Scilab Textbook Companion for Digital Communications by S. Sharma¹

Created by
Guttula Eswararao
B.Tech
Electronics Engineering
RGUKT,NUZVID
College Teacher
Muni Rama Krishna
Cross-Checked by
Lavitha Pereira

September 23, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Digital Communications

Author: S. Sharma

Publisher: S. K. Kataria & Sons, New Delhi

Edition: 6

Year: 2011

ISBN: 978-8188458196

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	PROBABILITY RANDOM SIGNALS AND RANDOM PROCESS	8
3	SAMPLING THEORY AND PULSE MODULATION	23
4	WAVEFORM CODING TECHNIQUES	2 8
5	DIGITAL MULTIPLEXERS	52
6	DIGTIAL BASEBAND TRANSMISSION	55
8	DIGITAL MODULATION TECHNIQUES	57
9	INFORMATION THEORY	63
10	ERROR CONTROL CODING	83

List of Scilab Codes

Exa 2.1.a	Probability
Exa 2.1.b	Probability
Exa 2.1.c	Probability
Exa 2.2	Probability
Exa 2.3	Probability
Exa 2.4	Probability
Exa 2.5	Probability
Exa 2.6	Probability
Exa 2.7	Probability
Exa 2.8	Probability
Exa 2.9	Probability
Exa 2.12	Probability density function
Exa 2.13	Probability
Exa 2.14	Probability
Exa 2.20	Joint probability
Exa 2.23	probability density function
Exa 2.24	mean mean Square Standard deviation
Exa 2.31	Mean and Variance
Exa 3.1	Nquist Rate
Exa 3.2	Nquist Rate and time interval
Exa 3.3	Nquist Rate
Exa 3.4	Nquist Rate
Exa 3.7	Amplitude
Exa 3.8	Transmission Bandwidth
Exa 4.2.i	code word length
Exa 4.2.ii	Transmission Bandwidth
Exa 4.2.iii	Final Bit rate
Exa 4.2.iv	

Exa	4.3.i	bits per sample
Exa	4.3.ii	Transmission Bandwith
Exa	4.4	samplingrate bandwidth and bitrate
Exa	4.5	Bandwidth and Sampling Rate
Exa	4.6	Signal Bandwidth and Noise Ratio
Exa	4.7	Bitspersample and Transmissionrate
Exa	4.8	signal to noise ratio
Exa	4.10	noise ratio and required bits
Exa	4.11	Maximum frequency
Exa	4.13	Maximum Amplitude
Exa	4.14	Signaling rate
Exa	4.15	Signal to noise ratio
Exa	4.16	Signal to Quatization noise ratio
Exa	4.17	sampling rate and quantizing level
Exa	4.18	time duration of binary signal
Exa	4.20	Quantizing noise ratio
Exa	4.21.i	Quantizing levels and bits per sample 41
Exa	4.21.ii	Bandwidth
Exa	4.21.iii	Quantizing levels bits per sample and Bandwidth 42
Exa	4.24	Maximum Amplitude and SNR
Exa	4.26	Bits per sample
Exa	4.27.i	Normalized power
		Bit transmission rate
Exa	4.27.iii	SNR
Exa	4.28	SNR bitrate and no of bits recorded 46
Exa	4.29	output SNR
Exa	4.30.i	step size
		Noise power
		Signal to Noise Ratio
	4.31	number of bits per sec
Exa	4.32	step size noise power and SNR 49
Exa	4.33	signaling rate and bandwidth
Exa	4.34	Step size and Noise power 51
Exa	5.1	Sampling Rate
Exa	5.2	Nyquest rate Signaling rate and bandwidth
Exa	5.3	spacing distance
Exa	5.4	signaling rate and bandwidth
Exa	6.25	roll of factor

Exa	6.26	Transmission bandwidth
Exa	8.1	probability of error
Exa	8.2	peak Amplitude
Exa	8.4	probability of error
Exa	8.5	probability bit error
Exa	8.7	Amplitude
Exa	8.8	Carrier power and Bandwidth 60
Exa	8.10	probability of error
Exa	8.11	probability of symbol error
Exa	9.1	Information Content
Exa	9.2	Information
Exa	9.3	Amount of Information
Exa	9.4	Amount of Information
Exa	9.9	Entropy
Exa	9.12	rate of information
Exa	9.13	information rate
Exa	9.14	Information rate
Exa	9.15	Information rate
Exa	9.16	Entropy and information rate 69
Exa	9.17	Entropy and information rate
Exa	9.18	Entropy and information rate
Exa	9.19	Channel Matrix and joint probability 71
Exa	9.21	probabilities channel matrix
Exa	9.35	Capacity of Channel
Exa	9.36.i	information rate
Exa		Channel Capacity
		SNR
		Bandwidth
	9.37	efficiency and redundancy
Exa	9.38	Efficiency and redundancy
Exa	9.44	Efficiency
Exa	9.50	Entropy and information rate
Exa	9.51	Entropy
Exa	9.52	Entropy
Exa	9.54	Entropy
	9.56	Information capacity
	10.4	errors and corrected errors
		code vectors 84

Exa 10.	19 c	ode	word	_	_	_								_		_		_											8	4
LAG IO.	10 0	ouc	WOLU	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	\circ	_

Chapter 2

PROBABILITY RANDOM SIGNALS AND RANDOM PROCESS

Scilab code Exa 2.1.a Probability

```
//Caption: Probability
//Example 2.1.a
//page no 43
//Find the Probability
clc;
clc;
clear;
redballs=3;
whiteballs=4;
blackballs=5;
//P=ways of choosing a red ball/Total no. of ways choosing a ball
Pro=redballs/(redballs+whiteballs+blackballs);
disp("Probability Getting red ball is");
disp(Pro, "P(R)=");
```

Scilab code Exa 2.1.b Probability

```
1
2 //Caption: Probability
3 //Example 2_1b
4 //page no 43
5 //Find the probability Getting black ball
6 clc;
7 clear;
8 redballs=3;
9 whiteballs=4;
10 blackballs=5;
11 //Probability Getting black ball
12 prob=blackballs/(redballs+whiteballs+blackballs);
13 p=1-prob;
14 disp("Probability not getting black ball");
15 disp(p,"P(B~)=");
```

Scilab code Exa 2.1.c Probability

```
// Caption: Probability
// Example 2.1.c
// page no 43
// Find the probability
clc;
clear;
redballs=3;
whiteballs=4;
```

```
9 blackballs=5;
10 //Probability Getting black ball
11 pb=blackballs/(redballs+whiteballs+blackballs);
12 //Probability Getting white ball
13 pw=whiteballs/(redballs+whiteballs+blackballs);
14 //Probability Getting white ball or black ball
15 pwb=pb+pw// black and white are mutuallly exclusive events
16 disp("Probability Getting white ball or black ball will be")
17 disp(pwb,"P(B+W)=")
```

Scilab code Exa 2.2 Probability

```
//Caption: Probability
//Example 2.2
//page no 43
//find the probability of getting 5
clc;
clear;
total_possibleoutcomes=6*6;
probabilityofeachoutcome=1/total_possibleoutcomes;//
    probability of each outcome
noofways=4; //ways of getting 5
probability=noofways*probabilityofeachoutcome;//
    probability of getting 5
disp(probability,"Probability of getting 5 is");
```

Scilab code Exa 2.3 Probability

```
1 //Caption: Probability
2 //Example 2.3
3 //page no 43
4 //find the probability
5 clc;
6 clear;
7 total_cards=52;
8 ways_of_drawingtwocards=52*51/(2*1); //ways of
     drawing 2 cards from a deck of 52 cards
9 diamonds=13;
10 Hearts=13;
11 waysof_diamonds_Hearts=diamonds*Hearts; //ways of
     drawing a Diamond and a Heart
12 probability=waysof_diamonds_Hearts/
     ways_of_drawingtwocards;
13
14 disp(probability," Probability that one card is
     Diamond and Othercard is Heart");
```

Scilab code Exa 2.4 Probability

```
//Caption: Probability
//Example 2.4
//page no 44
//find the probability
clc;
clear;
whiteballs=4;
blackballs=3;
pa1=whiteballs/(whiteballs+blackballs);//probability
    of first ball is white
pa2=(whiteballs-1)/(whiteballs+blackballs-1);//
    probability of second ball is white
```

