Breast Cancer
Prediction using
Machine Learning
(Random Forest)

MAMTA 02/09/2025

Problem Statement

Breast cancer is one of the leading causes of cancer deaths in women.

Early detection can save lives.

Goal \rightarrow Build an ML model to classify **Malignant (cancerous)** vs **Benign (non-cancerous)** tumors.

Dataset Overview

```
## Dataset: Breast Cancer Wisconsin Diagnostic Dataset
```

Size: ~569 samples, 30 features + target (diagnosis)

Target variable:

- M → Malignant (1)
- B → Benign (0)

Dropped: id, Unnamed: 32

Data Preprocessing

- ## Converted diagnosis labels ($M \rightarrow 1, B \rightarrow 0$).
- ## Checked for missing values.
- ## Standardized features using StandardScaler.
- ## Split data: 80% training, 20% testing (stratified).

Model Selection

Algorithm used: Random Forest Classifier

Why Random Forest?

- Handles high-dimensional data.
- Reduces overfitting.
- Provides **feature importance** ranking.

Parameters: n_estimators = 100, random_state=42

Model Performance

Accuracy: ~97.3684%

Feature Importance

Bar chart of top features responsible for prediction.

Example: radius_mean, concave points_mean, area_worst...

Insight: Certain tumor shape & size metrics strongly indicate malignancy.

Prediction Example

- ## Input new tumor data (30 features).
- ## Model scales & predicts.
- ## Example Output:

"Prediction: Malignant Tumor (Cancerous)"

Conclusion

- ## Achieved high accuracy with Random Forest.
- ## Model can assist doctors in early detection.
- ## Next steps:
 - Try other ML models (Logistic Regression).