Συστήματα Επικοινωνιών Ατομική Εργασία Εξαμήνου

Ηλιας Σταθακος ΑΕΜ: 2017

Θέμα: 32

Ιούνιος 19, 2024

Περιεχόμενα

1	$oldsymbol{\Sigma}$ χεδιασμός σημάτων $x(t)$ και $h(t)$	4													
	1.1 Σχεδίαση σήματος $h(t)$	4													
	1.2 Σχεδίαση σήματος $x(t)$	5													
2	Εύρεση σήματος $y(t) = x(t) * h(t)$	5													
	2.1 $\Gamma \iota \alpha t < 0$	7													
	2.2 $\Gamma \bowtie 0 \le t \le 1$	8													
	2.3 Γ ua $1 \le t \le 2$	9													
	$2.4 \Gamma \text{ is } 2 < t \le 3 \dots \dots$	12													
	2.5Γ is $3 < t \le 4 \dots \dots \dots \dots$	15													
	2.6Γ is $4 < t \le 5 \dots \dots \dots \dots \dots \dots \dots$	17													
	2.7Γ is $t > 5$	22													
	$2.8 y(t) \ldots \ldots \ldots \ldots \ldots \ldots$	25													
3	$oldsymbol{\Sigma}$ χεδιασμός σήματος $y(t)$	2 6													
4	Εύρεση μετασχηματισμού Fourier των σημάτων														
-	4.1 Υπολογισμός Χ(f)	27													
		32													
		02													
5	$\mathbf{\Sigma}$ χεδιασμός σημάτων $H(f),X(f)$ και $Y(f)$	43													
	5.1 Σχεδίαση $X(f)$	43													
		44													
6	Τεκμηρίωση αν τα σήματα $x(t),\ h(t)$ και $y(t)$ είναι σήματα														
Ū		45													
	$6.1 x(t) \dots \dots$														
		47													
7	E-Over - vo - composito vo 125 - co Composito vo -														
7		4 9													
	7.1 Ερώτημα 1														
	$7.1.1 \Sigma \eta \mu \alpha \mathbf{x}(\mathbf{t}) \dots \dots \dots \dots \dots$														
	7.1.2 $\Sigma_{\text{flux}} h(t)$	50													

7.2	Ερώτη	μα 3													50
	7.2.1	Σήμα y(t)													50
7.3	Ερώτη	μα 5													51
	7.3.1	Σήμα X(f)													51
		Σήμα H(f)													
		Σήμα Υ(f)													
7.4		ηρήσεις													

1 Σχεδιασμός σημάτων x(t) και h(t)

1.1 Σχεδίαση σήματος h(t)

$$h(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 3 \cdot t - 1, & 1 \le t \le 2 \\ 0, & 2 < t \le 3 \\ t - 3, & 3 < t \le 4 \\ 5 - t, & 4 < t \le 5 \\ 0, & t > 5 \end{cases}$$

Figure 1: h(t)

1.2 Σχεδίαση σήματος x(t)

$$x(t) = 2 \cdot \cos(2 \cdot \pi \cdot 25 \cdot t) + 2 \cdot \sin(2 \cdot \pi \cdot 7 \cdot t) + \sin(2 \cdot \pi \cdot 15 \cdot t)$$

Figure 2: x(t)

${f 2}$ Εύρεση σήματος y(t)=x(t)*h(t)

Πριν ξεκινήσουμε να γράφουμε τα ολοκληρώματα και τα αντίστοιχα χρονικά διαστήματα για την συνέλιξη πρέπει να κάνουμε κάποιες παρατηρήσεις οι οποίες θα μας διευκολύνουν στον υπολογισμό. Αρχικά παρατηρούμε πως η h(t) αποτελείται από 7 κλάδους (6 που δίνονται από την εκφώνηση και 1 για t<0, όπου η h(t) θεωρούμε ότι είναι 0), έπειτα παρατηρούμε πως καθένας από τους "σημαντικούς" 5 κλάδους (από $0 \le t \le 5$), έχει το ίδιο χρονικό διάστημα ($\Delta t_{\kappa\lambda\alpha\delta\sigma\nu}$) με το χρονικό διάστημα του σήματος x(t) ($\Delta t_x = \Delta t_{\kappa\lambda\alpha\delta\sigma\nu} = 1$). Οι προηγούμενες 2 παρατηρήσεις μας δίνουν ότι η y(t) θα αποτελείται και αυτή από 7 κλάδους (τους 5 "σημαντικούς", έναν για t<0, όπου θα είναι 0 και έναν για t>5).

Άρα η y(t) θα είναι η εξής:

- $y_0(t) = 0$, t < 0
- $y_1(t) = \int_{t-1}^t h(\tau) \cdot x(t-\tau) d\tau = \int_{t-1}^0 h(\tau) \cdot x(t-\tau) d\tau + \int_0^t h(\tau) \cdot x(t-\tau) d\tau$, $0 \le t \le 1$
- $y_2(t) = \int_{t-1}^t h(\tau) \cdot x(t-\tau) d\tau = \int_{t-1}^1 h(\tau) \cdot x(t-\tau) d\tau + \int_1^t h(\tau) \cdot x(t-\tau) d\tau$, $1 \le t \le 2$
- $y_3(t) = \int_{t-1}^t h(\tau) \cdot x(t-\tau) d\tau = \int_{t-1}^2 h(\tau) \cdot x(t-\tau) d\tau + \int_2^t h(\tau) \cdot x(t-\tau) d\tau$, $2 < t \le 3$
- $y_4(t) = \int_{t-1}^t h(\tau) \cdot x(t-\tau) d\tau = \int_{t-1}^3 h(\tau) \cdot x(t-\tau) d\tau + \int_3^t h(\tau) \cdot x(t-\tau) d\tau$, $3 < t \le 4$
- $y_5(t) = \int_{t-1}^t h(\tau) \cdot x(t-\tau) d\tau = \int_{t-1}^4 h(\tau) \cdot x(t-\tau) d\tau + \int_{t-1}^t h(\tau) \cdot x(t-\tau) d\tau$, $4 < t \le 5$
- $y_6(t) = \int_{t-1}^t h(\tau) \cdot x(t-\tau) d\tau = \int_{t-1}^5 h(\tau) \cdot x(t-\tau) d\tau + \int_5^t h(\tau) \cdot x(t-\tau) d\tau$, t > 5

Ο λόγος που τα ολοκληρώματα έχουν αυτά τα όρια θα φανεί καλύτερα στον τρόπο επίλυσης στην συνέχεια

Σ υνέλιξη:

Αρχικά θέτουμε τ=t. Έπειτα αντιστρέφουμε την $x(\tau)$ και προσθέτουμε t.Τέλος την βάζουμε στην ίδια γραφική παράσταση με την $h(\tau)$ την $x(t-\tau)$.

Figure 3: Συνέλιξη

2.1 $\Gamma \iota \alpha \ t < 0$

Figure 4: t < 0

$$y_0(t) = 0$$

2.2 Γ ia 0 < t < 1

Figure 5: $0 \le t \le 1$

$$\begin{split} y_1(t) &= \int_{t-1}^0 0 \cdot x(t-\tau) \, d\tau + \int_0^t 1 \cdot x(t-\tau) \, d\tau = \int_0^t 1 \cdot x(t-\tau) \, d\tau = \\ &= \int_0^t [2 \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 2 \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + \sin(30 \cdot \pi \cdot (t-\tau))] \, d\tau = \\ &= \int_0^t \{2 \cdot [\cos(50 \cdot \pi \cdot t) \cdot \cos(50 \cdot \pi \cdot \tau) + \sin(50 \cdot \pi \cdot t) \cdot \sin(50 \cdot \pi \cdot \tau)] + \\ &+ 2 \cdot [\sin(14 \cdot \pi \cdot t) \cdot \cos(14 \cdot \pi \cdot \tau) - \cos(14 \cdot \pi \cdot t) \cdot \sin(14 \cdot \pi \cdot \tau)] + \\ &+ [\sin(30 \cdot \pi \cdot t) \cdot \cos(30 \cdot \pi \cdot \tau) - \cos(30 \cdot \pi \cdot t) \cdot \sin(30 \cdot \pi \cdot \tau)] \} \, d\tau = \\ &= \frac{2}{50 \cdot \pi} \cdot [\cos(50 \cdot \pi \cdot t) \cdot \sin(50 \cdot \pi \cdot \tau) - \sin(50 \cdot \pi \cdot t) \cdot \cos(50 \cdot \pi \cdot \tau)] \Big|_0^t + \\ &+ \frac{2}{14 \cdot \pi} \cdot [\sin(14 \cdot \pi \cdot t) \cdot \sin(14 \cdot \pi \cdot \tau) + \cos(14 \cdot \pi \cdot t) \cdot \cos(14 \cdot \pi \cdot \tau)] \Big|_0^t + \\ &+ \frac{1}{30 \cdot \pi} \cdot [\sin(30 \cdot \pi \cdot t) \cdot \sin(30 \cdot \pi \cdot \tau) + \cos(30 \cdot \pi \cdot t) \cdot \cos(30 \cdot \pi \cdot \tau)] \Big|_0^t = \\ &= \frac{1}{25 \cdot \pi} \cdot [\cos(50 \cdot \pi \cdot t) \cdot \sin(50 \cdot \pi \cdot t) - \sin(50 \cdot \pi \cdot t) \cdot \cos(50 \cdot \pi \cdot t) + \sin(50 \cdot \pi \cdot t)] + \\ &+ \frac{1}{7 \cdot \pi} \cdot [\sin^2(14 \cdot \pi \cdot t) + \cos^2(14 \cdot \pi \cdot t) - \cos(14 \cdot \pi)] + \\ &+ \frac{1}{30 \cdot \pi} \cdot [\sin^2(30 \cdot \pi \cdot t) + \cos^2(30 \cdot \pi \cdot t) - \cos(30 \cdot \pi)] = \end{split}$$

$$= \tfrac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot t) + \tfrac{1}{7 \cdot \pi} - \tfrac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot t) + \tfrac{1}{30 \cdot \pi} - \tfrac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot t)$$

Άρα

$$y_1(t) = \frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot t) - \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot t) - \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot t) + \frac{37}{210 \cdot \pi}$$

2.3 Γ ia 1 < t < 2

Figure 6: $1 \le t \le 2$

$$y_2(t) = \int_{t-1}^1 h(\tau) \cdot x(t-\tau) d\tau + \int_1^t h(\tau) \cdot x(t-\tau) d\tau = y_{21}(t) + y_{22}(t)$$

Υπολογίζουμε τα ολοκληρώματα $y_{21}(t)+y_{22}(t)$ ξεχωριστά.

$$\begin{aligned} \bullet \ \, y_{21}(t) &= \int_{t-1}^{1} h(\tau) \cdot x(t-\tau) \, d\tau = \int_{t-1}^{1} 1 \cdot x(t-\tau) \, d\tau = \\ &= \int_{t-1}^{1} \left[2 \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 2 \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + \sin(30 \cdot \pi \cdot (t-\tau)) \right] d\tau = \\ &= -\frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{1} + \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{1} + \\ &+ \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{1} = -\frac{1}{25 \cdot \pi} \cdot \left[\sin(50 \cdot \pi \cdot (t-1)) - \sin(50 \cdot \pi) \right] + \end{aligned}$$

$$\begin{split} & + \frac{1}{7 \cdot \pi} \cdot [\cos(14 \cdot \pi \cdot (t-1)) - \cos(14 \cdot \pi)] + \frac{1}{30 \cdot \pi} \cdot [\cos(30 \cdot \pi \cdot (t-1)) - \cos(30 \cdot \pi)] = \\ & = -\frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-1)) + \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-1)) - \frac{1}{7 \cdot \pi} + \\ & + \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-1)) - \frac{1}{30 \cdot \pi} \Leftrightarrow \\ & y_{21}(t) = -\frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-1)) + \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-1)) + \\ & + \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-1)) - \frac{37}{210 \cdot \pi} \end{split}$$

•
$$y_{22}(t) = \int_1^t (3 \cdot \tau - 1) \cdot x(t - \tau) d\tau = \int_1^t 3 \cdot \tau \cdot x(t - \tau) d\tau - \int_1^t 1 \cdot x(t - \tau) d\tau = y_{221}(t) - y_{222}(t)$$

Υπολογίζω τα ολοκληρώματα $y_{221}(t) + y_{222}(t)$ ξεχωριστά.

$$-y_{221}(t) = \int_{1}^{t} \left[6 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t - \tau)) + 6 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t - \tau)) + 3 \cdot \tau \cdot \sin(30 \cdot \pi \cdot (t - \tau)) \right] d\tau$$

