## Welding Lectures 3-8

26 July 2016, Tuesday, 10.00-11.50 am 02 Aug 2016, Tuesday, 10.00-11.50 am 09 Aug 2016, Tuesday, 10.00-11.50 am

### Some material science basics...



- Grain size, Grain boundaries,
- Recrystalization ~0.4-0.6 T<sub>m</sub> → Atoms remain in lattice, but new grains will be formed
- Melting → Atoms displaced from lattice, free to move

### Some material science basics...

- Metals are <u>crystalline</u> in nature and consists of irregularly shaped grains of various sizes
- Each grain is made up of an <u>orderly</u> arrangement of atoms known as lattice
- The orientation of atoms in a grain is uniform but differ in adjacent grains

## Basic Classification of welding

(a) Fusion welding (b) solid-state welding

### a) Fusion Welding

- Uses <u>heat</u> to melt the base metals
- A <u>filler metal</u> is mostly added to the molten pool to facilitate the process and provide bulk and strength to the welded joint.
- e.g., Arc welding, resistance welding, Gas welding, Laser beam welding, Electron beam welding

## Basic Classification of welding

### b) Solid state Welding

- Coalescence results from application of pressure alone or a combination of heat and pressure
- If heat is used, the temperature in the process is below the melting point of the metals being welded
- No filler metal is used
- e.g., Diffusion welding, friction welding, ultrasonic welding

# Micro-structural zones in Fusion welding



- 1) Fusion zone 2) Weld interface/partially melted zone
- 3) Heat affected zone 4) Unaffected base metal

## Grain growth in Fusion welding



- <u>Fusion Zone</u> → Directional solidification → Epitaxial grain growth → Columnar grains
- HAZ → Possible recrystallization/ grain refinement or phase change
- Slow cooling →Coarse grains; Fast cooling → Fine grains
- Shrinkage of fusion zone → Residual stress on the base metal surrounding HAZ

7

# Micro-structural zones in Solid state welding



- No Fusion zone
- Little or no HAZ
- Mechanically upset region (Flash)
- Plastic deformation at the interface

## Role of Temperature in Fusion/ solid state welding

- Drives off volatile <u>adsorbed layers</u> of gases, moisture, or organic contaminants
- Breaks down the <u>brittle oxide</u> through differential thermal expansion
- Lowers <u>yield/flow strength</u> of base materials→ helps plastic deformation
- Promotes <u>dynamic recrystallization</u> during plastic deformation (if T > T<sub>r</sub>)
- Accelerates the rates of <u>diffusion</u> of atoms
- Melts the substrate materials, so that atoms can rearrange by fluid flow (if T > T<sub>m</sub>)

# Role of Pressure in solid state welding

- Disrupts the adsorbed layers of gases/organic compound or moisture by macro- or microscopic deformation
- Fractures brittle oxide or tarnish layers to expose clean base material atoms
- Plastically deform asperities (lattice) to increase the number of atoms that come into intimate contact (at equilibrium spacing)

# Mechanisms for obtaining material continuity

- (1) Solid-phase plastic deformation, without or with recrystallization → Solid state welding
- (2) Diffusion, → Brazing, Soldering
- (3) Melting and solidification → Fusion Welding

#### 1a) Solid-phase plastic deformation (with no heat)

- Atoms are brought together by plastic deformation
- Sufficiently close to ensure that bonds are established at their equilibrium spacing
- Significant lattice deformation
- Lattices are left in the strained state (distorted) in cold deformation



(1a) Cold deformation and lattice strain

Prevailing mechanism in solid state welding with out heat

### 1b) Solid-phase plastic deformation (with heat)

- In hot state (0.4-0.5 T<sub>m</sub>), the strained lattice recover from the distorted state
- Atomic rearrangement & Recrystallization
- Grain growth across original interface
- Eliminates the original physical interface



Prevailing mechanism in solid state welding with heat

### 2) Diffusion

- Transport of mass through atom movement
- Can occur entirely in solid phase or with liquid phase
- For dissimilar materials → thin layer of alloy at the interface
- Rate of diffusion α Difference in composition (Fick's law),
   Temperature



Solid-phase diffusion across the original interface (dotted line)

Prevailing mechanism in brazing/soldering

### 3) Melting and solidification



Liquid provided by melting the parent materials without or with additional filler

Establishing a bond upon epitaxial solidification of this liquid

- Solidifying crystals take up the grain structure & orientation of substrate/unmelted grains
- Prevailing mechanism in most fusion welding process

## Summary: Lectures 1-3

- Overview of welding, applications, advantages, Welded Joint types
- Weld specifications, Symbols
- Fusion & Solid state welding
- Elements of weld setup, Heat Balance, Power density
- N.B: Characteristics, micro-structural zones and concept of lattice continuity in fusion & solid state welding

