Notes of Deep Learning [1]

Part I (chapter 2-5)

Part I: Applied Math and Machine Learning Basics

- > Chapter 2. Linear algebra
- > Chapter 3. Probability and information theory
- > Chapter 4. Numerical computation
- > Chapter 5. Machine learning basics

Part I: Applied Math and Machine Learning Basics

> Chapter 2. Linear algebra

- > Scalars, Vectors, Matrices and Tensors
- > Notations:

-
$$s$$

- $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} S = \{1,3\}, x_s, x_{-s}\}$

- $A A_{:,j} A_{i,:} A_{i,j} f(A)_{i,j}$

- $A A_{i,j,k}$

- > Operations:
 - Transpose:
 - Addition
 - Multiply by a scalar
 - Broadcasting
 - Multiply matrices and vectors:
 - \rightarrow matrix product: C = AB
 - \rightarrow element-wise product: $C = A \odot B$
 - > distributive, associative, not commutative for matrices

- > Identity and inverse matrices:
 - Identity matrix
 - Matrix inverse:
 - $A^{-1}A = I_n$
 - $Ax = b, x = A^{-1}b$
 - > (Should not actually be used in practice for limited precision on a digital computer)

- > Linear dependence and span:
 - $A_{m*n}x = b_m$:
 - \rightarrow 1 solution (m = n linear independent vectors)
 - \rightarrow no solutions ($n < m \ linear \ independent \ vectors$)
 - \rightarrow infinitely many solutions (n > m linear independent vectors)
 - Linear combination:
 - $Ax = \sum_{i} x_i A_{:,i} = \sum_{i} c_i v^{(i)}$
 - Span: a set of vectors all points obtainable by linear combination of the original vectors.
 - Column space/ Range of A: span of the columns of A.
 - Linear independent vectors: no vector in the set is a linear combination of the other vectors.
 - The column space of the matrix to encompass all of $R^m \Leftrightarrow$ the matrix contain at least one set of exactly m linearly independent columns
 - Singular: A square matrix with linearly dependent columns
 - it can still possible to solve Ax = b while A is not square or is singular, but we can not use matrix inversion to find the solution

- > Norms: the size of vectors:
 - $f(x) = 0 \Rightarrow x = 0$
 - $f(x + y) \le f(x) + f(y)$ (the triangle inequality)
 - $\forall \alpha \in R$, $f(\alpha x) = |\alpha| f(x)$
- $L^p \text{ norm: } ||\mathbf{x}||_p = (\sum_i |x_i|^p)^{\frac{1}{p}}, \text{ for } p \in R, p \ge 1$
- > For vectors:
 - 'L'': # of nonzero elements
 - L¹: Manhattan distance
 - L²: Eculidean distance
 - L^{∞} : Max norm $||x||_{\infty} = \max_{i} |x_{i}|$
- > For matrices:
 - Frobenius norm: $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} A_{i,j}^2}$
 - $-L^1: ||A||_1 = \max_i \sum_i ||A_{i,j}||$
 - L^2 : $||A||_2 = \sqrt{\lambda}$, where λ is the maximum eigen value of $A^T A$
 - $L^{\infty} \colon \|\mathbf{A}\|_{\infty} = \max_{i} \sum_{j} \|A_{i,j}\|$

- > Special kinds of matrices and vectors:
 - Diagonal matrices (not necessary to be square), diag(v)
 - Symmetric matrices
 - Unit vectors
 - Orthogonal, Orthonormal (orthogonal + unit norm)
 - Orthogonal matrix:
 - $A^TA = AA^T = I$
 - $\rightarrow A^T = A^{-1}$
 - > There is no special term for a matrix whose rows or columns are orthogonal but not orthonormal.

- > Eigendecomposition
 - (right) Eigenvector, eigenvalue: $Av = \lambda v$
 - Eigendecomposition (for square matrix): $A = V \operatorname{diag}(\lambda) V^{-1}$
 - Real symmetric matrix:
 - $A = Q\Lambda Q^T$, where **Q** is an orthogonral matrix composed of eigenvectors of **A** and Λ is a doagonal matrix
 - > If any two or more eigenvectors share the same eigenvalue, then any set of orthogonal vectors lying in their span are also eigenvectors with that eigenvalue, and we could equivalently choose a *Q* using those eigenvectors instead
 - > The matrix is singular if and only if any of the eigenvalues are 0
- Optimize quadratic expressions of the form

$$f(x) = x^T A x$$
, s. t. $||x||_2 = 1$

- > Positive definite/Positive semidefinite (Negative definite/ Negative semidefinite):
 - Positive definite:
 - > Eigenvalues are all positive
 - $\forall x, x^T A x > 0$
 - $\rightarrow x^T A x = 0 \Rightarrow x = 0$
 - Positive semidefinite:
 - > Eigenvalues are all positive or zero-valued
 - $\forall x, x^T A x \geq 0$

Figure 2.3: An example of the effect of eigenvectors and eigenvalues. Here, we have a matrix \boldsymbol{A} with two orthonormal eigenvectors, $\boldsymbol{v}^{(1)}$ with eigenvalue λ_1 and $\boldsymbol{v}^{(2)}$ with eigenvalue λ_2 . (Left) We plot the set of all unit vectors $\boldsymbol{u} \in \mathbb{R}^2$ as a unit circle. (Right) We plot the set of all points $\boldsymbol{A}\boldsymbol{u}$. By observing the way that \boldsymbol{A} distorts the unit circle, we can see that it scales space in direction $\boldsymbol{v}^{(i)}$ by λ_i .

> Singular value decomposition(SVD)

- > The Moore-Penrose Pseudoinverse
 - For solve Ax = y by left-multiplying each side to obtain x = By
 - Definition: $A^+ = \lim_{\alpha \to 0} (A^T A + \alpha I)^{-1} A^T$
 - In practice: $A = UDV^T \Rightarrow A^+ = VD^+U^T$
 - > **D**⁺ of a diagonal matrix D is obtained by taking the reciprocal of its non-zero elements then taing the transpose of the resulting matrix
 - # of columns > # of rows:
 - > There could be multiple possible solutions
 - $\rightarrow x = A^+ y$ with minimal $||x||_2$
 - # of columns < # of rows:
 - > It is possible to have no solutions
 - \rightarrow Ax with minimal $||Ax y||_2$

- \rightarrow The trace operator: $Tr(A) = \sum_{i} A_{i,i}$
 - $\|A\|_F = \sqrt{Tr(AA^T)}$
 - $Tr(A) = Tr(A^T)$
 - Invariance to cyclic permutation (even if the resulting product has a different shape):

$$Tr(ABC) = Tr(CAB) = Tr(BCA)$$

- \rightarrow The determinant: det(A)
 - det(A) = product of all the eigenvalues of the matrix
 - A measure of how much multiplication by the matrix expands or contracts space:
 - If it is 0, then space is contracted completely along at least one dimension, causing it to lose all of its volume
 - > If it is 1, then the transformation is volume-preserving

