SEL0406 - Automação

Circuitos Elétricos / Acionamentos Elétricos

Toda instalação elétrica / acionamento elétrico está sujeita a condições anormais de funcionamento

Sobrecorrente:

corrente maior do que o valor nominal de projeto

Sobrecarga

Curto-Circuito

Dispositivos de Proteção Foco: Instalações em baixa tensão

Função:

> Interrupção do circuito em condições de curto-circuito ou sobrecarga (este em alguns casos).

Simbologia:

Exemplo de construção de um fusível tipo NH, da SIEMENS

Categorias:

Primeira Letra	а	Fusível limitador de corrente, atuando somente na presença de curto-circuito	
"minúscula"	g	Fusível limitador de corrente, atuando tanto na presença de curto-circuito co	
Segunda Letra "maiúscula"	G	Proteção de linha, uso Geral	
	М	Proteção de circuitos Motores	
	L	Proteção de Linha	
	Tr	Proteção de Transformadores	
	R	Proteção de Semicondutores, Ultra-Rápidos	
	S	Proteção de Semicondutores e linha (combinado)	

Exemplos:

Figura - Fusíveis tipo Cilindrico, Diazed e NH (Fabricante Siemens)

Características de atuação (Exemplo)

Função:

- Interrupção do circuito em condições de sobrecarga que levam ao sobreaquecimento da carga.
- > Por exemplo, em motores as principais causas de sobrecarga são:
 - Rotor bloqueado
 - Frequência de manobras excessivas
 - Partida dificultada (prolongada)
 - Sobrecarga em regime de operação
 - Falta de fase
 - Desvio de tensão e de frequência

Simbologia:

Esquemático de um relé de sobrecarga

Figura – Esquemático de um relé de sobrecarga, baseado de SIEMENS, 2003

Exemplo de um relé de sobrecarga

Classes de disparo – proteção de motor

Figura – Classe de disparo, curva de proteção de sobrecarga do motor

Função:

- Interrupção do circuito em condições de curto-circuito e sobrecarga.
- > Também conhecido como disjuntor termomagnético, pois possui um elemento térmico para proteção contra sobrecargas e um elemento magnético para proteção contra curtos-circuitos (correntes muito elevadas)

Simbologia:

Figura 3.31. Simbologia para disjuntor tripolar

Esquema de operação:

Figura - Esquemático de um disjuntor, baseado de Siemens, 2003

Exemplo de um disjuntor de baixa tensão:

Corrente nominal
Capacidade de ruptura

Curvas características:

Limiar de funcionamento magnético Figura 3.32. Curva característica de disjuntores

Curvas características:

- <u>Tipo B</u>: o seu limiar de disparo magnético é muito baixo (ideal para cargas elétricas resistivas que possuem corrente de partida reduzida), entre 3 e 5 vezes sua corrente nominal I_n .
- <u>Tipo C</u>: o seu limiar de disparo magnético permite-lhe ser de uso geral, entre 5 e 10 vezes sua corrente nominal I_n .
- <u>Tipo D</u>: o seu limiar de disparo magnético alto permite utilizá-lo na proteção de circuitos com elevados picos de corrente de partida, como em cargas indutivas, entre 10 e 20 vezes sua corrente nominal I_n.

Curvas características:

Figura 3.33. Curvas de disparo de disjuntores

ACIONAMENTO DE MÁQUINAS

Motores de Indução Trifásicos

Motores de Indução Trifásicos - Aplicações

Em países industrializados de 40 a 75% da carga é formada por motores de indução

Motores de Indução Trifásicos – Curva Torque x Velocidade

Motores de Indução Trifásicos – Curva Torque x Velocidade e Corrente x Velocidade

Motores de Indução Trifásicos – Curva Torque x Velocidade e Corrente x Velocidade

Influência da tensão aplicada ao motor:

Motores de Indução Trifásicos – Características de Partida

- ⇒ Categorias de partida: (motores com rotor gaiola de esquilo)
 - ⇒ Categoria N: acionamento de bombas, ventiladores e outras cargas consideradas normais;
 - ⇒ Categoria H: acionamento de cargas que exigem elevado conjugado na partida: peneiras, transportadores, britadores etc
 - ⇒ Categoria D: acionamento de prensas excêntricas e outras cargas que apresentem picos periódicos de conjugado. Também empregados em cargas que exijam elevado torque de partida.

