Опечатки

Сергей Губанов Яндекс esgv@yandex-team.ru

12 ноября 2015 г.

План

Постановка задачи

Noisy channel

Модель

Спеллчекер за 5 минут

Улучшения

Улучшение 1: метрика

Улучшение 2: генератор гипотез

Интермедия

Улучшение 3: машинное обучение

Улучшение 4: типы ошибок

References

План

Постановка задачи

Noisy channel Модель Спеллчекер за 5 минут

Улучшения

Улучшение 1: метрика

Улучшение 2: генератор гипотез

Интермедия

Улучшение 3: машинное обучение

Улучшение 4: типы ошибок

References

Задача

ightharpoonup q = однокласники;

Задача

- ightharpoonup q = однокласники;
- ▶ $c^* = \text{одноклассники};$

Задача

- ightharpoonup q = однокласники;
- $c^* = \text{одноклассники};$
- $c^* = c^*(q).$

<u>З</u>адача

Специфика

- Домен поисковые запросы (это сложно);
- ▶ 10-12% опечаток в поисковом потоке;
- Постоянно появляются новые слова (нельзя сделать словарь).
- Считается решенной и/или неинтересной задачей (мало статей, еще меньше хороших статей).

10-12% от поискового потока.

ightharpoonup эльфиливая башня ightharpoonup эйфелева башня ightharpoonup обычные;

- ightharpoonup эльфиливая башня ightharpoonup эйфелева башня ightharpoonup обычные;
- ▶ мин юст \rightarrow минюст segmentation;

- ightharpoonup эльфиливая башня ightharpoonup эйфелева башня ightharpoonup обычные;
- ▶ мин юст \rightarrow минюст segmentation;
- $\mu\phi$ твуч \rightarrow yandex раскладка клавиатуры;

- ightharpoonup эльфиливая башня ightharpoonup эйфелева башня ightharpoonup обычные;
- ▶ мин юст \rightarrow минюст segmentation;
- ightharpoonup н ϕ твуч ightarrow yandex раскладка клавиатуры;
- ightharpoonup *rитхаб теано* ightharpoonup *github theanо* транслитерация;

- ightharpoonup эльфиливая башня ightharpoonup эйфелева башня ightharpoonup обычные;
- ► мин юст → минюст segmentation;
- ightharpoonup н ϕ твуч ightarrow yandex раскладка клавиатуры;
- ightharpoonup *гитхаб теано* ightharpoonup *github theanо* транслитерация;
- Остальное и смешанные ошибки.

- ▶ 66.7% обычные;
- ▶ 13.7% segmentation;
- 9.1% раскладка клавиатуры;
- 2.1% транслитерация;
- 8.4% остальное и смешанные ошибки.

- эрнест хаменгуэль
- ▶ Нелигитивность
- девцвиница
- ▶ санбелютень

- эрнест хаменгуэль
- нелигитивность
- девцвиница
- санбелютень
- вклньаьке
- одноикикассн

вконтваке	вкантактй	ваконтакт
вконьакье	вкуонтакте	вконтттакте
вкорнтакте	вконитакте	вконтакнте
вконтактое	вконтавккте	выконтакте
вконтакоте	вклонтакте	вуконтакте
воконтакте	вкоетакте	вконтакто
вкомтакте	вкюнтакте	вкотаккте
вкоеткте	вкогтактн	вконате
вконьекте	вконтвкье	контокте
вконтаьке	вкорнтаке	ваконтакт
вконтвуте	вкоентакт	вконетакт

Таких опечаток не так мало (в килограммах);

- Таких опечаток не так мало (в килограммах);
- Таких опечаток очень, очень много (в штуках);

- Таких опечаток не так мало (в килограммах);
- Таких опечаток очень, очень много (в штуках);
- Больше всего влияют на поиск;
- Сложнее всего исправлять.

Наборы

- ▶ **Обычно**: случайные K запросов из лога.
- ▶ Сложно: случайные К запросов из лога, для которых мало найденных документов.

- Запросов с опечаткой:
 - Обычно: 10%;

- Запросов с опечаткой:
 - ▶ Обычно: 10%;
 - ▶ Сложно: >50%.

- Запросов с опечаткой:
 - ▶ Обычно: 10%;
 - ▶ Сложно: >50%.
- Примеры:
 - Обычно: barbe (barbie), batle (battle);

- Запросов с опечаткой:
 - ▶ Обычно: 10%;
 - **▶** Сложно: >50%.
- Примеры:
 - Обычно: barbe (barbie), batle (battle);
 - Сложно: яцилокант (целакант), фокебок (фейсбук), карбонатотетраамминкобальта (карбонатотетрааминкобальта).

- Запросов с опечаткой:
 - ▶ Обычно: 10%;
 - **▶ Сложно:** >50%.
- Примеры:
 - Обычно: barbe (barbie), batle (battle);
 - Сложно: яцилокант (целакант), фокебок (фейсбук), карбонатотетраамминкобальта (карбонатотетрааминкобальта).

Метрика качества

Обычный классификатор.

- ▶ nop ошибки не было, и мы ничего не исправили (TN);
- ▶ good была ошибка и мы ее исправили (TP);
- ► false ошибки не было, но мы что-то исправили (FP);
- nosug была ошибка, но мы ее не исправили (FN);

```
precision = good / (good + false)
recall = good / (good + nosug)
```

Метрика качества

Обычный классификатор (не совсем).

- ▶ nop ошибки не было, и мы ничего не исправили (TN);
- ▶ good была ошибка и мы ее исправили (TP);
- ► false ошибки не было, но мы что-то исправили (FP);
- nosug была ошибка, но мы ее не исправили (FN);

```
precision = good / (good + false)
recall = good / (good + nosug)
```

Метрика качества

Обычный классификатор (не совсем).

- ▶ nop ошибки не было, и мы ничего не исправили (TN);
- ▶ good была ошибка и мы ее исправили (TP);
- ► false ошибки не было, но мы что-то исправили (FP);
- ▶ nosug была ошибка, но мы ее не исправили (FN);
- ▶ bad была ошибка, и мы ее исправили, но неправильно (new!).

```
precision = good / (good + false + bad)
recall = good / (good + nosug + bad)
```

План

Постановка задачи

```
Noisy channel
Модель
Спеллчекер за 5 минут
```

Улучшения

Улучшение 1: метрика

Улучшение 2: генератор гипотез

Интермедия

Улучшение 3: машинное обучение

Улучшение 4: типы ошибок

References

Нужна модель того, как пользователи ошибаются.

Называется noisy channel model

Noisy channel model

ightharpoonup (q,c)

Noisy channel model

• $(q,c) \sim P(q,c)$

Noisy channel model

- $(q,c) \sim P(q,c)$
- Пусть знаем P(q,c);

Noisy channel model

- $(q,c) \sim P(q,c)$
- ▶ Пусть знаем P(q, c);
- $c^*(q) ?$

$$c^*(q) = \arg\max_{c} P(c|q);$$

$$c^*(q) = \arg\max_{c} P(c|q);$$

lacktriangle Если так, то $Pig(c^*(q)=cig)$ максимальна;

$$c^*(q) = \arg\max_{c} P(c|q);$$

lacktriangle Если так, то $P_{(q,c)}\Big(c^*(q)=c\Big)$ максимальна;

$$c^*(q) = \arg\max_{c} P(c|q);$$

- lacktriangle Если так, то $P_{(q,c)}\Big(c^*(q)=c\Big)$ максимальна;
- Что можно доказать;

$$c^*(q) = \arg\max_{c} P(c|q);$$

- lacktriangle Если так, то $P_{(q,c)}\Big(c^*(q)=c\Big)$ максимальна;
- Что можно доказать;
- Лучший возможный спеллчекер!

$$c^*(q) = \arg\max_{c} P(c|q);$$

- lacktriangle Если так, то $P_{(q,c)}\Big(c^*(q)=c\Big)$ максимальна;
- Что можно доказать;
- Лучший возможный спеллчекер!
- ▶ Но есть одна проблема...

Проблема

▶ P(q, c)-?

Проблема

- P(q,c)-?
- P(c|q) было бы достаточно, но его тоже не знаем.

$$c^*(q) = \arg\max_{c} P(c|q)$$

$$c^*(q) = \arg\max_{c} P(c|q)$$
 $P(c|q) = P(q,c) / P(q);$

$$c^*(q) = rg \max_c P(c|q) = rg \max_c P(q,c).$$
 $P(c|q) = P(q,c) / P(q);$

$$c^*(q) = \arg\max_c P(c|q) = \arg\max_c P(q,c).$$
 $P(c|q) = P(q,c) / P(q);$
 $P(q,c) = P(q|c) \cdot P(c) \rightarrow \max_c.$

$$\underbrace{P(q|c)}_{\text{Error model}} \cdot \underbrace{P(c)}_{\text{Language model}} \rightarrow \max_{c}$$

$$\underbrace{P(q|c)}_{\text{Error model}} \cdot \underbrace{P(c)}_{\text{Language model}} \rightarrow \max_{c}$$

Будем писать так:

$$P_{ ext{dist}}(c o q) \cdot P_{ ext{LM}}(c) o \max_{c}$$

$$\underbrace{P(q|c)}_{\text{Error model}} \cdot \underbrace{P(c)}_{\text{Language model}} \rightarrow \max_{c}$$

Будем писать так:

$$P_{ ext{dist}}(c o q) \cdot P_{ ext{LM}}(c) o \max_{c}$$

А оценивать — так:

$$ightharpoonup -\log P_{\mathrm{dist}}(c
ightarrow q) \propto \mathrm{Levenshtein}(q,c);$$

$$\underbrace{P(q|c)}_{\text{Error model}} \cdot \underbrace{P(c)}_{\text{Language model}} \rightarrow \max_{c}$$

Будем писать так:

$$P_{ ext{dist}}(c o q) \cdot P_{ ext{LM}}(c) o \max_{c}$$

А оценивать — так:

- ▶ $-\log P_{\mathrm{dist}}(c \to q) \propto \mathrm{Levenshtein}(q, c);$
- ho $P_{\mathrm{LM}}(c) = \mathrm{freq}(c) / \sum_{w} \mathrm{freq}(w)$

$$-\log P_{
m dist}(c o q) + -\log P_{
m LM}(c) o \min_c$$
 Штраф за расстояние Штраф за мал. частоту

$$-\log P_{
m dist}(c o q) + -\log P_{
m LM}(c) o \min_c$$
 Штраф за расстояние Штраф за мал. частоту

Минимизируем сумму штрафов:

- ▶ с не очень редкое;
- ightharpoonup с не очень далекое от q.

$$-\log P_{
m dist}(c o q) + -\log P_{
m LM}(c) o \min_c$$
 Штраф за расстояние Штраф за мал. частоту

Минимизируем сумму штрафов:

- с не очень редкое;
- ightharpoonup с не очень далекое от q.

