# Are environmental and geographic effective surrogates for genetic variation in conservation planning?

 $Jeffrey\ O.\ Hanson^1,\ Jonathan\ R.\ Rhodes^2,\ Cynthia\ Riginos^2,\ Hugh\ P.\ Possingham^1,\ Richard\ A.\ Fuller^1$ 

<sup>1</sup>School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia <sup>2</sup>School of Geography, Planning and Environmental Management, The University of Queensland, Brisbane, QLD, Australia

 $Correspondance\ should\ be\ addressed\ to\ jeffrey. hanson @uqconnect.edu. au$ 

08 December 2015

#### Abstract

Insert abstract here.

# Contents

| Introduction                                                        |
|---------------------------------------------------------------------|
| Methods                                                             |
| Study area                                                          |
| Genomic data                                                        |
| Surrogate data                                                      |
| Prioritisations                                                     |
| Results                                                             |
| Single species prioritisations                                      |
| Multi-species prioritisations                                       |
| Pareo-frontier analysis                                             |
| Discussion                                                          |
| Acknowledgements                                                    |
| References                                                          |
| Supporting Information                                              |
| Appendix S1: Species distributions                                  |
| Appendix S2: BayeScan Results                                       |
| Appendix S3: Genomic MDS                                            |
| Appendix S4: Distribution maps of intra-specific variation          |
| Appendix S5: Principle components analysis on climatic variation 49 |
| Appendix S6: Maps of climatic variation                             |

# Introduction

#### Methods

#### Study area

To address the aims of this study, we obtained species distribution and genomic (AFLP) from (Meirmans  $et\ al.\ 2011$ ). This dataset was chosen because it provides genomic data for a multitude

of species at a high spatial resolution (approx.  $20 \text{km}^2 \times 22 \text{km}^2$ ).

```
## compile spatial grid data
# load grid cell centroids
grid.DF <- fread(</pre>
    'extdata/Data_Meirmans_et_al_IntrabioDiv/ReadMe.txt',
    data.table=FALSE,
    skip='cell\tLong\tLat'
) %>% rename(
        grid.longitude=Long,
        grid.latitude=Lat
) %>% mutate(
    id=seq_along(grid.latitude)
# load in aflp data
spp.aflp.paths <- dir(</pre>
    'extdata/Data_Meirmans_et_al_IntrabioDiv',
    '^.*AFLP\\.dat$',
    full.names=TRUE
)[seq_len(n.spp)]
spp.BayeScanData.LST <- llply(</pre>
    spp.aflp.paths,
    read.BayeScanData
)
## compile species occurence data
# load in data
spp.loc.paths <- dir(</pre>
    'extdata/Data_Meirmans_et_al_IntrabioDiv',
    '^.*locations\\.txt$'.
    full.names=TRUE
)[seq_len(n.spp)]
spp.samples.DF <- ldply(</pre>
    seq along(spp.loc.paths),
    .fun=function(i) {
        x <- mutate(</pre>
            fread(spp.loc.paths[i], data.table=FALSE),
            species=gsub('_locations.txt', '', basename(spp.loc.paths[i]), fixed=TRUE)
        ) %>% rename(
            cell=population,
            sample.longitude=longitude,
            sample.latitude=latitude
        )
        return(x[as.numeric(spp.BayeScanData.LST[[i]]@populations),])
) %>% left_join(
        grid.DF,
```

```
by='cell'
)
# append species data to grid data.frame (wide-format)
for (i in unique(spp.samples.DF$species))
   grid.DF[[i]] <- replace(
      rep(0, nrow(grid.DF)),
      which(grid.DF$cell %in% filter(spp.samples.DF, species==i)$cell),
      1
   )</pre>
```

#### Genomic data

Loci in the AFLP were classified as adaptive or neutral using BayeScan (version 2.1) using a proability threshold of 0.5).

```
# assign cells as populations
spp.BayeScanData.LST <- llply(</pre>
    seq_along(unique(spp.samples.DF$species)),
    function(i) {
        bd <- spp.BayeScanData.LST[[i]]</pre>
        bd@populations <- filter(spp.samples.DF, species==unique(spp.samples.DF$species)[i])$c
    }
)
# run BayeScan
spp.BayeScan.LST <- llply(</pre>
    spp.BayeScanData.LST,
    run.BayeScan,
    threshold=bs.threshold,
    threads=bs.threads,
    n=bs.n,
    thin=bs.thin,
    nbp=bs.nbp,
    pilot=bs.pilot,
    burn=bs.burn
)
# run MDS
spp.mds.LST <- llply(</pre>
    spp.BayeScan.LST,
    function(i) {
        'names<-'(llply(c('adaptive', 'neutral'), function(j) {
            if (sum(i@results@fst==j)==0)
                 return(NULL)
            return(
                 mds(
                     i,
                     metric='gower',
```

```
type=j,
                    k=mds.k,
                    trymax=mds.trymax
                )
            )
        }), c('adaptive', 'neutral'))
)
## Warning in daisy(cbind(as.data.frame(x@matrix == 1), 1), metric = metric, :
## at least one binary variable has not 2 different levels.
## Run 0 stress 0.2387515
## Run 1 stress 0.2393767
## Run 2 stress 0.2441548
## Run 0 stress 0.2249186
## Run 1 stress 0.225666
## Run 2 stress 0.2259804
## Warning in daisy(cbind(as.data.frame(x@matrix == 1), 1), metric = metric, :
## at least one binary variable has not 2 different levels.
## Run 0 stress 0.25157
## Run 1 stress 0.2575878
## Run 2 stress 0.2675034
## Warning in daisy(cbind(as.data.frame(x@matrix == 1), 1), metric = metric, :
## at least one binary variable has not 2 different levels.
## Run 0 stress 0.2127055
## Run 1 stress 0.2177005
## Run 2 stress 0.2123847
## ... New best solution
## ... procrustes: rmse 0.03672649 max resid 0.1819873
## Run 0 stress 0.1957005
## Run 1 stress 0.19997
## Run 2 stress 0.2048544
## Run 0 stress 0.2316074
## Run 1 stress 0.241015
## Run 2 stress 0.2355921
# store mds rotations for each sample
spp.samples.DF <- ldply(seq_along(unique(spp.samples.DF$species)), .fun=function(i) {</pre>
    x <- filter(spp.samples.DF, species==unique(spp.samples.DF$species)[i])
    for (j in c('adaptive', 'neutral')) {
```

```
if (!is.null(spp.mds.LST[[i]][[j]])) {
            x <- cbind(
                 x,
                 'names<-'(
                     as.data.frame(spp.mds.LST[[i]][[j]]$points),
                     paste0(j,'_d',seq_len(mds.k))
                 )
            )
        }
    return(x)
})
# store mds average rotation for each grid
for (i in seq_along(unique(spp.samples.DF$species))) {
    for (j in c('adaptive', 'neutral')) {
        if(!is.null(spp.mds.LST[[i]][[j]])) {
            curr.sub <- filter(spp.samples.DF, species==unique(spp.samples.DF$species)[i])</pre>
            for (k in seq_len(mds.k)) {
                 curr.vals <- tapply(</pre>
                     curr.sub[[paste0(j,'_d',k)]],
                     curr.sub$cell,
                     FUN=mean
                 )
                 curr.pos <- match(names(curr.vals), grid.DF$cell)</pre>
                 grid.DF[curr.pos,paste0(unique(spp.samples.DF$species)[i],'_',j,'_d',k)] <- cur</pre>
            }
        }
    }
}
```

#### Surrogate data

```
## create spatial data
# grid data as SpatialPolygonsDataFrame
grid.PTS <- SpatialPoints(as.matrix(grid.DF[,2:3]))
grid.PLY <- grid.PTS %>%
    points2grid(tolerance=0.05) %>%
    as('SpatialPolygons')
grid.PLY <- grid.PLY[sapply(gIntersects(grid.PTS, grid.PLY, byid=TRUE, returnDense=FALSE), '[[
    spChFIDs(
        as.character(seq_len(nrow(grid.DF)))
    ) %>%
    SpatialPolygonsDataFrame(
        data=grid.DF
    )
grid.PLY@proj4string <- wgs1984</pre>
```

```
grid.PPLY <- spTransform(grid.PLY, europeEA)</pre>
# sample data as SpatialPoints
spp.sample.PTS <- SpatialPointsDataFrame(</pre>
    coords=as.matrix(spp.samples.DF[,5:6]),
    data=spp.samples.DF,
    proj4string=wgs1984
spp.sample.PPTS <- spTransform(spp.sample.PTS, europeEA)</pre>
## extract geographic data
centroids.DF <- gCentroid(grid.PPLY, byid=TRUE) %>% slot('coords') %>%
    as.data.frame() %>% 'names<-'(paste0('geo_d',1:2))
grid.DF <- cbind(grid.DF, centroids.DF)</pre>
## extract climatic data
# load climatic data
bioclim.STK <- stack('extdata/BioClim_variables/bioclim_pca.tif')</pre>
# extract mean for each cell for each principle component
extract.DF <- grid.PPLY %>% rasterize(bioclim.STK, field='id') %>%
    zonal(x=bioclim.STK) %>% as.data.frame() %>% select(-1) %>%
    'names<-'(paste0('env_d',seq_len(nlayers(bioclim.STK))))
# merge with grid.DF
grid.DF <- cbind(grid.DF, extract.DF)</pre>
## update spatial objects
grid.PLY@data <- grid.DF</pre>
grid.PPLY@data <- grid.DF</pre>
```

