THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL OF TANZANIA ADVANCED CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

142/1

ADVANCED MATHEMATICS 1

(For Both School and Private Candidates)

Time: 3 Hours

Monday, 02nd May 2016 a.m.

Instructions

- 1. This paper consists of ten (10) questions, each carrying ten (10) marks.
- 2. Answer all questions.
- 3. All necessary working and answers for each question done must be shown clearly.
- 4. Mathematical tables and non-programmable calculators may be used.
- 5. Cellular phones are not allowed in the examination room.
- 6. Write your Examination Number on every page of your answer booklet(s).

Using a scientific calculator find the following correct to four decimal places: 1. (a)

(i)
$$\frac{\sqrt{(3.12 \times \log 5)^3}}{\sqrt{\left(\cos \frac{\pi}{9} + \sin 46^\circ\right)}}.$$

(ii)
$$\left[\frac{\sqrt{e^3 \log_2 6} \times \sinh^{-1}(0.6972)}{(\ln 3.5) \times (\cos 64.5^\circ) \times (\tan 46^\circ)}\right] \times (0.6467)^3.$$

- A rat has a mass 30 grams at birth. It reaches maturity in 3 months. The rate of growth (b) is modeled by the equation $\frac{dm}{dt} = 120 (2.1985t - 3)^2$, where m grams is the mass of the rat, I months after birth. Use the scientific calculator to find the mass of the rat when fully grown.
- If $t = \tanh \frac{x}{2}$, express $\sinh x$ and $\cosh x$ in terms of t. 2. (a)
 - Express $\sinh^{-1} x \ln x$ in terms of natural logarithms; hence, find the limit as $x \to \infty$. (b)
 - Evaluate $\int_4^7 \frac{1}{\sqrt{(4x^2-8x+7)}} dx$ correct to four decimal places. (c)
- Mr. Mutu takes two types of vitamin pills. He must have at least 16 units of vitamin A, 5 units of vitamin B and 20 units of vitamin C. He can choose between pill M which (a) 3. contains 8 units of A, 1 unit of B and 2 units of C; and pill N which contains 2 units of A, I unit of B and 7 units of C. Pill M costs 150 shillings and pill N costs 300 shillings. How many pills of each type should be buy in order to minimize the cost?
 - A TV dealer has stores in Dar es Salaam and Morogoro and retailers in Tanga and Dodoma. The stores have a stock of 45 TV and 40 TV sets respectively while the (b) requirements of the retailers are 25 and 30 TV sets respectively. If the cost of transporting a TV set from Dar es Salaam to Tanga is Tsh 5,000/= and from Dar es Salaam to Dodoma is Tsh 9,000/=, from Morogoro to Dodoma is Tsh 3,000/= and Morogoro to Tanga is Tsh 6,000/=;
 - How should the TV dealer supply the requested TV sets at minimum cost?
 - (i) What is the minimum cost? (ii)

- The frequency distribution of a variable X is classified in equal intervals of size C. 4. (a) The frequency in a class is denoted by f and the total frequencies is N. If the data is coded into a variable u by means of the relation $\bar{x} = a + C\bar{u}$, where X takes the central values of the class intervals, show that the standard deviation δ of the distribution is given by $\delta^2 = C^2 \left[\frac{\sum f u^2}{N} - \left(\frac{\sum f u}{N} \right)^2 \right]$
 - The average heights of 20 boys and 30 girls are 160 cm and 155 cm respectively. If (b) the corresponding standard deviations of boys and girls are 4 cm and 3.5 cm, find the standard deviation of the whole group.
 - The following table shows the length of 100 earth worms in millimetres: (c)

Length(mm)	95 - 109	110 - 124	125 - 139	140 - 154	155 - 169	170 - 184	185 - 199	200 214
Number of worms	2	*	17	26	14	16	6	1

Obtain the semi-interquartile range correct to two significant figures.

