Piyush Chouhan Lookalike

January 24, 2025

1 Piyush_Chouhan_Lookalike.ipynb

2 Task 2: Lookalike Model

The goal of this notebook is to: 1. Use customer and transaction data to recommend 3 similar customers for each user. 2. Use a similarity measure to assign scores to recommended customers. 3. Generate a CSV file with recommendations for the first 20 customers.

```
[2]: # Import necessary libraries
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.preprocessing import StandardScaler
import numpy as np
```

2.1 Step 2: Load the Data

We will load the Customers.csv, Products.csv, and Transactions.csv datasets.

```
[3]: # Load datasets
    customers = pd.read_csv('Customers.csv')
    transactions = pd.read_csv('Transactions.csv')
    products = pd.read_csv('Products.csv')

# Display the first few rows of each dataset
    print("Customers:")
    print(customers.head())

print("\nTransactions:")
    print(transactions.head())

print("\nProducts:")
    print(products.head())
```

Customers:

```
CustomerID CustomerName Region SignupDate

0 C0001 Lawrence Carroll South America 2022-07-10

1 C0002 Elizabeth Lutz Asia 2022-02-13
```

```
2 C0003 Michael Rivera South America 2024-03-07
3 C0004 Kathleen Rodriguez South America 2022-10-09
4 C0005 Laura Weber Asia 2022-08-15
```

Transactions:

	${\tt TransactionID}$	${\tt CustomerID}$	ProductID	${\tt TransactionDate}$	Quantity	\
0	T00001	C0199	P067	2024-08-25 12:38:23	1	
1	T00112	C0146	P067	2024-05-27 22:23:54	1	
2	T00166	C0127	P067	2024-04-25 07:38:55	1	
3	T00272	C0087	P067	2024-03-26 22:55:37	2	
4	T00363	C0070	P067	2024-03-21 15:10:10	3	

```
TotalValue Price
0 300.68 300.68
1 300.68 300.68
2 300.68 300.68
3 601.36 300.68
4 902.04 300.68
```

Products:

I	ProductID	${\tt ProductName}$	Category	Price
0	P001	ActiveWear Biography	Books	169.30
1	P002	ActiveWear Smartwatch	Electronics	346.30
2	P003	ComfortLiving Biography	Books	44.12
3	P004	BookWorld Rug	Home Decor	95.69
4	P005	TechPro T-Shirt	Clothing	429.31

2.2 Step 3: Preprocess the Data

We will: 1. Merge the datasets to create a complete customer profile. 2. Aggregate the data to generate a transaction history per customer.

Customer Profile:

Category Books Clothing Electronics Home Decor CustomerID C0001 114.60 0.00 2827.30 412.62

C0002	0.00	1025.46	0.00	837.28
C0003	0.00	122.36	1385.20	1217.82
C0004	1888.48	0.00	1355.74	2110.66
C0005	0.00	0.00	1180.38	853.86

2.3 Step 4: Compute Similarities

We will: 1. Normalize the customer profiles using StandardScaler. 2. Use cosine similarity to compute pairwise similarity scores between customers.

```
[5]: # Normalize the customer profile data
    scaler = StandardScaler()
    normalized_data = scaler.fit_transform(customer_profile)
    # Compute cosine similarity between customers
    similarity_matrix = cosine_similarity(normalized_data)
    # Create a DataFrame for the similarity matrix
    similarity_df = pd.DataFrame(similarity_matrix, index=customer_profile.index,__
     →columns=customer_profile.index)
    # Display a sample of the similarity matrix
    print("Similarity Matrix:")
    print(similarity_df.head())
   Similarity Matrix:
   CustomerID
                 C0001
                          C0002
                                   C0003
                                            C0004
                                                     C0005
                                                              C0006 \
   CustomerID
   C0001
              -0.402215 1.000000 0.175482 -0.446094 0.257825 0.235584
   C0002
   C0003
              0.648350 0.175482 1.000000 0.328565 0.932178 -0.734670
   C0004
              0.043313 -0.446094 0.328565 1.000000 0.092857 -0.005891
              C0005
   CustomerID
                 C0007
                          C0008
                                   C0009
                                            C0010
                                                        C0191
                                                                 C0192 \
   CustomerID
   C0001
              0.637812 -0.268011 0.171019 -0.381244
                                                  ... -0.059019
                                                              0.830892
   C0002
              0.166689 0.470266 0.588281 0.703980
                                                  ... -0.527737 -0.050379
   C0003
              0.996881
                       0.202597
                                0.198752 -0.372100
                                                  ... -0.448319
                                                              0.462407
              C0004
                                                  ... 0.068221 -0.451726
   C0005
              0.945695 -0.065768 0.508871 -0.144782 ... -0.240979
                                                              0.657526
   CustomerID
                                                              C0198 \
                 C0193
                          C0194
                                   C0195
                                            C0196
                                                     C0197
   CustomerID
             -0.382490 0.576188 -0.030011 -0.719949 0.461473 -0.173126
   C0001
   C0002
             -0.374197
                       0.036706 0.426021 0.311911
                                                  0.409603 0.762741
   C0003
             -0.605579 0.316061
                                0.610345 -0.146110
                                                  0.919496 -0.064460
              0.104261 -0.379710 0.422922 0.433344 0.165504 -0.839495
   C0004
```

```
C0005
           -0.431373 0.220120 0.349060 -0.392847 0.967956 0.213940
CustomerID
               C0199
                         C0200
CustomerID
C0001
           0.165667 -0.756913
C0002
           0.522735 0.116516
C0003
           0.840167 -0.867465
C0004
           0.330655 -0.335804
C0005
           0.817298 -0.918261
```

