第一章 普通点集拓扑

1.1 拓扑空间与连续函数

1.1.1 拓扑空间

定义 1.1.1. 集合 X 上的一个拓扑 T 谓 X 的一满足如下条件的子集族:

- 1. $\{\emptyset, X\} \in \mathcal{T}$;
- 2. T 中元素的任意并仍在 T 中;
- 3. T 中元素的有限交仍在 T 中。

定义 1.1.2. X 的所有子集构成的拓扑谓离散拓扑。

定义 1.1.3. 由 X 和 \emptyset 构成的拓扑谓密着拓扑。

定义 1.1.4. 由 X 本身与所有满足 X-U 为有限集的 U 构成的拓扑谓有限补拓扑。

定义 1.1.5. $T' \supset T$ 则 T' 细于 T, 反之则谓粗于。

如果把开集比做石子, 把石子打碎就得到更细的拓扑。

1.1.2 拓扑的基

定义 1.1.6. 基 B 谓满足如下条件的子集族:

- 1. 对任意 $x \in X$, 存在 $B \in \mathcal{B}$ 满足 $x \in B$;
- 2. 对任意 $x \in B_1 \cap B_2$, 存在 B 满足 $x \in B$ 且 $B \subset B_1 \cap B_2$ 。

注意此定义不针对具体的拓扑。

例 1.1.1. 平面上的圆域和矩形域构成的集族都构成基。

定义 1.1.7. 满足定义 1.1.6的 \mathcal{B} 生成的拓扑为所有满足对 $x \in U$,存在 $x \in \mathcal{B} \subset U$ 的 U 的集族。

可以直接验证上述定义构成一个拓扑。对所有x取对应的 $x \in B_x$ 后将诸 B_x 并起,可得等价的表述

定理 1.1.1. 若 \mathcal{B} 为 \mathcal{T} 的基,则 \mathcal{T} 为 \mathcal{B} 中元素并的族。

定理 1.1.2. 设 C 为开集族,若对于任意开集 U 中任意 x,存在 $C \in C$ 满足 $x \in C \subset U$,则 C 为 T 的基。

证明. 容易验证 \mathcal{C} 为基。再分别证 $\mathcal{C} \subset \{U\}$ 与 $\{\cup C\} \supset \{U\}$ 。

定理 1.1.3. 设 \mathcal{B} 于 \mathcal{B}' 分别生成 \mathcal{T} 与 \mathcal{T}' , 则 \mathcal{T}' 细于 \mathcal{T} 当且仅当对任意 $x \in \mathcal{B}$ 存在 $x \in \mathcal{B}' \subset \mathcal{B}$ 。

证明. 强行带入定义,即任意 U 均在 T' 内即可。

定义 1.1.8. $\mathbb R$ 上的 (a,b) 生成的拓扑谓标准拓扑。

定义 1.1.9. \mathbb{R} 上 [a,b) 生成的拓扑谓下限拓扑,记作 \mathbb{R}_{ℓ} 。

定义 1.1.10. \mathbb{R} 上 (a,b) 与 (a,b) – $\left\{\frac{1}{n}\right\}$ 生成的拓扑谓 K-拓扑,记作 \mathbb{R}_K 。

引理 1.1.1. \mathbb{R}_{ℓ} 与 \mathbb{R}_{K} 严格细于标准拓扑,但它们之间不可比较。

证明. \mathbb{R}_K 严格细于的证明只需考虑 x=0 与 $B=(-1,1)-\{1/n\}$,同一个集合可证 \mathbb{R}_ℓ 不细于 R_K 。

定义 1.1.11. 子基 S 谓满足 $\cup S = X$ 的集族。

定义 1.1.12. 子基生成的拓扑谓 S 中有限交的所有并。

可以直接验证 $\{\cap S\}$ 为一个基,故其确实生成一拓扑。

1.1.3 序拓扑

定义 1.1.13. 具有全序关系的 X 上的序拓扑谓所有 (a,b), $(a, \max X]$, $[\min X,b)$ 生成的拓扑。

例 1.1.2. \mathbb{Z}_+ 上的序拓扑是离散拓扑。然而 $X=\{1,2\}\times\mathbb{Z}_+$ 的字典序拓扑下单点集 1×1 并非开集。

定义 1.1.14. 全序集 X 中 a 决定的射线谓开射线 $(a,+\infty)$, $(-\infty,a)$, $[a,+\infty)$, $(-\infty,a]$ 。

