Proba E.c)

Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$\left(1+2i\right)^2 = -3+4i$	3 p
	Partea reală este egală cu -3	2p
2.	$x_1 + x_2 = 3$	2p
	$x_1 x_2 = a$	2p
	a=2	1p
3.	$x = g(5) \Rightarrow f(x) = 5$	2p
	$2^{x} + 3 = 5$	2 p
	x=1	1p
4.	$p = \frac{\text{nr.cazuri favorabile}}{1 + 1 + 1}$	1p
	nr.cazuri posibile	1p
	Numărul cazurilor posibile este $2^5 = 32$	2p
	Numărul submulțimilor cu 3 elemente este $C_5^3 = 10$, adică 10 cazuri favorabile	1p
	$p = \frac{5}{16}$ $\overrightarrow{AB} = 6\overrightarrow{i} + 9\overrightarrow{j} \text{ si } \overrightarrow{AM} = (x_M - 1)\overrightarrow{i} + (y_M - 3)\overrightarrow{j}$	1p
	16	тр
5.	$AB = 6i + 9j$ și $AM = (x_M - 1)i + (y_M - 3)j$	2p
	$\overrightarrow{AM} = \frac{1}{3} \overrightarrow{AB} \iff \begin{cases} x_M - 1 = 2 \\ y_M - 3 = 3 \end{cases}$	2p
	$y_M - 3 = 3$	_ F
	M(3,6)	1p
6.	$\sin x + 2\cos x = 3\cos x$	2p
	$\sin x = \cos x$	1p
	$x = \frac{\pi}{4}$	2p
		- r

SUBIECTUL al II-lea (30 de puncte)

4		
1.a)	$D(0,1,-1) = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & -2 \\ 0 & 3 & 3 \end{vmatrix}$	2p
	D(0,1,-1)=12	3 p
b)	$A(0,1,x) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2x \\ 0 & 3 & 3x^2 \end{pmatrix}$	1p
	Există minorul $d = \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = 2 \neq 0 \Rightarrow \operatorname{rang} A(0,1,x) \geq 2$	1p
	rang $A(0,1,x) = 2 \Leftrightarrow D(0,1,x) = 0$	1p
	$D(0,1,x) = 6x(x-1) \Rightarrow x = 0 \text{ sau } x = 1$	2p

Probă scrisă la Matematică

Varianta 3

		1
c)	$D(a,b,c) = 6 \cdot \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$	1p
	D(a,b,c) = 6(b-a)(c-a)(c-b)	2 p
	$D(a,b,c) = 0 \Rightarrow a = b$ sau $b = c$ sau $c = a$, deci triunghiul este isoscel	2 p
2.a)	$f(\hat{1}) = \hat{0}$	2p
	$f(\hat{3}) = \hat{0}$	2p
	Finalizare	1p
b)	P are rădăcinile $\hat{1}$, $\hat{3}$ și $\hat{4}$	3p
	$P = (X - \hat{1})(X - \hat{3})(X - \hat{4}) = (X + \hat{4})(X + \hat{2})(X + \hat{1})$	2p
c)	$f(\hat{1}) = f(\hat{3})$, deci f nu este injectivă	2p
	$\operatorname{Im} f$ nu poate avea 5 elemente, deci f nu este nici surjectivă	3p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{3 - 9x}{(x^2 + 3)\sqrt{x^2 + 3}}$	4p 1p
	Finalizare	тþ
b)	$\lim_{x \to +\infty} f(x) = 1$	3 p
	Dreapta de ecuație $y = 1$ este asimptotă orizontală spre $+\infty$	2p
c)	$\lim_{x \to +\infty} f(x) = 1, \lim_{x \to -\infty} f(x) = -1$	2p
	Din monotonie, valoarea maximă a funcției este $f\left(\frac{1}{3}\right) = 2\sqrt{7}$	2p
	Imaginea funcției este $\left(-1,2\sqrt{7}\right]$	1p
2.a)	F este derivabilă și $F'(x) = \ln x$, pentru orice $x > 0$	3 p
	F' = f	2p
b)	Aria este egală cu $\int_{1}^{e} \ln x dx =$	2p
	$=F(x)\big _{1}^{e}=1$	3 p
c)	$ (p+1) \int_{1}^{x} f^{p}(t)dt = \int_{1}^{x} t \cdot (p+1) \cdot f^{p}(t) \cdot \frac{1}{t}dt = $	1p
	$= \int_{1}^{x} t \cdot \left(\ln^{p+1} t\right)' dt = t \cdot \ln^{p+1} t \Big _{1}^{x} - \int_{1}^{x} \ln^{p+1} t dt = x \ln^{p+1} x - \int_{1}^{x} \ln^{p+1} t dt$	3 p
	Finalizare	1p

Probă scrisă la **Matematică** Varianta 3

Examenul de bacalaureat 2012 Proba E.c)

Proba scrisă la MATEMATICĂ

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați partea reală a numărului complex $(1+2i)^2$.
- **5p 2.** Se notează cu x_1 , x_2 soluțiile ecuației $x^2 3x + a = 0$, unde a este un număr real. Determinați a pentru care $x_1 + x_2 + x_1x_2 = 5$.
- **5p** | **3.** Se notează cu g inversa funcției bijective $f:(0,+\infty)\to(4,+\infty)$, $f(x)=2^x+3$. Determinați g(5).
- **4.** Se consideră mulțimea $A = \{1, 2, 3, 4, 5\}$. Determinați probabilitatea ca, alegând la întâmplare una dintre submulțimile lui A, aceasta să conțină exact trei elemente.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,3) și B(7,12). Determinați coordonatele punctului M, știind că $\overline{AM} = \frac{1}{3}\overline{AB}$.
- **5p 6.** Determinați $x \in \left(0, \frac{\pi}{2}\right)$, știind că $\frac{\sin x + 2\cos x}{\cos x} = 3$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se notează cu D(a,b,c) determinatul matricei $A(a,b,c) = \begin{pmatrix} 1 & 1 & 1 \\ 2a & 2b & 2c \\ 3a^2 & 3b^2 & 3c^2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$
- **5p a**) Calculați D(0,1,-1).
- **5p** | **b**) Determinați numerele reale x pentru care matricea A(0,1,x) are rangul egal cu 2.
- **5p** c) Arătați că dacă a, b, c sunt lungimile laturilor unui triunghi și D(a,b,c) = 0, atunci triunghiul este isoscel.
 - **2.** Se consideră inelul $(\mathbb{Z}_5,+,\cdot)$ și funcția $f:\mathbb{Z}_5\to\mathbb{Z}_5$, $f(x)=x^3+\hat{2}x^2+\hat{4}x+\hat{3}$.
- **5p a)** Calculați $f(\hat{1}) + f(\hat{3})$.
- **5p b**) Descompuneți în factori ireductibili peste \mathbb{Z}_5 polinomul $P = X^3 + 2X^2 + 4X + 3 \in \mathbb{Z}_5[X]$.
- **5p c**) Arătați că funcția f nu este surjectivă.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x+9}{\sqrt{x^2+3}}$.
- **5p** a) Arătați că $f'(x)\sqrt{x^2+3} = \frac{3-9x}{x^2+3}$, pentru orice număr real x.
- **5p b)** Determinați asimptota spre $+\infty$ la graficul funcției f.
- **5p c**) Determinați imaginea funcției *f*.
 - **2.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}, f(x)=\ln x$.
- **5p** | a) Arătați că funcția $F:(0,+\infty)\to\mathbb{R}$, $F(x)=x\ln x-x$ este o primitivă a funcției f.
- **5p** | **b**) Calculați aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = e.
- **5p** c) Arătați că $(p+1)\int_{1}^{x} f^{p}(t)dt + \int_{1}^{x} f^{p+1}(t)dt = xf^{p+1}(x)$, pentru orice $x \ge 1$ și orice p > 0.

Probă scrisă la Matematică Varianta 3

Proba E.c)

Proba scrisă la MATEMATICĂ

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$(1+1)^2$ 2:	_
	$\left(1+i\right)^2 = 2i$	3p
	2i =2	2p
2.	$f(x) = g(x) \Rightarrow x^2 + 3x + 2 = 0$	1p
	$x_1 = -1 \Rightarrow y_1 = -1$	2p
	$x_2 = -2 \Rightarrow y_2 = 0$	2p
3.	$2^{x+1} \le 2^2$	1p
	$x+1 \le 2$	2p
	$S = (-\infty, 1]$	2p
4.	$p = \frac{\text{nr.cazuri favorabile}}{1 + 1 + 1}$	1p
	nr.cazuri posibile	
	Submulțimile cu 3 termeni consecutivi ai unei progresii aritmetice sunt: {1,2,3}, {2,3,4},	
	$\{3,4,5\}$ și $\{1,3,5\} \Rightarrow 4$ cazuri favorabile	2p
	Numărul submulțimilor cu 3 elemente este $C_5^3 = 10 \Rightarrow 10$ cazuri posibile	1p
	n=2	1p
	$p = \frac{2}{5}$	14
5.	$\vec{u} \cdot \vec{v} = 3 \Leftrightarrow a + 2 = 3$	4p
	a=1	1p
6.	$\cos A = \frac{AB^2 + AC^2 - BC^2}{2 \cdot AB \cdot AC}$	2p
	$2 \cdot AB \cdot AC$	_
	$\cos A = -\frac{1}{5}$	3p
	5	

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \\ 1 & 1 & m \end{pmatrix}$	2p
	$\det A = 3m - 6$	3 p
b)	Sistemul are o soluție unică dacă și numai dacă $\det A \neq 0$	2p
	Finalizare: $m \in \mathbb{R} \setminus \{2\}$	3p

Probă scrisă la **Matematică**

Varianta 5

_	, ,	
c)	$\det A = 0$ și $\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} \neq 0$, deci matricea sistemului are rangul doi	1p
	$z = \alpha \Rightarrow \begin{cases} 2x + y = -3\alpha \\ x + 2y = -3\alpha \end{cases} \Rightarrow x = -\alpha, \ y = -\alpha$	2 p
	$x_0^2 + y_0^2 + z_0^2 = 3 \Rightarrow (-\alpha)^2 + (-\alpha)^2 + \alpha^2 = 3 \Rightarrow \alpha \in \{-1, 1\}$	1p
	Soluția este $(x_0, y_0, z_0) = (1, 1, -1)$	1p
2.a)	$X(p) \cdot X(q) = X(p+q+pq)$	3р
	$p,q \in \mathbb{R} \setminus \{-1\} \Rightarrow (p+1)(q+1) \neq 0 \Rightarrow p+q+pq \neq -1, \text{ deci } X(p+q+pq) \in G$	2p
b)	Pentru orice $X(p) \in G$, există $X\left(-\frac{p}{1+p}\right)$ astfel încât $X(p) \cdot X\left(-\frac{p}{1+p}\right) = X(0)$	3р
	$-\frac{p}{1+p} \neq -1 \Rightarrow X\left(-\frac{p}{1+p}\right) \in G \text{ si } X\left(-\frac{p}{1+p}\right) \text{ este inversul lui } X\left(p\right)$	2p
c)	$(X(p))^3 = X(7)$	1p
	$(X(p))^3 = X((p+1)^3 - 1)$	3 p
	$(p+1)^3 = 8$, deci $p=1$ și soluția este $X(1)$	1p

SUBIECTUL al III-lea

1.a)	$f'(x) = 3x^2 - 12$	3p
	$f'(x) \ge 0$ pentru orice $x \in [2, +\infty)$, deci f este crescătoare pe $[2, +\infty)$	2p
b)	$\lim_{x \to +\infty} f(x) = +\infty$	2 p
	$\lim_{x \to +\infty} \frac{e^x}{f(x)} = \lim_{x \to +\infty} \frac{e^x}{3x^2 - 12} = \lim_{x \to +\infty} \frac{e^x}{6x} = \lim_{x \to +\infty} \frac{e^x}{6} = +\infty$	3p
c)	Şirul lui Rolle pentru funcția $g: \mathbb{R} \to \mathbb{R}, \ g(x) = f(x) - a \text{ este } -\infty, 16 - a, -16 - a, +\infty$	3 p
	Ecuația are trei soluții reale distincte dacă și numai dacă $a \in (-16,16)$	2p
2.a)	$F'(x) = f(x)$, pentru orice $x \in (-1, +\infty)$	2p
	$f(x) > 0$ pentru orice $x \in (-1, +\infty)$	1 p
	F este strict crescătoare	2p
b)	$\int_{0}^{1} \frac{f(x)}{x+1} dx = \int_{0}^{1} \frac{2x+3}{(x+1)(x+2)} dx = \int_{0}^{1} \frac{dx}{x+1} + \int_{0}^{1} \frac{dx}{x+2} =$	3p
	$= \ln(x+1) \Big _{0}^{1} + \ln(x+2) \Big _{0}^{1} = \ln 3$	2 p
c)	$\int_{x}^{2x} f(t)dt = (2t - \ln(t+2)) \Big _{x}^{2x} = 2x - \ln\frac{2x+2}{x+2}, \text{ pentru } x > 0$	3 p
	$\lim_{x \to +\infty} \frac{2x - \ln \frac{2x + 2}{x + 2}}{x} = 2$	2p

Examenul de bacalaureat 2012 Proba E.c) Proba scrisă la MATEMATICĂ

Varianta 5

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Calculați modulul numărului complex $(1+i)^2$.
- **5p** 2. Determinați coordonatele punctelor de intersecție a graficelor funcțiilor $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x$ și $g : \mathbb{R} \to \mathbb{R}$, g(x) = -x 2.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale inecuația $2^{x+1} \le 4$.
- **4.** Calculați probabilitatea ca, alegând la întâmplare una dintre submulțimile cu trei elemente ale mulțimii $A = \{1, 2, 3, 4, 5\}$, elementele submulțimii alese să fie termeni consecutivi ai unei progresii aritmetice.
- **5p** | **5.** Se consideră vectorii $\vec{u} = \vec{i} 2\vec{j}$ și $\vec{v} = a\vec{i} \vec{j}$. Determinați numărul real \vec{a} pentru care $\vec{u} \cdot \vec{v} = 3$.
- **5p 6.** Calculați cosinusul unghiului A al triunghiului ABC în care AB = 4, AC = 5 și BC = 7.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră sistemul $\begin{cases} 2x + y + 3z = 0 \\ x + 2y + 3z = 0, \text{ unde } m \in \mathbb{R}. \\ x + y + mz = 0 \end{cases}$
- **5p** a) Calculați determinantul matricei sistemului.
- **5p b**) Determinați valorile reale ale lui *m* pentru care sistemul are soluție unică.
- **5p** c) În cazul m = 2, determinați soluția (x_0, y_0, z_0) a sistemului pentru care $x_0 > 0$ și $x_0^2 + y_0^2 + z_0^2 = 3$.
 - **2.** Se consideră matricea $A = \begin{pmatrix} 3 & -2 \\ 3 & -2 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ și mulțimea $G = \left\{ X(p) = I_2 + pA \mid p \in \mathbb{R} \setminus \{-1\} \right\}$.
- **5p** a) Arătați că $X(p) \cdot X(q) \in G$, pentru orice $X(p), X(q) \in G$.
- **5p b**) Admitem că (G, \cdot) este grup comutativ având elementul neutru X(0). Determinați inversul elementului X(p) în acest grup.
- **5p** c) Rezolvați ecuația $(X(p))^3 = I_2 + 7A$, unde $X(p) \in G$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 12x$.
- **5p** a) Arătați că funcția este crescătoare pe intervalul $[2,+\infty)$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{e^x}{f(x)}$.
- **5p** c) Determinați mulțimea numerelor reale a pentru care ecuația f(x) = a are trei soluții reale distincte.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}, f(x) = \frac{2x+3}{x+2}$.
- **5p** a) Arătați că orice primitivă a lui f este strict crescătoare pe $(-1, +\infty)$.
- **5p b)** Calculați $\int_{0}^{1} \frac{f(x)}{x+1} dx$.
- **5p** c) Calculați $\lim_{x \to +\infty} \frac{x}{x}$

Proba E.c)

Proba scrisă la MATEMATICĂ

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$\log_2(\sqrt{7} + \sqrt{3}) + \log_2(\sqrt{7} - \sqrt{3}) = \log_2(\sqrt{7} + \sqrt{3})(\sqrt{7} - \sqrt{3})$	3 p
	Finalizare	2p
2.	$f(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = -4$	3 p
	Distanța este egală cu 3	2p
3.	Notăm $3^x = t$ și obținem $t + 3t = 4$	3p
	$t=1 \Leftrightarrow x=0$	2 p
4.	$T_{k+1} = C_{20}^k \cdot x^{20-k} \cdot \left(\frac{1}{\sqrt{x}}\right)^k = C_{20}^k \cdot x^{20-k-\frac{k}{2}}$	2 p
	$20 - k - \frac{k}{2} = 14 \iff k = 4$	2 p
	Rangul termenului este 5	1p
5.	$m_d = -\frac{3}{2}$	2p
	Ecuația paralelei este $y - y_A = -\frac{3}{2}(x - x_A)$ adică $y = -\frac{3}{2}x + \frac{15}{2}$	3 p
6.	$\frac{BC}{\sin A} = \frac{AB}{\sin C} \Rightarrow \sin C = \frac{1}{2}$	3 p
	$m(\not < C) = 30^{\circ}$, deoarece $m(\not < A) > m(\not < C)$	2p

SUBIECTUL al II-lea

1.a)	$\det A = \begin{vmatrix} -1 & a & 2a+4 \\ a+2 & a & a+1 \\ a+1 & 2a-1 & 3 \end{vmatrix} =$	200
	$\left \det A = \left a + 2 \right a a + 1 \right =$	2p
	$\begin{vmatrix} a+1 & 2a-1 & 3 \end{vmatrix}$	
	$\begin{vmatrix} 3a+3 & a & 2a+4 \\ 3a+3 & a & a+1 \\ 3a+3 & 2a-1 & 3 \end{vmatrix} = (3a+3)\begin{vmatrix} 1 & a & 2a+4 \\ 1 & a & a+1 \\ 1 & 2a-1 & 3 \end{vmatrix} = (3a+3)\begin{vmatrix} 1 & a & 2a+4 \\ 0 & 0 & -a-3 \\ 0 & a-1 & -2a-1 \end{vmatrix}$	
	= 3a+3 a $a+1 = (3a+3) 1$ a $a+1 = (3a+3) 0$ 0 $-a-3 $	2 p
	$\begin{vmatrix} 3a+3 & 2a-1 & 3 \end{vmatrix}$ $\begin{vmatrix} 1 & 2a-1 & 3 \end{vmatrix}$ $\begin{vmatrix} 0 & a-1 & -2a-1 \end{vmatrix}$	
	Finalizare	1p
b)	Sistemul este compatibil determinat \Leftrightarrow det $A \neq 0$	2p
	$\det A = 0 \iff a \in \{-1, 1, -3\}$	2p
	$a \in \mathbb{R} \setminus \{-1,1,-3\}$	1p
c)	$\int -x - 2y = 1$	
	$a = -2 \Rightarrow \begin{cases} -x - 2y = 1\\ -2y - z = 1\\ -x - 5y + 3z = 2 \end{cases}$	1p
	$\left[-x-5y+3z=2\right.$	•

	Contra i rațional de Livardale și Examinate	
	$x = -\frac{1}{9}$, $y = -\frac{4}{9}$, $z = -\frac{1}{9}$	4 p
2.a)	$\hat{0}^5 = \hat{0}, \ \hat{1}^5 = \hat{1}, \ \hat{2}^5 = \hat{2}, \ \hat{3}^5 = \hat{3}, \ \hat{4}^5 = \hat{4}$	5p
b)	$f = X^{8} + X^{4} + \hat{3}X^{4} + \hat{3} = X^{4} (X^{4} + \hat{1}) + \hat{3}(X^{4} + \hat{1})$	2p
	$f = \left(X^4 + \hat{1}\right)\left(X^4 + \hat{3}\right)$	3 p
c)	$f\left(\hat{0}\right) = \hat{3}$	1p
	$a \neq \hat{0} \Rightarrow a^4 = \hat{1}$	2p
	$f(a) = \hat{1} + \hat{4} + \hat{3} = \hat{3}$ pentru orice $a \neq \hat{0}$	1p
	Finalizare	1p

SUBIECTUL al III-lea

1.a)	f este derivabilă pe \mathbb{R} și $f'(x) = 1 + \frac{x}{\sqrt{x^2 + 1}}$	2p
	$\lim_{x \to 0} \frac{f(x) - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = 1$	3 p
b)	$\lim_{x \to 0} \frac{f(x) - 1}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0) = 1$ $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x + \sqrt{x^2 + 1}}{x} = 2$	2p
	$\lim_{x \to +\infty} \left(f(x) - 2x \right) = \lim_{x \to +\infty} \left(\sqrt{x^2 + 1} - x \right) = 0$	2p
	y = 2x este ecuația asimptotei oblice spre +∞ la graficul funcției f	1p
c)	f este continuă pe \mathbb{R} , $\lim_{x \to -\infty} f(x) = 0$ și $\lim_{x \to +\infty} f(x) = +\infty \Rightarrow f$ este surjectivă, deci ecuația are	2p
	soluție $f'(x) > 0, \forall x \in \mathbb{R} \Rightarrow f$ este strict crescătoare $\Rightarrow f$ este injectivă, deci soluția este unică	3 p
2.a)	$I_1 = \int_0^1 x \cdot e^{x^2} dx = \frac{1}{2} e^{x^2} \Big _0^1 =$	3p
	$=\frac{e-1}{2}$	2 p
b)	$2I_{p} = \int_{0}^{1} x^{p-1} \left(2xe^{x^{2}} \right) dx = \int_{0}^{1} \left(e^{x^{2}} \right)' x^{p-1} dx = e^{x^{2}} x^{p-1} \Big _{0}^{1} - (p-1) \int_{0}^{1} e^{x^{2}} x^{p-2} dx$	3p
	$2I_p = e - (p-1)I_{p-2} \implies 2I_p + (p-1)I_{p-2} = e$	2p
c)	Considerăm funcția continuă $f:[0,1] \to \mathbb{R}$, $f(x) = xe^{x^2}$, șirul de diviziuni $\Delta_n = \left(\frac{k}{n}\right)_{k=\overline{0,n}}$ cu	
	$\ \Delta_n\ \to 0$ și punctele intermediare $\frac{k}{n} \in \left[\frac{k-1}{n}, \frac{k}{n}\right]$	1p
	$\lim_{n \to +\infty} \frac{1}{n^2} \cdot \left(e^{\frac{1^2}{n^2}} + 2e^{\frac{2^2}{n^2}} + \dots + ne^{\frac{n^2}{n^2}} \right) = \lim_{n \to +\infty} \frac{1}{n} \cdot \sum_{k=1}^n \frac{k}{n} \cdot e^{\left(\frac{k}{n}\right)^2} =$	2p
	$= \lim_{n \to +\infty} \frac{1}{n} \cdot \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x) dx = \frac{e-1}{2}$	2 p

Examenul de bacalaureat 2012 Proba E.c)

Proba scrisă la MATEMATICĂ

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\log_2(\sqrt{7} + \sqrt{3}) + \log_2(\sqrt{7} \sqrt{3}) = 2$.
- **5p** 2. Calculați distanța dintre punctele de intersecție a graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 5x + 4$ cu axa Ox.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^x + 3^{x+1} = 4$.
- **5p** 4. Determinați rangul termenului care conține x^{14} în dezvoltarea binomului $\left(x + \frac{1}{\sqrt{x}}\right)^{20}$, x > 0.
- **5p 5.** Determinați ecuația dreptei care trece prin punctul A(3,3) și este paralelă cu dreapta d de ecuație 3x + 2y 1 = 0.
- **5p 6.** Determinați măsura unghiului C al triunghiului ABC, știind că BC = 2, $AB = \sqrt{2}$ și măsura unghiului BAC este egală cu 45° .

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră sistemul de ecuații $\begin{cases} -x + ay + (2a+4)z = 1\\ (a+2)x + ay + (a+1)z = 1\\ (a+1)x + (2a-1)y + 3z = 2 \end{cases}$, unde $a \in \mathbb{R}$.
- **5p** a) Arătați că determinantul matricei sistemului este egal cu $3a^3 + 9a^2 3a 9$.
- **5p b**) Determinați valorile reale ale lui *a* pentru care sistemul este compatibil determinat.
- **5p** c) Pentru a = -2, rezolvați sistemul.
 - **2.** Se consideră polinomul $f = X^8 + \hat{4}X^4 + \hat{3}, f \in \mathbb{Z}_5[X]$.
- **5p a**) Arătați că $a^5 = a$, pentru orice $a \in \mathbb{Z}_5$.
- **5p b**) Arătați că polinomul f este reductibil peste \mathbb{Z}_5 .
- **5p** c) Arătați că polinomul f nu are rădăcini în \mathbb{Z}_5 .

- **1.** Se consideră funcția $f: \mathbb{R} \to (0, +\infty)$, $f(x) = x + \sqrt{x^2 + 1}$.
- **5p a)** Calculați $\lim_{x\to 0} \frac{f(x)-1}{x}$.
- **5p b**) Determinați ecuația asimptotei oblice spre $+\infty$ la graficul funcției f.
- **5p** c) Demonstrați că, pentru orice număr real m > 0, ecuația f(x) = m are o soluție unică în \mathbb{R} .
 - 2. Pentru fiecare număr natural nenul p, se consideră numărul $I_p = \int_0^1 x^p e^{x^2} dx$.
- **5p a**) Calculați I_1 .
- **5p b**) Arătați că $2I_p + (p-1)I_{p-2} = e$, pentru orice $p \ge 3$.
- **5p** c) Calculați $\lim_{n \to +\infty} \frac{1}{n^2} \left(e^{\frac{1^2}{n^2}} + 2e^{\frac{2^2}{n^2}} + ... + ne^{\frac{n^2}{n^2}} \right).$

Examenul de bacalaureat 2012 Proba E. c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera teoretică, profilul real, specializarea matematică - informatică.

Filiera vocațională, profilul militar, specializarea matematică - informatică.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

	SUBIECTUL I (30 de pur	
1.		2p
	$-25 \le x \le 23$	1p
	Card A = 49	2p
2.	$\begin{vmatrix} 2\lambda - 1 - 2\lambda & -3\lambda + 1 \end{vmatrix}$	1p
	$x_1 = 2, x_2 = \frac{1}{2}$	2p
	Punctele de intersecție sunt $(2,3)$ și $(\frac{1}{2},0)$	2p
3.	$1 + 7x = 1 + 3x + 3x^2 + x^3$	1p
	$x(x^2 + 3x - 4) = 0$	1p
	$x_1 = 0, x_2 = 1, x_3 = -4$	3p
4.	Alegem 2 numere impare din cele 5 în $C_5^2 = 10$ moduri	2 p
	Alegem un număr par din cele 5 în 5 moduri	1p
	Sunt 50 de submulțimi	2p
5.	Mijlocul segmentului are coordonatele (2,1)	1p
	Dreapta AB are panta 3, deci mediatoarea are panta $-\frac{1}{3}$	2p
	Ecuația mediatoarei este $y = -\frac{1}{3}x + \frac{5}{3}$	2p
6.	$\cos 2x = 1 - 2\sin^2 x = \frac{1}{3}$	2p
	$\sin x = \pm \frac{1}{\sqrt{3}}$	2p
	$x \in \left(0, \frac{\pi}{2}\right) \Rightarrow \sin x = \frac{1}{\sqrt{3}}$	1p

SUBII	ECTUL al II-lea	(30 de puncte)
1.a)	$\Delta = \begin{vmatrix} 1 & m & m^2 \\ m & m^2 & 1 \\ m^2 & 1 & m \end{vmatrix} = -(m^3 - 1)^2$ Finalizare: $m = 1$	3p
b)	Dacă sistemul are soluții nenule, atunci $\Delta = 0$	2p
	În acest caz, sistemul se reduce la $x + y + z = 0$	-r 1p
	Această ecuație nu are soluții cu toate componentele strict pozitive	2p
c)	Pentru $m = 1$, rangul este 1	2p
	Pentru $m \neq 1$, rangul este 3	3p

Probă scrisă la Matematică

Model

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea matematică - informatică.

