```
In [9]:
```

```
import yfinance as yf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas_datareader import data as pdr
yf.pdr_override()
import datetime as dt
import json
import tensorflow as tf
from tensorflow import keras
```

In [10]:

```
start = '2010-01-01'
end = '2022-12-31'

df = pdr.get_data_yahoo('AAPL', start, end )
df.head()
```

[********** 100%*********** 1 of 1 completed

Out[10]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2010-01-04	7.622500	7.660714	7.585000	7.643214	6.515213	493729600
2010-01-05	7.664286	7.699643	7.616071	7.656429	6.526475	601904800
2010-01-06	7.656429	7.686786	7.526786	7.534643	6.422666	552160000
2010-01-07	7.562500	7.571429	7.466071	7.520714	6.410791	477131200
2010-01-08	7.510714	7.571429	7.466429	7.570714	6.453412	447610800

In [11]:

df.tail()

Out[11]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2022-12-23	130.919998	132.419998	129.639999	131.860001	131.860001	63814900
2022-12-27	131.380005	131.410004	128.720001	130.029999	130.029999	69007800
2022-12-28	129.669998	131.029999	125.870003	126.040001	126.040001	85438400
2022-12-29	127.989998	130.479996	127.730003	129.610001	129.610001	75703700
2022-12-30	128.410004	129.949997	127.430000	129.929993	129.929993	76960600

In [12]:

```
df = df.reset_index()
df.head()
```

Out[12]:

	Date	Open	High	Low	Close	Adj Close	Volume
0	2010-01-04	7.622500	7.660714	7.585000	7.643214	6.515213	493729600
1	2010-01-05	7.664286	7.699643	7.616071	7.656429	6.526475	601904800
2	2010-01-06	7.656429	7.686786	7.526786	7.534643	6.422666	552160000
3	2010-01-07	7.562500	7.571429	7.466071	7.520714	6.410791	477131200
4	2010-01-08	7.510714	7.571429	7.466429	7.570714	6.453412	447610800

In [13]:

```
df = df.drop(['Date','Adj Close'], axis = 1)
df.head()
```

Out[13]:

	Open	High	Low	Close	Volume
0	7.622500	7.660714	7.585000	7.643214	493729600
1	7.664286	7.699643	7.616071	7.656429	601904800
2	7.656429	7.686786	7.526786	7.534643	552160000
3	7.562500	7.571429	7.466071	7.520714	477131200
4	7.510714	7.571429	7.466429	7.570714	447610800

In [16]:

```
plt.plot(df.Close)
```

Out[16]:

[<matplotlib.lines.Line2D at 0x1825bfc77c0>]

In [18]:

df

Out[18]:

	Open	High	Low	Close	Volume
0	7.622500	7.660714	7.585000	7.643214	493729600
1	7.664286	7.699643	7.616071	7.656429	601904800
2	7.656429	7.686786	7.526786	7.534643	552160000
3	7.562500	7.571429	7.466071	7.520714	477131200
4	7.510714	7.571429	7.466429	7.570714	447610800
3267	130.919998	132.419998	129.639999	131.860001	63814900
3268	131.380005	131.410004	128.720001	130.029999	69007800
3269	129.669998	131.029999	125.870003	126.040001	85438400
3270	127.989998	130.479996	127.730003	129.610001	75703700
3271	128.410004	129.949997	127.430000	129.929993	76960600

3272 rows × 5 columns

```
In [19]:
```

```
ma100 = df.Close.rolling(100).mean() #ma = moving average
ma100
Out[19]:
                  NaN
                  NaN
1
2
                  NaN
3
                  NaN
4
                  NaN
3267
         150.515600
         150.157800
3268
         149.764699
3269
3270
         149.412100
3271
         149.062199
Name: Close, Length: 3272, dtype: float64
In [25]:
plt.figure(figsize = (12,6))
plt.nga.
plt.plot(df.Close, label = 'Closing Price')
plt.plot(ma100,'r', label='Moving 100 day average')
plt.legend()
plt.show()
```


