Homework 2016-03-04

Chuan Lu 13300180056

March 15, 2017

Problem 1.

Given
$$G(x) = e^{-x}$$
 and $F(x) = x - e^{-x}$,

compare Fixed-point iteration and Newton-Raphson iteration.

Proof. **0.1** The code is shown as follows.

```
1 function [root, root_list] = fixed_point_iter(func, x0, tol, order)
2 % FIXED_POINT_ITER Extract root ROOT of function FUNC with init
3 % point X0 given, using fixed point iteration
4 % author: chuanlu
5 % 2016-03-04
6
7 if nargin < 3
       error('More arguments are needed — newton_raphson_iter');
8
   elseif nargin = 3
9
       tol = 1e-6;
10
       order = 100;
11
12 end
13
14 count = 0;
15 root_list = zeros(1, 1);
16
   while 1
17
       count = count + 1;
18
       root_list(count) = x0;
       x1 = feval(func, x0);
19
       if abs(x1 - x0) < tol | | count >= order
20
21
           root = x1;
22
           return
23
       elseif count >= 100
           warning('Count over 100, may not be convergence');
24
           root = x1;
25
```

```
26
            return
27
        end
28
        x0 = x1;
29 end
   function [root, root_list] = newton_raphson_iter(func1, func2, x0, tol, order)
 2 % Extract root ROOT of function FUNC1 with its derivative FUNC2
 3 % and init point X0 given
 4
 5 if nargin < 3
        error('More arguments are needed — newton_raphson_iter');
 6
   elseif nargin == 3
 7
        tol = 1e-6;
 8
        order = 100;
 9
   elseif nargin = 4
10
        order = 100;
11
12 end
13
14 count = 0;
15 root_list = zeros(1, 1);
16 while 1
17
        count = count + 1;
18
        root_list(count) = x0;
        f1 = feval(func1, x0);
19
20
        f2 = feval(func2, x0);
21
        x1 = x0 - f1 / f2;
22
        if abs(x1 - x0) < tol
23
            disp(count);
24
            root = x1;
25
            return
26
        elseif count >= order
27
            root = x1;
28
            return
        elseif count > 100
29
30
            warning ('Count over 100, may not be convergence');
31
            root = x1;
32
            return
33
        end
34
        x0 = x1;
35 end
1 % homework 1.2.1
 2 format long
```

4 f = @(x)(x - exp(-x));

```
5 f2 = @(x)(1 + exp(-x));
 6 g = @(x)(exp(-x));
 7
 8 	ext{ } 	ext{x0} = 1;
 9 \text{ tol} = 1e-16;
10 \quad \mathbf{n1} = 4;
11 \mathbf{n2} = 24;
12 [root1, root\_list1] = fixed\_point\_iter(g, x0, tol, n2);
13 [root2, root\_list2] = newton\_raphson\_iter(f, f2, x0, tol, n1);
14 disp('root1')
15 \quad \mathbf{disp}(\mathbf{root1})
16 disp('root_list1')
17 disp(root_list1)
18 disp('root2')
19 disp(root2)
20 disp('root_list2')
21 disp(root_list2)
```

0.2 The result is shown as follows.

Fixed-point iter	Newton-Raphson iter
1.00000000000000000	1.00000000000000000
0.367879441171442	0.537882842739990
0.692200627555346	0.566986991405413
0.500473500563637	0.567143285989123
0.606243535085597	
0.545395785975027	
0.579612335503379	
0.560115461361089	
0.571143115080177	
0.564879347391050	
0.568428725029061	
0.566414733146883	
0.567556637328283	
0.566908911921495	
0.567276232175570	
0.567067898390788	
0.567186050099357	
0.567119040057215	
0.567157044001298	
0.567135490206278	
0.567147714260119	
0.567140781458298	
0.567144713346570	
0.567142483401307	
Root	Root
0.567143748099411	0.567143290409784

0.3 Analysis

When using Newton-Raphson iteration to extract the root of an equation, according to (1.2.22), the error is of second order, while the error of fixed-point iteration is of first-order. Hence, the speed of convergence is much quicker for Newton-Raphson iteration.

Problem 2.

For a n-dimension vector \mathbf{x} , when

$$1 \leqslant p \leqslant q,$$

prove

$$\|\mathbf{x}\|_{q} \leqslant \|\mathbf{x}\|_{p} \leqslant n^{\frac{1}{p} - \frac{1}{q}} \|\mathbf{x}\|_{q}$$

Proof. On one hand, assume $\|\mathbf{x}\|_q = 1$, then

$$||x_i|| \leqslant 1$$
, for $1 \leqslant i \leqslant n$

Because $1 \leq p \leq q$, then $||x_i||^q \leq ||x_i||^p$. Hence, $(\sum_{i=1}^n ||x_i||^p)^{\frac{1}{p}} \geqslant (\sum_{i=1}^n ||x_i||^q)^{\frac{1}{q}}$, which means $||x||_q \leq ||x||_p$. On the other hand, according to $H\ddot{o}lder$ inequation,

$$\frac{\left(\sum_{i=1}^{n} \|x_i\|^p\right)^{\frac{1}{p}}}{n^{\frac{1}{p}}} \leqslant \frac{\left(\sum_{i=1}^{n} \|x_i\|^q\right)^{\frac{1}{q}}}{n^{\frac{1}{q}}},$$

hence

$$\|\mathbf{x}\|_p \leqslant n^{\frac{1}{p} - \frac{1}{q}} \|\mathbf{x}\|_q$$