Representing real numbers in the computer 3,271 × 10 Integer Plusting base exponent mantt Ssa 32.71 × 10 0.327 × 10 Scientific notation. Usually, Le Write 3.271 x 109 only one eligit to the left of the decimel point. If exponent is O, we don't usually Write 3.271 × 10° but instead write 10st 3.271

Scientific Notation vs fixe	ed point
5.781 x 10 vs 0.0	
Which can store more info in least amount of space?	rmotion
Fluating 5.781 x 0 Point 4 digits	exponent.
Fixed 0.0005781 < 7 digits	Store rectly small number
Format statemens	lorge numbers.
matlab fprintf(0%.4e, 5.781e-1)	
$f \text{ printf}(5, 8f), 5.781e^{-4}$ >> x = 5.781e-4; >> fprintf('%.4e\n',x) 5.7810e-04 >> fprintf('%.7f\n',x)	

What numbers can we represent on the computer?

Numbers that can be represented in binary as:

$$\pm (1+6,2+6,2+6,2+\cdots) \times 2^{e}$$

Where b: =0 or 1, i=1,2,3,... and

where e is on integer. e= ±1, ±2, ±3, ...

$$x = 1.0 \times 2^{-1}$$
 (bax 2) $b_1 = b_2 = b_2 = ...$ Example: $x = 2$

$$X = \begin{bmatrix} 1.0 \times 2 \end{bmatrix}$$
 $b_1 = b_2 = b_3 = \cdots = 0$
 $c = 1$

Example:
$$.25 = 2^{-1}$$
: $.25 = 2^{-1}$: $.25$

Example: X = -5

Now do no get a negative value?

Now do we encode the binary representation on the computer?

- · New a "signed exponent"
- . Need a mantissa
- · Need a + sign
- · Needa O

· Encode a	s a Stri	ing of 0s and 1s standard. 754 standard.
bit expo	bits) — — — — —) 52 bits montissa
		- "dolde precision"
Sign bit:	1 bit	D: positive 1: negative
exponent:	ll bits	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
mantissa:	b, b, b,	

more on the exponent 11 bits allows as to represent $E = e_{0} 2^{\circ} + e_{1} 2^{i} + e_{2} 2^{i} + \cdots + e_{10} 2^{i}$ Example: E = 6 $C_{i} = 0 \text{ or } 1$ E = 2 + 4 = 2 + 2 $e_0 = 0$ $e_1 = e_2 = 1$ $e_3 = e_4 = \cdots = 0$ Smallert E: e = e = - e = 0 E=0 Lorgest E: Co = C, = -- C, = 1 $E = 2^{\circ} - 1 = 2047$ But how do we got a negative exponent? Shift the exponent First half represent negative numbers second half represents positive numbers

0 1 2 3 4 ---- 2047 2048 possible volves Designate D. I. - 1022 as "negative" 1023 05 0 bias the exponent e = E - 1023To represent e = 0.5 $X = 1 \times 2^{-1}$ C = -1 $E - 1023 = -1 \Rightarrow E = 1022$ $1022 = 2 + 2 + 2 + \cdots 2$ 1024 - 2 $2^{6} - 2$

Full representation

$$\frac{1}{1} \frac{e_{10}}{e_{10}} = \frac{1}{1} \frac{e_{1}}{e_{1}} \frac{e_{1}}{e_{0}} \frac{e_{1}}$$

"normalized mantissa"

$$X = |.0 \times 2^{-1}$$

Example
$$X = 2$$
 $10^3 - 1$ 1000 $X = 1.0 \times 2^1$ 0929

How do we represent 0? 0100000000000000000...0/ means: X = 0 Not $E = 0 \Rightarrow e = E - 1023$ mantissa 1.0? $X = 1.0 \times 2$ The IEE Standard tells us how O is represented >> all bits set to 0. The montissa is "denormalized" If all bits in the exponent one O, then, is we drop the "I" on the mantissa.

Instead of (-0 x 2" => 0.0 x 2" 1022

Denormalized numbers
non-zero
0 00000000000000000
$b_3 = 1 \neq 0$ $E = 0$
If F=0 => exponent is -1022 (not -102
Drop implied "1" on Mantissa
=> Cret a "denormalized number"
denoting $0.125 \times 2^{-1022} \approx 10^{-308}$
Denormalized numbers are less
precise, because they will have fewer digits in the mantissa.
Something like: 0.00000034
VS 3,4713671 x10
there extru digits

Other Special numbers in the IEEE stordard

- all bits set to 0 - possible to have to -o depending on how syn bit is set. - all exponent bits set to 1 + 00 - all mantissa bits set to 0 - sign bit can be I or O - all exponent bits set to 1 NAN - montissa bits can be set

not a

nomber - "quiet Nas - propagate

through a dadion

"Signaling Nons" - Signals a thend

"floating point exception" Mice l'not a