Scilab code Exa 2.5 Probability

```
2 //Caption: Probability
3 //Example 2.5
4 //page no 44
5 //find the probability
6 clc;
7 clear;
8 whiteballs=5;
9 redballs=3;
10 balckballs=2;
11 totalballs=whiteballs+redballs+balckballs;
12 pw=whiteballs/totalballs;//probability of
      gettingfirst ball is white
13 pr=redballs/(totalballs-1);//probability of getting
     second ball is red
14 pb=balckballs/(totalballs-2);//probability of
     getting third ball is black
15
16 possbilecases=6;
17 probabalityof_eachcase=pw*pr*pb;
18 totalprobability=6*probabalityof_eachcase;//required
      probability
19 disp(totalprobability, "Probability of balls will be
     in different colours");
```

Scilab code Exa 2.6 Probability

```
1 // Caption: Probability
2 //Example 2.6
3 //page no 45
4 //find the probability
5 clc;
6 clear;
7 // Probability of solving the problem
8 \text{ PA} = 3/4;
9 PB = 2/3;
10 PC = 1/4;
11 // Probability of not not able solving the problem
12 \quad PNA=1-PA;
13 PNB=1-PB;
14 PNC=1-PC;
15 //probability that no one will solve the problem
16 probability_notsolve=PNA*PNB*PNC;
17 //probability that problem willbe solved
18 probability_solve=1-probability_notsolve;
19 disp(probability_solve,"probability that problem
      willbe solved");
```

Scilab code Exa 2.7 Probability

```
1 //Caption: Probability
2 //Example 2.7
3 //page no 45
```

```
//find the probability
clc;
clear;
whiteballs=3;
redballs=2;
totalballs=whiteballs+redballs;
pw1=whiteballs/totalballs;//probability of first
    ball is white
pr2=redballs/(totalballs-1)//conditional probability
    event second ball is red with first white
probability=pw1*pr2//probability of second ball is
    red with first ball is white
disp(probability, "probability of first ball is white
and second ball is red");
```

Scilab code Exa 2.8 Probability

```
1 //Caption: Probability
2 //Example 2.8
3 //page no 45
4 //find the probability that recorded number is 2
5 clc;
6 clear:
7 head=1/2; //probability of getting head
8 tail=1-head; //probability of getting tail
9 head2= head*1/6;//probability of getting head with
     recorded number is 2
10 tail2=tail*1/36;//probability of getting tail with
     recorded number is 2
11
12 //probability of getting recorded number is 2
13 p=head2+tail2;
14 disp(p,"probability of getting recorded number is 2"
```

Scilab code Exa 2.9 Probability

Scilab code Exa 2.12 Probability density function

```
1 //Caption: Probability density function
2 //Example 2.12
3 //Find find the value of k
4 clc;
5 clear;
6 function y=FX1(x) //for -infinte <x<=0
7 y=0
8 endfunction
9 function y=FX2(x) //for 0<x<=10</pre>
```

```
10
             y=k*x^2
11 endfunction
                                   // for 10 < x < infine
12 function y=FX3(x)
13
             y = 100 * k
14 endfunction
15 k = poly(0, "k");
                                   //from the expression for
16
                                       CDF is given
17 y = 100 * k
                                   // for 10 < x < in fine
18 y == 1;
                                   //k=y/100
19 k=1/100;
20 disp(k,"i) k = ");
21 //CDF function can be expressed
22 // FX(x) = P(X < = x)
23 P5=FX2(5);
24 disp(P5, "ii) P(X <=5) = ");
                                  //now differentiating with
25
                                      respect tox we , have
                                  //PDF fX=0 for -infinte <
26
                                     x < =0,10 < x < i n fin e
27 x = poly(0, "x");
28 \text{ m}=\text{x}^2/100;
29 df=derivat(m);
                                // for 0 < x < = 10
30 disp(" for 0 < x <= 10", df," iii) PDF a) fX(x) =");
31 disp("-infinte < x < = 0.10 < x < infine", 0," b) fX(x) = "
      );
32
33 \times 1=5, \times 2=7;
34 function y=z(x),
35
             y = x / 50;
36 endfunction
37 P = intg(x1, x2, z);
38 disp(P,"iv) P(5<X<=7) =");
```

Scilab code Exa 2.13 Probability

Scilab code Exa 2.14 Probability

```
//Caption: Probability
//Example 2.14
//page no 54
//find the probability
clc;
clc;
clear;
function y=f(x),
y=12*x^3-21*x^2+10*x,//Probability Density
Function
endfunction
a=0;
b=1/2;
P=intg(a,b,f);
```

```
13 disp(P, "P(X \le 1/2) = ");
14 disp(1-P, "P(X > 1/2) = ");
```

Scilab code Exa 2.20 Joint probability

```
1 // Caption: Joint probability
2 //Example 2.20
3 // Page no 60
4 //Find Determine the value of constant C
5 clc;
6 clear;
7 X = [0,0;2,2;2,0];
8 Y = [0,0;3,3;0,3];
9 function y=f(x,y),
10
             y = 2 * x + y;
11 endfunction
12 P=int2d(X,Y,f);
13 C = poly(0, "C");
14 //we know that joint PDF
15 // double integration fXY(x,y) dxdy=1
16 / C*P == 1;
17 C=1/P;
18 \text{ disp(C,"C} = ")
```

Scilab code Exa 2.23 probability density function

```
1 //Caption: probability density function
2 //Example 2.23
3 //page no
```

```
4 // verify the area under curve is unity, prove that
      the mean is zero
5 clc;
6 clear;
7 //continuous random variable X in the range (-3,3)
8 //PDF of fucntions
9 function y=fX1(x)
             y = ((3+x)^2)/16; //for -3 <= x <= -1
10
11 endfunction
12 \quad a1 = -3;
13 a2 = -1;
14
15 function y=fX2(x), //for-1<=x<=1
           y = (6-2*x^2)/16;
16
17 endfunction
18 b1 = -1;
19 b2=1;
20
21 function y=fX3(x)
            y=((3-x)^2)/16; //for 1<=x<=3
22
23 endfunction
24 c1=1;
25 c2=3;
26 //area under pdf curve
27 //area = integral Fx(x)dx from -3 to 3
28 area = intg(a1,a2,fX1)+intg(b1,b2,fX2)+intg(c1,c2,fX3
      );
29 disp(area, "Area =");
30 disp(" Therefore area under PDF curve is unity.");
31 function y=f1(x)
            y=(x*(3+x)^2)/16; //for -3<=x<=-1
32
33 endfunction
34 \text{ a1} = -3;
35 \quad a2 = -1;
36
                                   // for -1 <= x <= 1
37 function y=f2(x),
           y=(x*(6-2*x^2))/16;
38
39 endfunction
```

Scilab code Exa 2.24 mean mean Square Standard deviation

```
1 // Caption: mean , mean Square Standard deviation
2 //Example 2.24
3 //page no
4 // Find mean, mean Square, Standard deviation
5 clc;
6 clear;
7 function y=f(x)
            y=x/(2*\%pi); //for 0<=x<=2*\%pi
9 endfunction
10
11 a=0;
12 b=2*\%pi;
13 mx=intg(a,b,f);//mean value
14 disp(mx, "Mean value mx=");
15
16 function y=fX(x)
            y=x^2/(2*\%pi); //for 0<=x<=2*\%pi
17
```

```
18 endfunction
19 a=0;
20 b=2*%pi;
21 //X^2=E(X^2)
22 X2=intg(a,b,fX);//mean square value
23 disp(X2,"Mean square value X^2 =");
24
25 sigma2=X2-mx^2;//variance
26 sigma=sqrt(sigma2);//Standard deviation
27 disp(sigma,"Standard deviation sigma=")
```

Scilab code Exa 2.31 Mean and Variance

```
1 // Caption: Mean, Variance
2 //Example 2.31
3 //page no 85
4 //find i) Mean
          ii) Variance of given function
6 clc;
7 clear;
8
9 //Mean Value
10 function X=f(x),
       z=3*(1-x)^2, // Marginal Probability Density
          Function
12
       X = x * z
13 endfunction
14 a=0;
15 b=1;
16 EX=intg(a,b,f);//Mean value of X
17
18 function Y=c(y)
        z=3*(1-y)^2,//Marginal Probability Density
19
```

```
Function
         Y = y * z
20
21 endfunction
22
23 EY=intg(a,b,c);//Mean value of Y
24 \texttt{disp}(\texttt{EX},"i) Mean of X=")
25 disp(EY," Mean of Y =")
26
27 // Variance
28 function X=g(x),
       z=3*(1-x)^2,//Marginal Probability Density
29
           Function
30
       X = x^2 \times z
31 endfunction
32 a=0;
33 b=1;
34 \text{ EX2=intg(a,b,g)};
35
36 function Y=h(y)
         z=3*(1-y)^2,//Marginal Probability Density
37
            Function
         Y = y^2 = z
38
39 endfunction
40
41 EY2=intg(a,b,h);
42
43 vX2=EX2-(EX)^2;/Variance of X
44 vY2=EY2-(EY)^2;//Variance of Y
45
46 disp(vX2,"ii) Variance of X");
47
48 disp(vY2," Variance of Y");
```

