

Projektbericht

Studiengang: Informatik

Entwicklung einer Augmented Reality Applikation zur Wiedererkennung bereits eingelernter Objekte

von

Michael Schlosser

75984

Betreuender Mitarbeiter: Dr. Marc Hermann

Einreichungsdatum: 31. Juli 2021

Eidesstattliche Erklärung

Hiermit erkläre ich, **Michael Schlosser**, dass ich die vorliegenden Angaben in dieser Arbeit wahrheitsgetreu und selbständig verfasst habe.

Weiterhin versichere ich, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben, dass alle Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wurden, kenntlich gemacht sind und dass die Arbeit in gleicher oder ähnlicher Fassung noch nicht Bestandteil einer Studien- oder Prüfungsleistung war.

Ort, Datum

Unterschrift (Student)

Kurzfassung

Das Einlernen und Wiedererkennen von beliebigen Objekten ist im Bereich des Maschinellen Sehens immer noch ein aktuelles Thema. Ein exemplarischer Anwendungsfall hierfür, wäre dem Nutzer die Möglichkeit zu bieten durch eine Kamera ein Objekt einzulesen und das Kamerabild bei Erkennung des Objektes mit bildunterstützenden Elementen zu ergänzen.

Die geringe Rechenleistung von Mobile und Embedded Devices stellt jedoch den Einsatz dieser Technologie auf diesen Geräten vor eine Herausforderung. Verschiedene Ansätze, um die Rechenintensität eines Einlern-/ und Wiedererkennungsalgorithmus gering zu halten, sind bereits verfügbar und einsetzbar.

Im Rahmen dieser Arbeit wird eine Android-Applikation für mobile Endgeräte entwickelt, welche den im obigen beschriebenen Anwendungsfall erfüllen kann. Zum Einlernen und Wiedererkennen werden bereits trainierte Deep Learning Architekturen mithilfe der Methode "Modellgeneralisierung" erweitert, um die Kernfunktionalität erbringen zu können.

Inhaltsverzeichnis

Eic	desst	attliche	e Erklärung	i
Ku	rzfas	sung		ii
Inł	naltsv	erzeic	hnis	iii
ΑŁ	bildu	ıngsve	erzeichnis	vi
Tal	belle	nverze	ichnis	vii
Qı	uellte	xtverze	eichnis	viii
ΑŁ	kürz	ungsve	erzeichnis	ix
1.	Einle	eitung		1
2.	Grui	ndlage	en e	2
	2.1.	Deep 2	Neural Networks	2
		2.1.1.	Deep Convolutional Neural Networks	2
		2.1.2.	Mobilenet	3
		2.1.3.	Imagenet	4
	2.2.	Wiede	ererkennung von Objekten	4
		2.2.1.	Katastrophales Vergessen	4
		2.2.2.	Transfer Learning	4
		2.2.3.	Latent-Replay-Algorithmus	6

3.	Anfo	orderur	ngsanalyse	8
	3.1.	Funkt	cionale Anforderungen	8
		3.1.1.	Lauffähigkeit als Android-App	9
		3.1.2.	Entwicklung einer graphischen Benutzeroberfläche	9
		3.1.3.	Einlernen von Objekten mithilfe einer Kamera	9
		3.1.4.	Wiedererkennung bereits eingelernter Objekte mithilfe einer Kamera	9
		3.1.5.	Markierung der wiedererkannten Objekte	9
		3.1.6.	Graphisches Overlay bei wiedererkannten Objekten	10
	3.2.	Nicht-	-funktionale Anforderungen	10
		3.2.1.	Lauffähigkeit auf einem Smartphone	10
		3.2.2.	Dauer und Umstände des Erlernens der Objekte	10
		3.2.3.	Benutzerfreundlichkeit	10
		3.2.4.	Wartbarkeit und Erweiterbarkeit	10
	3.3.	Anwei	ndungsfälle	11
4.	Entw	vurf		12
	4.1.	Grund	llegende Designentscheidungen	12
		4.1.1.	Tensorflow Lite und Continual Learning	12
	4.2.	Entwo	urfsmuster	12
		4.2.1.	Ports-und-Adapter	13
		4.2.2.	Factories	13
		4.2.3.	Observer	13
		4.2.4.	Fragments	13
	4.3.	Entitä	itsklassen	14
		4.3.1.	Modell	15
		4.3.2.	Objekt	15

	4.3.3. Trainingsdaten	. 16
	4.3.4. Latent-Replay-Puffer	. 16
	4.4. Grobentwurf	. 16
	4.4.1. Architektur	. 16
	4.5. Feinentwurf	. 16
5.	Implementierung	17
6.	Tests	18
7.	Evaluation	19
8.	Zusammenfassung und Ausblick	20
	8.1. Erreichte Ergebnisse	. 20
	8.2. Ausblick	. 20
	8.2.1. Erweiterbarkeit der Ergebnisse	. 20
	8.2.2. Übertragbarkeit der Ergebnisse	. 20
Lit	teratur	21
A.	. Beschreibung der Anwendungsfälle	22

Abbildungsverzeichnis

2.1.	Architektur eines Mobilenet v2	3
2.2.	Vergleich des Aufbaus eines Transfer Learning Models im Gegensatz zum traditionellen Maschinellen Lernen	5
2.3.	Architekturdiagramm des Latent Replay	7
3.1.	UML-Anwendungsfall-Diagramm	11
4.1.	Entity-Relationship-Diagramm	14

Tabellenverzeichnis

A.1. Anwendungsfall: Modell hinzufügen	22
A.2. Anwendungsfall: Modell wechseln	23
A.3. Anwendungsfall: Modell einfrieren	24
A.4. Anwendungsfall: Alle Modelle betrachten	25
A.5. Anwendungsfall: Gespeicherte Objekte im Modell anschauen	26
A.6. Anwendungsfall: Objekt hinzufügen	27
A.7. Anwendungsfall: Objekt wiedererkennen	28
A.8. Anwendungsfall: Objekt bearbeiten	29
A.9. Anwendungsfall: Weitere Trainingsdaten für Objekt erfassen	30
A.10.Anwendungsfall: Objekt löschen	31
A.11.Anwendungsfall: Alle Objekte betrachten	32
A.12.Anwendungsfall: Einstellen der Anzahl der hinzuzufügenden Daten pro Training	33
A.13.Anwendungsfall: Einstellen der Dauer des Countdowns vor dem Training	34
A.14.Anwendungsfall: Einstellen der Auflösung der hinzuzufügenden Trainingsdaten	35
A.15.Anwendungsfall: Einstellen des Konfidenzschwellwerts bei Inferenz . 3	36
A.16.Anwendungsfall: Applikation zurücksetzen	37

Listings

Operschrin, des Wheillexis	5.1.	Überschrift des Quelltexts		
----------------------------	------	----------------------------	--	--

Abkürzungsverzeichnis

API	Application Programming Interface	. 12
Blob	Binary Large Object	. 15
	Convolutional Neural Network	
	N Deep Convolutional Neural Network	
DNN	Deep Neural Network	2
	Depthwise Separable Convolution	
	Machine Learning	

1. Einleitung

Die Einleitung dient dazu, beim Leser Interesse für die Inhalte Praxissemesterberichts zu wecken, die behandelten Probleme aufzuzeigen und die zu ihrer Lösung entwickelten Konzepte zu beschreiben.

Zur Lösung der Problemstellung sind verschiedene Grundlagengebiete zu beherrschen, die zum einen bereits im Rahmen des Informatikstudiums verinnerlicht werden konnten und zum anderen Gebiete und Themen, die erst im Laufe der Recherche und Implentierung der Projektarbeit erarbeitet worden sind.

2.1. Deep Neural Networks

Konventionelle Methoden des Maschinellen Lernens sind in der Verarbeitung von rohen Daten, wie beispielsweise den Pixeln von Bildern, ineffizient. Deep Learning bezeichnet ein Teilgebiet des Maschinellen Lernens, welches in diesen Anwendungsfällen eine bessere Alternative darstellt. Ein Deep Neural Network (DNN) ist ein mehrschichtiges Rechenmodell, welches sich vor allem in den Gebieten der Bild- und Spracherkennung als *state-of-the-art* etablieren konnte.

Beim Deep Learning wird zwischen Training und Inferenz unterschieden. Beim Training werden in das Netz annotierte Trainingsdaten gegegeben, welche vom Netz prozessiert werden. Daraufhin werden die Gewichte des Netzes kalibriert um die Merkmale der eingelesenen Trainingsdaten wiedererkennen zu können.

Beim Vorgang der Inferenz erzeugt das Netz eigenständig Ausgaben. Der produktive Einsatz von DNNs entspricht demnach dem Vorgang der Inferenz [6, 5].

2.1.1. Deep Convolutional Neural Networks

Bei den meisten Bildklassifizierungs- und Objektdetektionsapplikationen werden sogenannte Faltungsschichten (engl.: Convolutional Layers) verwendet, da sich diese als sehr effizient in diesem Anwendungsfall erweisen konnten.

In der Mathematik bezeichnet eine Faltungsschicht das Überlappen zweier Funktionen

Eine Faltungsschicht besteht aus sogenannten Convolutional Filters mit der Größe $D_K \times D_K \times M$ wobei D_K der Höhe und Breite des Filters und M der Anzahl an Kanälen beziehungsweise der Tiefe des Filters entspricht. Der Filter gleitet nun über das Eingabebild F und multipliziert F mit dem Filter. Die Ergebnisse dieser Multiplikation werden als Skalarprodukt zu einem Wert zusammengefasst. Nach-

dem der Filter über alle Pixel des Bildes gegleitet ist ergibt sich eine neue kleinere Matrix, welchere als gefaltetes Merkmal (*engl.: Convolved Feature*) bezeichnet wird.

2.1.2. Mobilenet

Bei der rapiden Weiterentwicklung von DNN-Architekturen wird das Augenmmerk stets auf die Verbesserung der Genauigkeit des Modells gelegt. Da die Latenzzeit und Größe des Netzes zunehmen, ist der Einsatz auf Geräten mit limitierter Rechenleistung für Echtzeitsysteme nur schwer möglich.

Mobilenets sind DNNs, die speziell für Aufgaben im Bereich des Maschinellen Sehens auf mobilen Endgeräten und eingebetteten Systemen entwickelt wurden. Ein Mobilenet Modell basiert auf sogenannten Depthwise Separable Convolutions (DSCs), welche die Faltungsschichten in einem Deep Convolutional Neural Network (DCNN) hinsichtlich der Netzgröße und Inferenzzeit optimieren.

Der Rechenaufwand beim Prozessieren einer Faltungsschicht ist durch die hohe Anzahl an nötigen Multiplikationen enorm. DSCs berechnen die Faltung in mehreren Phasen. In der ersten PHase wird die sogenannte Tiefenfaltung angewendet, welche die herkömmliche Faltung lediglich auf einem Kanal berechnet. In der zweiten Phase wird die sogenannte Punktfaltung angewendet, wobei die Merkmale aus der Tiefenfaltung miteinander kombiniert werden. Dies verringert den Rechenaufwand deutlich.

Der Aufbau des Mobilenet v2, welches Anwendung im gegebenen Anwendungsfall findet, wird in Abbildung 2.1 dargestellt [3].

Abbildung 2.1.: Architektur eines Mobilenet v
2 Quelle: https://www.hindawi.com/journals/cin/2020/8817849/fig2/ abgerufen am
 30.07.2021

2.1.3. Imagenet

2.2. Wiedererkennung von Objekten

Das Einlernen und Wiedererkennen von Objekten ist im Bereich des Maschinelles Lernens noch heute eine Herausforderung für eingebettete beziehungsweise mobile Endgeräte, aufgrund der geringen Rechenleistung, die zur Verfügung steht. Es ist möglich diese Aufgabe mithilfe einer Cloudlösung auf einen externen leistungsstarken Server zu übertragen. Aufgrund von Nachteilen, wie beispielsweise Sicherheitsrisiken, die beim Übertragen von sensitiven Daten auftreten, wird im Rahmen dieser Arbeit eine Applikation programmiert, die den gegebenen Anwendungsfall mit der dem Endgerät zur Verfügung stehenden Hardware löst.

Ein naiver Ansatz, um dieses Problem lösen zu können ist ein Convolutional Neural Network (CNN) bei Eingang neuer Trainingsdaten erneut zu trainieren mitsamt den bereits vorhandenen Daten. Ein derart riesiger Lernvorgang ist jedoch nicht praktikabel und könnte mehrere Stunden oder sogar Tage dauern. Wenn lediglich die neuen Daten für das Training verwendet werden, resultiert dies im bekannten Phänomen des *Katastrophalen Vergessen* [9].

2.2.1. Katastrophales Vergessen

Neuronale Netze tendieren dazu beim Einlernen von aufeinanderfolgenden unterschiedlichen Aufgaben das bereits gelernte Wissen zu vergessen. Dieses Phänomen wird als Katatrophales Vergessen beziehungsweise als *Katastrophale Inferenz* bezeichnet. Die Ursache hierfür ist, dass Gewichte von Neuronen, die für eine vorherige Aufgabe wichtig sind, überschrieben werden, um die neue eingelernte Aufgabe zu erfüllen [4].

Für den gegebenen Anwendungsfall bedeutet dies, dass alte bereits eingelernte Objekte nicht mehr erkannt werden können, wenn ein bereits trainierter Datensatz mit unbekannten Daten weitertrainiert wird. Lösungsansätze für dieses Problem werden im Folgenden erklärt.

2.2.2. Transfer Learning

Jedes menschliche Gehirn, ist dazu fähig Wissen, welches für eine Aufgabe benötigt wird, auf eine andere Aufgabe zu übertragen. So ist es beispielsweise mit geringem Aufwand möglich das Autofahren zu erlernen, wenn man bereits Motorrad fahren kann. Da es eine ähnliche Aufgabe ist, wird nicht versucht die neue Aufgabe von Grund auf neu zu lernen, sondern das Wissen, welches in der Vergangenheit erlernt werden konnte auf ein neuen ähnlichen Anwendungsfall zu transferieren.

Im traditionellen Ansatz des Maschinellen Lernens wird ein Datensatz aufbereitet, welcher für eine bestimmte Aufgabe zugeschnitten ist.

Die grundlegende Aufgabe, die in dieser Arbeit zu erfüllen ist, ist jedoch das Einlernen von neuen Trainingsdaten. Hierfür kann der Ansatz des sogenannten Transfer Learnings Anwendung finden.

Beim Transfer Learning wird ein bereits trainiertes Machine Learning (ML)-Modell verwendet. Das bereits errungene Wissen kann hierbei weiterverwendet werden, um mit einem kleineren Trainingsdatensatz eine neue ähnliche Aufgabe erfüllen zu können. Erkannte Merkmale wie Formen, Kanten und Ecken können demnach durch den Wissenstransfer mit einem Modell geteilt werden. Bei dieser Vorgehensweise werden die unteren Schichten, welche die nicht-klassenspezifischen Merkmale erkennen eingefroren. Dies bedeutet, dass die Gewichte der Neuronen unveränderbar sind. Die oberen Schichten sind weiterhin trainierbar. Durch Training eines Datensatzes, welcher den neu einzulernenden Daten ähnelt, werden lediglich die klassenspezifischen Merkmale trainiert [9]. In Abbildung 2.2 wird diese Architektur mit dem Traditionellen ML-Ansatz verglichen.

