# MATH620 - Algebraic Number Theory



Taught by Niranjan Ramachandran Notes taken by Haoran Li  $2020 \,\, \mathrm{Spring}$ 

Department of Mathematics University of Maryland

## Contents

| 1     | Disciminant               | 2  |
|-------|---------------------------|----|
| 2     | Minkowski's theorem       | 5  |
| 3     | Dirichlet's unit theorem  | 6  |
| 4     | Discrete valuation domain | 7  |
| 5     | Ramification              | 12 |
| Index |                           | 15 |

### 1 Disciminant

**Definition 1.1.** An algebraic number field K is a finite field extension of  $\mathbb{Q}$ , its ring of algebraic integers is denoted  $\mathcal{O}_K$ 

$$\begin{array}{ccc}
\mathbb{O}_K & \longrightarrow & K \\
\uparrow & & \uparrow \\
\mathbb{Z} & \longrightarrow & \mathbb{O}
\end{array}$$

More generally, if E/F is a finite separable field extension, B,A are their ring of integers

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longrightarrow & F
\end{array}$$

**Definition 1.2.** [E:F]=n, then  $B \cong A^n$  as an A module, assume  $\beta_1, \dots, \beta_n$  is a basis, define

$$D(\beta_1, \dots, \beta_n) = \det(\operatorname{Tr}_{B/A}(\beta_i \beta_i)) \in A$$

The discriminant  $\operatorname{disc}(B/A) = D(\beta_1, \dots, \beta_n)$  is well-defined in  $A/(A^{\times})^2$ . In particular,  $\operatorname{disc}(O_K/\mathbb{Z})$  is a well-defined integer

**Lemma 1.3.**  $\gamma_1, \dots, \gamma_n \in \mathcal{O}_K$  is an  $\mathbb{Z}$ -basis for  $\mathcal{O}_K$  iff  $D(\gamma_1, \dots, \gamma_n) = \operatorname{disc}(\mathcal{O}_K/\mathbb{Z})$ . More generally, if A is integrally closed and Noetherian,  $\gamma_1, \dots, \gamma_n \in B$  is an A-basis of B iff  $D(\gamma_1, \dots, \gamma_n) = \operatorname{disc}(B/A)$ 

*Proof.* Write  $\gamma_i = \sum c_{ji}\beta_j$ , then  $\det(\operatorname{Tr}(\gamma_i\gamma_j)) = (\det C)^2\operatorname{disc}(\mathcal{O}_K/\mathbb{Z})$ . Thus  $D(\gamma_1,\cdots,\gamma_n) = \operatorname{disc}(\mathcal{O}_K/\mathbb{Z}) \Leftrightarrow \det C = \pm 1 \Leftrightarrow C \in \operatorname{GL}_n(\mathbb{Z}) \Leftrightarrow \gamma_1,\cdots,\gamma_n \text{ is an } \mathbb{Z}\text{-basis}$ 

**Example 1.4.**  $K = \mathbb{Q}(\sqrt{d})$ , d is square free.  $\mathcal{O}_K$  has  $\{1, \sqrt{d}\}$  as an  $\mathbb{Z}$ -basis if  $d \equiv 2, 3 \mod 4$ 

$$\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) = \operatorname{det} \operatorname{Tr}_{\mathbb{O}_K/\mathbb{Z}} \begin{pmatrix} 1 & \sqrt{d} \\ \sqrt{d} & d \end{pmatrix} = \operatorname{det} \begin{pmatrix} 2 & 0 \\ 0 & 2d \end{pmatrix} = 4d$$

 $O_K$  has  $\{1, \frac{1+\sqrt{d}}{2}\}$  as an  $\mathbb{Z}$ -basis if  $d \equiv 1 \mod 4$ 

$$\mathrm{disc}(\mathbb{O}_K/\mathbb{Z}) = \det \mathrm{Tr}_{\mathbb{O}_K/\mathbb{Z}} \begin{pmatrix} 1 & \frac{1+\sqrt{d}}{2} \\ \frac{1+\sqrt{d}}{2} & \frac{1+2\sqrt{d}+d}{4} \end{pmatrix} = \det \begin{pmatrix} 2 & 1 \\ 1 & \frac{2+2d}{4} \end{pmatrix} = d$$

Therefore 7 can never be a discriminant

**Proposition 1.5.**  $\gamma_1, \dots, \gamma_n \in \mathcal{O}_K$ ,  $N = \mathbb{Z}\gamma_1 + \dots + \mathbb{Z}\gamma_n \leq \mathcal{O}_K$  has finite index in  $\mathcal{O}_K$  iff  $D(\gamma_1, \dots, \gamma_n) \neq 0$ ,  $D(\gamma_1, \dots, \gamma_n) = [\mathcal{O}_K : N]^2 \operatorname{disc}(\mathcal{O}_K/\mathbb{Z})$ 

*Proof.* Suppose  $\beta_1, \dots, \beta_n$  is an  $\mathbb{Z}$ -basis,  $D(\beta - 1, \dots, \beta_n) = \operatorname{disc}(\mathcal{O}_K/\mathbb{Z}), \ \gamma_i = \sum c_{ji}\beta_j, \ \det C = [\mathcal{O}_K : N]$ 

**Proposition 1.6.** If  $D(\gamma_1, \dots, \gamma_n)$  is square free, then  $\gamma_1, \dots, \gamma_n$  is an  $\mathbb{Z}$ -basis

**Example 1.7.**  $K = \mathbb{Q}(\alpha)$ ,  $\alpha$  is a root of irreducible polynomial  $x^3 - x - 1$ ,  $D(1, \alpha, \alpha^2) = -23$  which is square free, hence  $\mathcal{O}_K = \mathbb{Z} + \mathbb{Z}\alpha + \mathbb{Z}\alpha^2 = \mathbb{Z}[\alpha]$ 

**Proposition 1.8.** [E:F]=n is separable,  $\Omega$  is the Galois closure of E,  $\operatorname{Hom}_F(E,\Omega)=\{\sigma_1,\cdots,\sigma_n\}$  are distinct F-embeddings of E

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longrightarrow & F
\end{array}$$

If  $\beta_1, \cdots, \beta_n$  is an F-basis of E, then  $D(\beta_1, \cdots, \beta_n) = \det(\sigma_i(\beta_j))^2 \neq 0$ 

