The group G is isomorphic to the group labelled by [72, 40] in the Small Groups library. Ordinary character table of $G \cong (S3 \times S3)$: C2:

	1a	2a	2b	3a	6a	2c	4a	6b	3b
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	-1	1	-1	1
χ_3	1	-1	1	1	-1	1	-1	1	1
χ_4	1	1	1	1	1	-1	-1	-1	1
χ_5	2	0	-2	2	0	0	0	0	2
χ_6	4	-2	0	1	1	0	0	0	-2
χ_7	4	0	0	-2	0	-2	0	1	1
χ_8	4	0	0	-2	0	2	0	-1	1
χ_9	4	2	0	1	-1	0	0	0	-2

Trivial source character table of $G \cong (S3 \times S3)$: C2 at p = 2:

This is source character table of $G = (50 \times 50)$. GZ at $p = 2$.												
formalisers N_i		N_1		N_2	N_3		N_4		N_5	N_6	N_7	N_8
p-subgroups of G up to conjugacy in G		P_1		P_2	P_3		P_4		P_5	P_6	P_7	P_8
Representatives $n_j \in N_i$		3a	3b	1a	1a	3a	1a	3a	1a	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	8	8	8	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	8	-4	2	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	8	2	-4	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	4	4	4	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	4	4	0	2	2	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	4	-2	1	0	2	-1	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	4	4	0	0	0	2	2	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	4	1	-2	0	0	0	2	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	2	2	0	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	0	0	2	2	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		2	2	2	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1

```
\begin{split} P_2 &= Group([(3,5)(4,6)]) \cong \mathbf{C2} \\ P_3 &= Group([(1,2)(3,4)(5,6)]) \cong \mathbf{C2} \\ P_4 &= Group([(3,5)]) \cong \mathbf{C2} \\ P_5 &= Group([(3,5)(4,6),(1,2)(3,4)(5,6)]) \cong \mathbf{C2} \times \mathbf{C2} \\ P_6 &= Group([(3,5)(4,6),(3,5)]) \cong \mathbf{C2} \times \mathbf{C2} \\ P_7 &= Group([(3,5)(4,6),(1,2)(3,4,5,6)]) \cong \mathbf{C4} \\ P_8 &= Group([(3,5)(4,6),(1,2)(3,4)(5,6),(3,5)]) \cong \mathbf{D8} \end{split}
```

 $P_1 = Group([()]) \cong 1$

```
N_{1} = Group([(3,5), (1,2)(3,4)(5,6), (3,5)(4,6), (1,3,5), (2,4,6)]) \cong (S3 \times S3) : C2
N_{2} = Group([(3,5)(4,6), (4,6), (3,5), (1,2)(3,4)(5,6)]) \cong D8
N_{3} = Group([(1,2)(3,4)(5,6), (1,5)(2,6), (1,5,3)(2,6,4)]) \cong D12
N_{4} = Group([(3,5), (4,6), (2,6,4)]) \cong D12
N_{5} = Group([(1,2)(3,4)(5,6), (3,5)(4,6), (4,6)]) \cong D8
```

 $N_6 = Group([(4,6),(3,5)(4,6),(1,2)(3,4,5,6)]) \cong D8$ $N_7 = Group([(1,2)(3,4,5,6),(3,5)(4,6),(4,6)]) \cong D8$

 $N_8 = Group([(4,6),(1,2)(3,6)(4,5),(3,5)(4,6)]) \cong D8$