Lecture 1

	*	*
Dr. Frid		
Topics we will cover, Background you should He	we.	
knowledge. You should Have		
. Minductive proofis		
. BAsic code Analysis .		
· PeSinition of Big-O, unmitemmen.		
· Studied dissevent algorithms that achieve	5an	e
goal sorting - quick sort, mage s		
selection, RADIX	*1	
· DATA structure Lists, animes, Stacks, Heaps		
Pisjoint-set	*	
unionsind	*	
graph Atso	٠	٠
· BFS . DFS . MST	*	٠
shorter path Dijskra		
Similar 1		
· part · Analysis · Learn · · · ·		

O granth Sunction SL.O.B.

Ogrant Sunction Sor Recursive equations/
Algorithms.

	. Part 2. Algorithm - Solution	choice.		
	· 13 Divie and conaur. Al			
	· W Greedy Algorithm.			
*	B Dynamic Programming F			
	· · · · · · · · · · · · · · · · · · ·		**	
	Part 3 graph Algorithm.			
*	· BFS. DFS, MST, shorte	estipath. 13	3 elln	nan
	Part 4		*.	
	. Defining P. NP. NR hard		olete	9 .
	· problems · · ·	1 a 1	٠	
	PENP.			
			*	
(exi)	Spolint n=9)			
_	Ocu for (i=1 to i= 20; i++)	١)		
T. is a funct	print hi	≥ 20		
ob rur		·		
	T(n) = Runtime	an input	size	e n
	T(n) = O(1).	T. (n) = 40	=.00	1) -
10	Sensint no f	n=10		
	for (i=1 to i=n i i++) { print hi;			
,	T(n)=2n=O(n)		٠	

```
n=10
                                                    T(n)=
                                      n = 32
                i=log2n
for (i=1 to n) { print "hello.
if Li=7) {
                                                          i=7 hello
                                                               - hi hi
                   for (j = 1 to n) {
    print hi
                                                              & hello
9 hello
                         n. hell + n. hi => = 2n
                                                             (0 he) |-
```

no>0 AND

. Growth Sunction ECS 122.A of Algorithm Definition Step 1: [We'll defind | computation Lyou known exactly what the input is Ly you known exactly what you want the output, to be desind procedure that transforms into the output the input input: set linta size n. permutation of the set s such that 5={a, a2 ... an} d, ≤ a2 ≤ a3 ≤ ... ≤ an problem? sorting Algorithmus? merge sort · O Does halt? . B is it correct? 3 How much memory bees it use? (3) is it test? 13 How Does nlogn [0.8-5,6,8,9,10] Let T(n) = 12 untime of the algorithm give the size of the input is n. .Tin) is o. (fin) if . I c. no such that . c>o

Vnzn. T.Cn) & C. & Ch)

$$\frac{1}{2}n \le c \cdot n$$

$$\frac{1}{2}n \le \frac{1}{2}n$$

$$\frac{1}{2}n \le \frac{1}{2}n$$

By def Big-0

TLn1=5n+7

5n+7 ≤@n.

$$5n^2 + 8n^2 + 15n^2 \le 28n^2$$

 $5n^2 + 8n + 15 \le 28n^2 => O(n^2)$

5x2 = 0(n)

5n² ≤cn

Vn>h. 5n2+8n+13=02n3)