#### **Prioritisations**

```
# generate attribute spaces for geographic and environmental data
surrogate.ASL <- llply(</pre>
    list(grep('^env.*$', names(grid.DF)),grep('^geo.*$', names(grid.DF))),
    .fun=function(x) {
        make.multi.species.AttributeSpace(
            site.data=grid.DF[,x,drop=FALSE],
            species.data=grid.DF[,unique(spp.samples.DF$species),drop=FALSE]
        )
    }
# generate attribute spaces for genetic data
adaptive.ASL <- llply(</pre>
    seq_along(unique(spp.samples.DF$species)),
    function(i) {
        make.single.species.AttributeSpace(
            site.data=select(grid.DF, contains(paste0(unique(spp.samples.DF$species)[i], '_ada
            species.data=select(filter(spp.samples.DF, species==unique(spp.samples.DF$species)
            spp.pos=i,
```

```
n.species=n_distinct(spp.samples.DF$species)
        )
    }
)
neutral.ASL <- llply(</pre>
    seq_along(unique(spp.samples.DF$species)),
    function(i) {
        make.single.species.AttributeSpace(
            site.data=select(grid.DF, contains(paste0(unique(spp.samples.DF$species)[i], '_neu'
            species.data=select(filter(spp.samples.DF, species==unique(spp.samples.DF$species)
            spp.pos=i,
            n.species=n_distinct(spp.samples.DF$species)
        )
    }
)
# make table with targets
target.DF <- make.targets(</pre>
    species=unique(spp.samples.DF$species),
    environmental.space=as1[[1]], geographic.space=as1[[2]],
    adaptive.spaces=adaptive.ASL, neutral.spaces=neutral.ASL,
    amount.target=0.2, space.target=0.2
)
# make Rap objects
rd <- RapData(
    polygon=SpatialPolygons2PolySet(grid.PLY),
    pu=data.frame(
        cost=rep(1, nrow(grid.DF)),
        area=rep(1, nrow(grid.DF)),
        status=rep(OL, nrow(grid.DF))
    ),
    species=data.frame(name=unique(spp.samples.DF$species)),
    target=target.DF,
    attribute.spaces=append(append(surrogate.ASL, adaptive.ASL), neutral.ASL),
    pu.species.probabilities=ldply(
        seq_along(unique(spp.samples.DF$species)),
        .fun=function(i) {
            data.frame(
                species=i,
                pu=which(grid.DF[[unique(spp.samples.DF$species)[i]]]==1),
                value=1
            )
        }
    ),
    boundary=calcBoundaryData(grid.PLY)
ru <- RapUnsolved(RapUnreliableOpts(), rd)</pre>
```

```
## single species analysis
# generate RapSolved objects
single.spp.prioritisations <- llply(</pre>
    seq_along(unique(spp.samples.DF$species)),
    function(x) {
        11ply(
            list(
                c(rapr.amount.target,0,0), c(rapr.amount.target,rapr.surrogate.target,0),
                    c(rapr.amount.target,0,rapr.genetic.target,0)
            ),
            function(y) {
                species.prioritisation(
                    x=spp.subset(ru, x),
                    amount.targets=y[1],
                    env.surrogate.targets=y[2],
                    geo.surrogate.targets=y[2],
                    adaptive.genetic.targets=y[3],
                    neutral.genetic.targets=y[3],
                    Threads=gb.Threads,
                    MIPGap=gb.MIPGap
                )
            }
        )
    }
)
## Optimize a model with 1 rows, 388 columns and 45 nonzeros
## Coefficient statistics:
                     [1e+00, 1e+00]
##
     Matrix range
     Objective range [1e+00, 1e+00]
##
##
     Bounds range
                     [1e+00, 1e+00]
                     [9e+00, 9e+00]
     RHS range
##
## Found heuristic solution: objective 9
## Presolve removed 1 rows and 388 columns
## Presolve time: 0.00s
## Presolve: All rows and columns removed
## Explored O nodes (O simplex iterations) in 0.00 seconds
## Thread count was 1 (of 2 available processors)
##
## Optimal solution found (tolerance 9.00e-01)
## Best objective 9.000000000000e+00, best bound 9.00000000000e+00, gap 0.0%
## Optimize a model with 4143 rows, 4438 columns and 16245 nonzeros
## Coefficient statistics:
                     [1e-05, 8e+05]
##
     Matrix range
##
     Objective range [1e+00, 1e+00]
##
     Bounds range
                     [1e+00, 1e+00]
```

```
[1e+00, 2e+06]
     RHS range
## Found heuristic solution: objective 40
## Presolve removed 0 rows and 343 columns
## Presolve time: 0.24s
## Presolved: 4143 rows, 4095 columns, 16245 nonzeros
## Variable types: 0 continuous, 4095 integer (4095 binary)
## Presolved: 4143 rows, 4095 columns, 16245 nonzeros
## Presolve removed 4051 rows and 200 columns
## Root relaxation: objective 9.000000e+00, 1401 iterations, 0.21 seconds
##
                     Current Node
##
       Nodes
                                           Objective Bounds
                                                                        Work
   Expl Unexpl | Obj Depth IntInf | Incumbent
                                                    BestBd
                                                              Gap | It/Node Time
##
## *
        0
                                      9.0000000
                                                   9.00000
                                                            0.00%
                                                                            0s
##
## Explored O nodes (1448 simplex iterations) in 0.50 seconds
## Thread count was 1 (of 2 available processors)
## Optimal solution found (tolerance 9.00e-01)
## Best objective 9.000000000000e+00, best bound 9.00000000000e+00, gap 0.0%
## Optimize a model with 6028 rows, 6283 columns and 23625 nonzeros
## Coefficient statistics:
##
    Matrix range
                     [1e-05, 1e+00]
     Objective range [1e+00, 1e+00]
##
                     [1e+00, 1e+00]
     Bounds range
##
##
     RHS range
                     [1e+00, 1e+01]
## Presolve removed 0 rows and 343 columns
## Presolve time: 0.62s
## Presolved: 6028 rows, 5940 columns, 23496 nonzeros
## Variable types: 0 continuous, 5940 integer (5940 binary)
## Found heuristic solution: objective 45.0000000
## Found heuristic solution: objective 39.0000000
## Presolved: 6028 rows, 5940 columns, 23496 nonzeros
##
## Presolve removed 6025 rows and 5850 columns
## Root relaxation: objective 9.000000e+00, 1234 iterations, 0.23 seconds
##
##
                1
                     Current Node
                                     Objective Bounds
       Nodes
                                                                        Work
   Expl Unexpl | Obj Depth IntInf | Incumbent
                                                    BestBd
                                                              Gap | It/Node Time
##
        0
                                      9.0000000
## *
                              0
                                                   9.00000 0.00%
                                                                            0s
## Explored O nodes (1241 simplex iterations) in 0.95 seconds
## Thread count was 1 (of 2 available processors)
##
```

```
## Optimal solution found (tolerance 9.00e-01)
## Best objective 9.000000000000e+00, best bound 9.00000000000e+00, gap 0.0%
## Optimize a model with 1 rows, 388 columns and 129 nonzeros
## Coefficient statistics:
                     [1e+00, 1e+00]
##
     Matrix range
     Objective range [1e+00, 1e+00]
##
##
     Bounds range
                     [1e+00, 1e+00]
##
     RHS range
                     [3e+01, 3e+01]
## Found heuristic solution: objective 26
## Presolve removed 1 rows and 388 columns
## Presolve time: 0.00s
## Presolve: All rows and columns removed
##
## Explored O nodes (O simplex iterations) in 0.00 seconds
## Thread count was 1 (of 2 available processors)
##
## Optimal solution found (tolerance 9.00e-01)
## Best objective 2.600000000000e+01, best bound 2.60000000000e+01, gap 0.0%
## Optimize a model with 33543 rows, 33670 columns and 133257 nonzeros
## Coefficient statistics:
                     [1e-05, 9e+05]
##
    Matrix range
     Objective range [1e+00, 1e+00]
##
##
     Bounds range
                     [1e+00, 1e+00]
                     [1e+00, 6e+06]
     RHS range
## Found heuristic solution: objective 114
## Presolve removed 0 rows and 259 columns (presolve time = 5s) ...
## Presolve removed 0 rows and 259 columns
## Presolve time: 6.19s
## Presolved: 33543 rows, 33411 columns, 133257 nonzeros
## Variable types: 0 continuous, 33411 integer (33411 binary)
## Presolved: 33543 rows, 33411 columns, 133257 nonzeros
##
## Presolve removed 33283 rows and 2012 columns
## Root simplex log...
##
## Iteration
                Objective
                                Primal Inf.
                                               Dual Inf.
                                                               Time
               0.000000e+00
                               6.098853e+01
                                               3.266558e+09
                                                                 7s
       3025
               2.6000000e+01
                               0.000000e+00
                                              0.000000e+00
##
                                                                 8s
       3025
               2.6000000e+01
                               0.000000e+00
##
                                              0.000000e+00
                                                                 88
##
## Root relaxation: objective 2.600000e+01, 3025 iterations, 2.17 seconds
##
##
       Nodes
                     Current Node
                                           Objective Bounds
                                                                        Work
    Expl Unexpl | Obj Depth IntInf | Incumbent
                                                     BestBd
                                                              Gap | It/Node Time
##
##
##
        0
                  26,00000
                                   2 114.00000
                                                   26.00000 77.2%
                                                                            8s
##
```

```
## Explored O nodes (5515 simplex iterations) in 8.85 seconds
## Thread count was 1 (of 2 available processors)
## Optimal solution found (tolerance 9.00e-01)
## Best objective 1.14000000000e+02, best bound 2.60000000000e+01, gap 77.1930%
## Optimize a model with 50052 rows, 50053 columns and 198789 nonzeros
## Coefficient statistics:
                     [1e-05, 1e+00]
##
    Matrix range
     Objective range [1e+00, 1e+00]
##
                     [1e+00, 1e+00]
##
     Bounds range
                     [1e+00, 3e+01]
##
     RHS range
## Presolve removed 0 rows and 259 columns (presolve time = 5s) ...
## Presolve removed 0 rows and 259 columns (presolve time = 10s) ...
## Presolve removed 0 rows and 259 columns (presolve time = 15s) ...
## Presolve removed 0 rows and 259 columns
## Presolve time: 18.44s
## Presolved: 50052 rows, 49794 columns, 198436 nonzeros
## Variable types: 0 continuous, 49794 integer (49794 binary)
## Found heuristic solution: objective 113.0000000
## Found heuristic solution: objective 112.0000000
## Presolved: 50052 rows, 49794 columns, 198436 nonzeros
##
## Presolve removed 50019 rows and 45666 columns
## Root simplex log...
##
                                Primal Inf.
                                               Dual Inf.
## Iteration
                Objective
                                                               Time
##
          0
               1.2900000e+02
                               0.000000e+00
                                              1.290000e+02
                                                                22s
##
       2475
               2.6000000e+01
                               0.000000e+00
                                              0.000000e+00
                                                                23s
##
       2475
               2.6000000e+01
                               0.000000e+00
                                              0.000000e+00
                                                                23s
##
## Root relaxation: objective 2.600000e+01, 2475 iterations, 4.01 seconds
##
##
       Nodes
                     Current Node
                                     Objective Bounds
                                                                        Work
   Expl Unexpl |
                   Obj Depth IntInf | Incumbent
##
                                                    BestBd
                                                              Gap | It/Node Time
##
        0
              0
                              0
                                     26.0000000
## *
                                                   26.00000 0.00%
                                                                           23s
## Explored O nodes (2778 simplex iterations) in 23.70 seconds
## Thread count was 1 (of 2 available processors)
##
## Optimal solution found (tolerance 9.00e-01)
## Best objective 2.600000000000e+01, best bound 2.60000000000e+01, gap 0.0%
## Optimize a model with 1 rows, 388 columns and 104 nonzeros
## Coefficient statistics:
##
     Matrix range
                     [1e+00, 1e+00]
##
     Objective range [1e+00, 1e+00]
##
     Bounds range
                     [1e+00, 1e+00]
```

```
[2e+01, 2e+01]
     RHS range
## Found heuristic solution: objective 21
## Presolve removed 1 rows and 388 columns
## Presolve time: 0.00s
## Presolve: All rows and columns removed
## Explored O nodes (O simplex iterations) in 0.00 seconds
## Thread count was 1 (of 2 available processors)
## Optimal solution found (tolerance 9.00e-01)
## Best objective 2.100000000000e+01, best bound 2.10000000000e+01, gap 0.0%
## Optimize a model with 21843 rows, 22020 columns and 86632 nonzeros
## Coefficient statistics:
                     [1e-05, 8e+05]
##
     Matrix range
##
     Objective range [1e+00, 1e+00]
                     [1e+00, 1e+00]
     Bounds range
##
     RHS range
                     [1e+00, 4e+06]
## Found heuristic solution: objective 98
## Presolve removed 0 rows and 284 columns
## Presolve time: 3.11s
## Presolved: 21843 rows, 21736 columns, 86632 nonzeros
## Variable types: 0 continuous, 21736 integer (21736 binary)
## Presolved: 21843 rows, 21736 columns, 86632 nonzeros
## Presolve removed 21633 rows and 1637 columns
##
## Root relaxation: objective 2.100000e+01, 2175 iterations, 1.08 seconds
##
##
                     Current Node
                                     Objective Bounds
    Expl Unexpl | Obj Depth IntInf | Incumbent
                                                     BestBd
                                                              Gap | It/Node Time
##
##
## *
                                     21.0000000
                                                  21.00000 0.00%
                                                                            4s
##
## Explored O nodes (2182 simplex iterations) in 4.29 seconds
## Thread count was 1 (of 2 available processors)
##
## Optimal solution found (tolerance 9.00e-01)
## Best objective 2.100000000000e+01, best bound 2.10000000000e+01, gap 0.0%
## Optimize a model with 32237 rows, 32316 columns and 127816 nonzeros
## Coefficient statistics:
                     [1e-03, 1e+00]
##
    Matrix range
     Objective range [1e+00, 1e+00]
##
                     [1e+00, 1e+00]
##
     Bounds range
     RHS range
                     [1e+00, 2e+01]
## Presolve removed 0 rows and 284 columns (presolve time = 5s) ...
## Presolve removed 0 rows and 284 columns (presolve time = 10s) ...
## Presolve removed 0 rows and 284 columns
## Presolve time: 10.63s
```

```
## Presolved: 32237 rows, 32032 columns, 127509 nonzeros
## Variable types: 0 continuous, 32032 integer (32032 binary)
## Found heuristic solution: objective 94.0000000
## Presolved: 32237 rows, 32032 columns, 127509 nonzeros
##
## Presolve removed 32237 rows and 32032 columns
##
## Root simplex log...
                                Primal Inf.
                                                Dual Inf.
## Iteration
                Objective
                                                                Time
               1.0400000e+02
                                0.000000e+00
                                               1.040000e+02
##
                                                                 12s
       1929
               2.1000000e+01
                                0.000000e+00
                                               0.000000e+00
##
                                                                 13s
       1929
               2.1000000e+01
                               0.000000e+00
                                               0.000000e+00
##
                                                                 13s
##
## Root relaxation: objective 2.100000e+01, 1929 iterations, 1.85 seconds
##
##
       Nodes
                     Current Node
                                            Objective Bounds
                                                                         Work
##
   Expl Unexpl |
                   Obj Depth IntInf | Incumbent
                                                               Gap | It/Node Time
                                                     BestBd
##
                                      21.0000000
## *
        0
              0
                               0
                                                   21.00000 0.00%
                                                                            14s
##
## Explored 0 nodes (3879 simplex iterations) in 14.14 seconds
## Thread count was 1 (of 2 available processors)
## Optimal solution found (tolerance 9.00e-01)
## Best objective 2.100000000000e+01, best bound 2.10000000000e+01, gap 0.0%
# generate results table
single.spp.DF <- ldply(</pre>
    single.spp.prioritisations,
    function(x) {
        mutate(
            ldply(x, extractResults),
            Prioritisation=c('Amount', 'Surrogate', 'Genetic')
        )
    }
## multispecies analysis
# make prioritisations
multi.spp.prioritisations <- llply(</pre>
    list(
        c(rapr.amount.target,0,0), c(rapr.amount.target,rapr.surrogate.target,0),
            c(rapr.amount.target,0,rapr.genetic.target,0)
   ),
    function(y) {
        species.prioritisation(
```

```
x=ru,
            amount.targets=v[1],
            env.surrogate.targets=y[2],
            geo.surrogate.targets=y[2],
            adaptive.genetic.targets=y[3],
            neutral.genetic.targets=y[3],
            Threads=gb.Threads,
            MIPGap=gb.MIPGap
        )
    }
)
## Optimize a model with 3 rows, 388 columns and 278 nonzeros
## Coefficient statistics:
                     [1e+00, 1e+00]
##
     Matrix range
##
     Objective range [1e+00, 1e+00]
##
     Bounds range
                     [1e+00, 1e+00]
##
     RHS range
                     [9e+00, 3e+01]
## Found heuristic solution: objective 29
## Presolve removed 3 rows and 388 columns
## Presolve time: 0.00s
## Presolve: All rows and columns removed
##
## Explored O nodes (O simplex iterations) in 0.00 seconds
## Thread count was 1 (of 2 available processors)
##
## Optimal solution found (tolerance 9.00e-01)
## Best objective 2.600000000000e+01, best bound 2.600000000000e+01, gap 0.0%
## Optimize a model with 59529 rows, 59352 columns and 236134 nonzeros
## Coefficient statistics:
                     [1e-05, 9e+05]
##
     Matrix range
##
     Objective range [1e+00, 1e+00]
                     [1e+00, 1e+00]
##
     Bounds range
    RHS range
                     [1e+00, 6e+06]
## Found heuristic solution: objective 141
## Presolve removed 0 rows and 242 columns (presolve time = 5s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 10s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 15s) ...
## Presolve removed 0 rows and 242 columns
## Presolve time: 17.25s
## Presolved: 59529 rows, 59110 columns, 236134 nonzeros
## Variable types: 0 continuous, 59110 integer (59110 binary)
## Presolved: 59529 rows, 59110 columns, 236134 nonzeros
##
## Presolve removed 58967 rows and 3717 columns
##
```

