Automata: Short Course COMP SCI 2SD3

Ryszard Janicki

Department of Computing and Software McMaster University Hamilton, Ontario, Canada janicki@mcmaster.ca

Sequences

Alphabet: an *arbitrary* (usually finite) set of elements, often denoted by the symbol Σ .

Sequence:

- an element $x=(a_1,a_2,\ldots,a_k)\in\Sigma^k$, where Σ^k is a Cartesian product of Σ 's.
 - For convenience we write $x = a_1 a_2 \dots a_k$.
- a function $\phi:\{1,\ldots,k\}\to\Sigma$, such that $\phi(1)=a_1,\ldots,\phi(k)=a_k$.
- The two above definitions are in a sense identical since: $\underbrace{\Sigma \times \ldots \times \Sigma}_{p} \equiv \{f \mid f : \{1, \ldots, k\} \to \Sigma\}.$
- Frequently a sequence is considered as a primitive undefined concept that is understood and does not need any explanation.

Sequences and strings

- If the elements of Σ are *symbols*, then a *finite* sequence of symbols is often called a *string* or a *word*.
- In concurrency theory sequences are often called traces (for example in the textbook for this course).
 - The *length* of a sequence x, denoted |x|, is the number of elements composing the sequence. For example |aba| = 3, |aabbc| = 5.
 - The *empty sequence*, ε , is the sequence consisting of zero symbols, i.e. $|\varepsilon| = 0$.
 - A prefix of a sequence is any number of leading symbols of that sequence, and a suffix is any number of trailing symbols (any number means 'zero included'). For example a sequence (word, trace) abca has the following prefixes: ε, a, ab, abc, abca, and the following suffixes: abca, bca, ca, a, ε.

Concatenation

• Concatenation (operation) Let $x = a_1 \dots a_k$, $y = b_1 \dots b_l$. Then

$$x \circ y = a_1 \dots a_k b_1 \dots b_l$$
.

We usually write xy instead of $x \circ y$.

- Properties of concatenation:

Fact. A triple $(\Sigma, \circ, \varepsilon)$ is a monoid (recall 2LC3).

- Power operator: $x^0 = \varepsilon$, $x^1 = x$ and $x^k = \underbrace{x \dots x}_k$.
- Recursive definition of power:

$$x^0 = \varepsilon$$
$$x^{k+1} = x^k x.$$

Σ^* and Formal Language

• Let Σ be a finite alphabet. Then we define Σ^* as:

$$\Sigma^* = \{a_1 \dots a_k \mid a_i \in \Sigma \land k \ge 0\},\$$

i.e. the set of all sequences, including ε , built from the elements of Σ .

- For example $\{a,b\}^* = \{\varepsilon,a,b,aa,ab,ba,bb,aaa,aba,aab,...\}$, all sequences built from a and b.
- $\bullet \ \emptyset^* = \{\varepsilon\}$
- If $\Sigma \neq \emptyset$ then $|\Sigma^*| = \infty$.
- A (formal) language over Σ is any subset of Σ^* , including the empty set \emptyset and Σ^* .
- For example $\{ab, cba, ba, bbbb\} \subseteq \{a, b, c\}^*$ is a finite language, while $\{abc, ba, ab, abb, abbb, \ldots, ab^k, \ldots\} \subseteq \{a, b\}^*$ in an infinite language.

Automata or State Machines

- There is a set of states Q.
 Q may be finite, then we have finite state machines.
- There is a set of actions/operations that allow to move from one state to another state.
- There is a **transition function/relation** that allow movement from one state to another state using actions/operations.
- There is an initial state.
- There might be final states.
- The concept of a **current state** may easily be introduced.
- The set of actions/operations is finite.
- There is a concept of **nondeterministic choice**.

(Finite) Automata or (Finite) State Machines: an example

Automata: Non-determinism

Deterministic Automata

Definition

A deterministic (finite) automaton (state machine) is a 5-tuple:

$$M = (\Sigma, Q, \delta, s_0, F),$$

where: Σ is the **alphabet** (finite) (**input alphabet**), Q is the **set of states** (finite), $\delta: Q \times \Sigma \to Q$ is the **transition function**, $s_0 \in Q$ is the **initial state**, $F \subset Q$ is the set of **final states**.

