

CLAIMS

1. A sulphamate compound suitable for use as an inhibitor of oestrone sulphatase, wherein the compound is a sulphamate compound having Formula IV;

Formula IV

5 wherein

R₁ and/or R₂ is a substituent other than H; wherein R₁ and R₂ may be the same or different but not both being H;

each of R₃ and R₄ is independently selected from H, alkyl, cycloalkyl, alkenyl and aryl, wherein at least one of R₃ and R₄ is H; and

10 Y is a suitable linking group.

2. A sulphamate compound suitable for use as an inhibitor of oestrone sulphatase, wherein the compound is a sulphamate compound having Formula II;

Formula II

wherein

15 R₁ and optionally R₂ is a substituent other than H; wherein R₁ and R₂ may be the same or different;

each of R₃ and R₄ is independently selected from H, alkyl, cycloalkyl, alkenyl and aryl, wherein at least one of R₃ and R₄ is H; and

group A and ring B together are capable of mimicking the A and B rings of oestrone; and

20 group A is additionally attached to the carbon atom at position 1 of the ring B.

3. A sulphamate compound according to claim 2 wherein the compound has the Formula IV;

Formula IV

wherein X is a sulphamate group; R₁ and/or R₂ is a substituent other than H; wherein R₁ and R₂ may be the same or different but not both being H; and wherein Y is a suitable linking group.

5. 4. A sulphamate compound according to claim 1 wherein at least one of R₃ and R₄ is H.

10. 5. A sulphamate compound according to claim 2 wherein at least one of R₃ and R₄ is H.

6. A sulphamate compound according to claim 1 wherein each of R₃ and R₄ is H.

15. 7. A sulphamate compound according to claim 2 wherein each of R₃ and R₄ is H.

8. A sulphamate compound according to claim 1 wherein Y is -CH₂- or -C(O)-.

9. A sulphamate compound according to claim 1 wherein Y is -C(O)-.

20

10. A sulphamate compound according to claim 1 wherein the compound has the Formula V;

Formula V

wherein X is a sulphamate group; R₁ and optionally R₂ is a substituent other than H; and wherein R₁ and R₂ may be the same or different.

11. A sulphamate compound according to claim 1 wherein each of R₁ and R₂ is independently selected from H, alkyl, cycloalkyl, alkenyl, aryl, substituted alkyl, substituted cycloalkyl, substituted alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy containing group.

12. A sulphamate compound according to claim 2 wherein
 10 R₁ is selected from alkyl, cycloalkyl, alkenyl, aryl, substituted alkyl, substituted cycloalkyl, substituted alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy containing group, and
 R₂ is selected from H, alkyl, cycloalkyl, alkenyl, aryl, substituted alkyl, substituted cycloalkyl, substituted alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy containing group.

13. A sulphamate compound according to claim 1 wherein each of R₁ and R₂ is independently selected from H, C₁₋₆ alkyl, C₁₋₆ cycloalkyl, C₁₋₆ alkenyl, substituted C₁₋₆ alkyl, substituted C₁₋₆ cycloalkyl, substituted C₁₋₆ alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy group having from 1-6 carbon atoms.

14. A sulphamate compound according to claim 2 wherein
 R₁ is selected from C₁₋₆ alkyl, C₁₋₆ cycloalkyl, C₁₋₆ alkenyl, substituted C₁₋₆ alkyl, substituted C₁₋₆ cycloalkyl, substituted C₁₋₆ alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy group having from 1-6 carbon atoms, and

R_2 is selected from H, C_{1-6} alkyl, C_{1-6} cycloalkyl, C_{1-6} alkenyl, substituted C_{1-6} alkyl, substituted C_{1-6} cycloalkyl, substituted C_{1-6} alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy group having from 1-6 carbon atoms.

5 15. A sulphamate compound according to claim 1 wherein each of R_1 and R_2 is independently selected from H, C_{1-6} alkyl, C_{1-6} alkenyl, a nitrogen containing group, or a carboxy group having from 1-6 carbon atoms.

16. A sulphamate compound according to claim 2 wherein
10 R_1 is selected from C_{1-6} alkyl, C_{1-6} alkenyl, a nitrogen containing group, or a carboxy group having from 1-6 carbon atoms, and
 R_2 is selected from H, C_{1-6} alkyl, C_{1-6} alkenyl, a nitrogen containing group, or a carboxy group having from 1-6 carbon atoms.

15 17. A sulphamate compound according to claim 1 wherein each of R_1 and R_2 is independently selected from H, C_{1-6} alkyl, C_{1-6} alkenyl, NO_2 , or a carboxy group having from 1-6 carbon atoms.

18. A sulphamate compound according to claim 2 wherein
20 R_1 is selected from C_{1-6} alkyl, C_{1-6} alkenyl, NO_2 , or a carboxy group having from 1-6 carbon atoms, and
 R_2 is selected from H, C_{1-6} alkyl, C_{1-6} alkenyl, NO_2 , or a carboxy group having from 1-6 carbon atoms.

25 19. A sulphamate compound according to claim 1 wherein each of R_1 and R_2 is independently selected from H, C_3 alkyl, C_3 alkenyl, NO_2 , or H_3CO .

20. A sulphamate compound according to claim 2 wherein
 R_1 is selected from C_3 alkyl, C_3 alkenyl, NO_2 , or H_3CO , and
30 R_2 is selected from H, C_3 alkyl, C_3 alkenyl, NO_2 , or H_3CO .

21. A sulphamate compound according to claim 1 wherein the compound is any one of the Formulae VI - IX.

		R ₁	R ₂	Formula VI
	a)	n-CH ₂ CH ₂ CH ₃	H	
	b)	H	n-CH ₂ CH ₂ CH ₃	
	c)	n-CH ₂ CH ₂ CH ₃	n-CH ₂ CH ₂ CH ₃	

		R ₁	R ₂	Formula VII
	a)	-CH ₂ CH=CH ₂	H	
	b)	H	-CH ₂ CH=CH ₂	
	c)	-CH ₂ CH=CH ₂	-CH ₂ CH=CH ₂	

5

		R ₁	R ₂	Formula VIII
	a)	H ₃ CO-	H	
	b)	H	H ₃ CO-	
	c)	H ₃ CO-	H ₃ CO-	

		R ₁	R ₂	Formula IX
	a)	-NO ₂	H	
	b)	H	-NO ₂	
	c)	-NO ₂	-NO ₂	

22. A sulphamate compound according to claim 2 wherein the group A/ring B combination contains one or more alkoxy substituents.

23. A sulphamate compound according to claim 2 wherein the group A/ring B combination contains one or more methoxy substituents.

24. A sulphamate compound according to claim 1 wherein R₁ and/or R₂ is an alkoxy group.

25. A sulphamate compound according to claim 2 wherein R₁ and/or R₂ is an alkoxy group.

10 26. A sulphamate compound according to claim 1 wherein R₁ and/or R₂ is a methoxy group.

27. A sulphamate compound according to claim 2 wherein R₁ and/or R₂ is a methoxy group.

15 28. A sulphamate compound according to claim 1 wherein R₁ is an alkoxy group.

29. A sulphamate compound according to claim 2 wherein R₁ is an alkoxy group.

20 30. A sulphamate compound according to claim 1 wherein R₁ is a methoxy group.

31. A sulphamate compound according to claim 2 wherein R₁ is a methoxy group.

32. A method of inhibiting steroid sulphatase activity in a patient in need thereof comprising administering a sulphamate compound having Formula IV;

Formula IV

wherein X is a sulphamate group; R₁ and/or R₂ is a substituent other than H; wherein R₁ and R₂ may be the same or different but not both being H; and wherein Y is a suitable linking group.

5 33. A method of inhibiting steroid sulphatase activity in a patient in need thereof comprising administering a sulphamate compound having Formula II;

Formula II

wherein X is a sulphamate group

R₁ and optionally R₂ is a substituent other than H; wherein R₁ and R₂ may be the same or different;

10 wherein group A and ring B together are capable of mimicking the A and B rings of oestrone; and

wherein group A is additionally attached to the carbon atom at position 1 of the ring B.

34. A method according to claim 33 wherein the compound has the Formula IV;

Formula IV

15 wherein X is a sulphamate group; R₁ and/or R₂ is a substituent other than H; wherein R₁ and R₂ may be the same or different but not both being H; and wherein Y is a suitable linking group.

35. A method according to claim 32 wherein the sulphamate group has the Formula III;

Formula III

wherein each of R₃ and R₄ is independently selected from H, alkyl, cycloalkyl, alkenyl and aryl, or together represent alkylene optionally containing one or more hetero atoms or groups in the alkylene chain.

5 36. A method according to claim 33 wherein the sulphamate group has the Formula III;

wherein each of R₃ and R₄ is independently selected from H, alkyl, cycloalkyl, alkenyl and aryl, or together represent alkylene optionally containing one or more hetero atoms or groups in the alkylene chain.

10 37. A method according to claim 32 wherein at least one of R₃ and R₄ is H.

38. A method according to claim 33 wherein at least one of R₃ and R₄ is H.

39. A method according to claim 32 wherein each of R₃ and R₄ is H.

15

40. A method according to claim 33 wherein each of R₃ and R₄ is H.

41. A method according to claim 32 wherein Y is -CH₂- or -C(O)-.

20 42. A method according to claim 32 wherein Y is -C(O)-.

43. A method according to claim 32 wherein the compound has the Formula V;

Formula V

wherein X is a sulphamate group; R₁ and optionally R₂ is a substituent other than H; and wherein R₁ and R₂ may be the same or different.

44. A method according to claim 32 wherein each of R₁ and R₂ is independently selected from H, alkyl, cycloalkyl, alkenyl, aryl, substituted alkyl, substituted cycloalkyl, substituted alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy containing group.

