

Grundlagen der Elektrotechnik II

Wechselstromwiderstände und Brückenschaltungen

Studien- und Versuchsaufgaben

Autor: Richard Grünert 16.5.2019

1 Vorbereitungsaufgaben

$$\underline{I} = \frac{\underline{U}}{\underline{Z}}, \quad \underline{U} = \hat{U} \cdot e^{j(\omega t + \phi_u)}$$

$$\underline{Z} = R + j\omega L + \frac{1}{j\omega C}$$

$$\underline{I} = \frac{\hat{U} \cdot e^{j(\omega t + \phi_u)}}{R + j(\omega L - \frac{1}{\omega C})}$$

Betrag:

$$|\underline{I}| = \hat{I} = \frac{\hat{U}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$

Phase:

$$\phi_i = \phi_u - \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$

Gesamt:

$$i(t) = \frac{\hat{U}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} \cdot \cos\left(\omega t + \phi_u - \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)\right)$$

$$\begin{array}{c|c}
R_{sL} & L & i_{\text{eff}} \\
\hline
U_{R_{\text{eff}}} & U_{L_{\text{eff}}}
\end{array}$$

$$I = 1.5 \text{ mA}, R_{sL} = 200\Omega, L = 60 \text{ mH}$$

$$\underline{U}_{\rm ges} = \underline{I} \cdot (R_{sL} + j\omega L)$$

$$\hat{U}_{\rm ges} = \hat{I} \cdot \sqrt{R_{sL}^2 + \omega^2 L^2}$$

$$\hat{U}_{\rm ges} = I_{\rm eff} \cdot \sqrt{R_{sL}^2 + \omega^2 L^2} = 1.5 \text{mA} \cdot \sqrt{(200\Omega)^2 + 4\pi^2 f^2 \cdot (60 \text{mH})^2}$$

$$U_{R_{\text{eff}}} = I_{\text{eff}} \cdot R = 1.5 \text{mA} \cdot 200\Omega = 0.3 \text{ V}$$

$$U_{L_{\textrm{eff}}} = I_{\textrm{eff}} \cdot \omega L = 1.5 \textrm{mA} \cdot 2 \pi f \cdot 60 \textrm{mH}$$

$$I=1.5~{\rm mA},~R=200\Omega,~C_1=0.5~{\rm \mu F},~C_2=1~{\rm \mu F}$$

$$\begin{split} \underline{U}_{\rm ges} &= \underline{I} \cdot (R - j \frac{1}{\omega C}) \\ \hat{U}_{\rm ges} &= \hat{I} \cdot \sqrt{R^2 + \frac{1}{\omega^2 C^2}} \\ \hat{U}_{\rm ges}_{\rm eff} &= I_{\rm eff} \cdot \sqrt{R^2 + \frac{1}{\omega^2 C^2}} = 1.5 \mathrm{mA} \cdot \sqrt{(200\Omega)^2 + \frac{1}{4\pi^2 f^2 C^2}} \end{split}$$

$$U_{R_{\text{eff}}} = I_{\text{eff}} \cdot R = 1.5 \text{mA} \cdot 200\Omega = 0.3 \text{ V}$$

$$\begin{split} U_{C_{\text{eff}}} &= I_{\text{eff}} \cdot \frac{1}{\omega C} \\ U_{C_{\text{eff}_1}} &= I_{\text{eff}} \cdot \frac{1}{\omega C_1} = 1.5 \text{mA} \cdot \frac{1}{2\pi f \cdot 0.5 \mu \text{F}} \\ U_{C_{\text{eff}_2}} &= I_{\text{eff}} \cdot \frac{1}{\omega C_2} = 1.5 \text{mA} \cdot \frac{1}{2\pi f \cdot 1 \mu \text{F}} \end{split}$$

a) Spule

Der Winkel δ , den die Impedanz \underline{Z} mit der imaginären Achse bildet, wird Verlustwinkel genannt. Der Verlustfaktor d ergibt sich dann aus:

$$d = \tan \delta = \frac{R_{sL}}{L_s}$$

Die Güte Q ist definiert als der Kehrwert des Verlustfaktors, also:

$$Q_{Ls} = \frac{1}{d} = \frac{\omega L_s}{R_{sL}}$$

Zeigerbild der Admittanz einer verlustbehafteten Induktivität / Spule im Parallelmodell

