Calculus reference sheet

- a) Exponential and logarithmic functions, assuming $b \in (0, \infty) \setminus \{1\}, x \in (0, \infty), y \in \mathbb{R}$:
 - $\log_b x = y \iff b^y = x$
 - $\ln x = \log_e x$, where $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$
 - $\log_b b^x = x$ and $b^{\log_b x} = x$
- b) Laws of logarithms: assuming $b \in (0, \infty) \setminus \{1\}, x, y \in (0, \infty), \alpha \in \mathbb{R}$:
 - $\log_b(xy) = \log_b x + \log_b y$
 - $\log_b \frac{x}{y} = \log_b x \log_b y$
 - $\log_b x^{\alpha} = \alpha \log_b x$
- c) Inverse trigonometric functions:
 - $y = \arcsin x \iff x = \sin y, -1 \le x \le 1, -\frac{\pi}{2} \le y \le \frac{\pi}{2}$
 - $y = \arccos x \iff x = \cos y, -1 \le x \le 1, \ 0 \le y \le \pi$
 - $y = \arctan x \iff x = \tan y, \ x \in \mathbb{R}, \ -\frac{\pi}{2} < y < \frac{\pi}{2}$
 - $y = \operatorname{arccot} x \iff x = \cot y, \ x \in \mathbb{R}, \ 0 < y < \pi$
 - $y = \operatorname{arcsec} x \iff x = \sec y, \ x \in (-\infty, -1] \cup [1, \infty), \ y \in [0, \pi/2) \cup (\pi/2, \pi]$
 - $y = \operatorname{arccsc} x \iff x = \operatorname{csc} y, \ x \in (-\infty, -1] \cup [1, \infty), \ y \in [-\pi/2, 0) \cup (0, \pi/2]$
- d) Trigonometric identities
 - Pythagorean theorem:

$$\sin^2 x + \cos^2 x = 1, \ x \in \mathbb{R}.$$

As a result we also have

$$1 + \cot^2 x = \csc^2 x, \ x \in \mathbb{R} \setminus \{x \mid \sin x = 0\}$$

$$\tan^2 x + 1 = \sec^2 x, \ x \in \mathbb{R} \setminus \{x \mid \cos x = 0\}$$

• Angle addition and subtraction:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta,$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta, \ \alpha, \beta \in \mathbb{R}.$$

• Double angle formulas:

$$\sin 2\theta = 2\sin\theta\cos\theta$$
,

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta, \ \theta \in \mathbb{R}.$$

• Half angle formulas:

$$\sin\frac{\theta}{2} = \operatorname{sgn}\left(\sin\frac{\theta}{2}\right)\sqrt{\frac{1-\cos\theta}{2}} \implies \sin^2\frac{\theta}{2} = \frac{1-\cos\theta}{2},$$
$$\cos\frac{\theta}{2} = \operatorname{sgn}\left(\cos\frac{\theta}{2}\right)\sqrt{\frac{1+\cos\theta}{2}} \implies \cos^2\frac{\theta}{2} = \frac{1+\cos\theta}{2}, \ \theta \in \mathbb{R}.$$

• Product to sum formulas: for $a, b \in \mathbb{R}$,

$$\sin(ax)\sin(bx) = \frac{1}{2} \left[\cos((a-b)x) - \cos((a+b)x) \right]$$
$$\sin(ax)\cos(bx) = \frac{1}{2} \left[\sin((a-b)x) + \sin((a+b)x) \right]$$
$$\cos(ax)\cos(bx) = \frac{1}{2} \left[\cos((a-b)x) + \cos((a+b)x) \right], \ x \in \mathbb{R}.$$

- e) Derivatives
 - 1) Exponential and logarithmic functions, assuming $b \in (0, \infty) \setminus \{1\}$:

•
$$\frac{d}{dx}(b^x) = \ln b \cdot b^x, \ x \in \mathbb{R}.$$

- If $f: I \to \mathbb{R}$ is differentiable, then $\frac{d}{dx} \left(b^{f(x)} \right) = \ln b \cdot b^{f(x)} \cdot f'(x), \ x \in I.$
- $\frac{d}{dx}(\log_b|x|) = \frac{1}{\ln b} \cdot \frac{1}{x}, \ x \in \mathbb{R} \setminus \{0\}.$
- 2) Trigonometric functions:

•
$$\frac{d}{dx}(\sin x) = \cos x$$
, $\frac{d}{dx}(\cos x) = -\sin x$, $x \in \mathbb{R}$.