Το ολοκλήρωμα το σπάμε σε 3 επιμέρους ολοκληρώματα και τα υπολογίζουμε ξεχωριστά, λόγω των όρων $\tau \cdot cos(\tau)$ και $\tau \cdot sin(\tau)$, καθώς πρέπει να εφαρμόσουμε στο καθένα ολοκλήρωση κατά παράγοντες για να το λύσουμε.

$$\begin{split} & \int_{1}^{t} 6 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t - \tau)) \, d\tau = -\frac{6 \cdot \tau}{50 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - \tau)) \Big|_{1}^{t} + \\ & + \int_{1}^{t} \frac{6}{50 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - \tau)) \, d\tau = 0 + \frac{3}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - 1)) + \\ & + \frac{3}{1250 \cdot \pi^{2}} \cdot \cos(50 \cdot \pi \cdot (t - \tau)) \Big|_{1}^{t} = \frac{3}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - 1)) + \frac{3}{1250 \cdot \pi^{2}} - \\ & - \frac{3}{1250 \cdot \pi^{2}} \cdot \cos(50 \cdot \pi \cdot (t - 1)) \end{split}$$

$$\int_{1}^{t} 6 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t - \tau)) d\tau = \frac{6 \cdot \tau}{14 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - \tau)) \Big|_{1}^{t} - \int_{1}^{t} \frac{6}{14 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - \tau)) d\tau = \frac{3 \cdot t}{7 \cdot \pi} \cdot \frac{3 \cdot t}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - 1)) + \frac{3}{98 \cdot \pi^{2}} \cdot \sin(14 \cdot \pi \cdot (t - \tau)) \Big|_{1}^{t} = \frac{3 \cdot t}{7 \cdot \pi} - \frac{3 \cdot t}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - 1)) - \frac{3}{98 \cdot \pi^{2}} \cdot \sin(14 \cdot \pi \cdot (t - 1))$$

$$\int_{1}^{t} 3 \cdot \tau \cdot \sin(30 \cdot \pi \cdot (t - \tau)) d\tau = \frac{3 \cdot \tau}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - \tau)) \Big|_{1}^{t} - \int_{1}^{t} \frac{3}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - \tau)) d\tau = \frac{t}{10 \cdot \pi} - \frac{t}{10 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - 1)) + \frac{1}{300 \cdot \pi^{2}} \cdot \sin(30 \cdot \pi \cdot (t - \tau)) \Big|_{1}^{t} = \frac{t}{10 \cdot \pi} - \frac{t}{10 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - 1)) - \frac{1}{300 \cdot \pi^{2}} \cdot \sin(30 \cdot \pi \cdot (t - 1))$$

Οπότε:

$$y_{221}(t) = \frac{3}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-1)) - \frac{3 \cdot t}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-1)) - \frac{t}{10 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-1)) - \frac{3}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-1)) - \frac{3}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-1)) - \frac{1}{300 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-1)) + \frac{3}{1250 \cdot \pi^2} + \frac{37 \cdot t}{70 \cdot \pi}$$

$$-y_{222}(t) = \int_{1}^{t} [2 \cdot \cos(50 \cdot \pi \cdot (t - \tau)) + 2 \cdot \sin(14 \cdot \pi \cdot (t - \tau)) + \sin(30 \cdot \pi \cdot (t - \tau))] d\tau$$

Το ολοκλήρωμα αυτό έχει τον ίδιο τρόπο επίλυσης με το ολοκλήρωμα $y_1(t)$ αλλάζοντας απλά τα όρια ολοκλήρωσης, που στην προκειμένη περίπτωση απλά επηρεάζουν μόνο την γωνία των \cos και \sin . Άρα το αποτέλεσμα είναι το εξής:

$$y_{222}(t) = \frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-1)) - \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-1)) - \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-1)) + \frac{37}{210 \cdot \pi}$$

${\bf A}$ ρα η $y_2(t)$ είναι η εξής:

$$y_2(t) = y_{21}(t) + y_{221}(t) - y_{222}(t)$$

Μετά από απλοποιήσεις έχουμε:

$$\begin{split} y_2(t) &= \tfrac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-1)) - \tfrac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-1)) - \tfrac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-1)) - \\ &- \tfrac{3}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-1)) - \tfrac{3}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-1)) - \\ &- \tfrac{1}{300 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-1)) + \tfrac{3}{1250 \cdot \pi^2} + \tfrac{37 \cdot t}{70 \cdot \pi} + \tfrac{37}{210 \cdot \pi} \end{split}$$

2.4 $\Gamma \iota \alpha \ 2 < t < 3$

Figure 7: $2 < t \le 3$

$$y_3(t) = \int_{t-1}^2 (3 \cdot \tau - 1) \cdot x(t - \tau) d\tau + \int_2^t 0 \cdot x(t - \tau) d\tau =$$

$$= \int_{t-1}^2 3 \cdot \tau \cdot x(t - \tau) d\tau - \int_{t-1}^2 1 \cdot x(t - \tau) d\tau = y_{31}(t) - y_{32}(t)$$

Υπολογίζουμε τα ολοκληρώματα $y_{31}(t)$ και $y_{32}(t)$ ξεχωριστά.

•
$$y_{31}(t) = \int_{t-1}^{2} [6 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 6 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + 4 \cdot \tau \cdot \sin(30 \cdot \pi \cdot (t-\tau))] d\tau$$

Το ολοκλήρωμα αυτό το σπάμε σε 3 επιμέρους ολοκληρώματα και υπολογίζουμε το καθένα ξεχωριστά εφαρμόζοντας πάλι ολοκλήρωση κατά παράγοντες

$$-\int_{t-1}^{2} 6 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t-\tau)) = -\frac{3 \cdot \tau}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{2} + \int_{t-1}^{2} \frac{3}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-\tau)) d\tau = -\frac{6}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-2)) + \frac{3}{1250 \cdot \pi^{2}} \cdot \cos(50 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{2} = -\frac{6}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-2)) + \frac{3}{1250 \cdot \pi^{2}} \cdot \cos(50 \cdot \pi \cdot (t-2)) - \frac{3}{1250 \cdot \pi^{2}}$$

$$-\int_{t-1}^{2} 6 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t-\tau)) = \frac{3 \cdot \tau}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{2} - \int_{t-1}^{2} \frac{3}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-\tau)) d\tau = \frac{6}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-2)) - \int_{t-1}^{2} \frac{3}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-\tau)) d\tau = \frac{6}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-\tau)) - \int_{t-1}^{2} dt = \int_{t-1}^{2} \frac{3}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-2)) - \frac{3 \cdot t}{7 \cdot \pi} + \frac{1}{7 \cdot \pi} + \frac{3}{98 \cdot \pi^{2}} \cdot \sin(14 \cdot \pi \cdot (t-2))$$

$$-\int_{t-1}^{2} 3 \cdot \tau \cdot \sin(30 \cdot \pi \cdot (t-\tau)) = \frac{3 \cdot \tau}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{2} - \int_{t-1}^{2} \frac{3}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-\tau)) d\tau = \frac{6}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-2)) - \frac{3 \cdot (t-1)}{30 \cdot \pi} + \frac{1}{300 \cdot \pi^{2}} \cdot \sin(30 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{2} = \frac{6}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-2)) - \frac{3 \cdot t}{30 \cdot \pi} + \frac{1}{300 \cdot \pi^{2}} \cdot \sin(30 \cdot \pi \cdot (t-2))$$

Οπότε:

$$y_{31}(t) = -\frac{6}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-2)) + \frac{6}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-2)) + \frac{6}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-2)) + \frac{3}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-2)) + \frac{3}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-2)) + \frac{1}{300 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-2)) - \frac{3}{1250 \cdot \pi^2} - \frac{37 \cdot t}{70 \cdot \pi} + \frac{111}{210 \cdot \pi}$$

•
$$y_{32}(t) = \int_{t-1}^{2} [2 \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 2 \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + \sin(30 \cdot \pi \cdot (t-\tau))] d\tau$$

Το ολοκλήρωμα αυτό έχει τον ίδιο τρόπο επίλυσης με το ολοκλήρωμα $y_{21}(t)$ αλλάζοντας απλά τα όρια ολοκλήρωσης, που στην προκειμένη περίπτωση απλά επηρεάζουν μόνο την γωνία των \cos και \sin . Άρα το αποτέλεσμα είναι το εξής:

$$y_{32}(t) = -\frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-2)) + \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-2)) + \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-2)) - \frac{37}{210 \cdot \pi}$$

Άρα η $y_3(t)$ είναι η εξής:

$$y_3(t) = y_{31}(t) + y_{32}(t) \Leftrightarrow y_3(t) = -\frac{5}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-2)) + \frac{5}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-$$

$$\begin{split} & + \frac{5}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-2)) + \frac{3}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-2)) + \frac{3}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-2)) + \\ & + \frac{1}{300 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-2)) - \frac{3}{1250 \cdot \pi^2} - \frac{37 \cdot t}{70 \cdot \pi} + \frac{74}{105 \cdot \pi} \end{split}$$

2.5 Γ ia 3 < t < 4

Figure 8: $3 < t \le 4$

$$\begin{split} y_4(t) &= \int_{t-1}^3 0 \cdot x(t-\tau) \, d\tau + \int_{3}^t (\tau-3) \cdot x(t-\tau) \, d\tau = \\ &= \int_{3}^t [2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + \\ &+ \tau \cdot \sin(30 \cdot \pi \cdot (t-\tau))] \, d\tau - \int_{3}^t [6 \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 6 \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + \\ &+ 3 \cdot \sin(30 \cdot \pi \cdot (t-\tau))] \, d\tau = y_{41}(t) - y_{42}(t) \end{split}$$

Υπολογίζουμε τα ολοκληρώματα $y_{41}(t)$ και $y_{42}(t)$ ξεχωριστά.

•
$$y_{41}(t) = \int_3^t [2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t - \tau)) + 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t - \tau)) + \tau \cdot \sin(30 \cdot \pi \cdot (t - \tau))] d\tau$$

Το ολοκλήρωμα αυτό το σπάμε σε 3 επιμέρους ολοκληρώματα και υπολογίζουμε το καθένα ξεχωριστά εφαρμόζοντας πάλι ολοκλήρωση κατά παράγοντες

$$- \int_{3}^{t} 2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t - \tau)) d\tau = -\frac{\tau}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - \tau)) \Big|_{3}^{t} +$$

$$+ \int_{3}^{t} \frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - \tau)) d\tau = \dots =$$

$$= \frac{3}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - 3)) - \frac{1}{1250 \cdot \pi^{2}} \cdot \cos(50 \cdot \pi \cdot (t - 3)) + \frac{1}{1250 \cdot \pi^{2}}$$

$$- \int_{3}^{t} 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t - \tau)) d\tau = \frac{\tau}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - \tau)) \Big|_{3}^{t} -$$

$$- \int_{3}^{t} \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - \tau)) d\tau = \dots =$$

$$= \frac{t}{7 \cdot \pi} - \frac{3}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - 3)) - \frac{1}{98 \cdot \pi^{2}} \cdot \sin(14 \cdot \pi \cdot (t - 3))$$

$$- \int_{3}^{t} \tau \cdot \sin(30 \cdot \pi \cdot (t - \tau)) d\tau = \frac{\tau}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - \tau)) \Big|_{3}^{t} -$$

$$- \int_{3}^{t} \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - \tau)) d\tau = \dots =$$

$$= \frac{t}{30 \cdot \pi} - \frac{3}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - 3)) - \frac{1}{900 \cdot \pi^{2}} \cdot \sin(30 \cdot \pi \cdot (t - 3))$$

Οπότε:

$$y_{41}(t) = \frac{3}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-3)) - \frac{3}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-3)) - \frac{3}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-3)) - \frac{1}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-3)) - \frac{1}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-3)) - \frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-3)) + \frac{1}{1250 \cdot \pi^2} + \frac{37 \cdot t}{210 \cdot \pi}$$

•
$$y_{42}(t) = \int_3^t [6 \cdot \cos(50 \cdot \pi \cdot (t - \tau)) + 6 \cdot \sin(14 \cdot \pi \cdot (t - \tau)) + 4 \cdot \sin(30 \cdot \pi \cdot (t - \tau))] d\tau$$

Το ολοχλήρωμα αυτό έχει ίδιο τρόπο επίλυσης με το $y_{222}(t)$, αλλάζοντας απλά τα όρια ολοχλήρωσης που στην προχειμένη περίπτωση απλά επηρεάζουν την γωνία των \cos και \sin . Επίσης είναι πολλάπλασιασμένος με μια σταθερά, που απλά πολλαπλασιάζεται με το αποτέλεσμα στο τέλος. Άρα το αποτέλεσμα είναι το εξής:

$$y_{42}(t) = \frac{3}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-3)) - \frac{3}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-3)) - \frac{3}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-3)) + \frac{111}{210 \cdot \pi}$$

Άρα η $y_4(t)$ μετά από απλοποιήσεις είναι η εξής:

$$y_4(t) = -\frac{1}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-3)) - \frac{1}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-3)) - \frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-3)) + \frac{1}{1250 \cdot \pi^2} + \frac{37 \cdot t}{210 \cdot \pi} - \frac{37}{70 \cdot \pi}$$

2.6 Γ ia $4 < t \le 5$

Figure 9: $4 < t \le 5$

$$y_5(t) = \int_{t-1}^4 (\tau - 3) \cdot x(t - \tau) \, d\tau + \int_4^t (5 - \tau) \cdot x(t - \tau) \, d\tau = y_{51}(t) + y_{52}(t)$$

Λύνουμε τα ολοκληρώματα $y_{51}(t)$ και $y_{52}(t)$ ξεγωριστά.

