ĐÁP ÁN- TOÁN CAO CẤP TRONG KINH TẾ KINH DOANH

Bộ môn Toán- Khoa KHCB, HK 2 Năm học 2021/2022

Thi ngày: 9/7/2022

ĐÁP ÁN ĐỀ 2

		Điểm
Câu 1	a) Điểm cân bằng (Q_0,P_0) thỏa mãn	0.25
	$P_0 = \sqrt{2Q_0 + 25} = -\frac{1}{4}Q_0 + 10.$	
	$\Rightarrow 2Q_0 + 25 = \left(-\frac{1}{4}Q_0 + 10\right)^2$	0.25
	$\Rightarrow Q_0^2 - 112Q_0 + 1200 = 0$	
	$\Rightarrow Q_0 = 12 \text{ hoặc } Q_0 = 100$	0.25
	Loại giá trị $Q_0=100$, thử lại thấy $Q_0=12$ thỏa mãn.	
	Suy ra	0.25
	$P_0 = -\frac{1}{4}Q_0 + 10 = 7.$	
	Vậy điểm cân bằng $(Q_0, P_0) = (12,7)$.	
	b) Thặng dư của nhà sản xuất tại điểm cân bằng $(Q_0,P_0)=(12,7)$ là	0.25
	$PS = P_0 Q_0 - \int_0^{Q_0} PdQ = 12.7 - \int_0^{12} \sqrt{2Q + 25} dQ$	
	$=84 - \frac{1}{2} \cdot \frac{2}{3} \sqrt{(2Q+25)^3} _0^{12}$	0.5
	$=84 - \frac{1}{3}\sqrt{7^3 - 5^3} = \frac{34}{3}.$	0.25

Câu 2	Nội dung	2.0 điểm
	Hàm doanh thu $TR = P_1Q_1 + P_2Q_2 = -Q_1^2 - 2Q_2^2 + 1300Q_1 + 1350Q_2$	0.25
	Hàm lợi nhuận $\pi = TR - TC = -2Q_1^2 - 3Q_2^2 - 3Q_1Q_2 + 1300Q_1 + 1350Q_2$	0.5
	Viết hệ $\begin{cases} \pi_{\mathcal{Q}_{\rm i}} = -4\mathcal{Q}_{\rm i} - 3\mathcal{Q}_{\rm 2} + 1300 = 0 \\ \pi_{\mathcal{Q}_{\rm 2}} = -6\mathcal{Q}_{\rm 2} - 3\mathcal{Q}_{\rm i} + 1350 = 0 \end{cases}$	0.25
	Giải đúng $Q_1 = 250, Q_2 = 100$	0.25
	Tính $\pi_{Q_1Q_1} = -4$, $\pi_{Q_2Q_2} = -6$, $\pi_{Q_1Q_2} = -3$. Kiểm tra	0.25
	Khẳng định (250,100) là điểm cực đại	0.25
	Tính $\max \pi = 230000$	0.25

Câu 3	a) Viết lại các PT thành	
	Y-C+M= $I^*+G^*+X^*$, -aY +C = b, -mY + M= M*.	0.25
	Dạng ma trận AX=B với:	
	$A = \begin{bmatrix} 1 & -1 & 1 \\ -a & 1 & 0 \\ -m & 0 & 1 \end{bmatrix}, X = \begin{bmatrix} Y \\ C \\ M \end{bmatrix}, B = \begin{bmatrix} I*+G*+X* \\ b \\ M* \end{bmatrix}$	0.25
	b) Khai triển tính det(A)=1-a+m #0	0.5
	Viết và khai triển tính det(A1)=b+I*+G*+X*-M*	0.5
	Y= det(A1)/det(A)= $\frac{b+I*+G*+X*-M*}{1-a+m}$	0.5

		Điểm
Câu 4	a) Từ các dữ kiện đã cho, ta có:	0.25
	$\frac{dP}{dt} = 0.02((-10P + 44) - (15P - 36)) = -0.5P + 1.6.$	
	Giải phương trình vi phân tuyến tính:	0.25
	Hàm bù: $CF = A.e^{-0.5t}$.	
	Nghiệm riêng: $PS = -\frac{1.6}{-0.5} = 3.2$.	
	Nghiệm tổng quát:	0.25
	$P(t) = CF + PS = A.e^{-0.5t} + 3.2.$	
	Từ dữ kiện $P(0) = 1.2 ta c$ ó	0.25
	$A + 3,2 = 1,2 \Rightarrow A = -2.$	
	Vậy $P(t) = 3.2 - 2e^{-0.5t}$.	0.25
	Hàm mũ $f(t) = e^{-0.5t} = (e^{-0.5})^t$ là hàm nghịch biến vì $e^{-0.5} < 1$.	0.25
	Do đó $P(t)=3.2-2e^{-0.5t}$ đồng biến (tăng) tại mọi t .	
	b)	0.25
	$\lim_{t \to +\infty} (3.2 - 2e^{-0.5t}) = 3.2 - 2.0 = 3.2$	
	hữu hạn.	
	Vậy $P(t)$ ổn định và mức giá cân bằng là 3,2.	0.25

Câu 5	a) Vẽ đường 3x-y=3: chọn 2 điểm vd (0,-3), (1,0)	0.25
	Vẽ đường x-2y=-9: chọn 2 điểm vd (0,4.5), (-9,0)	0.25
	Chọn điểm thử, ví dụ (0,0) để xác định các miền bđt	0.25
	Xác định giao điểm 2 đường thẳng = giải hpt: x=3, y=6	0.25
	Vẽ hình, kết luận miền chấp nhận được và nêu 4 góc: O(0,0), A(0,3), B(3,6), C(1,0)	0.25
	b) Lập bảng giá trị c tại các góc: c(O)=0, c(A)=-9, c(B)=6, c(C)=8,	0.25
	KL GTLN c =8 tại góc C khi x=1, y=0	0.25
	KL GTNN c=-9 tại góc A khi x=0, y=3	0.25

ĐÁP ÁN- TOÁN CAO CẤP TRONG KINH TẾ KINH DOANH

Bộ môn Toán- Khoa KHCB, HK 2 Năm học 2021/2022

Thi ngày: 9/7/2022

	ĐỀ SỐ 03	Điểm
Câu 1	a) Điểm cân bằng (Q_0,P_0) thỏa mãn	0.25
(2 điểm)	$P_0 = \frac{5}{9}Q_0 + 4 = \sqrt{144 - 7Q_0}.$	
	$\Rightarrow \left(\frac{5}{9}Q_0 + 4\right)^2 = 144 - 7Q_0$	0.25
	$\Rightarrow 25Q_0^2 + 927Q_0 - 10368 = 0$	
	$\Rightarrow Q_0 = 9 \text{ hoặc } Q_0 = -\frac{1152}{25}$	0.25
	Loại giá trị $Q_0=-rac{1152}{25}$, thử lại thấy $Q_0=9$ thỏa mãn.	
	Suy ra	0.25
	$P_0 = \frac{5}{9}Q_0 + 4 = 9.$	
	Vậy điểm cân bằng $(Q_0, P_0) = (9,9)$.	
	b) Thặng dư của người tiêu dùng tại điểm cân bằng $(Q_0,P_0)=(9,9)$ là	0.25
	$CS = \int_0^{Q_0} PdQ - P_0Q_0 = \int_0^9 \sqrt{144 - 7Q} dQ - 9.9$	
	$= -\frac{1}{7} \cdot \frac{2}{3} \sqrt{(144 - 7Q)^3} _0^9 - 81$	0.5
	$= -\frac{2}{21}(9^3 - 12^3) - 81 = \frac{99}{7}.$	0.25

Câu 2	Hàm chi phí $TC = 80K + 20L$	0.5
	Điều kiện $16\sqrt{K} + 4\sqrt{L} = 100 \Leftrightarrow 4\sqrt{K} + \sqrt{L} = 25$	0.25

(2 điểm)	Hàm Lagrange $U = TC - \lambda \left(4\sqrt{K} + \sqrt{L} - 25 \right)$	0.25
	Viết hệ $\begin{cases} 80 - \frac{2\lambda}{\sqrt{K}} = 0\\ 20 - \frac{\lambda}{2\sqrt{L}} = 0\\ 4\sqrt{K} + \sqrt{L} = 25 \end{cases}$	0.25
	Giải đúng $K = L = 25$, $\lambda = 200$	0.5
	Kết luận minTC = 2500	0.25

Câu 3	a) Viết lại các PT thành	
(2	Y-C= I*+G*, -aY +C+ a T= b, -tY + T= T*.	0.25
điểm)	Dạng ma trận AX=B với:	
	$A = \begin{bmatrix} 1 & -1 & 0 \\ -a & 1 & a \\ -t & 0 & 1 \end{bmatrix}, X = \begin{bmatrix} Y \\ C \\ T \end{bmatrix}, B = \begin{bmatrix} I^* + G^* \\ b \\ T^* \end{bmatrix}$	0.25
	b) Khai triển tính det(A)=1-a+at #0	0.5
	Viết và khai triển tính det(A2)= b-aT* + (a-at) (I*+G*)	0.5
	C= det(A1)/det(A)= $\frac{b-aT*+(a-at)(I*+G*)}{1-a+at}$	0.5

Câu 4	a) Từ các dữ kiện đã cho, ta có:	0.25
(2 điểm)	$\frac{dY}{dt} = 0.8(0.6Y + 160 + 200 - Y) = -0.32Y + 288.$	
	Giải phương trình vi phân tuyến tính:	0.25
	Hàm bù: $CF = A. e^{-0.32t}$.	
	Nghiệm riêng: $PS = -\frac{288}{-0.32} = 900$.	
	Nghiệm tổng quát:	0.25

$Y(t) = CF + PS = A.e^{-0.32t} + 900.$	
Từ dữ kiện $Y(0) = 800 ta c$ ó	0.
$A + 900 = 800 \Rightarrow A = -100.$	
Vậy $Y(t) = 900 - 100e^{-0.32t}$.	0.
Hàm mũ $f(t)=e^{-0.32t}=(e^{-0.32})^t$ là hàm nghịch biến vì $e^{-0.32}<1$.	0.
Do đó $Y(t)=900-100e^{-0.32t}$ đồng biến (tăng) tại mọi t .	
b)	0.
$\lim_{t \to +\infty} (900 - 100e^{-0.32t}) = 900 - 100.0 = 900$	
hữu hạn.	
	0.

Câu 5	a) Vẽ đường 3x+y=18: chọn 2 điểm vd (0, 18), (6,0)	0.25
(2 điểm)	Vẽ đường x+2y=16: chọn 2 điểm vd (0, 8), (16,0)	0.25
uiciii,	Chọn điểm thử, ví dụ (0,0) để xác định các miền bđt	0.25
	Xác định giao điểm 2 đường thẳng = giải hpt: x=4, y=6	0.25
	Vẽ hình, kết luận miền chấp nhận được và nêu 4 góc: O(0,0), A(0,8), B(4,6), C(6,0)	0.25
	b) Lập bảng giá trị c tại các góc: c(O)=0, c(A)=32, c(B)=4, c(C)=-30,	0.25
	KL GTLN c=32 tại góc A khi x=0, y=8	0.25
	KL GTNN c=-30 tại góc C khi x=6, y=0	0.25