

AG-Actividad Guiada 3

Nombre: Isabel Vázquez Trigás

https://github.com/404isabel/03MAIR-Algoritmos-de-optimizacion/tree/master/AG3

```
In [94]: import urllib.request
         file="swiss42.tsp"
         urllib.request.urlretrieve("http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/swiss42.tsp",file
Out[94]: ('swiss42.tsp', <http.client.HTTPMessage at 0x7fce62cccc18>)
In [95]: !!pip install tsplib95
         Requirement already satisfied: tsplib95 in /usr/local/lib/python3.6/dist-packages (0.3.2)
         Requirement already satisfied: Click>=6.0 in /usr/local/lib/python3.6/dist-packages (from tsplib
         95) (7.0)
         Requirement already satisfied: networkx==2.1 in /usr/local/lib/python3.6/dist-packages (from tsp
         lib95) (2.1)
         Requirement already satisfied: decorator>=4.1.0 in /usr/local/lib/python3.6/dist-packages (from
         networkx == 2.1 - > tsplib95) (4.3.2)
In [0]: import tsplib95
         import random
         from math import e
         problem = tsplib95.load problem(file)
         #Nodos
         Nodos = list(problem.get nodes())
         #Aristas
         Aristas = list(problem.get edges())
         #print("Nodos", Nodos)
```

In [103]: print("Nodos", Nodos) print("Aristas", Aristas)

Nodos [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] Aristas [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (0, 1)](0), (0, 11), (0, 12), (0, 13), (0, 14), (0, 15), (0, 16), (0, 17), (0, 18), (0, 19), (0, 20), (0, 21), (0, 22), (0, 23), (0, 24), (0, 25), (0, 26), (0, 27), (0, 28), (0, 29), (0, 30), (0, 3)1), (0, 32), (0, 33), (0, 34), (0, 35), (0, 36), (0, 37), (0, 38), (0, 39), (0, 40), (0, 41),(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10), (1, 1)1), (1, 12), (1, 13), (1, 14), (1, 15), (1, 16), (1, 17), (1, 18), (1, 19), (1, 20), (1, 21),(1, 22), (1, 23), (1, 24), (1, 25), (1, 26), (1, 27), (1, 28), (1, 29), (1, 30), (1, 31), (1, 3)(2), (1, 33), (1, 34), (1, 35), (1, 36), (1, 37), (1, 38), (1, 39), (1, 40), (1, 41), (2, 0), (2, 37)1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10), (2, 11), (2, 12),(2, 13), (2, 14), (2, 15), (2, 16), (2, 17), (2, 18), (2, 19), (2, 20), (2, 21), (2, 22), (2, 22)3), (2, 24), (2, 25), (2, 26), (2, 27), (2, 28), (2, 29), (2, 30), (2, 31), (2, 32), (2, 33),(2, 34), (2, 35), (2, 36), (2, 37), (2, 38), (2, 39), (2, 40), (2, 41), (3, 0), (3, 1), (3, 2),(3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10), (3, 11), (3, 12), (3, 13), (3, 12)14), (3, 15), (3, 16), (3, 17), (3, 18), (3, 19), (3, 20), (3, 21), (3, 22), (3, 23), (3, 24), (3, 25), (3, 26), (3, 27), (3, 28), (3, 29), (3, 30), (3, 31), (3, 32), (3, 33), (3, 34), (3, 38)5), (3, 36), (3, 37), (3, 38), (3, 39), (3, 40), (3, 41), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (4, 10), (4, 11), (4, 12), (4, 13), (4, 14), (4, 15), (4, 16), (4, 17), (4, 18), (4, 19), (4, 20), (4, 21), (4, 22), (4, 23), (4, 24), (4, 25), (4, 26), (4, 27), (4, 28), (4, 29), (4, 30), (4, 31), (4, 32), (4, 33), (4, 34), (4, 35), (4, 38)(6), (4, 37), (4, 38), (4, 39), (4, 40), (4, 41), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10), (5, 11), (5, 12), (5, 13), (5, 14), (5, 15), (5, 16),(5, 17), (5, 18), (5, 19), (5, 20), (5, 21), (5, 22), (5, 23), (5, 24), (5, 25), (5, 26), (5, 26)7), (5, 28), (5, 29), (5, 30), (5, 31), (5, 32), (5, 33), (5, 34), (5, 35), (5, 36), (5, 37),(5, 38), (5, 39), (5, 40), (5, 41), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 6)7), (6, 8), (6, 9), (6, 10), (6, 11), (6, 12), (6, 13), (6, 14), (6, 15), (6, 16), (6, 17), (6, 17), (6, 18)18), (6, 19), (6, 20), (6, 21), (6, 22), (6, 23), (6, 24), (6, 25), (6, 26), (6, 27), (6, 28), (6, 29), (6, 30), (6, 31), (6, 32), (6, 33), (6, 34), (6, 35), (6, 36), (6, 37), (6, 38), (6, 38)9), (6, 40), (6, 41), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7), (7, 8),(7, 9), (7, 10), (7, 11), (7, 12), (7, 13), (7, 14), (7, 15), (7, 16), (7, 17), (7, 18), (7, 18)9), (7, 20), (7, 21), (7, 22), (7, 23), (7, 24), (7, 25), (7, 26), (7, 27), (7, 28), (7, 29), (7, 30), (7, 31), (7, 32), (7, 33), (7, 34), (7, 35), (7, 36), (7, 37), (7, 38), (7, 39), (7, 4)(0), (7, 41), (8, 0), (8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (8, 7), (8, 8), (8, 9), (8, 9), (8, 1)10), (8, 11), (8, 12), (8, 13), (8, 14), (8, 15), (8, 16), (8, 17), (8, 18), (8, 19), (8, 20), (8, 21), (8, 22), (8, 23), (8, 24), (8, 25), (8, 26), (8, 27), (8, 28), (8, 29), (8, 30), (8, 38)