Definition ($\hat{\delta}$ function, also often denoted as δ^*)

We extend the function δ to $\hat{\delta}: Q \times \Sigma^* \to Q$ as follows:

- $\forall q \in Q$. $\hat{\delta}(q, \varepsilon) = q$
- $\bullet \ \forall q \in Q. \forall x \in \Sigma^*. \forall a \in \Sigma. \ \hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a).$

$\hat{\delta}$ function, also often denoted as δ^*

Definition

We extend the function δ to $\hat{\delta}: Q \times \Sigma^* \to Q$ as follows:

- $\forall q \in Q$. $\hat{\delta}(q, \varepsilon) = q$
- $\forall q \in Q. \forall x \in \Sigma^*. \forall a \in \Sigma. \ \hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a).$
- The above definition of $\hat{\delta}$ is recursive and the recursion is on the length of x.
- Intuitively $\delta(q,a)$ is the state that can be reached from q in one step, while $\hat{\delta}(q,x)$ is the state that can be reached from q in |x| steps by using δ in each step.
- For example $\hat{\delta}(q, abcd) = \delta(\delta(\delta(\delta(q, a), b), c), d)$.
- We usually write δ instead of $\hat{\delta}$ when it does not lead to any misunderstanding.
- For example $\delta(q, abcd) = \delta(\delta(\delta(\delta(q, a), b), c), d)$.

Language Accepted/Generated by an Automaton

Definition (Language)

For every automaton M, the set

$$L(M) = \{x \mid \hat{\delta}(s_0, x) \in F\}$$

is called the language accepted/generated by M.

- The language is just a set of all sequences (words, traces) that can be derived by starting from the initial state travelling trough automaton (using δ as next state function) and ending in some final state.
- It is possible to leave a final state!
- In concurrency we often do not have final states! In such a case we assume that each state is a final state, i.e. F = Q!

Deterministic Automaton: an Example

• Consider the following deterministic automaton M

• We have: $\Sigma = \{a, b\}$, $Q = \{s_0, s_1, s_2, s_3\}$, $F = \{s_2, s_3\}$ and the below table shows the transition function δ .

δ	a	b
<i>s</i> ₀	s_1	s ₂
s_1	S 3	s_1
s ₂	<i>s</i> ₁	S 3
S 3	s ₂	s_1

• For example $ab, bbaa \notin L(M)$, while $aaa, abbbaab \in L(M)$.

Problems!

(1) We cannot specify:

The meaning is pretty simple: "first execute a and next execute any number of b, including none." However, for the first definition we have $\delta(s_0, a) = s_1$ and $\delta(s_1, b) = s_1$, but what about $\delta(s_0, b) = 0$? and $\delta(s_1, a) = 0$?. For the second definition we have $a(s_0) = s_1$ and $b(s_1) = s_1$ but still $b(s_0) = 0$? and $a(s_1) = 0$?.

UGLY SOLUTION

Ugly Solution

UGLY SOLUTION

- This solution is good for illustration, problematics for real systems as we have to introduce entities that may not exist in the real system!
- The standard solution involves the concept of non-determinism.

- Notation for 'power set': $2^Q = \mathcal{P}(Q) = \{X \mid X \subseteq Q\}$, and clearly $\emptyset \in 2^Q$.
- Problem #1: How to model the below situation?

• The standard solution $\delta(s, a) = \{s_1, \dots, s_k\}$, which implies $\delta : Q \times \Sigma \to 2^Q$,

• Consider the following automaton:

$$M = \begin{cases} S_0 \\ S_2 \\ S_3 \end{cases}$$

• Which is true? $ab \in L(M)$ or $ab \notin L(M)$?

• Consider the following automaton:

Which is true? ab ∈ L(M) or ab ∉ L(M)?
 Usually it is assumed that ab ∈ L(M). It is called angelic semantics.