- 5. Use the laws of algebra of sets to: (a)
 - verify that $X \cup (X \cap Y) = X$.
 - (ii) simplify $A \cap (A \cup B)'$.
 - If A, B and C are three non-empty sets, use venn diagram to show whether (b) $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C).$
 - A class contains 15 boys and 15 girls. A survey of the class showed that; (c)
 - 20 pupils were studying Geography,
 - 14 pupils were studying Mathematics,
 - 10 of the girls were studying Geography,
 - 4 of the girls were studying Mathematics,

 - 3 of the girls were studying both Geography and Mathematics,
 - 3 of the boys were studying neither Geography nor Mathematics. How many pupils were studying both Mathematics and Geography? (Use Venn Diagrams).

- 6. (a) Use the table of values to draw the graph of $f(x) = 2 + e^{2x}$ if $-3 \le x \le 1.2$ and $g(x) = 1 e^x$ if $-3 \le x \le 2.7$ on the same xy plane.
 - (b) Given that, $f(x) = x + 1 \frac{1}{x}$ and that $g(x) = \frac{1}{x}$;
 - (i) Write down the composite function $g \circ f(x)$ in its simplest form,
 - (ii) Find the value of x if $g \circ f(x) = f \circ g(x)$.
 - (c) Find the equation of the asymptotes of the curve $y = \frac{x^2 + 3}{x 1}$ and sketch the curve showing the coordinates of the turning points.
- 7. (a) (i) Write down four sources of errors in numerical computations.
 - (ii) If x_{n+1} is a better approximation to a root of the equation $f(x_n) = 0$. Derive the Newton-Raphson method for the function $f(x_n)$.
 - (b) Use the Newton-Raphson method obtained in (a) (ii) to derive the secant formula and comment why would you want to use it instead of the Newton-Raphson method.
 - (c) Using the secant method obtained in (b) with $x_1 = 2$ and $x_2 = 3$ perform three iterations to approximate the root of $x^2 2x 1 = 0$ and hence compute the absolute error correct to four decimal places.
- 8. (a) (i) The line Ax + By + C = 0 meets coordinates axes at A and B. If P is a point (h, k) and PQ = p is the perpendicular distance to AB. Use the information given and the figure below to derive the perpendicular distance of the point P from the line AB.

- (ii) The perpendicular distance from the point (2, 5) to the line ny = 2x 4 is $\sqrt{5}$. Find the value of n.
- (b) Write down the equation to the bisector of the acute angle between the lines 3x+4y=1 and 5x-12y+6=0.

- (c) Find the length of a tangent from the centre of the circle $x^2 + y^2 + 6x + 8y 1 = 0$ to the circle $x^2 + y^2 2x + 4y 3 = 0$.
- 9. (a) (i) Show whether $\int \frac{f'(x)}{f(x)} dx = \ln A f(x)$, where A is a constant.
 - (ii) Find $\int \cos 2x \cos 4x \cos 6x \, dx$.
 - (b) Evaluate $\int_0^{\frac{\pi}{2}} x \sin x \cos x \, dx$.
 - (c) Find the area of the region bounded by the curve $y = 3x^2 2x + 1$, the lines x + 1 = 0, x 2 = 0 and y = 0.
 - (d) The area between the curve $3x^2 + y^2 = 9$ and the y axis from y = -3 to y = 3 is rotated about the y-axis. Find the volume of the solid generated.
- 10. (a) Find the derivative of $\frac{1}{x} + \cos 3x$ from first principle.
 - (b) Use the Taylor theorem to obtain the series expansion for $\cos\left(x + \frac{\pi}{3}\right)$ stating terms including that in x^3 . Hence obtain a value for $\cos 61^\circ$ giving your answer correct to five decimal places.
 - (c) Show whether the line 2x y = 0 and the curve $4x^2 4xy + y^2 4x 8y + 10 = 0$ intersect at a right angle.
 - (d) A two variable function f is defined by $z = f(x, y) = x^2 + xy + y^2$; find $\frac{\partial z}{\partial y}$ at (1.1.1).