

Objectives

1 Solve absolute value equations.

2 Solve and graph absolute value inequalities

Absolute Value Equations

The absolute value of a number, b, denoted |b|, is the distance b is from 0 on a number line.

Absolute Value Equations

The absolute value of a number, b, denoted |b|, is the distance b is from 0 on a number line.

For |x| = 2, we get two possible values for x: 2 and -2

Absolute Value Equations

The absolute value of a number, b, denoted |b|, is the distance b is from 0 on a number line.

For |x| = 2, we get two possible values for x: 2 and -2

Solving Absolute Value Equations

When solving absolute value equations:

$$|x| = c$$
 means that $x = c$ or $x = -c$

Solving Absolute Value Equations

When solving absolute value equations:

$$|x| = c$$
 means that $x = c$ or $x = -c$

Make sure your absolute value bars are isolated on one side before separating your problem into 2 equations.

(a)
$$|2x-3|=11$$

(a)
$$|2x-3| = 11$$

 $2x-3 = 11$ $2x-3 = -11$

(a)
$$|2x-3| = 11$$

 $2x-3 = 11$
 $2x = 14$
 $2x = -8$

(a)
$$|2x - 3| = 11$$

 $2x - 3 = 11$
 $2x = 14$
 $2x = -8$
 $x = 7$
 $2x = -4$

(a)
$$|2x - 3| = 11$$

 $2x - 3 = 11$
 $2x = 14$
 $2x = -8$
 $x = 7$
 $2x = -4$

$$x = 7 \text{ or } x = -4$$

(b)
$$|3x-1|=5$$

(b)
$$|3x - 1| = 5$$
 $3x - 1 = 5$ $3x - 1 = -5$

(b)
$$|3x - 1| = 5$$

 $3x - 1 = 5$
 $3x - 1 = -5$
 $3x = -4$

(b)
$$|3x - 1| = 5$$

 $3x - 1 = 5$
 $3x - 1 = -5$
 $3x = 6$
 $x = 2$
 $3x = -4$
 $x = -\frac{4}{3}$

(b)
$$|3x - 1| = 5$$

 $3x - 1 = 5$
 $3x = 6$
 $x = 2$
 $3x = -4$
 $3x = -4$

(c)
$$|x+1| = -2$$

(c)
$$|x+1| = -2$$
 $x+1=-2$ $x+1=2$

(c)
$$|x+1| = -2$$

 $x+1=-2$ $x+1=2$
 $x=-3$ $x=1$

(c)
$$|x+1| = -2$$

 $x+1 = -2$ $x+1 = 2$
 $x = -3$ $x = 1$

No solution (\emptyset)

(d)
$$|-x+2|-4=10$$

(d)
$$|-x+2|-4=10$$
 $|-x+2|=14$ add 4

(d)
$$|-x+2|-4=10$$

 $|-x+2|=14$ add 4
 $-x+2=14$ $-x+2=-14$

(d)
$$|-x+2|-4=10$$

 $|-x+2|=14$ add 4
 $-x+2=14$ $-x=12$ $-x=-16$

(d)
$$|-x+2|-4=10$$

 $|-x+2|=14$ add 4
 $-x+2=14$ $-x+2=-14$
 $-x=12$ $-x=-16$
 $x=-12$ $x=16$

(d)
$$|-x+2|-4=10$$

 $|-x+2|=14$ add 4
 $-x+2=14$ $-x+2=-14$
 $-x=12$ $-x=-16$
 $x=-12$ $x=16$

$$x = -12 \text{ or } x = 16$$

(e)
$$|3x-1| = |x+5|$$

(e)
$$|3x-1| = |x+5|$$

 $3x-1 = x+5$ $3x-1 = -(x+5)$

(e)
$$|3x-1| = |x+5|$$

 $3x-1=x+5$ $3x-1=-(x+5)$
 $3x-1=x+5$ $3x-1=-x-5$

(e)
$$|3x - 1| = |x + 5|$$

 $3x - 1 = x + 5$ $3x - 1 = -(x + 5)$
 $3x - 1 = x + 5$ $3x - 1 = -x - 5$
 $2x - 1 = 5$ $4x - 1 = -5$

(e)
$$|3x - 1| = |x + 5|$$

 $3x - 1 = x + 5$
 $3x - 1 = -(x + 5)$
 $3x - 1 = -x - 5$
 $2x - 1 = 5$
 $2x = 6$
 $4x = -4$

(e)
$$|3x - 1| = |x + 5|$$

 $3x - 1 = x + 5$
 $3x - 1 = -(x + 5)$
 $3x - 1 = -x - 5$
 $2x - 1 = 5$
 $2x = 6$
 $x = 3$
 $3x - 1 = -x - 5$
 $4x - 1 = -5$
 $4x = -4$
 $4x = -4$

(e)
$$|3x - 1| = |x + 5|$$

 $3x - 1 = x + 5$
 $3x - 1 = -(x + 5)$
 $3x - 1 = -x - 5$
 $2x - 1 = 5$
 $2x = 6$
 $x = 3$
 $3x - 1 = -x - 5$
 $4x - 1 = -5$
 $4x = -4$
 $x = -1$

x = 3 or x = -1

Objectives

Solve absolute value equations.

