\$3.2 Finite difference approximations

We showed. Sf = f(x+Sx) - f(x) = f(x)Sx + o(11Sx11).

J. Finite difference approximations

$$f(x+8x)-f(x)$$
 fwd difference

 $f(x)-f(x-8x)$ backward difference relation with

fwd differentiatic

Example. $f(A) = A^2$.

where 11-11 is a norm., like that in the vector case.

2. Norm of a matrix - the simplest one

$$||x|| = \sqrt{x^7 x} = \sqrt{\sum_i x_i^2} \quad (L2 \text{ norm}). \quad \left[\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]$$
big bag

(Generlized dot product is $B \cdot A = tr(B^{T}A)$). big bag of

3. Accuracy of finite differences

· plot (relative error - 118A11) in log-log scale.

What's the paratio portion of the?

· Order of accuracy.

Using Taylor Series, getting
$$x^2$$
 order accuracy.

$$f(x+8x) = f(x) + f'(x) & x + \frac{f''(x)}{2x} & x + \cdots$$

$$o(118x11^2).$$
higher-order terms

Then our relerror =
$$\frac{||f(x+\delta x)-f(x)-f'(x)\delta x||}{||f'(x)\delta x||}$$
 grab off

= $\frac{(\text{terms prop. to } |l\delta x|l^2) + o(|l\delta x|l^2)}{\text{perposional to } |l\delta x|l}$.

=(terms proportional to 118x11) +o(118x11).

truncation error (why it is Irnear).

• Roundoff error. When f(8x) is too small, $f(x+\delta x) - f(x) \text{ get rounded off to 0.} \qquad \text{round to 0.}$ i.e. $\sin(x)$ at x=1, $f'(x) = \frac{f(x+\delta x)-f(x)}{\delta x} + O(\delta x)$.

3. Rule of thumb for finite difference

The number of significant digits stored by pc is expred by machine epsition ϵ .

'EM is the sz of last significant digit of x.

choose half of significant digits. $||8x|| \approx \sqrt{\epsilon} \, ||x||.$

if x isoforder n_1 , δx should be of order $\sqrt{\epsilon} = 10^{-8}$.