Data Visualization Lab(L13+L14)

Name: Alpanshu Kataria

Reg. No.: 18BCE1267

Faculty: Dr.Parvathi.R

Lab 2

Task:

KMeans_Animation on wheat seeds dataset.

•	Area [‡]	Perimeter [‡]	Compactness [‡]	Kernel.Length	Kernel.Width	Asymmetry.Coeff [‡]	Kernel.Groove	Type ‡
1	15.26	14.84	0.8710	5.763	3.312	2,2210	5,220	1
2	14.88	14.57	0.8811	5.554	3.333	1.0180	4,956	1
3	14.29	14.09	0.9050	5.291	3.337	2,6990	4.825	1
4	13.84	13.94	0.8955	5.324	3.379	2,2590	4,805	1
5	16.14	14.99	0.9034	5.658	3.562	1.3550	5.175	1
6	14.38	14.21	0.8951	5.386	3.312	2,4620	4.956	1
7	14.69	14.49	0.8799	5.563	3.259	3,5860	5.219	1
8	16.63	15.46	0.8747	6.053	3.465	2.0400	5.877	1
9	16.44	15.25	0.8880	5.884	3.505	1.9690	5.533	1
10	15.26	14.85	0.8696	5.714	3.242	4.5430	5.314	1
11	14.03	14.16	0.8796	5.438	3.201	1.7170	5.001	1
12	13.89	14.02	0.8880	5.439	3.199	3,9860	4.738	1
13	13.78	14.06	0.8759	5.479	3.156	3.1360	4.872	1
14	13.74	14.05	0.8744	5.482	3.114	2,9320	4,825	1
15	14.59	14.28	0.8993	5.351	3.333	4.1850	4.781	1
16	13.99	13.83	0.9183	5.119	3.383	5.2340	4.781	1
17	15.69	14.75	0.9058	5.527	3.514	1.5990	5.046	1
18	14.70	14.21	0.9153	5.205	3.466	1.7670	4.649	1
19	12.72	13.57	0.8686	5.226	3.049	4.1020	4.914	1
20	14.16	14.40	0.8584	5.658	3.129	3.0720	5.176	1
21	14.11	14.26	0.8722	5.520	3.168	2,6880	5,219	1
	45.00	****	0.0000	5.640	2.507	0.7554	5.004	

Code:

```
#require("datasets")
#data("seeds")
seeds <- read.csv("D:/ViT/Sem 6/Data viz/Lab/Lab2/seeds.csv")
str(seeds)
summary(seeds)
head(seeds)
seeds.new<- seeds[,c(1,2,3,4,5,6,7)]
seeds.class<- seeds[,"Type"]</pre>
head(seeds.new)
head(seeds.class)
normalize <- function(x){
 return ((x-min(x))/(max(x)-min(x)))
seeds.new$Area<- normalize(seeds.new$Area)</pre>
seeds.new$Perimeter<- normalize(seeds.new$Perimeter)</pre>
seeds.new$Compactness<- normalize(seeds.new$Compactness)
seeds.new$Kernal.Length<- normalize(seeds.new$Kernel.Length)
seeds.new$Kernal.Width<- normalize(seeds.new$Kernel.Width)
seeds.new$Asymmetry.Coeff<- normalize(seeds.new$Asymmetry.Coeff)
seeds.new$Kernal.Groove<- normalize(seeds.new$Kernel.Groove)</pre>
seeds.new<- seeds.new[,c(1,2,3,6,8,9,10)]
head(seeds.new)
```

```
head(seeds.class)
result<- kmeans(seeds.new,3)
result$size # gives no. of records in each cluster
result$centers # gives value of cluster center datapoint value(3 centers for k=3)
result$cluster
par(mfrow=c(2,2), mar=c(5,4,2,2))
plot(seeds.new[c(1,2)], col=result$cluster)
plot(seeds.new[c(1,2)], col=seeds.class)
plot(seeds.new[c(3,4)], col=result$cluster)
plot(seeds.new[c(3,4)], col=seeds.class)
plot(seeds.new[c(5,6)], col=result$cluster)
plot(seeds.new[c(5,6)], col=seeds.class)
result$cluster <- as.factor(result$cluster)</pre>
library(ggplot2)
ggplot(seeds.new, aes(Kernal.Length, Kernal.Width, color = result$cluster)) + geom_point()
plot(seeds.new[,], col=result$cluster)
table(result$cluster,seeds.class)
library(animation)
km1<-kmeans.ani(seeds.new,3)
library(factoextra)
fviz_cluster(result, data = seeds.new)
k2 <- kmeans(seeds.new, centers = 2, nstart = 25)
k3 <- kmeans(seeds.new, centers = 3, nstart = 25)
```

```
k4 <- kmeans(seeds.new, centers = 4, nstart = 25)
k5 <- kmeans(seeds.new, centers = 5, nstart = 25)
p1 <- fviz_cluster(k2, geom = "point", data = seeds.new) + ggtitle("k = 2")
p2 <- fviz_cluster(k3, geom = "point", data = seeds.new) + ggtitle("k = 3")
p3 <- fviz_cluster(k4, geom = "point", data = seeds.new) + ggtitle("k = 4")
p4 <- fviz_cluster(k5, geom = "point", data = seeds.new) + ggtitle("k = 5")
library(gridExtra)
grid.arrange(p1, p2, p3, p4, nrow = 2)
```

