2001 Author Index

- ACHIMORE, Linda: Reducing Incidence of Low-Back Injuries Reduces Cost, 508
- AKBAR-KHANZADEH, Farhang: Safety and Health Program Assessment in Relation to the Number and Type of Safety and Health Violations, 605
- APREA, Cristina: Evaluation of Respiratory and Cutaneous Doses and Urinary Excretion of Alkylphosphates by Workers in Greenhouses Treated with Omethoate, Fenitrothion, and Tolclofos-Methyl. 87
- ARITO, Heihachiro: A Simple Method for Detecting Breakthroughs in Used Chemical Cartridges, 168
- ARTS, J.H.E.: Approach to Setting Occupational Exposure Limits (OELs) for Sensory Irritants in the Netherlands, 733
- BAKKE, Berit: Dust and Gas Exposure in Tunnel Construction Work, 457
- BARNHART, Scott: An Evaluation of Factors Affecting Hazardous Waste Workers' Use of Respiratory Protective Equipment, 236
- BARON, Paul: Computer Simulation of Particle Overlap in Fiber Count Samples, 281
- BEAUDET, Nancy: An Evaluation of Factors Affecting Hazardous Waste Workers' Use of Respiratory Protective Equipment, 236
- BIERMAN, Arthur H.: Simulated Workplace Protection Factor Study of Powered Air-Purifying and Supplied Air Respirators, 595
- BOOTH, Derrick W. Sr.: An Evaluation of Industrial Ventilation Branch Screening Methods for Obstructions in Working Exhaust Systems, 401
- BOOTH, Derrick W. Sr.: An Evaluation of Industrial Ventilation Troubleshooting Methods in Experimental Systems, 669
- BRINKMAN, Marielle C.: Design and Evaluation of a Breath-Analysis System for Biological Monitoring of Volatile Compounds, 28
- BRODEUR, Jules: Adjustment of Permissible Exposure Values to Unusual Work Schedules, 584
- BROPHY, Mary O'Reilly: Reducing Incidence of Low-Back Injuries Reduces Cost, 508
- BROSSEAU, L.M.: Inhalable Dust Exposures, Tasks, and Use of Ventilation in Small Woodworking Shops: A Pilot Study, 322
- BROWN, Richard C.: Filtration in Industrial Hygiene,
- BURKE, Mary Lynn: Airborne Concentrations of Ethyl and Methyl Cyanoacrylate in the Workplace, 70
- CALLAHAN, Patrick J.: Design and Evaluation of a Breath-Analysis System for Biological Monitoring of Volatile Compounds, 28
- CAMP, Janice: Noise Exposure among Construction Electricians, 615
- CAMPBELL, D.L.: Respiratory Protection as a Function of Respirator Fitting Characteristics and Fit-Test Accuracy, 36
- CANOSSA, L.: Design Guidelines for Push-Pull Ventilation Systems Through Computational Fluid Dynamics Modeling, 141
- CARETTI, David M.: Work Performance when Breathing Through Different Respirator Exhalation Resistances, 411
- CARLSON, Virginia: Technology-Enhanced Learning/Distance Education: Market Survey of Occupational Health and Safety Professionals, 349
- CARLTON, Gary: A Comparison of Solid Sampler Methods for the Determination of Hexamethylene-Based Isocyanates in Spray-Painting Operations, 246
- CATALANO, James D.: An Evaluation of Short-Term

- Exposures to Metalworking Fluids in Small Machine Shops, 342
- CATALANO, James D.: Metalworking Fluid Exposures in Small Machine Shops: An Overview, 356
- CECCARELLI, Franco: Evaluation of Respiratory and Cutaneous Doses and Urinary Exerction of Alkylphosphates by Workers in Greenhouses Treated with Omethoate, Fenitrothion, and Tolclofos-Methyl, 87
- CENTI, Letizia: Evaluation of Respiratory and Cutaneous Doses and Urinary Excretion of Alkylphosphates by Workers in Greenhouses Treated with Omethoate, Fenitrothion, and Tolclofos-Methyl, 87
- CHEN Chih-Chieh: Capture Envelopes of Rectangular Hoods in Cross Drafts, 563
- CHEN, Chih-Chich: Computer Simulation of Particle Overlap in Fiber Count Samples, 281
- CHEN, Chih-Chieh: The Capture Envelope of a Flanged Circular Hood in Cross Drafts, 199
- CHEN, Chun-Wann: Capture Envelopes of Rectangular Hoods in Cross Drafts, 563
- CHEN, Chun-Wann: The Capture Envelope of a Flanged Circular Hood in Cross Drafts, 199 CHEN, Jung Ling: The Capture Envelope of a
- Flanged Circular Hood in Cross Drafts, 199 CHEN, Yu-Kang: Capture Envelopes of Rectangular
- Hoods in Cross Drafts, 563
- CHEN, Yu-Kang: The Capture Envelope of a Flanged Circular Hood in Cross Drafts, 199 CHENG, Daiyun: Aerodynamic Adsorption of Per-
- meable Chemical Protective Suit, 559 CLARK, Laura L.: Fatigue and Endurance Limits Dur-
- ing Intermittent Overhead Work, 446 COFFEY, C.C.: Respiratory Protection as a Function of Respirator Fitting Characteristics and Fit-Test
- Accuracy, 36
 COHEN, Howard J.: Simulated Workplace Protection
 Factor Study of Powered Air-Purifying and Supplied Air Respirators, 595
- CONNON, Catherine: An Evaluation of Factors Affecting Hazardous Waste Workers' Use of Respiratory Protective Equipment, 236
- COURTNEY, Theodore, K.: Antecedent Factors and Disabling Occupational Morbidity—Insights from the New BLS Data, 622
- COYNE, Karen M.: Telephone Communications with Several Commercial Respirators, 685
- COYNE, Karen M.: Work Performance when Breathing Through Different Respirator Exhalation Resistances, 411
- DALBEY, W.E.: Subchronic Inhalation Exposures to Aerosols of Three Petroleum Lubricants, 49
- DALTON, Pamela: Evaluating the Human Response to Sensory Irritation: Implications for Setting Occupational Exposure Limits (OELs), 723
- DALTON, Pamela: Psychophysical Methods in the Study of Olfaction and Respiratory Tract Irritation, 705
- DES TOMBE, Karen: Benzene and Total Hydrocarbons Exposures in the Downstream Petroleum Industries, 176
- DROLET, Daniel: Adjustment of Permissible Exposure Values to Unusual Work Schedules, 584
- DUGAN, S.: Inhalable Dust Exposures, Tasks, and Use of Ventilation in Small Woodworking Shops: A Pilot Study, 322
- DURAN, Robyn: Is Acculturation Related to Use of Hearing Protection? 611
- DYRDAHL, K.S.: Successful Reduction of Morticians' Exposure to Formaldehyde During Embalming Procedures, 689

- EDUARD, Wijnand: Dust and Gas Exposure in Tunnel Construction Work, 457
- EDWARDS, Jeffrey A.: Design and Evaluation of a Breath-Analysis System for Biological Monitoring of Volatile Compounds, 28
- ENGLAND, Ellen: A Comparison of Solid Sampler Methods for the Determination of Hexamethylene-Based Isocyanates in Spray-Painting Operations, 246
- FERON, V.J.: Approach to Setting Occupational Exposure Limits (OELs) for Sensory Irritants in the Netherlands, 733
- FIALKOWSKI, Julie: Evaluation of the Effectiveness of Following Up Laboratory Reports of Elevated Blood Leads in Adults, 371
- FINKELSTEIN, Murray M.: Exposure Estimation in the Presence of Nondetectable Values: Another Look, 195
- FLANAGAN, Mary E.: Air Sampling at the Chest and Ear as Representative of the Breathing Zone, 416
- FOOTE, Kenneth L.: Simulated Workplace Protection Factor Study of Powered Air-Purifying and Supplied Air Respirators, 595
- FRIEDMAN, Warren: Comparison of Filter Bag, Cyclonic, and Wet Dust Collection Methods in Vacuum Cleaners, 573
- FRIEDMAN, Warren: Particle Emission Characteristics of Filter-Equipped Vacuum Cleaners, 482
- FRIEDMAN, Warren: Test Methods for Evaluating the Filtration and Particulate Emission Characteristics of Vacuum Cleaners, 313
- GARDNER, Joseph: Evaluation of the Effectiveness of Following Up Laboratory Reports of Elevated Blood Leads in Adults. 371
- GLASER, Robert A.: Metalworking Fluid Exposures in Small Machine Shops: An Overview, 356
- GOYER, Nicole: Emissions of Chemical Compounds and Bioaerosols During the Secondary Treatment of Paper Mill Effluents, 330
- GRINSHPUN, Sergey A.: Comparison of Filter Bag, Cyclonic, and Wet Dust Collection Methods in Vacuum Cleaners, 573
- GRINSHPUN, Sergey A.: Particle Emission Characteristics of Filter-Equipped Vacuum Cleaners, 482
- GRINSHPUN, Sergey A.: Test Methods for Evaluating the Filtration and Particulate Emission Characteristics of Vacuum Cleaners, 313
- GROSSMAN, Elizabeth: The History of OSHA's Asbestos Rulemakings and Some Distinctive Approaches that They Introduced for Regulating Occupational Exposure to Toxic Substances, 208
- GUFFEY, Steven E.: Air Sampling at the Chest and Ear as Representative of the Breathing Zone, 416
- GUFFEY, Steven E.: An Evaluation of Industrial Ventilation Branch Screening Methods for Obstructions in Working Exhaust Systems, 401
- GUFFEY, Steven E.: An Evaluation of Industrial Ventilation Troubleshooting Methods in Experimental Systems, 669
- HAAG, Werner R.: Interchangeability of Gas Detection Tubes and Hand Pumps, 65
- HÄNNINEN, Osmo: Ion Mobility Spectrometric Monitoring of Phosdrin* from Foliage in Greenhouse, 80
- HECKER, Lawrence H.: Simulated Workplace Protection Factor Study of Powered Air-Purifying and Supplied Air Respirators, 595
- HENDERSON, Chris J.: The Influence of Knife Dullness on Poultry Processing Operator Exertions

2001 Author Index

- ACHIMORE, Linda: Reducing Incidence of Low-Back Injuries Reduces Cost, 508
- AKBAR-KHANZADEH, Farhang: Safety and Health Program Assessment in Relation to the Number and Type of Safety and Health Violations, 605
- APREA, Cristina: Evaluation of Respiratory and Cutaneous Doses and Urinary Excretion of Alkylphosphates by Workers in Greenhouses Treated with Omethoate, Fenitrothion, and Tolclofos-Methyl. 87
- ARITO, Heihachiro: A Simple Method for Detecting Breakthroughs in Used Chemical Cartridges, 168
- ARTS, J.H.E.: Approach to Setting Occupational Exposure Limits (OELs) for Sensory Irritants in the Netherlands, 733
- BAKKE, Berit: Dust and Gas Exposure in Tunnel Construction Work, 457
- BARNHART, Scott: An Evaluation of Factors Affecting Hazardous Waste Workers' Use of Respiratory Protective Equipment, 236
- BARON, Paul: Computer Simulation of Particle Overlap in Fiber Count Samples, 281
- BEAUDET, Nancy: An Evaluation of Factors Affecting Hazardous Waste Workers' Use of Respiratory Protective Equipment, 236
- BIERMAN, Arthur H.: Simulated Workplace Protection Factor Study of Powered Air-Purifying and Supplied Air Respirators, 595
- BOOTH, Derrick W. Sr.: An Evaluation of Industrial Ventilation Branch Screening Methods for Obstructions in Working Exhaust Systems, 401
- BOOTH, Derrick W. Sr.: An Evaluation of Industrial Ventilation Troubleshooting Methods in Experimental Systems, 669
- BRINKMAN, Marielle C.: Design and Evaluation of a Breath-Analysis System for Biological Monitoring of Volatile Compounds, 28
- BRODEUR, Jules: Adjustment of Permissible Exposure Values to Unusual Work Schedules, 584
- BROPHY, Mary O'Reilly: Reducing Incidence of Low-Back Injuries Reduces Cost, 508
- BROSSEAU, L.M.: Inhalable Dust Exposures, Tasks, and Use of Ventilation in Small Woodworking Shops: A Pilot Study, 322
- BROWN, Richard C.: Filtration in Industrial Hygiene,
- BURKE, Mary Lynn: Airborne Concentrations of Ethyl and Methyl Cyanoacrylate in the Workplace, 70
- CALLAHAN, Patrick J.: Design and Evaluation of a Breath-Analysis System for Biological Monitoring of Volatile Compounds, 28
- CAMP, Janice: Noise Exposure among Construction Electricians, 615
- CAMPBELL, D.L.: Respiratory Protection as a Function of Respirator Fitting Characteristics and Fit-Test Accuracy, 36
- CANOSSA, L.: Design Guidelines for Push-Pull Ventilation Systems Through Computational Fluid Dynamics Modeling, 141
- CARETTI, David M.: Work Performance when Breathing Through Different Respirator Exhalation Resistances, 411
- CARLSON, Virginia: Technology-Enhanced Learning/Distance Education: Market Survey of Occupational Health and Safety Professionals, 349
- CARLTON, Gary: A Comparison of Solid Sampler Methods for the Determination of Hexamethylene-Based Isocyanates in Spray-Painting Operations, 246
- CATALANO, James D.: An Evaluation of Short-Term

- Exposures to Metalworking Fluids in Small Machine Shops, 342
- CATALANO, James D.: Metalworking Fluid Exposures in Small Machine Shops: An Overview, 356
- CECCARELLI, Franco: Evaluation of Respiratory and Cutaneous Doses and Urinary Exerction of Alkylphosphates by Workers in Greenhouses Treated with Omethoate, Fenitrothion, and Tolclofos-Methyl, 87
- CENTI, Letizia: Evaluation of Respiratory and Cutaneous Doses and Urinary Excretion of Alkylphosphates by Workers in Greenhouses Treated with Omethoate, Fenitrothion, and Tolclofos-Methyl, 87
- CHEN Chih-Chieh: Capture Envelopes of Rectangular Hoods in Cross Drafts, 563
- CHEN, Chih-Chich: Computer Simulation of Particle Overlap in Fiber Count Samples, 281
- CHEN, Chih-Chieh: The Capture Envelope of a Flanged Circular Hood in Cross Drafts, 199
- CHEN, Chun-Wann: Capture Envelopes of Rectangular Hoods in Cross Drafts, 563
- CHEN, Chun-Wann: The Capture Envelope of a Flanged Circular Hood in Cross Drafts, 199 CHEN, Jung Ling: The Capture Envelope of a
- Flanged Circular Hood in Cross Drafts, 199 CHEN, Yu-Kang: Capture Envelopes of Rectangular
- Hoods in Cross Drafts, 563
- CHEN, Yu-Kang: The Capture Envelope of a Flanged Circular Hood in Cross Drafts, 199 CHENG, Daiyun: Aerodynamic Adsorption of Per-
- meable Chemical Protective Suit, 559 CLARK, Laura L.: Fatigue and Endurance Limits Dur-
- ing Intermittent Overhead Work, 446 COFFEY, C.C.: Respiratory Protection as a Function of Respirator Fitting Characteristics and Fit-Test
- Accuracy, 36
 COHEN, Howard J.: Simulated Workplace Protection
 Factor Study of Powered Air-Purifying and Supplied Air Respirators, 595
- CONNON, Catherine: An Evaluation of Factors Affecting Hazardous Waste Workers' Use of Respiratory Protective Equipment, 236
- COURTNEY, Theodore, K.: Antecedent Factors and Disabling Occupational Morbidity—Insights from the New BLS Data, 622
- COYNE, Karen M.: Telephone Communications with Several Commercial Respirators, 685
- COYNE, Karen M.: Work Performance when Breathing Through Different Respirator Exhalation Resistances, 411
- DALBEY, W.E.: Subchronic Inhalation Exposures to Aerosols of Three Petroleum Lubricants, 49
- DALTON, Pamela: Evaluating the Human Response to Sensory Irritation: Implications for Setting Occupational Exposure Limits (OELs), 723
- DALTON, Pamela: Psychophysical Methods in the Study of Olfaction and Respiratory Tract Irritation, 705
- DES TOMBE, Karen: Benzene and Total Hydrocarbons Exposures in the Downstream Petroleum Industries, 176
- DROLET, Daniel: Adjustment of Permissible Exposure Values to Unusual Work Schedules, 584
- DUGAN, S.: Inhalable Dust Exposures, Tasks, and Use of Ventilation in Small Woodworking Shops: A Pilot Study, 322
- DURAN, Robyn: Is Acculturation Related to Use of Hearing Protection? 611
- DYRDAHL, K.S.: Successful Reduction of Morticians' Exposure to Formaldehyde During Embalming Procedures, 689

