Learning Cooperative Solution Concepts From Voting Behavior

A Case Study on the Israeli Parliament

Lu Wei

Department of Computer Science National University of Singapore

Dec 2019

Outline

Introduction

Methodology

Hedonic Game Stability Models Top Responsive Games Bottom Responsive Games Boolean Hedonic Games

Machine Learning Models

k-Means Clustering

Stochastic Block Model

Results & Discussion
Variability among PAC Partitions
Quantitative Analysis
Qualitative Analysis

Conclusion

Background

How to divide people into groups?

- ► Coalition formation games:
 - ► Mostly theoretical analysis
 - ► Most models require full information on player preference
 - ► Lack of large real-world dataset with ground truth
- ► Clustering & community detection:
 - ► Data-driven analysis
 - Missing strategic behavior modelling

Data

- ► Israeli parliament (the Knesset) voting data
- ► Available since March 2017
- For the 20th Knesset: 147 parliament members' votes on over 7500 bills in ∼ 4 years
- ► Ground truth clusters: political party affiliations

Data

- ► Israeli parliament (the Knesset) voting data
- ► Available since March 2017
- ► For the 20th Knesset: 147 parliament members' votes on over 7500 bills in ~ 4 years
- ► Ground truth clusters: political party affiliations
 - ▶ 10 parties aligned along a left-right axis
 - Ideological agreement among the government (right) and the opposition (left) parties respectively

Probably Approximately Correct (PAC) Stability

Given m observations of formed coalitions S_1, \ldots, S_m sampled i.i.d. from some distribution \mathcal{D} , and the cardinal valuations of players in S_j $(v_i(S_j))_{i\in S}$

The *local loss* of a coalition structure π and a coalition $S \subseteq N$:

$$\lambda(\pi, S) = \begin{cases} 1 & \text{if } \forall i \in S : v_i(S) > v_i(\pi(i)) \\ 0 & \text{otherwise.} \end{cases}$$

The *expected loss* of π w.r.t. \mathcal{D} :

$$L_{\mathcal{D}}(\pi) = \Pr_{S \sim \mathcal{D}} \left[\lambda(\pi, S) = 1 \right]$$

A PAC stabilizing algorithm:

- ▶ input: a set of i.i.d. samples $S_1, \ldots, S_m \sim \mathcal{D}^m$
- output: a coalition structure π^* with the following guarantee: $\Pr_{(S_1,...,S_m)\sim \mathcal{D}^m}[L_{\mathcal{D}}(\pi^*) \geq \varepsilon] < \delta$
- ► The number of samples needed m grows linearly in the number of players, and polynomially in $\frac{1}{\epsilon}$ and $\log \frac{1}{\delta}$

Research Questions

- ► Can we use hedonic games to model real-world collaborative activities?
- ► How well does the outcome compare to ground truth?
- ► How well does the outcome compare to that of canonical clustering and community detection models?

Game Theoretic Models

- ► Coalition formation games with hedonic preferences
 - ► Top responsive
 - ► Bottom responsive
 - ► Boolean

Game Theoretic Models

- Coalition formation games with hedonic preferences
 - ▶ Top responsive
 - Bottom responsive
 - ► Boolean
- ► Two approaches:
 - ► Full-information models: construct complete preference profile, then derive core stable solution
 - ► PAC models: learn a probably stable solution directly from partial preference relations

Game Theoretic Models

- Coalition formation games with hedonic preferences
 - ► Top responsive
 - Bottom responsive
 - ► Boolean
- ► Two approaches:
 - Full-information models: construct complete preference profile, then derive core stable solution
 - ► PAC models: learn a probably stable solution directly from partial preference relations
 - ► Simulate i.i.d.: sampling with replacement 3/4 of all bills
 - ► Repeat 50 times to check consistency of solution between runs
 - Select the "centroid" to represent model output: partition with minimum sum of information distance from other 49 partitions

Comparisons

- ► Comparison machine learning models:
 - K-Means
 - Stochastic Block Model
- ► Comparing every hedonic & ML model output partition to ground truth party affiliations
 - ► Quantitatively: information theoretic measures
 - ► Qualitatively: political analysis

How different are two partitions, quantitatively? Objectives

We want a measure that...

- ▶ has strong mathematical foundation: information theoretic measures
- ▶ is intuitive: satisfing metric property
 - ► non-negativity
 - symmetry
 - ► triangle inequality

How different are two partitions, quantitatively?

Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables X and Y

- ► Entropy: $H(\pi) = -\sum_{j=1}^{J} \frac{|S_j|}{|N|} \log \frac{|S_j|}{|N|}$
- ► Conditional entropy: $H(\pi|\pi') = -\sum_{j=1}^{J} \sum_{k=1}^{K} \frac{|S_j \cap S_k'|}{|N|} \log \frac{|S_j \cap S_k'|/|N|}{|S_k|/|N|}$
- Mutual Information (MI): $I(\pi, \pi') = H(\pi) H(\pi|\pi')$
- ► Variation of Information (VI): $VI(\pi, \pi') = H(\pi) + H(\pi') - 2I(\pi, \pi')$, metric!

How different are two partitions, quantitatively?

Baseline Values

Doint List Yesh Atid The Sewish Home Yisrael Beiteinu

The Knesset partition baseline VI values

All-in-One partition of the Knesset

How different are two partitions, quantitatively?

Additional Measure: AMI

Adjusted Mutual Information (AMI):

$$AMI(\pi, \pi') = \frac{I(\pi, \pi') - E(I(\pi, \pi'))}{\max(H(\pi), H(\pi')) - E(I(\pi, \pi'))}$$

► Adjusted for chance

► Normalized: [0,1]

▶ Not metric

Good for detecting "bad" (very different) partitions:

	Ajusted Mutual Information
Singletons	3e-14
All-in-One	-5e-16
Randome 10	0.007

The Knesset partition baseline AMIs

Outline

Introduction

Methodology

Hedonic Game Stability Models Top Responsive Games

Bottom Responsive Games Boolean Hedonic Games

Machine Learning Models

k-Means Clustering

Stochastic Block Model

Results & Discussion
Variability among PAC Partitions
Quantitative Analysis
Qualitative Analysis

Conclusion

Definitions

Idea: for every player, the value of a coalition depends on the most preferred subset of players

- ► Choice sets:
 - $Ch(i, S) = \{S' \subseteq S : (i \in S') \land (S' \succeq_i S'' \forall S'' \subseteq S)\}$ When |Ch(i, S)| = 1, the unique choice set is ch(i, S)
- ▶ A *top responsive* preference profile requires that for any player $i \in N$, and any coalition that may contain player i: $S, T \in \mathcal{N}_i$:
 - 1. |Ch(i, S)| = 1.
 - 2. if $ch(i, S) \succ_i ch(i, T)$ then $S \succ_i T$
 - 3. if ch(i, S) = ch(i, T) and $S \subset T$ then $S \succ_i T$

Example

Example 1

Consider a game of three players with the following choice sets: $ch(1,\{1,2,3\}) = ch(1,\{1,2\}) = \{1,2\}, ch(1,\{1,3\}) = \{1,3\}, ch(1,\{1\}) = \{1\}$ $ch(2,\{1,2,3\}) = ch(2,\{2,3\}) = \{2,3\}, ch(2,\{1,2\}) = \{1,2\}, ch(2,\{2\}) = \{2\}$ $ch(3,\{1,2,3\}) = ch(3,\{1,3\}) = \{1,3\}, ch(3,\{2,3\}) = \{2,3\}, ch(3,\{3\}) = \{3\}$

Then the resulting preference profile is top responsive:

```
player 1: \{1,2\} \succ_1 \{1,2,3\} \succ_1 \{1,3\} \succ_1 \{1\}
player 2: \{2,3\} \succ_2 \{1,2,3\} \succ_2 \{1,2\} \succ_2 \{2\}
player 3: \{1,3\} \succ_3 \{1,2,3\} \succ_3 \{2,3\} \succ_3 \{3\}
```

Core Finding Algorithms - Full Information

Algorithm 1 Top Covering Algorithm

Input: A hedonic game satisfying top responsiveness.

```
1: R^1 \leftarrow N; \pi \leftarrow \emptyset.
```

2: **for**
$$k = 1$$
 to $|N|$ **do**

3: Select
$$S^k$$

4:
$$\pi \leftarrow \pi \cup \{S^k\} \text{ and } R^{k+1} \leftarrow R^k \setminus S^k$$

5: if
$$R^{k+1} = \emptyset$$
 then

6: return
$$\pi$$

9: return
$$\pi$$

Let
$$C^{1}(i, S) = ch(i, S)$$
 $C^{t+1}(i, S) = \bigcup_{j \in C^{t}(i, S)} ch(j, S)$

The connected component of i with respect to S: $CC(i,S) = C^{|N|}(i,S)$ Step 3: select $i \in R^k$ such that $|CC(i,R^k)| \le |CC(j,R^k)|$ for each $j \in R^k$; and $S^k \leftarrow CC(i,R^k)$

Core Finding Algorithms - PAC

Algorithm 2 PAC Top Covering Algorithm

```
Input: \varepsilon, \delta, set S of m = (2n^4 + 2n^3) \lceil \frac{1}{\varepsilon} \log \frac{2n^3}{\delta} \rceil samples from D
 1: R^1 \leftarrow N, \pi \leftarrow \emptyset
 2: ω ← [2n<sup>2</sup> 1 log 2n<sup>3</sup>]
 3: for k = 1 to |N| do
           S' \leftarrow take and remove \omega samples from S
           S' \leftarrow \{T : T \in S', T \subseteq R^k\}
           for i \in R^k do
                 if i \notin \bigcup_{X \in S'} X then
                      B_{i,k} \leftarrow \{i\}
 9:
                 else
                      B_{i,k} \in \arg \max_{T \in S'} v_i(T)
                      B_{i,k} \leftarrow \bigcap_{\{T \in S': ch(i,T) = ch(i,B_{i,k})\}}
12:
                 end if
13-
           end for
           for j = 1, \dots, |R^k| do
14:
                 S'' \leftarrow \text{take and remove } \omega \text{ samples from } S
15:
                S'' \leftarrow \{T : T \in S'', T \subseteq R^k\}
16.
                 for i \in \mathbb{R}^k do
17:
                      B_{i,k} \leftarrow B_{i,k} \cap \bigcap_{T \in S'': ch(i,T) = ch(i,B,r)} T.
19:
                 end for
20.
           end for
           Select S^k
21:
           \pi \leftarrow \pi \cup \{S^k\}; and R^{k+1} \leftarrow R^k \setminus S^k
           if B^{k+1} = \emptyset then
23:
                 return \pi
24:
           end if
26: end for
27: return π
```

- ► Steps 1-3, 21-27: the same structure as Algorithm 1
- Steps 4-20: approximate player preferences from sample observations of coalitions formed
- ▶ Original [2] Step 21: select $i \in R^k$ such that $|CC(i, R^k)| \le |CC(j, R^k)|$ for each $j \in R^k$; and $S^k \leftarrow CC(i, R^k)$
- ▶ Improved Step 21: select the largest Strongly Connected Component (SCC) in the graph induced by R^k as vertices and directed edges E, $(i,j) \in E$ if $j \in ch(i,R^k)$ for all $j \in R^k$; and $S^k \leftarrow SCC(R^k)$

Imporoved Core Finding Algorithm - PAC

- correctness proof
- running time improvements:
 - ▶ each iteration: from finding smallest CC's $\mathcal{O}(|V|(|V|+|E|))$ to finding the largest SCC's $\mathcal{O}(|V|+|E|)$
 - removing more players in the earlier iterations also reduces the amount of computation required for the later iterations

Top Responsive Games - Handcrafted Value Function

Let S_f be the set of members who voted "for" and S_a be the set of members who voted "against". $S_p = S_f \cup S_a$.

$$v_i(S) = \begin{cases} 1 + \frac{1}{|S|} + \frac{|S_p|}{|N|}, & \text{if } S \text{ is the winning majority} \\ 0, & \text{otherwise} \end{cases}$$
 (1)

