

Module 4: R & tdplyr Labs

Teradata Vantage Analytics Workshop
ADVANCED

Copyright © 2007–2022 by Teradata. All Rights Reserved.

After completing this module, you will be able to:

- Articulate how R and Jupyter Lab fit within the Teradata Vantage architecture
- Connect to a Teradata Vantage context from Jupyter Lab
- Create remote tibbles from Teradata Vantage tables
- Transform a data set with NGramSplitter
- Find patterns with nPath
- Find Associations with VAL

Topics

Using R with JupyterLab via Teradata Vantage

- Teradata Vantage Architecture
- Connect to Teradata Vantage from JupyterLab
- What is a Tibble?
- Text Functions
 - NGramSplitter
- Path & Pattern Analysis
 - nPath
- Association with VAL
- Review & Summary

Current Topic – Using R with JupyterLab via Teradata Vantage

- Using R with JupyterLab via Teradata Vantage
 - Teradata Vantage Architecture
 - Connect to Teradata Vantage from JupyterLab
 - What is a Tibble?
- Text Functions
 - NGramSplitter
- Path & Pattern Analysis
 - nPath
- Association with VAL
- Review & Summary

Teradata Vantage

Lab 1: Load Libraries

Load Dependent R Libraries followed by 'tdplyr'

```
# Load Libraries
LoadPackages <- function() {
library(getPass)
library(dbplyr)
library(DBI)
                             See next pages for details
library(tidyverse)
                             on these two Libraries
library(teradatasql)
library(tdplyr)
 Suppress Package Detailed Information
 suppressPackageStartupMessages(LoadPackages())
```

Using 'dplyr' with Vantage

The Grammar of Data Manipulation

- One of the packages within the tidyverse
 - What is the sum of the values, grouped by product ID?
 - What are the most common car mechanical problems?
 - Which are the products with more than 10,000 reviews?
 - How do I see my data in descending order?
- Like base SQL and Pandas in Python

List of Helpful 'dplyr' Verbs

mutate()

Adds new variable that are functions of existing variable

select()

Picks variables based on their names

top_n()

Select the top *n* number of rows

arrange()

filter()

Picks cases based on their values

summarize()

Reduces multiple values down to a single summary

Changes the ordering of the rows

td_cfilter_mle()

arrange()

filter()

td_glm_mle()

top_n()

summarize()

td_ngramsplitter()

select()

mutate()

td_create_context

Create a Context to perform analytic functions on Teradata Vantage

td_set_context

Initialize a Context to perform analytic functions on Teradata Vantage

Lab 2: Create and Set Teradata Vantage Context

```
# Create Vantage Context
con <- td_create_context (</pre>
          host = "host_name",
          uid = "user_id",
          pwd = getpass(),
          dType = "native",
          logmech = "LDAP")
 Connect to Vantage
td set context(con)
```

Your code may vary slightly from this Generic example

Create a variable name con

- 1. Use the td create context function
- 2. Input the appropriate information for the remaining arguments.
- Input the con variable as the parameter using the td_set_context function

Access to Analytic Functions

High-Speed Data Fabric

Vantage Data Store

Dataframes and Tables

Jupyter Lab accesses dataframes

- Row names should be unique
 - e.g., row numbers
- No NULLs in column names
- Data types: NUM, CHAR, factor
- Each column has one data type

Vantage stores data in tables

- Relational tables
- Rows are managed by AMPs, evenly distributed
- Single table can be millions of rows

EMP	LOYEE							_			
	PLOYEE MBER		DEPARTMENT NUMBER	JOB CODE	LAST NAME	FIRST NAME	HIRE DATE		.		
1	1006 1008 1005	1019 1019 0801	301 301 403	312101 312102 431100		John Carol Loretta	861015 870201 861015			radat ntag	
1	1004 1007 1003	1003 0801	401 401	412101 411100	Johnson Villegas Trader	Darlene Arnando James	861015 870102 860731			<u></u>	

For our purposes, a Dataframe is the same as a Table

Very similar to a data frame and data table, other than:

Provides a better method for printing large data sets

Subsetting a Tibble will always return a Tibble

Allows you to interact with data from remote data sources

Creating a Remote Tibble

Tibbles are our way to pull in any Teradata Vantage table into JupyterLab and perform subsequent analysis

Example:

```
scale_housing <- tbl(con, dplyr::sql("SELECT * FROM TRNG_TDU_TD01.scale_housing"))</pre>
```


Lab 3: Converting R code to Vantage SQL

Current Topic – Text Functions

- Using R with JupyterLab via Teradata Vantage
 - Teradata Vantage Architecture
 - Connect to Teradata Vantage from JupyterLab
 - What is a Tibble?
- Text Functions
 - NGramSplitter
- Path & Pattern Analysis
 - nPath
- Review & Summary

Some Text Analytics Terminology: A Hierarchy

Each outer layer is essentially a superset of the others:

Corpus: Data source

Document: Row of text data

• **N-Gram:** Group of words

Token: Single word

Corpus: The column with all the reviews

MOVIE_REVIEWS

AccountID Movie		Date	Stars	Comments	
31964358	Guns and Bla	041218	4	This director is so talented, this is one of the best	
22727277	Romance in P	120617	5	My favorite part was when Oscar and Lily decided.	
85643108	Italian Connec	010119	4	The character development is exquisite and the vi	
55467372	Robots Amok	071619	3	The special effects were lacking but I like the plot i	
91150045	All My Cats	012318	1	This was such a waste of time we walked out of th	

Document: One row in a column

Examples of N-Grams and Tokens

MOVIE	REVIEWS
IVIOVIL	KLVILVVS

AccountID	Movie	Date	Stars	Comments
31964358	Guns and Bla	041218	4	This director is so talented, this is one of the best
22727277	Romance in P	120617	5	My favorite part was when Oscar and Lily decided
85643108	Italian Connec	010119	4	The character development is exquisite and the vi
55467372	Robots Amok	071619	3	The special effects were lacking but I like the plot į
91150045	All My Cats	012318	1	This was such a waste of time we walked out of th

N-Grams:

Bigram Trigram

Token: Individual word-

This director is so talented this is one of the best action movies I have seen in years I normally go for these kinds of films anyway, but it is such an unusual and unique take on this genre. The span of time from old-time Wild West to the futuristic laser gur battle is epic and especially like the way conrad weaves in the ragtag team of misfits and how they come together to vanquish the Marquohar. The visual aspect of the effects made me feel like I was part of the action and I especially recommend seeing this in a theater with surround sound, Dolby, and the like to get the full effect and experience. Highly recommend!

Why Tokenize Text? "Noisy Data"

Misspellings

The Iccredribles movie

Irrelevant to the context

Eating popcorn

Have a great day!

Throwback Thursday

Extra Punctuation

It was super!!!!!

Best. Day. Ever.

Emojis

:-)

Abbreviations

ICYMI

LOL

FOMO

Techniques for Reducing Noise

- Remove all punctuation and numbers
- Lowercase all words
- Reduce words to root words (stemming or lemmatization)
- Ignore certain words (stop words)
 - Frequent words ("the", "an", "a")
 - Irrelevant words and phrases ("Welcome to the Call Center" "How may I help you" "Thank you")
 - Custom dictionaries

Bag of Words Model

- The model characterizes data in terms of individual words
- No implied order or structure
- No context
- Produces word counts, frequencies
- Adds numerical value or weight to text
- Can analyze, rank, or calculate

Text Data Tokenizing Functions

Pre-processing functions for tokenizing text

Single-Word Tokenization

td_text_parser

More pre-processing parameters:

- Lowercase
- Remove punctuation
- Stemming
- Remove stop words

Multiple-Word Tokenization

td_ngramsplitter_sqle

Fewer pre-processing parameters:

- Lowercase
- Remove punctuation
- More context with grams
- More accurate ML models

Syntax: nGram Splitter

```
td_ngramsplitter_sqle (
      data = NULL
      text.column = NULL
      delimiter = " ",
      grams = NULL,
      overlapping = TRUE,
      to.lower.case = TRUE,
      punctuation = "^{*}
      reset = ".,?!",
      total.gram.count = FALSE,
      total.count.column = "totalcnt",
      accumulate = NULL,
      n.gram.column = "ngram",
      num.grams.column = "n",
      frequency.column = "frequency",
      data.order.column = NULL
```

Overlapping:

Recommend changing to **FALSE**

Frequency Column:

Can be used to determine word count

Lab 4a: Diary Remote Tibble

Create a remote tibble named **diary**

- 1. Use the **tbl** function
- 2. Reference our **con** Vantage context variable
- 3. Use the **dplyr::sql** function to query the Vantage table

Input

```
text_col <chr>
```

"1\tJune 12th 1941: Saw Klaus watching me again in class. I think he likes me.

