EE4035 Electronics Laboratory

<u>Laboratory 6 Shunt Voltage Regulator</u>

1N4734 Datasheet Link

PART-I

Pre-Lab Question

1. Design a circuit to provide a constant voltage of 3.6V when the input voltage varies from 4V to 5V.

Given a Zener diode of 3.6V, 1 mA and 1 W

Fig 1. Circuit Diagram and Operating Points V_{MIN} 4V

Fig 2. Circuit Diagram and Operating Points V_{MAX} 5V

Nigil M R, BTech ECE, Amrita Vishwa Vidyapeetham

$$R_{S} = \frac{V_{S} - V_{Z}}{I_{L} + I_{Z}}$$

2. What can be the maximum value of the series resistance? The minimum value?

$$R_{S} = \frac{V_{S} - V_{Z}}{I_{L} + I_{Z}}$$

$$R_{MAX} = \frac{5 - 3.6}{101 \text{ mA}} = 14 \text{ Ohms}$$

$$R_{MIN} = \frac{4 - 3.6}{101 \text{ mA}} = 4 \text{ Ohms}$$

3. What is the knee current (I_K) of the 1N4734 Zener diode?

45 mA

4. What is the maximum power dissipation of the 1N4734?

1 Watt

PART-II

Experimental Procedure for Measurements

Fig 2. Circuit Diagram

.include Zener.txt .dc VIN 6V 8V 1V .step param IL 5mA 51mA 2mA

Fig 3. Circuit Diagram

(Refer Excel Sheet for Plots)

PART-III

Post-Lab Exploration

1. What is the knee current of the Zener diode as determined by your experiment?

Approx. Around 50-55 mA

2. What is the Zener resistance (R_Z) ?

Fig 4. Excel Plot

$$-R_Z = \frac{55\text{mA} - 1.08\text{mA}}{5.42 - 5.44} = -2.696 \text{ Ohms}$$

