Jude Kappel NLP Assignment 1 Breakdown Prof. Luo Fordham University

NaiveBayesClassifier.py:

- 1. Instance Variables:
 - a. Corpus: set, stores unique words (vocabulary).
 - b. Word Frequencies: defaultdict(int), counts occurrences of each word per class.
 - c. Class Prior Probability: dict, holds the probability of each class.
 - d. Class Word Counts: dict, tracks total words per class.
 - e. Stopwords: set, contains words to ignore during tokenization.

2. Cleaning and Tokenization

- a. Lowercase tweet, remove special characters, append to a list of tokens if word is not in stopword set
- 3. Fitting Model
 - a. calculates class prior probability
 - b. Calculates word counts
 - c. Tokenize tweet
 - i. Add token to corpus
 - ii. Calculate frequency of word given class
 - d. Update class prior probability

4. Predict

- a. For tweet in X test
 - i. Calculate the logged probability of the tweet belonging to each class
 - ii. Calculate likelihood of tweet (with smoothing)
 - iii. Append prediction to list
 - iv. Return prediction list

NaiveBayes.ipynb:

- 1. Download all the NLTK data (twitter samples, stopword repo)
- 2. Concatenate positive and negative tweets together and map them to the corresponding class labels
- 3. Undersample the data (800 training examples, 200 validation examples) without replacement and ensuring the indices of the training data do not appear in the validation data

- 4. Fit the model to the training data and predict on test instances
- 5. Evaluate the model with performance metrics
 - a. Accuracy, precision, recall, f1 score