food"
- "Great Britain" vs. "Good Britain"
- "warm greetings" vs "hot greetings"

How can we find collocations in a corpus of text?

### **Example: Collocations & PMI**

The **pointwise mutual information** between words x and y is

$$pmi(x; y) = \log \frac{p(x, y)}{p(x)p(y)}$$

- p(x)p(y) is how frequently we **expect** x and y to co-occur, if they do so independently.
- p(x, y) measures how frequently x and y actually occur together

**Idea:** Rank word pairs by pmi(x, y) to find collocations!

• pmi(x, y) is large if x and y co-occur more frequently together than expected

Code: Let's try it on the novel Crime and Punishment!

• Pre-computed unigram and bigram counts are found in the collocations/data folder

## **Example: Collocations & PMI**

Here we read in the precomputed data. See the notebook in the collocations folder for a full implementation.

```
In [20]: import csv, math;
        # file paths
        unigram path = "collocations/data/crime-and-punishment.txt.unigr
        bigram_path = "collocations/data/crime-and-punishment.txt.bigram
        s";
        # read unigrams into dict
        with open(unigram path) as f:
            reader = csv.reader(f);
            unigrams = { row[0] : int(row[1]) for row in csv.reader(f)};
        # read bigrams into dict
        with open(bigram path) as f:
            reader = csv.reader(f);
            bigrams = \{ (row[0], row[1]) : int(row[2])  for row in csv.rea
        der(f)};
        # pretty print table
        class PrettyTable(object):
                def __init__(self, data, head1, head2, floats=False):
                   table = ""
                   table += "<thead>s
        (head1,head2);
                   table += "\n"
                   for bigram,count in data:
                       if floats: count = "%0.2f" % count;
                       else: count = "%d" % count;
                       table += ""
                       table += "%s %s" % bigram;
                       table += "%s" % count;
                       table += "\n";
                   table += ""
                   self.table = table;
                def _repr_html_(self):
                   return self.table;
```



The following code sorts bigrams by pointwise mutual information:

```
In [30]: # compute pmi
    pmi_bigrams = [];

for w1,w2 in bigrams:
        # compute pmi
        actual = bigrams[(w1,w2)];
        expected = unigrams[w1] * unigrams[w2];
        pmi = math.log( actual / expected );
        # filter out infrequent bigrams
        if actual < 15: continue;
        pmi_bigrams.append( ((w1, w2), pmi) );

# sort pmi
    pmi_sorted = sorted(pmi_bigrams, key=lambda x: x[1], reverse=Tru e);</pre>
```

## **Example: Collocations & PMI**

Here are the most frequent bigrams--these aren't collocations!

```
In [31]: bigrams_sorted = sorted(bigrams.items(), key=lambda x: x[1], rev
erse=True);
PrettyTable(bigrams_sorted[:10], "Bigram", "Count")
```

Out[31]:

| Bigram  | Count |
|---------|-------|
| in the  | 778   |
| of the  | 598   |
| he was  | 505   |
| he had  | 498   |
| to the  | 488   |
| on the  | 479   |
| i am    | 460   |
| at the  | 459   |
| it was  | 413   |
| that he | 335   |

# **Example: Collocations & PMI**

Sorting bigrams by PMI, we first get names...

In [33]: PrettyTable(pmi\_sorted[1:10], "Collocation", "PMI", floats=True)

Out[33]:

| Collocation         | PMI   |
|---------------------|-------|
| andrey semyonovitch | -3.18 |
| nikodim fomitch     | -3.18 |
| hay market          | -3.48 |
| dmitri prokofitch   | -3.87 |
| honoured sir        | -4.27 |
| sofya semyonovna    | -4.33 |
| marfa petrovna      | -4.37 |
| police station      | -4.48 |
| rodion romanovitch  | -4.57 |

...then more interesting collocations! This is much more useful than sorting by frequency alone.

