Extreme-mass-ratio-bursts from extragalactic sources

C. P. L. Berry 1* and J. R. Gair^1

¹Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA

12 January 2013

ABSTRACT

Extreme-mass-ratios bursts (EMRBs) are a class of potentially interesting gravitational wave signals. They are produced when a compact object passes through periapsis on a highly eccentric orbit about a much more massive object; we consider stellar mass objects orbiting the massive black holes (MBHs) found in the centre of galaxies. Such an object may emit many EMRBs before eventually inspiralling into the MBH. EMRBs from the Galaxy's MBH would be detectable with a space-borne gravitational wave detector; we investigate the possibility of detecting EMRBs from extragalactic sources.

Key words: black hole physics – Galaxy: centre – gravitational waves – methods: data analysis.

1 INTRODUCTION

It is well established that space is big (Adams 1979, chapter 8). The Milky Way, our own island universe, is but one of a multitude of galaxies. Each one of these may have a massive black hole (MBH) nestled at its core (Lynden-Bell & Rees 1971; Soltan 1982).

In previous work (Berry & Gair 2012), we considered measuring the properties of the Galaxy's MBH using extreme-mass-ratio bursts (EMRBs). An EMRB is a short gravitational wave (GW) signal produced when a small object passes through periapsis on an orbit about a much more massive body; in our case this is a stellar mass compact object (CO) orbiting the MBH. If the periapse radius of the orbit is sufficiently small ($r_{\rm p} \lesssim 10 r_{\rm g}$ for a $10 M_{\odot}$ CO, where $r_{\rm g} = G M_{\bullet}/c^2$ is a gravitational radius), a single burst can be highly informative about the MBH, improving our knowledge of its mass and spin.

EMRBs could be considered as the precursors to the better studied extreme-mass-ratio inspirals (EMRIs; Amaro-Seoane et al. 2007). Close collisions in the dense nuclear cluster surrounding the MBH scatter COs onto highly eccentric orbits. They proceed to emit an EMRB each orbit (Rubbo, Holley-Bockelmann, & Finn 2006). If they survive for long enough without being scattered again, the loss of energy-momentum carried away by gravitational radiation shall lead the orbit to circularise; eventually the GW signal changes, so there is continuous significant emission and we have an EMRI which continues until the inevitable plunge into the MBH. EMRBs are much shorter than EMRIs; they do not have as much time to accumulate high signal-to-noise ratios (SNRs), and consequently they are neither detectable

to the same range, or as informative as EMRIs. However, a CO could emit many EMRBs before transitioning to the EMRI regime, making EMRBs an interesting signal for GW detection.

In this work, we consider if EMRBs are detectable from other nearby galaxies. If so, they may be useful for constraining the properties of these galaxies' MBHs. Observations have shown MBH masses are correlated with properties of the host galaxies, such as bulge luminosity, mass, velocity dispersion and light concentration (Kormendy & Richstone 1995; Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000; Graham et al. 2001; Tremaine et al. 2002; Marconi & Hunt 2003; Häring & Rix 2004; Graham 2007; Graham et al. 2011). The two are linked via their shared history, such that one can inform us about the other.

Astrophysical black holes (BHs) are described by two quantities: mass M and (dimsensionless) spin a_* (Chandrasekhar 1998). The spin is related to the angular momentum J by

$$a_* = \frac{cJ}{GM^2},\tag{1}$$

For many MBHs in the local neighbourhood, we have existing mass estimates. Measuring the spin would give us a complete picture, and would crucially give an insight into the formation history of the galaxy (Dotti et al. 2012; Volonteri et al. 2012).

MBHs accumulate mass and angular momentum through accretion and mergers (Volonteri 2010; Yu & Tremaine 2002); the spin encodes information about the mechanism that has most recently dominated the evolution. A gaseous disc spins up the MBH, resulting in high spin values (Volonteri et al. 2005); randomly orientated accretion events lead to low spin values (King & Pringle 2006; King, Pringle, & Hofmann 2008); minor mergers with

^{*} E-mail: cplb2@cam.ac.uk

smaller BHs can decrease the spin (Hughes & Blandford 2003; Gammie, Shapiro, & McKinney 2004), and major mergers between MBHs gives a likely spin $|a_*| \sim 0.7$ (Berti & Volonteri 2008; González et al. 2007). Determining how the spin evolved shall tell us about how the galaxy evolved (Barausse 2012).

