University Of Tripoli

Faculty Of Engineering

Materials And Metallurgical Engineering

Student Name: Marwan Mohammed Ahmed

El-Janzouri

No:02108594

Numerical methods

MME308

Assignment 4

Grop.

Problem no: 3,7,11

fall 2014

Problem 3

X	6	7	8	9	10	11
Y	0.7782	0.8451	0.9031	0.9542	1.0000	1.0414

Solution:

b)

Selective Tow Point Adjacent The Point You Need Fined

$$F_1(x) = f(x_0) + f[x_1, x_0](x - x_0)$$

$$f(x_0) = 0.9031$$

$$f[x_1, x_0] = \frac{f(x_0) - f(x_1)}{x_0 - x_1} = \frac{0.9542 - 0.9031}{9 - 8}$$

$$f[x_0, x_1] = 0.0511$$

$$f_1(x) = 0.9031 + 0.051(x - 8)$$

 $f_1(x) = 0.4951 + 0.051 X$
 $f_1(8.3) = 0.4951 + 0.051*(8.3)$
 $=0.9192$

The Absolute Relative Approximate Error

$$\left| \in_{a} \right| = \left| \frac{0.9191 - 0.9192}{0.9191} \right| \times 100$$

=0.01%

b)

	X_0	X_1	X_2
Х	7	8	9
Υ	0.8451	0.9031	0.9542

$$F_2(x) = f(x_0) + f[x_1, x_0](x - x_0) + f[x_2, x_1, x_0](x - x_0)(x - x_1).$$

$$f[x_1,x_0] = 0.0511$$

$$f[x_2,x_1,x_0] = \frac{f[x_2,x_1] - f[x_1-x_0]}{x^2 - x^0} = \frac{\frac{f(x_2) - f(x_1)}{x^2 - x^0} - \frac{f(x_1) - f(x_0)}{x^1 - x^0}}{x^2 - x^0} = \frac{\frac{0.9542 - 0.9031}{9 - 8} - \frac{0.9031 - 0.8451}{9 - 8}}{9 - 7}$$

$$f[x_2,x_1,x_0] = -0.0035$$

$$F_2(8.3) = 0.8451 + 0.0511(x - x_0) - 0.0035*(x - x_0)(x - x_1).$$

$$F_2(x) = 0.8451 + 0.0511(x - 7) - 0.0035(x - 7)(x - 8)$$

$$f_2(8.3) = 0.8451 + 0.0511*(8.3 - 7) - 0.0035(8.3 - 7)(8.3 - 8)$$

$$= 0.9102$$

The Absolute Relative Approximate Error

$$\left| \in_{a} \right| = \left| \frac{0.9191 - 0.9102}{0.9191} \right| \times 100$$

=0.97%

Problem 7

The following data defines the sea-level concentration of dissolved oxygen for fresh water as function of temperature

$T(c^0)$	O (mg/L)
0	14.621
8	11.843
16	9.870
24	8.418
32	7.305
40	6.413

Estimate O(29) using (a) quadratic Lagrange polynomial.

(b) cubic Lagrange polynomial.

Solution

a) For quadratic interpolation, the concentration is given by

$$O(T) = \sum_{i=0}^{2} L_i(T)O(T_i)$$

$$= L_0(T)O(T_0) + L_1(T)O(T_1) + L_2(T)O(T_2)$$

Since we want to find the concentration at T=21, and we are using a second order polynomial, we need to choose the three data points that are closest to T=21 that also bracket T=21 to evaluate it. The three points are $T_0=24$, $T_1=32$, and $T_2=40$.

Then

$$T_0 = 24$$
, $O(T_0) = 8.418$
 $T_1 = 32$, $O(T_1) = 7.305$
 $T_2 = 40$, $O(T_2) = 6.413$

gives

$$\begin{split} L_0(T) &= \prod_{\substack{j=0\\j\neq 0}}^2 \frac{T - T_j}{T_0 - T_j} \\ &= \left(\frac{T - T_1}{T_0 - T_1}\right) \left(\frac{T - T_2}{T_0 - T_2}\right) \\ L_1(T) &= \prod_{\substack{j=0\\j\neq 1}}^2 \frac{T - T_j}{T_1 - T_j} \\ &= \left(\frac{T - T_0}{T_1 - T_0}\right) \left(\frac{T - T_2}{T_1 - T_2}\right) \\ L_2(T) &= \prod_{\substack{j=0\\j\neq 2}}^2 \frac{T - T_j}{T_2 - T_j} \\ &= \left(\frac{t - t_0}{t_2 - t_0}\right) \left(\frac{t - t_1}{t_2 - t_1}\right) \end{split}$$

Hence

$$O(T) = \left(\frac{T - T_1}{T_0 - T_1}\right) \left(\frac{T - T_2}{T_0 - T_2}\right) O(T_0) + \left(\frac{T - T_0}{T - T_0}\right) \left(\frac{T - T_2}{T_1 - T_2}\right) O(T_1) + \left(\frac{T - T_0}{T_2 - T_0}\right) \left(\frac{T - T_1}{T_2 - T_0}\right) O(T_2), \ T_0 \le T \le T_2$$

$$T(16) = \frac{(29-32)(29-40)}{(24-32)(24-40)}(8.418) + \frac{(29-24)(29-40)}{(32-24)(32-40)}(7.305) + \frac{(29-24)(29-32)}{(40-24)(40-32)}(6.413)$$

$$= (0.2578)(8.418) + (0.8594)(7.305) + (-0.1172)(6.413)$$
$$= 7.694 \quad C$$

Problem 7 b:

$T(c^0)$	O (mg/L)
0	14.621
8	11.843
16	9.870
24	8.418
32	7.305
40	6.413

Solution:

a)
$$O(T) = \sum_{i=0}^{3} L_i(T)O(T_i)$$
$$= L_0(T)O(T_0) + L_1(T)O(T_1) + L_2(T)O(T_2) + L_3(T)O(T_3)$$

Then

$$T_0 = 16$$
, $O(T_0) = 9.870$
 $T_1 = 24$, $O(T_1) = 8.418$
 $T_2 = 32$, $O(T_2) = 7.305$
 $T_3 = 40$, $O(T_3) = 6.413$

gives

$$\begin{split} L_0(T) &= \prod_{\substack{j=0\\j\neq 0}}^3 \frac{T - T_j}{T_0 - T_j} \\ &= \left(\frac{T - T_1}{T_0 - T}\right) \left(\frac{T - T_2}{T_0 - T_2}\right) \left(\frac{T - T_3}{T_0 - T_3}\right) \\ L_1(T) &= \prod_{\substack{j=0\\j\neq 1}}^3 \frac{T - T_j}{T_1 - T_j} \end{split}$$

$$\begin{split} &= \left(\frac{T-T_0}{T_1-T_0}\right) \left(\frac{T-T_2}{T_1-T_2}\right) \left(\frac{T-T_3}{T_1-T_3}\right) \\ &L_2(T) = \prod_{\substack{j=0\\j\neq 2}}^3 \frac{T-T_j}{T_2-T_j} \\ &= \left(\frac{T-T_0}{T_2-T_0}\right) \left(\frac{T-T_1}{T_2-T_1}\right) \left(\frac{T-T_3}{T_2-T_3}\right) \\ &L_3(T) = \prod_{\substack{j=0\\j\neq 3}}^3 \frac{T-T_j}{T_3-T_j} \\ &= \left(\frac{T-T_0}{T_3-T_0}\right) \left(\frac{T-T_1}{T_3-T_1}\right) \left(\frac{T-T_2}{T_3-T_2}\right) \end{split}$$

Hence

$$\begin{split} O(T) = & \left(\frac{T - T_1}{T_0 - T_1} \right) \left(\frac{T - T_2}{T_0 - T_2} \right) \left(\frac{T - T_3}{T_0 - T_3} \right) O(T_0) + \left(\frac{T - T_0}{T_1 - T_0} \right) \left(\frac{T - T_2}{T_1 - T_2} \right) \left(\frac{T - T_3}{T_1 - T_3} \right) O(T_1) \\ & + \left(\frac{T - T_0}{T_2 - T_0} \right) \left(\frac{T - T_1}{T_2 - T_1} \right) \left(\frac{T - T_3}{T_2 - T_3} \right) O(T_2) + \left(\frac{T - T_0}{T_3 - T_0} \right) \left(\frac{T - T_1}{T_3 - T_1} \right) \left(\frac{T - T_2}{T_3 - T_2} \right) O(T_3), \ T_0 \leq T \leq T_3 \\ & O(29) = \frac{(29 - 24)(29 - 32)(29 - 40)}{(16 - 24)(16 - 32)(16 - 40)} (9.870) + \frac{(29 - 16)(29 - 32)(29 - 40)}{(24 - 16)(24 - 32)(24 - 40)} (8.418) \\ & + \frac{(29 - 16)(29 - 24)(29 - 40)}{(32 - 16)(32 - 24)(32 - 40)} (7.305) \\ & + \frac{(29 - 16)(29 - 24)(29 - 32)}{(40 - 16)(40 - 24)(40 - 32)} (6.314) \\ & = (-0.0537)(9.870) + (0.419)(8.418) + (0.698)(7.305) + (-0.0635)(6.314) \\ & = 7.695 \text{ C} \end{split}$$
 b)
$$| \epsilon_a | = \left| \frac{7.695 - 7.694}{7.695} \right| \times 100 \\ & = 0.01299\%$$

Problem 11

X	-2	1	-4	4	3	-1
у	-1	2	-53	59	24	4

Solution:

Coordinates	0st order	1-th order	2-th order	
X 0	f[xo]			
X 1	f[x1]	f[x0, x1]		
X 2	f[x2]	f[x1, x2]	f[x0, x1, x2]	
Х3	f[x3]	f[x2, x3]	f[x1, x2, x3]	

X	Y	1 th order	2 th order	3 th order	4 th order	5 th order
-2	-1					
1	2	1				
-4	-53	11	-5			
4	59	14	1	1		
3	24	35	3	1	0	
-1	4	5	6	1	0	0

From the table is determine the degree of polynomial is ${\bf 3}$

X	Y	1 th order
-2	-1	
1	2	1

$$F_1(x) = b_0 + b_1(x-x_0)$$

$$F_1(0) = -1 + (0 + 2)$$

$$F_1(0) = 1$$

From the table at x=0, y=1