WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07D 413/06, 417/06, A61K 31/535

A1

(11) International Publication Number:

WO 96/29328

(43) International Publication Date: 26 September 1996 (26.09.96)

(21) International Application Number:

PCT/GB96/00587

(22) International Filing Date:

13 March 1996 (13.03.96)

(30) Priority Data:

9505491.2

18 March 1995 (18.03.95)

(71) Applicant (for all designated States except US): MERCK SHARP & DOHME LIMITED [GB/GB]; Hertford Road, Hoddesdon, Hertfordshire EN11 9BU (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): HAWORTH, Karen, Elizabeth [GB/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB). OWEN, Simon, Neil [GB/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB). SEWARD, Eileen, Mary [IE/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB).
- (74) Agent: HISCOCK, Ian, James; Merck & Co., Inc., European Patent Dept., Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA, GN, MIL, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: MORPHOLINE DERIVATIVES, COMPOSITIONS CONTAINING THEM AND THEIR USE AS THERAPEUTIC AGENTS

(57) Abstract

The present invention relates to compounds of formula (1), wherein R¹ and R⁴ represent hydrogen, halogen, C₁₋₆alkyl, C₂. salkenyl, C2-salkynyl, C3-7cycloalkyl, C3-7cycloalkylC1-salkyl, C₁₋₆alkoxy, C₁₋₄alkyl substituted by a hydroxy or C₁₋₄alkoxy group, OCF3, hydroxy, trifluoromethyl, trimethylsilyl, nitro, CN, SR^a, SOR^a, SO₂R^a, COR^a, CO₂R^a or CONR^aR^b, where R^a and Rb are each independently hydrogen or C1-4alkyl; R2, R3 and R5 represent hydrogen, halogen, C1-salkyl, C1-salkoxy substituted by a C1-alkoxy group, or trifluoromethyl; R6 represents C1-alkyl, optionally substituted by oxo, substituted by a 5-membered heteroaromatic ring selected from oxazole, thiazole, isoxazole, isothiazole, oxadiazole and thiadiazole, wherein each heteroaromatic ring is substituted at the available carbon atom by a group of the formula: ZNR⁷R⁸. The compounds are of particular use in the treatment of pain, inflammation, migraine and emesis.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guines	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	Œ	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
Ŋ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgysian	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
a.	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
cs	Czechoslovakia	LT	Lithuania	TD	Chad
čz	Czech Republic	LU	Luxembourg	TG	Togo
DE	Gennusy	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
7	Finland	ML	Mali	US	United States of America
FR	Prince	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MIR	Mauritania	VN	Viet Nam

10

15

20

25

30

MORPHOLINE DERIVATIVES, COMPOSITIONS CONTAINING THEM AND THEIR USE AS THERAPEUTIC AGENTS

This invention relates to a class of morpholine compounds which are useful as tachykinin antagonists. More particularly, the compounds of the invention are N-substituted morpholine derivatives bearing a heteroaromatic moiety.

The tachykinins are a group of naturally occurring peptides found widely distributed throughout mammalian tissues, both within the central nervous system and in peripheral nervous and circulatory systems.

The tachykinins are distinguished by a conserved carboxyl-terminal sequence:

Phe-X-Gly-Leu-Met-NH,

At present, there are three known mammalian tachykinins referred to as substance P, neurokinin A (NKA, substance K, neuromedin L) and neurokinin B (NKB, neuromedin K) (for review see J.E. Maggio, *Peptides* (1985) $\underline{6}$ (suppl. 3), 237-242). The current nomenclature designates the three tachykinin receptors mediating the biological actions of substance P, NKA and NKB as the NK₁, NK₂ and NK₃ receptors, respectively.

Evidence for the usefulness of tachykinin receptor antagonists in pain, headache, especially migraine, Alzheimer's disease, multiple sclerosis, attenuation of morphine withdrawal, cardiovascular changes, oedema, such as oedema caused by thermal injury, chronic inflammatory diseases such as rheumatoid arthritis, asthma/bronchial hyperreactivity and other respiratory diseases including allergic rhinitis, inflammatory diseases of the gut including ulcerative colitis and Crohn's disease, ocular injury and ocular inflammatory diseases, proliferative vitreoretinopathy, irritable bowel syndrome and disorders of bladder function including cystitis and bladder detruser hyper-reflexia is reviewed in "Tachykinin Receptors and Tachykinin Receptor Antagonists", C.A. Maggi, R.

10

15

20

25

30

Patacchini, P. Rovero and A. Giachetti, J. Auton. Pharmacol. (1993) 13, 23-93.

For instance, substance P is believed inter alia to be involved in the neurotransmission of pain sensations [Otsuka et al, "Role of Substance P as a Sensory Transmitter in Spinal Cord and Sympathetic Ganglia" in 1982 Substance P in the Nervous System, Ciba Foundation Symposium 91, 13-34 (published by Pitman) and Otsuka and Yanagisawa, "Does Substance P Act as a Pain Transmitter?" TIPS (1987) 8, 506-510], specifically in the transmission of pain in migraine (B.E.B. Sandberg et al, J. Med Chem, (1982) 25, 1009) and in arthritis [Levine et al Science (1984) 226, 547-549]. Tachykinins have also been implicated in gastrointestinal (GI) disorders and diseases of the GI tract such as inflammatory bowel disease [Mantyh et al Neuroscience (1988) 25(3), 817-37 and D. Regoli in "Trends in Cluster Headache" Ed. Sicuteri et al Elsevier Scientific Publishers, Amsterdam (1987) page 85)] and emesis [F. D. Tattersall et al, Eur. J. Pharmacol., (1993) 250, R5-R6]. It is also hypothesised that there is a neurogenic mechanism for arthritis in which substance P may play a role [Kidd et al "A Neurogenic Mechanism for Symmetrical Arthritis" in The Lancet, 11 November 1989 and Grönblad et al, "Neuropeptides in Synovium of Patients with Rheumatoid Arthritis and Osteoarthritis" in J. Rheumatol. (1988) 15(12), 1807-10]. Therefore, substance P is believed to be involved in the inflammatory response in diseases such as rheumatoid arthritis and osteoarthritis, and fibrositis [O'Byrne et al, Arthritis and Rheumatism (1990) 33, 1023-8]. Other disease areas where tachykinin antagonists are believed to be useful are allergic conditions [Hamelet et al, Can. J. Pharmacol. Physiol. (1988) 66, 1361-7], immunoregulation [Lotz et al, Science (1988) 241, 1218-21 and Kimball et al, J. Immunol. (1988) 141(10), 3564-9] vasodilation, bronchospasm, reflex or neuronal control of the viscera [Mantyh et al, PNAS (1988) 85, 3235-9] and, possibly by arresting or slowing B-amyloid-mediated neurodegenerative changes

10

15

20

25

[Yankner et al, Science (1990) 250, 279-82] in senile dementia of the Alzheimer type, Alzheimer's disease and Down's Syndrome.

Tachykinin antagonists may also be useful in the treatment of small cell carcinomas, in particular small cell lung cancer (SCLC) [Langdon et al, Cancer Research (1992) 52, 4554-7].

Substance P may also play a role in demyelinating diseases such as multiple sclerosis and amyotrophic lateral sclerosis [J. Luber-Narod et al, poster C.I.N.P. XVIIIth Congress, 28th June-2nd July 1992], and in disorders of bladder function such as bladder detrusor hyper-reflexia (Lancet, 16th May 1992, 1239).

It has furthermore been suggested that tachykinins have utility in the following disorders: depression, dysthymic disorders, chronic obstructive airways disease, hypersensitivity disorders such as poison ivy, vasospastic diseases such as angina and Reynauld's disease, fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis, reflex sympathetic dystrophy such as shoulder/hand syndrome, addiction disorders such as alcoholism, stress related somatic disorders, neuropathy, neuralgia, disorders related to immune enhancement or suppression such as systemic lupus erythmatosus (European patent specification no. 0 436 334), ophthalmic disease such as conjuctivitis, vernal conjunctivitis, and the like, and cutaneous diseases such as contact dermatitis, atopic dermatitis, urticaria, and other eczematoid dermatitis (European patent specification no. 0 394 989).

European patent specification no. 0 577 394 (published 5th January 1994) discloses morpholine and thiomorpholine tachykinin receptor antagonists of the general formula

wherein R1a is a large variety of substituents;

R^{2*} and R^{3*} are inter alia hydrogen;

R4 is inter alia

R50 is inter alia optionally substituted phenyl;

 $R^{6\bullet}$, $R^{7\bullet}$ and $R^{8\bullet}$ are a variety of substituents;

X• is 0, S, SO or SO₂;

Y is interalia 0; and

Z• is hydrogen or C, alkyl.

We have now found a further class of non-peptides which are potent antagonists of tachykinins, especially of substance P.

The present invention provides compounds of the formula (I):

15 wherein

20

R¹ represents hydrogen, halogen, C¹-6alkyl, C²-6alkenyl, C²-6alkynyl, C³-7cycloalkyl, C³-7cycloalkylC¹-4alkyl, C¹-6alkoxy, C¹-4alkyl substituted by a hydroxy or C¹-4alkoxy group, OCF³, hydroxy, trifluoromethyl, trimethylsilyl, nitro, CN, SR¹, SOR¹, SO²R¹, COR¹, CO²R¹ or CONR¹R¹ where R¹ and R¹ are each independently hydrogen or C¹-4alkyl;

10

15

20

25

30

R² and R³ each independently represent hydrogen, halogen,

C1-salkyl, C1-salkoxy substituted by a C1-salkoxy group, or trifluoromethyl;

R⁴ represents hydrogen, halogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, C₁₋₆alkoxy, C₁₋₄alkyl substituted by a hydroxy or C₁₋₄alkoxy group, OCF₃, hydroxy, trifluoromethyl, trimethylsilyl, nitro, CN, SR^a, SOR^a, SO₂R^a, COR^a, CO₂R^a, CONR^aR^b where R^a and R^b are as previously defined;

R⁵ represents hydrogen, halogen, C₁₋₆alkyl, C₁₋₆alkoxy substituted by a C₁₋₄alkoxy group, or trifluoromethyl;

R⁶ represents C₁₋₆alkyl, optionally substituted by oxo, substituted by a 5-membered heteroaromatic ring selected from oxazole, thiazole, isoxazole, isothiazole, oxadiazole and thiadiazole, wherein each heteroaromatic ring is substituted at the available carbon atom by a group of the formula ZNR⁷R⁸ where

Z is C1-salkylene or C3-scycloalkyl;

R7 is hydrogen or C1-4alkyl, C3-7cycloalkyl,

C3-7cycloalkylC1-4alkyl, or C2-4alkyl substituted by C1-4alkoxy or hydroxyl;

R8 is hydrogen or C1-4alkyl, C3-7cycloalkyl,

C₃₋₇cycloalkylC₁₋₄alkyl, or C₂₋₄alkyl substituted by C₁₋₄alkoxy, hydroxyl or a 4, 5 or 6 membered heteroaliphatic ring containing one or two heteroatoms selected from N, O and S;

or R⁷, R⁸ and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms, optionally substituted by one or two groups selected from hydroxy or C₁₋₄alkoxy optionally substituted by a C₁₋₄alkoxy or hydroxyl group, and optionally containing a double bond, which ring may optionally contain an oxygen or sulphur ring atom, a group S(O) or S(O)₂ or a second nitrogen atom which will be part of a NH or NR^c moiety where R^c is C₁₋₄alkyl optionally substituted by hydroxy or C₁₋₄alkoxy;

or R⁷, R⁸ and the nitrogen atom to which they are attached form a non-aromatic azabicyclic ring system of 6 to 12 ring atoms;

15

25

30

or Z, R⁷ and the nitrogen atom to which they are attached form a heteroaliphatic ring to 4 to 7 ring atoms which may optionally contain an oxygen ring atom;

R⁹ and R¹⁰ each independently represent hydrogen or C₁₋₄alkyl, or R⁹ and R¹⁰ are joined so, together with the carbon atoms to which they are attached, there is formed a C₅₋₇ ring;

Y represents hydrogen or a C₁₋₄alkyl group optionally substituted by a hydroxy group;

and pharmaceutically acceptable salts thereof.

Certain particularly apt compounds of the present invention include those wherein R¹ is hydrogen, C₁₋₄alkyl, C₁₋₄alkoxy, halogen or CF₃.

Most aptly R2 is hydrogen, C1-alkyl, C1-alkoxy, halogen or CF3.

Most aptly R³ is hydrogen, fluorine, chlorine or CF₃.

Favourably R¹ is fluorine, chlorine or CF₃.

Favourably R² is hydrogen, fluorine, chlorine or CF₃.

Favourably R³ is hydrogen, fluorine, chlorine or CF₃.

Preferably R1 and R2 are in the 3 and 5 positions of the phenyl ring.

More preferably, R1 is 3-fluoro or 3-CF3.

More preferably, R² is 5-fluoro or 5-CF₃.

20 More preferably, R³ is hydrogen.

Most preferably, R^1 is 3-F or 3-CF₃, R^2 is 5-F or 5-CF₃ and R^3 is hydrogen.

Most aptly R4 is hydrogen.

Most aptly R5 is hydrogen, fluorine, chlorine or CF3.

Preferably R4 is hydrogen and R5 is hydrogen or 4-fluoro.

Most aptly R9 and R10 are each independently hydrogen or methyl.

Preferably R^9 is hydrogen. Preferably R^{10} is hydrogen. Most preferably R^9 and R^{10} are both hydrogen.

Favourably R⁶ is C₁₋₆alkyl, in particular CH₂, CH(CH₃) and CH₂CH₂ and especially CH₂, substituted by a 5-membered ring selected from:

WO 96/29328 PCT/GB96/00587

Particularly preferred heterocyclic rings are selected from:

5

10

With respect to compounds of the formula (I), Z may be a linear, branched or cyclic group. Favourably Z contains 1 to 4 carbon atoms and most favourably 1 or 2 carbon atoms. A particularly favourable group Z is CH_2 .

With respect to compounds of the formula (I), R⁷ may aptly be a C₁-4alkyl group or a C₂₋₄alkyl group substituted by a hydroxyl or C₁₋₂alkoxy group, R⁸ may aptly be a C₁₋₄alkyl group or a C₁₋₄alkyl group substituted by a hydroxyl or C₁₋₂alkoxy group, or R⁷ and R⁸ may be linked so that,

10

15

20

25

30

together with the nitrogen atom to which they are attached, they form an azetidinyl, pyrrolidinyl, piperidyl, morpholino, thiomorpholino, piperazino or piperazino group substituted on the nitrogen atom by a C₁₋₄alkyl group or a C₂₋₄alkyl group substituted by a hydroxy or C₁₋₂alkoxy group.

Where the group NR⁷R⁸ represents a heteroaliphatic ring of 4 to 7 ring atoms and said ring contains a double bond, a particularly preferred group is 3-pyrroline.

Where the group NR⁷R⁸ represents a non-aromatic azabicyclic ring system, such a system may contain between 6 and 12, and preferably between 7 and 10, ring atoms. Suitable rings include 5-azabicyclo[2.1.1]hexyl, 5-azabicyclo[2.2.1]heptyl, 6-azabicyclo[3.2.1]octyl, 2-azabicyclo[2.2.2]octyl, 6-azabicyclo[3.2.2]nonyl, 6-azabicyclo[3.3.1]nonyl, 6-azabicyclo[3.2.2]decyl, 7-azabicyclo[4.3.1]decyl, 7-azabicyclo[4.4.1]undecyl and 8-azabicyclo[5.4.1]dodecyl, especially 5-azabicyclo[2.2.1]heptyl and 6-azabicyclo[3.2.1]octyl.

Where R⁸ represents a C₂₋₄alkyl group substituted by a 5 or 6 membered heteroaliphatic ring containing one or two heteroatoms selected from N, O and S, suitable rings include pyrrolidino, piperidino, piperazino, morpholino, or thiomorpholino. Particularly preferred are nitrogen containing heteroaliphatic rings, especially pyrrolidino and morpholino rings.

Particularly suitable moieties ZNR⁷R⁸ include those wherein Z is CH₂ or CH₂CH₂ and NR⁷R⁸ is amino, methylamino, dimethylamino, diethylamino, azetidinyl, pyrrolidino and morpholino.

Further preferred moieties represented by ZNR⁷R⁸ are those wherein Z is CH₂ or CH₂CH₂, R⁷ represents hydrogen, C₁₋₄alkyl or C₃₋₆cycloalkyl and R⁸ is C₂₋₄alkyl substituted by one or two substituents selected from hydroxy, C₁₋₂alkoxy, azetidinyl, pyrrolidino, piperidino, morpholino or thiomorpholino.

In particular, Z is preferably CH_2 and NR^7R^8 is preferably dimethylamino, azetidinyl or pyrrolidino, especially dimethylamino.

10

15

As used herein, the term "alkyl" or "alkoxy" as a group or part of a group means that the group is straight or branched. Examples of suitable alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl and t-butyl. Examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy and t-butoxy.

The cycloalkyl groups referred to herein may represent, for example, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. A suitable cycloalkylalkyl group may be, for example, cyclopropylmethyl.

As used herein, the terms "alkenyl" and "alkynyl" as a group or part of a group means that the group is straight or branched. Examples of suitable alkenyl groups include vinyl and allyl. A suitable alkynyl group is propargyl.

When used herein the term halogen means fluorine, chlorine, bromine and iodine. The most apt halogens are fluorine and chlorine of which fluorine is preferred.

One favoured group of compounds of the present invention are of the formula (Ia):

20

wherein R6 and Y are as defined in relation to formula (I) and

A¹ is fluorine or CF₃;

A² is fluorine or CF₃; and

20

25

30

A³ is hydrogen or fluorine; and pharmaceutically acceptable salts thereof.

With respect to compounds of the formulae (I) and (Ia), Y may be aptly a C₁₋₄alkyl optionally substituted by a hydroxy group. In particular Y may be a methyl or hydroxymethyl group.

Specific compounds within the scope of this invention include: 2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(4-dimethylaminomethyl)-1,2,5-oxadiazol-3-yl)methyl-3-(S)-phenylmorpholine;

2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(4-dimethylaminomethyl)-1,2,5-oxadiazol-3-yl)methyl-3-(S)-(4-fluorophenyl)morpholine;

2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenyl-4-(3-piperidinomethyl)-1,2,4-oxadiazol-5-yl)methylmorpholine;

2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(3-dimethylaminomethyl)-1,2,4-oxadiazol-5-yl)methyl-3-(S)-phenylmorpholine;

and pharmaceutically acceptable salts thereof.

In a further aspect of the present invention, the compounds of formula (I) will preferably be prepared in the form of a pharmaceutically acceptable salt, especially an acid addition salt.

For use in medicine, the salts of the compounds of formula (I) will be non-toxic pharmaceutically acceptable salts. Other salts may, however, be useful in the preparation of the compounds according to the invention or of their non-toxic pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts which may, for example, be formed by mixing a solution of the compound according to the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, fumaric acid, p-toluenesulphonic acid, maleic acid, succinic acid, acetic acid, citric acid, tartaric acid, carbonic acid, phosphoric acid or sulphuric acid. Salts of

10

15

20

25

30

amine groups may also comprise quaternary ammonium salts in which the amino nitrogen atom carries a suitable organic group such as an alkyl, alkenyl, alkynyl or aralkyl moiety. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include metal salts such as alkali metal salts, e.g. sodium or potassium salts; and alkaline earth metal salts, e.g. calcium or magnesium salts.

The salts may be formed by conventional means, such as by reacting the free base form of the product with one or more equivalents of the appropriate acid in a solvent or medium in which the salt is insoluble, or in a solvent such as water which is removed in vacuo or by freeze drying or by exchanging the anions of an existing salt for another anion on a suitable ion exchange resin.

The present invention includes within its scope prodrugs of the compounds of formula (I) above. In general, such prodrugs will be functional derivatives of the compounds of formula (I) which are readily convertible in vivo into the required compound of formula (I). Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in "Design of Prodrugs", ed. H. Bundgaard, Elsevier, 1985.

A prodrug may be a pharmacologically inactive derivative of a biologically active substance (the "parent drug" or "parent molecule") that requires transformation within the body in order to release the active drug, and that has improved delivery properties over the parent drug molecule. The transformation in vivo may be, for example, as the result of some metabolic process, such as chemical or enzymatic hydrolysis of a carboxylic, phosphoric or sulphate ester, or reduction or oxidation of a susceptible functionality.

The present invention includes within its scope solvates of the compounds of formula (I) and salts thereof, for example, hydrates.

The compounds according to the invention have at least three asymmetric centres, and may accordingly exist both as enantiomers and as diastereoisomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention.

The preferred compounds of the formula (I) will have the preferred stereochemistry of the 2- and 3-position that is possessed by the compound of Example 1 (i.e. 2-(R), 3-(S)). Thus for example as shown in formula (Ib)

10

15

20

5

The present invention further provides pharmaceutical compositions comprising one or more compounds of formula (I) in association with a pharmaceutically acceptable carrier or excipient.

Preferably the compositions according to the invention are in unit dosage forms such as tablets, pills, capsules, powders, granules, solutions or suspensions, or suppositories, for oral, parenteral or rectal administration, or administration by inhalation or insufflation.

For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogeneous mixture of a compound of the

15

20

25

30

present invention, or a non-toxic pharmaceutically acceptable salt thereof. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation composition is then subdivided into unit dosage forms of the type described above containing from 0.1 to about 500 mg of the active ingredient of the present invention. The tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.

The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions, suitably flavoured syrups, aqueous or oil suspensions, and flavoured emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil, as well as elixirs and similar pharmaceutical vehicles. Suitable dispersing or suspending agents for aqueous suspensions include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinyl-pyrrolidone or gelatin.

Preferred compositions for administration by injection include those comprising a compound of formula (I), as the active ingredient, in association with a surface-active agent (or wetting agent or surfactant) or in the form of an emulsion (as a water-in-oil or oil-in-water emulsion).

10

15

20

25

30

Suitable surface-active agents include, in particular, non-ionic agents, such as polyoxyethylenesorbitans (e.g. TweenTM 20, 40, 60, 80 or 85) and other sorbitans (e.g. SpanTM 20, 40, 60, 80 or 85). Compositions with a surface-active agent will conveniently comprise between 0.05 and 5% surface-active agent, and preferably between 0.1 and 2.5%. It will be appreciated that other ingredients may be added, for example mannitol or other pharmaceutically acceptable vehicles, if necessary.

Suitable emulsions may be prepared using commercially available fat emulsions, such as IntralipidTM, LiposynTM, InfonutrolTM, LipofundinTM and LipiphysanTM. The active ingredient may be either dissolved in a premixed emulsion composition or alternatively it may be dissolved in an oil (e.g. soybean oil, safflower oil, cottonseed oil, sesame oil, corn oil or almond oil) and an emulsion formed upon mixing with a phospholipid (e.g. egg phospholipids, soybean phospholipids or soybean lecithin) and water. It will be appreciated that other ingredients may be added, for example gylcerol or glucose, to adjust the tonicity of the emulsion. Suitable emulsions will typically contain up to 20% oil, for example, between 5 and 20%. The fat emulsion will preferably comprise fat droplets between 0.1 and 1.0μm, particularly 0.1 and 0.5μm, and have a pH in the range of 5.5 to 8.0.

Particularly preferred emulsion compositions are those prepared by mixing a compound of formula (I) with Intralipid™ or the components thereof (soybean oil, egg phospholipids, glycerol and water).

Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as set out above. Preferably the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in preferably sterile pharmaceutically acceptable solvents may be nebulised by use of inert gases. Nebulised solutions may be breathed directly from the

10

15

20

25

30

nebulising device or the nebulising device may be attached to a face mask, tent or intermittent positive pressure breathing machine. Solution, suspension or powder compositions may be administered, preferably orally or nasally, from devices which deliver the formulation in an appropriate manner.

The present invention futher provides a process for the preparation of a pharmaceutical composition comprising a compound of formula (I), which process comprises bringing a compound of formula (I) into association with a pharmaceutically acceptable carrier or excipient.

The compounds of formula (I) are of value in the treatment of a wide variety of clinical conditions which are characterised by the presence of an excess of tachykinin, in particular substance P, activity.

Thus, for example, an excess of tachykinin, and in particular substance P, activity is implicated in a variety of disorders of the central nervous system. Such disorders include mood disorders, such as depression or more particularly depressive disorders, for example, single episodic or recurrent major depressive disorders and dysthymic disorders, or bipolar disorders, for example, bipolar I disorder, bipolar II disorder and cyclothymic disorder; anxiety disorders, such as panic disorder with or without agoraphobia, agoraphobia without history of panic disorder. specific phobias, for example, specific animal phobias, social phobias. obsessive-compulsive disorder, stress disorders including post-traumatic stress disorder and acute stress disorder, and generalised anxiety disorders; schizophrenia and other psychotic disorders, for example, schizophreniform disorders, schizoaffective disorders, delusional disorders. brief psychotic disorders, shared psychotic disorders and psychotic disorders with delusions or hallucinations; delerium, dementia, and amnestic and other cognitive or neurodegenerative disorders, such as Alzheimer's disease, senile dementia, dementia of the Alzheimer's type. vascular dementia, and other dementias, for example, due to HIV disease, head trauma, Parkinson's disease, Huntington's disease, Pick's disease,

10

15

20

25

30

Creutzfeldt-Jakob disease, or due to multiple aetiologies; Parkinson's disease and other extra-pyramidal movement disorders such as medication-induced movement disorders, for example, neuroleptic-induced parkinsonism, neuroleptic malignant syndrome, neuroleptic-induced acute dystonia, neuroleptic-induced acute akathisia, neuroleptic-induced tardive dyskinesia and medication-induced postural tremour; substance-related disorders arising from the use of alcohol, amphetamines (or amphetaminelike substances) caffeine, cannabis, cocaine, hallucinogens, inhalants and aerosol propellants, nicotine, opioids, phenylglycidine derivatives, sedatives, hypnotics, and anxiolytics, which substance-related disorders include dependence and abuse, intoxication, withdrawal, intoxication delerium, withdrawal delerium, persisting dementia, psychotic disorders, mood disorders, anxiety disorders, sexual dysfunction and sleep disorders; epilepsy; Down's syndrome; demyelinating diseases such as MS and ALS and other neuropathological disorders such as peripheral neuropathy, for example diabetic and chemotherapy-induced neuropathy, and postherpetic neuralgia, trigeminal neuralgia, segmental or intercostal neuralgia and other neuralgias; and cerebral vascular disorders due to acute or chronic cerebrovascular damage such as cerebral infarction, subarachnoid haemorrhage or cerebral oedema.

Tachykinin, and in particular substance P, activity is also involved in nociception and pain. The compounds of the present invention will therefore be of use in the prevention or treatment of diseases and conditions in which pain predominates, including soft tissue and peripheral damage, such as acute trauma, osteoarthritis, rheumatoid arthritis, musculo-skeletal pain, particularly after trauma, spinal pain, myofascial pain syndromes, headache, episiotomy pain, and burns; deep and visceral pain, such as heart pain, muscle pain, eye pain, orofacial pain, for example, odontalgia, abdominal pain, gynaecological pain, for example, dysmenorrhoea, and labour pain; pain associated with nerve and root damage, such as pain associated with peripheral nerve disorders, for

10

15

20

25

30

PCT/GB96/00587

example, nerve entrapment and brachial plexus avulsions, amputation, peripheral neuropathies, tic douloureux, atypical facial pain, nerve root damage, and arachnoiditis; pain associated with carcinoma, often referred to as cancer pain; central nervous system pain, such as pain due to spinal cord or brain stem damage; low back pain; sciatica; ankylosing spondylitis, gout; and scar pain.

Tachykinin, and in particular substance P, antagonists may also be of use in the treatment of respiratory diseases, particularly those associated with excess mucus secretion, such as chronic obstructive airways disease, bronchopneumonia, chronic bronchitis, cystic fibrosis and asthma, adult respiratory distress syndrome, and bronchospasm; inflammatory diseases such as inflammatory bowel disease, psoriasis, fibrositis, osteoarthritis, rheumatoid arthritis, pruritis and sunburn; allergies such as eczema and rhinitis; hypersensitivity disorders such as poison ivy; ophthalmic diseases such as conjunctivitis, vernal conjunctivitis, and the like; ophthalmic conditions associated with cell proliferation such as proliferative vitreoretinopathy; cutaneous diseases such as contact dermatitis, atopic dermatitis, urticaria, and other eczematoid dermatitis.

Tachykinin, and in particular substance P, antagonists may also be of use in the treatment of neoplasms, including breast tumours, neuroganglioblastomas and small cell carcinomas such as small cell lung cancer.

Tachykinin, and in particular substance P, antagonists may also be of use in the treatment of gastrointestinal (GI) disorders, including inflammatory disorders and diseases of the GI tract such as gastritis, gastroduodenal ulcers, gastric carcinomas, gastric lymphomas, disorders associated with the neuronal control of viscera, ulcerative colitis, Crohn's disease, irritable bowel syndrome and emesis, including acute, delayed or anticipatory emesis such as emesis induced by chemotherapy, radiation, toxins, viral or bacterial infections, pregnancy, vestibular disorders, for

WO 96/29328 PCT/GB96/00587

- 18 -

example, motion sickness, vertigo, dizziness and Meniere's disease, surgery, migraine, variations in intercranial pressure, gastro-oesophageal reflux disease, acid indigestion, over indulgence in food or drink, acid stomach, waterbrash or regurgitation, heartburn, for example, episodic, nocturnal or meal-induced heartburn, and dyspepsia.

5

10

15

20

25

30

٠.

Tachykinin, and in particular substance P, antagonists may also be of use in the treatment of a variety of other conditions including stress related somatic disorders; reflex sympathetic dystrophy such as shoulder/hand syndrome; adverse immunological reactions such as rejection of transplanted tissues and disorders related to immune enhancement or suppression such as systemic lupus erythematosus; plasma extravasation resulting from cytokine chemotherapy, disorders of bladder function such as cystitis, bladder detrusor hyper-reflexia and incontinence; fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis; disorders of blood flow caused by vasodilation and vasospastic diseases such as angina, vascular headache, migraine and Reynaud's disease; and pain or nociception attributable to or associated with any of the foregoing conditions, especially the transmission of pain in migraine.

The compounds of formula (I) are also of value in the treatment of a combination of the above conditions, in particular in the treatment of combined post-operative pain and post-operative nausea and vomiting.

The compounds of formula (I) are particularly useful in the treatment of emesis, including acute, delayed or anticipatory emesis, such as emesis induced by chemotherapy, radiation, toxins, pregnancy, vestibular disorders, motion, surgery, migraine, and variations in intercranial pressure. Most especially, the compounds of formula (I) are of use in the treatment of emesis induced by antineoplastic (cytotoxic) agents including those routinely used in cancer chemotherapy.

Examples of such chemotherapeutic agents include alkylating agents, for example, nitrogen mustards, ethyleneimine compounds, alkyl

10

15

20

25

30

sulphonates and other compounds with an alkylating action such as nitrosoureas, cisplatin and dacarbazine; antimetabolites, for example, folic acid, purine or pyrimidine antagonists; mitotic inhibitors, for example, vinca alkaloids and derivatives of podophyllotoxin; and cytotoxic antibiotics.

Particular examples of chemotherapeutic agents are described, for instance, by D. J. Stewart in Nausea and Vomiting: Recent Research and Clinical Advances, Eds. J. Kucharczyk et al, CRC Press Inc., Boca Raton, Florida, USA (1991) pages 177-203, especially page 188. Commonly used chemotherapeutic agents include cisplatin, dacarbazine (DTIC), dactinomycin, mechlorethamine (nitrogen mustard), streptozocin, cyclophosphamide, carmustine (BCNU), lomustine (CCNU), doxorubicin (adriamycin), daunorubicin, procarbazine, mitomycin, cytarabine, etoposide, methotrexate, 5-fluorouracil, vinblastine, vincristine, bleomycin and chlorambucil [R. J. Gralla et al in Cancer Treatment Reports (1984) 68(1), 163-172].

The compounds of formula (I) are also of use in the treatment of emesis induced by radiation including radiation therapy such as in the treatment of cancer, or radiation sickness; and in the treatment of post-operative nausea and vomiting.

It will be appreciated that the compounds of formula (I) may be presented together with another therapeutic agent as a combined preparation for simultaneous, separate or sequential use for the relief of emesis. Such combined preparations may be, for example, in the form of a twin pack.

A further aspect of the present invention comprises the compounds of formula (I) in combination with a 5-HT₃ antagonist, such as ondansetron, granisetron or tropisetron, or other anti-emetic medicaments, for example, a dopamine antagonist such as metoclopramide. Additionally, a compound of formula (I) may be administered in combination with an anti-inflammatory corticosteroid,

WO 96/29328 PCT/GB96/00587

- 20 -

such as dexamethasone. Furthermore, a compound of formula (I) may be administered in combination with a chemotherapeutic agent such as an alkylating agent, antimetabolite, mitotic inhibitor or cytotoxic antibiotic, as described above. In general, the currently available dosage forms of the known therapeutic agents for use in such combinations will be suitable.

When tested in the ferret model of cisplatin-induced emesis described by F. D. Tattersall et al, in Eur. J. pharmacol., (1993) 250, R5-R6, the compounds of the present invention were found to attenuate the retching and vomiting induced by cisplatin.

5

10

15

20

25

30

The compounds of formula (I) are also particularly useful in the treatment of pain or nociception and/or inflammation and disorders associated therewith such as, for example, neuropathy, such as diabetic and chemotherapy-induced neuropathy, postherpetic and other neuralgias, asthma, osteroarthritis, rheumatoid arthritis and headache, including migraine, acute or chronic tension headache, cluster headache, temporomandibular pain, and maxillary sinus pain.

The present invention further provides a compound of formula (I) for use in therapy.

According to a further or alternative aspect, the present invention provides a compound of formula (I) for use in the manufacture of a medicament for the treatment of physiological disorders associated with an excess of tachykinins, especially substance P.

The present invention also provides a method for the treatment or prevention of physiological disorders associated with an excess of tachykinins, especially substance P, which method comprises administration to a patient in need thereof of a tachykinin reducing amount of a compound of formula (I) or a composition comprising a compound of formula (I).

For the treatment of certain conditions it may be desirable to employ a compound according to the present invention in conjunction with another pharmacologically active agent. For example, for the treatment of WO 96/29328

10

15

20

25

30

respiratory diseases such as asthma, a compound of formula (I) may be used in conjunction with a bronchodilator, such as a B₂-adrenergic receptor antagonist or tachykinin antagonist which acts at NK-2 receptors. The compound of formula (I) and the bronchodilator may be administered to a patient simultaneously, sequentially or in combination.

Likewise, a compound of the present invention may be employed with a leukotriene antagonists, such as a leukotriene D₄ antagonist such as a compound selected from those disclosed in European patent specification nos. 0 480 717 and 0 604 114 and in US patent nos. 4,859,692 and 5,270,324. This combination is particularly useful in the treatment of respiratory diseases such as asthma, chronic bronchitis and cough.

The present invention accordingly provides a method for the treatment of a respiratory disease, such as asthma, which method comprises administration to a patient in need thereof of an effective amount of a compound of formula (I) and an effective amount of a bronchodilator.

The present invention also provides a composition comprising a compound of formula (I), a bronchodilator, and a pharmaceutically acceptable carrier.

It will be appreciated that for the treatment or prevention of migraine, a compound of the present invention may be used in conjunction with other anti-migraine agents, such as ergotamines or 5-HT₁ agonists, especially sumatriptan.

Likewise, for the treatment of behavioural hyperalgesia, a compound of the present invention may be used in conjunction with an antagonist of N-methyl D-aspartate (NMDA), such as dizocilpine.

For the treatment or prevention of inflammatory conditions in the lower urinary tract, especially cystitis, a compound of the present invention may be used in conjunction with an anti-inflammatory agent such as a bradykinin receptor antagonist.

WO 96/29328 PCT/GB96/00587

- 22 -

The present invention also provides a composition comprising a compound of formula (I), a bronchodilator, and a pharmaceutically acceptable carrier.

It will be appreciated that for the treatment or prevention of pain or nociception, a compound of the present invention may be used in 5 conjunction with other analysesics, such as acetaminophen (paracetamol). aspirin and other NSAIDs and, in particular, opioid analgesics, especially morphine. Specific anti-inflammatory agents include diclofenac. ibuprofen, indomethacin, ketoprofen, naproxen, piroxicam and sulindac. 10 Suitable opioid analysesics of use in conjunction with a compound of the present invention include morphine, codeine, dihydrocodeine, diacetylmorphine, hydrocodone, hydromorphone, levorphanol, oxymorphone, alfentanil, buprenorphine, butorphanol, fentanyl, sufentanyl, meperidine, methadone, nalbuphine, propoxyphene and pentazocine; or a pharmaceutically acceptable salt thereof. Preferred salts 15 of these opioid analyssics include morphine sulphate, morphine hydrochloride, morphine tartrate, codeine phosphate, codeine sulphate, dihydrocodeine bitartrate, diacetylmorphine hydrochloride, hydrocodone bitartrate, hydromorphone hydrochloride, levorphanol tartrate, oxymorphone hydrochloride, alfentanil hydrochloride, buprenorphine 20 hydrochloride, butorphanol tartrate, fentanyl citrate, meperidine hydrochloride, methadone hydrochloride, nalbuphine hydrochloride. propoxyphene hydrochloride, propoxyphene napsylate (2-naphthalenesulphonic acid (1:1) monohydrate), and pentazocine hydrochloride. 25

Therefore, in a further aspect of the present invention, there is provided a pharmaceutical composition comprising a compound of the present invention and an analgesic, together with at least one pharmaceutically acceptable carrier or excipient.

30

In a further or alternative aspect of the present invention, there is provided a product comprising a compound of the present invention and

10

15

20

25

an analgesic as a combined preparation for simultaneous, separate or sequential use in the treatment or prevention of pain or nociception.

The excellent pharmacological profile of the compounds of the present invention offers the opportunity for their use in therapy at low doses thereby minimising the risk of unwanted side effects.

In the treatment of the conditions associated with an excess of tachykinins, a suitable dosage level is about 0.001 to 50 mg/kg per day, in particular about 0.01 to about 25 mg/kg, such as from about 0.05 to about 10 mg/kg per day.

For example, in the treatment of conditions involving the neurotransmission of pain sensations, a suitable dosage level is about 0.001 to 25 mg/kg per day, preferably about 0.005 to 10 mg/kg per day, and especially about 0.005 to 5 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.

In the treatment of emesis using an injectable formulation, a suitable dosage level is about 0.001 to 10 mg/kg per day, preferably about 0.005 to 5 mg/kg per day, and especially 0.01 to 1 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.

It will be appreciated that the amount of a compound of formula (I) required for use in any treatment will vary not only with the particular compounds or composition selected but also with the route of administration, the nature of the condition being treated, and the age and condition of the patient, and will ultimately be at the discretion of the attendant physician.

According to a general process (A), the compounds according to the invention may be prepared from compounds of formula (II)

WO 96/29328 PCT/GB96/00587

- 24 -

wherein R^1 , R^2 , R^3 , R^4 , R^5 , R^9 , R^{10} and Y are as defined in relation to formula (I) by reaction with a compound of formula (III):

5

10

15

20

LG-R⁶a (III)

where R^{6a} is a group of the formula R^6 as defined in relation to formula (I) or a precursor therefor and LG is a leaving group such as an alkyl- or arylsulphonyloxy group (e.g. mesylate or tosylate) or a halogen atom (e.g. bromine, chlorine or iodine); and, if R^{6a} is a precursor group, converting it to a group R^6 (in which process any reactive group may be protected and thereafter deprotected if desired).

This reaction may be performed in conventional manner, for example in an organic solvent such as dimethylformamide in the presence of an acid acceptor such as potassium carbonate.

Thus, for instance, where R^6 is a C_{1-6} alkyl group substituted by a 1,2,5-oxadiazolyl or 1,2,5-thiadiazolyl group, each of which heteroaromatic rings is substituted by ZNR^7R^8 , may be prepared by the reaction of a compound of formula (II) with a compound of formula (IV)

where m is an integer from 1 to 6, n is an integer from 1 to 6, X is O or S and each LG independently represents a leaving group as previously defined, followed by reaction of the resultant compound with an amine of formula NHR⁷R⁸ to complete the group ZNR⁷R⁸.

According to another process (B), compounds of formula (I) wherein R⁶ represents a C₁₋₆alkyl group substituted by a 1,2,4-oxadiazolyl or 1,2,4-thiadiazolyl group, each of which heteroaromatic rings is substituted by ZNR⁷R⁸, may be prepared by reaction of a compound of formula (V):

wherein m is an integer from 1 to 6, with a compound of formula (VI):

10

PCT/GB96/00587

5

10

15

20

in the presence of a base.

Suitable bases of use in the reaction include alkali metals, such as, for example, sodium, and alkali metal hydrides, such as, for example, sodium hydride.

The reaction is conveniently effected in a suitable organic solvent. Which solvents will be appropriate will depend on the nature of the base used. For example, where the base used is an alkali metal, suitable solvents will include alcohols, for example, ethanol, whereas where the base used is an alkali hydride, suitable solvents will include ethers, for example, tetrahydrofuran.

Preferably the reaction is conducted at elevated temperature, such as the reflux temperature of the chosen solvent.

Compounds of formula (I) wherein R⁶ is C₁₋₆alkyl substituted by thiazolyl may be prepared from compounds of formula (I) wherein R⁶ is C₁₋₆alkyl substituted by CSNH₂ by reaction with a compound of formula Hal-CH₂C(O)-R⁶⁰, where Hal is a halogen atom, such as bromine, chlorine or iodine, and R⁶⁰ represents H or a suitable substituent.

Intermediates of the formula (II) may be prepared as shown in the following Scheme in which Ar^1 represents the R^1 , R^2 , R^3 substituted phenyl group; Ar^2 represents the R^4 , R^5 substituted phenyl group and Ph represents phenyl:

10

L-Selectride is lithium tri-sec-butylborohydride.

The following references describe methods which may be applied by the skilled worker to the chemical synthesis set forth above once the skilled worker has read the disclosure herein:

- (i) D.A. Evans et al., J. Am. Chem. Soc., (1990) 112, 4011.
- (ii) I. Yanagisawa et al., J. Med. Chem., (1984) 27, 849.
- (iii) R. Duschinsky et al., J. Am. Chem. Soc., (1948) 70, 657.
- (iv) F.N. Tebbe et al., J. Am. Chem. Soc., (1978) 100, 3611.
- (v) N.A. Petasis et al., J. Am. Chem. Soc., (1990) 112, 6532.
- (vi) K. Takai et al., J. Org. Chem., (1987) 52, 4412.

Intermediates of formula (V) may be prepared by the reaction of a compound of formula (II) with a halogenated ester such as methyl bromoacetate. The reaction is conveniently effected in the presence of a

WO 96/29328 PCT/GB96/00587

- 28 -

base such as an alkali metal carbonate, for example, potassium carbonate in a suitable anhydrous organic solvent such as, for example, anhydrous dimethylformamide, preferably at a temperature between 50°C and 150°C.

Intermediates of formula (VI) are either commercially available or may be prepared by conventional methodology. For example, by the reaction of a suitable acetonitrile derivative with hydroxyamine hydrochloride in an organic solvent such as ethanol, conveniently at room temperature.

5

10

15

20

25

30

Where they are not commercially available, the intermediates of formula (III) above may be prepared by the procedures described in the accompanying Examples or by alternative procedures which will be readily apparent to one skilled in the art.

During any of the above synthetic sequences it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in *Protective Groups in Organic Chemistry*, ed. J.F.W. McOmie, Plenum Press, 1973; and T.W. Greene and P.G.M. Wuts, *Protective Groups in Organic Synthesis*, John Wiley & Sons, 1991. The protecting groups may be removed at a convenient subsequent stage using methods known from the art.

The exemplified compounds of this invention were tested by the methods set out at pages 36 to 39 of International Patent Specification No. WO 93/01165. The compounds or, in the case of prodrugs, the parent compounds, were found to be active with IC_{50} at the NK_1 receptor of less than 1 μ M on said test method.

The following non-limiting Examples serve to illustrate the preparation of compounds of the present invention:

20

DESCRIPTION 1

(S)-(4-Fluorophenyl)glycine

Via Chiral Synthesis:

Step A: 3-(4-Fluorophenyl)acetyl-4-(S)-benzyl-2-oxazolidinone

An oven-dried, 1 L 3-necked flask, equipped with a septum, nitrogen inlet, thermometer, and a magnetic stirring bar, was flushed with nitrogen and charged with a solution of 5.09g (33.0mmol) of 4-fluorophenylacetic acid in 100ml of anhydrous ether. The solution was cooled to -10°C and treated with 5.60ml (40.0mmol) of triethylamine followed by 4.30ml (35.0mmol) of trimethylacetyl chloride. A white precipitate formed immediately. The resulting mixture was stirred at -10°C for 40 minutes, then cooled to -78°C.

An oven-dried, 250ml round bottom flask, equipped with a septum and a magnetic stirring bar, was flushed with nitrogen and charged with a solution of 5.31g (30.0mmol) of 4-(S)-benzyl-2-oxazolidinone in 40ml of dry THF. The solution was stirred in a dry ice/acetone bath for 10 minutes. then 18.8ml of 1.6M n-butyllithium solution in hexanes was slowly added. After 10 minutes, the lithiated oxazolidinone solution was added, via cannula, to the above mixture in the 3-necked flask. The cooling bath was removed from the resulting mixture and the temperature was allowed to rise to 0°C. The reaction was quenched with 100ml of saturated aqueous ammonium chloride solution, transferred to a 11 flask, and the ether and THF were removed in vacuo. The concentrated mixture was partitioned between 300ml of methylene chloride and 50ml of water and the layers were separated. The organic layer was washed with 100ml of 2N aqueous hydrochloric acid solution, 300ml of saturated aqueous sodium bicarbonate solution, dried over magnesium sulfate and concentrated in vacuo. Flash chromatography on 400g of silica gel using 3:2 v/v hexanes/ether as the eluant afforded 8.95g of an oil that slowly solidified on standing. Recrystallisation from 10:1 hexanes/ether afforded 7.89g (83%) of the title compound as a white solid: mp 64-66°C. MS (FAB): m/z

25

30

314 (M⁺+H, 100%), 177 (M-ArCH₂CO+H, 85%). ¹H NMR (400MHz, CDCl₃) δ 2.76 (1H, dd, J = 13.2, 9.2), 3.26 (dd, J = 13.2, 3.2), 4.16-4.34 (4H, m), 4.65 (1H, m), 7.02-7.33 (9H, m). Anal. Calcd for C₁₈H₁₆FNO₃; C, 69.00; H, 5.15; N, 4.47; F, 6.06; Found: C, 68.86; H, 5.14; N, 4.48; F, 6.08.

Step B: 3-((S)-Azido-(4-fluorophenyl))acetyl-4-(S)-benzyl-2-oxazolidinone An oven-dried, 11 3-necked flask, equipped with a septum, nitrogen inlet, thermometer, and a magnetic stirring bar, was flushed with nitrogen and charged with a solution of 58.0ml of 1M potassium bis(trimethylsilyl)amide solution in toluene and 85ml of THF and was 10 cooled to -78°C. An oven-dried 250ml round-bottomed flask, equipped with a septum and a magnetic stirring bar, was flushed with nitrogen and charged with a solution of 7.20g (23.0mmol) of 3-(4-fluorophenyl)acetyl-4-(S)-benzyl-2-oxazolidinone (from Step A) in 40ml of THF. The acyl oxazolidinone solution was stirred in a dry ice/acetone bath for 10 15 minutes, then transferred, via cannula, to the potassium bis(trimethylsilyl)amide solution at such a rate that the internal temperature of the mixture was maintained below -70°C. The acyl oxazolidinone flask was rinsed with 15ml of THF and the rinse was added. via cannula, to the reaction mixture and the resulting mixture was stirred 20 at -78°C for 30 minutes. An oven-dried, 250ml round-bottomed flask, equipped with a septum and a magnetic stirring bar, was flushed with

stirred in a dry ice/acetone bath for 10 minutes, then transferred, via cannula, to the reaction mixture at such a rate that the internal temperature of the mixture was maintained below -70°C. After 2 minutes, the reaction was quenched with 6.0ml of glacial acetic acid, the cooling bath was removed and the mixture was stirred at room temperature for 18 hours. The quenched reaction mixture was partitioned between 300ml of ethyl acetate and 300ml of 50% saturated aqueous sodium bicarbonate

triisopropylphenylsulfonyl azide in 40ml of THF. The azide solution was

nitrogen and charged with a solution of 10.89g (35.0mmol) of 2,4,6-

20

25

solution. The organic layer was separated, dried over magnesium sulfate, and concentrated in vacuo. Flash chromatography on 500g of silica gel using 2:1 v/v, then 1:1 v/v hexanes/methylene chloride as the eluant afforded 5.45g (67%) of the title compound as an oil. IR Spectrum (neat, cm⁻¹): 2104, 1781, 1702. 1 H NMR (400MHz, CDCl₃) δ 2.86 (1H, dd, J = 13.2, 9.6), 3.40 (1H, dd, J = 13.2, 3.2), 4.09-4.19 (2H, m), 4.62-4.68 (1H, m), 6.14 (1H, s), 7.07-7.47 (9H, m). Anal. Calcd. for C₁₈H₁₅FN₄O₃; C 61.01; H, 4.27; N, 15.81; F, 5.36; Found: C, 60.99; H, 4.19; N, 15.80; F, 5.34.

10 Step C: (S)-Azido-(4-fluorophenyl)acetic acid

A solution of 5.40g (15.2mmol) of 3-((S)-azido-(4-fluorophenyl))acetyl-4-(S)benzyl-2-oxazolidinone (from Step B) in 200ml of 3:1 v/v THF/water was stirred in an ice bath for 10 minutes. 1.28g (30.4mmol) of lithium hydroxide monohydrate was added in one portion and the resulting mixture was stirred cold for 30 minutes. The reaction mixture was partitioned between 100ml of methylene chloride and 100ml of 25% saturated aqueous sodium bicarbonate solution and the layers were separated. The aqueous layer was washed with 2 x 100ml of methylene chloride and acidified to pH 2 with 2N aqueous hydrochloric acid solution. The resulting mixture was extracted with 2 x 100ml of ethyl acetate; the extracts were combined, washed with 50ml of saturated aqueous sodium chloride solution, dried over magnesium sulfate, and concentrated in vacuo to afford 2.30g (77%) of the title compound as an oil that was used in the following step without further purification. IR Spectrum (neat. cm⁻¹): 2111, 1724. ¹H NMR (400MHz, CDCl₃) δ 5.06 (1H, s), 7.08-7.45 (4H, m), 8.75 (1H, br s).

Step D: (S)-(4-Fluorophenyl)glycine

A mixture of 2.30g (11.8mmol) of (S)-azido-(4-fluorophenyl)acetic acid

(from Step C), 2.50mg 10% palladium on carbon catalyst and 160ml 3:1 v/v

water/acetic acid was stirred under an atmosphere of hydrogen for 18

hours. The reaction mixture was filtered through Celite and the flask and filter cake were rinsed well with ~1l of 3:1 v/v water/acetic acid. The filtrate was concentrated in vacuo to about 50ml of volume. 300ml of toluene was added and the mixture concentrated to afford a solid. The solid was suspended in 1:1 v/v methanol/ether, filtered and dried to afford 1.99g (100%) of the title compound. 1 H NMR (400MHz, D2O+ NaOD) δ 3.97 (1H, s), 6.77 (2H, app t, J = 8.8), 7.01 (2H, app t, J = 5.6).

- 32 -

Via Resolution:

15

10 Step A' (4-Fluorophenyl)acetyl chloride

A solution of 150g (0.974mol) of 4-(fluorophenyl)acetic acid and 1ml of N,N-dimethylformamide in 500ml of toluene at 40°C was treated with 20ml of thionyl chloride and heated to 40°C. An additional 61.2ml of thionyl chloride was added dropwise over 1.5 hours. After the addition, the solution was heated at 50°C for 1 hour, the solvent was removed in vacuo and the residual oil was distilled at reduced pressure (1.5mmHg) to afford 150.4g (89.5%) of the title compound, bp = 68-70°C.

Step B': Methyl 2-bromo-3-(4-fluorophenyl)acetate

A mixture of 150.4g (0.872mol) of 4-(fluorophenyl)acetyl chloride (from Step A') and 174.5g (1.09mol) of bromine was irradiated at 40-50°C with a quartz lamp for 5 hours. The reaction mixture was added dropwise to 400ml of methanol and the solution was stirred for 16 hours. The solvent was removed in vacuo and the residual oil was distilled at reduced pressure (1.5mmHg) to afford 198.5g (92%) of the title compound, bp = 106-110°C.

Step C': Methyl (±)-(4-fluorophenyl)glycine

A solution of 24.7g (0.1mol) of methyl 2-bromo-2-(4-fluorophenyl)acetate

(from Step B') and 2.28g (0.01mol) of benzyl triethylammonium chloride in

25ml of methanol was treated with 6.8g (0.105mol) of sodium azide and

20

25

30

the resulting mixture was stirred for 20 hours at room temperature. The reaction mixture was filtered; the filtrate was diluted with 50ml of methanol and hydrogenated in the presence of 0.5g of 10% Pd/C at 50 psi for 1 hour. The solution was filtered and the solvent removed in vacuo.

The residue was partitioned between 10% aqueous sodium carbonate solution and ethyl acetate. The organic phase was washed with water, saturated aqueous sodium chloride solution dried over magnesium sulfate and concentrated *in vacuo* to afford 9.8g of the title compound as an oil.

10 Step D': Methyl (S)-(4-fluorophenyl)glycinate

A solution of 58.4g of methyl (±) 4-(fluorophenyl)glycinate (from Step C') in 110ml of 7:1 v/v ethanol/water was mixed with a solution of 28.6g (0.0799mol) of O,O'-(+)-dibenzoyltartaric acid ((+)-DBT) (28.6g, 0.0799mol) in 110ml of 7:1 v/v ethanol:water and the resulting solution was allowed to age at room temperature. Ethyl acetate (220ml) was added after crystallisation was complete and the resulting mixture was cooled to -20°C and filtered to afford 32.4g of methyl (S)-(4-fluorophenyl)glycinate, (+)-DBT salt (ee = 93.2%). The mother liquors were concentrated in vacuo and the free base was liberated by partitioning between ethyl acetate and aqueous sodium carbonate solution. A solution of free base, so obtained, in 110ml of 7:1 v/v ethanol/water was mixed with a solution of 28.6g (0.0799mol) of O,O'-(-)-dibenzoyltartaric acid ((-)-DBT) (28.6g, 0.0799mol) in 110ml of 7:1 v/v ethanol:water and the resulting solution was allowed to age at room temperature. Ethyl acetate (220ml) was added after crysallisation was complete and the resulting mixture was cooled to -20°C and filtered to afford 47.0g of methyl (R)-(4-fluorophenyl)glycinate, (-)-DBT salt (ee = 75.8%). Recycling of the mother liquors and addition of (+)-DBT gave a second crop of 7.4g of (S)-(4-fluorophenyl)glycinate, (+)-DBT salt (ee = 96.4%). The two crops of the (S)-amino ester (39.8g) were combined in 200ml of 7:1 v/v ethanol/water, heated for 30 minutes and cooled to room temperature. Addition of ethyl acetate, cooling, and

filtration afforded 31.7g of (S)-(4-fluorophenyl)glycinate, (+)-DBT salt (ee > 98%). Enantiomeric excess was determined by chiral HPLC (Crownpak CR(+) 5% MeOH in aq HClO₄ pH2 1.5ml/min 40°C 200nm).

A mixture of 17.5g of (S)-(4-fluorophenyl)glycinate, (+)-DBT salt and 32ml of 5.5N HCl (32ml) was heated at reflux for 1.5 hours. The reaction mixture was concentrated *in vacuo* and the residue was dissolved in 40ml of water. The aqueous solution was washed (3 x 30ml of ethyl acetate) and the layers were separated. The pH of the aqueous layer was adjusted to 7 using ammonium hydroxide and the precipitated solid was filtered to afford 7.4g of the title compound (ee = 98.8%).

DESCRIPTION 2

4-Benzyl-3-(S)-(4-fluorophenyl)-2-morpholinone

15

20

25

30

10

5

Step A: N-Benzyl-(S)-(4-fluorophenyl)glycine

A solution of 1.87g (11.05mmol) of (S)-(4-fluorophenyl)-glycine (from Description 1) and 1.12ml (11.1mmol) of benzaldehyde in 11.1ml of 1N aqueous sodium hydroxide solution and 11ml of methanol at 0°C was treated with 165mg (4.4mmol) of sodium borohydride. The cooling bath was removed and the resulting mixture was stirred at room temperature for 30 minutes. Second portions of benzaldehyde (1.12ml (11.1mmol)) and sodium borohydride (165mg (4.4mmol) were added to the reaction mixture and stirring was continued for 1.5hours. The reaction mixture was partitioned between 100ml of ether and 50ml of water and the layers were separated. The aqueous layer was separated and filtered to remove a small amount of insoluble material. The filtrate was acidified to pH 5 with 2N aqueous hydrochloric acid solution and the solid that had precipitated was filtered, rinsed well with water, then ether, and dried to afford 1.95g of the title compound. ¹H NMR (400MHz, D₂O + NaOD) δ 3.33 (2H, AB q, J = 8.4), 3.85 (1H, s), 6.79-7.16 (4H, m).

10

15

Step B: 4-Benzyl-3-(S)-(4-fluorophenyl)-2-morpholinone

A mixture of 1.95g (7.5mmol) of N-benzyl (S)-(4-fluorophenyl)glycine, 3.90ml (22.5mmol) of N,N-diisopropyl-ethylamine, 6.50ml (75.0mmol) of 1,2-dibromoethane and 40ml of N,N-dimethylformamide was stirred at 100°C for 20 hours (dissolution of all solids occurred on warming). The reaction mixture was cooled and concentrated in vacuo. The residue was partitioned between 250ml of ether and 100ml of 0.5N potassium hydrogen sulfate solution and the layers were separated. The organic layer was washed with 100ml of saturated aqueous sodium bicarbonate solution, 3 x 150ml of water, dried over magnesium sulfate, and concentrated in vacuo. Flash chromatography on 125g of silica gel using 3:1 v/v hexanes/ether as the eluant afforded 1.58g (74%) of the title compound as an oil. ¹H NMR (400MHz, CDCl₃) & 2.65 (1H, dt, J = 3.2, 12.8), 3.00 (1H, dt, J = 12.8, 2.8), 3.16 (1H, d, J = 13.6), 3.76 (1H, d, J = 13.6), 4.24 (1H, s), 4.37 (1H, dt, J = 13.2, 3.2), 4.54 (1H, dt, J = 2.8, 13.2), 7.07-7.56 (9H, m).

20

25

30

DESCRIPTION 3

4-Benzyl-2-(R)-(3.5-bis(trifluoromethyl)benzoyloxy)-3-(S)-(4-fluorophenyl)morpholine

A solution of 2.67g (10.0mmol) of 4-benzyl-3-(S)-(4-fluorophenyl)-2-morpholinone (Description 2) in 40ml of dry THF was cooled to -78°C. The cold solution was treated with 12.5ml of 1.0M L-Selectride[®] solution in THF, maintaining the internal reaction temperature below -70°C. The resulting solution was stirred cold for 45 minutes and the reaction was charged with 3.60ml(20.0mmol) of 3,5-bis(trifluoromethyl)benzoyl chloride. The resulting yellow mixture was stirred cold for 30 minutes and the reaction was quenched with 50ml of saturated aqueous sodium bicarbonate solution. The quenched mixture was partitioned between

300ml of ether and 50ml of water and the layers were separated. The organic layer was dried over magnesium sulfate. The aqueous layer was extracted with 300ml of ether; the extract was dried and combined with the original organic layer. The combined organics were concentrated in vacuo. Flash chromatography on 150g of silica gel using 37:3 v/v hexanes/ether as the eluant afforded 4.06g (80%) of the title compound as a solid. 1 H NMR (200MHz, CDCl₃) δ 2.50 (1H, dt, J = 3.4, 12.0), 2.97 (1H, app d, J = 12.0), 2.99 (1H, d, J = 13.6), 3.72-3.79 (1H, m), 3.82 (1H, d, J = 2.6), 4.00 (1H, d, J = 13.6), 4.20 (dt, J = 2.4, 11.6), 6.22 (1H, d, J = 2.6), 7.22-7.37 (7H, m), 7.57 (2H, app d, J = 6.8), 8.07 (1H, s), 8.47 (2H, s). MS (FAB) m/z 528 (M+H, 25%), 270 (100%). Anal. Calcd for C₂₆H₂₀F₇NO₃: C, 59.21; H, 3.82; N, 2.66; F, 25.21. Found: C, 59.06; H, 4.05; N, 2.50; F, 25.18.

15

25

30

10

DESCRIPTION 4

4-Benzyl-2-(R)-(1-(3,5-bis(trifluoromethyl)phenyl)ethenyloxy)-3-(S)-(4-fluorophenyl)morpholine

20 Step A: Dimethyl titanocene

A solution of 2.49g (10.0mmol) of titanocene dichloride in 50ml of ether in the dark at 0°C was treated with 17.5ml of 1.4M methyllithium solution in ether maintaining the internal temperature below 5°C. The resulting yellow/orange mixture was stirred at room temperature for 30 minutes and the reaction was quenched by slowly adding 25g of ice. The quenched reaction mixture was diluted with 50ml of ether and 25ml of water and the layers were separated. The organic layer was dried over magnesium sulfate and concentrated in vacuo to afford 2.03g (98%) of the title compound as a light-sensitive solid. The dimethyl titanocene could be stored as a solution in toluene at 0°C for at least 2 weeks without

WO 96/29328 PCT/GB96/00587

- 37 -

apparent chemical degradation. ^{1}H NMR (200MHz, CDCl₃) δ -0.15 (6H, s), 6.06 (10H, s).

Step B: 4-Benzyl-2-(R)-(1-(3.5-bis(trifluoromethyl)phenyl)ethenyloxy)-3-

5 (S)-(4-fluorophenyl)morpholine

A solution of the compound of Description 3 (2.50g, 4.9mmol) and 2.50g (12.0mmol) of dimethyl titanocene (from Step A) in 35ml of 11 v/v THF/toluene was stirred in an oil bath at 80°C for 16 hours. The reaction mixture was cooled and concentrated in vacuo. Flash chromatography on 150g of silica gel using 3:1 v/v hexanes/methylene chloride as the eluant afforded 1.71g (69%) of the title compound as a solid. An analytical sample was obtained via recrystallisation from isopropanol: 1 H NMR (400MHz, CDCl₃) δ 2.42 (1H, dt, J = 3.6, 12.0), 2.90 (1H, app d, J = 12.0), 2.91 (1H, d, J = 13.6), 3.62-3.66 (1H, m), 3.72 (1H, d, J = 2.6), 3.94 (1H, d, J = 13.6), 4.09 (1H, dt, J = 2.4, 12.0), 4.75 (1H, d, J = 3.2), 4.82 (1H, d, J = 3.2), 5.32 (1H, d, J = 2.6), 7.09 (2H, t, J = 8.8), 7.24-7.33 (5H, m), 7.58-7.62 (2H, m), 7.80 (1H, s), 7.90 (2H, s); MS (FAB) 526 (M+H, 75%), 270 (100%). Anal. Calcd for $C_{27}H_{22}F_{7}NO_{2}$: C, 61.72; H, 4.22; N, 2.67; F, 25.31. Found: C, 61.79; H, 4.10; N, 2.65; F, 25.27%.

20

10

15

DESCRIPTION 5

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-(4-fluorophenyl)morpholine

The compound of Description 4 (4.0g) was dissolved in ethyl acetate (50ml) and isopropanol (16ml). To this solution was added palladium on charcoal (1.5g) and the mixture was hydrogenated at 40 psi for 36h. The catalyst was removed by filtration through Celite and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica using 100% ethyl acetate and then 1-10% methanol in ethyl acetate. This afforded isomer A 500mg (15%) and isomer B 2.6g (80%) as clear oils -

isomer B crystallised on standing. For the title compound: 1H NMR (400MHz, CDCl₃) δ 1.16 (3H, d, J = 6.8MHz), 1.80 (1H, br s), 3.13 (1H, dd, J = 3.2, 12.4Hz), 3.23 (1H, dt, J = 3.6, 12.4Hz), 3.63 (1H, dd, J = 2.4, 11.2Hz), 4.01 (1H, d, J = 2.4Hz), 4.13 (1H, dt, J = 3.2, 12.0Hz), 4.42 (1H, d, J = 2.4Hz), 4.19 (1H, q, J = 6.8Hz), 7.04-7.09 (2H, m), 7.27-7.40 (4H, m), 7.73 (1H, s); MS (FAB) 438 (M+H, 75%), 180 (100%).

HCl salt formation. To a solution of the free base (0.77g) in diethyl ether (10ml) was added 1M-HCl in methanol (1.75ml). The solution was evaporated to dryness and on addition of diethyl ether crystals formed. The solution was filtered and the residue washed with diethyl ether to give the title compound hydrochloride salt mp 248-250°C. Found: C, 50.46; H, 3.85; N, 3.01; Cl, 7.31. C₂₀H₁₈F₇NO₂.HCl requires C, 50.70; H, 4.04; N, 2.96; Cl, 7.48%.

15

20

25

30

10

DESCRIPTION 6

4-Benzyl-3-(S)-phenyl-2-morpholinone

Step A: N-Benzyl-(S)-phenylglycine

A solution of 1.51g (10.0mmol) of (S)-phenylglycine in 5ml of 2N aqueous sodium hydroxide solution was treated with 1.0ml (10.0mmol) of benzaldehyde and stirred at room temperature for 20 minutes. The solution was diluted with 5ml of methanol, cooled to 0°C, and carefully treated with 200mg (5.3mmol) of sodium borohydride. The cooling bath was removed and the reaction mixture was stirred at room temperature for 1.5 hours. The reaction was diluted with 20ml of water and extracted with 2 x 25ml of methylene chloride. The aqueous layer was acidified with concentrated hydrochloric acid to pH 6 and the solid that precipitated was filtered, washed with 50ml of water, 50ml of 1:1 v/v methanol/ethyl ether and 50ml of ether, and dried to afford 1.83g (76%) of product, mp 230-

232°C. Anal. Calcd for C₁₅H₁₅NO₂: C, 74.66; H, 6.27; N, 5.81. Found: C, 74.17; H, 6.19; N, 5.86.

Step B: 4-Benzyl-3-(S)-phenyl-2-morpholinone

A mixture of 4.00g (16.6mmol) of N-benzyl-(S)-phenylglycine (from Step A) 5.00g (36.0mmol) of potassium carbonate, 10.0ml of 1,2-dibromoethane and 25ml of N,N-dimethylformamide was stirred at 100°C for 20 hours. The mixture was cooled and partitioned between 200ml of ethyl ether and 100ml of water. The layers were separated and the organic layer was washed with 3 x 50ml of water, dried over magnesium sulfate and concentrated in vacuo. The residue was purified by flash chromatography on 125g of silica gel eluting with 9:1 v/v, then 4:1 hexanes/ethyl ether to afford 2.41g (54%) of the product as a solid, mp 98-100°C. 1 H NMR (250MHz, CDCl₃) δ 2.54-2.68 (1H, m), 2.96 (1H, dt, J = 12.8, 2.8), 3.14 (1H, d, J = 13.3), 3.75 (1H, d, J = 13.3), 4.23 (1H, s), 4.29-4.37 (1H, m), 4.53 (dt, J = 3.2, 11.0), 7.20-7.56 (10H, m). MS (FAB): m/z 268 (M+H; 100%). Anal. Calcd for C_{17} H₁₇NO₂: C, 76.38; C, 76.41; C, 75.24. Found: C, 76.06; C, 76.40; C, 75.78.

20

25

30

10

15

DESCRIPTION 7

4-Benzyl-2-(R)-(3,5-bis(trifluoromethyl)benzoyloxy)-3-(S)-phenylmorpholine

A solution of 2.67g (10.0mmol) of the compound of Description 6 in 40ml of dry THF was cooled to -78°C. The cold solution was treated with 12.5ml of 1.0M L-Selectride® solution in THF, maintaining the internal reaction temperature below -70°C. The resulting solution was stirred cold for 45 minutes and the reaction was charged with 3.60ml (20.0mmol) of 3,5-bis(trifluoromethyl)benzoyl chloride. The resulting yellow mixture was stirred cold for 30 minutes and the reaction was quenched with 50ml of saturated aqueous sodium bicarbonate solution. The quenched mixture

10

15

20

25

30

was partitioned between 300ml of ether and 50ml of water and the layers were separated. The organic layer was dried over magnesium sulfate. The aqueous layer was extracted with 300ml of ether; the extract was dried and combined with the original organic layer. The combined organics were concentrated in vacuo. Flash chromatography on 150g of silica gel using 37:3 v/v hexanes/ether as the eluant afforded 4.06g (80%) of the title compound as a solid. 1 H NMR (200MHz ppm, CDCl₃) δ 2.50 (1H, dt, J = 3.4, 12.0), 2.97 (1H, app d, J = 12.0), 2.99 (1H, d, J = 13.6), 3.72-3.79 (1H, m), 3.82 (1H, d, J = 2.6), 4.00 (1H, d, J = 13.6), 4.20 (dt, J = 2.4, 11.6), 6.22 (1H, d, J = 2.6), 7.22-7.37 (7H, m), 7.57 (2H, appd, J = 6.8), 8.07 (1H, s), 8.47 (2H, s). Anal. Calcd for $C_{26}H_{21}F_{6}NO_{3}$: C, 61.29; H, 4.16; N, 2.75; F, 22.38. Found: C, 61.18; H, 4.14; N, 2.70; F, 22.13.

DESCRIPTION 8

4-Benzyl-2-(R)-(1-(3.5-bis(trifluoromethyl)phenyl) ethenyloxy)-3-(S)-phenylmorpholine

A solution of 2.50g (4.9mmol) of the compound of Description 7 and 2.50g (12.0mmol) of dimethyl titanocene (Description 4a), in 35ml of 1:1 v/v THF/toluene was stirred in an oil bath at 80°C for 16 hours. The reaction mixture was cooled and concentrated *in vacuo*. Flash chromatography on 150g of silica gel using 3:1 v/v hexanes/methylene chloride as the eluant afforded 1.71g (69%) of the title compound as a solid. 1 H NMR (400MHz, CDCl₃) δ 2.42 (1H, dt, J = 3.6, 12.0), 2.89 (app d, J = 11.6), 2.92 (1H, d, J = 13.6), 3.61-3.66 (1H, m), 3.73 (1H, d, J = 2.8), 4.00 (1H, d, J = 13.6), 4.09 (1H, dt, J = 2.4, 11.6), 4.75 (1H, d, J = 2.8), 4.79 (1H, d, J = 2.8), 5.36 (1H, d, J = 2.4), 7.23-7.41 (7H, m), 7.63 (1H, app d, J = 7.2), 7.79 (1H, s), 7.91 (2H, s). MS (FAB) m/z 508 (M+1, 25%). Anal. Calcd. for C₂₇H₂₃F₆NO₂: C, 63.90; H, 4.57; N, 2.76; F, 22.46. Found: C, 63.71; H, 4.53; N, 2.68; F, 22.66.

15

20

30

DESCRIPTION 9

2-(R)-(1-(S)-(3.5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenylmorpholine

A mixture of the compound of Description 8 (1.5g) and 10% palladium on carbon catalyst (750mg) in a mixture of isopropanol/ethyl acetate (25ml, 3:2 v/v) was stirred under an atmosphere of hydrogen for 48h. The catalyst was removed by filtration through celite and the reaction flask and filter pad were rinsed with ethyl acetate (500ml). The filtrate was concentrated in vacuo, flash chromatography afforded epimer A (106mg) and epimer B (899mg) as clear oils. The title compound, epimer B had the following analysis: ¹H NMR (CDCl₃, 400MHz) δ 1.46 (3H, d, J = 6.8Hz), 1.92 (1H, brs), 3.13 (1H, dd, J = 3.0, 12.6Hz), 3.24 (1H, dt, J = 3.6, 12.6Hz), 3.62 (1H, dd, J = 3.6, 11.2Hz), 4.04 (1H, d, J = 2.4Hz), 4.14 (1H, dt, J = 3.0, 11.2Hz), 4.48 (1H, d, J = 2.4Hz), 4.90 (1H, q, J = 6.8Hz), 7.21-7.32 (7H, m), 7.64 (1H, s). MS (CI*) m/z 420 (M*+1, 20%), 178 (100%). Anal. Calcd. for C₂₀H₁₉F₆NO₂: C, 57.28; H, 4.57; N, 3.34; F, 27.18. Found: C, 57.41; H, 4.61; N, 3.29; F, 27.23.

EXAMPLE 1

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(4-(dimethylaminomethyl)-1,2,5-oxadiazol-3-yl)methyl-3-(S)-phenylmorpholine

25 a) <u>3.4-Dimethyl-1,2,5-oxadiazole</u>

A mixture of succinic anhydride (20g) and dimethyl glyoxime (23.2g) were heated in a 3-necked round bottom flask equipped with distillation apparatus. At 100°C the reaction mixture liquified, and at 150°C the product distilled. A second distillation yielded the product as a colourless liquid: bp 154-159°C. ¹H NMR (250MHz,CDCl₃) δ 2.35 (6H, s).

WO 96/29328 PCT/GB96/00587

b) 3-Chloromethyl-4-methyl-1,2,5-oxadiazole

α,α¹-Azoisobutyronitrile (0.4g) was added to the compound described in (a) (12.7g) and sulfuryl chloride (10.41ml) was added portionwise. The mixture was heated at 90°C for 3½ hours. Vacuum distillation (8mm Hg) yielded the product as a colourless liquid bp 60°C (8mm Hg). ¹H NMR (250MHz,CDCl₃) δ 2.48 (3H, s), 4.72 (2H, s).

c) <u>3,4-Bis(chloromethyl)-1,2,5-oxadiazole</u>

α,α¹-Azoisobutyronitrile (0.2g) was added to the compound described in (b) (3.27g) and sulfuryl chloride (2ml) was added portionwise. The mixture was heated at 90°C for 4 hours. The mixture was cooled, diluted with water (20ml), and extracted with ether (3x10ml). The combined organic phases were washed with brine (50ml), dried (MgSO₄), and concentrated to leave a pale yellow oil, which was a mixture of the starting material and product. ¹H NMR signals for the product are as follows: ¹H NMR (250MHz,CDCl₃) δ 2.48 (3H, s), 4.72 (2H, s), 4.85 (4H, s).

d) <u>2-(R)-(1(R)-(3.5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(4-(dimethylaminomethyl)-1,2,5-oxadiazol-3-yl)methyl-3-(S)-</u>

20 phenylmorpholine

5

10

15

25

30

The compound of Description 9 (300mg) in dimethylformamide (2ml) was added slowly to a stirred mixture of the compound described in (c) (220mg) and potassium carbonate (273mg) in dimethylformamide (2ml) at room temperature. The mixture was then heated at 60°C for 4 hours, and then cooled. Dimethylamine (2ml) was added to the mixture, and stirred at room temperature for 4 hours. The reaction mixture was diluted with water (50ml) and extracted with ethyl acetate (3x30ml). The combined organic phases were washed with brine (1x50ml), dried (MgSO₄), and concentrated to leave an oil. This was purified by chromatography on silica using ethyl acetate in hexane (1:4) as eluant to afford the title compound as an oil. ¹H NMR (250MHz,CDCl₃) δ 1.46 (3H,

10

15

20

30

d, J=6.6Hz), 2.19 (6H, s), 2.68 (1H, td, J=3.3Hz, 11.7Hz), 2.88 (1H, d, J=11.8Hz), 3.38 (1H, d, J=14Hz), 3.48 (1H, d, J=14.5Hz), 3.49 (1H, d, J=2.8Hz), 3.60 (1H, d, J=14Hz), 3.65 (1H, m), 3.87 (1H, d, J=14.5Hz), 4.25 (1H, td, J=2.5Hz, J=11.4Hz), 4.36 (1H, d, J=3.6Hz), 4.86 (1H, q, J=6.7Hz), 7.16 (2H, s), 7.33 (3H, m), 7.43 (2H, broad s), 7.61 (1H, s) MS (ES) m/z 559 (MH*).

EXAMPLE 2

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-4-(4-dimethylaminomethyl)-1,2,5-oxadiazol-3-yl)methyl-3-(S)-(4-fluorophenyl)morpholine

This compound was prepared according to the procedure described in Example 1 using the compound of Description 5 as starting material. Purification by chromatography on silica using ethyl acetate in hexane (1:9, 1:3, then 1:1) as eluant afforded the title compound as a colourless oil. ¹H NMR (360MHz, DMSO) δ 1.39 (3H, d, J=6.6Hz), 2.18 (6H, s), 2.38 (1H, d, J=6.3Hz) 2.52 (1H, td, J=3.4Hz, 11.8Hz), 2.83 (1H, d, J=11.4Hz), 3.30 (1H, d, J=8.4Hz), 3.42 (2H, d, J=14.1Hz), 3.58 (1H, m), 3.78 (1H, d, J=14.7hz), 4.13 (1H, t, J=9.2Hz), 4.34 (1H, d, J=2.7Hz), 4.96 (1H, d, J=6.6Hz), 7.13 (2H, t, J=8.9Hz), 7.42 (2H, s), 7.52 (2H, t, J=6.2Hz), 7.86 (1H, s). MS (ES) m/z 577 (MH*).

25 EXAMPLE 3

2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenyl-4-(3-piperidinomethyl-1,2,4-oxadiazol-5-yl)methylmorpholine

(a) <u>2-(R)-(1-(R)-(3.5-Bistrifluoromethyl)phenyl)ethoxy)-4-</u> carbomethoxymethyl-3-(S)-phenylmorpholine Methyl bromoacetate (0.15ml) was added to a stirred mixture of the compound of Description 9 (0.6g) and potassium carbonate (0.52g) in dry dimethylformamide at 60°C. After 15 mins the reaction mixture was diluted with water (100ml). The aqueous phase was washed with ethyl acetate (3x25ml). The combined organic phase was washed with brine, dried (MgSO₄) and concentrated to afford a clear oil. Purification was carried out by chromatography on silica eluting with 20% ethyl acetate in petrol to afford a clear oil (0.592g). ¹H NMR (360MHz,CDCl₃) δ 1.46 (1H, d, J=10Hz), 2.88-3.03 (2H, m), 3.08 (1H, d, J=12Hz), 3.33 (1H, d, J=12Hz), 3.61 (3H, s), 3.62 (1H, m), 3.90 (1H, m), 4.28-4.42 (2H, m), 4.86 (1H, q, J=10Hz), 7.15 (2H, s), 7.26-7.42 (5H, m), 7.60(1H, s). MS (CI+) m/z 492 (M+1+, 100%).

10

15

20

25

30

(b) 2-(R)-(1-(R)-(3,5-Bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenyl-4-(3-piperidinomethyl-1,2,4-oxadiazol-5-yl)methylmorpholine

Sodium hydride (0.057g) and 2-(1-piperidino)acetamidoxime (0.188g) were stirred together with molecular sieves and dry tetrahydrofuran for 1/2 hr. A solution of the ester (Step a) in tetrahydrofuran was added dropwise to this solution over 3 mins. The reaction was heated at reflux for 1/2 hr. The molecular sieves were filtered and washed with ethyl acetate. The filtrate was evaporated under reduced pressure and the residue dispersed between water and ethyl acetate. The aqueous layer was extracted with ethyl acetate (3x25ml). The combined organics were washed with brine, dried (MgSO₄) and evaporated under reduced pressure to afford a brown oil. Purification by chromatography on flash silica using 50/50 ethyl acetate/petrol as eluant afforded the title compound as a clear oil. H NMR (360MHz,CDCl₃) δ 1.36-1.66 (9H, m), 2.43-2.54 (4H, m), 2.68-2.82 (1H, m), 2.96-3.06 (1H, m), 3.60-3.76 (5H, m), 3.96 (1H, d, J=2.2Hz), 2.46-4.40 (2H, m), 4.82-4.90 (1H, q), 7.14 (2H, s), 7.30-7.48 (5H, m), 7.60 (1H, s). MS CI+ m/z 599 (M+1+. 100%).

EXAMPLE 4

2-(R)-(1-(R)-(3.5-Bistrifluoromethyl)phenyl)ethoxy)-4-(3-(N,N-

- dimethylaminomethyl)-1,2,4-oxadiazol-5-yl)methyl-3-(S)-5 phenylmorpholine
 - (a) (N.N-Dimethylamino)acetamide oxime

Dimethylaminoacetonitrile (5g) was dissolved in ethanol (12ml).

- Hydroxylamine hydrochloride (4.13g) was dissolved in water (5ml) and 10 added to the reaction mixture over 3 min resulting in a slightly exothermic reaction. The mixture was cooled and sodium carbonate was added portionwise and the reaction mixture was stirred for 1hr. The mixture was filtered and concentrated in vacuo to afford a viscous white oil. This was crystallised from hot ethanol. (3.45g): mp 135°C. 15
 - ^{1}H NMR (250MHz,CDCl₃) δ 2.69 (6H, s), 3.60 (2H, s), 6.06 (2H, s).
 - 2-(R)-(1-(R)-(3.5-Bistrifluoromethyl)phenyl)ethoxy-4-(3-(N,N-**(b)** dimethylaminomethyl)-1,2,4-oxadiazol-5-yl)methyl-3-(S)-
- phenylmorpholine 20

25

The compound of Example 3a was reacted with the product of step (a) above according to the procedure described for Example 3b to afford the title compound. (250MHz,CDCl₃) δ 1.39 (3H, d, J=7Hz), 2.29 (6H, s), 2.58-2.72 (1H, m), 2.90-2.98 (1H, br d), 3.53-3.64 (5H, m), 3.85 (1H, d, J=15Hz),4.18-4.31 (1H, m), 4.74-4.85 (1H, q, J=7Hz), 6.93-7.08 (4H, m), 7.32-7.42 (2H, m), 7.56 (1H, s). MS CI* m/z 577 (M+1*, 100%).

٠.

CLAIMS:

1. A compound of the formula (I):

wherein

5

10

15

20

R¹ represents hydrogen, halogen, C¹-6alkyl, C²-6alkenyl, C²-6alkynyl, C³-7cycloalkyl, C³-7cycloalkylC¹-4alkyl, C¹-6alkoxy, C¹-4alkyl substituted by a hydroxy or C¹-4alkoxy group, OCF³, hydroxy, trifluoromethyl, trimethylsilyl, nitro, CN, SR³, SOR³, SO²R³, COR³, CO²R³ or CONR³R¹ where R³ and R¹ are each independently hydrogen or C¹-4alkyl;

R² and R³ each independently represent hydrogen, halogen, C₁₋₆alkyl, C₁₋₆alkoxy substituted by a C₁₋₄alkoxy group, or trifluoromethyl;

R⁴ represents hydrogen, halogen, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, C₁₋₆alkoxy, C₁₋₄alkyl substituted by a hydroxy or C₁₋₄alkoxy group, OCF₃, hydroxy, trifluoromethyl, trimethylsilyl, nitro, CN, SR^a, SOR^a, SO₂R^a, COR^a, CO₂R^a, CONR^aR^b where R^a and R^b are as previously defined;

R⁵ represents hydrogen, halogen, C₁₋₆alkyl, C₁₋₆alkoxy substituted by a C₁₋₄alkoxy group, or trifluoromethyl;

R⁶ represents C₁₋₆alkyl, optionally substituted by oxo, substituted by a 5-membered heteroaromatic ring selected from oxazole, thiazole,

10

15

20

25

isoxazole, isothiazole, oxadiazole and thiadiazole, wherein each heteroaromatic ring is substituted at the available carbon atom by a group of the formula ZNR7R8 where

Z is C1-salkylene or C3-scycloalkyl;

R7 is hydrogen or C1-4alkyl, C3-7cycloalkyl,

C3-7cycloalkylC1-4alkyl, or C2-4alkyl substituted by C1-4alkoxy or hydroxyl;

R8 is hydrogen or C1-4alkyl, C3-7cycloalkyl,

C₃₋₇cycloalkylC₁₋₄alkyl, or C₂₋₄alkyl substituted by C₁₋₄alkoxy, hydroxyl or a 4, 5 or 6 membered heteroaliphatic ring containing one or two heteroatoms selected from N, O and S;

or R⁷, R⁸ and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms, optionally substituted by one or two groups selected from hydroxy or C₁₋₄alkoxy optionally substituted by a C₁₋₄alkoxy or hydroxyl group, and optionally containing a double bond, which ring may optionally contain an oxygen or sulphur ring atom, a group S(O) or S(O)₂ or a second nitrogen atom which will be part of a NH or NR^c moiety where R^c is C₁₋₄alkyl optionally substituted by hydroxy or C₁₋₄alkoxy;

or R⁷, R⁸ and the nitrogen atom to which they are attached form a non-aromatic azabicyclic ring system of 6 to 12 ring atoms;

or Z, R^7 and the nitrogen atom to which they are attached form a heteroaliphatic ring to 4 to 7 ring atoms which may optionally contain an oxygen ring atom;

R⁹ and R¹⁰ each independently represent hydrogen or C₁₋₄alkyl, or R⁹ and R¹⁰ are joined so, together with the carbon atoms to which they are attached, there is formed a C₅₋₇ ring;

Y represents hydrogen or a C₁₋₄alkyl group optionally substituted by a hydroxy group;

or a pharmaceutically acceptable salt thereof.

WO 96/29328 PCT/GB96/00587

- 48 -

- 2. A compound as claimed in claim 1 wherein R¹ is hydrogen, C₁₋₄alkyl, C₁₋₄alkoxy, halogen or CF₃.
- 3. A compound as claimed in claim 1 or claim 2 wherein R² is hydrogen, C₁₋₄alkyl, C₁₋₄alkoxy, halogen or CF₃.
 - 4. A compound as claimed in any one of claims 1 to 3 wherein R³ is hydrogen, fluorine, chlorine or CF₃.
- 10 5. A compound as claimed in any one of claims 1 to 4 wherein R^1 and R^2 are in the 3 and 5 positions of the phenyl ring.
 - 6. A compound as claimed in any one of claims 1 to 5 wherein R⁴ is hydrogen and R⁵ is hydrogen or 4-fluoro.

15

- 7. A compound as claimed in any one of claims 1 to 6 wherein R⁹ and R¹⁰ are each independently hydrogen or methyl.
- 8. A compound as claimed in any one of claims 1 to 7 wherein R⁶
 20 is C₁₋₆alkyl substituted by a 5-membered ring selected from:

9. A compound as claimed in claim 8 wherein the 5-membered ring is selected from:

- 10. A compound as claimed in any one of claims 1 to 9 wherein Z
 is CH₂ or CH₂CH₂ and NR⁷R⁸ is amino, methylamino, dimethylamino, diethylamino, azetidinyl, pyrrolidino and morpholino.
 - 11. A compound of the formula (Ia):

(Ia)

wherein R6 and Y are as defined in claim 1 and

A1 is fluorine or CF3;

A2 is fluorine or CF3; and 5

A³ is hydrogen or fluorine;

or a pharmaceutically acceptable salt thereof.

- 12. A compound as claimed in any one of claims 1 to 11 wherein Y is C1-4alkyl optionally substituted by a hydroxy group. 10
 - A compound selected from: 13.

2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(4-

dimethylaminomethyl)-1,2,5-oxadiazol-3-yl)methyl-3-(S)-

15 phenylmorpholine;

2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(4-

dimethylaminomethyl)-1,2,5-oxadiazol-3-yl)methyl-3-(S)-(4-

fluorophenyl)morpholine;

2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-3-(S)-phenyl-4-(3-

piperidinomethyl)-1,2,4-oxadiazol-5-yl)methylmorpholine; 20

2-(R)-(1-(R)-(3,5-bis(trifluoromethyl)phenyl)ethoxy)-4-(3-

dimethylaminomethyl)-1,2,4-oxadiazol-5-yl)methyl-3-(S)-

phenylmorpholine;

or a pharmaceutically acceptable salt thereof.

14. A compound as claimed in any one of claims 1 to 12 which has the stereochemistry of the 2- and 3-position that is shown in formula (Ib)

- 15. A process for the preparation of a compound as claimed in any one of claims 1 to 14, which comprises:
 - (A), reacting a compound of formula (II)

wherein R¹, R², R³, R⁴, R⁵, R⁹, R¹⁰ and Y are as defined in claim 1 with a compound of formula (III):

5

where R^{6a} is a group of the formula R^6 as defined in claim 1 or a precursor therefor and LG is a leaving group such as an alkyl- or arylsulphonyloxy group or a halogen atom; and, if R^{6a} is a precursor group, converting it to a group R^6 ; or

10

(B), where R⁶ represents a C₁₋₆alkyl group substituted by a 1,2,4-oxadiazolyl or 1,2,4-thiadiazolyl group, each of which heteroaromatic rings is substituted by ZNR⁷R⁸, by reaction of a compound of formula (V):

15

wherein m is an integer from 1 to 6, with a compound of formula (VI):

20

in the presence of a base;

each process being followed, where necessary, by the removal of any protecting group where present;

and when the compound of formula (I) is obtained as a mixture of enantiomers or diastereoisomers, optionally resolving the mixture to obtain the desired enantiomer:

and/or, if desired, converting the resulting compound of formula (I) or a salt thereof, into a pharmaceutically acceptable salt thereof.

- 16. A compound as claimed in any one of claims 1 to 14 for use in therapy.
 - 17. A pharmaceutical composition comprising a compound as claimed in any one of claims 1 to 14 in association with a pharmaceutically acceptable carrier or excipient.

15

20

5

- 18. A method for the treatment or prevention of physiological disorders associated with an excess of tachykinins, which method comprises administration to a patient in need thereof of a tachykinin reducing amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof, or a composition comprising a compound according to claim 1, or a pharmaceutically acceptable salt thereof.
- 19. A method according to claim 18 where the physiologicaldisorder is pain or inflammation.
 - 20. A method according to claim 18 where the physiological disorder is migraine.
- 30 21. A method according to claim 18 where the physiological disorder is emesis.

WO 96/29328 PCT/GB96/00587

- 22. A method according to claim 18 where the physiological disorder is postherpetic neuralgia.
- 23. The use of a compound as claimed in any one of claims 1 to 14
 5 for the manufacture of a medicament for the treatment or prevention of a physiological disorder associated with an excess of tachykinins.
 - 24. The use of a compound as claimed in any one of claims 1 to 14 for the manufacture of a medicament for the treatment or prevention of pain or inflammation.
 - 25. The use of a compound as claimed in any one of claims 1 to 14 for the manufacture of a medicament for the treatment or prevention of migraine.

15

10

- 26. The use of a compound as claimed in any one of claims 1 to 14 for the manufacture of a medicament for the treatment or prevention of emesis.
- 27. The use of a compound as claimed in any one of claims 1 to 14 for the manufacture of a medicament for the treatment or prevention of postherpetic neuralgia.

INTERNATIONAL SEARCH REPORT

Inte mal Application No PCT/GB 96/00587

		· · · · · · · · · · · · · · · · · · ·	/98 30/00307
A. CLASS IPC 6	NFICATION OF SUBJECT MATTER CO7D413/06 CO7D417/06 A61K3	1/535	-
According	to International Patent Classification (IPC) or to both national (damification and IPC	
	S SEARCHED		
IPC 6	documentation searched (classification system followed by class CO7D A61K	ification symbols)	
Documenta	ation searched other than minimum documentation to the extent	that such documents are included in	the fields searched
Electronic o	data base consulted during the international search (name of dat	a base and, where practical, search (zerms used)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.
A	EP.A.O 577 394 (MERCK & CO. IN January 1994 cited in the application see claims	1-27	
P,Y	WO,A,95 18124 (MERCK SHARP & D July 1995 see claims	1-27	
P,Y	WO,A,95 16679 (MERCK & CO. INC 1995 see claims	.) 22 June	1-27
P, Y	WO,A,95 23798 (MERCK & CO. INC September 1995 see claims	.) 8	1-27
Fur	ther documents are listed in the continuation of box C.	X Patent family member	s are listed in annex.
<u> </u>	Ategories of cited documents :		· · · · · · · · · · · · · · · · · · ·
'A' docum	ifter the international filing date conflict with the application but inciple or theory underlying the		
filing	— -	"X" document of particular rel cannot be considered now	el or cannot be considered to
which	nent which may throw doubts on priority claim(s) or its cited to establish the publication date of another	"Y" document of particular rel	when the document is taken alone evance; the claimed invention
O docum	on or other special reason (as specified) nent referring to an oral disciosure, use, exhibition or means	cannot be considered to in document is combined with	regive an inventive step when the h one or more other such docu- heing obvious to a person skilled
'P' docum	means ment published prior to the international filing date but than the priority date claimed	in the art. "&" document member of the	•
Date of the	actual completion of the international search	Date of mailing of the inte	rnational search report
2	28 May 1996	0	7.06.96
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentian 2	Authorized officer	
	NL - 2230 HV Rijrunja Td. (+31-70) 340-2040, Tz. 31 651 epo nl. Fax: (+31-70) 340-3016	Chouly, J	

INTERNATIONAL SEARCH REPORT

1. strong application No.

PCT/GB96/00587

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Although claims 18-22 are directed to a method of treatment of (diagnostic
method practised on) the human/animal body the search has been carried out and based on the alleged effects of the compound/composition.
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Noz:
A. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Int .cmal Application No PCT/GB 96/00587

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-577394		AU-B-	4156893	06-01-94
		AU-B-	4656193	24-01-94
		CA-A-	2099233	30-12-93
		CN-A-	1087902	15-06-94
		CZ-A-	9403330	13-09-95
		FI-A-	946133	28-12-94
		HR-A-	931003	28-02-95
		HU-A-	71809	28-02-96
		JP-A-	6172178	21-06-94
		NO-A-	945064	28-02-95
		SI-A-	9300346	31-12-93
		SK-A-	160094	11-07-95
		WO-A-	9400440	06-01-94
		AU-B-	4160893	06-01-94
		ZA-A-	9304624	20-06-94
WO-A-9518124	06-07-95	AU-B-	1322395	17-07-95
		FI-A-	951762	13-10-95
WO-A-9516679	22-06-95	AU-B-	1437595	03-07-95
WO-A-9523798	08-09-95	AU-B-	1975095	18-09-95
		US-A-	5512570	30-04-96