Breaking symmetry: embryonic establishment of body axes (I)

Sept. 11, 2024

Three body axes define asymmetries

sketch: Albrecht Durer

When do you start?

Zygotes: some break symmetry earlier than others

Does the early polarity relate to final body planes?

- How might we study this question?
- How is early polarity established?

What to ask, while we learn a bit about it? e.g.

Is there an order to three axial development?

How similar or different is it among animals?

What drives the similarity and difference?

Why asymmetry at all?

How might we study this question?

Watch and describe

live imaging

How might we study this question?

Perturb and sort effects

cell-manipulation

gene-manipulation

Mutants

forward genetic screens

'Mutants'

targetted or systematic (genome-wide) knockout, knock down, degradation

How might we study this question?

• Compare among sub-species

Correlate genomic-cellular variations

When do you start?

How early is 'early'?

C. elegans is early:

sperm entry + first 3 rounds of divisions

5 asymmetric divisions:

polarization for future body axes

6 blastomere (founder) cells:

non-exchangeable fates

Gastrulation: the final body plane layout

5 asymmetric divisions

6 blastomeres (founder cells)

gastrulate & unfold

Let's review key evidences

1) A-P axis:

Sperm initiates polarization of zygote, establishing A-P asymmetry in the first division.

Table I Maternal Loci in C elegans: Gene Names and Molecular Identities (See Text for References)

Gene	Name	Molecular identity
	Par Group	Genes
let-99	Lethal	?
par-1	Partitioning-defective	Ser-Thr kinase; binds a nonmuscle myosir
par-2	Same	Novel; ATP-binding site
par-3	Same	Novel; two PDZ domains
par-4	Same	Ser-Thr kinase
par-5	Same	?
par-6	Same	?
mes-1	Maternal-efffect sterile	?
	Blastomere Identif	y Group Genes
P ₁ subgroup		
pal-1	Posterior alae defective	Homeodomain protein; putative
		transcription factor
pie-l	Pharynx and intestine excess	TIS-II-like Zn2+ finger ptn
skn-1	Skin excess	bZIP-like putative transcription factor; lacks a leucine zipper
pop-1	Posterior pharynx defective	HMG domain protein; putative transcription factor
mom-1	More mesoderm	Porcupine homologue; ER protein required for Wnt secretion
mom-2	Same	Wingless/Wnt homologue; putative secreted glycoprotein ligand
mom-3	Same	?
mom-4	Same	2
mom-5	Same	Frizzled homologue; putative receptor for Wnt ligands
AB subgroup		
aph-2	Anterior pharynx defective	Novel membrane-associated extracellular protein
арх-1	Anterior pharynx excess	Delta-like transmembrane protein; putative GLP-! ligand
glp-1	Germline proliferation defective	Notchlike transmembrane protein; putative receptor
		50.000 • 50.000
	Intermediate G	
mex-1	Muscle excess	TIS-11-like Zn2+ finger ptn
mex-3	Same	Two KH domains; putative RNA-binding protein
pos-1	Posterior localized mRNA	TIS-11-like Zn2+ finger ptn

What might be the sperm's polarity cue?

Its pronucleus or DNA? No

embryos show normal polarity when oocytes are fertilized by anucleate sperm (Sadler and Shakes, 2000. Development 127: 355-366.)

Its centrosomes? Yes

embryo fails to polarize when its centrosome was destroyed by a laser.

Requirement for initiating embryo polarity, from the centrosome:

its microtubule extension to cortex

its close association with cortex

its component: e.g. Aurora kinase AIR-1

How might the sperm centrosome polarize the zygote?

asymmetric cortical actomyosin contraction: cytoplasmic flow

- Cytochalasin D blocks all division asymmetry
- Removing non-muscle myosin blocks polarity
- Posterior cortex excludes RhoGEF, which requires centrosome proteins

How might asymmetric cortical contraction polarize the zygote?

polarized cortical par localization (I)

How might cortical contraction polarize the zygote?

polarized cortical par location (II)

Mutual inhibition between PAR Proteins

PAR-1 phosphorylates PAR-3, excludes anterior PARs from cortex PKC-3 phosphorylates PAR-2, prevents its cortical localization.

How might blastomere cell fates be specified?

6 blastomeres

3 groups of fate-determinants

```
Anterior (AB descendants)
   MEX-3
   GLP-1
Posterior (Pl descendants)
   SKN-1
   PAL-1
Germline (Pl descendants)
   PIE-1
   MEX-1
   POS-1
   P granules
```

How might blastomere cell fates be specified?

transcription factors

How might blastomere cell fates be specified?

The second round of divisions: D-V axis and fate induction

The third-round division: L-R axis

A brief recap:

Initiated by sperm entry, the fertilized zygote starts off with 5 asymmetric divisions that establish the A-P, D-V, and L-R axes, and generate 6 blastomeres with unique fates.

A brief recap:

Key cellular events of blastomere patterning:

- Sperm centrosome marking the posterior
- Polarized actomyosin contraction and cytoplasmic flow
- Partition of anterior-posterior PAR complexes
- Established fate determinants (TF & induction)

Cell fate maps: roughly aligned with body planes

Final body planes: laid out during gastrulation

Is this early?

Recommended reading:

Overview (Review)

Bowerman. Maternal control of pattern formation in early *Caenorhabditis elegans* embryos. Curr Top Dev Biol 39:73-117, 1998

Initiation – cortical contraction

Cowan and Hyman. Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos, Nature. 431(7004):92-6, 2004

PAR and fate determinants (Review)

Kemphues. PARsing embryonic polarity, Cell, 101, 345-348, 2000

Induction

Thorpe, Schlesinger, Carter and Bowerman. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm, Cell 22;90(4):695-705, 1997

Chirality

Wood. Evidence from reversal of handedness in C. elegans embryos for early cell interactions deter- mining cell fates. Nature, 349:536-538, 1991