PLATAFORMA DE PROGRAMAÇÃO VISUAL PARA ESP8266

Aluno: Roberto Luiz Debarba

Orientador: Miguel Alexandre Wisintainer

Roteiro

- Introdução
- Objetivos
- Robótica educacional
- Linguagem de programação visual
- Otto DIY
- Trabalhos correlatos
- Requisitos
- Especificação
- Implementação
- Resultados
- Conclusões
- Sugestões

Introdução

- Ambiente onde a tecnologia é facilmente percebida
- Carência de conhecimento e interesse nessa área
- Ausência de computação no ensino fundamental
- A robótica educacional é uma alternativa para o problema, com apelo lúdico
- Recursos poucos utilizados no cenário nacional

Objetivo Geral

 Desenvolvimento de uma plataforma para programação visual baseada em blocos para suporte ao ensino de lógica de programação nas escolas com o auxílio de robótica educacional, usando o microcontrolador Esp8266

Objetivos Específicos

- Disponibilizar uma plataforma de programação visual baseada em blocos
- Permitir a execução dos programas desenvolvidos no microcontrolador Esp8266
- Garantir a execução dos programas de forma direta, sem a necessidade do usuário interagir com programas terceiros

Robótica Educacional

- Forma de viabilizar o conhecimento e estimular a criatividade e a experimentação com um forte apelo lúdico
- Com os últimos avanços em tecnologia, o preço dos recursos permite aos educadores utilizarem a robótica
- 1ª categoria: aprendizado de robótica
- 2ª categoria: robótica como recurso tecnológico na aprendizagem de conceitos interdisciplinares
- 3ª categoria: integração das duas categorias anteriores

Linguagem de Programação Visual

- A sintaxe (semanticamente significativa) inclui expressões visuais
- A dificuldade de compreensão da sintaxe das linguagens de programação e a falta de conexão dos programas desenvolvidos com os interesses contribuiu para o insucesso da inserção da computação em sala de aula
- A maioria das pessoas veem a programação como uma atividade técnica e restrita
- Scratch como ferramenta de programação baseada em blocos

Otto DIY

- Robô interativo que qualquer pessoa pode construir
- Possui código aberto permitindo modificação e construção da própria versão
- Usa uma linguagem de programação visual baseada em blocos ou C++ com o framework Arduino
- Custo total dos componentes: R\$311,50
- Custo do kit oficial: €49.99 (R\$228,87)

Otto DIY

Trabalhos Correlatos: Scratch

 Ajudar a pensar de forma criativa, raciocinar sistematicamente e trabalhar colaborativamente

Trabalhos Correlatos: Scratchboard

 Plataforma de baixo custo para ensino de programação com hardware

Trabalhos Correlatos: Micro:bit

 Ajudar a ensinar estruturas de código simples, condicionais, repetições e funções

Requisitos Funcionais

- RF01 A plataforma deve permitir a criação de programas através de uma linguagem de programação visual baseada em blocos
- RF02 A plataforma deve permitir a gravação no robô, através da internet, do programa criado
- RF03 A plataforma deve permitir salvar o programa criado no disco através de um arquivo

Requisitos Funcionais

- RF04 A plataforma deve permitir o carregamento, a partir do sistema de arquivos, de um programa previamente salvo
- RF05 A plataforma deve executar, através do robô, o programa mais recente gravado
- RF06 A plataforma deve permitir a visualização do código fonte do programa criado pelo usuário

Requisitos Não Funcionais

- RNF01 A plataforma deve utilizar a biblioteca Google Blockly para implementar a linguagem de programação visual baseada em blocos
- RNF02 A plataforma deve ser compatível com o navegador Google Chrome versão 78 ou superior
- RNF03 A plataforma não deve exigir nenhuma instalação no computador do usuário além do navegador compatível
- RNF04 A plataforma necessita de acesso à internet

Requisitos Não Funcionais

- RNF05 A plataforma deve utilizar a biblioteca PlatformIO versão 4.0.3 para compilar o programa criado pelo usuário
- RNF06 A plataforma deve utilizar o repositório de arquivos AWS S3 para armazenar os programas gerados
- RNF07 A plataforma deve utilizar o microcontrolador Espressif ESP8266 na construção do robô
- RNF08 A plataforma deve utilizar a pilha tecnológica Quarkus para a construção do backend

