# לוגיקה של פסוקים

כללי גזירה והוכחות - שלב 1

### טענות (פסוקים)

- לוגיקה עוסקת בטענות
- טענה (פסוק) היא הצהרה שאפשר לומר עליה אם היא נכונה או לא.
  - **•** דוגמאות לטענות:
  - סכום המספרים 1 ו 2 הוא 3
  - 4 סכום המספרים 1 ו 2 הוא
    - היום איחרתי להרצאה
      - שלג שחור יורד בחוץ
        - סוקרטס הוא אדם
          - :לא טענות •
      - Is this the real life? •
      - מתישהו יהיה שלום
      - אולי יירד מחר גשם



#### טענות מורכבות

• הלוגיקה היא מתמטיקה שעוסקת בבניית טענות.



: נתונה הטענה



אם הרכבת תאחר ולא יהיו מוניות בתחנה אז אאחר לפגישה

- י הטענה מורכבת משלוש טענות קטנות יותר:
  - הרכבת תאחר
  - לא יהיו מוניות בתחנה
    - אאחר לפגישה •
- ידוע שהרכבת אחרה, אבל אני לא איחרתי לפגישה. מה המסקנה?
  - תשובה: היו מוניות בתחנה



#### טענות מורכבות

#### :2 דוגמה •

• נתונה הטענה:

#### אם יירד גשם ולא יהיה לי מעיל אז אירטב

- הטענה מורכבת מ-3 טענות קטנות:
  - יירד גשם
  - לא יהיה לי מעיל
    - אני ארטב •
- נניח שירד גשם ולא נרטבתי. מה המסקנה?
  - תשובה: היה לי מעיל

### סינטקס

- אנו מבחינים בין שתי דרכים להסתכל על טענות בלוגיקה:
  - מבחינת הצורה סינטקס
  - מבחינת התוכן או המשמעות סמנטיקה
  - סינטקס: הצורה הפורמלית שבה הטענות כתובות.
    - **דוגמה** 3:
  - מבחינת הסינטקס הטענה 4 = 2+1 היא נכונה (כי היא כתובה בצורה נכונה)
    - . מבחינת הסינטקס הטענות 2+1=3 ו 2+1=3 הן שונות
      - <u>• דוגמה 4:</u>
      - 1+1=3 טענה 1: אם יורד גשם בחוץ אז
        - טענה 2: יורד גשם בחוץ
          - 1+1 = 3 :3 טענה •
    - מבחינת הסינטקס טענה 3 היא מסקנה של טענות 1 🗓 2



### סינטקס (המשך)

#### • דוגמה 5:

- "פו הדב: "אם ינשוף אינו הכי חכם ביער, אז שמי אינו פו הדב
  - שמו של פו הוא פו הדב
  - מסקנה: ינשוף הוא הכי חכם ביער



- (עפ"י אנסלם מקנטרברי) <u>- דוגמה 6:</u>
  - טענה 1: אלוהים הוא מושלם
    - טענה 2: אי-קיום הוא פגם
      - מסקנה: אלוהים קיים

## מסקנות לא נכונות

#### <u>דוגמה 7:</u>

מי שלא עובב את הבחינה לא מקבל תעודה •

יוסי לא קיבל תליסואס יוסי לא קיבל תליסואס יוסי לא עבר את הבחינה •

#### • דוגמה 8:

לא ינצחו אז ברק אובמה אינו נשיא ארה"ב Chicago Bulls אם ה •

ברק או<del>במה אינוסאסארה"ב •</del>

לא ניצחו Chicago Bulls • מסקנה: ה

#### :9 דוגמה **•**

- מחר יירד גשם או שלג (נאמר אתמול) היום ירד גשל WRONG

  - מסקנ<del>ה: היום לא ירד שלג</del>



**CHICAGO** 

BULLS



### "אנ" הערה אודות

- מכאן והלאה לכל אורך הקורס המשמעות של "או" באנגלית: or), הן בשפה והן בסימון מתמטי היא שלפחות אחת מהטענות אמת (כלומר, יתכן ששתיהן אמת).
- אם נרצה לציין מצב שרק אחת מהטענות אמת q p אז נציין זאת במפורש. למשל, p אז נציין זאת במפורש. למשל, p אז נציין זאת במפורש. למשל, b אז נציין זאת במפורש. לא שניהם.

