TRIGONOMETRY TOMO 4

REVIEW

Determine el ángulo y/o la razón trigonométrica que falta.

Resolución

Calcule las razones trigonométricas recíprocas, según corresponda.

$$\operatorname{sen}\alpha = \frac{a}{b}$$
 $\operatorname{csc}\alpha = \frac{b}{a}$

$$\cos \beta = \frac{m}{n}$$
 $\sec \beta = \frac{n}{m}$

$$\tan\theta = \frac{x}{y} \qquad \cot\theta = \frac{y}{x}$$

Resolucións

$$1. \cos \beta = \frac{3}{5} \qquad \qquad \sec \beta = \boxed{\frac{5}{3}}$$

II.
$$tan\theta = \frac{9}{5}$$
 $cot\theta = \frac{5}{9}$

III.
$$\csc\alpha = 3$$
 $\sec \alpha = \frac{1}{3}$

Alessandro y Raúl tienen a y b años, respectivamente. Averigüe quién de los dos es el mayor si se cumplen las siguientes condiciones $sen(3a + 10)^{\circ} \cdot csc(4a - 7)^{\circ} = 1$ y $tan(5b - 6)^{\circ} \cdot cot(4b + 11)^{\circ} = 1$

Recordar:

sen
$$\alpha$$
. $csc\alpha = 1$

$$tan\alpha$$
. $cot\alpha = 1$

Edad de Alessandro = 17

: El mayor es Alessandro

Calcule $M = \frac{a+b}{c}$; si

$$tan b = cot 40^{\circ}$$

 $sec 42^{\circ} = csc 4c$

Recordar

$$Si \theta + \beta = 90^{\circ}$$

 $sen\theta = cos\beta$

$$tan\theta = cot\beta$$

$$sec\theta = csc\beta$$

Resolucións

Calculamos:

$$M = \frac{a+b}{c} = \frac{10^{\circ} + 50^{\circ}}{12^{\circ}}$$

$$M = \frac{60^{\%}}{12^{\%}}$$

∴ M = 5

Calcule el valor de sec 2n, si $tan(25^{\circ} - 7m) = cot (2n + 7m + 35^{\circ})$

Recuerda que: $Si \theta + \beta = 90^{\circ}$

25° -
$$7m + 2n + 7m + 35° = 90°$$

 $60° + 2n = 90°$
 $2n = 30°$ $n = 15°$

Calculamos: sec2n = sec2(15°) = sec30°

$$\therefore \sec 2n = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

01

HELICOPRACTICE 6

Si
$$\alpha$$
 + β = 90°, además

$$\tan \alpha = \frac{5}{7}$$
; efectúe:

$$P = 21cot\beta - 1$$

Recuerda que: $si \theta + \Phi = 90^{\circ}$

Como
$$\alpha + \beta = 90^{\circ}$$

pero:
$$\tan \alpha = \frac{5}{7}$$

tan
$$\alpha$$
 = cot β Luego:

Luego:
$$\cot \beta = \frac{5}{7}$$

Calculamos:
$$P = 21\cot\beta - 1$$

$$\mathbf{P} = \mathbf{N} \left(\frac{5}{\mathbf{N}} \right)_{1} - \mathbf{N}$$

$$P = 15 - 1$$

Calcule el valor de P =
$$cot(4x + 5)$$
 ° si $sen(4x + 10)$. $csc(3x + 20)$ = 1

Resolución:

$$sen(4x+10^{\circ}). csc(3x+20^{\circ}) = 1$$

$$4x+10^{\circ} = 3x+20^{\circ}$$

$$4x-3x = 20^{\circ}+10^{\circ}$$

$$x = 10^{\circ}$$

Calculamos:

$$P = cot(4x + 5)$$

$$P = \cot(4(10^\circ) + 5)$$

$$P = \cot(45^{\circ})$$

$$\therefore P = 1$$

Remember:

$$sen \alpha \cdot csc \alpha = 1$$

Remember:

$$\cos \theta \cdot \sec \theta = 1$$

Remember:

 $\tan \beta \cdot \cot \beta = 1$

Calcule el valor de K = $sen(3\beta + 7^{\circ})$, si:

$$\tan(\beta + 20^{\circ}) = \cot(3\beta + 30^{\circ})$$

Resolución:

$$\tan(\beta + 20^{\circ}) = \cot(3\beta + 30^{\circ})$$

$$\beta + 20^{\circ} + 3\beta + 30^{\circ} = 90^{\circ}$$

Remember:

$$SI: \alpha + \beta = 90^{\circ}$$

$$sen \alpha = cos \beta$$

$$4\beta = 90^{\circ} - 50^{\circ}$$

$$A\beta = 40^{\circ} \longrightarrow \beta = 10^{\circ}$$

Reemplazamos:

$$sen(3\beta + 7^{\circ}) = sen(30^{\circ} + 7^{\circ})$$

$$\therefore \mathbf{sen}(37^\circ) = \frac{3}{5}$$

 $tan \alpha = cot\beta$

 $sec \alpha = csc \beta$

Calcule el valor de φ si $sen7\varphi.sec20^{\circ} = 1$

Recordamos:

Complementarias

$$SI: \alpha + \beta = 90^{\circ}$$

$$sec \alpha = csc\beta$$

R.T Reciprocas

$$sen \beta \cdot csc \beta = 1$$

Resolución:

$$sen7\varphi$$
. $sec20^\circ = 1$

$$sen7\varphi$$
. $csc70^{\circ} = 1$

$$\phi = 70^{\circ}$$

$$\therefore \varphi = 10^{\circ}$$

Calcule el valor de tan(x + y), si:

$$tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$$

 $sec(2y + 16^{\circ}) = csc(y + 23^{\circ}) \dots (b)$

Recordamos:

Complementarias

$$SI: \alpha + \beta = 90^{\circ}$$

 $sec(\alpha) = csc(\beta)$

R.T Reciprocas

 $tan\varphi.cot\varphi = 1$

Resolución:

$$tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (b)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (b)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (b)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (b)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$
 $tan(2x + 15^{\circ}) \cdot cot(4x - 25^{\circ}) = 1 \dots (a)$

En (b):
$$\sec(2y + 16^{\circ}) = \csc(y + 23^{\circ})$$

 $2y + 16 + y + 23^{\circ} = 90^{\circ}$
 $3y = 90 - 39^{\circ}$
 $3y = 51^{\circ}$
 $y = 17^{\circ}$

$$\therefore \tan(37^\circ) = \frac{3}{4}$$