Candidate's Name:	 •••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
Signature	Ran	dom	No.		Per	sonal	No.
Signature:							

(Do not write your School /Centre Name or Number anywhere on this booklet.)

P525/1

CHEMISTRY

Paper 1 (Theory) Nov./Dec. 2024

23/4 hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1 (Theory)

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

This paper consists of two Sections; A and B.

Section A is compulsory. Attempt six questions from Section B. Any additional question(s) attempted will not be marked.

All questions must be answered in the spaces provided. Use blue or black ink. Any work done in pencil, except drawings, will not be marked.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or silent non-programmable scientific electronic calculators may be used.

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant, $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$.

Molar volume of gas at s.t.p. is 22.4 litres.

Standard temperature = 273 K.

Standard pressure = 101325 Nm^{-2} .

						Fo	r Ex	amir	ners'	Use	Only						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

© 2024 Uganda National Examinations Board

SECTION A: (46 MARKS)

Answer all the questions in this section.

	Define the term standard electrode potential.	(01 mark)
•••••		
•••••	The second of th	
••••••		
(b) 7	The standard electrode potentials of some half cells rea	ctions are give
	to the second of	$E^{\theta}(V)$
C	$Co^{2+}(aq) + 2e \longrightarrow Co(s)$	-0.28
Z	$2n^{2+}(aq) + 2e \longrightarrow Zn(s)$	-0.76
C	$Cl_{2(aq)} + 2e \longrightarrow 2Cl_{(aq)}$	+1.36
M	$InO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5e \longrightarrow Mn^{2+}_{(aq)} + 4H_{2}O_{0}$	i) +1.52
	agont.	(01 mari
	agent.	(01 mark
		(01 marl
(ii)	Write the cell notation of the cell constructed by	combining the
(ii)	Write the cell notation of the cell constructed by half cells $Co^{2+}_{(aq)} / Co_{(s)}$ and $Zn^{2+}_{(aq)} / Zn_{(s)}$	_
	Write the cell notation of the cell constructed by half cells $Co^{2+}_{(aq)}/Co_{(s)}$ and $Zn^{2+}_{(aq)}/Zn_{(s)}$	combining the
(ii)	Write the cell notation of the cell constructed by half cells $Co^{2+}_{(aq)}/Co_{(s)}$ and $Zn^{2+}_{(aq)}/Zn_{(s)}$	combining the (01 mar) for the cell
	Write the cell notation of the cell constructed by half cells $Co^{2+}_{(aq)}/Co_{(s)}$ and $Zn^{2+}_{(aq)}/Zn_{(s)}$ Write the equation for the overall cell reaction in b(ii).	combining the (01 mar) for the cell
(iii)	Write the cell notation of the cell constructed by half cells $Co^{2+}_{(aq)}/Co_{(s)}$ and $Zn^{2+}_{(aq)}/Zn_{(s)}$ Write the equation for the overall cell reaction in b(ii).	combining the s). (01 mark for the cell (01 mark
(iii)	Write the cell notation of the cell constructed by half cells $Co^{2+}_{(aq)} / Co_{(s)}$ and $Zn^{2+}_{(aq)} / Zn_{(s)}$ Write the equation for the overall cell reaction in b(ii). Calculate the e.m.f. of the cell in b(ii).	combining the (01 mark) for the cell (01 mark)
(iii)	Write the cell notation of the cell constructed by half cells $Co^{2+}_{(aq)}/Co_{(s)}$ and $Zn^{2+}_{(aq)}/Zn_{(s)}$ Write the equation for the overall cell reaction in b(ii).	combining the (01 mark) for the cell (01 mark)

2.	Nylon 6, 6	$-N$ —(CH_2	O ₀₆ N—C(CH ₂) 	$\binom{O}{4C}$	is formed by
----	------------	----------------	--	-----------------	--------------

condensation polymerisation.

