Se considera el subgrupo de S_5 , $H = \langle (123), (4,5) \rangle$ que está generado por esos dos ciclos. Entonces:

- \bigcirc a. 2 divide a $[S_5:H]$ y por tanto H es normal en S_5 .
- \odot b. H es un grupo abeliano y por tanto es normal en S_5 . \ref{S}
- \bigcirc c. H no es normal en S_5 .

La respuesta correcta es:

H no es normal en S_5 .

Sea $f:G\to H$ un homomorfismo de grupos. Entonces:

- a. Ninguno de los otros enunciados es cierto.
- \bigcirc b. Si f es sobreyectivo y H es abeliano G es abeliano.
- \odot c. Si f es sobreyectivo y G es abeliano H es abeliano. \checkmark

Para cualquier permutación $\sigma \in S_n$, si $sign(\sigma)$ denota su sinatura o paridad, se tiene:

- \bigcirc a. $sign(\sigma) = sign(\sigma^{-1})$.
- o. Ninguna de las otras opciones tiene que ser cierta

La respuesta correcta es:

$$sign(\sigma) = sign(\sigma^{-1}).$$

Considera el grupo S_4 como el subgrupo de S_5 de las permutaciones que dejan fijo el 5.

- \bigcirc a. S_4 es normal en S_5 y el índice $[S_5:S_4]$ es 5.
- \odot b. S_4 no es normal en S_5 y el índice $[S_5:S_4]$ es 5. \checkmark
- \bigcirc c. S_4 no es normal en S_5 y el índice $[S_5:S_4]$ tampoco es 5.

Si $f:G\to H$ es un homomorfismo de grupos, entonces:

- \bigcirc a. $|x| = |f(x)| \forall x \in G$.
- b. |f(x)| divide a |x| $\forall x \in G$. ✓
- \bigcirc c. |x| divide a $|f(x)| \forall x \in G$.

La respuesta correcta es:

|f(x)| divide a $|x| \ \forall x \in G$.

En S_4 se tiene que:

- \bigcirc a. $\{(12), (23), (34)\}$ es un conjunto de generadores. \checkmark
- O b. el conjunto de ciclos de longitud 3 es un conjunto de generadores.
- \bigcirc c. $\{(1\ 2), (3\ 4)\}$ es un conjunto de generadores.

Sea G un grupo y $f:G\to G$ la aplicación dada por $f(x)=x^{-1}$. Entonces:

- \bigcirc a. f es un automorfismo.
- \bigcirc b. f es un homomorfismo de grupos pero no es biyectivo.
- c. Si f es un homomorfismo entonces G es abeliano. \checkmark

La respuesta correcta es:

Si f es un homomorfismo entonces G es abeliano.

Considera el grupo Q_2 de los cuaternios:

- \bigcirc a. Como Q_2 es resoluble, la serie de composición de Q_2 es igual a la serie derivada y por tanto es única.
- O b. La serie de composición de un grupo es única por tanto sólo puedo encontrar una serie de composición de $oldsymbol{Q}_2$
- \odot c. Puedo encontrar al menos tres series de composición distintas de Q_2 . \checkmark

Considera el subgrupo $H = \langle (12) \rangle$ entonces

- O a. $N_{S_4}(H) = S_4$.
- O b. $N_{S_4}(H) = H$.
- c. $N_{S_4}(H) = \langle (12), (34) \rangle$.

La respuesta correcta es:

 $N_{S_4}(H) = \langle (12), (34) \rangle.$

Se considera el subgrupo de S_5 , $H = \langle (123), (4,5) \rangle$ generado por esos dos ciclos. Entonces:

- \bigcirc a. H es un grupo cíclico.
- \odot b. H es un grupo abeliano pero no es cíclico. imes
- \bigcirc c. S_5 es un grupo no abeliano y por tanto H tampoco es abeliano.

Sea $G = H \cdot K$ producto directo. Entonces:

- \odot a. G' no tiene porqué ser producto de los derivados H' y K'. \ref{M}
- \bigcirc b. $G' = H' \cdot K'$ directo.
- \bigcirc c. $G' = H' \cdot K'$ pero no es directo.

La respuesta correcta es:

 $G' = H' \cdot K'$ directo.

Sea A un grupo abeliano de orden 10 con un elemento de orden 2 y otro de orden 5. Entonces

- \bigcirc a. A es cíclico, resoluble y simple.
- b. A no es cíclico ni simple pero si es resoluble.
- c. A es cíclico y resoluble pero no es simple.

El orden de la permutación (12)(123)(1234) es

- a. 6
- O b. 12
- ⊙ c. 3 ✓

La respuesta correcta es:

3

Sea C_6 el grupo cíclicos de órdene 6. Entonces:

- \bigcirc a. hay exactamente 18 homomorfismos de C_6 en S_4 .
- \bigcirc b. hay exactamente 12 homomorfismos de C_6 en S_4 .
- \bigcirc c. hay exactamente 6 homomorfismos de C_6 en S_4 .

Dadas las permutaciones $\sigma = (2\ 3\ 6)(6\ 5\ 7\ 1\ 3\ 4), \tau = (2\ 4\ 7\ 3) \in S_{10}$ se tiene que $\tau\sigma\tau^{-1}$:

- a. Tiene orden 12.

 ✓
- b. Es un ciclo de longitud 7.
- c. Es par.

La respuesta correcta es:

Tiene orden 12.

Sean C_9 y C_6 grupos cíclicos de órdenes 9 y 6 respectivamente. Entonces:

- \bigcirc a. hay exactamente 6 automorfismos de C_9 y 3 homomorfismos de C_9 en C_6 . \checkmark
- \bigcirc b. hay exactamente 3 automorfismos de C_9 y 6 homomorfismos de C_9 en C_6 .
- \bigcirc c. hay exactamente 6 automorfismos de C_9 pero ningún homomorfismos de C_9 en C_6 .

El grupo $GL_2(\mathbb{Z}_2)$ de matrices invertibles 2×2 con entradas en \mathbb{Z}_2 :

- \bigcirc a. Es un grupo isomorfo a \mathbb{Z}_6 .
- b. Es un grupo no abeliano de orden 8.
- \odot c. Es un grupo isomorfo a S_3 .

La respuesta correcta es:

Es un grupo isomorfo a S_3 .

Considera el grupo D_6 generado por el giro ho y la simetría au. Entonces el derivado es

- \bigcirc a. $D_6' = \langle \rho \rangle$.
- $\bigcirc \ \, \mathsf{b.} \quad D_6' = \langle \rho^3 \rangle.$

Sea $C_{120} = \langle x ; x^{120} = 1 \rangle$ y se consideran sus subgrupos $H = \langle x^{42} \rangle$ y $K = \langle x^{36} \rangle$. Entonces se tiene que:

- \bigcirc a. K < H (estricto).
- \odot b. H < K (estricto). \times
- \bigcirc c. H=K.

La respuesta correcta es:

K < H (estricto).

Las permutaciones (12)(13) y (234)

- a. son conjugadas pero no son pares.
- b. son pares y conjugadas,
- c. son pares pero no son conjugadas,