We have some MBH spin measurements from X-ray observations of active galactic nuclei (e.g. Nardini et al. 2011; Patrick et al. 2011; Gallo et al. 2011; Lohfink et al. 2012). Estimates span the entire range of allowed values, but are typically in the intermediate range of $a_* \sim 0.7$, with uncertainties of $\sim 10\%$. This population would be an interesting comparison for potential measurements from nearby galaxies.

EMRBs could be an interesting signal for a space-borne gravitational wave detector, such as the Laser Interferometer Space Antenna (LISA; Bender et al. 1998; Danzmann & Rüdiger 2003) or the evolved Laser Interferometer Space Antenna (eLISA; Jennrich et al. 2011; Amaro-Seoane et al. 2012). At the time of writing, there is no currently funded mission. However, LISA Pathfinder, a technology demonstration mission, is due for launch at the end of 2014 (Anza et al. 2005; Antonucci et al. 2012). Hopefully, a full mission shall follow in the subsequent decade. Since there does not exist a definite mission design, we stick to the classic LISA design for the majority of this work.

EMRB waveforms are calculated and analysed as in Berry & Gair (2012), and we give only an outline of the techniques used. Waveform construction and the numerical kludge approximation are explained in Sec. 2. The basics of signal analysis are introduced in Sec. 3. In Sec. 4, the detectability of EMRBs from extragalactic MBHs is discussed. We show that bursts from other galaxies could be detected with LISA or eLISA. Following this, in Sec. 5 we discuss the information that could be extracted from these signals, and the constraints these could place.

2 WAVEFORM GENERATION

We semirelativistic approximation employ (Ruffini & Sasaki 1981): the CO travels along a geodesic in Kerr spacetime, but radiates as if it were in flat spacetime. This approach is known as a numerical kludge (NK). Comparison with more accurate, and computationally intensive, methods has shown that NK waveforms are reasonably accurate for extreme-mass-ratio systems (Gair et al. 2005; Babak et al. 2007): typical errors can few percent (Tanaka et al. 1993; Gair et al. 2005; Berry & Gair 2012). Binding the motion to a true geodesic ensures the signal has the correct frequency components, although neglecting the effects of background curvature ensures that these do not have the correct amplitudes. The geodesic parameters are kept fixed throughout the orbit, as there should be negligible evolution due to the emission of gravitational

All bursts are assumed to come from marginally bound, or parabolic, orbits. In this case, the CO starts at rest at

infinity and has a single passage through periapsis. If the periapse radius is small enough, the orbit may still complete a number of rotations about the MBH; these are zoom-whirl orbits (Glampedakis & Kennefick 2002).

When integrating the Kerr geodesic equations, we use angular variables instead of the radial and polar Boyer-Lindquist coordinates (Drasco & Hughes 2004)

$$r = \frac{2r_{\rm p}}{1 + \cos\psi};\tag{2}$$

$$\cos^2 \theta = \frac{Q}{Q + L_z^2} \cos^2 \chi = \sin^2 \iota \cos^2 \chi, \tag{3}$$

where Q is the Carter constant, L_z is the angular momentum about the z-axis and ι is the orbital inclination (Glampedakis, Hughes, & Kennefick 2002). This parametrization avoids complications associated with turning points of the motion.

Once the geodesic is constructed, we identify the Boyer-Lindquist co-ordinates with flat-space spherical polars (Gair et al. 2005; Babak et al. 2007). This choice is not unique, as a consequence of the arbitrary nature of the NK approximation. Using flat-space oblate spheroidal coordinates gives quantitatively similar results (Berry & Gair 2012). The quadrupole-octupole formula is used to derive the gravitational strain (Bekenstein 1973; Press 1977; Yunes et al. 2008). The inclusion of higher order terms modify the amplitudes of some frequency components for the more relativistic orbits by a few tens of percent.

