上海交通大学试卷(A卷) (2022至 2023 学年第1学期, 2023年1月10日)

	班级号		_ 学号		姓名	
			文(荣誉)		成绩	
_	、选择题(共6题, 每	· ·题3分, 共18	3分)			
1.	设在齐次线性方程	组 $Ax = 0,B$	$Bx = 0 \oplus, A \pi$	B 都是 $m \times r$	n阶矩阵.	
	(1) 若Ax = 0的解	,	,			
	$(2) 若r(A) \ge r(B)$,则 $Ax = 0$ 的	的解一定都是。	Bx = 0的解	;	
	(3) 若Ax = 0和Bx	c = 0同解,则	则一定有 $r(A)$:	=r(B);		
	(4) 若r(A) = r(B)	,则 $Ax = 0$	与 $Bx = 0$ 一定	同解;		
	上述四个命题中正	确的是().			
	$(A) (1) \pi (3); (1)$	B) (1)和(4);	(C) (2)和(3); (D) (2)	和(4).	
2.	,	,		,	再将B的第一列的-1倍加到	到第
	列得到矩阵 C , 令 F	$P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$	0 , 则().		
	(A) $C = P^{-1}AP$; (B) $C =$	$PAP^{-1};$ (C	$C = P^T A$	$P;$ (D) $C = PAP^T$.	
3.	设 A, B, C 均为 n 阶	方阵, 若AB	=C,且 B 可说	逆 , 则().	
	(A) 矩阵 C 的行向	量组与矩阵 E	3的行向量组等	 		
	(B) 矩阵C的列向	量组与矩阵 E	8的列向量组等	等价;		
	(C) 矩阵 C 的行向	量组与矩阵在	A的行向量组等	等价;		
	(D) 矩阵C的列向:	量组与矩阵A	4的列向量组等	等价.		
4.	设 A 为 3 阶方阵, D	$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$,则 A 的特	幹征值为1 , –	1,0的充分必要条件是()
	` '			` ′	「逆矩阵 P ,使得 $A = PDP^-$ 」 「逆矩阵 P ,使得 $A = PDP^T$	_
5.	下述变换 $f: \mathbb{R}^3 \to$	ℝ ³ 构成线性	变换的是().		
	(A) $f(x, y, z) = 0$ (C) $f(x, y, z) = 0$					

我承诺,我将严 格遵守考试纪律。

题号	_	=	三	四	五.	六	七	八	九	十	总分
得分											
批阅人(流水阅											
卷教师签名处)											

承诺人:

6. 设A是秩为1, 迹为0的3阶方阵,

(1)
$$A$$
与矩阵 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 合同; (2) A 与矩阵 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 相似; (3) A 与矩阵 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 等价; (4) A 的Jordan标准形为 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

则上面四种说法中正确的是(

(A) (1) $\pi(2)$; (B) (2) $\pi(3)$; (C) (3) $\pi(4)$; (D) (4) $\pi(1)$.

二、填空题(共6题, 每题3分, 共18分)

- 7. 设A为3阶方阵, 非齐次线性方程组Ax = b有通解 $b+k_1\xi_1+k_2\xi_2$, 其中 ξ_1 和 ξ_2 是方程组Ax = 0的基础解系, 则A的最小多项式为_________
- 8. 设A, B为四阶方阵, r(A) = 3, r(B) = 4, 它们的伴随矩阵分别为 A^* , B^* , 则 $r(A^*B^*) =$ _______.
- 9. 设A为4阶方阵, A的伴随矩阵A*的特征值是2, -2, -2, -8, 则tr(A) = _____, |A+2E| = _____, $|A^{-1}+E| =$ _____.
- 10. 设 $f(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_2 x_3)^2 + (x_1 + x_3)^2$ 为一个三元二次型, $f(x_1, x_2, x_3)$ 的 规范形为_______
- 11. 设 α 与 β 为实n维列向量,A为n阶正交矩阵.若 α 与 β 的内积为1,则 $A(3\alpha)$ 与 $A(2\beta)$ 的内积为______
- 12. 令 $M_n(\mathbb{R})$ 是全体实数上n阶方阵构成的线性空间, $V = \{n$ 阶反对称矩阵的全体 $\}$ 是 $M_n(\mathbb{R})$ 的子空间,则dim(V) = _______.

