Universidade Federal do Amazonas - UFAM Instituto de Computação - ICOMP

Redes de Computadores – 2019. Quarto trabalho Prático

Lucas de Lima Castro - 21551892

1) Considere a analogia de transporte na Seção 5.1.1. Se o passageiro e comparado com o datagrama, o que e comparado com o quadro da camada de enlace?

R: Nesta analogia o quadro da camada de enlace é comparado com o meio de transporte utilizado pelo datagrama.

2) Se todos os enlaces da Internet fornecessem serviço de entrega confiável, o serviço de entrega confiável do TCP seria redundante? Justifique sua resposta.

R: Não, pois podem ocorrer erros quando um quadro da camada de enlace entrega os dados para as camadas superiores (**camada de rede, camada de transporte**).

3) Quais alguns possíveis serviços um protocolo da camada de enlace pode oferecer a camada de rede? Quais dos serviços da camada de enlace têm correspondentes no IP? E no TCP?

R: Serviços fornecidos para a cama de rede: *Enquadramento de dados, Acesso ao enlace, Entrega confiável, Detecção e correção de erros.*

Correspondentes ao IP: Quadro, Detecção de erros.

Correspondentes ao TCP: Quadro, entrega confiável, controle de fluxo, detecção de erros de full duplex

4) Suponha que dois nós comecem a transmitir ao mesmo tempo um pacote de comprimento L por um canal broadcast de velocidade R. Denote o atraso de propagação entre os dois nós como dprop. Haverá uma colisão se dprop < L/R? Por quê?

R: Haverá colisão. Pois enquanto um nó ainda estiver transmitindo o pacote, parte do pacote do outro transmissor iniciará a transmissão, assim sobrepondo as informações.

5) A Seção 5.3 do livro do Kurose&Ross relaciona quatro características desejáveis de um canal de difusão. O ALOHA com slots tem quais dessas características? E o protocolo de passagem de permissão, tem quais dessas características?

R: ALOHA com Slots:

Permite que um único nó transmita continuamente à taxa total do canal R, quando for o único nó ativo.

Quando M nós têm dados para enviar, cada um desses nós tem uma vazão de R/M bits/s. Isso não significa necessariamente que cada um dos M nós sempre terá uma velocidade instantânea de R/M, mas que cada nó deverá ter uma velocidade média de transmissão de R/M durante algum intervalo de tempo adequadamente definido.

É descentralizado, pois cada nó detecta as colisões no canal e decide de modo independente quando retransmitir.

O protocolo é simples para que sua implementação seja barata

Protocolo de Passagem de Permissão e suas características com um canal de difusão:

Possui todas as caraterísticas de um canal de difusão

6) No CSMA/CD, depois da quinta colisão, qual é a probabilidade de um nó escolher K = 4? O resultado K = 4 corresponde a um atraso de quantos segundos em uma Ethernet de 10 Mbits/s?

R:

X = 5: $2^5 = 32$

 $K = 4 : 1/32 \times 100\% = 0.03125 \times 100\% = 3.125 \%$ de chance.

Atraso = $K * 512 * Tb = 4 * 512 * (1/(1*10^6)) = 204,8us$

7) Descreva os protocolos de polling e de passagem de permissão usando a analogia com as interações ocorridas em um coquetel.

R:

Polling: o mestre permite haja apenas uma pessoa falando, falando também alternadamente.

Passagem de permissão: não existe mestre, mas cada participante tem um copo de vinho e só irá poder falar se estiver com esse copo de vinho.

8) Por que o protocolo de passagem de permissão seria ineficiente se uma LAN tivesse um perímetro muito grande?

R: Seria ineficiente pois cada i-quadro precisa esperar outros n-1quadros para obter o token novamente.

9) Suponha que o conteúdo de informação de um pacote seja o padrão de bits 1110 0110 1001 1101 e que um esquema de paridade par esteja sendo usado. Qual seria o valor do campo de soma de verificação para o caso de um esquema de paridade bidimensional? Sua resposta deve ser tal que seja usado um campo de soma de verificação de comprimento mínimo.

1	1	1	0	1
0	1	1	0	0
1	0	0	1	0
1	1	0	1	1
1	1	0	0	0

10) Dê um exemplo (que não seja o da Figura 5.5 do livro do Kurose&Ross) mostrando que verificações de paridade bidimensional podem corrigir e detectar um erro de bit único. Dê outro exemplo mostrando um erro de bit duplo que pode ser detectado, mas não corrigido.

Matrix sem erros:

0	1	0	0	1
0	1	0	1	0
1	1	0	1	1
0	1	0	0	1
1	0	0	0	0

Com Erro detectável e corrigível

0	1	0	0	1
0	1	0	1	0
1	1	0	0	1
0	1	0	0	1
1	0	0	0	0

Com erro detectável, mas não corrigível

0	1	0	0	1
0	0	1	1	0
1	0	0	0	1
0	1	0	0	1
1	0	0	0	0

11) Suponha que a parte da informação de um pacote (D da Figura 5.3) contenha 10 bytes consistindo na representação ASCII binaria (8 bits) sem sinal da cadeia de caracteres "Networking". Calcule a soma de verificação da Internet para esses dados.

Caracteres	Binário correspondente
Ne	0100 1110 0110 0101
tw	0111 0100 0111 0111
1Soma = Ne + tw	1100 0010 1101 1100
or	0110 1111 0111 0010
2Soma = 1Soma + or	0011 0010 0100 1110
ki	0110 1011 0110 1001
3Soma = 2Soma + ki	1001 1101 1011 0111
ng	0110 1110 0110 0111
4Soma = 3Soma + ng	0000 1100 0001 1110
Complemento de 1	1111 0011 1110 0001

- 12) Considere o problema anterior, mas suponha desta vez que esses 10 bytes contenham: a. A representação binaria dos números de 1 a 10. b. A representação ASCII das letras B até K (letras maiúsculas). c. A representação ASCII das letras B até K (letras minúsculas).
- a) A representação binaria dos números de 1 a 10.

Caracteres	Binário correspondente
12	0000 0001 0000 0010
34	0000 0011 0000 0100
1Soma = 12+34	0000 0100 0000 0110
56	0000 0101 0000 0110
2Soma = 1Soma + 56	0000 1001 0000 1100
78	0000 0111 0000 1000
3Soma = 2Soma + 78	0001 0000 0001 0100
910	0000 1001 0000 1010
4Soma = 3Soma + 910	0001 1001 0001 1110
Complemento de 1	1110 0110 1110 0001

b) A representação ASCII das letras B até K (letras maiúsculas).

Caracteres	Binário correspondente
ВС	0100 0010 0100 0011
DE	0100 0100 0100 0101
1Soma = BC + DE	1000 0110 1000 1000
FG	0100 0110 0100 0111
2Soma = 1Soma + FG	1100 1100 1100 1111
н	0100 1000 0100 1001
3Soma = 2Soma + HI	0001 0101 0001 1000
JK	0100 1010 0100 1011
4Soma = 3Soma + JK	0101 1111 0110 0011
Complemento de 1	1010 0000 1001 1100

c. A representação ASCII das letras B até K (letras minúsculas).

Caracteres	Binário correspondente
bc	0110 0010 0110 0011
de	0110 0100 0110 0101
1Soma = bc + de	1100 0110 1100 1000
fg	0110 0110 0110 0111
2Soma = 1Soma + fg	0010 1101 0010 1111
hi	0110 1000 0110 1001
3Soma = 2Soma + hi	1001 0101 1001 1000
Jk	0110 0010 0110 0011
4Soma = 3Soma + jk	1111 0111 1111 1011
Complemento de 1	0000 1000 0000 0100

```
Qual é o valor de R?
Resposta:
10101<mark>010<mark>10</mark>0000 / 10011</mark>
10011
00<mark>11001</mark>
  10011
  010100
    10011
    00<mark>11110</mark>
       10011
      0<mark>11010</mark>
        10011
        010010
         10011
         000<mark>0100</mark>
                           R= 0100
14) Considere o problema acima, mas suponha que D tenha o valor de: a. 1001010101. b.
0101101010. c. 1010100000.
a) 1001010101
10010<mark>1010</mark>10000 / 10011
10011
0000<mark>11010</mark>
      10011
      010011
       10011
       00000
                 R= 0000
```

13) Considere o gerador de 7 bits G =10011 e suponha que D tenha o valor de 1010101010.

```
b) 0101101010
<mark>010110</mark>10<mark>10</mark>0000 / 10011
10011
11000
10011
0<mark>10110</mark>
 10011
 00<mark>10110</mark>
    10011
    00<mark>10110</mark>
       10011
       00<mark>10100</mark>
           10011
           0011100
               10011
               01111 R= 1111
c) 1010100000
10101<mark>00</mark>0<mark>00</mark> / 10011
10011
00<mark>11000</mark>
   10011
   010110
     10011
     00<mark>10100</mark>
          10011
         00111 R= 0111
```

15) Neste problema, exploramos algumas propriedades de CRC. Para o gerador G (=1001) dado na Seção 5.2.3, responda as seguintes questões: a. Por que ele pode detectar qualquer erro de bit único no dado D? b. Pode esse G detectar qualquer número ímpar de erros de bit? Por quê?