

ORDINARY POLYNOMIAL ARITHMETIC

Ordinary Polynomial Arithmetic

A polynomial of degree n (integer $n \ge 0$) is an expression of the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = \sum_{i=0}^n a_i x^i$$

where the a_i are elements of some designated set of numbers S, called the **coefficient set**, and $a_n \neq 0$. We say that such polynomials are defined over the coefficient set S.

Ordinary Polynomial Arithmetic

- Zero Degree Polynomial (when n = 0)
- Monic Polynomial (when $a_n = 1$)
- In Abstract Algebra, x is also called as indeterminate.

Ordinary Polynomial Arithmetic

$$x^{3} + x^{2} + 2$$

$$+ (x^{2} - x + 1)$$

$$x^{3} + 2x^{2} - x + 3$$

(a) Addition

$$x^{3} + x^{2} + 2$$

$$- (x^{2} - x + 1)$$

$$x^{3} + x + 1$$
(b) Subtraction

$$x^{3} + x^{2} + 2$$

$$\times (x^{2} - x + 1)$$

$$x^{3} + x^{2} + 2$$

$$-x^{4} - x^{3} - 2x$$

$$x^{5} + x^{4} + 2x^{2}$$

$$x^{5} + 3x^{2} - 2x + 2$$

(c) Multiplication

$$\begin{array}{r}
 x + 2 \\
 x^{2} - x + 1 \overline{\smash)x^{3} + x^{2}} + 2 \\
 \underline{x^{3} - x^{2} + x} \\
 \underline{2x^{2} - x + 2} \\
 \underline{2x^{2} - 2x + 2} \\
 x
 \end{array}$$

(d) Division

Modular Polynomial Arithmetic

• $r(x) = f(x) \mod g(x)$

• When $f(x) = x^3 + x^2 + 2$ and $g(x) = x^2 - x + 1$, r(x) = x

• When $f(x) = x^7 + x^5 + x^4 + x^3 + x + 1$ and $g(x) = x^3 + x + 1$, r(x) = 0

Polynomials in GF(p)

GF(2)

- Polynomial Addition and Subtraction are the same.
- Polynomial Addition is equivalent to XOR operation.
- Polynomial Multiplication is equivalent to Logical AND operation.

GF(2) (Example 1)

•
$$f(x) = x^6 + x^5 + x^2 + 1$$

•
$$g(x) = x^3 + x^2 + 1$$

• In GF(2), f(x) + g(x) = ?

Solution:-

• $f(x) + g(x) = x^6 + x^5 + x^3$

GF(2) (Example 2)

•
$$f(x) = x^6 + x^3 + x^2 + 1$$

•
$$g(x) = x^6 + x^5 + x^3 + x + 1$$

• In GF(2), f(x) + g(x) = ?

Solution:-

• $f(x) + g(x) = x^5 + x^2 + x$

GF(2) (Example 3)

- $f(x) = x^6 + x^3 + x^2 + 1$
- $g(x) = x^6 + x^5 + x^3 + x + 1$
- In GF(2), f(x) * g(x) = ?

- $f(x) * g(x) = x^6 * (x^6 + x^5 + x^3 + x + 1) + x^3 * (x^6 + x^5 + x^3 + x + 1) + x^2 * (x^6 + x^5 + x^3 + x + 1) + (x^6 + x^5 + x^3 + x + 1)$
- $f(x) * g(x) = x^{12} + x^{11} + x^6 + x^4 + x^3 + x^2 + x + 1$

GF(2) (Example 4)

•
$$f(x) = x^3 + x^2 + x + 1$$

• In GF(2), $[f(x)]^2 = ?$

Solution:-

• $[f(x)]^2 = x^6 + x^4 + x^2 + 1$

GF(2) (Example 5)

- $f(x) = x^6 + x^5 + x^2 + x + 1$
- $g(x) = x^3 + x^2 + 1$
- In GF(2), f(x)/g(x) = ?, $f(x) \mod g(x) = ?$

- $f(x)/g(x) = x^3 + 1$
- $f(x) \mod g(x) = x$

GF(2) (Example 6)

- $f(x) = x^7 + x^6 + x^5 + x^2 + 1$
- $g(x) = x^3 + x^2 + x + 1$
- In GF(2), f(x)/g(x) = ?, $f(x) \mod g(x) = ?$

- $f(x)/g(x) = x^4 + x + 1$
- $f(x) \mod g(x) = x^2$

GF(2) (Example 7)

- $f(x) = x^4 + x^3 + x^2 + x$
- $\bullet g(x) = x^2 + 1$
- In GF(2), f(x)/g(x) = ?, $f(x) \mod g(x) = ?$

- $\bullet \ f(x)/g(x) = x^2 + x$
- $f(x) \mod g(x) = 0$

Irreducible Polynomials in GF(2)

- f(x) is irreducible if it can't be expressed as a product of any 2 non-constant polynomials of lower degrees.
- Also called as Prime polynomials.

