Estacionariedad débil

Detección en series electrofisiológicas

Julio Cesar Enciso Alva Neuroscience Short Course 6 de julio de 2017

Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo ${\bf Conceptos}$

Ejemplo práctico

Motivación

El estudio y diagnóstico de una gran cantidad de enfermedades depende de nuestra habilidad para registrar y analizar señales electrofisiológicas.

Se suele asumir que estas señales son complejas: no lineales, no estacionarias y sin equilibrio por naturaleza. Pero usualmente no se comprueban formalmente estas propiedades.

Motivación: formalidad

${\bf Conceptos}$

- Promedio (μ)
- Desviación estándar (σ^2)

• Serie de tiempo $\{X(t)\}$

 $\bullet~$ Función de autocorrelación (ρ)

¿ Promedio y desviación estándar de una serie de tiempo?

¿ Promedio y desviación estándar de una serie de tiempo?

Definición (Estacionariedad débil)

Un proceso estocástico es débilmente estacionario si y sólo si para cualesquiera tiempos admisibles t, s se tiene que

- $E[X(t)] = \mu_X$
- $Var(X(t)) = \sigma_X^2$
- $\operatorname{Cov}(X(t), X(s)) = \rho_X(s-t)$

Con $\mu_X, \, \sigma_X^2$ constantes, $\rho_X(\tau)$ únicamente depende de τ

Un atajo interesante

Espectro de potencias: $f(\omega_j) = \frac{1}{2T} \int_{-T}^T x(t) e^{-i\omega_j t} dt$

Un atajo interesante

Cantidad de operaciones: $\mathcal{O}(N \log N)$ vs $\mathcal{O}(N^2)$

Espectro de potencias vs Autocorrelación

Teorema (Wiener-Khinchin)

Una condición suficiente y necesaria para que ρ sea función de autocorrelación para algún proceso a tiempo continuo débilmente estacionario y estocásticamente continuo, $\{X(t)\}$, es que exista una función F tal que

$$\rho(\tau) = \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i}\omega\tau} \mathrm{d}F(\omega)$$

Espectro de potencias para series no-estacionarias

Se considerarán procesos no-estacionarios de media cero y varianza finita que admitan una representación de la forma

$$X(t) = \int_{-\pi}^{\pi} A(t, \omega) e^{it\omega} dZ(\omega)$$

tal que

- $\operatorname{Cov}(dZ(\omega), dZ(\lambda)) = 0 \Leftrightarrow \omega \neq \lambda$
- $E\left[|dZ(\omega)|^2\right] = \mu(\omega)$

El espectro evolutivo fue definido por Priestley¹ como

$$f(t, \omega) = |A(t, \omega)|^2$$

 $^{^1\,\}text{Maurice B}$ Priestley. "Evolutionary spectra and non-stationary processes". En: Journal of the Royal Statistical Society. Series B (Methodological) (1965), págs. 204-237.

Base de la prueba de Priestley-Subba Rao

Supóngase que puede expresarse a $\{X(t)\}$ como

$$X(t) = \int_{-\pi}^{\pi} A(t, \omega) e^{i\omega t} d\xi(\omega)$$

 $\{X(t)\} \ estacionario \Rightarrow A(t,\omega) \ constante \Rightarrow f(t,\omega) \ constante$

Base de la prueba de Priestley-Subba Rao

Supóngase que puede expresarse a $\{X(t)\}$ como

$$X(t) = \int_{-\pi}^{\pi} A(t, \omega) e^{i\omega t} d\xi(\omega)$$

 $\{X(t)\} \ estacionario \Rightarrow A(t,\omega) \ constante \Rightarrow f(t,\omega) \ constante$