[5 rows x 199 columns]

2.4 Step 5: Recommend Top 3 Lookalike Customers

We will: 1. Find the top 3 most similar customers for each customer. 2. Store the results in a dictionary.

```
[6]: # Function to get top 3 similar customers
     def get_top_3_similar(customer_id):
         # Exclude the customer itself (similarity = 1.0)
         similar_customers = similarity_df[customer_id].drop(customer_id)
         # Get the top 3 similar customers and their scores
         top_3 = similar_customers.nlargest(3).reset_index()
         top_3.columns = ['CustomerID', 'SimilarityScore']
         return top 3
     # Generate recommendations for the first 20 customers
     recommendations = {}
     for customer_id in similarity_df.index[:20]:
         recommendations[customer_id] = get_top_3_similar(customer_id).values.
      →tolist()
     # Display recommendations for the first few customers
     print("Lookalike Recommendations:")
     for key, value in recommendations.items():
         print(f"{key}: {value}")
    Lookalike Recommendations:
    C0001: [['C0091', 0.9888478853919913], ['C0069', 0.9843439691570108], ['C0184',
    0.9785619388073006]]
    C0002: [['C0159', 0.9795105096869298], ['C0036', 0.9567623389803885], ['C0134',
    0.9079308367148381]]
    C0003: [['C0007', 0.9968810093511232], ['C0085', 0.9640463999694346], ['C0166',
    0.9603809339360593]]
    C0004: [['C0075', 0.9832140510191636], ['C0090', 0.9205815444205002], ['C0065',
    0.8848698960012958]]
    C0005: [['C0197', 0.9679556789053673], ['C0085', 0.9638213905900722], ['C0166',
    0.9498424445847362]]
```

```
C0006: [['C0169', 0.9704006342294953], ['C0185', 0.9294489990803511], ['C0081',
0.9274392104956387]]
C0007: [['C0003', 0.9968810093511232], ['C0085', 0.9790544159375512], ['C0166',
0.9584810984308859]]
C0008: [['C0143', 0.9757288678444452], ['C0158', 0.953510746297948], ['C0170',
0.9505172118501191]]
C0009: [['C0032', 0.9803022627726677], ['C0058', 0.9683007773908333], ['C0150',
0.9614456236906473]]
C0010: [['C0029', 0.9976752433133421], ['C0062', 0.9804016075245915], ['C0111',
0.9801805189388902]]
C0011: [['C0117', 0.963973419326239], ['C0016', 0.9632077461792568], ['C0074',
0.9510195409647744]]
C0012: [['C0148', 0.9884792503556856], ['C0152', 0.9539841832634688], ['C0113',
0.9513290068238263]]
C0013: [['C0046', 0.9814947146937686], ['C0099', 0.9465853217128836], ['C0117',
0.919516728582664]]
C0014: [['C0151', 0.9979207390553534], ['C0097', 0.9927491228970107], ['C0060',
0.9880496411636847]]
C0015: [['C0071', 0.976486876158439], ['C0121', 0.9723159872874918], ['C0025',
0.9688259324918211]]
C0016: [['C0011', 0.9632077461792568], ['C0117', 0.9247869590037776], ['C0074',
0.8760745705780278]]
C0017: [['C0179', 0.8911139153655481], ['C0122', 0.8887860009610975], ['C0064',
0.8670294480943582]]
C0018: [['C0023', 0.9823466564399504], ['C0051', 0.9772356807245444], ['C0168',
0.9765757848964493]]
C0019: [['C0035', 0.9383055966012707], ['C0177', 0.9136577573845739], ['C0070',
0.8877945815992546]]
C0020: [['C0130', 0.9794407284463068], ['C0094', 0.955158720476758], ['C0032',
0.9273591770429713]]
```

2.5 Step 6: Save Recommendations to CSV

We will save the recommendations as Piyush_Chouhan_Lookalike.csv.

print("Recommendations saved to Piyush_Chouhan_Lookalike.csv")

Recommendations saved to Piyush_Chouhan_Lookalike.csv