

-Informe 03-

Laboratorio de Máquinas: Ensayo de un grupo electrógeno

Felipe Olivares Acevedo Escuela de Ingeniería Mecánica Pontificia Universidad Católica de Valparaíso cristobal.galleguillos@pucv.cl

19 de octubre de 2020

${\rm \acute{I}ndice}$

1.	Introducción	3
2.	Revisión de la literatura	4
3.	Desarrollo3.1. Esquema de Instalación3.2. Identificación de los elementos3.3. Procedimiento de trabajo3.4. Datos3.5. Formulas y ecuaciones empíricas3.6. Análisis y gráficos	() () ()
4.	Conclusiones	10
5.	Anexos	11

1. Introducción

El objetivo de este documento es analizar el comportamiento de un motor de combustión interna en aplicación a un grupo electrógeno, luego se procederá calcular el costo de los Kwh generados y determinar un punto óptimo de funcionamiento en base a eso.

2. Revisión de la literatura

El diésel o dísel, también denominado gasóleo o gasoil, es un hidrocarburo líquido de densidad sobre 850 kg/m^3 (0,850 g/cm³@15°C). Para el calculo de costos se utilizo un promedio del valor máximo, medio y mínimos del valor del Diesel entre un periodo del 06-jul-2020 al 12-oct-2020. Estos datos fueron extradaidos de GlobalPetrolPrice¹.

 $^{^{1} \}rm https://es.global petrol prices.com/Chile/diesel _{p} rices/$

3. Desarrollo

3.1. Esquema de Instalación

La obtención de potencia del motor se realiza de acuerdo al esquema presentado en la siguiente Figura 1:

Figura 1: Detalles de la instalación

Diagrama del generador:

Figura 2: Esquema de un generador

Figura 3: Esquema Instalación

3.2. Identificación de los elementos.

a) Identificación del motor

- Marca: Bedford (GM Inglaterra)
- Modelo: 350D Argentino
- Encendido por compresión, 4 tiempos, aspiración natural, enfriado por agua.
- Numero de cilindros: 6

b) Identificación de la transmisión

- Por correas en V
- Numero de correas: 8
- Relación de transmisión motor alternador aproximadamente 1,5:1

c) Identificación alternador

- Marca: AEG
- Auto excitado con rectificador de estado solido

3.3. Procedimiento de trabajo.

Procedimiento de adquisición de datos sugerido:

- Poner en marcha el motor y llevarlo a la velocidad de 52 [Hz].
- Poner la resistencia hidráulica a fondo.
- Conectar la carga.
- Verificar la frecuencia y reajustar alrededor de los 52 [Hz] si estábajo los 48 [Hz]. Continuar con este criterio durante todo el ensayo.
- Tomar la primera serie de valores de acuerdo con la tabla. Los valores de lectura instantánea, tomarlo una vez que se haya consumido la mitad del combustible de la probeta en uso.

- Terminada la medición de tiempo de consumo, rellenar probeta e inmediatamente iniciar la segunda lectura con el incremento de carga que se lograra en forma automática por la disminución de la resistencia por aumento de la temperatura del agua. Consumida la mitad de la probeta leer valores instantáneos.
- Seguir con el procedimiento análogo al descrito hasta que se llegue a plena carga o la ebullición del agua en la resistencia hidráulica muy violenta

3.4. Datos

Datos previos:

• El volumen de la bureta a ensayar : 375cm³.

• Densidad del combustible Diésel : 0,850 g/cm³.

• Costo del combustible : 485 [\$/lt.]

• Factor de Potencia: 0.8

Valores medidos / obtenidos por software / etc.

	Variables eléctricas							Combu	ustible
#	I1 [A]	12 [A]	13 [A]	V2 [V]	V2 [V]	V3 [V]	f [Hz]	Vol [cm3]	t [s]
1	26	26	27	404	404	404	51,5	375	150
2	28	29	29	402	402	402	51	375	146
3	39	39	37	400	400	400	50,5	375	132
4	42,5	42,6	40,9	400	400	400	50	375	125
5	46,4	46,5	44,6	399,9	399,9	399,9	50	375	120

Figura 4: Datos obtenidos en el laboratorio.

Los parámetros a calcular serán los siguientes:

 P_{el} : Potencia eléctrica en los bornes del alternador

 \mathbf{b}_{el} : Consumo específico en los bornes del alternador.

 Q_{cb} : Caudal volumétrico de combustible.

 C_{kwh} : Caudal volumétrico de combustible.

3.5. Formulas y ecuaciones empíricas.

Corriente media:

$$I_m = \frac{I_1 + I_2 + I_3}{3} [A] \tag{1}$$

Tensión media:

$$V_m = \frac{V_1 + V_2 + V_3}{3} [V] \tag{2}$$

Potencia electrica:

$$P_{el} = \cos\phi * V_m * I_m[W] \tag{3}$$

Consumo específico en bornes alternados:

$$b_{el} = \rho_c * \frac{\dot{Q}_{cb}}{P_{el}} \left[\frac{kg}{kWh} \right] \tag{4}$$

Costo del Kwh generado:

$$C_{Kwh} = \frac{\dot{Q}_{cb} * c}{P_{el}} \left[\frac{\$}{kWh}\right] \tag{5}$$

	Valores C	alculados						
#	Im Vm		Pel	Pef	bel	bef	С	
	[A]	[V]	[KW]	[CV]	[Kg/Kw*h]	[Kg/CV*h]	[\$/Kw*h]	
1	26,3333333	404	18,4048933	29,9999761	415,650331	255,000203	279,017869	
2	28,6666667	402	19,93652	32,4965276	394,23074	241,85935	264,639321	
3	38,3333333	400	26,5266667	43,2384667	327,714821	201,052037	219,988496	
4	42	400	29,064	47,37432	315,854666	193,775868	212,027007	
5	45,8333333	399,9	31,7087375	51,6852421	301,573029	185,014128	202,440026	

Figura 5: Datos Calculados.

