Теория чисел Основной поток

Создал: Низамов Айнур, БПМИ225

При обнаружении ошибок просьба писать сюда (не анонимно, но быстро) или сюда (анонимно, но не очень быстро). Для любителей Git можно создать issue на GitHub

Содержание:

Лекция 1 (12.01.23)

- 1.0. Введение
- 1.1. Алгоритм Евклида

Лекция 2 (19.01.23)

- 2.0. Введение
- 2.1. Основная теорема арифметики
- 2.2. Цепные дроби

Лекция 3 (26.01.23)

- 3.0. Введение
- 3.1. К-я подходящая дробь

Лекция 4 (02.02.23)

- 4.0. Введение
- 4.1. Сравнения и вычеты

1.0. Введение

 \mathbb{N} – натуральные числа

 \mathbb{Z} – целые числа

 \mathbb{Q} — рациональные числа

 \mathbb{R} – вещественные числа

 \mathbb{C} – комлпексные числа

A - алгебраические числа (не будут затронуты)

Обозначение. $a \mid b \text{ (реже } b \stackrel{.}{:} a) \iff \exists c \in \mathbb{Z} : b = ac \text{ (}a \text{ делит } b\text{)}$

Свойства:

• рефлексивность: $a \mid a \ (a \neq 0)$

• транзитивность: $a \mid b, b \mid c \Longrightarrow a \mid c$

• $a \mid b \Longrightarrow \forall c \in \mathbb{Z} \ a \mid bc$

• $a \mid b, a \mid c \Longrightarrow a \mid b \pm c$

Теорема 1 (деление с остатком). Пусть $a \in \mathbb{Z}, b \in \mathbb{N}$. Тогда $\exists !q, r \in \mathbb{Z} : a = qb + r, 0 \le r < b$

Доказательство. Возьмем $n \in \mathbb{Z}$, $nb \le a < (n+1)b$. Положим q = n, r = a - nb, тогда $0 \le r < b$. Теперь докажем единственность: $a = q_1b + r_1, a = q_2b + r_2$. Тогда $r_1 - r_2 = (q_2 - q_1)b$. Но $|r_1 - r_2| < b \Longrightarrow r_1 - r_2 = 0 \Longrightarrow q_2 - q_1 = 0$

Деление с остатком:

- 1. Однозначное разложение на простые множители (ocnoshas meopema $apu\phi me-mu\kappa u$)
- 2. Цепные дроби
- 3. Вычеты (арифметика остатков)

1.1. Алгоритм Евклида

Пусть $a, b \in \mathbb{Z}, |a| + |b| \neq 0$ Тогда $(a, b) = \text{HOД}(a, b) - наибольший общий делитель.}$

Определение. a и b взаимно просты, если (a,b)=1

Предложение. Пусть a=qb+r. Тогда (a,b)=(b,r) Доказательство.

$$\begin{cases} d \mid a, b \Longrightarrow d \mid r \\ d \mid b, r \Longrightarrow d \mid a \end{cases}$$

множество всех общих делителей a и b совпадает c b и r, значит (a,b)=(b,r)

Алгоритм Евклида. $a \in \mathbb{Z}, b \in \mathbb{N}$

$$a = a_0 b + r_0 \ (0 \le r_0 < b)$$

$$b = a_1 r_0 + r_1 \ (0 \le r_1 < r_0)$$

$$r_0 = a_2 r_1 + r_2 \ (0 \le r_2 < r_1)$$
...

$$r_{n-3} = a_{n-1}r_{n-2} + r_{n-1} \ (0 \le r_{n-2} < r_{n-1})$$

 $r_{n-2} = a_n r_{n-1} + r_n \ (r_n = 0), \text{ To ectb } r_{n-1} \mid r_{n-2}$
 $(a,b) \to (b,r_0) \to (r_0,r_1) \to \ldots \to (r_{n-3},r_{n-2}) \to (r_{n-2},r_{n-1}) = r_{n-1}$

Теорема 2 (расширенный алгоритм Евклида).

$$\forall a, b \in \mathbb{Z} (|a| + |b| \neq 0) \exists \lambda, \mu \in \mathbb{Z} : (a, b) = \lambda a + \mu b$$

Доказательство.
$$\forall k \; r_k = r_{k-2} - a_k r_{k-1}$$

$$r_{n-1} = r_{n-3} - a_{n-1}r_{n-2} = \dots = \lambda_k r_k + \mu_k r_{k+1} = \dots = \lambda a + \mu b$$

2.0. Введение

Лемма (важная). Пусть $a, b, c \in \mathbb{Z}$. Тогда:

$$\begin{cases} a \mid bc \\ (a,b) = 1 \end{cases} \implies a \mid c$$

Доказательство. $\exists \lambda, \mu$:

$$\lambda a + \mu b = 1$$

$$\underbrace{\lambda ac}_{a|ac} + \underbrace{\mu bc}_{a|bc} = \underbrace{c}_{a|c}$$

Левое слагаемое делится на a, потому что есть множитель a. Правое слагаемое делится на a по условию. Тогда и сумма делится на a.

