答卷无效

东南大学考试卷(A卷)

课程名	称 相	既率论与数	理统计	考试:	学期 12		得分		
适用专		全校	考	试形式	闭卷	考证	式时间长度	120分	分钟
题号		_ =	三	四	五.	六	七	八	
得分									
		-r ⁻¹² dt 表示							
$\Phi(-1.64)$ $\Phi(1.3) =$	(5) = 0.05 (0.9032)	; Φ(-1.90 Φ(1.	5) = 0.025 96) = 0.9	$\Phi(0) = 0$	$0.5; \Phi(1) \\ 0(2) = 0.97$	= 0.8413			
$t_{0.05}(8)$	=1.86,	$t_{0.025}(8)$	= 2.31,				=2.26		
		格 2',共							
1)	已知 P(B)=0.2, P(A	A)=0.3, P(A	A B)=0.5,	则 P(B-A)		_;P(AUB)=		°
2)	一盒中有	2个白球	,3个黑斑	成, 每次抽	取一球,]	取后放回,	连续抽取	5次,]	则第
	5 次首と	欠取到黑斑	求的概率	为	,第-	一次和第	五次都取到	的白球棒	既率
	为	0		1/2					
3)	设随机变	を量 X 服从	正态分布	N(1, 4),	P(X < 3)		•		
4)	随机变量	t X,Y 服	从二元正法	态分布, E	X=EY=1,D	X=DY=4,	X和Y的	相关系	数为
	0.5,则1	P(X-Y>2)=		•					
5)	随机变	量 X,	Y的联	合分布律	≢为: P(∑	X=1,Y=1)=	=0.1; P(X=	=1,Y=2)=	=0.4
	P(X=2,Y	=1)=0.4; P	(X=2,Y=2)=0.1. 则:	X-Y 分布律	丰为			°
	X 的边缘	分布律为							
6)	随机变量	a X,Y的	相互独立,	DX=DY	=1,则 co	v(X-2Y, 2	X+Y)=		0
7)	设随	机变量	序列 {	Xn,n=1,2,.	} 独 立	同分	布于N	(1,1) ,	贝
	$\frac{1}{n}(X_1^2)$	+ X ₂ ² +	$(+X_n^2)$	<i>_p</i>	•		,		

设总体 X 服从正态分布 $N(1,2), X_1, X_2, ..., X_{10}$ 是来此该总体的样本, \overline{X}, S^2 分别

- 9) 随机变量 X 的分布律为 P(X= 2)=0.1, P(X=3)=0.2, P(X=4)=0.7,则其分布函数为_____。
- 10) 随机变量 X 服从均值为 1 的指数分布,则 Y= 2X+1 的密度函数为____。
- 11) 设 X_1, X_2, X_3, X_4 是来自正态总体 N(0,9) 的简单随机样本,若 $c(X_1^2 + X_2^2 + X_4^2)$ 服 从 $\chi^2(3)$ 分 布 ,则 c= _____,若 $b \frac{X_1^2}{X_2^2 + X_3^2 + X_4^2} \sim F(1,3)$,则常数b = _____。
- 12) 设某假设检验问题在水平 α =0.1 时,根据样本得到的结论是拒绝原假设。若 α =0.2,则基于同样的样本和检验统计量得到的结论是____。
- 13) 设总体 $X \sim f(x,a)$, a 为未知参数,若 $X_1, X_2, ..., X_n$ 是来自该总体的简单随机样本, \bar{X}, S^2 分别表示表示样本均值和样本方差。设 $\frac{\bar{X}-a}{S}$ 的密度函数为 g(t)=2t,0 < t < 1, g(t)=0, 其他;则 <math>a 的置信度为 95%的置信区间为______。

二、(10') 设有甲乙两个箱子,甲中有红球 3 只,白球 2 只;乙箱中有红球 4 只,白球 1 只。随机地选一箱子,然后再随机的从该箱中任选一球。(1) 求取出的球为红球的概率;(2) 如果取出的球为红球,则该球取自甲箱的概率是多少?

三、(15') 设随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} a & x > 0, y > 0, x + y < 1 \\ 0 & \\ \exists \dot{\mathbb{C}} \end{cases},$$

求(1)常数 a; (2)Y 的边缘密度函数; (3) 求条件概率 P(Y<0.2|X=0.5)。

效

姓名

四、(10')设随机变量 X 和 Y 相互独立且都服从标准正态分布。令 $Z=X^2+Y^2$,求随机变量 Z 的概率密度函数 $f_Z(z)$ 。

五、(10') 某灯泡企业每月生产 20 万只节能灯泡,每只灯泡的寿命服从均值为 1000 小时的指数分布。现在从一大批灯泡中随机抽取 100 只进行检验。试用中心极限定理求 100 只灯泡的平均寿命超过 1200 小时的概率.

六、(10')设总体 X 的概率分布密度函数如下,

$$f(x,a) = \begin{cases} e^{-(x-a)} & x \ge a \\ 0 & x < a \end{cases}$$

 $X_1,...X_n$ 为来自该总体的样本,(1)求参数 a 的最大似然估计量 \hat{a} ,(2) \hat{a} 是否是 a的 无偏估计量,说明理由。.

七、 (9')设总体 X 服从正态分布 N (u,b),u,b 未知。 现有来自该总体样本容量为 9 的样本, 其样本均值为 2.4,样本方差为 4. 试检验 H_0 : u=2.0 v.s. H_1 : u>2.0.(检验水平 $\alpha=0.05$)