## Course details: Welding

|    | Topic                                                                                                | Hours | Status |
|----|------------------------------------------------------------------------------------------------------|-------|--------|
| 1. | Introduction to welding science & technology                                                         | 2-3   |        |
| 2  | Welding Processes                                                                                    | 4     |        |
| 3  | Welding Energy sources & characteristics                                                             | 1-2   |        |
| 5  | Welding fluxes and coatings                                                                          | 1     |        |
| 4  | Physics of Welding Arc                                                                               | 1     |        |
| 5  | Heat flow in welding                                                                                 | 1-2   |        |
| 6  | Design of weld joints                                                                                | 2     |        |
| 7. | Testing and inspection of weld joints                                                                | 2-3   |        |
| 8  | Metallurgical characteristics of welded joints, Weldability and welding of various metals and alloys | 2     |        |
|    | Total                                                                                                | 19    |        |

## Welding Processes 1) Oxy-Fuel gas welding

# Welding Processes1) Oxy-Fuel gas welding

- Uses oxygen as oxidizer
- Acetylene, H<sub>2</sub> or Natural gas, methane, propane, butane or any hydrocarbon as fuel
- Fuel + Oxidizer → Energy
- Acetylene is preferred (high flame temperature-3500 °C)

## Gases used in Oxy-gas welding

| Fuel                                                            | Peak<br>reaction<br>Temp (C) | Heat of combustion (MJ/m³) |
|-----------------------------------------------------------------|------------------------------|----------------------------|
| Acetylene                                                       | 3500                         | 54.8                       |
| Methylacetylene-<br>propadiene (C <sub>3</sub> H <sub>4</sub> ) | 2927                         | 91.7                       |
| Hydrogen                                                        | 2660                         | 12.1                       |
| Propylene                                                       | 2900                         | 12.1                       |
| Propane                                                         | 2526                         | 93.1                       |
| Natural gas                                                     | 2538                         | 37.3                       |

# Oxy-acetylene welding (OAW) operation



## Reactions in Oxy-acetylene welding

 Flame in OAW is produced by the chemical reaction of C<sub>2</sub>H<sub>2</sub> and O<sub>2</sub> in two stages



Stage 1 
$$C_2H_2 + O_2 \rightarrow 2CO + H_2 + Heat (1)$$
  
Stage 2  $2CO + H_2 + 1.5O_2 \rightarrow 2CO_2 + H_2O + Heat (2)$ 

### Flames in OAW



### Flames in OAW



Neutral flame is used for most applications

## Flames in OAW- Reducing flame

- Reducing flame for removing oxides from metals, such as aluminium or magnesium
- Preventing oxidation reactions during welding
- To prevent decarburization (i.e., C to CO,) in steels.
- Low carbon, alloy steels, monel metal (Ni+Cu+...), hard surfacing

## Flames in OAW-Oxy. flame

- •The oxidizing flame causes the metal being welded to form an oxide.
- Useful for preventing the loss of high vapor-pressure components, such as zinc out of brass, through the formation of an impermeable "oxide skin" (here, copper oxide)
- Brass (Cu + Zn)
- Bronze, Cu, Zn & Sn alloys

## OAW set up

- Pressurized cylinders of O<sub>2</sub> and C<sub>2</sub>H<sub>2</sub>
- Gas regulators for controlling pressure and flow rate
- A torch for mixing the gases
- Hoses for delivering the gases from the cylinders to the torch



### **OAW Torch**



## Example 1 - OAW

- An oxyacetylene torch supplies 0.3 m<sup>3</sup> of acetylene per hour and an equal volume rate of oxygen for an OAW operation on 4.5-mm-thick steel.
- Heat generated by combustion is transferred to the work surface with a heat transfer factor f1 = 0.20. If 75% of the heat from the flame is concentrated in a circular area on the work surface that is 9.0 mm in diameter, find
- (a) rate of heat liberated during combustion,
- (b) rate of heat transferred to the work surface, and
- (c) average power density in the circular area.

(Heat of combustion of Acetylene in  $O_2 = 55 \times 10^6 \text{ J/m}^3$ )

## Example 1 - OAW

- (a) The rate of heat generated by the torch is the product of the volume rate of acetylene times the heat of combustion: RH =  $(0.3 \text{ m}^3/\text{hr}) (55 \times 10^6) \text{ J/m}3 = 16.5 \times 10^6 \text{ J/hr}$  or 4583 J/s
- (b) With a heat transfer factor f1 = 0.20, the rate of heat received at the work surface is  $f1 \times RH = 0.20 \times 4583 = 917 \text{ J/s}$
- (c) The area of the circle in which 75% of the heat of the flame is concentrated is A = Pi.  $(9)^2/4 = 63.6 \text{ mm}^2$  The power density in the circle is found by dividing the available heat by the area of the circle:

Power density =  $0.75 \times 917/63.6 = 10.8 \text{ W/mm2}$ 

## **OAW-Advantages**

- The OAW process is simple and highly portable
- Inexpensive equipment
- Control over temperature
- Can be used for Pre-heating, cutting & welding

## **OAW-Disadvantages**

- Limited energy → welding is slow
- Low protective shielding → welding of reactive metals (e.g., titanium) is generally impossible
- Low power density, Energy wastage, total heat input per linear length of weld is high
- Unpleasant welding environment
- Weld lines are much <u>rougher</u> in appearance than other kinds of welds → Require more finishing
- Large heat affected zones

## **OAW-Applications**

- Preheating/post heat treatment
- Can be used for cutting, grooving, or piercing (producing holes), as well as for welding
- Oxyfuel gas processes can also be used for flame straightening or shaping
- Oxidizing flame for welding Brass, bronze, Cu-Zn and Tin alloys
- Reducing flame for low carbon & alloy steels

## Pressure Gas welding

(Special case of OAW)



Oxyfuel gas used for preheating the weld interface

## Welding Processes-2) Arc welding

# Arc welding (AW)- Basic configuration



|                             | Arc welding Types                       |
|-----------------------------|-----------------------------------------|
| Consumable electrode        | SMAW, GMAW (MIG), Submerged arc welding |
| Non consumable<br>Electrode | GTAW(TIG)                               |

#### Arc Shielding in AW process

- Accomplished by covering
  - the electrode tip,
  - arc, and
  - molten weld pool with a blanket of gas or flux,
- Common shielding gases → argon and helium,
- In the welding of <u>ferrous metals</u> with certain AW processes, oxygen and carbon dioxide are used, usually in combination with Ar and/or He, to produce an oxidizing atmosphere or to control weld shape

#### Flux in AW process

- Flux is usually formulated to serve several functions:
  - (1) To remove/prevent oxide
  - (2) provide a protective atmosphere
  - (3) stabilize the arc, and
  - (4) reduce spattering
- Flux delivery techniques include
  - (1) pouring granular flux onto the weld
  - (2) using a stick <u>electrode coated with flux</u> material in which the coating melts during welding
  - (3) using tubular electrodes in which flux is contained in the core and released as the electrode is consumed

## Arc Welding- Consumable Electrodes

- Consumable electrodes → Rods or wire.
- Welding rods → 225 to 450 mm long, < 10 mm dia.</li>
- Welding rods → to be changed periodically → reducing arc time of welder
- Consumable <u>weld wire</u> →
   continuously fed into the weld
   pool from spools → avoiding the
   frequent interruptions





# Arc Welding- Non-consumable Electrodes

- Made of <u>tungsten</u> (or carbon, rarely), which resists melting by the arc
- Slow depletion → Analogous to wearing of a cutting tool in machining
- Filler metal must be supplied by means of a separate wire that is fed into the weld pool

# AW-Type 1: Shielded metal arc welding (SMAW)



## Shielded metal arc welding (SMAW)

- Consumable electrode consisting of a filler metal rod coated with chemicals that provide <u>flux</u> and <u>shielding</u>
- Currents typically used in SMAW range between 30 and 300 A at voltages from 15 to 45 V.
- Usually performed manually
- Most common welding, 50 % of industrial welding uses SMAW

# SMAW: Electrode-coating functions

- Produces gases to shield weld from air
- Adds alloying elements
- De-oxidation
- Produces slag to protect & support weld
- Controls cooling rates
- Stabilizes arc

## Electrode coating in SMAW-constituents

- Shielding gas is generated by either the decomposition or dissociation of the coating, Cellulosic →generates H<sub>2</sub>, CO, H<sub>2</sub>O and CO<sub>2</sub>
  Limestone (CaCO<sub>3</sub>)→ generates CO<sub>2</sub> and CaO slag Rutile (TiO<sub>2</sub>) up to 40% → easy to ignite, gives slag detachability, fine bead appearance, generates O<sub>2</sub> & H<sub>2</sub> by hydrolysis
- Slag formers (flux): SiO, MnO<sub>2</sub>, FeO.Al<sub>2</sub>O<sub>3</sub>
- Arc stabilizers: Na<sub>2</sub>O, CaO, MgO, TiO<sub>2</sub>
- Deoxidizer: Graphite, Al, Wood flour
- Binder: sodium silicate, K silicate
- Alloying elements: V, Co, Mo, Zr, Ni, Mn, W etc.

