OPTIMISATION CONTINUE:

CONDITIONS D'OPTIMALITÉ

Hacène Ouzia

MAIN (4 ème année) Sorbonne Université

2019-20

AGENDA

- Généralités
 - Modèle mathématique général
 - Théorèmes d'existence
- 2 Applications
 - Finance
 - Approximations
 - Géométrie
 - Informatique
- Conditions d'optimalité
 - Domaine convexe
 - Conditions de Lagrange
 - Conditions KKT
 - Qualification des contraintes

2019-20

2/70

- Généralités
 - Modèle mathématique général
 - Théorèmes d'existence

3/70

■ PROBLÈME D'OPTIMISATION

Nous considérerons les problèmes s'écrivant sous la forme :

$$\min_{\vec{X} \in \Omega} f(\vec{X}) \tag{1}$$

où:

- Le vecteur de décision $\vec{x} = (x_1, \dots, x_n)$
- f est une fonction de \mathbb{R}^n dans \mathbb{R} , définie sur Ω
- Ω est un sous-ensemble de \mathbb{R}^n :
 - Description implicite : on le supposera convexe
 - Description explicite : $\Omega = \left\{ \vec{x} \in \mathbb{R}^n : g\left(\vec{x}\right) \leq \vec{0}, h\left(\vec{x}\right) = \vec{0} \right\}$

■ THÉORÈME DE WEIERSTRASS EXISTENCE D'UN MINIMUM GLOBAL

Soit $f: \mathcal{K} \to \mathbb{R}$ une fonction *continue* d'un espace métrique \mathcal{K} . Si l'espace \mathcal{K} est *compact*, alors la fonction f admet un minimum global sur \mathcal{K} , c.-à-d.,

$$\exists \vec{x} \in \mathcal{K}, \forall \vec{y} \in \mathcal{K} : f(\vec{x}) \leq f(\vec{y})$$

■ ENSEMBLE COMPACT Un sous-ensemble $X \subset \mathbb{R}^n$ est *compact* si : (i) X est *fermé* et (ii) X est *borné*, c.-à-d.;

$$\forall \gamma, \forall \vec{x} \in X : ||\vec{x}|| \leq \gamma.$$

- EXEMPLE
 - Le point $x = \alpha$ est un minimum global de $f(x) = e^x, x \in [\alpha, \beta]$
 - Le soint $\hat{x} = \alpha$ est un minimum global de $f(x) = e^x$, $x \in [\alpha, +\infty]$

Hacène Ouzia Optimisation non linéaire 2019-20 5/

■ THÉORÈME DE WEIERSTRASS EXISTENCE D'UN MINIMUM GLOBAL

Soit $f: \mathcal{K} \to \mathbb{R}$ une fonction *continue* d'un espace métrique \mathcal{K} . Si l'espace \mathcal{K} est *compact*, alors la fonction f admet un minimum global sur \mathcal{K} , c.-à-d.,

$$\exists \vec{x} \in \mathcal{K}, \forall \vec{y} \in \mathcal{K} : f(\vec{x}) \leq f(\vec{y})$$

■ ENSEMBLE COMPACT Un sous-ensemble $X \subset \mathbb{R}^n$ est *compact* si : (i) X est *fermé* et (ii) X est *borné*, c.-à-d. :

$$\exists \gamma, \forall \vec{x} \in X : ||\vec{x}|| \leq \gamma.$$

- EXEMPLE
 - Le point $x = \alpha$ est un minimum global de $f(x) = e^x, x \in [\alpha, \beta]$
- Le point $\hat{x} = \alpha$ est un minimum global de $f(x) = e^x, x \in [\alpha, +\infty]$

Hacène Ouzia Optimisation non linéaire 2019-20 5

■ THÉORÈME DE WEIERSTRASS EXISTENCE D'UN MINIMUM GLOBAL

Soit $f: \mathcal{K} \to \mathbb{R}$ une fonction *continue* d'un espace métrique \mathcal{K} . Si l'espace \mathcal{K} est *compact*, alors la fonction f admet un minimum global sur \mathcal{K} , c.-à-d.,

$$\exists \vec{x} \in \mathcal{K}, \forall \vec{y} \in \mathcal{K} : f(\vec{x}) \leq f(\vec{y})$$

■ ENSEMBLE COMPACT Un sous-ensemble $X \subset \mathbb{R}^n$ est *compact* si : (i) X est *fermé* et (ii) X est *borné*, c.-à-d. :

$$\exists \gamma, \forall \vec{x} \in X : ||\vec{x}|| \leq \gamma.$$

- EXEMPLE:
 - Le point $\hat{x} = \alpha$ est un minimum global de $f(x) = e^x, x \in [\alpha, \beta]$
 - Le point $\hat{x} = \alpha$ est un minimum global de $f(x) = e^x, x \in [\alpha, +\infty[$

Hacène Ouzia Optimisation non Linéaire 2019-20 5

■ THÉORÈME D'EXISTENCE FONCTIONS COERCIVES

Soit $f: \mathcal{K} \to \mathbb{R}$ une fonction *continue* sur $\mathcal{K} \subset \mathbb{R}^n$. Si l'ensemble \mathcal{K} est *fermé* et la fonction f est *coercive*, alors la fonction f admet un minimum global sur \mathcal{K} , c.-à-d.,

$$\exists \vec{x} \in \mathcal{K}, \forall \vec{y} \in \mathcal{K} : f(\vec{x}) \leq f(\vec{y}).$$

■ FONCTION COERCIVE Upe for faction $f: X \subset \mathbb{R}^n \to \mathbb{R}$ est coercive si la condition suivante est verifiée :

Hacène Ouzia Optimisation non linéaire 2019-20 6 /

■ THÉORÈME D'EXISTENCE FONCTIONS COERCIVES

Soit $f: \mathcal{K} \to \mathbb{R}$ une fonction *continue* sur $\mathcal{K} \subset \mathbb{R}^n$. Si l'ensemble \mathcal{K} est *fermé* et la fonction f est *coercive*, alors la fonction f admet un minimum global sur \mathcal{K} , c.-à-d.,

$$\exists \vec{x} \in \mathcal{K}, \forall \vec{y} \in \mathcal{K} : f(\vec{x}) \leq f(\vec{y}).$$

■ FONCTION COERCIVE Une fonction $f: X \subset \mathbb{R}^n \to \mathbb{R}$ est coercive si la condition suivante est vérifiée :

$$f\left(\vec{x}\right) \to +\infty, \|x\| \to +\infty$$

Hacène Ouzia Optimisation non linéaire 2019-20 6

Hacène Ouzia Optimisation non linéaire 2019-20 7

Théorème de Weierstrass

■ THÉORÈME D'EXISTENCE FONCTIONS COERCIVES

Soit $f: \mathcal{K} \to \mathbb{R}$ une fonction *continue* sur $\mathcal{K} \subset \mathbb{R}^n$. Si l'ensemble \mathcal{K} est *fermé* et la fonction f est *coercive*, alors la fonction f admet un minimum global sur \mathcal{K} , c.-à-d.,

$$\exists \vec{x} \in \mathcal{K}, \forall \vec{y} \in \mathcal{K} : f(\vec{x}) \leq f(\vec{y}).$$

