Examen¹ la Algebră Linară, seria 10, 19.02.2024

Nume și prenume:	
Grupa:	

Subjectul 1.

- a) Dați exemplu, dacă există, de matrice $F \in \mathcal{M}_3(\mathbb{R})$ a cărei forma eșalon redusă nu este I_3 . (2p)
- b) Decideți dacă următoarea afirmație este adevărată sau falsă (*i.e.* demonstrați-o sau dați un contraexemplu): $Dacă A si B sunt matrice <math>n \times n$ care au aceeași formă eșalon redusă, atunci det $A = 0 \iff \det B = 0$. (3p)
- c) Decideți dacă cele două sisteme de ecuații liniare de mai jos sunt echivalente:

d) Fie $A, B \in \mathcal{M}_n(\mathbb{R})$ matrice ale căror intrări sunt toate numere întregi. Știind că A este neinversabilă, demonstrați că $\det(A + 2024B)$ este un număr par. (3p)

Subjectul 2.

- a) În \mathbb{R}^n cu structura uzuală de spațiu vectorial, fie U mulțimea vectorilor care au suma coordonatelor 0 și $V = \langle (1, 1, ..., 1) \rangle_{\mathbb{R}}$. Demonstrați că $U \leq_{\mathbb{R}} \mathbb{R}^n$ și verificați dacă $U \oplus V = \mathbb{R}^n$. (2p)
- b) Fie \mathcal{P}_2 spațiul vectorial al polinoamelor cu coeficienți reali de grad cel mult 2. Definim funcția $T: P_2 \mapsto P_2$, T(f(x)) = f'(x) + 3f(x). Demonstrați că T este o aplicație liniară inversabilă și calculați $T^{-1}(2 3x + x^2)$. (3p)
- c) Fie $A \in \mathcal{M}_n(\mathbb{C})$. Demonstrați că există o matrice $B \in \mathcal{M}_n(\mathbb{C})$ având rang(B) = 1 astfel încât AB = BA. (3p)
- d) Fie $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ de rang k. Demonstrați că A poate fi scrisă ca o sumă de k matrice de rang 1. (3p)

Subiectul 3. Pentru orice $n \in \mathbb{N}^*$, notăm cu J_n matricea $n \times n$ având 1 pe fiecare poziție și I_n matricea identitate. Pentru orice $a, b \in \mathbb{R}$, considerăm matricea $A_n(a, b) = (a - b)I_n + bJ_n \in \mathcal{M}_n(\mathbb{R})$.

a) Eventual folosind transformări elementare asupra matricei $A_n(a,b)$, arătați că

$$\det(A_n(a,b)) = (a-b)^{n-1}(a+(n-1)b), \ \forall n \in \mathbb{N}^*, a,b \in \mathbb{R}.$$
 (2p)

(3p)

- b) Folosind punctul anterior, demonstrați că valorile proprii ale matricei $A_n(a,b)$ sunt a-b și a+(n-1)b. Aflați multiplicitățile lor algebrice. (3p)
- c) Decideți dacă $A_n(a,b)$ este diagonalizabilă (peste \mathbb{R}). Justificați răspunsul.
- d) Fie $f, g : \mathbb{R}^n \to \mathbb{R}^n$ două izomorfisme liniare diagonalizabile astfel încât $f \circ g = g \circ f$. Demonstrați că există o bază a lui \mathbb{R}^n în raport cu care f și g au simultan formă diagonală. (3p)

Subjectul 4.

- a) Fie $A \in \mathcal{M}_n(\mathbb{R})$. Demonstrați că, în raport cu produsul scalar canonic pe \mathbb{R}^n , vectorii linie ai lui A formează o bază ortonormală dacă și numai dacă vectorii coloană ai lui A formează o bază ortonormală. (2p)
- b) Demonstrați că

$$H: \mathcal{P}_n \times \mathcal{P}_n \to \mathbb{R}, \ H(f,g) = \int_{-1}^1 f(x)g(x)dx$$

este un produs scalar. Pentru n=2, folosind procedeul Gram-Schmidt, determinați o bază ortonormală plecând de la baza canonică $\{1, X, X^2\}$ a lui \mathcal{P}_2 . (3p)

- c) Pentru n=3, determinați proiecția ortogonală a lui $f_1(x)=x^3$ pe \mathcal{P}_2 . (3p)
- d) Fie V = C([-1,1]) spațiul vectorial al funcțiilor continue definite pe intervalul [-1,1] cu valori în \mathbb{R} și notăm cu W_p , respectiv W_i , subspațiul funcțiilor pare, respectiv impare al lui V. Arătați că în raport cu produsul scalar definit mai sus avem că $W_p^{\perp} = W_i$.

 $^{^1}$ Scrieți subiectele pe foi separate. Toate răspunsurile trebuie justificate. Nota lucrării este media notelor celor 4 subiecte. Nu există punct din oficiu. Timp de lucru: 3 ore. Succes!