ECE380 Digital Logic

Optimized Implementation of Logic Functions: Karnaugh Maps and Minimum Sum-of-Product Forms

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-1

Karnaugh map

- The key to finding a minimum cost SOP or POS form is applying the combining property (14a for SOP or 14b for POS)
- The Karnaugh map (K-map) provides a systematic (and graphical) way of performing this operation
- Minterms can be combined by 14a when they differ in only one variable

$$-f(x,y,z) = xyz+xyz' = xy(z+z') = xy(1) = xy$$

The K-map illustrates this combination graphically

Electrical & Computer Engineering

Karnaugh map

- The K-map is an alternative to a truth table for representing an expression
 - K-map consists of cells that correspond to rows of the truth table
 - Each cell corresponds to a minterm
- A two variable truth table and the corresponding Kmap

X_1	<i>X</i> ₂	f
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-3

Karnaugh map

Values for the first variable are listed across the top

Values for the second variable are listed down the left side

Electrical & Computer Engineering

Karnaugh map groupings

- Minterms in adjacent squares on the map can be combined since they differ in only one variable
- Indicated by looping the corresponding '1's on the map (the '1's must be adjacent)
- Looping two '1's together corresponds to eliminating a term and a variable from the output expression => xy+xy' = x

Х	У	f
0	0	0
0	1	0
1	0	1
1	1	1

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-5

K-map groupings example

X	У	f
0	0	0
0	1	1
1	0	1
1	1	1

 Note that the bottom two cells differ in only one variable (x) and the right two cells differ in only one variable (y)

Electrical & Computer Engineering

K-map groupings example

- Draw the K-map and give the minimized logic expression for the following truth table.
- Show the groupings made in the K-map

Х	У	f
0	0	1
0	1	1
1	0	1
1	1	0

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-7

Three variable K-map

- A three-variable K-map is constructing by laying 2 two-variable maps side by side
- K-map are always laid out such that adjacent squares only differ by one variable (i.e. by 1 bit in the binary expression of the minterm values)

X	У	Z	Minterm
0	0	0	$m_0 = x'y'z'$
0	0	1	$m_1 = x'y'z$
0	1	0	m ₂ =x'yz'
0	1	1	m ₃ =x'yz
1	0	0	m ₄ =xy'z'
1	0	1	m ₅ =xy'z
1	1	0	m ₆ =xyz'
1	1	1	m ₇ =xyz

End cells are 'adjacent'

Electrical & Computer Engineering

Example three-variable K-maps

$$f(x,y,z)=\sum m(0,1,2,4)$$

=x'y'+x'z'+y'z'

$$f(x,y,z)=\Sigma m(0,1,2,3,4)$$

=x'+y'z'

A grouping of four eliminates 2 variables

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-9

Guidelines for combining terms

- Can combine only adjacent '1's
- Can group only in powers of 2 (1,2,4,8, etc.)
- Try to form as large a grouping as possible
- Do not generate more groups than are necessary to "cover" all the '1's

Electrical & Computer Engineering

Example groupings

$$f=z'+y'$$

$$f=y+x'z'$$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-11

K-map groupings example

- Draw the K-map and give the minimized logic expression for the following.
 - $f(a,b,c)=\Sigma m(1,2,3,4,5,6)$
- Show the groupings made in the K-map

Electrical & Computer Engineering

Four variable K-map

- A four-variable K-map is constructing by laying 2 three-variable maps together to create four rows
 - f(a,b,c,d)

cd al	00	01	11	10
00	m_0	m ₄	m ₁₂	m ₈
01	m ₁	m ₅	m ₁₃	m ₉
11	m ₃	m ₇	m ₁₅	m ₁₁
10	m ₂	m ₆	m ₁₄	m ₁₀

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-13

Four variable K-map

• Adjacencies wrap around in the K-map

Electrical & Computer Engineering

Example four-variable K-maps

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-15

Example groupings

$$f(a,b,c,d)=b'+d'$$

$$f(a,b,c,d)=b'd+bd'$$

Example groupings

$$f(a,b,c,d)=b'd'+bd$$

ab cd	00	01	11	10
00	1	1	1	0
01	1	0	0	1
11	1	0	0	1
10	1	1	1	0

$$f(a,b,c,d)=b'd'+bd$$
 $f(a,b,c,d)=b'd+bd'+a'b'$

Electrical & Computer Engineering