

Matheus Barcelos de Oliveira Engenheiro de Inteligência Artificial Syngenta Digital

OpenCVismo Tech Talks

Calibração de Câmeras

Calibração termográfica

Calibração de Câmera

Câmera Ideal – Modelo Pinhole

- A luz obrigatóriamente atinge o plano de imagem passando pelo centro;
- Imagem formada de forma espelhada tanto horizontal quanto verticalmente.

Câmera Ideal – Projeção central

 X_s , Y_s , Z_s = Eixos no espaço x_u , y_u = Eixos plano de imagem Z_s = Eixo ótico f = Distância focal W = tamanho do sensor α = ângulo de abertura da lente

$$\alpha = 2 \arctan(\frac{W}{2f})$$

Câmera Ideal – Projeção central

$$x_u = \frac{f X_s}{Z_s} \qquad y_u = \frac{f Y_s}{Z_s}$$

$$x = \frac{f X_s}{Z_s} + c_x \qquad y = \frac{f Y_s}{Z_s} + c_y$$

No mundo real – Distorções

Distorção Radial

$$x_{distorted} = x(1+k_1r^2+k_2r^4+k_3r^6)$$

$$y_{distorted} = y(1+k_1r^2+k_2r^4+k_3r^6)$$

Distorção Tangencial

$$x_{distorted} = x + (2 p_1 xy + p_2 (r^2 + 2 x^2))$$

$$y_{distorted} = y + (p_1(r^2 + 2y^2) + 2p_2xy)$$

$$Matriz de câmera = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

Coeficientes de distorção = $(k_1, k_2, p_1, p_2, k_3)$

