Stochastic Gradient Descent

CSE *97B

Big Data

Empirical Risk

- lacksquare Data $=\left\{ (ec{X}_1,t_1), (ec{X}_2,t_2), \ldots, (ec{X}_n,t_n)
 ight\}$
 - \vec{X}_i is the feature vector (set of measurements) for the ith record: $\vec{X}_i = (X_i[0], X_i[1], \dots, X_i[m])$.
 - \bullet t_i is the target for the ith record
- Models have parameters (e.g. θ , \vec{w} , b)
 - Linear regression: $\hat{t} = \vec{w} \cdot \vec{X} + b$
 - Logistic regression: $\widehat{P}(t) = \frac{1}{1 + \exp(-t(\vec{w} \cdot \vec{x} + b))}$
 - $t = \pm 1$ (e.g. t = 1 if rain, t = -1 if no rain).
 - Logistic regression models the probability of an event.
- Parameters set by optimization problem (minimize empirical risk).
 - Linear regression: $\vec{w}, b = \operatorname{argmin} \sum_{i=1}^{n} (\vec{w} \cdot \vec{X}_i + b t_i)^2$
 - Logistic regression: $\vec{w}, b = \operatorname{argmin} \sum_{i=1}^{n} \log \left(1 + \exp(-t_i(\vec{w} \cdot \vec{X}_i + b)) \right)$
 - Common pattern: $\vec{w}, b = \operatorname{argmin} \sum_{i=1}^{n} f(\vec{X}_i, t_i, \vec{w}, b)$

Minimizing Empirical Risk

- Linear regression: $\vec{w}, b = \operatorname{argmin} \sum_{i=1}^{n} (\vec{w} \cdot \vec{X}_i + b t_i)^2$
 - Empirical risk $R(\vec{w}, b) = \sum_{i=1}^{n} (\vec{w} \cdot \vec{X}_i + b t_i)^2$
 - Can be solved in closed form (i.e. formula).
 - Compute $\frac{\partial R}{\partial w[0]}$, $\frac{\partial R}{\partial w[1]}$, ..., $\frac{\partial R}{\partial w[m]}$, $\frac{\partial R}{\partial b}$
 - Set partial derivatives to 0 and solve.
- Logistic regression: $\vec{w}, b = \operatorname{argmin} \sum_{i=1}^{n} \log \left(1 + \exp(-t_i (\vec{w} \cdot \vec{X}_i + b)) \right)$
 - No closed form solution, need algorithm.
- Common pattern: $\vec{w}, b = \operatorname{argmin} \sum_{i=1}^{n} f(\vec{X}_i, t_i, \vec{w}, b)$
 - Generaly no closed form solution, need algorithm.
- mini-batch Stochastic gradient descent: simple and fast.

Mini-Batch Stochastic Gradient Descent

Goal: find \vec{w} , b to minimize $\sum_{i=1}^{n} f(\vec{X}_i, t_i, \vec{w}, b)$

parameters: Batch size k; learning rate η // Typically k = 10Initialize b and \vec{w}

while stopping criterion not met do

Select next
$$k$$
 records $(\vec{X}_j, t_j), (\vec{X}_{j+1}, t_{j+1}), \dots, (\vec{X}_{j+k-1}, t_{j+k-1})$
// Error contribution is $\sum_{i=j}^{j+k-1} f(\vec{X}_i, t_i, \vec{w}, b)$
 $b \leftarrow b - \eta \sum_{i=j}^{j+k-1} \frac{\partial f(\vec{X}_i, t_i, \vec{w}, b)}{\partial b}$

for $\ell = 0..m$ do

$$w[\ell] \leftarrow w[\ell] - \eta \sum_{i=j}^{j+k-1} \frac{\partial f(\vec{X}_i, t_i, \vec{w}, b)}{\partial w[\ell]}$$

end

if at end of dataset then

Permute dataset;

end

end

In MapReduce

- Algorithm is inherently sequential.
- Cannot be parallelized as is.
- Can be approximated in parallel mode.
 - Zinkevich et al. "Parallelized Stochastic Gradient Descent" NIPS 2010.
- Main idea:
 - Each mapper independently performs stochastic gradient descent.
 - Same initial \vec{w} and \vec{b}
 - A reducer averages the \vec{w} from all mappers (similarly for b)
 - This is the common starting point for the next iteration.
- We use sort and shuffle phase to permute the data.

Controller

```
// For simplicity, batch size k=1 Set learning rate \eta for each mapper Initialize \vec{w} and b, distribute to all mappers while convergence criterion not met do

Set up mapreduce job

Obtain \vec{w} and b from Reducer 0 // via file or Hive Distribute \vec{w} and b to each mapper Modify \eta if necessary, set for each mapper end
```


Mapper

```
def setup():
     Get parameters \eta
      Read initial \vec{w} and \vec{b}
def map(key, value):
     (\vec{X}, t) = parse(value)
     emit(RandomPositiveNumber, value)// for permuting data
     b \leftarrow b - \eta \frac{\partial f(\vec{X}, t, \vec{w}, b)}{\partial b}
     for \ell = 0..m do
          w[\ell] \leftarrow w[\ell] - \eta \frac{\partial f(\vec{X}, t, \vec{w}, b)}{\partial w[\ell]}
     end
```

def cleanup():

 $emit(\vec{w} \text{ and } b \text{ to Reducer 0})$

Reducer

```
def reduce(key, value-list):
    if value-list is the set of vectors: \vec{w}_1, \vec{w}_2, \dots, \vec{w}_\ell then
        \vec{w} = \frac{1}{\ell} \sum_{i=1}^{\ell} \vec{w}_i
    else if value-list is the set of b values: b_1, b_2, \ldots, b_\ell then
        b = \frac{1}{\ell} \sum_{i=1}^{\ell} b_i
    else
         // Ignore key (which is random number)
         // value is data record, output it
         For every value in value-list, emit(value)
    end
def cleanup():
    Output \vec{w} and b (e.g. to HDFS or Hive)
```

