

Flight Price Prediction

Sayli Bhavsar (1914009) | Dhwani Doshi (1914016)

Flow Of The Presentation

Steps Of The Mini Project

Problem Definition

Problem Definition

Flight ticket prices can be something hard to guess, today we might see a price, check out the price of the same flight tomorrow, it will be a different story. We might have often heard travelers saying that flight ticket prices are so unpredictable. We are gonna prove that given the right data anything can be predicted. Here we will be provided with prices of flight tickets for various airlines between the months of March and June of 2019 and between various cities.

About the dataset

Modules Used

01 02

03

04

05

Numpy

Pandas

Seaborn

Matplotlib

Pickle

06

Sklearn:

- LabelEncoder from sklearn.preprocessing
- Mutual_info_classif from sklearn.feature_selection
- train_test_split from sklearn.model_selection
- metrics from sklearn
- RandomForestRegressor from sklearn.ensemble

- LinearRegression from sklearn.linear_model
- KNeighborsRegressor from sklearn.neighbors
- DecisionTreeRegressor from sklearn.tree
- RandomizedSearchCV from sklearn.model_selection

Data Preprocessing

Overview

train_data.head()

8	Airli	e Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	${\tt Additional_Info}$	Price
0	Indi	io 24/03/2019	Banglore	New Delhi	$BLR \to DEL$	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897
1	Air Inc	ia 1/05/2019	Kolkata	Banglore	$CCU \to IXR \to BBI \to BLR$	05:50	13:15	7h 25m	2 stops	No info	7662
2	Jet Airwa	ys 9/06/2019	Delhi	Cochin	$DEL \to LKO \to BOM \to COK$	09:25	04:25 10 Jun	19h	2 stops	No info	13882
3	Indi	io 12/05/2019	Kolkata	Banglore	$CCU \to NAG \to BLR$	18:05	23:30	5h 25m	1 stop	No info	6218
4	Indi	io 01/03/2019	Banglore	New Delhi	$BLR \to NAG \to DEL$	16:50	21:35	4h 45m	1 stop	No info	13302

Rectifying Columns

- Column "Date_of_Journey" →

 "Journey_day" and "Journey_month"
- Column "Dep_Time" → "Dep_Time_hour" and "Dep_Time_Minute"
- Column "Arrival_Time" →

 "Arrival_Time_hour" and

 "Arrival_Time_minute"
- Column "Duration" → "Duration_hours" and "Duration_mins"

```
def change into datetime(col):
           train_data[col]=pd.to_datetime(train_data[col])
   train_data['Journey_day']=train_data['Date_of_Journey'].dt.day
   train data['Journey month']=train data['Date of Journey'].dt.month
    def extract hour(df.col):
        df[col+"_hour"]=df[col].dt.hour
   def extract min(df,col):
        df[col+"_minute"]=df[col].dt.minute
    def drop column(df.col):
        df.drop(col,axis=1,inplace=True)
    extract_hour(train_data, 'Dep_Time extract hour(train_data, 'Arrival_Time')
    extract min(train data, 'Dep Time' extract min(train data, 'Arrival Time')
    drop_column(train_data, 'Dep_Time' drop_column(train_data, 'Arrival_Time')
   duration=list(train_data['Duration'])
    for i in range(len(duration)):
       if len(duration[i].split(' '))==2:
       else:
          if 'h' in duration[i]:
                                            # Check if duration contains only hour
             duration[i]=duration[i] + ' 0m'
                                            # Adds 0 minute
             duration[i]='0h '+ duration[i]
                                            # if duration contains only second, Adds 0 hour
   train data['Duration']=duration
   def hour(x):
      return x.split(' ')[0][0:-1]
   def min(x):
      return x.split(' ')[1][0:-1]
[ ] train_data['Duration_hours']=train_data['Duration'].apply(hour)
   train data['Duration_mins']=train_data['Duration'].apply(min)
```

Dataset After Changes

Route	Total_Stops	Additional_Info	Price	Journey_day	Journey_month	Dep_Time_hour	Dep_Time_minute	Arrival_Time_hour	Arrival_Time_minute	Duration_hours	Duration_mins
BLR → DEL	non-stop	No info	3897	24	3	22	20	1	10	2	50
CCU → IXR → BBI → BLR	2 stops	No info	7662	5	1	5	50	13	15	7	25
DEL → LKO → BOM → COK	2 stops	No info	13882	6	9	9	25	4	25	19	0
CCU → NAG → BLR	1 stop	No info	6218	5	12	18	5	23	30	5	25
BLR → NAG → DEL	1 stop	No info	13302	3	1	16	50	21	35	4	45

