Poisson and Zero-Inflated Poisson Regression

For this assignment, we will be using the STRESS dataset. This includes information from about 650 adolescents in the US who were surveyed about the number of stressful life events they had experienced in the past year (STRESS). STRESS is an integer variable that represents counts of stressful events. The dataset also includes school and family related variables, which are assumed to be continuously distributed. These variables are:

COHES = measure of how well the adolescent gets along with their family (coded low to high)

ESTEEM = measure of self-esteem (coded low to high)

GRADES = past year's school grades (coded low to high)

SATTACH = measure of how well the adolescent likes and is attached to their school (coded low to high)

1. For the STRESS variable, make a histogram and obtain summary statistics. Obtain a normal probability (Q-Q) plot for the STRESS variable. Is STRESS a normally distributed variable? What do you think is its most likely probability distribution for STRESS? Give a justification for the distribution you selected.

Histogram:

 Based QQplot, STRESS is not normally distributed. Histogram suggest we have a lot of zero associated with STRESS.

Summary statistics:

--- STRESS --n miss krts min **IQR** <u>mean</u> skew qrt1 mdn qrt3 max 651 1.27 1.65 0.00 0.00 1.00 3.00 9.00 3.00

(Box plot) Outliers: 9

Small	Large
	9.0
	9.0
	9.0
	9.0
	9.0
	8.0
	8.0
	8.0
	8.0

- Poisson distribution: Mean = Variance
- Negative binomial distribution : Mean < Variance
- Since mean is 1.73, variance = sd squared = 1.85 * 1.85 = 3.4225. Variance is a bit more than twice the mean. The data is over-dispersed, but of course we haven't considered any covariates yet.
- This is a negative binomial distribution since Mean is less than Variance.
- 2. Fit an OLS regression model to predict STRESS (Y) using COHES, ESTEEM, GRADES, SATTACH as explanatory variables (X). Obtain the typical diagnostic information and graphs. Discuss how well this model fits. Obtain predicted values (Y_hat) and plot them in a histogram. What issues do you see?

Call:					
lm(formula =	= STRESS ~ CO	DHES + ESTE	EM + GRADES +	SATTACH, dat	a = mydata)
Residuals:					
Min	1Q Median	3Q	Max		
-3.1447 -1.3	8827 -0.3819	0.9504	5.9525		
Coefficients	s:				
	Estimate Sto	d. Error t	value	Pr(> t)	
(Intercept)	5.71281	0.58118	9.830 < 0.000	0000000000000	!
COHES	-0.02319	0.00703 -	3.298	0.00103	1
ESTEEM	-0.04129	0.01933 -	2.136	0.03305	i
GRADES	-0.04170	0.02352 -	1.773	0.07670)
SATTACH	-0.03042	0.01412 -	2.154	0.03160)
Residual sta	andard error	: 1.776 on	646 degrees o	f freedom	
Multiple R-s	squared: 0.0	08319, Ad	ljusted R-squa	red: 0.07751	-
F-statistic:	14.65 on 4	and 646 DF	p-value: 0	.00000000018	326

- $Y = 5.713 0.023\beta1 0.412\beta2 0.0471\beta3 0.03\beta4$
- Y_hat1 value based on histogram seems to be normal distributed. However, R squared value indicating OLS model can only explain 8.319% of the variance of target variable STRESS.

 Closer look at our 2 by 2 diagnostic visualization we noticed a distinct pattern in residuals vs fitted as well as scale-location graph(lattice). This suggests violation of homogeneity of variance.
 QQ plot shows deviation from 45-degree line which indication of violation of normal distribution. Cook's distance shows we have large numbers of outliers. (242, 1340, 330)

No Studentized residuals with Bonferroni p < 0.05

Plot of individual variables contrasting with STRESS also does not present a distinct relationship.

