# ಕಾಂತಿ... ಸಿದ್ಧಾಂತಾಲು, ಧರ್ತ್ವಾಲು

### පංෂී (Light)

- కాంతి ఒక శక్తి స్వరూపం.
- ఇది స్వయం ప్రకాశాలైన వస్తువుల్లో జనించి, రుజు మార్గంలో ప్రయాణిస్తుంది.
- కాంతి కిరణాలు ఎదురుగా ఉన్న వస్తువుల ఉపరితలంపై పతనమై పరావర్తనం చెందినప్పుడు.. కనీసం 1/16వ సెకన్ కాలం పాటు మన కంటిలోని రెటీనాను తాకినట్లయితే optec అనే నాడి వల్ల దృష్టిజ్ఞానం కలుగుతుంది. కాబట్టి కాంతిని light అనే పేరుతో పాటు optics అని కూడా పిలుస్తారు.
- దృష్టి జ్ఞానాన్ని గురించి అధ్యయనం చేసే శాస్త్రాన్ని ఆప్తమాలజీ
   (Opthamology) అని అంటారు. కళ్ల డాక్టర్ను ఆప్తమాలజిస్ట్
   (Opthamologist) అని అంటారు.
- కాంతిని కొలిచే శాస్త్రాన్ని కాంతిమితి శాస్త్రం (Photometry) అంటారు.
- విశ్వంలో ఉన్న వస్తువులను స్వయం ప్రకాశకాలు (self luminous body), అస్వయం ప్రకాశకాలు అని రెండు రకాలుగా వర్గీకరించ వచ్చు.

## A. స్వయంప్రకాశకాలు

- ఈ వస్తువులు కాంతిని బయటకు వెదజిమ్ముతాయి.
   ఉదాహరణ:
  - 1) సూర్యుడు
  - 2) నక్షత్రాలు
  - 3) మిణుగురు పురుగు
  - 4) వెలుగుతున్న విద్యుత్ బల్పు
  - 5) Tube light
  - 6) Torch light

#### B. అస్వయంప్రకాశకాలు

 ఈ వస్తువులు కాంతి కోసం స్వయం ప్రకాశకాలైన వస్తువులపై ఆధారపడతాయి.

ఉదా: గ్రహాలు, ఉపగ్రహాలు, మానవ శరీరం, చెక్క దిమ్మ మొదలైనవి.

కాంతిని తమ ద్వారా ప్రసారం చేసే ధర్మాన్ని ఆధారంగా చేసుకొని విశ్వంలోని వస్తువులను మూడు రకాలుగా వర్గీకరించవచ్చు.

## 1. పారదర్శక వస్తువులు (Transparent materials)

వీటి ద్వారా కాంతి కిరణాలు చొచ్చుకొని వెళతాయి.
 ఉదా: గాజుపలక, నీరు.

## 2. అర్థ పారదర్శక పదార్థాలు (Semi Transparent)

 ఈ వస్తువులపై పతనమైన కాంతిలో కొంత భాగం తమ ద్వారా ట్రసారం చేసి మిగిలిన భాగాన్ని ఆపివేస్తాయి. ఉదా: 1) గరుకు ఉపరితలం ఉన్న గాజుపలక

- 2) టేసింగ్ పేపర్
- 3) నూనె అద్దిన కాగితం

### 3. అపారదర్శక వస్తువులు:-

వీటి ద్వారా కాంతి కిరణాలు చొచ్చుకొని వెళ్ళలేవు.
 ఉదాహరణ: గ్రహాలు, ఉపగ్రహాలు, మానవ శరీరం.

## కాంతి సిద్దాంతాలు

కాంతి ధర్మాల గురించి శాస్త్రవేత్తలు అధ్యయనం చేసి కింది సిద్ధాంతాలను డ్రతిపాదించారు.

## 1. న్యూటన్ కణ సిద్దాంతం (Newton's Corpuscular theory)

ఈ సిద్ధాంతం ప్రకారం స్వయం ప్రకాశకాలైన వస్తువుల్లో నుంచి వెలువడిన కాంతి కిరణాలు.. చిన్న చిన్న కణాల రూపంలో ప్రయాణిస్తాయి. ఈ కణాలపై భూమి గురుత్వాకర్షణ ప్రభావం దాదాపు శూన్యంగా ఉంటుంది. అందువల్ల వీటిని కార్పాస్కుల్లర్స్ అంటారు. వీటి వేగం సాంద్రతర యానకంలో (denser medium గాజు, నీరు) ఎక్కువ. అయితే సరళ యానకంలో (Rarer medium గాలి) తక్కువగా ఉంటుంది. అదేవిధంగా వేర్వేరు పరిమాణా లున్న కాంతి కణాలు వేర్వేరు రంగులను ఏర్పరుస్తాయి. కానీ ప్రయోగాత్మకంగా పరిశీలిస్తే.. కాంతి వేగం సరళ యానకంలో ఎక్కువ, సాంద్రతర యానకంలో తక్కువగా ఉంటుంది. అదే విధంగా వేర్వేరు తరంగదైర్ఘ్యాలున్న కాంతి కిరణాలు వేర్వేరు రంగులను ఏర్పరుస్తాయి. ఈ సిద్ధాంతాన్ని శాస్త్రవేత్తలు తప్పని తిరస్కరించారు.

## 2. హైగెన్స్ తరంగ సిద్దాంతం

- దీని ప్రకారం కాంతి కిరణాలు తరంగాల రూపంలో ప్రయాణి స్తాయి. ఇవి ప్రయాణించడానికి విశ్వవ్యాప్తమైన ఈథర్ అనే యానకం అవసరం.
- కాంతి తరంగాల వేగం సరళ యానకంలో ఎక్కువ, సాంద్రతర యానకంలో తక్కువగా ఉంటుంది. అదేవిధంగా వివిధ తరంగ ధై ర్య్యాలున్న కాంతి కిరణాలు వేర్వేరు రంగులను ఏర్పరుస్తాయి.

## 3. క్వాంటమ్ సిద్దాంతం

- దీన్ని క్రీ.శ. 1900లో Max Planck అనే శాస్త్రవేత్త ప్రతిపాదించారు.
- ఈ సిద్ధాంతం ప్రకారం కాంతిశక్తి చిన్న చిన్న క్వాంటంల రూపంలో లేదా శక్తి ప్యాకెట్ల రూపంలో ప్రయాణిస్తుంది. ఒక క్వాంటమ్లో ఉన్న శక్తిని ఒక ఫోటాన్ అంటారు.

ఫోటాన్లో ఉన్న శక్తికి సమీకరణం

E = hv

h = ప్లాంక్ స్థిరాంకం

$$\upsilon$$
 = పౌనఃపున్యం (Frequency) 
$$\label{eq:constraint}$$
 కాంతి వేగం  $c=\upsilon\lambda$   $\upsilon=\frac{c}{\lambda}$ 

- ullet దీనినిపై సమీకరణంలో డ్రుతిక్షేపించిన  ${
  m E}=rac{{
  m hc}}{\lambda}$
- ఈ సిద్ధాంత ప్రతిపాదనకు Max Planckకు నోబెల్ బహుమతి లభించింది. ఇతడిని ఆధునిక భౌతిక శాస్త్ర పితామహుడని అంటారు. (Father of Modern Physics)
- 4. విద్యుత్ అయస్కాంత తరంగ సిద్ధాంతం (Electro magnetic wave theory)
- င်္ဂိည္မွ Maxwell అనే శాస్త్రవేత్త డ్రతిపాదించాడు.
- ఈ సిద్ధాంతం ప్రకారం కాంతి శక్తి.. విద్యుత్, అయస్కాంత అంశాల రూపంలో ప్రయాణిస్తుంది. ఈ తరంగాలు ప్రయాణించ డానికి ఎలాంటి యానకం అవసరం లేదు.

#### కాంతి ధర్మాలు

## 1. కాంతి రుజువర్తనం

- స్వయం ప్రకాశకాలైన వస్తువుల నుంచి వెలువడిన కాంతి కిరణాలు సరళ మార్గంలో ప్రయాణించడాన్ని కాంతి రుజువర్తనం అంటారు.
- ఈ విధంగా ప్రయాణిస్తున్న కాంతి కిరణాలు ఎదురుగా ఉన్న వస్తువుల ఉపరితలంపై పతనమైనప్పుడు రెండోవైపు నీడలను (ఛాయలు) ఏర్పరుస్తాయి. ఈ ఛాయలు రెండు రకాలు. దట్టమైన చీకటితో ఆవరించిన ప్రాంతాన్ని ప్రచ్ఛాయ (embra), దాని చుట్టూన్న మనక చీకటిని ఉపచ్చాయ (penumbra) అంటారు.
- సూర్యగ్రహణం, చంద్రగ్రహణాలు (Sonar & Lunar eclipse)
   కాంతి రుజువర్తనం వల్ల ఏర్పడుతున్నాయి. ప్రచ్ఛాయలో సం పూర్ణ గ్రహణాలు, ఉపచ్ఛాయలో పాక్షిక గ్రహణాలు ఏర్పడ తాయి. సాధారణంగా అమావాస్య రోజు సూర్యగ్రహణం, పౌర్ణమి రోజు చంద్రగ్రహణాలు ఏర్పడతాయి.

