Gradient Flows notes

Jonas Teuwen

February 28, 2013

Contents

1	Hilbert space theory			
	1.1	"Gradi	ent flows" on a Hilbert space	3
	1.2	Unique	eness and a priori estimates	6
	1.3	Integra	d formulation of EVI	8
	1.4	"Existence" in case <i>X</i> is a Hilbert space		9
		1.4.1	Preliminaries	9
		1.4.2	Moreau-Yosida approximation	12
		1.4.3	A quasi-contractive semigroup associated with ϕ	16
		1.4.4	"Existence" theorem	19
2	Grad	dient flo	ows in metric spaces	23

1 Hilbert space theory

1.1 "Gradient flows" on a Hilbert space

Let $(H, \langle \cdot, \cdot \rangle)$ be a real Hilbert space with norm $|\cdot|$. Now let $\phi : H \to \mathbf{R}$ and recall that ϕ is Fréchet differentiable at x in H if there exists a bounded operator x^* on H such that

$$\phi(x + h) - \phi(x) = x^*(h) + o(|h|)$$

If such an x^* exists, then it will be unique and will be called the gradient of ϕ at x. So, according to the Riesz representation theorem there is an unique y in H such that $\langle y, h \rangle = x^*(h)$ for all h in H. Further we have $||x^*|| = |y|$. This y will also be called the gradient of ϕ at x. We will denote this one as $\nabla \phi(x)$. Now if ϕ is differentiable at every x in H and the map $\nabla \phi$ from H into itself is continuous, we say that ϕ is continuously differentiable and we write this as $\phi \in C^1(H, \mathbf{R})$. Further if $\nabla \phi$ is Lipschitz, then ϕ is said to be in $C^{1,1}(H, \mathbf{R})$.

Now let $\phi \in C^{1,1}(H, \mathbf{R})$ and let $\{S(t)\}_{t \in \mathbf{R}}$ be the group of operators associated with $F = \nabla \phi$. That is, we solve $\dot{u}(t) = F(u(t))$ for $t \in \mathbf{R}$ with u(0) = x. So, then we define $\Phi(t, x) = u_x(t)$. Now the semigroup of operators is given by $S(t)x := \Phi(t, x)$. Now clearly the orbits $t \mapsto S(t)x$ are continuously differentiable and so is the map $t \mapsto \phi(S(t)x)$. Further by the definition of S

$$\frac{d}{dt}\phi(S(t)x) = \left\langle \nabla\phi(S(t)x), \frac{d}{dt}S(t)x \right\rangle = |\nabla\phi(S(t)x)|^2 \geqslant 0$$

Hence, $t \mapsto \phi(S(t)x)$ is nondecreasing. We could as well do this with $\tilde{S}(t) = S(-t)$, then $t \mapsto \phi(\tilde{S}(t)x)$ nonincreasing. We also call this a gradient flow. In the sequel we will consider (semi)-flows associated with $-\nabla \phi$.

1.1 Lemma. Let $\psi : H \to \mathbf{R}$ be convex and Fréchet differentiable at $x \in H$. Further let $y \in H$. Now the following statements are equivalent:

1.
$$y = \nabla \psi(x)$$
,

2.
$$\langle y, h \rangle + \psi(x) \leq \psi(x+h)$$
 for every $h \in H$.

Remark: For a function $\psi: D(\psi) \subset H \to \mathbf{R}$ and every $x \in D(\psi)$ we say that $y \in H$ is a subgradient of ψ at x if

[1.1]
$$\langle y, z - x \rangle + \psi(x) \leq \psi(z)$$
 for every $z \in D(\psi)$.

The collection of all subgradients of ψ at x is called the subdifferential of ψ at x and is denoted by $\partial \psi(x)$.

Proof. 1) \Longrightarrow 2): Let $x_1, x_2 \in H$. The convexity of ψ implies the convexity of $t \mapsto \psi(x_1 + tx_2)$. It follows that the difference quotient

$$t \mapsto \frac{\psi(x_2 + tx_2) - \psi(x_2)}{t}$$

is nondecreasing. We can see this by noting that $x_1 + tx_2 = \frac{t}{t'}(x_1 + t'x_2) + \frac{t'-t}{t'}x_1$. Now if we choose $x_1 = x$ and $x_2 = h$ we have by the chain rule that

[1.2]
$$\langle y, h \rangle = \langle \nabla \psi(x), h \rangle = \lim_{t \downarrow 0} \frac{\psi(x + th) - \psi(x)}{t} = \inf_{t \downarrow 0} \frac{\psi(x + th) - \psi(x)}{t}$$
$$\leq \psi(x + h) - \psi(x)$$

2) \implies 1): If we replace h with th in 2) with t > 0 we obtain

$$\langle y, h \rangle \leqslant \frac{\psi(x + th) - \psi(x)}{t}$$

so taking the limit $t \to 0$ we get $\langle y, h \rangle \le \langle \nabla \psi(x), h \rangle$. If we replace h by -h we reach equality. So now if we set $h = y - \nabla \psi(x)$ we get

$$\langle y, y - \nabla \psi(x) \rangle = \langle \nabla \psi(x), y - \nabla \psi(x) \rangle$$

So we get $y = \nabla \psi(x)$. This implies 1).

1.2 Corollary. If $u \in C^1((a,b),H)$ for some $a,b \in R$, a < b and $\psi : H \to \mathbf{R}$ is everywhere Fréchet differentiable and convex, then

$$\dot{u}(t) = -\nabla \psi(u(t)), \ t \ in \ (a, b)$$

iff

$$\frac{1}{2}\frac{d}{dt}d(u(t),z)^2 + \psi(u(t)) \le \psi(z) \text{ for every } z \in H, t \in (a,b)$$

Proof. By the previous Lemma we have

$$\langle \dot{u}(t), z - u(t) \rangle + \psi(u(t)) \le \psi(z)$$
 for every $z \in H$, $t \in (a, b)$.

Which is what we want since

$$\frac{d}{dt}|u(t) - z|^2 = 2\langle \dot{u}(t), u(t) - z \rangle$$

We can now consider a slightly more general situation. We set $e(x) = \frac{1}{2}|x|^2$ for $x \in H$. So we now have that

[1.3]
$$\nabla e(x) = x, \quad e(x - y) = \frac{1}{2}d(x, y)^2, \text{ for } x, y \in H$$

1.3 Proposition. Let $\phi: H \to \mathbf{R}$ be everywhere Fréchet differentiable such that $\phi - \alpha e$ is convex for some $\alpha \in \mathbf{R}$. Further, let J be a nonempty interval of \mathbf{R} and $u \in C^1(J, H)$. Then the following are equivalent:

1.
$$\dot{u}(t) = -\nabla \phi(u(t))$$
 for $t \in J$,

2.
$$\frac{1}{2} \frac{d}{dt} d(u(t), z)^2 + \frac{\alpha}{2} d(u(t), z)^2 + \phi(u(t)) \le \phi(z)$$
 for every $z \in H$ and $t \in J$. This inequality is called the evolution variational inequality.

Proof. Let $\psi = \phi - \alpha e$. Now 1) is equivalent to $\nabla \psi(u(t)) = -\dot{u}(t) - \alpha u(t)$. By Lemma 1.1 this is equivalent to

$$\langle -\dot{u}(t) - \alpha u(t), z - u(t) \rangle + \psi(u(t)) \le \psi(z)$$
 for all $z \in H$

Now, we can use the definition of ψ we get

$$\langle -\dot{u}(t),z-u(t)\rangle -\alpha \langle u(t),z-u(t)\rangle +\phi(u(t)) -\frac{\alpha}{2}|u(t)|^2 \leq \phi(z) -\frac{\alpha}{2}|z|^2 \text{ for } z\in H.$$

Grouping terms together and using that $\frac{d}{dt}|u(t)-z|^2=2\langle \dot{u}(t),u(t)-z\rangle,\ d(u(t),z)^2=|u(t)|^2-2\langle u(t),z\rangle+|z|^2$ we get

$$\frac{1}{2}d(u(t),z)^2 + \underbrace{\frac{\alpha}{2}|u(t)|^2 - \alpha\langle u(t),z\rangle + \frac{\alpha}{2}|z|^2}_{d(u(t),z)^2} + \phi(u(t)) \leqslant \phi(z) \text{ for } z \in H.$$

Now it would be nice if $\phi \in C^{1,1}(H, \mathbf{R})$ there would exist an $\alpha \in \mathbf{R}$ such that $\phi - \alpha e$ is convex $(\phi \text{ is said to be } \alpha\text{-convex})$. This is the case

1.4 Lemma. Let $\psi: H \to \mathbf{R}$ be everywhere Fréchet differentiable, then ϕ is convex iff $\nabla \psi$ is monotone, that is if

$$\langle \nabla \psi(x_1), \nabla \psi(x_2), x_1 - x_2 \rangle \ge 0$$
 for all $x_1, x_2 \in H$.

Proof. \implies : Let ψ be convex and let $x_1, x_2 \in H$, set $y_1 = \nabla \psi(x_1)$ and $y_2 = \nabla \psi(x_2)$. From Lemma 1.1 we obtain $\langle y_i, h \rangle + \psi(x_i) \leq \psi(x_i + h)$ for i = 1, 2 and $h \in H$. For i = 1, choose $h = x_2 - x_1$ and for i = 2 choose $h = x_1 - x_2$. Adding both inequalities

$$\langle y_1, x_2 - x_1 \rangle + \langle y_2, x_1 - x_2 \rangle \le 0$$
 thus $\langle y_2 - y_1, x_2 - x_1 \rangle \ge 0$

 \Leftarrow : Let $\nabla \psi$ be monotone and let $x, y \in H$ and $t \in \mathbf{R}$. Define

$$\alpha(t) := \psi((1-t)x + ty) - (1-t)\psi(x) - t\psi(y)$$

Now $\alpha(0) = \alpha(1) = 0$ and α is differentiable

$$\alpha'(t) = \langle \nabla \psi((1-t)x + ty), y - x \rangle + \psi(x) - \psi(y).$$

Now let $t_1 < t_2$. Note that $[(1 - t_2)x + t_2y] - [(1 - t_1)x + t_1y] = (t_2 - t_1)(y - x)$. We have

[1.4]
$$\alpha'(t_2) - \alpha'(t_1) = \langle \nabla \psi((1 - t_2)x + t_2 y) - \nabla \psi((1 - t_1)x + t_1 y)$$
$$[(1 - t_2)x + t_2 y] - [(1 - t_1)x + t_1 y] \rangle \cdot \frac{1}{t_2 - t_1} \ge 0.$$

From this we conclude that α' is nondecreasing. So now if α had a maximum in $\xi = (0, 1)$, then $\alpha'(\xi) = 0$. So by the mean value theorem there exists $\zeta \in (t, \xi)$ such that $\alpha(\xi) - \alpha(t) = \alpha'(\zeta)(\xi - t) \ge 0$. So α is nonincreasing on (t, ϵ) . By a similar argument α is nondecreasing for $t > \xi$, which is a contradiction because then α would not be maximal in ξ . So. $\alpha(t) \ge 0$ this ψ is convex.

Now by Cauchy-Schwarz we have $\langle \nabla \psi(x_2) - \nabla \psi(x_1), x_2 - x_1 \rangle \ge [\nabla \psi]_{\text{Lip}} |x_2 - x_1|^2$ for all $x_1, x_2 \in H$. Now, for the correct α we can make $\psi - \alpha e$ convex by Lemma 1.4. We summarize this

1.5 Proposition. Let $\phi: H \to \mathbf{R}$ be such that $\phi - \alpha e$ is convex for some $\alpha \in \mathbf{R}$. If we have that for every $\phi \in C^{1,1}(H, \mathbf{R})$, then for every $x \in H$ there is a unique function $u \in C^1(\mathbf{R}, H)$ satisfying the EVI together with u(0) = x. Moreover if $u_1, u_2 \in C^1(\mathbf{R}, H)$ satisfy the EVI with $J = \mathbf{R}$, then

$$d(u_1(t), u_2(t)) \le e^{-\alpha(t-s)} d(u_1(s), u_2(s))$$

for every s < t, $s, t \in \mathbf{R}$.

1.2 Uniqueness and a priori estimates

A function $\phi: X \to (-\infty, \infty]$ is called *proper* if its effective domain $D(\phi) := \{x \in X : \phi(x) < \infty\}$ is non-empty. A proper function is called *lower semicontinuous* (lsc) at $x \in X$ if for every sequence (x_n) converging to x we have that $\phi(x) \leq \liminf_n \phi(x_n)$. So ϕ is lsc at x if for every $\epsilon > 0$ there exist $\delta > 0$ such that $\phi(y) \geq \phi(x) - \epsilon$ for every $y \in X$ such that $d(x,y) \leq \delta$. A function is everywhere lsc iff for every $c \in \mathbb{R}$ we have that $\{x \in X : \phi(x) \leq c\}$. A lsc function on a compact metric space is bounded from below and attains its minimum.

A function $u: I \to X$ is said to be locally absolutely continuous on I, notation $u \in AC_{loc}(I, X)$ if $u \in AC([a, b]; X)$ for every $a, b \in I$ with a < b and $[a, b] \subset I$.

Recall that if u is absolutely continuous on [a,b], then for every $z \in X$ the function $t \mapsto d(u(t),z)^2$ is absolutely continuous on [a,b] as well.

1.6 Definition. Let $\phi: X \to (-\infty, \infty]$ be proper and lsc, and let $\alpha \in \mathbf{R}$. If we have a function u in $C([0,\infty);X) \cap AC_{loc}((0,\infty);X)$ satisfying

[1.5]
$$u(0) \in \overline{D(\phi)}, \quad u(t) \in D(\phi) \quad \text{for every } t > 0,$$

and for every $z \in D(\phi)$

$$\frac{1}{2}\frac{d}{dt}d(u(t),z)^2 + \frac{\alpha}{2}d(u(t),z)^2 + \phi(u(t)) \leq \phi(z) \text{ a.e. in } (0,\infty).$$

then u is called a solution to the Evolution Variational Inequality ((\red)). The value u(0) is called the initial value of u.

1.7 Theorem (A priori estimate). Suppose u and v are solutions to $((\stackrel{\bullet}{\bullet}))$, then we have the following estimate:

[1.6]
$$d(u(t), v(t)) \le e^{-\alpha(t-s)} d(u(s), v(s)) \text{ for all } 0 \le s < t < \infty$$

Proof. The function $[a,b] \ni t \mapsto \phi(u(t))$ is lsc, hence Borel and bounded from below. From (\red{A}) we see that this function is bounded from above on [a,b] by a Lebesgue integrable function, hence

$$\int_{a}^{b} |\phi(u(t))| \, dt < \infty.$$

Integrating (♣) gives us

[1.7]
$$\frac{1}{2}(d(u(b), z)^2 - d(u(a), z)^2) + \frac{\alpha}{2} \int_a^b d(u(t), z)^2 dt + \int_a^b \phi(u(t)) dt$$
$$\leq (b - a)\phi(z), \text{ for every } z \in D(\phi).$$

Similarly for v. We now define $g(t) := \frac{1}{2}e^{2\alpha t}d(u(t),v(t))^2$. Now $t \mapsto g(t)$ is non-increasing on $[0,\infty)$, to see this note that we want to show that the derivative must be smaller of equal to zero. Using the weak-derivative formulism we note that it is sufficient to show

[1.8]
$$-\int_0^\infty g(t)\eta'(t)\,dt \le 0 \text{ for every non-negative } \eta \in C_c^1(0,\infty).$$

Now let η be as in (1.8). Extend η by 0 on on the rest of the real axis. Further let $h_0 > 0$ be such that $\eta(t) = 0$ for all $-\infty < t \le h_0$. We now have for $h \in (0, h_0)$

$$[1.9] - \int_0^\infty g(t) \frac{1}{h} (\eta(t) - \eta(t-h)) dt = \int_0^\infty \frac{1}{h} (g(t+h) - g(t)) \eta(t) dt.$$

by substitution. Note that

$$g(t+h) - g(t) = \frac{1}{2} [e^{2\alpha(t+h)} - e^{2\alpha t}] d(u(t+h), v(t+h))^{2}$$

$$+ \frac{1}{2} e^{2\alpha t} [d(u(t+h), v(t+h))^{2} - d(u(t), v(t+h))^{2}]$$

$$+ \frac{1}{2} e^{2\alpha t} [d(u(t), v(t+h))^{2} - d(u(t), v(t+h))^{2}]$$

$$= I_{1} + I_{2} + I_{3}.$$

So, now if we pick a = t, b = t + h and z = v(t + h) we get from (1.7) that

[1.10]
$$I_2 \le \frac{1}{2} e^{2\alpha t} \left(2h\phi(v(t+h)) - \alpha \int_t^{t+h} d(u(r), v(t+h))^2 dr - 2 \int_h^{t+h} \phi(u(r)) dr \right)$$

Similarly, if we replace u b v in (1.7) and set a = t, b = t + h and z = u(t) we obtain

[1.11]
$$I_3 \leq \frac{1}{2}e^{2\alpha t} \left(2h\phi(u(t)) - \alpha \int_t^{t+h} d(v(r), u(t))^2 dr - 2 \int_h^{t+h} \phi(v(r)) dr \right)$$

So, using that $\eta \ge 0$ we obtain that

$$\begin{split} &\int \eta(t) \frac{1}{h} (g(t+h) - g(t)) \, dt \\ & \leq \int_0^\infty \frac{1}{2} e^{2\alpha t} \left\{ \left[\frac{1}{h} (e^{2\alpha h} - 1) d(u(t+h), v(t+h))^2 \right] \right. \\ & + 2 \left[\phi(v(t+h)) - \frac{1}{h} \int_t^{t+h} \phi(u(r)) \, dr - \frac{\alpha}{2} \frac{1}{h} \int_t^{t+h} d(u(r), v(t+h))^2 \, dr \right] \\ & + 2 \left[\phi(u(t)) - \frac{1}{h} \int_t^{t+h} \phi(v(r)) \, dr - \frac{\alpha}{2} \frac{1}{h} \int_t^{t+h} d(v(r), u(t))^2 \, dr \right] \right\} dt. \end{split}$$

By the integrability of $\phi \circ v$ we have that

$$\frac{1}{h} \int_{t}^{t+h} \phi(u(r)) dr \to \phi \circ u(t) \text{ as } h \to 0.$$

So, as $h \to 0$ we have

$$-\int_{0}^{\infty} g(t)\eta'(t) dt = \lim_{h \to 0} -\frac{1}{h} \int_{0}^{\infty} g(t)(\eta(t) - \eta(t - h)) dt$$

$$\leq \int_{0}^{\infty} \eta(t) \frac{1}{2} e^{2\alpha t} \Big[2\alpha d(u(t), v(t))^{2} + 2\phi(v(t)) - 2\phi(u(t))$$

$$-\alpha d(u(t), v(t))^{2} + 2\phi(u(t)) - 2\phi(u(t)) - \alpha d(u(t), v(t))^{2} \Big\}$$

$$= 0$$

1.3 Integral formulation of EVI

1.8 Definition. Let $\phi: X \to (-\infty, \infty]$ be proper and lsc and let $\alpha \in \mathbf{R}$. A function $u \in C([0,\infty);X)$ is called an "integral solution" if for every 0 < a < b the function $\phi \circ u \in L^1(a,b)$ and satisfies (1.7).

1.9 Proposition.

- 1. A solution to * is an "integral solution" to *;
- 2. If u and v are "integral solutions" to * , then they satisfy the estimate of theorem 1.7. They coincide if u(0) = v(0);
- 3. If u is an "integral solution" to $\$ and if $u \in Lip([a,b];X)$ for every 0 < a < b, then u is a solution to $\$

Proof. Part 1) and part 2) follow from the proof of theorem 1.7. 3): Let $z \in D(\phi)$ and 0 < a' < b'. Further let $u \in \text{Lip}([a',b'];X)$ with $\phi \circ u \in L^1(a',b')$ satisfying (1.7). Now we will show that there exist a null set N in (a',b') such that u satisfies * on $(a',b') \setminus N$ and $\phi \circ u$ is bounded

from above on $(a',b') \setminus N$ by a finite number C. Since $\phi \circ u \in L^1(a',b')$ and $u \in \text{Lip}([a',b'];X)$ there exists N such that every $t_0 \in (a',b') \setminus N$ is a Lebesgue point of $\phi \circ u$ in (a',b') (that is this point satisfies Lebesgue's differentiation lemma) and N is a null set. Further t_0 is a point of differentiability of $t \mapsto d(u(t),z)$ in (a',b') because u is Lipschitz. This is because Lipschitz implies absolute continuity. Now we choose $a = t_0 \in (a',b') \setminus N$, $b = t_0 + h$ with $0 < h < b' - t_0$, so if we divide (1.7) by h and let h tend to 0, then we obtain

$$\frac{1}{2}\frac{d}{dt}d(u(t_0), z)^2 + \frac{\alpha}{2}d(u(t_0), z)^2 + \phi(u(t_0)) \le \phi(z)$$

Now, set $C_1(a',b') := \max_{t \in [a',b']} d(u(t),z)$, then we get after we note that

$$|d(u(t), z)^{2} - d(u(t'), z)^{2}| \le [d(u(t), z) + d(u(t'), z)]d(u(t), u(t'))$$

$$\le 2C_{1}[u]_{\text{Lip}}|t - t'|.$$

$$\phi(u(t_0)) \leq \phi(z) + \frac{|\alpha|}{2}C_1^2 + C_1[u]_{\rm Lip} =: C(a',b').$$

Now $(a',b')\setminus N$ is dense in (a',b') because if it were not N would contain an open interval, further u is continuous and ϕ is lsc so we get $\phi(u(t)) \leq C$ for every $t \in (a',b')$, hence $u(t) \in D(\phi), t \in (a',b')$.

