# PROBLEMAS INVERSOS Y TECNICAS DE REGULARIZACION

# **DORIS HINESTROZA**

## **SEPTIEMBRE 2003**

En esta presentación haremos una introducción a los problemas inversos mal puestos y daremos algunos ejemplos de interés de tipo integral y algunos algoritmos de regularización.

# 1. PROBLEMAS INVERSOS

Muchos sistemas físicos pueden ser descritos usando el modelo

$$Af = g$$
.

causa

Modelo

Ef ecto



Consideraremos que el operador

$$A: X \rightarrow Y$$

donde X,Y se consideran espacios de Hilbert, es un operador lineal continuo.

A partir del modelo presentado surgen de aquí los siguientes problemas:

## **PROBLEMA 1**

Problema Directo: Dado  $f \in X$  y A hallar  $g \in Y$ .

#### PROBLEM 2

Problema de Reconstrucción: Dado A y  $g \in Y$ , Hallar  $f \in X$ .

#### **PROBLEM 3**

Problema de Identificación: Dado  $f \in X$  y  $g \in Y$  identificar A.

# PROBLEMA 2 | PROBLEMAS INVERSOS

En el caso del problema 2 queremos calcular  $f=A^{-1}g$ . Pero este problema es complicado por dos factores importantes. Uno de ellos es que operador A opera en espacios de dimensión infinita y el otro hecho es que el operador viene representado como un operador integral, el cual desafortunadamente es un operador compacto. Estos dos factores asegurar que el operador inverso  $A^{-1}$  no es continuo. Así, pequeños errores en g pueden producir errores grandes en la reconstrucción de f.

Como ejemplo de estos modelos podemos considerar el problema de identificación de parámetros.

Consideremos una ecuación diferencial dependiente de un parámetro.

$$L(c)u = f$$

donde u es la solución, f representa una fuerza externa y L es un operador integral que depende del parámetro c, esto es

- Operador del tipo  $L(c)u = \Delta u + c^2u$  (Operador de Helmholtz).
- Operador del tipo  $L(c)u = div(c\nabla u)$ .

**Problema directo:** Dados  $\, \mathbf{c} \, \mathbf{y} \, f$ , y condiciones de frontera o iniciales adecuadas, calcular  $\, u \, .$ 

**Problema inverso:** Dada la forma de L y alguna información de u (por ejemplo, datos en la frontera), determinar c. Si c depende de x, este problema inverso se llama un problema de identificación.

## 1.1 PROBLEMAS BIEN PUESTOS Y PROBLEMAS MAL PUESTOS

El Problema y = Ax es un **problema bien puesto** (well - posed) si las siguientes condiciones se cumplen

- 1. El problema tiene solución (Existencia).
- 2. La solución del problema es única (Unicidad).
- 3. El problema depende continuamente de los datos (Estabilidad).

Podemos observar que un problema bien puesto es equivalente a decir que el operador A es biyectivo y que el operador inverso  $A^{-1}:Y\to X$  es continuo.

**Un problema es mal puesto** (ill-posed) si una de las condiciones (1)-(3) no se satisfacen.

En general la mayoría de los problemas inversos son mal puestos ill-posed).

# 1.2 OPERADORES DE TIPO INTEGRAL

Ecuación de Fredholm Integral de primera clase

$$g(s) = \int_a^b k(s,t) f(t) dt$$

Ecuación de tipo Volterra Integral de primera clase

$$g(s) = \int_{a}^{s} k(s,t) f(t) dt$$

Ecuación de tipo convolución

$$g(s) = K * f = \int_a^b k(s-t)f(t)dt$$

# 1.3 EJEMPLOS

# Ejemplo 1. La Diferenciación como un Problema Inverso

$$D_o f(x) = \frac{f(x+h) - f(x-h)}{2h}, \quad f \in C^3[a,b]$$
$$\|D_o f - f'\|_{\infty} \le \frac{h^2}{3} M = O(h^2).$$
$$f_{\varepsilon}(x) = f(x) + N(x), \quad a \le x \le b, \quad \|N\|_{\infty} \le \varepsilon$$

Si tomamos

$$N(x) = \varepsilon \sin(nx), n \ge 2, ||N||_{\infty} \le \varepsilon$$

tenemos que

$$\begin{split} f_{\varepsilon}'(x) &= f'(x) + \frac{\varepsilon}{n} cos(nx), & \left\| f_{\varepsilon}' - f' \right\|_{\infty} &= \frac{\varepsilon}{n} \\ D_{o} f_{\varepsilon}(x) &= D_{o} f(x) + \frac{N(x + h - N(x - h))}{2h}, & \left\| D_{o} f - D_{o} f_{\varepsilon} \right\|_{\infty} &\leq \frac{\varepsilon}{h}. \end{split}$$