The waveform is specified by a set of fourteen parameters:

- (1) The MBH's mass M.
- (2) The spin parameter a_* .
- (3, 4) The orientation angles for the MBH Θ_K and Φ_K .
- (5) The source distance R divided by the CO mass μ , which we denote as $\zeta = R/\mu$. This scales the amplitude of the waveform.
- (6, 7) The angular momentum of the CO parametrised in terms of total angular momentum $L_{\infty} = \sqrt{Q + L_Z^2}$ and inclination ι .
- (8–10) The angular phases at periapse, ϕ_p and χ_p (which determines θ_p), and the time of periapse t_p .
- $(11,\,12)$ The coordinates of the source (in ecliptic coordinates) $\overline{\Theta}$ and $\overline{\Phi}$. Sky position is already determined to high accuracy for each galaxy. Since an EMRB can only give weak constraints on source position we take it as known and do not infer it.²
- (13, 14) The orbital position of the detector. This should be known and need not be inferred. We assume the same initial position as Cutler (1998); this does not qualitatively influence results.

There are ten in which we are interested in inferring. The most interesting are the MBH's mass and spin.

¹ The revised *eLISA* concept is the same revised design as the *New Gravitational-wave Observatory (NGO)* submitted to the European Space Agency for their L1 mission selection.

² To be able to do this in practice it would be necessary to have a detection algorithm that can successfully identify the source galaxy. Since no work has yet been done on EMRB detection, we defer this question for future work.

3 SIGNAL ANALYSIS

In this section we briefly cover the basics of GW analysis. A more complete discussion can be found in Finn (1992) and Cutler & Flanagan (1994). Those familiar with the subject may skip this section with impunity. In the following, uppercase Latin indices from the beginning of the alphabet are used for labelling detectors: $A = \{I, II\}$ for LISA, but $A = \{I\}$ for eLISA which has only two arms, and so acts as a single detector.

The measured strain $\boldsymbol{s}(t)$ is the combination of the signal and the detector noise

$$s(t) = h(t) + n(t); \tag{4}$$

we assume the noise is stationary and Gaussian, and noise in multiple data channels uncorrelated, but shares the same characterisation (Cutler 1998). We can then define a signal inner product (Cutler & Flanagan 1994)

$$(\boldsymbol{g}|\boldsymbol{k}) = 2 \int_0^\infty \frac{\tilde{g}_A^*(f)\tilde{k}_A(f) + \tilde{g}_A(f)\tilde{k}_A^*(f)}{S_n(f)} df,$$
 (5)

introducing Fourier transforms

$$\tilde{g}(f) = \mathscr{F}{g(t)} = \int_{-\infty}^{\infty} g(t) \exp(2\pi i f t) dt,$$
 (6)

and $S_n(f)$ is the noise spectral density. We use the noise model of Barack & Cutler (2004) for LISA, and the simplified sensitivity model from Jennrich et al. (2011) for eLISA.

The signal-to-noise ratio (SNR) is

$$\rho[\mathbf{h}] = (\mathbf{h}|\mathbf{h})^{1/2}. \tag{7}$$

The probability of a realization of noise $\mathbf{n}(t) = \mathbf{n}_0(t)$ is

$$p(\mathbf{n}(t) = \mathbf{n}_0(t)) \propto \exp\left[-\frac{1}{2} (\mathbf{n}_0|\mathbf{n}_0)\right].$$
 (8)

Therefore, if the incident waveform is h(t), the probability of measuring signal s(t) is

$$p(s(t)|h(t)) \propto \exp\left[-\frac{1}{2}(s-h|s-h)\right].$$
 (9)

4 DETECTABILITY

The detectability of a burst is determined upon its SNR. We assume a detection threshold of $\rho=10$. The SNR of an EMRB depends upon many parameters. For a given MBH, the most important is the periapse radius $r_{\rm p}$. There is a good correlation between ρ and $r_{\rm p}$; other parameters specifying the inclination of the orbit or the orientation of the system with respect to the detector only produce scatter about this relation. The form of the ρ - $r_{\rm p}$ relation depends upon the noise curve.

