Small Nuclear Rocket Engine (SNRE) Geometry and Material Configuration

SNRE Overview

Table 1: Core Overview of the SNRE

Table 1: Core Overview of the SINKE.	
Core Overview	
Uranium Enrichment	93.0%
Total Number of Fuel Elements	564
Total Number of Support Elements	241
Mass of U235	$59.6\mathrm{kg}$

Geometry Data

Table 2: Geometry Data of the SNRE Fuel Element

Fuel Element Dimensions	
Flat-to-flat width	$1.905\mathrm{cm}$
Number of Coolant Channels	19
Borehole Diameter	$0.25654{\rm cm}$
Borehole Pitch	$0.40894\mathrm{cm}$
Internal Coating Thickness	$100\mu\mathrm{m}$
External Coating Thickness	$50 \mu \mathrm{m}$

Table 3: Geometry Data of the SNRE Support Element

Table 3. Geometry Data of the Siving St	ipport Licinicii	
Support Element Dimensions		
Flat-to-flat width	$1.89484{\rm cm}$	
Central Coolant Channel Radius	$0.20955{\rm cm}$	
Inner Tie Tube Radius	$0.26035{\rm cm}$	
Inner Gap (Stagnant Hydrogen) Radius	$0.26670\mathrm{cm}$	
Moderator Radius	$0.58420{\rm cm}$	
Outer Coolant Channel Radius	$0.67818{\rm cm}$	
Outer Tie Tube Radius	$0.69850{\rm cm}$	
Mid Gap (Stagnant Hydrogen) Radius	$0.70485\mathrm{cm}$	
Insulator Radius	$0.80645{\rm cm}$	
Outer Gap (Stagnant Hydrogen) Radius	$0.81280{\rm cm}$	
External Coating Thickness	$50.8\mu\mathrm{m}$	

The external core regions consist of a steel wrapper, beryllium barrel, beryllium reflector, containing 12 control drums. Positioned above the core is the control

drum actuator zone, brim shield, core support plate, tie tube plenum, and shield regions. The control drums consist of a cylinder of reflective material, and control plate of absorptive material, which covers a 120 degree segment of the control drum.

Table 4: Geometry Data of the SNRE Core Exterior

Region	Inner Radius	Outer Radius	Aft Bound-	Fwd Bound-
Region	Illilei Itaulus	Outer Madius	ary	ary
Core	-	$29.5275{\rm cm}$	$0.0\mathrm{cm}$	89.0 cm
Gap	$29.5275\mathrm{cm}$	$29.8450{\rm cm}$	$0.0\mathrm{cm}$	$89.0\mathrm{cm}$
Stainless-Steel Wrapper	$29.8450\mathrm{cm}$	$30.1625\mathrm{cm}$	$0.0\mathrm{cm}$	89.0 cm
Gap	$30.1625\mathrm{cm}$	$30.4800{\rm cm}$	$0.0\mathrm{cm}$	$89.0\mathrm{cm}$
Beryllium Barrel	$30.4800\mathrm{cm}$	$33.3375\mathrm{cm}$	$0.0\mathrm{cm}$	$89.0\mathrm{cm}$
Gap	$33.3375\mathrm{cm}$	$33.6550\mathrm{cm}$	$0.0\mathrm{cm}$	89.0 cm
Beryllium Reflec- tor	$33.6550\mathrm{cm}$	$43.3870{\rm cm}$	$0.0\mathrm{cm}$	89.1 cm
Gap	$43.3870{\rm cm}$	$48.7045\mathrm{cm}$	$0.0\mathrm{cm}$	$129.640{\rm cm}$
Pressure Vessel	$48.7045\mathrm{cm}$	$49.2633{\rm cm}$	$0.0\mathrm{cm}$	$129.640{\rm cm}$
Lower Tie Tube Plenum	-	$33.6550\mathrm{cm}$	89.0 cm	96.62 cm
Core Support Plate	-	$33.6550\mathrm{cm}$	96.62 cm	$106.78\mathrm{cm}$
Upper Tie Tube Plenum	-	$33.6550\mathrm{cm}$	$106.78\mathrm{cm}$	111.86 cm
Lower Internal Shield	-	$33.6550\mathrm{cm}$	111.86 cm	119.734 cm
Hydrogen Plenum	-	$33.6550{ m cm}$	119.734 cm	121.766 cm
Upper Internal Shield	-	$33.6550\mathrm{cm}$	121.766 cm	129.640 cm
Control Drum Actuator Zone	$33.6550\mathrm{cm}$	$43.3870{\rm cm}$	89.1 cm	111.860 cm
Brim Shield	$33.6550\mathrm{cm}$	$48.3870\mathrm{cm}$	$111.860{\rm cm}$	$119.734{\rm cm}$
Hydrogen Plenum	$33.6550\mathrm{cm}$	48.3870 cm	119.734 cm	$129.640\mathrm{cm}$

