Index

Note: Page numbers followed by "f" and "t" refer to figures and tables, respectively.

A	internal bus attacks, 143, 143t
AAA (Authenticate and Authenticate Again), 158	Keeloq, 141
Adaptive cruise control (ACC), 18	radio jamming, 141
Advanced Automatic Crash Notification Relay system, 193	relay attack, 141
Aggregations, 48	RollJam, 141–142
Amazon	TPMS attack, 144, 144 <i>t</i>
Redshift, 125	VANETs attacks, 145, 145 <i>t</i> , 146 <i>t</i>
S3, 123	Autoencoder, 219
Analytics workflow, 32	Automated driving system (ADS), 23
Anderson—Darling (A—D) test, 243	Automated vehicles, 134-135
comments on, 244–247	AWS Elastic MapReduce, 123
Anscombe's Quartet dataset, 34, 34 <i>t</i> , 167–169, 168 <i>t</i>	Azure Blob Storage, 123
scatter plots and linear regression models for, 35f	
Antitheft system vulnerabilities, 139	D
attacks, 140–142, 140 <i>t</i>	В
Apache	Basic Safety Messages (BSMs), 18, 220
Beam, 120	Bayesian Neural Networks (BNN), 225-227
	Big data, defined, 20–21
Hadoop, 87–90	Big data analytics, 4-9, 54
Tez, 61	Big data and open data initiatives, 231–233
UIMA project, 60–61	Bivariate analysis, 247–253
Zeppelin, 121–122	Bloom's taxonomy, 42
ArcGIS, 6	Bluetooth low energy (BLE), 153
Architecture Analysis & Design Language (AADL), 195–202	Bluetooth smart, 153
AGREE, 199–200, 206–207	Bluetooth WPAN, 142-143
annex snippet, 201f	Bokeh, 121-122
speed sensor, 206f	Boxplots, 36, 37 <i>f</i>
behavior annex, 197–198	Building and validation models, 58-60
snippet, 198f	Business analytics, 47-53
contract snippet, 197f	business intelligence (BI), 47-48
contract implementation snippet, 197f	data mining, 51-53
error annex, 198–199	data warehouses, 48-49
OutOfRange error, 199	Extract, Transform, and Load (ETL) tool, 49-51
snippet, 199 <i>f</i> , 200 <i>f</i>	OLAP cubes, 48–49
StuckValue error, 199	star schema, 48–49, 49f
functionality, 197	Business Intelligence (BI), 31, 47-48, 121-122
language overview, 196–197	
Resolute annex, 200–202	•
snippet, 201f	C
snippet, 196 <i>f</i>	CAN vulnerabilities, 138
Artificial neural networks (ANNs), 295–296, 296f	Capability Maturity Model (CMM), 33
AssocExplorer, 41	CarShark, 143
Asymmetric cryptography, 147	Cascading, 61
Attack taxonomy, 137, 137f	Cell phone technologies, 4
Attacks on connected vehicle systems	Central tendency, 33
antitheft system attacks, 140–142, 140 <i>t</i>	Chi-squared test, 243
bypass kits, 141	comments on, 244-247
digital signature transponder (DST), 141	Chrysler's Uconnect dashboard computers, 144
ECU attack, 142–144, 142 <i>t</i>	Cloudera Data Hub (CDH), 62

Cloudera Manager, 123	respect for context, 147
Clustering (cluster analysis), 53, 298-299	transparency, 147
CODASYL, 45	security solutions for bus communications, 148–151
Coefficient of determination, 252	authentication, 148-149
Cognition, 45, 55	code obfuscation, 148
Cognitive analytics, 31, 54–55	confidentiality, 149
Cognitive architecture, 55	integrity, 149–150
Cognitive computing system, 45, 55	stakeholders and assets, 135–136, 136f
Cognitive model, 55	WPAN security and privacy, 152-153
Cognitive processes, 45, 55	Bluetooth security checklist, 152
Cognitive Science, 45	enabling data privacy in WPAN, 153
Collaborative Adaptive Sensing of the Atmosphere (CASA)	secure WPAN, 152–153
radars, 105	Connected Vehicle Reference Implementation Architecture
Columnar data format, 114	(CVRIA), 6, 18, 114–115, 202
Comma separated values (CSV) file, 76	collision detection behavior, 205f
Commercial/Media Wholesale Web Portal (CWWP), 2	Do Not Pass Warning (DNPW), 203–209, 204 <i>f</i>
