Fire Dynamics Thermochemistry

Haejun Park

Objectives

- Equating chemical reaction formula
- Understanding the concept of heat of combustion (ΔH_c)
- Calculating heat of combustion using heat of formation

Basic chemistry

- Order of balancing a chemical equation
- C -> H -> O
- Air composition
 - In reality: $O_2(20.95 \text{ vol}\%) + N_2(78.08 \text{ vol}\%) + Ar(0.93 \text{ vol}\%) + CO_2(0.04 \text{ vol}\%)$
 - In fire dynamics: 21 vol% O_2 + 79 vol% N_2 Expressions:

```
(0.21 O_2 + 0.79 N_2) for 1 mole of air (O2 + __ N_2) for ____ moles of air
```


Basic chemistry (stoichiometric)

- Stoichiometric combustion: no fuel or oxidizer left after combustion.
- Methane combustion in air

```
CH_4 + c(O_2 + 3.76N_2) \rightarrow aCO_2 + bH_2O + c(3.76N_2)

a = ?

b = ?

c = ?
```


Mole?

- The fundamental chemical amount indicating 6.022 x 10²³ atoms/molecules/particles.
- At STP (standard temperature and pressure, or 273K (0 °C) and 1 atm), 1 mole of gas takes the volume of 22.4 L.
- At NTP (normal temperature and pressure, or 293K (20 °C) and 1 atm), 24.05 L = ____gal.
- 1 gal = 3.7854 Litter

Volume of 1 mole for gases at 20 °C?

Mole conservation?

- For propane, $C_3H_8 + 5(O_2 + 3.76N_2) \rightarrow 3CO_2 + 4H_2O + 5(3.76N_2)$
- # of moles of the reactants =?
- # of moles of the products =?
- Total number of moles of the reactants = total number of moles of the products?

$$CH_4 + 2(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 2(3.76N_2)$$

- The mass of the reactants = the mass of the products?
- Atomic weight
 - C: 12 g, H: 1 g, O: 16 g, N: 14 g
- Molar mass of:
 - Methane:
 - Propane :
 - $-O_{2}$
 - 1 mole of Air
 - Products?

Enthalpy (H)

- The total heat content of a system
 - Internal energy (U) + Pressure*Volume (PV)
 - Internal energy: molecule's kinetic and potential energy
- Enthalpy at temperature, T.

$$H^{T} = \Delta H_f^{298} + \int_{298}^{T} c_p dT = \Delta H_f^{298} + c_p (T - 298)$$

$$- If T = 298 K=25 °C,$$

$$H^{298} = \Delta H_f^{298}$$

Heat of formation

- Heat of formation for CH₄
- $C + 2H_2 \rightarrow CH_4 + heat (=74.9kJ)$
- How much heat was used to create one mole of methane?

Ans: -74.9 kJ/mole

Other values in the handout, figure 1.

Thermochemistry

Methane combustion

$$CH_4 + 2(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 2(3.76N_2) + Heat$$

Heat = enthalpy change of reactants and products

- Heat of combustion (ΔH_c)
 - Enthalpy change of reactants and products both at 1 atm and 298 K

$$- \Delta H_c = \sum_{i} n_i H_{react,i}^{298} - \sum_{j} n_j H_{prod,j}^{298}$$

Methane combustion in air at 298K

- $CH_4 + 2(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 2(3.76N_2)$
 - Enthalpy of reactants at 298K

$$\begin{split} &H_{CH_4}^{298} + 2(H_{O_2}^{298} + 3.76H_{N_2}^{298}) \\ &= H_{CH_4}^{298} + 2H_{O_2}^{298} + 7.52H_{N_2}^{298} \\ &= \Delta H_f(CH_4) + 2\Delta H_f(O_2) + 7.52\Delta H_f(N_2) = -74.9 + 0 + 0 = -74.9 \text{ kJ} \end{split}$$

Enthalpy of products at 298K

$$\Delta H_f(CO_2) + 2\Delta H_f(H_2O) + 7.52\Delta H_f(N_2) = -393.5 - 2(241.8) = -877.1 \text{ kJ}$$

Heat of combustion of methane

$$\Delta H_c = -74.9 - (-877.1) = 802.2 \text{ kJ}$$

Methane combustion in air at 298K

- $CH_4 + 2(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 2(3.76N_2)$
 - Amount of heat generated per g of methane consumed ?
 [kJ/g of CH4]
 - Amount of heat generated per g of Oxygen consumed ?_____[kJ/g of O2]
 - Amount of heat generated per g of air consumed ?_____[kJ/g of air]

