3-§. Eyler va Ferma teoremalari

Eyler teoremasi. Agar m > 1 va (a, m)=1 bo'lsa, $a^{\phi(m)} = 1 \pmod{p}$ bo'ladi. Xususiy holda, agar m=p tub songa teng bo'lsa, Eyler teoremasidan quyidagi Ferma teoremasi kelib chiqadi.

Ferma teoremasi. Agar p tub son va (a, p)=1 bo'lsa, u holda $a^{p-1} \equiv 1 \pmod{m}$ bo'ladi. Ferma teoremasidan ixtiyoriy a butun musbat soni uchun $a^p - a \equiv 0 \pmod{p}$ ning bajarilishi kelib chiqadi.

- **220.** a) agar (a,7) = 1 bo'lsa, $(a^{12} 1) : 7$; b) agar (a,65) = (b,65) = 1 bo'lsa, $(a^{12} b^{12}) : 65$ ekanligini isbotlang.
- 221. Kanonik yoyilmasiga 2 va 5 kirmaydigan n natural sonining 12 darajasining birliklar xonasidagi raqami 1 ga teng ekanligini isbotlang.
- 222. a^{p-1} + p − 1 ko'rinishdagi son murakkab ekanligini isbotlang, bu yerda a ≠ 0(modp).
 - 223. $2^{11\cdot 31} \equiv 2 \pmod{11\cdot 31}$ ekanligini isbotlang.
 - 224. 2³⁰ sonni 13 ga bo'lgandagi qoldiqni toping.
 - 225. 359 sonini 17 ga bo'lgandagi qoldiqni toping.
 - **226.** $a^{n(p-1)+1} \equiv a(modp)$ ekanligini isbotlang.
 - 227. 317²⁵⁹ sonini 15 ga bo'lgandagi qoldiqni toping.
 - 228. 380 + 780 sonini 11 ga bo'lgandagi qoldiqni toping.
 - 229. 3¹⁰⁰ + 4¹⁰⁰ sonini 7 ga bo'lgandagi qoldiqni toping.
 - 230. 197¹⁵⁷ sonini 35 ga bo'lgandagi qoldiqni toping.
 - **231.** $n = 73 \cdot 37$ uchun $2^{n-1} \equiv 1 \pmod{n}$ ekanligini ko'rsating.
 - **232.** $1^{30} + 2^{30} + \dots + 10^{30} = -1 \pmod{11}$ ekanligini isbotlang.
- **233.** Ixtiyoriy x butun soni uchun 1) $x^7 \equiv x \pmod{42}$; 2) $x^{13} \equiv x \pmod{2730}$ ekanligini isbotlang.
- **234.** Agar p va q lar har xil tub sonlar bo'lsa, $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$ ekanligini isbotlang.
 - 235. 2100 sonining oxirgi ikkita raqamini toping.
 - 236. 3100 sonining oxirgi raqamini toping.
 - 237. 243402 sonining oxirgi uchta raqamini toping.
 - **238.** Agar (n, 6) = 1 bo'lsa, $n^2 \equiv 1 \pmod{24}$ ekanligini isbotlang.
- **239.** Agar p tub son bo'lsa, $\sum_{i=1}^{p-1} i^{k(p-1)} + 1 \equiv 0 \pmod{p}$ taqqoslamaning o'rinli ekanligini ko'rsating.
- **240.** Agar p tub son bo'lsa, $(\sum_{i=1}^{n} a_i)^p \equiv \sum_{i=1}^{n} a_i^p (mod p)$ taqqoslamaning o'rinli ekanligini ko'rsating.
- **241.** Agar (a, m) = 1 bo'lsa $a^x \equiv 1 \pmod{m}$ taqqoslamaning eng kichik natural yechimi $\varphi(m)$ ning bo'luvchisi ekanligini isbotlang.
- **242.** Agar $N = \sum_{i=1}^{n} a_i$ soni 30ga bo'linsa, u holda $M = \sum_{i=1}^{n} a_i^5$ sonining ham 30 ga bo'linishi isbotlang.
- 243. Ixtiyoriy butun sonning 100 —darajasi 125 ga bo'linadi yoki 125 ga bo'lganda 1 qoldiq qolishini isbotlang.

- **244.** Agar (a, 10) = 1 bo'lsa, $a^{100n+1} \equiv a \pmod{1000}$ ning bajarilishini ko'psating. Bunda n natural son.
- **245.** m va n lar natural sonlar bo'lsalar, $a^{6m} + a^{6n} \equiv 0 \pmod{7}$ taqqoslamaning faqat a soni 7 ga karrali bo'lgandagina o'rinli ekanligini isbotlang.
 - **246.** $5^{p^2} + 1 \equiv 0 \pmod{p^2}$ taqqoslamani qanoatlantiruvchi p tub sonini toping.
- **247.** p > 3 tub son bo'lsa, p va 2p + 1 lar tub sonlar bo'lsalar, u holda 4p + 1 ning murakkab son ekanligini ko'rsating.