Demostra la validesa/invalidesa del següent raonament. Analitza la possible consistència/inconsistència de les premisses

Raonament

1	T→Q	Premissa
2	$\neg R \rightarrow T$	Premissa
3	QVP	Premissa
4	$\neg Q \rightarrow P \land R$	Conclusió

Declaracions

• Àtoms: P, Q, R, T

FNC

Premissa 1: $T \rightarrow Q$

1.	T→Q		
2.	¬T∨Q	Elimina implicació: A → B = ¬A ∨ B	Correcte
3.		FNC	Correcte

Correcte

Premissa 2: ¬R→T

1.	$\neg R \rightarrow T$		
2.	¬¬R∨T	Elimina implicació: A → B = ¬A ∨ B	Correcte
3.	R∨T	Simplifica la doble negació: ¬¬A = A	Correcte
4.		FNC	Correcte

Correcte

Premissa 3: Q ∨ P

1.	QVP		
2.		FNC	Correcte

Correcte

Negació de la conclusió: \neg (\neg Q \rightarrow P \land R)

1.	$\neg (\neg Q \rightarrow P \land R)$		
2.	¬ (¬¬Q∨(P∧R))	Elimina implicació: A → B = ¬A ∨ B	Correcte
3.	¬ (Q∨(P∧R))	Simplifica la doble negació: ¬¬A = A	Correcte
4.	¬Q ∧ ¬ (P ∧R)	Llei de Morgan: ¬(A ∨ B) = ¬A ∧ ¬B	Correcte
5.	¬Q∧(¬P∨¬R)	Llei de Morgan: ¬(A ∧ B) = ¬A ∨ ¬B	Correcte
6.		FNC	Correcte

Correcte

Resolució

Simplificar clàusules

Conjunt de clàusules	Acció	
Conjunt de clàusules de les premisses: { ¬T ∨Q, R ∨T, Q ∨P } Conjunt de suport:		
{ ¬Q, ¬P∨¬R}		

Correcte

Arbre de resolució

Conjunt de clàusules de les premisses: { $\neg T \lor Q$, $R \lor T$, $Q \lor P$ } Conjunt de suport: { $\neg Q$, $\neg P \lor \neg R$ }

Es pot crear un arbre de resolució amb les clàusules obtingudes? Si

	Clàusules troncals	Clàusules laterals	
1.	¬Q	¬T∨Q	
2.	¬T	R∨T	Correcte
3.	R	¬P∨¬R	Correcte
4.	¬P	QVP	Correcte
5.	Q	¬Q	Correcte
6.			Correcte

Correcte

Consistència de les premisses

Simplificar clàusules

Conjunt de clàusules	Acció	
Conjunt de clàusules de les premisses: { ¬T∨Q, R∨T, Q∨P}		
Conjunt de clàusules de les premisses: { R VT }	Literal pur: Q	Correcte
Conjunt de clàusules de les premisses: {}	Literal pur: R	Correcte

Correcte

Arbre de resolució

Conjunt de clàusules de les premisses: {}

Es pot crear un arbre de resolució amb les clàusules obtingudes? No

Correcte

Conclusió

Podem concloure que el raonament és: Vàlid, premisses consistents

Demostra la validesa/invalidesa del següent raonament. Analitza la possible consistència/inconsistència de les premisses

Raonament

1 (P → Q) → S Premissa

2	$\neg T \rightarrow Q$	Premissa
3	$\neg S \rightarrow T \land P$	Conclusió

Declaracions

• Àtoms: P, Q, S, T

FNC

Premissa 1: $(P \rightarrow Q) \rightarrow S$

1.	$(P \rightarrow Q) \rightarrow S$		
2.	(¬P∨Q) →S	Elimina implicació: A → B = ¬A ∨ B	Correcte
3.	¬ (¬P VQ) VS	Elimina implicació: A → B = ¬ A ∨ B	Correcte
4.	(¬¬P∧¬Q) VS	Llei de Morgan: ¬ (A ∨ B) = ¬A ∧ ¬B	Correcte
5.	(P ∧ ¬Q) ∨S	Simplifica la doble negació: ¬¬A = A	Correcte
6.	(P∨S) ∧ (¬Q∨S)	Distributiva: A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)	Correcte
7.		FNC	Correcte