Degree	Irreducible Polynomials
1	x, (x+1)
2	$x^2 + x + 1$
3	$(x^3 + x + 1), (x^3 + x^2 + 1)$
4	$(x^4 + x + 1), (x^4 + x^3 + 1), (x^4 + x^3 + x^2 + x + 1)$
5	$(x^5 + x^2 + 1), (x^5 + x^3 + 1), (x^5 + x^3 + x^2 + x + 1), (x^5 + x^4 + x^3 + x + 1), (x^5 + x^4 + x^2 + x + 1), (x^5 + x^4 + x^3 + x^2 + 1)$
	$+ x^4 + x^2 + x + 1), (x^5 + x^4 + x^3 + x^2 + 1)$

Pseudocode for GCD(f(x),g(x))

```
GCD\{f(x),g(x)\}
if(g(x)==0)
  return f(x);
else
  return GCD\{g(x), f(x) \mod g(x)\}
```

GCD (Example 1)

- $f(x) = x^6 + x^5 + x^4 + x^2 + x + 1$
- $g(x) = x^4 + x + 1$
- GCD $\{f(x), g(x)\} = ?$

```
\begin{split} &GCD\{f(x),g(x)\} = GCD\{g(x),f(x)\ mod\ g(x)\} = \\ &GCD\{(x^4+x+1),(x^6+x^5+x^4+x^2+x+1)\ mod\ (x^4+x+1)\} = \\ &GCD\{(x^4+x+1),(x^3+x^2+x)\} = \\ &GCD\{(x^3+x^2+x),(x^4+x+1)\ mod\ (x^3+x^2+x)\} = \\ &GCD\{(x^3+x^2+x),(x^4+x+1)\ mod\ (x^3+x^2+x)\} = \\ &GCD\{1,(x^3+x^2+x)\ mod\ 1\} = \\ &GCD(1,0) = 1 \end{split}
```

Polynomials in GF(p^m)

- $f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$, where all the coefficients belong to GF(p).
- All the operations are performed modulo any irreducible polynomial (m(x)) with degree m.
- For example, for Polynomial arithmetic over $GF(2^8)$, the coefficients are binary values, and a potential irreducible polynomial would be $(x^8 + x^4 + x^3 + x + 1)$.

Polynomial Arithmetic (Example 1)

•
$$f(x) = x^4 + x^3 + x^2 + x + 1$$

$$\bullet g(x) = x^2 + 1$$

•
$$m(x) = x^4 + x + 1$$

• f(x) + g(x) = ?

- $[f(x) + g(x)] \mod m(x) = [(x^4 + x^3 + x^2 + x + 1) + (x^2 + 1)] \mod (x^4 + x + 1)$
- $[f(x) + g(x)] \mod m(x) = (x^4 + x^3 + x) \mod (x^4 + x + 1)$
- $[f(x) + g(x)] \mod m(x) = x^3 + 1$

Polynomial Arithmetic (Example 2)

- $f(x) = x^5 + x^4 + x^2 + x + 1$
- $g(x) = x^5 + x^4 + x^3 + x^2 + x + 1$
- $m(x) = x^8 + x^4 + x^3 + x + 1$
- f(x) * g(x) = ?

- $[f(x) * g(x)] \mod m(x) = [(x^5 + x^4 + x^2 + x + 1) * (x^5 + x^4 + x^3 + x^2 + x + 1)] \mod (x^8 + x^4 + x^3 + x + 1)$
- $[f(x) * g(x)] \mod m(x) = (x^{10} + x^7 + x^5 + x^3 + x^2 + 1) \mod (x^8 + x^4 + x^3 + x + 1)$
- $[f(x) * g(x)] \mod m(x) = x^7 + x^6 + 1$

Polynomial Arithmetic (Example 3)

- $f(x) = x^4 + x + 1$
- $g(x) = x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + 1$
- $m(x) = x^6 + x^5 + x^4 + x + 1$
- f(x) * g(x) = ?

