TQGA

19 de outubro de 2021

Eric Fernando Otofuji Abrantes | Henrique Mualem Marti | Marco Moliterno Pena

0. INTRODUÇÃO

Insper

- 1. O presente documento está dividido nos seguintes tópicos, nesta ordem, conforme requerido pelo enunciado:
 - 1. (03-09) arquitetura,
 - 2. (10-13) total de instruções e sintaxe,
 - 3. (14-22) formato das instruções,
 - 4. (23-25) fluxo de dados,
 - 5. (26-27) pontos de controle,
 - 6. (28-29) conexões internas do processador,
 - 7. (30-35) conexão com os periféricos,
 - 8. (36-37) mapa de memória, e
 - 9. (38-38) extras.
- 2. Para fins de organização, não apenas os tópicos estão numerados, como também os parágrafos, que servem para fazer referências a conteúdo já presente no texto e, também, pode ser útil para correção.

1. ARQUITETURA

- 3. Inicialmente, fizemos a implementação do contador, que é a base para o projeto do relógio, usando a arquitetura baseada em acumulador.
- 4. Nesse primeiro momento, não houve uma decisão consciente para o uso dessa arquitetura. Ela foi usada pois foi a arquitetura usada em sala de aula ao longo dos estudos guiados para a montagem do contador.
- 5. Após ter o contador funcionando na referida arquitetura, decidimos alterála para ARQUITETURA REGISTRADOR-MEMÓRIA.
- 6. Na arquitetura acumulador, as operações aritméticas sempre são salvas em um único registrador (no acumulador).
- 7. Na ARQUITETURA REGISTRADOR-MEMÓRIA, podemos escolher entre vários registradores o qual que desejamos que o resultado da operação seja salvo.
- 8. Portanto, a ARQUITETURA REGISTRADOR-MEMÓRIA otimiza o circuito, permitindo que se façam operações simultaneamente, salvando seus

Eric Fernando Otofuji Abrantes | Henrique Mualem Marti | Marco Moliterno Pena

- resultados em registradores diferentes para uso posterior, deixando-a mais rápida.
- 9. Além disso, nosso processador recebe 13 bits de instruções, tem 8 bits de entrada e saída de dados, 9 bits de endereçamento e 2 bits para ativar leitura e escrita em periféricos.

2. TOTAL DE INSTRUÇÕES E SINTAXE

- 10. O total de instruções existentes é de onze. A sintaxe é definida na tabela a seguir.
- 11. Tabela de instruções. Autor: Paulo Carlos Santos. Extraída das páginas internas da disciplina e modificada por nós.

Instrução	Mnemônico	Código Binário
Sem Operação	NOP	0000
Carrega valor da memória para A	LDA	0001
Soma A e B e armazena em A	SOM	0010
Subtrai B de A e armazena em A	SUB	0011
Carrega valor imediato para A	LDI	0100
Salva valor de A para a memória	STA	0101
Desvio de execução	JMP	0110
Desvio condicional de execução	JEQ	0111
Comparação	CEQ	1000
Chamada de Sub Rotina	JSR	1001
Retorno de Sub Rotina	RET	1010

13. A tabela acima representa as possíveis instruções a serem dadas para o processador com uma breve descrição juntamente com seu mnemônico, que é a forma que é usada na implementação em VHDL no projeto para acionamento da instrução. Os pontos de controle e a leitura e escrita estão listados na tabela que consta na seção 5 – PONTOS DE CONTROLE.

3. FORMATO DAS INSTRUÇÕES

14. As instruções têm o formato definido a seguir.

TQGA moutação | Design de Computado

19 de outubro de 2021

Engenharia de Computação | Design de Computadores Projeto 1 | Entrega Final

Eric Fernando Otofuji Abrantes | Henrique Mualem Marti | Marco Moliterno Pena

- 15. tmp(0) := INS & RX & '0' & x"00";
- 16. Onde INS é uma das instruções definidas na tabela do parágrafo 12 do item 2, RX é o registrador utilizado e 0 são os campos de bits.
- 17. Por exemplo, a instrução:
- 18. tmp(1) := STA & R2 & '1' & x"01";
- 19. Ela salva na memória 256 o valor contido no registrador 2.
- 20. Outro exemplo:
- 21. tmp(0) := LDI & R0 & '0' & x"05";
- 22. Carrega o número x05 no registrador R0.

Eric Fernando Otofuji Abrantes | Henrique Mualem Marti | Marco Moliterno Pena

4. FLUXO DE DADOS

23. O fluxo de dados para o processador é como apresentado a seguir, usando por base o diagrama de autoria de Paulo Carlos Santos, que usamos para o estudo guiado para a implementação deste contador.

24.