Solve and graph absolute value inequalities

Absolute Value Inequalities: < and \le

Absolute value inequalities are similar to absolute value equations.

Absolute Value Inequalities: < and \le

Absolute value inequalities are similar to absolute value equations.

For |x| < 2, we want all values of x that are less than 2 units from 0 on a number line:

Absolute Value Inequalities: < and \le

Absolute value inequalities are similar to absolute value equations.

For |x| < 2, we want all values of x that are less than 2 units from 0 on a number line:

Absolute Value Inequalities: < and \le

Absolute value inequalities are similar to absolute value equations.

For |x| < 2, we want all values of x that are less than 2 units from 0 on a number line:

$$|x| < 2$$
 means $-2 < x < 2$

(a)
$$|2x-2| < 5$$

(a)
$$|2x-2| < 5$$

 $-5 < 2x-2$ $2x-2 < 5$

(a)
$$|2x-2| < 5$$

(a)
$$|2x-2| < 5$$

(a)
$$|2x-2| < 5$$

$$x = -\frac{3}{2} \text{ or } x = \frac{7}{2}$$

(a)
$$|2x-2| < 5$$

$$x = -\frac{3}{2} \text{ or } x = \frac{7}{2}$$

(a)
$$|2x-2| < 5$$

$$x = -\frac{3}{2} \text{ or } x = \frac{7}{2}$$

(b)
$$|x-9| \le 2.9$$

(b)
$$|x-9| \le 2.9$$

- 2.9 $\le x-9$ $x-9 \le 2.9$

(b)
$$|x-9| \le 2.9$$

 $-2.9 \le x-9$ $x-9 \le 2.9$
 $x-9 > -2.9$ $x-9 < 2.9$

(b)
$$|x-9| \le 2.9$$

 $-2.9 \le x-9$ $x-9 \le 2.9$
 $x-9 \ge -2.9$ $x-9 \le 2.9$
 $x > 6.1$ $x < 11.9$

(c)
$$|x+2| \le -1$$

(c)
$$|x+2| \le -1$$

No solution, \emptyset , since |x+2| is guaranteed to always be non-negative.

(c)
$$|x+2| \le -1$$
 Treat as $|x+2| = -1$

(c)
$$|x+2| \le -1$$
 Treat as $|x+2| = -1$ $x+2=-1$ $x+2=1$

(c)
$$|x+2| \le -1$$
 Treat as $|x+2| = -1$
$$x+2=-1 \qquad x+2=1$$

$$x=-3 \qquad x=-1$$

(c)
$$|x+2| \le -1$$
 Treat as $|x+2| = -1$
$$x+2 = -1$$

$$x = -3$$

$$x = -1$$

$$\longleftrightarrow$$

$$-3$$

(c)
$$|x+2| \le -1$$
 Treat as $|x+2| = -1$
$$x+2 = -1 \qquad x+2 = 1$$

$$x = -3 \qquad x = -1$$

$$\longleftrightarrow \qquad -3 \qquad -1$$

No test values work.

(c)
$$|x+2| \le -1$$
 Treat as $|x+2| = -1$
$$x+2 = -1$$

$$x = -3$$

$$x = -1$$

$$\longleftrightarrow$$

$$-3$$

$$-1$$

No test values work.

Absolute Value Inequalities: > and \ge

For |x| > 2, we want all the values of x that are greater than 2 units from 0 on a number line.

Absolute Value Inequalities: > and \ge

For |x| > 2, we want all the values of x that are greater than 2 units from 0 on a number line.

