5

10

15

20

25

ABSTRACT OF THE DISCLOSURE

Methods of inhibiting release of a proinflammatory cytokine from a macrophage are provided. The methods comprise treating the macrophage with a cholinergic agonist in an amount sufficient to decrease the amount of the proinflammatory cytokine that is released from the macrophage, wherein the cholinergic agonist is selective for an α7 nicotinic receptor. Methods for inhibiting an inflammatory cytokine cascade in a patient are also provided. The methods comprise treating the patient with a cholinergic agonist in an amount sufficient to inhibit the inflammatory cytokine cascade, wherein the cholinergic agonist is selective for an α 7 nicotinic receptor. Methods for determining whether a compound is a cholinergic agonist reactive with an α 7 nicotinic receptor are also provided. The methods comprise determining whether the compound inhibits release of a proinflammatory cytokine from a mammalian cell. Additionally, methods for determining whether a compound is a cholinergic antagonist reactive with an α 7 nicotinic receptor are provided. These methods comprise determining whether the compound reduces the ability of a cholinergic agonist to inhibit the release of a proinflammatory cytokine from a mammalian cell. Oligonucleotides or mimetics capable of inhibiting attenuation of lipopolysaccharide-induced TNF release from a mammalian macrophage upon exposure of the macrophage to a cholinergic agonist are also provided. The oligonucleotides or mimetics consist essentially of a sequence greater than 5 nucleotides long that is complementary to an mRNA of an α 7 receptor. Additionally, methods of inhibiting attenuation of TNF release from a mammalian macrophage upon exposure of the macrophage to a cholinergic agonist are provided. These methods comprise treating the macrophage with the above-described oligonucleotide or mimetic.