CS 225 Switching Theory

Dr. Somanath Tripathy
Indian Institute of Technology Patna

This Class

Combinational Circuit logic design

Priority Encoders

Priority encoder: n input lines and log_2 n output lines

- Input lines represent units that may request service
- When inputs p_i and p_j , such that i > j, request service simultaneously, line p_i has priority over line p_i $_{Enable}$
- Encoder produces a binary output code indicating which of the input lines requesting service has the highest priority

Example: Eight-input, three-output priority encoder

(a) Block diagram.

		Outputs								
p_0	p_1	p_2	p_3	p_4	p_5	p_6	p_7	Z_4	\boldsymbol{z}_2	Z_1
1	0	0	0	0	0	0	0	0	0	0
φ	1	0	0	0	0	0	0	0	0	1
φ	ϕ	1	0	0	0	0	0	0	1	0
φ	ϕ	ϕ	1	0	0	0	0	0	1	1
φ	ϕ	ϕ	ϕ	1	0	0	0	1	0	0
φ	ϕ	ϕ	ϕ	ϕ	1	0	0	1	0	1
φ	ϕ	ϕ	ϕ	ϕ	ϕ	1	0	1	1	0
φ	ϕ	ϕ	ϕ	ϕ	ϕ	ϕ	1	1	1	1

(b) Truth table.

$$z_4 = p_4 p_5' p_6' p_7' + p_5 p_6' p_7' + p_6 p_7' + p_7 = p_4 + p_5 + p_6 + p_7$$

$$z_2 = p_2 p_3' p_4' p_5' p_6' p_7' + p_3 p_4' p_5' p_6' p_7' + p_6 p_7' + p_7 = p_2 p_4' p_5' + p_3 p_4' p_5' + p_6 + p_7$$

$$z_1 = p_1 p_2' p_3' p_4' p_5' p_6' p_7' + p_3 p_4' p_5' p_6' p_7' + p_5 p_6' p_7' + p_7 = p_1 p_2' p_4' p_6' + p_3 p_4' p_6' + p_5 p_6' + p_7$$

Priority Encoders (Contd.)

(c) Logic diagram.

Decoders

Decoders with n inputs and 2^n outputs: for any input combination, only one output is 1

Useful for:

- Routing input data to a specified output line, e.g., in addressing memory
- Basic building blocks for implementing arbitrary switching functions
- Code conversion
- Data distribution

Example: 2-to-4- decoder

Decoders (Contd.)

Example: 4-to-16 decoder made of two 2-to-4 decoders and a gate-switching matrix

Decimal Decoder

BCD-to-decimal: 4-to-16 decoder made of two 2-to-4 decoders and a gate-switching matrix

Implementing Arbitrary Switching Functions

Example: Realize a distinct minterm at each output

$$f = \Sigma(1,5,9,15)$$

Demultiplexers

Demultiplexers: decoder with 1 data input and n address inputs

Directs input to any one of the 2ⁿ outputs

Example: A 4-output demultiplexer

BCD to 7-Segment Converter

Seven-segment Display

Seven-segment display: BCD to seven-segment decoder and seven LEDs

Seven-segment pattern and code:

Decimal Digit	BCD code				Seven-segment code									
	x1	x2	х3	х4	Α	В	С	D	Е	F	G			
1	0	0	0	1	0	1	1	0	0	0	0	f	ì	
2	0	0	1	0	1	1	0	1	1	0	1	Œ	i	
3	0	0	1	1	1	1	1	1	0	0	1		ì	
4	0	1	0	0	0	1	1	0	0	1	1	С	j	ē
5	0	1	0	1	1	0	1	1	0	1	1	C	D	
6	0	1	1	0	0	0	1	1	1	1	1		3	$\overline{}$
7	0	1	1	1	1	1	1	0	0	0	0		1	C
8	1	0	0	0	1	1	1	1	1	1	1	Œ	3	ō
9	1	0	0	1	1	1	1	0	0	1	1	С	3	C
0	0	0	0	0	1	1	1	1	1	1	0		J	