- 3. Create a transformed variable on Y that is LN(Y). Fit an OLS regression model to predict LN(Y) using COHES, ESTEEM, GRADES, SATTACH as explanatory variables (X). Obtain the typical diagnostic information and graphs. Discuss how well this model fits. Obtain predicted values (LN(Y)_hat) and plot them in a histogram. What issues do you see? Does this correct the issue?
 - First was to add 0.0001 to STRESS. Then we can transform the STRESS by avoiding 0. This transformed log Y did not improve our model with R-Squared value. We had 8.319% in the last OLS model, but second model is at 4.142%

Call:						
lm(formula =	= logSTRESS	~ COHES + ES	TEEM + GRADES	5 + SATTACH,	data = myda	ta)
Residuals:						
Min 3	LQ Median	3Q Max				
-8.893 -5.79	95 2.539 3	.620 6.173				
Coefficients	5:					
	Estimate St	d. Error t v	alue Pr(> t)			
(Intercept)	4.20551	1.52906 2	.750 0.00612	2		
COHES	-0.04775	0.01850 -2	.582 0.01005	5		
ESTEEM	-0.04915	0.05086 -0	.966 0.33419)		
GRADES	-0.06616	0.06188 -1	.069 0.28540)		
SATTACH	-0.06473	0.03716 -1	.742 0.08197	7		
Residual sta	andard error	: 4.673 on 6	46 degrees of	freedom		
Multiple R-s	squared: 0.	04142, Adj	usted R-squar	red: 0.0354	8	
F-statistic	: 6.978 on 4	and 646 DF,	p-value: 0.	00001676		

Y=4.206 – 0.0478β1 – 0.049β2 –0.066β3 – 0.065β4

- Based on T-value and P value, intercept and 4 variables are not statistically significant in explaining our target variable logSTRESS.
- Diagnostic graphs do not suggest improvement from last model, and the underlying assumptions are violated across normal distribution, and homogeneity.

• Running our OLS again with transformation but we will run a model by using mydata\$level, so we only model against data that indicate stress is not 0.

mydata\$stressed<-ifelse(mydata\$STRESS>0,1,0) #stressed yes or no

mydata\$level<-ifelse(mydata\$stressed==1, mydata\$STRESS,NA) #if not stressed mark it as NA

lm(formula =	= loglevel ~	COHES + E	STEEM +	GRADES	+ SATTACH, d	ata = mydat	:a)
Residuals:							
Min	1Q Median	3Q	Max				
-1.1201 -0.5	5951 0.0204	0.4655	1.3813				
Coefficients	5:						
	Estimate S	d. Error	t value		Pr(> t)		
(Intercept)	1.960830	0.239249	8.196	0.00000	000000000296		
COHES	-0.005233	0.002881	-1.816		0.0700		
ESTEEM	-0.013694	0.007946	-1.723		0.0855		
GRADES	-0.016140	0.009422	-1.713		0.0874		
SATTACH	-0.009408	0.005753	-1.635		0.1027		
Residual sta	andard error	0.5955 c	n 425 de	egrees c	f freedom		
(221 obser	rvations dele	eted due t	o missir	ngness)			
Multiple R-s	squared: 0.0)663, A	djusted	R-squar	ed: 0.05752		
F-statistic	7.545 on 4	and 425 D	F, p-va	alue: 0.	000007036		

- $Y=1.961-0.005\beta1-0.014\beta2-0.016\beta3-0.009\beta4$
- Based on T-value and P value, intercept is statistically significant but the 4 variables remained as not statistically significant in explaining our target variable loglevel. R-Squared did slight changed to 6.63% comparing to prior model using logSTRESS.

 Diagnostic graphs do not suggest improvement from model 1 or model 2, and the underlying assumptions are violated across normal distribution, and homogeneity. So the overall the goodness of fit is still lacking.

4. Use the glm() function to fit a Poisson Regression for STRESS (Y) using COHES, ESTEEM, GRADES, SATTACH as explanatory variables (X). Interpret the model's coefficients and discuss how this model's results compare to your answer for part 3). Similarly, fit an over-dispersed Poisson regression model using the same set of variables. How do these models compare?

