Catalyst Meta Acceleration Framework: The history and the gist of it

Hongda Li

UBC Okanagan

November 12, 2024

ToC

- Introduction
 - The History and a Series of Papers
 - Nesterov's Estimating Sequence
 - Example: Accelerated proximal gradient
- 2 Guler 1993
 - Exact Accelerated PPM
 - Inexact accelerated PPM
- 3 Lin 2015
- Paquette 2018
- Seferences

Nesterov's Book

• Yurri Nesterov's book: "Lectures on Convex Optimization" 2018, Springer [1].

Hongda Li Catalyst Acceleration November 12, 2024 3 / 17

Accelerated Proximal Point Method

SIAM J. OPTIMIZATION Vol. 2, No. 4, pp. 649-664, November 1992 © 1992 Society for Industrial and Applied Mathematics 007

NEW PROXIMAL POINT ALGORITHMS FOR CONVEX MINIMIZATION*

OSMAN GÜLER†

Abstract. This paper introduces two new proximal point algorithms for minimizing a proper, lower-semicontinuous convex function $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$. Under this minimal assumption on f, the first algorithm possesses the global convergence rate estimate $f(x_k) - \min_{x \in \mathbb{R}^n} f(x) = O(1/(\sum_{j=0}^{k-1} \sqrt{\lambda_j})^2)$, where $\{\lambda_k\}_{k=0}^\infty$ are the proximal parameters. It is shown that this algorithm converges, and global convergence rate estimates for it are provided, even if minimizations are performed inexactly at each iteration. Both algorithms converge even if f has no minimizers or is unbounded from below. These algorithms and results are valid in infinite-dimensional Hilbert spaces.

Key words. proximal point algorithms, global convergence rates, augmented Lagrangian algorithms, convex programming

AMS(MOS) subject classifications. primary 90C25; secondary 49D45, 49D37

 Osman Guler's, "New proximal point algorithm for convex optimization", SIAM J.Optimization 1992. [2]

Hongda Li Catalyst Acceleration November 12, 2024 4 / 17

Catalyst Acceleration

A Universal Catalyst for First-Order Optimization

Hongzhou Lin¹, Julien Mairal¹ and Zaid Harchaoui¹,²¹
¹Inria ²NYU
{hongzhou.lin, julien.mairal}@inria.fr
zaid.harchaoui@nyu.edu

Abstract

We introduce a generic scheme for accelerating first-order optimization methods in the sense of Nesterov, which builds upon a new analysis of the accelerated proximal point algorithm. Our approach consists of minimizing a convex objective by approximately solving a sequence of well-chosen auditary problems, leading to faster convergence. Since the strategy applies to a large class of algorithms, sincluding gradient descent, flock coordinated descent, flock, SAGA, SDCS, AGA, AGA, AGA, AGA, AGA, AGA, AG

(a) Lin 2015

Catalyst Acceleration for Gradient-Based Non-Convex Optimization

 Courtney Paquette
 Hongzhou Lin
 Dmitriy Drussyatskiy

 University of Waterloo
 MIT
 University of Washington

 c2paquette@uwaterloo.ca
 hongzhou@mit.edu
 dafterhaevi

 Julien Mairal
 Zaid Harchaevi

 Inria*
 University of Washington

zaid@uw.edu

January 3, 2019

julien.mairal@inria.fr

Abstract

We introduce a generic scheme to solve moscource optimization problems using gradient based algorithms originally designed for minimizing conver functions. Even though these methods have problems or the proposed approach allows one to use them on weakly connex objectives, which covers a large class of non-conver functions typically appearing in machine learning and signal processing. In general, the scheme is guaranteed to produce a stationary point with a worst-case efficiency typical of intio-order methods, and when the objective term onto to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values, accordance of the convergence of the

(b) Paquette 2018

- Honzhou Lin et al. "Universal Catalyst for first order optimization" 2015 JLMR [3].
- Paquette et al. "Catalyst for gradient-based nonconvex optimization"
 2018 JLMR [4].

Objectives of the Talk

List of objectives

- Introduce the technique of Nesterov's estimating sequence for convergence proof of algorithms.
- Understand the historical context for the inspirations of the Catalyst algorithm.
- Understand the theories behind the Catalyst meta acceleration.
- Understand key innovations for controlling the errors in Catalyst accelerations.
- Introduce the Non-convex extension of the method.