- EDUARD, Wijnand: Dust and Gas Exposure in Tunnel Construction Work, 457
- EDWARDS, Jeffrey A.: Design and Evaluation of a Breath-Analysis System for Biological Monitoring of Volatile Compounds, 28
- ENGLAND, Ellen: A Comparison of Solid Sampler Methods for the Determination of Hexamethylene-Based Isocyanates in Spray-Painting Operations, 246
- FERON, V.J.: Approach to Setting Occupational Exposure Limits (OELs) for Sensory Irritants in the Netherlands, 733
- FIALKOWSKI, Julie: Evaluation of the Effectiveness of Following Up Laboratory Reports of Elevated Blood Leads in Adults, 371
- FINKELSTEIN, Murray M.: Exposure Estimation in the Presence of Nondetectable Values: Another Look, 195
- FLANAGAN, Mary E.: Air Sampling at the Chest and Ear as Representative of the Breathing Zone, 416
- FOOTE, Kenneth L.: Simulated Workplace Protection Factor Study of Powered Air-Purifying and Supplied Air Respirators, 595
- FRIEDMAN, Warren: Comparison of Filter Bag, Cyclonic, and Wet Dust Collection Methods in Vacuum Cleaners, 573
- FRIEDMAN, Warren: Particle Emission Characteristics of Filter-Equipped Vacuum Cleaners, 482
- FRIEDMAN, Warren: Test Methods for Evaluating the Filtration and Particulate Emission Characteristics of Vacuum Cleaners, 313
- GARDNER, Joseph: Evaluation of the Effectiveness of Following Up Laboratory Reports of Elevated Blood Leads in Adults. 371
- GLASER, Robert A.: Metalworking Fluid Exposures in Small Machine Shops: An Overview, 356
- GOYER, Nicole: Emissions of Chemical Compounds and Bioaerosols During the Secondary Treatment of Paper Mill Effluents, 330
- GRINSHPUN, Sergey A.: Comparison of Filter Bag, Cyclonic, and Wet Dust Collection Methods in Vacuum Cleaners, 573
- GRINSHPUN, Sergey A.: Particle Emission Characteristics of Filter-Equipped Vacuum Cleaners, 482
- GRINSHPUN, Sergey A.: Test Methods for Evaluating the Filtration and Particulate Emission Characteristics of Vacuum Cleaners, 313
- GROSSMAN, Elizabeth: The History of OSHA's Asbestos Rulemakings and Some Distinctive Approaches that They Introduced for Regulating Occupational Exposure to Toxic Substances, 208
- GUFFEY, Steven E.: Air Sampling at the Chest and Ear as Representative of the Breathing Zone, 416
- GUFFEY, Steven E.: An Evaluation of Industrial Ventilation Branch Screening Methods for Obstructions in Working Exhaust Systems, 401
- GUFFEY, Steven E.: An Evaluation of Industrial Ventilation Troubleshooting Methods in Experimental Systems, 669
- HAAG, Werner R.: Interchangeability of Gas Detection Tubes and Hand Pumps, 65
- HÄNNINEN, Osmo: Ion Mobility Spectrometric Monitoring of Phosdrin* from Foliage in Greenhouse, 80
- HECKER, Lawrence H.: Simulated Workplace Protection Factor Study of Powered Air-Purifying and Supplied Air Respirators, 595
- HENDERSON, Chris J.: The Influence of Knife Dullness on Poultry Processing Operator Exertions

2001 AUTHOR INDEX

- and the Effectiveness of Periodic Knife Steeling, 428
- HETHMON, Thomas A.: "Total" and Respirable Dust Exposures in the U.S. Carbon Black Manufacturing Industry, 57
- HIIPAKKA, D.W.: Successful Reduction of Morticians' Exposure to Formaldehyde During Embalming Procedures, 689
- HOGAN, Andrew: Evaluation of the Effectiveness of Following Up Laboratory Reports of Elevated Blood Leads in Adults, 371
- HUANG, Rong Fung: Capture Envelopes of Rectangular Hoods in Cross Drafts, 563
- HUANG, Rong Fung: The Capture Envelope of a Flanged Circular Hood in Cross Drafts, 199
- HUGHES, Robert T.: An Evaluation of Short-Term Exposures to Metalworking Fluids in Small Machine Shops, 342
- HUGHES, Robert T.: Metalworking Fluid Exposures in Small Machine Shops: An Overview, 356
- HYVÄRINEN, Markku: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- JÄPPINEN, PAAVO: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- JO, Wan-Kuen: Worker Exposure to Aromatic Volatile Organic Compounds in Dry Cleaning Stores, 466
- JOHNSON, Arthur T.: Telephone Communications with Several Commercial Respirators, 685
- JOHNSON, Arthur T.: Work Performance when Breathing Through Different Respirator Exhalation Resistances, 411
- JOHNSON, Diane J.: Benzene and Total Hydrocarbons Exposures in the Downstream Petroleum Industries, 176
- JOHNSON, James S.: Simulated Workplace Protection Factor Study of Powered Air-Purifying and Supplied Air Respirators, 595
- KALMES, Renee: Airborne Concentrations of Ethyl and Methyl Cyanoacrylate in the Workplace, 70
- KANGAS, Juhani: Effect of In Situ Composting on Reducing Offensive Odors and Volatile Organic Compounds in Swineries, 159
- KENDAL-REED, Martin: Approaches to Understanding Chemosensory Responses: New Directions and New Caveats, 717
- KENNY, Donald V.: Design and Evaluation of a Breath-Analysis System for Biological Monitoring of Volatile Compounds, 28
- KEY-SCHWARTZ, Rosa: A Comparison of Solid Sampler Methods for the Determination of Hexamethylene-Based Isocyanates in Spray-Painting Operations, 246
- KEZIC, S.: Dermal Absorption of Neat Liquid Solvents on Brief Exposures in Volunteers, 12
- KIM, Sung-Hwan: Worker Exposure to Aromatic Volatile Organic Compounds in Dry Cleaning Stores, 466
- KITAMURA, Shoichi: A Simple Method for Detecting Breakthroughs in Used Chemical Cartridges, 168
- KJAERGAARD, Soren K.: The Assessment of Irritation
 Using Clinical Methods and Questionnaires, 711
- KNOX, Kristine: Validity of Generic Risk Factors and the Strain Index for Predicting Nontraumatic Distal Upper Extremity Morbidity, 229
- KOH, Frank C.S.: Telephone Communications with Several Commercial Respirators, 685
- KOH, Frank: Work Performance when Breathing Through Different Respirator Exhalation Resistances, 411
- KRÜSE, J.: Dermal Absorption of Neat Liquid Solvents on Brief Exposures in Volunteers, 12
- LAN, Ngiam Soon: Numerical Simulation of Airflow

- Around a Variable Volume/Constant Face Velocity Fume Cupboard, 303
- LANZA, Margaret A.: Fatigue and Endurance Limits During Intermittent Overhead Work, 446
- LAVOIE, Jacques: Emissions of Chemical Compounds and Bioacrosols During the Secondary Treatment of Paper Mill Effluents, 330
- LAZOVICH, D.: Inhalable Dust Exposures, Tasks, and Use of Ventilation in Small Woodworking Shops: A Pilot Study, 322
- LEMAY, Francois: Adjustment of Permissible Exposure Values to Unusual Work Schedules, 584
- LENHART, S.W.: Respiratory Protection as a Function of Respirator Fitting Characteristics and Fit-Test Accuracy, 36
- LESAGE, Jacques: A Comparison of Solid Sampler Methods for the Determination of Hexamethylene-Based Isocyanates in Spray-Painting Operations 246
- LEVINE, Steven P.: Community Exposure Assessment and Intervention Effectiveness at Trinity American Corporation, Glenola, North Carolina, 649
- LI, Lei: Aerodynamic Adsorption of Permeable Chemical Protective Suit, 559
- LI, Shou-Nan: Effect of Impactor Inlet Efficiency on the Measurement of Wood Dust Size Distribution, 19
- LIN, Yuehe: Development of an Integrated Microanalytical System for Analysis of Lead in Saliva and Linkage to a Physiologically Based Pharmacokinetic Model Describing Lead Saliva Secretion, 295
- LIU, Jiangge: Aerodynamic Adsorption of Permeable Chemical Protective Suit, 559
- LIUKKONEN, Tuula: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- LONKA, Pirjo: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- LOUHELAINEN, KYÖSTI: Effect of In Situ Composting on Reducing Offensive Odors and Volatile Organic Compounds in Swineries, 159
- LUNDGREN, Dale A.: Effect of Impactor Inlet Efficiency on the Measurement of Wood Dust Size Distribution, 19
- LUNGHINI, Liana: Evaluation of Respiratory and Cutaneous Doses and Urinary Excretion of Alkylphosphates by Workers in Greenhouses Treated with Omethoate, Fenitrothion, and Tolclofos-Methyl, 87
- MACINTOSH, David L.: Performance of Electronic Flow Rate Meters Used for Calibration of Air Sampling Pumps, 472
- MAINELIS, Gediminas: Particle Emission Characteristics of Filter-Equipped Vacuum Cleaners, 482
- MARTONIK, John F.: The History of OSHA's Asbestos Rulemakings and Some Distinctive Approaches that They Introduced for Regulating Occupational Exposure to Toxic Substances, 208
- MATTHEIS, Darrell K.: Simulated Workplace Protection Factor Study of Powered Air-Purifying and Supplied Air Respirators, 595
- MELDRUM, Maureen: Setting Occupational Exposure Limits (OELs) for Sensory Irritants: The Approach in the European Union, 730
- MIDDENDORF, Paul J.: Performance of Electronic Flow Rate Meters Used for Calibration of Air Sampling Pumps, 472
- MIELO, Timo: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- MILTON, T.: Inhalable Dust Exposures, Tasks, and Use of Ventilation in Small Woodworking Shops: A Pilot Study, 322
- MOJET, J.: Approach to Setting Occupational Exposure Limits (OELs) for Sensory Irritants in the Netherlands, 733
- MONSTER, A.C.: Dermal Absorption of Neat Liquid Solvents on Brief Exposures in Volunteers, 12

- MOORE, J. Steven: Validity of Generic Risk Factors and the Strain Index for Predicting Nontraumatic Distal Upper Extremity Morbidity, 229
- MOORE-DAWSON, Joyce: Reducing Incidence of Low-Back Injuries Reduces Cost, 508
- MOYER, Ernest S.: Carbon Tetrachloride Replacement Compounds for Organic Vapor Air-Purifying Respirator Cartridge and Activated Carbon Testing—A Review, 494
- MURANKO, Henry J.: "Total" and Respirable Dust Exposures in the U.S. Carbon Black Manufacturing Industry, 57
- MUSTARD, Timothy S.: Workplace Protection Factors-Supplied Air Hood, 96
- NANO, G.: Design Guidelines for Push-Pull Ventilation Systems Through Computational Fluid Dynamics Modeling, 141
- NASH, Edith: The History of OSHA's Asbestos Rulemakings and Some Distinctive Approaches that They Introduced for Regulating Occupational Exposure to Toxic Substances, 208
- NEITZEL, Rick: Noise Exposure among Construction Electricians, 615
- NELSON, Thomas J.: Workplace Protection Factors-Supplied Air Hood, 96
- NICAS, Mark: Modeling Turbulent Diffusion and Advection of Indoor Air Contaminants by Markov Chains, 149
- NURKKA, Timo: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- NUSSBAUM, Maury A.: Fatigue and Endurance Limits During Intermittent Overhead Work, 446
- O'BRIEN, Dennis M.: An Evaluation of Short-Term Exposures to Metalworking Fluids in Small Machine Shops, 342
- O'BRIEN, Dennis M.: Metalworking Fluid Exposures in Small Machine Shops: An Overview, 356
- OLSON, Debra Kay: Technology-Enhanced Learning/Distance Education: Market Survey of Occupational Health and Safety Professionals, 349
- OPDAM, J.J.G.: Dermal Absorption of Neat Liquid Solvents on Brief Exposures in Volunteers, 12
- OSMOND, Neale M.: Pressure Drop and Service Life Predictions for Respirator Canisters, 288
- PAAKKANEN, Heikki: Ion Mobility Spectrometric Monitoring of Phosdrin* from Foliage in Greenhouse, 80
- PAGE, Elena H.: The Role of Stachybotrys Mycotoxins in Building-Related Illness, 644
- PAN, W.: Inhalable Dust Exposures, Tasks, and Use of Ventilation in Small Woodworking Shops: A Pilot Study, 322
- PARKER, D.: Inhalable Dust Exposures, Tasks, and Use of Ventilation in Small Woodworking Shops: A Pilot Study. 322
- PAUSTENBACH, Dennis: Airborne Concentrations of Ethyl and Methyl Cyanoacrylate in the Workplace, 70
- PAUSTENBACH, Dennis: Approaches and Considerations for Setting Occupational Exposure Limits (OELs) for Sensory Irritants: Report of Recent Symposia, 697
- PELTONEN, YRJÖ: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- PERRAULT, Guy: Adjustment of Permissible Exposure Values to Unusual Work Schedules, 584
- PHILLIPS, Paula L.: Pressure Drop and Service Life Predictions for Respirator Canisters, 288
- PIACITELLI, Greg M.: An Evaluation of Short-Term Exposures to Metalworking Fluids in Small Machine Shops, 342
- PIACITELLI, Greg M.: Metalworking Fluid Exposures in Small Machine Shops: An Overview, 356

