ML/DL for Everyone with PYTORCH

Lecture 7: Wide & Deep

Call for Comments

Please feel free to add comments directly on these slides.

Other slides: http://bit.ly/PyTorchZeroAll

ML/DL for Everyone with PYTORCH

Lecture 7: Wide & Deep

HKUST PHD Program Application

GPA (a)	Admission?		
2.1	0		
4.2	1		
3.1	0		
3.3	1		

GPA enough? How about experience and others?

GPA (a)	Experience (b)	Admission?
2.1	0.1	0
4.2	0.8	1
3.1	0.9	0
3.3	0.2	1


```
 \begin{array}{lll} x\_data = & & & & & & & & & & & \\ [2.1, \ 0.1], & & & & & & & & \\ [4.2, \ 0.8], & & & & & & & \\ [3.1, \ 0.9], & & & & & & \\ [3.3, \ 0.2]] & & & & & & \\ \end{array}
```


$$egin{bmatrix} egin{bmatrix} a_1 & b_1 \ a_2 & b_2 \ \dots & \dots \ a_n & b_n \end{bmatrix} egin{bmatrix} w_1 \ w_2 \end{bmatrix} = egin{bmatrix} y_1 \ y_2 \ \dots \ y_n \end{bmatrix}$$

$$XW = \hat{Y}$$

$$egin{aligned} egin{bmatrix} a_1 & b_1 \ a_2 & b_2 \ \dots & \dots \ a_n & b_n \end{bmatrix} egin{bmatrix} w_1 \ w_2 \end{bmatrix} = egin{bmatrix} y_1 \ y_2 \ \dots \ y_n \end{bmatrix} \ egin{bmatrix} y_2 \ y_n \end{bmatrix}$$

$$XW = \hat{Y}$$

```
linear = torch.nn.Linear(2, 1)
y_prd = linear(x_data)
```

Go Wide!

Go Deep!

Go Deep!


```
sigmoid = torch.nn.Sigmoid()

11 = torch.nn.Linear(2, 4)
12 = torch.nn.Linear(4, 3)
13 = torch.nn.Linear(3, 1)

out1 = sigmoid(11(x_data))
out2 = sigmoid(12(out1))
y_pred = sigmoid(13(out2)
```

Sigmoid Activation Functions

Sigmoid: Vanishing Gradient Problem

Activation Functions

Activation Functions

Activation function	Equation	Example 1D Graph			
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant			
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant			
Linear	$\phi(z)=z$	Adaline, linear regression			
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine			
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN			
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks			
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0, z)$	Multi-layer Neural Networks			
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks			

Many Activation Functions

Data scientist interested in sports, politics and Simpsons references

- ♦ London via Cork ☐ Email
- O Github

Select an activation function from the menu below to plot it and its first derivative. Some properties relevant for neural networks are provided in the boxes on the right.

Classifying Diabetes

-0.411765	0.165829	0.213115	0	0	-0.23696	-0.894962	-0.7	1
-0.647059	-0.21608	-0.180328	-0.353535	-0.791962	-0.0760059	-0.854825	-0.833333	0
0.176471	0.155779	0	0	0	0.052161	-0.952178	-0.733333	1
-0.764706	0.979899	0.147541	-0.0909091	0.283688	-0.0909091	-0.931682	0.0666667	0
-0.0588235	0.256281	0.57377	0	0	0	-0.868488	0.1	0
-0.529412	0.105528	0.508197	0	0	0.120715	-0.903501	-0.7	1
0.176471	0.688442	0.213115	0	0	0.132638	-0.608027	-0.566667	0
0.176471	0.396985	0.311475	0	0	-0.19225	0.163962	0.2	1

```
xy = np.loadtxt('data-diabetes.csv', delimiter=',', dtype=np.float32)
x_data = Variable(torch.from_numpy(xy[:, 0:-1]))
y_data = Variable(torch.from_numpy(xy[:, [-1]]))
print(x_data.data.shape) # torch.Size([759, 8])
print(y_data.data.shape) # torch.Size([759, 1])
```

Wide & Deep

```
class Model(torch.nn.Module):
   def __init__(self):
        In the constructor we instantiate two nn.Linear module
        11 11 11
        super(Model, self). init ()
        self.l1 = torch.nn.Linear(8, 6)
        self.12 = torch.nn.Linear(6, 4)
        self.13 = torch.nn.Linear(4, 1)
        self.sigmoid = torch.nn.Sigmoid()
    def forward(self, x):
        In the forward function we accept a Variable of input data and we must return
        a Variable of output data. We can use Modules defined in the constructor as
        well as arbitrary operators on Variables.
        11 11 11
        out1 = self.sigmoid(self.l1(x))
        out2 = self.sigmoid(self.l2(out1))
        y_pred = self.sigmoid(self.13(out2))
        return y_pred
```



```
def __init__(self):
        In the constructor we instantiate two nn.Linear module
        super(Model, self).__init__()
        self.11 = torch.nn.Linear(8, 6)
        self.12 = torch.nn.Linear(6, 4)
        self.13 = torch.nn.Linear(4, 1)
        self.sigmoid = torch.nn.Sigmoid()
   def forward(self, x):
        In the forward function we accept a Variable of input data and we must return
       a Variable of output data. We can use Modules defined in the constructor as
       well as arbitrary operators on Variables.
       out1 = self.sigmoid(self.l1(x))
        out2 = self.sigmoid(self.12(out1))
       v pred = self.sigmoid(self.13(out2))
        return y pred
# our model.
model = Model()
# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters of the two
# nn.Linear modules which are members of the model.
```

Forward pass: Compute predicted y by passing x to the model

Zero gradients, perform a backward pass, and update the weights.

xy = np.loadtxt('data-diabetes.csv', delimiter=',', dtype=np.float32)

x_data = Variable(torch.from_numpy(xy[:, 0:-1]))
y data = Variable(torch.from_numpy(xy[:, [-1]]))

criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

Training loop
for epoch in range(100):

v pred = model(x data)

optimizer.zero_grad()
loss.backward()
optimizer.step()

Compute and print loss
loss = criterion(y pred, y data)

print(epoch, loss.data[0])

class Model(torch.nn.Module):

Classifying Diabetes

Design your model using class

```
Construct loss and optimizer (select from PyTorch API)
```

```
Training cycle (forward, backward, update)
```

Exercise 7-1

- Classifying Diabetes with deep nets
 - More than 10 layers
- Find other classification datasets
 - Try with deep network
- Try different activation functions
 Sigmoid to something else