Computer Emergency Response Team (CERT), 137	EMV2 error annex, 208, 208f
Confusion matrix, 58, 58t, 59t	goals and requirements, 203–204
Connected transport system (CTS), 113	information flow characteristics, 20t
data infrastructure, 115–117, 116 <i>f</i> , 274 <i>f</i>	resolute power draw validation, 207f, 208f
data ingest and stream processing, 119–120	Continuous Air-interface for Long and Medium Range
message broker, 119–120, 124f	(CALM), 135
processing engines for streaming, 120	Continuous Engineering, 194–195
storage formats, 120	pipeline, 195f
use cases, 118t	Cooperative Adaptive Cruise Control (CACC), 18, 19 <i>f</i>
Connected vehicle networks and vehicular applications, 3–4,	COPA, 42
132–135, 134 f , 191	Correlation coefficient, 43–44
attack taxonomy, 137, 137 <i>f</i>	Crash data, 228
development scenario, 202–209	
*	Crash injury severity modeling, 217–218
external networks, 133	Cryptography, 147–148
gateway ECU, 151	asymmetric, 147
handover security, 158	hash function, 148
innovative vehicular applications, 133–135	symmetric, 148
intrusion detection system (IDS), 151	Curbee, 106–107, 106 <i>f</i>
in-vehicle networks, 132–133	Cybersecurity, 235
privacy measurement of sensor data, 157–158	
Personal identifiable information (PII), 157	D
Privacy Preserving Data Mining (PPDM), 157	_
sensitivity (anomaly) detection and measurement of	Data analytics
privacy/sensitivity, 158	architecture, 202–203
unpredictable anomalous events, 157	descriptive, 242–249
rootkit traps, 150–151	functional facets, 32–45
secure OTA ECU firmware update, 155–157	future directions, 62-63
secure VANETs, 153–154	predictive, 249–259
security analysis, 137–145	R programming environment for, 70–71
attacks, 140–145	tools and resources, 60–62
future directions, 158–159	Data cleaning, 47
network and protocol vulnerability analysis, 138–140	Data driven highway patrol plan, 218-219
security and privacy solutions, 146-158	Data infrastructure, 115–117, 116f
accountability, 147	data collection and ingest, 116
choice, 147	data processing engines, 116
data minimization, de-identification, & retention, 147	higher-level infrastructure, 117-122
data security, 147	low-level infrastructure, 116, 122-125
integrity and access, 147	machine learning and analytics, 116

Data integration, 47	Data visualizations, 165
Data lake, 115	case study, 181-185
Data lifecycle, 56–57, 92, 95–102	classifying systems, 171-172
comparison of models, 102t	data types, 171-172
DataONE data lifecycle model, 98–99, 98f	interaction and distortion techniques, 172
Digital Curation Center (DCC) curation model, 96–98, 97f	visualization techniques, 172
community watch and participation, 97	computer graphics, 166
conceptualization and data collection, 97-98	fundamental challenge in designing effective, 172–175
curation and preservation, 97	data quantity reduction, 173–174
description and representation, 97	miniaturizing visual glyphs, 174–175
disposition of data, 97–98	interactive, 165–166
full lifecycle actions, 97	navigation strategies, 175–177
preservation planning, 97	focus + context strategy, 177
transformation of data, 97–98	overview + detail strategy, 176
future directions, 107–108	zoom and pan operations, 176
SEAD Research Object lifecycle model, 99–102, 100 <i>f</i> ,	pipeline, 169–171, 170 <i>f</i>
105–106	principles for designing effective, 179–181
interrelated components, 99	clear understanding in captions, 181
Live Object (LO), Curation Object (CO), or Publishable	data-pixel ratio, 180
