Titanic

Mateusz Bernart, Patryk Janiak, Patrick Molina, Marek Seget, Chihab Zitouni2024-04-20

Problem introduction

Introduction

- What is the **Titanic dataset** about?
- The goal: predicting survival on Titanic passengers using classifiers and feature selection

Freq

Dataset

• Dataset structure

Survived	Fare	Cabin	Parch	SibSp	Age	Sex	Pclass	PassengerId
0	7.2500		0	1	22	male	3	1
1	71.2833	C85	0	1	38	female	1	2
1	7.9250		0	0	26	female	3	3
1	53.1000	C123	0	1	35	female	1	4
0	8.0500		0	0	35	male	3	5

Target

• Our target - Survived? (binary 0/1)

Solving the problem

Data preprocessing

- Missing values:
 - Dropped irrelevant columns
- Encoding Sex + Embarked (categorical -> numeric)

Comparison of classifiers before preprocessing

Preprocessing techniques

Normalization: MinMaxScalerStandardization: StandardScaler

Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
1	-1.482983	1.322511	0.577094	0.522511	-0.506787	0.694046	-2.049487
1	-1.482983	1.322511	0.577094	0.522511	-0.506787	0.694046	-2.049487
1	0.908600	1.322511	-0.251478	0.552714	-0.506787	-0.503620	0.519588
1	-1.482983	1.322511	0.369951	0.522511	-0.506787	0.350326	0.519588
0	0.908600	-0.756138	0.369951	-0.552714	-0.506787	-0.501257	0.519588

Feature Selection

- RFE (Recursive Feature Elimination) with LR, RFC
- Selected features:
 - for LR: $\mathbf{Pclass},\,\mathbf{Sex},\,\mathbf{Age},\,\mathbf{SibSp}$
 - for RFC: Pclass, Sex, Age, Fare

Feature extraction

• PCA (Principal Component Analysis)

Figure 1:

```
[[ 1.03979617, -0.8338755 , 0.39574407, -0.124945 ],
         [-0.8159031 , 1.9567542 , 0.23809646, -0.0552459 ],
         [ 0.48443562 , 0.35598023 , -1.52130571 , -0.51725331],
         ...,
         [-0.44638046 , 1.59476638 , -0.76656293 , 1.20977618] ,
         [-0.94330883 , -0.02518358 , 0.51553682 , 1.40835751] ,
         [ 0.03490097 , -1.26169953 , -0.25152961 , -0.27004702]]
```

• Selected: Pclass, Sex, Age, SibSp

Classifiers comparison after selecting and extracting features

• SVC, RFC, LR after actions

Conclusion

- Data preprocessing significantly improved classifier accuracy.
- Feature selection techniques identified key predictors: Pclass, Sex, Age, and SibSp.
- Feature extraction via PCA simplified models while retaining essential information.
- Post-preprocessing, classifiers (SVC, RFC, LR) demonstrated improved performance.