

Stellaris® LM3S9B92 RevB1 Errata

This document contains known errata at the time of publication for the Stellaris® LM3S9B92 microcontroller. The table below summarizes the errata and lists the affected revisions. See the data sheet for more details.

See also the ARM® Cortex™-M3 errata, ARM publication number PR326-PRDC-009450 v2.0.

IS
nd Cortex-M3 tent added to
page 7.
om Timer A
n removed
but not to
s not function
lls over in
e VBUS pin
lls over the
ge-Count
Edge-Time
n k

Date	Revision	Description	
Mar 2010	2.4	■ Added issue "The option to force the ROM boot loader to execute at reset with an external pin does not function" on page 10.	
		■ Amended the workaround for issue "A spurious DMA request is generated when the timer rolls over in Input-Edge Time mode" on page 14.	
		■ Reworded description of issue "The value of the prescaler register is not readable in Edge-Count mode" on page 14.	
		Removed "Prescaler register must have a non-zero value in 16-bit Edge-Time mode" as it has been determined this item was included erroneously.	
		Added issue "ADC trigger and Wait-on-Trigger may assert when the timer is disabled" on page 15.	
		Added issue "Wait-on-Trigger does not assert unless the TnOTE bit is set" on page 15.	
		■ Added issue "Do not enable match and timeout interrupts in 16-bit PWM mode" on page 15.	
		■ Added issue "Do not use µDMA with 16-bit PWM mode" on page 16.	
		■ Added issue "Writing the GPTMTnV register does not change the timer value when counting up" on page 16.	

Erratum Number	Erratum Title	Revision(s) Affected
1.1	JTAG INTEST instruction does not work	B1
1.2	The Recover Locked Device sequence does not work as expected	B1
2.1	Sleep and Deep-Sleep mode not usable at higher speeds when ISRs reside in Flash memory	B1
2.2	Device Capabilities registers may not accurately reflect available signals	B1
2.3	The PIOSC is not trimmed by the factory	B1
3.1	Cumulative page erases may introduce bit errors in Flash memory	B1
3.2	Flash Write Buffer does not function above 50 MHz	B1
4.1	Ethernet fails to connect when using the Boot loader software in ROM	B1
4.2	Some ROM functions are unsupported	B1
4.3	ROM mapping check for the Boot loader does not function properly	B1
4.4	ROM_I2CMasterErr function is incorrect	B1
4.5	ROM_SSIConfigSetExpClk function is incorrect	B1
4.6	ROM_USBFIFOFlush function is incorrect	B1
4.7	The option to force the ROM boot loader to execute at reset with an external pin does not function	B1, C1
5.1	The μDMA controller fails to generate capture mode DMA requests from Timer A in the Timer modules	B1, C1
6.1	Port B [1:0] pins require external pull-up resistors	B1
7.1	EPI dual-chip select function does not work	B1

