CHAPTER

Plant Growth and Development

15.1 Growth

- The process of growth is maximum during
 - (a) log phase
- (b) lag phase
- (c) senescence
- (d) dormancy.

(NEET 2020)

- Typical growth curve in plants is
 - (a) stair-steps shaped
 - (b) parabolic
 - (c) sigmoid

(d) linear. (2015 Cancelled)

15.3 Development

- Senescence as an active developmental cellular process in the growth and functioning of a flowering plant, is indicated in
 - (a) annual plants
 - (b) floral parts
 - (c) vessels and tracheid differentiation
 - (d) leaf abscission.

(2008)

15.4 Plant Growth Regulators

- Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop.
 - (a) Cytokinin
- (b) Gibberellin
- (c) Ethylene
- (d) Abscisic acid

(NEET 2020)

- Which of the following is not an inhibitory substance governing seed dormancy?
 - (a) Gibberellic acid
- (b) Abscisic acid
- (c) Phenolic acid
- (d) Para-ascorbic acid

(NEET 2020)

- It takes very long time for pineapple plants to produce flowers. Which combination of hormones can be applied to artificially induce flowering in pineapple plants throughout the year to increase
 - (a) Cytokinin and Abscisic acid
 - (b) Auxin and Ethylene

- (c) Gibberellin and Cytokinin
- (d) Gibberellin and Abscisic acid (NEET 2019)
- Fruit and leaf drop at early stages can be prevented by the application of
 - (a) ethylene
- (b) auxins
- (c) gibberellic acid
- (d) cytokinins.

(NEET 2017)

- You are given a tissue with its potential for differentiation in an artificial culture. Which of the following pairs of hormones would you add to the medium to secure shoots as well as roots?
 - (a) IAA and gibberellin
 - (b) Auxin and cytokinin
 - (c) Auxin and abscisic acid
 - (d) Gibberellin and abscisic acid (NEET-II 2016)
- The Avena curvature is used for bioassay of
 - (a) IAA

- (c) ABA
- (b) ethylene (d) GA₃. (NEET-I 2016)
- **10.** Auxin can be bioassayed by
 - (a) potometer
 - (b) lettuce hypocotyl elongation
 - (c) Avena coleoptile curvature
 - (d) hydroponics.

(2015)

- 11. What causes a green plant exposed to the light, or only one side, to bend towards the source of light as
 - (a) Light stimulates plant cells on the lighted side to grow faster.
 - (b) Auxin accumulates on the shaded side stimulating greater cell elongation there.
 - (c) Green plants need light to perform photosynthesis.
 - (d) Green plants seek light because they are phototropic. (2015 Cancelled)
- 12. Dr. F. Went noted that if coleoptile tips were removed and placed on agar for one hour, the agar would produce a bending when placed on one side of freshly-cut coleoptile stumps. Of what significance is this experiment?