Absolute Value Inequalities: > and \ge

For |x| > 2, we want all the values of x that are greater than 2 units from 0 on a number line.

$$|x| > 2$$
 means that $x < -2$ or $x > 2$

(a)
$$|2x+3| \ge 5$$

(a)
$$|2x+3| \ge 5$$

 $2x+3 \le -5$ $2x+3 \ge 5$

(a)
$$|2x+3| \ge 5$$

 $2x+3 \le -5$ $2x+3 \ge 5$
 $2x < -8$ $2x \ge 2$

(a)
$$|2x + 3| \ge 5$$

 $2x + 3 \le -5$ $2x + 3 \ge 5$
 $2x \le -8$ $2x \ge 2$
 $x < -4$ $x > 1$

(a)
$$|2x+3| \ge 5$$

 $2x+3 \le -5$ $2x+3 \ge 5$
 $2x \le -8$ $2x \ge 2$
 $x \le -4$ $x \ge 1$

(a)
$$|2x+3| \ge 5$$

 $2x+3 \le -5$ $2x+3 \ge 5$
 $2x \le -8$ $2x \ge 2$
 $x \le -4$ $x \ge 1$

Solve and graph each.

(a)
$$|2x+3| \ge 5$$

 $2x+3 \le -5$ $2x+3 \ge 5$
 $2x \le -8$ $2x \ge 2$
 $x \le -4$ $x \ge 1$

(a)
$$|2x+3| \ge 5$$

(a)
$$|2x+3| \ge 5$$

(a)
$$|2x+3| \ge 5$$

$$x = -4 \text{ or } x = 1$$

(a)
$$|2x+3| \ge 5$$

$$x = -4 \text{ or } x = 1$$

(a)
$$|2x + 3| \ge 5$$

$$x = -4 \text{ or } x = 1$$

(a)
$$|2x+3| \ge 5$$

$$x = -4 \text{ or } x = 1$$

(b)
$$|2x-5|>3$$

(b)
$$|2x-5| > 3$$

 $2x-5 < -3$ $2x-5 > 3$

(b)
$$|2x-5| > 3$$

 $2x-5 < -3$ $2x-5 > 3$
 $2x < 2$ $2x > 8$

(b)
$$|2x-5| > 3$$

 $2x-5 < -3$ $2x-5 > 3$
 $2x < 2$ $2x > 8$
 $x < 1$ $x > 4$

(b)
$$|2x - 5| > 3$$

 $2x - 5 < -3$ $2x - 5 > 3$
 $2x < 2$ $2x > 8$
 $x < 1$ $x > 4$

(b)
$$|2x - 5| > 3$$

 $2x - 5 < -3$ $2x - 5 > 3$
 $2x < 2$ $2x > 8$
 $x < 1$ $x > 4$

(b)
$$|2x - 5| > 3$$

 $2x - 5 < -3$ $2x - 5 > 3$
 $2x < 2$ $2x > 8$
 $x < 1$ $x > 4$

(c)
$$|2x+2| > -2$$

(c)
$$|2x+2| > -2$$

All real numbers, \mathbb{R} , since |2x+2| is guaranteed to always be greater than a negative number.

(c)
$$|2x+2| > -2$$
 Treat as $|2x+2| = -2$

(c)
$$|2x + 2| > -2$$
 Treat as $|2x + 2| = -2$ $2x + 2 = -2$ $2x + 2 = 2$

(c)
$$|2x+2| > -2$$
 Treat as $|2x+2| = -2$ $2x+2=2$ $2x=-4$ $2x=0$

(c)
$$|2x + 2| > -2$$
 Treat as $|2x + 2| = -2$ $2x + 2 = 2$ $2x = -4$ $2x = 0$ $x = -2$ $x = 0$

(c)
$$|2x + 2| > -2$$
 Treat as $|2x + 2| = -2$

$$2x + 2 = -2$$

$$2x = -4$$

$$x = -2$$

$$2x = 0$$

$$x = 0$$

(c)
$$|2x + 2| > -2$$
 Treat as $|2x + 2| = -2$

$$2x + 2 = -2$$

$$2x = -4$$

$$x = -2$$

$$x = 0$$

$$-2$$

(c)
$$|2x + 2| > -2$$
 Treat as $|2x + 2| = -2$

$$2x + 2 = -2$$

$$2x = -4$$

$$x = -2$$

$$x = 0$$

(c)
$$|2x + 2| > -2$$
 Treat as $|2x + 2| = -2$

$$2x + 2 = -2$$

$$2x = -4$$

$$x = -2$$

$$x = 0$$

$$x = 0$$

(c)
$$|2x + 2| > -2$$
 Treat as $|2x + 2| = -2$

$$2x + 2 = -2$$

$$2x = -4$$

$$x = -2$$

$$x = 0$$

$$x = -2$$

$$x = 0$$

All test values work.

(c)
$$|2x + 2| > -2$$
 Treat as $|2x + 2| = -2$

$$2x + 2 = -2$$

$$2x = -4$$

$$x = -2$$

$$2x = 0$$

$$x = 0$$

All test values work. \mathbb{R}