NPTEL MOOC, JAN-FEB 2015 Week 4, Module 1

DESIGNAND ANALYSIS OF ALGORITHMS

Shortest paths in weighted graphs

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Recall that ...

- * BFS and DFS are two systematic ways to explore a graph
 - * Both take time linear in the size of the graph with adjacency lists
- * Recover paths by keeping parent information
- * BFS can compute shortest paths, in terms of number of edges
- * DFS numbering can reveal many interesting features

Adding edge weights

- * Label each edge with a number—cost
 - * Ticket price on a flight sector
 - * Tolls on highway segment
 - * Distance travelled between two stations
 - * Typical time between two locations during peak hour traffic

Shortest paths

- * Weighted graph
 - * G=(V,E) together with
 - * Weight function, w: E-Reals
- * Let $e_1=(v_0,v_1)$, $e_2=(v_1,v_2)$, ..., $e_n=(v_{n-1},v_n)$ be a path from v_0 to v_n
- * Cost of the path is $w(e_1) + w(e_2) + ... + w(e_n)$
- * Shortest path from v₀ to v_n: minimum cost

Shortest paths ...

- * BFS finds path with fewest number of edges
- * In a weighted graph, need not be the shortest path

Shortest path problems

- * Single source
 - * Find shortest paths from some fixed vertex, say 1, to every other vertex
 - * Transport finished product from factory (single source) to all retail outlets
 - * Courier company delivers items from distribution centre (single source) to addressees

Shortest path problems

* All pairs

- * Find shortest paths between every pair of vertices i and j
- * Railway routes, shortest way to travel between any pair of cities

This lecture...

- * Single source shortest paths
- * For instance, shortest paths from 1 to 2,3,...,7

- * Imagine vertices are oil depots, edges are pipelines
- * Set fire to oil depot at vertex 1
 - * Fire travels at uniform speed along each pipeline
- * First oil depot to catch fire after 1 is nearest vertex
- * Next oil depot is second nearest vertex

*

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

Algorithmically

- * Maintain two arrays
 - * BurntVertices[], initially False for all i
 - * ExpectedBurnTime[], initially ∞ for all i
 - * For ∞, use sum of all edge weights + 1
- * Set ExpectedBurnTime[1] = 0
- * Repeat, until all vertices are burnt
 - * Find j with minimum ExpectedBurnTime
 - * Set BurntVertices[j] = True
 - * Recompute ExpectedBurnTime[k] for each neighbour k of j

Dijkstra's algorithm

```
function ShortestPaths(s){ // assume source is s
 for i = 1 to n
   BV[i] = False; EBT[i] = infinity
 EBT[s] = 0
 for i = 1 to n
   Choose u such that BV[u] == False
                      and EBT[u] is minimum
   BV[u] = True
   for each edge (u,v) with BV[v] == False
    if EBT[v] > EBT[u] + weight(u,v)
      EBT[v] = EBT[u] + weight(u,v)
```

Dijkstra's algorithm

```
function ShortestPaths(s){ // assume source is s
 for i = 1 to n
   Visited[i] = False; Distance[i] = infinity
 Distance[s] = 0
 for i = 1 to n
   Choose u such that Visited[u] == False
                    and Distance[u] is minimum
   Visited[u] = True
   for each edge (u,v) with Visited[v] == False
    if Distance[v] > Distance[u] + weight(u,v)
      Distance [v] = Distance [u] + weight (u,v)
```