Задание 11

Коновалов Андрей, 074

1	2	3	4	5	σ

Задача 1

Построим ПДКА КМП для языка L.

Отождествим элементы моноида и состояния автомата, по нему построенному, для удобства записи. Автомат, построенный по моноиду переходов языка L обозначим $A_M(L)$.

Автомат $A_M(L^{\frac{1}{3}})$ будет иметь такие же состояния, как $A_M(L)$, но финальными будут лишь те состояния x, для которых $x^3 \in F(A_M(L))$. Рассчитаем x^3 для каждого $x \in Q(A_M(L))$.

Ξ.	- ··· = ·• (<i>M</i> ())·										
	x	1234	2344	4444	1444	1144	1114				
	x^3	1234	4444	4444	1444	1144	1114				
	$\in F$?	+			+	+	+				
	x	2444	2244	2224	3444	3344	3334				
	x^3	4444	2244	2224	4444	4444	3334				
	$\in F$?		+	+			+				

Построим $A_M(L^{\frac{1}{3}})$. При его минимизации оказывается, что он уже минимален. Приведем сертификат (разбиение множества состояний на множества k-эквивалентности).

 $k = 0: \{1234, 1114, 2224, 3334, 1144, 2244, 1444\}, \{2344, 3344, 3444, 2444, 4444\}$

 $k = 1: \{1234, 2244, 1444, 3334\}, \{1114, 2224, 1144\}, \{2344, 3344, 3444, 2444\}, \{444\}, \{4444\}, \{4444\}, \{4444\}, \{4444\}, \{4444\}, \{4444\}, \{4444\}, \{4444\}$

 $k=2:\{1234,2244\},\{1444\},\{3334\},\{1114\},\{2224,1144\},\{2344\},...,\{4444\},\{44$

 $k = 3 : \{1234\}, ..., \{4444\}$

Сам автомат изображен ниже.

Задача 2

(i) Покажем, что $x\sim_A y\Rightarrow x\sim_L y$. Пусть q_0 - начальное состояние A.

$$\begin{split} x \sim_A y &\Leftrightarrow \\ \forall q \in Q(A) \ \delta(q,x) = \delta(q,y) &\Rightarrow \\ \forall w \in \Sigma^* \ \delta(q_0,wx) = \delta(q_0,wy) &\Leftrightarrow \\ \forall w,z \in \Sigma^* \ \delta(q_0,wxz) = \delta(q_0,wyz) &\Rightarrow \\ \forall w,z \in \Sigma^* \ (wxz,wyz \in L) \lor (wxz,wyz \notin L) \Leftrightarrow \\ x \sim_L y \end{split}$$

(ii) Покажем, что $x \sim_{min(A)} y \Leftrightarrow x \sim_L y$.

$$(x \sim_{min(A)} y \Leftrightarrow x \sim_L y) \Leftrightarrow$$

$$(x \sim_L y \Rightarrow x \sim_{min(A)} y) \wedge (x \sim_{min(A)} y \Rightarrow x \sim_L y)$$

Из пункта (і) видим, что

$$x \sim_{min(A)} y \Rightarrow x \sim_L y$$

Допустим, что $x\sim_L y$, но $x\nsim_{min(A)} y$, тогда

$$x \nsim_{min(A)} y \Rightarrow$$

 $\exists q \in Q(min(A)) \ q_1 = \delta(q, x) \neq \delta(q, y) = q_2$

Поскольку автомат минимальный, то для q существует достигающая цепочка w.

$$\begin{split} x \sim_L y \Rightarrow \\ \forall z \in \Sigma^*(wxz, wyz \in L) \vee (wxz, wyz \notin L) \Rightarrow \\ \forall z \in \Sigma^*(\delta(q_1, z), \delta(q_2, z) \in L) \vee (\delta(q_1, z), \delta(q_2, z) \notin L) \end{split}$$

Но это означает, что q_1 и q_2 - неразличимые, а значит автомат не минимальный. Противоречие. Получаем, что $x\sim_L y\Rightarrow x\sim_{min(A)} y$.

Задача 4

- (i) Грамматика, построенная в соответствии с 16.1.6 книги Шеня будет леволинейной. А значит множество Left(N), которое выводится из $\langle LeftN \rangle$ является регулярным.
- (ii) Обозначим P = S' для удобства. Будем полагать, что P начальный символ грамматики, поскольку он явно не указан.

В соответствии с 16.1.6 книги Шеня, построим грамматику:

$$\begin{split} \langle LeftP\rangle &\to \varepsilon \\ \langle LeftS\rangle &\to \langle LeftP\rangle \ | \ \langle LeftS\rangle \, Sa \\ \langle LeftA\rangle &\to \langle LeftP\rangle \, S \end{split}$$

Практически очевидно, что из $\langle LeftP \rangle$ выводится множество $\{\varepsilon\}$, из $\langle LeftA \rangle$ - $\{S\}$, а из $\langle LeftS \rangle$ - $(Sa)^*$. Автоматы для них строятся тривиально.