ESERCIZI 1° TUTORATO

- 1. Scrivere un vettore $w \in \mathbb{R}^3$ linearmente dipendente dal vettore $v = \begin{pmatrix} -1 \\ 9 \\ 0 \end{pmatrix}$.
- 2. Stabilire se i vettori $v_1 = \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$ di \mathbb{R}^3 sono linearmente dipendenti.
- 3. Stabilire se i vettori $v_1 = \begin{pmatrix} 1 \\ -5 \\ 70 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ di \mathbb{R}^3 sono linearmente dipendenti.
- 4. Studiare la dipendenza o indipendenza lineare dei seguenti vettori di \mathbb{R}^3 :

$$v_1 = \begin{pmatrix} 1 \\ -3 \\ 7 \end{pmatrix}, v_2 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Se risultano linearmente dipendenti esprimere, quando 'e possibile:

- v_1 come combinazione lineare di v_2 e v_3 .
- v_2 come combinazione lineare di v_1 e v_3 .
- v_3 come combinazione lineare di v_2 e v_1 .
- 5. Verificare se il seguente insieme è un sottospazio vettoriale di \mathbb{R}^3 :

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 + 2x_2 = 3x_1 + x_3 = 0 \right\}$$

6. Verificare se il seguente insieme è un sottospazio vettoriale di \mathbb{R}^4 :

$$V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbb{R}^4 \mid x_1 + x_1 x_2 + 3x_4 = 0 \right\}$$

.

- 7. Sia U il sottospazio di \mathbb{R}^4 generato dai vettori $u_1 = \begin{pmatrix} 0 \\ 2 \\ 0 \\ -1 \end{pmatrix}$ e $u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ e sia V il sottospazio di \mathbb{R}^4 generato dai vettori $v_1 = \begin{pmatrix} 0 \\ 2 \\ 0 \\ -1 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 2 \\ 0 \\ -1 \\ 1 \end{pmatrix}$:
 - Si determini la dimensione e una base di $U \cap V$.
 - \bullet Si determini la dimensione e una base di U+V