ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 16

WANG YUNLEI

Proposition 1. Let $\varphi: X \to Y$ be a morphism of varieties. Assume there exists a nonempty open subset $U \subset Y$ such that for all $p \in U$, $\dim(\varphi^{-1}(p)) = n$, then we have

$$dimX = dimY + n$$
.

Proof. We prove the statement by induction over $\dim Y$. If Y is a point, then it is trivial. If $\dim Y > 0$, replacing Y by an open affine subset V (i.e. replace Y by $Y \cap \mathbb{A}^k$ for some k) and X by an open affine subset of $\varphi^{-1}(V)$, we can assume X,Y are both affine by theorem 6. In fact, $X \subset \mathbb{A}^l$ and $Y \subset \mathbb{A}^m$ for some l and some m, are closed affine subvarieties. We can write $\varphi = (F_1, \ldots, F_m)$ with $F_i \in k[x_0, \ldots, x_l]$. Let $g \in k[x_1, \ldots, x_m]$ such that $\emptyset \neq Z(g) \cap Y \neq Y$, then we set $Y' = Z(g) \cap Y$ and $X' = \varphi^{-1}(Y')$. By definition $X' = X \cap Z(g(F_1, \ldots, F_m))$ and it is not empty since its image Y' is not empty. For any point $p \in Y'$, $\varphi^{-1}(p)$ in X is also in X', hence the dimension of fibres is still equal to n. By induction any irreducible component X of X' has the relation $X = \dim X = \dim Y + n$ with the corresponding $Y = \dim Y' + n$ where $Y = \dim Y' + n$ is $Y = \dim Y' + n$. Since $Y = \dim Y' + n$ and $Y = \dim X' + 1$, we get $Y = \dim X = \dim X' + n$.

Theorem 1 (without proof). Let $\varphi: X \to Y$ be a surjective morphism, assume dimX = dimY + n, then

- (1) for all points $p \in X$, $dim(\varphi^{-1}(p)) \ge n$;
- (2) there is a nonempty open subset $U \subset Y$ such that for all $p \in U$, $\dim \varphi^{-1}(p) = U$.

Example 1. (1) $\dim(X \times Y) = \dim X + \dim Y$. Consider the projection map $p: X \times Y \to Y$, the inverse $p^{-1}(q) = X \times \{q\}$ has the dimension $\dim X$.

(2) Let $X \subset \mathbb{P}^n$ be a projective variety, then we have

$$\dim C(X) = \dim X + 1.$$

Consider the map $\Pi: C(X)\setminus\{0\} \to X$ that maps (x_0,\ldots,x_n) to $[x_0,\ldots,x_n]$.

Definition 1. If $X \subset \mathbb{P}^n$ has dimension n-k, we say codimension $\operatorname{codim} X = k$.

- **Theorem 2.** (1) Let $X, Y \subset \mathbb{A}^n$ be closed subvarieties. Every irreducible component Z of $X \cap Y$ has dimension $\dim Z \geq \dim X + \dim Y n$.
 - (2) Let $X,Y \subset \mathbb{P}^n$ be closed subvarieties, every irreducible component Z of $X \cap Y$ has dimension $\dim \ge \dim X + \dim Y n$. In particular, if $\dim X + \dim Y \ge n$, then $X \cap Y \ne \emptyset$.

Date: June 19, 2017.

Remark. The fact that $X \cap Y \neq \emptyset$ if $\dim X + \dim Y \geq n$ is special for projective space. This can be used to prove that $\mathbb{P}^1 \times \mathbb{P}^1$ is not isomorphic to \mathbb{P}^2 . If $\mathbb{P}^1 \times \mathbb{P}^1 \simeq \mathbb{P}^2$, then for any 1-dimension subvarieties $X,Y \subset \mathbb{P}^1 \times \mathbb{P}^1$, we have $X \cap Y \neq \emptyset$. But for $X = \{p\} \times \mathbb{P}^1$ and $Y = \{q\} \times \mathbb{P}^1$ such that $p \neq q$, we have $X \cap Y = \emptyset$, which contradicts to the theorem, so $\mathbb{P}^1 \times \mathbb{P}^1$ is not isomorphic to \mathbb{P}^2 .

Proof of Theorem 2. (1) Trick: take the diagonal to reduce to the intersection with hyperplanes

$$\delta^{-1}(X\times Y)=\delta^{-1}((X\times Y)\cap\Delta)=X\cap Y.$$
 Thus $X\cap Y\simeq (X\times Y)\cap\Delta\subset\mathbb{A}^{2n}.$ In fact,

$$\Delta = Z(x_1 - y_1, \dots, x_n - y_n).$$

By theorem 7, $\dim(Z \cap Z(f)) \ge \dim Z - 1$ where Z is a variety. By induction, we can get $\dim(X \cap Y) = \dim((X \times Y) \cap \Delta) \ge \dim X + \dim Y - n$.

