Höhere Mathematik 1

Präsenzaufgaben für die Übungen vom 23. bis 26.11.2021 (bitte vorbereiten und Aufgabenstellungen so weit wie möglich verstehen)

5.1. (a) Seien

$$v^{1} := \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v^{2} := \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad v^{3} := \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \quad v := \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}.$$

Zeige, dass v^1, v^2, v^3 linear unabhängig sind, und stelle den Vektor v als Linearkombination von v^1, v^2, v^3 dar.

(b) Zeige, dass

$$U := \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_5 \end{pmatrix} \in \mathbb{R}^5; \ x_1 = 3x_2, \ x_3 = 7x_4 \right\}$$

ein Unterraum des \mathbb{R}^5 ist, und finde eine Basis von U.

Hausaufgaben (Abgabe bis 2. 12. 2021 vor der Vorlesung)

5.2. Entscheide (mit Begründung!), ob die folgenden 4 Abbildungen linear sind:

(a)
$$\varphi \colon \mathbb{R}^2 \to \mathbb{R}^3$$
, $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+1 \\ 2y \\ x+y \end{pmatrix}$;

(b)
$$\varphi \colon \mathbb{R}^n \to \mathbb{R}, \ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \sum_{k=1}^n |x_k|;$$

(c)
$$\varphi \colon \mathbb{R}^n \to \mathbb{R}, \ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \sum_{k=1}^n x_k;$$

(d) $\varphi \colon V \to \mathbb{R}, \ f \mapsto f(x_0)$, wobei V der Vektorraum aller Funktionen von \mathbb{R} nach \mathbb{R} ist, und $x_0 \in \mathbb{R}$.

Bitte wenden

5.3. Begründe jeweils, warum V kein Vektorraum ist:

(a)
$$V := \mathbb{R}^2$$
 mit $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix}$ und $\lambda \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} := \begin{pmatrix} \lambda x_1 \\ x_2 \end{pmatrix}$.

(b)
$$V := \mathbb{R}^2 \text{ mit } \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} := \begin{pmatrix} x_1 + y_2 \\ x_2 + y_1 \end{pmatrix} \text{ und } \lambda \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} := \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \end{pmatrix}.$$

(c)
$$V := \mathbb{R}^2 \text{ mit } \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix} \text{ und } \lambda \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} := \begin{pmatrix} \lambda x_1 \\ 0 \end{pmatrix}.$$

(d)
$$V := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2; x = y^2 \right\}$$
 mit $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} := \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$ und $\lambda \cdot \begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}$.

Hinweis: Es ist jeweils mindestens eine der 8 Rechenregeln in einem Vektorraum nicht erfüllt, bzw. die Grundvoraussetzungen an die Operationen + und \cdot sind nicht erfüllt.

5.4. Sei $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^3$ eine lineare Abbildung mit

$$\varphi\begin{pmatrix}1\\1\end{pmatrix}=\begin{pmatrix}1\\0\\-2\end{pmatrix},\qquad \varphi\begin{pmatrix}1\\2\end{pmatrix}=\begin{pmatrix}0\\1\\-1\end{pmatrix}.$$

Durch welche Matrix $A \in \mathbb{R}^{m \times n}$ ist die Abbildung φ gegeben? Berechne $\varphi \begin{pmatrix} 7 \\ 12 \end{pmatrix}$.

- **5.5.** Sei V ein Vektorraum, und v^1, v^2, v^3, v^4 seien linear unabhängige Vektoren in V. Ermittle in jedem der folgenden 3 Fälle, ob die gegebenen Vektoren linear unabhängig sind:
- (a) v^1 , $v^1 + v^2$, $v^1 + v^2 + v^3$, $v^1 + v^2 + v^3 + v^4$,
- (b) $v^1 v^2$, $v^2 + v^3$, $v^3 v^4$, $v^4 + v^1$,
- (c) $v^1 + v^2$, $v^2 + v^3$, $v^3 + v^4$, $v^4 v^1$.

Beispiel: Die beiden Vektoren $v^1,\,v^1+v^2$ sind linear unabhängig, denn für $\lambda_1,\lambda_2\in\mathbb{R}$ gilt

$$\lambda_1 v^1 + \lambda_2 (v^1 + v^2) = 0 \implies (\lambda_1 + \lambda_2) v^1 + \lambda_2 v^2 = 0 \implies \lambda_1 + \lambda_2 = \lambda_2 = 0 \implies \lambda_1 = \lambda_2 = 0$$
 da v^1, v^2 linear unabhängig sind.