A note on the scope

Specific applications and algorithms are outside of the scope because variance reduced stochastic method is itself a big topic.

Hongda Li Catalyst Acceleration November 12, 2024 6 / 17

Objectives of the Talk

List of objectives

- Introduce the technique of Nesterov's estimating sequence for convergence proof of algorithms.
- Understand the historical context for the inspirations of the Catalyst algorithm.
- Understand the theories behind the Catalyst meta acceleration.
- Understand key innovations for controlling the errors in Catalyst accelerations.
- Introduce the Non-convex extension of the method.

A note on the scope

Specific applications and algorithms are outside of the scope because variance reduced stochastic method is itself a big topic.

Hongda Li Catalyst Acceleration November 12, 2024 6 / 17

Nesterov's Estimating Sequence

Definition (Nesterov's estimating sequence)

Let $(\phi_k : \mathbb{R}^n \mapsto \mathbb{R})_{k \geq 0}$ be a sequence of functions. We call this sequence of function a Nesterov's estimating sequence when it satisfies the conditions that:

- There exists another sequence $(x_k)_{k\geq 0}$ such that for all $k\geq 0$ it has $F(x_k)\leq \phi_k^*$.
- ② There exists a sequence of $(\alpha_k)_{k\geq 0}$ such that for all $x\in \mathbb{R}^n$, $\phi_{k+1}(x)-\phi_k(x)\leq -\alpha_k(\phi_k(x)-F(x))$.

Hongda Li Catalyst Acceleration November 12, 2024 7 / 17

Nesterov's Estimating Sequence and Convergence

Observations

If we dsefine ϕ_k , $\Delta_k(x) := \phi_k(x) - F(x)$ for all $x \in \mathbb{R}^n$ and assume that F has minimizer x^* . Then observe that $\forall k > 0$:

$$\phi_{k+1}(x) - \phi_k(x) \le -\alpha_k(\phi_k(x) - F(x))$$

$$\iff \phi_{k+1}(x) - F(x) - (\phi_k(x) - F(x)) \le -\alpha_k(\phi_k(x) - F(x))$$

$$\iff \Delta_{k+1}(x) - \Delta_k(x) \le -\alpha_k \Delta_k(x)$$

$$\iff \Delta_{k+1}(x) \le (1 - \alpha_k) \Delta_k(x).$$

Unroll the recurrence, by setting $x = x^*$, $\Delta_k(x^*)$ is non-negative and using the property of Nesterov's estimating sequence it gives:

$$\begin{aligned} F(x_k) - F(x^*) &\leq \phi_k^* - F(x^*) \leq \Delta_k(x^*) = \phi_k(x^*) - F(x^*) \\ &\leq \left(\prod_{i=0}^k (1 - \alpha_i)\right) \Delta_0(x^*). \end{aligned}$$

Hongda Li Catalyst Acceleration November 12, 2024 8 / 17

Example: accelerated proximal gradient

Quick Notations

Assume that: F = f + g where f is L-Lipschitz smooth and $\mu \ge 0$ strongly convex and g is convex. Define

$$\mathcal{M}^{L^{-1}}(x;y) := g(x) + f(y) + \langle \nabla f(x), x - y \rangle + \frac{L}{2} ||x - y||^2,$$
$$\widetilde{\mathcal{J}}_{L^{-1}}y := \underset{x}{\operatorname{argmin}} \mathcal{M}^{L^{-1}}(x;y),$$
$$\mathcal{G}_{L^{-1}}(y) := L\left(I - \widetilde{\mathcal{J}}_{L^{-1}}\right)y.$$

Hongda Li Catalyst Acceleration November 12, 2024

Definition (Accelerated proximal gradient estimating sequence)

Define $(\phi_k)_{k\geq 0}$ be the Nesterov's estimating sequence recursively given by:

$$I_{F}(x; y_{k}) := F\left(\widetilde{\mathcal{J}}_{L^{-1}}y_{k}\right) + \langle \mathcal{G}_{L^{-1}}y_{k}, x - y_{k} \rangle + \frac{1}{2L} \|\mathcal{G}_{L^{-1}}y_{k}\|^{2},$$

$$\phi_{k+1}(x) := (1 - \alpha_{k})\phi_{k}(x) + \alpha_{k} \left(I_{F}(x; y_{k}) + \frac{\mu}{2} \|x - y_{k}\|^{2}\right).$$

