User space and Kernel Space

Types of Systems

es multiprocessing system

1) Resident Monitor

2> Botch System

3) Multiprogramming System
- Degree of Multiprogramming

CPU time/burst - time spent on CPU IO time/burst - time spent on ID CPU burst > IO burst > CPU bound IO burst > CPU bound IO burst > CPU burst > IO bound

4) Time sharing system)
nultitasking system
Response time < 1 sec

2) Thread based Multitasking (multithreading)

> s) Multiuser system multiple users can control the system

Process Vs Thread

Thread - Lightweight process

- -for every process one thread is created
- process is just a container of resources.
- the threads in side that container are scheduled on CPU

Process Life Cycle

- worting queues one multiple

for IO/some event.

(per device one)

Running / TO levent request CPV scheduling Contenias; 1) CPU utilization: (max) 2) Thoughput: (max) -amount of work done in unit time 3) Maiting time: (min) - total time spent by process into ready queue. 4) Response time: (min) -time form arraival into reddy queue appo First time getting e se ecutival. 5) Furn Arround time: (min) -total time spent into memory.

Terminated

Types of Scheduling

1) Running > Terminated of Non-Preemptive Scheduling
2) Running > Neuting
3) Running > Ready
4) Waiting > Ready
5) Preemptive Scheduling
6) Waiting > Ready

CPU Scheduling Algorithms

) FCFS

2) SJF

3> Prioriy

4) RR

5> Fair Share

FCFS (First Come First Serve) (Non-Preemptive scheduling)

	Process	Arrival	CPU Burst	WT	RT	TAT
1	P1	0	24	0	\circ	24
	P2	0	3	24	24	27
1	P3	0	3	27	27	30

	Process	Arrival	CPU Burst	WT	RT	TAT
	P3	0	3	0	\bigcirc	S
	P2	0	3	3	3	6
\downarrow	P1	0	24	6	6	30

P	\	P2		P3 [
Ŏ	2	L9	27	30
Pl				
P2 P3				
P3				

Convoy's Effect

- due to arrival of longer process early into ready queue, all other processes has to wait for longer time
 - we do not have any control on sequenece of processes

SJF (Shortest Job First)

(Non Preemplive Scheduling)

(Preemptive Scheduling) (Shortest Remaining time First)

Process	Arrival	CPU Burst	WT	RT	TAT
P1	0	7	0	\bigcirc	7
P2	2	4	6	6	\bigcirc
Р3	4	1	3	3	4
P4	5	4	フ	7	\ \

				. 1—	\bigcirc \leftarrow	T 01
Process	Arrival	CPU Burst		WT	₩	1 + 1
P1	0	7	5	9	\bigcirc	16
P2	2	4	2,0	·	\bigcirc	5
P3	4	1	D	0	\mathcal{O}	1
P4	5	4	4,0	2	2	Ç

Starvation

- due to longer CPU time process will get last chance to execute
 - there is no solution for starvation in SJF

Priority

(Non Preemptive Scheduling)

				,	\wedge $-$	ナハイ
Process	Arrival	CPU Burst	Priority	NT	RT	()
P1	0	10	3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6	(6
P2	0	1	1(4)		Ô	\
P3	0	2	4 (L)	16	16	(8
P4	0	5	2	1	ſ	6

P2	PP	PI	P3	
0 1	E		16	8
P) P2		((-0.0	dt's char	-+)
P3		(dan	01130160	
PY				

(Preemptive Scheduling)

				-		—	
Process	Arrival	CPU Burst	Priority				TAT
P1	0	10	3	0,61	ς	6	
P2	1	1	1	0	0	0	
Р3	3	2	4	2-10	13	13	
P4	0	5	2	40	\	\bigcirc	

Starvation

due to low priority, process will not get enough CPU time for execution

Aging

increase the priority of process gradually, so that it will get scheduled

RR (Round Robin) (Pre emptive scheduling)

Process	CPU Burst		WT	RT	TAT	Time guantura	
P1		33,13,0	0+57+24	\bigcirc	134	- CPV time is	divided
P2	17	0	20	20	37	IND CHUM DUATI.	
Р3	68	48,28,8	37 +40+17	37	162		
P4	24	4,0	57+40	57	12)	T9 = 20	

First waiting time is Response time Tg=100 Lbehave like FCFS Tg=4 LCPU overhead will increase.

Fair Share

- CPU time is divided into time slices (epoch)
- some share of each epoch is given to the processes which are in ready queue.
- share is given to the process on the basis of their priority
- priority of every process is decided by its nice value
- nice values range ---> -20 to +19 (40 values)
 - * -20 highest priority

* +19 - lowest priority

Process	Nice Value
P1	10
P2	10
P3	10
P4	10

Epoch - 100

Process	Nice Value
P1	5
P2	5
P3	10
P4	10

P1 P2 P3 P4 P1 P2	PS	P 4
-------------------	----	------------

Multi Level Ready Queue

Multi Level Feedback Ready Queue

Linux Scheduling

- There are two scheduling policies
 - 1. Non real time policy
 - i. SCHED OTHER
 - ii. SCHED BATCH
 - iii. SCHED IDLE
 - 2. Real time policy
 - i. SCHED_FIFO
 - ii. SCHED_RR