2001 AUTHOR INDEX

- POET, Torka S.: Development of an Integrated Microanalytical System for Analysis of Lead in Saliva and Linkage to a Physiologically Based Pharmacokinetic Model Describing Lead Saliva Secretion, 295
- RABINOWITZ, Peter M.: Is Acculturation Related to Use of Hearing Protection? 611
- RADWIN, Robert G.: The Influence of Knife Dullness on Poultry Processing Operator Exertions and the Effectiveness of Periodic Knife Steeling, 428
- RÄISÄNEN, Jouni: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- RAY, Alison E.: Effect of Impactor Inlet Efficiency on the Measurement of Wood Dust Size Distribution, 19
- REBAR, Joyce E.: Telephone Communications with Several Commercial Respirators, 685
- REDINGER, Charles F.: Community Exposure Assessment and Intervention Effectiveness at Trinity American Corporation, Glenola, North Carolina, 649
- REN, Kyle: Noise Exposure among Construction Electricians, 615
- REPONEN, Tiina: Comparison of Filter Bag, Cyclonic, and Wet Dust Collection Methods in Vacuum Cleaners, 573
- REPONEN, Tiina: Particle Emission Characteristics of Filter-Equipped Vacuum Cleaners, 482
- REPONEN, Tiina: Test Methods for Evaluating the Filtration and Particulate Emission Characteristics of Vacuum Cleaners, 313
- RICE, Kim M.: Fatigue and Endurance Limits During Intermittent Overhead Work, 446
- ROBERT, William P.: Community Exposure Assessment and Intervention Effectiveness at Trinity American Corporation, Glenola, North Carolina, 649
- ROSENBERG, Christina: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- ROSENMAN, Kenneth D.: Evaluation of the Effectiveness of Following Up Laboratory Reports of Elevated Blood Leads in Adults, 371
- ROSENTHAL, F.S.: Characterization of Metalworking Fluid Acrosols in Bearing
- Grinding Operations, 379
- ROTA, R.: Design Guidelines for Push-Pull Ventilation Systems Through Computational Fluid Dynamics Modeling, 141
- ROVELL-RIXX, David: Effect of Impactor Inlet Efficiency on the Measurement of Wood Dust Size Distribution, 19
- RUCKER, Nathan R.: Validity of Generic Risk Factors and the Strain Index for Predicting Nontraumatic Distal Upper Extremity Morbidity, 229
- RUDNICK, Stephen N.: Predicting the Ultraviolet Radiation Distribution in a Room with Multilouvered Germicidal Fixtures, 434
- RUDZINSKI, Walter E.: A Comparison of Solid Sampler Methods for the Determination of Hexamethylene-Based Isocyanates in Spray-Painting Operations, 246
- RUUSKANEN, Juhani: Ion Mobility Spectrometric Monitoring of Phosdrin* from Foliage in Greenhouse, 80
- RYTKÖNEN, Esko: Vibration of Dental Handpieces, 477
- SALAZAR, Mary K.: An Evaluation of Factors Affecting Hazardous Waste Workers' Use of Respiratory Protective Equipment, 236
- SCHWEDER, Mark: The Use of Reverse Diffusion to Validate the Performance of Diffusive Samplers, xx
- SCIARRA, Gianfranco: Evaluation of Respiratory and Cutaneous Doses and Urinary Excretion of Alkylphosphates by Workers in Greenhouses Treated

- with Omethoate, Fenitrothion, and Tolclofos-Methyl, 87
- SCOTT, William H.: Telephone Communications with Several Commercial Respirators, 685
- SCOTT, William H.: Work Performance when Breathing Through Different Respirator Exhalation Resistances, 411
- SEIXAS, Noah S.: Noise Exposure among Construction Electricians, 615
- SEKI, Yukio: A Simple Method for Detecting Breakthroughs in Used Chemical Cartridges, 168
- SHAW, M. Lorraine: Benzene and Total Hydrocarbons Exposures in the Downstream Petroleum Industries, 176
- SHIH, Tung-Sheng: Computer Simulation of Particle Overlap in Fiber Count Samples, 281
- SHIMADA, Masahiro: A Simple Method for Detecting Breakthroughs in Used Chemical Cartridges, 168
- SHUM, Mona: Airborne Concentrations of Ethyl and Methyl Cyanoacrylate in the Workplace, 70
- SIEBER, W. Karl: An Evaluation of Short-Term Exposures to Metalworking Fluids in Small Machine Shops, 342
- SIEBER, W. Karl: Metalworking Fluid Exposures in Small Machine Shops: An Overview, 356
- SIMS, Amy: Evaluation of the Effectiveness of Following Up Laboratory Reports of Elevated Blood Leads in Adults, 371
- SIR, Soon Yih: Capture Envelopes of Rectangular Hoods in Cross Drafts, 563
- SMITH, Ralph G.: "Total" and Respirable Dust Exposures in the U.S. Carbon Black Manufacturing Industry, 57
- SMITH, Simon J.: Carbon Tetrachloride Replacement Compounds for Organic Vapor Air-Purifying Respirator Cartridge and Activated Carbon Testing— A Review, 494
- SORAINEN, Esko: Vibration of Dental Handpieces, 477
- STEWART, Patricia: Dust and Gas Exposure in Tunnel Construction Work, 457
- SVEDBERG, Urban: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- SZABO, Richard L.: The Influence of Knife Dullness on Poultry Processing Operator Exertions and the Effectiveness of Periodic Knife Steeling, 428
- TAKARO, Timothy K.: An Evaluation of Factors Affecting Hazardous Waste Workers' Use of Respiratory Protective Equipment, 236
- TANAKA, Shigeru: A Simple Method for Detecting Breakthroughs in Used Chemical Cartridges, 168
- TARDIF, Robert: Adjustment of Permissible Exposure Values to Unusual Work Schedules, 584
- THRALL, Karla D.: Design and Evaluation of a Breath-Analysis System for Biological Monitoring of Volatile Compounds, 28
- THRALL, Karla D.: Development of an Integrated Microanalytical System for Analysis of Lead in Saliva and Linkage to a Physiologically Based Pharmacokinetic Model Describing Lead Saliva Secretion, 295
- TIMCHALK, Charles: Development of an Integrated Microanalytical System for Analysis of Lead in Saliva and Linkage to a Physiologically Based Pharmacokinetic Model Describing Lead Saliva Secretion, 295
- TOW, Luther V.: Performance of Electronic Flow Rate Meters Used for Calibration of Air Sampling Pumps, 472
- TRAKUMAS, Saulius: Comparison of Filter Bag, Cyclonic, and Wet Dust Collection Methods in Vacuum Cleaners, 573
- TRAKUMAS, Saulius: Particle Emission Characteristics of Filter-Equipped Vacuum Cleaners, 482

- TRAKUMAS, Saulius: Test Methods for Evaluating the Filtration and Particulate Emission Characteristics of Vacuum Cleaners, 313
- TROUT, Douglas B.: The Role of Stachybotrys Mycotoxins in Building-Related Illness, 644
- TRUCHON, Ginette: Adjustment of Permissible Exposure Values to Unusual Work Schedules, 584
- TRUNOV, Mikhaylo: Test Methods for Evaluating the Filtration and Particulate Emission Characteristics of Vacuum Cleaners, 313
- TSUDA, Yoko: A Simple Method for Detecting Breakthroughs in Used Chemical Cartridges, 168
- TUCKER, Samuel P.: Determination of Capsaicin and Dihydrocapsaicin in Air in a Pickle and Pepper Processing Plant, 45
- TUOVINEN, Kai: Ion Mobility Spectrometric Monitoring of Phosdrin* from Foliage in Greenhouse, 80
- ULVESTAD, Bente: Dust and Gas Exposure in Tunnel Construction Work, 457
- UNDERHILL, Dwight: The Use of Reverse Diffusion to Validate the Performance of Diffusive Samplers, 680
- VALBERG, Peter A.: Carbon Black and Soot: Two Different Substances, 218
- VAN BELLE, Gerald: Air Sampling at the Chest and Ear as Representative of the Breathing Zone, 416
- VAN DE GEVEL, I.A.: Dermal Absorption of Neat Liquid Solvents on Brief Exposures in Volunteers, 12
- VEIJANEN, Anja: Effect of In Situ Composting on Reducing Offensive Odors and Volatile Organic Compounds in Swineries, 159
- VERBERK, M.M.: Dermal Absorption of Neat Liquid Solvents on Brief Exposures in Volunteers, 12
- VERMA, Dave K.: Benzene and Total Hydrocarbons Exposures in the Downstream Petroleum Industries, 176
- VERMA, Dave K.: Exposure Estimation in the Presence of Nondetectable Values: Another Look, 195
- VIILOS, Pia: Effect of In Situ Composting on Reducing Offensive Odors and Volatile Organic Compounds in Swineries, 159
- VISWANATHAN, Shekar: Numerical Simulation of Airflow Around a Variable Volume/Constant Face Velocity Fume Cupboard, 303
- VYSKOCIL, Adolf: Adjustment of Permissible Exposure Values to Unusual Work Schedules, 584
- WAGNER, Owen D.: Safety and Health Program Assessment in Relation to the Number and Type of Safety and Health Violations, 605
- WATSON, Ann Y.: Carbon Black and Soot: Two Different Substances, 218
- WEBSTER, Barbara S.: Antecedent Factors and Disabling Occupational Morbidity—Insights from the New BLS Data, 622
- WEITZ, Karl K.: Design and Evaluation of a Breath-Analysis System for Biological Monitoring of Volatile Compounds, 28
- WEITZ, Karl K.: Development of an Integrated Microanalytical System for Analysis of Lead in Saliva and Linkage to a Physiologically Based Pharmacokinetic Model Describing Lead Saliva Secretion, 295
- WELLING, Irma: Characterization and Control of Terpene Emissions in Finnish Sawmills, 172
- WHEELER, Teresa H.: Workplace Protection Factors-Supplied Air Hood, 96
- WILLEKE, Klaus: Comparison of Filter Bag, Cyclonic, and Wet Dust Collection Methods in Vacuum Cleaners, 573
- WILLEKE, Klaus: Particle Emission Characteristics of Filter-Equipped Vacuum Cleaners, 482
- WILLEKE, Klaus: Test Methods for Evaluating the

2001 AUTHOR INDEX

- Filtration and Particulate Emission Characteristics of Vacuum Cleaners, 313
- WILLIAMS, Phillip L.: Performance of Electronic Flow Rate Meters Used for Calibration of Air Sampling Pumps, 472
- WOOD, Gerry O.: Carbon Tetrachloride Replacement Compounds for Organic Vapor Air-Purifying Respirator Cartridge and Activated Carbon Testing— A Review, 494
- YEAGY, Brent L.: Characterization of Metalworking Fluid Aerosols in Bearing Grinding Operations, 379
- YEH, Wen-Yu: Capture Envelopes of Rectangular Hoods in Cross Drafts, 563
- YEH, Wen-Yu: The Capture Envelope of a Flanged Circular Hood in Cross Drafts, 199
- YIN, Jian: A Comparison of Solid Sampler Methods for the Determination of Hexamethylene-Based Isocyanates in Spray-Painting Operations, 246
- YOST, Michael: Noise Exposure among Construction Electricians, 615
- YU, Tai-Shan: Computer Simulation of Particle Overlap in Fiber Count Samples, 281
- ZHAO, Rui: Development of an Integrated Microanalytical System for Analysis of Lead in Saliva and Linkage to a Physiologically Based Pharmacokinetic Model Describing Lead Saliva Secretion, 295

PRODUCT INDEXES

Advertisers' Index

Circle #		Page #
2	AOSafety	C-2
4	Casella CEL	664
1	Draeger Safety, Inc.	C-4
5	Environmental Microbiology	741
6	NIOSH	C-3
3	Thermo Environmental	662

The Advertisers' and New Products Indexes are compiled as a service to the readers of the AIHAJ. Being listed in these indexes does not imply endorsement by AIHAJ or AIHA of the advertiser, its products, or its services. Inquiries to the advertisers with respect to the content of any advertisement should be made directly to the advertiser, with a copy to the Editor, AIHAJ. For information on the products and services advertised in this issue, please use the Reader Service Card provided.

A	nose/mouth/ear/chest differences, 416-427	aromatic volatile organic compound
abatement	side orientation, 416–427 wind velocity, 416–427	dry cleaning worker, 466–471 human study, 466–471
asbestos, 208-217	capsaicin, 45–48	Korea, 466–471
lead, 313-321	acetonitrile, 45–48	asbestos
high-efficiency particulate air (HEPA) filter,	air sampling, 45–48	abatement, 208-217
482-493	detection limits, 45-48	occupational exposure
noise, 611–614, 615–621 acoustic rhinometry, nasal mucosal irritation, 711–716	filtration of, 45-48	emergency temporary standards, 208-217
acrylic, occupational exposure limit, 697–704	high performance liquid chromatography with	medical removal protection, 208-217
actinomycetes bacteria	fluorescence detection, 45–48	presumption of hazard in absence of exposure
aerosolization, 330-341	contaminant dispersion, 416–427	information, 208–217
paper mill, 330-341	dihydrocapsaicin, 45–48	Occupational Safety and Health Administration,
activated carbon testing, carbon tetrachloride replace-	acetonitrile, 45–48 air sampling, 45–48	208–217 rulemaking history, 208–217
ment compound, 494-507	detection limits, 45–48	use of historical and objective exposure data,
American National Standards Institute, 494–507	filtration of, 45–48	208-217
American Society for Testing and Materials, 494–	high performance liquid chromatography with	ASC/T GAC adsorbent, 288-294
507 breakthrough time comparisons, 494–507	fluorescence detection, 45-48	Aspergillus fumigatus
n-butane adsorption test, 494–507	ethyl 2-cyanoacrylate, 70-79	aerosolization, 330-341
chin-style canister, 494–507	hour time-weighted average samples, 70–79	paper mill, 330-341
cyclohexane, 494–507	peak concentrations of exposure, 70–79	aspiration efficiency, cascade impactor inlet, 19–27
ethyl acetate, 494-507	personal mean short-term airborne concentra-	aerodynamic diameters, 19–27
European approach, 494-507	tions, 70–79	monodisperse solid particles, 19–27
freon, 494–507	sampling time, 70–79 fenitrothion, 87–95	assigned protection factor class vs. model, 595–604
hexane, 494-507	formaldehyde, 689–696	defined, 96–100
Japanese approach, 494–507	methyl 2-cyanoacrylate, 70–79	direct testing, 595–604
National Institute for Occupational Safety and	hour time-weighted average samples, 70–79	supplied-air hood, 96–100
Health, 494–507	peak concentrations of exposure, 70–79	asthma
nonpowered air-purifying respirator cartridges, 494–507	personal mean short-term airborne concentra-	permissible exposure limit, adjustment for unusu-
pentane, 494–507	tions, 70–79	al work schedules, 584-594
powered air-purifying respirator cartridges, 494	sampling time, 70-79	toxicokinetic modeling, 584-594
507	omethoate, 87-95	automotive industry, 356-370
U.S. Bureau of Mines, 494-507	organophosphate pesticide, 87-95	
adaptation, 733-735	pepper and pickle processing plant, 45–48	В
aerodynamic adsorption, permeable chemical protec-	sampling method, 45–48	bacteria
tive suit, 559–562	sulfur hexafluoride, 416–427 tolclofos-methyl pesticide, 87–95	aerosolization, 330-341
bench-scale experiments, 559–562	toluene diisocyanate, 649–657	paper mill, 330-341
breakthrough curve calculation, 559–562	wake zone, 416–427	bearing manufacturing industry, metalworking fluid,
system assessment, 559–562 aerosol, 633–643	air sampling pump	379–382
actinomycetes bacteria, 330–341	A.P. Buck mini-Buck airflow rate meter, 472–476	beliefs and attitudes
aerosol filtration efficiency, 313-321	bios DryCal airflow rate meter, 472-476	hazardous waste worker, 236–245
Aspergillus fumigatus, 330-341	bubble burette meter, 472-476	respirator use, 236–245
bacteria, 330-341	calibration device, types compared, 472-476	bellows pump, interchangeability, 65–69 benzene
concentration in metalworking fluid, 379-382	electronic flow rate meter, 472-476	breath analysis, 28–35
emission source, 330-341	MSA Accuflow airflow rate meter, 472–476	breath concentration, 466-471
endotoxin, 330–341	Sensidyne Gilibrator airflow rate meter, 472–476	accumulated body burden, 466-471
gram-negative bacteria, 330–341	airborne infectious disease, ultraviolet germicidal ra- diation, 434-445	amount of solvent, 466-471
indoor sampling, cascade impactor inlet, 19–27 mold, 330–341	airborne particulate	bulk terminal, 176-194
paper mill effluent secondary treatment, 330-	carbon black, 218–228	downstream petroleum industry, 176–194
341	diesel exhaust, 218–228	dry cleaning worker, 466–471
size distribution in metalworking fluid, 379-382	soot, 218–228	field study, 28–35
aerosol mass concentration	aircraft, painting and sanding, 96-100	human study, 28–35, 466–471 indoor air, 466–471
face grinding machinery, 379-382	airflow rate, terpene, 172-175	literature review, 176–194
metalworking fluid, 379-382	American National Standards Institute	marine terminal, 176–194
microcentric grinding machinery, 379-382	activated carbon testing, carbon tetrachloride re-	occupational exposure, 176-194
progressive grinding machinery, 379–382	placement compound, 494-507	permeable chemical protective suit, 559-562
aerosol photometer	American National Standard Z88.2 (1992), 96-	petroleum industry, 176-194
37-mm closed face cassette sampler, 342–348 collocated thoracic cassette sampler, 342–348	100	pipeline, 176-194
metalworking fluid, 342–348	American Society for Testing and Materials, activated	rail terminal, 176-194
air sampling, 342–348	carbon testing, carbon tetrachloride replacement compound, 494–507	refinery, 176–194
calibration factor, 342–348	ammonia	long-term exposure, 176–194
air contaminant, 633-643, 649-657	emission source, 330-341	short-term exposure, 176–194 task-based exposure, 176–194
chemical dosimeter, 28-35	odor perception threshold, 330-341	service station, 176–194
air disinfection, ultraviolet germicidal radiation, 434-	odor concentration, 159-167	site remediation, 176–194
445	paper mill, 330-341	tank cleaning, 176–194
air draft, 141-148	in situ composting, 159-167	truck, 176–194
air sampling, 65-69	swinery, 159-167	underground storage tank, 176-194
aerosol photometer, metalworking fluid, 342-	analytical detection limit, nondetectable values, 195-	Berner Impactor, cascade impactor inlet, wood dus
348	198	size distribution, 19-27
analytical method, 45–48	Andersen Impactor, cascade impactor inlet, wood dust	biological monitoring
breathing zone, 416–427 back orientation, 416–427	size distribution, 19–27 A.P. Buck mini-Buck airflow rate meter, air sampling	fenitrothion, 87–95
facing orientation, 416–427	pump, calibration, 472–476	omethoate, 87–95 organophosphate pesticide, 87–95
movement effects, 416–427	Arjo lift, 508–511	tolclofos-methyl pesticide, 87–95
	,,	position menty. Production, 07 70

