ROS序列埠範例

本文檔介紹如何在ROS下來讀取HI226/HI229的數據,並提供了c++語言範例代碼,通過執行ROS命令,運行相應的節點,就可以看到打印到終端上的資訊。

測試環境: Ubuntu16.04ROS版本: ROS Kinetic Kame測試設備: HI226 HI229

1. 安裝USB-UART驅動

Ubuntu 系統自帶CP210x的驅動,默認不需要安裝序列埠驅動。將調試版連接到電腦上時,會自動識別設備。識別成功後,會在dev目錄下出現一個對應的設備:ttyUSBx

檢查USB-UART設備是否被Ubantu識別:

- 1. 打開命令行(ctrl + alt + t)
- 2. 輸入 Is /dev 查看是掛載成功USB轉序列埠設備
- 3. 查看是否存在 ttyUSBx 這個設備文件。x表示USB設備號,由於Ubuntu USB設備號為從零開始依次累加,所以多個設備每次開機後設備號是不固定的,需要確定設備的設備號。下圖為沒有插入HI226/HI229評估板時的dev設備列表,這個時候,dev目錄下並沒有名為 **ttyUSB** 文件

linux@ubuntu:/de					
agpgart	loop3	snapshot	tty33	tty7	ttyS8
autofs	loop4	snd	tty34	tty8	ttyS9
block	loop5	sr0	tty35	tty9	uhid
bsg	loop6	stderr	tty36	ttyprintk	uinput
btrfs-control	loop7	stdin	tty37	ttyS0	urandom
bus	loop-control	stdout	tty38	ttyS1	userio
cdrom	mapper	tty	tty39	ttyS10	vcs
cdrw	mcelog	tty0	tty4	ttyS11	vcs1
char	mem	tty1	tty40	ttyS12	vcs2
console	memory_bandwidth	tty10	tty41	ttyS13	vcs3
соге	midi	tty11	tty42	ttyS14	vcs4
cpu_dma_latency	mqueue	tty12	tty43	ttyS15	vcs5
cuse	net	tty13	tty44	ttyS16	vcs6
disk	network_latency	tty14	tty45	ttyS17	vcs7
dmmidi	network_throughput	tty15	tty46	ttyS18	vcsa
dri	null	tty16	tty47	ttyS19	vcsa1
dvd	port	tty17	tty48	ttyS2	vcsa2
ecryptfs	PPP	tty18	tty49	ttyS20	vcsa3
fb0	psaux	tty19	tty5	ttyS21	vcsa4
fd	ptmx	tty2	tty50	ttyS22	vcsa5
full	pts	tty20	tty51	ttyS23	vcsa6
fuse	random	tty21	tty52	ttyS24	vcsa7
hidraw0	rfkill	tty22	tty53	ttyS25	vfio
hpet	rtc	tty23	tty54	ttyS26	vga_arbiter
hugepages	rtc0	tty24	tty55	ttyS27	vhci
hwrng	sda	tty25	tty56	ttyS28	vhost-net
initctl	sda1	tty26	tty57	ttyS29	vhost-vsock
input	sda2	tty27	tty58	ttyS3	vmci
kmsg	sda5	tty28	tty59	ttyS30	vsock
lightnvm	sda6	tty29	tty6	ttyS31	zero
log	sda7	tty3	tty60	ttyS4	
loop0	sg0	tty30	tty61	ttyS5	
loop1	sg1	tty31	tty62	ttyS6	
loop2	shm	tty32	tty63	ttyS7	

4. 插入USB線, 連接調試板, 然後再次執行Is /dev。 dev目錄下多了一個設備, 如圖:

```
linux@ubuntu:/dev$ ls
                                         shm
                                                            tty63
                                                                        ttyS7
agpgart
                   loop3
                                                    tty32
                                         snapshot
autofs
                   loop4
                                                    tty33
                                                            tty7
                                                                        ttyS8
block
                   loop5
                                         snd
                                                    tty34
                                                            tty8
                                                                        ttyUSB0
bsg
                   loop6
                                         ST0
                                                    tty35
                                                            tty9
btrfs-control
                                                            ttyprint
                                         stderr
                                                    tty36
                   loop7
                                         stdin
                                                                        uinput
                   loop-control
                                                    tty37
                                                            ttyS0
```

ttyUSB0 文件就是調試版在ubuntu系統中生成的設備(後面的數字是不固定的,有可能為 ttyUSB1 或 ttyUSB2)

5. 打開USB設備的可執行權限:

1 \$ sudo chmod 777 /dev/ttyUSB0

2. 安裝ROS serial軟體包

本範例依賴ROS提供的serial包實現序列埠通信.