## 2. కాంతివేగం

- కాంతి వేగాన్ని కనుగొనడానికి మొదటిసారిగా ప్రయత్నించిన శాస్త్రవేత్త గెలీలియో. కానీ సూర్యకాంతిని ఉపయోగించి ప్రయోగ శాలలో కాంతి వేగాన్ని ఖచ్చితంగా నిర్దారించిన శాస్త్రవేత్త ఫోకాల్ట్.
- శూన్యంలో లేదా గాలిలో కాంతివేగం  $c=3\times 10^8~{\rm ms^{-1}}$  సూర్యుని నుంచి కాంతి కిరణాలు భూమికి చేరడానికి పట్టే కాలం సుమారు  $8.2~{\rm \Lambda}$ మిషాలు లేదా  $500~{\rm he}$ కన్లు.
- చంద్రుని నుంచి బయలుదేరిన కాంతి కిరణాలు భూమిని చేరడా నికి పట్టే కాలం సుమారు ఒక సెకను.

$$t = \frac{S}{C} = \frac{3,8000 \times 1000}{3 \times 10^8}$$

$$=\frac{384}{300}=1.3$$
 sec

- కాంతి కిరణాలు సంవత్సర కాలంలో ప్రయాణించిన దూరమే
   కాంతి సంవత్సరం.
  - 1 కాంతి సంవత్సరం =  $365.25 \times 24 \times 60 \times 60 \times 3 \times 10^8 \, \mathrm{m}$  =  $9.4 \times 10^{15}$  metres (or)  $9.4 \times 10^{12}$  kms
- దూరాన్ని కొలవడానికి ఉపయోగించే అతిపెద్ద ప్రమాణం
   Paralastic second లేదా par–sec.
  - 1 par–sec = 3.26 కాంతి సంవత్సరాలు = 3.26×9.4×10<sup>15</sup> metres
- విశ్వంలో కాంతివేగం మాత్రమే గరిష్టమైంది. దీని కంటే వేగంగా
   ఏ వస్తువు కూడా ప్రయాణించదు.

ఉదా: రెండు వస్తువులు కాంతివేగానికి సమాన వేగంతో ఎదురె దురుగా ప్రయాణిస్తు న్నప్పుడు వాటి సాపేక్ష వేగం కూడా కాంతి వేగంనకు సమానంగా ఉంటుంది.

 గాలిలో ధ్వని వేగం 330 ms<sup>-1</sup>
 కాంతి వేగం 3 × 10<sup>8</sup> ms<sup>-1</sup>
 కాబట్టి పిడుగుపడే సమయంలో మొదట మెరుపు కనిపించి తర్వాత ఉరుము వినపడుతుంది.

## ಕಾಂತಿ ಧರ್ತ್ತಾಲು

(Properties of light)

- రుజువర్తనం (Rectilinear Propagation)
- కాంతి వేగం
- వక్రీభవనం (Refraction)
- పరావర్తనం (Reflection)
- సంపూర్ణాంతర పరావర్తనం (Total Internal Reflection)
- కాంతి విక్షేపణం/విశ్లేషణం (Dispersion of light)
- కాంతి పరిక్షేపణం (Scattering of the light)
- వ్యతికరణం (Interference)
- వివర్తనం (Diffraction)
- ద్దువణం (Polarization)

# కాంతి వక్రీభవనం, పరావర్తనం, విశ్లేషణం

## వ్యకీభవనం

కాంతి కిరణాలు ఒక యానకం నుంచి మరొక యానకంలోకి ప్రయా ణించేటప్పుడు ఆ యానక లంబం వద్ద వంగి ప్రయాణిస్తాయి. ఈ ధర్మాన్ని వక్రీభవనం (Refraction) అంటారు.

## అనువర్తనాలు:

- 1. నీళ్లున్న బకెట్లో కర్రను ఉంచినప్పుడు వక్రీభవనం వల్ల అది విరిగినట్లుగా కన్పిస్తుంది.
- 2. నీళ్లున్న పాత్రలో ఒక నాణేన్ని ఉంచినప్పుడు, ఆ నాణెం అసలు పరిమాణం కంటే పెద్దదిగా, దగ్గరగా కన్పిస్తుంది.
- 3. వక్రీభవనం వల్ల నీళ్లున్న పాత్ర అడుగుభాగం పైకి లేచి తక్కువ లోతు ఉన్నట్లుగా కన్పిస్తుంది. అందువల్ల జలాశయాల లోతు తక్కువగా ఉన్నట్లుగా కన్పిస్తాయి.
- 4. అక్షరాలున్న పేపర్ష్ గాజు పలకను ఉంచి చూసినప్పుడు ఆ అక్షరాలు లావుగా, దగ్గరగా కన్పిస్తాయి.
- 5. గాలిలో ఎగురుతున్న గద్ద నీటిలో ఉన్న చేపను చూసినప్పుడు ఆ చేప పెద్దదిగా, తక్కువ లోతులో ఉన్నట్లుగా కన్పిస్తుంది. ఒకవేళ నీటిలో ఉన్న చేప గాలిలో ఉన్న గద్దను పరిశీలించినప్పుడు ఆ గద్ద చిన్నదిగా, ఎక్కువ ఎత్తులో ఎగురుతున్నట్లుగా కన్పిస్తుంది.
- 6. సూర్యోదయం, సూర్యాస్త సమయాల్లో సూర్యుని నుంచి వస్తున్న కాంతి కిరణాలు భూమి వాతావరణ పొరలో వక్రీభవనం చెందడం వల్ల ప్రతీ సందర్భంలో రెండు నిమిషాల చొప్పున మొత్తం నాలుగు నిమిషాల కాలం పెరుగుతుంది. కాబట్టి ఒకరోజు కాల వ్యవధి 23 గంటల 56 నిమిషాల, 4 సెక్లన నుంచి 24 గంటలుగా మారింది.
- 7. కాంతి వక్రీభవనం వల్ల ఉదయిస్తున్న, అస్తమిస్తున్న సూర్యబింబం అండాకృతిలో (oval shape) కన్పిస్తుంది.
- 8. నక్షత్రాల నుంచి వచ్చే కాంతి కిరణాలు భూమి వాతావరణ పోర లో వక్రీభవనం చెందడం వల్ల అవి మిణుకు మిణుకుమంటు నృట్లుగా కన్పి స్తాయి.
- 9. పై కారణం వల్ల నక్ష్మతాలు అసలు ఎత్తు కంటే ఎక్కువ ఎత్తులో ఉన్నట్లుగా కన్పిస్తున్నాయి.

#### వ్రక్తీభవన గుణకం (Refractive Index)

• కాంతి కిరణాలు ఒక యానకం నుంచి మరొక యానకంలోకి ప్రయాణించేటప్పుడు ఆ యానక లంబం వద్ద చేసే పతన కోణం (Angle of incidence) sin విలువకు, వ్రక్షీభవన కోణం sin విలువకు మధ్య నిష్పత్తిని వ్రక్షీభవన గుణకం (Refractive Index) అని అంటారు.

$$\mu = \frac{\sin i}{\sin r}$$

- దీన్ని Snell అనే శాస్త్రవేత్త డ్రతిపాదించాడు. అందువల్ల దీన్ని Snell నియమం అని కూడా అంటారు.
- వ[కీభవన గుణకానికి ఎటువంటి ప్రమాణాలు ఉండవు. కానీ పదార్థ స్వభావాన్ని బట్టి వేర్వేరు విలువలు ఉంటాయి.

#### ఉదాహరణ:

- 1. గాలి  $\mu_{\rm air}=1$
- 3. നാജ്  $\mu_{\rm glass}=1.5$
- 4. మ్రజం  $\mu_{diamond} = 2.42$
- వజ్రానికి గరిష్టమైన వక్రీభవన గుణక విలువ ఉంటుంది.

#### నోట్

దాదాపు సరిసమాన వక్రీభవన గుణక విలువలు ఉన్న ఒక గాజు పలకను నీటిలో వేసినప్పుడు అది అదృశ్యమైనట్లుగా కన్పిస్తుంది.

## పరావర్గనం (Reflection)

- 1. కాంతి కిరణాలు వస్తువుల ఉపరితలంపై పతనమై తిరిగి వెనుకకు మరలడాన్ని పరావర్తనం అంటారు.
- 2. ఈ ధర్మం వల్ల మానవుడికి దృష్టి జ్ఞానం కలుగుతుంది.
- 3. అదే విధంగా దర్పణాలన్నీ పనిచేయడంలో ఈ ధర్మం ఇమిడి ఉంటుంది.
- 4. నునుపైన ఉపరితలంపై పరావర్తనం అన్ని బిందువుల వద్ద సమానంగా ఉంటుంది. కానీ గరుకు ఉపరితలంపై వేర్వేరు బిందువుల వద్ద పరావర్తనం వేర్వేరుగా ఉంటుంది.

## సంపూర్లాంతర పరావర్తనం: (TIR)

కాంతి కిరణాలు ఒక వస్తువు లోపల సంపూర్ణంగా పరావర్తనం చెందడాన్ని సంపూర్ణాంతర పరావర్తనం అని అంటారు. ఇది జరగాలంటే కాంతి కిరణాలు ఎప్పుడూ సాంద్రతర యానకం నుంచి సరళ యానకంలోకి ప్రయాణించాలి.

#### ఉదాహరణలు:

- 1. వజ్రం మెరియడానికి కారణం కాంతి సంపూర్ణాంతర పరావర్తనం.
- 2. ఇసుక ఎడారులు, తారు రోడ్లపై సంపూర్ణాంతర పరావర్తనం వల్ల ఎండమావులు ఏర్పడి నీరు ఉన్నట్లుగా భ్రమపడతాం.
- 3. మంచు ప్రాంతాల్లో సంపూర్ణాంతర పరావర్తనం వల్ల కొంత దూరం నుంచి మన వైపు వస్తున్న వస్తువు అసలు ఎత్తు కంటే ఎక్కువ ఎత్తు నుంచి వస్తున్నట్లుగా కన్పిస్తుంది. దీన్ని లూమింగ్ అని అంటారు.
- 4. ట్రూఫిక్ సిగ్నల్స్ పని చేయడంలో ఈ ధర్మం ఇమిడి ఉంటుంది.
- 5. గాజు దిమ్మలో (లేదా) నీటి లోపల ఉన్న గాలి బుడగ సంపూర్హాం

తర పరావర్తనం వల్ల వెండిలా మెరుస్తున్నట్లుగా కన్పిస్తుంది.

6. వైద్యరంగంలో ఉపయోగించే ఎండోస్కోపి, లాప్రోస్కోపి పని చేయడంలో ఈ ధర్మాన్సి వాడతారు.

నోట్:

ఎండోస్కోపి విధానంలో లేజర్ కిరణాలను ఉపయోగిస్తారు.

#### దృశ్య తంతువు – Optical Fibre

- దీన్ని గాజుతో నిర్మిస్తారు.
- దీనిలోని గాజు నాళం 2 మైక్రాన్ల నుంచి 3 మైక్రాన్ల వరకు (2×10<sup>-6</sup> మీటర్ల నుంచి 3×10<sup>-6</sup> మీటర్ల వరకు) ఉంటుంది. దీనిలోకి లేజర్ కిరణాలను లేదా ఇతర కాంతి కిరణాలను పంపించినప్పుడు సంపూర్ణాంతర పరావర్తనం చెంది అవి చాలా దూరం ప్రయా జీస్తాయి. కాబట్టి optical fibreలను సమాచారరంగంలో విరివిగా ఉపయోగిస్తారు.

నోట్:

్రప్రపంచంలో అత్యంత పొడమైన optical fibreను లండన్ నుంచి సింగపూర్ వరకు ఏర్పాటు చేస్తున్నారు. దీని పొడవు సుమారు 20,000 కి.మీ.లు.

## కాంతి విశ్లేషణం/విక్షేపణం (Dispersion of light)

 నలుపు రంగు తనపై పతనమైన కాంతి కిరణాలను శోషించుకొని ఉష్ణోగతను పెంచుకుంటుంది. తర్వాత ఒక గరిష్ట ఉష్ణోగతకు చేరుకున్నప్పుడు తాను గ్రహించిన కాంతిని పూర్తిగా బయటకు విడుదల చేస్తుంది. అందువల్ల నలుపు రంగు మంచి శోషణ, ఉద్దారి కూడా (good absorber, emitter).

## అనువర్తనాలు:

- 1. వంటపాత్రల ఆవరివైపున నలుపురంగుతో(మసి) పూత పూస్తారు.
- 2. సెప్టిక్ ట్యాంక్ పైపుల పైభాగం పైన నలుపు రంగుతో పూత పూయ టం వల్ల ఆ పైపులు వేడెక్కి ఆ ట్యాంక్లలో ఉన్న మురికినీటిని త్వరగా ఆవిరిగా మారుస్తాయి.

మిగిలిన రంగులతో పోల్చినప్పుడు నలుపు రంగుకు శక్తి ఎక్కువ.

- 3. సౌర కుటుంబంలో అత్యుత్తమమైన కృష్ణ వస్తువు (black body) సూర్యుడు (sun). ఎందుకంటే సూర్యుడు తనపై పతనమైన కాంతి కిరణాలను శోషించుకుంటాడు. అదేవిధంగా తనలో నుంచి కాం తిని బయటకు విడుదల చేస్తాడు.
- 4. తెలుపు రంగుపై కాంతి కిరణాలు పతనమైనప్పుడు ఆ రంగు వాటిని పూర్తిగా పరావర్తనం చెందిస్తుంది.
- 5. ఒక తెల్లని కాంతి కిరణం పట్టకం ద్వారా డ్రయాణించినప్పుడు VIBGYOR అనే 7 రంగులుగా విడిపోతుంది. దీన్ని కాంతి విశ్లేషణం అని అంటారు. ఈ ధర్మాన్ని 16వ శతాబ్దంలో న్యూటన్ కనుగొన్నాడు.
- 6. కాంతి విశ్లేషణంలో ఏర్పడిన 7 రంగుల్లో ఇండిగో అనే రంగును తప్ప మిగిలిన రంగులను మన కన్ను గుర్తించగలుగుతుంది.

అందువల్ల ఈ రంగులను కలిపి దృశ్యవర్ణ పటం (visible spectrum) అని అంటారు. వీటి వర్ణాలను (తరంగ దైర్ఘ్యాలను) కొలవడానికి వర్ణపట మాపకాన్ని (Spectrometer) ఉపయోగి స్తారు.

- 7. కాంతి విశ్లేషణంలో ఏర్పడిన ఊదారంగు తరంగ డ్రైర్హ్యం  $\lambda v = 4000 {\rm A}^\circ$ , ఎరుపు రంగు తరంగ డ్రైర్హ్య  $\lambda R = 7500 {\rm A}^\circ$  కాబట్టి తరంగ డ్రైర్హ్యం తక్కువగా ఉన్న ఊదా రంగు ఎక్కువగా వంగి డ్రయాణిస్తుంది. తరంగ డ్రైర్హ్యం ఎక్కువగా ఉన్న ఎరుపు రంగు తక్కువగా విచలనం చెంది దాదాపు రుజు మార్గంలో డ్రయాణి స్తుంది. కాబట్టి దీన్ని డ్రమాద సంకేతాలను సూచించడానికి ఉప యోగిస్తారు.
- 8. క్వాంటం సిద్దాంతం ప్రకారం

$$\left(E = \frac{hc}{\lambda}\right)$$

తరంగ దైర్ఘ్యం ఎక్కువగా ఉన్న ఎరుపురంగు శక్తి కనిష్టంగా ఉంటుంది. అందువల్ల photo graphic ఫిల్మ్అను develop చేసే dark roomలలో ఎరుపు రంగులో ఉన్న బల్బులను ఉపయో గిస్తారు.

9. వ్రక్టీభవన గుణకం తరంగ దైర్ఘ్యానికి విలోమానుపాతంలో  $\left(\mu lpha rac{1}{\lambda}
ight)$ .

కాబట్టి VIBGYORలో ఊదారంగు విషయంలో వక్రీభవన గుణకం ఎక్కువగా, ఎరుపురంగు విషయంలో తక్కువగా ఉం టుంది.

10.ఒక గాజు పలకలో తరంగ దైర్హ్యం తక్కువగా ఉన్న ఊదారంగు వేగం తక్కువగా, తరంగ దైర్హ్యం ఎక్కువగా ఉన్న ఎరుపురంగు వేగం ఎక్కువగా ఉంటుంది

కాని గాలి లేదా శూన్యంలో అన్ని రంగుల వేగాలు కాంతి వేగానికి సమానంగా ఉంటాయి.

- 11.VIBGYORలో ఊదారంగు వల్ల కంటిలోని రెటీనాకు హాని జరుగుతుంది. కాబట్టి ఈ రంగును చూడకూడదు. ఇండిగో రంగును మన కన్ను గుర్తించలేదు.
- 12. ఆకుపచ్చ రంగు తరంగదైర్హ్యం సుమారు 5550A° ఉంటుంది. ఈ తరంగదైర్హ్యం వల్ల (శక్తి వల్ల) కంటిలోని రెటీనాకు విశాంతి కలుగుతుంది.

#### ప్రాథమిక రంగులు

 $(C = \vartheta \lambda)$ .

 VIBGYORలో నీలం, ఆకుపచ్చ, ఎరుపు రంగులను ప్రాథమిక రంగులని (primary colours) అంటారు. ఎందుకంటే ఇవి ఒకదానిపై మరొకటి ఆధారపడకుండా స్వతంత్రంగా ఉంటాయి.

### గౌణ వర్లాలు (Secondary Colours)

- ఏవైనా రెండు ప్రాథమిక రంగులు ఒకదానితో మరొకటి కలిసిన పుడు ఏర్పడిన రంగులను గౌణ రంగులని అంటారు.
- ప్రాథమిక రంగులు మూడింటిని సమపాళ్లలో ఒకదానితో మరొ కటి కలిపినపుడు తెలుపు రంగు ఏర్పడుతుంది.
   Blue + Green + Red = White
   ప్రతీ ప్రాథమిక రంగు మరొక ప్రాథమిక రంగును శోషణ చేసుకుంటుంది.

#### ఉదాహరణ:

- 1. ఒక గులాబి పుష్పాన్ని (ఎరుపు రంగు) పచ్చ రంగు గాజు పలక ద్వారా పరిశీలించినప్పుడు అది నలుపు రంగులో కన్సిస్తుంది.
- 2. ఆకుపచ్చరంగులో ఉన్న కళ్లద్దాలను ధరించిన వ్యక్తి సూర్యోద యాన్ని లేదా సూర్యాస్తమయాన్ని పరిశీలించినప్పుడు అవి నలుపు రంగులో కన్సిస్తాయి.
- 3. ఆకుపచ్చరంగు గల గాజు పలక ద్వారా మన జాతీయ జెండాను పరిశీలించినప్పుడు ఏర్పడే రంగుల క్రమం: నలుపు, ఆకుపచ్చ రంగులు.

#### సంపూరక రంగులు

ఒక ప్రాథమిక రంగు దానికి వ్యతిరేకంగా ఉన్న గౌణ రంగుతో
 కలిసినప్పుడు తెలుపు రంగు ఏర్పడుతుంది.

#### ఉదాహరణ:

నీలం + పసుపు = తెలుపు (ప్రాథమిక రంగు) ఒక ప్రాథమిక రంగు + ప్రాథమిక రంగుకి వ్యతిరేక గౌణ రంగు = తెలుపు రంగు

• రెండు రంగులు ఒక దానితో మరొకటి కలిసి తెలుపు రంగును ఏర్పాటు చేస్తే వాటిని సంపూరక రంగులు (complimentary colours) అంటారు.

# కాంతి కిరణాల సంఖ్యను ఏమంటారు?

## కాంతి పరిక్షేపణం (Scattering of the light)

1. కాంతి కిరణాలు ప్రయాణిస్తున్న మార్గంలో ఎదురుగా ఉన్న చిన్న కణాలను ఢీకొని దాని వేగంలో మార్పు లేకుండా మరొక దిశలో ప్రయాణిస్తాయి. దీన్ని కాంతి పరిక్షేపణం అంటారు.

#### ఉదాహరణలు:

- పగటి సమయంలో సూర్యుని నుంచి వచ్చే తెల్లని కాంతిలోని నీలిరంగు.. భూ వాతావరణ పొరలో పరిక్షేపణం చెంది పైకి వెళ్లడం వల్ల ఆకాశం నీలిరంగులో కన్పిస్తుంది.
- 2. ఒకవేళ భూమిపై ఉన్న వాతావరణం అదృశ్యమైనట్లయితే కాంతి పరిక్షేపణం జరగదు. కాబట్టి పగలు, రాత్రి సమయంలో కూడా ఆకాశం నలుపు రంగులో కన్పించడమే కాకుండా నక్ష్మతాలు కూడా కన్పిస్తాయి.
- 3. చందునిపై వాతావరణం లేకపోవడం వల్ల కాంతి పరిక్షేపణం జరగదు. అందువల్ల చందునిపై నుంచి ఆకాశాన్ని పరిశీలిస్తే.. అన్ని సమయాల్లోనూ నలుపు రంగులో కన్పిస్తుంది. నక్షత్రాలను కూడా చూడొచ్చు.
- 4. సూర్యోదయం, సూర్యాస్తమయాల్లో ఎరుపు రంగు ఎక్కువగా పరిక్షేపణం చెందడం వల్ల సూర్యబింబం ఎరుపు రంగులో కన్పిస్తుంది.
- 5. భూమి చుట్టూ పరిట్రమిస్తున్న వ్యోమగాము లకు (astronauts & aeronauts) ఆకాశం ఎప్పుడూ నలుపు రంగులో కన్పించడానికి కారణం కాంతి పరిక్షేపణం లేకపోవడమే.
- 6. పొగమంచు, దుమ్ము, ధూళి కణాల ద్వారా కాంతి ఎక్కువగా పరిక్షేపణం చెందితే వస్తువులను చూడలేం.
- 7. మంచు ముక్కలు లేదా glass pieces పై కాంతి కిరణాలు పతనమై పరిక్షేపణం చెందితే.. అవి వెండిలా మెరుస్తున్నట్లుగా కన్పిస్తాయి.
- 8. రామన్ ఫలితాన్ని వివరించడానికి సర్ సి.వి.రామన్ కాంతి పరిక్షేపణం ధర్మాన్ని వినియోగించాడు. ఈ ఫలితాన్ని నిరూపించ డానికి క్వాంటం సిద్ధాంతం ఉపయోగించాడు.

## ఇంద్రధనస్సు (Rainbow)

- 1. వ్యక్తి వెనుక వైపు నుంచి వస్తున్న సూర్యకిరణాలు ఎదురుగా ఉన్న నీటి తుంపరలపై పతనమైనప్పుడు కాంతి విశ్లేషణం, సంపూ ర్ణాంతర పరావర్తనం అనే ధర్మాల ఆధారంగా అర్ధ గోళాకారంలో ఉన్న (hemispherical) ఇంద్రధనస్సు ఏర్పడుతుంది. దీనిలోని ఇండిగో రంగును మన కన్ను గుర్తించలేదు.
- 2. సంపూర్ణంగా గోళాకారంలో ఉన్న ఇంద్రధనస్సును విమాన పైలట్ చూడగలడు.

#### వ్యతికరణం (Interference)

 రెండు లేదా అంతకంటే ఎక్కువ సంఖ్యలో కాంతి కిరణాలు ఒకదానిపై ఒకటి అధ్యారోపణం (overlapping) చెందినప్పుడు వాటి ఫలిత కంపన పరిమితి, తరంగ దైర్ఘ్యాలు మారుతాయి. దీన్ని వ్యతికరణం అంటారు. ఈ ధర్మాన్ని Thomas Young అనే శాస్త్రవేత్త కనుగొన్నారు.

#### అనువర్తనాలు

- నీటిపై నూనెను వెదజల్లినప్పుడు వ్యతికరణం వల్ల వివిధ రంగుల్లో కన్పిస్తుంది.
- 2. సబ్బు బుడగ (లేదా) సబ్బు నీరు భిన్నమైన రంగుల్లో కన్పించడానికి కారణం కాంతి వ్యతికరణం.

## వివర్గనం (Diffraction)

1. కాంతి కిరణాలు ప్రయాణిస్తున్న మార్గంలో ఎదురుగా ఉన్న చిన్న అడ్డుతలాల వద్ద వంగి ప్రయాణించే ధర్మాన్ని వివర్తనం అని అంటారు. దీన్ని Grimaldi కనుగొన్నారు.

#### ఉదాహరణ:

- 1. సంపూర్ణ సూర్యగ్రహణ సమయంలో సూర్యుని మూడో పొర carona కన్పించడానికి కారణం వివర్తనం.
- 2. సీడీలపై కాంతి కిరణాలు పతనమైనప్పుడు వివర్తనం వల్ల అనేక రంగులు కన్పిస్తాయి.
- 3. వెలుగుతున్న వీధి బల్బు చుట్టూ దట్టమైన పొగమంచు ఉన్నప్పుడు కాంతి వివర్తనం వల్ల అనేక రంగులు కన్పిస్తాయి.
- 4. దుస్తుల సూక్ష్మ రండ్రాల వద్ద కాంతి కిరణాలు వివర్తనం చెందడం వల్ల కొంత దూరంలో ఉన్న వస్తువు చుట్టూ భిన్నమైన రంగులు ఉన్నట్లుగా కన్పిస్తాయి.
- 5. వెలుగుతున్న దీప ప్రమీద లేదా కొవ్వొత్తిని సగం మూసిన కన్నులతో చూసినప్పుడు కాంతి వివర్తనం వల్ల వాటి చుట్టూ అనేక రంగులు కన్పిస్తాయి.
- 6. వస్తువు ఉపరితలం నుంచి పరావర్తనం చెందిన కాంతి కిరణాలు కనుగుడ్మ వద్ద వంగి ప్రయాణించి కంటి లోపలికి ప్రవేశిస్తాయి.
- 7. పర్వతం వెనుక భాగంలో సూర్యోదయం లేదా సూర్యాస్తమయం జరుగుతున్నప్పుడు కాంతి వివర్తనం వల్ల ఆ కాంతి కిరణాలు చారల్లా (streaks) కన్పిస్తాయి.

