Uni- and Bipolar Hall IC Switches for Magnetic Field Applications

TLE 4905 L; TLE 4935 L; TLE 4935-2 L; TLE 4945 L; TLE 4945-2L

Bipolar IC

Features

- Temperature compensated magnetic performance
- Digital output signal
- · For unipolar and alternating magnetic fields
- Large temperature range
- Protection against reversed polarity
- Output protection against electrical disturbances

Туре	Ordering Code	Package
TLE 4905 L	Q67006-A9120	P-SSO-3-2
TLE 4935 L	Q67006-A9112	P-SSO-3-2
TLE 4935-2 L	Q67006-A9143	P-SSO-3-2
TLE 4945 L	Q67006-A9163	P-SSO-3-2
TLE 4945-2L	on request	P-SSO-3-2

TLE 4905/35/35-2/45 L (Unipolar/Bipolar Magnetic Field Switches) have been designed specifically for automotive and industrial applications. Reverse polarity protection is included on-chip as is output protection against negative voltage transients.

Typical applications are position/proximity indicators, brushless DC motor commutation, rotational indexing etc.

Pin Configuration

(view on branded side of component)

Figure 1

Pin Definitions and Functions

Pin No.	Symbol	Function
1	V_{S}	Supply voltage
2	GND	Ground
3	Q	Output

Circuit Description

The circuit includes Hall generator, amplifier and Schmitt-Trigger on one chip. The internal reference provides the supply voltage for the components. A magnetic field perpendicular to the chip surface induces a voltage at the hall probe. This voltage is amplified and switches a Schmitt-trigger with open-collector output. A protection diode against reverse power supply is integrated. The output is protected against electrical disturbances.

Figure 2 Block Diagram

Functional Description Unipolar Type TLE 4905 (figure 3 and 4)

When a positive magnetic field is applied in the indicated direction (**figure 3**) and the turn-on magnetic induction $B_{\rm OP}$ is exceeded, the output of the Hall-effect IC will conduct (Operate Point). When the current is reduced, the output of the IC turns off (Release Point; **figure 4**).

Figure 3
Sensor/Magnetic-Field Configuration

Figure 4
Switching Characteristics Unipolar Type

Functional Description Bipolar Type TLE 4935/35-2/45 (figure 5 and 6)

When a positive magnetic field is applied in the indicated direction (**figure 5**) and the turn-on magnetic induction $B_{\rm OP}$ is exceeded, the output of the Hall-effect IC will conduct (Operate Point). When a reverse magnetic field is generated, the output of the IC turns off (Release Point; **figure 6**).

Figure 5
Sensor/Magnetic-Field Configuration

Figure 6
Switching Characteristics Bipolar Type

Absolute Maximum Ratings

 $T_{\rm i}$ = -40 to 150 °C

Parameter	Symbol	Limit	Values	Unit	Remarks
		min.	max.		
Supply voltage	V_{S}	- 40	32	V	_
Supply voltage	$V_{\mathtt{S}}$	_	40	V	t < 400 ms; v = 0.1
Output voltage	V_{Q}	_	32	V	_
Output current	I_{Q}	_	100	mA	_
Output reverse current	$-I_{Q}$	_	100	mA	_
Junction temperature	T_{j}	- 40	150	°C	_
Junction temperature	T_{j}	_	170	°C	1000 h
Junction temperature	$T_{\rm j}$	_	210	°C	40 h
Storage temperature	$T_{ m stg}$	- 50	150	°C	_
Thermal resistance	R_{thJA}	_	190	K/W	_

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Range

Parameter	Symbol	Limit	Values	Unit	Remarks
		min.	max.		
Supply voltage	$V_{\mathtt{S}}$	3.8	24	V	_
Junction temperature	T_{j}	- 40	150	°C	_
Junction temperature	T_{j}	- 40	170	°C	thresholds may exceed the limits

Note: In the operating range the functions given in the circuit description are fulfilled.