Tenemos un error total dado por

$$\|f' - D_o f_{\varepsilon}'\|_{\infty} \le O(h^2) + \frac{\varepsilon}{h}.$$

#### Ejemplo 2.

Consideremos la matriz 
$$A = \begin{bmatrix} 0.2161 & 0.1441 \\ 1.2969 & 0.8648 \end{bmatrix}$$
 y  $\vec{b} = \begin{bmatrix} 0.1440 \\ 0.8642 \end{bmatrix}$ ,

Si resolvemos el sistema  $\vec{Ax} = \vec{b}$ , su solución es dada por x=2, y=2.

Si consideramos una perturbación de 
$$\vec{b}$$
,  $\overrightarrow{b_{\epsilon}} = \begin{bmatrix} 0.1410 + 10^{-8} \\ 0.8642 + 10^{-8} \end{bmatrix}$ .  $\vec{b} - \overrightarrow{b_{\epsilon}} = \begin{bmatrix} 10^{-8} \\ 10^{-8} \end{bmatrix}$ 

La solución del sistema  $Ax_{\varepsilon} = b_{\varepsilon}$  es  $x_{\varepsilon} = \begin{bmatrix} 0.9911 \\ -0.4870 \end{bmatrix}$ .

Más aún si 
$$B = \begin{bmatrix} -86484323 & 14407118 \\ 129696483 & -21605678 \end{bmatrix}$$
,  $AB = \begin{bmatrix} 1 & 0 \\ -0.0003 & 0.9998 \end{bmatrix}$ .

Podríamos preguntarnos: ¿ B es una buena aproximación para  $A^{-1}$ ?

Si 
$$\vec{z} = B\vec{b}$$
 el residuo es dado por  $A\vec{z} - \vec{b} = \begin{bmatrix} 0 \\ 0.0000216 \end{bmatrix}$ . Observemos que  $\vec{z} = \begin{bmatrix} -3111.1364 \\ 4666.6244 \end{bmatrix}$ . ¿Como así?

Observemos que

$$BA = \begin{bmatrix} -4670.861 & -3115.2979 \\ 7006.1781 & 4672.8659 \end{bmatrix} \quad \text{y} \quad A^{-1} = \begin{bmatrix} -86480000 & 14410000 \\ 12969000 & -21610000 \end{bmatrix}$$

Conclusión: A una matriz mal condicionada.

# Ejemplo 3

Consideremos la ecuación

$$Ax = b, \ b \in \mathbb{R}^m, \ x \in \mathbb{R}^n, \ A \in \mathbb{R}^{mn}$$

$$Z = \left\{ x^* : \|Ax^* - b\| = \inf \left\{ \|Ax - b\| : x \in \mathbb{R}^n \right\} \right\}$$

Z : Conjunto de las soluciones de mínimos cuadrados.

Se puede demostrar fácilmente que

$$||Ax*-b|| = \inf\{||Ax-b|| : x \in \mathbb{R}^n\} \Leftrightarrow A^T A x^* = A^T b$$

La solución generalizada  $\hat{x}$  se define como

$$\|\hat{x}\| = \inf\{\|z\| : z \in Z\}.$$

En el caso que  $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$   $b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$  Ax = b, el sistema no tiene solución. Las soluciones de mínimos cuadrados está dada por

$$Z = \{(x, y) : x + y = 2\}$$

La solución generalizada es dada por  $\hat{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ . Observemos que si

$$A_{\varepsilon} = \begin{pmatrix} 1 & 1 \\ 0 & \varepsilon \end{pmatrix} \quad A_{\varepsilon} z_{\varepsilon} = b \Rightarrow z_{\varepsilon} = \begin{pmatrix} 2 - \frac{1}{\varepsilon} \\ \frac{1}{\varepsilon} \end{pmatrix}$$

Como podemos observar  $z_{\epsilon}$  no converge a  $\hat{x}$  cuando  $\epsilon \to 0$  .

