AutoEncoder by Forest

Machine Learning 2020 Course

Olga Novitskaia, Maria Begicheva, Egor Sevriugov, Kirill Shcherbakov

Skoltech

April 6, 2020

Plan

- Introduction
- Goal and related tasks
- Data description
- ► Algorithm and models
 - EncoderFores (eForest) AE
 - Multilayer perceptrons (MLP) based auto-encoders (AE)
 - Convolutional Neural Network (CNN) based AE
- Experiments and Results
 - Image Reconstruction
 - Computation Efficiency
 - Damage Tolerable
 - Model Reuse
- Conclusion

Intro

- AE is a class of models, compressed the input data to a lower-dimensional code and mapped it back to the original space with low reconstruction error as its objective¹.
- Ensemble learning is one of the most powerful techniques of improving the performance of a model, trained and combined various learners to solve a problem.
- eForest is original idea² by Feng J. and Zhou Z-H., tree ensemble based AE which can be trained in both supervised or unsupervised fashion.

https://blog.paperspace.com/autoencoderimage-compression-keras/

Goal and related tasks

The main goal is to **check performance** of eForest AE.

Related tasks:

- Implementation of the eForest algorithm
- Demonstration of its usage in supervised and unsupervised setting
- Comparison with MLP and CNN based AE by the following criteria:
 - Accuracy
 - Efficiency
 - Damage-tolerance (resistance of the model to partial damage)
 - Reusability (application of the model trained from one dataset to the other dataset)

Data description

- **MNIST**³: 60,000 grayscale 28×28 images for training and 10,000 for testing (784 dimensional vector per sample).
- ▶ **CIFAR-10**⁴: 50,000 colored 32×32 images for training and 10,000 colored images for testing (each image is in R^{1024} per channel).
- ► **Omniglot**⁵: 19,280 grayscale 105 × 105 images (used just for testing).

The test size of each dataset was **reduced** to **1,000** images because of computationally expensive eForest performance evaluation.

All models were evaluated on this test size.

eForest AE

Algorithm 1 Encoding Input: trained forest F with T trees, object xOutput: x_{enc} $x_{enc} = empty(T)$ for i in range(T) do $x_{enc}[i] = F.tree[i].apply(x)$ % "apply" returns the index of leaf in tree i corresponding to object xend for return x_{enc}

Encoding algorithm

Encoding procedure

eForest AE

Algorithm 2 Calculate set of rules for tree

Input: tree t, n - leaf index of object for tree t

Output: rule set(array of size (N,2); for each feature min and max value)

% N - number of features in original space

set = [[-infty, infty] for i in range(N)]path = t.decision path(n)

% path - array of nodes from root to leaf

for node in path do

f = node. feature

thres = node.threshold

if next node in decision path is left then

% the threshold for the split is upper bound set[f][1] = min(set[f][1], thres)

else

% the threshold for the split is lower bound set[f][0] = max(set[f][0], thres)

end if

end for

return set

Set of rules for one tree

Decoding procedure

eForest AF

Algorithm 3 MCR

Input: trained forest F with T trees, object x in latent space

Output: final set of rules

$$result = [[-infty, infty] for i in range(N)]$$

for tree in F.trees do

$$set = {\sf Calculate \ set \ of \ rules \ for \ tree}(tree, x[tree])$$

%x[tree] returns component of x corresponding to tree

result = intersection(result, set)

% intersection (a, b) returns the intersection of rules a and b

end for

return result

Maximal compatible rule(MCR)

Algorithm 4 Decoding

Input: trained forest F with T trees, object x in latent space

Output: xdec

 $x_{dec} = empty(N)$

% N - number of features in original space

$$set = MCR(F, x)$$

for i in range(N) do

if
$$set[i][0] == -infty$$
 and $set[i][1] == infty$ then

$$x_{dec}[i] = median[i]$$

% $median[i]$ - median value for feature i

else if $set[i][0] \neq -infty$ and set[i][1] == infty

then
$$x_{dec}[i] = set[i][0]$$

else if
$$set[i][0] == -infty$$
 and $set[i][1] \neq infty$ then

$$x_{dec}[i] = set[i][1]$$
 else

$$x_{dec}[i] = mean(set[i][0], set[i][1])$$

end if return xdec

end for

Skoltech Decoding

MLP based AE

 MLP_1/MLP_2 based AE architecture on MNIST

MLP based AE

MLP₁/MLP₂ based AE architecture on CIFAR-10

CNN based AE

CNN encoder architecture on MNIST

CNN based AE

Image Reconstruction

Reconstructed samples on MNIST

Reconstructed samples on CIFAR-10

Computation Efficiency

Time cost (in seconds). Decoding time is measured in sample per seconds.

Model	MNIST Train	Decode	CIFAR-10 Train	DECODE
MLP_1	1050	0.0003	1237	0.0004
MLP_2	1777	0.0003	1579	0.0005
CNN	2394	0.0006	7988	0.0007
EFOREST_{500}^{s}	268	0.9071	1180	1.7208
$\text{EFOREST}_{1000}^{s}$	561	1.4393	2333	3.0264
EFOREST_{500}^{u}	118	1.0096	90	1.7483
EFOREST $_{1000}^{u}$	223	1.8121	172	3.2822

Damage Tolerable

Performance on MNIST and CIFAR-10 when model is partially damaged

Model Reuse

Performance comparison for model reuse (measured by MSE)

Model	CIFAR TRAIN	MNIST TRAIN	CIFAR TRAIN
	MNIST TEST	OMNIGLOT TEST	OMNIGLOT TEST
MLP_2 CNN $EFOREST^s$ $EFOREST^u$	931.195	461.723	1855.313
	123.392	210.599	269.476
	4132.411	1173.529	4357.183
	1438.885	103.896	1671.229

Model Reuse

Model reuse with training on CIFAR-10 and testing on MNIST

Model Reuse

Model reuse with training on MNIST and testing on Omniglot

Conclusion

- Not accurate: the eForest approach experimental reconstruction error is much higher than reasonable CNN based autoencoders, but comparable with MLP based autoencoders both on MNIST and CIFAR10 datasets.
- ► **Efficient**: the eForest on a many-core CPU runs even faster than a CNN autoencoder runs on a Tesla K80 GPU for training.
- ▶ Not damage-tolerable: the eForest is less resistant to partial damage than MLP and CNNs (to dropout specific neurons and to dropout channels in the layers).
- ▶ Reusable: In addition to replicating the original experiment, reusability of the eForest model were tested and compared additionally on a new experiment (train on CIFAR10 dataset and perform encoding/decoding task on Omniglot dataset), and the model trained from one dataset can be directly applied on the other dataset in the same domain.

Code and contact info

- https://github.com/Olga013/Skoltech-ML-2020-AutoEncoder-by-Forest/
- kirill.shcherbakov@skoltech.ru

References

- 1. Vincent, P., et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *Journal of Machine Learning Research*, 11:3371–3408, 2013.
- 2. Feng, J. and Zhou, Z.-H. *Autoencoder by forest*. ArXiv, pp.1–14, 2017.
- 3. LeCun, Y., et al. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- 4. Krizhevsky, A. Learning multiple layers of features from tiny images. *Tech. rep.*, University of Toronto, 2009.
- 5. Lake, B. M., *et al.* Human-level concept learning through probabilistic program induction. *Science*, 350(6266), 1332-1338, 2015.

