

Teste Intermédio de Matemática A

Versão 1

Teste Intermédio

Matemática A

Versão 1

Duração do Teste: 90 minutos | 24.05.2012

12.º Ano de Escolaridade

Decreto-Lei n.º 74/2004, de 26 de março

RESOLUÇÃO

GRUPO I

1. Resposta (B)

Tem-se:
$$b = a^{\pi} \Leftrightarrow \log_a b = \pi$$

 $\log_a(a^{12} \times b^{100}) = \log_a(a^{12}) + \log_a(b^{100}) = 12 + 100 \log_a b = 12 + 100 \pi \approx 326$

2. Resposta (D)

Como
$$\lim_{x\to 0^+} f(x) = -\infty$$
, tem-se $\lim_{x\to 0^+} \frac{1}{f(x)} = 0$. Tal permite excluir as opções B e C.

Como a bissetriz dos quadrantes ímpares é assíntota do gráfico de f, tem-se que $\lim_{x \to +\infty} f(x) = +\infty$ e, portanto, $\lim_{x \to +\infty} \frac{1}{f(x)} = 0$. Tal permite excluir a opção A.

3. Resposta (A)

Das informações dadas no enunciado, podemos concluir, por aplicação do teorema de Bolzano, que a função f-g tem pelo menos um zero em]2,3[. Portanto, $\exists\,c\in]2,3[$: f(c)-g(c)=0, ou seja, $\exists\,c\in]2,3[$: f(c)=g(c), pelo que os gráficos das funções f e g se intersectam em pelo menos um ponto.

4. Resposta (D)

$$\overline{A} \cap \overline{B} = \overline{A \cup B}$$

5. Resposta (C)

Tem-se
$$|z| = \overline{OQ}$$

Aplicando o teorema de Pitágoras, tem-se:

$$\overline{OQ}^{2} = \left(\frac{\overline{OQ}}{2}\right)^{2} + \left(\sqrt{3}\right)^{2} \Leftrightarrow \overline{OQ}^{2} = \frac{\overline{OQ}^{2}}{4} + 3 \Leftrightarrow 4\overline{OQ}^{2} = \overline{OQ}^{2} + 12 \Leftrightarrow \overline{OQ}^{2} = 4 \Leftrightarrow \overline{OQ} = 2 \quad \text{Portanto, } |z| = 2$$

Como o triângulo [OPQ] é equilátero, tem-se $Q\hat{O}P = \frac{\pi}{3}$

Portanto, um argumento de z é $\pi + \frac{\pi}{6} = \frac{7\pi}{6}$

GRUPO II

1.
$$\frac{\left(\sqrt{2}i\right)^{3} \times \operatorname{cis}\frac{\pi}{4}}{k+i} = \frac{2\sqrt{2}i^{3} \times \left(\operatorname{cos}\frac{\pi}{4} + i\operatorname{sen}\frac{\pi}{4}\right)}{k+i} = \frac{-2\sqrt{2}i \times \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)}{k+i} =$$

$$= \frac{-2i-2i^{2}}{k+i} = \frac{2-2i}{k+i} = \frac{(2-2i)(k-i)}{(k+i)(k-i)} = \frac{2k-2i-2ki+2i^{2}}{k^{2}+1} = \frac{2k-2+(-2-2k)i}{k^{2}+1} =$$

$$= \frac{2k-2}{k^{2}+1} + \frac{-2-2k}{k^{2}+1}i$$

Para esta expressão designar um número real, $\frac{-2-2k}{k^2+1}$ tem de ser igual a zero, pelo que k=-1

2.1. Seja X o número de vezes que, nas cinco realizações da experiência, sai bola preta.

Tem-se que X é uma variável aleatória com distribuição binomial.

A probabilidade de sair bola preta, em cada realização da experiência, é $\frac{2}{3}$

$$P(X \ge 4) = P(X = 4) + P(X = 5) = {}^{5}C_{4} \times \left(\frac{2}{3}\right)^{4} \times \left(\frac{1}{3}\right)^{1} + {}^{5}C_{5} \times \left(\frac{2}{3}\right)^{5} \times \left(\frac{1}{3}\right)^{0} =$$

$$= 5 \times \frac{16}{81} \times \frac{1}{3} + \frac{32}{243} = \frac{80}{243} + \frac{32}{243} = \frac{112}{243}$$

2.2. No contexto da situação descrita, $P(\overline{B} \mid A)$ é a probabilidade de as bolas retiradas da caixa 2 serem de cores diferentes, sabendo que as bolas retiradas da caixa 1 são da mesma cor.

Dado que as bolas retiradas da caixa 1 são da mesma cor, elas são necessariamente pretas, pelo que a caixa 2 fica com três bolas brancas e seis bolas pretas, num total de nove bolas.

Retiramos então duas bolas dessas nove, e queremos determinar a probabilidade de elas serem de cores diferentes, ou seja, de uma ser branca e a outra ser preta.

Existem 9C_2 maneiras diferentes de tirar simultaneamente duas bolas, de entre nove. Por isso, o número de casos possíveis é 9C_2

Existem 3×6 maneiras diferentes de tirar simultaneamente uma bola branca e uma bola preta. Por isso, o número de casos favoráveis é 3×6

Assim, a probabilidade pedida é $\frac{3\times 6}{{}^{9}C_{2}} = \frac{1}{2}$

3.1. Tem-se
$$\sin x = \frac{\overline{PQ}}{\overline{PB}} = \frac{\overline{PQ}}{2}$$
, pelo que $\overline{PQ} = 2 \sin x$

Tem-se
$$\cos x = \frac{\overline{BQ}}{\overline{PB}} = \frac{\overline{BQ}}{2}$$
, pelo que $\overline{BQ} = 2\cos x$

Portanto.

$$A(x) = \frac{\overline{AQ} \times \overline{PQ}}{2} = \frac{(2 + 2\cos x) \times 2\sin x}{2} = (2 + 2\cos x) \times \sin x =$$

 $= 2 \operatorname{sen} x + 2 \operatorname{sen} x \operatorname{cos} x = 2 \operatorname{sen} x + \operatorname{sen}(2x)$

3.2.
$$A'(x) = [2 \operatorname{sen} x + \operatorname{sen}(2x)]' = 2 \cos x + 2 \cos(2x)$$

 $A'(x) = 0 \Leftrightarrow 2 \cos x + 2 \cos(2x) = 0 \Leftrightarrow \cos x + \cos(2x) = 0 \Leftrightarrow$
 $\Leftrightarrow \cos x = -\cos(2x) \Leftrightarrow \cos x = \cos(\pi - 2x)$

Em \mathbb{R} . tem-se:

$$\cos x = \cos (\pi - 2x) \Leftrightarrow x = \pi - 2x + 2k\pi \lor x = -(\pi - 2x) + 2k\pi, k \in \mathbb{Z} \Leftrightarrow$$
$$\Leftrightarrow 3x = \pi + 2k\pi \lor -x = -\pi + 2k\pi, k \in \mathbb{Z} \Leftrightarrow x = \frac{\pi}{3} + \frac{2k\pi}{3} \lor x = \pi - 2k\pi, k \in \mathbb{Z}$$

Portanto, no intervalo $\left[0, \frac{\pi}{2}\right]$, a equação A'(x) = 0 tem apenas uma solução: $\frac{\pi}{3}$

Tem-se, então, o seguinte quadro:

х	0		$\frac{\pi}{3}$		$\frac{\pi}{2}$
A'	n.d.	+	0	_	n.d.
A	n.d.	1	Máx.	`	n.d.

Portanto, existe um valor de x, $\frac{\pi}{3}$, para o qual a área do triângulo [APQ] é máxima.

4.1. O declive da reta $r \in f'(2)$

O declive da reta $s \in f'(b)$

Como as retas $\,r\,$ e $\,s\,$ são paralelas, tem-se $\,f'(b)\!=\!f'(2)\,$

Portanto, uma equação que traduz o problema é $\ f'(x) = f'(2)$

Tem-se
$$f'(2) = 2^2 - 4 \times 2 + \frac{9}{2} - 4 \ln 1 = 4 - 8 + \frac{9}{2} = \frac{1}{2}$$

Portanto,
$$f'(x) = f'(2) \Leftrightarrow f'(x) = \frac{1}{2}$$

Temos, portanto, de resolver a equação $f'(x) = \frac{1}{2}$

Recorrendo à calculadora, podemos visualizar o gráfico de f' e a reta de equação $y = \frac{1}{2}$

Como era de esperar, 2 é uma das soluções da equação $f'(x) = \frac{1}{2}$

A outra solução é $\,b\,$

Portanto, $b \approx 4,14$

4.2. Tem-se $f''(x) = \left[x^2 - 4x + \frac{9}{2} - 4\ln(x-1)\right]' = 2x - 4 - \frac{4}{x-1}$

Como $x \in]1, +\infty[$, tem-se:

$$2x-4-\frac{4}{x-1}=0 \Leftrightarrow (2x-4)(x-1)-4=0 \Leftrightarrow$$

$$\Leftrightarrow 2x^2 - 2x - 4x + 4 - 4 = 0 \Leftrightarrow 2x^2 - 6x = 0 \Leftrightarrow x(2x - 6) = 0 \Leftrightarrow 2x - 6 = 0 \Leftrightarrow x = 3$$

Como o único zero da segunda derivada é 3, é esta a abcissa do ponto de inflexão.

5. A função f é contínua em x=2 se existir $\lim_{x\to 2} f(x)$ e se esse limite for igual a f(2)

Tem-se:

•
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{xe^{x} - 2e^{2}}{x - 2} \stackrel{0}{=}$$
 $y = x - 2$

$$= \lim_{y \to 0^{-}} \frac{(y + 2)e^{y+2} - 2e^{2}}{y} = \lim_{y \to 0^{-}} \frac{ye^{y+2} + 2e^{y+2} - 2e^{2}}{y} = \lim_{y \to 0^{-}} \frac{ye^{y+2} + 2e^{2}(e^{y} - 1)}{y} = \lim_{y \to 0^{-}} \left(\frac{ye^{y+2}}{y} + \frac{2e^{2}(e^{y} - 1)}{y} \right) = \lim_{y \to 0^{-}} e^{y+2} + 2e^{2} \times \lim_{y \to 0^{-}} \frac{e^{y} - 1}{y} = e^{2} + 2e^{2} \times 1 = 3e^{2}$$

•
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \left[3e^x + \ln(x-1) \right] = 3e^2 + \ln 1 = 3e^2$$

•
$$f(2) = 3e^2$$

Portanto, f é contínua em x = 2