

Welcome!

- About µMAG
- Announcements
- Discussion

Standard Problems

- Strategy
- Problem #1
 - Specification
 - Submission guid
 - Submission repo
- Problem #2
 - Specification
 - Four Reports!
- Problem #3
 - Specification
 - Three Reports!
- Problem #4
 - Specification
 - Eight Reports!

Public Code

- OOMMF
- SimulMag
- MAGPAR
- Nmag

Meeting Reports

- Initial workshop
 - Action Plan
- Nov. 1995
- Jan. 1998

µMAG Standard Problem

Problem brainstormed by Bob McMichael, Roger Koch a McMichael.

Please send comments to rmcmichael@nist.gov and join t

Sets of solutions are available.

Specifications

Standard problem #4 is focused on dynamic aspects of m equilibrium <u>s-state</u> such as is obtained after applying and to zero. Fields of magnitude sufficient to reverse the magr the time evolution of the magnetization as the system move problem will be run for two different applied fields.

Geometry:

A film of thickness, t=3 nm, length, L=500 nm and width,

Material parameters:

Similar to Permalloy:

$$A = 1.3e-11 \text{ J/m} (1.3e-6 \text{ erg/cm})$$

$$M_{\rm S} = 8.0 {\rm e}5 \,{\rm A/m} \, (800 \,{\rm emu/cc})$$

$$K = 0.0$$

The dynamics, calculated either using the Landau-Lifshitz