

Measuring class parameter [Floating point format data]

Input Register Paramet	Register	Address			
[Function code : 04H]			[H	ex]
Description	Length		Units	High	Low
Bosonphon	(bytes)	Format	Omis	Byte	Byte
Phase 1 line to neutral volts.	4	Float	V	00	00
Phase 2 line to neutral volts.	4	Float	V	00	02
Phase 3 line to neutral volts.	4	Float	V	00	04
Phase 1 current.	4	Float	А	00	06
Phase 2 current.	4	Float	А	00	08
Phase 3 current.	4	Float	А	00	0A
Phase 1 active power.	4	Float	w	00	0C
Phase 2 active power.	4	Float	w	00	0E
Phase 3 active power.	4	Float	W	00	10
Phase 1 reactive power.	4	Float	var	00	12
Phase 2 reactive power.	4	Float	var	00	14
Phase 3 reactive power.	4	Float	var	00	16
Phase 1 apparent power.	4	Float	VA	00	18
Phase 2 apparent power.	4	Float	VA	00	1A
Phase 3 apparent power.	4	Float	VA	00	1C
Phase 1 power factor (1).	4	Float	None	00	1E
Phase 2 power factor (1).	4	Float	None	00	20
Phase 3 power factor (1).	4	Float	None	00	22
Phase 1 phase angle.	4	Float	Degrees	00	24
Phase 2 phase angle.	4	Float	Degrees	00	26
Phase 3 phase angle.	4	Float	Degrees	00	28
Line 1 to Line 2 volts.	4	Float	V	00	2A
Line 2 to Line 3 volts.	4	Float	V	00	2C
Line 3 to Line 1 volts.	4	Float	V	00	2E
Frequency of supply voltages.	4	Float	Hz	00	30
Total system active power.	4	Float	W	00	32
Total system reactive power.	4	Float	var	00	34
Total system apparent power.	4	Float	VA	00	36
Total system power factor (1).	4	Float	None	00	38
Total system phase angle.	4	Float	Degrees	00	3A
Sum of line currents.	4	Float	А	00	3C
Average line to neutral volts.	4	Float	V	00	3E
Average line to line volts.	4	Float	V	00	40
Average line current.	4	Float	Α	00	42
Neutral current.	4	Float	Α	00	44
Nature of L1 load (Resistive=1, inductive=2, capacitive =3, Non Load=4)	4	Float	None	00	4E
Nature of L2 load (Resistive=1, inductive=2, capacitive =3, Non Load=4)	4	Float	None	00	50

Nature of L3 load (Resistive=1, inductive=2, capacitive	4	Float	None	00	52
=3, Non Load=4)					
Nature of the system load(Resistive=1, inductive=2,	4	Float	None	00	54
capacitive =3, Non Load=4)					
Phase 1 voltage THD (2).	4	Float	%	00	7C
Phase 2 voltage THD (2).	4	Float	%	00	7E
Phase 3 voltage THD (2).	4	Float	%	00	80
Phase 1 current THD	4	Float	%	00	82
Phase 2 current THD	4	Float	%	00	84
Phase 3 current THD	4	Float	%	00	86
Average voltage THD (2).	4	Float	%	00	88
Average line current THD.	4	Float	%	00	8A
Total system active power demand (3).	4	Float	W	00	8C
Total system reactive power demand (3).	4	Float	var	00	8E
Total system apparent power demand.	4	Float	VA	00	90
Phase 1 current demand.	4	Float	Α	00	92
Phase 2 current demand.	4	Float	Α	00	94
Phase 3 current demand.	4	Float	Α	00	96
Neutral current demand.	4	Float	Α	00	98
Import active power demand	4	Float	W	00	9A
Export active power demand	4	Float	W	00	9C
Maximum total system active power demand (3).	4	Float	W	00	A2
Maximum total system reactive power demand (3).	4	Float	var	00	A4
Maximum total system apparent power demand.	4	Float	VA	00	A6
Maximum phase 1 current demand.	4	Float	Α	00	A8
Maximum phase 2 current demand.	4	Float	Α	00	AA
Maximum phase 3 current demand.	4	Float	Α	00	AC
Maximum neutral current demand.	4	Float	Α	00	AE
Maximum import active power demand	4	Float	W	00	В0
Maximum export active power demand	4	Float	W	00	B2
Total import active energy.	4	Float	kWh	05	00
Total export active energy.	4	Float	kWh	05	02
Total active Energy.	4	Float	kWh	05	04
Total import reactive energy.	4	Float	kvarh	05	08
Total export reactive energy.	4	Float	kvarh	05	0A
Total reactive Energy.	4	Float	kvarh	05	0C
Total apparent energy.	4	Float	kVAh	05	10
L1 import active Energy	4	Float	kWh	05	14
L2 import active Energy	4	Float	kWh	05	16
L3 import active Energy	4	Float	kWh	05	18
L1 export active Energy	4	Float	kWh	05	1A
L2 export active Energy	4	Float	kWh	05	1C
L3 export active Energy	4	Float	kWh	05	1E
L1 total active Energy	4	Float	kWh	05	20
	L	Ĭ			

L2 total active Energy	4	Float	kWh	05	22
L3 total active Energy	4	Float	kWh	05	24
L1 import reactive energy	4	Float	kvarh	05	26
L2 import reactive energy	4	Float	kvarh	05	28
L3 import reactive energy	4	Float	kvarh	05	2A
L1 export reactive energy	4	Float	kvarh	05	2C
L2 export reactive energy	4	Float	kvarh	05	2E
L3 export reactive energy	4	Float	kvarh	05	30
L1 total reactive energy	4	Float	kvarh	05	32
L2 total reactive energy	4	Float	kvarh	05	34
L3 total reactive energy	4	Float	kvarh	05	36

Notes:

- 1. The power factor has its sign adjusted to indicate the direction of the current. Positive refers to forward current, negative refers to reverse current.
- 2. In 3P3W mode, L1 represents the line voltage THD of L1-2, L2 represents the line voltage harmonic content of L2-3, and L3 represents the Line voltage THD of L3-1. In 3P4W, 1P2W, 1P3W and other modes, L1, L2 and L3 respectively represent the corresponding phase voltage harmonic content.
- 3. The power sum demand calculation is for import export.

Measuring class parameter [Integer format data]

Holding Register Param	Register Address				
[Read : Function code :	03H]			[Hex]	
Description	Length	Data	Units	High	Low
Description	(bytes)	Format	Units	Byte	Byte
Phase 1 line to neutral volts.	4	ULONG	0.01V	00	00
Phase 2 line to neutral volts.	4	ULONG	0.01V	00	02
Phase 3 line to neutral volts.	4	ULONG	0.01V	00	04
Phase 1 current.	4	ULONG	0.001A	00	06
Phase 2 current.	4	ULONG	0.001A	00	08
Phase 3 current.	4	ULONG	0.001A	00	0A
Phase 1 active power.	4	LONG	0.001kW	00	0C
Phase 2 active power.	4	LONG	0.001kW	00	0E
Phase 3 active power.	4	LONG	0.001kW	00	10
Phase 1 reactive power.	4	LONG	0.001kvar	00	12
Phase 2 reactive power.	4	LONG	0.001kvar	00	14
Phase 3 reactive power.	4	LONG	0.001kvar	00	16
Phase 1 apparent power.	4	ULONG	0.001kVA	00	18
Phase 2 apparent power.	4	ULONG	0.001kVA	00	1A
Phase 3 apparent power.	4	ULONG	0.001kVA	00	1C
Phase 1 power factor (1).	2	INT	0.001	00	1E
Phase 2 power factor (1).	2	INT	0.001	00	1F
Phase 3 power factor (1).	2	INT	0.001	00	20
Phase 1 phase angle.	2	INT	0.01°	00	21
Phase 2 phase angle.	2	INT	0.01°	00	22

