Bài giảng Giải tích 2

Vũ Hữu Nhự

11th October 2023

CHƯƠNG 3. TÍCH PHÂN ĐƯỜNG. TÍCH PHÂN MẶT

3.1 Dường cong

- ► Biểu diễn tham số
- véc tơ tiếp xúc
- ▶ tiếp tuyến
- ► độ dài

3.2. Tích phân đường trong mặt phẳng và không gian

3.2.1. Định nghĩa và cách tính

Definition (Tích phân đường (loại 2))

- Dường cong C có biểu diễn tham số $\mathbf{r} = [x(t), y(t), z(t)],$ $a \le t \le b$, định hướng dương từ $A = \mathbf{r}(a)$ tới $B = \mathbf{r}(b)$
- hàm véc tơ $\mathbf{F}(\mathbf{r}) = (F_1(\mathbf{r}), F_2(\mathbf{r}), F_3(\mathbf{r}))$

Khi đó tích phân đường (loại 2) của hàm véc tơ $\mathbf{F}(\mathbf{r})$ trên đường cong C là đại lượng được cho bởi

$$\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{C} (F_{1}dx + F_{2}dy + F_{3}dz) = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t)dt$$
(1)

 $\mathring{\sigma} \, \mathring{\sigma} \, d\mathbf{r} = [dx, dy, dz].$

3.2.1. Định nghĩa và cách tính

Vì
$$\mathbf{F}(\mathbf{r}) = (F_1, F_2, F_3)$$
, nên ta có

$$\int_{\mathcal{C}} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{a}^{b} (F_{1}x' + F_{2}y' + F_{3}z') dt.$$
(2)

ullet Nếu C là đường cong kín $(A \equiv B)$, trong công thức (1) ta viết

$$\oint_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} \quad \text{thay vi} \quad \int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}.$$

Tính tích phân đường loại 2 của hàm véc tơ

$$\int_C (x^2 + 2y) dx + (x - 1) dy$$

với C là cung parabol $y=x^2$ nối A(0,0) với B(1,1) và có chiều dương từ A tới B.

Khi chiều dương của C thay đổi từ B tới A, thì kết quả tích phân đường thay đổi như thế nào??

Tính tích phân đường loại 2 của hàm véc tơ

$$\int_C (x^2 + 2y) dx + (x - 1) dy$$

với C là cung parabol $y=x^2$ nối A(0,0) với B(1,1) và có chiều dương từ A tới B.

Khi chiều dương của C thay đổi từ B tới A, thì kết quả tích phân đường thay đổi như thế nào??

- ► Khi chiều dương của C thay đổi ~ tích phân đường đổi dấu.
- ► \sim Chọn BDTS $\mathbf{r}(t)$ sao cho chiều tăng của t phù hợp với hướng dương của C

3.2.2 Tính chất của tích phân đường loại 2

- 1. $\int_C k\mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = k \int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$ với k là hằng số.
- 2. $\int_C [\mathbf{F}(\mathbf{r}) + \mathbf{G}(\mathbf{r})] \cdot d\mathbf{r} = \int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} + \int_C \mathbf{G}(\mathbf{r}) \cdot d\mathbf{r}$.
- 3. Nếu C chia thành hai đường cong C_1 và C_2 có hướng cùng hướng với C, thì

$$\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{C_1} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} + \int_{C_2} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}.$$

4.
$$\int\limits_{\widehat{AB}} Pdx + Qdy + Rdz = -\int\limits_{\widehat{BA}} Pdx + Qdy + Rdz.$$

Tính tích phân đường của hàm véc tơ $\mathbf{F}(\mathbf{r}) = [z, x, y]$ trên đường xoắn ốc C :

$$\mathbf{r}(t) = [\cos t, \sin t, 3t], \quad 0 \le t \le 2\pi.$$

Tính tích phân đường loại 2 của hàm véc tơ

$$\vec{F} = (x + y + 1)\vec{i} - 2\vec{j}$$

dọc theo đường tròn

$$x^2 + y^2 = 1$$

với chiều ngược kim đồng hồ.

Tính tích phân đường loại 2 của hàm véc tơ

$$\vec{F} = (x + y + 1)\vec{i} - 2\vec{j}$$

dọc theo đường tròn

$$x^2 + y^2 = 1$$

với chiều ngược kim đồng hồ.