Bios DryCal airflow rate meter, air sampling pump,	calibration device, air sampling pump, types compared,	organic vapor air-purifying respirator cartridge,
calibration, 472–476 blasting	472–476 caproic, occupational exposure limit, 697–704	494–507 American National Standards Institute, 494–507
dust exposure, 457-465	capsaicin	American Society for Testing and Materials,
exposure assessment, 457–465	air analysis, 45–48	494-507
gas exposure, 457–465 nitrogen dioxide, 457–465	acetonitrile, 45–48 air sampling, 45–48	breakthrough time comparisons, 494–507 chin-style canister, 494–507
blinking frequency, eye irritation, 711–716	detection limits, 45–48	cyclohexane, 494–507
blood lead. see lead	filtration of, 45-48	ethyl acetate, 494-507
bottling worker	high performance liquid chromatography with	European approach, 494-507
ethyl 2-cyanoacrylate, 70–79	fluorescence detection, 45-48	freon, 494-507
methyl 2-cyanoacrylate, 70–79	pepper and pickle processing plant, 45-48	hexane, 494–507
brain imaging, chemosensory stimulation, 717–721 breath analysis	capture envelope circular hood, 199–207, 563–572	Japanese approach, 494–507 National Institute for Occupational Safety and
benzene, 28–35, 466–471	exterior hood, 199–207	Health, 494–507
chemical dosimeter, compared, 28–35	rectangular hood, cross drafts, 563-572	n-butane adsorption test, 494–507
components, 28-35	square hood, 563-572	nonpowered air-purifying respirator cartridges,
exposure assessment, 28–35	carbon black	494-507
field study, 28–35	aciniform particulate, 218–228	nonpowered front-mounted/back-mounted
hexane, 28–35	adsorbed organic compounds, 218–228 airborne particulate, 218–228	canisters, 494–507
methylene chloride, 28–35 toluene, 28–35	ash, 218–228	pentane, 494–507 powered air-purifying respirator cartridges,
trimethylbenzene, 28-35	chemical composition, 218–228	494-507
volatile compound	components, 218–228	U.S. Bureau of Mines, 494-507
exposure-tissue dose relationship, 28-35	decrease in exposure since 1980, 57-64	carboxylic acid
internal target tissue dose, 28-35	distributions of dust fractions, 57-64	occupational exposure limit value, 159-167
measurement interval, 28-35	human study, 57-64	in situ composting, 159–167
physiologically based pharmacokinetic model,	industrywide exposure assessment study, 57–64	swinery, 159–167
28-35	manufacturing processes, 218–228 material handling job, 57–64	threshold odor concentration, 159–167 3-carene
breath concentration benzene, 466–471	mutagenic activity, 218–228	occupational exposure limit value, 159–167
accumulated body burden, 466–471	Occupational Safety and Health Administration	in situ composting, 159-167
amount of solvent, 466–471	permissible exposure limit, 57-64	swinery, 159-167
ethylbenzene, 466-471	oil-furnace processes, 218-228	threshold odor concentration, 159-167
accumulated body burden, 466-471	organic compound, 218-228	cascade impactor inlet
amount of solvent, 466-471	biologic activity, 218–228	Andersen Impactor, 19–27
toluene, 466-471	physical characteristics, 218–228 polycyclic aromatic hydrocarbon, 218–228	aspiration efficiency, 19–27 aerodynamic diameters, 19–27
amount of solvent, 466-471	product baggers/packers/sackers, 57-64	monodisperse solid particles, 19–27
m,p-xylene, 466–471	respirable dust mean concentration, 57-64	Berner Impactor, 19–27
accumulated body burden, 466–471 amount of solvent, 466–471	solvent extractable fraction, 218-228	designs, 19-27
o-xylene, 466–471	soot, contrasted, 218-228	indoor aerosol sampling, 19-27
accumulated body burden, 466–471	total dust mean concentration, 57-64	Marple Personal Cascade Impactor, 19-27
amount of solvent, 466-471	total vs. respirable carbon black dust concentra-	Microorific Uniform Deposit Impactor, 19–27
breathing zone	tions, 57–64 U.S. carbon black manufacturing workers 1993–	particle sampling, 19–27 Sierra Impactor, 19–27
air sampling, 416-427	95, 57-64	standard shrouded inlet, 19–27
back orientation, 416–427	uses, 218-228	University of Washington Impactor, 19-27
facing orientation, 416–427	carbon dioxide, 330-341	vertical sampling tube, 19-27
movement effects, 416–427 nose/mouth/ear/chest differences, 416–427	carbon disulfide	wood dust size distribution, 19-27
side orientation, 416–427	chemical cartridge, 168–171	cassette organic monitor sampler
wind velocity, 416–427	viscose rayon worker, 168–171	hexamethylene-based isocyanate, 246–250
contaminant dispersion, 416-427	carbon monoxide, 330–341 carbon oxide	1-(2-methoxyphenyl) piperazine, 246–250 spray painting, 246–250
defined, 416-427	emission source, 330–341	centralized data collection system, 322–329
bubble burette meter, air sampling pump, calibration,	odor perception threshold, 330-341	chamber test method, 313-321
472-476	paper mill, 330-341	chemical cartridge
building remediation, 644–648	carbon tetrachloride, ethyl acetate, breakthrough times	carbon disulfide, 168-171
building-related illness fungus, 644–648	comparison, 494–507	end-of-service-life indicator, 168–171
mycotoxin, 644-648	carbon tetrachloride replacement compound activated carbon testing, 494–507	gas detector tube, 168–171 human study, 168–171
Stachybotrys mycotoxin, 644-648	American National Standards Institute, 494	organic solvent, 168–171
bulk terminal	507	viscose rayon worker, 168–171
benzene, 176-194	American Society for Testing and Materials,	chemical compound, secondary treatment of paper
hydrocarbon, 176-194	494-507	mill effluents, 330-341
Bullard CC2OTIC, 595-604	breakthrough time comparisons, 494-507	chemical dosimeter
n-butane adsorption test, 494–507	chin-style canister, 494–507	airborne contaminant level, 28–35
2,3-butanedione occupational exposure limit value, 159–167	cyclohexane, 494–507 ethyl acetate, 494–507	breath analysis, compared, 28–35 chemosensory stimulation
in situ composting, 159–167	European approach, 494–507	brain imaging, 717–721
swinery, 159–167	freon, 494–507	human study, 717–721
threshold odor concentration, 159-167	hexane, 494-507	Chemviron Carbon Ltd.'s ASC/T GAC adsorbent,
2-butanone	Japanese approach, 494-507	288-294
occupational exposure limit value, 159-167	National Institute for Occupational Safety and	chin-style canister, 494–507
in situ composting, 159–167	Health, 494–507	cholinesterase inhibitor
swinery, 159–167	n-butane adsorption test, 494–507 nonpowered air-purifying respirator cartridges,	permissible exposure limit, adjustment for unusu- al work schedules, 584–594
threshold odor concentration, 159–167 butyric, occupational exposure limit, 697–704	494–507	toxicokinetic modeling, 584–594
one, ne, occupational exposure limit, 077-704	pentane, 494–507	circular hood, capture envelope, 199–207, 563–572
_	powered air-purifying respirator cartridges,	closed-face sampling, metalworking fluid, 379-382
С	494–507	collocated thoracic cassette sampler, aerosol photom-
cabinet shop, 322-329	U.S. Bureau of Mines, 494-507	eter, 342-348

cabinet shop, 322-329

colorimetric tube, 65-69	air injection, 477-481	hexamethylene-based isocyanate, 246-250
comfort, respirator, 236-245	grip force, 477-481	1-(2-methoxyphenyl) piperazine, 246-250
commercial engine oil	vibration spectra, 477-481	spray painting, 246-250
lung	water injection, 477-481	dust, 633-643
alveolar walls, 49-56	work simulation, 477-481	dust collection
epithelial hyperplasia, 49-56	dermal absorption	cyclonic collection, 573-583
foamy macrophages, 49-56	fenitrothion, 87-95	filter bag collection, 573-583
lung weight, 49-56	omethoate, 87-95	high-efficiency particulate air (HEPA) exhaust fil
pulmonary hydroxyproline, 49–56	organic solvent, 12-18	ter, 313-321, 482-493
subchronic inhalation exposure, 49–56	organophosphate pesticide, 87–95	pickup efficiency, 313–321
communication, respirator, 236–245	tetrachloroethene, 12-18	vacuum cleaner, 573–583
community exposure assessment, 649–657	tolclofos-methyl pesticide, 87–95	wet dust collection, 573–583
composting. see in situ composting	toluene, 12–18	
	1,1,1-trichloroethane, 12–18	dust exposure
computational fluid dynamics modeling, push-pull		carbon black
ventilation system, 141–148	trichloroethene, 12-18	decrease in exposure since 1980, 57-64
air draft velocity, 141-148	urinary alkylphosphate, 87-95	distributions of dust fractions, 57-64
mathematical model, 141-148	xylene, 12–18	industrywide exposure assessment study, 57-
tank width, 141-148	diesel exhaust	64
concrete worker	airborne particulate, 218–228	relationship between total and respirable car
dust exposure, 457–465	diesel-engine soot, 218–228	bon black dust concentrations, 57-64
exposure assessment, 457-465	mutagenic activity, 218-228	respirable dust mean concentration, 57-64
gas exposure, 457-465	organic materials, 218-228	total dust mean concentration, 57-64
construct validity, 711–716	underground construction worker, 457-465	U.S. carbon black manufacturing worker
construction electrician, noise exposure, 615-621	diffusion model	1993-95, 57-64
activity/exposure record, 615-621	Drivas model, 149-158	comprehensive evaluation, 57-64
determinants of average exposure, 615-621	indoor air quality, 149-158	concrete worker, 457–465
8-hour time-weighted averages, 615-621	Markov chain, 149-158	
exposure exceedences, 615-621	diffusive sampler, reverse diffusion, 680-684	drill and blast crew, 457–465
construction industry, hearing conservation program,	dihydrocapsaicin	electrician, 457–465
615–621	air analysis, 45–48	human study, 57-64, 457-465
		pneumatic drilling, 457-465
containment control, fume hood, 303–312	acetonitrile, 45–48	shaft-drilling crew, 457-465
contaminant, nondetectable values, 195-198	air sampling, 45–48	shotcreting operator, 457-465
contaminant dispersion	detection limits, 45-48	tunnel-boring machine crew, 457-465
air sampling, 416-427	filtration of, 45–48	underground construction worker, 457-465
breathing zone, 416–427	high performance liquid chromatography with	8
continuing education	fluorescence detection, 45–48	
cost, 349-355	pepper and pickle processing plant, 45-48	E
distance education, 349-355	dimethyl disulfide, 330-341	
technology-enhanced learning, 349-355	dimethyl sulfide, 330-341	electrically neutral particulate filter, 633–643
cost	direct pressure comparison method, ventilation, 669-	electrician
continuing education, 349-355	679	dust exposure, 457–465
low-back injury, 508-511	airflow level, 669-679	gas exposure, 457-465
cost-benefit analysis	branch duct, 669-679	noise-induced hearing loss, 615-621
blood lead, 371–378	distal upper extremity morbidity, 229–235	electronic flow rate meter, air sampling pump, calibr
lead surveillance system, 371–378		tion, 472–476
	generic risk factor, 229–235	electrophysiological method, sensory irritation, 723
p-cresol	gloves, 229–235	729
occupational exposure limit value, 159–167	musculoskeletal risk assessment, 229–235	electrostatic attraction, particulate filter, 633-643
in situ composting, 159–167	negative predictive value, 229–235	embalming fluid, ventilation, 689-696
swinery, 159–167	positive predictive value, 229-235	emission source
threshold odor concentration, 159-167	sensitivity, 229–235	aerosolization, 330-341
cross draft	specificity, 229-235	
flanged circular hood	risk factor, 229-235	ammonia, 330–341
capture envelope, 199-207	Strain Index, 229–235	carbon oxide, 330–341
hood-model/wind-tunnel assembly, 199-207	negative predictive value, 229-235	nitrogen oxide, 330–341
laser Doppler anemometer, 199-207	positive predictive value, 229-235	organic acid, 330–341
flow field, 199-207	sensitivity, 229-235	sulfur compound, 330-341
Rankine body-of-revolution, 199-207	specificity, 229-235	terpene, 330-341
suction field capture envelope, 563-572	distance education	end-of-service-life indicator
crotonic, occupational exposure limit, 697-704	areas of study interest, 349-355	chemical cartridge, 168–171
cutting oil	continuing education, 349-355	gas detector tube, 168-171
lung	downstream petroleum industry	endotoxin
alveolar walls, 49-56	benzene, 176–194	aerosolization, 330-341
epithelial hyperplasia, 49–56	hydrocarbon, 176–194	paper mill, 330-341
foamy macrophages, 49–56	Draeger Accuro, interchangeability, 65–69	endurance, overhead assembly work, 446-456
1 1 10 20	1.01	epithelium damage, eye irritation, 711-716
pulmonary function test, 49–56	drill and blast crew	ergonomics
pulmonary hydroxyproline, 49–56	dust exposure, 457-465	ergonomics program, 508–511
	exposure assessment, 457–465	
subchronic inhalation exposure, 49–56	gas exposure, 457-465	hand tool, 428–433
cyanogen chloride, 288-294	Drivas model, diffusion model, 149-158	human study, 428-433, 446-456
cyclohexane, 494–507	dry cleaning worker	injury costs, 508–511
cyclonic collection	aromatic volatile organic compound, 466-471	intermittent overhead work, 446-456
dust collection, 573-583	benzene, 466-471	arm reach, 446-456
vacuum cleaner	ethylbenzene, 466–471	declines in muscle strength, 446-456
airflow rate, 573-583	Korea, 466-471	duty cycle, 446-456
collection efficiencies, 573-583	perchloroethylene, 466-471	endurance times, 446-456
particle emissions performance, 573-583	Solvent V, 466-471	evaluation of tasks, 446-456
reentrainment, 573-583	Super New Cleaner, 466-471	fatigue onset, 446-456
	toluene, 466-471	hand orientation, 446–456
	m,p-xylene, 466–471	perceived discomfort, 446-456
D	o-xylene, 466–471	low-back injury, 508–511
dental handpiece, vibration	YuClean, 466–471	nursing personnel, 508–511
acceleration, 477–481	dual-filter cassette	ethyl acetate, 494–507

