CST8502 - Lab 5 Python Exercise

Student Name: Alvin Litani Liauw Student Number: 041118874

For every step, include screenshot of the code and the results in this document (screenshot from colab/jupyter notebook). Also, in your words, explain your code and results. If there is no explanation, no marks will be given. No need to write long paragraphs, but one or 2 lines per step.

1

Read CSV file and put it inside dataframe df = pd.read_csv('train.csv')

Show number of attributes
print(f'Number of attributes: {df.shape[1]}')

Show names of attributes
print(f'Name of attributes: {df.columns}')

Show number of instances
print(f'Number of instances: {df.shape[0]}')

Show columns and top 5 rows df.head()

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
# Check for duplicates after dropping PassengerId
df = df.drop(columns='PassengerId')
print(f'Number of duplicated rows: {df.duplicated().sum()}')
# Show only columns with missing data
missing_data = df.isnull().sum()
print(f'{missing_data[missing_data > 0]}')
# Check columns that have more than 50% missing data
missing proportion = df.isnull().mean()
columns_to_drop = missing_proportion[missing_proportion > 0.5]
Number of attributes: 7
Name of attributes: Index(['Survived', 'Pclass', 'Sex', 'Fare', 'Embarked', 'AgeGroup',
       'Relatives'],
      dtype='object')
3
# Drop those columns together with "Name" and "Ticket" columns
df = df.drop(columns=['Name','Ticket'] + list(columns_to_drop.index))
 Number of duplicated rows: 0
 Age
            177
 Cabin
             687
 Embarked
 dtype: int64
4
# Bin Age column into AgeGroup
df['AgeGroup'] = df['Age'].apply(lambda x:
                     'NK' if pd.isnull(x) else
                     'Child' if x < 16 else
                     'Youth' if x < 30 else
                     'Adult' if x < 65 else
                     'Senior')
```

Define the bins and labels

```
bins = [-float('inf'), 0, 3, float('inf')]
labels = ['None', 'Few', 'Many']
# Create new 'Relatives' column based on number of relatives
df['Relatives'] = pd.cut(df['Parch'] + df['SibSp'], bins=bins, labels=labels)
df['Fare'] = df['Fare'].apply(lambda x:
                       'Free' if x == 0 else
                       'Low' if x < 50 else
                       'Average' if x < 100 else
                       'High')
# Drop SibSp, Parch, Age columns
df = df.drop(columns=['SibSp','Parch','Age'])
print(f'Number of attributes: {df.shape[1]}')
print(f'Name of attributes: {df.columns}')
Number of attributes: 7
Name of attributes: Index(['Survived', 'Pclass', 'Sex', 'Fare', 'Embarked', 'AgeGroup',
         'Relatives'],
       dtype='object')
5
# Do one-hot encoding
data_encoded = pd.get_dummies(df,drop_first = True)
data_encoded.head()
   Survived Pclass Sex_male Fare_Free Fare_High Fare_Low Embarked_Q Embarked_S AgeGroup_Child AgeGroup_NK AgeGroup_Senior AgeGroup_Youth Relatives
```

```
True
                           False
                                     False
                                              True
                                                        False
                                                                     True
                                                                                  False
                                                                                              False
                                                                                                             False
                                                                                                                            True
1 1 1
                                            False
                                                     False
                   False False False
                                                                    False
                                                                                              False
                                                                                                             False
                                                                                                                           False
                                                                                  False
                    False
                            False
                                     False
                                              False
                                                         False
                                                                     True
                                                                                  False
                                                                                              False
                                                                                                             False
                                                                                                                           False
                                                                                                             False
        0
              3
                    True
                            False
                                     False
                                                         False
                                                                     True
                                                                                  False
                                                                                              False
                                                                                                                           False
```

6

```
# Split data into training and testing data 
label = data_encoded['Survived'] 
attributes = data_encoded.drop(columns='Survived')
```

```
attributes_train, attributes_test, label_train, label_test = train_test_split(attributes, label, test_size=0.3)
```

attributes_train.info() label_train.info()

label_pred = model.predict(attributes_test)

```
<class 'pandas.core.frame.DataFrame'>
Index: 623 entries, 846 to 848
Data columns (total 13 columns):
 # Column Non-Null Count Dtype
--- -----
                     -----
 0 Pclass 623 non-null int64
1 Sex male 623 non-null bool
                    623 non-null bool
 1 Sex male
 2 Fare_Free 623 non-null bool
3 Fare_High 623 non-null bool
4 Fare_Low 623 non-null bool
5 Embarked_Q 623 non-null bool
6 Embarked_S 623 non-null bool
 7 AgeGroup_Child 623 non-null bool
 8 AgeGroup NK 623 non-null bool
 9 AgeGroup_Senior 623 non-null bool
 10 AgeGroup_Youth 623 non-null bool
 11 Relatives Few 623 non-null bool
 12 Relatives Many 623 non-null bool
dtypes: bool(12), int64(1)
memory usage: 17.0 KB
<class 'pandas.core.series.Series'>
Index: 623 entries, 846 to 848
Series name: Survived
Non-Null Count Dtype
-----
623 non-null
                int64
dtypes: int64(1)
memory usage: 9.7 KB
7
# Train the model on the training data
model = DecisionTreeClassifier(max depth=3)
model.fit(attributes train, label train)
8
```

print(f'Number of survivors in testing set: {label_pred.sum()} out of {label_pred.size}')

```
Number of survivors in testing set: 99 out of 268
```

9

Show accuracy and confusion matrix
accuracy = accuracy_score(label_test, label_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')

ConfusionMatrix = confusion_matrix(label_test,label_pred) print(ConfusionMatrix)

Create the tree diagram
fig = plt.figure(figsize=(25,10))
tree.plot_tree(model, feature_names=attributes_train.columns, filled=True)
plt.show()

```
Accuracy: 82.46% [[144 21] [ 26 77]]
```


10

Split data into training and testing data label = data_encoded['Survived'] attributes = data_encoded.drop(columns='Survived')

attributes_train, attributes_test, label_train, label_test = train_test_split(attributes, label, test_size=0.3)

```
# Scale the training data
scaler = StandardScaler()
attributes_train = scaler.fit_transform(attributes_train)
attributes_test = scaler.transform(attributes_test)
12
# Do one-hot encoding
data_encoded = pd.get_dummies(df,drop_first = True)
print(data_encoded)
13
# Initialize the k-NN classifier with a chosen k value (e.g., k=5)
knn = KNeighborsClassifier(n_neighbors=5)
# Train the k-NN model on the training data
knn.fit(attributes train, label train)
# Predict on the test set
label_pred = knn.predict(attributes_test)
# Show accuracy and confusion matrix for testing set
accuracy = accuracy_score(label_test, label_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')
ConfusionMatrix = confusion_matrix(label_test,label_pred)
print(ConfusionMatrix)
 Accuracy: 76.87%
 [[135 33]
  [ 29 71]]
14
# Standardize the data
scaler = StandardScaler()
df_scaled = scaler.fit_transform(data_encoded)
```

```
# Sum of squared distances for each k
inertia = []
# Range of k values to test
k_values = range(1, 16)
# Perform K-Means for each k and store the inertia
for k in k_values:
  kmeans = KMeans(n_clusters=k)
  kmeans.fit(df_scaled)
  inertia.append(kmeans.inertia_)
# Plot the elbow graph
plt.figure(figsize=(10, 5))
plt.plot(k_values, inertia, marker='x')
plt.xlabel('Number of Clusters/K')
plt.ylabel('Inertia (Sum of Squared Distances)')
plt.title('Elbow Method for K')
plt.show()
print('Depending on the random seed, k is usually either 7 or 8.')
```


Depending on the random seed, \boldsymbol{k} is usually either 7 or 8.

```
# Perform Local Outlier Factor/LOF with 10% outlier assumption
lof = LocalOutlierFactor(contamination=0.1)
lof_outliers = lof.fit_predict(df_scaled)
lof_outliers = np.where(lof_outliers == -1)[0] # LOF labels outliers as -1
# Perform Isolation Forest/ISF with 10% outlier assumption
isf = IsolationForest(contamination=0.1)
isf_outliers = isf.fit_predict(df_scaled)
isf_outliers = np.where(isf_outliers == -1)[0] # ISF labels outliers as -1
# Find common outliers
common_outliers = np.intersect1d(lof_outliers, isf_outliers)
```

Print common outliers
print("Number of common outliers:", len(common_outliers))
print("Common outliers:\n", df.iloc[common_outliers])

Collillo	n outliers						
	Survived	Pclass	Sex	Age	Fare	Embarked	Relatives
16	0	3	male	2.0	29.1250	Q	5
116	0	3	male	70.5	7.7500	Q	0
122	0	2	male	32.5	30.0708	C	1
171	0	3	male	4.0	29.1250	Q	5
188	0	3	male	40.0	15.5000	Q	2
245	0	1	male	44.0	90.0000	Q	2
278	0	3	male	7.0	29.1250	Q	5
280	0	3	male	65.0	7.7500	Q	0
301	1	3	male	28.0	23.2500	Q	2
303	1	2	female	28.0	12.3500	Q	0
322	1	2	female	30.0	12.3500	Q	0
361	0	2	male	29.0	27.7208	C	1
412	1	1	female	33.0	90.0000	Q	1
626	0	2	male	57.0	12.3500	Q	0
787	0	3	male	8.0	29.1250	Q	5
885	0	3	female	39.0	29.1250	0	5