Team Espresso

Kim Pham, Karen Zhuqian Zhang, Aidi Bian, Sihan Wang

Defining the Problem

Right now we know the most popular hotels by total clicks and rankings.

However, we do not know most popular hotels by <u>individual types of users</u>.

If we want to reach a wider audience, we must assume there will be different types of users. If we can figure out those different types of users, we can learn to optimize the best hotel recommendations or **most popular hotels by user**.

What hotels should be recommended to what type of users?

Our Solution

- 1. Identify types of users (cluster)
- 2. Identify types of hotels (cluster)
- 3. Build item-based recommender system, based on collaborative filtering

Data Pre-Processing

Data Pre-Processing

- Import both TripAdvisor datasets and join datasets by "hotel_id"
- 2. Split into test and train data sets by dates before and after "2019-1-20"
 - a. Why time? We need past data as the training set and future data as the test.
 - b. Why "2019-1-20"? We need a relatively larger training set (1,050,306 obs.) versus the test set (108,295).

3. On train dataset:

- a. Calculate:
 - i. Total Clicks = click_booking + click_hotel_website + click_price
 - ii. We don't count the "click_view" since this is not a profitable action
- b. Scale

User Clusters

User Clustering

kmeans, cluster by k=5

ucluster	n
<int></int>	<int></int>
1	15304
2	140902
3	5528
4	16998
5	79213

Mean Total Clicks by Cluster

ucluster <int></int>	mean(total_clicks) <dbl></dbl>
1	2.13225301
2	3.88769267
3	0.08401584
4	1.59055963
5	3.63259768

Hotel Clusters

Hotel Clustering

kmeans, cluster by k=3

Note

- The elbow plot implies a clustering size of k=3.
- However we realized later the accuracy for k=3 really low.
- In this project, we used k=3 but we might consider a bigger k size in the future.

Build Recommender System

Item Similarity

Item-based filtering

Recomm.

User-Item Matrix

Number of user clusters = 5 Number of hotel clusters = 3

*	1 [‡]	2 ‡	3 ‡
1	-21866.669	-194168.03	-175679.67
2	28735.122	209137.00	203533.85
3	5595.713	251972.73	174067.51
4	-3056.848	-41816.58	-33107.48
5	23724.086	173901.17	150502.70

	1	2	3	4	5
3	462934	184608	123333	633868	20248

Item-Item Similarity Matrix

3 ‡	2	1 ‡	*
0.9235187	0.8665781	NA	1
0.9905780	NA	0.8665781	2
NA	0.9905780	0.9235187	3

Accuracy=0.0067=12333/(462934+184608+123333+633868 +20248)

The accuracy is very low.
(May due to the limited number of hotel clusters)

User-Item Matrix No clusters at all (a lot of N/A!)

•	80081	80087 =	80092	80107	80110	80112
1	NA	NA	NA	NA	NA	NA
2	NA	NA	NA	NA	0	NA
3	NA	NA	NA	NA	1	NA
4	NA	NA	NA	NA	NA	NA
5	NA	NA	NA	NA	NA	NA
6	NA	NA	NA	NA	NA	NA
7	NA	NA	NA	NA	NA	NA
8	NA	NA	NA	NA	NA	NA
9	NA	NA	NA	NA	NA	NA
10	NA	NA	NA	NA	NA	NA

Item-Item Similarity Matrix Still a lot of N/A!

*	75617	75688 [‡]	75711	75737 =	80075	80081	80087	80092	80107
75617	1	NA	NA	NA	NA	NA	NA	NA	NA
75688	NA	1	NA	NA	NA	NA	NA	NA	NA
75711	NA	NA	1	NA	NA.	NA	NA	NA	NA
75737	NA	NA	NA	1	NA	NA	NA	NA	NA
80075	NA	NA	NA	NA	1	NA	NA	NA	NA
80081	NA	NA	NA	NA	NA	1	NA	NA	NA
80087	NA	NA	NA	NA	NA	NA	1	NA.	NA
80092	NA	NA	NA	NA	NA	NA	NA	1	NA
80107	NA	NA	NA	NA	NA	NA	NA	NA	1

Recomm. (but haven't got to the part of prediction yet)

*	570101	570101	570101	570101	570101	570101	570101	570101	570101	570101	570101	570101	570101	570101	570101
1	75617	80110	93339	80110	93339	93339	93334	80110	80110	92414	80110	80110	80110	92414	75617

Confusion Matrix

- Precision
- Accuracy

Limitations

- To explore more methods that can reduce the challenges
- To provide recommendation in collaborating filtering a wider range of applications
- Consider the quality and privacy aspects
- The recommendation accuracy of clustered hotel data is very very low (less than 1%); We also tried to build a model with un-clustered hotels, but did not get the final cross validation matrix due to the big amount of data (R broke down when running this)

What we learned

We learned . . .

- clearly defining problems and outlining solutions helps us keep on track
- about different recommender systems (item-based versus user-based)