SPECIFICATION OF SEQUENTIAL SYSTEMS

- SYNCHRONOUS SEQUENTIAL SYSTEMS
- TWO TYPES: MEALY AND MOORE MACHINES
- TIME BEHAVIOR: I/O SEQUENCES
- STATE TABLE AND STATE DIAGRAM
- STATE MINIMIZATION

Figure 7.1: INPUT AND OUTPUT TIME FUNCTIONS.

Figure 7.2: a) SYNCHRONOUS BEHAVIOR. b) ASYNCHRONOUS BEHAVIOR.

- **CLOCK**
- I/O SEQUENCE $x(t_1, t_2)$

$$x(2,5) = aabc$$
$$z(2,5) = 1021$$

$$z(2,5) = 1021$$

Example 7.1: SERIAL DECIMAL ADDER

• LEAST-SIGNIFICANT DIGIT FIRST (at t=0)

STATE DESCRIPTION

Figure 7.3: OUTPUT AND STATE TRANSITION FUNCTIONS

STATE-TRANSITION FUNCTION s(t+1) = G(s(t), x(t))OUTPUT FUNCTION z(t) = H(s(t), x(t))

Example 7.3: STATE DESCRIPTION OF SERIAL ADDER

INPUT: $x(t), y(t) \in \{0, 1, ..., 9\}$

OUTPUT: $z(t) \in \{0, 1, ..., 9\}$

STATE: $s(t) \in \{0, 1\}$ (the carry)

INITIAL STATE: s(0) = 0

$$s(t+1) = \begin{cases} 1 & \text{if } x(t) + y(t) + s(t) \ge 10 \\ 0 & \text{otherwise} \end{cases}$$

$$z(t) = (x(t) + y(t) + s(t)) \mod 10$$

EXAMPLE OF SERIAL ADDITION

t	0	1	2	3	4	5	6
$\overline{x(t)}$	3	5	7	8	3	6	1
y(t)	5	2	4	2	5	6	3
$\overline{s(t)}$	0	0	0	1	1	0	1
x(t) y(t) s(t) z(t)	8	7	1	1	9	2	5

TIME-BEHAVIOR SPECIFICATION:

INPUT: $x(t) \in \{a, b\}$ OUTPUT: $z(t) \in \{0, 1\}$

FUNCTION: $z(t) = \begin{cases} 1 & \text{if } x(0,t) \text{ contains an even number of } b'\text{s} \\ 0 & \text{otherwise} \end{cases}$

I/O SEQUENCE:

Example 7.4: STATE DESCRIPTION OF ODD/EVEN

INPUT: $x(t) \in \{a, b\}$

OUTPUT: $z(t) \in \{0, 1\}$

STATE: $s(t) \in \{\text{EVEN, ODD}\}$

INITIAL STATE: s(0) = EVEN

PS	x(t) = a	x(t) = b
EVEN	EVEN, 1	ODD, 0
ODD	ODD, 0	EVEN, 1
	NS,	z(t)

Mealy machine

$$z(t) = H(s(t), x(t))$$

$$s(t+1) = G(s(t), x(t))$$

Moore machine

$$z(t) = H(s(t))$$

$$s(t+1) = G(s(t), x(t))$$

EQUIVALENT IN CAPABILITIES

Example 7.5: MOORE SEQUENTIAL SYSTEM

INPUT: $x(t) \in \{a, b, c\}$

OUTPUT: $z(t) \in \{0, 1\}$

STATE: $s(t) \in \{S_0, S_1, S_2, S_3\}$

INITIAL STATE: $s(0) = S_0$

PS	Input			
	a	b	c	
$\overline{S_0}$	S_0	$\overline{S_1}$	$\overline{S_1}$	0
S_1	S_2	S_0	S_1	1
S_2	S_2	S_3		1
S_3	S_0	S_1	S_2	0
		\overline{NS}	Output	

REPRESENTATION OF STATE-TRANSITION AND OUTPUT 12 **FUNCTIONS WITH STATE DIAGRAM**

Figure 7.4: (a) STATE DIAGRAM REPRESENTATION. (b) SIMPLIFIED STATE DIAGRAM NOTATION.

