COMP 3010J Tutorial

Clustering

Q1(a)

The dataset contains 10 examples represented by 4 numeric features.

These examples have been randomly assigned to two clusters in order to initialise the k-Means algorithm.

The assignments are as follows:

$$C1 = \{ x1, x3, x7, x8 \}$$

 $C2 = \{ x2, x4, x5, x6, x9, x10 \}$

	f1	f2	f3	f4
x1	5.1	3.8	1.6	0.2
x2	4.6	3.2	1.4	0.2
x3	5.3	3.7	1.5	0.2
x4	5	3.3	1.4	0.2
x5	7	3.2	4.7	1.4
х6	6.4	3.2	4.5	1.5
x7	6.9	3.1	4.9	1.5
x8	5.5	2.3	4	1.3
x9	6.5	2.8	4.6	1.5
x10	5.7	2.8	4.5	1.3

Based on the data and cluster assignments, calculate the centroid vector for each cluster.

Q1(a)

Recall - k-Means objective:

Centroid = mean of examples in cluster

$$SSE(\mathcal{C}) = \sum_{c=1}^k \sum_{x_i \in C_c} D(x_i, \mu_c)^2 \quad \text{where} \quad \mu_c = \frac{\sum_{x_i \in C_c} x_i}{|C_c|}$$

	f1	f2	f3	f4
x1	5.1	3.8	1.6	0.2
x2	4.6	3.2	1.4	0.2
х3	5.3	3.7	1.5	0.2
x4	5	3.3	1.4	0.2
x5	7	3.2	4.7	1.4
х6	6.4	3.2	4.5	1.5
x7	6.9	3.1	4.9	1.5
x8	5.5	2.3	4	1.3
x9	6.5	2.8	4.6	1.5
x10	5.7	2.8	4.5	1.3

Cluster 1	f1	f2	f3	f4
x1	5.1	3.8	1.6	0.2
x3	5.3	3.7	1.5	0.2
x7	6.9	3.1	4.9	1.5
x8	5.5	2.3	4	1.3
Centroid 1	5.70	3.23	3.00	0.80

Cluster 2	f1	f2	f3	f4
x2	4.6	3.2	1.4	0.2
x4	5	3.3	1.4	0.2
x5	7	3.2	4.7	1.4
x6	6.4	3.2	4.5	1.5
x9	6.5	2.8	4.6	1.5
x10	5.7	2.8	4.5	1.3
Centroid 2	5.87	3.08	3.52	1.02

Q1(b)

 Based on the centroids calculated above, which clusters will the examples x1 and x10 next be assigned to? Calculate distances using the Euclidean distance measure.

	f1	f2	f3	f4
x1	5.10	3.80	1.60	0.20
Centroid 1	5.70	3.23	3.00	0.80
Centroid 2	5.87	3.08	3.52	1.02

$$D(x,\mu) = \sqrt{\sum_{l=1}^m (x_l - \mu_l)^2}$$

$$D(x1,C1) \qquad \sqrt{(5.10-5.70)^2 + (3.80-3.22)^2 + (1.60-3.00)^2 + (0.20-0.80)^2} = 1.74$$

$$D(x1,C2) \qquad \sqrt{(5.10-5.87)^2 + (3.80-3.08)^2 + (1.60-3.52)^2 + (0.20-1.02)^2} = 2.33$$

$$D(x1,C1) = 1.74$$
 $D(x1,C2) = 2.33 => Assign to C1$

Q1(b)

 Based on the centroids calculated above, which clusters will the examples x1 and x10 next be assigned to? Calculate distances using the Euclidean distance measure.

	f1	f2	f3	f4
x10	5.70	2.80	4.50	1.30
Centroid 1	5.70	3.23	3.00	0.80
Centroid 2	5.87	3.08	3.52	1.02

$$D(x,\mu) = \sqrt{\sum_{l=1}^m (x_l - \mu_l)^2}$$

$$D(x10,C1) \quad \sqrt{(5.70-5.70)^2 + (2.80-3.22)^2 + (4.50-3.00)^2 + (1.30-0.80)^2} = 1.64$$

$$D(x10,C2) \quad \sqrt{(5.70-5.87)^2 + (2.80-3.08)^2 + (4.50-3.52)^2 + (1.30-1.02)^2} = 1.07$$

$$D(x10,C1) = 1.64$$
 $D(x10,C2) = 1.07 => Assign to C2$

Q2

• If the cluster C1 = {x1, x3}, use the Euclidean distance measure to calculate the distances between the example x2 and cluster C1 based on single, complete, and average linkage.

	f1	f2
x1	1.3	1.5
x2	0.5	2.4
x3	0.0	3.0

Step 1: Calculate Euclidean distances

$$D(x1,x2) = 1.20$$

$$D(x1,x3) = 1.98$$

$$D(x2,x3) = 0.78$$

Step 2: Calculate linkage metrics

Single: D(x2,C1) = min(1.20,0.78) = 0.78

Complete: D(x2,C1) = max(1.20,0.78) = 1.20

Average: D(x2,C1) = (1.20+0.78)/2 = 0.99

Q3

- The following table depicts a pairwise distance matrix for 5 examples.
- Calculate the dendrogram representing the agglomerative hierarchical clustering of these examples based on the <u>single-linkage</u> method.

8

5

3

()

 The answer should illustrate the distance matrices originating from each clustering step.

x1 x2 **x**3 x4 x5 0 x1 e.g. D(x3,x1) = 6and D(x1,x3) = 62 0 x2 **x**3 6 ()10 9 4 0 x4

9

x5

		x1	x2	хЗ	x4	x5
x1		0				
x2) -	2	0			
xЗ	}	6	5	0		
x4	ļ.	10	9	4	0	
x5	5	9	8	5	3	0

Start with everything in its own cluster:

Clusters: {x1}, {x2}, {x3}, {x4}, {x5}

Identify nearest pair via single linkage

Min distance \Rightarrow D(x1,x2) = 2

Merge: $C1 = \{x1,x2\}$

2 Clusters: C1, {x3}, {x4}, {x5}

Calculate distance matrix via single linkage e.g. D(C1,x3) = min(6,5)

Min distance \Rightarrow D(x4,x5) = 3

Merge: $C2 = \{x4, x5\}$

	C1	хЗ	x4	x5
C1	0			
х3	5	0		
x4	9	4	0	
х5	8	5	3	0

3 Clusters: C1, {x3}, C2

Calculate distance matrix via single linkage e.g. D(C1,C2) = min(10,9,9,8) = 8

Min distance \Rightarrow D(C2,x3) = 4

Merge: $C3 = \{x3, x4, x5\}$

	C1	хЗ	C2
C1	0		
х3	5	0	
C2	8	4	0

4 Clusters: C1, C3 where C1 = {x1,x2}, C3 = {x3,x4,x5} Only 2 clusters remain, so merge into root node C4

Construct dendrogram based on the merges at each level...

$${x1,x2,x3,x4,x5}$$

$${x1,x2} {x3,x4,x5}$$

$${x1,x2} {x3} {x4,x5}$$

$${x1,x2} {x3} {x4} {x5}$$

$$\{x1\} \{x2\} \{x3\} \{x4\} \{x5\}$$