Parallel Repetition Using de Finetti Reductions

QIS @ MIT | June 23, 2015

arXiv:1308.0312 | de Finetti reductions for correlations arXiv:1411.1582 | Non-signalling parallel repetition using de Finetti reductions

Rotem Arnon-Friedman (ETH), Renato Renner (ETH) & Thomas Vidick (Caltech)

Outline

- 1. Games and parallel repetition
- 2. de Finetti theorems in the context of games
- 3. Results
- 4. Proof ideas

Games & Parallel Repetition

Multiplayer games

Game: G = (Q, A, Q, R)

Winning condition: $R: \mathcal{Q} \times \mathcal{A} \rightarrow \{0, 1\}$

Strategies

- * Players decide on a strategy to optimally win the game
- * Modelled by a conditional prob. dist. $O_{A|Q}$
- * Allowed resources:
 - * Classical local functions + shared randomness
 - Quantum shared quantum state
 - Non-signalling

Non-signalling conditions

- * For every subset of players I, the marginals of the other players \bar{I} is independent of the questions to I
- * Formally:

$$\forall a^{\overline{I}}, q^{\overline{I}}, q^{I}, r^{I} \quad \mathcal{O}_{A|Q}(\circ, a^{\overline{I}}|q^{I}, q^{\overline{I}}) = \mathcal{O}_{A|Q}(\circ, a^{\overline{I}}|r^{I}, q^{\overline{I}})$$

where

$$\mathcal{O}_{A|Q}(\circ, a^{\overline{I}}|q^I, q^{\overline{I}}) = \sum_{a_i|i\in I} \mathcal{O}_{A|Q}(a|q^I, q^{\overline{I}})$$

Repeated game

Repeated game: $G^n = (Q^{\otimes n}, A^{\otimes n}, Q^{\otimes n}, R^{\otimes n})$

Goal: win as many coordinates as possible

The big question

- * Trivial i.i.d. strategy $O_{A|Q}^{\otimes n}$
- * The players get all the questions together
- * Can use a correlated strategy (between the rounds) $P_{\vec{A}|\vec{Q}}$
- Known games where this is useful
- Can they do significantly better than i.i.d. for a large number of repetitions?

The big question

- * Optimal winning prob. in one game $1-\alpha$
- * Questions 1 (parallel repetition):
 - * What is the prob. to win all games?
 - * Can it be higher than $(1 \alpha)^n$?
- * Question 2 (threshold):
 - * What is the prob. to win more than a fraction $1 \alpha + \beta$ of the games?

Related work

Raz, 98: Classical two-player games

exponential parallel repetition

Holenstein, 07: Classical two-player + non-signalling parallel repetition

Rao, 11: Classical two-player parallel repetition + threshold theorem

Buhrman, Fehr & Schaffner, 13:

Non-signalling multiplayer parallel repetition + threshold theorem (complete-support)

Quantum: exponential parallel repetition for restricted sets of games

de Finetti Theorems in the Context of Games

The basics

- * Two ingredients:
 - 1. Permutation invariant states
 - 2. de Finetti state
- * de Finetti theorem a tool that "connects" the two

Permutation invariance

Permutation invariance

Permutation invariance

- * More formally:
 - * Quantum: $\forall \pi \quad \rho = \pi \rho \pi^{\dagger}$
 - * Conditional probability distribution (CPD):

$$\forall \pi, \vec{a}, \vec{q} \quad P_{\vec{A}|\vec{Q}}(\vec{a}|\vec{q}) = P_{\vec{A}|\vec{Q}}(\pi(\vec{a})|\pi(\vec{q}))$$

permuting the questions and answers for all players together

Why permutation invariance?

- * Relevant in physics
- * Easy to enforce choose a random permutation

de Finetti state

- * Convex combination of i.i.d. states
 - * Quantum $\tau = \int \sigma^{\otimes n} d\sigma$
 - * CPD: $\tau_{\vec{A}|\vec{Q}} = \int \mathcal{O}_{A|Q}^{\otimes n} d\mathcal{O}_{A|Q}$
- * Simple structure easy to handle

Example:

$$\frac{3}{4}\mathcal{O}_1^{\otimes n} + \frac{1}{4}\mathcal{O}_2^{\otimes n}$$

de Finetti type theorems

permutation invariant state

de Finetti theorems

de Finetti state

easy to have

easy to analyse

Applications in quantum info. theory: cryptography, tomography, channel coding, ...

de Finetti for games

permutation invariant strategy

de Finetti theorems

de Finetti strategy

easy to have

1

 G^n is permutation invariant

easy to analyse

trivial behaviour under parallel repetition

de Finetti for games

- * Natural, how come this was never done before?
- * Recent de Finetti reduction for correlations fits!

