Pares Ordenados, Produto Cartesiano e Relações.

CCMP0133 - Aula 08

Prof. Valdigleis S. Costa valdigleis.costa@univasf.edu.br 07 de junho de 2022

Universidade Federal do Vale do São Francisco Colegiado de Ciência da Computação *Campus* Salgueiro-PE

Roteiro

Pares Ordenados

Cartesiano

Relações

Pares Ordenados

O objetivo fundamental

Definição (Par ordenado)

Sejam x e y elementos em um universo do discurso. O par ordenado entre x e y, denotado por (x,y), corresponde a seguinte igualdade.

$$(x,y) = \{\{x\}, \{x,y\}\}$$

O objetivo fundamental

Definição (Par ordenado)

Sejam x e y elementos em um universo do discurso. O par ordenado entre x e y, denotado por (x,y), corresponde a seguinte igualdade.

$$(x,y) = \{\{x\}, \{x,y\}\}\$$

Uma questão de interesse:

• Quando dois pares ordenados são igual?

Cartesiano

A definição fundamental

Definição (Produto Cartesiano)

Sejam A e B dois conjuntos quaisquer. O produto Cartesiano de A e B, denotado por $A \times B$, corresponde ao conjunto de todos os pares ordenado onde a primeira componente é um elemento de A e a segunda componente é um elemento de B, em notação formal tem-se que:

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

3

A definição fundamental

Definição (Produto Cartesiano)

Sejam A e B dois conjuntos quaisquer. O produto Cartesiano de A e B, denotado por $A \times B$, corresponde ao conjunto de todos os pares ordenado onde a primeira componente é um elemento de A e a segunda componente é um elemento de B, em notação formal tem-se que:

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

Como pode ser usado o conceito de cartesiano na matemática e na computação.

Exemplo

Dado os seguintes dois conjuntos $\{a,b,c\}$ e $\{-1,1\}$ tem-se os seguintes produtos Cartesianos:

(a)
$$\{a,b,c\} \times \{-1,1\} = \{(a,1),(a,-1),(b,-1),(b,1),(c,-1),(c,1)\}.$$

(b)
$$\{-1,1\} \times \{a,b,c\} = \{(1,a),(1,b),(1,c),(-1,a),(-1,c),(-1,b)\}.$$

(c)
$$\{a,b,c\} \times \{a,b,c\} = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)\}.$$

(d)
$$\{-1,1\} \times \{-1,1\} = \{(1,1),(1,-1),(-1,1),(-1,-1)\}.$$

O quadrado Cartesiano

Definição (Cartesiano quadrado)

Seja A um conjunto qualquer. O produto Cartesiano quadrado de A, denotado por $A \times A$, corresponde ao produto Cartesiano de A consigo mesmo, em notação formal tem-se que:

$$A \times A = \{(x,y) \mid x,y \in A\}$$

Propriedades - (I)

Teorema

Dado dois conjuntos A e B tem-se que, $A \times B = \emptyset$ se, e somente se, $A = \emptyset$ ou $B = \emptyset$.

Teorema

Dado dois conjuntos A e B tem-se que, $A \times B = B \times A$ se, e somente se, $A = \emptyset$ ou $B = \emptyset$ ou A = B.

Teorema

Dado três conjuntos $A, B \ e \ C$ tem-se que, $A \subset B$ se, e somente se, $A \times C \subset B \times C$.

Teorema

Dado três conjuntos A,B e C tem-se que, $A\subset B$ se, e somente se, $C\times A\subset C\times B$.

Propriedades - (II)

Teorema

Dado três conjuntos A, B e C tem-se que:

(i)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
.

(ii)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$
.

(iii)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

(iv)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
.

(v)
$$A \times (B - C) = (A \times B) - (A \times C)$$
.

(vi)
$$(A - B) \times C = (A \times C) - (B \times C)$$
.

(vii)
$$A \times (B \ominus C) = (A \times B) \ominus (A \times C)$$
.

(vii)
$$(A \ominus B) \times C = (A \times C) \ominus (B \times C)$$
.

Expansão (ou Generalização) dos Pares Ordenados

Definição

Dado $n \geq 2$ e sejam A_1, A_2, \dots, A_n conjuntos quaisquer, o produto Cartesiano n-ário, denotado por $A_1 \times \dots \times A_n$, corresponde ao conjunto formado por todas as tuplas da forma (a_1, \dots, a_n) tal que para todo $1 \leq i \leq n$ tem-se que $a_i \in A_i$.

¹Açúcar sintático é uma expressão criada em 1964 por Peter J. Landin (1930-2009) em seus trabalhos da década de 60. De forma direta um açúcar sintático diz respeito a uma sintaxe dentro da linguagem formal que tem por finalidade tornar suas construções mais fáceis de serem lidas e expressas, ou seja, um açúcar sintático é uma ferramenta para tornar o uso da linguagem "mais doce" (ou amigável) para o uso dos seres humanos.

Expansão (ou Generalização) dos Pares Ordenados

Definição

Dado $n \geq 2$ e sejam A_1, A_2, \dots, A_n conjuntos quaisquer, o produto Cartesiano n-ário, denotado por $A_1 \times \dots \times A_n$, corresponde ao conjunto formado por todas as tuplas da forma (a_1, \dots, a_n) tal que para todo $1 \leq i \leq n$ tem-se que $a_i \in A_i$.