1.4 "Existence" in case *X* is a Hilbert space

Let $(X, \langle \cdot, \cdot \rangle)$ be a real Hilbert space with norm $|\cdot|$ and metric $d(\cdot, \cdot)$ and let $\phi : X \to (-\infty, \infty]$ be a proper lsc function such that $\phi - \alpha e$ is convex for some $\alpha \in \mathbf{R}$. In this case ϕ is said to be α -convex.

We already know that for any $x \in \overline{D(\phi)}$ there exists at most one solution u to the Evolution Variational Inequality (*) with initial value u(0) = x. The goal of this section is to prove the existence of such a solution.

The proof of the existence will be done by approximating ϕ by a family of functions $(\phi_h)_{h \in I_\alpha}$ where

[1.12]
$$I_{\alpha} := \begin{cases} (0, \infty) & \text{if } \alpha \geq 0, \\ (0, |\alpha|^{-1}) & \text{if } \alpha < 0. \end{cases}$$

The functions ϕ_h are usually called the *Moreau-Yosida approximations* of ϕ . These converge to ϕ as h tends to 0 and they are $\frac{\alpha}{1+\alpha h}$ -convex.

1.4.1 Preliminaries

1.10 Lemma. Let $\psi: X \to (-\infty, \infty]$ be proper, lsc and convex. Then there exists $b \in X$ and $x \in \mathbf{R}$ such that

[1.13]
$$\psi(x) \ge \langle b, x \rangle + c, \quad x \in X.$$

Let $x_0 \in D(\psi)$ and $t_0 < \psi(x_0)$. Then $(x_0, t_0) \notin \operatorname{epi}(\psi)$. By the projection theorem on closed convex sets in Hilbert spaces, there exists a unique element $(\overline{x}, \overline{t}) \in \operatorname{epi}(\psi)$ satisfying

[1.14]
$$\langle x - \overline{x}, x_0 - \overline{x} \rangle + (t - \overline{t})(t_0 - \overline{t}) \le 0$$

for every $(x, t) \in \text{epi}(\psi)$. First we choose $x = x_0$ and $t \ge \psi(x_0)$ in (1.14). Then we can see that $t_0 - \bar{t}$ must be non-zero. Further, if we choose $t > \bar{t}$ we can see that $t_0 - \bar{t} < 0$. Finally if we choose $x \in D(\psi)$ in (1.14) we obtain (1.13) with

$$b := \frac{1}{\overline{t} - t_0} (\overline{x} - x_0) \text{ and } c := \overline{t} - \frac{1}{\overline{t} - t_0} \langle \overline{x}, \overline{x} - x_0 \rangle.$$

Equation (1.13) trivially holds for $x \in X \setminus D(\psi)$.

1.11 Lemma. Let $\phi: X \to (-\infty, \infty]$ be proper, lsc and α -convex for some $\alpha \in \mathbf{R}$. For every $h \in I_{\alpha}$ and every $x \in X$ the function

[1.15]
$$\psi(y) := \begin{cases} \frac{1}{2h}|y-x|^2 + \phi(y) & y \in D(\phi), \\ \infty & otherwise \end{cases}$$

has a unique global minimizer, which we will denote by J_hx .

Proof. By α -convexity of ϕ and lemma 1.10 the function ϕ can be rewritten as

[1.16]
$$\psi(y) = \left(\alpha + \frac{1}{h}\right) \frac{1}{2} |y|^2 + \left(b - \frac{1}{h}x, y\right) + \left(c + \frac{1}{2h}|x|^2\right) + \phi_1(y)$$

where $\phi: X \to [0, \infty]$ is proper, lsc and convex. We can see that $\alpha + \frac{1}{h} > 0$ and $\phi_1 \ge 0$, so ψ is bounded from below. Set $\gamma := \inf_{y \in X} \phi(y) \in \mathbf{R}$. Let $(y_n) \subset D(\psi)$ be a minimizing sequence, that is $\lim_{n \to \infty} \psi(y_n) = \lambda$. Now we claim that (y_n) is a Cauchy sequence. Suppose it is and \overline{y} is its limit in X. By lower semicontinuity we obtain

$$\gamma \leqslant \psi(\overline{y}) \leqslant \liminf_{n \to \infty} \psi(y_n) = \gamma.$$

Now given $y, \hat{y} \in D(\phi)$ we have because $\psi\left(\frac{y+\hat{y}}{2}\right) \geqslant \gamma$ that

$$\psi(y) + \psi(\hat{y}) - 2\psi\left(\frac{y+\hat{y}}{2}\right) \geqslant \left(\alpha + \frac{1}{h}\right) \left[\frac{1}{2}|y|^2 + \frac{1}{2}|\hat{y}|^2 - \left|\frac{y+\hat{y}}{2}\right|^2\right] = \left(\alpha + \frac{1}{h}\right) \left|\frac{y+\hat{y}}{2}\right|^2.$$

So since $\frac{y+\hat{y}}{2} \in D(\psi)$ (by convexity) we obtain

$$|y - \hat{y}| \le 2\left(\alpha + \frac{1}{h}\right)^{-\frac{1}{2}} \sqrt{\psi(y) + \psi(\hat{y}) - 2\psi\left(\frac{y + \hat{y}}{2}\right)}$$

$$\le 2\left(\alpha + \frac{1}{h}\right)^{-\frac{1}{2}} \sqrt{(\psi(y) - \gamma) + (\psi(\hat{y}) - \gamma)}.$$

Replacing y by y_m and \hat{y} by y_m in (1.17) and noting that $\lim_{n\to\infty} \psi(y_n) = \gamma$ we can conclude that (y_n) is Cauchy. The uniqueness follows from (1.17) as well.

1.12 Definition. Let $\phi: X \to (-\infty, \infty]$ be proper, lsc and α -convex for some $\alpha \in \mathbf{R}$. Set

$$\phi := \psi - \alpha e.$$

For $h \in I_{\alpha}$ and $x \in X$ set

[1.19]
$$A_h x := \frac{1}{h} (x - J_h x).$$

We will now give some properties of J_h and A_h .

1.13 Lemma. For $h \in I_{\alpha}$ and $x, \hat{x} \in X$ we have that

[1.20]
$$J_h x \in D(\partial \psi) \text{ and } A_h x - \alpha J_h x \in \partial \psi(J_h x),$$

$$|J_h x - J_h \hat{x}| \leqslant \frac{1}{1 + \alpha h} |x - \hat{x}|,$$

[1.22]
$$|A_h x - A_h \hat{x}| \le \frac{1}{h} \frac{2 + \alpha h}{1 + \alpha h} |x - \hat{x}|,$$

[1.23]
$$\langle A_h - A_h \hat{x}, x - \hat{x} \rangle \geqslant \frac{\alpha}{1 + \alpha h} |x - \hat{x}|^2.$$

Proof. (1.20). We have as in lemma 1.11 using $\psi := \phi - \alpha e$ that

$$\psi(y) = \left(\alpha + \frac{1}{h}\right) \frac{1}{2} |y|^2 - \left(\frac{1}{h}x, y\right) + \frac{1}{2h} |x|^2 + \phi(y), \quad y \in X.$$

Set $g(y) := \frac{1}{2}(\frac{1}{h} + \alpha)|y|^2 - \langle \frac{1}{h}x, y \rangle + \frac{1}{2h}|x|^2, y \in X$. So $\psi = g + \phi$. Because $J_h x$ is a global minimizer of ψ , we have for every $y \in D(\phi)$ and $t \in (0, 1)$ that

$$g((1-t)J_hx + ty) + \phi((1-t)J_hx + ty) \ge g(J_hx) + \phi(J_hx).$$

By the convexity of ϕ we have

$$-\frac{1}{t}(g((1-t)J_hx+ty)-g(J_hx))\leqslant \phi(y)-\phi(J_hx).$$

So let $t \to 0$ we arrive at

$$-\langle \nabla q(J_h x), y - J_h x \rangle \leq \phi(y) - \phi(J_h x).$$

now note that $\nabla g(z) = (\frac{1}{h} + \alpha)z - \frac{1}{h}x$, $z \in X$, so now using the definition of A_h and the definition of the subdifferential of ϕ . So we obtain (1.20). (1.21). Let $x_1, x_2 \in X$. From (1.20)

$$\frac{1}{h}(x_i - J_h x_i) - \alpha J_h x_i \in \partial \phi(J_h x_i), \quad i = 1, 2.$$

 $\partial \phi$ is monotone fill in so we get

$$\left\langle \left[-\left(\frac{1}{h} + \alpha\right) J_h x_2 + \frac{1}{h} x_2 \right] - \left[-\left(\frac{1}{h} + \alpha\right) J_h x_1 + \frac{1}{h} x_1 \right], J_h x_2 - J_h x_1 \right\rangle \geqslant 0.$$

Splitting up and using Cauchy-Schwarz we obtain

$$(1 + \alpha h)|J_h x_2 - J_h x_1|^2 \le \langle x_2 - x_1, J_h x_2 - J_h x_1 \rangle \le |x_2 - x_1||J_h x_2 - J_h x_1|$$

which implies (1.21) because $1 + \alpha h > 0$. (1.22) follows from (1.21) and the definition of A_h because

$$\begin{aligned} |A_h x - A_h \hat{x}| &= \frac{1}{h} |(x - \hat{x}) + (J_h x - J_h \hat{x})| \\ &\leq \frac{1}{h} |x - \hat{x}| + \frac{1}{h} |J_h x - J_h \hat{x}| \\ &\leq \frac{1}{h} |x - \hat{x}| + \frac{1}{h} \frac{1}{1 + \alpha h} |x - \hat{x}| \\ &= \frac{1}{h} \frac{2 + \alpha h}{1 + \alpha h} |x - \hat{x}|. \end{aligned}$$

(1.23). We have that

$$(1 + \alpha h)hA_h = (1 + \alpha h)I - (1 + \alpha h)J_h = (I - C) + \alpha hI,$$

where $C := (1 + \alpha h)J_h$. By (1.21) we know that $|Cx_2 - Cx_1| \le |x_2 - x_1|$ so $\langle (I - C)x_2 - (I - C)x_1, x_2 - x_1 \rangle \ge 0$ by rearranging terms. Now

$$\begin{split} \langle A_h x_2 - A_h x_1, x_2 - x_1 \rangle &= \frac{1}{h} \frac{1}{1 + \alpha h} \langle (I - C) x_2 - (I - C) x_1, x_2 - x_1 \rangle + \frac{\alpha h}{1 + \alpha h} |x_2 - x_1|^2 \\ &= \frac{1}{h} \frac{1}{1 + \alpha h} |x_2 - x_1|^2 - \frac{1}{h} \langle J_h x_2 - J_h x_1, x_2 - x_1 \rangle + \frac{\alpha h}{1 + \alpha h} |x_2 - x_1|^2 \\ &\geqslant \frac{1}{h} \frac{1}{1 + \alpha h} |x_2 - x_1|^2 - \frac{1}{h} |J_h x_2 - J_h x_1| |x_2 - x_1| + \frac{\alpha h}{1 + \alpha h} |x_2 - x_1|^2 \\ &\geqslant \frac{1}{h} \frac{1}{1 + \alpha h} |x_2 - x_1|^2 - \frac{1}{h} \frac{1}{1 + \alpha h} |x_2 - x_1|^2 + \frac{\alpha h}{1 + \alpha h} |x_2 - x_1|^2 \\ &= \frac{\alpha h}{1 + \alpha h} |x_2 - x_1|^2. \end{split}$$

1.4.2 Moreau-Yosida approximation

1.14 Definition. Let ϕ be proper, lsc and α -convex and let ψ as in (1.15). Further, let $h \in I_{\alpha}$. Then we define

$$\phi_h(x) := \psi(J_h x), \quad x \in X.$$

1.15 Proposition. Let ϕ , ϕ_h be as above. Then

[1.25]
$$\phi_h(x) = \frac{h}{2} |A_h x|^2 + \phi(J_h x), \quad x \in X.$$

 $\phi_h \in C^{1,1}(X; \mathbf{R})$, $\nabla \phi_h = A_h$ and ϕ_h is $\frac{\alpha}{1+\alpha h}$ -convex.

Proof. (1.25) follows from

$$\phi_h(x) = \psi(J_h x)$$

$$= \frac{1}{2h} |J_h x - x|^2 + \phi(J_h x)$$

$$= \frac{h^2}{2h} |A_h|^2 + \phi(J_h x)$$

$$= \frac{h}{2} |A_h|^2 + \phi(J_h x).$$

Now we will show that $\nabla \phi(x) = A_h x$ for $x \in X$. Let $x, y \in X$. From (1.20) we know that $A_h x - \alpha J_h x \in \partial \psi(J_h x)$. So, by the definition of the subgradient we have for $z = J_h y$ that

$$\langle A_h x - \alpha J_h x, J_h y - J_h x \rangle + \psi(J_h x) \leq \psi(J_h y)$$

So, by rearranging we get

$$\langle A_h x - \alpha J_h x, J_h y - J_h x \rangle \leq \psi(J_h y) - \psi(J_h x)$$

From (1.25) and $\psi = \phi - \alpha e$ we obtain

$$\begin{split} \phi_y(y) - \phi_h(x) &= \psi(J_h y) - \psi(J_h x) + \frac{\alpha}{2} |J_h y|^2 - \frac{\alpha}{2} |J_h x|^2 + \frac{h}{2} |A_h y|^2 - \frac{h}{2} |A_h x|^2 \\ &\geqslant \langle A_h x - \alpha J_h x, J_h y - J_h x \rangle + \frac{\alpha}{2} |J_h y|^2 - \frac{\alpha}{2} |J_h x|^2 + \frac{h}{2} |A_h y|^2 - \frac{h}{2} |A_h x|^2. \end{split}$$

We can rewrite

[1.26]
$$\langle A_h x - \alpha J_h x, J_h y - J_h x \rangle = -\langle A_h x - \alpha J_h x, x - y \rangle + \langle A_h x - \alpha J_h x, h A_h x - h A_h y \rangle.$$

By rearranging the terms we eventually obtain

$$\phi_{h}(y) - \phi_{h}(x) - \langle A_{h}x, y - x \rangle \geqslant \langle \alpha J_{h}x, x + y \rangle + \langle A_{h}x - \alpha J_{h}x, hA_{h}x - hA_{h}y \rangle$$

$$= \alpha \langle J_{h}x, x - y \rangle + h \langle A_{h}x, A_{h}x - A_{h}y \rangle - h\alpha \langle J_{h}x, A_{h}x - A_{h}y \rangle$$

$$+ \frac{\alpha}{2} |J_{h}y|^{2} - \frac{\alpha}{2} |J_{h}x|^{2} + \frac{h}{2} |A_{h}y|^{2} - \frac{h}{2} |A_{h}x|^{2}$$

$$= \alpha \langle J_{h}x, x - y \rangle + h \langle A_{h}x, A_{h}x - A_{h}y \rangle$$

$$- \alpha \langle J_{h}x, x - y \rangle + \alpha \langle J_{h}x, J_{h}x - J_{h}y \rangle$$

$$+ \frac{\alpha}{2} |J_{h}y|^{2} - \frac{\alpha}{2} |J_{h}x|^{2} + \frac{h}{2} |A_{h}y|^{2} - \frac{h}{2} |A_{h}x|^{2}$$

$$= h\langle A_{h}x, A_{h}x - A_{h}y \rangle + \alpha \langle J_{h}x, J_{h}x - J_{h}y \rangle + \frac{\alpha}{2} |J_{h}y|^{2} - \frac{\alpha}{2} |J_{h}x|^{2} + \frac{h}{2} |A_{h}y|^{2} - \frac{h}{2} |A_{h}x|^{2} = \frac{h}{2} |A_{h}x - A_{h}y|^{2} + \frac{\alpha}{2} |J_{h}x - J_{h}y|^{2}.$$

Now we switch the role of y and x and we add $\langle A_h y - A_h x, x - y \rangle$ (which is a negative term) to obtain

$$[1.27] \quad \phi_h(x) - \phi_h(y) - \langle A_h x, x - y \rangle \geqslant \frac{h}{2} |A_h x - A_h y|^2 + \frac{\alpha}{2} |J_h x - J_h y|^2 + \langle A_h y - A_h x, x - y \rangle.$$

Now because the LHS of the previous inequality is negative we have by (1.21), (1.22) and Cauchy-Schwarz some M > 0 independent on x or y such that

[1.28]
$$|\phi_h(x) - \phi_h(y) - \langle A_h x, x - y \rangle| \leq \frac{h}{2} |A_h x - A_h y|^2 + \frac{\alpha}{2} |J_h x - J_h y|^2 + |\langle A_h y - A_h x, x - y \rangle|$$
$$\leq M|x - y|^2.$$

Hence $\nabla \phi_h(x) = A_h x$. A_h is Lipschitz because of (1.22), so we have $\phi_h \in C^{1,1}(X; \mathbf{R})$.

To be able to handle the case $\alpha \ge 0$ and $\alpha < 0$ at the same time we introduce

[1.29]
$$h_{\alpha} := \begin{cases} 1 & \text{if } \alpha \geq 0, \\ \frac{1}{2|\alpha|} & \text{if } \alpha < 0. \end{cases}$$

Then we have that

[1.30]
$$1 + h\alpha \in \left[\frac{1}{2}, 1 + |\alpha|\right] \text{ for } 0 < h \leqslant h_{\alpha}.$$

We use the following notation. Let $x \in D(\partial \psi)$ with $\psi := \phi - \alpha e$. The set $\{y \in X : y \in \partial \psi((x))\}$ is a non-empty closed convex set so by the projection theorem on closed convex sets in Hilbert spaces this set has a minimal element, which we denote as $(\partial \psi)^{\circ} x$.

1.16 Lemma.

[1.31]
$$\sup_{h \in (0,h_{\alpha})} |A_h x| \leq \infty \quad \text{if } x \in D(\partial \psi),$$

[1.32]
$$\sup_{h \in (0, h_{\alpha})} |J_h x| \leq \infty \quad \text{for every } x \in X,$$

[1.33]
$$\inf_{h \in (0, h_{\alpha})} \phi(J_h x) > -\infty \quad \text{for every } x \in X.$$

Proof. (1.31). From (1.20) and the monotonicity of $\partial \psi$ we have

$$\langle y, x - J_h x \rangle - \langle A_h x - \alpha J_h x, x - J_h x \rangle = \langle y - A_h x + \alpha J_h x, x - J_h x \rangle \geqslant 0$$

So

$$\frac{1}{h}\langle y - A_h x + \alpha J_h x, x - J_h x \rangle \geqslant 0.$$

Thus by the definition of A_h we have

$$\langle y, A_h x \rangle - |A_h x|^2 + \alpha \langle x, A_h x \rangle - \alpha h |A_h x|^2 \ge 0,$$

so

$$|A_h x|^2 \le \langle y, A_h x \rangle + \alpha \langle x, A_h x \rangle - \alpha h |A_h x|^2$$

$$\le |y| |A_h x| + \alpha |x| |A_h x| - \alpha h |A_h x|^2.$$

Hence, by rearranging

$$(1 + h\alpha)|A_h x|^2 \le (|y| + |\alpha||x|)|A_h x|.$$

Now by (1.30) and using the minimal y we have

$$|A_h x| \leq 2(|(\partial \psi)^{\circ} x| + |\alpha||x|),$$

which implies (1.31).

(1.32). Let $x \in X$ and $\hat{x} \in D(\partial \psi)$. Set $C := \sup_{h \in (0,h_\alpha)} |A_h \hat{x}|$. Using the definition of A_h , (1.21) and the previous result (1.31) we get that

$$|J_h x| \le |J_h x - J_h \hat{x}| + |J_h \hat{x}| \le 2|x - \hat{x}| + h|A_h \hat{x}| \le 2|x - \hat{x}| + |\hat{x}| + h_\alpha C,$$

from which the result follows.

(1.33). Let $x \in X$ and $M := \sup_{h \in (0,h_{\alpha})} |J_h x|$. Then by using $\psi = \phi - \alpha e$, lemma 1.10, proposition 1.15 and Cauchy-Schwarz we get

$$\phi(J_h x) = \psi(J_h x) + \frac{\alpha}{2} |J_h x|^2 \geqslant -|b|M + c - \frac{|\alpha|}{2} M^2.$$

Another useful lemma

1.17 Lemma.

$$\lim_{h \to 0} |x - J_h x| = 0 \text{ iff } x \in \overline{D(\partial \psi)},$$

[1.35]
$$\sup_{h \in (0, h_{\alpha})} \phi_h(x) = \infty \text{ if } x \notin \overline{D(\psi)}.$$

Proof. (1.34). Assume that $x \in \overline{D(\partial \psi)}$, so for any $\hat{x} \in D(\partial \psi)$ we have by the definition of A_h , the bounds on $1 + h\alpha$ and (1.21),

$$|x - J_h x| \le |x - \hat{x}| + |\hat{x} - J_h \hat{x}| \le |x - \hat{x}| + |x - J_h \hat{x}| + 2|x - \hat{x}| \le 3|x - \hat{x}| + h|A_h \hat{x}|.$$

So because $|A_h x|$ is bounded by the previous lemma and the fact that we can pick $\hat{x} = x$ we obtain the result. Conversely, if $\lim_{h\to 0} |x - J_h x| = 0$ then $x \in \overline{D(\partial \psi)}$ because $J_h x \in D(\partial \psi)$.

(1.35). By proposition 1.15 and the third part of lemma 1.16 it is sufficient to check that $\sup_{h\in(0,h_{\infty})} h|A_hx|^2 = \infty$ if $x \notin \overline{D(\partial \psi)}$. Now note that

$$h|A_h x|^2 = |x - J_h x||A_h x| \ge d(x, \overline{D(\partial \psi)})|A_h x|$$

since $J_h x \in D(\partial \psi)$. Now $d(x, \overline{D(\partial \psi)}) > 0$ by assumtpion so it is sufficient to show that $\sup_{h \in (0,h_\alpha)} |A_h x| = \infty$ for $x \notin \overline{D(\partial \psi)}$. Set $M := \sup_{h \in (0,h_\alpha)} |A_h x| < \infty$ so then $|x - J_h x| \le hM$ by the definition of A_h so by the first part we have a contradiction.

1.18 Proposition. Let ϕ , ϕ_h and ψ be as above. Then

[1.36]
$$\phi_h(x) \uparrow \phi(x)$$
 for every $x \in X$ and $h \downarrow 0$,

[1.37]
$$D(\partial \psi) \subset D(\phi) \subset \overline{D(\partial \phi)} = \overline{D(\phi)}.$$

Proof. For $0 < h_2 < h_1 \le h_\alpha$ and $x \in X$ we have

$$\phi_{h_1}(x) = \psi_{h_1}(J_{h_1}x)$$

$$\leq \psi_{h_1}(J_{h_2}x)$$

$$= \frac{1}{2h_1}|J_{h_2}x - x|^2 + \phi(J_{h_2}x)$$

$$\leq \frac{1}{2h_2}|J_{h_2}x - x|^2 + \phi(J_{h_2}x)$$

$$= \phi_{h_2}(x).$$

Now we will show that ϕ_h is bounded by above by ϕ . To see this note that $\phi_h(x) = \psi(J_h x) \leq \psi(y)$ and choosing y = x we have $\phi_h(x) \leq \psi(x) = \phi(x)$. So, by lemma 1.17, (1.35) we have that if $x \notin \overline{D(\partial \psi)}$ then $\sup_{h \in (0,h_\alpha)} \phi_h(x) = \infty$ hence $x \notin D(\phi)$. This implies (1.36) for $x \notin \overline{D(\partial \psi)}$ and thus also the inclusion $D(\phi) \subset \overline{D(\partial \psi)}$ in (1.37). If $x \in \overline{D(\partial \psi)}$ and $h_n \in (0,h_\alpha)$, $h_n \downarrow 0$ we have by lemma 1.17, (1.34) that $\lim_{n \to \infty} |x - J_{h_n} x| = 0$ and by the lower semicontinuity of ϕ

$$\phi(x) \leqslant \liminf_{n \to \infty} \phi(J_{h_n} x) \leqslant \liminf_{n \to \infty} \phi_{h_n}(x) \leqslant \limsup_{n \to \infty} \phi_{h_n}(x) \leqslant \phi(x).$$

So we conclude that ϕ_h is decreasing in h, is bounded from above by ϕ and the limit is ϕ , so we have (1.36).

By definition we have $D(\partial \psi) \subset D(\psi) = D(\phi)$, so also $\overline{D(\partial \psi)} \subset \overline{D(\phi)}$. We already know that $D(\phi) \subset \overline{D(\partial \psi)}$ so (1.37) follows.

1.4.3 A quasi-contractive semigroup associated with ϕ

Let $\phi: X \to (-\infty, \infty]$ be proper, lsc and α -convex for some $\alpha \in \mathbf{R}$. Further, let $h \in (0, h_{\alpha}]$ and let ϕ_h be the Moreau-Yosida approximation of ϕ . We consider the abstract Cauchy problem

$$\frac{du}{dt}(t) + A_h u(t) = 0, t \in \mathbf{R},$$

together with the condition

[1.39]
$$u(0) = x \text{ with } x \in X.$$

In view of proposition 1.5 and proposition 1.15 this problem has exactly one solution which we will denote by $\phi_{h,x}$ or simply as ϕ_h and we set

[1.40]
$$S_h(t)x := u_{h,x}(t), \quad t \in \mathbf{R}, x \in X.$$

Further, this family $\{S_h(t)\}_{t \in \mathbb{R}}$ is a C_0 -group of operators on X which satisfy

[1.41]
$$|S_h(t)x - S_h(t)y| \le e^{-\frac{\alpha}{1+\alpha h}(t-s)} |S_h(s)x - S_h(s)y|$$

for s < t and $x, y \in X$ since $\nabla \phi_h = A_h$ and ϕ_h is $\frac{\alpha}{1 + \alpha h}$ -convex. In this section we will establish the following

1.19 Theorem. For every $x \in \overline{D(\phi)}$ and $t \ge 0$:

[1.42]
$$S(t)x := \lim_{h \to 0} S_h(t)x \text{ exists in } (X, |\cdot|),$$

[1.43]
$$S(t)x \in \overline{D(\phi)}$$
.

The family of operators $\{S(t)\}_{t\geqslant 0}: \overline{D(\phi)} \to \overline{D(\phi)}$ is a C_0 -semigroup satisfying

[1.44]
$$[S(t)]_{Lip} \le e^{-\alpha t}, \quad t \ge 0.$$

Proof. The idea is that we prove (1.42)-(1.44) for $x \in D(\partial \psi)$ and then approximate together with the estimate (1.41). We do this in a couple of steps.

Step 1. By lemma 1.16 we can set $M_1 := \sup_{h \in (0,h_\alpha)} |A_h(x)| < \infty$. Let T > 0. Claim.

[1.45]
$$|A_h u_h(t)| \le M_1 e^{2|\alpha|T} =: M_2(\alpha, T) \text{ for } h \in (0, h_\alpha) \text{ and } t \in [0, T].$$

To prove this take estimate (1.41) with $y = S_h x$ with h > 0 and s = 0 to obtain

$$|u_h(t) - u_h(t+h)| \le e^{-\frac{\alpha}{1+\alpha h}t} |u_h(0) - u_h(h)|$$

$$\le e^{2|\alpha|T} |u_h(0) - u_h(h)|.$$

If we now divide by h and send h to 0 we get

$$|\dot{u}_h(t)| \le e^{2|\alpha|T} |\dot{u}_h(0)| = e^{2|\alpha|T} |A_h x| \le e^{2|\alpha|M} M_1.$$

So if we take $\dot{u}_h(t) = -A_h u_h(t)$ we are done.

Step 2. In this step we prove the following estimate

$$(1.48) \qquad \langle A_h u_h(t) - A_{h'} u_{h'}(t), u_h(t) - u_{h'}(t) \rangle \geqslant -2|\alpha| |u_h(t) - u_{h'}(t)|^2 - \lambda M_3,$$

where

[1.49]
$$M_3 := (8|\alpha|h_\alpha + 4)M_2^2(\alpha, T)$$

By the monotonicity of $\partial \psi$ and lemma 1.13, (1.20) we get immediately that

$$\langle (A_h u_h(t) - \alpha J_h u_h(t)) - (A_{h'} u_{h'}(t) - \alpha J_{h'} u_{h'}(t)), J_h u_h(t) - J_{h'} u_{h'}(t) \rangle \geqslant 0.$$

By rearranging terms we quickly see that

$$\langle A_h u_h(t) - A_{h'} u_{h'}(t), J_h u_h(t) - J_{h'} u_{h'}(t) \rangle \geqslant \alpha |J_h u_h(t) - J_{h'} u_{h'}(t)|^2$$

$$|J_h u_h(t) - J_{h'} u_{h'}(t)|^2 \le 2|u_h - u_{h'}|^2 + 8M_2^2 h_{\alpha} \lambda$$

and finally ROT?

$$\langle A_h u_h(t) - A_{h'} u_{h'}(t), J_h u_h(t) - J_{h'} u_{h'}(t) \rangle \geqslant \langle A_h u_h(t) - A_{h'} u_{h'}(t), u_h(t) - u_{h'}(t) \rangle - 4M_2^2 \lambda^2$$

And the claim follows HOW????

Step 3. From ACP for u_h and $u_{h'}$ and (1.48)

$$\begin{split} \frac{1}{2} \frac{d}{dt} |u_{h}(t) - u_{h'}(t)|^{2} &= \langle \dot{u}_{h}(t) - \dot{u}_{h'}(t), u_{h}(t) - u_{h'}(t) \rangle \\ &= -\langle A_{h}u_{h}(t) - A_{h'}u_{h'}(t), u_{h}(t) - u_{h'}(t) \rangle \\ &\leq 2|\alpha|u_{h}(t) - u_{h'}(t)|^{2} + \lambda M_{3} \\ &\leq \frac{2|\alpha|}{\lambda M_{2}T} e^{2|\alpha|T} \lambda M_{3} + \lambda M_{3}. \end{split}$$

If we integrate we arrive at

[1.50]
$$|u_h(t) - u_{h'}(t)|^2 \le \lambda M_3 M_4$$
 for some $M_4 = M_4(\alpha, T)$.

Step 4 (Convergence for $x \in D(\partial \psi)$). From (1.50) it follows that if $h_n \to 0$ $\{u_{h_n}(t)\}_{n \ge 1}$ is a Cauchy sequence in $(X, |\cdot|)$. So this allows us to set

[1.51]
$$S(t)x := \lim_{n \to \infty} u_{h_n}(t).$$

So $S(t)x := \lim_{h\to 0} u_h(t) = \lim_{h\to 0} S_h(t)x$. Now, T > 0 is arbitrary, so S(t)x is well-defined for every t > 0. From (1.51) it follows that the convergence is uniform on [0, T] hence $t \mapsto S(t)x \in C([0, T]; X)$, T > 0. From the definition of A_h and M_2 it follows that

$$|S(t)x - J_{h_n}u_{h_n}(t)| \le |S(t)x - u_{h_n}(t) + h_nA_{h_n}(y)| \le |S(t)x - u_{h_n}(t)| + h_nM_1.$$

Now, $J_{h_n}u_{h_n}(t)\in D(\partial\psi)$ by lemma 1.13, (1.20), so $S(t)\in \overline{D(\partial\psi)}=\overline{D(\phi)}$ by (1.37).

Step 5 (Convergence for $x \in \overline{D(\phi)}$. Let $x \in \overline{D(\phi)}$, $\epsilon > 0$ and T > 0. Then for every $\hat{x} \in D(\partial \psi)$ we have

$$\begin{split} |S_h(t)x - S_{h'}x| & \leq |S_h(t)x - S_h(t)\hat{x}| + |S_h(t)\hat{x} - S_{h'}(t)\hat{x}| + |S_{h'}(t)\hat{x} - S_{h'}(t)x| \\ & = 2e^{2|\alpha|T}|x - \hat{x}| + |S_h(t)\hat{x} - S_{h'}\hat{x}|, \quad t \in [0, T]. \end{split}$$

Now since $\overline{D(\partial \psi)} = \overline{D(\phi)}$ we can pick the first term smaller than $\frac{\epsilon}{2}$ and there is a $\overline{h} \in (0, h_{\alpha}]$ such that the last term is also smaller than $\frac{\epsilon}{2}$ for $t \in [0, T]$ and $0 < h < \lambda \le \overline{h}$. So we conclude that $\lim_{h\to 0} S_h(t)x$ exists in X and we denote it by S(t)x, $t \ge 0$. By uniform continuity on [0, T], $t\mapsto S(t)x$ is continuous on [0, T]. Property (1.44) follows from (1.41) with s=0 and the fact that the limit exists. So now we prove (1.43). Let $x_n \in D(\partial \psi)$, $n \ge 1$ with $\lim_{n\to\infty} x_n = x$. So

$$|S(t)x - S(t)x_n| \le S(t)x_n| \le e^{-\alpha t}|x - x_n| \to 0.$$

So, since $S(t)x_n \in \overline{D(\phi)}$ this also holds for S(t)x.

Step 6 (Semigroup property). Let $x \in \overline{D(\phi)}$, $t, s \ge 0$, $h \in (0, h_{\alpha}]$. So we have

$$\begin{split} |S(t+s)x - S(t)S(x)x| & \leq |S(t+s)x - S_h(t+s)x| + |S_h(t+s)x - S_h(t)S_h(s)x| \\ & + |S_h(t)S_h(s)x - S_h(s)S(s)x| + |S_h(t)S(s)x - S(t)S(s)x| \\ & \leq |S(t+s)x - S_h(t+s)x| + e^{2|\alpha|T}|S_h(s) - S(s)x| \\ & + |S_h(t)S_h(s)x - S(t)S(s)x| \to 0. \end{split}$$

Hence $\{S(t)\}_{t\geq 0}$ is a semigroup of operators on $\overline{D(\phi)}$.

1.4.4 "Existence" theorem

Let $\phi: X \to (-\infty, \infty]$ be proper, lsc and α -convex for some $\alpha \in \mathbf{R}$. Let $\{S(t)\}_{t \ge 0}$ be the semigroup from theorem 1.19. We then have

1.20 Theorem. For every $u_0 \in \overline{D(\phi)}$ the function $u : [0, \infty)$ given by $u(t) := S(t)u_0$ is a solution to (\red{s}) with initial value u_0 .

Proof. We know from theorem 1.19 that $u \in C([0, \infty); X)$. So we still have to show that for every a, b with 0 < a < b the following three things hold:

- 1. $u \in AC([a, b]; X)$,
- 2. $u \in D(\phi)$ for $t \in [a, b]$,
- 3. *u* satisfies for every $z \in D(\phi)$:

[1.52]
$$\frac{1}{2} \frac{d}{dt} |u(t) - z|^2 + \frac{\alpha}{2} |u(t) - z|^2 + \phi(u(t)) \le \phi(z) \text{ a.e. in } (a, b).$$

We first establish the following estimate, there exists $C = C(\phi, \alpha, u_0, a, b) > 0$ such that

[1.53]
$$|A_h u_h(t)| \leq C, \quad h \in (0, h_\alpha), t \in [a, b],$$

where

[1.54]
$$u_h(t) := S_h(t)u_0, \quad t \in \mathbf{R}, h \in (0, h_\alpha).$$

Recall that $u_h \in C^1(\mathbf{R}; X)$ and satisfies the ACP for A_h . From (1.41) with $x = S_h(h)u_0$, $y = u_0$, h > 0 we obtain after dividing by h and sending h to 0 that

$$\begin{aligned} |\dot{u}_h(t)| &\leqslant e^{-\frac{\alpha}{1+\alpha h}} |\dot{u}_h(0)| \\ &= e^{-\frac{\alpha}{1+\alpha h}} |A_h(x)| \\ &= e^{-\frac{\alpha}{1+\alpha h}} M_1 > 0, \end{aligned}$$

so we conclude that

[1.55]
$$t \mapsto e^{\frac{\alpha}{1+\alpha h}} |\dot{u}_h(t)|$$
 is nonincreasing for $t \ge 0$.

If we take the inner product of ACP with $te^{\frac{2\alpha}{1+ah}t}\dot{u}_h(t)$ and integrate from 0 to a we get

$$\int_0^a t e^{\frac{2\alpha}{1+\alpha h}} |\dot{u}_h(t)|^2 \, dt + \int_0^a e^{\frac{2\alpha}{1+\alpha h}} \langle A_h u_h(t), \dot{u}_h(t) \rangle \, dt = 0.$$

So since we have by proposition 1.15 that $A_h u_h(t) = \nabla \phi_h(u_h(t))$ we also have

$$\langle A_h u_h(t), \dot{u}_h(t) \rangle = \frac{d}{dt} \phi_h(u_h(t)).$$

Using (1.55) and integration by parts we obtain

$$\begin{split} \frac{a^2}{2} e^{\frac{2\alpha}{1 + \alpha h} a} |\dot{u}_h(a)|^2 &\leq \int_0^a t e^{\frac{2\alpha}{1 + \alpha h} t} |\dot{u}_h(t)|^2 \, dt \\ &= -\int_0^a t e^{\frac{2\alpha}{1 + \alpha h} t} \frac{d}{dt} \phi_h(u_h(t)) \, dt \\ &= -a e^{\frac{2\alpha}{1 + \alpha h} a} \phi_h(u_h(a)) + \int_0^a \frac{d}{dt} (t e^{\frac{2\alpha}{1 + \alpha h} t}) \phi_h(u_h(t)) \, dt. \end{split}$$

Using (1.15) and $\psi = \phi - \alpha e$ we get

$$\phi_h(u_h(t)) \geq \phi(J_h u_h(t)) \geq \psi(J_h u_h(t)) - \frac{|\alpha|}{2} |J_h u_h(t)|^2, \quad t \geq 0.$$

By lemma 1.10 we have $a_1, b_1 \in \mathbf{R}$ depending only on ψ such that

$$\psi(J_h u_h(t)) \geqslant a_1 |J_h u_h(t)| + b_1.$$

From step 2 and 3 from theorem 1.19 we obtain for $0 < h \le h' \le h_{\alpha}$

$$|J_h u_h(t) - J_{h'} u_{h'}(t)|^2 \le 2\lambda M_3 M_4 + 8M_2^2 h_\alpha \lambda,$$

where $M_4 = M_4(\alpha, T)$, T = b. So this implies that there exists a constant $C_1 = C_1(\phi, \alpha, u_0, a, b) > 0$ such that

[1.56]
$$|J_h u_h(t)| \le C_1, \quad t \in [a, b].$$

This is because $u_{h'}$ is bounded and because of the inverse triangle inequality. So, there exists a $C_2 = C_2(\phi, \alpha, u_0, a, b) > 0$ such that

[1.57]
$$\phi_h(u_h(t)) \ge -C_2, \quad t \in [a, b], h \in (0, h_\alpha).$$

We can see this by considering the cases $a_1 \ge 0$ and $a_1 < 0$. Further, we have that

$$\frac{a^2}{2}e^{\frac{2\alpha}{1+\alpha h}a}|\dot{u}_h(a)|^2 + ae^{\frac{2\alpha}{1+\alpha h}a}\phi_h(u_h(a)) \leqslant \int_0^a \frac{d}{dt}(te^{\frac{2\alpha}{1+\alpha h}t}\phi_h(u_h(t))\,dt.$$

If we now add $ae^{\frac{2\alpha}{1+\alpha h}a}C_2$ to both sides the elements on the LHS become positive, so

$$\frac{a^{2}}{2}e^{\frac{2\alpha}{1+\alpha h}a}|\dot{u}_{h}(a)|^{2} + ae^{\frac{2\alpha}{1+\alpha h}a}(\phi_{h}(u_{h}(a)) + C_{2}) \leq \left| \int_{0}^{a} \frac{d}{dt}(te^{\frac{2\alpha}{1+\alpha h}t})(\phi_{h}(u_{h}(t)) + C_{2}) dt - ae^{\frac{2\alpha}{1+\alpha h}a}C_{2} \right| \\
\leq \left| \int_{0}^{a} \frac{d}{dt}(te^{\frac{2\alpha}{1+\alpha h}t})(\phi_{h}(u_{h}(t)) + C_{2}) dt \right| + ae^{\frac{2\alpha}{1+\alpha h}a}C_{2} \\
\leq C_{3} \left| \int_{0}^{a} \phi_{h}(u_{h}(t)) dt + C_{2} \right| + ae^{\frac{2\alpha}{1+\alpha h}a}C_{2},$$

where $C_3 = C_3(\alpha, a) > 0$. So we conclude

[1.58]
$$e^{\frac{2a}{1+ah}a}|\dot{u}_h(a)|^2 \le C_4 \int_0^a \phi_h(u_h(t)) dt + C_5$$

with $C_4, C_5 > 0$.

We still need to estimate $\int_0^a \phi_h(u_h(t)) dt$, by proposition 1.5 we have

[1.59]
$$\frac{1}{2}\frac{d}{dt}|u_h(t)-z|^2 + \frac{\alpha}{2}|u_h(t)-z|^2 + \phi_h(u_h(t)) \le \phi_h(z), \quad h \in (0, h_\alpha), \ t \in \mathbf{R}, \ z \in X.$$

From the definition of ψ an ϕ_h we see for $z \in D(\phi)$ that $\phi_h(z) \leq \psi(z) = \phi(z)$. Now note that $\sup_{h \in (0,h_\alpha)} \max_{t \in [a,b]} |u_h(t)| < \infty$ because of the inverse triangle inequality and (1.50). So we can conclude that there exists a C_6 such that

[1.60]
$$\int_0^a \phi_h(u_h(t)) dt \leqslant C_6, \quad h \in (0, h_\alpha)$$

From (1.55), (1.58) and (1.61) we obtain that $|A_h u_h(t)| \le C$ for $h \in (0, h_\alpha)$ and $t \in [a, b]$. So now we can prove 1. Now $|u_h(t)| \le C$ for $t \in [a, b]$ and $h \in (0, h_\alpha)$ we get $|u(t) - u(s)| \le C|t - s|$ for $a \le s, t \le b$ so $u \in \text{Lip}([a, b]; X) \subset \text{AC}([a, b]; X)$. From (1.27) we have for $z \in D(\phi)$ and $t \in [a, b]$:

$$\begin{split} \phi_{h}(u_{h}(t)) &\leq \phi_{h}(z) - \langle A_{h}u_{h}(t), z - u_{h}(t) \rangle - \frac{h}{2} |A_{h}x - A_{h}y|^{2} - \frac{\alpha}{2} |J_{h}x - J_{h}y|^{2} \\ &\leq \phi_{h}(z) - \langle A_{h}u_{h}(t), z - u_{h}(t) \rangle - \frac{\alpha}{2} |J_{h}x - J_{h}y|^{2} \\ &\leq \phi(z) + |A_{h}u_{h}(t)|(|z| + |u_{h}(t)|) + \frac{|\alpha|}{2} (|J_{h}u_{h}(t)| + |J_{h}z|)^{2} \\ &\leq \phi(z) + |A_{h}u_{h}(t)|(|z| + |u_{h}(t)|) + |\alpha|(|J_{h}u_{h}(t)|^{2} + |J_{h}z|^{2}). \end{split}$$

Using the bounded on $|A_h x|$, $|J_h x|$ and $\sup_{h \in (0,h_\alpha)} |J_h x| < \infty$ we find a $\hat{C} = \hat{C}(\phi,\alpha,u_0,a,b) > 0$ such that

[1.61]
$$\phi_h(u_h(t)) \leq \hat{C}, \quad t \in [a, b], h \in (0, h_\alpha).$$

Now let $h_n \in (0, h_\alpha) \to 0$. Since $J_{h_n} u_{h_n}(t) \to u(t)$ for $t \in [a, b]$ we obtain by the lower semicontinuity of ϕ that

$$\phi(u(t)) \leqslant \liminf_{n \to \infty} \phi(J_{h_n}(u_{h_n}(t)) \leqslant \liminf_{n \to \infty} \phi_{h_n}(u_{h_n}(t)) \leqslant \hat{C}, \quad t \in [a, b].$$

We can now prove . Note that $t \mapsto \phi(u(t))$ is lsc, hence bounded from below which together with $\phi(u(t)) \le \hat{C}$ proves that $\phi(u) \in L^{\infty}(a,b)$. Using (1.57) and Fatou's lemma

[1.62]
$$\int_{t}^{s} \phi(u(r)) dr \leq \int_{s}^{t} \liminf_{n \to \infty} \phi_{h_n}(u_{h_n}(r)) dr \leq \liminf_{n \to \infty} \int_{s}^{t} \phi_{h_n}(u_{h_n}(r)) dr.$$

Integrating (1.59) on $[s, t] \subset [a, b]$, taking $z \in D(\phi)$, using theorem 1.19 and (1.62) we obtain as $h_n \to 0$:

$$\frac{1}{2}|u(t)-z|^2 - \frac{1}{2}|u(s)-z|^2 + \frac{\alpha}{2}\int_s^t |u(r)-z|^2 dr + \int_s^t \phi(u(r)) \leq (t-s)\phi(z).$$

So now we can by t - s and use the absolute continuity of $t \mapsto |u(t) - z|^2$ and $t \mapsto \int_s^t \phi(u(r)) dr$ we get

$$\frac{1}{2}\frac{d}{dt}|u(t) - z|^2 + \frac{\alpha}{2}|u(t) - z|^2 + \phi(u(t)) \le \phi(z) \text{ a.e. in } (a, b).$$

This completes our proof.

2 Gradient flows in metric spaces

Let (X, d) be a complete metric space and let $\phi : X \to (-\infty, \infty]$ be proper and lower semicontinuous. The goal now is to establish a solution to (\red{a}) with an arbitrary initial value $u_0 \in \overline{D(\phi)}$ under some additional assumptions which will strictly extend that α -convexity condition of the Hilbert space case.

We first reformulate the α -convexity into a more usable form for the metric space case. Note that by rearranging terms

$$[2.1] e((1-t)y_0 + ty_1) = (1-t)e(y_0) + te(y_1) - t(1-t)e(y_0 - y_1)$$

for all $y_0, y_1 \in H$ and $t \in \mathbb{R}$. Now we can deduce that iff $\phi : H \to (-\infty, \infty]$ is α -convex then it satisfies

$$(2.2) \phi((1-t)y_0 + ty_1) \le (1-t)\phi(y_0) + t\phi(y_1) - \alpha t(1-t)e(y_0 - y_1).$$

To see this note that ϕ is α -convex iff

$$[2.3] \ \phi((1-t)y_0+ty_1)-\frac{\alpha}{2}e((1-t)y_0+ty_1) \leq (1-t)\phi(y_0)+t\phi(y_1)-\frac{\alpha}{2}(1-t)e(y_0)-\frac{\alpha}{2}te(y_1).$$

Now use (2.1). Since $e(y_0 - y_1) = \frac{1}{2}d(y_0, y_1)^2$ we can see that condition (2.3) can be expressed in terms of the distance function d in the Hilbert space $(H, \langle \cdot, \cdot \rangle)$. In lemma 1.11 we introduced the function ψ which thus can be rewritten as

[2.4]
$$\psi(y) := \begin{cases} \frac{1}{2h} d(x, y)^2 + \phi(y) & y \in D(\phi), \\ \infty & \text{otherwise} \end{cases}$$

for h > 0 and for $x \in X$. We can see as follows from (2.1) that if ϕ is α -convex then ψ is $\left(\frac{1}{h} + \alpha\right)$ -convex: fill in

We can now formulate additional assumptions on ϕ :

[H_1] There exists a $\alpha \in \mathbf{R}$ such that for every $x, y_0, y_1 \in D(\phi)$ there exists a map $\gamma : [0, 1] \to D(\phi)$ satisfying $\gamma(0) = y_0$ and $\gamma(1) = y_1$ for which the following inequality holds:

[2.5]
$$\frac{1}{2h}d(x,\gamma(t))^{2} + \phi(\gamma(t)) \leq (1-t)\left[\frac{1}{2h}d(x,y_{0})^{2} + \phi(y_{0})\right] + t\left[\frac{1}{2h}d(x,y_{1})^{2} + \phi(y_{1})\right] - \left(\frac{1}{h} + \alpha\right)\frac{1}{2}t(1-t)d(y_{0},y_{1})^{2}$$

for every $t \in [0, 1]$ and for every $h \in I_{\alpha}$.

We further assume

[H_2] There exists $x_* \in D(\phi)$, $r_* > 0$ and $m_* \in \mathbf{R}$ such that $\phi(y) \ge m_*$ for every $y \in X$ satisfying $d(x_*, y) \le r_*$.

2.1 Lemma. Let $\phi: X \to (-\infty, \infty]$ be proper and satisfy $[H_1]$ and $[H_2]$. Also let α be as in $[H_1]$ and x_*, r_* and m_* be as in $[H_2]$ then we have for every $y \in X$ that

[2.6]
$$\begin{cases} \phi(y) \ge m_* & \text{if } d(x_*, y) \le r_*, \\ \phi(y) \ge c - bd(x_*, y) + \frac{1}{2}d(x_*, y)^2 & \text{if } d(x_*, y) > r_*, \end{cases}$$

where $c := \phi(x_*)$ and $b := \frac{1}{r_*}(\phi(x_* - m_*) - \frac{1}{2}\alpha_+ r_*)$ with $\alpha_+ := \max(\alpha, 0)$.

Proof. The first part of (2.6) is just the second hypothesis $[H_2]$. So we will prove the second part. Assume that $y \in D(\phi)$ where $d(x_*, y) > r_*$. From $[H_1]$ with $x := x_*, y_0 = x_*, y_1 := y$ and $t := \frac{r_*}{d(x_*, y)}$ we find $y_* := \gamma(t) \in D(\phi)$ independent on $h \in I_\alpha$ such that

[2.7]
$$\frac{1}{2h}d(x_*, y_*)^2 + \phi(y_*) \le (1 - t) \left[\frac{1}{2h}d(x_*, x_*) + \phi(x_*) \right] + t \left[\frac{1}{2h}d(x_*, y)^2 + \phi(y) \right] - \left(\frac{1}{h} + \alpha \right) \frac{1}{2}t(1 - t)d(x_*, y)^2$$

for every $h \in I_{\alpha}$. Multiplying by h > 0 and sending h to zero in (2.7) we get

$$\frac{1}{2}d(x_*, y_*)^2 \le \frac{t}{2}d(x_*, y)^2 - \frac{1}{2}t(1 - t)d(x_*, y)^2
= \frac{1}{2}(t - t(1 - t))d(x_*, y)^2
= \frac{t^2}{2}d(x_*, y)^2
= \frac{1}{2}r_*^2.$$

Rearranging terms in (2.7) and using the non-negativity of the first term we obtain

$$(2.9) \phi(y) \geqslant \phi(x_*) - \frac{1}{t}(\phi(x_*) - m_*) - \left(\frac{1}{h} + \alpha\right) \frac{t}{2} d(x_*, y)^2 + \frac{\alpha}{2} d(x_*, y)^2.$$

In case of $\alpha \ge 0$ we let h tend to ∞ so we obtain

[2.10]
$$\phi(y) \ge \phi(x_*) - \frac{1}{t}(\phi(x_*) - m_*) - \alpha \frac{t}{2}d(x_*, y)^2 + \frac{\alpha}{2}d(x_*, y)^2,$$

so now we can use the definition of t to obtain (2.7). In the case of $\alpha < 0$ let h tend to $\frac{1}{|\alpha|}$.

It will be convenient to define the following function

[2.11]
$$\Phi(h, x; y) := \frac{1}{2h} d(x, y)^2 + \phi(y), \quad y > 0, \ x, y \in X.$$

2.2 Corollary. Let $\phi: X \to (-\infty, \infty]$ be proper and satisfy $[H_1]$ and $[H_2]$, let $\alpha \in \mathbf{R}$ be as in $[H_1]$. Then for every h > 0 satisfying $\frac{1}{h} + \alpha > 0$, for every $\overline{x} \in X$, M > 0 there exists $\beta > 0$ and $\gamma \in \mathbf{R}$ such that

[2.12] $\Phi(h, x; y) \ge \beta d(\overline{x}, y)^2 + \gamma$ for every $x \in X$ such that $d(x, \overline{x}) \le M$ and for every $y \in X$.

Proof. We can use

[2.13]
$$d(x,y)^2 \ge (1-\epsilon^2)d(\overline{x},y)^2 - M^2\left(\frac{1}{\epsilon^2} - 1\right).$$

To see this note

$$[2.14] d(\overline{x}, y) - M \le d(x, y)$$

so we can square both sides to obtain

[2.15]
$$d(\overline{x}, y)^2 + M^2 - 2Md(\overline{x}, y) \le d(x, y)^2,$$

now note that $2ab \le a^2 + b^2$ so

$$[2.16] \qquad \frac{\epsilon}{\epsilon} 2Md(\overline{x}, y) \leq \frac{M^2}{\epsilon^2} + \epsilon^2 d(\overline{x}, y)^2$$

so we obtain

[2.17]
$$d^{2}(\overline{x}, y)^{2} + M^{2} - \frac{M^{2}}{\epsilon^{2}} - \epsilon^{2} d(x, y)^{2} \le d(x, y)^{2}.$$

So after rearranging terms we get (2.13). Similarly we have

[2.18]
$$d(x_*, y)^2 \le (1 + \eta^2) d(\overline{x}, y)^2 + \left(1 + \frac{1}{\eta^2}\right) d(x_*, \overline{x})^2,$$

for
$$0 < \epsilon, \eta < 1$$
.

So this corollary implies that $y \mapsto \Phi(h, x; y)$ is bounded from below. We define $\phi_h(x)$ as its infimum on X.

2.3 Definition. Let $\phi: X \to (-\infty, \infty]$ be proper and satisfy $[H_1]$ and $[H_2]$, $h + \frac{1}{\alpha} > 0$ with h > 0 and let α be as in $[H_1]$.

[2.19]
$$\phi_h(x) := \inf_{y \in X} \Phi(h, x; y).$$

Remark.

- ϕ_h is a map from X to \mathbf{R} .
- **2.4 Lemma.** Let $\phi: X \to (-\infty, \infty]$ be proper, lsc and satisfy [H_1] and [H_2]. For every $h \in I_\alpha$ the function $\phi_h: X \to \mathbf{R}$ is continuous and for every $x \in \overline{D}(\phi)$ the function $X \ni y \mapsto \Phi(h, x; y)$ has a unique global minimizer in $D(\phi)$ which we will denote by $J_h x$.

Proof. First we will show the continuity of ϕ_h . We will do this by showing that ϕ_h is upper semicontinuous and lower semicontinuous. First we will show the upper semicontinuity To this end let $(x_n)_{n\geqslant 1}$ and $\overline{x}\in X$ be such that $x_n\to \overline{x}$. Now let $y\in D(\phi)$ then we have by definition of Φ that $\phi_h(x_n)\leqslant \Phi(h,x_n;y)$ for all $n\geqslant 1$. So,

[2.20]
$$\limsup_{n \to \infty} \phi_h(x_n) \leqslant \limsup_{n \to \infty} \Phi(h, x_n; y) = \Phi(h, \overline{x}, y),$$

where the last equality follows from the continuity of d. So now we can take the infimum over $u \in D(\phi)$ to obtain

[2.21]
$$\limsup_{n \to \infty} \phi(x_n) \leqslant \phi_h(\overline{x}) < \infty.$$

This proves the upper semicontinuity, now we can prove the lower semicontinuity. Let $(y_n)_{n \ge 1} \in D(\phi)$ be such that (by definition of the inf)

[2.22]
$$\Phi(h, x_n; y_n) \le \phi_h(x_n) + \frac{1}{n}, \quad n \ge 1.$$

Now by corollary 2.2 and (2.20) we have C > 0 such that for all $n \ge 1$ we have that $d(\overline{x}, y_n) \le C$. We also have that $\phi_h(\overline{x}) \le \Phi(h, \overline{x}; y_n)$ for $n \ge 1$ hence

[2.23]

$$\phi_h(\overline{x}) \leq \liminf_{n \to \infty} \Phi(h, \overline{x}; y_n)$$

now because $d(\overline{x}, y_n)$ is bounded we have

$$= \liminf_{n \to \infty} \left\{ \frac{1}{2h} d(\overline{x}, y_n)^2 - \frac{1}{h} d(x_n, \overline{x}) d(\overline{x}, y_n) + \phi(y_n) \right\}$$

because $x_n \to \overline{x}$ we have

$$= \liminf_{n \to \infty} \left\{ \frac{1}{2h} (d(\overline{x}, y_n) - d(\overline{x}, x_n))^2 + \phi(y_n) \right\}$$

$$\leq \left\{ \frac{1}{2h} d(x_n, y_n)^2 + \phi(y_n) \right\}$$

 $\leq \liminf_{n\to\infty} \phi_h(x_n),$

hence ϕ_h is also lower semicontinous hence using the upper semicontinuity ϕ_h is continuous. Let $\overline{x} \in \overline{D(\phi)}$ and let $(y_n)_{n\geqslant 1} \subset D(\phi)$ be a minimizing sequence, that is $\lim_{n\to\infty} \Phi(h,\overline{x},y_n) = \phi_h(\overline{x})$. We will show that in view of the lower semicontinuity of $\Phi(h,\overline{x},\cdot)$ and the completeness of (X,d) that it is sufficient to prove that $(y_n)_n$ is a Cauchy sequence. Suppose this is true, then let its limit be \overline{y} . Let γ be the infimum then

$$\gamma \leqslant \Phi(h, \overline{x}; \overline{y}) \leqslant \liminf_{n \to \infty} \Phi(h, \overline{x}; y_n) = \gamma.$$

Further note that $\Phi(h, \overline{x}, \overline{y}) < \infty$ hence $\overline{y} \in D(\phi)$. In order to show that (y_n) is a Cauchy sequence we use $[H_1]$ with $x := x_n$, $y_0 := y_n$, $y_1 := y_m$ and $t = \frac{1}{2}$ where $D(\phi) \supset x_n \to \overline{x}$. Now let $C_1 > 0$ be such that $d(x_n, \overline{x}) \le C_1$ for $n \ge 1$. From $[H_1]$ we obtain a $y_{n,m} \in D(\phi)$ such that

[2.24]
$$\Phi(h, x_n; y_{n,m}) \leq \frac{1}{2} \Phi(h, x_n; y_n) + \frac{1}{2} \Phi(h, x_n; y_m) - \frac{1}{8} \left(\frac{1}{h} + \alpha\right) d^2(y_n, y_m).$$

By noting that $\Phi(h, x_n; y_{n,m}) \ge \phi_h(x_n)$ we can quickly deduce by rearranging terms that

[2.25]
$$d^{2}(y_{n}, y_{m}) \leq 4\left(\frac{1}{h} + \alpha\right)^{-1} \left[(\Phi(h, x_{n}; y_{n}) - \phi_{h}(x_{n})) + \Phi(h, x_{n}; y_{m}) - \phi_{h}(x_{n}) \right],$$

for $m, n \ge 1$. We will show that the right-hand side of (2.25) tends to 0 as $m, n \to \infty$. For this we note that by corollary 2.2 we have that $\beta d(\overline{x}, y_n)^2 + \gamma \le \Phi(h, \overline{x}; y_n) \le \phi_h(\overline{x}) + \frac{1}{n} \le C_2$ for all $n \ge 1$. So it follows that

[2.26]

$$|\Phi(h, x_n; y_n) - \Phi(h, \overline{x}; y_n)| = \frac{1}{2h} |d(x_n, y_n)^2 - d(\overline{x}, y_n)^2|$$

now note that $d(x_n, y_n) - d(\overline{x}, y_n) \le d(x_n, \overline{x})$ so $(d(x_n, y_n) - d(\overline{x}, y_n))(d(x_n, y_n) + d(\overline{x}, y_n)) = d(x_n, y_n)^2 - d(\overline{x}, y_n)^2 \le d(x_n, \overline{x})(d(x_n, y_n) + d(\overline{x}, y_n))$ so,

$$\leq \frac{1}{2h}d(x_n, \overline{x})(d(x_n, y_n) + d(\overline{x}, y_n))$$

$$\leq \frac{1}{2h}d(x_n, \overline{x})(d(x_n, \overline{x}) + d(\overline{x}, y_n) + d(\overline{x}, y_n))$$

$$\leq \frac{1}{2h}d(x_n, \overline{x})(C_1 + 2C_2) \to 0$$

when $n \to \infty$. So now we have

[2.27]
$$|\Phi(h, x_n; y_n) - \phi_h(x_n)| \leq |\Phi(h, x_n; y_n) - \Phi(h, \overline{x}; y_n)| + |\Phi(h, \overline{x}; y_n) - \phi_h(\overline{x})| + |\phi_h(\overline{x}) - \phi_h(x_n)| \to 0,$$

to see this note that the first term tends to 0 by (2.26), for the second note that

[2.28]
$$|\Phi(h, x_m; y) - \phi_h(x_n)| \le |\phi_h(x_m) - \phi_h(x_n)| \to 0,$$

by the continuity of ϕ_h . The last term tends to 0 by the continuity of ϕ_h . Finally similarly to (2.26) we have

[2.29]
$$|\Phi(h, x_m; y_m) - \Phi(h, x_n; y_m)| = \frac{1}{2h} |d(x_m, y_m)^2 - d(x_n, y_m)^2|$$

$$\leq \frac{1}{2h} d(x_m, x_n) \cdot 2(C_1 + C_2) \to 0 \text{ as } m, n \to \infty.$$

Since $|\phi_h(x_n) - \phi_h(x_m)| \to 0$ we get that the right-hand side of (2.25) tends to 0 proving that the minimizer exists. To see uniqueness repeat the argument with two minimizing sequences.

2.5 Definition. Let (Y, d_Y) be a metric space and $\phi : Y \to (-\infty, \infty]$ be proper. Further, let $x \in D(\phi)$. Then

[2.30]
$$|\partial \phi|(x) := \begin{cases} \limsup_{\substack{y \to x \\ y \neq x}} \frac{(\phi(x) - \phi(y))^+}{d(x,y)} & \text{if } x \text{ is not isolated in } D(\phi), \\ 0 & \text{otherwise.} \end{cases}$$

Set $D(|\partial \phi|) := \{x \in D(\phi) : |\partial \phi|(x) < \infty\}$. $|\partial \phi|(x)$ is called the local slope of ϕ at x.

