Introduction to Statistical Machine Learning

Xiang Zhou

School of Data Science Department of Mathematics City University of Hong Kong

Mathematical Description of Data

Notations

- input output relation
 - x: inputs, feature vectors, predictors, independent variables.
 - ▶ *y*: output, response, dependent variable.
- $\mathcal X$ and $\mathcal Y$ denote the spaces of the generic x and y variables, respectively.
 - ▶ Generally $\mathcal{X} = \mathbb{R}^p$; qualitative features are coded using, for example, dummy variables (such as 0,1, -1, etc).
 - ▶ Typically $\mathcal{Y} \in \mathbb{R}^1$ is a scalar, or takes a finite number of values as a subset of \mathbb{N} ; it can be a vector in some scenarios.
- The random variable (X,Y) has the joint distribution p(x,y) on the sample space $\mathcal{X} \times \mathcal{Y}$.

Ground truth

• It is usually assumed that the ground truth for the relation between from input to the output is a deterministic input-output mapping from $x \in \mathcal{X}$ to $y_{\mathsf{true}} \in \mathcal{Y}$:

$$y_{\mathsf{true}} = f^{\star}(x)$$

where the ground truth f^* is an unknown function and has to be approximated by learning from the training dataset.

Data as iid r.v.

 \bullet In supervised learning, the data (observations) are given as the collection of the pairs 1

$$\mathbf{D} = \left\{ (x^{(i)}, y^{(i)}) : 1 \le i \le N \right\} \subset (\mathcal{X} \times \mathcal{Y})^N$$

which is assumed iid samples of the r.v. (X,Y) with an unknown joint distribution p(x,y) on the product space $\mathcal{X} \times \mathcal{Y}$.

- ▶ Regression: \mathcal{Y} is continuous/quantitiative, e.g., \mathbb{R}^d or its subset.
- ▶ Classification: \mathcal{Y} is discrete and finite (categorical variable), encoded by a finite number $\{1, \ldots, K\}$. In this case, "y" is usually called "label".
- In unsupervised learning, the observations only have $\{x^{(i)}\}$, the information $y^{(i)}$ is zero or there is no definition of y variable. The purpose is to identify the pattern of $\{x^{(i)}\}$ itself, such as model reduction.

 $^{^1}$ sometimes it is denoted as D = $\{(x_i,y_i):1\leq i\leq n\}$ if the subindex has no ambiguity. Xiang Zhou CityU

Additive error model

- The observed $x^{(i)} \in \mathcal{X}$ are samples from the marginal distribution p_X , i.e., $x^{(i)} \sim X$; in some cases, they are deterministic and assigned by a procedure of experiment design.
- In the additive error model, the corresponding observed $y^{(i)}$ are assumed to be the *perturbed* truth $f^{\star}(x^{(i)})$ with additional measurement error $\varepsilon^{(i)}$ which are assumed to be iid and independent from X.

$$y^{(i)} = f^{\star}(x^{(i)}) + \varepsilon^{(i)}.$$

- $\left\{ \varepsilon^{(i)} \right\}$ are assumed iid and distributed as a generic r.v. $\varepsilon.$
- ullet This is a convenient model/assumption to specify the joint pdf of (X,Y), even though there might be other types of uncertainty in output observations.
- The effect of the noise ε can never be eliminated by any statistical learning algorithms (irreducible error).

ullet So, the joint distribution p(x,y) of (X,Y) is completely determined by the triplet:

$$(p_X, f^{\star}, p_{\varepsilon})$$

- p_X: the distribution of the input
- f^* : the input-output function,
- p_{ε} : the distribution of error.
- The joint distribution p(x,y) manifests by the available dataset D. Given X,Y random variables $\sim p$, how to identify f^* ?

Statistics and machine learning

Different views and terminologies:

Machine Learning	Statistics
Supervised learning	Classification/regression
Unsupervised learning	Clustering
Semisupervised learning	Classification/regression with missing responses
Features/outcomes	Covariates/responses
Training set/testing set	Sample/population
Learner	Statistical model
Generalization error	Misclassification error/prediction error

Suggestion

Learn machine learning like a statistician or an applied mathematician, not a software engineer

- Start from stating a problem, not show an algorithm first: Many times, the students think the methods/algorithms/procedures as the problem itself.
- Pay close attentions to the "modelling" process: how to turn the data problem into the statistical model. In particularly the underlying principle which applies very general.
- Try to rigorously (and in most general context) understand (like a math theorem) the heuristic arguments used in practice, even for some toy examples.
- Draw strict boundaries between general principles and specific methods. In between, computational method survives and thrives.
- Diagnose and rationalize your results of numerical experiments. Test different dataset/parameters/methods.

