Computer Vision

Sign language to text

Team 37 Enas Ikram Girgis Ibrahim 162021072 CS1 Marley Amged Hamdy Thabet 162021252 CS4 Abram Ashraf Abd El-Sayed Shehata 162021003 CS1

April 10th, 2024

Assiut University

- 1 Task Description
- 2 Demo
- 3 Contribution
- 4 Data
- 6 Project Architecture
- 6 Methods
- Results

Task Description

Brief description

Recognize American Sign Language (ASL) gestures in real-time and converting them to text.

- 1 Task Description
- 2 Demo
- 3 Contribution
- Data
- Project Architecture
- 6 Methods
- Results

Demo

Github Repository

https://github.com/Mollyamged/Sign_Language_to_text.git

- 1 Task Description
- 2 Demo
- 3 Contribution
- 4 Data
- 5 Project Architecture
- 6 Methods
- Results

Contribution

- Collected and added the data by ourselves.
- Augmented the percentage of data designated for testing purposes.
- Added a layer from flatten type
- Substituted the initial three LSTM layers with Dense layers.

- 1 Task Description
- 2 Demo
- 3 Contribution
- Data
- 6 Project Architecture
- 6 Methods
- Results

Data

Dataset:

- The dataset consists images for sign language gestures for nine different words.
- Each word is represented by 30 images, resulting in a total of 270 images in the dataset.
- \bullet The images are divided into two parts: training set and testing set .10% of the total images are reserved for testing, while the remaining .90% are used for training.

- 1 Task Description
- 2 Demo
- 3 Contribution
- 4 Data
- **6** Project Architecture
- 6 Methods
- Results

Project Architecture

- 1 Task Description
- 2 Demo
- 3 Contribution
- 4 Data
- 6 Project Architecture
- 6 Methods
- Results

- 1 Input Layer (Flatten):
 - ▶ It converts the input data into a 1-dimensional array.
 - ▶ input data with dimensions 30x126.
- \bigcirc Dense layer(1):
 - ▶ 64 neurons
 - ▶ ReLU activation function
- Oropout layer(1):
 - ▶ dropout rate of 0.2
 - ► That mean 20% of the neurons will be randomly dropped during training to prevent overfitting
- \bullet Dense layer(2):
 - ▶ 128 neurons
 - ▶ ReLU activation function
- **1** Dropout layer(2):
 - ▶ dropout rate of 0.2

- \bullet Dense layer(3):
 - ▶ 64 neurons
 - ▶ ReLU activation function
- $\mathbf{0}$ Dropout layer(3):
 - ▶ dropout rate of 0.2
- \bullet Dense layer(4):
 - ▶ 64 neurons
 - ► ReLU activation function
- Oropout layer(4):
 - ▶ dropout rate of 0.2
- \odot Dense layer(5):
 - ▶ 32 neurons
 - ▶ ReLU activation function
- Dropout layer(5):
 - ▶ dropout rate of 0.2

- Oense layer (Output Layer):
 - ▶ 9 neurons
 - ▶ softmax activation function

Model Compilation:

- loss= 'categorical_crossentropy'
- optimizer='adam'
- metrics='accuracy'

Model Training:

- **Epochs**=2000
- batch_size=32
- callbacks=[early_stopping]

- 1 Task Description
- 2 Demo
- 3 Contribution
- 4 Data
- 5 Project Architecture
- 6 Methods
- Results

Results

1 Accuracy: 96.3%

2 Loss: 14.89%