•
$$y_{51}(t) = \int_{t-1}^{4} [2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + \tau \cdot \sin(30 \cdot \pi \cdot (t-\tau))] d\tau - \int_{t-1}^{4} [6 \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 6 \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + 3 \cdot \sin(30 \cdot \pi \cdot (t-\tau))] d\tau = y_{511}(t) - y_{512}(t)$$

Λύνουμε τα ολοκληρώματα $y_{511}(t)$ και $y_{522}(t)$ ξεχωριστά.

$$-y_{511}(t) = \int_{t-1}^{4} \left[2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + \tau \cdot \sin(30 \cdot \pi \cdot (t-\tau)) \right] d\tau$$

Το ολοκλήρωμα αυτό το σπάσε σε 3 επιμέρους ολοκληρώματα τα οποία υπολογίζουμε ξεχωριστά εφαρμόζοντας στο καθένα ολοκλήρωση κατά παράγοντες

*
$$\int_{t-1}^{4} 2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t-\tau)) d\tau = -\frac{\tau}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{4} + \int_{t-1}^{4} \frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-\tau)) d\tau = \dots =$$

$$= -\frac{4}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-4)) + \frac{1}{1250 \cdot \pi^{2}} \cdot \cos(50 \cdot \pi \cdot (t-4)) - \frac{1}{1250 \cdot \pi^{2}}$$

*
$$\int_{t-1}^{4} 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t-\tau)) d\tau = \frac{\tau}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{4} - \int_{t-1}^{4} \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-\tau)) d\tau = \dots =$$

$$= \frac{4}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-4)) - \frac{t}{7 \cdot \pi} + \frac{1}{7 \cdot \pi} + \frac{1}{98 \cdot \pi^{2}} \cdot \sin(14 \cdot \pi \cdot (t-4))$$

*
$$\int_{t-1}^{4} \tau \cdot \sin(30 \cdot \pi \cdot (t-\tau)) d\tau = \frac{\tau}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{4} - \int_{t-1}^{4} \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-\tau)) d\tau = \dots =$$

$$= \frac{4}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-4)) - \frac{t}{30 \cdot \pi} + \frac{1}{30 \cdot \pi} + \frac{1}{900 \cdot \pi^{2}} \cdot \sin(30 \cdot \pi \cdot (t-4))$$

Οπότε:

$$y_{511}(t) = -\frac{4}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - 4)) + \frac{4}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - 4)) + \frac{4}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - 4)) + \frac{1}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t - 4)) + \frac{1}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t - 4)) + \frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t - 4)) - \frac{1}{1250 \cdot \pi^2} - \frac{37 \cdot t}{210 \cdot \pi} + \frac{37}{210 \cdot \pi}$$

$$-y_{512}(t) = \int_{t-1}^{4} [6 \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 6 \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + 6 \cdot \sin(30 \cdot \pi \cdot (t-\tau))] d\tau$$

Το ολοκλήρωμα αυτό έχει την ίδια επίλυση με το $y_{21}(t)$, αλλάζοντας απλά την γωνία των cos και sin και πολλαπλασιάζοντας το με μια σταθερά. Άρα το αποτέλεσμα είναι το εξής:

$$y_{512}(t) = -\frac{4}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - 4)) + \frac{4}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - 4)) + \frac{4}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - 4)) - \frac{37}{70 \cdot \pi}$$

•
$$y_{52}(t) = \int_4^t [10 \cdot \cos(50 \cdot \pi \cdot (t - \tau)) + 10 \cdot \sin(14 \cdot \pi \cdot (t - \tau)) + 10 \cdot \sin(30 \cdot \pi \cdot (t - \tau))] d\tau - \int_4^t [2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t - \tau)) + 10 \cdot \sin(30 \cdot \pi \cdot (t - \tau))] d\tau - 10 \cdot \sin(30 \cdot \pi \cdot (t - \tau))] d\tau = y_{521}(t) - y_{522}(t)$$

Λύνουμε τα ολοκληρώματα $y_{521}(t)$ και $y_{522}(t)$ ξεχωριστά.

$$-y_{521}(t) = \int_{4}^{t} [10 \cdot \cos(50 \cdot \pi \cdot (t - \tau)) + 10 \cdot \sin(14 \cdot \pi \cdot (t - \tau)) + 10 \cdot \sin(14 \cdot \pi \cdot (t - \tau))] d\tau$$

Το ολοκλήρωμα αυτό έχει την ίδια επίλυση με το $y_{222}(t)$, αλλά-ζοντας απλά την γωνία των \cos και \sin και πολλαπλασιάζοντας το με μια σταθερά. Άρα το αποτέλεσμα είναι το εξής:

$$y_{521}(t) = \frac{5}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - 4)) - \frac{5}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - 4)) - \frac{5}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - 4)) + \frac{37}{42 \cdot \pi}$$

$$-y_{522}(t) = \int_4^t \left[2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t - \tau)) + 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t - \tau)) + \tau \cdot \sin(30 \cdot \pi \cdot (t - \tau)) \right] d\tau$$

Το ολοκλήρωμα αυτό το σπάσε σε 3 επιμέρους ολοκληρώματα τα οποία υπολογίζουμε ξεχωριστά εφαρμόζοντας στο καθένα ολοκλήρωση κατά παράγοντες

$$* \int_{4}^{t} 2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t - \tau)) d\tau = -\frac{\tau}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - \tau)) \Big|_{4}^{t} + \int_{4}^{t} \frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - \tau)) d\tau = \dots =$$

$$= \frac{4}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - 4)) - \frac{1}{1250 \cdot \pi^{2}} \cdot \cos(50 \cdot \pi \cdot (t - 4)) + \frac{1}{1250 \cdot \pi^{2}}$$

*
$$\int_{4}^{t} 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t - \tau)) d\tau = \frac{\tau}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - \tau)) \Big|_{4}^{t} - \int_{4}^{t} \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - \tau)) d\tau = \dots =$$

$$= \frac{t}{7 \cdot \pi} - \frac{4}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - 4)) - \frac{1}{98 \cdot \pi^{2}} \cdot \sin(14 \cdot \pi \cdot (t - 4))$$

$$* \int_{4}^{t} \tau \cdot \sin(30 \cdot \pi \cdot (t - \tau)) d\tau = \frac{\tau}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - \tau)) \Big|_{4}^{t} - \int_{4}^{t} \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - \tau)) d\tau = \dots =$$

$$= \frac{t}{30 \cdot \pi} - \frac{4}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - 4)) - \frac{1}{900 \cdot \pi^{2}} \cdot \sin(30 \cdot \pi \cdot (t - 4))$$

Οπότε:

$$y_{522}(t) = \frac{4}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t - 4)) - \frac{4}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t - 4)) - \frac{4}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - 4)) - \frac{1}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t - 4)) - \frac{1}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t - 4)) - \frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t - 4)) + \frac{1}{1250 \cdot \pi^2} + \frac{37 \cdot t}{210 \cdot \pi}$$

Άρα η $y_5(t)$ μετά από απλοποιήσεις είναι η εξής:

$$y_5(t) = -\frac{1}{625 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-4)) - \frac{1}{49 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-4)) - \frac{1}{450 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-4)) + \frac{1}{625 \cdot \pi^2} + \frac{37 \cdot t}{105 \cdot \pi} - \frac{37}{70 \cdot \pi}$$

2.7 $\Gamma \iota \alpha \ t > 5$

$$\begin{split} y_{6}(t) &= \int_{t-1}^{5} (5-\tau) \cdot x(t-\tau) \, d\tau + \int_{5}^{t} 0 \cdot x(t-\tau) \, d\tau = \\ &= \int_{t-1}^{5} [10 \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 10 \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + 5 \cdot \sin(30 \cdot \pi \cdot (t-\tau))] \, d\tau - \\ &- \int_{t-1}^{5} [2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + \tau \cdot \sin(30 \cdot \pi \cdot (t-\tau))] \, d\tau = \\ &= y_{61}(t) - y_{62}(t) \end{split}$$

Λύνουμε τα ολοκληρώματα $y_{61}(t)$ και $y_{62}(t)$ ξεχωριστά.

Figure 10: t > 5

•
$$y_{61}(t) = \int_{t-1}^{5} [10 \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 10 \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + 10 \cdot \sin(30 \cdot \pi \cdot (t-\tau))] d\tau$$

Το ολοκλήρωμα αυτό έχει την ίδια επίλυση με το $y_{21}(t)$, αλλάζοντας απλά την γωνία των \cos και \sin και πολλαπλασιάζοντας το με μια σταθερά. Άρα το αποτέλεσμα είναι το εξής:

$$y_{61}(t) = -\frac{5}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-5)) + \frac{5}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-5)) + \frac{5}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-5)) - \frac{37}{42 \cdot \pi}$$

•
$$y_{62}(t) = \int_{t-1}^{5} [2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t-\tau)) + 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t-\tau)) + \tau \cdot \sin(30 \cdot \pi \cdot (t-\tau))] d\tau$$

Το ολοκλήρωμα αυτό το σπάσε σε 3 επιμέρους ολοκληρώματα τα οποία υπολογίζουμε ξεχωριστά εφαρμόζοντας στο καθένα ολοκλήρωση κατά παράγοντες

$$-\int_{t-1}^{5} 2 \cdot \tau \cdot \cos(50 \cdot \pi \cdot (t-\tau)) d\tau = -\frac{\tau}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{5} + \int_{t-1}^{5} \frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-\tau)) d\tau = \dots =$$

$$= -\frac{5}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^{2}} \cdot \cos(50 \cdot \pi \cdot (t-5)) - \frac{1}{1250 \cdot \pi^{2}}$$

$$-\int_{t-1}^{5} 2 \cdot \tau \cdot \sin(14 \cdot \pi \cdot (t-\tau)) d\tau = \frac{\tau}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{5} - \int_{t-1}^{5} \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-\tau)) d\tau = \dots =$$

$$= \frac{5}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-5)) - \frac{t}{7 \cdot \pi} + \frac{1}{7 \cdot \pi} + \frac{1}{98 \cdot \pi^{2}} \cdot \sin(14 \cdot \pi \cdot (t-5))$$

$$-\int_{t-1}^{5} \tau \cdot \sin(30 \cdot \pi \cdot (t-\tau)) d\tau = \frac{\tau}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-\tau)) \Big|_{t-1}^{5} - \int_{t-1}^{5} \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-\tau)) d\tau = \dots =$$

$$= \frac{5}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-5)) - \frac{t}{30 \cdot \pi} + \frac{1}{30 \cdot \pi} + \frac{1}{900 \cdot \pi^{2}} \cdot \sin(30 \cdot \pi \cdot (t-5))$$

Οπότε:

$$y_{62}(t) = -\frac{5}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-5)) + \frac{5}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot$$

$$+ \frac{5}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t - 5)) + \frac{1}{1250 \cdot \pi^{2}} \cdot \cos(50 \cdot \pi \cdot (t - 5)) +$$

$$+ \frac{1}{98 \cdot \pi^{2}} \cdot \sin(14 \cdot \pi \cdot (t - 5)) + \frac{1}{900 \cdot \pi^{2}} \cdot \sin(30 \cdot \pi \cdot (t - 5)) - \frac{1}{1250 \cdot \pi^{2}} -$$

$$- \frac{37 \cdot t}{210 \cdot \pi} + \frac{37}{210 \cdot \pi}$$

Άρα η $y_6(t)$ μετά από απλοποιήσεις είναι η εξής:

$$y_6(t) = -\frac{1}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-5)) - \frac{1}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} + \frac{37 \cdot t}{210 \cdot \pi} - \frac{111}{105 \cdot \pi}$$

2.8 y(t)

$$y(t) = \begin{cases} 0 & ,t < 0 \\ \frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot t) - \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot t) - \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot t) + \\ + \frac{37}{210 \cdot \pi} & ,0 \leq t \leq 1 \end{cases}$$

$$\frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-1)) - \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-1)) - \\ -\frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-1)) - \frac{1}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-1)) - \\ -\frac{1}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-1)) - \frac{300 \cdot \pi^2}{300 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-1)) + \\ + \frac{1}{1250 \cdot \pi^2} + \frac{37}{70 \cdot \pi} + \frac{37}{210 \cdot \pi} & ,1 \leq t \leq 2 \end{cases}$$

$$y(t) = \begin{cases} -\frac{5}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-2)) + \frac{5}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-2)) + \\ +\frac{5}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-2)) + \frac{3}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-2)) + \\ +\frac{5}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-2)) + \frac{3}{1250 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-2)) - \\ -\frac{3}{1250 \cdot \pi^2} - \frac{37}{70 \cdot \pi} + \frac{74}{105 \cdot \pi} & ,2 < t \leq 3 \end{cases}$$

$$-\frac{1}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-3)) - \frac{1}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-3)) - \\ -\frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-3)) + \frac{1}{1250 \cdot \pi^2} + \frac{37 \cdot t}{210 \cdot \pi} - \frac{37}{70 \cdot \pi} & ,3 < t \leq 4 \end{cases}$$

$$-\frac{1}{625 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-4)) - \frac{1}{49 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-4)) - \\ -\frac{1}{250 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-4)) + \frac{1}{625 \cdot \pi^2} + \frac{37 \cdot t}{105 \cdot \pi} - \frac{37}{70 \cdot \pi} & ,4 < t \leq 5 \end{cases}$$

$$-\frac{1}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-5)) - \frac{1}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \\ -\frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \\ -\frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \\ -\frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \\ -\frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \\ -\frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \\ -\frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \\ -\frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \\ -\frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \\ -\frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)$$

${f 3}$ Σχεδιασμός σήματος y(t)

Figure 11: y(t)

Με μια πρώτη ματιά, φαίνεται πως η συνάρτηση y(t) για $3 \le t \le 6$ παρουσιάζει γραμμικότητα. Όμως μεγεθύνοντας την γραφική παράσταση παρατηρούμε πως η συνάρτηση σε αυτό το διάστημα δεν είναι γραμμική, αλλά είναι ένα ημιτονοειδές σήμα το οποίο έχει την ανάλογη κλίση. Στην εικόνα που ακολουθεί παρατηρούμε το ημιτονοειδές σήμα αυτό για $4 \le t \le 5$, συμπεριφορά, που όπως ανέφερα, συμβαίνει σε όλο το χρονικό διάστημα $3 \le t \le 6$.

Figure 12: y(t)

4 Εύρεση μετασχηματισμού Fourier των σημάτων

Πριν περάσουμε στον υπολογισμό των μετασχηματισμών Fourier θα πρέπει να κάνουμε κάποιες παρατηρήσεις οι οποίες θα μας βοηθήσουν στον υπολογισμό του μετασχηματισμόυ, αποφεύγοντας τις πολλές πράξεις και την επανάληψη διαδικασιών. Παρατηρούμε πως οι συναρτήσεις μας αποτελούνται στην βάση τους από τις συναρτήσεις $f_1(t) = cos(2 \cdot \pi \cdot f_0 \cdot t), f_2(t) = sin(2 \cdot \pi \cdot f_0 \cdot t), f_3(t) = c \cdot t$ και $f_4(t) = c$ πολλαπλασιασμένες με σταθερούς όρους. Άρα για να διευκολύνουμε τους υπολογισμούς, απλά θα πρέπει να βρούμε τον μετασχηματισμό αυτών των απλών συναρτήσεων και έπειτα να εφαρμόσουμε τις ιδιότητες του μετασχηματισμού Fourier για να βγάλουμε σε κάθε περίπτωση το επιθυμητό αποτέλεσμα. Επίσης για τον υπολογισμό θα χρειαστούμε και τον τύπο του Euler για το sin και το cos.

$$Euler - > \begin{cases} e^{j \cdot \theta} = \cos(\theta) + j \cdot \sin(\theta) \\ e^{-j \cdot \theta} = \cos(\theta) - j \cdot \sin(\theta) \end{cases} \Leftrightarrow \begin{cases} \cos(\theta) = \frac{e^{j \cdot \theta} + e^{-j \cdot \theta}}{2} \\ \sin(\theta) = \frac{e^{j \cdot \theta} - e^{-j \cdot \theta}}{2 \cdot j} \end{cases}$$

Άρα έχουμε:

•
$$f_1(t) = cos(2 \cdot \pi \cdot f_0 \cdot t) \stackrel{F}{\Longleftrightarrow} F_1(f) = \int_a^b cos(2 \cdot \pi \cdot f_0 \cdot t) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} dt =$$

$$= \int_a^b \frac{e^{j \cdot 2 \cdot \pi \cdot f_0 \cdot t} + e^{-j \cdot 2 \cdot \pi \cdot f_0 \cdot t}}{2} \cdot e^{-j \cdot 2 \cdot \pi \cdot f} dt = \int_a^b \frac{e^{-j \cdot 2 \cdot \pi \cdot t \cdot (f - f_0)} + e^{-j \cdot 2 \cdot \pi \cdot t \cdot (f + f_0)}}{2} dt =$$

$$= \frac{1}{2} \cdot \left[-\frac{e^{-j \cdot 2 \cdot \pi \cdot t \cdot (f - f_0)}}{j \cdot 2 \cdot \pi \cdot (f - f_0)} - \frac{e^{-j \cdot 2 \cdot \pi \cdot t \cdot (f + f_0)}}{j \cdot 2 \cdot \pi \cdot (f + f_0)} \right]_a^b \Leftrightarrow$$

$$F_1(f) = \frac{1}{2} \cdot \left[\frac{e^{-j \cdot 2 \cdot a \cdot \pi \cdot (f - f_0)} - e^{-j \cdot 2 \cdot b \cdot \pi \cdot (f - f_0)}}{j \cdot 2 \cdot \pi \cdot (f - f_0)} + \frac{e^{-j \cdot 2 \cdot a \cdot \pi \cdot (f + f_0)} - e^{-j \cdot 2 \cdot b \cdot \pi \cdot (f + f_0)}}{j \cdot 2 \cdot \pi \cdot (f + f_0)} \right]$$

•
$$f_2(t) = sin(2 \cdot \pi \cdot f_0 \cdot t) \stackrel{F}{\iff} F_2(f) = \int_a^b sin(2 \cdot \pi \cdot f_0 \cdot t) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} dt =$$

$$= \int_a^b \frac{e^{j \cdot 2 \cdot \pi \cdot f_0 \cdot t} - e^{-j \cdot 2 \cdot \pi \cdot f_0 \cdot t}}{2 \cdot j} \cdot e^{-j \cdot 2 \cdot \pi \cdot f} dt = \int_a^b \frac{e^{-j \cdot 2 \cdot \pi \cdot t \cdot (f - f_0)} - e^{-j \cdot 2 \cdot \pi \cdot t \cdot (f + f_0)}}{2 \cdot j} dt =$$

$$\begin{split} &= \frac{1}{2 \cdot j} \cdot \left[- \frac{e^{-j \cdot 2 \cdot \pi \cdot t \cdot (f - f_0)}}{j \cdot 2 \cdot \pi \cdot (f - f_0)} + \frac{e^{-j \cdot 2 \cdot \pi \cdot t \cdot (f + f_0)}}{j \cdot 2 \cdot \pi \cdot (f + f_0)} \right]_a^b = \\ &= \frac{1}{2 \cdot j} \cdot \left[\frac{e^{-j \cdot 2 \cdot \pi \cdot a \cdot (f - f_0)} - e^{-j \cdot 2 \cdot \pi \cdot b \cdot (f - f_0)}}{j \cdot 2 \cdot \pi \cdot (f - f_0)} - \frac{e^{-j \cdot 2 \cdot \pi \cdot a \cdot (f + f_0)} - e^{-j \cdot 2 \cdot \pi \cdot b \cdot (f + f_0)}}{j \cdot 2 \cdot \pi \cdot (f + f_0)} \right] \Leftrightarrow \\ F_2(f) &= \frac{1}{2} \cdot \left[\frac{e^{-j \cdot 2 \cdot a \cdot \pi \cdot (f + f_0)} - e^{-j \cdot 2 \cdot b \cdot \pi \cdot (f + f_0)}}{2 \cdot \pi \cdot (f + f_0)} - \frac{e^{-j \cdot 2 \cdot a \cdot \pi \cdot (f - f_0)} - e^{-j \cdot 2 \cdot b \cdot \pi \cdot (f - f_0)}}{2 \cdot \pi \cdot (f - f_0)} \right] \end{split}$$

•
$$f_3(t) = c \cdot t \stackrel{F}{\iff} F_3(f) = \int_a^b c \cdot t \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} dt$$

Εφαρμόζοντας ολοκλήρωση κατα παράγοντες παίρνουμε:

$$F_{3}(f) = -\frac{c \cdot t \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t}}{j \cdot 2 \cdot \pi \cdot f} \Big|_{a}^{b} + \int_{a}^{b} \frac{c \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t}}{j \cdot 2 \cdot \pi \cdot f} dt =$$

$$= \frac{c \cdot a \cdot e^{-j \cdot 2 \cdot a \cdot \pi \cdot f} - c \cdot b \cdot e^{-j \cdot 2 \cdot b \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} + \frac{c \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t}}{-j^{2} \cdot 4 \cdot \pi^{2} \cdot f^{2}} \Big|_{a}^{b} \Leftrightarrow$$

$$F_{3}(f) = \frac{c \cdot a \cdot e^{-j \cdot 2 \cdot a \cdot \pi \cdot f} - c \cdot b \cdot e^{-j \cdot 2 \cdot b \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} + \frac{c \cdot e^{-j \cdot 2 \cdot b \cdot \pi \cdot f} - c \cdot e^{-j \cdot 2 \cdot a \cdot \pi \cdot f}}{4 \cdot \pi^{2} \cdot f^{2}}$$

•
$$f_4(t) = c \stackrel{F}{\iff} F_4(f) = \int_a^b c \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} dt = -\frac{c \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t}}{j \cdot 2 \cdot \pi \cdot f} \Big|_a^b \Leftrightarrow$$

$$F_4(f) = \frac{c \cdot e^{-j \cdot 2 \cdot a \cdot \pi \cdot f} - c \cdot e^{-j \cdot 2 \cdot b \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f}$$

Οι ιδιότητες που θα εφαρμόσουμε είναι:

- Γραμμικότητα: $a_1\cdot x_1(t)+a_2\cdot x_2(t) \stackrel{F}{\Longleftrightarrow} a_1\cdot X_1(f)+a_2\cdot X_2(f)$
- ullet Ολίσθηση στον χρόνο: $x(t-t_0) \stackrel{F}{\Longleftrightarrow} e^{-j\cdot 2\cdot \pi\cdot f\cdot t_0} \cdot X(f)$

Έχοντας υπόψη τα παραπάνω μπορούμε να περάσουμε στον υπολογισμό του μετασχηματισμού Fourier των σημάτων.

