Computer-vision-Homework 9

General Edge Detection

Due date: 14 Dec 2021

Programming language: python 3.9.9

Import lib:

- Opency: to read and write the image file
- Numpy: to work with the arrays
- Math: to deal with some calculations.

Original image: lena.bmp

[512(width),512(height),1channel(cv2.IMREAD_GRAYSCALE)]

Code explanation:

(a) : Robert's Operator: 30

According to the formula, we can obtain the gradient magnitude by the applying two 2*2 mask and calculate it as the following function.

$$f'(x) \approx f(x+1) - f(x)$$

$$f(x) \approx f(x+1) - f(x)$$

$$f(x) = f(x+1)$$

$$f(x+1) = f(x)$$

$$f(x+1) = f(x)$$

gradient magnitude: $\sqrt{r_1^2 + r_2^2}$

(b): Prewitt's Edge Detector: 24

(c): Sobel's Edge Detector: 38

(d): Frei and Chen's Gradient Operator: 30

(b)(c)(d) has similar function with the only difference, which is the mask pattern.

Prewitt operator (ppt p.82)

$$f'(x) \approx f(x+1) - f(x-1)$$
 Threshold=24

-1	-1	-1	f(x-1)	-1	1
	SKAC		J (** 1)	-1	1
1	1	1	f(x+1)	-1	1
A 14.	p_1	A STATE OF		P	2

gradient magnitude: $\sqrt{p_1^2 + p_2^2}$

Sobel operator (ppt p.84)

$$f'(x) \approx f(x+1) - f(x-1)$$
 Threshold=38

gradient magnitude: $\sqrt{s_1^2 + s_2^2}$

Frei and Chen gradient operator (ppt p.87) Threshold=30

gradient magnitude: $\sqrt{f_1^2 + f_2^2}$ $f'(x) \approx f(x+1) - f(x-1)$

- (e) Kirsch's Compass Operator: 135
- (f) Robinson's Compass Operator: 43
- (e)(f) has similar function with the only difference, which is the mask pattern.

gradient magnitude: $\max_{n,n=0,...,7} k_n$

Mask of kirsch's Compass Operator.

gradient magnitude: $\max_{n,n=0,\dots,7} r_n$

Mask of Robinson Compass Operator

(g) Nevatia-Babu 5x5 Operator: 12500

Nevatia-Babu operator has the biggest mask as the following image shows.

gradient magnitude: $\max_{n,n=0,...,5} N_n$

100	100	100	100	100
100	100	100	100	100
0	0	0	0	0
-100	-100	-100	-100	-100
-100	-100	-100	-100	-100

0	0	78 -92	-32 -10
	0	-92	-10
		-	1 -10
3 -	100	-100	-10
0 -	100	-100	-10
			0 -100 -100

100	100	100	32	-100
100	100	92	-78	-100
100	100	0	-100	-100
100	78	-92	-100	-100
100	-32	-100	-100	-100
		60°		200-200

-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100
-100	-100	0	100	100

-100	32	100	100	100
-100	-78	92	100	100
-100	-100	0	100	100
-100	-100	-92	78	100
-100	-100	-100	-32	100

100	100	100	100	100
-32	78	100	100	100
-100	-92	0	92	100
-100	-100	-100	-78	32
-100	-100	-100	-100	-100

By extending the borders and calculate the image with the masks and threshold mentioned above, we can get the final image as below.

• (a) Robert's Operator: 30

• (b) Prewitt's Edge Detector: 24

• (c) Sobel's Edge Detector: 38

• (d) Frei and Chen's Gradient Operator: 30

• (e) Kirsch's Compass Operator: 135

• (f) Robinson's Compass Operator: 43

• (g) Nevatia-Babu 5x5 Operator: 12500