#### ద్దువణం (Polarization)

 కాంతి కిరణంలోని విద్యుత్, అయస్కాంతాల అంశాలను వేరుచే యడాన్ని ద్రువణం అంటారు. ఈ ధర్మాన్ని H.Bartholinus కనుగొన్నాడు.

#### ఉదాహరణ:

- వేసవికాలంలో ధరించే sun glasses ద్రువణం ఆధారంగా పని చేస్తాయి. ఇవి సూర్యుని నుంచి వస్తున్న అతినీలలో హిత కిరణాలను, పరారుణ కిరణాలను వేరుచేసి మామూలు కాంతి కిరణాలను మాత్రమే కంటిలోకి పంపిస్తాయి.
- 2. 3 Dimensional సినిమాలను చూడటానికి ఉపయోగించే polarograph (polaroid) కళ్లద్దాలు కూడా పై ధర్మం ఆధారంగా పని చేస్తాయి.
- 3. 3D పద్ధతిలో వస్తువును ఫొటో తీయడాన్ని Holography అంటారు. దీనిలో లేజర్ కిరణాలను వాడుతారు.
- ద్రువణం ఆధారంగా పనిచేసే ఈ పద్ధతిని గేబర్ (Gabar)
   కనుగొన్నాడు. దీనికి ఆయనకు నోబెల్ బహుమతి లభించింది.

## కాంతి తీవ్రత (Intensity of light)

 ప్రమాణ వైశాల్యంపై పతనమవుతున్న కాంతి కిరణాల సంఖ్యను కాంతి తీద్రత అంటారు.

ప్రమాణం : Candela

నోట్: పూర్వకాలంలో కాంతి తీవ్రతను కొలవడానికి ఉపయోగిం చిన ప్రమాణాలు Lumen & Luxలు కాని ప్రస్తుతం ఇవి వాడుకలో లేవు.

ම්කුෂ 
$$(I) = \frac{1}{d^2}$$

## ద్దుక్ సాధనాలు (Optical Devices)

 స్పష్టమైన దృష్టి కోసం ఉపయోగించే సాధనాలను ద్రుక్ సాధనాలంటారు.

## స్పష్ట దృష్టి కనిష్ట దూరం:

 ఒక వస్తువును స్పష్టంగా పరిశీలించడానికి కంటి నుంచి వస్తువుకు కావాల్సిన కనీస దూరాన్ని స్పష్ట దృష్టి కనిష్ట దూరం (Least distance of distinct vision) అంటారు. ఆరోగ్యవంతుడైన మానవుని విషయంలో దీని విలువ 25 సెం.మీ. ఉంటుంది.

## దృష్టి కోణం (Angle of vision):

ఒక వస్తువు కంటి వద్ద చేసే కోణాన్ని దృష్టి కోణమంటారు.
 వస్తువు దగ్గరగా ఉన్నప్పుడు దృష్టి కోణం ఎక్కువగా ఉండి,
 వస్తువు పరిమాణం పెద్దగా కన్పిస్తుంది.

కటకాలు: కటకాలను గాజుతో తయారుచేస్తారు. వీటిని రెండు రకాలుగా వర్గీకరించవచ్చు.

#### కుంబాకార కటకం:

దీనికి ఇరువైపులా ఉబ్బెత్తయిన ఉపరితలాలు ఉంటాయి. కటకం కేంద్రం ద్వారా వెళ్లే సరళరేఖను ప్రధానాక్షం (principal axis) అంటారు. ఈ ప్రధానాక్షంతో ఒకదానినొకటి సమాంతరంగా పతనమైన కాంతి కిరణాలు రెండో వైపున ఏదో ఒక బిందువు వద్ద కేంద్రీకృతమవుతాయి. ఈ బిందువును ప్రధాన నాభి (principal focus) అంటారు. ఈ ప్రధాన నాభి నుంచి కటక కేంద్రానికి మధ్య దూరాన్ని నాభ్యంతరం (focal light) అంటారు. ఈ కటకంలో కాంతి కిరణాలన్నీ ఒక బిందువు వద్ద కేంద్రీకృతం కావడం వల్ల దీని నాభ్యంతరాన్ని ధనాత్మకంగా తీసుకుంటారు. కాబట్టి ఈ కటకాన్ని కేంద్రీకరణ కటకం (converging lense) లేదా అభిసారి కటకం (magnifying lense) అంటారు.

#### పుటాకార కటకం (concave lense)

 దీనికి ఇరువైపులా వాలుగా ఉన్న ఉపరితలాలు ఉంటాయి. ఈ కటకానికి ఒక వైపు పతనమైన కాంతి కిరణాలు రెండో వైపు వికేంద్రీకృతం (Diverges) చెందుతాయి. కాబట్టి దీని నాభ్యంతరాన్ని రుణాత్మకంగా తీసుకుంటాం. అందువల్ల ఈ కటకాన్ని వికేంద్రీకరణ కటకం లేదా అపసారి కటకం అని అంటారు.

# రెండు కళ్లతో వస్తువులను పలిశీవించడమే..

## ಕಾಂತಿ

#### **Sextant:**

ullet త్రికోణమితిలోని  $\sec heta$  అనే సూత్రం ఆధారంగా పనిచేసే ఈ పరికరాన్ని ఉపయోగించి ఉన్నతాంశాల ఎత్తును కనుగొనవచ్చు.

#### Kaleodeo scope

 దీన్ని మూడు సమతల దర్పణాలను ఒకదానికొకటి 60°ల కోణంలో ఉండేట్లు సమబాహు త్రిభుజాకారంలో అమరుస్తారు.
 ఈ దర్పణాల మధ్యలో ఏదైనా ఒక వస్తువును ఉంచినప్పుడు అనేక ప్రతిబింబాలు కనిపిస్తాయి.

#### సూక్ష్మదర్శినులు (Microscopes):

 కంటికి దగ్గరగా ఉన్న చిన్న వస్తువులను స్పష్టంగా చూడటానికి వీటిని ఉపయోగిస్తారు. సూక్ష్మదర్శినులను రెండు రకాలుగా వర్గీకరించవచ్చు.

#### సరళ సూక్ష్మదర్శిని (Simple Microscope):

 దీన్ని తక్కువ నాభ్యంతరం ఉన్న ఒకే ఒక కుంభాకార కటకాన్ని ఉపయోగించి నిర్మిస్తారు. దీనిలో చిన్న వస్తువు ప్రతిబింబం పెద్దదిగా కనిపిస్తుంది. అంటే ప్రతిబింబం ఆవర్తనం (magnified) చెందుతుంది.

#### ఉపయోగాలు:

- చిన్న అక్షరాలను చదవడానికి
- వేలిముద్రలను విశ్లేషించడానికి
- గడియారంలోని చిన్న భాగాలను స్పష్టంగా చూడటానికి watch mechaniceు దీన్ని ఉపయోగిస్తారు.

#### సంయుక్త సూక్ష్మదర్శిని

#### (Compound Micro scope):

 తక్కువ నాభ్యంతరమున్న రెండు కుంభాకార కటకాలను ఉపయోగించి ఈ సూక్ష్మదర్శినిని నిర్మిస్తారు. దీనిలో వస్తువు వైపు ఉన్న కటకాన్ని వస్తు కటకం అని, కంటికి దగ్గరగా ఉన్న దానిని ఆక్షి కటకం (eye piece) అని అంటారు. ఈ రెండు కటకాల మధ్య దూరాన్ని సంయుక్త సూక్ష్మదర్శిని పొడవు అంటారు. దీని ఆవర్తన సామర్థ్యానికి సమీకరణం (magnified)

$$m = \frac{LD}{f_0 f_e}$$

L= సంయుక్త సూక్ష్మదర్శిని పొడవు

 $D = x_{j} x_{k} x_{j} x_{k} x_{k}$ 

 $f_0 = \Delta x_2$  కటక నాభ్యంతరం (focal length of the objective)

 $f_{e} = ఆక్షి కటక నాభ్యంతరం$ 

సంయుక్త సూక్ష్మదర్శిని ఆవర్తన సామర్థ్యం సరళ సూక్ష్మదర్శిని
 కంటే 1000 నుంచి 2000 రెట్లు ఎక్కువగా ఉంటుంది.

#### ఉపయోగాలు:

 సూక్ష్మజీవులు, ఫంగస్, రక్తకణాలు, వృక్షకణాలు, జంతుకణాలు, పుప్పొడి రేణువులు మొదలైన వాటిని పరిశీలించడానికి సంయుక్త సూక్ష్మదర్భినిని ఉపయోగిస్తారు.