TRIYEDQ Wenzhou TAIYE Electric Co., LTD TAC4300CT series Modbus Protocol v1.0

- Wenzhou 1741 E Electific Co.,		710-10000	71 SCITCS II	noabao i	1010001 V I
Phase 3 phase angle.	2	INT	0.01°	00	23
Line 1 to Line 2 volts.	4	ULONG	0.01V	00	24
Line 2 to Line 3 volts.	4	ULONG	0.01V	00	26
Line 3 to Line 1 volts.	4	ULONG	0.01V	00	28
Frequency of supply voltages.	2	UINT	0.01Hz	00	2A
Total system active power.	4	LONG	0.001kW	00	2C
Total system reactive power.	4	LONG	0.001kvar	00	2E
Total system apparent power.	4	ULONG	0.001kVA	00	30
Total system power factor (1).	2	INT	0.001	00	32
Total system phase angle.	2	INT	0.01°	00	33
Sum of line currents.	4	ULONG	0.001A	00	34
Average line to neutral volts.	4	ULONG	0.01V	00	36
Average line to line volts.	4	ULONG	0.01V	00	38
Average line current.	4	ULONG	0.001A	00	3A
Neutral current.	4	ULONG	0.001A	00	3C
Nature of L1 load (Resistive=1, inductive=2, capacitive				00	
=3, Non Load=4)	2	UINT	None		46
Nature of L2 load (Resistive=1, inductive=2, capacitive					
=3, Non Load=4)	2	UINT	None	00	47
Nature of L3 load (Resistive=1, inductive=2, capacitive	_				
=3, Non Load=4)	2	UINT	None	00	48
Nature of the system load(Resistive=1, inductive=2,	_				
capacitive =3, Non Load=4)	2	UINT	None	00	49
Phase 1 voltage THD (2).	2	UINT	0.01%	00	5D
Phase 2 voltage THD (2).	2	UINT	0.01%	00	5E
Phase 3 voltage THD (2).	2	UINT	0.01%	00	5F
Phase 1 current THD	2	UINT	0.01%	00	60
Phase 2 current THD	2	UINT	0.01%	00	61
Phase 3 current THD	2	UINT	0.01%	00	62
Average voltage THD (2).	2	UINT	0.01%	00	63
Average line current THD.	2	UINT	0.01%	00	64
Total system active power demand (3).	4	LONG	0.001kW	00	66
Total system reactive power demand (3).	4	LONG	0.001kvar	00	68
Total system apparent power demand.	4	ULONG	0.001kVA	00	6A
Phase 1 current demand.	4	ULONG	0.001A	00	6C
Phase 2 current demand.	4	ULONG	0.001A	00	6E
Phase 3 current demand.	4	ULONG	0.001A	00	70
Neutral current demand.	4	ULONG	0.001A	00	72
Import active power demand	4	ULONG	0.001kW	00	74
Export active power demand	4	ULONG	0.001kW	00	76
Maximum total system active power demand (3).	4	LONG	0.001kW	00	7C
Maximum total system reactive power demand (3).	4	LONG	0.001kvar	00	7E
Maximum total system apparent power demand.	4	ULONG	0.001kVA	00	80
Maximum phase 1 current demand.	4	ULONG	0.001A	00	82
	<u> </u>	1		1	

