Blockchain-Assisted Trust Management for Secure Service Placement at the Edge

Mid-semester Presentation

Pediredla Surya Venkata Mourya

Dept. of Computer Science & Engg., NIT Rourkela

October 22, 2025

Outline

- Introduction
- 2 Motivation
- 3 Literature Review
- Research Gaps
- Objectives
- Methodology
- Experimental Setup and Simulation Results
- 8 Discussion
- Onclusion and Future Work
- References

Introduction

- **Edge Computing:** Processing data closer to its source (sensors, IoT devices, gateways) to reduce latency and enable real-time applications.
- **Security Challenge:** Edge nodes are distributed, resource-constrained, and vulnerable to attacks like unauthorized access, DDoS, and data tampering.
- **Current Problem:** Traditional centralized security creates single points of failure and lacks transparency.
- Our Solution: A blockchain-based trust management system that provides:
 - Decentralized security (no central authority)
 - Tamper-proof trust records
 - Secure service placement based on node trustworthiness

Motivation

- Edge computing brings data processing closer to sources (IoT, smart cities, autonomous vehicles) but introduces **new security challenges**.
- Traditional centralized security mechanisms create single points of failure and cannot scale for distributed multi-stakeholder environments
- Edge nodes are vulnerable to attacks: unauthorized access. DDoS, data tampering, and service disruption.
- Blockchain technology offers decentralized, tamper-proof, and transparent trust management without relying on central authority.
- Need: A lightweight blockchain-based system for secure and trusted service placement in resource-constrained edge networks.

Literature Review

Survey of Related Work: We reviewed 5 key papers on blockchain and edge computing security.

Reference	Year	Main Focus	Limitations
Xiong et al., IEEE Comm.	2018	Blockchain with edge for mo-	Heavy consensus overhead; unsuitable
Mag.		bile resource sharing	for constrained edge devices
Hasan et al., IEEE Access	2020	Comprehensive survey on	Mostly theoretical; lacks practical
		blockchain-based edge security	lightweight implementation
Wang et al., Future Gen.	2021	Blockchain ledger for node rep-	Does not evaluate scalability; consensus
Comp. Sys.		utation and task offloading	cost not optimized
Kumar & Panda, J. Net-	2022	Lightweight blockchain	Prototype limited to small networks; no
work Comp. App.		(PBFT-Lite) for IoT edge	trust score adaptation
Kumar et al., IEEE IoT	2023	Smart contracts for trust score	High storage usage; performance degra-
Journal		calculation	dation for large ledgers

Gap: Existing works lack lightweight, scalable frameworks with integrated trust-based service placement.

Research Gaps

From our literature analysis, we identified key gaps:

- Resource Constraints Ignored: Current blockchain solutions are too computationally expensive for resource-limited edge devices (limited CPU, memory, battery).
- No Service Placement Integration: Existing trust management models don't connect with actual service placement decisions trust scores are calculated but not used.
- Lack of Working Prototypes: Most research is purely theoretical without real implementations or practical validation.
- **Scalability Issues:** High consensus and storage costs make existing systems impractical for large-scale edge networks.
- ⇒ **Our Contribution:** We address these gaps by developing a lightweight, practical blockchain framework with integrated trust-based service placement.

Objectives

The main objectives of this research project are:

- System Architecture Design: Design a lightweight blockchain-based architecture seamlessly integrated with edge network orchestration and service management.
- Trust Management System: Develop adaptive trust score calculation algorithms that track node behavior, reward reliability, and penalize failures.
- Working Prototype Implementation: Implement a functional prototype demonstrating blockchain operations (block creation, chain verification, trust updates).
- Service Placement Policy: Create a trust-based service placement mechanism that selects nodes based on trust thresholds and resource availability.
- Validation and Testing: Validate the approach through simulation testing with 3-10 edge nodes and prepare for future SDN integration.

Methodology

Our Proposed Approach:

- System Components:
 - Edge Nodes: Register, execute services, report completion status
 - Blockchain Layer: Maintains distributed ledger of trust records and placements
 - Trust Manager: Calculates and updates trust scores based on behavior
 - Placement Controller: Makes service placement decisions (under development)
- Trust Score Calculation:

$$T_{new} = T_{old} + \alpha \cdot S - \beta \cdot F$$

where S = success indicator, F = failure indicator, $\alpha = 5$ (reward). $\beta = 10$ (penalty)

- Consensus Mechanism: Proof-of-Authority (PoA) lightweight, fast, and energy-efficient for resource-constrained edge devices.
- Service Placement Policy: Select nodes with $T_i > T_{threshold}$ (default: 60) based on highest trust and available resources.

System Architecture

Experimental Setup and Implementation

Development Environment:

Component	Technology	
Language	Python 3.10	
Cryptography	SHA-256 (hashlib)	
Data Storage	JSON format	
IDE	VS Code	
Simulation	Single machine	

Test Configuration:

• 5 edge nodes (varied resources)

• Initial trust score: 50

• Trust threshold: 60

10 test tasks executed

Implementation Status:

- Block creation & linking
- SHA-256 hash verification
- Trust score calculation
- Node registration
- Service placement (partial)

Initial Performance Results:

Metric	Value
Block creation time	0.15-0.25s
Trust update latency	< 0.05s
Chain verification	0.30-0.45s
Avg block size	2.5-3.2 KB

All operations complete in real-time

Discussion

Key Findings and Observations:

- **Blockchain Integrity:** Successfully demonstrated tamper-proof record keeping with chain verification detecting any modification attempts.
- Trust Management Effectiveness: Adaptive scoring accurately reflects node behavior with +5 rewards for success and -10 penalties for failures.
- **Performance Validation:** Efficient operation within edge constraints block creation 0.2s, trust updates <0.05s, blocks 3KB.
- **Decentralization Benefits:** Eliminates single points of failure without requiring central authority for trust decisions.

Current Challenges:

- Limited to simulation environment (5 nodes) physical hardware testing pending
- Basic consensus mechanism Byzantine fault tolerance not yet implemented
- Security hardening needed (encryption, advanced authentication)

Conclusion & Future Work

green!20 Completed (25-30%)	Remaining Work (70%)
- System architecture design	 Full PoA consensus implementation
- Working blockchain prototype	Service placement controller
- Trust score algorithms	 Testing with 10-50 nodes
- Basic testing & validation	 SDN integration
- Core operations verified	 Real edge hardware deployment
- Chain integrity proven	 Security hardening & encryption

Foundation established for full-scale implementation

References

- Z. Xiong, Y. Zhang, D. Niyato, and P. Wang, "When Mobile Blockchain Meets Edge Computing," IEEE Communications Magazine, vol. 56, no. 11, pp. 75-81, 2018.
- M. Z. Hasan, M. H. Rehmani, and J. Chen, "A Survey on Blockchain-Based Edge and Fog Computing Security," IEEE Access, vol. 8, pp. 182321-182344, 2020.
- L. Wang, X. Li, and J. Wu, "Blockchain-Based Trust Management in Edge Computing," Future Generation Computer Systems, vol. 115, pp. 68-79, 2021.
- A. Kumar and S. K. Panda, "Lightweight Blockchain for IoT and Edge Devices," Journal of Network and Computer Applications, vol. 175, pp. 103-115, 2022.
- S. R. Kumar, P. Gupta, and R. Singh, "Decentralized Trust and Reputation Model Using Blockchain for IoT Edge," IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2451-2463, 2023.

Thank You!

Questions?

