EC112TA / 22EC13 / 22EC23

_					
USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

I / II Semester B. E. Regular / Supplementary Examinations Feb-2024

Common to EC / ET /EI BASIC ELECTRONICS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. Question number 2 is compulsory. Choose any one full question from 3 or 4, 5 or 6, 7 or 8 and 9 or 10.

PART-A

	1 1.1	A DC power supply has NO load voltage of 30V and a full load voltage	
		of 25V at a full load current of 1A. Calculate the load regulation and its output resistance.	02
	1.2	In a <i>NPN</i> transistor, if the base emitter junction is reverse biased and	
		the collector to base junction is reverse biased, the transistor is	
		operating in the region.	01
	1.3	An NPN transistor has $I_{co}=25nA$, $I_{B}=0$, $V_{CE}=4V$ and $I_{C}=20\mu A$. The	
		value of β is	01
	1.4	In a voltage divider circuit, for a silicon transistor having $\beta = 49$ has	0.1
	1 =	$R_E = 4K\Omega$ and $R_{th} = 60K\Omega$, $S(I_{co}) = $	01
	1.5	An amplifier has a voltage gain of 100 at $1kHz$. The gain falls by $6dB$ at	
		1MHz. If the input is $3mW$ at $2MHz$, then the output voltage is	02
	1.6	The output of a cascaded chain of four amplifiers is 4V, when the	02
	1.0	input voltage is $0.5mV$. If the voltage gains of the first, third and	
		fourth stages are $28dB$, $0dB$ and $12dB$ respectively, the voltage gain of	
		the second stage in dB is	01
	1.7	An N-channel MOSFET, having $V_t = 1V$, is biased such that $V_G = 4V$.	
		The maximum value of V_D allowed, so that the device operates in	0.1
	1.0	ohmic region is	01
	1.8	A <i>MOSFET</i> uses the electric field of a to control the channel current.	01
	1.9	The open loop and closed loop gains of an amplifier are 66dB and	01
	1.0	40dB respectively. The amount of negative feedback in dB is	
			01
	1.10	An amplifier without feedback has a gain of 100 and a bandwidth of	
		500kHz. If 5% negative feedback is given, then the bandwidth with	
		feedback is	01
	1.11	$(AB' + AB + A'B) = \underline{\qquad}.$	01
	1.12	If any one of the inputs of a $EX - NOR$ gate is always connected to	0.1
l		LOW, then the $EX - NOR$ gate behaves as	01

1.13	The total number of gates required to implement 64:1 multiplexer is	
		01
1.14	An operational amplifier has a differential gain of 100 and a common	
	mode gain of 0.1. The $CMRR$ in dB is	01
1.15	The slew rate of an op amp used as a voltage follower is $5V/\mu s$. If the	
	input voltage is 20sin6.28wt, the maximum frequency of the input so	
	that the output is not distorted is $____ kHz$.	01
1.16	For an AM signal, the bandwidth is $10kHz$ and the highest frequency	
	component present is $705kHz$. The carrier frequency used for this AM	
	signal is	01
1.17	A 400W carrier is modulated to a depth of 75%. Assuming the	
	modulating signal to be sinusoidal the total power in the amplitude	
	modulated wave is	01
1.18	A part of the transducer which responds to a change in the physical	
	phenomenon is called	01

PART-B

2	a	Draw the block diagram of a <i>DC</i> power supply and explain the function of each block.	04
	b c	In a <i>RC</i> coupled <i>CE</i> amplifier, $R_1 = 90k\Omega$, $R_2 = 10k\Omega$, $R_E = 0.68k\Omega$, $R_c = 2.2 k\Omega$ $V_{cc} = 16V$ and $\beta = 210$. Determine Z_i, Z_o and A_v of the transistor. Draw the re model for the same. Explain the different operating regions of a transistor along with the applications and draw the output characteristics for transistor in	08
		common emitter configuration.	04
3	а	With neat diagram explain the structure and working of N – channel enhancement type $MOSFET$. Draw the plot of I_D versus V_{GS} and I_D versus V_{DS} . Write the current equation at different regions of operation.	07
	b	An $N-channel$ $MOSFET$ has a threshold voltage $V_t=0.9V$ and $I_D=0.75mA$, when $V_{GS}=V_{DS}=2.5V$. Calculate: i) Drain current, if $V_{GS}=4.1V$ and $V_{DS}=4.0V$. ii) Drain to source resistance r_{ds} for small values of V_{DS} , if $V_{GS}=4.9V$	
		iii) Trans conductance, g_{m_s} if $V_{GS} = 4.9V$	05
	c	Explain the operation of CMOS NAND gate	04
		OR	
4	a	Write the advantages of providing a negative series feedback to a voltage amplifier.	04
	b	An amplifier has a gain of $60dB$, bandwidth of $30kHz$, distortion of 15%, input impedance of $5k\Omega$ and an output impedance of $1k\Omega$. If voltage series negative feedback of 3.9% is given to this amplifier,	
		calculate the gain, input impedance, output impedance, distortion, bandwidth and amount of feedback for a closed loop amplifier.	06
	c	Draw the circuit and explain the operation of a two input CMOS NOR	
		gate along with the truth table.	06
I			

5	a b	The four variable function f is given in terms of min-terms as: $f(A,B,C,D) = \sum m (0,1,2,3,4,6,8,9,10,11,12,14)$. Using the $K-map$ minimize the function in the sum of products form and realize the expression using only $NAND$ gates. Write the truth table for SUM and $CARRYOUT$ of a full adder. From the truth table, obtain the logic expressions for the same and then realize the full adder using two half adders.		
		OR		
6	a	A logic circuit has 3 inputs A, B and C and 2 outputs X and Y . Output X is 1, only when any two of the inputs are at 1 and Y is 1, only when any one of the inputs is at 1. Write the truth table and the logic expressions for X and Y . Also realize the logic circuit using basic gates.		
	b	Explain the operation of 8:1 multiplexer along with the truth table and logic expression. Also draw the logic circuit to realise the multiplexer.		
7	a	List at least eight important characteristics of ideal op-amp and		
	b	indicate their typical practical values. Draw the circuit and design the values of different resistors of a summer circuit using 2 ideal op amps to get an output voltage V_0 =	04	
		$V_1 + 3V_2 + 5V_3 - 7V_4 - 9V_5 - 11V_6$ where V_1 , V_2 , V_3 , V_4 , V_5 and V_6 are available input voltages.	06	
	С	Draw the circuit of a Schmitt trigger using an ideal op amp and explain its operation with necessary waveforms.	06	
		OR		
8	a b	Draw the circuit of a differentiator using an ideal op amp and derive the expression for the output voltage. Calculate the output voltage for the circuit in Fig. 8.b	06	
		R5 3V 40kΩ V3 R4 2V 10kΩ V2		
		1V 10kΩ V1 Vo		
		2V 5kΩ R6		
		-5V 5kΩ 10kΩ Fig. 8.b	06	
	С	Explain the working of negative comparator with input output waveforms.	04	
9	a	What is the need for modulation? Write eight differences between AM and FM.	08	
	b	Explain the working of a piezoelectric transducer with relevant equations.	08	
		OR	00	

10	а	A carrier signal of 1MHz with 400W of its power amplitude modulated	
		with a sinusoidal signal of 2500Hz. The depth of modulation is 75%.	
		Calculate the sideband frequencies, the bandwidth, the power of the	
		sidebands and total power in the modulated wave and sketch the	
		frequency spectrum when amplitude of the carrier signal is 3V.	08
	b	With the help of a neat diagram, discuss the working principle of	
		LVDT.	08