(a) No solution (b) 2 solutions

DPP 3 (COMPLEX NUMBERS)

1.	z_1 , z_2 , z_3 are the affixes of the vertices of a triangle having its circumcentre at the origin. If z is the affix of its orthocenter, then -				
	(a) $z_1 + z_2 + z_3 - z = 0$	(b) $z_1 + z_2$ -	(b) $z_1 + z_2 - z_3 + z = 0$		
	(c) $z_1 - z_2 + z_3 + z = 0$	(d) - $z_1 + z_2$	$+ z_3 + z = 0$		ans a
2.	The curve represented by Re $(z^2) = 4$ is				
	(a) A parabola	A parabola (b) An ellipse			
	(c) A circle	(d) A rectar	ngular hyperb	ans d	
3.	The centre of circle z = $\frac{3i-t}{2+it}$ (t \in R) must be -				
	(a) $\left(0, \frac{3}{4}\right)$ (b)) (0, 0)	(c) $\left(0, \frac{5}{4}\right)$	(d) None	ans c
4.	If z - i + z + i = 4 then the locus of point z is -				
	(a) Circle (b) Straight line (c) ellipse (d) hyperbola				ans c
5.	5. If $z_1 = 8 + 4i$, $z_2 = 6 + 4i$, and $arg \left(\frac{z - z_1}{z - z_2}\right) = \frac{\pi}{4}$, then z satisfies -				
	(a) z - 7 - 4i = 1 (b) z - 7 - 5		$-5i \mid = \sqrt{2}$		
	(c) z - 4i = 8	(d) z - 7	$ \dot{r} = \sqrt{18}$		ans b
6. If p represents $z = x + iy$ in the argand plane $ z - 1 ^2 + z + 1 ^2 = 4$ then locus of P is -					s of P is -
	(a) $x^2 + y^2 = 2$	(b) $x^2 + y^2$	² = 1		
	(c) $x^2 + y^2 = 4$ (d) $x + y = 2$		= 2		ans b
7.	The common roots of the equation				
	$z^3 + 2z^2 + 2z + 1 = 0$ and $z^{1985} + z^{100} + 1 = 0$ are -				
	(a) - 1, ω (b) - 1, ω^2	(c) ω, ω ²	(d) ω , - ω^2		ANS C
8. If the area of the triangle on the complex plane formed by the points z , $z + iz$ and					z and iz is 50, then z is -
	(a) 1 (b) 5	(c) 10	(d) 100)	ANS C
9.	The equation $z^2 = \overline{z}$ has -				

(c) Four solutions (d) An infinite number of solutions ans c (c) 5 (d) 625 ANS B 11. If z is a complex number, then |3z-1|=3|z-2| represents (a) y-axis (b) A circle (c) x-axis (d) A line parallel to y-axis ans d **12.** The complex numbers z_1, z_2 and z_3 satisfying $\frac{z_1 - z_3}{z_2 - z_3} = \frac{1 - i\sqrt{3}}{2}$ are the vertices of a triangle which is (a) Of area zero (b) Right-angled isosceles (c) Equilateral (d) Obtuse-angled isosceles ans c **13.** The inequality |z-4| < |z-2| represents the region given by (a) Re (z) > 0(b) Re (z) < 0(c) Re (z) > 2(d) None of these ans d **14.** If the equation $|z - z_1|^2 + |z - z_2|^2 = k$ represents the equation of a circle, where $z_1 = 2 + 3i$, $z_2 = 4 + 3i$ are the extremities of a diameter, then the value of k is (a) 1/4 (d) None of these (b) 4 (c) 2 ans c 15. If $\left| \frac{z_1 z - z_2}{z_1 z + z_2} \right| = k$, $(z_1, z_2 \neq 0)$ then (a) For k = 0, locus of z is a straight line (b) For $k \notin \{1, 0\}$, z lies on a circle (c) For k = 1, z represents a point ans b

(d) For k = 0, z lies on the perpendicular bisector of the line segment joining $\frac{Z_2}{Z_1}$ and - $\frac{Z_2}{Z_1}$

16. The equation $z^{\overline{z}} + (4 - 3i)z + (4 + 3i)^{\overline{z}} + 5 = 0$ represents a circle, whose radius is -

(a) 2 (b) $\frac{5}{2}$ (c) $2\sqrt{5}$ (d) 5 ans c

17. If Re $\left(\frac{z-8i}{z+6}\right)$ = 0, then z lies on the curve -

(a) 4x - 3y + 24 = 0 (b) $x^2 + y^2 - 8 = 0$

(c)
$$x^2 + y^2 + 6x - 8y = 0$$
 (d) None of these

ans c

18. Let
$$z = 1 - t + i \sqrt{t^2 + t + 2}$$
, where t is a real parameter. The

locus of z in the Argand plane is -

- (a) A straight line
- (b) A hyperbola
- (c) An ellipse
- (d) None of these

19. Number of complex numbers z satisfying
$$|z-3-i| = |z-9-i|$$
 and $|z-3+3i| = 3$ are

- (b) Two
- (c) Three
- (d) Four

20. A and B represent the complex numbers 1 + ai and 3 + bi and \triangle OAB is an isosceles triangle right- angled at A. Then the values of a and b can be-

(c)
$$a = 2$$
, $b = 1$ (d) $a = 2$, $b = -2$

ans c