

Data Provided:
Laplace and z-transforms
Compensator design formulae
Performance criteria mappings

LEAVE THIS EXAM PAPER ON YOUR DESK.
DO NOT REMOVE IT FROM THE HALL.

DEPARTMENT OF AUTOMATIC CONTROL & SYSTEMS ENGINEERING Spring Semester 2017–2018

ACS342 FEEDBACK SYSTEMS DESIGN

2 hours

Answer ALL THREE questions.

Trial answers will be ignored if they are clearly crossed out.

All questions are marked out of 20. The breakdown on the right-hand side of the paper is meant as a guide to the marks that can be obtained from each part.

Registration number from U-Card (9 digits) — to be completed by student

ACS342 1 TURN OVER

Blank Page

1. A feedback control system is shown in Figure 1.1.

Figure 1.1

a) Write down the open-loop pole locations, and hence identify the range of γ for which the open-loop system is stable.

[2 marks]

b) Show that the closed-loop transfer function of the system is

$$\frac{\textit{Y}(\textit{s})}{\textit{R}(\textit{s})} = \frac{7}{\gamma \textit{s}^3 + (\gamma + 2) \textit{s}^2 + 2 \textit{s} + 7}$$

Hence, determine the range of γ for which the closed-loop system is stable.

[6 marks]

The next two parts of this question use the Bode diagram of the open-loop system (for a particular, but unknown, value of $\gamma > 0$) provided overleaf in Figure 1.2.

- c) (i) Estimate the gain margin and phase margin of the system. Is the closed-loop system stable or unstable for this particular value of γ ?
 - (ii) Estimate the rise time and overshoot of the closed-loop system.

[6 marks]

d) Design a phase-lead compensator

$$C(s) = \frac{s\alpha\tau + 1}{s\tau + 1}$$

in order to achieve a phase margin of 45° for the system. Use a safety margin of 5° , and do not attempt to use the provided transfer function of the system to perform exact calculations—your design should be done using readings from the Bode diagram in Figure 1.2.

[6 marks]

Figure 1.2: Bode diagram for Q1.

2. A unity-feedback system has the open-loop transfer function

$$KG(s) = \frac{K}{s^2 + 4s + 4}$$

a) Find the closed-loop transfer function, and hence determine the damping ratio and natural frequency of the closed-loop system as functions of K. Show that the settling time of the closed-loop step response is constant (*i.e.*, independent of K).

[5 marks]

b) Find an expression for the position error constant of KG(s) in terms of K, and hence calculate the percentage steady-state tracking error (in response to a step) when K is chosen to provide an overshoot of 5%.

[5 marks]

c) Design a phase-lag compensator in order that the closed-loop system meets the following specification.

Overshoot (%)
$$\leq 5$$
 Position error constant ≥ 20

You are given that the desired dominant pole location is $s^* = -2 \pm 13.5$.

[5 marks]

d) The following continuous-time compensator is to be implemented on a digital platform.

$$C(s) = 5\frac{s+1}{s+0.1}$$

Derive a z-transform representation of the compensator's transfer function. Use a sampling time of T=0.1 seconds and zero-order hold for sampling of the continuous-time input signal to the compensator.

[5 marks]

3. The attitude dynamics of a satellite are modelled by the ordinary differential equation

$$50\frac{\mathsf{d}^2\theta(t)}{\mathsf{d}t^2} = \tau(t)$$

where θ is the attitude (orientation) of the satellite with respect to a particular coordinate frame, and $\tau(t)$ is the torque applied to the satellite (by reaction wheels).

The aim is to design an automatic control system that can re-orient the satellite smoothly and exactly to a desired reference attitude, θ_r . In particular, the specification is as follows:

Overshoot (%)
$$\leq 5$$

Settling time (s) ≤ 10

To achieve this aim, feedback control is proposed, and a controller C(s), acting on the error between θ_r and θ , is to be designed.

a) Draw a block diagram of the feedback control system.

[3 marks]

- **b)** For the case of C(s) = K, determine the following for the closed-loop system (in terms of K where appropriate):
 - (i) the transfer function, $\Theta(s)/\Theta_r(s)$;
 - (ii) the pole locations;
 - (iii) the damping ratio and natural frequency;
 - (iv) the impulse response.

Hence, explain why the feedback control system is unable to meet the specification with C(s) = K.

[8 marks]

c) Design a PD controller

$$C(s) = K_P + sK_D$$

by finding suitable gains K_P , K_D in order that the closed-loop poles lead to satisfaction of the specification.

[5 marks]

d) In the real system, the following PD controller is implemented:

$$C(s) = 16 + 40s$$

Experiments with the PD-controlled closed-loop system reveal that the overshoot is significantly more (close to 20%) than that predicted from the closedloop poles. By analysing the transfer function of the closed-loop system, identify a possible cause of this (aside from modelling errors). Explain how the excessive overshoot might be eliminated.

[4 marks]

Laplace and z-transforms

Time domain	s-domain	z-domain
f(t)	F(s)	F (z)
f(t-T)	$e^{-sT}F(s)$	$z^{-1}F(z)$
$\delta(t)$	1	_
1	1	Z
•	$\frac{\overline{s}}{1}$ $\frac{1}{s^2}$	$\overline{z-1}$
t	$\frac{1}{2}$	zT
•	S ²	$\overline{(z-1)^2}$
e^{-at}	1	$\frac{Z}{Z - e^{-aT}}$
	s + a	z — e ^{-ar} zTe ^{-aT}
te ^{−at}	$\frac{1}{(a+a)^2}$	$\frac{27e^{-aT}}{(z-e^{-aT})^2}$
	$(\mathbf{s} + \mathbf{a})^2$,
$\sin(\omega t)$	$\frac{\omega}{\mathbf{s}^2 + \omega^2}$	$z\sin(\omega T)$
	•	$z^2 - 2z\cos(\omega T) + 1$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$	$\frac{z^2 - z\cos(\omega T)}{z^2 - z\cos(\omega T) + 4}$
		$z^2 - 2z\cos(\omega T) + 1$
$e^{-at}\sin(\omega t)$	<u>w</u>	$ze^{-aT}\sin(\omega T)$
	$\overline{(s+a)^2+\omega^2}$	$z^2 - 2ze^{-aT}\cos(\omega T) + e^{-2aT}$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{\sqrt{2a^2+a^2}}$	$\frac{z^2 - ze^{-aT}\cos(\omega T)}{2}$
	$(s+a)^2+\omega^2$	$z^2 - 2ze^{-aT}\cos(\omega T) + e^{-2aT}$
$f^{(n)}(t) = \frac{\mathbf{d}^n}{\mathbf{d}t^n} f(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{n-1}(0)$	Various forms

Compensator design formulae

Transfer function	$\frac{s\alpha\tau+1}{s\tau+1}$ (lead)	$\frac{s\tau+1}{s\alpha\tau+1}$ (lag)
Maximum phase lead/lag, ϕ_m	$\sin^{-1}\frac{\alpha-1}{\alpha+1}$	
Centre frequency, ω_m	$\frac{1}{\tau\sqrt{\alpha}}$	

Performance criteria mappings

END OF QUESTION PAPER

ACS342 8