```
In [1]:
          import pandas as pd
          import numpy as np
In [2]:
          df =pd.read_csv('./zoodata.csv')
In [3]:
          df.head()
Out[3]:
            aardvark 1 0 0.1 1.1 0.2 0.3 1.2 1.3 1.4 1.5 0.4 0.5 4 0.6 0.7 1.6 1.7
         0 antelope 1 0
                                                                  0 4
                                             0
               bass 0 0
         2
               bear 1 0
                                                                  0
         3
               boar 1 0
                                                                  0 4
                                                                  0 4
In [4]:
         df.columns =['name', 'hair', 'feathers', 'eggs', 'milk', 'airbone', 'aquatic', 'predator', 'toothed', 'backone', 'breathe
In [5]:
          df.head(200)
               name hair feathers eggs milk airbone aquatic predator toothed backone breathes venomous fins legs tail domestic catsiz
Out[5]:
                                                   0
                                                          0
                                                                                                                              0
          0 antelope
          1
                bass
                                0
                                          0
                                                   0
                                                          1
                                                                   1
                                                                                             0
                                                                                                                              0
          2
                bear
                                0
                                          1
                                                   0
                                                          0
                                                                                    1
                                                                                             1
                                                                                                                     0
                                                                                                                              0
                                                   0
                                                          0
                boar
                                          1
                                                                                                                              0
              buffalo
                                0
                                     0
                                          1
                                                   0
                                                          0
                                                                   0
                                                                           1
                                                                                    1
                                                                                             1
                                                                                                       0
                                                                                                            0
                                                                                                                 4
                                                                                                                              0
                                0
                                                   0
                                                          0
                                                                   0
                                                                                    1
                                                                                                                 2
                                                                                                                              0
              wallaby
                                     0
                                          1
                                                                                             1
```

	name	hair	feathers	eggs	milk	airbone	aquatic	predator	toothed	backone	breathes	venomous	fins	legs	tail	domestic	catsiz
96	wasp	1	0	1	0	1	0	0	0	0	1	1	0	6	0	0	
97	wolf	1	0	0	1	0	0	1	1	1	1	0	0	4	1	0	
98	worm	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	
99	wren	0	1	1	0	1	0	0	0	1	1	0	0	2	1	0	

100 rows × 18 columns

```
In [6]: print("Shape",df.shape)
# df.type.unique()
```

Shape (100, 18)

```
In [7]: df.describe()
```

Out[7]:		hair	feathers	eggs	milk	airbone	aquatic	predator	toothed	backone	breathes	venomous	
	count	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.00	100.000000	100.000000	100.00000	100.00000	100.000
	mean	0.420000	0.200000	0.590000	0.400000	0.240000	0.360000	0.55	0.600000	0.820000	0.79000	0.08000	0.170
	std	0.496045	0.402015	0.494311	0.492366	0.429235	0.482418	0.50	0.492366	0.386123	0.40936	0.27266	0.377
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00	0.000000	0.000000	0.00000	0.00000	0.000
	25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00	0.000000	1.000000	1.00000	0.00000	0.000
	50%	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	1.00	1.000000	1.000000	1.00000	0.00000	0.000
	75%	1.000000	0.000000	1.000000	1.000000	0.000000	1.000000	1.00	1.000000	1.000000	1.00000	0.00000	0.000
	max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.00	1.000000	1.000000	1.00000	1.00000	1.000

```
In [8]:
    x =df.iloc[:, :-1]
    y =df.iloc[:, -1]
```

4/5/22, 12:57 PM Week9_assignment2

Encode our target variable into a nummerical vairable encode label encode command

```
In [9]:
    from sklearn.preprocessing import OneHotEncoder
    encoded_x = OneHotEncoder().fit_transform(x).toarray()
    print(encoded_x)

[[1. 0. 0. ... 0. 0. 1.]
    [0. 1. 0. ... 0. 1. 0.]
    [0. 0. 1. ... 0. 0. 1.]
    ...
    [0. 0. 0. ... 0. 0. 1.]
    [0. 0. 0. ... 0. 0. 1.]
    [0. 0. 0. ... 0. 1. 0.]
    [0. 0. 0. ... 0. 1. 0.]
```

Split into Traning & Testing Sets

Create Classifier object

```
from sklearn.neural_network import MLPClassifier
clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1)
```

Train MODEL

Make Predictions

CONFUSION Matrix

Classification Report

```
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
1	0.69	1.00	0.81	11
2	0.00	0.00	0.00	6
3	0.00	0.00	0.00	1
4	0.67	1.00	0.80	4

	5	1.00	1.00	1.00	2
	6	1.00	1.00	1.00	5
	7	0.00	0.00	0.00	1
accur	асу			0.73	30
macro	avg	0.48	0.57	0.52	30
weighted	avg	0.57	0.73	0.64	30

S:\Anaconda\lib\site-packages\sklearn\metrics_classification.py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

warn prf(average, modifier, msg start, len(result))

S:\Anaconda\lib\site-packages\sklearn\metrics_classification.py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behav ior.

warn prf(average, modifier, msg start, len(result))

S:\Anaconda\lib\site-packages\sklearn\metrics_classification.py:1248: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior

_warn_prf(average, modifier, msg_start, len(result))

In []: