Ethan Zhou ECE584 Homework3

### Problem 1.

Consider the autonomous dynamical system

$$\dot{x} = f(x, t),$$

with initial set  $\Theta \subseteq \operatorname{val}(X)$ , and let  $V : \operatorname{val}(X) \to \mathbb{R}$  be a Lyapunov function for the system. Let S be a sublevel set of V, defined as

$$S = \{ x \in val(X) \mid V(x) \le c \}$$

for some constant  $c \in \mathbb{R}$ . Suppose  $\Theta \subseteq S$ . We will show that S is an inductive invariant of the system.

By assumption,  $\Theta \subseteq S$ , so the initial set is included in the candidate invariant. Thus, the initialization condition is satisfied.

Since V is a Lyapunov function, it satisfies:

$$\frac{d}{dt}V(x(t)) = \nabla V(x) \cdot f(x,t) \le 0.$$

This implies that V(x(t)) is non-increasing along any trajectory of the system. In particular, if  $x(0) \in S$ , then  $V(x(0)) \le c$ , and for all  $t \ge 0$ ,

$$V(x(t)) \le V(x(0)) \le c \Rightarrow x(t) \in S.$$

Hence, every trajectory starting in S remains in S for all future time.

Since  $\Theta \subseteq S$  and S is forward invariant under the dynamics, S is an inductive invariant of the system.

S is an inductive invariant.

Ethan Zhou ECE584 Homework3

#### Problem 2.

### (a) Convexity for Linear Systems

Claim: For the linear autonomous system

$$\dot{x} = Ax, \quad x \in \mathbb{R}^n,$$

if the initial set  $\Theta \subseteq \mathbb{R}^n$  is convex, then the set of reachable states at time t, denoted by  $\text{Reach}(\Theta, [t, t])$ , is also convex.

#### **Proof:**

The solution to the linear system at time t with initial condition  $x(0) = x_0$  is:

$$x(t) = e^{At}x_0.$$

Therefore, the reachable set at time t is:

$$\operatorname{Reach}(\Theta, [t, t]) = \{e^{At}x_0 \mid x_0 \in \Theta\}.$$

Let  $x_1, x_2 \in \Theta$ . Since  $\Theta$  is convex, for any  $\lambda \in [0, 1]$ , the point

$$x_{\lambda} = \lambda x_1 + (1 - \lambda)x_2 \in \Theta.$$

Then the corresponding reachable point is:

$$e^{At}x_{\lambda} = e^{At}(\lambda x_1 + (1 - \lambda)x_2) = \lambda e^{At}x_1 + (1 - \lambda)e^{At}x_2.$$

This is a convex combination of two reachable points, so it belongs to Reach $(\Theta, [t, t])$ .

Conclusion: The reachable set is closed under convex combinations, so it is convex.

## (b) Nonlinearity Can Break Convexity

**Example:** Consider the nonlinear system in  $\mathbb{R}^2$ :

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -x_1 + x_1^3.$$

This is the well-known Duffing oscillator. Let's choose the initial set:

$$\Theta = \{ x \in \mathbb{R}^2 \mid x_1 \in [-1, 1], x_2 = 0 \},\$$

which is a convex line segment along the  $x_1$ -axis.

Now consider the evolution of two initial points:  $-x^{(1)}(0) = [-1,0]^T$ ,  $-x^{(2)}(0) = [1,0]^T$ .

Because of the nonlinearity in the restoring force  $-x_1 + x_1^3$ , these two trajectories will curve in opposite directions in phase space. Their solutions  $x^{(1)}(t)$  and  $x^{(2)}(t)$  at some small t > 0 will lie on opposite sides of the origin in the  $x_2$ -direction.

Now consider the midpoint of the initial conditions:

$$x^{(3)}(0) = \frac{1}{2}x^{(1)}(0) + \frac{1}{2}x^{(2)}(0) = [0, 0]^{T}.$$

The origin is an unstable equilibrium point of the system. So at time t > 0, the state  $x^{(3)}(t)$  remains at the origin, while  $x^{(1)}(t)$  and  $x^{(2)}(t)$  move away from it.

