Visual rhetoric and R graphics for the R novice

ME447 Visualizing Data Fall 2017–18

Richard Layton

We cover three main topics today to introduce the course.

Samples

Wk		Agenda
О	R	[tut] Course goals & outcomes
	F	Graphical limitations, portfolio
1	M	[tut] D1 Scatterplots
	T	[tut] Data basics
	R	Discuss today's reading:
	F	[tut] Markdown basics
2	М	[tut] D2 Dot plots
	T	[tut] Subsetting data
	R	Present and discuss D1+critique
	F	[tut] Document design 1
3	М	[tut] D ₃ Multiways
	T	[tut] Reshaping data
	R	Discuss today's reading:
	F	[tut] Basic file management

Calendar, syllabus, resources

The course is about visual rhetoric: reasoning about quantitative data.

data carpentry and statistics technical communication human perception display design ethics

Creating effective data graphics requires curiosity, imagination, critical thinking, and software fluency.

Draft different displays to explore the data.

Evalute the context for the compelling story.

Redesign the display to reveal your reasoning.

The data – its type and organization – constrains your display design options.

Samples: how data type helps determine graph type

Univariate data: show the data jittered

Univariate data: box-plot

Individual letter grade in a course for transfer (Tfr) and non–transfer (Non) students

Survey responses: diverging stacked bar

Categorical data: dot plot

Number of students

Categorical data: Sankey diagram

Categorical data: Mosaic plot

KSWAT 41st bring medical care to children (2008) by DanielWest, https://www.dvidshub.net/image/103082/. Funeral of seaman Jesse Pelham (2000) by Jeff Hall, https://www.dvidshub.net/image/1081508/.

Bivariate data: Small multiples

Time series data: Small multiples

Unemployment in Europe, 2004–2014

Cyclic data: Cycle plot

Yearly trends in arctic ice by month, 1978–2010

Tri-variate data: Co-plot

Ozone level as a function of temperature and solar radiation

Ozone Level

Temperature (F)

Four-dimensional data: Co-plot

Life expectancy as a function of

- income
- level of literacy
- geographic region

Multivariate data: scatterplot matrix

Blood pressure in heart disease patients under 50

Spatial data: Maps

Birthplaces of US presidents, 1797 –2014

Creating original designs

Implications for the designer

Grasp the structure of your data.

Explore the data using graph types suited to the data.

Create new designs when conventional designs fail to tell the story.