•
$$\frac{d}{dx}(\tan x) = \sec^2 x$$
, $\frac{d}{dx}(\sec x) = \sec x \tan x$, $x \in \mathbb{R} \setminus \{x \in \mathbb{R} \mid \cos x = 0\}$.

•
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
, $\frac{d}{dx}(\csc x) = -\csc x \cot x$, $x \in \mathbb{R} \setminus \{x \in \mathbb{R} \mid \sin x = 0\}$.

3) Inverse trigonometric functions:

•
$$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}, \ \frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}, \ x \in (-1,1).$$

$$\bullet \ \, \frac{d}{dx} \left(\operatorname{arctan} x \right) = \frac{1}{1+x^2}, \, \, \frac{d}{dx} \left(\operatorname{arccot} x \right) = -\frac{1}{1+x^2}, \, \, x \in \mathbb{R}.$$

$$\bullet \ \frac{d}{dx}\left(\operatorname{arcsec} x\right) = \frac{1}{|x|\sqrt{x^2-1}}, \ \frac{d}{dx}\left(\operatorname{arccsc} x\right) = -\frac{1}{|x|\sqrt{x^2-1}}, \ x \in (-\infty,-1) \cup (1,\infty).$$

4) Absolute value:

$$\bullet \frac{d}{dx}|x| = \frac{x}{|x|} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases} = \operatorname{sgn} x, \ x \in \mathbb{R} \setminus \{0\}.$$

• If
$$f: I \to \mathbb{R}$$
 is differentiable, then $\frac{d}{dx} |f(x)| = \frac{f(x)}{|f(x)|} f'(x), \ x \in I \setminus \{x \mid f(x) = 0\}.$

f) Anti-derivatives (C denotes an arbitrary real constant in the identities to follow):

•
$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C$$
, $\alpha \neq -1$, $x \in \mathbb{R} \setminus \{0\}$ if $\alpha < -1$, $x \in \mathbb{R}$ otherwise

•
$$\int \frac{1}{x} dx = \ln|x| + C = \begin{cases} \ln x + C_1, & x > 0 \\ \ln(-x) + C_2, & x < 0, \end{cases}$$
 $C_1, C_2 \in \mathbb{R}.$

•
$$\int a^x dx = \frac{a^x}{\ln a}, x \in \mathbb{R}, a \in (0, \infty) \setminus \{1\}$$

•
$$\int \tan x \, dx = \ln|\sec x| + C_n = -\ln|\cos x| + C_n, \ x \in \left(-\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi\right), \ n \in \mathbb{Z}$$

•
$$\int \cot x \, dx = \ln|\sin x| + C_n = -\ln|\csc x| + C_n, \ x \in (n\pi, (n+1)\pi), \ n \in \mathbb{Z}$$

•
$$\int \sec x \, dx = \ln|\sec x + \tan x| + C_n, \ x \in \left(-\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi\right), \ n \in \mathbb{Z}$$

•
$$\int \csc x \, dx = -\ln|\csc x + \cot x| + C_n, \ x \in (n\pi, (n+1)\pi), \ n \in \mathbb{Z}$$

•
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C, \ x \in (-a, a), \ a \in (0, \infty)$$

•
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C, \ x \in \mathbb{R}$$

•
$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a}\operatorname{arcsec} \left| \frac{x}{a} \right| + C, \ x \in (-\infty, -a) \cup (a, \infty), \ a \in (0, \infty)$$

g) Integration formulas

• Change of variables: if $f: I \to \mathbb{R}$ is continuous and $g: [a, b] \to I$ is differentiable and $g': (a, b) \to \mathbb{R}$ is continuous, then

$$\int_{a}^{b} f(g(x)) \cdot g'(x) \ dx = \int_{g(a)}^{g(b)} f(u) \ du.$$

• Integration by parts: if $f,g:[a,b]\to\mathbb{R}$ are differentiable, then

$$\int_{a}^{b} f'(x)g(x) \ dx = f(x)g(x) \Big|_{x=a}^{x=b} - \int_{a}^{b} f(x)g'(x) \ dx.$$

• Symmetry: if $f:[-a,a]\to\mathbb{R}$ is continuous and even, then $\int_{-a}^a f(x)\ dx=2\int_0^a f(x)\ dx$; if $f:[-a,a]\to\mathbb{R}$ is continuous and odd, then $\int_{-a}^a f(x)\ dx=0$.

h) Numerical integration

• Error bounds for the midpoint and trapezoid rules: let $f:[a,b] \to \mathbb{R}$ be a twice-differentiable function over the open interval (a,b). If $|f''(x)| \le K$ for $x \in [a,b]$ (K can be chosen to be the maximum absolute value of the second derivative of f on [a,b]), then

Absolute Error in
$$M_n \leq \frac{K(b-a)^3}{24n^2}$$
.

We also have

Absolute Error in
$$T_n \leq \frac{K(b-a)^3}{12n^2}$$
.

• Simpson's rule: let $f:[a,b] \to \mathbb{R}$ be an integrable function over the interval [a,b] and let $n \geq 1$ be some integer. Divide the interval [a,b] into n (where n is even) equal-length subintervals $[x_{i-1},x_i]$ $(i=1,\ldots,n)$ with width $\Delta x=(b-a)/n$. Then we can define the Simpson's rule approximation to $\int_a^b f(x) dx$ with n subintervals S_n via

$$S_n = \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]$$

• Error bound for Simpson's rule: Let $f:[a,b] \to \mathbb{R}$ be a four-times-differentiable function over the open interval (a,b). If $|f^{(4)}(x)| \le K$ for $x \in [a,b]$ (K can be chosen to be the maximum absolute value of the fourth derivative of f on [a,b]), then

Absolute Error in
$$S_n \leq \frac{K(b-a)^5}{180n^4}$$
.

- i) Sequences and series
 - Partial sum: given a sequence $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$, the N-th partial sum s_N is defined via $s_N = \sum_{n=1}^N a_n = a_1 + \ldots + a_N$ for $N \geq 1$.
 - Infinite series: given a sequence $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$, the infinite series $\sum_{n=1}^{\infty} a_n$ is defined as the limit of the sequence of partial sums $\{s_N\}_{N=1}^{\infty}$. If the limit exists, we say that the infinite series converges; otherwise, we say that the infinite series diverges.
 - Divergence test: if $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.
 - Contrapositive of the divergence test: if $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
 - Geometric series: the series $\sum_{n=1}^{\infty} ar^{n-1}$ converges to $\frac{a}{1-r}$ if |r| < 1 and diverges otherwise.
 - Direct comparison test: suppose $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty} \subset \mathbb{R}$ are two sequences and $0 \leq a_n \leq b_n$ for all $n \geq N$ for some $N \in \mathbb{N}$.
 - If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. - If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.
 - If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges. • Limit comparison test: suppose $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty} \subset \mathbb{R}$ are two eventually non-negative sequences.
 - If $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ for some $L \in \mathbb{R}^+$, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ either both converge or both diverge.
 - If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
 - If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

- Otherwise, the test is inconclusive.
- Integral test: suppose $f:[1,\infty)\to\mathbb{R}$ is a continuous, positive, and decreasing function. If $a_n=f(n)$ for all $n\geq N$ for some $N\in\mathbb{N}$, then $\int_N^\infty f(x)\,dx$ and $\sum_{n=N}^\infty a_n$ either both converge or both diverge.
- Remainder estimate associated to the integral test: if a sequence $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ satisfies the hypotheses of the integral test $(a_n = f(n) \text{ for all } n \geq 1 \text{ for a continuous, positive, and decreasing function)}$ and the associated series converges to a number L, then the N-th remainder $R_N = L s_N$ satisfies the estimate

$$\int_{N+1}^{\infty} f(x) dx \le R_N \le \int_{N}^{\infty} f(x) dx \text{ for all } N \ge 1.$$

- Alternating series test: suppose $\{b_n\}_{n=1}^{\infty} \subset \mathbb{R}$ is a sequence satisfying $0 \leq b_{n+1} \leq b_n$ for all $n \geq N$ for some $N \in \mathbb{N}$ and $\lim_{n \to \infty} b_n = 0$. Then the alternating series $\sum_{n=1}^{\infty} (-1)^n b_n$ and $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ both converge.
- Remainder estimate associated to the alternating series test: if a sequence $\{b_n\}_{n=1}^{\infty} \subset \mathbb{R}$ satisfies the hypotheses of the alternating series test $(0 \le b_n \le b_{n+1} \text{ for all } n \ge 1 \text{ and } b_n \to 0 \text{ as } n \to \infty)$ and the associated alternating series converges to a number L, then the N-th remainder $R_N = L s_N$ satisfies the estimate

$$|R_N| \le b_{N+1}$$
 for all $N \ge 1$.

