南京工业大学 通信原理 试题 (A) 卷 (闭)

2019 -2020 学年第 1 学期 使用班级 _______ 通信 1701-02

题	号 - -	1 = 1 m	五	1 1	1.1	1 1	总分
得	分	-	()	3 St 12	1048 X	962	
_	、填空题 (每3	21分,共1	5分)	34-4	1 3/10		
1.	已知 4 进制数号的传输速率》			波特,若信息	息速率保持不	变,变换成二进	制数字信
2.	出现概率越	_的消息,其	其所含有的信	息量越大。			
3.	设英文字母xb	出现的概率为(). 002,则 x	的信息量为	bit.		
4.	能量信号的平均	的功率为					
5.	对于一个平稳和 率, R(0)-R(c))代表了信号	的平均功率,	R(∞)代表了	功
6.	AM 信号的频谱	由 载频分量	,		三个部分构成,	其中后两者互	为镜像关
	系。				Principly		
7.	在AM、SSB、FM	系统中,有效	性最好的是	. ,1	可靠性最好的	是	
8.	设基带信号的最 宽为_	高频率为 3.4	kHz,则 SSB	调制后信号	带宽为	DSB 调制后	信号的带
9.	部分响应传输系以采用	统中,由于采 的方法来克服		码,会导致占	出现差错传播的	的现象,一般情况	兄下,可
0.	在 4 进制 PSK 调	制系统中,发	送端经常采	H	米克服相位模	糊. / /	
1.	对一模拟信号进	行数字化的时	候,若抽样这	速率是 10kHz	,量化电平数	为 32, 则数字值	言号的传

南京工业大学 第 1 页 共 6 页

二、简答题 (每题6分,共30分)

1. 写出信源、消息、信号、信息的定义。

2. 写出随机过程的均值、方差和自相关函数的表达式,并说明其意义。

3. 分别画出二进制数字序列{01101101}的 2ASK 和 2FSK 波形图。

4. 画出插入导频法提取位同步信号的发送端和接收端原理框图。

3. 什么是奈奎斯特速率?如果一个基带信号的带宽是 4kHz, 敢小尢矢真捆秤速率走多少?

三、综合题(共55分)

- 1. (10分)某信息源的符号集由 A、B、C、D 和 E 组成,设每一符号独立出现,其出现的概率分别为 1/4, 1/8, 1/8, 3/16 和 5/16;信息源以 1600B 码元速率进行传输,问:
 - 1) 求该信源的熵;
 - 2) 求该系统的平均信息速率;
 - 3) 求该系统每小时传输的信息量;
 - 4) 若各符号等概率出现时,求该信源的熵。

2. (10 分)设 $\xi(t)$ 是平稳随机过程,其自相关函数为 $R_{\xi}(\tau)$,试求它通过图示系统后的自相关函数及功率谐密度。

诚信考试,公平克里: 公八八, 公公公() 以以信展现良好学风。 以下三种行为是严重作弊行为,学校将从严处理: 1.替他人考试或由他人替考; 2.通讯工具作弊: 3.组织作弊。

3. (10 分) 已调信号时域表示如下,其中A_m sinω_mt 是调制信号。

$$s_m(t) = (A_0 + A_m \sin \omega_m t) \cos \omega_c t, A_0 \ge A_m$$

- 1) 如果发送该信号, 计算 Sm(t)的发送功率;
- 2) 当 $A_0 = 0$ 时, $s_m(t)$ 为何信号? $s_m(t)$ 能否用包络检波法解调? 为什么?

- 4. (10分) 已知数字基带信号序列 1101001000001.
 - 1) 试写出 AMI 码的编码规则:
 - 2) 试写出 AMI 码编码后的输出序列:
 - 3) 试写出 HDB3 码的编码规则:
 - _4) 试写出 HDB3 编码后的输出序列。

5. (15 分)存在如下一个由发送滤波器 $G_T(\omega)$ 、传输信道 $C(\omega)$ 、加性噪声 n(t)、接收滤波器 $G_R(\omega)$ 、及抽样判决器构成数字基带信号传输模型,如下图所示,其中,输入到发送滤波器 的符号序列为 $\{a_n\}$,h(t)是基带传输系统总传输特性的单位冲激响应,接收机的抽样判决器 在 $t=kT_s+t_0$ 时刻上对接收信号 r(t) 进行抽样,其中 T_s 是码元周期。

- 1) 试写出该数字基带传输系统的总传输特性 H(ω)的表达式;
- 2) 试写出接收滤波器的输出信号 r(t)的时域表达式;
- 3) 为了确定第 k 个码元 a_k 的取值,试写出在该时刻的抽样结果 $r(kT_s+t_0)$,并说明其中各项的意义;
- 4) 试写出该基带传输系统可以实现无码间串扰传输的条件

诚信考试,公平竞争,以实力争取过硬成绩,以诚信展现良好学风。 以下三种行为是严重作弊行为,学校将从严处理,1,替他人考试或由他人替考,2.通讯工具作弊;3.组织作弊。

