Lecture 34 MARTINGALE 3

Exy is a warlingale if EXN < 9 EXn+1/x0,x1,-xn = Xn Xn in the strind estimator Xntl siven in Sort Astr. \triangleright For a Martingale process $\{X_n\}$,

$$E(X_n) = \text{constant}$$

 $E(X_n X_{n+m}) = EX_n^2, m \ge 0$

 \triangleright A martingale $\{X_n\}$ is an orthogonal increment process, i.e. for

$$E(X_{n_2} - X_{n_1})(X_{n_4} - X_{n_3}) = 0$$

For a martingale process $\{X_n\}$, EX_n^2 is a monotonically inc sequence.

Martingale convergence theorem

Let $\{X_n, n \ge 0\}$ be a martingale and $EX_n^2 \le M \le \infty$ for all n. Then $\{X_n\}$ converges in the m.s. sense as $n \to \infty$ to a random variable X. **Proof:**

$$E(X_{n+m} - X_n)^2$$

$$= EX_{n+m}^2 + EX_n^2 - 2EX_nX_{n+m}$$

$$= EX_{n+m}^2 + EX_n^2 - 2EX_n^2$$

$$= EX_{n+m}^2 - EX_n^2$$

 EX_n^2 is a bounded monotonically increasing sequence and hence convergeent

$$\lim_{n \to \infty} E(X_{n+m} - X_n)^2 = \lim_{n \to \infty} (EX_{n+m}^2 - EX_n^2)$$
$$= 0$$

$$\Rightarrow \{X_n\}$$
 is converges in M.S

Thus, there exists an RV X_{\cdot} such that

$$\{X_n\}$$
 $\xrightarrow{m.s.}$ X

The theorem has a stronger version. Under the conditions of the martingale convergence theorem, it can be shown that

$$\{X_n\} \xrightarrow{a.s.} X$$

Continuous Time Martingale

2.
$$EX(t) | X(t_1), X(t_2), ..., X(t_n) = X(t_n)$$

for any $t_1 < t_2 < ... < t_n < t$.

The condition (2) is conveniently written as

$$E(X(t) \mid X(u), u \le s) = X(s), s < t.$$

Martingal property of the Wiener process

Let X(t) be a standard Weiner process.

Examine if

(i)
$$X(t)$$
 and (ii) $Y(t) = X^{2}(t) - t$ and

(i)
$$X(t)$$
 and (ii) $Y(t) = X^2(t) - t$ and (iii) $z(t) = e^{aX(t) - \frac{a^2t}{2}}$, $a \in R$ are martingale.

 $x(t) \sim N(0, t)$

Solution: Standard Weiner process $X(t) \sim N(0,t)$ $=E(X(t)-X(\mathfrak{F})+X(s)\,|\,X(u),\,u\leq s)$ $= E(X(t) - X(u) | X(u), u \le s) + E(X(u), u \le s)$ =0+X(s) \Rightarrow \bigcirc \times (t) \bigcirc \times (t) + \times (t)Therefore, X(t) is a martingale.

=XO)-S. =Y(S) : Y(E) in markygele provers. (iii) $Z(t) = e^{aX(t) - \frac{a^2t}{2}}$. $E(Z(t) | X(u), u \leq s)$ $= E(e^{aX(t) - \frac{a^2t}{2}} \mid X(u), u \le s)$ Therefore, Z(t) is a Martingale wrt X(t).

Point of the property of the point Z(t) is a Martingale wrt Z(t). Z(t) is a Martingale wrt Z(t).