Object (PO), 101	focus + context scheme, 180–181
relationships, 100–101	graphical excellence, 179
Research Object (RO) approach, 99	graphical executione, 179
states, 100–101	multifunctioning graphical elements, 180
U.S. Geological Survey (USGS) model, 95–96, 95f	optimal quantitative scales, 180
• • • • • • • • • • • • • • • • • • • •	reference lines, 180
acquiring, 96	
analysis stage, 96	support multiple concurrent views, 180
cross-cutting activities in, 96 planning, 95–96	techniques for alleviating over-plotting issues, 181
1 0	using graphical symbols, or glyphs, 166
preservation and publication of data, 96	visual interaction strategies, 177–179
processing, 96	dynamic query technique, 178
Data marts, 49–51	filtering operations, 178–179
Data mining, 51–53	linking techniques, 178
classification, 40–41	rearranging and remapping, 179
clustering (cluster analysis), 53	selecting items, 177–178
evolution analysis, 52	visual mappings, 170
frequent patterns, 51–52	Database Management Systems (DBMS), 45
itemset, 52	IBM Information Management System (IMS), 45
subsequence, 52	Relational DBMS (RDBMS), 45–47, 61
substructure, 52	System R, 45–46
outlier detection, 56	Databricks cloud, 121–122
Data pipelines, 102–107	Dataframe abstractions, 120
data lifecycle and, 103–104	Dataframes, 120–121
examples, 104 <i>f</i> , 105	Decision trees, 52
Data quality, 57	Deep learning, 122
Data routing and processing, 103	Delimited file, 75–78
Data sampling, 56–57	Density curve, 39–40
Data science, 45, 55–60, 115, 117, 121–122	Department of Motor Vehicles (DMV), 230
Data use cases, 92–95	Descriptive analytics, 6, 32–41
importance of data to advancements in ITS, 94	Diagnostic analytics, 32, 41–43
in-vehicle sensor data, 94	case studies, 41–43
sensor data, 94	COPA, 42
social media data, 94	Student Success System (S3), 42
weather and climate data, 94	teaching and learning, 42–43
Data variability, 92–95	Digest, 148

Digital signature transponder (DST), 141	Cloud Storage, 123
Dispersion, 33	Dataflow, 120
Distribution of a variable, 33–34	DistBelief, 122
Distributive Collaborative Adaptive Sensing (DCAS), 105	Dremel, 120
	Graph mining, 52
_	application, 56
E	GraphFrames, 120–121
Elastic MapReduce (EMR), 62, 123	
Electronic Control Units (ECUs), 131, 149-150	
rootkit vulnerabilities, 150–151	Н
Elliptic Curve Integrated Encryption Scheme algorithm, 153	Hadoop, 113
EMC Isilon, 123	the cloud, 123–125
Enterprise data warehouse, 49-51	deployment options, 124t
ERTICO Automated Driving Roadmap, 23	Distributed File System (HDFS), 61, 120, 123
Evolution analysis, 52	ecosystem, 61
Exploratory data analysis (EDA), 34-36	MapReduce, 61, 87–89, 117–119
case studies, 40-41	Platform-as-a-Service (PaaS) distribution, 62
discovery process, 36	Yet Another Resource Negotiator (YARN), 120, 123
illustration, 36–40	Handovers, security, 158
presentation process, 35	Hash function, 148
visual exploration process, 35–36	HAWQ, 120
Exploratory Data analysis Environment (EDEN) visual	HAZMAT security, 14
analytics, 171, 175, 175f, 181	High-level abstractions for data analytics, 113
dynamic variable summarization via embedded	Histograms, 33–34
visualizations, 183	Hive, 61, 120
dynamic visual queries through direct manipulation, 182	Hortonworks, 62
multiple coordinated views, 183-185, 184f, 185f	Hortonworks Data Platform (HDP), 62
multivariate visualization using interactive parallel	Hours-of-Service (HOS) rules, 218
coordinates, 182	Hypercube, 48
Extract, Transform, and Load (ETL) tool, 49-51	J.F. Tarana, T.
