# **Automated Game Playing by (Intelligent) Machines: Part III**







## Nim is a Sum of Games

3-pile nim is like the "sum" (or combination) of three 1-pile nim games.

At each step, pick one of the three games (that is non-terminal) and make a move in that game.

The position is terminal iff all 3 games are in terminal positions.

## **Other Combinations**

I can create a new game by combining Nim and Chomp





A player can make a move in any of these. If no move exists (both games terminal), next player loses

#### Combine Even More?



Combine Nim, Chomp and Soda can game? What is the winning strategy?

Why combine? Sometimes even a single game can be seen as a combination of multiple games (like 3 pile Nim is just a combination of 1 pile Nim)

# Sum (or Combination) of games

A and B are games. Game A+B is a new game where the allowed moves are to pick one of the two games A or B (that is in a non-terminal position) and make a legal move in that game.

Terminal positions of A+B  $\equiv$  Positions that terminal in **both** A and B.

Note: The sum operator is

- commutative [ A+B = B+A ]
- associative [ (A+B) + C = A + (B+C) ]

## **Analyzing Games**

We assign a number to positions of any (normal, impartial) game.

This number is called the Nimber of the position.

Computed using the MEX function.

#### The MEX

The "MEX" of a finite set of natural numbers is the Minimum EXcluded element.

MEX 
$$\{0, 1, 2, 4, 5, 6\} = 3$$

$$MEX \{1, 3, 5, 7, 9\} = 0$$

$$MEX \{\} = 0$$

## **Definition of Nimber**

The Nimber of a game (position) G (denoted N(G)) is defined inductively as follows:

```
N(G) = 0 if G is terminal
```

$$N(G) = MEX{N(G_1), N(G_2), ... N(G_n)}$$

where  $G_1$ ,  $G_2$ , ...  $G_n$  are the successor positions of G (i.e. the positions resulting from all the allowed moves)

# Example: Nimber for 1-pile Nim Game

Let  $P_k$  denote the position that is a pile of k chips in the game of (one-pile) Nim.



What is the value of  $N(P_k)$ ?

Theorem: Nimber of a position with a single pile of k chips,  $N(P_k) = k$ 

**Proof:** Use induction.

Base case is when k=0.  $N(P_0)=0$ . (Terminal position).

 $N(P_1) = MEX(N(P_0)) = 1$  (just for intuition)

When k>0 the set of possible positions after a legal move is  $P_{k-1}$ ,  $P_{k-2}$ , ...  $P_0$ .

By induction these positions have Nimbers k-1, k-2, ... 0.

The MEX of these is k.

## Key Theorem (No Proof)

**Theorem:** Any game/position G is a P-position *if and only if* N(G)=0. (for any game)

Also Keep in Mind: Given G, next player can move to a position G' with any desired value of N(G') < N(G)

## How to Win Any Game

Make sure you move the game in a state G s.t. N(G)=0.

- 1) For atomic games: analyze, try to compute Nimber for any position
- 2) For sum of games: use the Nimber theorem!

## The Nimber Theorem

Theorem: Let A and B be two impartial normal games. Then:

$$N(A+B) = N(A) \oplus N(B)$$

## **Beauty of Nimbers**

They completely capture what you need to know about a game in order to add it to another game.

This often allows you to compute winning strategies, and can speed up game search.

# **Application to Nim**

Game of Nim is just the sum of several games. We have shown that for pile of size a,  $N(P_a) = a$ .

If the piles are of size a, b, and c, the nimber of this position, by the Nimber Theorem, is just  $a \oplus b \oplus c$ .

So it's a P-position if and only if  $a \oplus b \oplus c = 0$ , which is what Bouton proved.

# **Application to Chomp**

What is the nimber of this chomp game?



# What if we add this to a nim pile of size 4?



Is this an N-position or a P-position?

Nimber  $\neq$  0. So it is an N-position. How do you win?

If we remove two chips from the nim pile, then the nimber is 0, giving a P-position. This is the unique winning move in this position.

# The Game of Dawson's Kayles

Start with a row of n bowling pins:



A move consists of knocking down 2 neighboring pins.

The last player to move wins.

Note: an isolated pin is stuck and can never be removed.

How do we analyze this game?

Given a row of n pins: there are n-1 possible moves [(x,y) denotes x pins to left and y pins to right of the two pins that are knocked down]

So the nimber of a row of n pins, denoted N(n) is:

0 if n=0 or if n=1  
Else MEX{N(0)
$$\oplus$$
N(n-2), N(1) $\oplus$ N(n-3), ... N(n-2) $\oplus$ N(0)}

Let's work out some small values.....

| n    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|------|---|---|---|---|---|---|---|---|---|---|----|----|----|
| N(n) | 0 | 0 | 1 | 1 | 2 | 0 | 3 | 1 | 1 | 0 | 3  | 3  | 2  |

MEX{  $N(0) \oplus N(n-2)$ ,  $N(1) \oplus N(n-3)$ , ...  $N(n-2) \oplus N(0)$  }

The table has period 34

If going first, start with 2,3,4,6.... Pins!

## Read on Your Own: Treblecross Game

Tic-Tac-Toe on a line with only X's allowed. First player to form 3-in-a-row wins.



Read: http://lbv-pc.blogspot.com/2012/07/treblecross.html

#### What We have Learnt

- Winning strategy for any combination of games
- Even single games can be seen as combination of smaller games
- Nimber of a position represents everything that I need to know about that position
- Makes it much easier to write computer programs to find winning strategies

