

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

O-fucosyltransferase Sequence Similarity between Human, Hamster and C. elegans

C. Elegans	Σ Σ	<u>∝</u>	ഗ ≻	¥	Z 	Ш 7	ш	ш	<u>ა</u>	_	ш	Σ	۵	S S	∢ (0	z	0		+	α	0	O Ш		_	0	М	۵	۵	ഥ	٦	LLI LL	>	o	ທ z	>	œ	⊢
C. Elegans	51 LRG	ω Σ	Σ ω	-	<u>ග</u>	М	٦	۵	0 0	ഗ	⊢	Σ	۵	٦	0	0	ᄓ	ω Σ	≻	Ø	ш	α ⊢	~ 	Ω	<u>-</u>	Σ ∢	<u>∠</u>	×	Σ	∢	スコ	Η.	I	Ш	۵	ပ	Σ
CHO C. Elegans	1 · · · · 101 L L A	, a	. >	٠ ٥	· ≥	, 0	٠Z		, O	, ∢	ب.	· 0	· 0_	, ,	, C.	· œ	, ,	, C	, w	· O	٠ ــ	· ⊢	. >-	· >	٠ ۵	· -	· >	۰ ۵	٠ ١ــ	· 0	, S L	· F	، ليـ	· -	מג ייב	<u> </u>	∢ -
CHO Human C. Elegans	4 G S W	_ , _ _ , _	Ø · O	⊢ • L	0 , L S , L	> · · ○	× · · · · · · · · · · · · · · · · · · ·	£ , O	× · ω Σ · ×	0 0	α . α	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	zzz	0 0 0	4 4 >	IIO	tr tr tr	000	σ σ >		4 4 4	7 7 7 4 4 4	4 4 4 X X X	→	L L	> z O			∢ ∢ ≥	> > -		≥ ≥ ∟			00 4	III	IIL
CHO Human C. Elegans	32 X X 32 T T T T T T T T T T T T T T T T T T	μ π Σ 	Z Z C	IΗ	· > F	· · · ·	. 0 0	· × >	· 1 ·	· × ·	، لـ ،	, Ш , Н	< ١ ،	. 0 4	·	·IF		, - >	· S -	. ⊐ Σ	. п О	П	, ∑ ⊢ ,	• М Х	, <u>X</u>	,	, ∢ Σ	' 	' I I	، ≽ آد	· @ >	, ш —	, X J	· > 0	4 4	· > -	· U >-
Human C. Elegans	82 F E V 247 D K S		0 T T O	ທ ပ	0 H	다 있 지 지	, X	⊢ ,	O ,	Σ	Υ '	ы В В	zz	م م	F F	م م	L >	3 3	0 0	<u> </u>	ΙO	S S	L L	z >	٧ O	S O	<u>н</u> н		<u>⊢ ७</u>		<u>o</u> <u>o</u>	ш O	თ დ	Α F Ω O	≻	αz	ωΟ
Human C. Elegans	132 O W S 291 M G S	Ο α α χ · χ	, ₹	٠ ــــــــــــــــــــــــــــــــــــ	, П	, X	σα	σ ν 7 π	х ш ш ш	工	م م	> >	4 4	اما ال	ы В 8	< ∢	م م	4 4 0 D	<u>LL LL</u>	م م	> v	고 X	п О п Х	x >	α ≥	٦ S	00	ス ス	> >	Σ ¬	> °C	S S	ے م	ш С Σ —	> ⊢	х ш	⊢ o
Human C. Elegans	177 GEA 341 AKK	O F	T W	IZ		> ∢ π x	ه م	<u> </u>	○ <	- >	II	L L L	<u>- z</u>	0 0	S 4	3 3	X >	∢ > z œ	00	_∢ ш	ΣΙ	_ L	λО О Н	७ ⊢		₹Z	0 E	Ι -	L_ L_	Σ ∢	A S	0. O	00	C C	ပ ်	<i>≻ '</i> '	σ ·
Human C. Elegans	227 R S T 388 · · ·		Р , , Г	⊢ '	Σ ,	Σ .	O ,	٠ لــ	□ ·	، ب -	Χ ,	— ' 山 '	O .	α,	> · ∢ ·	χ,	٠ ١	> ·	<u>د</u> ،	o ·	٠ لـ	7 0 '	∀ ,	ဟ ပ	> I	<i>></i> ⊐	> 7 G A	<u>⊢</u> ⊢	0 -	o ⊢	п X О п	> -	> 0	σ w п σ	ا 0 د	0 ×	0 0
Human C. Elegans	277 LFK 406 Q I L	о m х О	>. — ⊼ п	> <) L > I	8 R 2 O	ΧШ	ه م	ы О С	∢ Σ	o ≻	⊃ v		<u></u>	 ¬ Σ	0 0	0 &	4 4	D D	ᄔᄔ	_ >	0 0	U U Z Z	> >	တ တ	ω ⊢	F 6	∢ I	ш —	> >	χ χ	ы ы	α α	D D H	0 <	ပ ပ	αο
Human C. Elegans	327 P S S 456 S P R	ιτ (Ω Γτ (Ω	O ∢ Σ Γ	۵ ك	α o	<u>α</u> α	¥ ∢	7 >	$x \times \nabla$	ШΙ	L. —																										