#### నోట్:

Electronics అనే సూత్రం ఆధారంగా పనిచేసే electronic microscope ఆవర్తన సామర్థ్యం సంయుక్త సూక్ష్మదర్శిని కంటే 265 రెట్లు ఎక్కువగా ఉంటుంది. కాబట్టి వైరస్సు పరిశీలించ డానికి దీన్ని ఉపయోగిస్తారు.

## దూరదర్శిని (Telescope):

- కంటి నుంచి దూరంగా ఉన్న వస్తువులను దగ్గరగా చూడటానికి దూరదర్శినులను వాడతారు. దీనిని కనుగొన్న శాస్త్రవేత్త గెలీ లియో.
- ఉపయోగించే విధానం దృష్ట్యా దూరదర్శినులను రెండు రకాలుగా వర్గీకరించవచ్చు.

## ఖగోళ దూరదర్శిని

## (Astronomical Telescope):

 భూమికి ఆవల ఉన్న ఖగోళ వస్తువులను అంటే గ్రహాలు, ఉపగ్రహాలు, సూర్యుడు, నక్ష్మ్ర్హాలు మొదలైన వాటిని పరిశీలించ డానికి దీన్ని వాడతారు. ఈ దూరదర్శినిలో తుది ప్రతిబింబం తలకిందులుగా ఏర్పడినప్పటికీ ఖగోళ వస్తువులను పరిశీలించ డంలో ఎటువంటి సమస్య ఉండదు ఎందుకంటే ఖగోళ వస్తువు లన్సీ గోళాకారంలో ఉంటాయి.

## భూగోళ దూరదర్శిని (Teratrial telescope):

- భూమిపై (లేదా) సముద్రాలపై దూరంగా ఉన్న వస్తువులను చూడటానికి ఈ దూరదర్శినిని ఉపయోగిస్తారు. దీనిలో తుది ప్రతిబింబం నిటారుగా ఏర్పడుతుంది.
- నిర్మాణం దృష్ట్యే దూరదర్శినులను తిరిగి రెండు రకాలుగా వర్గీకరించవచ్చు.

## 1. వక్రీభవన దూరదర్శినులు (Refractive Telescopes)

 వీటిని కటకాలను ఉపయోగించి నిర్మిస్తారు. ఈ రకమైన దూరద ర్శినిని గెలీలియో కనుగొన్నాడు.

## 2. పరావర్తన దూరదర్శినులు (Reflective Telescopes)

- వీటిని దర్పణాలను ఉపయోగించి నిర్మిస్తారు. ఈ దూరదర్శిను
   లను Jame Gregory అనే శాస్త్రవేత్త కనుగొన్నాడు.
- 1. రేడియో తరంగాలతో పనిచేసే ప్రపంచంలో అతి పెద్దదైన టెలి స్కోప్ మ మహారాష్ట్రలోని పూణె సమీపంలో ఏర్పాటు చేశారు.

- 2. ఎక్స్ రేతో పనిచేసే చంద్ర ఎక్స్ రే (Chandra x-ray) టెలిస్కోప్ ను NASA శాస్త్రవేత్తలు విశ్వాంతరాళంలోకి ప్రయోగించి విశ్వ రహ స్వాలను తెలుసుకుంటున్నారు.
- 3. HST (Hubble Space Telescope)ను 1990లో NASA శాస్త్రవేత్తలు విశ్వాంతరాశంలో ప్రవేశపెట్టారు. ఇది 650 కి.మీ.ల నుంచి 700 కి.మీ.ల కక్ష్యలో భూమి చుట్టు పరిట్రమిస్తూ, విశ్వానికి సంబంధించిన అనేక ఫొటోలను భూమి పైకి పంపిస్తుంది.
- 4. సౌరశక్తితో పనిచేసే సోలార్ టెలిస్కోప్ మ మన శాస్త్రవేత్తలు రూపొందించారు. దీన్ని సముద్రమట్టానికి ఎత్తైన ప్రదేశంలో ఏర్పాటు చేస్తారు. ఈ రకమైన టెలిస్కోప్ లు ఉన్న దేశాల్లో మన దేశం రెండో ది. (మొదటి దేశం అమెరికా)
- 5. త్రిమితీయ ఫొటోలను చూడటానికి స్టీరియో స్కోప్ అనే సాధనాన్ని ఉపయోగిస్తారు.
- 6. బ్రామణం చెందుతున్న (లేదా) డోలనాలు చేస్తున్న వస్తువును నిశ్చల స్థితిలో ఉన్నట్లుగా చూడటానికి ఉపయోగించే పరికరం – Strobo Scope.
- 7. సినిమా projectorలో ఒక సెకన్ కాలంలో 16 ఫిల్మ్ల్ కదిలిపో యినప్పుడు తెరపై ఏర్పడిన బొమ్మ సజీవ చిత్రంలా కన్పిస్తుంది. ఈ projector ముందు భాగంలో కుంభాకార కటకాన్ని వాడతారు.
- టి.వి.: టీవీలోని Keno Scope అనే సాధనం విద్యుత్, అయస్కాంత తరంగాలను 1/25 సెకను కాలంలో కాంతి చిత్రాలు(picture)గా మారుస్తుంది.

## మానవ కంటిని, కెమెరాలో ఉన్న భాగాలతో పోల్చడం:

- 1. కెమెరాలో ఉన్న మూతలా కనురెప్ప పని చేస్తుంది.
- 2. కెమెరాలో ఉన్న కుంభాకార కటకంలా కనుగుడ్డు ప్రవర్తిస్తుంది. కనుగుడ్డు దగ్గరగా, దూరంగా ఉన్న వస్తువులను చూడటానికి తనంతట తానుగా తన నాభ్యంతరాన్ని మార్చుకుంటుంది. దీన్ని నేత్రానుగుణ్యత (accommodation of the eye) అంటారు.
- 3. కెమెరాలోని ఫిల్మ్ల్ రెటీనా పని చేస్తుంది.

#### నోట్:

కెమెరాలో ఉన్న కుంభాకార కటకం నాభ్యంతరాన్ని బట్టి దాని flash time ఆధారపడి ఉంటుంది.

## దృష్టిలో రకాలు:

#### 1. Monocular Vision:

- అంటే ఒక కన్నుతో వస్తువులను పరిశీలించడం.
   ఉదాహరణ: కాకి దృష్టి
- 2. Binacular Vision:
- అంటే రెండు కళ్లతో వస్తువులను పరిశీలించడం.

## ఉదాహరణ: మానవ దృష్టి

- 3. ನಿಕಾವರ ದೃಷ್ಟಿ (Night Vision):
- అంటే రాత్రి సమయంలో వస్తువులను చూడటం.

## ఉదాహరణ: పిల్లి దృష్టి

#### దృష్టి లోపాలు (Defects in the Vision):

- డ్రాష్ట్ర దృష్టి short sight (or) Myopia:
- కంటికి దగ్గరగా ఉన్న వస్తువును మాత్రమే చూడగలిగి, దూరంగా ఉన్న వస్తువును చూడలేని లోపాన్ని తగిన నాభ్యంతరం గల వికేం ద్రీకరణ కటకాన్ని (పుటాకార కటకం) ఉపయోగించి నివారించ వచ్చు.
- 2. దూరదృష్టి (లేదా) దీర్హ దృష్టి (లేదా) Long Sight (or) Hyper metropia:
- కంటికి దూరంగా ఉన్న వస్తువును మాత్రమే చూడగలిగి దగ్గరగా ఉన్న వస్తువును చూడలేని దృష్టి లోపాన్ని తగిన నాభ్యంతరం గల కేంద్రీకరణ కటకాన్ని (కుంభాకార కటకం) ఉపయోగించి నివారిం చవచ్చు.
- 3. అసమదృష్టి (లేదా) Astigmation:
- కంటిలో ఉన్న కార్నియా అనే భాగం దెబ్బతినడం వల్ల ఈ దృష్టి లోపం ఏర్పడుతుంది. ఈ లోపమున్నవారు ఏ వస్తువును పరిశీలిం చినా అది అడ్డుగీతలుగా (లేదా) నిలువు గీతలుగా కన్పిస్తుంది. ఈ లోపాన్ని నివారించడానికి స్థూపాకార కటకాన్ని (cylindrical lense)ను వాడతారు.

## 4. ఛత్వారసం (లేదా) Presbyopia:

వయసు మళ్లిన కొద్దీ కన్ను తన నేడ్రానుగుణ్యతను కోల్పోవడం
 వల్ల దగ్గరగా, దూరంగా ఉన్న వస్తువులను చూడటం వీలు కాదు.
 ఈ లోపాన్ని సవరించడానికి ద్వినాభి కటకాన్ని (Bifocal Lense)
 ఉపయోగిసారు.