carbon tetrachloride, breakthrough times com- parison, 494–507	respirator, 236–245 fenitrothion	end-of-service-life indicator, 168–171 gas chromatograph, compared, 168–171
occupational exposure limit, 730–732	air sampling, 87–95	hand pump, 65–69
sensory irritation, 730-732	biological monitoring, 87-95	gas exposure
ethyl 2-cyanoacrylate	cutaneous dose, 87–95	concrete worker, 457-465
air sampling, 70–79 8-hour time-weighted average samples, 70–79	gloves, 87–95 greenhouse worker, 87–95	drill and blast crew, 457–465
peak concentrations of exposure, 70–79	hand contamination, 87–95	electrician, 457–465 human study, 457–465
personal mean short-term airborne concentra-	human study, 87–95	pneumatic drilling, 457–465
tions, 70–79	protective clothing, 87-95	shaft-drilling crew, 457-465
sampling time, 70–79	respiratory dose, 87–95	shotcreting operator, 457-465
bottling worker, 70–79 human study, 70–79	urinary alkylphosphate, 87–95 fiber counting	tunnel-boring machine crew, 457–465
humidity, 70–79	bias in fiber counts, 281–287	underground construction worker, 457–465 gear oil
mixing operator, 70-79	computer simulation of particle overlap, 281-	lung
occupational exposure, 70-79	287	alveolar walls, 49-56
packaging worker, 70–79	effect of loading, 281–287	epithelial hyperplasia, 49-56
sensory irritation, 70–79 temperature, 70–79	fiber length and width distributions, 281–287 fiber-to-particle concentration ratio, 281–287	foamy macrophages, 49-56 lung weight, 49-56
waste-handling operation, 70–79	filter surface loading density, 281–287	pulmonary function test, 49–56
ethylbenzene	graticule field, 281-287	pulmonary hydroxyproline, 49–56
breath concentration, 466-471	resolution index, 281-287	subchronic inhalation exposure, 49-56
accumulated body burden, 466–471	size distributions of fibers and particles, 281–287	gender difference, intermittent overhead work, 446-
amount of solvent, 466–471	fibrous aerosol fiber counting	456
dry cleaning worker, 466–471 human study, 466–471	fiber-to-particle concentration ratio, 281–287	gloves distal upper extremity morbidity, 229–235
indoor air, 466–471	length and width distributions, 281–287	negative predictive value, 229–235
European Union	resolution index, 281-287	positive predictive value, 229-235
carbon tetrachloride substitute, 494–507	National Institute for Occupational Safety and	sensitivity, 229–235
Scientific Committee on Occupational Exposure Limits, 730–732	Health Method 7400, 281–287 thoracic preseparator, 281–287	specificity, 229–235 fenitrothion, 87–95
sensory irritant occupational exposure limits,	filter	omethoate, 87–95
697-704, 730-732	problems, 633-643	organophosphate pesticide, 87–95
exhalation resistance, respirator	selection, 633-643	tolclofos-methyl pesticide, 87-95
human subjects, 411–415	as size selectors for dust samplers, 633–643	gram-negative bacteria
hypoventilation, 411–415 maximal aerobic capacity, 411–415	types, 633–643 filter bag collection	aerosolization, 330–341 paper mill, 330–341
minute ventilation, 411–415	dust collection, 573–583	granulated activated carbon absorbent, respirator can-
oxygen consumption rates, 411-415	vacuum cleaner	ister, 288–294
performance time, 411–415	airflow rate, 573-583	adsorbent bed physical dimensions, 288-294
work performance, 411–415	collection efficiencies, 573–583	adsorbent depth, 288–294
exposure assessment breath analysis, 28–35	particle emissions performance, 573–583 reentrainment, 573–583	adsorbent quantity, 288–294 cross-sectional surface area, 288–294
concrete worker, 457–465	Finland, terpene, 172–175	cyanogen chloride chemisorption performance,
drill and blast crew, 457-465	fit-test. See respirator fit-testing program	288-294
electrician, 457–465	flanged circular hood, cross draft	linear flow velocity, 288–294
noise exposure, 615–621 pneumatic drilling, 457–465	capture envelope, 199–207 hood-model/wind-tunnel assembly, 199–207	pressure drop, 288–294 graticule field, fiber counting, 281–287
polyurethane foaming plant, 649–657	laser Doppler anemometer, 199–207	greenhouse worker
flawed methodology, 649-657	flow field	fenitrothion, 87-95
shaft-drilling crew, 457–465	cross draft, 199-207	omethoate, 87-95
shotcreting operator, 457–465	point-sink-plus-rectilinear-flow, 199–207	organophosphate pesticide, 87–95
toluene diisocyanate, 649–657 tunnel-boring machine crew, 457–465	Rankine body-of-revolution, 199–207 foam formation, eye irritation, 711–716	tolclofos-methyl pesticide, 87–95 grinding operation, metalworking fluid, 379–382
exposure concentration, nondetectable values, 195–	formaldehyde	grinding operation, metalworking fluid, 377–362
198	air sampling, 689-696	
exposure-tissue dose relationship, 28-35	ventilation, 689-696	Н
exterior hood, capture envelope, 199–207	short-term exposure limit, 689–696	habituation, 733–735
external validity, 711–716 eve irritation	3M passive formaldehyde dosimeter, 689–696 time weighted average exposure, 689–696	hand contamination fenitrothion, 87–95
blinking frequency, 711–716	freon, 494–507	omethoate, 87–95
dose-response relationship, 711-716	full-facepiece respirator, 411-415	organophosphate pesticide, 87-95
epithelium damage, 711–716	fume, 633-643	tolclofos-methyl pesticide, 87-95
foam formation, 711–716	fume hood	hand pump
hyperemia, 711–716 inflammation, 711–716	flow patterns, 303–312	designs, 65–69 gas detection tube, 65–69
measurements, 711–716	fully turbulent flow, 303–312	interchangeability, 65–69
sensitivity, specificity, and predictive value,	numerical simulation of airflow, 303-312	assessment, 65-69
711-716	rated face velocity, 303-312	initial pump vacuum, 65-69
quantitation methods, 711–716	recirculating flow volume, 303–312	pump flow curve, 65–69 pump flow profile, 65–69
questionnaires, 711–716 tear film stability, 711–716	sash opening, 303–312 unobstructed flow, 303–312	routine leak tests, 65–69
tear flow, 711–716	fungus	technical standards, 65-69
	building-related illness, 644-648	test gas measurement, 65-69
•	indoor air, 644-648	total volume, 65–69
F face grinding machinery		hand tool ergonomics, 428–433
aerosol mass concentration, 379–382	G	human study, 428–433
metalworking fluid, 379–382	gas chromatograph, gas detector tube, compared,	musculoskeletal disorder, 428–433
		sanding, 322-329
face validity, 711–716	168–171	
face validity, 711–716 fatigue overhead assembly work, 446–456	gas detector tube chemical cartridge, 168–171	hazard classification, 229–235 hazardous waste worker

beliefs and attitudes, 236-245	hand tools, 428-433	1
respirator, 236-245	hexane, 28–35	in situ composting
associated health symptoms, 236-245	intermittent overhead work, 446–456	ammonia, 159-167
communication, 236–245	lead, 371–378	2,3-butanedione, 159-167
concern about work exposure, 236–245 effect on vision, 236–245	metalworking fluid, 356–370 methyl 2-cyanoacrylate, 70–79	2-butanone, 159-167
fatigue, 236–245	methylene chloride, 28–35	carboxylic acid, 159-167
fit-testing, 236–245	noise exposure, 611-614, 615-621	3-carene, 159–167
frequency of use, 236-245	omethoate, 87–95	p-cresol, 159–167
personal comfort, 236-245	organophosphate pesticide, 87-95	hydrogen peroxide, during turning work, 159-
structural environment, 236-245	perchloroethylene, 466-471	167 budrogen culfide 159 167
training, 236-245	powered air-purifying respirator, 595-604	hydrogen sulfide, 159–167 3-hydroxy-2-butanone, 159–167
type of respirator, 236-245	respirator	ketone, 159–167
health-based recommended occupational exposure	exhalation resistance, 411-415	limonene, 159–167
limit, 733–735	factors affecting hazardous waste workers,	odor, 159-167
hearing conservation program	236-245	224-pinene, 159-167
construction industry, 615–621	telephone communication, 685-688	225-pinene, 159-167
Hispanic employee, 611–614 acculturation scale, 611–614	sensory irritation, 697–704	sulfur compound, 159-167
language and cultural barriers, 611–614	adaptation and habituation, 723–729	terpene, 159-167
noise-exposed employees with limited English	confounders, 723–729	volatile organic compound, 159-167
skills, 611–614	differences between odor and irritation, 723-	indicative limit value, sensory irritation, 730-732
hearing loss, electrician, 615–621	729	indoor air quality
hearing protective device, Hispanic employee, 611-	evaluation, 723–729	benzene, 466–471
614	toxicity, 723–729	diffusion model, 149–158
barriers to use, 611-614	Solvent V, 466–471	ethylbenzene, 466–471
knowledge, attitudes, and behavior, 611-614	Super New Cleaner, 466–471	fungus, 644–648
language and cultural barriers, 611-614	supplied-air respirator, 595–604	Markov chain
hepatonoic, occupational exposure limit, 697-704	tetrachloroethene, 12–18	advective flow patterns, 149–158
hexamethylene-based isocyanate	tolclofos-methyl pesticide, 87-95	air inlets and outlets, 149–158
cassette organic monitor sampler, 246-250	toluene, 28–35, 466–471	computational complexity, 149–158
dual-filter cassette, 246-250	1,1,1-trichloroethane, 12–18 trichloroethene, 12–18	contaminant removal mechanisms at specific room positions, 149–158
inhalable organic monitor sampler, 246-250		in-room reflective surfaces, 149–158
polyurethane foam cassette sampler, 246–250	trimethylbenzene, 28–35	modeling turbulent diffusion and advection,
polyurethane foam inhalable organic monitor	tunnel construction, 457–465 woodworking shop, inhalable dust exposures,	149–158
sampler, 246–250	322–329	probabilistic, 149-158
hexane, 494–507	m,p-xylene, 466–471	single-state transition probabilities, 149-158
breath analysis, 28-35	o-xylene, 466–471	mycotoxin, 644-648
human study, 28–35	YuClean, 466–471	perchloroethylene, 466-471
high-efficiency particulate air (HEPA) filter	humidity	Solvent V, 466-471
aerosol concentration upstream of HEPA filter,	ethyl 2-cyanoacrylate, 70–79	Stachybotrys mycotoxin, 644-648
313–321	methyl 2-cyanoacrylate, 70–79	Super New Cleaner, 466-471
aerosol filtration efficiency, 313–321 chamber test method, 313–321	hydraulic stretcher, 508–511	toluene, 466-471
collection efficiency, 482–493	hydrocarbon	m,p-xylene, 466-471
dust pickup efficiency, 313-321	bulk terminal, 176–194	o-xylene, 466–471
filtration characteristics, 313-321	downstream petroleum industry, 176-194	YuClean, 466-471
industrial vs. household, 482-493	literature review, 176–194	inductively coupled plasma-mass spectrometry, 295-
lead abatement, 313-321, 482-493	marine terminal, 176-194	302
optical particle size spectrometer, 313-321	occupational exposure, 176-194	industrial ventilation system, 401–410
overall filtration efficiency, 313-321	petroleum industry, 176-194	industrywide exposure assessment study, 57–64
particle emission characteristics, 482-493	pipeline, 176-194	inflammation, eye irritation, 711–716
particle reaerosolization, 313–321	rail terminal, 176-194	inhalable organic monitor sampler
particulate emission characteristics, 313-321	refinery, 176-194	hexamethylene-based isocyanate, 246–250
probed testing method, 313-321	long-term exposure, 176-194	1-(2-methoxyphenyl) piperazine, 246–250
wet surfaces, 482-493	short-term exposure, 176-194	spray painting, 246–250 inhalation exposure
high-frequency vibration, dental handpiece, 477-481	task-based exposure, 176-194	tetrachloroethene, 12–18
Hispanic employee	service station, 176-194	toluene, 12–18
hearing conservation program, 611–614	site remediation, 176-194	1,1,1-trichloroethane, 12–18
acculturation scale, 611-614 language and cultural barriers, 611-614	tank cleaning, 176-194	trichloroethene, 12-18
hearing protective device, 611–614	truck, 176-194	xylene, 12–18
barriers to use, 611-614	underground storage tank, 176-194	insecticide, ion mobility spectrometric monitoring,
knowledge, attitudes, and behavior, 611-614	hydrogen peroxide	80–86
language and cultural barriers, 611–614	occupational exposure limit value, 159-167	from foliage, 80-86
historical exposure data, 208-217	in situ composting, 159-167	greenhouse, 80-86
hobbing, metalworking fluid, 356-370	swinery, 159-167	linearly proportional to concentration of Phos-
hood static pressure method, ventilation, 669-679	threshold odor concentration, 159-167	drin, 80-86
airflow level, 669-679	turning work, 159-167	time after spraying of Phosdrin, 80-86
branch duct, 669-679	hydrogen sulfide, 330–341	interchangeability
Hoyer lift, 508-511	occupational exposure limit value, 159-167	bellows pump, 65-69
human study	in situ composting, 159–167	Draeger Accuro, 65-69
aromatic volatile organic compound, 466-471	swinery, 159–167	hand pump, 65–69
benzene, 28–35, 466–471	threshold odor concentration, 159–167	assessment, 65-69
chemical cartridge, 168–171	3-hydroxy-2-butanone	initial pump vacuum, 65–69
chemosensory stimulation, 717–721	occupational exposure limit value, 159–167	pump flow curve, 65–69
dust exposure, 457–465	in situ composting, 159–167	pump flow profile, 65–69
ergonomics, 428–433 ethyl 2-cyanoacrylate, 70–79	swinery, 159–167 threshold odor concentration, 159–167	routine leak tests, 65–69
ethylbenzene, 466–471	hydroxyproline, 49–56	technical standards, 65–69
fenitrothion, 87–95	hyperemia, eye irritation, 711–716	test gas measurement, 65-69 total volume, 65-69
gas exposure, 457–465	hypoventilation, 411–415	Matheson-Kitagawa 8104-400A, 65–69
Our enpoune, to too	"/Po-chimion, 111 110	Manieson rambana 0101-10011, 00-07