二、计算题(共4题, 每题8分, 共32分)

- 13. 设二次型 $f = 4x_1^2 + 4x_2^2 + 4x_3^2 2x_1x_2 2x_1x_3 + 2ax_2x_3(a > 0)$ 通过正交替换x = Qy可化为 $g = 3y_1^2 + 3y_2^2 + 6y_3^2$.
 - (1)求a;
 - (2)求所使用的正交替换x = Qy.
- 14. 设 $\mathbb{R}[x]_n$ 是实数域上全体次数小于n的多项式和零多项式一起构成的线性空间, σ 是 $\mathbb{R}[x]_n$ 上的微分变换, 即对任何 $f(x) \in \mathbb{R}[x]_n$, 都有 $\sigma(f(x)) = f'(x)$.
 - (1) 求 σ 在基 $1, x, \dots, x^{n-1}$ 下的矩阵A;
 - (2)是否存在 $\mathbb{R}[x]_n$ 中的一组基, 使得 σ 在这组基下的矩阵为对角阵? 如果存在, 请写出这组基; 如果不存在, 请说明理由.
- 15. 已知聚3中的两组基为:

$$\alpha_1 = (1, 0, 0)^T, \alpha_2 = (0, 2, 1)^T, \alpha_2 = (0, 5, 3)^T$$

和

$$\beta_1 = (1, 2, 0)^T, \beta_2 = (1, 3, 0)^T, \beta_3 = (0, 0, 2)^T.$$

- (1) 求由 $\alpha_1, \alpha_2, \alpha_3$ 到 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵;
- (2) 求向量 $y = 2\alpha_1 3\alpha_2 \alpha_3$ 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标.
- 16. 令 $V = \mathbb{R}^2$ 是一个2维线性空间. 在V上定义了一个内积, 使之构成欧氏空间, 内积用记号(,)表示. 取定V中两组基

$$\alpha_1 = (1,1)^T, \alpha_2 = (1,-1)^T$$

和

$$\beta_1 = (0, 2)^T, \beta_2 = (6, 12)^T.$$

对任何 $1 \le i, j \le 2$, 设 α_i 和 β_j 的内积分别为:

$$(\alpha_1, \beta_1) = 1, (\alpha_1, \beta_2) = 15, (\alpha_2, \beta_1) = -1, (\alpha_2, \beta_2) = 3.$$

- (1) 求基 α_1 , α_2 的度量矩阵;
- (2) 求V的一组标准正交基.

三、证明题(共4题, 每题8分, 共32分)

- 17. 设A, B是两个n阶方阵, 且AB = BA. 令 V_{λ} 为方阵A的特征值 λ 的特征子空间. 试证: 对任何 $\alpha \in V_{\lambda}$, 都有 $B\alpha \in V_{\lambda}$.
- 18. 设A为n阶实方阵, r(A) = r. 试证: 存在秩为r的 $n \times r$ 阵H和秩为r的 $r \times n$ 阵L, 使得A = HL.
- 19. 设A和B均为实n阶方阵, 且 $A^T = A$. 试证: 若A和 $A - B^T AB$ 都是正定矩阵, λ 是B的实特征值, 则 $|\lambda| < 1$.
- 20. 设V是n维欧氏空间, $\alpha_1, \cdots, \alpha_n$ 是V中一组标准正交基, σ 是V上的一个线性变换, $A = (a_{ij})_{n \times n}$ 是 σ 在这组基下的矩阵.
 - (1) 试证: 对任何 $1 \le i, j \le n$,都有 $a_{ji} = (\sigma(\alpha_i), \alpha_j)$, (其中(,)表示V上的内积)
 - (2) 试证: 若A是对称矩阵, 则对任何 $\alpha, \beta \in V$, 都有 $(\sigma(\alpha), \beta) = (\alpha, \sigma(\beta))$.