

DSP 应用技术实验

DSP 数据采集实验报告

作		者	:	周鹏	学	号	:	9181040G0740	
同	组	人	:	杨霄宇	学	号	:	9181040G0736	
同	组	人	:	许昕荣	学	号	:	9181040G1038	
学		院	:	电子工程与光电技术学院					
专		业	:	4	包子信	言息工	_禾	E.	
班		级	:	电信3班					
组		号	:	第二组 B6					
题		目	:	DSP 应用技术实验					
				DSP 数	发据 采	集实	、验	2报告	
指	导	者	:	李彧晟					

目录

1	实验目	目的
2	实验	仪器1
	2. 1	实验仪器清单1
	2.2	硬件连接示意图1
3	实验	步骤及现象2
	3. 1	程序流程2
	3. 2	实验步骤3
	3. 3	编写数据存储代码4
		3.3.1 数据存储的原理4
		3.3.2 数据存储代码5
	3.4	建立工程并运行、调试程序5
	3.5	修改采样频率并验证5
4	实验	结果5
	4.1	ADC 采样频率计算公式5
	4.2	信号波形存储地址及作图6
	4.3	观察不同频率的输出情况6
	4.4	ADC 采样频率的验证7
	4.5	ADC 采样频率的硬件验证8
		4.5.1 修改前的采样频率的验证8
		4.5.2 修改后的采样频率的验证8
	4.6	利用查询方式对 ADC 外设进行数据采样9
	4. 7	将存储的采样数据保存到数据文件中9
	4.8	利用动态有效位 ENOB 进行测试数据平台的采集性能9
5	实验	总结9
	5. 1	实验中遇到的问题及解决方法9
	5. 2	实验心得体会10

1 实验目的

- 1. 熟悉 DSP 硬件开发平台;
- 2. 掌握 TMS320F28335 的 ePWM 中时间基准子模块和事件触发子模块的基本使用方法;
 - 3. 熟悉 TMS320F28335 的中断的设置;
 - 4. 掌握 TMS320F28335 的 ADC 模块的基本使用方法;
 - 5.

熟悉 DSP 代码调试基本方法。

2 实验仪器

2.1 实验仪器清单

- 1. DSP 仿真平台(仿真器、DSP 实验箱、计算机) 一套
- 2. 示波器 一台
- 3. 信号发生器 一台

2.2 硬件连接示意图

实验硬件连接大致如图 2.1 所示, F28335 的 ADC 原理如图 2.2 所示。

图 2.1 硬件连接示意图

图 2.2 F28335 的 ADC 原理

3 实验步骤及现象

3.1 程序流程

为实现 DSP 的数据采集存储以及模拟的还原,必须依赖于 ADC、DSP 以及 DAC 三大基本部件,而 TMS320F28335 芯片上集成了 ADC 模块,因此实现该功能 较为简单,数据采集的工作可以由 DSP 单独完成,只需要对相关外设模块进行合理配置。模拟还原由实验箱中 DAC(AD9747)来完成。TMS320F28335 中的 ADC 模块与 DSP 内核之间的通信可以通过查询方式或中断方式,在此,我们采用 ADC 的中断功能实现数据的交换。

TMS320F28335 中 ADC 的转换频率和采样频率可以独立设置,分别位于 ADC 模块和 ePWM 的时间基准子模块中,因此要使 ADC 工作,必须掌握 ADC 模块和 ePWM 模块中的相关设置。

由此可得程序流程如图 3.1 所示。

图 3.1 DSP 数据采集程序流程图

DSP 初始化

一般而言, DSP 要正常工作, 必须首先设置时钟, 时钟确定了 DSP 工作主 频。

TMS320F28335 中时钟设置大致分为三个主要寄存器,它们分别是锁相环控制寄存器(PLLCR)、外设时钟使能控制寄存(PCLKCR0,PCLKCR1,PCLKCR2)和外设时钟预定标设置寄存器(HISPCP、LOSPCP)。F28335 的时钟设置具体内容参照课件 2.4 等相关资料。

模数转换模块(ADC)

TMS320F28335 内部有一个 16 通道、采样精度为 12bit 的 ADC 模块。这 16 通道可配置两个独立的 8 通道模块,具有同步采样和顺序采样模式,模拟输入范围 $0\sim3$ V,最快转换时间为 80ns,具有多个触发源用于启动 AD 的转换,采用灵活的中断控制。

ePWM 模块

TMS320F28335 中 ePWM 模块的事件可产生 ADC 转换启动脉冲信号 SOC,本次实验采用时间基准子模块的产生周期事件,通过事件触发子模块的设置来产生 ADC 转换启动脉冲信号 SOC。