Filiera vocațională, profilul militar, specializarea matematică - informatică.

2.a)	$(x*y)*z = \frac{1}{4}(x-1)(y-1)(z-1) + 1 \text{si} x*(y*z) = \frac{1}{4}(x-1)(y-1)(z-1) + 1$	4p
	Finalizare: legea este asociativă	1p
b)	Trebuie să arătăm că există $e \in \mathbb{R}$ astfel încât $x * e = e * x = x$, pentru orice $x \in \mathbb{R}$	1p
	$x * e = x \Leftrightarrow x + e - xe + 1 = 2x \Leftrightarrow (e+1)(x-1) = 0, \forall x \in \mathbb{R}$, deci $e = -1$	3р
	Verificarea relației $(-1) * x = x, \forall x \in \mathbb{R}$	1p
c)	$x * x * x = \frac{x^3 - 3x^2 + 3x + 3}{4}$	2p
	Ecuația $x * x * x = 3$ este echivalentă cu $(x-3)(\underbrace{x^2+3}) = 0 \Rightarrow x = 3$	3р
	20	1

	>0	
SUBI	ECTUL al III-lea (30 de pu	ıncte)
1.a)	$f(-x) = -x^3 + 3x + 2$	2p
	$\lim_{x \to +\infty} \frac{x^3 - 3x + 2}{-x^3 + 3x + 2} = -1$	3 p
b)	$f'(x) = 3x^2 - 3$	2p
	$f'(x) \le 0, \forall x \in [-1,1] \Rightarrow f$ este descrescătoare pe $[-1,1]$	3 p
c)	$f(1) = 0, f(-1) = 4, \lim_{x \to +\infty} f(x) = +\infty, \lim_{x \to -\infty} f(x) = -\infty$	2p
	Din studiul variației funcției deducem că ecuația $f(x) = m$ are trei soluții reale distincte dacă și numai dacă $m \in (0,4)$	3 p
2.a)	$I_2 = \int_0^1 1 dx - 2 \int_0^1 x^2 dx + \int_0^1 x^4 dx =$	1p
	$ = \left(x - \frac{2x^3}{3} + \frac{x^5}{5}\right) \Big _0^1 = $	3 p
	$=\frac{8}{15}$	1p
b)	$I_n - I_{n+1} = \int_0^1 x^2 (1 - x^2)^n dx \ge 0$ pentru orice <i>n</i> , deci şirul este descrescător	3 p
	$I_n \ge 0$, deci şirul este mărginit inferior	1p
	Finalizare	1p
c)	$I_n = x(1-x^2)^n \Big _0^1 - n \int_0^1 x(1-x^2)^{n-1} \cdot (-2x) dx =$	2p
	$= -2n \int_0^1 \left[(1-x^2) - 1 \right] (1-x^2)^{n-1} dx =$	1p
	$=-2nI_n+2nI_{n-1}\Rightarrow (2n+1)I_n=2nI_{n-1}, \forall n\geq 2$	2p

Examenul de bacalaureat 2012 Proba E. c) Proba scrisă la MATEMATICĂ

Model

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică - informatică.

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.
- La toate subiectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați numărul elementelor mulțimii $A = \{x \in \mathbb{Z} | |x+1| \le 24\}$.
- **5p** 2. Determinați coordonatele punctelor de intersecție a dreptei y = 2x 1 cu parabola $y = 2x^2 3x + 1$.
- **5p** 3. Rezolvați, în mulțimea numerelor reale, ecuația $\sqrt[3]{1+7x} = 1+x$.
- **5p 4.** Se consideră mulțimea $A = \{1, 2, ..., 10\}$. Determinați numărul de submulțimi cu 3 elemente ale mulțimii A, submulțimi care conțin exact 2 numere impare.
- **5p** | **5.** Determinați ecuația mediatoarei segmentului [AB], unde A(1,-2) și B(3,4).
- **5p 6.** Știind că $x \in \left(0, \frac{\pi}{2}\right)$ și $\cos 2x = \frac{1}{3}$, calculați $\sin x$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră sistemul de ecuații $\begin{cases} x + my + m^2z = 0 \\ mx + m^2y + z = 0 \text{, unde } m \in \mathbb{R} \\ m^2x + y + mz = 0 \end{cases}$
- **5p** a) Determinați valorile lui *m* pentru care determinantul matricei sistemului este nul.
- **5p b)** Arătați că, pentru nicio valoare a lui m, sistemul nu are o soluție (x_0, y_0, z_0) cu x_0, y_0, z_0 numere reale strict pozitive.
- **5p** c) Arătați că rangul matricei sistemului este diferit de 2, oricare ar fi $m \in \mathbb{R}$.
 - **2.** Pe mulțimea \mathbb{R} se definește legea de compoziție $x * y = \frac{1}{2}(x + y xy + 1)$.
- **5p** a) Verificați dacă legea de compoziție "*" este asociativă.
- 5p b) Arătați că legea de compoziție "*" admite element neutru.
- **5p** c) Rezolvați ecuația x * x * x = 3.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 3x + 2$.
- **5p** a) Calculați $\lim_{x \to +\infty} \frac{f(x)}{f(-x)}$.
- **5p b)** Demonstrați că funcția f este descrescătoare pe intervalul [-1,1].
- **5p** c) Determinați $m \in \mathbb{R}$ pentru care ecuația f(x) = m are trei soluții reale distincte.
 - **2.** Se consideră șirul $(I_n)_{n\geq 1}$, $I_n = \int_0^1 (1-x^2)^n dx$.
- **5p a)** Calculați I_2 .
- **5p b)** Demonstrați că șirul $(I_n)_{n>1}$ este convergent.
- **5p** c) Demonstrați că $(2n+1)I_n = 2nI_{n-1}$, pentru orice $n \ge 2$.

Proba E.c)

Proba scrisă la MATEMATICĂ

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte)

1.	$x^2 + mx + 4 = 0$ are soluția $x = 2 \implies m = -4$	3p
	Pentru $m = -4$ cele două mulțimi sunt egale	2 p
2.	$x_V = -\frac{b}{2a} = \frac{3}{2}$	2p
	$\Delta = 1$	1p
	$y_V = -\frac{\Delta}{4a} = -\frac{1}{4}$	2p
3.	Condiție: $x > 0$	2p
	$3^{\log_3 x} < 3^0 \Leftrightarrow x < 1$	2 p
	$x \in (0,1)$	1p
4.	$p = \frac{\text{nr.cazuri favorabile}}{\text{nr.cazuri favorabile}}$	1p
	nr.cazuri posibile	-
	\overline{ab} cu $a,b \in \{1,3,5,7,9\}$ sunt 25 de numere \Rightarrow 25 de cazuri favorabile	2 p
	\overline{ab} cu $a \in \{1,2,3,,9\}$ şi $b \in \{0,1,2,3,,9\}$ sunt 90 de numere \Rightarrow 90 de cazuri posibile	1p
	$p = \frac{5}{18}$	1p
5.	3 _ a	2p
	$\frac{3}{a} = \frac{a}{2a - 3}$	2p
	$a^2 - 6a + 9 = 0$	
	a=3	1p
6.	$S_{ABC} = 12$	2 p
	$R = \frac{abc}{4S}$	2p
	$R = \frac{25}{100}$	²P
	$R = \frac{25}{8}$	1p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$	
	$ \begin{vmatrix} A(\pi) = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \end{vmatrix} $	3р
	$\det(A(\pi)) = 1$	2 p

Probă scrisă la **Matematică** Varianta 7

	Centrul Național de Evaluare și Examinare	
b)	$A(x) \cdot A(y) = \begin{pmatrix} \cos x \cos y - \sin x \sin y & 0 & i(\cos x \sin y + \sin x \cos y) \\ 0 & 1 & 0 \\ i(\cos x \sin y + \sin x \cos y) & 0 & \cos x \cos y - \sin x \sin y \end{pmatrix}, \text{ pentru orice } x, y \in \mathbb{R}$	
	$A(x) \cdot A(y) = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & \end{vmatrix}$, pentru orice $x, y \in \mathbb{R}$	3p
	$i(\cos x \sin y + \sin x \cos y) = 0 = \cos x \cos y - \sin x \sin y$	
	$(\cos(x+y) 0 i\sin(x+y))$	1
	$A(x+y)=$ 0 1 0 , pentru orice $x,y\in\mathbb{R}$	1p
	$A(x+y) = \begin{pmatrix} \cos(x+y) & 0 & i\sin(x+y) \\ 0 & 1 & 0 \\ i\sin(x+y) & 0 & \cos(x+y) \end{pmatrix}, \text{ pentru orice } x, y \in \mathbb{R}$	
	Finalizare	1p
c)	$A^{2012}(x) = A(2012x)$	2p
	$A(2012x) = I_3 \Leftrightarrow \cos(2012x) = 1 \text{ si } \sin(2012x) = 0$	1p
	$x = \frac{k\pi}{1006}, k \in \mathbb{Z}$	2p
2.a)	$\frac{1}{x} \cdot \frac{1}{2}$	2n
	$x \circ \frac{1}{2} = \frac{2}{1} = x$, pentru orice $x \in G$	2p
	$x \circ \frac{1}{2} = \frac{x \cdot \frac{1}{2}}{2x \cdot \frac{1}{2} - x - \frac{1}{2} + 1} = x, \text{ pentru orice } x \in G$	
	$\frac{1}{x} \cdot x$	2p
	$\frac{1}{2} \circ x = \frac{\frac{1}{2} \cdot x}{2 \cdot \frac{1}{2} \cdot x - \frac{1}{2} - x + 1} = x, \text{ pentru orice } x \in G$	
	$\frac{2}{2} \cdot \frac{1}{2} \cdot x - \frac{1}{2} - x + 1$	
	Finalizare	1p
b)	$x \circ x' = \frac{xx'}{2xx' - x - x' + 1} = \frac{x'x}{2x'x - x' - x + 1} = x' \circ x$, pentru orice $x, x' \in G$	1p
	$x \circ x' = \frac{1}{2} \Rightarrow x' = 1 - x$	3p
	$x' \in (0,1)$	1p
c)	f este bijectivă	2p
	$f(x \circ y) = \frac{1}{x \circ y} - 1 = \frac{(x-1)(y-1)}{xy}$, pentru orice $x, y \in G$	2
	2. 9	2p
	$f(x)f(y) = \left(\frac{1}{x} - 1\right)\left(\frac{1}{y} - 1\right) = \frac{(x-1)(y-1)}{xy}$, pentru orice $x, y \in G$	1p
	(x,y) (x,y) (x,y) (x,y) (x,y) (x,y)	

