Звіт до комп'ютерного практикуму №2.

Рекурентні нейронні мережі

ПІБ: Грисюк Михайло Олександрович

Група: ІК-21мп

Мета роботи: ознайомитись з принципами побудови, навчання та використання мереж зі зворотніми зв'язками, дослідити вплив параметрів моделі, алгоритму навчання та даних на результати роботи.

Завдання: для задачі прогнозування (або іншої) на основі типового датасету створити рекурентну мережу. Навчити її, перевірити результат на тестовій вибірці, оцінити результати. Провести дослідження впливу параметрів на результати роботи мережі.

Номер варіанту: 5

Завдання для варіанту: Для задачі прогнозування на основі типового датасету **Boston Housing** створити рекурентну мережу. Навчити її, перевірити результат на тестовій вибірці, оцінити результати. Провести дослідження **впливу параметрів рекурентного шару** на результати роботи мережі. **Базова РНН.**

Засоби виконання практикуму: Дану комп'ютерну практику було виконано в середовищі VSCode зі спеціально встановленими розширеннями Jupiter та іншими. Використовувалась мова програмування Python та фреймворком TensorFlow, це ε самі популярні інструменти для створення та навчання нейронних мереж.

Набір даних (датасет): Датасет boston_housing складаються із 505 прикладів. Це ϵ вектор який складається з 13 елементів і результатом якого ϵ число (MEDV). Ця інформація, зібрана Службою перепису населення США щодо житла в районі Бостона, Массачусетс. Нижче наведено опис стовпців набору даних:

- **CRIM** рівень злочинності на душу населення по містах
- **ZN** частка земель житлової забудови, виділених на ділянки площею понад 25 000 кв.
- **INDUS** частка акрів нероздрібного бізнесу на місто.
- **CHAS** фіктивна змінна річки Чарльз (1, якщо тракт обмежує річку; 0 інакше)
- NOX концентрація оксидів азоту (частини на 10 мільйонів)
- **RM** середня кількість кімнат на житло
- **AGE** частка квартир, які займають власники, побудованих до 1940 року
- DIS зважені відстані до п'яти бостонських центрів зайнятості
- **RAD** індекс доступності радіальних магістралей
- ТАХ ставка податку на повну вартість майна за 10 000 доларів США
- **PTRATIO** співвідношення учень/вчитель за містом
- **В** 1000(Bk 0,63)^2, де Bk частка темношкірих у містах
- LSTAT % нижчий статус населення
- **MEDV** середня вартість будинків, зайнятих власниками, у 1000 доларів США

Boston Housing Dataset

CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	PAD	TAX	PTRATIO	В	LSTAT	MEDV
14.4208	0.0	18.1	0.0	0.74	6.461	93.3	2.0026	24.0	666.0	20.2	27.49	18.05	9.6
0.51183	0.0	6.2	0.0	0.507	7.358	71.6	4.148	8.0	307.0	17.4	390.07	4.73	31.5
0.04297	52.5	5.32	0.0	0.405	6.565	22.9	7.3172	6.0	293.0	16.6	371.72	9.51	24.8
2.3139	۵٥	19.58	0.0	0.605	5.88	97.3	2.3887	5.0	403.0	14.7	348.13	12.03	19.1
0.06899	d.O	25.65	0.0	0.581	5.87	69.7	2.2577	2.0	188.0	19.1	389.15	14.37	22.0
8.49213	a	18.1	0.0	0.584	6.348	85.1	2.0527	24.0	666.0	20.2	83.45	17.64	14.5
7.36711	۵0	18.1	0.0	0.679	6.193	78.1	1.9356	24.0	666.0	20.2	96.73	21.52	11.0
0.09604	40.0	6.41	0.0	0.447	6.854	42.8	4.2673	4.0	254.0	17.6	396.9	2.98	32.0
0.06664	a	4.05	0.0	0.51	6.546	33.1	3.1323	5.0	296.0	16.6	390.96	5.33	29.4
0.07165	0.0	25.65	0.0	0.581	6.004	84.1	2.1974	2.0	188.0	19.1	377.67	14.27	20.3
0.1146	20.0	6.96	0.0	0.464	6.538	58.7	3.9175	3.0	223.0	18.6	394.96	7.73	24.4
10.233	۵٥	18.1	0.0	0.614	6.185	96.7	2.1705	24.0	666.0	20.2	379.7	18.03	14.6
0.1712	0.0	8.56	0.0	0.52	5.836	91.9	2.211	5.0	384.0	20.9	395.67	18.66	19.5
4.75237	0.0	18.1	0.0	0.713	6.525	85.5	2.4358	24.0	666.0	20.2	50.92	18.13	14.1
5.58107	۵٥	18.1	0.0	0.713	6.436	87.9	2.3158	24.0	666.0	20.2	100.19	16.22	14.3
0.97617	0.0	21.89	0.0	0.624	5.757	98.4	2.346	4.0	437.0	21.2	262.76	17.31	15.6
22.0511	0.0	18.1	0.0	0.74	5.818	92.4	1.8662	24.0	666.0	20.2	391.45	22.11	10.5
9.91655	ao	18.1	0.0	0.693	5.852	77.8	1.5004	24.0	666.0	20.2	338.16	29.97	6.3
0.37578	0.0	10.59	1.0	0.489	5.404	88.6	3,665	4.0	277.0	18.6	395.24	23.98	19.3
0.17142	0.0	6.91	0.0	0.448	5.682	33.8	5.1004	3.0	233.0	17.9	396.9	10.21	19.3

Попередня обробка даних: немає

Модель машинного навчання:

На вході у нас буде вектор 13х1 з числовими значеннями, далі буде рекурентний шар зі SimpleRNN і на виході буде шар з 1 нейроном. Виходить така конструкція мережі:

Код моделі навчання:

Константи:

```
BATCH_SIZE = 20
EPOCHS = 100
```

Навчання моделі: Тут ми використовували модель рекурентної мережі. Ми використовували алгоритм навчання лінійної регресії з визначенням максимально точного результат, а для функції втрат тут можа використати **RMSprop**.

Результати навчання:

Оцінка результатів навчання: Як ми бачимо наша модель навчається, але в нас відбувається перенавчання приблизно 40-50 епох. Щоб покращити результат нам

можна змінити параметр рекурентного шару або зменшити кількість епох.

Задача дослідження: Вплив параметрів рекурентного шару.

Результати експериментального дослідження:

Варіант покращення результату	Середня максимальна різниця	Втрати	Оцінка результату
SimpleRNN (64)	Train and val mean absolute error 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0 20 40 60 80 100	Train and test loss 400 350 300 250 200 150 0 20 40 60 80 100	train_loss: 1.6812 train_mae: 1.0194 val_loss: 35.5835 val_mae: 4.1982 test_loss: 34.69 test_mae : 4.44 Погіршення результатів. Стрибки у графіку та інше вказують на перенавчання. Можна зменшити кількість епох.

Висновки за результатами дослідження: Згідно нашими результатами можна зробити висновок, що при зміні параметрів рекурентного шару результати середньої абсолютної різниці та втрат змінюються. При збільшені значення параметру наша модель починає перенавчатись, а коли будем зменшувати параметр — недонавчатись. Згідно наших результатів краще використовувати **SimpleRNN(16)** при заданих константах.