Diary

Updated: April 12, 2024.

Meeting	Day	Topic	Reference	Assignment
1	15/1	Vector spaces: definition and examples	§1B	WS 1
2	18/1	Subspaces, sums and direct sums	§1C	WS 1
3	18/1	Span, independence, bases	§2A, §2B	WS 1
4	22/1	Bases and dimension	§2B, §2C	WS 2
5	25/1	Linear maps, null spaces and range	§3A, §3B	WS 2
6	25/1	Fundamental Theorem of linear algebra	§3A, §3B	WS 2
7	29/1	Matrices associated to a linear map, Invertible morphisms	§3C, §3D	WS 3
8	1/2	Properties of invertible morphisms	§3D	WS 3
9	1/2	Products of vector spaces	§3E	WS 3
10	5/2	Quotient spaces	§3E	HW 1, WS 4
11	8/2	Dual spaces	§3F	WS 4
12	8/2	Dual morphisms and annihilator subspace	§3F	WS 4
13	19/2	Invariant subspaces	$\S5A$	WS 5
14	22/2	Minimal Polynomial	§5B	WS 5
15	22/2	Minimal Polynomial	§5B	WS 5
16	26/2	Upper-Triangular Matrices	§5C	HW 2
_	29/2	Midterm 1	M 1-15	Midterm 1
17	11/3	Diagonalizable Operators	§5D	WS 6
18	14/3	Discussion of Midterm 1		
19	14/3	Inner Product Spaces, Norm	§6A, 6B	WS 6
		Orthonormal basis, Gram–Schmidt procedure		
20	18/3	Riesz representability, Orthogonal Complement	§7A	WS 7
		Adjoint Operator, Self-Adjoint and Normal Operators		
21	21/3	Spectral Theorem	§7B	WS 7
22	21/3	Spectral Theorem	§7B	WS 7
23	25/3	Generalized Eigenvectors	§8A	HW 3, WS 8
24	28/3	Generealized Eigenspace, Char. Polynomial	§8B	WS 8
	28/3	Multiplicity of Eigenvalues and Jordan canonical form	§8B	WS 8
25	8/4	Jordan form and Tensor Product	§8C	HW 4
	11/4	Midterm 2	M 16,17-25	Midterm 2
31	15/4	Tensor Product	§9D	WS 9
32	18/4	Trace of an operator	§8D	WS 9
33	18/4	(Alternating) Multilinear Forms	§9A, 9B	WS 9
34	22/4	(Alternating) Multilinear Forms	§9C	WS 10
35	25/4	Determinant of an Operator	§9C	WS 10
36	25/4	Determinant of an Operator	§9C	WS 10
	29/4			HW 5

- The reference concerns sections of the textbook.
- The first exam will cover the material from Meetings 1-15.
- The second exam will cover the material from Meetings 16, 17-25.

- WS means Worksheet. You don't have to turn them in, but they are the exercises that I expect you to know how to solve.
- \bullet HW means Homework. You need to turn these in and they will be graded.
- The final exam is commulative.