25. No diagrama acima, o ROM_ADDRESS diz pra ROM qual a próxima instrução, e a ROM responde pela porta INSTRUCTION_IN do processador. O RD e o WR indicam se a memória RAM deve ser lida ou escrita. Além disso, o RD permite a leitura de botões e switches se o endereço destes estiver na saída DATA_ADDRESS. Da mesma maneira o WR permite a escrita nos LEDs e nos displays caso o endereço destes estiver na saída DATA_ADDRESS. Ao ler qualquer periférico todos os dados recebidos entram pelo DATA_IN e ao escrever data nos periféricos a escrita é feita pelo DATA_OUT.

Eric Fernando Otofuji Abrantes | Henrique Mualem Marti | Marco Moliterno Pena

5. PONTOS DE CONTROLE

Insper

```
RD / WR / JSR / RET / JEQ / FREG/ JMP / Sel / ACU / ULA
'0' & '0' & '0' & '0' & '0' & '0' & '0' & '1' & '0' & "11" -- NOP
'1' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '1' & "11" -- LDA
'1' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '1' & "01" -- SOM
'1' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '1' & "00" -- SUB
'0' & '0' & '0' & '0' & '0' & '0' & '0' & '1' & "11" -- LDI
'0' & '1' & '0' & '0' & '0' & '0' & '0' & '1' & '1' & "11" -- STA
'0' & '0' & '0' & '0' & '0' & '1' & '1' & '1' & "11" -- JEQ
'1' & '0' & '0' & '0' & '0' & '1' & '0' & '0' & '0' & "11" -- JSR
26. '0' & '0' & '0' & '1' & '0' & '0' & '1' & '0' & "11" -- RET
```

27. Além das onze instruções definidas na seção 2 – TOTAL DE INSTRUÇÕES E SINTAXE, temos também que selecionar o registrador que será usado com base na arquitetura registrador-memória. São eles: R0, R1, R2 e R3. Esses quatro registradores foram adicionados posteriormente no caminho para progredir de rubrica.

Eric Fernando Otofuji Abrantes | Henrique Mualem Marti | Marco Moliterno Pena

6. CONEXÕES INTERNAS DO PROCESSADOR

29. No diagrama acima, de autoria de Paulo Carlos Santos, temos a visão geral do nosso processador, que utiliza a arquitetura de registrador-memoria, e sua conexão com a ROM e a RAM (note que ainda tem conexões com outros periféricos que não estão listadas neste diagrama.

Eric Fernando Otofuji Abrantes | Henrique Mualem Marti | Marco Moliterno Pena

7. CONEXÃO COM PERIFÉRICOS

31. No diagrama acima, temos a visão geral do nosso circuito, que é o esquema de conexão do processador com os periféricos, extraído do RTL Viewer do Quartus Studio.

Eric Fernando Otofuji Abrantes | Henrique Mualem Marti | Marco Moliterno Pena

33. No diagrama acima, elaborado pelo Paulo Carlos Santos, estão representadas as conexões com os botões e switches.

35. No diagrama acima, elaborado pelo Paulo Carlos Santos, estão representadas as conexões com os LEDs e Displays de 7 segmentos.

8. MAPA DE MEMÓRIA

36. O mapa de memória é apresentado a seguir. Usamos o mapa de memória descrito no estudo guiado da aula 9, elaborado por Paulo Carlos Santos.

Endereço	Periférico	Largura	Tipo	Bloco
0-63	RAM	8	RD/WR	0
64-127	Reservado	-	-	1
128-191	Reservado	-	-	2
192-255	Reservado	-	-	3
256	LED0 a 7	8	WR	4

Eric Fernando Otofuji Abrantes | Henrique Mualem Marti | Marco Moliterno Pena

257	LED 8	1	WR	4
258	LED 9	1	WR	4
259-287	Reservado	-	-	4
288	HEX0	4	WR	4
289	HEX1	4	WR	4
290	HEX2	4	WR	4
291	HEX3	4	WR	4
292	HEX4	4	WR	4
293	HEX5	4	WR	4
294-319	Reservado	-	-	4
320	SW0 A 7	8	RD	5
321	SW8	1	RD	5
322	SW9	1	RD	5
323-351	Reservado	-	-	5
352	KEY0	1	RD	5
353	KEY1	1	RD	5
354	KEY2	1	RD	5
355	KEY3	1	RD	5
356	FPGA RST	1	RD	5
357-507	Reservado	-	-	5,6,7
508	Z-KEY3	-	RD/WR	7
509	Z-KEY2	_	RD/WR	7
510	Z-KEY1	-	RD/WR	7
511	ZKEY0	-	RD/WR	7

^{37.} Essa tabela apresenta o endereço em decimal para cada parte de memória e o periférico que é representado por esse endereço de memória. Além disso, também apresenta a largura dos dados para cada periférico e o tipo de acesso. Também apresenta o bloco de memória.

9. EXTRAS

38. Além do básico pedido, adicionamos dois itens em busca do B+: um despertador que pode ser configurado usando o botão B1. Após o despertador tocar, é possível desligá-lo usando o botão B3 e, além disso, usamos a instrução de chamada de sub-rotina com um nível na nossa ROM.