10.3: Effects of Temperature, Concentration, and Catalysts on Reaction Rates

Learning Outcomes

• Describe how temperatures, concentration of reactant, and a catalyst affect the reaction rate.

By their nature, some reactions occur very quickly, while others are very slow. However, certain changes in the reaction conditions can have an effect on the rate of a given chemical reaction. Collision theory can be utilized to explain these rate effects.

Concentration

Increasing the concentration of one or more of the reacting substances generally increases the reaction rate. When more particles are present in a given amount of space, a greater number of collisions will naturally occur between those particles. Since the rate of a reaction is dependent on the frequency of collisions between the reactants, the rate increases as the concentration increases.

Temperature

Raising the temperature of a chemical reaction results in a higher reaction rate. When the reactant particles are heated, they move faster and faster, resulting in a greater frequency of collisions. An even more important effect of the temperature increase is that the collisions occur with a greater force, which means the reactants are more likely to surmount the activation energy barrier and go on to form products. Increasing the temperature of a reaction increases not only the frequency of collisions, but also the percentage of those collisions that are effective, resulting in an increased reaction rate.

Paper is certainly a highly combustible material, but paper does not burn at room temperature because the activation energy for the reaction is too high. The vast majority of collisions between oxygen molecules and the paper are ineffective. However, when the paper is heated by the flame from a match, it reaches a point where the molecules now have enough energy to react. The reaction is very exothermic, so the heat released by the initial reaction will provide enough energy to allow the reaction to continue, even if the match is removed. The paper continues to burn rapidly until it is gone.

Catalysts

The rates of some chemical reactions can be increased dramatically by introducing certain other substances into the reaction mixture. Hydrogen peroxide is used as a disinfectant for scrapes and cuts, and it can be found in many medicine cabinets as a 3% aqueous solution. Hydrogen peroxide naturally decomposes to produce water and oxygen gas, but the reaction is very slow. A bottle of hydrogen peroxide will last for several years before it needs to be replaced. However, the addition of just a small amount of manganese (IV) oxide to hydrogen peroxide will cause it to decompose completely in just a matter of minutes. A **catalyst** is a substance that increases the rate of a chemical reaction without being used up in the reaction. It accomplishes this task by providing an alternate reaction pathway that has a lower activation energy barrier. After the reaction occurs, a catalyst returns to its original state, so catalysts can be used over and over again. Because it is neither a reactant nor a product, a catalyst is shown in a chemical equation by being written above the yield arrow.

$$2\mathrm{H_{2}O_{2}}\left(aq\right)\overset{\mathrm{MnO_{2}}}{\rightarrow}2\mathrm{H_{2}O}\left(l\right)+\mathrm{O_{2}}\left(g\right)\tag{10.3.1}$$

A catalyst works by changing the mechanism of the reaction, which can be though of as the specific set of smaller steps by which the reactants become products. The important point is that the use of a catalyst lowers the overall activation energy of the reaction (see figure below). With a lower activation energy barrier, a greater percentage of reactant molecules are able to have effective collisions, and the reaction rate increases.

Figure 10.3.7: The addition of a catalyst to a reaction lowers the activation energy, increasing the rate of the reaction. The activation energy of the uncatalyzed reaction is shown by E_a . The heat of reaction (ΔH) is unchanged by the presence of the catalyst.

Catalysts are extremely important parts of many chemical reactions. Enzymes in your body act as nature's catalysts, allowing important biochemical reactions to occur at reasonable rates. Chemical companies constantly search for new and better catalysts to make reactions go faster and thus make the company more profitable.

10.3: Effects of Temperature, Concentration, and Catalysts on Reaction Rates is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by LibreTexts.