Bostat 218 Problem Set 1

Due Feb 07 @ 11:59PM in PDF by email

Adolfo Jacobo 006333111

January 23, 2025

R Setup

```
## Load libraries
library(DatabaseConnector)

## Clean Environment
rm(list = ls())

## Force garbage collection
gc()

## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 745283 39.9 1266861 67.7 1266861 67.7
## Vcells 1356867 10.4 8388608 64.0 2123768 16.3

## Set file path for synthetic database
absoluteFileName <- file.path(getwd(), ".../data", "synthetic.duckdb")</pre>
```

OMOP CDM

1. John is an African American man born on August 4, 1974. Define an entry in the PERSON table that encodes this information.

Column name	Value	Explanation
PERSON_ID	1	Unique identifier
GENDER_CONCEPT_ID	8507	Value for 8507 refers to "Male".
YEAR_OF_BIRTH	1974	Year of birth
MONTH_OF_BIRTH	8	Month of birth
DAY_OF_BIRTH	4	Day of birth
BIRTH_DATETIME	1974-08-04 00:00:00	When time of birth is is unknown value will default to midnight.
RACE_CONCEPT_ID	8516	Value for 8516 refers to "Black or African American".
ETHNICITY_CONCEPT_ID	38003564	Value for 38003564 refers to "Not hispanic".

Column name	Value	Explanation
LOCATION_ID		Address of the person is not known
PROVIDER_ID		PCP is not known
CARE_SITE_ID		PCP site is not known
PERSON_SOURCE_VALUE		Value is not known
GENDER_SOURCE_VALUE	Male	Text description of
		GENDER_CONCEPT_ID
GENDER_SOURCE_CONCEPT_ID		GENDER_CONCEPT_ID from
		source data. When this is not known,
		value will default to 0.
RACE_SOURCE_VALUE	African American	Text description of
		RACE_CONCEPT_ID
RACE_SOURCE_CONCEPT_ID	0	RACE_CONCEPT_ID from source
		data. When this is not known, value
		will default to 0.
ETHNICITY_SOURCE_VALUE	Not hispanic	Text description of
		ETHNICITY_CONCEPT_ID.
ETHNICITY_SOURCE_CONCEPT0_ID		EHTNICITY_CONCEPT_ID from
		source data. When this is not known,
		value will default to 0.

2. John enrolled in his current insurance on January 1st, 2015. The data from his insurance database were extracted on July 1st, 2019. Define an entry in the <code>OBSERVATION_PERIOD</code> table that encodes this information.

Column name	Value	Explanation
OBSERVATION_PERIOD_ID	1	Unique identifier
PERSON_ID	1	Unique identifier
OBSERVATION_PERIOD_STAR	Г <u>2</u> D145101 -01 00:00:00	Start date of observation period
OBSERVATION_PERIOD_END_	_D 20119 -07-01 00:00:00	End date of observation period
PERIOD_TYPE_CONCEPT_ID	44814722	Value for 44814722 refers to "Period
		while enrolled in insurance".
PERIOD_TYPE_SOURCE_VALUE	UFPeriod while enrolled in	Text description of
	insurance	PERIOD_TYPE_CONCEPT_ID
PERIOD_TYPE_SOURCE_CON	CIOPT_ID	PERIOD_TYPE_CONCEPT_ID
		from source data. When this is not
		known, value will default to 0.

3. John was prescribed a 30-day supply of Ibuprofen 200 MG Oral tablets (NDC code: 76168009520) on May 1st, 2019. Define an entry in the <code>DRUG_EXPOSURE</code> table that encodes this information.