(2) Reduce to (1) by using affine cones. By definition, $C(X) \cap C(Y) = C(X \cap Y)$, $\dim C(X) = \dim X + 1$ and same for Y and $X \cap Y$. Let Z be a irreducible component of $X \cap Y$, then C(Z) is a irreducible component of $C(X \cap Y)$. By using the conclusion in (1) we get

$$\dim Z = \dim C(Z) - 1
\geq \dim C(X) + \dim C(Y) - (n+1) - 1
= \dim X + \dim Y - n$$

Assume $\dim X + \dim Y \ge n$, we know $C(X) \cap C(Y) \ne \emptyset$ because $0 \in C(X) \cap C(Y)$. Every Z irreducible component $C(X) \cap C(Y)$ satisfies $\dim Z = \dim(C(X) \cap C(Y)) \ge \dim C(X) + \dim C(Y) - (n+1) \ge 1$. Thus $C(X) \cap C(Y) \ne \{0\} \Rightarrow X \cap Y \ne \emptyset$. \square

We know $\dim X = \dim Y$ if X and Y are birational, and $K(X) \simeq K(Y)$ if X is birational to Y. Thus $\dim X$ must be determined by K(X). We will see $\dim X$ is equal to the transcendence degree of K(X) over k.

Definition 2 (Field Extension and Finitely generated Field Extension). Let K/k be a field extension. For $a_1, \ldots, a_n \in K$, denote $k(a_1, \ldots, a_n)$ as the smallest subfield of K containing k and a_1, \ldots, a_n . This is called field extension over k by a_1, \ldots, a_n . If there are $a_1, \ldots, a_n \in K$ such that $K = k(a_1, \ldots, a_n)$, we say K/k is finitely generated.

Definition 3 (Algebraically Independent sets). Let K/k be a finitely generated field extension, elements $b_1, \ldots, b_n \in K$ are called algebraically independent over k if there is no polynomial $f \in k[x_1, \ldots, x_n]$ such that $f(b_1, \ldots, b_n) = 0$. In particular, if $b \in K$ is algebraically independent over k, then b is called transcendent over k.

Let $k(x_1, \ldots, x_n)$ be a field of rational functions in n indeterminants, it is easy to see $k(b_1, \ldots, b_n) \simeq k(x_1, \ldots, x_n)$ if b_1, \ldots, b_n are algebraically independent over k.

Definition 4 (Transcendence Basis). A maximal set of algebraically independent elements of K over k is called a transcendence basis.

Theorem 3 (without proof). Let $K = k(a_1, \ldots, a_n)/k$ be a finitely generated field extension, then

(1) there exists a transcendence basis of K/k, it can be chosen as a subset of $\{a_1, \ldots, a_n\}$;

- (2) every transcendence basis of elements of K/k has the same number of elements, called the transcendence degree;
- (3) let b_1, \ldots, b_r be a transcendence basis of K/k, then $K/k(b_1, \ldots, b_r)$ is a finite algebraic extension.

Theorem 4. Every variety X is birational to a hypersurface in $\mathbb{A}^{\dim X+1}$.

This theorem may be proved next time.

Theorem 5. Let X be a variety, then

$$dim X = trdeq K(X)/k$$
.

Proof. By theorem 4, we can assume $X=Z(F)\subset \mathbb{A}^n$ is a hypersurface, $F\in k[x_1,\ldots,x_n]$ is irreducible. We know $\dim X=n-1$. To show $\mathrm{trdeg}K(X)/k=n-1$, let $y_1,\ldots,y_n\in A(X)$ be coordinate functions. Then $K(X)=k(y_1,\ldots,y_n)$, $F(y_1,\ldots,y_n)\in A(X)=k[x_1,\ldots,x_n]/\langle F\rangle$ and $F(y_1,\ldots,y_n)=0$ since X=Z(F). Thus y_1,\ldots,y_n are algebraically dependent. It follows that $\mathrm{trdeg}K(X)/k\leq n-1$. To show the equality, we assume the last variable x_n occurs in F, then we can get y_1,\ldots,y_{n-1} are algebraically independent. Otherwise, there exists a nonzero element $G\in k[x_1,\ldots,x_{n-1}]$ with $G(y_1,\ldots,y_{n-1})=0$, then $G(y_1,\ldots,y_{n-1})\in \langle F\rangle$. But it is impossible because F contains $x_n\Rightarrow G$ contains x_n . Thus $\mathrm{trdeg}K(X)/k=n-1$.

1. Conclusions We Need From Previous Lectures

In lecture 15:

Theorem 6. Let X be a variety, $\emptyset \neq U \subset X$, U is an open subset of X. Then dimU = dimX.

Theorem 7. Let $X \subset \mathbb{A}^n$ be an affine variety, $F \in k[x_1, \dots, x_n] \setminus I(X)$, then every irreducible component (if there is any) of $Z(F) \cap X$ has dimension $\dim X - 1$.

E-mail address: wcghdpwyl@126.com