BENCH-TOP HEAT EXCHANGERS LAB 9

BENCH-TOP HEAT EXCHANGERS

- Heat Exchangers
 - Introduction
 - Types of heat exchangers
 - Theory

- Lab 9
 - Goal: To explore the heat-transfer characteristics of: 1) Concentric tube heat exchangers and 2) shell-and-tube heat exchangers

HEAT EXCHANGERS

• Heat exchangers are devices that provide the flow of thermal energy between two or more fluids at different temperatures while keeping them from mixing with each other.

HEAT EXCHANGERS

- Heat transfer in a heat exchanger usually involves
 - Convection
 - Conduction
 - Overall heat transfer coefficient U
- Classified according to:
 - Recuperating or Regenerating
 - Tubes, plates or extended surfaces
 - Parallel flow, counter flow or cross flow

HEAT EXCHANGER TYPES

- Concentric Tube Heat Exchangers
- Double Piped Heat Exchangers
 - A pipe is placed concentrically within a larger pipe.
 - Commonly used for small heat transfer areas.
 - Simple construction, flexible.
 - Bulky and Expensive

HEAT EXCHANGER TYPES

- Shell-and-Tube Heat Exchangers
 - Most versatile heat exchanger type
 - Large heat transfer area per volume.

tube passes

tube passes

HEAT EXCHANGER TYPES

- Compact Heat Exchangers
 - Commonly used in gas flow applications
 - Plate fin or tube fin geometries
 - Fins increase heat transfer rate by increasing contact area
 - Cross flow conditions

Commercial plates with 'chevron' style indentations

TQ's plates with flow disturbers

$$Q = \dot{m}_h(i_{h,i} - i_{h,o}) = \dot{m}_h c_{p,h} (T_{h,i} - T_{h,o})$$

$$Q = \dot{m}_c (i_{c,i} - i_{c,o}) = \dot{m}_c c_{p,c} (T_{c,i} - T_{c,o})$$

$$Q = UA\Delta T_{LM} \qquad \Delta T_{LM} = \frac{\Delta T_2 - \Delta T_1}{\ln(\Delta T_2 / \Delta T_1)}$$

$$\frac{1}{U\!A} = \frac{1}{(\eta_o h A)_c} + \frac{R''_{f,c}}{(\eta_o A)_c} + R_w + \frac{R''_{f,h}}{(\eta_o A)_h} + \frac{1}{(\eta_o h A)_h}$$

$$R_f'' =$$
fouling factor

• Tube Flow:

$$\frac{1}{UA} = \frac{1}{U_o A_o} = \frac{1}{U_i A_i}$$

$$= \frac{1}{h_i A i} + \frac{R''_{f,i}}{A_i} + \frac{\ln\left(\frac{D_o}{D_i}\right)}{2\pi k L} + \frac{R''_{f,o}}{A_o} + \frac{1}{h_o A_o}$$

Overall Heat Transfer Coefficients for Common Arrangements	
Fluid Combination	$\bigcup \left(\frac{W}{m^2K}\right)$
Water to water	850-1700
Water to oil	110-350
Steam Condenser	1000-6000
Ammonia Condenser	800-1400
Alcohol Condenser	250-700
Fined-Tube Heat Exchanger	25-50

Parallel Flow

$$\Delta T_1 = T_{h,1} - T_{c,1} = T_{h,i} - T_{c,i}$$

$$\Delta T_2 = T_{h,2} - T_{c,2} = T_{h,o} - T_{c,o}$$

Counter Flow

$$\Delta T_1 = T_{h,1} - T_{c,1} = T_{h,i} - T_{c,o}$$
$$\Delta T_2 = T_{h,2} - T_{c,2} = T_{h,o} - T_{c,i}$$

$$\dot{Q} = \dot{Q}_e = \dot{Q}_a = \dot{m}_H c_{p_H} \Delta T_H = \dot{m}_C c_{p_C} \Delta T_C$$

$$\dot{Q}_e = UA\Delta T$$

Log-Mean Temperature Difference

$$LMTD = \Delta T_{lm} = \frac{\left(\left(T_{H_2} - T_{C_2} \right) - \left(T_{H_1} - T_{C_1} \right) \right)}{\ln \frac{\left(T_{H_2} - T_{C_2} \right)}{\left(T_{H_1} - T_{C_1} \right)}}$$

