Image Enhancement (Spatial Filtering 2)

Contents

In this lecture we will look at more spatial filtering techniques

- Spatial filtering refresher
- Sharpening filters
 - 1st derivative filters
 - 2nd derivative filters
- Combining filtering techniques

Spatial Filtering Refresher

The above is repeated for every pixel in the original image to generate the smoothed image

Sharpening Spatial Filters

Previously we have looked at smoothing filters which remove fine detail

Sharpening spatial filters seek to highlight fine detail

- Remove blurring from images
- Highlight edges

Sharpening filters are based on *spatial* differentiation

Spatial Differentiation

Differentiation measures the *rate of change* of a function

Let's consider a simple 1 dimensional example

1st Derivative

The formula for the 1st derivative of a function is as follows:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

It's just the difference between subsequent values and measures the rate of change of the function

1st Derivative (cont...)

2nd Derivative

The formula for the 2nd derivative of a function is as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) - 2f(x)$$

Simply takes into account the values both before and after the current value

2nd Derivative (cont...)

1st & 2nd Derivatives

Comparing the 1st and 2nd derivatives we can conclude the following:

- 1st order derivatives generally produce thicker edges
- 2nd order derivatives have a stronger response to fine detail e.g. thin lines
- 1st order derivatives have stronger response to grey level step
- 2nd order derivatives produce a double response at step changes in grey level

Using Second Derivatives For Image Enhancement

The 2nd derivative is more useful for image enhancement than the 1st derivative

- Stronger response to fine detail
- Simpler implementation
- We will come back to the 1st order derivative later on

The first sharpening filter we will look at is the *Laplacian*

- Isotropic
- One of the simplest sharpening filters
- We will look at a digital implementation

The Laplacian

The Laplacian is defined as follows:

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

where the partial 1^{st} order derivative in the x direction is defined as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$
d in the wedirection on follows:

and in the y direction as follows:

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

The Laplacian (cont...)

So, the Laplacian can be given as follows:

$$\nabla^{2} f = [f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y+1) + f(x, y-1)]$$
$$-4f(x, y)$$

We can easily build a filter based on this

0	1	0
1	-4	1
0	1	0

The Laplacian (cont...)

Applying the Laplacian to an image we get a new image that highlights edges and other discontinuities

Original Image

Laplacian Filtered Image

Laplacian
Filtered Image
Scaled for Display

But That Is Not Very Enhanced!

The result of a Laplacian filtering is not an enhanced image We have to do more work in order to get our final image Subtract the Laplacian result from the original image to generate our final sharpened enhanced image

$$g(x, y) = f(x, y) - \nabla^2 f$$

Laplacian
Filtered Image
Scaled for Display

Laplacian Image Enhancement

In the final sharpened image edges and fine detail are much more obvious

Simplified Image Enhancement

The entire enhancement can be combined into a single filtering operation

$$g(x, y) = f(x, y) - \nabla^2 f$$

$$= f(x, y) - [f(x+1, y) + f(x-1, y) + f(x, y+1) +$$

Simplified Image Enhancement (cont...)

This gives us a new filter which does the whole job for us in one step

Variants On The Simple Laplacian

There are lots of slightly different versions of the Laplacian that can be used:

0	1	0
1	-4	1
0	1	0

Simple Laplacian

1	1	1
1	-8	1
1	1	1

Variant of Laplacian

Simple Convolution Tool In Java

A great tool for testing out different filters

- From the book "Image Processing tools in Java"
- Available from my <u>website</u>
- To launch: java ConvolutionTool Moon.jpg

1st Derivative Filtering

Implementing 1st derivative filters is difficult in practice

For a function f(x, y) the gradient of f at coordinates (x, y) is given as the column vector:

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

1st Derivative Filtering (cont...)

The magnitude of this vector is given by:

$$\nabla f = mag(\nabla f)$$

$$= \left[G_x^2 + G_y^2\right]^{\frac{1}{2}}$$

$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{\frac{1}{2}}$$

For practical reasons this can be simplified as:

$$\nabla f \approx \left| G_{x} \right| + \left| G_{y} \right|$$

1st Derivative Filtering (cont...)

There is some debate as to how best to calculate these gradients but we will use:

$$\nabla f \approx \left| (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3) \right| + \left| (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7) \right|$$

which is based on these coordinates

Z ₁	Z_2	z_3
Z ₄	Z ₅	Z ₆
Z ₇	Z ₈	Z ₉

Sobel Operators

Based on the previous equations we can derive the *Sobel Operators*

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

To filter an image it is filtered using both operators the results of which are added together

Sobel Example

An image of a contact lens which is enhanced in order to make defects (at four and five o'clock in the image) more obvious

Sobel filters are typically used for edge detection

Combining Spatial Enhancement Methods

Successful image enhancement is typically not achieved using a single operation

Rather we combine a range of techniques in order to achieve a final result

This example will focus on enhancing the bone scan to the right

Combining Spatial Enhancement Methods (cont...)

Combining Spatial Enhancement Methods (cont...)

Result of applying a (h) power-law trans. to Sharpened image (g) which is sum of (a) **(g)** and (f) The product of (c) and (e) which will be used as a mask (e)

Image (d) smoothed with a 5*5 averaging filter

Combining Spatial Enhancement Methods (cont...)

Compare the original and final images

Summary

In this lecture we looked at:

- Sharpening filters
 - 1st derivative filters
 - 2nd derivative filters
- Combining filtering techniques