Chú ý: Chọn biểu diễn tham số r
 phù hợp với chiều dương của ${\cal C}$

Tính

$$I = \int_C x dx + y dy$$

lấy theo chiều tăng của t, biết rằng

$$C: \begin{cases} x = |1 - t| \\ y = 2t \end{cases} \quad 0 \le t \le 3.$$

Kiểm tra 15'

Tính tích phân đường

$$I = \int_C (2x+1)dx + (x-y)dy$$

trong hai trường hợp sau:

- (a) C là cung tròn $x^2+y^2=1$ nằm trong góc phần tư thứ nhất và có chiều dương từ A(1,0) tới B(0,1).
- (b) C là đoạn gấp khúc AOB có chiều dương từ A(1,0) tới O(0,0), rồi đến B(0,1).

3.2.3. Công thức Green trong mặt phẳng

(1) Công thức Green

- D miền liên thông, bị chặn,
- ▶ Biên $C = \partial D$ là một hoặc nhiều đường cong kín, trơn từng khúc, rời nhau đôi một
- ► Chiều dương của C phù hợp với miền D
- $ightharpoonup F_1(x,y), F_2(x,y)$ có các đạo hàm riêng liên tục trên D.

3.2.3. Công thức Green trong mặt phẳng

(1) Công thức Green

- D miền liên thông, bị chặn,
- ▶ Biên $C = \partial D$ là một hoặc nhiều đường cong kín, trơn từng khúc, rời nhau đôi một
- Chiều dương của C phù hợp với miền D
- $ightharpoonup F_1(x,y), F_2(x,y)$ có các đạo hàm riêng liên tục trên D.

Khi đó

$$\oint_C F_1 dx + F_2 dy = \iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy. \tag{3}$$

Tính

$$I = \oint_C (xy + 4x + 5y)dx + (y^2 - 2x + \frac{x^2}{2})dy$$

lấy theo chiều ngược kim đồng hồ, biết ${\it C}$ là đường tròn có phương trình

$$x^2 + y^2 = 1.$$

3.2.4. Úng dụng tích phân đường loại 2: Tính công cơ học

Công của lực $\mathbf{F}(\mathbf{r})$ để di chuyển một chất điểm M dọc theo một cung C từ A đến B được tính bởi

$$W = \int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}. \tag{4}$$

Tính công W của lực \mathbf{F} thực hiện dọc theo đường cong C với

$$C: \mathbf{r} = [t, 3t, 2t]$$
 từ $t = 0$ tới $t = 1$ và $\mathbf{F} = [x + y, y + z, z + x]$

3.3. Mặt trong không gian 3 chiều

• Biểu diễn của mặt trong hệ tọa độ Oxyz. Phương trình của mặt cong S trong hệ tọa độ Oxyz được cho bởi

$$z = f(x, y)$$
 hoặc $g(x, y, z) = 0.$ (5)

Example

Nửa mặt cầu phía trên mặt Oxy với tâm O(0,0,0) và bán kính r=a có phương trình

$$z = \sqrt{a^2 - x^2 - y^2} =: f(x, y)$$

hoặc

$$g(x, y, z) := x^2 + y^2 + z^2 - a^2 = 0 \quad (z \ge 0).$$

Biểu diễn tham số của mặt

Biểu diễn tham số của mặt S có dạng

$$\begin{cases}
\mathbf{r}(u,v) = [x(u,v),y(u,v),z(u,v)] \\
= x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k} \\
(u,v) \in R \subset \mathbb{R}^2,
\end{cases} (6)$$

 \mathring{o} đó u và v là các tham số.

<u>Biểu diễn tha</u>m số của mặt

Biểu diễn tham số của mặt S có dạng

$$\begin{cases}
\mathbf{r}(u,v) = [x(u,v), y(u,v), z(u,v)] \\
= x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k} \\
(u,v) \in R \subset \mathbb{R}^2,
\end{cases} (6)$$

 $\mathring{\sigma}$ đó u và v là các tham số.

Example

Viết biểu diễn tham số của:

- mặt phẳng qua A(1,0,0), B(0,2,0), C(0,0,3);
- mặt trụ $x^2 + y^2 = a^2, 0 \le z \le h$;
- ightharpoonup mặt cầu $x^2 + y^2 + z^2 = r^2$.