2.6 Proposition. Let $\phi: X \to (-\infty, \infty]$ be proper, lsc an let it satisfy [H₁] and [H₂]. Then

1. if h > 0, $1 + h\alpha > 0$ where the α is from $[H_1]$, $x \in \overline{D(\phi)}$, then $J_h x \in D(|\partial \phi|)$ and

[2.31]
$$|\partial \phi|(J_h x) \le \frac{1}{h} d(x, J_h x).$$

2. if h > 0, $1 + h\alpha > 0$, $x \in \overline{D(\phi)}$ then we have

$$[2.32] \phi(J_h x) \le \phi_h(x) \le \phi(x),$$

if
$$0 < h_0 < h_1$$
, $1 + h_i \alpha > 0$, then,

[2.33]
$$\phi_{h_1}(x) \leq \phi_{h_0}(x), \quad x \in X$$

[2.34]
$$d(J_{h_0}x, x) \leqslant d(J_{h_1}x, x), \quad x \in \overline{D(\phi)},$$

[2.35]
$$\phi(J_{h_1}x) \leqslant \phi(J_{h_0}x), \quad x \in \overline{D(\phi)},$$

3. if $x \in \overline{D(\phi)}$, then

[2.36]
$$d(x, J_h x) \downarrow 0 \text{ as } h \downarrow 0,$$

[2.37]
$$\phi(J_h x) \uparrow \phi(x) \text{ as } h \downarrow 0,$$

[2.38]
$$\phi_h(x) \uparrow \phi(x) \text{ as } h \downarrow 0.$$

4.

$$\overline{D(|\partial\phi|)} = \overline{D(\phi)}.$$

Proof. 1. By definition we have

$$\phi(J_h x) - \phi(y) = \Phi(h, x; J_h x) - \Phi(h, x; y) + \frac{1}{2h} d(x, y)^2 - \frac{1}{2h} d(x, J_h x)^2$$

$$\leq \frac{1}{2h} (d(x, y)^2 - d(x, J_h x)^2)$$

$$\leq \frac{1}{2h} d(y, J_h x) (d(x, y) + d(x, J_h x))$$

for every $y \in D(\phi)$. If $J_h x$ is isolated in $D(\phi)$, then $|\partial \phi|(J_h x) = 0$ and so (2.31) holds. Otherwise there exists a sequence $(y_n) \subset D(\phi)$ such that $y_n \neq J_h x$ for $n \geqslant 1$ and $y_n \to J_h$ From(2.40) we obtain

[2.41]
$$\frac{\phi(J_h x) - \phi(y_n)}{d(J_h x, y_n)} \leq \frac{1}{2h} (d(x, y_n) + d(x, J_h x)) \\ \leq \frac{1}{2h} (d(y_n, J_h x) + d(x, J_h x) + d(x, J_h x)),$$

hence

$$\limsup_{n \to \infty} \frac{\phi(J_h x) - \phi(y_n)}{d(J_h x, y_n)} \le \frac{1}{h} d(x, J_h x),$$

so

$$|\partial \phi|(J_h x) = \limsup_{\substack{y \to J_h x \\ x \neq J_h x}} \frac{(\phi(J_h x) - \phi(y))^+}{d(J_h x, y)} \leqslant \frac{1}{h} d(x, J_h x).$$

2. For any $x \in \overline{D(\phi)}$ we have

[2.44]
$$\phi(J_h x) \leqslant \phi(J_h x) + \frac{1}{2h} d(x, J_h x)^2 = \phi_h(x) \leqslant \phi(h, x; x) = \phi(x).$$

Further, let $0 < h_0 < h_1$ with $1 + \alpha h_i > 0$. (2.33) is a consequence of the definition of ϕ_h . About (2.34) we have

$$\begin{aligned} [2.45] & \frac{1}{2h_0}d(x,J_{h_0}x)^2 + \phi(J_{h_0}x) \leqslant \frac{1}{2h_0}d(x,J_{h_1}x)^2 + \phi(J_{h_1}x) \\ & \leqslant \frac{1}{2h_0}d(x,J_{h_1}x)^2 - \frac{1}{2h_1}d(x,J_{h_1}x)^2 + \frac{1}{2h_1}d(x,J_{h_1}x)^2 + \phi(J_{h_1}x) \\ & = \left(\frac{1}{2h_0} - \frac{1}{h_1}\right)d(x,J_{h_1}x)^2 + \Phi(h_1,x;J_{h_1}x) \\ & \leqslant \left(\frac{1}{2h_0} - \frac{1}{h_1}\right)d(x,J_{h_1}x)^2 + \frac{1}{2h_1}d(x,J_{h_0}x)^2 + \phi(J_{h_0}x). \end{aligned}$$

Hence

[2.46]
$$\left(\frac{1}{2h_0} - \frac{1}{h_1}\right) d(x, J_{h_0} x)^2 \le \left(\frac{1}{2h_0} - \frac{1}{h_1}\right) d(x, J_{h_1} x)^2,$$

so (2.34) follows.

From $\Phi(h_1, x; J_{h_1}x) \leq \Phi(h_1, x; J_{h_0}x)$ we obtain

$$(2.47) \phi(J_{h_1}x) \leq \frac{1}{2h_1} \underbrace{(d(x, J_{h_0}x)^2 - d(x, J_{h_1}x)^2)}_{\leq 0} + \phi(J_{h_0}x) \leq \phi(J_{h_0}x),$$

because of (2.34)

3. Note

[2.48]

$$d(x, J_h x)^2 = 2h\Phi(h, x; J_h x) - 2h\phi(J_h x)$$

$$\leq 2h\Phi(h, x, y) - 2h\phi(J_h x)$$

$$= d(x, y)^2 - 2h\phi(J_h x) + 2h\phi(y)$$

For every $y \in D(\phi)$. Since $-\phi(J_h x) \le -\phi(J_{h_0} x)$, $0 < h < h_0$ we obtain

$$d(x, J_h x)^2 \le -2h\phi(J_{h_0}) + d(x, y)^2 + 2h\phi(y),$$

taking the lim sup yields

 $\limsup_{h\to 0} d(x, J_h x)^2 \le d(x, y)^2, \text{ for all } y \in D(\phi).$

Now since $x \in \overline{D(\phi)}$ we can take $(y_n) \subset D(\phi)$ converging to x, so then we see

[2.49]
$$\limsup_{h \to 0} d(x, J_h x)^2 = 0.$$

So (2.36) follows from (2.34) and part i) but why??

(2.37) follows from (2.32) (bounded from above by ϕ), (2.34) (increasing) and by the lower semicontinuity

[2.50]
$$\phi(J_h x) \leqslant \phi(x) \leqslant \liminf_{n \to \infty} \phi(x_n),$$

where $x_n := J_{\perp}x$ which converges to x by (2.36). So (2.37) follows.

For (2.38) we note that by (2.32) we have $\phi_h \le \phi$, from (2.33) that ϕ_h is increasing and (2.37) gives the result by noting that

$$\phi(J_h x) \le \phi_h(x) \le \phi(x).$$

For 4 and (2.39) we note that it one direction is direct and for the other one we need to show

$$[2.52] \overline{D(\phi)} \subset \overline{D(|\partial \phi|)}$$

How??

- **2.7 Proposition.** Let $\phi: X \to (-\infty, \infty]$ be proper, lsc and satisfy $[H_1]$ and $[H_2]$. Then we have
 - 1. For all $x \in D(\phi)$ and x is not isolated in $D(\phi)$:

[2.53]
$$|\partial \phi|(x) = \sup_{\substack{y \in D(\phi) \\ y \neq x}} \left(\frac{\phi(x) - \phi(y)}{d(x, y)} + \frac{\alpha}{2} d(x, y) \right)^{+}$$

where α is as in $[H_1]$.

2. The functional $|\partial \phi| : D(\phi) \to [0, \infty]$ is lsc.

Proof. 2. We know that

[2.54]

$$|\partial \phi|(x) = \limsup_{\substack{z \to x \\ z \in D(\phi)}} \left(\frac{\phi(x) - \phi(z)}{d(x, z)} + \frac{1}{2} \rho d(x, z) \right)^{+}$$

because $\limsup = \inf \sup$ we have

$$\leq \sup_{\substack{z \neq x \\ z \in D(\phi)}} \left(\frac{\phi(x) - \phi(z)}{d(x,z)} + \frac{1}{2} \rho d(x,z) \right)^+,$$

and in particular for $\rho = \alpha$. If the right-hand side of (2.53) is equal to zero we are done. In the other case we can restrict the set on which the supremum is taken to the elements $z \in D(\phi)$ and $z \neq x$ such that

[2.55]
$$\phi(x) - \phi(z) + \frac{1}{2}\alpha d(x, z)^2 > 0.$$

Now we can use $[H_1]$ with $x, y_0 := x$ and $y_1 := z$ where z satisfies (2.55). So we get

$$\frac{1}{2h}d(x,\gamma(t))^{2} + \phi(\gamma(t)) \leq (1-t)\phi(x) + t\left[\frac{1}{2h}d(x,z)^{2} + \phi(z)\right] - \left(\frac{1}{h} + \alpha\right)\frac{1}{2}t(1-t)d(x,z)^{2}$$

$$= (1-t)\phi(x) + \left[\frac{1}{2h}t - \left(\frac{1}{h} + \alpha\right)\frac{1}{2}t(1-t)\right]d(x,z)^{2} + t\phi(z)$$

$$= (1-t)\phi(x) - \frac{1}{2}t\alpha d(x,z)^{2} + t\phi(z) + \frac{1}{2}t^{2}\left(\frac{1}{h} + \alpha\right)d(x,z)^{2}$$

$$= \phi(x) - t(\phi(x) - \phi(z) + \frac{1}{2}\alpha d(x,z)^{2}) + \frac{1}{2h}t^{2}d(x,z)^{2},$$

so after multiplying by h and sending h to 0 we get,

[2.57]
$$d(x, \gamma(t))^{2} \le t^{2} d(x, z)^{2}, \quad t \in [0, 1].$$

We can now use $[H_1]$ again with the same x, y_0, y_1 and $(\gamma(t))_{t \in [0,1]}$, so we fix h > 0 with $1 + h\alpha > 0$ and we obtain by deleting the first term in $[H_1]$ that

$$\begin{aligned} \phi(x) - \phi(\gamma(t)) &\ge -\left[\frac{1}{2h}t - \left(\frac{1}{h} + \alpha\right) + \frac{1}{2}t(1-t)\right]d(x,z)^2 + t\phi(x) - t\phi(z) \\ &= \left[\frac{\phi(x) - \phi(z)}{d(x,z)} - \frac{1}{2h}d(x,z) + \left(\frac{1}{h} + \alpha\right)\frac{1}{2}(t-1)d(x,z)\right]td(x,z) \\ &= \left[\frac{\phi(x) - \phi(z)}{d(x,z)} - \frac{1}{2h}(\alpha h(1-t) - t)d(x,z)\right]td(x,z), \end{aligned}$$

for every $t \in [0, 1]$. Since h > 0 is fixed in (2.58) and z satisfies (2.55) there is $t_0 \in (0, 1]$ such that the right-hand side of (2.58) is positive for $t \in (0, t_0)$. So $\gamma(t) \neq x$ for $t \in (0, t_0)$. For $t \in (0, t_0)$ we divide (2.58) by $d(x, \gamma(t))$, use the sign of the right-hand side together with (2.57) we obtain

[2.59]
$$\frac{\phi(x) - \phi(\gamma(t))}{d(x, \gamma(t))} \geqslant \frac{\phi(x) - \phi(z)}{d(x, z)} - \frac{1}{2h} (\alpha h(1 - t) - t) d(x, z)$$

hence,

[2.60]
$$|\partial \phi|(x) \ge \limsup_{t \to 0} \frac{\phi(x) - \phi(\gamma(t))}{d(x, \gamma(t))} \ge \frac{\phi(x) - \phi(z)}{d(x, z)} - \frac{1}{2}\alpha d(x, z)$$

and so

[2.61]
$$|\partial \phi|(x) \geqslant \sup_{\substack{z \neq x \\ z \in D(\phi)}} \left(\frac{\phi(x) - \phi(z)}{d(x, z)} + \frac{1}{2} \alpha d(x, z) \right)^{+}.$$

2. Let $x \in D(\phi)$ and $y \neq x$, $y \in D(\phi)$. Further let $(x_n) \subset D(\phi)$ with $x_n \to x$. Then there exists $n_0 \ge 1$ such that $x_n \ne y$ for $n \ge n_0$. So we have

[2.62]

$$\liminf_{n \to \infty} \sup_{\substack{z \neq x_n \\ z \in D(\phi)}} \left(\frac{\phi(x_n) - \phi(z)}{d(x_n, z)} + \frac{1}{2} \alpha d(x_n, z) \right)^+ \ge \liminf_{n \to \infty} \left(\frac{\phi(x_n) - \phi(y)}{d(x_n, y)} + \frac{1}{2} \alpha d(x_n, y) \right)^+$$

now because ϕ is lsc,

$$\geqslant \left(\frac{\phi(x) - \phi(y)}{d(x, y)} + \frac{1}{2}\alpha d(x, y)\right)^{+}.$$

Taking the supremum over $y \in D(\phi)$ and $y \neq x$ we obtain using (2.53) that

[2.63]
$$|\partial \phi|(x) \le \liminf_{n \to \infty} |\partial \phi|(x_n).$$

This concludes the proof.

The following estimates will be useful in what follows

2.8 Proposition. Let $\phi: X$ to $(-\infty, \infty]$ be proper, lsc and satisfy $[H_1]$ and $[H_2]$. Further let h > 0, $1 + h\alpha > 0$. Then

1. for $x \in D(\phi)$,

[2.64]
$$d(x, J_h x)^2 \le 2(1 + h\alpha)^{-1} h[\phi(x) - \phi_h(x)]$$

2. for $x \in D(|\partial \phi|)$, then

[2.65]
$$\phi(x) - \phi_h(x) \le \frac{1}{2} (1 + h\alpha)^{-1} h |\partial \phi|^2(x),$$

[2.66]
$$|\partial \phi|(J_h x) \le (1 + h\alpha)^{-1} |\partial \phi|(x),$$

[2.67]
$$\phi(x) - \phi(J_h x) \le \frac{1}{2} h(1 + h\alpha)^{-2} (2 + h\alpha) |\partial \phi|^2(x),$$

3. for $x \in \overline{D(\phi)}$, Fix labels

$$(2.68) x \in D(|\partial \phi|) iff \sup_{\substack{h>0\\1+h\alpha\geqslant\frac{1}{2}}} |\partial \phi|(J_hx)<\infty, iff \sup_{\substack{h>0\\1+h\alpha\geqslant\frac{1}{2}}} |\partial \frac{d(x,J_hx)}{h}<\infty,$$

4. for $x \in D(\phi)$

[2.69]
$$x \in D(|\partial \phi|) \ iff \sup_{\substack{h > 0 \\ 1 + h\alpha \geqslant \frac{1}{2}}} |\partial \frac{\phi(x) - \phi_h(x)}{h} < \infty$$

5. for $x \in D(|\partial \phi|)$

[2.70]
$$|\partial \phi|(x) = \lim_{h \to 0} |\partial \phi|(J_h x) = \lim_{h \to 0} \frac{d(x, J_h x)}{h} = \lim_{h \to 0} \left(2\frac{\phi(x) - \phi_h(x)}{h}\right)^{\frac{1}{2}}.$$

6. for $x \in D(|\partial \phi|)$ $|\partial \phi|(x) = 0$ iff there exist $h_0 > 0$ with $1 + h_0\alpha > 0$ such that $x = J_{h_0}x$ iff for all h > 0 with $1 + \alpha h > 0$: $x = J_hx$

2.9 Definition. We will denote by J_h the opertor from $\overline{D(\phi)}$ into $D(\phi)$ defined by $x \mapsto J_h x$.

The first main result is

2.10 Theorem. Assume that (X, d) is a complete metric space and that $\phi : X \to (-\infty, \infty]$ is proper, lsc and satisfies conditions $[H_1]$ with $\alpha \in \mathbf{R}$ and $[H_2]$. Then we have for every $x \in D(|\partial \phi|)$ with α of $[H_1]$ one unique solution u with initial condition u(0) = x. Further the following holds:

[2.71]
$$\lim_{n\to\infty} J_{\frac{t}{n}}^n x = u(t) \text{ for every } t > 0,$$

[2.72]
$$u(t) \in D(|\partial \phi|)$$
 for every $t > 0$,

[2.73]
$$u|_{[0,T]} \in Lip([0,T];X)$$
 for every $T > 0$,

[2.74]
$$[0, \infty) \ni t \mapsto \phi(u(t))$$
 is nonincreasing,

[2.75]
$$[0, \infty) \ni t \mapsto e^{\alpha t} |\partial \phi|(u(t) \text{ is nonincreasing and right-continuous,}$$

[2.76]
$$\phi(u(t)) = \lim_{n \to \infty} \phi(J_{\frac{t}{n}}^n x) \text{ for every } t > 0,$$

$$[2.77] \qquad \frac{1}{2} \int_0^t |\dot{u}|^2(s) \, ds + \frac{1}{2} \int_0^t |\partial \phi|^2(u(s)) \, ds + \phi(u(t)) \le \phi(x) \, \text{for every } t \ge 0.$$

Finally we set

[2.78]
$$S(t)x := u(t), \quad t \ge 0,$$

where u is the unique solution to (*) with initial condition u(0) = x. In this case $(S(t))_{t \ge 0}$ is a contractive C_0 -semigroup of operators on $D(|\partial \phi|)$, i.e.

$$[S(t)]_{Lip} \leq e^{\alpha t}, \quad t \geq 0.$$

Proof. Step 1 (A variational inequality for $J_h x$).

[2.80]
$$\frac{1}{2h}[d(J_h x, z)^2 - d(x, z)^2] + \frac{\alpha}{2}d(J_h x, x)^2 + \phi_h(x) \le \phi(z)$$

for every $z \in D(\phi)$. Because $J_h x$ is the minimum of Φ we have for every $\hat{z} \in D(\phi)$

[2.81]
$$\frac{1}{2h}d(x,J_hx)^2 + \phi(J_hx) \leqslant \frac{1}{2h}d(x,\hat{z})^2 + \phi(\hat{z}).$$

Let $z \in D(\phi)$. So if we use $[H_1]$ with $x := x_0$, $y_0 := z$ and $y_1 := J_h x$ and substituting $\hat{z} = \gamma(t)$, $t \in (0, 1)$ in (2.81) we obtain

$$[2.82] \qquad \frac{1}{2h}d(x,\hat{z})^{2} + \phi(\hat{z}) \leq (1-t)\left[\frac{1}{2h}d(x,z)^{2} + \phi(z)\right] \\ + t\left[\frac{1}{2h}d(x,J_{h}x)^{2} + \phi(J_{h}x)\right] - \left(\frac{1}{h} + \alpha\right)\frac{1}{2}t(1-t)d(z,J_{h}x)^{2}.$$

So now we can use (2.81) we get

[2.83]
$$\frac{1}{2h}d(x,J_hx)^2 + \phi(J_hx) \leq (1-t)\left[\frac{1}{2h}d(x,z)^2 + \phi(z)\right] + t\left[\frac{1}{2h}d(x,J_hx)^2 + \phi(J_hx)\right] - \left(\frac{1}{h} + \alpha\right)\frac{1}{2}t(1-t)d(z,J_hx)^2,$$

rearranging terms and dividing by (1 - t) and letting t tend to 1 we obtain

[2.84]
$$\frac{1}{2h}d(x,J_hx)^2 + \phi(J_hx) \le \frac{1}{2h}d(x,z)^2 + \phi(z) - \frac{1}{2}\left(\frac{1}{h} + \alpha\right)d(J_hx,z)^2.$$

This proves (2.80).