(a)	State the meaning of the term condensation polymerisation.	(01 mark)
(b)	(i) Write the structural formula(e) and name(s) of the m nylon 6, 6.	
	a zamen jer alikur (mostara jednjena ljena) sejodinski	
	(ii) State one use of nylon 6, 6.	(01 mark)

Draw the structure and name the shape of each of the following ions in Table 1: 3. Table 1 (4½ marks)

Ion	Structure	Name of shape
NO ₃		
SO ₃ ²⁻		
NH4 ⁺		

4. C	omplete the	following	equations	and name	the major	organic	product:
------	-------------	-----------	-----------	----------	-----------	---------	----------

(a) $CH_3COOH \xrightarrow{PCl_5}$

...... (1½ marks)

Name

(b)
$$CH_3$$
 Al_3O_3
 $Heat$

.....(1½ marks)

Name

(c) (CH₃COO)₂Ca — Heat

...(1½ marks)

Name

(d)
$$OH CH_3COC$$
AlCl₃

.....(1½ marks)

Name

- 5. The vapour pressure of propanone is 37330 Nm⁻² at 30 °C. When 33.4 g of cane sugar were dissolved in 120 g of propanone, the vapour pressure reduced by 1760 Nm⁻².
 - (a) Calculate the molar mass of cane sugar.

 $(2\frac{1}{2} \text{ marks})$

(b) Explain why the vapour pressure of the solution is lower than that of propanone. (1½ marks)

Complete the following equations and in each case write the mechanism for the reaction(s): (a) CH ₃ CH ₂ OH Conc.H ₂ SO ₄ (3½ marks) Mechanism: (b) Explain why potassium manganate(VII) is not acidified using hydrochloric acid. (2½ marks) (2½ marks) (3½ marks) Mechanism:	(a)	State what would be observed and wr that takes place when dilute hydrochl- potassium manganate(VI) solution.	-	,
Equation: (1½ marks) (b) Explain why potassium manganate(VII) is not acidified using hydrochloric acid. (2½ marks) Complete the following equations and in each case write the mechanism for the reaction(s): (a) $CH_3CH_2OH = \frac{Conc.H_2SO_4}{180 \text{ °C}}$ (3½ marks) Mechanism:		•	(1½ mark	(s)
Equation: (1½ marks) (b) Explain why potassium manganate(VII) is not acidified using hydrochloric acid. (2½ marks) Complete the following equations and in each case write the mechanism for the reaction(s): (a) CH_3CH_2OH $\frac{Conc.H_2SO_4}{180 ^{\circ}C}$ (3½ marks) Mechanism: (b) $\frac{Conc. HNO_3/Conc.H_2SO_4}{180 ^{\circ}C}$ (2½ marks)				
hydrochloric acid. (2½ marks) Complete the following equations and in each case write the mechanism for the reaction(s): (a) CH ₃ CH ₂ OH Conc.H ₂ SO ₄ (3½ marks) Mechanism: (b) Conc. HNO ₃ /Conc.H ₂ SO ₄ (2½ marks)		Equation:	(1½ mar)	 ks)
Complete the following equations and in each case write the mechanism for the reaction(s): (a) $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4} (3\frac{1}{2} \text{ marks})$ Mechanism: (b) $Conc. HNO_3/Conc.H_2SO_4 (2\frac{1}{2} \text{ marks})$	(b)			 ks)
Complete the following equations and in each case write the mechanism for the reaction(s): (a) $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4} (3\frac{1}{2} \text{ marks})$ Mechanism: (b) $COnc. HNO_3/Conc.H_2SO_4 (2\frac{1}{2} \text{ marks})$; 1	
