Problemas usando Transformações

Guilherme Zeus Moura zeusdanmou@gmail.com

Sugestões e correções de erros (mesmo que mínimos) são muito bem vindas. Envie-as para zeusdanmou+tex@gmail.com.

Sumário

1	Reflexões	1
2	Homotetias	1
3	Rotações	2
4	Roto-homotetias	3

1 Reflexões

Problema 1.1. Seja \overrightarrow{ABC} um triângulo com ortocentro H e circumcentro O. Seja M o ponto médio de \overrightarrow{BC} . Prove que $\overrightarrow{AH} = 2\overrightarrow{OM}$.

Problema 1.2 (Reta de Euler). Seja ABC um triângulo com ortocentro H, circumcentro O e baricentro G. Prove que H, O, G são colineares.

Problema 1.3. Seja ABC um triângulo com ortocentro H e circumcírculo Ω . Seja P um ponto em Ω . Sejam P_A , P_B , P_C as reflexões de P pelas retas BC, CA e AB, respectivamente. Prove que P_A , P_B , P_C , H são colineares.

Problema 1.4 (EGMO 2012, 7). Seja ABC um triângulo acutângulo com circuncírculo Γ e ortocentro H. Seja K um ponto de Γ no lado oposto de BC relativo a A. Seja L a reflexão de K pela reta AB, e seja M a reflexão de I pela reta BC. Seja E o segundo ponto de intersecção de Γ com o circuncírculo de BLM. Mostre que as retas KH, EM e BC são concorrentes.

Problema 1.5 (IMO 2011, 6). Seja ABC um triângulo acutângulo com circuncírculo Γ. Seja ℓ uma reta tangente a Γ, e sejam ℓ_a , ℓ_b e ℓ_c as retas obtidas após refletir ℓ pelas retas BC, CA e AB, respectivamente. Mostre que o circuncírculo do triângulo determinado pelas retas ℓ_a , ℓ_b e ℓ_c é tangente ao círculo Γ.

Problema 1.6 (Balcãs 2018, 1). Um quadrilátero ABCD é inscrito num círculo ω onde AB > CD, e AB não é paralelo a CD. Seja M o ponto de intersecção das diagonais AC e BD, e seja E a projeção de M no segmento AB. Se EM bisecta o ângulo $\angle CED$, prove que AB é diâmetro de ω .

2 Homotetias

Problema 2.1 (Círculo de Nove Pontos). Seja ABC um triângulo. Prove que o ponto médio dos lados, o pé das alturas e os pontos médios dos segmentos que ligam os vértices do triângulo com o ortocentro H estão todos sobre um mesmo círculo. Qual é o raio deste círculo?

Problema 2.2. Seja ABC um triângulo com incírculo ω . Seja D a intersecção de ω com BC. Seja T o ponto diametralmente oposto a D em ω . Seja X a intersecção de AT com BC. Prove que BD = CX.

Problema 2.3 (Lema da Estrela da Morte). Sejam Γ_1 e Γ_2 circunferências tangentes, com Γ_1 no interior de Γ_2 . Sejam T o ponto de tangência e AB uma corda de Γ_2 que tangencia Γ_1 em U. Prove que TU bissecta o arco AB.

Problema 2.4 (IMO 1978, 4). Seja ABC um triângulo com AB = AC. Um círculo que é internamente tangente ao circuncírculo de ABc também é tangente aos lados AB e AC nos pontos P e Q, respectivamente. Prove que o ponto médio de PQ é o incentro de ABC.

Problema 2.5 (IMO 1981, 5). Três circunferências de raios iguais possuem um ponto O em comum e estão no interior de um triângulo dado. Cada circunferência tangencia um par de lados do triângulo.

Prove que o ponto O está na reta que liga o incentro e o circuncentro do triângulo.

Problema 2.6 (IMO 1982, 2). Um triângulo escaleno $A_1A_2A_3$ tem lados a_1 , a_2 , a_3 , com o lado a_i oposto ao vértice A_i . Seja M_i o ponto médio do lado a_i , e seja T_i o ponto onde o incírculo de $A_1A_2A_3$ tangencia o lado a_i . Seja S_i a reflexão de T_i pela bissetriz interna do ângulo $\angle A_i$.

Prove que as retas M_1S_1 , M_2S_2 e M_3S_3 concorrem.

Problema 2.7 (OBM 2012, 2). Dado um triângulo ABC, o exincentro relativo ao vértice A é o ponto de interseção das bissetrizes externas de DB e DC. Sejam I_A , I_B e I_C os exincentros do triângulo escaleno ABC relativos a A, B e C, respectivamente, e X, Y e Z os pontos médios de I_BI_C , I_CI_A e I_AI_B , respectivamente. O incírculo do triângulo ABC toca os lados BC, CA e AB nos pontos D, E e F, respectivamente. Prove que as retas DX, EY e FZ têm um ponto em comum pertencente à reta IO, sendo I e O o incentro e o circuncentro do triângulo ABC, respectivamente.

Problema 2.8 (Japão 2007, 3). Seja Γ o circuncírculo do triângulo ABC. Seja Γ_A o círculo que tangencia os lados AB e AC e que tangencia Γ. Seja T_A a intersecção entre Γ e Γ_A. Defina Γ_B, T_B , Γ_C e T_C de maneira análoga.

Prove que as retas AT_A , BT_B e CT_C são concorrentes.

Problema 2.9 (OBM 2014, 6). Seja ABC um triângulo com incentro I e incírculo ω O círculo ω_A tangencia externamente ω e toca os lados AB e AC em A_1 e A_2 . Seja r_A a reta A_1A_2 . Defina r_B e r_C de modo análogo. As retas r_A , r_B e r_C determinam um triângulo XYZ. Prove que o incentro de XYZ, o circuncentro de XYC e I são colineares.

Problema 2.10 (OBM 2017, 5). No triângulo ABC, seja r_A a reta que passa pelo ponto médio de BC e é perpendicular à bissetriz interna de $\angle BAC$. Defina r_B e r_C da mesma forma. Sejam H e I o ortocentro e o incentro de ABC, respectivamente. Suponha que as três retas r_A , r_B , r_C definem um triângulo. Prove que o circuncentro desse triângulo é o ponto médio de HI.

Problema 2.11 (IMO 1983, 2). Seja A um dos dois pontos de intersecção de duas circunferências C_1 e C_2 , com raios distintos e centros O_1 e O_2 , respectivamente. Uma das tangentes comuns das circunferências tangencia C_1 em P_1 e C_2 em P_2 , enquanto a outra tangente comum tangencia C_1 em C_2 em C_2 em C_2 em C_3 em C_4 em C_4 em C_5 em C_6 em C_7 em C_8 em C_8 em C_8 em C_8 em C_8 em C_8 em C_9 em $C_$

Prove que $\angle O_1 A O_2 = \angle M_1 A M_2$.

Problema 2.12 (IMO 1992, 4). Seja Γ uma circunferência, ℓ uma reta tangente à circunferência Γ e M um ponto em ℓ . Ache o lugar geométrico de todos os pontos P com a seguinte propriedade: existem dois pontos Q e R em ℓ tal que M é ponto médio de QR e Γ é incírculo de PQR.

Problema 2.13 (IMO 1999, 5). Duas circunferências Ω_1 e Ω_2 tangenciam internamente a circunferência Ω em M e N e o centro de Ω_2 está sobre Ω_1 . A corda comum de Ω_1 e Ω_2 intersecta Ω em A e B. MA e MB intersectam Ω_1 em C e D. Prove que Ω_2 é tangente a CD.

Problema 2.14 (IMO 2008, 6). Seja ABCD um quadrilátero convexo com $BA \neq BC$. Sejam ω_1 e ω_2 os incírculos de ABC e ADC, respectivamente. Suponha que existe uma circunferência ω tangente à reta BA de forma que A está entre B e o ponto de tangência, tangente à reta BC de forma que C está entre B e o ponto de tangência, e que também seja tangente às retas AD e CD. Prove que as tangentes externas comuns a ω_1 e ω_2 se intersectam sobre ω .

3 Rotações

Problema 3.1 (Ponto de Fermat).

(a) Seja ABC um triângulo com ângulos menores ou iguais a 120° . Construa o triângulo equilátero BCD, com D e A em semiplanos distintos em relação a reta BC. Construa os triângulos equiláteros CAE e ABF de forma análoga. Prove que AD, BE, CF possuem tamanhos iguais e são concorrentes.

Vamos chamar essa intersecção de ponto de Fermat.

(b) Seja ABC um triângulo com ângulos menores ou iguais a 120° . Seja P um ponto no interior de ABC. Prove que AP + BP + CP é mínimo quando P é o ponto de Fermat.

Problema 3.2. Dado um paralelogramo ABCD, construa externamente quadrados em seus quatro lados. Prove que os centros desses quadrados foram um quadrado.

Problema 3.3 (Mathematical Olympiad Challenges). Sejam ABC e BCD triângulos equiláteros, com A e D distintos. Uma reta passa por D, intersectando o prolongamendo de AC em M e AB em N. Seja P a intersecção de CN e BM. Prove que $\angle BPC = 60^{\circ}$.

Problema 3.4 (Banco RMM 2019, P4, Original $\[mathbb{C}'$ **).** É dado um ponto P no plano em que reside um triângulo equilátero ABC desconhecido. É dado que AP < BP < CP. Suponha que é possível determinar o valor do lado de ABC sabendo somente o valor dos tamanhos AP, BP e CP. Prove que P está no circuncírculo de ABC.

4 Roto-homotetias

Problema 4.1. Sejam AB e CD segmentos, e seja X a intersecção entre AC e BD. Se os circuncírculos de ABX e CDX se intersectam em O, então O é o centro da única roto-homotetia que leva AB em CD.

Problema 4.2 (IMO 2016, 1). O triângulo BCF é retângulo em B. Seja A o ponto da reta CF tal que FA = FB e que F esteja entre A e C. Escolhe-se o ponto D de modo que DA = DC e que AC seja bissetriz de $\angle DAB$. Escolhe-se o ponto E de modo que EA = ED e que EA0 seja a bissetriz de EA1. Seja EA2 o ponto médio de EA3 o ponto tal que EA4 seja um paralelogramo. Prove que EA5 e EA6 o concorrentes.

Problema 4.3 (IMO 2010, 2). Seja ABC um triângulo, I o seu incentro e Γ o seu circuncírculo. A reta AI intersecta novamente Γ no ponto D. Sejam E um ponto no arco BC que contém D e F um ponto do segmento BC, tal que

$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$

Seja G o ponto médio de IF, prove que as retas EI e DG se intersectam sobre Γ .

Problema 4.4 (EGMO 2017, 6). Seja ABC um triângulo acutângulo no qual não há dois lados com a mesma medida. As reflexões do baricentro G e do circuncentro G de ABC através dos lados BC, CA, AB são denotadas por G_1, G_2, G_3 e O_1, O_2, O_3 , respectivamente. Mostre que os circuncírculos dos triângulos G_1G_2C , G_1G_3B , G_2G_3A , O_1O_2C , O_1O_3B , O_2O_3A e ABC têm um ponto em comum.

Referências

- [1] Evan Chen. Euclidean Geometry in Mathematical Olympiads. MAA Problem. Mathematical Association of America, 2016.
- [2] Viktoriya Krakovna. Transformations, ceva and menelaus theorems, and harmonic points. Canada Winter Training, January 2010.
- [3] Davi Lopes. Ampliando horizontes geométricos e encolhendo problemas: Homotetias e composição de homotetias. Semana Olímpica da OBM, 2018.
- [4] Anca Mustata. Geometric transformations: Reflections, homotheties (dilations), rotations and spiral similarity, translations.
- [5] Régis. Homotetia e outros temas relacionados. Semana Olímpica da OBM, 2018.