A Topography of Climate Change Literature

Max Callaghan callaghan@mcc-berlin.net

Massive growth of literature on climate change challenges IPCC [4]

New Concepts

	$\mathbf{AR1}$	$\mathbf{AR2}$	$\mathbf{AR3}$	$\mathbf{AR4}$	$\mathbf{AR5}$	$\mathbf{AR6}$
Years	1986-1989	1990-1994	1995-2000	2001-2006	2007-2013	2014-
Documents	1,167	8,539	21,716	38,750	$134,\!413$	$201,\!606$
\mathbf{Words}	2000	12480	23346	34637	71867	94746
New words	change (560)	oil (287)	$\begin{array}{c} \text{downscaling} \\ (217) \end{array}$	sres (234)	biochar (1791)	mmms (313)
	climate (428) co2 (318) climatic (289)	deltac (283) whole (256) tax (254)	degreesc (187) ncep (130) fco (107)	petm (95) amf (88) sf5cf3 (86)	redd (1113) cmip5 (679) cmip3 (587)	cop21 (234) c3n4 (214) sdg (187)
	model (288) atmospheric (281)	$\begin{array}{c} {\rm landscape} \\ (249) \\ {\rm alternative} \\ (243) \end{array}$	pfc (98) otcs (98)	clc (81) embankment (81)	mofs (299) sdm (297)	zika (182) ndcs (168)
	effect (280)	availability (242)	dtr (95)	cwd (79)	mof (275)	indc (164)
	global (224)	life (239)	nee (89)	etm (75)	biochars (252)	indes (134)

A simple analysis of the words in the documents about climate change shows us that not only are there more articles, they discuss **new concepts**. The **topic model** below [3] mobilises large patterns of words in documents to make broad conceptual developments and differences comprehensible.

Proportionality

Contrary to suggestions/previously [2, 1], the social sciences are over-represented in IPCC reports, engineering/agricultural sciences are under-represented

A Topographic Map of 400,000 Climate Change Articles

Using T-SNE [5], we can project each document into a 2D space such that documents with similar 100-dimensional topic vectors are close together.

Documents similar in topic tend to be from similar disciplines, with some cross-disciplinary work around the energy system, or on soils.

The majority of topics are from the natural sciences

Supply/Demand of Solutions

Physical science topics are well represented and have been around longer. Solution-oriented topics, particularly in WGIII are newer and underrepresented.

Evolution

sessment reports, as have topics on impacts and vulnerability. New WGII topics are better covered by IPCC reports. We can also witness the

Further work Computer-assisted systematic map of climate impacts.

> Quantification of knowledge transfer pyramid. Tools/methodologies for computer assisted evidence synthesis.

Social science proportion

Those WGIII topics with a higher share of so-

cial science documents are better-represented in

IPCC. Either the IPCC must engage with the

social science literature, or the social sciences

must cover solutions-topics.

Social Science & Solutions

Solutions topics have grown fast in recent asemergence of new topics such as coral bleaching.

References

- [1] Andreas Bjurström and Merritt Polk. Physical and economic bias in climate change research: A scientometric study of IPCC Third Assessment Report. Climatic Change, 108(1):1-22, 2011.
- David G. Victor. Embed the social sciences in climate policy -David Victor. *Nature*, 520:7-9, 2015.
- [3] D D Lee and H S Seung. Learning the parts of objects by nonnegative matrix factorization. Nature, 401(6755):788-91, 1999.
- [4] Jan C. Minx, Max Callaghan, William F. Lamb, Jennifer Garard, and Ottmar Edenhofer. Learning about climate change solutions in the IPCC and beyond. Environmental Science & Policy, 2017.
- [5] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of Machine Learning Research, 9:2579-2605, 2008.

Acknowledgements

This research is funded by a PhD scholarship from the Heinrich Böll Stiftung