Today - Special Topic: Cryptography

- Commitments
- Zero-Knowledge Proofs

ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17,

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 =$

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$,

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 1$

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$,

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 =$

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$,

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 1$

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$,

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 10$

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13$

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13$...,

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13$..., $3^{16} \mod 17 = 13$

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13$..., $3^{16} \mod 17 = 1$.

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13...$, $3^{16} \mod 17 = 1$. Fermat's Little Theorem

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13...$, $3^{16} \mod 17 = 1$. Fermat's Little Theorem
- Given $x \in \mathbb{Z}$ can you compute $g^x \mod p$?

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13...$, $3^{16} \mod 17 = 1$. Fermat's Little Theorem
- Given $x \in \mathbb{Z}$ can you compute $g^x \mod p$? Efficiently?

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13...$, $3^{16} \mod 17 = 1$. Fermat's Little Theorem
- Given $x \in \mathbb{Z}$ can you compute $g^x \mod p$? Efficiently?
- What about the other way around? Given g, X, p can we compute x such that $X = g^x \mod p$?

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13...$, $3^{16} \mod 17 = 1$. Fermat's Little Theorem
- Given $x \in \mathbb{Z}$ can you compute $g^x \mod p$? Efficiently?
- What about the other way around? Given g, X, p can we compute x such that $X = g^x \mod p$?
- Efficiently?

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13...$, $3^{16} \mod 17 = 1$. Fermat's Little Theorem
- Given $x \in \mathbb{Z}$ can you compute $g^x \mod p$? Efficiently?
- What about the other way around? Given g, X, p can we compute x such that $X = g^x \mod p$?
- Efficiently? Well, it depends on what x was?

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13...$, $3^{16} \mod 17 = 1$. Fermat's Little Theorem
- Given $x \in \mathbb{Z}$ can you compute $g^x \mod p$? Efficiently?
- What about the other way around? Given g, X, p can we compute x such that $X = g^x \mod p$?
- Efficiently? Well, it depends on what x was?
- Discrete-Log Problem: Sample (uniform) $x \leftarrow \{1, \dots p-1\}$ and give you g, X, p where $X = g^x \mod p$. Now can you find x?

- ullet Consider the group $\mathbb{G}=\mathbb{Z}_p^*$ for some prime number p
- ullet Let g be a non-identity element in ${\mathbb G}$
- Example: p = 17, $\mathbb{G} = \mathbb{Z}_{17}^* = \{1, 2 \cdots 16\}$
- Say g = 3, then what is $3^0 \mod 17 = 1$, $3^1 \mod 17 = 3$, $3^2 \mod 17 = 9$, $3^3 \mod 17 = 10$, $3^4 \mod 17 = 13...$, $3^{16} \mod 17 = 1$. Fermat's Little Theorem
- Given $x \in \mathbb{Z}$ can you compute $g^x \mod p$? Efficiently?
- What about the other way around? Given g, X, p can we compute x such that $X = g^x \mod p$?
- Efficiently? Well, it depends on what x was?
- Discrete-Log Problem: Sample (uniform) $x \leftarrow \{1, \dots p-1\}$ and give you g, X, p where $X = g^x \mod p$. Now can you find x?
- Best Algorithm: $e^{(3^{2/3}-o(1))(\log p)^{\frac{1}{3}}(\log\log p)^{\frac{2}{3}}}$

How large can primes be?

• The number of prime numbers is infinite.

How large can primes be?

- The number of prime numbers is infinite.
- As of January 2017, the largest known prime number is 2^{74,207,281} – 1, a number with 22,338,618 digits. It was found in 2016 by the Great Internet Mersenne Prime Search (GIMPS).

How large can primes be?

- The number of prime numbers is infinite.
- As of January 2017, the largest known prime number is 2^{74,207,281} 1, a number with 22,338,618 digits. It was found in 2016 by the Great Internet Mersenne Prime Search (GIMPS).
- Using large enough primes primes the discrete log problem is believed to be hard!