In [26]:

```
ma200 = df.Close.rolling(200).mean() #ma = moving average
ma200
```

Out[26]:

```
0
             NaN
1
             NaN
2
             NaN
3
             NaN
4
             NaN
        152.1331
3267
3268
        152.0096
3269
        151.8867
3270
        151.7593
3271
        151.6110
Name: Close, Length: 3272, dtype: float64
```

```
In [11]:
```

```
plt.figure(figsize = (12,6))
plt.plot(df.Close,label='Closing Price')
plt.plot(ma100,'r',label = 'Moving 100 day average')
plt.plot(ma200,'g',label = 'Moving 200 day average')
plt.legend()
plt.show()
```


In [12]:

df.shape

Out[12]:

(3272, 5)

In [13]:

```
#Spliting data into training and testing

data_training = pd.DataFrame(df['Close'][0:int(len(df)*0.70)])
data_testing = pd.DataFrame(df['Close'][int(len(df)*0.70):int(len(df))])

print(data_training.shape)
print(data_testing.shape)
```

(2290, 1)

(982, 1)

In [14]:

```
data_training.head()
```

Out[14]:

Close

- **0** 7.643214
- **1** 7.656429
- **2** 7.534643
- **3** 7.520714
- **4** 7.570714

```
In [15]:
```

```
from sklearn.preprocessing import MinMaxScaler #data scaling = reduces the difference between the points in the data
# which results in greater accuracy. It comes under Data Preprocessing
scaler = MinMaxScaler(feature_range=(0,1))
```

```
In [16]:
```

```
data_training_array = scaler.fit_transform(data_training)
data_training_array
Out[16]:
array([[0.01533047],
       [0.01558878],
       [0.01320823],
       [0.71710501],
       [0.71739828],
       [0.70127194]])
In [17]:
data_training_array.shape
Out[17]:
(2290, 1)
In [18]:
x_train = [] # this is the steps we take, for example 100 days data
y_train = [] #this is the predicted value, ie value on 101 day after analysing 100 days.
```

```
In [19]:

x_train.shape
```

Out[19]:

(2190, 100, 1)

In [20]:

y_train.shape

for i in range(100, data_training_array.shape[0]):
 x_train.append(data_training_array[i-100:i])
 y_train.append(data_training_array[i,0])

x_train , y_train = np.array(x_train) , np.array(y_train)

Out[20]:

(2190,)

In [21]:

#ML Model

In [22]:

```
from keras.layers import Dense, Dropout, LSTM
from keras.models import Sequential, model_from_json
```

In [23]:

```
model = Sequential()
model.add(LSTM(units = 50, activation = 'relu', return_sequences= True, input_shape = (x_train.shape[1],1)))
model.add(Dropout(0.2))

model.add(LSTM(units = 60, activation = 'relu', return_sequences= True))
model.add(Dropout(0.3))

model.add(LSTM(units = 80, activation = 'relu', return_sequences= True))
model.add(Dropout(0.4))

model.add(LSTM(units = 120, activation = 'relu'))
model.add(Dropout(0.5))

model.add(Dense(units = 1)) #connects the whole model
```

In [24]:

model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 100, 50)	10400
dropout (Dropout)	(None, 100, 50)	0
lstm_1 (LSTM)	(None, 100, 60)	26640
dropout_1 (Dropout)	(None, 100, 60)	0
lstm_2 (LSTM)	(None, 100, 80)	45120
dropout_2 (Dropout)	(None, 100, 80)	0
lstm_3 (LSTM)	(None, 120)	96480
dropout_3 (Dropout)	(None, 120)	0
dense (Dense)	(None, 1)	121

