Raytracing: když přesnost je zbytečný luxus

David Nápravník

Matematicko-fyzikální fakulta UK

24.09.2025

Pokud není uvedeno jinak obrázky David Nápravník CC BY 4.0

Co je ray tracing

- Sledování pohybu fotonů napříč scénou
- Podloženo fyzikálními zákony
- Dříve jen ve filmu, ale dnes i v reálném čase

Renderovací rovnice

- Matematické vyjádření pohybu světla ve scéně
- Výstupem je osvětlení specifického bodu ve scéně

Renderovací rovnice (Kajiya 1986)

$$L_o(\omega_o) = L_e(\omega_o) + \int_{\Omega} f_r(\omega_i \to \omega_o) L_i(\omega_i) \cos \theta_i d\omega_i$$

Monte Carlo integrace

Šum

• Od teď minimalizujeme šum a čas

1 paprsek na pixel

1000 paprsků na pixel

Optimalizace šumu

- Tak náhodě trochu pomůžeme
- Přidáme paprsek ke světlu a náležitě to zprůměrujeme

Kaustika

- Zaostřené světlo
- Materiály jako sklo, voda ...

Kaustika

Pixar Rango (2011) (Zdroj: Disney Pixar)

Obousměrné trasování cesty

• Najednou nám vzorkování světla nefunguje

BRDF

Bidirectional Reflectance Distribution Function

• Diffuse: matný povrch

• Mirror: ostrý odraz

• Glossy: rozostřený odraz

BRDF

Různé drsnosti materiálu

Měření BRDF

• Matematicky hezký, ale jak to změřit

BRDF vzorkování

- A zase nám vzorkování světla nefunguje
- Malá šance se trefit (takže té šanci budeme muset zase pomoct)

MIS

Multiple Importance Sampling

$$v_{\rm sv\check{e}tlo}(\omega) = \frac{p_{\rm sv\check{e}tlo}(\omega)}{p_{\rm sv\check{e}tlo}(\omega)^{\beta} + p_{\rm brdf}(\omega)} \quad \ v_{\rm brdf}(\omega) = \frac{p_{\rm brdf}(\omega)}{p_{\rm sv\check{e}tlo}(\omega)^{\beta} + p_{\rm brdf}(\omega)}.$$

Zdroj: Eric Veach

MIS

Vyvážená kombinace strategií

Zdroj: Eric Veach

Speciální jevy

- Mikrofacety: drsnost, mlha
- Subsurface scattering: průsvitné materiály

Speciální jevy

Subsurface scattering

Zdroj: The Lord of the Rings: The Two Towers (2002)

Datové struktury

- O(n) by bylo na dlouho
- Chceme $O(\log n)$

Film Coco: 20 milionů objektů (Zdroj Disney Pixar)

Datové struktury

- BVH (bounding volume hierarchy)
 - AABB (Axis-aligned bounding boxes)
- Vytvoření: O(n log n)
- Vyhledávání: O(log n)

Efekty kamery

Věci které máme témeř zdarma

Anti-aliasing: více paprsků/pixel

• Depth of field: simulace clony

• Motion blur: čas jako další rozměr

100x	100x	100x
100x	100x	100x
100x	100x	100x

Efekty kamery

Věci které máme témeř zdarma

- Anti-aliasing: více paprsků/pixel
- Depth of field: simulace clony
- Motion blur: čas jako další rozměr

Efekty kamery

Věci které máme témeř zdarma

- Anti-aliasing: více paprsků/pixel
- Depth of field: simulace clony
- Motion blur: čas jako další rozměr

Spektrální efekty

- RGB nestačí na všechny jevy
- Simulace vlnových délek
- Disperze, duhové efekty, fluorescence

Denoising

- Filtrace šumu po renderu
- Umožňuje méně paprsků na pixel

Denoising

• Využití algoritmů, Al i pomocných bufferů

Denoising

Porovnání s referenčním obrázkem

1 vzorek na pixel

10000 vzorků na pixel

Hry

• Co kdybychom z 60 vteřin na snímek udělali 60 snímků za vteřinu?

Zdroje: https://www.nvidia.com/en-us/geforce/news/gfecnt/20229/portal-with-rtx-ray-tracing/

https://www.nvidia.com/en-us/geforce/news/cyberpunk-2077-ray-tracing-overdrive-update-launches-april-11/

Perlička na závěr

Zdrojové soubory

https://github.com/EbrithilNogare/TechMeetup-Ostrava