

CMT107 Visual Computing Assignment Project Exam Help

https://tutorcs.com Image Filtering

WeChat: cstutorcs

Jing Wu

School of Computer Science and Informatics Cardiff University

Overview

- Linear filtering
- Convolution
- Box filtering
- Gaussian filtering
- Separable kernel
- Median filter
- Sharpening

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Acknowledgement

The majority of the slides in this section are from Svetlana Lazebnik at University of Illinois at Urbana-Champaign

Image Filtering

- Filtering is a technique for modifying or enhancing an image
 - Emphasise certain features or remove other feature
- Filtering is a neighbourhood operation
 - The output value of any given pixel is determined by the values of the pixels in the neighbourhood of the corresponding input times. Help
- Linear filtering is filtering in which the values of the pixel is a linear combination (weighted average) of the values of the pixels in the input pixel's neighbourhood

 WeChat: cstutorcs
 - Linear filtering can be represented by convolution

Linear Filtering

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Motivation: Image Denoising

How can we reduce noise in a photograph?

- Let's replace each pixel with a weighted average of its neighbourhood
- The weights are called the filter kernel

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

CMT107 Visual Computing

- Let's replace each pixel with a weighted average of its neighbourhood
- The weights are called the filter kernel
- What are the weights for the average of a 3x3 neighbourhood?

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Source: D. Lowe

- Let's replace each pixel with a weighted average of its neighbourhood
- The weights are called the filter kernel
- What are the weights for the average of a 3x3 neighbourhood?

Assignment Project Exam Help

"box filter"

- Let's replace each pixel with a weighted average of its neighbourhood
- The weights are called the filter kernel
- What are the weights for the average of a 3x3 neighbourhood?

Assignment Project Exam Help

1	1	1
1	10	1
1	1	1

htt	.ps <u>.1</u> /tu	ito <u>r</u> cs.	com
* \frac{1W}{9}	eChat:	cstute 1	orcs 1
	1	1	1

"box filter"

- Let's replace each pixel with a weighted average of its neighbourhood
- The weights are called the filter kernel

*

What are the weights for the average of a 3x3 neighbourhood?

Assignment Project Exam Help

1	1	1
1	10	1
1	1	1

htt	ps <u>1</u> /tu	ito <u>r</u> cs.	cor <u>n</u>
$\frac{1W}{9}$	eChat:	cstute 1	orcs 1
	1	1	1

"box filter"

• Let f be the image and g be the kernel. The output of convolving f with g is denoted $f \ast g$

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

CMT107 Visual Computing

Source: F. Durand

• Let f be the image and g be the kernel. The output of convolving f with g is denoted $f \ast g$

Assignment Project Exam Help

g

https://tutorcs.com

WeChat: cstutorcs

f

CMT107 Visual Computing

• Let f be the image and g be the kernel. The output of convolving f with g is denoted $f \ast g$

Assignment Project Exam Help

g

Convention: kernel is flipped for convolution

CMT107 Visual Computing

Source: F. Durand

• Let f be the image and g be the kernel. The output of convolving f with g is denoted $f \ast g$

Assignment Project Exam Help

https://tutorcs.com

Convention: kernel is flipped for convolution

CMT107 Visual Computing

Source: F. Durand

• Let f be the image and g be the kernel. The output of convolving f with g is denoted $f \ast g$

$$(f * g)[x,y] = \sum_{i=-k}^{k} \sum_{j=-l}^{l} f[x-i,y-j]g[i,j]$$
Assignment Project Exam Help

https://tutorcs.com

Convention: kernel is flipped for convolution

Linear Filter: Key Properties

- Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- Shift invariance: same behaviour regardless of pixel location filter(shift(f)) = shift(filter(f))
- Theoretical result: any Aineign shift i Projeion Experator per le represented as a convolution

https://tutorcs.com

WeChat: cstutorcs

Linear Filter: More Properties

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $((a*b_1)*b_2)*b_3)$ This is equivalent to applying one filter: $a*(b_1*b_2*b_3)$
- Distributive over addition: bttp(b/tuto)cs.(am b) + (a * c)
- Scalars factor out: $ka * b = q_{\bullet}(kb) = k(a * b)$
- Identity: unit pulse e = [..., 0, 0, 1, 0, 0, ...], a * e = a

Size of the Output

- "full": output size is the sum of sizes of f and g minus 1
- "same": output size is the same as the size of f
- "valid": output size is the difference of the sizes of f and g

Assignment Project Exam Help

valid

- What about near the edge?
 - The filter window falls off the edge of the image
 - Need to extrapolate
 - Method
 - Clip filter (black)
 - Wrap around
 - Copy edge
 - Reflect across edge

Assignment Project Exam Hel https://tutorcs.com WeChat: cstutorc

• Clip filter (black)

CMT107 Visual Computing

Source: S. Marschner

Wrap around

CMT107 Visual Computing

Source: S. Marschner

• Copy edge

Reflect across edge

Source: S. Marschner

Assignment Project Exam Help

Original

Original

Filtered (no change)

Original

Original

Shifted left by 1 pixel

Original

Assignment Project Exam Help

Original

Blur (with a box filter)

Assignment Project Exam Help

* (
$$\frac{{}^{0}_{\text{https://tutorcs1com}} {}^{0}_{\text{https://tutorcs1com}} {}^{0}_{\text{https://tuto$$

Original

(Note that filter weights sum to 1)

Assignment Project Exam Help

Original

(Note that filter weights sum to 1)

Sharpening filter:
Accentuates differences
with local average

Smoothing with Box Filter revisited

- What's wrong with this picture?
- What's the solution?

ssignment Project Exam Hel

https://tutorcs.com

We@hat: cstutorcs=

Smoothing with Box Filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effect, weight contribution of neighbourhood pixels according to their closeness to the centre.

"fuzzy blob"

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

 5×5 , $\sigma = 1$

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case

Source: C. Rasmussen

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

• Standard deviation σ determines the extent of smoothing

Source: K. Grauman

Choosing Kernel Width

• The Gaussian function has infinite support, but discrete filters use finite kernels

 σ = 5 with 10 x 10 kernel

 σ = 5 with 30 x 30 kernel

Source: K. Grauman

Choosing Kernel Width

• Rule of thumb: set filter half width to about 3σ

Gaussian vs. Box Filtering

Gaussian Filters

- Remove "high frequency" component from the image (low-pass filter)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as large- σ kernel would have
 - Convolving two times with same as convolving one with Gaussian kernel with standard deviation $\sigma\sqrt{2}$
- Separable kernel
 - Factors into product of two Weshianstutores

Separability of the Gaussian Filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}}e^{-\frac{(x^{2}+y^{2})}{2\sigma^{2}}} = \left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^{2}}{2\sigma^{2}}}\right)\left(\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

Assignment Project Exam Help

- The 2D Gaussian can be expressed as the product of two 1D functions: one is a function of x, and the other is a function of y.
- In this case, the two functions are the the the file of the file

CMT107 Visual Computing

Source: D. Lowe

2D convolution (centre location only)

1	2	1
2	4	2
1	2	1

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

CMT107 Visual Computing

2D convolution (centre location only)

1	2	1
2	4	2
1	2	1

$$= 1 \times 2 + 2 \times 3 + 1 \times 3 = 11$$

$$= 2 \times 3 + 4 \times 5 + 2 \times 5 = 36$$

$$= 1 \times 4 + 2 \times 4 + 1 \times 6 = 18$$

$$= 65$$

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

CMT107 Visual Computing

2D convolution (centre location only)

1	2	1
2	4	2
1	2	1

$$= 1 \times 2 + 2 \times 3 + 1 \times 3 = 11$$

$$= 2 \times 3 + 4 \times 5 + 2 \times 5 = 36$$

$$= 1 \times 4 + 2 \times 4 + 1 \times 6 = 18$$
65

The filter factors into a Assignment Proje product of 1D filters

2D convolution (centre location only)

1	2	1
2	4	2
1	2	1

$$= 1 \times 2 + 2 \times 3 + 1 \times 3 = 11$$

$$= 2 \times 3 + 4 \times 5 + 2 \times 5 = 36$$

$$= 1 \times 4 + 2 \times 4 + 1 \times 6 = 18$$

$$= 65$$

The filter factors into a Assignment Proje product of 1D filters

Perform convolution along rows

2D convolution (centre location only)

1	2	1
2	4	2
1	2	1

$$= 1 \times 2 + 2 \times 3 + 1 \times 3 = 11$$

$$= 2 \times 3 + 4 \times 5 + 2 \times 5 = 36$$

$$= 1 \times 4 + 2 \times 4 + 1 \times 6 = 18$$

$$= 65$$

The filter factors into a Assignment Proje product of 1D filters

Perform convolution along rows

2D convolution (centre location only)

1	2	1
2	4	2
1	2	1

$$= 1 \times 2 + 2 \times 3 + 1 \times 3 = 11$$

$$= 2 \times 3 + 4 \times 5 + 2 \times 5 = 36$$

$$= 1 \times 4 + 2 \times 4 + 1 \times 6 = 18$$

$$= 65$$

The filter factors into a Assignment Proje product of 1D filters

Perform convolution along rows

	11	
=	18	
	18	

Followed by convolution along the remaining column

1			11	
2	*		18	
1	CMT107 Visual Co	mputi	ng 18	

2D convolution (centre location only)

1	2	1
2	4	2
1	2	1

$$= 1 \times 2 + 2 \times 3 + 1 \times 3 = 11$$

$$= 2 \times 3 + 4 \times 5 + 2 \times 5 = 36$$

$$= 1 \times 4 + 2 \times 4 + 1 \times 6 = 18$$

$$= 65$$

The filter factors into a Assignment Proje product of 1D filters

Perform convolution along rows

	11	
=	18	
	18	

Followed by convolution along the remaining column

$$= 1 \times 11 + 2 \times 18 + 1 \times 18 = 65$$

Why is Separability Useful

- What is the complexity of filtering an $n \times n$ image with an $m \times m$ kernel?
 - $O(n^2 \times m^2)$
- What if the kernel separable?
 - $O(n^2 \times m)$

Assignment Project Exam Help

https://tutorcs.com

Noise

• Salt and pepper noise: contains random occurrences of black and white pixels

• Impulse noise: contains random occurrences of white pixels

• Gaussian noise: variations in intensity drawn from a gaussian normal

distribution

Assignment Project Exam Help

Original

Salt and pepper noise

OISE Impulse noise CMT107 Visual Computing

Gaussian noise

Source: S. Seitz

Gaussian Noise

 Mathematical model: sum of many independent factors

Image Noise

 Good for small standard deviations

Assumption: independent, https://tutorcs.com

zero-mean noise

$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$$

Gaussian i.i.d. ("white") noise: $\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$

Reducing Gaussian Noise

Reducing Salt and Pepper Noise

What's wrong with the results?

Alternative Idea: Median Filtering

 A median filter operates over a window by selecting the median intensity in the window

• Is median filtering linear?

Median Filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

CMT107 Visual Computing

Median Filter

Median filtered Salt-and-pepper noise

CMT107 Visual Computing

Source: M. Hebert

Gaussian vs. Median Filter

CMT107 Visual Computing

What does blurring take away?

What does blurring take away?

What does blurring take away?

• Let's add it back

WeChat: cstutorcs

+ α

CMT107 Visual Computing

What does blurring take away?

• Let's add it back

WeChat: cstutorcs

Unsharp Mask Filter

https://tutorcs.com

Unsharp Mask Filter

Image Filtering with Java

- Use filter() in BufferedImageOp
- Implement filtering without using filter() function

Assignment Project Exam Help

https://tutorcs.com

Use filter() Function

Define a filter kernel

```
float[] km = { // low-pass filter kernel
       0.1f, 0.1f, 0.1f, // Suppose the matrix has been flipped
       0.1f, 0.2f, 0.1f,
                           Assignment Project Exam Help
       0.1f, 0.1f, 0.1f
   };
   Kernel kernel = new Kernel(3, 3, km); | ConvolveOp(Kernel kernel, int edgeCondition,
                                                                           RenderingHints hints)
                                WeChat: cstutorcs edgeCondition: ConvolveOp.EDGE_NO_OP or

    Define an operator

   BufferedImageOp op = null;
                                                                 ConvolveOp.EDGE ZERO FILL
   op = new ConvolveOp(kernel, ConvolveOp.EDGE NO OP, null);
```

Call the filter() function

```
out = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB);
op.filter(in, out);
```

Not Use filter() Function

Define a filter kernel matrix

```
float[] km = { // low-pass filter kernel
       0.1f, 0.1f, 0.1f, // Suppose the matrix has been flipped
       0.1f, 0.2f, 0.1f,
                           Assignment Project Exam Help
       0.1f, 0.1f, 0.1f
   };
                                https://tutorcs.com

    Calculate convolution on each pixel

   int[] rArray = new int[width*here that: cstutorcs
   for each pixel {
       get the neighbourhood colours of the pixel
       calculate the colour according to the convolution formula
       set the pixel colour in the output image
```

More details in Lab session 6

Summary

- What is filtering? What is linear filtering?
- What is convolution?
- How to do sharpening of image?
- What is box filtering, Gausisjam bitte Pinge and Exmad Holfiltering?
- What is separable kernel? Why use separable kernel?