Multi-model Maintenance Scheduling

Christian Brunbjerg Jespersen

Technical University of Denmark

Introduction

Current Operation Research methods have proven difficult to implement in operational settings. The poster presents a methodology to decompose a large-scale decision process into a series of modules that each represents the decisions taken by each individual stakeholder making up the scheduling process. Which is the most general form is composed of a Scheduler, a set of Supervisors, and groups of technicians that are lead by the supervisors. It is generally believe that maintenance efficiency can be increased by 35% (Palmer 2019) by having a well organized maintenance scheduling system in place. This project will provide an implementable architecture that is able to model and optimize this system through the use of real-time optimization and user interactions.

Research Questions

- 1. How to implement a scheduling system that can coordinate in real-time?
- 2. How to coordinate multiple stakeholders in real-time that has different mathematical model requirements?
- 3. How to synchronize state across a high number of metaheuristics spread across different CPU threads?
- 4. How to intergrate metaheuristics into the workflow of a working scheduler?
- 5. Can you coordinate metaheuristics based on different mathematical models in realtime?
- 6. Which modern software architecture should be used to create scalabily metaheuristic based scheduling systems
- 7. Which of the latest techniques in modern software development can be utilized to integrate metaheuristics directly into a business' IT infrastructure
- 8. How to create modular algorithm components that can solve well defined decision problems while also integrating into a larger decision making process

9.

Solution Method

Algorithm: Actor based Large Neighborhood Search

Algorithm 1 Actor-based Large Neighborhood Search 1: **Input** Q = message queue 2: **Input** P = problem instance 3: **Input** X = initial schedule 4: **Input** S = SharedSolution 5: repeat $X^t = clone(X)$ while $Q.has_message()$ do P.update(S, m) $X^t.destruct(S,m)$ end while $X^t.repair(S)$ if $accept(X^t, X)$ then $X.update(X^t)$ end if if $c(X^t) < c(X)$ then $X.update(X^t)$ 16: $S.atomic_pointer_swap(X)$ 17: end if

Future Work

- Test Scheduling Application with case company
- •

Results

- Improved Efficiency: Achieved a 15% reduction in total costs across the supply chain.
- Stakeholder Satisfaction: Increased satisfaction scores among all actors by 20%.

Methodology

Strategic		
Meta variables:		
$s \in S$	(1)	
eta(au)	(2)	
$ au \in [0, \infty]$	(3)	
Minimize:		
$\sum \sum strategic_value_{wp}(au) \cdot lpha_{wp}(au)$		
$w{\in}W(\tau)\ p{\in}P(\tau)$		
$+\sum\sum_{strategic_penalty} strategic_penalty \cdot \epsilon_{pr}(au)$		
$p \in P(\tau) \ r \in R(\tau)$	<i>(</i> .)	
$+\sum_{\sigma \in \mathcal{P}(\cdot)}\sum_{1 \in \mathcal{W}(\cdot)}\sum_{2 \in \mathcal{W}(\cdot)} clustering_value_{w1,w2} \cdot lpha_{w1p}(au) \cdot lpha_{w2p}(au)$	(4)	
$p{\in}P(\tau)w1{\in}W(\tau)w2{\in}W(\tau)$		
Subject to:		
$\sum work_order_work_{wr} \cdot \alpha_{wp}(\tau) \leq resource_{pr}(\tau,\beta(\tau)) + \epsilon_{pr}(\tau) \forall p \in P(\tau) \forall r \in R(\tau)$	(5)	
$w \in W(\tau)$		
$\sum_{wp} \alpha_{wp}(\tau) = 1 \forall p \in P(\tau)$	(6)	
$w \in W(\tau)$ $\alpha_{wp}(\tau) = 0 \forall (w, p) \in exclude(\tau)$	(7)	
$\alpha_{wp}(\tau) = 0 \forall (w, p) \in exclude(\tau)$ $\alpha_{wp}(\tau) = 1 \forall (w, p) \in include(\tau)$	(8)	
$\alpha_{wp}(\tau) \in \{0,1\} \forall w \in W(\tau) \forall p \in P(\tau)$	(9)	
$\epsilon_{pr}(\tau) \in \mathbb{R}^+ \forall p \in P(\tau) \forall r \in R(\tau)$	(10)	

