Principe Fondamental de la Statique

#dimensionnement_de_liaisons_et_transmission_d_efforts

Dans un repère galiléen pour tout système matériel (S) en équilibre, le torseur d'action mécanique extérieur applique à (S) est nul.

• Définition en physique.

$$ullet \left\{ T_{S_1 o S_2}
ight\} = \left\{ 0
ight\} \quad \Rightarrow \overrightarrow{R}_{S_1 o S_2} = \overrightarrow{0} ext{ et } \overrightarrow{M_A} (S_1 o S_2) = \overrightarrow{0}$$

Cas de 2 glisseurs

Quand un système est en équilibre statique sous l'action mécanique de deux glisseurs, les résultantes sont opposées et ont pour direction la droit relient leur deux points d'application.

Cas de 3 glisseurs

Les résultantes sont concurrentes.

Problème plan

- Il y a un plan de symétrie.
- Les forces sont dans ce plan, les moments sont perpendiculaires à ce plan.

Méthode de résolution

Isostatisme et hyperstatisme

Isostatique:

Le nombre de inconnues est égal aux nombre d'équations.

Hyperstatique

Le nombre de inconnues est supérieur aux nombre d'équations.

Résolution

- 1- Isoler le solide.
- 2- Faire le Bilan des Actions Mécaniques Extérieurs (BAME).
- 3- Déterminer si le problème est plan.
- 4- Modéliser ces actions par un torseur dans le repère de la liaison.
- 5- Vérifier l'isostatisme.

Résolution analytique

- 1- Choisir le repère du solide le mieux adapté pour la résolution.
- 2- Choisir le point où seront transférés les torseurs (par exemple, point de définition du torseur dont la résultante a le plus d'inconnues de résultante).
- 3- Transférer les différents torseurs dans le repère de résolution.
- 4- Poser les équations nécessaires du principe fondamental de la statique en tenant compte des caractéristiques des liaisons pour ne pas faire apparaître trop d'inconnues inutilement.
- 5- Les résoudre.