s(t)	x(t)		
	a	b	
$\overline{S_0}$	S_1, p	S_2, q	
S_1	S_1, p	S_0, p	
S_2	S_1, p	S_2, p	
	s(t+	$\overline{1),z(t)}$	

 $\label{eq:Figure 7.5: STATE DIAGRAM FOR EXAMPLE 7.6.}$

Figure 7.6: STATE DIAGRAM FOR EXAMPLE 7.5

Example 7.7: USE OF CONDITIONAL EXPRESSIONS

INPUT: $x(t) \in \{0, 1, 2, 3\}$

OUTPUT: $z(t) \in \{a, b\}$

STATE: $s(t) \in \{S_0, S_1\}$

INITIAL STATE: $s(0) = S_0$

$$s(t+1) = \begin{cases} S_0 & \text{if } (s(t) = S_0) \\ & \text{and } [x(t) = 0 \text{ or } x(t) = 2]) \\ & \text{or } (s(t) = S_1 \text{ and } x(t) = 3) \\ S_1 & \text{otherwise} \end{cases}$$

$$z(t) = \begin{cases} a & \text{if } s(t) = S_0 \\ b & \text{if } s(t) = S_1 \end{cases}$$

Figure 7.7: STATE DIAGRAM FOR EXAMPLE 7.7

Example 7.8: INTEGERS AS STATE NAMES

A MODULO-64 COUNTER

INPUT: $x(t) \in \{0, 1\}$

OUTPUT: $z(t) \in \{0, 1, 2, \dots, 63\}$

STATE: $s(t) \in \{0, 1, 2, \dots, 63\}$

INITIAL STATE: s(0) = 0

$$s(t+1) = [s(t) + x(t)] \mod 64$$
$$z(t) = s(t)$$

Example 7.9: VECTORS AS STATE NAMES

INPUT: $e(t) \in \{1, 2, ..., 55\}$

OUTPUT: $z(t) \in \{0, 1, 2, \dots, 55\}$

STATE: $\underline{s}(t) = (s_{55}, \dots, s_1), \quad s_i \in \{0, 1, 2, \dots, 99\}$

INITIAL STATE: $\underline{s}(0) = (0, 0, ..., 0)$

$$s_i(t+1) = \begin{cases} [s_i(t)+1] \bmod 100 & \textbf{if} \quad e(t)=i\\ i=1,2,\ldots,55\\ s_i(t) & \textbf{otherwise} \end{cases}$$

$$z(t) = \begin{cases} i & \textbf{if} \quad e(t)=i \text{ and } s_i(t)=99\\ 0 & \textbf{otherwise} \end{cases}$$

• STATE DESCRIPTION \Rightarrow I/O SEQUENCE (Example 7.10)

INITIAL STATE: $s(0) = S_2$

PS	x(t)			
	a	b	c	
$\overline{S_0}$	S_0		$\overline{S_1}$	p
S_1	S_2	S_0	S_1	q
S_2	S_2	S_3	S_0	q
S_3	S_0	S_1	S_2	p
		\overline{NS}	1	z(t)

I/O SEQUENCE

	0				
\overline{x}	a	b	c	\overline{a}	
S	$\begin{bmatrix} a \\ S_2 \\ q \end{bmatrix}$	S_2	S_3	S_2	S_2
z	q	q	p	q	

NOT ALL TIME-BEHAVIORS ARE REALIZABLE

$$z(t) = \begin{cases} 1 & \text{if } x(0,t) \text{ has same number of 0's and 1's} \\ 0 & \text{otherwise} \end{cases}$$

 $s(t) = \mathsf{DIFFERENCE}$ BETWEEN NUMBER OF 1'S AND 0'S

$$s(t+1) = \begin{cases} s(t) + 1 & \text{if } x(t) = 1 \\ s(t) - 1 & \text{otherwise} \end{cases}$$

$$z(t) = \begin{cases} 1 & \text{if } s(t) = 0 \\ 0 & \text{otherwise} \end{cases}$$

