Donnerstag, 31. Oktober 2024

18:10

Exercise 2.1.12 Show that if β is any skew-symmetric bilinear form on the vector space W, there is a basis $u_1, \ldots, u_n, v_1, \ldots, v_n, w_1, \ldots, w_p$ of W such that $\beta(u_j, v_k) = \delta_{jk}$ and all other pairings $\beta(b_1, b_2)$ vanish. A basis with this property is called a **standard basis** for (W, β) , and the integer 2n is the **rank** of β .

Let $S = \{w \in W \mid B(w,v) = 0 \text{ } v \in W\}$.

5 is a linear subspace. Let V be a complementary subspace. One then sees (V, B_{IV}) is a symplectic vectorspace.

By Theorem 2.1.3 we get a basis M_{II}, V_{II} . Let W_{II} be arbitrary basis for S. This basis has the properties we wanted.