Learning Theory: An Approximation Theory Viewpoint

Reference:

Learning Theory: An Approximation Theory Viewpoint; by F. Cucker and D.X. Zhou, Cambridge University Press 2007

Given r.v.s X and Y, find a function $f: \mathcal{X} \to \mathcal{Y}$ so that f(X) can explain Y best in certain sense.

Conditional Expectation as Optimal Prediction

The best L^2 approximation of a function f of the r.v. X to a r.v. Y is achieved by the conditional probability. The (generalized) squared error¹

$$\mathcal{E}(f) := \mathbb{E} |Y - f(X)|^2 \tag{1}$$

has a minimum at

$$f^*(x) = \mathbb{E}(Y|X=x) \quad .$$

i.e.,

$$\mathbb{E}|Y - f^*(X)|^2 = \min_{f: \text{ a Borel function}} \mathbb{E}(|Y - f(X)|^2)$$

Note: We did not assume the additive error model here. The applicability

of the theorem here is very general. The expectation is w.r.t. the joint pdf of (X,Y).

 $^{^{1}}$ also named as generalization risk, mean square error, L_{2} error, etc. $_{\mathrm{CityU}}$

Proof.

• We show first that $\mathbb{E}[(Y - f^*(X))h(X)] = 0$ a is true for any function h. Using the double expectation theorem b, we have

$$\mathbb{E}[(Y - f^*(X))h(X)] = \mathbb{E}\left[\mathbb{E}[Y - f^*(X))|X]h(X)\right]$$
$$= \mathbb{E}\left[\mathbb{E}(Yh(X)|X) - f^*(X)h(X)\right] = 0.$$

Note that

Note that
$$(y-f(x))^2 = (y-f^*(x))^2 + (f(x)-f^*(x))^2 - 2(y-f^*(x))h(x)$$
 where $h(x)=f(x)-f^*(x)$, then for any f

$$\mathbb{E}(|f(X) - Y|^2) = \mathbb{E}(|f^*(X) - Y|^2) + \mathbb{E}\left[|f(X) - f^*(X)|^2\right]$$
 (2)

asometimes it is denoted $Y - f^*(X) \perp h(X)$, the perpendicular property in L_2 space.

$${}^{b}\mathbb{E}[\mathbb{E}(Y|X)] = \mathbb{E}Y$$

reference for elementary math: Understanding Conditional Expectation via Vector Projection

The following exercise is to directly minimize functions in the function space.

Exercise

Use the method of perturbation to solve ^a

$$\inf_{f} \iint (f(x) - y)^{2} p_{X,Y}(x,y) dx dy$$

where $p_{X,Y}$ is the joint pdf of the r.v.s (X,Y). The optimal f^* satisfies

$$\int (f^*(x) - y) p_{X,Y}(x,y) dy = 0, \quad \forall x$$

i.e.,
$$\mathbb{E} Y = \mathbb{E} f^*(X)$$

^aRigorously, f is in the p-weighted L_2 space

What if generalized the L_2 norm to L_n norm ?

Exercise (Conditional distribution of multivariate Gaussian r.v.)

Suppose that $X = (X_1, X_2)$ is a two dimensional Gaussian random variable with mean $\mu = (\mu_1, \mu_2)$ and the covariance matrix $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}.$ What is the conditional pdf $p(x_1|x_2)$ of X_1

$$\mathcal{L} = \begin{pmatrix} \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$
. What is the conditional pull $p(x_1|x_2)$ of X_1 given $X_2 = x_2$? What is the expectation of X_1 given $X_2 = x_2$? What is the general result in n dimension?

the general result in n dimension?

$$X_1|_{X_2=x_2} \sim \mathcal{N}(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_2 - \mu_2), \sigma_1^2(1 - \rho^2))$$