Thermochemistry

Table 2.2 Heat of formation $\Delta \tilde{h}_{\rm f}^{\circ}$ in kJ/mole (at 25 °C and 1 atm)^a (abstracted from Reference [2])

Table 1-5.3 Heats of Combustion of Selected Fuels at 25°C (298 K)a

Substance	Formula	State	$\Delta ilde{m{h}}^{\circ}_{ m f}({ m kJ/mole})$	Fuel	ΔH_c (kJ/mol)	ΔH_c (kJ/g)	ΔH_c^c [kJ/g(O ₂)]	ΔH_c [kJ/g(air)]
Oxygen	O_2	g	0	Carbon monoxide (CO)	283	10.10	17.00	4.10
Nitrogen	N_2	g	0	Methane (CH ₄)	800	50.00	12.54	2.91
Graphite	C	S	0	Ethane (C ₂ H ₆)	1423	47.45	11.21	2.96
Diamond	С	S	1.88	Ethene (C ₂ H ₄)	1411	50.53	14.74	3.42
Carbon dioxide	CO_2	g	-393.5	Ethyne (C ₂ H ₂)	1253	48.20	15.73	3.65
Carbon monoxide	CO	σ	-110.5	Propane (C ₃ H ₈)	2044	46.45	12.80	2.97
Hydrogen	H_2	_	0	<i>n</i> -Butane (n-C₄H ₁₀)	2650	45.69	12.80	2.97
Water		g		<i>n</i> -Pentane (n-C ₅ H ₁₂)	3259	45.27	12.80	2.97
	H ₂ O	g	-241.8	<i>n</i> -Octane (n-C ₈ H ₁₈)	5104	44.77	12.80	2.97
Water	H ₂ O	l	-285.9	c-Hexane (c-C ₆ H ₁₂)	3680	43.81	12.80	2.97
Chlorine	Cl ₂	g	0	Benzene (C ₆ H ₆)	3120	40.00	13.06	3.03
Hydrogen chloride	HCl	g	-92.3	Methanol (CH ₃ OH)	635	19.83	13.22	3.07
Hydrogen cyanide	HCN	g	+135.1	Ethanol (C ₂ H ₅ OH)	1232	26.78	12.88	2.99
Methane	$\mathrm{CH_4}$	g	-74.9	Acetone (CH ₃ COCH ₃)	1786	30.79	14.00	3.25
Propane	C_3H_8	g	-103.8	D-glucose (C ₆ H ₁₂ O ₆)	2772	15.40	13.27	3.08
<i>n</i> -Butane	C_4H_{10}	g	-124.7	Cellulose ^b	_	16.09	13.59	3.15
n-Heptane	C_7H_{16}	g	-187.8	Polyethylene	_	43.28	12.65	2.93
Benzene	C_6H_6	g	+82.9	Polypropylene	_	43.31	12.66	2.94
Formaldehyde	CH_2O		-115.9	Polystyrene	_	39.85	12.97	3.01
Methanol	CH ₄ O	g	-201.2	Polyvinylchloride	_	16.43	12.84	2.98
		g		Polymethylmethacrylate	_	24.89	12.98	3.01
Methanol	CH ₄ O	1	-238.6	Polyacrylonitrile	_	30.80	13.61	3.16
Ethanol	C_2H_6O	1	-277.7	Polyoxymethylene	_	15.46	14.50	3.36
Ethylene	C_2H_4	g	52.5	Polyethyleneterephthalate	_	22.00	13.21	3.06
a Values for account whatever not in accilibrate at the standard state.				Polycarbonate	_	29.72	13.12	3.04
^a Values for gaseous substances not in equilibrum at the standard state				Nylon 6,6	_	29.58	12.67	2.94

^a Values for gaseous substances not in equilibrum at the standard state have been determined from the liquid and the heat of vaporization.

OKLAHOMA -

Heat released from air consumption

- For most fuels, about <u>3.0 kJ</u> is generated from 1 g of air consumed in combustion reactions.
- For most fuels, about <u>13.1 kJ</u> is generated from 1 g of **Oxygen** consumed in combustion reactions.