A protocol between a committer (C) and a receiver (R)

- A protocol between a committer (C) and a receiver (R)
- C's input: a bit $b \in \{0,1\}$ and R has no input

- A protocol between a committer (C) and a receiver (R)
- C's input: a bit $b \in \{0,1\}$ and R has no input
- Commitment Phase: $\langle C(b; s_C) \leftrightarrow R(s_R) \rangle$

- A protocol between a committer (C) and a receiver (R)
- C's input: a bit $b \in \{0,1\}$ and R has no input
- Commitment Phase: $\langle C(b; s_C) \leftrightarrow R(s_R) \rangle$

Opening Phase: C sends b, s_C to R who outputs 0 or 1.

- A protocol between a committer (C) and a receiver (R)
- C's input: a bit $b \in \{0,1\}$ and R has no input
- Commitment Phase: $\langle C(b; s_C) \leftrightarrow R(s_R) \rangle$ Opening Phase: C sends b, s_C to R who outputs 0 or 1.
 - ▶ Correctness: If C and R are honest then R always outputs 1

- A protocol between a committer (C) and a receiver (R)
- C's input: a bit $b \in \{0,1\}$ and R has no input
- Commitment Phase: $\langle C(b; s_C) \leftrightarrow R(s_R) \rangle$ Opening Phase: C sends b, s_C to R who outputs 0 or 1.
 - ► Correctness: If C and R are honest then R always outputs 1
 - Hiding: At the end of the commitment phase, R doesn't learn anything about b.

- A protocol between a committer (C) and a receiver (R)
- C's input: a bit $b \in \{0,1\}$ and R has no input
- Commitment Phase: $\langle C(b; s_C) \leftrightarrow R(s_R) \rangle$

Opening Phase: C sends b, s_C to R who outputs 0 or 1.

- Correctness: If C and R are honest then R always outputs 1
- ► **Hiding**: At the end of the commitment phase, R doesn't learn anything about *b*.
- ▶ **Binding**: C can not find $(0, s_0)$ and $(1, s_1)$ such that R outputs 1 on both.

 $Commiter(b; s_C)$

$$\begin{array}{l} \textit{Receiver}(s_R) \\ x \leftarrow \{0, \cdots p-1\} \end{array}$$

 $Commiter(b; s_C)$

$$\begin{array}{l} \textit{Receiver}(s_R) \\ x \leftarrow \{0, \cdots p-1\} \\ \textit{h} := \textit{g}^x \mod p \end{array}$$

$$Commiter(b; s_C)$$

Receiver(
$$s_R$$
)
 $x \leftarrow \{0, \dots p-1\}$
 $h := g^x \mod p$

$$\begin{array}{c} \textit{Commiter}(b;s_{C}) & \textit{Receiver}(s_{R}) \\ & x \leftarrow \{0,\cdots p-1\} \\ & h := g^{x} \mod p \\ & & \\ & & \\ \hline & & Y = g^{b}h^{s_{C}} \\ & &$$

$$Commiter(b; s_C)$$

Receiver(
$$s_R$$
)
 $x \leftarrow \{0, \cdots p-1\}$
 $h := g^x \mod p$

$$\frac{h}{Y = g^b h^{s_c}}$$

Store Y

Opening Phase

$$\xrightarrow{\hspace*{1cm} b,s_C}$$

$$Commiter(b; s_C)$$

Receiver(
$$s_R$$
)
 $x \leftarrow \{0, \cdots p-1\}$
 $h := g^x \mod p$

$$\frac{h}{Y = g^b h^{s_c}}$$

Store Y

Opening Phase

$$\xrightarrow{b,s_C}$$

Output 1 if $g^b h^{s_c} \stackrel{?}{=} Y$ Else output 0

Is it hiding?

¹ For this class, we ignore that x^{-1} may sometimes not exist.

Is it hiding?

Y contains no information about b.

¹ For this class, we ignore that x^{-1} may sometimes not exist.

Is it hiding?

- Y contains no information about b.
- If $g^b h^s = Y$ then $g^{1-b} h^{s'} = Y$ where $s' = \frac{2b-1}{x} + s \mod p 1.1$

¹ For this class, we ignore that x^{-1} may sometimes not exist.

It is only computationally binding!

- It is only computationally binding!
- If at the end of the protocol C can come up with $(0, s_0)$ and $(1, s_1)$ such that R outputs 1 on both choices then we can use this "procedure" to solve the discrete-log problem.

- It is only computationally binding!
- If at the end of the protocol C can come up with $(0, s_0)$ and $(1, s_1)$ such that R outputs 1 on both choices then we can use this "procedure" to solve the discrete-log problem.
- Given (g, X, p) we are trying to find $dlog_g X$.