### סמנטיקה

- מתייחסת למשמעות של טענה במובן המתמטי או
   בעולם האמיתי.
- המשמעות של טענה לוגית תהיה בדרך כלל אמת או
   שקר (T או F)
  - **•** דוגמאות:
  - 1+2 ו 1+2 זהים מבחינה סמנטית
  - הטענות +2=4 ו +2=3 הן שונות מבחינה סמנטית •

### סימונים לוגיים

- שני סוגים בסיסיים של סימנים לוגיים
  - טענות אטומיות
    - קַשָּרים
  - בנוסף, נשתמש גם בסוגריים: ( )
- $p,q,r,\dots p_1,\,p_{2,}$  אותיות לטיניות קטנות מסמנות מסמנות טענות לטיניות אטומיות ייקראו גם טענות אטומיות

דוגמאות:

יורד גשם – p

ברק אובמה הוא נשיא ארה"ב-q

ינשוף הוא היצור החכם ביער – r

### קַעָּרים

```
- שלילה (negation) שלילה -pיש מוניות בתחנה -p אין מוניות בתחנה -p
```

```
(קרוי גם קוֹניוּנקצִיה) (and) וגם -p - הרכבת אחרה -q היו מוניות בתחנה -p \land -p הרכבת אחרה והיו מוניות בתחנה
```

### (המשך) קַשְּׁרִים

```
(קרוי גם דיסיוּנקציה) (or)
                                           הרכבת אחרה - p
                                       היו מוניות בתחנה – q
                     הרכבת אחרה או היו מוניות בתחנה – q \lor p
                                    (implies ,"גרירה\rightarrow
                                           הרכבת אחרה - p
                                       היו מוניות בתחנה – q
                אם הרכבת אחרה אז היו מוניות בתחנה -p \rightarrow q
הקשר \leftarrow לא בהכרח מבטא סיבתיות. הוא מבטא שימור ערך
                                     אמת (נדון בכך בהמשך).
הקשרים \lor, \land, \lor ו \leftarrow נקראים קשרים בינאריים כי הם מקשרים
                      שתי טענות. הקשר – הוא קשר אונארי
```

#### טענות מורכבות

- בעזרת טענות אטומיות וקשרים ניתן להרכיב <mark>טענות</mark> מורכבות
  - $(p \land q) \rightarrow ((\neg r) \lor q)$  :דוגמה:
    - מוגדרים סדרי העדיפות הבאים:
      - () (1
      - **¬** (2
      - (משמאל לימין)  $\vee \wedge$  (3
      - (מימין לשמאל $) \rightarrow (4$
    - :מחושב מימין לשמאל  $\rightarrow$

$$(p \rightarrow (q \rightarrow r))$$
 שקול ל  $p \rightarrow q \rightarrow r$ 

• כל ביטוי חוקי המורכב מטענות אטומיות, קשרים ו () ייקרא פסוק או טענה. (נראה בהמשך מה פרוש "חוקי")

# רצפים והוכחות

### (natural deduction) הסקה טבעית

- בהסקה טבעית יש אוסף של כללי הסקה המאפשרים להסיק פסוקים חדשים מתוך פסוקים נתונים.
  - (premises) נתונים  $\phi_1,\phi_2,...,\phi_n$  •
- אם ע"י הפעלת כללי גזירה שוב ושוב על הנתונים נקבל בסופו של דבר את הפסוק  $\psi$ , נסמן זאת כך:

$$\{\phi_1,\phi_2,...,\phi_n\}$$
  $ert$  או  $\phi_1,\phi_2,...,\phi_nert$   $ert$ 

- נקרא מסקנה  $\psi$  נקרא נקרא •
- (sequent) נקרא רצף  $\phi_1,\phi_2,...,\phi_n \vdash \psi$  הביטוי •
- אם קיימת עבורו <mark>הוכחה (valid) ארצף נקרא תקף רצף נקרא תקף</mark>

#### הוכחה

- הוכחה היא סידרה של הפעלות של כללי הסקה
   שתחילתה בנתונים ובסיומה מקבלים את המסקנה.
  - <u>• דוגמה 1:</u>

אם הרכבת תאחר ולא יהיו מוניות בתחנה אז אאחר לפגישה

- p הרכבת תאחר
- q היו מוניות בתחנה
  - r איחרתי לפגישה
- נתונים: הרכבת אחרה, לא איחרתי לפגישה.
  - מסקנה: היו מוניות בתחנה
- $p \land \neg q \rightarrow r, p, \neg r \vdash q$  :זה נותן את הרצף הבא