2.1. Основная теорема арифметики

Теорема. Пусть $n \in \mathbb{N}, n > 1$. Тогда n раскладывается в произведение простых единственным образом с точностью до перестановки множителей.

Доказательство. Если n не имеет нетривиального разложения¹, то оно простое. Если n = mk, m, k < n. Дальше показывается по индукции, что число можно разложить на такие числа, которые не имеют нетривиального разложения (простые). Теперь докажем единственность. Пусть $n = p_1 \cdot p_2 \cdot \ldots \cdot p_a = q_1 \cdot q_2 \cdot \ldots \cdot q_b$. Сократим все одинаковые множители из первого и второго разложения: $\forall i, j \ p_i \neq q_j$. Тогда $(p_1, q_j) = 1$. По важной лемме:

$$p_1 \mid q_2 \cdot q_3 \cdot \ldots \cdot q_b$$

$$p_1 \mid q_3 \cdot \ldots \cdot q_b$$

$$\ldots$$

$$p_1 \mid q_b$$

 $(p_1,q_b)=1,$ но $p_1 \neq 1$ – противоречие.

Пусть $n \in \mathbb{N}, n > 1$. Тогда по основной теореме арифметики: $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k},$ $p_i \neq p_j \ \forall i \neq j$, где p_i – простое. Это называется *каноническим разложением* n *на простые*.

Обозначение. $\nu_p(n) = \max\{d \in \mathbb{N} \cup \{0\} : p^d \mid n\} - cmenene вхождения <math>p \in n$.

¹Разложение n = mk называется нетривиальным, если $m, k < n, m, k \in \mathbb{N}$

С такими обозначениями разложение на простые множители можно записать так: $n = \prod_{p|n} p^{\nu_p(n)} = \prod_p p^{\nu_p(n)} - c$ какого-то момента $\nu_p(n)$ будет 0.

2.2. Цепные дроби

Вспомним алгоритм Евклида и разложим Q в цепную дробь:

$$\begin{vmatrix} a = a_0b + r_0 \\ b = a_1r_0 + r_1 \\ & \vdots \\ r_{n-2} = a_nr_{n-1} \end{vmatrix} = a_0 + \frac{1}{\frac{b}{r_0}} = a_0 + \frac{1}{a_1 + \frac{r_1}{r_0}} = a_0 + \frac{1}{a_1 + \frac{r_1}{r_0}} = a_0 + \frac{1}{a_1 + \frac{r_1}{a_2}} = a_0 + \frac{1}{a_2 + \frac{1}{a_2}} = a_0 + \frac{1}{a_2 + \frac{1}{a_2$$

Также есть другая, более короткая запись цепной дроби: $[a_0; a_1, a_2, \ldots, a_n]$, где $a_0 \in \mathbb{Z}$, $a_1, a_2, \ldots, a_n \in \mathbb{N}$, $a_n \neq 1$ (видно по алгоритму на предпоследнем шаге: $r_{n-1} < < r_{n-2} \Longrightarrow a_n = \frac{r_{n-2}}{r_{n-1}} > 1$).

Обозначение. $[\alpha]$ – целая часть α , $\{\alpha\} = \alpha - [\alpha]$ – дробная доля (часть) α

Пусть
$$\alpha \in \mathbb{R}$$
. Положим $\alpha_0 = \alpha$. Реккурента: $\alpha_{k+1} = \frac{1}{\{\alpha_k\}}, \ a_k = [\alpha_k], \ k \in \mathbb{N} \cup \{0\}$ $\forall n \in \mathbb{N} \cup \{0\}$ верно $\alpha = [a_0; a_1, \dots, a_{n-1}, \alpha_n] = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_{n-1} + \cfrac{1}{\alpha_n}}}$

Если у цепной дроби есть период, то над каждой a_i (которая в периоде) рисуется черта. Например: $\sqrt{15} = [3; 1, 6, 1, 6, \ldots] = [3; \overline{1, 6}]$

Определение. Пусть $\alpha \sim [a_0; a_1, a_2, \dots, a_k, \dots]$. Тогда для $k = 0, 1, 2, \dots$ дроби $\frac{p_k}{q_k} = [a_0; a_1, \dots, a_k]$ называются *подходящими дробями* числа α .

