Special Topics on Basic EECS I VLSI Devices Lecture 24

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Drain current

- Using the previous approximation,
 - We can obtain the following expression:

$$\begin{split} I_{d} &= \mu_{eff} \frac{W}{L} \bigg\{ C_{ox} \bigg(V_{gs} - V_{fb} + \frac{k_{B}T}{q} \bigg) \phi_{s} - \frac{1}{2} C_{ox} \phi_{s}^{2} - \frac{2}{3} \sqrt{2 \epsilon_{si} q N_{a}} \phi_{s}^{1.5} \\ &+ \frac{k_{B}T}{q} \sqrt{2 \epsilon_{si} q N_{a} \phi_{s}} \bigg\} \bigg|_{\phi_{s,s}}^{\phi_{s,d}} \end{split}$$
 Taur, Eq. (3.21)

–Only with $\phi_{s,s}$ and $\phi_{s,d}$, we can evaluate the drain current.

Let's evaluate it together! (1)

- Step-by-step
 - Assume that N_a = 10¹⁷ cm⁻³, t_{ox} = 10 nm, V_{gs} = 1.0 V, and V_{fb} = -0.88 V.
 - Consider a case of V_{ds} = 0.1 V.
 - First, we must calculate $\phi_{S,S}$. How?

$$1.88 = \phi_{s,s} + \frac{\sqrt{2\epsilon_{si}k_{B}TN_{a}}}{C_{ox}} \left[\frac{q\phi_{s,s}}{k_{B}T} + \frac{n_{i}^{2}}{N_{a}^{2}} \exp\left(\frac{q}{k_{B}T}\phi_{s,s}\right) \right]^{1/2}$$

Let's evaluate it together! (2)

- Graphical solution
 - Draw the LHS and RHS.

$$\phi_{S,S}$$
 = 1.006 V

Let's evaluate it together! (3)

- Now, for the drain end.
 - We must calculate $\phi_{s.d}$.

$$\phi_{s,d}$$
 = 1.100 V

$$1.88 = \phi_{s,d} + \frac{\sqrt{2\epsilon_{si}k_BTN_a}}{C_{ox}} \left[\frac{q\phi_{s,d}}{k_BT} + \frac{n_i^2}{N_a^2} \exp\left(\frac{q}{k_BT}(\phi_{s,d} - \mathbf{0.1})\right) \right]^{1/2}$$

5

Let's evaluate it together! (4)

- Now, we can calculate I_d .
 - -Evaluate $C_{ox} \left(V_{gs} V_{fb} + \frac{k_B T}{q} \right) \phi_s \frac{1}{2} C_{ox} \phi_s^2 \frac{2}{3} \sqrt{2 \epsilon_{si} q N_a} \phi_s^{1.5} + \frac{k_B T}{q} \sqrt{2 \epsilon_{si} q N_a \phi_s}$ twice with $\phi_{s,s} = 1.006$ V and $\phi_{s,d} = 1.100$ V.
 - -Values are 1.3442X10⁻⁶ C V cm⁻² and 1.4096X10⁻⁶ C V cm⁻².
 - When $\mu_{eff} \frac{W}{I_c}$ is 500 cm² V⁻¹ sec⁻¹, I_d is about 32.76 μA.

Input characteristics (at a low V_{ds} , 0.1 V)

- Increase V_{gs} up to 2.5 V.
 - Linear scale and semi-log scale

Output characteristics

• Increase V_{ds} up to 2.5 V at various V_{gs} values.

Regional approximations

- After the onset of inversion but before saturation,
 - –The surface potential, $\phi_s(y)$, can be approximated by $\phi(0,y)=V(y)+2\phi_B$

- It means that

$$\phi_{s,s} = 2\phi_B$$
$$\phi_{s,d} = 2\phi_B + V_{ds}$$

– In this case, $rac{dV}{d\phi_{\it S}}=1$. We must calculate the following term for $\phi_{\it S,d}$:

$$C_{ox}(V_{gs} - V_{fb})(2\phi_B + V_{ds}) - \frac{1}{2}C_{ox}(2\phi_B + V_{ds})^2 - \frac{2}{3}\sqrt{2\epsilon_{si}qN_a}(2\phi_B + V_{ds})^{1.5}$$

GIST Lecture

Taur, Eq. (3.3)

A simpler form of I_d

• By taking the difference, we can find a simpler form:

$$\begin{split} & I_{d} \\ &= \mu_{eff} \frac{W}{L} \bigg\{ C_{ox} \bigg(V_{gs} - V_{fb} - 2\phi_{B} - \frac{1}{2} V_{ds} \bigg) V_{ds} \\ & - \frac{2}{3} \sqrt{2\epsilon_{si} q N_{a}} \big[(2\phi_{B} + V_{ds})^{1.5} - (2\phi_{B})^{1.5} \big] \bigg\} \quad \text{Taur, Eq. (3.22)} \end{split}$$

– For a given V_{gs} , I_d first increases linearly with V_{ds} , then gradually levels off to a saturated value.

Linear (triode) region

• When V_{ds} is small, we may keep only up to the first order.

$$\begin{split} & I_{d} \\ & = \mu_{eff} \frac{W}{L} \bigg\{ C_{ox} \big(V_{gs} - V_{fb} - 2\phi_B \big) V_{ds} - \frac{2}{3} \sqrt{2\epsilon_{si} q N_a} \left[\frac{3}{2} (2\phi_B)^{0.5} V_{ds} \right] \bigg\} \\ & = \mu_{eff} \frac{W}{L} C_{ox} \left(V_{gs} - V_{fb} - 2\phi_B - \frac{\sqrt{4\epsilon_{si} q N_a \phi_B}}{C_{ox}} \right) V_{ds} \\ & = \mu_{eff} \frac{W}{L} C_{ox} \big(V_{gs} - V_t \big) V_{ds} \end{split} \qquad \qquad \text{Taur, Eq. (3.23)}$$

-The threshold voltage, V_t , is given by

$$V_t = V_{fb} + 2\phi_B + \frac{\sqrt{4\epsilon_{si}qN_a\phi_B}}{C_{ox}}$$
 Taur, Eq. (3.24)

– It is the gate voltage when the surface potential reaches at $2\phi_B$.

In our previous example,

- The threshold voltage is about 0.11 V.
 - In reality, a linearly extrapolated threshold voltage is slightly higher than the " $2\phi_B$ " V_t .

Comparison

- Output characteristics by Taur, Eq. (3.22) & Taur, Eq. (3.23)
 - Difference in V_t (~0.2 V)

Parabolic region

We must keep up to the second order.

$$\begin{split} I_{d} &= \mu_{eff} \frac{W}{L} \left\{ C_{ox} \left(V_{gs} - V_{fb} - 2\phi_{B} - \frac{1}{2} V_{ds} \right) V_{ds} \right. \\ &- \frac{2}{3} \sqrt{2\epsilon_{si} q N_{a}} \left[\frac{3}{2} (2\phi_{B})^{0.5} V_{ds} + \frac{3}{8} (2\phi_{B})^{-0.5} V_{ds}^{2} \right] \right\} \\ &= \mu_{eff} \frac{W}{L} \left\{ C_{ox} \left(V_{gs} - V_{t} - \frac{1}{2} V_{ds} \right) V_{ds} - \frac{1}{4} \sqrt{2\epsilon_{si} q N_{a}} \left[(2\phi_{B})^{-0.5} V_{ds}^{2} \right] \right\} \\ &= \mu_{eff} \frac{W}{L} \left\{ C_{ox} \left(V_{gs} - V_{t} \right) V_{ds} - \frac{1}{2} C_{ox} \left[1 + \frac{\sqrt{\epsilon_{si} q N_{a} / (4\phi_{B})}}{C_{ox}} \right] V_{ds}^{2} \right\} \end{split}$$

Taur, Eq. (3.25)

Let's introduce a factor, m.

It is given as

$$m = 1 + \frac{\sqrt{\epsilon_{si}qN_a/(4\phi_B)}}{C_{ox}}$$
 Taur, Eq. (3.26)

- From the maximum depletion width,

$$W_{dm} = \sqrt{\frac{4\epsilon_{si}\phi_B}{qN_a}}$$
 Taur, Eq. (2.190)

- An alternative form is available,

$$m = 1 + \frac{C_{dm}}{C_{ox}} = 1 + \frac{3t_{ox}}{W_{dm}}$$
 Taur, Eq. (3.27)

-In our previous example? It was about 1.1. (Due to a low N_a)

Its physical meaning

- Serial capacitors give $\frac{C_{ox}C_{dm}}{C_{ox}+C_{dm}}$.
 - Charge across the oxide capacitor:

$$\frac{C_{ox}C_{dm}}{C_{ox} + C_{dm}} \Delta V_{gs} = C_{dm} \Delta \phi_s$$

-Therefore,

$$m = \frac{C_{ox} + C_{dm}}{C_{ox}} = \frac{\Delta V_{gs}}{\Delta \phi_s}$$

-m should be kept close to one.

Saturation current

- Maximum value of I_d at a given V_{gs}
 - Recall that

$$I_{ds} = \mu_{eff} \frac{W}{L} \left\{ C_{ox} (V_{gs} - V_t) V_{ds} - \frac{m}{2} C_{ox} V_{ds}^2 \right\}$$
 Taur, Eq. (3.25)

-When
$$V_{ds} = V_{dsat} = \frac{V_{gs} - V_t}{m}$$
,

$$I_{d} = I_{dsat} = \mu_{eff} C_{ox} \frac{W}{L} \frac{(V_{gs} - V_{t})^{2}}{2m}$$
 Taur, Eq. (3.28)

Thank you!