Chapter 3

SAMPLING THEORY AND PULSE MODULATION

Scilab code Exa 3.1 Nquist Rate

```
1 //Caption: Nquist Rate
\frac{2}{\sqrt{\text{Example } 3.1}}
3 //page no 102
4 //find Nquist Rate
5 //given
6 clc;
7 clear;
8 \text{ w1}=50*\%\text{pi};
9 \text{ w2}=300*\%\text{pi};
10 w3 = 100 * \%pi;
11 /w=2*\%pi*f
12 f1=w1/(2*\%pi);
13 f2=w2/(2*\%pi);
14 f3=w3/(2*\%pi);
15 fm=f2; //fm = maximum frquency is present at the
16 disp(f2, "maximum frquency of the signal is");
17 disp(" Hz");
18 fs=2*fm; // Nyquist rate
```

```
19 disp("Nquist Rate of Signal is");
20 disp("Hz",fs);
```

Scilab code Exa 3.2 Nquist Rate and time interval

```
1 // Caption: Nquist Rate, time interval
2 //Example 3.2
3 //page no 103
4 //Find Nquist Rate and Nquist time interval
5 // given
6 clc;
7 clear;
8 \text{ w1} = 5000 * \% \text{pi};
9 \text{ w2} = 3000 * \% \text{pi};
10 f1=w1/(2*\%pi);
11 f2=w2/(2*\%pi);
12 fm=f1; //fm = maximum frquency is present at the
      signal
13 disp(" Hz",f1,"i) maximum frquency of the signal is"
      );
14
15 fs=2*fm; // Nyquist rate
16 disp(" Hz",fs,"ii) Nquist Rate of the given Signal
      is");
17 Ts=1/(2*fm); // frequncy =1/time
18 disp("m Sec", Ts*10^3, "iii) Nquist Interval of the
      given signal is");
```

Scilab code Exa 3.3 Nquist Rate

```
1 ///Caption Nquist Rate
2 //Example 3.3
3 //page no 104
4 //Find Nquist Rate
5 //given
6 clc;
7 clear;
8 f=100;
9 fs=2*f;//Nyquist rate
10 disp(" Hz",fs,"(i)To avoid aliasing Nquist Rate is ");
```

Scilab code Exa 3.4 Nquist Rate

```
1 // Caption: Nquist Rate
2 //Example 3.4
3 //page no 105
4 //Find Nquist Rate of Continous signal
5 //given
6 clc;
7 clear;
9 \text{ w1=50*\%pi};
10 w2=300*\%pi;
11 w3 = 100 * \%pi;
12 f1=w1/(2*\%pi);
13 f2=w2/(2*\%pi);
14 f3=w3/(2*\%pi);
15 fmax=f2; //fmax = Highest frquency component of the
      message signal
16 disp ("Highest frquency component of the message
      signal will be");
17 disp(fmax, "fmax=");
```

```
18 disp(" Hz");
19 fs=2*fmax;//Nyquist rate
20 disp("Nquist Rate of the given Signal is");
21 disp(" Hz",fs);
```

Scilab code Exa 3.7 Amplitude

```
1 //caption: amplitude
2 //Example 3.7
3 //page no 123
4 //find amplitude distortion at highest frquency
5 //given
6 clc;
7 clear;
9 fs=9.5; //samplig frequncy
10 fmax=1; //maximum frequncy
11 t=0.2; // pulse width
12 c=3*10^8;
13 f = fmax;
14 H1=t*sinc(f*t); //aperture effect at highest
      frequency
15 \operatorname{disp}(H1*100,"|H(1)|=");
16 disp("%");
```

Scilab code Exa 3.8 Transmission Bandwidth

```
1 // Caption: Transmission Bandwidth
2 // Example 3.8
```

```
//page no 131
//Calculate Transmission Bandwidth
//given
clc;
clear;

fm=3*10^3;
fs=8*10^3;// sampling frequncy
Ts=1/fs;
t=0.1*Ts;
BW=1/(2*t);//Bandwidth
disp("Transmission Bandwidth of PAM signal is ");
disp("kHz",BW*10^-3,"BW>=");
```

Chapter 4

WAVEFORM CODING TECHNIQUES

Scilab code Exa 4.2.i code word length

```
//Caption:code word length
//Example 4.2.i
//page no 167
//find code word length
clc;
clc;
clear;
//Given data
bandwidth=4.2*10^6;
fm=bandwidth;
q=512// Quantization levels
//q=2^v
v=log10(512)/log10(2);
disp(v,"The code word legth is ");
disp("bits");
```

Scilab code Exa 4.2.ii Transmission Bandwidth

```
//Caption: Transmission Bandwidth
//Example 4.2.ii
//page no 167
//find The transmission Bandwidth
clc;
clear;
//Given data
bandwidth=4.2*10^6;
fm=bandwidth;
q=512// Quantization levels
v=9;
bw=v*fm;
disp(bw*10^-6, "The transmission Bandwidth is ");
disp("MHz");
```

Scilab code Exa 4.2.iii Final Bit rate

```
//Caption: Final Bit rate
//Example 4.2.iii
//page no 167
//find Final Bit rate
clc;
clc;
clear;
//Given data
bandwidth=4.2*10^6;
fm=bandwidth;
q=512// Quantization levels
v=9;
fs=2*fm;
r=v*fs;//signaling rate
disp(r,"Final Bit rate");
```

```
15 disp("bits/sec");
```

Scilab code Exa 4.2.iv Output signal to noise ratio

```
//Caption: Output signal to noise ratio
//Example 4.2.iv
//page no 167
//find Output signal to noise ratio
clc;
clear;
//Given data
bandwidth=4.2*10^6;
fm=bandwidth;
q=512// Quantization levels
v=9;
sn=4.8+6*v;//noise in dB
disp(sn,"Output signal to noise ratio is");
disp("dB");
```

Scilab code Exa 4.3.i bits per sample

```
//Caption : bits per sample
//Example 4.3.i
//page no 168
//find bits per sample
clc;
clear;
//Given data
fmax=4*10^3;
```

Scilab code Exa 4.3.ii Transmission Bandwith

```
1 // Caption: Transmission Bandwith
2 //Example 4.3.ii
3 //page no 168
4 //Find
          Transmission Bandwith
5 clc;
6 clear;
7 // Given data
8 fm=4*10^3;//Bandwidth of PCM
9 \text{ xmax} = 3.8;
10 snr=100; // Signal to Noise Ratio
11 outputs=30;
12 v = 7;
13 bw=outputs*v*fm;
14 r = bw * 2;
15 disp(bw/10<sup>3</sup>, "Transmission Bandwith");
16 disp("kHz");
17 disp("bits/sec",r/1000, "Signaling rate")
```

Scilab code Exa 4.4 samplingrate bandwidth and bitrate

```
1 // Caption: samplingrate, number of bits, bitrate,
      bandwidth
2 //Example 4.4
3 //page no 169
4 //find sampling rate, number of bits, bit rate,
      bandwidht
5 clc;
6 clear;
7 // Given data
8 \text{ emax} = 0.001;
9 \text{ del=}2*emax;;
10 fm = 100;
11 xmax=10;
12
13 q=(2*xmax)/del;
14 \text{ fs} = 2*\text{fm};
15 v = (log10(q))/log10(2);
16 \text{ v=ceil}(v);
17 \text{ r=v*fs};
18 disp(fs,"i)sampling Frequncy");
19 disp("Hz.");
20 disp(v,"ii)no.of bits in PCM");
21 disp("bits.");
22 disp(r,"iii) sampling rate");
23 disp("bits per second.");
24 disp(r/2, "iv) Transmission Bandwidth");
25 disp("Hz.");
```

Scilab code Exa 4.5 Bandwidth and Sampling Rate

```
1 // Caption: Bandwidth, Sampling Rate
2 // Example 4.5
3 // page no 170
```

```
Bandwidth, Sampling Rate
4 //Find
5 clc;
6 clear;
7 // Given data
8 fm=3.4*10^3;
9 N = 24;
10 r=1.5*10^6;
11 encoder=8;
12
13 BW=N*fm;
14 disp(BW/10<sup>3</sup>, "Channel Bandwith is");
15 disp("kHz");
16
17 r1=r/N;
18 fs=r1/encoder;
19
20 disp(fs, "sampling frequency");
21 disp("Hz or samples per second.");
```

