EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos 2000

1.ª Fase

1.a Chamada

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Deve indicar claramente na sua folha de respostas a versão da prova.

A ausência desta indicação implicará a anulação de toda a primeira parte da prova.

Na página 11 deste enunciado encontra-se um formulário que, para mais fácil utilização, pode ser destacado do resto da prova, em conjunto com esta folha.

Primeira Parte

- As sete questões desta primeira parte são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- 1. Qual das afirmações seguintes é verdadeira?

(A)
$$\lim_{x \to +\infty} \operatorname{sen} x = 0$$

(B)
$$\lim_{x \to +\infty} \text{sen } x = +\infty$$

(C)
$$\lim_{x \to +\infty} \operatorname{sen} x = 1$$

(D) Não existe
$$\lim_{x \to +\infty} \operatorname{sen} x$$

2. Na figura está parte da representação gráfica da função f, de domínio \mathbb{R}^+ , definida por $f(x) = \log_8 x$

P é um ponto do gráfico de $\,f,\,\,{\rm que}$ tem ordenada $\,\frac{1}{3}\,\,$

Qual é a abcissa do ponto $\,P$?

(A)
$$\frac{8}{3}$$

(C)
$$\ln\left(\frac{8}{3}\right)$$

3. Na figura ao lado está parte da representação gráfica de uma função g, de domínio $\mathbb{R}\setminus\{0\}$.

> Qual das figuras seguintes poderá ser parte da representação gráfica da função g', **derivada** de g?

(A)

(B)

(C)

(D)

4. Um tanque tem a forma de um paralelepípedo rectângulo, com $7\ m$ comprimento, 5 m de largura e 4 m de altura.

Admita que o tanque está vazio.

Num certo instante, é aberta uma torneira que verte água para o tanque, à taxa de $2 m^3$ por hora, até este ficar cheio.

Qual é a função que dá a **altura**, em metros, da água no tanque, t horas após a abertura da torneira?

(A)
$$h(t) = 4 - 2t$$
, $t \in [0, 70]$

(A)
$$h(t) = 4 - 2t$$
, $t \in [0, 70]$ **(B)** $h(t) = \frac{2t}{35}$, $t \in [0, 70]$

(C)
$$h(t) = 4 - 2t$$
, $t \in [0, 140]$

(C)
$$h(t) = 4 - 2t$$
, $t \in [0, 140]$ **(D)** $h(t) = \frac{2t}{35}$, $t \in [0, 140]$

- 5. Seja A um acontecimento possível, cuja probabilidade é diferente de 1. Qual é o valor da probabilidade condicionada P(A|A) ?
 - **(A)** 0

- **(B)** 1 **(C)** P(A) **(D)** $[P(A)]^2$
- 6. Lança-se um dado com as faces numeradas de 1 a 6. Considere os acontecimentos:

A: «sair face ímpar»;

B: «sair face de número maior ou igual a 4».

Qual é o acontecimento **contrário** de $A \cup B$?

- (A) sair a face 1 ou a face 5
- (B) sair a face 4 ou a face 6

(C) sair a face 2

(D) sair a face 5

7. Na figura está representado um hexágono cujos vértices são as imagens geométricas, no plano complexo, das raízes de índice 6 de um certo número complexo.

O vértice C é a imagem geométrica do número complexo

$$\sqrt{2} cis \frac{3\pi}{4}$$

Qual dos seguintes números complexos tem por imagem geométrica o vértice D?

(A)
$$\sqrt{2} \ cis \ \frac{7\pi}{6}$$

(B)
$$\sqrt{2} \ cis \ \frac{13 \, \pi}{12}$$

(C)
$$\sqrt[6]{2} cis \frac{7\pi}{6}$$

(D)
$$\sqrt[6]{2} \ cis \ \frac{13 \, \pi}{12}$$

Segunda Parte

Nas questões desta segunda parte, apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

- **1.** Seja A o conjunto dos números complexos cuja imagem, no plano complexo, é o interior do círculo de centro na origem do referencial e raio 1.
 - **1.1.** Defina, por meio de uma condição em \mathbb{C} , a parte de A contida no segundo quadrante (excluindo os eixos do referencial).
 - **1.2.** Sem recorrer à calculadora, mostre que o número complexo $\frac{1+\sqrt{3}\ i}{4\ cis\ \frac{\pi}{6}}$ pertence ao conjunto A.
- **2.** Considere a função f , de domínio \mathbb{R} , definida por $f\left(x\right)=e^{x}\left(x^{2}+x\right)$

Recorrendo exclusivamente a processos analíticos (ou seja, **sem** utilização da calculadora), resolva as alíneas seguintes:

- **2.1.** Verifique que $f'(x) = e^x (x^2 + 3x + 1)$ e determine uma equação da recta tangente ao gráfico de f, no ponto de abcissa 0.
- **2.2.** Estude f quanto ao sentido das concavidades do seu gráfico e quanto à existência de pontos de inflexão.