Пример:

С	freq	$-\log P_{ m LM}$	$-\log P_{ m dist}$	\sum
масква	70K	19.30	0	19.30
москва	47M	9.892	5	14.892

 $\mathsf{T}\mathsf{a}\mathsf{б}\mathsf{л}\mathsf{и}\mathsf{ц}\mathsf{a}$: $q=\mathsf{м}\mathsf{a}\mathsf{c}\mathsf{к}\mathsf{b}\mathsf{a}$

Многословные запросы:

 $P_{\mathrm{LM}}(w_1,...,w_n)$ – известно как (см. «Language model»)

- $P_{\mathrm{LM}}(w_1,...,w_n)$ известно как (см. «Language model»)
- ho $P_{
 m dist}(c_1,...,c_n
 ightarrow q_1,...,q_n)=\sum_i P_{
 m dist}(c_i
 ightarrow q_i)$

Многословные запросы:

- $ightharpoonup P_{\mathrm{LM}}(w_1,...,w_n)$ известно как (см. «Language model»)
- $ightharpoonup P_{\mathrm{dist}}(c_1,...,c_n \to q_1,...,q_n) = \sum_i P_{\mathrm{dist}}(c_i \to q_i)$

мам мыл раму

- $P_{\mathrm{LM}}(w_1,...,w_n)$ известно как (см. «Language model»)
- $P_{\text{dist}}(c_1,...,c_n \rightarrow q_1,...,q_n) = \sum_i P_{\text{dist}}(c_i \rightarrow q_i)$

- $P_{\mathrm{LM}}(w_1,...,w_n)$ известно как (см. «Language model»)
- $ightharpoonup P_{ ext{dist}}(c_1,...,c_n o q_1,...,q_n) = \sum_i P_{ ext{dist}}(c_i o q_i)$

- $P_{\mathrm{LM}}(w_1,...,w_n)$ известно как (см. «Language model»)
- $ightharpoonup P_{ ext{dist}}(c_1,...,c_n o q_1,...,q_n) = \sum_i P_{ ext{dist}}(c_i o q_i)$

Многословные запросы:

- $P_{\mathrm{LM}}(w_1,...,w_n)$ известно как (см. «Language model»)
- $ightharpoonup P_{\mathrm{dist}}(c_1,...,c_n o q_1,...,q_n) = \sum_i P_{\mathrm{dist}}(c_i o q_i)$

Алгоритм:

- ▶ Перебираем все возможные пути (исправления) с;
- lacktriangle Для каждого считаем $P_{
 m dist}(c o q)\cdot P_{
 m LM}(c)$;
- Выбираем лучший.

План

```
Постановка задачи
```

Noisy channel Модель Спеллчекер за 5 минут

Улучшения

Улучшение 1: метрика

Улучшение 2: генератор гипотез

Интермедия

Улучшение 3: машинное обучение

Улучшение 4: типы ошибок

References

План

Постановка задачи

Noisy channel Модель

Спеллчекер за 5 минут

Улучшения

Улучшение 1: метрика

Улучшение 2: генератор гипотез

Интермедия

Улучшение 3: машинное обучение

Улучшение 4: типы ошибок

References

Расстояние Левенштейна

- Минимальное число операций редактирования
 - ▶ Удаление символа: $drow \rightarrow row$
 - ▶ Вставка символа: $row \rightarrow crow$
 - ▶ Замена символа: $crow \rightarrow cron$

Расстояние Левенштейна

- Минимальное число операций редактирования
 - ▶ Удаление символа: $drow \rightarrow row$
 - ▶ Вставка символа: $row \rightarrow crow$
 - ► Замена символа: $crow \rightarrow cron$
- На самом деле нет.

Расстояние Левенштейна

- Минимальное число операций редактирования
 - ▶ Удаление символа: $drow \rightarrow row$
 - ▶ Вставка символа: $row \rightarrow crow$
 - ▶ Замена символа: crow → cron
- На самом деле нет.
- О расстоянии Левенштейна стоит рассуждать как o joint segmentation.

Joint segmentation

d|e|o|e|n|-|a|n|t
d|e|p|e|n|d|e|n|t
0+0+1+0+0+1+1+0+0 = 3

Сегменты не больше 1 буквы (меньше можно); Получается побуквенное выравнивание;

Joint segmentation

d|e|o|e|n|-|a|n|t
d|e|p|e|n|d|e|n|t
0+0+1+0+0+1+1+0+0 = 3
S IS

S = substitution
I = insertion

Сегменты не больше 1 буквы (меньше можно); Получается побуквенное выравнивание;

▶ Это не так очевидно, но лучшее выравнивание и лучшая последовательность правок — это одно и то же.

Joint segmentation

d|e|o|e|n|-|a|n|t
d|e|p|e|n|d|e|n|t
0+0+1+0+0+1+1+0+0 = 3
S IS

Сегменты не больше 1 буквы (меньше можно); Получается побуквенное выравнивание;

- Это не так очевидно, но лучшее выравнивание и лучшая последовательность правок — это одно и то же.
- Выравнивание монотонно и генеративно

(последовательность — нет).

Как считать Левенштейна

```
destination string
```

```
$ K E Y
$ . . . .
source K . . . .
string E . . . .
```

Инвариант

```
$ K E Y

$ . . . . . .

K . . . . . .

E_.__x | .

I . . . .

x = dist(KE, KE)
```

Инвариант

```
$ K E Y|

$_.__.x|

K . . . .

E . . . .

I . . . .
```

Инициализация

```
$ K E Y

$ . . . | . |

K . . . | . | o = dist(KE, KE)

E_.__._o| . | x = dist(KEI, KEY)

I_.__.x|

o -- shaem

x = min(x, o + penalty(I, Y))
```

```
$ K E Y

$ . . . | . |

K . . . | . | o = dist(KEI, KE)

E . . . | . | x = dist(KEI, KEY)

I . . o | x |

======+--+

o -- 3HaeM

x = min(x, o + penalty("", Y))
```

```
$ K E Y
$ . . . . .
K . . . . .
E . . o o
I . . o x
```

>x< зависит от [o]

```
$ K E Y
$>0< x x x
K x x x x
E x x x x
I x x x x
```

```
$ K E Y
$[0] x x x
K>1< x x x
E x x x x
I x x x x
```

```
$ K E Y
$ 0 x x x
K[1] x x x
E>2< x x x
I x x x x
```

```
$ K E Y
$ 0 x x x
K 1 x x x
E[2] x x x
I>3< x x x
```

```
$ K E Y
$[0][1] x x
K[1]>0< x x
E 2 x x x
I 3 x x x
```

```
$ K E Y
$ 0 1 x x
K[1][0] x x
E[2]>1< x x
I 3 x x x
```

```
$ K E Y
$ 0 1 2 3
K 1 0 1 2
E 2 1 0 1
I 3 2 1 1
```

```
$ K E Y
$ 0 1 2 3
K 1 0 1 2
E 2 1 0 1
I 3 2 1 >1<
```

Трансфемы

Трансфема (от «transformation unit») — это пара (коротких) строк и вес.

$pe \leftarrow e$	7.6296
$c \leftarrow cb$	3.3078
$c \leftarrow t$	8.4283
$c \leftarrow tc$	3.0278
$CTK \leftarrow CK$	7.2816

▶ Все то же самое, только длина сегмента может быть больше 1.

```
e||e|f ||na||t
e||e|ph||an||t
```

▶ Все то же самое, только длина сегмента может быть больше 1.

```
e||e|f |na|t
e||e|ph|an|t
```

Левенштейн:

```
e|l|e|f|n|a|-|t

e|l|e|p|h|a|n|t
```

▶ Все то же самое, только длина сегмента может быть больше 1.

```
e|l|e|f |na|t
e|l|e|ph|an|t
```

Левенштейн:

```
e|1|e|f|n|a|-|t

e|1|e|p|h|a|n|t
```

- Штраф за разбиение = сумма штрафов за трансфемы;
- ▶ Трансфемное расстояние = минимально возможный штраф.

▶ Все то же самое, только длина сегмента может быть больше 1.

```
e||e|f ||na||t
e||e|ph||an||t
```

Левенштейн:

```
e|l|e|f|n|a|-|t c|\pi|o|H|-
e|l|e|p|h|a|n|t -|\pi|o|H|\mu
```

- Штраф за разбиение = сумма штрафов за трансфемы;
- ▶ Трансфемное расстояние = минимально возможный штраф.

Как считать

destination string

```
$ K E Y
$ . . . .
source K . . . .
string E . . . .
```

Инвариант

```
$ K E Y

$ . . . . . .

K . . . . . .

E_.__x | .

I . . . .

x = dist(KE, KE)
```

Инициализация

```
$ K E Y
$ . . | . . |
K_.__o| . . | o = dist(K, K)
E . . . | x = dist(KEI, KEY)
I_.___x|
o -- знаем
x = min(x, o + penalty(EI, EY))
```

```
$ K E Y
$ . . . .
K . o o o
E . o o o
I . o o x
```

>x< зависит от [o]

```
$ K E Y
$ 0 4 8 c
K 1 5 9 d
E 2 6 a e
I 3 7 b f
```

```
$ K E Y
$ 0 1 2 3
K 4 5 6 7
E 8 9 a b
I c d e f
```

План

Постановка задачи

Noisy channel

Спеллчекер за 5 минут

Улучшения

Улучшение 1: метрика

Улучшение 2: генератор гипотез

Интермедия

Улучшение 3: машинное обучение

Улучшение 4: типы ошибок

References

Генератор гипотез

q =ремофломуцин

Text	Frequency	Distance
римофломуцин	1760	6.702
ринофломуцин	3461	13.37
римофламуцин	120	8.540
ринофламуцин	105	15.21
римофломуцил	19	12.78
римафламуцил	145	16.57
ринофлуимуцил	107609	26.93
ринофлоимуцин	160	17.01

Генератор гипотез

 $q = \mathsf{ремофломуцин}$

Text	Frequency	Distance
римофломуцин	1760	6.702
ринофломуцин	3461	13.37
римофламуцин	120	8.540
ринофламуцин	105	15.21
римофломуцил	19	12.78
римафламуцил	145	16.57
ринофлуимуцил	107609	26.93
ринофлоимуцин	160	17.01

$$q \to c_1, ..., c_{30}$$
.

Генератор гипотез

q =ремофломуцин

Text	Frequency	Distance
римофломуцин	1760	6.702
ринофломуцин	3461	13.37
римофламуцин	120	8.540
ринофламуцин	105	15.21
римофломуцил	19	12.78
римафламуцил	145	16.57
ринофлуимуцил	107609	26.93
ринофлоимуцин	160	17.01

$$q \to c_1, ..., c_{30}$$
.

- ▶ Нет гипотезы не будет подсказки;
- ▶ 30 лучших (иначе будет медленно).

Решение 1: Левенштейн

▶ Все такие c_i , что levenshtein $(q, c_i) < T$;

Решение 1: Левенштейн

- Все такие c_i , что levenshtein $(q, c_i) < T$;
 - 1. Перебрать все слова;

Решение 1: Левенштейн

- ▶ Все такие c_i , что levenshtein $(q, c_i) < T$;
 - 1. Перебрать все слова;
 - 2. Изменять до T символов в q;

- Все такие c_i , что levenshtein $(q, c_i) < T$;
 - 1. Перебрать все слова;
 - 2. Изменять до T символов в q;
 - 3. Построить инвертированный индекс на буквенных n-граммах и решить t-threshold problem;

- Все такие c_i , что levenshtein $(q, c_i) < T$;
 - 1. Перебрать все слова; Медленно;
 - 2. Изменять до T символов в q;
 - 3. Построить инвертированный индекс на буквенных n-граммах и решить t-threshold problem;

- Все такие c_i , что levenshtein $(q, c_i) < T$;
 - 1. Перебрать все слова; Медленно;
 - 2. Изменять до T символов в q; Медленно и/или плохо;
 - 3. Построить инвертированный индекс на буквенных n-граммах и решить t-threshold problem;

- Все такие c_i , что levenshtein $(q, c_i) < T$;
 - 1. Перебрать все слова; Медленно;
 - 2. Изменять до T символов в q; Медленно и/или плохо;
 - 3. Построить инвертированный индекс на буквенных n-граммах и решить t-threshold problem;

Сложно

- Все такие c_i , что levenshtein $(q, c_i) < T$;
 - 1. Перебрать все слова; Медленно;
 - 2. Изменять до T символов в q; Медленно и/или плохо;
 - 3. Построить инвертированный индекс на буквенных n-граммах и решить t-threshold problem;

Сложно и все еще плохо.

- ▶ Все такие c_i , что levenshtein $(q, c_i) < T$;
 - 1. Перебрать все слова; Медленно;
 - 2. Изменять до T символов в q; Медленно и/или плохо;
 - 3. Построить инвертированный индекс на буквенных n-граммах и решить t-threshold problem;

Сложно и все еще плохо (или медленно).

- Все такие c_i , что levenshtein $(q, c_i) < T$;
 - 1. Перебрать все слова; Медленно:
 - 2. Изменять до T символов в q; Медленно и/или плохо;
 - 3. Построить инвертированный индекс на буквенных n-граммах и решить t-threshold problem;

Сложно и все еще плохо (или медленно).

• При любой реализации: много гипотез при больших T, много пропусков при малых T.

• Soundex — функция $str \to str$; выдает фонетическую сигнатуру. Т.е. похожие по звучанию слова получают похожие (или одинаковые) сигнатуры;

- Soundex функция $str \to str$; выдает фонетическую сигнатуру. Т.е. похожие по звучанию слова получают похожие (или одинаковые) сигнатуры;
- К прмр: вкнт вс глсн;
 (Вообще, soundex конкретная функция, но мы так будем называть целый класс);
- ► На основании soundex можно построить генератор гипотез.

• Строим обратный индекс по сигнатурам: для каждой сигнатуры s — список слов $W(s) = (w_1, ..., w_k)$ с такой сигнатурой.

- Строим обратный индекс по сигнатурам: для каждой сигнатуры s список слов $W(s) = (w_1, ..., w_k)$ с такой сигнатурой.
- ightharpoonup Для запроса q считаем сигнатуру s(q), и выдаем слова с такой же сигнатурой: W(s(q));

- Строим обратный индекс по сигнатурам: для каждой сигнатуры s список слов $W(s) = (w_1, ..., w_k)$ с такой сигнатурой.
- ightharpoonup Для запроса q считаем сигнатуру s(q), и выдаем слова с такой же сигнатурой: W(s(q));
- Функций-сигнатур может быть несколько.

- Строим обратный индекс по сигнатурам: для каждой сигнатуры s список слов $W(s) = (w_1, ..., w_k)$ с такой сигнатурой.
- ightharpoonup Для запроса q считаем сигнатуру s(q), и выдаем слова с такой же сигнатурой: W(s(q));
- Функций-сигнатур может быть несколько.

Для коротких слов – очень много гипотез.

<u>Качество</u>

▶ Размеченный корпус: (опечатка, исправление);

<u>Качество</u>

▶ Пара запросов: (мам мыл раму, мама мыла раму);

Качество

- ▶ Пара запросов: (мам мыл раму, мама мыла раму);
- ▶ Пары слов: (мам, мама), (мыл, мыла);

Качество

- Пара запросов: (мам мыл раму, мама мыла раму);
- Пары слов: (мам, мама), (мыл, мыла);
- N-best recall: процент пар слов, для которых правильное слово есть в списке гипотез для исходного слова.

Качество: baseline

	N-best recall	
	Обычно	Сложно
Levenshtein	85%	
Soundex	93%	

Качество: baseline

	N-best recall		
	Обычно	Сложно	
Levenshtein	85%	75%	
Soundex	93%	59%	

Качество: baseline

	N-best recall		
	Обычно	Сложно	
Levenshtein	85%	75%	
Soundex	93%	59%	
Transfeme	95%	89%	

 $ightharpoonup c_1,...,c_{30}$ — такие, что $\operatorname{dist}(q,c_i) o \mathit{min}.$

- $ightharpoonup c_1,...,c_{30}$ такие, что $\mathrm{dist}(q,c_i) o \mathit{min}.$
- ▶ Как искать? Перебирать долго.

- $ightharpoonup c_1,...,c_{30}$ такие, что $\operatorname{dist}(q,c_i) o \mathit{min}$.
- ▶ Как искать? Перебирать долго.
- Trie of words

Будем одновременно «съедать» запрос и спускаться в трае.


```
(ROOT)

* Query k|e e i

A/\K Hypothesis k

o * Penalty O

B/ D/\E R N Transfemes

. . .----- NOP k <- k O

C/ E/ I/\Y
o o o o
```

```
(ROOT)
                               k|e e i
                                           INOP
     *
                   Query
   A/\K
                   Hypothesis
                                k
                                           INS
                                                     10
                   Penalty
                                           ISUB
                                                     10 l
 B/ D/ \E R
               N Transfemes
                                           DEL
                                                     10|
                     NOP k <- k
                                 0
                                           |ei <- ey 5|
C/ E/ I/ \Y
                                           |i <- y 7|
                                           |k <- g
          0
```

```
(ROOT)

*
A/\K

o *
B/D/\E R N

. . *------
C/ E/ I/\Y
o o o o
```

```
Query kelei
Hypothesis ke
Penalty 0
Transfemes
NOP k <- k 0
NOP e <- e 0
```



```
(ROOT)
                         k e e|i
                                          INOP
     *
                   Query
   A/\K
                   Hypothesis
                               k e
                                          INS
                                                    10
                   Penalty
                               10
                                          ISUB
                                                    10 l
 B/ D/\E R
                   Transfemes
                                          DEL
                                                    10|
                     NOP k < - k
                                0
                                          |ei <- ey 5|
   . *---.-0
C/ E/ I/ \Y
                     NOP e <- e
                              0
                                          |i <- y 7|
                     DEL e <-
                               10
                                          |k <- g
          0
```

(ROOT)			+	+
*	Query	k e e i	INOP	0
A/ \K	Hypothesis	k e	INS	10
o *	Penalty	10	SUB	10
B/ D/ \E R N	Transfemes		DEL	10
*	NOP k <- k	0	ei <- ey	5
C/ E/ I/\Y	NOP e <- e	0	i <- y	7
0 0 0 0	DEL e <-	10	k <- g	9
			+	+

```
(ROOT)
                                        NOP
    *
                  Query
                         k e e il
   A/\K
                  Hypothesis key
                                        IINS
                                                 10 l
                  Penalty
                             17
                                        ISUB
                                                 10 l
   0 *
 B/D/E R N Transfemes
                                        DEL
                                                10|
                   NOP k <- k
                              0
                                        |ei <- ey 5|
C/E/I/Y
                                        |i <- y 7|
                  NOP e <- e 0
                   DEL e <- 10
                                        |k <- g
                       i <- y 7
```



```
(ROOT)

* Query k|e e i

A/\K Hypothesis k

o * Penalty O

B/ D/\E R N Transfemes

. . .----- NOP k <- k O

C/ E/ I/\Y
o o o o
```

```
| NOP | O | | INS | 10 | | SUB | 10 | | IDEL | 10 | | lei <- ey | 5 | | i <- y | 7 | | k <- g | 9 | |
```

```
(ROOT)
                               k|e e i
                                           INOP
     *
                   Query
   A/\K
                   Hypothesis
                                k
                                           INS
                                                     10
                   Penalty
                                           ISUB
                                                     10 l
 B/ D/ \E R
               N Transfemes
                                           DEL
                                                     10|
                     NOP k <- k
                                 0
                                           |ei <- ey 5|
C/ E/ I/ \Y
                                           |i <- y 7|
                                           |k <- g
          0
```

```
(ROOT)

*
A/\K
o *
B/ D/\E R N
. . .-----
C/ E/ I/\Y
o o o o
```

```
Query kelei
Hypothesis k
Penalty 10
Transfemes
NOP k <- k 0
DEL e <- 10
```

```
(ROOT)
                           k e|e i
                                           INOP
     *
                   Query
   A/\K
                   Hypothesis
                                k
                                           INS
                                                     10
                   Penalty
                                10
                                           ISUB
                                                     10 l
 B/ D/ \E R
                   Transfemes
                                           DEL
                                                    10|
                     NOP k < - k
                                0
                                           |ei <- ey 5|
C/ E/ I/ \Y
                     DEL e <-
                                10
                                           |i <- y 7|
                                           |k <- g
          0
```

Генерация гипотез

```
(ROOT)
                                       INOP
    *
                  Query
                       k e e i|
   A/\K
                  Hypothesis k e y
                                       INS
                                                10
                  Penalty
                             15
                                       ISUB
                                                10 l
 B/D/ER
                 Transfemes
                                       DEL
                                                10|
                   NOP k < - k
                              0
                                       |ei <- ey 5|
  . *---.-0
C/E/I/Y
                  DEL e <-
                            10
                                       |i <- y 7|
                      ei<-ey 5
                                       |k <- g
```

Поиск Дейкстры / в ширину

```
queue.enqueue("", "", 0.0)
while not queue.empty():
    src, dest, dist = queue.dequeue_min_dist()
    if src == query and trie_has_word(dest):
        print(dest, dist)
    for (a, b, d) in transfemes:
        if not is_prefix(src + a, query):
            continue
        if not trie_has_prefix(dest + b):
            continue
        queue.enqueue(src + a, dest + b, dist + d)
```

Поиск Дейкстры / в ширину

```
queue.enqueue("", "", 0.0)
while not queue.empty():
    src, dest, dist = queue.dequeue_min_dist()
    if src == query and trie_has_word(dest):
        print(dest, dist)
    for (a, b, d) in transfemes:
        if not is_prefix(src + a, query):
            continue
        if not trie_has_prefix(dest + b):
            continue
        queue.enqueue(src + a, dest + b, dist + d)
```

Первые напечатанные гипотезы – самые близкие.

1.

$$\operatorname{dist}(c \to q) \to \min;$$

1.

$$\operatorname{dist}(c \to q) - \log \operatorname{freq}(c) \to \min;$$

1.

$$\mathrm{dist}(c o q)$$
— $\log\mathrm{freq}(c) o$ min;
То же, что и $-\log P_{\mathrm{dist}}(c o q)-\log P_{\mathrm{LM}}(c) o$ min;

1.

$$\operatorname{dist}(c \to q) - \log \operatorname{freq}(c) \to \min;$$

То же, что и

$$-\log P_{\mathrm{dist}}(c
ightarrow q) - \log P_{\mathrm{LM}}(c)
ightarrow \mathsf{min};$$

Алгоритм:

- Собрать freq(c);
- В каждую вершину трая записать максимальную частоту в поддереве;
- Считать queue score немножко по-другому.

2.
$$-\log P_{\mathrm{dist}}(c \to q) - \log P_{\mathrm{LM}}(c) \to \max$$
;

2.
$$-\log P_{\rm dist}(c \to q) - \frac{\lambda}{\log P_{\rm LM}(c)} \to \max$$
;

- 2. $-\log P_{\rm dist}(c \to q) \frac{\lambda}{\lambda} \log P_{\rm LM}(c) \to \max$;
- 3. Pruning исследуем ограниченное число гипотез
 - для каждой позиции в запросе;
 - для каждой глубины в трае.

Результаты (еще раз)

	N-best recall	
	Обычно	Сложно
Levenshtein	85%	75%
Soundex	93%	59%
Transfeme	95%	89%

План

Постановка задачи

Noisy channel

Модель

Спеллчекер за 5 минут

Улучшения

Улучшение 1: метрика

Улучшение 2: генератор гипотез

Интермедия

Улучшение 3: машинное обучение

Улучшение 4: типы ошибок

References

Помните lattice?

Noisy-channel baseline: найти путь c в lattice, для которого $\mathrm{LM}(c) + \mathrm{dist}(q,c)$ минимально.

Помните lattice?

- ▶ Noisy-channel baseline: найти путь c в lattice, для которого $\mathrm{LM}(c) + \mathrm{dist}(q,c)$ минимально.
- Перебирать все пути медленно.

```
+-- logP(teh|^)
        +-- logP(stanley|teh)
                  +-- logP(hAEven|stanley)
   teh
                     hAEven
                             \ -- logP($|hAEven)
          stanley
                             / -- logP(\$|hEAven) +
                                  dist(hAEven -> hEAven)
   the
                     hEAven
                  +-- logP(hEAven|stanley)
        +-- logP(stanley|the) + dist(teh --> the)
+-- logP(the|^)
```

```
+-- log P(teh|^)
          +-- log P(stanley|teh)
     teh
            stanley
                              / -- log P($|hEAven) +
                       hEAven dist(hAEven -> hEAven)
                    +-- log P(hEAven|stanley)
  logP(teh|^)
+ logP(stanley|teh)
+ logP(hEAven|stanley) + dist(hAEven -> hEAven)
+ logP($|hEAven)
= logP(^teh stanley hEAven$) + dist(hAEven -> hEAven)
          total LM
                                    total dist
```

▶ Профит: вместо полного перебора путей можно запустить поиск кратчайшего пути.

Свойства:

- Каждый путь в графе соответствует исправлению.
- Любое допустимое исправление имеет путь в графе.
- Цена исправления равна сумме длин ребер.
- Длины ребер положительны.
- Лучшее исправление соответствует кратчайшему пути.

- ▶ Профит: вместо полного перебора путей можно запустить поиск кратчайшего пути.
- Проблема: так можно делать только для биграмм или униграмм.

Свойства:

- ▶ Каждый путь в графе соответствует исправлению.
- Любое допустимое исправление имеет путь в графе.
- Цена исправления равна сумме длин ребер.
- Длины ребер положительны.
- Лучшее исправление соответствует кратчайшему пути.

- ▶ Профит: вместо полного перебора путей можно запустить поиск кратчайшего пути.
- Проблема: так можно делать только для биграмм или униграмм.
- Решение: контекстим граф.

Свойства:

- Каждый путь в графе соответствует исправлению.
- Любое допустимое исправление имеет путь в графе.
- Цена исправления равна сумме длин ребер.
- Длины ребер положительны.
- Лучшее исправление соответствует кратчайшему пути.

- ▶ Трансформируем граф (N-граммная LM \implies N-1 слов в вершине);
- Пишем веса на ребрах;
- Ишем Дейкстрой лучший путь.

Каждый путь в графе соответствует исправлению (остальные свойства очевидны).

Каждый путь в графе соответствует исправлению (остальные свойства очевидны).

a b c d --- ?

a b c d --- ?

План

Постановка задачи

Noisy channel

Модель

Спеллчекер за 5 минут

Улучшения

Улучшение 1: метрика

Улучшение 2: генератор гипотез

Интермедия

Улучшение 3: машинное обучение

Улучшение 4: типы ошибок

References

Реранкер

- 1. Берем 30 лучших путей согласно noisy channel;
- 2. Считаем фичи.
- 3. Запускаем matrixnet;
- Готово.

Реранкер

▶ 90% top-30 recall.