1), (8, 32), (8, 33), (8, 34), (8, 35), (8, 36), (8, 37), (8, 38), (8, 39), (8, 40), (8, 41), (9, 0), (9, 1), (9, 2), (9, 3), (9, 4), (9, 5), (9, 6), (9, 7), (9, 8), (9, 9), (9, 10), (9, 1)1), (9, 12), (9, 13), (9, 14), (9, 15), (9, 16), (9, 17), (9, 18), (9, 19), (9, 20), (9, 21), (9, 22), (9, 23), (9, 24), (9, 25), (9, 26), (9, 27), (9, 28), (9, 29), (9, 30), (9, 31), (9, 3)2), (9, 33), (9, 34), (9, 35), (9, 36), (9, 37), (9, 38), (9, 39), (9, 40), (9, 41), (10, 0), (1 0, 1), (10, 2), (10, 3), (10, 4), (10, 5), (10, 6), (10, 7), (10, 8), (10, 9), (10, 10), (10, 1)(10, 12), (10, 13), (10, 14), (10, 15), (10, 16), (10, 17), (10, 18), (10, 19), (10, 20), (11), (11), (12), (13), (14), (15), (16), (17), (18), (18), (18), (19)0, 21), (10, 22), (10, 23), (10, 24), (10, 25), (10, 26), (10, 27), (10, 28), (10, 29), (10, 3)0), (10, 31), (10, 32), (10, 33), (10, 34), (10, 35), (10, 36), (10, 37), (10, 38), (10, 39), (1 0, 40), (10, 41), (11, 0), (11, 1), (11, 2), (11, 3), (11, 4), (11, 5), (11, 6), (11, 7), (11, 7)8), (11, 9), (11, 10), (11, 11), (11, 12), (11, 13), (11, 14), (11, 15), (11, 16), (11, 17), (11, 18), (1, 18), (11, 19), (11, 20), (11, 21), (11, 22), (11, 23), (11, 24), (11, 25), (11, 26), (11, 26)7), (11, 28), (11, 29), (11, 30), (11, 31), (11, 32), (11, 33), (11, 34), (11, 35), (11, 36), (11, 31) $\{2, 5\}, \{12, 6\}, \{12, 7\}, \{12, 8\}, \{12, 9\}, \{12, 10\}, \{12, 11\}, \{12, 12\}, \{12, 13\}, \{12, 14\}, \{12, 14\}, \{12, 14\}, \{13, 14\}, \{14, 14\},$ (2, 15), (12, 16), (12, 17), (12, 18), (12, 19), (12, 20), (12, 21), (12, 22), (12, 23), (12, 2)4), (12, 25), (12, 26), (12, 27), (12, 28), (12, 29), (12, 30), (12, 31), (12, 32), (12, 33), (1 (2, 34), (12, 35), (12, 36), (12, 37), (12, 38), (12, 39), (12, 40), (12, 41), (13, 0), (13, 1),(13, 2), (13, 3), (13, 4), (13, 5), (13, 6), (13, 7), (13, 8), (13, 9), (13, 10), (13, 11), (13, 12)12), (13, 13), (13, 14), (13, 15), (13, 16), (13, 17), (13, 18), (13, 19), (13, 20), (13, 21), (13, 22), (13, 23), (13, 24), (13, 25), (13, 26), (13, 27), (13, 28), (13, 29), (13, 30), (13, 3)1), (13, 32), (13, 33), (13, 34), (13, 35), (13, 36), (13, 37), (13, 38), (13, 39), (13, 40), (1 3, 41), (14, 0), (14, 1), (14, 2), (14, 3), (14, 4), (14, 5), (14, 6), (14, 7), (14, 8), (14, 7)9), (14, 10), (14, 11), (14, 12), (14, 13), (14, 14), (14, 15), (14, 16), (14, 17), (14, 18), (1 4, 19), (14, 20), (14, 21), (14, 22), (14, 23), (14, 24), (14, 25), (14, 26), (14, 27), (14, 28)8), (14, 29), (14, 30), (14, 31), (14, 32), (14, 33), (14, 34), (14, 35), (14, 36), (14, 37), (1 4, 38), (14, 39), (14, 40), (14, 41), (15, 0), (15, 1), (15, 2), (15, 3), (15, 4), (15, 5), (15, 5)6), (15, 7), (15, 8), (15, 9), (15, 10), (15, 11), (15, 12), (15, 13), (15, 14), (15, 15), (15, 16), (15, 17), (15, 18), (15, 19), (15, 20), (15, 21), (15, 22), (15, 23), (15, 24), (15, 25), (15, 26), (15, 27), (15, 28), (15, 29), (15, 30), (15, 31), (15, 32), (15, 33), (15, 34), (15, 35), (15, 36), (15, 37), (15, 38), (15, 39), (15, 40), (15, 41), (16, 0), (16, 1), (16, 2), (16, 3), (16, 4), (16, 5), (16, 6), (16, 7), (16, 8), (16, 9), (16, 10), (16, 11), (16, 12), (16, 13), (16, 14), (16, 15), (16, 16), (16, 17), (16, 18), (16, 19), (16, 20), (16, 21), (16, 22), (1 (6, 23), (16, 24), (16, 25), (16, 26), (16, 27), (16, 28), (16, 29), (16, 30), (16, 31), (16, 31)2), (16, 33), (16, 34), (16, 35), (16, 36), (16, 37), (16, 38), (16, 39), (16, 40), (16, 41), (1 7, 0), (17, 1), (17, 2), (17, 3), (17, 4), (17, 5), (17, 6), (17, 7), (17, 8), (17, 9), (17, 1)(0), (17, 11), (17, 12), (17, 13), (17, 14), (17, 15), (17, 16), (17, 17), (17, 18), (17, 19)7, 20, (17, 21), (17, 22), (17, 23), (17, 24), (17, 25), (17, 26), (17, 27), (17, 28), (17, 28)9), (17, 30), (17, 31), (17, 32), (17, 33), (17, 34), (17, 35), (17, 36), (17, 37), (17, 38), (1 7, 39), (17, 40), (17, 41), (18, 0), (18, 1), (18, 2), (18, 3), (18, 4), (18, 5), (18, 6), (18, 6)

