In [6]:

import pandas as pd
import numpy as np
import seaborn as sns

In [2]:

import matplotlib.pyplot as plt

In [4]:

data=pd.read_csv(r"C:\21761A05B6\auto-mpg.csv")
data

Out[4]:

car name	origin	model year	acceleration	weight	horsepower	displacement	cylinders	mpg	
chevrolet chevelle malibu	1	70	12.0	3504	130	307.0	8	18.0	0
buick skylark 320	1	70	11.5	3693	165	350.0	8	15.0	1
plymouth satellite	1	70	11.0	3436	150	318.0	8	18.0	2
amc rebel sst	1	70	12.0	3433	150	304.0	8	16.0	3
ford torinc	1	70	10.5	3449	140	302.0	8	17.0	4
ford mustang gl	1	82	15.6	2790	86	140.0	4	27.0	393
vw pickup	2	82	24.6	2130	52	97.0	4	44.0	394
dodge rampage	1	82	11.6	2295	84	135.0	4	32.0	395
ford ranger	1	82	18.6	2625	79	120.0	4	28.0	396
chevy s- 10	1	82	19.4	2720	82	119.0	4	31.0	397

398 rows × 9 columns

localhost:8889/notebooks/MLLABB6-2.ipynb#

In [16]:

```
plt.figure(figsize=(12,6))
sns.boxplot(data=data)
plt.title("Boxplot for the dataset")
plt.xticks()
plt.show()
```


In [17]:

data.boxplot(figsize=(10,6))

Out[17]:

<AxesSubplot:>

In [18]:

```
data.hist()
```

Out[18]:

In [20]:

```
plt.figure(figsize=(12,8))
data.hist(bins=50)
plt.suptitle("Histogram for the entire dataset")
plt.tight_layout()
plt.show()
```

<Figure size 864x576 with 0 Axes>

Histogram for the entire dataset

In [24]:

```
plt.figure(figsize=(8,5))
sns.boxplot(x=data['mpg'])
plt.title("Boxplot for mpg")
plt.xlabel('mpg')
plt.show()
```

Boxplot for mpg

In [22]:

```
plt.figure(figsize=(8,5))
sns.boxplot(x=data['displacement'])
plt.title("Boxplot for displacement")
plt.xlabel('displacement')
plt.show()
```

Boxplot for displacement

In [25]:

```
plt.figure(figsize=(8,5))
sns.boxplot(x=data['weight'])
plt.title("Boxplot for weight")
plt.xlabel('weight')
plt.show()
```

Boxplot for weight

In [26]:

```
plt.figure(figsize=(8,5))
sns.boxplot(x=data['acceleration'])
plt.title("Boxplot for acceleration")
plt.xlabel('acceleration')
plt.show()
```

Boxplot for acceleration

In [27]:

```
q1=data['mpg'].quantile(0.25)
q2=data['mpg'].quantile(0.5)
q3=data['mpg'].quantile(0.75)
min_value=data['mpg'].min()
max_value=data['mpg'].max()

plt.figure(figsize=(8,5))
sns.boxplot(y=data['mpg'],orient='v',showfliers=False)
plt.title('Boxplot for mpg attribute')
plt.ylabel('mpg')

plt.text(0.85,q1,f'Q1:{q1:.2f}',ha='left',va='center',fontweight='bold')
plt.text(0.85,q2,f'Q2 (Median):{q2:.2f}',ha='left',va='center',fontweight='bold')
plt.text(0.85,q3,f'Q3:{q3:.2f}',ha='left',va='center',fontweight='bold')
plt.text(0.85,min_value,f'Min:{min_value:.2f}',ha='left',va='center',fontweight='bold')
plt.text(0.85,max_value,f'Max:{max_value:.2f}',ha='left',va='center',fontweight='bold')
plt.text(0.85,max_value,f'Max:{max_value:.2f}',ha='left',va='center',fontweight='bold')
plt.show()
```


In [28]:

```
q1=data['displacement'].quantile(0.25)
q2=data['displacement'].quantile(0.5)
q3=data['displacement'].quantile(0.75)
min_value=data['displacement'].min()
max_value=data['displacement'].max()

plt.figure(figsize=(8,5))
sns.boxplot(y=data['displacement'],orient='v',showfliers=False)
plt.title('Boxplot for displacement attribute')
plt.ylabel('displacement')

plt.text(0.85,q1,f'Q1:{q1:.2f}',ha='left',va='center',fontweight='bold')
plt.text(0.85,q2,f'Q2 (Median):{q2:.2f}',ha='left',va='center',fontweight='bold')
plt.text(0.85,q3,f'Q3:{q3:.2f}',ha='left',va='center',fontweight='bold')
plt.text(0.85,min_value,f'Min:{min_value:.2f}',ha='left',va='center',fontweight='bold')
plt.text(0.85,max_value,f'Max:{max_value:.2f}',ha='left',va='center',fontweight='bold')
plt.tshow()
```


In [29]:

```
plt.figure(figsize=(8,5))
sns.histplot(data['displacement'],kde=False,bins=10)
plt.title("Histogram for displacement")
plt.xlabel('Engine displacement (cubic inches)')
plt.show()
```


In [30]:

```
plt.figure(figsize=(8,5))
sns.histplot(data['mpg'],kde=False,bins=10)
plt.title("Histogram for mpg")
plt.xlabel('mpg')
plt.show()
```


In [31]:

```
plt.figure(figsize=(8,5))
sns.histplot(data['acceleration'],kde=False,bins=10)
plt.title("Histogram for acceleration")
plt.xlabel('acceleration')
plt.show()
```


In [32]:

```
plt.figure(figsize=(8,5))
sns.histplot(data['weight'],kde=False,bins=10)
plt.title("Histogram for weight")
plt.xlabel('weight')
plt.show()
```


In [33]:

data.plot.scatter(x="mpg",y="weight",s=30)

Out[33]:

<AxesSubplot:xlabel='mpg', ylabel='weight'>

In []: