Chapter #1,2 Introduction

Architecture & Organization

Architecture:

- —Attributes visible to the programmer
- Instruction set, number of bits used for data representation, I/O mechanisms, addressing techniques, etc.

Organization:

- —How features are implemented
- —Control signals, interfaces, memory technology

Example:

- —All Intel x86 CPUs share the same basic architecture
- —Organization differs between different versions

Structure & Function

Structure:

—Way in which components relate to each other

Function:

- —Operation of individual components as part of the structure
- —e.g. Data processing, data storage, data movement, control

Structure - Top Level

Structure - The CPU

ENIAC – background

- What:
 - —Electronic Numerical Integrator And Computer
- Who & Where:
 - —Eckert and Mauchly, University of Pennsylvania
- Why:
 - —Trajectory tables for weapons in WW II
- When:
 - —Started in 1943
 - —Finished in 1946
 - (WWII ended 1945)
 - —Used until 1955 to determine feasibility of hydrogen bomb

ENIAC – details

- Decimal (not binary)
- 20 accumulators of 10 digits
- Programmed manually by switches
- 18,000 vacuum tubes
- 30 tons
 - —5 ton laptop version available ☺
- 15,000 square feet
- 140 kW power consumption
- 5,000 additions per second

IAS computer/ von Neumann machine

What:

- —Started concept of storing a program
- —Main memory storing programs and data
- —ALU operating on binary data
- —Control unit interpreting instructions from memory and executing
- —Input and output equipment operated by control unit
- Who and Where:
 - —Von Neumann & colleagues at Princeton
- When:
 - —Started in 1946
 - —Completed in 1952

Structure of von Neumann machine

IAS - details

- 1000 x 40 bit words
 - —Binary number
 - —2 x 20 bit instructions
- Set of registers (storage in CPU)
 - —Memory Buffer Register
 - —Memory Address Register
 - —Instruction Register
 - —Instruction Buffer Register
 - —Program Counter
 - —Accumulator
 - -etc.

Structure of IAS - detail

Generations of Computers

- Vacuum tube (1946-1957)
 - -40K ops/sec.
- Transistor (1958-1964)
 - -200K ops/sec
- Small-/Medium-scale integration (1965-1971)
 - —1M ops/sec
- Large scale integration (1972-1977)
 - —10M ops/sec
- Very large scale integration (1978-1991)
 - —100M ops/sec
- Ultra large scale integration (1991-?)
 - —>1B ops/sec

Intel CPU's (the 4004, 80xx's)

Name	4004	8008	8080	8086	8088
Year	1971	1972	1974	1978	1979
Clock speed	108 KHz	108 KHz	2 MHz	5-10 MHz	5-8 MHz
Bus width	4 bits	8 bits	8 bits	16 bits	8 bits
# trans.	2300	3500	6000	29,000	29,000
(microns)	(10)		(6)	(3)	(6)
Physical memory	640 B	16 KB	64 KB	1 MB	1 MB

Intel CPU's (the 80x86's)

Name	80286	80386TM	80386TM	80486TM	80486TM
		DX	SX	DX	SX
Year	1982	1985	1988	1989	1991
Clock	6-12.5	16-33	16-33	25-50	16-133
speed	MHz	MHz	MHz	MHz	MHz
Bus	16 bits	32 bits	16 bits	32 bits	32 bits
width					
# trans.	134,000	275,000	275,000	1.2M	1.185M
(microns)	(1.5)	(1)	(1)	(1)	(1)
Physical	16 MB	4 GB	4 GB	4 GB	4 GB
memory					
Virtual	1 GB	64 TB	64 TB	64 TB	64 TB
memory					

Intel CPU's (the Pentium's)

Name	Pentium	Pentium Pro	Pentium II	Pentium III	Pentium IV
Year	1993	1995	1997	1999	2000
Clock speed	60-166 MHz	150-200 MHz	200-300 MHz	450-660 MHz	1.3-1.8 GHz
Bus width	32 bits	64 bits	64 bits	64 bits	64 bits
# trans.	3.1M	5.5M	7.5M	9.5M	42M
(microns)	(0.8)	(0.6)	(0.35)	(0.25)	(0.18)
Physical memory	4 GB	64 GB	64 GB	64 GB	64 GB
Virtual memory	64 TB	64 TB	64 TB	64 TB	64 TB

Intel CPU's (the CORE's)

Name	Core 2 Duo	Core 2 Quad	Core I7
Year	2006	2008	2011
Clock speed	1.2 GHz	3.0 GHz	3.5 GHz
Bus width	64 bits	64 bits	64 bits
# trans.	167M	820M	1170M
(microns)	(0.065)	(0.045)	(0.032)
Physical memory	64 GB	64 GB	64 GB
Virtual memory	64 TB	64 TB	64 TB

Performance Assessment

- Instruction execution rate
- Processor time
- MIPS (million instructions-per-second)
- MFLOPS (million floating-point instructions-persecond)
- Arithmetic mean
- Geometric mean
- Speedup

Instruction Execution Rate

Parameters:

- —CPI for each instruction type: *CPI*_i
- —# times each instruction type I is executed: I_i
- —Total # instructions: I

Formula:

$$CPI = \frac{\sum_{i=1}^{n} CPI_{i} \times I_{i}}{I}$$

Measuring Processing time

Parameters:

- —Total # instructions: I
- —Average cycles per instruction: CPI
- —Cycle time: t
- —Frequency: f=1/t

Formula:

```
T=I * CPI * t = I * (CPI / f)
```

Other Performance Measures

- Total execution time: T
- Execution time for ith program: T_i

$$MIPS = \frac{Instruction count}{T \times 10^6} = \frac{Clock rate}{CPI \times 10^6}$$

$$MFLOPS = \frac{\text{Number of floating-point operations in a program}}{T \times 10^6}$$

Arithmetic mean =
$$\frac{1}{n} \sum_{i=1}^{n} T_i$$

Geometric mean =
$$\sqrt[n]{\prod_{i=1}^{n} T_i}$$

Speedup (Amdahl's Law)

$$Speedup = \frac{\textit{Execution time before enhancement}}{\textit{Execution time after enhancement}}$$

Speedup for fraction of time f with speedup factor SU_f :

$$S = \frac{1}{(1-f) + \frac{f}{SU_f}}$$

Speedup with multiple fractional enhancements f_1 , f_2 , ..., f_n and individual speedups SU_1 , SU_2 ,..., SU_n :

$$S = \frac{1}{[1 - (f_1 + f_2 + \dots + f_n)] + \frac{f_1}{SU_1} + \frac{f_2}{SU_2} + \dots + \frac{f_n}{SU_n}}$$