Local Variable Selection and Parameter Estimation of Spatially Varying Coefficient Regression Models

Wesley Brooks

0.1. Model

Consider n data points, observed at sampling locations s_1, \ldots, s_n , which are distributed in a spatial domain $D \subset \mathbb{R}^2$ according to a density f(s). For $i = 1, \ldots, n$, let $y(s_i)$ and $x(s_i)$ denote the univariate response variable, and a (p+1)-variate vector of covariates measured at location s_i , respectively. At each location s_i , assume that the outcome is related to the covariates by a linear model where the coefficients $\beta(s_i)$ may be spatially-varying and $\varepsilon(s_i)$ is random error at location s_i . That is,

$$y(s_i) = x(s_i)'\beta(s_i) + \varepsilon(s_i). \tag{1}$$

Further assume that the error term $\varepsilon(s_i)$ is normally distributed with zero mean and variance σ^2 , and that $\varepsilon(s_i)$, i = 1, ..., n are independent. That is,

$$\varepsilon(\mathbf{s}_i) \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma^2\right).$$
 (2)

Thus, conditional on the design matrix X, observations of the response variable at different locations are independent of each other.

An SVCR model that estimates the regression coefficients as locally constant, as in the class of Nadaraya-Watson kernel smoothers (?), suffers the problem of biased estimation that is common

Preprint April 23, 2014

to that class of models - particularly where there is a gradient to the coefficient surface at the boundary of the domain (?).

In the context of nonparametric regression, the boundary-effect bias can be reduced by local polynomial modeling, usually in the form of a locally linear model (?). Here, locally linear coefficients are estimated by augmenting the local design matrix with covariate-by-location interactions in two dimensions as proposed by ?. The augmented local design matrix at location s_i is

$$Z(s_i) = (X L(s_i) X M(s_i) X)$$
(3)

where X is the unaugmented matrix of covariates, $L(s_i) = \text{diag}\{(s_{i'} - s_i)_1\}$ and $M(s_i) = \text{diag}\{(s_{i'} - s_i)_2\}$ for $i' = 1, \ldots, n$.

0.2. Estimation

The total log-likelihood of the observed data is the sum of the log-likelihood of each individual observation:

$$\ell\left\{\boldsymbol{\beta}(\boldsymbol{s}_i)\right\} = -(1/2) \sum_{i'=1}^{n} \left[\log \sigma^2(\boldsymbol{s}_i) + \sigma^{-2}(\boldsymbol{s}_i) \left\{y(\boldsymbol{s}_{i'}) - \boldsymbol{z}'(\boldsymbol{s}_{i'})\boldsymbol{\beta}(\boldsymbol{s}_i)\right\}^2\right]. \tag{4}$$

Since there are a total of $n \times 3(p+1)$ parameters for n observations, the model is not identifiable and it is not possible to directly maximize the total likelihood.

The values of the local coefficients $\beta(s_i)$ are estimated by the weighted likelihood

$$\mathcal{L}\left\{\boldsymbol{\beta}(\boldsymbol{s}_{i})\right\} = \prod_{i'=1}^{n} \left(\left\{2\pi\sigma^{2}(\boldsymbol{s}_{i})\right\}^{-1/2} \exp\left[-(1/2)\sigma^{-2}(\boldsymbol{s}_{i})\left\{y(\boldsymbol{s}_{i'}) - \boldsymbol{z}'(\boldsymbol{s}_{i'})\boldsymbol{\beta}(\boldsymbol{s}_{i})\right\}^{2}\right]\right)^{w_{ii'}}, \quad (5)$$

where the weights are calculated by a kernel function $K_h(\cdot)$ such as the Epanechnikov kernel:

$$w_{ii'} = K_h(\delta_{ii'}) = h^{-2}K \left(h^{-1}\delta_{ii'} \right)$$

$$K(x) = \begin{cases} (3/4)(1 - x^2) & \text{if } \delta_{ii'} < h, \\ 0 & \text{if } \delta_{ii'} \ge h. \end{cases}$$
(6)

Thus, the local log-likelihood function is, up to an additive constant:

$$\ell\left(\boldsymbol{\beta}(\boldsymbol{s}_i)\right) = -(1/2) \sum_{i'=1}^{n} w_{ii'} \left[\log \sigma^2(\boldsymbol{s}_i) + \sigma^{-2}(\boldsymbol{s}_i) \left\{ y(\boldsymbol{s}_{i'}) - \boldsymbol{z}'(\boldsymbol{s}_{i'}) \boldsymbol{\beta}(\boldsymbol{s}_i) \right\}^2 \right]. \tag{7}$$

This local likelihood can be maximized by weighted least squares

$$\hat{\boldsymbol{\beta}}(\boldsymbol{s}_i) = \left\{ \boldsymbol{Z}^T(\boldsymbol{s}_i) \boldsymbol{W}(\boldsymbol{s}_i) \boldsymbol{Z}(\boldsymbol{s}_i) \right\}^{-1} \boldsymbol{Z}^T(\boldsymbol{s}_i) \boldsymbol{W}(\boldsymbol{s}_i) \boldsymbol{Y}. \tag{8}$$

From (??), the maximum local likelihood estimate $\hat{\sigma}^2(s_i)$ is:

$$\hat{\sigma}^{2}(\mathbf{s}_{i}) = \left(\sum_{i'=1}^{n} w_{ii'}\right)^{-1} \sum_{i'=1}^{n} w_{ii'} \left\{ y(\mathbf{s}_{i'}) - \mathbf{z}'(\mathbf{s}_{i'}) \hat{\boldsymbol{\beta}}(\mathbf{s}_{i}) \right\}^{2}$$
(9)