

SEQUENCE LISTING

<110> Darrow, Andrew L
Qi, Jian-shen
Chen, Cailin
Andrade-Gordon, Patricia

<120> Human PRSS-11 like S2 serine protease and uses thereof

<130> ORT-1644

<140>
<141>

<160> 8

<170> PatentIn Ver. 2.1

<210> 1
<211> 3006
<212> DNA
<213> Homo sapiens

<400> 1

cagggactcg aagttgcag tcctccacac tcagttccca cagatgtggt aggagggcat 60
attcagtccc attttcaga tgaggagttt agggccagag aacgtaagta atctgtctga 120
ggccacacag cttagaaagca gccaggccca gccgaacccc tggtgtgtgc agccccccagc 180
ccagttgctc attgcggggc tcgggagcca cgagcgaggc tgagcagcat gtgttccaga 240
tggtggaac tggagagagc ccggcacagg cccgtgcagg gaaccccgag ggctgttaggc 300
cccggtccac tgcattgcctc aggctgtgg tcctggcagc cacagccccc actgctgacg 360
gcagcaggaa tctgagcccg ggaagggtcc agggaaatgc tgaaccatc tagcaagtgc 420
ggctgggtg tggcaagtt agacacagat gttagggccct gtggactcag aaattggcag 480
ctctttggc ccagaggggc caagctgtgt ccgggcctgg gttagctcaga agggtcacct 540
gggggtcttc cactacaccc ccgcctggac actgctgttag ccccagggtcc cggaggggacc 600
agctggagcc catgaggaga gggccagttc tctcctgtaa ggttattgtct gttagcatgag 660
ggaacagaca aggcccaggq qqactaaccg gagatccagc cccggcctca ctccctgtq 720
gctcacggca atatcctaacc ctctctctga gcctcctgcc cagcctagca gggtcagtg 780
aggggggtga ggaagcccg cacgttggaaag ctttttaac cattctcggt gtgagcgagc 840
cccttcccaa atgcctgggt tcactgcact gctgtgtggt agggggtccc caacgggtcc 900
agtgtggct gaggctggct ctgaactggg acaggggtct caggaagagc ctccctctcc 960
tgcccactgg gcataggcct ctgggagctg gcagcatgt gatctactg atgcacctgg 1020
cccttcccgcc cagcgccagg ctccaccaggc tgagcagccc ggcgtacaaat ttcaacttca 1080
ttgctgacgt ggtggagaag atgcaccagg ccgtggtcca catagagctc ttctgagac 1140
accgcgtt tggccgcaac gtggccctgt ccagcggttc tgcttcatac atgtcagagg 1200
ccggcctgat catcaccaat gcccacgtgg tgtccagcaa cagtgtgc cccggcaggc 1260
agcagctcaa ggtgcagcta cagaatgggg actcctatga gcccaccatc aaagacatcg 1320
acaagaagtc ggacattgcc accatcaaga tccatcccaa gaaaaagctc cctgttgtt 1380
tgctgggtca ctggcccgac ctggccctg gggagttgt ggtggccatc ggcagtcct 1440
tcgcccataca gaacacagtg acaacgggca tcgtcagcac tgcccagcgg gagggcagg 1500
agctgggcct ccgggactcc gacatggact acatccagac ggatgccatc atcaactacg 1560
ggaactccgg gggaccactg gtgaacctgg atggcgaggt cattggcata aacacgctca 1620
aggtcacggc tggcatctcc tttggccatcc cctcagaccg catcacacgg ttccctcacag 1680
agttccaaga caagcagatc aaagactgga agaagcgctt catcggtcata cggatgcgg 1740
cgatcacacc aaggctgggt gatgagctga aggccagcaa cccggacttc ccagagggtca 1800
gcagtggaat ttatgtgca gagggtgcgc cgaattcacc ttctcagaga ggcggcattc 1860
aagatggta catcatcgtc aaggtaacg ggcgtcctct agtggactcg agtgagctgc 1920
aggaggccgt gctgaccggag tctcctctcc tactggaggt gccggcggggg aacgacgacc 1980
tccttccatc catcgacact gagggtgtca tgtgagggc gcattcctcc agcgccaagc 2040