7), (18, 8), (18, 9), (18, 10), (18, 11), (18, 12), (18, 13), (18, 14), (18, 15), (18, 16), (18, 18)17), (18, 18), (18, 19), (18, 20), (18, 21), (18, 22), (18, 23), (18, 24), (18, 25), (18, 26), (18, 27), (18, 28), (18, 29), (18, 30), (18, 31), (18, 32), (18, 33), (18, 34), (18, 35), (18, 36), (18, 37), (18, 38), (18, 39), (18, 40), (18, 41), (19, 0), (19, 1), (19, 2), (19, 3), (19, 4), (19, 5), (19, 6), (19, 7), (19, 8), (19, 9), (19, 10), (19, 11), (19, 12), (19, 13), (19, 1 4), (19, 15), (19, 16), (19, 17), (19, 18), (19, 19), (19, 20), (19, 21), (19, 22), (19, 23), (1 9, 24), (19, 25), (19, 26), (19, 27), (19, 28), (19, 29), (19, 30), (19, 31), (19, 32), (19, 3 3), (19, 34), (19, 35), (19, 36), (19, 37), (19, 38), (19, 39), (19, 40), (19, 41), (20, 0), (20, 10), (19, 10), (0, 1), (20, 2), (20, 3), (20, 4), (20, 5), (20, 6), (20, 7), (20, 8), (20, 9), (20, 10), (20, 10)(20, 12), (20, 13), (20, 14), (20, 15), (20, 16), (20, 17), (20, 18), (20, 19), (20, 20), (20, 10), (20,0, 21), (20, 22), (20, 23), (20, 24), (20, 25), (20, 26), (20, 27), (20, 28), (20, 29), (20, 3)(20, 31), (20, 32), (20, 33), (20, 34), (20, 35), (20, 36), (20, 37), (20, 38), (20, 39), (20, 31), (20, 31), (20, 32), (20,0, 40), (20, 41), (21, 0), (21, 1), (21, 2), (21, 3), (21, 4), (21, 5), (21, 6), (21, 7), (21, 7)8), (21, 9), (21, 10), (21, 11), (21, 12), (21, 13), (21, 14), (21, 15), (21, 16), (21, 17), (21, 18), (1, 18, (21, 19), (21, 20), (21, 21), (21, 22), (21, 23), (21, 24), (21, 25), (21, 26), (21, 26)7), (21, 28), (21, 29), (21, 30), (21, 31), (21, 32), (21, 33), (21, 34), (21, 35), (21, 36), (21, 36)1, 37), (21, 38), (21, 39), (21, 40), (21, 41), (22, 0), (22, 1), (22, 2), (22, 3), (22, 4), (22, 1), (23, 1), (24, 1), (25, 1) $\{2, 5\}, \{2, 6\}, \{2, 7\}, \{2, 8\}, \{2, 9\}, \{2, 10\}, \{2, 11\}, \{2, 12\}, \{2, 13\}, \{2, 14$ (2, 15), (22, 16), (22, 17), (22, 18), (22, 19), (22, 20), (22, 21), (22, 22), (22, 23), (22, 22)4), (22, 25), (22, 26), (22, 27), (22, 28), (22, 29), (22, 30), (22, 31), (22, 32), (22, 33), (2 (2, 34), (22, 35), (22, 36), (22, 37), (22, 38), (22, 39), (22, 40), (22, 41), (23, 0), (23, 1),(23, 2), (23, 3), (23, 4), (23, 5), (23, 6), (23, 7), (23, 8), (23, 9), (23, 10), (23, 11), (23, 12)12), (23, 13), (23, 14), (23, 15), (23, 16), (23, 17), (23, 18), (23, 19), (23, 20), (23, 21), (23, 22), (23, 23), (23, 24), (23, 25), (23, 26), (23, 27), (23, 28), (23, 29), (23, 30), (23, 38)1), (23, 32), (23, 33), (23, 34), (23, 35), (23, 36), (23, 37), (23, 38), (23, 39), (23, 40), (2 3, 41), (24, 0), (24, 1), (24, 2), (24, 3), (24, 4), (24, 5), (24, 6), (24, 7), (24, 8), (24, 7), (24, 8), (29), (24, 10), (24, 11), (24, 12), (24, 13), (24, 14), (24, 15), (24, 16), (24, 17), (24, 18), (2 4, 19), (24, 20), (24, 21), (24, 22), (24, 23), (24, 24), (24, 25), (24, 26), (24, 27), (24, 2 8), (24, 29), (24, 30), (24, 31), (24, 32), (24, 33), (24, 34), (24, 35), (24, 36), (24, 37), (2 4, 38), (24, 39), (24, 40), (24, 41), (25, 0), (25, 1), (25, 2), (25, 3), (25, 4), (25, 5), (25, 4)6), (25, 7), (25, 8), (25, 9), (25, 10), (25, 11), (25, 12), (25, 13), (25, 14), (25, 15), (25, 16), (25, 17), (25, 18), (25, 19), (25, 20), (25, 21), (25, 22), (25, 23), (25, 24), (25, 25), (25, 26), (25, 27), (25, 28), (25, 29), (25, 30), (25, 31), (25, 32), (25, 33), (25, 34), (25, 38)5), (25, 36), (25, 37), (25, 38), (25, 39), (25, 40), (25, 41), (26, 0), (26, 1), (26, 2), (26, 3), (26, 4), (26, 5), (26, 6), (26, 7), (26, 8), (26, 9), (26, 10), (26, 11), (26, 12), (26, 13)(26, 14), (26, 15), (26, 16), (26, 17), (26, 18), (26, 19), (26, 20), (26, 21), (26, 22), (26, 21), (26,(6, 23), (26, 24), (26, 25), (26, 26), (26, 27), (26, 28), (26, 29), (26, 30), (26, 31), (26, 31)2), (26, 33), (26, 34), (26, 35), (26, 36), (26, 37), (26, 38), (26, 39), (26, 40), (26, 41), (2 7, 0), (27, 1), (27, 2), (27, 3), (27, 4), (27, 5), (27, 6), (27, 7), (27, 8), (27, 9), (27, 1)0), (27, 11), (27, 12), (27, 13), (27, 14), (27, 15), (27, 16), (27, 17), (27, 18), (27, 19), (2

7, 20, (27, 21), (27, 22), (27, 23), (27, 24), (27, 25), (27, 26), (27, 27), (27, 28), (27, 28)9), (27, 30), (27, 31), (27, 32), (27, 33), (27, 34), (27, 35), (27, 36), (27, 37), (27, 38), (2 (7, 39), (27, 40), (27, 41), (28, 0), (28, 1), (28, 2), (28, 3), (28, 4), (28, 5), (28, 6), (28, 6)7), (28, 8), (28, 9), (28, 10), (28, 11), (28, 12), (28, 13), (28, 14), (28, 15), (28, 16), (28, 16)17), (28, 18), (28, 19), (28, 20), (28, 21), (28, 22), (28, 23), (28, 24), (28, 25), (28, 26), (28, 27), (28, 28), (28, 29), (28, 30), (28, 31), (28, 32), (28, 33), (28, 34), (28, 35), (28, 36), (28, 37), (28, 38), (28, 39), (28, 40), (28, 41), (29, 0), (29, 1), (29, 2), (29, 3), (29, 4), (29, 5), (29, 6), (29, 7), (29, 8), (29, 9), (29, 10), (29, 11), (29, 12), (29, 13), (29, 1 4), (29, 15), (29, 16), (29, 17), (29, 18), (29, 19), (29, 20), (29, 21), (29, 22), (29, 23), (2 9, 24), (29, 25), (29, 26), (29, 27), (29, 28), (29, 29), (29, 30), (29, 31), (29, 32), (29, 3 3), (29, 34), (29, 35), (29, 36), (29, 37), (29, 38), (29, 39), (29, 40), (29, 41), (30, 0), (3 0, 1), (30, 2), (30, 3), (30, 4), (30, 5), (30, 6), (30, 7), (30, 8), (30, 9), (30, 10), (30, 1)1), (30, 12), (30, 13), (30, 14), (30, 15), (30, 16), (30, 17), (30, 18), (30, 19), (30, 20), (30, 10),(30, 21), (30, 22), (30, 23), (30, 24), (30, 25), (30, 26), (30, 27), (30, 28), (30, 29), (30, 30)(30, 31), (30, 32), (30, 33), (30, 34), (30, 35), (30, 36), (30, 37), (30, 38), (30, 39), (30, 30)0, 40), (30, 41), (31, 0), (31, 1), (31, 2), (31, 3), (31, 4), (31, 5), (31, 6), (31, 7), (31, 7)8), (31, 9), (31, 10), (31, 11), (31, 12), (31, 13), (31, 14), (31, 15), (31, 16), (31, 17), (31, 18), (1, 18), (31, 19), (31, 20), (31, 21), (31, 22), (31, 23), (31, 24), (31, 25), (31, 26), (31, 27)7), (31, 28), (31, 29), (31, 30), (31, 31), (31, 32), (31, 33), (31, 34), (31, 35), (31, 36), (3 1, 37), (31, 38), (31, 39), (31, 40), (31, 41), (32, 0), (32, 1), (32, 2), (32, 3), (32, 4), (31, 32) $\{2, 5\}, \{32, 6\}, \{32, 7\}, \{32, 8\}, \{32, 9\}, \{32, 10\}, \{32, 11\}, \{32, 12\}, \{32, 13\}, \{32, 14\},$ 2, 15), (32, 16), (32, 17), (32, 18), (32, 19), (32, 20), (32, 21), (32, 22), (32, 23), (32, 2 4), (32, 25), (32, 26), (32, 27), (32, 28), (32, 29), (32, 30), (32, 31), (32, 32), (32, 33), (3 (32, 34), (32, 35), (32, 36), (32, 37), (32, 38), (32, 39), (32, 40), (32, 41), (33, 0), (33, 1),(33, 2), (33, 3), (33, 4), (33, 5), (33, 6), (33, 7), (33, 8), (33, 9), (33, 10), (33, 11), (33, 11)12), (33, 13), (33, 14), (33, 15), (33, 16), (33, 17), (33, 18), (33, 19), (33, 20), (33, 21), (33, 22), (33, 23), (33, 24), (33, 25), (33, 26), (33, 27), (33, 28), (33, 29), (33, 30), (33, 38)1), (33, 32), (33, 33), (33, 34), (33, 35), (33, 36), (33, 37), (33, 38), (33, 39), (33, 40), (3 3, 41), (34, 0), (34, 1), (34, 2), (34, 3), (34, 4), (34, 5), (34, 6), (34, 7), (34, 8), (34, 7)9), (34, 10), (34, 11), (34, 12), (34, 13), (34, 14), (34, 15), (34, 16), (34, 17), (34, 18), (3 4, 19), (34, 20), (34, 21), (34, 22), (34, 23), (34, 24), (34, 25), (34, 26), (34, 27), (34, 2 8), (34, 29), (34, 30), (34, 31), (34, 32), (34, 33), (34, 34), (34, 35), (34, 36), (34, 37), (3 4, 38), (34, 39), (34, 40), (34, 41), (35, 0), (35, 1), (35, 2), (35, 3), (35, 4), (35, 5), (35, 6), (35, 7), (35, 8), (35, 9), (35, 10), (35, 11), (35, 12), (35, 13), (35, 14), (35, 15), (35, 16), (35, 17), (35, 18), (35, 19), (35, 20), (35, 21), (35, 22), (35, 23), (35, 24), (35, 25), (35, 26), (35, 27), (35, 28), (35, 29), (35, 30), (35, 31), (35, 32), (35, 33), (35, 34), (35, 35), (35, 36), (35, 37), (35, 38), (35, 39), (35, 40), (35, 41), (36, 0), (36, 1), (36, 2), (36, 3), (36, 4), (36, 5), (36, 6), (36, 7), (36, 8), (36, 9), (36, 10), (36, 11), (36, 12), (36, 1 3), (36, 14), (36, 15), (36, 16), (36, 17), (36, 18), (36, 19), (36, 20), (36, 21), (36, 22), (36, 21),6, 23), (36, 24), (36, 25), (36, 26), (36, 27), (36, 28), (36, 29), (36, 30), (36, 31), (36, 3

```
2), (36, 33), (36, 34), (36, 35), (36, 36), (36, 37), (36, 38), (36, 39), (36, 40), (36, 41), (3
                  7, 0), (37, 1), (37, 2), (37, 3), (37, 4), (37, 5), (37, 6), (37, 7), (37, 8), (37, 9), (37, 1)
                  (37, 11), (37, 12), (37, 13), (37, 14), (37, 15), (37, 16), (37, 17), (37, 18), (37, 19), (37, 18)
                  7, 20, (37, 21), (37, 22), (37, 23), (37, 24), (37, 25), (37, 26), (37, 27), (37, 28), (37, 28)
                  9), (37, 30), (37, 31), (37, 32), (37, 33), (37, 34), (37, 35), (37, 36), (37, 37), (37, 38), (3
                  7, 39), (37, 40), (37, 41), (38, 0), (38, 1), (38, 2), (38, 3), (38, 4), (38, 5), (38, 6), (38, 6)
                  7), (38, 8), (38, 9), (38, 10), (38, 11), (38, 12), (38, 13), (38, 14), (38, 15), (38, 16), (38, 16)
                  17), (38, 18), (38, 19), (38, 20), (38, 21), (38, 22), (38, 23), (38, 24), (38, 25), (38, 26),
                  (38, 27), (38, 28), (38, 29), (38, 30), (38, 31), (38, 32), (38, 33), (38, 34), (38, 35), (38, 3
                  6), (38, 37), (38, 38), (38, 39), (38, 40), (38, 41), (39, 0), (39, 1), (39, 2), (39, 3), (39,
                  4), (39, 5), (39, 6), (39, 7), (39, 8), (39, 9), (39, 10), (39, 11), (39, 12), (39, 13), (39, 1
                  4), (39, 15), (39, 16), (39, 17), (39, 18), (39, 19), (39, 20), (39, 21), (39, 22), (39, 23), (3
                  9, 24), (39, 25), (39, 26), (39, 27), (39, 28), (39, 29), (39, 30), (39, 31), (39, 32), (39, 3
                  3), (39, 34), (39, 35), (39, 36), (39, 37), (39, 38), (39, 39), (39, 40), (39, 41), (40, 0), (4
                  0, 1), (40, 2), (40, 3), (40, 4), (40, 5), (40, 6), (40, 7), (40, 8), (40, 9), (40, 10), (40, 1)
                  1), (40, 12), (40, 13), (40, 14), (40, 15), (40, 16), (40, 17), (40, 18), (40, 19), (40, 20), (4
                  0, 21), (40, 22), (40, 23), (40, 24), (40, 25), (40, 26), (40, 27), (40, 28), (40, 29), (40, 3)
                  0), (40, 31), (40, 32), (40, 33), (40, 34), (40, 35), (40, 36), (40, 37), (40, 38), (40, 39), (4
                  0, 40, (40, 41), (41, 0), (41, 1), (41, 2), (41, 3), (41, 4), (41, 5), (41, 6), (41, 7), (41, 7)
                  8), (41, 9), (41, 10), (41, 11), (41, 12), (41, 13), (41, 14), (41, 15), (41, 16), (41, 17), (4
                  1, 18), (41, 19), (41, 20), (41, 21), (41, 22), (41, 23), (41, 24), (41, 25), (41, 26), (41, 27), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 28), (41, 2
                  7), (41, 28), (41, 29), (41, 30), (41, 31), (41, 32), (41, 33), (41, 34), (41, 35), (41, 36), (41, 36)
                  1, 37), (41, 38), (41, 39), (41, 40), (41, 41)]
   In [0]: #Devuelve el factorial de un numero
                  def factorial(n):
                         if n == 0:
                                 return 1
                         else:
                                 return n * factorial(n-1)
In [105]: #Se genera una solucion aleatoria con comienzo en en el nodo 0
                  def crear solucion(Nodos):
                      solucion = [0]
                      for i in range(len(Nodos)-1):
                          solucion = solucion + [random.choice(list(set(Nodos) - set({0})) - set(solucion)))]
                      return solucion
```

```
#Devuelve la distancia entre dos nodos
def distancia(a,b, problem):
    return problem.wfunc(a,b)

#distancia(0,1,problem)

#Devuelve la distancia total de una trayectoria
def distancia_total(solucion, problem):
    distancia_total = 0
    for i in range(len(solucion)-1):
        distancia_total += distancia(solucion[i] ,solucion[i+1] , problem)
    return distancia_total + distancia(solucion[len(solucion)-1] ,solucion[0], problem)

solucion=crear_solucion(Nodos)
#print(solucion)
distancia_total(solucion,problem)
```

Out[105]: 4987

Búsqueda aleatoria

```
In [106]: def busquedaAleatoria(problem, N):
    Nodos = list(problem.get_nodes())
    mejor_solucion = []
    mejor_distancia = 10e100

    for i in range(N):
        solucion=crear_solucion(Nodos)
        distancia = distancia_total(solucion,problem)

        if distancia < mejor_distancia:
        mejor_solucion = solucion
        mejor distancia = distancia</pre>
```

```
print("Mejor solución :", mejor solucion)
            print("Mejor distancia :", mejor distancia)
            return mejor solucion
          sol=busquedaAleatoria(problem, 100)
          Mejor solución : [0, 32, 10, 8, 26, 23, 21, 39, 40, 13, 16, 41, 20, 19, 31, 27, 30, 4, 3, 18, 1
          2, 6, 37, 11, 36, 17, 1, 7, 14, 35, 34, 24, 29, 33, 22, 28, 9, 5, 15, 2, 38, 25]
          Mejor distancia: 4072
          Búsqueda local
In [107]: def genera vecina(solucion):
            #Generador de soluciones vecinas: 2-opt (intercambiar 2 nodos) Si hay N nodos se generan (N-
          1)x(N-2)/2 soluciones
            #print(solucion)
            mejor solucion = []
            #mejor distancia = 10e100
            mejor distancia = float("infinity") #Modificación
            for i in range(1,len(solucion)-1):
              for j in range(i+1, len(solucion)):
                vecina = solucion[:i] + [solucion[j]] + solucion[i+1:j] + [solucion[i]] + solucion[j+1:]
                distancia vecina = distancia total(vecina, problem)
                if distancia vecina <= mejor distancia:</pre>
                  mejor distancia = distancia vecina
                  mejor solucion = vecina
            return mejor solucion
          solucion=crear solucion(Nodos)
          print(solucion)
          nueva solucion = genera vecina(solucion) #Se ve cómo se han intercambiado 2 nodos
          print(nueva solucion)
          [0, 29, 22, 33, 4, 1, 2, 21, 13, 28, 15, 35, 20, 41, 19, 37, 39, 34, 6, 3, 12, 32, 23, 9, 38, 3
```

```
1, 7, 11, 17, 25, 18, 36, 27, 14, 24, 30, 40, 5, 16, 10, 8, 26]
          [0, 29, 22, 33, 4, 1, 2, 21, 13, 28, 15, 35, 20, 17, 19, 37, 39, 34, 6, 3, 12, 32, 23, 9, 38, 3
          1, 7, 11, 41, 25, 18, 36, 27, 14, 24, 30, 40, 5, 16, 10, 8, 26]
In [111]: def busqueda local(problem, N):
            mejor solucion = []
            mejor distancia = float("infinity") #Modificación
            Nodos = list(problem.get nodes())
            solucion referencia = crear solucion(Nodos)
            for i in range(N):
              vecina = genera vecina(solucion referencia)
              distancia vecina = distancia total(vecina, problem)
              if distancia vecina < mejor distancia:</pre>
                mejor solucion = vecina
                mejor distancia = distancia vecina
              solucion referencia = vecina
            print("Mejor solución:" , mejor solucion)
                                :" , mejor distancia)
            print("Distancia
            return mejor solucion
          #Modificación: Le cambio el nombre a la variable para después usar esta solución en el gráfico
          solLocal = busqueda local(problem, 100)
          Mejor solución: [0, 31, 35, 36, 17, 7, 1, 3, 2, 4, 26, 5, 13, 19, 6, 27, 28, 29, 39, 21, 24, 40,
          23, 41, 9, 8, 10, 18, 14, 16, 15, 37, 20, 33, 34, 12, 11, 25, 22, 38, 30, 32]
          Distancia
                        : 1833
          Recocido simulado
 In [0]: def genera vecina aleatorio(solucion):
            #Generador de 1 solucion vecina 2-opt (intercambiar 2 nodos)
            #Se nuede meiorar haciendo que la elección no se uniforme sino entre las que estén más proxim
```

```
as
            i = random.choice(range(1, len(solucion)) )
            j = random.choice(list(set(range(1, len(solucion))) - {i}))
            vecina = solucion[:i] + [solucion[i]] + solucion[i+1:i] + [solucion[i]] + solucion[i+1:]
            return vecina
          def probabilidad(T,d):
            r=random.random()
            return r \le (e^{**}(-1^*d)/(T^*1.0)) #Modificación para poner todo en 1 línea
            \#if(r \le (e^{**}(-1^*d)/(T^*1.0))):
            # return True
            #else:
            # return False
          def bajar_temperatura(T):
            return T-1
In [113]: def recocido simulado(problem, TEMPERATURA):
            #problem = datos del problema
            #T = Temperatura
            solucion referencia = crear solucion(Nodos)
            distancia referencia = distancia total(solucion referencia, problem)
            mejor solucion = []
            mejor distancia = float("infinity") #Modificación
            while TEMPERATURA > 0:
              #Genera una solución vecina(aleatoria)
              vecina = genera vecina aleatorio(solucion referencia)
              #vecina = genera vecina(solucion referencia)#Mejores soluciones
              #Calcula su valor(distancia)
              distancia vecina = distancia total(vecina, problem)
              #Si es la mejor solución de todas se guarda
              if distancia vecina < mejor distancia:</pre>
                  mejor solucion = vecina
```