We parametrize the detectability in terms of a characteristic frequency

$$f_* = \sqrt{\frac{GM}{r_{\rm p}^3}}. (10)$$

This allows comparison between different systems where the same periapse does not correspond to the same frequency, and thus the same point of the noise curve.

We also expect the SNR to scale with other quantities.

Figure 1. Scaled signal-to-noise ratio for EMRBs as a function of characteristic frequency.

We shall define a characteristic strain amplitude for a burst h_0 ; we expect $\rho \propto h_0$, where the proportionality will be set by a frequency-dependent function than includes the effect of the noise curve. Assuming that the strain is dominated by the quadrupole contribution (Misner, Thorne, & Wheeler 1973, section 36.10; Hobson et al. 2006, section 17.9)

$$h_0 \sim \frac{G}{c^6} \frac{\mu}{R} \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left(r^2\right),\tag{11}$$

where μ is the CO mass, R is the distance to the MBH, t is time and r is a proxy for the position of the orbitting object. The characteristic rate of change is set by f_* and the characteristic length scale is set by r_p . Hence

$$h_0 \sim \frac{G}{c^6} \frac{\mu}{R} f_*^2 r_{\rm p}^2$$
 (12)

$$\sim \frac{G^{5/2}}{c^6} \frac{\mu}{R} f_*^{-2/3} M^{2/3}.$$
 (13)

Using this, we can factor out the most important dependencies to give a scaled SNR

$$\rho_* = \left(\frac{\mu}{M_{\odot}}\right)^{-1} \left(\frac{R}{\text{Mpc}}\right) \left(\frac{M}{10^6 M_{\odot}}\right)^{-2/3} \rho. \tag{14}$$

Space-based detectors are most sensitive from extrememass-ratio signals originating from MBHs with masses 10⁵-10⁶. Higher mass objects produce signals at too low frequencies. We considered several nearby MBHs that were likely candidates for detectable burst signals. Details are given in Table 1. For each, we calculated SNRs at $\sim 10^4$ different periapse distances, uniformly distributed in log-space between the innermost orbit and $100r_{\rm g}$. Each had a spin and orbital inclination randomly chosen from distributions uniform in a_* and $\cos \iota$. For every periapse, five SNRs were calculated, each having a different set of intrinsic parameters specifying the relative orientation of the MBH, the orbital phase and the position of the detector, drawn from appropriate uniform distributions. The scaled SNRs are plotted in Fig. 1. The plotted points are the average values of $\ln \rho_*$ calculated for each periapse distance. The curve shows that EMRB SNR does scale as expected, and ρ_* can be describe as a one-parameter curve. There remains some scatter about this (removing the averaging over intrinsic parameters increases this to about an order of magnitude); however, it is good enough for rough calculations.

We approximate the trend with a best-fit curve

$$\rho_* = \alpha_1 f_*^{\beta_1} \left[1 + (\alpha_2 f_*)^{\beta_2} \right] \left[1 + (\alpha_3 f_*)^{\beta_3} \right]^{-\beta_4}. \tag{15}$$

To fit this, we treat the problem as if it were a likelihood maximisation, with each averaged point having a Gaussian likelihood with standard deviation defined from the scatter because of the variation in the intrinsic parameters. The optimised values for LISA are

$$\alpha_1 \simeq 8.93 \times 10^4; \quad \alpha_2 \simeq 4.68 \times 10^2; \quad \alpha_3 \simeq 1.84 \times 10^2;$$

 $\beta_1 \simeq 1.84; \quad \beta_2 \simeq 3.23; \quad \beta_3 \simeq 1.27; \quad \beta_4 \simeq 4.13.$ (16)

³ The innermost orbit depends upon a_* and ι , hence these are drawn first.

Table 1. Sample of nearby MBHs that are candidates for producing detectable EMRBs.

