Why Software?

- * Why is software as important to security as crypto, access control and protocols?
- * Virtually all of information security is implemented in software
- * If your software is subject to attack, your security is broken
 - * Regardless of strength of crypto, access control or protocols
- * Software is a poor foundation for security

Bad Software

- * Bad software is everywhere!
- NASA Mars Lander (cost \$165 million)
 - Crashed into Mars
 - Error in converting English and metric units of measure
- Denver airport
 - Buggy baggage handling system
 - Delayed airport opening by 11 months
 - Cost of delay exceeded \$1 million/day
- * MV-22 Osprey
 - Advanced military aircraft
 - Lives have been lost due to faulty software

Software Issues

"Normal" users

- Find bugs and flaws by accident
- □ Hate bad software...
- ...but must learn to live with it
- Must make bad software work

Attackers

- * Actively look for bugs and flaws
- * Like bad software...
- * ... and try to make it misbehave
- * Attack systems thru bad software

Complexity

"Complexity is the enemy of security", Paul Kocher, Cryptography Research, Inc.

system

Lines of code (LOC)

Netscape	17,000,000
Space shuttle	10,000,000
Linux	1,500,000
Windows XP	40,000,000
Boeing 777	7,000,000

A new car contains several orders of magnitude more LOC than was required to land the Apollo astronauts on the moon

Lines of Code and Bugs

- * Conservative estimate: 5 bugs/1000 LOC
- * Do the math
 - * Typical computer: 3,000 exe's of 10K LOC each
 - Conservative estimate of 50 bugs/exe
 - * About 150k bugs per computer
 - * 30,000 node network has 4.5 billion bugs
 - * Suppose that only 10% of bugs security-critical and only 10% of those remotely exploitable
 - * Then "only" 4.5 million critical security flaws!

Counter-Measurements: Skynet

- * Fault Intrusion Tolerance
- * Features
 - * Zero-day detection
 - * Risk Analysis
 - * Graph mining
 - * Degradation under intrusion but maintains correctness
 - * Self-Testing
 - * Introspection
 - * Secure Enclaves as secure anchors
 - * Self-healing

Counter-Measurements: Skynet's Architecture