THE PUBLIC INSTITUTE THE TOTAL HIGH CONTROL OF THE PROPERTY OF

```
mejor_distancia = distancia_vecina

#Si la nueva vecina es mejor, se cambia y si es peor se cambia según una probabilidad depen
diente de T y de |distancia_referencia - distancia_vecina|
   if distancia_vecina < distancia_referencia or probabilidad(TEMPERATURA, abs(distancia_refer
encia - distancia_vecina) ):
    solucion_referencia = vecina
    distancia_referencia = distancia_vecina

TEMPERATURA = bajar_temperatura(TEMPERATURA)

print("La mejor solución encontrada es " , end="")
print(mejor_solucion)
print("con una distancia total de " , end="")
print(mejor_distancia)
return mejor_solucion

sol = recocido_simulado(problem, 10000)</pre>
```

La mejor solución encontrada es [0, 27, 28, 29, 8, 41, 25, 11, 13, 19, 14, 16, 15, 37, 36, 35, 3 1, 17, 7, 1, 30, 39, 21, 24, 40, 23, 26, 5, 6, 2, 32, 34, 20, 33, 38, 22, 9, 10, 12, 18, 4, 3] con una distancia total de 1732

Colonia de hormigas

```
In [0]: import math
#Colonia de hormigas
def Add_Nodo(problem, H ,T ) : #H (hormiga):recorrido parcial T:fermomona ---> mejorar est
e método, no se está teniendo en cuenta T (jugar con los dos parámetros, distancia y feromona)
    #Establecer una una funcion de probabilidad para
    # añadir un nuevo nodo dependiendo de los nodos mas cercanos y de las feromonas depositadas
    #print(H)
    Nodos = list(problem.get_nodes())
    return random.choice( list(set(range(1,len(Nodos))) - set(H) ) ) #añade un nodo de modo al
eatorio, debería ser en base a la feromona T

#Modificación: creo nuevo método para elegir el siguiente nodo, mediante una función de probabi
lidad que tenga en cuenta y las feromonas
def Add_Nodo_Mod(problem, H ,T, actual ) :
```

```
alfa=1.0 #Peso que se da al rastro
  beta=2.5 #Peso que se da a la distancia
 Nodos = list(problem.get nodes())
  listaValores = []
 listaValoresPesos = []
 for i in range(len(Nodos)):
   if len(T)>actual and i<len(T[actual]) :</pre>
      feromona = math.pow((T[actual][i]), alfa)
      #Distancia entre el nodo i y el último nodo de la hormiga
      hormiga=H[actual]
      nodohormiga=hormiga[len(hormiga)-1]
      dist=(distancia(nodohormiga,Nodos[i],problem))
      #Divido entre 1 porque a menor distancia, mayor peso le quiero dar al nodo
      # Lo multiplico *100 y posteriormente lo convertiré a entero para que funcione correctame
nte la función de calculo de probabilidad en base a pesos)
      if dist!=0:
        dist=1+(1/dist)*100
      peso = math.pow(dist, beta) * feromona
      #Sólo añado el nodo si no existe previamente
      s=set(H[actual])
      if Nodos[i] not in s:
        elem=(Nodos[i],peso)
        listaValoresPesos.append(elem)
  if(len(listaValoresPesos)>0):
   listadoPesos = [nodo for nodo, peso in listaValoresPesos for i in range(int(peso))]
   valor= random.choice(listadoPesos)
    return valor
  else:
    return random.choice(list(set(range(1,len(Nodos))) - set(H[actual]) ) )
```

```
def Incrementa Feromona(problem, T, H):
            #Incrementar segun la calidad de la solución. Añadir una cantidad inversamente proporcional a
           la distancia total
            for i in range(len(H)-1):
              T[H[i]][H[i+1]] += 1000/distancia total(H, problem) #más feromonas a las distancias más peg
          ueñas
            return T
          def Evaporar Feromonas(T):
            #Podemos elegir diferentes funciones de evaporación dependiendo de la cantidad actual y de la
           suma total de feromonas depositadas,...
            #Evapora 0.3 el valor de la feromona, sin que baje de 1 --> mejorable, podría hacerse en b
          ase al número de ciclos, etc...
           T = [[ max(T[i][j] - 0.3 , 1) for i in range(len(Nodos)) ] for j in range(len(Nodos))]
            return T
          #Modificación: Intento de Función de evaporación de hormigas en función de los ciclos (Al final
           no la uso, porque no veo que mejore la función inicial)
          def Evaporar Feromonas Mod(T,ciclos,N):
            #Evaporar en función de los ciclos (lo multiplico * 2 para corregir el efecto que se produce
           en los primeros ciclos, sobretodo cuando hay muchos agentes.
            #La evaporación era mínima y provocaba que el algoritmo no arrojase resultados tan óptimos):
            ratioEvaporacion=(ciclos/N)*2
            T = [[max(T[i][j] - ratioEvaporacion, 1) for i in range(len(Nodos))] for j in range(len(No
          dos))1
            return T
In [116]: #problem = datos del problema
          #N = Número de agentes(hormigas)
          def hormigas(problem, N):
            #Nodos
            Nodos = list(problem.get nodes())
            #Aristas
            Aristas = list(problem.get edges())
```

```
#Inicializa las aristas con una cantidad inicial de feromonas:1 (vector de 2 dimensiones)
T = [[ 1 for in range(len(Nodos)) ] for in range(len(Nodos))]
#print(T)
#Se generan los agentes(hormigas) que serán estructuras de caminos desde 0
Hormiga = [[0] for in range(N)]
#Recorre cada agente construyendo la solución
ciclos=0
for h in range(N):
 #Para cada agente se construye un camino
 for i in range(len(Nodos)-1):
    #Elige el siguiente nodo
    #Nuevo Nodo = Add Nodo(problem, Hormiga[h] ,T )
    Nuevo Nodo = Add Nodo Mod(problem, Hormiga ,T, h )
    Hormiga[h].append(Nuevo Nodo)
  #Incrementa feromonas en esa arista
 T = Incrementa Feromona(problem, T, Hormiga[h])
 #Evapora Feromonas
 T = Evaporar Feromonas(T)
  #T = Evaporar Feromonas Mod(T,ciclos,N)
  ciclos+=1
 #Seleccionamos el mejor agente
mejor solucion = []
mejor distancia = float("infinity")
for h in range(N):
  distancia actual = distancia total(Hormiga[h], problem)
  if distancia actual < mejor distancia:</pre>
    mejor solucion = Hormiga[h]
    mejor distancia =distancia_actual
print(mejor solucion)
print(mejor distancia)
```

```
[0, 1, 8, 28, 36, 37, 15, 16, 14, 6, 27, 2, 30, 29, 9, 22, 38, 24, 18, 12, 10, 25, 11, 41, 23, 3
         9, 40, 21, 3, 4, 5, 7, 34, 33, 20, 13, 19, 26, 17, 31, 35, 32]
         2413
         Pruebas con distinto número de agentes para el problema de las hormigas
In [77]: | #Con 10 agentes
         VECES=5
         for i in range(VECES):
           hormigas(problem, 10)
         [0, 3, 27, 2, 1, 37, 14, 15, 16, 17, 31, 28, 4, 5, 35, 36, 34, 20, 33, 30, 24, 21, 32, 39, 41, 2
         3, 26, 6, 7, 9, 8, 19, 13, 18, 25, 10, 29, 38, 22, 12, 11, 40]
         2813
         [0, 29, 30, 28, 3, 4, 5, 31, 15, 13, 19, 37, 1, 17, 40, 21, 9, 2, 27, 34, 38, 22, 39, 24, 10, 2
         5, 41, 23, 8, 18, 6, 36, 16, 14, 7, 12, 11, 26, 32, 33, 20, 35]
         2673
         [0, 1, 7, 17, 6, 4, 3, 2, 28, 27, 25, 10, 12, 11, 26, 5, 14, 16, 15, 33, 34, 20, 29, 21, 9, 23,
         41, 36, 35, 19, 13, 37, 31, 32, 30, 8, 39, 38, 22, 18, 40, 24]
         2593
         [0, 1, 3, 6, 7, 15, 14, 16, 37, 17, 9, 8, 27, 2, 32, 28, 12, 18, 26, 5, 13, 23, 4, 29, 22, 25, 1
         0, 41, 11, 33, 34, 35, 31, 20, 36, 30, 24, 40, 21, 39, 38, 19]
         2751
         [0, 3, 1, 6, 4, 37, 17, 31, 18, 29, 23, 41, 25, 12, 15, 16, 14, 32, 20, 33, 30, 19, 5, 26, 10, 2
         2, 38, 24, 2, 27, 28, 11, 13, 7, 8, 9, 39, 40, 21, 35, 36, 34]
         2807
In [78]: #Con 42 agentes tantos agentes como nodos
         VECES=5
         for i in range(VECES):
           hormigas(problem, 42)
         [0, 27, 2, 3, 6, 25, 11, 14, 16, 15, 37, 18, 12, 26, 13, 19, 28, 17, 31, 33, 29, 10, 41, 23, 9,
         22, 38, 40, 24, 39, 21, 8, 4, 1, 5, 7, 36, 35, 20, 34, 32, 30]
         2245
         [0, 3, 27, 2, 6, 7, 4, 18, 29, 8, 10, 12, 11, 30, 28, 1, 32, 33, 20, 34, 31, 17, 37, 14, 16, 15,
         19, 26, 5, 13, 25, 22, 38, 9, 23, 41, 24, 21, 40, 39, 36, 35]
```

