Esercitazione Algebra lineare

Marco Gattulli

ESERCIZIO 1. Si dica per quali valori di β la matrice

$$B_{\beta} = \begin{bmatrix} 0 & 1 & 1 \\ \beta & 1 - \beta & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

è diagonalizzabile

SVOLGIMENTO.

Innanzitutto ricordiamo cosa vuol dire che una matrice è diagonalizzabile:

DEFINIZIONE 1. A è una matrice diagonalizzabile se è simile ad una matrice D diagonale, ossia se esistono una matrice diagonale D ed una matrice invertibile S tali che

$$A = SDS^{-1}$$

Questa è solo una definizione, a noi servirebbe un modo per capire quando ha senso cercare questa D e questa S, ovvero delle condizioni necessarie e sufficienti che ci dicano se data A essa è diagonalizzabile.

Un importante teorema ci dà proprio queste condizioni:

TEOREMA 1. Sia A una matrice complessa $n \times n$, λ_i i suoi autovalori e $E_A(\lambda_i)$ i relativi autospazi, allora sono equivalenti i seguenti fatti:

- ${\it 1. \ A \ \grave{e} \ diagonalizzabile.}$
- 2. \mathbb{C}^n ha una base costituita da autovettori di A.
- 3. $\mathbb{C}^n = \bigoplus_{1 \le i \le k} E_A(\lambda_i), \text{ con } k \le n.$
- 4. la molteplicità geometrica di ciascun autovalore coincide con la sua molteplicità algebrica.

La condizione più facile da verificare affinché A sia diagonalizzabile é la quarta.

Torniamo al nostro esercizio: troviamo gli autovalori di B_{β} , calcolando il determinante di $B_{\beta}-\lambda I$ e ponendolo uguale a zero:

$$B_{\beta} - \lambda I = \begin{bmatrix} 0 - \lambda & 1 & 1 \\ \beta & 1 - \beta - \lambda & -1 \\ 0 & 0 & 2 - \lambda \end{bmatrix}$$

$$\det(B_{\beta} - \lambda I) = 0$$

$$(2 - \lambda)(-\lambda + \lambda \beta + \lambda^{2} - \beta) = 0$$

$$(2 - \lambda)[\lambda^{2} + (\beta - 1)\lambda - \beta] = 0$$

$$(2 - \lambda)(\lambda - 1)(\lambda + \beta) = 0$$

Da cui otteniamo:

$$\lambda_1 = 2 \qquad m = 1 \qquad d = 1$$

$$\lambda_2 = 1 \qquad m = 1 \qquad d = 1$$

Il terzo autovalore sarebbe $-\beta$. Si presentano quindi 3 casi:

CASO $\beta \neq -1, -2$ In questo caso avremmo 3 autovalori diversi e pertanto tutte le molteplicità algebriche e geometriche coinciderebbero per ogni autovalore.

Dunque se $\beta \neq -1, -2$ la matrice B_{β} è diagonalizzabile.

ATTENZIONE: questo vuol dire che se prendiamo $\beta \neq -1, -2$ riusciamo a trovare S e D tali che $B_{\beta} = SDS^{-1}$ ma niente ci dice che per -1 e -2 B_{β} non sia pure diagonalizzabile. Quindi questa è solo una risposta provvisoria, dobbiamo vedere cosa accade per $\beta = -1$ e $\beta = -2$. Ripeto: sicuramente per $\beta \neq -1, -2$ la matrice B_{β} è diagonalizzabile, e per $\beta = -1$ e $\beta = -2$? Scopriamolo nei prossimi due casi.

CASO $\beta = -2$ Innanzitutto vediamo come diventa la matrice:

$$B_{-2} = \begin{bmatrix} 0 & 1 & 1 \\ -2 & 3 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

In questo modo otteniamo (non serve rifare il polinomio caratteristico sulla nuova matrice, basta andare a sostituire il valore di β nel risultato già torvato all'inizio)

$$\lambda_1 = 2$$
 $m = 2$ $d = ?$
 $\lambda_2 = 1$ $m = 1$ $d = 1$

Dunque la matrice è diagonalizzabile se la molteplicità geometrica di $\lambda_1 = 2$ è 2. Calcoliamo allora lo spazio nullo di $B_{-2} - 2I$ applicandovi l'Eliminazione di Gauss:

$$B_{-2} - 2I = \begin{bmatrix} -2 & 1 & 1 \\ -2 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} \to \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Da cui capiamo che il rango della matrice è 2 (due colonne dominanti) quindi la dimensione dello spazio nullo, e quindi la dimensione dell'autospazio, è 1 (per teorema nullità più rango). Questo vuol dire che la molteplicità geometrica è 1 e non essendo uguale a quella algebrica (che era 2), possiamo dire che per $\beta = -2$ la matrice B_{β} non è diagonalizzabile.

CASO $\beta = -1$ | Innanzitutto vediamo come diventa la matrice:

$$B_{-1} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 2 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

In questo modo otteniamo (non serve rifare il polinomio caratteristico sulla nuova matrice, basta andare a sostituire il valore di β nel risultato già torvato all'inizio)

$$\lambda_1 = 2$$
 $m = 1$ $d = 1$
 $\lambda_2 = 1$ $m = 2$ $d = ?$

Dunque la matrice è diagonalizzabile se la molteplicità geometrica di $\lambda_2=1$ è 2. Calcoliamo allora lo spazio nullo di $B_{-1}-1I$ applicandovi l'Eliminazione di Gauss:

$$B_{-1} - 1I = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Da cui capiamo che il rango della matrice è 2 (due colonne dominanti) quindi la dimensione dello spazio nullo, e quindi la dimensione dell'autospazio, è 1 (per teorema nullità più rango). Questo vuol dire che la molteplicità geometrica è 1 e non essendo uguale a quella algebrica (che era 2), possiamo dire che per $\beta = -1$ la matrice B_{β} non è diagonalizzabile.

Quindi la risposta definitiva è: la matrice B_β è diagonalizzabile per $\beta \neq -1$ e $\beta \neq -2$

Diamo un esempio di diagonalizzazione: poniamo $\beta=0$ e vediamo come escono S e D tali che $B_0=SDS^{-1}.$

Innanzitutto vediamo come diventa la matrice:

$$B_0 = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

Da essa, per i calcoli fatti prima, troviamo:

$$\lambda_1 = 2$$
 $m = 1$ $d = 1$
 $\lambda_2 = 1$ $m = 1$ $d = 1$
 $\lambda_3 = 0$ $m = 1$ $d = 1$

Calcoliamo i vari autovettori.

Per $\lambda=2$ calcoliamo una base dello spazio nullo di B_0-2I attraverso l'eliminazione di Gauss:

$$B_0 - 2I = \begin{bmatrix} -2 & 1 & 1\\ 0 & -1 & -1\\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & 1 & 1\\ 0 & 0 & 0 \end{bmatrix}$$

3

Da cui ricaviamo il vettore soluzione

$$\begin{bmatrix} 0 \\ -\alpha \\ \alpha \end{bmatrix} \to \alpha = 1 \to \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

Quindi l'autovettore relativo a $\lambda=2$ è $v_1=\begin{bmatrix}0 & -1 & 1\end{bmatrix}^T$.

Per verificare che abbiamo fatto giusto, notare che $B_0v_1 = \lambda_1v_1$ e che $(B_0 - 2I)v_1 = 0$ (queste equazioni derivano proprio dalla definizione di autovettore).

Per $\lambda=1$ calcoliamo una base dello spazio nullo di B_0-1I attraverso l'eliminazione di Gauss:

$$B_0 - 1I = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Da cui ricaviamo il vettore soluzione

$$\begin{bmatrix} \alpha \\ \alpha \\ 0 \end{bmatrix} \to \alpha = 1 \to \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Quindi l'autovettore relativo a $\lambda=2$ è $v_2=\begin{bmatrix}1&1&0\end{bmatrix}^T$

Per verificare che abbiamo fatto giusto, notare che $B_0v_2 = \lambda_2v_2$ e che $(B_0 - 1I)v_2 = 0$ (queste equazioni derivano proprio dalla definizione di autovettore).

Per $\lambda=0$ calcoliamo una base dello spazio nullo di $B_0-0I=B_0$ attraverso l'eliminazione di Gauss:

$$B_0 = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Da cui ricaviamo il vettore soluzione

$$\begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} \to \alpha = 1 \to \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Quindi l'autovettore relativo a $\lambda = 0$ è $v_3 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ Per verificare che abbiamo fatto giusto, notare che $B_0v_2 = \lambda_2v_1$ e che $(B_0 - v_1)$

Per verificare che abbiamo fatto giusto, notare che $B_0v_2 = \lambda_2v_1$ e che $(B_0 - 1I)v_2 = 0$ (queste equazioni derivano proprio dalla definizione di autovettore).

A questo punto definiamo le matrici D e S e diamo anche S^{-1} :

$$D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad S^{-1} = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Notare che nella i-esima colonna di S sta l'autovettore relativo all'autovalore di posto ii in D.

É facile verificare che

$$B_0 = SDS^{-1}$$