Please check the examination detai	ils below	before ente	ering your candidate information
Candidate surname			Other names
Pearson Edexcel International Advanced Level	Centre	Number	Candidate Number
Wednesday 2	2 J	anu	ary 2020
Morning (Time: 1 hour 30 minute:	s)	Paper R	deference WMA13/01
Mathematics			
International Advanced Pure Mathematics P3	d Lev	el	
You must have: Mathematical Formulae and Stati	istical T	ables (Lil	lac), calculator

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

1. A population of a rare species of toad is being studied.

The number of toads, N, in the population, t years after the start of the study, is modelled by the equation

$$N = \frac{900e^{0.12t}}{2e^{0.12t} + 1} \qquad t \geqslant 0, t \in \mathbb{R}$$

According to this model,

(a) calculate the number of toads in the population at the start of the study,

(1)

(b) find the value of *t* when there are 420 toads in the population, giving your answer to 2 decimal places.

(4)

(c) Explain why, according to this model, the number of toads in the population can never reach 500

(1)

Question 1 continued		Leav blan
	<u>Q</u>	21
	(Total 6 marks)	

2. The function f and the function g are defined by

$$f(x) = \frac{12}{x+1} \qquad x > 0, x \in \mathbb{R}$$

$$g(x) = \frac{5}{2} \ln x \qquad x > 0, x \in \mathbb{R}$$

(a) Find, in simplest form, the value of $fg(e^2)$

(2)

- (b) Find f^{-1}
- (3)

(3)

(c) Hence, or otherwise, find all real solutions of the equation

$$f^{-1}(x) = f(x)$$

estion 2 continued	

Question 2 continued

Question 2 continued		blank
		Q2
	(Total 8 marks)	

3.

Figure 1

Figure 1 shows a linear relationship between $\log_{10} y$ and $\log_{10} x$

The line passes through the points (0, 4) and (6, 0) as shown.

(a) Find an equation linking $\log_{10} y$ with $\log_{10} x$

(2)

(b) Hence, or otherwise, express y in the form px^q , where p and q are constants to be found.

(3)

Question 3 continued	Le
	Q3
	(Total 5 marks)

(6)

(5)

- 4. (i) $f(x) = \frac{(2x+5)^2}{x-3} \qquad x \neq 3$
 - (a) Find f'(x) in the form $\frac{P(x)}{Q(x)}$ where P(x) and Q(x) are fully factorised quadratic expressions.
 - (b) Hence find the range of values of x for which f(x) is increasing.

(ii)
$$g(x) = x\sqrt{\sin 4x} \qquad 0 \leqslant x < \frac{\pi}{4}$$

The curve with equation y = g(x) has a maximum at the point M.

Show that the x coordinate of M satisfies the equation

$$\tan 4x + kx = 0$$

where k is a constant to be found.

	Leave
	blank
Question 4 continued	
	1

Question 4 cont	inucu		

Question 4 continued		blank
	Question 4 continued	
		Q4
	(Total 11 marks)	

5. (a) Use the substitution $t = \tan x$ to show that the equation

$$12\tan 2x + 5\cot x \sec^2 x = 0$$

can be written in the form

$$5t^4 - 24t^2 - 5 = 0 (4)$$

(b) Hence solve, for $0 \le x < 360^{\circ}$, the equation

$$12\tan 2x + 5\cot x \sec^2 x = 0$$

Show each stage of your working and give your answers to one decimal place.

		(4)

estion 5 continued	

(Tatal 8 modes)	Question 5 continued		blank
			05
I IMM X IRINI I		(Total 8 marks)	

6.

Figure 2

Figure 2 shows part of the graph with equation y = f(x), where

$$f(x) = 2 |2x - 5| + 3$$
 $x \ge 0$

The vertex of the graph is at point P as shown.

(a) State the coordinates of P.

(2)

(b) Solve the equation f(x) = 3x - 2

(4)

Given that the equation

$$f(x) = kx + 2$$

where k is a constant, has exactly two roots,

(c) find the range of values of k.

(3)

estion 6 continued	
estion o continued	

Question 6 continued		

Question 6 continued		blank
		Q6
	(Total 9 marks)	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Figure 3

Figure 3 shows a sketch of part of the curve with equation

$$y = 2\cos 3x - 3x + 4 \qquad x > 0$$

where x is measured in radians.

The curve crosses the x-axis at the point P, as shown in Figure 3.

Given that the x coordinate of P is α ,

(a) show that α lies between 0.8 and 0.9

(2)

The iteration formula

$$x_{n+1} = \frac{1}{3} \arccos(1.5x_n - 2)$$

can be used to find an approximate value for α .

- (b) Using this iteration formula with $x_1 = 0.8$ find, to 4 decimal places, the value of
 - (i) x_2

(ii)
$$x_5$$

The point Q and the point R are local minimum points on the curve, as shown in Figure 3.

Given that the x coordinates of Q and R are β and λ respectively, and that they are the two smallest values of x at which local minima occur,

(c) find, using calculus, the exact value of β and the exact value of λ .

(6)

estion 7 continued		

Question 7 continued		

Question 7 continued	Leave
Question / continued	
	Q7
(Total 11 marks)	

8. (i) Find, using algebraic integration, the exact value of

$$\int_3^{42} \frac{2}{3x-1} \, \mathrm{d}x$$

giving your answer in simplest form.

(4)

(ii)
$$h(x) = \frac{2x^3 - 7x^2 + 8x + 1}{(x - 1)^2} \qquad x > 1$$

Given $h(x) = Ax + B + \frac{C}{(x-1)^2}$ where A, B and C are constants to be found, find

$$\int h(x) dx$$

1	6		
l	v	,	

action Q aartimud	
estion 8 continued	

uestion 8 continu	ued		

Question 8 continued	blank
	Q8
(Total 10 marks)	
(10tm 10 marks)	

- 9. $f(\theta) = 5\cos\theta 4\sin\theta \qquad \theta \in \mathbb{R}$
 - (a) Express $f(\theta)$ in the form $R\cos(\theta + \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give the exact value of R and give the value of α , in radians, to 3 decimal places.

(3)

The curve with equation $y = \cos \theta$ is transformed onto the curve with equation $y = f(\theta)$ by a sequence of two transformations.

Given that the first transformation is a stretch and the second a translation,

- (b) (i) describe fully the transformation that is a stretch,
 - (ii) describe fully the transformation that is a translation.

(2)

Given

$$g(\theta) = \frac{90}{4 + (f(\theta))^2} \qquad \theta \in \mathbb{R}$$

(c) find the range of g.

	•	1
	4	,
L		,

	Leave
Question 9 continued	blank

Leave

	IIS AREA
	DO
	IOT WRITE IN TH
	IS AREA
	DON
	OT WRITE IN TH
Q9	E IN THIS AREA

blank Question 9 continued (Total 7 marks)

TOTAL FOR PAPER IS 75 MARKS END