Descomposición Schur.

La descomposición de Schur asegura que cualquier matriz cuadrada A puede ser escrita de la forma

$$A = QUQ^*$$

donde Q es una matriz unitaria (i.e. $Q^* = Q^{-1}$) y U triangular superior.

Este resultado puede verse como una generalización del Teorema Espectral que asegura que si A es normal, es decir $A^*A = AA^*$ (lo que incluye matrices hermitanas), entonces se puede diagonalizar en una base ortonormal de autovectores:

$$A = QDQ^*$$

con Q unitaria (donde las columnas son los autovectores de A) y D diagonal (elementos de la diagonal son los autovalores correspondientes).

Veamos un par de ejemplos.

Ejercicio 1. Determinar si la matriz $A = \begin{pmatrix} -1 & 4 \\ 4 & 5 \end{pmatrix}$ es diagonalizable en una base ortonormal y si es así hallar dicha descomposición.

Paso 1: determinar si A es diagonalizable en una bon

Observemos primero que $A^* = \overline{A^t} = A^t = A$, es decir A es hermitana por ser simétrica y real. Luego, en particular es normal ya que $A^*A = A^2 = AA^*$, y por el Teorema Espectral podemos asegurar que A es diagonalizable en una base ortonormal de autovectores.

Paso 2: hallar los autovalores de A

Para hallar dicha descomposición veamos primero cuáles son los autovalores. Su polinomio característico es

$$\det(A - \lambda I) = \det\begin{pmatrix} -1 - \lambda & 4\\ 4 & 5 - \lambda \end{pmatrix} = (-1 - \lambda)(5 - \lambda) - 16$$
$$= \lambda^2 - 4\lambda - 5 - 16 = (\lambda - 2)^2 - 4 - 5 - 16 = (\lambda - 2)^2 - 25$$

que tiene raíces $\lambda_1 = 7$ y $\lambda_2 = -3$.

Paso 3: hallar los autovectores de A

Calculemos un autovector para λ_1 :

$$A - 7I = \begin{pmatrix} -8 & 4\\ 4 & -2 \end{pmatrix}$$

que tiene como autovector a $v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ lo cual normalizando nos queda $u_1 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Al ser A hermitana, autovectores de autovalores diferentes deben ser ortogonales.

Luego, el autovector correspondiente a λ_2 debe ser ortogonal a cualquier autovector correspondiente

a λ_1 . Como en este caso estamos en \mathbb{R}^2 , $u_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2\\1 \end{pmatrix}$ debe ser autovector de λ_2 .

En general esto siempre se puede hacer resolviendo el núcleo de $A - \lambda_2 I$.

PASO 4: ESCRIBIR LA DESCOMPOSICIÓN

Agrupando resulta
$$Q=\begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$
 y $D=\begin{pmatrix} 7 & 0 \\ 0 & -3 \end{pmatrix}$ por lo que

$$A = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} 7 & 0 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$

es una descomposición espectral, i.e. $A = QDQ^*$.

Ahora pasamos a mostrar cómo realizar la descomposición de Schur con otro ejemplo.

Ejercicio 2. Hallar una descomposición de Schur para
$$A = \begin{pmatrix} 101 & 80 & 57 \\ 80 & -25 & 60 \\ 32 & 60 & 49 \end{pmatrix}$$
.

Observemos primero que

$$A \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 101 & 80 & 57 \\ 80 & -25 & 60 \\ 32 & 60 & 49 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} 75 \\ 0 \\ -100 \end{pmatrix} = 25 \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$$

por lo que 5 es un autovalor de A con autovector $\begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$.

PASO 2: COMPLETAR A UNA BON

Normalizando $\begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$ y completando a una base ortonormal construimos la siguiente matriz unitaria:

$$Q_1 = \begin{pmatrix} \frac{3}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ -\frac{4}{5} & 0 & \frac{3}{5} \end{pmatrix}$$