Call:						
glm(formula	= STRESS ~	COHES + ESTE	EM + GRADES -	+ SATTACH, f	amily = "pois	son",
data = r	nydata)					
Deviance Res	siduals:					
Min	1Q Medi	an 3Q	Max			
-2.7111 -1	.5989 -0.29	14 0.7107	3.6424			
Coefficients	5:					
	Estimate S	td. Error z	value	Pr(> z	1)	
(Intercept)	2.734513	0.234066 1	1.683 < 0.00	000000000000	02	
COHES	-0.012918	0.002893 -	4.466	0.000007	98	
ESTEEM	-0.023692	0.008039 -	2.947	0.003	21	
GRADES	-0.023471	0.009865 -	2.379	0.017	35	
SATTACH	-0.016481	0.005783 -	2.850	0.004	37	
(Dispersion	parameter f	or poisson f	amily taken	to be 1)		
Null dev	/iance: 1349	.8 on 650	degrees of f	reedom		
Residual dev	/iance: 1245	.4 on 646	degrees of f	reedom		
AIC: 2417.2						

- $Y = 2.735 0.013\beta1 0.024\beta2 0.23\beta3 0.016\beta4$
- Poisson regression is a log of response Y. so we need to transform the value back for interpretation by using exp() function.
- Intercept exp(2.735)= 15.4. Which is not reasonable considering all variables are 0. Count of stressful events would be 15.4 which is grossly higher than the extreme value in the actual data.
- β 1=exp(-0.013) = .987, interpret per unit change of the adolescent's measure of how well is the relationship with the family, this will decrease 0.987 to the count of stressful event encounter.
- B2=exp(-0.024)=0.977, interpret per unit change of the adolescent's measure of self-esteem, this will decrease 0.977 to the count of stressful event encounter.
- B3=exp(-0.023)=0.977, interpret per unit change of the adolescent's past year's school grades, this will decrease 0.977 to the count of stressful event encounter.
- B4=exp(-0.016)=0.984, interpret per unit change of the adolescent's measure of how well
 adolescent likes or attached to the school, this will decrease 0.984 to the count of stressful
 event encounter.

- Histogram of the predicted count of stressful events are clustered around 1-2.5 ranges, which does not represent the actual data.
- Fit a Quasi-Poisson model to see improvement to predicting the count of stressful events.

data =	mydata)						
Deviance R	esiduals:						
Min	1Q Med	dian	3Q M	lax			
-2.7111 -	1.5989 -0.2	2914 0.7	107 3.64	24			
Coefficien	ts:						
	Estimate	Std. Erro	r t value		Pr(> t)	
(Intercept) 2.734513	0.31216	0 8.760	< 0.000000	000000000	2	
COHES	-0.012918	0.00385	8 -3.348		0.0008	6	
ESTEEM	-0.023692	0.01072	1 -2.210		0.0274	-6	
GRADES	-0.023471	0.01315	7 -1.784		0.0749	0	
SATTACH	-0.016481	0.00771	2 -2.137		0.0329	7	
(Dispersio	n parameter	for quasi	poisson fa	mily taker	to be 1.	778603)	
Null d	eviance: 134	19.8 on 6	50 degree	s of freed	lom		
Residual d	eviance: 124	15.4 on 6	46 degree	s of freed	lom		
AIC: NA							

- Histogram and residual graph show not a significant improvement using Quasi Poisson
- Let's fit to fit negative binomial using the same set of variables since we compared to the mea and variance in our initial evaluation.

Call:						
glm.nb(form	ula = STRESS	~ COHES + E	STEEM + GRAD	DES + SATTACH	,	
data =	mydata, maxi	t = 100000,	init.theta =	1.865329467	,	
link =	log)					
Deviance Re	siduals:					
Min	1Q Medi	an 3Q	Max			
-2.0179 -1	.3900 -0.22	14 0.4882	2.3199			
Coefficient	s:					
	Estimate S	std. Error z	value	Pr(> z	D	
(Intercept)	2.759032	0.341531	8.078 0.0000	000000000000	56	
COHES	-0.013391	0.004136 -	3.238	0.001	21	
ESTEEM	-0.023058	0.011477 -	2.009	0.044	53	
GRADES	-0.024360	0.013969 -	1.744	0.081	18	
SATTACH	-0.016750	0.008296 -	2.019	0.043	49	
(Dispersion	parameter f	or Negative I	Binomial(1.8	3653) family	taken to be 1)	
Null de	viance: 792.	47 on 650	degrees of t	reedom		
Residual de	viance: 738.	53 on 646	degrees of t	reedom		
AIC: 2283.6						
Number of F	isher Scorir	ng iterations	: 1			
	Theta: 1	. 865				
S	td. Err.: 0	0.257				

