MCMC для dummies

Винни-Пух

27 февраля 2017 г.

Предисловие

План:

1. Энтропия/Джини

Распределения максимизирующие энтропию? что-то про ROC кривые до кучи?

2. Одиноко стоящий дуб

Типичное заданичие: Вырастить дерево согласно такому-то критерию. Сюда борьбу с NA. Сюда же регуляризацию? Или отдельно?

3. Логит-модель

Логистическое распределение? Перевод y=0/1 в y=-1/1. Максимум правдоподобия в минимум штрафа? Предельные эффекты?

4. Мини-мими-лес

Типичное: Два-три дерева. По ним построить прогноз/оценить важность переменных. Что еще?

5. Регуляризация.

Общая идея. Парадокс James-Stein. Для среднего, для регрессии, для дерева. L1 и L2.

6. Про кросс-валидацию?

Как это делать руками? Какие тут теоретические задачи?

Упр: Дано одно-два-три дерева. И 5 наблюдений. Посчитать кросс-валидационную ошибку.

Упр: На наборе данных в 5 наблюдений подобрать параметр жесткости с помощью кросс-валидации.

7. Несколько практических упражнений.

Упр: сделайте с дефолтными параметрами и ответьте на все подробности про алгоритм тут решения в python/R.

Упр: Нарисуйте дерево номер 5.

Из теории:

- определения
- табличка с параметрами xgboost, rforest
- несколько практик подбора параметров

```
library("knitr") # грамотное программирование
library("tikzDevice") # сохранение графиков в формате tikz
library("tidyverse") # Хэдли на нашей стороне
library("xtable")
theme_set(theme_bw()) # чёрно-белая тема для графиков
```

Глава 1

Неразобранные :)

http://www.stat.columbia.edu/~gelman/book/solutions2.pdf

1.1. Марковские цепи

1.1 Шахматный конь начинает в клетке A1. Каждый свой ход он выбирает равновероятно из возможных. Какова вероятность того, что через много-много ходов он окажется в клетке H8? Сколько в среднем длится путь от клетки A1 до клетки A1?

1.2. Ручные задачи

1.2 Случайные величины X_i независимы и одинаково распределены с табличкой

$$\begin{array}{c|cccc} X & 1 & 2 & 6 \\ \hline \mathbb{P}() & \beta & 2\beta & 1 - 3\beta \end{array}$$

Известно, что $X_1 = 1$, $X_2 = 2$, $X_3 = 2$, $X_4 = 4$.

- 1. Найдите оценку $\hat{\beta}$ методом моментов.
- 2. Найдите оценку $\hat{\beta}$ методом максимального правдоподобия.

Априорно известно, что β равномерно на отрезке [0;1/3].

- 3. Найдите апостериорную условную функцию плотности β с учётом полученных наблюдений.
- 4. Сгенерируйте выборку из апостериорного распределения с помощью STAN.

Априорно известно, что β имеет функцию плотности f(t) = 18t на отрезке [0; 1/3].

- 5. Найдите апостериорную условную функцию плотности β с учётом полученных наблюдений.
- 6. Сгенерируйте выборку из апостериорного распределения с помощью STAN.
- 1.3 Маша прячется от Медведей в точке m на числовой прямой. Есть несколько Медведей, каждый из которых обнюхивает всю числовую прямую в поисках Маши. Медведю номер i кажется, что Машей сильней всего пахнет в точке y_i . Естественно, Медведи могут ошибаться, например, у них может быть заложен нос, поэтому $y_i | m \sim \mathcal{N}(m, 2^2)$. При фиксированном m величины y_i независимы.

Известно, что $y_1 = 0.5$, $y_2 = -1$.

- 1. Найдите оценку \hat{m} методом моментов.
- 2. Найдите оценку \hat{m} методом максимального правдоподобия.

Априорно известно, что m нормально $\mathcal{N}(1,4^2)$:

- 3. Найдите апостериорную условную функцию плотности m с учётом полученных наблюдений.
- 4. Сгенерируйте выборку из апостериорного распределения с помощью STAN.

Априорно известно, что m равномерно на отрезке [0; 10]:

- 5. Найдите апостериорную условную функцию плотности m с учётом полученных наблюдений.
- 6. Сгенерируйте выборку из апостериорного распределения с помощью STAN.
- 1.4 дискретная переменная непрерывные наблюдения
- 1.5 дискретная переменная дискретные наблюдения

1.3. toy stan

1.6 Напишите на языке STAN модель парной регрессии. А именно, априорно предполагается, что

$$\begin{cases} \beta_1 \sim \mathcal{N}(0, 10^2) \\ \beta_2 \sim \mathcal{N}(1, 10^2) \\ \sigma^2 \sim IG(rate = 3, shape = 4) \end{cases}$$

Наблюдаемые y_i порождаются согласно уравнению

$$y_i = \beta_1 + \beta_2 x_i + u_i, \ u_i \sim \mathcal{N}(0; \sigma^2)$$

На вход модели должны подаваться количество наблюдений N, значения зависимой переменной $y_1, ..., y_N$ и значения независимой переменной $x_1, ..., x_N$.

