Modulación de Ancho de Pulso (PWM)

PWM

La señal PWM (Pulse Width Modulation, Modulación de Ancho de Pulso) es una señal que utiliza el microcontrolador para generar una señal continua sobre el proceso a controlar.

Ciclo de trabajo

El ciclo de trabajo, a veces denominado "factor de trabajo", se expresa como un porcentaje del tiempo de activación. Por ejemplo, un ciclo de trabajo del 10% es una señal que se encuentra activada el 10% del tiempo y desactivada el otro 90%.

Simulacion en Multisim

Señales cuadradas solicitadas:

Para simular las señales cuadradas solicitadas deben seguirse los siguientes pasos:

1. Seleccionar el modo de onda cuadrada en el generador de funciones Agilent

1. Especificar la frecuencia a partir de la expresión

 $\$ \omega = 5\pi \frac{kRads}{s}\$\$

Siendo \$\omega\$ la frecuencia angular en kilo radianes y conociendo que

 $\frac{2 \pi^2 f}{T} \ f = \frac{1}{T}$

por tanto

 $$5\pi = \frac{2\pi}{T}$

 $frac{5\pi}{2\pi} = \frac{1}{T}$

 $\frac{5\concel{\pii}}{2\concel{\pii}} = f$

\$\$\boxed{Frecuencia \rarr 2.5kHz = f}\$\$

2. Calcular el periodo de la señal

\$\$f = 2.5kHz = 2500Hz\$\$

 $T = \frac{1}{f}$

 $T = \frac{1}{2500Hz}$

 $\$\$ \boxed{Periodo \rarr T = 0.0004s = 400\mu s} \\$\$

3. Establecer el \$V_{pp}\$ en el generador

A partir de las figuras proporcionadas de las señales solicitadas, podemos identificar que la amplitud es de 2V o, lo que es lo mismo, un voltaje pico a pico de $V_{pp} = 4V$.

4. Ajustar las escalas de voltaje y tiempo en el osciloscopio

En este caso se emplearon divisiones de 2V para la escala del voltaje y, a su vez, se emplearon divisiones de 100\$\mu\$s para la escala del tiempo.

5. Ajustar el ciclo de trabajo

Para ajustar el ciclo de trabajo se debe presionar el botón Shift del generador de funciones y posteriormente el botón Offset, mismo que cuenta con leyenda de % Duty.