Hence,

$$x^{(3)}(t) \neq \frac{1}{2}x^{(1)}(t) + \frac{1}{2}x^{(2)}(t),$$

and the convex combination of two reachable states does not necessarily correspond to a reachable state. Thus, the reachable set is not convex.

**Conclusion:** Nonlinear dynamics can distort trajectories so that the image of a convex initial set under the flow of the system is no longer convex.

### Problem 3.

1. AF  $f_1$  (infinitely often):

$$AF f_1 \equiv \neg EG \neg f_1$$

2. AG  $f_1$  (invariance):

$$AG f_1 \equiv \neg E true U \neg f_1$$

3. AFAG  $f_1$  (stabilization):

$$AFAG f_1 \equiv \neg EG EF \neg f_1$$

4. **A**  $f_1$  **U**  $f_2$ :

$$A(f_1 U f_2) \equiv \neg E(\neg f_2 U (\neg f_1 \wedge \neg f_2)) \wedge \neg EG \neg f_2$$

# Problem 4.

### CTL Automaton for AFAG



Figure 1: AF'AG

# CTL Automaton for AF



Figure 2: AF

### Problem 5.

We are given an automaton  $\mathcal{A} = \langle Q, Q_0, T, L \rangle$  with:

- States  $Q = \{s_0, s_1, s_2, s_3, s_4\}$
- Initial states  $Q_0 = \{s_0, s_3\}$
- Atomic propositions:  $AP = \{a, b\}$
- State labels (as seen in the diagram):

$$-L(s_0)=\emptyset$$

$$-L(s_1) = \{a\}$$

$$-L(s_2) = \{a, b\}$$

$$-L(s_3) = \{b\}$$

$$-L(s_4) = \{b\}$$

We are asked to evaluate two CTL formulas:

Formula 1:  $\varphi_1 = A(a U b) \vee EX(AG b)$ 

- (a) First, we analyze A(a U b). This formula states that on *all* paths, eventually *b* must hold, and until then, *a* must hold.
  - $s_1 \to s_2$ : this path satisfies a U b.
  - $s_2$ : both a and b hold at once this trivially satisfies a U b.
  - $s_0$ : does not satisfy the formula, since  $L(s_0) = \emptyset$  a does not hold initially.
  - $s_3$ : a never holds; hence, the formula fails.
  - $s_4$ : similar to  $s_3$ , only b holds.

Therefore, the states satisfying A(a U b) are:

$$\{s_1,s_2\}$$

- (b) Now consider EX(AGb) "there exists a next state where b holds globally on all paths."
  - AGb holds in  $s_3$  and  $s_4$  because they loop on themselves and are labeled with  $\{b\}$ .
  - $s_0$  has a transition to  $s_4$ , so  $s_0 \models EX(AGb)$ .
  - $s_2 \rightarrow s_3$ : so  $s_2$  also satisfies the formula.

Thus, the states satisfying EX(AGb) are:

Ethan Zhou ECE584 Homework3

(c) Taking the union (since it's a disjunction), the states satisfying  $\varphi_1$  are:

$$\{s_0, s_1, s_2\}$$

(d) Since one of the initial states  $(s_0)$  satisfies the formula, we conclude that the automaton  $\mathcal{A} \models \varphi_1$ .

Formula 2:  $\varphi_2 = AGA(aUb)$ 

This formula says: on all paths, globally, it must hold that  $A(a \cup b)$  is true from every reachable state.

- From  $s_0$ , we already saw that  $s_0 \not\models A(a U b)$ , so the formula fails immediately.
- From  $s_3$ , a never holds so  $s_3 \not\models A(a U b)$  either.
- Therefore, no path from the initial states maintains the invariant required by  $\varphi_2$ .

Hence, no state satisfies  $\varphi_2$ , and:

$$\mathcal{A} \not\models \varphi_2$$

### Final Answer Summary

- $\varphi_1 = A(a U b) \vee EX(AG b)$ :
  - Satisfying states:  $\{s_0, s_1, s_2\}$
  - $-\mathcal{A} \models \varphi_1$ : Yes
- $\varphi_2 = AG A(a U b)$ :
  - Satisfying states:  $\emptyset$
  - $-\mathcal{A} \models \varphi_2$ : **No**