- 1. 首先執行如下命令,下載安裝serial軟體包:
- 1 | \$ sudo apt-get install ros-kinetic-serial
 - 2. 然後輸入 roscd serial 命令,進入serial下載位置,如果安裝成功,就會出現如下資訊:
- 1 \$:/opt/ros/kinetic/share/serial

3. 編譯serial_imu_ws工作空間

- 1. 打開終端進入/examples/ROS/serial_imu_ws 目錄
- 2. 執行catkin make命令,編譯成功後出現完成度100%的資訊。

4. 修改序列埠波特率和設備號

- 1. 在Ubuntu環境中,支援的波特率為115200, 460800, 921600。本範例使用的默認波特率是115200, 默認打開的序列埠名稱是/dev/ttyUSB0。
- 2. 如果您需要更高的輸出頻率,請編輯serial_imu.cpp文件,修改serial_imu.cpp文件中的宏定義,改為其他波特率。
- 1 #define IMU_SERIAL "/dev/ttyUSBO"
- 2 #define BAUD 115200

注意修改後需要回到serial_imu_ws目錄下,重新執行catkin_make命令

5. 顯示數據

本範例提供了三種查看數據方式:

- 1. 第一種方式是顯示所有的數據資訊,通過printf把imu上傳的所有的資訊都打印到終端上,便於查看數據。
- 2. 打印ROS標準imu_msg 數據
- 3. rviz工具實現可視化

5.1: 輸出IMU原始數據

1. 打開另一個終端,執行 roscore 開啟ROS

```
1 | $ roscore
```

- 2. 回到serial_imu_ws文件夾下 執行
- 1 | \$ source devel/setup.bash
 - 2. 執行啟動rosrun 啟動接受程序

```
1 | $ rosrun serial_imu serial_imu
```

執行成功後,就可以看到所有的資訊:

```
1
2
      Devie ID:
                0
3
     Run times: 0 days 3:26:10:468
   Frame Rate: 100Hz
4
       Acc(G): 0.933 0.317 0.248
5
     Gyr(deg/s): -0.02 	 0.30
6
                              -0.00
7
       Mag(uT): 0.00
                       0.00
                               0.00
    Eul(R P Y): 52.01 -66.63 -60.77
8
  Quat(W X Y Z): 0.770 0.066 -0.611
9
                                     -0.172
  Pleaes enter ctrl + 'c' to quit....
1
```

5.2: 輸出ROS標準 Imu.msg

- 1. 在windows系統下進行配置模組,使能四元數輸出。
- 2. 使用Window下 Uranus上位機進行配置: 先把模組連接到PC機上。然後使用Uranus工具進行 連接對應的com口,點擊 工具 ---> 配置模組,在協議配置區域,可以選擇老協議中單獨勾選 加速度、角速度、四元數 ,或者是選擇新協議的 IMU數據集合 。勾選好之後,點擊 寫入配置 ,接收區最後顯示 ok ,說明配置成功。在關閉配置窗口上,看一下數據顯示區域,最後確認一下,加速度、角速度、四元數是否正確輸出。執行 roslaunch imu_launch imu_msg.launch 命令。執行成功後,就可以看到ROS定義的IMU話題消息:

```
1 header:
   seq: 595
2
   stamp:
3
    secs: 1595829903
4
5
    nsecs: 680423746
   frame_id: "base_link"
6
7
  orientation:
   x: 0.0663746222854
8
9
   y: -0.611194491386
   z: -0.17232863605
10
   w: 0.769635260105
11
  12
13
  angular_velocity:
   x: 0.0851199477911
14
15
   y: 0.0470183677971
16
   z: 0.00235567195341
  17
  linear_acceleration:
18
19
   x: 0.93323135376
20
    y: 0.317857563496
```

5.3: rviz可視化

- 1. 安裝ROS rviz插件
- 2. 同上節, 使能模組四元數輸出
- 3. 進入serial_imu_ws,執行 roslaunch imu_launch imu_rviz.launch 命令,執行成功後,rviz工具被打開。
- 4. 先點擊左下角的Add標籤,然後在彈出窗口中,選擇 By display type標籤,查找rviz_imu_plugin; 找到之後,選擇它下面的imu標籤,點擊OK, 這時,我們可以看到rviz的左側的展示窗口中已經成功 添加上了Imu的標籤。在FixedFrame中填入**base_link** 。topic中添加 /IMU_data。這時,可以看到 坐標系隨感測器改變而改變。
- 5. 可以從這裡下載rviz的工具:
- git clone -b indigo https://github.com/ccny-ros-pkg/imu_tools.git

6. FAQ

1. 如果在執行 rosrun serial_imu serial_imu 時候,出現如下錯誤:

```
linux@ubuntu:~$ rosrun serial_imu serial_imu
[rospack] Error: package 'serial_imu' not found
```

這是由於沒有配置環境的原因導致的,解決辦法就是在當前終端執行 source ~/serial_imu_ws/devel/setup.bash 命令。但是這個辦法並不能一次性解決,每次開啟一個終端,運行新節點都需要為該終端設置環境變量。所以按照如下方式,可以不用這麼麻煩: 執行 gedit ~/.bashrc 命令,打開一個文件,然後在這個文件的末尾加入ROS程序註冊命令。(serial_imu_ws_dir為 serial_imu_ws所在目錄)

- 1 | \$ source <serial_imu_ws_dir>/devel/setup.bash
 - 2. 序列埠打開失敗,權限不夠。執行chmod命令,開啟權限。
- 1 \$ sudo chmod 777 /dev/ttyUSB0