Table 5: Geometry Data of the SNRE Control Drum

Control Drum Dimensions	
Control Drum Radius	$6.0325\mathrm{cm}$
Control Plate Inner Radius	$5.3975\mathrm{cm}$
Control Plate Thickness	$0.635\mathrm{cm}$

Material Data

Table 6: Material Data of the SNRE Fuel Element

Material	Mass Density (g/cm3) and w/o	
Fuel	Element Coolant	
Density	2.7002×10^{-3}	
¹ H	9.9977×10^{-1}	
² H	2.2980×10^{-4}	
	Fuel	
Density	3.6400	
natC	3.3791×10^{-1}	
⁹⁰ Zr	2.5214×10^{-1}	
⁹¹ Zr	5.5597×10^{-2}	
⁹² Zr	8.5916×10^{-2}	
⁹⁴ Zr	8.8964×10^{-2}	
⁹⁶ Zr	1.4638×10^{-2}	
²³⁵ U	1.5330×10^{-1}	
²³⁸ U	1.1538×10^{-2}	
Fuel Coating		
Density (100%)	6.7300	
natC	1.1625×10^{-1}	
⁹⁰ Zr	4.4811×10^{-1}	
⁹¹ Zr	9.8811×10^{-2}	
⁹² Zr	1.5269×10^{-1}	
⁹⁴ Zr	1.5811×10^{-1}	
⁹⁶ Zr	2.6016×10^{-2}	

Table 7: Material Data of the SNRE Support Element

Material	Mass Density (g/cm3) and w/o	
Support Element Coolant		
Density	2.7002×10^{-3}	
¹ H	9.9977×10^{-1}	
^{2}H	2.2980×10^{-4}	
Stagnant Hydrogen		
Density	1.9127×10^{-3}	
¹ H	9.9977×10^{-1}	
2 H	2.2980×10^{-4}	
	Continued on next page	

Material	Mass Density (g/cm3) and w/o
	Inconel 718
Density	8.1900
¹⁰ B	9.2155×10^{-6}
¹¹ B	4.0785×10^{-5}
natC	7.3000×10^{-4}
27 Al	5.0000×10^{-3}
²⁸ Si	2.9214×10^{-3}
²⁹ Si	1.5371×10^{-4}
³⁰ Si	1.0494×10^{-4}
31 P	1.4000×10^{-4}
^{32}S	1.3260×10^{-4}
³³ S	1.0797×10^{-6}
^{34}S	6.3031×10^{-6}
³⁶ S	1.5704×10^{-8}
⁴⁶ Ti	7.1281×10^{-4}
⁴⁷ Ti	6.5680×10^{-4}
⁴⁸ Ti	6.6461×10^{-3}
⁴⁹ Ti	4.9790×10^{-4}
⁵⁰ Ti	4.8644×10^{-4}
^{50}Cr	7.9300×10^{-3}
^{52}Cr	1.5903×10^{-1}
⁵³ Cr	1.8380×10^{-2}
$^{54}\mathrm{Cr}$	4.6614×10^{-3}
^{55}Mn	3.1800×10^{-3}
^{54}Fe	9.5975×10^{-3}
⁵⁶ Fe	1.5623×10^{-1}
⁵⁷ Fe	3.6726×10^{-3}
⁵⁸ Fe	4.9733×10^{-4}
⁵⁹ Co	9.1000×10^{-3}
⁵⁸ Ni	3.5279×10^{-1}
⁶⁰ Ni	1.4057×10^{-1}
⁶¹ Ni	6.2126×10^{-3}
⁶² Ni	2.0133×10^{-2}
^{64}Ni	5.2928×10^{-3}
⁶³ Cu	1.8695×10^{-3}
⁶⁵ Cu	8.6052×10^{-4}
^{93}Nb	5.1250×10^{-2}
^{92}Mo	0.030 500
^{94}Mo	0.030 500
^{95}Mo	0.030 500
	Continued on next page