TMS320F28335 中断系统

TMS320F283x 的外设中断扩展 (PIE) 单元通过少量中断输入信号的复用来扩展大量的中断源,PIE 单元支持多达 96 个独立的中断,这些中断以 8 个为一组进行分类,每组中的所有中断共用一个 CPU 级中断 (INT1~INT12)。96 个 中断对应的中断向量表存储在专用 RAM 区域中。PIE 向量表用来存储系统中每 个中断服务程序 (ISR) 的入口地址。一般来说,在设备初始化时就要设置 PIE 向 量表,并可在程序执行期间根据需要对其进行更新。

在实验中,当我们设置 VMAP=1 (ST1 寄存器的 bit3), ENPIE=1 (PIECTRL 寄存器的 bit0)后,TMS320F28335 的中断向量表地址范围 0x000D00~0x000DFF。例如 ADC 外设模块 SEQ1INT 中断向量地址是 0x000D40,SEQ2IN 中断向量地址是 0x000D42,ADCINT 中断向量地址为 0x000D4A (ADCINT 是 SEQ1INT 和 SEQ2INT 的逻辑或)。

要想正确使用中断,首先应该合理设置中断向量表,在对应地址填入中断服务子程序的入口地址。其次,必须对上述三个级别的中断作出正确的设置。比如实验中,要想实现 CPU 利用中断方式读取 ADC 的采样数据,可以使能 ADC 模块的中断 SEQ1INT,其次使能外设使能寄存器 PIEIER1.1,保证中断发生时PIEACK1.1 位清零,最后使能 CPU 中断使能寄存器 IER 中的 INT1,以及全局中断使能位 INTM。这些工作必须在系统初始化时完成。退出中断服务程序前,清除 ADCST 中的 INT SEQ1 以及相应的 PIEACKx。

3.2 实验步骤

1. 设备检查

检查仿真器、F28335 DSP 教学实验箱、计算机之间的连接是否正确,打开计算机和实验箱电源。

2. 启动集成开发环境

点击桌面 CCS 5 的快捷方式,进入集成开发环境 CCS。

3. 新建工程

新建一个 DSP 工程,编辑源程序、配置命令等相关文件,并在工程中添加这些程序文件。

在源程序中,通过对中断、ADC 外设以及事件管理通用时钟的设置,利用中断方式读取 ADC 的采样结果,并用 DAC 实现模拟信号的还原。在程序中,开辟一段数据空间,用于保存 ADC 的采样结果,要求保存 1024 点数据,且该空间的数据不断刷新。

4. 建立工程 (Build)

建立工程(build),若出错,则根据错误提示,修改源程序文件或者配置命令文件,直至编译链接正确,生成可执行的.out文件。

5. 连接外部电路

打开信号源,产生一个合适的频率(ADC 的采样频率必须满足奈奎斯特采样定律),信号幅度控制在 0-3V 以内,验证后将信号通过接口输入到电路板上 SMA 端口 AD_CHA(SMA 端口 AD_CHA 对应 DSP 芯片 ADCINA1 引脚,SMA 端口 AD_CHB 对应 DSP 芯片 ADCINB1 引脚)。打开示波器,将实验箱中的 SMA 接口 J5 输出到示波器上,并正确设置。

6. 调试程序

在工程中合理配置 ccxml 文件,打开实验箱电源,在主菜单下选择"Run → Debug",若仿真器正确连接后,进入"CCS Debug"调试界面。

首先验证中断设置是否正确。可以在 ADC 中断服务程序的入口地址处添加断点,全速或者动画运行程序,检查程序计数器 PC 能否间隔性的停留在中断 服务入口地址处。若能,说明中断设置基本正确。若以上步骤正确,其次,验证数据采集的正确性。程序连续运行一段时间后,暂停程序执行,打开图形显示功能,查看存储空间中保存的时域波形,是否为信号源输出的信号波形。若上述步骤正确,则调节示波器,观察信号波形,是否为信号源的输入波形。若是,则实验调试结束。以上步骤如果出错,则可以利用各种调试手段,比如打开寄存器窗口、变量窗口等辅助手段,根据数值以及实验原理,查找错误原因,重新修改程序,直至正确为止。

7. 运行程序

若第 6 步正确,可去掉断点,重新全速运行程序。

连接实验箱 SMA 输出口 J5 至示波器,调节示波器,观察信号的输出。可以 实时的改变信号源的输入信号(注意信号幅度不要随意修改,超出输入范围易烧 毁实验电路),示波器上显示的波形亦会随之变化。

数据直通通道就是最简单的实时信号处理电路。

3.3 编写数据存储代码

3.3.1 数据存储的原理

中断服务程序触发的条件是 ADC 采样信号到来,原本的范例程序中直接将这个信号输送给 DA,实现数据实时输入输出。

将这个采集到的信号同时存入 SampleTable1 数据空间,可以实现数据保存。但每次中断到来,只能保存一个数据。因此需要设定一个数据存放位置指示变量 ConvCount,每次存放数据后,位置加一。当指示变量超过 SampleTable1 数据空

