

Our objective is to develop a machine learning model that can quickly classify whether an entity from Exiger's dataset is a person or company.

Our Goal

- 1. Create accurate and efficient features that can be implemented in our model.
- 2. Group the different languages into language groups. Ex: Latin, CJK.
- 3. Split data for equal distribution of languages in both test and training set.
- 4. Test different models like Decision Tree, Random Forest, Logistic regression ect.
- 5. Create a model with high precision, recall and f1 score above 90%.
- 6. Overall, our product needs to differentiate between Person and Company entities quickly, efficiently, and accurately.

Business Impact

- Clients of Exiger frequently don't distinguish between names of people and companies. This is a challenge because exigers' product strategies vary depending on whether they are working with a person or a business.
- Updating the current rules based system to a machine learning model will make improvements and upkeep easier for the developers who work with this data

Our Approach

Resources We Leveraged

StackExchange

Data Preprocessing

Our Data Set

- Given to us by Exiger
- CSV File: Entity_Type_Detector_Data_Set.csv
- There are 10000 entities in total.
 5717 person entities and 4282
 Company entities.
- Two columns: entity name, entity type(Person or Company)
- In multiple languages

Feature Engineering - Language Detection

- Many iterations before we settled on alphabet detect
- Detects the alphabet being used NOT the language
- 17 separate alphabets
- We could see the split of different alphabets in the dataset
- This feature is critical to making sure many other features work effectively
- This also ensured we could split the data set properly

langs_ad	Entity Type	Entity Name	
LATIN	Person	M@MM@DOV,Zaur	5782
CYRILLIC	Company	ОШ МАМЛЕКЕТТИК УНИВЕРСИТЕТИ МЕКЕМЕСИ	3690
LATIN	Company	Aeropuerto de Santa Isabel	2494
LATIN	Company	KCRAM	132
CJK	Person	马瑞云	5338
CJK	Person	青柳真	6626
LATIN	Company	Outer Islands Development Corporation (OIDC)	1956
LATIN	Company	National Life Insurance Company	2131
HIRAGANA	Person	いむらひでや	6736
LATIN	Person	Shihab Reza	8803

LATIN	7867
CJK	924
CYRILLIC	308
HANGUL	277
ARABIC	256
DEVANAGARI	52
SINHALA	36
HEBREW	36
MYANMAR	34
ARMENIAN	33
THAI	33
GEORGIAN	33
GREEK	31
LAO	31
HIRAGANA	28
KATAKANA	13
KATAKANA-HIRAGANA	7

Feature Engineering- Length Feature

- This feature shows how long the Entity name is
 - We decided to measure length in words or characters depending on the language
- For people the most common length 2
- There are almost no people names with a length greater than 10
- This feature is helpful for determining if an entity is a person since there are some distinct characteristics of people entities in terms of the length of the entity

2317	JS Air	Company	LATIN	2
6171	李向东	Person	CJK	3
412	Santa Maria Energias Renováveis S.A.	Company	LATIN	6

Feature Engineering- Comma and other punctuation feature

- These features determine which entities have a comma present, and which have other punctuation
- Why do we make this distinction?
 - In latin languages commas appear much more frequently in name entities
 - Company names tend to have more other instances of punctuation (eg period or dash)
- As mentioned people and company entities have different patterns when it comes to punctuation appearing in the entity name which makes this feature helpful

Feature Engineering- Contains Number Feature

John 99 Smith Vs. John Smith

- This feature identifies whether there is a number in the Entity Name.
- 83 entities in the dataset contain a number in the name
- This feature is beneficial because entities with numbers will most likely be companies.