Açúcar Sintático

No caso de $A_i = A_j$ para todo $1 \le i, j \le n$ e $n \ge$ é comum usar um açúcar sintático¹ (syntactic sugar em inglês) para representar o produto Cartesiano n-ário, em vez de

usar, $A_1 \times \cdots \times A_n$ ou mesmo $\prod_{i=1}^n A_i$, em geral é usado a notação A^n .

¹Açúcar sintático é uma expressão criada em 1964 por Peter J. Landin (1930-2009) em seus trabalhos da década de 60. De forma direta um açúcar sintático diz respeito a uma sintaxe dentro da linguagem formal que tem por finalidade tornar suas construções mais fáceis de serem lidas e expressas, ou seja, um açúcar sintático é uma ferramenta para tornar o uso da linguagem "mais doce" (ou amigável) para o uso dos seres humanos.

Representação

Quando os conjuntos A₁, A₂, ··· , A_n são todos conjuntos finitos, uma estratégia muito utilizada para se obter e também representar o mecanismo de construção das tuplas (a₁, a₂, ··· , a_n) pertencentes ao produto Cartesiano n-ário A₁ × A₂ × ··· × A_n é usando a noção de diagrama de árvore.

Exemplo De diagrama

Dado os conjuntos $\{-1,1\}$, $\{a,b\}$ e $\{-1,1\}$ tem-se que o produto Cartesiano $\{-1,1\} \times \{a,b\} \times \{-1,1\}$ pode ser representado pelo diagrama esboçado na Figura ??.

Figura 1: Diagrama de árvore para o Cartesiano $\{-1,1\} \times \{a,b\} \times \{1,-1\}$.

Relações

As Relações Básicas

Definição (Relação binária)

Seja A e B dois conjuntos, uma relação R de A em B é qualquer subconjunto de $A \times B$, isto é, $R \subseteq (A \times B)$.

As Relações Básicas

Definição (Relação binária)

Seja A e B dois conjuntos, uma relação R de A em B é qualquer subconjunto de $A \times B$, isto é, $R \subseteq (A \times B)$.

Açúcar Sintático

Dado R uma relação binária de A em B a sintaxe da teoria dos conjuntos e de pares ordenados permite que seja escrito que $(x,y) \in R$, entretanto, está escrita é geralmente substituída por x R y. E no caso de $(x,y) \notin R$ é escrito simplesmente $x \not R y$.

Componentes Básicos

Definição (Domínio e Imagem)

Seja R uma relação de A em B, o domínio de R, denotado por Dom(R), corresponde ao conjunto de todos os elementos de A que são a primeira coordenada de x R y, ou seja,

$$Dom(R) = \{x \in A \mid x R y\}$$

e a imagem de R, denotada por Ima(R), corresponde ao conjunto de todos os elementos de B que são a segunda coordenada de x R y, ou seja,

$$Ima(R) = \{ y \in B \mid x R y \}$$

Dual Relacional

Definição (Relação inversa)

Seja R uma relação. A relação inversa (ou oposta) de R, denotada por R^{-1} , corresponde ao seguinte conjunto:

$$R^{-1} = \{ (y, x) \mid x R y \}$$

Operação Básica e Propriedades

Definição (Composição de relações)

Seja R_1 uma relação de A em B e seja R_2 uma relação de B em C, a composição de R_1 e R_2 , denotada por $R_1 \bullet R_2$, corresponde ao seguinte conjunto:

$$R_1 \bullet R_2 = \{(x, z) \mid (\exists y \in B)[x \ R_1 \ y \ e \ y \ R_2 \ z]\}$$

Operação Básica e Propriedades

Definição (Composição de relações)

Seja R_1 uma relação de A em B e seja R_2 uma relação de B em C, a composição de R_1 e R_2 , denotada por $R_1 \bullet R_2$, corresponde ao seguinte conjunto:

$$R_1 \bullet R_2 = \{(x, z) \mid (\exists y \in B)[x \ R_1 \ y \ e \ y \ R_2 \ z]\}$$

Teorema

Seja R_1 uma relação de A em B e seja R_2 uma relação de B em C, então tem-se que:

- (i) $Dom(R_1 \bullet R_2) \subseteq Dom(R_1)$.
- (ii) $Ima(R_1 \bullet R_2) \subseteq Ima(R_2)$.

Mais Propriedades

Teorema

Seja R_1 e R_2 relações de A em B. Se $R_1 \subseteq R_2$, então para toda relação R_3 de B em C tem-se que $(R_1 \bullet R_3) \subseteq (R_2 \bullet R_3)$.

Corolário

Se R_1, R_2, S_1, S_2 são relações tais que $R_1 \subseteq R_2$ e $S_1 \subseteq S_2$ com $Ima(R_1) = Dom(S_1)$ e $Ima(R_2) = Dom(S_2)$, então $(R_1 \bullet S_1) \subseteq (R_2 \bullet S_2)$.

Teorema

Seja R_1 uma relação de A em B e seja R_2 uma relação de B em C tem-se que $(R_1 \bullet R_2)^{-1} = R_2^{-1} \bullet R_1^{-1}$.

Teorema

Seja R_1 uma relação de A em B e seja R_2 uma relação de B em C e R_3 uma relação de C em D tem-se que $(R_1 \bullet R_2) \bullet R_3 = R_1 \bullet (R_2 \bullet R_3)$.