VORKURS EINFÜHRUNG IN DIE HOCHSCHULMATHEMATIK:

BRUCHRECHNEN

JONATHAN BUSSE

Universität Duisburg Essen GITHUB.COM/JOKABUS/VEH2020

SITZUNG VOM 5. OKTOBER 2020

ORGANISATORISCHES

ORGANISATORISCHES

ZEITPLANUNG

ZEITPLANUNG

- 10:00 Begrüßung
- 10:05 Break-Out-Session

Übung 3.1-2

Übung 3.1-1 (optional)

- 10:50 Kaffepause
- **11:00** Besprechung der Übungsaufgabe(n)
- 11:20 Rückblick auf die erste Woche

ÜBUNGSAUFGABEN

ÜBUNGSAUFGABEN

VORRECHNEN

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Aufgabe 1:

Bestimme die Lösungsmenge der folgenden Gleichungen:

$$(a) 9x^3 + 5x^2 = 5 - 10x$$

(a)
$$9x^3 + 5x^2 = 5 - 10x$$
 (b) $\sqrt{3x+4} + \sqrt{3x-5} = 9$ (c) $\frac{1}{\sqrt{x}} + \frac{1}{x} = \frac{3}{4}$

$$(c) \frac{1}{\sqrt{x}} + \frac{1}{x} = \frac{5}{2}$$

a)

b)

c)

ÜBUNGSAUFGABEN

LÖSUNGSANSÄTZE

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Ansatz

Die pq-Formel oder abc-Formel (siehe Merkblatt)

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Ansatz

Die pq-Formel oder abc-Formel (siehe Merkblatt) Dazu Substitution: x² = w

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Ansatz

Die pq-Formel oder abc-Formel (siehe Merkblatt)

Dazu Substitution: $x^2 = w$

Vielfachheit und Anzahl der Lösung hängt vom Term unter der Wurzel ab.

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Betrachte
$$w^2 + (3r - r^2)w - 3r^3 = 0$$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Betrachte
$$w^2 + (3r - r^2)w - 3r^3 = 0$$

pq-Formel:
$$\frac{(3r-r^2)^2}{4} + 3r^3$$
 abc-Formel: $D = (3r-r^2)^2 + 12r^3$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Betrachte $w^2 + (3r - r^2)w - 3r^3 = 0$

pq-Formel:
$$\frac{(3r-r^2)^2}{4} + 3r^3$$
 abc-Formel: $D = (3r-r^2)^2 + 12r^3$

- **1. Fall** D < o, keine Lösung in den reellen Zahlen
- **2.Fall** D = o, eine Lösung von Vielfachheit 2
- **3. Fall** D > 0, zwei Lösungen von Vielfachheit 1

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Betrachte $w^2 + (3r - r^2)w - 3r^3 = 0$

pq-Formel:
$$\frac{(3r-r^2)^2}{4} + 3r^3$$
 abc-Formel: $D = (3r-r^2)^2 + 12r^3$

- **1. Fall** D < o, keine Lösung in den reellen Zahlen
- **2.Fall** D = o, eine Lösung von Vielfachheit 2
- **3. Fall** D > o, zwei Lösungen von Vielfachheit 1

Welche Nullstellen hat D?

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Betrachte $w^2 + (3r - r^2)w - 3r^3 = 0$

pq-Formel:
$$\frac{(3r-r^2)^2}{4} + 3r^3$$
 abc-Formel: $D = (3r-r^2)^2 + 12r^3$

- **1. Fall** D < o, keine Lösung in den reellen Zahlen
- **2.Fall** D = o, eine Lösung von Vielfachheit 2
- **3. Fall** D > o, zwei Lösungen von Vielfachheit 1

Welche Nullstellen hat D?

$$(3r-r^2)^2 + 12r^3 = r^2(r+3)^2 = 0 \Leftrightarrow r=0,-3$$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r\in\mathbb{R},$ Anzahl und Vielfachheit der Lösungen $x\in\mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Betrachte $w^2 + (3r - r^2)w - 3r^3 = 0$

pq-Formel:
$$\frac{(3r-r^2)^2}{4} + 3r^3$$
 abc-Formel: $D = (3r-r^2)^2 + 12r^3$

- **1. Fall** D < o, keine Lösung in den reellen Zahlen
- **2.Fall** D = o, eine Lösung von Vielfachheit 2
- **3. Fall** D > 0, zwei Lösungen von Vielfachheit 1

Welche Nullstellen hat D?

$$(3r-r^2)^2 + 12r^3 = r^2(r+3)^2 = 0 \Leftrightarrow r=0,-3$$

Wie verhält sich D zwischen den Nullstellen?

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Nehmen wir an, $w^2 + (3r - r^2)w - 3r^3 = 0$ hat 1, 2 Lösungen von Vielfachheit 2, 1.

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Nehmen wir an, $w^2 + (3r - r^2)w - 3r^3 = 0$ hat 1, 2 Lösungen von Vielfachheit 2, 1.

Wie viele Lösungen hat $x^4 + (3r - r^2)x^2 - 3r^3 = 0$?

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Nehmen wir an, $w^2 + (3r - r^2)w - 3r^3 = 0$ hat 1, 2 Lösungen von Vielfachheit 2, 1.

Wie viele Lösungen hat $x^4 + (3r - r^2)x^2 - 3r^3 = 0$?

Abhängig vom Vorzeichen der Lösung $w_{1,2} = \frac{r^2 - 3r \pm r(r+3)}{2}$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Nehmen wir an, $w^2 + (3r - r^2)w - 3r^3 = 0$ hat 1, 2 Lösungen von Vielfachheit 2, 1.

Wie viele Lösungen hat $x^4 + (3r - r^2)x^2 - 3r^3 = 0$?

Abhängig vom Vorzeichen der Lösung $w_{1,2} = \frac{r^2 - 3r \pm r(r+3)}{2}$ $w_1 = r^2$, $w_2 = -3r$

Sei
$$x^2 = w$$
 und w eine Lösung von $w^2 + (3r - r^2)w - 3r^3 = 0$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Nehmen wir an, $w^2 + (3r - r^2)w - 3r^3 = 0$ hat 1, 2 Lösungen von Vielfachheit 2, 1.

Wie viele Lösungen hat $x^4 + (3r - r^2)x^2 - 3r^3 = 0$?

Abhängig vom Vorzeichen der Lösung $w_{1,2} = \frac{r^2 - 3r \pm r(r+3)}{2}$ $w_1 = r^2$, $w_2 = -3r$

Sei
$$x^2 = w$$
 und w eine Lösung von $w^2 + (3r - r^2)w - 3r^3 = 0$
1. Fall $w = 0$, dann $x = 0$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Nehmen wir an, $w^2 + (3r - r^2)w - 3r^3 = 0$ hat 1, 2 Lösungen von Vielfachheit 2, 1.

Wie viele Lösungen hat $x^4 + (3r - r^2)x^2 - 3r^3 = 0$?

Abhängig vom Vorzeichen der Lösung $w_{1,2} = \frac{r^2 - 3r \pm r(r+3)}{2}$ $w_1 = r^2$, $w_2 = -3r$

Sei
$$x^2 = w$$
 und w eine Lösung von $w^2 + (3r - r^2)w - 3r^3 = 0$

- **1. Fall** w = o, dann x = o
- **2. Fall** w > 0, dann $x = \pm \sqrt{w_{1,2}}$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Nehmen wir an, $w^2 + (3r - r^2)w - 3r^3 = 0$ hat 1, 2 Lösungen von Vielfachheit 2, 1.

Wie viele Lösungen hat $x^4 + (3r - r^2)x^2 - 3r^3 = 0$?

Abhängig vom Vorzeichen der Lösung $w_{1,2} = \frac{r^2 - 3r \pm r(r+3)}{2}$ $w_1 = r^2$, $w_2 = -3r$

Sei $x^2 = w$ und w eine Lösung von $w^2 + (3r - r^2)w - 3r^3 = 0$

- **1. Fall** w = o, dann x = o
- **2. Fall** w > 0, dann $x = \pm \sqrt{w_{1,2}}$
- **3. Fall** w < o, dann keine Lösung für x in \mathbb{R}

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

Aufgabe 2:

Bestimme in Abhängigkeit vom Parameter $r \in \mathbb{R}$, Anzahl und Vielfachheit der Lösungen $x \in \mathbb{R}$ zur Gleichung:

$$x^4 + (3r - r^2)x^2 = 3r^3$$

WIE HAT ES EUCH BISHER GEFALLEN?

Welche Eindrücke habt ihr aus der ersten Woche mitgenommen?

Welche Eindrücke habt ihr aus der ersten Woche mitgenommen?

Brainstorming

in den geteilten Notizen

Welche Eindrücke habt ihr aus der ersten Woche mitgenommen?

Brainstorming

in den geteilten Notizen

Interaktive

Umfragen

Welche Eindrücke habt ihr aus der ersten Woche mitgenommen?

Brainstorming

in den geteilten Notizen

Interaktive

Umfragen

Rückmeldung

an mich

VIEL ERFOLG FÜR DEN STUDIENSTART!