Material	Mass Density (g/cm3) and w/o	
⁹⁶ Mo	0.030 500	
⁹⁷ Mo	0.030 500	
⁹⁸ Mo	0.030 500	
¹⁰⁰ Mo	0.030 500	
	Moderator	
Density	5.6100	
¹ H	1.7582×10^{-2}	
2 H	4.0412×10^{-6}	
^{nat} Zr	9.8241×10^{-1}	
	Insulator	
Density (50%)	3.3650	
natC	1.1625×10^{-1}	
⁹⁰ Zr	4.4811×10^{-1}	
91 Zr	9.8811×10^{-2}	
92 Zr	1.5269×10^{-1}	
94 Zr	1.5811×10^{-1}	
⁹⁶ Zr	2.6016×10^{-2}	
Suppo	rt Element Sleeve	
Density	1.7000	
¹⁰ B	1.8431×10^{-7}	
¹¹ B	8.1569×10^{-7}	
natC	1.0000	
Support Element Coating		
Density (100%)	6.7300	
nat C	1.1625×10^{-1}	
⁹⁰ Zr	4.4811×10^{-1}	
91 Zr	9.8811×10^{-2}	
92 Zr	1.5269×10^{-1}	
94 Zr	1.5811×10^{-1}	
⁹⁶ Zr	2.6016×10^{-2}	

Note that the insulator region is porous ZrC at 50% porosity. The support element contains regions of stagnant hydrogen.

Table 8: Material Data of the SNRE Core Exterior

Material	Mass Density (g/cm3) and w/o		
Beryllium Core	Periphery Filler Element		
Density	1.8480		
⁹ Be	1.0000		
Steel \	Nrapper (SS-347)		
Density	8.0000		
natC	8.0000×10^{-4}		
²⁸ Si	9.1867×10^{-3}		
²⁹ Si	4.8336×10^{-4}		
³⁰ Si	3.2999×10^{-4}		
³¹ P	4.5000×10^{-4}		
^{32}S	2.8415×10^{-4}		
³³ S	2.3136×10^{-6}		
34 S	1.3507×10^{-5}		
³⁶ S	3.3651×10^{-8}		
⁵⁰ Cr	7.0953×10^{-3}		
⁵² Cr	1.4229×10^{-1}		
⁵³ Cr	1.6445×10^{-2}		
⁵⁴ Cr	4.1707×10^{-3}		
⁵⁵ Mn	2.0000×10^{-2}		
54 Fe	3.8415×10^{-2}		
⁵⁶ Fe	6.2534×10^{-1}		
⁵⁷ Fe	1.4700×10^{-2}		
⁵⁸ Fe	1.9906×10^{-3}		
⁵⁸ Ni	1.0000×10^{-1}		
⁶⁰ Ni	2.9454×10^{-2}		
⁶¹ Ni	1.3017×10^{-3}		
⁶² Ni	4.2183×10^{-3}		
⁶⁴ Ni	1.1090×10^{-3}		
⁹³ Nb	4.0000×10^{-3}		
¹⁸¹ Ta	3.9995×10^{-3}		
Beryllium Barrel			
Density	1.8480		
⁹ Be	1.0000		
	Reflector		
Density	1.8480		
⁹ Be	1.0000		
	Continued on next page		
L	1 0		