- It is only computationally binding!
- If at the end of the protocol C can come up with $(0, s_0)$ and $(1, s_1)$ such that R outputs 1 on both choices then we can use this "procedure" to solve the discrete-log problem.
- Given (g, X, p) we are trying to find $dlog_g X$. We set h = X on behalf of R.

- It is only computationally binding!
- If at the end of the protocol C can come up with $(0, s_0)$ and $(1, s_1)$ such that R outputs 1 on both choices then we can use this "procedure" to solve the discrete-log problem.
- Given (g, X, p) we are trying to find $dlog_g X$. We set h = X on behalf of R. Now given $(0, s_0)$ and $(1, s_1)$ (and because R outputs 1 on both) we have that $x \cdot s_0 = 1 + x \cdot s_1$.

- It is only computationally binding!
- If at the end of the protocol C can come up with $(0, s_0)$ and $(1, s_1)$ such that R outputs 1 on both choices then we can use this "procedure" to solve the discrete-log problem.
- Given (g, X, p) we are trying to find $dlog_g X$. We set h = X on behalf of R. Now given $(0, s_0)$ and $(1, s_1)$ (and because R outputs 1 on both) we have that $x \cdot s_0 = 1 + x \cdot s_1$. Therefore, $x = \frac{1}{s_0 s_1} \mod p 1$

How would you prove that a NP problem is true?

• A *NP problem I* is true if there exists a solution S such that $\mathscr{C}(I,S) = true$, where \mathscr{C} is the checking algorithms.

How would you prove that a NP problem is true?

- A *NP problem I* is true if there exists a solution *S* such that $\mathscr{C}(I,S) = true$, where \mathscr{C} is the checking algorithms.
- You can send the solution S to your friend.

How would you prove that a NP problem is true?

- A *NP problem I* is true if there exists a solution *S* such that $\mathscr{C}(I,S) = true$, where \mathscr{C} is the checking algorithms.
- You can send the solution S to your friend.
- However, this leaks the solution to your friend.

• Can you color a map in 3 colors?

- Can you color a map in 3 colors?
- How can you prove to a friend that there exists a 3-coloring without disclosing the coloring itself?

- Can you color a map in 3 colors?
- How can you prove to a friend that there exists a 3-coloring without disclosing the coloring itself?
- This problem is NP-complete.

• We have two players: a prover (\mathscr{P}) and a verifier (\mathscr{V})

- We have two players: a prover (\mathscr{P}) and a verifier (\mathscr{V})
- \mathscr{P} and \mathscr{V} get as input a graph/map G = (V, E)

- We have two players: a prover (\mathscr{P}) and a verifier (\mathscr{V})
- \mathscr{P} and \mathscr{V} get as input a graph/map G = (V, E)
- \mathscr{P} also gets as input a coloring function $c: V \to \{R, B, G\}$.

- We have two players: a prover (\mathscr{P}) and a verifier (\mathscr{V})
- \mathscr{P} and \mathscr{V} get as input a graph/map G = (V, E)
- \mathscr{P} also gets as input a coloring function $c: V \to \{R, B, G\}$.
- A protocol $\langle \mathscr{P}, \mathscr{V} \rangle$ where at the end \mathscr{V} outputs 0 or 1.

- We have two players: a prover (\mathscr{P}) and a verifier (\mathscr{V})
- \mathscr{P} and \mathscr{V} get as input a graph/map G = (V, E)
- \mathscr{P} also gets as input a coloring function $c: V \to \{R, B, G\}$.
- A protocol $\langle \mathcal{P}, \mathcal{V} \rangle$ where at the end \mathcal{V} outputs 0 or 1.
 - ▶ Correctness: Execution with honest \mathscr{P} , \mathscr{V} always leads \mathscr{V} to output 1.

- We have two players: a prover (\mathscr{P}) and a verifier (\mathscr{V})
- \mathscr{P} and \mathscr{V} get as input a graph/map G = (V, E)
- \mathscr{P} also gets as input a coloring function $c: V \to \{R, B, G\}$.
- A protocol $\langle \mathcal{P}, \mathcal{V} \rangle$ where at the end \mathcal{V} outputs 0 or 1.
 - ▶ Correctness: Execution with honest \mathscr{P}, \mathscr{V} always leads \mathscr{V} to output 1.
 - Soundness: For any cheating \mathscr{P}^* and G that is not 3-colorable \mathscr{V} outputs 0 with probability greater that $1-2^{-\lambda}$.

