BATTERY POWER SYSTEM MANAGEMENT

Robotic Hardware Systems: Week 8

MUHAMMAD IRFAN BIN MOHAMAD SALINI (1814705)

TYPE OF BATTERIES

- Primary (non-rechargeable)
- Secondary (rechargeable)

PRIMARY BATTERIES

- A primary battery is a convenient sources of power for portable electronics and devices.
- Inexpensive, lightweight, and convenient to use with no maintenance and can not be recharged.
- Primary Battery Types:

Alkaline, Magnesium, Mercury, Lithium Cathode, Lithium Electrolyte, Silver, Zinc-Carbon.

SECONDARY BATTERIES

- Can be recharged and reused.
- Secondary batteries usually cost more than primary ones. But considering they're rechargeable, they can have a longer lifespan.
- Used for two applications:
 - energy storage devices
 - applications where the battery is used and discharged as a primary battery
- Major Types of Secondary Batteries:
 - Lithium-ion, Lithium-Polymer, Lead-acid, Cadmium, Metal Hydride.

HOW TO CHOOSE THE RIGHT BATTERY?

- We need to consider the following:
 - Primary or secondary
 - Energy or power
 - Shelf life
 - Energy efficiency and recharge rate
 - Battery life
 - Battery temperature

Step 1- Back of the envelope

If the current drawn is x amps, the time is T hours then the capacity C in amp-hours is C = xT. For example, if your pump is drawing 120 mA and you want it to run for 24 hours.

C = 0.12 Amps * 24 hours = 2.88 Amp hours

Step 2- Cycle Life Considerations

It isn't good to run a battery all the way down to zero during each charge cycle. For example, if you want to use a lead acid battery for many cycles you shouldn't run it past 80% of its charge, leaving 20% left in the battery. This not only extends the number of cycles you get, but lets the battery degrade by 20% before you start getting less run time than the design calls for C' = C/0.8

• For the example above, C' = 2.88 AH / 0.8 = 3.6 AH

Step 3: Rate of discharge considerations

For example, if your portable guitar amplifier is drawing a steady 20 amps and you want it to last 1 hour you would start out with Step 1:

$$C=20 \text{ amps } * 1 \text{ hour } = 20 \text{ AH}$$

Then proceed to Step 2

$$C' = 20 AH / 0.8 = 25 AH$$

Then take the high rate into account

$$C''=25/.5=50 AH$$

Thus, you would need a 50 Amp hour sealed lead acid battery to run the amplifier for 1 hour at 20 amps average draw.

• **Step 4.** What if you don't have a constant load? The obvious thing to do is the thing to do. Figure out an average power drawn. Consider a repetitive cycle where each cycle is 1 hour. It consists of 20 amps for 1 second followed by 0.1 amps for the rest of the hour. The average current would be calculated as follows.

20*1/3600 + 0.1(3599)/3600 = 0.1044 amps average current.

HOW TO CALCULATE BATTERY RUNTIME

- Battery life = capacity / consumption * (1- discharge safety)
- Capacity is the <u>capacity of your battery</u>, measured in ampere hours. You can usually find this value printed on your battery.
- Consumption is the average current draw of your electronic device, expressed in amperes. (If you want to learn more about the electric current, make sure to check out the Ohm's law calculator!)
- **Discharge safety** is the percentage of your battery capacity that is never used. For example, if you use a LiPo battery to <u>fly a drone</u>, you should never discharge it below 20% otherwise, it can be damaged. Our battery life calculator assumes a default discharge safety of 20%, but feel free to change it as you wish.

