(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-8104 (P2001-8104A)

(43)公開日 平成13年1月12日(2001.1.12)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H 0 4 N 5/335

H 0 4 N 5/335

P 5C024

審査請求 未請求 請求項の数14 OL (全 10 頁)

(21)出願番号

特願平11-176537

(22)出願日

平成11年6月23日(1999.6.23)

(71)出願人 000005201

富士写真フイルム株式会社 神奈川県南足柄市中沼210番地

(72)発明者 田丸 雅也

埼玉県朝霞市泉水三丁目11番46号 富士写

真フイルム株式会社内

(72)発明者 小田 和也

埼玉県朝霞市泉水三丁目11番46号 富士写

真フイルム株式会社内

(74)代理人 100079991

弁理士 香取 孝雄

Fターム(参考) 50024 AA01 CA15 EA04 EA08 FA01

FA11 FA12 GA11 HA14 HA17

HA21 HA24 JA09 JA21

(54) 【発明の名称】 広ダイナミックレンジ撮像装置

(57)【要約】

【課題】 撮影後の後処理によってハイライト階調の良好な繋がりを実現でき、回路構成の無駄が最小化された 広ダイナミックレンジ撮像装置を提供。

【解決手段】 広ダイナミックレンジ撮像装置は、固体 撮像デバイス10で生成された1つの画像を表わす高感度 の映像信号12をアナログ・ディジタル変換回路16によっ て10ビットの分解能で量子化し、低感度の映像信号14を アナログ・ディジタル変換回路18によって8ビットの分 解能で量子化する。量子化された高感度の映像信号データ20は、低感度の映像信号データ22と対応づけられて記 録媒体26に記録される。合成回路52は、これらの高感度 の映像信号データ20および対応する低感度の映像信号デ ータ22を加算合成して、広いダイナミックレンジの映像 信号56を形成する。これにより、簡略な回路構成で、広 いダイナミックレンジの映像信号56が得られ、後処理で ながイナミックレンジの映像信号56が得られ、後処理で 露光補正や階調圧縮を行なうことによって、銀塩写真シ ステムに匹敵する完成度の高い完成画像が得られる。

1

【特許請求の範囲】

【請求項1】 被写界を撮像して該被写界を表わす高感 度の映像信号および低感度の映像信号を生成する撮像手 段と、

該高感度の映像信号を第1の量子化分解能で量子化して、対応する高感度の映像信号データを出力する第1の信号変換手段と、

前記低感度の映像信号を第1の量子化分解能より低い第2の量子化分解能で量子化して、対応する低感度の映像信号データを出力する第2の信号変換手段とを含むこと 10 を特徴とする広ダイナミックレンジ撮像装置。

【請求項2】 被写界を撮像して該被写界を表わす高感度の映像信号および低感度の映像信号を生成する撮像手段と

該高感度の映像信号を第1の量子化分解能で量子化して、対応する高感度の映像信号データを出力する第1の信号変換手段と、

前記低感度の映像信号を第1の量子化分解能より低い第2の量子化分解能で量子化して、対応する低感度の映像信号データを出力する第2の信号変換手段と、

該高感度の映像信号データおよび低感度の映像信号データを対応づけて出力する出力手段とを含むことを特徴とする広ダイナミックレンジ撮像装置。

【請求項3】 請求項2に記載の装置において、前記出力手段は、前記高感度の映像信号データおよび低感度の映像信号データを対応づけて記録媒体に記録する記録手段を含むことを特徴とする広ダイナミックレンジ撮像装置。

【請求項4】 請求項2に記載の装置において、該装置はさらに、前記出力手段から出力される前記高感度の映 30 像信号データおよび対応する低感度の映像信号データを加算合成して、広いダイナミックレンジの映像信号を形成する信号合成手段を含むことを特徴とする撮像装置。

【請求項5】 請求項4に記載の装置において、前記信号合成手段は、前記高感度の映像信号が実質的に飽和していると、前記低感度の映像信号に、第2の分解能に対する第1の分解能の比および前記低感度の映像信号に対する前記高感度の映像信号の感度の比を乗じて前記広いダイナミックレンジの映像信号とし、前記高感度の映像信号が実質的に飽和していないときは、前記高感度の映像像信号を前記広いダイナミックレンジの映像信号とすることを特徴とする撮像装置。

【請求項6】 請求項2に記載の装置において、前記撮像手段は、前記高感度の映像信号および低感度の映像信号をそれぞれ第1および第2の信号変換手段へ同時に出力する固体撮像デバイスを含むことを特徴とする撮像装置。

【請求項7】 請求項2に記載の装置において、前記撮像手段は、前記高感度の映像信号および低感度の映像信号を交互に出力する固体撮像デバイスを含み、

該装置はさらに、該交互に出力された高感度の映像信号 および低感度の映像信号を互いに分離して、それぞれ第 1および第2の信号変換手段へ供給する信号分離手段を 含むことを特徴とする撮像装置。

【請求項8】 被写界を撮像して該被写界を表わす高感度の映像信号および低感度の映像信号を交互に生成する 撮像手段と、

該生成された映像信号を量子化して、対応する映像信号 データを出力する信号変換手段と、

該映像信号データから高感度の映像信号データおよび低 感度の映像信号データを互いに分離する信号分離手段と を含み、

該信号分離手段は、前記分離された低感度の映像信号データを前記分離された高感度の映像信号データより低い 分解能で出力し、

該装置はさらに、前記高感度の映像信号データおよび低 感度の映像信号データを対応づけて出力する出力手段を 含むことを特徴とする広ダイナミックレンジ撮像装置。

【請求項9】 請求項8に記載の装置において、前記出力手段は、前記高感度の映像信号データおよび低感度の映像信号データを対応づけて記録媒体に記録する記録手段を含むことを特徴とする撮像装置。

20

【請求項10】 固体撮像デバイスで生成された1つの 画像を表わす高感度の映像信号および低感度の映像信号 が入力される入力手段と、

該高感度の映像信号を第1の量子化分解能で量子化して、対応する高感度の映像信号データを出力する第1の信号変換手段と、

前記低感度の映像信号を第1の量子化分解能より低い第2の量子化分解能で量子化して、対応する低感度の映像信号データを出力する第2の信号変換手段と、

該高感度の映像信号データおよび低感度の映像信号データを対応づけて出力する出力手段とを含むことを特徴とする信号変換装置。

【請求項11】 請求項10に記載の装置において、該装置はさらに、前記出力手段から出力される前記高感度の映像信号データおよび対応する低感度の映像信号データを加算合成して、広いダイナミックレンジの映像信号を形成する信号合成手段を含むことを特徴とする信号変換装置。

【請求項12】 請求項11に記載の装置において、前記信号合成手段は、前記高感度の映像信号が実質的に飽和していると、前記低感度の映像信号に、第2の分解能に対する第1の分解能の比および前記低感度の映像信号に対する前記高感度の映像信号の感度の比を乗じて前記広いダイナミックレンジの映像信号とし、前記高感度の映像信号を前記広いダイナミックレンジの映像信号とすることを特徴とする信号変換装置。

50 【請求項13】 固体撮像デバイスで生成された1つの

画像を表わす高感度の映像信号および低感度の映像信号 を用意する工程と、

該高感度の映像信号を第1の量子化分解能で量子化し て、対応する高感度の映像信号データに変換する工程

前記低感度の映像信号を第1の量子化分解能より低い第 2の量子化分解能で量子化して、対応する低感度の映像 信号データに変換する工程と、

該高感度の映像信号データおよび低感度の映像信号デー タを対応づける工程と、

前記高感度の映像信号データおよび対応する低感度の映 像信号データを加算合成して、広いダイナミックレンジ の映像信号を形成する工程とを含むことを特徴とする信 号変換方法。

【請求項14】 請求項13に記載の方法において、前記 広いダイナミックレンジの映像信号を形成する工程は、 前記高感度の映像信号が実質的に飽和していると、前記 低感度の映像信号に、第2の分解能に対する第1の分解 能の比および前記低感度の映像信号に対する前記高感度 の映像信号の感度の比を乗じて前記広いダイナミックレ 20 ンジの映像信号とし、前記高感度の映像信号が実質的に 飽和していないときは、前記高感度の映像信号を前記広 いダイナミックレンジの映像信号とすることを特徴とす る信号変換方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、固体撮像デバイス から出力される映像信号を広いダイナミックレンジで出 力する広ダイナミックレンジ撮像装置、とくに、電子カ メラ、ディジタルカメラ、ビデオカメラ、イメージスキ 30 ャナなどの撮像装置に関するものである。

[0002]

【従来の技術】銀塩写真ネガフィルムから写真プリント を得る撮影システムでは、銀塩ネガフィルムの有する広 いダイナミックレンジの特徴を生かして、図10に示すよ うに、そのような広い露光域の画像情報をネガフィルム に一旦、記録したうえで、後処理によってその記録露光 域のうちから適正なプリント再現域の画像情報を切り出 すことによって、適正な完成画像、すなわち微調整以 外、大きな露光修正を必要としない状態の画像を得るこ 40 とができる。この特徴は、たとえば、撮影の際、カメラ 側で露光を失敗しても、後処理での補正により適切なプ リントを得られる効果をもたらす。また、たとえば、主 階調の領域はそのままの階調を保ち、その両側の高輝度 域および低輝度域については階調圧縮を施して、全体を プリント再現域に納めることができる。そのため、たと えば人物の頬などの絵柄の部分で白飛びするような画像 の再現を回避することができる。

【0003】電子スチルカメラなど、固体撮像デバイス

クレンジが銀塩写真ネガフィルムに比べて狭い理由か ら、後処理で露光補正や階調圧縮などの修正処理が困難 であった。図11から分かるように、固体撮像デバイスで は、広範囲の被写体輝度のうちのごく一部が捕捉される にすぎない。これは、撮影の際の不適正な露出による失 敗を後処理で補正しにくく、ハイライト階調の繋がりが 悪いなどの欠点を生じている。

【0004】この欠点を回避するため、固体撮像デバイ スでも広いダイナミックレンジを有するものが提案され 10 ている。たとえば、特公平8-34558 号公報には、低感度 の受光セルと高感度の受光セルが交互に配置された電荷 結合デバイス(CCD) などの固体撮像デバイスが開示され ている。このような異なる感度の2種類の受光セルから 得られる映像信号は、互いに独立して撮像デバイスから 読み出され、後に合成されて、広いダイナミックレンジ の映像信号が形成される。別な公報、特開平9-181979号 公報および同9-191099号公報には、奇数番列のフォトセ ンサおよび偶数番列のフォトセンサの電荷蓄積時間を電 子シャッタによって電気的に互いに異ならせることによ って、見掛け上の感度の比を可変にした固体撮像デバイ スが開示され、このような感度の異なる映像信号を合成 して広いダイナミックレンジの映像信号が形成される。

[0005]

【発明が解決しようとする課題】上述の特開平9-181979 号公報では、撮像デバイスから出力される感度の異なる 2フィールドの映像信号がディジタル信号に変換され る。上述のように写真システムとして優れた再現特性を 有する銀塩写真システムでは、高輝度部分の画像情報を 階調圧縮するので、好ましい階調の画像が得られる。こ れはつまり、完成画像において、その階調圧縮される高 輝度部分に割り当てられる階調数が少ないことを意味し ている。したがって、ディジタル画像信号の場合、高輝 度領域で階調圧縮される信号のビット分解能は低くてよ い。しかし、上掲の従来技術ではいずれも、高輝度域お よび低輝度域についてこのようなビット分解能の差を考 慮に入れていない。したがって、撮像デバイスからの映 像信号をディジタル信号に変換する機能部分の回路構成 に無駄がある。

【0006】本発明はこのような従来技術の欠点を解消 し、撮影後の後処理によってハイライト階調の良好な繋 がりを実現でき、回路構成の無駄が最小化された広ダイ ナミックレンジ撮像装置を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明によれば、固体撮 像デバイスで生成された1つの画像を表わす高感度の映 像信号および低感度の映像信号が入力される入力手段 と、高感度の映像信号を第1の量子化分解能で量子化し て、対応する高感度の映像信号データを出力する第1の 信号変換手段と、低感度の映像信号を第1の量子化分解 を有する撮像装置では、固体撮像デバイスのダイナミッ 50 能より低い第2の量子化分解能で量子化して、対応する

低感度の映像信号データを出力する第2の信号変換手段 とを含む信号変換装置が提供される。

【0008】本発明によれば、このような信号変換装置 はさらに、高感度の映像信号データおよび低感度の映像 信号データを対応づけて出力する出力手段を含むように 構成してよい。

【0009】本発明による広ダイナミックレンジ撮像装 置は、被写界を撮像して被写界を表わす高感度の映像信 号および低感度の映像信号を生成する撮像手段と、高感 度の映像信号を第1の量子化分解能で量子化して、対応 10 する高感度の映像信号データを出力する第1の信号変換 手段と、低感度の映像信号を第1の量子化分解能より低 い第2の量子化分解能で量子化して、対応する低感度の 映像信号データを出力する第2の信号変換手段と、高感 度の映像信号データおよび低感度の映像信号データを対 応づけて出力する出力手段とを含む。

【0010】このような撮像装置はさらに、出力手段か ら出力される高感度の映像信号データおよび対応する低 感度の映像信号データを加算合成して、広いダイナミッ クレンジの映像信号を形成する信号合成手段を含むもの 20 でよい。

【0011】本発明による広ダイナミックレンジ撮像装 置はまた、被写界を撮像して被写界を表わす高感度の映 像信号および低感度の映像信号を交互に生成する撮像手 段と、この生成された映像信号を量子化して、対応する 映像信号データを出力する信号変換手段と、映像信号デ ータから高感度の映像信号データおよび低感度の映像信 号データを互いに分離する信号分離手段とを含み、信号 分離手段は、分離された低感度の映像信号データを前記 分離された高感度の映像信号データより低い分解能で出 30 力し、本撮像装置はさらに、高感度の映像信号データお よび低感度の映像信号データを対応づけて出力する出力 手段を含むように構成してもよい。