Similarity between hamster O-fucosyltransferase and human and C elegans genes. N-terminal peptide sequence of hamster O-fucosyltransferase is shaded. Human sequence is a partial cDNA of unknown protein from a myeloblast cell line and C. elegans gene is a computer generated coding sequence from its genome.

Northern Blot For O-Fucosyltransferase

Figure 10

think given, green agent green, or a general or to get the state of the green of the transfer of the green of the transfer of the green of the green

ATCCCAGGGC ATAGGACTIG CAGGITICCTA GGAGCAGGAG CATCICICCAI CGCACGIGCI TICIGCICII CIGGGAATII CICACACIGG CAAAGCAGIC CAGCCICCGI CITCIGGICC TAGGGIÇCCG TATCCIGAAC GICCAAGGAI CCICGICCIC GIAGAGGGIA GCGIGCACGA AAGACGAGAA GACUCIIAAA GAGIGIGACC GTTICGICAG GICGGAGGCA GAAGACCAGG GAGCAGCCTG GGATGCTGAA CTCTTCAGAG AGATITITII ATAGAGAGAT TICTATAATI TIGATACAAG GTCATGACTA ICCTAGAACT CTCTGTGGTT TTTGAAAATC CTCGTCGGAC CCTACGACTI GAGAAGICIC TCTAAAAAA TATCTCTCTA AACATATAA AACTATGTIC CAGTACTGAT AGGATCTIGA GAGACACCAA AAACTITAG AGTACCAGCA TCACAAGCCT CCTTTCACCA ACCTCCATGT TCATGGTCGT AGTGTTCGGA GGAAAGTGGT TGGAGGTACA AGATAAGAAG ACGIGCCCCA IGAAGGAAGG AAACCCCITI GGCCCATICI GGGAICAGTI ICAIGIGAGI ITCAACAAGI CGGAGCITITI ICIATICIIC IGCACGGGGI ACTICCIICC ITIGGGGAAA CCGGGIAAGA CCTAGICAA AGIACACICA AAGIIGIICA GCCTCGAAAA CAGECCACTA CAGAAGTACA IGGTATGGTC AGACGAAATG CTGAAGACGG GAGAGGCCCA GATTCATGCC CACCTTGTCC GGCCCTATGT GGGCATTCAT CTGCGCATTG GCTCTGACTG GTCCGGTGAT GTCTTCATGT ACCATACCAG TCTGCTTTAC CACTTCTGCC CTCTCCGGGT CTAAGTACGG GTGGAACAGG CCGGGATACA CCCGTAAGTA GACGCGTAAC CGAGACTGAC GAAGAACGCC TGTGCCATGC TGAAGGACGG GACTGCAGGC TCGCACTTCA TGGCCTCTCC GCAGTGTGTG GGCTACAGCC GCAGCAGC GGCCCCCCTC ACGATGACTA TGTGCCTGCC CTTCTTGCGG ACACGGTACG ACTTCCTGCC CTGACGTCCG AGCGTGAAGT ACCGGAGAGG CGTCACACAC CCGATGTCGG CGTCGTGTCG CCGGGGGGAG TGCTGAT ACACGGACGG GAAGGIGAAG GIGGIGAGCC IGAAGCCIGA GGIGGCCCAG GICGACCIGI ACAICCICGG CCAAGCCAC CACIIIAIIG GCAACIGIGI CICCICCIIC ACIGCCIIIG IGAAGGGGAA CIICCACIIC CACCACICGG ACIICGGACI CCACCGGGIC CAGCIGGACA IGIAGGAGCC GGIICGGCIG GIGAAATAAC CGIIGACACA GAGGAGGAAG IGACGGAAAA ACIICGCCCI GCGGGACCTC CAGGGAAGGC CGTCTTCTTT CTTCGGCATG GACAGGCCCC CTAAGCTGCG GGACGAGTTC TCATTC1GGC CGGAGCACCA GACCCTCTGA TCCTGGAGGG ACCAGAGTCT CGCCCTGGAG GTCCCCTCCG GCAGAAGAAA GAAGCCGTAC CTGTCCGGGG GATTCGACGC CCTGCTCAAG ACTAAGACCG GCCTCGTGGT CTGGGAGACT AGGACCTCCC TGGTCTCAGA AGCTGGAGCC CCTCCAGGCT TACCATCGG TCATCAGCTT GGAGGATTTC ATGGAGAAGC TGGCACCCCAC CCACTGGCCC CCTGAGAAGC GGGTGGCATA TCGACCTCGG GGAGGTCCGA ATGGTAGCCC AGTAGTCGAA CCTCCTAAAG TACCTCTTCG ACCGTGGGTG GGTGACCGGG GGACTCTTCG CCCACCGTAT IGACCIGAAG GAGAICCAGA GGGCIGIGAA GCICIGGGIG AGGICGCIGG AIGCCCAGIC GGICIACGII GCIACIGAII CCGAGAGIIA IGIGCCIGAG CICCAACAGC ICTICAAAGG ACIGGACIIC CICIAGGICI CCCGACACII CGAGACCCAC ICCAGCGACC IACGGGICAG CCAGAIGCAA GGAIGACIAA GGCICICAAI ACACGGACIC GAGGIIGICG AGAAGIIICC AGGGACCCCT CAAGGAGGGA GAGCTGGTCC TICCAGCCAG GCCTGGCAGC CAGAGGTGCT CCGGGATTGC AAACTCCTCT TCTCACCTGC CAAAGATGGA GAAGAGTGCC CTCTCACGG CCCCAAGA AGAGTGGACG GTTTCTACCT CTTCTCACGG CTCGACGG AAGGTGGACG GTTTCTACCT CTTCTCACGG ACCGTACCTT GGCTGTCCCT CCTTGGATTG TGGCATGGAA CCGACAGGGA GGAACCTAAC AAGCTGCTAA A GAACCAGGCC GATCACTTCT TGGGCTCTCT GGCATTTGCA CTTGGTCCGG CTAGTGAAGA ACCCGAGAGA CCGTAAACGT AGCGAAGCCC A TCGCTTCGGG 1 CAGGATGGTC TTCATGAAGT GACGAAACTC CACCGTCGGG AAGTACTTCA GTGGCAGCCC GAGACGAGA ACTCTGCTC1

primers used in PCR reaction as described in Methods.

Human KIAA0180 First EcoRI Fragment. The first Eco RI fragment of the cDNA contains a partial coding sequence within complete

probe for the northern blot (Figure 2) are over-scored and double-underlined. The nucleotides over-scored and underlined are two amino terminus. The region which matched with CHO peptide sequence is shaded. The two oligonucleotides used to make the

the trust that the time the trust of the trust trust of the trust trust

L	!				recent is et alles estat is is				
rigure	lre 1	ATGCCCGCGG GCTCCTGGGA	тевел сссеессеет	TACCTGCTCT ACTGCCCCTG		CATGGGGCGC TTTGC	GAACC AGGCC	TTTGGGAACC AGGCCGATCA CTTCTTGGGC	GGC TCTCTGGCAT
12 A	1 1	M P A G S	W D P A G	Y L L Y	CPCMG	ж ы	N O N	р н ғ	G S L A F
	101		TTGCAAAGCT GCTAAACCGT ACCTTGGCTG	TCCCTCCTTG P P W	GATTGAGTAC CAGCA I E Y Q H	CAGCATCACA AGCC1 Q H H K P	AGCCTCCTTT CACCAACGTC P P F T N L	ACCTC CAMGIGICCT	CCT ACCAGAAGTA Y Q K Y
	201	CTTCAAGCTG GAGCO F K L E P	CTICAAGCIG GAGCCCTCC AGGCTTACCA F K L E P L Q A Y H	TCGGGTCATC R V I	CTTGGAGG	ATTTCATGGA GAAG F M E K	GAAGCTGGCA CCCAC K L A P T	CCCACCCACT GGCCCCCTGA	CTGA GAAGCGGGTG E K R V
	301	GCATACTGCT TTGAG A Y C F E	GGTGGC AGCCCAGCGA V A A Q R	AGCCCAGATA AGAAGACGTG S P D K K T C	HAAGACGTG CCCCAT	rgaag K	GAAGGAAACC CCTTTGGCCC E G N P F G P	ATTCTGG F W	GAT CAGTTTCATG D Q F H V
	401 135	TGAGTTTCAA CAA(S F N K	STCGGAG CTTTTACAG S E L F T G	GCATTTCCTT CAC I S F S	STGCTTCC A S	TACAGAGAAC AATGG Y R E Q W	AATGGAGCCA GAGATTTCT W S Q R F S	TTCT CCAAAGGAAC S P K E H	AAC ATCCGGTGCT H P V L
	501	TGCCCTGCCA GGAGCCCCAG A L P G A P A	CCCAG CCCAGTTCCC P A Q F P	CGTCCTAGA <u>A</u> GA V L E E	ACACAGGC H R P	CACTACAGAA GTACAT L Q K Y M	GTACATGGTA TGGTCAGACG Y M V W S D E	AGACG AAATGGTGAA D E M V K	GAA GACGGGAGAG K T G E
	601 201	GCCCAGATTC ATGCCCACCT A Q I H A H L	TGTCCGGCCC V R P	TATGTGGGCA TT Y V G I	TTCATCTGCG CATTGC H L R I G	screr s	GACTGGAAGA ACGCCTGTGC D W K N A C A	CATGCTC M L	HAAG GACGGGACTG K D G T A