(a) Indole-3-acetic acid (b) It is the basis for quantitative determination of (b) Gibberellic acid small amounts of growth-promoting substances. (c) Abscisic acid (c) It supports the hypothesis that IAA is auxin. (2009) (d) Indole butyric acid (d) It demonstrated polar movement of auxins. (2014) 23. Which one of the following pairs, is not correctly 13. Which one of the following growth regulators is matched? known as 'stress hormone'? (a) Gibberellic acid - Leaf fall (a) Abscisic acid (b) Ethylene (b) Cytokinin - Cell division (c) GA₃ (d) Indole acetic acid (c) IAA - Cell wall elongation (2014)(d) Abscissic acid - Stomatal closure (2007)**14.** During seed germination, its stored food is **24.** Parthenocarpic tomato fruits can be produced by mobilized by (a) treating the plants with phenylmercuric acetate (b) removing androecium of flowers before poller (a) ABA (b) gibberellin grains are released (c) ethylene (d) cytokinin. (c) treating the plants with low concentrations of (NEET 2013) gibberellic acid and auxins 15. The pineapple which under natural condition is (d) raising the plants from vernalized seeds. (2006) difficult to blossom has been made to produce fruits 25. How does pruning help in making the hedge dense? throughout the year by application of (a) It releases wound hormones. (a) NAA, 2, 4-D (b) Phenyl acetic acid (b) It induces the differentiation of new shoots from (c) Cytokinin (d) IAA, IBA. the rootstock. (Karnataka NEET 2013) (c) It frees axillary buds from apical dominance. (d) The apical shoot grows faster after pruning 16. Through their effects on plant growth regulators, what do the temperature and light control in the 26. Cell elongation in internodal regions of the greer plants? plants takes place due to (a) Apical dominance (a) indole acetic acid (b) cytokinins (b) Flowering (c) gibberellins (d) ethylene. (2004)(c) Closure of stomata **27.** Coconut milk factor is (d) Fruit elongation (Mains 2012) (a) an auxin (b) a gibberellin 17. Which one of the following generally acts as an (c) abscisic acid (d) cytokinin. (2003)antagonist to gibberellins? 28. Plants deficient of element zinc, show its effect or (a) Zeatin (b) Ethylene the biosynthesis of plant growth hormone (d) IAA (c) ABA (*Mains 2012*) (a) auxin (b) cytokinin (c) ethylene (d) abscisic acid. (2003)18. Phototropic curvature is the result of uneven distribution of **29.** Differentiation of shoot is controlled by (a) gibberellin (b) phytochrome (a) high auxin : cytokinin ratio (c) cytokinins (b) high cytokinin: auxin ratio (d) auxin. (2010)(c) high gibberellin : auxin ration 19. One of the commonly used plant growth hormone (d) high gibberellin: cytokinin ratio. (2003)in tea plantations is **30.** Dwarfness can be controlled by treating the plan (a) ethylene (b) abscisic acid with (c) zeatin (d) indole-3-acetic acid. (a) cytokinin (b) gibberellic acid (Mains 2010) (c) auxin (d) anti-gibberellin. **20.** Root development is promoted by (2002, 1992) (a) abscisic acid (b) auxin **31.** Which of the following prevents the fall of fruits? (c) gibberellin (d) ethylene. (b) NAA (a) GA_3 (Mains 2010) (c) Ethylene (d) Zeatin (2001)**21.** One of the synthetic auxin is **32.** Hormone responsible for senescence is (a) IAA (b) GA (a) ABA (b) auxin (c) GA (d) cytokinin. (2001)(d) NAA. (2009)(c) IBA

22. Which one of the following acids is a derivative of

carotenoids?

(a) It made possible the isolation and exact

identification of auxin.

