1 Mutation

() Here we describe a biallelic system where A mutates to a at some frequency μ , and a mutates to A at frequency ν

$$p' = (1 - \mu)p + (1 - p)\nu \tag{1}$$

2 Migration

() Here we describe a biallelic system where individuals move from a continent (mainland), with an allele frequency of p_C , to an island at a net migration rate of m. The allele frequency on the island p_I .

$$p_I' = (1 - m)p_I + mp_C (2)$$

3 Selection

() Here we describe a biallelic system where selection acts on each genotype based on the value of the relative fitness of each genotype (w_{AA}, w_{Aa}, w_{aa}) .

$$p' = \frac{w_{AA}p^2 + w_{Aa}p(1-p)}{w_{AA}p^2 + w_{Aa}2p(1-p) + w_{aa}(1-p)^2}$$
(3)

4 Combining Mutation, Migration, and Selection Models

() Here we describe a biallelic system where A mutates to a at some frequency μ , and a mutates to A at frequency ν , individuals move from a continent (mainland), with an allele frequency of p_C , to an island at a net migration rate of m. The allele frequency on the island p_I , and selection acts on each genotype based on the value of the relative fitness of each genotype (w_{AA}, w_{Aa}, w_{aa}) .

$$p_{1} = (1 - \mu)p_{0} + (1 - p_{0})\nu$$

$$p_{2} = (1 - m)p_{1} + mp_{C}$$

$$p' = \frac{w_{AA}p_{2}^{2} + w_{Aa}p_{2}(1 - p_{2})}{w_{AA}p_{2}^{2} + w_{Aa}2p_{2}(1 - p_{2}) + w_{aa}(1 - p_{2})^{2}}$$
(4)

5 Inbreeding

() Here we describe a biallelic system where inbreeding takes place.

$$f(AA) = p^{2}(1 - F) + pF$$

$$f(Aa) = 2p(1 - p)(1 - F)$$

$$f(aa) = (1 - p)^{2}(1 - F) + qF$$
(5)