Material	Mass Density (g/cm3) and w/o	
C	Control Drum	
Density	1.8480	
⁹ Be	1.0000	
C	Control Plate	
Density	1.3300×10^{1}	
¹⁷⁴ H f	2.0000×10^{-3}	
¹⁷⁶ Hf	5.2000×10^{-2}	
¹⁷⁷ Hf	1.8600×10^{-1}	
¹⁷⁸ Hf	2.7100×10^{-1}	
¹⁷⁹ Hf	1.3700×10^{-1}	
¹⁸⁰ Hf	3.5200×10^{-1}	
Lower	Tie Tube Plenum	
Density	3.9080×10^{-1}	
¹ H	7.4207×10^{-3}	
² H	1.7052×10^{-6}	
^{54}Fe	5.6037×10^{-2}	
⁵⁶ Fe	9.1220×10^{-1}	
⁵⁷ Fe	2.1443×10^{-2}	
⁵⁸ Fe	2.9037×10^{-3}	
Core	Support Plate	
Density	1.0050	
¹ H	2.0891×10^{-3}	
² H	4.8017×10^{-7}	
^{54}Fe	5.6338×10^{-2}	
⁵⁶ Fe	9.1709×10^{-1}	
⁵⁷ Fe	2.1559×10^{-2}	
⁵⁸ Fe	2.9193×10^{-3}	
Upper	Tie Tube Plenum	
Density	9.7180×10^{-1}	
¹ H	2.1604×10^{-3}	
² H	4.9658×10^{-7}	
^{54}Fe	5.6338×10^{-2}	
⁵⁶ Fe	9.1709×10^{-1}	
⁵⁷ Fe	2.1559×10^{-2}	
⁵⁸ Fe	2.9193×10^{-3}	
Lower Internal Shield		
Density	4.4519	
¹ H	2.0526×10^{-2}	
² H	4.7179×10^{-6}	
¹⁰ B	9.1080×10^{-4}	
	Continued on next page	
	1 0	

Material	Mass Density (g/cm3) and w/o	
¹¹ B	4.0309×10^{-3}	
⁹⁰ Zr	4.9415×10^{-1}	
^{91}Zr	1.0896×10^{-1}	
92 Zr	1.6838×10^{-1}	
94 Zr	1.7435×10^{-1}	
⁹⁶ Zr	2.8688×10^{-2}	
Нус	drogen Plenum	
Density	2.7002×10^{-3}	
¹ H	9.9977×10^{-1}	
² H	2.2980×10^{-4}	
Uppe	r Internal Shield	
Density	4.4519	
¹ H	2.0526×10^{-2}	
² H	4.7179×10^{-6}	
¹⁰ B	9.1080×10^{-4}	
¹¹ B	4.0309×10^{-3}	
⁹⁰ Zr	4.9415×10^{-1}	
⁹¹ Zr	1.0896×10^{-1}	
92 Zr	1.6838×10^{-1}	
⁹⁴ Zr	1.7435×10^{-1}	
⁹⁶ Zr	2.8688×10^{-2}	
Control [Drum Actuator Zone	
Density	4.2790×10^{-1}	
¹ H	5.1402×10^{-3}	
² H	1.1815×10^{-6}	
⁵⁴ Fe	3.6678×10^{-2}	
⁵⁶ Fe	5.9707×10^{-1}	
⁵⁷ Fe	1.4036×10^{-2}	
⁵⁸ Fe	1.9006×10^{-3}	
⁶³ Cu	2.3637×10^{-1}	
⁶⁵ Cu	1.0880×10^{-1}	
Brim Shield		
Density	4.4519	
¹ H	2.0526×10^{-2}	
² H	4.7179×10^{-6}	
¹⁰ B	9.1080×10^{-4}	
¹¹ B	4.0309×10^{-3}	
⁹⁰ Zr	4.9415×10^{-1}	
^{91}Zr	1.0896×10^{-1}	
^{92}Zr	1.6838×10^{-1}	
	Continued on next page	
L	1 0	

Material	Mass Density (g/cm3) and w/o
94 Zr	1.7435×10^{-1}
⁹⁶ Zr	2.8688×10^{-2}
Pressure Vessel	
Density	2.7000
²⁷ AI	1.0000

Figure 1: x-y Model Plot of the Core in the Subcritical Position (0 degrees)

Figure 2: x-z Model Plot of the Core in the Subcritical Position (0 degrees)