

Department of Mathematics and Natural Science MAT110: Differential Calculus and Co-ordinate Geometry Section _____, Quiz _____(Fall'22)

Name (PRINT):	_ ID:
---------------	-------

Time: 25 minutes Total Marks: 27

Problem 1

Complete the definition, then use it to answer the question.

- a) A function f is said to be **continuous at** $\mathbf{x} = \mathbf{c}$ provided the following conditions are satisfied:
 - 1. f(x) is defined at x = c
 - 2. $\lim_{x \to c} f(x)$ exists.
 - $3. \lim_{x \to c} f(x) = f(c)$

Write in each case if the function is continuous or not. If not, which of the condition is hampered?

Draw the graph of the functions in the assigned space-

function	Continuous	which con-	Graph
	or not	dition was	
	(Yes/No)	broken?	
		(1/2/3/	
		No condi-	
		tion)	
			
$f(x) = \frac{x^2 - 16}{x + 4}$	No	1	
$f(x) = \frac{1}{x+4}$	110	1	
			<u> </u>
(m^2) 16			1
$g(x) = \begin{cases} \frac{x^2 - 16}{x + 4}, & x \neq -4 \\ -7, & x = -4 \end{cases}$	No	3	
$\left(\begin{array}{cc} -7, & x = -4 \end{array}\right)$			
$\int x^2 - 16$			
$h(x) = \begin{cases} \frac{1}{x+4}, & x \neq -4 \\ -8, & x = -4 \end{cases}$	Yes	no condi- tion	*
$h(x) = \begin{cases} \frac{x^2 - 16}{x + 4}, & x \neq -4 \\ -8, & x = -4 \end{cases}$	Yes	no condi- tion	

 $\boxed{[3+3+3+3+3=12]}$

Problem 2

Answer the following:

a. Find the limit and plot the graph showing the end behaviour: for $\lim_{x\to-\infty} 5-x^2$ [1+1 = 2]

b. Find the limit:
$$\lim_{x \to -\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}}$$
 [3]

Solution: (a) $\lim_{x \to -\infty} 5 - x^2 = -\infty$ Graph:

(b) $\lim_{x \to -\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to -\infty} \frac{e^{-x} (e^{2x} + 1)}{e^{-x} (e^{2x} - 1)}$ $= \lim_{x \to -\infty} \frac{\left(e^{2x} + 1\right)}{\left(e^{2x} - 1\right)}$ $= \frac{1}{-1} = -1$

Problem 3

Let

$$g(x) = \begin{cases} x - 3, & x < 0 \\ x^2 - 1, & 0 \le x \le 2 \\ 2x + 1, & x > 2 \end{cases}$$

Find

(a)
$$\lim_{x\to 0} g(x)$$

(b)
$$\lim_{x \to 1} g(x)$$

(c) $\lim_{x\to 2} g(x)$

and plot the graph.

[7+3 = 10]

Solution: (a)
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (x - 3) = -3$$
 $\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} (x^{2} - 1) = -1$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x^2 - 1) = -1$$

$$\lim_{x \to 0^-} g(x) \neq \lim_{x \to 0^+} g(x)$$

∴ limit does not exist

(b)
$$\lim_{x \to 1} g(x) = \lim_{x \to 1} (x^2 - 1) = 1^2 - 1 = 0$$

(c)
$$\lim_{x \to 1^{2}} g(x) = \lim_{x \to 1} (x^2 - 1) = 3$$

(c)
$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 1} (x^{2} - 1) = 3$$
 $\lim_{x \to 2^{+}} g(x) = \lim_{x \to 2^{+}} (2x + 1) = 5$

$$\lim_{x \to 2^-} g(x) \neq \lim_{x \to 2^+} g(x)$$

: limit does not exist

Grpah:

