AGI via Combining Logic and Deep Learning

AGI 2021 Conference

YKY

October 12, 2021

Table of contents

2	Categorical Logic
3	Fibrations
)	Hitzler's Core Method
;	Hitzler's Core Method
3	This is a lamprey
)	Evolution of the Neocortex
.0	Neocortex vs Reinforcement Learning
2	Equivariance of the Transformer
.3	Additivity of Word Embeddings
4	BERT's Hidden Representation
6	Memory Formation
7	Memory Recall
9	The success of CNN in computer vision
21	Symmetry and inductive bias
22	Richard Sutton's view
24	Doubts about logicism
25	Reinforcement learning
26	Structure of logic
27	Symmetric neural networks
29	For example: symmetric NN for object recognition
80	Logicalization of BERT
31	Advantages of logical AI (1)
0	A 1 4 C1 - 1 A T (O)

Categorical Logic

Part I

Categorical Logic

• Quantifier as adjunctions

Fibrations

• Fibration

Part II

Model-based vs Syntax-based

1 610 11

Hitzler's Core Method

• The semantic operator \mathcal{T}_P updates an interpretation to another interpretation:

Hitzler's Core Method

• The level mapping ι takes an interpretation to a real number:

Part III

Reinforcement Learning

This is a lamprey

Evolution of the Neocortex

Neocortex vs Reinforcement Learning

Part IV

BERT / GPT

Equivariance of the Transformer

• Many people already know this: the Transformer module is **equivariant** in its inputs and outputs:

Additivity of Word Embeddings

• This suggests that word embeddings can be added together to give **composite** meanings

BERT's Hidden Representation

• This may be a close description of how BERT performs question-answering or logic deduction:

BERT + Knowledge Graphs

Part V

Memory Formation

 $\bullet \ \ {\rm Memory}$

Memory Recall

 \bullet Memory retrieval

Old Stuffs

Part VI

The success of CNN in computer vision

• In geometry, vision is said to possess the property of **translation** invariance:

• Convolution is an operation invariant under translation:

$$(T_x \circ f) * g = T_x \circ (f * g) \tag{2}$$

• Yann LeCun *et al* exploited the symmetry of CNNs to accelerate learning, successfully solved the visual recognition problem

(3)

Symmetry and inductive bias

- In mathematics, symmetry often simplifies computation, which is why mathematicians love to study symmetries
- In machine learning, one introduces inductive bias to narrow down the search space:

• Oftentimes, if inductive bias is chosen correctly, solution is found quickly, otherwise problem becomes **intractable**

Richard Sutton's view

• In contrast, Sutton expressed the view that AI can be solved merely by increasing computing power, under the reinforcement learning framework

(5)

• Our choice is just one out of many possible forms of logic:

intelligence based on "alternative" logics

(6)

• This is not only a theoretical issue; Indeed, AI labs around the world had begun the search for AGI with various strategies!

Doubts about logicism

- Admittedly, the human brain does **not** think like symbolic logic
- By symbolic logic, we mean any "linear" (sequential) representation
- In contrast, **pictures** and **music** are *multi*-dimensional
- The brain may use representations that are not sequential or symbolic
- However, logic is a very efficient representation (from a computer perspective) even though it deviates from the biological brain
- Neuroscience is too difficult to crack, thus not a practical route to AGI
- Human cognition may be much closer to logic than we've thought. If we're given a description: "woman finds new lover, murders husband":

We may not know: Is the woman blonde? What is she wearing? In other words, our "mental model" is devoid of details and it may not possess any more information than just a sequence of symbols.

Reinforcement learning

• Think of the "state" in reinforcement learning like a board positon in a chess game:

• Reinforcement learning seeks to maximize the total **rewards** accrued over a (possibly infinite) **time horizon**:

$$\text{maximize } S = \int_0^\infty L \, dt \tag{9}$$

- Such maximization gives the AI **intelligence** because it is often beneficial to **delay** rewards, eg: to plot a clever chess move
- But reinforcement learning is a **brute force** approach; we need to give the model some additional **inductive bias**, eg, in the form of **logical structure**

Structure of logic

- The idea is: introduce symmetries of **logic** into deep learning to solve the AGI problem
- Because human cognition has logical structure, this inductive bias may help us find a solution to AGI faster
- Logic is a complicated structure, but its simplest symmetry is the **commutativity** (or permutation invariance) of **propositions**:

$$A \wedge B \equiv B \wedge A$$

it's raining \wedge lovesick \equiv lovesick \wedge it's raining (10)

- Its importance may be analogous to translation invariance in vision
- The significance of commutativity is: it **decomposes** the AI system's mental state into individual **propositions**

Symmetric neural networks

- Permutation invariance can be handled by symmetric neural networks
- I wasted 2 years trying to solve this problem, and then found out it had been solved 3 years before: [PointNet 2017] and [DeepSets 2017] and their mastery of mathematics is significantly above me!
- Any symmetric function can be represented by the following form (a special case of the Kolmogorov-Arnold representation of functions):

- Sym NN gives a powerful boost in efficiency ∝ n! where n = #inputs
 The code for Sym NN is just a few lines of Tensorflow:
- h = Dense(3, activation='tanh')
 ys = []
 for i in range(9):
 ys.append(h(xs[i]))
 y = Keras.stack(ys, axis=1)
 Adder = Lambda(lambda x: Keras.sum(x, axis=1))
 (13)

- Very easy to adopt this to existing models such as BERT and reinforcement learning
- I have successfully tested it on the game of TicTacToe: https://github.com/Cybernetic1/policy-gradient

y = Adder(y) g = Dense(3) output = g(y)

For example: symmetric NN for object recognition

• Imagine objects represented as **point clouds**:

- It does not matter in what order the points are in a sequence; the function $f(x_1,...,x_n)$ is symmetric in its arguments (the points)
- Permutation invariance is **essential** for this to work

Logicalization of BERT

original BERT / Transformer

• Similarly, we can convert BERT's hidden state into a set of propositions, by replacing the original decoder with a sym NN:

logic BERT?

- symmetry on the hidden state, error propagation is expected to cause its representation to change
- Of course, this remains to be proven by experiment 😝

Advantages of logical AI (1)

• With logic, it becomes easy to design cognitive architectures, eg: long-term memory module

Advantages of logical AI (2)

- Integrate seamlessly with knowledge graphs
- graphs are made up of edges,
 edges = relations between nodes = propositions:

References

Thanks for watching
Illustration credits:

• Translation invariance, from Udacity Course 730, Deep Learning (L3 Convolutional Neural Networks ▷ Convolutional Networks)