#### הוכחות

- בניית הוכחה עשויה להיות תהליך ארוך וקשה.
- יש להיזהר בניסוח כללי הסקה, כדי שלא נקבל תוצאות אבסורדיות. למשל, לא היינו רוצים שהרצף הבא יהיה חוקי:

$$p \vdash \neg p$$

# כללי הסקה

(כללי גזירה)

# כללי הסקה

- כללי הסקה מגדירים כיצד ניתן לקבל (להסיק) פסוק חדש (מסקנה) מפסוק או פסוקים קיימים (נתונים).
- כללי ההסקה הם האקסיומות של מערכת ההסקה, לכן הם צריכים להיות "מובנים מאליהם".
  - צורת הרישום של כלל הסקה:



## (∧ introduction) ∧ כלל הוספת

$$\frac{\phi,\psi}{\phi\wedge\psi}\wedge i$$

- נתונים  $\psi$  , $\phi$  •
- (לאו דוקא המסקנה  $\phi \wedge \psi$  מסקנה הסופית)  $\phi \wedge \psi$ 
  - (introduction = i) שם הכלל  $\land i$

# (∧ elimination) כלל הסרת ∧ הראשון

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1$$

- נתון  $\phi \wedge \psi$  •
- מסקנה  $\phi$  •
- (elimination = e) שם הכלל  $\wedge e_1$

# כלל הסרת ∧ השני (∧ elimination) כלל

$$\frac{\phi \wedge \psi}{\psi} \wedge e_2$$

- נתון  $\phi \wedge \psi$  •
- מסקנה  $\psi$  •
- (elimination = e) שם הכלל  $\wedge e_2$

#### דוגמה

$$p \land q, r \vdash q \land r$$



#### הערות

- יכולות להיות כמה הוכחות שונות לאותו רצף.
- כל הוכחה ניתנת לבדיקה בצורה שיטתית, גם באמצעות מחשב.
  - תרגיל: בנו הוכחה עבור הרצף הבא:

$$(p \land q) \land r, s \land t \vdash q \land s$$

### כללי שלילה כפולה

#### • כלל הסרת שלילה כפולה

$$\frac{\neg \neg \phi}{\phi}$$
  $\neg \neg e$ 

#### • כלל הוספת שלילה כפולה

$$\frac{\phi}{\neg\neg\phi}$$
  $\neg\neg i$ 

#### דוגמה

$$p, \neg \neg (q \land r) \vdash \neg \neg p \land r$$

### כלל הסרת גרירה (MP ,Modus Ponens ,כלל הניתוק,

$$\frac{\phi, \phi \to \psi}{\psi} \to e \text{ (MP)}$$

#### דוגמה:

נתון:

אם יורד גשם אז יש עננים : $p{
ightarrow}q$  •

יורד גשם - p

מסקנה: q - יש עננים

.q את לא ניתן להסיק את  $p{ o}q$  לא ניתן להסיק את

#### דוגמה

$$p \rightarrow (q \rightarrow r), p \rightarrow q, p \vdash r$$

נתון p נתון  $p \rightarrow (q \rightarrow r)$  נתון  $q \rightarrow r$  MP 1,2  $p \rightarrow q$  נתון  $q \rightarrow r$  MP 1,4  $q \rightarrow r$  MP 3,5

# (MT) Modus Tollens הכלל

$$\frac{\phi \to \psi, \neg \psi}{\neg \phi} \text{ MT}$$

#### דוגמה:

נתון:

- אם יורד גשם אז יש עננים : $p \rightarrow q$ 
  - אין עננים  $-\neg q$

מסקנה: p – אין גשם

29

#### דוגמה

$$p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$$

נתון p נתון  $p \rightarrow (q \rightarrow r)$  נתון  $q \rightarrow r$  MP 1,2  $q \rightarrow r$  נתון  $q \rightarrow r$  MT 3,4

### תרגילים

$$\neg p \rightarrow q, \neg q \vdash p$$

$$p \rightarrow \neg q, q \vdash \neg p$$

# (→ introduction) כלל הוספת גרירה



#### הסבר:

אם כאשר מניחים  $\phi$  מקבלים הוכחה ל  $\psi$ , אז ניתן להסיק את  $\psi \leftarrow \phi$ .