TRIYEDQ Wenzhou TAIYE Electric Co., LTD TAC4300CT series Modbus Protocol v1.0

Maximum phase 2 current demand.	4	ULONG	0.001A	00	84
Maximum phase 3 current demand.		ULONG	0.001A	00	86
Maximum neutral current demand.	4	ULONG	0.001A	00	88
Maximum import active power demand		ULONG	0.001kW	00	8A
Maximum export active power demand	4	ULONG	0.001kW	00	8C
Total import active energy.	4	ULONG	0.01kWh	04	00
Total export active energy.	4	ULONG	0.01kWh	04	02
Total active Energy.	4	LONG	0.01kWh	04	04
Total import reactive energy.	4	ULONG	0.01kvarh	04	08
Total export reactive energy.	4	ULONG	0.01kvarh	04	0A
Total reactive Energy.	4	LONG	0.01kvarh	04	0C
Total apparent energy.	4	ULONG	0.01kVA	04	10
L1 import active Energy	4	ULONG	0.01kWh	04	14
L2 import active Energy	4	ULONG	0.01kWh	04	16
L3 import active Energy	4	ULONG	0.01kWh	04	18
L1 export active Energy	4	ULONG	0.01kWh	04	1A
L2 export active Energy	4	ULONG	0.01kWh	04	1C
L3 export active Energy	4	ULONG	0.01kWh	04	1E
L1 total active Energy	4	LONG	0.01kWh	04	20
L2 total active Energy	4	LONG	0.01kWh	04	22
L3 total active Energy	4	LONG	0.01kWh	04	24
L1 import reactive energy	4	ULONG	0.01kvarh	04	26
L2 import reactive energy	4	ULONG	0.01kvarh	04	28
L3 import reactive energy	4	ULONG	0.01kvarh	04	2A
L1 export reactive energy	4	ULONG	0.01kvarh	04	2C
L2 export reactive energy	4	ULONG	0.01kvarh	04	2E
L3 export reactive energy	4	ULONG	0.01kvarh	04	30
L1 total reactive energy	4	LONG	0.01kvarh	04	32
L2 total reactive energy	4	LONG	0.01kvarh	04	34
L3 total reactive energy	4	LONG	0.01kvarh	04	36
64-bit integer energy register					
Total import active energy.	8	INT64	Wh	1D	00
Total export active energy.	8	INT64	Wh	1D	04
Total active Energy (Import + Export).	8	INT64	Wh	1D	08
Total import reactive energy.	8	INT64	varh	1D	10
Total export reactive energy.	8	INT64	varh	1D	14
Total reactive energy (Import + Export).	8	INT64	varh	1D	18
Total apparent energy.	8	INT64	VAh	1D	20
L1 import active Energy	8	INT64	Wh	1D	24
L2 import active Energy	8	INT64	Wh	1D	28
L3 import active Energy	8	INT64	Wh	1D	2C
L1 export active Energy	8	INT64	Wh	1D	30
L2 export active Energy	8	INT64	Wh	1D	34
L3 export active Energy	8	INT64	Wh	1D	38

TRIYEDQ Wenzhou TAIYE Electric Co., LTD	TAC4300CT series Modbus Protocol v1.0
	TACASOUCH SELES MOUDUS ETOICED ATO

L1 total active Energy	8	INT64	Wh	1D	3C
L2 total active Energy	8	INT64	Wh	1D	40
L3 total active Energy	8	INT64	Wh	1D	44
L1 import reactive energy		INT64	varh	1D	48
L2 import reactive energy		INT64	varh	1D	4C
L3 import reactive energy	8	INT64	varh	1D	50
L1 export reactive energy	8	INT64	varh	1D	54
L2 export reactive energy	8	INT64	varh	1D	58
L3 export reactive energy	8	INT64	varh	1D	5C
L1 total reactive energy	8	INT64	varh	1D	60
L2 total reactive energy	8	INT64	varh	1D	64
L3 total reactive energy	8	INT64	varh	1D	68

Notes:

- 1. The power factor has its sign adjusted to indicate the direction of the current. Positive refers to forward current, negative refers to reverse current.
- 2. In 3P3W mode, L1 represents the line voltage THD of L1-2, L2 represents the line voltage harmonic content of L2-3, and L3 represents the Line voltage THD of L3-1. In 3P4W, 1P2W, 1P3W and other modes, L1, L2 and L3 respectively represent the corresponding phase voltage harmonic content.
- 3. The power sum demand calculation is for import export.

Set class parameters

Holding Register Parameter [Read : Function code : 03H ; Write : Function code : 10H]				Register Address [Hex]					
Parameter	Description	Length	Data	High	Low	Mode			
r ai ailletei	Description	(bytes)	Format	Byte	Byte	Wiode			
Key Parameter	Read: to get the status of the KPPA								
Programming	0 = not authorized; 1 = authorized	2	UINT	50	00	R/W			
Authorization	Write the correct password to get KPPA,	2	2 UINT		50	00	IX/VV		
(KPPA)	enable to program key parameters.								
	Write system type:	2		50					
	1 = 1P2W;		UINT		01				
0.4. T	2 = 3P3W;					D.044			
System Type	3 = 3P4W,(default);					R/W			
	4 = 1P3W;								
	(KPPA is asked)								
	Write demand period: 0~60 minutes,								
Demand Period	Default 60.		UINT		02	R/W			
Demand Period	Range: 0~60, 0 means function update	2	UINI	50	02	R/VV			
	every second.								
Slide time	Default 1, min.	2	LUNT	50	03	R/W			
Slide time	Range: 1 ~ (Demand Period -1).	2	2 (2 (2 UINT	UINT	50	03	R/VV
Madhua addraac	Write the modbus address		0 1111	UINT	50	05	D/M		
Modbus address	Range: 1 to 247 for MODBUS Protocol,	2	UINI	50	05	R/W			

