Unique representation

Recall idea of *coordinate system* for a vector space V:

- ▶ Generators $\mathbf{a}_1, \dots, \mathbf{a}_n$ of \mathcal{V}
- lacktriangle Every vector $oldsymbol{v}$ in $\mathcal V$ can be written as a linear combination

$$\mathbf{v} = \alpha_1 \, \mathbf{a}_1 + \cdots + \alpha_n \, \mathbf{a}_n$$

• We represent vector **v** by its coordinate representation $[\alpha_1, \ldots, \alpha_n]$

Question: How can we ensure that each point has only one coordinate representation?

Answer: The generators $\mathbf{a}_1, \dots, \mathbf{a}_n$ should form a basis.

Unique-Representation Lemma Let $\mathbf{a}_1, \dots, \mathbf{a}_n$ be a basis for \mathcal{V} . For any vector $\mathbf{v} \in \mathcal{V}$, there is exactly one representation of \mathbf{v} in terms of the basis vectors.

Uniqueness of representation in terms of a basis

Unique-Representation Lemma: Let $\mathbf{a}_1, \dots, \mathbf{a}_n$ be a basis for \mathcal{V} . For any vector $\mathbf{v} \in \mathcal{V}$, there is exactly one representation of \mathbf{v} in terms of the basis vectors.

Proof: Let \mathbf{v} be any vector in \mathcal{V} .

The vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ span \mathcal{V} , so there is at least one representation of \mathbf{v} in terms of the basis vectors.

Suppose there are two such representations:

$$\mathbf{v} = \alpha_1 \, \mathbf{a}_1 + \dots + \alpha_n \, \mathbf{a}_n = \beta_1 \, \mathbf{a}_1 + \dots + \beta_n \, \mathbf{a}_n$$

We get the zero vector by subtracting one from the other:

$$\mathbf{0} = \alpha_1 \, \mathbf{a}_1 + \dots + \alpha_n \, \mathbf{a}_n - (\beta_1 \, \mathbf{a}_1 + \dots + \beta_n \, \mathbf{a}_n)$$
$$= (\alpha_1 - \beta_1) \, \mathbf{a}_1 + \dots + (\alpha_n - \beta_n) \, \mathbf{a}_n$$

Since the vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$ are linearly independent, the coefficients $\alpha_1 - \beta_1, \dots, \alpha_n - \beta_n$ must all be zero, so the two representations are really the same.

QED

Uniqueness of representation in terms of a basis: The case of graphs

Unique-Representation Lemma Let a_1, \ldots, a_n be a basis for \mathcal{V} . For any vector $\mathbf{v} \in \mathcal{V}$, there is exactly one representation of \mathbf{v} in terms of the basis vectors.

A basis for a graph is a spanning forest.

Unique Representation shows that, for each edge xy in the graph,

- ▶ there is an *x*-to-*y* path in the spanning forest, and
- there is only one such path.