- We have two players: a prover (\mathscr{P}) and a verifier (\mathscr{V})
- \mathscr{P} and \mathscr{V} get as input a graph/map G = (V, E)
- \mathscr{P} also gets as input a coloring function $c: V \to \{R, B, G\}$.
- A protocol $\langle \mathcal{P}, \mathcal{V} \rangle$ where at the end \mathcal{V} outputs 0 or 1.
 - ▶ Correctness: Execution with honest \mathscr{P}, \mathscr{V} always leads \mathscr{V} to output 1.
 - Soundness: For any cheating \mathscr{P}^* and G that is not 3-colorable \mathscr{V} outputs 0 with probability greater that $1-2^{-\lambda}$.
 - ▶ Zero-Knowledge: No cheating \mathscr{V}^* learns anything about P's coloring function c.

$$\mathscr{P}(G,c;r)$$
 $\mathscr{V}(G,s)$ π be a random function $\{R,B,G\} \to \{R,B,G\}$

$$\mathscr{P}(G,c;r)$$
 $\mathscr{V}(G,s)$ π be a random function $\{R,B,G\} o \{R,B,G\}$ $\forall v \in V, c_v = com(\pi(c(v)))$

$$\mathscr{P}(G,c;r)$$
 $\mathscr{V}(G,s)$ π be a random function $\{R,B,G\} \to \{R,B,G\}$
$$\xrightarrow{\forall v \in V, c_v = com(\pi(c(v)))} e \xleftarrow{\$} E$$

$$\mathscr{P}(G,c;r)$$
 $\mathscr{V}(G,s)$ π be a random function $\{R,B,G\} \to \{R,B,G\}$
$$\xrightarrow{\forall v \in V, c_v = com(\pi(c(v)))} e \xleftarrow{\$} E$$
 $e = (u,v)$ $open c_u, c_v$

$$\mathcal{P}(G,c;r) \\ \pi \text{ be a random function} \\ \{\textit{R},\textit{B},\textit{G}\} \rightarrow \{\textit{R},\textit{B},\textit{G}\} \\ & \xrightarrow{\forall v \in \textit{V},\textit{c}_v = com(\pi(c(v)))} \\ & \xrightarrow{e = (u,v)} \\ & \xrightarrow{\text{open } \textit{c}_u,\textit{c}_v} \\ & \xrightarrow{\text{olyput 1}} \\ & \text{if diff} \\ & \text{Else 0}$$

• If \mathscr{P}, \mathscr{V} are honest then does V always accept?

- If \mathscr{P}, \mathscr{V} are honest then does V always accept?
- What is G doesn't have any 3-colorings?

- If \mathcal{P}, \mathcal{V} are honest then does V always accept?
- What is G doesn't have any 3-colorings? $\mathscr V$ catches the prover with probability $\frac{1}{|E|}$.

- If \mathcal{P}, \mathcal{V} are honest then does V always accept?
- What is G doesn't have any 3-colorings? \mathscr{V} catches the prover with probability $\frac{1}{|E|}$.
- How do we reduce probability of not catching to $2^{-\lambda}$?

- If \mathscr{P}, \mathscr{V} are honest then does V always accept?
- What is G doesn't have any 3-colorings? \mathscr{V} catches the prover with probability $\frac{1}{|E|}$.
- How do we reduce probability of not catching to $2^{-\lambda}$? Repeat it $|E| \cdot \lambda$ times.

- If \mathscr{P}, \mathscr{V} are honest then does V always accept?
- What is G doesn't have any 3-colorings? \mathscr{V} catches the prover with probability $\frac{1}{|E|}$.
- How do we reduce probability of not catching to $2^{-\lambda}$? Repeat it $|E| \cdot \lambda$ times.
- Must use fresh randomness (namely π) in each.

Zero-Knowledge

• What does a cheating verifier \mathscr{V}^* learn in one execution?

Zero-Knowledge

- What does a cheating verifier \mathcal{V}^* learn in one execution?
- Nothing! :)

CS194 on Cryptography: Next Semester