

Correction TD

07/09/09 Cours CNAM 1

Exercices

Exercice 1 : Gestion de la mémoire par partitions variables

Soit un système qui utilise l'allocation par partitions variables. On considère à l'instant t, l'état d'allocation de la mémoire centrale représenté sur la figure 16.1, où les zones grisées représentent les zones libres.

Figure 16.1 Allocation de la mémoire à t.

- 1. Représentez l'évolution de la mémoire centrale, suite à chacun des événements suivants, en supposant une stratégie de choix *First Fit* :
 - 1) arrivée du programme G de taille égale à 20 Ko;
 - 2) départ du programme B;
 - 3) arrivée du programme H de taille égale à 15 Ko;
 - 4) départ du programme E;
 - 5) arrivée du programme I de taille égale à 40 Ko.
- 2. Même question mais en supposant une stratégie de choix Best Fit.

Exercices

Réponse 1 : Gestion de la mémoire par partitions variables

Exercices

Exercice 2 : Remplacement de pages

Soit la liste de pages virtuelles référencées aux instants t = 1, 2, ..., 11 : 3, 5, 6, 8, 3, 9, 6, 12, 3, 6, 10

Réponse 2 :

Accès	3	5	6	8	3	9	6	12	3	6	10
Case 1	3	3	3	3	3	9	9	9	9	9	10
Case 2		5	5	5	5	5	5	12	12	12	12
Case 3	3. ;		6	6	,6	6	6	6	3	3	3
Case 4				8	8	8	8	8	8	6	6
Défaut	D	0	D	D		D		D	D	D	D

RU

Accès	3	5	6	8	3	9	6	12	3	6	10
Case 1	3	3	3	3	3	3	3	3	3	3	3
Case 2		5	5	5	5	9	9	9	9	9	10
Case 3			6	6	6	6	6	6	6	6	6
Case 4				8	8	8	8	12	12	12	12
Défaut	D	D	D	D	a prétaga	D	enes (3	D			D

Exercices

Exercice 3 : Mémoire paginée et segmentée

Réponse 3 :

12 292 pour le processus A : adresse virtuelle <S2, page 2, déplacement 4> = adresse réelle <case 10, déplacement 4> = octet 331 780.

8 212 pour le processus B : adresse virtuelle <\$1, page 3, déplacement 20> = adresse réelle <case 2, déplacement 20> = octet 4 116.

- 3. adresse logique «S2B, page 2, 10». La page 2 du segment 2 du processus B n'est pas en mémoire centrale. Il se produit un défaut de page. Nous pouvons supposer que la page manquante est chargée dans la première case libre, c'est-à-dire la case 1. Il s'ensuit alors que l'adresse physique correspondante est 10.
- 4. 4 098 pour le processus A : adresse virtuelle <S1, page 2, déplacement 2> = adresse réelle <case 5, déplacement 2> = octet 16 386.