• We see a slight improvement based on the graphs above, we still experience significant residuals between actual versus predicted value. Let's compare these three models closer.

	poisson.coef	${\tt quasi.coef}$	neg.binomial.coef	se.poisson	se.quasi	se.neg.binomial
(Intercept)	2.7345	2.7345	2.7590	0.2341	0.3122	0.3415
COHES	-0.0129	-0.0129	-0.0134	0.0029	0.0039	0.0041
ESTEEM	-0.0237	-0.0237	-0.0231	0.0080	0.0107	0.0115
GRADES	-0.0235	-0.0235	-0.0244	0.0099	0.0132	0.0140
SATTACH	-0.0165	-0.0165	-0.0168	0.0058	0.0077	0.0083

- The negative binomial estimates are not significantly different from those based on the Poisson and QuasiPoisson model, and both sets would lead to the same conclusions.
- Looking at the standard errors across three models, we see that both approaches to overdispersion lead to very similar estimated standard errors, and that ordinary Poisson regression underestimates the standard errors.
- Unobserved Heterogeneity using dgamma and qgamma with Theta value in negative binomial distribution model.

- Adolescents in the US who were surveyed at Q1 of the distribution of unobserved heterogeneity
 has 54% fewer stressful events than expected from their observed characteristics, while those at
 the median encountered 17% fewer and those at Q3 encountered 33% more than expected.
- 5. Based on the Poisson model in part 4), compute the predicted count of STRESS for those whose levels of family cohesion are less than one standard deviation below the mean (call this the low group), between one standard deviation below and one standard deviation above the mean (call this the middle group), and more than one standard deviation above the mean (high). What is the expected percent difference in the number of stressful events for those at high and low levels of family cohesion?
 - Categorizing the data based on the High Middle and Low, our data can be broken down into these 3 buckets.

```
High Low Middle
   99 106 446

> meanCOHES <- mean(mydata$COHES)
> sdCOHES <- sd(mydata$COHES)</pre>
```

> COHESlow

```
[1] 41.62096
> COHEShigh<-meanCOHES+sdCOHES
> COHEShigh
[1] 64.38757
```

- Calculating the threshold of low and high: 41.621 and 64.388
- Plug them into the Y= $2.735 0.013\beta1 0.024\beta2 0.23\beta3 0.016\beta4$

```
> pred_COHES_low<-2.735 - 0.013*COHESlow- 0.024*0 - 0.23*0 - 0.016*0
> pred_COHES_low
[1] 2.193928
> pred_COHES_high<-2.735 - 0.013*COHEShigh- 0.024*0 - 0.23*0 - 0.016*0
> pred_COHES_high
[1] 1.897962
```

• Since Poisson is a log function of response Y, so transform it back using exp()

```
> exp(pred_COHES_low)
[1] 8.970376
> exp(pred_COHES_high)
[1] 6.67228
```

- (exp(pred COHES high)-exp(pred COHES low))/exp(pred COHES low) = -0.2561872
- There is 25.619% difference in the number of stressful events for those at high and low levels of family cohesion.
- 6. Compute the AICs and BICs from the Poisson Regression and the over-dispersed Poisson regression models from part 4). Is one better than the other?
 - Negative binomial is better performing than the Poisson regression model based on AIC and BIC values.

```
poisson_AIC quasi_AIC nbd_AIC 2417.219 NA 2283.590 poisson_BIC quasi_BIC nbd_BIC 2439.612 NA 2310.461
```

7. Using the Poisson regression model from part 4), plot the deviance residuals by the predicted values. Discuss what this plot indicates about the regression model.

- Based on the graphs we can see there are lot of outliers, top 10% are highlighted in red on the right side of the graph.
- Poisson regression is also having difficulty predicting zero by displaying large residuals. This
 leads us to consider modeling the zeros, and the other counts separately.
- 8. Create a new indicator variable (Y_IND) of STRESS that takes on a value of 0 if STRESS=0 and 1 if STRESS>0. This variable essentially measures is stress present, yes or no. Fit a logistic regression model to predict Y_IND using the variables using COHES, ESTEEM, GRADES, SATTACH as explanatory variables (X). Report the model, interpret the coefficients, obtain statistical information on goodness of fit, and discuss how well this model fits. Should you rerun the logistic regression analysis? If so, what should you do next?