Step 2 (an estimate for $d(J_{\gamma}^m x, J_{\delta}^n x)^2$). Let $x \in D(\partial \phi|)$, $\gamma, \delta > 0$ such that $1 + \alpha \gamma > 0$ and $1 + \alpha \delta > 0$ and let m, n be nonnegative integers. We want to estimate $d(J_{\gamma}^m x, J_{\delta}^n x)^2$ where for n = 0 we have $J_{\delta}^n x := x$. The idea is to first establish the estimate in the case m = 0 or n = 0 and then to find a recursive identity. We will restrict ourselves to the case $\alpha \leq 0$. Case n = 0 or m = 0; $\alpha \leq 0$. We have for $x \in D(|\partial \phi|)$, $\gamma > 0$, $1 + \alpha \gamma > 0$ and $m \geq 1$:

[2.85]
$$d(J_{\gamma}^{m}x, x) \leq (m\gamma)^{2}(1 + \alpha\gamma)^{-2m}|\partial\phi|^{2}(x).$$

To see this set z = x in (2.80), then we obtain

[2.86]
$$\frac{1}{2h}(d(J_h x, x)^2 - d(x, x)^2) + \frac{\alpha}{2}d(J_h x, x)^2 + \phi_h(x) \le \phi(x),$$

now multiply by 2h and replace h by γ we get

$$(1 + \gamma \alpha)d(J_h x, x)^2 \le 2\gamma [\phi(x) - \phi_{\gamma}(x)],$$

divide by $1 + \alpha \gamma$ to obtain

[2.88]
$$d(J_h x, x)^2 \le (1 + \gamma \alpha)^{-1} 2\gamma [\phi(x) - \phi_{\gamma}(x)],$$

so now

[2.89]

$$d(J_{\gamma}^{m}x, x) \leq \left(\sum_{k=1}^{m} d(J_{\gamma}^{k}x, J_{\gamma}^{k-1}x)\right)^{2}$$

$$\leq m \sum_{k=1}^{m} d(J_{\gamma}^{k}x, J_{\gamma}^{k-1})^{2}$$

$$\leq m \sum_{k=1}^{m} [d(J_{\gamma}^{k}x, x) + d(J_{\gamma}^{k-1}, x)]^{2}$$

now using (2.84) we have

$$\leq 2m\gamma(1+\alpha\gamma)^{-1}\sum_{k=1}^{m}[\phi(J_{\gamma}^{k-1}x)-\phi_{\gamma}(J_{\gamma}^{k-1}x)].$$

By the triangle inequality and Cauchy-Schwarz. Now we can use (2.65) to obtain

[2.90]
$$d(J_{\gamma}^{m}, x) \leq m\gamma^{2} (1 - \alpha \gamma)^{-2} \sum_{k=1}^{m} |\partial \phi|^{2} (J_{\gamma}^{k-1}).$$

Now we can use (2.66) to obtain

[2.91]
$$d(J_{\gamma}^{m}x, x)^{2} \leq m\gamma^{2}(1 + \alpha\gamma)^{-2} \left(\sum_{k=1}^{m} (1 + \alpha\gamma)^{-2(k-1)}\right) |\partial\phi|^{2}(x).$$

So now we can compute the sum and use some basic estimates to get since $\alpha \le 0$ that

[2.92]
$$d(J_{\gamma}^{m}, x) \leq m^{2} \gamma^{2} (1 + \alpha \gamma)^{-2m} |\partial \phi|^{2}(x),$$

which proves our claim. Similarly we have for m = 0, $n \ge 1$, $\alpha \le 0$, $\delta > 0$ and $1 + \alpha \delta > 0$:

[2.93]
$$d(J_{\delta}^{n}, x) \leq n^{2} \delta^{2} (1 + \alpha \delta)^{-2n} |\partial \phi|^{2}(x),$$

Case $n \ge 1$, $m \ge 1$ and $\alpha \ge 0$ we claim that

[2.94]
$$d(J_{\gamma}^{m}x, J_{\delta}^{n}x)^{2} \leq |\partial\phi|^{2}(x) \cdot \max\left\{ (1 + \alpha\gamma)^{-2(m+1)}, (1 + \alpha\delta)^{-2(n+1)} \right\} \cdot \left\{ [m\gamma - n\delta) + (m - n)\alpha\gamma\delta \right]^{2} + (\gamma + \delta) \cdot \min(m\gamma, n\delta) \right\}$$

To see this let $1 \le i \le m$, $1 \le j \le n$, $x_0 = y_0 := x$, $x_i := J_{\gamma} x_{i-1}$. Now use $\phi(J_h x) \le \phi_h(x) \le \phi(x)$ and (2.80) to obtain

[2.95]
$$\frac{1}{2\gamma} [d(x_i x, z)^2 - d(x_{i-1}, z)^2] + \frac{\alpha}{2} d(x_i, z)^2 \le \phi(z)$$

[2.96]
$$\frac{1}{2\delta} [d(y_i x, \hat{z})^2 - d(y_{i-1}, \hat{z})^2] + \frac{\alpha}{2} d(y_i, \hat{z})^2 \le \phi(z)$$

Now we can set $z := y_i$ in (2.95) and $\hat{z} := x_i$ in (2.96) and adding we obtain

$$\frac{1}{2\gamma} [d(x_i, y_j)^2 - d(x_{i-1}, y_j)] + \frac{1}{2\delta} [d(y_j, x_i)^2 - d(y_{j-1}, x_i)^2]
= \left(\frac{1}{2\gamma} + \frac{1}{2\delta} + \alpha\right) d(x_i, y_j)^2 - \frac{1}{2\gamma} d(x_{i-1}, y_j)^2 - \frac{1}{2\delta} d(y_{j-1}, x_i)^2
\leq 0$$

So, multiplying with $2\gamma\delta$ we get

$$[2.98] d(x_i, y_j)^2 \le \frac{\delta}{\delta + \gamma + 2\gamma\delta\alpha} d(x_{i-1}, y_j)^2 + \frac{\gamma}{\delta + \gamma + 2\gamma\delta\alpha} d(y_{j-1}, x_i)^2.$$

Now we multiply (2.98) by $(1 + \alpha \gamma)^{i} (1 + \alpha \delta)^{j}$ and then defining (also for i, j = 0),

[2.99]
$$a_{i,j} := (1 + \alpha \gamma)^{i} (1 + \alpha \delta)^{j} d(x_i, y_j)^2,$$

so we obtain

[2.100]
$$a_{i,j} \leqslant \frac{\gamma(1+\alpha\delta)}{\delta+\gamma+2\gamma\delta\alpha} a_{i,j-1} + \frac{\delta(1+\alpha\gamma)}{\delta+\gamma+2\gamma\delta\alpha} a_{i-1,j}.$$

So now we set

[2.101]
$$\hat{\gamma} := \gamma(1 + \alpha \delta), \quad \hat{\delta} := \delta(1 + \alpha \gamma),$$

and we arrive at

$$[2.102] a_{i,j} \leqslant \frac{\hat{\gamma}}{\hat{\gamma} + \hat{\delta}} a_{i,j-1} + \frac{\hat{\delta}}{\hat{\gamma} + \hat{\delta}} a_{i-1,j}.$$

From (2.85), (2.101) and using that $\alpha \le 0$ such that $(1 + \alpha \gamma)^{-1} \ge 1$ and $(1 + \alpha \delta)^{-1} \ge 1$ we get

[2.103]
$$a_{i,0} \le |\partial \phi|^2 (x) \cdot (1 + \alpha \gamma)^{-m} (1 + \alpha \delta)^{-2} (i\hat{g}amma)^2,$$

similarly from (2.93) we obtain

[2.104]
$$a_{0,j} \le |\partial \phi|^2(x) \cdot (1 + \alpha \delta)^{-n} (1 + \alpha \gamma)^{-2} (j\hat{\delta})^2.$$

By pairwise comparison we obtain

[2.105]
$$|\partial \phi|^2(x) \max\{(1 + \alpha \gamma)^{-m} (1 + \alpha \delta)^{-2}, (1 + \alpha \delta)^{-n} (1 + \alpha \gamma)^{-2}\}$$

$$\leq |\partial \phi|^2(x) \max\{(1 + \alpha \gamma)^{-(m+2)}, (1 + \alpha \delta)^{-(n+2)}\}$$

Now use Lemma 2 Step 3 (Convergence of $J_{\frac{t}{m}}^m$). Let $x \in D(|\partial \phi|)$, t > 0, $\alpha \le 0$ and $n_0 \in \mathbb{N}$ be such that

$$[2.106] 1 + \alpha \frac{t}{n_0} > 0.$$

Now let $m, n \ge n_0$, then $J_{\frac{t}{m}}^m x$ and $J_{\frac{t}{n}}^n$ are well defined by lemma 2.4 and because of (2.94) with $\gamma := \frac{t}{m}, \delta := \frac{t}{n}$ we obtain

$$\begin{aligned} d(J_{\frac{t}{m}}x,J_{\frac{t}{n}}x) & \leq |\partial\phi|(x)\cdot \max\left\{\left(1+\alpha\frac{t}{m}\right)^{-(m+1)},\left(1+\alpha\frac{t}{n}\right)^{-(n+1)}\right\} \\ & \cdot \left\{\left[\frac{m-n}{mn}t^{2}\alpha\right]^{2}+\left(\frac{t}{n}+\frac{t}{m}\right)\cdot \min\{t,t\}\right\}^{\frac{1}{2}}, \end{aligned}$$

now we use $\frac{m-n}{mn} = \left(\frac{1}{m} - \frac{1}{n}\right)^2$ to obtain

$$\begin{aligned} d(J_{\frac{t}{m}}x,J_{\frac{t}{n}}x) &\leq |\partial\phi|(x)\cdot t\cdot \max\left\{\left(1+\alpha\frac{t}{m}\right)^{-(m+1)},\left(1+\alpha\frac{t}{n}\right)^{-(n+1)}\right\}\\ &\cdot \left[\frac{1}{m}+\frac{1}{n}+(\alpha t)^2\left(\frac{1}{m}-\frac{1}{n}\right)^2\right]^{\frac{1}{2}}, \end{aligned}$$

this proves that $(J_{\frac{1}{n}}^n x)_{n \geqslant n_0}$ is a Cauchy sequence in the complete space (X, d), so we can set

[2.109]
$$u(t) := \lim_{n \to \infty} J_{\frac{t}{n}}^{n} x, \quad t > 0,$$

with the estimate

$$[2.110] d(u(t), J_{\frac{t}{n}}x) \leq |\partial \phi|(x) \cdot t \cdot \max\left\{e^{-\alpha t}, \left(1 + \alpha \frac{t}{n}\right)^{-(n+1)}\right\} \cdot \left[\frac{1}{n} + \left(\frac{\alpha t}{n}\right)^2\right]^{\frac{1}{2}}.$$

Now we need to show that $u(t) \in D(|\partial \phi|)$. by (2.66) we have

[2.111]
$$|\partial \phi(J_{\frac{t}{n}}x) \leqslant \left(1 + \alpha \frac{t}{n}\right)^{-1} |\partial \phi|(x),$$

hence by induction

[2.112]
$$|\partial \phi(J_{\frac{t}{n}}^n x) \le \left(1 + \alpha \frac{t}{n}\right)^{-n} |\partial \phi|(x).$$

By the lower semicontinuity of $|\partial \phi|$ we get

[2.113]
$$|\partial \phi|(u(t)) \leq e^{-\alpha t} |\partial \phi|(x), \quad t > 0.$$

Step 4 (Local Lipschitz continuity of u). Let $x \in D(|\partial \phi|)$ and further set

$$[2.114] u(0) := x,$$

and for t > 0, $\alpha \le 0$, u(t) is defined by (2.110). From (2.93) with $\delta := \frac{t}{n}$, $n \ge n_0$ and (2.106) we have

[2.115]
$$d(J_{\frac{t}{n}}^{n}x,x) \leq t\left(1+\alpha\frac{t}{n}\right)^{-n}|\partial\phi|(x),$$

so if we take the limit when n tends to infinity we have

[2.116]
$$d(u(t), u(0)) \le te^{-\alpha t} |\partial \phi|(x).$$

Hence *u* is continuous at 0. Now let 0 < s < t, $m = n \ge n_0$ and $\gamma := \frac{t}{n}$, $\delta := \frac{s}{n}$. If we apply (2.94) we have

$$[2.117] d(J_{\frac{t}{n}}^{n}x, J_{\frac{s}{n}}^{n}x)^{2} \leq |\partial\phi|^{2}(x)\left(1 + \alpha \frac{t}{n}\right)^{-2(n+1)} \cdot \left[(t-s)^{2} + \left(\frac{t}{n} + \frac{s}{n}\right) \cdot s\right],$$

if we now take the limit as n tends to infinity we obtain

[2.118]
$$d(u(t), u(s)) \le |\partial \phi|(x)e^{-\alpha t}|t - s|, \quad 0 < s < t,$$

now taking the limit as s tends to 0 we obtain

[2.119]
$$d(u(t), u(s)) \le |\partial \phi|(x)e^{-\alpha t}|t - s|, \quad 0 \le s < t.$$

If $\alpha > 0$ then u is also a solution to (*) with $\alpha = 0$, hence we obtain for any $\alpha \in \mathbb{R}$ | WHY??

[2.120]
$$d(u(t), u(s)) \le |\partial \phi|(x)e^{-\alpha^{-t}}|t - s|, \quad 0 \le s < t.$$

Step 5 (u is a solution to (*)). Let $x \in D(|\partial \phi|)$ and $\alpha \in \mathbb{R}$ as in $[H_1]$. If $\alpha > 0$, then for h > 0, $1 + h\alpha > 0$, $J_h x$ is well defined by lemma 2.4 and satisfies (2.80) so all the estimates that follow from this hold. We have defined u in (2.110). We will prove that if u is a solution to (*) with initial condition u(0) = x and $\alpha \leq 0$ as above.

If $\alpha > 0$, then for every h > 0, $J_h x$ is well defined by lemma 2.4 and also satisfies the variational inequality (2.80) where $\alpha > 0$, hence also for $\alpha = 0$. Thus it follows from the proofs of step 2, 3 and 4 that $J_h x$ satisfies all the estimates as well with $\alpha = 0$. So $\lim_{n\to\infty} J_{\frac{t}{n}}^n x$ exists for every t > 0 and so we can define u(t) as in (2.110) for t > 0 and u(0) = x. In this case u satisfies (2.72) and (2.73). In this case we also want to prove that u is a solution to (**) with $\alpha > 0$. To prove this we start from (2.80) with $\alpha > 0$. From now one we will take $\alpha \in \mathbb{R}$ and distinguish between the cases $\alpha \le 0$ and $\alpha > 0$ if necessary. Because of (2.73) and proposition 1.9 it is sufficient to prove that u is an "integral solution" to (**), this means that for every 0 < a < b, $\phi \circ u \in L^1(a,b)$ and $\phi \circ u$ satisfies the integral formulation of proposition 1.9. If follows from the continuity of u (because then we can pass limits) that if $\phi \circ u \in L^1(a,b)$ and $\phi \circ u$ satisfies the integral ** with 0 < a < b where a, b are rational numbers, then u is an "integral solution" to (**).

Let 0 < a < b with a, b rational numbers. So now there exists s > 0 rational, p > q > 0 integers such that a = qs and b = ps. Let $k_0 \in \mathbb{N}$ be such that

$$[2.121] 1 + \alpha \frac{s}{k_0} > 0,$$

and $k \ge k_0$. Then we have

$$J_{\frac{s}{k}}^{qk}x = J_{\frac{qs}{k}}^{qk}x = J_{\frac{a}{ak}}^{qk}x \rightarrow u(a),$$

and similarly

$$[2.123] J^{pk}_{\frac{s}{t}} \to u(b).$$

Now we set $h := \frac{s}{k}$, now we also have $1 + \alpha \frac{s}{k_0} > 0$, $x_m := J_h^m x$, $m \ge 1$ is well defined because of lemma 2.4. Further we set $x_0 := x$, for all $z \in D(\phi)$, $m \ge 1$ we have because $\phi(J_h x) \le \phi_h(x) \le \phi(x)$ and (2.80)

[2.124]
$$\frac{1}{2}[d(x_m, z)^2 - d(x_{m-1}, z)^2] + \frac{\alpha h}{2}d(x_m, z)^2 + h\phi(x_m) \le h\phi(z).$$

So, summing (2.124) from m := qk + 1 to pk we have

$$\frac{1}{2}[d(x_{pk},z)^{2} - d(x_{qk},z)^{2}] + \frac{\alpha}{2} \frac{s}{k} \sum_{l=qk+1}^{pk} d(x_{l},z)^{2} + \frac{s}{k} \sum_{l=qk+1}^{pk} \phi(x_{l})$$

$$\leq \frac{s}{k} \sum_{l=qk+1}^{pk} \phi(z)$$

$$= (b-a)\phi(z).$$

Now we take the limit of (2.125) as k tends to infinity. Note that because of (2.122) and (2.123) that $\lim_{k\to\infty} x_{pk} = u(b)$ and $\lim_{k\to\infty} x_{qk} = u(a)$. The following lemma will take care of the limit in the third and fourth term of (2.125).

- **2.11 Lemma.** Let x, u, s, a, b, p, q be as above and let $k \ge k_0$ where k_0 satisfies $1 + \alpha \frac{s}{k_0} > 0$
 - 1. if $\phi: X \to \mathbf{R}$ is Lipschitz continuous on bounded subsets of X, then

[2.126]
$$\lim_{k \to \infty} \frac{s}{k} \sum_{l=ak+1}^{pk} \phi\left(J_{\frac{s}{k}}^{l} x\right) = \int_{a}^{b} \phi(u(t)) dt.$$

2. if $\phi: X \to (-\infty, \infty]$ is proper, lsc and satisfies assumptions $[H_1]$ with $\alpha \in \mathbb{R}$ and $[H_2]$, then $\phi \circ u$ is lsc (hence Lebesgue measurable) and $\phi \circ |_{[a,b]}$ is bounded below. Further if $C \geqslant 0$ is such that $\phi(u(t)) + C \geqslant 0$, $t \in [a,b]$, then

[2.127]
$$\int_{a}^{b} \phi(u(t)) + C \leq \liminf_{k \to \infty} \frac{s}{k} \sum_{l=ak+1}^{pk} \phi(J_{\frac{s}{k}}^{l}x) + C(b-a).$$

In particular if the rhs of (2.127) is finite, then $\phi \circ u|_{[a,b]} \in L^1(a,b)$.

Before we prove lemma 2.11 we will apply it so prove that $\phi \circ u|_{[a,b]} \in L^1(a,b)$ and satisfies the integral form of $^{\bigstar}$. Remember that $y \mapsto d(y,z)^2$ is Lipschitz continuous on bounded subsets of X, to see this note

[2.128]
$$d(y,z)^2 - d(\hat{y},z)^2 \le d(y,\hat{y})(d(y,z) + d(\hat{y},z))$$

We can use lemma 2.11 to prove that the third term in (2.125) converges to $\frac{\alpha}{2} \int_a^b d(u(t), z) dt$ as k tends to infinity. So it follows that

[2.129]

$$\liminf_{k \to \infty} \sum_{l=qk+1}^{pk} \phi(x_l) \leq (b-a)\phi(z) - \frac{1}{2}d(u(b), z)^2 + \frac{1}{2}d(u(a), z)^2 - \frac{\alpha}{2} \int_a^b d(u(t), z)^2 dt < \infty.$$

It follows from lemma 2.11 that $\phi \circ u|_{[a,b]} \in L^1(a,b)$ and from (2.127) that u satisfies integral \clubsuit . Hence u is a solution to (\clubsuit). So now we can prove lemma 2.11.

Proof (of lemma 2.11). First we prove 1. Since $u|_{[a,b]} \in C[a,b]$ we have $\phi \circ u \in u|_{[a,b]}$ and

[2.130]
$$\int_{a}^{b} \phi(u(t)) dt = \lim_{k \to \infty} \frac{s}{k} \sum_{l=ak+1}^{pk} \phi\left(u\left(l\frac{s}{k}\right)\right).$$

Note that $\{u(l_{\overline{k}}): k \ge k_0, qk + 1 \le l \le pk\} \subset u([a, b])$ is bounded in X. From (2.110) we get

$$d\left(u\left(l\frac{s}{k}\right), J_{\frac{s}{k}}^{l}x\right) = d\left(u\left(l\frac{s}{k}\right), J_{\frac{sl}{k}}^{l}x\right)$$

$$\leq |\partial\phi|(x)s\frac{l}{k}\left[\frac{1}{l} + \left(\frac{\alpha l\frac{s}{k}}{l}\right)^{2}\right]^{\frac{1}{2}} \cdot \max\left\{e^{-\alpha t}, \left(1 + \alpha\frac{s}{k}\right)^{-(l+1)}\right\}$$

$$\leq |\partial\phi|(x)\left(\frac{ls}{k}\right) \cdot \left[\frac{1}{l} + \left(\frac{\alpha l\frac{s}{k}}{l}\right)^{2}\right]^{\frac{1}{2}} C(|\alpha|, b),$$

for some constant $C = C(|\alpha|, b) > 0$, since $e^{-\alpha l \frac{s}{k}} \le e^{|\alpha|b}$ and $\lim_{k \to \infty} \left(1 + \frac{1}{\alpha} \frac{t}{n}\right)^{-(n+1)} = e^{-\alpha t} \le e^{|\alpha|b}$. Since $0 < \frac{ls}{k} \le b$, it follows that $\left\{J_{\frac{s}{k}}x : k \ge k_0, qk + 1 \le l \le pk\right\}$ is bounded in X (by writing out the limit definition). Let $k \ge k_0$ and let $qk + 1 \le l \le pk$. Then in view of the Lipschitz continuity of ϕ on bounded subsets of X there exists M > 0 such that

[2.132]

$$\left|\phi\left(u\left(l\frac{s}{k}\right)\right) - \phi\left(J_{\frac{s}{k}}^{l}x\right)\right| \leq Md\left(u\left(l\frac{s}{k}\right), J_{\frac{s}{k}}^{l}x\right).$$

now using (2.131) we get

$$\leq M|\partial\phi|(x)\left(l\frac{s}{k}\right)\left[\frac{1}{l} + \left(\alpha\frac{ls}{k}\right)^2 \frac{1}{l^2}\right]^{\frac{1}{2}}C(|\alpha|, b)$$

$$= M|\partial\phi|(x)C(|\alpha|, b)\left[1 + (\alpha s)^2\right]^{\frac{1}{2}} s\frac{l^2}{k}.$$

Hence,

$$[2.133] \qquad \frac{s}{k} \left| \sum_{l=qk+1}^{pk} \phi\left(u\left(l\frac{s}{k}\right)\right) - \phi\left(J_{\frac{s}{k}}^{l}x\right) \right| \leq M|\partial\phi|(x)C'(|\alpha|, b, s) \frac{1}{k^{2}} \sum_{l=qk+1}^{pk} \sqrt{l} = O\left(\frac{1}{\sqrt{k}}\right),$$

as k tends to infinity. Therefore in view of (2.131) we find (2.126). Now we prove 2. $u \in C([a,b];X)$ and ϕ is lsc, [a,b] compact hence $\phi \circ u|_{[a,b]}$ is bounded from below. Now let $\overline{C} \geqslant 0$ be such that $\phi(u(t)) + \overline{C} \geqslant 0$ for all $t \in [a,b]$. Then $\int_a^b \phi(u(t)) + \overline{C} \, dt$ is well defined (possibly equal to ∞). We now claim that ϕ is bounded from below on $B = \left\{J_{\frac{s}{k}}^l x : k \geqslant k_0, qk \leqslant l \leqslant pk\right\}$ where x is as in theorem 2.10. And k_0 satisfies $1 + \alpha \frac{s}{k_0} > 0$ and p,q as defined above. Note that $B \subset D(\phi)$. WHY?? Suppose for contradiction that ϕ is not bounded from below on B. For $k \geqslant k_0$ let $l_k \in \mathbb{N}$ be such that $qk \leqslant l_k \leqslant pk$ and

$$\phi_k := \phi\left(J_{\frac{s}{k}}^{l_k}x\right) = \min\left\{J_{\frac{s}{k}}^{l}x : qk \leqslant l \leqslant pk\right\}$$

There exists a subsequence ϕ_{j_k} tending to $-\infty$ as $k \to \infty$. Let $t_k := l_k \frac{s}{k}$, $k \ge k_0$. Since $t_k \in [a, b]$ there exists a subsequence of t_{j_k} which we will still denote by t_{j_k} and $\bar{t} \in [a, b]$ such that $\lim_{k \to \infty} t_{j_k} = \bar{t}$. We now claim that

$$[2.135] d\left(u(\bar{t}), J_{\frac{s}{h}}^{l_{j_k}} x\right) = 0.$$

Clearly we have $d(u(\bar{t}), u(t_{j_k})) \to 0$. So set $m_k = l_{j_k}$. In view of (2.110), using the same constant as in (2.131)

$$[2.136] d\left(u\left(m_k \cdot \frac{m_k s}{m_k j_k}\right), J_{\frac{s}{j_k}}^{m_k} x\right) \leq |\partial \phi|(x) C(|\alpha|, b) \cdot b \cdot \left(\frac{q}{j_k} + (\alpha s)^2 \frac{1}{j_k^2}\right)^{\frac{1}{2}} \to 0,$$

which proves the claim. Since ϕ is lsc we have

[2.137]
$$\phi(u(\bar{t})) \leq \liminf_{k \to \infty} \phi\left(J_{\frac{s}{j_k}}^{m_k} x\right) = \liminf_{k \to \infty} \phi_{j_k} = -\infty,$$

this is a contradiction since we know that $\phi \circ u|_{[a,b]}$ is bounded from below. Hence ϕ is bounded from below on B and so there exists $C \ge \overline{C} \ge 0$ such that $\phi(y) + C \ge 0$ when y = u(t) for some $t \in [a,b]$ or $y \in B$.

