BD 151 205

SE 023 998

TITLE INSTITUTION

Advanced Mathematics. Training Module 1.303.3.77. Kirkwood Community Coll., Cedar Rapids, Iowa.

SPONS · AGENCY

Department of Labor, Washington, D.C.; Iowa State

Dept. of Environmental Quality, Des Moines.

Sep 77

PUB DATE NOTĖ

69p.: For related documents, see SE 023 996-SE 024

EDRS PRICE

MF-\$0.83 HC-\$3.50 Plus Postage.

DESCRIPTORS

*Engineering Education: *Mathematics: Post Secondary Education: *Sanitation: Science Education: Secondary

Education: *Teaching Guides: Technical Mathematics:

*Waste Disposal'

IDENTIFIERS

*Waste Water Treatment.

ABSTRACT -

This document is an instructional module prepared in objective form for use by an instructor familiar with mathematics as applied to water and wastewater treatment plant operation. Included are objectives, instructor guides and student handouts. This is the third level of a three module series and is concerned with statistics, total head, steady flow in pipes, flow measurement and pump motor power and efficiency. (Author/BB)

************ Reproductions supplied by EDRS are the best that can be made from the original document.

= 023 998

U S DEPARTMENT OF HEALTH, EDUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN-ATING IT POINTS OF VIEW OB OPINIONS STATED DO NOT NECESSARILY REPRE-SENT OFFICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY

ADVANCED MATHEMATICS

Training Module 1.303.3.77

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

Mary Jo Bruett

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC) AND USERS OF THE ERIC SYSTEM "

Prepared for the .

Iowa Department of Environmental Quality
Wallace State Office Building
Des Moines, Iowa 50319

Ъу

Kirkwood Community College 6301 Kirkwood Boulevard, S. W. P. O. Box 2068 Cedar Rapids, Iowa 52406

The publication of these training materials was financially aided through a contract between the Iowa Department of Environmental Quality and the Office of Planning and Programming, using funds available under the Comprehensive Employment and Training Act of 1973. However, the opinions expressed herein do not necessarily reflect the position or policy of the U. S. Department of Labor, and no official endorsement by the U. S. Department of Labor should be inferred.

September, 1977

Page 1 of 65

	A COLUMN CONTRACTOR OF THE PROPERTY OF THE PRO
Module No:	Module Fitle:
	Advanced Mathematics
	Submodule Titles:
Approx. Time:	a. Review
14 hours	b. Statistics c. Total head d. Steady flow in pipes
4:	f. Pump motor power and efficiency
Overall Objective:	
kui marmediacius of ac	his module the learner should be able to use the principles dition, subtraction, multiplication, division and to use, applied to water and wastewater technology.
The second of th	
Instructional Aids:	
Handout AV (overhead transpa Calculators	rency)
Instructional Approach	1: : : • • • • • • • • • • • • • • • • •
Discussion Demonstration Exercise	
References:	
Manual of Water Utili	ity Operations, Texas Water UtiTities Association.
Mathematics for Water Ann Arbor Science.	r and Wastewater Treatment Plant Operators, Kirkpatrick,
Class Assignments: 🕬	
3	

Given handout to be read
 Given exercise problems to be solved
 Given evaluation problems to be solved

ERIC FULL TROVIDED BY ERIC

. Page <u>2</u> of 65.

Module No:

Topic:

Advanced Mathematics

Instructor Notes:

Instructor Outline:

- 1. Give handout of each submodule
- Allow sufficient time or exercise problems to be solved.
- 3. Review exercise problems.
- 4. Give evaluation problems.

Discuss/demonstrate using the students handout how one uses formulas as applied to water and wastewater technology in

- a. Statistics
- b. Total head
- c_p Steady flow in pipes ≰
- d. Flow measurement
- e. Pump and motor efficiency

Page 3 of 65 Module !lo: Module Title: -Advanced Mathematics. Submodule Title: Approx. Time: Topic: 2 hours ,Review Objectives: The learner will demonstrate the ability to determine the answer to problems related to Detention time Hydraulic loading Organic loading Efficiency Conversion of concentration (mg/l) to pounds/day Instructional Aids: Handout AV (overhead transparency) Instructional Approach: Discussion Demonstration Exercise Rejerences:.

Wanual of Water Utilities Operation, Texas Water Utilities Association.

Mathematics for Water and Wastewater Treatment Plant Operators, Kirkpatrick, Ann Arbor, Science.

Class Assignments:

Given exercise problems to be solved

Module No:

Topic: Réview

Instructor Notes:

Instructor Outline:

Discuss/demonstrate the use of formulas

- 1. Areas
 - a. Circle TR2
 - b. Rectang/e/square L x·W
 - c. Triangle 1/2 b x h
- 2. Volumes
 - a. Cy,linder $IIR^2 \times H$

 - c. Pyramid/cone $1/3 1 \times R^2 \times H$
- 3. Conversion of concentration (mg/l) to pounds/day

 $1bs/day = mg/1 \times 8,34 \times Q$

4. Hydraulic loading

$$HL = Q SA$$

5. Organic loading

- 6. Percentage = Parts of 100 parts
- 7. Efficiency = $\frac{\text{in out}}{\text{In}}$ x 100

Q - flow rate • Indicate that Q could also be volume of a tank. Unit value of Q is in MG

Indicate that solids could be a.g. ${\tt BOD}$

- b. COD
- c. TS. S.
- .d. · T. VSS
- e. Ts.
- f. TVS

Page <u>5</u> of <u>65</u>

Module No:

Topic:

Review

Instructor Notes:

Instructor Outline:

Ans.

DT = 2 Hrs.

 \cdot SSR = 1,202.94 GP.D/ft.²

"HL (T.F.) = 344 GPD/ft.^2

Lbs. of $Cl_2 = 101.84$ lbs/day

BOD Eff. = 93%

SS. Eff. = 92%

Give one exercise problem that combines several of the principles discussed above.

REVIEW

I. Areas

A. Circles: The area of a circle is

$$A = \overline{11} \times R^2$$

T = 3.14

R' = Radius of the circle

B. Rectangle/Square: The area of a rectangle/square is

L = Length

W.= Width

.C. $\cdot_7 T_{\text{riangle}}^{\text{f}}$ The area of a triangle is

b = Base

h = Height

II. 'Volumes

A. Cylinder: The volume of a cylinder is

$$V = \sqrt{11} \times R^2 \times H$$

11 = 3.14

R = Radius of circle

H = Height or length of cylinder

B. Rectangle Solid/Cube: The volume of a ractangular/cube is

L = Length

W = Width

H = Height or depth

C. Sphere: The volume of a sphere is

$$V = 4/31/x R^3$$

TT = 3.14

R = Radius of sphere

D. Pyramid: The volume of the pyramid is determined by the V = 1/3 area of base x height

The most common pyramid used in water and wastewater technology is a cone. The volume of a cone is

$$V = 1/3 \cdot x \sqrt{1/x} R^2 \times H$$

R = Radius of circle

H = Height/depth of cone

III. Conversion of concentration (mg/l) to pounds/day. The formula to use is

$$lbs/day = mg/1 \times 8.34 \times Q$$

IV. Hydraulic Boading: The formula to use for hydraulic loading is

$$HL = Q SA$$

HL = Hydraulic, loading

SA = Surface area of unit

V. Organic Loading: The formula to use for organic loading is

OL = Organic Loading

Lbs. of organic solids = lbs. of (a) BOD-or

- ,(b) COD or.
- (c) Suspended solids or
- (d) Volatile suspended solids or
- (e) Total solids_or
- (f) Total volatile solids

Volume of unit = Volume of process unit

VI. Percentage: Percent is defined as portion of 100

Ex. 3% = 3 parts of 100° parts or

60% = 60 parts of 100 parts

VII. Efficiency: In water and wastewater technology, efficiency (in most cases) is an indication of the % removal of "pollutants" in a process.

The formula to use is

$$\% Eff = \frac{In - Out}{In} \times 100$$

In = Amount of "pollutants" in influent to the unit

Out = Amount of "pollutants" left in the effluent from the unit

Exercise

Given

Flow rate - 1,200 GPM for 24 Hrs. .

BOD influent - 300 mg/l

primary effluent - 150 mg/l

final effluent * 20 mg/l ·

Suspended solids (SS) influent - 250 mg/l

primary effluent 100 mg/l

final effluent - 20 mg/l

Chlorine - final effluent

dose - 7.1 mg/l

residual - 0.5 mg/l

Primary clarifier

Length - 54 ft.

Width - 27 ft.

Height - 12 ft.

