Correction du DS du 10/05/2017

Exercice 1 (Adresses IPv4)

Remplacez les points d'interrogations (« ? ») dans la table suivante par leur valeur correcte. Dans cette table, les correspondent à :

Adresse :une adresse IPv4 en notation CIDR

Netmask): son masque réseau **NetID**(*): son préfixe réseau

HostID(*): l'identificateur de son interface

Classe/Type: la classe de l'adresse/de type publique ou privée Cible : il s'agit d'un Réseau, d'un Hôte ou bien de Diffusion

Solution:

Voir le texte en bleu dans la table 1

Adresse	Netmask	NetID	HostID	Classe/Type	Cible
100.2.16.255/23	255.255.254.0	100.2.16.0	0.0.0.255	A/publique	255è hôte
132.25.79.255/20	255.255.240.0	132.25.64.0	0.0.15.255	B/publique	Diffusion
172.20.253.15/19	255.255.224.0	172.20.224.0	0.0.29.15	B/privée	7439è hôte
222.168.160.143/29	255.255.255.248	222.168.160.136	0.0.0.7	C/publique	Diffusion
192.164.64.69/26	255.255.255.192	192.164.64.64	0.0.0.5	C/publique	5è hôte
111.250.208.0/21	255.255.248.0	111.250.208.0	0.0.0.0	A/publique	Réseau

Table 1 - Adresses IP, notation CIDR, classe, . . .

(*): en notation IP pointée

_____ Fin de l'exercice 1

Exercice 2 (Adresses IPv6)

- (1) Quelle est la forme abrégée des adresses suivantes :
 - 2001:0688:1f80:0000:0203:ffff:4c18:00e0

Solution:

2001:688:1f80::203:ffff:4c18:e0

- 3cd0:0000:0000:0000:0040:0000:0cf0

Solution: 3cd0::40:0:cf0

Solution:

- fe80:0000:0000:0000:4cff:fe4f:4f50

Solution:

fe80::4cff:fe4f:4f50

- (2) Déterminez le type des adresses suivantes :
 - 2001:618:1f80:2010:203:ffff:b118:ef1e

Solution:

UNICAST globale

- 3001:2:1:2::4cfE **Solution:**

UNICAST globale

L2 INFO INFO 0403

- fec0:0:0:ffff::1

Solution:

UNICAST lien local

— ff02::1:ff1a:ef1e

Solution: MULTICAST

(3) En fonction de la longueur de leur préfixe donnez le réseau d'appartenance de ces adresses :

- 2001:88:1f80::203:ffff:4c18:ffe1/64

Solution:

2001:88:1f80::/64

- 2001:bb76:7878:2::/56

Solution:

2001:bb76:7878::/56

(4) A partir des adresses Mac suivantes construisez les adresses « lien local »

- 2:0:4c:4f:50:f0

Solution:

fe80::4cff:fe4f:50f0

- 0:3:ff:18:cf:1e

Solution:

fe80::203:ffff:fe18:cf1e

(5) Quelles seraient les adresses « lien global » correspondalet psésfixe distribué par le fournisseur d'accès est 2a01:5d8:ccf1:4::/64.

Solution:

2a01:5d8:ccf1:4::4cff:fe4f:50f0 2a01:5d8:ccf1:4:203:ffff:fe18:cf1e

Fin de l'exercice 2

Exercice 3 (IPv4: Plan d'adressage, RIP, fragmentation)

La figure (1) montre 4 machines (A, B, C et D) et 4 routeurs (RA, RB, RC et RD). Nous supposons que chaque mac possède la première adresse IP du réseau auquel elle appartient. Pour les routeurs, leur adresse commence au fo plage d'adresses du réseau auquel ils appartiennent.

Figure 1 - Routage dynamique, fragmentation,...

(1) Donnez la configuration IP des 4 machines (adresse IP et Passerelle par défaut).

