Lecture 21: Dynamic Programming III

Lecture Overview

- Subproblems for strings
- Parenthesization
- Edit distance (& longest common subseq.)
- Knapsack
- Pseudopolynomial Time

Review:

* 5 easy steps to dynamic programming

```
(a) define subproblems
(b) guess (part of solution)
(c) relate subproblem solutions
(d) recurse + memoize time / subproblem
(e) relate subproblems acyclic/topological order
(e) solve original problem: = a subproblem
```

OR by combining subproblem solutions \implies extra time

 $\boldsymbol{\ast}$ problems from L20 (text justification, Blackjack) are on sequences (words, cards)

```
* useful problems for strings/sequences x:

suffixes x[i:]

\Theta(|x|)

\Theta(|x|)

\Theta(|x|)

\Theta(|x|)

\Theta(|x|)

\Theta(|x|)
```

Parenthesization:

Optimal evaluation of associative expression $A[0] \cdot A[1] \cdots A[n-1]$ — e.g., multiplying rectangular matrices

Figure 1:

- 2. guessing = outermost multiplication $\bigoplus_{\uparrow_{k-1}} \bigoplus_{\uparrow_k}$ \implies # choices = O(n)1. subproblems = prefixes & suffixes? NO

 = cost of substring A[i:j] \implies # subproblems = $\Theta(n^2)$
- 3. recurrence:
 - $\mathrm{DP}[i,j] = \min(\mathrm{DP}[i,k] + \mathrm{DP}[k,j] + \mathrm{cost}$ of multiplying $(A[i] \cdots A[k-1])$ by $(A[k] \cdots A[j-1])$ for k in $\mathrm{range}(i+1,j))$

- DP[i, i+1] = 0 \implies cost per subproblem = O(j-i) = O(n)
- 4. topological order: increasing substring size. Total time = $O(n^3)$
- 5. original problem = DP[0, n] (& use parent pointers to recover parens.)

NOTE: Above DP is <u>not</u> shortest paths in the subproblem DAG! Two dependencies \implies not path!

Edit Distance

Used for DNA comparison, diff, CVS/SVN/..., spellchecking (typos), plagiarism detection, etc.

Given two strings x & y, what is the cheapest possible sequence of character edits (insert c, delete c, replace $c \to c$) to transform x into y?

- $\underline{\cos t}$ of edit depends only on characters c, c'
- for example in DNA, $C \to G$ common mutation \implies low cost
- cost of sequence = sum of costs of edits
- If insert & delete cost 1, replace costs 0, minimum edit distance equivalent to finding longest common subsequence. Note that a subsequence is sequential but not necessarily contiguous.
- for example H I E R O G L Y P H O L O G Y vs. M I C H A E L A N G E L O \Longrightarrow HELLO

Subproblems for multiple strings/sequences

- combine suffix/prefix/substring subproblems
- multiply state spaces
- still polynomial for O(1) strings

Edit Distance DP

- (1) <u>subproblems</u>: c(i, j) = edit-distance(x[i:], y[j:]) for $0 \le i < |x|, 0 \le j < |y| \implies \Theta(|x| \cdot |y|)$ subproblems
- (2) guess whether, to turn x into y, (3 choices):
 - x[i] deleted
 - y[j] inserted
 - x[i] replaced by y[j]
- (3) recurrence: c(i, j) = maximum of:
 - cost(delete x[i]) + c(i+1, j) if i < |x|,
 - cost(insert y[j]) + c(i, j + 1) if j < |y|,
 - $cost(replace \ x[i] \to y[j]) + c(i+1, j+1) \text{ if } i < |x| \& j < |y|$

base case: c(|x|, |y|) = 0

 $\implies \Theta(1)$ time per subproblem

(4) topological order: DAG in 2D table:

- bottom-up OR right to left
- only need to keep last 2 rows/columns
 ⇒ linear space
- total time = $\Theta(|x| \cdot |y|)$
- (5) original problem: c(0,0)

Knapsack:

Knapsack of size S you want to pack

- item i has integer size s_i & real value v_i
- goal: choose subset of items of maximum total value subject to total size $\leq S$

First Attempt:

- 1. subproblem = value for suffix i: WRONG
- 2. guessing = whether to include item $i \implies \#$ choices = 2
- 3. recurrence:
 - $DP[i] = \max(DP[i+1], v_i + DP[i+1] \text{ if } s_i \leq S?!)$
 - not enough information to know whether item *i* fits how much space is left? GUESS!

Correct:

1. subproblem = value for suffix i: $\underline{\text{given knapsack of size } X}$ \implies # subproblems = O(nS) ! 3. recurrence:

```
• DP[i, X] = \max(DP[i+1, X], v_i + DP[i+1, X-s_i] \text{ if } s_i \le X)
• DP[n, X] = 0
```

DF[n, X] = 0 $\implies \text{ time per subproblem} = O(1)$

4. topological order: for i in $n, \ldots, 0$: for X in $0, \ldots S$ total time = O(nS)

5. original problem = DP[0, S] (& use parent pointers to recover subset)

AMAZING: effectively trying all possible subsets! ... but is this actually fast?

Polynomial time

Polynomial time = polynomial in input size

- here $\Theta(n)$ if number S fits in a word
- $O(n \lg S)$ in general
- S is exponential in $\lg S$ (not polynomial)

Pseudopolynomial Time

Pseudopolynomial time = polynomial in the problem size AND the <u>numbers</u> (here: S, s_i 's, v_i 's) in input. $\Theta(nS)$ is pseudopolynomial.

Remember:

polynomial — GOOD

 ${\rm exponential} - {\rm BAD}$

pseudopoly — SO SO

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.