Paso 3: calcular el producto $Q_1^*AQ_1$

Observemos primero que al hacer la multiplicación $Q_1^*AQ_1$ resultará una matriz del tipo $\begin{pmatrix} 25 & * & * \\ 0 & A_2 & \\ 0 & \end{pmatrix}$ donde A_2 es una matriz 2×2 , ya que la primera columna de Q_1 es un autovector con autovalor 25 de A y el resto de Q_1 . Concretamente

$$Q_1^*AQ_1 = \begin{pmatrix} \frac{3}{5} & 0 & \frac{4}{5} \\ 0 & 1 & 0 \\ -\frac{4}{5} & 0 & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 101 & 80 & 57 \\ 80 & -25 & 60 \\ 32 & 60 & 49 \end{pmatrix} \begin{pmatrix} \frac{3}{5} & 0 & -\frac{4}{5} \\ 0 & 1 & 0 \\ \frac{4}{5} & 0 & \frac{3}{5} \end{pmatrix} = \begin{pmatrix} 25 & 0 & 25 \\ 0 & -25 & 100 \\ 0 & 100 & 125 \end{pmatrix}$$

Paso 4: repetir los cuatro pasos anteriores para A_2

La idea del algoritmo ahora es hacer a A_2 lo mismo que hicimos con A, es decir encontrar un autovector u_1 (esta vez en \mathbb{R}^2) y completar a una base ortnormal $\{u_1,u_2\}$ de \mathbb{R}^2 y tomar $Q_1=(u_1|u_2)$, resultando $A_2=Q_2\begin{pmatrix}\lambda&*\\0&*\end{pmatrix}Q_2^*$ donde λ es el autovalor asociado a u_1 .

En este caso, observemos que la matriz $A_2 = \begin{pmatrix} -25 & 100 \\ 100 & 125 \end{pmatrix}$ es $25 \cdot \begin{pmatrix} -1 & 4 \\ 4 & 5 \end{pmatrix}$ que por el ejercicio anterior es una matriz de la cual ya conocemos una descomposición de Schur (de hecho una diagonalización en autovectores ortogonales!). Luego, podemos tomar $Q_2 = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$ resultando

$$A_2 = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} 175 & 0 \\ 0 & -75 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$

PASO 5: MULTIPLICAR LAS MATRICES POR BLOQUES

Observemos que si $A_2 = Q_2 \begin{pmatrix} \lambda & * \\ 0 & * \end{pmatrix} Q_2^*$ entonces

$$Q_1^*AQ_1 = \begin{pmatrix} 25 & 0 & 25 \\ 0 & A_2 \\ 0 & & \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & Q_2 \\ 0 & & \end{pmatrix} \begin{pmatrix} 25 & 0 & 25 \\ 0 & \lambda & * \\ 0 & 0 & * \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & Q_2^* \\ 0 & & \end{pmatrix}$$

De modo que, llamando $U=\begin{pmatrix}25&0&25\\0&\lambda&*\\0&0&*\end{pmatrix}$ y $Q=Q_1\begin{pmatrix}1&0&0\\0&Q_2\\0&\end{pmatrix}$, resulta $A=QUQ^*$ con Q unitaria y U triangular inferior.

Explícitamente en este caso resulta

$$Q = Q_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & Q_2 \\ 0 & & \end{pmatrix} = \begin{pmatrix} \frac{3}{5} & 0 & -\frac{4}{5} \\ 0 & 1 & 0 \\ \frac{4}{5} & 0 & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ 0 & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} = \begin{pmatrix} \frac{3}{5} & -\frac{8}{5\sqrt{5}} & -\frac{4}{5\sqrt{5}} \\ 0 & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{5}} \\ \frac{4}{5} & \frac{6}{5\sqrt{5}} & \frac{3}{5\sqrt{5}} \end{pmatrix}$$

$$y U = \begin{pmatrix} 25 & 0 & 25 \\ 0 & 175 & 0 \\ 0 & 0 & -75 \end{pmatrix}.$$

Descomposición en valores singulares.

La descomposición en valores singulares de una matriz $A \in \mathbb{C}^{m \times n}$ es un producto de la forma

$$A = U\Sigma V^*$$

donde $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ son unitarias y $\Sigma \in \mathbb{C}^{m \times n}$ es una matriz diagonal con todas sus entradas reales y no negativas. Más aún

- las entradas de la diagonal de Σ son $\sigma_1, \ldots, \sigma_n$ donde $\sigma_1^2, \ldots, \sigma_n^2$ son los autovalores de A^*A (que deben ser reales no negativos por ser esta una matriz hermitana y semidefinida positiva),
- las columnas de V son los autovectores correspondientes v_1, \ldots, v_n ,
- las columnas de $U, u_1, \ldots, u_n, \ldots, u_m$ vienen dadas por la relación $Av_j = \sigma_j u_j$ para $j = 1, \ldots, n$.

