

NOVEMBER 2002

GCE Advanced Level GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709 /7, 8719 /7

MATHEMATICS (Probability and Statistics 2)

www.studyguide.pk

Page 1	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	7

$d_{P_{i}}$			
$ \begin{array}{c} 51.2 \pm 2.576 \times \sqrt{\frac{37.4}{120}} \\ 49.8 < \mu < 52.6 \end{array} $	MI B1 A1	3	Calculation of correct form $ \overline{x} \pm z \frac{s}{\sqrt{n}} $ Using $z = 2.576$ Or equivalent statement
2 (i) $0.015n = 2.55$ n = 170	M1 A1	2	For equation linking n , p and mean For correct answer
(ii) mean = 210 × 0.015 (=3.15) $e^{-3.15} \left(1 + 3.15 + \frac{3.15^2}{2}\right)$	Bl		For new mean
P(0) + P(1) + P(2) = = 0.390 or 0.391	M1		For evaluating Poisson $P(0) + P(1) + P(2) + [P(3)]$
SR use of Binomial scores B1 for final correct answer 0.389	Al	3	For correct answer
$z = \frac{64.3 - 65}{4.9 / \sqrt{n}} = -1.807$ $n = 160$	M1 M1 A1	3	For standardising equation = ± 1.807 with n or \sqrt{n} Solving for n For correct answer CWO.
(ii) H ₀ : μ = 65 H ₁ : μ < 65 Critical Value +/-1.645 Significant growth decrease	B1 B1 M1 A1	4	For H ₀ and H ₁ For +/-1.645 (or ft +/- 1.96 for two tail test) Comparing given statistic with their CV Correct conclusion
4 (i) H_0 : $\lambda = 4.8$ H_1 : $\lambda < 4.8$ Under H_0 $P(0) = e^{-4.8}$ (=0.00823) $P(1) = 0.0395$	B1 M1		For both H ₀ and H ₁ For evaluating P(0) and P(1) and P(2)
P(2) = 0.0948 Critical region is $X = 0$ or 1	M1 A1		For stating/showing that $P(0) + P(1) + P(2) > 10\%$ For critical region.
Not enough evidence to say road sign has decreased accidents SR If M0, M0 allow M1 for stating / showing P(0) + P(1) < 10%	A1	5	Correct conclusion
(ii) P(Type I error) = $P(0) + P(1)$ = 0.0477	M1 A1	2	For identifying correct outcome For correct answer
5 (i) new mean = 5.6 $P(X+Y>3)=1-\{P(0)+P(1)+P(2)+P(3)\}$ 5.62 5.63	B1 M1		For new mean For evaluating 1 – some Poisson probabilities
$e^{-5.6}(1+5.6+\frac{5.6^2}{2!}+\frac{5.6^3}{3!})$ = 1 - = 0.809	A1 A1	4	For correct expression For correct answer
(ii) $\overline{X} \sim N(2.5, \frac{2.5}{80})$ or equiv. method using totals N(200, 200)	M1 A1		For using normal distribution with mean 2.5 / 200 For correct variance
$P(X<2.4) = \Phi\left(\frac{2.4 - 2.5}{\sqrt{(2.5/80)}}\right) \text{ or } \Phi\left(\frac{192 - 200}{\sqrt{200}}\right)$	M1		For standardising and using normal tables
$= \Phi(-0.566)$ $= 1 - 0.7143 = 0.286$	Al	4	For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	7