Complete the following equations and in each case write the mechanism for the reaction(s): (a) $CH_3CH_2OH = \frac{Conc.H_2SO_4}{180 \text{ °C}} = \frac{(3\frac{1}{2} \text{ marks})}{(3\frac{1}{2} \text{ marks})}$ Mechanism:	::	,		
Complete the following equations and in each case write the mechanism for the reaction(s): (a) $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4} (3\frac{1}{2} \text{ marks})$ Mechanism: (b) $COnc. HNO_3/Conc.H_2SO_4 (2\frac{1}{2} \text{ marks})$, , , , , , , , , , , , , , , , , , ,	
Complete the following equations and in each case write the mechanism for the reaction(s): (a) $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4} (3\frac{1}{2} \text{ marks})$ Mechanism: (b) $COnc. HNO_3/Conc.H_2SO_4 (2\frac{1}{2} \text{ marks})$				
(b) $Conc. HNO_3/Conc. H_2SO_4$ (2½ marks		plete the following equations and in each	ch case write the mechanism fo	 r
(2½ marks	the re	plete the following equations and in eaction(s): $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4}$	ch case write the mechanism fo	
(2½ marks	the re	plete the following equations and in eaction(s): $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4}$ $Mechanism:$	ch case write the mechanism fo	
(2½ marks	the re	plete the following equations and in eaction(s): $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4}$ $Mechanism:$	ch case write the mechanism fo	
(2½ marks	the re	plete the following equations and in eaction(s): $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4}$ $Mechanism:$	ch case write the mechanism fo	
(2½ marks	the re	plete the following equations and in eaction(s): $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4}$ $Mechanism:$	ch case write the mechanism fo	
Mechanism:	(a)	plete the following equations and in eace eaction(s): $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4}$ Mechanism:	ch case write the mechanism fo	
	(a)	plete the following equations and in eace eaction(s): $CH_3CH_2OH \xrightarrow{Conc.H_2SO_4}$ Mechanism:	ch case write the mechanism fo	ks)
	(a)	plete the following equations and in each eaction(s): $CH_{3}CH_{2}OH \xrightarrow{Conc.H_{2}SO_{4}}$ $Mechanism:$ $Conc. HNO_{3}/Conc.H_{2}SO_{4}$	ch case write the mechanism fo	ks)
	(a)	plete the following equations and in each eaction(s): $CH_{3}CH_{2}OH \xrightarrow{Conc.H_{2}SO_{4}}$ $Mechanism:$ $Conc. HNO_{3}/Conc.H_{2}SO_{4}$	ch case write the mechanism fo	ks)
	(a)	plete the following equations and in each eaction(s): $CH_{3}CH_{2}OH \xrightarrow{Conc.H_{2}SO_{4}}$ $Mechanism:$ $Conc. HNO_{3}/Conc.H_{2}SO_{4}$	ch case write the mechanism fo	ks)
	(a)	plete the following equations and in each eaction(s): $CH_{3}CH_{2}OH \xrightarrow{Conc.H_{2}SO_{4}}$ $Mechanism:$ $Conc. HNO_{3}/Conc.H_{2}SO_{4}$	ch case write the mechanism fo	ks)

