PERTH MODERN SCHOOL

TEST 1 – POLAR COORDINATES & COMPLEX NUMBERS

NAME: SOLUTIONS DATE: 9/10 February,

2011

[To achieve full marks and to allow assessment of particular outcomes, working and reasoning should be shown.]

[A maximum of 2 marks will be deducted for incorrect rounding, units, etc.]

This is Resource Rich – 50 minutes for 53 marks:

1. [1, 1, 1, 1 = 4 marks]

Convert:

a) (4,-6) into polar coordinates with $-180^{\circ} < \theta \le 180^{\circ}$.

$$toPol([4,-6]) \Rightarrow [7.21, -56.3^{\circ}] \checkmark$$

b) (3,- $\sqrt{3}$) into *exact* polar coordinates with - $\pi < \theta \le \pi$.

toPol([3,-
$$\sqrt{3}$$
]) \Rightarrow [2 $\sqrt{3}$, - $\frac{\pi}{6}$] \checkmark

c) [4,35°] into Cartesian coordinates.

$$toRect([4, \angle 35^{\circ}]) \Rightarrow (3.28, 2.29)$$

d) $[8,-3/4\pi]$ into *exact* Cartesian coordinates.

$$toRect([8, \angle -\frac{3}{4}\pi]) \Rightarrow (-4\sqrt{2}, -4\sqrt{2})$$

2. [3, 3 = 6 marks]

Clearly show how you obtain your answers, find:

a) the distance between [20,-210°] and [$\sqrt{5}$,-50°].

toRect([20,
$$\angle$$
(-210°)]) \Rightarrow (-17.32, -10) \checkmark
toRect([$\sqrt{5}$, \angle (-50°)]) \Rightarrow (1.44, -1.71) \checkmark
norm([-17.32, -10] - [1.44, -1.71]) \Rightarrow 22.11 \checkmark

b) the *exact* distance between $\left[\begin{array}{c} \frac{\sqrt{5}}{3}, -\frac{2\pi}{3} \end{array}\right]$ and $\left[\begin{array}{c} 10, -\frac{7\pi}{6} \end{array}\right]$.

toRect(
$$[\frac{\sqrt{5}}{3}, \angle(-\frac{2\pi}{3})]$$
) $\Rightarrow (-\frac{\sqrt{5}}{6}, -\frac{\sqrt{15}}{6})$ \checkmark
toRect($[10, \angle(-\frac{7\pi}{6})]$) $\Rightarrow (-5\sqrt{3}, 5)$ \checkmark
norm($[-\frac{\sqrt{5}}{6}, -\frac{\sqrt{15}}{6}] - [-5\sqrt{3}, 5]$) $\Rightarrow \frac{\sqrt{905}}{3}$ \checkmark

3. [8 marks]

Find the *exact* distance between ($\sqrt{3k}$, \sqrt{k}) and $\left[\sqrt{k}, \frac{5\pi}{6}\right]$. Draw a diagram.

OB =
$$\sqrt{3}\mathbf{k} + \mathbf{k}$$

= $2\sqrt{\mathbf{k}} \checkmark$
 $\tan \theta = \frac{\sqrt{\mathbf{k}}}{\sqrt{3}\mathbf{k}} \checkmark$
= $\frac{\sqrt{3}}{3}$
 $\theta = \frac{\pi}{6} \checkmark$
 $\therefore \alpha = \frac{2\pi}{3} \checkmark$

$$\therefore \alpha = \frac{1}{3}$$

$$AB^{2} = OA^{2} + OB^{2} - 2(OA)(OB) \cos \alpha$$

$$= k + 4k - 2(\sqrt{k})(2\sqrt{k})(-\frac{1}{2})$$

$$= 7k \checkmark$$

$$\therefore AB = \sqrt{7k}$$

 \therefore The distance between the points is $\sqrt{7k}$ units. \checkmark

- 4. [3, 2 = 5 marks]
 - a) Find, in *exact* form, the modulus and principal argument of $-\sqrt{3} + i$, and hence rewrite $-\sqrt{3} + i$ in *exact* polar (*cis*) form.

Modulus =
$$\sqrt{3+1}$$
 = 2 \checkmark

Principal argument =
$$tan^{-1} \left(-\frac{1}{\sqrt{3}} \right) = \frac{5\pi}{6}$$

$$\therefore -\sqrt{3} + i = 2 \operatorname{cis} \frac{5\pi}{6} \quad \checkmark$$

b) Convert 2 *cis* $\begin{pmatrix} \frac{\pi}{4} \end{pmatrix}$ into *exact* algebraic Cartesian/rectangular form.

$$2 \operatorname{cis} \left(\frac{\pi}{4} \right) = 2 \left[\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right]$$

$$= \sqrt{2} + i \sqrt{2}$$

5. [3, 3 = 6 marks] Evaluate, giving answers in *exact* form:

a)
$$4 cis \frac{\pi}{3} \times 2 cis \frac{3\pi}{4} = 8 cis \left(\frac{\pi}{3} + \frac{3\pi}{4} \right)$$

$$= 8 cis \frac{13\pi}{12} \checkmark$$

$$= 8 cis \left(-\frac{11\pi}{12} \right) \checkmark$$

b)
$$4 cis \left(-\frac{5\pi}{6}\right)$$

$$= 2 cis \left(-\frac{5\pi}{6} - \frac{5\pi}{6}\right)$$

$$= 2 cis \left(-\frac{5\pi}{6} - \frac{5\pi}{6}\right)$$

$$= 2 cis \left(-\frac{5\pi}{3}\right)$$

$$= 2 cis \left(\frac{\pi}{3}\right)$$

6. [4 marks]

Given z = 2 $cis \frac{\pi}{4}$, express z^{-1} and \bar{z} in **exact** polar and rectangular form.

$$z^{-1} = \left[2 \operatorname{dis} \frac{\pi}{4} \right]^{-1}$$

$$= \frac{1}{2} \operatorname{cis} \left(-\frac{\pi}{4} \right) \quad \leftarrow \operatorname{Polar form} \quad \checkmark$$

$$= \frac{\sqrt{2}}{4} (1 - \mathbf{i}) \quad \leftarrow \operatorname{Rectangular form} \quad \checkmark$$

$$\overline{z} = 2 \operatorname{dis} \left(-\frac{\pi}{4} \right) \leftarrow \operatorname{Polar form} \checkmark$$

$$= \sqrt{2} (1 - \mathbf{i}) \leftarrow \operatorname{Rectangular form} \checkmark$$

7. [2, 2, 2, 2 = 8 marks]

The Argand diagram below shows the point representing the complex number z where |z| > 1. Plot on the same diagram, the points representing the complex numbers:

a) \bar{z}

c) z^2

d)
$$\frac{1}{z}$$

If
$$z = 1 + \frac{1}{2}i$$

$$\Rightarrow \overline{z} = 1 - \frac{1}{2}i$$

$$iz = -\frac{1}{2} + i$$

$$z^{2} = \frac{3}{4} + i$$

$$\frac{1}{z} = \frac{4}{5} (1 - \frac{1}{2}i)$$

8. [3, 3, 3, 3 = 12 marks]

Sketch on an Argand diagram, the locus of the point z = x + iy, satisfying each of the following conditions. In each case, give the Cartesian equation or inequality of the locus.

a) Re(z) = $-2 \Rightarrow x = -2$

b) $Im(z) = Re(z) \Rightarrow y = x$

c) Re(z) + 2Im(z) > 3 \Rightarrow x + 2y > 3

d) $Re(z).Im(z) = 1 \Rightarrow xy = 1$