#### SMAW-Adv & Applications

- It is preferred over oxyfuel welding for thicker sections—above 5 mm —because of its higher power density.
- The equipment is portable and low cost, making SMAW highly versatile and most widely used AW processes.
- Base metals include steels, stainless steels, cast irons, and certain nonferrous alloys

#### **SMAW-Disadvantages**

- Electrode length varies during the operation
- Length affects the resistance heating of the electrode,
- Current levels → To be maintained within a safe range or the coating will overheat and melt prematurely when starting a new welding stick

#### **SMAW-Disadvantages**

- Use of the consumable electrode →
  must periodically be changed → reduces
  the arc time
- Offers <u>limited shielding protection</u> compared to inert gas shielded processes
- Some of the other AW processes overcome the limitations of welding stick length in SMAW by using a continuously fed wire electrode

# AW-Type 2: Gas metal arc welding (GMAW) -MIG



#### Gas metal arc welding-Features

- Consumable wire electrode is fed continuously and automatically from a spool through the welding gun
- Inert shielding gas: protects the arc and the molten or hot, cooling weld metal from air.
   Also, provides desired arc characteristics through its effect on ionization
- No electrode coating
- No flux or additional filler
- DCRP used (electrode +ve, work –ve)

# AW-Type 3: Flux-Cored Arc Welding (FCAW)

- Flux cored electrode
- Consumable wire electrode
- With/ Without shielding gas
- Core contents
  - alloying elements,
  - shielding gas generators
  - flux, etc.





# AW-Type 4 Submerged Arc welding (SAW)



The blanket of granular flux submerges the welding operation, prevents sparks, spatter, and radiation

### Submerged Arc welding

- Continuous, consumable bare wire electrode
- Arc shielding provided by a cover of granular flux
- Granular flux is introduced into the joint slightly ahead of the weld arc by gravity from a hopper
- <u>Unfused flux</u> remaining after welding can be recovered and <u>reused</u>
- <u>efficiency of Energy transfer from the electrode to</u> workpiece is very high- Low losses
- Welding is restricted to <u>flat and horizontal positions</u>

# AW-Type 5: Gas Tungsten Arc Welding (GTAW or TIG)



#### **GTAW-** Features

- Non-consumable tungsten electrode
- Inert gas for arc shielding
- With or without filler rod
- Aluminium and stainless steel
- high-quality welds, no weld spatter because no filler metal
- Little or no post weld cleaning because no flux is used

### Arc welding Types-Summary

| Name                                      | Electrode<br>type               | Electro de coating | Filler<br>rod    | Shielding<br>gas              | Flux                          | Remarks               |
|-------------------------------------------|---------------------------------|--------------------|------------------|-------------------------------|-------------------------------|-----------------------|
| Shielded metal<br>arc welding<br>(SMAW)   | Consumable rod                  | YES                | NIL              | Provided by electrode coating | Provided by electrode coating | Manual<br>welding     |
| Gas metal arc<br>welding<br>(GMAW)-MIG    | Consumable wire                 | NIL                | NIL              | YES                           | NIL                           | Automate<br>d welding |
| Flux-Cored Arc<br>Welding<br>(FCAW)       | Consumable<br>wire<br>electrode | NIL                | NIL              | With/without                  | Provided by electrode core    | Manual/au<br>tomated  |
| Submerged<br>Arc welding<br>(SAW)         | Consumable wire electrode       | NIL                | NIL              | NIL                           | Granular flux                 | Manual/au<br>tomated  |
| Gas Tungsten<br>Arc Welding<br>(GTAW-TIG) | Non<br>consumable               | NIL                | With/<br>without | YES                           | NIL                           | Automate<br>d welding |

りり

Physics of Arc welding

#### Arc-on-time in Arc welding

- The proportion of hours worked that arc welding is being accomplished
- Arc time = Time arc is ON / Hours worked

|                       | Arc ON time |  |
|-----------------------|-------------|--|
| Manual Welding        | ~ 20 %      |  |
| Machine, automatic, & |             |  |
| robotic welding       | ~ 50 %      |  |

#### The electric arc

- Thermionic emission: Electrons and positive ions from the electrode and the workpiece.
- Accelerated by the potential field between the electrode and the work
- Produce heat when they convert their kinetic energy by collision with the opposite charged element
- Electrons have much greater kinetic energy because they can be accelerated to much higher velocities under the influence of a given electric field



### Polarity in Arc welding

- Consumable electrode

   → Normally Anode;
   work → cathode
- Non consumable electrode → Normally Cathode, Work → anode



# Effect of Magnetic Fields on Arcs

- Arc blow (deflection)
- Arc blow arises from two basic conditions
  - the change in direction of current flow as it leaves the arc and enters the workpiece to seek ground
  - Asymmetrical arrangement of magnetic material around the arc
- The effects of magnetic fields on welding arcs is determined by the Lorentz force, which is proportional to the cross-product of the magnetic field (B) and the current flow density (J), B x J
- Arc blow can be reduced by using AC or pulsed DC

### Arc welding - Arc Types

- Steady (from a DC power supply)
- Intermittent (due to occasional, irregular short circuiting)
- Continuously unsteady (as the result of an AC power supply)
- Pulsing (as the result of a pulsing DC power supply)



