

電腦硬體概論

中央處理器 記憶單元

電腦五大單元關係圖

中央處理器

CPU的運作方式

- ◆ 中央處理單元 Central Processing Unit
- ◆ 微處理器 Microprocessor

3. 算數邏輯單元 執行運算

 將指令解碼,並 送到算數邏輯單 元執行

CPU效能的衡量

- ◆ 時脈速度 Clock Speed
- ◆ 多核心 Multi-core Processor
- ◆ 快取記憶體 Cache
- ◆ 匯流排 Bus

時脈速度 Clock Speed

- ◆ 時脈 Clock
 - ◆ 電腦內部一個類似時鐘的裝置,每計數一次,稱為一個時脈週期,電腦就可以完成少量工作
- ◆ 時脈速度 Clock Speed
 - ◆ 單位時間內,CPU運算處理的<mark>時鐘脈</mark>衝(Clock Pulse)數,單位為赫茲 Hertz,時脈 速度越大,每秒所能完成的運算週期數越多,速度越快
 - ◆ 目前市售電腦所使用的CPU都可達到十億赫茲(Giga Hertz)
 - ◆ 1 GHz 表示每秒可完成十億個運算週期
- ◆ 時脈週期(Clock Cycle) × 時脈頻率(Clock Rate) = 1

= 時脈速度 (Clock Speed)

指令運作週期

- ◆ CPU執行指令時,必須經過指令的擷取、解碼、執行,及儲存結果等步驟,這個過程稱為機器週期 Machine Cycle
- ◆ 指令週期 Instruction Cycle
 - ◆ 擷取與解碼的步驟
- ◆ 執行週期 Execution Cycle
 - ◆ 執行與儲存的步驟

指令運作週期

行動裝置的CPU

- ◆ 行動裝置的CPU多採用 Advanced RISC Machines 架構
 - ◆ 精簡指令集 Reduced Instruction Set Computing,每個 CPU 指令的功能都被精簡
 - ◆ 廣泛運用於各領域,如嵌入式系統等
 - ◆ 體積小、低成本、低耗電
- ◆ 個人電腦的CPU多屬於 Complex Instruction Set Computing
 - ◆ 複雜指令集,每個指令都包含許多功能
 - ◆ 處理效能高

管線技術 Pipeline

◆ 重疊執行 CPU 指令週期的擷取、解碼、執行、儲存,提升 CPU 的效率。

行動裝置和一般 CPU 都常用管線技術提升執行效率

記憶單元

記憶單元 MU

- ◆ 主記憶體
 - ◆ 存放正在執行中的程式或資料
- ◆ 輔助記憶體
 - ◆ 存放需長久保存的資料

輔助記憶體

主記憶體

- ◆ 由可以記憶資料的 IC 所組成的
 - ◆ 積體電路 Integrated Circuit
- ◆ 儲存資料的方式
 - ◆ 每一位置都有一個位址,做為存取程式或資料的依據
- ◆ 位址以 8 bits 表示
 - ◆ 共有 28=256 個存放資料的位置,每個位置可存放 1 bytes的資料

輔助記憶體

- ◆ 特點
 - ◆ 大容量
 - ◆ 低成本
 - ◆ 電源關閉資料不會消失(非揮發性記憶體)
- ◆ 類型
 - ◆ 磁碟:硬碟
 - ◆ 光碟:CD、DVD
 - ◆ 快閃碟:USB 隨身碟、記憶卡、固態硬碟

記憶體階層

主記憶體: Random Access Memory

- ◆ 隨機存取記憶體
- ◆ 可供讀取及寫入資料
- ◆ 揮發性記憶體,電源關閉後,儲存的資料就會消失
- ◆ 分為動態與靜態兩種類型

桌上型電腦常用的 RAM

筆記型電腦常用的 RAM

Dynamic Random Access Memory

- ◆ 動態隨機存取記憶體
- ◆ 以電容器來儲存資料,必須不斷充電以維持資訊的完整, 故稱之為「動態」
- ◆ 一般使用者所稱的電腦主記憶體,指的就是DRAM

Static Random Access Memory

- ◆ 靜態隨機存取記憶體
- ◆ 以正反器來儲存資料,因為不需要充電的元件,不必進行 自動充電的動作,故稱為「靜態」
- ◆ 常被應用於主機板上的快取記憶體或大型電腦的主記憶體