Page : 9. of 65

Tri	ickling filter
٠.	Diameter - 80 ft.
	Media depth - 7 ft.
Det	cermine
1:	Detention time in primary clarifier hrs.
2.	Surface settling rate in primary clarifier FPD/ft.2
3.	Hydraulic loading on trickling filter GPD/ft. ² .
4.	Organic (BOD) loading on trickling filterlbs. BOD/1,000 cu. ft
5.	Lb. of Cl ₂ needed per daylbs./day
6	BOD efficiency of the plant%
7.	S. S. efficiency of the plant%
	en e

ERIC

Page 10 of 65

Modula Na.		
Module Na:	Module Title: Mathematics	
	Submodule Title:	ė
Approx. Time:	Statistics	
	Topic:	
2 hours	Geometric Mean	
Objectives:		
The learner will der group of numbers us	nonstrate the ability to determining logarithm and anti-logarithm	e the geometric mean of a tables.
•	,	
Ac is		
Instructional Aids:		
Logarithm tables Handout AV (overhead transpa	irancy)	
		<u>-</u>
nstructional Approach		
Discussion Demonstration Exercise		
• • •		
•		- 34-4s

eferences:	ical Tables and Formulas, Handbo	ok Publishers Inc.,
References:	ical Tables and Formulas, Handbo	ok Publishers Inc.,
References: Handbook of Mathemat	ical Tables and Formulas, Handbo	ok Publishers Inc.,

	· · · · · · · · · · · · · · · · · · ·		Page <u>II</u> of 65	
Module No:	Topic: Geometric	Mean		
Instructor Notes:		Instructor Outline:		
0.7		· · · · · · · · · · · · · · · · · · ·		

- Handout
 - Explain
 - Characteristics of a number
 - Mantissa
- Discuss and demonstrate how one calculates geometric mean of a group of numbers using natural logarithums

Formula:

Determine the antilog of the value obtained by dividing the sum of logarithums of group of numbers by the number of groups.

Give 6 exercise problems.

—Common logarithms of numbers—

	N.	L. 0	84	2	3 .	4	. 5	. 6	7	8		9
	10	00 000	90 432	00 860	01 284	01 703	02 119	'02 831	02 938	03 342	03	748
	11 ¹ 12 13	04 139 07 918 11 394	04 532 08 279 11 727	04 922 08 636 12 057	05 308 08 991 12 385	05 690 09 342 12 710	06 070 09 691 13 033	96 446 10 037 13 354	06 819- 10 380 13 672	07 188 10 721 13 938	11	55 5 059 301
	14) 15 16	14 613 17 609 20 412	14 922 17 898 20 683	15 229 18 184 20 952	15 534 18 469 21 219	15 836 18 752 21 484	16 137 19 033. 21 748	16 435 19 312 22 011	16 732 19 590 22 272	17 026 19 866 22 531		319 140 789
	17 18 19	23 045 25 527 27 875	23 300 25 768 28 103	23 553 26 007 28 330	23 805 26 245 28 556	24 055 26 482 28 780	24 304 26 717 29 ,003	24 551 26 951 29 226	24 797 27 184 29 447	25 042 27 416 29 667	27	285 646 885
1	20	30 103	30 320	30 535	30 750	30 963	31 175	31 387	31 597	31 806	32	015
	~ 21 -22 23	32, 222 34, 242 36, 173	32 428 34 439 36 361	32 634 34 635 36 549	32 838 34 830 36 736	33 041 35 025 36 922	33 244 35 218 37 107	33 445 35 411 37 291	33 646 35 603 37 475	33 846 35 793 37 658	35	044 984 840
	24 25 26	38 021 39 794 41 497	38 202 39 967 41 664	38 382 40 140 41 830	38 561 40 312 41 996	38 739 40 483 42 160	38 917 40 654 42 325	39 094 40 824 42 488	39 270 40 993 42 651	39 445 41 162 42 813	41	620 330 975
	27 , 28 , 29	43*136 44 716 46 240	43 297 44 871 46 389	43 457 45 025 46 538	43 616 45 179 46 687	43 775 45 332 46 835	43 933 45 484 46 982	44 091 45 637 47 129	44 248 45 788 47 276	44 404 45 939 47 422	46	560 090 567
	30	47 712	47 857	48 001	48 144	48 287	48 430	48 572	48 714	48 855	48	996 .
	31 32 33	49 136 50 515 51 851	50 651	49 415 50 786 52 114	49 554 50 920 52 244	49 693 51 055 52 375	49 831 51 188 52 504	49 969 51 322 52 634,	50 106 51 455 52 763	50 243 51 587 52 892	51	379 720 020
	34 35 36	53 148 54 407 55 630	53 275 54 531 55 751	53 403 54 654 55 871	53 529 54.777 55 991	53 656 54 900 56 110	53 782 55 023 56 229	53 908 55 145 56 348	54 033 55 267 56 467	54 158 55 388 56 585	55	283 509 703
	37 38 39	56 820 57 978 59 106	56 937 58 092 59 218	57 054 58 206 59 329	57 171 58 320 59 439	57 287 58 433 59 550	57 403 58 546 59 660	57 519 58 659 59 770	57 634 58 771 59 879	57 749 58 883 59 988	58	864 995 097
	40	60 206	60 314	60 423	60 531	60 638	60 746	60 853	60 959	61 066	61	172
	41 42 43	61 278 62 325 63 347	61 384 62 428 63 448	61 490 62 531 63 548	61 595 62 634 63 649	61 '700 62 737 63 749	61 805 62 839 63 849	61 909 62 941 63 949	62 014 63 043 64 048	62 118 63 144 64 147	63	221 246 248
	44 45 46	64 345 65 321 66 276	64 444 65 418 66 370	64 542 65 514 66 464	64 640, 65 610 66 558		64 836 65 801 66 745	64 933 65 896 66 839	65 031 65 992 66 932	65 128 66 087 67 025		225 181 117
	47 48 49	67 210 68 124 69 020	67 302 68 215 69 108	67 394 68 305 69 197	67 486 68 395 69 285	67 578 68 485 69 373	67 669 68 574 69 461	67, 761 68, 664 69, 548	67 852 68 753 69 636,	67 943 68 842 69 723	68	931
	50	69 897	69 984	70 070	70 157	70 243	70 329	70 415	70 50Î	70 586	7 Q	672 .
	N.	L. 0	1	,2	3	4	5 .	. 6	7	8		ð.

TM 5-236 War Department July 10, 1940

—Common logarithms of numbers—

	N.	ĺπ.	. 0		1	,	2		3			1	_			. :	_	_	•	_			7
,		<u>{ </u>	· · ·		<u> </u>				3		4	1		5	•	6		7		8		9	4
•	10	69	897	69	984	, 70	070	70	157	70	243	1	7 0	329	70	415	70	501	. 70	586	3 - 70	672	
•	51 52 53	71	757 600 428	71	842 684 509	71	927 767 591	71	012 850 673	71	096 933 754		72	, 181 016 835	.72	265 099 916	• 72	349 181 '997	72	433 263 078	72	517 346 159	
	54 55 56	74	239 036 819	74	320 115 896	74	400 194 974	- 74	480 273 051	74	560 351 128		74	640 429 205	74	719 507 282	74	799 586 358	74	878 663 435	-74	957 741 511	
پښ ر د	57 58 59	76	587 343 085	~76	664 418 159	76	740 492 232	76	815 567 305	76	891 641 379		76	967 716 452	76	042 790 525	76	118 864 597	76	193 938 670	77	268 012 743	
	60	77	815	77	887	77	960	78	032	78	104	1	78	176	78	247	78	319		-390	_	462	1
•	61 62 63	-79	533 239 934	-79	604 309 003	79	675 379 072	79	746 449 140	79	817 518 209	1	79	888 588 277	79	958 657 346	79	029 727 414	79	099 798 482	. 79	169 865 550	
•	64 65 66	81	618 291 964	81	686 358 020	81	754 425 086	81	821 491 151	81	889 558 217	ı	81	956 624 282	81	023 690 347	81	090 757 413	81	158 823 478	81	224 889 543	
	67 68 69	83	607 251 885	83	672 315 948	83	737 378 011	83	802 442 073	83	866 506 136	1	83	930 569 198	83	995 632 261	83 83	059 696 323	83 83	123 759 386	83 83	187 822 448	
	70	84	510	84	572	84	634	84	696	84	757	╂		819		880				003		065	1
	71 72 73	85	126 733 332	\&5	187 794 392	85	248 854 451	85	309 914 510	85	370 974 570	1	86	431. 034 629	86	491 094 688	86	552 153 747	86	61 2 213 806	86	673 273 864	1
	74 75 76	87	923 506 081	87	982 564 138	87	040 622 195	87	099 679 252	87	157 737 309		87	216 795 386	87	274 852 423	87	332 910 480	87	390 967 536	. 88	448 024 593	
	77 78 79	88 89 89	649 209 763	88 89 89	705 265 818		762 321 873	89	818 376 927	89	874 432 982	{ }	39	930 487 037,	89	542	89	042 597 146	89	098 653 200	89	154 708 255	
	80	90	309	90	363	90	417	90	472	90	526	1	90	£80,s	90	634	90.	687	90	741	90	795	1
	81 82 83	90 91 91	281	91	902\ 434 960	\91	956 487 012	91	009 540 Q65	91	062 593 117	1	₽ī	116 645 16 9 .	91	169 698 221	91	222 751 273	91	275 803 324	91	328 855 376	
	84 85 86	92 92 93	942	92	480 993 500	88888 8888	531 044 551	92 93 93	095	93	634 146 651	1 9	33	686 197 702	92 93 93	247	93	788 298 802	93	840 349 852	93	891 399 902	
	88 88 89	93 94 94	448	94 94 94		94 94 95	547	94 94 95	596	94 -	151 845 134	٤	4	201 694 182	94 94 95	743	94	300 792 279	94	349 841 328	94	399 890 376	
1	. 90	95	£24·	95	472	95	52 <u>1</u> :	95	569	95	617	g	5	86 5	95	713	95	761	95	809	95	856	1
	83 83 83	96 96 96		96	952 426 895	95 96 96	473	96 (96) 96 (520		095 567 035	9	6-6	514	96 96 97		96 96 97	708	96 96 97	755		332 ³ 802 267].
	. 94 . 95 . 96	97 3 97 3 98 3	772.	97 97 98	818	97 97 987	405 864 318	97 4 97 9 98 3	XXX .	97 97 98	955	.8	8 (000	97 98 (98 (246	97 98 98	091	97 98 98	137	97 98 96	182	
4	97 98 99	98 6 99 1	23	98 : 99 :	167	98 ; 99 ; 99 (211	98 8 99 2 99 6	255	98 99 99	300	9	Q 3	44	98 9 99 8 99 8	45 888 326	98 9 99 8	132	99 99 99	176	99 99	520	
	100	00 (900	00 (143	00 (187	00 1	30	00 1	173	, 00	2		òo 2		00 3		00	346	00	38 9	
	N.	Ļ. 0)]	Ì	2	}		7	• 1	- 1 - 1		8		(}	,	7 -	3 1	3	ا در	· ·	

GEOMETRIC MEAN /. .

To be able to determine geometric mean one should be able to use common logarithm tables.

The common logarithm of a number consists of two sections:

- A. The charactéristic
 - The characteristic of any number greater than one (1) is one (1) less than the number of digits before the decimal point.
 - 2. The characteristic of a number less than one (1) is formed by subtracting from 9 the number of zeros (0) between the decimal point and the first significant digit, and writing (- 10) after the log has been determined.

Example 1

Find the characteristic of 235:0

Solution' 1 .

2 3 5 6

a. The total number of digits is 3

b. 3 - 1 = 2 = characteristics

Example 2

Find the characteristic of 0.00054

Solution.2

 $0 \quad \boxed{0} \quad \boxed{0} \quad \boxed{0} \quad \boxed{0} \quad 5 \quad 2 \quad 4$

a. The total number of zero is 3

b. 9 - 3 = 7

The characteristic of .000524 is 7. - 10

B. The MANTISSA

The mantissa of a number is the number obtained from the logarithm. tables supplied with this module.

In."reading" the logarithm tables,

a. In the column marked N (left hand column) locate the first two digits of the number and pick the column headed by the third digit. The Mantissa is the number appearing at the intersection of the row and column corresponding to the number.

Example 1

Find the Mantissa of the number 213

Solution 1

(Use log tables provided)

- a, Locate in column (N) the number 21
- b. Move to column (3)

NOTE: NOT THE THIRD COLUMN.

Where Row 1 and Column 3 intersect the number is 32838 (the Mantissa)

Example 2

Find the Mantissa of number 0.00321

Solution 2

- a. Locate in column (N) the number 32
- Move to column (1). The intersection of Row 32 and Column 1 is 49276 (the Mantissa)

By combining the characteristic and the Mantissa the logarithm of a number is determined.

Example 1

Find the log of \cdot 122

'Solution 1

Log 122 = 2.086,36

Example 2

Find the log of 0.00263

Solution 2

Log 0.00263 = 7.41996 - 10

To determine the geometric mean of a group of numbers

- .a. Find the logarithm of each of the numbers
- b. Add the Togarithm numbers together
- c. Divide the total sum by the total number of "numbers" .
- d. Determine the anti-log that the number obtained in (C)

To determine the anti-log of a number the reverse of the procedure to determine the log of a number is performed. $\$

That is find the Mantissa in the tables. Then the row in column (N) is the 1st and 2nd digit and the column is the third digit.

Example.

Find the anti-log of 3.56937

Solution.

Locate in log table number 56937 at that number Row 37 and Column 1 intersect. Therefore the number is 371.

The characteristic is 3. Therefore the number is a 4 digit number.

The anti-log of 3.56937 is 3710

Exercise

Find the log to

- 1. 352
- 2. 861
- 3. 2511
- 4. .0135
- 5. .00225

Find the anti-log to \mathcal{L}

- 1. 3.60206
- 2. 1.38917
- 3. 9.4404 10
- 4. 6.38202 10
- 5. 1.0

Exercise for geometric mean

Find the geometric mean of

- 1. 63500, 31800000, 165000
- 2. 350, 540, 180, 170, 220
- 3. 2450; 141000, 1320000, 28

Module Title: Module No:

Advanced Mathematics

Approx. Time:

Submodule Title:

4Štatistics

-1 hour

EVALUATION

Objectives:

Given logarithm tables the learner will demonstrate the ability to determine correctly the answers to 6 out of 8 problems related to

- Use of logarithm tables
- ·b. Geometric mean
- Find the log of 154.0
 - 2.18752
 - 2.06070
 - 3.18752
 - 1.0670 10
- 2. Find the log of 16.30
 - a. 1.06446
 - 1.21219
 - 1.21219 10
 - d: 2.21219
 - 3. Find the log of .0000388
 - a. 7.94569 10
 - 6.58883 10
 - 4.58883 10
 - 5.58883 10

- 4. Find the anti-log of $9\sqrt{1933} 10$
 - a. .0514
 - b. .514
 - c. 5.14
 - d. · .827
- 5. Lab results on fecal coliform are month
 - Jan. 3,850,000

Feb. 2,660,000

March 550,000

Calculate the geometric mean for that quarter

- a. 550,000
- b. 2,350,000
- cf. 1,780,000
- d. 2,660,000
- 6. Lab results on fecal coliform are 450, 650, 215, 238, 685, 65, 985

 Calculate the geometric mean of the above series of numbers
 - a·. 65.0
 - b. 469:7
 - c. 351.0
 - d. 985.0
- 7. Fecal coliform results indicate
 - 1. 92,000,000
 - 2., 106,000,000
 - 3. 152,000,000\
 - 4. 152,000,000

Calculate geometric mean

- a. 92,000,000
- b. 125,500,000 ·
- c. [152,000,000]
- d: 122,000,000 -
- 8. Find the anti-log of 2.69461
 - a. 49.5
 - b. 495
 - c. 4950
 - d. 42975

Module No: Topic: Evaluation Instructor Notes: Instructor Outline: 1. Give 10 evaluation problems. 1, Handout Answers 1. a

—Common logarithms of numbers—

1	.4	L. 0	·`.	1	;	2	.	3,		4		5 .	-	6		7	•	8	•	9
	10	00 00	00	432	00	860	01	284	0ĩ	703	02	119	02	Š31	02	938	03	342	03	743
	11 12 13	04 13 07-91 11 39	3 08	532 279 727	08	922 636 057	08	308 991 385	09	690 342 710	09	070 691 033	10	448 037 354	10	819 380 672	10	188 721 988	11	
	14 15 16	14 61 17 60 20 41	17	922 898 683	18	229 184 952	.18	534 469 219	18	836 752 484	19	137 033 748	19	435 312 011	19	732 590 272	19	026 866 531	20	319 140 789
~	17 18 19	23 04 25 52 27 87	7 25	300 768 103	23	553 007 330	26	805 245 556	26	055 482 780	26	304 717 003	26	551 951 226	27	797 184 447	27	042 416 667	27	285 646 885
	`20	30 10	3 30	320	30	535	30	7,50	30	963	31	175-	31	387	^{>} 31	597	31	806	32	015
	21 22 23	32 22 34 24 36 17	2 8 t 3 36	428 439 361.	34 36		34	838 830 736	35	011 025 9 22	. 35	244 218 107	35.	445 411 291	35	646 603 475	35	846 793 658	35	044 984 840
d	24 25 26	38 02 39 79 41 49	4 39	967	40	38 2 140 830	·40	561 312 996	40	739 483 160	~40	917 654 325	40	094 824 488	40	270 993 651	41	445 162 813	39 41 42	620 380 975
	27 28 29	43 136 44 716 46 246	3 44	297 871 389	45	457 025 538	459	616 179 687	45	775 332 835	45	933: 484 982	45	091 637 129	45	248 788 276	45	404 939 422	46	560 090 567
	30	47 71	2 47	857	48	001	. 48	144	48	287	48	430	43	572	48	714	48	855	4	996
,	31 32 33	49 13 50 51 51 85	50	276 651 983	150		50	554 920 244	-51	693 055 375	-51	831 188 504	51				- 51	243 587 892	51	379 720 020
	34 35 36	53 149 54 407 55 630	54	275, 531 751	54	403. 654 871	54.	529 777 991	54	656 900 110	55	782 023 229	55	908 145 348	55	033 267 467	55	158 388 58 ŏ	55	283 509 703
*	37 38 3 9	56 820 57 978 59 100	58	937 092 218	58	054 206 329	58	171 320 439	58	287 433 550	58	403 546 660	58	519 659 770	58	634 771 879	58	749 883 988	58	864 ⁴ 995 097
	40	60 20	60	314	60	423	60	531	60	638	60	746	60	853	60	959	6Ì	068	61	172
-	41 42 43	61 276 62 32 63 34	62	384 428 448	62	490 531 548	62	595 634 649	62	700 737 749	62	805 839 849	62	909 941 949	63	014 043 048	63	118 144 147	63	221 246 246
•	44 45 46	64 345 65 32 66 276	65	444 418 370	65	542 514 464	65	640 ° 610 558	65	738 706 652	65	836 801 745	65	933 896 839	65	031 992 932	66	128 087 025	66	225 181 117
	47 48 49	67 210 68 124 69 020	68	302 215 108	68	394 305 197	68	486 395 285	68	578 485 373	67 68 69	669 574 461	68	761 664 548	68	852 753 636	68	943 842 723	68	034 - 931 810
,	50	69 897	69	984	7 0	070	70	157	70	243	70	329	70	415	70	501	70	586	70	672,
N		T., 0		1	,	2 ·	·	3		4		5	,	6	•	7		8		9

TM 5-236 War Department July 10, 1940

-Common logarithms of numbers-

						_			
. N.	Ì. 0	1.	2 3	4	5	· 16	. 7	8	9
14	69 897	69 984 70	070 70 157	.70 243	70 329	70 415	70 501	70 <i>5</i> 86	70 672
51 52 53	70 757 71 600 72 428	- 71- 68471	927 71 012 767 71 850 591 72 673	71.933	71, 181 72 016 72 835	72 099	71 349 772 181 72 997	72 263 .	71 517. 72 346 73 159
54 55 56	73 239 74 036 74 819	74 115 74	400 73 480 194 74 273 974 75 051	74 - 351	78-640 74-429 75-205	74 - 507	74 586	74 663	73 957 74 741 75 511
57 58 59	78 587 76 343 77 085	76 418 76	740 75 815 492 76 567 232 77 305	76 641	75 967 76 716 77 452	76 790	7.6 864 7	76 938	76 268 77 012 77 743
69	77 815	77 887 77	P60 78 032	78 104	78 176	78 247	78 319 7	78 390	78 462
61 62, 63	78 533 79 239 79 934	79 309 79	675 78 746 379 79 449 072 80 140	79 518	78 888 79 588 80 277	78 958 •79 657 •80 346	79 727 7	9 798	79 169 79 865 80_850
64 65 66	80 618 81 291 81 954	81 358 81	754 80 821 425 81 491 086 82 151		.80 956 81 624 82 282	81 023 81 690 82 347	81 757 8	1 823 8	81 224 81 889 82 543
67 68 69	82 607 83 251 83 885	83 315 83	737 82 802 378 83 442 011 84 073	83 506	82 [°] 930 83 569 84 198	82 995 .83 632 84 261	83 059 8 83 696 8 84 323 8	3 769 8	3 187 3 822 4 448
70	84 510	84 572 84	634 "84 696	84 757	.84 819	84 880	84 942 8	5 003 8	35 068
71 72 73	85 126 85 733 86 332	85 794 85	248 85 309 854 85 914 451 86 510		85 431 86 034 86 629	85 491 86 094 86 688	.86 153 8	8 213 8	35 673 36 273 36 864
74 75 . 76 ≈	86 923 87 506 88 081	87 564 87	040 87 099 622 87 679 195 88 252	87 157 87 737 88 309	87 216 87 795 88 366	87 274 87 852 88 423	87 910 8	7 967 8	7 448 8 024 8 593
77 78 79	88 649 89`209 89 763	89 265 89	762 88 818 321 89 376 873 89 927	88 874 89 432 89 982	89 487	88 986 89 542 90 091	89 597 8	9 653 8	9 154 9 708 0 255
80	90 309	90 363 90	417 90 472	90 526	90 880	90 634	90 687 9	0 741 9	0 795
81 82 83	90 849 •91 381 91 -908	91, 434, 91	956 91 009 487 91 540 012 92 065	91 062 91 593 . 92 117	91 116 91 645 92 169	91 169 91 698 92 221	91 751 9	1 803 9	1 328 1 855 2 376
84 85 86	92 428 92 942 93 450			92 634 93 146 93 651	92 686 93 197 93 702	92 737 93 247 93 752	93 298 9	3 349 8	2 891 3 399 3 902
87 88 89	93 952 94 448 94 939	94 002 94 94 498 94 94 988 95	547 94 598	94 151 94 645 95 134	94 201 94 694 95 182	94 250 94 743 95 231	94 792 94	841 9	4 399 4 890 5 376
.80	95 424	95 472 95	521 95 569	95 617	95 665	95 713	95 761 95	809 b	5 856
888	95 904 96 379 96 848	95 952 95 96 426 96 96 895 96		96 095 96 567 97 035	96 142 96 614 97 081	96 661 -		755 90	3 332 3 802 7 267
94 95 95	97 313 97 772 98 227	97 359 97 97 818 , 97 98 272 98	864 97 909	97 497 97 955 98 408 ·	97 543 98 000 98 453	98 046	98 091 98		7 727 3 182 3 632
97 98 99	98 677 99 123- 99 564	98 722 98 99 167 99 99 607 88	211 99 255	98. 856 99. 300 99. 739	98 900 99 344 99 782	99 388	98 989 99 99 432 99	034 90	078 520
109	00 000	00, 043 .00	087 00 130	00 173	00 217	00 260	00 303 00	846 (00	389
и.	L . 0	1 -	3	4	5	. 6	7	'8 * .	9

Page 24 of 65

Module No:	Module Title:	. , , =
. • .	Advanced Mathematics	
	Submodule Title:	. \$
Approx. Time:	Total Head	· · · · · ·
1 hour	Conversion .	. ,
Objectives: The learner will demo	onstrate the ability to convert:	
1. The height of a v 2. Convert pounds pe	water, column from feet to pounds per square er square inch (psi) to feet.	inch (psi)-
		,
Instructional Aids:		
Handout AV (overhead transpar	rency)	
•		
Instructional Approach	7:	• ;
Discussion Demonstration Exercise		
Reférences:	ty Operations Toyas Waton Utilities Associa	

Class Assignments:-

Given 10 exercise problems to be solved.

Mathematics for Water and Wastewater Treatment Plant Operators, Kirkpatrick, Ann Arbor Science.

Page <u>25</u> of <u>65</u>

Module No:	Topic:				•	
	Conversion		•		·	
Instructor Notes:		Instructor Outline	:	,	•••	

1. Discuss/demonstrate how one converts feet to PSI by using the formula:

 $PSI = feet \times 0.433$

PSI = Pounds/square inch

Feet - Height of water column

2. Discuss/demonstrate how one converts PSI to feet by using the formula:

a. Feet =
$$\frac{PSI}{0.433}$$

Feet = Height of water golumn

PSI = Pounds/square inch

b. Feet = PSI \times 2.31

Feet = Height of water column

PSI = Pounds/square inch

TOTAL HEAD

A. Pressure ·

Force and pressure are sometimes used interchangeably. The definition of FORCE is the weight of the liquid while PRESSURE is the force applied to a unit area. Since liquids are acted upon by the gravitational pull (force) then it also can exert a pressure.

