Advanced Topics in Deep Learning: Recurrent Neural Networks

Anders Søgaard

Previous Lectures

Forward propagation

Error estimation

Parameter updates

Week	Lecturer	Subject	Literature	Assignment
1	Stefan	Introduction to Neural Networks.	d2l 2.1-2.5, 2.7, 11.5.1, slides	
2	Stefan	CNNs; FCNs; U-Nets. Data augmentation; invariance; regularization e.g. dropout	d2l 6, 7, slides	Assignment 1 (May 10)
3	Anders/Phillip	RNNs (May 9) and Transformers (May 11)	Transformers: <u>Vaswani et al. (2017)</u> ₽	Assignment 2 (May 17)
			Autoencoders (1/2): tba	
4	Phillip/Anders	May 16-18: Representation Learning	Self-supervised learning: <u>blog post</u> ₽	
			Contrastive learning: <u>Dor et al. (2018)</u> ₽	
			Autoencoders (2/2): <u>Chandar et al. (2011)</u>	Assignment 3 [MC on Representation Learning/1p
5	Anders	May 23-25: Adversarial Learning	GANs: <u>Lample et al. (2018)</u> ₽	Report on Adversarial
			Applications: <u>Goodfellow et al. (2015)</u> ಶ	Learning] (May 31)
6	Anders	May 30-June 1: Interpretability	Literature: <u>Søgaard (2022)</u> ₽	
7	Anders	June 8: Interpretability (Note: June 6 off)	Literature: Feng and Boyd-Graber (2018) &; Jiang and Senge (2021) &	
8	Anders	June 13-15: Best Practices	Literature: <u>Dodge et al. (2019)</u> ਫ and <u>Raji et al. (2021)</u> ਫ	Assignment 4 [MC on Interpretability; 1p Report on Best Practices] (June 21)

This Lecture

- Word Embeddings (Recap)
- Recurrent Neural Networks
- RNNs for Embeddings

Word Embeddings

Representing Text

- ullet One-hot vector over a vocabulary of V word types $w \in \mathcal{R}^{|V|}$
- Continuous dense vector with E dimensions (word embedding)

$$x\in \!\! \mathcal{R}^{|E|}$$

One-hot -to- word embedding is a lookup function

Why learn Embeddings?

- Overcome sparsity of one-hot vectors
- Cosine similarity will tell us the angle formed between vectors A and B, where A and B are representations of the different terms

banana

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

$$= \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Type-based Skip-gram Embeddings

• Skip-gram embeddings are learned in the context of **predicting the** surrounding words w_{i-|C|}, w_{i+|C|}, given the target word w_t

$$\log \mathrm{p}(w_c|w_t) := \mathrm{softmax}(W_{out}W_{in}w_t)$$

Softmax doesn't scale so you can use noise-contrastive estimation

$$\sum_{t=1}^T \left[\sum_{c \in \mathcal{C}_t} \ell(s(w_t, w_c)) + \sum_{n \in \mathcal{N}_{t,c}} \ell(-s(w_t, n))
ight] \quad s(w_t, w_c) \, = \, \mathbf{u}_{w_t}^ op \mathbf{v}_{w_c} \, .$$

Type-based FastText Embeddings

- The main shortcoming of type-based embeddings is how should we deal with out-of-vocabulary tokens?
- FastText proposes to split words into all sequences of 3−6 characters and learn embeddings z_g for each sequence

subwords (where)

FastText

$$s(w,c) = \sum_{g \in \mathcal{G}_w} \mathbf{z}_g^{ op} \mathbf{v}_c$$

$$s(w_t, w_c) = \mathbf{u}_{w_t}^{\top} \mathbf{v}_{w_c}$$

Recurrent Neural Networks

Recurrent Neural Networks

 The order of the words in a sentence is not random. The order often conforms to rules of syntax and semantics.

 An averaged embedding representation of a sentence does not capture the difference in these sentences.