I previously created a new variable:

mydata\$stressed<-ifelse(mydata\$STRESS>0,1,0) #stressed yes or no

data =	mydata)					
Deviance Re	siduals:					
Min		edian	30 Ma			
-1.9069 -1	•		366 1.269			
Coefficient	s:					
	Estimate	e Std. Erro	r z value	Pr(> z)		
(Intercept)	3.516735	0.73713	1 4.771 (.00000183		
COHES	-0.02073	0.00875	1 -2.369	0.0178		
ESTEEM	-0.018867	7 0.02374	1 -0.795	0.4268		
GRADES	-0.025492	0.02870	1 -0.888	0.3744		
SATTACH	-0.027730	0.01752	5 -1.582	0.1136		
(Dispersion	parameter	r for binom	ial family	taken to be	1)	
Null de	viance: 83	34.18 on 6	50 degrees	of freedom		
Residual de	viance: 81	11.79 on 6	46 degrees	of freedom		
AIC: 821.79						

Y=3.5167 - 0.0207β1 - 0.0189β2 -0.0255β3 - 0.0277β4

```
    β1 is COHES = measure of how well the adolescent gets along with their family
    odds_dir1 <- round(exp(-0.020733) - 1, digits = 3)</li>
    odds_dir1
    [1] -0.021
```

β2 is ESTEEM = measure of self-esteem

```
> odds_dir2 <- round(exp(-0.018867) - 1, digits = 3)#ESTEEM
> odds_dir2
[1] -0.019
```

• β3 is GRADES = past year's school grades

```
> odds_dir3 <- round(exp(-0.025492 ) - 1, digits = 3)#GRADES
> odds_dir3
[1] -0.025
```

β4 is SATTACH = measure of how well the adolescent likes and is attached to their school
 odds_dir4 <- round(exp(-0.027730) - 1, digits = 3)#SATTACH
 odds_dir4
 -0.027

- With odds direction created for each variable. It makes the interpretation much easier.
- Interpretation is for change in the adolescent's relationship with the family, as it improves it will decrease by 2.1% of encountering stressful event while everything else is 0.
- For every change in the adolescent's measure of self-esteem, as it improves it will decrease by 1.9% of encountering stressful event while everything else is 0.
- For every change in the adolescent's past year's school grades, as it improves it will decrease by 2.5% of encountering stressful event while everything else is 0.
- For every change in the adolescent's measure of how well adolescent likes or attached to the school, as it improves it will decrease by 2.7% of encountering stressful event while everything else is 0.
- Using probability of success, we can see quite a high probability that's above 50%. But the model is still not predicting 0 well.
- AIC is 821.79 which is the lowest comparing to all previous model. But given the statistically significance of the variables to predict the stress is low. We should consider a combined model in predicting stressed versus not stressed, since we have significant amount of stress occurrence at 0.

- 9. It may be that there are two (or more) process at work that are overlapped and generating the distributions of STRESS(Y). What do you think those processes might be? To conduct a ZIP regression model by hand, fit a Logistic Regression model to predict if stress is present (Y_IND), and then use a Poisson Regression model to predict the number of stressful events (STRESS) conditioning on stress being present. Is it reasonable to use such a model? Combine the two fitted model to predict STRESS (Y). Obtained predicted values and residuals. How well does this model fit? HINT: You have to be thoughtful about this. It is not as straight forward as plug and chug!
 - ZIP which is zero inflated poisson regression is a good approach when the data has high counts of zero. We have conducted the first part of the logistic regression previous using "stressed" with 4 explanatory variables. For this round, we will add AGE to the model and see if we can further improve the model by looking at AIC value. Then we will use "level" to review the counts of the adolescents who are stressed.
 - Running the logistic model again by adding "AGE". Unfortunately, we do not see an
 improvement of the model, and AIC score decreased. Ran through interactive method to by
 adding one explanatory variable at the time and rank each model as below. Using COHES and
 ESTEEM we can get to almost identical AIC score rather than using all 4 explanatory variables.

