# Tiantai Ma

t2ma@ucsd.edu PID: A53308792

#### **Questions:**

[Q1] Tell me the name of a protein you are interested in. Include the species and the accession number. This can be a human protein or a protein from any other species as long as it's function is known.

If you do not have a favorite protein, select human RBP4 or KIF11. Do not use beta globin as this is in the worked example report that I provide you with online.

**KIF11** (kinesin family member 11) **Accession number:** NP\_004514

Species: Homo sapiens

[Q2] Perform a BLAST search against a DNA database, such as a database consisting of genomic DNA or ESTs. The BLAST server can be at NCBI or elsewhere. Include details of the BLAST method used, database searched and any limits applied (e.g. Organism).

**Method:** tblastn search against Fungi ESTs **Database:** Expressed sequence tag (est)

**Organism:** Fungi (taxid:4751)



Also include the output of that BLAST search in your document. If appropriate, change the font to Courier size 10 so that the results are displayed neatly. You can also screen capture a BLAST output (e.g. alt print screen on a PC or on a MAC press #-shift-4. The pointer becomes

a bulls eye. Select the area you wish to capture and release. The image is saved as a file called Screen Shot [].png in your Desktop directory). It is **not** necessary to print out all of the blast results if there are many pages.

**Chosen match:** Accession DV760029.1, 849 base pairs cDNA clone from *Phanerochaete chrysosporium*.



# PchrSEQ9845 Phanerochaete chrysosporium pBluescript (EcoRI-XhoI) Phanerochaete chrysosporium cDNA clone PchrSEQ9845, mRNA sequence

Sequence ID: DV760029.1 Length: 849 Number of Matches: 1 Range 1: 8 to 760 GenBank Graphics ▼ Next Match ▲ Previous Match Expect Method Identities Positives 246 bits(628) 2e-72 Compositional matrix adjust. 143/251(57%) 181/251(72%) 7/251(2%) +2 Query 256 VKIGKLNLVDLAGSENIGRSGAVDKRAREAGNINQSLLTLGRVITALVERTPHVPYRESK 315 +++GKLNLVDLAGSENIGRSGA DKRAREAG INQSLLTLGRVI ALV+R+ HVPYRESK
Sbjct 8 LRVGKLNLVDLAGSENIGRSGAQDKRAREAGMINQSLLTLGRVINALVDRSSHVPYRESK 
 Query
 316
 LTRILQDSLGGRTRTSIIATISPAslnleetlstleYAHRAKNILNKPEVNQKLTKKALI
 375

 Sbjct
 188
 LTRLLQDSLGGRTHT IIATISPA NHEETLSTLHYA RAKHI NKPEVNQHHTHNALL
 367
 Query 376 KEYTEEIERLKRDLAAAREKNGVYISEENFRVMSGKLTVQEEQIVELIEKIGAVEEELNR 435 KEY EIERLK D+ AAREKNG++ SEE ++ M+ + +++ + E +++ VE +L
Sbjct 368 KEYVAEIERLKADVLAAREKNGIFFSEERWQEMTAEQELKDTEMQEAKKQVEIVESOLRN 547 Query 436 ---LFMDNKNELDQCKSDLQNKTQELETTQKHLQETKLQLVKEEYITSALEST 488 V E L M EL + K LQ K EL+ T+ L+ K L +E + A + VREEFEQSMALLMRRDGELKETKERLQKKETELKATEGKLEVVKGALEEEVVVRQAYQEN 727 Sbjct 548 Query 489 EEKLHDAASKL 499 ETVLDGVATGL 760 Sbjct 728

PchrSEQ9845 Phanerochaete chrysosporium pBluescript (EcoRI-XhoI) Phanerochaete chrysosporium cDNA clone PchrSEQ9845, mRNA sequence

