Tema: Розв'язування прямокутних трикутників Мета:

- Навчальна: навчити розв'язувати прикладні задачі на основі отриманих знань, закріпити знання та вміння розв'язувати прямокутні трикутники;
- Розвиваюча: розвивати вміння працювати самостійно та в групі;
- *Виховна:* виховувати наполегливість, естетичність у оформленні конспекту.

Хід уроку

> Пригадайте:

- Що означає розв'язати трикутник?
- Як розв'язати прямокутний трикутник за гіпотенузою і гострим кутом?
- Як розв'язати прямокутний трикутник за катетом і гіпотенузою?
- Як розв'язати прямокутний трикутник за двома катетами?
- Як розв'язати прямокутний трикутник за катетом і гострим кутом?

1. Розв'язування прямокутного трикутника за гіпотенузою і гострим кутом

2. Розв'язування прямокутного трикутника за катетом і гострим кутом

$$\angle \beta = 90^{\circ} - \angle \alpha$$

$$b = \frac{a}{\operatorname{tg} \alpha}$$

$$b = a \cdot \mathsf{tg}\,oldsymbol{eta}$$

$$c = \frac{a}{\sin \alpha}$$

$$c = \sqrt{a^2 + b^2}$$

3. Розв'язування прямокутного трикутника за катетом і гіпотенузою

$$a = \sqrt{c^2 - b^2}$$

$$\sin \beta = \frac{b}{c}$$

$$\angle \alpha = 90^{\circ} - \angle \beta$$

∠**β** знаходимо за допомогою таблипь

4. Розв'язування прямокутного трикутника за двома катетами

$$c = \sqrt{a^2 + b^2}$$

$$tg \beta = \frac{b}{a}$$

$$\angle \alpha = 90^{\circ} - \angle \beta$$

∠**β** знаходимо за допомогою таблипь

Розв'язування задач

Задача №1

Розв'язати прямокутний трикутник за гіпотенузою і катетом:

$$c = 25, a = 24$$

Дано:

$$\Delta MAT$$
 – прямокутний ($\angle A=90^\circ$)

$$MA \perp AT$$

$$AT = 24$$

$$MT = 25$$

Знайти: $MA-? \angle M-? \angle T-?$

Розв'язання:

За теоремою Піфагора:

$$MA = \sqrt{MT^2 - AT^2} = \sqrt{25^2 - 24^2} = \sqrt{625 - 576} = \sqrt{49} = 7$$

$$\sin M = \frac{AT}{MT} = \frac{24}{25} = 0.96 \implies \angle M = 74^{\circ}$$

$$\angle T = 90^{\circ} - \angle M = 90^{\circ} - 74^{\circ} = 16^{\circ}$$

Відповідь: b = 7; $\alpha = 74^{\circ}$; $\beta = 16^{\circ}$.

Задача №2

Розв'яжіть прямокутний трикутник <u>за двома катетами</u>: $a = 6\sqrt{3}$, b = 6

Дано:

 ΔMAT – прямокутний ($\angle A=90^\circ$)

$$MA = 6$$

$$AT = 6\sqrt{3}$$

Знайти:

$$MT-? \angle M-?$$
 $\angle T-?$

Розв'язання:

За теоремою Піфагора:

$$MT = \sqrt{MA^2 + AT^2} = \sqrt{6^2 + (6\sqrt{3})^2} = \sqrt{36 + 108} = \sqrt{144} = 12$$

$$\sin T = \frac{MA}{MT} = \frac{6}{12} = \frac{1}{2} \Rightarrow \angle T = 30^\circ$$

$$\angle M = 90^\circ - 30^\circ = 60^\circ$$

Відповідь: MT = 12; $\angle M = 60^{\circ}$; $\angle T = 30^{\circ}$;

Задача №3

Синус кута при основі рівнобедреного трикутника дорівнює $\frac{8}{17}$, а висота, проведена до основи - 16 см. Знайдіть основу трикутника.

Лано:

ΔМАТ − рівнобедрений

$$MA = AT$$

$$AH \perp MT$$

$$AH = 16 \text{ cm}$$

$$\sin M = \sin T = \frac{8}{17}$$

Знайти:МТ-?

Розв'язання:

 $\left. \frac{\Delta MAT}{\text{рівнобедрений}} \right| \Rightarrow AH -$ висота, медіана і бісектриса $\Rightarrow MH = HT$

• Розглянемо прямокутний $\Delta MHA~(\angle H=90^\circ)$:

$$\sin M = \frac{AH}{MA} \Rightarrow MA = \frac{AH}{\sin M} = 16 \cdot \frac{17}{8} = 34 \text{ cm}$$

За теоремою Піфагора:

$$MH = \sqrt{MA^2 - AH^2} = \sqrt{34^2 - 16^2} = \sqrt{1156 - 256} = \sqrt{900} = 30 \text{ cm}$$

$$MT = 2MH = 2 \cdot 30 = 60 \text{ cm}$$

Відповідь: 60 см.

Домашнє завдання

Повторити § 21 Виконати № 795 (1-3), 797.

795. За катетом і гіпотенузою трикутника ABC ($\angle C = 90^{\circ}$) знайдіть його другий катет та гострі кути з точністю до мінути:

1)
$$AB = 8$$
 cm; $AC = 4\sqrt{2}$ cm;

2)
$$AB = 37$$
 дм; $BC = 12$ дм;

3)
$$AB = 10$$
 cm; $AC = 7$ cm;

797. Знайдіть укіс дороги (значення тангенса кута α) за малюнком 211. Знайдіть міру кута α .

Відправити на Human або електронну пошту smartolenka@gmail.com