## Root simplex log...

```
##
## Iteration
                Objective
                                Primal Inf.
                                               Dual Inf.
                                                               Time
               0.0000000e+00
                               1.432025e+02
                                              5.292865e+09
                                                                20s
##
          0
       1911
                                                                20s
##
               8.6975993e+01
                               0.000000e+00
                                              4.185188e+03
##
       8122
               2.9997714e+01
                               0.000000e+00
                                              1.732555e+04
                                                                25s
##
      11032
               2.6000000e+01
                               0.000000e+00
                                              0.000000e+00
                                                                29s
##
      11032
               2.6000000e+01
                               0.000000e+00
                                              0.000000e+00
                                                                29s
##
## Root relaxation: objective 2.600000e+01, 11032 iterations, 12.06 seconds
  Total elapsed time = 30.45s
##
##
       Nodes
                     Current Node
                                     Objective Bounds
                                                                        Work
   Expl Unexpl |
                   Obj Depth IntInf | Incumbent
##
                                                     BestBd
                                                              Gap | It/Node Time
##
##
                  26.00000
                              0 228 141.00000
                                                   26.00000 81.6%
                                                                           33s
##
## Explored O nodes (16236 simplex iterations) in 33.64 seconds
## Thread count was 1 (of 2 available processors)
##
## Optimal solution found (tolerance 9.00e-01)
## Best objective 1.410000000000e+02, best bound 2.60000000000e+01, gap 81.5603%
## Optimize a model with 88317 rows, 87876 columns and 350230 nonzeros
## Coefficient statistics:
                     [1e-05, 1e+00]
##
    Matrix range
##
     Objective range [1e+00, 1e+00]
##
     Bounds range
                     [1e+00, 1e+00]
                     [1e+00, 3e+01]
##
     RHS range
## Presolve removed 0 rows and 242 columns (presolve time = 5s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 10s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 15s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 20s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 25s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 30s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 35s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 40s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 45s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 50s) ...
## Presolve removed 0 rows and 242 columns (presolve time = 55s) ...
## Presolve removed 0 rows and 242 columns
## Presolve time: 58.62s
## Presolved: 88317 rows, 87634 columns, 349441 nonzeros
## Variable types: 0 continuous, 87634 integer (87634 binary)
## Found heuristic solution: objective 139.0000000
## Presolved: 88317 rows, 87634 columns, 349441 nonzeros
## Presolve removed 88281 rows and 83416 columns
## Root simplex log...
```

```
##
                                 Primal Inf.
## Iteration
                Objective
                                                Dual Inf.
                                                                Time
               1.4600000e+02
                                0.000000e+00
                                               1.460000e+02
                                                                 63s
##
          0
       2069
               6.2993159e+01
                                0.000000e+00
                                               5.682674e+03
                                                                 65s
##
##
       5280
               3.7092713e+01
                                0.00000e+00
                                               1.835344e+04
                                                                 70s
               2.6605111e+01
                                0.000000e+00
                                               3.177995e+03
                                                                 75s
##
       8491
##
       9559
               2.6000000e+01
                                0.000000e+00
                                               0.000000e+00
                                                                 80s
##
       9559
               2.6000000e+01
                                0.000000e+00
                                               0.000000e+00
                                                                 80s
##
## Root relaxation: objective 2.600000e+01, 9559 iterations, 19.52 seconds
## Total elapsed time = 80.01s
##
                     Current Node
##
       Nodes
                                            Objective Bounds
                                                                         Work
                   Obj Depth IntInf | Incumbent
   Expl Unexpl |
                                                     BestBd
                                                               Gap | It/Node Time
##
## *
        0
              0
                                      26,0000000
                                                   26.00000
                                                              0.00%
                                                                            80s
##
## Explored O nodes (13085 simplex iterations) in 80.67 seconds
## Thread count was 1 (of 2 available processors)
## Optimal solution found (tolerance 9.00e-01)
## Best objective 2.600000000000e+01, best bound 2.60000000000e+01, gap 0.0%
# generate results table
multi.spp.DF <- ldply(seq_along(multi.spp.prioritisations), function(i) {</pre>
    mutate(
        extractResults(multi.spp.prioritisations[[i]]),
        Prioritisation=c('Amount', 'Surrogate', 'Genetic')[i]
    )
})
## pareto frontier analysis
# generate prioritistions
env.pareto.prioritisations <- llply(</pre>
    rapr.pareto.surrogate.targets,
    species.prioritisation,
    x=ru,
    amount.targets=0,
    geo.surrogate.targets=0,
    adaptive.genetic.targets=0,
    neutral.genetic.targets=0
)
## Optimize a model with 29766 rows, 29870 columns and 118206 nonzeros
## Coefficient statistics:
                      [1e-05, 2e+03]
##
     Matrix range
##
     Objective range [1e+00, 1e+00]
```

```
[1e+00, 1e+00]
##
     Bounds range
##
     RHS range
                     [1e+00, 2e+05]
## Found heuristic solution: objective 118
## Presolve removed 3 rows and 242 columns
## Presolve time: 4.71s
## Presolved: 29763 rows, 29628 columns, 117928 nonzeros
## Variable types: 0 continuous, 29628 integer (29628 binary)
## Presolved: 29763 rows, 29628 columns, 117928 nonzeros
## Presolve removed 29482 rows and 146 columns
##
## Root simplex log...
## Iteration
                Objective
                                Primal Inf.
                                                Dual Inf.
                                                               Time
##
               0.000000e+00
                               2.530709e-01
                                               9.212604e+07
                                                                 6s
       5544
               1.0000000e+00
                               0.000000e+00
                                              0.000000e+00
##
                                                                10s
##
       5544
               1.0000000e+00
                               0.000000e+00
                                              0.000000e+00
                                                                10s
##
## Root relaxation: objective 1.000000e+00, 5544 iterations, 5.04 seconds
##
##
       Nodes
                     Current Node
                                     Objective Bounds
                                                                        Work
   Expl Unexpl | Obj Depth IntInf | Incumbent
                                                     BestBd
                                                              Gap | It/Node Time
##
## *
        0
                                       1.0000000
                                                    1.00000
                                                             0.00%
                                                                            9s
##
## Explored O nodes (5544 simplex iterations) in 9.89 seconds
## Thread count was 1 (of 2 available processors)
##
## Optimal solution found (tolerance 5.00e-02)
## Best objective 1.000000000000e+00, best bound 1.00000000000e+00, gap 0.0%
## Optimize a model with 29766 rows, 29870 columns and 118206 nonzeros
## Coefficient statistics:
##
    Matrix range
                     [1e-05, 2e+03]
     Objective range [1e+00, 1e+00]
##
     Bounds range
                     [1e+00, 1e+00]
##
##
     RHS range
                     [1e+00, 8e+04]
## Found heuristic solution: objective 118
## Presolve removed 3 rows and 242 columns
## Presolve time: 4.76s
## Presolved: 29763 rows, 29628 columns, 117928 nonzeros
## Variable types: 0 continuous, 29628 integer (29628 binary)
## Presolved: 29763 rows, 29628 columns, 117928 nonzeros
##
## Presolve removed 29482 rows and 146 columns
## Root simplex log...
##
## Iteration
                Objective
                                Primal Inf.
                                               Dual Inf.
                                                               Time
```

```
##
               0.000000e+00
                               2.368537e+01
                                              1.976974e+09
                                                                 6s
               1.9945643e+00
                               0.000000e+00 2.476667e+02
##
      16076
                                                                10s
##
      24782
               1.0000000e+00
                               0.000000e+00
                                              0.000000e+00
                                                                14s
      24782
               1.0000000e+00
                               0.000000e+00
                                              0.000000e+00
##
                                                                14s
##
## Root relaxation: objective 1.000000e+00, 24782 iterations, 9.57 seconds
##
##
       Nodes
                     Current Node
                                           Objective Bounds
                                                                        Work
   Expl Unexpl
                   Obj Depth IntInf | Incumbent
                                                              Gap | It/Node Time
##
                                                     BestBd
##
                   1.00000
                                                             99.2%
##
        0
              0
                              0 558 118.00000
                                                    1.00000
                                                                           14s
## H
        0
              0
                                      1.0000000
                                                    1.00000 0.00%
                                                                           15s
##
## Explored O nodes (28177 simplex iterations) in 15.19 seconds
## Thread count was 1 (of 2 available processors)
##
## Optimal solution found (tolerance 5.00e-02)
## Best objective 1.000000000000e+00, best bound 1.00000000000e+00, gap 0.0%
## Optimize a model with 29766 rows, 29870 columns and 118206 nonzeros
## Coefficient statistics:
                     [1e-05, 2e+03]
##
     Matrix range
     Objective range [1e+00, 1e+00]
##
##
     Bounds range
                     [1e+00, 1e+00]
     RHS range
                     [5e-04, 1e+00]
## Found heuristic solution: objective 146
## Presolve removed 29766 rows and 29870 columns
## Presolve time: 0.06s
## Presolve: All rows and columns removed
##
## Explored O nodes (O simplex iterations) in 0.08 seconds
## Thread count was 1 (of 2 available processors)
## Optimal solution found (tolerance 5.00e-02)
## Best objective 1.46000000000e+02, best bound 1.460000000000e+02, gap 0.0%
geo.pareto.prioritisations <- llply(</pre>
    rapr.pareto.surrogate.targets,
    species.prioritisation,
    x=ru,
    amount.targets=0,
    env.surrogate.targets=0,
    adaptive.genetic.targets=0,
    neutral.genetic.targets=0
```