	701	CAGGCTCGCA CTTCATGGCC G S H F M A	TCTCCGCAGT S P Q C	GTGTGGGCTA CA(V G Y S	SCCGCAGC R S	ACAGCGGCCC CCCTC T A A P L	CCCTCACGAT GACTATGTGC L T M T M C	GTGC CTGCCTGACC	ACC TGAAGGAGAT L K E I
	801 268	CCAGAGGGCT GTGAAGCTCT Q R A V K L W	GGGTGAGGTC V R S	GCTGGATGCC CA L D A Q	CAGTCGGTCT ACGTTGCTAC TGATTCCGAG Q S V Y V A T D S E	GCTAC TGATTO A T D S	CCGAG AGTTATGTGC E S Y V P	GTGC CTGAGCTCCA V P E L Q	CCA ACAGCTCTTC Q Q L F
	901 301	AAAGGGAAGG TGAAGGTGGT K G K V K V V	GAGCCTGAAG S L K	CCTGAGGTGG CC P E V A	CCCAGGTCGA CCTGTACATC Q V D L Y I		CTCGGCCAAG CCGACC/ L G Q A D H	ACTT TATTGGC F I G	AAC TGTGTCTCCT N C V S S
	1001	CCTTCACTGC CTTTGTGAAG	CGGGAGCGGG R E R D	ACCTCCAGGG GAG L Q G R	SGCCGTCT P S	TCTTTCTTCG GCATG S F F G M	GCATGGACAG GCCCCTAAG M D R P P K	TAAG CTGCGGGACG K L R D E	ACG AGTICIGATI E F O
	1101	CTGGCCGGAG CACCAGACCC	TCTGATCCTG	GAGGGACCAG AGTCTGAGCT	TCTGAGCT GGTCC	GGTCCTTCCA GCCAG	GCCAGGCCTG GCAGCCAGAG	AGAG GTGCTCCGGG	3GG ATTGCAAACT
	1201	CCTCTTCTCA CCTGCCAAAG	ATGGAGAAGA	GTGCCAGGGA CC	CCCCTCAAGG AGGGAGACGC		TCCATATCCC AGGGCATAGG	TAGG ACTTGCAGGT	ser recrassase
	1301	AGGAGCATCT CCCATCGCAC	GTGCTTTCTG	CTCTTCTGGG AA	AATTICICAC ACTGGCAAAG	CAAAG CAGTC	CAGICCAGCC ICCGICITCI	TTCT GGTCCACTCT	rcr gcrcrgagca
	1401	GCCTGGGATG CTGAACTCTT	CAGAGAGATT	TTTTTATAGA GA	GAGATTTCTA TAATTTTGAT	rtgar acaag	ACAAGGTCAT GACTATCCTA	cera gaactererg	cre regrrrrrda
	1501	AAATCATTGA ATTC	10	20	30	4 0	50	09	
Figure		Human MI	MPAGSWDPAGYLLY	CPCMGRFGNQA	SWDPAGYLLYCPCMGRFGNQADHFLGSLAFAKLLNRTLAVPPWIEYQHHKPPFTNLH	LLNRTLAVF	ритеуоннк	PPFTNLH	
12 B			****	*	***********		******	* * * * * *	

Human hear O-fucosyltransferase Sequence. Upper panel, compiled sequence from positive cDNA clones. The region that matches with CHO cell sequence is shaded. The residue A at position 540 of the DNA sequence is different from that of human KIAA0180 (G at position 475 of Figure X). The peptide sequences are the same. Lower panel, comparison of O-fucosyltransferase amino terminal sequences from human heart and CHO cells.