HEAT EXCHANGER DESIGN

• If only the inlet temperature are specified, effectiveness-NTU Method

$$q_{max} = C_{min}(T_{h,i} - T_{c,i})$$

$$\varepsilon = \frac{q}{q_{max}}$$
, effectiveness

$$q = \varepsilon C_{min} (T_{h,i} - T_{c,i})$$

$$NTU = \frac{UA}{C_{min}}$$

$$\varepsilon = f\left(NTU, \frac{C_{min}}{C_{max}}\right)$$

HEAT EXCHANGER DESIGN

Flow Arrangement	Relation
Concentric tube	
Parallel flow	$\varepsilon = \frac{1 - \exp\left[-NTU(1 + C_r)\right]}{1 + C_r}$
Counterflow	$\varepsilon = \frac{1 - \exp\left[-NTU(1 - C_r)\right]}{1 - C_r \exp\left[-NTU(1 - C_r)\right]} \qquad (C_r < 1)$
	$\varepsilon = \frac{\text{NTU}}{1 + \text{NTU}} \tag{C_r = 1}$
Shell-and-tube	
One shell pass (2, 4, tube passes)	$\varepsilon_1 = 2 \bigg\{ 1 + C_r + (1 + C_r^2)^{1/2} \bigg\}$
	$ imes rac{1 + \exp\left[-(\mathrm{NTU})_1(1 + C_r^2)^{1/2} ight]}{1 - \exp\left[-(\mathrm{NTU})_1(1 + C_r^2)^{1/2} ight]} ight\}^{-1}$
n Shell passes $(2n, 4n, \dots$ tube passes)	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - C_r \right]^{-1}$
Cross-flow (single pass)	
Both fluids unmixed	$\varepsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right) (\text{NTU})^{0.22} \left\{\exp\left[-C_r(\text{NTU})^{0.78}\right] - 1\right\}\right]$
$C_{ m max}$ (mixed), $C_{ m min}$ (unmixed)	$\varepsilon = \left(\frac{1}{C_r}\right) (1 - \exp\left\{-C_r[1 - \exp\left(-\text{NTU}\right)]\right\})$
C_{\min} (mixed), C_{\max} (unmixed)	$\varepsilon = 1 - \exp\left(-C_r^{-1}\left\{1 - \exp\left[-C_r(\text{NTU})\right]\right\}\right)$
All exchangers ($C_r = 0$)	$\varepsilon = 1 - \exp(-NTU)$

Flow Arrangement	Relation
Concentric tube	
Parallel flow	$NTU = -\frac{\ln\left[1 - \varepsilon(1 + C_r)\right]}{1 + C_r}$
Counterflow	$NTU = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) (C_r < 1)$
	$NTU = \frac{\varepsilon}{1 - \varepsilon} \qquad (C_r = 1)$
Shell-and-tube	
One shell pass (2, 4, tube passes)	$(\text{NTU})_1 = -(1 + C_r^2)^{-1/2} \ln \left(\frac{E - 1}{E + 1} \right)$ $E = \frac{2/\varepsilon_1 - (1 + C_r)}{(1 + C_r^2)^{1/2}}$
<i>n</i> Shell passes $(2n, 4n, \dots$ tube passes)	Use Equations 11.30b and 11.30c with $\varepsilon_1 = \frac{F - 1}{F - C_r} F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{1/n} \text{NTU} = n(\text{NTU})_1$
Cross-flow (single pass)	No. 10.4 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1.1 (1
C_{max} (mixed), C_{min} (unmixed)	$NTU = -\ln\left[1 + \left(\frac{1}{C_t}\right)\ln(1 - \varepsilon C_t)\right]$
C_{\min} (mixed), C_{\max} (unmixed)	$NTU = -\left(\frac{1}{C_r}\right) \ln[C_r \ln(1-\varepsilon) + 1]$
All exchangers ($C_r = 0$)	$NTU = -\ln(1-\varepsilon)$

HEAT EXCHANGER DESIGN

LAB 9 ASSIGNMENT

LAB 9 ASSIGNMENT

LAB 9 ASSIGNMENT

$$\dot{Q} = \dot{Q}_{e} = \dot{Q}_{a} = \dot{m}_{H} c_{p_{H}} \Delta T_{H} = \dot{m}_{C} c_{p_{C}} \Delta T_{C}$$

$$LMTD = \frac{\left(\left(T_{H_{2}} - T_{C_{2}} \right) - \left(T_{H_{1}} - T_{C_{1}} \right) \right)}{\ln \frac{\left(T_{H_{2}} - T_{C_{2}} \right)}{\left(T_{H_{1}} - T_{C_{1}} \right)}}$$

$$U = \frac{\dot{Q}_{e}}{A \times LMTD}$$

$$\eta_H = \frac{T_{H1} - T_{H2}}{T_{H1} - T_{C1}} \times 100\%, \qquad \eta_C = \frac{T_{C2} - T_{C1}}{T_{H1} - T_{C1}} \times 100\%$$

$$\bar{\eta} = \frac{\eta_H + \eta_C}{2}$$