## Optimize a model with 29766 rows, 29870 columns and 118206 nonzeros
## Coefficient statistics:

```
Matrix range
                     [1e-05, 9e+05]
##
     Objective range [1e+00, 1e+00]
##
##
     Bounds range
                     [1e+00, 1e+00]
     RHS range
                     [1e+00, 6e+07]
##
## Found heuristic solution: objective 118
## Presolve removed 3 rows and 242 columns
## Presolve time: 4.67s
## Presolved: 29763 rows, 29628 columns, 117928 nonzeros
## Variable types: 0 continuous, 29628 integer (29628 binary)
## Presolved: 29763 rows, 29628 columns, 117928 nonzeros
##
## Presolve removed 29482 rows and 3717 columns
## Root simplex log...
##
## Iteration
                Objective
                               Primal Inf.
                                               Dual Inf.
                                                               Time
##
               0.0000000e+00
                               1.897425e-01
                                              2.726995e+08
                                                                 6s
##
       5754
               1.0000000e+00
                               0.000000e+00
                                              0.000000e+00
                                                                10s
                               0.000000e+00
       5754
               1.0000000e+00
                                              0.000000e+00
##
                                                                10s
## Root relaxation: objective 1.000000e+00, 5754 iterations, 5.17 seconds
##
                     Current Node
                                     Objective Bounds
                  Obj Depth IntInf | Incumbent
##
   Expl Unexpl |
                                                    BestBd
                                                              Gap | It/Node Time
##
## *
                              0
                                                    1.00000 0.00%
                                      1.0000000
                                                                            9s
##
## Explored O nodes (5754 simplex iterations) in 9.95 seconds
## Thread count was 1 (of 2 available processors)
##
## Optimal solution found (tolerance 5.00e-02)
## Best objective 1.000000000000e+00, best bound 1.00000000000e+00, gap 0.0%
## Optimize a model with 29766 rows, 29870 columns and 118206 nonzeros
## Coefficient statistics:
    Matrix range
##
                     [1e-05, 9e+05]
     Objective range [1e+00, 1e+00]
##
##
     Bounds range
                     [1e+00, 1e+00]
     RHS range
                     [1e+00, 3e+07]
## Found heuristic solution: objective 124
## Presolve removed 3 rows and 242 columns
## Presolve time: 4.77s
## Presolved: 29763 rows, 29628 columns, 117928 nonzeros
## Variable types: 0 continuous, 29628 integer (29628 binary)
## Presolved: 29763 rows, 29628 columns, 117928 nonzeros
## Presolve removed 29482 rows and 3717 columns
## Root simplex log...
```

```
##
## Iteration
                 Objective
                                  Primal Inf.
                                                  Dual Inf.
                                                                  Time
##
                0.000000e+00
                                                 3.315739e+09
          0
                                 3.367941e+01
                                                                    6s
##
      11511
                3.2519777e+00
                                 0.00000e+00
                                                 1.688364e+03
                                                                   10s
##
      15567
                3.0654929e+00
                                 0.000000e+00
                                                 5.864860e+02
                                                                   15s
##
      19103
               2.9117592e+00
                                 0.000000e+00
                                                 3.285617e+02
                                                                   20s
##
      22327
               2.7865479e+00
                                 0.00000e+00
                                                 3.669895e+02
                                                                   25s
##
      25447
               2.6431077e+00
                                 0.000000e+00
                                                 5.631065e+02
                                                                   30s
##
      28671
               2.4763708e+00
                                 0.000000e+00
                                                 7.578635e+02
                                                                   35s
##
      30335
               2.4414239e+00
                                 0.000000e+00
                                                 1.019895e+03
                                                                   40s
##
      31479
               2.3884282e+00
                                 0.000000e+00
                                                 1.015067e+03
                                                                   45s
##
      32623
               2.3034871e+00
                                 0.000000e+00
                                                 8.756853e+02
                                                                   50s
##
      33767
                                 0.000000e+00
                2.2370324e+00
                                                 1.446064e+03
                                                                   55s
##
      35015
                2.1552095e+00
                                 0.000000e+00
                                                 3.573627e+02
                                                                   60s
##
      36159
               2.0881209e+00
                                 0.000000e+00
                                                 4.980702e+02
                                                                   65s
##
      37303
               2.0296691e+00
                                 0.000000e+00
                                                 1.626541e+03
                                                                   70s
##
      38447
               1.9838385e+00
                                 0.000000e+00
                                                 5.277967e+02
                                                                   75s
##
      39487
                1.9466193e+00
                                 0.000000e+00
                                                 2.551990e+02
                                                                   80s
##
      40631
                1.9052307e+00
                                 0.000000e+00
                                                 6.215684e+03
                                                                   85s
##
      41671
                1.8644888e+00
                                 0.000000e+00
                                                 3.198452e+02
                                                                   90s
##
      42815
                1.8062983e+00
                                 0.000000e+00
                                                 6.754032e+02
                                                                   95s
##
      43751
                1.7544822e+00
                                 0.000000e+00
                                                 7.438513e+03
                                                                  100s
##
      44791
               1.7074283e+00
                                 0.000000e+00
                                                 1.461999e+03
                                                                  105s
##
      45727
                1.6660891e+00
                                 0.000000e+00
                                                 5.164360e+03
                                                                  110s
##
      46767
                1.6221972e+00
                                 0.000000e+00
                                                 2.018706e+03
                                                                  115s
##
      47703
                                 0.000000e+00
                                                 1.349636e+03
                1.5969801e+00
                                                                  120s
##
      48743
                1.5770462e+00
                                 0.000000e+00
                                                 3.226639e+02
                                                                  125s
##
      49783
                1.5654998e+00
                                 0.000000e+00
                                                 2.599145e+02
                                                                  130s
##
      50927
                1.5536145e+00
                                 0.000000e+00
                                                 9.848115e+02
                                                                  135s
##
      51863
                1.5459101e+00
                                 0.000000e+00
                                                 1.069567e+03
                                                                  140s
##
      52903
                1.5410078e+00
                                 0.000000e+00
                                                 4.231634e+02
                                                                  145s
##
      53839
                1.5355246e+00
                                 0.000000e+00
                                                 2.467873e+02
                                                                  150s
##
      54775
                1.5293048e+00
                                 0.000000e+00
                                                 5.075302e+02
                                                                  155s
##
                                 0.000000e+00
      55711
                1.5179598e+00
                                                 1.158771e+03
                                                                  160s
##
      56647
                1.4981117e+00
                                 0.000000e+00
                                                 6.710989e+02
                                                                  165s
##
      57583
                1.4783747e+00
                                 0.000000e+00
                                                 3.841066e+02
                                                                  170s
##
      58519
                1.4620607e+00
                                 0.000000e+00
                                                 5.926053e+02
                                                                  175s
##
      59455
                1.4394960e+00
                                 0.000000e+00
                                                 3.074928e+03
                                                                  180s
##
      60287
                1.4217585e+00
                                 0.000000e+00
                                                 3.953825e+03
                                                                  185s
##
      61223
                1.3958233e+00
                                 0.000000e+00
                                                 1.524913e+03
                                                                  190s
##
      62159
                1.3612990e+00
                                 0.000000e+00
                                                 2.674519e+03
                                                                  195s
##
      63095
                1.2868621e+00
                                 0.000000e+00
                                                 1.717281e+04
                                                                  200s
##
      64759
                                                                  205s
                1.0143032e+00
                                 0.000000e+00
                                                 7.681355e+03
##
      66735
               9.9566670e-01
                                 0.000000e+00
                                                 6.845464e+02
                                                                  210s
##
      67107
                1.0000000e+00
                                 0.000000e+00
                                                 0.000000e+00
                                                                  211s
##
      67107
                1.0000000e+00
                                 0.000000e+00
                                                 0.000000e+00
                                                                  211s
##
```

## Root relaxation: objective 1.000000e+00, 67107 iterations, 205.90 seconds

```
##
##
                     Current Node
                                     Objective Bounds
       Nodes
                                                                        Work
##
   Expl Unexpl | Obj Depth IntInf | Incumbent
                                                     BestBd
                                                              Gap | It/Node Time
##
        0
              0
                              0
                                       1.0000000
                                                    1.00000 0.00%
## *
                                                                        - 210s
##
## Explored 0 nodes (67107 simplex iterations) in 210.79 seconds
## Thread count was 1 (of 2 available processors)
## Optimal solution found (tolerance 5.00e-02)
## Best objective 1.000000000000e+00, best bound 1.00000000000e+00, gap 0.0%
## Optimize a model with 29766 rows, 29870 columns and 118206 nonzeros
## Coefficient statistics:
                     [1e-05, 9e+05]
     Matrix range
##
     Objective range [1e+00, 1e+00]
##
     Bounds range
                     [1e+00, 1e+00]
##
     RHS range
                     [5e-04, 1e+00]
## Found heuristic solution: objective 146
## Presolve removed 29766 rows and 29870 columns
## Presolve time: 0.06s
## Presolve: All rows and columns removed
##
## Explored O nodes (O simplex iterations) in 0.08 seconds
## Thread count was 1 (of 2 available processors)
##
## Optimal solution found (tolerance 5.00e-02)
## Best objective 1.46000000000e+02, best bound 1.460000000000e+02, gap 0.0%
# extract results
env.pareto.DF <- ldply(seq_along(env.pareto.prioritisations), function(i) {</pre>
    mutate(
        extractResults(env.pareto.prioritisations[[i]]),
        Surrogate.target=rapr.pareto.surrogate.targets[i]
    )
})
geo.pareto.DF <- ldply(seq_along(geo.pareto.prioritisations), function(i) {</pre>
    mutate(
        extractResults(geo.pareto.prioritisations[[i]]),
        Surrogate.target=rapr.pareto.surrogate.targets[i]
    )
})
```

#### Results

#### Single species prioritisations

```
## statistical analysis
# prepare data
single.spp.SDF <- single.spp.DF %>%
    gather(Metric, value, amount.held:neutral.held) %>%
    filter(Metric %in% c('adaptive.held', 'neutral.held')) %>%
    mutate(Metric=revalue(Metric, c('adaptive.held'='Adaptive variation',
        'neutral.held'='Neutral variation'))) %>%
    mutate(Prioritisation.Metric=interaction(Prioritisation,Metric))
# model
single.spp.GLM <- suppressWarnings(glm(value ~ Prioritisation * Metric,</pre>
    family='binomial', data=single.spp.SDF))
single.spp.AOV <- suppressWarnings(anova(single.spp.GLM))</pre>
# post-hoc
single.spp.GLM2 <- suppressWarnings(glm(value ~ Prioritisation.Metric,</pre>
    family='binomial', data=single.spp.SDF))
single.spp.MCP <- summary(</pre>
    glht(single.spp.GLM2,
        linfct=mcp(Prioritisation.Metric='Tukey')),
    adjusted('bonferroni'))
```

```
# prepare data for plotting
single.spp.PDF <- expand.grid(</pre>
    Prioritisation=unique(single.spp.SDF$Prioritisation),
    Metric=unique(single.spp.SDF$Metric))
single.spp.PDF <- cbind(single.spp.PDF,</pre>
    as.data.frame(predict(single.spp.GLM, single.spp.PDF,
        type='response', se.fit=TRUE))) %>%
    mutate(lower=fit-se.fit, upper=fit+se.fit,
        letters=toupper(cld(single.spp.MCP)$mcletters$Letters),
        letter_pos=upper+0.05)
# make plot
ggplot(aes(x=Metric,y=fit,fill=Prioritisation),
    data=single.spp.PDF) +
    geom_bar(position=position_dodge(0.9),
        stat='identity') +
    geom errorbar(
        aes(ymin=lower,ymax=upper),
        position=position_dodge(0.9), width=0.6) +
    geom_text(aes(x=Metric, y=letter_pos,
        label=letters), position=position_dodge(0.9)) +
    scale_fill_manual(name='Prioritisation',
        values=c('grey80', 'grey50', 'grey20')) +
```

```
ylab('Proportion genetic\nvariation secured (%)') +
xlab('') +
theme_classic()
```

## ymax not defined: adjusting position using y instead



**Figure 1** Summary of single species prioritisations. Single species prioritisations were generated using amount-based targets, amount-based and surrogate-based targets, and amount-based and genetic-based targets for each species. Data shows the performance of prioritisations generated using these three sets of targets. Bars denote means and standard errors.

#### Multi-species prioritisations

```
multi.spp.MCP <- summary(</pre>
    glht(multi.spp.GLM2,
        linfct=mcp(Prioritisation.Metric='Tukey')),
    adjusted('bonferroni'))
# download basemap
data(countriesHigh)
countries.FPLY <- countriesHigh[</pre>
    countriesHigh$ADMIN %in% c(
        'Italy', 'Switzerland', 'France', 'Austria',
        'Germany', 'Slovenia', 'Croatia', 'Hungary',
        'Monaco', 'Germany'
    )
,] %>% spFortify
# prepare data for plotting
multi.spp.grid.FPLY <- grid.PLY</pre>
for (i in seq_along(multi.spp.prioritisations))
    multi.spp.grid.FPLY@data[[paste0('v',i)]] <- selections(multi.spp.prioritisations[[i]])</pre>
multi.spp.grid.FPLY <- spFortify(multi.spp.grid.FPLY)</pre>
# make maps
do.call(
    grid.arrange,
    append(
        llply(
            seq_along(multi.spp.prioritisations),
            function(i) {
                ggplot() +
                    geom_polygon(data=countries.FPLY, aes(x=long, y=lat, group=group),
                         fill='grey20', color='grey80') +
                    geom_polygon(data=multi.spp.grid.FPLY, aes_string(x='long', y='lat',
                         group='group', fill=paste0('v',i)),
                         alpha=0.8, color='grey10') +
                    guides(fill=guide_legend(title=' ')) +
                    theme classic() +
                    theme(axis.ticks=element_blank(), axis.text=element_blank(),
                         plot.margin=unit(c(0,0,0,0),'cm'), axis.line=element_blank(),
                        legend.position='none') +
                    coord_cartesian(
                         xlim=buffered.range(multi.spp.grid.FPLY$long, 0.05),
                         ylim=buffered.range(multi.spp.grid.FPLY$lat, 0.05)
                    ) +
                    xlab(',') +
                    ylab('') +
```

x=min(multi.spp.grid.FPLY\$long)+diff(range(multi.spp.grid.FPLY\$long)\*0
y=min(multi.spp.grid.FPLY\$lat)+diff(range(multi.spp.grid.FPLY\$lat)\*1.0

label=letters[i], hjust=1, vjust=1, color='white', size=8)

annotate('text',

```
}
),
list(nrow=1)
)
```



Figure 2 Multi-species prioritisations. Panel (a) shows the prioritisation generated for using just amount-based targets. Panel (b) shows the prioritisation generated using amount-based and surrogate based targets. Panel (c) shows the prioritisation generated using amount-based and genetic-based targets

```
# prepare data for plotting
multi.spp.PDF <- expand.grid(</pre>
    Prioritisation=unique(multi.spp.SDF$Prioritisation),
    Metric=unique(multi.spp.SDF$Metric))
multi.spp.PDF <- cbind(multi.spp.PDF,</pre>
    as.data.frame(predict(multi.spp.GLM, multi.spp.PDF,
        type='response', se.fit=TRUE))) %>%
    mutate(lower=fit-se.fit, upper=fit+se.fit,
        letters=toupper(cld(multi.spp.MCP)$mcletters$Letters),
        letter_pos=upper+0.05)
# make plot
ggplot(aes(x=Metric,y=fit,fill=Prioritisation),
    data=multi.spp.PDF) +
    geom_bar(position=position_dodge(0.9),
        stat='identity') +
    geom_errorbar(
        aes(ymin=lower,ymax=upper),
        position=position_dodge(0.9), width=0.6) +
    geom_text(aes(x=Metric, y=letter_pos,
        label=letters), position=position_dodge(0.9)) +
    scale_fill_manual(name='Prioritisation',
```

```
values=c('grey80','grey50','grey20')) +
ylab('Proportion genetic\nvariation secured (%)') +
xlab('') +
theme_classic()
```

## ymax not defined: adjusting position using y instead



**Figure 3** Summary of multi-species prioritisations. Three prioritisations were generated using amount-based targets, amount-based and surrogate-based targets, and amount-based and genetic-based targets for each species. Data shows the performance of these prioritisations based on how much genetic variation they explain. Bars denote means and standard errors.

#### Pareo-frontier analysis

```
# make plots
p1 <- ggplot(data=env.pareto.DF) +
    geom_line(aes(x=Surrogate.target,y=adaptive.held,group=Species),
        alpha=0.5) +
    xlab('Environmental variation secured (%)') +
    ylab('Adaptive genetic\nvariation secured (%)') +
    theme_classic()
p2 <- ggplot(data=geo.pareto.DF) +
    geom_line(aes(x=Surrogate.target,y=neutral.held,group=Species),
        alpha=0.5) +
    xlab('Geographic variation secured (%)') +
    ylab('Neutral genetic\nvariation secured (%)') +
    theme_classic()
grid.arrange(p1, p2, nrow=1)</pre>
```



Figure 4 The relationship between surrogates and genetic variation secured in prioritisations.

# Discussion

# Acknowledgements

JOH is funded by an Australian Postgraduate Award (APA) scholarship. RAF has an Australian Research Council Future Fellowship. This work was supported by the Centre of Excellence for Environmental Decisions (CEED) and the Landscape Ecology and Conservation Group (LEC) at The University of Queensland.

# References

# **Supporting Information**

#### Appendix S1: Species distributions

```
## plot map of species distributions
# fortify data
grid.FPLY <- spFortify(grid.PLY)
spp.grid.FPLY <- ldply(unique(spp.samples.DF$species), function(x) {
    z <- grid.FPLY[,c('long', 'lat', 'group', x),drop=FALSE]
    names(z)[4] <- 'presence'
    z$species <- gsub('\\_', '', x)
    return(z)
  }
)
# plot species data</pre>
```

```
ggplot() +
   geom_polygon(data=countries.FPLY, aes(x=long, y=lat, group=group),
       fill='grey20', color='grey80') +
   geom_polygon(data=spp.grid.FPLY, aes(x=long, y=lat,
        group=group, fill=presence), alpha=0.8, color='grey10') +
   theme_classic() +
   guides(fill=guide_legend(title='Presence')) +
   theme(axis.ticks=element_blank(), axis.text=element_blank(),
        axis.line=element_blank()) +
   coord_cartesian(
       xlim=buffered.range(grid.FPLY$long, 0.05),
       ylim=buffered.range(grid.FPLY$lat, 0.05)
   ) +
   xlab('') +
   ylab('') +
   facet_wrap(~ species, ncol=4)
```



Figure 5 Species distributions. Squares represent planning units. For a given species, planning units that were found to be inhabited are denoted with bright blue.

```
# calculate species richness
grid.PLY$Species_richness <- grid.PLY@data %>%
    select(5:(4+n.spp)) %>% as.matrix() %>% rowSums()
# plot species richness
ggplot() +
   geom_polygon(data=countries.FPLY, aes(x=long, y=lat, group=group),
        fill='grey20', color='grey80') +
   geom_polygon(data=spFortify(grid.PLY), aes(x=long, y=lat,
        group=group, fill=Species_richness), alpha=0.8, color='grey10') +
   guides(fill=guide_legend(title='Count (#)')) +
   theme classic() +
   theme(axis.ticks=element_blank(), axis.text=element_blank(),
        axis.line=element_blank()) +
   coord_cartesian(
       xlim=buffered.range(grid.FPLY$long, 0.05),
       ylim=buffered.range(grid.FPLY$lat, 0.05)
   ) +
   xlab('') +
   ylab('') +
   ggtitle('Species richness')
```



**Figure 6** Species richness. Squares denote planning units. Planning units with a brighter color are inhabited by more species.

# Appendix S2: BayeScan Results

```
knitr::kable(
    format.table(
        ldply(
            seq_along(unique(spp.samples.DF$species)),
            function(i) {
                data.frame(
                    Species=paste0('\\textit{',gsub('\\_', '', unique(spp.samples.DF$species)
                    Individuals=nrow(spp.BayeScanData.LST[[i]]@matrix),
                    Total_Loci=ncol(spp.BayeScanData.LST[[i]]@matrix),
                    Neutral_Loci=sum(spp.BayeScan.LST[[i]]@results@fst[[7]]=='neutral'),
                    Adpative_Loci=sum(spp.BayeScan.LST[[i]]@results@fst[[7]]=='adaptive'),
                    Proportion_adaptive=sum(spp.BayeScan.LST[[i]]@results@fst[[7]]=='adaptive'
                )
            }
        )
    ),
    digits=2,
    colnames=c('Species','Individuals (#)', 'Total Loci (#)', 'Neutral Loci (#)', 'Adaptive Loci
    align=c('1', 'c', 'c', 'c', 'c', 'c')
```

| Species               | Individuals | Total_Loci | Neutral_Loci | Adpative_Loci | Proportion_adaptive |
|-----------------------|-------------|------------|--------------|---------------|---------------------|
| Androsace obtusifolia | 131         | 138        | 66           | 72            | 0.52                |
| $Arabis\ alpina$      | 385         | 151        | 52           | 99            | 0.66                |
| $Campanula\ barbata$  | 307         | 114        | 46           | 68            | 0.60                |

| Species               | Primer           | Probability | qval | alpha | fst  | Type     |
|-----------------------|------------------|-------------|------|-------|------|----------|
| Androsace obtusifolia | AAC_CAN_83.0     | 0.06        | 0.30 | -0.02 | 0.09 | neutral  |
|                       | $AAC\_CAN\_85.0$ | 1.00        | 0.00 | 1.02  | 0.21 | adaptive |
|                       | AAC_CAN_89.0     | 0.06        | 0.30 | -0.01 | 0.09 | neutral  |
|                       | AAC_CAN_91.0     | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|                       | AAC_CAN_100.0    | 0.39        | 0.06 | -0.28 | 0.07 | neutral  |
|                       | AAC_CAN_102.0    | 0.24        | 0.09 | -0.10 | 0.08 | neutral  |
|                       | AAC_CAN_108.0    | 0.04        | 0.35 | -0.02 | 0.09 | neutral  |
|                       | AAC_CAN_124.0    | 1.00        | 0.00 | -1.05 | 0.03 | adaptive |
|                       | AAC_CAN_125.0    | 1.00        | 0.00 | 1.45  | 0.29 | adaptive |
|                       | AAC_CAN_128.0    | 1.00        | 0.00 | 1.06  | 0.22 | adaptive |
|                       | AAC_CAN_130.0    | 0.04        | 0.35 | 0.01  | 0.09 | neutral  |
|                       | AAC_CAN_132.0    | 0.94        | 0.01 | -0.79 | 0.04 | adaptive |
|                       | AAC_CAN_133.0    | 1.00        | 0.00 | 1.43  | 0.29 | adaptive |
|                       | AAC_CAN_136.0    | 1.00        | 0.00 | 0.89  | 0.19 | adaptive |
|                       | AAC_CAN_137.0    | 1.00        | 0.00 | -2.31 | 0.01 | adaptive |
|                       | AAC_CAN_146.0    | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|                       | AAC_CAN_151.0    | 1.00        | 0.00 | -1.01 | 0.04 | adaptive |
|                       | AAC_CAN_152.0    | 1.00        | 0.00 | -1.41 | 0.02 | adaptive |
|                       | AAC_CAN_153.0    | 0.08        | 0.21 | -0.02 | 0.09 | neutral  |
|                       | AAC_CAN_182.0    | 1.00        | 0.00 | 1.60  | 0.32 | adaptive |
|                       | AAC_CAN_195.0    | 1.00        | 0.00 | 1.35  | 0.27 | adaptive |
|                       | AAC_CAN_211.0    | 1.00        | 0.00 | 1.30  | 0.26 | adaptive |
|                       | AAC_CAN_220.0    | 0.02        | 0.42 | -0.01 | 0.09 | neutral  |
|                       | AAC_CAN_231.0    | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|                       | AAC_CAN_239.0    | 0.96        | 0.00 | -0.69 | 0.05 | adaptive |
|                       | AAC_CAN_272.0    | 0.53        | 0.05 | -0.16 | 0.08 | adaptive |
|                       | AAC_CAN_319.0    | 1.00        | 0.00 | -1.79 | 0.02 | adaptive |

| Species | Primer        | Probability | qval | alpha | fst  | Туре     |
|---------|---------------|-------------|------|-------|------|----------|
|         | ACA_CAT_81.0  | 1.00        | 0.00 | 0.76  | 0.18 | adaptive |
|         | ACA_CAT_85.0  | 1.00        | 0.00 | -0.87 | 0.04 | adaptive |
|         | ACA_CAT_90.0  | 1.00        | 0.00 | -0.96 | 0.04 | adaptive |
|         | ACA_CAT_97.0  | 1.00        | 0.00 | -0.87 | 0.04 | adaptive |
|         | ACA_CAT_99.0  | 1.00        | 0.00 | -0.77 | 0.05 | adaptive |
|         | ACA_CAT_100.0 | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|         | ACA_CAT_102.0 | 0.02        | 0.42 | 0.01  | 0.09 | neutral  |
|         | ACA_CAT_103.0 | 0.02        | 0.42 | 0.00  | 0.09 | neutral  |
|         | ACA_CAT_108.0 | 0.02        | 0.42 | 0.01  | 0.09 | neutral  |
|         | ACA_CAT_120.0 | 0.04        | 0.35 | -0.01 | 0.09 | neutral  |
|         | ACA_CAT_124.0 | 0.16        | 0.14 | -0.05 | 0.09 | neutral  |
|         | ACA_CAT_126.0 | 0.65        | 0.01 | -0.46 | 0.06 | adaptive |
|         | ACA_CAT_129.0 | 0.02        | 0.42 | -0.01 | 0.09 | neutral  |
|         | ACA_CAT_131.0 | 0.16        | 0.14 | 0.05  | 0.09 | neutral  |
|         | ACA_CAT_133.0 | 1.00        | 0.00 | 0.59  | 0.15 | adaptive |
|         | ACA_CAT_135.0 | 0.04        | 0.35 | -0.02 | 0.09 | neutral  |
|         | ACA_CAT_140.0 | 0.96        | 0.00 | -0.78 | 0.04 | adaptive |
|         | ACA_CAT_148.0 | 1.00        | 0.00 | -1.09 | 0.03 | adaptive |
|         | ACA_CAT_152.0 | 1.00        | 0.00 | 1.75  | 0.35 | adaptive |
|         | ACA_CAT_153.0 | 1.00        | 0.00 | 0.98  | 0.21 | adaptive |
|         | ACA_CAT_155.0 | 1.00        | 0.00 | 1.86  | 0.38 | adaptive |
|         | ACA_CAT_157.0 | 0.18        | 0.11 | -0.07 | 0.08 | neutral  |
|         | ACA_CAT_159.0 | 0.14        | 0.17 | 0.05  | 0.09 | neutral  |
|         | ACA_CAT_162.0 | 1.00        | 0.00 | -1.46 | 0.02 | adaptive |
|         | ACA_CAT_168.0 | 0.10        | 0.19 | 0.02  | 0.09 | neutral  |
|         | ACA_CAT_173.0 | 0.96        | 0.00 | -0.61 | 0.05 | adaptive |
|         | ACA_CAT_177.0 | 0.02        | 0.42 | 0.01  | 0.09 | neutral  |
|         | ACA_CAT_178.0 | 0.06        | 0.30 | -0.01 | 0.09 | neutral  |
|         | ACA_CAT_187.0 | 1.00        | 0.00 | 0.97  | 0.21 | adaptive |
|         | ACA_CAT_192.0 | 0.06        | 0.30 | 0.00  | 0.09 | neutral  |
|         | ACA_CAT_196.0 | 1.00        | 0.00 | -1.18 | 0.03 | adaptive |
|         | ACA_CAT_199.0 | 0.02        | 0.42 | -0.01 | 0.09 | neutral  |
|         |               |             |      |       |      |          |

| Species | Primer            | Probability | qval | alpha | fst  | Type     |
|---------|-------------------|-------------|------|-------|------|----------|
|         | ACA_CAT_200.0     | 0.04        | 0.35 | -0.01 | 0.09 | neutral  |
|         | ACA_CAT_204.0     | 1.00        | 0.00 | -0.93 | 0.04 | adaptive |
|         | ACA_CAT_205.0     | 0.08        | 0.21 | -0.03 | 0.09 | neutral  |
|         | ACA_CAT_210.0     | 0.02        | 0.42 | 0.00  | 0.09 | neutral  |
|         | ACA_CAT_214.0     | 1.00        | 0.00 | 1.07  | 0.22 | adaptive |
|         | ACA_CAT_219.0     | 0.06        | 0.30 | 0.00  | 0.09 | neutral  |
|         | ACA_CAT_229.0     | 1.00        | 0.00 | 1.59  | 0.32 | adaptive |
|         | ACA_CAT_237.0     | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|         | ACA_CAT_243.0     | 1.00        | 0.00 | -0.93 | 0.04 | adaptive |
|         | ACA_CAT_246.0     | 1.00        | 0.00 | -1.54 | 0.02 | adaptive |
|         | ACA_CAT_248.0     | 1.00        | 0.00 | -1.05 | 0.03 | adaptive |
|         | ACA_CAT_282.0     | 0.06        | 0.30 | 0.03  | 0.09 | neutral  |
|         | ACA_CAT_300.0     | 1.00        | 0.00 | -1.13 | 0.03 | adaptive |
|         | ACA_CAT_390.0     | 1.00        | 0.00 | 1.20  | 0.25 | adaptive |
|         | ACA_CAT_391.0     | 0.06        | 0.30 | 0.01  | 0.09 | neutral  |
|         | ACA_CAT_393.0     | 0.31        | 0.08 | -0.19 | 0.08 | neutral  |
|         | $AGG\_CAA\_82.3$  | 0.94        | 0.01 | -0.72 | 0.05 | adaptive |
|         | $AGG\_CAA\_83.0$  | 0.02        | 0.42 | 0.00  | 0.09 | neutral  |
|         | $AGG\_CAA\_84.2$  | 1.00        | 0.00 | -0.75 | 0.05 | adaptive |
|         | $AGG\_CAA\_86.9$  | 0.16        | 0.14 | -0.12 | 0.08 | neutral  |
|         | $AGG\_CAA\_90.9$  | 0.06        | 0.30 | -0.02 | 0.09 | neutral  |
|         | $AGG\_CAA\_94.8$  | 0.08        | 0.21 | -0.04 | 0.09 | neutral  |
|         | $AGG\_CAA\_95.6$  | 0.04        | 0.35 | 0.01  | 0.09 | neutral  |
|         | $AGG\_CAA\_100.0$ | 0.61        | 0.03 | -0.46 | 0.06 | adaptive |
|         | $AGG\_CAA\_101.0$ | 0.02        | 0.42 | 0.00  | 0.09 | neutral  |
|         | $AGG\_CAA\_109.3$ | 1.00        | 0.00 | -1.03 | 0.03 | adaptive |
|         | $AGG\_CAA\_110.2$ | 1.00        | 0.00 | -1.01 | 0.04 | adaptive |
|         | $AGG\_CAA\_113.5$ | 1.00        | 0.00 | -2.33 | 0.01 | adaptive |
|         | AGG_CAA_115.9     | 1.00        | 0.00 | 1.53  | 0.31 | adaptive |
|         | AGG_CAA_117.4     | 1.00        | 0.00 | -1.36 | 0.03 | adaptive |
|         | AGG_CAA_118.2     | 0.06        | 0.30 | -0.03 | 0.09 | neutral  |
|         | $AGG\_CAA\_122.9$ | 0.63        | 0.03 | -0.43 | 0.06 | adaptive |