Advantages

- * No dimension dependency
 - * Instead: # of measurements and outcomes
- * No non-signalling assumptions between subsystems (without tracing out systems)
- ♦ ⇒ Applicable to parallel repetition and the study of correlations in general!

de Finetti reduction for correlations

- * Permutation invariance $P_{\vec{A}|\vec{Q}}(\vec{a}|\vec{q}) = P_{\vec{A}|\vec{Q}}(\pi(\vec{a})|\pi(\vec{q}))$
- * de Finetti strategy $\tau_{\vec{A}|\vec{Q}} = \int \mathcal{O}_{A|Q}^{\otimes n} d\mathcal{O}_{A|Q}$
- * de Finetti reduction

number of number of questions / measurements (per subsystem) answers / outcomes (per subsystem)
$$\forall \vec{a}, \vec{q} \quad P_{\vec{A}|\vec{Q}} \left(\vec{a} | \vec{q} \right) \leq (n+1)^{m(l-1)} \tau_{\vec{A}|\vec{Q}} \left(\vec{a} | \vec{q} \right)$$
 number of repetitions / subsystems

How to apply

* de Finetti reduction:

$$\forall \vec{a}, \vec{q} \ P_{\vec{A}|\vec{Q}}(\vec{a}|\vec{q}) \le (n+1)^{m(l-1)} \tau_{\vec{A}|\vec{Q}}(\vec{a}|\vec{q})$$

- * How to apply (intuition):
 - * $P_{fail}\left(P_{\vec{A}|\vec{Q}}\right)$ failure prob. of the protocol when acting on $P_{\vec{A}|\vec{Q}}$
 - * Reduction: $P_{fail}\left(P_{\vec{A}|\vec{Q}}\right) \leq (n+1)^{m(l-1)} P_{fail}\left(\tau_{\vec{A}|\vec{Q}}\right)$ increasing poly. with n

Challenges in parallel repetition

* Trivial application:

$$w\left(\mathbf{P}_{\vec{A}|\vec{Q}}\right) \leq (n+1)^{m(l-1)} w\left(\tau_{\vec{A}|\vec{Q}}\right) \qquad \text{for use full.}$$

Signalling de Finetti strategy

$$\tau_{\vec{A}|\vec{Q}} = \int \mathcal{O}_{A|Q}^{\otimes n} \; \mathrm{dO}_{A|Q}$$
 not necessarily non-signalling measure over CPD

Signalling de Finetti strategy

* Wishful thinking:

$$-\forall \vec{a}, \vec{q} - P_{\vec{A}|\vec{Q}}^{\text{ns}} (\vec{a}|\vec{q}) \le (n+1)^{m(l-1)} \tau_{\vec{A}|\vec{Q}}^{\text{ns}} (\vec{a}|\vec{q})$$

- * Counter example: no strong parallel repetition [Kempe & Regev, 2009]
- Same for quantum and classical!

Signalling de Finetti strategy

- * Have to deal with the signalling de Finetti strategy
- * General intuition:

$$P_{\vec{A}|\vec{Q}} \approx \int O_{A|Q}^{\otimes n} dO_{A|Q}$$

* If the total strategy is non-signalling then the weight of signalling strategies is exponentially small

Parallel Repetition Results

Theorem 1

- * For
 - * any complete-support non-signalling game with optimal winning probability $1-\alpha$
 - * any $0 < \beta \le \alpha$
 - * and large enough number of repetitions n

$$\Pr\left[f > 1 - \alpha + \beta\right] \leq \mathcal{C}_1\left(G, n\right) \exp\left[-\mathcal{C}_2\left(G\right) n\beta^2\right]$$
 winning polynomial optimal optimal

Theorem 2

- * Theorem 1 also holds for 2-player games without complete supports
- * For other games without complete support similar result for a modified version of parallel repetition

Proof Ideas & Techniques

Main ideas

- * Step 0: define a signalling measure (distance)
- * Step 1: bound the weight of the $O_{A|Q}$'s which are far from non-signalling strategies
- * Step 2: bound the winning probability of all other parts

Step 1: low signalling weight

* Reduction to a guessing game

* Goal: Player 2 needs to guess an index in which the question they got is (\star, \star)

Step 1: low signalling weight

* Reduction to a guessing game

Step 1: low signalling weight

- * The important part: signalling can be estimated locally!
- In contrast to the standard proofs of parallel repetition, we only need to condition on local events (detecting signalling)

Step 2: signalling to winning

- * Most of the weight is on strategies which only signal a bit
- * Small signalling value \Rightarrow small advantage in the game
- * Winning probability close to 1α
- * Formally: sensitivity analysis of linear programs

Summary & open questions

- New proof technique for non-signalling parallel repetition using de Finetti reductions for correlations
 - * What about classical and quantum parallel repetition?
- * First (new) application for the de Finetti reduction
 - * What more can we do with it?
 - Device independent crypto?
 - * Complexity?

Thank you!

arXiv:1308.0312 | de Finetti reductions for correlations arXiv:1411.1582 | Non-signalling parallel repetition using de Finetti reductions