In [34]: PrettyTable(pmi\_sorted[12:20], "Collocation", "PMI", floats=Tru
e)

Out[34]:

| Collocation        | РМІ   |
|--------------------|-------|
| thank god          | -5.20 |
| police office      | -5.23 |
| great deal         | -5.28 |
| ten minutes        | -5.40 |
| good heavens       | -5.51 |
| thousand roubles   | -5.54 |
| katerina ivanovnas | -5.57 |
| old womans         | -5.57 |

#### **Example: Feature Selection**

Mutual information can also be used for feature selection.

- ullet In classification, features that *depend* most on the class label C are useful
- So, choose features  $X_k$  such that  $I(X_k; C)$  is large
- This helps to avoid *overfitting* by ignoring irrelevant features!

See [MLAPP] §3.5.4 for more information

# **Exponential Families**

Uses material from [MLAPP] §9.2 and [Hero 2008] §3.5, §4.4.2

### **Exponential Family: Introduction**

We have seen many distributions.

- Bernoulli
- Gaussian
- Exponential
- Gamma

Many of these belong to a more general class called the exponential family.

#### **Exponential Family: Introduction**

Why do we care?

- · only family of distributions with finite-dimensional sufficient statistics
- only family of distributions for which conjugate priors exist
- makes the least set of assumptions subject to some user-chosen constraints (Maximum Entropy)
- · core of generalized linear models and variational inference

#### **Sufficient Statistics**

**Recall:** A statistic  $T(\mathcal{D})$  is a function of the observed data  $\mathcal{D}$ .

- Mean,  $T(x_1, ..., x_n) = \frac{1}{n} \sum_{k=1}^n x_k$
- · Variance, maximum, mode, etc.

## **Sufficient Statistics: Definition**

Suppose we have a model P with parameters  $\theta$ . Then,

A statistic  $T(\mathcal{D})$  is **sufficient** for  $\theta$  if no other statistic calculated from the same sample provides any additional information about the parameter.

That is, if  $T(\mathcal{D}_1)=T(\mathcal{D}_2)$ , our estimate of  $\theta$  given  $\mathcal{D}_1$  or  $\mathcal{D}_2$  will be the same.

- Mathematically,  $P(\theta|T(\mathcal{D}),\mathcal{D})=P(\theta|T(\mathcal{D}))$  independently of  $\mathcal{D}$ 

### **Sufficient Statistics: Example**

Suppose  $X \sim \mathcal{N}(\mu, \sigma^2)$  and we observe  $\mathcal{D} = (x_1, \dots, x_n)$ . Let

- $\hat{\mu}$  be the sample mean
- $\hat{\sigma}^2$  be the sample variance

Then  $T(\mathcal{D}) = (\hat{\mu}, \hat{\sigma}^2)$  is sufficient for  $\theta = (\mu, \sigma^2)$ .

• Two samples  $\mathcal{D}_1$  and  $\mathcal{D}_2$  with the same mean and variance give the same estimate of heta (we are sweeping some details under the rug)

## **Exponential Family: Definition**

 $p(x|\theta)$  has exponential family form if:

$$p(x|\theta) = \frac{1}{Z(\theta)} h(x) \exp[\eta(\theta)^T \phi(x)]$$
$$= h(x) \exp[\eta(\theta)^T \phi(x) - A(\theta)]$$

- $Z(\theta)$  is the **partition function** for normalization
- $A(\theta) = \log Z(\theta)$  is the log partition function
- $\phi(x) \in \mathbb{R}^d$  is a vector of sufficient statistics
- $\eta(\theta)$  maps  $\theta$  to a set of natural parameters
- h(x) is a scaling constant, usually h(x) = 1

### **Example: Bernoulli**

The Bernoulli distribution can be written as

Ber
$$(x|\mu) = \mu^x (1 - \mu)^{1-x}$$
  
=  $\exp[x \log \mu + (1 - x) \log(1 - \mu)]$   
=  $\exp[\eta(\mu)^T \phi(x)]$ 

where  $\eta(\mu) = (\log \mu, \log(1 - \mu))$  and  $\phi(x) = (x, 1 - x)$ 

- There is a linear dependence between features  $\phi(x)$
- This representation is overcomplete
- $\eta$  is not uniquely determined

#### **Example: Bernoulli**

Instead, we can find a **minimal** parameterization:

$$Ber(x|\mu) = (1 - \mu) \exp\left[x \log \frac{\mu}{1 - \mu}\right]$$

This gives natural parameters  $\eta = \log \frac{\mu}{1-\mu}$ .

Now, η is unique

#### **Other Examples**

**Exponential Family Distributions:** 

- Multivariate normal
- Exponential
- Dirichlet

Non-examples:

- Student t-distribution can't be written in exponential form
- Uniform distribution support depends on the parameters heta

#### **Log-Partition Function**

Derivatives of the log-partition function  $A(\theta)$  yield cumulants of the sufficient statistics (Exercise!)

- $\nabla_{\theta} \log p(x|\theta) = E[\phi(x)]$
- $\nabla_{\theta}^{2} \log p(x|\theta) = Cov[\phi(x)]$

This guarantees that  $A(\theta)$  is convex!

- Its Hessian is the covariance matrix of X, which is positive-definite.
- Later, this will guarantee a unique global maximum of the likelihood!

**Proof of Convexity: First Derivative** 

$$\frac{dA}{d\theta} = \frac{d}{d\theta} \left[ \log \int exp(\theta\phi(x))h(x)dx \right]$$

$$= \frac{\frac{d}{d\theta} \int exp(\theta\phi(x))h(x)dx}{\int exp(\theta\phi(x))h(x)dx}$$

$$= \frac{\int \phi(x)exp(\theta\phi(x))h(x)dx}{exp(A(\theta))}$$

$$= \int \phi(x)\exp[\theta\phi(x) - A(\theta)]h(x)dx$$

$$= \int \phi(x)p(x)dx$$

$$= E[\phi(x)]$$

**Proof of Convexity: Second Derivative** 

$$\frac{d^2A}{d\theta^2} = \int \phi(x) \exp[\theta\phi(x) - A(\theta)]h(x)(\phi(x) - A'(\theta))dx$$

$$= \int \phi(x)p(x)(\phi(x) - A'(\theta))dx$$

$$= \int \phi^2(x)p(X)dx - A'(\theta) \int \phi(x)p(x)dx$$

$$= E[\phi^2(x)] - E[\phi(x)]^2 \qquad (\because A'(\theta) = E[\phi(x)])$$

$$= Var[\phi(x)]$$

#### **Proof of Convexity: Second Derivative**

For multi-variate case, we have

$$\frac{\partial^2 A}{\partial \theta_i \partial \theta_j} = E[\phi_i(x)\phi_j(x)] - E[\phi_i(x)]E[\phi_j(x)]$$

and hence,

$$\nabla^2 A(\theta) = Cov[\phi(x)]$$

Since covariance is positive definite, we have  $A(\theta)$  convex as required.

### **Exponential Family: Likelihood**

For data  $\mathcal{D}=(x_1,\ldots,x_N)$ , the likelihood is

$$p(\mathcal{D}|\theta) = \left[\prod_{k=1}^{N} h(x_k)\right] Z(\theta)^{-N} \exp\left[\eta(\theta)^T \sum_{k=1}^{N} \phi(x_k)\right]$$

The sufficient statistics are now N and  $\phi(\mathcal{D}) = \sum_{k=1}^N \phi(x)$ .

• Bernoulli: N and  $\phi = \#Heads$ 

• Normal: N and  $\phi = [\sum_k x_k, \sum_k x_k^2]$ 

## Pitman-Koopman-Darmois Theorem

Among families of distributions  $P(x|\theta)$  whose support does not vary with the parameter  $\theta$ , only in exponential families is there a sufficient statistic  $T(x_1, \ldots, x_N)$  whose dimension remains bounded as the sample size N increases.

