

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 06-144020
 (43)Date of publication of application : 24.05.1994

(51)Int.CI.

B60K 6/00
 B60K 8/00
 B60L 11/14

(21)Application number : 04-294977
 (22)Date of filing : 04.11.1992

(71)Applicant : AQUEOUS RES:KK
 (72)Inventor : MOROTO SHUZO
 KAWAMOTO MUTSUMI
 YAMAGUCHI KOZO
 MIYAISHI YOSHINORI

(54) HYBRID TYPE VEHICLE

(57)Abstract:

PURPOSE: To travel without generating noise and exhaust gas by driving only a motor while traveling at low and medium speed.

CONSTITUTION: A hybrid type vehicle comprises an engine 11, a first driving device, which is selectively connected to the engine 11 through a first clutch C1, a second driving device, which is selectively connected to the first driving device through a second clutch C2, and drive wheels, which are connected to the second driving device. The first driving device is constituted as a high torque low speed type, and the second driving device is constituted as a low torque high speed type. In accelerating during traveling at low speed and medium speed, in normal traveling and in decelerating the engine 11 is not driven, and therefore the hybrid type vehicle can travel without generating noise and exhaust gas. Since the engine 11 is not suddenly started in full power starting and acceleration, the drive of the first and second driving devices and drive of the engine 6 can be favorably switched.

LEGAL STATUS

[Date of request for examination] 28.10.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3141262

[Date of registration] 22.12.2000

(19)日本国特許庁 (J P)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-144020

(43)公開日 平成6年(1994)5月24日

(51)Int.Cl⁵ 独別記号 序内整理番号 F I 技術表示箇所
B 60 K 6/00
8/00
B 60 L 11/14 6821-5H
7140-3D B 60 K 9/ 00 Z

審査請求 未請求 請求項の数 2(全 9 頁)

(21)出願番号	特願平4-294977	(71)出願人	591261509 株式会社エクオス・リサーチ 京都市千代田区外神田2丁目19番12号
(22)出願日	平成4年(1992)11月4日	(72)発明者	諸戸 健三 京都市千代田区外神田2丁目19番12号 株 式会社エクオス・リサーチ内
		(72)発明者	川本 駿 京都市千代田区外神田2丁目19番12号 株 式会社エクオス・リサーチ内
		(72)発明者	山口 幸成 京都市千代田区外神田2丁目19番12号 株 式会社エクオス・リサーチ内
		(74)代理人	弁理士 川合 誠

(54)【発明の名称】 ハイブリッド型直画

(57) [要約]

【目的】低速走行時及び中速走行時においてモータのみを駆動して、騒音や排気ガスを発生させることなく走行することができるようとする。

【構成】エンジン11と、該エンジン11と第1クラッチC1を介して選択的に連結された第一の駆動装置と、該第一の駆動装置と第2クラッチC2を介して選択的に連結された第二の駆動装置と、該第二の駆動装置と連結された駆動輪を有する。そして、前記第一の駆動装置を高トルク低回転型として構成し、前記第二の駆動装置を低トルク高回転型として構成する。低速走行及び中速走行における加速時、定速走行時、減速時においてはエンジン11が駆動されないので、騒音や排気ガスを発生させることなくハイブリッド型車両を走行させることができることを特徴とする。

特開平6-144020

(2)

2

【特許請求の範囲】

【請求項1】 (a) エンジンと、(b) 該エンジンと第1クラッチを介して選択的に連絡された第一の駆動装置と、(c) 該第一の駆動装置と第2クラッチを介して選択的に連絡された第二の駆動装置と、(d) 該第二の駆動装置と連絡された駆動輪を有するとともに、(e) 前記第一の駆動装置を高トルク低回転型として構成し、(f) 前記第二の駆動装置を低トルク高回転型として構成したことを特徴とするハイブリッド型車両。

【請求項2】 前記第一の駆動装置及び第二の駆動装置は一体的なケース内に配設され、第1クラッチを介してエンジンと連絡された請求項1に記載のハイブリッド型車両。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は、ハイブリッド型車両に関するものである。

【0002】

【従来の技術】 従来、車両はエンジンを駆動することによって発生させた回転を駆動輪に伝達し、走行するようになっているが、騒音や排気ガスが発生するため、騒音モータ(以下、「モータ」という。)を駆動することによって走行するようにした電気自動車が提供されている。