Scilab code Exa 4.6 Signal Bandwidth and Noise Ratio

```
//Caption: Signal Bandwidth, Noise Ratio
//Example 4.6
//page no 170
//Find Signal Bandwidth, Noise Ratio
clc;
clear;
//Given data
v=7;
r=50*10^6;
//fs=2*fm
fm=r/(2*v);
disp(fm*10^-6, "Maximum message Bandwidth is ");
```

```
disp("MHz");

snr=1.8+(6*v);

disp(snr, "signal to quantization niose ration");
disp("dB");
```

Scilab code Exa 4.7 Bitspersample and Transmissionrate

```
1 // Caption: bitspersample, Transmissionrate
2 //Example 4.7
3 //page no 171
4 //find i) bits per sample, ii) transmission rate
5 clc;
6 clear;
7 // Given data
8 \text{ fm} = 3 * 10^3;
9 q=16;
10
11 v = (log10(q))/log10(2);
12 disp(v, "bits in code word");
13 disp("bits");
14 fs = 2 * fm;
15 \text{ r=v*fs};
16 disp(r,"bit trasmission rate");
17 disp("bits per second")
```

Scilab code Exa 4.8 signal to noise ratio

```
1 // Caption: signal to noise ratio
```

```
\frac{2}{\text{Example 4.8}}
3 //page no 171
4 //find signal to noise ratio
5 clc;
6 clear;
7 // Given data
8 fm=3.5*10^3;
9 r=50*10^3;
10 fs = 2 * fm;
11 rms=0.2;
12 xmax=2;
13 v=r/fs; //signaling rate <math>r=v*fs
14 v = ceil(v);
15 P=(rms^2)/1;
16 SNR = ((3*P*2^(2*v))/(xmax^2));
17 SN = 10 * log 10 (SNR);
18 disp(ceil(SN), "signal to niose ratio");
19 disp("dB");
```

Scilab code Exa 4.10 noise ratio and required bits

```
//Caption : noise ratio , required bits
//Example 4.10
//page no 173
//find i) noise ratio ii) bits
clc;
clear;
//Given data
Am=3;
v=10;
SNR=1.8+6*v;//noise ratio
disp(SNR, "Signal to Quantization noise ratio");
disp("dB.");
```

```
13 SN=40;
14 v=(SN-1.8)/6;
15
16 disp("bits required to get signal to niose ratio of 40dB", ceil(v));
```

Scilab code Exa 4.11 Maximum frequency

```
//Caption :Maximum frequency
//Example 4.11
//page no 174
//find Maximum frequency
clc;
clc;
clear;
//Given data
v=7;
SNR=1.8+6*v;
r=56*10^3;
fs=r/v;//r=v*fs signaling rate
fm=fs/2;//Nquset rate
disp(fm/10^3, "Maximum frequency is");
disp("kHz");
```

Scilab code Exa 4.13 Maximum Amplitude

```
1 // Caption: Maximum Amplitude
2 // Example 4.13
3 // page no 185
4 // Find Maximum Amplitude
```

```
5 clear;
6 clc;
7 fm=3*10^3;
8 Nyquistrate=2*fm;//Nyquistrate
9 fs=5*Nyquistrate;//Samplingfrquency
10 Ts=1/fs;// Sampling Interval
11 del=0.25;//step size
12 fm1=2*10^3;
13 Am=del/(2*%pi*fm1*Ts);
14 disp("Volts",Am,"Maximum Amplitude");
```

Scilab code Exa 4.14 Signaling rate

```
1 //Caption: signaling rate
2 //Example 4.14
3 //page no 187
4 //Find
          signaling rate
5 clear;
6 clc;
7 fs1=8*10^3;
8 del=31.25*10^-3;
9 q = 64;
10 v = log2(q);
11 r=v*fs1;//signaling rate
12 disp(r*10^-3,"i)Signaling rate of PCM is");
13 disp("kHz");
14
15 fm = 3 * 10^3;
16 A = 1;
17 fs2=(2*\%pi*fm*A)/(del);
18 disp(fs2*10^-3,"ii) The signaling rate of DM is");;
19 disp("kHz");
```

Scilab code Exa 4.15 Signal to noise ratio

```
1 //Caption: Signal to noise ratio
2 //Example 4.15
3 //page no 188
4 //Find signal to noise ratio
5 clear;
6 clc;
7 fs=64*10^3;
8 fm=2*10^3;
9 fM=4*10^3;
10 SNR=(3*fs^3)/(8*%pi^2*fm^2*fM);// Signal to noise ratio
11 SNRO=10*log10(SNR)
12 disp("dB",SNRO,"Output signal to noise ratio =");
```

Scilab code Exa 4.16 Signal to Quatization noise ratio

```
//Caption: Signal to Quatization noise ratio
//Example 4.16
//page no 188
//Find signal to Quatization noise ratio
clear;
clc;

fs=8*10^3;
r=64*10^3;
N=8;//number of bits
```

Scilab code Exa 4.17 sampling rate and quantizing level

```
1 // Caption: sampling rate, quantizing level
2 //Example 4.17
3 //page no 194
           sampling rate, quantizing level
4 //Find
5 clear;
6 clc;
7 r = 36000;
8 \text{ fm}=3.2*10^3;
9 fs=2*fm; // Nquest rate
10
11 v=r/fs; //r=v*fs signaling rate
12 \text{ v=floor(v)};
13 q=2^v;
14 fs1=r/v;
15 disp(q, "quantizing level q=");
16 disp(fs1/1000, "sampling rate fs=");
17 disp("kHz");
18 disp(v,"Number of binary digits =")
```

Scilab code Exa 4.18 time duration of binary signal

```
1 // Caption: time duration of binary signal
```

```
2 //Example 4.18
3 //page no 196
4 //Find time duration of 1bit binary encoded signal
5 clear;
6 clc;
7 fs=input("Enter the Nyquist rate of Signal fs(Hz)=")
8 q=input("Enter the Quantization levels q =");
10 v=log2(q); //binary pulses transmitted per second
11 t=1/(v*fs);//Nyquist interval
12 disp(" sec",t," Time duration of binary signal t="
     );
13 //output
14 //Enter the Nyquist rate fs(Hz)=3
15 //Enter the Quantization levels q =5
16
17
   // time duration of 1 bit binary signal
18
   // t = 0.1435589 sec
19
```

Scilab code Exa 4.20 Quantizing noise ratio

```
1
2 //Caption: Quantizing noise ratio
3 //Example 4.20
4 //page no 196
5 //find signal to noise ratio
6 clc;
7 clear;
8
9 SNR=40;
10 SNRO=10^(SNR/10);
```

Scilab code Exa 4.21.i Quantizing levels and bits per sample

```
1 // Caption: Quantizing levels, bits per sample
2 //Example 4_21.i
3 //page no 197
4 //Find Quantizing levels, minimum number of bits
      per sample
5 clear;
6 clc;
7 SNRO=30; //dB
8 fmin=300;
9 \text{ fmax} = 3300;
10 fs=80000;
11 / SNRO = 1.76 + 20 \log 10 (q)
12 q=10^{(SNRO-1.76)/20};
13 q = ceil(q);
14 \ v = \log 2(q);
15 disp(q,"Quantizing levels required is");
16 disp(ceil(v), "minimum number of bits per sample are"
      );
```

Scilab code Exa 4.21.ii Bandwidth

```
1 //Caption: Bandwidth
2 //Example 4.21.i
3 //page no 197
4 //Find minimum required bandwidth
5 clear;
6 clc;
7 SNRO=30; //dB
8 fmin=300;
9 fmax=3300;
10 fs=8000;
11 v=5;
12 fPCM=(v*fs)/2;
13 disp(fPCM/1000, "minimum required bandwidth");
14 disp("kHz");
```

Scilab code Exa 4.21.iii Quantizing levels bits per sample and Bandwidth

```
8 fmin=300;
9 fmax=3300;
10 fs=8000;
11
12 q=10^((SNRO+10.1)/20);
13 q=ceil(q);
14 v=log2(q);
15 v=ceil(v);
16 disp(q, "Quantizing levels need is");
17 disp(v, "minimum number of bits per sample is");
18
19
20 fPCM=(v*fs)/2;
21 disp(fPCM/1000, "minimum required bandwidth");
22 disp("kHz");
```

Scilab code Exa 4.24 Maximum Amplitude and SNR

```
//Caption: Maximum Amplitude, SNR
//Example 4.24
//page no 199
//determine the Maximum Amplitude,
//
clear;
clc;
del=250*10^-3;
wm=2*%pi*1000;
fs=3*10^3;
Ts=1/fs

Amax=(del*3*fs*2)/(wm);//Amplitude
// disp("V", Amax, "Maximum Amplitude,");
```

Scilab code Exa 4.26 Bits per sample

```
1 // Caption: Bits per sample
2 //Example 4.26
3 //page no 200
4 //Find number of bits per sample
5 clear;
6 clc;
7 \text{ SNR} = 20; //dB
8 averagepower=30*10^-3;
9 SNR0=10^(SNR/10); //dB
10 A = 3.8;
11 / L=2^n
12 //SNRO=average signal power/Quatizing power
13 // del = (2*A)/L
14 L=sqrt((SNRO*A^2)/(3*averagepower));
15 n = log2(L);
16 \text{ n=ceil(n)};
17 disp(n,"Bits required per sample");
```

Scilab code Exa 4.27.i Normalized power

```
1 // Caption: Normalized power
2 // Example 4.27.i
3 // page no 200
4 // Find Normalized power for quantization noise
5 clear;
6 clc;
```

```
7 fm=3*10^3;
8 v=8;
9 VH=5;
10 VL=-5;
11 q=2^v;
12 del=(VH-VL)/q;
13 Nq=del^2/12;//quantization noise
14 disp("W",Nq," Normalized power for quantization noise
")
```

Scilab code Exa 4.27.ii Bit transmission rate

```
//Caption: Bit transmission rate
//Example 4.27.ii
//page no 200
//Find bit transmission rate
clear;
clc;
fm=3*10^3;
v=8;
VH=5;
VL=-5;
q=2^v;

fs=2*fm; //Nyquist rate
r=8*fs;
disp("K bits/s",r/1000," bit transmission rate");
```

Scilab code Exa 4.27.iii SNR

```
//Caption: SNR
//Example 4.27.i
//page no 200
//Find Signal to quantization noise ratio
clear;
clc;
Nq=127.15*10^-6
Meansignal=2;
P=Meansignal/1;
SNR=P/Nq;
SNR=P/Nq;
SNRq=10*log10(SNR);
disp("dB",SNRq,"Signal to quantization noise ratio");
```

Scilab code Exa 4.28 SNR bitrate and no of bits recorded

```
1 // Caption: SNR, bitrate, no. of bits recorded
2 //Example 4.28
3 //page no 201
          i )SNR
4 //Find
                  ii) output bit rate iii) no. of bits
      recorded
5 clear;
6 clc;
7 N = 16;
8 v = 16;
9 fs=44.1*10^3;
10 SNR=1.76+6*N;
11 disp("dB", SNR, "i)Out put signal noise ratio");
12 bitrate=2*v*fs;
13 outputbitrate=2*bitrate;//including addtional 100%
      over head
14 disp("Mbits/sec", outputbitrate*10^-6, "ii) output bit
      rate");
```

```
15 CD=outputbitrate*3600;
16 disp("gigabits",CD*10^-9,"iii)no.of bits recorded in CD");
```

Scilab code Exa 4.29 output SNR

```
//Caption: output SNR
//Example 4.29
//page no 202
//Find output SNR
clear;
clc;
fm=1*10^3;
fs=32*10^3;
FM=4*10^3;// Bandwidth
SNR=(3*fs^3)/(8*%pi^2*fm^2*FM);//SNR
SNRO=10*log10(SNR);
disp("dB",SNRO,"Output signal to noise ratio");
```

Scilab code Exa 4.30.i step size

```
// Caption: step size
// Example 4.30 i
// page no 202
// Find step size
clear;
clc;
fs=64000; // samples/sec
Amax=1;
```

```
9 fm=3500;
10 //A=del/(2*%pi*fm*Ts)
11 del=(2*%pi*fm*Amax)/fs;
12 disp("mV",del*1000," Step Size ");
```

Scilab code Exa 4.30.ii Noise power

```
1 // Caption: noise power
2 //Example 4.30 ii
3 //page no 202
4 //Find
           Quantizatio noise power
5 clear;
6 clc;
7 fs = 64000;
8 \quad Amax=1;
9 \text{ fm} = 3500;
10 del=343.6117*10^{-3}; //step size
11
    Nq=del^2/3; // Quantizatio noise power
12
    Nqd=Nq*(fm/fs);
13 disp("mW", Nqd*1000, "Quantizatio noise power");
```

Scilab code Exa 4.30.iii Signal to Noise Ratio

```
1 // Caption: SNR
2 // Example 4.30 iii
3 // page no 202
4 // Find SNR
5 clear;
6 clc;
```

```
7 fs=64000;
8 Amax=1;
9 fm=3500;
10 Nqd=2.1522995*10^-3;
11 So=Amax^2/2;
12 SNR=So/Nqd;
13 SNRO=10*log10(SNR);
14 disp("dB",SNRO,"Output signal noise ratio");
```

Scilab code Exa 4.31 number of bits per sec

```
//Caption: no. of bits/sec
//Example 4.31
//page no 203
//Find no. of bits/sec
//assuming signal is sampled at the rate 20% above Nyquist rate
clear;
clc;
fm=4.5*10^6;
q=1024;
fs=1.2*2*fm;//20% above Nyquist rate
v=log2(q);
r=v*fs;
disp("M bit/sec",r/10^6,"no. of bits/sec");
```

Scilab code Exa 4.32 step size noise power and SNR

```
1 // Caption: step size, noise power, SNR
```

```
2 //Example 4.32
3 //page no 203
4 //Find step size, noise power, SNR
5 //assume bandwidth of the singal is 4kHz
6 clear;
7 clc;
8 \text{ fs} = 32000;
9 \quad A = 2;
10 fm = 4000;
11 BW=4000;
12 del=(2*\%pi*fm*A)/fs;
13 disp("Volt", del, "i) step size");
14 Nq=del^2/3
15 disp("W", Nq, "ii) noise power");
16 SNR = (3*fs^3)/(8*\%pi^2*fm^2*BW);
17 disp(SNR,"iii)SNR=");
```

Scilab code Exa 4.33 signaling rate and bandwidth

```
//Caption: signaling rate, bandwidth
//Example 4.33
//page no 204
//Find signaling rate, bandwidth
//assuming signal is sampled at the rate 20% above
Nyquist rate
clear;
clc;
fm=15*10^3;
fs=1.2*2*fm;
q=65536;
v=log2(q);
r=v*fs;
disp("i) signaling rate,")
```

```
14 disp("K bits/sec",r/1000,"r=");
15 BW=r/2;
16 disp("ii)bandwidth")
17 disp("kHz",BW/1000,"BW min=")
```

Scilab code Exa 4.34 Step size and Noise power

```
//Caption: step size, noise power
//Example 4.34
//page no 204
//Find step size, noise power
clear;
clear;
fs=64*10^3;
fm=3500;
A=1;
del=(2*%pi*fm*A)/fs;//step size
disp("Volts",del,"i)step size");
Nq=(del^2/3)*(fm/fs);//Granular noise power
disp("W",Nq,"ii)Nq=");
```

Chapter 5

DIGITAL MULTIPLEXERS

Scilab code Exa 5.1 Sampling Rate

```
1 //Caption: Sampling Rate
2 //Example 5.1
3 //page no 220
4 //Find Sampling Rate
5 clear;
6 clc;
7 f1=4*10^3;
8 f2=4.5*10^3;
9 fsmin=2*f2;
10 disp("kHz",fsmin/1000,"Sampling rate");
```

Scilab code Exa 5.2 Nyquest rate Signaling rate and bandwidth

```
1 // Caption: Nyquest rate, Signaling rate, bandwidth
2 // Example 5.2
3 // page no 220
4 // Find i) Nyquest rate,
```

```
5 //
           iii) Signaling rate,
           iv) bandwidth
6 //
7 clc;
8 clear;
9
10 \text{ f1} = 3000;
11 f4=1000;
12 	ext{ f2=1000};
13 f3=1000;
14 //Nyquest rate
15 \text{ nq1=2*f1};
16 \text{ nq2=2*f2};
17 \text{ nq3}=2*f3;
18 \text{ nq4=2*f4};
19 disp("kHz",nq1,"i)Nyquest rate of x1");
20 disp("kHz",nq2," Nyquest rate of x2");
21 disp("kHz",nq3," Nyquest rate of x3");
22 disp("kHz",nq4," Nyquest rate of x4");
23
24 \quad r = nq1 + nq2 + nq3 + nq4;
25 disp("Samples/sec", r, "iii) Signaling rate");
26 \text{ bw=r/2};
27 disp("Hz", bw, "iv) Minimum channel bandwidth");
```

Scilab code Exa 5.3 spacing distance

```
1 //Caption: spacing distance
2 //Example 5.3
3 //page no 221
4 //Find The spacing between two successive pules
5 clc;
6 clear;
7 samplingrate=8000;
```

```
8 totalsignals=24+1;
9 t=1/samplingrate;
10 T=t/totalsignals;
11 T=T*10^6//time is now u sec
12 space=T-1;
13 disp("u sec", space, "The spacing between two successive pules");
```

Scilab code Exa 5.4 signaling rate and bandwidth

```
//Caption: signaling rate ,bandwidth
//Example 5.4
//page no 222
//Find signaling rate ,bandwidth
clc;
clear;
N=6;
fm=5000;
r=2*fm;//sampling rate
sr=N*r;//signalingrate
disp("K bits/sec",sr/1000,"Signaling rate");
BW=N*fm;//Bandwith
disp("kHz",BW/1000,"Bandwith to avoid the cross talk in TDM is");
```

Chapter 6

DIGTIAL BASEBAND TRANSMISSION

Scilab code Exa 6.25 roll of factor

```
//Caption: roll of factor
//Example 6.25
//page no 307
//Find The roll of factor alpha
clc;
clear;
datarate=0.1*10^6;
fB=75000; //bandwidth
Tb=1/datarate;
alpha=2*fB*Tb-1
disp(alpha, "factor alpha = ")
```

Scilab code Exa 6.26 Transmission bandwidth

```
1 // Caption: Transmission bandwidth
2 //Example 6.26
3 //page no 307
4 //Find The Transmission bandwidth
5 clc;
6 clear;
7 q=128;
8 \text{ alpha=0.2}
9 n = \log 2(q);
10 fm = 2000;
11 Nq=2*fm;
12 fs=1.25*Nq;
13 N=8;
14 total=N*fs;
15 bitrate=7*total;
16 fB=((1+alpha)*bitrate)/2;
17 disp("kHz",fB/1000, "Transmission Bandwidth");
```

Chapter 8

DIGITAL MODULATION TECHNIQUES

Scilab code Exa 8.1 probability of error

```
1
2 //Caption: probability of error
3 //Example 8.1
4 //page no 374
5 //Find probability of bit error
6 //AWGN is added to signal
7 clc;
8 clear;
9 N0=2*10^-15;
10 Ps1=1/2;
11 Ps2=1/2;
12 A=0.2*10^-3;
13 T=2*10^-6;
14
15 Eb=(A/sqrt(2))^2*T*Ps1+Ps2*0^2;//Eb=bit energy
16 z=sqrt(Eb/NO); // Probability
17 disp(z,"z = ");
18 //Pe=(8)*10^{(-4)}//probability of error from the
     table
```

Scilab code Exa 8.2 peak Amplitude

```
//Caption: peak Amplitude
//Example 8.2
//page no 374
//Find peak Transmission pulseAmplitude
clc;
clear;
NO=1.338*10^-5;
Pe=2.055*10^-5;
T=100*10^-6;
//Pe=erfc(sqrt(Eb/(2*N0)));
Eb=(2*2.9^2*N0);
A=sqrt((Eb*2)/T);
disp("Volts",A," Transmission pulse Amplitude");
```

Scilab code Exa 8.4 probability of error

```
1 //Caption: probability of error
2 //Example 8.4
3 //page no 377
4 //Find probability of error
5 clc;
6 clear;
```

```
7 A=1*10^-3;
8 Tb=0.2*10^-3;
9 fb=1/Tb;
10 fc=5*fb;
11 N0=2*10^-11;// power sepctral density
12
13 Eb=(A^2*Tb)/2;//Eb=bit energy
14
15
16 z=sqrt(Eb/N0);
17 Pe=erfc(z)'//bit error probability
18 disp("Error probability of PSK is ")
19 disp(Pe, "P(e) =");
```

Scilab code Exa 8.5 probability bit error

```
1 //Caption: probability bit error
2 //Example 8.5
3 //page no 378
4 //Find bit error probability
5 clc;
6 clear;
7 A=10*10^-3;
8 T=10^-6;
9 NO=10^-11; // power sepctral density
10
11 Eb=(A^2*T)/2//Eb=bit energy
12
13 z=sqrt(Eb/NO); // Probability of ASK
14 Pe=erfc(z)'//bit error probability
15 disp("bit error probability")
16 disp(Pe, "Pe =")
```

Scilab code Exa 8.7 Amplitude

```
1 // Caption: amplitude
2 //Example 8.7
3 //page no 379
4 //Find carrier amplitude
5 clc;
6 clear;
7 Pe=10^-4; // probability of error of PSK
8 N0 = 2 * 10^{-10};
9 //from table error function
10 / Pe = erffc(z)
11 z=2.6
12 r=10<sup>6</sup>;
13 T=1/r;
14 //z = sqrt (Eb/N0)
15 Eb=N0*z^2; // Eb=bit energy
16 A = sqrt((Eb*2)/T); //Eb=A^2*T/2
17 disp("mV", A*1000, "Carrier Amplitude");
```

Scilab code Exa 8.8 Carrier power and Bandwidth

```
1
2 //Caption: Carrier power
3 //Example 8.8
4 //page no 382
5 //Find Carrier power, Bandwidth
6 clc;
```

```
7 clear;
8 Pe=10^-4; //probability of error of FSK
9 r=1*10^6//tranasmitted rate
10 NO=1*10^-7; //psd at input of the receiver
11 //from table error function
12 / Pe = erffc(z)
13 z = 3.71
14 T=1/r;
15 //z = sqrt (Eb/N0)
16 / Eb = N0 * z^2;
                     // Eb=bit energy
17 Ac = sqrt((z^2*2*N0)/T);
18
19 AP=(Ac/sqrt(2))^2; //average carrier power
20 disp("watts", AP, "Average carrier power =");
21 BW = 1/T;
22 disp("MHz", BW*10^-6, "Channel Bandwidth =");
```

Scilab code Exa 8.10 probability of error

```
//Caption: probability of error
//Example 8.10
//page no 382
//Find probability of error of FSK
clc;
clear;
rb=300;//bit rate
T=1/rb;
A2N0=8000;
//Pe=1/2*exp(-Eb/2N0);
//Eb=A^2*T/2
Pe=1/2*exp(-((A2N0*T)/4));//Probability of error non coherent FSK
disp(Pe, "Probability of error is ");
```

Scilab code Exa 8.11 probability of symbol error

```
1 //Caption: probability of symbol error
2 //Example 8.11
3 //page no 383
4 //Find probability of symbol error
5 //assuming coherent detection
6 clc;
7 clear;
8 rb=2.5*10^6//binary data rate
9 NO=2*10^-20;//power spectral density of noise FSK
     system
10 A=1*10^-6; //amplitude of received signal
11 T=1/rb;
12 Eb=(A^2*T)/2; // Eb=bit energy
13 z=sqrt(Eb/(2*N0))
14 Pe=1/2*erfc(z);//probability of symbol error
15 disp(Pe, "probability of symbol error");//
```

Chapter 9

INFORMATION THEORY

Scilab code Exa 9.1 Information Content

```
1 // Caption: Information Content
2 / \text{Example } 9.1
3 //page no 394
4 //Find Information Content of Each Symbol
5 clc;
6 clear;
7 \text{ px1=1/2};
8 \text{ px2}=1/4;
9 \text{ px3=1/8};
10 px4=1/8;
11 //information content of each symbol
12 Ix1 = log2(1/px1);
13 Ix2 = log2(1/px2);
14 Ix3 = log2(1/px3);
15 Ix4 = log2(1/px4);
16 printf ("Information Content \n\n \t I(x1) = \%d bit \
      n", Ix1);
17 printf(" tI(x2) = \%d bits n", Ix2);
18 printf(" \langle tI(x3) \rangle = \%d \text{ bits } \langle n \rangle", Ix3);
19 printf(" \tI(x4) = %d bits\n", Ix4);
```

Scilab code Exa 9.2 Information

```
//Caption: Information
//Example 9.2
//page no 394
//Find amount of Information
clc;
clear;
pxi=1/4;
Ixi=(log10(1/pxi))/log10(2);
printf(" \n The amount of Information \n \n\t I(Xi)
= %.2d bits", Ixi)
```