Wenn stets neue Klassen eingelernt werden sollen und diese Daten sich nicht innerhalb einer Trainingsstapels befinden, tritt jedoch das Phänomen des Katastrophalen Vergessens auf und früher eingelernte Objekte werden überschrieben [2].

Traditional ML

Isolated, single task learning:

 Knowledge is not retained or accumulated. Learning is performed w.o. considering past learned knowledge in other tasks

Learning

vs Transfer Learning

- Learning of a new tasks relies on the previous learned tasks:
 - Learning process can be faster, more accurate and/or need less training data

Abbildung 2.2.: Vergleich des Aufbaus eines Transfer Learning Models im Gegensatz zum traditionellen Maschinellen Lernen

Quelle: [8]

2.2.3. Latent-Replay-Algorithmus

Das grundlegende Konzept beim Latent-Replay-Algorithmus bildet das sogenannte *Replay* beziehungsweise *Rehearsal*. Bereits trainierte Trainingsdaten werden hierfür in einem separaten Datenbank persistent gespeichert und bei Eingang neuer Trainingsdaten ebenfalls mitgelernt. Das Problem hierbei ist jedoch, dass die Trainingsdauer massiv zunimmt, da in jeder Trainingsepoche mehrere Trainingsiterationen durch das Neuronale Netz notwendig sind. Zudem ergibt sich aus dem Abspeichern von alten Trainingsdaten ein Speicherproblem auf eingebetteten Systemen.

Der Latent-Replay-Algorithmus erweitert den Ansatz des Rehearsals, um eben diese Schwierigkeiten zu beheben. Hierfür werden nicht rohe Bilddaten abgespeichert sondern Aktivierungen von Neurononen innerhalb einer Schicht der Netzarchitektur. Bei einer Trainingsiteration werden neue Eingangsdaten durch Schichten des Netzen weitergeleitet, welche für das Erkennen von generischen Merkmalen zuständig sind, wie beispielsweise Ecken und Kanten. Anschließend werden diese Daten in die Latent-Replay-Schicht, welche die Speicherung der alten Trainingsdaten übernimmt, weitergeleitet, wobei die Eingangsdaten nun mit den Aktivierungen der alten Trainingsdaten vermischt werden. Die Schichten, die oberhalb der Latent-Replay-Schicht angesetzt sind, sind für die Erkennung von klassenspezifischen Merkmalen zuständig [7]. In Abbildung 2.3 wird der eben erklärte Aufbau dargestellt.

Das Prinzip des Transfer Learnings kann dementsprechend mithilfe des Latent-Replay-Algorithmus erweitert werden und dadurch das Phänomen des Katastrophalen Vergessens beheben, durch das Mittrainieren von alten Trainingsdaten.

Abbildung 2.3.: Architekturdiagramm des Latent Replay Quelle: [7]

3. Anforderungsanalyse

Zur Erarbeitung der Anforderungen der gegebenen Aufgabenstellung, werden diese hinsichtlich ihrer Umsetzungsrelevanz gegliedert und gewichtet.

- Must-Have-Anforderungen sind unbedingt umzusetzen. Sie umfassen die Kernfunktionalitäten, die zur Lösung der gegebenen Aufgabenstellung essentiell sind.
- Should-Have-Anforderungen beschreiben Eigenschaften des Systems, die vorteilhaft für die Lösung der gegebenen Aufgabenstellung sind und einen großen Mehrwert für die Software bieten, jedoch nicht zwingend erforderlich sind.
- Could-Have-Anforderungen sind optionale Anforderungen an Eigenschaften des Systems, die ebenfalls einen relevanten Mehrwert bieten können, welcher jedoch nicht zwingend erforderlich für die Lösung der gegebenen Aufgabenstellung ist.
- **Nice-To-Have-Anforderungen** sind ebenfalls optionale Anforderungen an Eigenschaften des Softwaresystems. Diese sind jedoch von untergeordneter Bedeutung.

Im Folgenden werden die Anforderungen an das zu entwickelnde Softwaresystem thematisch gruppiert und unterteilt in funktionale und nicht-funktionale Anforderungen.

3.1. Funktionale Anforderungen

Funktionale Anforderungen erklären, welche Funktionen und Dienste vom Software-System bereitzustellen sind und insbesondere die Beziehungen zwischen den Einund Ausgabedaten.

3.1.1. Lauffähigkeit als Android-App

Eine auf einem aktuellen Android-Betriebssystem lauffähige Applikation soll entwickelt und auf einem Smartphone in den Betrieb genommen werden. Es wird gefordert, dass der Nutzer des Software-Systems die im Smartphone integrierte Kamera nutzt und diese als Eingabe für das Einlernen und die Wiedererkennung eines Objektes nutzt. – Gewichtung: Must-Have-Anforderung.

3.1.2. Entwicklung einer graphischen Benutzeroberfläche

Es wird gefordert eine Graphische Benutzeroberfläche zur Verfügung zu stellen, mit welcher der Nutzer interagieren kann. Der Touchscreen des Smartphones sollte das Haupteingabegerät des Nutzers zur Steuerung der Applikation sein. – Gewichtung: Must-Have-Anforderung.

3.1.3. Einlernen von Objekten mithilfe einer Kamera

Es wird gefordert, dass ein Objekt mit der integrierten Smartphone-Kamera, bei guten Licht- und Kontrastverhältnissen eingelernt werden kann. Bei erfolgreicher Abspeicherung der Daten, soll dem Nutzer dies mitgeteilt werden. Der Nutzer hat nun die Möglichkeit das eingelernte Objekt mit Daten zu versehen, wie beispielsweise einem Namen. Die Informationen über das nun eingelernte Objekt werden in einer Datenbank persistent abgespeichert, um sie wieder abrufen zu können. – Gewichtung: Must-Have-Anforderung.

3.1.4. Wiedererkennung bereits eingelernter Objekte mithilfe einer Kamera

Ein bereits eingelerntes Objekt soll bei guten Licht- und Kontrastverhältnissen vom Softwaresystem in Echtzeit wiedererkannt werden. – *Gewichtung:* Must-Have-Anforderung.

3.1.5. Markierung der wiedererkannten Objekte

Wenn ein Objekt von der Applikation erkannt wird, soll es beispielsweise durch das Einblenden des Namens des Objektes dem Nutzer mitgeteilt werden, dass das eingelernte Objekt wieder auf dem Display des Smartphones zu sehen ist. – Gewichtung: Should-Have-Anforderung.

3.1.6. Graphisches Overlay bei wiedererkannten Objekten

Die beim eingelernten Objekt gespeicherten Daten sollen als ein graphisches Overlay auf dem Bildschirm des Smartphones dargestellt werden, wenn das Objekt erneut erkannt worden ist. – *Gewichtung:* Must-Have-Anforderung.

3.2. Nicht-funktionale Anforderungen

Im Folgenden werden die Einschränkungen und Qualitätsmerkmale an die Entwicklung und den Betrieb des Systems erklärt.

3.2.1. Lauffähigkeit auf einem Smartphone

Die Kompatibilität und ein angemessenes Laufzeitverhalten auf einem aktuellen Android-basierten Smartphone wird gefordert, um eine benutzerfreundliche Applikation bereitstellen zu können. – Gewichtung: Must-Have-Anforderung.

3.2.2. Dauer und Umstände des Erlernens der Objekte

Ein Objekt soll bei guten Lichtverhältnissen in annehmbarer Zeit eingelernt werden. – *Gewichtung:* Must-Have-Anforderung.

3.2.3. Benutzerfreundlichkeit

Die Graphische Benutzeroberfläche ist so intuitiv wie möglich zu gestalten, um die Bedienung des Systems ohne größeren Einarbeitungsaufwand erlernen zu können. – *Gewichtung:* Should-Have-Anforderung.

