Codierungstheorie

Reinhold Hübl

Vorlesung 6 - WS 2022/23

1/33

lineare Codes

Ein linearer $[n,k]_q$ –Code ist ein k–dimensionaler Untervektorraum $C\subseteq \mathbb{F}_q^n$.

Ein linearer Code kann beschreiben werden durch eine Erzeugermatrix, also eine $k \times n$ -Matrix G, deren Zeilen eine Basis von C bilden.

Ein linearer Code kann beschrieben werden durch eine Paritätsprüfmatrix, also eine $(n - k) \times n$ -Matrix H, für die gilt:

$$C = \{c \in \mathbb{F}_q^n \mid H \cdot \overrightarrow{c} = \overrightarrow{0}\}\$$

Bemerkung

Das Dualitätsprinzip der linearen Algebra liefert Algorithmen zur Berechnung einer Erzeugermatrix G eines Codes C aus einer Paritätsprüfmatrix H und zur Berechnung einer Paritätsprüfmatrix H aus einer Erzeugermatrix G.

Beispiel

Der *n*-fache Wiederholungscode $C \subseteq \mathbb{F}_q^n$ ist der $[n,1,n]_q$ -Code

$$C = \{(r, r, \dots, r) \in \mathbb{F}_q^n | r \in \mathbb{F}_q\}$$

Beispiel

Der **Paritätsprüfcode** $C \subseteq \mathbb{F}_q^n$ der Länge n ist der $[n, n-1, 2]_q$ -Code

$$C = \{(x_1, \ldots, x_n) \in \mathbb{F}_q^n \mid \sum_{i=1}^n x_i = 0\}$$

Bemerkung

Der *n*–fache Wiederholungscode hat Erzeugermatrix

$$G = (1 \ 1 \dots 1)$$

und der Paritätsprüfcode der Länge n hat die Paritätsprüfmatrix

$$H = (1 \ 1 \dots 1)$$

Die beiden Codes sind also dual zueinander.

Übung

Bestimmen Sie eine Paritätsprüfmatrix des 5–fachen Wiederholungscodes über \mathbb{F}_7 .

Wir betrachen ein n von der Form $n = 2^k - 1$ und alle möglichen k-Tupel

$$v=egin{pmatrix} a_1 \ dots \ a_k \end{pmatrix}$$
 mit $a_i\in\{0,1\}$ ohne das Nulltupel $egin{pmatrix} 0 \ dots \ 0 \end{pmatrix}$. Hiervon gibt es

genau n Stück v_1,\ldots,v_n . Wir betrachten die $k\times n$ -Matrix

$$H = (v_1 \ldots v_n)$$

mit den v_i als Spalten.

Satz

Die Matrix H ist die Paritätsprüfmatrix eines vollkommenen $[n, n-k]_2$ -Codes C mit d(C)=3.

Definition

Dieser Code C heißt Hammingcode

Übung

Bestimmen Sie eine Paritätsprüfmatrix und eine Erzeugermatrix für den [7, 4, 3]₂–Hamming–Code

Definition

Ein linearer $[n,k]_q$ -Code $C \subseteq \mathbb{F}_q^n$ heißt **zyklisch**, wenn gilt:

Ist
$$c = (c_1, c_2, ..., c_{n-1}, c_n) \in C$$
, so ist auch

$$\widetilde{c}=(c_n,c_1,c_2,\ldots,c_{n-1})\in C.$$

Beispiel

Der lineare [6, 2]₂-Code

$$\textit{C} = \{(0,0,0,0,0,0), (1,0,1,0,1,0), (0,1,0,1,0,1), (1,1,1,1,1,1)\} \subseteq \mathbb{F}_2^6$$

ist zyklisch.

Für ein $c=(c_1,c_2,\ldots,c_{n-1},c_n)\in\mathbb{F}_q^n$ bezeichnen wir mit $c^{[1]}=(c_n,c_1,c_2,\ldots,c_{n-1})$ das Element von \mathbb{F}_q^n , das dadurch entsteht, dass wir alle Komponenten um eine Stelle nach rechts verschieben.

Regel

Ein linearer $[n, k]_q$ -Code C ist genau dann zyklisch, wenn gilt

$$c \in C \Longrightarrow c^{[1]} \in C$$

Satz

Ist $\mathbf{g_1}, \dots, \mathbf{g_k}$ Basis eines $[n, k]_q$ -Codes C, so ist C genau dann zyklisch, wenn $\mathbf{g_1}^{[1]}, \dots, \mathbf{g_k}^{[1]} \in C$.

Übung

Überprüfen Sie, ob der lineare $[4,2]_7$ –Code C mit Erzeugermatrix

$$G = \begin{pmatrix} 1 & 3 & 1 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

zyklisch ist.

Ein **Polynom** über \mathbb{F}_q ist ein Ausdruck der Form

$$f(X) = a_0 + a_1 \cdot X + a_2 \cdot X^2 + \cdots + a_n \cdot X^n$$

mit $a_0, \ldots, a_n \in \mathbb{F}_q$ und mit einer Unbekannten X.

Die Zahlen $a_i \in \mathbb{F}_q$ heißen die **Koeffizienten** des Polynoms f(X).

Ist $a_n \neq 0$, so heißt $\deg(f) = n \operatorname{der} \operatorname{Grad} \operatorname{von} f(X)$.

Mit $\mathbb{F}_q[X]$ bezeichnen wir die Menge der Polynome über \mathbb{F}_q .

Beispiel

$$f(X)=2X^6+7X^2+4X+3\in\mathbb{F}_{11}[X]$$
 ist ein Polynom vom Grad 6.

Regel

 $\mathbb{F}_q[X]$ ist (zusammen mit der Polynommultiplikation) ein Ring.

Satz

Ist C ein zyklischer $[n,k]_q$ -Code, so gibt es Elemente $g_0, \ldots, g_{n-k} \in \mathbb{F}_q$ und $h_0, \ldots, h_k \in \mathbb{F}_q$ mit den folgenden Eigenschaften

- Oie Matrix

$$G = \begin{pmatrix} g_0 & g_1 & \dots & \dots & g_{n-k} & 0 & 0 & \dots & 0 \\ 0 & g_0 & \dots & \dots & g_{n-k-1} & g_{n-k} & 0 & \dots & 0 \\ \vdots & & & \ddots & & & \vdots \\ 0 & 0 & & g_0 & & & & & g_{n-k} \end{pmatrix}$$

mit n Spalten und k Zeilen ist eine Erzeugermatrix von C.

Satz

Die Matrix

$$H = \begin{pmatrix} h_k & h_{k-1} & \dots & \dots & h_0 & 0 & 0 & \dots & 0 \\ 0 & h_k & \dots & \dots & h_1 & h_0 & 0 & \dots & 0 \\ \vdots & & & \ddots & & & & \vdots \\ 0 & 0 & & h_k & & & & & h_0 \end{pmatrix}$$

 $mit\ n\ Spalten\ und\ n-k\ Zeilen\ ist\ eine\ Paritätsprüfmatrix\ von\ C.$ Umgekehrt definieren auch zwei\ Polynome

$$G(X) = g_0 + g_1X + \cdots + g_{n-k}X^{n-k}, \quad H(X) = h_0 + h_1X + \cdots + h_kX^k$$

mit $G(X) \cdot H(X) = X^n - 1$ über \mathbb{F}_q einen zyklischen $[n,k]_q$ -Code (mit Erzeuger- und Paritätsprüfmatrix wie oben beschrieben).

Definition

Das Polynom G(X) aus dem Satz heißt **Erzeugerpolynom** des Codes C, das Polynom H(X) heißt **Paritätsprüfpolynom** von C.

Beispiel

Für den zyklischen [4, 2]₂-Code

$$C = \{(0,0,0,0), (1,0,1,0), (0,1,0,1), (1,1,1,1)\}$$
 gilt:

$$G(X) = X^2 + 1$$
, $H(X) = X^2 + 1$

Beachten Sie dabei, dass über Körpern der Charakteristik 2 gilt

$$X^{n} - 1 = X^{n} + 1$$

Beispiel

Das Polynom $G(X)=X^4+X^3+X+1\in\mathbb{F}_2[X]$ definiert einen zyklischen $[6,2]_2$ –Code.

$$(X^6+1) \div (X^4+X^3+X+1) = X^2+X+1$$

Beispiel

Das Polynom $G(X) = X^3 + X^2 + X + 1 \in \mathbb{F}_2[X]$ definiert keinen zyklischen $[6,3]_2$ -Code.

$$(X^6+1) \div (X^3+X^2+X+1) = X^3+X^2$$
 Rest X^2+1

G(X) ist also kein Teiler von $X^6 + 1$.

Beispiel

Das Polynom $G(X) = X^3 + 3X^2 + 6X + 4 \in \mathbb{F}_7[X]$ ist Erzeugerpolynom eines zyklischen $[6,3]_7$ -Codes.

Das Paritätsprüfpolynom hierzu ist

$$H(X) = X^3 + 4X^2 + 3X + 5$$

Übung

Überprüfen Sie, ob $G(X) = X^2 + 4 \in \mathbb{F}_5[X]$ Erzeugerpolynom eines zyklischen $[4,2]_5$ -Codes C ist.

Übung

Wie viele zyklische [5,3]2-Codes gibt es?