- ► A winning coalition is always worth more than a losing coalition
- ▶ $\frac{1}{|S|}$ reflects that a win is more valuable when achieved with fewer members
- ► The participation term $\frac{|S_p|}{|N|}$ gives a win more value when there are more effective votes for a given bill
- ► Assign all unobserved coalition the value of zero

Top Responsive Games - Handcrafted Value Function

Let S_f be the set of members who voted "for" and S_a be the set of members who voted "against". $S_p = S_f \cup S_a$.

$$v_i(S) = \begin{cases} 1 + \frac{1}{|S|} + \frac{|S_p|}{|N|}, & \text{if } S \text{ is the winning majority} \\ 0, & \text{otherwise} \end{cases}$$
 (1)

- ► Core stable partition: apply Algorithm 1 with partial reference profile as input
- ► PAC stable partition: apply improved Algorithm 2, sampling with replacement to make up for insufficient samples

Top Responsive Games - Appreciation of Friends

Let G_i be player i's set of friends, and B_i the set of enemies. $G_i \cup B_i \cup i = N$ and $G_i \cap B_i = \emptyset$. A preference profile P^f is based on appreciation of friends if for all player $i \in N$, $S \succeq_i T$ if and only if

- 1. $|S \cap G_i| > |T \cap G_i|$ or
- 2. $|S \cap G_i| = |T \cap G_i|$ and $|S \cap B_i| \le |T \cap B_i|$
- ► Friends: anyone whose votes agreed with the given player's more often than they disagreed
- Agreed votes are only counted if the given player voted "for" or "against"
- ► Disagreed votes:
 - 1. Narrow disagreement (general friends): the other player's vote is different from mine, and is either "for" or "against"
 - Broad disagreement (selective friends): the other player's vote is different from mine

Top Responsive Games - Appreciation of Friends

Examples

Example 2

Given 3 players and 3 bills, their votes are as follow:

	player 1	player 2	player 3
bill A	for	for	against
bill B	abstained	for	abstained
bill C	abstained	against	abstained

General friends preference profile:

player 1: $\{1,2\} \succ_1 \{1,2,3\} \succ_1 \{1\} \succ_1 \{1,3\}$

player 2: $\{1,2\} \succ_2 \{1,2,3\} \succ_2 \{2\} \succ_2 \{2,3\}$

player 3: $\{3\} \succ_3 \{1,3\} \sim \{2,3\} \succ_3 \{1,2,3\}$

Selective friends preference profile:

player 1: $\{1,2\} \succ_1 \{1,2,3\} \succ_1 \{1\} \succ_1 \{1,3\}$

player 2: $\{2\} \succ_2 \{1,2\} \sim \{2,3\} \succ_2 \{1,2,3\}$

player 3: $\{3\} \succ_3 \{1,3\} \sim \{2,3\} \succ_3 \{1,2,3\}$

Outline

Introduction

Methodology

Hedonic Game Stability Models

Top Responsive Games

Bottom Responsive Games

Boolean Hedonic Games

Machine Learning Models

k-Means Clustering

Stochastic Block Model

Results & Discussion

Variability among PAC Partitions

Quantitative Analysis

Qualitative Analysis

Conclusion

Idea: for every player, the value of a coalition depends on the absence of the least preferred subset of players

► Avoid sets:

$$Av(i,S) = \{S' \subseteq S : (i \in S') \land (S' \preceq_i S'' \forall S'' \subseteq S)\}$$

- ► A *bottom responsive* preference profile requires:
 - 1. if for all $S' \in Av(i, S)$ $T' \in Av(i, T)$, $S' \succ_i T'$ then $S \succ_i T$
 - 2. if $Av(i, S) \cap Av(i, T) \neq \emptyset$ and $|S| \geq |T|$ then $S \succeq_i T$

Bottom Responsive Games - Aversion to Enemies

A preference profile P^e is based on aversion to enemies if for every player $i \in N$, $S \succeq_i T$ if and only if

- 1. $|S \cap B_i| < |T \cap B_i|$ or
- 2. $|S \cap B_i| = |T \cap B_i|$ and $|S \cap G_i| \ge |T \cap G_i|$