	Write an equation dissolved in water			dissolved in water.							
(b)	The hydrogen ion 2.5 × 10 ⁻¹³ mol 1 methylamine.	^{1−1} . Calcula	te the base dis	sociation co	solution is onstant K_b , o						
	(The ionic produc	ct of water, I	$K_{w} = 10^{-14} mo$	$(l^2 l^{-2})$							
					•••••••••••••••••••••••••••••••••••••••						
			· · · · · · · · · · · · · · · · · · ·								
						••••					
	***************************************			••••							
		**************************************	ki :azkori	Y 2.3	••••••	••••					
			i di kananan kanan k Kanan kanan ka								
		68 W 11 1 1	eranga saiv.	المراكبة والمراجع المراجع	ige saje je						
		***************************************			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••					
	first ionisation ener			ome elemen	ts of group(l	I)					
of the	e Periodic Table are			ome elemen	ts of group(I	I)					
of the	e Periodic Table are e 2	given in Ta	able 2.								
of the Tabl	e Periodic Table are e 2 nent			Calcium	ts of group(l						
of the Tabl	e Periodic Table are e 2	given in Ta	able 2.			I) Bariu 50					

SECTION B: (54 MARKS) Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 mar (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed. (i) Identify compounds P and R. (02 mar					
SECTION B: (54 MARKS) Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 mar.) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.	•••••				
SECTION B: (54 MARKS) Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 mar) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.	••••••	••••••			
SECTION B: (54 MARKS) Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 mar.) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.					,
SECTION B: (54 MARKS) Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 marked) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.	••••••		· · · · · · · · · · · · · · · · · · ·	**	
SECTION B: (54 MARKS) Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 marked) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.	•••••	•			
SECTION B: (54 MARKS) Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 marked) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.					
SECTION B: (54 MARKS) Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 marked) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.		gu ., ., ., ., ., .,			
Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 marked) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.	•••••				
Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 marked) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.	••••••••••••••••••••••••••••••••••••••				
Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 marked) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.					
Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 marked) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.		*** *** *** *** *** *** *** *** *** **		ga 'ala a kaaksa, hii 	
Answer any six questions from this section. Any additional question(s) answered will not be marked. The molecular formula of a compound P is C3H6Cl2. (a) Write the structural formulae of all the possible isomers of P. (02 marked) (b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.				and the second of	
(b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH2OH) in the presence of an and reduced Fehling's solution, was formed.	Wri	te the structural f	formulae of all the	e possible isom	
(b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH ₂ OH) in the presence of an and reduced Fehling's solution, was formed.			. 3 30 1 - 9		(02 11.61
(b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH ₂ OH) in the presence of an and reduced Fehling's solution, was formed.	••••••				
(b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH ₂ OH) in the presence of an and reduced Fehling's solution, was formed.				1 - 12 1	
(b) When P was boiled with aqueous sodium hydroxide, a compound which reacted with hydroxylamine (NH ₂ OH) in the presence of an and reduced Fehling's solution, was formed.					
which reacted with hydroxylamine (NH ₂ OH) in the presence of an and reduced Fehling's solution, was formed.					
and reduced Fehling's solution, was formed.					
	Whe	n P was boiled v	with aqueous sodi	ium hydroxide	a compound
	Whe whic	n P was boiled when reacted with hy	with aqueous sodi ydroxylamine (N	ium hydroxide, <i>H</i> 2 <i>OH</i>) in the	a compound
(1) Identity compounds I and It.	Whe whic	n P was boiled when the reacted with hyreduced Fehling	with aqueous sodi ydroxylamine (<i>N</i> g's solution, was	ium hydroxide, <i>H</i> 2 <i>OH</i>) in the	a compound I
	Whe which and it (i)	en P was boiled with hy reduced Fehling Identify compo	with aqueous soding ydroxylamine (Nowas solution, was bounds P and R .	ium hydroxide, <i>H2OH</i>) in the formed.	a compound I presence of an (02 ma
		molec	SECT Answer any Any additional que molecular formula of a	SECTION B: (54 MA Answer any six questions from Any additional question(s) answered molecular formula of a compound P is	SECTION B: (54 MARKS) Answer any six questions from this section. Any additional question(s) answered will not be managed to the managed of a compound P is C3H6Cl2.

		Write a mechanism for the reaction between R and hydroxylamine.	(05 marks)	
11.	(a)		two factors which affect the magnitude of lattice ene	rgy. (01 mark)
	(b)		thermochemical data are shown below:	
		Enth	alpy of atomisation of chlorine $= +122 \text{ kJ mol}^{-1}$. alpy of atomisation of magnesium $= +148 \text{ kJ mol}^{-1}$ ionisation energy of magnesium $= +738 \text{ kJ mol}^{-1}$	
		Secon Entha	and ionisation energy of magnesium = $+1451 \text{ kJ} \text{ m}$ alpy of formation of magnesium chloride = -641 kJ electron affinity of chlorine = $-364 \text{ kJ} \text{ mol}^{-1}$.	nol^{-1} .
		(i)	Construct an energy level diagram for the formation magnesium chloride.	of (03 marks)
= = = = = = = = = = = = = = = = = = = =				

	(ii)	Dete	rmine the lattice energy	y of magnesium c	hloride. (02 mark	s)
	(iii)	Calc	ulate the enthalpy of some of the solution of the land	solution of magne	sium chloride. (<i>03 mark</i>	 (3)
2.			characteristics of trans Explain how transitio	n metal ions form	complexes. (1½ mark	-
	name	of the	ne of some complex ic complex ion, its oxid he central metal ion.			
	Table	e 3				
_	Complex ion	l	Name of ion	Oxidation state	Co-ordination number	
(Ca	$\left(SCN\right)_4$	-				
C	(NHa) Cla	+	1 Ca 2 - 1			1

(c) The molecular mass of a salt, $Cu (NH_3)_{\mathbf{X}} Cl_{\mathbf{Y}} \cdot \mathbf{Z}H_2O$ is 276. When a solution containing 1.38 g of salt was reacted with excess silver nitrate solution, 2.87 g of silver chloride was formed. Calculate the number of moles of chloride ions in 1 mole of the salt. (02 marks)

							•••••••••••••••••••••••••••••••••••••••
	•••••						
			••••••				
•••••	•••••	•••••				••••••	
	••••••						
					,		•••••
(d)	Whe sodi	en a solution um hydroxid	containing le and heat	g 1.38g of to ted, the amount	he salt was nonia libera	mixed w	ith aqueous
	Calc	ulate the nur	mber of m	oles of;		. 1000	
	(i)	ammonia i	molecules	in 1 mole c	of the salt.	alt was mixed with aqueous ia liberated completely c acid. e salt. (1½ marks) (01 mark) ompounds can be synthesised eaction. (04 marks)	
			to show how the following compounds can be synthesised licate the conditions for the reaction.				
	•••••						•••••
			•••••				
						1.5	
						•••••	
	(ii)	water in 1	mole of th	e salt.	in the second	ath Vir.	(01 mark)
		· 47		·	. j. 6. 0	er rom	
•••••					••••••	31	
•••••		••••••	•••••		••••••	•••••	•••••
Write	the eq	uations to sh	now how t	he followin	g compour	nds can b	e synthesised
(a)			_	-			,
	•••••				••••••	•••••	

13.

		•••••		11 24			Turn Over					
		(ii)		value of the ed			for the (04 marks)					
	(a)	(i)	Write the exp	pression for the	equilibrium c	onstant, <i>I</i>	K_p . $(\frac{1}{2} mark)$					
		dm ³ ve nur dio	essel at 50 atmo xide.	spheres. At eq	uilibrium the v	essel cont	ained 20 %					
		•	sulphur dioxide	•*								
	2 <i>S</i> (O _{2 (g)} -	$+ O_{2(g)} =$	\Rightarrow 2 SO _{3 (g}	ΔH is negative.	tive.						
4.	the f	ollowi	oxide and oxygeng equation:		, - -		cording to					
				. <u></u>								

	(c)		$CH = CH_2$				(1½ marks)					
	(b)		Соосн,	from benzene).		(3½ marks)					

•••••	•••••		••••••
 (b)	State	e, giving reasons, how the concentration of sulphur t librium would be affected if;	
	(i)	pressure is increased. It managed above the and	(1½ marks)
	(ii)	temperature is increased.	$(1\frac{1}{2} marks)$
•••••			
	(iii)	an inert gas is added at constant pressure.	(1½ marks)
•••••			
	•••••		
		j a vada	
	• • • • • • • • • • • • • • • • • • • •		,
•••••			

(a)	State	(01 ma							
(b)	The bond dissociation energies of fluorine, chlorine, bromine and is are 158, 242, 193 and 151 kJ mol ⁻¹ respectively.								
	(i)	State the trend in the bond dissociation energies	of the eleme (1½ ma						
	········								
	(ii)	Explain your answer in (b)(i).	(3½ m						
(c)	Writ react	ydroxide sol							
	(i)	fluorine.	$(1\frac{1}{2}m$						
	(ii)	chlorine.	$(1\frac{1}{2})$ m						

16.	miscib	Propan-1-ol (boiling point 97 °C) and water (boiling point 100 °C) are miscible in all proportions. A mixture of the two liquids containing 72 % propan-1-ol boils at 88 °C.										
	(a)	Sketch a labelled boiling point—composition diagram fo propan-1-ol and water.	r the mixture of (03 marks)									
		,										
į												
		Briefly explain;										
	, ,	 (i) why propan-1-ol and water form a minimum bo mixture. 	iling point (04 marks)									
	•••••											
	••••••											

propan-1-ol is fractionally distilled.	(02 marks)
,	
d are elements in group(IV) of the Periodic Table. The elements with;	Describe the
water.	(03 marks
· · · · · · · · · · · · · · · · · · ·	
m hydroxide solution.	(21/ marks
	are elements in group(IV) of the Periodic Table. the elements with; water.

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1																1.0 H 1	4.0 He 2
6.9 Li 3	9.0 Be 4									i-		10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.5 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20		47.9 Ti 22	50.9 V 23	52.0 Cr 24					63.5 Cu 29	65.7 Zn 30	69.7 Ga 31	72.6 Ge 32		79.0 Se 34		83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44		106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	Bi	209 Po 84	At	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89						_					1				
			139 La 57	140 Ce 58		144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63	157 Gd 64		162 Dy 66		167 Er 68	169 Tm 69		175 Lu 71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93		243 Am 95			251 Cf 98	254 Es 99	257 Fn 100	256 Md 101		260 Lw 103

END