From the definition of pressure the formula is

P = Pressure/lbs/in²

W = Height - 1bs.

 $A = Area - in^{2}$

Example

A weight of 3,000 lbs. is placed on a surface area of 300 square inches. Calculate the pressure exerted by the weight.

Solution

$$P = \frac{W}{A}$$

$$= \frac{3,000 \text{ lbs.}}{300 \text{ in}^2}$$

=
$$10 \text{ lbs/in}^2$$

Pressure exerted by a liquid column.

A container having inside dimensions of one inch by one inch by one foot depth exactly will hold _433 lbs. of water.

This can provide the ratio that water with a depth or height of one foot will exert a pressure of .433 lbs/in² If the column of water was more than one foot high, then the formula to use is

$$P = H \times 0.433$$

$$P = Pressure in lbs/in^2$$

Example

A water tower is 100 feet high. Calculate the pressure exerted by the water.

 $P_{x} = H \cdot \hat{x} = 0.433$

= 100 x 0.433

 $= 43.3 \text{ lbs/in}^2$

By revising the formula to ${\boldsymbol{.}}$

 $P = H \times 0.433$

H = P 0.433

If the pressure exerted is 1 lbs/in²

Then H = P 0.438

= 1

= 2.31 ft.

This means that to exert 1 lb/in^2 of pressure a column of water <u>has</u> a height or depth of 2.31 feet.

To convert pressure to height use the formula

a. H = PSI 0.433

or

b. $H = PSI \times 2.31$

Example

A gauge at the bottom of a tank reads 16 PSI (G) \sim Calculate the depth of water in the tank.

Solution

H ≅ PSI x 2.31

 $= 16 \times 2.31$

.= 36.96 ft.

In the field of water and wastewater technology the greatest area of use of pressure is when there is movement of liquids from one point to another. To accomplish this movement one must take into account the

- a. Height the liquid is moved to
- b. The pressure exerted by the weight of the liquid
- c. The velocity the liquid is moving at
- d. The "head" losses due to
 - 1. Friction of pipe and liquid
 - 2. Change in sizes of pipe
 - Bends, valves and other pipe appertenances

By combining all the factors that the movement of liquid has to overcome, the term TOTAL DYNAMIC HEAD or TOTAL HEAD is determined. Total dynamic head (TDH) is reported in feet. TDH is the amount of pressure that has to be overcome to be able to cause movement of liquid from one point to another.

Exercise

The gauge at the discharge line of a pump indicates a reading of 125 PSI. What is the discharge head?

Solution

 $H = Pressure \times 2.31$

= 125 x 2.31 -

= 288.75 feet

: Exercise

- 1. What is the pressure at the bottom of a tank with an area of 185 square inches that contains 16,650 lbs. of water.
- 2. A water column with a radius of 10 ft. is filled with water. The pressure indicator shows 100 PSI. Calculate the height of the water column.
- 3. What is the pressure applied on the bottom of a rectangular tank 10 ft. length, 5 ft. width and 4 ft. deep.

- 4. A water line in a tower is 125 ft. high. Calculate the pressure exerted by the water at the base of the tower.
- 5. The discharge gauge on a pump indicates 23 PSI. Calculate the head against the pump.
- 6. What is the gauge pressure under 5 ft. of water.
- 7. Calculate the head equivalent to 60 PSI.
- 8. A water tower 110 ft. contains 1.8 MG. Calculate the pressure exerted by the weight of the water.
- 9. If the pressure in a water main is 70 PSI, calculate the minimum loss in water pressure to a faucet 28 ft. above the main.
- 10. If the pressure in a water main is 65 PSI, calculate the maximum pressure that could occur at a faucet 50 ft. above the maximum static head is being sought).

			Page 30	of65	<u> </u>
Module No:	Module Title: ' =		f	· ·	• 1
	Advanced Mathemat	ics ("			
,	Submodule Title:	· · · · · · · · · · · · · · · · · · ·	•		
Approx. Time:	Steady Flow in a	Pige	•		·
	Topic:		,		,
1 hour	Steady Flow		,`		
Objectives:					
The learner will o	demonstrate the abili	ty to calculate	e the stea	dy flow of	water
	(diameter) pipe.		. ,		
	es (diameter) pipe, c	onnected.	,		
2. Differentisize	es (diameter) pipe , c	onnected.	•	- %	
	es (diameter) pipe, c	onnected.	,	- \$	
	,	onnected.		- \$ W	

Instructional Approach:

Discussion Demonstration Exercise .

References: ...

Manual of Water Utility Operations, Texas Water Utilities Association.

Mathematics for Water and Wastewater Treatment Plant Operators, Kirkpatrick, Ann Arbor Science.

Class Assignments: ' '

Give 8 exercise problems to be solved.

Module No:

Topic:

Steady. Flow

Instructor Notes:

Instructor Outline:

the formula:

Q = AV

1. Give handout

Q is in cubic fee/sec.

A is in square feet

V is in feet/sec.

Q = The flow rate

A = Cross sectional area of the pipe

V = Velocity of the water moving through
the pipe

Discuss/demonstrate how one calculates the steady flow in a single sized pipe using

 Discuss/demonstrate how one calculates the steady flow in different size pipe connected to each other using the formula:

 $Q_1 = A_1 V_1$.

and 1

 $Q_2 = A_2 V_1$

Since $Q_1 = Q_2$

Then

A1 V1 = A2 V1

Q₁ = Flow rate in pipe (1)

 Q_2 = Flow rate in pipe (2)

 A_1 = Cross sectional area of pipe (1)

 V_1 = Velocity of water through pipe (1)

 A_2 = Cross section of area of pipe (2)

 V_2 = Velocity of water through pipe (2)

 Q_1 is in cubic/sec.

 Q_2

A1 is in square feet

Vi is in feet/sec.

A2 is in square feet

V₂ is in feet/sec.

Refer to Module Wo.

Submodule Title Volumes
Topic cylinders

STEADY FLOW IN A PIPE

The flow rate of a liquid can be determined using the formula

0 = AV

Q = Flow rate

A = Wetted cross sectional area of the pipe

V = The velocity of the liquid

NOTE: IF THE PIPE IS FULL FLOW THAN IT. IS SIMPLE TO DETERMINE THE WETTED CROSS SECTIONAL AREA. BUT IF THE PIPE IS PARTIALLY FULL TO CALCULATE THE WETTED CROSS SECTIONAL AREA IS BEYOND THE SCOPE OF THIS MODULE ESPECIALLY IF THE PIPE IS CIRCULAR.

Example.

Calculate the flow rate in a 12 inch main if the velocity is 4 feet per sec.

Solution

Q = AV

a. $A = .785 \times D^2$

= .785 x 12 x 12

= 113.04 square`inches

b. Convert 113.04 sq. in. to sq. ft.

$$= \frac{113.04}{114}$$

= ..785 sq. ft.

c. Q = AV

= .785 ft² x 4 ft./sec.

= 3.14 ft³/sec.

d. If Q is required in gallons then convert $ft^{B}/sec.$ to GPS

 $= 3.14 \times 7.48$

= 23.5 GPS

In a piping system there may very well be different sizes of pipe.

Example

An 8" main is connected to a 6" main. This will evoke the continuity principle.

The continuity principle states that a volume of liquid entering the pipe at one end per unit time, must leave the other end in the same unit time. If this principle did not apply then if less liquid leaves the pipe than enters it, the volume will build up so will the pressure (liquids are non-compressable) and the pipe may break, or if more liquid leaves the pipe than enters it, the pipe will eventually empty.

Assuming that a series of pipes are connected then from the continuity principle:

$$Q_1 = Q_2 = Q_3 = Q_4$$

Where (Q) is the flow rate from each pipe.

Substituting for Q

$$Q_1 = A_1 V_1$$

$$Q_2 = A_2 V_2$$

$$Q_3 = A_3 V_3$$

Therefore

$$A_1 V_1 = A_2 V_2 = A_3 V_3 = \bar{A_4} V_4$$

Since the cross sectional area is changed then the velocity has to change.

Example

Two pipes one 4 inches in diameter, the second 6 inches in diameter are connected. The flow is from the 4 inch to the 6 inch pipe and the velocity is 8 ft/sec. in the 4 inch pipe. Calculate the velocity through the 6 inch pipe.

Solution

$$A_1 \cdot V_1 = A_2 \cdot V_2$$

Since V_2 is the unknown then

$$v_2 = A_1 v_1$$

$$V_2 = \frac{.785 \times D_1^2 \times V_1}{.785 \times D_2^2}$$

The .785 cancels out/

Then

$$V_2 = \frac{4 \text{ in. } x \cdot 4 \cdot \text{in. } x \cdot 8 \text{ ft/sec.}}{6 \text{ in. } x \cdot 6 \text{ in.}}$$

 $V_2 = 3.5 \text{ ft/sec.}$

Exercise

- A 12" main flowing full with a velocity of 6 ft/sec., what is the volume of water delivered in 10 hrs.
- An 8" sewer line flowing full with a velocity of 2 ft/sec. Calculate the rate of flow.
- 3. A 6" sewer line flowing half full with a velocity of 2.3 ft/sec., calculate the rate of flow.
- 4. Two connected water mains, the input line is 6 inches and the output line is 8 inches. The velocity of the liquid in the input line is 10 ft/sec.
- a. Calculate the rate of flow through the system.
 - b. Calculate the velocity at the output end.
- 5. A horizontal section of pipe has two diameters. The first is 8 inches and the second 12 inches. If the flow rate is 80 $\rm ft^3/sec.$ calculate
 - a. Velocity in the '8" diameter pipe.
 - b. Velocity in the 12" diameter pipe
- 6. An 18" main flowing full with a velocity of 8 ft/sec, is connected to two 8" mains. Each 8" main receives equal volume of flow. Calculate the velocity in the 8" main.
- 7. A pressure sewer line 6" in diameter delivers a volume of 380,000 gallons per day. Calculate the velocity.
- 8. Calculate the average velocity in a grit chamber 12 ft: long x 2. ft. wide x 18" water depth if the flow rate is 1.9 MGD.

Page 35 of 65

· · · · · · · · · · · · · · · · · · ·	NAMES AND ADDRESS OF THE PARTY			
Module Title:				
.Advanced Mathematics				
Submodule Title:	,			
Flow Measurement	•			
Topic: Flow Measurement	4			
Committed and the second secon				
monstrate the ability to calcu	late the flow of water using the			
ctangular weir weir	*,			
•				
arency)				
	·			
ch: · ′	,			
	Comment of the commen			
ity Operations, Texas Water Ut	tilities Association.			
	Advanced Mathematics Submodule Title: Flow Measurement Topic: Flow Measurement			

Class Assignments:
Given 10 exercise problems to be solved.

Module No: Topic:

Flow Measurement

Instructor Notes:

Instructor Outline:

Handout

 Discuss/demonstrate how one calculates the flow of water using the formula of a venturi meter.

$$Q = \frac{A_1 \times A_2}{\sqrt{(A_1)^2 - (A_2)^2}} \times \sqrt{\frac{2g}{W} \times (P_1 - P_2)}$$

Q = Flow rate

A₁ = The cross sectional area of the discharge end of the meter

A₂ = The cross sectional area of the throat of the meter

g = The gravitational pull of 32 ft./sec.²

Pi = The pressure gauge reading on the the discharge end of the meter

P₂ = The pressure gauge reading on the throat of theometer.

W = Specific weight of the liquid being pumped ~

Pi is in PSI

P₂₄ is in PSI

W of water is 62.4 lbs/ft³

Refer to Module No.

Submodule Title areas
Topic circle

Refer to Module No.
Submodule Title Statistics
Topic Geometric Mean

Q is in cubic feet/sec.

L is in feet

H is in feet

2. Discuss/demonstrate how one calculates the flow of water using the formula of a suppressed rectangular weir neglecting velocity.

$$Q = 3.33 L x H 3/2$$

Q = Flow rate

L = Length of weir crest

H = Head on weir crest

	• •	Page 37 of 65
Module Ho:	.Topic: Flow Measu	urement
Instructor Notes:		Instructor Outline:
	,	3. Discuss/demonstrate how one calculates the flow of water using the formula of a 90° V notch weir neglecting velocity.
	()	Q = 2.49 x H 2.48
Q is in cubic feet/s	ec. •, ·	Q = Flow rate

H is in fæet

4. Discuss/demonstrate the use of nanograms

`H = Head on weir crest

VENTURI METER

The venturi meter operates on the idea of the continuity principle which says that changing the pipe size will change the velocity. When the velocity changes so does the pressure exerted by the liquid. The ratio and proportion is reducing the cross area of the pipe increases the velocity and reduces the pressure.

The formula to use in determining the flow rate (Q) using a venturi meter is

$$Q = \frac{A_1 \times A_2}{\sqrt{(A_1)^2 - (A_2)^2}} \times \sqrt{\frac{2g}{W} \times (P_1 - P_2)}$$

 $Q = Flow rate in ft^3/sec.$

 A_1 = Area of large diameter pipe

A2 = Area of small diameter pipe (throat)

g = The gravitational pull 32 ft./sec.²

-W = The specific weight of the liquid (water is 62.4 lbs/ft.3)

 P_1 = The pressure at large diameter pipe in PSI ...

•P2 = The pressure, at small diameter pipe in PSI

Example

A venturi meter has an input diameter of 6 inches and a throat of 31 inches. The input pressure (P_1) is 9 PSI and the throat pressure (P_2) is 5 PSI. Calculate the rate of flow.

Solution

To be able to use the formula

$$Q = \frac{A_1 \times A_2}{\sqrt{(A_1)^2 - (A_2)^2}} \times \sqrt{\frac{2g}{W} (P_1 - P_2)}$$

First determine A₁

Second determine A₂

$$A_1 = .785 \times D^2$$
.

$$= .785 \times (6)^2$$

$$=\frac{28.26}{144}=0.196$$
 sq. ft.

$$A_2 = .785 \times D^2$$

=
$$.785 \times (3)^{2}$$

$$=\frac{7.065}{144}$$
 = .0.049 sq. ft.

$$\sqrt{(A_1)^2 - (A_2)^2}$$

$$= 0.196 \text{ ft.}^2 .049 \text{ ft.}^2$$

$$\sqrt{(0.196 \text{ ft.}^2) - (.049 \text{ ft.}^2)^2}$$

$$=\frac{0.01 \text{ ft.}^4}{100 \text{ ft.}^2}$$

$$= .05 \text{ ft.}^2$$

$$=\sqrt{\frac{2g}{W}(P_1 - P_2)}$$

$$= \sqrt{\frac{2 \times 32 \text{ ft/sec.}^2}{64 \text{ lbs/ft.}^3}} \quad (9 - 5) \text{ lbs/in}^2$$

$$=\sqrt{\frac{4.184 \text{ ft}^2}{\text{Sec.}^2 \times \text{in}^2}}$$

$$= \frac{2.05 \text{ ft}^2}{\text{Sec. x in.}}$$

Sincé 1 ft. = 12 in.

Therefore

2.05 ft. x 12 in. Sec. x in.

= 24.6 ft./sec.

$$Q = \frac{A_1 \times A_2}{\sqrt{(A_1)^2 - (A_2)^2}} \times \sqrt{\frac{2q}{W} (P_1 - P_2)}$$

= $0.05 \text{ ft.}^2 \times 24.6 \text{ ft/sec.}$

 $= 1.23 \text{ ft}^3/\text{sec.}$

NOTE: Since A_1 , A_2 , g & W are constant for that particular venturi meter unit, one can obtain a constant (k) and when the pressures change use the

$$Q = k \sqrt{P_1 - P_2}$$

Example

Using the problem from the previous example (large diameter 6 inches, throat 3 inches, P_1 - 9 PSI, P_2 - 5 PSI) determine the rate of flow when

a:
$$P_1 = 11 PSI$$

b.
$$P_1 = 8$$

$$P_2 = 3$$

Solution

$$Q = \frac{A_1 \times A_2}{\sqrt{(A_1)^2 - (A_2)^2}} \cdot x \sqrt{\frac{2g}{W}(P_1 - P_2)}$$

or
$$Q = k\sqrt{P_1 - P_2}$$

$$k = \frac{A_1 \times A_2}{\sqrt{(A_1)^2 - (A_2)^2}} \times \sqrt{\frac{25}{W}}$$

$$= \frac{.196 \text{ ft}^2 \times .049 \text{ ft}^2}{\sqrt{(.196 \text{ ft}^2)^2 - (.049 \text{ ft}^2)^2}} \times \sqrt{\frac{64 \text{ ft/sec.}^2}{62.4 \text{ lbs/ft}^3}}$$

.k = .036 ft³/sec.

