25

Claims

1. Macromolecular photocrosslinkers having a general formula

- $(A)_n(B)_m(C)_p$, wherein 5
 - A, B and C are units of substituted ethylene or siloxane groups in the (i) macromolecular structure;
 - C carries a photoactive groups; (ii)
- n = 0.98 mole %, m = 0.98 mole %, n+m = 50.98 mole % and p = 0.5.50 mole %; (iii) 10

and when said photoactive groups are exposed to light of determined wavelengths above 305 nm, radicals are generated and retained on the macromolecular photocrosslinkers and reacting so as to accomplish a crosslinked network structure.

- 2. Photocrosslinkers according to claim 1 characterized in that said photoactive group comprises a phosphine oxide.
- 3. Photocrosslinkers according to claim 2 characterized in that the photoactive group is an acyl- or aroyl phosphine oxide. 20
 - 4. Photocrosslinkers according to claim 3 characterized in that the photoactive group is linked to the ethylene groups of units C by a linking group comprising a phenylene group, said phenylene group being optionally substituted.
 - 5. Photocrosslinkers according to claim 1, wherein the ethylene units A, B, C of the macromolecular structure comprises substituents in accordance with:

$$A = -CH_2 - C(R^1R^2)$$
-, $B = -CH_2 - C(R^1R^3)$ -, $C = -CH_2 - C(R^1R^4)$ -, wherein

30

25

DOGJESTY DEEDE

15

WO 00/55212

PCT/EP00/02539

26

R¹ is hydrogen or methyl;

R² is -CON(Me)₂, -CO₂CH₂CH₂OH, -OCOCH₃, -OCOCH₂CH₂Ph, -OH or a <u>lactam</u> group;

- R³ is -CON(Me)₂, -CO₂CH₂CH₂OH, -OCOCH₃, -OCOCH₂CH₂Ph, -OH or a lactarn group when B is -CH₂-C(R¹R³)- with the proviso that R² and R³ are not the same unless R² and R³ is -OH; and
- \Rightarrow R⁴ is -R⁵C(O)P(O) R⁶R⁷ or -R⁵P(O)R⁶OC(O)R⁷, wherein R⁵, R⁶ and R⁷ are selected among same or different aryl groups comprising phenyl, methylphenyl, dimethylphenyl, trimethylphenyl, methoxyphenyl, dimethoxyphenyl, trimethoxyphenyl, methylolphenyl, dimethylolphenyl, trimethylolphenyl or styryl radicals.
 - 6. Photocrosslinkers according to claim 5, wherein R² and R³ are selected so as to form a water-soluble molecule.
 - 7. Photocrosslinkers according to claim 5, wherein said lactam units together with units A or B constitute N-vinylpyrrolidone units.
 - 8. Photocrosslinkers according to claim 5, wherein at least one of R² and R³ is hydroxyl.
 - 9. Photocrosslinkers according to claim 5, wherein A is N-vinylpyrrolidone, B is vinyl alcohol.

- 10. Photocrosslinkers according to claim 1 or 5 provided with functional groups for crosslinking.
- 11. Photocrosslinkers according to claim 10 provided with functional groups selected among vinylic, acrylic and methacrylic groups.
- 12. Photocrosslinkers according to claim 1 characterized in that units A, B and C are

01 09/14 12:17 FAX -46 8 6954278

WO 00/55212

PCT/EP00/02539

27

siloxane monomer units of a general formula -R_aR_bSiO-, wherein R_a and R_b in units A and B are selected among lower substituted or unsubstituted alkyl groups, aryl groups and arylalkyl groups.

- 13. Photocrosslinkers according to claim 12, wherein at least on of R_a and R_b is an aryl or arylalkylgroup.
- 14. Photocrosslinkers according to claim 13, wherein at least one of R_a and R_b is substituted with one or more fluorine atoms.
- 15. Photocrosslinkers according to claim 1, wherein units A, B, C are siloxane units comprising substituents in accordance with:

A is $-Si(R^1R^2)$ -O-, B is $-Si(R^1R^3)$ -O- and C is $-Si(R^1R^4)$ -O-, wherein

R¹ is C1 to C6 alkyl; R² is C1 to C6 alkyl or phenyl; R³ is R¹, R² or C1 to C6 fluroalkyl;

- R^4 is $R^5R^6C(O)P(O) R^7R^8$ or $R^5R^6P(O)R^7OC(O)R^8$, wherein R^5 is a spacing group; R^6 . R⁷ and R⁸ are selected among same or different aryl groups comprising phenyl, methylphenyl, dimethylphenyl, trimethylphenyl, methoxyphenyl, dimethoxyphenyl, trimethoxyphenyl, methylolphenyl, dimethylolphenyl, trimethylolphenyl or styryl radicals.
 - 16. Photocrosslinkers according to claim 15, wherein R⁵ is aliphatic spacing group comprising between one and ten atoms.
 - 17. Photocrosslinker according to claim 16, wherein said spacing group is (-CH₂)_{ns} wherein n is between 1 and 10.
 - 18. Photocrosslinkers according to claim 15, wherein R¹ is methyl; R² is methyl or phenyl, R3 is R1. R2 or -CH2CH2CF3.

WO 00/55212

PCT/EP00/02539

28

19. Photocrosslinkers according to claim 15 having functional acrylic groups in its terminal ends.

mall 2

20. A method of forming a macromolecular crosslinked network from a composition comprising a photocrosslinker according to any of claims 1 te-19 by irradiating said composition with light exceeding a wavelength of about 305 nm for a time sufficient to form a solid article.

- 21. A method forming a macromolecular crosslinked network from a composition comprising a photocrosslinker according to any of claims 1 to 1 and at least one copolymerizable vinylic, acrylic or methacrylic monomer.
- 22. A method according to claim 20, wherein said composition further comprises a polymer provided with functional vinylic, acrylic or methacrylic groups.
- 23. A method according to claim 22, wherein said polymer has a backbone of ethylene units.
- 24. A method according to claim 22, wherein said polymer is a polysiloxane.

Fuelos

25. A method according to any of claims 20 to 24, wherein an ophthalmic lens is produced.

26. A method according to claim 25, wherein an intraocular lens is produced in the capsular bag of the eye.

128

June

27. An ophthalmically acceptable composition comprising photocrosslinkers according to any of claims 1 to 19; having a refractive index greater than about 1.39 and a viscosity such that said composition can be injected through standard cannula having a needle of 15 Gauge, or finer.

WO 00/55212

PCT/EP00/02539

29

28. The use of photocrosslinkers according to any of claims 1 to 19 in an ophthalmologically acceptable composition for injection into the capsular bag of the eye.