COMP8760

Lecture 5

Worksheet for Practice

Sanjay Bhattacherjee

1. Extended Euclidean Algorithm

Fill in the blanks.

(a) We define the floor notation [x] as the largest integer smaller than or equal to x. So,

(b) Find gcd(24, 21):

Input:	$a \leftarrow \underline{\hspace{1cm}}, b \leftarrow \underline{\hspace{1cm}}$	
Initialisation:		
$r' \leftarrow 24, s' \leftarrow 1, t' \leftarrow 0,$	$r' \leftarrow s' \times a + t' \times b = 1 \times 24 + 0 \times 21$	=
$r \leftarrow 21, s \leftarrow 0, t \leftarrow 1,$	$r \leftarrow s \times a + t \times b = 0 \times 24 + 1 \times 21$	=
Iterations:		
q		=
r		=
s		=
t		=
$s \cdot a + t \cdot b$	=	=
q		=
r		=
s		=
t		=
$s \cdot a + t \cdot b$	=	=
Final:	$d \leftarrow r', x \leftarrow s', y \leftarrow t'$	
	$\mathtt{return}\ d, x, y$	

(c) Find gcd(128, 88):

Input:	$a \leftarrow ___, b \leftarrow ___$	
Initialisation:		
$r' \leftarrow 128, s' \leftarrow 1, t' \leftarrow 0,$	$r' \leftarrow s' \times a + t' \times b = 1 \times 128 + 0 \times 88$	=
$r \leftarrow 88, s \leftarrow 0, t \leftarrow 1,$	$r \leftarrow s \times a + t \times b = 0 \times 128 + 1 \times 88$	=
Iterations:		
q		=
r		=
s		=
t		=
$s \cdot a + t \cdot b$	=	=
q		=
r		=
s		=
t		=
$s \cdot a + t \cdot b$	=	=
q		=
r		=
s		=
t		=
$s \cdot a + t \cdot b$	=	=
Final:	$d \leftarrow r', x \leftarrow s', y \leftarrow t'$	
	return d, x, y	

2. Chinese Remainder Theorem

Fill in the blanks.

The theorem states that given two equations as follows,

$$x = a \pmod{M}$$
, and $x = b \pmod{N}$

there is a unique solution $\pmod{M \cdot N}$ if and only if

$$gcd(N, M) = 1.$$

The algorithm to find the solution is as follows:

$$\begin{array}{lll} \text{Step 1:} & \text{Check if} & \gcd(M,N) = 1 \\ \text{Step 2:} & \text{Find} & T \leftarrow M^{-1} \pmod{N} \\ \text{Step 3:} & \text{Find} & u \leftarrow (b-a) \cdot T \pmod{N} \\ \text{Step 3:} & \text{Find} & x \leftarrow a + u \cdot M \end{array}$$

Note that $M^{-1} \pmod{N}$ can be found directly from the result of the extended Euclidean algorithm in the previous step.

(a) Consider the equations

$$x = 6 \pmod{9}, \text{ and}$$
$$x = 7 \pmod{25}$$

The steps to follow according to CRT are

(b) Consider the equations

$$x = 9 \pmod{100}, \text{ and}$$
$$x = 20 \pmod{21}$$

The steps to follow according to CRT are