"Per aspera ad astra..."

Contents

	Intr	oduction	3
1	Intr	oduction to the stars in high energy	4
	1.1	Motivation	5
	1.2	Observations	6
		1.2.1 Optical and IR	6
		1.2.2 X-ray	7
		1.2.3 Gamma ray	7
2	Whi	ite Dwarfs	8
3	Cata	aclysmic variable stars	9
	3.1	Non magnetic cataclysmic variables	9
	3.2	Magnetic cataclysmic variables	9
		3.2.1 Polars	9
		3.2.2 Intermediate polars	9
	3.3	Galactic population of cataclysmic variables	9
	3.4	Others important creatures	9
	3.5	GXRE	9
4	Mod	lel of post shock region	10
	4.1	Breaking radiation	10
		4.1.1 Bremsstrahlung	10
		4.1.2 Thermal bremsstrahlung	10
	4.2	Synchrotron radiation	10
	4.3	Post shock region	10
	4.4	WD mass estimations methods	10

5	Data analysis	11
	5.1 INTEGRAL	11
	5.2 XMM-Newton	11
	5.3 Results	11
	5.4 Discussion	11
6	Conclusions	13
	Bibliography	15
	Apendix	16

Introduction to the stars in high energy

Let your imagination soar. By sitting on the old rocker looking at the sky with couple of good old whiskey you can easily start thinking about the universe. You are looking at a heck of a different kinds of cosmic objects, but suddenly you see almost only the stars. Almost all the shiny dots on the sky are stars and these stars are only the closest ones. Yes, you can see few other galaxies by naked eye¹, but none of the exotic cosmic objects you are imaging about. They are too faint to be observed easily, because they are not only far, far away, but also usually shines on different wavelengths, not visible by human eye.

Think about distances in the universe. One of the most accurate explanation is that from: Adams (1979) "Space," it says, "is big. Really big. You just won't believe how vastly, hugely, mindbogglingly big it is. I mean, you may think it's a long way down the road to the chemist's, but that's just peanuts to space..."

Consider this, sometimes you want to study processes in these extreme, very faint objects, but they are too faint and too far in the universe. You are looking for "laboratory" with similar processes, but located mutch closer to the observer. The X-ray binary stars can be this kind of laboratories.

There is, off-course, many interesting phenomena which could be studied in X-ray binaries or in non-binary X-ray stars. Several of them are mentioned in motivation section.

I am mentioning many interesting thinks in this work, but main effort is taken to study post shock region in Intermediate Polars.

¹M31 and M33 in extremely good conditions on northern hemisphere and Magellanic clouds on southern one

1.1 Motivation

We easily find many reasons why to study stars in high energy bands. We can consider the direct and the most common scientific applications like observations of the supernovae, black holes & neutron stars in X-ray binaries. But for education purposes I am preferring several others, very nice examples closer to topic of this work.

• Relativistic jet phenomena: like it was proposed by Mirabel (2002) that universal mechanism should be at work in all the relativistic jet sources in the universe. Better understanding of sources as: microblazars, AGNs and gamma-ray burst will helps to gain more comprehensive understanding of this phenomena. Microblazars can play role of "space laboratories", where interesting processes last on different timescales as in the case with AGNs or GRBs.

Figure 1.1: NOT in scale diagram, showing curent ideas of micro-quasars, AGNs and gamma-ray bursts as space objects driven by same, universal mechanism Mirabel (2002).

Galactic ridge X-ray emission (GRXE): various physical processes contribute to brightness of GRXE in different bands, but several studies in 3-20 keV provide evidence that diffuse X-ray radiation is originate from huge number of stellar X-ray sources, mostly coronally active stars and white dwarf X-ray binaries. In particular for the energies over 20 keV to 200 keV

is spectrum very similar to spectrum of magnetic white dwarf binaries – e.g. Intermediate polars (IP) and polars (P). Krivonos et al. (2007)

• White dwarfs masses in Intermediate Polars (IP): as was proposed in Rothschild et al. (1981), the temperature of the post shock region (PSR) depends on WD mass. Therefor the X-ray spectrum can be used for WD mass determination Suleimanov et al. (2005). The WD mass estimations in cataclysmic stars is in general complicated. Usually the curve of radiation velocities can be used, but it is quit hard to constuct and because of . Therefor X-ray spectrum method is very atractive for several reasons. This work is dedicated to this topic.

1.2 Observations

Cataclysmic Variable stars (CVs) have been, in fact, observed as early as ancient times. In historical records of many civilizations we can find references for various astronomical events. Mostly they are about temporary objects: planets, Moon and Sun. However several are about comets and new stars. Rightly, these new stars are in many cases novae and supernovae. In China, the records date back to 1500 AD.

Many records are saved from medieval time, for example positions of *Nova Vulpecula 1670* and *Nova Cygni 1600* (now knows as P Cygni) in Hevelius maps.