Sequence ID: DV760029.1 Length: 849 Number of Matches: 1 Range 1: 8 to 760GenBankGraphicsNext MatchPrevious Match

| Score         | Exp   | ect Method                      | Identities     | Positives      | Gaps      | Frame |
|---------------|-------|---------------------------------|----------------|----------------|-----------|-------|
| 246 bits(628) | ) 2e- | 72 Compositional matrix adjust. | 143/251(57%)   | 181/251(72%)   | 7/251(2%  | ) +2  |
|               |       |                                 |                |                |           |       |
| Query         | 256   | VKIGKLNLVDLAGSENIGRSGAVDKRAF    | REAGNINQSLLTLO | GRVITALVERTPHV | /PYRESK   | 315   |
|               |       | +++GKLNLVDLAGSENIGRSGA DKRAF    | REAG INQSLLTLO | GRVI ALV+R+ HV | /PYRESK   |       |
| Sbjct         | 8     | LRVGKLNLVDLAGSENIGRSGAQDKRAF    | REAGMINQSLLTLO | GRVINALVDRSSHV | /PYRESK   | 187   |
|               |       |                                 |                |                |           |       |
| Query         | 316   | LTRILQDSLGGRTRTSIIATISPAsln     | leetlstleYAHRA | AKNILNKPEVNQKI | TKKALI :  | 375   |
|               |       | LTR+LQDSLGGRT+T IIATISPA N-     | +EETLSTL+YA RA | AK+I NKPEVNQ+- | ⊦T+ AL+   |       |
| Sbjct         | 188   | LTRLLQDSLGGRTKTCIIATISPARSN     | MEETLSTLDYAIRA | AKSIKNKPEVNQRI | 4TRNALL   | 367   |
|               |       |                                 |                |                |           |       |
| Query         | 376   | KEYTEEIERLKRDLAAAREKNGVYISE     |                |                |           | 435   |
|               |       | KEY EIERLK D+ AAREKNG++ SEI     |                |                |           |       |
| Sbjct         | 368   | KEYVAEIERLKADVLAAREKNGIFFSE     | ERWQEMTAEQELKI | TEMQEAKKQVEIV  | /ESQLRN ! | 547   |
| 0             | 126   | THE THOMAS TO SELECT ON         |                |                |           | 4.0.0 |
| Query         | 436   | VTELFMDNKNELDQCKSDLQ1           |                |                |           | 488   |
| Q1            | F 4.0 | V E L M EL + K LQ               |                |                |           | 707   |
| Sbjct         | 548   | VREEFEQSMALLMRRDGELKETKERLQI    | AKETELKATEGKLE | LVVKGALEEEVVVI | (QAYQEN   | 727   |
| Query         | 489   | EEKLHDAASKL 499                 |                |                |           |       |
| Zaci y        | 100   | E L A+ L                        |                |                |           |       |
| Sbjct         | 728   | ETVLDGVATGL 760                 |                |                |           |       |

On the BLAST results, clearly indicate a match that represents a protein sequence, encoded from some DNA sequence, that is homologous to your query protein. I need to be able to inspect the pairwise alignment you have selected, including the E value and score. It should be labeled a "genomic clone" or "mRNA sequence", etc. - but include no functional annotation.

In general, [Q2] is the most difficult for students because it requires you to have a "feel" for how to interpret BLAST results. You need to distinguish between a perfect match to

your query (i.e. a sequence that is not "novel"), a near match (something that might be "novel", depending on the results of [Q4]), and a non-homologous result.

If you are having trouble finding a novel gene try restricting your search to an organism that is poorly annotated.

[Q3] Gather information about this "novel" **protein**. At a minimum, show me the protein sequence of the "novel" protein as displayed in your BLAST results from [Q2] as FASTA format (you can copy and paste the aligned sequence subject lines from your BLAST result page if necessary) or translate your novel DNA sequence using a tool called EMBOSS Transeq at the EBI. Don't forget to translate all six reading frames; the ORF (open reading frame) is likely to be the longest sequence without a stop codon. It may not start with a methionine if you don't have the complete coding region. Make sure the sequence you provide includes a header/subject line and is in traditional FASTA format.

Here, tell me the name of the novel protein, and the species from which it derives. It is very unlikely (but still definitely possible) that you will find a novel gene from an organism such as *S. cerevisiae*, human or mouse, because those genomes have already been thoroughly annotated. It is more likely that you will discover a new gene in a genome that is currently being sequenced, such as bacteria or plants or protozoa.

>8-760\_1 PchrSEQ9845 Phanerochaete chrysosporium pBluescript (EcoRI-XhoI) Phanerochaete chrysosporium cDNA clone PchrSEQ9845, mRNA sequence LRVGKLNLVDLAGSENIGRSGAQDKRAREAGMINQSLLTLGRVINALVDRSSHVPYRESK LTRLLQDSLGGRTKTCIIATISPARSNMEETLSTLDYAIRAKSIKNKPEVNQRMTRNALL KEYVAEIERLKADVLAAREKNGIFFSEERWQEMTAEQELKDTEMQEAKKQVEIVESQLRN VREEFEQSMALLMRRDGELKETKERLQKKETELKATEGKLEVVKGALEEEVVVRQAYQEN ETVLDGVATGL

Name: Phanerochaete chrysosporium, hypothetical protein

**Species:** Phanerochaete chrysosporium

Eukaryota; Fungi; Dikarya; Basidiomycota; Agaricomycotina; Agaricomycetes; Polyporales; Phanerochaetaceae; Phanerochaete

[Q4] Prove that this gene, and its corresponding protein, are novel. For the purposes of this project, "novel" is defined as follows. Take the protein sequence (your answer to [Q3]), and use it as a query in a blastp search of the nr database at NCBI.

- If there is a match with 100% amino acid identity to a protein in the database, from the same species, then your protein is NOT novel (even if the match is to a protein with a name such as "unknown"). Someone has already found and annotated this sequence, and assigned it an accession number.
- If the top match reported has less than 100% identity, then it is likely that your protein is novel, and you have succeeded.
- If there is a match with 100% identity, but to a different species than the one you started with, then you have likely succeeded in finding a novel gene.
- If there are no database matches to the original query from [Q1], this indicates
  that you have partially succeeded: yes, you may have found a new gene, but no,
  it is not actually homologous to the original query. You should probably start
  over.

### Blastp search against nr database:



The top result is a hypothetical protein from *Phanerochaete camosa* with identity 94.42%, some results indicate that this is a kinesin-domain-cotaining protein:

|                | Description                                                                      | Max<br>Score |     | Query<br>Cover | E<br>value | Per.<br>Ident | Accession      |
|----------------|----------------------------------------------------------------------------------|--------------|-----|----------------|------------|---------------|----------------|
| $\checkmark$   | hypothetical protein PHACADRAFT_173717 [Phanerochaete carnosa HHB-10118-sp]      | 483          | 483 | 100%           | 5e-161     | 94.42%        | XP_007395896.1 |
| ✓              | hypothetical protein PHLGIDRAFT_22804 [Phlebiopsis gigantea 11061_1 CR5-6]       | 467          | 467 | 100%           | 4e-155     | 91.24%        | KIP09572.1     |
| ✓              | kinesin motor protein cin8 [Steccherinum ochraceum]                              | 447          | 447 | 100%           | 1e-145     | 87.65%        | TCD71883.1     |
| $\blacksquare$ | hypothetical protein EUX98_g250 [Antrodiella citrinella]                         | 446          | 446 | 100%           | 3e-145     | 86.45%        | THH33841.1     |
| ✓              | hypothetical protein EVJ58_g2903 [Fomitopsis rosea]                              | 442          | 442 | 100%           | 9e-145     | 86.06%        | TFY64019.1     |
| ✓              | hypothetical protein SERLADRAFT_451502 [Serpula lacrymans var. lacrymans S7.9]   | 441          | 441 | 100%           | 1e-144     | 85.66%        | XP_007321258.1 |
| ✓              | hypothetical protein PHLCEN_2v10106 [Phlebia centrifuga]                         | 444          | 444 | 100%           | 3e-144     | 85.66%        | PSR74150.1     |
| ☑              | hypothetical protein PAXINDRAFT_112407 [Paxillus involutus ATCC 200175]          | 442          | 442 | 100%           | 3e-144     | 85.26%        | KIJ17421.1     |
| $\blacksquare$ | hypothetical protein SERLA73DRAFT_170393 [Serpula lacrymans var. lacrymans S7.3] | 440          | 440 | 100%           | 3e-144     | 85.66%        | EGN95950.1     |
| ✓              | hypothetical protein HYDPIDRAFT_145382 [Hydnomerulius pinastri MD-312]           | 441          | 441 | 100%           | 1e-143     | 86.06%        | KIJ69381.1     |
| ✓              | kinesin-domain-containing protein [Daedalea quercina L-15889]                    | 440          | 440 | 100%           | 1e-143     | 86.06%        | KZT67731.1     |
| ✓              | hypothetical protein PAXRUDRAFT_825572 [Paxillus rubicundulus Ve08.2h10]         | 440          | 440 | 100%           | 2e-143     | 85.26%        | KIK96808.1     |
| $\blacksquare$ | hypothetical protein PISMIDRAFT_670188 [Pisolithus microcarpus 441]              | 438          | 438 | 100%           | 8e-143     | 85.26%        | KIK31191.1     |
| ✓              | hypothetical protein FOMPIDRAFT_1109816 [Fomitopsis pinicola FP-58527 SS1]       | 436          | 436 | 100%           | 2e-142     | 85.26%        | EPT06162.1     |
| ✓              | hypothetical protein M404DRAFT_951987.[Pisolithus tinctorius Marx 270]           | 436          | 436 | 100%           | 5e-142     | 85.66%        | KIO13377.1     |
| ✓              | predicted protein [Postia placenta Mad-698-R]                                    | 434          | 434 | 100%           | 5e-142     | 85.66%        | EED84161.1     |
| ✓              | hypothetical protein PLICRDRAFT_161615 [Plicaturopsis crispa FD-325 SS-3]        | 436          | 436 | 100%           | 7e-142     | 84.46%        | KII88479.1     |
| ✓              | predicted protein [Fibroporia radiculosa]                                        | 438          | 438 | 100%           | 1e-141     | 85.26%        | XP_012181653.1 |
| ✓              | hypothetical protein SCLCIDRAFT_113134 [Scleroderma citrinum Foug_A]             | 434          | 434 | 100%           | 2e-141     | 84.06%        | KIM65286.1     |
| $ lap{}$       | kinesin-domain-containing protein [Rhizopogon vinicolor AM-OR11-026]             | 434          | 434 | 100%           | 2e-141     | 84.46%        | OAX44667.1     |

## **L** Download **→** GenPept Graphics

#### hypothetical protein PHACADRAFT\_173717 [Phanerochaete carnosa HHB-10118-sp]

Sequence ID: XP 007395896.1 Length: 1058 Number of Matches: 1

See 1 more title(s) ❤

Range 1: 320 to 570 GenPept Graphics

▼ Next Match ▲ Previous Match

| Score   |         | Expect  | Method       |           |        |         | Identities           |       | Positives | 3      | Gaps   |     |
|---------|---------|---------|--------------|-----------|--------|---------|----------------------|-------|-----------|--------|--------|-----|
| 483 bit | s(1243) | 5e-161  | Comp         | ositional | matrix | adjust. | 237/251              | (94%) | 245/25    | 1(97%) | 0/251( | 0%) |
| Query   | 1       |         |              |           |        |         | GMINQSLL<br>GMINOSLL |       |           |        |        | 60  |
| Sbjct   | 320     |         |              |           |        |         | GMINQSLL             |       |           |        |        | 379 |
| Query   | 61      |         |              |           |        |         | TLSTLDYA<br>TLSTLDYA |       |           |        |        | 120 |
| Sbjct   | 380     |         |              |           |        |         | TLSTLDYA             |       |           |        |        | 439 |
| Query   |         |         |              |           |        |         | QEMTAEQE<br>EMTAEQE  |       |           |        |        | 180 |
| Sbjct   |         |         |              |           |        |         | MEMTAEQE             |       |           |        |        | 499 |
| Query   | 181     |         |              |           |        |         | TELKATEO<br>T+LKATEO |       |           |        |        | 240 |
| Sbjct   | 500     |         |              |           |        |         | TDLKATE              |       |           |        |        | 559 |
| Query   | 241     | ETVLDGV | ATGL<br>ATGL | 251       |        |         |                      |       |           |        |        |     |
| Sbjct   | 560     | EAALDGV |              | 570       |        |         |                      |       |           |        |        |     |