

TTT4120 Digital Signal Processing Problem Set 11

The main topic for this problem set is multirate signal processing. Relevant chapters from the textbook are 11.1-11.4. You will need **headsets** in order to do Problem 3. The maximum score for each problem is given in parentheses.

Problem 1 (3 points)

An analog signal $x_a(t)$ is given by the following magnitude spectrum.

A signal x(n) has been generated by sampling $x_a(t)$ using the sampling frequency $F_{sx} = 8 \text{kHz}$. We wish to increase the sampling frequency of the signal to $F_{sy} = 24 \text{kHz}$ using an intepolator as shown in the following block diagram.

$$\begin{array}{c|c} x(n) & & & w(m) & & \\ \hline \end{array} \uparrow I & & & h(m) & & y(m) \\ \hline \end{array}$$

- (a) Explain the purpose of each block in the diagram.
- (b) Show that

$$W\left(\frac{F}{F_{sy}}\right) = X\left(\frac{F}{F_{sx}}\right)$$

where $W(\cdot)$ and $X(\cdot)$ are spectra of the signals w(m) and x(n), respectively.

(c) Sketch the magnitude spectra $|X(F/F_{sx})|$, $|W(F/F_{sy})|$, $|Y(F/F_{sy})|$, and the magnitude response of the filter, $|H(F/F_{sy})|$. Comment the sketches.

Problem 2 (3 points)

Let x(n) be the time-discrete signal with sampling frequency $F_{sx} = 8$ kHz from Problem 1. We wish to design a digital system that reduces the sampling frequency of the signal to $F_{sy} = 6$ kHz such that aliasing does not appear. Let y(m) be the resulting output signal.

- (a) Sketch the block diagram of the system and explain the function of each component.
- (b) State the necessary specifications of the system components.
- (c) Will the reduction in the sampling frequency cause any information loss, i.e. is it possible to reconstruct the original analog signal from the output signal y(m)? Justify your answer.
- (d) Sketch the magnitude spectra of all the signals in the system (i.e. $|X(F/F_{sx})|$, $|Y(F/F_{sy})|$ and possible intermediate signals). State the value of the corresponding sampling frequency for each graph.
- (e) Optional: The sampling rate of the signal x(n) should now be increased to $F_{sy} = 12 \text{kHz}$. Repeat (b)-(d) for this case.

Problem 3 (4 points)

Given the following discrete-time signals

- $x_1(n) = \cos(2\pi f_1 n)$
- $\bullet \ x_2(n) = \cos(2\pi f_2 n)$
- $x(n) = x_1(n) + x_2(n)$,

where f_1 and f_2 correspond to analog frequencies $F_1 = 900$ Hz and $F_2 = 2000$ Hz, and the sampling frequency is $F_s = 6000$ Hz.

(a) Show that the spectrum of $x_1(n)$ is given by

$$X_1(f) = \frac{1}{2}(\delta(f - f_1) + \delta(f + f_1)).$$

(Hint: Show that the IDTFT of $X_1(f)$ is equal to $x_1(n)$.)

(b) The sampling frequency of the signal x(n) should be decreased by a factor D=2 using the system shown in the following figure. The filter h(n) is designed such that no aliasing appears.

- Sketch the magnitude spectra of the signals x(n), w(n) and y(m).
- Sketch the magnitude spectrum of the output signal y(m) when the filter h(n) is removed.
- (c) i) Use Matlab to generate a segment of length 1s of the signal x(n).
 - ii) Listen to the signal and its downsampled version both when the filter h(n) is used in downsampling and when it is not used.
 - iii) Explain the differences based on the sketches in (b).
 - iv) Repeat (ii) and (iii) on the music signal "Dolly.wav" that can be downloaded from the course homepage (under Problem Sets).
 - v) Write down your observations.

Useful Matlab functions are sound, decimate, downsample.