We know the firm has purchased the optimum **mix** of machines and labor when

MRP_K P_{K}

MRPL

The firm should spend the next dollar on capital

MRP_L P_1

MRP_K P_{K}

If the firm gets more revenue if it spends the next dollar on capital than if it spends that dollar on labor

The firm should spend the next dollar on labor

MRP_1

MRP_K P_{K}

If the firm gets more revenue if it spends the next dollar on labor than if it spends that dollar on capital

Revenue per dollar spent on Labor is the same as the revenue per dollar spent on machines

Revenue per dollar spent on Labor is the same as the revenue per dollar spent on machines

$$\frac{\frac{MRP_{K}}{P_{K}}}{\frac{MRP_{K}}{P_{K}}} > \frac{\frac{MRP_{L}}{P_{K}}}{\frac{MRP_{L}}{P_{L}}} = \frac{\frac{MRP_{L}}{P_{L}}}{\frac{MRP_{K}}{P_{K}}} < \frac{MRP_{L}}{P_{L}}$$

If the firm gets **more** revenue if it spends the next dollar on capital than if it spends that dollar on labor

The firm should spend the next dollar on capital

If the firm gets **more**revenue if it spends the next
dollar on labor than if it
spends that dollar on capital

The firm should spend the next dollar on labor