4.1 Υπολογισμός X(f)

$$x(t) = 2 \cdot \cos(2 \cdot \pi \cdot 25 \cdot t) + 2 \cdot \sin(2 \cdot \pi \cdot 7 \cdot t) + \sin(2 \cdot \pi \cdot 15 \cdot t) =$$

$$= x_1(t) + x_2(t) + x_3(t) , 0 \le t \le 1$$

•
$$x_1(t) = 2 \cdot f_1(t)$$
, $\text{ me } f_0 = 25$, $a = 0$, $b = 1$

$$O\pi \text{ die } X_1(f) = 2 \cdot F_1(f) = \frac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f - 25)}}{j \cdot 2 \cdot \pi \cdot (f - 25)} + \frac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f + 25)}}{j \cdot 2 \cdot \pi \cdot (f + 25)}$$

•
$$x_2(t)=2\cdot f_2(t), \quad \text{me} \quad f_0=7, \quad a=0, \quad b=1$$

$$O\text{póte} \qquad X_2(f)=2\cdot F_2(f)=\frac{1-e^{-j\cdot 2\cdot \pi\cdot (f+7)}}{2\cdot \pi\cdot (f+7)}-\frac{1-e^{-j\cdot 2\cdot \pi\cdot (f-7)}}{2\cdot \pi\cdot (f-7)}$$

•
$$x_3(t)=f_2(t), \quad \text{re} \quad f_0=15, \quad a=0, \quad b=1$$

$$O\text{pose} \qquad X_3(f)=F_2(f)=\frac{1-e^{-j\cdot 2\cdot \pi\cdot (f+15)}}{4\cdot \pi\cdot (f+15)}-\frac{1-e^{-j\cdot 2\cdot \pi\cdot (f-15)}}{4\cdot \pi\cdot (f-15)}$$

Εφαρμόζοντας της ιδιότητα της Γραμμικότητας έχουμε:

$$\begin{split} X(f) &= \tfrac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f - 25)}}{j \cdot 2 \cdot \pi \cdot (f - 25)} + \tfrac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f + 25)}}{j \cdot 2 \cdot \pi \cdot (f + 25)} + \tfrac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f + 7)}}{2 \cdot \pi \cdot (f + 7)} - \tfrac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f - 7)}}{2 \cdot \pi \cdot (f - 7)} + \\ &+ \tfrac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f + 15)}}{4 \cdot \pi \cdot (f + 15)} - \tfrac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f - 15)}}{4 \cdot \pi \cdot (f - 15)} \end{split}$$

4.2 Υπολογισμός Η(f)

$$h(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 3 \cdot t - 1, & 1 \le t \le 2 \\ 0, & 2 < t \le 3 \\ t - 3, & 3 < t \le 4 \\ 5 - t, & 4 < t \le 5 \\ 0, & t > 5 \end{cases} = \begin{cases} h_1(t), & 0 \le t \le 1 \\ h_2(t), & 1 \le t \le 2 \\ h_3(t), & 2 < t \le 3 \\ h_4(t), & 3 < t \le 4 \\ h_5(t), & 4 < t \le 5 \\ h_6(t), & t > 5 \end{cases}$$

•
$$h_1(t) = f_4(t)$$
 με $c = 1$, $a = 0$, $b = 1$
 Οπότε $H_1(f) = F_4(f) = \frac{1 - e^{-j \cdot 2 \cdot \pi \cdot f}}{-j \cdot 2 \cdot \pi \cdot f}$

•
$$h_2(t)=h_{21}(t)-h_{22}(t)$$

$$-h_{21}(t)=f_3(t) \quad \text{ we } \quad c=3, \quad a=1, \quad b=2$$

$$\mathrm{Ophits} \quad H_{21}(f)=F_3(f)=\frac{3\cdot e^{-j\cdot 2\cdot \pi\cdot f}-6\cdot e^{-j\cdot 4\cdot \pi\cdot f}}{j\cdot 2\cdot \pi\cdot f}+\frac{3\cdot e^{-j\cdot 4\cdot \pi\cdot f}-3\cdot e^{-j\cdot 2\cdot \pi\cdot f}}{4\cdot \pi^2\cdot f^2}$$

$$-h_{22}(t)=f_4(t) \quad \text{ we } \quad c=1, \quad a=1, \quad b=2$$

$$\mathrm{Ophits} \quad H_{22}(f)=F_4(f)=\frac{e^{-j\cdot 2\cdot \pi\cdot f}-e^{j\cdot 4\cdot \pi\cdot f}}{-j\cdot 2\cdot \pi\cdot f}$$

Με βάση την ιδιότητα της γραμμικότητας έχουμε:

$$H_2(f) = \frac{3 \cdot e^{-j \cdot 2 \cdot \pi \cdot f} - 6 \cdot e^{-j \cdot 4 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} + \frac{3 \cdot e^{-j \cdot 4 \cdot \pi \cdot f} - 3 \cdot e^{-j \cdot 2 \cdot \pi \cdot f}}{4 \cdot \pi^2 \cdot f^2} - \frac{e^{-j \cdot 2 \cdot \pi \cdot f} - e^{-j \cdot 4 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} \Leftrightarrow$$

$$H_2(f) = \frac{2 \cdot e^{-j \cdot 2 \cdot \pi \cdot f} - 5 \cdot e^{-j \cdot 4 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} + \frac{3 \cdot e^{-j \cdot 4 \cdot \pi \cdot f} - 3 \cdot e^{-j \cdot 2 \cdot \pi \cdot f}}{4 \cdot \pi^2 \cdot f^2}$$

•
$$h_3(t) = 0 \stackrel{F}{\iff} H_3(f) = 0$$

•
$$h_4(t)=h_{41}(t)-h_{42}(t)$$

$$-h_{41}(t)=f_3(t) \quad \text{ if } c=1, \quad a=3, \quad b=4$$

$$\mathrm{Opsic} \quad H_{41}(f)=F_3(f)=\frac{3\cdot e^{-j\cdot 6\cdot \pi\cdot f}-4\cdot e^{-j\cdot 8\cdot \pi\cdot f}}{j\cdot 2\cdot \pi\cdot f}+\frac{e^{-j\cdot 8\cdot \pi\cdot f}-e^{-j\cdot 6\cdot \pi\cdot f}}{4\cdot \pi^2\cdot f^2}$$

$$-h_{42}(t)=f_4(t) \quad \text{ if } c=3, \quad a=3, \quad b=4$$

$$\mathrm{Opsic} \quad H_{42}(f)=F_4(f)=\frac{3\cdot e^{-j\cdot 6\cdot \pi\cdot f}-3\cdot e^{-j\cdot 8\cdot \pi\cdot f}}{j\cdot 2\cdot \pi\cdot f}$$

Με βάση την ιδιότητα της γραμμικότητας έχουμε:

$$H_4(f) = \frac{3 \cdot e^{-j \cdot 6 \cdot \pi \cdot f} - 4 \cdot e^{-j \cdot 8 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} + \frac{e^{-j \cdot 8 \cdot \pi \cdot f} - e^{-j \cdot 6 \cdot \pi \cdot f}}{4 \cdot \pi^2 \cdot f^2} - \frac{3 \cdot e^{-j \cdot 6 \cdot \pi \cdot f} - 3 \cdot e^{-j \cdot 8 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} \Leftrightarrow$$

$$H_4(f) = \frac{e^{-j \cdot 8 \cdot \pi \cdot f} - e^{-j \cdot 6 \cdot \pi \cdot f}}{4 \cdot \pi^2 \cdot f^2} - \frac{e^{-j \cdot 8 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f}$$

•
$$h_5(t) = h_{51}(t) - h_{52}(t)$$

$$- h_{51}(t) = f_4(t) \quad \text{me} \quad c = 5, \quad a = 4, \quad b = 5$$

$$\text{Opsign} \quad H_{51}(f) = F_4(f) = \frac{5 \cdot e^{-j \cdot 8 \cdot \pi \cdot f} - 5 \cdot e^{-j \cdot 10 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f}$$

$$- h_{52}(t) = f_3(t) \quad \text{me} \quad c = 1, \quad a = 4, \quad b = 5$$

$$\text{Opsign} \quad H_{52}(f) = F_3(f) = \frac{4 \cdot e^{-j \cdot 8 \cdot \pi \cdot f} - 5 \cdot e^{-j \cdot 10 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} + \frac{e^{-j \cdot 10 \cdot \pi \cdot f} - e^{-j \cdot 8 \cdot \pi \cdot f}}{4 \cdot \pi^2 \cdot f^2}$$

Με βάση την ιδιότητα της γραμμικότητας έχουμε:

$$H_5(f) = \frac{5 \cdot e^{-j \cdot 8 \cdot \pi \cdot f} - 5 \cdot e^{-j \cdot 10 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} - \frac{4 \cdot e^{-j \cdot 8 \cdot \pi \cdot f} - 5 \cdot e^{-j \cdot 10 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} - \frac{e^{-j \cdot 10 \cdot \pi \cdot f} - e^{-j \cdot 8 \cdot \pi \cdot f}}{4 \cdot \pi^2 \cdot f^2} \Leftrightarrow$$

$$H_5(f) = \frac{e^{-j \cdot 8 \cdot \pi \cdot f}}{j \cdot 2 \cdot \pi \cdot f} - \frac{e^{-j \cdot 10 \cdot \pi \cdot f} - e^{-j \cdot 8 \cdot \pi \cdot f}}{4 \cdot \pi^2 \cdot f^2}$$

•
$$h_6(t) = 0 \stackrel{F}{\iff} H_6(f) = 0$$

4.3 Υπολογισμός Υ(f)

•
$$y_0(t) = 0 \stackrel{F}{\Longleftrightarrow} Y_0(f) = 0$$

•
$$y_1(t) = \frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot t) - \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot t) - \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot t) + \frac{37}{210 \cdot \pi} =$$

$$= y_{11}(t) - y_{12}(t) - y_{13}(t) + y_{14}(t)$$

$$- y_{11}(t) = \frac{1}{25 \cdot \pi} \cdot f_2(t) \quad \text{ue} \quad f_0 = 25, \quad a = 0, \quad b = 1$$

$$O\pi \text{ore} \quad Y_{11}(f) = \frac{1}{25 \cdot \pi} \cdot F_2(f) \Leftrightarrow$$

$$Y_{11}(f) = \frac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f + 25)}}{100 \cdot \pi^2 \cdot (f + 25)} - \frac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f - 25)}}{100 \cdot \pi^2 \cdot (f - 25)}$$

$$- y_{12}(t) = \frac{1}{7 \cdot \pi} \cdot f_1(t) \quad \text{ue} \quad f_0 = 7, \quad a = 0, \quad b = 1$$

$$O\pi \text{ore} \quad Y_{12}(f) = \frac{1}{7 \cdot \pi} \cdot F_1(f) \Leftrightarrow$$

$$Y_{12}(f) = \frac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f - 7)}}{j \cdot 28 \cdot \pi^2 \cdot (f - 7)} + \frac{1 - e^{-j \cdot 2 \cdot \pi \cdot (f + 7)}}{j \cdot 28 \cdot \pi^2 \cdot (f + 7)}$$

$$- y_{13}(t) = \frac{1}{30 \cdot \pi} \cdot f_1(t) \quad \text{ue} \quad f_0 = 15, \quad a = 0, \quad b = 1$$

$$O\pi \text{ore} \quad Y_{13}(f) = \frac{1}{30 \cdot \pi} \cdot F_1(f) \Leftrightarrow$$

$$\begin{split} Y_{13}(f) &= \tfrac{1-e^{-j\cdot 2\cdot \pi\cdot (f-15)}}{j\cdot 120\cdot \pi^2\cdot (f-15)} + \tfrac{1-e^{-j\cdot 2\cdot \pi\cdot (f+15)}}{j\cdot 120\cdot \pi^2\cdot (f+15)} \\ &- y_{14}(t) = f_4(t) \quad \text{me} \quad c = \tfrac{37}{210\cdot \pi}, \quad a = 0, \quad b = 1 \\ &\text{Optice} \quad Y_{14}(f) = F_4(f) \Leftrightarrow \\ &Y_{14}(f) = \tfrac{37-37\cdot e^{-j\cdot 2\cdot \pi\cdot f}}{j\cdot 420\cdot \pi^2\cdot f} \end{split}$$

Με βάση την ιδιότητα της γραμμικότητας έχουμε:

$$Y_1(f) = Y_{11}(f) - Y_{12}(f) - Y_{13}(f) + Y_{14}(f)$$

•
$$y_2(t) = \frac{1}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-1)) - \frac{1}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-1)) - \frac{1}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-1)) - \frac{3}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-1)) - \frac{3}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-1)) - \frac{1}{300 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-1)) + \frac{3}{1250 \cdot \pi^2} + \frac{37 \cdot t}{70 \cdot \pi} + \frac{37}{210 \cdot \pi} =$$

$$= y_{21}(t) - y_{22}(t) - y_{23}(t) - y_{24}(t) - y_{25}(t) - y_{26}(t) + y_{27}(t) + y_{28}(t) + y_{29}(t) - y_{21}(t) = \frac{1}{25 \cdot \pi} \cdot f_2(t-1) \quad \text{ as } \quad f_0 = 25, \quad a = 1, \quad b = 2$$

$$\text{To } t - 1 \text{ upologication and this idstate this observed and this idstate this observed and this idstate this observed and this idstate this idstate$$

Το t-1 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=1.$

Οπότε
$$Y_{22}(f) = \frac{1}{7 \cdot \pi} \cdot F_1(f) \cdot e^{-j \cdot 2 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{22}(f) = \left[\frac{e^{-j \cdot 2 \cdot \pi \cdot (f-7)} - e^{-j \cdot 4 \cdot \pi \cdot (f-7)}}{j \cdot 28 \cdot \pi^2 \cdot (f-7)} + \frac{e^{-j \cdot 2 \cdot \pi \cdot (f+7)} - e^{-j \cdot 4 \cdot \pi \cdot (f+7)}}{j \cdot 28 \cdot \pi^2 \cdot (f+7)} \right] \cdot e^{-j \cdot 2 \cdot \pi \cdot f}$$

$$-y_{23}(t) = \frac{1}{30 \cdot \pi} \cdot f_1(t-1)$$
 $\mu \epsilon$ $f_0 = 15$, $a = 1$, $b = 2$

