

Fourier transform

Joseph Fourier has put forward an idea of representing signals by a series of harmonic functions

inverse

forward

Fourier coefficients

Joseph Fourier (1768-1830)

Fourier transform - example

$$X(j\omega) = \int_{-\infty}^{+\infty} \cos(\omega_0 t) e^{-j\omega t} dt = \frac{1}{2} (\delta(\omega - \omega_0) + \delta(\omega + \omega_0))$$

Fourier transform - example

$$f(t) = \begin{cases} 1, & t < T \\ 0, & t > T \end{cases}$$

$$F(\omega) = A \int_{0}^{T} e^{-j\omega t} dt = \frac{2A}{\omega} sin\left(\frac{\omega T}{2}\right) e^{-j\frac{\omega T}{2}}$$

$$|F(\omega)|=?$$

Fourier transform - example

A series of Dirac pulses

$$\delta_{T}(t) = \sum_{-\infty}^{+\infty} \delta(t - kT) \qquad \Longleftrightarrow \qquad \omega_{s} \sum_{-\infty}^{+\infty} \delta(\omega - k\omega_{0})$$

$$\omega_s = \frac{2\pi}{T}$$

Monochrome image

Fourier spectrum

Why do we convert images (signals) to spectrum domain?

Why do we convert images to spectrum domain?

- For exposing image features not visible in spatial domain, eg. periodic interferences
- 2. For achieving more compact image representation (coding), eg. **JPEG, JPEG2000**
- 3. For designing digital filters
- 4. For fast processing of images, eg. digital filtering of images in spectrum domain

Detection of image features, eg. periodic interferences

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-j2\pi(ux+vy)}dxdy$$
 forward

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v)e^{j2\pi(ux+vy)}dudv$$
 inverse

Euler equations?

$$\cos \omega_{0} t = \frac{1}{2} \left(e^{j\omega_{0}t} + e^{-j\omega_{0}t} \right) \left[\sin \omega_{0} t = \frac{1}{2j} \left(e^{j\omega_{0}t} - e^{-j\omega_{0}t} \right) \right]$$

$$\sin \omega_0 t = \frac{1}{2j} \left(e^{j\omega_0 t} - e^{-j\omega_0 t} \right)$$

Amplitude and phase spectrum of the Fourier transform of images

$$F(u,v) = |F(u,v)|e^{-j\arg[F(u,v)]}$$

$$|F(u,v)| = \sqrt{\text{Re}(F(u,v))^2 + \text{Im}(F(u,v))^2}$$

$$\arg(F(u,v)) = \arctan \frac{\text{Im}(F(u,v))}{\text{Per}(F(u,v))}$$

The Discrete FT of images

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux+vy)/N}$$

$$dla \quad u, v = 0,1,...,N-1$$

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{+j2\pi(ux+vy)/N}$$

$$dla x, y = 0,1,...,N-1$$

Number of computations for 512x512 image?

1D computational example

$$f(x) = [1 \ 3 \ 4 \ 4]$$
 $N = 4$

$$N = 4$$

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$F(u) = \frac{1}{N} \sum_{x=0}^{x=3} f(x) e^{-j2\pi ux/N}$$

$$F(0) = \frac{1}{N} \sum_{x=0}^{N-1=3} f(x) e^{-j2\pi 0x/N} = \frac{1}{4} [f(0) + f(1) + f(2) + f(3)] = 0$$

$$= \frac{1}{4}[1+3+4+4] = 3$$

$$F(1) = \dots = \frac{1}{4}(-3+j)$$

$$F(2) = \dots = -\frac{1}{4}(2)$$

$$F(3) = \dots = -\frac{1}{4}(3+j)$$

Fourier amplitude spectrum

Fourier amplitude spectrum

Detection of periodic distortions

Fourier phase spectrum of an image

|F(u,v)|

$$log(1+|F(u,v)|)$$

Properties of the two-dimensional Fourier transform

Separability:

Computation of the 2-D Fourier transform as a series of 1-D transforms

Separability of the 2-D Fourier transform

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux+vy)/N}$$

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} e^{-j2\pi ux/N} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi vy/N}$$

$$F(u,v) = \frac{1}{N} \sum_{x=0}^{N-1} F(x,v) e^{-j2\pi ux/N}$$

Example

Images

Amplitude spectra

Shift in the spatial domain

$$f(x-x_0, y-y_0) \Leftrightarrow F(u,v) exp \left[-\frac{j2\pi(ux_0+vy_0)}{N} \right]$$

Properties of the two-dimensional Fourier transform

Convolution:

$$F \{f(x,y) | g(x,y)\} = F(u,v) * G(u,v)$$

$$\mathcal{F}\left\{f(x,y) * g(x,y)\right\} = F(u,v) G(u,v)$$

This property is useful in designing digital image filters.

2-D convolution of discrete functions

f(i,j), g(i,j) – dicretete 2-D functions of period NxN

increase periods of f(i,j) and g(i,j) up to M=2N-1:

$$f_e(i,k) = \begin{cases} f(i,k) & 0 \le i, k \le N-1 \\ 0 & N \le i, k \le M-1 \end{cases} \quad g_e(i,k) = \begin{cases} g(i,k) & 0 \le i, k \le N-1 \\ 0 & N \le i, k \le M-1 \end{cases}$$

$$f_e(i,k) * g_e(i,k) = \sum_{m=0}^{M-1} \sum_{n=0}^{M-1} f_e(m,n) g_e(i-m,k-n)$$

1-D correlation - example

$$f(\alpha)g(x+\alpha) \qquad f(x) \circ g(x) = \int_{-\infty}^{\infty} f(\alpha)g(x+\alpha)d\alpha$$
1/2
$$|x| \qquad 2 \qquad \alpha$$

Correlation of 2-D discrete functions

f(i,j), g(i,j) – dicretete 2-D functions of period NxNIncrease the periods as for convolution:

$$f_e(i,k) \circ g_e(i,k) = \sum_{m=0}^{M-1} \sum_{n=0}^{M-1} f_e(m,n) g_e(i+m,k+n)$$

Periodicity of the FT

$$F(u,v)=F(u+N,v)=F(u,v+N)=F(u+N,v+N)$$

If f(x,y) is a real valued function then:

$$F(u,v)=F^*(-u,-v)$$

and:

$$/F(u,v)/=/F(-u,-v)/$$

It is assumed the transformed image is a periodic function of period (N, N)

Translation in the spectral domain

$$f(x,y)\exp\left[\frac{j2\pi(u_0x+v_0y)}{N}\right] \Leftrightarrow F(u-u_0,v-v_0)$$

This Fourier property is known as the theorem of modulation.

Translation in the spectral domain

Translation in the spectral domain

$$f(x,y)\exp\left[\frac{j2\pi(u_0x+v_0y)}{N}\right] \Leftrightarrow F(u-u_0,v-v_0)$$

for
$$u_0 = v_0 = \frac{N}{2} \iff F\left(u - \frac{N}{2}, v - \frac{N}{2}\right)$$

$$f(x,y)\exp\left[\frac{j2\pi(u_0x+v_0y)}{N}\right] =$$

$$= f(x, y) \exp[j\pi(x+y)] = f(x, y)(-1)^{x+y}$$

Translation in spectral domain

Rotation

 $f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \phi + \theta_0)$

Linearity

$$\mathcal{J}{a f(x,y) + b g(x,y)} = a F(u,v) + b G(u,v)$$

Scaling

$$\mathcal{J}{f(ax,by)} = \frac{|ab|^{-1} F(u/a, v/b)}{}$$

 $a,b \in R$

Average value

$$\bar{f}(x,y) = \frac{1}{N^2} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$

$$F(0,0) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$

$$\bar{f}(x,y) = \frac{1}{N} F(0,0)$$

$$F(0,0) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$

$$\bar{f}(x,y) = \frac{1}{N}F(0,0)$$

Fourier transform of an image - examples


```
f=zeros(30,30);
f(5:24,13:17)=1;
imshow(f,'notruesize')
F=fft2(f); %compute 2-D Fourier transform
F1=log(abs(F)+1); %amplitude spectrum
imshow(F1,[0 5],'notruesize');
```

Discrete Fourier Transform

Basis functions for 30-point Fourier transform (sine component)

Fourier transform of an image - examples

The Fast Fourier Transform, FFT (succesive doubling method)

If $N=2^n$, then $N=2^*M$ and one can show that:

$$F_{even}(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(2x) W_M^{ux}, \quad F_{odd}(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(2x+1) W_M^{ux}$$

$$F(u) = \frac{1}{2} [F_{even}(u) + F_{odd}(u) W_{2M}^{u}], \quad u = 0, 1, ..., M-1$$

$$F(u+M) = \frac{1}{2} [F_{even}(u) - F_{odd}(u) W_{2M}^{u}], \quad u = 0, 1, ..., M-1$$

$$W_M = e^{-j2\pi/M}$$

Comparison of TF and FFT

N	N ² (FT)	NlogN	Advantage
		(FFT)	N/logN
16	256	64	4
256	65535	2048	32
512	262144	4608	64
2048	~4e6	22528	186
<u> </u>	<u>I</u>	<u> </u>	I

2-D Fourier transform

Interactive noise reduction in Fourier spectrum

Discrete Cosine Transform (DCT)

$$F(u,v) = \frac{2}{N} \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} f(x,y) \cos \left[\frac{\pi u(2x+1)}{2N} \right] \cos \left[\frac{\pi v(2y+1)}{2N} \right]$$

for: u, v = 1, 2, ..., N-1

Fourier spectrum of a real valued and symmetric function has real valued coeffcients, ie. only those associated with the cosine components of the Fourier series

DCT basis functions

DCT basis functions for 8x8 image blocks

Discrete Cosine Transform (DCT)

'autumn' image

image cosine transform

The JPEG image compression standard is based on DCT

Other image transforms

- the **Karhunen-Loeve** transform equivalent to the **PCA** (*Principal Component Analysis*)
- the wavelet transform is used in JPEG-2000 image coding standard

Other image transforms