【0003】 ところが、電気自動車はバッテリに充電した電気を利用するものであるため、航続距離が短い。そこで、市街地では、エンジンを駆動せず、モータのみを駆動して走行することによって騒音や排気ガスの発生を防止し、高速道路などではエンジンのみを駆動して走行することによって航続距離を長くすることができるハイブリッド型車両が提案されている(特開平2-101903号公報参照)。

【0004】 该ハイブリッド型車両は、前後の駆動輪がモータに接続されるとともに、前方の駆動輪はモータのみによって回転させられ、後方の駆動輪はエンジンとモータによって回転させられるようにしている。この場合、前記エンジンとモータは、クラッチを介して連絡される。そして、加速時などの高負荷時にはすべてのモータを駆動し、定常走行時のような低負荷時には、前方の駆動輪をモータで回転させるとともに、後方の駆動輪をエンジンで回転させ、エンジンの回転に伴って後方のモータを発電機として使用する。

【0005】

【発明が解決しようとする課題】 しかしながら、前記従来ハイブリッド型車両においては、騒音や排気ガスの発生を防止するため、モータを駆動する走行時においては、エンジンを停止させ、モータのみを駆動する走行時においては、エンジンを起動させ、モータを駆動する走行時においては、エンジンとモータを同時に駆動する。

【0006】 一方、低速走行に対応した特性を有するモータを前後の駆動輪に配設すると、高速走行時においてトルクが不足する。このため、比較的車速が低い中速走行時においてもエンジンによってトルクを補助することが必要となり、市街地でもエンジンを駆動させて走行しなければならない場合が多くなり、排気ガスの発生を防止することができない。

【0007】 本発明は、前記従来のハイブリッド型車両の問題点を解決して、低速走行時及び中速走行時においてモータのみを駆動して、騒音や排気ガスを発生させることなく走行することができ、モータの駆動とエンジンの駆動の切換を良好に行うことができるハイブリッド型車両を提供することを目的とする。

【0008】

【課題を解決するための手段】 そのために、本発明のハイブリッド型車両においては、エンジンと、該エンジンと第1クラッチを介して選択的に連絡された第一の駆動装置と、該第一の駆動装置と第2クラッチを介して選択的に連絡された第二の駆動装置と、該第二の駆動装置と連絡された駆動輪を有する。

【0009】 そして、前記第一の駆動装置を高トルク低回転型として構成し、前記第二の駆動装置を低トルク高回転型として構成する。

【0010】

【作用及び発明の効果】 本発明によれば、前記のようにハイブリッド型車両は、エンジンと、該エンジンと第1クラッチを介して選択的に連絡された第一の駆動装置と、該第一の駆動装置と第2クラッチを介して選択的に連絡された第二の駆動装置と、該第二の駆動装置と連絡された駆動輪を有する。

【0011】 そして、前記第一の駆動装置を高トルク低回転型として構成し、前記第二の駆動装置を低トルク高回転型として構成する。したがって、フル発進時や低速走行における加速時においては、エンジンを停止させ、第1クラッチを解放し、第一の駆動装置を駆動し、第2クラッチを係合し、第二の駆動装置を駆動すると、第一、第二の駆動装置のトルクが合成され、大きな駆動力が発生し、該駆動力によってハイブリッド型車両は走行する。

【0012】 また、低速走行における定常走行時や、中速走行における加速時及び定常走行時においては、エンジンを起動させ、モータを駆動する走行時においては、エンジンとモータを同時に駆動する。

(3)

特閏平6-144020

時においては、エンジンを停止させ、第1クラッチを解放し、第一の駆動装置を被駆動状態とし、第2クラッチを係合し、第二の駆動装置を被駆動状態とする。この時、慣性力によってハイブリッド型車両は走行するが、通常の車両のエンジンブレーキと同様に、被駆動状態の第一、第二の駆動装置が負荷となって制動力が発生するとともに、第一、第二の駆動装置において回生が行われる。