Dividing Into Categorical & Numerical Variables

- Nominal data --> data are not in any order --> OneHotEncoder is used in this case
- Ordinal data --> data are in order --> LabelEncoder is used in this case

	Airline	Source	Destination	Route	Total_Stops	Additional_Info
0	IndiGo	Banglore	New Delhi	BLR → DEL	non-stop	No info
1	Air India	Kolkata	Banglore	$CCU \to IXR \to BBI \to BLR$	2 stops	No info
2	Jet Airways	Delhi	Cochin	$DEL \to LKO \to BOM \to COK$	2 stops	No info
3	IndiGo	Kolkata	Banglore	$CCU \to NAG \to BLR$	1 stop	No info
4	IndiGo	Banglore	New Delhi	$BLR \to NAG \to DEL$	1 stop	No info

After Performing OneHotEncoding on Airlines Column

	Air India	GoAir	IndiGo	Jet Airways	Jet Airways Business	Multiple carriers	Multiple carriers Premium economy		Trujet	Vistara	Vistara Premium economy
0	0	0	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	1	0	0	0	0	0	0	0
3	0	0	1	0	0	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0	0	0	0

After Performing OneHotEncoding on Source Column

	Cochin	Delhi	Hyderabad	Kolkata	New Delhi
0	0	0	0	0	1
1	0	0	0	0	0
2	1	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	1

After Performing OneHotEncoding on Destination Column

	Chennai	Delhi	Kolkata	Mumbai
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	0

	Airline	Source	Destination	Total_Stops	Additional_Info	Route_1	Route_2	Route_3	Route_4	Route_5
0	IndiGo	Banglore	New Delhi	non-stop	No info	BLR	DEL	None	None	None
1	Air India	Kolkata	Banglore	2 stops	No info	CCU	IXR	BBI	BLR	None
2	Jet Airways	Delhi	Cochin	2 stops	No info	DEL	LKO	вом	сок	None
3	IndiGo	Kolkata	Banglore	1 stop	No info	CCU	NAG	BLR	None	None
4	IndiGo	Banglore	New Delhi	1 stop	No info	BLR	NAG	DEL	None	None

Using LabelEncoder on Route 1, Route 2 ... and Total Stops

	Airline	Source	Destination	Total_Stops	Route_1	Route_2	Route_3	Route_4	Route_5
0	IndiGo	Banglore	New Delhi	0	0	13	29	13	5
1	Air India	Kolkata	Banglore	2	2	25	1	3	5
2	Jet Airways	Delhi	Cochin	2	3	32	4	5	5
3	IndiGo	Kolkata	Banglore	1	2	34	3	13	5
4	IndiGo	Banglore	New Delhi	1	0	34	8	13	5

Outliers: Detection and

Imputing

Imputing outliers (price>=40000) by median of the data

data_train['Price']=np.where(data_train['Price']>=40000,data_train['Price'].median(),data_train['Price'])
plot(data_train,'Price')

Apply Feature Selection

Find the feature which contributes most to the target variable i.e price

```
[ ] imp= pd.DataFrame(mutual_info_classif(X,y),index=X.columns)
```

Print columns from highest to lowest importance

[] imp.columns=['importance']
 imp.sort_values(by='importance',ascending=False)

Total_Stops	2.152682
Route_1	2.009530
Arrival_Time_hour	1.862940
Duration_hours	1.804452
Delhi	1.544504
Cochin	1.525066
Arrival_Time_minute	1.505011
Route_4	1.465240
Dep_Time_hour	1.441511
Dep_Time_minute	1.188782
Journey_day	1.076345
Duration_mins	1.063301

Data Analysis

Correlation Of Columns With Price

plt.figure(figsize=(12,6))
train_data.corr()['Price'].sort_values().plot(kind='bar');

- * Departure time, Journey month, Arrival time and duration have positive correlation with price
- * Duration hours have maximum correlation with price.

Count Of Flights In Airlines

```
plt.figure(figsize=(12,6))
sns.countplot(train_data['Airline'], palette='Set3')
plt.title('Count of Flights in Airlines', size=30)
plt.xticks(rotation=90)
plt.show()
```


- Jet Airways have the maximum number of flights
- Vistara Premium economy, Jet Airways Business, Multiple carriers Premium economy and Trujet have very few or none as compared to the rest of the airlines.

Count Of Source

```
[ ] plt.figure(figsize=(12,6))
    sns.countplot(train_data['Source'], palette='Set2')
    plt.title('Count of Source', size=30)
    plt.xticks(rotation=90)
    plt.show()
```


- Delhi has the maximum number of flights that leave it.
- Chennai has the minimum number of flights that leave it.

