COMS 4771 Machine Learning (2018 Fall) Homework 2

 Jing Qian - $\operatorname{jq2282@columbia.edu}$

November 14, 2018

Problem 3

(Jing, Nov 14)

(i)

Since $b \in \{0,1\}^p$, there are 2^p possible bs. Since the entries of A are picked uniformly at random, the probability of x_i hashes to any b is equal and hence $1/2^p$. what's the point of the hint?

(ii)

From part (i), the probability of x_i hashing to any b is $1/2^p$, the probability of x_j hashing to any b is $1/2^p$. So the probability of x_j hashing to the same vector that x_i is hashing to is $1/2^p$.

(iii)

The probability of no collisions among the x_i could be represented as following:

Prob (no collisions) = 1 - Prob (exist collisions)

$$\geq 1 - \sum_{1 \leq i < j \leq m} \operatorname{Prob}(x_i, x_j \text{ collide})$$

$$= 1 - \sum_{1 \leq i < j \leq m} 1/2^p$$

$$= 1 - \binom{m}{2} \frac{1}{2^p}$$

$$= 1 - \frac{m(m-1)}{2} \frac{1}{2^p}$$

$$\geq 1 - \frac{m^2}{2} \frac{1}{2^p}$$
(1)

If $p \ge 2\log_2 m$,

Prob (no collisions)
$$\geq 1 - \frac{m^2}{2} \frac{1}{2^p}$$

 $\geq 1 - \frac{m^2}{2} \frac{1}{m^2}$
 $= 1 - 1/2$
 $= 1/2$ (2)

So if $p \ge 2 \log_2 m$, there are no collisions among the x_i with probability at least 1/2.