République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2016

Session Normale

Honneur – Fraternité – Justice

Séries : C & TMGM Epreuve : Mathématiques Durée : 4 heures Coefficients : 9 & 6

(0,75 pt)

(0,75 pt)

(0,75 pt)

(0,75 pt)

(1 pt)

(1 pt)

(0,75 pt)

(0,75 pt)

(0, 5 pt)

(1 pt)

(0,75 pt)

(0.5 pt)

(0,25 pt)

Exercice 1 (3 points)

On considère l'équation (E): 5x-3y=17, où x et y sont des entiers relatifs.

- 1.a) Justifier que l'équation (E) admet des solutions entières et vérifier que le couple (4,1) est une solution particulière de (E).
- b) Déterminer l'ensemble des solutions de (E).
- 2) Soit (x,y) une solution de (E).
- a) Montrer que si x est un diviseur de y, alors x est un diviseur de 17.
- b) Soit m un entier relatif. Trouver les valeurs de m telles que le quotient $\frac{1+5m}{4+3m}$ soit un entier relatif.

Exercice 2 (4 points)

Le plan complexe est muni d'un repère orthonormé $(\mathbf{O}; \mathbf{u}, \mathbf{v})$. Pour tout nombre complexe z on pose : $P(z) = z^3 - (4+8i)z^2 + (-14+24i)z + 32+4i$.

- 1.a) Calculer P(2i) et déterminer deux nombres a et b tels que pour tout nombre complexe z on a : $P(z) = (z-2i)(z^2+az+b)$.
- b) En déduire l'ensemble des solutions de l'équation P(z) = 0. On note z_1, z_2 et z_3 ses solutions avec $|z_1| < |z_2| < |z_3|$.
- c) Soit A,BetC les points d'affixes respectives z_1, z_2 et z_3 . Déterminer l'affixe du point G barycentre du système $\{(0,5); (A,-7); (C,4)\}$. Placer A,B ,C et G sur la figure.
- 2) Pour tout nombre complexe z on pose : $Q(z) = z^2 (4+6i)z 2+16i$.

On note Γ l'ensemble des points M d'affixe z tels que Q(z) soit imaginaire pur (ou nul).

- a) En posant z=x+iy, donner une équation cartésienne de Γ et montrer que Γ est une conique de centre G.
- b) Préciser les sommets et l'excentricité de \(\Gamma\) puis la construire dans le repère précédent.

Exercice 3 (4 points)

1) On considère la fonction g définie sur \mathbb{R} par : $\begin{cases} f(x) = xe^{\frac{1}{x}} & \text{si} & x \neq 0 \\ f(0) = 0 \end{cases}$

Soit (C) la courbe représentative de f dans un repère orthonormé $(0;\vec{i},\vec{j})$.

- a) Montrer que $\lim_{x\to 0^-} f(x) = 0$ et que $\lim_{x\to 0^+} f(x) = +\infty$. Interpréter.
- b) Calculer et interpréter les limites suivantes : $\lim_{x\to 0^-} \frac{f(x)}{x}$, $\lim_{x\to \infty} (f(x)-(x+1))$ et $\lim_{x\to +\infty} (f(x)-(x+1))$.
- c) Dresser le tableau de variation de f.
- d) Construire, dans le repère précédent la courbe (C).
- 2) On définit pour tout entier $n \in \mathbb{N}^*$ la fonction f_n par $\begin{cases} f_n(x) = xe^{\frac{n}{x}} & \text{si} \quad x \neq 0 \\ f_n(0) = 0 \end{cases}$.

Soit (C_n) la courbe représentative de f_n dans le repère précédent $(O; \vec{i}, \vec{j})$.

- a) Montrer que (C_n) est l'image de (C) par une homothétie h_n de centre O dont on précisera le rapport.
- b) Montrer que tous les points M_n de (C_n) en lesquels la tangente est horizontale, sont situés sur une même droite Δ dont on donne ra une équation.
- c) Sans étudier f_2 , déduire de ce qui précède le tableau de variation de f_2 et la construction de sa courbe (C_2) dans le même repère. Justifier.

(0,5 pt)

(0.5 pt)

Exercice 4 (4 points)

Soit la fonction f définie sur $]-1,+\infty[$ par $f(x) = \ln(x+1) - \frac{x}{x+1}$. Soit (C) la courbe représentative de f dans un repère orthonormé $(O;\vec{i},\vec{j})$.

- 1. a) Montrer que $\lim_{x \to t^+} f(x) = +\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$ puis calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter.
- (0,75 pt)

b) Dresser le tableau de variation de f.

- (0.75 pt)
- c) Montrer que la courbe (C) admet un point d'inflexion dont on donnera les coordonnées .
- (0,25 pt)

d) Tracer la courbe (C).

