1.3 1 Solve the following congruence

d
$$19x \equiv 1 \pmod{36}$$

Ans

$$19x \equiv 1 \pmod{36}$$

 $19x = 1 + 36n$, for $n \in \mathbb{Z}$
 $\Rightarrow 1 = 19x - 36n$
 $1 = 19(19) - 36(10)$

Therefore, $x \equiv 19 \pmod{36}$

4 Solve the following congruence: $20x \equiv 12 \pmod{72}$

Ans Since (20,72) = 4, there exists 4 solutions.

$$20x \equiv 12 \pmod{72}$$

 $20x = 12 + 72n$, for $n \in \mathbb{Z}$
 $\Rightarrow 5x = 3 + 18n$
 $5x \equiv 3 \pmod{18}$

Then, $x \equiv 15 \pmod{18} \Rightarrow 18 \mid (5x - 3)$

Therefore,

$$x \equiv 15 \pmod{18}$$

 $x \equiv 33 \pmod{18}$
 $x \equiv 51 \pmod{18}$
 $x \equiv 69 \pmod{18}$

7 The smallest positive solution of the congruence $ax \equiv 0 \pmod{n}$ is called the additive order of a modulo n. Find the additive orders of each of the following elements, by solving the appropriate congruences.

- **b** 7 modulo 12
- **Ans** The smallest positive solution: $7x \equiv 0 \pmod{12}$

That is, the smallest positive integer x such that $12 \mid 7x \Rightarrow x = 4$

Therefore, the additive order of 7 modulo 12 is x = 12

- **d** 12 modulo 18
- **Ans** The smallest positive solution: $12x \equiv 0 \pmod{18}$

That is, the smallest positive integer x such that $18 \mid 12x \Rightarrow x = 3$

Therefore, the additive order of 12 modulo 18 is x=3

14 Find the units digit of $3^{29} + 11^{12} + 15$.

Hint: Choose an appropriate modulus n, and then reduce modulo n.

Ans Since $3^4 = 81$ with a units digit of 1,

then $3^{29} = (3^4)^7 \cdot 3$ with a units digit of 3

Since $11^2 = 121$ with a units digit of 1,

then $11^{12} = (11^2)^6$ with a units digit of 1

Therefore, the units digit of $3^{29} + 11^{12} + 15$ is: 1 + 3 + 5 = 9

16 Solve the following congruences by trial and error.

a
$$x^3 + 2x + 2 \equiv 0 \pmod{5}$$

Ans By trial and error

$$x = 1 \Rightarrow 5 \mid (1)^3 + 2(1) + 2 = 5$$

$$x = 2 \Rightarrow 5 \nmid (2)^3 + 2(2) + 2 = 14$$

$$x = 3 \Rightarrow 5 \mid (3)^3 + 2(3) + 2 = 35$$

$$x = 4 \Rightarrow 5 \nmid (4)^3 + 2(4) + 2 = 74$$

Therefore,

$$x \equiv 1 \pmod{5}$$
 and $x \equiv 3 \pmod{5}$

20 Solve the following system of congruences.

$$2x \equiv 5 \pmod{7} \qquad \qquad 3x \equiv 4 \pmod{8}$$

Ans Simplifying the congruences first,

$$2x \equiv 5 \pmod{7}$$

$$2x \equiv 5 \pmod{7}$$

$$2v \equiv 1 \pmod{7}$$

$$2v = 1 - 7n, \text{ for } n \in \mathbb{Z}$$

$$\Rightarrow 1 = 2v + 7n$$

$$1 = 2(4) + 7(-1)$$

$$\Rightarrow x \equiv 4v \pmod{7}$$

Therefore,

$$2x \equiv 4 \cdot 5 \pmod{7}$$
$$x \equiv 6 \pmod{7}$$

And $3x \equiv 4 \pmod{8}$

$$3x \equiv 4 \pmod{8}$$

$$3v \equiv 1 \pmod{8}$$

$$3v = 1 - 8n, \text{ for } n \in \mathbb{Z}$$

$$\Rightarrow 1 = 3v + 8n$$

$$1 = 3(3) + 8(-1)$$

$$\Rightarrow x \equiv 3v \pmod{8}$$

Therefore,

$$3x \equiv 3 \cdot 4 \pmod{8}$$
$$x \equiv 4 \pmod{8}$$

Now the system can be solved using the Chinese Remainder Theorem:

$$x \equiv 6 \pmod{7} \qquad \qquad x \equiv 4 \pmod{8}$$

Since
$$(n_1,n_2)=(7,8)=1$$
, let $u_1=7k_1$ and $u_2=8k_2$

Then

$$u_1 + u_2 = 1 \Rightarrow 7k_1 + 8k_2 = 1$$

$$1 = 7(-1) + 8(1)$$

Thus

$$u_1 = 7(-1) = -7 \equiv 1 \pmod{8}$$

 $u_1 = 7(-1) = -7 \equiv 0 \pmod{7}$

And

$$u_2 = 8(1) = 8 \equiv 0 \pmod{8}$$

 $u_2 = 8(1) = 8 \equiv 1 \pmod{7}$

Therefore,

$$x = 6u_1 + 4u_2$$
$$= 6(-7) + 4(8)$$
$$= -10$$

Therefore, the general solution with the smallest nonnegative integer is

$$x \equiv -10 \pmod{n_1 n_2}$$

$$x \equiv -10 \pmod{56}$$

$$x \equiv 46 \pmod{56}$$

1.4 2 Make multiplication tables for the following sets.

Table 1: b: Multiplication table of \mathbb{Z}_7

×	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[0]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[0]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[0]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[0]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[0]	[6]	[5]	[4]	[3]	[2]	[1]

Table 2: c: Multiplication table of \mathbb{Z}_8

×	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[2]	[0]	[2]	[4]	[6]	[0]	[2]	[4]	[6]
[3]	[0]	[3]	[6]	[1]	[4]	[7]	[2]	[5]
[4]	[0]	[4]	[0]	[4]	[0]	[4]	[0]	[4]
[5]	[0]	[5]	[2]	[7]	[4]	[1]	[6]	[3]
[6]	[0]	[6]	[4]	[2]	[0]	[6]	[4]	[2]
[7]	[0]	[7]	[5]	[4]	[3]	[2]	[1]	[1]

6 Let m and n be positive integers such that $m \mid n$. Show that for any integer a, the congruence class $[a]_m$ is the union of the congruence classes $[a]_n, [a+m]_n, [a+2m]_n, \ldots, [a+n-m]_n$

Ans To show

$$[a]_m = [a]_n \cup [a+m]_n \cup [a+2m]_n \cup \ldots \cup [a+n-m]_n$$

Let $x \in [a+km]_n$, for $k \in \mathbb{Z}$

Then $x \equiv a + km \pmod{n}$

 $\Rightarrow x = a + km + ln$, for $l \in \mathbb{Z}$

Since $m \mid n$,

n=pm, for $p\in\mathbb{Z}$

Then

$$x = a + km + l(pm)$$
$$= a + (k + lp)m$$
$$\Rightarrow x \equiv a \pmod{m}$$
$$\Rightarrow x \in [a]_m$$

Thus

$$[a]_n \cup [a+m]_n \cup [a+2m]_n \cup \ldots \cup [a+n-m]_n \subseteq [a]_m$$

Conversely,

Let $x \in [a]_m$

Then,

$$x \equiv a \pmod{m}$$

$$\Rightarrow x = a + lm, \text{ for } l = k + n$$

$$= a + (k + n)m$$

$$= a + km + mn$$

$$\Rightarrow x \equiv km \pmod{n}$$

$$\Rightarrow x \in [a + km]_n$$

Thus

$$[a]_m \subseteq [a]_n \cup [a+m]_n \cup [a+2m]_n \cup \ldots \cup [a+n-m]_n$$

$$\therefore [a]_m = [a]_n \cup [a+m]_n \cup [a+2m]_n \cup \ldots \cup [a+n-m]_n$$

9 Let gcd(a,n)=1. The smallest positive integer k such that $a^k\equiv 1\pmod n$ is called the **multiplicative order** of [a] in \mathbb{Z}_n^\times

b Find the multiplicative orders of [2] and [5] in \mathbb{Z}_{17}^{\times} .

Ans Show $2^k \equiv 1 \pmod{17}$, for $k \in \mathbb{Z}$

Then, $2^k = 1 + 17n$, for $n \in \mathbb{Z}$

Then, $n = (2^k - 1)/17$

Therefore, for n to be an integer, k = 8.

Similarly, show $5^k \equiv 1 \pmod{17}$, for $k \in \mathbb{Z}$

Then, $5^k = 1 + 17n$, for $n \in \mathbb{Z}$

Then, $n = (5^k - 1)/17$

Therefore, for n to be an integer, k = 16.

Therefore, the multiplicative order of [2] and [5] in \mathbb{Z}_{17}^{\times} is k=8

10 Let gcd(a,n)=1. If [a] has multiplicative order k in \mathbb{Z}_n^{\times} , show that $k\mid \varphi(n)$.

Ans By Euler's theorem, if gcd(a, n) = 1 then $a^{\varphi(n)} \equiv 1 \pmod{n}$

Also, if k is the multiplicative order of [a],

then k is the smallest positive interger such that $a^k \equiv 1 \pmod{n}$

Therefore, there exists an $m \in \mathbb{Z}$ such that

$$a^{mk} = a^{\varphi(n)} \equiv 1 \pmod{n}$$

Then $mk = \varphi(n)$

That is, $k \mid \varphi(n)$

13 An element [a] of is said to be **idempotent** if $[a]^2 = [a]$.

b Find all idempotent elements of \mathbb{Z}_{10}^{\times} and \mathbb{Z}_{30}^{\times} .

Ans For \mathbb{Z}_{10}^{\times} :

$$[0]^2 = [0]$$

$$[1]^2 = [1]$$

$$[5]^2 = [5]$$

$$[6]^2 = [6]$$

For \mathbb{Z}_{30}^{\times} :

$$[0]^2 = [0]$$

 $[1]^2 = [1]$
 $[6]^2 = [6]$

 $[10]^2 = [10]$

15 If n is not a prime power, show that \mathbb{Z}_n has an idempotent element different from [0] and [1].

Hint: Suppose that n=bc, with gcd(b,c)=1. Solve the simultaneous congruences $x\equiv 1\ (\mathrm{mod}\ b)$ and $x\equiv 0\ (\mathrm{mod}\ c)$.

Ans Let n = bc, with gcd(b, c) = 1

Since gcd(b,c), the Chinese remainder theorem may be applied to the congruences:

$$x \equiv 1 \pmod{b}$$
 $x \equiv 0 \pmod{c}$

Consider

$$x - 1 \equiv 0 \pmod{b}$$
 and $x \equiv 0 \pmod{c}$

That is

$$x(x-1) \equiv 0 \pmod{bc}$$

 $x^2 - x \equiv 0 \pmod{bc}$
 $x^2 \equiv x \pmod{bc}$
 $x^2 \equiv x \pmod{bc}$

Therefore, there exists an idempotent element in \mathbb{Z}_n different from [0] and [1]

20 Show that $\varphi(1) + \varphi(p) + \ldots + \varphi(p^{\alpha}) = p^{\alpha}$ for any prime number p and any positive integer α .

Ans Since

$$\varphi(p^{\alpha}) = p^{\alpha} \left(1 - \frac{1}{p} \right)$$
$$= p^{\alpha} - p$$
$$= p^{\alpha - 1}(p - 1)$$

Then

$$\begin{split} \varphi(1) + \varphi(p) + \varphi(p^2) + \ldots + \varphi(p^{\alpha}) &= (p^{-1}(p-1)) + (p^0(p-1)) + (p^1(p-1)) + \ldots + p^{\alpha-1}(p-1) \\ &= 1 + p - 1 + p^2 - p \ldots + p^{\alpha} - p^{\alpha-1} \\ &= p^{\alpha} \end{split}$$

26 Let p=2k+1 be a prime number. Show that if a is an integer such that $p \nmid a$, then either $a^k \equiv 1 \pmod p$ or $a^k \equiv -1 \pmod p$

Ans Using Fermat's little theorem:

If p is prime and $p \nmid a$, then

$$a^{p-1} \equiv 1 \pmod{p}$$

$$a^{(2k+1)-1} \equiv 1 \pmod{(2k+1)}$$

$$a^{2k} \equiv 1 \pmod{(2k+1)}$$

$$(a^k)^2 \equiv 1 \pmod{(2k+1)}$$

Therefore,

$$a^k \equiv \pm 1 \; (\bmod \, p)$$

$$\therefore a^k \equiv 1 \; (\bmod \, p) \; \text{or} \; a^k \equiv -1 \; (\bmod \, p)$$

$$\Box$$