| Species | Primer            | Probability | qval | alpha | fst  | Type     |
|---------|-------------------|-------------|------|-------|------|----------|
|         | AGG_CAA_129.5     | 1.00        | 0.00 | -1.61 | 0.02 | adaptive |
|         | $AGG\_CAA\_130.1$ | 0.06        | 0.30 | 0.03  | 0.09 | neutral  |
|         | $AGG\_CAA\_135.5$ | 1.00        | 0.00 | -1.10 | 0.03 | adaptive |
|         | AGG_CAA_137.9     | 0.06        | 0.30 | -0.01 | 0.09 | neutral  |
|         | AGG_CAA_144.9     | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|         | AGG_CAA_145.8     | 0.02        | 0.42 | 0.00  | 0.09 | neutral  |
|         | $AGG\_CAA\_150.9$ | 0.02        | 0.42 | -0.01 | 0.09 | neutral  |
|         | $AGG\_CAA\_152.8$ | 1.00        | 0.00 | -1.57 | 0.02 | adaptive |
|         | $AGG\_CAA\_155.4$ | 0.22        | 0.11 | 0.15  | 0.11 | neutral  |
|         | $AGG\_CAA\_164.0$ | 0.22        | 0.11 | -0.17 | 0.08 | neutral  |
|         | AGG_CAA_175.9     | 1.00        | 0.00 | -1.08 | 0.03 | adaptive |
|         | AGG_CAA_181.6     | 0.04        | 0.35 | 0.01  | 0.09 | neutral  |
|         | AGG_CAA_182.1     | 0.98        | 0.00 | -1.21 | 0.03 | adaptive |
|         | AGG_CAA_188.1     | 1.00        | 0.00 | -1.30 | 0.03 | adaptive |
|         | AGG_CAA_191.3     | 0.37        | 0.07 | -0.18 | 0.08 | neutral  |
|         | AGG_CAA_193.9     | 0.04        | 0.35 | -0.01 | 0.09 | neutral  |
|         | AGG_CAA_196.8     | 0.43        | 0.06 | -0.25 | 0.07 | neutral  |
|         | $AGG\_CAA\_201.7$ | 0.12        | 0.18 | 0.01  | 0.09 | neutral  |
|         | AGG_CAA_212.4     | 0.14        | 0.17 | 0.07  | 0.10 | neutral  |
|         | $AGG\_CAA\_215.6$ | 1.00        | 0.00 | -1.11 | 0.03 | adaptive |
|         | AGG_CAA_219.0     | 0.82        | 0.01 | -0.63 | 0.05 | adaptive |
|         | $AGG\_CAA\_225.2$ | 1.00        | 0.00 | -1.38 | 0.03 | adaptive |
|         | $AGG\_CAA\_253.2$ | 0.55        | 0.04 | -0.41 | 0.07 | adaptive |
|         | $AGG\_CAA\_256.7$ | 0.53        | 0.05 | -0.42 | 0.07 | adaptive |
|         | $AGG\_CAA\_262.5$ | 1.00        | 0.00 | 1.74  | 0.35 | adaptive |
|         | AGG_CAA_263.6     | 0.12        | 0.18 | 0.03  | 0.09 | neutral  |
|         | AGG_CAA_264.8     | 1.00        | 0.00 | -1.32 | 0.03 | adaptive |
|         | AGG_CAA_267.9     | 1.00        | 0.00 | -1.13 | 0.03 | adaptive |
|         | AGG_CAA_269.8     | 1.00        | 0.00 | -1.15 | 0.03 | adaptive |
|         | AGG_CAA_270.8     | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|         | AGG_CAA_276.8     | 0.94        | 0.01 | -0.99 | 0.04 | adaptive |
|         | AGG_CAA_299.0     | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|         |                   |             |      |       |      |          |

| Species          | Primer            | Probability | qval | alpha | fst  | Type     |
|------------------|-------------------|-------------|------|-------|------|----------|
|                  | AGG_CAA_305.1     | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|                  | $AGG\_CAA\_312.1$ | 1.00        | 0.00 | -1.39 | 0.02 | adaptive |
|                  | $AGG\_CAA\_313.2$ | 0.88        | 0.01 | -0.93 | 0.04 | adaptive |
|                  | $AGG\_CAA\_316.0$ | 0.63        | 0.03 | 0.68  | 0.18 | adaptive |
|                  | AGG_CAA_319.0     | 0.14        | 0.17 | -0.01 | 0.09 | neutral  |
|                  | $AGG\_CAA\_324.1$ | 0.02        | 0.42 | 0.00  | 0.09 | neutral  |
|                  | $AGG\_CAA\_359.4$ | 0.02        | 0.42 | 0.00  | 0.09 | neutral  |
|                  | $AGG\_CAA\_360.5$ | 0.06        | 0.30 | 0.01  | 0.09 | neutral  |
|                  | $AGG\_CAA\_363.2$ | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|                  | AGG_CAA_364.1     | 1.00        | 0.00 | -1.01 | 0.04 | adaptive |
|                  | $AGG\_CAA\_376.2$ | 1.00        | 0.00 | -1.15 | 0.03 | adaptive |
|                  | $AGG\_CAA\_376.7$ | 0.00        | 0.47 | 0.00  | 0.09 | neutral  |
|                  | AGG_CAA_396.0     | 1.00        | 0.00 | -0.90 | 0.04 | adaptive |
|                  | $AGG\_CAA\_403.4$ | 0.06        | 0.30 | -0.01 | 0.09 | neutral  |
|                  | $AGG\_CAA\_420.5$ | 1.00        | 0.00 | -1.78 | 0.02 | adaptive |
| $Arabis\ alpina$ | AAT_CAC_51.9      | 0.04        | 0.14 | -0.01 | 0.13 | neutral  |
|                  | $AAT\_CAC\_54.7$  | 1.00        | 0.00 | 0.96  | 0.28 | adaptive |
|                  | AAT_CAC_69.0      | 1.00        | 0.00 | 0.25  | 0.17 | adaptive |
|                  | AAT_CAC_73.6      | 1.00        | 0.00 | -0.58 | 0.08 | adaptive |
|                  | AAT_CAC_77.9      | 1.00        | 0.00 | -1.69 | 0.03 | adaptive |
|                  | AAT_CAC_86.9      | 1.00        | 0.00 | -1.66 | 0.03 | adaptive |
|                  | $AAT\_CAC\_90.5$  | 0.27        | 0.04 | 0.22  | 0.17 | neutral  |
|                  | $AAT\_CAC\_95.3$  | 1.00        | 0.00 | -0.63 | 0.08 | adaptive |
|                  | AAT_CAC_97.0      | 0.04        | 0.14 | 0.01  | 0.14 | neutral  |
|                  | AAT_CAC_97.1      | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|                  | AAT_CAC_100.3     | 0.02        | 0.19 | 0.00  | 0.13 | neutral  |
|                  | AAT_CAC_105.4     | 1.00        | 0.00 | -2.00 | 0.02 | adaptive |
|                  | AAT_CAC_118.4     | 1.00        | 0.00 | -0.53 | 0.09 | adaptive |
|                  | AAT_CAC_121.3     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|                  | AAT_CAC_128.0     | 1.00        | 0.00 | -1.12 | 0.05 | adaptive |
|                  | AAT_CAC_130.0     | 1.00        | 0.00 | -0.97 | 0.06 | adaptive |
|                  | AAT_CAC_147.4     | 0.08        | 0.07 | -0.01 | 0.13 | neutral  |
|                  |                   |             |      |       |      |          |

| Species | Primer            | Probability | qval | alpha | fst  | Type     |
|---------|-------------------|-------------|------|-------|------|----------|
|         | AAT_CAC_156.9     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | AAT_CAC_175.1     | 1.00        | 0.00 | -0.68 | 0.07 | adaptive |
|         | AAT_CAC_177.9     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | AAT_CAC_179.6     | 1.00        | 0.00 | -2.15 | 0.02 | adaptive |
|         | AAT_CAC_188.6     | 1.00        | 0.00 | 0.92  | 0.28 | adaptive |
|         | AAT_CAC_190.0     | 1.00        | 0.00 | -1.52 | 0.03 | adaptive |
|         | $AAT\_CAC\_195.5$ | 1.00        | 0.00 | 1.57  | 0.42 | adaptive |
|         | AAT_CAC_197.1     | 1.00        | 0.00 | 1.73  | 0.46 | adaptive |
|         | AAT_CAC_200.6     | 1.00        | 0.00 | -1.17 | 0.05 | adaptive |
|         | AAT_CAC_201.8     | 1.00        | 0.00 | -1.22 | 0.05 | adaptive |
|         | $AAT\_CAC\_209.2$ | 0.04        | 0.14 | -0.01 | 0.13 | neutral  |
|         | AAT_CAC_213.1     | 1.00        | 0.00 | 0.78  | 0.25 | adaptive |
|         | AAT_CAC_215.0     | 0.35        | 0.02 | 0.09  | 0.15 | neutral  |
|         | AAT_CAC_216.2     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | AAT_CAC_217.0     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | AAT_CAC_218.1     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | AAT_CAC_219.1     | 1.00        | 0.00 | -1.21 | 0.04 | adaptive |
|         | $AAT\_CAC\_225.5$ | 1.00        | 0.00 | -0.82 | 0.06 | adaptive |
|         | AAT_CAC_227.1     | 1.00        | 0.00 | -1.04 | 0.05 | adaptive |
|         | $AAT\_CAC\_229.1$ | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | AAT_CAC_231.4     | 1.00        | 0.00 | 1.60  | 0.43 | adaptive |
|         | AAT_CAC_249.7     | 1.00        | 0.00 | -1.54 | 0.03 | adaptive |
|         | AAT_CAC_259.3     | 1.00        | 0.00 | -1.68 | 0.03 | adaptive |
|         | AAT_CAC_277.3     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | AAT_CAC_298.1     | 0.27        | 0.04 | -0.04 | 0.13 | neutral  |
|         | AAT_CAC_315.9     | 1.00        | 0.00 | 1.21  | 0.34 | adaptive |
|         | AAT_CAC_330.4     | 1.00        | 0.00 | -1.69 | 0.03 | adaptive |
|         | AAT_CAC_334.8     | 0.02        | 0.19 | 0.00  | 0.13 | neutral  |
|         | AAT_CAC_336.6     | 1.00        | 0.00 | 0.50  | 0.20 | adaptive |
|         | AAT_CAC_353.0     | 0.31        | 0.03 | -0.19 | 0.12 | neutral  |
|         | AAT_CAC_359.2     | 1.00        | 0.00 | -1.59 | 0.03 | adaptive |
|         | AAT_CAC_399.9     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         |                   |             |      |       |      |          |

| Species | Primer            | Probability | qval | alpha | fst  | Type     |
|---------|-------------------|-------------|------|-------|------|----------|
|         | AAT_CAC_410.5     | 1.00        | 0.00 | -1.96 | 0.02 | adaptive |
|         | $AAT\_CAC\_412.4$ | 1.00        | 0.00 | -2.07 | 0.02 | adaptive |
|         | AAT_CAC_458.1     | 1.00        | 0.00 | -1.83 | 0.02 | adaptive |
|         | $AAT\_CAC\_488.6$ | 1.00        | 0.00 | 1.57  | 0.42 | adaptive |
|         | $AGT\_CAC\_53.8$  | 1.00        | 0.00 | -1.97 | 0.02 | adaptive |
|         | $AGT\_CAC\_56.3$  | 1.00        | 0.00 | -1.86 | 0.02 | adaptive |
|         | $AGT\_CAC\_98.2$  | 1.00        | 0.00 | -0.73 | 0.07 | adaptive |
|         | AGT_CAC_104.9     | 1.00        | 0.00 | -1.11 | 0.05 | adaptive |
|         | AGT_CAC_114.8     | 0.04        | 0.14 | 0.00  | 0.13 | neutral  |
|         | AGT_CAC_145.8     | 0.84        | 0.00 | 0.37  | 0.18 | adaptive |
|         | AGT_CAC_154.2     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | AGT_CAC_158.1     | 1.00        | 0.00 | -0.88 | 0.06 | adaptive |
|         | $AGT\_CAC\_169.0$ | 1.00        | 0.00 | -1.27 | 0.04 | adaptive |
|         | AGT_CAC_171.1     | 0.02        | 0.19 | 0.00  | 0.13 | neutral  |
|         | AGT_CAC_181.1     | 1.00        | 0.00 | 1.30  | 0.36 | adaptive |
|         | AGT_CAC_183.0     | 1.00        | 0.00 | 0.35  | 0.18 | adaptive |
|         | AGT_CAC_184.4     | 0.02        | 0.19 | 0.00  | 0.13 | neutral  |
|         | AGT_CAC_191.2     | 1.00        | 0.00 | -2.10 | 0.02 | adaptive |
|         | AGT_CAC_195.0     | 1.00        | 0.00 | 0.97  | 0.29 | adaptive |
|         | $AGT\_CAC\_200.9$ | 0.02        | 0.19 | 0.00  | 0.13 | neutral  |
|         | AGT_CAC_203.8     | 1.00        | 0.00 | 1.48  | 0.40 | adaptive |
|         | $AGT\_CAC\_205.8$ | 0.10        | 0.06 | 0.03  | 0.14 | neutral  |
|         | $AGT\_CAC\_210.0$ | 1.00        | 0.00 | -0.70 | 0.07 | adaptive |
|         | $AGT\_CAC\_230.8$ | 1.00        | 0.00 | 0.78  | 0.25 | adaptive |
|         | AGT_CAC_241.0     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | $AGT\_CAC\_245.6$ | 1.00        | 0.00 | 0.91  | 0.27 | adaptive |
|         | AGT_CAC_264.7     | 1.00        | 0.00 | -1.26 | 0.04 | adaptive |
|         | AGT_CAC_266.9     | 1.00        | 0.00 | -2.56 | 0.01 | adaptive |
|         | $AGT\_CAC\_269.4$ | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | $AGT\_CAC\_274.0$ | 1.00        | 0.00 | 1.39  | 0.38 | adaptive |
|         | AGT_CAC_285.6     | 1.00        | 0.00 | 1.35  | 0.37 | adaptive |
|         | AGT_CAC_291.5     | 1.00        | 0.00 | 1.56  | 0.42 | adaptive |
|         |                   |             |      |       |      |          |