- (0,25 pt)
- 2. a) Calculer $\int_0^x \ln(1+t)dt$ et déterminer la primitive F de f sur]-1,+ ∞ [qui s'annule en 0 (On pourra écrire $f(x) = \ln(x+1) 1 + \frac{1}{x+1}$).
- (0.25 pt)
- b) Pour tout entier naturel $n \ge 1$, on note A_n l'aire du domaine plan délimité par la courbe (C),
- l'axe des abscisses et les droites d'équations respectives x = 0 et $x = \frac{1}{n}$. Donner l'expression de A_n en fonction de n.
- (0,25 pt)
- 3) Dans la suite de l'exercice on prendra x réel tel que $x \in [0;1]$ et n un entier naturel non nul.
- a) Montrer que pour tout n: $\frac{1}{1+x} = \sum_{k=1}^{n+1} (-1)^{k-1} x^{k-1} + \frac{(-1)^{n+1} x^{n+1}}{1+x}.$

(0,5 pt)

b) En déduire que : $\ln(1+x) = \sum_{k=1}^{n+1} (-1)^{k-1} \frac{x^k}{k} + (-1)^{n+1} \int_0^x \frac{t^{n+1}}{1+t} dt$.

- (0,25 pt)
- c) En utilisant a) et b); montrer que : $f(x) = \sum_{k=1}^{n+1} (-1)^{k-1} \frac{1-k}{k} x^k + \frac{(-1)^{n+2} x^{n+2}}{x+1} + (-1)^{n+1} \int_0^x \frac{t^{n+1}}{1+t} dt.$
- (0,25 pt)

d) Montrer que : $0 \le \int_0^x \frac{t^{n+1}}{1+t} dt \le \frac{x^{n+2}}{n+2}$.

(0,25 pt)

e) En déduire que : $f(x) = \lim_{n \to \infty} \sum_{k=1}^{n+1} (-1)^{k-1} \frac{1-k}{k} x^k$.

(0,25 pt)

Exercice 5 (5 points)

Dans le plan orienté, on considère le carré direct ABCD de centre O et de coté a (a>0).

- I, J, K et L les milieux respectifs des cotés [AB], [BC], [CD] et [DA]. Les points E et F tels que LDEF soit un carré direct.
- 1.a) Faire une figure illustrant les données précédentes que l'on complétera au fur et à mesure.
 - b) Montrer qu'il existe une unique rotation r qui transforme A en D et L en E.
- (0,5 pt) (0,5 pt)

(0, 5 pt)

- c) Déterminer un angle et le centre de cette rotation. 2) a) Montrer qu'il existe une unique similitude directe s₁ qui transforme J en O et C en D.
- (0,5 pt)

b) Déterminer l'angle et le rapport de s_1 .

(0.5 pt)

c) Déterminer $s_1(B)$ que peut-on en déduire à propos du centre de s_1 .

- (0,25 pt) (0,25 pt)
- d) Déterminer $s_1(O)$ puis construire l'image du carré ABCD par s_1 . Justifier la construction. 3) Soit s_2 la similitude directe de centre A , de rapport $\frac{1}{\sqrt{2}}$ et d'angle $\frac{\pi}{4}$. Déterminer $s_2(O)$ et $s_2(C)$
- (0,25 pt)
- 4) On pose $f = s_2 \circ s_1^{-1}$ et pour tout point M du plan, on note $M_1 = s_1(M)$, $M_2 = s_2(M)$.
- (0.5 pt)

a) Déterminer f(D) et caractériser f.

- (0,5 pt)
- b) Montrer que si $M_1 \neq M_2$ alors la droite (M_1M_2) passe par un point fixe que l'on déterminera.
- c) Déterminer l'ensemble Γ_1 des point M du plan pour les quels les points M, M₁ et M₂ sont alignés. (On pourra utiliser l'angle $(\overline{MA}.\overline{MB})$).
- alignés. (On pourra utiliser l'angle (MA,MB)). 5.a) Vérifier que O est le barycentre du système {(A,1);(D,3);(E,-2)}.

(0,25 pt)

- b) Déterminer les ensembles Γ_2 et Γ_3 des points M du plan tels que :
- $M \in \Gamma_2 \Leftrightarrow 2MA^2 + 6MD^2 4ME^2 = a^2 ,$
- $M \in \Gamma_3 \Leftrightarrow (\overrightarrow{MA} + \overrightarrow{MK} \overrightarrow{ME})(2\overrightarrow{ML} + 2\overrightarrow{MK} \overrightarrow{MB}) = 0$. Que peut-on remarquer?

(0, 25 pt)

Fin.