Erratum Number	Erratum Title	Revision(s) Affected
7.2	EPI Host-Bus 16 mode does not work	B1
7.3	Clock signal in EPI General-Purpose mode is inverted	B1
8.1	The General-Purpose Timer match register does not function correctly in 32-bit mode	B1, C1
8.2	A spurious DMA request is generated when the timer rolls over in Input-Edge Time mode	B1, C1
8.3	A spurious DMA request is generated when the timer rolls over the 16-bit boundary	B1, C1
8.4	The value of the prescaler register is not readable in Edge-Count mode	B1, C1
8.5	ADC trigger and Wait-on-Trigger may assert when the timer is disabled	B1, C1
8.6	Wait-on-Trigger does not assert unless the TnOTE bit is set	B1, C1
8.7	Do not enable match and timeout interrupts in 16-bit PWM mode	B1, C1
8.8	Do not use μDMA with 16-bit PWM mode	B1, C1
8.9	Writing the GPTMTnV register does not change the timer value when counting up	B1, C1
9.1	Writes to Watchdog Timer 1 module WDTLOAD register sometimes fail	B1, C1
10.1	ADC hardware averaging produces erroneous results in differential mode	B1, C1
10.2	The ADCSPC register does not function	B1
11.1	UART Smart Card (ISO 7816) mode does not function	B1
11.2	When in IrDA mode, the UnRx signal requires configuration even if not used	B1
12.1	An interrupt is not generated when using μDMA with the SSI module if the EOT bit is set	B1
13.1	Some bits in the I2SMCLKCFG register do not function	B1
13.2	I ² S SCLK signal is inverted in certain modes	B1
14.1	Ethernet receive packet corruption may occur when using optional auto-clock gating	B1
14.2	Ethernet packet loss with cables longer than 50 meters	B1
14.3	Ethernet PHY interrupts do not function correctly	B1
15.1	USB0ID and USB0VBUS signals are required to be connected regardless of mode	B1
15.2	Latch-up may occur if power is applied to the VBUS pin but not to VDD	B1
16.1	PWM generation is incorrect with extreme duty cycles	B1
16.2	Sync of PWM does not trigger "zero" action	B1
16.3	PWM "zero" action occurs when the PWM module is disabled	B1
16.4	PWM Enable Update register bits do not function	B1
17.1	Momentarily exceeding V _{IN} ratings on any pin can cause latch-up	B1
17.2	Power-on event may disrupt operation	B1

1 JTAG

1.1 JTAG INTEST instruction does not work

Description:

The JTAG INTEST (Boundary Scan) instruction does not properly capture data.

Workaround:

None.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

1.2 The Recover Locked Device sequence does not work as expected

Description:

If software configures any of the JTAG/SWD pins as GPIO or loses the ability to communicate with the debugger, there is a debug sequence that can be used to recover the microcontroller, called the Recover Locked Device sequence. After reconfiguring the JTAG/SWD pins, using the Recover Locked Device sequence does not recover the device.

Workaround:

To get the device unlocked, follow these steps:

- **1.** Power cycle the board and run the debug port unlock procedure in LM Flash Programmer. DO NOT power cycle when LM Flash Programmer tells you to.
- 2. Go to the Flash Utilities tab in LM Flash Programmer and do a mass erase operation (check "Entire Flash" and then click the Erase button). This erase appears to have failed, but that is ok.
- 3. Power cycle the board.
- **4.** Go to the Flash Utilities tab in LM Flash Programmer and do another mass erase operation (check "Entire Flash" and then click the Erase button).

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

2 System Control

2.1 Sleep and Deep-Sleep mode not usable at higher speeds when ISRs reside in Flash memory

Description:

Sleep and Deep-Sleep modes cannot be used when running the processor at 66 or 80 MHz when the Interrupt Service Routines (ISRs) and vector table reside in Flash memory. If Sleep or Deep-Sleep mode is used at those speeds, an invalid PC is sometimes returned for the interrupt vector address when exiting sleep mode.

Workaround:

There are two possible workarounds for this issue:

- 1. Store the ISRs and vector table in the on-chip SRAM when running the processor at 66 or 80 MHz.
- 2. Run the processor at 50 MHz.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

2.2 Device Capabilities registers may not accurately reflect available signals

Description:

Some of the Device Capabilities register bits reflect the presence of specific pins on the microcontroller. These bits do not always properly reflect the available signals. Bits affected include DC3 [31:0], DC4 [15:14], DC5 [27:24] and [7:0], and DC8 [31:0]. Do not rely on the value of these bits in system design.

Workaround:

None.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

2.3 The PIOSC is not trimmed by the factory

Description:

The PIOSC is not trimmed by the factory prior to shipment. This errata item affects any product with date codes prior to 0946.

For parts that have a Hibernation module, the PIOSC can be user calibrated. The PIOSC cannot be calibrated on parts without a Hibernation module.

Silicon Revision Affected:

B1

Fixed:

Fixed for devices with date codes beginning 0946.

3 Internal Memory

3.1 Cumulative page erases may introduce bit errors in Flash memory

Description:

Cumulative page erases anywhere in the Flash memory array may introduce bit errors. The bit error is not confined to the page being erased or the 4-KB block but could be in any page in the Flash memory. A page erase is used to erase a 1-KB page so it can be rewritten. A mass erase erases the entire Flash memory array (all pages). A bit error means that a bit may change from 0 to 1 or 1 to 0.

Workaround:

There are two possible workarounds for this issue:

- 1. Minimize total page erases to less than 3000 between mass erases for the lifetime of the product. After each mass erase, an additional 3000 page erase operations are allowed before bit errors may be introduced. At the rate of one page erase per week, this issue would not be seen over at least 17 years.
- 2. Perform CRC checks on all Flash memory after page erases to increase the chances of detecting the issue. The two CRC functions built into ROM can assist in this.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

3.2 Flash Write Buffer does not function above 50 MHz

Description:

The Flash Write Buffer does not successfully program the Flash memory at speeds above 50 MHz.

Workaround:

Lower the speed of the system clock to 50 MHz or less while programming the Flash memory.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

4 ROM

Ethernet fails to connect when using the Boot loader software in 4.1 **ROM**

Description:

The Ethernet controller takes longer to connect than the Boot loader software in ROM allows.

Workaround:

Download the Boot loader software in the on-chip Flash memory and ensure that the Ethernet connection uses MDI mode only.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

4.2 Some ROM functions are unsupported

Description:

The following functions are unsupported in ROM:

- ADCComparatorConfigure
- ADCComparatorRegionSet
- ADCComparatorReset
- ADCComparatorIntDisable
- ADCComparatorIntEnable
- **ADCComparatorIntStatus** ADCComparatorIntClear
- CANBitRateSet
- **EPIIntStatus**
- EPIModeSet
- EPIDividerSet
- **EPIConfigSDRAMSet**
- EPIConfigGPModeSet
- EPIConfigHB8Set
- EPIConfigHB16Set
- **EPIAddressMapSet**
- EPINonBlockingReadConfigure
- **EPINonBlockingReadStart**
- EPINonBlockingReadStop
- EPINonBlockingReadCount
- **EPINonBlockingReadAvail**
- EPINonBlockingReadGet32
- EPINonBlockingReadGet16
- EPINonBlockingReadGet8

- EPIFIFOConfig
- EPIWriteFIFOCountGet
- EPIIntEnable
- EPIIntDisable
- EPIIntErrorStatus
- EPIIntErrorClear
- GPIOPinConfigure
- GPIOPinTypel2S
- GPIOPinTypeEthernetLED
- GPIOPinTypeUSBAnalog
- I2CSlaveIntClearEx
- I2CSlaveIntDisableEx
- I2CSlaveIntEnableEx
- I2CSlaveIntStatusEx
- I2SIntClear
- I2SIntDisable
- I2SIntEnable
- I2SIntStatus
- I2SMasterClockSelect
- I2SRxConfigSet
- I2SRxDataGet
- I2SRxDataGetNonBlocking
- I2SRxDisable
- I2SRxEnable
- I2SRxFIFOLevelGet
- I2SRxFIFOLimitGet
- I2SRxFIFOLimitSet
- I2STxConfigSet
- I2STxDataPut
- I2STxDataPutNonBlocking
- I2STxDisable
- I2STxEnable
- I2STxFIFOLevelGet
- I2STxFIFOLimitGet
- I2STxFIFOLimitSet
- I2STxRxConfigSetI2STxRxDisable
- I2STxRxEnable
- IntPendSet
- IntPendClear
- SSIBusy
- SysCtlDelay
- SysCtll2SMClkSet
- UARTBusy
- UARTFIFODisable
- UARTFIFOEnable
- UARTRxErrorClear
- UARTRxErrorGet
- UARTTxIntModeGetUARTTxIntModeSet
- uDMAChannelSelectDefault
- uDMAChannelSelectSecondary
- USBDevEndpointConfigGet
- USBEndpointDataAvail

- USBEndpointDMAChannel
- USBEndpointDMADisable
- USBEndpointDMAEnable
- USBModeGet
- USBOTGHostRequest
- USBIntDisableControl
- USBIntEnableControl
- USBIntStatusControl
- USBIntDisableEndpoint
- USBIntEnableEndpoint
- USBIntStatusEndpoint
- USBHostMode

Code for these functions is included in the current version of StellarisWare, which can be downloaded from the website at http://www.ti.com/stellaris.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

4.3 ROM mapping check for the Boot loader does not function properly

Description:

Before the processor is released from the reset state, the System Control module is supposed to check offset 0x0000.0004 of Flash memory looking for a reset vector that is not 0xFFF.FFF. If an initialized reset vector is found, Flash memory is mapped to address 0x0000.0000, otherwise ROM is mapped to address 0x0000.0000. Currently, the System Control module errantly checks offset 0x0000.0008, which is the NMI vector. So, in situations where a valid reset vector (offset 0x0000.0004) has been programmed, but the NMI vector has not been programmed, the ROM is errantly mapped to zero preventing the application that is stored in Flash memory from being executed out of reset.

Workaround:

Ensure that the NMI vector is always programmed.

Silicon Revision Affected:

B1

Fixed:

Address 0x0000.0000 is checked in Rev C.

4.4 ROM_I2CMasterErr function is incorrect

Description:

The ROM_I2CMasterErr function currently assumes that bit 2 of the **I2CMCS** register is set in all error conditions and, if this bit is clear, assumes no error has occurred. Unfortunately, this bit only indicates an ACK error so the function returns I2C_MASTER_ERR_NONE if the controller loses arbitration. I2C_MASTER_ERR_ARB_LOST is expected in this case.

Use the StellarisWare I2CMasterErr function in Flash memory.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

4.5 ROM_SSIConfigSetExpClk function is incorrect

Description:

If a non-Motorola format was specified in a call to the ROM_SSIConfigSetExpClk function, two lower bits of a clock divisor register could be corrupted. This corruption results in a small error in the actual clock rate.

Workaround:

Use the StellarisWare SSIConfigSetExpClk function in Flash memory.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

4.6 ROM_USBFIFOFlush function is incorrect

Description:

The ROM_USBFIFOFlush function improperly checks the state of the FIFO and does not allow the endpoint's FIFO to be flushed. This error affects all endpoints other than endpoint zero.

Workaround:

Use the StellarisWare USBFIFOFlush function in Flash memory.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

4.7 The option to force the ROM boot loader to execute at reset with an external pin does not function

Description:

The option to force the ROM boot loader to execute at reset with an external pin does not function. Changing the PORT and PIN fields of the **Boot Configuration (BOOTCFG)** register has no effect.

The ROM boot loader still executes if address 0x0000.0004 contains 0xFFFF.FFFF, indicating that the Flash memory has not been programmed.

Silicon Revision Affected:

B1. C1

Fixed:

Not yet fixed.

$5 \mu DMA$

5.1 The µDMA controller fails to generate capture mode DMA requests from Timer A in the Timer modules

Description:

The µDMA controller fails to generate DMA requests from Timer A in the General-Purpose Timer modules when in the Event Count and Event Time modes.

Workaround:

Use Timer B.

Silicon Revision Affected:

B1, C1

Fixed:

Not yet fixed.

6 GPIO

6.1 Port B [1:0] pins require external pull-up resistors

Description:

The internal pull-up resistors are not effective for the Port B0 and B1 pins.

Workaround:

External pull-up resistors must be used on these two pins when they are used as GPIOs.

Silicon Revision Affected:

В1

Fixed:

Fixed in Rev C.

7 EPI

7.1 EPI dual-chip select function does not work

Description:

The Dual CSn Configuration mode (CSCFG=0x2) and the ALE with Dual CSn Configuration mode (CSCFG=-x3) controlled by the **EPI Host-Bus 8 Configuration 2 (EPIHB8CFG2)** register do not function. System designs should use ALE Configuration mode (CSCFG=0x0) or CSn Configuration mode (CSCFG=0x1).

Workaround:

None.

Silicon Revision Affected:

В1

Fixed:

Fixed in Rev C.

7.2 EPI Host-Bus 16 mode does not work

Description:

The Host-Bus 16 mode (MODE=0x3) controlled by the **EPI Configuration (EPICFG)** register do not function.

Workaround:

None.

Silicon Revision Affected:

В1

Fixed:

Fixed in Rev C.

7.3 Clock signal in EPI General-Purpose mode is inverted

Description:

The clock signal that is output on the EPI0S31 signal in General-Purpose mode is inverted. Figure Figure 1 on page 13 shows the timing differences between Rev B parts and Rev C parts.

Figure 1. Timing Differences Between Rev B and Rev C Devices

Use the opposite edge for timing when designing with this interface. During read cycles, ensure that the data meets set up and hold times for the appropriate edge as shown in the diagram above.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

8 **General-Purpose Timer**

The General-Purpose Timer match register does not function 8.1 correctly in 32-bit mode

Description:

The GPTM Timer A Match (GPTMTAMATCHR) register triggers a match interrupt and a DMA request, if enabled, when the lower 16 bits match, regardless of the value of the upper 16 bits.

Workaround:

None.

Silicon Revision Affected:

B1, C1

March 01, 2010/Rev. 2.4 13 http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm

Fixed:

Not yet fixed.

8.2 A spurious DMA request is generated when the timer rolls over in Input-Edge Time mode

Description:

When the timer is in Input-Edge Time mode and rolls over after the terminal count, a spurious DMA request is generated.

Workaround:

Either ignore the spurious interrupt, or capture the edge time into a buffer via DMA, then the spurious interrupt can be detected by noting that the captured value is the same as the previous capture value.

Silicon Revision Affected:

B1. C1

Fixed:

Not yet fixed.

8.3 A spurious DMA request is generated when the timer rolls over the 16-bit boundary

Description:

When the timer is in 32-bit periodic or one-shot mode and is enabled to generate periodic DMA requests, a spurious DMA request is generated when the timer rolls past 0x0000FFFF.

Workaround:

Only use DMA with a 16-bit periodic timer.

Silicon Revision Affected:

B1, C1

Fixed:

Not yet fixed.

8.4 The value of the prescaler register is not readable in Edge-Count mode

Description:

In Edge-Count mode, the prescaler is used as an 8-bit high order extension to the 16-bit counter. When reading the **GPTM Timer n (GPTMTnR)** register as a 32-bit value, the bits [23:16] always contain the initial value of the **GPTM Timer n Prescale (GPTMTnPR)** register, that is, the "load" value of the 8-bit extension.

Workaround:

None.

Silicon Revision Affected:

B1, C1

Fixed:

Not yet fixed.

8.5 ADC trigger and Wait-on-Trigger may assert when the timer is disabled

Description:

If the value in the **GPTM Timer n Match (GPTMTnMATCHR)** register is equal to the value of the timer counter and the **TnOTE** bit in the **GPTM Control (GPTMCTL)** register is set, enabling the ADC trigger, the trigger fires even when the timer is disabled (the **TnEN** bit in the **GPTMCTL** register is clear). Similarly, if the value in the **GPTMTnMATCHR** register is equal to the value of the timer counter and the **TnWOT** bit in the **GPTM Timer n Mode (GPTMTnMR)** register is set, enabling the Wait-on-Trigger mode, the trigger fires even when the timer is disabled.

Workaround:

Enable the timer before setting the Thote bit. Also, for the Wait-on-Trigger mode, ensure that the timers are configured in the order in which they will be triggered.

Silicon Revision Affected:

B1, C1

Fixed:

Not yet fixed.

8.6 Wait-on-Trigger does not assert unless the TnOTE bit is set

Description:

Wait-on-Trigger does not assert unless the TnOTE bit is set in the GPTMCTL register.

Workaround:

If the TnWOT bit in the **GPTM Timer n Mode (GPTMTnMR)** register is set, enabling the Wait-on-Trigger mode, the TnOTE bit must also be set in the **GPTMCTL** register in order for the Wait-on-Trigger to fire. Note that when the TnOTE bit is set, the ADC trigger is also enabled.

Silicon Revision Affected:

B1, C1

Fixed:

Not yet fixed.

8.7 Do not enable match and timeout interrupts in 16-bit PWM mode

Description:

16-bit PWM mode generates match and timeout interrupts in the same manner as periodic mode.

Ensure that any unwanted interrupts are masked in the **GPTMTnMR** and **GPTMIMR** registers.

Silicon Revision Affected:

B1, C1

Fixed:

Not yet fixed.

8.8 Do not use µDMA with 16-bit PWM mode

Description:

16-bit PWM mode generates match and timeout μDMA triggers in the same manner as periodic mode.

Workaround:

Do not use µDMA to transfer data when the timer is in 16-bit PWM mode.

Silicon Revision Affected:

B1, C1

Fixed:

Not yet fixed.

8.9 Writing the GPTMTnV register does not change the timer value when counting up

Description:

When counting up, writes to the **GPTM Timer n Value (GPTMTnV)** register do not change the timer value.

Workaround:

None.

Silicon Revision Affected:

B1, C1

Fixed:

Not yet fixed.

9 Watchdog Timer 1

9.1 Writes to Watchdog Timer 1 module WDTLOAD register sometimes fail

Description:

Due to the independent clock domain of the Watchdog Timer 1 module, writes to the **Watchdog Load (WDTLOAD)** register may sometimes fail, even though the WRC bit in the **WDTCTL1** register is set after the write occurs.

Workaround:

After performing a write to the **WDTLOAD** register, read the contents back and verify that they are correct. If they are incorrect, perform the write operation again.

Silicon Revision Affected:

B1, C1

Fixed:

Not yet fixed.

10 ADC

10.1 ADC hardware averaging produces erroneous results in differential mode

Description:

The implementation of the ADC averaging circuit does not work correctly when the ADC is sampling in differential mode and the difference between the voltages is approximately 0.0V.

Workaround:

Do not use hardware averaging in differential mode. Instead, use the FIFO to store results and average them in software.

Silicon Revision Affected:

B1, C1

Fixed:

Not yet fixed.

10.2 The ADCSPC register does not function

Description:

The ADC Sample Phase Control (ADCSPC) register does not function and cannot be used.

Workaround:

None.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

11 UART

11.1 UART Smart Card (ISO 7816) mode does not function

Description:

The UnTX signal does not function correctly as the bit clock in Smart Card mode.

Workaround:

None.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

11.2 When in IrDA mode, the UnRx signal requires configuration even if not used

Description:

When in IrDA mode, the transmitter may not function correctly if the UnRx signal is not used.

Workaround:

When in IrDA mode, if the application does not require the use of the \mathtt{UnRx} signal, the GPIO pin that has the \mathtt{UnRx} signal as an alternate function must be configured as the \mathtt{UnRx} signal and pulled High.

Silicon Revision Affected:

В1

Fixed:

Fixed in Rev C.

12 SSI

12.1 An interrupt is not generated when using μ DMA with the SSI module if the EOT bit is set

Description:

When using the primary μDMA channels with the SSI module, an interrupt is not generated on transmit μDMA completion if the EOT bit (bit 4 of the **SSICR1** register) is enabled.

Use the alternate µDMA channels for the SSI module.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

13 12S

13.1 Some bits in the I2SMCLKCFG register do not function

Description:

The top 2 bits of the RXI and TXI bit fields in the I2SMCLKCFG register do not function (bits [29:28] of RXI and bits [13:12] of TXI). The RXI and TXI fields contain the 10-bit integer input for the receive and transmit clock generator, respectively. The remaining 8 bits in each field function correctly, so most of the possible integer input choices can be used in system design.

Workaround:

None.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

I²S SCLK signal is inverted in certain modes 13.2

Description:

When the I²S controller is operating as a receiver in SCLK Master mode, the WS signal is latched on the rising edge of SCLK, not the falling edge. In addition, when the controller is operating as a transmitter in SCLK Slave mode, the data is launched on the rising edge of SCLK, not the falling edge.

Workaround:

For the transmitter, there are two possible workarounds for this issue:

- 1. Ensure that the I2SOTXSCK signal leads the I2SOTXWS signal by at least 4 ns.
- 2. Configure as I²S mode with DAC in Left-Justified audio format.

For the receiver, ensure that the CODEC is configured as the SCLK master, and the I²S receive module is configured as the SCLK slave.

Silicon Revision Affected:

B1

March 01, 2010/Rev. 2.4 19 http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm

Fixed:

Fixed in Rev C.

14 Ethernet Controller

14.1 Ethernet receive packet corruption may occur when using optional auto-clock gating

Description:

Ethernet receive packets may be corrupted if the ACG bit in the Run-Mode Clock Configuration (RCC) register is set.

Workaround:

Do not set the ACG bit in the RCC register.

Silicon Revision Affected:

В1

Fixed:

Fixed in Rev C.

14.2 Ethernet packet loss with cables longer than 50 meters

Description:

The microcontroller experiences some packet loss with Ethernet cables longer than 50 meters in normal operating conditions.

Workaround:

There are two possible workarounds for this issue:

- 1. Add 10 Ω resistor to the center-tap of the transformer as shown in the figure. These resistors should be replaced by a direct connection for silicon that has this item fixed.
- 2. Continue using the recommended circuit, but limit cable lengths to 50 meters.

Figure 2. Recommended Center-Tap Connections

Silicon Revision Affected:

В1

Fixed:

Fixed in Rev C.

14.3 Ethernet PHY interrupts do not function correctly

Description:

The Ethernet PHY interrupts are not functional. Ethernet PHY interrupts are not necessary for normal Ethernet operation. MAC interrupts are all functional and provide necessary operation.

Workaround:

None.

Silicon Revision Affected:

В1

Fixed:

Fixed in Rev C.

15 USB

15.1 USB0ID and USB0VBUS signals are required to be connected regardless of mode

Description:

The DEVMODOTG bit in the USB General-Purpose Control and Status (USBGPCS) register does not function correctly.

Connect the USB0VBUS input to VBUS in all modes. In addition, connect the USB0ID pin to ground for Host mode operation and to VDD for Device mode operation using the DEVMOD bit in the USB General-Purpose Control and Status (USBGPCS) register.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

15.2 Latch-up may occur if power is applied to the VBUS pin but not to VDD

Description:

If power is applied to the VBUS pin but not to VDD, the microcontroller may latch up and or draw excessive current. This condition can occur if the microcontroller is unpowered and is connected as a USB device or OTG B.

Workaround:

Add a 100 Ω resistor (the tolerance is not critical) in series with the microcontroller's USB0VBUS signal. This resistor changes the USB VBUS signalling thresholds by approximately 8 mV which addresses the latch-up issue with no impact on USB performance.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

16 PWM

16.1 PWM generation is incorrect with extreme duty cycles

Description:

If a PWM generator is configured for Count-Up/Down mode, and the **PWM Load (PWMnLOAD)** register is set to a value N, setting the compare to a value of 1 or N-1 results in steady state signals instead of a PWM signal. For example, if the user configures PWM0 as follows:

- PWMENABLE = 0x00000001
 - PWM0 Enabled
- PWM0CTL = 0x00000007
 - Debug mode enabled
 - Count-Up/Down mode
 - Generator enabled

- PWM0LOAD = 0x00000063
 - Load is 99 (decimal), so in Count-Up/Down mode the counter counts from zero to 99 and back down to zero (200 clocks per period)
- PWM0GENA = 0x000000b0
 - Output High when the counter matches comparator A while counting up
 - Output Low when the counter matches comparator A while counting down
- PWM0DBCTL = 0x00000000
 - Dead-band generator is disabled

If the PWM0 Compare A (PWM0CMPA) value is set to 0x00000062 (N-1), PWM0 should output a 2-clock-cycle long High pulse. Instead, the PWM0 output is a constant High value.

If the **PWM0CMPA** value is set to 0x00000001, PWM0 should output a 2-clock-cycle long negative (Low) pulse. Instead, the PWM0 output is a constant Low value.

Workaround:

User software must ensure that when using the PWM Count-Up/Down mode, the compare values must never be 1 or the **PWMnLOAD** value minus one (N-1).

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

16.2 Sync of PWM does not trigger "zero" action

Description:

If the PWM Generator Control (PWM0GENA) register has the ActZero field set to 0x2, then the output is set to 0 when the counter reaches 0, as expected. However, if the counter is cleared by setting the appropriate bit in the PWM Time Base Sync (PWMSYNC) register, then the "zero" action is not triggered, and the output is not set to 0.

Workaround:

None.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

PWM "zero" action occurs when the PWM module is disabled 16.3

Description:

The zero pulse may be asserted when the PWM module is disabled.

None.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

16.4 PWM Enable Update register bits do not function

Description:

The ENUPDn bits in the **PWM Enable Update (PWMENUPD)** register do not function. As a result, enabling the PWM modules can't be synchronized.

Workaround:

None.

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

17 Electrical Characteristics

17.1 Momentarily exceeding V_{IN} ratings on any pin can cause latch-up

Description:

To avoid latch-up, the maximum DC ratings of the part must be strictly enforced. The most common violation of the V_{IN} electrical specification can occur when a mechanical switch or contact is connected directly to a GPIO or special function ($\overline{\text{RST}}$, $\overline{\text{WAKE}}$, ...) pin. The circuit shown in Figure 3 on page 24 typically has stray inductance and capacitance that can cause a voltage glitch when the switch transitions, as shown in Figure 4 on page 25. The magnitude of the glitch may exceed the V_{IN} in the maximum DC ratings table in the Electrical Characteristics chapter. Figure 5 on page 25 shows an improved circuit that eliminates the glitch.

Figure 3. Incorrect Reset Circuitry

Figure 4. Excessive Undershoot Voltage on Reset

Use a circuit as shown in Figure 5 on page 25. In this circuit, R_S should be less than or equal to $R_{PU}/10$. C_1 should be matched to R_{PU} to achieve a suitable t_{RC} for the application. Typical values are:

- \blacksquare R_{PU} = 10 k Ω
- \blacksquare R_S = 470 Ω
- $C_1 = 0.01 \, \mu F$

Figure 5. Recommended Reset Circuitry

After implementing the circuit shown in Figure 5 on page 25, confirm that the voltage on the $\overline{\tt RST}$ input has a curve similar to the one in Figure 6 on page 25, and that the V_{IN} specification is not exceeded.

Figure 6. Recommended Voltage on Reset

Silicon Revision Affected:

B1

Fixed:

Fixed in Rev C.

17.2 Power-on event may disrupt operation

Description:

Incorrect power sequencing during power up can disrupt operation and potentially cause device failure.

Workaround:

 V_{DDC} must be applied approximately 50 µs before V_{DD} . Normally V_{DDC} is controlled by the part's internal LDO voltage regulator. The workaround requires the addition of an external regulator (see Figure 7) to ensure that V_{DDC} sequencing requirements are met (see Figure 8). A recommended regulator is the TI TPS73101DBVR.

This fix mitigates the on-chip power issue, but does not solve it completely. During development, the Flash memory should also be reprogrammed (using LMFlash or another programming tool) at least once a week.

Figure 7. Configuration of External Regulator

Figure 8. VDDC Sequencing Requirements

Detailed characterization is ongoing.	Cantact the Applications Compa	t To ana far tha lataat infarmation
Theralieo characienzalion is onooino	Contact the Applications Stippo	n Team for the latest information

Silicon Revision Affected:

В1

Fixed:

Fixed in Rev C.

Copyright © 2008-2010 Texas Instruments Inc. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Texas Instruments 108 Wild Basin, Suite 350 Austin, TX 78746 http://www.ti.com/stellaris