Mặt phẳng tiếp xúc và véc tơ pháp tuyến

Mặt S có bdts $\mathbf{r} = \mathbf{r}(u, v)$ và điểm $P = \mathbf{r}(u_0, v_0) \in S$.

► Hai véc tơ tiếp xúc của S tại P là

$$\mathbf{u}_1 = \mathbf{r}'_u(u_0, v_0), \quad \text{và} \quad \mathbf{u}_2 = \mathbf{r}'_v(u_0, v_0)$$

► Véc tơ pháp tuyến của S tại P là

$$\mathbf{N}(u_0, v_0) = \mathbf{r}'_u(u_0, v_0) \times \mathbf{r}'_v(u_0, v_0) \neq \mathbf{0} = (0, 0, 0). \quad (7)$$

Ó đây, với $\mathbf{a}=(a_1,a_2,a_3)$ và $\mathbf{b}=(b_1,b_2,b_3)$, kí hiệu

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{pmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

► Véc tơ pháp tuyến đơn vị của S tại P là

$$\mathbf{n}(u_0, v_0) = \frac{1}{|\mathbf{N}(u_0, v_0)|} \mathbf{N}(u_0, v_0). \tag{8}$$

Cho mặt trụ (S) có phương trình

$$x^2 + y^2 = 1$$
, $0 \le z \le 2$.

- 1. Tìm véc tơ pháp tuyến của (S) tại $P(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1)$.
- 2. Viết phương trình mặt phẳng tiếp xúc của (S) tại P.

Nhân xét

Nếu S được cho bởi phương trình

$$g(x,y,z)=0,$$

khi đó, véc tơ pháp tuyến đơn vị của S tại $P(x_0, y_0, z_0)$ được cho bởi

$$\mathbf{n}(P) = \frac{1}{|\operatorname{grad} g(P)|} \operatorname{grad} g(P), \tag{9}$$

 $v\acute{\sigma}i \ \mathrm{grad} \ g = \nabla g = (\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}).$

Example

Mặt cầu $S: g(x, y, z) = x^2 + y^2 + z^2 - a^2 = 0$ có véc tơ pháp tuyến đơn vị tại điểm $P(x_0, y_0, z_0) \in S$ là

$$\mathbf{n}(P) = \left[\frac{x_0}{a}, \frac{y_0}{a}, \frac{z_0}{a}\right].$$

- Mặt trơn
- mặt trơn từng mảnh
- Sự định hướng của mặt

3.4. Tích phân mặt loại 2

Biểu diễn tham số phù hợp với sự định hướng của
 mặt. Cho mặt tron S được định hướng dương bởi một véc tơ pháp tuyến n. Xét một biểu diễn tham số

$$\mathbf{r}(u, v) = [x(u, v), y(u, v), z(u, v)]$$
 (10)

ightarrow một véc tơ pháp tuyến ${f N}$ tại điểm $P={f r}(u,v)$ tùy ý

$$\mathbf{N} = \mathbf{r}'_{u} \times \mathbf{r}'_{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x'_{u} & y'_{u} & z'_{u} \\ x'_{v} & y'_{v} & z'_{v} \end{vmatrix} = \left(\frac{D(y, z)}{D(u, v)}, \frac{D(z, x)}{D(u, v)}, \frac{D(x, y)}{D(u, v)} \right) \neq \mathbf{0}.$$
(11)

Ta nói rằng \mathbf{N} phù hợp với hướng dương của S nếu \mathbf{N} cùng hướng với $\widetilde{\mathbf{n}}$.

3.4.1. Định nghĩa và cách tính

- lackbox véc tơ pháp tuyến $lackbox{N}$ được cho bởi công thức (11) phù hợp với hướng dương của mặt định hướng S
- ▶ tích phân mặt (loại 2) của hàm véc tơ $\mathbf{F} = \mathbf{F}(\mathbf{r})$ trên mặt cong định hướng S:

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dA = \iint_{S} (F_1 dy dz + F_2 dz dx + F_3 dx dy)$$
 (12)

$$= \iint_{R} \mathbf{F}(\mathbf{r}(u,v)) \cdot \mathbf{N}(u,v) du dv \tag{13}$$

$$= \iint_{R} (F_1 N_1 + F_2 N_2 + F_3 N_3) du dv$$
 (14)

