Когомологии расслоений на кривых

10 июня 2024 года

ЗАМЕЧАНИЕ: Всякое линейное расслоение на P^1 имеет вид $\mathfrak{O}(n)$, то есть склеено из тривиальных карт $\mathsf{A}^1 \times \mathsf{A}^1$ и $\mathsf{A}^1 \times \mathsf{A}^1$ отождествлением $(t,s) \sim (t^{-1},t^ns)$.

ЗАМЕЧАНИЕ: Всякое линейное расслоение на P^1 имеет вид $\mathfrak{O}(n)$, то есть склеено из тривиальных карт $\mathsf{A}^1 \times \mathsf{A}^1$ и $\mathsf{A}^1 \times \mathsf{A}^1$ отождествлением $(t,s) \sim (t^{-1},t^ns)$.

ПРИМЕР: Вычислим когомологии линейных расслоений над P^n . Группы H^0 нам известны, это группы сечений. Для вычисления группы H^1 напишем комплекс Чеха:

$$0 \to \check{C}_0 = \{ (\varphi_0 \in \Gamma(U_0), \varphi_1 \in \Gamma(U_1)) \} \to \check{C}_1 = \{ \varphi_{0,1} \in \Gamma(U_0 \cap U_1) \} \to 0.$$

ЗАМЕЧАНИЕ: Всякое линейное расслоение на P^1 имеет вид $\mathfrak{O}(n)$, то есть склеено из тривиальных карт $\mathsf{A}^1 \times \mathsf{A}^1$ и $\mathsf{A}^1 \times \mathsf{A}^1$ отождествлением $(t,s) \sim (t^{-1},t^ns)$.

ПРИМЕР: Вычислим когомологии линейных расслоений над P^n . Группы H^0 нам известны, это группы сечений. Для вычисления группы H^1 напишем комплекс Чеха:

$$0 \to \check{C}_0 = \{ (\varphi_0 \in \Gamma(U_0), \varphi_1 \in \Gamma(U_1)) \} \to \check{C}_1 = \{ \varphi_{0,1} \in \Gamma(U_0 \cap U_1) \} \to 0.$$

Можно переписать его как $0 \to k[t] \oplus k[t^{-1}] \to k[t,t^{-1}] \to 0$, где стрелка отправляет пару сечений над шапочками в их разность на пересечении: $(f_1,f_2) \mapsto f_1 - t^n f_2$.

Итак, $H^1=k[t,t^{-1}]/\left(k[t]\oplus t^nk[t^{-1}]\right)$. Это нулевая группа, если $n\geqslant -1$, и группа размерности -(n+1) иначе.

ЗАМЕЧАНИЕ: Всякое линейное расслоение на P^1 имеет вид $\mathfrak{O}(n)$, то есть склеено из тривиальных карт $\mathsf{A}^1 \times \mathsf{A}^1$ и $\mathsf{A}^1 \times \mathsf{A}^1$ отождествлением $(t,s) \sim (t^{-1},t^ns)$.

ПРИМЕР: Вычислим когомологии линейных расслоений над P^n . Группы H^0 нам известны, это группы сечений. Для вычисления группы H^1 напишем комплекс Чеха:

$$0 \to \check{C}_0 = \{ (\varphi_0 \in \Gamma(U_0), \varphi_1 \in \Gamma(U_1)) \} \to \check{C}_1 = \{ \varphi_{0,1} \in \Gamma(U_0 \cap U_1) \} \to 0.$$

Можно переписать его как $0 \to k[t] \oplus k[t^{-1}] \to k[t,t^{-1}] \to 0$, где стрелка отправляет пару сечений над шапочками в их разность на пересечении: $(f_1,f_2) \mapsto f_1 - t^n f_2$.

Итак, $H^1=k[t,t^{-1}]/\left(k[t]\oplus t^nk[t^{-1}]\right)$. Это нулевая группа, если $n\geqslant -1$, и группа размерности -(n+1) иначе.

ЗАМЕЧАНИЕ: Заметим, что $h^0(\mathcal{O}(n)) = h^1(\mathcal{O}(-2-n))$. Это частный случай **двойственности Серра:** ведь $K_{\mathsf{P}^1} \cong \mathcal{O}(-2)$.