Now '

1.
$$P_1 = 11$$

 $P_2 = 5$
 $Q = k \times \sqrt{P_1 - P_2}$
 $= .036 \text{ ft}^3/\text{sec.} \sqrt{11 - 5}$
 $= .036 \text{ ft}^3/\text{sec.} \times 2.45$
 $= 1.56 \text{ ft}^3/\text{sec.}$

2.
$$P_1 = 8$$
 $P_2 = 3$
 $Q = k \times \sqrt{P_1 - P_2}$
 $= .036 \times \sqrt{8 - 3}$
 $= 1.43 \text{ ft}^3/\text{sec.}$

Exercise

- 1. A venturi meter is inserted into a horizontal section of water line whose entrance is 18 inches. Find the flow rate of water if the throat diameter is 12 inches. The difference in pressures is 30 PSI.
- 2. In Problem No. 1, if the pressure difference in PSI at

$$10:00 \text{ a.m.} = 25$$

Calculate the flow rates at the different hours

WEIRS

The shapes and types of weirs are numerous. The most typical ones are

- a. Rectangular weirs with no end contractions. The formula is
 - $Q = 33^{\circ} L \times H^{3/2}$.
 - Q = Flow rate in CFS
 - L = Effective width of the weir in ft.
 - H = Head in ft.
- b. Rectangular weirs with end contractions. The formula is

$$Q = 3.33 \times L \times H^{3/2} - 0.66 H^{5/2}$$

RECTANGULAR WEIR

 $c._{i}$ Cipolletti weir. The formula is

 $Q = 3.367 \times L \times H^{3/2}$

Q = Flow rate in CFS

L = Length of the weir opening at the base in ft.

H = Measured head in ft.

d. Triangular weirs

The most commonly used angle for the v-notch weirs being 90° and 60° . The formula to use with a 90° v-notch weir with no end contraction is

$$Q = 2.49 \times H^{5/2}$$

Q = Flow rate in CFS

H = Head in ft:

e. 90° v-notch weir with end contraction. The formula is

 $Q = 2.4381 \times H^{5/2}$

TRAINGULAR
or
V-NOTCH WEIR

In calculating for flow rates (Q) using any of the formulas given, the use of logarithm tables is extremely helpful in determining the value for H3/2. This is accomplished by

- a. Finding the logarithm of H
- b. Multiplying by 3 or 5 depending on the formula
- c. Dividing by 2
- d: Find the anti-log of the result, remember that the has to be in ft.

Example

Calculate the flow rate using a cipolleti weir. If the length of opening at the base is 3 ft. and the water height (head) over the weir is 4 inches.

Solution.

 $Q = 3.367 \times L \times H^{3/2}$

First determine H^{3/2}

- a. Log of H = 0.60206
- b. Lóg of H \times 3 = 1.80618
- c. Log of H x $3 \div 2 = .90309$
- d. Anti-log of .90309 = 8 inches
- e. Change inches to ft = $8 \div 12 = 0.67$ ft.

Therefore

 $Q = 3.367 \times 3 \times .67 \text{ ft.}$

= 6.77 CFS

NANÓGRAMS

Nanograms are graphs designed to simplify determination of values.

A three column nanogram is used by joining with a line two known values, the third value is at the intersection of the column and the line.

Two column nanograms are used by drawing a perpendicular line from the column of the unknown value to the column of the unknown value. The intersection is the sought value.

Flow Rates For 60° and 90° V-Notch Weirs (3)

Exercise

- 1. Calculate the flow rate using a 90° v-notch weir with contracted ends if the level of water over the weir is
 - a. 3.8 inches
 - b. 5.2 inches
 - c. 1.5 inches
- 2. Using a nanogram determine the flow rate for a 60° v-notch weir if the head, is
 - a. 7 inches
- / b. 1.5 inches
 - c. 1 foot
- 3. Determine the flow rate in a channel using a cipolleti weir. Given:
 - a. ·2.7 inches head, 2 ft. length of weir opening at base.
 - b. 1.5 feet head 3 ft. Tength of weir opening at base.
 - c. 21 inches head, 41 ft. length of we'r opening at base.

Module No:

Module Title:
Advanced Mathematics

Submodule Title:
Pump and Motor Power and Efficiency

Topic:
Pump and Motor Power and Efficiency

Objectives:

The learner will demonstrate the ability to:

1. Identify the data obtained from a given pump curve.

2. Calculate the work horsepower (WHP) of a pump needed to deliver a volume of water.

3. Calculate the brake horsepower (bhp) of a pump needed to deliver a volume of water.

4. Calculate motor power input needed to deliver a volume of water using a specified pump.

5. Cost of pumping a volume of water.

Instructional Aids/

Handout

AV (overhead transparency)

Instructional Approach:

Discussion Demonstration Exercise

References:

Manual of Water Utility Operations, Texas Water Utilities Association.

Mathematics for Water and Wastewater Treatment Plant Operators, Kirkpatrick, Ann Arbor Science.

Class Assignments:

Given 10 exercise problems to be solved.

Module No: Topic: Power Efficiency Instructor Notes:

Pe is in decimal %

Instructor Outline:

- Discuss/demonstrate how one can obtain specific data such as:
 - a. TDH = Total head
 - b. 'GPM = Gallons per minute
 - c.. BHP = Brake horsepower
 - d. Efficiency
- Discuss/demonstrate how one calculates the work horsepower (WHP) of a pump using the formula:

WHP =
$$Q \times TDH \times Sp. Gr.$$
 3960

WHP = Work horsepower

Q = Flow rate in GPM

TDH = Total head against pump

- Sp. Gr. = Specific gravity of liquid being pumped.
- 3. Discuss/demonstrate how one calculates the brake horsepower (bhp) of a pump using the formula:

a.
$$bhp = 0 \times TDH \times Sp. Gr.$$

• 3960 Pe

bhp = Brake horsepower

Q = Flow hate in GPM

TDH - Total head against pump

Pe = Pump efficiency

Module No:

Topic:

Power Efficiency

Instructor Notes:

-Instructor Outline:

b. $bhp = \frac{whp}{Pe}$

bhp = Brake horsepower

wph = Work horsepower

Pe = Pump efficiency

- 4. 'Discuss/demonstrate how one calculates the motor (power) input using the formula:
 - a. $MPi = Q \times TDH \times Sp. Gr.$ 3960 x Pe x Me

Mpi = Motor power input

Q = Flow rate in GPM

TDH - Total head against pump

Sp. Gr. = Specific gravity of liquid being pumped

Pe = Pump efficiency

Me = Motor efficiency

b. Mpi = bhp

Mpi = Motor power input

_bhp = Brake horsepower

Me = Motor efficiency

Me is in decimal,%

Pe is in decimal %

Me is in decimal %

Page <u>52</u> - of <u>65</u>

Module No:

Topic:

Power Efficiency \

Instructor Notes:

TDH is in ft.

Me is in

Pe is in decimal %

Instructor Outline:

- 5. Discuss/demonstrate how one calculates the cost of pumping using the formula:
 - a. bwh/1000 gal. = $\frac{\text{TDH.x 0.00314}}{\text{Pe x Me}}$

'bwh/1000 gal. = Kilowatts per 1000 gallons of water pumped

TDH = Total head

Pe = Pump efficiency

Me = Motor efficiency

b. kwh = 1000 gal. =

Kw Input to motor x 16-7

bwh/1000 gal. = Kilowatts per 1000 gallons of water pumped

kw input to motor = power in Kilowatts that the motor draws

Q = Flow rate or GPM

Pumps and Motor

What makes water be transferred from one point to another is usually a pump driven by a motor.

- The size of pump and motor depend on
 - a. The volume of water needed
- .b. The total head

Most manufacturers provide a pump curve.

Usual information obtained from pump curves are

- a. Total head
- b. Volume in GPM
- c. Efficiency of the pump under the head and GPM load.
- d. Brake horsepower

Use of Pump Curve

By knowing the total head the pump has to work against, draw a horizontal line to meet the curve. At the intersection of line and curve draw a perpendicular line to meet the (x) axis or the GPM axis. Read the GPM. It is important to remember that pumps operate best at their peak efficiency about 80 - 85% even though they may not be pumping the maximum GPM.

Refer to Figure 1

Example

If the total head is 60 ft. determine the GPM from Curve 1.