TRIYEDQ Wenzhou TAIYE Electric Co., LTD TAC4300CT series Modbus Protocol v1.0

	SHEHOU TATTE Electric Go., ETD		0001 30	100 11100		
	default 1.					
	Write the network port baud rate for					
	MODBUS Protocol, where:					
	0 = 1200 baud.					
National Panal Pata	1 = 2400 baud.		LUNIT	50	00	DAM
Network Baud Rate	2 = 4800 baud.	2	UINT	50	06	R/W
	3 = 9600 baud, default.					
	4 = 19200 baud.					
	5 = 38400 baud.					
	Write the network port parity/stop bits for					
	MODBUS Protocol, where:					
	0 = One stop bit and no parity, default.					
Parity and stop bit	1 = One stop bit and even parity.	2	UINT	50	07	R/W
	2 = One stop bit and odd parity.					
	3 = Two stop bits and no parity.					
	Read: to get the password of the meter					
	Write: to program the new password of					
Password	the meter	2	UINT	50	08	R/W
	Default : 0000					
	(KPPA is asked)					
	Write MODBUS Protocol					
	input parameter for pulse					
	output 1:					
	1: import active energy					
Pulse 1 Energy Type	2: total active energy	2	UINT	50	09	R/W
	4: export active energy, default					
	5: import reactive energy					
	6: total reactive energy					
	8: export reactive energy					
	Write pulse rate index: n					
	= 0 to 5					
	0 : 0.001 kwh/imp					
	1: 0.01 kwh/imp, default					
Pulse 1 Rate	2 : 0.1 kwh/imp	2	UINT	50	0A	R/W
	3 : 1 kwh/imp					
	4 : 10 kwh/imp					
	5 : 100 kwh/imp					
	Write pulse on period in milliseconds: 60,					
Pulse 1 Width	100 or 200, default 100.	2	UINT	50	0B	R/W
	0 = L1 Frd , L2 Frd , L3 Frd					
Current Direction	1 = L1 Rev, L2 Frd, L3 Frd					
correction	2 = L1 Frd, L2 Rev, L3 Frd					
(when the external	3 = L1 Rev, L2 Rev, L3 Frd	2	UINT	50	0F	R/W
CT is connected	4 = L1 Frd, L2 Frd, L3 Rev					
reversely)	5 = L1 Rev, L2 Frd, L3 Rev					
	o Linev, Lziiu, Loitev					

TRIYEDQ Wenzhou TAIYE Electric Co., LTD	TAC4300CT series Modbus Protocol v1.0

- //	enznou Taiye Electric Co., LTD	1/104	300C1 se	TICS IVIC		TOLOCOI
	6 = L1 Frd, L2 Rev, L3 Rev					
	7 = L1 Rev, L2 Rev, L3 Rev					
	Default 0					
	(KPPA is asked)					
PT1	PT1 Range 30 - 500000V, Default 230	4	ULONG	50	12	R/W
	(KPPA is asked)		OLONG	30	12	1000
PT2	PT2 Range 30- 500V, Default 230	2	UINT	50	14	R/W
PIZ	(KPPA is asked)	2	UINI	50	14	R/VV
CT1	CT1 Range 1-9999A, Default 5,			50	45	D.044
	(KPPA is asked)	2	UINT	50	15	R/W
0.70	CT2 Range: 1A or 5A , Default 5A					
CT2	(KPPA is asked)	2	UINT	50	16	R/W
	Automatic scroll display time, unit :					
	second					
Automatic Scroll	Range 0~60, default : 0	2	UINT	50	18	R/W
Display Time	Note: 0 mean stop automatic scroll					
	display					
	Backlit time, unit : minute.					
	Default 60.		2 UINT	50	19	
Backlit time	Range 0~120 or 255, 0 means backlit	2				R/W
	always on, 255 means backlit always off.					
5	Running time. Unit: minute.					
Running time	Write 0 to reset the running time with					
(Data in units of	load. No response if write other value.	4	ULONG	50	3C	R/W
minutes)	Note: The meter starts timing when					
	it's powered on					
Running time with	Running time with load. Unit : minute.					
load	Write 0 to reset the running time with					
(Data in units of	load. No response if write other value.	4	ULONG	50	3E	R/W
minutes)	Note: The meter starts timing when					
	power greater than 0 detected					
	0 = reset max. demand					
Reset historical data	8 = reset daily energy consumption	2	UINT	56	00	w
Neset Historical data	9 = reset monthly energy consumption	2	Olivi	30	00	**
	(KPPA is asked)					
Meter code	The code of the meter	2	HEX	56	01	R
Serial number	The serial number of the meter	4	ULONG	56	02	R
0.6	Software version number : XX.YY					
Software version	Data definition : The first byte represents	2	HEX	56	04	R
number	XX, and the second byte represents YY					
	Hardware version number : XX.YY					
Hardware version	Data definition : The first byte represents	2	HEX	56	05	R
number	XX, and the second byte represents YY					
	version number of displayed : XX.YY					
		2	HEX	56	06	R
lisplayed	Data definition : The first byte represents					