#### **Exponential Family: MLE**

For natural parameters  $\theta$  and data  $\mathcal{D}=(x_1,\ldots,x_N)$ ,

$$\log p(\mathcal{D}|\theta) = \eta^T \phi(\mathcal{D}) - NA(\theta)$$

Since  $-A(\theta)$  is concave and  $\theta^T\phi(\mathcal{D})$  linear,

- the log-likelihood is concave
- there is a unique global maximum!

#### **Exponential Family: MLE**

To find the maximum, recall  $\nabla_{\theta} \log p(x|\theta) = E[\phi(x)]$ , so  $\nabla_{\theta} \log p(D|\theta) = \phi(D) - NE[\phi(X)] = 0$   $\implies E[\phi(X)] = \frac{\phi(D)}{N} = \frac{1}{N} \sum_{k=1}^{N} \phi(x_k)$ 

At the MLE  $\hat{\theta}_{MLE}$ , the empirical average of sufficient statistics equals their expected value.

• this is called moment matching

## **Exponential Family: MLE**

As an example, consider the Bernoulli distribution

• Sufficient statistic N,  $\phi(\mathcal{D}) = \#Heads$ 

$$\hat{\mu}_{MLE} = \frac{\#Heads}{N}$$

## **Bayes for Exponential Family**

Exact Bayesian analysis is considerably simplified if the prior is **conjugate** to the likelihood.

• Simply, this means that prior  $p(\mathcal{D}|\tau)$  has the same form as likelihood  $p(\mathcal{D}|\theta)$ .

This requires likelihood to have finite sufficient statistics

• Exponential family to the rescue!

#### Likelihood

Likelihood:

$$p(\mathcal{D}|\theta) \propto g(\theta)^N \exp[\eta(\theta)^T s_N]$$
$$s_N = \sum_{i=1}^N s(x_i)$$

In terms of canonical parameters:

$$p(D|\eta) \propto \exp[N\eta^T \bar{s} - NA(\eta)]$$
  
 $\bar{s} = \frac{1}{N} s_N$ 

#### **Prior**

$$p(\theta|\nu_0, \tau_0) \propto g(\theta)^{\nu_0} \exp[\eta(\theta)^T \tau_0]$$

• Denote  $au_0=
u_0ar{ au}_0$  to separate out the size of the **prior pseudo-data**,  $u_0$ , from the mean of the sufficient statistics on this pseudo-data,  $au_0$ . Hence,

$$p(\theta|\nu_0, \bar{\tau}_0) \propto \exp[\nu_0 \eta^T \bar{\tau}_0 - \nu_0 A(\eta)]$$

### **Prior: Example**

$$p(\theta|\nu_0, \tau_0) \propto (1 - \theta)^{\nu_0} \exp[\tau_0 \log(\frac{\theta}{1 - \theta})]$$
$$= \theta^{\tau_0} (1 - \theta)^{\nu_0 - \tau_0}$$

Define  $\alpha = \tau_0 + 1$  and  $\beta = \nu_0 - \tau_0 + 1$  to see that this is a **beta distribution**.

#### **Posterior**

Posterior:

$$p(\theta|\mathcal{D}) = p(\theta|\nu_N, \tau_N) = p(\theta|\nu_0 + N, \tau_0 + s_N)$$

Note that we obtain hyper-parameters by adding. Hence,

$$p(\eta | D) \propto \exp[\eta^{T} (\nu_{0}\bar{\tau}_{0} + N\bar{s}) - (\nu_{0} + N)A(\eta)]$$
  
=  $p(\eta | \nu_{0} + N, \frac{\nu_{0}\bar{\tau}_{0} + N\bar{s}}{\nu_{0} + N})$ 

• posterior hyper-parameters are a convex combination of the prior mean hyper-parameters and the average of the sufficient statistics.