Galaxy	$M/10^6 M_{\odot}$	R/Mpc	References
Milky Way (MW)	4.31	0.00833	Gillessen et al. (2009)
M32 (NGC 221)	2.5	0.770	Verolme et al. (2002); Karachentsev et al. (2004)
Andromeda (M31, NGC 224)	140	0.770	Bender et al. (2005); Karachentsev et al. (2004)
Circinus	1.1	2.82	Graham (2008); Greenhill et al. (2003); Karachentsev et al. (2007)
NGC 4945	1.4	3.82	Greenhill et al. (1997); Karachentsev et al. (2007)
Sculptor (NGC 253)	10	3.5	Graham et al. (2011); Rodríguez-Rico et al. (2006); Rekola et al. (2005)
NGC 4395	0.36	4.0	Peterson et al. (2005); Thim et al. (2004)
NGC 3368	7.3	10.1	Graham et al. (2011); Nowak et al. (2010); Tonry et al. (2001)
NGC 3489	5.8	11.7	Graham et al. (2011); Nowak et al. (2010); Tonry et al. (2001)

Figure 2. Limit of detection for EMRBs originating from MBHs of mass M and distance R with CO of mass $\mu=1M_{\odot}$ () or $\mu=10M_{\odot}$. The detection threshold is assumed to be $\rho=10$. The ... line is the limit for non-rotating MBHs, the ... line is for maximally rotating MBHs. Sources below the relevant line are potentially detectable. The trends should not be extrapolated to lower MBH masses.

Figure 3. Scaled signal-to-noise ratio for EMRBs as a function of characteristic frequency for the eLISA design.

Using our fitted trends it is possible to invert (14) to find the furthest distance that bursts from an MBH of a given mass are detectable. In calculating the maximum SNR it is necessary to decide upon a minimum periapse radius. For the optimal case with a maximally rotating MBH, the innermost periapsis is $r_p = r_g$. For a non-rotating MBH, the innermost periapsis would be $r_{\rm p}=4r_{\rm g}.$ Figure 2 shows the detectability limit for $\mu = 1M_{\odot}$ and $\mu = 10M_{\odot}$ COs. The more massive COs are detectable to a greater distance, but are also the more likely sources since mass segregation ensures they are more likely to be on orbits that pass close to the MBH. Limits using periapsis of $r_{\rm g}$ and $4r_{\rm g}$ are shown: intermediate spin values would have limits between these two. In any case, these are strict bounds; it is unlikely that we would observe a burst from the optimal orbit. Therefore bursts from MBHs outside the curve are impossible to detect and those inside may be possible, but need not be probable, to detect.

It appears that there are potentially many galaxies which could produce observable bursts. From our sample, all could be potentially detected. Andromeda could only be detected if it had a high spin value. It is therefore less promising than the others. NGC 3489, NGC 3368 and NGC 253 lie on the boundary of detectability for non-spinning sources with a $10M_{\odot}$ CO. They are therefore of marginal interest: we do not necessarily need any special requirement for the spin, but such close orbits would be infrequent. NGC 4395, NGC 4945 and Circinus are around the boundary of detectability for a $1M_{\odot}$ CO. Hence we could potentially see bursts from white dwarfs as well as BHs. M32 is the best extragalactic source, lying safely within the detection limit for $1M_{\odot}$ COs.

We can repeat the analysis for eLISA. The scaled SNRs are shown in Fig. 3. Since Andromeda was only marginally of interest for the classic LISA design, we did not it this

Figure 4. Limit of detection using eLISA for EMRBs originating from MBHs of mass M and distance R with CO of mass $\mu=1M_{\odot}$ () or $\mu=10M_{\odot}$. The detection threshold is assumed to be $\rho=10$. The ... line is the limit for non-rotating MBHs, the ... line is for maximally rotating MBHs. Sources below the relevant line are potentially detectable. The trends should not be extrapolated to lower MBH masses.

