AIML331 Assignment 1

Gerard Cabauatan NSN: 300651470

Link:

https://github.com/Canteenboy/ AIML331-Assignment-1

1.1 - Compute the [R, t] matrix converting world coordinates to camera coordinates

The pinhole camera is at [0, 0, -10] and is pointing to the right 30 degrees so like I said below, we have to translate the camera coordinates by moving it forward by 10 and rotate it 30 degrees anti clockwise along the y-axis so that objects in the world is shown correctly

We to t	need to be origin	move which	(translate) means) the we h	world ave to	. co-c	ordinate the	s of . Camera	the camera forward
to the	10 on the	l z-an	means xis becaus	e thu	come	ei a	at [O	,0,-10)]
the anti	camero - clockw	is ise	also at	30°	so h	e nec	ed to	turn	it 30°
	[cos (A)	0	(A) nie	0]					
Ry (6) =	0	1	0	0					
	-sin (θ)	0	(B) 203	0					
	[0	0	Q	1]					
Ry(30):	(30)	0	sin (30)	0]	13	0	1 0		[0]
	0	l	0	0	_ 0	١	0 0	+	0
	-sin (30) 0	(30)	0	- 1/2	0 -	2 0		10
	[0	0	0	1]	[0	0	0 1]	11]
	13 O -	1 0	1 [0][5	1				
Rt = [0 1	0 0	0	0					
	$-\frac{1}{2}$ 0 $-\frac{1}{2}$	3 0	10	5√3					
l	0 0 (0 1		١					
	[<u>-1</u>	3 0	<u>†</u> 5	1					
[R	v 7 0	1	0 0						
	Kt] -	0	\$ 5\13						

		P ₁ = [O]		P _n = K[R Rt]P _n
		$ \begin{bmatrix} \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\ 0 & 0 & 0 \end{bmatrix} $		
		$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$		
		$ \begin{bmatrix} \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\ 0 & 0 & 0 \end{bmatrix} $		
$\begin{bmatrix} \frac{\sqrt{3}}{20} & 0 \\ 0 & 0 & 1 \\ -\frac{1}{2} & 0 \end{bmatrix}$	$\frac{1}{20}$ 0.5 0 0 $\frac{\sqrt{3}}{2}$ 5 $\sqrt{3}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \frac{11}{2} \end{bmatrix}$	55] = [0.55] 0 √3] [5.5√3]	
P ₁ x P ₂ = 0.5	5 0.5 x 0 3 5.5	55] [0.5 5 - 0.6 5 - 0.6		
Line equ 0.55√3∞	ation , -0.055 =	0 Vector for 0.55 0 -0.05	$ \begin{array}{c} $	

2.1 My image is 1200 by 1200 pixels and is converted to grayscale using the .convert('L') from the PIL library. I then converted it to an image array so it's easier to make calculations with the image

https://en.wikipedia.org/wiki/Check_%28pattern%29

2.2 From the graphs below we can see that for the checkerboard image there is only 2 pixel values being black and white but from what we can see there is more black than white due to the difference of the 2 peaks in the histogram

2.3

When applying the gaussian filter, I set my sigma to 7 which means that it would be more blurry as we can see below with the 2 images. This is because as the checkerboard image has fine lines sectioning each black and white square, having a larger sigma smoothes out those fine lines making them blurry

2.4

I chose the gaussian filter and yes it is separable. As I also said in my jupyter notebook, for a filter to be separable it should be able to decompose into the product of 2 1D filters. Since the equation for a gaussian filter is:

$$w(i,j)=K\mathrm{e}^{-\frac{i^2+j^2}{2\sigma^2}}$$

We can change this into 2 1D filters:

$$e^{-rac{i^2}{2\sigma^2}}$$
 and $e^{-rac{i^2}{2\sigma^2}}$

<u>2.5</u>

To convert from the spatial domain to the frequency domain I used fast fourier transform (FFT) and after converting to the frequency domain I applied the gaussian low-pass filter and converted it back to the spatial domain to give the image on the very right. I used a cutoff frequency of 20 which means that any frequency 20 will be filtered out which is why the fine lines are again blurred

2.7
 To have a uniform probability of intensity levels for the low pass filtered checkerboard image
 I used histogram equalization which maps the original pixel intensities to the new pixel intensities which is defined by the normalised CDF