*Proof.* Deonte  $Q = \sigma_i(\beta_i)$ , then

$$\begin{split} D(\beta_1, \cdots, \beta_n) &= \det(\mathrm{Tr}_{E/F}(\beta_i \beta_j)) \\ &= \det(\sum \sigma_k(\beta_i \beta_j)) \\ &= \det(\sum \sigma_k(\beta_i) \sigma_k(\beta_j)) \\ &= \det(Q^T Q) \\ &= \det(\sigma_i(\beta_j))^2 \\ &\stackrel{\mathrm{Theorem \ 1.9}}{\neq} 0 \end{split}$$

Dedekind's theorem

**Theorem 1.9** (Dedekind's theorem). G is group,  $\Omega$  is a field,  $\sigma_1, \dots, \sigma_n$  are distinct homomorphisms  $G \to \Omega^{\times}$ , then  $\sigma_i$ 's are linear independent over  $\Omega$ 

**Definition 1.10.** Assume A,B are integrally closed in  $F,E,\,\beta_1,\cdots,\beta_n\in B$  is an F-basis of  $E,\,C=A\beta_1+\cdots+A\beta_n\leq B,\,C^*=\{\beta\in E|\,\mathrm{Tr}_{E/F}(\beta\beta_i)\in A\},\,\beta\in B\Rightarrow\beta\beta_i\in B\Rightarrow\mathrm{Tr}(\beta\beta_i)\in A\Rightarrow C\leq B\leq C^*,\,C^*=A\beta_1'+\cdots+A\beta_n',\,\beta_1',\cdots,\beta_n'\ \text{is a dual basis. For }\alpha\in E,\,\alpha=\sum\mathrm{Tr}_{E/F}(\alpha\beta_i)\beta_i'$ 

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longrightarrow & F
\end{array}$$

Example of dual basis

**Example 1.11.**  $E = F(\beta), f \in A[x]$  is the minimal polynomial of  $\beta \in B$ ,  $\deg f = n$ ,  $C = A[\beta] \leq B$ , Euler discovered

$$\operatorname{Tr}_{E/F}(oldsymbol{eta}^i/f'(oldsymbol{eta})) = egin{cases} 0 & 0 \leq i \leq n-1 \ 1 & i = n-1 \end{cases}$$
 ,  $\operatorname{det} \operatorname{Tr}_{E/F}(rac{oldsymbol{eta}^ioldsymbol{eta}^j}{f'(oldsymbol{eta})}) = (-1)^n$ 

 $\frac{\beta^{n-1-i}}{f'(\beta)}$  is the dual basis of  $\beta^i$ 

**Proposition 1.12.** In Example 1.11, suppose  $f(x) = \prod_{i=1}^n (x-\beta_i) \in \bar{E}[x], f'(x) = \sum_{i=1}^n \prod_{j\neq i} (x-\beta_j)$ . Then

$$D(1,\beta,\cdots,\beta^{n-1}) = \prod_{1 \leq i < j \leq n} (\beta_i - \beta_j)^2 = (-1)^{\frac{n(n-1)}{2}} = N_{E/F}(f'(\beta))$$

Proof.

$$D(1,\beta,\cdots,\beta^{n-1}) = \det(\sigma_i(\beta^j))^2$$

$$= \det(\beta_i^j)^2$$

$$= \prod_{1 \le i < j \le n} (\beta_i - \beta_j)^2$$

$$= (-1)^{\frac{n(n-1)}{2}} \prod_i \prod_{j \ne i} (\beta_i - \beta_j)$$

$$= (-1)^{\frac{n(n-1)}{2}} \prod_i f'(\beta_i)$$

$$= (-1)^{\frac{n(n-1)}{2}} N(f'(\beta))$$

**Remark 1.13.**  $\Delta = \prod_{1 \le i < j \le n} (\beta_i - \beta_j)^2$  is the determinant  $\operatorname{disc}(f) = \operatorname{disc}(E/F)$ 

**Lemma 1.14.**  $f(x) = x^n + ax + b$ ,  $\operatorname{disc}(f) = (-1)^{\frac{n(n-1)}{2}} (n^n b^{n-1} + (-1)^n (n-1)^{n-1} a^n)$ 

3

**Example 1.15.**  $K = \mathbb{Q}(\beta)$ ,  $\beta$  is a root of  $f(x) = x^5 - x - 1 \in \mathbb{Z}[x]$ ,  $\operatorname{disc}(f) = 2869 = 19 \times 151$  is square free, hence  $[\mathcal{O}_K : \mathbb{Z}[\beta]] = 1$ ,  $\mathcal{O}_K = \mathbb{Z}[\beta]$ 

**Definition 1.16.**  $K = \mathbb{Q}(\alpha), f(x)$  is the minimal polynomial of  $\alpha$ , thus  $K \otimes_{\mathbb{Q}} \mathbb{R} \stackrel{\cong}{=} \frac{\mathbb{R}[x]}{(f)} \stackrel{\text{Chinese remainder theorem}}{\cong} \mathbb{R}^r \times \mathbb{C}^s, \alpha_1, \cdots, \alpha_r \text{ are the real roots of } f, \alpha_{r+1}, \bar{\alpha}_{r+1}, \cdots, \alpha_{r+s}, \bar{\alpha}_{r+s}$  are complex roots of f.  $\mathcal{O}_K \hookrightarrow K_{\mathbb{R}} \stackrel{\cong}{=} \mathbb{R}^n$  is a lattice

**Example 1.17.**  $\mathbb{Q}(\sqrt{5}) \hookrightarrow \mathbb{R} \times \mathbb{R}$  give the two real embeddings.  $\mathbb{Q}(\sqrt{-5}) \hookrightarrow \mathbb{C}$  give the two complex embeddings

#### Proposition 1.18.

- (1)  $K = \mathbb{Q}(\alpha)$ ,  $\operatorname{sgn}\operatorname{disc}(K/\mathbb{Q}) = (-1)^s$
- (2) (Stickelberger)  $\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) \equiv 0, 1 \mod 4$

Proof.

- (1)  $1, \alpha, \dots, \alpha^n$  is a basis for K, since  $disc(K/\mathbb{Q}) \in \mathbb{Q}^\times/(\mathbb{Q}^\times)^2 \operatorname{sgn} D(1, \alpha, \dots, \alpha^n) = \operatorname{sgn} \det(\sigma_j(\alpha^i))^2 = \operatorname{sgn} \prod_{1 \leq i < j \leq n} (\alpha_i \alpha_j)^2 = \operatorname{sgn} \prod_{1 \leq j \leq s} (\alpha_{r+j} \bar{\alpha}_{r+j})^2 = (-1)^s$
- (2)  $\beta_1, \dots, \beta_n$  is an  $\mathbb{Z}$ -basis of  $\mathbb{O}_K$ ,  $\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) = \operatorname{det}(\sigma_i(\beta^j))^2$ ,  $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$  acts on  $\operatorname{Hom}(K, \overline{\mathbb{Q}})$ ,  $K \overset{\sigma}{\hookrightarrow} \overline{\mathbb{Q}} \overset{\tau}{\to} \overline{\mathbb{Q}}$ .  $\operatorname{det} A = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) \prod_{i=1}^n a_{i\tau(i)} = P N$ , P for those  $\tau \in A_n$ , N for those aren't, so  $\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) = (P N)^2 = (P + N)^2 4PN$ ,  $\eta \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$  induce a permutation  $\pi_\eta$  on  $\operatorname{Hom}(K, \overline{\mathbb{Q}})$ , if  $\pi_\eta$  is even,  $\pi_\eta(P) = P$ ,  $\pi_\eta(N) = N$ , if  $\pi_\eta$  is odd, then  $\pi_\eta$  swich P, P, and P + N, PN are integral over  $\mathbb{Z}$ , thus P + N,  $PN \in \mathbb{Z}$ , hence  $\operatorname{disc}(\mathbb{O}_K/\mathbb{Z}) \equiv 0.1 \operatorname{mod} 4$

**Definition 1.19.** For any nonzero ideal  $I \leq \mathcal{O}_K$ , since  $I \cap \mathbb{Z} = m\mathbb{Z}$ ,  $\mathcal{O}_K/m\mathcal{O}_K \cong (\mathbb{Z}/m\mathbb{Z})^m \to \mathcal{O}_K/I$  is surjective, hence the *norm*  $N(I) = |\mathcal{O}_K/I| < \infty$ . The *Dedekind zeta function* of an algebraic number field is  $\zeta_K(s) = \sum_{I \neq 0} \frac{1}{N(I)^s} = \prod_p \frac{1}{1 - N(p)^{-s}}$ 

### 2 Minkowski's theorem

**Definition 2.1.**  $L = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n \leq \mathbb{R}^n$  is a lattice, take  $D = \{c_1v_1 + \cdots + c_nv_n | 0 \leq c_i \leq 1\}$ L, the *covolume* covol(L) = vol( $\mathbb{R}^n/L$ ) = vol(D),  $\pi : D \to \mathbb{R}^n/L$  is the quotient map, covol(L)<sup>2</sup> = det( $(v_i, v_i)$ )

**Theorem 2.2.** If  $B \subseteq \mathbb{R}^n$  is bounded, convex, symmetric (i.e. B = -B) subset such that either

- 1.  $vol(B) > 2^n covol(L)$  or
- 2.  $vol(B) \ge 2^n \operatorname{covol}(L)$  and B is closed

Then  $(B \cap L) \setminus \{0\} \neq \emptyset$ 

Proof.

- 1.  $\mathbb{R}^2 \to \mathbb{R}^2/2L$  is not injective by volume, thus  $\exists x \neq y \in B$  such that  $x y \in 2L \Rightarrow \frac{1}{2}(x y) \in B \cap L$  since B is convex and symmetric
- 2.  $C_k = L \cap (1 + \frac{1}{k})B \setminus \{0\} \neq \emptyset$ ,  $C_k$  is discrete and closed,  $\bigcap_{k=1}^{\infty} C_k \neq \emptyset$ , thus contains a limit point of B, but B is closed

**Proposition 2.3.**  $D_K = \operatorname{disc}(O_K/\mathbb{Z}) \in \mathbb{Z}$ 

- 1. The image of  $\mathcal{O}_K$  in  $K_{\mathbb{R}}$  is a lattice
- 2.  $\operatorname{covol}(O_K) = \sqrt{|D_K|}$
- 3. If I is an ideal of  $\mathcal{O}_K$ ,  $\operatorname{covol}(I) = [\mathcal{O}_K : I] \sqrt{|D_K|}$  (union of all members in the coset)

Proof.

- 1. Need  $\mathcal{O}_K \cap B_r$  is finite.  $x \in \mathcal{O}_K \cap B_r \Rightarrow |\sigma(x)| \leq r$ , for all complex embeddings  $\sigma \Rightarrow f_{K/\mathbb{Q},x}(t) = \prod_{\sigma} (t \sigma(x))$ , the characteristic monomial with  $\mathbb{Z}$  coefficients of degree  $[K:\mathbb{Q}]$ , since coefficients are bounded, so only finitely many f, finitely many x since conjugates are roots
- 2.  $\alpha_1, \dots, \alpha_n$  is an  $\mathbb{Z}$ -basis of  $\Theta_K$ ,  $\operatorname{covol}(\Theta_K)^2 = \det(\langle \alpha_i, \alpha_j \rangle) = \det(M^T \bar{M})$ ,  $M = (\sigma_i(\alpha_j))$ , thus  $\operatorname{covol}(\Theta_K) = \sqrt{|D_K|}$

**Lemma 2.4.** For  $m \geq 1$ , the number of ideals of  $\mathcal{O}_K$  of index less than m is finite, if  $[\mathcal{O}_K : I] \leq m$ , then  $\mathcal{O}_K/I$  is killed by m!, thus  $m!\mathcal{O}_K \subseteq I \subseteq \mathcal{O}_K$ , but  $\mathcal{O}_K/m!\mathcal{O}_K \cong \mathbb{Z}^n/m!\mathbb{Z}^n \cong (\mathbb{Z}/m!)^n$  is finite

**Theorem 2.5.** For any  $g \in \text{Cl}(\mathcal{O}_K)$ ,  $\exists I \subseteq \mathcal{O}_K$  such that  $NI = [\mathcal{O}_K : I] \leq (\frac{2}{\pi})^s \sqrt{D_K} \Rightarrow \text{Cl}(\mathcal{O}_K)$  is finite

*Proof.* J be an ideal representation for  $g^{-1}$ , if  $0 \neq \alpha \in J$ , then  $0 \neq (\alpha) \subseteq J \Rightarrow \exists I$  ideal of  $O_K$  such that  $(\alpha) = IJ$ , so I represents g,  $N\alpha = NI \cdot NJ$ , for  $c = (c_1, \dots, c_r, c_{r+1}, \dots, c_{r+s}), c_i > 0$ 

$$B(c) = \{(x_1, \dots, x_r, x_{r+1}, \dots, x_{r+s}) \in \mathbb{R}^r \times \mathbb{C}^s | |x_i| \le c_i \}$$