Το t-1 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=1.$

Οπότε
$$Y_{23}(f) = \frac{1}{30 \cdot \pi} \cdot F_1(f) \cdot e^{-j \cdot 2 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{23}(f) = \left[\frac{e^{-j \cdot 2 \cdot \pi \cdot (f-15)} - e^{-j \cdot 4 \cdot \pi \cdot (f-15)}}{j \cdot 120 \cdot \pi^2 \cdot (f-15)} + \frac{e^{-j \cdot 2 \cdot \pi \cdot (f+15)} - e^{-j \cdot 4 \cdot \pi \cdot (f+15)}}{j \cdot 120 \cdot \pi^2 \cdot (f+15)} \right] \cdot e^{-j \cdot 2 \cdot \pi \cdot f}$$

$$-y_{24}(t) = \frac{3}{1250 \cdot \pi^2} \cdot f_1(t-1)$$
 $\mu \epsilon$ $f_0 = 25$, $a = 1$, $b = 2$

Το t-1 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=1.$

Οπότε
$$Y_{24}(f) = \frac{3}{1250 \cdot \pi^2} \cdot F_1(f) \cdot e^{-j \cdot 2 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{24}(f) = \left[\frac{3 \cdot e^{-j \cdot 2 \cdot \pi \cdot (f - 25)} - 3 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f - 25)}}{j \cdot 5000 \cdot \pi^3 \cdot (f - 25)} + \frac{3 \cdot e^{-j \cdot 2 \cdot \pi \cdot (f + 25)} - 3 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f + 25)}}{j \cdot 5000 \cdot \pi^3 \cdot (f + 25)} \right] \cdot e^{-j \cdot 2 \cdot \pi \cdot f}$$

$$-y_{25}(t) = \frac{3}{98 \cdot \pi^2} \cdot f_2(t-1)$$
 $\mu \epsilon$ $f_0 = 7$, $a = 1$, $b = 2$

Το t-1 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=1.$

Οπότε
$$Y_{25}(f) = \frac{3}{98 \cdot \pi^2} \cdot F_2(f) \cdot e^{-j \cdot 2 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{25}(f) = \left[\frac{3 \cdot e^{-j \cdot 2 \cdot \pi \cdot (f+7)} - 3 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f+7)}}{392 \cdot \pi^3 \cdot (f+7)} - \frac{3 \cdot e^{-j \cdot 2 \cdot \pi \cdot (f-7)} - 3 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f-7)}}{392 \cdot \pi^3 \cdot (f-7)} \right] \cdot e^{-j \cdot 2 \cdot \pi \cdot f}$$

$$-y_{26}(t) = \frac{1}{300 \cdot \pi^2} \cdot f_2(t-1)$$
 $\mu \epsilon$ $f_0 = 15$, $a = 1$, $b = 2$

Το t-1 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=1.$

Οπότε
$$Y_{26}(f) = \frac{1}{300 \cdot \pi^2} \cdot F_2(f) \cdot e^{-j \cdot 2 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{26}(f) = \left[\frac{e^{-j \cdot 2 \cdot \pi \cdot (f+15)} - e^{-j \cdot 4 \cdot \pi \cdot (f+15)}}{1200 \cdot \pi^3 \cdot (f+15)} - \frac{e^{-j \cdot 2 \cdot \pi \cdot (f-15)} - e^{-j \cdot 4 \cdot \pi \cdot (f-15)}}{1200 \cdot \pi^3 \cdot (f-15)} \right] \cdot e^{-j \cdot 2 \cdot \pi \cdot f}$$

$$-y_{27}(t) = f_4(t) \quad \text{με} \quad c = \frac{3}{1250 \cdot \pi^2}, \quad a = 1, \quad b = 2$$
 Οπότε
$$Y_{27}(f) = \frac{3 \cdot e^{-j \cdot 2 \cdot \pi \cdot f} - 3 \cdot e^{-j \cdot 4 \cdot \pi \cdot f}}{j \cdot 1250 \cdot \pi^3 \cdot f}$$

$$-y_{28}(t) = f_5(t) \quad \text{με} \quad c = \frac{37}{70 \cdot \pi}, \quad a = 1, \quad b = 2$$

$$Oπότε \qquad Y_{28}(f) = \frac{37 \cdot e^{-j \cdot 2 \cdot \pi \cdot f} - 74 \cdot e^{-j \cdot 4 \cdot \pi \cdot f}}{j \cdot 140 \cdot \pi^2 \cdot f} + \frac{37 \cdot e^{-j \cdot 4 \cdot \pi \cdot f} - 37 \cdot e^{-j \cdot 2 \cdot \pi \cdot f}}{280 \cdot \pi^3 \cdot f^2}$$

$$-y_{29}(t) = f_4(t) \quad \text{με} \quad c = \frac{37}{105 \cdot \pi}, \quad a = 1, \quad b = 2$$

$$Oπότε \qquad Y_{29}(f) = \frac{37 \cdot e^{-j \cdot 2 \cdot \pi \cdot f} - 37 \cdot e^{-j \cdot 4 \cdot \pi \cdot f}}{j \cdot 105 \cdot \pi^2 \cdot f}$$

Με βάση την ιδιότητα της γραμμικότητας έχουμε:

$$Y_2(f) = Y_{21}(f) - Y_{22}(f) - Y_{23}(f) - Y_{24}(f) - Y_{25}(f) - Y_{26}(f) + Y_{27}(f) + Y_{28}(f) + Y_{29}(f)$$

•
$$y_3(t) = -\frac{5}{25 \cdot \pi} \cdot \sin(50 \cdot \pi \cdot (t-2)) + \frac{5}{7 \cdot \pi} \cdot \cos(14 \cdot \pi \cdot (t-2)) + \frac{5}{30 \cdot \pi} \cdot \cos(30 \cdot \pi \cdot (t-2)) + \frac{3}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-2)) + \frac{3}{1250 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-2)) + \frac{1}{300 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-2)) - \frac{3}{1250 \cdot \pi^2} - \frac{37 \cdot t}{70 \cdot \pi} + \frac{74}{105 \cdot \pi} = \frac{-y_{31}(t) + y_{32}(t) + y_{33}(t) + y_{34}(t) + y_{35}(t) + y_{36}(t) - y_{37}(t) - y_{38}(t) + y_{39}(t)}{1250 \cdot \pi^2}$$

$$-y_{31}(t) = \frac{5}{25.\pi} \cdot f_2(t-2)$$
 $\mu \epsilon$ $f_0 = 25$, $a = 2$, $b = 3$

Το t-2 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=2$.

Οπότε
$$Y_{32}(f) = \frac{5}{25 \cdot \pi} \cdot F_2(f) \cdot e^{-j \cdot 4 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{31}(f) = \left[\frac{5 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f+25)} - 5 \cdot e^{-j \cdot 6 \cdot \pi \cdot (f+25)}}{100 \cdot \pi^2 \cdot (f+25)} - \frac{5 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f-25)} - 5 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f-25)}}{100 \cdot \pi^2 \cdot (f-25)} \right] \cdot e^{-j \cdot 4 \cdot \pi \cdot f}$$

$$-y_{32}(t) = \frac{5}{7 \cdot \pi} \cdot f_1(t-2)$$
 $\mu \varepsilon$ $f_0 = 7$, $a = 2$, $b = 3$

Το t-2 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=2$.

Οπότε
$$Y_{32}(f) = \frac{5}{7 \cdot \pi} \cdot F_1(f) \cdot e^{-j \cdot 4 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{32}(f) = \left[\frac{5 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f-7)} - 5 \cdot e^{-j \cdot 6 \cdot \pi \cdot (f-7)}}{j \cdot 28 \cdot \pi^2 \cdot (f-7)} + \frac{5 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f+7)} - 5 \cdot e^{-j \cdot 6 \cdot \pi \cdot (f+7)}}{j \cdot 28 \cdot \pi^2 \cdot (f+7)} \right] \cdot e^{-j \cdot 4 \cdot \pi \cdot f}$$

$$-y_{33}(t) = \frac{5}{30 \cdot \pi} \cdot f_1(t-2)$$
 $\mu \epsilon$ $f_0 = 15$, $a = 2$, $b = 3$

Το t-2 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=2$.

Οπότε
$$Y_{33}(f) = \frac{5}{30 \cdot \pi} \cdot F_1(f) \cdot e^{-j \cdot 4 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{33}(f) = \left[\frac{5 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f-15)} - 5 \cdot e^{-j \cdot 6 \cdot \pi \cdot (f-15)}}{j \cdot 120 \cdot \pi^2 \cdot (f-15)} + \frac{5 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f+15)} - 5 \cdot e^{-j \cdot 6 \cdot \pi \cdot (f+15)}}{j \cdot 120 \cdot \pi^2 \cdot (f+15)} \right] \cdot e^{-j \cdot 4 \cdot \pi \cdot f}$$

$$-y_{34}(t) = \frac{3}{1250 \cdot \pi^2} \cdot f_1(t-2)$$
 $\mu \epsilon$ $f_0 = 25$, $a = 2$, $b = 3$

Το t-2 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=2$.

Οπότε
$$Y_{34}(f) = \frac{3}{1250 \cdot \pi^2} \cdot F_1(f) \cdot e^{-j \cdot 4 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{34}(f) = \left[\frac{3 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f-25)} - 3 \cdot e^{-j \cdot 6 \cdot \pi \cdot (f-25)}}{j \cdot 5000 \cdot \pi^3 \cdot (f-25)} + \frac{3 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f+25)} - 3 \cdot e^{-j \cdot 6 \cdot \pi \cdot (f+25)}}{j \cdot 5000 \cdot \pi^3 \cdot (f+25)} \right] \cdot e^{-j \cdot 4 \cdot \pi \cdot f}$$

$$-y_{35}(t) = \frac{3}{98 \cdot \pi^2} \cdot f_2(t-2)$$
 $\mu \epsilon$ $f_0 = 7$, $a = 2$, $b = 3$

Το t-2 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=2$.

Οπότε
$$Y_{35}(f) = \frac{3}{98 \cdot \pi^2} \cdot F_2(f) \cdot e^{-j \cdot 4 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{35}(f) = \left[\frac{3 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f+7)} - 3 \cdot e^{-j \cdot 6 \cdot \pi \cdot (f+7)}}{392 \cdot \pi^3 \cdot (f+7)} - \frac{3 \cdot e^{-j \cdot 4 \cdot \pi \cdot (f-7)} - 3 \cdot e^{-j \cdot 6 \cdot \pi \cdot (f-7)}}{392 \cdot \pi^3 \cdot (f-7)} \right] \cdot e^{-j \cdot 4 \cdot \pi \cdot f}$$

$$-y_{36}(t) = \frac{1}{300 \cdot \pi^2} \cdot f_2(t-2)$$
 $\mu \varepsilon$ $f_0 = 15$, $a = 2$, $b = 3$

Το t-2 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=2$.

Οπότε
$$Y_{36}(f) = \frac{1}{300 \cdot \pi^2} \cdot F_2(f) \cdot e^{-j \cdot 4 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{36}(f) = \left[\frac{e^{-j \cdot 4 \cdot \pi \cdot (f+15)} - e^{-j \cdot 6 \cdot \pi \cdot (f+15)}}{1200 \cdot \pi^3 \cdot (f+15)} - \frac{e^{-j \cdot 4 \cdot \pi \cdot (f-15)} - e^{-j \cdot 6 \cdot \pi \cdot (f-15)}}{1200 \cdot \pi^3 \cdot (f-15)} \right] \cdot e^{-j \cdot 4 \cdot \pi \cdot f}$$

$$-y_{37}(t) = f_4(t)$$
 µє $c = \frac{3}{1250 \cdot \pi^2}$, $a = 2$, $b = 3$

Οπότε
$$Y_{37}(f)=rac{3\cdot e^{-j\cdot 4\cdot \pi\cdot f}-3\cdot e^{-j\cdot 6\cdot \pi\cdot f}}{j\cdot 2500\cdot \pi^3\cdot f}$$

$$-y_{38}(t)=f_5(t) \quad \text{με} \quad c=rac{37}{70\cdot \pi}, \quad a=2, \quad b=3$$

$$-y_{39}(t) = f_4(t) \quad \text{με} \quad c = \frac{74}{105 \cdot \pi}, \quad a = 2, \quad b = 3$$
 Οπότε
$$Y_{39}(f) = \frac{74 \cdot e^{-j \cdot 4 \cdot \pi \cdot f} - 74 \cdot e^{-j \cdot 6 \cdot \pi \cdot f}}{j \cdot 210 \cdot \pi^2 \cdot f}$$

$$Y_3(f) = -Y_{31}(f) + Y_{32}(f) + Y_{33}(f) + Y_{34}(f) + Y_{35}(f) + Y_{36}(f) - Y_{37}(f) - Y_{38}(f) + Y_{39}(f)$$

Οπότε $Y_{38}(f) = \frac{37 \cdot e^{-j \cdot 4 \cdot \pi \cdot f} - 74 \cdot e^{-j \cdot 6 \cdot \pi \cdot f}}{j \cdot 140 \cdot \pi^2 \cdot f} + \frac{37 \cdot e^{-j \cdot 6 \cdot \pi \cdot f} - 37 \cdot e^{-j \cdot 4 \cdot \pi \cdot f}}{280 \cdot \pi^3 \cdot f^2}$

•
$$y_4(t) = -\frac{1}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-3)) - \frac{1}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-3)) - \frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-3)) + \frac{1}{1250 \cdot \pi^2} + \frac{37 \cdot t}{210 \cdot \pi} - \frac{37}{70 \cdot \pi} =$$

$$= -y_{41}(t) - y_{42}(t) - y_{43}(t) + y_{44}(t) + y_{45}(t) - y_{46}(t)$$

$$-y_{41}(t) = \frac{1}{1250 \cdot \pi^2} \cdot f_1(t-3)$$
 $\mu \varepsilon$ $f_0 = 25$, $a = 3$, $b = 4$

Το t-3 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=3$.