- ullet The objective function $\mathcal{E}(f)$ is also called loss function, risk, etc.
- $\mathbb{E} f^*(X) = \mathbb{E} Y$: $f^*(X)$ is an unbiased estimate of Y;
- \bullet The variance of the difference between Y and the optimal prediction $f^{\ast}(X)$ is

$$\sigma_*^2(x) := \mathbb{E}\left[(Y - f^*(X))^2 | X = x \right]$$

• Take average of $\sigma^2(x)$ over x, then the averaged uncertainty is

$$\sigma_*^2 := \mathbb{E}_X \, \sigma_*^2(X) = \mathbb{E}\left[|Y - f^*(X)|^2 \right] = \mathcal{E}(f^*)$$

This is the variance of the measurement error $Y - f^*(X)$: irreducible error

We have shown in (2) for any two r.v.s X, Y and an arbitrary function f:

$$\mathcal{E}(f) = \underbrace{\mathbb{E}_{X,Y}(|f(X) - Y|^2)}_{\text{Mean Square Error}} = \underbrace{\mathbb{E}_{X,Y}(|f^*(X) - Y|^2)}_{=\mathcal{E}(f^*), \text{Bayes error}} + \underbrace{\mathbb{E}_{X}\left[|f(X) - f^*(X)|^2\right]}_{\text{model error}}$$
(3)

where $f^*(x) = \mathbb{E}(Y|X=x)$ is called **Bayes rule**.

- Bayes error: irreducible error;
- Model error: the distance from f to the optimal prediction f^* .

Next, the same idea, $\inf_f \mathcal{E}(f)$, applied to classification problem...

CityU

Baye classifier for classification: optimal for the 0-1 loss

- Assume $Y \in \{1, ..., K\}$ and $X \in \mathbb{R}^p$. So a function $f : \mathcal{X} \to \mathcal{Y}$ is a piece-wise constant function.
- A loss function $\ell(Y, f(Y))$ for penalizing errors in misclassification.
- Most Common choice for classification problem is the **0-1 loss** ¹

$$\ell(Y, f(X)) = I(Y \neq f(X)) := \begin{cases} 1 & \text{if } Y \neq f(X) \\ 0 & \text{if } Y = f(X) \end{cases}.$$

The expected prediction error, or the generalization error, is

$$\mathcal{E}(f) = \mathbb{E}I(Y \neq f(X)) = \mathbb{P}(Y \neq f(X)) = 1 - \mathbb{P}(Y = f(X)).$$

• The Bayes rule minimizing $\mathcal{E}(f)$ is the one maximizing $\mathbb{P}(Y = f(X)) = \int_{\mathcal{X}} \mathbb{P}(Y = f(x)|X = x) p_X(x) \mathrm{d}x$, which is

$$f^*(x) = \underset{k}{\operatorname{argmax}} \mathbb{P}(Y = k | X = x).$$

since
$$\mathbb{P}(Y = k | X = x) \leq \mathbb{P}(Y = f^*(x) | X = x), \forall k$$

¹corresponding to the Dirac delta function Xiang Zhou C

Bayes classifier: the maximizer of conditional probability

$$f^*(x) = \underset{k}{\operatorname{argmax}} \mathbb{P}(Y = k | X = x).$$

ullet Bayes error rate: the minimal value of ${\mathcal E}$

$$\inf_{f} \mathcal{E}(f) = \mathcal{E}(f^*) = 1 - \mathbb{P}(Y = f^*(X)) = 1 - \int_{\mathcal{X}} \mathbb{P}(Y = f^*(X)) p_X(X) dX$$

Bayes decision boundary

The boundary separating the K partition domains in \mathcal{X} on each of which $f^*(x)$ is constant. For the binary classification $(K=2,\mathcal{Y}=\{-1,1\})$, the boundary corresponds to the level set where $\mathbb{P}(Y=1|X=x)=\mathbb{P}(Y=-1|X=x)=0.5$.

We focus on the regression fit first and will come back to classification later.

Exercise (Ex. 2.2 in ESL)

Let $\mathcal{X} = \mathbb{R}^2$ and $\mathcal{Y} = \{0,1\}$ and the conditional distribution X|Y is the normal $\mathcal{N}(\mu_Y, (1+Y)I_2)$ where $\mu_y = (y,y)^T$ for $y \in \mathcal{Y}$, I_2 is identify matrix. Find the Bayes decision boundary and the Bayes error rate for this problem.

How do we estimate f^* ?

