CS494 - IR - SAMPLE EXAM 2

Name:

University NetID:

This test consists of 5 questions. The number of points for each question is shown below.

- Read all questions carefully before starting to answer them.
- Write all your answers in the space provided in the exam paper.
- The order of the questions is arbitrary, so the difficulty may vary from question to question. Do not get stuck by insisting on doing them in order.
- Show your work. Correct answers without justification will not receive full credit. However, also be concise. Excessively verbose answers may be penalized.
- Clearly state any simplifying assumptions you may make when answering a question.
- Be sure to write your name on the test paper.

Question	1	2	3	4	5	total
Points	20	20	20	20	20	100
Your Points						

Exercise 1 - 20 points. (Naïve Bayes)

You are given a collection of 1,000 documents, which are classified into one of the two classes: *politics* and *technology*. The vocabulary of words in the collection is as follows:

```
V = \{Android, camera, pictures, Obama, elections, Foxnews\}
```

Assume there are 400 documents from politics and 600 documents from technology. Assume further that the frequency counts of words in each class are as follows:

```
politics: And roid (10), camera (5), pictures (5), Obama (700), elections (423), Foxnews (365) \\ technology: And roid (700), camera (668), pictures (400), Obama (40), elections (30), Foxnews (71)
```

Train a Multinomial Naïve Bayes model and predict the class for the test document below:

I took lots of pictures of Obama with my Android.

Ignore any words that are not in the vocabulary. Do add-1 smoothing.

Exercise 2 - 20 points. (Web Crawling)

Consider the following web graph:

Page A points to pages B, D, and E.

Page B points to pages C and E.

Page C points to pages F and G.

Page D points to page G.

Page G points to page E.

Show the order in which the pages are indexed when starting at page A and using a breadth-first spider (with duplicate page detection). Assume links on a page are examined in the orders given above.

Exercise 3 - 20 points. (HITS)

Consider the web graph from Exercise 2, shown below for convenience.

Page A points to pages B, D, and E.

Page B points to pages C and E.

Page C points to pages F and G.

Page D points to page G.

Page G points to page E.

Run the HITS (Hubs and Authorities) algorithm on this graph of web pages. Simulate the algorithm for two iterations.

Exercise 4 - 20 points. (Page Rank)

Consider the following pages and the set of web pages that they link to:

Page A points to pages C, D. Page B points to page C. Page C points to pages D, B. Page D points to page B.

Consider running the PageRank algorithm on this graph of pages. Assume $\epsilon=0.15$. Simulate the algorithm for two iterations. Show the page rank scores for each page for each iteration. Order the elements in the vectors in the sequence: A, B, C, D.

Remember:

$$R(A) = \frac{\epsilon}{n} + (1 - \epsilon) \sum_{(B,A) \in G} \frac{R(B)}{out(B)}$$

Exercise 5 - 20 points. (The kNN Algorithm)

Given a database about whether a user should go skiing or not, we want to learn a classifier, which will be used to advise the user with respect to skiing activities. The decision of going skiing depends on the attributes *snow*, *weather*, *season*, and *current physical condition* of the user, as shown in the table below:

	snow	weather	season	physical condition	go skiing
1	sticky	foggy	low	rested	no
2	fresh	sunny	low	injured	no
3	fresh	sunny	low	rested	yes
4	fresh	sunny	high	rested	yes
5	fresh	sunny	mid	rested	yes
6	frosted	windy	high	tired	no
7	sticky	sunny	low	rested	yes
8	frosted	foggy	mid	rested	no
9	fresh	windy	low	rested	yes
10	fresh	windy	low	rested	yes
11	fresh	foggy	low	rested	yes
12	fresh	foggy	low	rested	yes
13	sticky	sunny	mid	rested	yes
14	frosted	foggy	low	injured	no

Use the 3-NN algorithm to make a recommendation to the user for a scenario where:

snow=sticky, weather=windy, season=high, physical condition=tired

Use Hamming distance (i.e., number of attributes where two instances differ) to calculate the distance between instances.