Fundamental Physical Constants — Non-SI units

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
	QT !	. 16		
		eccepted for use with the SI	T	
electron volt: (e/C) J	eV	$1.602176634 \times 10^{-19}$	J	exact
(unified) atomic mass unit: $\frac{1}{12}m(^{12}C)$	u	$1.66053906660(50)\times10^{-27}$	kg	3.0×10^{-10}
Natural units (n.u.)				
n.u. of velocity	c	299792458	${ m m~s^{-1}}$	exact
n.u. of action	\hbar	$1.054571817\ldots \times 10^{-34}$	J s	exact
		$6.582119569\ldots \times 10^{-16}$	eV s	exact
	$\hbar c$	$197.3269804\ldots$	MeV fm	exact
n.u. of mass	$m_{ m e}$	$9.1093837015(28)\times 10^{-31}$	kg	3.0×10^{-10}
n.u. of energy	$m_{ m e}c^2$	$8.1871057769(25) \times 10^{-14}$	J	3.0×10^{-10}
		0.51099895000(15)	MeV	3.0×10^{-10}
n.u. of momentum	$m_{ m e}c$	$2.73092453075(82)\times 10^{-22}$	${ m kg~m~s^{-1}}$	3.0×10^{-10}
		0.51099895000(15)	MeV/c	3.0×10^{-10}
n.u. of length: $\hbar/m_{ m e}c$	$\lambda_{ m C}$	$3.8615926796(12)\times 10^{-13}$	m	3.0×10^{-10}
n.u. of time	$\hbar/m_{ m e}c^2$	$1.28808866819(39)\times10^{-21}$	S	3.0×10^{-10}
	Ato	mic units (a.u.)		
a.u. of charge	e	$1.602176634\times10^{-19}$	C	exact
a.u. of mass	$m_{ m e}$	$9.1093837015(28) \times 10^{-31}$	kg	3.0×10^{-10}
a.u. of action	\hbar	$1.054571817\ldots \times 10^{-34}$	Js	exact
a.u. of length: Bohr radius (bohr)				
$\hbar/lpha m_{ m e} c$	a_0	$5.29177210903(80) \times 10^{-11}$	m	1.5×10^{-10}
a.u. of energy: Hartree energy (hartree)				
$\alpha^2 m_{\rm e} c^2 = e^2 / 4\pi \epsilon_0 a_0 = 2hc R_{\infty}$	$E_{ m h}$	$4.3597447222071(85) \times 10^{-18}$	J	1.9×10^{-12}
a.u. of time	$\hbar/E_{ m h}$	$2.4188843265857(47)\times10^{-17}$	S	1.9×10^{-12}
a.u. of force	$E_{ m h}/a_0$	$8.2387234983(12) \times 10^{-8}$	N	1.5×10^{-10}
a.u. of velocity: αc	$a_0 E_{ m h}/\hbar$	$2.18769126364(33) \times 10^{6}$	${ m m~s^{-1}}$	1.5×10^{-10}
a.u. of momentum	\hbar/a_0	$1.99285191410(30) \times 10^{-24}$	${ m kg~m~s^{-1}}$	1.5×10^{-10}
a.u. of current	$eE_{ m h}/\hbar$	$6.623618237510(13) \times 10^{-3}$	A	1.9×10^{-12}
a.u. of charge density	e/a_{0}^{3}	$1.08120238457(49)\times10^{12}$	${ m C}~{ m m}^{-3}$	4.5×10^{-10}
a.u. of electric potential	$E_{ m h}/e$	27.211386245988(53)	V	1.9×10^{-12}
a.u. of electric field	$E_{ m h}/ea_0$	$5.14220674763(78)\times10^{11}$	${ m V~m^{-1}}$	1.5×10^{-10}
a.u. of electric field gradient	$E_{ m h}/ea_0^2$	$9.7173624292(29) \times 10^{21}$	${ m V~m^{-2}}$	3.0×10^{-10}
a.u. of electric dipole moment	ea_0	$8.4783536255(13)\times 10^{-30}$	C m	1.5×10^{-10}
a.u. of electric quadrupole moment	ea_0^2	$4.4865515246(14) \times 10^{-40}$	$C m^2$	3.0×10^{-10}
a.u. of electric polarizability	$e^2 a_0^2 / E_{\rm h}$	$1.64877727436(50) \times 10^{-41}$	$\mathrm{C}^2~\mathrm{m}^2~\mathrm{J}^{-1}$	3.0×10^{-10}
a.u. of 1 st hyperpolarizability	$e^3 a_0^3 / E_{\rm h}^2$	$3.2063613061(15)\times10^{-53}$	$\mathrm{C}^3~\mathrm{m}^3~\mathrm{J}^{-2}$	4.5×10^{-10}
a.u. of 2 nd hyperpolarizability	$e^4 a_0^4 / E_{ m h}^3$	$6.2353799905(38) \times 10^{-65}$	$\mathrm{C}^4~\mathrm{m}^4~\mathrm{J}^{-3}$	6.0×10^{-10}
a.u. of magnetic flux density	\hbar/ea_0^2	$2.35051756758(71)\times10^5$	T	3.0×10^{-10}
a.u. of magnetic dipole moment: $2\mu_{\mathrm{B}}$	$\hbar e/m_{ m e}$	$1.85480201566(56)\times 10^{-23}$	$ m J~T^{-1}$	3.0×10^{-10}
a.u. of magnetizability	$e^2 a_0^2 / m_{\rm e}$	$7.8910366008(48)\times10^{-29}$	$ m J~T^{-2}$	6.0×10^{-10}
a.u. of permittivity	$e^2/a_0E_{\rm h}$	$1.11265005545(17) \times 10^{-10}$	$\mathrm{F}\mathrm{m}^{-1}$	1.5×10^{-10}