- direction method by definition of conditional expectation ¹;
- optimization method by minimization of generalization error;

¹or conditional probability for the Bayes classifier Kiang Zhou CityU

Nearest neighbors method to approximate condition expectation

A natural way to approximate the function $\mathbb{E}(Y|X=x)$ is to replace the expectation by the average from the data $D=\{(x_i,y_i)\}$:

$$f^*(x) = \mathbb{E}(Y|X=x) \approx \mathsf{AVE}\left\{y_i : \mathsf{where} \ x_i = x\right\}, \ \forall x \in \mathcal{X}$$

or

$$f^*(x) = \int_{\mathcal{Y}} y \, p_{Y|X}(y; x) dy$$

where $p_{Y|X}(y;x) = \frac{p_{X,Y}(x,y)}{p_X(x)}$ by estimating the density $p_{X,Y}(x,y)$ first? Question: Would these work well in practice ?

(1) this formula is defined point-wisely; (2) one does not have an accurate estimation of the expectation or the joint distribution p(x,y), particularly in high dimension.

ullet Use windows with size Δ

$$\mathbb{E}(Y|X=x) \approx \mathsf{AVE}\left\{y_i: \text{ where } |x_i-x| \leq \Delta\right\}$$

• Use k -nearest neighbors (KNN): have a look at its neighbors, and take a vote:

$$\mathbb{E}(Y|X=x) \approx \mathsf{AVE}\left\{y_i : x_i \in \mathcal{N}_k(x)\right\}$$

where $\mathcal{N}_k(x)$ is a neighborhood of x that contains exactly k neighbors (k-nearest neighbors). The number samples in AVE is fixed (k).

Two approximations are happening here:

- expectation is approximated by averaging over sample data;
- 2 conditioning at a point is relaxed to conditioning on some region "close" to the target point.

Note: A metric on $\mathcal X$ is necessary here. The choice of metric, $|x-x_i|$, is a practical issue.

Curse of dimensionality

k-NN can fail in high dimensions, because it becomes difficult to gather k observations close to a target point x_0 .

- Neighborhoods tend to be spatially large, and estimates are biased.
- ullet Reducing the spatial size of the neighborhood means reducing k, and the variance of the estimate increases.

In general (see Figure 2.6. [ESL]), when the dimension of $\mathcal X$ is very large (the sample size N is fixed.)

- Most points are at the boundary, and points tend to be equidistant (Hall et al., JRSS-B, 2005).
- Sampling density is proportional to $n^{1/p}$: the number of sample size increases exponentially in dimension p: If 100 points are sufficient to estimate a function in \mathbb{R}^1 , 100^{10} are needed to achieve similar accuracy in \mathbb{R}^{10} .

This is similar to the curse of dimensionality in using the mesh grid based method to solve high dimensional PDE.

Minimizing the generalization error: learning as minimization

- Loss function $\ell(y, \hat{y}) : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+ \cup \{0\}$
 - $ightharpoonup L_2$, L_1 norm
 - 0-1 loss: $\ell(y, \hat{y}) = I(y \neq \hat{y})$.
 - **.**..
- ullet Population risk/loss (Generalization error): $\mathcal{E}(f) = \mathbb{E}\,\ell(Y,f(X))$

The direct approach of minimizing the risk

$$\min_{f} \mathcal{E}(f) = \mathbb{E}\,\ell(Y, f(X))$$

where f can be in a very general class of functions, such as continuous function on \mathcal{X} , or even piecewise continuous function.

It is important to specify a hypothesis space $\ensuremath{\mathcal{H}}$ to restrict the search space.

- lacktriangledown the function space of f to search: hypothesis space(model class) \mathcal{H} .
- ② approximate the expectation $\mathbb E$ in $\mathcal E$ with the use of data $\mathtt D=\{x_i,y_i\}.$

Notations

1 The minimizer of

$$\min_{f \in \mathcal{H}} \mathcal{E}(f)$$

is denoted by $f_{\mathcal{H}}$.