The Algorithm generates a sequence of vectors y_k, x_k , and scalars α_k satisfies the following:

$$\begin{split} x_{k+1} &= \widetilde{\mathcal{J}}_{L^{-1}} y_k, \\ \text{find } \alpha_{k+1} &\in (0,1) : \alpha_{k+1} = (1 - \alpha_{k+1}) \alpha_k^2 + (\mu/L) \alpha_{k+1} \\ y_{k+1} &= x_{k+1} + \frac{\alpha_k (1 - \alpha_k)}{\alpha_k^2 + \alpha_{k+1}} (x_{k+1} - x_k). \end{split}$$

One of the possible base case can be $x_0 = y_0$ and any $\alpha_0 \in (0,1)$.

Hongda Li Catalyst Acceleration November 12, 2024 10 / 17

Accelerated proximal point method

Guler in 1993 discovered the following:

- The method of proximal point can be accelerated via Nesterov's estimating sequence.
- The accelerated convergence rate retains for certain magnitude of errors on inexact evaluation of proximal point method.

Quick notations

We use the following list of notations:

$$\mathcal{M}^{\lambda}(x;y) := F(x) + \frac{1}{2\lambda} ||x - y||^{2}$$
$$\mathcal{J}_{\lambda}y := \operatorname*{argmin}_{x} \mathcal{M}^{\lambda}(x;y)$$
$$\mathcal{G}_{\lambda} := \lambda^{-1} (I - \mathcal{J}_{\lambda}).$$

We use $\mathcal{G}_k, \mathcal{J}_k, \mathcal{M}_k$ as a short for $\mathcal{G}_{\lambda_k}, \mathcal{J}_{\lambda_k}, \mathcal{M}_{\lambda_k}$. $(\lambda_k)_{k\geq 0}$ is a sequence that controls proximal operator.

Estimating sequence of accelerated PPM

Definition (Accelerated PPM estimating sequence)

 $(\phi_k)_{k\geq 0}$ has for all $k\geq 0$, any $A\geq 0$:

$$\phi_0 := f(x_0) + \frac{A}{2} \|x - x_0\|^2,$$

$$\phi_{k+1}(x) := (1 - \alpha_k) \phi_k(x) + \alpha_k (F(\mathcal{J}_k y_k) + \langle \mathcal{G}_k y_k, x - \mathcal{J}_k y_k \rangle).$$

 $(\lambda_k)_{k\geq 0}$, $x_k=\mathcal{J}_{\lambda}y_k$. auxiliary vectors (y_k,v_k) , and $(\alpha_k,A_k)_{k\geq 0}$ satisfies $k\geq 0$:

$$\alpha_k = \frac{1}{2} \left(\sqrt{(A_k \lambda_k)^2 + 4A_k \lambda_k} - A_k \lambda_k \right)$$

$$y_k = (1 - \alpha_k) x_k + \alpha_k v_k$$

$$v_{k+1} = v_k - \frac{\alpha_k}{A_{k+1} \lambda_k} (y_k - \mathcal{J}_k y_k)$$

$$A_{k+1} = (1 - \alpha_k) A_k.$$

Hongda Li Catalyst Acceleration November 12, 2024 12 / 17

Convergence of accelerated PPM

An accelerated rate

The accelerated PPM generate $(x_k)_{k\geq 0}$ such that $F(x_k) - F^*$ converges at a rate of:

$$\mathcal{O}\left(\frac{1}{\left(\sum_{i=1}^k \sqrt{\lambda_i}\right)^2}\right).$$

Note, PPM without accelerate converges at a rate of $\mathcal{O}((\sum_{i=1}^k \lambda_i)^{-1})$.

