Appello – 14 gennaio 2019

- 1) Una sfera conduttrice A, di raggio r, posta molto lontano da ogni altro corpo, si trova inizialmente al potenziale V_o .
- a) La sfera viene poi circondata da una sfera conduttrice cava B, concentrica con A, di raggio interno r_1 e raggio esterno r_2 . Si determini il nuovo valore V_1 del potenziale di A.
- b) Successivamente la sfera B viene messa a terra. Si determini il valore V_2 del potenziale di A.

2) Un conduttore cilindrico infinitamente lungo, di raggio a, è percorso da una corrente di intensità I (e verso uscente dal piano del foglio), distribuita uniformemente nella sezione del conduttore. Nel conduttore, per tutta la sua lunghezza, viene praticata una cavità cilindrica di raggio a/2, mantenendo inalterata la densità di corrente iniziale. Si determini il campo magnetico \mathbf{B} (\underline{modulo} , $\underline{direzione}$ \underline{e} \underline{verso}):

- a) nel punto O (al centro del conduttore),
- b) nel punto C (al centro della cavità),
- c) nel punto P (a distanza l da O).
- 3) Si ricavi l'equazione delle onde dalle equazioni di Maxwell e si discutano le proprietà delle sue soluzioni.
- 4
- a) Si enuncino le leggi di Snell e le si ricavino dalle condizioni al contorno per il campo elettromagnetico.
- b) A partire dalle leggi di Snell, si ricavi, almeno in un caso, l'angolo di incidenza per cui si osserva una particolare condizione di riflessione e/o trasmissione e la si discuta.

Nota:

Si invitano gli studenti a:

- Scrivere in stampatello NOME, COGNOME e numero di MATRICOLA e a FIRMARE ogni foglio;
- MOTIVARE e COMMENTARE adeguatamente ogni risultato.