Теорема. $\forall k \in \mathbb{N} \cup \{0\}$ верно следующее: $\left| \alpha - \frac{p_k}{q_k} \right| \leq \frac{1}{q_k q_{k+1}} \leq \frac{1}{q_k^2}$ Реккурентные соотношения:

$$p_k = a_k p_{k-1} + p_{k-2}$$
$$q_k = a_k q_{k-1} + q_{k-2}$$

Все это будет доказано на следующей лекции.

3.0. Введение

Давайте разложим $5+\frac{1}{3}$ в цепную дробь следующим образом: $5+\frac{1}{2+\frac{1}{1}}$. Запретим такие $\frac{1}{1}$, потому что можно отщепить 1 из числителя и получить исходное число разложение: $5+\frac{1}{2+1}=5+\frac{1}{3}$.

3.1. К-я подходящая дробь

Вспомним прошлую лекцию и дополним определение. Дробь вида $\frac{p_k}{q_k} = [a_0; a_1, \dots, a_k],$ $p_k, q_k \in \mathbb{Z}, q_k > 0, (p_k, q_k) = 1$ называется k-й подходящей дробью. Докажем некоторые факты, которые остались недоказанными в прошлый раз.

Теорема (о реккурентных соотношениях для числителей и знаменателей подходящих дробей). Пусть заданы последовательности α_k (хвосты), a_k (неполные частные). Тогда последовательности p и q заданы следующей реккурентной формулой:

$$p_k = a_k p_{k-1} + p_{k-2}$$

$$q_k = a_k q_{k-1} + q_{k-2}$$

Для удобства можно положить:

$$\begin{pmatrix} p_{-1} & p_{-2} \\ q_{-1} & q_{-2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Теперь последовательности p и q определены $\forall k \geq 0$

Теорема (*о континуантах*). Пусть x_0, x_1, \ldots, x_k – независимые переменные. Положим:

$$\begin{pmatrix} P_{-1} & P_{-2} \\ Q_{-1} & Q_{-2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

А также определим последовательности многочленов ($\forall k \geq 0$):

$$P_k(x_0,\ldots,x_k) = x_k P_{k-1}(x_0,\ldots,x_{k-1}) + P_{k-2}(x_0,\ldots,x_{k-2})$$

$$Q_k(x_0,\ldots,x_k) = x_k Q_{k-1}(x_0,\ldots,x_{k-1}) + Q_{k-2}(x_0,\ldots,x_{k-2})$$

Обозначение. Сокращенная запись P_k предполагает $P_k(x_0, ..., x_k)$ (аналогично и для Q_k).

Утверждения:

$$1. \ \frac{P_k}{Q_k} = [x_0, \dots, x_k]$$

2.
$$P_k Q_{k-1} - P_{k-1} Q_k = (-1)^{k-1}$$

3.
$$P_k Q_{k-2} - P_{k-2} Q_k = (-1)^k \cdot x_k$$

Доказательство.

1. Докажем по индукции по k:

База: k = 0:

$$P_0(x_0)=x_0P_{-1}+P_{-2}=x_0$$

$$Q_0(x_0)=x_0Q_{-1}+Q_{-2}=1$$
 откуда $\frac{P_0(x_0)}{Q_0(x_0)}=x_0=[x_0]$ (цепная дробь) – верно

Переход: пусть верно $\forall k < n$, докажем для k = n:

$$\begin{split} &[x_0;\dots,x_{n-2},x_{n-1},x_n] = [x_0;\dots,x_{n-2},x_{n-1}+\frac{1}{x_n}]^2 = \frac{P_{n-1}(x_0,\dots,x_{n-2},x_{n-1}+\frac{1}{x_n})}{Q_{n-1}(x_0,\dots,x_{n-2},x_{n-1}+\frac{1}{x_n})} = \\ &= \frac{(x_{n-1}+\frac{1}{x_n})P_{n-2}(x_0,\dots,x_{n-2}) + P_{n-3}(x_0,\dots,x_{n-3})}{(x_{n-1}+\frac{1}{x_n})Q_{n-2}(x_0,\dots,x_{n-2}) + Q_{n-3}(x_0,\dots,x_{n-3})} = \frac{(x_{n-1}+\frac{1}{x_n})P_{n-2} + P_{n-3}}{(x_{n-1}+\frac{1}{x_n})Q_{n-2} + Q_{n-3}} = \\ &= \frac{x_n}{x_n} \cdot \frac{(x_{n-1}+\frac{1}{x_n})P_{n-2} + P_{n-3}}{(x_{n-1}+\frac{1}{x_n})Q_{n-2} + Q_{n-3}} = \frac{x_n(x_{n-1}P_{n-2} + P_{n-3}) + P_{n-2}}{x_n(x_{n-1}Q_{n-2} + Q_{n-3}) + Q_{n-2}} = \frac{x_nP_{n-1} + P_{n-2}}{x_nQ_{n-1} + Q_{n-2}} = \\ &= \frac{P_n}{Q_n} = \frac{P_n(x_0,x_1,\dots,x_n)}{Q_n(x_0,x_1,\dots,x_n)} = [x_0;x_1,\dots,x_n] - \text{верно} \end{split}$$

2. Докажем по индукции по k:

База:
$$k=-1: P_{-1}Q_{-2}-P_{-2}Q_{-1}=1\cdot 1-0\cdot 0=1=(-1)^{-1-1}=(-1)^{-2}$$
 – верно

Переход: пусть верно для $\forall k < n$, докажем дял k = n:

$$\begin{split} P_nQ_{n-1}-P_{n-1}Q_n&=(x_nP_{n-1}+P_{n-2})Q_{n-1}-P_{n-1}(x_nQ_{n-1}+Q_{n-2})=x_nP_{n-1}Q_{n-1}+P_{n-2}Q_{n-1}-x_nP_{n-1}Q_{n-1}-P_{n-1}Q_{n-2}=P_{n-2}Q_{n-1}-P_{n-1}Q_{n-2}=-(P_{n-1}Q_{n-2}-P_{n-2}Q_{n-1})=-(-1)^{n-2}=(-1)^{n-1}-\text{верно} \end{split}$$

3. Возьмем определитель:

$$\begin{vmatrix} P_k & P_{k-2} \\ Q_k & Q_{k-2} \end{vmatrix} = \begin{vmatrix} P_k - P_{k-2} & P_{k-2} \\ Q_k - Q_{k-2} & Q_{k-2} \end{vmatrix} = \begin{vmatrix} x_k P_{k-1} & P_{k-2} \\ x_k Q_{k-1} & Q_{k-2} \end{vmatrix} = x_k \begin{vmatrix} P_{k-1} & P_{k-2} \\ Q_{k-1} & Q_{k-2} \end{vmatrix} =$$

$$= x_k (P_{k-1} Q_{k-2} - P_{k-2} Q_{k-1}) = (-1)^{k-2} \cdot x_k = (-1)^k \cdot x_k$$

Доказательство теоремы (о реккурентных соотношениях для числителей и знаменателей подходящих дробей). Положим $x_0 = a_0, \ldots, x_k = a_k$:

 $[\]overline{{}^2}$ Ключевой ход: $x_{n-1} + \frac{1}{x_n} = [x_{n-1}, x_n] = [x_{n-1} + \frac{1}{x_n}]$ – по алгоритму построения цепной дроби

$$\frac{P_k(a_0, \dots, a_k)}{Q_k(a_0, \dots, a_k)} = [a_0; a_1, \dots, a_k]$$

Заметим, что:

- $P_k(a_0,\ldots,a_k), Q_k(a_0,\ldots,a_k) \in \mathbb{Z}$
- $Q_k(a_0,\ldots,a_k)\in\mathbb{N}$
- $(P_k(a_0,\ldots,a_k),Q_k(a_0,\ldots,a_k))=1$ следствие пункта 2 из теоремы о континуантах.

Стало быть $p_k=P_k(a_0,\ldots,a_k),\ q_k=Q_k(a_0,\ldots,a_k)$ То есть $p_k=a_kp_{k-1}+p_{k-2},\ q_k=a_kq_{k-1}+q_{k-2},$ так как P_k и Q_k удовлетворяли этому.

9

4.0. Введение

Вспомним 3 утверждения с прошлой лекции:

$$\bullet \ \frac{P_k}{Q_k} = [x_0, \dots, x_k]$$

•
$$P_k Q_{k-1} - P_{k-1} Q_k = (-1)^{k-1}$$

•
$$P_k Q_{k-2} - P_{k-2} Q_k = (-1)^k \cdot x_k$$

Следствие из теоремы (о континуантах).

