25/11/2019

Gérer ses données Pourquoi? Comment?

Contexte

- Déroulement d'un projet:
 - Avant : Anticipation, préparation, planification

Pendant : Réalisation, manipes, accumulation de données

 Après : Rapport final, publications scientifiques, ouverture/archivage des données

→ Les données sont le carburant de la science ©

Objectifs

- Gérer ses données de la conception du projet à l'ouverture pour
 - Gagner du temps
 - Être efficace, éviter les erreurs
 - Éviter des catastrophes!
 - Attester fiabilité des résultats
 - Produire des données réutilisables par soi et par les autres, Être prêts à les partager
 - → Faire au mieux pour soi et pour le projet

Anticiper

- Investir un peu de temps dans l'anticipation pour éviter d'en perdre beaucoup plus tard...
- Prévoir quelles données vont être produites
 - Types?
 - Volumes?
 - Format?
- Qui va les utiliser
 - Une personne?
 - Plusieurs dans le même labo?
 - Plusieurs dans des labos différents?
- Comment
 - Fréquence?
 - Flux?

Anticiper

- Que faudra-t-il conserver? Archiver?
 - Quoi?
 - données chères, non-reproductibles
 - longues et difficiles à produire, ≠ modélisation, simulation sauf si processus longs
 - Forte valeur patrimoniale
 - Volume?
 - Durée?
 - Où? Local, entrepôt...
- Protéger selon : risque (destruction, perte...) x probabilité

Anticiper

- Savoir de quels moyens on dispose
 - Logiciels
 - Espaces de stockage, locaux ou externes
 - Compétences
- Se mettre d'accord au sein de l'équipe
- Définir qui fait quoi, référents
- Choisir une langue (FR/EN)
- → Commencer à remplir son PGD [©]
- → Rester raisonnable! Ne pas en faire trop
 - → Il n'existe pas d'organisation idéale, trouver le mieux pour VOUS

- Choisir un lieu de stockage
 - Disque local → solo
 - Espace serveur partagé → un labo
 - Gain de place
 - Rapidité d'échanges
 - Évite chargement de serveurs par mail lourds (+écolo)
 - Versions uniques de fichier, pas de doublons
 - Gérer droits des utilisateurs
 - Hébergement en ligne (GoogleDrive etc) → plusieurs labos
 - Mêmes avantages
 - Penser sécurité

Types de stockage

Support de stockage	Sécurité	Accès	Coût	Remarque d'utilisation
Ordinateur professionnel	Sujet au piratage informatique, aux détériorations et pannes	Pas adapté au partage, nécessite l'utilisation d'un support externe ou d'Internet (mail, cloud)	Pas de coût supplémentaire ou coût peu important	- Pour un stockage temporaire - Nécessité de crypter les données confidentielles et sensibles
Support externe	- Sujet au vol, à la perte du support - Durée de vie limitée (dégradation du matériel)	Facilement transportable, il permet de transférer les données vers un autre ordinateur	Pas de coût supplémentaire ou coût peu important	- Pour un stockage temporaire - Nécessité de crypter ou de sécuriser physiquement les données confidentielles et sensibles
Serveur institutionnel	Stockage fiable, durable et sécurisé (contre le vol, le piratage, les incendies)	La connexion au serveur institutionnel ne facilite pas le travail avec des personnes extérieures	Coût assez important mais pas forcément répercuté sur l'usager	- Pour un stockage plus pérenne - Adapté pour le stockage de données sensibles et des versions « stables » de vos données - Toutes les institutions ne proposent pas ce service
Google Drive One Drive Serveur Cloud	On ne sait pas vraiment où sont stockées les données, ni ce qu'elles deviennent	Permet un travail synchronisé avec toutes les personnes ayant été autorisées au partage	Payant à partir d'une certaine limite de stockage	 Pour un partage avec des personnes externes à l'institution Ne pas y mettre de données sensibles ou confidentielles Pas de contrôle sur la procédure de sauvegarde des données

Tableau tiré de http://doranum.fr/le-stockage-des-donnees/

Pas de données personnelles ou sensibles sur le Cloud ou sur un support externe, sauf si cryptées

- Choisir une organisation
 - Par Mots-clés
 - Organisation fluide
 - Recherche facile, rapide
 - Utilisation d'un thésaurus de mots-clés/une convention à suivre par TOUS
 - Idéal pour certains types de fichiers : photos, images, publi
 - Peu structuré
 - Besoin de logiciels particuliers (TagFlow + autres exemples)

- Choisir une organisation
 - Par Mots-clés
 - Hiérarchique

- Organisation Hiérarchique
 - Choisir les grandes catégories (admin, données brutes, résultats, rédaction...)
 - Éviter toute redondance :
 - un fichier=un emplacement=un chemin d'accès
 - Mais utiliser des raccourcis Windows si besoin
 - Trouver un équilibre entre largeur et profondeur
 - Trop large = trop détaillé (ou pas assez!)

