Taller 1 Solución de Ecuaciones no Lineales Métodos Numéricos

Rodrigo Moreno García*

Para realizar en grupos de máximo 2 personas. Se debe entregar el día del taller.

Ejercicios Propuestos

- 1. Aplique los metodos de Bisección de Bolzano y Posición Falsa para encontrar las soluciones con un error apróximado por debajo de 0.5×10^{-2} para $x^3 7x^2 + 14x 6 = 0$ en los intervalos [3,2;4] y [0,1].
- 2. Aplique el método de Newton Raphson y el de la Secante para obtener soluciones con un error apróximado por debajo de 0.5×10^{-3} para el siguiente problema:

a)
$$x - \cos x = 0$$
 [0, $\pi/2$]

3. En el diseño de vehículos para todo tipo de terreno, es necesario tener en cuenta las fallas cuando se trata de librar dos tipos de obstáculos. Una es la falla por rozamiento, y ocurre cuando el vehículo intenta cruzar un obstáculo que hace que su fondo toque el suelo. La otra recibe el nombre de falla por colisión de la defensa delantera y ocurre cuando el vehículo desciende por una zanja y la defensa delantera toca el suelo.

La figura 1, tomada de [1], muestra los componentes asociados al segundo tipo de falla. En ella se indica que el ángulo máximo α que puede alcanzar un vehículo cuando β es el ángulo máximo en que no hay falla por rozamiento satisface la ecuación:

$$A\sin\alpha\cos\alpha + B\sin^2\alpha - C\cos\alpha - E\sin\alpha = 0$$

Donde:

$$A = l \sin \beta_1$$
 $B = l \cos \beta_1$ $C = (h + 0.5D) \sin \beta_1 - 0.5D \tan \beta_1$
 $E = (h + 0.5D) \cos \beta_1 - 0.5D$

a) Se afirma que, cuando l=89pulg, h=49pulg, D=55pulg y $\beta_1=11,5^\circ,$ el ángulo α será aproximadamente de 33°. Verifique este resultado.

 $^{^*{\}rm rmorenoga@unal.edu.co}$

Figura 1: Ejercicio 3

b) Encuentre α para el caso en el que $l,\,h$ y β_1 son iguales a los de la parte 3a, pero $D=30 {\rm pulg}.$

Referencias

[1] R.L. Burden and J.D. Faires. Análisis numérico. Cengage Learning Latin America, 2001.