แบบฝึกหัดปฏิบัติการคาบที่ 9: Pointer

ชื่อ-นามสกุล		รหัสประจำตัวนักศึกษารหัสประจำตัวนักศึกษา	
วันที่เดือน	พ.ศ. 2564	Section	

1. กำหนดตัวแปรดังนี้

int
$$i = 3$$
, $j = 5$, *p = &i, *q = &j, *r;
double $x = 2.50$:

จงตอบคำถามว่าค่าของตัวแปรต่อไปนี้มีค่าเป็นเท่าใด (ตอบว่าเป็น illegal ถ้าการกำหนดค่าให้ตัวแปรในข้อนั้นไม่ถูกต้อง)

ตัวแปร	ค่าของตัวแปร
1. *p	
2. *q	
3. *r (เมื่อกำหนดให้ r = p;)	
4. *r (เมื่อกำหนดให้ r = &j)	
5. *r (เมื่อกำหนดให้ r = &x)	
6. **&p	
7. *p-1	
8. *p+*q	
9. ++*p	
10. 7**q+7	

2. จากโปรแกรมต่อไปนี้ จงเติมค่าตัวแปรลงในช่องว่างที่กำหนดให้

/* 1 */	#include <stdio.h></stdio.h>	
/* 2 */	int main()	
/* 3 */	{	
/* 4 */	int $x = 1, y = 2;$	
/* 5 */	int a[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};	
/* 6 */	int *ip, *iq;	
/* 7 */	ip = &x	*ip =
/* 8 */	y = *ip;	y =
/* 9 */	*ip = 0;	X =
/* 10 */	ip = &a[0];	*ip =
/* 11 */	ip = ip + 3;	*ip =
/* 12 */	*ip = 0;	a[3] =
/* 13 */	*ip = *ip + 10;	a[3] =
/* 14 */	iq = ip;	*iq =
/* 15 */	*iq = 0;	*ip =
/* 16 */	return 0;	
/* 17 */	}	

ชื่อ-นามสกุล			รหัสประจำตัวนักศึกษา
วันที่	เดือน	พ.ศ. 2563	ตอนเรียน Lab ที่

3. จงเขียนโปรแกรมทำการรับค่าสายอักขระจากทางแป้นพิมพ์ แล้วทำการแสดงผลสายอักขระนี้จากหลังมาหน้า (Reverse) และแสดงจำนวนของตัวเลขที่อยู่ในสายอักขระดังกล่าว โดยให้ใช้ pointer เท่านั้น

ตัวอย่างผลลัพธ์โปรแกรม

Input

บรรทัดแรกเป็นสายอักขระ

Output

บรรทัดแรกเป็นการแสดงผลสายอักขระนี้จากหลังมาหน้า (Reverse) บรรทัดถัดไปแสดงจำนวนของตัวเลขที่อยู่ในสายอักขระ

Input	Output
Computer Programming	gnimmargorP retupmoC 0

4. จงเขียนโปรแกรมให้สมบูรณ์ (โดยใช้ Pointer) เพื่อรับและแสดงผล argument พร้อมทั้งสลับลำดับตัวอักษรของ argument ต่างๆ โดยนำตัวอักษรแต่ละลำดับของ argument แต่ละตัวมาเขียนต่อกันเก็บไว้ในตัวแปร str ดังนี้ สมมุติว่าโปรแกรมมี Argument ตัวที่ 1, 2 และ 3 คือ 123 abc xyz ผลการจัดเรียงตัวอักษรใหม่ที่ต้องการคือ 1ax2by3cz ตัวอย่างผลลัพธ์โปรแกรม

Input

บรรทัดแรกเป็นจำนวน Arguments n ตัว n บรรทัดถัดไปเป็น Argument

Output

บรรทัดแรกเป็นผลลัพธ์

Input	Output
3	1ax2by3cz
123	
123 abc	
xyz	

ชื่อ-นามสกล			รหัสประจำตัวนักศึกษา	
วันที่	เดือน	พ.ศ. 2563	ตอนเรียน Lab ที่	

5. กำหนดให้ Matrix P คือ Matrix ขนาด NxN ที่สร้างจากอาร์เรย์ 1 มิติสองตัว (A และ B) ที่มีความยาว N เท่ากัน (1 ≤ N ≤ 10) โดยสมาชิกของ Matrix P ได้จากผลคูณของสมาชิกของอาร์เรย์ A และ B ดังนี้

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_N \end{bmatrix}$$

$$B = \begin{bmatrix} b_1 & b_2 & b_3 & \dots & b_N \end{bmatrix}$$

$$P = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 & \dots & a_1b_N \\ a_2b_1 & a_2b_2 & a_2b_3 & \dots & a_2b_N \\ \dots & \dots & \dots & \dots & \dots \\ a_Nb_1 & a_Nb_2 & a_Nb_3 & \dots & a_Nb_N \end{bmatrix}$$

์ โปรแกรมสำหรับสร้าง Matrix P จากอาร์เรย์ A และ B ดังนิยามข้างต้น มีตัวอย่างการรันโปรแกรมเป็นดังนี้

```
Enter N = 2
Input array A
Enter 2 integers: 2 7
Input array B
Enter 2 integers: 9 5
Matrix P
18  10
63  35
```

```
Enter N = 4
Input array A
Enter 4 integers: 1 2 3 4
Input array B
Enter 4 integers: 5 6 7 8
Matrix P
    6
10
     12
          14
               16
15
    18
          21
               24
20
     2.4
          28
               32
```

โค้ดของโปรแกรม

```
#include <stdio.h>
#define NMAX 10
void inputArray(int array[ ], int N);
void showArray2D(int matrix[ ][10], int N);
void constructMatrix(int P[ ][10], int N, int A[ ], int B[ ]);
int main()
{ int a[NMAX], b[NMAX], p[NMAX][NMAX], n;
   printf("Enter N = ");
                                  scanf("%d", &n);
   printf("Input array A \n");
                                 inputArray(a, n);
   printf("Input array B \n"); inputArray(b, n);
   constructMatrix(p, n, a, b);
   printf("Matrix P \n");
   showArray2D(p, n);
   return 0;
```

โปรแกรมนี้ยังขาดส่วนของรายละเอียดของทั้งสามฟังก์ชัน จงเขียนรายละเอียดของสามฟังก์ชันนั้นเพื่อให้โปรแกรมทำงานได้ อย่างถูกต้องสมบูรณ์ดังตัวอย่างข้างต้น