

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds

Yujia Huang, Huan Zhang, Yuanyuan Shi, J Zico Kolter, Anima Anandkumar

Caltech

CMU

UCSD

CMU & Bosch

Caltech & NVIDIA

Adversarial Robustness

[Goodfellow et. al., ICLR 2015]

Certified Robustness

Certified Robustness

For $\forall x$ such that $||x - x_0||_p \le \delta$, the neural network f outputs the same class.

Certifiable training

- Bound the neural network output given input perturbation
- Compute the worst-case logit over the bounded output region
- Train with the worst-case logit (using worst-case logit to replace normal logit in cross-entropy loss)

Global v.s. Local Lipschitz constant

Definition: Function f(x) satisfies a Lipschitz condition over a set D if a constant L > 0 exists with

 $|f(x_1) - f(x_2)| \le L|x_1 - x_2|, \forall x_1, x_2 \in D. L_D$ is the Lipschitz constant over set D.

- If D = Domain(f), L_D is called **global** Lipschitz constant.
- If $D = \{x \mid |x x_0| \le \delta\}$, L_D is called **local** Lipschitz constant.

Local Lipschitz constant ≤ **Global Lipschitz constant**

Certified Defenses via Global Lipschitz bound

Certified Defenses via Local Lipschitz bound

Our approach: An Efficient Local Lipschitz Bound

ReLU outputs under perturbation

Input Output
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \operatorname{ReLU} \left(\begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right)$$

$$\begin{cases} |x_1| \\ |y_2| = |x_1| \\ |y_2| = |x_1| \\ |y_2| = |x_1| \\ |y_2| = |x_2| \\ |y_2| = |x_1| \\ |y_1| = |x_1| \\ |y_2| = |x_1| \\ |y_1| = |x_1| \\ |y_2| = |x_1| \\ |y_1| = |x_1| \\ |y_2| = |x_1|$$

$$L_{\text{local}}(x) = \left\| W^L I_V^{L-1} \right\|_2 \left\| I_V^{L-1} W^{L-1} I_V^{L-1} \right\|_2 \dots \left\| I_V^1 W^1 \right\|_2$$

Global Lipschitz bound
$$\|\Delta y\| \le \left\| \begin{matrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{matrix} \right\| \|\Delta x\|$$

Local Lipschitz bound at $x \|\Delta y\| \le \|W_{21}\|$ $W_{22} || || \Delta x ||$

Provable tightness of our Local Lipschitz Bound

- Global Lipschitz bound: $L_{\text{global}} = \prod_{i=1}^{K} ||W_i||_2$ (1)
- Local Lipschitz bound: $L_{\text{local}}(x) = \|W^L I_V^{L-1}\|_2 \|I_V^{L-1} W^{L-1} I_V^{L-1}\|_2 ... \|I_V^1 W^1\|_2$ (2)

 I_V : Indicator matrix for varying ReLU outputs

Theorem: For any x and L-layer ReLU neural network, the local Lipchitz bound calculated via (2) is no larger than the global Lipschitz bound in (1), i.e.

$$L_{local}(x) \leq L_{global}$$

A new activation function for tighter local Lipschitz bound

ReLU θ outputs under perturbation

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & W_{23} \\ W_{31} & W_{32} & W_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} 0 \\ y_2' \\ \theta \end{bmatrix} = \text{ReLU} \begin{pmatrix} \begin{bmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & W_{23} \\ W_{31} & W_{32} & W_{33} \end{bmatrix} \begin{bmatrix} x_1' \\ x_2' \\ x_3' \end{bmatrix} + \begin{pmatrix} 0 \\ 0 \\ \theta \end{pmatrix}$$

Local Lipschitz bound at $x \quad ||\Delta y|| \le ||W_{21} \quad W_{22} \quad W_{23}||||\Delta x||$

• This trick can be applied to other activation functions such as MaxMin [Anil et. al., ICML 2019].

Certified Robustness

Our method (Local Lipschitz bound) outperforms state-of-the-art methods

- On Various datasets: MNIST, CIFAR-10 and Tiny-imagenet
- With different activation functions: ReLU or clipped MaxMin

CIFAR-10, ReLU activations, $\epsilon = 36/255$

CIFAR-10, MaxMin activations, $\epsilon = 36/255$

Certified Robustness - continued

Our method (Local Lipschitz bound) outperforms state-of-the-art methods

- On Various datasets: MNIST, CIFAR-10 and Tiny-imagenet
- With different activation functions: ReLU or clipped MaxMin

Tiny-Imagenet, ReLU activations, $\epsilon = 36/255$

Tiny-Imagenet, MaxMin activations, $\epsilon = 36/255$

Tightness of our local Lipschitz bound

Global and average local Lipschitz bound during training

- Our local Lipschitz bound is always tighter than the global Lipschitz bound.
- Directly applying our bound on a trained network has much less improvement (red curves).
- It is crucial to incorporate Local Lipschitz bound during training.

Better clean loss and robust loss

- Larger global Lipschitz bound in the beginning of training.
- Larger model capacity and easier training in the early stage.
- Improvement of both clean loss and robust loss.

Sparsity of varying ReLU outputs

- Dense varying ReLU neurons leads to better clean accuracy but worse robustness.
- Incorporate local Lipschitz bound during training to allow for denser varying ReLU neurons without hurting robustness.

Summary

- We propose an efficient and trainable Local Lipschitz bound.
- The proposed local bound is **provably tighter** than the global Lipschitz bound.
- Our method outperforms state-of-the-art methods on L2 certified robustness.

Our code is available at https://github.com/yjhuangcd/local-lipschitz.

Thank You!