Selected solutions Module 4

Exercise 4.9.

Starting tableau first phase: $\min w = x_2^a$.

basis $ \begin{array}{c} s_1 \\ x_2^a \\ s_3 \\ \end{array} $	$ar{b}$	$ x_1 $	x_2	x_3	s_1	s_2	s_3	x_2^a
$\overline{s_1}$	5	1	1	1	1	0	0	0
x_2^a	2	0	1	1	0	-1	0	1
s_3	1	2	0	1	0	0	1	0
-w	0	0	0	0	0	0	0	1

Subtract the second row from the objective function row to create a 0 in the column of basic variable x_2^a .

basis	$ar{b}$	x_1	x_2	x_3	s_1	s_2	s_3	x_2^a
s_1	5	1	1	1	1	0	0	0
x_2^a	2	0	1	1	0	-1	0	1
basis $ \begin{array}{c} s_1 \\ x_2^a \\ s_3 \\ -w \end{array} $	1	2	0	1	0	0	1	0
-w	-2	0	-1	-1	0	1	0	0

Bring x_2 into the basis. $\min\{5/1, 2/1\} = 2/1$ so x_2^a leaves the basis (min ratio test). Subtract row 2 from row 1 and add row 2 to the objective function row.

basis	\bar{b}	$ x_1 $	x_2	x_3	s_1	s_2	s_3	x_2^a
$\overline{s_1}$	3	1	0	0	1	1	0	-1
x_2	2	0	1	1	0	-1	0	1
$ \begin{array}{c} \text{basis} \\ \hline s_1 \\ x_2 \\ s_3 \\ \hline \end{array} $	1	2	0	1	0	0	1	0
-w	0	0	0	0	0	0	0	1

Reduced costs are all nonnegative, so we have found an optimal solution to the first phase.

 x_2^a is not in the basis, so we can remove the column of x_2^a and put the original objective function back.

basis	\bar{b}	x_1	x_2	x_3	s_1	s_2	s_3
s_1	3	1	0	0	1	1	0
x_2	2	0	1	1	0	-1	0
$ \begin{array}{c} \text{basis} \\ \hline s_1 \\ x_2 \\ s_3 \\ \hline \end{array} $	1	2	0	1	0	0	1
-z	0	-4	1	-1	0	0	0

Subtract row 2 from the objective function row to create a zero in the column of basic variable x_2 .

basis	\bar{b}	x_1	x_2	x_3	s_1	s_2	s_3
s_1	3	1	0	0	1	1	0
x_2	2	0	1	1	0	-1	0
$ \begin{array}{c} s_1 \\ x_2 \\ s_3 \\ -z \end{array} $	1	2	0	1	0	0	1
$\overline{-z}$	-2	-4	0	-2	0	1	0

Bring x_1 into the basis. s_3 leaves the basis (min ratio test).

basis	\bar{b}	x_1	x_2	x_3	s_1	s_2	s_3
$\overline{s_1}$	$2\frac{1}{2}$	0	0	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$
x_2	2	0	1	1	0	-1	0
x_1	$\frac{1}{2}$	1	0	$-\frac{1}{2}$ 1 $\frac{1}{2}$	0	0	$\frac{1}{2}$
-z	0	0	0	0	0	1	2

Optimal solution found (reduced costs nonnegative) $x_1 = \frac{1}{2}, x_2 = 2, x_3 = 0.$

We can find more optimal solutions by bringing x_3 into the basis (reduced costs are zero). x_1 leaves the basis.

$ \begin{array}{c} \text{basis} \\ \hline s_1 \\ x_2 \\ x_3 \\ \hline -z \end{array} $	\bar{b}	x_1	x_2	x_3	s_1	s_2	s_3
s_1	3	1	0	0	1	1	0
x_2	1	-2	1	0	0	-1	-1
x_3	1	2	0	1	0	0	1
-z	0	0	0	0	0	1	2

Other optimal solution found: $x_1 = 0$, $x_2 = 1$, $x_3 = 1$.

These are the only optimal basic solutions.

All optimal solutions can now be found by taking all convex combinations of the two optimal basic solutions:

All optimal solutions:
$$\lambda \begin{bmatrix} \frac{1}{2} \\ 2 \\ 0 \end{bmatrix} + (1 - \lambda) \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
 with $0 \le \lambda \le 1$.