

EE 5141 Introduction to Wireless and Cellular Communications Feb – May 2021

Computer Assignment Submission Instructions

- Submit the assignment as a team of two students
- Please submit the following
 - o Required plots
 - o Include brief explanation of observations, as appropriate
 - o Listing of code written by you
- The submitted file should be in .pdf format
- Mention name and roll number of both team members
- · Use following naming convention for file
 - o roll_number_assign#.pdf(Use roll number of one of the team members)
 - o Example: EE20M001_cassign2.pdf
- · Assignment submission via Moodle
 - o Instructions given by TAs
 - o Do not send via email
- Honour Code:
 - o Add this line to your assignment and an electronic signature
 - I certify that this assignment submission is my own work and not from obtained from any other source

Phone: +91-44-2257-4405

FAX: +91-44-2257-0120

Department of Electrical Engineering IIT Madras, Chennai 600 036.

EE 5141: Introduction to Wireless and Cellular Communications Feb – May 2021

Computer Assignment 2 (Due date: March 1, 2021)

1. The task is to build a QPSK modem and study the Bit Error Rate (BER) and Symbol Error Rate (SER) performance using Monte-Carlo simulations, as given in the Figure 1a. Generate a random sequence of about 512 QPSK symbols and apply pulse shaping with an SRRC pulse (roll off $\alpha = 0.35$), as generated in Computer Assignment 1. Use Gray Coding for the QPSK symbols.

Bits	00	01	10	11
QPSK	$\rho^{j\frac{\pi}{4}}$	$a^{j\frac{3\pi}{4}}$	$e^{-j\frac{\pi}{4}}$	$a^{-j\frac{3\pi}{4}}$
Symbol		е т		е т

The symbol rate is 25 K symbols/sec.

- (a) Assume that the obtained signal after receiver filter is down-sampled to one sample per symbol. Plot the received symbols for the case when $\frac{E_b}{N_0} = 6 \ dB$. This will show the constellation points in the presence of noise.
- (b) BER / SER simulation
 - Generate AWGN with different variance values (by varying α in Figure 1b)
 - Pass the desired signal and noise through a matched receive filter (same SRRC filter as used in transmitter) using the block diagram given in Figure 1b.
 - Apply coherent detection and compute BER and SER for $\frac{E_b}{N_0}$ in the range [0, 14 dB] in steps of 2 dB, using 500 bursts for averaging. (Measure P_s and P_n and convert to $\frac{E_b}{N_0}$, given that for QPSK with SRRC Tx and Rx filters, then $\frac{P_s}{P_n}$ $(dB) 3 dB = \frac{E_b}{N_0}$ (dB)
- (c) Plot BER vs $\frac{E_b}{N_0}$ and SER vs $\frac{E_S}{N_0}$
- (d) In the BER plot, include the analytical computation of the BER for coherent QPSK given by $BER = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$. Refer Rappaport Appendix F for definition of Q-function. Verify that the BER plot (simulations) and the BER curve (analytical computation of BER) are in agreement.

Prof. David Koilpillai koilpillai@ee.iitm.ac.in

Phone: +91-44-2257-4405 FAX: +91-44-2257-0120

Department of Electrical Engineering IIT Madras, Chennai 600 036.

Figure 1a: Block diagram for simulation of BER performance in AWGN

Phone: +91-44-2257-4405

+91-44-2257-0120

FAX:

Figure 1b: Equivalent diagram to enable measurement of $\frac{P_s}{P_n}$

Prof. David Koilpillai koilpillai@ee.iitm.ac.in