IN THE CLAIMS

Please amend the claims as follows:

Claim 1 (Original): A fuel and lubricant additive concentrate comprising at least one anthraquinone derivative as a marker.

Claim 2 (Original): The concentrate according to claim 1, comprising at least one anthraquinone derivative selected from the group consisting of the compounds

of the formula I

$$R_n$$
 (I)

of the formula II

and of the formula III

where

 Z^1 , Z^2 are each independently hydrogen, hydroxyl, OR, NHR or NR₂,

R¹, R² are each independently R or COR,

X is hydrogen, cyano, nitro, hydroxyl, OR, amino, NHR, R or CH(R⁹)(R¹⁰),

n, m are each 0, 1, 2, 3 or 4, and, in each case that n or m is greater than 1, the R or X radicals may each be the same or different,

R⁹, R¹⁰ are each independently cyano, COOH or COOR,

R³ is hydrogen, R or NHR,

R⁴ to R⁸ are each independently hydrogen, R or NHR and

R is C₁-C₂₀-alkyl which is optionally interrupted by from 1 to 4 oxygen atoms in ether function, C₅-C₇-cycloalkyl which is optionally substituted by one or more C₁-C₂₀-alkyl groups which are optionally interrupted by from 1 to 4 oxygen atoms in ether function, saturated heterocyclic five- or six-membered radical which is optionally substituted by one or more C₁-C₂₀-alkyl groups which are optionally interrupted by from 1 to 4 oxygen atoms in ether function, or is C_6 - C_{10} -aryl which is optionally substituted by one or more halogen, cyano, nitro, hydroxyl, amino, C₁-C₂₀-alkyl which is optionally interrupted by from 1 to 4 oxygen atoms in ether function, C₁-C₂₀-alkoxy, C₁- C_{20} -alkylamino or C_1 - C_{20} -dialkylamino, or is heteroaryl having from 3 to 12 carbon atoms which is optionally substituted by one or more C_1 - C_{20} -alkyl which is optionally interrupted by from 1 to 4 oxygen atoms in ether function, C₁-C₂₀-alkoxy, C₁-C₂₀-alkylamino or C₁-C₂₀-dialkylamino, or is C₆-C₁₀-aryl-C₁-C₄-alkyl which is optionally substituted in the aryl radical by one or more halogen, cyano, nitro, hydroxyl, amino, C₁-C₂₀-alkyl which is optionally interrupted by from 1 to 4 oxygen atoms in ether function, C₁-C₂₀-alkoxy, C₁-C₂₀-alkylamino or C₁-C₂₀-dialkylamino, or is heteroaryl-C₁-C₄-alkyl having from 3 to 12 carbon atoms in the heteroaryl radical, the latter optionally being substituted by one or more C₁-C₂₀-alkyl which is optionally interrupted by

from 1 to 4 oxygen atoms in ether function, C_1 - C_{20} -alkoxy, C_1 - C_{20} -alkylamino or C_1 - C_{20} -dialkylamino.

Claim 3 (Original): The concentrate according to claim 2, wherein, in formula I and II,

 Z^1 , Z^2 are each independently hydrogen or NHR,

R¹, R² are each independently R,

X is hydrogen, cyano or $CH(R^9)(R^{10})$,

n, m are 0, 1, 2, 3 or 4, and, when n or m is greater than 1, the R or X radicals are the same or different,

R⁹, R¹⁰ are each independently cyano or COOR,

R³ is hydrogen, R or NHR,

R⁴ to R⁷ are hydrogen or NHR,

R⁸ is NHR

and

R is C₁-C₁₅-alkyl which is optionally interrupted by from 1 to 4 oxygen atoms in ether function, cyclohexyl which is optionally substituted by one or more C₁-C₁₅-alkyl groups which are optionally interrupted by from 1 to 4 oxygen atoms in ether function, saturated heterocyclic five- or six-membered radical which is optionally substituted by one or more C₁-C₁₅-alkyl groups which are optionally interrupted by from 1 to 4 oxygen atoms in ether function, or is C₆-C₁₀-aryl which is optionally substituted by one or more C₁-C₁₅-alkyl which is optionally interrupted by from 1 to 4 oxygen atoms in ether function, C₁-C₁₅-alkoxy, C₁-C₁₅-alkylamino or C₁-C₁₅-dialkylamino, or is heteroaryl having from 3 to 5 carbon atoms which is optionally substituted by one or more C₁-

 C_{15} -alkyl which is optionally interrupted by from 1 to 4 oxygen atoms in ether function, C_1 - C_{15} -alkoxy, C_1 - C_{15} -alkylamino or C_1 - C_{15} -dialkylamino, or is phenyl C_1 - C_4 -alkyl which is optionally substituted in the phenyl radical by one or more C_1 - C_{15} -alkyl which is optionally interrupted by from 1 to 4 oxygen atoms in ether function, C_1 - C_{15} -alkoxy, C_1 - C_{15} -alkylamino or C_1 - C_{15} -dialkylamino, or is heteroaryl- C_1 - C_4 -alkyl having from 3 to 5 carbon atoms in the heteroaryl radical, the latter optionally being substituted by one or more C_1 - C_{15} -alkyl which is optionally interrupted by from 1 to 4 oxygen atoms in ether function, C_1 - C_{15} -alkoxy, C_1 - C_{15} -alkylamino or C_1 - C_{15} -dialkylamino.

Claim 4 (Currently Amended): The use of the concentrate according to one or more of claims 1 to 3 claim 1 for additizing mineral oils.

Claim 5 (Currently Amended): A mineral oil comprising the concentrate according to one or more of claims 1 to 3 claim 1.