time. The curve is fitted with

$$\alpha_1 \simeq 7.39 \times 10; \quad \alpha_2 \simeq 4.99 \times 10^3; \quad \alpha_3 \simeq 5.27 \times 10;
\beta_1 \simeq 1.47; \quad \beta_2 \simeq 0.85; \quad \beta_3 \simeq 1.76; \quad \beta_4 \simeq 1.25.$$
 (17)

Using this to find the detectability range results in the curves shown in Fig. 4. The maximum distances are reduced compared to the LISA case indicating that detectable bursts would be much rarer. There still remain a number of potential candidate galaxies. From our sample, Andromeda is on the very edge of possibility. NGC 3489, NGC 3368 and NGC 253 require a high spin, making them unlikely sources. Of the extragalactic sources, only M32 remains detectable with a $1M_{\odot}$, and still it requires a non-zero spin.

Using either noise curve we see that EMRBs could potentially be seen from a range of galaxies. The Galaxy's MBH remains securely detectable in either case. M32 is the next best. MBHs with masses $\sim 10^6 - 10^7 M_{\odot}$ are observable to the greatest distance. We currently know of few MBHs with masses at the lower end of the spectrum, $10^5 - 10^6 M_{\odot}$, but these would be good potential candidates.

5 PARAMETER INFERENCE

We are not only interested in if EMRBs are detectable, but also if we can extract information about their sources. The probability the burst is described by parameters λ is given by the posterior distribution

$$p(\boldsymbol{\lambda}|\boldsymbol{s}(t)) = \frac{p(\boldsymbol{s}(t)|\boldsymbol{\lambda})p(\boldsymbol{\lambda})}{p(\boldsymbol{s}(t))},$$
(18)

where $p(s(t)|\lambda)$ is the likelihood of the parameters, $p(\lambda)$ is the prior for the parameters, and p(s(t)) is the evidence which is just a normalising factor for our purposes.

To discover if any parameters can be accurately inferred, we must characterise the form of the posterior. Markov chain Monte Carlo methods are commonly used for inference problems (MacKay 2003, chapter 29). Parameter space is explored by the construction of a chain of random samples. A new point is accepted with a rate dependent

upon its probability, such that the a converged chain reflects the underlying distribution (Metropolis et al. 1953; Hastings 1970). We employ the same semi-adaptive algorithm that was previously used in Berry & Gair (2012). This follows the suggestion of Haario et al. (1999) and has an initial period where the proposal distribution (used in the selection of new points) is adjusted to match the distribution of points previously accepted, before proceeding to the main phases where the proposal is kept fixed in order to be purely Markovian.

The likelihood of a set of parameters is found using (9):

$$p(s(t)|\lambda) \propto \exp\left[-\frac{1}{2}(s-h(\lambda)|s-h(\lambda))\right].$$
 (19)

We assume non-informative priors on the parameters to reflect a state of ignorance: we do not incorporate information we have from other measurements such that results indicate what could be leant from an EMRB alone.

6 CONCLUSIONS

Extreme-mass-ratio bursts have a characteristic...

The MBH in our own Galaxy is by far the best source for bursts; however, it is also possible to detect bursts from extragalactic sources. We were previously too pessimistic about this possibility (Berry & Gair 2012). M32 is a promising candidate. This is good news for any space-borne GW detectors, as EMRBs can be added to the list of potential source candidates.

However, we must still be cautious: EMRBs may be rare and the event rate may prevent us from observing any over a realistic mission lifetime. In a companion paper we shall look at the expectations for bursts from our own Galaxy. Bursts from any given extragalactic source should be less common, although this may be slightly ameliorated by the larger number of potential source systems.

ACKNOWLEDGMENTS

The authors would like to thank Donald Lynden-Bell for useful conversations. CPLB is supported by STFC. JRG is supported by the Royal Society. The MCMC simulations were performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England.

