We have three designs: Which one is the best design?

The square box beam is constructed from four planks as shown. Knowing that the spacing between nails is s=1.75 in. and the beam is subjected to a vertical shear of magnitude V=600 lb, determine the shearing force in each nail for all three designs.

This is a rated-R problem,

$$A_w = 4.5^2 - 3^2 = 11.25in^2$$

Design 2

Design 3

$$I = \frac{1}{12} (4.5 \text{ in})^4 - \frac{1}{12} (3 \text{ in})^4$$
$$= 27.42 \text{ in}^4$$

$$V = 600 N$$

$$s = 1.75in$$

$$2F_{nail} = \Delta H = q\Delta x$$

Summary

Which design is the optimal design?

For the fixed F_{nail} , which design has the smallest $\Delta x = s$?

Design 1

$$\Delta H = q\Delta x$$

For the upper plank,

$$Q = A'\bar{y} = (0.75\text{in.})(3\text{in.})(1.875\text{in.})$$

= 4.22in³

$$I = \frac{1}{12}(4.5 \text{ in})^4 - \frac{1}{12}(3 \text{ in})^4$$

$$= 27.42 \text{ in}^4$$

$$s = 1.75 \text{ in}$$

$$q = \frac{VQ}{I} = \frac{(600 \text{ lb})(4.22 \text{ in}^3)}{27.42 \text{ in}^4} = 92.3 \frac{\text{lb}}{\text{in}}$$

$$f = \frac{q}{2} = 46.15 \frac{\text{lb}}{\text{in}}$$

$$= \text{edge force per unit length}$$

Based on the spacing between nails, determine the shear force in each nail.

$$F = f s = \left(46.15 \frac{\text{lb}}{\text{in}}\right) (1.75 \text{in})$$

$$F = 80.81 \text{b}$$

Design 2:

$$V = 600lb$$

$$I = 27.42in^4$$

$$A = 4.5 \times 0.75 = 3.375 \ in^2$$

$$\Delta x = s = 1.75 \ in$$

$$Q = \bar{y}A = (1.825)(3.375) = 6.1594in^3$$

$$2F_{nail} = qs$$

$$q = \frac{VQ}{I} = \frac{(600)(6.1594)}{27.42} = 134.778lb/in$$

$$F_{nail} = \frac{(134.778)(1.75)}{2} = 117.931 \ lb$$

Design 3:

$$V = 600 lb$$

$$A = 3.75 \times 0.75 = 2.8125 \ in^2$$

$$s = 1.75 \ in$$

$$I = 27.42in^4, \ \bar{y} = 1.875$$

$$Q = \bar{y}A = (1.875)(2.815) = 5.1328in^3$$

$$q = \frac{VQ}{I} = \frac{(600)(5.1328)}{27.42} = 112.315lb/in$$

$$F_{nail} = \frac{(112.315)(1.75)}{2} = 98.275 \ lb$$

$$\Delta H = 2F_{nail} = qs$$

Steel Beam Shear Test

Lecture 30 Differential Equation for Beam Deflection

Objectives: Study the deformation (deflection) of beams

Bar: Elongation $\Delta = \frac{PL}{EA}$;

Shaft Angle of Twist $\Phi = \frac{TL}{GJ}$

Beam Deflection y = ?

Leonhard Euler

Jacob Bernoulli

Daniel Bernoulli

Recall: From equilibrium

$$\frac{dV}{dx} = -w(x); \qquad \frac{dM}{dx} = V(x);$$

$$\frac{d^2M}{dx^2} = -w(x)$$

$$\frac{d^2}{dX^2}(EI\frac{d^2y}{dX^2}) = -w(x), \quad 0 < X < L$$

How to integrate beam deflection?

Boundary Conditions

Туре	Symbol*
Fixed End	X=0
Simple Support	
Free End	
Concentrated Force	Po
Concentrated Couple	

1:
$$y(0) = 0$$
, $\theta(0) = y'(0) = 0$;

2:
$$y(0) = 0$$
, $\kappa(0) = M(0) = EIy''(0) = 0$;

3:
$$M(0) = EIy''(0) = 0$$
, $V(0) = EIy'''(0) = 0$;

4:
$$M(0) = EIy''(0) = 0$$
, $V(0) = EIy'''(0) = P_0$;

5:
$$M(0) = EIy''(0) = -M_0$$
, $V(0) = EIy'''(0) = 0$;

Equation of the Elastic Curve (II) $EIy^{(iv)}(x) = -w(x)$:

$$(1)V(x) = EIy'''(x) = \int_0^x -w(t_1)dt_1 + C_1$$
, so $C_1 = V(0) = EIy'''(0)$;

(2)
$$M(x) = EIy''(x) = \int_0^x \int_0^{t_2} -w(t_1)dt_1dt_2 + C_1x + C_2,$$

so $C_2 = M(0) = EIy''(0);$

(3)
$$EI\theta = EIy'(x) = \int_0^x \int_0^{t_3} \int_0^{t_2} -w(t_1)dt_1dt_2dt_3 + C_1\frac{x^2}{2} + C_2x + C_3,$$

so $C_3 = EI\theta(0);$

(4)
$$EIy(x) = \int_0^x \int_0^{t_4} \int_0^{t_3} \int_0^{t_2} -w(t_1)dt_1dt_2dt_3dt_4 + C_1\frac{x^3}{6} + C_2\frac{x^2}{2} + C_3x + C_4$$
, so $C_4 = EIy(0)$;

Remark: In a given problem, one cannot know all four boundary conditions at one end. One can only find two boundary conditions at a given end.

Example I

$$[y_A = 0]$$
 $[y_B = 0]$ $[M_B = 0]$

$$w(x) = w_0 \qquad EIy^{(iv)} = -w_0$$

[Solution]

$$EIy''' = -w_0x + C_1$$

$$EIy'' = -\frac{w_0 x^2}{2} + C_1 x + C_2, \quad (C_2 = M(0) = 0)$$

Based on M(L) = 0,

$$\rightarrow -w_0 L^2/2 + C_1 L = 0, \rightarrow C_1 = \frac{1}{2} w_0 L = V(0)$$

$$EIy' = -\frac{w_0 x^3}{6} + \frac{w_0 L x^2}{4} + C_3$$

$$EIy(x) = -\frac{w_0 x^4}{24} + \frac{w_0 L x^3}{12} + C_3 x + C_4$$
 $y(0) = 0, \rightarrow C_4 = 0$

$$EIy(L) = -\frac{w_0 L^4}{24} + \frac{w_0 L^4}{12} + C_3 L = 0 \rightarrow C_3 = -\frac{w_0 L^3}{24} = \theta(0)$$

$$EIy^{(iv)}(x) = -w_0$$

$$EIy'''(x) = V(x) = -w_0 x + \frac{w_0 L}{2}$$

$$V(0) = \frac{w_0 l}{2}$$

$$EIy''(x) = M(x) = -\frac{w_0 x^2}{2} + \frac{w_0 Lx}{2}$$

$$y'(x) = \theta(x) = -\frac{w_0}{24EI} \left(4x^3 - 6Lx^2 + L^3 \right) + \frac{l^3 w_0}{24EI}$$

$$y(x) = -\frac{w_0}{24FL} \left[x^4 - 2Lx^3 + L^3x \right]$$

