	age	job	marital	education	default	balance	housing	loan	contact	d
0	30	unemployed	married	primary	no	1787	no	no	cellular	
1	33	services	married	secondary	no	4789	yes	yes	cellular	
2	35	management	single	tertiary	no	1350	yes	no	cellular	
3	30	management	married	tertiary	no	1476	yes	yes	unknown	
4	59	blue-collar	married	secondary	no	0	yes	no	unknown	
•••	•••		•••		•••	•••	•••	•••	•••	
4516	33	services	married	secondary	no	-333	yes	no	cellular	:
4517	57	self- employed	married	tertiary	yes	-3313	yes	yes	unknown	
4518	57	technician	married	secondary	no	295	no	no	cellular	
4519	28	blue-collar	married	secondary	no	1137	no	no	cellular	
4520	44	entrepreneur	single	tertiary	no	1136	yes	yes	cellular	

→

===== Change categorical columns into numerical columns ======

map

```
In [35]: #change job column in categorical to numerical using map method
    bank_df=pd.read_csv("bank.csv",sep=";")
    unique_label=sorted(bank_df["job"].unique())
    list1=[i for i in range(len(unique_label))]
    dict1={i:j for i,j in zip(unique_label,list1)}
    bank_df["job_update"]=bank_df["job"].map(dict1)
    bank_df
```

out[35]:		age	job	marital	education	default	balance	housing	loan	contact	d
	0	30	unemployed	married	primary	no	1787	no	no	cellular	
	1	33	services	married	secondary	no	4789	yes	yes	cellular	
	2	35	management	single	tertiary	no	1350	yes	no	cellular	
	3	30	management	married	tertiary	no	1476	yes	yes	unknown	
	4	59	blue-collar	married	secondary	no	0	yes	no	unknown	
	•••	•••	•••	•••			•••	•••	•••	•••	
	4516	33	services	married	secondary	no	-333	yes	no	cellular	
	4517	57	self- employed	married	tertiary	yes	-3313	yes	yes	unknown	
	4518	57	technician	married	secondary	no	295	no	no	cellular	
	4519	28	blue-collar	married	secondary	no	1137	no	no	cellular	
	4520	44	entrepreneur	single	tertiary	no	1136	yes	yes	cellular	

```
In [43]: #apply map method on all categorical columns in the dataframe.
bank_df=pd.read_csv("bank.csv",sep=";")
cat_col=bank_df.select_dtypes(include="object").columns
for i in cat_col:
    unique_label=sorted(bank_df[i].unique())
    list1=[i for i in range(len(unique_label))]
    dict1={i:j for i,j in zip(unique_label,list1)}
    bank_df[i]=bank_df[i].map(dict1)
bank_df
```

Out[43]:		age	job	marital	education	default	balance	housing	loan	contact	day	month
	0	30	10	1	0	0	1787	0	0	0	19	10
	1	33	7	1	1	0	4789	1	1	0	11	8
	2	35	4	2	2	0	1350	1	0	0	16	0
	3	30	4	1	2	0	1476	1	1	2	3	6
	4	59	1	1	1	0	0	1	0	2	5	8
	•••	•••									•••	•••
	4516	33	7	1	1	0	-333	1	0	0	30	5
	4517	57	6	1	2	1	-3313	1	1	2	9	8
	4518	57	9	1	1	0	295	0	0	0	19	1
	4519	28	1	1	1	0	1137	0	0	0	6	3
	4520	44	2	2	2	0	1136	1	1	0	3	0

→

Labelencoder

```
In [47]: # Apply labelencoder method on dataframe to change columns value categorical to num
# add new columns.
bank_df=pd.read_csv("bank.csv",sep=";")
cat_col=bank_df.select_dtypes(include="object").columns

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
for i in cat_col:
    bank_df[f"{i}_new"]=le.fit_transform(bank_df[i])
bank_df
```