Solution

Ans. 1210 GPM

Exercise

Using Figure I determine -

- a. "GPM from ourve 1 if total head is 64 ft.
- b. Range of GPM from curve 1 at 80% efficiency
- c. Range of total head from curve 1 at 80% efficiency

age .54 of 65

57

Work Horsepower (WHP)

Work horsepower (WHP) is the power output of a pump to determine the work horsepower (WHP) of a pump. The formula to use is

WHP = $\frac{Q \times TH \times Sp. Gr.}{3960}$

WHP = Work horsepower

Q = Flow rate in gallons per minute.

TH = Total head

3960 = A constant obtained from dividing 33,000 ft.-pounds by 8.34 pounds/gallon

Sp. Gr. = Specific gravity. For water Sp. Gr. is 1 - Sp. Gr. of wastewater in ranges from 1.01 to 1.08.

Brake Horsepower (BHP)

Brake horsepower (BHP) is the input power to the shaft of the nump. The formula to use is

A: BHP = $\frac{Q \times TH \times Sp. Gr.}{3960 \times Pe}$

BHP = Brake horsepower

Q = Flow rate = gallons per minute.

TH = Total head

3960 = A constant obtained by dividing 3300 ft.-pounds by 8.34 pounds/gallon

Sp. Gr. = Specific gravity. For water Sp. Gr. is 1 - Sp. Gr. of was tewater ranges from 1.01 to 1.08

Pe = Pump efficiency

BHP = WHP Pe

BHP = Brake horsepower

WHP = Work horsepower

Pe = Pump efficiency

Motor Power Input (MPI)

Motor Power Input (MPI), also the motor brake horsepower, is the input power to a motor. The formula to use is

A. MPI = $\frac{Q \times TH \times Sp. Gr.}{3960 \times Pe \times Me}$

·MPI = Motor power input

Q = Flow. rate in gallons per minute,

TH = Total Head

Sp. Gr. = Specific gravity. For water Sp. Gr. is 1 - Sp. Gr. of
 wastewater ranges from 1.01 to 1.08

3960 = A constant obtained by dividing 3300 ft.-pounds by 8.34 pounds/gallon

Pe = Pump efficiency

Me = Motor efficiency

 B_{\bullet} MPI = $\frac{BHP}{Me}$

MPI = Motor power input

BHP = Brake horsepower

Me = Motor efficiency

COST OF PUMPING A VOLUME OF WATER

The operating cost of pumping water is due to the cost of electricity which is needed to operate the motor.

The formula to use to change horsepower to kilowatts/hour is

kwh = MPI x 0 746

kwh = kilowatts/hour - power consumed

MPI = Motor power input - horsepower

0.746 = A constant where 1 hp. = 0.746 \vec{k}_{1}

The formula to use to determine the cost of pumping is

$$kwh/1000 \text{ gallons} = \frac{kw \text{ input to motor } x \text{ } 1000}{GPM \times 60}$$

Cost per/1000 gallons = kwh/1000 x cost/kwh

Example

A pump operating against a TH of 93 ft. at a rate of 382 GPM with a pump efficiency of 80% and motor efficiency of 93%. Cost per kwh is 5 cents/kwh.

- 1. The WHP of the pump
- 25 The BHP of the pump
- 3. The MPI of the motor
- 4. Cost of pumping/1000 gallons

Solution

1. WHP =
$$\frac{Q \times TH \times Sp. Gr.}{3960}$$

BHP =
$$\frac{Q \times TH}{3960} \times Pe$$
.

$$= \frac{382 \times 93 \times 1}{3960 \times 1.8}$$

3. MPI =
$$\frac{Q \times TH \times Sp. Gr.}{3960 \times Pe \times Me}$$

or =
$$\frac{BHP}{Me}$$

$$=\frac{11.2}{.93}$$

1 Hp = 746 watts

1 Hp = .746 kilowatts

4.
$$kwh = MPI \times 0.746$$

 $= 12 \times .746$

= 8.95 kw input to motor

$$kwh/1000$$
 gallons = $bwh \times 1000$ GPM $\times 60$

 $= \frac{8.95 \times 1000}{382 \times 60}$

= 0.39 kwh/1000 gallons

 $cost/1000 = kwh/1000 \times cost/kwh$

 $= 0.39 \times 5$

= 1.95 cents

Exercise

- A pump operating against a total head of 115 ft. at a rate of 400 GPM. Pump efficiency is 82%, motor efficiency is 91%. Cost per kwh is 4:85 cents/kwh. Calculate the cost of operating the pump for 18.5 hours per day.
- 2. Using the pump curve for impeller No. 3; figure (1) determine:
 - a. Total head (range)
 - b. Gallons/minute (range)
- Calculate the horsepower (Whp) of a pump needed to deliver 650 GPM if the discharge pressure gauge reads 60 psi.
- 4. Calculate the cost/1000 gallons given
 - a. Total head = 180 ft.
 - b. Pump efficiency = 62%
 - 6. Motor efficiency = 94%
 - d. Flow rate = 265 GPM
 - e. kwh/cost = 5.2 cents
- 5. A 10 horse pump pumps at 510 GPM against a total head of 36 psi. If the motor is 93% efficient, calculate the pump efficiency.
- 6. A lift station pumps wastewater with a specific gravity of 1.01 against a 35 ft. head. Calculate the motor horsepower necessary if the flow rate is 1200 GPM, pump efficiency at 55% and motor efficiency 90%.
- 7. Calculate the horsepower needed to pump water at a rate of 210 GPM against a total head of 42 ft.

Page60	of	65
--------	----	----

Module_No:	Module Title:			
•	Advanced Mathematics	*	,	1
Approx. Time:	Submodule Title:		•	
1 hour	EVALUATION			•

Objectives:

The learner will be able to demonstrate the ability to determine correctly the answers to 8 out of 10 problems related to:

- a. Flow measurement
- b. Flow in pipe
- c. Total head
- d. Pump and motor power efficiency
- If the pressure in a water main is 65 psi, what is the minimum loss in water pressure at a water faucet 25 ft. above the main.
 - a. 57.7 psi
 - b. 54.2 psi
 - c. 10.8 psi
 - d. 7.3 psi
- A horizontal section of pipe has two diameters, the first is 18 inches and the second 12 inches. If the flow rate through the 18 inch pipe is 165 gallons per second, calculate the velocity through the 18 inch pipe.
 - a. 12.5 ft/sec.
 - b. 39 ft/sec. 4
 - c. 0.65 ft/sec.
 - d. 2.9 ft/sec.
- 3. Using the nanogram determine the discharge in GPM from an 8" pipe with a velocity of 3.5 ft/sec.
 - a. 500 GPM
 - b.` 900 GPM
 - c. 1.8 GPM
 - d. 800 GPM

• - }

- 4. A 6" sewer line flowing & full with a velocity of 1.8 ft/sec. Calculate the rate of flow.
 - a. $18 \text{ ft}^3/\text{sec.}$
 - b. 1.4 ft³/sec,
 - c. .35 ft³/sec.
 - d. 0.18 ft³/sec.
- 5. A venturi meter has a throat of 2 inches and an inlet of 3½ inches. Calculate the k for the meter. Pressure gauges read in psi.
 - a. 4.4
 - b. 9.09
 - c. 9.364
 - d. 3.364
- A cipolletti weir is placed in an open channel. If the length of the weir opening at the base is 4 ft. and the head is 14.4 inches, calculate the flow rate.

Q = 3.367 LH^{1.5}

- a. 114.05 ft³/sec.
- b. 12.06 ft³/sec.
- c. 743.6 ft³/sec.
- d. 17.7 ft³/sec.
- Using the pump curve provided, what is the GPM delivered against a 48 ft. head using a 7" impeller.
- a.. 1380,
- ь. 12<u>,</u>10
- c. 1200
- d. 1190 g

- 8. Calculate the BHP of the pump if the pump efficiency is 85%.
 - a. 19 Hp.
 - b. 23 Hp.
 - c. 16 Hp.
 - d. 56 Hp/.
- 9. Calculate the cost of operating the pump for one day if the cost/kwh is 6 cents.
 - a. 9.76
 - b. 35.25
 - c. 14.25
 - d. 12.73
- 10. Records indicate that the pump efficiency has decreased to 79%. What is the additional cost in operating the unit for a day.
 - a. 117 cents
 - b. 265 cents
 - ′c. 97 cents
 - d. 513 cents

·· ,	<u> </u>	Page 6	5 of 65 ·
Module No:	Topic: EVALUATION	-	
Instructor Notes:		Instructor Outline:	
Answers		Give 10 evaluation problems	*******************************
1. c	•		
•3. d	·		
4. d		/	•
6. d			. ,
7. d			•
8. b 9. d		a series	" /
10. c			,
	•		
		₩	~ 0

Ĭ

Ź

4

· E