Analog ist der Verlustwinkel δ der Winkel der Admittanz mit der imaginären Achse:

$$d = \tan \delta = \frac{\frac{1}{R_{pL}}}{|-\frac{1}{\omega L_p}|} = \frac{\omega L_p}{R_{pL}}$$

Demnach ist auch die Güte der Kehrwert des Verlustfaktors:

$$Q_{Lp} = \frac{1}{d} = \frac{R_{pL}}{\omega L_p}$$

Für die gleich Frequenz gilt damit:

$$Q_{L_s} = Q_{L_p} = Q_L$$

b) Kondensator

Zeigerbild der Impedanz einer verlustbehafteten Kapazität / Kondensator im Serienmodell

Der Winkel δ , den die Impedanz \underline{Z} mit der imaginären Achse bildet, wird Verlustwinkel genannt. Der Verlustfaktor d ergibt sich dann aus:

$$d = \tan \delta = \frac{R_{sC}}{|-\frac{1}{\omega C_s}|} = R_{sC} \cdot \omega C_s$$

Die Güte Q ist definiert als der Kehrwert des Verlustfaktors, also:

$$Q_{Cs} = \frac{1}{d} = \frac{1}{\omega R_{sC} C_s}$$

Analog ist der Verlustwinkel δ im Parallelmodell der Winkel der Admittanz mit der imaginären Achse:

$$d = \tan \delta = \frac{\frac{1}{R_{pC}}}{\omega C_p} = \frac{1}{\omega R_{pC} C_p}$$

Demnach ist auch die Güte der Kehrwert des Verlustfaktors:

$$Q_{Cp} = \frac{1}{d} = \omega R_{pC} C_p$$

Für die gleich Frequenz gilt damit:

$$Q_{C_s} = Q_{C_p} = Q_C$$

1.6

 $R_1 = 25 \text{ k}\Omega, \ R_2 = 100 \text{ k}\Omega, \ C = 1 \text{ nF}, \ L = 0.25 \text{ H}, \ f = 800 \text{ Hz}$

a)

$$\underline{Z} = R_1 + j\omega L + \frac{1}{\frac{1}{R_2} + j\omega C} = R_1 + j\omega L + \frac{\frac{1}{R_2} - j\omega C}{\frac{1}{R_2^2} + \omega^2 C^2}$$

$$\underline{Z} = R_1 + \frac{\frac{1}{R_2}}{\frac{1}{R_2^2} + \omega^2 C^2} + j\underbrace{\left(\omega L - \frac{\omega C}{\frac{1}{R_2^2} + \omega^2 C^2}\right)}_{\text{Imaginărteil (Resistanz)}}$$

$$\underline{Imaginărteil (Resistanz)}$$

$$Re(\underline{Z}) = 25k\Omega + \frac{1}{100k\Omega\left(\frac{1}{(100k\Omega)^2} + (2\pi \cdot 800Hz \cdot 1nF)^2\right)} = 104.83 \text{ k}\Omega$$

$$\mathrm{Im}(\underline{Z}) = 2\pi \cdot 800 \mathrm{Hz} \cdot \left(0.25 \mathrm{H} - \frac{1 \mathrm{nF}}{\frac{1}{(100 \mathrm{k}\Omega)^2} + (2\pi \cdot 800 \mathrm{Hz} \cdot 1 \mathrm{nF})^2}\right) = \underbrace{-38.87 \ \mathrm{k}\Omega}_{\mathrm{kapazitiv}}$$

$$\underline{Z} = 104.83 \text{ k}\Omega - j38.87 \text{k}\Omega$$

b)

$$|\underline{Z}| = \sqrt{\left(R_1 + \frac{1}{\frac{1}{R_2} + \omega^2 C^2 R_2}\right)^2 + \left(\omega L - \frac{\omega C}{\frac{1}{R_2^2} + \omega^2 C^2}\right)^2}$$

$$|\underline{Z}| = 111.8 \text{ k}\Omega$$

$$\phi_{\underline{Z}} = \arctan\left(\frac{\omega L - \frac{\omega C}{\frac{1}{R_2^2} + \omega^2 C^2}}{R_1 + \frac{1}{\frac{1}{R_2} + \omega^2 C^2 R_2}}\right) = \arctan\left(\frac{-38.87 \text{k}\Omega}{104.83 \text{k}\Omega}\right)$$

$$\phi_{\underline{Z}} = 20.36$$
 °

Abgleich bei $U_2 = 0$

$$\frac{R_2}{R_1} = \frac{Z_x}{Z_N} = \frac{\frac{1}{\frac{1}{R_x} + j\omega C_x}}{\frac{1}{\frac{1}{R_N} + j\omega C_N}} = \frac{\frac{1}{R_N} + j\omega C_N}{\frac{1}{R_x} + j\omega C_x}$$
$$\frac{R_2}{R_x} + j\omega R_2 C_x = \frac{R_1}{R_N} + j\omega C_N$$

