

MOR of Electro-Thermal Actuator using ANSYS and Simplorer

Under the guidance of : Prof. Dr. –Ing. Tamara Bechtold Msc. Yuan Chengdong

Ujjwal Verma

(216100297)

Device – Electro-Thermal Actuator

- The conventional MEMS polysilicon electro-thermal microactuator uses Joule heating to generate thermal expansion and movement.^[1]
- Electrical boundary conditions determine how the device is actuated. Mechanical boundary conditions control how the device is constrained from movement.

Applications:

- Switches
- Stepper motors^[2]
- Safety Shut Off Devices
- Radiator temperature control.

Fig.1: Thermal Actuator^[*]

Objective

- Obtain the maximum temperature across the device based on the given BC.
- Reduce the full scale ANSYS model using MORACT (Two inputs and an Extra output as T_max) and export the model to Simplorer.
- Compare the results of reduced model integrated in Simplorer with ANSYS transient solution using the expansion result button in ANSYS workbench.
- Develop a temperature control (operation at fixed temperature), using the PI controller library element in Simplorer
- Goal: Maximum actuator temperature should quickly increase to 300°C and show minimum overshoot (use optimization for controller parametrization in Simplorer 2017)

Case Setup

- Boundary Conditions
 - Thermal: 0 K temperature on both bottom pads.
- Mesh
 - 5455 Nodes
 - 844 Elements
 - Hexahedral mesh elements
- Transient-Thermal Analysis
 - Internal Heat generation
 - Narrow arms– 10^{13} W/m³
 - Wide arm- 2.5x10¹² W/m³

Fig.4: Mesh

Model in Simplorer

Fig.5: Simplorer model

Fig.6: MORACT Model vs Full Model

Temperature Control for Actuator

Fig.7: Temperature Control using PI controller

Optimization Curves

Fig.8: Temperature Distribution limiting at 300°C

Fig.9: Optimized curves

Result Comparison

Result Comparison between the Reduced model-expanded result from the Simplorer and ANSYS Full model result.

Fig.10: Full Model Results

Fig.10: Reduced Model-Expanded Results

Result Comparison

Fig.10: Comparing Expanded Results

Conclusion

- The results from both appear to follow same Temperature distribution and values.
- This means that the Reduced model can also be used in place of the Full model, thus reducing the computation effort.
- Maximum actuator temperature increases quickly to 300°C using PI controller optimization.

Reference

[1] E.S. Kolesar, P.B. Allen, J.T. Howard and J.M. Wilken, J. Vac. Sci. Technol. A, 17 (1999) 2257-2263.

[2] Kaur, Sandeep, Sukhdeep Kaur, and Subhash Poonia. "APPLICATION OF THERMAL ACTUATOR". International Journal of Advanced Research in Computer and Communication Engineering 2.10 (2013): 3. Print.