【0012】なお、本明細書において、高感度の撮像セ ルおよび低感度の撮像セルの両方を有する撮像デバイス を、便宜上、広ダイナミックレンジの撮像デバイスと称 している。

[0013]

【発明の実施の形態】次に添付図面を参照して本発明に よる広ダイナミックレンジ撮像装置の実施例を詳細に説 40 明する。図1を参照すると、本発明による広ダイナミッ クレンジ撮像装置の実施例は、広いダイナミックレンジ を有する電荷結合デバイス(CCD) などの固体撮像デバイ ス10を有し、これから出力される高感度映像信号12およ び低感度映像信号14を、それぞれアナログ・ディジタル (A/D) 変換回路16および18によってビット分解能の互い に異なる2つのディジタル映像信号20および22に変換 し、これらを記録回路24によって、たとえばメモリカー ドなどの映像信号記録媒体26に記録する、ディジタルス

ような特定の実施例のみに限定されず、たとえば電子カ メラ、ビデオカメラ、イメージスキャナなどの他の形態 にも効果的に適用される。

【0014】固体撮像デバイス10は、本実施例では、2 線読出しの単板式電荷結合デバイスである。より具体的 には、固体撮像デバイス10は、図2に例示するように、 それぞれ水平ラインを形成する高感度(H) の撮像セル30 H および低感度(L) の撮像セル30L が水平ラインごとに 交互に位置し、水平および垂直方向のセルピッチの1/2 に相当する長さだけ各セル30H および30L がずれて配列 された、いわゆるハニカム構造の撮像デバイスである。 図2では、図の複雑化を避けるため、ごく少数の撮像セ ルしか図示されていないが、実際には、撮像セルアレイ 32には多数の撮像セルが2次元に配設されていること は、言うまでもない。

【0015】高感度の撮像セル30H および低感度の撮像 セル30Lは、たとえば、その撮像セルアレイ32の表面に 形成されているオンチップ・マイクロレンズおよび(ま たは)オンチップフィルタ (いずれも図示せず)の光透 過率を、前者については高く、また後者については低く 設計したり、または光学開口を、前者については広く、 また後者については狭く設計したりすることによって、 形成することができる。または、高感度の撮像セル30H にはマイクロレンズを設けて集光し、低感度の撮像セル 30L にマイクロレンズを設けないように構成してもよ い。または、高感度の撮像セル30H については、それか らの電荷掃出し時間を短くとり、これに対して低感度の 撮像セル30Lは長くとるように構成してもよい。

【0016】実施例の電荷結合デバイス10は、2本の水 平転送路34L および34H を有し、これらは、撮像セルア レイ32における電荷の垂直転送方向における末端、すな わち図2では下端縁に水平方向に配設されている。ま た、高感度の撮像セル30H からの水平方向の電荷掃出し 側には、垂直方向に電荷を転送する垂直転送路36H が配 設され、また低感度の撮像セル30L からの水平方向の電 荷掃出し側には、やはり垂直方向に電荷を転送する垂直 転送路36L が配設されている。

【0017】被写界からの高感度の撮像セル30Hへの入 射光に応じてこれらのセル30H に蓄積された電荷は、後 述の制御線 126から供給される水平転送パルスに応動し て、矢印38H で示すようにその垂直転送路36H へ転送さ れる。また、同様にして低感度の撮像セル30L について は、入射光に応じて低感度の撮像セル30Lに蓄積された 電荷は、水平転送パルスに応動して、矢印38L で示すよ うにその垂直転送路36L へ転送される。これら2本の垂 直転送路36H および36L に転送された電荷は、水平方向 のラインについては一斉に、そして垂直方向については 順番に、同じく制御線 126から供給される垂直転送パル スに応動して、まず一方の水平転送路34L まで転送され チルカメラなどの画像撮影装置である。本発明は、この 50 る。より詳細には、高感度セル30H に対応する1ライン

の蓄積電荷が一方の水平転送路34L に到達した後、これ を他方の水平転送路34H に一斉に転送する。次に、これ に続く低感度セル30L に対応する1ラインの蓄積電荷を 一方の水平転送路34L に転送する。こうして、1対の水 平転送路34H および34L に時間的に位相がずれた状態で 到達した1対の水平ラインの電荷、すなわち高感度撮像 セル30H および低感度撮像セル30L にそれぞれ対応する 2ラインの蓄積電荷は、同時に、それぞれ水平転送路34 H および34L から1画素ずつ出力される。この映像信号 12および14の様子を図1では模式的に、それぞれ矩形で 10 囲った「H」および「L」で示す。このようにして、固 体撮像デバイス10の出力12および14からは同時に、それ ぞれ高い感度の映像信号および低い感度の映像信号が点 順次で出力される。