Regel

Für ein $n \in \mathbb{N}$ und ein $1 \le k \le n-1$ sind die folgenden Aussagen äquivalent:

- Es gibt einen zyklischen $[n, k]_q$ -Code.
- Das Polynom $X^n 1$ hat einen Teiler vom Grad k in $\mathbb{F}_q[X]$.
- Es gibt einen zyklischen $[n, n-k]_q$ -Code.
- Das Polynom $X^n 1$ hat einen Teiler vom Grad n k in $\mathbb{F}_q[X]$.

Beispiel

Es gibt genau zwei zyklische [6,2]2-Codes. Einer mit

$$G_1(X) = X^4 + X^2 + 1, \qquad H_1(X) == X^2 + 1$$

und einer mit

$$G_2(X) = X^4 + X^3 + X + 1$$
 $H_2(X) = X^2 + X + 1$

Weitere zyklische [6,2]2-Codes gibt es nicht.

Jedes Polynom $G(X) \in \mathbb{F}_q[X]$ vom Grad n-k mit

$$G(X)|(X^n-1)$$

definiert einen zyklischen $[n, k]_q$ -Code mit zugehörigem Paritätsprüfpolynom

$$H(X) = (X^n - 1) \div G(X)$$

Unterschiedliche zyklische $[n, k]_q$ -Codes führen zu unterschiedlichen Erzeugerpolynomen G(X) (und unterschiedlichen Paritätsprüfpolynomen H(X)).

Unterschiedliche Teiler $G(X)|(X^n-1)$ können jedoch denselben zyklischen $[n,k]_a$ -Code definieren.

Regel

Sind $G_1(X)$ und $G_2(X)$ zwei Polynome in $\mathbb{F}_q[X]$ vom Grad n-k, die X^n-1 teilen, und gilt

$$G_1(X) = r \cdot G_2(X)$$

für ein $r \in \mathbb{F}_q \setminus \{0\}$, so definieren $G_1(X)$ und $G_2(X)$ denselben zyklischen $[n,k]_q$ –Code.

Beispiel

Das Polynom $G_1(X)=X^2+5X+6\in\mathbb{F}_7[X]$ definiert einen zyklischen $[6,4]_7$ –Code mit Paritätsprüfpolynom

$$H_1(X) = X^4 + 2X^3 + 5X^2 + 5X + 1$$

Derselbe Code wird definiert durch $G_2(X) = 5X^2 + 4X + 2 \ (= 5 \cdot G_1(X))$ mit Paritätsprüfpolynom $H_2(X) = 3X^4 + 6X^3 + X^2 + X + 3 \ (= 3 \cdot H_1(X))$.

Regel

Sind $G_1(X)$ und $G_2(X)$ zwei Polynome in $\mathbb{F}_q[X]$ vom Grad n-k, die X^n-1 teilen, und gilt **nicht**

$$G_1(X) = r \cdot G_2(X)$$

für ein $r \in \mathbb{F}_q \setminus \{0\}$, so definieren $G_1(X)$ und $G_2(X)$ unterschiedliche zyklische $[n, k]_q$ –Codes.

Bemerkung

Das Erzeugerpolynom G(X) eines zyklischen $[n, k]_q$ -Codes kann immer normiert gewählt werden, dh. so, dass

$$G(X) = X^{n-k} + g_{n-k-1} \cdot X^{n-k-1} + \dots + g_1 \cdot X + g_0$$

Dadurch ist das Erzeugerpolynom eindeutig bestimmt. In diesem Fall ist auch das Paritätsprüfpolynome eindeutig.

Übung

Überprüfen Sie, ob

$$G_1(X) = 3X^3 + X^2 + X + 5, \quad G_2(X) = 5X^3 + 4X^2 + 3X + 2 \in \mathbb{F}_7[X]$$

zyklische [6,3]₇–Codes definieren. Falls das der Fall ist, überprüfen Sie, ob die beiden Codes übereinstimmen.

Zyklische Codes können nicht nur über Körpern \mathbb{F}_p betrachtet werden sondern über beliebigen endlichen Körpern.

Beispiel

Wir betrachten den Körper \mathbb{F}_4 , gegeben durch die Relation $\alpha^2 = \alpha + 1$. Das Polynom $G(X) = X^3 + X^2 + \alpha \cdot X + \alpha$ definiert einen zyklischen $[6,3]_4$ -Code:

Es ist

$$(X^{6}+1) \div G(X) = X^{3} + X^{2} + (\alpha+1) \cdot X + \alpha + 1$$
 Rest 0

Damit ist also

$$H(X) = X^3 + X^2 + (\alpha + 1) \cdot X + \alpha + 1$$

das Paritätsprüfpolynom für diesen Code.

Übung

Wir betrachten wieder \mathbb{F}_4 , gegeben durch $\alpha^2 = \alpha + 1$.

