P425/2
Applied Mathematics
Paper 2
July/August 2022
3 hours

BUGANDA EXAMINATIONS COUNCIL MOCKS

Uganda advanced Certificate of Education

Applied Mathematics

Paper 2

3hours

INSTRUCTIONS TO CANDIDATES:

- Answer **ALL** the eight questions in Section A and <u>ONLY</u> 5 from Section B.
- All working MUST be clearly shown.
- Mathematical tables with a list of formulars and graph paper will be provided.
- *Use a silent non programmable calculator.*
- State the level of accuracy for answers got and indicate (tab) for Mathematics tables and (cal) for calculator used.
- Begin each answer on a fresh paper and use g = 9.8 m/s for numerical work.

SECTION A (40 MARKS)

- 1. Events A and B are such that $P(A) = \frac{1}{2}$, $P(B) = \frac{3}{8}$ and $P(A/B) = \frac{7}{12}$. Find
 - i). $P(A \cap B)$

ii).
$$P\left(\frac{B}{A}\right)$$
. (05 marks)

2. A discrete random variable x has a cumulative distribution function (c.d.f) as shown below.

X	1	2	3
F(x)	K	4k	9k

Find

- i). k
- ii). Mean k

iii).
$$P(x \ge 2)$$
. (05 marks)

- 3. Three men A, B and C took part in a shooting contest. The probability that A hits the target is $\frac{1}{3}$, B and C have corresponding probabilities of $\frac{1}{5}$ and $\frac{1}{7}$.
 - (i) Make a tree diagram for the above.
 - (ii) Find the probability that only two men will hit the target. (05 marks)
- 4. Use the trapezium rule with 5 ordinates to estimate:

$$\int_0^4 x e^{-x} dx$$
, correct to 3 decimal places. (05 marks)

5. Two examiners V and W each marked the papers of ten candidates who sat a mathematics examination. The table shows the examiners' ranking of the candidates. Calculate spearman's rank, correlation coefficient and comment on your result.

Table 1

Examiners	A	В	С	D	E	F	G	Н	Ι	J
V	5	3	6	1	4	7	2	10	8	9
W	6	3	7	2	5	4	1	10	9	8

(05 marks)

- 6. A particle of weight 20N rests on a rough horizontal ground and the coefficient of friction between the particle and ground is μ . Force P acting upwards at 30° to the horizontal, is just enough to move the particle. Show that $P = \frac{40\mu}{\mu + \sqrt{3}}$. (05marks)
- 7. Over a long period, it's found that the mass of soap powder in certain packets is normally distributed with standard deviation of 15g. Find the 95% confidence limits for mean of the distribution if the mean of a random sample of size 25 is 842g. (05 marks)
- 8. A particle initially is at a point $P_0 = (3i + 5j 8k)m$ with a constant speed of 25m/s in direction of $\underline{u} = 3j + 5k$. Find;

The constant velocity of the particle and its final position after 10 seconds. (05marks)

SECTION B (60 MARKS)

9. The table below shows the distribution of marks of 80 students in S.6 mock examination.

Marks	10-<20	20-<30	30-<40	40-<50	50-<60	60-<70	70-<80	80-<90	90-<100
No.									
Of	2	3	9	10	14	19	11	8	4
students									

- a) Calculate;
 - i. Mean
 - ii. Standard deviation.
- b) Plot an ogive for the distribution and use it to estimate;
 - (i) Median
 - (ii) Pass mark if 60 students passed.

(12 *marks*)

- 10a) Box A contains 4 red sweets and 3 green sweets. Box B contains 5 red sweets and 6 green ones. Box A is twice likely to be picked as box B. If a box is chosen at random and two sweets are removed from it one at a time without replacement,
 - (i) Find the probability that the two sweets removed are of same colour.
 - (ii) Construct the probability distribution table for the number of red sweets picked.
 - (iii) Find the mean number of red sweets.

(7marks)

b) A random variable has a pdf given by $f(x) = \begin{cases} k(1-x^2), & 0 \le x \le 1 \\ 0, & elsewhere \end{cases}$

Determine;

- (i) the value of the constant k.
- (ii) Mean of x.

(5marks)

11a) Show that the Newton Raphson Formula for approximating the root of equation

$$xe^{x} = 10 - 5x$$
 is $X_{n+1} = \frac{X_n^2 e^{X_n} + 10}{e^{X_n} (X_n + 1) + 5}$.

- b) Draw a corresponding flow chart that;
 - i. Reads the initial approximation X_0 .
 - ii. Counts the number of interactions as 4.
 - iii. Computes the root to two decimal places.
 - iv. Prints the root. Hence perform a dry run taking X_0 as 1.13.

(12 marks)

- 12a) A uniform beam of weight W and length 2b rests in equilibrium with one end, A, against a smooth vertical wall and the other end, B on a rough horizontal floor. The plane through AB meets the line of intersection of the wall and the floor at point O.
 - iii. Calculate the normal reactions at A and B.
 - iv. Show that friction force is $\frac{W}{2\tan\theta}$, where θ is angle the beam makes with horizontal.
 - v. If the beam slips when a man of weight 2W climbs $\frac{3}{2}b$ upward and $\tan \theta = 3$, find the coefficient of friction between the floor and the beam.
- 13. An aircraft A is 8km due north of another aircraft B. Both are flying at the same height with constant velocity 150kmh⁻¹ due west and 200kmh⁻¹ N30⁰W respectively. After what time will the aircraft be closest together and how far apart will they be by then? (12 marks)
- 14a) The table below shows the values of function f(x) at a set of points.

x	0.9	1.0	1.1	1.2
f(x)	0.266	0.242	0.218	0.192

Use linear interpolation to find;

- i. Value of f(1.04)
- ii. The value of x corresponding to f(x)=0.25.

(06 marks)

b)i) Given that A=bcsin Θ as the formula to finding area of a triangle with error $|\Delta A|$ and the sides b and c subtending an angle Θ with errors $|\Delta b|$, $|\Delta c|$ and $|\Delta \theta|$ respectively. Prove that the expression for percentage error in area is given by;

$$\left(\left| \frac{\Delta b}{b} \right| + \left| \frac{\Delta c}{c} \right| + \cot \theta |\Delta \theta| \right) 100\%$$

- ii) The dimensions of a rectangle are 6.2cm and 5.36cm.
- iii) Find the range within which the area of the rectangle lie. (06 marks)

15a) The diagram below shows the three forces **P**, **R** and mg acting on a particle of mass m and as a result, producing the acceleration a horizontally. The surface is smooth. **R** is the normal reaction.

Prove that
$$\tan \theta = \frac{R - mg}{ma}$$
 (05 marks)

(b) A pulley system has loads 6kg and 3kg at the ends of the string and a movable pulley of mass 2kg as shown in the figure below.

Assuming that the pulleys A B and C are smooth, find;

- a. the acceleration of C.
- b. The tension in the string. (Leave acceleration due to gravity as g in your solution) (07 marks)

- 16. In a school of 800 students their average weight is 54.5kgand standard deviation is 6.8kg. if the weight of the students is assumed to be normally distributed, find;
 - (i) Probability that a student picked at random weighs 52.8 or less kg.
 - (ii) The number of students who weigh over 75kg.
 - (iii) The weight range of the middle 56% of the students in the school.

(12 marks)