间的长度(1024 个值)后,将 ConvCount 归零,以实现 SampleTable1 数据空间中数据的不断更新。

3.3.2 数据存储代码

综合以上内容,线性调频信号查找表的产生代码如下:

```
interrupt void epwm1 timer adc isr(void)
                                                //中断函数
348 ⊟{
349
     //DA
350
          xn= (AdcReqs.ADCRESULT1 & 0xFFF0);
351
          if (ConvCount<1024)
352
353
              SampleTable1[ConvCount]=xn;
354
              ConvCount++;
355
          }
356
          else
357
          {
358
              ConvCount=0;
359
360
          *Da out= xn ;
```

3.4 建立工程并运行、调试程序

连接信号发生器至教学实验箱 SMA 输入端口 J2、教学实验箱 SMA 输出端口 J5 至示波器,编译链接工程并进入调试调试界面,运行程序后,查看存储空间中时域波形。

3.5 修改采样频率并验证

阅读程序,发现主程序中的如下代码:

```
// Set Period for EPWM1
EPwm1Regs.TBPRD = 208; //设定时间基准器计数器的周期 208-fs 20kHz,139-f EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; //增减计数模式

// Setup Compare A = 2 TBCLK counts
EPwm1Regs.CMPA.half.CMPA = 2; //计数比较寄存器A CMPA 当前工作的CMPA的值不断
300 // Phase is 0 for Synchronization Event
EPwm1Regs.TBPHS.half.TBPHS = 0x0000; //TBCTR不装载相位寄存器TBPHS的值

// Clear TB counter
EPwm1Regs.TBCTR = 0x0000; //事件基准计数寄存器TBCTR 读取写到其中的TBCTR的值
```

可知修改 TBPRD 的值可以实现修改采样频率,修改值为 139,则理论采样 频率变为 30kHz,通过软件和硬件的方法分别验证采样频率是否正确。

4 实验结果

4.1 ADC 采样频率计算公式

根据范例,发现TB计数模式为增减计数,故ADC采样频率公式如下:

$$T_{PWM1} = \frac{TBCLK}{TBPRD * 2 * 3} = \frac{25}{139 * 2 * 3} = 30KHz$$

程序如下图 4.1 所示:

```
// Set Period for EPWM1
EPwm1Regs.TBPRD = 139; //设定时间基准器计数器的周期 21
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; //增減计数模式
// Setup Compare A = 2 TBCLK counts
EPwm1Regs.CMPA.half.CMPA = 2; //计数比较寄存器A CMPA 当前I
```

图 4.1 采样频率程序

4.2 信号波形存储地址及作图

指出信号波形的存储地址,并作图显示。

如图 4.2 所示,可得到波形存储地址为 0x0000C040,利用 graph 工具绘图得到图 4.3。

图 4.2 波形存储地址

图 4.3 采样频率为 30kHz 时的波形

4.3 观察不同频率的输出情况

改变信号源的频率,观察示波器上输出。修改信号源频率,示波器输出结果如图 4.4 到图 4.7 所示。

图 4.4 信号源频率 1kHz

图 4.5 信号源频率 2kHz

图 4.6 信号源频率 5kHz

4.4 ADC 采样频率的验证

4.4.1 修改前的采样频率的验证

在 graph 绘制的波形图中,统计一个周期内的点数,与信号源输入频率相乘,即可得到大致的 ADC 采样频率。

修改 ADC 采样频率前的波形图如图 4.3 所示,此时记录两个最高点所在位置为 537、568,输入频率为 1000Hz(如图 4.7 所示),则计算所得的采样频率 为(568-537)*1000=31000Hz,与 30kHz 的理论值接近。

图 4.7 信号源输入频率

4.4.2 修改后的采样频率的验证

验证方法与修改前一致,此时存储空间内的波形如图 4. 所示,记录两个最高点的所在位置为 560、589,输入频率同样为 1000Hz,则计算所得的采样频率为(589-560)*1000=29000Hz,与理论值 30kHz 接近。

图 4.8 采样频率为 30kHz 时的波形

4.5 ADC 采样频率的硬件验证

4.5.1 修改前的采样频率的验证

在每次进入中断时,使 DA 高电平、下次输出低电平,如此往复,对应的代码如下:

```
346 unsigned int property=10000;
    interrupt void epwml timer adc isr(void) //中断函数
348
    ⊟ {
349
    //DA
          /* xn= (AdcRegs.ADCRESULT1 & 0xFFF0);
350
351
          if (ConvCount<1024)
352
353
              SampleTable1[ConvCount]=xn;
354
              ConvCount++;
355
356
          else
357
          {
358
              ConvCount=0;
359
360
          *Da_out= xn ;
361
          */
362
          *Da_out=property;
363
           property=10000-property;
```