Especificação

Especificação

Especificação

interaction Atualizar firmware

Frontend

```
Blockly.Blocks['control_waitseconds'] = {
 init: function() {
  this.appendDummyInput()
     .appendField("Esperar")
     .appendField(new Blockly.FieldNumber(1, 0, Infinity,
1), "seconds")
     .appendField("segundos");
  this.setPreviousStatement(true, null);
  this.setNextStatement(true, null);
  this.setColour(140);
this.setTooltip("");
this.setHelpUrl("");
```

Esperar 1 segundos

Frontend

```
Blockly.JavaScript['control_waitseconds'] = function
(block) {
    let number_seconds = block.getFieldValue('seconds');
    return `delay(${number_seconds * 1000});\n`;
};
```


Frontend

Plataforma de programação visual para Esp8266 Salvar Abrir Blocos Código 3 Controles Movimentos Sensores Tem obstáculo Executar para sempre Dançar Configurações Virar (90°) para a (direita ਹ Mostrar sentimento

Backend

Robô

Robô

Análise dos Resultados

- Lista de tarefas
- Dois exercícios com complexidades diferentes
- Execução na plataforma e no Scratch
- Questionário de avaliação
- Espaço para sugestões sobre a plataforma e Scratch

Perfil de Usuário

Idade dos alunos

Conhecimento em programação

Programa profissionalmente

Conhece o Scratch

Lista de Tarefas: Tempo

Exercício	Tempo médio (min)	Tempo mínimo (min)	Tempo máximo (min)		
Exercício 1 na plataforma	2,6	1	4,83		
Exercício 1 no Scratch	1,95	1,17	3,67		
Exercício 2 na plataforma	4,85	4,67	8		
Exercício 2 no Scratch	7,4	4	11		

Questionário: Plataforma

	Pergunta	1	2	3	4	5
a)	Foi fácil achar os elementos na interface e entender qual sua funcionalidade				25%	75%
b)	Os blocos de comando possuem descrições que permitem entender facilmente sua funcionalidade				37,5%	62,5%
c)	A variedade de blocos é suficiente para aplicar todos os exercícios iniciais de lógica de programação			12,5%	25%	62,5%
d)	O programa executou sem apresentar erros e travamentos	12,5%		37,5%	37,5%	12,5%
e)	A execução do robô é condizente com o texto dos blocos	25%	12,5%	25%	25%	12,5%
f)	Observar a execução do robô aumenta o interesse por criar novos programas				25%	75%

Questionário: Scratch

	Pergunta	1	2	3	4	5
a)	Foi fácil achar os elementos na interface e entender qual sua funcionalidade		12,5%	12,5%	50%	25%
b)	Os blocos de comando possuem descrições que permitem entender facilmente sua funcionalidade		12,5%	12,5%	25%	37,5%
c)	A variedade de blocos é suficiente para aplicar todos os exercícios iniciais de lógica de programação		12,5%	12,5%	37,5%	37,5%
d)	O programa executou sem apresentar erros e travamentos		25%		37,5%	37,5%
e)	A execução da animação é condizente com o texto dos blocos		25%		50%	25%
f)	Observar a execução da animação aumenta o interesse por criar novos programas			50%	12,5%	37,5%

Pontos Positivos da Plataforma

- Interface intuitiva
- Simplicidade
- Uso de robótica
- Auxílio no ensino de lógica de programação

Pontos Negativos da Plataforma

- Baixa quantidade de blocos
- Instabilidade na gravação dos programas no robô
- Dificuldades ao ler as opções de alguns blocos

Pontos Positivos do Scratch

- Interface intuitiva
- Simplicidade
- Auxílio no ensino de lógica de programação
- Grande quantidade de blocos

Pontos Negativos do Scratch

- Dificuldade em encontrar blocos
- Dificuldade de criar um programa sem haver explicação prévia
- Animações de execução muito simples

Conclusões

Objetivo	Resultado
Plataforma de programação visual baseada em blocos	Atendido
Suporte ao ensino de lógica de programação	Atendido
Uso da robótica educacional com Esp8266	Atendido
Execução direta pela plataforma	Atendido parcialmente

Pontos Relevantes

- Apresentação do projeto Otto DIY
- Uso do Esp8266 no Otto DIY

Sugestões

- Protocolo MQTT na rotina de atualização do firmware
- Novos blocos de ações para o robô
- Novos blocos de lógica de programação
- Atualização do firmware via cabo USB

Demonstração

Obrigado

PLATAFORMA DE PROGRAMAÇÃO VISUAL PARA ESP8266

Aluno: Roberto Luiz Debarba

Orientador: Miguel Alexandre Wisintainer