Lab 4b: Tokenize with nGrams Splitter

```
tokenized_diary <- td_ngramsplitter_sqle
    data = diary,
    text.column = "text_col",
    delimiter = " ",
    grams = "1",
    overlapping = TRUE,
    punctuation = "[.,?!]",
    reset = "[.,?!]")</pre>
```

Create an object named text_parser_diary

- 1. Use the td_text_parser_mle function
- 2. Input appropriate values for the pre-processing parameters
- 3. Input **TRUE** to remove stop words and list the position of the word within the document

View the output by executing the following command:

arrange(tokenized_diary\$result, desc(frequency))

Arrange by the frequency column in descending order

Output

Current Topic – Path & Pattern Analysis

- Using R with JupyterLab via Teradata Vantage
 - Teradata Vantage Architecture
 - Connect to Teradata Vantage from JupyterLab
 - What is a Tibble?
- Text Functions
 - NGramSplitter
- Path & Pattern Analysis
 - nPath
- Review & Summary

- The nPath function scans a set of rows, looking for patterns that you specify
- For each set of input rows that matches the pattern, nPath produces a single output row
- The function provides a flexible pattern-matching capability that lets you specify complex patterns in the input data and define the values that are output for each matched input set
- nPath is useful when your goal is to identify the paths that lead to an outcome
- The output from the nPath function can be input into other Machine Learning Engine functions or into a visualization tool such as Teradata AppCenter

nPath Description (cont.)

What is nPath?

- Function designed for time-series sequence analysis of data
- Links an outcome with a preceding path

Benefits

- Pattern detection can be completed in a <u>single pass</u> over the data
- Allows you to understand relationships across rows of data
- Transcend's SQL ordered-data limitations that require either complex, multi-pass SQL or custom UDFs for each analysis

Example use cases:

- Web analytics (clickstream, Golden Path)
- Complex Marketing revenue paths
- Granular product & process analysis (A/B)
- Granular pattern detection (fraud, QA,..)

nPath Website Path Analysis

Complete Application:

- nPath identifies path patterns and exit points
- The Sessionize function is used prepare the input data for nPath analysis.
- In the example above, we are viewing which paths users take once they've landed on our Home page. Note that 32% of Home page visits end up in the users' exiting the website altogether.

Some examples of how nPath can be used follow:

- A retailer wishes to analyze Web site click data, to identify paths that lead to sales over a specified amount
- A manufacturer analyzes sensor data from industrial processes, to identify paths to poor product quality
- A healthcare provider analyzes healthcare records of individual patients, to identify paths that indicate that patients are at risk of developing conditions such as heart disease or diabetes
- A financial institution reviews financial data for individuals, to identify paths that provide information about credit or fraud risks

- Input Tibble: Data is read from specified input tables
- nPath: The following arguments are specified when the function is invoked
 - Mode (overlapping or nonoverlapping)
 - Pattern to match
 - Symbols to use
 - [Optional] Filters to apply
 - Results to output
- Output object: Data is written to an output object

Lab 5: Create borre_z Remote Tibble

Create a remote tibble named **borre_z**

- 1. Use the **tbl** function
- 2. Reference our **con** Vantage context variable
- 3. Use the **dplyr::sql** function to query the Vantage table

Input

Syntax: nPath

- The td_npath_sqle function scans a set of rows, looking for patterns that you specify
- For each set of input rows that matches the pattern, nPath produces a single output row
- The function provides a flexible pattern-matching capability that lets you specify complex patterns in the input data and define the values that are output for each matched input set

```
td_npath_sqle (
    data1 = NULL.
     mode = NULL
     pattern = NULL.
     symbols = NULL.
     result = NULL.
     filter = NULL,
     data2 = NULL.
     data3 = NULL.
     data1.partition.column = NULL,
     data2.partition.column = NULL,
     data3.partition.column = NULL,
     data1.order.column = NULL,
     data2.order.column = NULL,
     data3.order.column = NULL)
```