 \Rightarrow DIFFERENCE UNBOUNDED: NOT A FINITE-STATE SYSTEM

PROCEDURE FOR OBTAINING FSM FROM TIME BEHAVIOR²³

- 1. DETERMINE A SET OF STATES REPRESENTING REQUIRED EVENTS
- 2. DETERMINE THE TRANSITION FUNCTION
- 3. DETERMINE THE OUTPUT FUNCTION

• Example 7.11

$$\begin{array}{ll} \text{INPUT:} & x(t) \in \{0,1\} \\ \text{OUTPUT:} & z(t) \in \{0,1\} \\ \text{FUNCTION:} & z(t) = \begin{cases} 1 \text{ if } x(t-3,t) = 1101 \\ 0 \text{ otherwise} \end{cases} \end{array}$$

PATTERN DETECTOR ⇒ DETECT SUBPATTERNS

State	indicates that
01000	Initial state; also no subpattern
	First symbol (1) of pattern has been detected
	Subpattern (11) has been detected
S_{110}	Subpattern (110) has been detected

Figure 7.8: STATE DIAGRAM FOR Example 7.11

$$z(t) = F(x(t - m + 1, t))$$

Example 7.12:

$$z(t) = \begin{cases} p & \text{if } x(t-3,t) = aaba \\ q & \text{otherwise} \end{cases}$$

- ⇒ FINITE MEMORY OF LENGTH FOUR
- ALL FINITE-MEMORY MACHINES ARE FS SYSTEMS
- NOT ALL FS SYSTEMS ARE FINITE MEMORY

$$z(t) = \begin{cases} 1 & \text{if number of } 1' \text{s in } x(0, t) \text{ is even} \\ 0 & \text{otherwise} \end{cases}$$

CONTROLLERS

- THE STATE DESCRIPTION IS PRIMARY
- FSM PRODUCING CONTROL SIGNALS
- CONTROL SIGNALS DETERMINE ACTIONS PERFORMED IN OTHER PARTS OF SYSTEM
- *AUTONOMOUS*: FIXED SEQUENCE OF STATES, INDEPENDENT OF INPUTS

AUTONOMOUS CONTROLLER

Figure 7.9: AUTONOMOUS CONTROLLER: TIMING DIAGRAM.

Figure 7.10: AUTONOMOUS CONTROLLER: STATE DIAGRAM.

Note: $coin \cdot return = 0$

Figure 7.11: CONTROLLER FOR SIMPLE VENDING MACHINE: BLOCK DIAGRAM.

Figure 7.12: CONTROLLER FOR SIMPLE VENDING MACHINE: STATE DIAGRAM.

EQUIVALENT SEQUENTIAL SYSTEMS: SAME TIME BEHAVIOR

INPUT: $x(t) \in \{0, 1\}$ OUTPUT: $z(t) \in \{0, 1\}$

FUNCTION:
$$z(t) = \begin{cases} 1 & \text{if } x(t-2,t) = 101 \\ 0 & \text{otherwise} \end{cases}$$

Figure 7.13: a) STATE DIAGRAM WITH REDUNDANT STATES; b) REDUCED STATE DIAGRAM

• k-DISTINGUISHABLE STATES: DIFF. OUTPUT SEQUENCES

$$z(x(t, t+k-1), S_v) \neq z(x(t, t+k-1), S_w)$$

EXAMPLE:

State
$$x(3,6)$$
 $z(3,6)$
 S_1 0210 0011
 S_3 0210 0001

- k-EQUIVALENT STATES: NOT DISTINGUISHABLE FOR SEQUENCES OF LENGTH k
- P_k : PARTITION OF STATES INTO k-EQUIVALENT CLASSES
- ullet EQUIVALENT STATES NOT DISTINGUISHABLE FOR ANY k