#### Pulsed DC in Arc welding

- The higher pulsing rates increase puddle agitation → a better grain molecular structure within the weld
- High speed pulsing constricts and focuses the arc; Increases arc stability, penetration and travel speeds
- Reduces <u>arc blow</u> (created by influence of magnetic field)
- A smaller heat-affected zone
- 4 Variables: peak amperage, background amperage, peak time and pulse rate



#### Creation of arc plasma

Electrons emitted from cathode Inert gas Secondary electrons

High temperature plasma



Low temperature plasma

#### The Arc Plasma

- Plasma, the ionized state of a gas
- Comprises of a <u>balance of negative</u> <u>electrons and positive ions</u> (both created by thermionic emission from an electrode) and
- Collisions between these electrons and atoms in the gaseous medium → secondary emission from gas → ionisation of gaseous medium
- Gaseous medium could be a selfgenerated (e.g. metal vapour) or externally supplied inert shielding gas



#### The Arc Plasma

- The establishment of a <u>neutral plasma state</u>

   → attained at <u>equilibrium temperatures</u> →
   magnitude depend on the ionization potential
   of gas from which the plasma is produced
   (e.g., air, argon, helium)
- The higher work function of the gaseous medium → Higher Arc temperature
- E.g. Helium → tighter bonding of outermost electrons compared to Ar → Hotter arc

#### The Plasma Temperature

Formation of a plasma is governed by an extended concept of the ideal gas law and law of mass action

$$\frac{n_e n_i}{n_0} = \frac{2Z_i (2\pi m_e kT)^{2/3}}{Z_0 h^3 e^{-Vi/kT}}$$

 $n_e$ ,  $n_i$ , and  $n_o$  are the number of electrons, ions, and neutral atoms per unit volume (i.e., the particle density),

**V**<sub>i</sub> is the ionization potential of the neutral atom,

**T** is the absolute temperature (K),

 $Z_i$  and  $Z_o$  are partition functions (statistical properties of a system in thermodynamic equilibrium) for ions and neutral particles,

h is Planck's constant (6.63 x 10<sup>-34</sup> J/s),

 $m_e$  is the mass of an electron (9.11 x 10<sup>-31</sup> kg),

**k** is Boltzmann's constant (1.38 x 10<sup>-23</sup>J/K)

#### Arc/Plasma Temperature

- Factors affect the plasma temperature
  - √ Constituents of the particular plasma
  - ✓ Its density
- Lowered by the presence of fine metallic particles
- Lowered by convection/radiation heat loss

Plasma

Inert gas, Metal particles, vapours, constituents Alkali metal vapours, fine particles of molten flux (or slag)

### Arc temperature

| Arc Welding type                                    | Arc constituents                                                                    | ~Arc temperature K (Theoretical values) |                                                                    |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|--|
| Plasma Arc<br>welding (PAW)                         | Pure plasma, no metal transfer                                                      | 50,000                                  |                                                                    |  |
| Gas tungsten arc welding (with inert shielding gas) | Metal vapor from nonconsumable electrode and any molten metal particles from filler | 30,000                                  | Actual values limited by losses (convection, radiation, diffusion) |  |
| GMAW                                                | large concentrations of metal ions and vapor and molten droplets                    | 20,000                                  |                                                                    |  |
| SMAW/<br>Flux cored arc<br>welding                  | easily ionized materials<br>such as alkali metals<br>(sodium, potassium)            | 6000                                    |                                                                    |  |

68

#### Arc Temperature

### Temperature of the arc columns for various gases

| Gas                            | Temperature of arc column close to cathode (K) ~ |  |
|--------------------------------|--------------------------------------------------|--|
| Alkali-metal vapour (Na, K)    | 4000                                             |  |
| Alkaline earth vapour (Ca, Mg) | 5000                                             |  |
| Iron vapour                    | 6000                                             |  |
| Argon (200 A)                  | 10,000-15,000                                    |  |

### Arc Temperature



- Measured by spectral emission of excited/ionized atoms
- Normally is in the range of 5000 to 30,000 K
- The actual temperature in an arc is limited by heat loss (radiation, convection, conduction, and diffusion), rather than by any theoretical limit

#### **Arc: V-A Characteristics**

- The total potential of an arc first falls with increasing current, and then rises with further increases in current
- The initial decrease is attributed to a growth of thermally induced electron emission at the arc cathode and thermal ionization



#### Influence of Arc length

- Potential barrier increases with the arc length (gap)
- Lengthening the arc →
   exposes more of the arc
   column to cool boundary →
   More losses → Higher
   demand for voltage



#### V-A Characteristics of an Arc

- Arc welding → <u>low-voltage</u>, <u>high-current</u> arcs between a nonconsumable or consumable electrode and a work piece
- Arc welding power source → static and dynamic characteristics
- Static volt-ampere characteristics,
  - (1) constant-current and
  - (2) constant-voltage
- Dynamic characteristics → determined by measuring very short-duration (~1 ms) transient variations in output voltage and current that appear in the arc itself