2 Population loss/risk is approximated by **empirical** loss/risk associated with $D = \{(x_i, y_i) : i = 1, ..., N\}$:

$$\mathcal{E}(f) = \mathbb{E}\left[|Y - f(X)|^2\right] \approx \mathcal{E}_N(f) = \frac{1}{N} \sum_i \ell(y_i, f(x_i))$$

The learning algorithm produces the learnt function $\hat{f}_{\rm D}$ (regression function) as the solution to

$$\mathcal{E}_N(\hat{f}_{\mathsf{D}}) = \min_{f \in \mathcal{H}} \mathcal{E}_N(f) = \min_{f \in \mathcal{H}} \frac{1}{N} \sum_{(x_i, u_i) \in \mathsf{D}} \ell(y_i, f(x_i))$$

- ▶ The training error is $\mathcal{E}_N(\hat{f}_{\mathsf{D}})$.
- ▶ The test error/prediction error is $\mathcal{E}(\hat{f}_{D}) = \mathbb{E}_{X,Y} \ell(Y, \hat{f}_{D}(X)).$
- ▶ The expected test/prediction error is $\mathbb{E}_{D}\left[\mathcal{E}(\hat{f}_{D})\right]$, which requires running on several (statistically identical) datasets $\sim D$.

- $f_{\mathcal{H}}$ may not equal to f^* unless the ground truth $f^* \in \mathcal{H}$;
- \hat{f}_{D} depends on three elements: the hypothesis space \mathcal{H} , the (training) data D (random !) and the loss function ℓ . So, \hat{f}_{D} is a random function to approximate the ground truth f.
- For the fixed \mathcal{H} and ℓ , \hat{f}_{D} is essentially a mapping from D to the function space \mathcal{H} . As $N \to \infty$, $\hat{f}_{\mathrm{D}} \to f_{\mathcal{H}}$ by the law of large number.

Hypothesis space: representation of the function f

- parametric approach: e.g. $f(x) = \theta \cdot x$ with a set of finite and (usually fixed) number of parameters θ
- \bullet non-parametric approach: functional analysis viewpoint, f is only in some function space. (such as in the traditional computational math for representing the solution to some PDE)
- there is no rigorous boundary between parametric/non-parametric: eventually the computer represents a function f only by a finite number of freedoms.
- need to be restricted to certain model class in practice. Examples: linear model, polynomial, spline, kernel machine, neural network, etc.

some examples of ${\cal H}$

- Linear function (chapter 3, ESL)
- Basis functions and dictionary methods (chapter 5, ESL)

$$f_{\theta}(x) = \sum_{m=1}^{M} \theta_m h_m(x),$$

where h_m 's are pre-specified basis functions.

Kernel methods and local regression (chapter 6, ESL)

$$RSS(f, x_0) = \sum_{i=1}^{n} K(x_0, x_i)(y_i - f(x_i))^2,$$

where K is a kernel measuring the closeness between points.

• Roughness penalty (chapter 5, ESL)

Penalized
$$\mathrm{RSS}(f;\lambda) = \mathrm{RSS}(f) + \lambda J(f)$$
,

where J(f) is a regularization term on the model complexity.

The generalization error is then decomposed into

$$\mathcal{E}(f^*) = \underbrace{\mathcal{E}(f^*) - \mathcal{E}(f_{\mathcal{H}})}_{\text{approximation error}} + \underbrace{\mathcal{E}(f_{\mathcal{H}}) - \mathcal{E}_N(\hat{f}_{\mathsf{D}})}_{\text{sampling error}} + \underbrace{\mathcal{E}_N(\hat{f}_{\mathsf{D}})}_{\text{training error}} + \underbrace{\mathcal{E}_N(\hat{f}_{\mathsf{D}})}_{\text{training error}}$$

- Approximation error: characterized how large (complex) the hypothesis space $\mathcal H$ is. analogy to the interpolation inequality in finite element method. A larger space of $\mathcal H$ indicates
 - A larger effective dimension of this space;
 - ► A smaller approximation error; lower bias
 - More difficult for numerical optimization;
- Sampling error: vanishes if the number of data points N goes to infinity. This error may be analyzed by probability inequality (e.g. Chebychev); analysis method used for Monte Carlo simulation. A larger sample size for training data indicates:
 - Smaller sampling error; lower variance;
 - more challenges for data collection and Big Data techniques;
- Training error:
 - design of optimization method, numerical convergence rate,
 - ▶ the time and memory cost ...
 - ▶ the output is a further approximation to \hat{f}_D : the optimization algorithm stops with a time cost T: $\hat{f}_D^{(T)}$

Very Important Remarks

- Although different fields focus on each of three errors separately, to address the problems in machine learning needs trans-disciplinary efforts:
 - approximation theory
 - statistical learning
 - computation

A joint strategy is very important to have a complete picture of the machine learning problem.