1.a)	$\lim_{x \to +\infty} \frac{x}{f(x)} = \lim_{x \to +\infty} \frac{2x}{e^x + e^{-x}} = \lim_{x \to +\infty} \frac{2}{e^x - e^{-x}} = 0$	3p 2p
b)	$f'(x) = \frac{e^x - e^{-x}}{2}, \text{ pentru orice } x \in \mathbb{R}$ $f''(x) = \frac{e^x + e^{-x}}{2}, \text{ pentru orice } x \in \mathbb{R}$	1p 2p
	f''(x) > 0, pentru orice x real, deci f este convexă	2p
c)	$g(x) = \frac{e^{\sqrt{x}} + e^{-\sqrt{x}}}{2} \Rightarrow g'(x) = \frac{e^{\sqrt{x}} - e^{-\sqrt{x}}}{4\sqrt{x}}, \text{ pentru orice } x > 0$	2p
	$x > 0 \Rightarrow \sqrt{x} > 0 \Rightarrow e^{\sqrt{x}} > e^{-\sqrt{x}}$	2p
	$g'(x) > 0 \Rightarrow g$ este strict crescătoare pe $(0, +\infty)$	1p

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

2.a)	π	
	$J_1 = \int_{0}^{\frac{\pi}{2}} \sin t dt$	1p
	$J_1 = -\cos t \Big _0^{\frac{\pi}{2}}$ $J_1 = 1$	2 p
	$J_1 = 1$	2p
b)	$I_{1} = \int_{0}^{1} x \sqrt{1 - x^{2}} dx$ $I_{1} = -\frac{1}{3} \sqrt{\left(1 - x^{2}\right)^{3}} \Big _{0}^{1}$ $I_{1} = \frac{1}{3}$	1p
	$I_1 = -\frac{1}{3}\sqrt{\left(1-x^2\right)^3} \bigg _0^1$	3 p
	$I_1 = \frac{1}{3}$	1p
c)	$\frac{\pi}{2}$	
	$J_{2n} - J_{2n+2} = \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \cos^{2} x dx$	2p
	Cu schimbarea de variabilă $\sin x = t$ obținem $J_{2n} - J_{2n+2} = \int_{0}^{1} t^{2n} \cdot \sqrt{1 - t^2} dt = I_{2n}$	3p

Proba E.c)

Proba scrisă la MATEMATICĂ

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

(30 de puncte)

- **5p** 1. Determinați numărul real m știind că mulțimile $A = \{2\}$ și $B = \{x \in \mathbb{R} \mid x^2 + mx + 4 = 0\}$ sunt egale.
- **5p** 2. Determinați coordonatele vârfului parabolei asociate funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 3x + 2$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale inecuația $3^{\log_3 x} < 1$.
- **5p 4.** Calculați probabilitatea ca, alegând la întâmplare unul dintre numerele naturale de 2 cifre, acesta să fie format doar din cifre impare.
- **5p** | **5.** Determinați numărul real \vec{a} pentru care vectorii $\vec{u} = 3\vec{i} + a\vec{j}$ și $\vec{v} = a\vec{i} + (2a 3)\vec{j}$ sunt coliniari.
- **5p 6.** Calculați raza cercului circumscris triunghiului ABC, știind că AB = AC = 5 și BC = 6.

SUBIECTUL al II-lea

(30 de puncte)

- **1.** În $\mathcal{M}_3(\mathbb{C})$ se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(x) = \begin{pmatrix} \cos x & 0 & i\sin x \\ 0 & 1 & 0 \\ i\sin x & 0 & \cos x \end{pmatrix}$, unde $x \in \mathbb{R}$.
- **5p** | **a**) Calculați $\det(A(\pi))$.
- **5p b**) Arătați că $A(x) \cdot A(y) = A(x+y)$ pentru orice $x, y \in \mathbb{R}$.
- **5p** | **c**) Determinați numerele reale x pentru care $(A(x))^{2012} = I_3$.
 - **2.** Pe mulțimea G = (0,1) se definește legea de compoziție asociativă $x \circ y = \frac{xy}{2xy x y + 1}$.
- **5p** a) Arătați că $e = \frac{1}{2}$ este elementul neutru al legii de compoziție "°".
- **5p** \mid **b**) Arătați că orice element din mulțimea G este simetrizabil în raport cu legea de compoziție " \circ ".
- **5p** c) Demonstrați că $f: G \to \mathbb{R}_+^*$, $f(x) = \frac{1}{x} 1$ este un izomorfism de la grupul (G, \circ) la grupul (\mathbb{R}_+^*, \cdot) .

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{e^x + e^{-x}}{2}$.
- **5p a)** Calculați $\lim_{x \to +\infty} \frac{x}{f(x)}$.
- **5p b)** Demonstrați că funcția f este convexă pe \mathbb{R} .
- **5p** c) Arătați că funcția $g:(0,+\infty)\to\mathbb{R}$, $g(x)=f(\sqrt{x})$ este strict crescătoare pe $(0,+\infty)$.
 - **2.** Pentru fiecare număr natural nenul n se consideră numerele $I_n = \int_0^1 x^n \cdot \sqrt{1-x^2} dx$ și $J_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$.
- **5p a**) Calculați J_1 .
- **5p b**) Calculati I_1 .
- **5p** | **c**) Demonstrați că $J_{2n} J_{2n+2} = I_{2n}$ pentru orice număr natural nenul n.