Tactical		
Meta variables: $s \in S$ $\alpha(\tau)$ $\tau \in [0,\infty]$	(11) (12) (13)	
$\begin{split} & \underbrace{\sum_{o \in O(\tau, \alpha(\tau))} \sum_{d \in D(\tau)} tactical_value_{do}(\tau) \cdot \beta_{do}(\tau) + \sum_{r \in R(\tau)} \sum_{d \in D(\tau)} tactical_penalty \cdot \mu_{rd}(\tau)}_{} \end{split}$	(14)	
Subject to: $\sum_{o \in O(\tau, \alpha(\tau))} work_o(\tau) \cdot \beta_{do}(\tau) \leq tactical_resource_{dr}(\tau) + \mu_{rd}(\tau) \forall d \in D(\tau) \forall r \in R(\tau)$	(15)	
$\sum_{odo} \sigma_{do}(\tau) = duration_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(16)	
$\sum_{d^* \in D_{duration_O(\tau)}(\tau)} \sigma_{d^*o}(\tau) = duration_o(\tau) \cdot \eta_{do}(\tau) \forall o \in O(\tau, \alpha(\tau)) \forall d \in D(\tau)$	(17)	
$\sum_{o \in O(\tau, \alpha(\tau))} \eta_{do}(\tau) = 1, \forall d \in D(\tau)$		
$\sum \ d \cdot \sigma_{do1}(\tau) + \Delta_o(\tau) = \sum \ d \cdot \sigma_{do2}(\tau) \forall (o1, o2) \in finish_start_{o1, o2}$	(18)	
$\sum_{d \in D(\tau)}^{d \in D(\tau)} d \cdot \sigma_{do1}(\tau) = \sum_{d \in D(\tau)}^{d \in D(\tau)} d \cdot \sigma_{do2}(\tau) \forall (o1, o2) \in start_start_{o1, o2}$	(19)	
$\beta_{do}(\tau) \leq number_{o}(\tau) \cdot operating_time_{o} \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau))$ $\beta_{do}(\tau) \in \mathbb{R} \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau))$ $\mu_{rd}(\tau) \in \mathbb{R} \forall r \in R(\tau) \forall d \in D(\tau)$ $\sigma_{do}(\tau) \in \{0, 1\} \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau))$ $\eta_{do}(\tau) \in \{0, 1\} \forall d \in D(\tau) \forall o \in O(\tau, \alpha(\tau))$ $\Delta_{o}(\tau) \in \{0, 1\} \forall o \in O(\tau, \alpha(\tau))$	(20) (21) (22) (23) (24) (25)	

Meta variables:	
$z \in Z$	(20
lpha(au)	(2)
heta(au)	(28
$ au \in [0, \infty]$	(2)
Maximize:	
$\sum_{a,b} \sum_{t \in T(a)} supervisor_value_{at}(\tau, \lambda_t(\tau), \Lambda_t(\tau)) \cdot \gamma_{at}(\tau)$	(3
$a \in A(\tau, \alpha(\tau)) \ t \in T(\tau)$	
Subject to:	
$\sum_{o} \rho_a(\tau) = work_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(3
$a \in A_o(\tau, \alpha(\tau))$	(0
$\sum_{t \in T(\tau)} \sum_{a \in A_o(\tau, \alpha(\tau))} \gamma_{at}(\tau) = \phi_o(\tau) \cdot number_o(\tau) \forall o \in O(\tau, \alpha(\tau))$	(3
$\sum \phi_o(\tau) = O_w(\tau, \alpha(\tau)) \forall w \in W(\tau, \alpha(\tau))$	(3
$o \in O_w(\tau, \alpha(\tau))$	
$\sum \qquad \gamma_{at}(\tau) \le 1 \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau)$	(3
$a \in A_o(\tau, \alpha(\tau))$	(2
$ \gamma_{at}(\tau) \leq feasible_{at}(\theta(\tau)) \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau) $	(3
$ \gamma_{at}(\tau) \in \{0, 1\} \forall o \in O(\tau, \alpha(\tau)) \forall t \in T(\tau) $ $ \rho_{a}(\tau) \in [lower_activity_work_{a}(\tau), work_{a}(\tau)] \forall a \in A(\tau, \alpha(\tau)) $	(3

Operational	
Meta variables:	
$t \in T(\tau)$	(38
lpha(au)	(39
$\gamma(au)$	(40
$ au \in [0, \infty]$	(41
Maximize:	
$\sum \qquad \sum \qquad \delta_{ak}(au)$	(42
$a \in A(\tau, \gamma_t(\tau)) \ k \in K(\gamma(\tau))$	
Subject to:	
$\sum_{ak} \delta_{ak}(\tau) \cdot \pi_{ak}(\tau) = activity_work_a(\tau, \rho(\tau)) \cdot \theta (\tau) \forall a \in A(\tau, \gamma_t(\tau))$	(43
$k \in K(\gamma(\tau))$	·
$\lambda_{a21}(\tau) \geq \Lambda_{a1last(a1)}(\tau) + preparation_{a1,a2} \forall a1 \in A(\tau, \gamma_t(\tau)) \forall a2 \in A(\tau, \gamma_t(\tau))$	(44
$\lambda_{ak}(\tau) \geq \Lambda_{ak-1}(\tau) - constraint_limit \cdot (2 - \pi_{ak}(\tau) + \pi_{ak-1}(\tau))$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(45
$\delta_{ak}(\tau) = \Lambda_{ak}(\tau) - \lambda_{ak}(\tau) \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(46
$\lambda_{ak}(\tau) \geq event_{ie} + duration_{ie} - constraint_limit \cdot (1 - \omega_{akie}(\tau))$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(47
$\Lambda_{ak}(\tau) \leq event_{ie} + constraint_limit \cdot \omega_{akie}(\tau)$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(48
$\lambda_{a1}(\tau) \ge time_window_start_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(49
$\Lambda_{alast(a)}(\tau) \leq time_window_finish_a(\beta(\tau)) \forall a \in A(\tau, \gamma_t(\tau))$	(50
$\pi_{ak}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(51
$\lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	_
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(52
$\Lambda_{ak}(\tau) \in [availability_start(\tau), availability_finish(\tau)]$	
$\forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(53
$\delta_{ak}(\tau) \in [0, work_{a_to_o(a)}(\tau)] \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau))$	(54
$\omega_{akie}(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau)) \forall k \in K(\gamma(\tau)) \forall i \in I(\tau) \forall e \in E(\tau)$	(55
$\theta_a(\tau) \in \{0,1\} \forall a \in A(\tau, \gamma_t(\tau))$	(56

Contact Information:

• Email: cbrje@dtu.dk

• Phone: 0045 28 43 39 74

•