RLAGSWDLAGYLLYXPXMGRFGNQADHFLGSLAFAKLXVRTLAVPPWIEYQHHKPPFTNLH

CHO

pbSP human OFT Hise Signal pbSP Figure 13 A

CCGGTTACCT GCTCTACTGC CCCTGCATGG GGCGCTTTGG TGGCACCCAC CCACTGGCCC CCTGAGAAGC GGGTGGCATA CTGCTTTGAG GTGGCAGCCC AGGGAAGCCC AGATAAGAAG ACGTGCCCCA TGAAGGAAGG CACCTTGTCC GGCCCTATGT GGGCATTCAT CTGCGCATTG GCTCTGACTG M X X O TCGCACTTCA TGGCCTCTCC GCAGTGTGTG GGCTACAGC GCAGCACAGC GGCCCCCTC S H F M A S P Q C V G Y S R S T A A P L TGACCTGAAG GAGATCCAGA GGGCTGTGAAA GCTCTGGGTG AGGTCGCTGG ATGCCCAGTC GGTCTACGTT GCTACTGATT D l k e i q r a v k l w v r s l d a q s v y v a t d s ACATCCTCGG TTATTEATAE ESTECEACEA FEGGEGIUG ATEAGATECA TEGCEAAGIT CETGGTEAAE GIGGEECTGE IGCIGCI GCIGCIGCT TECGGAGECT TCACAAGCCT ď × Ö x AGTACCAGCA TCATCAGCTT GGAGGATTTC CAGGCCACTA GICGACCIGI SXR R P L Ω U >-H £Ι CCTTGGATTG TGAAGCCTGA GGTGGCCCAG TCCTTCAGTG TTCCCGTCC TAGAGGAACA ы D X o a S R S I 34 d H GGCTGTCCCT TACCATCGGG Y H R V TACAGGCATT R S P n D ᆸ > A <u>م</u> Ø ۲ > GGGCCCATAT GAGATCC<u>CAT CACCATCACC ATCAC</u>ATGCC GGGGGCTCC TGGGACCCGG
A H M R S H H H H H M P A G S W D P A GGCATTTGCA AAGCTGCTAA ACCGTACCTT GTCCTACCAG AAGTACTTCA AGCTGGAGCC CCTCCAGGCT O TTCAACAAGT CGGAGCTTTT F N K S E L F CTCCAACAGG TCTTCAAAGG GAAGGTGAAG GTGGTGAGCC L Q Q L F K G K V K V V S L TGCCAGGAGC CCCAGCCCAG ., A Q P A Q V A A ۲ > œί ᆸ J GTGAAGACGG GAGAGGCCCA GATTCATGCC V K T G E A Q I H A z ĹŁ Ø ш K L L ¥ ы П S G C) Ø Σ × GIGCIIGCCC V L A L TGTGCCATGC TGAAGGACGG GACTGCAGGC GGCCCATTCT GGGATCAGTT TCATGTGAGT × × × T A G Ø N N (L, Ĺ, × Ø GAACCAGGCC GATCACTTCT TGGGCTCTCT TTTCTCCAAA GGAACATCCG α ._ ပ o x A H B ъ Э Ж ۵ ۵ N S U AGACGAAATG (TGTGCCTGAG (V P E I 3 TGTGCCTGCC ACCTCCATGT CAML u × C L P Σ G FP D H P H G, S 3 ഗ CCTTTCACCA AAACCCCTTT TGGTATGGTC GAAGAACGCC AGCCAGAGAT CCGAGAGITA (z, A Z Ø œ ø ᅜ s S Ø 4101 4201 4301 4401 4501 122 4601 4701 188 4801 222 4901 255 22 55 88 5001 5101 155 322 Figure 13 B

sequence of the insert. The artificial signal peptide is shaded and the poly histidine tag is double underlined Human hear O-fucosyltransferase Plasmid construct for expression of human)-fucosyltransferase Upper panel is a schematic drawing of the plasmid Lower panel is the part is the same as in Figure 5.

CCAAGCCGAC CACTTTATTG GCAACTGTGT CTCCTTC ACTGCCTTTG TGAAGCGGGA GCGGGACCTC CAGGGGAGGC CGTCTTCTTT CTTCGGCATG Q A D H F I G N C V S S F T A F V K R E R D L Q G R P S S F F G M

GACAGGECEE CTAAGETGEG GGAEGAGTTE TGATTETGGE EGGAGEAEEA GAEEETETGA TECTGGAGGG AECAGAGTET GAGETGGTEE TTECAGECAG

0

(H)

Ω

œ

X L

۵

5301

5201

Figure 14

Figure 15