07 AR 기술을 활용한 소셜 네트워킹 서비스 개발

소속 정보컴퓨터공학부

분과 A

팀명 meARy(메아리)

참여학생 김진영, 임석윤, 허취원

지도교수 이명호

개요

기존의 SNS 서비스

2D 미디어 기반 (텍스트, 사진, 동영상) 비 공간적, 저 차원 상호작용으로 인해 같은 장소에 대한 공감과 경험 공유가 어려움

위치 기반 AR SNS 서비스

Unity ARFoundation, Google ARCore를 이용한 AR 어플리케이션을 통해 생동감 있는 기록으로 사용자 경험 극대화

구성

AR world 에서의 고정밀 위치 추정

- → Google Geospaital API
- → 단순 GPS 정보만으로 특정 위치의 위도, 경도, 고도 추론은 부정확
- → Google Street View기반의 VPS(Visiual Positioning Service)를 GPS 와 결합하여 정밀도 향상(오차범위 3~ 5m)

AR Camera 에서 Human Detecting

→ Blaze CNN 기반의 Light Mediapipe Human Pose Detection (C#)을 사용하여 핸드폰에서 실시간으로 AR 공간상의 사람을 인식, 서 있는 위치 추정

고도와 실제 바닥 위치의 오차

- → Google Geospatial API로 추정한 고도 정보와 실제 바닥의 위치 간의 오차 발생 (최대 5m)으로 피사체가 공중에 생성됨
- → AR Raycast를 활용하여 Plane Detection을 수행하여 바닥의 위치에 정확히 피사체 생성

3D Model Pose Retargeting

- → 2D 이미지 기반으로 Full Mediapipe Human Detection(Python)를 이용하여 자세 정보 추론
- → BlazePose를 사전에 생성된 HumanIK 기반 FBX Model에 Pose Retargeting
- → Unity 어플리케이션에서 사용가능한 Texture가 포함된 glb Model로 변환

System Architecture

서비스를 위한 데이터 모델 설계

- → 3D Model과 Geographic coordinate 연계한 데이터 모델 설계
- → 위치 기반으로 조회해 주변 포스팅 정보 제공

결과

UI 1

- ① Capture Button
 - AR Camera로 사람 인식 및 서 있는 위치 추정
 - AR Raycast를 통해 Geographical coordinate 계산
 - 촬영된 사진을 확인할 수 있도록 UI 2로 전환
- ② Refresh Button
 - 사용자의
 Geographical
 coordinate를
 기준으로 서버에
 주변 포스팅 요청

UI 2

- ① Check Button
 - 촬영된 사진과 Geographical coordinate를 서버로 서버로 전송함으로써 포스팅
- ② Return Button
 - UI 1으로 전환

UI 3

① 서버로 부터 받은
Retargeted 3D Model,
Geographical
coordinate를
바탕으로 AR world에
포스팅 표현

개선방안

- 1. 유료 최신 딥러닝 기반 Texture 보강 기법을 활용한다면, 3D Model의 Texture를 더욱 자연스럽게 생성할 수 있을 것이다.
- 2. 실내에서의 GPS, VPS 기반 Geographical coordinate 추정의 정확도는 한계가 있었다. 실내 데이터를 수집하여 분석한다면 정확도 개선이 가능할 것이다.
- 3. 포스팅을 계절별로 분류하여 서비스하는 방향으로 개선시킨다면 사용자 경험을 높일 수 있을 것이다.