AC/DC Characteristics

3.8 V $\leq V_{\rm S} \leq$ 24 V; - 40 °C $\leq T_{\rm i} \leq$ 150 °C

Parameter	Symbol	Lir	nit Val	ues	Unit	Test Condition	Test
		min.	typ.	max.			Circuit
Supply current	$I_{ m SHigh} \ I_{ m SLow}$		3 4	7 8	mA mA	$B < B_{RP}$ $B > B_{OP}$	1
Output saturation voltage	V_{QSat}	_	0.25	0.5	V	$I_{\rm Q}$ = 40 mA	1
Output leakage current	I_{QL}	_	_	10	μΑ	V _Q = 24 V	1
Rise/fall time	$t_{\rm r}$ / $t_{\rm f}$	_	_	1	μs	$R_{\rm L}$ = 1.2 k Ω $C_{\rm L}$ \leq 33 pF	1

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{\rm j} = 25\,^{\circ}{\rm C}$ and the given supply voltage.

Magnetic Characteristics

 $3.8 \text{ V} \le V_{\text{S}} \le 24 \text{ V}$

Parameter	Symbol					Limit	Values					Unit
			4905 polar	TLE 4935 bipolar latch		TLE 4935-2 bipolar latch		TLE 4945 bipolar latch		TLE 4945-2 bipolar latch		
		min.	max.	min. max.		min. max.		min. max.		min.	max.	

Junction Temperature $T_{\rm j}$ = - 40 °C

Turn-ON induction	B_{OP}	7.5	19	10	20	15	27	-6	10	-3	6	mT
Turn-OFF induction	B_{RP}	5.5	17	- 20	– 10	- 27	– 15	- 10	6	- 6	3	mT
Hysteresis $(B_{OP} - B_{RP})$	ΔB_{HY}	2	6.5	20	40	30	54	2	10	1	5	mT

Junction Temperature $T_{\rm j}$ = 25 °C

Turn-ON	_	_	4.0	4.0	4.0				4.0			_
induction	B_{OP}	/	18	10	18	14	26	- 6	10	-3	6	mT
Turn-OFF induction	R	5	16	–18	-10	- 26	– 14	– 10	6	- 6	3	mT
Hysteresis	B_{RP}	3	10	-10	-10	_ 20	_ 14	_ 10		-0	3	1111
$(B_{OP} - B_{RP})$	ΔB_{HY}	2	6	20	36	28	52	2	10	1	5	mT

Junction Temperature $T_{\rm j}$ = 85 °C

Turn-ON induction	B_{OP}	6.5	17.5	9	18	13	26	- 6	10	-3	6	mT
Turn-OFF induction Hysteresis	B_{RP}	4.5	15	– 18	- 9	- 26	- 13	– 10	6	-6	3	mT
$(B_{OP}\text{-}B_{RP})$	ΔB_{HY}	2	5.5	18	36	26	52	2	10	1	5	mT

Magnetic Characteristics (cont'd)

 $3.8 \text{ V} \le V_{\text{S}} \le 24 \text{ V}$

Parameter	Symbol					Limit	Values					Unit
			4905 polar	bip	4935 olar tch	-			4945 oolar tch	TLE 4945-2 bipolar latch		
		min.	max.	min. max.		min. max.		min.	max.	min.	max.	

Junction Temperature $T_i = 150$ °C

Turn-ON induction	B_{OP}	6	17	7	18	12	25	-6	10	-3	6	mT
Turn-OFF induction	B_{RP}	4	14	- 18	-7	- 25	- 12	- 10	6	- 6	3	mT
Hysteresis $(B_{OP} - B_{RP})$	ΔB_{HY}	2	5	14	36	24	50	2	10	1	5	mT

Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_j = 25^{\circ}$ C and the given supply voltage.

Figure 7
Test Circuit 1

Figure 8
Application Circuit

Quiescent Current versus Supply Voltage

Quiescent Current Difference versus Temperature

Quiescent Current versus Junction Temperature

Saturation Voltage versus Output Current

TLE 4905 Operate-and Release-Point versus Junction Temperature

TLE 4935 Operate-and Release-Point versus Junction Temperature

TLE 4905 Hysteresis versus Junction Temperature

TLE 4935-2 Operate-and Release-Point versus Junction Temperature

TLE 4945 Operate-and Release-Point versus Junction Temperature

TLE 4945-2 Operate-and Release-Point versus Junction Temperature

Package Outline

Exterior Packaging

I.e. tubes, trays, boxes are shown in our Data Book "Package Information".

Dimensions in mm

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.