Realteilvergleich:

$$\frac{R_2}{R_x} = \frac{R_1}{R_N} \implies R_x = \frac{R_N \cdot R_2}{R_1}$$

Imaginärteilvergleich:

$$\omega R_2 C_x = \omega R_1 C_N \implies C_x = C_N \cdot \frac{R_1}{R_2}$$

1.8

Abgleich bei $U_2 = 0$

$$\frac{R_2}{Z_N} = \frac{Z_x}{R_3}$$

$$\frac{R_2}{\frac{1}{R_N} + j\omega C_N} = \frac{R_x + j\omega L_x}{R_3}$$

$$\frac{R_2}{R_N} + j\omega R_2 C_N = \frac{R_x}{R_3} + j\frac{\omega L_x}{R_3}$$

Realteilvergleich:

$$\frac{R_2}{R_N} = \frac{R_x}{R_3} \implies R_x = \frac{R_2 \cdot R_3}{R_N}$$

Imaginärteilvergleich:

$$\omega R_2 C_N = \frac{\omega L_x}{R_3} \implies L_x = R_2 R_3 C_N$$

2 Versuchsaufgaben

2.1

a)

Bei einem konstanten Strom von 2 mA und einem Vorwiderstand von 1 k Ω wurden folgende Werte gemessen:

f/Hz	$U_{R_{\text{eff}}}/V$	$U_{L_{ ext{eff}}}/\mathbf{V}$	$U_{\mathrm{ges}_{\mathrm{eff}}}/\mathrm{V}$
20	2.003	0.1281	2.102
60	2.002	0.2441	2.111
200	2	0.7413	2.223
300	2	1.1063	2.369
500	1.998	1.838	2.785
1000	1.997	3.677	4.229
1500	1.999	5.543	5.925

b)

Aus diesen wurden dann die folgenden Werte berechnet: (Frequenzen wie oben)

mit:

$$U_L^* = \sqrt{U_L^2 - U_{R_s}^2}$$

$$U_{R_s} = \frac{U_{\text{ges}}^2 - U_R^2 - U_L^2}{2U_R}$$

$$\phi = \arctan \frac{U_L^*}{U_R}$$

$$\delta = \frac{\pi}{2} - \phi$$

$$X_L = 2\pi f \cdot L$$

$$\mid \underline{Z}_L \mid = \sqrt{R_s^2 + X_L^2}$$

$$Q = \frac{U_L^*}{U_{R_s}}$$

$$L = \frac{QR_s}{2\pi f}$$

$U_{R_{s_{ ext{eff}}}}/ ext{V}$	$U_L^*/{ m V}$	R_s/Ω	$\phi/^{\circ}$	Q	$Q_{\mathrm{theoretisch}}$	L/H
0.09735	0.08326	48.67516	40.53971	0.85528	0.77450	0.33129
0.09709	0.22396	48.54298	66.56364	2.30685	2.32984	0.29704
0.09805	0.73479	49.02541	82.39929	7.49394	7.68971	0.29236
0.09707	1.10203	48.53266	84.96647	11.35352	11.65167	0.29232
0.09659	1.83546	48.29542	86.98760	19.00243	19.51485	0.29212
0.09417	3.67579	47.08350	88.53251	39.03484	40.03431	0.29251
0.09624	5.54216	48.12094	89.00514	57.58579	58.75683	0.29402

$\delta/^{\circ}$	X_L/Ω	$\mid \underline{Z}_L \mid /\Omega$
49.46029	41.63089	41.63101
23.43636	111.98117	111.98121
7.60071	367.39343	367.39344
5.03353	551.01679	551.01680
3.01240	917.73011	917.73011
1.46749	1837.89700	1837.89701
0.99486	2771.08221	2771.08221