Реранкер

- ▶ 90% top-30 recall.
- Фичи: общий вес по языковой модели, общее расстояние, количество слов/символов, sparse индикаторы для трансфем, и т.д.

План

Постановка задачи

Noisy channel Модель Спеллчекер за 5 минут

Улучшения

Улучшение 1: метрика

Улучшение 2: генератор гипотез

Интермедия

Улучшение 3: машинное обучение

Улучшение 4: типы ошибок

References

Типы ошибок

10-12% от поискового потока.

ightharpoonup эльфиливая башня ightharpoonup эйфелева башня ightharpoonup обычные;

Типы ошибок

10-12% от поискового потока.

- ightharpoonup эльфиливая башня ightharpoonup эйфелева башня ightharpoonup обычные;
- ▶ мин юст \rightarrow минюст segmentation;

Типы ошибок

10-12% от поискового потока.

- ightharpoonup эльфиливая башня ightharpoonup эйфелева башня ightharpoonup обычные;
- ▶ мин юст \rightarrow минюст segmentation;
- $\mu\phi$ твуч \rightarrow yandex раскладка клавиатуры;

Типы ошибок

10-12% от поискового потока.

- ightharpoonup эльфиливая башня ightharpoonup эйфелева башня ightharpoonup обычные;
- ▶ мин юст \rightarrow минюст segmentation;
- ightharpoonup н ϕ твуч ightarrow yandex раскладка клавиатуры;
- ightharpoonup *rитхаб теано* ightharpoonup *github theanо* транслитерация;

Типы ошибок

10-12% от поискового потока.

- ightharpoonup эльфиливая башня ightharpoonup эйфелева башня ightharpoonup обычные;
- ▶ мин юст \rightarrow минюст segmentation;
- ightharpoonup н ϕ твуч ightarrow yandex раскладка клавиатуры;
- ightharpoonup *гитхаб теано* ightharpoonup *github theanо* транслитерация;
- Остальное и смешанные ошибки.

Проблемы для noisy channel

(Их нет.)

мам млараму

Токенизация;

мам млараму

- Токенизация;
- Word lattice;

- Токенизация;
- Word lattice;
- New!;

- Токенизация;
- Word lattice;
- ► New!;
- Генерация гипотез;

- Токенизация;
- Word lattice;
- ► New!;
- Генерация гипотез;
- ▶ Ранкер.

Типы ошибок

- ▶ Новые пути в lattice для ошибок сегментации;
- Новые трансфемы для транслита и keyboard layout;
- ▶ И т.д.

• В запросе и исправлении по несколько слов;

- В запросе и исправлении по несколько слов;
- В запросе и исправлении может быть разное число слов;

- В запросе и исправлении по несколько слов;
- В запросе и исправлении может быть разное число слов;
- В разных исправлениях может быть разное число слов;

- В запросе и исправлении по несколько слов;
- ▶ В запросе и исправлении может быть разное число слов;
- В разных исправлениях может быть разное число слов;
- Расстояние надо считать по-другому, и прочие проблемы.

▶ Считать sentence-level фичи;

- Считать sentence-level фичи;
- Считать средние значения фичей по предложению;

- Считать sentence-level фичи;
- Считать средние значения фичей по предложению;
- ► Использовать structured learning (см.
 "transition-based dependency parser"и статью
 http://citeseerx.ist.psu.edu/viewdoc/
 download?doi=10.1.1.68.2325&rep=rep1&
 type=pdf)

- Считать sentence-level фичи;
- Считать средние значения фичей по предложению;
- ► Использовать structured learning (см.
 "transition-based dependency parser"и статью
 http://citeseerx.ist.psu.edu/viewdoc/
 download?doi=10.1.1.68.2325&rep=rep1&
 type=pdf)
- Да хоть свертки нейросетями.

План

Постановка задачи

```
Noisy channel
```

Модель

Спеллчекер за 5 минут

Улучшения

Улучшение 1: метрика

Улучшение 2: генератор гипотез

Интермедия

Улучшение 3: машинное обучение

Улучшение 4: типы ошибок

References

References

- ► https://class.coursera.org/nlp
- ▶ Brill, Eric, and Robert C. Moore.
 "An improved error model for noisy channel spelling correction."
 - Proceedings of the 38th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2000.
 - http://www.aclweb.org/anthology/P00-1037
- Duan, Huizhong, and Bo-June Paul Hsu. "Online spelling correction for query completion." Proceedings of the 20th international conference on World wide web. ACM, 2011.
 - http://research-srv.microsoft.com/pubs/148103/WWW1

References

- ► Cucerzan, Silviu and Brill, Eric.

 "Spelling Correction as an Iterative Process that Exploits the Collective Knowledge of Web Users."

 EMNLP. Vol. 4., 2004. http:

 //anthology.aclweb.org/W/W04/W04-3238.pdf
- Gao, Jianfeng and Li, Xiaolong and Micol, Daniel and Quirk, Chris and Sun, Xu
 "A large scale ranker-based system for search query spelling correction"

 Proceedings of the 23rd International Conference on Computational Linguistics, 2010. http://anthology.aclweb.org/C/C10/C10-1041.pdf

References

Whitelaw, Casey and Hutchinson, Ben and Chung, Grace Y and Ellis, Gerard.
"Using the web for language independent spellchecking and autocorrection."

Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 2-Volume 2, 2009. http://www.aclweb.org/anthology/D/D09/D09-1093.pdf

Вопросы?

Приходите к нам

galinskaya@yandex-team.ru