Correcte

Premissa 2: $\neg \top \rightarrow Q$

1.	¬T→Q		
2.	¬¬T∨Q	Elimina implicació: A → B = ¬A ∨ B	Correcte
3.	T∨Q	Simplifica la doble negació: ¬¬A = A	Correcte
4.		FNC	Correcte

Correcte

Negació de la conclusió: $\neg (\neg S \rightarrow T \land P)$

1.	$\neg (\neg S \rightarrow T \land P)$		
2.	¬(¬¬S∨(T∧P))	Elimina implicació: A → B = ¬A ∨ B	Correcte
3.	¬ (S∨(T∧P))	Simplifica la doble negació: ¬¬A = A	Correcte
4.	¬S ^ ¬ (T ^P)	Llei de Morgan: ¬(A ∨ B) = ¬A ∧ ¬B	Correcte
5.	¬S ∧ (¬T ∨ ¬P)	Llei de Morgan: ¬(A ∧ B) = ¬A ∨ ¬B	Correcte
6.		FNC	Correcte

Correcte

Resolució

Simplificar clàusules

Conjunt de clàusules	Acció	
Conjunt de clàusules de les premisses: {P∨S, ¬Q∨S,T∨Q}		
Conjunt de suport:		
{ ¬S, ¬T∨¬P}		

Arbre de resolució

Conjunt de clàusules de les premisses: { P \lor S , \neg Q \lor S , T \lor Q }

Conjunt de suport: $\{ \neg S, \neg T \lor \neg P \}$

Es pot crear un arbre de resolució amb les clàusules obtingudes? Si

	Clàusules troncals	Clàusules laterals	
1.	¬S	P∨S	
2.	Р	¬T∨¬P	Correcte
3.	¬T	T∨Q	Correcte
4.	Q	¬Q∨S	Correcte
5.	S	¬S	Correcte
6.			Correcte

Correcte

Consistència de les premisses

Simplificar clàusules

Conjunt de clàusules	Acció	
Conjunt de clàusules de les premisses: $\{P \lor S, \neg Q \lor S, T \lor Q\}$		
Conjunt de clàusules de les premisses: { ¬Q ∨S, T ∨Q }	Literal pur: P	Correcte
Conjunt de clàusules de les premisses: $\{ T \lor Q \}$	Literal pur: S	Correcte
Conjunt de clàusules de les premisses: {}	Literal pur: T	Correcte

Correcte

Arbre de resolució

Conjunt de clàusules de les premisses: {}

Es pot crear un arbre de resolució amb les clàusules obtingudes? No

Correcte

Conclusió

Podem concloure que el raonament és: Vàlid, premisses consistents

Analitzeu la validesa o la invalidesa del següent raonament utilitzant el mètode de resolució. Simplifiqueu, si es pot, el conjunt de clàusules resultant. Són consistents les premisses?

Raonament

1 ¬AV¬D Premissa

2	$\neg A \rightarrow B \lor C$	Premissa
3	$C \rightarrow A$	Premissa
4	$A \lor C \rightarrow D$	Premissa
5	A ∨ (B ∧ C)	Premissa
6	¬C∧ (B∨¬D)	Conclusió

Declaracions

• Àtoms: A, B, C, D

FNC

Premissa 1: ¬A∨¬D

1.	$\neg A \lor \neg D$		
2.		FNC	Correcte

Correcte

Premissa 2: ¬A→B∨C

1.	$\neg A \rightarrow B \lor C$		
2.	¬¬A∨B∨C	Elimina implicació: A → B = ¬A ∨ B	Correcte
3.	A∨B∨C	Simplifica la doble negació: ¬¬A = A	Correcte
4.		FNC	Correcte