gtcagagcct gcagacaacg gagggcagcg ccccccag atcaggacga aggaccac 2100
 tcggcctca gcagggcggc agctcctcc tggctgtccg gggcagacgc gaggctggc 2160
 ttggccaggg gccccattt ccgcctgggg agtgttggat ccacatcccgt gtgcgggg 2220
 gggaaagccca acatcccctt gtacagatga tcctgaaaat cacttccaag ttctccggat 2280
 attcacaaaa ctgccttcca tggaggtccc tccttcctt agttcccgcc ctctgcccct 2340
 gtgaacaccc atctgcagta tccctgtcc tcgcctcc tactgcaggt ctggctgcc 2400
 aagcttcttc cccctgaca aacgcccacc tgacctgagg ccccagcttc cctctgcctc 2460
 aggacttacc aagctgttagg gcoagggctg ctgcctgcca gcctggggtc cctggaggac 2520
 aggtcacatc tgatccctt ggggtgcggg ggtgggtcc agcccagacg aggactgag 2580
 tgaatcccc ctggctgcgg agctgagccc cgccctgcca tgggttttc ctccccaggc 2640
 aggaggagg ccgcggggag cacgtggaaa gttggctgt gcctggggaa gtttcctc 2700
 cccaaaggcgg ccatggggca gcctgcagag gacagtggac gtggagctgc ggggtgtgag 2760
 gactgagccg gcttccctt cccacgcagc tctggatgc agcagccgcg cgcattggaaag 2820
 tgccgcccag aggcatgcag gctgctggc accaccctt catccaggga acgagtgtgt 2880
 ctcaaggggc atttgtgagc ttgctgtaa atggattccc agtgttgctt gtactgtatg 2940
 ttctctact gtatggaaaa taaagttac aagcacacgg ttctcagcca aaaaaaaaaa 3000
 aaaaaaaaaa 3006

<210> 2
 <211> 334
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met His Leu Ala Leu Pro Ala Ser Ala Gly Leu His Gln Leu Ser Ser
 1 5 10 15

Pro Arg Tyr Lys Phe Asn Phe Ile Ala Asp Val Val Glu Lys Ile Ala
 20 25 30

Pro Ala Val Val His Ile Glu Leu Phe Leu Arg His Pro Leu Phe Gly
 35 40 45

Arg Asn Val Pro Leu Ser Ser Gly Ser Gly Phe Ile Met Ser Glu Ala
 50 55 60

Gly Leu Ile Ile Thr Asn Ala His Val Val Ser Ser Asn Ser Ala Ala
 65 70 75 80

Pro Gly Arg Gln Gln Leu Lys Val Gln Leu Gln Asn Gly Asp Ser Tyr
 85 90 95

Glu Ala Thr Ile Lys Asp Ile Asp Lys Lys Ser Asp Ile Ala Thr Ile
 100 105 110

Lys Ile His Pro Lys Lys Lys Leu Pro Val Leu Leu Leu Gly His Ser
 115 120 125

Ala Asp Leu Arg Pro Gly Glu Phe Val Val Ala Ile Gly Ser Pro Phe
 130 135 140

Ala Leu Gln Asn Thr Val Thr Gly Ile Val Ser Thr Ala Gln Arg
 145 150 155 160

Glu Gly Arg Glu Leu Gly Leu Arg Asp Ser Asp Met Asp Tyr Ile Gln
 165 170 175

Thr	Asp	Ala	Ile	Ile	Asn	Tyr	Gly	Asn	Ser	Gly	Gly	Pro	Leu	Val	Asn
															180
															185
															190
Leu	Asp	Gly	Glu	Val	Ile	Gly	Ile	Asn	Thr	Leu	Lys	Val	Thr	Ala	Gly
															195
															200
															205
Ile	Ser	Phe	Ala	Ile	Pro	Ser	Asp	Arg	Ile	Thr	Arg	Phe	Leu	Thr	Glu
															210
															215
															220
Phe	Gln	Asp	Lys	Gln	Ile	Lys	Asp	Trp	Lys	Lys	Arg	Phe	Ile	Gly	Ile
															225
															230
															235
															240
Arg	Met	Arg	Thr	Ile	Thr	Pro	Ser	Leu	Val	Asp	Glu	Leu	Lys	Ala	Ser
															245
															250
															255
Asn	Pro	Asp	Phe	Pro	Glu	Val	Ser	Ser	Gly	Ile	Tyr	Val	Gln	Glu	Val
															260
															265
															270
Ala	Pro	Asn	Ser	Pro	Ser	Gln	Arg	Gly	Gly	Ile	Gln	Asp	Gly	Asp	Ile
															275
															280
															285
Ile	Val	Lys	Val	Asn	Gly	Arg	Pro	Leu	Val	Asp	Ser	Ser	Glu	Leu	Gln
															290
															295
															300
Glu	Ala	Val	Leu	Thr	Glu	Ser	Pro	Leu	Leu	Leu	Glu	Val	Arg	Arg	Gly
															305
															310
															315
															320
Asn	Asp	Asp	Leu	Leu	Phe	Ser	Ile	Ala	Pro	Glu	Val	Val	Met		
															325
															330

<210> 3
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: RACE primer

<400> 3
cagccgtgac cttgagcgtg ttg 23

<210> 4
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: RACE primer

<400> 4
ggccgagtga cccagcaaca ac 22

<210> 5

<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 5
cgtgtctaga gccatgcacc tggcccttcc cgcc 34

<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: primer

<400> 6
gcgctctaga catgaccacc tcaggtgcga 30

<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Internal primer

<400> 7
gcaagtccgg ctggggtgtg 20

<210> 8
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Internal primer

<400> 8
caggagctttcttggatgga 24