Total params: 178,761 Trainable params: 178,761 Non-trainable params: 0 In [25]:

```
model.compile(optimizer = 'adam', loss = 'mean_squared_error')
model.fit(x_train , y_train, epochs = 50)
```

```
Epoch 1/50
Epoch 2/50
69/69 [=========== ] - 14s 199ms/step - loss: 0.0070
Epoch 3/50
Epoch 4/50
Epoch 5/50
Epoch 6/50
69/69 [===========] - 15s 217ms/step - loss: 0.0047
Epoch 7/50
69/69 [=========== ] - 15s 215ms/step - loss: 0.0049
Epoch 8/50
69/69 [============ ] - 14s 207ms/step - loss: 0.0049
Epoch 9/50
69/69 [========] - 16s 234ms/step - loss: 0.0048
Epoch 10/50
Epoch 11/50
69/69 [=========== ] - 14s 206ms/step - loss: 0.0038
Epoch 12/50
Epoch 13/50
69/69 [===========] - 15s 220ms/step - loss: 0.0033
Epoch 14/50
Epoch 15/50
69/69 [============= ] - 15s 219ms/step - loss: 0.0037
Epoch 16/50
69/69 [=========== ] - 14s 204ms/step - loss: 0.0039
Epoch 17/50
69/69 [=========== ] - 15s 213ms/step - loss: 0.0034
Epoch 18/50
69/69 [=========] - 15s 214ms/step - loss: 0.0033
Epoch 19/50
Epoch 20/50
69/69 [=========== ] - 15s 218ms/step - loss: 0.0028
Epoch 21/50
69/69 [============= - - 15s 220ms/step - loss: 0.0030
Epoch 22/50
69/69 [=========== ] - 16s 227ms/step - loss: 0.0029
Epoch 23/50
69/69 [=========== - - 15s 218ms/step - loss: 0.0022
Epoch 24/50
69/69 [============ ] - 15s 224ms/step - loss: 0.0024
Epoch 25/50
69/69 [=========== ] - 15s 221ms/step - loss: 0.0025
Epoch 26/50
69/69 [=========== ] - 15s 211ms/step - loss: 0.0024
Epoch 27/50
Epoch 28/50
69/69 [===========] - 15s 223ms/step - loss: 0.0022
Epoch 29/50
69/69 [=========] - 15s 222ms/step - loss: 0.0022
Epoch 30/50
Epoch 31/50
69/69 [============ ] - 16s 228ms/step - loss: 0.0021
Epoch 32/50
Epoch 33/50
69/69 [===========] - 16s 233ms/step - loss: 0.0023
Epoch 34/50
Epoch 35/50
69/69 [=========] - 16s 226ms/step - loss: 0.0018
Epoch 36/50
69/69 [=========== ] - 16s 233ms/step - loss: 0.0018
Epoch 37/50
Epoch 38/50
69/69 [========] - 16s 238ms/step - loss: 0.0020
Epoch 39/50
Epoch 40/50
Epoch 41/50
Epoch 42/50
69/69 [=====
       ========= ] - 14s 204ms/step - loss: 0.0018
Epoch 43/50
69/69 [========== ] - 15s 220ms/step - loss: 15.4308
```

```
Epoch 44/50
69/69 [=====
           Epoch 45/50
69/69 [========] - 16s 232ms/step - loss: 0.0029
Epoch 46/50
69/69 [========] - 16s 227ms/step - loss: 0.0026
Epoch 47/50
69/69 [===========] - 15s 213ms/step - loss: 0.0024
Epoch 48/50
69/69 [============] - 16s 226ms/step - loss: 0.0023
Epoch 49/50
69/69 [=======] - 16s 237ms/step - loss: 0.0025
Epoch 50/50
69/69 [========] - 17s 246ms/step - loss: 0.0024
Out[25]:
<keras.callbacks.History at 0x20de7492d90>
In [26]:
model.save('keras_model4.keras')
In [27]:
data_testing.head()
Out[27]:
       Close
2290 42 602501
2291 42.357498
2292 42,722500
2293 42.544998
2294 42.700001
In [28]:
past_100_days = data_training.tail(100)
In [29]:
final_df = pd.concat([past_100_days, data_testing],ignore_index = True, axis = 0)
In [30]:
final_df.head()
Out[30]:
     Close
0 55.959999
1 54.470001
2 54.560001
3 54.592499
4 55.007500
In [31]:
input_data = scaler.fit_transform(final_df)
input_data
Out[31]:
array([[0.13937014],
      [0.1291969],
      [0.1298114],
      [0.61785443],
      [0.64222927],
      [0.64441407]])
```

```
In [32]:
input_data.shape
Out[32]:
(1082, 1)
In [33]:
x_{test} = []
