Acquisition Analytics Case Study

Problem:

Predict the probability of a response from each prospect and target the ones most likely to respond to the next telemarketing campaign. The steps were as follows:

- Identify relevant predictor variables for a response using EDA.
- Build predictive models and choose the best one.
- Sort the prospects in order of decreasing probability of response (predicted by the best model) and target the top X% (or top Y deciles), where X would be determined by your business objective (e.g., maximising the overall response rate/number of responders at a fixed marketing cost).

Task

Set the business objective to achieving 80% of total responders at the minimum possible cost. The total number of responders is the total number of prospects who responded, from the available data of about 45,000 prospects.

Calculate the X in the top X%, i.e., how many prospects should be called to meet the business objective.

- 1. We found relevant variables using EDA which are:
 - 1.1 Age
 - 1.2 Job
 - 1.3 Marital
 - 1.4 Education
 - 1.5 Previous Default
 - 1.6 Housing
 - 1.7 Loan
 - 1.8 Contact
 - 1.9 Month
 - 1.10 Day of the week
 - 1.11 Campaign
 - 1.12 Gap after the last contact
 - 1.13 Previous
 - 1.14 Employment Variation Rate
 - 1.15 Consumer Price Index
 - 1.16 Euribor three-month rate
 - 1.17 No. of employees
- 2. We have performed modelling using Logistic Regression and used RFE for variable selection to select out of 15 variables and our result as follows:

Impt variables predicted:

Month: March, May, June, August, November

Day of Week: Monday

Job: Student

Contact: Telephone Euribor three month rate Pdays: First time contacted

Our results:

Optimal cut off value: 0.1

Accuracy: 78% Sensitivity(TP): 67% Specificity(TN): 79%

3. Dataframe with the variables prospect ID, actual response, predicted response, predicted probability of response, duration of the call in seconds and cost of the call:

	Actual_response	Predicted_probablity	duration	Predicted_Response	Prospect_ID	duration_mins	cost
39340		9.067330e-01	101	1	139340	1.683333	2
39336	1	9.066381e-01	136	1	139336	2.266667	3
39258	- 1	9.060671e-01	215	1	139258	3.583333	4
40450	1	9.020609e-01	1064	1	140450	17.733333	18
40365	1	8.925504e-01	178	1	140365	2.966667	3
39153	1	8.917506e-01	363	1	139153	6.050000	7
39334	3	8.906684e-01	255	1	139334	4.250000	5
39255	3	8.900116e-01	290	1	139255	4.833333	5
40278	1	8.884697e-01	429	1	140278	7.150000	8

- 4. We can attain 80% of total conversions by targeting only top 50% of the total client base. Average call duration for targeting the top 80% prospects is 4.42 minutes
- 5. Lift chart:-

x-axis should show the number of prospects contacted;

y-axis should show the ratio of the response rate using the model and the response rate without using the model

6. Cost of acquisition:

Cost incurred for acquiring 80% of customers using the predictive model = \$ 101434