Let $\tilde{\phi}(y) := \max\{\phi(y), -C\}$, $y \in X$. Then $\tilde{\phi}: X \to (-\infty, \infty]$ is proper, lsc and satisfies $\tilde{\phi} \ge -C$, $\tilde{\phi}(u(t)) = \phi(u(t))$, $t \in [a,b]$ and $\tilde{\phi}(y) = \phi(y)$, $y \in B$. Now we approximate F by Lipschitz continuous functions ϕ_n . Let $\phi_n(y) := \inf\{\tilde{\phi}(z) : nd(y,z) : z \in X\}$ where $n \ge 1$, $y \in X$. One can then verify $\phi_n \ge -C$, $\phi_n \le \phi_{n+1}$, $\phi_n \uparrow \tilde{\phi}$ and $\phi_n \in \operatorname{Lip}(X; \mathbf{R})$. To see this for all $y \in X$, $n \ge 1$ there exists (y_n) such that

[2.138]
$$\phi_n(y) \geqslant \phi(y_n) + nd(y, y_n) - \frac{1}{n}$$
$$\geqslant \inf \phi + nd(y, y_n) - 1.$$

So

[2.139]
$$nd(y, y_n) \leq \phi_n(y) - \inf \tilde{\phi} + 1 \leq \tilde{\phi}(y) - \inf \tilde{\phi} + 1.$$

so $y_n \to y$. fix the rest For each of $n \in \mathbb{N}$ we can apply part 2 of lemma 2.11 and we get

[2.140]
$$\int_{a}^{b} \phi_{n}(u(t)) dt = \lim_{k \to \infty} \frac{s}{k} \sum_{l=qk+1}^{pk} \phi_{n} \left(J_{\frac{s}{k}}^{l} x \right)$$

$$\leq \liminf_{k \to \infty} \frac{s}{k} \sum_{l=qk+1}^{pk} \tilde{\phi} \left(J_{\frac{s}{k}}^{l} x \right)$$

$$= \liminf_{k \to \infty} \frac{s}{k} \sum_{l=qk+1}^{pk} \phi \left(J_{\frac{s}{k}}^{l} x \right)$$

$$=: J.$$

Suppose that $J < \infty$, otherwise there is nothing to prove. We have $\phi_n + C \ge 0$ and

[2.141]
$$\int_{a}^{b} \phi_{n}(u(t)) + C dt \leq J + C(b - a), \quad n \geq 1,$$

So by the monotone convergence theorem and $\tilde{\phi}(u(t)) = \phi(u(t))$ for $t \in [a, b]$ we get

[2.142]
$$\int_{a}^{b} \phi(u(t)) + C dt \leq J + C(b - a), \quad n \geq 1,$$

so we get $\phi \circ u + C \in L^1(a,b)$, hence $\phi \circ u|_{[a,b]} \in L^1(a,b)$ and $\int_a^b \phi(u(t)) dt \leq J$.

Step 6 (proof of (2.71)-(2.76), (2.78) and (2.79)). The function u defined above is the unique solution to (\red{t}) to theorem 1.7. (2.71) is clear from the definition of u, (2.72) follows from (2.113) which says

$$|\partial \phi|(u(t)) \le e^{-\alpha t} |\partial \phi|(x), \quad t > 0,$$

and $x \in D(|\partial \phi|)$. (2.73) follows directly from (2.120).

Let $(S(t))_{t\geqslant 0}$ be the family of operators as defined in (2.78) by S(t)x := u(t), $t \geqslant 0$. Then by (2.72) S(t) maps $D(|\partial \phi|)$ into itself. Clearly S(0) is the identity and if h > 0 and v(t) := u(t+h), $t \geqslant 0$ then v is a solution to (\ref{t}) with initial value v(0) = u(h). So by uniqueness we have S(t+h)x = S(t)u(h) = S(t)S(h)x so S(t+h) = S(t)S(h) which is the semigroup property of $(S(t))_{t\geqslant 0}$. Then (2.79) follows from (1.7). Now we can prove (2.74). We have

$$(2.144) \phi\left(J_{\frac{t}{n}}^n x\right) \leqslant \phi\left(J_{\frac{t}{n}}^n x\right) \leqslant \phi(x), \quad n \geqslant n_0, t > 0, x \in D(|\partial \phi|) \text{ and } 1 + \alpha \frac{t}{n_0} > 0.$$

Because ϕ is lsc, we have

$$\phi\left(\liminf_{n\to\infty}J_{\frac{t}{n}}^nx\right)\leqslant \liminf_{n\to\infty}\phi\left(J_{\frac{t}{n}}^nx\right)$$

Hence, $\phi(S(t)x) = \phi(u(t)) \le \phi(x)$. If h > 0, then

[2.146]
$$\phi(u(t+h)) = \phi(S(t+h)x) = \phi(S(t)S(h)x) \le \phi(S(h)x) = \phi(u(h)),$$

which proves (2.74). Similarly we have from (2.66) for $x \in D(|\partial \phi|)$, t > 0 and $n \ge n_0$

$$|\partial \phi| \left(J_{\frac{t}{n}} x \right) \le \left(1 + \alpha \frac{t}{n} \right)^{-1} |\partial \phi|(x),$$

hence

$$|\partial \phi| \left(J_{\frac{t}{n}}^n x\right) \le \left(1 + \alpha \frac{t}{n}\right)^{-n} |\partial \phi|(x).$$

So by lower semicontinuity we obtain $|\partial \phi|(u(t)) \le e^{-\alpha t} |\partial \phi|(x)$.

$$e^{\alpha(t+h)}|\partial\phi|(u(t+h)) = e^{\alpha(t+h)}|\partial\phi|(S(t+h)x)$$

$$= e^{\alpha(t+h)}|\partial\phi|(S(t)S(h)x)$$

$$\leq e^{\alpha(t+h)}e^{-\alpha t}|\partial\phi|(S(h)x)$$

$$= e^{\alpha h}|\partial\phi|(u(h)),$$

which proves the first assertion in (2.75). For the right continuity let $t_n \downarrow t$, then

[2.150]
$$e^{\alpha t} |\partial \phi|(u(t)) \leqslant \liminf_{n \to \infty} e^{\alpha t_n} |\partial \phi|(u(t_n))$$
$$e^{\alpha t} |\partial \phi|(u(t)).$$

So it remains to prove (2.76). We have by the lower semicontinuity of ϕ that

[2.151]
$$\phi(u(t)) \leq \liminf_{n \to \infty} \phi\left(J_{\frac{t}{n}}^{n} x\right), \quad t > 0.$$

In view of (2.53) we have for $y \in D(\phi)$ and $z \in D(|\partial \phi|)$ that

[2.152]
$$\phi(y) \geqslant \phi(z) - |\partial \phi|(z)d(y,z) + \frac{\alpha}{2}d(y,z)^2.$$

If we substitute y = u(t) and $z = J_{\frac{t}{2}}^{n} x$ in (2.151) we have

$$(2.153) \phi\left(J_{\frac{t}{n}}^{n}x\right) \leq \phi(u(t)) + |\partial\phi|\left(J_{\frac{t}{n}}^{n}x\right)d\left(J_{\frac{t}{n}}^{n}x,u(t)\right) - \frac{\alpha}{2}d\left(J_{\frac{t}{n}}^{n}x,u(t)\right).$$

Using (2.66) we have

[2.154]
$$|\partial \phi| \left(J_{\frac{t}{n}}^n x \right) \le \phi(u(t)), \quad t > 0,$$

which together with (2.151) implies (2.76).

Step 7 (proof of (2.152)). We will need the following lemma

2.12 Lemma. Let $\phi : \to (-\infty, \infty]$ be proper, lsc and satisfy assumptions $[H_1]$ with $\alpha \in \mathbf{R}$ and $[H_2]$. Let h > 0 be such that $1 + \alpha h > 0$. Then for any $y \in D(\phi)$ we have

[2.155]
$$\phi(y) - \phi_h(y) = \frac{1}{2} \int_0^h \frac{d(y, J_s y)^2}{s^2} ds.$$

Proof (of lemma 2.12). Because of the assumptions on h, $J_s y$ is well defined for $0 < s \le h$ and $s \mapsto d(y, J_s y)^2$ is nondecreasing by (2.36), hence Borel measurable and so is $\frac{d(y, J_s y)^2}{s^2}$. Let $N(y) \subset (0, h)$ denote the countable sets of points of discontinuity of $s \mapsto d(y, J_s y)^2$. Because $\lim_{\overline{h} \to 0} \phi_{\overline{h}}(y) = \phi(y)$ by (2.40), hence it is sufficient to prove

$$[2.156] \phi_{\overline{h}_0}(y) - \phi_{\overline{h}_1}(y) = \frac{1}{2} \int_{\overline{h}_0}^{\overline{h}_1} \frac{d(y, J_s y)^2}{s^2} ds \text{ for } 0 < \overline{h}_0 < \overline{h}_1 \text{ such that } 1 + \alpha \overline{h}_1 > 0.$$

We claim that $h \mapsto \phi_h(y) \in \text{Lip}[\overline{h}_0, \overline{h}_1]$. Let $h_0, h_1 \in [\overline{h}_0, \overline{h}_1]$,

$$\begin{aligned} \phi_{h_0}(y) - \phi_{h_1}(y) &\leq \Phi(h_0, y; J_{h_1}y) - \Phi(h_1, y; J_{h_1}y) \\ &= \frac{1}{2h_0} d(y, J_{h_1}y)^2 - \frac{1}{2h_1} d(y, J_{h_1y})^2 \\ &\leq \frac{1}{2} \frac{h_1 - h_0}{h_0 h_1} d(y, J_{h_1y})^2. \end{aligned}$$

If we choose $h_0 < h_1$ we get by (2.36) and (2.40) that

$$|\phi_{h_0}(y) - \phi_{h_1}(y)| \leq (h_1 - h_0) \frac{1}{2} \frac{1}{\overline{h_0}^2} d(y, J_{\overline{h_1}} y)^2,$$

which proves the claim that $h \mapsto \phi_h(y)$ is Lipschitz continuous. So it follows that the derivative of $h \mapsto \phi_h(y)$ exists a.e. in $(\overline{h}_0, \overline{h}_1)$ and that

[2.159]
$$\phi_{\overline{h}_0}(y) - \phi_{\overline{h}_1}(y) = \int_{\overline{h}_0}^{\overline{h}_1} \frac{d}{dh} \phi_h(y) \, dh$$

we now claim that for $h \in (\overline{h}_0, \overline{h}_1) \setminus N(y)$ that

[2.160]
$$\frac{d}{dh}\phi_h(y) = -\frac{1}{2}\frac{d(y, J_h y)^2}{h^2},$$

which would imply (2.156). Interchanging h_0 and h_1 in (2.156)

[2.161]
$$\phi_{h_0}(y) - \phi_{h_1}(y) \ge \frac{1}{2} \frac{h_1 - h_0}{h_0 h_1} d(y, J_{h_0 y})^2.$$

Assuming $h_0 < h_1$ in (2.156) and (2.161) we get

$$[2.162] \qquad \frac{1}{2} \frac{1}{h_0 h_1} d(y, J_{h_0} y)^2 \leq \frac{\phi_{h_0}(y) - \phi_{h_1}(y)}{h_0 - h_1} \leq \frac{1}{2} \frac{1}{h_0 h_1} d(y, J_{h_1} y)^2.$$

Recalling that $\lim_{h\to \overline{h}} d(y, J_h y)^2 = d(y, J_{\overline{h}} y)^2$ for $\overline{h} \ni N(y)$ so we obtain (2.161) for every $h \in (\overline{h}_0, \overline{h}_1) \setminus N(y)$.

In order to prove (2.77) we introduce dyadic partitions of the interval [0, t], for $k \ge 1$ we set

[2.163]
$$h_k := \frac{t}{2^k}, \quad t_i^k := ih_k, \quad 0 \le 1 \le 2^k,$$

and we choose $k \ge k_0$ where k_0 satisfies

$$[2.164] 1 + \alpha h_{k_0} > 0,$$

to make sure that $J_{h_k}x$ is well defined. We can use the notation $J_{h_k}^0x=x$ and introduce the following functions associated with the above partitions where $1 \le i \le 2^k$

[2.165]
$$\overline{u}_k(s) := \begin{cases} x, & s = 0, \\ J_{h_k}^i x, & s \in (t_{i-1}^k, t_i^k], \end{cases}$$

[2.166]
$$\tilde{u}_k(s) := \begin{cases} x, & s = 0, \\ J_{s-t_{i-1}k}J_{h_k}^{i-1}x, & s \in (t_{i-1}^k, t_i^k], \end{cases}$$

[2.167]
$$v_k(s) := \begin{cases} 0, & s = 0, \\ \frac{d(J_{h_k}^i x, J_{h_k}^{i-1} x)}{h_{\iota}}, & s \in (t_{i-1}^k, t_i^k], \end{cases}$$

and,

[2.168]
$$w_k(s) := \begin{cases} 0, & s = 0, \\ \frac{d(\tilde{u}_k(s), J_{h_k}^{i-1} x)}{s - t_{i-1}^k} & s \in (t_{i-1}^k, t_i^k], \end{cases}$$

Clearly, v_k and w_k are non-negative real valued Borel measurable on [0, t]. Note that

$$\frac{1}{2} \int_{t_{i-1}^k}^{t_i^k} w_k^2(s) \, ds = \frac{1}{2} w_k^2(s + t_{i-1}^k) \\
= \frac{1}{2} \int_0^{h_k} \frac{d(J_{h_k}^{i-1} x, J_s J_{h_k}^{i-1})}{s^2} \, ds$$

and by (2.155) we have

$$= \phi(J_{h_{k}}^{i-1}x) - \phi_{h_{k}}(J_{h_{k}}^{i-1}x).$$

Now by the definition of ϕ_{h_k} we have

$$\phi_{h_k}(J_{h_k}^{i-1}x) = \frac{1}{2h_k}d(J_{h_k}^{i-1}x, J_{h_k}^i) + \phi(J_{h_k}^ix),$$

now noting that

[2.171]
$$\frac{1}{2h_k}d(J_{h_k}^{i-1}x,J_{h_k}^i) = \frac{1}{2}\int_{I_{k-1}^i}^{I_k^k} v_k^2(s)\,ds.$$

So we obtain

[2.172]
$$\frac{1}{2} \int_{t_{i-1}^k}^{t_i^k} v_k^2(s) \, ds + \frac{1}{2} \int_{t_{i-1}^k}^{t_i^k} w_k^2(s) \, ds = \phi(J_{h_k}^{i-1} x) - \phi(J_{h_k}^i x).$$

Now we can sum from 1 to 2^k to obtain

[2.173]
$$\frac{1}{2} \int_0^t v_k^2(s) \, ds + \frac{1}{2} \int_0^t w_k^2(s) \, ds = \phi(x) - \phi\left(J_{\frac{t}{2^k}}^{2^k} x\right).$$

By (2.76) we have

[2.174]
$$\liminf_{k \to \infty} \frac{1}{2} \int_0^t v_k^2(s) \, ds + \liminf_{k \to \infty} \frac{1}{2} \int_0^t w_k^2(s) \, ds \leq \liminf_{k \to \infty} \left(\frac{1}{2} \int_0^t v_k^2(s) \, ds + \frac{1}{2} w_k^2(s) \, ds \right)$$

$$= \phi(x) - \phi(u(t)).$$

Now we will prove that

[2.175]
$$\int_0^t |\partial \phi|^2(u(s)) \le \liminf_{k \to \infty} \int_0^t w_k^2(s) \, ds,$$

and for some subsequence (j_k) that

[2.176]
$$\int_0^t |\dot{u}|^2(s) \, ds \le \liminf_{k \to \infty} \int_0^t v_{j_k}^2(s) \, ds.$$

Now note that (2.174), (2.175) and (2.176) imply (2.77). We will first prove that for every $s \in [0, T]$

[2.177]
$$\lim_{k \to \infty} d(u(s), \overline{u}_k(s)) = \lim_{k \to \infty} d(u(s), \widetilde{u}_k(s)) = 0.$$

We clearly have that $d(u(0), \overline{u}(0)) = d(u(0), \widetilde{u}(0)) = 0$. Now let $s \in (0, t]$ and $\epsilon > 0$. For every $k \ge k_0$ there is a unique $i \in \{1, \dots, 2^k\}$ such that $s \in (t_{i-1}^k, t_i^k]$, $u \in \text{Lip}([0, t]; X)$. So there exists $k_1 \ge k$ such that

[2.178]
$$d(u(s), u(t_{i-1}^k) \le \frac{\epsilon}{2} \text{ for } k \ge k_1.$$

On the other hand by (2.110) we have $C_1 = C_1(t, k_0)$ such that

$$(2.179) d(u(t_{i-1}^k, \overline{u}_k(t_{i-1}^k))) = d\left(u\left(t_{i-1}^k, J_{\frac{(i-1)h_k}{i-1}}^{i-1}x\right)\right) \le |\partial \phi|(x)C_1 \frac{1}{\sqrt{i-1}}.$$

Since $\lim_{k\to\infty} (i-1)2^{-k} = \lim_{k\to\infty t_{i-1}^k} = s > 0$ we have $\lim_{k\to\infty} i(k) = \infty$ so

[2.180]
$$d(u(s), \overline{u}_k(s)) \leq d(u(s), u(t_{i-1}^k) + d(u(t_{i-1}^k, \overline{u}_k(s)))$$

$$\leq \frac{\epsilon}{2} + d(u(t_{i-1}^k), \overline{u}_k(t_{i-1}^k)) + d(\overline{u}_k(t_{i-1}^k), \overline{u}_k(s))$$

$$\leq \epsilon \text{ for } k \text{ large enough.}$$

Now we estimate $d(\overline{u}_k(s), \widetilde{u}_k(s))$, $s \in (0, t]$. We have $\widetilde{u}_k(s) = J_{\delta_k} J_{h_k}^{i-1} x$ where i = i(k) is as above and $\delta_k := s - t_{i-1}^k$. So by using (2.64) and (2.65) we get

$$[2.181] d(\overline{u}_{k}(s), \widetilde{u}_{k}(s)) \leq d(J_{\delta_{k}}J_{h_{k}}^{i-1}x, J_{h_{k}}^{i-1}x) + d(J_{h_{k}}J_{h_{k}}^{i-1}x, J_{h_{k}}^{i-1}x) \\ \leq \delta_{k}(1 + \alpha\delta_{k})^{-1}|\partial\phi|(J_{h_{k}}^{i-1}x) + h_{k}(1 + h_{k}\alpha)^{-1}|\partial\phi|(J_{h_{k}}^{i-1}x).$$