Count Of Days

```
plt.figure(figsize=(12,6))
sns.countplot(train_data['Journey_day'], palette='Set2')
plt.title('Count of Days', size=30)
plt.xticks(rotation=90)
plt.show()
```


The first week of any month have more flights as compared to the rest of the month.

Days vs Price

```
[ ] plt.figure(figsize=(12,6))
    sns.barplot(train_data['Journey_day'], train_data['Price'], palette='Set2')
    plt.title('Days vs Price', size=30)
    plt.xticks(rotation=90)
    plt.show()
```


- The cost of flights for the first week of any month is more as compared to the rest of the month.
- Price seems to dip on the 4th day of the month and increases back on the 5th.

Month vs Price

```
[ ] train_data['Journey_month'] = train_data['Journey_month'].map({1:'JAN',2:'FEB',3:'MAR',4:'APR',5:'MAY',:'JUN',7:'JUL',8:'AUG',9:'SEP',10:'OCT',11:'NOV',12:'DEC'})
plt.figure(figsize=(12,6))
sns.barplot(train_data['Journey_month'], train_data['Price'], palette='Set2')
plt.title('Month vs Price', size=30)
plt.xticks(rotation=90)
plt.show()
```


- The price of flights is highest in the month of January
- The price of flights is lowest in the month of April

Duration vs Price

```
train_data['Duration_bool'] = (train_data['Duration_hours']*60)+train_data['Duration_mins']

plt.figure(figsize=(12,6))
sns.scatterplot(train_data['Duration_bool'], train_data['Price'], palette='Set2')
plt.title('Duration vs Price', size=30)
plt.xticks(rotation=90)
plt.show()
```


• The cost of flights for the first week of any month is more as compared to the rest of the month.

Duration bool

Price seems to dip on the 4th day of the month and increases back on the 5th.

1000

Stops vs Price

```
[ ] plt.figure(figsize=(12,6))
    sns.barplot(train_data['Total_Stops'], train_data['Price'], palette='Set2')
    plt.title('Stops vs Price', size=30)
    plt.xticks(rotation=90)
    plt.show()
```


- The price of increases with the number of stops
- The price suddenly increases for flights with 2 stops

Machine Learning

Splitting data into train and test

print(df)

if dump==1:

file=open('model.pkl','wb')
pickle.dump(model,file)

[] X train,X test,y train,y test=train test split(X,y,test size=0.2)

```
[] from sklearn import metrics
    ##dump your model using pickle so that we will re-use
    import pickle
    def predict(ml_model,dump):
        model=ml_model.fit(X_train,y_train)
        print('Training score : {}'.format(model.score(X_train,y_train)))
        y_prediction=model.predict(X_test)
        df = pd.DataFrame({'Actual': y_test, 'Predicted': y_prediction})
        r2_score=metrics.r2_score(y_test,y_prediction)
        print('r2 score: {}'.format(r2_score))
        print('MAE:',metrics.mean_absolute_error(y_test,y_prediction))
        print('MSE:',np.sqrt(metrics.mean_squared_error(y_test,y_prediction)))
        sns.distplot(y_test-y_prediction)
        print('\n')
```

##dump your model using pickle so that we will re-use

Function predict()

```
[] X train,X test,y train,y test=train test split(X,y,test size=0.2)
[ ] from sklearn import metrics
    ##dump your model using pickle so that we will re-use
    import pickle
    def predict(ml model,dump):
        model=ml model.fit(X train,y train)
        print('Training score : {}'.format(model.score(X train,y train)))
        y prediction=model.predict(X test)
        df = pd.DataFrame({'Actual': y test, 'Predicted': y prediction})
        r2 score=metrics.r2 score(y test,y prediction)
        print('r2 score: {}'.format(r2 score))
        print('MAE:',metrics.mean absolute error(y test,y prediction))
        print('MSE:',metrics.mean squared error(y test,y prediction))
        print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,y_prediction)))
        sns.distplot(y_test-y_prediction)
        print('\n')
        print(df)
        if dump==1:
            ##dump your model using pickle so that we will re-use
            file=open('model.pkl','wb')
            pickle.dump(model.file)
```

Creating predict function to pass all the models in for prediction of price

Linear Regression

predict(LinearRegression(),1)

Training score: 0.614552623000792 r2 score: 0.6198821088302715

> MAE: 1905.8563174482993 MSE: 7273979.8175415145 RMSE: 2697.0316678788763

	Actual	Predicted
8998	13067.0	11452.329714
3646	3807.0	5070.146688
6416	13817.0	14258.609919
2371	7845.0	10173.194801
10056	10844.0	11922.678207
3960	10844.0	11590.386320
235	4409.0	5185.366849
1347	17057.0	11998.052529
4976	4804.0	4031.888676
993	4990.0	3580.542926