Prueba de hipótesis para

 $H_0: f(t, \bullet)$ no depende de t

El estimador de doble ventana

Definición (Estimador de doble ventana)

$$\widehat{f}(t, \omega) = \int_{t-T}^{t} w_{T'}(u) |U(t-u, \omega)|^2 du$$

Donde $w_{T'}$, U, g, Γ son tales que

- $U(t, \omega) = \int_{t-T}^{t} g(u) X(t-u) e^{i\omega(t-u)} du$
- $2\pi \int_{-\infty}^{\infty} |g(u)|^2 du = \int_{-\infty}^{\infty} |\Gamma(\omega)|^2 d\omega = 1$
- $w_{\tau}(t) \geqslant 0$ para cualesquiera t, τ
- $w_{\tau}(t) \rightarrow 0$ cuando $|t| \rightarrow \infty$, para todo τ
- $\int_{-\infty}^{\infty} w_{\tau}(t)dt = 1$ para todo τ
- $\int_{-\infty}^{\infty} (w_{\tau}(t))^2 dt < \infty$ para todo τ

Estimador de doble ventana

Proposición

El estimador f tiene las siguientes propiedades

- $E\left[\widehat{f}(t,\omega)\right] \approx f(t,\omega)$
- $\bullet \ \mathrm{Var}\left(\widehat{f}(t,\omega)\right) \approx \frac{C}{\tau} f^2(t,\omega) \int_{-\infty}^{\infty} \left|\Gamma(\theta)\right|^4 \mathrm{d}\theta$
- $$\begin{split} \bullet & \operatorname{Cov}\left(\widehat{f}(t_1, \omega_1), \widehat{f}(t_2, \omega_2)\right) \approx \\ & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w_{\tau}(u) w_{\tau}(v) \operatorname{Cov}\left(\left|U(t_1 u, \omega_1)\right|^2, \left|U(t_2 u, \omega_2)\right|^2\right) du dv \end{split}$$

Estimador de doble ventana

Puede escribirse $Y(t, \omega) = \log(f(t, \omega)) + \varepsilon(t, \omega)$, donde

- $E[\varepsilon(t, \omega)] = 0$
- $\operatorname{Var}\left(\varepsilon(t,\omega)\right) \approx \frac{C}{\tau} \int_{-\infty}^{\infty} \left|\Gamma(\theta)\right|^4 d\theta =: \sigma^2$

Como f y Y dependen (o no) simultáneamente de t, se puede usar la siguiente prueba de hipótesis

$$H_0: \sum_{i=1}^N \left(Y(t, \omega_i) - \overline{Y}(\bullet, \omega_i)\right)^2 = 0$$

con
$$\overline{Y}(\bullet,\omega) = \frac{1}{M} \sum_{j=1}^{M} Y(t_j,\omega)$$

Resultados de la prueba PSR

Priestley-Subba Rao stationarity Test for datos

Samples used : 3072 Samples available : 3069 Sampling interval : 1 SDF estimator : Multitaper Number of (sine) tapers : 5 Centered : TRUE Recentered · FALSE Number of blocks : 11 Block size : 279 Number of blocks : 11 p-value for T : 0.4130131 p-value for I+R : 0.1787949 p-value for T+I+R : 0.1801353

Espectro estimado

Descomposición clásica usando loess

Filtro no-paramétrico para generar las series de tiempo

$$X(t) = T(t) + S(t) + R(t)$$

Tales que:

S Función periódica suave, comp. estacional

T Función suave, tendencia

R Residuo

Ejemplo práctico

Software estadístico R

Lenguaje para cómputo estadístico y graficación; multiplataforma (Linux, Windows, MacOS), de código abierto y acceso gratuito a través de su página • Link

Por simplicidad, se usará la interfaz gráfica de RStudio Link

Datos: registros

Graficación de los datos

Resultados de la prueba PSR

Priestley-Subba Rao stationarity Test for datos

Samples used : 3072 Samples available : 3069 Sampling interval : 1 SDF estimator : Multitaper Number of (sine) tapers : 5 Centered : TRUE Recentered : FALSE Number of blocks : 11 Block size . 279 Number of blocks : 11 p-value for T : 0.4130131 p-value for I+R : 0.1787949 p-value for T+I+R : 0.1801353

Disposición gráfica de los resultados

Efecto del tamaño de la época

Efecto del tamaño de la época

Estacionariedad local²

 $^{^2}$ Bernard Allan Cohen y Anthony Sances. "Stationarity of the human electroencephalogram". En: Medical and Biological Engineering and Computing 15.5 (1977), págs. 513-518.

Gracias por su atención