MSA Kwik-Draw, 65-69	lead concentration range, 295-302	marine terminal
piston hand pump, 65-69	portable microfluidics/electrochemical device,	benzene, 176-194
RAE Systems LP-1200, 65-69	295-302	hydrocarbon, 176-194
Sensidyne/Gastec GV/100, 65-69	saliva lead analysis, 295-302	Markov chain
intermittent overhead work	saliva-blood lead relationship, 295–302	diffusion model, 149-158
ergonomics, 446–456	saliva analysis, 295-302	indoor air quality
arm reach, 446–456	surveillance system	advective flow patterns, 149–158
declines in muscle strength, 446–456 duty cycle, 446–456	amounts of penalties, 371–378	air inlets and outlets, 149–158
endurance times, 446–456	cost-benefit analysis, 371–378 followup of companies identified, 371–378	computational complexity, 149–158
evaluation of tasks, 446–456	inspection effectiveness, 371–378	contaminant removal mechanisms at specific room positions, 149–158
fatigue onset, 446–456	number of citations, 371–378	in-room reflective surfaces, 149–158
hand orientation, 446-456	statewide laboratory-based blood lead surveil-	modeling turbulent diffusion and advection,
perceived discomfort, 446-456	lance system effectiveness, 371-378	149-158
gender difference, 446-456	total cost to identify lead-exposed workers,	probabilistic, 149-158
human study, 446-456	371-378	single-state transition probabilities, 149-158
shoulder, 446-456	violations of specific lead standard compo-	Marple Personal Cascade Impactor, 19-27
internal target tissue dose, 28-35	nents, 371–378	material handling job, carbon black, 57-64
internal validity, 711–716	lead abatement, 313-321	Matheson-Kitagawa 8104-400A, interchangeability,
ion mobility spectrometer	high-efficiency particulate air (HEPA) filter, 482–	65-69
aspiration-type, 80–86	493	mathetical model, respirator fit-testing program
insecticide, 80–86 from foliage, 80–86	limonene	accuracy of fit-testing method, 36–44 number of fit-test trials, 36–44
greenhouse, 80–86	occupational exposure limit value, 159–167 in situ composting, 159–167	number of workers failing fit-test, 36-44
linearly proportional to concentration of Phos-	swinery, 159–167	respirator fitting characteristics, 36–44
drin, 80–86	threshold odor concentration, 159–167	Maxilift, 508–511
time after spraying of Phosdrin, 80–86	literature review	maximum likelihood estimation
ion mobility distribution, 80–86	benzene, 176-194	spreadsheet software, 195-198
measuring electrode, 80-86	hydrocarbon, 176-194	values below detection limit, 195-198
mevinphos, 80-86	mycotoxin	measurement interval, 28-35
from foliage, 80-86	case definitions, 644-648	meat-processing operation, knife steeling schedule,
greenhouse, 80-86	exposure assessment, 644-648	428-433
linearly proportional to concentration of Phos-	petroleum industry, 176–194	mechanical lifting device, 508-511
drin, 80–86	low-back injury	mercury discharge lamp, ultraviolet germicidal radia-
time after spraying of Phosdrin, 80–86	cost, 508–511	tion, 434–445
operation principle, 80–86	ergonomics program, 508–511	metal shavings, ventilation, 401–410
pattern recognition, 80–86 Phosdrin, 80–86	nursing personnel	metalworking fluid
from foliage, 80–86	cost, 508–511 lost workdays, 508–511	aerosol concentration, 379–382 aerosol mass concentration, 379–382
greenhouse, 80–86	lung	aerosol photometer, 342–348
isobutyric, occupational exposure limit, 697–704	commercial engine oil	calibration factor, 342–348
isocaproic, occupational exposure limit, 697–704	alveolar walls, 49–56	aerosol size distribution, 379-382
isocyanate, polyurethane foam inhalable organic mon-	epithelial hyperplasia, 49-56	bearing manufacturing industry, 379-382
itor sampler, 246-250	foamy macrophages, 49-56	closed-face sampling, 379-382
isovaleric, occupational exposure limit, 697-704	lung weight, 49-56	face grinding machinery, 379-382
	pulmonary function test, 49-56	grinding, 356-370, 379-382
J	pulmonary hydroxyproline, 49-56	hobbing, 356–370
Japan, carbon tetrachloride substitute, 494-507	cutting oil	human study, 356-370
**	alveolar walls, 49–56	machine shop, 342-348, 356-370
K	epithelial hyperplasia, 49–56	particle size distribution, 356–370
ketone	foamy macrophages, 49–56	recommended exposure limit, 356–370
occupational exposure limit value, 159-167	lung weight, 49–56 pulmonary function test, 49–56	thoracic particulate exposure, 356–370 microcentric grinding machinery, 379–382
in situ composting, 159-167	pulmonary hydroxyproline, 49–56	NIOSH proposed exposure limit, 379–382
swinery, 159–167	gear oil	open-face filter sampling, 379–382
threshold odor concentration, 159-167	alveolar walls, 49–56	particle size, 379–382
knife steeling schedule	epithelial hyperplasia, 49-56	progressive grinding machinery, 379-382
meat-processing operation, 428-433	foamy macrophages, 49-56	short-term exposure, 342-348
poultry operation, 428–433	lung weight, 49-56	straight oils and soluble fluids, 356-370
Korea	pulmonary function test, 49-56	turning, 356-370
aromatic volatile organic compound, 466–471	pulmonary hydroxyproline, 49-56	methacrylic, occupational exposure limit, 697-704
dry cleaning worker, 466-471	mineral oil	methemoglobinenia-causing agent
	alveolar walls, 49-56	permissible exposure limit, adjustment for unusu-
L	epithelial hyperplasia, 49–56	al work schedules, 584–594
language skills, hearing conservation program, 611-	foamy macrophages, 49–56	toxicokinetic modeling, 584–594
614	lung weight, 49–56	1-(2-methoxyphenyl) piperazine
laser Doppler anemometer, 199-207	pulmonary function test, 49–56	cassette organic monitor sampler, 246–250
lead	pulmonary hydroxyproline, 49–56 petroleum lubricant	dual-filter cassette, 246–250 inhalable organic monitor sampler, 246–250
human study, 371–378 microanalytical system, 295–302	alveolar walls, 49–56	polyurethane foam cassette sampler, 246–250
inductively coupled plasma-mass spectrometry,	epithelial hyperplasia, 49–56	polyurethane foam inhalable organic monitor
295–302	foamy macrophages, 49–56	sampler, 246–250
lead concentration range, 295–302	lung weight, 49–56	methyl 2-cyanoacrylate
portable microfluidics/electrochemical device,	pulmonary function test, 49–56	air sampling, 70-79
295–302	pulmonary hydroxyproline, 49-56	8-hour time-weighted average samples, 70-79
saliva lead analysis, 295-302		peak concentrations of exposure, 70-79
saliva-blood lead relationship, 295-302		personal mean short-term airborne concentra-
noninvasive monitoring, 295-302	M	tions, 70–79
physiologically based pharmacokinetic model,	machine shop, metalworking fluid, 342–348, 356–370	sampling time, 70–79
295–302	particle size distribution, 356–370	human study, 70–79
inductively coupled plasma-mass spectrometry,	recommended exposure limit, 356–370	humidity, 70–79
295–302	thoracic particulate exposure, 356-370	mixing operator, 70–79

occupational exposure, 70–79 packaging worker, 70–79	case definitions, 644–648 exposure assessment, 644–648	isocaproic, 697–704 isovaleric, 697–704
sensory irritation, 70–79	exposure assessment, 044-048	ketone, 159–167
temperature, 70–79		limonene, 159–167
waste-handling operation, 70–79	N	methacrylic, 697-704
methyl bromide, 717–721	nasal mucosal irritation	odor, 159-167
methyl mercaptan, 330-341	acoustic rhinometry, 711–716	pentenoic, 697-704
methylene chloride	dose-response relationship, 711–716	224-pinene, 159-167
breath analysis, 28-35	measurements, 711–716	225-pinene, 159-167
human study, 28-35	sensitivity, specificity, and predictive value,	propiolic, 697-704
mevinphos, ion mobility spectrometric monitoring,	711-716	sensory irritant, 717–721
80-86	nasal inflammation, 711–716 quantitation methods, 711–716	adaptation vs. habituation, 723-729, 733-73.
from foliage, 80-86	questionnaires, 711–716	animal vs. human data, 733-735
greenhouse, 80-86	rhinostereometry, 711–716	confounders, 723-729
linearly proportional to concentration of Phos-	National Institute for Occupational Safety and Health	differences between odor and irritation, 723
drin, 80-86	Method 7400, fibrous aerosol, 281–287	729
time after spraying of Phosdrin, 80-86	noise exposure metric, 615–621	European Union approaches, 697-704, 730
microanalytical system, lead, 295-302	respirator certification program, 36-44	732
inductively coupled plasma-mass spectrometry,	Netherlands, sensory irritant occupational exposure	evaluation, 723-729
295-302	limits, 733–735	Netherlands approaches, 733–735
lead concentration range, 295–302	animal vs. human data, 733–735	symposia reports, 697–704
portable microfluidics/electrochemical device,	nitric oxide, 330–341	toxicity, 723-729
295–302	nitrogen dioxide	sulfur compound, 159–167
saliva lead analysis, 295–302	blasting cloud, 457–465	terpene, 159-167
saliva-blood lead relationship, 295-302	underground construction worker, 457–465	during turning work, 159–167
microcentric grinding machinery	nitrogen oxide	valeric, 697–704
aerosol mass concentration, 379-382	emission source, 330-341	volatile organic compound, 159–167
metalworking fluid, 379–382	odor perception threshold, 330-341	occupational morbidity, U.S. Bureau of Labor Statis
Microorific Uniform Deposit Impactor, cascade im-	paper mill, 330-341	tics annual survey of occupational injuries and il
pactor inlet, wood dust size distribution, 19-27	noise exposure, 611-614, 615-621	nesses, 622-632
mineral oil	construction electrician, 615-621	frequency, 622–632
lung	activity/exposure record, 615-621	incidence rate, 622–632
alveolar walls, 49–56	determinants of average exposure, 615-621	severity, 622–632
epithelial hyperplasia, 49–56	8-hour time-weighted averages, 615-621	Occupational Safety and Health Administration
foamy macrophages, 49-56	exposure exceedences, 615-621	asbestos, 208–217
lung weight, 49-56	construction industry, 615-621	emergency temporary standards, 208-217
pulmonary function test, 49–56	employees with limited English skills, 611-614	medical removal protection, 208–217
pulmonary hydroxyproline, 49–56	exposure assessment, 615-621	presumption of hazard in absence of exposur
subchronic inhalation exposure, 49–56	human study, 611-614, 615-621	information, 208–217
Minnesota Wood Dust Study, 322–329	National Institute for Occupational Safety and	rulemaking history, 208–217
mist, 633–643	Health exposure metric, 615-621	use of historical and objective exposure data
mixing operator	Occupational Safety and Health Administration	208–217
ethyl 2-cyanoacrylate, 70–79	permissible exposure limit, 615-621	On-Site Consultation Program, Ohio Bureau o
methyl 2-cyanoacrylate, 70–79 mold	noninvasive monitoring	Employment Services, 605–610
	lead, 295-302	Safety and Health Program Assessment Worl
aerosolization, 330–341 paper mill, 330–341	saliva analysis, 295-302	sheet (Form 33), 605–610 indicators of Timely Hazard Control and A
morbidity classification, 229–235	nonpowered air-purifying respirator cartridges, 494-	countability, 605-610
mortician, 689–696	507	indicators of Timely Hazard Control an
mortuary facility, ventilation, 689-696	nonpowered front-mounted/back-mounted canisters,	Emergency Planning and Preparation, 605
MSA Accuflow airflow rate meter, air sampling pump,	494-507	610
calibration, 472–476	North 76008A full-facepiece air-purifying respirator,	predictors of other-than-serious violation
MSA Advantage 1000 full-facepiece air-purifying res-	685-688	605-610
pirator, 685-688	North Model 85302 T, 595-604	predictors of regulatory violations, 605–610
MSA Kwik-Draw, interchangeability, 65-69	North Model 85302 TB, 595-604	predictors of regulatory violations, 605–610
MSA VERSA-Hood, 595–604	nursing	odor
multilouvered germicidal fixture	ergonomics program, 508-511	occupational exposure limit value, 159–167
airflow field, 434–445	low-back injury	odor irritation, 697–704
effectiveness, 434-445	cost, 508-511	odor perception threshold
emission characteristics, 434-445	lost workdays, 508-511	ammonia, 330–341
musculoskeletal disorder	musculoskeletal injury, 508-511	carbon oxide, 330-341
ergonomics, 428-433		nitrogen oxide, 330–341
hand tool, 428-433	0	odor concentration, 159-167
nursing injury, 508-511	objective exposure data, 208-217	organic acid, 330–341
United States Bureau of Labor Statistics annual	occupational estimation of nondetectable values, 195-	sulfur compound, 330–341
survey of occupational injuries and illnesses,	198	terpene, 330–341
622-632	occupational exposure limit	in situ composting, 159–167
musculoskeletal risk assessment, distal upper extremity	acrylic, 697–704	swinery, 159–167
morbidity, 229-235	2,3-butanedione, 159–167	Ohio Bureau of Employment Services
negative predictive value, 229-235	2-butanone, 159–167	Occupational Safety and Health Administration
positive predictive value, 229-235	butyric, 697-704	On-Site Consultation Program, 605-610
sensitivity, 229–235	caproic, 697–704	safety and health consultation services, 605-61
specificity, 229-235	carboxylic acid, 159–167	oil mist, 356-370
mutagenic activity	3-carene, 159–167	underground construction worker, 457–465
carbon black, 218–228	p-cresol, 159–167	olfaction
diesel-engine soot, 218–228	crotonic, 697–704	cognitive characteristics, 705–710
soot, 218–228	ethyl acetate, 730–732	mechanisms, 705–710
mycotoxin	hepatonoic, 697–704	physicochemical properties, 705–710
building remediation, 644–648	hydrogen peroxide, 159–167	physicochemical properties, 705–710 physiological characteristics, 705–710
building-related illness, 644–648	hydrogen sulfide, 159–167	psychophysical methods for assessment, 705–71
indoor air, 644-648	3-hydroxy-2-butanone, 159–167	psychophysical procedures, 705–710
literature review	isobutyric, 697–704	response measurement, 705–710
metature review	isobutyne, 077-707	response measurement, /05-/10