■ FONCTION COERCIVE Une fonction $f: X \subset \mathbb{R}^n \to \mathbb{R}$ est coercive si la condition suivante est vérifiée :

$$f(\vec{x}) \to +\infty, ||x|| \to +\infty$$

■ EXEMPLE <

- Le point $\hat{x} = \alpha$ est un minimum global de $f(x) = e^x, x \in [\alpha, \beta]$
- Le point $\hat{x} = \alpha$ est un minimum global de $f(x) = e^x, x \in [\alpha, +\infty[$

Hacène Ouzia Optimisation non Linéaire 2019-20 8

- **Applications**
 - Finance
 - Approximations
 - Géométrie
 - Informatique

Données

- Un budget d'un 1 euros à investir
- *n* produits financiers
- Le gain aléatoire par produit est : $\mu_j : j = 1, \dots, n$
- Le gain moyen par produit est : $\bar{\mu}_i : j = 1, ..., n$
- La matrice de covariance est $Q = (\sigma_{ij})$ où

$$\sigma_{ij} = \mathbb{E}\left\{\left(\mu_i - ar{\mu}_i
ight)\left(\mu_j - ar{\mu}_j
ight)
ight\}$$

GESTION D'UN PORTEFEUILLE

Déterminer un portefeuille $x = (x_1, \dots, x_n)$ minimisant la variance du gain, respectant le budget total disponible et garantissant un gain moyen de γ .

■ GESTION D'UN PORTEFEUILLE UN MODÈLE

Min
$$x^{t}Qx$$

s.c.
$$\sum_{j=1}^{n} x_{j} = 1$$

$$\sum_{j=1}^{n} \bar{\mu}_{j}x_{j} = \gamma$$

DONNÉES

- Deux entiers non nuls n et m tels que m > n,
- Une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ de rang m,
- Un vecteur $b \in \mathbb{R}^m$,
- Une norme $\|\bullet\|$ sur \mathbb{R}^m .

APPROXIMATION SUIVANT UNE NORME MODÈLE GÉNÉRAL

Minimiser
$$||Ax - b||$$

 $x \in \mathbb{R}^n$

Le problème (2) est un problème convexe

(2)

Hacène Ouzia OPTIMISATION NON LINÉAIRE 12/70

■ ESTIMATION DE PARAMÈTRES

- x un vecteur de paramètres à estimer
- b un vecteur d'observables
- Ax b erreur inconnue mais supposée très petite

■ PROJECTION D'UN POINT SUR UN POLYÈDRE

Le problème (2) est équivalent à

Minimiser
$$||y - b||$$

 $y = Ax$
 $x \in \mathbb{R}^n$

■ PROBLÈME DE CONCEPTION

- x un vecteur de décision
- b un vecteur de demandes

■ APPROXIMATION AU SENS DES MOINDRES CARRÉS

La norme $\|.\|$ est la norme *euclidienne* $\|.\|_2$, c.-à-d. :

$$||x||_2^2 = \sum_{j=1}^n x_j^2$$

Le problème (2) s'écrit :

Minimiser
$$||Ax - b||_2^2$$
 (3)

Le vecteur x lest solution de (3) ssi

$$(A^t A) x = A^t b$$

Hacène Ouzia Optimisation non linéaire 2019-20 14/70

■ APPROXIMATION AU SENS DES MOINDRES CARRÉS

La norme $\|.\|$ est la norme *euclidienne* $\|.\|_2$, c.-à-d. :

$$||x||_2^2 = \sum_{j=1}^n x_j^2$$

Le problème (2) s'écrit :

Minimiser
$$||Ax - b||_2^2$$
 (3)

Le vecteur x est solution de (3) ssi :

$$(A^tA)x=A^tb$$

Hacène Ouzia Optimisation non linéaire 2019-20 14 / 70

APPROXIMATION AU SENS MINIMAX

La norme $\|.\|$ est la norme $\|.\|_{\infty},$ c.-à-d. :

$$\left\|x\right\|_{\infty} = max\left\{\left|x_{1}\right|, \ldots, \left|x_{n}\right|\right\}$$

$$Ax - b \le \gamma 1_m$$

APPROXIMATION AU SENS MINIMAX

La norme $\|.\|$ est la norme $\|.\|_{\infty}$, c.-à-d. :

$$\|x\|_{\infty} = \max\{|x_1|,\ldots,|x_n|\}$$

Le problème (2) est équivalent au problème linéaire :

$$Ax - b \le \gamma 1_m$$

 $Ax - b \ge -\gamma 1_m$

■ APPROXIMATION AU SENS /₁

$$||x||_1=\sum_{j=1}^n|x_j|$$

Minimiser
$$\sum_{i=1}^{n}$$
 s.c. Ax

16 / 70

\blacksquare Approximation au sens I_1

La norme $\|.\|$ est la norme $\|.\|_1$, c.-à-d. :

$$\|x\|_1 = \sum_{j=1}^n |x_j|$$

Le problème (2) est équivalent au problème linéaire :

Minimiser
$$\sum_{i=1}^{m} \gamma_i$$

s.c. $Ax - b \le \gamma$
 $Ax - b \ge -\gamma$

APPROXIMATION AU SENS DES MOINDRES CARRÉS

Un ensemble convexe fermé C définit par

$$C = \{x \in \mathbb{R}^n : Ax = b, f_i(x) \le 0, i = 1, \dots, m\}$$

Un ensemble convexe fermé C définit par

$$C = \{x \in \mathbb{R}^n : Ax = b, f_i(x) \leq 0, i = 1, \dots, m\}$$

- Un point $x_0 \in \mathbb{R}^n$
- Un modèle

$$\begin{array}{ll}
\min & \|x - x_0\| \\
\text{s.c.} & x \in C
\end{array} \tag{4}$$

Hacène Ouzia 17 / 70 OPTIMISATION NON LINÉAIRE

Projection sur un ensemble

■ PROJECTION ORTHOGONALE SUR UN POLYÈDRE

L'ensemble convexe C est définit par

$$C = \left\{ x \in \mathbb{R}^n : Ax \le b \right\}$$

- La norme ||.|| est la norme euclidienne ||.||₂
- Le problème de la projection orthogonale sur C s'écrit :

min
$$||x - x_0||_2^2$$

s.c. $Ax \le b$ (5)

Le problème (5) est un programme quadratique convexe sous contraintes linéaires

 Hacène Ouzia
 OPTIMISATION NON LINÉAIRE
 2019-20
 18 / 70

Distance entre ensembles

■ DISTANCE ENTRE DEUX ENSEMBLES CONVEXES ET FERMÉS

Deux ensembles convexes C_1 et C_2 tels que

$$C_1 = \{x \in \mathbb{R}^n : f_i(x) \le 0, i = 1, \dots, m\}$$

$$C_2 = \{x \in \mathbb{R}^n : g_k(x) \le 0, k = 1, \dots, r\}$$

△ La distance entre C₁ et C₂ est :

$$\min_{\substack{x \in S.C.}} ||x - y||^2
s.c.
f_i(x) \le 0 i = 1, ..., m
g_k(y) \le 0 k = 1, ..., r$$
(6)

Hacène Ouzia 19/70 OPTIMISATION NON LINÉAIRE

Discrimination

■ DISTANCE ENTRE DEUX ENSEMBLES CONVEXES ET FERMÉS

 \square Deux ensembles de points E_1 et E_2 tels que

$$E_1 = \{x_1, \dots, x_n\}$$

 $E_2 = \{y_1, \dots, y_m\}$

Identifier une fonction f telle que

$$f(x_i) > 0, \forall i = 1, \ldots, n$$

 $f(y_k) < 0, \forall k = 1, \ldots, m$

Hacène Ouzia Optimisation non linéaire 2019-20 20 / 70

Discrimination

DISCRIMINATION LINÉAIRE ROBUSTE

- Un paramètre non négatif γ
- Deux ensembles de points E_1 et E_2 tels que

$$E_1 = \{x_1, \dots, x_n\}$$

 $E_2 = \{y_1, \dots, y_m\}$

$$E_2 = \{y_1, \ldots, y_m\}$$

Identifier un hyperplan h tel que

min
$$\gamma$$

$$h(x_i) \ge \gamma, \forall i = 1, ..., n$$

 $h(y_k) \le -\gamma, \forall k = 1, ..., m$
 $\|\gamma\|_2 \le 1$

(7)

Allocation et localisation

- un ensemble de n points de \mathbb{R}^n
- Pour chaque paire de points x_i et x_i une fonction

$$\phi_{ij}(x_i, x_j) = dist(x_i, x_j)$$

Identifier la localisation des points xi de telle sorte à minimiser la distance totale.