Extreme outliers, 36	
	1
	IBM Watson's Jeopardy! game championship, 31
F	Identity Resolution Key (IRK), 153
Feature selection, 57	If-then rules, 52
Feature vector, 52	Image processing tools, 6
Federal Motor Carrier Safety Administration (FMCSA), 218	Impala, 120
First-Order Reliability Method (FORM), 219–220	Incident management, 4
5Vs of Big Data, 1–2	Information Mural, 175
Freight Advanced Traveler Information Systems (FRATIS),	Information visualization, 165–166
241-242	Integrated Database Management System (IDMS), 45
Fuzzy regression, 256–259	Integrity constraints (ICs), 57
fuzzy parameters, 257	Intelligent transportation system (ITS), 91, 131, 191
, , , , , , , , , , , , , , , , , , , ,	architecture, 9–14
	logical, 11
G	physical, 11–12
Georgia Navigator, 14–15, 15 <i>f</i>	security, 14
Geostationary Operational Environmental Satellite system	service packages, 12–13
(GOES), 94	standards, 13–14
Ggplot2, 121–122	system components, 9
Global positioning systems (GPS), 3–4	Transit Management Subsystem, 12–13
Goodness-of-fit (GOF) test, 243	transit vehicle tracking service package, 12, 13f
Google, 134–135	US national ITS architecture, 10, 10 <i>f</i>
BigQuery, 125	user services and user service requirements, 10–11
- - • • •	±,

data flam diagram 12f	Loodoble komel medule (LVM) readsit 150 151
data flow diagram, 12f	Loadable kernel module (LKM) rootkit, 150–151
data sources and data collection technologies, 3–4, 5t	Long-term pavement performance (LTPP) data, 288–289
data system, 2–3	Lustre, 123
data-intensive applications of, 1–4	
5Vs of Big Data, 1–4	M
foundation layer, 2–3	
infrastructure to support, 4–9	Machine learning, 114, 122, 283
Joint Program Office (JPO), 13–14	algorithms
1960s and 1970s, 21	clustering, 298–299
1980s and 1990s, 21–22	decision trees, 293–295, 294 <i>f</i>
overview of its applications, 14–20, 16t	development approach, 287f
data analytics, 18–20	evaluating performance, 299–300
mobility, safety and environmental, 15–18	neural networks (NNs), 295–297
variable speed limits system, 16–18, 17 <i>f</i>	regression methods, 290–293, 291f
Strategic Plan, 167	support vector machines (SVMs), 297–298
three Is, 3	example, 300–302, 302 <i>f</i> , 303 <i>f</i>
2000s, 22–23	methods and algorithms, 283–286
2010s, 23–24	supervised learning, 284–285
Intermodal freight transportation	unsupervised learning, 285–286
ITS-enabled	understanding data, 286–290
data analytics, 242	data collection, 287–288
Internet of Things (IoT), 31–32, 107–108, 191	data fusion, 288–289
Internet protocol (IP), 2–3	data preprocessing, 289–290
Interquartile (IQ) range, 36	problem definition, 286–287
Intrusion detection system (IDS), 151	Magellan, 119
In-vehicle infrastructure, 114	Matlab, 6
Inverse document frequency (idf), 53	Matplotlib, 121–122
	Message Authentication Codes (MACs), 149–150, 150f
	Microsoft
J	HDInsight, 123
JavaScript Object Notation (JSON)-type data, 273	Power BI, 121–122
	Mild outliers, 36
	Miniaturizing visual glyphs, 174-175
K	MongoDB, 105
Keeloq, 141	MOST vulnerabilities, 138-139
Keim's classification scheme, 171	MPP (Massively Parallel Processing) databases, 125
Kernel, 39–40	Mtcars, 36
Kernel density plot, 33–34	Multicube, 48
K-fold cross validation, 300	Multidimensional scaling (MDS), 173-174
Kolmogorov-Smirnov (KS) test, 158, 243	Multivariate analysis, 253–256
comments on, 244–247	correlation values, 254–255
KullbackLeibler (KL) distance, 158	Multivariate regression, 292
Kurtosis, 33–34	MySQL database, 105
	•
L	N
LAK dataset, 41	Naturalistic driving study, 230–231
Lambda architecture for scalable real-time data systems,	Natural language processing tools, 6