Οπότε
$$Y_{41}(f) = \frac{1}{1250 \cdot \pi^2} \cdot F_1(f) \cdot e^{-j \cdot 6 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{41}(f) = \left[\frac{e^{-j \cdot 6 \cdot \pi \cdot (f-25)} - e^{-j \cdot 8 \cdot \pi \cdot (f-25)}}{j \cdot 5000 \cdot \pi^3 \cdot (f-25)} + \frac{e^{-j \cdot 6 \cdot \pi \cdot (f+25)} - e^{-j \cdot 8 \cdot \pi \cdot (f+25)}}{j \cdot 5000 \cdot \pi^3 \cdot (f+25)} \right] \cdot e^{-j \cdot 6 \cdot \pi \cdot f}$$

$$-y_{42}(t) = \frac{1}{98 \cdot \pi^2} \cdot f_2(t-3)$$
 $\mu \varepsilon$ $f_0 = 7$, $a = 3$, $b = 4$

Το t-3 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=3$.

Οπότε
$$Y_{42}(f) = \frac{1}{98 \cdot \pi^2} \cdot F_2(f) \cdot e^{-j \cdot 6 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{42}(f) = \left[\frac{e^{-j \cdot 6 \cdot \pi \cdot (f+7)} - e^{-j \cdot 8 \cdot \pi \cdot (f+7)}}{392 \cdot \pi^3 \cdot (f+7)} - \frac{e^{-j \cdot 6 \cdot \pi \cdot (f-7)} - e^{-j \cdot 8 \cdot \pi \cdot (f-7)}}{392 \cdot \pi^3 \cdot (f-7)} \right] \cdot e^{-j \cdot 6 \cdot \pi \cdot f}$$

$$-y_{43}(t) = \frac{1}{900\pi^2} \cdot f_2(t-3)$$
 $\mu\epsilon$ $f_0 = 15$, $a = 3$, $b = 4$

Το t-3 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=3$.

Οπότε
$$Y_{43}(f) = \frac{1}{900 \cdot \pi^2} \cdot F_2(f) \cdot e^{-j \cdot 6 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{43}(f) = \left[\frac{e^{-j \cdot 6 \cdot \pi \cdot (f+15)} - e^{-j \cdot 8 \cdot \pi \cdot (f+15)}}{3600 \cdot \pi^3 \cdot (f+15)} - \frac{e^{-j \cdot 6 \cdot \pi \cdot (f-15)} - e^{-j \cdot 8 \cdot \pi \cdot (f-15)}}{3600 \cdot \pi^3 \cdot (f-15)} \right] \cdot e^{-j \cdot 6 \cdot \pi \cdot f}$$

$$-y_{44}(t) = f_4(t) \quad \text{με} \quad c = \frac{1}{1250 \cdot \pi^2}, \quad a = 3, \quad b = 4$$

$$Oπότε \quad Y_{44}(f) = \frac{e^{-j \cdot 6 \cdot \pi \cdot f} - e^{-j \cdot 8 \cdot \pi \cdot f}}{j \cdot 2500 \cdot \pi^3 \cdot f}$$

$$-y_{45}(t) = f_5(t) \quad \text{με} \quad c = \frac{37}{210 \cdot \pi}, \quad a = 3, \quad b = 4$$

$$Oπότε \quad Y_{45}(f) = \frac{37 \cdot e^{-j \cdot 6 \cdot \pi \cdot f} - 74 \cdot e^{-j \cdot 8 \cdot \pi \cdot f}}{j \cdot 420 \cdot \pi^2 \cdot f} + \frac{37 \cdot e^{-j \cdot 8 \cdot \pi \cdot f} - 37 \cdot e^{-j \cdot 6 \cdot \pi \cdot f}}{840 \cdot \pi^3 \cdot f^2}$$

$$-y_{46}(t) = f_4(t)$$
 με $c = \frac{37}{70 \cdot \pi}$, $a = 3$, $b = 4$
Οπότε $Y_{46}(f) = \frac{37 \cdot e^{-j \cdot 6 \cdot \pi \cdot f} - 37 \cdot e^{-j \cdot 8 \cdot \pi \cdot f}}{j \cdot 140 \cdot \pi^2 \cdot f}$

$$Y_4(f) = -Y_{41}(f) - Y_{42}(f) - Y_{43}(f) + Y_{44}(f) + Y_{45}(f) - Y_{46}(f)$$

•
$$y_5(t) = -\frac{1}{625 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-4)) - \frac{1}{49 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-4)) - \frac{1}{450 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-4)) + \frac{1}{625 \cdot \pi^2} + \frac{37 \cdot t}{105 \cdot \pi} - \frac{37}{70 \cdot \pi} = -y_{51}(t) - y_{52}(t) - y_{53}(t) + y_{54}(t) + y_{55}(t) - y_{56}(t)$$

$$-y_{51}(t) = \frac{1}{625 \cdot \pi^2} \cdot f_1(t-4)$$
 $\mu \epsilon$ $f_0 = 25$, $a = 4$, $b = 5$

Το t-4 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=4$.

Οπότε
$$Y_{51}(f) = \frac{1}{625 \cdot \pi^2} \cdot F_1(f) \cdot e^{-j \cdot 8 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{51}(f) = \left[\frac{e^{-j \cdot 8 \cdot \pi \cdot (f - 25)} - e^{-j \cdot 10 \cdot \pi \cdot (f - 25)}}{j \cdot 2500 \cdot \pi^3 \cdot (f - 25)} + \frac{e^{-j \cdot 8 \cdot \pi \cdot (f + 25)} - e^{-j \cdot 10 \cdot \pi \cdot (f + 25)}}{j \cdot 2500 \cdot \pi^3 \cdot (f + 25)} \right] \cdot e^{-j \cdot 8 \cdot \pi \cdot f}$$

$$-y_{52}(t) = \frac{1}{49 \cdot \pi^2} \cdot f_2(t-4)$$
 $\mu \epsilon$ $f_0 = 7$, $a = 4$, $b = 5$

Το t-4 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=4$.

Οπότε
$$Y_{52}(f) = \frac{1}{49 \cdot \pi^2} \cdot F_2(f) \cdot e^{-j \cdot 8 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{52}(f) = \left[\frac{e^{-j \cdot 8 \cdot \pi \cdot (f+7)} - e^{-j \cdot 10 \cdot \pi \cdot (f+7)}}{196 \cdot \pi^3 \cdot (f+7)} - \frac{e^{-j \cdot 8 \cdot \pi \cdot (f-7)} - e^{-j \cdot 10 \cdot \pi \cdot (f-7)}}{196 \cdot \pi^3 \cdot (f-7)} \right] \cdot e^{-j \cdot 8 \cdot \pi \cdot f}$$

$$-y_{53}(t) = \frac{1}{450 \cdot \pi^2} \cdot f_2(t-4)$$
 $\mu \epsilon$ $f_0 = 15$, $a = 4$, $b = 5$

Το t-4 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο

$$με t_0 = 4.$$

Οπότε
$$Y_{53}(f) = \frac{1}{450 \cdot \pi^2} \cdot F_2(f) \cdot e^{-j \cdot 8 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{53}(f) = \left[\frac{e^{-j \cdot 8 \cdot \pi \cdot (f+15)} - e^{-j \cdot 10 \cdot \pi \cdot (f+15)}}{1800 \cdot \pi^3 \cdot (f+15)} - \frac{e^{-j \cdot 8 \cdot \pi \cdot (f-15)} - e^{-j \cdot 10 \cdot \pi \cdot (f-15)}}{1800 \cdot \pi^3 \cdot (f-15)} \right] \cdot e^{-j \cdot 8 \cdot \pi \cdot f}$$

$$-y_{54}(t)=f_4(t)$$
 με $c=rac{1}{625\cdot\pi^2},$ $a=4,$ $b=5$
Οπότε $Y_{54}(f)=rac{e^{-j\cdot 8\cdot\pi\cdot f}-e^{-j\cdot 10\cdot\pi\cdot f}}{j\cdot 1250\cdot\pi^3\cdot f}$

$$-y_{55}(t) = f_5(t) \quad \text{με} \quad c = \frac{37}{105 \cdot \pi}, \quad a = 4, \quad b = 5$$

$$Oπότε \quad Y_{55}(f) = \frac{37 \cdot e^{-j \cdot 8 \cdot \pi \cdot f} - 74 \cdot e^{-j \cdot 10 \cdot \pi \cdot f}}{j \cdot 210 \cdot \pi^2 \cdot f} + \frac{37 \cdot e^{-j \cdot 10 \cdot \pi \cdot f} - 37 \cdot e^{-j \cdot 8 \cdot \pi \cdot f}}{420 \cdot \pi^3 \cdot f^2}$$

$$- y_{56}(t) = f_4(t) \quad \text{με} \quad c = \frac{37}{70 \cdot \pi}, \quad a = 4, \quad b = 5$$
Οπότε
$$Y_{56}(f) = \frac{37 \cdot e^{-j \cdot 8 \cdot \pi \cdot f} - 37 \cdot e^{-j \cdot 10 \cdot \pi \cdot f}}{j \cdot 140 \cdot \pi^2 \cdot f}$$

$$Y_5(f) = -Y_{51}(f) - Y_{52}(f) - Y_{53}(f) + Y_{54}(f) + Y_{55}(f) - Y_{56}(f)$$

•
$$y_6(t) = -\frac{1}{1250 \cdot \pi^2} \cdot \cos(50 \cdot \pi \cdot (t-5)) - \frac{1}{98 \cdot \pi^2} \cdot \sin(14 \cdot \pi \cdot (t-5)) - \frac{1}{900 \cdot \pi^2} \cdot \sin(30 \cdot \pi \cdot (t-5)) + \frac{1}{1250 \cdot \pi^2} + \frac{37 \cdot t}{210 \cdot \pi} - \frac{111}{105 \cdot \pi} =$$

$$= -y_{61}(t) - y_{62}(t) - y_{63}(t) + y_{64}(t) + y_{65}(t) - y_{66}(t)$$

Επειδή το x(t) έχει Δt =1, ο μετασχηματισμός Fourier θα γίνει στο διάστημα [5,6]

$$-y_{61}(t) = \frac{1}{1250 \cdot \pi^2} \cdot f_1(t-5)$$
 $\mu \varepsilon$ $f_0 = 25$, $a = 5$, $b = 6$

Το t-5 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=5$.

Οπότε
$$Y_{61}(f) = \frac{1}{1250 \cdot \pi^2} \cdot F_1(f) \cdot e^{-j \cdot 10 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{61}(f) = \left[\frac{e^{-j \cdot 10 \cdot \pi \cdot (f-25)} - e^{-j \cdot 12 \cdot \pi \cdot (f-25)}}{j \cdot 5000 \cdot \pi^3 \cdot (f-25)} + \frac{e^{-j \cdot 10 \cdot \pi \cdot (f+25)} - e^{-j \cdot 12 \cdot \pi \cdot (f+25)}}{j \cdot 5000 \cdot \pi^3 \cdot (f+25)} \right] \cdot e^{-j \cdot 10 \cdot \pi \cdot f}$$

$$-y_{62}(t) = \frac{1}{98 \cdot \pi^2} \cdot f_2(t-5)$$
 $\mu \varepsilon$ $f_0 = 7$, $a = 5$, $b = 6$

Το t-5 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=5$.

Οπότε
$$Y_{62}(f) = \frac{1}{98 \cdot \pi^2} \cdot F_2(f) \cdot e^{-j \cdot 10 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{62}(f) = \left[\frac{e^{-j \cdot 10 \cdot \pi \cdot (f+7)} - e^{-j \cdot 12 \cdot \pi \cdot (f+7)}}{392 \cdot \pi^3 \cdot (f+7)} - \frac{e^{-j \cdot 10 \cdot \pi \cdot (f-7)} - e^{-j \cdot 12 \cdot \pi \cdot (f-7)}}{392 \cdot \pi^3 \cdot (f-7)} \right] \cdot e^{-j \cdot 10 \cdot \pi \cdot f}$$

$$-y_{63}(t) = \frac{1}{900 \cdot \pi^2} \cdot f_2(t-5)$$
 $\mu \epsilon$ $f_0 = 15$, $a = 5$, $b = 6$

Το t-5 υπολογίζεται από την ιδιότητα της ολίσθησης στον χρόνο με $t_0=5$.

Οπότε
$$Y_{63}(f) = \frac{1}{900 \cdot \pi^2} \cdot F_2(f) \cdot e^{-j \cdot 10 \cdot \pi \cdot f} \Leftrightarrow$$

$$Y_{63}(f) = \left[\frac{e^{-j \cdot 10 \cdot \pi \cdot (f+15)} - e^{-j \cdot 12 \cdot \pi \cdot (f+15)}}{3600 \cdot \pi^3 \cdot (f+15)} - \frac{e^{-j \cdot 10 \cdot \pi \cdot (f-15)} - e^{-j \cdot 12 \cdot \pi \cdot (f-15)}}{3600 \cdot \pi^3 \cdot (f-15)} \right] \cdot e^{-j \cdot 10 \cdot \pi \cdot f}$$

$$-y_{64}(t)=f_4(t) \quad \text{με} \quad c=\frac{1}{1250\cdot\pi^2}, \quad a=5, \quad b=6$$
 Οπότε
$$Y_{64}(f)=\frac{e^{-j\cdot 10\cdot\pi\cdot f}-e^{-j\cdot 12\cdot\pi\cdot f}}{j\cdot 2500\cdot\pi^3\cdot f}$$

$$-y_{65}(t) = f_5(t)$$
 $\mu \epsilon$ $c = \frac{37}{210 \cdot \pi}$, $a = 5$, $b = 6$

Οπότε
$$Y_{65}(f) = \frac{37 \cdot e^{-j \cdot 10 \cdot \pi \cdot f} - 74 \cdot e^{-j \cdot 12 \cdot \pi \cdot f}}{j \cdot 420 \cdot \pi^2 \cdot f} + \frac{37 \cdot e^{-j \cdot 12 \cdot \pi \cdot f} - 37 \cdot e^{-j \cdot 10 \cdot \pi \cdot f}}{840 \cdot \pi^3 \cdot f^2}$$

$$-y_{66}(t) = f_4(t) \quad \text{με} \quad c = \frac{111}{105 \cdot \pi}, \quad a = 5, \quad b = 6$$
 Οπότε
$$Y_{66}(f) = \frac{111 \cdot e^{-j \cdot 10 \cdot \pi \cdot f} - 111 \cdot e^{-j \cdot 12 \cdot \pi \cdot f}}{j \cdot 420 \cdot \pi^2 \cdot f}$$

$$Y_6(f) = -Y_{61}(f) - Y_{62}(f) - Y_{63}(f) + Y_{64}(f) + Y_{65}(f) - Y_{66}(f)$$

5 Σχεδιασμός σημάτων $H(f),\,X(f)$ και Y(f)

5.1 Σχεδίαση X(f)

Figure 13: X(f)

$\mathbf{5.2}$ Σχεδίαση H(f)

Η συνάρτηση H(f) φαίνεται στην εικόνα που ακολουθεί

Figure 14: H(f)

$\mathbf{5.3}$ Σχεδίαση Y(f)

Η συνάρτηση Y(f) φαίνεται στην εικόνα που ακολουθεί

Figure 15: Y(f)

6 Τεκμηρίωση αν τα σήματα x(t), h(t) και y(t) είναι σήματα ενέργειας ή ισχύος

Ένα σήμα δεν μπορεί να είναι και σήμα ενέργειας και σήμα ισχύος, μπορεί όμως να μην είνια τίποτα από τα 2. Έχοντας αυτό υπόψη, για να εξακριβώσουμε αν τα σήματα είναι ενέργειας ή ισχύος θα ξεκινήσουμε υπολογίζοντας την ενέργεια του. Αν η ενέργεια του είναι πεπερασμένη τότε είναι σήμα ενέργιας. Αν όμως η ενέργεια του απειρίζεται, τότε θα πρέπει να υπολογίζουμε την ισχύ του. Έτσι αν η ισχύς του είναι πεπερασμένη, τότε θα είναι σήμα ισχύος, ενώ αν απειρίζεται, τότε δεν θα είναι τίποτα από τα 2. Οι τύποι για τον υπολογισμό της ενέργειας και τις ισχύς σε συνεχή σήματα είναι οι εξής:

$$extbf{Tύπος Ενέργειας:}$$
 $E_s = \int_{-\infty}^{\infty} \left| s(t) \right|^2 dt$

Τύπος Ισχύος:
$$P_s = \lim_{T \to \infty} \frac{1}{2 \cdot T} \cdot \int_{-n--T}^T \left| s(t) \right|^2 dt$$

$6.1 \quad x(t)$

$$\begin{aligned} \left| x(t) \right|^2 &= 4 \cdot \cos^2(50 \cdot \pi \cdot t) + 4 \cdot \sin^2(14 \cdot \pi \cdot t) + \sin^2(30 \cdot \pi \cdot t) + \\ &+ 8 \cdot \cos(50 \cdot \pi \cdot t) \cdot \sin(14 \cdot \pi \cdot t) + 4 \cdot \sin(14 \cdot \pi \cdot t) \cdot \sin(30 \cdot \pi \cdot t) + \\ &+ 4 \cdot \sin(30 \cdot \pi \cdot t) \cdot \cos(50 \cdot \pi \cdot t) \end{aligned}$$

Για να υπολογίσουμε το ολοχλήρωμα θα πρέπει να απλοποιήσουμε τους όρους χρησιμοποιώντας τριγωνομετριχούς τύπους γινομένου σε άθροισμα. Οι τύποι αυτοί είναι:

$$\begin{cases} sin(a) \cdot sin(b) = \frac{1}{2} \cdot \left[cos(a-b) - cos(a+b) \right] \\ cos(a) \cdot cos(b) = \frac{1}{2} \cdot \left[cos(a-b) + cos(a+b) \right] \\ sin(a) \cdot cos(b) = \frac{1}{2} \cdot \left[sin(a+b) + sin(a-b) \right] \\ cos(a) \cdot sin(b) = \frac{1}{2} \cdot \left[sin(a+b) - sin(a-b) \right] \end{cases}$$

Άρα έχουμε:

$$\begin{split} \left| x(t) \right|^2 &= 2 + 2 \cdot \cos(100 \cdot \pi \cdot t) + 2 - 2 \cdot \cos(28 \cdot \pi \cdot t) + \frac{1}{2} - \frac{1}{2} \cdot \cos(60 \cdot \pi \cdot t) + \\ &+ 4 \cdot \sin(64 \cdot \pi \cdot t) + 4 \cdot \sin(36 \cdot \pi \cdot t) + 2 \cdot \cos(16 \cdot \pi \cdot t) - 2 \cdot \cos(44 \cdot \pi \cdot t) + \\ &+ 2 \cdot \sin(80 \cdot \pi \cdot t) - 2 \cdot \sin(20 \cdot \pi \cdot t) \end{split}$$

Τα όρια του ολοκληρώματος που θα υπολογίσουμε είναι [0,1]. Έχοντας αυτό

υπόψη και ότι η συνάρτηση αποτελείται από ημίτονα, συνημίτονα και σταθερούς όρους, καθώς και ότι η γωνίες των ημιτόνων και συνημιτόνων στο διάστημα ολοκλήρωσης [0,1] βγαίνει άρτιο πολλαπλάσιο του π, μπορούμε με ευκολία να αποδείξουμε ότι οι τριγωνομετρικοί όροι μετά την ολοκλήρωση μηδενίζονται.

$$\int_0^1 2 \cdot \cos(a \cdot \pi \cdot t) \, dt = \frac{\sin(a \cdot \pi \cdot t)}{a \cdot \pi} \Big|_0^1 = \frac{\sin(a \cdot \pi) - 0}{a \cdot \pi} = 0, \text{ gia a=2,4,6...}$$

Όμοια

$$\int_0^1 2 \cdot \sin(a \cdot \pi \cdot t) \, dt = \left. \frac{\cos(a \cdot \pi \cdot t)}{a \cdot \pi} \right|_0^1 = \left. \frac{\cos(a \cdot \pi) - 1}{a \cdot \pi} = 0, \text{ gia a=2,4,6...} \right.$$

Οπότε έχουμε:

$$E_x = \int_0^1 |x(t)|^2 dt = \left[2 \cdot t + 2 \cdot t + \frac{1}{2} \cdot t\right]_0^1 = 4,5$$

Άρα το $\mathbf{x}(\mathbf{t})$ είνια σήμα ενέργειας.

6.2 h(t)

$$|h(t)|^{2} = \begin{cases} 1, & 0 \le t \le 1\\ 9 \cdot t^{2} - 6 \cdot t + 1, & 1 \le t \le 2\\ 0, & 2 < t \le 3\\ t^{2} - 6 \cdot t + 9, & 3 < t \le 4\\ t^{2} - 10 \cdot t + 25, & 4 < t \le 5\\ 0, & t > 5 \end{cases}$$

$$E_h = \int_0^5 h(t) dt = \int_0^1 1 dt + \int_1^2 (9 \cdot t^2 - 6 \cdot t + 1) dt + \int_2^3 0 dt + \int_3^4 (t^2 - 6 \cdot t + 9) dt + \int_4^5 (t^2 - 10 \cdot t + 25) dt =$$

$$=t\Big|_0^1+\Big[3\cdot t^3-3\cdot t^2+t\Big]_1^2+\Big[\tfrac{t^3}{3}t^3-3\cdot t^2+9\cdot t\Big]_3^4+\Big[\tfrac{t^3}{3}t^3-5\cdot t^2+25\cdot t\Big]_4^5=\\=\ldots=\tfrac{44}{3}$$

Άρα το h(t) είναι σήμα ενέργειας

6.3 y(t)

Εφαρμόζοντας την ίδια λογική που εφαρμόσαμε για τον υπολογισμό της ενέργειας του x(t), οι τριγωνομετρικοί όροι μηδενίζονται και στο ολοκλήρωμα μένουν μόνο οι υπόλοιποι όροι. Αφού το ολοκλήρωμα υπολογίζεται στο διάστημα [0,6] και αφού η μεταβλητή t δεν προκύπτει σε κάποιον παρονομαστή ώστε να υπάρχει πιθανότητα απειρισμού κάποιου όρου, η ενέργεια είναι πεπερασμένη και άρα το σήμα y(t) είναι σήμα ενέργειας.

7 Επίλυση των ερωτημάτων 1,3,5 στο Gnu-Radio και σύγκριση

7.1 Ερώτημα 1

7.1.1 Σήμα x(t)

Figure 16: x(t) - GnuRadio

7.1.2 Σήμα h(t)

Figure 17: h(t) - GnuRadio

7.2 Ερώτημα 3

7.2.1 Σήμα y(t)

Figure 18: y(t) - GnuRadio

7.3 Ερώτημα 5

7.3.1 Σήμα X(f)

Figure 19: X(f) - GnuRadio

7.3.2 Σήμα H(f)

Figure 20: H(f) - GnuRadio

7.3.3 Σήμα Y(f)

Figure 21: Y(f) - GnuRadio

7.4 Παρατηρήσεις

Παρατηρώ πως στην σχεδίαση των σημάτων x(t), h(t), y(t) δεν υπάρχουν διαφορές ανάμεσα στην θεωρεία και στην υλοποίηση στο Gnuradio. Βέβαια αυτό δεν ισχυεί στα σήματα X(f), H(f), Y(f) τα οποία έχουν εμφανείς διαφορές. Οι διαφορές αυτές μπορεί να οφείλονται στον τρόπο με τον οποίο γίνετε αναπαράσταση των σημάτων στον Gnuradio, καθώς παρατηρώ πως τα διαγράμματα του Gnuradio έχουν στο κατακόρυφο άξονα decibel, σε αντίθεση με τα δικά μου.