

Plano de Ensino para o Ano Letivo de 2021

IDENTIFICAÇÃO							
Disciplina:				Código da Disciplina:			
Transferência de Calor II				EMC616			
Course:				!			
Heat Transfer II							
Materia:							
Transferencia de Calor II							
Periodicidade: Anual	Carga horária total:	80	Carga horária seman	nal: 01 - 01 - 00			
Curso/Habilitação/Ênfase:			Série:	Período:			
Engenharia Mecânica			5	Noturno			
Engenharia Mecânica			4	Diurno			
Engenharia Mecânica			4	Noturno			
Professor Responsável:		Titulação - Graduaç	ção	Pós-Graduação			
Marco Antonio Soares de Paiva		Engenheiro Me	cânico	Doutor			
Professores:		Titulação - Graduaç	ção	Pós-Graduação			
Bruno Galelli Chieregatti		Engenheiro Me	cânico	Doutor			
Carlos Vinicius Xavier Bessa Engenheiro Mecâi			cânico	Doutor			
João de Sa Brasil Lima		Engenheiro Me	Doutor				
Marco Antonio Soares de Paiva Engenheiro Mecânico Doutor							
MODALIDADE DE ENSINO							

Presencial: 30%

Mediada por tecnologia: 70%

* Em qualquer modalidade a entrega de atividades e trabalhos deve ser realizada segundo orientações do professor da disciplina.

ATIVIDADES DE EXTENSÃO

- Projeto: 10%

EMENTA

Uso de software de elementos finitos e CFD para resolução de problemas de transferência de calor. Convecção natural. Convecção forçada interna. Ebulição de fluidos em piscina. Condensação de fluidos na forma de filmes. Cálculo de carga térmica de ambientes. Trocadores de calor. Projeto de um radiador automotivo.

SYLLABUS

Solving heat transfer problems through CFD and finite element softwares. Natural convection. Internal forced convection. Pool condensation. Room heat load calculation. Heat exchangers. Automotive radiator project.

2021-EMC616 página 1 de 9

TEMARIO

Uso de elementos finitos y software CFD para resolver problemas de transferencia de calor. Convección natural. Convección forzada interna. Fluido hirviendo en piscina. Condensación de fluidos en forma de películas. Cálculo de carga térmica ambiental. Intercambiadores de calor Proyecto de un radiador para autos.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

- Geometria e Visão Espacial
- Física e Mecânica Geral
- Cálculo Diferencial e Integral

COMPETÊNCIAS DESENVOLVIDAS NA DISCIPLINA

COMPETÊNCIA 1:

1. Analisar e compreender os usuários das soluções de engenharia e seu contexto, para formular os requerimentos de engenharia e conceber soluções apropriadas na área de energia e fluidos.2. Dominar o ciclo de investigação dos aspectos analítico, numérico e experimental de um mesmo fenômeno, aprendendo a conciliar as diferenças encontradas no conhecimento interdisciplinar coordenado entre as disciplinas da área de energia e fluidos.3. Analisar e compreender os fenômenos físicos e químicos por meio de modelos matemáticos, computacionais ou físicos, validados por experimentação.4. Projetar, analisar e supervisionar a operação e a manutenção de sistemas, produtos e processos.5. Planejar, elaborar, coordenar e avaliar a viabilidade econômica de projetos e serviços de engenharia na área de energia e fluidos.6. Comunicar-se eficientemente nas formas escrita, oral e gráfica.7. Trabalhar e liderar equipes multidisciplinares.8. Conceber modelos numéricos e simulações para predizer resultados de projetos inovadores.

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Objetivos - Conhecimentos, Habilidades e Atitudes:

Conhecimento:

- C1 conceitos fundamentais;
- C2 conhecimento dos mecanismos de transmissão de calor, matéria e propriedades termofísica.

Atitudes:

- A1 desenvolver capacidade de compreensão de problemas;
- A2 abstração para a formulação de modelos matemáticos;
- A3 aplicação de leis gerais;
- A4 análise do comportamento do modelo do processo ou do equipamento;
- A5 organizar os procedimentos de solução de problemas.

Habilidades:

- H1 desenvolver a capacidade do aluno de conceituar problemas e generalizar a aplicação dos conhecimentos;
- H2 desenvolver a capacidade de observar a realidade e com o ferramental adquirido gerar modelos matemáticos dela representativos;
- H3 avaliar desvios entre o comportamento simulado do modelo e a realidade.

2021-EMC616 página 2 de 9

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Teoria - Sim Aulas de Exercício - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Problem Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas presenciais e remotas mediadas por tecnologia, acompanhadas de exercícios. Durante o curso será desenvolvido com os alunos o projeto transdisciplinar da área de Energia e Fluidos, envolvendo as disciplinas Mecânica dos Fluidos e Termodinâmica no assunto de salas limpas. Como infraestrutura para o desenvolvimento do curso, além das ferramentas tradicionais de ensino, são utilizados equipamento multimídia para projeção de material didático, o Laboratório de Termodinâmica e também o uso do software EES Enginnering Equation Solver. As atividades computacionais complementares são desenvolvidas em laboratório computacional dedicado ao curso.

INSTRUMENTOS DE AVALIAÇÃO

NENHUM INSTRUMENTO DE AVALIACAO FOI ADICIONADA.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014) e CRITÉRIOS DE APROVAÇÃO

Disciplina anual, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 0,5 \quad k_2: 0,5$

Peso de $MP(k_p)$: 0,8 Peso de $MT(k_p)$: 0,2

INFORMAÇÕES SOBRE INSTRUMENTOS DE AVALIAÇÃO

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina propicia o conhecimento dos mecanismos de transferência de calor e também o entendimento de como a Termodonâmica e a Transferência de Calor estão relacionadas. Desenvolve a capacidade de modelagem matemática e simulação computacional de problemas. Propicia o desenvolvimento de procedimentos organizados para o desenvolvimento de modelagem matemática por meio da estrutura de raciocínio que deve caracterizar a atitude do engenheiro. As aplicações extrapolam o âmbito da própria disciplina.

2021-EMC616 página 3 de 9

BIBLIOGRAFIA

Bibliografia Básica:

COELHO, João Carlos Martins. Energia e Fluidos: Transferência de calor. : Blucher, 2016. v. 3. 287 p. ISBN 9788521209492.

INCROPERA, Frank P; DEWITT, David P. Fundamentos de transferência de calor e de massa. Trad. de Carlos Alberto Biolchini da Silva. 5. ed. Rio de Janeiro, RJ: LTC, 2002. 698 p. ISBN 85-216-1378-4.

ÇENGEL, Yunus A. Transferência de calor e massa: uma abordagem prática. Trad. de Luiz Felipe mendes de Moura; rev. téc. de Kamal A. R. Ismail. 3. ed. Boston: McGraw-Hill, 2009. 902 p. (McGraw-Hill Series in Mechanical Engineering). ISBN 9788577260751.

Bibliografia Complementar:

MORAN, Michael J et al. Introdução à engenharia de sistemas térmicos: termodinâmica, mecânica dos fluidos e transferência de calor. Tradução de Carlos Alberto Biolchini da Silva. Rio de Janeiro, RJ: LTC, 2005. 604 p. ISBN 8521614462.

MUNSON, Bruce R; YOUNG, Donald F; OKIISHI, Theodore. Uma introdução concisa à mecânica dos fluidos. trad. da 2. ed. americana por Euryale de Jesus Zerbini. São Paulo, SP: Edgard Blücher, 2005. 372 p. ISBN 8521203608.

Ozisik, M. Necati. Transferência de calor: um texto básico. [OLIVEIRA, Luiz de; MACEDO, Horácio]. Rio de Janeiro, RJ: Guanabara Koogan, 1990. 661 p. ISBN 852270160X.

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

- 1) Engineering Equation Solver (EES);
- 2) ANSYS

Ambos são disponíveis na escola.

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Avaliação (conforme Resolução RN CEPE 07/2007):

Baseada em: Provas e Trabalhos

Pesos dos trabalhos: k1: 0,5 k2: 0,5

Peso de MP(kP): 0,8 Peso de MT(kT): 0,2

A nota P1 resultará da avaliação de uma simulação CFD realizada no horário de aula.

2021-EMC616 página 4 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

A nota P2 será composta por uma avaliação realizada no horário o	
composta por questões discursivas, certo ou errado, de múltipla es também por questões de resolução numérica.	scolha e

2021-EMC616 página 5 de 9

OUTRAS INFORMAÇÕES

Em função do DECRETO Nº 64.881, DE 22 DE MARÇO DE 2020 e suas sucessivas prorrogações determinando Quarentena obrigatória no Estado de São Paulo, todas as avaliações realizadas a partir daquela data e até que haja encerramento da Quarentena e autorização Estadual para retomada específica das aulas presenciais, serão realizadas via Plataforma de Ensino Mediado por Tecnologia.

Α	nota	da	PS1	será	determinada	por	uma	atividade	de	avaliação	realizada	no
hc	rário	de	aula									

2021-EMC616 página 6 de 9

APROVAÇÕES

2021-EMC616 página 7 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

	PROGRAMA DA DISCIPLINA	
N° da	Conteúdo	EAA
semana	Conceduo	EAA
1 T	Não há aulas para alunos veteranos	0
1 E	Não há aulas para alunos veteranos	0
2 T	Apresentação da disciplina	0
2 E	Apresentação da disciplina	0
3 T	Introdução à CFD	0
3 E	Introdução à CFD	91% a
		100%
4 T	Condução de Calor - Experimental	91% a
		100%
4 E	Condução de Calor - Experimental	91% a
		100%
5 T	Condução de Calor - Simulação	61% a 90%
5 E	Condução de Calor - Simulação	61% a 90%
6 T	Condução de Calor - Simulação	61% a 90%
6 E	Condução de Calor - Simulação	61% a 90%
7 T	Simulação - Condução e Convecção	61% a 90%
7 E	Simulação - Condução e Convecção	61% a 90%
8 T	Simulação - Análise Transiente	61% a 90%
8 E	Simulação - Análise Transiente	61% a 90%
9 T	Prova P1	0
9 E	Prova P1	0
10 T	Convecção forçada interna. Teoria e exercícios.	61% a 90%
10 E	Convecção forçada interna. Exercícios.	61% a 90%
11 T	Convecção forçada interna. Teoria e exercícios.	61% a 90%
11 E	Convecção forçada interna. Exercícios.	61% a 90%
12 E 12 T	Convecção forçada interna e externa combinados. Exercícios.	61% a 90%
	Convecção forçada interna e externa combinados. Convecção natural. Teoria e exercícios.	61% a 90%
13 T 13 E	Convecção natural. Exercícios	61% a 90% 61% a 90%
14 T	Convecção natural. Teoria e exercícios.	61% a 90%
14 E	Convecção natural. Exercícios	61% a 90%
15 T	Ebulição de fluidos em piscinas. Teoria e exercícios	61% a 90%
15 E	Ebulição de fluidos em piscinas. Exercícios	61% a 90%
16 T	Ebulição de fluidos em piscinas. Teoria e exercícios	61% a 90%
16 E	Ebulição de fluidos em piscinas. Exercícios	61% a 90%
17 T	Ebulição de fluidos em piscinas. Teoria e exercícios	61% a 90%
17 E	Ebulição de fluidos em piscinas. Exercícios	61% a 90%
18 T	Prova P2	0
18 E	Prova P2	0
19 T	Prova P2	0
19 E	Prova P2	0
20 T	Revisão Prova P2	0
20 E	Revisão Prova P2	0
21 E	Prova PS1	0

2021-EMC616 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

21 T	Prova PS1	0
22 T	Prova PS1	0
22 E	Prova PS1	0
23 E	Condensação em filme. Exercícios	61% a 90%
23 T	Condensação em filme. Teoria e exercícios	61% a 90%
24 E	Condensação em filme. Exercícios	61% a 90%
24 T	Condensação em filme. Teoria e exercícios	61% a 90%
25 E	Cálculo de carga térmica de ambientes. Exercícios.	61% a 90%
25 T	Cálculo de carga térmica de ambientes. Teoria e exercícios.	61% a 90%
26 E	Cálculo de carga térmica de ambientes. Exercícios.	61% a 90%
26 T	Cálculo de carga térmica de ambientes. Teoria e exercícios.	61% a 90%
27 E	Cálculo de carga térmica de ambientes. Exercícios.	61% a 90%
27 T	Cálculo de carga térmica de ambientes. Teoria e exercícios.	61% a 90%
28 E	Cálculo de carga térmica de ambientes. Exercícios.	61% a 90%
28 T	Cálculo de carga térmica de ambientes. Teoria e exercícios.	61% a 90%
29 T	Prova P3	0
29 E	Prova P3	0
30 T	Trocadores de calor. Conceitos e exercícios	61% a 90%
30 E	Trocadores de calor. Exercícios.	61% a 90%
31 T	Trocadores de calor. Conceitos e exercícios	61% a 90%
31 E	Trocadores de calor. Exercícios.	61% a 90%
32 E	Trocadores de calor. Exercícios.	61% a 90%
32 T	Trocadores de calor. Conceitos e exercícios	61% a 90%
33 T	Dimensionamento de um radiator de automóvel.	61% a 90%
33 E	Dimensionamento de um radiator de automóvel.	61% a 90%
34 T	Dimensionamento de um radiator de automóvel.	61% a 90%
34 E	Dimensionamento de um radiator de automóvel.	61% a 90%
35 E	Dimensionamento de um radiator de automóvel.	61% a 90%
35 T	Dimensionamento de um radiator de automóvel.	61% a 90%
36 T	Dimensionamento de um radiator de automóvel.	61% a 90%
36 E	Dimensionamento de um radiator de automóvel.	61% a 90%
37 T	Prova P4	0
37 E	Prova P4	0
38 T	Prova P4	0
38 E	Prova P4	0
39 E	Revisão Prova P4	0
39 T	Revisão Prova P4	0
40 E	Prova PS2	0
40 T	Prova PS2	0
41 T	Prova PS2	0
41 E	Prova PS2	0
Legenda		-
20301144		

2021-EMC616 página 9 de 9