Université Pierre et Marie Curie - LM223 - Année 2012-2013

Interro n^o 2

Question de cours:

- 1. Donner la définition d'une forme bilinéaire symétrique ainsi que celle d'un produit scalaire.
- 2. Sur \mathbb{R}^3 donner quatre formes quadratiques q_1, q_2, q_3 et q_4 différentes telles que q_1 et q_2 soient des produits scalaires, q_3 soit de signature (2,1) et q_4 soit dégénérée.

Exercice 1:

- 1. Soit $M = \begin{pmatrix} -2 & 4 & -9 \\ 3 & -1 & 3 \\ 2 & -2 & 5 \end{pmatrix}$. M est-elle diagonalisable? Si oui la diagonaliser (i.e. donner une base de vecteurs propres).
- 2. Même question avec $N = \begin{pmatrix} 5 & -1 & -2 \\ -5 & 3 & 3 \\ 9 & -3 & -4 \end{pmatrix}$.

Exercice 2:

Sur \mathbb{R}^3 soit q la forme quadratique définie par $q(x) = x_1^2 + 7x_2^2 + 12x_3^2 + 4x_1x_2 - 2x_1x_3 - 16x_2x_3$.

- 1. Donner la matrice M de q dans la base canonique de \mathbb{R}^3 .
- 2. Donner une base orthogonale pour q.
- 3. Quelle est la signature de q?
- 4. Trouver un élément $x \in \mathbb{Z}^3$ tel que q(x) = -1.

Exercice 3:

Sur \mathbb{R}^3 soit q la forme quadratique définie par $q(x) = x_1x_2 - 2x_1x_3 + 4x_2x_3$. On note M la matrice de q dans la base canonique de \mathbb{R}^3 . Trouver $P \in GL_3(\mathbb{R})$ telle que tPMP soit une matrice diagonale.

Exercice 4:

Soit

$$q: \ \mathbb{R}_2[X] \to \mathbb{R}$$

$$P \mapsto P(1)P(-1)$$

- 1. Justifier que q est une forme quadratique, en donnant la forme polaire associée à q.
- 2. Donner la matrice de q dans la base canonique de $\mathbb{R}_2[X]$, i.e. $\{1, X, X^2\}$.
- 3. Déterminer la signature de q.
- 4. Montrer que $\mathcal{B} = \{X 1, X + 1, X^2 1\}$ est une base de $\mathbb{R}_2[X]$.
- 5. Calculer la matrice de q dans la base \mathcal{B} .

Exercice 5:

Soit la forme quadratique de \mathbb{R}^3 , $q(x) = x_1^2 + 3x_2^2 - 8x_3^2$. Soit $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ le sous-espace vectoriel de \mathbb{R}^3 . Alors, $q_{|F|}$ induit une forme quadratique sur F.

Donner la dimension de F, et calculer la signature de $q_{|F|}$ qu'on voit comme une forme quadratique sur F.

Exercice 6:

- 1. Soit q une forme quadratique sur \mathbb{R}^3 . Déterminer, suivant la signature de q, s'il existe $x \in \mathbb{R}^3 \setminus \{0\}$ tel que q(x) = 0.
- 2. Soit $n \geq 2$ et q une forme quadratique sur \mathbb{C}^n . Montrer qu'il existe $x \in \mathbb{C}^n \setminus \{0\}$ tel que q(x) = 0.