73 73

### Constant current power sources

- A change in arc length will cause corresponding change in arc voltage and a very small change in current.
- Electrode melting and <u>metal</u> deposition rate remain constant with slight changes in arc length
- Greater tolerance to arc length Variations
- Used for manual SMAW and GTAW



### Constant current power sources

- Used primarily with <u>coated electrodes</u>
- Small change in amperage and arc power for a corresponding relatively large change in arc voltage or arclength
- The curve of a constant current machine drops down-ward sharply → often called a "<u>drooper</u>"
- In welding with coated electrodes, the amperage is set by the operator while the voltage is designed into the unit
- The operator can vary the arc voltage by increasing or decreasing the arc length

### Constant-Voltage Power Sources



- A slight change in arc length causes a large change in current, so melting rate changes rapidly in response.
- This has the effect of self-regulation, increasing the melting rate as arc length is inadvertently shortened, (and vice versa)

**76** 76

### Constant-Voltage Power Sources

 CV power supplies are attractive for <u>constantly fed continuous electrode</u> <u>processes</u> such as GMAW, FCAW, or SMAW, to maintain near-constant arc length.

#### Combined Characteristic Sources

- Single power supply that can provide either constant-voltage or constant-current
- Higher-voltage portion
- → Constant current
- Below a certain threshold voltage, the curve switches to a constant voltage type



#### Combined Characteristic Sources

- Utility for a variety of processes, and are actually a combination of the straight CV or CC types
- Useful for SMAW to <u>assist in starting</u>
- Avoid electrode sticking in the weld pool (in those cases where the welder is required to use shorter arc length)

## Arc Electrical Features-impedance

- An electric welding arc is an <u>impedance</u> (related to the resistance of a circuit, but including contributions from capacitance and inductance as well) to the flow of electric current
- Specific impedance at any point in an arc is inversely proportional to the <u>density</u> of the charge carriers and their inherent <u>mobility</u>.
- The total impedance depends on the radial and axial <u>distribution of charge carrier density</u>
- The impedance of the plasma column is a <u>function of temperature</u> (except regions near the arc terminals)



#### All electric arcs consist of three regions

- the cathode fall space (or drop zone);
- the plasma column fall space (or drop zone)
- the anode fall space (or drop zone)

#### Arc-Electrical features

- Electrical power dissipated in each regions of the arc given by  $P = I(E_a + E_c + E_p)$  where  $E_a$  is anode voltage,  $E_c$  is cathode voltage, and  $E_p$  is plasma column voltage ( $E_c > E_a > E_p$ )
- Intermediate regions → Involved in expanding or contracting the cross section of the gaseous conductor to accommodate each of these main regions.
- As a consequence, welding arcs assume bell or cone shapes and elliptical or some other noncylindrical contour.

### Arc Shape

Arc shape = Interaction of (Arc + Plasma + Ambience)

- Bell Shape
- Cone
- Elliptical
- Cylindrical



## Arc Shape- Influencing factors

- 1. Shape of the arc terminals (i.e., pointed welding electrode producing a narrow arc focused at the electrode tip and flat work piece electrode, which causes the arc to spread)
- 2. Gravitational forces
- Magnetic forces (from both internally generated and externally induced or applied sources)
- 4. <u>Interactions</u> between the plasma and ambience (shielding gas)



### Arc Shape- Influencing factors

- Nature of electrode- Consumable/non consumable
- Electrode coating/gas generation
- Shielding gas
- Magnitude & polarity of current source

### Arc Shape-Examples







Non consumable electrode + Inert gas

Consumable coated electrode + Gas generation

Consumable electrode + CO<sub>2</sub> gas



#### Arc radiation

- Arc radiation → amount and character depends on
  - the atomic mass and chemical composition of the gaseous medium,
  - the temperature, and the pressure.
- Spectral analysis shows line and continuum emissions due to excited and ionized states of atoms and ions
- Radiation → UV, visible, IR
- Energy loss due to radiation → 10-20
- Highly hazardous to eyes, skin





# Metal transfer in Arc welding (Consumable electrode)

- The manner in which molten filler metal is transferred to the weld pool → profound effects on the performance of a consumable electrode arc welding process
- These effects include
  - Ease of welding in various positions
  - Extent of weld penetration;
  - Rate of filler deposition and
  - Heat input
  - Stability of the weld pool
  - Amount of spatter loss

# Metal transfer in Arc welding (Consumable electrode)



# Mode of Metal transfer-Influencing parameters

- Pressure generated by the evolution of gas at the electrode tip (for flux-coated or fluxcored electrode processes)
- <u>Electrostatic attraction</u> between the consumable electrode and the workpiece
- Gravity
- <u>"Pinch effect"</u> caused near the tip of the consumable electrode by electromagnetic field forces → spray

