Locally Equivalent Weights for Bayesian MrP

Ryan Giordano, Alice Cima, Erin Hartman, Jared Murray, Avi Feller UT Austin Statistics Seminar September 2025

Standard error estimation

Does this mean anything? **Yes:** We can meaningful sum these weights against regressors.

What else might it mean? **Does the spread relate to frequentist variance?**

Figure 1: Comparison between raking and MrPlew weights for the Name Change dataset

Figure 2: Comparison between raking and MrPlew weights for the Gay Marriage dataset

Standard error estimation

Standard error consistency theorm: (sketch)

For Bayesian hierarchical logictic regression, define

$$\varepsilon_n = y_n - \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})} [m(\mathbf{x}_n^{\mathsf{T}} \theta)] \quad \text{ and } \quad \psi_n := N_S w_n^{\mathsf{MrP}} \varepsilon_n.$$

We state mild conditions under which, as $N \to \infty$,

$$\sqrt{N} \left(\hat{\mu}_{\text{MrP}} - \mu_{\infty} \right) \to \mathcal{N} \left(0, V \right)$$
 for some μ_{∞} and variance V , and

$$\frac{1}{N_S} \sum_{i=1}^{N_S} (\psi_n - \overline{\psi})^2 \to V.$$

The use of $w_n^{\rm MrP}$ is exactly analogous to the use of raking weights for standard error estimation. This builds on our earlier work on the Bayesian infinitesimal jackknife¹.

.

¹G. and Broderick 2024

Frequentist standard errors

Figure 3: Frequentist standard deviation estimates

References

G. and T. Broderick (2024). The Bayesian Infinitesimal Jackknife for Variance. arXiv: 2305.06466 [stat.ME]. URL: https://arxiv.org/abs/2305.06466.