绍兴一中 ZJOIP 模拟赛

中文题目名称	HearthStone	CrackleCylinder	BadPiggies
子目录名	hs	СС	bp
可执行文件名	hs	СС	bp
输入文件名	hs.in	cc.in	bp.in
输出文件名	hs.out	cc.out	bp.out
时间限制	2s	1s	3s
内存限制	512MB	512MB	512MB
测试点数目	6	/	20
单个测试点分值	/	/	5
附加样例文件	有	有	有
结果比较方式	全文比较(忽略行末空格及文末回车)		
题目类型	传统	传统	传统
编译命令	-02	-02	-02

本次评测在 Linux 下进行。

HearthStone

题目描述

"低保不是挺轻松的吗?"

HS 需要智商,需要知己知彼,需要根据场面情况和对手策略进行针对性的概率分析和分类讨论。zzh 不擅长这些,看着 hzy 又一次低保,便向 hzy 请教经验。

"每次你与对手博弈,获胜一局加一分,否则扣一分。低保之后,连胜附加分取消, 上分的道路更加艰难。",说着 hzy 拿出一张足有七十米长的小纸条,"这是根据目前天 梯上的情况得到的,我的卡组在已有i分时找对手博弈获胜的概率。"

zzh 顿时来了劲,不停地问 hzy,如果 hzy 有一只小号目前有 I 分,不停地博弈,博弈过程中任何时刻不低于 I 分,最终到达 r 分的概率。因为天梯实况不时会改变,hzy 还会不断地对纸条进行修改。于是,zzh 的问题就要你来回答了。

为了避免精度问题,请输出在模 P=998244353 域下的结果。

输入描述

第一行输入两个数,低保以上的分数上限 N,修改和询问总数 Q(N,Q \leq 10^5)。 接下来 N 行,第 i+1 行两个数 x[i],y[i](1 \leq x[i]<y[i]<P),表示已有 i 分时获胜的概率为 x[i]/y[i]。

接下来 M 行,每行以下面的格式描述一个操作:

 $1 d x y (1 \le d \le N, 1 \le x < y < P)$: hzy 将已有 d 分时获胜的概率改为 x/y;

2 | r (1 ≤ l ≤ r ≤ N): zzh 进行一次询问,询问的含义如题。

输出描述

对于所有 zzh 的询问,一行一个数输出结果。

输入样例

3 7

13

12

23

211

212

213

1223

211

212

213

输出样例

332748118

598946612

166374059

332748118

748683265

887328314

数据范围

测试点编号	分值	对N和Q的限制	其他限制
1	3	N=1	
2	22	N≤3,Q≤10 无	
3	19	N≤1000,Q≤1000	
4	24		无操作 1, 所有 y[i]相同
5	6	无	无
6	26		<i>/</i> L

提示

如果 P 是质数,那么 Q^(P-1)≡1 (mod P)。

CrackleCylinder

题目描述

hzy 面前有两个不规则齿轮状障碍,它们在同一平面内,且以相同方向、相同速度旋转,不停地发出牙酸的嘎嘎声。

然而 hzy 却怡然不惧,一跃而过。zzh 却吓软了腿。现在他想问问你,旋转一段时间后,这两个齿轮会不会卡住?

输入描述

我们用简单多边形(不自交)来描述齿轮的形状。齿轮卡住当且仅当旋转过程某一时刻两个多边形存在一个交点。卡住后,齿轮停止转动。

第一行两个整数,Px,Py,分别表示第一个多边形旋转中心的横、纵坐标。

之后一行一个数 N,表示第一个多边形的点数。

之后 N 行,每行两个整数,按连边顺序给出第一个多边形的所有点横、纵坐标。

之后一行两个整数,Qx,Qy,分别表示第二个多边形旋转中心的横、纵坐标。

之后一行一个数 M,表示第二个多边形的点数。

之后 M 行,每行两个整数,按连边顺序给出第二个多边形的所有点横、纵坐标。

N≥3, 所有点坐标的绝对值不超过 10000。保证初始时两个多边形没有交点且不互相包含。

输出描述

一行,如果齿轮会卡住输出 YES,否则输出 NO。

输入样例一

10

4

00

10

15

05

90

4

90

9 -5

10 -5

100

输出样例一

YES

样例解释一

输入样例二

- 0 0
- 3
- 10
- 2 -1
- 2 1
- 0 0
- -10
- -2 1
- -2 -1

输出样例二

NO

数据范围

子任务编号	分值	对 N 和 M 的限制	其他限制	
Subtask1	17	N=M=3	无	
Subtask2	23	N=M=4	两个多边形为四条边 均与坐标轴平行的矩形	
Subtask3	21	N,M≤10	无	
Subtask4	22	N,M≤100	两个多边形的旋转中心 均在多边形内; 连接旋转中心 与多边形顶点的线段 与多边形所有边均无交点	
Subtask5	17		无	

BadPiggies

题目描述

捣蛋猪是一款有趣的小游戏,每关有多个目标,达成一个目标可以加一颗星,多次 通关获得的评星级为每次通关获得星星集合的并。

为了刷星,zzh 给自己定了一个小目标,每玩一次必须让关卡的星数增多(也就是说至少加一)。

一个关卡有 N 颗星。对于所有可能的 2^N 种评星级,zzh 给自己制定了 2^N-1 种通关策略(除去得 0 星的情况)。由于时间紧迫,zzh 只能进行 M 轮游戏。现在,zzh 想知道,要达成自己的小目标,有多少种可能的策略序列?由于答案可能很大,请输出对质数 P 取模后的值。

输入格式

一行三个数, M, N, P。

输出格式

一行一个数,表示答案。

输入样例

2 3 1000000007

输出样例

30

样例解释

列举第一次仅刷掉第一颗星的情况:

- {1}, {2}
- {1}, {1,2}
- {1}, {3}
- {1}, {1,3}
- {1}, {2,3}
- {1}, {1,2,3}
- 共6种。
- 第一次仅刷掉第二颗星同理。
- 第一次仅刷掉第三颗星同理。

因此,第一次刷掉一颗星的方案数为18种。

再列举第一次仅刷掉第一、第二颗星的情况:

 $\{1,2\}, \{3\}$

{1,2}, {1,3}

 $\{1,2\}, \{2,3\}$

 $\{1,2\}, \{1,2,3\}$

共4种。

第一次仅刷掉第一、第三颗星同理。

第一次仅刷掉第二、第三颗星同理。

因此,第一次刷掉两颗星的方案数为12种。

因此,总方案数为30种。

数据范围

测试点编号	N≤	M	Р
1	3	≪N	=998244353
2	5		≤1000000007
3	8		=998244353
4	12		≤100000007
5	20		=998244353
6	50		≤100000007
7	100		=998244353
8	500		≤100000007
9	5000	≤50	=998244353
10	10000		≤100000007
11	20000		=998244353
12	30000		≤100000007
13	1000	≪N	=998244353
14	1000		≤100000007
15	2000		=998244353
16	2000		≤100000007
17	5000		=998244353
18	10000		≤100000007
19	20000		=998244353
20	30000		≤100000007

对于所有数据,满足 M≤N<P。