Pattern Operators

- Use with pattern symbols to customize pattern-matching rules
 - '.' : followed by (Use to separate a series of pattern symbols)
 - '|' : alternative (The equivalent of an OR)
 - '?' : occurs at most once (0-1)
 - '*': occurs zero or more times (0-n)
 - '+': occurs at least once (1-n)
 - '^': pattern must begin with value specified. Also, value specified must be the first row within the partition.
 - '\$': pattern must end with
- Customizing pattern matching rules:
 - (X){a}: exactly A number of occurrences of X
 - (X){a,}: at least A number of occurrences of X
 - (X){a,b}: A to B occurrences of X

pattern('A.B{3}')

pattern('A.B{1,}')

pattern('A.B{1,3}')

Pattern Operators (cont.)

Operator	Description	Precedence
Α	Matches one row that meets the definition of A	1 (highest)
A.	Matches one row that meets the definition of A	1
A?	Matches 0 or 1 rows that satisfy the definition of A	1
A*	Matches 0 or more rows that satisfy the definition of A (greedy operator)	1
A+	Matches 1 of more rows that satisfy the definition of A (greedy operator)	1
A.B	Matches two rows, where the first row meets the definition of A and the second row meets the definition of B	2
AJB	Matches one row that meets the definition of either A or B	3

The nPath function uses greedy pattern matching. That is, it finds the longest available match when matching patterns specified by nongreedy operators

Simple nPath Example

```
npath_out <- td_npath_sqle (
    data1 = borre_z,
    data1.partition.column = c("user_id"),
    data1.order.column = "ts",
    mode = "nonoverlapping",
    pattern = "X.X",
    symbols = "event = 'a' as X",
    result = "ACCUMULATE (event of X) AS x_pattern")</pre>
```

Input

Create an object named borre_z

- 1. Use the tbl_npath_sqle function
- 2. Reference our **borre_z** remote tibble
- 3. Select **user_id** as the partition column
- 4. Order by the **ts** column
- 5. Input the remaining required arguments

Output

```
x_pattern

<chr>
1 [a, a]
2 [a, a]
```


Lab 6a: nPath Between Remote Tibble

Create a remote tibble named npath_between

- 1. Use the **tbl** function
- 2. Reference our **con** Vantage context variable
- 3. Use the **dplyr::sql** function to query the Vantage table

Input

	c1	c2	с3
	<int></int>	<int></int>	<chr></chr>
1	1	1	В
2	3	1	C
3	2	1	В
4	5	1	D
5	4	1	Α

Lab 6b: nPath 'Or' Pattern

```
npath_or_out <- td_npath_sqle (</pre>
     data1 = npath_between,
     data1.partition.column = "c1",
     data1.order-column = "c1",
    mode = "nonoverlapping",
     pattern = "B|C|A",
     symbols = c("c3 = 'A' \text{ as } A", "c3 = 'B' \text{ as } B",
                 c3 = c' as c''
     results = "ACCUMULATE(c3 of ANY(B,C,A))
              AS matches")
```


Lab 6c: View the Output

View the output by executing the following command:

Input

	c1	c2	с3
	< <i>int></i>	< <i>int></i>	<chr></chr>
1	1	1	В
2	3	1	C
3	2	1	В
4	5	1	D
5	4	1	Α

Output

```
matches

<chr>
1 [B]
2 [C]
3 [B]
4 [A]
```

Persist Dataframe as a Vantage Table

To more easily create a visualization in **Teradata AppCenter** we can **copy** our Dataframe into a **Vantage table**

copy_to (con,npath_or_out\$result,name = "npath_or_out")

Vantage Data Store

Vantage Data Store

Vantage Data Store

Current Topic – Association with VAL

- Using R with JupyterLab via Teradata Vantage
 - Teradata Vantage Architecture
 - Connect to Teradata Vantage from JupyterLab
 - What is a Tibble?
- Text Functions
 - NGramSplitter
- Path & Pattern Analysis
 - nPath
- Association with VAL
- Review & Summary

Lab: Load Table into Dataframe and Display

Use 'DataFrame' command to load SQL Table into a DataFrame, then display

```
# Create Remote Tibble
    sales detail1 df <- tbl(con, dplyr::sql("SELECT * FROM TRNG TDU TD01.sales detail1"))
  4 # View the Output
  5 print(sales detail1 df)
# Source: SOL [?? x 11]
# Database: Teradata
  product name
                   product category name store name region name city name
  <chr>
                  <chr>
                                        <chr>
                                                   <chr>>
                                                              <chr>
1 Bluberries
                  Fruits
                                                  Western
                                        Denver
                                                              Denver
 2 Chicken Nuggets Other Snacks
                                        Denver
                                                  Western
                                                              Denver
 3 Slurpee
                   Drinks
                                                  Western
                                        Denver
                                                              Denver
4 Sprite
                  Drinks
                                        Denver
                                                  Western
                                                              Denver
 5 Toaster pastries Ethnic Snacks
                                        Denver
                                                   Western
                                                              Denver
6 Tuna Snacks
                  Other Snacks
                                        Denver
                                                   Western
                                                            Denver
7 Chocolate Bars Candy
                                        San Diego Western
                                                            San Diego
8 Taffy
                   Candy
                                        Denver
                                                   Western
                                                              Denver
9 Chicken Nuggets Other Snacks
                                        Denver
                                                   Western
                                                              Denver
10 Red Bull
                   Drinks
                                        Chicago
                                                   Eastern
                                                              Chicago
# ... with more rows, and 6 more variables: sales date <dttm>,
   customer id <int>, basket id <int>, store id <int>, sales quantity <int>,
   discount amount <dbl>
```


Lab 15: Association on the Data

First, we run Association against all the Data

ITEM10F2	ITEM20F2	LSUPPORT	RSUPPORT	SUPPORT	CONFIDENCE	LIFT	ZSCORE
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Cookies	Corn chips	0.016 <u>3</u>	0.011 <u>8</u>	0.001 <u>48</u>	0.090 <u>9</u>	7.68	2.41
Nerds	French Fries	0.016 <u>3</u>	0.017 <u>8</u>	0.00148	0.090 <u>9</u>	5.12	1.82
French Fries	Nerds	0.017 <u>8</u>	0.016 <u>3</u>	0.00148	0.083 <u>3</u>	5.12	1.82
Mike and Ikes	Smores	0.022 <u>2</u>	0.011 <u>8</u>	0.001 <u>48</u>	0.066 <u>7</u>	5.63	1.95
Muddy buddies	Bagel chips	0.022 <u>2</u>	0.022 <u>2</u>	0.00148	0.066 <u>7</u>	3.00	1.16
Bagel chips	Muddy buddies	0.022 <u>2</u>	0.022 <u>2</u>	0.00148	0.066 <u>7</u>	3.00	1.16
Soused herring	Cola	0.013 <u>3</u>	0.017 <u>8</u>	0.001 <u>48</u>	0.111	6.26	2.10
Smores	Mike and Ikes	0.011 <u>8</u>	0.022 <u>2</u>	0.001 <u>48</u>	0.125	5.63	1.95
Corn chips	Cookies	0.011 <u>8</u>	0.016 <u>3</u>	0.00148	0.125	7.68	2.41
Fairy bread	Pretzels	0.025 <u>1</u>	0.020 <u>7</u>	0.002 <u>96</u>	0.118	5.68	2.78

Lab 15: Association on the Data (cont.)