- $[f(x) * g(x)] \mod m(x) = [(x^4 + x + 1) * (x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + 1)] \mod (x^6 + x^5 + x^4 + x + 1)$
- $[f(x) * g(x)] \mod m(x) = (x^{11} + x^{10} + x^9 + x^7 + x^6 + x^4 + x^2 + x + 1) \mod (x^6 + x^5 + x^4 + x + 1)$
- $[f(x) * g(x)] \mod m(x) = x^5 + x$

Extended Euclidean Algorithm (EEA) on Polynomials in GF(p) and GF(p^m)

Pseudocode for EEA

```
EEA\{a(x), b(x)\}
u1(x)=1, u2(x)=0, v1(x)=0, v2(x)=1;
while(b(x)\neq0)
  q(x)=a(x)/b(x); r(x)=a(x) \mod b(x); u(x)=u1(x)-q(x)*u2(x); v=v1(x)-q(x)*v2(x);
a(x)=b(x); b(x)=r(x); u1(x)=u2(x); u2(x)=u(x); v1(x)=v2(x); v2(x)=v(x);
return(a(x), u1(x), v1(x))
```

EEA (Example 1)

- $a(x) = x^3 + x + 1$
- $b(x) = x^2 + 1$
- Calculate GCD $\{a(x), b(x)\}=a(x)*u1(x)+b(x)*v1(x), and calculate u1(x) and v1(x), in GF(2)$

Solution:-

Iteration 1:-

$$a(x) = x^3 + x + 1$$
; $b(x) = x^2 + 1$; $q(x) = x$; $r(x) = 1$; $u1(x) = 1$; $u2(x) = 0$; $u(x) = 1$; $v1(x) = 0$; $v2(x) = 1$, $v(x) = x$

EEA (Example 1) (Contd..)

Iteration 2:-

$$a(x) = x^2 + 1$$
, $b(x) = 1$; $q(x) = x^2 + 1$; $r(x) = 0$; $u1(x) = 0$; $u2(x) = 1$; $u(x) = x^2 + 1$; $v1(x) = 1$; $v2(x) = x$, $v(x) = x^3 + x + 1$

Iteration 3:-

$$a(x) = 1$$
; $b(x) = 0$; $u1(x) = 1$, $u2(x) = x^2 + 1$, $v1(x) = x$, $v2(x) = x^3 + x + 1$

- Therefore GCD $\{(a(x), b(x))\} = 1; u1(x) = 1; v1(x) = x;$
- Also, we can say that $MI(x^3 + x + 1) \mod (x^2 + 1) = 1$

EEA (Example 2)

• Calculate $MI(x^2+1) \mod (x^4 + x + 1) \text{ in } GF(2^4)$

Solution:-

Iteration 1:-

$$a(x) = x^4 + x + 1$$
; $b(x) = x^2 + 1$; $q(x) = x^2 + 1$; $r(x) = x$; $v1(x) = 0$; $v2(x) = 1$; $v(x) = x^2 + 1$

Iteration 2:-

$$a(x) = x^2 + 1$$
; $b(x) = x$; $q(x) = x$; $r(x) = 1$;
 $v1(x) = 1$; $v2(x) = x^2 + 1$; $v(x) = x^3 + x + 1$

EEA (Example 2) (Contd..)

Iteration 3:-

$$a(x) = x$$
; $b(x) = 1$; $q(x) = x$; $r(x) = 0$;
 $v1(x) = x^2 + 1$; $v2(x) = x^3 + x + 1$; $v(x) = (x^4 + x + 1) \mod (x^4 + x + 1) = 0$

Iteration 4:-

$$a(x) = 1; b(x) = 0;$$

 $v1(x) = x^3 + x + 1; v2(x) = 0$

• Therefore, $MI(x^2+1) \mod (x^4+x+1) = (x^3+x+1)$

EEA (Example 3)

• Calculate $MI(x^4 + x^3 + x^2 + 1) \mod (x^8 + x^4 + x^3 + x + 1)$

Solution:-

Iteration 1:-

$$a(x) = x^{8} + x^{4} + x^{3} + x + 1; b(x) = x^{4} + x^{3} + x^{2} + 1;$$

$$q(x) = x^{4} + x^{3} + x + 1; r(x) = x^{2};$$

$$v1(x) = 0; v2(x) = 1; v(x) = x^{4} + x^{3} + x + 1$$

Iteration 2:-

$$a(x) = x^4 + x^3 + x^2 + 1$$
; $b(x) = x^2$; $q(x) = x^2 + x + 1$; $r(x) = 1$; $v1(x) = 1$; $v2(x) = x^4 + x^3 + x + 1$; $v(x) = x^6$

EEA (Example 3) (Contd..)

Iteration 3:-

$$a(x) = x^{2}$$
; $b(x) = 1$; $q(x) = x^{2}$; $r(x) = 0$;
 $v1(x) = x^{4} + x^{3} + x + 1$; $v2(x) = x^{6}$; $v(x) = 0$;

Iteration 4:-

$$a(x) = 1$$
; $b(x) = 0$; $v1(x) = x^6$; $v2(x) = 0$;

• Therefore, $MI(x^4 + x^3 + x^2 + 1) \mod (x^8 + x^4 + x^3 + x + 1) = x^6$