

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

OptiMOS[™]

OptiMOS[™]3 Power-Transistor, 100 V IPT020N10N3

Data Sheet

Rev. 2.0 Final

IPT020N10N3

1 **Description**

Features

- N-channel, normal level

- N-channel, normal level
 Excellent gate charge x R_{DS(on)} product (FOM)
 Extremely low on-resistance R_{DS(on)}
 High current capability
 175 °C operating temperature
 Pb-free lead plating; RoHS compliant
 Qualified according to JEDEC ¹⁾ for target application
 Halogen-free according to IEC61249-2-21

rable i Rey i enormance i arameters						
Parameter	Value	Unit				
$V_{ m DS}$	100	V				
$R_{DS(on),max}$	2	mΩ				
I_{D}	300	A				

Type / Ordering Code	Package	Marking	Related Links
IPT020N10N3	PG-HSOF-8-1	020N10N3	-

IPT020N10N3

Table of Contents

Description	2
Maximum ratings	2
Thermal characteristics	
Electrical characteristics	5
Electrical characteristics diagrams	7
Package Outlines	11
Revision History	12
Disclaimer	12

IPT020N10N3

2 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 Maximum ratings

Danamatan	Oh a l	Values				N
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Continuous drain current	I _D	-	-	300 212	А	T _C =25 °C ¹⁾ T _C =100 °C
Pulsed drain current 1)	I _{D,pulse}	-	-	1200	Α	T _C =25 °C
Avalanche energy, single pulse	E AS	-	-	800	mJ	$I_{\rm D}$ =150 A, $R_{\rm GS}$ =25 Ω
Gate source voltage	V _{GS}	-20	-	20	V	-
Power dissipation	P _{tot}	-	-	375	W	<i>T</i> _C =25 °C
Operating and storage temperature	T _j , T _{stg}	-55	-	175	°C	IEC climatic category; DIN IEC 68-1: 55/175/56

Thermal characteristics 3

Table 3 **Thermal characteristics**

Parameter	Symbol	Values			Unit	Note / Test Condition
Parameter	Symbol	Min.	Тур.	Max.	Ullit	Note / Test Condition
Thermal resistance junction - case	R _{thJC}	-	0.2	0.4	K/W	-
Thermal resistance junction - ambient, minimal footprint	R _{thJA}	-	-	62	K/W	-
Thermal resistance junction - ambient, 6 cm ² cooling area ²⁾	R _{thJA}	-	-	40	K/W	-

Final Data Sheet 4 Rev. 2.0, 2014-02-17

 $^{^{1)}}$ See figure 3 $^{2)}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm² (one layer, 70 μm thick) copper area for drain connection. PCB is vertical in still air.

4 Electrical characteristics

Table 4 Static characteristics

Davamatav	Compleal		Values			Note / Took Condition
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage	$V_{(BR)DSS}$	100	-	-	V	V _{GS} =0 V, I _D =1 mA
Gate threshold voltage	V _{GS(th)}	2	2.7	3.5	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=272\ \mu {\rm A}$
Zero gate voltage drain current	I _{DSS}	-	0.1 10	1 100	μA	V _{DS} =100 V, V _{GS} =0 V, T _j =25 °C V _{DS} =100 V, V _{GS} =0 V, T _j =125 °C
Gate-source leakage current	I _{GSS}	-	1	100	nA	V _{GS} =20 V, V _{DS} =0 V
Drain-source on-state resistance	R _{DS(on)}	-	1.7 2.2	2 3.7	mΩ	V _{GS} =10 V, I _D =150 A V _{GS} =6 V, I _D =75 A,
Gate resistance	R _G	-	1.9	2.9	Ω	-
Transconductance	g fs	125	250	-	S	$ V_{DS} > 2 I_D R_{DS(on)max}, I_D = 150 A$

 Table 5
 Dynamic characteristics

Parameter	Sumb of	Values			11	Note / Took Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Input capacitance	Ciss	-	11200	14896	pF	V _{GS} =0 V, V _{DS} =50 V, f=1 MHz
Output capacitance	Coss	-	2010	2673	pF	V _{GS} =0 V, V _{DS} =50 V, <i>f</i> =1 MHz
Reverse transfer capacitance	Crss	-	69	138	pF	V _{GS} =0 V, V _{DS} =50 V, f=1 MHz
Turn-on delay time	$t_{\sf d(on)}$	-	34	-	ns	$V_{\rm DD}$ =50 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.6 Ω
Rise time	t _r	-	58	-	ns	$V_{\rm DD}$ =50 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.6 Ω
Turn-off delay time	$t_{ m d(off)}$	-	84	-	ns	$V_{\rm DD}$ =50 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.6 Ω
Fall time	t _f	-	18	_	ns	$V_{\rm DD}$ =50 V, $V_{\rm GS}$ =10 V, $I_{\rm D}$ =100 A, $R_{\rm G,ext}$ =1.6 Ω

Table 6 Gate charge characteristics 1)

Parameter	Symbol	Values			11	Note / Took Condition
		Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q_{gs}	-	48	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Gate to drain charge	Q _{gd}	-	27	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Switching charge	Q _{sw}	-	42	-	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Gate charge total	Q g	-	156	207	nC	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Gate plateau voltage	V _{plateau}	-	4.3	-	V	$V_{\rm DD}$ =50 V, $I_{\rm D}$ =100 A, $V_{\rm GS}$ =0 to 10 V
Output charge	Qoss	-	55	-	nC	V _{DD} =50 V, V _{GS} =0 V

IPT020N10N3

Table 7 Reverse diode

Parameter	Symbol		Values			Note / Took Condition
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Diode continous forward current	I _S	-	-	300	Α	T _C =25 °C
Diode pulse current	I _{S,pulse}	-	-	1200	Α	T _C =25 °C
Diode forward voltage	V _{SD}	-	0.89	1	V	V _{GS} =0 V, I _F =150 A, T _j =25 °C
Reverse recovery time	<i>t</i> _{rr}	-	86	172	ns	V_R =50 V, I_F = I_S , d_F/dt =100 A/ μ s
Reverse recovery charge	Qrr	-	232	-	nC	V_{R} =50 V, I_{F} = I_{S} , di_{F}/dt =100 A/ μ s

5 Electrical characteristics diagrams

6 Package Outlines

Figure 1 Outline PG-HSOF-8-1, dimensions in mm/inches

IPT020N10N3

Revision History

IPT020N10N3

Revision: 2014-02-17, Rev. 2.0

Revision. 2014-02-17, Rev.

Previous Revision						
Revision	Date	Subjects (major changes since last revision)				
2.0	2014-02-17	Release of final version				

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.