John Smith Inc. Vs. John Smith

- This feature uses a list of company suffixes/prefixes, such as "Limited", "Inc.", "Co.", in multiple languages to recognize company entities.
- 1887 entities in the dataset contain a company prefix or suffix in their name
- This feature is beneficial because it can help with the issue of a company name being a person's name
- One of the most common words in our dataset was company suffixes and prefixes

Conjunction/Stopword Feature

	Entity Name	Entity Type	dup	conj_pres
624	Société Nationale d'Exploitation des Transport	Company	False	1/
5943	Amir Mansour Borghei	Person	False	0
5423	Cadmael Pech	Person	False	0
924	Aby Technical & Traning	Company	False	1

This feature identifies conjunction words from 39+ languages from within the entity

• spaCy Stopwords Package

The code inputs an entity name as a string and then outputs

- → 1 if there is a conj. word
- → 0 if there are no conj. words

Other Data Sets Used

Main_city.csv

- 3579 location names
- Mostly consist of names city names (Most commonly known cities around the world)
- All the countries
- US States Names
- Location names in a few other languages

는 · · · · · · · · · · · · · · · · · · ·		استونيا	
천안시		أثيوبيا	
청주시		فيجي	
춘천시 충주시	Korean	فنلندا	Λ la
태백시	Roreari	فرنسا	Arabic
통영시		الجابون	
파주시		غامبيا	
평택시		جورجيا	
포천시		3, ,,	

Counties and US States

Juan	.00
Virginia	
Washingto	n
West Virgi	nia
Wisconsin	
Wyoming	
United Sta	tes
Afghanista	n
Albania	
Algeria	
Andorra	
Angola	
Antigua an	d Barbuda
Argentina	
Armenia	
Australia	
Austria	
Azerbaijan	
Bahamas	
Bahrain	
Bangladesl	h
Barbados	

2080 Cities

city_ascii	
Tokyo	
Jakarta	
Delhi	
Manila	
Sao Paulo	
Seoul	
Mumbai	
Shanghai	
Mexico Cit	У
Guangzhou	1
Cairo	
Beijing	
New York	
Kolkata	
Moscow	
Bangkok	
Dhaka	
Buenos Air	es

Feature Engineering- Contains Location Name Feature

Why is this feature important?

- If an entity has a location name it is most likely a company
- Many companies around the world include the name of a city, country, state, etc.

Entity Name	Entity Type	has_city_list2
Eni Gabon S.A.	Company	
Jamaica Vacations	Company	
National Taiwan University of Science and Tech	Company	
ALBA Alimentos de El Salvador	Company	
Scotiabank Uruguay S.A.	Company	
Airports Company South Africa	Company	
Polyplas Dominicana - Grupo Diesco	Company	
Kingstronic (Hong Kong)	Company	
Africa Improved Foods Rwanda	Company	
Industriji Elettronići Iran	Company	
Institute of History of Academy of Sciences of	Company	
Bangladesh Municipal Development Fund	Company	
Jordan Insurance Company P.L.C	Company	
Trichem de Colombia S.A.	Company	
Mario Salvador Pérez Fleites	Person	
Telia Carrier Latvia SIA	Company	

Preview of the matches

- 721 matches
- Most entities classified are companies.

Feature Engineering- Contains Common Person name

names.csv

- 1249 common names
- Used to classify an entity as a Person Name
- Names around the world

A <mark>bdu</mark> l
Ana
Ying
Michael
Juan
Anna
Mary
Jean
Robert
Daniel
Luis
Carlos
James
Antonio
Josep <mark>h</mark>
Elena
Francisco
Marie

David

Feature Engineering- Contains Common Person name

- This feature checks if an entity contains a common person name.
- It turns the names data frame into a list and goes through the list the to look for matches.
- Classified 3148 entities as having a common person name in it.
- It contains many different languages and names from around the world. So we can avoid bias.

Model Selection and Evaluation

Key Definitions

- Machine Learning Model: program that is trained to recognize patterns in data
- **Ensemble Methods:** Machine learning method that utilizes the predictions of many models to classify a new datapoint
- Accuracy Metrics
 - AUC: percentage of random points in your distribution your model properly classifies.
 - **Precision:** Out of all your positive predictions, how many were actually correct?
 - **Recall:** Out of all the positives in the dataset, how many does our model capture?
 - **F1 Score:** Mathematical balance of precision and recall
- **Overfitting:** When a model fails to generalize well on new data because it pays too much attention to the particulars of the training dataset
- **Interpretable/transparent:** The level to which we understand how and why a model makes it's predictions

Algorithm Research and Selection

- Binary Classification Algorithms: identifies, out of two possible categories, which category an object belongs to
 - Logistic Regression
 - Gradient Boosted Descent
 - K-Nearest Neighbors (KNN)
 - Decision Tree
 - Random Forest
- Using GridSearch CV and Hyperopt to find the best parameters to improve these models
- We want precision, recall, and F1 score to be above 90%

Model Comparison

Model Name	Description	Results	Pros	Cons
K-Nearest Neighbors	Uses proximity to make classifications or predictions about the grouping of an individual data point	AUC = 92.8% Precision = 83.8% Recall = 94.6% F1 Score = 88.9%	→ Simple→ It constantly evolves	→ Can be slow with large datasets→ Dimensionality
Logistic Regression	Logistics regression uses a sigmoid function to return the probability of a label	AUC = 89% Precision = 79% Recall = 91.6% F1 Score = 84.8%	→ Easy to implement→ Easy to update	→ Sensitive to Outliers→ Overfitting
Gradient Boosted Decent	Trains simple models on the errors of previous models thereby having each new model focusing on the weaknesses of the previous iteration	AUC = 97% Precision = 91% Recall = 85% F1 Score = 88%	→ No data preprocessing→ Flexible	 → Less interpretable → Overfitting → Requires a lot space and time
Random Forest	Generates a group of decision trees and takes the majority vote to classify information	AUC = 96% Precision = 89% Recall = 83% F1 Score = 86%	 → Does not tend to overfit → Will adapt well to more features being added → No scaling needed 	→ Less interpretable→ Slow with large datasets

Graphics For Top 2 Non-Ensemble Models

true-negitive: 715 false-positive: 349 false-negative: 122 true-positive: 1314

true-negitive: 801 false-positive: 263 false-negative: 77 true-positive: 1359

Graphics For Top 2 Ensemble Models

true-negitive: 1315 false-positive: 108 false-negative: 181 true-positive: 896

true-negitive: 1319 false-positive: 104 false-negative: 166 true-positive: 911

Feature Importance

- The features we developed were essential for our model's accuracy results
- Originally, precision, recall and f1 scores were unbalanced
- Adding two features, Common Locations and Common Person Name feature, balanced the scores by decreasing precision and increasing recall

```
1 : has_co : 0.2804136353974996
2 : comma : 0.1848945800923264
3 : word count : 0.1802361832772355
```

: has_common_person_name : 0.14484488080740693

5 : other_punc : 0.04171280646882276

6 : CJK : 0.03498327178866768

7 : conj_pres : 0.034023449345622146

3 : LATIN : 0.023757466586668708 9 : HANGUL : 0.020493157686498134

10 : has city list2 : 0.017873764344333073

11 : CYRILLIC : 0.011554533771114183

12 : ARABIC : 0.00455218680357851

13 : has digit num : 0.004398011487520961

14 : KATAKANA : 0.0038325961331820333

15 : DEVANAGARI : 0.003103892972904334

6 : GEORGIAN : 0.0018592493590370595

17 : GREEK : 0.0016871448888725986

8 : ARMENIAN : 0.0016023895693279035

19 : SINHALA : 0.0009784497831248013

20 : HEBREW : 0.0009315323696047536

21 : MYANMAR : 0.0007158639955576728

22 : THAI : 0.000568366471036491

23 : HIRAGANA : 0.000534031662373374

24 : LAO : 0.0004485549376843315

25 : MASCULINE : 0.0

26 : KATAKANA-HIRAGANA : 0.0

Final Model Selection

- We decided to choose the K Nearest Neighbors Model as our selection due to it having a higher F1 and recall score
 - The Gradient Boosted Descent is our runner up due to it's high level of precision and the fact that it's F1 score is within .9 of the KNN model
 - o It is also possible that given more time on hyperparameter optimization it could achieve better results as there are many untested hyperparameters

Final Thoughts

What We Learned

- We learned how to navigate through a multitude of different language groups with contrasting grammar, punctuation, and linguistics
- New hyperparameter optimization tools
- Some new material we learned:
 - Delved into feature engineering
 - Web-scraping
 - Natural language processing
 - o API's
 - Language Detection

Potential Next Steps

Analyze model errors to discern how to improve accuracy

Concentrate on further developing + improving our features

Further fine-tune and optimize model hyperparameters

Aim for even higher accuracy, precision, f1 and recall scores