1

ME 36

EE23BTECH11048-Ponugumati Venkata Chanakya*

QUESTION: In the circuit shown below, $R_1 = 2\Omega$, $R_2 = 1\Omega$, $L_1 = 2$ h, and $L_2 = 0.5$ H. Which of the following describe(s) the correct characteristics of the circuit?

- 1) Second order high pass filter
- 2) Second order low pass filter
- 3) Under damped system
- 4) Overdamped system

Solution:

Converting above circuit to frequency domain using laplace transform let V_1 and V_2 be voltages at shown positions

Variable	Value
R_1	2Ω
R_2	1Ω
L_1	2 H
L_2	0.5 H
TABLE 4	

INPUT PARAMETERS

$$V_0 = V_1 \left(\frac{R_2}{R_2 + sL_2} \right) \tag{1}$$

$$V_1 = V_s \left(\frac{R_1 \left(\frac{sL_2 + R_2}{R_1 + R_2 + SL_2} \right)}{sL_1 + R_1 \left(\frac{sL_2 + R_2}{R_1 + R_2 + SL_2} \right)} \right)$$
 (2)

$$V_1 = V_s \left(\frac{2+s}{(2+s)+s(6+s)} \right)$$
 (3)

$$V_0 = V_s \left(\frac{2}{s^2 + 7s + 2} \right) \tag{4}$$

$$let s = j\omega (5)$$

$$V_0 = V_s \left(\frac{2}{-\omega^2 + 7J\omega + 2} \right) \tag{6}$$

$$=V_s\left(\frac{4-2\omega^2-7j\omega}{\omega^4+45\omega^2+4}\right) \tag{7}$$

For lower frequency V_0 is finite and for higher frequency V_0 is zero \therefore Second order low pass filter From 5

$$s^2 + 7s + 2 = 0 ag{8}$$

$$for as^2 + bs + c = 0 (9)$$

$$\zeta(\text{Damping Factor}) = \frac{b}{2\sqrt{ac}}$$
 (10)

By comparing
$$\zeta = \frac{7}{2\sqrt{2}}$$
 (11)

$$\implies \zeta > 1 \tag{12}$$

- : Over-damped System
- .. B,D are correct options