Applications of RNNs

Classification

Text Categorization

- Sequence encoding
 - Sentence similarity

- Autoregressive modelling
 - Machine translation

Simple RNN: Definition

w: Explaining the Simple RNN model t:

Output vector

$$\mathbf{o_t} = \mathbf{W_o}\mathbf{h_t} + \mathbf{b_o}$$

Hidden state

$$\mathbf{h}_{t} = \mathbf{f}(\mathbf{W}_{x}\mathbf{x}_{t} + \mathbf{W}_{h}\mathbf{h}_{t-1} + \mathbf{b}_{h})$$

Embedded word

$$\mathbf{x_t} = \mathbf{E}[\mathbf{w_t}]$$

1-hot vector

$$\mathbf{w_t} = [\mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1}]$$

Unrolled Simple RNN

This is a feed-forward neural network that has depth-in-time.


```
class SingleRNN(nn.Module):
         def __init__(self, n_inputs, n_neurons):
 2
 3
             super(SingleRNN, self).__init__()
 4
 5
             self.Wx = torch.randn(n_inputs, n_neurons) # 4 X 1
 6
             self.Wy = torch.randn(n_neurons, n_neurons) # 1 X 1
 7
 8
             self.b = torch.zeros(1, n_neurons) # 1 X 4
 9
         def forward(self, X0, X1):
10
             self.Y0 = torch.tanh(torch.mm(X0, self.Wx) + self.b) # 4 X 1
11
12
             self.Y1 = torch.tanh(torch.mm(self.Y0, self.Wy) +
13
                                 torch.mm(X1, self.Wx) + self.b) # 4 X 1
14
15
             return self.Y0, self.Y1
16
```

Exercise: What is this?

Padding data in RNNs

X

My	favourite	car		
The	car	with	red	wheels
The	car			
The	small	car		

Padded X

The	small	car		>
The	car		>	>
The	car	with	red	wheels
My	favourite	car	<	>

Loss masking in RNNs

Padded X

The	small	car		
The	car			
The	car	with	red	wheels
My	favourite	car		

Mask

1	1	1	0	0
1	1	0	0	0
1	1	1	1	1
1	1	1	0	0

Training Autoregressive RNNs

Objective

$$-\sum_{i=1}^{n} \sum_{t=1}^{T} \log p(x_t^i | x_{< t}^i)$$

Simple RNN: Extra Notes

• What about the initial hidden state?

Why are we reusing the transition vectors?
 Why Wx Wo

Multi-layer RNN

Recurrent Neural Networks can also have layer-wise depth

Second layer

$$\mathbf{h_t^2} = \mathbf{f}(W_{hh2}h_t + W_h^2h_{t-1}^2 + b_h^2)$$

Bidirectional Networks

- Alternatively, we can encode the sequence in reverse.
- This "bidirectional" model provides a richer representation.

Bi-Directional Networks

 Now we can train our classifiers on a concatenation of the forward and backward representations of the sequence

$$egin{aligned} \mathbf{h}_t &= f(\mathbf{h}_{t-1}, \mathbf{x}_t) \qquad \overleftarrow{\mathbf{h}_t} = f(\overleftarrow{\mathbf{h}_{t-1}}, \mathbf{x}_t) \ \mathbf{h}_t &= [\mathbf{h}_t \oplus \overleftarrow{\mathbf{h}_t}] \end{aligned}$$

RNNs for Embeddings

Autoregressive Recurrent Neural Networks

- Elman-style model (Cognitive Science, 1990)
 - LSTM (Hochreiter and Schmidhuber, 1997)
 - Gated Recurrent Unit (Cho et al. 2014)

ullet Create a **contextualized representation** of a word in the sequence of hidden states s_t

Contextual Embeddings from Language Models

- Represent each token using multi-layer bidirectional LSTMs.
- Final representation is a weighted sum of the representations at the different layers in the model