# Mode of Metal transfer-Influencing parameters

- Explosive evaporation of a necked region formed between the molten drop and solid portions of the electrode <u>due to very high</u> <u>conducting current density</u>
- Electromagnetic action produced by divergence of current in the arc plasma around a drop.
- Friction effects of the plasma jet (plasma friction)
- Surface tension effects once the molten drop (or electrode tip) contacts the molten weld pool

### Metal transfer types

- Free-flight transfer: Complete

   detachment of the molten metal
   drop from the consumable
   electrode → flight to the work piece
   and weld pool, without any direct
   physical contact
- Bridging transfer: molten metal drops are never completely free; rather they are always attached to the consumable electrode and the workpiece, momentarily bridging the two from a material standpoint and electrically
- Slag-protected transfer





### Free-flight-Globular Transfer

- Low welding currents (50-170 A) in pure argon, molten metal from a small diameter solid steel wire electrode is transferred in the form of globules
- Drop's diameter larger than the wire
- Large drops → detach by gravity
- Low rate of globule formation, detachment, and transfer (< 1-10 s<sup>-1</sup>)
- Globular transfer → down-hand position



# Free flight: Globular-projected Transfer

- As the welding current increases within the range of 50-170A, the drops become progressively smaller, → electromagnetic forces are having an increasing effect on detachment
- Drop size inversely proportional to welding current.
- As welding current is increased, the rate of drop transfer also increases



### Free-flight transfer modes



Individual drop formation and detachment sequence in (a) globular transfer and (b) projected and (c) streaming axial spray transfer

# Free flight -Spray Transfer/streaming transfer

- At current > critical level → No individual drops
- Tip of the consumable electrode becomes pointed → cylindrical stream of liquid metal flows toward the work piece in line with the electrode.
- Near its tip (nearest the work piece), this cylinder disperses into many very small droplets → <u>Electromagnetic pinch effect</u>
- The rate at which droplets are transferred is hundreds per second.



# Free flight -Spray Transfer: Features

- Axial spray transfer mode → Excellent stability, virtually free of spatter
- Droplets are <u>actively propelled away</u> from the consumable electrode and into the molten weld pool to be captured by surface tension force.
- This is a great advantage when <u>making vertical</u> or <u>overhead welds</u>, where the propelling force offsets the disruptive effect of gravity

# Bridging or short circuiting transfer

- Large dia. Electrodes → too high transition current to achieve axial spray transfer (e.g., 200-220A for 1-mmdiameter steel wire) → Bridging transfer
- Voltage is kept low (say 17-21 V versus 24-28 V for globular transfer with steel wires)
- The tip of the electrode periodically dipped into the molten weld pool.



# Bridging or short-circuiting transfer

- Bridging → Molten metal transfer by a combination of <u>surface tension and</u> <u>electromagnetic forces</u>
- Repelled transfer → the molten drop at the electrode tip could be pushed upward in some cases [e.g: in the presence of carbon dioxide (CO<sub>2</sub>) in shielding gas]. In this case, shortcircuiting could be used to capture the drop before it detaches in an unfavorable manner



# Sequence of short-circuiting transfer



(a) Globule of molten metal builds up on the end of the electrode; (b) Globule contacts surface of weld pool; (c) Molten column pinches off to detach globule; and (d) Immediately after pinch-off, fine spatter may result

# Short-circuiting transfer: I-V trace



# Short-circuiting transfer-Advantages

- Less fluid molten metal (due to less superheat)
- Less penetration (due to lower welding voltage and lower net energy input).
- Easy handling in all positions, especially overhead, and for the joining of thin-gauge materials.
- Minimum Spatter



# Pulsed arc or pulsed current transfer

- Steady current to maintain the arc and a periodic current pulse to a higher level
- Periodic pulses <u>detaches a drop</u> and propels it into the weld pool,
- Advantage of axial spray transfer at a lower average current, and, thus, lower net heat input.
- The time period of pulses must be short enough to suppress globular transfer, but long enough to ensure that transfer by the spray mode will occur

#### Pulsed current transfer



#### Pulsed current transfer

- This pulsed mode differs from the normal spray mode in that
  - The molten metal transfer is interrupted between the current pulses
  - The current to produce spray is below the normal transition current
- Pulse shape (i-e., wave form, especially the rate of the rise and fall of current) and frequency can be varied over a wide range in modern power sources
- Rate of molten metal transfer can be adjusted to be one drop or a few drops per pulse (by adjusting the pulse duration)