| Species | Primer                     | Probability | qval | alpha | fst  | Type     |
|---------|----------------------------|-------------|------|-------|------|----------|
|         | AGT_CAC_295.6              | 1.00        | 0.00 | -2.22 | 0.02 | adaptive |
|         | $AGT\_CAC\_315.2$          | 0.04        | 0.14 | 0.01  | 0.14 | neutral  |
|         | $AGT\_CAC\_332.1$          | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | AGT_CAC_347.8              | 1.00        | 0.00 | 1.81  | 0.48 | adaptive |
|         | $AGT\_CAC\_355.2$          | 1.00        | 0.00 | -1.92 | 0.02 | adaptive |
|         | $AGT\_CAC\_360.2$          | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | $AGT\_CAC\_386.5$          | 1.00        | 0.00 | 1.15  | 0.32 | adaptive |
|         | $AGT\_CAC\_418.5$          | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | $AGT\_CAC\_420.2$          | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | $AGT\_CAC\_444.3$          | 1.00        | 0.00 | 1.27  | 0.35 | adaptive |
|         | $AGT\_CAC\_453.4$          | 1.00        | 0.00 | -0.51 | 0.09 | adaptive |
|         | $AGT\_CAC\_458.5$          | 1.00        | 0.00 | -2.03 | 0.02 | adaptive |
|         | AGT_CAC_489.1              | 1.00        | 0.00 | 1.55  | 0.42 | adaptive |
|         | ${\rm ATC\_CAC\_52.4}$     | 0.04        | 0.14 | 0.00  | 0.13 | neutral  |
|         | ${\rm ATC\_CAC\_56.7}$     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | ${\rm ATC\_CAC\_61.5}$     | 1.00        | 0.00 | -0.83 | 0.06 | adaptive |
|         | ${\rm ATC\_CAC\_64.3}$     | 0.24        | 0.05 | -0.06 | 0.13 | neutral  |
|         | ${\rm ATC\_CAC\_91.9}$     | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | ${\rm ATC\_CAC\_96.2}$     | 1.00        | 0.00 | 1.70  | 0.45 | adaptive |
|         | ${\rm ATC\_CAC\_99.5}$     | 1.00        | 0.00 | 0.57  | 0.21 | adaptive |
|         | $\mathrm{ATC\_CAC\_100.6}$ | 1.00        | 0.00 | -1.20 | 0.05 | adaptive |
|         | ${\rm ATC\_CAC\_102.0}$    | 1.00        | 0.00 | -1.28 | 0.04 | adaptive |
|         | ATC_CAC_111.9              | 0.47        | 0.01 | -0.17 | 0.12 | neutral  |
|         | $\mathrm{ATC\_CAC\_113.5}$ | 1.00        | 0.00 | -2.05 | 0.02 | adaptive |
|         | ${\rm ATC\_CAC\_123.5}$    | 1.00        | 0.00 | 1.75  | 0.46 | adaptive |
|         | ${\rm ATC\_CAC\_139.7}$    | 1.00        | 0.00 | 1.62  | 0.43 | adaptive |
|         | ${\rm ATC\_CAC\_140.8}$    | 1.00        | 0.00 | 1.30  | 0.36 | adaptive |
|         | ATC_CAC_142.9              | 1.00        | 0.00 | -1.37 | 0.04 | adaptive |
|         | ATC_CAC_144.1              | 0.16        | 0.05 | -0.05 | 0.13 | neutral  |
|         | ATC_CAC_148.6              | 1.00        | 0.00 | 1.98  | 0.52 | adaptive |
|         | ATC_CAC_149.8              | 1.00        | 0.00 | 1.40  | 0.38 | adaptive |
|         | ATC_CAC_151.8              | 0.04        | 0.14 | 0.01  | 0.13 | neutral  |

| Species | Primer                              | Probability | qval | alpha | fst  | Type     |
|---------|-------------------------------------|-------------|------|-------|------|----------|
|         | ATC_CAC_156.1                       | 1.00        | 0.00 | 1.15  | 0.32 | adaptive |
|         | $\mathrm{ATC}\_\mathrm{CAC}\_162.5$ | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | ATC_CAC_181.9                       | 1.00        | 0.00 | -1.49 | 0.03 | adaptive |
|         | ATC_CAC_186.4                       | 1.00        | 0.00 | -1.69 | 0.03 | adaptive |
|         | ATC_CAC_189.9                       | 0.04        | 0.14 | -0.01 | 0.13 | neutral  |
|         | ATC_CAC_194.8                       | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | ATC_CAC_198.3                       | 1.00        | 0.00 | -1.18 | 0.05 | adaptive |
|         | ATC_CAC_199.4                       | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | ATC_CAC_204.2                       | 0.84        | 0.00 | 0.55  | 0.21 | adaptive |
|         | ATC_CAC_207.3                       | 0.02        | 0.19 | 0.00  | 0.13 | neutral  |
|         | ATC_CAC_215.8                       | 0.96        | 0.00 | -0.49 | 0.09 | adaptive |
|         | ATC_CAC_220.7                       | 1.00        | 0.00 | -0.73 | 0.07 | adaptive |
|         | $\mathrm{ATC}\_\mathrm{CAC}\_223.7$ | 1.00        | 0.00 | -1.35 | 0.04 | adaptive |
|         | ATC_CAC_229.1                       | 1.00        | 0.00 | -1.35 | 0.04 | adaptive |
|         | ATC_CAC_230.7                       | 1.00        | 0.00 | 0.76  | 0.25 | adaptive |
|         | ATC_CAC_233.7                       | 1.00        | 0.00 | 0.69  | 0.24 | adaptive |
|         | ATC_CAC_235.8                       | 1.00        | 0.00 | -0.54 | 0.08 | adaptive |
|         | ATC_CAC_258.7                       | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | $ATC\_CAC\_266.2$                   | 1.00        | 0.00 | 1.53  | 0.41 | adaptive |
|         | ATC_CAC_270.8                       | 0.06        | 0.08 | -0.02 | 0.13 | neutral  |
|         | ATC_CAC_273.6                       | 1.00        | 0.00 | -0.94 | 0.06 | adaptive |
|         | ATC_CAC_274.9                       | 1.00        | 0.00 | 1.58  | 0.42 | adaptive |
|         | ATC_CAC_276.4                       | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |
|         | ATC_CAC_277.8                       | 1.00        | 0.00 | -1.00 | 0.05 | adaptive |
|         | ATC_CAC_287.8                       | 1.00        | 0.00 | 1.49  | 0.40 | adaptive |
|         | ATC_CAC_288.7                       | 1.00        | 0.00 | 1.30  | 0.36 | adaptive |
|         | ATC_CAC_332.4                       | 1.00        | 0.00 | -1.36 | 0.04 | adaptive |
|         | ATC_CAC_347.9                       | 1.00        | 0.00 | 1.81  | 0.48 | adaptive |
|         | ATC_CAC_370.4                       | 1.00        | 0.00 | 1.42  | 0.38 | adaptive |
|         | ATC_CAC_373.3                       | 0.47        | 0.01 | -0.19 | 0.11 | neutral  |
|         | ATC_CAC_378.0                       | 1.00        | 0.00 | -1.63 | 0.03 | adaptive |
|         | ATC_CAC_387.7                       | 0.00        | 0.33 | 0.00  | 0.13 | neutral  |

| Species           | Primer           | Probability | qval | alpha | fst  | Type     |
|-------------------|------------------|-------------|------|-------|------|----------|
|                   | ATC_CAC_401.5    | 1.00        | 0.00 | -1.93 | 0.02 | adaptive |
|                   | ATC_CAC_405.7    | 1.00        | 0.00 | 1.56  | 0.42 | adaptive |
|                   | ATC_CAC_430.5    | 0.02        | 0.19 | 0.00  | 0.13 | neutral  |
|                   | ATC_CAC_442.2    | 1.00        | 0.00 | 1.57  | 0.42 | adaptive |
|                   | ATC_CAC_445.2    | 1.00        | 0.00 | 1.13  | 0.32 | adaptive |
|                   | ATC_CAC_456.3    | 0.02        | 0.19 | 0.00  | 0.13 | neutral  |
| Campanula barbata | $ACA\_CTA\_55.8$ | 1.00        | 0.00 | 1.97  | 0.46 | adaptive |
|                   | ACA_CTA_69.2     | 1.00        | 0.00 | 1.87  | 0.43 | adaptive |
|                   | ACA_CTA_101.6    | 0.47        | 0.02 | -0.22 | 0.09 | neutral  |
|                   | ACA_CTA_114.7    | 0.14        | 0.07 | 0.05  | 0.12 | neutral  |
|                   | ACA_CTA_122.8    | 0.06        | 0.13 | 0.01  | 0.11 | neutral  |
|                   | ACA_CTA_132.9    | 1.00        | 0.00 | -1.37 | 0.03 | adaptive |
|                   | ACA_CTA_153.4    | 1.00        | 0.00 | -0.92 | 0.05 | adaptive |
|                   | ACA_CTA_155.4    | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|                   | ACA_CTA_164.8    | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|                   | ACA_CTA_169.4    | 1.00        | 0.00 | -0.71 | 0.06 | adaptive |
|                   | ACA_CTA_174.3    | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|                   | ACA_CTA_178.0    | 1.00        | 0.00 | 2.01  | 0.47 | adaptive |
|                   | ACA_CTA_179.5    | 0.43        | 0.03 | -0.17 | 0.10 | neutral  |
|                   | ACA_CTA_183.6    | 0.06        | 0.13 | 0.00  | 0.11 | neutral  |
|                   | ACA_CTA_186.8    | 0.67        | 0.01 | 0.30  | 0.15 | adaptive |
|                   | ACA_CTA_187.9    | 0.04        | 0.17 | 0.00  | 0.11 | neutral  |
|                   | ACA_CTA_194.5    | 1.00        | 0.00 | -1.66 | 0.02 | adaptive |
|                   | ACA_CTA_195.9    | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|                   | ACA_CTA_197.7    | 1.00        | 0.00 | -0.81 | 0.05 | adaptive |
|                   | ACA_CTA_203.8    | 1.00        | 0.00 | -0.54 | 0.07 | adaptive |
|                   | ACA_CTA_213.5    | 1.00        | 0.00 | -1.00 | 0.04 | adaptive |
|                   | ACA_CTA_254.3    | 1.00        | 0.00 | -0.69 | 0.06 | adaptive |
|                   | ACA_CTA_284.5    | 1.00        | 0.00 | -1.01 | 0.04 | adaptive |
|                   | ACA_CTA_289.0    | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|                   | ACA_CTA_296.4    | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|                   | ACA_CTA_311.1    | 1.00        | 0.00 | 1.34  | 0.32 | adaptive |
|                   |                  |             |      |       |      |          |

