

Blended Matching Pursuit

Cyrille W. Combettes (Georgia Institute of Technology) Sebastian Pokutta (Zuse Institute Berlin and TU Berlin)

Problem

Let $\mathcal{D} \subset \mathcal{H}$ be a dictionary and $f: \mathcal{H} \to \mathbb{R}$ be a smooth, convex, and coercive function. Solve, without sparsity-inducing constraints:

Problem. For any $\epsilon > 0$, find $x \in \mathcal{H}$ satisfying $f(x) - \min_{\mathcal{H}} f \leq \epsilon$ and which is sparse relative to \mathcal{D} , i.e., $x = \sum_{i=1}^{m} \lambda_i v_i$ where $v_1, \ldots, v_m \in \mathcal{D}$ and m is *small*.

Preliminaries

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a separable Hilbert space with induced norm $\| \cdot \|$. A set $\mathcal{D} \subset \mathcal{H}$ of normalized vectors is a *dictionary* if it is at most countable and $\mathrm{cl}(\mathrm{span}(\mathcal{D})) = \mathcal{H}$, and in this case its elements are referred to as *atoms*. For any set $\mathcal{S} \subseteq \mathcal{H}$, let $\mathcal{S}' \coloneqq \mathcal{S} \cup -\mathcal{S}$ denote the *symmetrization of* \mathcal{S} . Let $f: \mathcal{H} \to \mathbb{R}$ be a Fréchet differentiable function. We say that f is:

(i) *L-smooth of order* $\ell > 1$ if L > 0 and for all $x, y \in \mathcal{H}$,

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \leqslant \frac{L}{\ell} ||y - x||^{\ell},$$

(ii) S-strongly convex of order s > 1 if S > 0 and for all $x, y \in \mathcal{H}$,

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \geqslant \frac{S}{s} ||y - x||^s,$$

(iii) *C-sharp of order* $\theta \in]0,1[$ *on* \mathcal{K} if $\mathcal{K} \subset \mathcal{H}$ is a bounded set, $\varnothing \neq \arg\min_{\mathcal{H}} f \subset \operatorname{int}(\mathcal{K})$, and for all $x \in \mathcal{K}$,

$$\operatorname{dist}\left(x, \operatorname*{arg\,min} f\right) \leqslant C\left(f(x) - \operatorname*{min} f\right)^{\theta}.$$

Fact 1. If f is smooth of order $\ell > 1$ and sharp of order $\theta \in [0, 1[$, then $\ell \theta \leq 1$.

Fact 2. A strongly convex function is sharp but a (convex and) sharp function is not necessarily strongly convex:

Lemma [1]. Sharpness holds for all *well-behaved* convex functions in \mathbb{R}^n .

Generalized/Orthogonal Matching Pursuit

Gradient descent follows the optimal descent direction but produces poor sparsity as $-\nabla f(x_t)$ may be a combination of many atoms. To preserve sparsity, **GMP** moves in the direction of an atom $v_t \in \mathcal{D}'$, keeping track of the active set $\mathcal{S}_{t+1} = \mathcal{S}_t \cup \{v_t\}$. OMP reoptimizes f over $\mathrm{span}(\mathcal{S}_{t+1})$ and each iteration is typically a sequence of projected gradient steps (**PG steps**). OMP achieves higher sparsity than **GMP** but each iteration is expensive: the sequence of **PG steps** is overkill and can be truncated.

GMP step

$$v_{t} \leftarrow \underset{v \in \mathcal{D}'}{\arg\min} \langle \nabla f(x_{t}), v \rangle$$

$$x_{t+1} \leftarrow \underset{x_{t} + \mathbb{R}v_{t}}{\arg\min} f$$

$$x_{t+1} \leftarrow \mathcal{S}_{t} \cup \{v_{t}\}$$

Potentially more progress but decreases the sparsity level

PG step

$$\widetilde{\nabla} f(x_t) \leftarrow \operatorname{proj}_{\operatorname{span}(\mathcal{S}_t)}(\nabla f(x_t))$$

$$x_{t+1} \leftarrow \underset{x_t + \mathbb{R}\widetilde{\nabla} f(x_t)}{\operatorname{arg \, min}} f$$

$$x_{t+1} \leftarrow \mathcal{S}_t$$

Progress only over $span(S_t)$ but keeps the sparsity level intact

Blended Matching Pursuit

Lazification. BMP speeds-up the linear oracle with a weak-separation oracle $\operatorname{LPsep}_{\mathcal{D}'}(\nabla f(x_t), \phi_t, \kappa)$ [2]: Find $v_t \in \mathcal{D}'$ such that $\langle \nabla f(x_t), v_t \rangle \leqslant \phi_t/\kappa$.

Blending. BMP blends GMP steps with PG steps:

GMP, PG,...,PG, GMP, PG,...,PG, GMP, ...

partially optimize over span(
$$S_t$$
)

add 1 atom and enter new space span($S_t \cup \{v_t\}$)

partially optimize over span($S_t \cup \{v_t\}$)

over span($S_t \cup \{v_t\}$)

The idea is to promote **PG** steps as long as the progress offered is *comparable* to that of a **GMP** step. To this end, we want to compare $\min_{v \in \mathcal{S}'_t} \langle \nabla f(x_t), v \rangle$ to $\min_{v \in \mathcal{D}'} \langle \nabla f(x_t), v \rangle$, which quantity is not available because of the lazification.