隨機存取記憶體的比較

類型	使用的電子元件	是否須持續充電	存取速度	應用	價格
DRAM	器容事	是	較慢	主記憶體	較便宜
SRAM	正反器	否	較快	快取記憶體	較貴

- ◆ 正反器 Flip-Flop
- ◆ 一種可以儲存一個位元(0或1)的邏輯電路, 又稱為「雙穩態電路」
- ◆ 電路的輸出狀態會穩定維持在兩個狀態(0或 1)的其中之一,除非有其他事件的觸發,否 則不會改變

主記憶體: Read-Only Memory

- ◆ 唯讀記憶體
- ◆ 僅供讀取,無法寫入資料
- ◆ 電源關閉後,儲存的資料不會消失
- ◆ 最常用於內建在電腦主機板中儲存 BIOS
 - ◆ Basic Input/Output System 基本輸入輸出系統

電腦主機板上的 BIOS 是ROM 的一種

唯讀記憶體的類型

名稱	說明
Mask ROM	遮罩式唯讀記憶體(Mask ROM)裡面的資料在製造過程便已寫入,它所存放的內容不能再變更。
PROM	可程式唯讀記憶體(Programmable ROM, PROM)出廠時是空白的,使用者或廠商可依其所需,使用特殊的燒錄裝置將資料燒錄到 ROM 中,但資料一經燒錄後便無法再改變。
EPROM	可清除可程式唯讀記憶體 (Erasable PROM, EPROM)是可以重複程式化的 PROM,可以使用紫外線來清除 ROM 中原本的資料,清除之後就可以再次寫入資料。
EEPROM	可電子清除的唯讀記憶體(Electrically EPROM, EEPROM)是電子式的 EPROM,可利用電壓來清除 ROM 中原本的資料,清除之後便可以再次進行寫入資料。
Flash Memory	快閃記憶體(Flash Memory)是一種非揮發性,可重覆讀寫的記憶體,它與 ROM 一樣都是非揮發性。快閃記憶體也常用於製作記憶卡、隨身碟或固態硬碟等輔助記憶體。

輔助記憶體:硬碟 Hard Disk

- ◆ 使用磁性原理儲存資料的裝置
 - ◆ 依照外觀尺寸的大小,常見的有3.5 吋、2.5 吋、1.8 吋等
 - ◆ 常見的硬碟容量有4TB、3TB、2TB、1TB、 750GB、500GB等

桌上型電腦常用的 3.5 时硬碟

筆記型電腦常用的 2.5 时硬碟

筆記型電腦常用的 1.8 时硬碟

硬碟 Hard Disk

- ◆ 由一片或多片快速旋轉的磁碟堆疊而成
- ◆ 碟片上塗有一層磁性薄膜,可以用來存放資料
- ◆ 讀寫頭以圓形的軌跡,同時讀取或寫入資料

硬碟 Hard Disk

◆ 磁碟片的表面可以分成一圈圈不同大小的磁軌 Track

◆ 每一磁軌可分成許多大小相同的磁區 Sector

◆ 每個磁軌的磁區數都相同

◆ 磁區是電腦每次所能存取的最小區域

◆ 一筆資料可以儲存在一個或多個磁區

硬碟格式化與重組

- ◆ 新硬碟一般並沒有磁軌、磁區的配置,必須要經過分割及 格式化後,才能進行資料的存取
- ◆ 為何要格式化硬碟?
- ◆ 為何要磁碟重組?