Zeigen Sie, dass $G(X) = X^4 + \alpha \cdot X^2 + \alpha + 1$ das Erzeugerpolynom eines zyklischen [6, 2]₄–Codes ist und bestimmen Sie das zugehörige Paritätsprüfpolynom.

Wir betrachten den Körper \mathbb{F}_8 , gegeben durch die Relation $\alpha^3=\alpha+1$. Dann können auch über \mathbb{F}_8 zyklische Codes betrachtet werden.

Beispiel

Das Polynom $G(X) = X^3 + (\alpha^2 + \alpha + 1) \cdot X^2 + (\alpha^2 + 1) \cdot X + \alpha + 1$ ist das Erzeugerpolynom eines zyklischen $[7,4]_8$ -Codes.

$$(X^7+1) \div G(X) = X^4 + (\alpha^2 + \alpha + 1) \cdot X^3 + (\alpha^2 + \alpha) \cdot X^2 + X + \alpha^2 + \alpha$$
 Rest 0

Also ist

$$H(X) = X^4 + (\alpha^2 + \alpha + 1) \cdot X^3 + (\alpha^2 + \alpha) \cdot X^2 + X + \alpha^2 + \alpha$$

das zugehörige Paritätsprüfpolynom.

Übung

Wir betrachten den Körper \mathbb{F}_8 , gegeben durch die Relation $\alpha^3=\alpha+1$. Zeigen Sie, dass das Polynom

$$G(X) = X^3 + (\alpha^2 + \alpha + 1) \cdot X^2 + \alpha^2 \cdot X + \alpha^2 + \alpha + 1$$

einen zyklischen $[7,4]_8$ -Code definiert und bestimmen Sie das zugehörige Paritätsprüfpolynom.

Nachrichten können bei zyklischen Codes direkt mithilfe des Erzeugerpolynoms codiert werden.

Wir betrachtenen einen zyklischen $[n,k]_q$ -Code C mit Erzeugerpolynom G(X) und eine Nachricht $m=(m_0,m_1,\ldots,m_{k-1})\in \mathbb{F}_a^k$.

- Bilde $m(X) = m_0 + m_1 \cdot X + \cdots + m_{k-1} \cdot X^{k-1}$.
- Berechne $c(X) = m(X) \cdot G(X)$.
- Schreibe $c(X) = c_0 + c_1 X + \cdots + c_{n-1} \cdot X^{n-1}$.
- Setze $c = (c_0, c_1, \dots, c_{n-1}).$

Beispiel

Wir betrachten den zyklischen $[6,4]_2$ -Code mit Erzeugerpolynom $G(X) = X^2 + X + 1$ und die Nachricht m = (1,0,1,1).

•
$$m(X) = 1 + X^2 + X^3$$
.

•

$$c(X) = (1 + X^2 + X^2) \cdot (1 + X + X^2)$$

= 1 + X + X⁵

• c = (1, 1, 0, 0, 0, 1).

Übung

Wir betrachten den zyklischen $[6,3]_7$ -Code mit Erzeugerpolynom

 $G(X) = X^3 + 6X^2 + 4X + 6.$

Codieren Sie die Nachricht m = (3, 5, 2)

Beispiel

Wir betrachten den Körper \mathbb{F}_8 mit der Relation $\alpha^3=\alpha+1$ und den zyklischen $[7,4]_8$ -Code mit Erzeugerpolynom

$$G(X) = X^3 + (\alpha^2 + 1) \cdot X^2 + \alpha \cdot X + \alpha^2 + 1$$

und die Nachricht $m = (\alpha^2, \alpha^2 + 1, \alpha, \alpha + 1)$.

•
$$m(X) = \alpha^2 + (\alpha^2 + 1) \cdot X + \alpha \cdot X^2 + (\alpha + 1) \cdot X^3$$
.

•

$$c(X) = G(X) \cdot m(X)$$

= $\alpha + \alpha^2 \cdot X + \alpha \cdot X^2 + (\alpha + 1) \cdot X^3 + \alpha \cdot X^4$
+ $(\alpha^2 + \alpha) \cdot X^5 + (\alpha + 1) \cdot X^6$

• $c = (\alpha, \alpha^2, \alpha, \alpha + 1, \alpha, \alpha^2 + \alpha, \alpha + 1).$

Übung

Wir betrachten den zyklischen [7,3]₈-Code mit Erzeugerpolynom

$$G(X) = X^4 + (\alpha^2 + 1) \cdot X^3 + (\alpha^2 + 1) \cdot X^2 + (\alpha + 1) \cdot X + \alpha$$

Codieren Sie die Nachricht $m = (\alpha, \alpha + 1, \alpha^2)$