33.	Which hormone breaks (a) Gibberellin	dormancy of potate (b) IAA	o tuber?			death of plant formation of late	eral bran	ching.	(1993)	
	(c) ABA	(d) Zeatin	(2001)	44.	. The regulator which retards ageing/senescer					
34.	If the apical bud has bee (a) more lateral branch (b) more axillary buds (c) plant growth stops			45.	(a) (c)	nt parts is cytokinin gibberellin hormone	(d)	abscisic acid.	(1993) adverse	
35.	(d) flowering stops.Which hormone is resp(a) Ethylene(c) Ethyl chloride	onsible for fruit ripo (b) Auxin (d) Cytokinin	(2000) ening? (2000)		(a) (b) (c)	benzyl aminopu bichlorophenoxy ethylene	rine	cid	(1002	
36.	ABA is involved in (a) shoot elongation (b) increased cell divisit (c) dormancy of seeds (d) root elongation.	on	(1999)	46.	Klin (a) (b) (c)	osmosis growth moveme photosynthesis		study of		
37.	A plant hormone used to	for inducing morph	ogenesis	4.7		respiration.	1 .			
	in plant tissue culture is(a) cytokinins(c) abscisic acid	(b) ethylene(d) gibberellins.	(1998)	47.	stor (a)	ich is produced matal closure? Ethylene Abscisic acid	during v	vater stress th	at brings	
38.	Which combination of ripening? (a) 80% CH ₄ and 20% C		for fruit		(c) (d)	Ferulic acid Coumarin			(1993)	
	 (b) 80% CO₂ and 20% (c) 80% C₂H₄ and 20% (d) 80% CO₂ and 20% (d) 	O_2 CO_2	48.	(a) (b)	maintaining the refrigeration	m at roo	m temperatur			
	Which one among the for causing defoliation of (a) Malic hydrazide (c) Amo-1618	of forest trees? (b) 2, 4-D (d) Phosphon D	(1998)	49.	(d) Api (a)	storing in a freez cal dominance is	zer. caused l ateral bu	ру	(1992)	
40.	Gibberellic acid induces (a) in short day plants t(b) in day-neutral plant(c) in some gymnosper	under long day condi s under dark condi		50.	(d) Cyt	auxin in shoot ti okinins	p.	S	(1992)	
41.	(d) in long day plants u The movement of auxin	•	ditions. (1997)		(b) (c)	influence water in help retain chlor	is min (b) auxin ellin (d) abscisic acid. (1993) mone produced during adverse ental conditions is aminopurine rophenoxy acetic acid nee c acid. (1993) semployed in the study of is a movements synthesis expression. (1993) movements or acid arin (1993) movements ental cacid arin (1993) movement ental cacid arin (1994) movement ental cacid arin (1994) movement ental cacid ental cacid in lateral bud min in leaf tip ellin in lateral bud min in leaf tip ellin in lateral buds in shoot tip. (1992) movement ental cacid cacid ental caci			
	(a) centripetal(c) acropetal	(b) basipetal (d) both (a) and (c). (1994)	51.	Wh frui	ich is employed	for artific	cial ripening o		
42.	If the growing plant is d (a) its growth stops	ecapitated, then		52.	(c)	Ethylene scisic acid causes			(1992)	
	(b) leaves become yello(c) axillary buds are ina(d) axillary buds are act	activated	(1994)	32.	(a)	stomatal closure leaf expansion		_	n.	
43.	Removal of apical bud r			53.	The	hormone respor	nsible for	apical domin		
	(a) formation of new ap(b) elongation of main	pical bud			(a)	IAA ABA	(b)	GA	(1991)	

		(199.	1, 1988)		cessary for induction	U		ts?				
55.	Highest auxin concentra	ation occurs		. ,	Leaves	(b) Lateral						
55.	(a) in growing tips	ation occurs		(c)	Pulvinus	(d) Shoot a	-					
	(b) in leaves						(NEE	T 2019)				
	(c) at base of plant orga	ans	65.	. Ph	ytochrome is a							
	(d) in xylem and phloen		(1990)	(a)	flavoprotein	(b) glycopi	rotein					
56	Phytohormones are		, ,	(c)	lipoprotein	(d) chromo	oprotein					
50.	(a) chemical regulating	flowering				((NEET-1	II 2016)				
	(b) chemical regulating	,	66	Str	ıdy the four statem							
	(c) hormones regulati				ect the two correct of			ow and				
	adulthood				Definition of biol			iven by				
	(d) regulators synthesis	ed by plants and influ	uencing		Ernst Mayr.	ogram of cone	, ,, ac 8,					
	physiological proces		(1990)	В.	Photoperiod does	not affect r	eproduc	tion ir				
57	Abscisic acid controls				plants.		- F					
37.	(a) cell division			C.	Binomial nomence	lature system	was g	iven by				
	(b) leaf fall and dormar	ıcv		R.H. Whittaker.								
	(c) shoot elongation	7		D.	D. In unicellular organisms, reproduction is							
	(d) cell elongation and	wall formation.	(1990)		synonymous with growth.							
58	Phototropic and geotrop	nic movements are li	nked to	Th	e two correct statem	ents are						
50.	(a) gibberellins	(b) enzymes	incu to	(a)	B and C	(b) C and l	D					
	(c) auxin	(d) cytokinins.	(1990)	(c)	A and D	(d) A and l	B.					
50	Which of the following	•	` ´				(NEET-	II 2016)				
39.	auxin level?	movement is not re		. Ph	otoperiodism was fi	rst characteris	sed in					
	(a) Bending of shoot to	wards light			tobacco	(b) potato	7 - 07					
	(b) Movement of root to			. ,	tomato	(d) cotton.		(2010)				
	(c) Nyctinastic leaf mov		60	Importance of day length in flowering of plants was								
	(d) Movement of sunflo		he sun		st shown in	zui iii nowerii	ig or pra	iiis was				
	,	O	(1990)		cotton	(b) Petunio	7					
60	Leaf fall can be prevente	ed with the help of			Lemna	(d) tobacco		(2008)				
00.	(a) abscisic acid	(b) auxins		, ,								
	(c) florigen	(d) cytokinins.	(1989) 69 .		e wavelength of lig	tht absorbed	by P_r f	orm of				
(1	· ·	•	` ′		ytochrome is	(1) ====						
61.	Mowing grass lawn factories because	cilitates better main	tenance	. ,	680 nm	(b) 720 nm		(200=				
	(a) wounding stimulate	os raganaration		(c)	620 nm	(d) 640 nm	1.	(2007)				
	(b) removal of apical do		ation of 70.	. On	ne set of the plant was	grown at 12 h	iours day	y and 12				
	intercalary merister		ation of	ho	urs night period cycl	es and it flowe	ered whil	le in the				
	(c) removal of apical do				other set night phase was interrupted by flash of light and it did not produce flower. Under which one of the							
	(d) removal of apical do		otion of									
	lateral meristem.	1	(1989)		lowing categories wil		_					
62	Cut or excised leaves	remain green for	long if		Long day	(b) Darkne						
02.	induced to root or dippe	· ·		(c)	Day neutral	(d) Short d	lay	(2004)				
	(a) gibberellins	(b) cytokinins	71.	. W1	hich pigment absorb	s the red and	far-red	light?				
	(c) auxins	(d) ethylene.	(1988)	(a)	Cytochrome	(b) Phytoc	hrome					
62	Gibberellins promote	. / /	, ,	(c)	Carotenoids	(d) Chloro	phyll	(2002)				
03.	(a) seed germination	(b) seed dormancy	7 72.	. W1	hich plant is LDP?							
	(c) leaf fall	(d) root elongation			Tobacco	(b) Glycine	e max					
	(-)	(=, 1000 010116001011	(1988)	. ,	Mirabilis jalapa	(d) Spinacl		(2001)				
			(2200)	(-)		(,		(0 -)				

15.5 Photoperiodism

64. What is the site of perception of photoperiod

54. Hormone primarily connected with cell division is

(b) NAA

(d) gibberellic acid.

(a) IAA

(c) cytokinin/zeatin

7.4	771-			. (1	α.				ر 1		(d)	Ascei	nt of s	ap					(1989)
74.	The response of different organisms to the environmental rhythms of light and darkness is called (a) vernalization (b) photoperiodism (c) phototaxis (d) phototropism. (1998)										(a) (c)	(d) Ascent of sap Phytochrome is involved in (a) phototropism (b) photorespira (c) photoperiodism (d) geotropism.						•	, ,
75.	Phytochrome becomes active in (a) red light (b) green light (c) blue light (d) none of these. (1998)										Vernalisation Vernalisation stimulates flowering in (a) zamikand (b) turmeric								2012
76.	A pigment which absorbs red and far-red light is (a) cytochrome (b) xanthophyll (c) phytochrome (d) carotene. (1997)										(c) carrot(d) ginger. (Mains84. Treatment of seeds at low temperature under conditions to break its dormancy is called								
77.	What will be the effect on phytochrome in a plant subjected to continuous red light? (a) Phytochrome synthesis will increase								85	(a) stratification(b) scarification(c) vernalization(d) chelation.85. Flowering dependent on cold treatment is								(2006)	
	(b) Le (c) Pl (d) Fi	evel o nytoc	f phyt hrom	ochro e will l	me wi	ill dec	rease		1997)		(a) cryotherapy (b) cryogenics (c) cryoscopy (d) vernalisation.							(1992)	
78.	If a tree North (a) ph (b) ph (c) ph	ee flovern I noto a noto a	wers the ndia, in and the and the ensitive	nrice i it is sa ermo- ermo- ve but	id to b insen sensit	oe sitive tive no-ins	ensitiv	and Ju	,	1	Which of the following hormones can vernalisation? (a) Auxin (b) Cytokinin (c) Gibberellins (d) Ethylene 5.7 Seed Dormancy An enzyme that can stimulate germination of							(1989)	
79.	 (d) thermosensitive but photo-insensitive. (1997) In short day plants, flowering is induced by (a) photoperiod less than 12 hours (b) photoperiod below a critical length and uninterrupted long night (c) long night (d) short photoperiod and interrupted long night. 									seeds is (a) invertase (b) α-amylase (c) lipase (d) protease. Seed dormancy is due to the (a) ethylene (b) abscisic acid						(2006)			
80.	(a) gi	(1992) chemical believed to be involved in flowering is a) gibberellin (b) kinetin c) florigen (d) IBA. (1991)					89	wa (a)	which ter? Scari Verna	ficatio	n	(b	at beco) Stra l) All	itificat	tion	(2000)			
								(ANSW	/ER KI	EY))							
1.	(a)	2.	(c)	3.	(c)	4.	(b)	5.	(a)	6.	(b)	7.	(b)	8.	(b)	9.	(a)	10.	(c)
11.	(b)	12.	(a)	13.	(a)	14.	(b)	15.	(a)	16.	(b)	17.	(c)	18.	(d)	19.	(d)	20.	(d)
21.	(c,d)	22.	(c)	23.	(a)	24.	(c)	25.	(c)	26.	(c)	27.	(d)	28.	(a)	29.	(b)	30.	(b)
31.	(b)	32.	(a)	33.	(a)	34.	(a)	35.	(a)	36.	(c)	37.	(a)	38.	(c)	39.	(b)	40.	(d)
41.	(b)	42.	(d)	43.	(d)	44.	(a)	45.	(d)	46.	(b)	47.	(b)	48.	(c)	49.	(d)	50.	(c)
51.	(c)	52.	(a)	53.	(a)	54.	(c)	55.	(a)	56.	(d)	57.	(b)	58.	(c)	59.	(c)	60.	(d)
61.	(b)	62.	(b)	63.	(a)	64.	(a)	65.	(d)	66.	(c)	67.	(a)	68.	(d)	69.	(a)	70.	(d)
71.	(b)	72.	(d)	73.	(a)	74.	(b)	<i>7</i> 5.	(a)	76.	(c)	77.	(d)	78.	(a)	79.	(b)	80.	(c)
0.1	()	0.0	()	0.0	()	0.4	()	0=	(1)	0.	()	0=	(1.)	00	(1.)	00	()		

85. (d) 86.

84. (c)

89.

(c) **87.** (b) **88.** (b)

(a)

81. Which one increases in the absence of light?

(a) Uptake of minerals(b) Uptake of water

(c) Elongation of internodes

73. Proteinaceous pigment which controls the activities

(b) chlorophyll

(d) carotenoids.

(2001)

concerned with light is

82. (c) **83.** (c)

81. (c)

(a) phytochrome

(c) anthocyanin