solucionHormigas=hormigas(problem, 1000)

```
2208
         [0, 1, 6, 4, 28, 2, 27, 3, 30, 29, 19, 5, 12, 10, 25, 23, 41, 9, 39, 38, 8, 18, 37, 16, 14, 15,
         31, 26, 13, 33, 34, 32, 11, 40, 21, 24, 22, 17, 7, 20, 35, 36]
         2566
         [0, 5, 16, 15, 7, 37, 14, 12, 11, 18, 10, 25, 8, 41, 9, 2, 27, 3, 4, 29, 39, 21, 24, 40, 23, 22,
         38, 6, 1, 13, 19, 17, 35, 20, 34, 30, 28, 31, 36, 32, 33, 26]
         2375
         [0, 1, 6, 14, 15, 19, 5, 2, 27, 4, 3, 28, 13, 26, 31, 35, 36, 29, 30, 39, 23, 21, 40, 9, 8, 17,
         37, 16, 7, 10, 25, 11, 41, 24, 12, 18, 33, 22, 38, 32, 34, 20]
         2642
In [79]:
         #Con 1000 agentes
         VECES=5
         for i in range(VECES):
           hormigas(problem, 1000)
         [0, 37, 15, 14, 16, 29, 30, 28, 1, 6, 26, 5, 4, 13, 19, 31, 12, 11, 25, 3, 27, 2, 41, 23, 8, 10,
         39, 9, 40, 24, 21, 22, 7, 20, 33, 34, 32, 17, 36, 35, 38, 18]
         2486
         [0, 18, 19, 16, 14, 15, 37, 35, 36, 2, 27, 5, 26, 11, 12, 10, 25, 22, 39, 8, 29, 30, 32, 28, 9,
         21, 40, 38, 13, 6, 3, 1, 31, 17, 7, 4, 23, 41, 34, 33, 20, 24]
         2669
         [0, 30, 27, 2, 32, 29, 35, 31, 34, 4, 3, 18, 25, 11, 12, 5, 19, 13, 14, 16, 15, 26, 22, 28, 6,
         1, 7, 37, 36, 20, 33, 39, 24, 40, 21, 8, 23, 9, 41, 10, 38, 17]
         2573
         [0, 2, 3, 27, 13, 16, 14, 15, 37, 25, 12, 11, 21, 40, 23, 41, 10, 1, 26, 18, 5, 31, 17, 20, 33,
         34, 32, 35, 36, 19, 28, 24, 22, 39, 9, 8, 30, 38, 7, 6, 4, 29]
         2507
         [0, 6, 1, 18, 26, 19, 9, 8, 23, 41, 25, 10, 4, 3, 2, 27, 28, 38, 22, 24, 21, 39, 40, 30, 29, 13,
         15, 14, 16, 17, 33, 34, 32, 12, 11, 7, 31, 20, 5, 35, 37, 36]
         2544
In [80]:
         #Con 5000 agentes
         VECES=5
         for i in range(VECES):
           hormigas(problem, 5000)
         [0, 1, 7, 19, 5, 17, 32, 10, 4, 26, 13, 23, 41, 12, 11, 6, 2, 3, 27, 28, 30, 8, 18, 9, 29, 38, 2
         0, 33, 34, 31, 15, 14, 16, 37, 36, 35, 22, 39, 40, 21, 24, 25]
         2483
```

```
[0, 33, 20, 34, 32, 28, 27, 2, 4, 26, 13, 14, 16, 15, 37, 17, 31, 40, 21, 39, 23, 41, 11, 12, 8, 10, 25, 18, 3, 1, 30, 29, 9, 7, 24, 35, 36, 19, 5, 6, 38, 22]
2603
[0, 30, 10, 8, 9, 26, 1, 4, 6, 5, 15, 16, 14, 17, 3, 31, 7, 11, 12, 25, 41, 23, 21, 24, 40, 29, 19, 13, 18, 33, 34, 28, 27, 2, 36, 35, 20, 32, 38, 22, 39, 37]
2602
[0, 7, 12, 10, 3, 1, 2, 27, 28, 4, 26, 13, 19, 6, 32, 34, 33, 5, 38, 22, 21, 24, 40, 36, 17, 31, 15, 14, 16, 37, 20, 30, 29, 39, 9, 41, 8, 25, 23, 18, 11, 35]
2715
[0, 1, 2, 3, 27, 18, 26, 19, 13, 36, 31, 17, 5, 11, 12, 10, 29, 30, 7, 16, 14, 15, 37, 35, 34, 3, 20, 32, 9, 8, 21, 40, 23, 41, 25, 4, 6, 28, 38, 39, 22, 24]
2309
```

