# (Don't) Plan To Escape the Maze

Konstantin Pakulev, Mohammed Deifallah, Hekmat Taherinejad, Pavel Krasnik

# **Project objectives**

**PS4** (Escape the Maze) is taken as a basis for our work

- Implement different planning algorithms
  - Value Iteration
  - Markov Decision Process
  - Monte-Carlo Tree Search
- Implement different policies for pursuers
- Explore their performance under
  - Different **number** of pursuers
  - Various operating logic of pursuers

### Easy mode



#### Hard mode



### Value Iteration

### Method formulation:

$$G_k^*(x_k) = \min_{u_k} \left\{ l(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}$$
 optimal cost-to-go where  $x_{k+1} = f(x_k, u_k)$ 

$$u^* = \arg\min_{u \in U(x)} \{l(x, u) + G^*(f(x, u))\}$$

recover the optimal plan





VI (gets caught) playout

### Improved VI

To avoid getting caught **the cost of the pursuers** should be taken into account



VI + pursuer cost (escapes) playout

# Improved Value Iteration



The recovery of the "optimal" plan then becomes:

$$u^* = \arg\min_{u \in U(x)} \left\{ G^*(f(x, u)) + P(f(x, u)) \right\}$$

### Failure examples



VI + pursuer cost (gets caught) playout



VI + pursuer cost (gets stuck) playout

### **Markov Decision Process**

### Method formulation:

Bellman optimality equation:

$$v_{*}(s) = \max_{u \in U(s)} q_{*}(s, u) = \max_{u \in U(s)} \sum_{s', r} p(s', r|s, u) \left[ r + \gamma v_{*}(s') \right]$$

After which the policy can be recovered by

$$u^* = \arg\max_{u \in U(s)} q_*(s, u)$$

For our problem we simplified the equation to:

$$v_*(s) = r + \gamma \max_{u \in U(s)} \sum_{s'} p(s'|s, u) v_*(s')$$

And the policy is changed to:

$$u^* = \arg \max_{u \in U(s)} -q_*(s, u) + R(s, u)$$





Solving the Bellman equation doesn't influence pursuers

### Markov Decision Process. Pursuers







MDP (escapes)
playout

MDP tricks the pursuer to escape

MDP (gets stuck) playout:



### Monte-Carlo Tree Search

Reward function from the PS4:

$$R_{T}(x_{e}, x_{p}) = \begin{cases} 0 & \text{if } x_{e} = x_{p} \\ 100 + \sum_{t}^{T} \frac{0.1}{d(x_{e}(t) - x_{goal})} - T & \text{if } x_{e} = x_{goal} \\ \sum_{t}^{T} \frac{0.1}{d(x_{e}(t) - x_{goal})} - T & \text{otherwise} \end{cases}$$

Simulations with *high number of iterations* in our environment have **high chance to fail** providing **no information** 

#### **Solutions:**

- Relax the failure reward
- Make shorter simulation

In our case the reward is modified to:

$$R_T(x_e, x_p) = \begin{cases} -100 + \sum_{t=0}^{T} \frac{0.1}{d(x_e(t) - x_{goal})} & if \ x_e = x_p \\ 100 + \sum_{t=0}^{T} \frac{0.1}{d(x_e(t) - x_{goal})} - T & if \ x_e = x_{goal} \\ \sum_{t=0}^{T} \frac{0.1}{d(x_e(t) - x_{goal})} - T & \text{otherwise} \end{cases}$$



MCTS (escapes)
playout



MCTS (escapes) playout with less simulation iterations





# Deep Q-Network

In the Q-learning algorithm, we compute the Q-table which contains the Q-values of any state-action pair using the Q-value iteration. In deep Q-learning, we use a neural network to approximate the Q-value function. The state is given as the input and the Q-value of all possible actions is generated as the output.

$$\begin{split} &Q(s,a) = r(s,a) + \gamma \max_{a} Q(s',a) \\ &Q(s,a) \rightarrow \gamma Q(s',a) + \gamma^2 Q(s'',a) \dots \dots \gamma^n Q(s''...^n,a) \\ &Q(S_t,A_t) = (1-\alpha) Q(S_t,A_t) + \alpha * (R_t + \lambda * \max_{a} Q(S_{t+1},a)) \\ &L_i(\theta_i) = \mathbb{E}_{s,a,r,s'\sim \rho(.)} \left[ (y_i - Q(s,a;\theta_i))^2 \right] \text{ where } y_i = r + \gamma \max_{a'} Q(s',a';\theta_{i-1}) \end{split}$$



# Variants of pursuers



Pursuers with heuristic (manhattan distance)

$$d(x,y) = \sum_{i=0}^{n} |x_i - y_i|$$



Pursuers with heuristic (euclidean distance)

$$d(x,y) = \sqrt{\sum_{i=0}^{n} (x_i - y_i)^2}$$



Pursuers with Probabilistic Roadmap

Sample-based. Agents act as a whole

# Probabilistic Roadmaps (Pursuer)

#### Idea:

- 1. The agent is the set of pursuers as whole.
- 2. Sample C-space.
- 3. Get approximate result via graph search.
- 4. At proximity use accurate algorithm (A\*).

#### Disadvantages:

- Curse of dimensionality: we need ~5^6 samples for 3 pursuers
- Too much for graph search
- Long initialization
- Random process





### Advantages:

- 1. Simplification of space.
- 2. Easy to configure sophisticated constraints
- 3. Due to randomness result looks natural

#### Conclusion:

- Very niche algorithm
- Using lattice instead of uniform looks promising



# (Not) Escaping the maze







MVI (gets caught)
vs
Pursuers with heuristic
(euclidean distance)

MDP (gets caught)
vs
Pursuers with heuristic
(euclidean distance)

MCTS (gets caught)
vs
Pursuers with heuristic
(euclidean distance)

### **Conclusions**

- In the presence of pursuers with a just a little more complex logic the difficulty increases dramastically
- For both MDP and MCTS the choice of the reward function significantly changes the behaviour of the escaper
- MDP is not very suitable for long term minimization/maximization planning
- MCTS is noticeably faster than MDP