3.6. Análisis y gráficos

Curvas de consumo específico del motor y del grupo en función de la carga (corriente).

Figura 6: Gráfico Consumo especifico en función de la carga.

Figura 7: Gráfico Costo kwh generado en función de la carga.

¿Existe alguna fórmula que relacione las RPM con la frecuencia, si es así a cuantas RPM funcionó el motor?

Un hertz equivale a 60 revoluciones por minuto, osea 1 hertz = 1 revolución/segundo. Multiplicando la frecuencia por 60 obtendríamos algo como esto : $52 \text{ hertz} = 52 \text{ Hz} \times (60 \text{ segundos/minuto}) = 52 \text{ (revoluciones/segundos)} \times (60 \text{ segundos/minuto}) = 3120 \text{ revoluciones/minuto} = 3120 \text{ RPM}.$

Determinación del punto de funcionamiento óptimo.

Si observamos los datos de la figura 5, en la columna C de costos por kWh generado, el punto de medición 5 es cuando más dinero ahorramos. sin embargo no sabemos si existirá un valor menor mas adelante debido a que es el ultimo punto de medición. Contamos con valores de medición otorgados por el fabricante el cual estarán en el anexo de este informe, a partir de esos valores se calcularon los parámetros anteriormente mencionados. Se observa la medición numero 10 como un punto de funcionamiento óptimo basado en los valores medidos del fabricante.

100	Valores Ca	alculados			8	
#	Im	Vm	Pel	Pef	bel	Costo
2	[A]	[V]	[KW]	[CV]	[Kg/Kw*h]	[\$/Kw*h]
1	22,16666667	363,3333333	13,93322778	22,71116128	483912,5874	334,8876037
2	23,33333333	369	14,8953	24,279339	4 59762,0154	318,1744052
3	26,43333333	394,3333333	18,03273189	29,39335298	385102,1846	266,5067021
4	29,1	400,7333333	20,1741182	32,88381267	356322,8058	246,5901771
5	31,86666667	396,3	21,8477548	35,61184032	343172,5543	237,489657
6	36,23333333	385,4	24,15828513	39,37800477	325917,6095	225,5485187
7	38,16666667	392,0333333	25,88530761	42,19305141	319289,5898	220,9616538
8	41,4	386,8666667	27,7081644	45,16430797	314790,1059	217,8478241
9	44,66666667	388,0666667	29,98720489	48,87914397	311741,9204	215,7383532
10	48,26666667	381,6666667	31,86967556	51,94757116	308059,6723	213,1900846
11	54,06666667	405,5666667	37,93481336	61,83374577	323798,5351	224,0820312
12	62,03333333	397,3666667	42,64446348	69,51047547	309863,3591	214,4383108
13	65,56666667	394,7666667	44,77851459	72,98897878	322098,1548	222,9052974
14	69,73333333	396,4333333	47,82518876	77,95505767	326177,7111	225,7285198
15	73,36666667	385,5	48,9293305	79,75480872	350398,7884	242,490511

Figura 8: Valores calculados a partir de las mediciones del fabricante.

4. Conclusiones

Comparando los valores obtenidos en tabla tanto como los que se calcularon a partir de los datos medidos en el laboratorio como por los que otorgo el fabricante, podemos concluir que el punto mas óptimo de funcionamiento es cuando la carga media esta entre un rango de 40 a 50 [A] Al calcular el valor del KWh en una boleta de Chilquinta se obtiene un valor de app. \$126,16 comparándolo con el valor óptimo del grupo electrógeno se logra apreciar que es un 78,87% más caro generar energía a través de un grupo electrógeno

5. Anexos

Figura 9: Placa del generador electrico AEG

Mediciones	corriente 1 [A]	corriente 2 [A]	corriente 3 [A]	voltaje 1 [V]	voltaje 2 [V]	voltaje 3 [V]	frecuencia [Hz]	vol. Comb [cm^3]	tiempo consumo combustible	tiempo [s]
1	22,3	22,5	21,7	330	370	390	52,5	375	2'50,19"	170,19
2	24	22,4	23,6	350	360	397	52,5	375	2'47,56"	167,56
3	26,3	26,9	26,1	391	382	410	52,5	375	2'45,24"	165,24
4	29,1	29,5	28,7	399	394	409,2	52	375	2'39,63"	159,63
5	31,9	32,4	31,3	389,4	392,3	407,2	52	375	2'33,05"	153,05
6	38,4	35,7	34,6	359,5	390,9	405,8	51,5	375	2'25,74"	145,74
7	38	38,8	37,7	388,8	387,9	399,4	51	375	2'18,84"	138,84
8	41,2	42,2	40,8	393,7	385,2	381,7	50,5	375	2'11,56"	131,56
9	44,5	45,6	43,9	389,2	381,9	393,1	50	375	2'02,72"	122,75
10	48	49,2	47,6	372,7	375,1	397,2	49,8	375	1'56,88"	116,88
11	46,9	58,6	56,7	403,6	409,7	403,4	53,5	375	1'33,42"	93,42
12	60,9	63,7	61,5	394,2	382,6	415,3	52,5	375	1'26,84"	86,84
13	65,3	66,9	64,5	378,9	391,5	413,9	52	375	1'19,56"	79,56
14	69,2	71,1	68,9	391,7	386,4	411,2	51	375	1'13,77"	73,56
15	73,1	74,7	72,3	370,1	382,7	403,7	50	375	1'06,93"	66,93

Figura 10: Mediciones del fabricante.