y_{\text{test}} = []
for i in range(100, input_data.shape[0]):
    x_test.append(input_data[i-100: i])
    y_test.append(input_data[i,0])
In [34]:
x_test , y_test = np.array(x_test), np.array(y_test)
print(x_test.shape)
print(y_test.shape)
(982, 100, 1)
(982,)
In [35]:
#Making Predictions
y_predicted = model.predict(x_test)
31/31 [========= ] - 2s 62ms/step
In [36]:
y_predicted.shape
Out[36]:
(982, 1)
In [37]:
y_test
Out[37]:
array([0.04816933, 0.04649653, 0.04898865, 0.04777672, 0.04883503,
        0.04818639, 0.04905691, 0.05093454, 0.04927882, 0.05253905,
        0.05468976, 0.05486046, 0.05578219, 0.05284628, 0.05595289,
        0.05745499,\ 0.05690876,\ 0.05518478,\ 0.05173679,\ 0.05243663,
        0.06266108, 0.06609201, 0.06745755, 0.07090551, 0.07498506,
        0.07822822,\ 0.0756849 , 0.07846719,\ 0.09029614,\ 0.08340019,
        0.07945721, 0.07612869, 0.07899633, 0.07942306, 0.08152257,
         0.08372451, \ 0.08846975, \ 0.09073996, \ 0.09132031, \ 0.09355637, 
         0.09884784, \ 0.09782367, \ 0.09973542, \ 0.09688486, \ 0.09674831, 
         0.0973628 \ , \ 0.09739694, \ 0.10401981, \ 0.10526585, \ 0.10640949, \\
        0.1114449, 0.1108987, 0.10768968, 0.1060169, 0.10654605, 0.09982077, 0.11663396, 0.11429546, 0.11873346, 0.11315182,
         0.10355893, \; 0.1036272 \;\; , \; 0.09990612, \; 0.0938636 \;\; , \; 0.0743023 \;\; , \\
         0.07932065, \ 0.08317828, \ 0.08174448, \ 0.079901 \quad , \ 0.06981308, 
        0.0758044 , 0.06928394, 0.06395836, 0.06278058, 0.06151744,
         0.06006658, \ 0.06163694, \ 0.05612359, \ 0.05310233, \ 0.06392421, 
        0.06887427, 0.07344884, 0.08186395, 0.08601178, 0.08981821, 0.08875993. 0.08869163. 0.08628489. 0.08824784. 0.0960314
```

```
In [38]:
y_predic
```

```
y_predicted
Out[38]:
array([[0.09207357],
         [0.09277508],
        [0.09351471],
        [0.09425803],
        [0.09497693],
        [0.09565249],
        [0.09627241],
        [0.09683166],
        [0.09733434],
        [0.09778409],
        [0.09819143],
        [0.09857252],
        [0.09894121],
        [0.09930849],
        [0.09967425],
        [0.10003999],
        [0.1004099],
        [0.1007849 ].
In [42]:
scaler.scale_ #gives the factor with which the above data is scaled down so that we can scale it up again
Out[42]:
array([0.00682769])
In [44]:
scale_factor = 1/0.00682769
y_predicted = y_predicted * scale_factor
y_test = y_test * scale_factor
In [45]:
plt.figure(figsize=(12,6))
plt.plot(y_test, 'b', label = "Original Price")
plt.plot(y_predicted, 'r', label = "Predicted Price")
plt.xlabel('Time')
plt.ylabel('Price')
plt.legend()
plt.show()
    7000
                 Original Price
                 Predicted Price
    6000
    5000
    4000
    3000
    2000
    1000
                                     200
                                                             400
                                                                                    600
                                                                                                           800
                                                                                                                                  1000
                                                                       Time
In [ ]:
```