XX, and the second byte represents YY

Example:

1, Read Input Registers

Example: Read "Phase 1 line to neutral volts"

Request: 01 04 00 00 00 02 71 CB

Where, 01 = Meter address

04 = Function code

00 = High byte of registers starting address

00 = Low byte of registers starting address

00 = High byte of registers number

02 = Low byte of registers number

71 = CRC Low

CB = CRC High

Response: 01 04 04 43 66 33 34 1B 38

Where, 01 = Meter address

04 = Function code

04= Byte count

43 = Data, (High Word, High Byte)

66 = Data, (High Word, Low Byte)

33 = Data, (Low Word, High Byte)

34 = Data, (Low Word, Low Byte)

1B = CRC Low

38 = CRC High

Note: 43 66 33 34(Hex) = 230.2 (Floating point)

Example: Read "Phase 1 line to neutral volts" (ULONG Format)

Request: 01 03 00 00 00 02 C4 B0

Where, 01 = Meter address

03 = Function code

00 = High byte of registers starting address

00 = Low byte of registers starting address

00 = High byte of registers number

02 = Low byte of registers number

C4 = CRC Low

B0 = CRC High

Response: 01 03 04 00 00 61 AA 53 DC

Where, 01 = Meter address

04 = Function code

04= Byte count

00 = Data, (High Word, High Byte)

00 = Data, (High Word, Low Byte)

61 = Data, (Low Word, High Byte)

AA = Data, (Low Word, Low Byte)

53 = CRC Low

DC = CRC High

Note: 00 00 61 AA(Hex) = 25002(ULONG) * 0.01V = 250.02V

2, Read Holding Registers

Example: Read "Slide time"

Request: 01 03 50 03 00 01 65 0A

Where, 01 = Meter address

03 = Function code

50 = High byte of registers starting address

03 = Low byte of registers starting address

00 = High byte of registers number

01 = Low byte of registers number

65 = CRC Low

0A = CRC High

Response: 01 03 02 00 05 78 47

Where, 01 = Meter address

03 = Function code

04= Byte Count

00 = Data, (High Byte)

05 = Data, (Low Byte)

78 = CRC Low

47 = CRC High

Note: $00\ 05\ (Hex) = 5\ (UINT)$

3, Write Holding Registers

Example: Write "Demand Period" = 30

Request: 01 10 50 02 00 01 02 00 1E 77 BF

Where, 01 = Meter address

10 = Function code

50 = High byte of registers starting address

02 = Low byte of registers starting address

00 = High byte of registers number

01 = Low byte of registers number

02 = Byte Count

00 = Data, (High Byte)

1E = Data, (Low Byte)

77 = CRC Low

BF = CRC High

Note: 00 1E (Hex) = 30(UINT)

Response: 01 10 50 02 00 01 B1 09

Where, 01 = Meter address

10 = Function code

50 = High byte of registers starting address

02 = Low byte of registers starting address

00 = High byte of registers number

01 = Low byte of registers number

B1 = CRC Low

09 = CRC High