Correcte

Premissa 3: C → A

1.	$C \rightarrow A$		
2.	¬C∨A	Elimina implicació: A → B = ¬A ∨ B	Correcte
3.		FNC	Correcte

Correcte

Premissa 4: A ∨C → D

1.	$A \lor C \rightarrow D$		
2.	¬ (A ∨C) ∨D	Elimina implicació: A → B = ¬A ∨ B	Correcte
3.	(¬A∧¬C)∨D	Llei de Morgan: ¬ (A ∨ B) = ¬ A ∧ ¬ B	Correcte
4.	(¬A∨D) ∧ (¬C∨D)	Distributiva: A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)	Correcte
5.		FNC	Correcte

Correcte

Premissa 5: A ∨ (B ∧ C)

1	A ∨ (B ∧ C)		
2	(A VB) ^ (A VC)	Distributiva: A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)	Correcte

3	FNC	Correcte

Negació de la conclusió: \neg (\neg C \land (B \lor \neg D))

1.	¬ (¬C∧(B∨¬D))		
2.	¬ ¬C ∨ ¬ (B ∨ ¬D)	Llei de Morgan: ¬(A ∧ B) = ¬A ∨ ¬B	Correcte
3.	C ∨ ¬ (B ∨ ¬D)	Simplifica la doble negació: ¬¬A = A	Correcte
4.	C ∨ (¬B∧¬¬D)	Llei de Morgan: ¬ (A ∨ B) = ¬A ∧ ¬B	Correcte
5.	C∨(¬B∧D)	Simplifica la doble negació: ¬¬A = A	Correcte
6.	(C ∨ ¬B) ∧ (C ∨D)	Distributiva: A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)	Correcte
7.		FNC	Correcte

Correcte

Resolució

Simplificar clàusules

Conjunt de clàusules	Acció	
Conjunt de clàusules de les premisses: $\{ \neg A \lor \neg D, A \lor B \lor C, \neg C \lor A, \neg A \lor D, \neg C \lor D, A \lor B, A \lor C \}$ Conjunt de suport: $\{ C \lor \neg B, C \lor D \}$		
Conjunt de clàusules de les premisses: $\{ \neg A \lor \neg D, \neg C \lor A, \neg A \lor D, \neg C \lor D, A \lor B, A \lor C \}$ Conjunt de suport: $\{ C \lor \neg B, C \lor D \}$	Subsumpció: A VC subsumeix A VB VC	Correcte

Correcte

Arbre de resolució

Conjunt de clàusules de les premisses: { $\neg A \lor \neg D$, $\neg C \lor A$, $\neg A \lor D$, $\neg C \lor D$, $A \lor B$, $A \lor C$ } Conjunt de suport: { $C \lor \neg B$, $C \lor D$ }

Es pot crear un arbre de resolució amb les clàusules obtingudes? Si

	Clàusules troncals	Clàusules laterals	
1.	C∨¬B	A∨B	
2.	CVA	¬A∨¬D	Correcte
3.	C∨¬D	C∨D	Correcte
4.	С	¬C ∨A	Correcte
5.	А	¬A∨¬D	Correcte
6.	¬D	¬A∨D	Correcte
7.	¬A	А	Correcte
8.			Correcte

Correcte

Consistència de les premisses

Simplificar clàusules

Conjunt de clàusules	Acció	
Conjunt de clàusules de les premisses: $\{ \neg A \lor \neg D, A \lor B \lor C, \neg C \lor A, \neg A \lor D, \neg C \lor D, A \lor B, A \lor C \}$		
Conjunt de clàusules de les premisses: { ¬A ∨ ¬D, ¬C ∨A, ¬A ∨D, ¬C ∨D, A ∨C }	Literal pur: B	Correcte