# Ejemplo 4 (Problemas relacionados con el problema inverso del Calor) Problema 1.



#### Problema 2.



## Ejemplo 5.

Consideremos un operador lineal compacto A definido sobre el espacio de Hilbert  $\ell_2$ .

$$x = (x_1, x_2, \dots, x_n, \dots) \in l_2 \Leftrightarrow \sum_{i=1}^{\infty} x_i^2 < \infty$$

Definimos el operador  $A:\ell_2 \to \ell_2$ 

$$Ax = \left(x_1, \frac{x_2}{2}, \frac{x_3}{3}, \dots, \frac{x_n}{n}, \dots\right).$$

Formalmente la inversa de A es dada por

$$A^{-1}y = (y_1, 2y_2, \dots, ny_n, \dots)$$

Así tenemos unicidad (y existencia para ciertos y). Pero no tenemos estabilidad. Tomemos por ejemplo

$$y_n = (0, \dots, 0, 1/\sqrt{n}, 0, \dots).$$

Entonces  $y_n \to 0$ , pero

$$||A^{-1}y_n|| = \sqrt{n} \rightarrow \infty.$$

También podemos observar que el sistema Ax=y no tiene solución para todo  $y\in Y$ , por ejemplo si tomamos  $y=(1,1/2,1/3,\cdots)=A(1,1,1,\cdots)$ , pero  $(1,1,1,\cdots)\not\in\ell_2$ 

# Ejemplo 7. PROBLEMA DE RESTAURACIÓN

$$Af(x) = K(x) * f(x) = g(x)$$

g(x), K(x) son dados

$$K(x) = \frac{1}{u} \exp(-\pi^2 x^2 / \mu^2)$$

$$K(w) = \exp(-\pi^2 \mu^2 w^2)$$

 $K(w) \neq 0$  para todo  $w \in R$ .

$$\widehat{f}(w) = \frac{\widehat{g}(w)}{\widehat{K}(w)} = \widehat{g}(w) \left( 1 + \pi \mu^2 w^2 + (\pi \mu^2 w^2)^2 / 2 + \dots \right)$$

$$f(x) = g(x) - (\mu^2/4\pi)g''(x) + (\mu^4/32\pi^2)g''''(x) + \dots$$

$$\mu = \sqrt{\pi}$$

$$f(x) = g(x) - (1/4)g''(x) + (1/32)g''''(x) + \dots$$

Esta formula es conocida como formula de Eddington.

# 2. REGULARIZACIÓN DE REGULARIZACION

## 2.1 Método de Regularización de Tikhonov

La idea básica de la regularización de Tikhonov es relacionada con la minimización del funcional cuadrático

$$\Phi_{\mu}(f,g) = ||Af - g||^2 + \mu ||f||^2$$

Si  $\mu = 0$ , tenemos un problema de mínimos cuadrados.

Sea  $f_{\scriptscriptstyle \it L}$  una solución que cumple que

$$\Phi_{\mu}(f_{\mu},g) \leq \Phi_{\mu}(f,g)$$

$$(A^*A + \mu I)f_{\mu} = A^*g$$

$$f_{\mu} = (A^*A + \mu I)^{-1} A^* g = R_{\mu} g$$
 
$$R_{\mu} = (A^*A + \mu I)^{-1} A^*$$
 
$$< A^*Af + \mu f, f > = \langle Af, Af \rangle + \mu \langle f, f \rangle = ||Af||^2 + \mu ||f||^2 \ge \mu ||f||^2$$

ii. La solución es única.

iii.

$$\|(A^*A + \mu I)^{-1}\| \le \frac{1}{\mu}$$

 $R_\mu$  es llamada una regularización lineal para el problema inverso mal puesto Af=g .  $\mu$  es llamado parámetro de regularización.

 $f_{\mu}$  la solución regularizada.

## 2.2 Método Iterativo de Tikhonov

El sistema

$$(A^*A + \mu I)f_{\mu} = A^*g$$

es equivalente a

$$\begin{cases} Af_{\mu} - \sqrt{\mu} h_{\mu} = g \\ A^* h_{\mu} + \sqrt{\mu} f_{\mu} = 0 \end{cases}$$

$$Af_{\mu} - \sqrt{\mu} h_{\mu} = g$$

$$\sqrt{\mu} \beta A^* h_{\mu} + \mu \beta f_{\mu} - f_{\mu} + f_{\mu} = 0$$

Esto nos permite definir el método iterativo

$$Af_{\mu}^{n} - \sqrt{u}h_{\mu}^{n} = g$$

$$\sqrt{\mu}\beta^{n}A^{*}h_{\mu} + \mu\beta^{n}f_{\mu}^{n} - f_{\mu}^{n} + f_{\mu}^{n+1} = 0.$$

Entonces obtenemos

$$\sqrt{u}h_{\mu}^{n} = Af_{\mu}^{n} - g$$

$$f_{\mu}^{n+1} = f_{\mu}^{n} - \beta^{n}(\mu f_{\mu}^{n} - \sqrt{\mu}A^{*}h_{\mu}).$$

Para n=0,1,2,... y  $f_{\mu}^{\ 0}$  arbitrario.