REFERENCES

Adams D., 1979, The Hitchikers' Guide to the Galaxy, 1st edn. Pan Books, London

Amaro-Seoane P. et al., 2012, Classical and Quantum Gravity, 29, 124016

Amaro-Seoane P., Gair J. R., Freitag M., Miller M. C., Mandel I., Cutler C. J., Babak S., 2007, Classical and Quantum Gravity, 24, R113

Antonucci F. et al., 2012, Classical and Quantum Gravity, 29, 124014 Anza S. et al., 2005, Classical and Quantum Gravity, 22, S125

Babak S., Fang H., Gair J., Glampedakis K., Hughes S., 2007, Physical Review D, 75, 024005(25)

Barack L., Cutler C., 2004, Physical Review D, 69, 082005 Barausse E., 2012, Monthly Notices of the Royal Astronomical Society, 423, 2533

Bekenstein J. D., 1973, The Astrophysical Journal, 183, 657

Bender P. et al., 1998, LISA Pre-Phase A Report. Tech. rep., Max-Planck-Institut für Quantenoptik, Garching

Bender R. et al., 2005, The Astrophysical Journal, 631, 280 Berry C. P. L., Gair J. R., 2012, 25

Berti E., Volonteri M., 2008, The Astrophysical Journal, 684, 822

Chandrasekhar S., 1998, The Mathematical Theory of Black Holes, Oxford Classic Texts in the Physical Sciences. Oxford University Press, Oxford

Cutler C., 1998, Physical Review D, 57, 7089

Cutler C., Flanagan E. E., 1994, Physical Review D, 49, 2658

Danzmann K., Rüdiger A., 2003, Classical and Quantum Gravity, 20, S1

Dotti M., Colpi M., Pallini S., Perego A., Volonteri M., 2012, 14

Drasco S., Hughes S., 2004, Physical Review D, 69, 044015 Ferrarese L., Merritt D., 2000, The Astrophysical Journal, 539, L9

Finn L. S., 1992, Physical Review D, 46, 5236

Gair J. R., Kennefick D. J., Larson S. L., 2005, Physical Review D, 72, 084009

Gallo L. C., Miniutti G., Miller J. M., Brenneman L. W., Fabian A. C., Guainazzi M., Reynolds C. S., 2011, Monthly Notices of the Royal Astronomical Society, 411, 607

Gammie C. F., Shapiro S. L., McKinney J. C., 2004, The Astrophysical Journal, 602, 312

Gebhardt K. et al., 2000, The Astrophysical Journal, 539, L13

Gillessen S., Eisenhauer F., Trippe S., Alexander T., Genzel R., Martins F., Ott T., 2009, The Astrophysical Journal, 692, 1075

Glampedakis K., Hughes S., Kennefick D., 2002, Physical Review D, 66, 064005

Glampedakis K., Kennefick D., 2002, Physical Review D, 66, 044002

González J. A., Sperhake U., Brügmann B., Hannam M., Husa S., 2007, Physical Review Letters, 98, 091101

Graham A. W., 2007, Monthly Notices of the Royal Astronomical Society, 379, 711

Graham A. W., 2008, Publications of the Astronomical Society of Australia, 25, 167

Graham A. W., Erwin P., Caon N., Trujillo I., 2001, The Astrophysical Journal, 563, L11

Graham A. W., Onken C. A., Athanassoula E., Combes F., 2011, Monthly Notices of the Royal Astronomical Society, 412, 2211

Greenhill L. J. et al., 2003, The Astrophysical Journal, 590, 162

Greenhill L. J., Moran J. M., Herrnstein J. R., 1997, The Astrophysical Journal, 481, L23

Haario H., Saksman E., Tamminen J., 1999, Computational

- Statistics, 14, 375
- Häring N., Rix H.-W., 2004, The Astrophysical Journal, 604, L89
- Hastings W. K., 1970, Biometrika, 57, 97
- Hobson M. P., Efstathiou G., Lasenby A., 2006, General Relativity: An Introduction for Physicists. Cambridge University Press, Cambridge
- Hughes S. A., Blandford R. D., 2003, The Astrophysical Journal, 585, L101
- Jennrich O. et al., 2011, NGO Revealing a hidden Universe: opening a new chapter of discovery. Tech. rep., European Space Agency
- Karachentsev I. D., Karachentseva V. E., Huchtmeier W. K., Makarov D. I., 2004, The Astronomical Journal, 127, 2031
- Karachentsev I. D. et al., 2007, The Astronomical Journal, 133, 504
- King A. R., Pringle J. E., 2006, Monthly Notices of the Royal Astronomical Society: Letters, 373, L90
- King A. R., Pringle J. E., Hofmann J. A., 2008, Monthly Notices of the Royal Astronomical Society, 385, 1621
- Kormendy J., Richstone D., 1995, Annual Review of Astronomy and Astrophysics, 33, 581
- Lohfink A. M., Reynolds C. S., Miller J. M., Brenneman L. W., Mushotzky R. F., Nowak M. A., Fabian A. C., 2012 Lynden-Bell D., Rees M. J., 1971, Monthly Notices of the Royal Astronomical Society, 152, 461
- MacKay D. J. C., 2003, Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge, p. 640
- Magorrian J. et al., 1998, The Astronomical Journal, 115, 2285
- Marconi A., Hunt L. K., 2003, The Astrophysical Journal, 589, L21
- Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller E., 1953, The Journal of Chemical Physics, 21, 1087
- Misner C. W., Thorne K. S., Wheeler J. A., 1973, Gravitation. W. H. Freeman, New York
- Nardini E., Fabian A. C., Reis R. C., Walton D. J., 2011, Monthly Notices of the Royal Astronomical Society, 410, 1251
- Nowak N., Thomas J., Erwin P., Saglia R. P., Bender R., Davies R. I., 2010, Monthly Notices of the Royal Astronomical Society, 403, 646
- Patrick A. R., Reeves J. N., Porquet D., Markowitz A. G., Lobban A. P., Terashima Y., 2011, Monthly Notices of the Royal Astronomical Society, 411, 2353
- Peterson B. M. et al., 2005, The Astrophysical Journal, 632, 799
- Press W., 1977, Physical Review D, 15, 965
- Rekola R., Richer M. G., McCall M. L., Valtonen M. J., Kotilainen J. K., Flynn C., 2005, Monthly Notices of the Royal Astronomical Society, 361, 330
- Rodríguez-Rico C. A., Goss W. M., Zhao J.-H., Gomez Y., Anantharamaiah K. R., 2006, The Astrophysical Journal, 644, 914
- Rubbo L. J., Holley-Bockelmann K., Finn L. S., 2006, The Astrophysical Journal, 649, L25
- Ruffini R., Sasaki M., 1981, Progress of Theoretical Physics, 66, 1627
- Soltan A., 1982, Monthly Notices of the Royal Astronomi-

- cal Society, 200, 115
- Tanaka T., Shibata M., Sasaki M., Tagoshi H., Nakamura T., 1993, Progress of Theoretical Physics, 90, 65
- Thim F., Hoessel J. G., Saha A., Claver J., Dolphin A., Tammann G. A., 2004, The Astronomical Journal, 127, 2322
- Tonry J. L., Dressler A., Blakeslee J. P., Ajhar E. A., Fletcher A. B., Luppino G. A., Metzger M. R., Moore C. B., 2001, The Astrophysical Journal, 546, 681
- Tremaine S. et al., 2002, The Astrophysical Journal, 574, 740
- Verolme E. K. et al., 2002, Monthly Notices of the Royal Astronomical Society, 335, 517
- Volonteri M., 2010, The Astronomy and Astrophysics Review, 18, 279
- Volonteri M., Madau P., Quataert E., Rees M. J., 2005, The Astrophysical Journal, 620, 69
- Volonteri M., Sikora M., Lasota J.-P., Merloni A., 2012
- Yu Q., Tremaine S., 2002, Monthly Notices of the Royal Astronomical Society, 335, 965
- Yunes N. N., Sopuerta C. F., Rubbo L. J., Holley-Bockelmann K., 2008, The Astrophysical Journal, 675, 604

This paper has been typeset from a $T_EX/$ I_FX file prepared by the author.