Correcte

Arbre de resolució

Conjunt de clàusules de les premisses: { \neg A \lor \neg D , \neg C \lor A , \neg A \lor D , \neg C \lor D , A \lor C }

Es pot crear un arbre de resolució amb les clàusules obtingudes? Si

	Clàusules troncals	Clàusules laterals	
1.	$\neg A \lor \neg D$	¬A∨D	
2.	¬А	A∨C	Correcte
3.	С	¬C ∨A	Correcte
4.	А	¬A	Correcte
5.			Correcte

Correcte

Conclusió

Podem concloure que el raonament és: Vàlid, premisses inconsistents

És vàlid el raonament següent? Esbrina-ho utilitzant taules de veritat. Si descobreixes que el raonament és vàlid digues si és degut a la inconsistència de les premisses. I si descobreixes que no ho és, indica clarament quins són els contraexemples que has trobat.

Raonament

1	$A \rightarrow B$	Premissa
2	$B \rightarrow C$	Premissa
3	$A \rightarrow (B \rightarrow C)$	Conclusió

Taula de veritat

	Α	В	С	$A \rightarrow B$	$B \rightarrow C$	$A \rightarrow (B \rightarrow C)$	Contraexemple?
1.	٧	٧	٧	٧	٧	V	No
2.	٧	٧	F	٧	F	F	No
3.	٧	F	٧	F	٧	V	No
4.	٧	F	F	F	V	V	No
5.	F	٧	٧	٧	٧	V	No
6.	F	٧	F	٧	F	V	No
7.	F	F	٧	٧	٧	V	No
8.	F	F	F	V	٧	V	No

Conclusió

Podem concloure que el raonament és: Vàlid, premisses consistents

És vàlid el raonament següent? Esbrina-ho utilitzant taules de veritat. Si descobreixes que el raonament és vàlid digues si és degut a la inconsistència de les premisses. I si descobreixes que no ho és, indica clarament quins són els contraexemples que has trobat.

Raonament

1	$\neg A \lor \neg D$	Premissa
2	$C \rightarrow A$	Premissa
3	$A \lor C \rightarrow D$	Premissa
4	A V (B A C)	Premissa
5	В	Conclusió

Taula de veritat

	Α	В	С	D	_D	Ā	A V C	B ∧ C	¬AV¬	$C \rightarrow A$	A ∨C →	A V (B A C)	В	Contraexempl e?
1.	٧	٧	٧	٧	F	F	V	V	F	V	V	V	٧	No
2.	٧	٧	٧	F	V	F	V	V	V	V	F	V	٧	No
3.	٧	٧	F	٧	F	F	V	F	F	V	V	V	٧	No
4.	٧	٧	F	F	V	F	V	F	V	V	F	V	٧	No
5.	٧	F	٧	٧	F	F	V	F	F	V	V	V	F	No
6.	٧	F	٧	F	V	F	V	F	V	V	F	V	F	No
7.	٧	F	F	٧	F	F	V	F	F	V	V	V	F	No
8.	٧	F	F	F	V	F	V	F	V	V	F	V	F	No
9.	F	٧	٧	٧	F	V	V	V	V	F	V	V	٧	No
10	F	٧	٧	F	V	V	V	V	V	F	F	V	٧	No
11	F	٧	F	٧	F	V	F	F	V	V	V	F	٧	No
12	F	٧	F	F	V	V	F	F	V	V	V	F	٧	No
13	F	F	٧	٧	F	V	V	F	V	F	V	F	F	No
14	F	F	٧	F	V	V	V	F	V	F	F	F	F	No
15	F	F	F	V	F	V	F	F	V	V	V	F	F	No
16	F	F	F	F	V	V	F	F	V	V	V	F	F	No

Conclusió

Podem concloure que el raonament és: Vàlid, premisses inconsistents

Valideu utilitzant el mètode de resolució

Raonament

1	$\exists x P(x) \longrightarrow \forall y \ \forall z \ (Q(y) \land R(z) \longrightarrow S(y, z))$	Premissa
2	Q(a) ∧ ∃u (R(u) ∧ ¬S(a, u))	Premissa
3	$\forall t \neg P(t)$	Conclusió