- Conditions d'optimalité
 - Domaine convexe
 - Conditions de Lagrange
 - Conditions KKT
 - Qualification des contraintes

Soit Ω un sous-ensemble *convexe* de \mathbb{R}^n . Supposons que $f \in \mathcal{C}^1$.

Si le point $\vec{x}_0 \in \Omega$ est un *minimum local* alors

$$\langle \nabla f(\vec{x}_0), \vec{x} - \vec{x}_0 \rangle \ge 0, \ \forall \vec{x} \in \Omega$$
 (8)

Si, de plus, la fonction f est *convexe* alors la condition (8) est suffisante

$$\nabla f\left(\vec{x}_0\right) = \vec{0}.$$

Hacène Ouzia OPTIMISATION NON LINÉAIRE 24 / 70

Soit Ω un sous-ensemble *convexe* de \mathbb{R}^n . Supposons que $f \in \mathcal{C}^1$.

Si le point $\vec{x}_0 \in \Omega$ est un *minimum local* alors

$$\langle \nabla f(\vec{x}_0), \vec{x} - \vec{x}_0 \rangle \ge 0, \ \forall \vec{x} \in \Omega$$
 (8)

Si, de plus, la fonction f est *convexe* alors la condition (8) est suffisante

Tout point de Ω satisfaisant l'inégalité variationnelle (8) est ■ REMARQUE: dit *point stationnaire*. Car si $\Omega = \mathbb{R}^n$ on a :

$$\nabla f\left(\vec{x}_0\right) = \vec{0}.$$

Hacène Ouzia 24 / 70 OPTIMISATION NON LINÉAIRE

PREUVE

Raisonnons par l'absurde. Soit $\vec{y} \in \Omega$ tel que :

$$\langle \nabla f\left(\vec{x}_{0}\right), \vec{y} - \vec{x}_{0} \rangle < 0 \tag{9}$$

Pour tout $\epsilon > 0$ on a :

$$\exists \beta \in [0,1], \langle \nabla f(\vec{x}_0 + \beta(\vec{y} - \vec{x}_0)), \vec{y} - \vec{x}_0 \rangle < 0.$$

D'où:

$$f\left(\vec{x}_0 + \beta\left(\vec{y} - \vec{x}_0\right)\right) < f\left(\vec{x}_0\right)$$

$$f\left(\vec{x}_{0}+\beta\left(\vec{y}-\vec{x}_{0}\right)\right) < f\left(\vec{x}_{0}\right).$$
 Or $\forall \beta \in \left[0,1\right], \vec{x}_{0}+\beta\left(\vec{y}-\vec{x}_{0}\right) \in \Omega.$ Contradiction!

Puisque f est convexe, alors :

$$f\left(\vec{x}\right) \geq f\left(\vec{x}_{0}\right) + \langle \nabla f\left(\vec{x}_{0}\right), \vec{x} - \vec{x}_{0} \rangle, \forall \vec{x} \in \Omega.$$

D'où le résultat.

Hacène Ouzia OPTIMISATION NON LINÉAIRE

APPLICATION

Expliciter les conditions d'optimalité dans le cas suivant :

$$\frac{\text{Minimiser}}{\vec{x} \in \mathbb{R}^{n}_{+}} f(\vec{x}) \tag{10}$$

■ SOLUTION En utilisant Linégalité variationnelle (8), on obtient :

$$\frac{\partial \nabla f(\vec{y})}{\partial x_k} = 0, \text{ si } y_k > 0.$$

Hacène Ouzia OPTIMISATION NON LINÉAIRE 2019-20 26 / 70

APPLICATION

Expliciter les conditions d'optimalité dans le cas suivant :

$$\begin{array}{ll}
\text{Minimiser} & f(\vec{x}) \\
\vec{x} \in \mathbb{R}^n_+
\end{array} \tag{10}$$

■ SOLUTION En utilisant l'inégalité variationnelle (8), on obtient :

$$\frac{\partial \nabla f\left(\vec{y}\right)}{\partial x_{k}}=0, \text{ si } y_{k}>0.$$

Hacène Ouzia OPTIMISATION NON LINÉAIRE 2019-20 26 / 70

■ THÉORÈME PROJECTION ORTHOGONALE

Soit Ω un sous-ensemble non vide, fermé et convexe de \mathbb{R}^n .

Pour tout $\vec{z} \in \mathbb{R}^n$, le problème suivant admet une unique solution

$$\begin{array}{ll}
\operatorname{MIN} & \left\| \vec{X} - \vec{Z} \right\|^2 \\
\vec{X} \in \Omega
\end{array}$$

Le vecteur solution, noté $[\vec{z}]^+$, est dit *projeté* de \vec{z} sur l'ensemble Ω .

Le point \vec{x}_0 est le projeté de $\vec{z} \in \Omega$ si et seulement si :

$$\langle \vec{x}_0 = \vec{z}, \vec{x} - \vec{x}_0 \rangle \ge 0, \forall \vec{x} \in \Omega$$
 (11)

 \rightarrow Si Ω est \mathbb{R} -s.E.V. alors la condition (11)

$$\langle \vec{z} - \vec{x}_0, \vec{x}
angle = 0, orall \vec{x} \in \Omega$$

L'application $\pi: \mathbb{R}^n \to \mathbb{R}$ définie par $\pi(\vec{x}) = [\vec{x}]^+$ est *continue* et non-expansive, c.-à-d.:

$$\left\| \left[\vec{x} \right]^+ - \left[\vec{y} \right]^+ \right\| \le \left\| \vec{x} - \vec{y} \right\|, \forall \vec{x}, \vec{y} \in \mathbb{R}^n$$

Hacène Ouzia OPTIMISATION NON LINÉAIRE

■ Données

- us Un vecteur $\vec{\gamma}$ de \mathbb{R}^n
- Une matrice $A \in \mathcal{M}_{m \times n}$ de rang m

■ APPLICATION

Résoudre le problème suivant :

$$\begin{array}{ll} \mathsf{MIN} & \frac{1}{2} \left\| \vec{X} \right\| + \left\langle \vec{\gamma}, \vec{X} \right\rangle \\ \text{s.c.} & \end{array}$$

$$A\vec{x} = \vec{0}$$

Domaine convexe

■ SOLUTION Le problème

MIN
$$\frac{1}{2} \| \vec{x} \|^2 + \langle \vec{\gamma}, \vec{x} \rangle$$
s.c $A\vec{x} = \vec{0}$

est équivalent au problème suivant :

$$\begin{array}{ll}
\text{MIN} & \frac{1}{2} \|\vec{x} + \vec{\gamma}\|^2 \\
\text{s.c.} & A\vec{x} = \vec{0}
\end{array}$$

Donc, c'est la projection du vecteur $-\vec{\gamma}$ sur le sous-espace vectoriel $A\vec{x} = \vec{0}$. Ainsi, la solution \vec{z} est donnée par

$$\langle \vec{z} + \vec{\gamma}, \vec{x} \rangle = 0, \forall \vec{x} : A\vec{x} = \vec{0}.$$

D'où:

$$\vec{z} = -\left[I - A^t \left(AA^t\right)^{-1} A\right] \vec{\gamma}$$

■ MODÈLE PROBLÈME D'OPTIMISATION AVEC CONTRAINTES D'ÉGALITÉ

Le modèle général est le suivant :

MIN
$$f(\vec{x})$$
s.c.
$$h_{k}(\vec{x}) = 0, k = 1,...,m$$

$$\vec{x} \in \mathbb{R}^{n}$$
(12)

où:

- Le vecteur de décision $\vec{x} = (x_1, \dots, x_n)$
- Is le domaine $\Omega = \{\vec{x} \in \mathbb{R}^n : h_k(\vec{x}) = 0, k = 1, \dots, m\}$
- Les fonctions h_i sont supposées de classe C^1

Hacène Ouzia Optimisation non linéaire 2019-20 30 / 70

■ DÉFINITION FONCTION DE LAGRANGE

La fonction de Lagrange associée au problème (12) est définie comme suit :

$$\mathcal{L}\left(\vec{x}, \vec{\pi}\right) = f\left(\vec{x}\right) + \sum_{k=1}^{m} \pi_k h_k\left(\vec{x}\right) \tag{13}$$

■ DÉFINITION FONCTION DE LAGRANGE

La fonction de Lagrange associée au problème (12) est définie comme suit :

$$\mathcal{L}\left(\vec{x}, \vec{\pi}\right) = f\left(\vec{x}\right) + \sum_{k=1}^{m} \pi_k h_k\left(\vec{x}\right) \tag{13}$$

 \rightarrow le vecteur $\vec{\pi}$ est dit vecteur des *multiplicateurs de Lagrange*

Hacène Ouzia Optimisation non linéaire 2019-20 31/70

■ THÉORÈME MULTIPLICATEURS DE LAGRANGE

Si \vec{x}_0 un *minimum local* du problème :

MIN
$$f(\vec{x})$$
s.c.
$$h_k(\vec{x}) = 0, \ k = 1, ..., m$$

$$\vec{x} \in \mathbb{R}^n$$
(14)

et si la matrice $\nabla \vec{H}(\vec{x}_0)$ est de rang m, alors il existe un *unique* vecteur $\vec{\pi}$ tel que:

$$\nabla_{x}\mathcal{L}\left(\vec{x}_{0}, \vec{\pi}\right) = 0 \Leftrightarrow \nabla f\left(\vec{x}_{0}\right) + \sum_{k=1}^{m} \pi_{k} \nabla h_{k}\left(\vec{x}_{0}\right) = 0.$$

$$\operatorname{rg} \nabla \vec{H} \left(\vec{x}_{0} \right) = m.$$

■ THÉORÈME MULTIPLICATEURS DE LAGRANGE

Si \vec{x}_0 un *minimum local* du problème :

MIN
$$f(\vec{x})$$
s.c.
$$h_k(\vec{x}) = 0, \ k = 1, ..., m$$

$$\vec{x} \in \mathbb{R}^n$$
(14)

et si la matrice $\nabla \vec{H}(\vec{x}_0)$ est de rang m, alors il existe un *unique* vecteur $\vec{\pi}$ tel que:

$$\nabla_{x}\mathcal{L}\left(\vec{x}_{0}, \vec{\pi}\right) = 0 \Leftrightarrow \nabla f\left(\vec{x}_{0}\right) + \sum_{k=1}^{m} \pi_{k} \nabla h_{k}\left(\vec{x}_{0}\right) = 0.$$

POINT RÉGULIER Un point $\vec{x} \in \Omega$ est qualifié de régulier si la matrice

$$\operatorname{rg} \nabla \vec{H} \left(\vec{x}_{0} \right) = m.$$

■ JACOBIENNE La fonction $\vec{H}: \mathbb{R}^n \to \mathbb{R}^m$ est définit comme suit :

$$\vec{H}(\vec{x}) = (h_1(\vec{x}), \dots, h_m(\vec{x}))^t$$

et sa Jacobienne est donnée par :

$$\nabla^{t}\vec{H}\left(\vec{x}\right)=\left[\nabla h_{1}\left(\vec{x}\right),\ldots,\nabla h_{m}\left(\vec{x}\right)\right]$$

■ FONCTION DE PÉNALITÉ La fonction suivante

$$F_k(\vec{x}) = f(\vec{x}) + \frac{k}{2} ||\vec{H}(\vec{x})||^2 + \frac{\gamma}{2} ||\vec{x} - \vec{x}_0||^2$$

est dite fonction de pénalité associée au problème (12) :

- k est une constante très grandes
- \vec{x}_0 est un minimum locale du problème (12)
- $\rightarrow \gamma$ un constante positive

Hacène Ouzia Optimisation non Linéaire 2019-20 3

■ JACOBIENNE La fonction $\vec{H}: \mathbb{R}^n \to \mathbb{R}^m$ est définit comme suit :

$$\vec{H}(\vec{x}) = (h_1(\vec{x}), \dots, h_m(\vec{x}))^t$$

et sa Jacobienne est donnée par :

$$\nabla^{t}\vec{H}\left(\vec{x}\right)=\left[\nabla h_{1}\left(\vec{x}\right),\ldots,\nabla h_{m}\left(\vec{x}\right)\right]$$

■ FONCTION DE PÉNALITÉ La fonction suivante

$$F_{k}\left(\vec{x}\right) = f\left(\vec{x}\right) + \frac{k}{2} \left\| \vec{H}\left(\vec{x}\right) \right\|^{2} + \frac{\gamma}{2} \left\| \vec{x} - \vec{x}_{0} \right\|^{2},$$

est dite fonction de pénalité associée au problème (12) :

- → k est une constante très grandes
- \vec{x}_0 est un minimum locale du problème (12)
- γ un constante positive

Hacène Ouzia Optimisation non linéaire 2019-20 3

I EMME FONCTION DE PÉNALITÉ

Le problème (12) est équivalent au problème non contraint suivant :

MIN
$$f\left(\vec{x}\right) + \frac{k}{2} \left\| \vec{H}\left(\vec{x}\right) \right\|^2 + \frac{\gamma}{2} \left\| \vec{x} - \vec{x}_0 \right\|^2$$
s.c. $\vec{x} \in \mathbb{R}^n$

pour k suffisamment grand.

 Hacène Ouzia
 Optimisation non linéaire
 2019-20
 34 / 70

PREUVE Puisque \vec{x}_0 est un minimum local alors

$$\exists \epsilon > 0, \forall \vec{x} : \left\| \vec{x} - \vec{x}_0 \right\| \le \epsilon \Longrightarrow f\left(\vec{x}_0\right) \le f\left(\vec{x}\right)$$

Posons

$$ec{\mathbf{x}}_{k}\in\operatorname{argmin}\left\{ F_{k}\left(ec{\mathbf{x}}
ight):\left\Vert ec{\mathbf{x}}-ec{\mathbf{x}}_{0}
ight\Vert \leq\epsilon
ight\}$$

On a nécessairement :

$$\lim_{k\to+\infty}\left\|\vec{H}\left(\vec{x}_k\right)\right\|=0.$$

D'où, tout point d'accumulation \vec{y} de la suite $\{\vec{x}_n\}_{n\in\mathbb{N}}$ satisfait

$$\vec{H}(\vec{y}) = \vec{0}$$

Par conséquent :

$$f\left(\vec{y}\right) + \frac{\gamma}{2} \left\| \vec{y} - \vec{x}_0 \right\|^2 \leq f\left(\vec{x}_0\right).$$

Aussi, on a

$$f\left(\vec{x}_0\right) \leq f\left(\vec{y}\right)$$

D'où, la suite $\{\vec{x}_n\}_{n\in\mathbb{N}}$ converge \vec{x}_0 .

.

■ PREUVE Pour une constante *k* suffisamment grande on a :

$$\nabla f(\vec{x}_k) + k \nabla \vec{H}(\vec{x}_k) \vec{H}(\vec{x}_k) + \gamma (\vec{x}_k - \vec{x}_0) = \vec{0}.$$
 (15)

Pour k suffisamment grand, la matrice

$$\nabla \vec{H} \left(\vec{x}_k \right)^t \nabla \vec{H} \left(\vec{x}_k \right)$$

est inversible.

D'où la relation suivante :

$$-k\vec{H}\left(\vec{x}_{k}\right)=\left[\nabla\vec{H}\left(\vec{x}_{k}\right)^{t}\nabla\vec{H}\left(\vec{x}_{k}\right)\right]^{-1}\nabla\vec{H}\left(\vec{x}_{k}\right)^{t}\left[\nabla f\left(\vec{x}_{k}\right)+\gamma\left(\vec{x}_{k}-\vec{x}_{0}\right)\right].$$

Par passage à la limite :

$$k\vec{H}\left(\vec{x}_{k}\right)\rightarrow-\left[\nabla\vec{H}\left(\vec{x}_{0}\right)^{t}\nabla\vec{H}\left(\vec{x}_{0}\right)\right]^{-1}\nabla\vec{H}\left(\vec{x}_{0}\right)^{t}\nabla f\left(\vec{x}_{0}\right)=\vec{\pi}.$$

Par passage à la limite dans (15), on obtient :

$$\nabla f(\vec{x}_0) + \langle \nabla \vec{H}(\vec{x}_0), \vec{\pi} \rangle = 0.$$

Hacène Ouzia Optimisation non linéaire 2019-20

■ APPLICATION Soit à résoudre le problème suivant :

MIN
$$x + y$$
s.c. $(x - 1)^2 + y^2 = 1$
 $x, y \in \mathbb{R}^2$ (16)

QUESTIONS

- △ Déterminer la solution optimale globale du problème (30)
- Résoudre le système traduisant les conditions nécessaires d'optimalité
- Que remarquez-vous?

■ APPLICATION EXISTENCE DES MULTIPLICATEURS DE LAGRANGE Soit à résoudre le problème suivant :

MIN
$$x + y$$

s.c. $(x - 1)^2 + y^2 = 1$
 $(x + 1)^2 + y^2 = 1$
 $x, y \in \mathbb{R}^2$ (17)

■ QUESTIONS

- △ Déterminer la solution optimale globale du problème (30)
- A Résoudre le système traduisant les conditions nécessaires d'optimalité
- Que remarquez-vous?

Hacène Ouzia Optimisation non linéaire 2019-20 38

Théorème Multiplicateurs de Lagrange Si \vec{x}_0 un minimum local du problème:

MIN
$$f(\vec{x})$$

s.c. $h_k(\vec{x}) = 0, k = 1,..., m$ (18)

et si la matrice $\nabla \vec{H}(\vec{x}_0)$ est de rang m et que les f et h sont 2-fois différentiables alors il existe un *unique* vecteur $\vec{\pi}$ tel que :

$$\langle \vec{y}, \left(\nabla^2 f\left(\vec{x}_0\right) + \sum_{k=1}^m \pi_k \nabla^2 h_k\left(\vec{x}_0\right)\right) \vec{y} \rangle \geq 0, \forall \vec{y} \in \mathcal{T}_{\Omega}\left(\vec{x}_0\right)$$

ou de façon équivalente :

$$\nabla_{xx}^{2}\mathcal{L}\left(\vec{x}_{0},\vec{\pi}\right)\succeq0,\forall\vec{y}\in\mathcal{T}_{\Omega}\left(\vec{x}_{0}\right)$$

où \mathcal{T}_{Ω} (\vec{x}_0) est l'espace *tangent* à la surface Ω au point \vec{x}_0 :

$$\mathcal{T}_{\Omega}\left(\vec{x}_{0}\right)=\left\{ \vec{y}\in\mathbb{R}^{n}:\left\langle \nabla h_{k}\left(\vec{x}_{0}\right),\vec{y}\right\rangle =0,k=1,\ldots,m\right\}$$

PREUVE Pour k suffisamment grand et pour tout γ , nous avons r

$$\nabla^2 f\left(\vec{x}^k\right) + k \nabla H\left(\vec{x}^k\right) \nabla^t H\left(\vec{x}^k\right) + k \sum_{i=1}^m h_i\left(\vec{x}^k\right) \nabla^2 h_i\left(\vec{x}^k\right) + \gamma I_n \succeq 0.$$

Soit $\vec{y} \in \mathcal{T}_{\Omega}(\vec{x}_0)$. Soit \vec{y}^k sa projetée sur l'espace :

$$\left\{ \vec{z} \in \mathbb{R}^{n} : \nabla^{t} H\left(\vec{x}_{k}\right) \vec{z} = \vec{0} \right\}.$$

Donc,

$$\vec{y}^{k} = \vec{y} - \nabla H\left(\vec{x}^{k}\right) \left(\nabla^{t} H\left(\vec{x}_{k}\right) \nabla H\left(\vec{x}^{k}\right)\right)^{-1} \nabla^{t} H\left(\vec{x}^{k}\right) \vec{y}$$

Il s'en suit que :

$$\langle \vec{y}^k, \left(\nabla^2 f\left(\vec{x}^k \right) + k \sum_{i=1}^m h_i \left(\vec{x}^k \right) \nabla^2 h_i \left(\vec{x}^k \right) \right) \vec{y}^k \rangle + \gamma \left\| \vec{y}^k \right\|^2 \geq 0.$$

D'où, par passage à la limite

$$\langle \vec{y}, \left(\nabla^2 f\left(\vec{x}_0 \right) + \sum_{i=1}^m \vec{\pi}_i \nabla^2 h_i \left(\vec{x}_0 \right) \right) \vec{y} \rangle + \gamma \left\| \vec{y} \right\|^2 \geq 0.$$

APPLICATION Soit à résoudre le problème suivant :

MIN
$$x^2 + y^2 + z^2$$
s.c. $x + y + z = 2$
 $x, y, z \in \mathbb{R}$ (19)

QUESTIONS

- Résoudre le système traduisant les conditions nécessaires d'optimalité
- Quelle est la nature du point stationnaire trouvé?

