## 1 Sunlight

We want to find the energy density per volume for blackbody radiation for given wavelength  $\lambda$  and temperature T.

## (a) $\rho(T,\lambda)$

We can start with the expression for U in terms of an integral over k:

$$U = 2\frac{V}{(2\pi)^3} 4\pi \hbar c \int_0^\infty dk \, k^3 \left( e^{\beta \hbar c k} - 1 \right)^{-1} \tag{1}$$

We want this integral in terms of  $\lambda$ . We use  $k = \frac{2\pi}{\lambda}$ , and  $dk = -\frac{2\pi}{\lambda^2} d\lambda$ , to rewrite:

$$U = 2\frac{V}{(2\pi)^3} 4\pi \hbar c \int_{k=0}^{k=\infty} dk \left(\frac{2\pi}{\lambda}\right)^3 \left(e^{\frac{\beta \hbar c 2\pi}{\lambda}} - 1\right)^{-1}$$
 (2)

$$U = 2\frac{V}{(2\pi)^3} 4\pi \hbar c \int_{\lambda=\infty}^{\lambda=0} \left(-\frac{2\pi}{\lambda^2}\right) d\lambda \left(\frac{2\pi}{\lambda}\right)^3 \left(e^{\frac{\beta\hbar c 2\pi}{\lambda}} - 1\right)^{-1}$$
(3)

$$\frac{U}{V} = \frac{(2\pi)^4}{(\pi)^3} \pi \hbar c \int_{\lambda = \infty}^{\lambda = 0} \left( -\frac{1}{\lambda^2} \right) d\lambda \left( \frac{1}{\lambda} \right)^3 \left( e^{\frac{\beta \hbar c 2\pi}{\lambda}} - 1 \right)^{-1} \tag{4}$$

$$\frac{U}{V} = \frac{(2\pi)^4}{\pi^2} \hbar c \int_{\lambda=\infty}^{\lambda=0} \left(-\frac{1}{\lambda^2}\right) d\lambda \left(\frac{1}{\lambda}\right)^3 \left(e^{\frac{\beta\hbar c 2\pi}{\lambda}} - 1\right)^{-1} \tag{5}$$

$$\frac{U}{V} = -16\pi^2 \hbar c \int_{\lambda - \infty}^{\lambda = 0} d\lambda \, \frac{1}{\lambda^5} \left( e^{\frac{\beta \hbar c 2\pi}{\lambda}} - 1 \right)^{-1} \tag{6}$$

$$\frac{U}{V} = 16\pi^2 \hbar c \int_0^\infty d\lambda \, \frac{1}{\lambda^5} \left( e^{\frac{\beta \hbar c 2\pi}{\lambda}} - 1 \right)^{-1} \tag{7}$$

We want the energy density per wavelength, so we can identify  $\rho$  with the integrand:

$$\rho(\lambda,\beta) = 16\pi^2 \hbar c \frac{1}{\lambda^5} \left( e^{\frac{\beta \hbar c 2\pi}{\lambda}} - 1 \right)^{-1} \tag{8}$$

This means

$$\rho(\lambda, T) = \frac{16\pi^2 \hbar c}{\lambda^5} \left( e^{\frac{2\pi \hbar c}{k_{\rm B} T \lambda}} - 1 \right)^{-1} \tag{9}$$

## (b) Finding $\lambda$ to maximise $\rho$

Let's rewrite  $\rho$  a bit:

$$\rho(\lambda, T) = \frac{16\pi^2 \hbar c}{\lambda^5 \left( e^{\frac{2\pi \hbar c}{k_{\rm B} T \lambda}} - 1 \right)}$$
 (10)

To simplify the math a bit, we can notice that maximising  $\rho$  should be equivalent to minimising the denominator. Let's do that:

$$0 = \frac{d}{d\lambda} \left( \lambda^5 \left( e^{\frac{2\pi\hbar c}{k_{\rm B}T\lambda}} - 1 \right) \right) \tag{11}$$

$$0 = \lambda^5 \frac{d}{d\lambda} \left( e^{\frac{2\pi\hbar c}{k_{\rm B}T\lambda}} - 1 \right) + \left( e^{\frac{2\pi\hbar c}{k_{\rm B}T\lambda}} - 1 \right) \frac{d}{d\lambda} \lambda^5$$
 (12)

Continuing on, pausing only to admire symmetry,

$$-\lambda^{5} \frac{d}{d\lambda} \left( e^{\frac{2\pi\hbar c}{k_{\rm B}T\lambda}} - 1 \right) = \left( e^{\frac{2\pi\hbar c}{k_{\rm B}T\lambda}} - 1 \right) \frac{d}{d\lambda} \lambda^{5} \tag{13}$$

$$-\lambda^{5} e^{\frac{2\pi\hbar c}{k_{\rm B}T\lambda}} \left( -\frac{2\pi\hbar c}{k_{\rm B}T\lambda^{2}} \right) = \left( e^{\frac{2\pi\hbar c}{k_{\rm B}T\lambda}} - 1 \right) \left( 5\lambda^{4} \right) \tag{14}$$

$$\frac{2\pi\hbar c}{k_{\rm B}T}\lambda^3 e^{\frac{2\pi\hbar c}{k_{\rm B}T\lambda}} = \left(e^{\frac{2\pi\hbar c}{k_{\rm B}T\lambda}} - 1\right)\left(5\lambda^4\right) \tag{15}$$

Defining  $y = \frac{2\pi\hbar c}{k_{\rm B}T}$ :

$$ye^{\frac{y}{\lambda}} = 5\lambda \left(e^{\frac{y}{\lambda}} - 1\right) \tag{16}$$

$$\frac{y}{\lambda} = 5\left(1 - e^{-\frac{y}{\lambda}}\right) \tag{17}$$

Listing 1: Mathematica script

```
1  (* ::Package:: *)
2
3  BeginPackage["PS3ProblScript'"]
4
5  CurrentDir = DirectoryName[FileNameJoin[{Directory[], $ScriptCommandLine[[1]]}]]
6  outFile = OpenWrite[FileNameJoin[{CurrentDir, "problScriptOutput.txt"}]]
7
8
9  Print["Solving_equation_for_Problem_1"]
10  sols = NSolve[ x == 5(1 - E^(-x)), x]
11  Solving_equation_solutions:_'1'"][x /. sols]]
12  Print[StringTemplate["Found_solutions:_'1'"][x /. sols]]
13  Write[outFile, StringTemplate["Solutions:_'1'"][x /. sols]]
15  EndPackage[]
```

Listing 2: Mathematica output

1 "Solutions: {0., 4.96511}"