A small value of training error $\mathcal{E}_N(\hat{f}_{\mathsf{D}})$ does not imply a small value of $\mathcal{E}(\hat{f}_{\mathsf{D}}).$

• These three topics are not completely separate. For example, the necessary number of sample size N may depend on the complexity of hypothesis space, which further depends on the dimension of \mathcal{X},\mathcal{Y} and the specific representation form of functions in \mathcal{H} .

Generalization Gap

The optimal function in theory is f^* ; the optimal function in practical computation is \hat{f}_D . The difference in risks of these two:

$$\mathcal{E}(\hat{f}_{\mathtt{D}}) - \mathcal{E}(f^*)$$

is called **generalization gap**: it measures to which extent the performance of the algorithm learnt from a given training data set D is valid for the whole distribution p(x,y).

Remark

- $\mathcal{E}(\hat{f}_{\mathtt{D}}) \mathcal{E}(f^*)$ can be either positive or negative;
- $\mathcal{E}(\hat{f}_{\mathtt{D}}) \mathcal{E}(f^*)$ still depends on D. One can use the expected $\mathbb{E}_{\mathtt{D}}\left[\mathcal{E}(\hat{f}_{\mathtt{D}}) \mathcal{E}(f^*)\right]$ to represent the average.

First inequality for Generalization Gap

Exercise

Prove the upper bound of the generalization gap:

$$\left|\mathcal{E}(\hat{f}_{\mathtt{D}}) - \mathcal{E}(f^*)\right| \leq 2 \sup_{f \in \mathcal{H}} |\mathcal{E}_N(f) - \mathcal{E}(f)|$$

$$\approx 2 \sup_{f \in \mathcal{H}} \frac{1}{\sqrt{N}} \sqrt{\textit{Var}(\ell(Y, f(X)))}$$

Limitation of the previous boundedness:

- The first RHS depends on the hypothesis space \mathcal{H} and the dataset D of size N in \mathcal{E}_N ; and the second depends on \mathcal{H} and the joint distribution p(x,y) of (X,Y). The " \approx " is due to the central limit theorem.
- The Var in RHS is w.r.t. D, and eventually for $p_{X,Y}$.
- The supremum in the above inequality can describe the **complexity** of hypothesis space \mathcal{H} , which increases when \mathcal{H} is "larger".
- Although this upper bound is quite useful and not too far way from the true gap; but it is not sharp in many cases and fail to serve as a good indicator of the generalization gap. A good lower bound is extremely difficult to obtain.
- $m{ ilde{\mathcal{E}}}(\hat{f}_{\mathtt{D}})$ depends on D. When D is regarded as random, $\mathcal{E}(\hat{f}_{\mathtt{D}})$ is also random.

Statistical Learning: Viewpoint of Bias-Variance Trade-off

- In the approximation theory above, the introduction of the dataset D is only used to approximate the expectation w.r.t. the generic r.v.s X,Y by their sample average: population risk \longrightarrow empirical risk.
- In statistical learning, D is regarded as random, then $\hat{f}_{\mathbb{D}}(\cdot)$ is a random function on \mathcal{X} , then its prediction ability, measured by $\mathcal{E}(\hat{f}_{\mathbb{D}})$, is random. Then it makes sense to consider

$$\mathbb{E}_{\mathtt{D}}\,\mathcal{E}(\hat{f}_{\mathtt{D}})$$

Bias-Variance Decomposition / Trade-off

Let f be a given deterministic function (ground truth) $\mathcal{X} \to \mathcal{Y}$. Assume that the response r.v. Y is defined by the additive error statistical model:

$$Y = f(X) + \varepsilon$$

where the r.v. ε is independent of X and has mean 0 and variance σ_{ε}^2 . Assume this model generates on the training dataset

$$\mathbf{D}=\{(x_i,y_i): 1\leq i \leq N\}, \text{ i.e., } y_i=f(x_i)+\varepsilon_i \text{ and } \varepsilon_i \sim \varepsilon$$

 $(\mathbb{E}\,\varepsilon=0, \mathsf{Var}(\varepsilon)=\sigma^2)$. Assume one learns a function based on D, still denoted by $\hat{f}_{\mathsf{D}}(\cdot)$. ¹

The key question is the prediction performance of this function \hat{f}_{D} on a new data (x_0,y_0) where $x_0\in\mathcal{X}$ is arbitrary and $y_0=f(x_0)+\varepsilon_0$ with the new measurement error ε_0 being independent of D and distributed as ε .

¹it does not have to be the one in previous part associated with \mathcal{E}_N . For example, $\hat{f}_{\mathbb{D}}$ can be the k-NN model.

Decomposition of expected prediction (squared) error

The expected prediction error (generalization error) in terms of L_2 criterion, at a new input value x_0 is

$$\begin{split} &\mathbb{E}[(Y - \hat{f}_{\mathsf{D}}(X))^{2} | X = x_{0}] = \mathbb{E}_{\varepsilon_{0},\mathsf{D}}(f(x_{0}) + \varepsilon_{0} - \hat{f}_{\mathsf{D}}(x_{0}))^{2} \\ = & \sigma_{\varepsilon}^{2} + \mathbb{E}_{\mathsf{D}} \left(f(x_{0}) - \hat{f}_{\mathsf{D}}(x_{0}) \right)^{2} \quad \because \mathbb{E}(\varepsilon_{0}) = 0, \text{ and } \mathsf{D} \perp \varepsilon_{0} \\ = & \sigma_{\varepsilon}^{2} + \mathbb{E}_{\mathsf{D}} \left(f(x_{0}) - \mathbb{E} \, \hat{f}_{\mathsf{D}}(x_{0}) + \mathbb{E} \, \hat{f}_{\mathsf{D}}(x_{0}) - \hat{f}_{\mathsf{D}}(x_{0}) \right)^{2} \\ = & \underbrace{\sigma_{\varepsilon}^{2} + \underbrace{(f(x_{0}) - \mathbb{E}_{\mathsf{D}} \, \hat{f}_{\mathsf{D}}(x_{0}))^{2}}_{\mathsf{Bias}^{2}} + \underbrace{\mathsf{Var}_{\mathsf{D}}(\hat{f}_{\mathsf{D}}(x_{0}))}_{\mathsf{Variance}} \end{split}$$

Here the subscripts emphasize the random elements to take expectation. $\sigma_{\varepsilon}^2 = \text{Var}(\varepsilon_0)$ is the irreducible uncertainty of the new measurement error.

definition

 \hat{f}_{D} is called unbiased if the functions $\mathbb{E}_{D} \hat{f}_{D}(x)$ and f(x) are equal.

Sometimes, this quantity is further taken expectation for x_0 w.r.t. p_X . Use the generic r.v. $(X,Y=f(X)+\varepsilon)$ for a new **testing** pair, which is independent of the training set D:

$$\begin{split} & \mathbb{E}_{X,Y} \left[\mathbb{E}_{\mathrm{D}} \left(Y - \hat{f}_{\mathrm{D}}(X) \right)^2 \right] \\ &= \mathbb{E}_{X,\varepsilon,\mathrm{D}} \left(f(X) - \hat{f}_{\mathrm{D}}(X) + \varepsilon \right)^2 \\ &= & \sigma_{\varepsilon}^2 + \mathbb{E}_{X} \left(f(X) - \mathbb{E}_{\mathrm{D}} \, \hat{f}_{\mathrm{D}}(X) \right)^2 + \mathbb{E}_{X} \left[\mathsf{Var}_{\mathrm{D}}(\hat{f}_{\mathrm{D}}(X) \right]. \end{split}$$

This is simply equal to $\mathbb{E}_{\mathtt{D}}\,\mathcal{E}(\hat{f}_{\mathtt{D}}) = \mathbb{E}_{\mathtt{D}}\,\mathbb{E}_{X,Y}\,\Big|Y - \hat{f}_{\mathtt{D}}(X)\Big|^2.$

The variance term $\mathrm{Var}_{\mathbb{D}}(\hat{f}_{\mathbb{D}}(x_0))$ is typically $\sim \frac{1}{N} \times C$ for which C may depend on complexity of the model space \mathcal{H} .