【0018】図1に戻って、固体撮像デバイス10の2本 の出力12および14は、2つのアナログ・ディジタル変換 回路16および18にそれぞれ接続されている。高感度映像 信号出力12に接続された一方のアナログ・ディジタル変 換回路16は、本実施例では10ビットの量子化分解能を有 し、入力12に到来する高感度映像信号をレベル 0~1023 のディジタル信号データに変換してその出力20から出力 する信号変換回路である。同様にして、低感度映像信号 出力14に接続された他方のアナログ・ディジタル変換回 路18は、本実施例では8ビットの量子化分解能を有し、 入力14の低感度映像信号をレベル 0~ 255のディジタル 信号データに変換してその出力22に出力する信号変換回 路である。これらの出力20および22は、記録回路24の入 力に接続されている。

【0019】記録回路24は、本実施例ではメモリカード などの映像信号記録媒体26に、1つの画像についての高 30 感度映像信号データ20および低感度映像信号データ22を 関連づけて記録するデータ記録装置である。好ましい実 施例では、1つの画像について、低感度映像信号データ 22は、高感度映像信号データ20の記録される記憶領域を 管理するヘッダ部分に記録される。本実施例では、低感 度映像信号データ22のビット分解能が高感度映像信号デ ータ20のそれより低いので、記録媒体26における所要記 億領域が少なくてよい長所がある。このような高感度映 像信号データ20および低感度映像信号データ22の対応づ け記録を、図1では概念的に矢印40で示す。

【0020】実施例の撮像装置は制御回路 124を有して いる。制御回路 124は、図示のように固体撮像デバイス 10、アナログ・ディジタル変換回路16および18、ならび に記録回路24にそれぞれ制御線 126、 128および 130で 接続され、これらの回路を制御して、固体撮像デバイス 10から出力される映像信号を記録媒体26に記録する動作 を行なわせる全体制御機能部である。制御回路 124は、 制御線 126を通して撮像デバイス10に水平および垂直転 送パルスなどの駆動信号を送り、撮像デバイス10から映 像信号を読み出し、これに同期してアナログ・ディジタ 50 の諸特性を考慮して、これより低い値、たとえば「100

ル変換回路16および18、ならびに記録回路24を動作させ て、ビット分解能の互いに異なる2つのディジタル映像 信号データ20および22を映像信号記録媒体26に記録させ

【0021】本実施例ではこのように、アナログ形式の 映像信号12および14を対応のディジタルデータに変換す る際、感度の高い方の映像信号データ20を感度の低い方 の映像信号データ22のビット分解能より高いビット分解 能でA/D 変換するように構成されている。これは、一般 に、完成画像におけるハイライト階調特性は軟調であっ て、高いビット分解能を必要とせず、低感度映像信号デ ータ22には、画像の絵柄のハイライト部分についての情 報、すなわちハイライト情報が多く含まれているからで ある。本実施例では、一方のアナログ・ディジタル変換 回路16は10ビットの分解能を有し、他方のアナログ・デ ィジタル変換回路18は8ビットの分解能を有している が、本発明は、必ずしもこのような特定の値のみに限定 されるものではない。

【0022】このようにして映像信号記録媒体26に記録 された1対の映像信号、すなわち高感度映像信号データ 20および低感度映像信号データ22は、図3に例示するよ うな画像再生装置50によって可視画像として再生され る。メモリカードなどの映像信号記録媒体26は合成回路 52に接続される。合成回路52は、記録媒体26から1つの 画像についての1対の高感度映像信号データ20および低 感度映像信号データ22をその入力54に読み出し、両者を 加算合成して広いダイナミックレンジの映像信号を形成 する信号合成回路である。その合成された出力は出力56 から出力され、この出力56はプリンタなどの利用回路58 に接続されている。利用回路58の一例として、合成され た映像信号の表わす画像を記録紙などの画像記録媒体

(図示せず) に印刷するプリンタなどのハードコピー装 置がある。プリンタに代わって、またはこれに加えて、 液晶表示装置などのソフトコピー装置や通信回線などの 伝送媒体(いずれも図示せず)が利用回路58として合成 回路52の出力56に接続されていてもよい。

【0023】合成回路52は、その入力54に得られる1つ の画像についての高感度映像信号データ20および低感度 映像信号データ22を次のようにして合成する。固体撮像 40 デバイス10の高感度撮像セル30H は、低感度撮像セル30 L の感度のK倍の感度を有する。ここでKは1より大き い正の数である。図4を参照すると、撮像セルアレイ32 において、ある注目画素の高感度映像信号22H のレベル 値Hを合成閾値Tと比較する(ステップ100)。合成閾 値Tは、高感度映像信号用のアナログ・ディジタル変換 回路16の最大変換レベル、すなわち本実施例では「102 3」でよい。この閾値Tは、必ずしも高感度映像信号用 のアナログ・ディジタル変換回路16の最大変換レベル 「1023」でなくてもよく、信号のばらつきや線形性など