1.7 Напишите на языке STAN модель процесса AR(1). А именно, априорно предполагается, что

$$\begin{cases} \beta_1 \sim \mathcal{N}(0, 10^2) \\ \beta_2 \sim \mathcal{N}(1, 10^2) \\ \sigma^2 \sim IG(rate = 3, shape = 4) \end{cases}$$

Наблюдаемые y_i порождаются согласно уравнению

$$y_i = \beta_1 + \beta_2 y_{i-1} + u_i, \ u_i \sim \mathcal{N}(0; \sigma^2)$$

На вход модели должны подаваться количество наблюдений N, значения зависимой переменной $y_1,...,y_N$. На выходе должна получаться выборка из апостериорного распределения β_1,β_2 и σ^2 .

1.8 Напишите на языке STAN байесовский тест для сравнения средних при неизвестных дисперсиях и малом количестве наблюдений.

$$\begin{cases} \mu_A \sim \mathcal{N}(0, 100^2) \\ \mu_B \sim \mathcal{N}(0, 100^2) \\ \sigma_A^2 \sim IG(rate = 3, shape = 4) \\ \sigma_B^2 \sim IG(rate = 3, shape = 4) \end{cases}$$

При фиксированных параметрах распределения условно независимы и $y_i^A|\mu_A,\sigma_A^2\sim \mathcal{N}(\mu_A,\sigma_A^2)$, $y_i^B|\mu_B,\sigma_B^2\sim \mathcal{N}(\mu_B,\sigma_B^2)$.

Даны конкретные наблюдения: $y_1^A=2.7, y_2^A=3.8, y_3^A=4.1, y_1^B=4.2, y_2^A=3.8, y_3^A=3.1.$

- 1. Постройте выборку из апостериорного распределения.
- 2. Оцените апостериорную вероятность того, что μ_B более чем на единицу превосходит μ_A .

1.4. stan - integrate out

1.4. stan - integrate out

1.9 Рассмотрим данные по количеству происшествий на английских шахтах. Предположим, что до момента b включительно количество происшествий за год имеет пуассоновское распределение с параметром λ_1 , а после момента b — пуассоновское с параметром λ_2 .

Всего есть данные за T дней. Предположим, что априорно b равновероятно принимает значения от 1 до T, а $\lambda_i \sim IG(rate=3, shape=4)$.

Фактические данные по количеству происшествий за год рассчитайте исходя из дат происшествий по ссылке http://people.reed.edu/~jones/141/Coal.html.

С помощью STAN:

- 1. Постройте выборку из апостериорного распределения λ_1, λ_2, b .
- 2. Какой год наиболее вероятно был годом структурного сдвига?
- 3. Постройте прогноз распределения количества аварий на шахтах на следующий год.

1.5. Гиббс

1.10 Используя алгоритм Гиббса сгенерите выборку для двумерного нормального распределения N(0,A), $A=\left(egin{array}{cc} 4 & -1 \\ -1 & 2 \end{array} \right)$.

1.6. Метрополис-Гастингс

- **1.11** Используя алгоритм Метрополиса-Хастингса сгенерите выборку для биномиального распределения Bin(n,p) из равновероятного на множестве $\{0,1,2,\ldots,n\}$:
 - 1. Подробно опишите алгоритм.
 - 2. Реализуйте алгоритм на каком-нибудь языке программирования.
- **1.12** Используя алгоритм Метрополиса-Хастингса сгенерите выборку для биномиального распределения Bin(n,p) из симметричного случайного блуждания на \mathbb{Z} .
 - 1. Подробно опишите алгоритм.
 - 2. Реализуйте алгоритм на каком-нибудь языке программирования.
- **1.13** Используя алгоритм Метрополиса-Хастингса сгенерите выборку для геометрического распределения Geom(p) из симметричного случайного блуждания на \mathbb{Z} .
 - 1. Подробно опишите алгоритм.
 - 2. Реализуйте алгоритм на каком-нибудь языке программирования.
- **1.14** Используя алгоритм Метрополиса-Хастингса сгенерите выборку для пуассоновского распределения $Pois(\lambda)$ из симметричного случайного блуждания на \mathbb{Z} .
 - 1. Подробно опишите алгоритм.
 - 2. Реализуйте алгоритм на каком-нибудь языке программирования.
- **1.15** Используя алгоритм Метрополиса-Хастингса сгенерите выборку для функции плотности $\pi(x) \sim \exp(-x^2)(3+x^2+\cos x)$ из нормального N(0,1). Из нормального $N(0,\sigma^2)$.

- 1. Подробно опишите алгоритм.
- 2. Реализуйте алгоритм на каком-нибудь языке программирования.
- 1.16 Используя алгоритм Метрополиса-Хастингса сгенерите выборку для функции плотности $\pi(x) \sim \exp(-x^2)(3+x^2+\cos x)$ из случайного блуждания $X_{t+1} = X_t + \varepsilon_t$, где $\varepsilon_t \sim N(0,1)$. Вариант с $N(0,\sigma^2)$.
 - 1. Подробно опишите алгоритм.
 - 2. Реализуйте алгоритм на каком-нибудь языке программирования.
- 1.17 Используя алгоритм Метрополиса-Хастингса сгенерите выборку для стандартного нормального распределения N(0,1) из случайного блуждания $X_{t+1} = X_t + \varepsilon_t$, где $\varepsilon_t \sim U[-1,1]$.
 - 1. Подробно опишите алгоритм.
 - 2. Реализуйте алгоритм на каком-нибудь языке программирования.
- 1.18 Используя алгоритм Метрополиса-Хастингса сгенерите выборку для двумерного нормального распределения $N(0,A),\,A=\left(egin{array}{cc} 4 & -1 \\ -1 & 2 \end{array}
 ight)$ из случайного блуждания $X_{t+1,i}=X_{t,i}+arepsilon_{t,i}$, где $arepsilon_{t,i}\sim U[-1,1].$
 - 1. Подробно опишите алгоритм.
 - 2. Реализуйте алгоритм на каком-нибудь языке программирования.
- 1.19 Используя алгоритм Метрополиса-Хастингса сгенерите выборку для двумерного распределения с функцией плотности $p(x,y) = \exp(-4x^2 6y^2 + 2x y + xy), x > 0, y > 0$ из случайного блуждания $X_{t+1,i} = X_{t,i} + \varepsilon_{t,i}$, где $\varepsilon_{t,i} \sim U[-1,1]$.
 - 1. Подробно опишите алгоритм.
 - 2. Реализуйте алгоритм на каком-нибудь языке программирования.

1.7. Регуляризация

1.20 Рассмотрим модель

$$y = X\beta + u$$

где u_i независимы и $\mathcal{N}(0; \sigma^2)$.

Метод гребневой регрессии предполагает минимизацию функции

$$Q(\beta) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{k} \beta_j^2.$$

Рассмотрим байесовский подход к регрессии. Предположим, что априорное распределение имеет вид $\sigma^2 \sim InvGamma(a,b)$, $\beta_i|\sigma^2 \sim \mathcal{N}(0;c)$.

При каких a,b и c апостериорная мода $\hat{\beta}_{MAP}$ совпадёт с $\hat{\beta}_{Ridge}$?

1.21 Рассмотрим модель

$$y = X\beta + u$$
,

где u_i независимы и $\mathcal{N}(0; \sigma^2)$.

1.7. Регуляризация

Метод LASSO предполагает минимизацию функции

$$Q(\beta) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{k} |\beta_j|.$$

Рассмотрим байесовский подход к регрессии. Предположим, что априорное распределение имеет вид $\sigma^2 \sim InvGamma(a,b), \beta_j | \sigma^2 \sim DoubleExp(c).$

При каких a,b и c апостериорная мода $\hat{\beta}_{MAP}$ совпадёт с $\hat{\beta}_{LASSO}$?

1.22 Храбрый Охотник ловит Покемонов в случайном порядке. Вес i-го пойманного Покемона, y_i , имеет нормальное распределение $\mathcal{N}(\mu; \sigma^2)$. Параметры μ и σ неизвестны.

Храбрый охотник хочет оценить μ по формуле $\hat{\mu} = c \sum_{i=1}^n y_i$.

- 1. При каком c величина $\mathbb{E}((\hat{\mu}-\mu)^2)$ будет минимальна?
- 2. Возможно ли использовать на практике данное c?

Глава 2

Решения и ответы к избранным задачам

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.

1.16.

1.17.

1.18.

- 1.19.
- 1.20.
- 1.21.
- **1.22.** $c=\frac{1}{n+\mu^2/\sigma^2}$, нет, так как μ и σ^2 неизвестны.

Список обозначений

Оглавление

	Неразобранные :)			
	1.1	Марковские цепи	5	
	1.2	Ручные задачи	5	
	1.3	toy stan	6	
	1.4	stan - integrate out	7	
	1.5	Гиббс	7	
	1.6	Метрополис-Гастингс	7	
	1.7	Регуляризация	8	
2	Реш	гения и ответы к избранным задачам	11	