Linear Algebra

주재걸 고려대학교 컴퓨터학과

Lecture Overview

- Elements in linear algebra
- Linear system
- Linear combination, vector equation, Four views of matrix multiplication
- Linear independence, span, and subspace
- Linear transformation
- Least squares
- Eigendecomposition
- Singular value decomposition

Span and Subspace

- **Definition**: A **subspace** H is defined as a subset of \mathbb{R}^n closed under linear combination:
- For any two vectors, $\mathbf{u}_1, \mathbf{u}_2 \in H$, and any two scalars c and d, $s = \{2,4,8,6,32,\cdots\}$ $c\mathbf{u}_1 + d\mathbf{u}_2 \in H$.
 - Span $\{\mathbf v_1, \cdots, \mathbf v_p\}$ is always a subspace. Why?
 - $\mathbf{u}_1 = a_1 \mathbf{v}_1 + \dots + a_p \mathbf{v}_p$, $\mathbf{u}_2 = b_1 \mathbf{v}_1 + \dots + b_p \mathbf{v}_p$
 - $c\mathbf{u}_1 + d\mathbf{u}_2 = c(a_1\mathbf{v}_1 + \dots + a_p\mathbf{v}_p) + d(b_1\mathbf{v}_1 + \dots + b_p\mathbf{v}_p)$ = $(ca_1 + db_1)\mathbf{v}_1 + \dots + (ca_p + db_p)\mathbf{v}_p$
 - In fact, a subspace is always represented as Span $\{v_1, \dots, v_p\}$.

Basis of a Subspace

평면이 먼저구에심 이 Subspace를 fully span 하는 버전을 : 기저백건

- **Definition**: A **basis** of a subspace *H* is a set of vectors that satisfies both of the following:
 - Fully spans the given subspace H
 - 2) Linearly independent (i.e., no redundancy) 36 2012 06!!
- In the previous example, where $H = \text{Span } \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, Span $\{\mathbf{v}_1, \mathbf{v}_2\}$ forms a plane, but $\mathbf{v}_3 = 2\mathbf{v}_1 + 3\mathbf{v}_2 \in \text{Span } \{\mathbf{v}_1, \mathbf{v}_2\}$, $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of H, but not $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ nor $\{\mathbf{v}_1\}$ is a basis.

Non-Uniqueness of Basis

53

• Consider a subspace *H* (green plane).

- Is a basis unique?
- That is, is there any other set of linearly independent vectors that span the same subspace *H*?

Dimension of Subspace

Subspace = 기계베르의 기수.

- What is then unique, given a particular subspace H?
- Even though different bases exist for *H*, the number of vectors in any basis for *H* will be unique.
- We call this number as the dimension of H, denoted as dim H.
- In the previous example, the dimension of the plane is 2, meaning any basis for this subspace contains exactly two vectors.

Column Space of Matrix

 Definition: The column space of a matrix A is the subspace spanned by the columns of A.
 We call the column space of A as Col A.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \longrightarrow \qquad \text{Col } A = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

• What is dim Col A?

Matrix with Linearly Dependent Columns

• Given
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
, note that $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$,

i.e., the third column is a linear combination of the first two.

Col
$$A = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

$$\text{Col } A = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

$$\text{Most in disc Call A2}$$

• What is dim Col A?

Rank of Matrix

- **Definition**: The **rank** of a matrix *A*, denoted by rank *A*, is the dimension of the column space of *A*:
 - rank $A = \dim Col A$

Lecture Overview

- Elements in linear algebra
- Linear system
- Linear combination, vector equation, Four views of matrix multiplication
- Linear independence, span, and subspace
- Linear transformation
- Least squares
- Eigendecomposition
- Singular value decomposition

Summary So Far

- Scalars, vectors, matrices, and their operations such as addition, scalar multiple, matrix multiplication, transpose
- Linear system: solving using inverse matrix
- Matrix equation and vector equation
- Linear combination and Span
 - When does the solution of a linear system exist?
- Four views of matrix multiplication: inner product, column combination, row combination, sum of rank-1 outer products
- Linear independence
 - If the solution of a linear system exists, when is it unique or many?
- Subspace
 - Subset of vectors in \mathbb{R}^n closed under linear combination
 - Basis and dimension
 - Column space and rank of a matrix