От общей кривой к P^1

ОПРЕДЕЛЕНИЕ: Пусть \mathcal{F} — пучок на топологическом пространстве X, и $f: X \to Y$ — непрерывное отображение. Тогда **прямым образом** $f_*\mathcal{F}$ называется пучок на Y, определенный как $\Gamma(f_*\mathcal{F}, U) = \Gamma(\mathcal{F}, f^{-1}(U))$.

От общей кривой к P^1

ОПРЕДЕЛЕНИЕ: Пусть \mathcal{F} — пучок на топологическом пространстве X, и $f: X \to Y$ — непрерывное отображение. Тогда прямым образом $f_*\mathcal{F}$ называется пучок на Y, определенный как $\Gamma(f_*\mathcal{F}, U) = \Gamma(\mathcal{F}, f^{-1}(U))$.

ПРЕДЛОЖЕНИЕ: Пусть $f: C \to C'$ — сюръективное отображение проективных кривых. Тогда $H^i(\mathcal{F},C) \cong H^i(f_*\mathcal{F},C')$.

От общей кривой к P^1

ОПРЕДЕЛЕНИЕ: Пусть \mathcal{F} — пучок на топологическом пространстве X, и $f: X \to Y$ — непрерывное отображение. Тогда **прямым образом** $f_*\mathcal{F}$ называется пучок на Y, определенный как $\Gamma(f_*\mathcal{F}, U) = \Gamma(\mathcal{F}, f^{-1}(U))$.

ПРЕДЛОЖЕНИЕ: Пусть $f: C \to C'$ — сюръективное отображение проективных кривых. Тогда $H^i(\mathcal{F}, C) \cong H^i(f_*\mathcal{F}, C')$.

ПРЕДЛОЖЕНИЕ: Пусть $f: C \to C'$ — сюръективное отображение проективных кривых, а $L \to C$ — линейное расслоение. Тогда f_*L есть векторное расслоение ранга $\deg L$.

ДОКАЗАТЕЛЬСТВО: Достаточно проверить на локальных кольцах, а там это следует из свойств колец дискретного нормирования. ■

От общей кривой к P^1

ОПРЕДЕЛЕНИЕ: Пусть \mathcal{F} — пучок на топологическом пространстве X, и $f: X \to Y$ — непрерывное отображение. Тогда прямым образом $f_*\mathcal{F}$ называется пучок на Y, определенный как $\Gamma(f_*\mathcal{F}, U) = \Gamma(\mathcal{F}, f^{-1}(U))$.

ПРЕДЛОЖЕНИЕ: Пусть $f: C \to C'$ — сюръективное отображение проективных кривых. Тогда $H^i(\mathcal{F}, C) \cong H^i(f_*\mathcal{F}, C')$.

ПРЕДЛОЖЕНИЕ: Пусть $f: C \to C'$ — сюръективное отображение проективных кривых, а $L \to C$ — линейное расслоение. Тогда f_*L есть векторное расслоение ранга $\deg L$.

ДОКАЗАТЕЛЬСТВО: Достаточно проверить на локальных кольцах, а там это следует из свойств колец дискретного нормирования. ■

ЗАМЕЧАНИЕ: Имеется и обратная конструкция. Пусть $E \to C'$ — векторное расслоение над кривой, и имеется его общий эндоморфизм $\alpha \colon E \to E$. В общей точке α диагонализуем, и собственные значения дают (rk E)-кратное сечение $C \subset \mathsf{P}(E) \to C'$. Там, где α не диагонализуем, оно разветвлено. Ограничение послойного $\mathfrak{O}(1)$ дает линейное расслоение $L \to C$ такое, что $f_*L \cong E$. В этом случае $f \colon C \to C'$ называется спектральным накрытием.

Pасслоения на P^1

Теорема Биркгофа — Гротендика

ТЕОРЕМА: (Дж. Д. Биркгоф, 1909, А. Гротендик, 1957) Всякое векторное расслоение над P^1 есть сумма линейных $\mathfrak{O}(n_i)$.

ТЕОРЕМА: (Дж. Д. Биркгоф, 1909, А. Гротендик, 1957) Всякое векторное расслоение над P^1 есть сумма линейных $\mathfrak{O}(n_i)$.

ЛЕММА: Пусть E — векторное расслоение над P^1 . Тогда существует d такое, что $h^0(E\otimes \mathcal{O}(d))>0$, а $h^0(E\otimes \mathcal{O}(-d))=0$.

ТЕОРЕМА: (Дж. Д. Биркгоф, 1909, А. Гротендик, 1957) Всякое векторное расслоение над P^1 есть сумма линейных $\mathfrak{O}(n_i)$.

ЛЕММА: Пусть E — векторное расслоение над P^1 . Тогда существует d такое, что $h^0(E\otimes \mathcal{O}(d))>0$, а $h^0(E\otimes \mathcal{O}(-d))=0$.

ДОКАЗАТЕЛЬСТВО: Докажем индукцией по рангу. База известна.

ТЕОРЕМА: (Дж. Д. Биркгоф, 1909, А. Гротендик, 1957) Всякое векторное расслоение над P^1 есть сумма линейных $\mathfrak{O}(n_i)$.

ЛЕММА: Пусть E — векторное расслоение над P^1 . Тогда существует d такое, что $h^0(E\otimes \mathcal{O}(d))>0$, а $h^0(E\otimes \mathcal{O}(-d))=0$.

ДОКАЗАТЕЛЬСТВО: Докажем индукцией по рангу. База известна. Для шага можно считать, что $h^0(E)>1$, $h^0(E\otimes \mathfrak{O}(-1))=0$. Тогда имеется $s\in \Gamma(E)$, причем s нигде не зануляется, а значит и точная тройка $0\to 0\stackrel{s}{\to} E\to F\to 0$.

ТЕОРЕМА: (Дж. Д. Биркгоф, 1909, А. Гротендик, 1957) Всякое векторное расслоение над P^1 есть сумма линейных $\mathfrak{O}(n_i)$.

ЛЕММА: Пусть E — векторное расслоение над P^1 . Тогда существует d такое, что $h^0(E\otimes \mathcal{O}(d))>0$, а $h^0(E\otimes \mathcal{O}(-d))=0$.

ДОКАЗАТЕЛЬСТВО: Докажем индукцией по рангу. База известна. Для шага можно считать, что $h^0(E) > 1$, $h^0(E \otimes \mathcal{O}(-1)) = 0$. Тогда имеется $s \in \Gamma(E)$, причем s нигде не зануляется, а значит и точная тройка $0 \to \mathcal{O} \xrightarrow{s} E \to F \to 0$. Имеем длинную точную последовательность:

$$\cdots \to H^0(E \otimes \mathcal{O}(-1)) \to H^0(F \otimes \mathcal{O}(-1)) \to H^1(\mathcal{O}(-1)) \to \ldots,$$

откуда $h^0(F\otimes \mathcal{O}(-1))=0$. Значит, F — линейное расслоение, и по предположению индукции $F=\oplus \mathcal{O}(n_i)$, причем $n_i\leqslant 0$.

ТЕОРЕМА: (Дж. Д. Биркгоф, 1909, А. Гротендик, 1957) Всякое векторное расслоение над P^1 есть сумма линейных $\mathfrak{O}(n_i)$.

ЛЕММА: Пусть E — векторное расслоение над P^1 . Тогда существует d такое, что $h^0(E\otimes \mathcal{O}(d))>0$, а $h^0(E\otimes \mathcal{O}(-d))=0$.

ДОКАЗАТЕЛЬСТВО: Докажем индукцией по рангу. База известна. Для шага можно считать, что $h^0(E) > 1$, $h^0(E \otimes \mathcal{O}(-1)) = 0$. Тогда имеется $s \in \Gamma(E)$, причем s нигде не зануляется, а значит и точная тройка $0 \to \mathcal{O} \xrightarrow{s} E \to F \to 0$. Имеем длинную точную последовательность:

$$\cdots \to H^0(E \otimes \mathcal{O}(-1)) \to H^0(F \otimes \mathcal{O}(-1)) \to H^1(\mathcal{O}(-1)) \to \ldots,$$

откуда $h^0(F\otimes \mathcal{O}(-1))=0$. Значит, F — линейное расслоение, и по предположению индукции $F=\oplus \mathcal{O}(n_i)$, причем $n_i\leqslant 0$.

