- 자료형
 - 선언할 변수의 특징을 나타내기 위한 키워드
 - ① 정수냐? 실수냐?
 - ② 크기는 얼마이냐? (몇 Bytes 이냐?)
 - 기본 자료형
 - 기본 적으로 제공되는 자료형
 - 사용자 정의 자료형
 - 사용자가 정의하는 자료형 : 구조체, 공용체 등

● 기본 자료형 종류와 데이터의 표현 범위

ANSI 표준

형태	표기방법	크기	범위 (개수)
정수형	char	1 byte	-128 ~ +127
	short	2 byte	-32768 ~ +32767
	int	4 bytes	-2147483648 ~ +2147483647
	long	4 bytes	-2147483648 ~ +2147483647
실수형	float	4 bytes	$3.4 \times 10^{-38} \sim 3.4 \times 10^{+38}$
	double	8 bytes	$1.7 \times 10^{-308} \sim 1.7 \times 10^{+308}$
	long double	8 bytes 또는 이상	double 이상의 표현

● ANSI 표준에서 말하는 자료형의 크기

American National Standards Institute(미국표준협회)

《float 《 double 《≡ long double

● 다양한 자료형이 제공되는 이유

- 데이터의 표현 방식이 다르기 때문에
 - ① 정수형 데이터를 표현 할 것이냐?
 - ② 실수형 데이터를 표현 할 것이냐?
- 메모리 공간을 적절히 사용하기 위해서
 - ① 데이터의 표현 범위를 고려하여 자료형을 선택함.
 - ② 작은 메모리 공간에 큰 데이터를 저장하는 경우 데이터의 손실이 발생할 수 있음.

sizeof 연산자

- 피연산자의 메모리 크기를 반환
- 피연산자로 자료형의 이름이 올 경우 괄호를 사용
- 그 이외의 경우 괄호의 사용은 선택적

```
int main(void)
{
  int num = 10;
  int sz1 = sizeof num; // 변수 num 의 메모리 크기 출력
  int sz2 = sizeof(int); // int의 메모리 크기 출력
  .......
```

11-1. C 언어가 제공하는 기본 자료형(예제 11-1)

```
#include <stdio.h>
int main(void)
         char ch=9;
         int inum=1052;
         double dnum=3.1415;
         printf("변수 ch의 크기: %d \mathbb{\pm}n", sizeof ch);
         printf("변수 inum의 크기: %d ₩n", sizeof inum);
         printf("변수 dnum의 크기: %d ₩n", sizeof dnum);
         printf("char의 크기: %d ₩n", sizeof(char));
         printf("int의 크기: %d ₩n", sizeof(int));
         printf("long의 크기: %d ₩n", sizeof(long));
         printf("float의 크기: %d ₩n", sizeof(float));
         printf("double의 크기: %d ₩n", sizeof(double));
         return 0;
```

● 자료형 선택의 기준

- 정수형 데이터를 처리하는 경우
 - ① 컴퓨터는 내부적으로 int 형 연산을 가장 빠르게 처리.
 - ② 변수의 범위가 int 형 변수가 넘어가는 경우 long 형으로 선언

```
char a, b;
char result;
printf("-50 이상 +50이하의 수 둘 입력 : ");
scanf("%d %d", &a,&b);
result = a + b;
printf("두 수의 덧셈 결과 : %d ₩n", result);
```

11-1. C 언어가 제공하는 기본 자료형(예제 11-2)

```
#include <stdio.h>
int main(void)
         char num1=1, num2=2, result1=0;
         short num3=300, num4=400, result2=0;
         printf("size of num1 & num2: %d, %d ₩n", sizeof(num1), sizeof(num2));
         printf("size of num3 & num4: %d, %d ₩n", sizeof(num3), sizeof(num4));
         printf("size of char add: %d \foralln", sizeof(num1+num2));
         printf("size of short add: %d ₩n", sizeof(num3+num4));
         result1=num1+num2;
         result2=num3+num4;
         printf("size of result1 & result2: %d, %d \n", sizeof(result1), sizeof(result2));
         return 0;
```

● 자료형 선택의 기준

- 실수형 데이터를 처리하는 경우
 - ① 선택 지표는 정밀도
 - ② 정밀도란 오차 없이 표현 가능한 정도를 의미함.
 - ③ 일반적인 선택은 double

자료형	정밀도				
float	소수 이하 6 자리				
double	소수 이하 15자리				
long double	double의 정밀도와 같거나 크다.				

