Sequential Convolutional Recurrent Neural Networks for Fast Automatic Modulation Classification

Kaisheng Liao, Guanhong Tao, Yi Zhong, Yaping Zhang, and Zhenghong Zhang

Jeel Bhavsar: es16btech11005

Vignatha Vinjam: es17btech11024

Introduction

Why do we need Automatic Modulation Classification (AMC)?

Growing spectral resource scarcity;

Improving the performance of Cognitive Radios (Core in non-cooperative communication)

Can we stick to the existing methods?

Likelihood-based approach

- Not ideal for unknown channel conditions and heavy computational load

Feature-based approach(traditional)

- Easy practical implementation hence widely studied.
- Current FB AMC methods are commonly designed for a limited set of modulation and lack of generalization ability.
- Very difficult to manually design features for new modulation types in non-cooperative scenarios.

Using Deep Neural Networks

Automatic feature extraction is required for new modulation types and complex environments.

Results from previous research works:

- Convolutional neural networks (CNNs) trained on time domain in-phase and quadrature (IQ) data significantly outperform conventional approaches.
- Using Recurrent neural networks (RNNs) for learning temporal representations achieve higher accuracies than CNNs but suffer from computational complexity and long training time.
- Adopting convolutional long short-term deep neural networks (CLDNNs) has shown some success.
- Improved accuracy by using 2 CNNs (trained on different datasets).
- For various DNNs, reducing input dimensionality (with subsampling techniques) reduced the training complexity (A comparative study performed by Sharan Ramjee, Diyu Yang, Aly El Gamal in the paper- 'Fast Deep Learning for Automatic Modulation Classification')

Benchmark Dataset Description

Representation of received signal: r(t) = s(t) * h(t) + n(t)

Dataset	RadioML2016.10a		
	8 Digital Modulations: BPSK,		
	QPSK, 8PSK, 16QAM, 64QAM,		
Modulations	BFSK, CPFSK, and PAM4		
	3 Analog Modulations: WBFM,		
	AM-SSB, and AM-DSB		
Length per sample	128		
Signal format	In-phase and quadrature (IQ)		
Signal dimension	2×128 per Sample		
Duration per sample	128 μs		
Sampling frequency	1 MHz		
Samples per symbol	8		
SNR Range	[-20 dB, -18 dB, -16 dB,, 18 dB]		
Total number of samples	220000 vectors		
Number of training samples	198000 vectors		
Number of test samples	22000 vectors		

Baseline Approaches

CNN architecture proposed by **Timothy J O'Shea, Johnathan Corgan, T. Charles Clancy** in their paper **Convolutional Radio Modulation Recognition Networks**

Baseline Approaches

Rajendran, Wannes Meert, Domenico
Giustiniano, Vincent Lenders, and Sofie Pollin
in their paper Deep Learning Models for
Wireless Signal Classification with Distributed
Low-Cost Spectrum Sensors

Note that this model learns from the time domain information of the modulation schemes using amplitude-phase format, instead of IQ format.

Validation Loss vs Epochs

TRAINING AND PREDICTION TIME COMPARISON BETWEEN THE TWO BASELINE MODELS AND THE THREE SCRNN MODELS.

Models	CNN	LSTM	1-Layer SCRNN	2-Layer SCRNN	3-Layer SCRNN
Training Time per Epoch (s)	30	800	800	280	90
Training Epochs	20	56	57	41	57
Total Training Time (s)	600	44800	45600	11480	5130
Prediction Time (µs/sample)	1000	2000	641	661	751

Response patterns of the 128 filters learned by the first convolutional layer of the SCRNN.