Recíprocamente dadas $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ son unitarias y $\Sigma \in \mathbb{C}^{m \times n}$ matriz diagonal con todas sus entradas reales y no negativas, el producto $U\Sigma V^*$ define una matriz A para la cual U, V y Σ verifican los tres puntos anteriores.

Observemos que bien puede pasar m > n y en ese caso se completan las columnas de U para una base ortonormal de \mathbb{C}^m , o también puede que m < n en cuyo caso varios $v_j's$ van a estar asociados un autovalor 0 y por lo tanto no hay problemas en la definición. Por último, en este sentido si $\sigma_j = 0$ para algún $j \leq \min(n, m)$ entonces se puede de nuevo elegir u_j completando la ortonormalidad de las columnas de U.

Realicemos un par de ejemplos de esta descomposición.

Ejercicio 3. Calcular la descomposición en valores singulares de $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix}$.

Paso 1: Calcular A^*A

Primero, calculamos A^*A :

$$A^*A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix} = \begin{pmatrix} 17 & 8 \\ 8 & 17 \end{pmatrix}$$

Paso 2: calcular los autovalores de A^*A

A continuación, encontramos los valores propios resolviendo el polinomio característico:

$$\det(A^T A - \lambda I) = \det\begin{pmatrix} 17 - \lambda & 8\\ 8 & 17 - \lambda \end{pmatrix} = (17 - \lambda)(17 - \lambda) - 8 \cdot 8$$

De donde se sigue que $\sigma_1^2 = 25$ y $\sigma_2^2 = 9$ son los autovalores de A^*A . Por tanto los valores singulares de A son $\sigma_1 = 5, \sigma_2 = 3$.

Paso 3: calcular los autovectores de A^*A

Para $\sigma_1^2 = 25$ observemos que

$$A^*A - 25I = \begin{pmatrix} 17 - 25 & 8 \\ 8 & 17 - 25 \end{pmatrix} = \begin{pmatrix} -8 & 8 \\ 8 & -8 \end{pmatrix}$$

que claramente tiene como autovector a $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Aprovechándonos nuevamente que el autovector para $\sigma_2^2 = 9$ debe ser ortogonal a los autovectores de σ_1^2 tenemos que $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ es un autovector para σ_2^2 .

Paso 5: Formar Las Matrices U, Σ y V^T

La matriz V se forma a partir de los vectores propios normalizados de A^*A :

$$V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$$

La matriz Σ es una matriz diagonal 3×2 con los valores singulares σ_1 y σ_2 :

$$\Sigma = \begin{pmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{pmatrix}$$

Para calcular la matriz U, utilizamos la relación $Av_i = \sigma_i u_i$ para cada v_i y luego completamos a una base ortnormal de \mathbb{R}^3 . Para u_1 :

$$Av_1 = A \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{5}{\sqrt{2}} \\ \frac{5}{\sqrt{2}} \\ 0 \end{pmatrix}$$

Por lo que
$$u_1 = \frac{1}{5} \begin{pmatrix} \frac{5}{\sqrt{2}} \\ \frac{5}{\sqrt{2}} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}.$$

Para u_2 :

$$Av_2 = A \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 3 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{4}{\sqrt{2}} \end{pmatrix}$$

por lo que $u_2 = \frac{1}{3} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \\ \frac{4}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{3\sqrt{2}} \\ \frac{-1}{3\sqrt{2}} \\ \frac{4}{3\sqrt{2}} \end{pmatrix}$. Finalmente tomamos $u_3 = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$ que completa una base

ortonormal de \mathbb{R}^3 . En total

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{3\sqrt{2}} & \frac{-2}{\sqrt{5}} \\ 0 & \frac{4}{3\sqrt{2}} & \frac{1}{\sqrt{5}} \end{pmatrix}.$$

Terminemos con una observación respecto a qué sucede si nos preguntamos por la descomposición en valores singulares de la transpuesta conjugada de una matriz.

Ejercicio 4. Calcular la descomposición en valores singulares de $B = A^* = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$

Dada una descomposición en valores singulares de $A,\,A=U\Sigma V^*$ obtenemos tomando transpuesta conjugadas que

$$B = A^* = (U\Sigma V^*)^* = V\Sigma^* U^* = V\Sigma^t U^*$$

lo cual es una descomposición en valores singulares para B.