Hongda Li Catalyst Acceleration November 12, 2024

Accelerated Inexact PPM

Guler cited Rockafellar 1976 [5] for condition (A'):

Putting things into the context of accelerated PPM, the thereoem follows is pivotal:

Theorem (Guler's inexact proximal point error bound (Lemma 3.1))

Define the minimum of the Moreau Enevelope: $\mathcal{M}_k^* := \min_z \mathcal{M}^{\lambda_k}(z; y_k)$. If x_{k+1} is an inexact evaluation under condition (A'), then the estimating sequence admits the conditions that:

$$\frac{1}{2\lambda_k}\|x_{k+1}-\mathcal{J}_ky_k\|^2=\mathcal{M}_k(x_{k+1},y_k)-\mathcal{M}_k^*\leq \frac{\epsilon_k^2}{2\lambda_k}.$$

Hongda Li Catalyst Acceleration November 12, 2024

Guler's Major Results

Theorem (Guler's accelerated inexact PPM convergence (Theorem 3.3))

If the error sequence $(\epsilon_k)_{k\geq 0}$ for condition A' is bounded by $\mathcal{O}(1/k^{\sigma})$ for some $\sigma>1/2$, then the accelerated proximal point method has for any feasible $x\in\mathbb{R}^n$:

$$f(x_k) - f(x) \le \mathcal{O}(1/k^2) + (1/k^{2\sigma-1}) \to 0.$$

If $\sigma \geq 3/2$, the method converges at a rate of $\mathcal{O}(1/k^2)$. It looks exciting but it's not because:

- ① Determining $(\epsilon_k)_{k\geq 0}$ requires knowledge on ϕ_k^* .
- ② ϕ_k^* is expressed with untracable quantity: $F(\mathcal{J}_k y_k)$.

So the algorithm contains intractable quantities: $F(\mathcal{J}_k y_k)$.

Hongda Li Catalyst Acceleration November 12, 2024 15 / 17

Theorem (Guler's accelerated inexact PPM convergence (Theorem 3.3))

If the error sequence $(\epsilon_k)_{k\geq 0}$ for condition A' is bounded by $\mathcal{O}(1/k^{\sigma})$ for some $\sigma>1/2$, then the accelerated proximal point method has for any feasible $x\in\mathbb{R}^n$:

$$f(x_k) - f(x) \le \mathcal{O}(1/k^2) + (1/k^{2\sigma-1}) \to 0.$$

If $\sigma \geq 3/2$, the method converges at a rate of $\mathcal{O}(1/k^2)$. It looks exciting but it's not becaues:

- **1** Determining $(\epsilon_k)_{k\geq 0}$ requires knowledge on ϕ_k^* .
- ② ϕ_k^* is expressed with untracable quantity: $F(\mathcal{J}_k y_k)$.

So the algorithm contains intractable quantities: $F(\mathcal{J}_k y_k)$.

Hongda Li Catalyst Acceleration November 12, 2024

Lin 2015

Hongzhou Lin 2015 [3] did the following:

- Improved the proof from Guler 1993 to include strong convexity objective.
- ② Showed that $(\epsilon_k)_{k\geq 0}$ can be determined algorithmically and an accelerated rate can be achieved.
- Invented his own accelerated varianced reduced incremental method called: "Prox MISO" to demonstrate the Catalyst Framework.

Quick notations

Hongda Li Catalyst Acceleration November 12, 2024

References

Y. Nesterov, *Lectures on Convex Optimization*, ser. Springer Optimization and Its Applications. Cham: Springer International Publishing, 2018, vol. 137. [Online]. Available: http://link.springer.com/10.1007/978-3-319-91578-4

O. Güler, "New Proximal Point Algorithms for Convex Minimization," *SIAM Journal on Optimization*, vol. 2, no. 4, pp. 649–664, Nov. 1992, publisher: Society for Industrial and Applied Mathematics. [Online]. Available: https://epubs.siam.org/doi/10.1137/0802032

H. Lin, J. Mairal, and Z. Harchaoui, "A Universal Catalyst for First-Order Optimization." MIT Press, Dec. 2015, p. 3384. [Online]. Available: https://inria.hal.science/hal-01160728

C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, and Z. Harchaoui, "Catalyst for Gradient-based Nonconvex Optimization," in *Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics*. PMLR, Mar. 2018, pp. 613–622, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v84/paquette18a.html

R. T. Rockafellar, "Monotone operators and the proximal point algorithm," vol. 14, no. 5, pp. 877–898. [Online]. Available: http://epubs.siam.org/doi/10.1137/0314056