Xilin Northwest Chinese School AP Physics 1

Fall 2018 Course Introduction and Instructional Plan

Course Code	AP_PHY_A_1
Classroom Number	247
Course Meeting	 15:00 - 16:50, Every Sunday from Aug 26th to Dec 16th, 2018; 14 Course Meetings in total.
Instructor	Haoyu Wang, Ph.D.
Email	harry.wanghy@gmail.com

Course Description:

- Being more advanced than regular AP Physics 1 classes, this course will help the students of Grade 7+ understand and master the fundamental concepts of mechanics, as well as apply them to solve complicated problems in a flexible manner. We will focus on building the capability for the students to analyze and understand problem efficiently, and to solve the problem using the correct model gained in class.
- Not only is this course designed to fully prepare the students for a score of 5 in the AP Physics 1 exam, but also to build the foundation of F=ma exam (USA Physics Olympiad Level 1) for the students with a higher expectation in themselves.
- The course will be organized as lectures, demonstration experiments, and in-class problem-solving practices.

Prerequisite:

Basic algebra knowledge (Quadratic equation, System of linear equations, Vectors)

<u>Textbook and other material requirement:</u>

- Physics: Principles with Applications (5th Edition, 1997) by Douglas C. Giancoli.
- Course-specific binder, Loose leaf papers, Scientific calculator, Pens & Highlighters.

Instructional Plan:

Class #01

- Introduction
- Kinematics in One Dimension (Newton's first law; Equilibrium forces; Mathematical expression of motion; Offset, velocity and acceleration)

Class #02

• Kinematics in Two Dimensions (Vector calculation; Combination of independent motions on two axis, Relative Velocity)

Class #03

• Dynamics (Force, mass, Newton's second law and acceleration; Force Diagrams; Frictions and deceleration;)

Class #04

- Dynamics (Newton's third law; Propulsion and air drag)
- Circular Motion (Uniform Circular Motion; Mathematical expression; Frequency, Period, linear and angular velocity; Centripetal force)

Class #05

• Circular Motion (Centrifugation; Newton's Law of universal gravitation; Gravity on planet surfaces; Man-made satellites and Weightlessness; Kepler's laws)

Class #06

• Work and Energy (Doing work by constant force/varying force; Kinetic energy and gravitational potential energy; Conservative Forces; Conservation law of Mechanical energy)

Class #07

- Work and Energy (Energy transformation; Power; Energy loss)
- Linear Momentum (Momentum, velocity, force, time; Conservation of momentum; Impulse and change of momentum; Conservation of energy and momentum in collisions)

Class #08

• Linear Momentum (Elastic collisions in one dimension; Inelastic collisions; Higher dimensional collisions; Center of Mass; Translational motion)

Class #09

• Rotational Motion (Angular expression of motion; Angular acceleration; Rolling motion; Torque and rotational inertia; Comparison between linear and rotational motion)

Class #10

• Rotational Motion (Rotational kinetic energy; Angular momentum conservation; Vector expression of Angular quantities; Superposition of translational and rotational motion)

Class #11

• Fluids (Density; Pressure in fluids and atmosphere; Pascal's principle; Buoyancy and Archimedes' principle; Fluids Dynamics and Bernoulli's equation)

Class #12

• Vibrations and Waves (Simple harmonic motion; Energy of harmonic oscillator; Mathematical expression; Simple pendulum)

Class #13

• Vibrations and Waves (Damped harmonic motion; Forced Vibrations; Resonance; Wave motion and math expression; Energy associated with wave)

Class #14

- Sound (Longitudinal waves; Decibels; Source of sound; Doppler effect)
- End-semester Review

Instructor Information

 Dr. Haoyu Wang earned his B.S. degree from University of Science and Technology of China in 2011 and his Ph.D. degree from Purdue University in 2017. He had more than 4 years of experience instructing undergraduate level physics courses including mechanics and electromagnetism, winning the Excellent Graduate Teacher Award of Purdue University in 2014. Currently he is working in a national laboratory in Chicago area, focusing on the research field of applied nuclear physics.