3.2.4. Wartbarkeit und Erweiterbarkeit

Änderungen und Erweiterungen des Software-Systems sollten mit hinnehmbarem Aufwand bewerkstelligt werden können. Demnach sollte der Quellcode modular, strukturiert und dokumentiert sein. – *Gewichtung:* Should-Have-Anforderung.

3.3. Anwendungsfälle

Die zu entwickelnde Applikation soll dem Hauptakteur "User" die in Abbildung 3.1 dargestellten Anwendungsfälle erfüllen können. Eine genaue Beschreibung wurde in Anhang A verlagert, um den Lesefluss nicht zu stören.

Abbildung 3.1.: UML-Anwendungsfall-Diagramm Quelle: Eigene Darstellung

Auf der Basis der im vorangegangenen Kapitel erstellten Anforderungsanalyse und der im Grundlagenkapitel aufgearbeiteten theoretischen Kenntnisse wird ein Lösungskonzept erarbeitet.

4.1. Grundlegende Designentscheidungen

Die für den Entwurf der Applikation zugrundelegenden Entscheidungen, welche für die erfolgreiche Implentierung entscheidend sind, werden im Folgenden erklärt.

4.1.1. Tensorflow Lite und Continual Learning

Tensorflow Lite ist ein Open-Source Deep Learning Framework, welches für die Inferenz von Deep Learning Modellen auf Mobilen Endgeräten und eingebetteten Systemen entwickelt wurde [1].

Aufgrund einer bereits vorhandenen Beispielimplementierung einer Transfer Learning Applikation, wurde eine Basis für die ersten Ansätze einer Anbindung der Wiederkennungsfunktionalität unter der Nutzung von Transfer Learning für die Applikation, die in dieser Projektarbeit zu entwickeln ist, geschaffen. Tensorflow Lites stellt ein Application Programming Interface (API) zur Verfügung, welche die Nutzung von Transfer Learning vereinfacht. Zudem ist es durch ein Python-Skript möglich selbst generierte Tensorflow Lite-Modelle für das Transfer Learning vorzubereiten.

Um einen Latent-Replay Algorithmus in die Applikation zu übertragen, wurden Anpassungen übernommen nach dem Vorbild von Demosthenous et al. [2], welche im Rahmen ihrer Forschung den Transfer Learning Ansatz mit dem Continual Learning Ansatz von Pellegrini et al. [7] verglichen haben.

4.2. Entwurfsmuster

Um sich auf bereits bewährte Entwurfsansätze bestehender Software beziehen zu können, werden unter anderem mehrere Entwurfsmuster aus dem GoF-Buch

genutzt. Dies ermöglicht es qualitativ hochwertige Software zu entwickeln, welche durch das Anwenden von allgemein bekannten Mustern von anderen Entwicklern leichter nachvollzogen werden kann.

4.2.1. Ports-und-Adapter

Um ein möglichst wart- und erweiterbares Softwareprodukt zu entwickeln, wurde das *Ports-und-Adapter-Muster*, soweit dies möglich war, angewendet, um Third-Party-Dependencies, wie beispielsweise Tensorflow Lite, aber auch um die Persistenz möglichst abstrakt zu halten und eine Bindung an konkrete Implementierungen und Technologien zu vermeiden. Dies erhöht die Testfähigkeit enorm, da das *Dependency-Inversion-Prinzip* angewendet wird und die Abhängigkeiten der Geschäftslogik so gering wie möglich gehalten wird.

4.2.2. Factories

Um die Erzeugung von Objekten ähnlicher Klassen, wie beispielsweise Dialogboxen, möglichst konsistent zu halten, werden diese mithilfe des *Factory*-Musters erstellt, soweit dies möglich war.

4.2.3. Observer

Um eine starke Kopplung der Komponenten zu vermeiden, wird das *Observer*-Muster so weit dies möglich ist verwendet. Es findet vor allem im Aktualisieren der Graphischen Oberfläche, aber auch bei der Interkommunikation von entkoppelten Dialogfenstern und Fragments, sowie bei der Beobachtung von asynchronen Prozessen Anwendung.

4.2.4. Fragments

Da das Entwickeln einer Android-Applikation zu den Anforderungen gehört, ist zu entscheiden, ob man eine Applikation auf Basis mehrerer Android-Aktivitäten (engl.: Activities) erstellt, oder eine Activity mithilfe von angefügten sogenannten Fragmenten (engl: Fragments) entwickelt. Das Nutzen von Fragments ermöglicht die Interkommunikation der Systemkomponenten über die Activity, zu welcher diese gehören. Da in mehreren Anwendungsfällen das Zusammenarbeiten mehrerer Systemkomponenten notwendig ist, ist die Nutzung von Fragments der Nutzung von mehreren Aktivitäten vorzuziehen.

Die Oberfläche der Applikation kann mithilfe von XML-Code generiert werden.

Programmatisch wird die Oberfläche an die Funktionalität, welche in Java-Code geschrieben wurde, gebunden.

4.3. Entitätsklassen

Die für die Geschäftslogik grundlegenden und technisch unbedingt notwendigen Entitäten werden in Abbildung 4.1 dargestellt. In den folgenden Unterkapiteln werden diese erläutert.

Zu allen Entitäten wird eine einzigartige fortlaufende Identifikationsnummer (ID) gespeichert.

Abbildung 4.1.: Entity-Relationship-Diagramm Quelle: Eigene Darstellung

4.3.1. Modell

Um dem Nutzer eine Unterscheidungsmöglichkeit zu bieten wird zu dem Modell ein Name abgespeichert.

Der absolute Pfad zu einer lokalen Binärdatei, die die derzeitige Parametrisierung des Modells festlegt wird zusätzlich abgespeichert, anstatt die Binärdaten direkt als Binary Large Object (Blob) zu speichern. Dies vereinfacht es die Applikation bei Bedarf um eine "Modell teilen"-Funktion zu erweitern.

Zusätzlich wird ein boolescher Wert zu jedem Modell abgespeichert, welcher entscheidet, ob das Modell bereits eingefroren wurde, um den Nutzer warnen zu können, wenn er im Begriff ist bereits bestehende Objekte aufgrund des Phänomen des Katastrophalen Vergessen zu überschreiben.

4.3.2. Objekt

Das Objekt ist die Kernentität der Applikation. Im Rahmen dieser Projektarbeit wurden einem Objekt diverse Attribute, wie beispielsweise dem Objekttyp oder dem generischen Attribut "Weitere Daten" angefügt. Es ist jedoch möglich die zusätzlichen Daten, außer dem bezeichnenden Objektnamen, leer zu lassen, da diese keine Auswirkungen auf die Funktionsweise der Applikation haben.

Jedes Objekt hat eine Beziehung zu einem bestimmten Modell. Dies kann durch das Speichern einer Modell-Identifikationsnummer als Fremdschlüssel realisiert werden.

Ein Modell stellt eine Anzahl an Endknoten zur Verfügung, welche sich direkt auf die Endknoten der Netzarchitektur des zugrundeliegenden DCNN projizieren lassen. Demnach ist zu jedem Objekt eine Modelposition zu speichern. Anhand dieser Kartierung ist eine lose Kopplung zwischen Objekt und Modell und eine generische Erstellung von beliebig vielen Modellen und demnach beliebig vielen Objekten, anknüpfend an bestimmte Modelle, möglich.

Außerdem wird dem Objekt automatisch ein Zeitstempel hinzugefügt, um dem Nutzer darüber Auskunft geben zu können, wann das jeweilige Objekt eingespeichert wurde. Zudem ist ein Zeitstempel für mögliche weitere Datenabfragen und beispielsweise Erweiterungen der Objektübersicht mit einer Nach-Datum-Sortierungsfunktion sinnvoll.

Sobald ein Objekttraining gestartet wird, wird die erste Bitmap, die in der Trainings-Vorbereitungs-Pipeline eingeht persistent abgespeichert, um dem Nutzer eine Vorschau des Objektes zu geben, falls es in Vergessenheit geraten ist, um welches Objekt es sich handelt.

