CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (I E II GRUPPO) 18 MAGGIO 2012

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Sia $S = \mathbb{N} \setminus \{0, 1\}$. Per ogni $k \in \mathbb{N}^{\#}$ si ponga $S_k = \{n \in S \mid n \text{ è diviso da esattamente } k$ primi positivi distinti $\}$ (ad esempio, $8 \in S_1$, $500 \in S_2$).

- (i) Verificare che $\mathcal{F} := \{S_k \mid k \in \mathbb{N}^{\#}\}$ è una partizione di S.
- (ii) Esiste una relazione di equivalenza \mathcal{R} in S tale che $\mathcal{F} = S/\mathcal{R}$?
- (iii) In caso affermativo, descrivere la classe di equivalenza di 210 rispetto a tale relazione \Re .

Esercizio 2. Sia $f: n \in \mathbb{N} \longmapsto \pi(n) \in \mathcal{P}(\mathbb{P})$ (come di consueto, \mathbb{P} indica l'insieme dei numeri primi positivi e, per ogni $n \in \mathbb{N}$, $\pi(n) = \{p \in \mathbb{P} : p \mid n\}$). Si consideri la relazione d'ordine σ_f definita in \mathbb{N} da:

$$(\forall a, b \in \mathbb{N}) (a \sigma_f b \iff a = b \lor f(a) \subset f(b)).$$

- (i) Individuare gli eventuali minimo, massimo, elementi minimali, elementi massimali in (\mathbb{N}, σ_f) . (\mathbb{N}, σ_f) è un reticolo?
- (ii) Se possibile, determinare un sottoinsieme Y di \mathbb{N} tale che |Y|=4 e (Y,σ_f) sia un reticolo, specificando se esso è un reticolo booleano.
- (iii) Posto $X = \{15, 21, 105, 210, 315\}$, descrivere (se esistono) in (\mathbb{N}, σ_f) : i minoranti di X, i maggioranti di X, inf X, sup X. Si disegni il diagramma di Hasse di (X, σ_f) .

Esercizio 3. Si studi l'operazione * definita sull'insieme $R = \mathbb{Z}_{40}$ delle classi di resto modulo 40 ponendo, per ogni $a, b \in R$,

$$a * b = a + \overline{25}b - \overline{10}$$
.

In particolare, si stabilisca se * è commutativa e se è associativa, se esistono in (R, *) elementi neutri a destra, elementi neutri a sinistra, elementi neutri. L'operazione * è distributiva a destra rispetto alla ordinaria addizione in \mathbb{Z}_{40} ?

Esercizio 4. Si enunci il teorema di Ruffini generalizzato.

Dati i polinomi $h = (x^2 - 1)(3x + 2)$ e $k = (x - 4)^2$ in $\mathbb{Q}[x]$,

- (i) esiste un polinomio $g \in \mathbb{Q}[x]$ tale che f = h + gk abbia 1 e -1 come radici? Nel caso, fornirne un esempio e rispondere alle domande che seguono:
- (ii) è possibile scegliere un tale q in modo che f abbia grado 3?
- (iii) è possibile scegliere un tale q in modo che f abbia grado 10?
- (iv) esistono infiniti $g \in \mathbb{Q}[x]$ con la proprietà richiesta in (i)?