• Ratio test: suppose $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ is a sequence with $a_n \neq 0$ for all $n \geq N$ for some $N \in \mathbb{N}$.

- If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$
 and $0 \le L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

- If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$
 and $L > 1$ or $L = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

- Otherwise, the test is inconclusive.
- Root test: suppose $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$.

- If
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$$
 and $0 \le L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

- If
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = L$$
 and $L > 1$ or $L = \infty$, then $\sum_{n=1}^{\infty} a_n$ diverges.

- Otherwise, the test is inconclusive.
- p-test: the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges otherwise.
- j) Power series
 - 1) Given a formal power series of the form $\sum_{n=0}^{\infty} a_n (x-a)^n$, the series either converges only for x=a and diverges otherwise, only for |x-a| < R for R > 0 (potentially also at $x=a\pm R$) and diverges otherwise, or for all $x \in \mathbb{R}$.
 - 2) Some common power series representations centered at 0.

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots, |x| < 1$$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, \ x \in \mathbb{R}$$

•
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, \ x \in \mathbb{R}$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots, \ x \in \mathbb{R}$$

•
$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, |x| \le 1$$

•
$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \ x \in (-1,1]$$

• For
$$k \in \mathbb{R}$$
, $(1+x)^k = \sum_{n=0}^{\infty} {k \choose n} x^n = 1 + kx + \frac{k(k-1)}{2!} x^2 + \frac{k(k-1)(k-2)}{3!} x^3 + \cdots$, $|x| < 1$

- 3) Term-by-term differentiation and integration: if an analytic function $f: I \to \mathbb{R}$ admits a power series representation $\sum_{n=0}^{\infty} a_n (x-a)^n$ centered at $a \in I$ with radius of convergence R, then the power series representation of f' centered at a is $\sum_{n=1}^{\infty} n a_n (x-a)^{n-1}$ with the same radius of convergence and the power series representation of any antiderivative of f centered at a is $C + \sum_{n=0}^{\infty} a_n \frac{(x-a)^{n+1}}{n+1}$ with the same radius of convergence, for some constant $C \in \mathbb{R}$.
- 4) Cauchy product of two power series: suppose two analytic functions $f,g:I\to\mathbb{R}$ admit the power series representations $\sum_{n=0}^{\infty}c_n(x-a)^n$ and $\sum_{n=0}^{\infty}d_n(x-a)^n$ respectively, centered at a and over some interval $J\subseteq I$. Then for all $x\in J$, $f(x)g(x)=\left(\sum_{n=0}^{\infty}c_n(x-a)^n\right)\left(\sum_{n=0}^{\infty}d_n(x-a)^n\right)=\sum_{n=0}^{\infty}e_n(x-a)^n$ where $e_n=c_0d_n+c_1d_{n-1}+c_2d_{n-2}+\cdots+c_{n-2}d_2+c_{n-1}d_1+c_nd_0=\sum_{k=0}^nc_kd_{n-k},\ n\geq 0$.

k) Taylor series

- If $f: I \to \mathbb{R}$ admits a local power series representation in a neighborhood J of $a \in I$, then $f: J \to \mathbb{R}$ is smooth and the coefficients of the power series representation $\sum_{n=0}^{\infty} a_n (x-a)^n$ are given by $a_n = f^{(n)}(a)/n!$ for $n \in \mathbb{N}$.
- If $f: I \to \mathbb{R}$ is a smooth function, then the Taylor series of f centered at $a \in I$ is defined as the formal power series $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$.
- For $N \in \mathbb{N}$, the N-th Taylor polynomial T_N associated to f centered at a is the N-th degree polynomial $T_N : \mathbb{R} \to \mathbb{R}$ defined via $T_N(x) = \sum_{n=0}^N \frac{f^{(n)}(a)}{n!} (x-a)^n$.
- For $N \in \mathbb{N}$, the N-th remainder R_N^{n-0} associated to f centered at a is a function $R_N : I \to \mathbb{R}$ defined via $R_N(x) = f(x) T_N(x)$.
- The formal Taylor series associated to a smooth function $f: I \to \mathbb{R}$ converges to f(x) for $x \in I$ if and only if $|R_N(x)| \to 0$ as $N \to \infty$ for $x \in I$.

• Taylor's remainder theorem: if $f: I \to \mathbb{R}$ is smooth and $R_N: I \to \mathbb{R}$ is the remainder associated to f centered at $a \in I$, then for each $N \in \mathbb{N}$ and $x \in I$, there exist c between a and x such that

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$
 (1.1)

Furthermore, if there exists a constant M > 0 for which $|f^{(N+1)}(x)| \leq M$ for all $x \in I$, then $|R_N(x)| \leq \frac{M}{(N+1)!} |x-a|^{N+1}$ for all $x \in I$.

- 1) Newton's method
 - Newton's method is an iterative method that is used to approximate the roots of a differentiable function $f: \mathbb{R} \to \mathbb{R}$. One starts at an initial guess $x_0 \in \mathbb{R}$ and iteratively computes the sequence (if possible) $\{x_n\}_{n=0}^{\infty} \subset \mathbb{R}$ via the formula $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ for $n \geq 0$.
- m) Arc length and surface area (in Cartesian coordinates)
 - If a curve $\mathscr C$ is represented by the graph of a differentiable function $f:[a,b]\to\mathbb R$, then the arc length of $\mathscr C$ is defined as the definite integral $\int_a^b \sqrt{1+(f'(x))^2} \ dx$.
 - In the x-y plane, if a "nice" curve $\mathscr C$ is represented by the set $\{(x,y)\in\mathbb R^2\mid y=f(x),\ a\leq x\leq b\}$ where $f:[a,b]\to\mathbb R$ is differentiable, then the surface area of the surface of revolution $\mathscr S$ obtained by rotating $\mathscr C$ about the x-axis is defined as the definite integral $\int_a^b 2\pi f(x)\sqrt{1+(f'(x))^2}\ dx$.
 - In the x-y plane, if a "nice" curve $\mathscr C$ is represented by the set $\{(x,y)\in\mathbb R^2\mid x=g(y),\ a\leq y\leq b\}$ where $g:[a,b]\to\mathbb R$ is differentiable, then the surface area of the surface of revolution $\mathscr S$ obtained by rotating $\mathscr C$ about the y-axis is defined as the definite integral $\int_a^b 2\pi g(y)\sqrt{1+(g'(y))^2}\ dy$.
- n) Differential equations
 - A differential equation is an equation that involves an unknown function $y: I \to \mathbb{R}$ and its derivatives. A solution to a differential equation is a function $y: I \to \mathbb{R}$ that satisfies the equation.
 - An order of a differential equation is the highest order of derivatives that appears in the equation.
 - An initial value problem is a differential equation coupled with initial conditions. A solution to an initial value problem is a solution to the differential equation that also satisfies the initial conditions.
 - A first-order separable differential equation is a differential equation that can be written in the form $y'(x) = f(x)g(y(x)), x \in I$ for some functions $f: I \to \mathbb{R}, g: J \to \mathbb{R}$.
- o) Parametric equations
 - If $x, y : I \to \mathbb{R}$ are continuous functions, then the curve \mathscr{C} defined via $\mathscr{C} = \{(x, y) \in \mathbb{R}^2 \mid x = x(t), y = y(t), t \in I\}$ is said to be a parametric curve.
 - If $x, y: I \to \mathbb{R}$ are differentiable, then

$$\frac{dy}{dx}(t) = \frac{y'(t)}{x'(t)} \text{ for all } t \in I \text{ such that } x'(t) \neq 0,$$
(1.2)

and

$$\frac{d^2y}{dx^2}(t) = \frac{\frac{d}{dt} \left[\frac{dy}{dx}(t) \right]}{x'(t)} \text{ for all } t \in I \text{ such that } x'(t) \neq 0.$$
 (1.3)

- Suppose the graph of a non-negative function $f: I \to (0, \infty)$ is parametrically represented by the curve $\mathscr{C} = \{(x,y) \in \mathbb{R}^2 \mid x = x(t), y = y(t), t \in I\}$ and $x': I \to \mathbb{R}$ is differentiable. Then the area of the region bounded by \mathscr{C} , the x-axis, and the vertical lines x = x(a) and x = x(b) is given by the definite integral $\int_a^b y(t)x'(t) dt$ or $\int_b^a y(t)x'(t) dt$.
- In the x-y plane, if a "nice" curve $\mathscr C$ is parametrically represented by the set $\mathscr C=\{(x,y)\in\mathbb R^2\mid x=x(t),y=y(t),t\in[a,b]\}$, $\mathscr C$ is traversed exactly once as t increases from a to b, and $x,y:(a,b)\to\mathbb R$ are differentiable, then the arc length of $\mathscr C$ is defined as the definite integral $\int_a^b\sqrt{(x'(t))^2+(y'(t))^2}\ dt$.
- In the x-y plane, if a "nice" curve $\mathscr C$ is parametrically represented by the set $\mathscr C = \{(x,y) \in \mathbb R^2 \mid x = x(t), y = y(t), t \in I\}$ and $x,y:I \to \mathbb R$ are differentiable, then the surface area of the surface of revolution $\mathscr S_x$ obtained by rotating $\mathscr C$ about the x-axis is defined as the definite integral $\int_a^b 2\pi y(t) \sqrt{(x'(t))^2 + (y'(t))^2} \ dt$, and the surface area of the surface of revolution $\mathscr S_y$ obtained by rotating $\mathscr C$ about the y-axis is defined as the definite integral $\int_a^b 2\pi x(t) \sqrt{(x'(t))^2 + (y'(t))^2} \ dt$.

p) Polar coordinates

- The polar coordinate system is a coordinate system in which each point P in the plane is determined by a tuple $(r, \theta) \in \mathbb{R}^2$, where |r| denotes the distance from P to the origin and θ measures the angle between the polar axis (the positive x-axis) and the line segment connecting the origin to P.
- If $(r, \theta) \in \mathbb{R}^2$ is the polar representation of a point P in the plane, then the Cartesian representation of P is given by $(x, y) = (r \cos \theta, r \sin \theta) \in \mathbb{R}^2$.
- If $(x, y) \in \mathbb{R}^2$ is the Cartesian representation of a point P in the plane, then a possible polar representation (r, θ) of P is can be found by solving the system of equations $r^2 = x^2 + y^2$ and $\theta = \arctan(y/x)$ if $x \neq 0$.
- If $f: I \to \mathbb{R}$ is a continuous function and a "nice" curve \mathscr{C} is represented in polar coordinates by the set $\mathscr{C} = \{(r, \theta) \in \mathbb{R}^2 \mid r = f(\theta), \theta \in I\}$, then the curve \mathscr{C} is represented in Cartesian coordinates as a parametric curve $\mathscr{C} = \{(x, y) \in \mathbb{R}^2 \mid x = f(\theta) \cos \theta, y = f(\theta) \sin \theta, \theta \in I\}$.
- If $f: [\alpha, \beta] \to [0, \infty)$ is continuous with $0 < \beta \alpha < 2\pi$, then the area of the region bounded by the curve $\mathscr{C} = \{(r, \theta) \in \mathbb{R}^2 \mid r = f(\theta), \theta \in [\alpha, \beta]\}$ and the radial lines $\theta = \alpha$ and $\theta = \beta$ is defined as the definite integral $\frac{1}{2} \int_{\alpha}^{\beta} (f(\theta))^2 \ d\theta$.
- In polar coordinates, if a "nice" curve $\mathscr C$ is represented by the set $\mathscr C=\{(r,\theta)\in\mathbb R^2\mid r=f(\theta),\theta\in[\alpha,\beta]\}$, $\mathscr C$ is traversed exactly once as θ increases from α to β , and $f:(\alpha,\beta)\to\mathbb R$ is differentiable, then the arc length of $\mathscr C$ is defined as the definite integral $\int_{\alpha}^{\beta}\sqrt{(f(\theta))^2+(f'(\theta))^2}\ d\theta$.