11-1. C 언어가 제공하는 기본 자료형(예제 11-3)

```
#include <stdio.h>
int main(void)
        double rad;
        double area;
        printf("원의 반지름 입력: ");
        scanf("%lf", &rad);
        area = rad*rad*3.1415;
        printf("원의 넓이: %f ₩n", area);
        return 0;
```

● unsigned 가 붙어서 달라지는 표현의 범위

- MSB 까지도 데이터의 크기를 표현하는데 사용
- 양의 정수로 인식
- 실수형 자료형에는 붙일 수 없음.

자료형	메모리크기	표현 가능한 데이터의 범위				
(signed) char	1 Byte	-128 ~ +127				
unsigned char	1 Byte	0 ~ 255				
(signed) short	2 Byte	-32768 ~ +32767				
unsigned short	2 Byte	0 ~ 65535				
(signed) int	4 Byte	-2147483648 ~ +2147483647				
unsigned int	4 Byte	0 ~ 4294967295				
(signed) long	4 Byte	-2147483648 ~ +2147483647				
unsigned long	4 Byte	0 ~ 4294967295				

■ 9장. 서식 문자의 종류와 그 의미

서식문자	출력형태
%c	단일문자
%d	부호 있는 10진 정수
%i	부호 있는 10진 정수, %d와 같음
%f	부호 있는 10진 실수(소수 이하 6자리)
%s	문자열
%o	부호 없는 8진 정수
%u	부호 없는 10진 정수
%x	부호 없는 16진 정수, 소문자로 표기
%X	부호 없는 16진 정수, 대문자로 표기
%e	e 표기법에 의한 실수(부동소수점)
%E	E 표기법에 의한 실수(부동소수점)
%g	값에 따라서 %f, %e 둘 중 하나를 선택
%G	값에 따라서 %f, %G 둘 중 하나를 선택
%%	%기호 출력

11-1. C 언어가 제공하는 기본 자료형(예제 11-4)

```
#include <stdio.h>
int main(void)
  unsigned char a;
  unsigned short b;
  unsigned int c;
   a = 128;
   b = 32768;
   c = 2147483648;
   printf("a = %d a = %u \foralln",a,a);
   printf("b = %d b = %u \foralln",b,b);
   printf("c = %d c = %u \foralln",c,c);
   return 0;
```

● 문자 표현을 위한 ASCII 코드의 등장

- 미국 표준 협회 ANSI 에 의해 정의
- 컴퓨터를 통해서 문자를 표현하기 위한 표준
 - ① 컴퓨터를 문자를 표현하지 못함.
- 문자와 숫자의 연결관계를 정의.
 - ① 문자 'A'는 숫자 65, 문자 'B'는 66......

● ASCII 코드의 범위

- 0 ~ 127, char 변수로 처리 가능
- char형으로 처리하는 것이 합리적

1. C 언어가 제공하는 기

ASCII 코드표

DEC	HEX	OCT	Char	DEC	HEX	OCT	Char	DEC	HEX	OCT	Char
0	00	000	Ctrl-@ NUL	43	2B	053	+	86	56	126	٧
1	01	001	Ctrl-A SOH	44	2C	054		87	57	127	W
2	02	002	Ctrl-B STX	45	2D	055	-	88	58	130	X
3	03	003	Ctrl-C ETX	46	2E	056		89	59	131	Υ
4	04	004	Ctrl-D EOT	47	2F	057	1	90	5A	132	Z
5	05	005	Ctrl-E ENQ	48	30	060	0	91	5B	133	[
6	06	006	Ctrl-F ACK	49	31	061	1	92	5C	134	₩
7	07	007	Ctrl-G BEL	50	32	062	2	93	5D	135]
8	08	010	Ctrl-H BS	51	33	063	3	94	5E	136	^
9	09	011	Ctrl-I HT	52	34	064	4	95	5F	137	_
10	0A	012	Ctrl-J LF	53	35	065	5	96	60	140	
11	0B	013	Ctrl-K VT	54	36	066	6	97	61	141	a
12	0C	014	Ctrl-L FF	55	37	067	7	98	62	142	b
13	0D	015	Ctrl-M CR	56	38	070	8	99	63	143	С
14	0E	016	Ctrl-N SO	57	39	071	9	100	64	144	d
15	0F	017	Ctrl-O SI	58	3A	072	:	101	65	145	9
16	10	020	Ctrl-P DLE	59	3B	073	:	102	66	146	f
17	11	021	Ctrl-Q DCI	60	3C	074	<	103	67	147	g
18	12	022	Ctrl-R DC2	61	3D	075	-	104	68	150	h
19	13	023	Ctrl-S DC3	62	3E	076	>	105	69	151	1
20	14	024	Ctrl-T DC4	63	3F	077	?	106	6A	152	1
21	15	025	Ctrl-U NAK	64	40	100	@	107	6B	153	k
22	16	026	Ctrl-V SYN	65	41	101	Α	108	6C	154	1
23	17	027	Ctrl-W ETB	66	42	102	В	109	6D	155	m
24	18	030	Ctrl-X CAN	67	43	103	С	110	6E	156	n
25	19	031	Ctrl-Y EM	68	44	104	D	111	6F	157	0
26	1A	032	Ctrl-Z SUB	69	45	105	E	112	70	160	р
27	18	033	Ctrl-[ESC	70	46	106	F	113	71	161	q
28	10	034	Ctrl-W FS	71	47	107	G	114	72	162	r
29	1D	035	Ctrl-] GS	72	48	110	Н	115	73	163	s
30	1E	036	Ctrl-^ RS	73	49	111	1	116	74	164	t
31	1F	037	Ctrl_ US	74	4A	112	J	117	75	165	u
32	20	040	Space	75	4B	113	K	118	76	166	٧
33	21	041	1	76	4C	114	L	119	77	167	W
34	22	042	11	77	4D	115	M	120	78	170	X
35	23	043	#	78	4E	116	N	121	79	171	У
36	24	044	\$	79	4F	117	0	122	7A	172	z
37	25	045	%	80	50	120	Р	123	78	173	{
38	26	046	&	81	51	121	Q	124	7C	174	- 1
39	27	047	1	82	52	122	R	125	7D	175	}
40	28	050	(83	53	123	S	126	7E	176	

11-1. C 언어가 제공하는 기본 자료형(예제 11-5)

ASCII 문자의 표현

- 작은 따옴표('')를 이용해서 표현

char ch1 = 'A';

```
#include <stdio.h>
int main(void)
          char ch1='A', ch2=65;
          char ch3='B', ch4=66;
          printf("%c %d ₩n", ch1, ch1);
          printf("%c %d \foralln", ch2, ch2);
          printf("%c %d ₩n", ch3, ch3);
          printf("%c %d ₩n", ch4, ch4);
          return 0;
```

11. 연습문제

1. 사용자로부터 정수를 4바이트 크기의 10진수 정수로 입력 받아서 10진수, 16진수 형태로 출력하는 프로그램을 작성하시오

실행 예]

정수를 입력하시오: 12

입력된 정수는 10진: 12, 16진: C 입니다

입력된 정수의 전체 비트 반전 값은 (16진): FFFFFFF3

전체 비트 반전값 +1 = -12 (10진), FFFFFFF4 (16진)

2의 보수 : -12

11. 연습문제

2. int 형의 변수 x, y의 값을 서로 교환하는 프로그램을 작성하여 보자. 별도의 변수가 필요하면 정의하여서 사용한다. 변수 x와 y의 값으로 초 기화 하라.

실행 예]

x:10

y:20

result x = 20, y = 10

11. 연습문제

3. 'a' + 1, 'a'+2, 'a'+3을 문자 형식(%c)으로 출력하는 프로그램을 작성하라.