ở đó

 $\mathbf{n} = \frac{1}{|\mathbf{N}|} \mathbf{N}$ là véc tơ pháp tuyến đơn vị cùng hướng với \mathbf{N}

 $\mathbf{n}dA = \mathbf{N}dudv$ là yếu tố diện tích trên mặt $S_{\mathbf{n}}$

Nhận xét

- Nếu đối hướng mặt S, thì tích phân mặt loại 2, ∫∫_S F · ndA đổi dấu;
- Nhi biểu diễn tham số $\mathbf{r} = \mathbf{r}(u, v)$ có véc tơ pháp tuyến $\mathbf{N} = \mathbf{r}'_u \times \mathbf{r}'_v$ không phù hợp với hướng dương của S, ta có thể đổi thứ tự u và v cho nhau để thu được một biểu diễn tham số khác của S,

$$\tilde{\mathbf{r}}(u,v)=\mathbf{r}(v,u),$$

có véc tơ pháp tuyến

$$\widetilde{\mathbf{N}} = \widetilde{\mathbf{r}}'_u \times \widetilde{\mathbf{r}}'_v = -\mathbf{N}$$

phù hợp với hướng dương của S.

Tính tích phân mặt của hàm véc tơ $\mathbf{F} = [x^2, 0, 3y^2]$ trên mặt S. Trong đó S là phía trên phần giới hạn của mặt phẳng

$$x + y + z = 1$$

trong góc phần tám thứ nhất.

3.4.2. Úng dụng tính thông lượng của một trường véc tơ (tùy chọn)

Sinh viên nghiên cứu trong tài liệu.

3.5. Tích phân mặt loại 1. 3.5.1. Định nghĩa và cách tính

- ▶ hàm $G: \mathbb{R}^3 \to \mathbb{R}$ liên tục và mặt cong trơn (hoặc trơn từng mảnh) S
- ► Mặt S có biểu diễn tham số

$$\begin{cases} \mathbf{r}(u,v) = [x(u,v),y(u,v),z(u,v)] \\ = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k} \\ (u,v) \in R \subset \mathbb{R}^2, \end{cases}$$

(6)

▶ tích phân mặt loại 1 của hàm G trên mặt cong S:

$$\iint_{S} G(\mathbf{r}) dA = \iint_{R} G(\mathbf{r}(u, v)) |\mathbf{N}(u, v)| du dv.$$
 (15)

Ở đó

 $dA = |\mathbf{N}| du dv = |\mathbf{r}'_u \times \mathbf{r}'_v| du dv$ là yếu tố diện tích của mặt S.

Úng dụng

Ứng dụng: Tính khối lượng mặt cong S. Nếu $G(\mathbf{r})$ là mật độ khối lượng (khối lượng trên một đơn vị diện tích) của S, thì khối lượng của mặt cong S là

$$m(S) = \iint_{S} G(\mathbf{r}) dA. \tag{16}$$

• **Úng dụng: Tính diện tích mặt cong** S. Nếu $G \equiv 1$, thì tích phân mặt loại 1 của G trên mặt S chính là diện tích mặt S. Vì vậy,

$$A(s) = \iint_{S} dA = \iint_{R} |\mathbf{r}'_{u} \times \mathbf{r}'_{v}| du dv. \tag{17}$$

Example (Diện tích mặt cầu) Tính diện tích mặt cầu

$$x^2 + y^2 + z^2 = a^2$$
 (a > 0).

3.6. Công thức Gauss-Ostrogradsky (liên hệ giữa tích phân mặt loại 2 và tích phân bội 3)

- $T\subset\mathbb{R}^3$ miền đóng, bị chặn có biên là mặt kín trơn từng mảnh S
- S định hướng dương theo hướng pháp tuyến ngoài n
- ► $F_1(x, y, z)$, $F_2(x, y, z)$, $F_3(x, y, z)$ có các đạo hàm riêng liên tục trên T.

3.6. Công thức Gauss-Ostrogradsky (liên hệ giữa tích phân mặt loại 2 và tích phân bội 3)

- $ightharpoonup T \subset \mathbb{R}^3$ miền đóng, bị chặn có biên là mặt kín trơn từng mảnh S
- S định hướng dương theo hướng pháp tuyến ngoài n
- ► $F_1(x, y, z)$, $F_2(x, y, z)$, $F_3(x, y, z)$ có các đạo hàm riêng liên tục trên T.

Khi đó

$$\iiint_{T} \left[\frac{\partial F_{1}}{\partial x} + \frac{\partial F_{2}}{\partial y} + \frac{\partial F_{3}}{\partial z} \right] dx dy dz$$

$$= \iint_{S} (F_{1} dy dz + F_{2} dz dx + F_{3} dx dy). \tag{18}$$

Toán tử div hay toán tử phân kỳ áp dụng trên hàm véc tơ $\mathbf{F} = [F_1, F_2, F_3]$ và được cho bởi công thức

$$\operatorname{div} F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}.$$
 (19)

Khi đó, công thức Gauss-Ostrogradsky (18) được viết dưới dạng

$$\iiint_{T} \operatorname{div} F dV = \iint_{S} \mathbf{F} \cdot \mathbf{n} dA. \tag{20}$$

Tính

$$I = \iint_{S} y^{2}z dx dy + xz dy dz + x^{2}y dz dx$$

với S là phía ngoài của biên của vật được giới hạn bởi

$$z=1, \quad z=x^2+y^2.$$

3.7. Định lý Stokes (liên hệ giữa tích phân đường loại 2 và tích phân mặt loại 2)

Cho hàm véc tơ $\mathbf{F} = [F_1, F_2, F_3]$, curl $(d\hat{\rho} xoáy)$ của trường véc tơ \mathbf{F} được cho bởi

$$\operatorname{curl} \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix} = \left[\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right].$$
(21)

3.7. Định lý Stokes (liên hệ giữa tích phân đường loại 2 và tích phân mặt loại 2)

Theorem (Định lý Stokes)

- *S* là mặt cong trơn từng mảnh và được định hướng dương bởi véc tơ pháp tuyến đơn vị **n**.
- C là biên của S, định hướng dương phù hợp với hướng của S.
- $\mathbf{F}(x, y, z)$ là hàm véc tơ có các đạo hàm riêng liên tục trên một miền chứa S.

Khi đó, ta có

$$\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} dA = \oint_{C} \mathbf{F} \cdot \mathbf{r}'(s) ds, \qquad (22)$$

 $\mathring{\sigma}$ đó $\mathbf{r}'(s) = \frac{\partial \mathbf{r}}{\partial s}$ là véc tơ tiếp xúc của đường C và s là độ dài cung C.

3.7. Định lý Stokes

Nếu mặt cong S được tham số hóa bởi

$$\mathbf{r}(u,v) = [x(u,v), y(u,v), z(u,v)] \quad (u,v) \in R \subset \mathbb{R}^2, \quad (23)$$

sao cho véc tơ pháp tuyến $\mathbf{N} = \mathbf{r}'_u \times \mathbf{r}'_v = [N_1, N_2, N_3]$ có hướng phù hợp với hướng của S, thì công thức Stokes (22) được viết dưới dạng

$$\iint_{S} \left(\frac{\partial F_{3}}{\partial y} - \frac{\partial F_{2}}{\partial z} \right) dydz + \left(\frac{\partial F_{1}}{\partial z} - \frac{\partial F_{3}}{\partial x} \right) dzdx + \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dxdy$$

$$= \iint_{R} \left[\left(\frac{\partial F_{3}}{\partial y} - \frac{\partial F_{2}}{\partial z} \right) N_{1} + \left(\frac{\partial F_{1}}{\partial z} - \frac{\partial F_{3}}{\partial x} \right) N_{2} + \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) N_{3} \right] dudv$$

$$= \oint_{C} (F_{1}dx + F_{2}dy + F_{3}dz). \tag{24}$$

Tính tích phân mặt loại 2 của $\operatorname{curl} \mathbf{F}$ (với $\mathbf{F} = [y, z, x]$) trên mặt S với S là phía ngoài mặt paraboloid tròn xoay

$$z = f(x, y) = 1 - (x^2 + y^2), \quad z \ge 0.00$$

Kiểm chứng Định lý Stokes với $\mathbf{F} = [y,z,x]$ và S là phía ngoài mặt paraboloid tròn xoay

$$z = f(x, y) = 1 - (x^2 + y^2), \quad z \ge 0$$