南京工业大学_通信原理 试题(A)卷(闭)

2020-2021 学年第 1 学期 使用班级 通信 1801-02

课程目标 1 题目:

- 1. (10 分)设有一个四进制通信系统,传输的内容由四个符号组成,其中前三个符号的出现概率分别为 1/4, 1/8, 1/8, 且各符号的出现是相互独立的。假设该传输系统每隔 0.4ms 发送一个符号
 - 1) 试计算该符号集的平均信息量。
 - 2) 该系统的信息传输速率;

- - 1) 请写出信道容量公式,并说明影响信道容量的因素;
 - 2) 在 NRZ 和曼彻斯特编码中选择一个合适的基带编码方式来传输该信号,说明理由;
 - 3) 假设数据的符号速率为 115200, 请计算无失真传输该信号所需要的信噪比。

南京工业大学 第1页共6页

- 3. (10分)已知信码序列为 1011/000d000d0101,
 - 1) 使用 AMI 码及 HDB, 码对该信码进行编码, 写出编码结果;
 - 2) 基于频谱特性, 说明 AMI 和 HDB, 码相对于单极性非归零码的性能改善。
 - 3) 将 HDB3 编码+1/100-/+100+1/-1+1 泽为原始信码

课程目标2题目:

4. (5分)观察以下两张图片所呈现的两个随机过程 X(t)和 Y(t):

- 1) 从随机变量和样本函数角度出发,说明什么是随机过程;
- 2) 从随机过程的数字特征的角度,说明 X(t)和 Y(t)的异同点。

- 5. (15分)设随机过程 $Y(t)=X_1\cos\omega_0t-X_2\sin\omega_0t$,若 X_1 与 X_2 是彼此统计独立且均值为
 - 0- 方差为 o² 的高斯随机变量, 试求;
 - 1) E[Y(t)] . E[Y 1(t)] :
 - 2) Y(t) 的一维概率密度函数 f(y):
 - 3) Y(t) 的相关函数 R(t₁,t₂)。

- (15 分)已知2个已调信号表示式: s₁(t) = cos Ωt cos ω_ct; s₂(t) = (1+0.5 sin Ωt) cos ω_ct, 式 中ω_c = 6Ω, 2个已调信号中的调制信号分别为 cosΩt 和 0.5sinΩt
 - 1) 圖出 sz(t)的波形图和频谱图:
 - 2) 计算 s2(t)的调制效率:
 - 3) 哪一个信号可以采用非相干解调的方案,说明理由;
 - 4) 用相干法对 s1(t)进行解调, 绘制解调器的框图。

/南京1.型大学 和 3 页 共 6 页

- 7. (10 分) 设某 2FSK 调制系统的码元速率为 2000Baud, 己调信号的载频分别为 6000Hz (对应"1"码) 和 4000Hz (对应"0"码)。
 - 1) 若发送的信息序列为 1011001, 试画出 2FSK 信号的时间波形;
 - 2) 试画出 2FSK 信号的功率谱密度示意图,并计算 2FSK 信号的第一谱零点带宽。
 - 3) 选择什么合适的解调方法解调该 2FSK 信号,说明理由并绘制解调器的框图。

- 8. (15 分)对基带信号 $m(t)=\cos 2000\pi t + 2\cos 4000\pi t$ 进行理想抽样,为了在接收端能不失真地从抽样信号 $m_s(t)$ 中恢复 m(t)。
 - 1) 绘制基带信号 m(t)的幅度谱;
 - 2) 结合低通抽样定理说明针对 m(t)信号, 抽样间隔应如何选择;
 - 3) 若抽样间隔取为 0.2ms, 试画出已抽样信号 m_s(t)的幅度谱;
 - 4) 请画出从抽样信号 m_s(t)中恢复 m(t)的过程中需要的滤波器的频率响应。、

- 9. (10分)观察下图所示的星座图:
 - 1) 请说明该星座图所代表的调制方式,并写出该信号的表达式。
 - 2) 请按照正交平衡调制的方法,构造一个调制发生器的框图:
 - 3) 按照括号内所示星座点的坐标(x,y), 计算两个调制的平均功率

诚信考试,公平竞争;以实力争取过硬成绩,以诚信展现良好学风。 以下三种行为是严重作弊行为,学校将从严处理: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.组织作弊。

南京工业大学<u>通信原理</u>试题(A)卷(闭)

2021 -2022 学年第 1 学期 使用班级 _____通信 1901-02__

	班级				学号.			姓名		
课程 目标	课程目标 1			课程目标 2			课程目标3	课程目标 4		
题号	81	2	3	4	5	6	7	8	9	总分
得分										

课程目标 | 题目:

- 一、(10分)设有一个记录学生成绩的数据库,其中,学生的成绩有优、良、中、差四种,出现概率分别为 1/8,1/2,1/4 和 1/8,且各学生的成绩的出现是相互独立的。数据库用 ABCD 四种符号来记录优、良、中、差四种成绩。其中一(11)班的 40 位同学某学期期末成绩为AABCBDCDBBCBCACBCCADDCBBBBBBBCDBBCBBCADBC。
 - 1) 试计算该系统的熵;
 - 2) 试计算一(11)班期末成绩的每符号的平均信息量;
 - 3) 对比1)和2),说明为何两者不同。

=、(10 分)某零均值平稳高斯白噪声(双边功率谱密度为 $\frac{n_0}{2}$)通过一个上限频率为 ω_H 的理想

低通滤波器,即 $H(\omega) = \begin{cases} 1 & |\omega| \leq \omega_H \\ 0 & |\omega| > \omega_H \end{cases}$ 试求:

- 1) 滤波器输出噪声的功率谱密度 $P_o(\omega)$, 自相关函数 $R_o(\tau)$, 输出功率 S_o ;
- 2) 输出噪声的一维概率密度函数f(x)。

四、(5分)请说明什么是通信系统的有效性和可靠性。表征模拟通信系统和数字通信系统的指标各有哪些。

课程目标 2 题目:

- 五、(10分)某基带通信系统采用 HDB3 编码发送一个二进制序列 1000 0100 0000 1100 0000 0011
 - 1) 简述 HDB3 编码的编码规则;

110 W 4 11-11 00 400 + V+ W 11 1

- 2) 说明 HDB3 编码主要要解决的问题:
- 2) 试写出发送序列经过 HDB3 编码后的输出序列:
- 3) 接收机收到了一个 HDB₃ 编码后的序列为: +1-1000+100-1000-100+1, 试写出编码前的原始序列。

六、(15 分)某调制信号 m(t)如图 a 所示,采用正弦载波调制后的已调信号如图 b 所示。m(t)信 号的频谱图如图c所示。

- 请说明,图b采用的是什么调制方式,说明该调制和DSB调制的主要区别; 1)
- 请写出该调制的已调信号的表达式; 2)
- 3) 请绘制该调制的调制器和非相干解调器框图;
- 假设调制方式改为 DSB 调制,请绘制已调信号波形图;
- 假设载波为 fc,请绘制该调制和 DSB 调制的已调信号频谱图。

七、(15分)某 2PSK 带通数字通信系统,接收机拟采用下图所示的解调器。

- 1) 根据上图判断拟采用的是什么解调方式,该解调方法的核心特征是什么;
- 2) 请写出上图中1、2、3、4各模块对应的处理环节的名称,并说明模块1的作用;
- 3) 假设符号速率为 1000 符号/Hz, 载波频率为 1000Hz, 发送符号为 0110, 请在下图中绘制 2PSK 的波形图, 并绘制解调器 a、b、c、d、e 各位置的波形图;
- 4) 请说明在采用平方环法时, b 处的波形是否唯一, 如果不唯一, 还可能是什么波形。

课程目标3题目:

八、(15 分)已知一低通信号 m(t)的频谱 M(f)为

$$M(f) = \begin{cases} 1 - \frac{|f|}{200} & \text{figure} \\ 0 & \text{figure} \end{cases}$$

- 1) 若以 fs=300Hz 的速率对 m(t)进行理想抽样, 试画出已抽样信号 m_s(t)的频谱草图;
- 2) 若以 fs=400Hz 的速率抽样, 重作 1);
- 3) 设计一个 DAC 方案,将 2)中的抽样信号还原成 m(t),画出方案的框图;
- 4) 说明 3) 中用到的滤波器的类型和频率响应;
- 5) 说明 1)中的抽样信号是否能够通过 3)的方案还原成 m(t);
- 6) 将 2) 中的抽样信号按 256 级进行量化,各级均匀分布且抽样点相互独立,计算数字化系统的信息速率。

南京工业大学 第 5 页 共 6 页

课程目标 4 题目:

- 九、(15 分)假设存在一个交流耦合通信场景,需要在该信道上传输二进制数字基带信号传输,信道中会叠加均值为0,方差为 δ^2 的高斯白噪声。
 - 1) 传输系统中存在发送滤波器 $G_{\tau}(\omega)$ 、传输信道 $C(\omega)$ 、加性噪声 n(t)、接收滤波器 $G_{R}(\omega)$ 、及抽样判决器等模块,请将下图补充完整,并说明各模块的作用;

- 2) 假设存在两种传输设备,一种采用电平为 3v 和 0v 单极性信号传输,一种采用±3v 双极性信号传输,请选择合理的设备,并说明选择的理由;
- 3) 根据 2)的选择,试写出发送"1"时,抽样判决器的输入信号的一维概率密度函数。画出抽样信号的概率密度函数曲线图,假设判决门限电平为 Vd,标出发生错误判决的区间;
- 4) 设发送"1"和"0"独立,且概率分别为 P(1)和 P(0),写出系统的总的错误概率和系统的最佳判决门限表达式。