Sort by LIFT

```
1 # Sort by LIFT decending
  2 assoc <- arrange((obj$result.11), desc(LIFT))</pre>
  1 print(assoc)
# Source:
   table<"TRNG TDU TD01"."r t valib td association valib1632772754800163 11">
   [35 x 8]
# Database: Teradata
# Ordered by: desc(LIFT)
  ITEM10F2
            ITEM20F2
                              LSUPPORT RSUPPORT SUPPORT CONFIDENCE
                                                                    LIFT ZSCORE
             <chr>>
                                          <dbl> <dbl>
                                                             <dbl> <dbl> <dbl>
  <chr>
                                 <dbl>
1 Cheese curls Gatorade
                               0.005<u>92</u> 0.007<u>40</u> 0.001<u>48</u>
                                                             0.25
                                                                    33.8
                                                                           5.64
                                                                    33.8
2 Gatorade Cheese curls
                               0.007<u>40</u> 0.005<u>92</u> 0.001<u>48</u>
                                                             0.2
                                                                          5.64
 3 Cheese curls Chocolate Tr~ 0.00592 0.00888 0.00148
                                                             0.25
                                                                    28.2
                                                                           5.12
4 Chocolate Tr~ Cheese curls
                               0.00888 0.00592 0.00148
                                                             0.167
                                                                    28.2
                                                                           5.12
 5 Deep-fried T~ Cheese puffs
                               0.00592
                                        0.0104 0.00148
                                                             0.25
                                                                    24.1
                                                                           4.71
 6 Cheese puffs Deep-fried T~
                               0.0104
                                        0.00592 0.00148
                                                             0.143
                                                                    24.1
                                                                           4.71
7 Chocolate Tr∼ Gatorade
                               0.008<u>88</u> 0.007<u>40</u> 0.001<u>48</u>
                                                             0.167 22.5
                                                                           4.54
                Chocolate Tr~ 0.00740 0.00888 0.00148
 8 Gatorade
                                                             0.2
                                                                    22.5
                                                                           4.54
 9 Meze
              Cheese curls
                               0.0118
                                        0.00592 0.00148
                                                             0.125
                                                                    21.1
                                                                           4.38
10 Cheese curls Meze
                                                             0.25
                                                                    21.1
                                                                           4.38
                               0.00592
                                        0.0118 0.00148
```


Lab 15: Association on the Data (cont.)

Select only Chicken Nuggets in first column

```
arrange((obj$result.11), desc(LIFT))%>%filter(ITEM10F2 == "Chicken Nuggets")
# Source: lazy query [?? x 8]
# Database:
            Teradata
# Ordered by: desc(LIFT)
  ITEM10F2
                 TTEM20F2
                            LSUPPORT RSUPPORT SUPPORT CONFIDENCE
                              <dbl>
                                       <dbl> <dbl>
                                                         <dbl> <dbl> <dbl>
  <chr>>
                 <chr>>
1 Chicken Nuggets Almonds 0.0163 0.00888 0.00148
                                                        0.0909 10.2
                                                                      2.89
                                                        0.0909 8.78 2.63
2 Chicken Nuggets Energy bars 0.0163 0.0104 0.00148
3 Chicken Nuggets Taffy
                        0.0163 0.0133 0.00148
                                                        0.0909 6.83
                                                                    2.23
4 Chicken Nuggets Cup noodles 0.0163 0.0133 0.00148
                                                                     2.23
                                                        0.0909 6.83
5 Chicken Nuggets Sprite
                         0.0163 0.0148 0.00148
                                                        0.0909 6.15
                                                                      2.08
6 Chicken Nuggets Jaffa cake
                                                        0.0909 5.59
                                                                      1.94
                            0.0163 0.0163 0.00148
7 Chicken Nuggets Peanuts 0.016<u>3</u> 0.016<u>3</u> 0.001<u>48</u>
                                                        0.0909 5.59
                                                                      1.94
8 Cnicken Nuggets Toaster pa~ 0.0163 0.0178
                                                        0.0909 5.12
                                                                      1.82
                                             0.00148
9 Chicken Nuggets Cola
                                                               5.12
                                                                      1.82
                              0.0163
                                     0.0178
                                             0.00148
                                                        0.0909
10 Chicken Nuggets Gummy Bears
                              0.0163
                                     0.0207
                                             0.00148
                                                        0.0909 4.39
                                                                      1.62
```


Lab 16: Remove Context

This command also does any Garbage Collection that is needed (removes Temporary tables)

```
# Disconnect Client from Vantage cluster
remove_context()
```

Current Topic – Review & Summary

- Using R with JupyterLab via Teradata Vantage
 - Teradata Vantage Architecture
 - Connect to Teradata Vantage from JupyterLab
 - What is a Tibble?
- Text Functions
 - NGramSplitter
- Path & Pattern Analysis
 - nPath
- Association with VAL
- Review & Summary

Review & Summary

In this module, you learned how to:

- Articulate how R and Jupyter Lab fit within the Teradata Vantage architecture
- Connect to a Teradata Vantage context from Jupyter Lab
- Create remote tibbles from Teradata Vantage tables
- Transform a data set with NGramSplitter
- Find patterns with nPath
- Find Associations with VAL

Thank you.

©2022 Teradata