【0014】また、低速走行や中速走行においてエンジンによる発電を行う時には、エンジンを駆動し、第1クラッチを介合し、第一の駆動装置を被駆動状態とし、第2クラッチを解放し、第二の駆動装置を駆動する。この時、エンジンのトルクによって被駆動状態の第一の駆動装置において発電が行われ、第二の駆動装置のトルクによって駆動力が発生し、該駆動力によってハイブリッド型車両は走行する。

【0015】一方、高速走行における加速時及び定常走行時においては、エンジンを駆動し、第1クラッチを係合し、第一の駆動装置を停止させ、第2クラッチを係合し、第二の駆動装置を停止させる。この時、エンジンのみのトルクによって駆動力が発生し、該駆動力によってハイブリッド型車両は走行する。また、高速走行における減速時においては、エンジンを被駆動状態とし、第1クラッチを係合し、第一の駆動装置を被駆動状態とし、第2クラッチを係合し、第二の駆動装置を被駆動状態とする。この時、慣性力によってハイブリッド型車両は走行するが、通常の直両のエンジンブレーキと同様に、被駆動状態のエンジン及び第一、第二の駆動装置が負荷となって制動力が発生するとともに、第一、第二の駆動装置において回生が行われる。

【0016】そして、高遠走行においてエンジンによる発電を行う時には、エンジンを駆動し、第1クラッチを係合し、第一の駆動装置を被駆動状態とし、第2クラッチを係合し、第二の駆動装置を被駆動状態とする。この時、エンジンのトルクによって駆動力が発生し、該駆動力によってハイブリッド型車両は走行するとともに、該駆動状態の第一、第二の駆動装置において発電が行われる。

【0017】したがって、低速走行及び中速走行における加速時、定常走行時、減速時においてはエンジンが駆動されないので、騒音や排気ガスを発生させることなくハイブリッド型車両を走行させることができる。そして、フル発進時や加速時においてエンジンが急に始動されることがないので、第一、第二の駆動装置の駆動とエンジンの駆動が同時に発生する危険性を防ぐ。

施例を示すハイブリッド型車両の第2断面図である。

〔0019〕図において、10は第1部分10a、第2部分10b及び第3部分10cから成る駆動装置ケース、11はエンジン、12は該エンジン11が発生したトルクを出力するエンジン出力軸、13は前記エンジン11から急激にトルクが伝達された時に、トルクショックを抑制するダンバである。該ダンバ13はダンバケース13a、二つのスプリング13b、13c、ハブ13dから成り、ダンバケース13aに伝達されたトルク19は、二つのスプリング13b、13cによって緩衝され、ハブ13dを介してダンバ出力軸14に伝達される。

〔0020〕また、C1は油圧サー油C-1によって係脱される第1クラッチ、16は該第1クラッチC1が係合された時にエンジン11のトルクが伝達される第1モータ出力軸である。該第1モータ出力軸16に第一の駆動装置として高トルク低回転型の第1モータ18が設けられる。該第1モータ18は、駆動装置ケース10の第1部分10aに固定されたステータ19及び回転自在に支持されたロータ20から成り、該ロータ20が前記第1モータ出力軸16に固定される。そして、前記ステータ19のステータコイルに電流が供給されると、第1モータ18が駆動され、前記ロータ20に発生した回転は、前記第1モータ出力軸16に伝達される。

【0021】また、前記第1モータ出力軸16に第2クラッチC2が接続され、該第2クラッチC2は油圧サークルC-2によって係脱される。22は該第2クラッチC2が係合された時に前記エンジン11又は第1モータ18のトルクが伝達される第2モータ出力軸である。該第2モータ出力軸22に第二の駆動装置として低トルク高回転型の第2モータ25が設けられる。該第2モータ25は、駆動装置ケース10の第2部分10bに固定されたステータ26及び回転自在に支持されたロータ27から成り、該ロータ27が前記第2モータ出力軸22に固定される。そして、前記ステータ26のステータコイルに電流が供給されると、第2モータ25が駆動され、前記ロータ27に発生した回転は、前記第2モータ出力軸22に伝達される。

【0022】さらに、該第2モータ出力軸22にトラン
40 スミッショソ31が接続される。該トランスマッショソ
31は、プラネタリギヤユニット32、第3クラッチC
3、第4クラッチC4及びワンウェイクラッチFから成
る。また、前記プラネタリギヤユニット32は、サンギ
ヤS、該サンギヤSと噛合(しごう)するピニオンP、
ギヤレーナー、ローラムギヤリード、ギヤレーナー、ギヤレーナー、