#### Classification of transfer modes

| Designation of Transfer Type       | Welding Processes (Examples)      |
|------------------------------------|-----------------------------------|
| 1. Free-flight transfer            |                                   |
| 1.1. Globular                      |                                   |
| 1.1.1. Drop                        | Low-current GMA                   |
| 1.1.2. Repelled                    | CO, shielded GMA                  |
| 1.2. Spray                         | •                                 |
| 1.2.1. Projected                   | Intermediate-current GMA          |
| 1.2.2. Streaming                   | Medium-current GMA                |
| 1.2.3. Rotating                    | High-current GMA                  |
| 1.3. Explosive                     | SMA (coated electrodes)           |
| 2. Bridging transfer               |                                   |
| 2.1. Short-circuiting              | Short-arc GMA, SMA                |
| 2.2. Bridging without interruption | Welding with filler wire addition |
| 3. Slag-protected transfer         |                                   |
| 3.1. Flux-wall guided              | SAW                               |
| 3.2. Other modes                   | SMA, cored wire, electroslag      |

### Dominant forces in transfer modes

| Transfer Type                      | Dominant Force or Mechanism                            |
|------------------------------------|--------------------------------------------------------|
| 1. Free-flight transfer            |                                                        |
| 1.1. Globular                      |                                                        |
| 1.1.1. Drop                        | Gravity and electromagnetic pinch                      |
| 1.1.2. Repelled                    | Chemical reaction generating vapor                     |
| 1.2. Spray                         |                                                        |
| 1.2.1. Projected                   | Electromagnetic pinch instability                      |
| 1.2.2. Streaming                   | Electromagnetic                                        |
| 1.2.3. Rotating                    | Electromagnetic kink instability                       |
| 1.3. Explosive                     | Chemical reaction to form a gas bubble                 |
| 2. Bridging transfer               | _                                                      |
| 2.1. Short-circuiting              | Surface tension plus electromagnetic forces            |
| 2.2. Bridging without interruption | Surface tension plus (hot wire) electromagnetic forces |
| 3. Slag-protected transfer         |                                                        |
| 3.1. Flux-wall guided              | Chemical and electromagnetic                           |
| 3.2. Other modes                   | Chemical and electromagnetic                           |

# Effect of welding process parameters on transfer modes-Summary

- <u>Current</u>: Current at which transition from globular to spray transfer begins depends on
  - Composition of the consumable electrode,
  - Electrode diameter,
  - Electrode extension,
  - Composition of shielding gas.
- Shielding Gas Effects
- Process Effects
- Operating Mode or Polarity Effects

## Welding Processes-Other fusion welding processes

### Thermite mixture



Metallic fuel + Oxidiser → Energy

#### Thermite Reaction

Metal oxide + Aluminum →
Metal + Aluminum oxide +
Heat



- Bimolecular reactions and reaction rates are controlled by diffusion times between reactants.
- Thermite mixtures of nano-sized reactants reduce the critical diffusion length thus increasing the overall reaction rate

### Thermite Reaction stages



Figure 14 Interaction zones between Fe<sub>2</sub>O<sub>3</sub> and aluminium films: (1) pure aluminium film, (2) finely dispersed FeO particles on the aluminium film, (3) fine particles of FeAl<sub>2</sub>O<sub>4</sub> with traces of FeO on the aluminium film, (4) FeAl<sub>2</sub>O<sub>4</sub> layer [109].

$$(1/2)\text{Fe}_3\text{O}_4 + \text{Al} \rightarrow \text{Fe} + (1/2)\text{FeAl}_2\text{O}_4$$
  
 $2\text{FeO} + \text{Al} \rightarrow (3/2)\text{Fe} + (1/2)\text{FeAl}_2\text{O}_4$   
 $(1/2)\text{FeAl}_2\text{O}_4 + (1/3)\text{Al} \rightarrow (1/2)\text{Fe} + (2/3)\text{Al}_2\text{O}_3$ 

## Thermite types

| Fuels      | Oxidisers              |
|------------|------------------------|
| Aluminium, | Boron(III) oxide,      |
| Magnesium, | Silicon(IV) oxide,     |
| Titanium,  | Chromium(III) oxide,   |
| Zinc,      | Manganese(IV) oxide,   |
| Silicon,   | Iron(III) oxide,       |
| Boron      | Iron(II,III) oxide,    |
|            | Copper(II) oxide,      |
|            | Lead(II,III,IV) oxide, |

### Thermite welding (TW)

- Heat for coalescence is produced by superheated molten metal from the chemical reaction of Thermite
- Example:  $2AI + Fe_2O_3 \rightarrow 2Fe + AI_2O_3 + heat$
- Filler metal is obtained from the liquid metal
- More in common with casting than it does with welding
- Applications in joining of railroad rails and repair of cracks in large steel castings and forgings such as ingot moulds, large diameter shafts, frames for machinery, and ship rudders

## Thermit welding (TW)



$$Fe_2O_3 + AI \rightarrow 2Fe + AI_2O_3 + \sim 850kJ$$