Notater til forelesning 2– Grunnleggende mikroøkonomi

Optimal tilpasning ved frikonkurranse

Maks
$$T(q) = p \cdot q - c(q) - F$$

$$\frac{dT}{dq} = p - \frac{dc}{dq} = 0$$

Praktisk problem 2.1

Anta at det er fullkommen konkurranse i markedet for produksjon av mobiltelefoner. Markedsetterspørselen for mobiltelefoner er gitt ved en lineær etterspørsel: $Q^D = \frac{6000 - 50P}{9}$ Det er 50 produsenter i markedet for produksjon av mobiltelefoner

De totale kostnadene for hver produsent er gitt ved: $TC(q) = 100 + q^2 + 10q$ Marginale kostnader er: MC(q) = 2q + 10

- a. Vis at bedriftene maksimerer sin profitt ved å produsere $q = \frac{P-10}{2}$
- b. Vis at markedets tilbudskurve er lik $Q^D=25P-250$
- c. Finn optimal pris og kvantum i markedet
- d. Hva er optimalt kvantum for hver bedrift? Vis at hver bedrift oppnår null i profitt ved markedslikevekt

Løsning av Praktisk Problem 2.1

Ettersporsel:
$$Q = 6000 - 50P$$

 $MC(q) = 2q + 10$

a) Optimal tilpasning for en bedrift,
$$P=NC$$

$$P = 29 + 10 = 0$$

$$q = \frac{P - 10}{2}$$

Til bud:
$$S = 50 \cdot q^* = 50P - 500 = 25P - 250$$

C) Markedslikevelet, E=T

$$\frac{6000 - 50P}{9} = 25p - 250 \Rightarrow P = 30 \text{ og } P = 500$$

d, Optimalt kvantom per bedrift, PEMC

$$TT(q) = 30 \cdot 10 - (100 + 10^2 + 10 \cdot 10) = 0$$

Optimal tilpasning ved frikonkurranse

Optimal tilpasning ved monopol

Invers ettersporsel:
$$P(q) = A - BQ$$

Inntent: $R(Q) = PQ = (A - BQ)Q = AQ - BQ^2$
Marginal inntent: $MR(Q) = \frac{dR}{dQ} = A - 2BQ$
Profett: $T(Q) = R(Q) - C(Q) - F$
maks $T: \frac{dT(Q)}{dQ} = \frac{dR(Q)}{dQ} - \frac{dC(Q)}{Q} = D MR(Q) = MC(Q)$

Praktisk problem 2.2

Anta nå at det er monopol i markedet for produksjon av mobiltelefoner. Monopolisten har 50 like fabrikker, med samme kostnadsfunksjon per fabrikk som i 2.1: $TC(q) = 100 + q^2 + 10q$ Markedsetterspørselen for mobiltelefoner er gitt ved en lineær etterspørsel lik: $Q^D = \frac{6000 - 50P}{9}$

Marginale kostnader for monopolisten er lik: MC(q) = 10 + Q/2

- a. Vis at monopolistens marginalinntekts funksjon er: $MR(Q) = 120 \frac{18Q}{50}$
- b. Vis at monopolistens optimale produksjon er $Q_M=275$. Hva er den optimale prisen for monopolisten?
- c. Hva blir profitten for hver fabrikk?

Løsning av Praktisk Problem 2.2

a. Vis at monopolistens marginalinntekts funksjon er: $MR(Q) = 120 - \frac{18Q}{50}$

Etterspærsel:
$$Q = 6000 - 50P$$

9

Invers etterspærsel: $P(Q) = 6000 - 9Q = 120 - 9Q$

50

 $Q = 120 - 9Q$

- b. Vis at monopolistens optimale produksjon er $Q_M=275$. Hva er den optimale prisen for monopolisten?
- c. Hva blir profitten for hver fabrikk?

$$120 - 18Q = 10 + Q = 275$$
 = $Q = 275$ og $P' = 70.5$

C) Produksjon per fabrikk:
$$q = \frac{275}{50} = 5.5$$

$$\pi(q) = 70.5.5.5 - (100 + 5.5^2 + 10.5.5) = 202.5$$

Optimal tilpasning for monopolist

Praktisk problem 2.3

Anta nå at det er fullkommen konkurranse i markedet for produksjon av mobiltelefoner, som i PP 2.1, og finn konsument- og produsentoverskudd.

- a. Vis at når Q^c = 500 og P^c = 30 per enhet, så vil konsumentoverskuddet være lik 22 500 og produsentoverskuddet være lik 5 000.
- b. Vis nå at en produksjon på 275 enheter vil gi et samfunnsøkonomisk overskudd på 21 931,25

Løsning av Praktisk Problem 2.3

Vis at når Q^{C} = 500 og P^{C} = 30 per enhet, så vil konsumentoverskuddet være lik 22 500 og produsentoverskuddet være lik 5 000.

Etters poisel:
$$P = 120 - \frac{90}{50}$$

Tilbud: $P = 10 + \frac{9}{25}$

Optimal tilpasning for samfunnet: Q = 500 P=30

Konsumentourswad: (120-30).500 = 22500

b) Vis nå at en produksjon på 275 enheter vil gi et samfunnsøkonomisk overskudd på 21 931,25

Konsumentoverskuold:

$$(120-70.5).275 = 6806.25$$

Produsent oursworld:

= 15125

samfonnsallo, ourslevold:

