2. Apply Master theorem to find asymptotic behaviour of T(n)

a) $T(n) = 25 \cdot T(\frac{2}{5}) + n$

 $k = \log_5 25 = \log_5 5^* = 2$

f(n) = n

> n2 grows Paster than P(n).

Thus, T(n) = (Cn2)

b) $T(n) = 2 \cdot T(\frac{a}{3}) + n \log(n)$

k = 10932

 $f(n) = n \log(n)$ $\Rightarrow f(n)$ grows faster than $n \log_3(2)$

Thus, $T(n) = f(n) = \Theta(n \log n)$

c) $T(n) = T(\frac{3n}{4}) + 1$

K = 109 & 1 = 0

 $f(n) = 1 = n^{\circ} \log^{\circ} n$ k = p.

Thus, T(n) = log n