

BinaryCoP: Binary Neural Network-based COVID-19 Face-Mask Wear and Positioning Predictor

Team Number: xohw21-142

Team Members: Nael Fasfous¹, Manoj Rohit Vemparala², Alexander Frickenstein²

Supervisor: Walter Stechele¹

1: Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany

²: Autonomous Driving, BMW Group, Munich, Germany

¹{nael.fasfous, walter.stechele}@tum.de

²{manoj-rohit.vemparala, alexander.frickenstein}@bmw.de

Outline

- Problem Statement
- Common Challenges for Al Deployment
 - Synthetic Data
 - Binary Neural Networks
 - Algorithm Interpretability
- Hardware Dimensioning
- Comparison with Existing Work

Problem Formulation

- Face-masks are a simple yet effective solution to mitigate the spread of COVID-19 [1]
- Most public indoor spaces have a mandatory rule on wearing masks
- **Compliance** to rules is hard to guarantee
- **Correct wearing position** of masks hard to assert

Problem Statement

Deploy accurate, unbiased image classification algorithms, which can be used at entrances or speed-gates to check correct mask wear and positioning, with all processing on low-power, cheap, edge hardware to preserve privacy of passing users.

Common Challenges for Al Deployment

BinaryCoP:

PYNQ board (or PYNQ -based)

- being learnt

Exposed

Dataset Diversity

- Diversity
 - Large-scale natural face datasets exist
 - But the number of real-world masked face images is limited

Large dataset predominantly collected in East Asia [2]

Nael Fasfous | Chair of Integrated Systems | TUM

Maintain Diversity

Synthetically generated on top of natural images [3]

Dataset Diversity

Synthetically added mask type: [4]

Mask pattern variation:

Mask color and intensity:

Should we sacrifice real-world accuracy for diversity?

Synthetic data generation can be improved to close the gap [4]

BNNs have proven regularization characteristics [5]

Initialize on synthetic data, then fine-tune on real-world data

Binary Neural Networks

• Restrict all weights w and activations a to $\{-1, 1\}$ the sign function:

$$b = sign(w) = \begin{cases} -1, & w < 0 \\ 1, & w \ge 0 \end{cases}$$

- Where w is the latent weight representation (backward-pass) and b is the binarized weight (forward-pass)
- Latent weights w are represented in full-precision to allow fine adjustments during training
- In final deployment, only b binarized weights are kept.

Binary Neural Networks: Gradient Flow Problem 🤨 🎹

- Inputs $i \in I$ result in outputs $o \in O$
- Outputs $o \in O$ result in a loss L when compared to true class of *I*
- Weights $w \in W$ are updated in backpropagation to minimize L
- Stochastic gradient decent (SGD) applies the chain rule to update each weight for a mini-batch input:

Update **w** to minimize **L** i.e. find minimization slope:

$$\frac{\partial L}{\partial w} = \frac{\partial v}{\partial w} \frac{\partial z}{\partial v} \frac{\partial k}{\partial z} \frac{\partial L}{\partial k}$$

Intermediate operations between *L* and *w*

Binary Neural Networks

• The *sign* function is an intermediate operation in BNNs:

$$y = sign(x) = \begin{cases} -1, & w < 0 \\ 1, & w \ge 0 \end{cases}$$

Intermediate operations between $m{L}$ and $m{w}$

Derivative of *sign* blocks gradient flow because it is **zero almost everywhere**!

Discreteness of binarization is incompatible with Gradient Decent optimization

Binary Neural Networks: Gradient Flow Problem 🤨 🎹

Solution: *approximate* derivative of *sign* with *htanh* (or other):

Gradient flow possible again!

Binary Neural Networks

So what do we get for all this?

High-Precision	Binary
Multiplications —	→ XNOR
Accumulation —	→ PopCount
BatchNorm	
32 or 16 Bits/Operand	→ 1-Bit Operands

Bonus:

BNNs' approximate training makes it harder to overfit on training data Good candidate for training on Synthetic Data

Algorithm Explainability: Grad-CAM [6]

NN's learning can be observed to understand its decisions and learning patterns

Hardware Acceleration: FINN framework

- BNNs can have a very small memory footprint
 - Accelerator can pre-load all weights
 - Computation units (MVTUs) can be parameterized (PEs, SIMD)
 - Match-throughput of MVTUs

Hardware Acceleration: Bit-Packing XNORs into DSPs

^{*}These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

BinaryCoP Prototypes

• 3 BinaryCoP variants

	High Accuracy	Low Memory	Low Logic
Network	CNV	n-CNV	μ -CNV
Arch. $L \mid [C_i, C_o]$ $K = 3 \forall \text{ Conv}$	Conv1_1 [3, 64] Conv1_2 [64, 64] Conv2_1 [64, 128] Conv2_2 [128, 128] Conv3_1 [128, 256] Conv3_2 [256, 256] FC1 [512] FC2 [512] FC3 [4]	Conv1_1 [3, 16] Conv1_2 [16, 16] Conv2_1 [16, 32] Conv2_2 [32, 32] Conv3_1 [32, 64] Conv3_2 [64, 64] FC1 [128] FC2 [128] FC3 [4]	Conv1_1 [3,16] Conv1_2 [16, 16] Conv2_1 [16, 32] Conv2_2 [32, 32] Conv3_1 [32, 64] FC1 [128] FC2 [4]
PE Count SIMD lanes	16, 32, 16, 16, 4, 1, 1, 1, 4 3, 32, 32, 32, 32, 32, 4, 8, 1	16, 16, 16, 16, 4, 1, 1, 1, 1 3, 16, 16, 32, 32, 32, 4, 8, 1	4, 4, 4, 4, 1, 1, 1 3, 16, 16, 32, 32, 16, 1

BinaryCoP Prototypes

- Throughput Matching Weight Memory Fragmentation
 - Example: BinaryCoP-n-CNV

Prototype Hardware Results

- Masked-FaceNet Dataset
- 32x32 input resolution

Explainability Results

Confusion matrix of BinaryCoP-CNV

Chin area too small, can be overlooked by BNN

Explainability Results: Grad-CAM Interpretation

(c) Mouth + nose exposed Grad-CAM

(d) Chin exposed Grad-CAM

Explainability Results: Diversity and Generalizability

Demo

Comparison with Other Works

- Dataset for Mask Wear problem are not standardized
- Tasks range from classification to object detection
- Resolutions range from 960×544 to 32x32

Work	Pro	Con
NVIDIA [8]	High ResObject Localization	500€ Hardware20-30 Watts
Amazon [9]	High ResOther PPE supported	 Cloud Processing
Wang et al. [10]	 Serverless, In-browser Processing 	 Requires Web-assembly Browser (tested on iPhone, iPad, MacBook) \$\$\$ Expensive Devices
"CheckYourMask" Hammoudi et al. [11]	 Edge Processing through Android app 	 Designed for self-check, not surveillance Not optimized for power, low-battery application

Nael Fasfous | Chair of Integrated Systems | TUM

Conclusion

Resources and References

- [1] When and how to use masks. [Online]. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/when-and-how-to-use-masks
- [2] https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset
- [3] https://github.com/cabani/MaskedFace-Net
- [4] https://github.com/aqeelanwar/MaskTheFace
- [5] M. Courbariaux et al. "Binaryconnect: Training deep neural networks with binary weights during propagations"
- [6] R. Selvaraju et al., "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization"
- [7] Y. Umuroglu et al., "FINN: A Framework for Fast, Scalable Binarized Neural Network Inference"
- [8] A. Kulkarni et al., "Implementing a real-time, ai-based, face mask detector application for covid-19"
- [9] T. Agrawal et al., ""Automatically detecting personal protective equipment on persons in images using amazon rekognition"
- [10] Z. Wang et al, "Wearmask: Fast in-browser face mask detection with serverless edge computing for covid-19"
- [11] K. Hammoudi et al., "Validating the correct wearing of protection mask by taking a selfie: Design of a mobile application "checkyourmask" to limit the spread of covid-19"

Slide 3 has been designed using resources from Flaticon.com