- low bias: large model space, low training error, overfitting, bad generalization ability (high variance);
- low variance: rigid model space, insensitive to the perturbation of the dataset used in fitting; good generalization for the new data from the same distribution.
- BAD news: it is almost impossible to decrease the bias and variance terms simultaneously!
- Criteria for model assessment or variable selection: good trade-off between the bias and variance
 - ► Analyse the bias or variance or model complexity to have analytical results (very limited cases)
 - ▶ A practical method is to estimate $\mathbb{E}[(Y \hat{f}_{\mathsf{D}}(X))^2] \approx \frac{1}{n} \sum_j (Y_j' \hat{f}_{\mathsf{D}}(X_j'))^2$ where X_j' are not from D but an independent dataset D'.
 - ► Where is the "new" dataset D′? cross-validation (split 1 cent into 1/2 cents) and bootstrap (1 cent used twice).

Figure: Bias-Variance Tradeoff as a Function of Model Capacity/Complexity

FIGURE 2.11. Test and training error as a function of model complexity.

Exercise: Prove that the blue curve is always below the red curve. (Ex. 2.9 in [ESL])

Application of Bias-Variance decomposition to k-NN

Consider the k-nearest-neighbor regression fit to the data $\mathbf{D}=\{(x_i,y_i)\}$ arising from the additive model $Y=f(X)+\varepsilon$:

$$\hat{f}_{\mathrm{D}}^{k}(x) = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i = \frac{1}{k} \sum_{x_i \in N_k(x)} (f(x_i) + \varepsilon_i).$$

WLOG, we assume that the input design points $\{x_i\}$ in the training D is deterministic. Then the expectation w.r.t. D is only for the measurement errors ε_i :

- The bias is $f(x_0) \mathbb{E}_{\mathtt{D}}[\hat{f}_{\mathtt{D}}^k(x_0)] = f(x_0) \frac{1}{k} \sum_{x_i \in N_k(x_0)} f(x_i);$
- The variance is $\operatorname{Var}_{\mathtt{D}}(\hat{f}_{\mathtt{D}}^{k}(x_{0})) = \frac{1}{k}\sigma_{\varepsilon}^{2}$

Exercise

Assume $x_0 = 0$, $x_i = i/N$, i = 1, 2, ...N. Compute the EPE(k), the expected prediction error, as a function of k and fine the optimal k^* in this special case.

Model Assessment: practical techniques

Typical objectives:

- ① Choose a value of a tuning parameter (hyperparameter) used in the model (such as k in k-NN)
- 2 Estimate the prediction performance (test error) of a given model

Remarks:

- For both objectives, the best approach is to run the procedure on an independent test set, if one is available.
- If possible, one should use different test data for (1) and (2) above: a validation set for objective (1) and a test set for objective (2).
- Often there is insufficient data to create a separate validation or test set. In this case, Cross-Validation is useful.

K-fold cross validation

Denote the hyper-parameter by λ . K-fold cross validation is the most popular method for estimating a tuning parameter λ .

Divide the dataset (of size N) into K subsets: A_1, \ldots, A_K (K = 2, 5, 10 or N)

• For each $k=1,\ldots,K$, fit the model with parameter λ to $\{\mathcal{A}_1,\ldots,\mathcal{A}_{k-1},\mathcal{A}_{k+1},\ldots,\mathcal{A}_K\}$ giving $f_{\lambda}^{-k}(\cdot)$, and compute its prediction error on \mathcal{A}_k :

$$E_k(\lambda) = \sum_{x_i \in A_k} \ell(y_i, f_{\lambda}^{-k}(x_i)).$$

• The average of these K values $E_k(\lambda)$ give the cross-validation error (per sample)

$$CV(\lambda) := \frac{1}{N} \sum_{k=1}^{K} E_k(\lambda).$$

• Choose the optimal λ^* yielding the smallest $CV(\lambda)$.

K-fold cross validation

- Cross-validation is often abbreviated as CV.
- ullet In the subset selection procedure, λ is the subset size
- $f^{-k}(\lambda)$ is the best model of size λ , found from the training set that leaves out the k-th part of the data
- $E_k(\lambda)$ is its estimated test error on the k-th part.
- ullet Using K-fold CV, the K test error estimates are averaged to give the final CV estimated test error.
- \bullet The output is the model associated with $\lambda^*,$ typically, computed by using all N data.

Bootstrap

- ullet Bootstrap works by sampling N times with replacement from the training set to form a "bootstrap" data set. Then model is estimated on the bootstrap data set, and predictions are made on the original training set.
- This process is repeated many times and the results are averaged.
- Bootstrap is most useful for estimating standard errors of predictions.
- Can also use modified versions of the bootstrap to estimate prediction error. Sometimes produces better estimates than CV (still an open question!)