Master-Praktikum: IoT

(IN2106, IN4224)

IoT Core Team

Final Presentation 30.07.2018

Topic

Presenting the design and capabilities of the reinvented IoT platform

Presenters

Peeranut Chindanonda Helge Dickel Christoph Gebendorfer Bahareh Hosseini Hans Kirchner

Agenda

Defined Requirements

Defined Requirements

	Requirement	Previous Status		
R1	Secure communication & transmission of data	🗴 n.a.		
R2	Storage	✔ Persisted inside VM		
R3	Data Provisioning to Consumers	✓ REST-API		
R4	Processing large amounts of data (>100k msg/sec) backed by scalability and load balancing on all tiers - ingestion to extraction	x n.a.		
R5	Load throughput testing	x n.a.		
R6	Ensure platform-independence, platform should be deployable on commonly used OS	🗴 n.a.		
R7	Ensure that platform can be deployed with beginner knowledge	with beginner knowledge ~ long, detailed guide available		
R8	Guide for Deployment & Usage ~ long, detailed guide av			
R9	Multitenancy	🗴 n.a.		
R10	Support Ingestion via MQTT	🗴 n.a.		

Architecture Design

Architecture Design - Pipeline

Architecture Design - Deployment

Development Env (Local)

- Install Helm & K8s
- Load Cluster Config
- Docker Login
- Attempt to Rebuild from Previous Version
- Push to Container Registry
- Install new
 Deployment from
 Helm Chart

Production Env (LRZ)

kubernetes

Data Model

Data Model - Device-/Sensor Model

- Our Intent
 - Support of generic devices
 - Enable (optional) multi level nesting of sensors
- Device
 - Entity that may contain one or many sensors
 - Represents a single physical logical unit
- Sensor
 - Entity that belongs to a device
 - Represents a single physical measuring point, producing a time series of data

Data Model - Example

Security

Security

Security via JWT (JSON Web Token, IETF RFC7519 standard) [https://tools.ietf.org/html/rfc7519]

Retrieving JWT Tokens:

eyJhbGciOiJIUzI1NiIsInR5cCl6lkp XVCJ9.eyJpZCl6ImRhc2RjbTM5Y 21pMjM5Y20zYyIsInZhbGlkX3Vud GwiOjEyMzIzMTMxM30.vMClKz_ QkkcBFWMKhuPDL4o8PM5V_az Eby4q7t1Jr3c

Security

Security via JWT (JSON Web Token, IETF RFC7519 standard) [https://tools.ietf.org/html/rfc7519]

Secure data ingestion as producer: Get device id and sensor_id Load Balancer Producer Gateway eyJhbGciOiJIUzI1NiIsInR5cCl6lk **RSA** pXVCJ9.eyJpZCl6ImRhc2RjbTM **Public** 5Y21pMjM5Y20zYylsInZhbGlkX3 VudGwiOjEyMzIzMTMxM30.vMCl Kz QkkcBFWMKhuPDL4o8PM5

V azEby4q7t1Jr3c

Live Demo

Benchmarks

Benchmarks - HTTP - w/ Auth

Performance on Hetzner, cx41: 4 vCPUs, 16Gb of RAM

Testcase:

- 100 devices
- 200,000 msg
- Max-Throughput

Go

Statistics:

Mean: 13.236 msMax: 80 ms

Req/s: 7,554.87

Completed Requests

Testcase:

- 100 devices
- 200,000 msg
- Max-Throughput

Statistics:

Mean: 44.942 msMax: 136 msReg/s: 2,205.08

Completed Requests

Benchmarks - HTTP - w/ Auth

Performance on Hetzner, cx41: 4 vCPUs, 16Gb of RAM

Testcase:

- 1,000 devices
- 100,000 msg
- Max-Throughput

Statistics:

Mean: 131.057 msMax: 3,321 msReq/s: 7,630.28

Completed Requests

Testcase:

- 1,000 devices
- 100,000 msg
- Max-Throughput

Statistics:

Mean: 452.459 msMax: 15,662 msReq/s: 2,210.14

Completed Requests

Benchmarks - WebSockets - w/ Auth

Performance on Hetzner, cx41: 4 vCPUs, 16Gb of RAM

Testcase:

1,000 devices

1,000 msg/device

Connections pre-established

Go

Statistics:

Mean: 0.542 msMax: 923 msReq/s: 800,319.53

Testcase:

• 1,000 devices

1,000 msg/device

Connections pre-established

Statistics:

Mean: 0.549 msMax: 726 msReq/s: 783,266.05

Benchmarks - WebSockets - Golang, w/ Auth

Performance on Hetzner, cx41: 4 vCPUs, 16Gb of RAM

Testcase:

- n devices
- 1,000 msg/device
- Connections pre-established

Comparison to Existing Solutions

Comparison to Existing Solutions -

FEATURE	AVOCADO ARCHIPELAGO	BANANA BEACH (Early Access Only)	
Architecture	Monolithic	Microservices	
Connectivity protocol	Proprietary	Open, standards-based	
Gateway connectivity model	One connection per device	Single, multiplexed connection	
Communication security	RSA+AES	(D)TLS	
Device credential management	No	Yes	
Device metadata	Structured	Structured or unstructured	
Data collection	Single data type, structured only	Unlimited types, isolated flows, structured or unstructured	
Configuration management	Structured only	Structured or unstructured	
Data processing and analytics	3-rd party integrations	Built-in or 3-rd party integrations	
Data visualization	3-rd party integrations	Built-in customizable dashboards or 3-rd party integration	
Device notifications	Yes	No, superseded by commands	
Command execution	No	Yes	
Over-the-air updates	No	Yes	
Technology stack	Mainly Java	Polylingual	
Scalability, elasticity, self-healing	Manual	Automated container orchestration	
Server configuration	Non-portable, stored in DB	Portable declarative blueprint	

[https://www.kaaproject.org/whats-new/]

Comparison to Existing Solutions - ThingsBoard

Core Services:

- Device and credentials
- Rule chains and rule nodes
- Tenants and customers
- Widgets and dashboards
- Alarms and events

[https://thingsboard.io/docs/reference/performance/]

[https://thingsboard.io/docs/reference/architecture/]

Comparison to Existing Solutions - ThingsBoard

AWS, c4.2xlarge: 4 vCPUs, 7.5Gb of RAM

MQTT

10000 devices

1 msg/sec/device

total load: 10000 msg/sec

Statistics:

Mean: 217 msMax: 10887 msReg/s: 6818.182

Completed Requests

AWS, c4.2xlarge: 8 vCPUs, 15Gb of RAM

MQTT

10000 devices

1 msg/sec/device

total load: 10000 msg/sec

Statistics:

Mean: 38 msMax: 3270 msReg/s: 8823.529

Completed Requests

[https://thingsboard.io/docs/reference/performance/]

Goals:

- Generate sensor data that 'looks real'
 - Different types of sensors (moving physical object, temperature, switch, ...)
 - Noise
 - Outliers
- Never save sensor for later replay but use a seed for the PRNG
- (Possibly) endless stream of data

Implementation:

- Pluggable components
 - Generators output an endless stream of sensor values
 - Filters take a sensor value and modify it
 - Joins take several sensor values and combine them

Generators

Conclusion, Challenges & Outlook

Conclusion

	Requirement
R1	Secure communication & transmission of data
R2	Storage
R3	Data provisioning to consumers
R4	Processing large amounts of data, scalability in all tiers - ingestion to extraction
R5	Load throughput testing
R6	Ensure platform-independence
R7	Ensure accessibility with beginner knowledge
R8	Guide for deployment & usage
R9	Multitenancy
R10	Support ingestion via MQTT

Current Status
✓ Messaging & device administration secured via JWT
✔ Persisted in ES container within cluster
✓ Secure REST-API to ES
✓ Large amounts of data∼ Autoscaling capabilities via K8s
✓ Gateway capabilities tested + language comparisons
✓ Guaranteed thanks to dockerized application design
✓ As easy as "docker-compose up"
✓ Detailed Github Readme + docs
✔ Private tokens for devices
✓ MQTT, HTTP & WS gateways available

Challenges

- Team members had to evolve an understanding of the considerable technology stack
- Ambitious scope
- Opinion: previous architecture design not suited for the requirements given to us
 - Almost inevitable to redesign and reimplement, adding considerable workload

- Cooperation with HAL team
 - Difficult since they have to rely on running architecture, which is hard if it is being reworked
 - Integration now possible
- JWT Authorization Node.js library converts HTTP headers to lower case
 - Either: loop over raw headers (sacking performance), change header (abusing the standard)

Outlook

- Activate true persistence, surviving rolling deployments (only Flink missing)
- Finish up on autoscaling
- Improve frontend UX
- Security testing
- Actuator expansion (e.g. connected to Flink)
- Provide more default Flink jobs for analytics
- MQTT performance testing
- Set up alternative to Node.js MQTT gateway (e.g. Emitter.io)
- Enable document/object ingestion in Flink/ES (e.g. gyro sensor data)

