Advanced Topics in Control 2020: Large-Scale Convex Optimization

Exercise 3: Convex Optimization Problems

Goran Banjac, Mathias Hudoba de Badyn, Andrea Iannelli, Angeliki Kamoutsi, Ilnura Usmanova

March 27, 2020

Date due: March 26, 2019 at 23:59.

Please submit your solutions via Moodle as a PDF with filename Ex01_Surname.pdf, replacing Surname with your surname.

1 Local Minima Are Global Minima in Convex Optimization

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function and assume that x^* is a local minimizer of f, i.e., there exists a sufficiently small $\delta > 0$ such that for all x with $||x - x^*|| \le \delta$, it holds that $f(x^*) \le f(x)$. Show that x^* is a global minimizer of f.

Hint: Assume that x^* is not a global minimizer., i.e., there exists $\overline{x} \in \mathbb{R}^n$, such that $f(\overline{x}) < f(x^*)$. In order to arrive to a contradiction, consider the point $x = \theta \overline{x} + (1 - \theta)x^*$ for sufficiently small θ so that $||x - x^*|| \le \delta$ (for instance $\theta = \min\{1, \frac{\delta}{||x^* - \overline{x}||}\}$).

2 The Lasso Problem

Consider the Lasso problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1,$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $\lambda > 0$. Show that if $\lambda \geq ||A^{\top}b||_{\infty}$, then x = 0 is an optimal solution (minimizer).

Hint: Set $f(x) = \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1$. Clearly, $f(x) \ge \frac{1}{2} ||Ax - b||_2^2 + ||A^{\top}b||_{\infty} ||x||_1$, for all $x \in \mathbb{R}^n$. Continue the argument to derive the lower bound $f(x) \ge \frac{1}{2} ||b||_2^2$ and show that it is attained at x = 0. In the lower bound derivation you can use the inequality $|x^{\top}y| \le ||x||_{\infty} ||y||_1$, for all $x, y \in \mathbb{R}^n$.

3 Logistic Regression

(a) Given some data points $x_i \in \mathbb{R}^n$ of some class $y_i \in \{-1, 1\}$ we model the probability of some data point x belonging to class y = 1 or y = -1 with the following logistic model:

Prob
$$(y = 1) = p_1(x) = \frac{1}{1 + e^{-(w^{\top}x + b)}},$$

Prob
$$(y = -1) = p_{-1}(x) = \frac{1}{1 + e^{(w^{\top}x + b)}},$$

where $w \in \mathbb{R}^n$ and $b \in \mathbb{R}$ are the model parameters. With this model, the likelihood for measuring the data (x_i, y_i) for i = 1, ..., N is

$$l_w(x,y) = \prod_{i=1}^{N} p_{y_i}(x_i).$$

The model parameters w and b should be chosen such that this likelihood is maximized.

Show that the maximum likelihood estimate of (w, b) is given by the following logistic regression problem

$$\min_{w,b} \sum_{i=1}^{N} \log(1 + e^{-y_i(x_i^{\top} w + b)}). \tag{1}$$

Is this problem convex? μ -strongly convex?

Hint: First note that since $y \in \{-1,1\}$, we can write $p_y(x) = \frac{1}{1+e^{-y}(w^{\top}x+b)}$. Maximizing $l_w(x,y)$ is the same as maximizing $\log(l_w(x,y))$ (why?). The final optimization problem is not strongly convex. Argue on this by considering the second derivative of $\log(1+e^x)$ as $x \to -\infty$ and $x \to +\infty$.

(b) Show that the problem is equivalent to

$$\min_{w,b} \sum_{i=1}^{N} \left(\log(1 + e^{x_i^{\top} w + b}) - y_i(x_i^{\top} w + b) \right)$$
 (2)

if the classes are labeled with $\{0,1\}$ instead of $\{-1,1\}$.

Hint: We have

$$\sum_{i=1}^{N} \log(1 + e^{-y_i(w^{\top}x_i + b)}) = \sum_{i:y_i = -1} \log(1 + e^{w^{\top}x_i + b}) + \sum_{i:y_i = 1} \log(1 + e^{-(w^{\top}x_i + b)})$$

$$= \dots$$

$$= \sum_{i=1}^{N} \log(1 + e^{w^{\top}x_i + b}) - \sum_{i:y_i = 1} (w^{\top}x_i + b).$$

In the above calculations use that $\log(1 + e^{-(w^{\top}x_i + b)}) = \log(\frac{1 + e^{w^{\top}x_i + b}}{e^{w^{\top}x_i + b}})$. Next, go over the new labels.

(c) Consider the logistic regression problem (1) where $y_i \in \{-1, 1\}$ are labels. Assume that there exists $(\overline{w}, \overline{b})$ such that $x_i^{\top} \overline{w} + \overline{b} < 0$, for all i with $y_i = -1$ and $x_i^{\top} \overline{w} + \overline{b} > 0$, for all i with $y_1 = 1$. Show that optimal value is 0 and that no (w, b) exists that attains the value. *Hint*: First note that the objective function

$$\sum_{i=1}^{N} \underbrace{\log(1 + e^{-y_i(x_i^{\top} w + b)})}_{=:f_i(w,b)}$$

is strictly positive everywhere, since this is the case for all terms f_i . We want to show that the infimum is 0. To this end, find a sequence $((w_n, b_n))_n$ so that $\lim_{n\to\infty} f_i(w_n, b_n) = 0$, for all i = 1, ..., N. Treat separately the *i*'s such that $y_i = -1$ and those that $y_i = 1$.

4 ℓ_1 -, ℓ_∞ - and ℓ_4 -Norm Approximation Problems

(a) Formulate the following problems as LPs. Explain in detail the relation between the optimal solution of each problem and the solution of its equivalent LP.

- (1) Minimize $||Ax b||_{\infty}$. *Hint*: Recall the epigraph reformulation discussed on Slide 6 of Lecture 4.
- (2) Minimize $||Ax b||_1$. *Hint*: The objective (cost function) is $\mathbf{1}^{\top}s$, where $s \in \mathbb{R}^m$ is a new (additional) optimization variable and $\mathbf{1}$ is the vector with all entries equal to one.
- (3) Minimize $||Ax b||_1$ subject to $||x||_{\infty} \le 1$.
- (4) Minimize $||x||_1$ subject to $||Ax b||_{\infty} \le 1$.
- (5) Minimize $||Ax b||_1 + ||x||_{\infty}$.

In each problem $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are given.

(b) (**Bonus Question**) Formulate the following problem as a QCQP: Minimize $||Ax - b||_4$.