274–276	Natural Language Understanding (NLU) systems, 60–61
Latent Dirichlet Allocation (LDA) model, 40	Near-crash events/extreme driving behaviors, 234
LIN vulnerabilities, 138	Network and protocol vulnerability analysis, 138–140
Linear regression, 291–292	antitheft system vulnerabilities, 139
Linear regression line, 43, 44f	CAN vulnerabilities, 138
LinkedUp project, 41	LIN vulnerabilities, 138

Network and protocol vulnerability analysis (<i>Continued</i>) MOST vulnerabilities, 138–139 TPMS vulnerabilities, 139 VANETs vulnerabilities, 139 WPAN vulnerabilities, 139 Neural network models for crash data modeling, 225 fully connected multilayer feed-forward, 226f Neural networks (NNs), 52, 122, 295–297 Non-linear feedback shift register (NLFSR), 141	use cases, 44 Prescriptive analytics, 32–33, 45 Principal component analysis (PCA), 173–174 Privacy, 9 Probability density function (PDF), 39–40 Public clouds, 123 Python, 6, 62, 69, 105, 121–122 data ecosystem, 122
Normal distribution, 36–37	Q
NoSQL database, 105	Quadratic model, 292
On Board Equipment (OBE), 202	Quantile, 36 Quantile—quantile (Q—Q) plot, 36—37, 37f Quartiles, 36
On-Board Diagnostic (OBD) system, 233	Queensland Hospital Admitted Patient Data Collection
Online analytical processing (OLAP), 31, 46–47 cubes, 48–49	(QHAPDC), 40 QuickStarts, 62
functions, 46–47	QuickStarts, 02
hybrid OLAP (HOLAP), 51	_
multidimensional OLAP (MOLAP), 51	R
relational OLAP (ROLAP), 51	R programming, 70–71
servers, 51	big data processing, 87–89
specialized SQL DBMS, 51	Chi-squared test, 246
Online transaction processing (OLTP) applications, 45, 47	data frames and list, 72–75 fit of the data against a log-normal distribution,
Open Archives Initiative Object Reuse and Exchange (OAI- ORE), 107	determining, 246
Open Systems Interconnection network model, 2–3	Graphical User Interface (GUI), 71f
Oracle, 45–46, 119	importing data from external files, 75–84
OTA ECU firmware update, 155–157, 155f	delimited file, 75–78
availability, 155	SQL (Structured Query Language) files, 83-84
code confidentiality, 155	XML files, 78–82
code integrity, 155	multiple linear regression model, 255–256
code origin authenticity, 155	platforms for large-scale social media data, 84–87
command freshness, 155	dynamic live streaming, 86–87
Hardware Security Module (HSM), 156	package for static search, 85–86 RStudio, 70, 71 <i>f</i>
message source authenticity, 155 Remote Diagnosis phase, 157	Random access queries, 121
secure protocol for, 156, 156f	Real-time, speech-to-speech translation
update metadata confidentiality, 155	systems, 63
Outlier, 36	Regression coefficients or weights, 291–292
detection, 55	Regression methods, 290-293
	choosing suitable, 293
P	Representational State Transfer (REST) architecture, 105
Pearson's product-moment correlation coefficient, 252 properties, 252–253	Research data exchange (DRE), 72 Residual sum of squares (RSS), 291–292
Photogrammetry, 4	Resilient Distributed Datasets (RDD), 117–119
Pig, 61	Resource drains, 33
Pig Latin, 61	Roadside units (RSUs), 3–4
Polynomial regression, 292 Postgres, 119	Roadway data, 229–230 Roadway data collection technologies, 3
Predictive analytics, 32–33, 43–44	Ross, Thomas, 283
correlation coefficient 43–44	Round Table Automated Driving (RTAD) 23

\$	characteristics, 264-267
Safety analysis methods	value, 266–267
issues and future directions, 233–235	variety, 266
statistical methods, 221–225	veracity, 266
categorical data modeling, 222-225	volume and velocity, 265-266
count data modeling, 221–222	data analysis, 267–270
Generalized Additive Models (GAMs), 222	future research issues/challenges, 272-277
Generalized Linear Models (GLMs), 221–222	supplemental traffic data source, 273-277
latent class logit (LCL) model, 223	supplemental transportation data source, 272-273
standard MNL model and mixed MNL model, 224-225	Society of Automotive Engineers (SAE) standard, 195
Safety applications of data and data analytics	Software Defined Networking (SDN), 158
big and heterogeneous data for safety, 219	Software metrics and measurements, 33
commercial vehicle safety, 218	Space-Filling Multidimensional Data Visualization
connected vehicles and traffic safety, 220	(SFMDVis), 41
crash count/frequency modeling, 216-217	Spark, 61, 117–119, 119f, 121–123
crash injury severity modeling, 217–218	dataframes, 120–121
data driven highway patrol plan, 218–219	MLlib, 121
effectiveness of safety countermeasures, 217	SQL, 120
human factors, 215–216	Streaming, 120
real-time traffic operation and safety monitoring, 219-220	SQL (Structured Query Language) analytics, 46-47, 83-84,
Safety data, 227–233	120-121
big data and open data initiatives, 231–233	Static database schema analysis, 57
crash data, 228	Statistical and spatiotemporal analysis tools, 6
naturalistic driving study, 230-231	Stop words, 53
NDS data for addressing safety issues, 232t	Storm, 61
roadway data, 229-230	Streaming engines, 120
traffic data, 228-229	Streaming infrastructure for deployment, 114–115
vehicle and driver data, 230	Stream-processing engines (SPE)
weather data, 230	data provenance, 277
Safety Pilot Model Deployment (SPMD), 220, 231	dynamic provision of computing resources from distributed
Samuel, Arthur, 283	locations, 277
Santayana, George, 93	evaluation and selection, 276
Satisfiability Modulo Theorem (SMT), 200	integration of infrastructure elasticity, 276
Scalable data processing, 117–119	integration of multiple, 276
Scatter plot matrix, 37–39, 38 <i>f</i> , 43	Student Success System (S3), 42
Scientific visualization, 165–166	Success index, 42
Scikit-learn machine learning package, 58	Supervised learning, 284–285
Seaborn, 121–122	classification, 285
Search-based analytics, 121	regression, 285
Security challenges in automobile industry, 131–132	Support vector machines (SVMs), 297–298
SeeSoft system, 175	Symmetric cryptography, 148
Shneiderman's task taxonomy system, 171	Systems Development V Model, 192–194
Short-running data management, 121	construction, 194
Simple linear regression, 43–44, 249	operations and maintenance, 194
Skewness, 33–34	plans, specifications, and estimates, 193–194
Smart phone Apps, 134–135	preliminary engineering, 193
Social media data in transportation, 263-264	project closeout, 194
application, 270–272	project initiation, 193
traffic information dissemination, 272	Systems engineers, 191–192, 192f
traffic management during planned events, 271	
traffic management during unplanned events, 271-272	T
traffic prediction, 270-271	Teaching analytics, 42–43
transportation planning projects, 270	Telematics Control Units (TCUs), 133–134

security requirements, 153–154 DSRC, 154 Efficient Conditional Privacy Preservation Protocol (ECPP), 154
k-anonymity, 154 vulnerabilities, 139 attacks, 145, 145t, 146t Vehicle and driver data, 230 Vehicle platooning, 134–135 Vehicle-based data collection technologies, 3–4
Vehicle-based data contection technologies, 3–4 Vehicle-driver interface design, 235 Vehicle-to-vehicle (V2V) communication, 18, 139 Vehicle-to-vehicle (V2V) infrastructure, 114 Visual analytics, 35–36, 53–54 software products, 54
techniques, 166 Visualization cube, 40
W Whiskers, 36 Wide area data collection technology, 3 Win-loss chart, 42 Wireless internal networks, 137–138
Workflow, 103 World Atlas of Language Structures (WALS), 60 X XML files, 78–82