פתרון תרגילים להרצאה 10

מרחב מטריצות עם $m\times n$ עם רכיבים מרוכבים. $\max_{m\times n}(\mathbb C)$ נתון מגדירים מכפלה פנימית מכפלה פנימית $(A,B):=\mathrm{tr}(AB^*)$ עבור $B^*=^t\overline B$ כאשר

.1 לפי הגדרה הארה $\left[\begin{array}{cc} 1 & i \\ i & 2 \end{array}\right]$, $\left[\begin{array}{cc} 2 & -i \\ i & 3 \end{array}\right]$ לפי הגדרה מכפלה מכפלה פנימית של

פתרון:

$$\left\langle \begin{bmatrix} 1 & i \\ i & 2 \end{bmatrix}, \begin{bmatrix} 2 & -i \\ i & 3 \end{bmatrix} \right\rangle = \operatorname{tr}\left(\begin{bmatrix} 1 & i \\ i & 2 \end{bmatrix} \begin{bmatrix} 2 & -i \\ i & 3 \end{bmatrix}^* \right) =$$

$$= \operatorname{tr}\left(\begin{bmatrix} 1 & i \\ i & 2 \end{bmatrix} \overline{\begin{bmatrix} 2 & i \\ -i & 3 \end{bmatrix}} \right) = \operatorname{tr}\left(\begin{bmatrix} 1 & i \\ i & 2 \end{bmatrix} \overline{\begin{bmatrix} 2 & -i \\ i & 3 \end{bmatrix}} \right) =$$

$$= \operatorname{tr}\left(\begin{bmatrix} 1 & 2i \\ 4i & 7 \end{bmatrix} \right) = 1 + 7 = 8.$$

אינה מכפלה $(x_1-x_2)(\overline{y_1-y_2})=\left\langle\left[\begin{array}{c}x_1\\x_2\end{array}\right],\left[\begin{array}{c}y_1\\y_2\end{array}\right]\right\rangle$ $(x_i,y_i\in\mathbb{C})$ פנימית על \mathbb{C}^2 .

כלומר הפונקציה הנתונה $\langle \cdot, \cdot
angle$ לא מקיימת את התכונה 3 של מכפלה פנימית.

 $\|\cdot\|_{\infty}$, $\|\cdot\|_{2}$, $\|\cdot\|_{1}$ בנורמות בנו הוקטור $\mathbb{R}^{2}\ni\begin{bmatrix}1\\1\end{bmatrix}$ את הוקטור את $\left(v\mapsto\frac{1}{\|v\|}v\right)$ את נרמל (ב) אייר את מעגל היחידה ב- \mathbb{R}^{2} לפי הנורמות \mathbb{R}^{2} , $\|\cdot\|_{\infty}$, $\|\cdot\|_{\infty}$, ווא לפי המעגלים לקוטר (פעמיים הרדיוס) שלהם. (ג) חשב את היחס בין היקפי המעגלים לקוטר (פעמיים הרדיוס) שלהם.

(א) פתרון:

$$\left\| \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\|_{1} = \left(|1|^{1} + |1|^{1} \right)^{1/1} = 2, \quad \left\| \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\|_{2} = \sqrt{|1|^{2} + |1|^{2}} = \sqrt{2},$$

$$\left\| \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\|_{\infty} = \max\{|1|, |1|\} = 1.$$

 $\mathbb{R}^2\ni x,y$ לכל $\mathrm{dist}(x,y):=\|x-y\|$ מרחי מרחידה. נגדיר מיחידה מעגל היחידה מעגל תהי מוא תהי לנו מוא מוא $\mathbb{R}^2\supset C$ היחידה ווקוטר של לפי לפי $\mathrm{dist}(x,y):=\sup_{x,y\in C}\mathrm{dist}(x,y)$

לכן , $C=\{x\in\mathbb{R}^2;\|x\|_1=1\}$ לכן המעגל היחידה המעגל היחידה הוא (1.ג) עבור נורמה א

$$\begin{split} \pi_1 &= \frac{\operatorname{perimeter}(C)}{\operatorname{diam}(C)} = \frac{4 \cdot \operatorname{dist}((1,0),(0,1))}{\sup\limits_{x,y \in C} \operatorname{dist}(x,y)} = \frac{4 \cdot \|(1,0) - (0,1)\|_1}{\operatorname{dist}((1,0),(-1,0))} = \\ &= \frac{4 \cdot \|(1,-1)\|_1}{\|(1,0) - (-1,0)\|_1} = \frac{4 \cdot (|1| + |-1|)}{\|(2,0)\|_1} = \frac{4 \cdot 2}{|2|} = 4. \end{split}$$

