We consider the classical algorithm in Clawpack with the minmod TVD limiter and solve the shallow water equations:

$$\partial_t h + \partial_x (h v_x) + \partial_y (h v_y) = 0, \tag{1a}$$

$$\partial_t(hv_x) + \partial_x(hv_x^2 + \frac{1}{2}gh^2) + \partial_y(hv_xv_y) = -gh\partial_x b, \tag{1b}$$

$$\partial_t(hv_y) + \partial_x(hv_xv_y) + \partial_y(hv_y^2 + \frac{1}{2}gh^2) = -gh\partial_y b, \tag{1c}$$

where h is the water height, $hv = (hv_x, hv_y)$ the momentum, and

$$b(x,y) = \frac{1}{4} - \frac{1}{4}\sin(2\pi y) \tag{2}$$

is the variable bathymetry. The domain is given by $\Omega = [0, 100] \times [-0.5, 0.5]$.

Generation of diffractors

To generate a diffraction we start with the following initial condition:

$$h(x,y) + b(x,y) = \frac{3}{4} + 0.05 \exp\left(-\frac{x^2}{4}\right), \quad hu(x,y) = hv(x,y) = 0$$

and impose solid wall boundary conditions at the left, bottom and top boundaries. The right boundary is set to outflow. At t = 25, we change the left and right boundaries to periodic boundary conditions. We compute the solution up to t = 340. The solution is a train of diffractors, we consider the largest one. To produce the diffractor, proceed as follows:

- Generation of the diffracton. Run create_diffracton/run_sw_eqns.py, which solves (??) up to a final time t = 340. The resolution is given by $\Delta x = \Delta y = 1/512$.
- Isolation of the diffracton. Inside cut_diffracton, create a folder called _output and copy create_diffracton/_output/*0340* to the newly created folder. Finally, run cut_diffracton/cut.py. The isolated diffracton will be placed in cut_diffracton/_output_cut_wave. The diffracton is isolated based on the water elevation h + b. We locate the peak of the wave and move to the left and right until $h + b \eta^*$ is smaller than 10^{-12} . Here $\eta^* = 0.75$ is the mean water level.
- Run cut_diffracton/export_diffracton.py to generate an h5 file with the isolated diffracton.

After following these steps, the data (in a h5 file) will be placed in cut_diffracton/. We place the diffracton in a smaller domain given by $\Omega = [0, 20]$. We use this diffracton as the initial condition for the pseudospectral simulations in the manuscript.

Measurement of the speed of diffractors

We need to estimate the speed of the diffracton. We do that using $\Delta x = \Delta y = 1/512$ and run the simulations in the modified version of Clawpack in https://github.com/manuel-quezada/pyclaw/tree/compute_L1_error_wrt_init_cond. We proceed as follows:

- Inside propagate_cut_diffracton, create a folder called _output_refn0 and copy cut_diffracton/_output_small_domain/*refn0* into it.
- Change the name of the copied files from 'init_refn0...' to 'claw...'.
- Run propagate_cut_diffracton/prop_diffracton.py. Doing so will create a file called 'file.csv'.
- Run propagate_cut_diffracton/measure_speed.py to estimate the speed of the diffracton.