Column name	Value	Explanation
DRUG_EXPOSURE_ID	1	Unique identifier
PERSON_ID	1	Unique identifier
DRUG_CONCEPT_ID	19078461	Value for 19078461 refers to
		"Ibuprofen 200 MG Oral Tablet".
DRUG_EXPOSURE_START_DATE019-05-01		Start date of drug exposure
DRUG_EXPOSURE_START_DATEOIDADE-31 00:00:00		Start date and time of drug exposure
DRUG_EXPOSURE_END_DATE	2019-05-31	End date of drug exposure

Column name	Value	Explanation
DRUG_EXPOSURE_END_DATET 201B -05-31 00:00:00		End date and time of drug exposure
VERBATIM_END_DATE	2019-05-31	End date of drug exposure as it
		appears in the source data
DRUG_TYPE_CONCEPT_ID	38000175	Value for 38000175 refers to
		"Prescription dispensed in pharmacy".
STOP_REASON		Reason for stopping drug exposure
REFILLS	0	Number of refills allowed
QUANTITY	30	Quantity of drug exposure
DAYS_SUPPLY	30	Days supply of drug exposure
SIG	Take 1 tablet by mouth	Instructions for taking the drug
	once daily	
ROUTE_CONCEPT_ID	0	Value for 0 refers to "Unknown".
LOT_NUMBER		Lot number of the drug
PROVIDER_ID		Prescribing provider
VISIT_OCCURRENCE_ID		Visit occurrence
VISIT_DETAIL_ID		Visit detail
DRUG_SOURCE_VALUE	76168009520	NDC code of the drug
DRUG_SOURCE_CONCEPT_ID	583945	DRUG_CONCEPT_ID from source
		data. When this is not known, value
		will default to 0.
ROUTE_SOURCE_VALUE	0	ROUTE_SOURCE_VALUE from
		source data. When this is not known,
		value will default to 0.
DOSE_UNIT_SOURCE_VALUE	0	DOSE_UNIT_SOURCE_VALUE
		from source data. When this is not
		known, value will default to 0.

4. Using SQL and R, retrieve all records of the condition "Gastrointestinal hemorrhage" (with concept ID 192671) from the Eunomia dataset.

```
# Using Eunomia -- will download with each R session
connection <- connect(Eunomia::getEunomiaConnectionDetails())</pre>
```

attempting to download GiBleed

Connecting using SQLite driver

CONCEPT_ID

CONCEPT_NAME DOMAIN_ID VOCABULARY_ID

```
192671 Gastrointestinal hemorrhage Condition
     CONCEPT_CLASS_ID STANDARD_CONCEPT CONCEPT_CODE VALID_START_DATE
##
                                             74474003
## 1 Clinical Finding
                                                             1970-01-01
     VALID_END_DATE INVALID_REASON
## 1
         2099-12-31
                               <NA>
disconnect(connection)
  5. Using SQL and R, retrieve all records of the condition "Gastrointestinal hemorrhage" using source
     codes. This database uses ICD-10, and the relevant ICD-10 code is "K92.2" from the Eunomia dataset.
# Using Eunomia -- will download with each R session
connection <- connect(Eunomia::getEunomiaConnectionDetails())</pre>
## attempting to download GiBleed
## attempting to extract and load: C:\Users\ajaco\AppData\Local\Temp\RtmpGsAC9w/GiBleed_5.3.zip to: C:\
## Connecting using SQLite driver
# Get list of tables
# getTableNames(connection, databaseSchema = 'main')
querySql(connection = connection,
         sql = "
         SELECT *
         FROM concept
         WHERE CONCEPT_CODE = 'K92.2';
         ")
##
     CONCEPT ID
                                              CONCEPT NAME DOMAIN ID VOCABULARY ID
## 1
       35208414 Gastrointestinal hemorrhage, unspecified Condition
                                                                             ICD10CM
        CONCEPT_CLASS_ID STANDARD_CONCEPT CONCEPT_CODE VALID_START_DATE
## 1 4-char billing code
                                                   K92.2
                                                                2007-01-01
                                       <NA>
     VALID_END_DATE INVALID_REASON
##
         2099-12-31
## 1
disconnect(connection)
  6. Using SQL and R, retrieve the observation period of the person with PERSON_ID 61 from the Eunomia
     dataset.
# Using Eunomia -- will download with each R session
connection <- connect(Eunomia::getEunomiaConnectionDetails())</pre>
## attempting to download GiBleed
```