Dual gap estimates. Hence, we introduce *dual gap estimates* $|\phi_t|$. This designation comes from $\min_{v \in \mathcal{D}'} \langle \nabla f(x_t), v \rangle$ being a dual gap in our setting. Indeed, there exists $\rho > 0$ such that for all $t \in [0, T]$ and $x^* \in \arg\min_{\mathcal{H}} f$,

$$\epsilon_t \leqslant \langle \nabla f(x_t), x_t - x^* \rangle \leqslant \max_{u, v \in \rho \operatorname{conv}(\mathcal{D}')} \langle \nabla f(x_t), u - v \rangle = -2\rho \min_{v \in \mathcal{D}'} \langle \nabla f(x_t), v \rangle$$
 (1)

where $\epsilon_t = f(x_t) - \min_{\mathcal{H}} f$. We initialize $\phi_0 \leftarrow \min_{v \in \mathcal{D}'} \langle \nabla f(x_0), v \rangle / \tau$ so $\epsilon_0 \leq 2\tau \rho |\phi_0|$. Then the **criterion** Line 3 measures the progress offered by a **PG step**. If it is not satisfactory, then $\mathbf{LPsep}_{\mathcal{D}'}$ is called to evaluate if there exists a **GMP step** with satisfactory progress. Else, it shows that $\min_{v \in \mathcal{D}'} \langle \nabla f(x_t), v \rangle > \phi_t$ and by (1), $\epsilon_t \leq 2\rho |\phi_t|$ so we have detected an improved dual gap estimate. A **dual step** updates $\phi_{t+1} \leftarrow \phi_t / \tau$ and gives $\epsilon_{t+1} \leq 2\tau \rho |\phi_{t+1}|$; only **dual steps** update ϕ_t .

Algorithm Blended Matching Pursuit (BMP)

```
Input: Start atom x_0 \in \mathcal{D}, parameter \eta > 0 balancing speed vs. sparsity, \kappa \geqslant 1, \tau > 1.
 1: S_0, \phi_0 \leftarrow \{x_0\}, \min_{v \in \mathcal{D}'} \langle \nabla f(x_0), v \rangle / \tau
 2: for t = 0 to T - 1 do
          if \min \langle 
abla f(x_t), v 
angle \leqslant \phi_t/\eta then
              \nabla f(x_t) \leftarrow \operatorname{proj}_{\operatorname{span}(\mathcal{S}_t)}(\nabla f(x_t))
              x_{t+1} \leftarrow \text{arg min} \quad j
                                                                                                                                                                 {PG step}
                               x_t + \mathbb{R} \nabla f(x_t)
              \mathcal{S}_{t+1}, \phi_{t+1} \leftarrow \mathcal{S}_t, \phi_t
               v_t \leftarrow \text{LPsep}_{\mathcal{D}'}(\nabla f(x_t), \phi_t, \kappa)
               if v_t = false then
                                                                                                                                                              {dual step}
                  x_{t+1} \leftarrow x_t
                  \mathcal{S}_{t+1}, \phi_{t+1} \leftarrow \mathcal{S}_t, \phi_t/	au
                                                                                                                                                             {GMP step}
                  x_{t+1} \leftarrow rg \min f
                                    x_t + \mathbb{R} v_t
                  \mathcal{S}_{t+1}, \phi_{t+1} \leftarrow \mathcal{S}_t \cup \{v_t\}, \phi_t
              end if
           end if
 17: end for
```

Convergence results

Properties of f	BMP rate	Complexity lower bound [3]
Smooth convex	$\mathcal{O}\left(\frac{1}{\epsilon^{1/(\ell-1)}}\right)$	$\Omega\left(\frac{1}{\epsilon^{1/(1.5\ell-1)}}\right)$
Smooth convex sharp $\ell\theta=1$	$\mathcal{O}\left(\ln\left(\frac{1}{\epsilon}\right)\right)$	$\Omega\left(\ln\left(\frac{1}{\epsilon}\right)\right)$
Smooth convex sharp $\ell\theta < 1$	$\mathcal{O}\left(\frac{1}{\epsilon^{(1-\ell\theta)/(\ell-1)}}\right)$	$\Omega\left(\frac{1}{\epsilon^{(1-\ell\theta)/(1.5\ell-1)}}\right)$

Computational experiments

We measure a signal/observe data $y = Ax^* + \mathcal{N}(0, \sigma^2 I_m)$ where $||x^*||_0 \ll n$ and we want to recover/learn x^* from the dictionary $\mathcal{D} = \{\pm e_1, \ldots, \pm e_n\}$.

BMP, GMP, and OMP solve

 $\min \|y - Ax\|_2^2$ s.t. $x \in \mathbb{R}^n$

BCG and CoGEnT solve

min $||y - Ax||_2^2$ **s.t.** $||x||_1 \le ||x^*||_1$

where $||x^*||_1$ is favorably given

(i)
$$A \in \mathbb{R}^{250 \times 1000}$$
 and $f : x \in \mathbb{R}^{1000} \mapsto \|y - Ax\|_3^5$

(ii) Gisette dataset: $f: x \in \mathbb{R}^{5000} \mapsto (1/1000) \sum_{i=1}^{1000} \ln(1 + e^{-y_i a_i^{\mathsf{T}} x})$

References

- [1] J. Bolte, A. Daniilidis, and A. Lewis. The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. *SIAM J. Optim.*, 2007.
- [2] G. Braun, S. Pokutta, and D. Zink. Lazifying conditional gradient algorithms. ICML, 2017.
- [3] A. Nemirovskii and Y. Nesterov. Optimal methods of smooth convex minimization. *Comput. Math. Math. Phys.*, 1985