Apply Random Forest Model

```
predict(RandomForestRegressor(),1)
```

Training score: 0.9538271440941618 r2 score: 0.8081810239275149

MAE: 1153.3750860557577 MSE: 3670670.0552269397 RMSE: 1915.899281075845

	Actual	Predicted
8998	13067.0	12476.445333
3646	3807.0	4105.210000
6416	13817.0	13169.575000
2371	7845.0	8136.807500
10056	10844.0	10952.620000
		• • •
3960	10844.0	13601.216667
235	4409.0	4683.280000
1347	17057.0	16607.510833
4976	4804.0	4724.210000
993	4990.0	4957.330000

Apply KNN

predict(KNeighborsRegressor(),1)

Training score: 0.7813186018339361 r2 score: 0.65462899281159

MAE: 1730.280205896116 MSE: 6609059.437117455 RMSE: 2570.8091016482445

	Actual	Predicted
8998	13067.0	11693.6
3646	3807.0	4223.2
6416	13817.0	13271.0
2371	7845.0	10538.8
10056	10844.0	11578.8
• • •	• • •	
3960	10844.0	12355.6
235	4409.0	4799.6
1347	17057.0	19400.6
4976	4804.0	4678.0
993	4990.0	4889.8

Apply Decision Tree

predict(DecisionTreeRegressor(),0)

Training score : 0.9666309298021185

r2 score: 0.7406579706620775

MAE: 1287.752456715021 MSE: 4962798.992278895 RMSE: 2227.7340488215586

	Actual	Predicted	
8998	13067.0	13067.0	
3646	3807.0	4107.0	
6416	13817.0	13817.0	
2371	7845.0	6148.0	
10056	10844.0	10844.0	
3960	10844.0	14781.0	
235	4409.0	4409.0	
1347	17057.0	17057.0	
4976	4804.0	4804.0	
993	4990.0	4823.0	

Hyperparameter Tuning

- 1. Choose following method for hyperparameter tuning
 - a. RandomizedSearchCV --> Fast way toHypertune model
 - b. GridSearchCV--> Slow way to hypertune my model

2. Assign hyperparameters in form of dictionary

3. Fit the model

4. Check best parameters and best score

Hyperparameters in form of dictionary

```
[ ] # Number of trees in random forest
    n estimators=[int(x) for x in np.linspace(start=100,stop=1200,num=6)]
    # Number of features to consider at every split
    max_features=['auto','sqrt']
    # Maximum number of levels in tree
    max depth=[int(x) for x in np.linspace(5,30,num=4)]
    # Minimum number of samples required to split a node
    min samples split=[5,10,15,100]
[ ] # Create the random grid
    random grid={
        'n estimators':n estimators,
        'max_features':max_features,
    'max depth':max depth,
        'min samples split':min samples split
```

Save The Model For Reuse

15) Save the model and reuse again [] import pickle [] # open a file, where you want to store the data file=open('rf_random.pkl','wb') [] # dump information to that file pickle.dump(rf_random,file) [] model=open('rf_random.pkl','rb') forest=pickle.load(model) [] y_prediction=forest.predict(X_test) [] y_prediction array([12171.47246098, 4274.17636284, 13015.10240681, ..., 16271.70527847, 4769.46051739, 4730.27811033])] metrics.r2_score(y_test,y_prediction) 0.835810519999809

Conclusion

The conclusions/inferences drawn from data analysis of the data have been mentioned before in the presentation

- The price depends most on the Total Stops and the route taken
- The models of Random Forest and Decision Tree seem to give the best accuracy for prediction with 84% and 76% accuracy respective

Accuracy (R2) and Training scores for all the models used:

- I. Random Forest
 - Accuracy: 95 %
 - Training score: 84%
- 2. Decision Tree
 - Accuracy: 96 %
 - Training score: 76%
- 3. KNN
 - Accuracy: 67 %
 - Training score: 67%
- 4. Linear Regression
 - Accuracy: 62%
 - Training score: 61%

Conclusion

	Linear Regression	Random Forest	K Nearest Neighbour	Decision Tree
Training Score	0.6145	0.9538	0.78131	0.96663
R2 score	0.6198	0.8081	0.6546	0.7406
MAE	1905.8563	1153.3750	1730.2802	1287.7524
MSE	7273979.8175	3670670.0552	6609059.4371	4962798.992
RMSE	2697.0316	1915.8992	2570.8091	2227.7340

- Decision Tree Model has the best training score.
- Random Forest Model has the best R2 score (accuracy of price prediction) and the least value of errors: Mean Absolute Error, Mean Squared Error and Root Mean Squared Error.

Thank You