#### <u>:הערות</u>

- 1. התיבה מקיפה את קטע ההוכחה שמתחיל בהנחה ומסתיים בתוצאה,
  - 2. מיד אחרי התיבה תבוא המסקנה מהתיבה

#### משפטים

- רצף מהצורה  $\phi$  הוא רצף ללא נתונים. כלומר, ניתן להוכיח את  $\phi$  בלי להסתמך על נתונים כלשהם.
- טענה שהיא מסקנה בהוכחה בלי נתונים נקראת משפט

#### דוגמה

$$p \vdash q \rightarrow (p \land q)$$



#### דוגמה דומה

$$\vdash p \rightarrow (q \rightarrow (p \land q))$$

| 1 | p                   | הנחה   |
|---|---------------------|--------|
| 2 | q                   | הנחה   |
| 3 | $p \wedge q$        | ∧i 1,2 |
| 4 | $q \to (p \land q)$ | →i 2-3 |

5  $p \rightarrow (q \rightarrow (p \land q)) \rightarrow i 1-4$ 

# הערה על הסברים למסקנות

עבור מסקנה מתיבה נכתוב את שורת התחלת התיבה
 ואת שורת סיום התיבה עם "-" ביניהם:



### הערה כללית על סימונים

- אותיות לטיניות כגון p,q,rיסמנו טענות אטומיות
  - אותיות יווניות כגון  $\phi$ ,  $\psi$ ,  $\varphi$  יסמנו טענות כלשהן אטומיות או מורכבות)

# הכלל copy

$$\frac{\phi}{\phi}$$
 copy

- הסבר: ניתן להעתיק פסוק שכבר הופיע, אלא אם כן הוא תלוי בהנחה זמנית שהמסגרת שלה כבר נסגרה
  - $\vdash p \rightarrow p$  :דוגמה •

| 1 | p                 | הנחה   |
|---|-------------------|--------|
| 2 | p                 | copy 1 |
| 3 | $p \rightarrow p$ | →i 1-2 |

### דוגמה רעה



| 1 | <i>p</i>            | הנחה   |
|---|---------------------|--------|
| 2 |                     | הנחה   |
| 3 | $p \wedge q$        | ∧i 1,2 |
| 4 | $q \to p \land q$   | →i 2-3 |
| 5 | $p \wedge q$        | copy 3 |
| 6 | $p \to (p \land q)$ | →i 1-5 |

」Wrong!!!

#### דוגמה מסכמת

$$\vdash (q \rightarrow r) \rightarrow ((\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r))$$

| 1  | $q \rightarrow r$                                                                         | הנחה   |  |
|----|-------------------------------------------------------------------------------------------|--------|--|
| 2  | $\neg q \rightarrow \neg p$                                                               | הנחה   |  |
| 3  | p                                                                                         | הנחה   |  |
| 4  |                                                                                           | ¬¬i 3  |  |
| 5  |                                                                                           | MT 2,4 |  |
| 6  | q                                                                                         | ¬¬e 5  |  |
| 7  | r                                                                                         | MP 1,6 |  |
| 8  | $p \rightarrow r$                                                                         | →i 3-7 |  |
| 9  | $(\neg q \to \neg p) \to (p \to r)$                                                       | →i 2-8 |  |
| 10 | $(q \rightarrow r) \rightarrow (\neg q \rightarrow \neg p) \rightarrow (p \rightarrow r)$ | →i 1-9 |  |

## האקסיומות של הילברט

(H1) 
$$\vdash \phi \rightarrow (\psi \rightarrow \phi)$$

(H2) 
$$\vdash (\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi))$$

(H3) 
$$\vdash (\neg \phi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \phi)$$

לכל שלושה פסוקים φ, ψ ן χ. הילברט הציע את המשפטים האלה בתור מערכת אקסיומות לתחשיב הפסוקים.

תרגיל: הוכיחו את האקסיומות של הילברט בעזרת כלי ההסקה שלמדנו

### תרגילים נוספים

$$(\mathsf{H3.1}) \vdash (p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$$

(H3.2) 
$$\vdash (\neg p \rightarrow q) \rightarrow (\neg q \rightarrow p)$$

(H3.3) 
$$\vdash (p \rightarrow \neg q) \rightarrow (q \rightarrow \neg p)$$