DAILY ASSESSMENTFORMAT

Date:	06-06-2020	Name:	PAVITHRAN S
Course:	DIGITAL DESIGN USING HDL	USN:	4AL17EC068
Topic:	 FPGA Basics: Architecture, Applications and Uses Verilog HDL Basics by Intel Verilog Test bench code to Verify the design under the test (DUT) 	Semester & Section:	6 ^{тн} В
Github Repository:	Pavithran		

FORENOON SESSION DETAILS

Report -

FPGA Basics: Architecture, Applications and Uses:

- Abasic FPGA architecture (Figure 1) consists of thousands of fundamental elements called configurable logic blocks (CLBs) surrounded by a system of programmable interconnects, called a fabric, that routes signals between CLBs. Input/output (I/O) blocks interface between the FPGA and external devices.
- Dependingonthemanufacturer, the CLB may also be referred to as a logic block (LB), a logic element (LE) or a logic cell (LC).

Application:

- Manyapplicationsrelyontheparallelexecutionofidentical operations; the ability to configure the FPGA's CLBs into hundreds or thousands of identical processing blocks has applications in image processing, artificial intelligence (AI), data center hardware accelerators, enterprise networking and automotive advanced driver assistance systems (ADAS).
- Manyoftheseapplicationareasarechangingveryquicklyasrequirementsevolveand newprotocols and standards are adopted. FPGA senablemanufacturers to implement systems that can be updated when necessary.
- A good example of FPGA use is high-speed search: Microsoft is using FPGAs in its data

centerstorun Bingsearchalgorithms. The FPGAcanchangetosupportnewalgorithms astheyare created. If needschange, the design can be repurposed torun simulation or modeling routines in an HPC application. This flexibility is difficult or impossible to achieve with an ASIC.

• Other FPGA uses include aerospace and defense, medical electronics, digital television, consumer electronics, industrial motor control, scientific instruments, cybersecurity systems and wireless communications.

Verilog HDL Basics by Intel:

- Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). It is a language used for describingadigitalsystem likeanetworkswitchor amicroprocessorora memory or a flip-flop.
- It means, by using a HDL we can describe any digital hardware at any level. Designs, which are described in HDL are independent of technology, very easy for designing and debugging, and are normally more useful than schematics, particularly for large circuits.
- Behavioral level
- Register-transfer level
- Gate level
- Lexical Tokens
- Numbers
- Identifiers
- Operators
- Data Types
- Operators
- Operands
- Modules

```
Verilog Test bench code to verify the design under test (DUT):
TASK:
Implementa4:1MUXandwritethetestbenchcodetoverifythemodule:
Multiplexer (4:1)
Verilog design:
module mux41(
input i0,i1,i2,i3,sel0,sel1, output reg y); always @(*) begin
case (\{sel0, sel1\}) 2'b00 : y = i0; 2'b01 : y = i1; 2'b10 : y = i2; 2'b11 : y = i3;
end case
end
endmodule
Test Bench:
module tb_mux41;
reg I0,I1,I2,I3,SEL0,SEL1; wire Y;
mux41 MUX (.i0(I0),.i1(I1),.i2(I2),.i3(I3),.sel0(SEL0),.sel1(SEL1),.y(Y));
initial begin I0 =1'b0; I1= 1'b0; I2 =1'b0;
I3 =1'b0; SEL0 =1'b0; SEL1 =1'b0; #45 $finish;
end
always #2 I0 = \simI0; always #4 I1 =\simI1; always #6 I2 =\simI1; always #8 I3 =\simI1; always #3 SEL0 = \simSEL0;
always #3 SEL1 = \sim SEL1;
always @(Y)
$\display(\text{"time} = \%0t INPUT VALUES: \t I0=\%b I1 = \%b I2 = \%b I3 = \%b SEL0 = \%b
```

SEL1 =%b \t output value Y =%b ",\\$time,I0,I1,I2,I3,SEL0,SEL1,Y);

endmodule

Output:

time=0INPUTVALUES:outputvalueY=0 time=2 INPUTVALUES:outputvalueY=1

time=3INPUTVALUES:outputvalueY=0 time=6 INPUTVALUES:outputvalueY=1

time =8 INPUTVALUES: outputvalue Y=0 time=14INPUT VALUES:outputvalueY=1

time=15INPUTVALUES:outputvalueY=0

I0=0I1=0I2=0I3=0SEL0=0SEL1=0 I0=1I1=0I2=0I3=0SEL0=0SEL1=0 I0=0I1=0I2=0I3=0SEL0=0SEL1=0 I0=0I1=0I2=0I3=0SEL0=0SEL1=0

I0=1 I1 =1 I2 =1 I3 =0 SEL0 =0 SEL1 =0 I0=1 I1 =1 I2 =1 I3 =0 SEL0 =1 SEL1 =1