Motores de Indução Trifásicos – Características de Partida

Categorias de partida	Torque de partida	Corrente de partida	Escorregamento
N	Normal	Normal	Baixo
Н	Alto	Normal	Baixo
D	Alto	Normal	Alto

Fonte: Guia de Aplicação - Inversores de Frequência - WEG

Motores de Indução Trifásicos – Características de Partida

⇒ Basicamente, existem os seguintes tipos de cargas em um ambiente industrial:

- (a) pontes rolantes, esteiras, guinchos, elevadores e semelhantes
- (b) moinhos de rolo, bombas de pistão, plainas e serras
- (c) ventiladores, misturadores, bombas centrífugas, exaustores e compressores
- (d) máquinas operatrizes, frezadoras, mandriladoras e bobinadeiras

Motores de Indução Trifásicos - Acionamento / Partida

Simbologia de motores

O problema da partida de motores

O que se observar no dimensionamento da partida dos motores?

- Características da máquina a ser acionada (CARGA): deve-se atentar para o momento de inércia e torque resistente da carga, que implica no valor de corrente e tempo de partida;
- Circunstancias da disponibilidade de potência de alimentação: deve limitar as perturbações da rede elétrica, principalmente na partida dos motores, por exemplo: quedas de tensão, sobrecarga do sistema de alimentação (geradores, transformadores, rede UPS, etc);
- Confiabilidade do serviço: verificar a necessidade de controle de velocidade, posição ou torque, inversão de rotação, entre outros;
 - Distância da fonte de alimentação, devido a queda de tensão em regime normal de operação.

Motores de Indução Trifásicos - Acionamento / Partida

O que se observar no dimensionamento da partida dos motores?

- Capacidade de condução de corrente
- Queda de tensão em regime permanente e na partida do motor

Motores de Indução Trifásicos – Acionamento / Partida

Componentes necessários para o circuito de potência do acionamento:

- Seccionamento;
- Proteção (Sobrecarga, curto-circuito, outras como falta de fase, sub e sobretensão, sub e sobrecorrente, etc);
 - Manobra

Motores de Indução Trifásicos – Acionamento / Partida

Quanto à proteção do circuito de manobra dos motores:

- Coordenação Tipo 1

Sem risco para as pessoas e instalações, ou seja, desligamento seguro da corrente de curtocircuito. Porém, o dispositivo de partida não estará em condições de continuar funcionando após o desligamento, permitindo danos ao contator e ao relé de sobrecarga.

Coordenação Tipo 2

Sem risco para as pessoas e instalações, ou seja, desligamento seguro da corrente de curtocircuito. Não pode haver danos ao relé de sobrecarga e outras partes com exceção de leve fusão dos contatos do contator e estes permitam fácil separação sem deformação significativa.

Motores de Indução Trifásicos – Acionamento / Partida – Partida Direta

Partida Direta:

- > Conexão direta do motor com a fonte de alimentação, com fornecimento de tensão nominal.
- > Elevada corrente de partida
- > Torque elevado

Motores de Indução Trifásicos – Acionamento / Partida – Partida Direta

Partida Direta:

- > Conexão direta do motor com a fonte de alimentação, com fornecimento de tensão nominal.
- > Elevada corrente de partida
- > Torque elevado

Motores de Indução Trifásicos – Acionamento / Partida – Partida Direta

Partida Direta: Exemplos

Esquema 1 Esquema 2

Motores de Indução Trifásicos – Acionamento / Partida – Partida Reversora

Partida Reversora:

- Quando há necessidade de inverter o sentido de rotação do motor.
- Como inverter o sentido de rotação de um motor trifásico? Invertendo a sequência de fases: abc para acb
- > Contatores devem ser intertravados mecanicamente para não provocar curto-circuito.

Motores de Indução Trifásicos – Acionamento / Partida – Partida Reversora

Partida Reversora Exemplos:

Motores de Indução Trifásicos – Acionamento / Partida – Partida Reversora

Partida Reversora Exemplos:

Motores de Indução Trifásicos – Acionamento / Partida – Partida Estrela-Triângulo

Partida Estrela-Triângulo:

- > Aplica-se uma tensão reduzido ao motor durante sua aceleração.
- ➤ Os enrolamentos da máquina são ligados em estrela inicialmente (58% da tensão nominal) e depois convertidos para triângulo. Com isso, diminui-se a corrente na partida.

Partida Estrela-Triângulo:

Motores de Indução Trifásicos – Acionamento / Partida – Partida Estrela-Triângulo

Partida Estrela-Triângulo: Exemplos

Estudo Dirigido (entregar na próxima aula – 17/04)

- 1) O que é soft starter e quais a vantagens de usá-lo na partida?
- 2) Apresente um esquema de partida com soft starter coordenado com disjuntor e fusível. Mostre os diagramas de potência e de comando, explicando a lógica da partida.
- 3) Resolva os exercícios do arquivo "Exercícios partida de motores" disponibilizados no Moodle.