L2 INFO INFO U103

Solution:

Dans la figure 2 page suivante, nous avons délibérément coloré les différents réseaux pour une meilleure lectur De plus, nous les listons par ordre croissant de leur adresse IP ; il en sera de même dans les tables de routage de En voici la liste :

Rouge: 1.0.0.0/8
Vert: 2.0.0.0/8
Bleu: 3.0.0.0/8
Magenta: 4.0.0.0/8
Violet: 130.1.0.0/16
Jaune: 130.2.0.0/16
Marron: 130.3.0.0/16

Pour les passerelles nous anticipons la réponse à la question suivante.

Nom du hôte	Config. IP	Passerelle
Machine A	1.0.0.1	1.255.255.254
Machine B	2.0.0.1	2.255.255.254
Machine C	3.0.0.1	3.255.255.254
Machine D	4.0.0.1	4.255.255.254

(2) Donnez la configuration IP des 4 routeurs.

Solution:

Nom du hôte	eth0	eth1	eth2
	1.255.255.254		
Routeur RB	130.2.255.253	2.255.255.254	130.3.255.254
Routeur RC	130.1.255.253	3.255.255.254	_
Routeur RD	130.3.255.253	4.255.255.254	_

(3) Nous choisissons le routage dynamique comme mode de routage pour notre exemple. Donnez les tables de de chaque routeur une fois que RIP termine (Au besoin, considérez une métrique de 1 pour chaque liaison!).

Netmask

Saut

255.0.0.0 130.2.255.254 eth0

Solution:

	Dest	Netmask	Saut	Iface	Métrique
	1.0.0.0	255.0.0.0	_	eth0	0
	2.0.0.0	255.0.0.0	130.2.255.253	eth1	1
Table de routage du routeur RA	3.0.0.0	255.0.0.0	130.1.255.253	eth2	1
rable de l'outage du l'outeur Ka	4.0.0.0	255.0.0.0	130.2.255.253	eth1	2
	130.1.0.0	255.255.0.0	_	eth2	0
	130.2.0.0	255.255.0.0	_	eth1	0
	130.3.0.0	255.255.0.0	130.2.255.253	eth1	1

	2.0.0.0	233,0,0,0	1501212551251	000	
	2.0.0.0	255.0.0.0	_	eth1	0
Table de routage du routeur Ri	3.0.0.0	255.0.0.0	130.2.255.254	eth0	2
rable de l'outage du l'outeur r	4.0.0.0	255.0.0.0	130.3.255.253	eth2	1
	130.1.0.0	255.255.0.0	130.2.255.254	eth0	1
	130.2.0.0	255.255.0.0	_	eth0	0
	130.3.0.0	255.255.0.0		eth2	0

Dest

	Dest	IVELIIIASK	Saut	Hace	Metrique
	1.0.0.0	255.0.0.0	130.2.255.254	eth0	1
	2.0.0.0	255.0.0.0	130.2.255.254	eth0	2
Table de routage du routeur R	3.0.0.0	255.0.0.0	_	eth1	0
rable de routage du routeur k	4.0.0.0	255.0.0.0	130.1.255.254	eth0	3
	130.1.0.0	255.255.0.0	_	eth0	0
	130.2.0.0	255.255.0.0	130.1.255.254	eth0	1
	130.3.0.0	255.255.0.0	130.1.255.254	eth0	2

Iface Métrique

L2 INFO INFO U103

	Dest	Netmask	Saut	Iface	Métrique
	1.0.0.0	255.0.0.0	130.3.255.254	eth0	2
	2.0.0.0	255.0.0.0	130.3.255.254	eth0	1
Table de routage du routeur RI	3.0.0.0	255.0.0.0	130.3.255.254	eth0	3
rable de routage du routeur Ki	4.0.0.0	255.0.0.0	_	eth2	0
	130.1.0.0	255.255.0.0	130.3.255.254	eth0	2
	130.2.0.0	255.255.0.0	130.1.255.254	eth0	1
	130.3.0.0	255.255.0.0	_	eth0	0

Figure 2 - Routage dynamique, fragmentation : configurations IP

- réseau 1.0.0.0/8 = ⇒ 500
- réseau 2.0.0.0/8 = ⇒ 500
- réseau 3.0.0.0/8 =⇒ 500
- réseau 4.0.0.0/8 = \Rightarrow 500
- réseau 130.1.0.0/16 =⇒ 200
- réseau 130.2.0.0/16 =⇒ 400
- réseau 130.3.0.0/16 = ⇒ 100

(4) Détaillez le processus de fragmentation concernant cen enhoisissant une valeur personnelle pour le champs Identification du datagramme IP. Vous devez préciser et nommer les fragments générés par les sites intermédial long de la route menant de la machine C vers la machine D.