Declaracions

Predicats: P, Q, R, S
Variables: x, y, z, t, u
Constants: a, b, c
Funcions: -

FNC

Premissa 1: $\exists x P(x) \rightarrow \forall y \forall z (Q(y) \land R(z) \rightarrow S(y, z))$

1.	$\exists x P(x) \longrightarrow \forall y \ \forall z \ (Q(y) \land R(z) \longrightarrow S(y,z))$		
2.	$\neg \exists x P(x) \lor \forall y \forall z (Q(y) \land R(z) \rightarrow S(y, z))$	Elimina implicació: A → B = ¬A ∨ B	Correcte Variables: x, y, z
3.	$\neg \exists x P(x) \lor \forall y \forall z (\neg (Q(y) \land R(z)) \lor S(y, z))$	Elimina implicació: A → B = ¬A ∨ B	Correcte Variables: x, y, z
4.	$\neg \exists x P(x) \lor \forall y \forall z (\neg Q(y) \lor \neg R(z) \lor S(y, z))$	Llei de Morgan: ¬(A ∧ B) = ¬A ∨ ¬B	Correcte Variables: x, y, z
5.	$\forall x \neg P(x) \lor \forall y \forall z (\neg Q(y) \lor \neg R(z) \lor S(y, z))$	Llei de Morgan: $\neg \exists x \ A(x) = \forall x \neg A(x)$	Correcte Variables: x, y, z
6.	$\forall x \forall y \forall z (\neg P(x) \lor \neg Q(y) \lor \neg R(z) \lor S(y, z))$	Moure quantificadors universals a l'esquerra	Correcte Variables: x, y, z
7.		FNC	Correcte

Correcte

Premissa 2: $Q(a) \land \exists u (R(u) \land \neg S(a, u))$

1.	Q(a) ∧ ∃u (R(u) ∧ ¬S(a, u))		
2.	$Q(a) \wedge (R(b) \wedge \neg S(a, b))$	Eskolemització	Correcte Constants: a, b
3.		FNC	Correcte

Correcte

Negació de la conclusió: ¬ ∀t ¬P(t)

1.	¬ ∀t ¬P(t)		
2.	∃t ¬ ¬P(t)	Llei de Morgan: $\neg \forall x A(x) = \exists x \neg A(x)$	Correcte Variables: t
3.	∃tP(t)	Simplifica la doble negació: ¬¬A = A	Correcte Variables: t
4.	P(c)	Eskolemització	Correcte Constants: c
5.		FNC	Correcte

Resolució

Arbre de resolució

 $\textbf{Conjunt de clàusules de les premisses:} \left\{ \begin{array}{c} \blacksquare P(x) \ \textbf{V} \end{array} \blacksquare Q(y) \ \textbf{V} \end{array} \blacksquare R(z) \ \textbf{V} S(y,z) \ , \ Q(a) \ , \ R(b) \ , \ \ \blacksquare S(a,b) \ \}$ $\textbf{Conjunt de suport:} \left\{ P(c) \ \right\}$

	Clàusules troncals	Clàusules laterals	
1.	P(c)	$\neg P(x) \lor \neg Q(y) \lor \neg R(z) \lor S(y, z)$	
		<i>Llista de substitucions:</i> x substituït per c	
2.	$\neg Q(y) \lor \neg R(z) \lor S(y, z)$	Q(a)	Correcte
	<i>Llista de substitucions:</i> y substituït per a		
3.	¬ R(z) ∨ S(a, z)	¬ S(a, b)	Correcte
	Llista de substitucions: z substituït per b		
4.	¬ R(b)	R(b)	Correcte
5.			Correcte