• Consider the following automaton:

Which is true? ab ∈ L(M) or ab ∉ L(M)?
 Usually it is assumed that ab ∈ L(M). It is called angelic semantics.

Angelic vs Demonic Semantics

- Angelic: At each state an angel will tell you where to go, so if there is a good choice you will make it. The only bad case is when all choices are bad.
- **Demonic**: At each state a *demon* will tell you where to go, so if there is a bad choice you will make it. The only good case is when all choices are good.
- Demonic semantics is much less popular. It is relatively new and was motivated by fault tolerant systems. In this class we will use only angelic semantics. I have mentioned demonic, to show that non-determinism is more complex than the one presented in most textbooks.

Angelic vs Demonic Semantics - An Example

Consider the three automata below:

$$M_{1} = 0$$
 S_{0}
 S_{0}

• Let $L_A(M_1)$, i = 1, 2, 3 denote a language defined by M_i under angelic semantics, and let $L_D(M_1)$, i = 1, 2, 3 denote a language defined by M_i under demonic semantics. Note that $L_A(M_1) = L_D(M_1) = \emptyset$, $L_A(M_2) = \{ab\}$, $L_D(M_2) = \emptyset$ and $L_A(M_3) = L_D(M_3) = \{ab\}.$

Definition (Non-deterministic Automaton)

A **non-deterministic (finite) automaton (state machine**) is a 5-tuple:

$$M = (\Sigma, Q, \delta, s_0, F),$$

where: Σ is the **alphabet** (finite) (**input alphabet**),

Q is the **set of states** (finite),

 $\delta: Q \times \Sigma \to 2^Q$ is the transition function,

 $s_0 \in Q$ is the initial state,

 $F \subseteq Q$ is the set of **final states**.

Definition (non-deterministic $\hat{\delta}$ function)

We extend the function δ to $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ as follows:

- $\forall q \in Q$. $\hat{\delta}(q, \varepsilon) = \{q\}$
- $\forall q \in Q. \forall x \in \Sigma^*. \forall a \in \Sigma. \ \hat{\delta}(q, xa) = \bigcup_{s \in \hat{\delta}(q, x)} \delta(s, a).$

Sometimes, by a small abuse of notation, we write

$$\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a).$$

Language Defined by a Non-deterministic Automaton

Definition (Angelic semantics)

For every automaton M, the set

$$L(M) = \{x \mid \hat{\delta}(s_0, x) \cap F \neq \emptyset\}$$

is called the language accepted/generated by M.

Definition (Demonic semantics)

For every automaton M, the set

$$L(M) = \{x \mid \hat{\delta}(s_0, x) \subseteq F\}$$

is called the language accepted/generated by M.

We will not consider demonic semantics in this course.

Non-determinism: Example 1

Consider the following example:

- Standard model: $\Sigma = \{a, b\}$, $Q = \{s_0, s\}$, $F = \{s_1\}$. $\delta(s_0, a) = \{s_1\}$, $\delta(s_0, b) = \emptyset$, $\delta(s_1, a) = \emptyset$, $\delta(s_1, b) = \{s_1\}$.
- In this case we do not have 'splits' like the one from page 15, all outcomes of the function δ are either singletons or empty set, so intuitively this is rather a deterministic system.
- However formally the automaton is non-deterministic.

Non-determinism: Example 2

Consider the following example:

- Classical model: $\Sigma = \{a, b, c\}$, $Q = \{q_0, q_1, q_2, q_3\}$, $F = \{q_3\}$. $\delta(q_0, a) = \{q_1, q_2\}$, $\delta(q_0, b) = \delta(q_0, c) = \emptyset$, $\delta(q_1, a) = \{q_3\}$, $\delta(q_1, b) = \emptyset$, $\delta(q_1, c) = \{q_1\}$, $\delta(q_2, a) = \{q_3\}$, $\delta(q_2, b) = \{q_2\}$, $\delta(q_2, c) = \emptyset$, $\delta(q_3, a) = \delta(q_3, b) = \delta(q_3, c) = \emptyset$
- 'Local' model: $\Sigma = \{a, b, c\}$, $Q = \{q_0, q_1, q_2, q_3\}$, $F = \{q_3\}$. $a = \{(q_0, q_1), (q_0, q_2), (q_1, q_3), (q_2, q_3)\}$, $b = \{(q_2, q_2)\}$, $c = \{(q_1, q_1)\}$.

Another Approach to Non-determinism

Definition

An **automaton** (**state machine**) is a 5-tuple:

$$M = (\Sigma, Q, \delta, s_0, F),$$

where: Σ is the **alphabet** (finite),

Q is the **set of states** (finite),

 $\delta: Q \times \Sigma \to 2^Q$ is the transition function,

 $s_0 \in Q$ is the initial state,

 $F \subseteq Q$ is the set of **final states**.

Definition

- *M* is deterministic iff $\forall q \in Q. \forall a \in \Sigma. |\delta(q, a)| \leq 1$
- *M* is strictly deterministic iff $\forall q \in Q. \forall a \in \Sigma$. $|\delta(q, a)| = 1$

These definitions are often used in the papers that deal with applications rather than theory.

Labelled Transition Systems

- **Transition** (from Collins Dictionary): "a passing or change from one place, state, condition, etc., to another."
- Consider the case: Can "a" be called a transition?
- Transitions, state and labels:

- Transitions are **unique**: $t_1 \iff \mathfrak{S}$
- Transitions (labelled) are usually needed and used for modelling concurrency.

Non-determinism vs Determinism: Example

• Does non-determinism increases the descriptive power?

Non-determinism vs Determinism: Example

Does non-determinism increases the descriptive power?
 NO. See an example below and Theorem on next page.

Non-determinism vs Determinism

Theorem

Let L be a language accepted by a non-deterministic finite automaton M, i.e. L = L(M). There exists a deterministic finite automaton M' such that L(M') = L.

Invisible (silent) Actions or ε -moves

• In many cases we need to model invisible actions!

Definition

A non-deterministic automaton with ε -moves is:

$$M = (Q, \Sigma, \delta, q_0, F),$$

where: Q, Σ, q_0, F are as usual, and:

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$$

- **Problem**: ε has **two** interpretations:
 - Do nothing,
 - Go to another state by executing invisible (silent) action.

Removal of ε -moves

Theorem

If L is accepted by a nondeterministic automaton with ε -moves, then L is also accepted by a nondeterministic automaton without ε -moves.

Removal of ε -moves: An example

 We may then transform the non-deterministic automaton from the right hand side into appropriate deterministic one.

Equivalence of Finite Automata

Definition

Two automata M_1 and M_2 are **equivalent** if and only if $L(M_1) = L(M_2)$.

Conclusion

Non-deterministic automata, nondeterministic automata with ε -moves, and deterministic automata are all equivalent.

- Equivalence means only the same language, other properties may differ.
- For example the concept of 'demonic semantics' does not make much sense for deterministic automata as we do not have non-deterministic choices.
- For any deterministic automaton M, if all states are finite then then $L(M) = \Sigma^*$, so this concept also has very little sense.

No Final States

- No final states is equivalent to all states are final, i.e. $F = \emptyset \equiv F = Q$.
- But this makes sense only for nondeterministic automata.

Modelling Dynamic Systems With Automata: Hotel Reservation

• No arrow to initial state and no arrow from final state.

Road Deicing

• Neither initial nor final state specified.

Simplified Home Security

• Neither initial nor final state specified.

Modelling Dynamic Systems With Automata

 FOR THIS KIND OF APPLICATIONS AUTOMATA ARE USUALLY NONDETERMINISTIC, or deterministic in the sense of the definition from page 23.

Regular Expressions: Intuition

```
(0 \cup 1)0^* \qquad \rightarrow \qquad \{0,00,000,\ldots,1,10,100,1000,\ldots\} 'zero or one followed by any number of zeros including none' ab^* \qquad \rightarrow \qquad \{a,ab,abb,abbb,\ldots\} (a \cup b)^* \qquad \rightarrow \qquad \{a,b\}^* 'all strings (including \varepsilon) that can be built from a and b' (a \cup \varepsilon)(b \cup \varepsilon) = ab \cup \varepsilon b \cup a\varepsilon \cup \varepsilon \varepsilon = ab \cup b \cup a \cup \varepsilon \qquad \rightarrow \qquad \{\varepsilon,a,b,ab\}
```

Definition (Formal Definition of Regular Expressions)

Let Σ be an alphabet. A string R built from the elements of $\Sigma \cup \{\varepsilon, \emptyset, (,), \cup, ^*\}$ is a **regular expression**, if it is defined by the following rules:

- **1** \emptyset, ε and each $a \in \Sigma$ are regular expressions.
- ② $(R_1 \cup R_2)$ is a *regular expression* if R_1 and R_2 are regular expressions.
- **1** (R_1R_2) is a *regular expression* if R_1 and R_2 are regular expressions.
- $(R)^*$ is a regular expression if R is a regular expression.
- There are no other regular expressions.

The set of all regular expressions over the alphabet Σ will be denoted by $Rex(\Sigma)$.

- We usually skip some parenthesis.
- Rules: * first, followed by concatenation, and finally ∪, unless parentheses say differently.

Languages Defined by Regular Expressions

Definition (Interpretation)

Let $L: Rex(\Sigma) \to 2^{\Sigma^*}$ be the following function called interpretation:

- $2 L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
- $L((R_1R_2)) = L(R_1)L(R_2)$
- $L((R)^*) = L(R)^*$

Definition (Language)

For every regular expression R, L(R) is a **language defined by** R.

A class of all languages defined by regular expressions will be denoted by \mathcal{L}_{REX} .

Languages Defined by Regular Expressions: Examples

- $L((0 \cup 1)0^*) = \{0, 00, 000, \dots, 1, 10, 100, 1000, \dots\}$
- $L(ab^*) = \{a, ab, abb, abbb, abbbb, \ldots\}$
- $L((a \cup \varepsilon)(b \cup \varepsilon)) = \{\varepsilon, a, b, ab\}$
- We customarily often identify a regular expression R with L(R) but technically R is not L(R).
- **A question:** What is the relationship between \mathcal{L}_R and \mathcal{L}_{REX} ?

Theorem

$$\mathcal{L}_R = \mathcal{L}_{REX}$$

Minimization of Deterministic Finite Automata

• Consider the following two deterministic automata:

- It can be proved that $L(M_1) = L(M_2)$, and clearly M_2 has less states.
- It can be proved that M_2 is the minimum state automaton that is equivalent to M_1 , i.e. $L(M_1) = L(M_2)$.

Intuitions for Minimization

Consider the following two automata, both generating the language ab^* :

The states q_1 and q_2 of the left automaton and equivalent, so they, and appropriate arrows, can be glued together.

Minimum State Deterministic Finite Automata

Theorem

For every deterministic automaton M_1 there is the minimum state deterministic automaton M_2 such that $L(M_1) = L(M_2)$. The automaton M_2 is unique up to the names of states.

Non-deterministic Automata and Minimization Problem

- The word 'deterministic' is important and cannot be omitted!
- Consider the following two non-deterministic automata, both generating the language

$$L = \{ab, ac, bc, ba, ca, cb\}$$

 Both automata above are minimum state and there is no way to make them identical!

Non-deterministic Automata and Minimization Problem

 When talking about Minimum State Non-deterministic automaton (usually when we discuss some application), we usually mean the case as below (no non-deterministic splits):

- If we forgot about red part, both automata are non-deterministic and the black automaton on the right can be interpreted as the minimum state automaton equivalent to the blue automaton on the left.
- However, to derive formally the back automaton on the right from the blue on left we need to add the red parts.

Non-deterministic Automata and Minimization Problem

 Labelled Transition Systems are almost always non-deterministic and the statements 'minimal', 'minimization', etc., in the textbook, refer to the meaning from the previous slide.