(4)

特開平6-144020

5

37 及び第4クラッチC4のクラッチディスク38に接続され、前記リングギヤRが出力軸40に接続される。

【0024】したがって、前記第3クラッチC3はサンギヤSとキャリヤCR間を係脱し、第4クラッチC4はサンギヤSと駆動装置ケース10の第2部分10b間を係脱する。前記構成のトランスミッション31においては、低速段と高速段を選択することができる。すなわち、低速段において、第3クラッチC3を係合し、第4クラッチC4を解放すると、前記第2モータ出力軸22に伝達された回転はキャリヤCRに入力され、サンギヤSを逆方向に回転させようとするが、サンギヤSが第3クラッチC3によって第2部分10bに固定されるため、リングギヤRを同方向に回転させる。すなわち、リングギヤRから減速された回転が outputされる。

【0025】また、高速段において、第3クラッチC3を解放し、第4クラッチC4を係合すると、サンギヤSとキャリヤCR間が第4クラッチC4によって連結されるため、ブランタリギヤユニット32が直結状態となる。したがって、リングギヤRから前記第2モータ出力軸22の回転がそのまま出力される。なお、図2の51はエンジン11の回転数を検出するエンジン回転数センサ、図3の52は出力軸40の回転数を直速として検出する車速センサである。

【0026】ところで、前述したように駆動装置ケース10は、第1部分10a、第2部分10b及び第3部分10cから成るが、本実施例においては、従来のトランスミッションケースをそのまま使用しており、第1部分10aはトルクコンバータハウジングに、第2部分10bはセンターケースに、第3部分10cはエクステンションケースに相当する。

【0027】そして、該従来のトランスミッションケース内に特性の異なる第1、第2モータ18、25を取り付け、エンジン11を駆動したり、第1、第2モータ18、25を選択的に駆動したりしてハイブリッド型車両を走行させることができる。したがって、従来のトランスミッションと互換性を有することができ、ハイブリッド型車両本体を従来のエンジン付きの車両と共通化することができる。

【0028】すなわち、エンジン付きの車両が、電気自動車や一部でエンジンを使用するハイブリッド型車両に徐々に置き換えられる過渡的な時期においては、エンジン付きの車両及び電気自動車のいずれもが使用されることになる。特に、電気自動車を新たに設計し製造するためには、膨大な費用が必要になり、コストが上昇してしまふ。そのため、車両の構成が複雑化されてしまう。

本実施例の駆動モータ装置を変更するだけでそのまま搭載することができる。したがって、コストを低減することができ、従来の自動直結技術を利用することができる。

【0030】次に、本発明の実施例を示すハイブリッド型車両の動作について図4～6を併用して説明する。図4は本発明の実施例におけるハイブリッド型車両の作動表を示す図、図5は第1、第2モータの特性図、図6は本発明の実施例を示すハイブリッド型車両の駆動力曲線図である。図4において、○は各要素が駆動されていること又は係合されていることを、△は各要素が被駆動状態にあることを、×は各要素が停止されていること又は解放されていることを示す。

【0031】本発明の実施例においては、エンジン11(図1)のほか、高トルク低回転型の第1モータ18と低トルク高回転型の第2モータ25が駆動源として使用される。図5において、横軸は第1、第2モータ18、25(図1)の回転数を、縦軸は発生するトルクを示す。また、破線Aは第1モータ18の特性図、実線Bは第2モータ25の特性図である。

【0032】前記特性を有する第1、第2モータ18、25をエンジン11と組み合わせることによって、ハイブリッド型車両は図4に示すように作動する。したがって、フル発進時や低速走行における加速時においては、第1、第2モータ18、25を駆動し、大きな駆動力を発生させ、低速走行における定常走行時や、中速走行における加速時及び定常走行時においては、第2モータ25のみを駆動し、高速走行における加速時及び定常走行時においては、エンジン11のみを駆動してハイブリッド型車両を走行させることができる。

