EE 779 Advanced Topics in Signal Processing Assignment 5

Assigned: 08/10/16, Due: 20/10/16 Indian Institute of Technology Bombay

Note

• Submit the written part and print out of simulations, together.

Problems

1. [*]When estimating **x** using least-squares approach to solve

$$y = Ax + n$$

determine the bounds on the error

$$\|\tilde{\mathbf{x}} - \mathbf{x}\|_2^2$$
,

where we estimate $\tilde{\mathbf{x}}$ as $\tilde{\mathbf{x}} = \mathbf{A}^{-1}\mathbf{y}$.

2. Show that the minimizer $\hat{\mathbf{x}}$ of

$$\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \delta \|\mathbf{x}\|_2^2$$

for **A** a $M \times N$ matrix with M > N is

$$\hat{\mathbf{x}} = \left(\mathbf{A}^T \mathbf{A} + \delta \mathbf{I}\right)^{-1} \mathbf{A}^T \mathbf{y}.$$

This modification to the standard least-squares problem is a special case of the Tikhonov Regularization. Compare the above solution with the least-squares solution by using SVD representation of \mathbf{A} .

- 3. Suppose **U** is an $N \times N$ matrix with orthonormal columns $\mathbf{U}^T \mathbf{U} = \mathbf{I}$. Show that $\|\mathbf{U}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$ for every $\mathbf{x} \in \mathbb{R}^N$.
- 4. [*] Use the file blocks_deconv.mat from moodle data file. This contains the vectors
 - \mathbf{x} : a 512 × 1 signal
 - **h**: a 30×1 filter
 - y: a 541×1 vector of observations of h convolved with x.
 - yn: a noisy observation of y. The noise is iid Guassian with standard deviation 0.01.
 - (a) Write a function which takes a vector \mathbf{h} of length L and input signal length N, and returns the $M \times N$ with M = N + L 1 matrix \mathbf{A} such that for any vector $\mathbf{x} \in \mathbb{R}^N$, the product $\mathbf{A}\mathbf{x}$ is the vector of non-zero values of \mathbf{h} convolved with \mathbf{x} .
 - (b) Use MATLAB's svd command to calculate the SVD of **A**. What are the largest and smallest singular values? Calculate $\mathbf{A}^{\dagger}\mathbf{y}$ and plot it.
 - (c) Apply \mathbf{A}^{\dagger} to the noisy $\mathbf{y}\mathbf{n}$. Plot the result. Calculate the mean square error $\|\mathbf{x} \hat{\mathbf{x}}\|_2^2$ and compare to the measurement error $\|\mathbf{y} \mathbf{y}\mathbf{n}\|_2^2$.
 - (d) Approximate **A** by truncating the last q terms in the SVD to obtain:

$$\mathbf{A}^{'} = \sum_{k=1}^{p-q} \sigma_k \mathbf{u}_k \mathbf{v}_k^T.$$

Apply the new pseudo-inverse $\mathbf{A}^{'\dagger}$ to \mathbf{yn} and plot the result. Try different values for q and choose the one which gives the best result. Mention the value you choose for q. Calculate the mean-square reconstruction error.

- (e) Form another approximate inverse using the Tikhonov regularization (See Problem 2, above). Try different values of δ and choose the best one. What value of δ gave the best result. Calculate the mean-square reconstruction error.
- (f) Summarize your observations and findings by comparing (c), (d), and (e). Include the error for $\|\mathbf{x} \mathbf{y}\mathbf{n}'\|_2^2$ using appropriate part of $\mathbf{y}\mathbf{n}$.