Solution:

Pour l'envoi du message de taille 256 ϕ nous aurons 2 cas selon le protocole utilisé au niveau de la couche Tran

- 1. en mode connecté, utilisation du protocole TCP dont l'entête est longue de 20 ϕ ,
- 2. en mode non connecté, utilisation du protocole UDP dont l'entête fait 8 φ.

Le segment de la couche Transport aura donc une taille de :

- 276 φ pour le cas 1 ou
- -264ϕ pour le cas 2.

Ce segment sera encapsulé dans un datagramme IP de la couche Réseau. Moyennant une entête de 20 φ, c'est totale du datagramme œsit soumise à la contrainte MTDans la suitenous détaillons les 5 étapes pour envoyer le message de la machine C à la macine D. Vous remarquerez que la coloration des étapes se fait conformément au des réseaux présentés par la figure 2 :

• de C à RC : 1 datagramme DGRAM

— cas 1 :	20 φ	276 φ
— cas 2 :	20 φ	264 φ

L2 INFO **INFO 0403**

Le MTU est suffisamment grand pour que le datagramme le traverse sans être fragmenté. Donc pas de doi fraamentation.

96 φ

84 ф

• de RC à RA : traversée du réseau 130.1.0.0/16 dont le MTU est de 200. Le datagramme dans les deux cas fragmenté par le routeur RC

180 ф <u>20 φ</u> — cas 1 : F1 → D=0 ; M=1D=0:M=0180 ф D=0:M=1D=0:M=0

- de RA à RB: traversée du réseau 130.2.0.0/16 dont le MTU est de 400taille des fragments entrant est inférieure au MTU. Donc pas de fragmentation pour cette étape.
- de RB à RD : traversée du réseau 130.3.0.0/16 dont le MTU est de 100us les fragments entrant dont la taille est supérieure à la MTU seront fragmenté par le routeur RB. D'où :

— le fragment F1 sera fragmenté en :

```
-F1.1 → \boxed{20 \phi}
                                   80 ф
                                                        avec D=0 et M=1,
- F1.2 →
            20 φ
                                   80 ф
                                                        avec D=0 et M=1,
— F1.3 → [
           20 ф
                     20 \phi + 6 \phi de bourrage avec D=0 et M=1.
```

— le fragment F2 sera fragmenté selon le cas en :

```
16 \phi + 10 \phi de bourrage
                             80 ф
                                                    20 φ
                  20 φ
— cas 1 : F2.1 →
                      D=0 : M=1
                                                              D=0:M=0
                                                            4 \phi + 22 \phi de bourrage
                             80 ф
- cas 2 : F2.1 -
                                                              D=0:M=0
                      D=0:M=1
```

- de RD à D: traversée du réseau 4.0.0.0/8 dont le MTU est de 500. La taille des fragments entrant est inférence au MTU. Donc pas de fragmentation pour cette dernière étape.
- \star : Le bourrage est nécessaire pour compléter une trame Ethernet minimale de 46 ϕ .

Fin de l'exercice 3

Barème:

Exercice 3:.....

Format du PDU: Datagramme IP

0 3 1 01234567890123456789012345678901 Ver | HLen | Total length T.O.S |0|D|M| Fragment offset Identification +-+-+-+-+-+-+-+-+-+-Proto H.Checksum ΙP SRC ADDR DEST IP ADDR **OPTIONS Padding**

L'adressage Internet (suite) asse A Net-id Host-id asse C Net-id Host-id asse C Multicast asse E Net-id Réservé

Adressage IPv6

Certains préfixes d'adresses IPv6 jouent des rôles particuliers :

Type d'adresses IPv6			
Préfixe	Description		
::/8	Adresses réservées		
2000::/3	Adresses unicast routables sur Internet		
fc00::/7	Adresses locales uniques		
fe80::/10	Adresses locales lien		
ff00::/8	Adresses multicast		