					AIC	RANK
logistic 1	stressed ~	COHES + ESTE	EM + GRADES -	+ SATTACH	821.79	1
logistic 2	stressed ~	COHES + ESTER	EM + GRADES -	+ SATTACH + AGE,	822.56	5
logistic 3	stressed ~	COHES			821.86	3
Ū						
logistic 4	stressed ~	COHES + ESTER	EM		821.80	2
logistic 5	stressed ~	COHES + ESTE	EM + GRADES		822.32	4

• Let's fit the Poisson regression against "level" in predicting the count of stress.

Interactive approach by evaluating all variable for Poisson landed us with three variables achieving lowest AIC. When then using negative binomial, we did not see improvement. We will settle with Poisson #5 as the second component of the model.

		AIC	RANK
poisson 1	level ~ COHES + ESTEEM + GRADES + SATTACH	1552.10	2
poisson 2	level ~ COHES + ESTEEM + GRADES + SATTACH + AGE,	1553.10	3
poisson 3	level ~ COHES	1560.60	6
poisson 4	level ~ COHES + ESTEEM	1553.30	4
poisson 5	level ~ COHES + ESTEEM + GRADES	1551.90	1
nbd 1	level ~ COHES + ESTEEM + GRADES	1553.90	5

 Using the combined logistic 4 model and poisson 5 model. Our combined model produced the following histogram.

Reviewing the actual versus the prediction of the model, we can see the model is still grossly
missing the ability to predict 0 and failed to predict the stress level/count of encounter of
adolescent after 5 completely.

STRESS count

Ві	'n	Midpnt	Count	Prop	Cumul.c	Cumul.p
0 > 1 > 2 > 3 > 4 > 5 > 6 >	2 3 4 5 6	0.5 1.5 2.5 3.5 4.5 5.5	349 125 75 41 34 14	0.54 0.19 0.12 0.06 0.05 0.02	349 474 549 590 624 638 642	0.54 0.73 0.84 0.91 0.96 0.98
7 > 8 >	_	7.5 8.5	4 5	$0.01 \\ 0.01$	646 651	0.99 1.00

Y_hat_comb

	Bin	Midpnt	Count	Prop	Cumul.c	Cumul.p
0.5 1.0 1.5 2.0 2.5 3.0 3.5	> 0.5 > 1.0 > 1.5 > 2.0 > 2.5 > 3.0 > 3.5 > 4.0	0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75	10 0 0 47 265 220 85 20	0.02 0.00 0.00 0.07 0.41 0.34 0.13 0.03	10 10 10 57 322 542 627 647	0.02 0.02 0.02 0.09 0.49 0.83 0.96 0.99
4.0	> 4.5	4.25	4	0.01	651	1.00

10. Use the pscl package and the zeroinfl() function to Fit a ZIP model to predict STRESS(Y). You should do this twice, first using the same predictor variable for both parts of the ZIP model. Second, finding the best fitting model. Report the results and goodness of fit measures. Synthesize your findings across all of these models, to reflect on what you think would be a good modeling approach for this data.

• For this exercise I will simply used all 4 variables and review models between using Poisson versus negative binomial distribution for the stress count predictability.