It is a proper subclass of bottom responsive games

- ► Friends: anyone whose votes agreed with the given player's more often than they disagreed
- Agreed votes are only counted if the given player voted "for" or "against"
- ► Disagreed votes:
 - 1. Narrow disagreement (general friends/selective enemies): the other player's vote is different from mine, and is either "for" or "against"
 - 2. Broad disagreement (selective friends/general enemies): the other player's vote is different from mine

Top Responsive Games - Aversion to Enemies

Examples

Example 3

Given 3 players and 3 bills, their votes are as follow:

	player 1	player 2	player 3
bill A	for	for	against
bill B	abstained	for	abstained
bill C abstained		against	abstained

Selective enemies preference profile:

player 1: $\{1,2\} \succ_1 \{1\} \succ_1 \{1,2,3\} \succ_1 \{1,3\}$

player 2: $\{1,2\} \succ_2 \{2\} \succ_2 \{1,2,3\} \succ_2 \{2,3\}$

player 3: $\{3\} \succ_3 \{1,3\} \sim \{2,3\} \succ_3 \{1,2,3\}$

General enemies preference profile:

player 1: $\{1,2\} \succ_1 \{1\} \succ_1 \{1,2,3\} \succ_1 \{1,3\}$

player 2: $\{2\} \succ_2 \{1,2\} \sim \{2,3\} \succ_2 \{1,2,3\}$

player 3: $\{3\} \succ_3 \{1,3\} \sim \{2,3\} \succ_3 \{1,2,3\}$

Bottom Responsive Games

12: return π

Core Finding Algorithms - Full Information

Algorithm 3 Bottom Responsive Game Core Finding Algorithm

```
Input: A bottom responsive game
```

```
1: S \leftarrow N: \pi \leftarrow \emptyset.
 2: while S \neq \emptyset do
            Set \Gamma \leftarrow \{S\}
 3:
           Set \Phi \leftarrow \{X \in \Gamma | \{i\} \in Av(i, X) \text{ for each } i \in X\}
 4:
      while \Phi = \emptyset do
 5:
                  \Gamma \leftarrow \bigcup \bigcup \{X \setminus \{j\} | j \in Y \text{ for some } Y \in Av(i,X)\}
 6:
                          X \in \Gamma i \in X
                  \Phi \leftarrow \{X \in \Gamma | \{i\} \in Av(i, X) \text{ for each } i \in X\}
 7:
            end while
 8:
             Select a coalition X \in \Phi
 9:
             Set \pi \leftarrow \pi \cup \{X\} and S \leftarrow S \setminus X
10:
11: end while
```

Bottom Responsive Games

Core Finding Algorithms - PAC

- ► Same structure as Algorithm 3
- ightharpoonup Approximate player preferences Av(i, X) from samples
 - ► Find friends from each set of sample coalitions
 - ► Take intersection of friend sets as "true friends"
 - Let each player's avoid set be players outside the "true friends" set

Outline

Introduction

Methodology

Hedonic Game Stability Models

Top Responsive Games
Bottom Responsive Games

Boolean Hedonic Games

Machine Learning Models

k-Means Clustering

Stochastic Block Model

Results & Discussion
Variability among PAC Partitions
Quantitative Analysis
Qualitative Analysis

Conclusion

Idea: a player either likes to be a member of a coalition or hates it

- ► A player is indifferent among all satisfactory coalitions, same for unsatisfactory coalitions
- Strictly prefers any satisfactory coalition over any unsatisfactory coalition
- ► Within each bill, "for" and "against" groups each forms a satisfactory coalition
- ► Assume unobserved coalitions as unsatisfactory

Examples

Example 4

Given a parliament with 3 players and 3 bills, their votes are as follow:

	player 1	player 2	player 3
bill A	for	against	for
bill B	abstained	for	for
bill C	for	against	against

Boolean preference profile:

player 1: $\{1,3\} \sim \{1\} \succ_1 \{1,2\} \sim \{1,2,3\}$ player 2: $\{2\} \sim \{2,3\} \succ_2 \{1,2\} \sim \{1,2,3\}$ player 3: $\{1,3\} \sim \{2,3\} \succ_3 \{3\} \sim \{1,2,3\}$

Core Finding Algorithms - Full Information

Algorithm 4 Boolean Hedonic Game Core Finding Algorithm

Input: A Boolean hedonic game

- 1: $N' \leftarrow N$; $\pi \leftarrow \emptyset$.
- 2: while $N' \neq \emptyset$ do
- 3: Find $S \subset N'$ where all players in S find S satisfactory, and the size of S is the largest if there are multiple such coalitions.
- 4: $\pi \leftarrow \pi \cup \{S\}$ and $N' \leftarrow N' \setminus S$
- 5: end while
- 6: return π
 - Symmetry in preference profile implies the bill with the broadest support/disapproval also yields the largest coalition
 - Symmetry further implies largest cross-party coalition will be part of the output partition
 - Selecting any satisfactory coalition (not necessarily the largest) in Step 3 maintains core stability
 - ► Our implementation: replace largest with median-sized coalition

Core Finding Algorithms - PAC

- ► Same as Algorithm 4
- ► Only difference: the input is satisfactory coalitions derived from sample bills
- ► The output is consistent with the observed samples, therefore PAC stable [1]

Introduction

Methodology

Hedonic Game Stability Models
Top Responsive Games
Bottom Responsive Games
Boolean Hedonic Games

Machine Learning Models

k-Means Clustering

Stochastic Block Model

Results & Discussion
Variability among PAC Partitions
Quantitative Analysis
Qualitative Analysis

k-Means Clustering

k-means clustering[3] divides a given set of samples x_1, \dots, x_n into k disjoint sets C, each described by the mean μ_j of the samples in the cluster; it produces a partition minimizing the *within-cluster* sum-of-squares (WCSS):

$$\sum_{i=1}^{n} \min_{\mu_j \in C} (||x_i - \mu_j||^2)$$

- ► General purpose
- ► Only need to find the best *k*
- ► Runs fast
- Assumes similar sized clusters

k-Means Clustering

Model Construction

Distance between points

- ► Each politician correspond to a point
- ► Each bill acts as a feature
- ► A "for" vote takes value of 1, "against" -1, others 0

Finding the best k

► Elbow method:

$$k = 10$$

► Average silhouette:

$$k = 2$$

Introduction

Methodology

Hedonic Game Stability Models
Top Responsive Games
Bottom Responsive Games
Boolean Hedonic Games

Machine Learning Models

k-Means Clustering

Stochastic Block Model

Results & Discussion
Variability among PAC Partitions
Quantitative Analysis
Qualitative Analysis

Stochastic Block Model

- ► A benchmark model in community detection
- ► Models dataset as a graph: parliament members as nodes, same/different votes as edge weights
- Assumes nodes in the same block shares same probability of being connected to other nodes
- ► Using Bayesian inference to find a partition that maximizes the likelihood of the observed network

Stochastic Block Model

Modeling Edge Weights

- Positive edge weight: the number of times a pair of politicians voted together, either "for" or "against" a bill.
- ► Modeled as a geometric distribution

- Possibly negative edge weight: the difference between the number of times their votes agree and the number of times their votes disagree
- ► Modeled as a normal distribution

Introduction

Methodology

Hedonic Game Stability Models
Top Responsive Games
Bottom Responsive Games
Boolean Hedonic Games

Machine Learning Models

k-Means Clustering

Stochastic Block Model

Results & Discussion
Variability among PAC Partitions

Quantitative Analysis Qualitative Analysis

Variability among PAC Partitions

Model	Partition Size Mean (SD)	CV
Value Function	87 (0)	0
General Friends	13 (1.29)	0.10
Selective Friends	20 (1.83)	0.09
Selective Enemies	10 (0)	0
General Enemies	34 (0.84)	0.02
Boolean	85 (16.92)	0.2

PAC model partition size statistics across 50 runs per model

Model	Pairwise AMI Mean (Min)	CV
Value Function	1 (1)	0
General Friends	0.78 (0.6)	0.09
Selective Friends	0.84 (0.66)	0.08
Selective Enemies	0.99 (0.97)	0.01
General Enemies	0.97 (0.93)	0.01
Boolean	0.18 (-0.06)	0.86

PAC Model Partition Pairwise AMI Statistics over 50 Runs per Model

Introduction

Methodology

Hedonic Game Stability Models
Top Responsive Games
Bottom Responsive Games
Boolean Hedonic Games

