

ALEX: An Updatable Adaptive Learned Index

Overview

Baseline: B+ Tree

# Setup

#### Machines used:

Mimi cluster (teach-node-07, 08) Intel(R) Xeon(R) Gold 6234 CPU @ 3.30GHz 16GB RAM

#### Differences:

Single-threaded experiments on an Ubuntu Linux machine Intel Core i9-9900K **3.6GHz CPU 64GB RAM**.

#### B+ tree (baseline)

- Traverses tree using comparisons
- Supports OLTP-style mixed workloads:
  - o reads: Point lookups, range queries
  - o writes: Inserts, updates, deletes

# ALEX: supports read and writes.

#### Learned Index

- Traversing tree using models.
- Supports point lookups and range queries
- 3X faster reads, 10X smaller size
  - Limitation: read-only



#### **ALEX**

Dynamic data structure

• Efficient support for point lookups, short range queries, inserts, updates, deletes, and bulk loading.

Storage layout optimized for models:
Gapped Array (faster inserts)

Exponential search strategy (faster reads)



# Configs

- Longlat 200M total keys , 10M init\_num\_keys, 1M batch size.
- Longitudes 200M total keys, 10M init\_num\_keys, 1M batch size.
- Lognormal 190M total keys, 10M init\_num\_keys, 1M batch size.
- The experiment for YCSB here was with 200M, 10M, 1k.

- Read-only
- Read-heavy 5% inserts
- Write-heavy 50% inserts

reads consist of a lookup of a single key

#### Workloads



**Paper** 

#### **Comments:**

ycsb slightly different



Reproduced



Paper

#### **Comments:**

ycsb slightly different



Reproduced



Paper

#### **Comments:**

Baslelines values slightly lower.

#### Grid search tuning



Reproduced

### Why we see these differences?

#### ycsb

- Parameters used in our experiments were less intensive than real workloads.
- The closer we are to real parameters, the closer the measurements become.





- 200m total, 100m init, 1k batch
  - B+ tree ~3million ops/s closer to the paper
  - We were able to get it as confirmation.

### Why we see these differences?

#### Ycsb

- payload: 80 Bytes
- Size of workload 8Bytes (Instead of 80 bytes)



#### Data files size discrepancy (paper vs github)

Text files ~ 17GB, binary files ~ 1.5GB

#### **Memory constraint**

- We calculated: (8 Bytes + 8 Bytes) for 200 mill records -> 3.2GB bare minimum memory (works)
  - 8 + 80 Bytes --> 17.6GB may not work :(

#### **Shared machine**

Interference: from other users logged



#### **Network Storage**

We were storing our data and scripts on CS accounts (not locally on mimi)

Home directory on network server which gets mounted to mimi.



## Project Reflections



Bulk loading 100M was problematic for ALEX.

Replicating the exact configs the paper used was challenging.

ex: batch size, node size, payload

Surprisingly, the exact implementations used in paper were not directly linked.

# Thank you

Do you have any questions?