【0033】また、減速時には、ハイブリッド型車両の慣性力によって被駆動状態の第1、第2モータ18、25を回生することができる。そして、低速走行や中速走行においてエンジン11による発電を行う時には、エンジン11を駆動して第1モータ18の発電を行い、第2モータ25を駆動してハイブリッド型車両を走行させることができる。一方、高速走行においてエンジン11による発電を行う時には、エンジン11を駆動してハイブリッド型車両を走行させるとともに、被駆動状態の第1、第2モータ18、25において発電を行うことができる。

【0034】以下、各走行状態におけるハイブリッド型車両の作動について説明する。すなわち、ハイブリッド型車両の停止時から図示しないアクセルペダルを踏み込んで発進するフル発進時においては、エンジン11を停止させ、第1モータ18、25を駆動してハイブリッド型車両を走行させる。

(5)

特開平6-144020

8

ブレーキと同様に、被駆動状態の第1、第2モータ18、25が負荷となって制動力が発生するとともに、第1、第2モータ18、25において回生が行われる。

【0042】また、中速走行においてエンジン11による発電を行う時には、エンジン11を駆動し、第1クラッチC1を係合し、第1モータ18を被駆動状態とし、第2クラッチC2を解放し、第2モータ25を駆動する。この時、エンジン11のトルクによって被駆動状態の第1モータ18において発電が行われ、第2モータ25のトルクによって駆動力が発生し、該駆動力によってハイブリッド型車両は走行する。

10 10 【0043】そして、高速走行における加速時においては、エンジン11を駆動し、第1クラッチC1を係合し、第1モータ18を停止させ、第2クラッチC2を係合し、第2モータ25を停止させる。この時、エンジン11のみのトルクによって、図6の線E、Fで示す駆動力が発生し、該駆動力によってハイブリッド型車両は走行する。なお、線Eは前記トランスマッション31を低速段に切り換えた場合の、線Fは前記トランスマッショ

20 20 ン31を低速段に切り換えた場合の駆動力を示す。

【0044】また、高速走行における定常走行時においては、高速走行における加速時と同様にエンジン11を駆動し、第1クラッチC1を係合し、第1モータ18を停止させ、第2クラッチC2を係合し、第2モータ25を停止させる。この時、エンジン11のみのトルクによって、図6の線E、Fで示す駆動力が発生し、該駆動力によってハイブリッド型車両は走行する。

【0045】そして、高速走行における減速時においては、エンジン11を被駆動状態とし、第1クラッチC1

30 30 を係合し、第1モータ18を被駆動状態とし、第2クラッチC2を係合し、第2モータ25を被駆動状態とする。この時、慣性力によってハイブリッド型車両は走行するが、通常の車両のエンジンブレーキと同様に、被駆動状態のエンジン11及び第1、第2モータ18、25が負荷となって制動力が発生するとともに、第1、第2モータ18、25において回生が行われる。

【0046】また、高速走行においてエンジン11による発電を行う時には、エンジン11を駆動し、第1クラッチC1を係合し、第1モータ18を被駆動状態とし、第2クラッチC2を係合し、第2モータ25を被駆動状態とする。この時、エンジン11のトルクによって駆動力が発生し、該駆動力によってハイブリッド型車両は走行するとともに、被駆動状態の第1、第2モータ18、25において発電が行われる。

「ハイブリッド型車両の駆動装置に関する技術」

(6)

特開平6-144020

9

中においてエンジン 11 を始動しようとする。第 1 モータ 18 が駆動され、該第 1 モータ 18 の駆動力によってエンジン 11 が回転させられる。

【0048】また、前述したように、低速走行、中速走行及び高速走行においてエンジン 11 によって発電することができるようになっているが、この場合、最良燃費曲線上で発電すると、効率が良好になる。図 7 は最良燃費曲線図である。図の横軸はエンジン (E/G) 11

(図 1) の回転数を、縦軸はトルクを示す。

【0049】図において、線 G は等燃費率曲線、線 H は最良燃費曲線である。発電時には、該最良燃費曲線 H に沿ってエンジン 11 の回転数及びトルクが設定される。なお、本実施例においては、第一の駆動装置及び第二の駆動装置をそれぞれ単一の第 1 モータ 18 及び第 2 モータ 25 で構成したが、それそれを複数のモータによって構成することもできる。例えば、第二の駆動装置を複数のモータで構成し、全体として低トルク高回転特性を持たせることができる。