3. No presente ano civil, em Lisboa, o tempo que decorre entre o nascer e o pôr do Sol, no dia de ordem $\,n\,$ do ano, é dado em horas, aproximadamente, por

$$f(n) = 12.2 + 2.64 \text{ sen } \frac{\pi (n-81)}{183}$$
 $n \in \{1, 2, 3, \dots, 366\}$

(o argumento da função seno está expresso em radianos).

Por exemplo: no dia 3 de Fevereiro, trigésimo quarto dia do ano, o tempo que decorreu entre o nascer e o pôr do Sol foi de $f(34) \approx 10,3$ horas.

3.1. No dia 24 de Março, Dia Nacional do Estudante, o Sol nasceu às seis e meia da manhã. Em que instante ocorreu o pôr do Sol? Apresente o resultado em horas e minutos (minutos arredondados às unidades).

Notas:

- Recorde que, no presente ano, o mês de Fevereiro teve 29 dias.
- Sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.
- **3.2.** Em alguns dias do ano, o tempo que decorre entre o nascer e o pôr do Sol é superior a 14,7 horas. Recorrendo à sua calculadora, determine em quantos dias do ano é que isso acontece. Indique como procedeu.

4. Na figura está representado um poliedro com doze faces, que pode ser decomposto num cubo e em duas pirâmides quadrangulares regulares.

4.1. Pretende-se numerar as doze faces do poliedro, com os números de 1 a 12 (um número diferente em cada face).

Como se vê na figura, duas das faces do poliedro já estão numeradas, com os números 1 e 3.

- **4.1.1.** De quantas maneiras podemos numerar as outras dez faces, com os restantes dez números?
- 4.1.2. De quantas maneiras podemos numerar as outras dez faces, com os restantes dez números, de forma a que, nas faces de uma das pirâmides, fiquem só números ímpares e, nas faces da outra pirâmide, fiquem só números pares?
- **4.2.** Considere agora o poliedro num referencial o. n. Oxyz, de tal forma que o vértice P coincida com a origem do referencial, e o vértice Q esteja no semieixo positivo Oy. Escolhidos ao acaso três vértices distintos, qual é a probabilidade de estes definirem um plano paralelo ao plano de equação y=0? Apresente o resultado na forma de fracção irredutível.
- **5.** Considere uma função f de domínio \mathbb{R}^+ . Admita que f é positiva e que o eixo Ox é assimptota do gráfico de f. Mostre que o gráfico da função $\frac{1}{f}$ não tem assimptota horizontal.

FIM

COTAÇÕES

ra Parte	
Cada resposta certa	+9
Cada resposta errada	
Cada questão não respondida ou anulada	
Nota: um total negativo nesta parte da prova vale 0 (zero) pontos.	
da Parte	
1	21
1.19	
1.2. 12	
2.	33
2.1.	
2.2. 18	
3	33
3.1.	
3.2. 18	
4	22
	32
4.1. 18	
4.1.1	
4.1.2. 11	
4.2. 14	
5	18

Formulário

Áreas de figuras planas

Losango:
$$\frac{Diagonal\ maior \times Diagonal\ menor}{2}$$

Trapézio:
$$\frac{Base\, maior + Base\, menor}{2} imes Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica:
$$4\,\pi\,r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times Área \ da \ base \times Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \, . \, (\rho' \operatorname{cis} \theta') = \rho \, \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, \operatorname{cis} \theta}{\rho' \, \operatorname{cis} \theta'} = \frac{\rho}{\rho'} \, \operatorname{cis} \left(\theta - \theta'\right)$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} \, = \, \sqrt[n]{\rho} \, \cos \frac{\theta {+} 2 \, k \, \pi}{n} \ , \, k \in \{0,...,\, n-1\}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$