GAUGING VERSUS THE BACKGROUND FIELD METHOD

0.1. Gauging = local BRST cohomology. BW: recall ordinary BRST cohomology for symplectic actions

We now explain, in more detail, the process of gauging a symmetry of a BV theory. We will find that the observables of the gauged theory introduce a "local" version of BRST cohomology. In our setup, of course, this will be a factorization algebra. As in the case of the equivariant observables, the process of gauging is defined whenever we have a symmetry of a theory by some local Lie algebra, but there are many key differences as we have explained in Table BW: ref. First, we focus on the classical case.

0.1.1. Indeed, let E be the fields of a classical BV theory on a manifold M described by some action functional

$$S = S^{free} + I \in \mathcal{O}_{loc}(\mathcal{E}),$$

satisfying the classical master equation $\{S,S\}=0$. Let \mathcal{L} be a local Lie algebra that acts on the theory $\mathcal E$ with corresponding Noether functional $I^{\mathcal L}:\mathcal L\to \mathfrak O_{loc}(\mathcal E)$. Recall, this means that the equivariant classical master equation $(d_{\mathcal{L}} + Q)(I + I^{\mathcal{L}}) + \frac{1}{2}\{I + I^{\mathcal{L}}, I + I^{\mathcal{L}}\} = 0$, where $d_{\mathcal{L}}$ is the Chevalley–Eilenberg differential on \mathcal{L} , is satisfied.

We define a new BV theory built from this action of \mathcal{L} on \mathcal{E} . The space of fields is

$$\mathcal{E}^{\mathcal{L}}_{\textit{BRST}} = \mathcal{E} \oplus \mathcal{L}[1] \oplus \mathcal{L}^![-2].$$

The (-1)-shifted symplectic pairing is given by the sum of the pairing defining the theory \mathcal{E} together with the natural pairing

$$\langle -, - \rangle_{\mathcal{L}} : \mathcal{L}[1] \times \mathcal{L}^{!}[-2] \xrightarrow{\text{ev}} \text{Dens}_{M} \xrightarrow{\int_{M}} \mathbb{C}.$$

The first arrow is the density valued evaluation pairing between \mathcal{L} and its !-dual $\mathcal{L}^! = \mathcal{L}^\vee \otimes$ Dens_M. Write $X, X^!$ for elements of $\mathcal{L}, \mathcal{L}^!$, respectively. The action functional for this new theory is

$$S_{BRST}^{\mathcal{L}} = S + I^{\mathcal{L}} + \sum_{n>0} \frac{1}{n!} \langle X^!, \ell_n(X, \dots, X) \rangle_{\mathcal{L}} \in \mathcal{O}_{loc}(\mathcal{E}_{BRST}^{\mathcal{L}}).$$

If we denote by $\{\ell_n\}$ the L_{∞} structure maps for \mathcal{L} we can think about this new theory as splitting up into a free part

$$S_{RRST}^{\mathcal{L},free} = S^{free} + \langle X^!, \ell_1(X) \rangle_{\mathcal{L}}$$

and an interacting part

$$I_{BRST}^{\mathcal{L}} = I + I^{\mathcal{L}} + \sum_{n \neq 1} \langle X^!, \ell_n(X, \dots, X) \rangle_{\mathcal{L}}.$$

Lemma 0.1. Let $\{-, -\}_{BRST}$ denote the bracket on $\mathcal{O}_{loc}(\mathcal{E}^{BRST})$ induced by the (-1)-shifted symplectic structure on \mathcal{E}^{BRST} defined above. The functional $S^{\mathcal{L}}_{BRST}$ satisfies the curved classical master equation

$$\{S_{BRST}^{\mathcal{L}}, S_{BRST}^{\mathcal{L}}\} = \ell_0.$$

Definition 0.2. The *local BRST complex* for the action of \mathcal{L} on \mathcal{E} is the factorization algebra Obs_{BRST}^{cl} of classical observables for the theory $(\mathcal{E}_{BRST}^{\mathcal{L}}, \mathcal{S}_{BRST}^{\mathcal{L}})$.

The

Example 0.3. Suppose that Σ is a Riemann surface with fixed metric g_0 . We have already seen in Example ?? how the local Lie algebra controlling deformations of Riemannian metrics \mathcal{L}^{Riem} acts on the free boson on Σ . The corresponding BRST theory

$$\mathcal{E}_{\mathit{BRST}} = \mathcal{E}_{\Sigma}^{\mathit{boson}} \oplus \mathcal{L}_{(\Sigma,g_0)}^{\mathit{Riem}}[1] \oplus (\mathcal{L}_{(\Sigma,g_0)}^{\mathit{Riem}})^![-2],$$

is precisely the perturbative expansion of the Polchinski string ?? near the fixed metric (Σ, g_0) . Explicitly, the action functional is BW: finish, copy from string

Example 0.4. Suppose, again, that Σ is a Riemann surface. Consider local Lie algebra given by the Dolbeualt complex of holomorphic vector fields $\mathcal{L} = \mathcal{T}_{\Sigma} = \Omega^{0,*}(\Sigma, T_{\Sigma}^{1,0})$.

- 0.1.2. BW: Quantum story. Formula in the case that the theory is free.
- 0.2. Examples of BRST cohomology.
- 0.3. Chiral gravity.