## 5. రేచీకటి (Night Blindness):

రాత్రి సమయంలో వస్తువులను చూడలేని ఈ దృష్టి లోపాన్ని విటమిన్–ఎ తో సరిచేయవచ్చు.

6. వర్ణాంధత్వం (Colour Blindness):

కంటిలో ఉన్న కోన్స్ లో లోపం వల్ల ఈ దృష్టిలోపం కలుగుతుంది.

- ఈ లోపం ఉన్నవారు అన్ని రంగులను గుర్తించలేరు.
- ఈ లోపం తల్లిదండుల జన్యువుల వల్ల సంతానానికి సంప్రాప్తి స్తుంది కాబట్టి ఇప్పటివరకు ఈ లోపాన్ని సవరించడానికి ఎటు వంటి చికిత్స లేదు.

# III. అదృశ్య వికిరణాలు

#### (Invisible Radiation):

- 1. పరారుణ కిరణాలు (IR):
- వీటిని కనుగొన్న శాస్త్రవేత్త "Herschel".
- ఈ కిరణాల తరంగద్దైర్య అవధి 7500A° నుంచి సుమారు 4
   మిలియన్ల A°ల వరకు ఉంటుంది.
- వీటిని దాదాపు అన్ని గాజు పదార్థాలు శోషించుకుంటాయి.
- అందువల్ల గాజుతో తయారుచేసిన సాధనాలను ఉపయోగించి వీటి ఉనికిని కనుగొనడం సాధ్యపడదు.
- పరారుణ కిరణాలు తమ వెంట ఉష్ణాన్ని మోసుకొని పోయి ఇతర వస్తువులపై పతనమైనప్పుడు వాటిని వేడెక్కిస్తాయి. కాబట్టి ఈ కిరణాలను ఉష్ణ వికిరణాలు (Thermo Radiations) అని

అంటారు.

• ఈ సూత్రం ఆధారంగా రూపొందించిన bolometer, thermophile అనే సాధనాలను ఉపయోగించి పరారుణ కిరణాల ఉనికిని తెలుసుకోవచ్చు.

### ఉపయోగాలు:

- టీవీ, రేడియో కార్యక్రమాల ప్రసారంలో
- గోడలపై ఉన్న పాత చిత్రలేఖనాలను తొలగించడంలో
- కండరాల నొప్పిని, పక్షవాతాన్ని నయం చేయడంలో
- రహస్య సంకేతాలను పంపించడంలో
- రిమోట్ సెన్సింగ్ విధానంలో
- భూమి చుట్టూ పరిభమిస్తున్న కృతిమ ఉపగ్రహాలను నియంతిం చడంలో, భూమిపై ఉన్న వివిధ ప్రదేశాలను ఉపగ్రహ సహా యంతో ఫొటోలు తీయడంలో
- ప్రయోగించిన రాకెట్లు, క్షిపణులకు మార్గనిర్దేశక కిరణాలుగా
- పొగమంచు, దుమ్ము ధూళి కణాల ద్వారా దూరంగా ఉన్న వస్తువు
   లను స్పష్టంగా ఫొటో తీయడంలో.

# ಕಾಂತಿ ತರಂಗ ಸಿದ್ಧಾಂತಾನ್ನಿ ಪ್ರತಿವಾದಿಂವಿಂದಿ?

## కాంతి, కాంతి స్వభావం-కాంతి జనకాలు

కాంతివంతమైన వస్తువుల నుంచి కాంతిపుంజాలు ఉత్పత్తి అవు తాయి. కాంతికి సంబంధించిన అనేక దృగ్విషయాలను సంపూర్ణంగా వివరించేందుకు, కాంతికి కణ స్వభావం, తరంగ స్వభావం రెండు ఉన్నాయని, ఆధునిక క్వాంటం సిద్ధాంతం వివరిస్తుంది.

## న్యూటన్ కాంతి కణ సిద్దాంతం:

మొట్టమొదట కాంతి స్వభావాన్ని వివరించే డ్రయత్నం సర్ ఐజక్ న్యూటన్ చేశారు. 17వ శతాబ్దం మధ్యలో న్యూటన్ ''కాంతి కణ సిద్ధాంతాన్ని'' డ్రతిపాదించాడు.

ఈ సిద్ధాంతం ప్రకారం...

- కాంతి తేలికైన, అతి చిన్న, సంపూర్ణ స్థితిస్థాపక కణాలతో కూడిన ప్రవాహం. వీటిని కణాల సముదాయం అంటారు.
- ఈ కణాలు, సూర్యుడు, వెలుగుతున్న కొవ్వొత్తి వెలుగునిస్తున్న విద్యుద్దీపం వంటి కాంతివంతమైన జనకాల నుంచి ఉద్గారం అవుతాయి.
- ఈ కణాలు అన్ని దిశల్లో, రుజు మార్గంలో ప్రయాణిస్తాయి.
- ఈ కణాల వేగం, వేర్వేరు విక్షేషక యానకాల్లో వేర్వేరుగా ఉంటుంది.
- ఈ కణాలు, కంటిలోని రెటీనాని తాకినపుడు దృశ్య జ్ఞానాన్ని కలిగిస్తాయి.
- ఈ కణాలు వేర్వేరు పరిమాణంలో ఉంటాయి. దీనివల్ల కాంతికి వేర్వేరు రంగులు ఏర్పడతాయి.

### కాంతి కణాల పరావర్తనం:

బంతి ఒక దృధతలం నుంచి ఏ విధంగానైతే పరావర్తనం చెందు తుందో అదే విధంగా కాంతి పరావర్తనం చెందుతుందని కాంతి కణ సిద్ధాంతం వివరిస్తుంది. పరావర్తనం(r), పతన కోణం(i)కు సమానంగా ఉండేటట్లు కాంతి కణాలు పరావర్తన తలం వద్ద వికర్షణకు గురవుతాయి.

## కాంతి కణాల వక్రీభవనం:

న్యూటన్ ప్రతిపాదన ప్రకారం, కాంతి కణాలు వక్రీభవన తలాన్ని తాకినపుడు అవి తలం వద్ద ఆకర్షణకు గురవుతాయి.

## న్యూటన్ కాంతి కణ సిద్దాంత వైఫల్యాలు:

న్యూటన్ ట్రతిపాదించిన సాంద్రతల యానకంలో కాంతి వేగం,
 విరళ యానకంలో కంటే ఎక్కువ ఉంటుందనే విషయం తప్పని
 రుజువైంది.

- కాంతి కణాలు వేర్వేరు పరిమాణంలో ఉండటం వల్ల వేర్వేరు రంగులు ఏర్పడతాయనే విషయానికి నిదర్శనాలు లేవు.
- కాంతి కణ సిద్ధాంతం, వ్యతికరణం (Interference), వివర్తనం (Diffraction) ధృవణం (Polarisation) వంటి దృగ్విషయా లను వివరించలేకపోయింది.

## కాంతి తరంగ సిద్దాంతం:

డచ్ భౌతిక శాస్త్రవేత్త క్రిస్టియన్ హైగెన్స్ 1678లో కాంతి జనకం నుంచి కాంతి తరంగ రూపంలో డ్రయాణిస్తుందని డ్రుతిపాదించాడు. దీన్నే ''కాంతి తరంగ సిద్ధాంతం'' అంటారు. హైగెన్స్ కాంతి తరంగ సిద్ధాంతం ద్రకారం..

- కాంతి తరంగాలు వ్యాపించేందుకు యానకం కావాలి. దీనికి హైగెన్స్, సంపూర్ణ స్థితి స్థాపకత ఉన్న ఒక పరికల్పిక యానకం 'ఈథర్' విశ్వమంతా వ్యాపించి ఉందన్నాడు.
- కాంతివంతమైన జనకాలు, కాంతి శక్తిని ఈథర్ యానకంలో
   అలజడి చేస్తూ, అన్ని వైపులా వ్యాపింపజేస్తాయి.
- ఈ అలజడులు, యాంతిక అనుధ్హెర్హ్ల తరంగాల రూపంలో ఈథర్
   యానకం ద్వారా ప్రయాణిస్తాయి.

## తరంగాగ్రం:

యానకంలో ఒకే ప్రావస్థలో కంపనం చేస్తూ కాంతి జనకం నుంచి ఒకే దూరంలో ఉన్న కణాల సముదాయం వల్ల ఏర్పడే ఒక ఊహాత్మక త్రిమితీయ తలాన్ని 'తరంగాగ్రం' అంటారు.

కాంతి జనక పరిమాణం దూరాన్ని బట్టి, తరంగాగ్ర పరిమాణం ఆకారం వేర్వేరుగా ఉంటాయి.

హైగెన్స్ నియమం ప్రకారం తరంగాగ్రాల్లోని ప్రతి బిందువు ఒక గౌణ తరంగ జనకంలా ప్రవర్తించి, గౌణ తరంగాలను, అన్ని వైపులా కాంతి వేగానికి సమానమైన వేగంతో వ్యాపింపజేస్తాయి. గౌణ తరంగాలకు స్పర్శీయతలాన్ని నిర్మించడం ద్వారా కొత్త తరంగాగ్రాన్ని తెలుసుకోవచ్చు.

హైగెన్స్ నియమాన్ని ఉపయోగించి కాంతి పరావర్తనం, కాంతి వక్రీభవనాలను వివరించవచ్చు.

## రిపిల్ ట్యాంక్ వర్ణన:

సాధారణంగా రిపిల్ ట్యాంక్, గాజు లేదా పెర్స్ పెక్స్ వంటి పారదర్శక పదార్థంతో చేసిన ద్ఫీర్త చతుర్వసాకారంలో ఉన్న తొట్టి. నీటితో నింపిన తొట్టిని, నాలుగు పాదాల సహాయంతో కొంత ఎత్తులో ఉండేటట్లుగా ఏర్పాటు చేయాలి. ట్యాంక్ పైభాగంలో వెలుగుతున్న విద్యుద్దీపం నుంచి ఉద్గారమయ్యే కాంతి తొట్టిలోని నీటిపై పడేలా ఏర్పాటు చేయాలి.

విద్యుత్ కంపకం చివరికి సూదిని జతచేసి, దీని ద్వారా తొట్టి నీటిలో అలజడులను సృష్టించాలి. ఈ అలజడులు సూది మొన నుంచి బయలుదేరి, వృత్తాకార తరంగాలుగా తొట్టిలోని ఇతర ప్రాంతాలకు ప్రయాణిస్తాయి. నీటి తరంగాల్లోని శృంగాలు, కుంభాకార కటకాల లాగా, ద్రోణులు పుటాకార కటకాలలాగా ప్రవర్తిస్తాయి. దాంతో తొట్టి పైభాగం నుంచి, తొట్టిలోని నీటిగుండా, కాగితం పైకి ప్రసరించే కాంతి కిరణాలు, శృంగాల వల్ల అభిసరణమై, ద్రోణుల వల్ల అపసరణమై ప్రకాశవంతమైన, ప్రకాశహీనమైన పట్టీలను ఏర్పరుస్తాయి. ఈ పట్టీలు తొట్టిలోని నీటి తరంగాల కదలికలను పోలిఉంటాయి.

## తరంగాల అధ్యారోహణ సూత్రం:

తరంగాల అధ్యారోహణ నియమం ప్రకారం రెండు లేదా అంతకంటే ఎక్కువ తరంగాలు ఒక యానకంలో, ఒకే కాలంలో ప్రయాణిస్తు న్నపుడు ఏ బిందువు వద్దనైనా వీటి ఫలిత స్థాన్మభంశ, రెండు తరంగాల విడిస్థాన్మభంశాల సదిశ మొత్తానికి సమానం.

## తరంగాల వ్యతికరణం:

రెండు కంపన జనకాల నుంచి ఒకే పౌనఃపున్యం, ఒకే కంపన పరిమితులతో ఉన్న తరంగాల అధ్యారోహణ జరగడం వల్ల ఏర్పడే భౌతిక ప్రభావాన్ని 'వ్యతికరణం' అంటారు. యానకంలోని కొంత భాగంలో ఫలిత తరంగ కంపన పరిమితిలోని మార్పుల వల్ల ఈ భౌతిక ప్రభావాన్ని గమనించవచ్చు.

## తరంగాల వివర్తనం:

వ్యాపించే దిశ నుంచి తరంగాలు, విచలనమవడానికి, అవరోధాల అంచుల్ని తాకిన తరంగాలు వంగి ప్రయాణిస్తాయి. ఈ విధంగా తరంగాలు వంగడమనేది, అవరోధ పరిమాణం, ఆకారం, పతన తరంగం తరంగధైర్యం పైన ఆధారపడి ఉంటుంది. తరంగాలు ఈ విధంగా వంగి ప్రయాణించడాన్ని తరంగాల 'వివర్తనం' అంటారు.

తరంగాగ్రాలు ఏదైనా చిన్న అవరోధాలను తాకి, వాటి అంచుల వెంబడి వంగి ప్రయాణించడాన్ని 'వివర్తనం' అంటారు.

# ప్రాక్టీస్ బట్స్

- 1. కాంతి తరంగం ఏదైనా అవరోధాన్ని తాకి దాని అంచుల వెంబడి వంగి ప్రయాణించడాన్ని ఏమంటారు? (డీఎస్సీ–2006)
  - ఎ) వివర్తనం
- బి) వక్రీభవనం
- సి) వ్యతికరణం
- డి) పరావర్తనం
- 2. కాంతికి వివిధ రంగులు ఉండటానికి కారణం? (డీఎస్సీ-2004)
  - ఎ) వివర్తనం
- బి) వ్యతికరణం
- సి) తరంగధైర్వాల తేడా డి) వక్రీభవనం
- 3. కాంతి తిర్యక్ తరంగం అని నిరూపించే ధర్మం?
  - ఎ) వ్యతికరణం
- బి) ధృవణం
- సి) వివర్తనం
- డి) పైవన్సీ
- 4. కాంతి తరంగ సిద్దాంతాన్ని ప్రతిపాదించింది?
  - ఎ) న్యూటన్
- బి) హైగెన్స్
- సి) మాక్స్వెవెల్
- డి) థామస్ యంగ్
- 5. వినాశక కాంతి అధ్యారోపణంలో దశాంతరం?
  - $\omega$ )  $2\pi n$
- ඨ) (3*n*+1)π
- 6. కాంతి ఏ ధర్మంలో వెలుగు, చీకటి పట్టీలు ఏర్పడతాయి?
  - ఎ) వ్యతికరణం
- బి) సంపూర్ణాంతార పరావర్తనం
- సి) వక్రీభవనం
- డి) వివర్తనం
- 7. రిపిల్ ట్యాంక్లలో నీటి తరంగాల శృంగాలు వేటిని ఏర్పాటు వేస్తాయి?

  - ఎ) చీకటి పట్టీలు బి) వెలుగు పట్టికలు
  - సి) రంగుల పట్టీలు
- డి) పైవన్నీ
- 8. నీటి తరంగ ధైర్వ్యాలతో పోల్చినపుడు కాంతి తరంగ ధైర్వ్యాలు సుమారు ఎంత పరిమాణంలో ఉంటాయి?

## న్యూటన్ కణ సిద్ధాంతం - కాంతి తరంగ చలన సిద్ధాంతాల మధ్య పోలికలు

| ė         |                                                                           |    |                                                                                         |
|-----------|---------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------|
| ను        | ာ္ပမဲလ်                                                                   |    | ಕಾಂತಿ ತರಂಗ ಸಿದ್ಧಾಂತಂ                                                                    |
| 1. కాంతి, | కణాల ప్రవాహమని భావించారు.                                                 | 1. | కాంతి, తరంగ చలనం చేస్తుందని భావిం<br>చారు.                                              |
|           | రుజుమార్గ వ్యాప్తిని, కణాల సరశ<br>వలనంతో వివరించారు.                      | 2. | కాంతి రుజు మార్గ వ్యాప్తిని, పురోగమిస్తున్న<br>తరంగాగ్రాల అభిలంబ దిశలతో వివరిం<br>చారు. |
|           | రంగులు, కణాల వేర్వేరు పరిమాణాల<br>ర్పడతాయి.                               | 3. | కాంతి రంగులు, తరంగధైర్హ్మాల భేదంతో<br>ఏర్పడతాయి.                                        |
|           | పరావర్తనం, వక్షీభవనాలను కణాలు,<br>కం మధ్య గల ఆకర్షణ, వికర్షణలతో<br>ంచారు. | 4. | కాంతి, పరావర్తనం, వక్రీభవనాల్ని, హైగెన్స్<br>గౌణ తరంగాల నిర్మాణ నియమంతో వివరిం<br>చారు. |
|           | దృగ్విషయాలను వివరించలేకపో                                                 | 5. | కాంతి వ్యతికరణం, వివర్తనం, ధృవణం<br>వంటి దృగ్విషయాలను వివరించగలిగింది.                  |
|           | వేగం, విరళ యానకంలో కంటే<br>తర యానకంలో ఎక్కువగా ఉన్నట్లు<br>స్తుంది.       | 6. | కాంతి వేగం, విరశ యానకంలో కంటే<br>సాంద్రతర యానకంలో తక్కువ ఉందని<br>రుజువు చేసింది.       |

ఎ) 5000Å పి) 9000Å డి) 1000Å

9. కణ సిద్దాంతం ప్రకారం ఏ యానకంలో కాంతి వేగం ఎక్కువ?

ఎ) సాంద్రతర యానకం

బి) విరళ యానకం

సి) పై రెండూ

డి) పై రెండూ కాదు

