《概率统计》试 卷 (二)

时间 90 分钟

—.	选择题	(每题 3 分,	共 24 分)	
-----------	-----	-----------	---------	--

(A) a=1, b=2;

(C) a=1, b=-2;

Ι.	设事件 A 与 B 互斥,	P(A) > 0, P(B) > 0,	则下列结论中一定成立	的有
	(A) \overline{A} 与 \overline{B} 互不相名 (C) A 与 B 相互独立		(B) A,B为对立事 (D) A与B不独立	
		,2 个次品,不放回任取; (<i>B</i>) 4/7;		<u></u>
		为 0.75. 若射击直到中		
	$(A) (0.75)^3;$	$(B) 0.75(0.25)^2;$	$(C) 0.25(0.75)^2;$	$(D) (0.25)^3$.
4.	下列各函数中可以作	为某个随机变量 X 的分	布函数的是	
	$(A) F(x) = \sin x$		$(B) F(x) = \frac{1}{1+x^2};$	
	$(C) F(x) = \begin{cases} \frac{1}{1+x} \\ 1 \end{cases}$	$\frac{1}{x^2} (x \le 0), (x > 0);$	$(D) F(x) = \begin{cases} 0 \\ 1.1 \\ 1 \end{cases}$	(x < 0), $(0 \le x \le 1),.$ (x > 1);
5.	设随机变量 $X \sim B(1)$	$(p), Y \sim \pi(\lambda), \perp X,$	Y相互独立,则 $X + Y$	·
	(A) 是一维随机型	变量;	(B) 是二维随机变量	;
	(C) 服从两点分a	乍 ;	(D) 服从泊松分布.	
6.	设随机变量 X 的分布	f律为: $P(X = a) = 0.6$	P(X=b)=p, (a < b < b < b < b < b < b < b < b < b <	$\langle b \rangle$. $\nabla E(X) = 1.4$
	D(X) = 0.24,则	<i>a</i> , <i>b</i> 的值为		

(B) a=-1, b=2;

(D) a=0, b=1.

7. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, 1)$ 的一与样本方差,则	一个简单随机样本, $ar{X},S^2$ 分别为样本均值
$(A) \overline{X} \sim N(0,1);$	(B) $\sum_{i=1}^{n} (X_i - \overline{X})^2 \sim \chi^2(n)$;
(C) $\sum_{i=1}^{n} (X_i - \mu)^2 \sim \chi^2(n)$;	(D) $\frac{\overline{X}}{S/\sqrt{n-1}} \sim t(n-1)$.
8. 在 H_0 为原假设, H_1 为备择假设的假设检验中	中,若显著性水平为 $lpha$,则
(A) $P(接受H_0 H_0成立) = \alpha;$ (C) $P(接受H_1 H_0成立) = \alpha;$	
二. 填空题(每题5分,共30分)	
1. 设 $P(A) = 3P(B) = 2/3$, $A 与 B$ 都不发生的	的概率是 A 与 B 同时发生的概率的 2 倍,
则 $P(A-B)=$	
2. 设 A, B 为两随机事件,已知 $P(A) = 0.7 = 0$.	$3 + P(B), P(A \cup B) = 0.8$,则
$P(A \mid \overline{A} \cup B) = \underline{\hspace{1cm}}.$	
3. 设随机变量 X 的密度函数为: $f(x) = \begin{cases} 1/3 \\ 2/9 \\ 0 \end{cases}$	$(0 \le x \le 1),$ $(3 \le x \le 6),$ (其 他).
若 k 满足 $P(X \ge k) = 2/3$,则 k 的取值范围是_	·
4. 设随机变量 $X \sim N(1.04, 1)$,已知 $P(X \le 3)$) = 0.975,则 $P(X \le -0.92) =$
5. 设随机变量 X, Y 满足 $D(X) = 4$, $D(Y) = 1$, $D(3X - 2Y) = 28$, $\rho_{XY} = $
6. 设总体 $X \sim \bigcup (0, \theta), X_1, X_2, \dots, X_n$ 为总体	的一个样本,则未知参数 $ heta$ 的矩估计量
为	

- 三. 计算题 (每题 10 分, 共 40 分)
- 1. 某电脑公司组装的电脑所用的显示屏是由 3 家工厂提供的(数据见表),现从待出厂的电脑中任抽一台检验发现是次品(设为事件 A),原因是显示屏有问题.
 - (1) 求 P(A); (2) 有问题的显示屏由哪家厂提供的可能性最大?

显示屏制造厂	提供份额	次品率
1	0. 15	0.03
2	0. 60	0.01
3	0. 25	0.02

2. 设随机变量(X,Y)的联合密度函数为

$$f(x, y) = \begin{cases} 3x & (0 \le x \le 1, 0 \le y \le x), \\ 0 & (\sharp & \text{th}). \end{cases}$$

- (1) 求边缘密度函数 $f_x(x)$ 与 $f_y(y)$;
- (2) X 与 Y 是否相互独立? 为什么?
- (3) 计算P(X+Y>1).
- 3. 某意外事故 A 发生的概率为 p. 若 A 发生,保险公司要赔偿给投保者 M 元. 为使公司的期望收益达到 0.05 M 元,公司将要求投保者交纳多少保费?
- 3. 机器自动包装食盐,设每袋盐的净重服从正态分布,规定每袋盐的标准重量为 500 克,标准差不能超过 10 克。某天开工后,为了检验机器是否正常工作,从已经包装好的食盐中随机抽取 9 袋,测得 $\bar{X}=499$, $S^2=16.03^2$ 。问这天自动包装机工作是否正常($\alpha=0.05$)? 即检验(1) $H_0: \mu=500$, $H_1: \mu\neq 500$; (2) $H_0: \sigma^2 \leq 10^2$, $H_1: \sigma^2 > 10^2$.

$$\begin{cases} t_{0.025}(8) = 2.306, t_{0.025}(9) = 2.262 & \chi_{0.025}^{2}(8) = 17.535, \chi_{0.025}^{2}(9) = 19.023 \\ t_{0.05}(8) = 1.8595, t_{0.05}(9) = 1.8331 & \chi_{0.05}^{2}(8) = 15.507, \chi_{0.05}^{2}(9) = 16.919 \end{cases}$$

四. 证明题(6分)

设事件 A、B、C 同时发生必导致事件 D 发生,证明: $P(A) + P(B) + P(C) \le 2 + P(D)$.