 $\mathbf{c})$

$$\underline{Y}_s = \frac{1}{R_s + j\omega L} = \frac{R_s - j\omega L}{R_s^2 + \omega^2 L^2} = \frac{R_s}{R_s^2 + \omega^2 L^2} - j\frac{\omega L}{R_s^2 + \omega^2 L^2}$$

$$\underline{Y}_p = \underbrace{\frac{1}{R_p}}_{\text{Konduktanz}} -j \underbrace{\frac{1}{\omega L_p}}_{\text{Suszeptanz}}$$

$$\underline{Y}_s = \underline{Y}_p$$

$$\frac{R_s}{R_s^2 + \omega^2 L^2} - j \frac{\omega L}{R_s^2 + \omega^2 L^2} = \frac{1}{R_p} - j \frac{1}{\omega L}$$

$$\implies R_p = R_s + \frac{\omega^2 L^2}{R_s^2}$$

$$\implies L_p = L \cdot \left(1 + \frac{1}{Q_s^2}\right)$$

Beispiel 1: f = 20 Hz

$$R_p = 48.67516\Omega + \frac{2\pi \cdot 20 \text{Hz} \cdot 0.33129 \text{H}}{(48.67516\Omega)^2} \approx 48.69 \ \Omega \implies \frac{1}{R_p} \approx 0.02054 \ \text{S}$$

$$X_{L_p} = 2\pi \cdot 20 \text{Hz} \cdot 0.33129 \text{H} \cdot \left(1 + \frac{1}{0.85528^2}\right) \approx 98.543 \ \Omega \implies \frac{1}{\omega L_p} \approx 0.01015 \ \text{S}$$

Beispiel 2: f = 1000 Hz

$$R_p = 47.08350\Omega + \frac{2\pi \cdot 1000 \text{Hz} \cdot 0.29251 \text{H}}{(47.08350\Omega)^2} \approx 47.91 \ \Omega \implies \frac{1}{R_p} \approx 0.02087 \ \text{S}$$

$$X_{L_p} = 2\pi \cdot 1000 \text{Hz} \cdot 0.29251 \text{H} \cdot \left(1 + \frac{1}{39.03484^2}\right) \approx 1839.1007 \ \Omega \implies \frac{1}{\omega L_p} \approx 0.0005437 \ \text{S}$$

2.2

a)

Im Versuch wurden die Kapazität C_N und der Widerstand R_N der Maxwellbrücke so eingestellt, dass die Spannung U_2 sehr gering wurde. (ca. 4 mV). Es wurden die folgenden Messwerte ermittelt:

f/Hz	$R_{ m Verlust}/\Omega$	L/mH	$C_{\rm eingestellt}/{\rm nF}$	$R_{\rm eingestellt}/\Omega$	R_2/Ω	R_3/Ω
800	54.644	292.2		18300	1000	1000
2000	63.29	296.7		15800	1000	1000

b)

Scheinwiderstand:

$$\mid \underline{Z} \mid = \sqrt{R_{\text{Verlust}}^2 + (2\pi f \cdot L)^2}$$

Verlustwinkel:

$$\delta = \arctan \frac{R_{\text{Verlust}}}{2\pi f \cdot L}$$

Güte:

$$Q_{L_s} = \frac{1}{\tan \delta}$$

$$f = 800 \text{ Hz}$$
:

$$|\underline{Z}| = \sqrt{(54.644\Omega)^2 + (2\pi \cdot 800\text{Hz} \cdot 292.2\text{mH})^2} \approx 1469.774 \Omega$$

$$\delta = \arctan \frac{54.644\Omega}{2\pi \cdot 800\text{Hz} \cdot 292.2\text{mH}} \approx 2.13 ^{\circ}$$

$$Q_{L_s} = \frac{2\pi \cdot 800\text{Hz} \cdot 292.2\text{mH}}{54.644\Omega} \approx 26.879$$

f = 2000 Hz:

$$|\underline{Z}| = \sqrt{(63.29\Omega)^2 + (2\pi \cdot 2000\text{Hz} \cdot 296.7\text{mH})^2} \approx 3728.979 \Omega$$

$$\delta = \arctan \frac{63.29\Omega}{2\pi \cdot 2000\text{Hz} \cdot 296.7\text{mH}} \approx 0.97 ^{\circ}$$

$$Q_{L_s} = \frac{2\pi \cdot 2000\text{Hz} \cdot 296.7\text{mH}}{63.29\Omega} \approx 58.91$$

2.3

a)

Mit dem RLC-Messgerät wurden folgende Werte ermittelt:

f/Hz	L/mH	R_s/Ω	R_p/Ω	Q
100 1000 10000	-	55.83	691.34 60.67k 1.3M	

b)

2.5

a)