Out[47]:]: age		job	marital	education	default	balance	housing	loan	contact	d
	0	30	unemployed	married	primary	no	1787	no	no	cellular	
	1	33	services	married	secondary	no	4789	yes	yes	cellular	·
	2	35	management	single	tertiary	no	1350	yes	no	cellular	
	3	30	management	married	tertiary	no	1476	yes	yes	unknown	
	4	59	blue-collar	married	secondary	no	0	yes	no	unknown	
	•••	•••		•••	•••		***	•••	•••	•••	
	4516	33	services	married	secondary	no	-333	yes	no	cellular	:
	4517	57	self- employed	married	tertiary	yes	-3313	yes	yes	unknown	
	4518	57	technician	married	secondary	no	295	no	no	cellular	
	4519	28	blue-collar	married	secondary	no	1137	no	no	cellular	
	4520	44	entrepreneur	single	tertiary	no	1136	yes	yes	cellular	

```
In [49]: # Apply labelencoder method on dataframe to change columns value categorical to num
    bank_df=pd.read_csv("bank.csv",sep=";")
    cat_col=bank_df.select_dtypes(include="object").columns

from sklearn.preprocessing import LabelEncoder
    le=LabelEncoder()
    for i in cat_col:
        bank_df[i]=le.fit_transform(bank_df[i])
    bank_df
```

Out[49]:		age	job	marital	education	default	balance	housing	loan	contact	day	month
	0	30	10	1	0	0	1787	0	0	0	19	10
	1	33	7	1	1	0	4789	1	1	0	11	8
	2	35	4	2	2	0	1350	1	0	0	16	0
	3	30	4	1	2	0	1476	1	1	2	3	6
	4	59	1	1	1	0	0	1	0	2	5	8
	•••			•••	•••	•••	•••			•••		•••
	4516	33	7	1	1	0	-333	1	0	0	30	5
	4517	57	6	1	2	1	-3313	1	1	2	9	8
	4518	57	9	1	1	0	295	0	0	0	19	1
	4519	28	1	1	1	0	1137	0	0	0	6	3
	4520	44	2	2	2	0	1136	1	1	0	3	0

```
•
```

np.where

```
In [51]: bank_df=pd.read_csv("bank.csv",sep=";")
bank_df["housing"].unique()
```

```
Out[51]: array(['no', 'yes'], dtype=object)
```

```
In [53]: #np.where
    con=bank_df["housing"]=="no"
    np.where(con,0,1) #limitation it apply only with two labels.
```

```
Out[53]: array([0, 1, 1, ..., 0, 0, 1])
```

One-hot-Encoder

```
In [67]: bank_df
```

Out[67]:		age	job	marital	education	default	balance	housing	loan	contact	di
	0	30	unemployed	married	primary	no	1787	no	no	cellular	
	1	33	services	married	secondary	no	4789	yes	yes	cellular	
	2	35	management	single	tertiary	no	1350	yes	no	cellular	
	3	30	management	married	tertiary	no	1476	yes	yes	unknown	
	4	59	blue-collar	married	secondary	no	0	yes	no	unknown	
	•••		•••	•••	•••		•••	•••		•••	
	4516	33	services	married	secondary	no	-333	yes	no	cellular	:
	4517	57	self- employed	married	tertiary	yes	-3313	yes	yes	unknown	
	4518	57	technician	married	secondary	no	295	no	no	cellular	
	4519	28	blue-collar	married	secondary	no	1137	no	no	cellular	
	4520	44	entrepreneur	single	tertiary	no	1136	yes	yes	cellular	

Out	66	
UU L		

	admin.	blue- collar	entrepreneur	housemaid	management	retired	self- employed	services
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
2	0	0	0	0	1	0	0	0
3	0	0	0	0	1	0	0	0
4	0	1	0	0	0	0	0	0
•••			•••		•••	•••		•••
4516	0	0	0	0	0	0	0	1
4517	0	0	0	0	0	0	1	0
4518	0	0	0	0	0	0	0	0
4519	0	1	0	0	0	0	0	0
4520	0	0	1	0	0	0	0	0

In [94]: # Apply the get_dummies methods on dataframe. bank_dummes=pd.get_dummies(bank_df,dtype="int") bank_dummes

Out	10/	0
out	124	
	-	-

	age	balance	day	duration	campaign	pdays	previous	job_admin.	job_blue- collar	jok
0	30	1787	19	79	1	-1	0	0	0	
1	33	4789	11	220	1	339	4	0	0	
2	35	1350	16	185	1	330	1	0	0	
3	30	1476	3	199	4	-1	0	0	0	
4	59	0	5	226	1	-1	0	0	1	
•••	•••	•••	•••	•••		•••	•••	•••		
4516	33	-333	30	329	5	-1	0	0	0	
4517	57	-3313	9	153	1	-1	0	0	0	
4518	57	295	19	151	11	-1	0	0	0	
4519	28	1137	6	129	4	211	3	0	1	
4520	44	1136	3	345	2	249	7	0	0	

4521 rows × 53 columns

```
'job_admin.', 'job_blue-collar', 'job_entrepreneur', 'job_housemaid',
    'job_management', 'job_retired', 'job_self-employed', 'job_services',
    'job_student', 'job_technician', 'job_unemployed', 'job_unknown',
    'marital_divorced', 'marital_married', 'marital_single',
    'education_primary', 'education_secondary', 'education_tertiary',
    'education_unknown', 'default_no', 'default_yes', 'housing_no',
    'housing_yes', 'loan_no', 'loan_yes', 'contact_cellular',
    'contact_telephone', 'contact_unknown', 'month_apr', 'month_aug',
    'month_dec', 'month_feb', 'month_jan', 'month_jul', 'month_jun',
    'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep',
    'poutcome_failure', 'poutcome_other', 'poutcome_success',
    'poutcome_unknown', 'y_no', 'y_yes'],
    dtype='object'),

53)
```

```
In [98]: # categorical columns
    cat_col
```

```
In [100... #categorical columns unique labels and therir counting
for i in cat_col:
```

```
print(bank_df[i].unique(),bank_df[i].nunique())
         ['unemployed' 'services' 'management' 'blue-collar' 'self-employed'
          'technician' 'entrepreneur' 'admin.' 'student' 'housemaid' 'retired'
          'unknown'] 12
         ['married' 'single' 'divorced'] 3
         ['primary' 'secondary' 'tertiary' 'unknown'] 4
         ['no' 'yes'] 2
         ['no' 'yes'] 2
         ['no' 'yes'] 2
         ['cellular' 'unknown' 'telephone'] 3
         ['oct' 'may' 'apr' 'jun' 'feb' 'aug' 'jan' 'jul' 'nov' 'sep' 'mar' 'dec'] 12
         ['unknown' 'failure' 'other' 'success'] 4
         ['no' 'yes'] 2
          df1=bank df[["age","job"]]
In [122...
           df2=bank df[["marital","education"]]
In [128...
           #concatination
In [144...
           df3=pd.concat([df1,df2],axis=1)
           df3
Out[144...
                               job marital education
                 age
              0
                  30
                        unemployed married
                                                primary
              1
                  33
                            services married secondary
              2
                  35
                       management
                                      single
                                                tertiary
              3
                  30
                       management married
                                                tertiary
                  59
              4
                         blue-collar married
                                             secondary
           4516
                  33
                            services married
                                             secondary
           4517
                  57 self-employed
                                    married
                                                tertiary
           4518
                  57
                          technician
                                    married secondary
           4519
                  28
                          blue-collar
                                    married
                                            secondary
           4520
                  44
                        entrepreneur
                                      single
                                                tertiary
          4521 rows × 4 columns
           df4=bank_df[["age","housing"]]
In [152...
In [156...
           #merge
           df5=pd.merge(df3,df4)
           df5
```

Out[156...

	age	job	marital	education	housing
0	30	unemployed	married	primary	no
1	30	unemployed	married	primary	yes
2	30	unemployed	married	primary	no
3	30	unemployed	married	primary	yes
4	30	unemployed	married	primary	no
•••	•••	•••	•••	•••	•••
597344	44	entrepreneur	single	tertiary	yes
597345	44	entrepreneur	single	tertiary	no
597346	44	entrepreneur	single	tertiary	yes
597347	44	entrepreneur	single	tertiary	yes
597348	44	entrepreneur	single	tertiary	yes

597349 rows × 5 columns

In [168... df6=bank_df[["loan"]]

In [170...

#join
df3.join(df6)

Out[170...

	age	job	marital	education	loan
0	30	unemployed	married	primary	no
1	33	services	married	secondary	yes
2	35	management	single	tertiary	no
3	30	management	married	tertiary	yes
4	59	blue-collar	married	secondary	no
•••		•••	•••	•••	
4516	33	services	married	secondary	no
4517	57	self-employed	married	tertiary	yes
4518	57	technician	married	secondary	no
4519	28	blue-collar	married	secondary	no
4520	44	entrepreneur	single	tertiary	yes

4521 rows × 5 columns

In []: