TRIGONOMETRIC FUNCTIONS AND THEIR GRAPHS

Domains and Ranges of Sine and Cosine Functions

Let us consider a unit circle with centre at origin O. Let P(x,y) be any point on the circle such that $L \times OP = \theta$

is in Standard position. Then

$$Sin\theta = \frac{9}{1} \implies Sin\theta = \frac{9}{3}$$

$$(\omega s \theta = \frac{\chi}{1} \Rightarrow \omega s \theta = \chi$$

=> Corresponding to any real number

O, there is one and only one

value of x and y i.e, one and only one value for each sind and coso.

Hence sino and coso are functions of 8.

- : Sino and coso are defined for all OETR, the set of real numbers.
- :. Domain of $8in\theta = R$ Domain of $\cos \theta = R$

To find the Range, we have

Since P(x, 8) is a point on the unit circle with centre at O.

 $: -1 \le x \le 1$ and $-1 \le y \le 1$

>-16 Col 0 ≤ 1 and -16 Sin 8 ≤ 1

Domains and Ranges of Tangent and Cotangent Fuctions. Amir Mahmood

From figure; $\tan \theta = \frac{y}{2}$, $x \neq 0$

Lecturer.

Govt College Farooks (Sgd)

- > terminal side of should not coincide with oy or oy' (i.e., Y-ixis)
- $\Rightarrow \theta \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$
- $\Rightarrow \theta \neq (2n+1)\frac{\pi}{2} , n \in \mathbb{Z}$.
 - : Domain of tano is $O \in \mathbb{R}$ but $O \neq (2n+1) \frac{\pi}{2}$, $n \in \mathbb{Z}$ and Rang of tano = \mathbb{R}

Now Cot $\theta = \frac{1}{\tan \theta} = \frac{x}{y}$, $y \neq 0$

=> terminal side of should not coincide with OX or ox' (i.e., x-axis).

ラ 0≠0 > ± T > ±2 T , ...

⇒ 8≠nx , n∈Z

: Comain of Coto is OER but O + nT, nEZ.

and range of coto is R

Domains and Ranges of Secant and Cosecant Fuctions,

From fig. $\sec \theta = \frac{1}{\cos \theta} = \frac{1}{x}$, $x \neq 0$

>> terminal side of should not coincide with 0 yor oy (i.e; Y- axis)

 $\Rightarrow \theta \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$

 $\Rightarrow \theta \neq (2n+1) \stackrel{\pi}{\Rightarrow}, n \in \mathbb{Z}$

: Domain of Seco = is OER but O = (2n+1) I, nEZ.

As sec 0 attains all real values except those between - 1 and 1.

: Range of Sec $\theta = \mathbb{R} - \{x/-1 < x < 1\}$

Now Cosec $\theta = \frac{1}{\sin \theta} = \frac{1}{3}$, $0 \neq 0$

=> terminal side of should not coincide with Ox or ox (i.e., X-axis)

⇒ θ≠ 0, ±π, ± 2π, ...

⇒ θ≠ ηπ , η∈ z

: Domain of Coseco is OER but 0 = nn , nez

As cosec's attains all real values except those between - 1 and 1.

: Range of Codec $\theta = \mathbb{R} - \{x \mid \bullet -1 < x < 1\}$

Now summarizing the above results in the form of a table as:

Function	Domain	Range
y = Sinx	R	-1 = 7 = 1
y=68x	R '	-1 = 8 = 1
Z=tanx	$x \in \mathbb{R}$ but $x \neq (2n+1)\frac{\pi}{2}$, $n \in \mathbb{Z}$	R
y=cotx	XER but X ≠ NT, NEZ	IR.
7= Secx	XER but x + (2n+1) 1, nez	R-{x -1 <x<1}< td=""></x<1}<>
J=loseoc	XER but X + nT, nez	R-{x -1 <x<1}< td=""></x<1}<>

Periodic Function

A function f is said to be periodic if for every x belonging to its domain D, there exists a positive number p such that $x+p\in D$ and

f(x+p) = f(x). If p is the least positive number satisfying these conditions, then it is called the period of f.

Perfodicity: All the

six trigonometric functions repeat their values for each increase or decrease of 2π in θ . This behaviour of trigonometric functions is called periodicity.

Theorem.

Sine is a periodic function and its period is 2π .

Proof: Let p be the period of sine . Then $\sin(\theta+p) = \sin\theta$ $\forall \theta \in \mathbb{R}$ putting $\theta=0$ in (1), we get

 $Sin(0+p) = Sin0 \Rightarrow Sinp=0$ $\Rightarrow p = Sin^{-1}(0)$ $\Rightarrow p = 0, \pi, 2\pi, ...$ i) If $p = \pi$, then from ① $Sin(0+\pi) = Sin0$ $\Rightarrow -Sin0 = Sin0 \pmod{tRue}$ $\therefore Sin(0+\pi) = -Sin0$ $\therefore \pi$ is not the period of Sin0ii) If $p = 2\pi$, then from ① $Sin(0+2\pi) = Sin0$ $\Rightarrow Sin0 = Sin0 \pmod{tRue}$ $\therefore Sin(0+2\pi)$ $\Rightarrow Sin0 = Sin0 \pmod{tRue}$ $\therefore Sin(0+2\pi)$ $\Rightarrow Sin0 = Sin0 \pmod{tRue}$ $\Rightarrow Sin0 = Sin0 \pmod{tRue}$

Theorem Tangent is a periodic function and its periodic T.

Proof: Let p be the period of tan. Then tan(0+p) = tan0, $\forall 0 \in \mathbb{R}$ Putting 0 = 0 in (1), we get tan(0+p) = tan0 $\Rightarrow tan p = 0$ $\Rightarrow p = 0, \pi, 2\pi, 3\pi, \dots$

p=0 can't be the period of tano: p=0 is not positive.

It $\beta = \pi$, then from (1) $tan(\theta + \pi) = tan\theta$ $\Rightarrow tan\theta = tand(true)$ $\therefore \pi$ is the period of tand

: it is the least +ve number for which $tan(\partial_{t}\pi) = tano$.

Similarly we can prove that

i) 2π is the period of case

ii) 2π is the period of coseco

iii) 2π is the period of seco

iv) π is the period of coto.

* Exercise 11.1*

Find the periods of the following functions.

1)
$$\sin 3x = \sin(3x + 2\pi)$$

$$= \sin 3(x + \frac{2\pi}{3})$$

$$= \cos 3x + 2\pi$$

: period of $8in3x = \frac{2\pi}{3}$ Ans.

2)
$$\cos 2x = \cos(2x + 2\pi)$$

= $\cos 2(x + \pi)$
= $\cot \cot \cot \cos 2x = \pi$ Ans.

3) tan 4x = tan (4x+T)

=
$$\tan 4(x + \frac{\pi}{4})$$

: period of $\tan 4x = \frac{\pi}{4}$ Ams.

4) (ot
$$\frac{x}{2} = \cot(\frac{x}{2} + \pi)$$

= $\cot(\frac{1}{2}(x + 2\pi))$
: period of $\cot(\frac{x}{2}) = 2\pi$ His.

$$Sin \frac{x}{3} = Sin \left(\frac{x}{3} + 2\pi\right)$$
$$= Sin \frac{1}{3} \left(x + 6\pi\right)$$

: period of Sin x = 67 Ans.

$$\widehat{O} \operatorname{Cosec} \frac{x}{4} = \operatorname{Cosec} \left(\frac{x}{4} + 2\pi \right) \\
= \operatorname{Cosec} \frac{1}{4} \left(x + 8\pi \right)$$

: period of Cosec $\frac{x}{4} = 8\pi$ Ans.

$$\oint \sin \frac{x}{5} = \sin \left(\frac{x}{5} + 2\pi \right)$$

$$= \frac{1}{5} \sin \left(x + 10\pi \right)$$

... period of $\sin x = 10\pi$ Ans.

$$8) \cos \frac{x}{6} = \cos \left(\frac{x}{6} + 2x\right)$$

$$= \cos \frac{1}{6}(x + 12x)$$

$$= \cos \frac{1}{6}(x + 12x)$$

: period of $\cos \frac{x}{6} = 12 \pi$

$$\frac{9 \tan x}{7} = \tan \left(\frac{x}{7} + \pi\right)$$

$$= \tan \frac{1}{7} (x + 7\pi)$$

: period of tan $\frac{x}{7} = 777$ Ans.

① Sec
$$9x = Sec(9x + 2\pi)$$

$$= Sec 9(x + \frac{2\pi}{9})$$

$$= period at Sec 9x = \frac{2\pi}{9} \rightarrow tns.$$

(12) Codec lox
$$= Codec (lox + 2\pi)$$

$$= Codec lo(x + 2\pi)$$

$$= Codec lo(x + 2\pi)$$

$$= Codec lo(x + 2\pi)$$

: period of Cosec 10x = $\frac{\pi}{5}$ Ans.

: period of 3 Sinx = 27 Ans.

(5)
$$3\cos\frac{x}{5} = 3\cos\left(\frac{x}{5} + 2\pi\right)$$

= $3\cos\frac{1}{5}(x+10\pi)$
: period of $3\cos\frac{x}{5} = 10\pi$ Ans.