→ Organiser, Subdiviser

- Organisation Hiérarchique
 - Choisir les grandes catégories (admin, données brutes, résultats, rédaction...)
 - Éviter toute redondance :
 - un fichier=un emplacement=un chemin d'accès
 - Mais utiliser des raccourcis Windows si besoin
 - Trouver un équilibre entre largeur et profondeur
 - Trop large = trop détaillé
 - Trop profond = pénible + incompatible avec certains
 OS

- Project
 - Folder 1
 - ▼ Folder 2
 - Subfolder 1
 - Subfolder 2
 - SubSubFolder 1
 - SubSubFolder 2
 - SubSubSubFolder
 - SubSubSubFolder
 - Folder 3

→ Organiser, Rassembler

- Organisation Hiérarchique
 - Choisir les grandes catégories (admin, données brutes, résultats, rédaction...)
 - Éviter toute redondance :
 - un fichier=un emplacement=un chemin d'accès
 - Mais utiliser des raccourcis Windows si besoin
 - Trouver un équilibre entre largeur et profondeur
 - Trop large = trop détaillé
 - Trop profond = pénible + incompatible avec certains OS
 - Bien anticiper!

- Définir une <u>Convention de Nommage</u>
 - Contenu des noms
 - Court, clair et précis
 - Date: permet classement rapide
 - Projet : si risque de mélange
 - Objet
 - Format
 - Pas d'espaces : underscore (2019_project_data) ou CamelCase (2019ProjectData)
 - Date : année en premier, jour-mois-année, subdivisions?
 - Pas de caractères spéciaux, pas d'accents
 - Pas de points autres que pour l'extension
- → Applicable aux échantillons (quoi, qui, où, comment, quand...)
- → Certains logiciels de mesure sont paramétrables/noms
- → Existence de logiciels de renommage massif (Bulk Rename Utility, Renamer...)
- → Tout le monde suit la convention!

- Définir le <u>Versionnement</u>
 - Éviter Final/Final1/Final2/FinalFinal... être clairs
 - Mode de versionnement
 - Dates: sauf si plusieurs versions par jour!
 - Numérotation simple :
 - prévoir plusieurs caractères 01-02...15...
 - Anticiper le format selon le nombre de versions
 - Numérotation par section :
 - V1_0, V2_3, V5_1_2
 - Définir ce que signifient les versions
 - Historique des versions en tête de fichier (surtout doc)
 - Ajouter une ligne pour chaque version : Auteur, Date, Détails/Modifications

- Définir le <u>Versionnement</u>
 - Mode de versionnement
 - Faire un dossier « Old » ou « Archives » si premières versions sont à conserver
 - Si beaucoup de fichiers, utiliser logiciels type
 Git qui gèrent le versionnement (GitHub,
 GitLab, FramaGit...)

- Prévoir des sauvegardes
 - Versionnement facilite choix de quoi sauvegarder
 - Méthode:
 - Manuelle : dangereux → être rigoureux!
 - Automatiques : plateforme, politique de labo
 - Règles d'or :
 - 3 copies (actives + 2 sauvegardes)
 - **2** supports (DD, serveur, cloud...)
 - 1 en-dehors du site
 - Documenter! Qui, Quand, Comment, Où

- Conclusions
 - Compiler toutes les règles dans un document ouvert à tous : ReadMe.txt (ou PGD!)
 - Faire un répertoire des fichiers, surtout si organisation complexe
 - Combine avantages des mots-clés et de l'organisation hiérarchique
 - Un peu chronophage...
 - Attention au cryptage, ne pas perdre le mdp!
 - Désigner un référent pour l'organisation, la sauvegarde, l'archivage

Organiser les données

- Fondamentaux:
 - Savoir où les trouver : gestion des fichiers
 - Savoir les lire et les relire : choix des formats/logiciels
 - Savoir les comprendre : documentation, métadonnées, dictionnaire de données
- Choix des logiciels...
 - Non-propriétaires/ouverts, pérennes
 - Gratuits autant que possible
 - Utilisation courante dans votre communauté scientifique
- ... et des formats
 - Lisibles par humains/machines
 - Standards (csv, txt, pdf, xml...)
 - → Conversion possible en fin de projet!

Comprendre et réutiliser les données

- Documenter:
 - Métadonnées
 - Dictionnaire de données

Bonnes pratiques pour les données

- Tableau de données
 - Un seul tableau par feuille
 - Éviter multiplication de tableaux similaires, d'onglets

1	Α	В	С	
1	Site _	Température		
2	1	22		
3	2	24		
4	3	27		
5	4	24		
6	5	25		
H 4	i ▶ N avri	l 2014 / octobre 201	14 / mars	

4	1	Α	В	С	
1	Sit	e	Température		
2	1		12	12	
3	2		13	13	
1	3		14	14	
5	4		16		
6	5		12	12	
()	H	avril 2014	octobre 201	.4 / ma	

- Si trop complexe : faire une base de données

Bonnes pratiques pour les données

- Tableau de données
 - Entêtes de colonnes/noms de champ:
 - Une ligne et une seule
 - Descriptifs, clairs et homogènes d'un fichier à l'autre
 - Choisir une langue
 - Autant que possible : pas d'unité
 - Pas de caractères spéciaux, d'espaces, d'accents...
 - Une colonne = UNE variable
 - Une ligne = UNE observation
 - Une cellule = UNE valeur
 - Pas de vides : ni lignes, ni colonnes, ni cellules
 - Pas de doublons!

Bonnes pratiques pour les données

- Tableau de données
 - Contenu uniforme :
 - Valeurs manquantes = un code unique
 - Convention d'écriture : M ≠ male ≠ mâle
 - Format des dates ; une ou plusieurs colonnes?
 - Choix du marqueur décimal
 - Pas d'unités de mesure dans les cellules
 - Éviter commentaires : colonne « Notes » à codifier au maximum
 - Pas de code couleur : incompréhensible, illisible, non interopérable
 - Pas de cellules fusionnées
 - Pas de graphiques

Qualité des données

- Choix d'unités : standards internationaux
- Contrôle des valeurs
 - Uniformité des variables qualitatives, des formats
 - Unités homogènes, la même partout!
 - Valeurs min/max, cohérentes, réalistes/pertinentes
 - Trouver origine si données aberrantes
- Ne jamais modifier les données brutes

Qualité des données

- Complétude : tout est renseigné (sauf si justifié)
- Précision/Exactitude
 - Mesure physique : calibrage, contrôle stat
 - Temporelle : selon le contexte scientifique
 - Spatiale

(Chapman, 2005)

- Fig. 1. Montre les différences entre exactitude et précision dans un contexte spatial. Les points rouges indiquent les vraies localisations, les points noirs représentent les localisations rapportées par un collecteur.
 - Haute précision, faible exactitude,
 - Faible précision, faible exactitude indiquant une erreur aléatoire,
 - c. Faible précision, haute exactitude,
 - Haute précision et haute exactitude.

Qualité des données

- Précision/Exactitude
 - Sémantique : référentiels/thésaurus/ontologies (géographiques, taxonomiques, standards...)
- Méthodes
 - Limitations des valeurs :
 - Contraintes: min/max, null possible?
 - Contrôle logique : ex: mâle + utérus = faux/erreur
 - Tables de références dans BD
 - Utilisation d'indicateurs de qualité : Vrai/Faux, indice de niveau de contrôle

Conclusions

- Anticiper
- Se coordonner
- Gérer responsabilités et droits d'accès
- Documenter les données :
 - Dictionnaire de données
 - Commentaires dans les codes informatiques
- Documenter l'ensemble du projet : Fichier ReadMe.txt
 - Règles de nommage et d'organisation
 - Répertoire de fichiers
 - Contenu des fichiers / dictionnaire de données / Référentiels
 - Logiciels ou codes informatiques nécessaires
 - Précautions pour la réutilisation
 - Référents, responsables
- Planifier, compiler : PGD !!

Sources

- Arnould, P.-Y. and M.-C. Jacquemot-Perbal (2016). Guide de bonnes pratiques : Gestion et valorisation des données de recherche, CNRS
- Chapman, Arthur D. (2005). Les principes de qualité des données, version 1.0. Trad. Chenin, N. Copenhague: Global Biodiversity Information Facility, 76 pp. http://www.gbif.org/document/80626
- DoRANum (2017). Métadonnées, standards et formats (<u>www.doranum.fr</u>)
- Flamerie, F. (2018). Organiser efficacement ses données Document de cours, Urfist Bordeaux
- Malinowski, C. (2017). Data Management: File Organization, MITLibraries
- Plumejeaud-Perreau, C. and N. Mandran (2018). Qualité des données.
 ANF « Sciences des données : un nouveau challenge pour les métiers liés aux bases de données », 5-7 novembre 2018, Sète, CNRS
- Saby, M. (2019). Organiser, documenter et protéger ses données au quotidien. Formation Doctorale, Université Nice-Sophia-Antipolis