 $\begin{aligned} \operatorname{vol}(B(c)) &= (2c_1) \cdots (2c_r)(2\pi c_{r+1}^2) \cdots (2\pi c_{r+s}^2) = 2^n (\tfrac{\pi}{2})^s c_1 \cdots c_r c_{r+1}^2 \cdots c_{r+s}^2 = 2^n (\tfrac{\pi}{2})^s \xi. \text{ Pick } c \\ \operatorname{such that } \operatorname{vol}(B(c)) &= 2^n \operatorname{covol}(J), \text{ by Minkowski's theorem, } B(c) \cap J \setminus \{0\} \neq \varnothing, \text{ pick } \alpha \in B(c) \cap J \setminus \{0\}, \ |N(\alpha)| &= |\sigma_1(\alpha)| \cdots |\sigma_n(\alpha)| \leq \xi, \text{ thus } N\alpha = NI \cdot NJ \leq \xi = (\tfrac{2}{\pi})^s \operatorname{covol} J = (\tfrac{2}{\pi})^s [O_K : J] \sqrt{|D_K|}, \\ \operatorname{hence } NI &\leq (\tfrac{2}{\pi})^s \sqrt{|D_K|} \end{aligned}$ 

### 3 Dirichlet's unit theorem

**Example 3.1.** 
$$K = \mathbb{Q}(\zeta_p), p \nmid rs, \text{ then } \frac{\zeta^r - 1}{\zeta^s - 1} \in \mathbb{Z}[\zeta]^{\times}$$

**Proposition 3.2.** For  $\alpha \in \mathcal{O}_K$ ,  $\alpha \in \mathcal{O}_K^{\times} \Leftrightarrow N_{K/\mathbb{Q}}(\alpha) = \pm 1$ 

*Proof.* Let  $f = x^m + \cdots + a_0$  be the characteristic polynomial of  $\alpha$ ,  $N\alpha = a_0$ , if  $N\alpha = \pm 1$ , then  $g(x) = x^m + a_0^{-1}a_1x^{m-1} + \cdots + a_0^{-1}a_{m-1}x + a_0^{-1} \in \mathbb{Z}[x]$  has  $\alpha^{-1}$  as a root, thus  $\alpha \in \mathcal{O}_K^{\times}$   $\square$ 

**Lemma 3.3.**  $\mu(K)$  is the set of roots of unity in K which is also the torsion subgroup of  $\mathcal{O}_K^{\times}$ .  $\mu(K)$  is finite, hence cyclic,  $\mathcal{C}_m \in K \Rightarrow \varphi(m)|[K:\mathbb{Q}] \Rightarrow$  only finitely many such m

**Example 3.4.** If  $K \hookrightarrow \mathbb{R}$ , then  $\mu(K) = \{\pm 1\}$ . If  $K = \mathbb{Q}(\zeta_p)$ , then  $\mu(K) = \{\pm 1\} \times \langle \zeta_p \rangle$ . If  $K = \mathbb{Q}(\sqrt{d})$ , d < 0, then  $\zeta_m \in K \Rightarrow \varphi(m) \leq 2 \Rightarrow m = 2, 3, 4, 6$ 

**Proposition 3.5.**  $\alpha \in \mathcal{O}_K$ ,  $|\sigma(\alpha)| = 1$  for all  $K \stackrel{\sigma}{\hookrightarrow} \mathbb{C}$ , then  $\alpha \in \mu(K)$ 

*Proof.* Fix C, D > 0

$$E_{C,D} = \{ \beta \in \overline{\mathbb{Z}} | \deg(\beta) \le C, |\sigma(\beta)| \le D, \forall \mathbb{Q}(\beta) \stackrel{\sigma}{\hookrightarrow} \mathbb{C} \}$$

 $f_{\beta}(x) \in \mathbb{Z}[x]$  is the monic irreducible polynomial of  $\beta$ .  $\deg f_{\beta} \leq C \Rightarrow \deg f_{\beta}$  has finitely many choice and coefficients of  $f_{\beta}$  is bounded by function of  $D \Rightarrow$  finitely many choices for  $f_{\beta} \Rightarrow E_{C,D}$  is finite.  $\alpha \in E_{n,1}$ ,  $n = [K : \mathbb{Q}]$ ,  $\alpha^2$ ,  $\alpha^3$ ,  $\cdots \in E_{n,1} \Rightarrow \alpha \in \mu(K)$  since  $E_{n,1}$  is finite,  $\alpha^n$  repeats  $\square$ 

**Definition 3.6.** Define logarithm

$$\mathcal{L}: K_{\mathbb{R}}^{\times} = (\mathbb{R}^{\times})^{r} \times (\mathbb{C}^{\times})^{s} \to \mathbb{R}^{r+s}$$
$$(x_{1}, \dots, x_{r+s}) \mapsto (\log |x_{1}|, \dots, \log |x_{r}|, 2\log |x_{r+1}|, \dots, 2\log |x_{r+s}|)$$

Note that  $1 = |N_{K/\mathbb{Q}}(\alpha)| = |\sigma_1(\alpha)| \cdots |\sigma_r(\alpha)| |\sigma_{r+1}(\alpha)| |\overline{\sigma_{r+1}(\alpha)}| \cdots |\sigma_{r+s}(\alpha)| |\overline{\sigma_{r+s}(\alpha)}|$ , thus the image of  $\alpha$  is contained in the hyperplane  $H = \{\alpha_1 + \cdots + \alpha_{r+s} = 0\}$ 

**Theorem 3.7.** (i)  $\ker \mathcal{L} = \mu(K) = \operatorname{Tor}(\mathcal{O}_K^{\times})$ 

- (ii)  $\mathcal{L}(O_K^{\times})$  is a lattice in H
- (iii)  $\mathcal{O}_K^{\times} \cong \mathbb{Z}^{r+s-1} \times \mu(K)$ ,  $\mathcal{O}_K^{\times}$  is finitely generated