By (2.66) for $x \in D(|\partial \phi|)$, $|\partial \phi|(J_{h_k}^{i-1}x)$ is bounded. Because $0 < \delta_k \le h_k \to 0$ we have that $d(\tilde{u}_k(s), \bar{u}_k(s)) \to 0$. This implies the second part of (2.177). For $s \in (t_{i-1}^k, t_i^k)$ by (2.168), (2.31) and (2.166) we have

$$[2.182] w_k(s) = \frac{d(J_{\delta_k}J_{h_k}^{i-1}x, J_{h_k}^{i-1}x)}{s - t_{i-1}^k} \ge |\partial \phi|(J_{\delta_k}J_{h_k}^{i-1}x) = |\partial \phi|(\tilde{u}_k(s)) = |\partial \phi|(\tilde{u}_k(s)).$$

Since $|\partial \phi|$ is lsc we get by (2.177) that

[2.183]
$$\liminf_{k \to \infty} w_k(s) \ge \liminf_{k \to \infty} |\partial \phi|(\tilde{u}_k(s)) \ge |\partial \phi|(u(s)).$$

So by Fatou's lemma we have

$$[2.184] \qquad \int_0^t |\partial \phi|^2(u(s)) \, ds \leqslant \int_0^1 \liminf_{k \to \infty} w_k^2(s) \, ds \leqslant \liminf_{k \to \infty} \int_0^t w_k^2(s) \, ds.$$

This proves (2.175). Now we establish (2.176). By (2.174) there exists a constant M = M(t) > 0 and a subsequence j_k such that

$$[2.185] \qquad \qquad \int_0^t v_{j_k}^2(s) \, ds \leqslant M,$$

so a bounded sequence has a weakly convergent subsequence which we will still denote by v_{jk} and $v_{jk} \to \bar{v} \in L^2(0,t)$ weakly with $\bar{v} \ge 0$ a.e. and

[2.186]
$$\int_0^t \overline{v}^2(s) \leqslant \liminf_{k \to \infty} \int_0^t v_{j_k}^2(s) \, ds.$$

Since $d(\overline{u}_k(t_{i-1}^k), \overline{u}_k(t_i^k) = \int_{t_{i-1}^k}^{t_i^k} v_k(s) ds$ given $0 \le s_1 < s_2 \le t$ we can find sequences $(s_{1,k})$ and $(s_{2,k})$ converging to s_1 and s_2 respectively such that

[2.187]
$$d(\overline{u}_k(s_1), \overline{u}_k(s_2)) \leq d(\overline{u}_k(s_{1,k}), \overline{u}_k(s_{2,k})) \leq \int_{s_{1,k}}^{s_{2,k}} v_k(s) \, ds,$$

in view of (2.185) and (2.177) we have

[2.188]
$$d(u(s_1), u(s_2)) \leq d(u(s_1), \overline{u}_k(s_1)) + d(u(s_1), \overline{u}_k(s_2)) \\ \leq d(u(s_1), \overline{u}_k(s_1)) + d(u(s_2), \overline{u}_k(s_2)) + d(\overline{u}_k(s_1), \overline{u}_k(s_2)),$$

taking the limit $k \to \infty$ we obtain

[2.189]
$$d(u(s_1), u(s_2)) \leq \int_{s_1}^{s_2} \overline{v}(s) \, ds.$$

So the metric derivative of u, $|\dot{u}|(s)$ satisfies $|\dot{u}|(s) \le \bar{v}(s)$ a.e. by Lebesgue differentiation lemma on (0, t). By (2.186) we have

[2.190]
$$\int_0^t |\dot{u}|^2(s) \, ds \le \int_0^t \overline{v}^2(s) \, ds \le \liminf_{k \to \infty} \int_0^t v_{j_k}^2(s) \, ds,$$

which is exactly (2.176). This completes the proof of the present theorem.

Now we can formulate and prove the main result of this section

- **2.13 Theorem.** Let (X, d) be a complete metric space and let $\phi: X \to (-\infty, \infty]$ be proper, lsc. Assume that $[H_1]$ with $\alpha \in \mathbb{R}$ and $[H_2]$ are satisfied. Then there exists a contractive C_0 -semigroup $(S(t))_{t\geqslant 0}$ on $\overline{D(\phi)}$ satisfying $[S(t)]_{Lip} \leq e^{-\alpha t}$, $t\geqslant 0$ such that for every $x\in \overline{D(\phi)}$ the function $u:[0,\infty)\to X$ defined by u(t):=S(t)x, $t\geqslant 0$ is the unique solution to (\red{X}) with initial condition u(0)=x. Further the following properties of the function u hold:
 - 1. $\phi \circ u(t) \leq \phi_{c(t)}(x)$ for every t > 0 such that $1 + \alpha c(t) > 0$ where

$$[2.191] c(t) := \int_0^t e^{\alpha s} ds,$$

- 2. the map $[0, \infty) \ni t \mapsto \phi \circ u(t)$ is nonincreasing and right-continuous,
- 3. the map $[0, \infty) \ni t \mapsto e^{-2\alpha^{-}t} \phi \circ u(t)$ is convex,
- 4. $u(t) \in D(|\partial \phi|)$ for every t > 0 and

$$[2.192] \qquad \qquad \frac{t}{2} |\partial \phi|^2(u(t)) \le e^{2\alpha^{-}t} (\phi(x) - \phi_t(x)))$$

for every t > 0 such that $1 + \alpha t > 0$,

5. the map $(0, \infty) \mapsto e^{\alpha t} |\partial \phi|(u(t))$ is nonincreasing and right-continuous,

6.

[2.193]
$$\frac{d^{+}}{dt}\phi \circ u(t) = -|\partial \phi|^{2}(u(t)) = -|\dot{u}_{+}|^{2}(t)$$

for every t>0 where $|\dot{u}_+|(t):=\lim_{s\downarrow t}\frac{d(u(t),u(s))}{s-t}$ is the right metric derivative of u at t,

7.

[2.194]
$$\phi \circ u(s) - \phi \circ u(t) = \int_{s}^{t} \frac{1}{2} |\partial \phi|^{2} (u(r)) + \frac{1}{2} |\dot{u}|^{2}(r) dr$$

for every $0 \le s < t$,

8. for every 0 < a < b, $u|_{[a,b]} \in Lip([a,b]; X)$ and

[2.195]
$$[u|_{[a,b]}]_{Lip} \le |\partial \phi|(u(a))e^{\alpha^{-}(b-a)},$$

9.

[2.196]
$$u(t) = \lim_{n \to \infty} J_{\frac{t}{n}}^n x \text{ for every } t > 0,$$

10.

[2.197]
$$\phi(u(t)) = \lim_{n \to \infty} \phi(J_{\frac{t}{n}}^n x) \text{ for every } t > 0,$$

- 11. if $\alpha > 0$ then ϕ has a unique minimizer $\overline{x} \in D(\phi)$ and $d(u(t), \overline{x}) \leq e^{-\alpha t} d(x, \overline{x})$ for every $t \geq 0$,
- 12. if $\alpha = 0$, then

[2.198]
$$d\left(u(t), J_{\frac{t}{n}}^n x\right) \leqslant \frac{t}{n} \left[\phi(x) - \phi_{\frac{t}{n}}(x)\right] \leqslant \frac{t^2}{2n^2} |\partial \phi|^2(x), \text{ for every } t > 0.$$

Proof. Step 1 (Extension of $(S(t))_{t\geqslant 0}$). Let $x\in \overline{D(\phi)}=\overline{D(|\partial\phi|)}$ and let $t\geqslant 0$. Let $(S(t))_{t\geqslant 0}$ be the semigroup defined in theorem 2.10. Because $S(t):D(|\partial\phi|)\to D(|\partial\phi|)$ is Lipschitz continuous and $\overline{D(|\partial\phi|)}$ is complete, there exists a continuous extension also denoted S(t) to $\overline{D(\phi)}$. Clearly $S(t):\overline{D(\phi)}\to\overline{D(\phi)}$ is also Lipschitz continuous and satisfies $[S(t)]_{\text{Lip}}\leqslant e^{\alpha t}$ to see this let $u,v\in\overline{D(\phi)}$ and $(u_n),(v_m)$ their approximants, then

[2.199]
$$d(S(t)u, S(t)v) \leq d(S(t)u, S(t)u_n) + d(S(t)u_n, S(t)v_m) + d(S(t)v_m, S(t)v)$$

$$\leq e^{-\alpha t} d(u, v) \text{ as } n, m \to \infty.$$

Let $(x_n) \subset D(|\partial \phi|)$ be such that $x_n \to x$. Then for $t, s \ge 0$ we have $S(t+s)x = \lim S(t+s)x_n = \lim S(t)S(s)x_n = S(t)S(s)x$. Because S(0) = I, $(S(t))_{t \ge 0}$ satisfies the semigroup property. Further, let $t_n \ge 0$ be such that $t_n \to t$ and let $y \in D(|\partial \phi|)$.

[2.200]

$$d(S(t)x, S(t_n)x) \le d(S(t)x, S(t)y) + d(S(t)y, S(t_n)y) + d(S(t_n)y, S(t_n)x)$$

$$\le (e^{-\alpha t} + e^{-\alpha t_n})d(x, y) + d(S(t)y, S(t_n)y),$$

hence $d(S(t)x, S(t_n)x) \le 2e^{\alpha t}d(x, y)$, because $D(|\partial \phi|)$ is dense in $\overline{D(\phi)}$ we have $\limsup d(S(t)x, S(t_n)x) = 0$ by taking limits, so $(S(t))_{t \ge 0} : \overline{D(\phi)} \to \overline{D(\phi)}$ is a C_0 α -contractive semigroup on $\overline{D(\phi)}$.

Step 2. (u(t) := S(t)x is an integral solution to (). Let (x_n) be as in step 1 and let $u_n(t) := S(t)x_n$, $n \ge 1$, u(t) := S(t)x, $t \ge 0$. Because $d(u_n(t), u(t)) \le e^{\alpha t} d(x, x_n)$, the sequence (u_n) converges uniformly to u on intervals [0, T], T > 0. Let 0 < a < b and $z \in D(\phi)$. ϕ lsc hence

[2.201]
$$\phi(u(b)) \leqslant \liminf_{n \to \infty} \phi(u_n(b)),$$

so there exists $C_1 \in \mathbf{R}$ such that $\phi(u_n(b)) \ge \phi(u(b)) - C_1 := C$. Because $\phi \circ u_n$ is nonincreasing on [a, b], thus $\phi \circ u_n(t) \ge C$ for $t \in [a, b]$, $n \ge 1$. We have

$$[2.202] \int_{a}^{b} \phi(u_n(t)) dt \leq \frac{1}{2} d(u_n(a), z)^2 - \frac{1}{2} d(u_n(b), z)^2 - \frac{\alpha}{2} \int_{a}^{b} d(u_n(t), z)^2 dt + (b - a)\phi(z).$$

We can now apply Fatou's lemma and notice that $\phi \circ u$ is lower semicontinuous hence Borel measure so we obtain

$$[2.203] \int_{a}^{b} \phi \circ u(t) + c \, dt \leq \frac{1}{2} d(u(a), z)^{2} - \frac{1}{2} d(u(b), z)^{2} - \frac{\alpha}{2} \int_{a}^{b} d(u(t), z)^{2} \, dt + (b - a)(\phi(z) + c).$$

So, $\phi \circ u \in L^1(a, b)$ and u satisfies integral \clubsuit .

Step 3 (u(t) := S(t)x is a solution to (\red{A})). and the proof of 1, 2 and 4). To prove that u is a solution to (\red{A}) it is suffcient to show that $u \in \text{Lip}([a,b];X)$ for every 0 < a < b. Recall (and remember that it is proved under the condition $\alpha \le 0$) (2.120) and by the semigroup property we have

[2.204]
$$d(u_n(t), u_n(s)) \le |\partial \phi|(u_n(a))e^{|\alpha|(b-a)}(t-s),$$

for $0 < a \le s < t \le b$, $n \ge 1$ where u_n is defined in step 2. So if we can find $a_0 > 0$ such that for every $a \in (0, a_0) |\partial \phi|(u_n(a))$ is bounded, then u will be a solution to (\(^\chi\)). Set

$$[2.205] c(t) := \int_0^t e^{\alpha s} ds$$

for t > 0 and we choose $a_0 > 0$ such that $1 + \alpha a_0 > 0$ and $1 + \alpha c(a_0) > 0$. If $0 < a < a_0$, then $1 + \alpha a > 0$ and $1 + \alpha c(a) > 0$ too. Let $a \in (0, a_0)$. We will first establish a bound for $\phi\left(u_n\left(\frac{a}{2}\right)\right)$ and prove 1. Because u_n satisfies (*) we obtain by multiplication of (*) by $e^{\alpha s}$ and integrating on [0, t] that

$$[2.206] \quad \int_0^t e^{\alpha t} \frac{1}{2} \frac{d}{dt} d(u_n(t), z)^2 dt \le -\int_0^t e^{\alpha t} \phi(u_n(t)) dt - \int_0^t \frac{\alpha}{2} e^{\alpha t} d(u_n(t), z)^2 dt + \int_0^t e^{\alpha t} \phi(z) dt,$$

and noting that

$$[2.207] \qquad \int_0^t e^{\alpha t} \frac{1}{2} \frac{d}{dt} d(u_n(t), z)^2 dt = \int_0^t \frac{1}{2} \frac{d}{dt} e^{\alpha t} d(u_n(t), z)^2 dt - \int_0^t \frac{\alpha}{2} e^{\alpha t} d(u_n(t), z)^2 dt,$$

so

$$[2.208] \qquad \frac{1}{2}e^{\alpha t}d(u_n(t),z)^2 - \frac{1}{2}d(u_n(0),z)^2 + \int_0^t e^{\alpha s}\phi(u_n(s))\,ds \leqslant c(t)\phi(z), \quad z \in D(\phi).$$

Now we use the fact that $\phi \circ u_n$ is nonincreasing to get

$$(2.209) \phi \circ u_n(t) \le \frac{1}{c(t)} \int_0^t e^{\alpha s} \phi(u_n(s)) \, s \le \phi(z) + \frac{1}{2c(t)} d(u_n(0), z)^2.$$

Now assuming that $1 + \alpha c(t) > 0$ and taking the infimum over $z \in D(\phi)$ we obtain by definition

[2.210]
$$(\phi \circ u_n)(t) \le \phi_{c(t)}(u_n(0)).$$

Now $\phi_{c(t)}$ is continuous and $u_n(0)x_n \to x$ so there exists $C_1(t) > 0$ indepedent of n such that $(\phi \circ u_n)(t) \le C_1(t)$, since if t' is close enough to t then $(\phi \circ u_n)(t) \le \phi_{c(t)}(u_n(0)) + \epsilon$. In particular there holds that

$$\phi\left(u_n\left(\frac{a}{2}\right)\right) \leqslant C_1\left(\frac{a}{2}\right), \quad n \geqslant 1.$$

Note also that since $\phi_{c(t)}$ is continuous and ϕ is lower semicontinuous, then for t > 0 such that $1 + \alpha c(t) > 0$ we have

$$\lim_{n \to \infty} \inf \phi \circ u_n(t) \geqslant \phi \circ \liminf_{n \to \infty} u_n(t)$$

Hence $\phi \circ u(t) \leq \liminf \phi \circ u_n(t) \leq \phi_{c(t)}(x)$. This establishes 1. Now we will find a bound for $|\partial \phi|(u_n(a))$ and for this we first prove 4 in the special case $x \in D(|\partial \phi|)$. We denote the x by y in this case and we set v(t) := S(t)y, $t \geq 0$. Let t > 0 be such that $1 + \alpha t > 0$. From theorem 2.10, (2.77)

$$\frac{1}{2} \int_0^t |\partial \phi|^2(v(s)) \, ds \le \phi(y) - \left[\phi(v(t)) + \frac{1}{2} \int_0^t |\dot{v}|^2(s) \, ds \right],$$

because $v \in \text{Lip}([0, t]; X)$ (hence absolutely continuous) we have

[2.214]
$$d(v(0), v(t)) \le \int_0^t |\dot{v}|(s) \, ds,$$

and by Jensen's inequality we have

[2.215]
$$\frac{1}{t}d(v(0), v(t))^{2} \le t \left(\int_{0}^{t} |\dot{v}|(s) \frac{ds}{t} \right)^{2}$$

$$\le \int_{0}^{t} |\dot{v}|^{2}(s) ds.$$

So there follows tht

$$[2.216] \qquad \frac{1}{2} \int_0^t |\partial \phi|^2(v(s)) \, ds \le \phi(y) - \left[\phi(v(t)) + \frac{1}{2t} d(y, v(t))^2\right] \le \phi(y) - \phi_t(y).$$

Now we use that $[0, \infty) \ni s \mapsto e^{-2\alpha^{-s}} |\partial \phi|^2(v(s))$ is nonincreasing. So

$$\frac{t}{2}e^{-2\alpha^{-t}}|\partial\phi|^{2}(v(t)) \leq \frac{1}{2}\int_{0}^{t}e^{2\alpha^{-s}}ds \cdot e^{-2\alpha^{-t}}|\partial\phi|^{2}(v(t))$$

$$\leq \frac{1}{2}\int_{0}^{t}e^{2\alpha^{-s}}e^{-2\alpha^{-s}}|\partial\phi|^{2}(v(s))ds$$

$$\leq \phi(y) - \phi_{t}(y).$$

This gives 4 in the case that $y = x \in D(|\partial \phi|)$. Now we can prove a bound $|\partial \phi|(u_n(a))$. To see this choose $y = u_n(\frac{a}{2})$, so we have $u_n(a) = S(\frac{a}{2}) = v(\frac{a}{2})$, so

$$\frac{a}{4}e^{-2\alpha^{-\frac{a}{2}}}|\partial\phi|^{2}(u_{n}(a)) \leq \phi\left(u_{n}\left(\frac{a}{2}\right)\right) - \phi_{\frac{a}{2}}\left(u_{n}\left(\frac{a}{2}\right)\right),$$

both terms on the righthand side are bounded, one by C_1 and the other one by continuity by $\epsilon + C_1$. So there exists $C_2 > 0$ independent of $n \ge 1$ such that $|\partial \phi|(u_n(a)) \le C_2$, $n \ge 1$. So u is a solution to (*). Now we prove that $u(t) \in D(|\partial \phi|)$ for every t > 0. Observe that $u_n(a) = S\left(\frac{a}{2}\right)u_n\left(\frac{a}{2}\right)$ we have

$$[2.219] \quad \frac{a}{4}e^{-2\alpha^{-}a}|\partial\phi|^{2}(u_{n}(a)) \leqslant \phi\left(u_{n}\left(\frac{a}{2}\right)\right) - \phi_{\frac{a}{2}}\left(u_{n}\left(\frac{a}{2}\right)\right) \leqslant \phi_{c\left(\frac{a}{2}\right)}(x_{n}) - \phi_{\frac{a}{2}}\left(u_{n}\left(\frac{a}{2}\right)\right), \quad n \geqslant 1.$$

Since $|\partial \phi|$ is lower semicontinuous we obtain

$$|\partial \phi|^2(u(a)) \leq \frac{4}{a} e^{\alpha^- a} \left[\phi_{c\left(\frac{a}{2}\right)} - \phi_{\frac{a}{2}} \left(u\left(\frac{a}{2}\right) \right) \right] < \infty.$$

Hence $S(a)x \in D(|\partial \phi|)$ for every $x \in \overline{D(\phi)}$ and a > 0 such that $1 + \alpha a > 0$ and $1 + \alpha c(a) > 0$. By induction it follows that $S(t)x \in D(|\partial \phi|)$ for every $x \in \overline{D(\phi)}$ and t > 0. Now we prove 2. Let t > 0 be such that $1 + \alpha c(t) > 0$ and let $x \in \overline{D(\phi)}$. Then $\phi(S(t)x) \le \phi_{c(t)}(x) \le \phi(x)$ for every $x \in \overline{D(\phi)}$ and t > 0. So $\phi(S(nt)x) \le \phi(S(nt)x) \le \phi($

We now prove 4. Let t > 0 be such that $1 + \alpha t > 0$. So there exists $h_0 > 0$ such that $1 + \alpha(t + h) > 0$ for $0 < h \le h_0$. Let $x \in \overline{D(\phi)}$. Since $S(h)x \in D(|\partial \phi|)$ we have by the preceding that

$$[2.221] \frac{t}{2} |\partial \phi|^2 (S(t)S(h)x) \le e^{2\alpha^{-t}} [\phi(S(hx) - \phi_t(S(h)x))] \le e^{2\alpha^{-t}} [\phi(x) - \phi_t(x)].$$

Choosing a sequence $h_n \downarrow 0$ we have

$$[2.222] \frac{t}{2} |\partial \phi|^2 (S(t)x) \le \liminf_{n \to \infty} [\phi(x) - \phi_t(S(h_n)x)] = e^{2\alpha^{-t}} [\phi(x) - \phi_t(x)].$$

Step 4 (proof of 5 and 8). First we prove 5. Let h > 0, then $S(h)x \in D(|\partial \phi|)$ by 4, hence

[2.223]
$$[0, \infty) \ni t \mapsto e^{\alpha t} |\partial \phi|(u(t+h)) = e^{\alpha t} |\partial \phi(S(t)S(h)x)|$$

is nonincreasing by theorem 2.10 and right-continuous since $t \mapsto e^{\alpha t} |\partial \phi|(u(t+h))$ is lower semicontinuous. This completes the proof of 5. Now we prove 8. Let 0 < a < b and set $v(s) := u(s+a), s \ge 0$. Then $v(0) \in D(|\partial \phi|)$ continue