所有开射线构成 X 的序拓扑的子基。

1.1.4 积拓扑

定义 1.1.15. $X \times Y$ 上的积拓扑谓所有 $U \times V$ 的集族 \mathcal{B} 生成的拓扑, 其中 $U \to V$ 为 $X \to Y$ 中的开集。

定理 1.1.4. 若 \mathcal{B} 与 \mathcal{C} 分别为 \mathcal{X} 与 \mathcal{Y} 的基、则 $\mathcal{B} \times \mathcal{C}$ 为 $\mathcal{X} \times \mathcal{Y}$ 的基。

定义 1.1.16. 投射 $\pi_1(x,y) = x$, $\pi_2(x,y) = y$ 。

定理 1.1.5. 如下的 S 构成 $X \times Y$ 的一子基, 其中 U 和 V 分别为 X 与 Y 中的开集。

$$S = \{\pi_1^{-1}(U)\} \cup \{\pi_2^{-1}(V)\}.$$

1.1.5 子空间拓扑

定义 1.1.17. 对 X 的子集 Y 定义子空间拓扑, 其中 U 为 X 中的开集。

$$\mathcal{T}_Y = \{Y \cap U\}.$$

定理 1.1.6. 若 \mathcal{B} 为 X 的一个基,则

$$\mathcal{B}_Y = \{ B \cap Y \mid B \in \mathcal{B} \}$$

谓 Y 的子空间拓扑的一个基。

引理 1.1.2. 若 Y 为 X 中开集而 U 为 Y 中开集,则 U 为 X 中开集。

定理 1.1.7. 若 $A \subset X$, $B \subset Y$, 则 $A \times B$ 的积拓扑与其自 $X \times Y$ 继承的子空间拓扑相符。

然而,对于序拓扑无类似结论。

例 1.1.3. 考虑 $X = \mathbb{R}$ 而 Y = [0,1], Y 上的序拓扑与子空间拓扑相符。

例 1.1.4. 考虑 $X = \mathbb{R}$ 而 $Y = [0,1) \cup \{2\}$,子空间拓扑中 $\{2\}$ 为开集,二者不符。

例 1.1.5. 考虑 $X = \mathbb{R}^2$ 而 $Y = [0,1] \times [0,1]$,则 $\frac{1}{2} \times \left(\frac{1}{2},1\right]$ 为子空间拓扑的开集但不是序拓扑的开集。

定义 1.1.18. 子集 Y 称为凸的,如果对 Y 中 a < b 皆有 $(a,b) \subset Y$ 。

定理 1.1.8. 设 X 为全序集, Y 为凸子集, 则子空间拓扑与序拓扑一致。

证明. 借助开射线构造子基后证明其相互包含即可。

1.1.6 闭集与极限点

Hausdorff 空间

定义 1.1.19. 若 X 中任意两不同点存在无交邻域,则称 X 为一 Hausdorff 空间 (Hausdorff space)。

1.2 连通性与紧致性

1.2.1 紧致空间

定义 1.2.1. X 的子集族 \mathcal{C} 称为具有有限交性质 (finite intersection property), 如果 \mathcal{C} 的任意有限子族交非空。

定理 1.2.1. X 是紧致的当且仅当 X 中具有有限交性质的每一个闭集族 \mathcal{C} ,其交非空。

证明. 这些集合的补是一堆开集,这些开集中的任意有限个都不能覆盖 X,但 X 是紧致的,所以它们合起来也不能覆盖 X。

1.2.2 实直线上的紧致子空间

定理 1.2.2. 非空紧致 Hausforff 空间 X, 若无孤立点则不可数。

证明. 对于 X 的任意元素 x,由 Hausdorff 性质皆可以选取一非空开集 V,满足 $x \notin \overline{V}$ 。

假设有 $f:\mathbb{Z}_+\to X$,则可以选取 V_1 其闭包不包含 x,且可选取 $V_2\subset V_1$ 其闭包不包含 x_2 ,以此类推。考虑

$$\overline{V}_1 \supset \overline{V}_2 \supset \cdots,$$

由 x 的紧致性与定理 1.2.1, 知其交非空故有元素 x 在诸 x_n 之外。

1.2.3 极限点紧致性

定义 1.2.2. 度量空间内的映射 f, 若

$$d\left(f\left(x\right), f\left(y\right)\right) < d\left(x, y\right),$$

则称 f 为收紧映射 (shrinking map)。

定义 1.2.3. 度量空间内的映射 f, 若

$$d(f(x), f(y)) \le \alpha d(x, y),$$

其中 $\alpha < 1$, 则称 f 为压缩映射 (contraction map)。

定理 1.2.3. 若 X 为完备度量空间,则压缩映射存在不动点。