volatile chemical	respirator, 96-100	benzene, 176-194
annoyance, 705–710	strontium chromate, 96–100	hydrocarbon, 176–194
irritation, 705–710 odor, 705–710	supplied-air hood, 96–100 workplace protection factor, 96–100	literature review, 176–194 petroleum lubricant
olfactory receptor neuron, 717-721	paper mill	lung
omethoate	actinomycetes bacteria, 330-341	alveolar walls, 49-56
air sampling, 87–95	ammonia, 330–341	epithelial hyperplasia, 49–56
biological monitoring, 87–95 cutaneous dose, 87–95	Aspergillus fumigatus, 330–341 bacteria, 330–341	foamy macrophages, 49–56 lung weight, 49–56
gloves, 87–95	bioaerosol, 330-341	pulmonary function test, 49–56
greenhouse worker, 87-95	carbon oxide, 330-341	pulmonary hydroxyproline, 49-56
hand contamination, 87–95	chemical compounds, 330-341	subchronic inhalation exposure, 49-56
human study, 87–95 protective clothing, 87–95	endotoxin, 330–341 gram-negative bacteria, 330–341	Phosdrin, ion mobility spectrometric monitoring, 80-
respiratory dose, 87–95	mold, 330–341	from foliage, 80–86
urinary alkylphosphate, 87-95	nitrogen oxide, 330-341	greenhouse, 80–86
open surface tank, 141-148	organic acid, 330-341	linearly proportional to concentration of Phos-
open-face filter sampling, metalworking fluid, 379–382	secondary treatment of paper mill effluents, 330– 341	drin, 80–86 time after spraying of Phosdrin, 80–86
organic acid	sulfur compound, 330–341	physiologically based pharmacokinetic model, 28–35
emission source, 330-341	terpene, 330-341	lead, 295–302
odor perception threshold, 330-341	paraformaldehyde preservative powder, 689-696	inductively coupled plasma-mass spectrometry,
paper mill, 330–341	particulate, 633-643	295-302
organic compound ash, 218–228	reaerosolization, 313–321 sampling, cascade impactor inlet, 19–27	lead concentration range, 295–302 portable microfluidics/electrochemical device,
carbon black, 218–228	size in metalworking fluid, 379–382	295–302
biologic activity, 218-228	particulate carbon, types, 218-228	saliva lead analysis, 295-302
soot, 218-228	particulate filter	saliva-blood lead relationship, 295–302
organic solvent chemical cartridge, 168–171	diffusional motion of airborne particles, 633–643 electrostatic attraction, 633–643	pilocarpine, 295–302 pine, terpene
dermal absorption, 12–18	fiber diameter, 633–643	emission rates, 172–175
organic solvent vapor, chemical cartridge, 168-171	initial efficiency, 633-643	mass balance models, 172-175
organic vapor air-purifying respirator cartridge, carbon	lifetime vs. efficiency, 633-643	224-pinene
tetrachloride replacement compound, 494–507 American National Standards Institute, 494–507	optimum respiratory protection vs. maximum fil- tration efficiency, 633–643	occupational exposure limit value, 159–167 in situ composting, 159–167
American Society for Testing and Materials, 494	selection, 633-643	swinery, 159–167
507	pentane, 494-507	threshold odor concentration, 159-167
breakthrough time comparisons, 494-507	pentenoic, occupational exposure limit, 697-704	225-pinene
chin-style canister, 494–507	pepper and pickle processing plant	occupational exposure limit value, 159–167
cyclohexane, 494–507 ethyl acetate, 494–507	air analysis, 45–48 capsaicin, 45–48	in situ composting, 159–167 swinery, 159–167
European approach, 494–507	dihydrocapsaicin, 45–48	threshold odor concentration, 159–167
freon, 494-507	perchloroethylene	pipeline
hexane, 494–507	dry cleaning worker, 466-471	benzene, 176–194
Japanese approach, 494–507 National Institute for Occupational Safety and	human study, 466–471 indoor air, 466–471	hydrocarbon, 176–194 piston hand pump, interchangeability, 65–69
Health, 494–507	permeable chemical protective suit	pneumatic drilling
n-butane adsorption test, 494-507	aerodynamic adsorption, 559-562	dust exposure, 457-465
nonpowered air-purifying respirator cartridges,	bench-scale experiments, 559–562	exposure assessment, 457–465
494-507 nonpowered front-mounted/back-mounted can-	breakthrough curve calculation, 559–562 system assessment, 559–562	gas exposure, 457–465 point-sink-plus-rectilinear-flow, flow field, 199–207
isters, 494–507	benzene, 559–562	polycyclic aromatic hydrocarbon, carbon black, 218-
pentane, 494-507	permeation rate	228
powered air-purifying respirator cartridges, 494-	tetrachloroethene, 12-18	polyurethane foam cassette sampler
507	linear system dynamics method, 12–18	hexamethylene-based isocyanate, 246–250
U.S. Bureau of Mines, 494–507 organophosphate pesticide	maximal permeation rate, 12–18 toluene, 12–18	1-(2-methoxyphenyl) piperazine, 246–250 spray painting, 246–250
air sampling, 87–95	linear system dynamics method, 12–18	polyurethane foam inhalable organic monitor sampler
biological monitoring, 87-95	maximal permeation rate, 12-18	hexamethylene-based isocyanate, 246-250
cutaneous dose, 87–95	1,1,1-trichloroethane, 12–18	isocyanate, 246–250
gloves, 87–95 greenhouse worker, 87–95	linear system dynamics method, 12–18 maximal permeation rate, 12–18	1-(2-methoxyphenyl) piperazine, 246–250 spray painting, 246–250
hand contamination, 87–95	trichloroethene, 12–18	polyurethane foaming plant
human study, 87-95	linear system dynamics method, 12-18	exposure assessment, 649-657
protective clothing, 87-95	maximal permeation rate, 12-18	flawed methodology, 649-657
respiratory dose, 87–95	xylene, 12-18	resident complaints, 649–657
urinary alkylphosphate, 87–95 overexertion, United States Bureau of Labor Statistics	linear system dynamics method, 12–18 maximal permeation rate, 12–18	poultry operation, knife steeling schedule, 428–433 power tool, sanding, 322–329
annual survey of occupational injuries and illnesses,	permissible exposure limit	powered air-purifying respirator
622-632	adjustment for unusual work schedules, 584-594	cartridges, 494-507
overhead assembly work	asthma, 584–594	human study, 595–604
endurance, 446–456	carbon black, 57–64	loose-fitting facepiece, 595-604 selection, 595-604
fatigue, 446–456	cholinesterase inhibitor, 584–594 methemoglobinenia-causing agent, 584–594	simulated workplace protection factor study
_	noise exposure, 615–621	595-604
P	reproductive system toxicant, 584-594	precision, 711–716
packaging worker	respiratory sensitizer, 584–594	predictive validity
ethyl 2-cyanoacrylate, 70–79 methyl 2-cyanoacrylate, 70–79	skin sensitizer, 584–594 teratogen, 584–594	risk factor, 229–235 Strain Index, 229–235
	clatogett, our o/r	Struit Index, was all
		predictive value, 711–716
painting aircraft, 96–100	tissue irritant, 584–594 tissue toxicant, 584–594	predictive value, 711–716 pressure ratio method, ventilation, 669–679 airflow level, 669–679

1 1 1 . ((0 (70	C. W W. C. C 26 44	Line
branch duct, 669–679	failing to qualify for use, 36–44	rhinostercometry, nasal mucosal irritation, 711–716
probed testing method, 313–321	fit-test accuracy, 36–44	risk factor
product baggers/packers/sackers, carbon black, 57-	fitting characteristics, 36-44	distal upper extremity morbidity, 229–235
64	assessment, 36–44	predictive validity, 229–235
progressive grinding machinery	public health and economic benefits, 36-44	
aerosol mass concentration, 379-382	hazardous waste worker, 236-245	_
metalworking fluid, 379-382	associated health symptoms, 236-245	S
propiolic, occupational exposure limit, 697-704	communication, 236-245	safety and health consultation services, Ohio Bureau of
protective clothing	concern about work exposure, 236–245	Employment Services, 605-610
		Safety and Health Program Assessment Worksheet
fenitrothion, 87–95	effect on vision, 236–245	
omethoate, 87-95	fatigue, 236–245	(Form 33), 605–610
organophosphate pesticide, 87-95	fit-testing, 236–245	indicators of Hazard Identification (Self-Inspec-
tolclofos-methyl pesticide, 87-95	frequency of use, 236–245	tion) and Emergency Planning and Preparation
psychophysiological method, sensory irritation, 723-	personal comfort, 236–245	(Equipment), 605–610
729	structural environment, 236-245	indicators of Timely Hazard Control and Ac-
pulmonary function test, subchronic inhalation expo-	training, 236-245	countability, 605-610
sure, 49-56	type of respirator, 236-245	indicators of Timely Hazard Control and Emer-
pulmonary hydroxyproline, 49–56	human study	gency Planning and Preparation, 605-610
pulp mill, 330–341	factors affecting hazardous waste workers,	predictors of other-than-serious violations, 605-
pump flow curve, 65-69	236–245	610
push-pull ventilation system, computational fluid dy-	telephone communication, 685–688	predictors of regulatory violations, 605-610
namics modeling, 141–148	monitoring first-time fit-testing results, 36-44	predictors of serious violations, 605–610
air draft velocity, 141-148	National Institute for Occupational Safety and	saliva analysis
mathematical model, 141-148	Health respirator certification program, 36-44	lead, 295-302
tank width, 141-148	painting, 96-100	noninvasive monitoring, 295-302
	protection factor table, 595–604	sanding
Q	sanding, 96–100	aircraft, 96-100
224-quartz, underground construction worker, 457-	selection, 36-44	hand tool, 322-329
465	telephone communication, 685–688	handheld powered tool, 322-329
403	accuracy, 685-688	respirator, 96–100
	communications protocol, 685-688	stationary tool, 322-329
R	electronic amplification of speech diaphragm	strontium chromate, 96-100
	signal, 685–688	supplied-air hood, 96-100
Racal AirMate 3 loose-fitting powered air-purifying		
respirator, 685-688	recognition speed, 685–688	workplace protection factor, 96–100
Racal BE-5, 595-604	speed, 685-688	Sarita lift, 508–511
Racal BE-10, 595-604	word comprehension, 685-688	sawmill
Racal BE-12, 595-604	respirator canister	Finland, 172–175
RAE Systems LP-1200, interchangeability, 65-69	design, 288-294	terpene
rail terminal	granulated activated carbon absorbent, 288-294	airflow rate, 172-175
benzene, 176-194	adsorbent bed physical dimensions, 288-294	emissions characterization, 172-175
	adsorbent depth, 288–294	emissions control, 172–175
hydrocarbon, 176–194		
Rankine body-of-revolution	adsorbent quantity, 288–294	saw-sharpening operation, ventilation, 401–410
cross draft, 199-207	cross-sectional surface area, 288-294	Scientific Committee on Occupational Exposure Lim-
flow field, 199-207	cyanogen chloride chemisorption perfor-	its, European Union, 730–732
RD50 mouse bioassay, sensory irritant, 697-704	mance, 288-294	Sensidyne Gilibrator airflow rate meter, air sampling
rectangular hood	linear flow velocity, 288-294	pump, calibration, 472–476
aspect ratios, 563-572	pressure drop, 288-294	Sensidyne/Gastec GV/100, interchangeability, 65-69
capture envelope, cross drafts, 563-572	service life prediction, 288-294	sensitivity, 711-716
floor characteristics, 563-572	respirator fit-testing program	sensory irritation
	mathetical model	electrophysiological method, 723–729
hood openings, 563–572		
suction field, 563–572	accuracy of fit-testing method, 36–44	ethyl 2-cyanoacrylate, 70–79
refinery	number of fit-test trials, 36-44	ethyl acetate, 730-732
benzene, 176-194	number of workers failing fit-test, 36-44	factors influencing, 723–729
long-term exposure, 176-194	respirator fitting characteristics, 36-44	human study, 697–704
short-term exposure, 176-194	respirator program administrator, 36-44	adaptation and habituation, 723-729
task-based exposure, 176-194	respirator program administrator	confounders, 723-729
hydrocarbon, 176-194	respirator fit-testing program, 36-44	differences between odor and irritation, 723-
long-term exposure, 176–194	respirator selection, 36-44	729
	respiratory dose	evaluation, 723-729
short-term exposure, 176–194		
task-based exposure, 176–194	fenitrothion, 87–95	toxicity, 723–729
reliability, 711–716	omethoate, 87-95	indicative limit value, 730–732
reproductive system toxicant	organophosphate pesticide, 87-95	mechanism, 697–704
permissible exposure limit, adjustment for unusu-	tolclofos-methyl pesticide, 87–95	methyl 2-cyanoacrylate, 70-79
al work schedules, 584-594	urinary alkylphosphate, 87-95	objective assays, 723-729
toxicokinetic modeling, 584-594	respiratory sensitizer	occupational exposure limit, 717–721
respirable dust	permissible exposure limit, adjustment for unusu-	adaptation ps. habituation, 723-729, 733-735
mean concentration, 57-64	al work schedules, 584-594	animal vs. human data, 733–735
	toxicokinetic modeling, 584–594	confounders, 723–729
underground construction worker, 457-465		
respirator. see also specific type	respiratory tract irritation	differences between odor and irritation, 723-
assigned protection factor	cognitive characteristics, 705–710	729
class vs. model, 595-604	mechanisms, 705–710	European Union approaches, 697-704, 730-
direct testing, 595-604	physicochemical properties, 705–710	732
beliefs and attitudes, 236-245	physiological characteristics, 705-710	evaluation, 723-729
carbon tetrachloride substitute, 494-507	psychophysical methods for assessment, 705-710	Netherlands approaches, 733-735
exhalation resistance	psychophysical procedures, 705-710	symposia reports, 697–704
human subjects, 411–415	response measurement, 705–710	toxicity, 723–729
	volatile chemical, 705–710	
hypoventilation, 411–415		psychophysical assessments, 723–729
maximal aerobic capacity, 411-415	reverse diffusion	psychophysiological method, 723-729
minute ventilation, 411-415	diffusive sampler, 680-684	quantitation methods, 711–716
oxygen consumption rates, 411-415	SKC diffusive sampler, 680-684	RD50 mouse bioassay, 697-704
performance time, 411-415	3M diffusive sampler, 680-684	recovery of olfactory function, 717-721
work performance, 411-415	vinyl chloride 680-684	subjective assays 723-729