En vista de los datos, se observa una mejora sustancial entre usar 10 agentes o 42 (tantos agentes/hormigas como nodos). A partir de ahí, no se ven mejoras en usar más número de agentes. Además, vemos que usando 42 agentes obtenemos tiempos de ejecución bastante razonables.

Aplicación del algoritmo de las hormigas a otros problemas:

El primer algoritmo de colonia de hormigas, tenía como objetivo resolver el problema del viajante.

Además, se ha visto que este algoritmo es útil en la resolución de los siguientes problemas:

• Problema de la mochila:

El problema de la mochila consiste en seleccionar un conjunto de objetos de manera tal que el val os objetos sea máximo y no supere un límite establecido (mochila).

Para resolver el problema de la mochila usando el algoritmo de las hormigas:

Se inicializa cada objeto con una cantidad mínima de feromonas.

Cada hormiga se coloca en una posición aleatoria y va seleccionando cada nodo de forma iterativa ando a la mochila. Los objetos totales no pueden sobrepasar la capacidad de la mochila.

Por último se selecciona la mejor solución y se actualizan los rastros de las feromonas.

• Para Optimización de estructuras de hormigón armado. (Reforzando aquellos elementos que se han empleado para la construcción,

calidad de la solución.)

- Para problemas de distribución en planta (Para buscar la mejor asignación espacial de estaciones o celdas de trabajo)
- Para detectar fallos de programación
- Tareas de supervisión de las máquinas de aprendizaje, encargadas de agrupar los grupos de objetos que son similares

Referencias:

https://es.wikipedia.org/wiki/Algoritmo de la colonia de hormigas

https://www.agenciasinc.es/Noticias/Colonias-de-hormigas-detectan-fallos-de-programacion

http://www.academia.edu/3567732/ACHPM ALGORITMO DE OPTIMIZACI%C3%93N CON COLONIA DE HORMIGAS PARA EL PRO

https://victoryepes.blogs.upv.es/tag/colonia-de-hormigas/

https://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/11897

Gráfico para visualizar mejor camino y distancia entre los nodos.

El gráfico mostrado es el obtenido mediante el algoritmo de busquedaLocal

```
import matplotlib.pyplot as plt
In [343]:
          import networkx as nx
          import sys
          #Gráfico para mostrar la solución, representando el camino, así como la distancia entre los nod
          05
          def dibujar(solucion):
            G = nx.DiGraph()
            G.clear()
            G.pos={}
            x=0
            V=0
            posiciones=[]
            tamanio=len(solucion)
            mitad=len(solucion)//2
            distancias=[]
            i=0
```

```
for elem in solucion:
   #Posiciono el primer elemento en la coordenada (0,0)
    if(i==0):
        G.pos[elem]=(0,0)
        posiciones.append(0)
   #Para el resto de casos calculo la posición x en función de la distancia
   #Además voy sumando siempre el valor 30 para x e y para que una mejor visualización
   #y que no se queden los nodos apelotonados
    else:
      #Añado la arista del elemento anterior y este
      G.add edge(solucion[i-1],solucion[i])
      #Calculo la distancia entre el nodo anterior y este
      dist=distancia(solucion[i], solucion[i-1], problem)
      #Añado la distancia al array
      distancias.append(dist)
      #Para una mejor visualización, divido el gráfico en 2 partes, ya que si no no se visualiz
a correctamente, al haber tantos nodos
      #Si es menor que la mitad, voy a visualizar el gráfico de forma ascendente hacia la derec
ha
      if i<=mitad:</pre>
        y += 30
        x += 30
        posicionAnterior=posiciones[i-1]
        posicionActual=posicionAnterior+dist
      #Si es menor que la mitad, hacia la izquierda y hacia arriba
      else:
       y += 30
        x = 30
        posicionAnterior=posiciones[i-1]
        posicionActual=posicionAnterior-dist
      #Establezco la posición del nodo actual, y añado la posición a array
      G.pos[elem]=((posicionActual)+x,y)
      posiciones.append(posicionActual)
   i += 1
 #Visualizo la figura
```

```
plt.figure(figsize=(30, 5))
pos = nx.spring_layout(G)
nx.draw_networkx_edges(G, pos, arrows=True)
nx.draw(G,G.pos, with_labels=True, size=1000,cmap=plt.cm.Reds_r)
plt.show()

#Pinto, además el camino y las distancias para que se pueda comparar con el gráfico
print("Camino :"+str(solucion))
print("Distancias :"+str(distancias))

#Pasamos al gráfico como parámetro la solución obtenida anteriormente mediante el algoritmo de
búsqueda local
dibujar(solLocal)
```


Camino: [0, 31, 35, 36, 17, 7, 1, 3, 2, 4, 26, 5, 13, 19, 6, 27, 28, 29, 39, 21, 24, 40, 23, 41, 9, 8, 10, 18, 14, 16, 15, 37, 20, 33, 34, 12, 11, 25, 22, 38, 30, 32]
Distancias: [66, 60, 39, 63, 40, 32, 23, 11, 18, 34, 15, 36, 25, 52, 37, 18, 27, 72, 26, 51, 49, 64, 19, 38, 28, 29, 44, 93, 8, 11, 22, 113, 24, 24, 168, 14, 28, 126, 36, 67, 46]

© 2019 GitHub, Inc. Terms Privacy Security Status Help

Contact GitHub Pricing API Training Blog About