R=1 עבור נורמה $\|\cdot\|_2$ המעגל היחידה הוא א $\|\cdot\|_2$ המעגל (2.2 עבור נורמה 2R=1 היחס יהיה לכן ב2R=d והקוטר

$$\pi_2 = \pi = \frac{2\pi R}{d} \approx 3.1415926.$$

לכן , $C=\{x\in\mathbb{R}^2;\|x\|_{\infty}=1\}$ עבור נורמה $\left\|\cdot\right\|_{\infty}$ המעגל עבור (3.ג

$$\pi_{\infty} = \frac{\operatorname{perimeter}(C)}{\operatorname{diam}(C)} = \frac{4 \cdot \operatorname{dist}((1, -1), (1, 1))}{\sup_{x, y \in C} \operatorname{dist}(x, y)} = \frac{4 \cdot \|(1, -1) - (1, 1)\|_{\infty}}{\operatorname{dist}((-1, -1), (1, 1))} =$$

$$= \frac{4 \cdot \|(0, -2)\|_{\infty}}{\|(-1, -1) - (1, 1)\|_{\infty}} = \frac{4 \cdot \max\{0, |2|\}}{\|(-2, -2)\|_{\infty}} = \frac{4 \cdot 2}{\max\{|-2|, |-2|\}} = 4.$$

מסקנה: קיבלנו הגדרה של המספר $\pi=\pi_2\approx 3.1415<\pi_1=\pi_\infty$ המספר של הגדרה הגדרה לנו הגדרה $\|\cdot\|_\infty$, $\|\cdot\|_2$, $\|\cdot\|_1$ העומות לפי נורמות היישור לפי נורמות האוים המספר ליישור המספר ליישור המספר ליישור המספר ליישור המספר ליישור המספר ה

 $,\!v=\sum\limits_{1\leqslant i\leqslant n}\langle v,v_i\rangle\,v_i$, אם אורתונורמלי או $B=(v_1,\ldots,v_n)$ אם אם אורתונו $\underline{\bf 4}$

$$.[v]_B = \left[\begin{array}{c} \langle v, v_1 \rangle \\ \vdots \\ \langle v, v_n \rangle \end{array} \right]$$

, הבסיס B אורתונורמלי, $V\ni\sum_{k=1}^n\alpha_kv_k=x$ נניח נניח נניח אורתונורמלי, אורתונורמלי, אורתונורמלי

. לכל $lpha_i\mapstolpha_i\cdot 1=lpha_i$ לכל $lpha_i\mapstolpha_i\cdot 1=lpha_i$ לכל $lpha_i\mapstolpha_i$ לכל $lpha_i\mapstolpha_i$

בסיס אורתונורמלי של ממ"פ $B=(v_1,\ldots,v_n)$ בסיס אורתונורמלי של בסים ובסיס אורתונורמלי של בסיס אורתונורמלי ובצד ימין: $\langle u,v\rangle=\langle [u]_B,[v]_B\rangle_{\rm st}$

$$\langle u,v
angle = [\langle u,v_1
angle \, , \ldots , \langle u,v_n
angle] \cdot \left[egin{array}{c} \overline{\langle v,v_1
angle} \\ dots \\ \overline{\langle v,v_n
angle} \end{array}
ight] = \sum_{1 \leqslant j \leqslant n} \langle u,v_j
angle \, \overline{\langle v,v_j
angle} \, :$$
 כלומר:

 $[x]_B=(lpha_1,\ldots,lpha_n)$ זאת אומרת $y=\sum_{j=1}^neta_jv_j$ די $x=\sum_{i=1}^nlpha_iv_i$ נניח גניח $[y]_B=(eta_1,\ldots,eta_n)$ די $[y]_B=(eta_1,\ldots,eta_n)$

$$\langle x, y \rangle = \left\langle \sum_{i=1}^{n} \alpha_{i} v_{i}, \sum_{j=1}^{n} \beta_{j} v_{j} \right\rangle = \sum_{i=1}^{n} \left\langle \alpha_{i} v_{i}, \sum_{j=1}^{n} \beta_{j} v_{j} \right\rangle =$$

$$= \sum_{i=1}^{n} \alpha_{i} \left\langle v_{i}, \sum_{j=1}^{n} \beta_{j} v_{j} \right\rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \left\langle v_{i}, \beta_{j} v_{j} \right\rangle =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \overline{\beta_{j}} \left\langle v_{i}, v_{j} \right\rangle = \sum_{k=1}^{n} \alpha_{k} \overline{\beta_{k}}.$$

לכן $\{1,2,\dots,n\}
ightarrow \beta_k = \langle y,v_k \rangle$ וד $\alpha_k = \langle x,v_k \rangle$ לכל לפי תרגיל לפי תרגיל לפי

$$\langle x, y \rangle = \sum_{k=1}^{n} \alpha_k \overline{\beta_k} = \sum_{j=1}^{n} \alpha_j \overline{\beta_j} = \sum_{1 \leqslant j \leqslant n} \langle x, v_j \rangle \, \overline{\langle y, v_j \rangle} = \langle [x]_B, [y]_B \rangle_{\mathrm{st}} \,.$$

תרגיל U של (השורות) העמודות U אוניטרית אוניטרית אוניטרית המטריצה של המטריצה ערתונור מלי ל- \mathbb{C}^n

