Automatic Test Generation for Physical Systems

Melony Bennis (mmb4vu) Carl Hildebrandt (ch6wd)

Motivation

Autonomous vehicles are becoming a **reality** in society

Amazon Drone-Releasing Blimp

Autonomous Differential Drive Robots

Amazon Warehouse Robots

Self Driving Cars

Autonomous Aquatic Vehicles

Arial-Aquatic Vehicles

Problem

- Faults occur when system changes
- Errors come from incompatibilities between:
 - Hardware and other hardware
 - Hardware and software
- Isolating the differences caused by hardware changes is difficult

Is it possible to create **test cases** that **identify differences** in robot behavior brought about by **hardware changes**?

Goals

- Devise technique to formally model differences spurred by hardware changes.
- Construct test cases that identifies and isolates differences.
- (Bonus) Uncover existing bugs in legacy code.

Method

- Clearpath Husky Robot
 - Well-known autonomous ground vehicle
 - Very customizable
- What do you notice about the Husky Robots?

Customers of Clearpath Robotics

Examples of Husky Robot

Method

- Clearpath Husky Robot
 - Well-known autonomous ground vehicle
 - Very customizable
- What do you notice about the Husky Robots?

Customers of Clearpath Robotics

Examples of Husky Robot

Method

Constraints containing information about the both laser scanners were used to generate tests.

World Generation

The world was generated using a ground plane and cube(s). The robot was placed. A goal was set.

Robot Simulation

The robot was allowed to navigate autonomously to the goal. Collisions were monitored.

System Overview

Box

Husky Robot

Laser Scan

Distance Constraint

Size Constraint

 $\begin{aligned} & \text{Block Angle} > \text{Max_Angle}_{\text{robot1}} \\ & \text{Block Angle} < \text{Max_Angle}_{\text{robot2}} \\ & 0 \leq x \leq \text{Beam Length} \end{aligned}$

u = tan(Block Angle)

 $y = tan(Block Angle) \times x$

 $Block Angle > Min_Angle_{robot1}$ $Block Angle < Max_Angle_{robot2}$ $x < Beam Length_{robot1}$

 $x > \text{Beam Length}_{\text{robot2}}$

 $y = tan(Block Angle) \times x$

 $Range = |Max_Angle| + |Min_Angle|$ Sectors = max(Number beams) - 1 $Sector Angle = \frac{Range}{Sectors}$

x = Beam Length; y = 0

Sector Size = $tan(Sector Angle \div 2) \times x$

 $0 < \mathrm{Size} \leq \mathrm{Sector} \ \mathrm{Size}$

Box

Husky Robot

Laser Scan

Blind	Spot	Constrai	in

Distance Constraint

Size Constraint

 $\begin{aligned} & \text{Block Angle} > \text{Max_Angle}_{\text{robot1}} \\ & \text{Block Angle} < \text{Max_Angle}_{\text{robot2}} \\ & 0 \leq x \leq \text{Beam Length} \end{aligned}$

 $0 \le x \le \text{Deam Length}$

 $y = tan(Block Angle) \times x$

Block Angle > Min_Angle_{robot1}
Block Angle < Max_Angle_{robot2}

 $x < \text{Beam Length}_{\text{robot}1}$ $x > \text{Beam Length}_{\text{robot}2}$

La / Dia 1 A 1 1

 $y = tan(Block Angle) \times x$

x = Beam Length ; y = 0 $\text{Range} = |\text{Max_Angle}| + |\text{Min_Angle}|$ Sectors = max(Number beams) - 1 $\text{Sector Angle} = \frac{\text{Range}}{\text{Sectors}}$ $\text{Sector Size} = tan(\text{Sector Angle} \div 2) \times x$ $0 < \text{Size} \le \text{Sector Size}$

Box

Blind	Spot	Constrain
-------	-------------	-----------

Distance Constraint

 $\begin{aligned} & \text{Block Angle} > \text{Max_Angle}_{\text{robot1}} \\ & \text{Block Angle} < \text{Max_Angle}_{\text{robot2}} \\ & 0 \leq x \leq \text{Beam Length} \end{aligned}$

 $0 \le x \le \text{Deam Length}$

 $y = tan(Block Angle) \times x$

 $Block Angle > Min_Angle_{robot1}$ $Block Angle < Max_Angle_{robot2}$ $x < Beam Length_{robot1}$

 $x > \text{Beam Length}_{\text{robot2}}$

u - tam (Dlook Angle)

 $y = tan(Block Angle) \times x$

 $\begin{aligned} & \text{Range} = |\text{Max_Angle}| + |\text{Min_Angle}| \\ & \text{Sectors} = max(\text{Number beams}) - 1 \\ & \text{Sector Angle} = \frac{\text{Range}}{\text{Sectors}} \\ & \text{Sector Size} = tan(\text{Sector Angle} \div 2) \times x \end{aligned}$

 $0 < \text{Size} \le \text{Sector Size}$

x = Beam Length; y = 0

Box

Blind	Spot	Constr	ain
-------	-------------	--------	-----

Distance Constraint

 $\begin{aligned} & \text{Block Angle} > \text{Max_Angle}_{\text{robot1}} \\ & \text{Block Angle} < \text{Max_Angle}_{\text{robot2}} \\ & 0 \leq x \leq \text{Beam Length} \end{aligned}$

 $0 \le x \le \text{Beam Length}$

 $y = tan(Block Angle) \times x$

 $Block Angle > Min_Angle_{robot1}$ $Block Angle < Max_Angle_{robot2}$ $x < Beam Length_{robot1}$

 $x > \text{Beam Length}_{\text{robot2}}$

 $y = tan(Block Angle) \times x$

Range = $|\text{Max_Angle}| + |\text{Min_Angle}|$ Sectors = max(Number beams) - 1Sector Angle = $\frac{\text{Range}}{\text{Sectors}}$

x = Beam Length; y = 0

Sector Size = $tan(Sector Angle \div 2) \times x$

 $0 < \mathrm{Size} \leq \mathrm{Sector} \ \mathrm{Size}$

Results - Blind Constraint

Robot 1:

Minimum Angle: -1 radMaximum Angle: 1 rad

Robot 2:

Minimum Angle: -π/2 rad
 Maximum Angle: π/2 rad

Results - Distance Constraint

Robot 1:

Max Range: 5m

Robot 2:

Max Range: 10m

Results - Size Constraint

Robot 1:

• Resolution: 16 samples

Robot 2:

Resolution: 32 samples