*Proof.*  $\mathbb{C} \xrightarrow{|\cdot|} \mathbb{R}_{>0}$  is a homomorphism, compact  $\Leftrightarrow$  image compact,  $\mathbb{C}^{\times} \stackrel{\simeq}{=} U(1) \times \mathbb{R}^{\times}$ ,  $\log : \mathbb{R}_{>0} \to \mathbb{R}$ , compact  $\Leftrightarrow$  image compact

$$\mathfrak{O}_{K}^{\times} \longleftrightarrow K_{\mathbb{R}}^{\times} \cong (\mathbb{R}^{\times})^{r} \times (\mathbb{C}^{\times})^{s} \overset{\mathcal{L}}{\longleftrightarrow} \mathbb{R}^{r} \times \mathbb{R}^{s}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Show  $\mathcal{L}(\mathcal{O}_K^{\times})$  is discrete in  $\mathbb{R}^r \times \mathbb{R}^s$ ,  $\Rightarrow \operatorname{rank}_{\mathbb{Z}} \mathcal{O}_K^{\times} \leq r + s$ . Let  $B \subseteq \mathbb{R}^r \times \mathbb{R}^s$  be open bounded,  $\mathcal{L}(\mathcal{O}_K^{\times}) \cap B$  is finite since  $\mathcal{L}^{-1}(B)$  is open bounded in  $K_{\mathbb{R}} \Rightarrow \mathcal{L}^{-1}(B) \cap \mathcal{O}_K$  is finite  $\Rightarrow \mathcal{L}^{-1}(B) \cap \mathcal{O}_K^{\times}$  is finite  $\Rightarrow \mathcal{L}(\mathcal{O}_K^{\times}) \cap B$  is finite. Two lattices,  $\mathcal{O}_K$  is an additive group scheme,  $\mathcal{O}_K^{\times}$  is a multiplicative group scheme

#### 4 Discrete valuation domain

**Definition 4.1.** A is a discrete valuation ring if A is an integrally closed PID with a unique nonzero prime ideal. k = A/m,  $m = (\pi)$ ,  $\pi$  irreducible is unique up to  $A^{\times}$ , called the uniformizer,  $F = \operatorname{Frac}(A) = A[\frac{1}{\pi}]$ 

**Proposition 4.2.** A is a DVR, then  $m^i - m^{i+1} = A^{\times} \pi^i$ ,  $A^{\times} = A - m = \bigsqcup_{i \in \mathbb{N}} A^{\times} \pi^i$ ,  $F^{\times} = \bigsqcup_{i \in \mathbb{Z}} A^{\times} \pi^i$ 



Figure 4.1: Discrete Valuation Ring

DVR

**Proposition 4.3.** X is a compact Riemann surface,  $F = \mathbb{C}(X)$ , then  $A = \{f \in F | f \text{ is defined at } x\} \subseteq F \text{ is a DVR}$ 

**Theorem 4.4.** sgn disc $(K/\mathbb{Q}) = (-1)^s$ 

 $Proof. \ \operatorname{disc}(K/\mathbb{Q}) = \operatorname{det}(\operatorname{Tr}(\alpha_i\alpha_j)) = (\operatorname{det} M)^2, \ M = (\sigma_i(\alpha_j)), \ \overline{M} = (\overline{\sigma_i(\alpha_j)}), \ \operatorname{det} \overline{M} = (-1)^s \operatorname{det} M$ 

**Example 4.5.** •  $\mathbb{Z}_{(p)}$  with  $\pi = p$ 

- $\mathbb{C}[t]_{(t-a)}$  with  $\pi = t a$
- $\mathbb{R}[t]_{(t-c)}$  with  $\pi = t c$
- $\mathbb{F}_p[t]_{(t-c)}$  with  $\pi = t c$

**Definition 4.6.** The additive valuation  $\nu: F \to \mathbb{Z} \cup \{\infty\}, 0 \mapsto \infty, u\pi^i \mapsto i$  satisfies

- 1.  $v(x) = \infty \Leftrightarrow x = 0$
- $2. \ \nu(xy) = \nu(x) + \nu(y)$
- 3.  $v(x + y) \ge \min(v(x), v(u))$

Any  $\nu$  on F satisfying 1.-3. knows A, i.e.  $A = \{\nu \geq 0\}$ ,  $m = \{\nu > 0\}$ ,  $A^{\times} = \{\nu = 0\}$ 

**Definition 4.7.** F is a field, a discrete valuation on F is a function  $F \to \mathbb{R} \cup \{\infty\}$  satisfying

- 1.  $v(x) = \infty \Leftrightarrow x = 0$
- 2. v(xy) = v(x) + v(y)
- 3.  $v(x + y) \ge \min(v(x), v(u))$

 $\nu(F^{\times}) \subseteq \mathbb{R}$  is a lattice in  $\mathbb{R}$ .  $\nu$  is normalized if  $\nu(F^{\times}) = \mathbb{Z}$  is the standard lattice

**Remark 4.8.** Given a normalized, discrete valuation, we get  $A, m, A^{\times}$  and A is a DVR

**Example 4.9.** ord<sub>p</sub>:  $\mathbb{Q} \to \mathbb{R} \cup \{\infty\}$ , ord<sub>p</sub>(x) = r if  $x = p^r \frac{a}{b}$ ,  $p \nmid ab$ , then  $A = \{x \in \mathbb{Q} | \operatorname{ord}_p(x) \ge 0\} = \mathbb{Z}_{(p)}$ ,  $m = p\mathbb{Z}_{(p)}$ 

**Exercise 4.10.** A is a DVR with valuation  $\nu$ 

- 1. If  $v(x) \neq v(y)$ , then  $v(x + y) = \min(v(x), v(y))$
- 2. If  $x_1 + \cdots + x_n = 0$ ,  $n \ge 2$ , then  $\exists i \ne j$  such that  $v(x_i) = v(x_j) = \min_{1 \le k \le n} v(x_k)$

**Definition 4.11.** R is a Noetherian domain,  $K = \operatorname{Frac}(R)$ , a fractional ideal  $I \leq K$  is a sub R-module such that  $rI \subseteq R$  for some nonzero  $r \in R$ , define  $I^{-1} = \{x \in K | xI \subseteq R\}$ , a principal fractional ideal is xR for some nonzero  $x \in K$ , clearly  $II^{-1} \subseteq R$ 

**Lemma 4.12.** If I, I are fractional ideals, then so are  $I^{-1}, II, I+I$ 

**Proposition 4.13.** F is a field, discrete valuations are in bijective correspondence with DVR subrings of F

**Definition 4.14.** Consider  $Spv(R) = \{All \text{ valuations on } R\}/\sim$ , and there is a topology given by  $R(f/g) = \{v \in Spv(R) | v(f) \le v(g) \ne 0\}$ 

