Feuille 4,

Courbes algébriques

Ensembles Algébriques Projectifs, Morphismes, Applications rationnelles

Exercice 1 Soit k un corps.

Si V est un k-espace vectoriel, un sous-espace linéaire projectif de $\mathbb{P}(V)$ est un sous-ensemble de la forme $\mathbb{P}(W)$ pour $W\subseteq V$ un sous-espace vectoriel. La dimension de $\mathbb{P}(W)$ est dim $\mathbb{P}(W) = \dim W - 1$.

Une droite de $\mathbb{P}(V)$ est sous-espace linéaire projectif $\mathbb{P}(W)$ avec dim $\mathbb{P}(W) = 1$. Un plan de $\mathbb{P}(V)$ est sous-espace linéaire projectif $\mathbb{P}(W)$ avec dim $\mathbb{P}(W) = 2$.

- 1. Soit $V = k^3$ et $\mathbb{P}(V) = \mathbb{P}(k^3)$ le plan projectif. Montrer que deux droites Let L' telles que $L \neq L'$ se coupent en un point exactement.
 - 2. Soit $V = k^4$ et $\mathbb{P}(V) = \mathbb{P}(k^4)$ l'espace projectif de dimension 3.
- 2a. Montrer qu'une droite L et un plan P se coupent en un point exactement si et seulement si $L \nsubseteq P$.
- 2b. Montrer que deux plans P et P' se coupent en une droite exactement si et seulement si $P \neq P'$.
- 2c. Montrer qu'en général deux droites L et L' ne se coupent pas. Montrer que L et L' se coupent si et seulement s'il existe un plan P tel que $L, L' \subseteq P$.

Exercice 2 Soit $a = [a_0, \dots, a_n]$ un point de \mathbb{P}^n . Calculer l'idéal $I(\{a\})$. Est-ce un idéal maximal de $k[X_0, \ldots, X_n]$?

Exercice 3 Dans les cas suivants, calculer l'intersection de V avec le plan \mathbb{A}^2 (identifié à $U_0 = \{[x, y, 1] \in \mathbb{P}^2 \mid x, y \in \mathsf{k}\}$) puis avec la doite à l'infini. 1. $V = \{[x, y, z] \in \mathbb{P}^2 \mid x + y + \lambda z = 0\}$ avec $\lambda \in \mathsf{k}$. 2. $V = \{[x, y, z] \in \mathbb{P}^2 \mid z = 0\}$. 3. $V = \{[x, y, z] \in \mathbb{P}^2 \mid x = y, z = 0\}$.

- 4. $V = \{[x, y, z] \in \mathbb{P}^2 \mid x = y = \lambda z\} \text{ avec } \lambda \in \mathsf{k}^{\times}.$

Exercice 4 Soient $V = V(XT - YZ) \subseteq \mathbb{P}^3_k$.

1. Montrer que pour tout $[a,b] \in \mathbb{P}^1_k$ et tout $[c,d] \in \mathbb{P}^1_k$, les ensembles projectifs

$$L_{[a,b]} = V(aX + bY, aZ + bT), \quad L'_{[c,d]} = V(cX + dZ, cY + dT)$$

sont des droites contenus dans V.

On pose
$$F_1 = \{L_{[a,b]} \mid [a,b] \in \mathbb{P}^1\}, F_2 = \{L'_{[c,d]} \mid [c,d] \in \mathbb{P}^1\}.$$

- 2. Montrer que toute droite contenue dans V est un élément de la famille F_1 ou de la famille F_2 .
- 3. Montrer que pour tout point $p \in V$, il existe exactement une droite de la famille F_1 et unne droite de la famille F_2 contenant p.
- 4. Montrer que deux droites distinctes de la famille F_1 (et par symétrie, de la famille F_2) ne se rencontrent pas.
- 5. Soit L une droite de la famille F_1 et soit L' une droite de la famille F_2 . Montrer que L et L' se coupent en un point exactement.

Exercice 5 Décrire les sous-variétés de \mathbb{P}^1 .

Exercice 6 Dans les cas suivants montrer que V est irréductible en utilisant le critère suivant : si X est un espace topologique avec $X = U \cup V$, U et V des ouverts de X irréductibles et tels que $U \cap V \neq \emptyset$, alors X est irréductible.

- 1. $V = \mathbb{P}^n$.
- 2. $V = V(XT YZ) \subseteq \mathbb{P}^3$.
- 3. $V = V(F) \subset \mathbb{P}^n$, $F \in \mathsf{k}[X_0, \dots, X_n]$ homgène, irréductible.

Exercice 7 Soit $V \subseteq \mathbb{A}^n$ un ensemble algébrique affine avec décomposition en irréductibles $V = V_1 \cup \ldots \cup V_s$. Soit $\mathbb{A}^n \subseteq \mathbb{P}^n$, identifié avec

$$U_0 = \{ [x_0, \dots, x_n] \in \mathbb{P}^n \mid x_0 \neq 0 \}.$$

Soit \overline{V} l'adhérence de V en \mathbb{P}^n .

- 1. Montrer que \overline{V} a comme décomposition en irréductibles $V = \overline{V}_1 \cup \ldots \cup \overline{V}_s$.
- 2. Soit $S = \{f_1, \dots, f_r\} \subset \mathsf{k}[X_1, \dots, X_n]$ tel que V = V(S). Montrer que \overline{V} est une composante irréductible de $W = V(\tilde{S}) \subseteq \mathbb{P}^n$, où

$$\tilde{S} = \{F_1, \dots, F_r\} \subset \mathsf{k}[X_0, \dots, X_n],$$

$$f_i(X_1,\ldots,X_n) = F_i(1,X_1,\ldots,X_n) \ (i=1,\ldots,r).$$

Exercice 8 Soient

$$V = V(Y - X^2, Z - X^2) \subseteq \mathbb{A}^3, \quad W = V(YT - X^2, ZT - X^2) \subseteq \mathbb{P}^3.$$

1. Montrer que W a deux composantes irréductibles :

$$W_1 = V(YT - X^2, Y - Z), \quad W_2 = V(T, X).$$

2. Montrer que l'adhérence \overline{V} de V dans \mathbb{P}^3 est W_1 .

Exercice 9 Soit $V = V(X^2 + Y^2 - Z^2) \subseteq \mathbb{P}^2$, $p_1 = [1, 0, -1]$, $p_2 = [1, 0, 1]$, $U_1 = V \setminus \{p_1\}$, $U_2 = V \setminus \{p_2\}$. Soient

$$\varphi_1: U_1 \to \mathbb{P}^1, \quad \varphi_1([x, y, z]) = [X + Z, Y],$$

$$\varphi_2: U_2 \to \mathbb{P}^1, \quad \varphi_2([x, y, z]) = [-Y, X - Z].$$

- 1. Montrer que φ_1 et φ_2 sont des morphismes tels que $\varphi_1 = \varphi_2$ sur $U_1 \cap U_2$. En déduire qu'il existe un morphisme $\varphi: V \to \mathbb{P}^1$ tel que $\varphi_{|U_i} = \varphi_i$ pour i = 1, 2.
 - 2. Montrer que φ est un isomorphisme avec inverse

$$\varphi^{-1}: \mathbb{P}^1 \to V, \quad \varphi^{-1}([u,v]) = [u^2 - v^2, 2uv, u^2 + v^2].$$

Exercice 10 Montrer qu'une fonction régulière $f: \mathbb{P}^1_{\mathbf{k}} \to \mathbf{k}$ doit être constante.

Exercice 11 Soient V et W deux varétés. Une application rationnelle

$$\varphi: V \dashrightarrow W$$

est la classe d'equivalence d'un morphisme $\varphi: U_V \to W$, avec $U_V \subseteq V$ ouvert, où deux morphismes $\varphi_1: U_1 \to W$ et $\varphi_2: U_2 \to W$ $(U_1, U_2$ des ouverts de V) sont equivalents si $\varphi_1 = \varphi_2$ sur un ouvert $U \subseteq U_1 \cap U_2$.

On dit que $\varphi: V \dashrightarrow W$ est défini en $a \in V$ s'il existe $\varphi': U \to W$ morphisme dans la classe d'equivalence de φ , tel que U est un ouvert de V, $a \in U$.

Montrer que $\pi: \mathbb{P}^2 \longrightarrow \mathbb{P}^1$, $\pi([x, y, z]) = [x, y]$ n'est pas défini en [0, 0, 1].

Exercice 12 Soient V et W deux varétés. Une application rationnelle

$$\varphi:V\dashrightarrow W$$

est dit birationnelle s'il existent des ouverts $U_V \subseteq V$, $U_W \subseteq W$ et un isomorphisme $\varphi: U_V \to U_W$ dans la classe d'equivalence de φ . Dans ce cas, on appelle la classe d'equivalence de $\varphi^{-1}: U_W \to U_V$ l'application rationnelle inverse de φ . On dit que V et W sont birationnelles s'il existe une application birationnelle $\varphi: V \dashrightarrow W$.

1. Montrer que si V et W sont birationnelles, il existe un isomorphisme

$$k(V) \cong k(W)$$

entre les corps de fonctions rationnelles. En particulier, $\dim V = \dim W$.

- 2. Soit $V = V(XT YZ) \subseteq \mathbb{P}^3_k$ et $\varphi : V \longrightarrow \mathbb{P}^2$, $\varphi([x, y, z, t]) = [x, y, z]$.
- 2a. Montrer que φ n'est pas défini en [0,0,0,1].
- 2b. Montrer que φ est une application birationnelle, avec inverse

$$\psi:\mathbb{P}^2\to V,\quad \psi([x,y,z,t])=[x^2,xy,xz,yz].$$

2c. Montrer que ψ n'est pas défini en [0,0,1], [0,1,0].