Dozent: Denis Vogel Tutor: Marina Savarino

Aufgabe 40

(a) Reflexivität und Symmetrie sind offensichtlich, für die Transitivität setzen wir voraus, dass $(r_1, s_1) \sim (r_2, s_2)$, also $r_1s_2 = r_2s_1$ und $r_2s_3 = r_3s_2$ gilt. Dann erhalten wir

$$s_2(r_1s_3) = (r_1s_2)s_3 = (r_2s_1)s_3 = s_1(r_2s_3) = s_1r_3s_2 = s_2(s_1r_3).$$

Daraus folgern wir

$$s_2(r_1s_3 - r_3s_1) = 0 \xrightarrow{R \text{ nullteilerfrei}} r_1s_3 = r_3s_1,$$

was äquivalent ist zu $(r_1, s_1) \sim (r_3 s_3)$.

(b) Sei $(r'_1, s'_1) \sim (r_1, s_1)$ und $(r'_2, s_2) \sim (r_2, s_2)$. Wir müssen zeigen, dass dann $(r_1s_2 + r_2s_1, s_1s_2) = (r'_1s'_2 + r'_2s'_1, s'_1s'_2)$. Nun gilt aber

$$(r_1s_2 + r_2s_1)s_1's_2' = r_1s_1's_2s_2' + r_2s_2's_1s_1' = r_1's_1s_2s_2' + r_2's_2s_1s_1' = (r_1's_2' + r_2's_1')s_1s_2,$$

womit wir sofort die Aussage erhalten. Für den zweiten Teil müssen wir noch zeigen, dass $(r_1r_2, s_1s_2) \sim (r'_1r'_2, s'_1s'_2)$, das folgt aber sofort aus

$$r_1r_2s_1's_2' = r_1's_1r_2's_2 = s_1s_2r_1'r_2'.$$

(c) Auch hier sind Reflexivität und Symmetrie erneut trivial. Für die Transitivität nehmen wir an, dass $(r_1, s_1) \sim (r_2, s_2)$ und $(r_2, s_2) \sim (r_3, s_3)$, also $\exists s, t \in R \setminus \{0\}$ mit $sr_1s_2 = sr_2s_1$ und $tr_2s_3 = tr_3s_2$ gilt. Dann erhalten wir

$$\underbrace{tss_2}_{u} r_1 s_3 = tss_1 r_2 s_3 = tss_1 s_2 r_3 = u \cdot s_1 r_3.$$

Wegen $u \in R \setminus \{0\}$ haben wir damit die Transitivität bewiesen.

(d) In $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}^{\times}$ gilt $(1,3) \sim (2,6)$ wegen $1 \cdot 6 = 2 \cdot 3$ und $(2,6) \sim (2,3)$ wegen $2 \cdot 3 = 6 = 0 = 12 = 6 \cdot 2$. Allerdings gilt nicht $(1,3) \sim (2,3)$, da $3 \neq 6$ in $\mathbb{Z}/6\mathbb{Z}$.

Aufgabe 41

- 1. (i) \Longrightarrow (ii): Sei (m_1, \ldots, m_n) eine Basis von M. Dann existiert zu jedem m_i ein $s_i \in R \setminus \{0\}$ mit $s_i m_i = 0 \forall i$. Dann liegt $s := s_1 \cdot \cdots \cdot s_n$ aufgrund der Nullteilerfreiheit in $R \setminus \{0\}$ und wegen $s \cdot m = s \cdot \sum_{i=1}^n m_i = \sum_{i=1}^n s_i m_i = 0$ auch $s \in \text{Ann}(M)$.
- 2. (ii) \Longrightarrow (ii): Sei $0 \neq s \in \text{Ann}(M)$. Dann ist $\forall m \in M : sm = 0$ mit $s \neq 0$, woraus sofort die Behauptung folgt.
- 3. Da in der direkten Summe fast alle "Summanden" gleich 0 sein müssen, kann man ein beliebiges $m \in M$ darstellen durch $(m_1, \ldots, m_n, 0, \ldots)$. Dann ist aber $2^n \cdot m = 0$, also ist M ein Torsionsmodul. Sei ein beliebiges $0 \neq s \in \text{Ann}(M)$ gegeben, o.B.d.A. s > 0. Betrachte dann das Element $m := (0, \ldots, 0, 1, 0, \ldots) \in M$, wobei die 1 an der s-ten Stelle stehe. Dann ist $sm = (0, \ldots, 0, s, 0, \ldots) \neq 0$, da $s \neq 0 \in \mathbb{Z}/2^s\mathbb{Z}_{\xi}$. Daher muss Ann(M) = (0) sein.

Aufgabe 42

- (a) Sei $f \in M$. Dann ist $t^2 \cdot f = 0$ mit $0 \neq t^2 \in \mathbb{R}[t]$, also T(M) = M. Mit 11.3d folgt daraus, dass Q(M) = 0 und daher muss der Rang von M auch 0 sein.
- (b) Ein beliebiges Element aus M können wir darstellen durch $a+b\overline{t}$ mit $a,b\in\mathbb{R}$. Es gilt aber $r\cdot(a+bt)\neq 0$ für $r,a,b\neq 0,\ r\in\mathbb{R}$. Daher ist T(M)=0. Außerdem ist M ein freier \mathbb{R} -Modul, mit Basis $(\overline{1},\overline{t})$. Die lineare Unabhängigkeit ist trivial, außerdem handelt es sich um ein Erzeugendensystem, da $\overline{t^2}=0$ und daher $\overline{a_0+a_1t+a_2t^2+\cdots+a_nt^n}=\overline{a_0}+\overline{a_1t}$.

(c) Behauptung: $0 \subsetneq (\bar{t}) \subsetneq M$ ist eine Kompositionsreihe. Zu zeigen ist also, dass (\bar{t}) und $M/(\bar{t})$ einfach sind. Sei N ein echter Untermodul $\neq 0$ von (\bar{t}) . Dann liegt ein Element $a\bar{t}$ in N. Damit ist aber insbesondere auch $\frac{1}{a} \cdot a \cdot \bar{t} = \bar{t} \in N$ und damit $N = (\bar{t})$. Also besitzt (\bar{t}) keine Untermoduln außer 0 und (\bar{t}) und ist damit einfach. Nun betrachten wir noch $M/(\bar{t})$. Die Menge der Untermoduln von $M/(\bar{t})$ ist nach Bemerkung 6.7 isomorph zur Menge der Untermoduln N von M mit $(\bar{t}) \subset N \subset M$. Die einzigen Untermoduln, die diese Bedingungen erfüllen sind (\bar{t}) und M selbst. Sei nämlich $f \in \tilde{N} \subset M$ mit $(\bar{t}) \subseteq \tilde{N}$ und $f \notin (\bar{t})$. Dann ist $f = a + b\bar{t}$ mit $a \neq 0$. Dann ist aber auch $g = 1 = \frac{1}{a} \cdot a = \frac{1}{a} \left(f - b\bar{t} \right) \in \tilde{N}$. Da aber $(1,\bar{t})$ bereits ein Erzeugendensystem von M ist, ist dann \tilde{N} schon gleich M. Also gibt es nur zwei Untermoduln von $M/(\bar{t})$, nämlich 0 und $M/(\bar{t})$. Also ist $M/(\bar{t})$ einfach. Damit haben wir eine Kompositionsreihe mit den einfachen Kompositionsfaktoren (\bar{t}) und $M/(\bar{t})$. Die Länge $\ell(M)$ beträgt also 2.

Aufgabe 43

(a) Die kurze Folge

$$0 \to \ker \varphi \xrightarrow{\iota} M \xrightarrow{\pi} \operatorname{im} \varphi \simeq M / \ker \varphi \to 0$$

ist exakt (siehe die Anmerkung zur Definition 10.1). Daher ist nach Folgerung 12.15 $\ell(\ker \varphi) + \ell(\operatorname{im} \varphi) = \ell(M)$.

- (b) Sei \mathcal{F} eine Filtrierung von $\ell(L)$. Dann können wir die Filtrierung fortsetzen, indem wir einfach als letztes Modul M hinzufügen und eine neue Filtrierung \mathcal{G} mit einer Länge $L \leq \ell(M)$ erhalten. Also ist $\ell(L) \leq \ell(M) 1$, also $\ell(L) < \ell(M)$.
- (c) Es gilt

 $\varphi \text{ injektiv } \Longleftrightarrow \ker \varphi = \{0\} \Longleftrightarrow \ell(M) = \ell(\operatorname{im} \varphi) \Longleftrightarrow \operatorname{im} \varphi \text{ ist kein echter Untermodul von } M \Longleftrightarrow \operatorname{im} \varphi = M.$

Also ist die Injektivität von φ äquivalent zur Surjektivität. Ist also φ surjektiv, erhalten wir sofort die Injektivität und damit die Bijektivität. Ist φ injektiv, so auch surjektiv und damit bijektiv. Die Umkehrungen sind jeweils trivial.