INVESTIGATING THE STRUCTURE OF $M_2(\mathbb{F}_q)$

IAN GALLAGHER DR. ERIC BRUSSEL

ABSTRACT. We present and prove a count of the maximal commutative subalgebras of $M_2(\mathbb{F}_q)$, as well as counts for the individual isomorphism classes.

1. Introduction

For a finite field of $q = p^m$ elements, it is possible to count the number of vector subspaces of \mathbb{F}_q^n of a given dimension. These counts arise in problems involving the number of points of \mathbb{P}_q^n , the Grassmannian, and further generalizations.

This paper is meant to address a similar problem. Namely, the structure and count of the maximal commutative sub-algebras of $M_2(\mathbb{F}_q)$. Such sub-algebra's...

2. Identifying maximal commutative sub-algebras

3. Planes in $M_2(\mathbb{F}_q)$

4. Plane Counts

Theorem 1. $M_2(\mathbb{F}_q)$ has $q^2 + q + 1$ unique 2D commutative subalgebras.

Proof outline notes:

- Each plane has q^2 elements.
- Each plane shares the q elements of \mathbb{F}_q .
- Each plane has trivial intersection.
- The planes cover all of $M_2(\mathbb{F}_q)$.

Proof. Let E_x for $x \in M_2(\mathbb{F}_q) - \mathbb{F}_q$ be the commutative subalgbra created by the span of 1 and x. Label $N = |\{E_x \mid x \in M_2(\mathbb{F}_q) - \mathbb{F}_q\}|$.

$$N(q^{2} - q) + q = q^{4}$$

 $N(q - 1) + 1 = q^{3}$
 $N(q - 1) = q^{3} - 1$
 $N = q^{2} + q + 1$

A 2D commutative subalgebra E must be such that $|E| = p^2$ and $\mathbb{F}_q \subseteq E$.

Date: April 30, 2021.

Lemma 2. Let $A \in M_2(k)$. Let $S = \det(kA)$. Then

$$S = \begin{cases} \{0\} & \text{if } \det(A) = 0\\ k^{\times^2} & \text{if } \det(A) \in k^{\times^2}\\ k^{\times} - k^{\times^2} & \text{if } \det(A) \in k^{\times} - k^{\times^2} \end{cases}$$

Proof. Let $A \in M_2(k)$. Then $\det(\lambda A) = \det(\lambda I) \det(A) = \lambda^2 \det(A)$ where $\lambda \in k$.

Case (1) Suppose $\det(A) = 0$. Then $\lambda^2 \det(A) = 0$ for all $\lambda \in k$ and we have S = 0.

Case (2) Suppose $\det(A) = \alpha^2$ where $\alpha \in k^{\times}$. Then $\lambda^2 \det(A) = \lambda^2 \alpha^2 = (\lambda \alpha)^2 \in k^{\times^2}$. It follows that $S \subseteq k^{\times^2}$. Now, let $\sigma \in k^{\times}$. Then $\det(\frac{\sigma}{\alpha}A) = \frac{\sigma^2}{\alpha^2}\alpha^2 = \sigma^2$. So $\sigma^2 \in S$ and we have shown $k^{\times^2} \subseteq S$. Therefore, $S = k^{\times^2}$.

Case (3) Suppose $\det(A) = \beta$ where $\beta \in k^{\times} - k^{\times^2}$. Then $\lambda^2 \det(A) = \lambda^2 \beta \in k^{\times} - k^{\times^2}$. It follows that $S \subseteq k^{\times} - k^{\times^2}$. Since $|k^{\times}/k^{\times^2}| = 2$, if $\sigma, \gamma \notin k^{\times^2}$, we know there exists $\lambda \in k^{\times}$ such that $\sigma \lambda^2 = \gamma$. So $k^{\times} - k^{\times^2} \subseteq S$ is clear and we have shown $S = k^{\times} - k^{\times^2}$.

Theorem 3. This is a theorem.

$$(1) |[\mathbb{F}_{q^2}]| = \begin{pmatrix} q \\ 2 \end{pmatrix}$$

$$|[\mathbb{F}_q^2]| = \binom{q+1}{2}$$

$$(3) \qquad |[\mathbb{F}^2_{q_{ni}}]| = q + 1$$

Proof. We shall consider the conjugation action of $GL_2(\mathbb{F}_q)$ on $M_2(\mathbb{F}_q)$ for the matrices,

$$x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

These are the rational canonical forms for matrices with minimum polynomials $X^2 - 1$ and X^2 respectively. We want to compute the size of their orbits, G_x, G_y , using the orbit coset correspondence theorem. Now,

$$G_x = \{ A \in GL_2(\mathbb{F}_q) | A \cdot x = x \}$$
$$= \{ A \in GL_2(\mathbb{F}_q) | AxA^{-1} = x \}$$
$$= \{ A \in GL_2(\mathbb{F}_q) | Ax = xA \}$$

Clearly, matrices of the form sx + tI for $s, t \in \mathbb{F}_q$, so if $sx + tI \in GL_2(\mathbb{F}_q)$, then $sx + tI \in G_x$. These are also the only possible matrices in G_x since these are the elements of the maximal commutative subalgebra containing x requires result citation/prior inclusion. It now suffices to determine when $\det(sx + tI) = 0$.

$$\det(sx + tI) = \begin{vmatrix} t & s \\ s & t \end{vmatrix} = t^2 - s^2$$

Therefore, det(sx + tI) = 0 when $t^2 = s^2$, so when $t = \pm s$. We have thus found precisely $q^2 - 2q + 1 = (q - 1)^2$ elements of G_x . It follows that,

$$[G:G_x] = \frac{(q^2-1)(q^2-q)}{(q-1)^2} = q(q-1)$$

By the orbit coset correspondence theorem should cite/include prior we have that $\#\operatorname{orbit}(x) = q(q+1)$

Similarly we have $G_y = \{A \in GL_2(\mathbb{F}_q) | Ay = yA\}$ and the only possible elements of G_y are those of the form sy + tI for $s, t \in \mathbb{F}_q$ where $sy + tI \in GL_2(\mathbb{F}_q)$.

$$\det(sy + tI) = \begin{vmatrix} t & 0 \\ s & t \end{vmatrix} = t^2$$

So det(sy + tI) = 0 if and only if t = 0. There are then $q^2 - q = q(q - 1)$ elements of G_y . Therefore,

$$[G:G_y] = \frac{(q^2-1)(q^2-q)}{q^2-1} = q(q-1)$$

and we have $\#orbit(y) = q^2 - 1$

Now, referring to cite previous lemma using Cref later we know that each plane