threshold limit value, 697-704	sensitivity, 229–235	task-based exposure assessment, time-weighted aver-
service life prediction, respirator canister, 288-294	specificity, 229–235	age exposure
service station benzene, 176–194	predictive validity, 229–235 strontium chromate, 96–100	benzene, 176–194 compared, 176–194
hydrocarbon, 176–194	painting, 96–100	petroleum industry, 176–194
settling velocity, 633–643	sanding, 96–100	total hydrocarbons, 176–194
shaft-drilling crew	subchronic inhalation exposure	tear film stability, eye irritation, 711-716
dust exposure, 457-465	commercial engine oil, 49-56	tear flow, eye irritation, 711-716
exposure assessment, 457-465	cutting oil, 49-56	technology-enhanced learning
gas exposure, 457–465	gear oil, 49-56	areas of study interest, 349-355
short-term exposure, metalworking fluid, 342-348	mineral oil, 49–56	continuing education, 349–355
shotcreting operator dust exposure, 457–465	petroleum lubricant, 49–56 pulmonary function test, 49–56	telephone communication, respirator, 685–688
exposure assessment, 457–465	sulfur compound	accuracy, 685–688 communications protocol, 685–688
gas exposure, 457–465	emission source, 330-341	electronic amplification of speech diaphragm sig-
shoulder, intermittent overhead work, 446-456	occupational exposure limit value, 159-167	nal, 685-688
Sierra Impactor, cascade impactor inlet, wood dust size	odor perception threshold, 330-341	recognition speed, 685-688
distribution, 19-27	paper mill, 330-341	word comprehension, 685-688
site remediation	in situ composting, 159-167	temperature
benzene, 176–194	swinery, 159–167	ethyl 2-cyanoacrylate, 70–79
hydrocarbon, 176–194	threshold odor concentration, 159–167	methyl 2-cyanoacrylate, 70–79
SKC diffusive sampler reverse diffusion, 680–684	sulfur dioxide, 330–341 sulfur hexafluoride, air sampling, 416–427	teratogen permissible exposure limit, adjustment for unusu-
vinyl chloride	Super New Cleaner	al work schedules, 584–594
European Union test protocol, 680-684	dry cleaning worker, 466-471	toxicokinetic modeling, 584-594
National Institute for Occupational Safety and	human study, 466-471	terpene
Health protocol, 680-684	indoor air, 466-471	airflow rate, 172-175
skin irritation. see also dermal absorption	supplied-air hood	emission source, 330-341
tetrachloroethene, 12-18	assigned protection factor, 96-100	Finland, 172–175
toluene, 12-18	painting, 96–100	occupational exposure limit value, 159–167
1,1,1-trichloroethane, 12–18	sanding, 96–100	odor perception threshold, 330–341 paper mill, 330–341
trichloroethene, 12–18 xylene, 12–18	workplace protection factor, 96–100 aircraft painting, 96–100	pine
skin sensitizer	aircraft sanding, 96–100	emission rates, 172-175
permissible exposure limit, adjustment for unusu-	American National Standard Z88.2 (1992),	mass balance models, 172-175
al work schedules, 584-594	96-100	sawmill
toxicokinetic modeling, 584-594	strontium chromate, 96-100	airflow rate, 172-175
solvent extractable fraction	supplied-air respirator	emissions characterization, 172-175
carbon black, 218–228	direct testing, 595–604	emissions control, 172–175
soot, 218–228	human study, 595–604	in situ composting, 159–167
Solvent V	selection, 595–604	spruce emission rates, 172–175
dry cleaning worker, 466–471 human study, 466–471	simulated workplace protection factor study, 595-604	mass balance models, 172–175
indoor air, 466–471	supplied-air, continuous flow, hood/helmet,	swinery, 159–167
soot	595-604	threshold odor concentration, 159-167
adsorbed organic compounds, 218-228	surveillance system, lead	ventilation, 172-175
airborne particulate, 218-228	amounts of penalties, 371-378	wood dust, 172-175
ash, 218-228	cost-benefit analysis, 371–378	tetrachloroethene
biologic activity, 218–228	followup of companies identified, 371–378	dermal absorption, 12–18
carbon black, contrasted, 218–228 characterized, 218–228	inspection effectiveness, 371–378 number of citations, 371–378	human study, 12–18 inhalation exposure, 12–18
chemical composition, 218–228	statewide laboratory-based blood lead surveil-	permeation rate, 12–18
components, 218–228	lance system effectiveness, 371–378	linear system dynamics method, 12–18
mutagenic activity, 218–228	total cost to identify lead-exposed workers, 371-	maximal permeation rate, 12-18
organic compound, 218-228	378	skin irritation, 12-18
physical characteristics, 218-228	violations of specific lead standard components,	37-mm closed face cassette sampler, aerosol photom-
production, 218-228	371–378	eter, 342-348
solvent extractable fraction, 218-228	swinery	thoracic particulate exposure, 356–370
specificity, 711–716 spray, 633–643	ammonia, 159–167	thoracic preseparator, fibrous aerosol, 281–287 3M 7000 series full-facepiece air-purifying respirator,
spray, 033–043 spray painting	2,3-butanedione, 159–167 2-butanone, 159–167	685–688
cassette organic monitor sampler, 246–250	carboxylic acid, 159–167	3M 7000 series half-facepiece air-purifying respirator,
dual-filter cassette, 246–250	3-carene, 159-167	685-688
inhalable organic monitor sampler, 246-250	p-cresol, 159-167	3M diffusive sampler
polyurethane foam cassette sampler, 246-250	hydrogen peroxide, 159-167	reverse diffusion, 680-684
polyurethane foam inhalable organic monitor	hydrogen sulfide, 159–167	vinyl chloride
sampler, 246–250	3-hydroxy-2-butanone, 159–167	European Union test protocol, 680–684
spreadsheet software, maximum likelihood estimation,	ketone, 159–167	National Institute for Occupational Safety and Health test protocol, 680–684
195–198 spruce, terpene	limonene, 159–167 odor, 159–167	3M Snapcap hood, 595–604
emission rates, 172–175	224-pinene, 159–167	3M Whitecap helmet, 595-604
mass balance models, 172-175	225-pinene, 159-167	threshold limit value
square hood, capture envelope, 563-572	slatted floor pit system, 159-167	sensory irritant, 697-704
Stachybotrys mycotoxin	sulfur compound, 159-167	toluene, 12-18
building-related illness, 644-648	terpene, 159-167	threshold odor concentration
indoor air, 644-648	volatile organic compound, 159-167	ammonia, 159–167
static task, guidelines, 446–456		2,3-butanedione, 159–167 2-butanone, 159–167
stationary tool, sanding, 322–329 Strain Index	T	carboxylic acid, 159–167
distal upper extremity morbidity, 229–235	tank cleaning	3-carene, 159-167
negative predictive value, 229–235	benzene, 176–194	p-cresol, 159–167
positive predictive value, 229–235	hydrocarbon, 176-194	hydrogen peroxide, 159-167

L 1	and an about the annual data distinct 424, 445	
hydrogen sulfide, 159–167 3-hydroxy-2-butanone, 159–167	tuberculosis, ultraviolet germicidal radiation, 434–445 tunnel construction, human study, 457–465	wet surfaces, 482–493 wet dust collection
ketone, 159–167	tunnel-boring machine crew	airflow rate, 573–583
limonene, 159-167	dust exposure, 457–465	collection efficiencies, 573-583
odor, 159-167	gas exposure, 457-465	particle emissions performance, 573-583
224-pinene, 159–167	turbulent eddy diffusion model, 149-158	reentrainment, 573-583
225-pinene, 159–167	turning, metalworking fluid, 356-370	valeric, occupational exposure limit, 697–704
sulfur compound, 159–167		validity, assessment, 711–716
terpene, 159–167	U	values below detection limit, maximum likelihood es- timation, 195–198
volatile organic compound, 159–167 time-weighted average exposure	ultravibration, dental handpiece, 477-481	vapor, 633–643
adjustment for unusual work schedules, 584–594	ultraviolet germicidal radiation	vapor filter
task-based exposure assessment	air disinfection, 434–445	effective surface area
benzene, 176-194	airborne infectious disease, 434-445	initial efficiency, 633-643
compared, 176-194	mercury discharge lamp, 434–445 tuberculosis, 434–445	lifetime vs. efficiency, 633-643
petroleum industry, 176-194	underground construction worker	optimum respiratory protection vs. efficiency,
total hydrocarbons, 176-194	diesel exhaust, 457–465	633-643
tissue irritant	dust exposure, 457-465	selection, 633–643
permissible exposure limit, adjustment for unusu-	gas exposure, 457-465	variable volume/constant face velocity fume cupboard
al work schedules, 584–594 toxicokinetic modeling, 584–594	nitrogen dioxide, 457-465	flow patterns, 303–312 fully turbulent flow, 303–312
tissue toxicant	oil mist, 457-465	numerical simulation of airflow, 303-312
permissible exposure limit, adjustment for unusu-	224-quartz, 457-465	rated face velocity, 303-312
al work schedules, 584-594	respirable dust, 457–465	recirculating flow volume, 303-312
toxicokinetic modeling, 584-594	underground storage tank	sash opening, 303-312
tolclofos-methyl pesticide	benzene, 176–194 hydrocarbon, 176–194	unobstructed flow, 303-312
air sampling, 87-95	University of Washington Impactor, cascade impactor	ventilation
biological monitoring, 87–95	inlet, wood dust size distribution, 19–27	design guidelines, 141-148
cutaneous dose, 87–95	urinary alkylphosphate	direct pressure comparison method, 669-679
gloves, 87-95	cutaneous dose, 87-95	airflow level, 669–679
greenhouse worker, 87–95 hand contamination, 87–95	fenitrothion, 87–95	branch duct, 669–679 embalming fluid, 689–696
human study, 87–95	omethoate, 87-95	formaldehyde, 689–696
protective clothing, 87–95	organophosphate pesticide, 87-95	short-term exposure limit, 689–696
respiratory dose, 87–95	respiratory dose, 87–95	3M passive formaldehyde dosimeter, 689-696
urinary alkylphosphate, 87-95	tolclofos-methyl pesticide, 87–95	time weighted average exposure, 689-696
toluene	U.S. Army M17 full-facepiece air-purifying respirator, 685–688	hood static pressure method, 669-679
breath analysis, 28-35	U.S. Bureau of Labor Statistics annual survey of oc-	airflow level, 669-679
breath concentration, 466–471	cupational injuries and illnesses	branch duct, 669-679
amount of solvent, 466–471	musculoskeletal disorder, 622-632	identifying and locating obstruction, 669–679
dermal absorption, 12–18 dry cleaning worker, 466–471	occupational morbidity, 622-632	metal shavings, 401–410 monitoring, 401–410
human study, 28–35, 466–471	frequency, 622-632	mortuary facility, 689–696
indoor air, 466–471	incidence rate, 622-632	obstructions, 401–410
inhalation exposure, 12-18	severity, 622–632	pressure measurement, 401-410
permeation rate, 12-18	overexertion, 622–632	pressure ratio method, 669-679
linear system dynamics method, 12-18	traumatic injury, 622–632	airflow level, 669-679
maximal permeation rate, 12-18	U.S. Bureau of Mines, carbon tetrachloride replace- ment compound	branch duct, 669-679
skin irritation, 12–18	activated carbon testing, 494–507	saw-sharpening operation, 401–410
threshold limit value, 12–18	organic vapor air-purifying respirator cartridge,	screening methods effectiveness in identifying
toluene diisocyanate air sampling, 649-657	494-507	obstructed branches, 401–410 pressure comparison methods, 401–410
exposure assessment, 649–657		pressure ratio methods, 401–410
total dust mean concentration, 57–64	V	terpene, 172–175
toxicokinetic modeling	vacuum cleaner	troubleshooting, 401-410
asthma, 584-594	evelonic collection	method evaluation, 669-679
cholinesterase inhibitor, 584-594	airflow rate, 573-583	wood dust, 322-329, 401-410
methemoglobinenia-causing agent, 584-594	collection efficiencies, 573-583	woodworking shop, 322-329
reproductive system toxicant, 584-594	particle emissions performance, 573-583	vibration, dental handpiece
respiratory sensitizer, 584–594	reentrainment, 573-583	acceleration, 477–481
skin sensitizer, 584–594	dust collection, 573-583	air injection, 477–481
teratogen, 584–594 tissue irritant, 584–594	filter bag collection	grip force, 477–481 vibration spectra, 477–481
tissue toxicant, 584–594	airflow rate, 573–583 collection efficiencies, 573–583	water injection, 477–481
training, respirator, 236–245	particle emissions performance, 573–583	work simulation, 477–481
traumatic injury, United States Bureau of Labor Sta-	reentrainment, 573–583	vinyl chloride
tistics annual survey of occupational injuries and ill-	high-efficiency particulate air (HEPA) filter	reverse diffusion, 680-684
nesses, 622-632	aerosol concentration upstream of HEPA fil-	SKC diffusive sampler
trichloroethene	ter, 313-321	European Union test protocol, 680-684
dermal absorption, 12–18	aerosol filtration efficiency, 313-321	National Institute for Occupational Safety and
human study, 12–18 inhalation exposure, 12–18	chamber test method, 313-321	Health protocol, 680–684
permeation rate, 12–18	collection efficiency, 482–493	3M diffusive sampler European Union test protocol, 680–684
linear system dynamics method, 12–18	dust pickup efficiency, 313–321	National Institute for Occupational Safety an
maximal permeation rate, 12–18	filtration characteristics, 313–321 industrial vs. household, 482–493	Health protocol, 680–684
skin irritation, 12–18	lead paint abatement, 313–321	viscose ravon worker
trimethylbenzene	optical particle size spectrometer, 313–321	carbon disulfide, 168-171
breath analysis, 28-35	overall filtration efficiency, 313–321	chemical cartridge, end-of-service-life indicator
human study, 28-35	particle emission characteristics, 482-493	168-171
truck	particle reaerosolization, 313-321	vision, respirator, 236-245
benzene, 176–194	particulate emission characteristics, 313-321	volatile compound
hydrocarbon, 176-194	probed testing method, 313–321	breath analysis

exposure-tissue dose relationship, 28–35 internal target tissue dose, 28–35 measurement interval, 28–35 physiologically based pharmacokinetic model, 28–35 olfaction annoyance, 705–710 irritation, 705–710 odor, 705–710 respiratory tract irritation, 705–710 volatile organic compound occupational exposure limit value, 159–167 in situ composting, 159–167 swinery, 159–167 threshold odor concentration, 159–167	wood dust size distribution, cascade impactor inlet, 19–27 terpene, 172–175 ventilation, 322–329, 401–410 woodworking shop centralized data collection system, 322–329 cleaning, 322–329 dust concentrations, 322–329 intervention targets, 322–329 sampling protocol, 322–329 sanding, 322–329 sanding, 322–329 shop-level measures, 322–329 wood products industry, 19–27 woodworking shop human study, inhalable dust exposures, 322–329 pilot study, 322–329	xylene dermal absorption, 12–18 inhalation exposure, 12–18 permeation rate, 12–18 linear system dynamics method, 12–1 maximal permeation rate, 12–18 skin irritation, 12–18 m.p-xylene breath concentration, 466–471 accumulated body burden, 466–471 amount of solvent, 466–471 dry cleaning worker, 466–471 human study, 466–471 indoor air, 466–471 m-xylene, 12–18
W waste-handling operation ethyl 2-cyanoacrylate, 70–79 methyl 2-cyanoacrylate, 70–79 wet dust collection, vacuum cleaner airflow rate, 573–583 collection efficiencies, 573–583	ventilation, 322–329 wood dust, 322–329 worker compensation cost, low-back injury, 508–511 workplace protection factor defined, 96–100 painting, 96–100 sanding, 96–100	o-xylene breath concentration, 466–471 accumulated body burden, 466–471 amount of solvent, 466–471 dry cleaning worker, 466–471 human study, 466–471 indoor air, 466–471
particle emissions performance, 573–583 reentrainment, 573–583 Willson 6500 full-facepiece air-purifying respirator, 685–688 wind velocity, 416–427	supplied-air hood, 96–100 aircraft painting and sanding, 96–100 American National Standard Z88.2 (1992), 96–100 stroutium chromate, 96–100	Y YuClean dry cleaning worker, 466–471 human study, 466–471 indoor air, 466–471