APPLICATION Soit à résoudre le problème suivant :

MAX
$$x + y + z$$

s.c. $x^2 + y^2 + z^2 = 1$
 $x, y, z \in \mathbb{R}$ (20)

QUESTIONS

- Résoudre le système traduisant les conditions nécessaires d'optimalité
- Quelle est la nature des points stationnaires trouvés?

Conditions suffisantes d'ordre 2

■ THÉORÈME CONDITIONS SUFFISANTES Soit le problème suivant :

MIN
$$f(\vec{x})$$
s.c.
$$h_k(\vec{x}) = 0, \ k = 1, ..., m$$

$$\vec{x} \in \mathbb{R}^n$$
(21)

Supposons que dans (21) les fonctions f et H sont de classe C^2 . Soit $(\vec{x}_0, \vec{\pi}) \in \mathbb{R}^{n+m}$ un point tel que :

$$\begin{split} \nabla_{x} \mathcal{L}\left(\vec{x}_{0}, \vec{\pi}\right) &= 0, \\ \nabla_{\pi} \mathcal{L}\left(\vec{x}_{0}, \vec{\pi}\right) &= 0, \\ \nabla_{xx}^{2} \mathcal{L}\left(\vec{x}_{0}, \vec{\pi}\right) &\succ 0, \forall \vec{y} \in \mathcal{T}_{\Omega}\left(\vec{x}_{0}\right). \end{split}$$

Alors, \vec{x}_0 est un *minimum stricte* du problème (21), c.-à-d. :

$$\exists \gamma > 0, \epsilon > 0: f\left(\vec{x}\right) \geq f\left(\vec{x}_0\right) + \frac{\gamma}{2} \left\|\vec{x} - \vec{x}_0\right\|^2, \forall \vec{x}: \vec{H}\left(\vec{x}\right) = \vec{0}, \left\|\vec{x} - \vec{x}_0\right\|^2 \leq \epsilon$$

Conditions suffisantes d'ordre 2

APPLICATION Soit à résoudre le problème suivant :

MIN
$$-xy - xz - yz$$

s.c.
$$x + y + z = 3$$

$$x, y, z \in \mathbb{R}$$
(22)

QUESTIONS

- Résoudre le système traduisant les conditions suffisantes d'optimalité.
- Déterminer la nature des points stationnaires trouvés.

■ MODÈLE PROBLÈME AVEC CONTRAINTES D'ÉGALITÉ ET D'INÉGALITÉ

Le modèle général est le suivant :

MIN
$$f(\vec{x})$$
s.c.
$$h_{k}(\vec{x}) = 0, k = 1, ..., \rho$$

$$g_{k}(\vec{x}) \leq 0, k = 1, ..., \kappa$$

$$\vec{x} \in \mathbb{R}^{n}$$
(23)

où:

Le vecteur de décision $\vec{x} = (x_1, \dots, x_n)$

is le domaine
$$\Omega = \left\{ \vec{x} \in \mathbb{R}^n : \vec{H}\left(\vec{x}\right) = \vec{0}, \vec{G}\left(\vec{x}\right) \leq \vec{0} \right\}$$

Les fonctions \vec{H} et \vec{G} sont supposées de classe C^1

La fonction $f(\vec{x})$ est supposée de classe C^1

Hacène Ouzia Optimisation non linéaire 2019-20 45

■ DÉFINITION FONCTION DE LAGRANGE

La fonction de Lagrange associée au problème (24) est définie comme suit :

$$\mathcal{L}\left(\vec{x}, \vec{\pi}, \vec{\mu}\right) = f\left(\vec{x}\right) + \sum_{k=1}^{\rho} \pi_k h_k\left(\vec{x}\right) + \sum_{k=1}^{\kappa} \mu_k g\left(\vec{x}\right)$$

- le vecteur $(\vec{\pi}, \vec{\mu})$ est dit vecteur des multiplicateurs de Lagrange

$$\nabla h_{k}(\vec{x}), k = 1, ..., \rho$$

$$\nabla g_{k}(\vec{x}), k \in \mathcal{A}(\vec{x}),$$

$$A\left(\vec{x}\right) = \left\{k : g_k\left(\vec{x}\right) = 0\right\}$$

■ DÉFINITION FONCTION DE LAGRANGE

La fonction de Lagrange associée au problème (24) est définie comme suit :

$$\mathcal{L}\left(\vec{x}, \vec{\pi}, \vec{\mu}\right) = f\left(\vec{x}\right) + \sum_{k=1}^{\rho} \pi_k h_k\left(\vec{x}\right) + \sum_{k=1}^{\kappa} \mu_k g\left(\vec{x}\right)$$

- \rightarrow le vecteur $(\vec{\pi}, \vec{\mu})$ est dit vecteur des *multiplicateurs de Lagrange*
- DÉFINITION POINT RÉGULIÉR Un point $\vec{x} \in \Omega$ est qualifié de *régulier* si les vecteurs :

$$\nabla h_{k}\left(\vec{x}\right), k = 1, \ldots, \rho$$

 $\nabla g_{k}\left(\vec{x}\right), k \in \mathcal{A}\left(\vec{x}\right),$

où $\mathcal{A}(\vec{x})$ est l'ensemble des indices des contraintes saturées en \vec{x} , c.-à-d. :

$$A(\vec{x}) = \{k : g_k(\vec{x}) = 0\}.$$

Hacène Ouzia Optimisation non linéaire 2019-20 46.

■ Théorème Conditions Karush-Kuhn-Tucker Si xo un minimum local du problème :

MIN
$$f(\vec{x})$$
s.c.
$$h_{k}(\vec{x}) = 0, \ k = 1, \dots, \rho$$

$$g_{k}(\vec{x}) \leq 0, \ k = 1, \dots, \kappa$$

$$\vec{x} \in \mathbb{R}^{n}$$
(24)

où les fonctions f, g et h sont de classe C^1 . Si le point \vec{x}_0 est régulier alors il existe un *unique* vecteur $(\vec{\pi}, \vec{\mu})$ tel que :

$$egin{aligned}
abla_{ec{x}}\mathcal{L}\left(ec{x}_{0},ec{\pi},ec{\mu}
ight) &= ec{0}, \ ec{\mu} &\geq 0, \ \mu_{k} &= 0, orall k
otin \mathcal{A}\left(ec{x}_{0}
ight). \end{aligned}$$

■ APPLICATION Soit le problème non linéaire suivant :

MAX
$$f(\vec{x})$$

s.c. $g_i(\vec{x}) \leq 0$ $i \in \mathcal{I}$
 $h_k(\vec{x}) = 0$ $k \in \mathcal{K}$
 $\vec{x} \in \Omega$

QUESTIONS

Ecrire les conditions KKT.

 Hacène Ouzia
 Optimisation non linéaire
 2019-20
 48 / 70

■ APPLICATION Soit le problème non linéaire suivant :

MAX
$$f(\vec{x})$$

S.C. $g_i(\vec{x}) \leq 0$ $i \in \mathcal{I}$
 $h_k(\vec{x}) = 0$ $k \in \mathcal{K}$
 $\vec{x} \in \Omega$

SOLUTION II existe des scalaires π_i , $i \in \mathcal{I}$, et μ_k , $k \in \mathcal{K}$, tels que :

$$\begin{split} -\nabla f\left(\vec{x}\right) + \sum_{i \in \mathcal{I}} \pi_{i} \nabla g_{i}\left(\vec{x}\right) + \sum_{k \in \mathcal{K}} \mu_{k} \nabla h_{k}\left(\vec{x}\right) &= 0 \\ \pi_{i} g_{i}\left(\vec{x}\right) &= 0, \, \forall i \in \mathcal{I} \\ \pi_{i} > 0, \, \forall i \in \mathcal{I} \end{split}$$

 Hacène Ouzia
 Optimisation non linéaire
 2019-20
 49 / 70

■ APPLICATION Soit le problème non linéaire suivant :

MIN
$$f(\vec{x})$$

S.C. $g_i(\vec{x}) \ge 0$ $i \in \mathcal{I}$
 $h_k(\vec{x}) = 0$ $k \in \mathcal{K}$
 $\vec{x} \in \Omega$

QUESTIONS

Ecrire les conditions KKT.

OPTIMISATION NON LINÉAIRE 50 / 70

■ APPLICATION Soit le problème non linéaire suivant :

MIN
$$f(\vec{x})$$

S.C. $g_i(\vec{x}) \ge 0$ $i \in \mathcal{I}$
 $h_k(\vec{x}) = 0$ $k \in \mathcal{K}$
 $\vec{x} \in \Omega$

SOLUTION Il existe des scalaires π_i , $i \in \mathcal{I}$, et μ_k , $k \in \mathcal{K}$, tels que :

$$\nabla f\left(\vec{x}\right) - \sum_{i \in \mathcal{I}} \pi_{i} \nabla g_{i}\left(\vec{x}\right) + \sum_{k \in \mathcal{K}} \mu_{k} \nabla h_{k}\left(\vec{x}\right) = 0$$

$$\mu_{i} g_{i}\left(\vec{x}\right) = 0, \forall i \in \mathcal{I}$$

$$\mu_{i} \geq 0, \forall i \in \mathcal{I}$$

APPLICATION Soit le problème linéaire suivant :

MAX
$$x + 2y$$

S.C.
$$2x + 3y \leq 5$$

$$-x + 4y \leq 3$$

$$x, y \geq 0$$

$$(25)$$

QUESTIONS

- Ecrire les conditions KKT pour le problème (25)
- Pour chaque point extrême vérifier, géométriquement et algébriquement, si les conditions KKT sont satisfaites ou pas.
- En déduire la solution optimale du problème linéaire (25)

■ APPLICATION Soit le problème non linéaire suivant :

MIN
$$x^2 + 2y^2$$

S.C. $x + y \ge 2$
 $x, y \ge 0$ (26)

QUESTIONS

- △ Ecrire les conditions KKT pour le problème (26).
- Trouver un point réalisable satisfaisant les équations KKT.

Hacène Ouzia Optimisation non linéaire 2019-20 53

■ APPLICATION Soit le problème non linéaire suivant :

MAX
$$x + y$$

s.c. $(x-1)^2 + y^2 \le 1$
 $(x+1)^2 + y^2 \le 1$ (27)

QUESTIONS

- Vérifier que le problème non linéaire (27) est convexe.
- Ecrire les conditions KKT pour le problème (27).
- Que remarquez-vous?

■ APPLICATION Soit le problème non linéaire suivant :

MIN
$$x^2 + 2y^2$$

S.C. $x + y = 3$

QUESTIONS

- Ecrire les conditions nécessaires d'optimalité.
- Résoudre les conditions KKT.
- Vérifier que la solution trouvée est unique.

Hacène Ouzia Optimisation non linéaire 2019-20 55

■ APPLICATION Soit le problème non linéaire suivant :

$$\begin{array}{ll} \text{MAX} & x^2+y^2 \\ \text{s.c.} & \\ & x^2+3y^2 \leq 3 \\ & y \geq 0 \end{array}$$

QUESTIONS

- Ecrire les conditions nécessaires d'optimalité.
- Résoudre le système KKT.

■ APPLICATION Soit le problème non linéaire suivant :

MAX
$$xyz$$

s.c. $x + 2y + 3z \le 1$
 $x, y, z \ge 0$

■ QUESTIONS

- Ecrire les conditions nécessaires d'ordre 1.
- Résoudre le système KKT.
- En déduire l'optimum global.

■ THÉORÈME CONDITIONS DE KARUSH-KUHN-TUCKER Si xo un minimum local du problème :

MIN
$$f(\vec{x})$$

s.c $h_k(\vec{x}) = 0, k = 1, ..., \rho$ $g_k(\vec{x}) \leq 0, k = 1, ..., \kappa$ $\vec{x} \in \mathbb{R}^n$ (28)

et si \vec{x}_0 est *régulier* et que les fonctions f, g et h sont 2-fois différentiables, alors il existe un *unique* vecteur $(\vec{\pi}, \vec{\mu})$ tel que :

$$abla_{\mathit{xx}}^2 \mathcal{L}\left(ec{x}_0, ec{\pi}, ec{\mu}
ight) \succeq 0, orall ec{y} \in \mathcal{T}_\Omega\left(ec{x}_0
ight)$$

où *l'espace tangent* $\mathcal{T}_{\Omega}\left(\vec{x}_{0}\right)$ est l'ensemble des vecteurs \vec{y} tels que :

$$\langle \nabla h_{k}(\vec{x}_{0}), \vec{y} \rangle = 0, k = 1, \dots, m, \langle \nabla g_{k}(\vec{x}_{0}), \vec{y} \rangle = 0, k \in \mathcal{A}(\vec{x}_{0})$$

■ APPLICATION Soit le problème non linéaire suivant :

MIN
$$x^2 + y^2$$

s.c. $x + y = 2$
 $x, y \in \mathbb{R}$

QUESTIONS

- Vérifier les conditions nécessaires d'ordre 1 et 2
- Résoudre le système KKT.
- Pouvez-vous en déduire la nature de la solution KKT.
- Vérifiez que les conditions suffisantes d'ordre 1 ne sont pas satisfaites.

■ APPLICATION Soit le problème non linéaire suivant :

MIN
$$x^2 + y^2$$

s.c. $x + y = 2$
 $x, y \in \mathbb{R}$

■ SOLUTION

$$\mathcal{L}(X,\lambda) = x^2 + y^2 + \lambda (x + y - 2)$$

$$\nabla_X \mathcal{L}(X,\lambda) = 0 \iff (X,\lambda) = (1,1,-2)$$

$$\mathcal{M} = \left\{ \zeta \in \mathbb{R}^2 : \zeta_1 + \zeta_2 = 0 \right\}$$

 Hacène Ouzia
 Optimisation non linéaire
 2019-20
 60 / 70

■ APPLICATION Soit le problème non linéaire suivant :

MIN
$$xy + x + y$$

s.c. $x + y = 2$
 $x, y \in \mathbb{R}$

QUESTIONS

- Vérifier que les conditions nécessaires d'ordre 1
- Résoudre le système KKT
- Pouvez-vous en déduire la nature de la solution KKT
- Les conditions suffisantes d'ordre 2 sont-elles suffisantes

■ APPLICATION Soit le problème non linéaire suivant :