$k \int_{20}^{28} \frac{1}{x^2} dx = 1$ $k \left[\frac{-1}{x} \right]_{=1}$ $k \left[\frac{1}{20} - \frac{1}{28} \right] = 1$ $k \left[\frac{1}{20} - \frac{1}{28} \right] = 1$ $= 23.6, 23.5, 70 \ln 1.4, 70 \ln (7/5)$ $= 0.528 \text{ (accept 0.534 from 23.6)} \\ (0.521 $	
$k \left[\frac{1}{20} - \frac{1}{28} \right] = 1$ $k \int_{1}^{28} \frac{1}{x} dx$ (ii) $E(X) = {}^{20} = k [\ln x]$ $= 23.6, 23.5, 70 \ln 1.4, 70 \ln (7/5)$ (iii) $P(X < E(X)) = {}^{20} = \frac{1}{x^2} dx$ $= 0.528 \text{ (accept } 0.534 \text{ from } 23.6)$ $= 0.521 23.5)$ Al 3 For given answer correctly obtained decimals seen). M1 A1	
$k \left[\frac{1}{20} - \frac{1}{28} \right] = 1$ $k \left[\frac{1}{20} - \frac{1}{28} \right] = 1$ $k \int_{0}^{28} \frac{1}{x} dx$ (ii) $E(X) = 20$ $= 23.6, 23.5, 70 \ln 1.4, 70 \ln (7/5)$ $= 23.5, 23.5, 70 \ln 1.4, 70 \ln (7/5)$ (iii) $P(X < E(X)) = 20$ $= 0.528 \text{ (accept } 0.534 \text{ from } 23.6)$ $= 0.528 \text{ (accept } 0.534 \text{ from } 23.6)$ $= 0.521 23.5$ Al 2 For given answer correctly obtained decimals seen). M1 A1 A1 A1 A1 For attempt to evaluate $\frac{1}{x} dx$ For correct answer For attempt to evaluate $\frac{1}{x^2} dx$ betwee $\frac{1}{x^2} dx$ For attempt to evaluate $\frac{1}{x^2} dx$	
$k \left[\frac{1}{20} - \frac{1}{28} \right] = 1$ $k \int_{x}^{28} \frac{1}{x} dx$ (ii) $E(X) = {}^{20} = k[\ln x]$ $= 23.6, 23.5, 70 \ln 1.4, 70 \ln (7/5)$ (iii) $P(X < E(X)) = {}^{20} \int_{x}^{2} \frac{70}{x^2} dx$ $= 0.528 \text{ (accept } 0.534 \text{ from } 23.6)}$ $= 0.528 \text{ (accept } 0.534 \text{ from } 23.5)$ Al 2 For given answer correctly obtained decimals seen). M1 A1	
(ii) $E(X) = \frac{28}{20} \frac{1}{x} dx$ (iii) $E(X) = \frac{20}{20} = k[\ln x]$ $= 23.6, 23.5, 70 \ln 1.4, 70 \ln (7/5)$ All 3 For attempt to evaluate $\frac{20}{x} \frac{70}{x} dx$ For correct integration For correct answer M1 A1	
= 23.6, 23.5, 70ln 1.4, 70ln (7/5) A1 A1 A1 For correct integration For correct answer	n their
$= 23.6, 23.5, 70 \ln 1.4, 70 \ln (7/5)$ A1	n their
(iii) $P(X < E(X)) = \sum_{20}^{23.55} \frac{70}{x^2} dx$ $= 0.528 \text{ (accept } 0.534 \text{ from } 23.6) \\ (0.521 23.5)$ Al 2 For correct answer For attempt to evaluate $\int \frac{70}{x^2} dx$ betwee limits (<28) For correct answer	n their
(iii) $P(X < E(X)) = \int_{20}^{23.55} \frac{70}{x^2} dx$ = 0.528 (accept 0.534 from 23.6) (0.521 23.5) A1 2 For attempt to evaluate $\int_{x^2}^{70} dx$ betwee limits (<28) For correct answer	n their
= 0.528 (accept 0.534 from 23.6) $= 0.528 (accept 0.534 from 23.6) $ $= 0.528 (accept$	n their
= 0.528 (accept 0.534 from 23.6) $= 0.528 (accept 0.534 from 23.6) $ $= 0.528 (accept$	n their
(0.521 23.5) A1 2 limits (<28) For correct answer	
1 or correct answer	
(iv) Greater Prob in (iii) is > 0.5 Blft Pro correct statement	
B1ft 2 For correct reason. Follow through from ((iii)
or calculating med. = 23.3	
7 (i) $W \sim N(17.6, 0.133(2))$ B1 For correct mean	
B1 For correct variance	
$\Phi\left(\frac{18-17.6}{\sqrt{0.1332}}\right)_{\text{(= 0.8633)}} \text{B1} \qquad \text{For correct variance} \\ \text{For standardising and using tables}$	
$\Phi\left(\frac{17-17.6}{\sqrt{0.1332}}\right) = 1 - 0.9499 \ (= 0.0501)$ Al For standardising and using tables $A1 = 5$ For correct answer	
$\sqrt{0.1332}$ = 1 - 0.9499 (= 0.0501) A1 5 For correct answer	
0.8633 - 0.0501 = 0.813	
(ii) Wt diff $D \sim N(0, 0.0072)$ B1 For correct mean and variance	
$1-\Phi$ 0.05 M1 For standardising and using tables	
$P(D>0.05) = \sqrt{\sqrt{0.0072}} = 1 - \Phi(0.589)$	
= 0.278 A1 For 0.278 (could be implied)	
P(D < 0.05) = 0.278 $0.278 + 0.278 = 0.556$ M1 For finding the other probability For correct answer	
0.278 + 0.278 = 0.556 Al 5 For correct answer	