Machine Learning Models

k-Means Clustering

Stochastic Block Model

Results & Discussion

Variability among PAC Partitions

Quantitative Analysis

Qualitative Analysis

AMI between model partition and party affiliations

Friends Models - Full Information

General friends model output

Full-information models

- ightharpoonup $AMI_{friends} = 0$
- ► AMI_{selective friends} = 0.293
- ► More friendly → more likely to have grand coalition as final partition
- Major drawback of the full-information friends models: sensitive to the definition of "friends"

Friends Models - PAC

PAC general friends model output

PAC models

- ► AMI_{PAC friends} = 0.288
- ► AMI_{PAC selective friends} = 0.283
- ► PAC models dampen their sensitivity to the definition of friends through sampling

Boolean Models

Boolean model output

Full-info model

- ightharpoonup $AMI_{Boolean} = 0.077$
- ► Too many "stranded" singleton coalitions

PAC model

- $ightharpoonup AMI_{PAC Boolean} = 0.194$
- ► Slightly better performance
- ► But of limited representativeness due to high variability

Handcrafted Value Function Models

PAC value function model output

Value function model output

Handcrafted Value Function Models

Full-info model

- ightharpoonup AMI_{Value Fuction} = 0.290
- ▶ Identified a government coalition and an opposition coalition
- ▶ Precense of Yisrael Beiteinu members in coalition 1 (opposition parties) not in line with reality

PAC model

- $ightharpoonup AMI_{PAC Value Fuction} = 0.144$
- ► Worst performing PAC model
- ► Many singleton coalitions
- ► Identified a government coalition
- Missing opposition coalition due to sampling more likely picking government majority bills — limitation of value function formulation

SBM - Normal Edge Weights

SBM normal model output

- ► AMI_{SBM normal} = 0.192
- ▶ Many small coalitions
- Left-wing/right-wing grouping observed, but fails to distinguish the government from the opposition

Model Selection

AMI: higher means closer to ground truth

VI: lower means closer to ground truth

Introduction

Methodology

Hedonic Game Stability Models
Top Responsive Games
Bottom Responsive Games
Boolean Hedonic Games

Machine Learning Models

k-Means Clustering

Stochastic Block Model

Results & Discussion

Variability among PAC Partitions Quantitative Analysis

Qualitative Analysis

Selected Models

PAC Models

- ► Selective Friends
- ► Selective Enemies
- ► Boolean

Comparison ML Models

- ▶ 2-group *k*-means
- ► 10-group *k*-means
- ► SBM Geometric

Criteria

- Coherence: separate coalition and opposition parties cleanly? (no mixed coalitions)
- ► Overal Structure: able to distinguish between the main government and opposition groups?
- ► Party Sub-groups: able to identify subgroups within parties?

Model	Coherence	Structure	Sub-group
PAC Selective Friends	✓	✓	X
PAC Selective Enemies	✓	✓	X
PAC Boolean	✓	✓	X
2-group <i>k</i> -means	×	✓	X
10-group <i>k</i> -means	×	×	X
SBM Geometric	X	X	×

Conclusion

Summary

- ► ML methods: do not consider players' preferences and strategic behavior
- ► Game theoretic research: mostly theoretical or prescriptive with simulated data
- ► This thesis: a "descriptive" study of hedonic game theoretical models using real-world data of scale, and with ground truth
 - ► PAC models are able to recover overall structure & more coherent than ML models
 - ► PAC approach result is more robust than full-info approach

Future Research

- ► Apply PAC models on other parliaments, e.g. Dutch, Brazilian, US congress
- Apply other hedonic uncertainty models, e.g. Baysian core, on the Knesset dataset

Bibliography I

- [1] Tushant Jha and Yair Zick. A Learning Framework for Distribution-Based Game-Theoretic Solution Concepts. 2019. arXiv: 1903.08322.
- [2] Jakub Sliwinski and Yair Zick. "Learning Hedonic Games". In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI). 2017, pp. 2730–2736.
- [3] Pang-Ning Tan et al. *Introduction to Data Mining (2Nd Edition)*. Pearson, 2018.