With progress of astronomical photography in late 19th century started era of continuous observations and with development of first photo-multipliers in the mid-1940s CVs were begun attractive targets because of their big variability in different time scales.

It is suitable to mention, that AAVSO has light curve of SS Cyg from 1896 up to date.

1.2.1 Optical and IR

The very first visual observation was follows by photographic photometry and then spectroscopy, follows by photo-multiplier photometry since mid-1940s. The binary nature of all the CVs was confirm. The flickering was discovered and was assumed that it is somehow connected to stars duplicity Walker (1957), Warner (1995).

Statistical studies by Luyten and Hughes in mid-1960th showed, that novae remnants have $M_V \approx 4$ and dwarf novae at quisence have $M_V \approx 7.5$. They conculde that the hot primary star in CVs must by WD or hot subdwarf Warner (1995).

The most important contribution of optical astronomy to this work is the discovery of large and variable circular polarization in several CVs. This helped to identified magnetic CVs, which were later divided to two categories, polars and intermediate polars.

1.2.2 X-ray

1.2.3 Gamma ray

CHAPTER	2
---------	---

White Dwarfs

CHAPTER 3

Cataclysmic variable stars

- 3.1 Non magnetic cataclysmic variables
- 3.2 Magnetic cataclysmic variables
- **3.2.1 Polars**
- 3.2.2 Intermediate polars
- 3.3 Galactic population of cataclysmic variables
- 3.4 Others important creatures
- **3.5 GXRE**

CHAPTER 4

Model of post shock region

4.1 Breaking radiation

4.1.1 Bremsstrahlung

$$a_{\parallel} = \dot{v}_x = -\frac{eE_x}{m_e} \frac{\gamma Z_e^2 vt}{4\pi \varepsilon_0 m_e \left[b^2 + (\gamma vt)^2\right]^{2/3}}$$
 (4.1)

- 4.1.2 Thermal bremsstrahlung
- 4.2 Synchrotron radiation
- 4.3 Post shock region
- 4.4 WD mass estimations methods

Data analysis

5.1 INTEGRAL

Figure 5.1: INTEGRAL

- 5.2 XMM-Newton
- 5.3 Results
- 5.4 Discussion

Figure 5.2: XMM-Newton

$\text{CHAPTER}\, 6$

Conclusions

Bibliography

- Adams, D. 1979, The Hitchhiker's Guide to the Galaxy (Great publishing house of Ursa Minor Beta)
- Aizu, K. 1973, Progress of Theoretical Physics, 49, 1184
- Brunschweiger, J., Greiner, J., Ajello, M., & Osborne, J. 2009, A&A, 496, 121
- Frank, J., King, A., & Raine, D. 2002, Accreation Power in Astrophysics Third Edition (University Press, Cambridge)
- Krivonos, R., Revnivtsev, M., Churazov, E., Sazonov, S., Grebenev, S., & Sunyaev, R. 2007, A&A, 463, 957
- Mirabel, I. F. 2002, ASP Conference Series
- Revnivtsev, M., Sazonov, S., Krivonos, R., Ritter, H., & Sunyaev, R. 2008, A&A, 489, 1121
- Rothschild, R. E., Gruber, D. E., Knight, F. K., Matteson, J. L., Nolan, P. L., Swank, J. H., Holt, S. S., Serlemitsos, P. J., Mason, K. O., & Tuohy, I. R. 1981, ApJ, 250, 723
- Rybicki, G. B. & Lightman, A. P. 1979, Radiative Processes in Astrophysics (John Wiley & Sons, Inc.)
- Sazonov, S., Revnivtsev, M., Gilfanov, M., Churazov, E., & Sunyaev, R. 2006, A&A, 450, 117
- Suleimanov, V., Revnivtsev, M., & Ritter, H. 2005, A&A, 435, 191
- Warner, B. 1995, Cataclysmic Variable Stars (University Press, Cambridge)

Yuasa, T., Nakazawa, K., Makishima, K., Saitou, K., Ishida, M., Ebisawa, K., Mori, H., & Yamada, S. 2010, A&A, 520, A25+

Appendix

this will be the appendix

Table 1: Estimated WD masses from previous reports ...

	aioni.			Tom br	Toran Tol		
System	Suzaku	Swift	Swift RXTE	RXTE	Ginga	ASCA	ASCA This work
	XIS+HXD BAT	BAT	PCA+HEXTE PCA	PCA	LAC	SIS	XMM & Integral
	M_{WD}	M_{WD}	M_{WD} M_{WD}	M_{WD}	M_{WD}	M_{WD}	M_{WD}
FO Aqr							
XY Ari							
MU Cam							
BG CMi							
V709 Cas							
TV Col							
TX Col							
YY Dra							
PQ Gem							
EX Hya							
NY Lup							
V2400 Oph							
AO Psc							
V1223 Sgr							
RX J2133							
IGR 117303							