Anforderungen an die Anwendungsklassen eines Übertragungskanals (Channel) Kupfer

Eine Auswahl wesentlicher elektrischer Anforderungen zum Vergleich bei verschiedenen Frequenzen und Übertragungsklassen nach ISO/IEC

Frequenz [MHz]		Klasse D	Klasse E	Klasse E _A	Klasse F	Klasse F _A
_	Dämpfung	4,0	4,0	4,0	4,0	4,0
	NEXT	63,3	65,0	65,0	65,0	65,0
	ACR	59,3	61,0	61,0	61,0	61,0
	Rückflussdämpfung	17,0	19,0	19,0	19,0	19,0
	PS-ACR-F	Х	X	67,0	67,0	67,0
0	Dämpfung	9,1	8,3	8,1	8,1	8,0
	NEXT	43,6	53,2	53,2	65,0	65,0
	ACR	34,5	44,9	45,1	56,9	57,0
	Rückflussdämpfung	17,0	18,0	18,0	18,0	18,0
	PS-ACR-F	Х	X			
0	Dämpfung	24,0	21,7	20,8	20,8	20,3
	NEXT	30,1	39,9	39,9	62,9	65,0
	ACR	6,1	18,2	19,2	42,1	46,1
	Rückflussdämpfung	10,0	12,0	12,0	12,0	12,0
	PS-ACR-F	X	X	60,0	60,0	67,0
720	Dämpfung	Х	35,9	33,8	33,8	32,5
4	NEXT	X	33,1	33,1	56,9	59,1
	ACR	X	-2,8	-0,7	23,1	26,6
	Rückflussdämpfung	X	8,0	8,0	8,0	8,0
	PS-ACR-F	Х	X	54,0	54,0	67,0
200	Dämpfung	X	X	49,3	49,3	46,7
ก	NEXT	X	X	27,9	52,4	53,6
	ACR	X	X	-21,4	3,1	6,9
	Rückflussdämpfung	X	X	8,0	8,0	8,0
	PS-ACR-F	X	X	49,5	49,5	64,5
000	Dämpfung	Х	X	X	54,6	51,4
ة ا	NEXT	X	X	X	51,2	51,1
	ACR	X	X	X	-3,4	-0,7
	Rückflussdämpfung	X	X	X	8,0	8,0
	PS-ACR-F	X	X	X	X	X
3	Dämpfung	X	X	X	X	67,6
000-	NEXT	X	X	X	X	47,9
	ACR	X	X	X	X	-19,7
	Rückflussdämpfung	X	X	X	X	8,0
	PS-ACR-F	Х	X	X	X	60,0

HINWEIS zum Thema Alien Crosstalk (Beeinflussung von außen durch elektromagnetische Störsignale von parallel geführten anderen Kupferkabeln): Gemäß Norm erfüllen Kabel der Kategorie 7 per Design die Anforderungen an die Alien Crosstalk-Parameter.

In der Verkabelungsnorm EN 50173-1:2007 sind drei Güteklassen für die elektromagnetische Verträglichkeit definiert (MICE-Tabelle).

Die beste Güteklasse E3 kann nur mit geschirmten Kabeln erreicht werden.

Dätwyler empfielt bereits seit vielen Jahren den Einsatz hochwertiger geschirmter Datenkabel der Cat.7 bzw. 7_A (PIMF) und bietet Kunden damit einen langfristigen Investitionsschutz bei steigenden Anforderungen.

