Catheter Placement

Group 2.

This is our team.

Byron Shim

Yohan Nanayakkara

Jaehong Kang

Charles Connell

Aden Siau

Stefano Nicholas Rusli

Avish Narayan

Table of contents.

01 Introduction

What is a catheter?

03 Exploratory Data Analysis

04 Modelling

05 Conclusion

Introduction

Context

- Medical devices using in medical procedures to perform functions such as removing fluids or delivering medication
- Placed in veins connecting to stomach or heart
- Medical complications can arise due to malpositioned lines/tubes in patients
- Early detection can be extremely beneficial

Benefits and implications

Benefits

- Mitigate risk of human error
- Early detection of complications
- Faster decision making

implications

- Increased reliance of ai use for diagnostics
- Ethical and legal considerations

Benefits to Everyday Person

Specific to catheters:

- Classifying the catheter type
- Determining if position is correct

In general:

- Can be applied to other X-rays such as broken bones
- Automating detection can reduce wait times
- Process will be faster and cheaper

Project goals

- Create a range of binary classification models that detects each catheter type
- Create a multi-label classification model that can determine the positioning of a certain type of catheter
- This will allow incorrectly positioned catheters to be identified faster, speeding up processes and ensuring procedures are done correctly.

What is a Catheter?

Catheter Classifications

Types of catheters:

- NGT
- ETT
- CVC

Classifications:

- Normal
- Abnormal
- Borderline
- Incompletely Imaged

NGT - Nasogastric Tube (Normal)

Place of insertion:

- Nostril
- Mouth

Where it sits:

Down the esophagus, in the stomach

What it does:

- Delivers food or medicine
- Draw substances out, e.g. poisons

NGT Abnormal

NGT Borderline

NGT Incompletely Imaged

Place of insertion:

Mouth (common in emergencies) or nose

Where it sits:

- In the windpipe
- Just below the collarbones

What it does:

- Keeps the airway open
- Provides uncontaminated oxygen, medicine or anesthesia

ETT Abnormal

ETT Borderline

CVC - Central Venous Catheter

ng of insertion:

- PICC (Peripherally inserted central catheter) inserted in arm
- Subclavian vein or neck

Where it sits:

- Ideally the vena cava (large vein just before the right atrium)
 This is so intravenous fluids can be
- This is so intravenous fluids can be pumped through the body as quickly as possible

What it does:

Mainly administers medication

CVC Borderline

Swan Ganz - Type of CVC

Does more than a normal cvc, it can measure:

- Cardiac Output
- Left atrial pressure
- Pulmonary artery pressure

Where it sits:

 Pulmonary artery - between right ventricle and lungs

Provides information about heart strength and health

Data We Received

Images:

- Folder with 30083 images
- Each image is a medical scan that contains a number of catheters

Train CSV:

- CSV that indicates what catheter types are present in a particular image

Annotations:

- Each row provides the coordinates of a catheter present in an image
- 18000 annotations
- 9095 unique images

Data

The data received was already clean:

- No duplicates
- No missing values

Duplicates present: 0

Exploratory Data Analysis

\Diamond

Positioned vs Malpositioned

Number of Observations

Total number of unique patients: 3255 Number of patients with more than one observation: 2858

Distribution of Catheters

	0
ETT - Abnormal	79
ETT - Borderline	1138
ETT - Normal	7240
NGT - Abnormal	279
NGT - Borderline	529
NGT - Incompletely Imaged	2748
NGT - Normal	4797
CVC - Abnormal	3195
CVC - Borderline	8460
CVC - Normal	21324
Swan Ganz Catheter Present	830

Concentration and Outliers

Preprocessing and Data Manipulation + Modelling

Deep Neural Network architecture

For modelling we decided to predominantly use the pre-built model in **ResNet50**:

- Other CNN models performed worse or the same
- ResNet is more suitable:
 - In medical image classification, small details can be crucial for distinguishing between different types of abnormalities in catheters (utilises 50 layers)
 - Stronger learning capabilities
 - Most efficient

\Diamond

ResNet50 Architecture

- Custom layers on top include a
 global average pooling layer, a
 dense layer with 128 units, dropout
 layer to prevent overfitting, and a
 dense output layer.
- Overall using 50 layers from ResNet and 4 custom layers

Layer (type)	Output Shape	Param #
resmet50 (Functional)	(None, 7, 7, 2048)	23587712
global_average_pooling2d lobalAveragePooling2D)	(G (None, 2048)	0
dense (Dense)	(None, 128)	262272
dropout (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 10)	1290

Total params: 23,851,274 Trainable params: 263,562

Non-trainable params: 23,587,712

Binary Classification: CVC

As CVC catheters were the most prevalent, we first looked at categorising catheters as CVC or non-CVC

- Trained on the whole data set (30083 images)
- Obtained extremely high accuracies
- Confusion matrix is from a smaller subset however reflects
 what is occurring

Binary Classification 2: CVC

Due to the imbalance between CVC and non-CVC the model was

biased and inaccurate

- Applying weights to the model
- Upsampling non-CVC catheters

Second attempt:

- Filtered data to only images with annotations
- 20% validation split

Original		Upsampled	
CVC	_numeric	CVC	_numeric
1	29333	1	14666
0	750	0	14666

Ori	ginal	Upsampled		
CVC	numeric	CVC	_numeric	
1	8866	0	8866	
0	229	1	8866	

Binary Classification: CVC results

Validation Loss: 0.6705045700073242 Validation Accuracy: 0.596446692943573

ETT_numeric

6101

2994

Binary Classification: ETT

We also looked at classifying ETT catheters as ETT or non-ETT

- ETT catheters were less prevalent

- Ratio between ETT and non-ETT seemed more balanced than

CVC (expected a higher accuracy)

CVC (expected a bigher declaracy)

Validation Accuracy: 0.6723474264144897

Binary Classification: ETT 2

Down-sampled ETT_numeric 0 2994 1 2994

Validation Loss: 0.6691277027130127 Validation Accuracy: 0.6182122230529785

Binary Classification: NGT

Built a model to classify images as 'NGT' or 'non-NGT'

 The distribution of NGT to non-NGT images was much more even compared to CVC and ETT

```
NGT_numeric
0 5918
1 3177
```


Categorical: Multi-label CVC Catheter Classification Setup

- Due to software limitations, we only worked with X-ray images with only one catheter present
- Created categorical columns classifying the catheters
- Removed multiple catheter instances for software efficiency
- Upsampled abnormal and borderline data for balancing
- Only focussed on annotated data

CVC_type
normal 5147
borderline 1619
abnormal 751
Name: count, dtype: int64

CVC_type
normal 5147
borderline 5147
abnormal 5147
Name: count, dtype: int64

Categorical: Multi-label CVC Catheter Classification Initial results

Validation Loss: 0.9419806003570557 Validation Accuracy: 0.5806087851524353

	precision	recal1	f1-score	support
abnorma1	0.00	0.00	0.00	231
borderline	0.00	0.00	0.00	513
normal	0.58	1.00	0.73	1030
accuracy			0.58	1774
macro avg	0.19	0.33	0.24	1774
weighted avg	0.34	0.58	0.43	1774

Categorical: Multi-label CVC Catheter Classification Balanced Results

	precision	recal1	f1-score	support	
abnormal	0.25	1.00	0.40	515	
borderline	0.00	0.00	0.00	515	
normal	0.00	0.00	0.00	1029	
accuracy			0.25	2059	
macro avg	0.08	0.33	0.13	2059	
weighted avg	9.06	0.25	0.10	2059	

Validation Loss: 0.6365716457366943 Validation Accuracy: 0.6666667461395264

Categorical: Multi-label Catheter Classification setup

- 17999 studies
- Due to software limitations, we only worked with X-ray images with only one catheter present
- With significant undersampling, we added class weights
- Created categorical columns classifying the catheters

CVC - Normal	13312
ETT - Normal	8532
CVC - Borderline	6453
NGT - Normal	6987
NGT - Incompletely Imaged	3480
CVC - Abnormal	2421
ETT - Borderline	1432
NGT - Borderline	659
Swan Ganz Catheter Present	555
NGT - Abnormal	336
ETT - Abnormal	92
dtype: int64	

CVC	- Normal	3689
CVC	- Borderline	1145
CVC	- Abnormal	569
VGT	- Normal	37
WGT	- Incompletely Imaged	17
ETT	- Normal	10
WGT	- Abnormal	8
WGT	- Borderline	7
ETT	- Borderline	3
ETT	- Abnormal	1
iwar	Ganz Catheter Present	0
dtv	e: int64	

Multi-label Catheter Classification Results

Validation Loss: 0.8148368000984192 Validation Accuracy: 0.7393973469734192

Categorical: Multi-label Catheter Classification True vs Predicted

Highlights - the parts that most influence the models prediction. Shows that the model is focusing on the correct anatomical features related to the catheter type.

Green - positive influence.

Red - negative influence

LIME (Local Interpretable Model-agnostic Explanations) explains individual predictions by identifying parts of the input (like regions in an image) that most influence the model's decision.

Conclusion

Results

- Models must be refined before being implemented into hospitals and clinics
- Fixed one issue of unbalanced data, however poor accuracies could be due to:
- Data quality
- Poor choice of model
- Overfitting

Summary

- Over 30,000 images of chest x-rays
- Research on the types of catheters.
- 1/3 of the catheters were malpositioned
- CVC is most common type of catheter
- We used ResNet50 and the Multi-label Catheter Classification performed best with 73.93%

References

Kolikof, J. (July, 2023). *Central Venous Catheter*. National Library of Medicine. https://www.ncbi.nlm.nih.gov/books/NBK557798/

Signon, F. (Oct, 2022). *Nasogastric Tube*. National Library of Medicine. https://www.ncbi.nlm.nih.gov/books/NBK556063/

Ahmed, R. (July, 2023). *Endotracheal Tube*. National Library of Medicine. https://www.ncbi.nlm.nih.gov/books/NBK539747/

Hosny, A. (Aug, 2018). *Artificial intelligence in radiology.* National Library of Medicine. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268174/

Shim, J. (2024). 'How to identify a catheter'. Interview by Byron Shim, 20 August.

Thank you!

Do you have any questions?