Connecting using SQLite driver

attempting to extract and load: C:\Users\ajaco\AppData\Local\Temp\RtmpGsAC9w/GiBleed_5.3.zip to: C:\

```
# Get list of tables
# getTableNames(connection, databaseSchema = 'main')
querySql(connection = connection,
         sql = "
         SELECT *
         FROM observation_period
         WHERE PERSON_ID = 61;
##
     OBSERVATION_PERIOD_ID PERSON_ID OBSERVATION_PERIOD_START_DATE
## 1
                                                          1968-01-21
     OBSERVATION_PERIOD_END_DATE PERIOD_TYPE_CONCEPT_ID
##
                      2019-01-06
## 1
disconnect(connection)
```

Standardize vocabularies

- 7. What is the standard concept ID for "Gastrointestinal hemorrhage"?
- The standard concept ID for "Gastrointestinal hemorrhage" is 192671.
- 8. Which ICD-10CM codes map to the standard concept for "Gastrointestinal hemorrhage"? Which ICD-9CM codes map to this Standard Concept?
- The ICD-10CM codes that map to the standard concept for "Gastrointestinal hemorrhage" are K92.2 and K92.9. The ICD-9CM codes that map to this standard concept are 578.9 and 578.0.

9. What are the MedDRA preferred terms that are equivalent to the standard concept for "Gastrointestinal hemorrhage"?

Advanced SQL

10. What is the minimum, maximum, and mean length (in days) of observation from the synthetic dataset? (Hint: you can use the DATEDIFF function to compute the time between two dates.)

```
syn_connection <- connect(dbms = "duckdb", server = absoluteFileName)</pre>
```

Connecting using DuckDB driver

```
querySql(syn_connection,
    sql = "SELECT MIN(DATEDIFF('day', OBSERVATION_PERIOD_START_DATE, OBSERVATION_PERIOD_END_DATE))
        , MAX(DATEDIFF('day', OBSERVATION_PERIOD_START_DATE, OBSERVATION_PERIOD_END_DATE))
        , AVG(DATEDIFF('day', OBSERVATION_PERIOD_START_DATE, OBSERVATION_PERIOD_END_DATE))
        FROM OBSERVATION_PERIOD;")
```

```
MIN_OBSERVATION_PERIOD_START_DATE MAX_OBSERVATION_PERIOD_END_DATE
##
## 1
                                                                    40509
##
     AVG OBSERVATION DAYS
## 1
                 13683.69
disconnect(syn connection)
 11. How many people have at least one prescription of celecoxib from the synthetic dataset? (Note:
    there's an easy way to do this, using DRUG_ERA, and a harder way using DRUG_EXPOSURE and
    CONCEPT ANCESTOR. Can you do both?)
syn_connection <- connect(dbms = "duckdb", server = absoluteFileName)</pre>
## Connecting using DuckDB driver
querySql(syn_connection,
         sql = "SELECT COUNT(DISTINCT PERSON_ID) AS TOTAL_CELECOXIB_PRESCRIPTIONS
                FROM DRUG_ERA de
                LEFT JOIN CONCEPT c ON de.DRUG_CONCEPT_ID = c.CONCEPT_ID
                WHERE LOWER(c.CONCEPT_NAME) LIKE '%cele%';")
##
     TOTAL_CELECOXIB_PRESCRIPTIONS
## 1
disconnect(syn_connection)
syn connection <- connect(dbms = "duckdb", server = absoluteFileName)
## Connecting using DuckDB driver
querySql(syn_connection,
         sql = "SELECT COUNT(DISTINCT PERSON_ID) AS TOTAL_CELECOXIB_PRESCRIPTIONS
                FROM DRUG_EXPOSURE a
                LEFT JOIN CONCEPT_ANCESTOR b ON a.DRUG_CONCEPT_ID = b.DESCENDANT_CONCEPT_ID
                LEFT JOIN CONCEPT c ON b.ANCESTOR_CONCEPT_ID = c.CONCEPT_ID
                WHERE LOWER(c.CONCEPT_NAME) LIKE '%celecoxib%';")
     TOTAL_CELECOXIB_PRESCRIPTIONS
##
## 1
disconnect(syn_connection)
 12. During which period in time (calender start and end date) did people start a celecoxib prescription
    from the synthetic dataset?
syn_connection <- connect(dbms = "duckdb", server = absoluteFileName)</pre>
```

Connecting using DuckDB driver

disconnect(syn_connection)