CONCUR 2023 - Antwerp Belgium

Udi Boker †
Thomas A. Henzinger ‡
Nicolas Mazzocchi ‡
N. Ege Sarac ‡

- † Reichman University, Israel
- Institute of Science and Technology, Austria

Safety and Liveness of Quantitative **Automata**

Boolean Properties

Definition

A Boolean property $\Phi\subseteq \Sigma^\omega$ or equivalently $\Phi\colon \Sigma^\omega \to \{0,1\}$, is a language

Safety

Requests Not Duplicated

Liveness

All Requests Granted

Boolean Properties

Definition

A Boolean property $\Phi\subseteq \Sigma^\omega$ or equivalently $\Phi\colon \Sigma^\omega \to \{0,1\}$, is a language

Safety

Requests Not Duplicated

Liveness

All Requests Granted

Theorem: Decomposition¹

All Boolean property Φ can be expressed by $\Phi = \Phi_{\mathsf{safe}} \cap \Phi_{\mathsf{live}}$

- Φ_{safe} is safe
- Φ_{live} is live

¹ Alpern, Schneider. Defining liveness. 1985

Quantitative Properties

Definition

A quantitative property $^2 \Phi \colon \Sigma^\omega \to \mathbb{D}$ is a quantitative language where \mathbb{D} is a complete lattice

² Chatterjee, Doyen, Henzinger. *Quantitative Languages*. 2010

Quantitative Properties

Definition

A quantitative property $\Phi \colon \Sigma^\omega \to \mathbb{D}$ is a quantitative language where \mathbb{D} is a complete lattice

Safety³ Minimal Response Time

Theorem: Decomposition³

All quantitative property Φ can be expressed by $\Phi(w) = \min\{\Phi_{\mathsf{safe}}(w), \Phi_{\mathsf{live}}(w)\}$ for all $w \in \Sigma^{\omega}$

- Φ_{safe} is quantitative safe
- Φ_{live} is quantitative live

³ Henzinger, Mazzocchi, Saraç. *Quantitative Safety and Liveness*. 2023

Value functions

Inf, Sup, LimInf, LimSup LimInfAvg, LimSupAvg, DSum

Value functions

Inf, Sup, LimInf, LimSup LimInfAvg, LimSupAvg, DSum

Runs

Subset of quantitative properties

totally ordered domain

Value functions

Inf, Sup, LimInf, LimSup LimInfAvg, LimSupAvg, DSum

Non-determinism

 $A(w) = \sup{\text{values of } w \text{'s runs}}$

Runs

Subset of quantitative properties

- totally ordered domain
- finitely many weights

Value functions

Inf. Sup. LimInf. LimSup LimInfAvg, LimSupAvg, DSum

Non-determinism

 $A(w) = \sup{\text{values of } w \text{'s runs}}$

Runs

Subset of quantitative properties

- totally ordered domain
- finitely many weights
- supremum-closed

$$\forall u \in \Sigma^* : \sup_{v \in \Sigma^{\omega}} A(uv) \in \{A(uv') : v' \in \Sigma^{\omega}\}$$

Value functions

Inf, Sup, LimInf, LimSup LimInfAvg, LimSupAvg, DSum

Non-determinism

Example of LimSup Automaton

$$w = \text{off on eco off eco } \dots \text{off eco } \dots A(w) = \text{LimSup } 0210101 \dots 01 \dots = 1$$

Example of LimSup Automaton

No Error

```
\forall u \in (\Sigma \setminus \{\text{err}\})^* : A(u \text{ on}^{\omega}) = 2
\forall u \in (\Sigma \setminus \{\text{err}\})^* : A(u \text{ eco}^{\omega}) = 1
\forall u \in (\Sigma \setminus \{\text{err}\})^* : A(u \text{ off}^{\omega}) = 0
```

w= off on eco off eco ... off eco ... A(w)= LimSup 0210101...01... = 1

Example of LimSup Automaton

No Error

$$\forall u \in (\Sigma \setminus \{\text{err}\})^* : A(u \text{ on}^{\omega}) = 2$$

$$\forall u \in (\Sigma \setminus \{\text{err}\})^* : A(u \text{ eco}^{\omega}) = 1$$

$$\forall u \in (\Sigma \setminus \{\text{err}\})^* : A(u \text{ off}^{\omega}) = 0$$

After Error

$$\forall v \in \Sigma^{\omega} : A(\text{err } v) = 0$$

$$w=$$
 off on eco off eco ... off eco ... $A(w)=$ LimSup 0210101...01... = 1

Boolean Safety

Intuition

Every \mathbf{wrong} hypothesis $w \in \Phi$ can always be rejected after a finite number of observations

Boolean Safety

Intuition

Every **wrong** hypothesis $w \in \Phi$ can always be rejected after a finite number of observations

Example: Requests Not Duplicated

- $ightarrow \Sigma = \{r, g, t, o\}$ r: request, g: grant, t: clock-tick, o: other
- $m{\Phi}=\mathsf{no}\;\mathbf{r}\;\mathsf{is}\;\mathsf{followed}\;\mathsf{by}\;\mathsf{another}\;\mathbf{r}\;\mathsf{without}\;\mathsf{some}\;\mathsf{g}\;\mathsf{in}\;\mathsf{between}\;$

```
w = \text{trtottogtoo} \text{rttorttogtr} \cdots
w \in \Phi: \text{T} \dots \dots \text{F} \dots \dots \text{F} \dots
```

Boolean Safety

Intuition

Every **wrong** hypothesis $w \in \Phi$ can always be rejected after a finite number of observations

Example: Requests Not Duplicated

- $\Sigma = \{r, g, t, o\}$ r: request, g: grant, t: clock-tick, o: other
- + $\Phi = \text{no r}$ is followed by another r without some g in between

Definition

A boolean property $\Phi \subseteq \Sigma^{\omega}$ is safe when

$$\forall w \in \Sigma^{\omega} : w \notin \Phi \implies \exists u \sqsubseteq w : \forall v \in \Sigma^{\omega} : uv \notin \Phi$$

Quantitative Safety

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$, can always be rejected after a finite number of observations

Quantitative Safety

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$, can always be rejected after a finite number of observations

Example: Minimal Response Time

- $\Sigma = \{r, g, t, o\}$ r: request, g: grant, t: clock-tick, o: other
- $m{\Phi}_{\sf min}(w) = {\sf greatest}$ lower bound on the occurrences of t between all matching ${
 m r/g}$ in w

```
w = \text{trtottogtoortto} \text{rttogtr} \cdots

\Phi(w) \geq 3: T.....F....
```

Quantitative Safety

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$, can always be rejected after a finite number of observations

Example: Minimal Response Time

- $ightharpoonup \Sigma = \{r, g, t, o\}$ r: request, g: grant, t: clock-tick, o: other
- $m{\Phi}_{\sf min}(w) = {\sf greatest}$ lower bound on the occurrences of t between all matching ${f r}/{f g}$ in w

Definition⁴

A quantitative property $\Phi: \Sigma^\omega o \mathbb{D}$ is safe when

$$\forall x \in \mathbb{D} : \forall w \in \Sigma^{\omega} : \varPhi(w) \not \geq x \implies \exists u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \varPhi(uv) \not \geq x$$

⁴ Henzinger, Mazzocchi, Saraç. *Quantitative Safety and Liveness*. 2023

Safety of Quantitative Automata

Boolean Safety

 $\forall w \in \Sigma^{\omega} : w \notin \Phi \implies \exists u \sqsubseteq w : \forall v \in \Sigma^{\omega} : uv \notin \Phi$

Quantitative Safety

$$\forall x \in \mathbb{D} : \forall w \in \Sigma^{\omega} : \varPhi(w) \not \geq x \implies \exists u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \varPhi(uv) \not \geq x$$

Safety of Quantitative Automata

Boolean Safety

$$\forall w \in \Sigma^{\omega} : w \notin \Phi \implies \exists u \sqsubseteq w : \forall v \in \Sigma^{\omega} : uv \notin \Phi$$

Quantitative Safety

$$\forall x \in \mathbb{D} : \forall w \in \Sigma^{\omega} : \varPhi(w) \not \geq x \implies \exists u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \varPhi(uv) \not \geq x$$

Threshold safety

A quantitative property $\Phi: \Sigma^\omega o \mathbb{D}$ is threshold-safe when

$$\forall x \in \mathbb{D} : \Phi_{\geq x} = \{ w \in \Sigma^{\omega} \mid \Phi(w) \geq x \} \text{ is safe }$$

Safety of Quantitative Automata

Boolean Safety

$$\forall w \in \Sigma^{\omega} : w \notin \Phi \implies \exists u \sqsubseteq w : \forall v \in \Sigma^{\omega} : uv \notin \Phi$$

Quantitative Safety

$$\forall x \in \mathbb{D} : \forall w \in \Sigma^{\omega} : \varPhi(w) \not \geq x \implies \exists u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \varPhi(uv) \not \geq x$$

Threshold safety

A quantitative property $\Phi: \Sigma^\omega \to \mathbb{D}$ is threshold-safe when

$$\forall x \in \mathbb{D} : \Phi_{\geq x} = \{ w \in \Sigma^{\omega} \mid \Phi(w) \geq x \} \text{ is safe }$$

Theorem: For totally ordered domain, threshold-safety = quantitative safety

Quantitative Safety Closure

Intuition

The safety closure ${\bf \Phi}^{\star}$ is the least safety property that bound ${\bf \Phi}$ from above

Quantitative Safety Closure

Intuition

The safety closure Φ^* is the least safety property that bound Φ from above

Example: Minimal Response Time

- Σ = {r,g,t,o}
- $\Phi_{\min}(w)=$ greatest lower bound on the occurrences of t between all matching r/g in w

```
w = \mathsf{trtottogtoorttorttogtr} \cdots least upper bound: \infty \dots 3 \dots 2 \dots \dots 2 \dots
```

Quantitative Safety Closure

Intuition

The safety closure Φ^* is the least safety property that bound Φ from above

Example: Minimal Response Time

- $\blacktriangleright \ \Sigma = \{ \texttt{r}, \texttt{g}, \texttt{t}, \texttt{o} \}$
- $arPhi_{\mathsf{min}}(w) = \mathsf{greatest}$ lower bound on the occurrences of t between all matching r/g in w

Definition⁵

Given $\Phi: \Sigma^\omega \to \mathbb{D}$, its safety closure is $\Phi^\star(w) \coloneqq \inf_{u \sqsubseteq w} \sup_{v \in \Sigma^\omega} \Phi(uv)$ for all $w \in \Sigma^\omega$

Theorem⁵: Φ is safe $\iff \Phi = \Phi^*$

⁵ Henzinger, Mazzocchi, Saraç. *Quantitative Safety and Liveness*. 2023

Example of Safety Closure

Example of Safety Closure

A is not safe since $A \neq A^*$ as witnessed by $A(eco^{\omega}) = 1$, $A^*(eco^{\omega}) = 2$

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether $A = A^*$

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether $A = A^*$

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether $A = A^*$

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

• $Avg(x_1x_2...) - Avg(y_1y_2...) \neq Avg((x_1 - y_1)(x_2 - y_2)...)$

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether $A = A^*$

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

- $Avg(x_1x_2...) Avg(y_1y_2...) \neq Avg((x_1 y_1)(x_2 y_2)...)$
- Equals if $y_1y_2...$ is eventually constant

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether $A = A^*$

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

- $Avg(x_1x_2...) Avg(y_1y_2...) \neq Avg((x_1 y_1)(x_2 y_2)...)$
- Equals if $y_1y_2...$ is eventually constant
- $A = A^* \iff A A^* = 0$ because all runs of A^* is eventually constant

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether $A = A^*$

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

- $Avg(x_1x_2...) Avg(y_1y_2...) \neq Avg((x_1 y_1)(x_2 y_2)...)$
- Equals if $y_1y_2...$ is eventually constant
- $A = A^* \iff A A^* = 0$ because all runs of A^* is eventually constant
- **Determine whether** $A A^* = 0$, by reducing the limitedness of distance automata

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether $A = A^*$

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

- $Avg(x_1x_2...) Avg(y_1y_2...) \neq Avg((x_1 y_1)(x_2 y_2)...)$
- Equals if $y_1y_2...$ is eventually constant
- $A = A^* \iff A A^* = 0$ because all runs of A^* is eventually constant
- Determine whether $A A^* = 0$, by reducing the limitedness of distance automata

Theorem: Safety is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

Boolean Liveness

Intuition

Some \mathbf{wrong} hypothesis $w \in \varPhi$ can never be rejected after any finite number of observations

Boolean Liveness

Intuition

Some **wrong** hypothesis $w \in \Phi$ can never be rejected after any finite number of observations

Example: All Requests Granted

- $ightharpoonup \Sigma = \{r, g, t, o\}$
- $\Phi = \text{every } \mathbf{r} \text{ is eventually followed by some } \mathbf{g}$

Boolean Liveness

Intuition

Some **wrong** hypothesis $w \in \Phi$ can never be rejected after any finite number of observations

Example: All Requests Granted

- $\Sigma = \{r, g, t, o\}$
- ullet $\Phi=$ every ${\tt r}$ is eventually followed by some ${\tt g}$

Definition

A boolean property $\Phi \subseteq \Sigma^{\omega}$ is live when

$$\forall u \in \Sigma^* : \exists v \in \Sigma^\omega : uv \in \Phi$$

37

Quantitative Liveness

Intuition

Some **wrong** hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Quantitative Liveness

Intuition

Some **wrong** hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Example: Average Response Time

- $\Sigma = \{r, g, t, o\}$
- + $\Phi_{\mathsf{avg}}(w) = \mathsf{average}$ on the occurrences of t between all matching r/g in w

```
w = \text{trtottogtoorttorttogtr} \cdots \Phi(w) \geq 3: T....? ...
```

Quantitative Liveness

Intuition

Some **wrong** hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Example: Average Response Time

- $\Sigma = \{r, g, t, o\}$
- ullet $arPhi_{ ext{avg}}(w) = ext{average}$ on the occurrences of t between all matching $ext{r}/ ext{g}$ in w

Definition⁶

A quantitative property $\Phi: \Sigma^\omega o \mathbb{D}$ is live when

$$\forall w \in \Sigma^{\omega} : \varPhi(w) < \top \implies \exists x \in \mathbb{D} : \varPhi(w) \not \geq x \land \forall u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \varPhi(uv) \geq x$$

⁵ Henzinger, Mazzocchi, Saraç. *Quantitative Safety and Liveness*. 2023

Threshold Liveness

A quantitative property $\Phi: \Sigma^\omega \to \mathbb{D}$ is threshold-live when

$$\forall x \in \mathbb{D} : \Phi_{\geq x} = \{ w \in \Sigma^{\omega} \mid \Phi(w) \geq x \} \text{ is live }$$

Threshold Liveness

A quantitative property $\Phi: \Sigma^{\omega} \to \mathbb{D}$ is threshold-live when

$$\forall x \in \mathbb{D} : \Phi_{\geq x} = \{ w \in \Sigma^{\omega} \mid \Phi(w) \geq x \} \text{ is live }$$

Theorem: A property Φ is threshold live iff the set $\{w \in \Sigma^{\omega} \mid \Phi(w) = \top\}$ is dense

Threshold Liveness

A quantitative property $\Phi: \Sigma^\omega \to \mathbb{D}$ is threshold-live when

$$\forall x \in \mathbb{D} : \Phi_{\geq x} = \{ w \in \Sigma^{\omega} \mid \Phi(w) \geq x \} \text{ is live }$$

Theorem: A property Φ is threshold live iff the set $\{w \in \Sigma^{\omega} \mid \Phi(w) = \top\}$ is dense

Top Liveness

A quantitative property $\Phi: \Sigma^\omega \to \mathbb{D}$ is top-live when $\Phi^\star(w) = \top$ for all $w \in \Sigma^\omega$

Threshold Liveness

A quantitative property $\Phi: \Sigma^\omega \to \mathbb{D}$ is threshold-live when

$$\forall x \in \mathbb{D} : \Phi_{\geq x} = \{ w \in \Sigma^{\omega} \mid \Phi(w) \geq x \} \text{ is live }$$

Theorem: A property Φ is threshold live iff the set $\{w \in \Sigma^{\omega} \mid \Phi(w) = \top\}$ is dense

Top Liveness

A quantitative property $\Phi: \Sigma^\omega o \mathbb{D}$ is top-live when $\Phi^\star(w) = \top$ for all $w \in \Sigma^\omega$

Theorem: For supremum-closed properties, top-liveness = threshold-liveness = liveness

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether $A^* = T$

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether $A^* = \top$

About DSum

• Every DSum automaton equals its safety closure: determine whether A = T

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether $A^* = \top$

About DSum

- Every DSum automaton equals its safety closure: determine whether A = T
- Determine the highest achievable value of each state

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether $A^* = \top$

About DSum

- Every DSum automaton equals its safety closure: determine whether A = T
- Determine the highest achievable value of each state
- Trim transitions that do not lead to the highest value of the source state

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether $A^* = \top$

About DSum

- Every DSum automaton equals its safety closure: determine whether A = T
- Determine the highest achievable value of each state
- Trim transitions that do not lead to the highest value of the source state
- Decide universality of underlying finite state automaton (ignoring weights)

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether $A^* = \top$

About DSum

- Every DSum automaton equals its safety closure: determine whether A = T
- Determine the highest achievable value of each state
- Trim transitions that do not lead to the highest value of the source state
- Decide universality of underlying finite state automaton (ignoring weights)

Theorem: Liveness is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

Example of Safety-Liveness Decomposition

construction for deterministic for Sup, LimInf, and LimSup automata

Example of Safety-Liveness Decomposition

$$A(w) = \min\{A_{\mathsf{safe}}(w), A_{\mathsf{live}}(w)\}\$$

Example of Safety-Liveness Decomposition

$$A(w) = \min\{A_{\mathsf{safe}}(w), A_{\mathsf{live}}(w)\}$$

In a nutshell

	Inf	Sup, LimInf, LimSup	LimInfAvg, LimSupAvg	DSum	
Safety Closure construct A*	O(1)	PTIME		O(1)	
Is A constant?	PSpace-complete				
i.e., $A = \top$					
Is A safe?	O(1)	PSPACE-complete	EXPSPACE PSPACE-hard	O(1)	
i.e., $A^{\star} = A$					
Is A live?	PSPACE-complete				
i.e., <i>A</i> * = ⊤					
Decomposition	O(1)	PTIME if deterministic	Open	O(1)	
construct A_{safe} A_{live}					

In a nutshell

	Inf	Sup, LimInf, LimSup	LimInfAvg, LimSupAvg	DSum	
Safety Closure construct A*	O(1)	PTIME		O(1)	
Is A constant? i.e., $A = \top$	PSpace-complete				
Is A safe? i.e., $A^* = A$	O(1)	PSPACE-complete	EXPSPACE PSPACE-hard	O(1)	
Is A live? i.e., $A^* = \top$	PSPACE-complete				
Decomposition construct A_{safe} A_{live}	O(1)	PTIME if deterministic	Open	O(1)	

Thank you