

Q3-Class HiperFET[™] Power MOSFET

IXFT18N100Q3 IXFH18N100Q3

 $V_{DSS} = 1000V$ $I_{D25} = 18A$ $R_{DS(an)} \le 660 m\Omega$

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

TO-268 (IXFT)	GS
	D (Tab)

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _J = 25°C to 150°C	1000	V	
\mathbf{V}_{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{gs} = 1\text{M}\Omega$	1000	V	
V _{GSS}	Continuous	± 30	V	
V _{GSM}	Transient	± 40	V	
I _{D25}	$T_{c} = 25^{\circ}C$	18	Α	
I _{DM}	$\rm T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $\rm T_{_{\rm JM}}$	60	Α	
IA	T _C = 25°C	18	Α	
E _{as}	$T_{c} = 25^{\circ}C$	1.5	J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	50	V/ns	
P _D	T _C = 25°C	830	W	
T _J		-55 +150	°C	
\mathbf{T}_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in.	
Weight	TO-268 TO-247	4.0 6.0	g g	
-	.02.		9 	

G = Gate	D	=	Drain
S = Source	Tab	=	Drain

Features

- Low Intrinsic Gate Resistance
- International Standard Packages
- Low Package Inductance
- Fast Intrinsic Rectifier
- Low R_{DS(on)} and Q_G

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- DC Choppers
- Temperature and Lighting Controls

SymbolTest ConditionsCharacter $(T_J = 25^{\circ}\text{C Unless Otherwise Specified})$ Min.		teristic Typ.	Values Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	1000			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = 4mA$	3.5		6.5	V
I _{gss}	$V_{GS} = \pm 30V$, $V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$				μА
	T _J = 125°C			1.25	mΑ
R _{DS(on)}	V _{GS} = 10V, I _D = 0.5 • I _{D25} , Note 1			660	mΩ

Symbol Test Conditions Characteristic Value		alues		
$(T_J = 25^{\circ}C U)$	Inless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 20V, I_{D} = 0.5 \bullet I_{D25}, Note 1$	9	16	S
C _{iss}			4890	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		400	pF
C _{rss}			34	pF
\mathbf{R}_{Gi}	Gate Input Resistance		0.20	Ω
t _{d(on)}	Butting a training		37	ns
t, (Resistive Switching Times		32	ns
t _{d(off)}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		40	ns
t,)	$R_{_{G}} = 3\Omega$ (External)		13	ns
$Q_{g(on)}$			90	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		33	nC
\mathbf{Q}_{gd}			37	nC
R _{thJC}				0.15 °C/W
R _{thCS}	TO-247		0.21	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C U)$	nless Otherwise Specified)	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			18	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			72	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
t _{rr}	L = 9A -di/dt = 100A/us			300	ns
I _{RM}	$I_F = 9A$, -di/dt = 100A/ μ s $V_R = 100V$, $V_{GS} = 0V$		11.0		Α
\mathbf{Q}_{RM}	$\mathbf{v}_{R} = 100V, \ \mathbf{v}_{GS} = 0V$		1.5		μC

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

I_D - Amperes

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

© 2020 IXYS CORPORATION, All Rights Reserved

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.