10

0」程度に設定してもよい。つまり、高感度映像信号が 実質的に飽和状態にある値付近に設定するのが有利であ る。

【0024】注目画素の高感度映像信号22H のレベル値 日が「1023」より小さいことは、その画素に対応する被 写体部分が高感度映像信号データ20のダイナミックレン ジ内で捕捉できたことを意味する。合成回路52はそこ で、このような高感度映像信号データ20のレベル値H は、そのまま出力値Cとしてその出力56から出力する (ステップ 101)。

【0025】ステップ 100において、注目画素の高感度 映像信号22H のレベル値Hが「1023」に等しいときは、 その画素の被写体部分が高感度映像信号データ20が飽和 し、そのダイナミックレンジ内で捕捉できなかったこと を意味する。そこで合成回路52は、その画素の低感度映 像信号データ22L のレベル値Lを使用し、この値Lに、 低感度撮像セル30L の感度に対する高感度撮像セル30H の感度の比Kと低感度映像信号用のアナログ・ディジタ ル変換回路18の量子化レベル数に対する高感度映像信号 の比2¹⁰⁻⁸ とを乗じた値L·K·2¹⁰⁻⁸ を出力値Cとしてそ の出力56に出力する (ステップ 103)。

【0026】図5を参照してこれを説明すると、横軸に 被写体輝度をとり、左側の縦軸に高感度映像信号データ 20のレベル 0~1023を、また右側の縦軸に低感度映像信 号データ22のレベル 0~ 255をとると、注目画素の高感 度映像信号22H のレベル値Hは線60のようにプロットさ れ、また低感度映像信号データ22L のレベル値Lは線62 のようにプロットされる。両レベル値HおよびLを上述 のようにステップ 100、 101および 103で合成すると、 その結果の信号は、点線64で示すようになる。合成回路 52は、このような合成操作を行なうことによって、高感 度映像信号12のみを再生に利用した場合と比較して、K 倍のダイナミックレンジを有する映像信号Cをその出力 56に得ることができる。

【0027】このような合成信号56は、プリンタなどの 利用回路58に入力され、プリントなどの形態に変換され て利用される。利用回路58は、露光補正や階調補正を行 なう画像処理回路を含んでいてもよい。そのような適用 例では、利用回路58において、合成信号Cのうちの所要 の輝度領域を切り出して完成画像として再生することが できる。

【0028】ところで、固体撮像デバイス10は、もちろ ん正方格子状に撮像セルが配列された電荷結合デバイス であってもよい。その例を図6に示す。以下の説明にお いて、これまでの説明におけるのと同様の要素は同じ参 照符号で示す。この実施例の電荷結合デバイス10は、1 本の水平ラインにおいて高感度撮像セル70H および低感 度撮像セル70L が交互に位置し、垂直方向の画素位置に セルアレイ72を有している。高感度の撮像セル70Hから の水平方向の電荷掃出し側には、垂直方向に電荷を転送 する垂直転送路74H が配設され、また低感度の撮像セル 70L からの水平方向の電荷掃出し側には、やはり垂直方 向に電荷を転送する垂直転送路74L が配設されている。 この場合、高感度撮像セル70H の垂直列と低感度撮像セ ル70L の垂直列とでは、それぞれ垂直転送路74H および 74L へ蓄積電荷を読み出す位置、すなわち画素電荷の読 出し時間が隣接する垂直列の間で異なるようにCCD 電極 (図示せず)が配列され、最終的に1対の水平転送路34 H および34L のそれぞれに同時にこれらの電荷が到達す るように構成されている。

10

40

【0029】被写界からの入射光に応じて高感度の撮像 セル70H へ蓄積された電荷は、水平転送パルスに応動し て、矢印76H で示すようにその垂直転送路74H へ転送さ れる。同様にして低感度の撮像セル70L については、入 射光に応じて低感度の撮像セル70L に蓄積された電荷 は、水平転送パルスに応動して、矢印76L で示すように その垂直転送路74L へ転送される。これら2本の垂直転 用のアナログ・ディジタル変換回路16の量子化レベル数 20 送路74H および74L に転送された電荷は、水平方向のラ インについては一斉に、そして垂直方向については順番 に、垂直転送パルスに応動して、対応する1対の水平転 送路34H および34L まで転送される。こうして、1対の 水平転送路34H および34L に到達した1対の水平ライン の電荷、すなわち高感度撮像セル70H および低感度撮像 セル70L にそれぞれ対応する2ラインの蓄積電荷は、同 時に、それぞれ水平転送路34H および34L から1画素ず つ出力される。

> 【0030】動作状態において、固体撮像デバイス10に て撮像された被写界を表わす映像信号は、制御回路 124 の制御の下に、高感度映像信号データ20および低感度映 像信号データ22の形でそれぞれ出力12および14から対応 するアナログ・ディジタル変換回路16および18に入力さ れる。一方のアナログ・ディジタル変換回路16は、高感 度映像信号12を10ビットの分解能で0~1023のいずれか の量子化レベルに変換し、その出力20へ出力する。ま た、他方のアナログ・ディジタル変換回路18は、低感度 映像信号14を8ビットの分解能で0~ 255のいずれかの 量子化レベルに変換し、その出力22へ出力する。記録回 路24は、これらの映像信号20および22を1つの画像のデ ータファイルとして関連づけて映像信号記録媒体26へ記 録する。

【0031】映像信号記録媒体26に記録されたディジタ ル映像信号20および22は、再生装置50によって読み出さ れる。記録媒体26から合成回路52に読み出された高感度 映像信号データ20は、合成回路52において、対応する低 感度映像信号データ22と加算合成される。つまり、図4 を参照して前述したように、合成回路52は、1画素ずつ 映像信号を加算合成し、高感度映像信号22H のレベル値 は同じ感度の撮像セル70H または70L が配列された撮像 50 Hが「1023」より小さいと、この高感度映像信号データ

20のレベル値Hをそのまま出力値Cとしてその出力56か ら出力する。また、その画素の高感度映像信号22H のレ ベル値Hが「1023」に等しいときは、その画素の低感度 映像信号データ22Lのレベル値Lを調べ、この値LをK・ 2¹⁰⁻⁸ 倍して値L·K·2¹⁰⁻⁸ を出力値Cとしてその出力56 から出力する。このようにして合成された結果の信号56 は、利用回路58に入力され、プリントなどの可視画像と して再生されて利用される。

【0032】この実施例は、本発明をメモリカードなど の映像信号記録媒体26に画像データを記録するディジタ 10 ルスチルカメラに適用したものであったが、たとえばイ メージスキャナなどの適用例では、固体撮像デバイス10 は1次元撮像デバイスでよく、記録回路24および記録媒 体26に代わって、アナログ・ディジタル変換回路16およ び18の出力20および22を直接、合成回路52の入力に接続 するように構成してもよい。

【0033】ところで、固体撮像デバイス10は、高感度 映像信号Hおよび低感度映像信号Lを点順次で交互に出 力するタイプであってもよい。そのような1線読出しの 固体撮像デバイス80を含む撮像装置の実施例を図7に示 20 す。固体撮像デバイス80は単一の映像信号出力82を有 し、その出力82から点順次で交互に出力される高感度映 像信号Hおよび低感度映像信号Lは、信号分離回路84の 入力に接続される。この固体撮像デバイス80は、図8に 示すような撮像セルアレイ86を有し、その同図における 下端縁には単一の水平転送路34が配設されている。この 例では、高感度撮像セル70H の垂直列と低感度撮像セル 70L の垂直列は、それぞれ垂直転送路74Hおよび74L へ 蓄積電荷を読み出す位置、すなわち画素電荷の読出し時 間が隣接する垂直列の間で同じでよく、最終的に、高感 30 度映像信号Hおよび低感度映像信号Lの電荷は、単一の 水平転送路34に同時に到達するように構成されている。

【0034】信号分離回路84は、制御回路 124からの制 御信号 132に応動して、入力80に交互に到来するアナロ グ信号の高感度映像信号Hおよび低感度映像信号Lを、 固体撮像デバイス10からの信号読出しに同期して分離 し、対応する2つの出力88および90にそれぞれ出力する 信号分離回路である。その1対の出力88および90は、そ れぞれ対応するアナログ・ディジタル変換回路16および 18に接続されている。図7に示す実施例は、固体撮像デ 40 バイス80が単一の信号出力82を有し、これに対応して信 号分離回路84が設けられている以外は、図1を参照して 説明した実施例と同じでよい。

【0035】図9を参照すると、本発明の他の実施例が 示され、この実施例は、1対のアナログ・ディジタル変 換回路16および18に代わって単一のアナログ・ディジタ ル変換回路92が設けられ、これが信号分離回路94の前に 配設されている以外は、図7を参照して説明した実施例 と同じである。単一のアナログ・ディジタル変換回路92 は、固体撮像デバイス80の出力82に得られる映像信号を 50 成で、広いダイナミックレンジの映像信号を得ることが

対応するディジタルデータに変換する信号変換回路であ る。本実施例ではアナログ・ディジタル変換回路92は、 10ビットの量子化分解能で入力信号82を量子化する。そ の入力82には、図7に示す実施例と同様に、高感度映像 信号Hおよび低感度映像信号Lが点順次で交互に到来す るので、両信号とも10ビットの量子化レベルに量子化さ れる。アナログ・ディジタル変換回路92は、信号分離回 路94の入力に接続された出力96を有する。

【0036】信号分離回路94は、図7に示す実施例にお ける信号分離回路84と同様の信号分離機能を有するが、 信号分離回路84と相違する点は、扱う信号がディジタル データであり、また、後述のように低感度映像信号しの ビット分解能を低下させる機能を有するという点であ る。信号分離回路94は、制御回路 124からの制御信号 1 32に応動して、その入力96に点順次で交互に入力される 高感度映像信号Hおよび低感度映像信号Lを互いに分離 して、その対応する2つの出力120および122にそれぞ れ出力するディジタル信号処理回路である。その際、信 号分離回路94は、低感度映像信号Lについては、その下 位ビット、本実施例では2桁を削除することによって、 低感度映像信号Lのビット分解能を8ビット相当に低下 させる。こうしてディジタルデータベースで分離された 高感度映像信号 120および低感度映像信号 122は、1つ の画像について対応づけて、記録回路24によって記録媒 体26に記録される。

【0037】本発明による広ダイナミックレンジ撮像装 置の特定の実施例を説明したが、本発明はこの実施例の 細部に限定されず、特許請求の範囲内で当業者が可能な 変更を含むものである。たとえば、上述の実施例では、 撮像で得られ合成する映像信号の感度が2種類であった が、映像信号の感度は3種類以上であってもよい。たと えば、3種類の感度の撮像セルがラインごとに配列さ れ、それぞれの感度の映像信号を同時に読み出せる構造 の電荷結合デバイスを使用してもよい。または、1線で 読み出された3種類の映像信号を個々の種類の信号に分 離する信号分離回路を使用してもよい。このような3種 類の映像信号は、たとえば、中輝度域の映像信号とその 両側のシャドウ域およびハイライト域の映像信号として 完成画像に採用される。

【0038】本発明はまた、上述の実施例のように2種 類の感度の撮像セルを有する固体撮像デバイスのみなら ず、インタレースされた2つのフィールドについて、奇 数列および偶数列ごとに撮像セルにおける電荷の蓄積時 間を変えることによって高感度および低感度の映像信号 を得る撮像方式にも効果的に適用される。

[0039]

【発明の効果】このように本発明によれば、固体撮像デ バイスから生成される複数種類の感度の映像信号を異な るビット分解能で量子化することにより、簡略な回路構 13

できる。また、このような映像信号を記録媒体に記録す る場合は、所要の記憶領域が少なくて済む。さらに、広 ダイナミックレンジの映像信号は、後処理で露光補正や 階調圧縮を行なうことによって、銀塩写真システムに匹 敵するような完成度の高い完成画像が得られる。

【図面の簡単な説明】

【図1】本発明による広ダイナミックレンジ撮像装置を ディジタルスチルカメラに適用した実施例を示す機能ブ ロック図である。

【図2】図1に示す実施例における固体撮像デバイスの 10 撮像セルアレイの例を示す説明的平面図である。

【図3】同実施例に適用される画像再生装置の実施例を 示す機能ブロック図である。

【図4】図3に示す実施例における合成回路の動作を説 明するための動作フロー図である。

【図5】図3に示す合成回路の信号合成動作を説明する ためのグラフである。

【図6】図1に示す実施例における固体撮像デバイスの 撮像セルアレイの他の例を示す、図2と同様の平面図で ある。

【図7】本発明による広ダイナミックレンジ撮像装置を ディジタルスチルカメラに適用した他の実施例を示す、

図1と同様の機能ブロック図である。

【図8】図7に示す実施例における固体撮像デバイスの 撮像セルアレイの例を示す、図2と同様の平面図であ

【図9】本発明による広ダイナミックレンジ撮像装置の 他の実施例を示す、図1と同様の機能ブロック図であ

【図10】従来の銀塩写真システムにおけるネガフィル ムおよびプリントの再現域を説明するためのグラフであ

【図11】被写体輝度域と固体撮像デバイスによる撮影 輝度域の関係を説明するための、図10と同様のグラフで

【符号の説明】

10 固体撮像デバイス

16、18、92 アナログ・ディジタル変換回路

24 記録回路

32 撮像セルアレイ

30H、30L 撮像セル

34、34H、34L 水平転送路 20

52 合成回路

84、94 信号分離回路

【図1】

【図2】

【図3】

【図4】

【図11】