Scilab code Exa 9.3 Amount of Information

```
//Caption: Amount of Information
//Example 9.3
//page no 395
//Find Amount og Information
clc;
clear;
px1=1/2;
px1=1/2;
px2=1/2;
Ix1=log2(1/px1);//entropy
Ix2=log2(1/px2);

printf(" \n The amount of Information \n \n\t I(X1)
= %.2d bit\n", Ix1);
```

```
13 printf(" \n The amount of Information \n \n\t I(X2) = \%.2d bit", Ix2);
```

Scilab code Exa 9.4 Amount of Information

```
//Caption: Amount of Information
//Example 9.4
//page no 395
//Find Amount of Information
clc;
clear;
px1=1/4;
px2=3/4;
Ix1=log2(1/px1);
Ix2=log2(1/px2);

printf(" \n The amount of Information \n \n\t I(X1)
= %.2d bits\n",Ix1);
printf(" \n \t I(X2) = %.3f bits",Ix2);
```

Scilab code Exa 9.9 Entropy

```
1 // Caption: Entropy
2 // Example 9.9
3 // page no 398
4 // Find Entropy, Amount of information
5 clc;
6 clear;
7 px1=0.4;
```

```
8 \text{ px2=0.3};
9 px3=0.2;
10 px4=0.1;
11 HX = -px1 * log2(px1) - px2 * log2(px2) - px3 * log2(px3) - px4 *
     log2(px4);
12 printf(" n \in \text{Entropy } n \setminus n \in \text{H}(X) = \%.2 \text{ f bits}
     symbol, \n", HX);
13 Px1x2x1x3=px1*px2*px1*px3;
14 Ix1x2x1x3 = -log2(Px1x2x1x3);
15
x1x2x1x3) = \%.2 f bits/symbol,\n",Ix1x2x1x3);
17 \text{ Px4x3x3x2=px4*px3*px3*px2};
18 Ix4x3x3x2 = -log2(Px4x3x3x2);
19
. \ n", Ix4x3x3x2);
```

Scilab code Exa 9.12 rate of information

```
1 //Caption: rate of information
2 //Example 9.12
3 //page no 401
4 //Find Average rate of information
5 clc;
6 clear;
7 m=16;
8 pxi=1/16;
9 elements=2*10^6;
10 n=32
11 HX=0;
12 for(i=1:16)
13 HX=HX+(-(pxi*log2(pxi)));
```

Scilab code Exa 9.13 information rate

```
1 //Caption: information rate
2 //Example 9.13
3 //page no 401
4 //Find information rate the telegraphic source
5 clc;
6 clear;
7 pdash=1/3;
8 \text{ pdot} = 2/3;
9 tdot=0.2;
10 tdash=0.6;
11 tspace=0.2;
12 HX=-pdash*log2(pdash)-pdot*log2(pdot);
13 Ts=pdot*tdot+pdash*tdash+tspace;
14 \text{ r=1/Ts};
15 R=r*HX;
16 printf ("Average rate of information \n \n \t R = \%.2 f
       b/s",R);
```

Scilab code Exa 9.14 Information rate

```
1 //Caption: information rate
2 //Example 9.14
3 //page no 402
4 //Find information rate of the source
5 clc;
6 clear;
7 f=input("Enter the frequncy f=");
8 \text{ px1=1/8};
9 \text{ px2=1/8};
10 px3=3/8;
11 px4=3/8;
12
13 HX=px1*log2(1/px1)+px2*log2(1/px2)+px3*log2(1/px3)+
      px4*log2(1/px4);//entropy of the source
14 R=2*f*HX; //r=2*f;
15 printf ("information rate \n\ \n \t R= \%.1 f bits/sec
      ",R);//f=signal bandwidth
```

Scilab code Exa 9.15 Information rate

```
//Caption: information rate
//Example 9.15
//page no 403
//Find information rate of the source
//all symbols are equally likely
clc;
clear;
px1=1/2;
px2=1/2;
px3=1/2;
px4=1/2;
f=input("Enter the frequency of system fm(in Hz) =");
HX=px1*log2(1/px1)+px2*log2(1/px2)+px3*log2(1/px3)+
```

```
px4*log2(1/px4);

14
15
16 printf("\n Entropy H(X) = %d bits/symbol\n ",HX);
17 R=2*f*HX;
18 printf("\n information rate = %d bits/sec",R);
```

Scilab code Exa 9.16 Entropy and information rate

```
1 // Caption: entropy , information rate
2 //Example 9.16
3 //page no 404
4 //Find
           source entropy , information rate
5 clc;
6 clear;
7 //probability symbols
8 \text{ px1}=1/2;
9 \text{ px}2=1/4;
10 \text{ px3}=1/8;
11 px4=1/16;
12 \text{ px5}=1/16;
13 Tb=10^-3;
14 HX=px1*log2(1/px1)+px2*log2(1/px2)+px3*log2(1/px3)+
      px4*log2(1/px4)+px5*log2(1/px5);
15 printf("i) source entropy\n\n \tH(X) = \%.2 f bits/
      symbol\n", HX); //source entropy
16 r = 1/Tb;
17 R=r*HX; //information rate
18 printf("\n ii) information rate \n \t R = %d bits
      / \sec ",R);
```

Scilab code Exa 9.17 Entropy and information rate

```
1
2 //Caption: entropy and information rate
3 //Example 9.17
4 //page no 404
5 //determine entropy ,information rate
6 //assume if there are 16 outcomes per second
7 clc;
8 clear;
9 \text{ px1=1/2};
10 px2=1/4;
11 px3=1/8;
12 \text{ px4=1/16};
13 px5=1/16;
14 r = 16
15 HX = px1 * log2(1/px1) + px2 * log2(1/px2) + px3 * log2(1/px3) +
      px4*log2(1/px4)+px5*log2(1/px5);
16
17 printf("i) Entropy\n\n \tH(X) = \%.2 \text{ f bits/symbol} \n"
      ,HX);//source entropy
18
19 R=r*HX;
20 printf("\n ii) information rate \n \t R = %d bits
      / \sec ",R);
```

Scilab code Exa 9.18 Entropy and information rate

```
1
2 //Caption: entropy ,information rate
3 //Example 9.18
4 //page no 405
5 //determine entropy ,information rate
6 clc;
7 clear;
8 \text{ px1=1/4};
9 \text{ px2=1/5};
10 px3=1/5;
11 px4=1/10;
12 \text{ px5}=1/10;
13 px6=1/20;
14 \text{ px7} = 1/20;
15 \text{ px8}=1/20;
16 f = 10 * 10^3;
17 fs=10*2*10^3;
18 HX = px1 * log2(1/px1) + px2 * log2(1/px2) + px3 * log2(1/px3) +
       px4*log2(1/px4)+px5*log2(1/px5)+px6*log2(1/px6)+
       px7*log2(1/px7)+px8*log2(1/px8);//entropy
19 \operatorname{disp}("\operatorname{bits/message"}, \operatorname{HX}, "\operatorname{H}(X) = ");
20 \text{ r=fs};
21 R=r*HX; //information rate
22 disp("bits/sec",R,"R = ");
```

Scilab code Exa 9.19 Channel Matrix and joint probability

```
1 // Caption: Channel Matrix, joint probability
2 // Example 9.19
3 // page no 408
4 // Find Channel Matrix, joint probability
5
6 clc;
```

```
7 clear;
8 \text{ px1=0.5};
9 \text{ px2=0.5};
10 py1x1=0.9;
11 py2x1=0.1;
12 py1x2=0.2;
13 py2x2=0.8;
14 PYX=[py1x1 py2x1; py1x2 py2x2];
15 PX=[px1 px2];
16
                  i) Channel Matrix
                                       [P(Y/X)] = ");
17 disp(PYX,"
18 PY = PX * PYX;
19 printf("\n
                  ii) P(y1)=\%.2 f and P(y2)=\%.2 f \n", PY(1)
      ,PY(2));
20
21 PXd=[px1 0;0 px2];
22 \quad PXY = PXd * PYX;
23 printf("\n iii) P(x1y2) = \%.2 f and P(x2y1) = \%.2 f", PXY(3)
      , PXY(2));
```

Scilab code Exa 9.21 probabilities channel matrix

```
1 //Caption: probabilities channel matrix
2 //Example 9.21
3 //Find probabilities channel matrix
4
5 clc;
6 clear;
7 p=0.2;
8 PX=[0.5 0.5];
9 PXY=[1-p p 0;0 p 1-p];
10 //P(Y)=[P(X)]*[P(Y|X)]
11 PY=PX*PXY
```

```
12 disp(PY,"[P(Y)]");

13 disp(PY(1),"P(y1)=");

14 disp(PY(2),"P(y2)=");

15 disp(PY(3),"P(y3)=");
```