Example 7.14

INPUT: $x(t) \in \{a, b, c\}$

OUTPUT: $z(t) \in \{0, 1\}$

STATE: $s(t) \in \{A, B, C, D, E, F\}$

INITIAL STATE: s(0) = A

FUNCTIONS: TRANSITION AND OUTPUT

\overline{PS}	x = a	x = b	x = c
\overline{A}	E,0	D, 1	B,0
B	F, 0	D, 0	A, 1
C	E,0	B, 1	D, 0
D	F, 0	B, 0	C, 1
E	C, 0	F, 1	F, 0
F	B,0	C, 0	F, 1
		\overline{NS} , z	

Example 7.14 (cont.)

ullet A and B ARE 1-DISTINGUISHABLE BECAUSE

$$z(b,A) \neq z(b,B)$$

ullet A and C ARE 1-EQUIVALENT BECAUSE

$$z(x(t), A) = z(x(t), C), \quad for \ all \ x(t) \in I$$

ullet A and C ARE ALSO 2-EQUIVALENT BECAUSE

$$z(aa, A) = z(aa, C) = 00$$

 $z(ab, A) = z(ab, C) = 01$
 $z(ac, A) = z(ac, C) = 00$
 $z(ba, A) = z(ba, C) = 10$
 $z(bb, A) = z(bb, c) = 10$
 $z(bc, A) = z(bc, C) = 11$
 $z(ca, A) = z(ca, C) = 00$
 $z(cb, A) = z(cb, C) = 00$
 $z(cc, A) = z(cc, C) = 01$

Obtain P_1 : DIRECTLY FROM OUTPUT FUNCTION

From P_i to P_{i+1} ...

1. P_{i+1} IS A REFINEMENT OF P_i (states (i+1)-equiv. must also be i-equiv.)

$$P_i$$
 $(A, B, C)(D)$ possible not possible P_{i+1} $(A, C)(B)(D)$ $(A, D)(B)(C)$

FOR (i+1)-EQUIVALENT STATES S_v and S_w

$$z(x(t,t+i),S_v) = z(x(t,t+i),S_w)$$

FOR ARBITRARY x(t, t + i)

THEN
$$z(x(t, t+i-1), S_v) = z(x(t, t+i-1), S_w)$$

EXAMPLE:
$$z(abcd, S_v) = z(abcd, S_w) = 1234$$

THEN
$$z(abc, S_v) = z(abc, S_w) = 123$$

(i+1)-EQUIVALENT STATES

- 2. TWO STATES ARE (i+1)-EQUIVALENT IF AND ONLY IF
 - a) THEY ARE i-EQUIVALENT, and
 - b) FOR ALL $x \in I$, THE CORRESPONDING NEXT STATES ARE i-EQUIVALENT

PROOF:

IF PART:

- SINCE THE STATES ARE i-EQUIVALENT,
 THEY ARE ALSO 1-EQUIVALENT
- THEREFORE, IF THE NEXT STATES ARE i-EQUIVALENT,
 THE STATES ARE (i+1)-EQUIVALENT

Same output sequences of length i+1

Figure 7.14: ILLUSTRATION OF (i + 1)-EQUIVALENCE RELATION.

ONLY IF PART: BY CONTRADICTION

• IF FOR SOME INPUT a THE NEXT STATES ARE NOT i-EQUIVALENT THEN THERE EXISTS A SEQUENCE T OF LENGTH i SUCH THAT THESE NEXT STATES ARE DISTINGUISHABLE.

THEREFORE,

$$z(aT, S_v) \neq z(aT, S_w)$$

 $ightarrow S_v$ AND S_w NOT (i+1)-EQUIVALENT

Different output sequences of length i+1

Figure 7.15: ILLUSTRATION OF (i + 1)-EQUIVALENCE RELATION.