Zip poission					Zip negative binomial									
Call:							Call:							
zeroinfl(formula = STRESS ~ COHES + ESTEEM + GRADES + SATTACH COHES + ESTEEM +			zeroinfl(formula = STRESS ~ COHES + ESTEEM + GRADES + SATTACH COHES + ESTEEM +											
GRADES	+ SATTACH, C	lata = myda	ta)				GRADES	+ SATTACH,	data = myda	ta, dist =	"negbin",	EM = TRUE)		
Pearson re	siduals:						Pearson re	siduals:						
Min	1Q Mediar	3Q	Max				Min	1Q Media	n 3Q	Max				
-1.4534 -0	0.9136 -0.2166	0.6257	3.9954				-1.2579 -0	0.8679 -0.207	2 0.5817	3.8088				
Count mode	l coefficient	s (poisson	with log	link):			Count mode	l coefficien	ts (negbin	with log 1	ink):			
	Estimate S	td. Error	z value	Pr(> z)			Estimate	Std. Error	z value	F	r(> z)		
(Intercept	2.641693	0.272349	9.700 <	0.000000000000000	2		(Intercept	2.694064	0.343585	7.841 0.	0000000000	0000447		
COHES	-0.008258	0.003416	-2.418	0.0156	1		COHES	-0.009199	0.004300	-2.139		0.0324		
ESTEEM	-0.026068	0.009206	-2.832	0.0046	3		ESTEEM	-0.026367	0.011510	-2.291		0.0220		
GRADES	-0.019553	0.010914	-1.792	0.0732	0		GRADES	-0.021654	0.013400	-1.616		0.1061		
SATTACH	-0.010485	0.006673	-1.571	0.1161	1		SATTACH	-0.011805	0.008239	-1.433		0.1519		
							Log(theta)	1.745944	0.348664	5.008 0.	0000005513	2612184		
zero-infla	tion model co	efficients	(binomial	with logit link)	:									
	Estimate S	td. Error	z value Pr	(> z)			Zero-infla	tion model c	pefficients	(binomial	with logi	t link):		
(Intercept	.) -2.835428	0.983250	-2.884 0	.00393				Estimate S	td. Error z	value Pr(> z)			
COHES	0.018917	0.012124	1.560 0	.11869			(Intercept	:) -2.97479	1.34073	-2.219 0	.0265			
ESTEEM	-0.004328	0.032777	-0.132 0	.89496			COHES	0.02057	0.01709	1.203 0	.2289			
GRADES	0.014330	0.037731	0.380 0	.70410			ESTEEM	-0.01158	0.04470	-0.259 0	. 7955			
SATTACH	0.024838	0.024083	1.031 0	.30238			GRADES	0.01013	0.04871	0.208	.8352			
							SATTACH	0.02564	0.03321	0.772	.4402			
Number of	iterations in	BFGS opti	mization:	16										
Log-likelihood: -1134 on 10 Df				Theta = 5.	7313									
							Number of iterations in BFGS optimization: 1							
							Log-likeli	hood: -1126	on 11 Df					

 Calculating the ZIP models above in terms of AIC and comparing with previous Poisson and NBD models. We can see the ZIP model using negative binomial distribution produces the best result.

	AIC		
Poisson Model	2417.219		
NBD Model	2283.590		
ZIP_Poisson Model	2288.802		
ZIP_NBD Model	2274.236		

Non-nested hypothesis test is another handy way of reviewing the models.

Refit the model by using the manual approach from #9. Using AIC as the goodness of fit, that
negative binomial distribution ZIP model using all 4 explanatory variables produced slightly
better result.

Variables Selection	Model Name	AIC	RANK
COHES + ESTEEM + GRADES + SATTACH	Poisson Model	2417.219	6
COHES + ESTEEM + GRADES + SATTACH	NBD Model	2283.590	3
COHES + ESTEEM + GRADES + SATTACH	ZIP_Poisson Model	2288.802	4
COHES + ESTEEM + GRADES + SATTACH	ZIP_NBD Model	2274.236	1
COHES + ESTEEM COHES + ESTEEM + GRADES	ZIP_Poisson Model_2	2292.431	5
COHES + ESTEEM COHES + ESTEEM + GRADES	ZIP_NBD Model_2	2276.416	2

• ZIP_NBD model and ZIP_NBD Model_2 comparison based on non-nested hypothesis testing statistics. If using AIC, ZIP_NBD model is better than ZIP_NBD Model_2. But if looking BIC, ZIP_NBD Model_2 is better than ZIP_NBD.

```
Vuong Non-Nested Hypothesis Test-Statistic:
(test-statistic is asymptotically distributed N(0,1) under the null that the models are indistinguishible)

Vuong z-statistic H_A p-value
Raw 1.3574952 model1 > model2 0.087312
AIC-corrected 0.3618523 model1 > model2 0.358731
BIC-corrected -1.8676459 model2 > model1 0.030906
```

• In conclusion, we explored the modeling thought process and experiment in evaluating a dataset that presents a lot of zero in the response variable. For this dataset STRESS, explanatory variables failed to produce a robust model in predicting the encounter of number of stressful events. As much as the measurement of how well the adolescent gets along with their family is slightly more statistically significant than the other three variables. We still found the final model in predicting stress response of 0, in addition to the count of stressful events taken place was grossly underperforming when leveraging the zero inflated Poisson model. None the less, this exercise laid out the foundational framework on how to handle real world data set if it represents these characteristics.