Conception des bases de données MLD

Objectifs du cours

- Traiter des ensembles/des tables
- Conversion vers un Modèle Logique de Données

Des représentations physiques différentes

- Les données modélisées avec une méthode donnée (e.g. Merise) peuvent avoir différentes représentations physiques:
 - un modèle hiérarchique (IMS) ou réseau (IDS2), i.e. l'utilisation de pointeurs
 - un modèle relationnel (Oracle) ou logique (Datalog), i.e. une structure physique simple mais une complexité logique
 - un modèle objet (Gemstone), i.e. une représentation par objet et héritage

Le modèle relationnel

- SGBDR (Système de Gestion de Base de Données Relationnel) : données organisées en tables
- Fidèle à un cadre mathématique : l'algèbre relationnelle
- Concept mathématique sous-jacent : relation de la théorie des ensembles
- Un domaine est un ensemble fini ou infini de valeurs possibles
- Une table relationnelle est un sous-ensemble du produit cartésien d'une liste de domaines

Exemple de produit cartésien

D1={durand,lefebvre,martin} et D2={christian,franck}

durand	christian			
durand	franck			
lefebvre	christian			
lefebvre	franck			
martin	christian			
martin	franck			

Table relationnele

- On associe un nom à chaque table
- On associe un nom à chaque colonne
- L'ordre des colonnes est indifférent
- Les tables relationnelles sont physiquement indépendantes : les liens sont purement logiques

Exemple de table

D1={durand,lefebvre,martin} et D2={christian,franck}

durand	christian			
durand	franck			
lefebvre	christian			
lefebvre	franck			
martin	christian			
martin	franck			

Personne	nom	prénom		
	lefebvre	christian		
	martin	franck		
	durand	franck		

Objets relationnels

- Le schéma d'une table :
 - Ensemble des attributs de la table
- Le schéma d'une base de données :
 - Ensemble des tables de la base
- Donc une base de données relationnelle est une base de données dont le schéma est un ensemble de schémas de tables

Exemple de BDDR

 La BDD qui gère les commandes de produits aux différents fournisseurs de l'entreprise

Produit	pno	design	prix	poids	couleur
	102	fauteuil	1500	9	rouge
	103	bureau	3500	30	vert
	101	fauteuil	2000	7	gris
	105	armoire	2500	35	rouge
	104	bureau	4000	40	gris
	107	caisson	1000	12	jaune
	106	caisson	1000	12	gris
	108	classeur	1500	20	bleu

Fournisseur	fno	nom	adr	ville	Commande	cno	fno	pno	qute
	10	Dupont		Lille	·-	1001	17	103	10
	15	Durand		Lille		1003	15	103	2
	17	Lefebvre		Lille		1005	17	102	1
	12	Jacquet		Lyon		1007	15	108	1
	14	Martin		Nice		1011	19	107	12
	13	Durand		Lyon		1013	13	107	5
	11	Martin		Amiens		1017	19	105	3
	19	Maurice		Paris		1019	14	103	10
	16	Dupont		Paris		1023	10	102	8
		THE PERSON NAMED IN				1029	17	108	15

Traitement des entités

- Dans le MLD relationnel, l'unique type d'objet existant est la table
 - Chaque entité devient une table
 - Chaque propriété d'une entité devient une colonne de cette table
 - L'identifiant d'une entité devient la clé (primaire) de la table correspondante

Traitement des liens hiérarchiques

- Une association (0,n)-(0,1) provoque la migration d'une clé étrangère (l'identifiant côté 0,n) vers la table de l'entité côté (0,1)
- Si des propriétés étaient sur l'association elles migrent côté (0,1)
- La clé qui est recopiée est appelée clé étrangère dans l'autre table
- L'une des 2 tables contient donc à la fois une clé (primaire) et une clé étrangère

Les liens hiérarchiques vers le MLD

Le MLD correspondant est :

Traitement des liens (1,1)

 Une association dont les cardinalités maximales valent 1 nécessitent de choisir judicieusement la clé étrangère

Client

CodeClient

Nom

Livret A

CodeLivret
Solde
#CodeClient

Traitement des liens mail és

- Une association n-n donne naissance à une nouvelle table contenant chacune des clés ainsi que les propriétés portées par l'association
- Même chose pour les n-aires
- La clé qui est recopiée est appelée clé étrangère dans l'autre table
- La table créée contient une clé primaire constituée des clés étrangères

Les liens mail és vers le MLD

Le MLD correspondant est :

Notation

Table (<u>clé1,,cléN</u>, attribut1,.., attributN, #cléEtrangère1,.. #cléEtrangèreN)

Table1 (A, B)

Table2 (#<u>A, #C,</u> E)

Table3 (<u>A.</u> B, E, #C)