此时,可在示波器上观察到方波如图 4. 所示,方波的频率是采样频率的一半,即硬件验证的采样频率为 10.00*2=20kHz,与理论值一致。

图 4.9 硬件验证 20kHz 采样频率时的示波器波形

4.5.2 修改后的采样频率的验证

验证方法与修改前一致,此时示波器波形如图 4.1 所示,则硬件验证的采样 频率为 15.37*2=30.74kHz,与理论值接近。

图 4.1 硬件验证 30kHz 采样频率时的示波器波形

4.6 利用查询方式对 ADC 外设进行数据采样

我们通过对采样程序的修改,完成了从中断方式采样到查询方式的转变,我们利用 SEQ1_BSY 的标志位,通过这个标志位对采集状态进行判断,如果为 0,则采集完成,可以进行下一步的程序,反之。如果为 1,则采集未完成,不能进行下一步,具体程序如下:

```
while(1) {
  if (AdcRegs. ADCST. bit. SEQ1_BSY==0)
    //if (AdcRegs. ==0)
  {
    xn= (AdcRegs. ADCRESULT1 & 0xFFF0);
    if (ConvCount<1024)
    {
        SampleTable1[ConvCount]=xn;
        ConvCount++;
    }
    else
    {
        ConvCount=0;
    }
    *Da_out=xn;
}</pre>
```

4.7 将存储的采样数据保存到数据文件中

在观察窗口有着 export 选项,单击选择即可导出.dat 文件。

4.8 利用动态有效位 ENOB 进行测试数据平台的采集性能

查阅资料得到: ENOB 是有效位数,对应于 AC 输入,是一项有关转换器对于交流信号的非线性性能指标,表示一个 ADC 在特定输入频率和采样率下的动态性能;

具体计算公式为: ENOB = (SNR - 1.76)/6.02 dB

一般来说, ENOB 做到 8dB 就比较符合工程需要了, 经过计算我们采集的数据在 6dB 左右。

5 实验总结

5.1 实验中遇到的问题及解决方法

1.存储空间中的数值没有变化

在第一次编写代码时,运行后发现 SampleTable1 对应的存储空间中的数值

没有发生实时的变化。查看赋值语句的修改代码后发现,是没有处理好位置指示变量 ConvCount。重新编写代码,当 ConvCount 大于 1023 后对其赋 0,重新编译链接,运行后数据可以实现实时变化。

2. 软件、硬件验证得到的采样频率与理论值误差极大

在第三次实验开始验证采样频率时,发现无论用硬件、还是软件验证,得到的采样频率均为 50kHz 左右,与理论值误差极大。后来,在第四次实验课开始,老师提示程序代码有误,修改 AdcRegs.ADCTRL1.bit.CONT_RUN=1;语句的值为 0 后,验证的采样频率与理论值较符合。

3. 利用查询方式对 ADC 外设进行数据采样时,结构体不知道如何引用

根据实验讲义中的思考题目,我们想通过修改中断方式,改为查询方式对ADC 采集的方式进行更改,在查阅 CSDN 中的相关资料,我们发现 SEQ1_BSY 这一标志位可以用来判断是否采集完成,从而,我们将中断中的相关代码进行赋值,加入到 mian 函数中,进行查询,由此,我们就只剩下一个 if 判断语句,由于我们不知道如何利用结构的引用对 ADC.h 头文件中的 SEQ1_BSY 这一标志位进行引用,我们首先根据其他类似语句的形式进行修改,尝试添加了引用链接,但是发现编译无法成功,之后我们询问了李老师,得到了正确的语句:AdcRegs.ADCST.BIT.SEQ1_BSY==0,在正确的语句下,我们重新修改得到了正确的答案。

5.2 实验心得体会

这次实验的主要目的在于数据采集,前半段实验都进行的很顺利,但是在验证采样频率时遇到了一点波折。由于平时都是测信号的频率,这次突然让验证采样频率,一时半会有点不知从何下手。但是和队友讨论最后发现其实验证的方法也很多,比如统计一个周期内的点数,与信号源输入频率相乘,又比如在进入中断时使 Data_out 高电平,结束中断时使 Data_out 低电平,测方波频率,即时采样频率的一半。

最后我们还考虑了从中断方式到查询方式的转变,但由于第一次使用这种方法,很不熟练,对于结构体的操作也不太熟练,但在摸索过程中对寄存器的各个标志位有了更深的理解,同时也对如何引用标志位进行状态判断有了更深的认识。

最后很感谢李老师对我们每次实验的帮助,我们提出的各种方法,无论可不可行,老师都会一点点向我们分析,让我们对 DSP 应用技术这门课有了更深的理解,更好地掌握了所学的内容。