Liner and nonliner dynamics of matter vawe packets in periodic potentials

Th. Anker October 12, 2017

予備知識

ボースアインシュタイン凝縮 (BEC)

Bose 粒子の集合

- ▶ 同じ状態を取ることができる
- ▶ 基底状態に詰め込まれる

低エネルギー状態では?

- ▶ 基底状態をとる
- ▶ BEC

周期ポテンシャル

波束が非線形な伝搬をする

- ▶ 強いポテンシャル→平均場近似
- ▶ 弱いポテンシャル→バンド理論

概要

周期ポテンシャル内の物質波を調べる

実験

- ▶ BEC で波束を作った
- ▶ レーザー場で周期ポテンシャルを作った

解析

- ▶ 最初は分子分子相関の影響が強い
- ▶ 時間が経つと線形な拡散に近づく

有効質量

定義

郡速度

$$v_g(q) = \frac{1}{\hbar} \frac{\partial E}{\partial q}$$

有効質量

$$m_{eff} = \hbar^2 \left(\frac{\partial^2 E}{\partial q^2}\right)^{-1}$$

有効質量

自由粒子では?

有効質量は質量と一致する
$$E_{free}=\hbar\omega=rac{\hbar^2}{2m}k^2$$

特殊な状態

E のエネルギー分散が上に \Box の場合

▶ 有効質量が負

実験の設定

試料

 ^{87}Rb

▶ BEC 状態になることができる

機材

Nd:YAG レーザー

- ▶ 資料を冷却するときに使う
- ▶ 周期ポテンシャルを作るときに使う

実験の手順

レーザーで 87 Rb をトラップする

レーザーの周波数は原子の共鳴周波数よりほんの少しだけ小さい 原子がフォトンを散乱するときにエネルギーが散逸する トラップは 2 次元的に行う

実験の手順

断熱的にポテンシャルを構成する

実験の手順

ポテンシャルを一定速度まで加速する

加速する前にトラップを一つ外す 原子はガイド内を 1 次元的に運動する

数値計算の設定

実験の現象

- ▶ 非線形 Schrödinger 方程式を解かなくてはならない
- ▶ 時間がかかる

アプローチ

半古典近似

- ト Newton の運動方程式を使う質量部分を有効質量で置き換え $M^*\ddot{x}=\ddot{F}$ この F を使って q を表現する $\hbar\dot{q}_c=F_{\hat{x}}$ $\dot{\hat{x}}=v_q(q_c)$
- ▶ F を与えれば q が求められる

数値計算の結果

二つのセットアップ

実験と計算結果の比較1

実験結果

14ms まで

▶ 数値計算の傾向と概ね一致 する

14ms 以降

- ▶ 数値計算と合わなくなる
- ▶ バックグラウンドの影響が 大きい

計算結果

- ▶ 運動量空間:拡散
- ▶ 実距離空間:収縮
- ▶ 有効質量が負であることの 影響

実験と計算結果の比較2

実験結果

1と同様

計算結果

- ▶ 運動量空間:収縮
- ▶ 実距離空間:拡散
- ▶ 線形現象と同様
- ▶ 有効質量が負の領域に留まらないため
- ▶ 有効質量が負の領域では運動量空間分布の収縮が起こっている

まとめ

前提

- ▶ BEC によって短時間の波動力学が実験可能
- ▶ 物質波は分子分子相関によって非線形にふるまう
- ▶ しかし、長時間的には線形なふるまい

明らかになったこと

物質波がゆっくり拡散する

- ▶ 準運動量空間で負の質量領域
- ▶ 実空間ではソリトンのような拡散が見られる

実験的に

- ▶ 二方向に波束を分けられる
- 有効質量を用いた半古典近似
 - ▶ 実験をよく説明できる