| Species | Primer            | Probability | qval | alpha | fst  | Туре     |
|---------|-------------------|-------------|------|-------|------|----------|
|         | ACA_CTA_347.7     | 1.00        | 0.00 | -1.32 | 0.03 | adaptive |
|         | ACA_CTA_368.6     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | ACA_CTA_378.8     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | ACA_CTA_382.7     | 0.31        | 0.05 | -0.11 | 0.10 | neutral  |
|         | ACA_CTA_393.5     | 1.00        | 0.00 | -1.64 | 0.02 | adaptive |
|         | ACA_CTA_415.5     | 1.00        | 0.00 | -1.13 | 0.04 | adaptive |
|         | $ACA\_CTA\_489.5$ | 1.00        | 0.00 | -1.43 | 0.03 | adaptive |
|         | ACA_CTA_491.1     | 1.00        | 0.00 | -2.29 | 0.01 | adaptive |
|         | $AGA\_CAC\_84.2$  | 1.00        | 0.00 | -1.47 | 0.03 | adaptive |
|         | $AGA\_CAC\_89.4$  | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | $AGA\_CAC\_91.6$  | 1.00        | 0.00 | 1.73  | 0.40 | adaptive |
|         | $AGA\_CAC\_102.6$ | 1.00        | 0.00 | -0.66 | 0.06 | adaptive |
|         | AGA_CAC_106.2     | 0.04        | 0.17 | 0.01  | 0.11 | neutral  |
|         | AGA_CAC_107.0     | 0.18        | 0.06 | 0.06  | 0.12 | neutral  |
|         | AGA_CAC_109.0     | 1.00        | 0.00 | 1.25  | 0.30 | adaptive |
|         | AGA_CAC_116.9     | 1.00        | 0.00 | -0.73 | 0.06 | adaptive |
|         | AGA_CAC_130.4     | 1.00        | 0.00 | 0.76  | 0.21 | adaptive |
|         | AGA_CAC_133.3     | 0.02        | 0.25 | 0.00  | 0.11 | neutral  |
|         | AGA_CAC_135.7     | 1.00        | 0.00 | 1.71  | 0.40 | adaptive |
|         | AGA_CAC_141.4     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | AGA_CAC_168.9     | 1.00        | 0.00 | 1.03  | 0.25 | adaptive |
|         | AGA_CAC_170.2     | 0.04        | 0.17 | -0.01 | 0.11 | neutral  |
|         | AGA_CAC_180.6     | 1.00        | 0.00 | -0.75 | 0.06 | adaptive |
|         | AGA_CAC_183.6     | 1.00        | 0.00 | -1.33 | 0.03 | adaptive |
|         | AGA_CAC_196.1     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | AGA_CAC_202.0     | 0.06        | 0.13 | 0.02  | 0.11 | neutral  |
|         | AGA_CAC_204.8     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | AGA_CAC_214.4     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | AGA_CAC_218.3     | 0.02        | 0.25 | 0.01  | 0.11 | neutral  |
|         | AGA_CAC_227.1     | 1.00        | 0.00 | -1.08 | 0.04 | adaptive |
|         | AGA_CAC_231.4     | 0.02        | 0.25 | 0.01  | 0.11 | neutral  |
|         | AGA_CAC_245.4     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         |                   |             |      |       |      |          |

| Species | Primer            | Probability | qval | alpha | fst  | Type     |
|---------|-------------------|-------------|------|-------|------|----------|
|         | AGA_CAC_247.3     | 1.00        | 0.00 | -1.68 | 0.02 | adaptive |
|         | $AGA\_CAC\_250.2$ | 1.00        | 0.00 | -1.16 | 0.04 | adaptive |
|         | AGA_CAC_251.1     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | $AGA\_CAC\_269.0$ | 0.02        | 0.25 | 0.01  | 0.11 | neutral  |
|         | AGA_CAC_279.6     | 1.00        | 0.00 | -1.56 | 0.03 | adaptive |
|         | AGA_CAC_283.4     | 0.04        | 0.17 | -0.01 | 0.11 | neutral  |
|         | $AGA\_CAC\_285.4$ | 1.00        | 0.00 | -0.58 | 0.07 | adaptive |
|         | AGA_CAC_286.8     | 0.41        | 0.04 | -0.28 | 0.09 | neutral  |
|         | AGA_CAC_294.8     | 0.39        | 0.04 | -0.38 | 0.09 | neutral  |
|         | AGA_CAC_299.4     | 1.00        | 0.00 | -1.37 | 0.03 | adaptive |
|         | AGA_CAC_308.2     | 1.00        | 0.00 | 0.82  | 0.22 | adaptive |
|         | AGA_CAC_314.3     | 1.00        | 0.00 | 0.64  | 0.19 | adaptive |
|         | AGA_CAC_316.2     | 1.00        | 0.00 | -1.11 | 0.04 | adaptive |
|         | AGA_CAC_318.3     | 1.00        | 0.00 | -1.65 | 0.02 | adaptive |
|         | AGA_CAC_321.0     | 1.00        | 0.00 | 1.25  | 0.30 | adaptive |
|         | AGA_CAC_324.2     | 1.00        | 0.00 | -1.58 | 0.03 | adaptive |
|         | $AGA\_CAC\_326.2$ | 1.00        | 0.00 | -1.43 | 0.03 | adaptive |
|         | AGA_CAC_338.4     | 1.00        | 0.00 | -0.40 | 0.08 | adaptive |
|         | $AGA\_CAC\_356.5$ | 1.00        | 0.00 | -1.44 | 0.03 | adaptive |
|         | AGA_CAC_441.7     | 0.02        | 0.25 | 0.00  | 0.11 | neutral  |
|         | AGA_CAC_445.1     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | AGA_CAC_475.7     | 1.00        | 0.00 | -0.89 | 0.05 | adaptive |
|         | AGA_CAC_477.9     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | AGA_CAC_487.7     | 1.00        | 0.00 | -0.79 | 0.05 | adaptive |
|         | $AGT\_CTG\_85.2$  | 1.00        | 0.00 | -0.63 | 0.06 | adaptive |
|         | AGT_CTG_109.9     | 1.00        | 0.00 | -2.03 | 0.02 | adaptive |
|         | AGT_CTG_127.9     | 0.02        | 0.25 | 0.00  | 0.11 | neutral  |
|         | AGT_CTG_130.9     | 0.08        | 0.09 | 0.02  | 0.11 | neutral  |
|         | $AGT\_CTG\_135.5$ | 1.00        | 0.00 | 0.62  | 0.19 | adaptive |
|         | AGT_CTG_144.4     | 1.00        | 0.00 | 1.01  | 0.25 | adaptive |
|         | AGT_CTG_151.4     | 0.02        | 0.25 | -0.01 | 0.11 | neutral  |
|         | $AGT\_CTG\_152.8$ | 0.94        | 0.00 | 0.60  | 0.19 | adaptive |
|         |                   |             |      |       |      |          |

| Species | Primer            | Probability | qval | alpha | fst  | Type     |
|---------|-------------------|-------------|------|-------|------|----------|
|         | AGT_CTG_181.2     | 1.00        | 0.00 | -1.24 | 0.04 | adaptive |
|         | AGT_CTG_191.2     | 1.00        | 0.00 | 0.78  | 0.21 | adaptive |
|         | AGT_CTG_196.4     | 1.00        | 0.00 | -0.97 | 0.05 | adaptive |
|         | $AGT\_CTG\_202.3$ | 0.02        | 0.25 | 0.00  | 0.11 | neutral  |
|         | AGT_CTG_218.5     | 1.00        | 0.00 | -1.36 | 0.03 | adaptive |
|         | AGT_CTG_221.0     | 1.00        | 0.00 | 1.57  | 0.37 | adaptive |
|         | $AGT\_CTG\_226.4$ | 1.00        | 0.00 | -0.60 | 0.06 | adaptive |
|         | $AGT\_CTG\_228.9$ | 0.55        | 0.01 | -0.23 | 0.09 | adaptive |
|         | $AGT\_CTG\_230.8$ | 1.00        | 0.00 | -2.07 | 0.02 | adaptive |
|         | AGT_CTG_234.9     | 0.02        | 0.25 | 0.00  | 0.11 | neutral  |
|         | AGT_CTG_245.4     | 1.00        | 0.00 | -1.88 | 0.02 | adaptive |
|         | $AGT\_CTG\_262.1$ | 1.00        | 0.00 | -0.54 | 0.07 | adaptive |
|         | AGT_CTG_266.2     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | $AGT\_CTG\_297.5$ | 0.12        | 0.08 | -0.02 | 0.11 | neutral  |
|         | $AGT\_CTG\_336.5$ | 1.00        | 0.00 | -0.98 | 0.05 | adaptive |
|         | AGT_CTG_344.2     | 1.00        | 0.00 | -1.49 | 0.03 | adaptive |
|         | AGT_CTG_359.0     | 0.02        | 0.25 | 0.00  | 0.11 | neutral  |
|         | AGT_CTG_363.4     | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | $AGT\_CTG\_392.1$ | 1.00        | 0.00 | -1.62 | 0.02 | adaptive |
|         | $AGT\_CTG\_415.3$ | 1.00        | 0.00 | -0.74 | 0.06 | adaptive |
|         | AGT_CTG_443.5     | 1.00        | 0.00 | -2.02 | 0.02 | adaptive |
|         | $AGT\_CTG\_452.7$ | 0.00        | 0.38 | 0.00  | 0.11 | neutral  |
|         | $AGT\_CTG\_459.7$ | 1.00        | 0.00 | -1.18 | 0.04 | adaptive |
|         | AGT_CTG_488.9     | 1.00        | 0.00 | -1.71 | 0.02 | adaptive |

## Appendix S3: Genomic MDS

```
function(j) {
                data.frame(
                    Species=paste0('\\textit{',gsub('\\_', '', unique(spp.samples.DF$spec)
                    Loci=names(spp.mds.LST[[i]])[j],
                    Stress=spp.mds.LST[[i]][[j]]$stress,
                    Converged=spp.mds.LST[[i]][[j]]$converged
                )
            })
        }
    ),
    omit='Converged'
),
digits=2,
caption='Summary of non-metric multi-dimensional scaling (MDS) analyses on genetic variation
colnames=c('Species', 'Loci Type', 'NMDS Stress', 'Converged'),
align=c('l', 'c', 'c', 'c')
```

| Species               | Loci     | Stress | Converged |
|-----------------------|----------|--------|-----------|
| Androsace obtusifolia | adaptive | 0.24   | FALSE     |
|                       | neutral  | 0.22   | FALSE     |
| $Arabis\ alpina$      | adaptive | 0.25   | FALSE     |
|                       | neutral  | 0.21   | FALSE     |
| $Campanula\ barbata$  | adaptive | 0.20   | FALSE     |
|                       | neutral  | 0.23   | FALSE     |

**Table 3** Summary of non-metric multi-dimensional scaling (MDS) analyses on genetic variation for each species.

## Appendix S4: Distribution maps of intra-specific variation

```
group='group', fill=paste0(unique(spp.samples.DF$species)[i], '_',
                            alpha=0.8, color='grey10') +
                        guides(fill=guide_legend(title=' ')) +
                        theme_classic() +
                        theme(axis.ticks=element_blank(), axis.text=element_blank(),
                            plot.margin=unit(c(0,0,0,0),'cm'), axis.line=element_blank()) +
                        coord_cartesian(
                            xlim=buffered.range(grid.FPLY$long, 0.05),
                            ylim=buffered.range(grid.FPLY$lat, 0.05)
                        ) +
                        xlab('') +
                        ylab('') +
                        ggtitle(paste0(g,' (',k,')'))
                })
            }),recursive=FALSE),
            list(ncol=2)
        )
   )
}
```

plot.spp.mds(1)



**Figure 7** Distribution of adaptive and neutral genetic variation in *Androsace obtusifolia*. Each square represents a planning unit. The color of each planning unit panel corresponds to ordination values. Planning units with similar colors contain individiduals with similar genetic variation.

plot.spp.mds(2)



 $\textbf{Figure 8} \ \, \text{Distribution of adaptive and neutral genetic variation in } \textit{Arabis alpina}. \ \, \text{See Figure XX caption for conventions}. \\$ 

plot.spp.mds(3)



**Figure 9** Distribution of adaptive and neutral genetic variation in *Campanula barbata*. See Figure XX caption for conventions.

## Appendix S5: Principle components analysis on climatic variation

| Principle Component | Eigen Value | Variation explained $(\%)$ | Accumulative variation explained (%) |
|---------------------|-------------|----------------------------|--------------------------------------|
| 1                   | 216765.14   | 82.67                      | 82.67                                |

| Principle Component | Eigen Value | Variation explained $(\%)$ | Accumulative variation explained $(\%)$ |
|---------------------|-------------|----------------------------|-----------------------------------------|
| 2                   | 38177.84    | 14.56                      | 97.23                                   |
| 3                   | 5356.75     | 2.04                       | 99.27                                   |
| 4                   | 1216.67     | 0.46                       | 99.73                                   |
| 5                   | 700.39      | 0.27                       | 100.00                                  |

**Table 4** Summary of priciniple components analysis (PCA) on bioclimatic variation across the study area. The first two principle components (PCs) were used for subsequent analysis.

## Appendix S6: Maps of climatic variation

```
do.call(
    grid.arrange,
        append(
        llply(grep('^env\\_.*\$', names(grid.DF), value=TRUE), function(x) {
            ggplot() +
                geom_polygon(data=countries.FPLY, aes(x=long, y=lat, group=group),
                    fill='grey20', color='grey80') +
                geom_polygon(data=grid.FPLY, aes_string(x='long', y='lat',
                    group='group', fill=x),
                    alpha=0.8, color='grey10') +
                guides(fill=guide_legend(title=' ')) +
                theme_classic() +
                theme(axis.ticks=element_blank(), axis.text=element_blank(),
                    plot.margin=unit(c(0,0,0,0),'cm'), axis.line=element_blank()) +
                coord_cartesian(
                    xlim=buffered.range(grid.FPLY$long, 0.05),
                    ylim=buffered.range(grid.FPLY$lat, 0.05)
                ) +
                xlab(',') +
                ylab('') +
                ggtitle(paste0('PC', substr(x, nchar(x), nchar(x))))
        }),
        list(ncol=2)
```



**Figure 10** Climatic variation. Each panel depicts variation based on a different principle component (PC). Squures represent planning units. The color of each planning unit denotes the average priciniple component value of pixels inside it. Planning units with more similar colors have more similar climates regimes.

Meirmans, P., Goudet, J., IntraBioDiv Consortium, Gaggiotti, O. (2011) Ecology and life history affect different aspects of the population structure of 27 high-alpine plants. *Molecular Ecology.* **20**, 3144–3155.