1. Справедливы $p_k = a_k p_{k-1} + p_{k-2}, \ q_k = a_k q_{k-1} + q_{k-2}$

2.
$$p_k q_{k-1} - p_{k-1} q_k = (-1)^{k-1}$$

3.
$$p_k q_{k-2} - p_{k-2} q_k = (-1)^k \cdot a_k$$

Доказательство. 1 доказывали на прошлой лекции, 2 и 3 мгновенно получаются из утверждений, которые тоже были доказаны на прошлой лекции

Предложение.

1.
$$\frac{p_0}{q_0} < \frac{p_2}{q_2} < \ldots < \frac{p_{2k}}{q_{2k}} < \ldots \le \alpha \le \ldots < \frac{p_{2k+1}}{q_{2k+1}} < \ldots < \frac{p_3}{q_3} < \frac{p_1}{q_1}$$

2.
$$\frac{p_k}{q_k} - \frac{p_{k-1}}{q_{k-1}} = \frac{p_k q_{k-1} - p_{k-1} q_k}{q_k q_{k-1}} = \frac{(-1)^{k-1}}{q_k q_{k-1}}$$

3.
$$\frac{p_k}{q_k} - \frac{p_{k-2}}{q_{k-2}} = \frac{p_k q_{k-2} - p_{k-2} q_k}{q_k q_{k-2}} = \frac{(-1)^k \cdot a_k}{q_k q_{k-2}}$$

$$4. \ q_k \ge 2q_{k-2} \ (\forall k \ge 1)$$

5.
$$\left| \alpha - \frac{p_k}{q_k} \right| \le \frac{1}{q_k q_{k+1}} \le \frac{1}{q_k^2}$$

6.
$$\left| \alpha - \frac{p_k}{q_k} \right| \ge \frac{a_{k+2}}{q_k q_{k+2}}$$

Доказательство.

1. $\forall i=2n, j=2m+1$ $\frac{p_i}{q_i}<\frac{p_j}{q_j}$ следует из пункта 3 предложения. Для четных

$$k: \frac{p_k}{q_k} - \frac{p_{k-2}}{q_{k-2}} = \overbrace{\frac{a_k}{q_k q_{k-2}}}^{\mathbb{N}} \Longrightarrow$$
 разница положительна, значит возрастает при

возрастании k. Аналогично показывается для нечетных (убывают, так как $(-1)^k$ при нечетном k будет отрицательным, стало быть и разница отрицательна).

$$(-1)^k$$
 при нечетном k будет отрицательным, стало быть и разница отрицательна) Далее $\alpha = [a_0; a_1, \dots, a_k, \alpha_{k+1}]$. Рассмотрим последние 3 дроби: $a_{k-1} + \frac{1}{a_k + \frac{1}{\alpha_{k+1}}}$.

Если обрубим α_{k+1} (получим $[a_0; a_1, \dots, a_k]$), то знаменатель $a_k + \underbrace{\frac{1}{\alpha_{k+1}}}$ уменьшит-

ся, значит дробь $\frac{1}{a_k + \frac{1}{\alpha_{k+1}}}$ увеличится. Следующий знаменатель увеличится,

а дробь уменьшится и так далее. Из этого следует:

- $\alpha \geq \frac{p_{2k}}{q_{2k}}$
- $\bullet \ \alpha \le \frac{p_{2k+1}}{q_{2k+1}}$

Выходит, что все четные не больше α , а нечетные – не меньше.

- 2. Даром из следствия 2 из теоремы о континуантах.
- 3. Даром из следствия 3 из теоремы о континуантах.

4.
$$q_k = \underbrace{a_k}_{>1} q_{k-1} + q_{k-2} \ge q_{k-1} + q_{k-2} \ge 2q_{k-2}$$

- 5. $\frac{p_k}{q_k} \le \alpha \le \frac{p_{k+1}}{q_{k+1}}$, если k четное вычитаем $\frac{p_k}{q_k}$ и получаем что надо.
- 6. $\alpha \ge \frac{p_{k+2}}{q_{k+2}} > \frac{p_k}{q_k}$, если k четное вычитаем $\frac{p_k}{q_k}$ и получаем что надо.