- STOP WHEN P_{i+1} IS THE SAME AS P_i
 - THIS IS THE EQUIVALENCE PARTITION
 - THE PROCESS ALWAYS TERMINATES

PROCEDURE: SUMMARY

- 1. OBTAIN P_1 (look at the outputs)
- 2. OBTAIN P_{i+1} FROM P_i BY GROUPING STATES THAT ARE i-EQUIVALENT AND WHOSE CORRESPONDING SUCCESSORS ARE i-EQUIVALENT
- 3. TERMINATE WHEN $P_{i+1} = P_i$
- 4. WRITE THE REDUCED TABLE

PS	x(t) = a	x(t) = b	x(t) = c
Α	0	1	0
В	0	0	1
C	0	1	0
D	0	0	1
Ε	0	1	0
F	0	0	1
		NS, z	

• 1-EQUIVALENT IF SAME "row pattern"

$$P_1 = (A, C, E) \ (B, D, F)$$

- NUMBER THE CLASSES IN P_1
- \bullet TWO STATES ARE IN THE SAME CLASS OF P_2 IF THEIR SUCCESSOR COLUMNS HAVE THE SAME NUMBERS

		1			2	
P_1	(A,	C,	E)	(B,	D,	F)
\overline{a}	1	1	1	2	2	2
b	2	2	2	2	2	1
C	2	2	2	1	1	2

BY IDENTIFYING IDENTICAL COLUMNS OF SUCCESSORS, WE GET $P_2 = (A,C,E) \ (B,D) \ (\emph{\textbf{\emph{F}}})$

SAME PROCESS TO OBTAIN THE NEXT PARTITION:

		1		2		3
P_2	(A,	C,	E)	(B,	D),	(F)
\overline{a}	1	1	1	3	3	
b	2	2	3	2	2	
c	2	2	3	1	1	

$$P_3 = (A, C) \quad (E) \quad (B, D) \quad (F)$$

• SIMILARLY, WE DETERMINE $P_4 = (A, C) (E) (B, D) (F)$

BECAUSE $P_4=P_3$ THIS IS ALSO THE EQUIVALENCE PARTITION P

THE MINIMAL SYSTEM:

\overline{PS}	x = a	x = b	x = c
\overline{A}	E,0	B,1	$\overline{B,0}$
B	F, 0	B, 0	A, 1
E	A, 0	F, 1	F, 0
F	B,0	A, 0	F, 1
		\overline{NS} , z	

THE STATES CAN BE RELABELLED

BINARY SPECIFICATION OF SEQUENTIAL SYSTEMS

- THE STATE CODING IS CALLED STATE ASSIGNMENT
- CODING FUNCTIONS:

INPUT
$$C_I: I \to \{0,1\}^n$$

OUTPUT $C_O: O \to \{0,1\}^m$
STATE $C_S: S \to \{0,1\}^k$

\overline{PS}	x = a	x = b	x = c
\overline{A}	E,0	B,1	$\overline{B,0}$
B	F, 0	B, 0	A, 1
E	A, 0	F, 1	F, 0
F	B,0	A, 0	F, 1
		\overline{NS} , z	

BINARY CODING

Input code

<u> </u>				
x(t)	$x_1(t)x_0(t)$			
a	00			
b	01			
С	10			

	z(t)				
0	0				
1	1				

Output code State assignment

	\circ
s(t)	$s_1(t)s_0(t)$
A	00
B	01
E	10
$\mid F \mid$	11

THE RESULTING BINARY SPECIFICATION:

$s_1(t)s_0(t)$	$x_1 x_0 = 00$	$x_1 x_0 = 01$	$x_1 x_0 = 10$
00	10,0	01, 1	01,0
01	11,0	01, 0	00, 1
10	00, 0	11, 1	11,0
11	01,0	00, 0	11, 1
	$s_1(t)$	$+1)s_0(t+$	$\overline{1}$), z

Figure 7.16: SWITCHING EXPRESSIONS AS ARC LABELS

SPECIFICATION OF DIFFERENT TYPES OF SEQUENTIAL SYSTEMS

MODULO-p COUNTER: 0, 1, 2, ..., p-1, 0, 1, ...

$$z(t) = \left[\sum_{i=0}^{t} x(i)\right] \mod p$$

$$s(t+1) = \left[s(t) + x(t)\right] \mod p$$

$$z(t) = s(t) \text{ (if same coding)}$$

Figure 7.17: STATE DIAGRAM OF A MODULO-5 COUNTER

Figure 7.18: FRAGMENT OF STATE DIAGRAM OF PATTERN RECOGNIZER

Figure 7.19: STATE DIAGRAM OF A PATTERN RECOGNIZER