$$A = x_1 + x_2'x_4' + x_2x_4 + x_3x_4$$

$$B = x_2' + x_3'x_4' + x_3x_4$$

$$C = x_2 + x_3' + x_4$$

$$D = x_2'x_4' + x_2'x_3 + x_3x_4' + x_2x_3'x_4$$

$$E = x_2'x_4' + x_3x_4'$$

$$F = x_1 + x_2x_3' + x_2x_4' + x_3'x_4'$$

$$G = x_1 + x_2'x_3 + x_2x_3' + x_3x_4'$$

NAND/NOR Circuits

Switching algebra: not directly applicable to NAND/NOR logic

NAND and NOR gate symbols

Analysis of NAND/NOR Networks

Example: circles (inversions) at both ends of a line cancel each other

(b) Logically equivalent AND-OR circuit.

Synthesis of NAND/NOR Networks

Example: Realize T = w(y+z) + xy'z'

(a) First realization.

(b) Realization with two-input gates.

Design of High-speed Adders

Full adder: performs binary addition of three binary digits

- Inputs: arguments A and B and carry-in C
- Outputs: sum S and carry-out C_0

Example:

Truth table, block diagram and expressions:

Α	В	С	S	C0
0	0	0	0	0
0	0	1	1	0
0	1	1	0	1
0	1	0		0
1	1	0	0	1
1	1	1	1	1
1	1	1	0	1
1	0	0	1	0

$$S = A'B'C + A'BC' + AB'C' + ABC$$

$$= A \oplus B \oplus C$$

$$C_0 = A'BC + ABC' + AB'C + ABC$$

$$= AB + AC + BC$$

(b) Block diagram.

Ripple-carry Adder

Ripple-carry adder: Stages of full adders

- C_f : forced carry
- $C_0(n-1)$: overflow carry

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{0i} = A_i B_i + A_i C_i + B_i C_i$$

Time required:

- Time per full adder: 2 units
- Time for ripple-carry adder: 2n units

Carry Propagation & Delay

- One problem with the addition of binary numbers is the length of time to propagate the ripple carry from the least significant bit to the most significant bit.
- The gate-level propagation path for a 4-bit ripple carry adder of the last example:

• Note: The "long path" is from A_0 or B_0 though the circuit to S_3 .

Carry Lookahead

- Given Stage i from a Full Adder, we know that there will be a <u>carry generated</u> when $A_i = B_i = "1"$, whether or not there is a carry-in.
- Alternately, there will be a <u>carry propagated</u> if the "half-sum" is "1" and a carry-in, C_i occurs.
- These two signal conditions are called generate, denoted as G_i , and propagate, denoted as P_i respectively and are identified in the circuit:

Carry Lookahead (continued)

- In the ripple carry adder:
 - o Gi, Pi, and Si are local to each cell of the adder
 - Ci is also local each cell
- In the carry lookahead adder, in order to reduce the length of the carry chain, C_i is changed to a more global function spanning multiple cells
- Defining the equations for the Full Adder in term of the P_i and G_i :

$$S_i = P_i \oplus C_i \qquad C_{i+1} = G_i + P_i C_i$$

$$P_i = A_i \oplus B_i \qquad G_i = A_i B_i$$

Example - 4-bit Adder

```
c_1 = G_0 + c_0 P_0,
c_2 = G_1 + G_0 P_1 + c_0 P_0 P_1,
c_3 = G_2 + G_1 P_2 + G_0 P_1 P_2 + c_0 P_0 P_1 P_2,
c_4 = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + c_0 P_0 P_1 P_2 P_3
```

A carry lookahead generator.

A carry lookahead Adder

Thanks

Q3 on next week

Mid Sem is as schedule

Wish you all have a Good Exam