

06.Funnction_prediction 【功能预测】

1 PICRUSt 【PICRUSt 功能预测】

- 1.1 00.Predicted RawData 【KEGG 原始预测数据】
- 1.1.1 KEGG_Genes_Stat.{pdf, png} 【基因预测结果统计图】
- 1.1.2 predicted_metagenomes.KEGG_L*.txt 【KEGG 第 1, 2, 3 层级预测数据】
- 1.2 01.Absolute 【KEGG 各层级预测数据绝对丰度表】

Genes.level*.absolute.mat 【KEGG 第 1, 2, 3 和 ko 层级绝对丰度表】

列数	列标题	含义
1	KO_Hierarchy	KO 层级
2	样本名称	各样本中各功能注释的绝对丰度值
3	KEGG_Description	功能注释信息

- 1.3 02.Relative 【KEGG 各层级预测数据相对丰度表】
- 1.4 03.Top10 bar plot 【KEGG 1, 2, 3 层级 top10 功能相对丰度柱状图】
- 1.5 04.Cluster heatmap 【KEGG 各层级功能丰度聚类热图】
- 1.6 05.PCA 【基于 KEGG 2, 3, ko 层级 PCA 结果】
- 1.6.1 PCA12.{pdf,png} 【标有样品名的 PCA 图】
- 1.6.2 PCA12_2.{pdf,png} 【未标样品名称的 PCA 图】
- 1.6.3 PCA12_with_cluster.{pdf,png} 【带有置信椭圆标注样品名称的 PCA 图】
- 1.6.4 PCA12_with_cluster2.{pdf,png} 【带有置信椭圆未标样品名称的 PCA 图】
- 1.6.5 pca.csv 【PCA 作图数据】

列数	列标题	含义
1	样本名称	各样本名称
2	Axis1	1 维坐标
3	Axis2	2 维坐标
4	Axis3	3 维坐标
5	Axis4	4 维坐标
6	Axis5	5 维坐标

- 1.7 06.Venn_flower 【基于 ko 层级的韦恩花瓣图结果】
- 1.7.1 venn_flowerdata 【韦恩花瓣图数据】
- 1.*.uniq.otu.xls 【各样本独有 OTU 信息】
- 1.7.2 venn_flower_display.{png,pdf,svg} 【韦恩花瓣图展示】

样本(或分组)≤5个,用 Venn 图展示;样本(或分组)5个以上15个以下,用花瓣

图展示。

- 1.8 07.iPATH 【代谢通路比较分析结果】
- 1.9 08.T_test 【t_test 结果】
- 1.9.1 *-vs-*.*.mat 【两样本 t-test 数据文件】
- 1.9.2 *-vs-*.psig.xls 【两样本 t-test 数据结果】

列数	列标题	含义
1	Taxa	物种
2	avg(A1)	A1 组均值
3	sd(A1)	A1 组标准差

4	avg(A2)	A2 组均值
5	sd(A2)	A2 组标准差
6	p.value	p 值
7	q.values	q 值
8	interval lower	置信区间
9	interval upper	보디다면

- 1.9.3 *-vs-*.psig.xls.{svg,png} 【组间差异显著的物种分析条形图】
- 1.9.4 *-vs-*.qsig.xls 【从组间差异显著的物种分析结果中,筛选出的 p value≤0.05 的信息】
- 1.9.5 *-vs-*.test.xls 【组间差异显著的物种分析结果】
- 2 Tax4Fun 【Tax4Fun 功能预测】
- 3 FUNGuild 【FUNGuild 功能预测】

4 FAPROTAX 【FAPROTAX 功能预测】

PICRUST、FAPROTAX、Tax4fun 适用于细菌(16S)的功能预测,FunGuild 适用于真菌(ITS)的功能预测。这四种预测方式所需要的数据是不一样的,例如 FunGuild 和 FAPROTAX 使用的数据文件是有物种注释信息的 OTU 表格,Tax4fun 和 PICRUST 使用的是质控后的序列(FASTQ、FASTA 格式都可以)。