45. A method according to claim 33 wherein
10 R₁ is selected from alkyl, cycloalkyl, alkenyl, aryl, substituted alkyl, substituted cycloalkyl, substituted alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy containing group, and
R₂ is selected from H, alkyl, cycloalkyl, alkenyl, aryl, substituted alkyl, substituted cycloalkyl, substituted alkenyl, substituted aryl, a nitrogen containing group, a S containing
15 group, or a carboxy containing group.

46. A method according to claim 32 wherein each of R₁ and R₂ is independently selected from H, C₁₋₆ alkyl, C₁₋₆ cycloalkyl, C₁₋₆ alkenyl, substituted C₁₋₆ alkyl, substituted C₁₋₆ cycloalkyl, substituted C₁₋₆ alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy group having from 1-6 carbon atoms.

47. A method according to claim 33 wherein
R₁ is selected from C₁₋₆ alkyl, C₁₋₆ cycloalkyl, C₁₋₆ alkenyl, substituted C₁₋₆ alkyl, substituted C₁₋₆ cycloalkyl, substituted C₁₋₆ alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy group having from 1-6 carbon atoms, and
R₂ is selected from H, C₁₋₆ alkyl, C₁₋₆ cycloalkyl, C₁₋₆ alkenyl, substituted C₁₋₆ alkyl, substituted C₁₋₆ cycloalkyl, substituted C₁₋₆ alkenyl, substituted aryl, a nitrogen containing group, a S containing group, or a carboxy group having from 1-6 carbon atoms.

48. A method according to claim 32 wherein each of R₁ and R₂ is independently selected from H, C₁₋₆ alkyl, C₁₋₆ alkenyl, a nitrogen containing group, or a carboxy group having from 1-6 carbon atoms.

5 49. A method according to claim 33 wherein

R₁ is selected from C₁₋₆ alkyl, C₁₋₆ alkenyl, a nitrogen containing group, or a carboxy group having from 1-6 carbon atoms, and

R₂ is selected from H, C₁₋₆ alkyl, C₁₋₆ alkenyl, a nitrogen containing group, or a carboxy group having from 1-6 carbon atoms.

10

50. A method according to claim 32 wherein each of R₁ and R₂ is independently selected from H, C₁₋₆ alkyl, C₁₋₆ alkenyl, NO₂, or a carboxy group having from 1-6 carbon atoms.

15 51. A method according to claim 33 wherein

R₁ is selected from C₁₋₆ alkyl, C₁₋₆ alkenyl, NO₂, or a carboxy group having from 1-6 carbon atoms, and

R₂ is selected from H, C₁₋₆ alkyl, C₁₋₆ alkenyl, NO₂, or a carboxy group having from 1-6 carbon atoms.

20

52. A method according to claim 32 wherein each of R₁ and R₂ is independently selected from H, C₃ alkyl, C₃ alkenyl, NO₂, or H₃CO.

53. A method according to claim 33 wherein

25 R₁ is selected from C₃ alkyl, C₃ alkenyl, NO₂, or H₃CO, and

R₂ is selected from H, C₃ alkyl, C₃ alkenyl, NO₂, or H₃CO.

54. A method according to claim 32 wherein the compound is any one of the Formulae VI - IX.

30

	R_1	R_2	Formula VI
a)	n-CH ₂ CH ₂ CH ₃	H	
b)	H	n-CH ₂ CH ₂ CH ₃	
c)	n-CH ₂ CH ₂ CH ₃	n-CH ₂ CH ₂ CH ₃	

	R_1	R_2	Formula VII
a)	-CH ₂ CH=CH ₂	H	
b)	H	-CH ₂ CH=CH ₂	
c)	-CH ₂ CH=CH ₂	-CH ₂ CH=CH ₂	

	R_1	R_2	Formula VIII
a)	H ₃ CO-	H	
b)	H	H ₃ CO-	
c)	H ₃ CO-	H ₃ CO-	

	R_1	R_2	Formula IX
a)	-NO ₂	H	
b)	H	-NO ₂	
c)	-NO ₂	-NO ₂	

5 55. A method according to claim 33 wherein the group A/ring B combination contains one or more alkoxy substituents.

56. A method according to claim 33 wherein the group A/ring B combination contains one or more methoxy substituents.

57. A method according to claim 32 wherein R₁ and/or R₂ is an alkoxy group.
58. A method according to claim 33 wherein R₁ and/or R₂ is an alkoxy group.
- 5 59. A method according to claim 32 wherein R₁ and/or R₂ is a methoxy group.
60. A method according to claim 33 wherein R₁ and/or R₂ is a methoxy group.
61. A method according to claim 32 wherein R₁ is an alkoxy group.
- 10 62. A method according to claim 33 wherein R₁ is an alkoxy group.
63. A method according to claim 32 wherein R₁ is a methoxy group.
- 15 64. A method according to claim 33 wherein R₁ is a methoxy group.