Alineamiento y modelos evolutivos Datos Moleculares II

Nelson R. Salinas

Septiembre 12, 2020

Información general

Nelson R. Salinas

nrsalinas@gmail.com https://nrsalinas.github.io Instituto Alexander von Humboldt Investigador Adjunto

Repositorio del curso:

https://github.com/nrsalinas/datos_moleculares_ii Allí encontrarán presentaciones, guías, conjuntos de datos, etc.

- Biología comparada requiere hipótesis de correspondencias entre los datos observados (=homologías).
- Necesario para cualquier clase de datos usados en sistemática filogenética: morfología, comportamiento, secuencias moleculares, señales acústicas, etc.

 En datos de secuencias (ADN, ARN, proteinas) estas hipótesis se establecen de una manera automatizada: alineamiento de secuencias múltiples.

- En datos de secuencias (ADN, ARN, proteinas) estas hipótesis se establecen de una manera automatizada: alineamiento de secuencias múltiples.
- Alinear → incluir espacios en blanco (gaps) en algunas posiciones de algunas secuencias.

- En datos de secuencias (ADN, ARN, proteinas) estas hipótesis se establecen de una manera automatizada: alineamiento de secuencias múltiples.
- Alinear → incluir espacios en blanco (gaps) en algunas posiciones de algunas secuencias.

- En datos de secuencias (ADN, ARN, proteinas) estas hipótesis se establecen de una manera automatizada: alineamiento de secuencias múltiples.
- Alinear → incluir espacios en blanco (gaps) en algunas posiciones de algunas secuencias.
- Algunos sitemáticos realizan alineamientos de manera no automatizada ("al ojo"), pero entra en conflicto con método científico.

Computacionalmente, alinear secuencias es un un proceso intensivo.

n\m	2	3	4	5
1	3	13	75	541
2	13	409	23917	2244361
3	63	16081	10681263	14638756721
4	321	699121	5552351121	117629959485121
5	1683	32193253	3147728203035	1.0×10^{18}
10	8097453	9850349744182729	3.32×10^{26}	1.35×10^{38}

Número posible de alineamientos para m número de secuencias cuya longitud es n.

Principales programas de alineamiento progresivo

¿Existe una manera inequívoca de seleccionar el mejor alineamiento para un análisis?

No.

Existen varios métodos para comparar alineamientos producidos por algoritmos distintos, se resumen en dos estrategias generales:

- Similitud respecto a un alineamiento "verdadero".
- 2 Comparación respecto a una función objetiva.

Probablemente la mejor alternativa es realizar una desición informada en el efecto del alineamiento en el análisis posterior (v.g., reconstrucción filogenética).

¿Qué hacer con un alineamiento?

- Los alineamientos son medios para llegar a un fin.
- El fin es otro análisis.
- Son necesarios criterios para compartir alineamientos...
- ...Formatos de matrices.

Alineamiento Formatos de matrices

- Un programa \rightarrow un formato.
- La mayoría emplean archivos legibles y pueden ser editados en cualquier editor de texto.
- Formatos binarios emplados en genómica (optimización de espacio).

Fasta

```
1 >Mayaca_sellowiana_X0038
2 CTCCTGAGTATGAAACTAAAGATACTGATATCTTGGCAGCAT
3 GCGGGAGCTGCAGTAGCTGCCGAATCTTCTACTGGTACATGG
4 TTACAAAGGGCGATGCTACCACATTGATCCTGTTCCTGGGGA
5 ATCTTTTTGAAGAAGGTTCAGTTACTACTTCTTATTCAAAA
6 CTACGTCTGGAGGATTTGCGAATTCCTACTTCTTATTCAAAA
7 AGATAAATTGAACAAGTATGGTCGTCCTCTATTGGGATGTTAC
8 GTAGGGCAGTTTATGAATGTTTACGTGGTGGACTTGATTTTAC
9 CGTTGGAGAGACCGTTTCTTATTTTTTGCGGAAGCTATTTTTA
1 CTTGAATGCTACTGCGGGTACATGGAGAAATACAAGTT
2 ATCCATGCCGCAATGCATGCAGGTTATTGATAGAAGAAT
```

Estandarizado por el programa de alineamiento Fasta.

Nexus

```
[Data processed on 2020 September 3 using 2matrix.pl -i Henri alg.fasta -o n -n Henriette
indel characters coded using 2xread using the "simple gap coding" method of SIMMONS AND O
begin taxa:
    dimensions ntax=16;
    taxlabels
        Henriettea ekmanii
        Henriettea_flavescens
        Henriettea gibberosa
        Henriettea_macfadyenii
        Henriettea martiusii
        Henriettea multiflora
        Henriettea ramiflora
        Henriettea spruceana
        Henriettea squamata
        Henriettea squamulosa
        Henriettea uniflora
        Henriettella aggregata
        Henriettella fascicularis
        Henriettella odorata
        Henriettella rimosa
        Henriettella_sessilifolia
begin characters:
    dimensions nchar=928;
    format datatype=DNA missing=? gap=-:
    charlabels
        [1] sequence 0
           sequence 1
            sequence 2
```

Estandarizado por los programas de filogenética MacClade y PAUP*.

Nexus

Estandarizado por los programas de filogenética MacClade y PAUP*.

El formato está resumido en un manual de 32 páginas que no es exhaustivo (Maddison et al. 1997. NEXUS: an extensible file format for systematic information. Systematic Biology 46: 590–621).

Otros programas lo han incorporado en su funcionamiento, pero usualmente con modificaciones no bien documentadas.

Phylip

```
16 945
Henriettea ekmanii
                            TTTAGAGGAAGGAGAAGTCGTAA
Henriettea flavescens
                             ---AGAGGAAGGAGAAGTCGTAA
Henriettea gibberosa
                             TTTAGAGGAAGGAGAAGTCGTAA
Henriettea macfadyenii
                             TTTAGAGGAAGGAGAAGTCGTAA
Henriettea martiusii
                             TTTAGAGGAAGGAGAAGTCGTAA
Henriettea multiflora
                             TTTAGAGGAAGGAGAAGTCGTAA
Henriettea ramiflora
                             TTTAGAGGAAGGAGAAGTCGTAA
Henriettea spruceana
                            TTTAGAGGAAGGAGAAGTCGTAA
Henriettea_squamata
                             TTTAGAGGTAGGAGAAGTCGTAA
Henriettea squamulosa
                             - - - AGAGGAAGGAGAAGTCGTAA
Henriettea uniflora
                             -TTAGAGGAAGGAGAAGTCGTAA
Henriettella aggregata
                                 ---GAAGGAGAAGTCGTAA
Henriettella fascicularis
                             TTTAGAGGAAGGAGAAGTCGTAA
Henriettella odorata
Henriettella rimosa
                            TTTAGAGGAAGGAGAAGTCGTAA
Henriettella sessilifolia
                            TTTAGAGGAAGGAGAAGTCGTAAG
```

Estandarizado por el paquete de programas de filogenética PHYLogeny Inference Package.