Min
$$xy + x + y$$

s.c $x + y = 2$
 $x, y \in \mathbb{R}$

SOLUTION

$$\mathcal{L}(X,\lambda) = xy + x + y + \lambda(x + y - 2)$$

$$\nabla_{X}\mathcal{L}(X,\lambda)=0 \iff (X,\lambda)=(1,1,-2)$$

$$\mathcal{M} = \left\{ \zeta \in \mathbb{R}^2 : \zeta_1 + \zeta_2 = 0 \right\}$$

$$\nabla_X^2 \mathcal{L}(X,\lambda) \prec 0, \text{sur } \mathcal{M}$$

Spec
$$(\nabla_X^2 \mathcal{L}(X,\lambda)) = \{-1,1\}$$

■ APPLICATION Soit le problème non linéaire suivant :

MIN
$$x^2 + xy + y^2 - 5x - 2y$$

s.c $x + y \le 2$
 $x^2 + y^2 \le 4$
 $x, y \in \mathbb{R}$

QUESTIONS

- Vérifier que les conditions nécessaires d'ordre 1
- Résoudre le système KKT
- Pouvez-vous en déduire la nature de la solution KKT

Conditions suffisantes d'ordre 2

■ Théorème Conditions suffisantes d'ordre 2

Soit le problème suivant :

MIN
$$f(\vec{x})$$
s.c
$$h_{k}(\vec{x}) = 0, k = 1, ..., \rho$$

$$g_{k}(\vec{x}) \leq 0, k = 1, ..., \kappa$$

$$\vec{x} \in \mathbb{R}^{n}$$
(29)

Supposons que les fonctions f, g et h sont de classe $C^2(\Omega)$. Soit $(\vec{x}_0, \vec{\pi}, \vec{\mu})$ un vecteur tel que :

$$\begin{split} \nabla_{x}\mathcal{L}\left(\vec{x}_{0}, \vec{\boldsymbol{\pi}}, \vec{\boldsymbol{\mu}}\right) &= \vec{0}, \vec{H}\left(\vec{x}_{0}\right) = \vec{0}, \vec{G}\left(\vec{x}_{0}\right) \leq \vec{0}, \\ \vec{\boldsymbol{\mu}} &\geq \vec{0}, \mu_{k} = 0, \forall k \notin \mathcal{A}\left(\vec{x}_{0}\right), \\ \mu_{k} &> 0, \forall k \in \mathcal{A}\left(\vec{x}_{0}\right), \\ \langle \vec{\boldsymbol{y}}, \nabla_{xx}^{2}\mathcal{L}\left(\vec{\boldsymbol{x}}_{0}, \vec{\boldsymbol{\pi}}, \vec{\boldsymbol{\mu}}\right) \vec{\boldsymbol{y}} \rangle &\geq 0, \forall \vec{\boldsymbol{y}} \in \mathcal{T}_{\Omega}\left(\vec{\boldsymbol{x}}_{0}\right). \end{split}$$

Alors, le point \vec{x}_0 est un *minimum stricte* du problème (29)

Hacène Ouzia Optimisation non Linéaire 2019-20 64 / 70

■ APPLICATION Soit à résoudre le problème suivant :

MIN
$$-x^2 + y^2$$

s.c

 $x \le 0$
 $x, y \in \mathbb{R}$

(30)

QUESTIONS

- Résoudre le système traduisant les conditions nécessaires d'optimalité
- Que remarquez-vous?

Conditions suffisantes générales

■ Théorème Conditions suffisantes générales

Soit le problème suivant :

MIN
$$f(\vec{x})$$
s.c.
$$g_{k}(\vec{x}) \leq 0, k = 1, \dots, \kappa$$

$$\vec{x} \in X \subset \mathbb{R}^{n}$$
(31)

Soit $(\vec{x}_0, \vec{\pi})$ un vecteur satisfaisant les conditions suivantes :

$$ec{x}_0 \in \operatorname{argmin} \left\{ \mathcal{L} \left(ec{x}, ec{\pi}
ight) : ec{x} \in X
ight\}$$

$$ec{\pi} \geq ec{0}, k = 1, \dots, \kappa$$

$$ec{\pi}_k = 0, \forall k \notin \mathcal{A} \left(ec{x}_0
ight).$$

Alors, le point \vec{x}_0 est un *minimum global* du problème (31)

Conditions suffisantes générales

D'après les hypothèses, d'une part nous avons

$$f\left(\vec{x}_{0}\right) = f\left(\vec{x}_{0}\right) + \langle \vec{\pi}, \vec{G}\left(\vec{x}_{0}\right) \rangle \Longrightarrow \langle \vec{\pi}, \vec{G}\left(\vec{x}_{0}\right) \rangle = 0$$

D'autre part

$$\begin{split} f\left(\vec{x}_{0}\right) &= \min\left\{\mathcal{L}\left(\vec{x}, \overline{\vec{\pi}}\right) : \vec{x} \in X\right\} \\ &\leq \min\left\{\mathcal{L}\left(\vec{x}, \overline{\vec{\pi}}\right) : \vec{x} \in X, \vec{G}\left(\vec{x}\right) \leq \vec{0}\right\} \\ &\leq \min\left\{f\left(\vec{x}\right) : \vec{x} \in X, \vec{G}\left(\vec{x}\right) \leq \vec{0}\right\}. \end{split}$$

OPTIMISATION NON LINÉAIRE

Qualification des contraintes

QUALIFICATION DES CONTRAINTES CONDITIONS SUFFISANTES

L'hypothèse de *qualification des contraintes* au point \vec{x}_0 pour l'ensemble

$$\Omega = \left\{ \vec{x} \in \mathbb{R}^n : g_i\left(\vec{x}\right) \leq 0, i \in \mathcal{I} \right\}$$

est satisfaite dans les cas suivants :

- Les fonctions g_i , $i \in \mathcal{I}$ sont toutes affines.
- Les fonctions $g_i, i \in \mathcal{I}$ sont convexes différentiables en \vec{x}_0 et

$$\exists \vec{y}: g_i(\vec{y}) < 0, \forall i \in \mathcal{I}$$

Les vecteurs $\{\nabla g_i(\vec{x}_0), i \in \mathcal{I}^=\}$ sont linéairement indépendants.

QUALIFICATION DES CONTRAINTES CONDITIONS SUFFISANTES

L'hypothèse de *qualification des contraintes* au point \vec{x}_0 pour l'ensemble

$$\Omega = \left\{ \vec{x} \in \mathbb{R}^n : g_i\left(\vec{x}\right) \leq 0, i \in \mathcal{I}, h_k\left(\vec{x}\right) = 0, k \in \mathcal{K} \right\}$$

est satisfaite dans les cas suivants :

- Les fonctions $\{g_i, i \in \mathcal{I}\}$ et $\{h_k, k \in \mathcal{K}\}$ sont toutes affines.
- Les fonctions $\{g_i, i \in \mathcal{I}\}$ sont convexes différentiables en $\vec{x}_0, \{h_k, k \in \mathcal{K}\}$ sont affines et

$$\exists \vec{y}: g_i\left(\vec{y}\right) < 0, \forall i \in \mathcal{I}, h_k\left(\vec{y}\right) = 0, \forall k \in \mathcal{K}$$

Les vecteurs $\{\nabla g_i(\vec{y}), i \in \mathcal{I}^-\}$ et $\{\nabla h_k(\vec{y}), k \in \mathcal{K}\}$ sont linéairement indépendants.

Bibliographie

- R. J Venderbei (2008), Linear programming, Fondations and extensions, Springer
- J. Nocedal and S.J. Wright (2000), Numerical Optimization, Springer
- D.G. Luenberger and Yinyu Ye (2008), Linear and Nonlinear Programming, Springer