#### Teorema 2.6

(Consistencia)

$$||f - f_{\mu}|| \le C\mu$$

Para alguna constante C > 0, independientemente de  $\mu$ .

(Estabilidad)

$$\|f_{\mu} - f_{\mu}^{\varepsilon}\| \le \frac{\varepsilon}{\sqrt{\mu}}$$

(Convergencia)

$$\|f - f_{\mu}^{\varepsilon}\| \le C\mu + \frac{\varepsilon}{\sqrt{\mu}}$$

 $\mu = O(\varepsilon)$  La convergencia será de order  $O(\sqrt{\varepsilon})$ .

#### 2.3 Método de Mollificación

Para cada función continua  $f \in C[0,1]$  definimos el operador mollificación como

$$J_{\delta} f(x) = (\rho_{\delta} * f)(x)$$

$$\rho_{\delta}(x) = \frac{1}{\delta \sqrt{\pi}} e^{-x^2/\delta^2}$$

Núcleo Gaussiano de radio  $\delta$ .

 $J_{\delta}f$  suaviza las puntas de f y elimina aquellas oscilaciones en escalas  $\leq \delta$ .

El núcleo Gaussiano tiene la propiedad que es el tiene la más pequeña dispersión de su transformada de Fourier entre todos los núcleos de mollificación.

Claramente,  $\rho_{\delta} \in C^{\infty}$  y decrece rápidamente fuera de un intervalo de radio  $\delta$  de su centro  $(\approx 3\delta)$ , es positivo y tiene integral 1.

La transformada de Fourier  $J_{\delta}f$  es dado por

$$\widehat{J}_{\delta}f(w) = \widehat{\rho}_{\delta}(w) \cdot \widehat{f}(w) = e^{-w^2 \delta^2/4} \cdot \widehat{f}(w).$$

 $C^{o}(I)$  el conjunto de funciones continuas sobre I = [0,1] con  $||f||_{\infty} = \underset{x \in I}{\text{Max}} |f(x)|$ .

$$\frac{d}{dx}J_{\delta}f(x) = (\rho_{\delta})' * f(x) = \rho_{\delta} * f'(x)$$

Sea  $K \subset I$  un compacto tal que  $d(K, \partial I) \ge 3\delta$ .

**Teorema 2.7** : Si  $f_{\varepsilon} \in C^{o}(I)$  y $\|f - f_{\varepsilon}\|_{\infty} \le \varepsilon$ , entonces

- 1.  $||J_{\delta}f_{\varepsilon} f||_{\infty,K} \le 4M_1\delta + \varepsilon$
- 2. (Consistencia) If  $\|f''\|_{\infty;I} \le M_2$ , entonces  $\|(J_{\delta}f)' f\|_{\infty,K} \le 3M_2\delta$ .
- 3. (Estabilidad)  $\|f''\|_{\infty;I} \leq M_2$ , entonces  $\|(J_{\delta}f)' (J_{\delta}f_{\varepsilon})'\|_{\infty,K} \leq \frac{2\varepsilon}{\sqrt{\pi}\delta}$ .

4. (Convergencia). 
$$\|f''\|_{\infty;I} \le M_2$$
, entonces  $\|f' - (J_{\delta} f_{\varepsilon})'\|_{\infty,K} \le 3M_2 \delta + \frac{2\varepsilon}{\sqrt{\pi}\delta}$ .





# Bibliografía

- 1. J. Baumeister, Stable Solutions of Inverse Problems, Vieweg, Braunschweig, 1987.
- 2. H.W.England, M. Hanken and .Neubauer Regularization of Inverse Problems, 2000.
- 3. S.F. Gilyazov and N.L. Gol'dman, Regularization of III-Possed Problems by Iteration MethodsTikhonov. 2000.
- 4. A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. 1996.
- 5. A.N.Tikhonov and V.Y.Arsenin, Solutions of Ill-posed Problems, Winston and Sons, Washington, 1977.