Die Speicherung der Anzahl der Trainingsdaten pro Objekt sind von monitorischer Bedeutung. Durch das Speichern und die spätere Anzeige dieser Daten kann der Nutzer entscheiden, ob es sinnvoll ist einem Objekt weitere Trainingsdaten hinzuzufügen. Mögliche Erkennungsprobleme wie beispielsweise einer ungleichen

Verteilung an Trainingsdaten können dadurch leichter festgestellt werden.

4.3.3. Trainingsdaten

Die Aktivierungen im Bottleneck-Layer des zugrundeliegenden Mobilenet v2, werden persistent abgespeichert, mitsamt der jeweiligen Modellposition und der Modell-Identifikationsnummer, zu welchem die Trainingsdaten gehören. Erforderlich ist dies aufgrund der Implementierung eines Continual Learning Ansatzes unter Verwendung des Latent-Replay Algorithmus, da alte Trainingsdaten bei einem Objekttraining vermischt werden, um das Phänomen des Katastrophalen Vergessens zu lösen.

Ein Zeitstempel wird zu jedem Trainingsdatenfeld hinzugefügt, um lediglich die letzten n Daten in den Latent-Replay-Puffer zu überführen.

4.3.4. Latent-Replay-Puffer

Der Latent-Replay-Puffer wird nach jeder Trainingssitzung aktualisiert mit den zuletzt hinzugefügten Trainingsdaten.

Zudem wird die Modellidentifikationsnummer als Fremdschlüssel und die Modellposition, zu welchem das jeweilige Trainingsdatenfeld gehört mitabgespeichert, um das Vermischen von neuen Trainingsdaten und alten Trainingsdaten, nach dem Prinzip des Latent-Replay-Algoritmhus zu ermöglichen.

4.4. Grobentwurf

4.4.1. Architektur

Bausteinsicht

4.5. Feinentwurf

Feine UMLs über Klassen, Sequenzdiagramme, Algorithmen Flussdiagramme, Verarbeitungspipelines

5. Implementierung

Transfer Learning, quantisiertes MobilenetV2, Imagenet.

Ein Problem das beim Nutzen des Transfer Learnings aufgetreten ist, ist dass alle Trainingsdaten sich im derzeitigen Trainingsbatch befinden müssen, da sonst das Problem des Katastrophalen Vergessens aufkommt. In diesem Kapitel wird die konkrete Implementierung des im Kapitel ?? entwickelten Lösungskonzepts beschrieben. Hierbei wird auf die konkret verwendeten Entwicklungswerkzeuge etc. Bezug genommen.

Bei Software-Projekten besteht dieses Kapitel typischerweise aus den Phasen Implementierung & Test im **rup!** (**rup!**).

Zum Beispiel kann man hier auch ein kleines Listing einfügen.

```
#include<stdio.h>
2
3 int main() {
4
       // Kommentar
5
       int answer = 20 << 1;
6
       answer += 2;
7
       printf("Hallöchen Welt!\n");
8
       printf("Die Antwort ist: %d\n", answer);
9
       return 0;
10
```

Quelltext 5.1: Überschrift des Quelltexts

Manchmal hilft auch eine kleine Tabelle:

Details siehe Tabelle ??.

6. Tests

Aufgabe des Kapitels Inbetriebnahme ist es, die Überführung der in Kapitel 5 entwickelte Lösung in das betriebliche Umfeld aufzuzeigen. Dabei wird beispielsweise die Inbetriebnahme eines Programms beschrieben oder die Integration eines erstellten Programmodules dargestellt.

Bei der Software-Erstellung entspricht dieses Kapitel der Auslieferungsphase (Deployment) im **rup!**.

7. Evaluation

Aufgabe des Kapitels Evaluierung ist es, in wie weit die Ziele der Arbeit erreicht wurden. Es sollen also die erreichten Arbeitsergebnisse mit den Zielen verglichen werden. Ergebnis der Evaluierung kann auch sein, das bestimmte Ziele nicht erreicht werden konnten, wobei die Ursachen hierfür auch außerhalb des Verantwortungsbereichs des Praktikanten liegen können.

8. Zusammenfassung und Ausblick

8.1. Erreichte Ergebnisse

Die Zusammenfassung dient dazu, die wesentlichen Ergebnisse des Praktikums und vor allem die entwickelte Problemlösung und den erreichten Fortschritt darzustellen. (Sie haben Ihr Ziel erreicht und dies nachgewiesen).

8.2. Ausblick

Im Ausblick werden Ideen für die Weiterentwicklung der erstellten Lösung aufgezeigt. Der Ausblick sollte daher zeigen, dass die Ergebnisse der Arbeit nicht nur für die in der Arbeit identifizierten Problemstellungen verwendbar sind, sondern darüber hinaus erweitert sowie auf andere Probleme übertragen werden können.

8.2.1. Erweiterbarkeit der Ergebnisse

Hier kann man was über die Erweiterbarkeit der Ergebnisse sagen.

8.2.2. Übertragbarkeit der Ergebnisse

Und hier etwas über deren Übertragbarkeit.

Literatur

- [1] Tensorflow Lite Contributors. *Deploy machine learning models on mobile and IoT devices*. 2021. URL: https://www.tensorflow.org/lite (besucht am 31.07.2021).
- [2] Giorgos Demosthenous und Vassilis Vassiliades. "Continual Learning on the Edge with TensorFlow Lite". In: (5. Mai 2021). arXiv: 2105.01946v1 [cs.LG].
- [3] Andrew G. Howard u. a. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications". In: (17. Apr. 2017). arXiv: 1704.04861v1 [cs.CV].
- [4] James Kirkpatrick u. a. "Overcoming catastrophic forgetting in neural networks". In: (2. Dez. 2016). arXiv: 1612.00796v2 [cs.LG].
- [5] Yann LeCun, Yoshua Bengio und Geoffrey Hinton. "Deep learning". In: (Mai 2015).
- [6] Niall O' Mahony u. a. "Deep Learning vs. Traditional Computer Vision". In: in Advances in Computer Vision Proceedings of the 2019 Computer Vision Conference (CVC). Springer Nature Switzerland AG, pp. 128-144 (30. Okt. 2019). DOI: 10.1007/978-3-030-17795-9. arXiv: 1910.13796v1 [cs.CV].
- [7] Lorenzo Pellegrini u. a. "Latent Replay for Real-Time Continual Learning". In: (2. Dez. 2019). arXiv: 1912.01100 [cs.LG].
- [8] Dipanjan Sarkar. A Comprehensive Hands-on Guide to Transfer Learning with Real-World Applications in Deep Learning. 14. Nov. 2019. URL: https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a (besucht am 12.05.2021).
- [9] Pavel Senchanka. Example on-device model personalization with TensorFlow Lite. 12. Dez. 2019. URL: https://blog.tensorflow.org/2019/12/example-on-device-model-personalization.html (besucht am 12.05.2021).

A. Beschreibung der Anwendungsfälle

Anwendungsfall	Modell hinzufügen
Beschreibung	Beliebig viele neue Modelle sollen hinzufügt werden können
Akteur	Nutzer
Auslöser	Der Nutzer betätigt den "+Button in der Mo- dellübersicht oder startet die Applikation zum ersten Mal
Vorbedingung	Der Nutzer befindete sich in der Modellüber- sicht oder hat bisher noch kein Modell hinzu- gefügt
Nachbedingung/Ziel	Ein Modell zu welchem weitere Objekte hin- zugefügt werden können, wurde gespeichert
Nachbedingung im Sonderfall	Das Modell wurde nicht gespeichert und der Nutzer wird darüber durch eine Fehlermel- dung informiert
Standardablauf	 Dialogfenster öffnet sich Nutzer gibt Namen für Modell ein Neues Modell wird gespeichert und Nutzer wird darüber informiert
Sonderfälle	 2a. Ein Modell mit dem Namen existiert bereits → Der Nutzer wird darüber mit einer Fehlermeldung informiert 3a. Das Modell konnte nicht gespeichert werden → Der Nutzer wird darüber mit einer Fehlermeldung informiert

Tabelle A.1.: Anwendungsfall: Modell hinzufügen

Anwendungsfall	Modell wechseln
Beschreibung	Das ausgewählte Modell soll gewechselt wer-
	den können mit einem anderen bestehenden
	Modell
Akteur	Nutzer
Auslöser	Der Nutzer befindet sich in der Modellüber-
	sicht und betätigt den Radiobutton, der sich
	links neben dem Modellnamen befindet
Vorbedingung	Es sind bereits mehrere Modelle hinzugefügt
	worden
Nachbedingung/Ziel	Es wurde ein anderes Modell ausgewählt
Nachbedingung im Sonderfall	Das Modell wurde nicht gewechselt
Standardablauf	1. Nutzer betätigt den Radiobutton neben dem
	Namen des Modells
	2. Der Radiobutton wird als selektiert mar-
	kiert und das Modell wurde gewechselt
Sonderfälle	2a. Das Modell konnte nichte selektiert wer-
	den
	ightarrow Keine Sonderbehandlung dieses Falles not-
	wendig

Tabelle A.2.: Anwendungsfall: Modell wechseln

24

Anwendungsfall	Modell einfrieren
Beschreibung	Das Modell soll eingefroren werden. Das bedeutet, dass der Latent-Replay Algorithmus
	bei Ende der Trainingssitzung nicht mehr aus-
	geführt wird. Diese Kontrolle dem Nutzer zu
	übergeben, bietet den Vorteil, dass der Nutzer
	nicht durch langes Warten bei Ende der Trai-
	ningssitzung aufgrund des rechenintensiven
	Latent-Replay Algorithmus überrascht wird
	und die Möglichkeit hat das Modell fertigzu-
	stellen und nicht weiter zu trainieren.
Akteur	Nutzer
Auslöser	Der Nutzer verlässt die Trainingssitzung
	durch Wechseln der App mithilfe der Navi-
	gationsleiste
Vorbedingung	Nutzer hat in dieser Trainingssitzung ein neu-
NT 11 11	es Objekt hinzugefügt
Nachbedingung/Ziel	Das Modell wurde eingefroren
Nachbedingung im Sonderfall	Das Modell wurde nicht eingefroren und der
	Latent-Replay Algorithmus wurde ausgeführt,
	um das Phänomen des Katastrophalen Ver-
	gessens in der nächsten Trainingssitzung zu verhindern
Standardablauf	1. Nutzer wechselt den Kameratab durch Be-
	tätigen eines Reiters in der Navigationsleiste
	2. Dialogfenster öffnet sich, welches den Nut-
	zer darüber informiert, dass er nun die Mög-
	lichkeit hat sein Modell einzufrieren und wel-
	che Folgen dies hat.
	3. Nutzer betätigt den Button, der das Modell
	einfriert
	4. Es wird kein aufwendiger Algorithmus bei
C 1 6"11 .	Ende der Trainingssitzung durchgeführt
Sonderfälle	3a. Nutzer betätigt den Button, der das Mo-
	dell auf eine nächste Trainingssitzung vorbereitet
	3b. Latent-Replay Algorithmus wird ausge-
	führt und der Nutzer wird durch einen La-
	dekreis dazu angehalten bis zum Ende der
	Ausführung mit der Fortsetzung der Nutzung
	der Applikation zu warten
	act 11ppiiiavioii 2a marvoii

Tabelle A.3.: Anwendungsfall: Modell einfrieren

Anwendungsfall	Alle Modelle betrachten
Beschreibung	Alle abgespeicherten Modelle sollen mitsamt
	wichtiger Informationen besichtigt werden
	können
Akteur	Nutzer
Auslöser	Das Modell soll eingefroren werden. Das be-
	deutet, dass der Latent-Replay Algorithmus
	bei Ende der Trainingssitzung nicht mehr aus-
	geführt wird.
Vorbedingung	Es wurden bereits ein oder mehrere Modelle
	gespeichert
Nachbedingung/Ziel	Der Nutzer befindet sich in der Modellüber-
	sicht, in welcher die gespeicherten Modelle
	betrachtet werden können
Nachbedingung im Sonderfall	Die Modellübersicht enthält einen Text wel-
	cher daraufhinweist, dass bisher noch kein
	Modell gespeichert wurde, um einen leeren
	Bildschirm zu vermeiden
Standardablauf	1. Der Nutzer betätigt den Button in der Na-
	vigationsleiste der zur Modellübersicht führt
	2. Der Nutzer befindet sich in der Modellüber-
	sicht, welche eine Listenansicht der gespei-
	cherten Objekte anzeigt, mitsamt der Anzahl
Q 1 0011	bereits gespeicherter Objekte
Sonderfälle	2a. Es öffnet sich keine Listenansicht, da noch
	kein Modell abgespeichert wurde.
	\rightarrow Der Nutzer wird über das Fehlen von Mo-
	dellen durch einen Text in der Mitte des Bild-
	schirms informiert

Tabelle A.4.: Anwendungsfall: Alle Modelle betrachten

Anwendungsfall	Gespeicherte Objekte im Modell be-
	trachten
Beschreibung	Alle im Modell abgespeicherten Objekte sollen
	besichtigt werden können
Akteur	Nutzer
Auslöser	Der Nutzer betätigt den Button welcher sich
	rechts neben dem Modellnamen befindet
Vorbedingung	Der Nutzer befindet sich in der Modellüber-
	sicht und ein Modell wurde bereits abgespei-
	chert
Nachbedingung/Ziel	Ein Dialogfenster, welches zum Modell alle
	gespeicherten Objekte anzeigt wurde geöffnet
Nachbedingung im Sonderfall	Es wurden noch keine Objekte für das Modell
	abgespeichert und ein Hilfetext befindet sich
	im geöffneten Dialog
Standardablauf	1. Nutzer betätigt den Button, welcher sich
	rechts neben dem Modell befindet, dessen Ob-
	jekte betrachtet werden sollen
	2. Ein Dialogfenster öffnet sich, welches eine
	Listenansicht aller zum Modell gespeicherten
	Objekte enthält
Sonderfälle	2a. Es öffnet sich keine Listenansicht, da noch
	kein Objekt für das jeweilige Modell abgespei-
	chert wurde
	ightarrow Der Nutzer wird über das Fehlen von Ob-
	jekten durch einen Text in der Mitte des Dia-
	logfensters informiert

