CONVERGENCE DOMINÉE

Exercice 1. Soit (X, \mathcal{A}, μ) un espace mesuré et (f_n) une suite décroissante de fonctions mesurables positives qui converge presque partout vers une fonction f. On suppose que $\int_X f_0 d\mu < +\infty$. Montrer que

$$\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu < +\infty.$$

On donnera deux démonstrations : une utilisant le théorème de convergence monotone et l'autre le théorème de convergence dominée.

Peut-on supprimer l'hypothèse $\int_X f_0 d\mu < +\infty$? Sinon, donner un contre exemple.

Exercice 2. Caluler les limites suivantes quand $n \longrightarrow +\infty$:

1.
$$\int_0^1 \frac{1+nx}{(1+x)^n} dx$$

2.
$$\int_0^{+\infty} \frac{\sin(\pi x)}{1 + x^n} dx$$
.

3. $\int_0^{+\infty} f(x)e^{-n\sin^2 x}dx$ où f est une fonction intégrable sur \mathbb{R}_+ .

4. $\int_0^{+\infty} \frac{nf(x)}{1+n^2x^2} dx$ où f est une fonction continue et bornée sur \mathbb{R}_+ .

5. $\int_0^n \ln(x) \left(1 - \frac{x}{n}\right)^n dx$. On pourra en profiter pour donner une expression intégrale de la constante d'Euler $\gamma = \lim_{n \to +\infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln(n)\right)$.

Exercice 3. Soit (X, \mathcal{A}, μ) un espace mesuré et $(f_n)_{n\geq 0}$ une suite de fonction mesurable de (X, \mathcal{A}) à $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

1. Montrer que si
$$\sum_{n\geq 0} \int_X |f_n| d\mu < +\infty$$
, alors $\sum_{n\geq 0} \int_X f_n d\mu = \int_X \sum_{n\geq 0} f_n d\mu$.

2. Soit($\mathbb{N}, \mathcal{P}(\mathbb{N}), m$) où m la mesure de comptage. Soit $u : \mathbb{N} \longrightarrow \overline{\mathbb{R}}_+$ une fonction mesurable. Démontrer que $\int_{\mathbb{N}} u dm = \sum_{n \in \mathbb{N}} u(n)$.

3. Soit f fonction réelle telle que pour tout $a \in \mathbb{R}$, $\int_{\mathbb{R}} |f(x)| e^{|ax|} dx < +\infty$. Montrer que :

$$\int_{\mathbb{R}} f(x)e^{ax}dx = \sum_{n \ge 0} \frac{a^n}{n!} \int_{\mathbb{R}} x^n f(x)dx.$$

4. Soit $(a_{n,p})_{n,p\geq 0}$ des réels. Montrer que

$$\sum_{n>0} \sum_{p>0} |a_{n,p}| < +\infty \Longrightarrow \sum_{n>0} \sum_{p>0} a_{n,p} = \sum_{p>0} \sum_{n>0} a_{n,p}.$$

5. Calculer la limite $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$.

Exercice 4. Soit (X, \mathcal{A}, μ) un espace mesuré et $f: X \longrightarrow \mathbb{R}$ une fonction intégrable.

- 1. Montrer que $\lim_{n\to+\infty} n\mu(\{|f|\geq n\})=0$.
- 2*. Montrer que $\sum_{n\geq 1} \frac{1}{n^2} \int_{|f|\leq n} f^2 d\mu < +\infty$.

Exercice 5. Soit (X, \mathcal{A}, μ) est un espace mesuré et $f: X \longrightarrow [0, +\infty)$ une fonction mesurable positive. On suppose que $0 < \int_X f d\mu < +\infty$. Calculer, en fonction du paramètre $\alpha \in \mathbb{R}_+^*$, la valeur de

$$\lim_{n \to +\infty} \int_X n \ln \left(1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right) d\mu(x).$$

Exercice 6. Convergence en mesure. Soit (X, \mathcal{A}, μ) un espace mesuré tel que $\mu(X) < +\infty$. Soit $(f_n)_{n\geq 1}$ et f des fonctions mesurables de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On dit que f_n converge en mesure vers f si

$$\forall \varepsilon > 0, \lim_{n \to +\infty} \mu(\{|f_n - f| \ge \varepsilon\}) = 0.$$

- 1. Si $\int_X |f_n f| d\mu \longrightarrow 0$, alors que f_n converge en mesure vers f.
- 2. Montrer que si la suite f_n converge vers f μ -p.p., alors, f_n converge en mesure vers f.
- 3. Réciproquement, suppose que f_n converge en mesure vers f :
 - (i) Montrer qu'il existe une sous-suite $(f_{n_k})_{k\in\mathbb{N}}$ telle que

$$\forall k \ge 1, \ \mu\left(|f_{n_k} - f| > \frac{1}{k}\right) < \frac{1}{k^2}.$$

(ii) Soit $A = \liminf_{k} \left\{ |f_{n_k} - f| \leq \frac{1}{k} \right\}$. Montrer que f_{n_k} converge vers f sur A et $\mu(A^c) = 0$. Autrement dit, f_n possède une sous-suite qui converge vers f μ -p.p.