【0050】また、本実施例では、第一の駆動装置と第二の駆動装置が同じ駆動装置ケースに 10 内に配設されているが、ハイブリッド型車両の前輪を第一の駆動装置によって駆動し、ハイブリッド型車両の後輪を第二の駆動装置によって駆動する構成とすることもできる。この場合、第一の駆動装置の出力軸を前輪と接続し、第二の駆動装置と後輪間に第 2 クラッチを配設し、第 2 クラッチ

10

* チを係合することによって、前後輪及び地面を介して第一の駆動装置と第二の駆動装置を連結することができる。このような構成とすることにより、ハイブリッド型車両は大きな駆動力を発生する場合に四輪駆動によって走行することが可能になる。

【図面の簡単な説明】

【図 1】本発明の実施例を示すハイブリッド型車両の概略図である。

【図 2】本発明の実施例を示すハイブリッド型車両の第 1 断面図である。

【図 3】本発明の実施例を示すハイブリッド型車両の第 2 断面図である。

【図 4】本発明の実施例におけるハイブリッド型車両の作動表を示す図である。

【図 5】第 1、第 2 モータの特性図である。

【図 6】本発明の実施例を示すハイブリッド型車両の駆動力曲線図である。

【図 7】最良燃費曲線図である。

【符号の説明】

10 駆動装置ケース

11 エンジン

18 第 1 モータ

25 第 2 モータ

C1 第 1 クラッチ

C2 第 2 クラッチ

【図 1】

(3)

特開平6-144020

[图2]

【图5】

[图3]

(8)

特開平6-144020

[図4]

フル発進	低速走行		中速走行		高速走行		エンジンスタート	
	エンジンによる発電	エンジンによる発電	エンジンによる発電	エンジンによる発電	減速(回生)	減速(回生)	エンジンによる発電	エンジンによる発電
エンジン	×	×	○	×	×	○	○	△
第1クラッチ	×	×	○	×	×	○	○	○
第1モータ	○	×	△	×	×	△	×	△
第2クラッチ	○	×	○	×	×	○	○	×
第2モータ	○	○	△	○	○	△	△	○

○: 駆動又は係合
 △: 動止又は解放
 ×: 停止

(9)

特開平6-144020

【図6】

【図7】

フロントページの続き

(72)発明者 宮石 善則
 東京都千代田区外神田2丁目19番12号 株
 式会社エクオス・リサーチ内

特開平6-144020

【公報種別】特許法第17条の2の規定による補正の掲載

【部門区分】第2部門第5区分

【発行日】平成13年1月16日(2001.1.16)

【公開番号】特開平6-144020

【公開日】平成6年5月24日(1994.5.24)

【年通号数】公開特許公報6-1441

【出願番号】特願平4-294977

【国際特許分類第7版】

B60K 6/00

8/00

B60L 11/14

【F1】

B60K 9/00 Z

B60L 11/14

【手続補正書】

【提出日】平成11年10月28日(1999.10.28)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 (a) エンジンと、(b) 該エンジンと連結された第一の駆動装置と、(c) 該第一の駆動装置と連結された第二の駆動装置と、(d) 該第二の駆動装置と連結された駆動輪とを有するとともに、(e) 前記第一の駆動装置を高トルク低回転型として構成し、(f) 前記第二の駆動装置を低トルク高回転型として構成し、(g) 前記エンジン、前記第一の駆動装置及び第二の駆動装置を順に、かつ、同軸上に配設することを特徴とするハイブリッド型車両。

【請求項2】 前記第一、第二の駆動装置は一体的なケース内に配設される請求項1に記載のハイブリッド型車両。

【請求項3】 前記第一の駆動装置の径方向における寸法は、第二の駆動装置の径方向における寸法より大きくなる請求項1又は2に記載のハイブリッド型車両。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0007

【補正方法】変更

【補正内容】

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

【0008】

【課題を解決するための手段】そのために、本発明のハイブリッド型車両においては、エンジンと、該エンジンと連結された第一の駆動装置と、該第一の駆動装置と連結された第二の駆動装置と、該第二の駆動装置と連結された駆動輪とを有する。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0009