Correcte

Valideu mitjançant resolució

Raonament

1	$\exists x (Q(x) \land R(x) \longrightarrow \forall y T(x,y))$	Premissa
2	$\forall x\exists y(T(x,y)\vee\neg Q(x)\to\neg R(x))$	Premissa
3	$\forall x (\forall y T(y, x) \land Q(x))$	Premissa
4	$\exists x \neg R(x)$	Conclusió

Declaracions

• Predicats: Q, R, T

• Variables: x, y

• Constants: a, b

Funcions: f

FNC

Premissa 1: $\exists x (Q(x) \land R(x) \rightarrow \forall yT(x, y))$

1.	$\exists x (Q(x) \land R(x) \rightarrow \forall yT(x, y))$		
2.	$\exists x (\neg (Q(x) \land R(x)) \lor \forall yT(x, y))$	Elimina implicació: A → B = ¬A ∨ B	Correcte Variables: x, y
3.	$\exists x (\neg Q(x) \lor \neg R(x) \lor \forall yT(x, y))$	Llei de Morgan: ¬(A ∧ B) = ¬A ∨ ¬B	Correcte Variables: x, y
4.	¬Q(a) ∨ ¬R(a) ∨ ∀yT(a, y)	Eskolemització	Correcte Variables: y Constants: a
5.	\forall y (\neg Q(a) \lor \neg R(a) \lor T(a, y))	Moure quantificadors universals a l'esquerra	Correcte Variables: y Constants: a
6.		FNC	Correcte

Correcte

Premissa 2: $\forall x \exists y (T(x, y) \lor \neg Q(x) \rightarrow \neg R(x))$

1.	$\forall x \exists y (T(x, y) \lor \neg Q(x) \rightarrow \neg R(x))$		
2.	$\forall x \exists y (\neg (T(x, y) \lor \neg Q(x)) \lor \neg R(x))$	Elimina implicació: A → B = ¬A ∨ B	Correcte Variables: x, y
3.	$\forall x \exists y ((\neg T(x, y) \land \neg \neg Q(x)) \lor \neg R(x))$	Llei de Morgan: ¬ (A ∨ B) = ¬ A ∧ ¬ B	Correcte Variables: x, y
4.	$\forall x \exists y ((\neg T(x, y) \land Q(x)) \lor \neg R(x))$	Simplifica la doble negació: ¬¬A = A	Correcte Variables: x, y
5.	$\forall x \exists y ((\neg T(x, y) \lor \neg R(x)) \land (Q(x) \lor \neg R(x)))$	Distributiva: A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)	Correcte Variables: x, y
6.	$\forall x ((\neg T(x, f(x)) \lor \neg R(x)) \land (Q(x) \lor \neg R(x)))$	Eskolemització	Correcte Variables: x Funcions: f
7.		FNC	Correcte

Correcte

Premissa 3: $\forall x (\forall y T(y, x) \land Q(x))$

1.	$\forall x (\forall y T(y, x) \land Q(x))$		
2.	$\forall x \forall y (T(y, x) \land Q(x))$	Moure quantificadors universals a l'esquerra	Correcte Variables: y, x
3.		FNC	Correcte

Correcte

Negació de la conclusió: $\neg \exists x \neg R(x)$

1.	¬∃x ¬R(x)		
2.	∀x ¬ ¬R(x)	Llei de Morgan: $\neg \exists x A(x) = \forall x \neg A(x)$	Correcte Variables: x
3.	∀xR(x)	Simplifica la doble negació: ¬¬A = A	Correcte Variables: x
4.		FNC	Correcte

Correcte

Resolució

Arbre de resolució

Conjunt de clàusules de les premisses: { \neg Q(a) \lor \neg R(a) \lor T(a, y), \neg T(x, f(x)) \lor \neg R(x), Q(x) \lor \neg R(x), T(y, x), Q(x) } Conjunt de suport: { R(x) }

	Clàusules troncals	Clàusules laterals	
1.	R(x)	$\neg T(x, f(x)) \lor \neg R(x)$	
2.	¬T(x, f(x))	¬Q(a) ∨ ¬R(a) ∨T(a, y)	Correcte
	<i>Llista de substitucions:</i> x substituït per a	Llista de substitucions: y substituït per f(a)	
3.	¬Q(a) ∨ ¬R(a)	R(x)	Correcte
		Llista de substitucions: x substituït per a	
4.	¬Q(a)	Q(x)	Correcte
		Llista de substitucions: x substituït per a	
5.			Correcte

Correcte

Valideu utilitzant el mètode de resolució

Raonament

l	1	$\forall x (P(x) \rightarrow \forall y (S(y) \rightarrow \neg R(x, y)))$	Premissa
I	2	$\exists x \forall y (P(x) \land (Q(y) {\longrightarrow} R(x, y)))$	Premissa
I	3	¬∃x (Q(x) ∧ S(x))	Conclusió

Declaracions

• Predicats: P, Q, R, S

• Variables: x, y

Constants: a, b

• Funcions: f

FNC

Premissa 1: $\forall x (P(x) \rightarrow \forall y (S(y) \rightarrow \neg R(x, y)))$

1.	$\forall x (P(x) \rightarrow \forall y (S(y) \rightarrow \neg R(x, y)))$		
2.	$\forall x (\neg P(x) \lor \forall y (S(y) \rightarrow \neg R(x, y)))$	Elimina implicació: A → B = ¬A ∨ B	Correcte Variables: x, y
3.	$\forall x (\neg P(x) \lor \forall y (\neg S(y) \lor \neg R(x, y))$	Elimina implicació: A → B = ¬A ∨ B	Correcte Variables: x, y
4.	$\forall x \forall y (\neg P(x) \lor \neg S(y) \lor \neg R(x, y))$	Moure quantificadors universals a l'esquerra	Correcte Variables: x, y
5.		FNC	Correcte

Correcte

Premissa 2: $\exists x \forall y (P(x) \land (Q(y) \rightarrow R(x, y)))$

1.	$\exists x \forall y (P(x) \land (Q(y) \rightarrow R(x, y)))$		
2.	$\exists x \forall y (P(x) \land (\neg Q(y) \lor R(x, y)))$	Elimina implicació: A → B = ¬A ∨ B	Correcte Variables: x, y
3.	∀y (P(a) ∧ (¬Q(y) ∨R(a, y)))	Eskolemització	Correcte Variables: y Constants: a
4.		FNC	Correcte

Correcte

Negació de la conclusió: $\neg \neg \exists x (Q(x) \land S(x))$

1.	¬ ¬ ∃x (Q(x) ∧S(x))		
2.	$\exists x (Q(x) \land S(x))$	Simplifica la doble negació: ¬¬A = A	Correcte Variables: x
3.	(Q(b) ^S(b))	Eskolemització	Correcte Constants: b
4.		FNC	Correcte

Correcte

Resolució

Arbre de resolució

 $\textbf{Conjunt de clàusules de les premisses:} \{ \ \ \, \blacksquare P(x) \ \ \, \lor \ \ \, \blacksquare S(y) \ \ \, \lor \ \ \, \blacksquare R(x,\,y) \ , \ P(a) \ , \ \ \, \blacksquare Q(y) \ \ \, \lor R(a,\,y) \ \}$ $\textbf{Conjunt de suport:} \ \{ \ \, Q(b) \ , \ \, S(b) \ \}$

	Clàusules troncals	Clàusules laterals	
1.	Q(b)	¬Q(y) ∨R(a, y)	
		<i>Llista de substitucions:</i> y substituït per b	
2.	R(a, b)	$\neg P(x) \lor \neg S(y) \lor \neg R(x, y)$	Correcte

		Llista de substitucions: x substituït per a y substituït per b	
3.	¬P(a) ∨ ¬S(b)	S(b)	Correcte
4.	¬P(a)	P(a)	Correcte
5.			Correcte

Siguin P i Q dos subconjunts del conjunt domini U (P \subseteq U i Q \subseteq U) tals que P \subseteq Q.

Considerem les afirmacions

A1: P U Q = U A2: P U Q = U

A1 és sempre certa però A2 no ho és

Sigui R = { (1,2), (1,3), (2,3), (2,4), (3,4), (4,1) } una relació definida sobre el conjunt {1,2,3,4}

Aquesta relació és connectada i irreflexiva

La relació $R = \{ (1,1) \}$ sobre el conjunt $\{1, 2, 3\}$

(Pista: recordeu que simetria i antisimetría es defineixen en termes d'implicacions (sí ...). Penseu en la taula de veritat de la implicació)

És simètrica i antisimètrica al mateix temps

Passar a enunciat

Raonament

1	$\exists x (P(x) \land \forall y (Q(y) \rightarrow R(y, x)))$	Premissa
2	¬ ∃xQ(x)	Premissa
3	∃x ¬ P(x)	Conclusió

Domini

D = { 1, 2 }

Pas de fórmules a enunciats

Premissa 1: $\exists x (P(x) \land \forall y (Q(y) \rightarrow R(y, x)))$

1.	$\exists x (P(x) \land \forall y (Q(y) \rightarrow R(y, x)))$		
2.	$\exists x (P(x) \land (Q(1) \rightarrow R(1, x)) \land (Q(2) \rightarrow R(2, x)))$	Eliminar quantificador universal	Correcte
3.	$(P(1) \land ((Q(1) \rightarrow R(1, 1)) \land (Q(2) \rightarrow R(2, 1)))) \lor (P(2) \land ((Q(1) \rightarrow R(1, 2)) \land (Q(2) \rightarrow R(2, 2))))$	Eliminar quantificador existencial	Correcte
4.		Enunciat	Correcte

Correcte

Premissa 2: $\neg \exists xQ(x)$

1.	¬ ∃xQ(x)		
2.	¬ (Q(1) ∨Q(2))	Eliminar quantificador existencial	Correcte
3.		Enunciat	Correcte

Conclusió: $\exists x \neg P(x)$

1.	∃x ¬P(x)		
2.	¬P(1) V ¬P(2)	Eliminar quantificador existencial	Correcte
3.		Enunciat	Correcte

Correcte

Pregunta

El raonament de l'exercici anterior no és vàlid. Demostreu-ho. [Cal haver resolt correctament l'exercici anterior per a puntuar en aquest]

Resposta

Per demostrar que el raonament no és correcte n'hi ha prou amb trobar un contraexemple, això és una interpretació que faci certes les premisses però falsa la conclusió

Per a fer falsa la conclusió ¬ P(1) V ¬ P (2) cal que ambdós disjuntands siguin falsos. Això s'aconsegueix amb: P(1) = P(2) = V

Per a per a fer certa la segona premissa \neg (Q(1) \lor Q(2)) és necessari que ambdós disjuntands siguin falsos: Q(1)=Q(2)=F Pel que fa a la primera premissa (P(1) \land ((Q(1) \rightarrow R(1, 1)) \land (Q(2) \rightarrow R(2, 1)))) \lor (P(2) \land ((Q(1) \rightarrow R(1, 2)) \land (Q(2) \rightarrow R(2, 2)))) veiem que totes les parts de la

forma Q(_) → ... són certes atès que tots els antecedents són falsos. Això redueix l'enunciat a P(1) V P(2) i aquest enunciat ja és cert amb els valors de P(_) donats abans.

Pel que fa als valors de R(_,_) aquests poden ser qualssevol.

Així, una interpretació que és un contraexemple del raonament (i per tant una demostració de la seva incorrectesa) és:

 $\{1,2\}$, $\{P(1)=P(2)=V$, Q(1)=Q(2)=F, R(1,1)=V, R(2,1)=V, R(1,2)=V, $R(2,2)=V\}$, \emptyset