Console Output:

```
> #require("datasets")
> #data("seeds")
> seeds <- read.csv("D:/ViT/Sem 6/Data viz/Lab/Lab2/seeds.csv")</pre>
 str(seeds)
               199 obs. of 8 variables:
'data.frame':
 $ Area
                : num 15.3 14.9 14.3 13.8 16.1 ...
 $ Perimeter
                 : num 14.8 14.6 14.1 13.9 15 ...
 $ Compactness
                 : num
                        0.871 0.881 0.905 0.895 0.903 ...
 $ Kernel.Length : num 5.76 5.55 5.29 5.32 5.66 ...
                 : num 3.31 3.33 3.34 3.38 3.56 ...
 $ Kernel.Width
 $ Asymmetry.Coeff: num
                        2.22 1.02 2.7 2.26 1.35 ...
 $ Kernel.Groove : num 5.22 4.96 4.83 4.8 5.17 ...
 $ Type
                 : int 111111111...
> summary(seeds)
                  Perimeter
                                                 Kernel.Length
                                                                 Kernel.Width
                                 Compactness
     Area
Min.
       :10.59
               Min. :12.41
                               Min. :0.8081
                                                 Min. :4.899
                                                                Min. :2.630
 1st Qu.:12.33
                1st Qu.:13.47
                                1st Qu.: 0.8571
                                                 1st Qu.:5.267
                                                                1st Qu.:2.954
                Median :14.37
Median :14.43
                                Median :0.8734
                                                 Median :5.541
                                                                 Median :3.245
                                Mean :0.8708
                                                 Mean :5.643
 Mean :14.92
                Mean :14.60
                                                                 Mean :3.266
 3rd Qu.:17.45
                                3rd Qu.:0.8868
                                                 3rd Qu.:6.002
                                                                 3rd Qu.:3.564
                3rd Qu.:15.80
       :21.18
                       :17.25
                                мах.
                                       :0.9183
                                                 мах.
                                                        :6.675
                                                                 Max.
                                                                       :4.033
                Max.
 Asymmetry.Coeff Kernel.Groove
                                      туре
                                        :1.000
                                 Min.
                 Min. :4.519
Min.
       :0.7651
 1st Qu.:2.5700
                 1st Qu.:5.046
                                 1st Qu.:1.000
                                 Median :2.000
Median :3.6310
                 Median :5.228
       :3.6992
                 Mean
                       :5.421
                                 Mean
                                       :1.995
 3rd Qu.:4.7990
                 3rd Qu.:5.879
                                 3rd Qu.:3.000
Max.
       :8.3150
                 Max.
                        :6.550
                                 Max.
                                        :3.000
> head(seeds)
  Area Perimeter Compactness Kernel.Length Kernel.Width Asymmetry.Coeff Kernel.Groove
1 15.26
           14.84
                      0.8710
                                     5.763
                                                  3.312
                                                                  2.221
                                                                                5.220
2 14.88
           14.57
                      0.8811
                                     5.554
                                                  3.333
                                                                  1.018
                                                                                4.956
                      0.9050
           14.09
                                                                  2.699
3 14.29
                                     5.291
                                                  3.337
                                                                                4.825
                      0.8955
                                                  3.379
4 13.84
           13.94
                                     5.324
                                                                  2.259
                                                                                4.805
                      0.9034
                                                                 1.355
5 16.14
           14.99
                                     5.658
                                                  3.562
                                                                                5.175
6 14.38
           14.21
                     0.8951
                                     5.386
                                                  3.312
                                                                  2.462
                                                                                4.956
  Туре
```

```
туре
1
     1
3
     1
4
5
6
> seeds.new<- seeds[,c(1,2,3,4,5,6,7)]
> seeds.class<- seeds[,"Type"]
> head(seeds.new)
  Area Perimeter Compactness Kernel.Length Kernel.Width Asymmetry.Coeff Kernel.Groove
                     0.8710
1 15.26
          14.84
                                      5.763
                                              3.312
                                                                   2.221
2 14.88
            14.57
                       0.8811
                                      5.554
                                                   3.333
                                                                   1.018
                                                                                 4.956
3 14.29
           14.09
                      0.9050
                                      5.291
                                                   3.337
                                                                  2.699
                                                                                 4.825
           13.94
                      0.8955
                                                                  2.259
4 13.84
                                      5.324
                                                  3.379
                                                                                 4.805
                                                   3.562
            14.99
                      0.9034
                                      5.658
                                                                   1.355
                                                                                 5.175
5 16.14
                      0.8951
                                      5.386
6 14.38
            14.21
                                                   3.312
                                                                   2.462
                                                                                 4.956
> head(seeds.class)
[1] 1 1 1 1 1 1
> normalize <- function(x){</pre>
   return ((x-min(x))/(max(x)-min(x)))
> seeds.new$Area<- normalize(seeds.new$Area)
> seeds.new$Perimeter<- normalize(seeds.new$Perimeter)</pre>
> seeds.new$Compactness<- normalize(seeds.new$Compactness)</pre>
> seeds.new$Kernal.Length<- normalize(seeds.new$Kernel.Length)
> seeds.new$Kernal.Width<- normalize(seeds.new$Kernel.Width)
> seeds.new$Asymmetry.Coeff<- normalize(seeds.new$Asymmetry.Coeff)
> seeds.new$Kernal.Groove<- normalize(seeds.new$Kernel.Groove)
> seeds.new<- seeds.new[,c(1,2,3,6,8,9,10)]
> head(seeds.new)
       Area Perimeter Compactness Asymmetry.Coeff Kernal.Length Kernal.Width
                                    0.19283699
1 0.4409821 0.5020661
                       0.5707804
                                                      0.4864865
                                                                   0.4861012
2 0.4050992 0.4462810
                       0.6624319
                                       0.03349713
                                                      0.3688063
                                                                   0.5010691
3 0.3493862 0.3471074
                       0.8793103
                                      0.25614909
                                                      0.2207207
                                                                   0.5039202
4 0.3068933 0.3161157
                        0.7931034
                                       0.19787017
                                                      0.2393018
                                                                   0.5338560
                       0.8647913
                                      0.07813349
                                                     0.4273649
                                                                  0.6642908
5 0.5240793 0.5330579
6 N 3578848 N 3719NN8
                       0 7804737
                                                      0 27/2117
                                       0 22/7570/
                                                                   0 4861012
```

```
Kernal.Groove
1
      0.3451502
      0.2151649
3
      0.1506647
4
      0.1408173
      0.3229936
5
6
      0.2151649
> head(seeds.class)
[1] 1 1 1 1 1 1
> result<- kmeans(seeds.new,3)
> result$size # gives no. of records in each cluster
[1] 62 72 65
> result$centers # gives value of cluster center datapoint value(3 centers for k=3)
       Area Perimeter Compactness Asymmetry.Coeff Kernal.Length Kernal.Width
1 0.7606994 0.7970874
                                         0.3746018
                        0.6940753
                                                         0.7336167
                                                                      0.7720093
2 0.1257344 0.1781451
                         0.3777349
                                          0.5028705
                                                         0.1902997
                                                                       0.1642116
3 0.3865621 0.4250159 0.6617479
                                         0.2754671
                                                         0.3722453
                                                                      0.4685454
  Kernal. Groove
      0.7580328
      0.2832075
      0.3224028
> result%cluster
  > par(mfrow=c(2,2), mar=c(5,4,2,2))
> plot(seeds.new[c(1,2)], col=result$cluster)
> plot(seeds.new[c(1,2)], col=seeds.class)
> plot(seeds.new[c(3,4)], col=result$cluster)
> plot(seeds.new[c(3,4)], col=seeds.class)
> plot(seeds.new[c(5,6)], col=result$cluster)
> plot(seeds.new[c(5,6)], col=seeds.class)
> result$cluster <- as.factor(result$cluster)</pre>
> library(ggplot2)
> ggplot(seeds.new, aes(Kernal.Length, Kernal.Width, color = result$cluster)) + geom_point()
> ggplot(seeds.new, aes(Kernal.Length, Kernal.Width, color = result$cluster)) + geom_point()
> plot(seeds.new[,], col=result$cluster)
> table(result$cluster, seeds.class)
   seeds.class
     1 2 3
2 60 0
  2 9 0 63
  3 55 8 2
> library(animation)
> km1<-kmeans.ani(seeds.new,3)</p>
> library(factoextra)
Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
> fviz_cluster(result, data = seeds.new)
> k2 <- kmeans(seeds.new, centers = 2, nstart = 25)
> k3 <- kmeans(seeds.new, centers = 3, nstart = 25)
> k4 <- kmeans(seeds.new, centers = 4, nstart = 25)
> k4 <- kmeans(seeds.new, centers = 4, instant = 25)
> k5 <- kmeans(seeds.new, centers = 5, instant = 25)
> p1 <- fviz_cluster(k2, geom = "point", data = seeds.new) + ggtitle("k = 2")
> p2 <- fviz_cluster(k3, geom = "point", data = seeds.new) + ggtitle("k = 3")
> p3 <- fviz_cluster(k4, geom = "point", data = seeds.new) + ggtitle("k = 4")
> p4 <- fviz_cluster(k5, geom = "point", data = seeds.new) + ggtitle("k = 5")
> library(gridExtra)
> grid.arrange(p1, p2, p3, p4, nrow = 2)
```

Plot Output:

