B.Tech / M.Tech (Integrated) DEGREE EXAMINATION, JANUARY 2023

First Semester

21CYB101J - CHEMISTRY

(For the candidates admitted from the academic year 2022-2023)

TAT				
	0	•	Δ	в
	v	u	v	в

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) er to hall invigilator at the end of 40th minute.

(ii)		over to hall invigilator at the end of 40 Part - B and Part - C should be answere	ed in a	nswer booklet.				
(11)					Max.	Ma	rks:	75
Time	: 3	Hours			Marks	BL	со	PO
		PART - A (20 × 1	= 20N	Tarks)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		Answer ALL O	uestic	ons	1	2	1	1
	1.	The crystal field splitting energy (Δ_0)	is di	Number of d-Electrons		-		
		(A) Geometry	(D)	Oxidation state				
		(C) Coordination number	(D)	Oxidation state				,
	2	The effective nuclear charge realised	by is	electron of helium atom is	1	3	1	1
	۷.	(A) 1.00	(B)	1.20				
		(C) 1.70	(D)	1.65				
					1	3	1	1
	3.	The complex [Pt (NH ₃) ₂ Cl ₂] exhibits	(D)	Coordination isomerism				
		(A) Linkage isomerism	(D)	Optical isomerism				
		(C) Geometrical isomerism	(D)	Option isomorphism				
	4	The spin only magnetic moment valu	ie (In	bohr magneton units) of Cr(CO)6	1	3	1	1
		is						
		(A) 0		2.84				
		(C) 4.90	(D)	5.92				
	5	For a reaction that has an equilibrium	ım cc	onstant of 3.2×10^{-2} , which of the	1	4	2	1
	٥.	following statement must be true?						
		(A) ΔH° is negative	(B)	ΔG° is positive				
		(C) ΔG° is negative	(D)	ΔS° is positive				
		477 0 1		1 400	1	2	2	1
	6.	For an isolated system, $\Delta U = 0$, what	(P)	$\Delta S < 0$				
		(A) $\Delta S > 0$	(D)	10. 0				
		(C) $\Delta S \leq 0$	(D)	45 2 0				
	7.	In the pourbaix diagram, the form	of ire	on that will predominate at pH12	1	3	2	1
		and at potential of 1.86 V is						
		(A) Fe		Fe ²⁺				
		(C) FeO ₄ ²⁻	(D)	Fe(OH) ₃				
	8	Helmholtz function F is given by			1	1	2	1
	0.	(A) -U+TS	(B)	-U - TS				
		(C) U+TS	(D)	U-TS				

	The number of structural isomers for C ₆ H ₁₄ is (A) 6 (B) 5 (C) 4 (D) 3	1	2	3	
10.	Reactivity order of alkyl halides in S_N^2 reaction is (A) $CH_3 \times 1^{\circ} > 2^{\circ} > 3^{\circ}$ (B) $CH_3 \times 2^{\circ} > 3^{\circ} > 1^{\circ}$ (C) $3^{\circ} > 2^{\circ} > 1^{\circ} > CH_3 \times$ (D) $3^{\circ} > 1^{\circ} > 2^{\circ} > CH_3 \times$	1	2	3	2
	Among the following hex-2-ene reacts fastest with? (A) HCl (B) HF (C) HI (D) HBr	1	3	3	2
12.	Which of the following has the lowest priority according to the CIP sequence rules? (A) CH(OH) CH ₃ (B) CH = CH ₂ (C) -CHO (D) CH ₂ CH ₃	1	3	3	2
	Which of the following is a thermo setting polymer? (A) Bakelite (B) Polystyrene (C) PVC (D) Polyethene		1	4	1
	Which one of the below is used as an insulator and also as a lubricant? (A) PVC (B) PTFE (D) Poly propylene	1	2	4	1
15.	Hemodialysis tubes are made with (A) Silicone rubber (C) Polyurethane intermediate (B) Polystyrene (D) Nylon	1	1	4	1
16.	Which of the below polymers show higher crystallinity? (A) Isotactic (B) Atactic (C) Random (D) Syndiotactic	1	2	4	1
	In fibre reinforced composites which constituent will fail last? (A) Filler (B) Matrix (C) Both fail at same time (D) Need more details on composite	1	2	5	1
18.	After the proportionality limit in the stress-strain our	1	3	5	1
19.	Minimum inter planar spacing required for Bragg's diffraction is (A) $\lambda/4$ (B) 4λ (C) $\lambda/2$ (D) 2λ	1	2	5	1
20	Determine young's modulus of a material whose elastic stress and strain are 4 N/m² and 0.15 respectively (A) 26.66 N/m^2 (B) 2.666 N/m^2 (C) 266.6 N/m^2 (D) 2666 N/m^2	1	3	5	1

$PART - B (5 \times 8 = 40 Marks)$ Answer ALL Questions

Marks BL CO PO

21. a.	Find the number of unpaired electrons in strong and weak octahedral field for a Mn ²⁺ complex (d ⁵) based on CFT. Calculate CFSE and magnetic moment for both the situation with energy level diagrams.	8	4	1	1
b.	OR) Demonstrate with proper examples the isomerism exhibited in transition metal complexes.	8	3	1	1
22. a.	With appropriate examples, elucidate how Nernst equation can be applied in a redox reaction and in an acid-base reaction.	8	2	2	1
b.	(OR) Derive Gibbs-Helmholtz equation and given its applications.	8	1	2	1
23. a.	Compare and contrast S_N^1 and S_N^2 reactions with an example for each.	8	2	3	2
b.	(OR) Sketch the potential energy diagram and explain in detail the conformational analysis of n-butane.	8	1	3	2
24. a.	Provide a conscise note on the synthesis and applications of Teflon and PVC.	8	2	4	1
	(OR)				
Ъ.	Explain in detail n and p-doping in conducting polymers.	8	2	4	1
25. a.	Illustrate with a proper stress-strain plot for the following (i) Elastic region (ii) Plastic region	8	3	5	1
	(OR)				
b.	Explain with an example ceramic matrix composite and metal matrix composite.	8	2	5	1
	PART – C (1 × 15 = 15 Marks) Answer ANY ONE Questions	Marks	BL	СО	PO
26.	With an neat sketch discuss pourbaix diagram for iron.	15	3	2	1
27.i.	Explain E2 mechanism with suitable example.	5	2	3	2
ii.	Discuss about the principle and instrumentation of X-ray photo electron spectroscopy.	10	3	5	1