Tabelle A.5.: Anwendungsfall: Gespeicherte Objekte im Modell anschauen

Anwendungsfall	Objekt hinzufügen
Beschreibung	Objekte sollen hinzugefügt werden können
Akteur	Nutzer
Auslöser	Der Nutzer betätigt den "+"-Button der sich
	in der Mitte der Navigationsleiste befindet
Vorbedingung	Der Nutzer befindet sich in der Kamera-
	Ansicht und hat bereits ein Modell hinzuge-
	fügt
Nachbedingung/Ziel	Ein Objekt konnte erfolgreich zum derzeitig
	ausgewählten Modell hinzugefügt werden und
	kann wiedererkannt werden
Nachbedingung im Sonderfall	Das Objekt wurde nicht abgespeichert
Standardablauf	1. Nutzer befindet sich in der Kamera-Ansicht
	und betätigt den "+"-Button in der Mitte der
	Navigationsleiste
	2. Ein Dialogfenster öffnet sich, welches den Nutzer darüber informiert was nun zu tun
	ist. Er hat nun die Möglichkeit diese Meldung
	nicht mehr anzuzeigen durch das Klicken des
	Hakens neben dem Text "Nicht mehr anzei-
	gen"
	3. Nutzer betätigt den "Fortfahren"-Button
	4. Ein Dialogfenster öffnet sich, welches den
	Nutzer dazu auffordert dem Objekt Informa-
	tionen hinzuzufügen
	5. Nutzer gibt korrekte Daten ein und startet
	Training durch das Betätigen des "Training"-
	Buttons
	6. Das Dialogfenster schließt sich und ein
	Countdown beginnt, welcher das bevorstehen-
	de Einlesen ankündigt
	7. Das Training wurde gestartet und der Nutzer wird darüber durch Ändern des Textes am
	rechten oberen Bildschirmran in "Training"
	und einem deterministischen Ladekreis im
	rechten oberen Bildschirmrand informiert
	8. Das Training wurde abgeschlossen und der
	Text am rechten oberen Bildschildrand ändert
	sich wieder zu "Erkennen"
Sonderfälle	1a. Der Nutzer befindet sich in der Kamera-
	Ansicht
	ightarrow Die Ansicht wird durch Betätigen des But-
	tons zur Kamera-Ansicht gewechselt
	5a. Der Name des Objekts ist bereits vergeben
	→ Der Nutzer wird darüber informiert und
	das Training wird noch nicht gestartet
	7a. Der Nutzer verlässt frühzeit die Kamera-
	Ansicht, obwohl das Training noch nicht abge- schlossen ist
	7b. Alle Objektplätze des ausgewählten Mo-
	dells sind bereits belegt
	→ Der Nutzer wird über diesen Fehler infor-
	miert. Das Training wird abgebrochen und
	das Objekt gelöscht
	and a vilatin Baranatin

Tabelle A.6.: Anwendungsfall: Objekt hinzufügen

Anwendungsfall	Objekte wiedererkennen
Beschreibung	Bereits eingespeicherte Objekte sollen durch
	Nutzung der Kamera wiedererkannt werden,
	wenn sich das Objekt innerhalb der Fokusbox
	befindet
Akteur	Nutzer
Auslöser	Der Nutzer kann das wiederzuerkennende Ob-
	jekt in der Kamera-Ansicht sehen, da die Ka-
	mera des Mobilgeräts auf dieses Objekt aus-
	gerichtet ist
Vorbedingung	Das Objekt wurde bereits eingespeichert und
	der Nutzer befindet sich in der Kamera-
	Ansicht
Nachbedingung/Ziel	Das Objekt wird korrekt erkannt und die In-
	formationen über das Objekt werden am obe-
	ren Bildschirmrand angezeigt
Nachbedingung im Sonderfall	Das Objekt wurde nicht erkannt
Standardablauf	1. Nutzer zeigt mit der Kamera auf das Objekt
	2. Das Objekt wird erkannt und eingespeicher-
	te Informationen über das Objekt werden für
	den Nutzer angezeigt
Sonderfälle	2a. Das Objekt wurde nicht erkannt
	ightarrow Nutzer hat die Möglichkeit weitere Ein-
	drücke über das Objekt zu sammeln, oder ge-
	wisse Einstellungen an der Applikation vorzu-
	nehmen, um das Problem selbstständig behe-
	ben zu können

Tabelle A.7.: Anwendungsfall: Objekt wiedererkennen

Anwendungsfall	Objekt bearbeiten
Beschreibung	Die Attribute, die für das Objekt gespeichert
	wurden, sollen geändert werden können
Akteur	Nutzer
Auslöser	Der Nutzer betätigt den "Bearbeiten"-Button
	in der Objektübersicht
Vorbedingung	Der Nutzer befindet sich in der Objektüber-
	sicht und es sind bereits Objekte eingspeichert
Nachbedingung/Ziel	Der Nutzer kann durch das Öffnen eines Dia-
	logfensters die bereits gespeicherten Informa-
	tionen eines Objektes abändern
Nachbedingung im Sonderfall	Es sind keine Objekte eingespeichert und der
	Nutzer hat dementsprechend keine Möglich-
	keit ein Objekt abzuändern
Standardablauf	1. Der Nutzer betätigt den "Bearbeiten"-
	Button in der Objektübersicht
	2. Ein Dialogfenster öffnet sich, welches den
	Nutzer dazu auffordert das Objekt zu bearbei-
	ten
	3. Der Nutzer bearbeitet die Informationen
	korrekt
	4. Der Nutzer betätigt den "Bestätigen"-
	Button und kehrt zur Objektübersicht zurück
Sonderfälle	3a. Der Nutzer gibt einen neuen Objektnamen
	ein, der bereits existiert
	→ Nutzer wird darauf hingewiesen und die
	Änderungen werden nicht gespeichert
	4a. Der Nutzer betätigt den Abbrechen Button
	ightarrow Die Änderungen werden nicht gespeichert

Tabelle A.8.: Anwendungsfall: Objekt bearbeiten

Anwendungsfall	Weitere Trainingsdaten für Objekt erfas-
	sen
Beschreibung	Es sollen zu einem bestehenden Objekt wei-
	tere Trainingsdaten erfasst werden, um die
	Erkennungsgenauigkeit für das gewählte Ob-
	jekt erhöhen zu können
Akteur	Nutzer
Auslöser	Der Nutzer betätigt den "+ "-Button der sich
	unterhalb des Vorschaubildes des Objekts in
	der Listenansicht befindet
Vorbedingung	Es wurde bereits ein Objekt abgespeichert
	und der Nutzer befindet sich in der Objekt-
	übersicht
Nachbedingung/Ziel	Es wurde eine neue Trainingssitzung gestar-
	tet und dem Objekt wurde weitere Trainings-
	daten hinzugefügt
Nachbedingung im Sonderfall	Das Training wurde nicht gestarte
Standardablauf	1. Nutzer betätigt den "+"-Button
	2. Die Applikation wechselt in die Kamera-
	Ansicht und das Training wird nach Ablauf
	des Countdowns gestartet
Sonderfälle	2a. Das Training konnte nicht gestartet wer-
	den
	ightarrow Der Nutzer wird darüber mit einer Fehler-
	meldung informiert

Tabelle A.9.: Anwendungsfall: Weitere Trainingsdaten für Objekt erfassen

Anwendungsfall	Objekt löschen
Beschreibung	Ein Objekt soll gelöscht werden können, so-
	dass dieses nicht mehr von der Applikation
	erkannt wird
Akteur	Nutzer
Auslöser	Der Nutzer betätigt den "Löschen"-Button
Vorbedingung	Der Nutzer befindet sich in der Objektüber-
	sicht und hat bereits ein Objekt eingespei-
	chert
Nachbedingung/Ziel	Das zu löschende Objekt wurde erfolgreich
	entfernt
Nachbedingung im Sonderfall	Das zu löschende Objekt wurde nicht erfolg-
	reich entfernt
Standardablauf	1. Der Nutzer betätigt den "Löschen"-Button
	2. Ein Dialogfenster öffnet sich, welches den
	Nutzer fragt, ob er sich sicher sei das Objekt zu löschen
	3. Der Nutzer bestätigt seine Sicherheit durch
	Betätigen des Buttons und das Objekt wird gelöscht
Sonderfälle	3a. Der Nutzer betätigt den "Abbrechen"-
	Button
	ightarrow Das Dialogfenster wird geschlossen und
	das Objekt wird nicht gelöscht

Tabelle A.10.: Anwendungsfall: Objekt löschen

Anwendungsfall	Alle Objekte betrachten
Beschreibung	Alle eingespeicherten Objekte sollen mitsamt
	aller Attribute des Objektes betrachtet wer-
	den können
Akteur	Nutzer
Auslöser	Der Nutzer wechselt in die Objektübersicht
Vorbedingung	Der Nutzer bereits Objekte eingespeichert
Nachbedingung/Ziel	Der Nutzer kann nun eine Listenansicht über
	alle abgespeicherten Objekte betrachten
Nachbedingung im Sonderfall	Es wurden noch keine Objekte abgespeichert.
	Dementsprechend wurde keine Listenansicht
	erzeugt
Standardablauf	1. Nutzer wechselt durch Betätigen des jewei-
	ligen Buttons in der Navigationsleiste in die
	Objektübersicht
	2. Nutzer betrachtet eine Liste, welche alle
	Objekte mit den zugehörig abgespeicherten
	Daten beinhaltet
Sonderfälle	2a. Es wurde noch kein Objekt abgespeichert
	ightarrow Es wird in der Mitte des Bildschirm ein
	Informationstext angezeigt, um eine komplett
	leere Ansicht zu vermeiden

Tabelle A.11.: Anwendungsfall: Alle Objekte betrachten

Anwendungsfall	Einstellen der Anzahl der hinzuzufügen-
	den Daten pro Training
Beschreibung	Die Anzahl der Trainingsdaten die pro Objekt-
	training erfasst werden, soll konfigurierbar
	sein, um Kontrolle über die Dauer und die
	Genauigkeit der Erkennung zu erhalten
Akteur	Nutzer
Auslöser	Der Nutzer betätigt den jeweiligen Schiebe-
	regler in den App-Einstellungen
Vorbedingung	Der Nutzer befindet sich in den App-
	Einstellungen
Nachbedingung/Ziel	Die Anzahl der hinzuzufügenden Daten pro
	Training wurde auf den neuen Wert angepasst
Nachbedingung im Sonderfall	Änderung konnte nicht vollzogen werden
Standardablauf	1. Der Nutzer stellt den Schieberegler auf
	einen neuen Wert
	2. Die Anzahl der Trainingsdaten pro Objekt-
	training wird angepasst
Sonderfälle	2a. Anzahl der Trainingsdaten pro Objekttrai-
	ning kann nicht angepasst werden
	ightarrow Der Nutzer wird darüber durch eine Feh-
	lermeldung informiert

Tabelle A.12.: Anwendungsfall: Einstellen der Anzahl der hinzuzufügenden Daten pro Training

Anwendungsfall	Einstellen der Dauer des Countdowns
	vor dem Training
Beschreibung	Der unmittelbar vor dem Training laufende
	Countdown, soll konfigurierbar sein, um un-
	nötige Wartezeiten, oder notwendige Zeiten
	für die korrekte Ausrichtung der Kamera zu
	ermöglichen
Akteur	Nutzer
Auslöser	Der Nutzer betätigt den jeweiligen Schiebe-
	regler in den App-Einstellungen
Vorbedingung	Der Nutzer befindet sich in den App-
	Einstellungen
Nachbedingung/Ziel	Die Länge des Countdowns wurde auf den
	neuen Wert gesetzt
Nachbedingung im Sonderfall	Die Länge des Countdowns konnte nicht auf
	den neuen Wert gesetzt werden
Standardablauf	1. Der Nutzer stellt den Schieberegler auf
	einen neuen Wert
	2. Die Länge des Countdowns wird angepasst
Sonderfälle	2a. Die Länge des Countdowns konnte nicht
	angepasst werden
	ightarrow Der Nutzer wird darüber durch eine Feh-
	lermeldung informiert

Tabelle A.13.: Anwendungsfall: Einstellen der Dauer des Countdowns vor dem Training

Anwendungsfall	Einstellen der Auflösung der hinzuzufü-
	genden Trainingsdaten
Beschreibung	Die Größe der Fokusbox im Kamerahauptbild-
	schirm soll konfigurierbar sein, um nahe be-
	ziehungs Objekte in der Ferne zu erfassen,
	ohne zu viel Hintergrund einzufangen
Akteur	Nutzer
Auslöser	Der Nutzer betätigt den jeweiligen Schiebe-
	regler in den App-Einstellungen
Vorbedingung	Der Nutzer befindet sich in den App-
	Einstellungen
Nachbedingung/Ziel	Die Auflösung der hinzuzufügenden Trai-
	ningsdaten wird angepasst
Nachbedingung im Sonderfall	Die Auflösung der hinzuzufügenden Trai-
	ningsdaten konnte nicht angepasst werden
Standardablauf	1. Der Nutzer stellt den Schieberegler auf
	einen neuen Wert
	2. Die Auflösung der hinzuzufügenden Trai-
	ningsdaten wird angepasst
Sonderfälle	2a. Die Auflösung der hinzuzufügenden Trai-
	ningsdaten konnte nicht angepasst werden
	ightarrow Der Nutzer wird darüber durch eine Feh-
	lermeldung informiert

Tabelle A.14.: Anwendungsfall: Einstellen der Auflösung der hinzuzufügenden Trainingsdaten

Anwendungsfall	Einstellen des Konfidenzschwellwerts
	bei Inferenz
Beschreibung	Der Konfidenzschwellwert soll konfigurierbar
	sein. Dies bedeutet, dass ein Objekt erst im
	Overlay angezeigt wird, wenn das Modell mit
	einer bestimmen Erkennungssicherheit (Kon-
	fidenz) das Objekt richtig erkannt hat
Akteur	Nutzer
Auslöser	Der Nutzer betätigt den jeweiligen Schiebe-
	regler in den App-Einstellungen
Vorbedingung	Der Nutzer befindet sich in den App-
	Einstellungen
Nachbedingung/Ziel	Der Konfidenzschwellwert wurde auf den neu-
	en Wert gesetzt
Nachbedingung im Sonderfall	Der Konfidenzschwellwert konnte nicht auf
	den neuen Wert gesetzt werden
Standardablauf	1. Der Nutzer stellt den Schieberegler auf
	einen neuen Wert
	2. Der Konfidenzschwellwert wird angepasst
Sonderfälle	2a. Der Konfidenzschwellwert wird nicht an-
	gepasst
	ightarrow Der Nutzer wird darüber durch eine Feh-
	lermeldung informiert

Tabelle A.15.: Anwendungsfall: Einstellen des Konfidenzschwellwerts bei Inferenz

Anwendungsfall	Applikation zurücksetzen
Beschreibung	Alle persistent gespeicherten Daten sollen zu-
	rückgesetzt werden können, um eine Alterna-
	tive zur Neuinstallation der Applikation zu
	schaffen
Akteur	Nutzer
Auslöser	Der Nutzer betätigt das Feld in den App-
	Einstellungen, welches für das Zurücksetzen
	der Applikation zuständig ist
Vorbedingung	Der Nutzer befindet sich in den App-
	Einstellungen
Nachbedingung/Ziel	Alle Modelle, Objekte und sonstige Konfigu-
	rationen wurden auf Werkseinstellungen zu-
	rückgesetzt
Nachbedingung im Sonderfall	Das Zurücksetzen war nicht erfolgreich
Standardablauf	1. Der Nutzer betätigt das Feld
	2. Ein Dialogfenster erscheint, welches den
	Nutzer darauf hinweist, dass das Zurückset-
	zen der Applikation nicht rückgängig gemacht
	werden kann und dass alle eingespeicherten
	Daten gelöscht werden
	3. Der Nutzer bestätigt das Zurücksetzen
	4. Die Applikation wird zurückgesetzt und
	neu gestartet
Sonderfälle	3a. Der Nutzer betätigt den "Abbrechen"-
	Button und das Dialogfenster schließt sich.
	Der Vorgang wird abgebrochen
	4a. Die Applikation konnte nicht zurückge-
	setzt werden
	→ Der Nutzer wird darüber durch eine Feh-
	lermeldung informiert und der Vorgang wird abgebrochen

 ${\bf Tabelle\ A.16.: Anwendungsfall: Applikation\ zur\"{u}cksetzen}$

B. Anhang B