AFTER adding output stabilizing circuit:

Results at m1 marker free	quency:	
StabilityMu[m1]	StabCktMu[m1]	
0.902	1.043	MU > 1 - circuit now stable at the price of

Otabilityria[r]	otabottama[mi]	
0.902	1.043	MU > 1 - circuit now stable at the price of

Load and source stability circles now fall outside Smith Chart. All passive source and load terminations will produce stable circuit.

indep(I_stab_circle(StabCkt..S[m1],51)) (0.000 to 51.000) indep(s_stab_circle(StabCkt..S[m1],51)) (0.000 to 51.000)

NF of device with resistor-only stabilizing circuit 2.6 RStabCkt..I StabCkt..N NF of device with L-R circuit. 2.0-NF of device alone frea, GHz Adding inductor to stabilizing circuit maintains device noise performance.

Sopt

ot at 2GHz, used in Matching.dsn		
mag(StabCktSopt[m1])	phase(StabCktSopt[m1])	
0.444	98.626	