Еще одно **следствие** из теоремы о континуантах. Пусть
$$\alpha = [a_0; a_1, \dots, a_{k-1}, \alpha_k]$$
. Тогда $\alpha = \frac{P_k(a_0, \dots, a_{k-1}, \alpha_k)}{Q_k(a_0, \dots, a_{k-1}, \alpha_k)} = \frac{\alpha_k p_{k-1} + p_{k-2}}{\alpha_k q_{k-1} + q_{k-2}}$

Пример.
$$\varphi = \frac{1+\sqrt{5}}{2}$$

$$\varphi^2 = \varphi + 1$$

$$\varphi = 1 + \frac{1}{\varphi}$$

 $\varphi = [1; \bar{1}]$ – самая простая цепная дробь для числа из $\mathbb R$

Пусть F_k – k-е число Фибоначчи. Положим $p_k = F_k$, $q_k = F_{k-1}$. Тогда $\lim_{k \to \infty} \frac{p_k}{q_k} = \varphi$

Приложения к линейным диофантовым уравнениям.

 $a, b \in \mathbb{N}, (a, b) = 1.$ Как решить уравнение ax + by = c?

Пусть
$$\frac{a}{b}=[a_0;a_1,\ldots,a_{k-1},a_k]$$
. Тогда $\frac{p_k}{q_k}=\frac{a}{b},\;\frac{p_{k-1}}{q_{k-1}}=[a_0;a_1,\ldots,a_{k-1}]$

Следовательно $aq_{k-1} + b(-p_{k-1}) = (-1)^{k-1}$

Значит
$$\binom{x_0}{y_0} = (-1)^{k-1} \cdot c \cdot \binom{q_{k-1}}{-p_{k-1}}$$
 — частичное решение уравнения $ax + by = c$

4.1. Сравнения и вычеты

Определение. Пусть $m \in \mathbb{N}, m \geq 2$ – модуль. Есть $a,b \in \mathbb{Z}$. Тогда a и b сравнимы по модулю m если $m \mid a-b$

Обозначение. $a \equiv b \pmod{m}$. Реже пишут как $a \equiv b \pmod{m}$

Свойства:

1. Отношение сравнения является отношением эквивалентности.

2. Пусть выполняются
$$\begin{cases} a \equiv b \pmod m \\ c \equiv d \pmod m \end{cases}$$
 . Тогда верно и
$$\begin{cases} a+c \equiv b+d \pmod m \\ a-c \equiv b-d \pmod m \\ ac \equiv bd \pmod m \end{cases}$$

- 3. $a \equiv b \pmod{m}, \forall c \in \mathbb{N} \implies ac \equiv bc \pmod{mc}$
- 4. $a \equiv b \pmod{m}, \forall c \in \mathbb{Z} \ (c, m) = 1 \Longrightarrow ac \equiv bc \pmod{m}$
- 5. Пусть $f(x) \in \mathbb{Z}[x]^3$, $a \equiv b \pmod{m}$. Тогда $f(a) \equiv f(b) \pmod{m}$

Доказательство.

- 1. Чтобы отношение сравнения было отношением эквивалентности, должны выполняться 3 условия. Проверим каждый:
 - Рефлексивность: $a \equiv a \pmod{m}$
 - Cимметричность: $a \equiv b \pmod{m} \Longrightarrow b \equiv a \pmod{m}$
 - Транзитивность: $a \equiv b \pmod{m}, \ b \equiv c \pmod{m} \Longrightarrow a \equiv c \pmod{m}$

2.
$$\begin{cases} m \mid a - b \\ m \mid c - d \end{cases} \implies m \mid (a - b) + (c - d) \Longrightarrow m \mid (a + c) - (b + d) \Longrightarrow a + c \equiv$$

 $\equiv b + d \pmod{m}$. Аналогично для вычитания.

Для умножения:

 $^{3\}mathbb{Z}[x]$ – многочлен с целыми коэффициентами от x

$$\begin{cases} m \mid a - b \\ m \mid c - d \end{cases} \Longrightarrow \begin{cases} m \mid c(a - b) \\ m \mid b(c - d) \end{cases} \Longrightarrow m \mid c(a - b) + b(c - d) \Longrightarrow m \mid ac - bc + bc - bd \Longrightarrow m \mid ac - bd \Longrightarrow ac \equiv bd \pmod{m}$$

- 3. $m \mid a b \iff mc \mid (a b)c$
- 4. С одной стороны: $m \mid a-b \Longrightarrow m \mid c(a-b)$ С другой стороны: $m \mid c(a-b) \Longrightarrow m \mid a-b$ (по важной лемме, так как (m,c)=1)
- 5. Пока что нет (не обсуждалось на лекции).