THEORETICAL PART:

Solutions

Definition:

Let a be a fixed positive real number not equal to 1. The **logarithmic function with base** a is defined to be the inverse of the exponential function with base a, and is denoted $\log_a x$. In symbols, if $f(x) = a^x$, then $f^{-1}(x) = \log_a x$.

In equation form, the definition of logarithm means that the equations

$$x = a^y$$
 and $y = \log_a x$

are equivalent. Note that a is the base in both equations: either the base of the exponential function or the base of the logarithmic function.

Properties:

- 1. $\log_a 1 = 0$, because $a^0 = 1$
- 2. $\log_a a = 1$, because $a^1 = a$
- 3. $\log_a a^x = x$ and $a^{\log_a x} = x$

Definition:

- The function $\log_{10} x$ is called the **common logarithm** and is usually written $\log x$.
- The function $\log_e x$ is called the **natural logarithm** and is usually written $\ln x$.

Properties of Natural Logarithms:

$$\ln x = y \Leftrightarrow e^y = x$$

- 1. $\ln 1 = 0$
- 2. $\ln e = 1$
- $3. \ln e^x = x$
- 4. $e^{\ln x} = x$

PRACTICAL PART:

- 1. Use the definition of logarithmic functions to rewrite the following exponential equations as logarithmic equations:
 - (a) $8 = 2^3$
 - (b) $5^4 = 625$
 - (c) $7^x = z$

2. Rewrite the following logarithmic equations as exponential equations:

(a)
$$\log_3 9 = 2$$

(b)
$$3 = \log_8 512$$

(a)
$$\log_{3}q = 2 = 3 = 9$$

(b) $\log_{3}512 = 3 = 512$

3. Sketch the graphs of the following logarithmic functions:

(a)
$$f(x) = \log_3 x$$

(b)
$$g(x) = \log_{\frac{1}{2}} x$$

- 4. Sketch the graph of the following functions. State their domain and range.
 - (a) $f(x) = \log_3(x+2) + 1$
 - (b) $g(x) = \log_{\frac{1}{2}} x 2$

5. Evaluate the following logarithmic equations:

(a)
$$\log_5 25 = 2$$

(b)
$$\log_{\frac{1}{2}} 2 =$$
 (c) $\log_{16} 4 =$

(c)
$$\log_{16} 4 = \frac{1}{2}$$

(d)
$$\log_{10} \frac{1}{100} = -$$

6. Use elementary properties of exponents and logarithms to solve the following equations.

(a)
$$\log_6(2x) = -1$$

(b)
$$3^{\log_{3x} 2} = 2$$

(c)
$$\log_2 8^x = 5$$

(a)
$$\log_{6}(2x) = -1$$

 $6^{-1} = 2x = 1$ $\frac{1}{6} = 2x = 1$ $x = \frac{1}{2}$

$$x = 1$$

7. Evaluate the following logarithmic expressions.

(a)
$$\ln(\sqrt[3]{e}) =$$

(b)
$$log 1000 =$$

(c)
$$ln(4.78) =$$

(b)
$$\log 1000 = \log_{10} 10^3 = 3$$