ערון: $u_{i=\overline{1,n}}$ השורות של $U=\left[egin{array}{c} u_1\\ \vdots\\ u_n \end{array}\right]$ אוניטרית. נסמן על אוניטרית. נסמן (\Leftarrow) איז (\Leftarrow) איז מתרון:

$$UU^* = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}^* = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \begin{bmatrix} \overline{tu_1} | \dots | \overline{tu_n} \end{bmatrix} =$$

$$= \begin{bmatrix} \langle u_1, \overline{tu_1} \rangle & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \langle u_n, \overline{tu_n} \rangle \end{bmatrix} =$$

$$= \begin{bmatrix} \langle u_1, \overline{u_1} \rangle & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \langle u_n, \overline{u_n} \rangle \end{bmatrix} = \begin{bmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{bmatrix},$$

 \mathbb{C}^n ל־ אורתונורמלי בסיס $u_1,...,u_n$ ר ב $\langle u_i,\overline{u_j}\rangle=\delta_{ij}$ כלומר כלומר

כלומר השורות לא אוניטרית. אז קיים $i \neq j$ כך ש־ כך לא אוניטרית. אז קיים (\Rightarrow) לא אורתוגונלים ולכן לא אורתונורמליים. u_1,\dots,u_n

כך ש־ $U=[v_1|\dots|v_n]$ לכן, נסמן $UU^*=U^*U=I$ כך אוניטרית, אז $U=[v_1|\dots|v_n]$ יהיו העמודות של $v_{i=\overline{1,n}}$

$$\begin{split} U^*U &= [v_1|\dots|v_n]^* \left[v_1|\dots|v_n\right] = \\ &= \begin{bmatrix} \frac{\overline{t}_{v_1}}{\vdots} \\ \frac{\overline{t}_{v_n}}{t} \end{bmatrix} \left[v_1|\dots|v_n\right] = \begin{bmatrix} \left\langle \overline{t}_{v_1}, v_1 \right\rangle & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \left\langle \overline{t}_{v_n}, v_n \right\rangle \end{bmatrix} = \\ &= \begin{bmatrix} \left\langle \overline{v_1}, v_1 \right\rangle & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \left\langle \overline{v_n}, v_n \right\rangle \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}. \end{split}$$

לכן הפוך: כנ"ל בכיוון הפוך: $v_1,...,v_n$ ו־ $\langle \overline{v_i},v_j\rangle=\delta_{ij}$ לכן לכן לכן לא אוניטרית, אז קיים j כך ש־ j כך ש־ j כלומר העמודות אם j לא אוניטרית, אז קיים ולכן לא אורתונורמליים. לא אורתוגונלים ולכן לא אורתונורמליים.

. אוניטרית. או אוניטרית אוניטרית אוניטרית אוניטרית בסיסים אורתונורמלים אוניטרית בסיסים E,F

 $\mathcal E$ ניקח $P=[I]_F^E=[I\circ I]_F^E=[I]_F^E=[I]_F^{\mathcal E}$ מעל $\mathbb C$ מעל מעל V מעל בסיס $P=[I]_F^E=[I\circ I]_F^E$ מטריצות אוניטריות כך ש־ בסיס סטנדרטי. אז $[I]_{\mathcal E}^E,[I]_F^E$ מטריצות אוניטריות כך ש־

$$\begin{split} [I]_{\mathcal{E}}^F &= \left([I]_F^{\mathcal{E}}\right)^{-1} = \left(\overline{[I]_F^{\mathcal{E}}}\right)^t, \quad [I]_E^{\mathcal{E}} &= \left([I]_{\mathcal{E}}^E\right)^{-1} = \left(\overline{[I]_E^E}\right)^t, \\ \text{ אס } &: [I]_E^{\mathcal{E}} \cdot \left(\overline{[I]_E^E}\right)^t = [I]_F^F \cdot \left(\overline{[I]_F^E}\right)^t = [\mathcal{E}] = I \text{ for all } I \in \mathcal{E} \\ P^{-1} &= \left([I]_F^{\mathcal{E}}[I]_{\mathcal{E}}^E\right)^{-1} = \left([I]_{\mathcal{E}}^E\right)^{-1} \left([I]_F^{\mathcal{E}}\right)^{-1} = \left(\overline{[I]_E^E}\right)^t \left(\overline{[I]_F^{\mathcal{E}}}\right)^t = \\ &= \left(\overline{[I]_F^{\mathcal{E}}} \cdot \overline{[I]_E^E}\right)^t = \left(\overline{([I]_F^{\mathcal{E}}[I]_E^E)}\right)^t = (\overline{P})^t = P^*. \end{split}$$

E פסיס קיים של V של של בסיס פופי. לכל ממימד סופי. מרחב וקטורי ממימד מטריצות מטריצות $[I]_B^E$ וגם וגם וגם $[I]_B^E$ מטריצות מטריצות מטריצות וגם וגם אוני וגם וו