Scilab code Exa 9.35 Capacity of Channel

```
1 //Caption: Capacity of Channel
2 //Example 9.35
3 //page no 426
4 //Find Capacity of Channel
5 //Channel is aproximated by the AWGN Channel
6 clear;
7 clc;
8 B=4000;
9 S=0.1*10^-3;
10 n=2*10^-12;
11 N=n*B;
12 C=B*log2(1+(S/N));//Capacity of Channel
13 printf("\n Capacity of Channel \n\n\t C=%.3f(10^3) b
/s",C/1000);
```

Scilab code Exa 9.36.i information rate

```
1 //Caption: information rate
2 //Example 9.36i
3 //page no 427
4 //Find information rate
```

Scilab code Exa 9.36.ii Channel Capacity

```
1 //Caption: Channel Capacity
2 //Example 9.36 ii
3 //page no 427
4 //Find Capacity of Channel
5 //assume that succeissive samples are statistically independent
6 clear;
7 clc;
8 B=10*10^3;
9 SN=20;
10 SNR=10^(SN/10)
11 C=B*log2(1+(SNR));
12 disp("kb/s",C/1000,"C =")
```

Scilab code Exa 9.36.iii SNR

```
1 //Caption: SNR
2 //Example 9.36 iii
3 //page no 427
4 //Find SNR
5 //assume that succeissive samples are statistically independent
6 clear;
7 clc;
8 C=8*10^4;
9 B=10^4;
10 SN=2^(C/B)-1;
11 SNR=10*log10(SN);//SNR
12 disp("dB",SNR,"SNR =");//required SNR is greater that 24.064
```

Scilab code Exa 9.36.iv Bandwidth

```
1 //Caption: Bandwidth
2 //Example 9.36 ii
3 //page no 427
4 //Find Required bandwidth
5 //assume that succeissive samples are statistically independent
6 clear;
7 clc;
8 SN=20;
9 SNR=10^(SN/10);
10 C=8*10^4;
11 B=C/(log2(1+SNR));//Bandwidth
12 disp("kHz",B/1000,"Bandwidth B = ");
```

Scilab code Exa 9.37 efficiency and redundancy

```
1 // Caption: efficiency, redundancy
2 //Example 9.37
3 //page no 430
4 // Find code efficiency, redundancy
5 clear;
6 clc;
7 \text{ px1=0.9};
8 \text{ px2=0.1};
9 n1=1;
10 n2=1;
11 L=px1*n1+px2*n2; // \text{ code leght}
12 HX=px1*log2(1/px1)+px2*log2(1/px2);
13 n=(HX/L);// code efficiency
14
15 printf("\n\t code efficiency = \%.2 f ",n*100);
16 disp("
                       %");
17
18 r=(1-n); //code reduncy
19 printf("\n\n\tcode redundancy = \%.2 f ",r*100);
20 disp("
                       %");
```

Scilab code Exa 9.38 Efficiency and redundancy

```
1 //Caption: efficiency, redundancy
2 //Example 9.38
3 //page no 431
```

```
4 //Find code efficiency, redundancy
5 clear;
6 \text{ clc};
7 pa1=0.81;
8 pa2=0.09;
9 pa3=0.09;
10 pa4=0.01;
11 n1=1;
12 n2=2;
13 \quad n3=3;
14 \quad n4=3;
15
16 L=pa1*n1+pa2*n2+pa3*n3+pa4*n4;
17
18 HX2=pa1*log2(1/pa1)+pa2*log2(1/pa2)+pa3*log2(1/pa3)+
      pa4*log2(1/pa4);
19 n=HX2/L;
20
21 printf("\n\tcode efficiency = %.2 f ",n*100);
22 disp("
                      %");
23
24 r=(1-n); // code reduncy
25 printf("\n\tcode redundancy = %.1 f ",r*100);
26 disp("
                      %");
```

Scilab code Exa 9.44 Efficiency

```
1 //Caption: efficiency
2 //Example 9.44
3 //page no 436
4 //Find efficiency of the code
5 clear;
6 clc;
```

```
7
8 \text{ px1=1/2};
9 \text{ px2=1/4};
10 px3=1/8;
11 px4=1/8;
12 n1=1
13 n2=2;
14 \quad n3=3;
15 \quad n4=3;
16
17 //information content of each symbol
18 Ix1 = -\log 2(px1);
19 Ix2 = -\log 2(px2);
20 \text{ Ix3} = -\log 2 (px3);
21 \text{ Ix4} = -\log 2 (px4);
22
23 HX = px1 * log2(1/px1) + px2 * log2(1/px2) + px3 * log2(1/px3) +
       px4*log2(1/px4);
24 L=px1*n1+px2*n2+px3*n3+px4*n4;
25
26 n=HX/L;
27
28 printf("\n \tcode efficiency = %.2 f ",n*100);
29 disp("
                          %");
```

Scilab code Exa 9.50 Entropy and information rate

```
1 //Caption: entropy ,information rate
2 //Example 9.50
3 //Pge no 441
4 //Find entropy ,information rate
5 //If there are 16 outcomes per second
6 clear;
```

Scilab code Exa 9.51 Entropy

Scilab code Exa 9.52 Entropy

Scilab code Exa 9.54 Entropy

```
1 // Caption: Entropy
 2 //Example 9.54
3 //Pge no 443
4 //Find entropy of source
5 clear;
6 clc;
 7 S0 = 1/3;
8 \text{ S1}=1/6;
9 S2=1/4;
10 \quad S3 = 1/4
11
12 \quad \text{HX} = \text{S0} * \log 2 (1/\text{S0}) + \text{S1} * \log 2 (1/\text{S1}) + \text{S2} * \log 2 (1/\text{S2}) + \text{S3} * \log 2
        (1/S3); // EntroSy of source
13
14 printf ("\n\ti) Entropy of system \n\n \t H(X)=\%.4 f
         bits/symbol\n", HX);
```

Scilab code Exa 9.56 Information capacity

```
//Caption: Information capacity
//Example 9.56
//page no 444
//Find Information capacity of telephone
clear;
clc;
B=3.4*10^3;
SNR=30
SN=10^(SNR/10);
C=B*log2(1+SN)//Information capacity
printf("Information capacity of telephone is \n\n\tag{tC} = %.2 f kbps", C/1000);
```

Chapter 10

ERROR CONTROL CODING

Scilab code Exa 10.4 errors and corrected errors

```
1 //Caption: errors, corrected errors
2 //Example 10.4
3 //page no 464
4 //Find detected errors, corrected errors
5 clear;
6 clc;
7 \text{ dmin}=5
8 // (s+1) \le dmin number errors can be detected (s)
9 \quad s = dmin - 1;
",s);
11 //(2t+1) \le dmin number errors can be corrected(t)
12 t = (dmin - 1)/2;
13
14 printf("\n\n ii) Number of corrected errors\n\n
     t \le \%d ",t);
```

Scilab code Exa 10.17 code vectors

```
1 // Caption: code vectors
2 //Example 10.17
3 //page no 498
4 //Determine all possible code vectors
5 clc;
6 clear;
7 m3=1;
8 m2=0;
9 m1=1;
10 m0 = 0;
11 //M=Message Matrix
12 //G=Generator Matrix
13 G=[1 0 1 1 0 0 0;0 1 0 1 1 0 0;0 0 1 0 1 1 0;0 0 0 1
      0 1 1];
14 M = [m3 m2 m1 m0;];
15 X = M * G;
16 for i=1:7;
      if X(i)>1
17
18
           X(i) = 0
19
        end
20 end
21 disp(X, "The code vectors are ");
```

Scilab code Exa 10.19 code word

```
1 //Caption: code word
2 //Example 10.19
3 //page no 501
4 //Determine code word
5 clc;
6 clear;
```

```
7 m3=1;
8 m2=0;
9 m1=1;
10 \text{ mO=0};
11 //M=Message Matrix
12 //G=Generator Matrix
13 G=[1 0 0 0 1 0 1;0 1 0 0 1 1 1;0 0 1 0 1 0;0 0 0 1
       0 1 1];
14 \quad M = [m3 \quad m2 \quad m1 \quad m0;];
15 X = M * G;
16 for i=1:7;
17
       if X(i)>1
            X(i)=0
18
19
         end
20
   end
21 disp(X, "The required code word ");
```