影響磁碟效能的因素

- ◆ 轉速 (Rotational Speed)
 - ◆ 磁碟旋轉的速度
 - ◆ 單位為 Revolutions Per Minute (每分鐘轉動的圈數)
 - ◆ 轉速越高,硬碟的存取效能越高
 - ◆ 高轉速硬碟須注意散熱
- ◆ 搜尋時間 (Seek Time)
 - ◆ 把讀寫頭移動到目的磁軌所需的時間
- ◆ 轉移時間 (Transfer Time)
 - ◆ CPU 或記憶體讀取或寫入資料到磁碟所需的時間

硬碟的傳輸介面

- ◆ 主要可分為 Integrated Device Electronics 與 Serial Advanced Technology Attachment
- ◆ IDE介面的資料傳輸率最高可達 133MB/s
- ◆ SATA介面的資料傳輸率最高可達 600MB/s

輔助記憶體:光碟

◆ 使用光學原理儲存資料

CD 光碟

DVD 光碟

Blu-Ray 藍光光碟

光碟機種類		標誌	鐳射光波長	儲存容量		單倍讀寫速度
hT.Q	CD		780 nm 紅光	650 MB \sim 900 MB		150 KB/Sec
紅色 雷射光	DVD		650 nm 紅光	4.7 GB 單面單層	8.5 GB 單面雙層	1.32 MB/Sec
				9.4 GB 雙面單層	17 GB 雙面雙層	
藍光(BD)		Blu-ray Disc	405 nm 藍光	25 GB 50 GB	單面單層 單面雙層	4.5 MB/Sec

光碟的儲存原理

◆ 光碟在燒錄的過程中,利用雷射光熱熔而產生凹痕,讓光碟片資料層形成凹凸不平的狀態

◆ 雷射讀取頭藉由雷射光投射在光碟凹凸上的反射波強度不

同解讀資料

DVD光碟的種類

名稱	說明	
DVD-ROM	唯讀 DVD 光碟片(DVD-Read Only Memory, DVD-ROM) 是由工廠壓製而成,只能讀取資料而不能寫入。	
DVD \pm R	只能夠寫入一次,不能重複寫入。	
DVD ± R DL	DL代表雙層,為 DVD ± R的雙層燒錄光碟,具有雙倍容量,但同樣只能夠寫入一次,不能重複寫入。	
$DVD \pm RW$	其容量與 DVD ± R 相同,但可重複讀寫。	
DVD – RAM	DVD-RAM (DVD-Random Access Memory) 的檔案儲存技術類似電腦硬碟,是一種隨機存取且可重複寫入的 DVD 規格,且其可寫入次數較 DVD ± RW 規格高。	

DVD和藍光DVD的差異

- DVD
 - ◆ 使用紅光雷射,波長為650nm
- ◆ 藍光DVD
 - ◆ 使用藍光雷射,波長縮短到 405nm,所以可以對光碟進行高密度記錄與讀取

DVD 光碟片的記錄點大小為 0.4μm,而藍光光碟片則為 0.14 - 0.2μm,所以藍光光碟 可以儲存更多資料

輔助記憶體:快閃碟 Flash Disk

- ◆ 主要以快閃記憶體 Flash Memory 為儲存資料的媒介
- ◆ 不需電力維持資料的儲存、讀取速度快、震動忍受度較高
- ◆ 以 USB 隨身碟和記憶卡等最常見

快閃記憶體的運作原理

儲存資料 當浮閘被注入負電子時, 儲存狀態會由1被寫成0; 當負電子從浮閘中移走後, 儲存狀態就由0變成1。

記憶卡 Memory Card

- ◆ 將快閃記憶體晶片封裝到塑膠殼裡面,變成可以抽換的快 閃記憶體模組
- ◆ 常用於數位相機、手機等電子產品

固態硬碟 SSD

- Solid State Disk / Solid State Drive
- ◆ 以快閃記憶體晶片封裝而成的電路板
 - ◆ 傳統硬碟採用驅動馬達與碟盤設計
- ◆ 優點
 - ◆ 傳輸速度快、無噪音、抗震動、低耗電量、低熱量
- ◆ 缺點
 - ◆ 價格昂貴
 - ◆ 壽命與讀寫次數有關,讀寫次數有限

SEE YOU NEXT WEEK:D