Имея такое представление, мы выведем теорему из леммы со следующего слайда. ■

Расширения векторных расслоений на P^1

ЛЕММА: Пусть $0 \stackrel{s}{\to} E \to \oplus 0(n_i)$ — расширение расслоений, и $n_i \leqslant 0$. Тогда $E \cong 0 \oplus \oplus 0(n_i)$.

Расширения векторных расслоений на P^1

ЛЕММА: Пусть $0 \stackrel{s}{\to} E \to \oplus 0(n_i)$ — расширение расслоений, и $n_i \leqslant 0$. Тогда $E \cong 0 \oplus \oplus 0(n_i)$.

ДОКАЗАТЕЛЬСТВО: Ограничим E на шапочки $U_{0,1}$. Выберем тривиализации расслоений $E_i \cong 0 \oplus \ldots \oplus 0 \to U_i$ такие, что s(0) ограничивается как первое слагаемое. Тогда имеются и вложения $F_i = F|_{U_i} \xrightarrow{\varphi_i} 0^{\oplus n}$ как дополнительных подрасслоений.

Расширения векторных расслоений на P^1

ЛЕММА: Пусть $0 \stackrel{s}{\to} E \to \oplus \mathcal{O}(n_i)$ — расширение расслоений, и $n_i \leqslant 0$. Тогда $E \cong \mathcal{O} \oplus \oplus \mathcal{O}(n_i)$.

ДОКАЗАТЕЛЬСТВО: Ограничим E на шапочки $U_{0,1}$. Выберем тривиализации расслоений $E_i \cong \emptyset \oplus \ldots \oplus \emptyset \to U_i$ такие, что $s(\emptyset)$ ограничивается как первое слагаемое. Тогда имеются и вложения $F_i = F|_{U_i} \xrightarrow{\varphi_i} \emptyset^{\oplus n}$ как дополнительных подрасслоений. Эти вложения не однозначны: каждое из них можно поправить на отображение F_i : \emptyset , то есть элемент $\Gamma(F^*, U_i)$. Наша цель — поправить их так, чтобы они сошлись на пересечении карт.

Расширения векторных расслоений на P^1

ЛЕММА: Пусть $0 \stackrel{s}{\to} E \to \oplus \mathcal{O}(n_i)$ — расширение расслоений, и $n_i \leqslant 0$. Тогда $E \cong \mathcal{O} \oplus \oplus \mathcal{O}(n_i)$.

ДОКАЗАТЕЛЬСТВО: Ограничим E на шапочки $U_{0,1}$. Выберем тривиализации расслоений $E_i \cong 0 \oplus \ldots \oplus 0 \to U_i$ такие, что s(0) ограничивается как первое слагаемое. Тогда имеются и вложения $F_i = F|_{U_i} \xrightarrow{\varphi_i} 0^{\oplus n}$ как дополнительных подрасслоений. Эти вложения не однозначны: каждое из них можно поправить на отображение F_i : 0, то есть элемент $\Gamma(F^*, U_i)$. Наша цель — поправить их так, чтобы они сошлись на пересечении карт.

Для всякого $f \in F_x$ имеем $\varphi_0(f) - \varphi_1(f) \in s(0)$. Это отображение расслоений $F|_{U_0 \cap U_1} \to 0$, а значит элемент $\check{C}_1(F^*)$. Он представляет нулевой класс тогда и только тогда, когда после поправки он может быть сделан нулевым, то есть $\varphi_0 = \varphi_1$ и подрасслоения согласованы. Но $H^1(F^*) = \bigoplus H^1(\mathfrak{O}(-n_i), \mathsf{P}^1) = 0$, так как $n_i \leqslant 0$.