【補正方法】変更

【補正内容】

【0009】そして、前記第一の駆動装置を高トルク低回転型として構成する。また、前記第二の駆動装置を低トルク高回転型として構成する。さらに、前記エンジン、前記第一の駆動装置及び第二の駆動装置を順に、かつ、同軸上に配設する。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0010

【補正方法】変更

【補正内容】

【0010】

【特開平6-144020の出願日】平成6年5月24日

特開平6-144020

【補正対象音類名】明細書

【補正対象項目名】0011

【補正方法】変更

【補正内容】

【0011】そして、前記第一の駆動装置を高トルク低回転型として構成する。また、前記第二の駆動装置を低トルク高回転型として構成する。さらに、前記エンジン、前記第一の駆動装置及び第二の駆動装置を順に、かつ、同軸上に配設する。したがって、フル発進時、低速走行における加速時等においては、エンジンを停止させて第一、第二の駆動装置を駆動すると、第一、第二の駆動装置のトルクが合成されて大きな駆動力が発生させられ、該駆動力によってハイブリッド型車両は走行させられる。

【手続補正7】

【補正対象音類名】明細書

【補正対象項目名】0012

【補正方法】変更

【補正内容】

【0012】また、低速走行における定常走行時、中速走行における加速時及び定常走行時等においては、エンジン及び第一の駆動装置を停止させて第二の駆動装置を駆動すると、第二の駆動装置だけのトルクによって駆動力が発生させられ、該駆動力によってハイブリッド型車両は走行させられる。

【手続補正8】

【補正対象音類名】明細書

【補正対象項目名】0013

【補正方法】変更

【補正内容】

【0013】そして、低速走行及び中速走行における減速時等においては、エンジンを停止させて第一、第二の駆動装置を被駆動状態にする。このとき、慣性力によってハイブリッド型車両は走行させられるが、通常の車両のエンジンブレーキと同様に、被駆動状態に置かれた第一、第二の駆動装置が負荷になって制動力が発生するとともに、第一、第二の駆動装置において回生が行われる。

【手続補正9】

【補正対象音類名】明細書

【補正対象項目名】0014

【補正方法】変更

【補正内容】

【0014】また、低速走行、中速走行等においてエンジンが駆動されないので、騒音、排気ガス等を発生させることなくハイブリッド型車両を走行させることができる。そして、フル発進時、加速時等においてエンジンが急に始動する音が発生しない。

置を駆動して第一の駆動装置を被駆動状態にする。このとき、エンジンのトルクによって、被駆動状態に置かれた第一の駆動装置において発電が行われ、第二の駆動装置のトルクによって駆動力が発生させられ、該駆動力によってハイブリッド型車両は走行させられる。

【手続補正10】

【補正対象音類名】明細書

【補正対象項目名】0015

【補正方法】変更

【補正内容】

【0015】一方、高速走行における加速時及び定常走行時等においては、エンジンを駆動して第一、第二の駆動装置を停止させる。このとき、エンジンだけのトルクによって駆動力が発生させられ、該駆動力によってハイブリッド型車両は走行させられる。また、高速走行における減速時等においては、エンジン及び第一、第二の駆動装置を被駆動状態にする。このとき、慣性力によってハイブリッド型車両は走行させられるが、通常の車両のエンジンブレーキと同様に、被駆動状態に置かれたエンジン及び第一、第二の駆動装置が負荷になって制動力が発生するとともに、第一、第二の駆動装置において回生が行われる。

【手続補正11】

【補正対象音類名】明細書

【補正対象項目名】0016

【補正方法】変更

【補正内容】

【0016】そして、高速走行においてエンジンによる発電を行う場合、エンジンを駆動して第一、第二の駆動装置を被駆動状態にする。このとき、エンジンのトルクによって駆動力が発生させられ、該駆動力によってハイブリッド型車両は走行させるとともに、被駆動状態に置かれた第一、第二の駆動装置において発電が行われる。

【手続補正12】

【補正対象音類名】明細書

【補正対象項目名】0017

【補正方法】変更

【補正内容】

【0017】したがって、低速走行及び中速走行における加速時、定常走行時、減速時等においてはエンジンが駆動されないので、騒音、排気ガス等を発生させることなくハイブリッド型車両を走行させることができる。そして、フル発進時、加速時等においてエンジンが急に始動する音が発生しない。

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.