REES W. CHANG

rees-c.github.io | linkedin.com/in/reeschang | github.com/rees-c | reeswc2@illinois.edu Last updated: September 7, 2022

EDUCATION

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

2020 - present

PhD Candidate, Materials Science & Engineering

GPA: 4.0/4.0

Activities: Materials Research Society, UIUC Engineers Volunteering in STEM Education

<u>Graduate coursework:</u> Condensed Matter Physics, Quantum Mechanics, Mathematical Physics, Statistical Mechanics, Atomic Structure and Bonding

CORNELL UNIVERSITY 2016 – 2020

B.S. Materials Science & Engineering with Honors

Cum Laude | GPA: 3.601/4.3

<u>Activities:</u> Theta Tau Professional Engineering Fraternity, Cornell Materials Society, Cornell Prison Education Program, Intramural Soccer

<u>Featured Coursework</u>: Computational Chemistry; Computational Materials Science; Bayesian Estimation; Supervised Machine Learning; Unsupervised Machine Learning; Large-Scale Machine Learning; Numerical Linear Algebra; Networks; Mechanical Properties of Materials; Electronic, Dielectric, and Magnetic Properties of Materials; Kinetics; Thermodynamics; Materials Chemistry

AWARDS

NSF Graduate Research Fellowship (2022 – present)

DIGI-MAT NSF Traineeship (2021 - present)

Hamer Fellowship (2020)

Cornell Engineering Learning Initiatives Research Award (2017)

PUBLICATIONS

Rees Chang, Yu-Xiong Wang, and Elif Ertekin. "Towards overcoming data scarcity in materials science: unifying models and datasets with a mixture of experts framework" (2022). arXiv:2207.13880. *Under review*.

PRESENTATIONS

Rees Chang, Yu-Xiong Wang, and Elif Ertekin, "Overcoming Data Scarcity in Materials Science with Mixture of Experts," in Materials Research Society (MRS) Spring Meeting Symposium, 2022.

SKILLS

<u>Proficient:</u> Python (numpy, pandas, pytorch, scikit-learn), Git, Bash, MATLAB, LaTeX Experienced: VASP, HOOMD-Blue, TensorFlow, BoTorch, Mongo, HTML/CSS, R, Mathematica, Java

RESEARCH EXPERIENCE

UIUC, Materials Science & Engineering

Aug 2020 – present

PhD student

Advisors: Professors Elif Ertekin, Yu-Xiong Wang

Project: Developing machine learning methods to accelerate materials discovery

- Developing machine learning frameworks to predict data-scarce properties of inorganic crystals
- Developing a generative deep learning model to rapidly generate stable atomic structures of crystals

Cornell University, Materials Science & Engineering

Aug 2019 - May 2020

Undergraduate Researcher

PI: Prof. Julia Dshemuchadse

Project: "Active Machine Learning of Binary Compound Pair Potentials to Discover Exotic Self-Assembling Materials"

- Led independent project using molecular dynamics to study how molecular building blocks self-assemble
- Implemented a Random Embedding Bayesian optimization framework (arXiv:1301.1942) in GPyTorch to accelerate
 discovery of new self-assembling structures by exploring the high-dimensional parameter space of a flexible
 interaction potential function

Lawrence Berkeley National Lab

Summer 2019

SULI Research Intern

PI: Dr. Anubhav Jain

Project: "Compressed Sensing Lattice Dynamics for High-Throughput Thermal Conductivity Calculations"

- Developed and implemented a supercell generation algorithm into *pymatgen*
- Conducted Density Functional Theory (DFT) calculations with VASP to calculate electronic band diagrams, electronic density of states, and atomic forces

- Used Compressive Sensing Lattice Dynamics (CSLD) to calculate 2nd through 4th order interatomic force constants, phonon dispersion curves, and anharmonic lattice thermal conductivities
- Developed an automated workflow in atomate incorporating DFT and CSLD to rapidly produce high-fidelity vibrational property calculations of materials

Cornell University, Chemical Engineering

Jan 2017 - Jun 2019

Undergraduate Researcher

PI: Prof. Tobias Hanrath

Project: "Computational Optimization of Light Absorption in Thin Film Solar Cells"

- Awarded \$1850 from Air Products
- Developed genetic algorithms in Python and MATLAB, interfacing them with electromagnetic simulations via Bash scripts
- Achieved 822% increased absorption from introducing nanostructures to an amorphous silicon thin film
- Generated data visualization workflows in MATLAB for on-the-fly interpretability

NASA Goddard Space Flight Center, Detector Systems

Jun – Aug 2018

Research and Development Intern

PI: Dr. Larry Hess

Project: "Quasi-Resonant Absorption for Quantum Efficiency Improvement in UV Detectors"

- Designed, fabricated, patterned, and characterized multilayer thin film UV detectors for the LUVOIR mission with photolithographic and optical methods
- Modeled devices for 3D printing using SolidWorks

Columbia University, Environmental Engineering

May 2015 - Aug 2016

Research Intern

PI: Prof. Robert Farrauto

Project: "Carbon Capture and Conversion to Methane with a Dual-Functioning Material"

- Conducted high-throughput experiments of new carbon dioxide adsorbents and methanation catalysts
- Conceptualized/tested catalyst processing procedures
- Examined surface area and adsorption properties using BET analysis and a thermal gravimetric analyzer
- Drove scale-up studies using gas flow reactors

TEACHING EXPERIENCE

UIUC Engineers Volunteering in STEM Education

Spring 2021

Virtually volunteered at Franklin Middle School to teach concepts about materials science and chemistry

Cornell CS 4780, Prof. Thorsten Joachims

Fall 2019

Undergraduate Teaching Assistant

Course: Machine Learning for Intelligent Systems

• Held weekly office hours and graded assignments and exams for a course of over 600 students

Cornell Prison Education Program, Prof. Marjo Schat

Fall 2019

Volunteer Teaching Assistant

Course: Environmental Science Tutorial

Led discussions and activities for 17 incarcerated students at Cayuga Correctional Facility

Cornell MSE 2610, Prof. Shefford Baker

Fall 2017

Undergraduate Teaching Assistant

Course: Mechanical Properties of Materials

• Graded problem sets for a course of ~80 sophomores and first-year graduate students