FY2045 Quantum Mechanics I

Fall 2023

Henning Goa Hugdal Week 3 General formulation of QM

Dirac's $\langle bra|ket \rangle$ notation

State vector

A quantum mechanical state of a system is described by a state vector

$$|\psi\rangle$$

in a complex, linear vector space $\mathcal{H}-$ Hilbert space.

Dual vector

For each vector $|a\rangle$ we define the dual vector $\langle a|$ in the dual space \mathcal{H}^* ,

$$|a\rangle \stackrel{\text{dual}}{\longleftrightarrow} \langle a|,$$

so that we can define the scalar (inner) product of vectors $|a\rangle$ and $|b\rangle$

$$\langle a||b\rangle \equiv \langle a|b\rangle \in \mathbb{C},$$

with $\langle a|b\rangle = \langle b|a\rangle^*$.

1

Interpretation

Example

Probability amplitude for particle arriving at point *x*:

⟨Particle arrives at x|particle leaves s⟩

or simply

$$\langle x|s\rangle$$
.

Can go through either slit 1 or 2:

$$\langle x|s\rangle = \langle x|1\rangle\langle 1|s\rangle + \langle x|2\rangle\langle 2|s\rangle.$$

Point x

2

Screen

Based on Ch. 3 of Vol. III in the Feynman Lectures.

Interpretation

The wavefunction is probability amplitude of finding state $|\psi\rangle$ at point x:

$$\psi(\mathsf{X}) = \langle \mathsf{X} | \psi \rangle.$$

The momentum wavefunction is probability amplitude of finding state $|\psi\rangle$ with momentum p:

$$\phi(p) = \langle p | \psi \rangle.$$

The probability amplitude of finding state $|\psi\rangle$ with energy E_n :

$$\langle \psi_n | \psi \rangle$$
.

Completeness

n linearly independent vectors $|1\rangle, |2\rangle, |3\rangle, ...$ span \mathcal{H} if $\forall |\psi\rangle \in \mathcal{H}$ we have

$$|\psi\rangle = \sum_{k=1}^{n} c_n |k\rangle.$$

Assuming orthonormality $\langle m|k\rangle=\delta_{mk}$,

$$\Rightarrow \ |\psi\rangle = \sum_{k} \langle k|\psi\rangle |k\rangle = \sum_{k} |k\rangle \langle k||\psi\rangle,$$

meaning we have the completeness relation

$$\sum_{k} |k\rangle\langle k| = 1.$$

Operators

An operator \hat{A} applied to a vector $|a\rangle \in \mathcal{H}$ results in a new vector $|c\rangle \in \mathcal{H}$,

$$\hat{A}|a\rangle = |c\rangle.$$

Adjoint or Hermitian conjugate of operator:

$$\langle a|\hat{A}^{\dagger}|b\rangle = \langle b|\hat{A}|a\rangle^* \quad \forall |a\rangle, |b\rangle \in \mathcal{H}.$$

meaning that we have the dual vector

$$\hat{A}|a\rangle \stackrel{\text{dual}}{\longleftrightarrow} \langle a|\hat{A}^{\dagger}.$$

Properties

$$(\hat{A}^{\dagger})^{\dagger} = \hat{A},$$

$$(\alpha \hat{A})^{\dagger} = \alpha^* \hat{A}^{\dagger},$$

$$(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger} \hat{A}^{\dagger}.$$

For a Hermitian (self-adjoint) matrix

$$\hat{A}^{\dagger}=\hat{A}.$$

Eigenvectors and eigenvalues

The eigenvectors $|\alpha\rangle$ and eigenvalues λ_{α} of an operator $\hat{\bf A}$ are defined by

$$\hat{A}|\alpha\rangle = \lambda_{\alpha}|\alpha\rangle.$$

The set of eigenvectors $\{|\alpha\rangle\}$ corresponding to physical quantities is assumed to be complete — they form a basis set that span \mathcal{H} .

The eigenvectors of a Hermitian operator are real.

Examples

Energy:

$$\hat{H}|n\rangle = E_n|n\rangle.$$

Position:

$$\hat{x}|x'\rangle=x'|x'\rangle.$$

Momentum:

$$\hat{p}|p'\rangle = p'|p'\rangle.$$

Postulates in general formulation

Postulate A

Each observable quantity F corresponds to a linear, Hermitian operator \hat{F} in Hilbert space. The operators for a generalized coordinate q_n and generalized momentum p_n fulfill

$$[\hat{q}_n,\hat{p}_n] = \hat{q}_n\hat{p}_n - \hat{p}_n\hat{q}_n = i\hbar.$$

Postulate C

The expectation value of an observable F, given the state $|\Psi\rangle$, is

$$\langle F \rangle = \langle \Psi | \hat{F} | \Psi \rangle.$$

Postulate B

Each state of a physical system is represented by a state vector $|\Psi,t\rangle$ in Hilbert space with length 1, $\langle\Psi,t|\Psi t\rangle=$ 1. The vector fulfills the time-dependent SE

$$i\hbar \frac{\partial}{\partial t} |\Psi, t\rangle = \hat{H} |\Psi, t\rangle.$$

Postulate D

The measurement of an observable F yields one of the eigenvalues f_n of the corresponding operator \hat{F} .

Position representation

Eigenvectors $|x'\rangle$ of operator \hat{x} :

$$\hat{x}|x'\rangle = x'|x'\rangle,$$

with eigenvalue x' taking continuous values. $|x'\rangle$ is δ -function normalized

$$\langle X''|X'\rangle = \delta(X''-X'),$$

with completeness relation

$$\int dx'|x'\rangle\langle x'|=\mathbb{1}.$$

Position space wavefunction

Given a state vector $|\psi\rangle$, the position space wavefunction is given by

$$\psi(\mathsf{X}') = \langle \mathsf{X}' | \psi \rangle,$$

the projection of $|\psi\rangle$ on the position basis vector $|\mathbf{x}'\rangle$.

Operators

For an operator \hat{F} , which is a function of \hat{x} and \hat{p} , we have

$$\langle x''|F(\hat{\rho},\hat{x})|x'\rangle = F\left(\frac{\hbar}{i}\frac{\partial}{\partial x''},x''\right)\delta(x''-x').$$

Momentum formulation

Eigenvectors $|p\rangle$ of operator \hat{p} :

$$\hat{p}|p\rangle = p|p\rangle,$$

with eigenvalue p taking continuous values. $|p\rangle$ is δ -function normalized

$$\langle p'|p\rangle = \delta(p'-p),$$

with completeness relation

$$\int dp|p\rangle\langle p|=1.$$

Momentum space wavefunction

Given a state vector $|\psi\rangle$, the momentum space wavefunction is given by

$$\phi(p) = \langle p | \psi \rangle,$$

the projection of $|\psi\rangle$ on the momentum basis vector $|p\rangle$.

Relation between $|p\rangle$ and $|x\rangle$

Projecting $|p\rangle$ on the position basis $|x\rangle$, we get the momentum eigenfunctions in the position formulation,

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar}.$$

Harmonic oscillator

Why the harmonic oscillator again?

"Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics."

CC BY-NC; Ümit Kaya via LibreTexts

¹Wikipedia — Quantum Harmonic Oscillator.

Ladder operators

Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{q}^2.$$

Introduce ladder operators

$$a = \frac{1}{\sqrt{2\hbar m\omega}} (i\hat{p} + m\omega\hat{q}),$$

$$a^{\dagger} = \frac{1}{\sqrt{2\hbar m\omega}} (-i\hat{p} + m\omega\hat{q}),$$

with $(a)^{\dagger} = a^{\dagger}$ — they are not Hermitian.

Commutation relations for a and a^{\dagger}

Since \hat{q} and \hat{p} do not commute $(\hat{q}\hat{p} - \hat{p}\hat{q} = i\hbar)$, neither do a and a^{\dagger} :

$$a^{\dagger}a = \frac{\hat{H}}{\hbar\omega} - \frac{1}{2},$$
$$aa^{\dagger} = \frac{\hat{H}}{\hbar\omega} + \frac{1}{2},$$

meaning we have

$$[a, a^{\dagger}] = aa^{\dagger} - a^{\dagger}a = 1.$$

Number operator

Define the **number operator** $\hat{N} = a^{\dagger}a$, and write

$$\hat{H} = \hbar\omega \left(\hat{N} + \frac{1}{2}\right).$$

Eigenvectors of \hat{N} will also be eigenvectors of \hat{H} :

$$\hat{N}|n\rangle = n|n\rangle \quad \Rightarrow \quad \hat{H}|n\rangle = \hbar\omega \left(n + \frac{1}{2}\right)|n\rangle \equiv E_n|n\rangle.$$

with orthonormalized eigenvectors $|n\rangle$.

Commutation relations for \hat{N}

Commutators of \hat{N} with a and a^{\dagger} :

$$[\hat{N}, a] = -a,$$

$$[\hat{N}, a^{\dagger}] = a^{\dagger}.$$

Energy spectrum

What do the ladder operators do?

$$\hat{H}a|n\rangle = (E_n - \hbar\omega)a|n\rangle.$$

If $a|n\rangle \neq 0$, $a|n\rangle$ is an eigenvector of \hat{H} with eigenvalue $E_n - \hbar\omega$. a is a **lowering** or **annihilation operator**.

Can repeat this argument: If $a^k|n\rangle \neq 0$, $a^k|n\rangle$ is an eigenvector of \hat{H} with eigenvalue $E_n - k\hbar\omega$.

Energy spectrum

The norm of a vector must be positive:

$$0 \le ||a|n\rangle||^2 = \langle n|a^{\dagger}a|n\rangle = \langle n|\hat{N}|n\rangle = n\langle n|n\rangle = n.$$

We must require

$$a|0\rangle = 0.$$

Hence $|0\rangle$ is the ground state with energy $E_0 = \frac{1}{2}\hbar\omega$, and we get the energy eigenvalues

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right)$$
, with $n = 0, 1, 2...$