Hilbert rings and adic spaces

**Definition 4.15.** *I* is invertible  $II^{-1} = R$ 

**Example 4.16.**  $R = \mathbb{C}[x, y], I = (x, y), I^{-1} = \mathbb{C}[x, y]$ 

**Proposition 4.17.** 1. If I = (f), then  $I^{-1} = (f^{-1})$ , hence principal fractional ideals are invertible

- 2. If *I* is invertible, then *I* is finitely generated as an *R*-module.  $1 = \sum_{i=1}^{n} x_i y_i, x_i \in I, y_i \in I^{-1}$ , so for any  $r \in I$ ,  $r = rx_i y_i = \sum x_i (ry_i)$ , hence *I* is finitely generated by  $x_1, \dots, x_n$
- 3. (R, m) is a local ring, then I invertible  $\Rightarrow I$  principal.  $1 = \sum_{i=1}^{n} x_i y_i, x_i \in I, y_i \in I^{-1}$  are not all in m, say  $x_1 y_1 \notin m$ , then  $x_1 y_1 = u$  is a unit, let  $y_1' = y_1 u^{-1}$ , then  $1 = x_1 y_1'$ , then  $r \in I \Rightarrow r = r x_1 y_1' = x_1 (r y_1')$ , thus  $I = (x_1)$
- 4. p is a prime of R,  $(R_p, pR_p)$  is a local ring, then I fractional invertible  $\Rightarrow IR_p$  fractional invertible  $\Rightarrow IR_p$  principal
- 5. I, J invertible  $\Rightarrow IJ$  invertible

**Definition 4.18.** The group of divisors Div(R) is the set of invertible fractional ideals of R, this becomes an abelian group, R is the neutral element. The set of principal fractional ideals is a subgroup of Div(R), define the Picard group  $Pic(R) = Div(R)/\{principal\ fractional\ ideals\}$ 

**Proposition 4.19.** If R is a domain,  $\dim R = 1 \Leftrightarrow R$  is a field  $\Leftrightarrow$  all primes are maximal. R is a DVR  $\Rightarrow$  dim R = 1, dim  $R[t] = 1 + \dim R$ 

**Proposition 4.20.** Every prime in  $\mathcal{O}_K$  is maximal

*Proof.* For any nonzero  $\alpha \in p$ ,  $0 \neq N\alpha \in p \cap \mathbb{Z}$ ,  $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$  is the minimal polynomial of  $\alpha$ , then  $a_0 = -a_1\alpha - a_2\alpha^2 - \cdots - \alpha^n \in (p)$ . Recall  $N(p) = [O_K : p] = |O_K/p|$  is finite,  $O_K \cong \mathbb{Z}^n$ , thus  $O_K/p$  is a domain  $\Rightarrow O_K/p$  is a field  $\Rightarrow p$  is maximal

**Theorem 4.21.** R is a domain, then the following are equivalent

- 1. R is Noetherian, normal, and dim R = 1
- 2. R is Noetherian,  $R_p$  is a DVR for any nonzero prime p
- 3. All fractional ideals of R are invertible

Such a ring is called a *Dedekind domain*. This is why DVR is sometimes called a local Dedekind domain.  $O_K$  is a Dedekind domain

**Theorem 4.22** (DVR recognition theorem). (R, m) is a local domain, the following are equivalent

- (1) R is a DVR
- (2) R is a PID
- (3) R is Noetherian and m is principal
- (4) R is a Noetherian and m is invertible
- (5) All fractional ideals are invertible
- (6) R is Noetherian, normal and  $\dim R = 1$

Proof.

$$\begin{array}{ccc}
(1) & \longrightarrow & (2) & \longrightarrow & (3) & \longrightarrow & (4) \\
\downarrow & & & \downarrow & & \\
(6) & & & (5) & & & \\
\end{array}$$

is clear, here (2) $\Leftrightarrow$ (5) uses local rings + invertible fractional ideals  $\Rightarrow$  principal (3) $\Rightarrow$ (1):  $m = (\pi)$ ,  $N = \bigcap_{i=1}^{\infty} m^i = \bigcap_{i=1}^{\infty} \pi^i R$ , N is finitely generated, mN = N, by Nakayama's lemma, N = 0. Thus for any  $r \in R$ ,  $r \in \pi^n R - \pi^{n+1} R$  for some n, hence  $R \setminus \{0\} = \sqcup_{n \geq 0} \pi^n R^{\times}$  (6) $\Rightarrow$ (4):  $K = \operatorname{Frac}(R)$ , need to show  $1 \in mm^{-1}$ 

- Set  $s(m) = \{x \in K | xm \subseteq m\}$ ,  $R \subseteq s(m) \subseteq K$ ,  $s(m) \subseteq \operatorname{End}_R(m) \Rightarrow s(m)$  is integral over R (Cayley-Hamilton). Since R is normal, s(m) = R, i.e. R is the largest subring of K such that m is an ideal
- $R \subseteq m^{-1}$ ,  $m \subseteq mm^{-1} \subseteq R$ , since m is maximal, if  $mm^{-1} = R$  then we are done, otherwise  $m = mm^{-1} \Rightarrow m^{-1} \subseteq s(m) = R \Rightarrow m^{-1} = R$
- Consider  $T = \{I \subseteq R \text{ ideal} | R \subsetneq I^{-1}\} \ni (0) = K$ , since R is Noetherian, T has a maximal element I,  $I \subsetneq R \subsetneq I^{-1}$ , claim I is prime, then I is maximal since  $\dim R = 1$ , then I = m,  $R \subsetneq m^{-1}$ . Pf of claim: suppose  $r, s \in R$ ,  $rs \in I$ ,  $r \notin I$ , let  $J = (r) + I \subseteq R$  is an ideal, then  $I \subsetneq J$ ,  $J^{-1} = R$ , but  $\exists t \in I^{-1} \setminus R$ ,  $tsJ = ts(r) + tsI \subseteq R \Rightarrow ts \in J^{-1} = R$ , thus  $t((s) + I) \subseteq R \Rightarrow t \in ((s) + I)^{-1} R$ , thus  $(s) + I \in I \Rightarrow s \in I$  which is a contradiction

R is a Noetherian ring,  $X = \operatorname{Spec} R$  or any scheme. Consider the category of projective modules, and the subcategory of rank 1 projective R-modules. If M is of rank 1,  $M \otimes R_p \cong R_p$  as  $R_p$  module,  $M \otimes M^* \cong R$ , Picard category

**Definition 4.23.** The class group is  $Cl(O_K) = \{Fractional ideals/Principal ideals\}$ 

**Exercise 4.24.** Every ideal in  $\mathcal{O}_K$  is generated by at most 2 elements

**Theorem 4.25.** R is a domain, the following are equivalent

- 1. R is Noetherian, normal and  $\dim R = 1$
- 2. R is Noetherian,  $R_p$  is a DVR for any nonzero prime p
- 3. All nonzero fractional ideals are invertible

*Proof.* 1.⇒2.: R is Noetherian, so is  $R_p$ ,  $\dim R_p \leq \dim R$ , there is a bijection between primes in  $S^{-1}R$  and primes in R that doesn't intersect S, thus  $\dim R_p = 1$ . Claim: R normal  $\Rightarrow S^{-1}R$  normal. If  $x \in \operatorname{Frac} S^{-1}R = K$  is normal and integral over  $S^{-1}R$ , then  $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 = 0$ ,  $a_i \in S^{-1}R$ , pick  $s \in S$ ,  $sa_i \in R$ , then  $(sx)^n + sa_{n-1}(sx)^{n-1} + \cdots + s^{n-1}a_1(sx) + s^na_0 = 0$   $\Rightarrow sx$  is integral over  $R \Rightarrow sx \in R \Rightarrow x \in S^{-1}R$ 

2. $\Rightarrow$ 3.:  $I \subseteq R$  is a nonzero fractional ideal,  $IR_p \subseteq R_p$  is a nonzero fractional ideal, since  $R_p$  is a DVR,  $IR_p$  is invertible,  $(IR_p)^{-1} = I^{-1}R_p$  is easy,  $II^{-1}R_p = (IR_p)(I^{-1}R_p) = R_p$ , if  $II^{-1} \subsetneq R$ , then  $II^{-1} \subseteq p$  for some prime(maximal)  $p \Rightarrow II^{-1}R_p \subseteq pR_p$  which is a contradiction

3.⇒1.:  $0 \neq I \subseteq R \Rightarrow I$  is invertible  $\Rightarrow I$  is a finitely generated R-module  $\Rightarrow R$  is Noetherian,  $x \in K$  integral over R, the subring B = R[x] is a finitely generated R-module  $\Rightarrow B$  is a fractional ideal of  $R \Rightarrow B$  is invertible,  $B = BR = BBB^{-1} = BB^{-1} = R \Rightarrow x \in R$ .  $p \neq 0$  is a prime in R,  $p \nsubseteq m$  is maximal, then  $m^{-1} \subseteq p^{-1} \Rightarrow pm^{-1} \subseteq R = pp^{-1}$ ,  $pmm^{-1} = p \Rightarrow p \subseteq m$  or  $p \subseteq pm^{-1} \Rightarrow p \supseteq pm^{-1} \Rightarrow m^{-1} \supseteq R \Rightarrow mm^{-1} \subseteq m \Rightarrow R \subseteq m$  which is a contradiction  $\square$ 

**Theorem 4.26.** If A is a Dedekind domain, then so is B

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longrightarrow & F
\end{array}$$

*Proof.* B is normal, B is a finitely generated A-module.  $I \subseteq B$  is an ideal  $\Rightarrow I$  is a finitely generated A-module  $\Rightarrow B$  is Noetherian. Pick  $p \neq 0$  prime in  $B, A \cap p \subseteq A$  is prime,  $A/A \cap p \hookrightarrow B/p$ .  $0 \neq \alpha \in p$ ,  $\alpha^n + a_{n-1}\alpha^{n-1} + \cdots + a_0 = 0$ ,  $a_i \in A$  minimal so that  $a_0 \neq 0$ ,  $0 \neq a_0 \in A \cap p \Rightarrow A \cap p$  is maximal,  $k = A/A \cap p$ , B/p is a k-algebra, finite dimensional vector space,  $0 \neq y \in B/p$ ,  $B/p \xrightarrow{\times y} B/p$  is injective, this an isomorphism, hence  $1 = yy^{-1}$ 

R is a Dedekind domain,  $0 \neq p$  maximal,  $K = \operatorname{Frac}(R)$ ,  $R_p$  is a DVR with valuation  $v_p$ ,  $a \in K^{\times}$ ,  $aR_p = p^{v_p(a)}R_p = (pR_p)^{v_p(a)}$ . I is a fractional ideal of R,  $v_p(I) = n$  if  $IR_p = p^nR_p = (pR_p)^n$ ,  $n \in \mathbb{Z}$ , it is enough to check

- $v_D(IJ) = v_D(I) + v_D(J)$
- $v_p(I + J) = \min\{v_p(I), v_p(J)\}$
- $v_p(I \cap J) = \max\{v_p(I), v_p(J)\}$
- $I \subseteq J \Rightarrow \nu_p(J) \le \nu_p(I)$

**Example 4.27.**  $A = \mathbb{C}[t]$ , PID  $\Rightarrow$  Dedekind domain,  $F = \mathbb{C}(t)$ ,  $v_{\infty} : F \to \mathbb{Z} \cup \{\infty\}$ ,  $v_{\infty}(0) = \infty$ ,  $v_{\infty}(f/g) = \deg g - \deg f$ . Normalized valuations on  $\mathbb{C}(t) \leftrightarrow \mathbb{CP}^1$ 

**Theorem 4.28.** A is a Dedekind domain, then any nonzero ideal I can be written as a product of prime ideals in a unique way, thus A is a UFD  $\Leftrightarrow A$  is a PID

Remark 4.29.

$$1 \to A^{\times} \to F^{\times} \xrightarrow{\oplus \nu_{p}} \bigoplus_{p \in \operatorname{Spec} A} \mathbb{Z} \to \operatorname{Cl}(A) \to 0$$

$$\cdots \to K_{1}(A) \to K_{1}(F) \to \bigoplus_{p \in \operatorname{Spec} A} K_{0}(A/p) \to \cdots$$

is the localization sequence in K-theory

Lemma 4.30. A is a Dedekind domain, Spec A has closed points and a unique generic point (0)

**Example 4.31.**  $A = \mathbb{C}[x]$  is a PID,  $F = \mathbb{C}(x)$ ,  $\mathrm{Cl}(A)$  is trivial

$$B = \frac{\mathbb{C}[x,y]}{(y^2 - x^3 - 1)} \longleftrightarrow \frac{\mathbb{C}(x)[y]}{(y^2 - x^3 - 1)}$$

$$\uparrow \qquad \qquad \uparrow$$

$$A = \mathbb{C}[x] \longleftrightarrow F = \mathbb{C}(x)$$

 $\operatorname{Cl}(B)$  is uncountable,  $\mathbb{C}^2/\Gamma$ 

### 5 Ramification

**Definition 5.1.** A, B are Dedekind domains, F, E are fractional field

$$\begin{array}{ccc}
B & \longrightarrow & E \\
\uparrow & & \uparrow \\
A & \longrightarrow & F
\end{array}$$

 $\beta \in B$  is maximal  $\Rightarrow \beta \cap A$  is maximal in A.  $pB = \beta_1^{e_1} \cdots \beta_r^{e_r}$ ,  $e_i > 0$ .  $k_p = A/p \rightarrow B/\beta = k_\beta$ , B is a finitely generated A-module,  $B/\beta$  is a finitely generated  $k_p$  vector space,  $f_i = [k_\beta : k_p]$ 

- p is ramified if  $e_i > 1$  for some i
- p is inert if pB is a prime
- p total split if  $e_i = 1, f_i = 1$

**Proposition 5.2.** Suppose  $pB = \beta_1^{e_1} \cdots \beta_r^{e_r}, e_i > 0$ 

- 1.  $B/pB \cong \prod_{i=1}^r B/\beta_i^{e_i}$
- 2.  $[E:F] = \dim_{k_p}(B/pB) = \sum_{i=1}^r e_i f_i \Rightarrow r \leq [E:F]$ , (totally split  $\Leftrightarrow$  "=")

Proof.

- 1. Chinese remainder theorem
- 2. If  $B \cong A^n$ , then  $B/pB \cong A^npA^n \cong (A/p)^n \cong k_p^n$

**Example 5.3.**  $2\mathbb{Z}[i] = (1+i)^2$  is ramified,  $3\mathbb{Z}[i]$  is prime inert,  $5\mathbb{Z}[i] = (2-i)(2+i)$  totally split

$$\begin{array}{ccc} \mathbb{Z}[i] & \longrightarrow \mathbb{Q}[i] \\ \uparrow & & \uparrow \\ \mathbb{Z} & \longrightarrow \mathbb{Q} \end{array}$$

**Example 5.4.**  $f: \operatorname{Spec} B \to \operatorname{Spec} A$ ,  $f(\beta) = \beta \cap A$ , If  $pB = \beta_1^{e_1} \cdots \beta_r^{e_r}$ , then  $f^{-1}(p) = T_p = \{\beta_1, \cdots, \beta_r\}$ . If  $\beta \cap A = p$ , then  $\beta \supseteq pB = \beta_1^{e_1} \cdots \beta_r^{e_r}$ , since  $\beta$ ,  $\beta_i$  are maximal,  $\beta = \beta_i$  for some  $i. pB \subseteq \beta_i \Rightarrow pB \cap A = p \subseteq \beta_i \cap A \Rightarrow \beta_i \cap A = p$ 



In general,  $A_p$  is a DVR  $\Rightarrow$  PID,  $A_p/pA_p \cong A/p \cong k_p$ ,  $B_p = B \otimes_A A_p$  is torsion free since  $B_p \subseteq E$ ,  $B_p$  is finitely generated and torsion free over PID  $A_p \Rightarrow B_p \cong A_p^n \Rightarrow B_p/pB_p \cong (A_p/pA_p) \cong k_p^n$ 

**Theorem 5.5.** If E/F is Galois, then G = Gal(E/F) acts on  $f^{-1}(p) = \{\beta_1, \dots, \beta_r\}$  transitively, thus  $n = \sum_{i=1}^r e_i f_i = ref$ , e, f, r | n

*Proof.* For any  $\sigma \in G$ ,  $f(\beta) = f(\sigma(\beta))$ , preserving  $e_i$ ,  $f_i$ 

$$k_{p} \longleftrightarrow B/\beta$$

$$\downarrow \sigma$$

$$k_{p} \longleftrightarrow B/\sigma(\beta)$$

Suppose  $\beta, \beta'$  are not related by G, then  $\exists x \in B$  such that

$$x \equiv \begin{cases} 1 \mod \sigma \beta & \forall \sigma \in G \\ 0 \mod \tau \beta' & \forall \tau \in G \end{cases}$$

Thus

$$A \ni N_{B/A}(x) = N_{E/F}(x) = \prod_{\sigma \in G} \sigma(x) \equiv \begin{cases} 1 \mod \sigma \beta \\ 0 \mod \sigma \beta' \end{cases}$$
$$\Rightarrow N_{B/A}(x) \equiv \begin{cases} 0 \mod \sigma \beta \cap A = p \\ 1 \mod \sigma \beta' \cap A = p \end{cases}$$

Fix  $\beta$ , define  $D_{\beta} = \{ \sigma \in G | \sigma\beta = \beta \}$ ,  $D_{\tau(\beta)} = \tau D_{\beta} \tau^{-1}$ ,  $|D_{\beta}| = ef$ . p totally splits in  $B \Leftrightarrow D_{\beta} = \{1\}$  for any  $\beta$ 

If G is abelian,  $D_{\beta}$  depends only on p, not  $\beta$  since  $\tau D_{\beta} \tau^{-1} = D_{\beta}$ 

$$0 \longrightarrow \beta \longrightarrow B \longrightarrow k_{\beta} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow^{\sigma} \qquad \downarrow$$

$$0 \longrightarrow \sigma\beta \longrightarrow B \longrightarrow k_{\sigma\beta} \longrightarrow 0$$

If  $\sigma \in D_{\beta}$ ,  $k_{\beta} \to k_{\beta}$  is an automorphism  $\Rightarrow D_{\beta} \to \operatorname{Aut}(k_{\beta}/k_{p}) \Rightarrow \ker = I_{\beta}$ , the inertia group of  $\beta$ ,  $I_{\tau\beta} = \tau I_{\beta} \tau^{-1}$ 

**Theorem 5.6.** p ramifies in  $\mathcal{O}_K \Leftrightarrow p \mid \operatorname{disc}(\mathcal{O}_K/\mathbb{Z})$ 

## References

### Index

Algebraic number field,  $2\,$ 

Class group, 9

Dedekind domain, 9 Dedekind zeta function, 4 Discrete valuation, 7 Discrete valuation ring, 7

Discriminant, 2

Ideal norm, 4

Uniformizer, 7