Problem

Let H and O denote the orthocenter and circumcenter of acute triangle ABC, respectively. \overline{AH} meets \overline{BC} at P and \overline{AO} meets BC at Q. Prove that $\angle BAP = \angle CAQ$.

First, $\angle TAC = \angle TBC = \widehat{TC}$ and so we just need to prove $\angle TBC = \angle BAP =$. Next, $\angle TBA = 90^{\circ}$ because AT is a diameter of the circle, and with $\angle APB = 90^{\circ}$ we conclude that $\angle TBC = \angle BAP$ because both adds $\angle PWB$ to 90° . Therefore, $\angle BAP = \angle TBC = \angle TAC$.