Maestría en Econometría - UTDT Examen Final - Series de Tiempo

Ejercicio 1 (file named a merval.wf1).

(a) Find the preferred GARCH(p,q) model for the returns of the MERVAL. NB: The series is stock prices; you should model the returns.

En la tabla 1, se presenta la estimación ARMA(2, 3) de los retornos del MERVAL. Se puede observar que todos los coeficientes son estadísticamente significativos.

Por otra parte, al mirar el correlograma de los residuos de esta estimación (tabla 2), se observa que las correlaciones no son significativamente distintas de cero, por lo que no queda estructura ARMA sin modelar. Sin embargo, al mirar el correlograma de los residuos al cuadrado de esta estimación (tabla 3), se observa que las correlaciones son significativamente distintas de cero, por lo que se debería modelar, de alguna manera, una varianza variable en el tiempo. Esto mismo se observa al realizar el test ARCH de heterocedasticidad (tabla 4), al rechazar la hipótesis nula de ausencia de heterocedasticidad.

Tabla 1. Estimación ARMA(2,3) de los retornos del MERVAL.

Dependent Variable: RETURNS_MERVAL

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 07/07/24 Time: 16:39

Sample: 2 399

Included observations: 398

Convergence achieved after 31 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.456715	0.181224	2.520170	0.0121
AR(2)	-0.552417	0.180549	-3.059654	0.0024
MA(1)	-0.457149	0.192187	-2.378664	0.0179
MA(2)	0.613557	0.187136	3.278677	0.0011
MA(3)	0.104576	0.056026	1.866545	0.0627
SIGMASQ	0.000736	3.30E-05	22.26812	0.0000
R-squared	0.028983	Mean depende	ent var	-0.000549
Adjusted R-squared	0.016598	S.D. dependen	ıt var	0.027563
S.E. of regression	0.027333	Akaike info crit	erion	-4.346122
Sum squared resid	0.292869	Schwarz criteri	on	-4.286025
Log likelihood	870.8783	Hannan-Quinn	criter.	-4.322318
Durbin-Watson stat	1.996032			
Inverted AR Roots	.23+.71i	.2371i		
Inverted MA Roots	.30+.78i	.3078i	15	

Tabla 2. Correlograma de los residuos de la estimación ARMA(2,3) de los retornos del MERVAL.

Date: 07/07/24 Time: 16:40 Sample (adjusted): 2 399

Q-statistic probabilities adjusted for 5 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. .	. .	1	0.002	0.002	0.0011	
. .	. .	2	0.010	0.010	0.0430	
. .	. .	3	-0.013	-0.013	0.1104	
. .	. .	4	0.042	0.042	0.8239	
. .	. .	5	-0.018	-0.017	0.9481	
. .	. .	6	0.001	0.000	0.9485	0.330
. .	. .	7	0.000	0.002	0.9485	0.622
. .	. .	8	-0.021	-0.023	1.1289	0.770
. .	. .	9	-0.060	-0.058	2.5959	0.628
. .	. .	10	-0.002	-0.002	2.5974	0.762
. .	. .	11	-0.054	-0.054	3.7967	0.704
. .	. .	12	0.060	0.061	5.2578	0.629
. .	. .	13	0.020	0.025	5.4290	0.711
. .	. .	14	-0.010	-0.014	5.4703	0.792
. .	. .	15	0.062	0.069	7.0716	0.719
. .	. .	16	0.047	0.041	8.0111	0.712
* .	* .	17	-0.093	-0.100	11.642	0.475
. .	. .	18	0.016	0.017	11.748	0.548
. .	. .	19	0.068	0.063	13.674	0.474
. .	. .	20	-0.011	-0.022	13.723	0.547
. .	. .	21	0.021	0.040	13.915	0.605
. .	. .	22	0.013	0.011	13.990	0.668
. .	. .	23	-0.016	-0.017	14.095	0.723
. .	. .	24	0.039	0.056	14.747	0.739
. .	. .	25	0.065	0.061	16.530	0.683
. .	. .	26	0.033	0.026	17.001	0.711
. .	. .	27	0.028	0.035	17.335	0.745
. *	. .	28	0.076	0.064	19.839	0.652
. .	. .	29	-0.018	-0.013	19.983	0.698
. .	. .	30	-0.009	0.002	20.019	0.746
. .	. .	31	-0.022	-0.039	20.221	0.781
. .	. .	32	0.021	0.028	20.413	0.813
.j. j	.j. j	33	-0.030	-0.011	20.806	0.833
.j. j	.j. j	34	-0.016	-0.034	20.915	0.862
* .	* .	35	-0.138	-0.130	29.285	0.503
.j. j	.j. j	36	0.032	0.053	29.726	0.531

Tabla 3. Correlograma de los residuos al cuadrado de la estimación ARMA(2,3) de los retornos del MERVAL.

Date: 07/07/24 Time: 16:40 Sample (adjusted): 2 399

Included observations: 398 after adjustments

Autocorrelation	s: 398 after adjustments Partial Correlation		AC	PAC	Q-Stat	Prob
. **	. **	1	0.249	0.249	24.791	0.000
. *	. *	2	0.179	0.125	37.626	0.000
. *	. .	3	0.085	0.016	40.515	0.000
. **	. *	4	0.236	0.208	63.065	0.000
. ***	. **	5	0.384	0.316	122.81	0.000
. **	. *	6	0.272	0.116	152.86	0.000
. *	. .	7	0.127	-0.023	159.39	0.000
. *	. .	8	0.105	0.016	163.86	0.000
. *	. .	9	0.120	-0.023	169.75	0.000
. *	* .	10	0.133	-0.077	176.99	0.000
. **	. *	11	0.222	0.091	197.18	0.000
. .	* .	12	0.024	-0.112	197.41	0.000
. .	. .	13	0.048	-0.032	198.36	0.000
. *	. .	14	0.078	0.060	200.88	0.000
. *	. .	15	0.131	0.060	208.06	0.000
. *	. *	16	0.186	0.097	222.55	0.000
. *	. *	17	0.151	0.128	232.10	0.000
. .	. .	18	0.073	0.034	234.32	0.000
. *	. .	19	0.112	0.043	239.60	0.000
. *	. .	20	0.097	-0.017	243.55	0.000
. *	. .	21	0.169	0.024	255.58	0.000
. **	. .	22	0.223	0.073	276.56	0.000
. *	. .	23	0.105	-0.025	281.20	0.000
. *	. .	24	0.102	-0.016	285.61	0.000
. *	. .	25	0.118	0.031	291.59	0.000
. *	. .	26	0.108	-0.040	296.56	0.000
. *	. .	27	0.147	-0.008	305.82	0.000
. *	. *	28	0.173	0.108	318.68	0.000
. .	. .	29	0.062	-0.027	320.34	0.000
. .	* .	30	0.045	-0.072	321.20	0.000
. .	. .	31	0.004	-0.054	321.21	0.000
. .	* .	32	0.034	-0.083	321.71	0.000
. .	* .	33	0.065	-0.077	323.57	0.000
. .	. .	34	-0.007	-0.051	323.59	0.000
. .	. .	35	0.030	0.044	323.98	0.000
. .	. .	36	-0.028	-0.040	324.31	0.000

Tabla 4. Test de heterocedasticidad de la estimación ARMA(2, 3) de los retornos del MERVAL.

Heteroskedasticity Test: ARCH

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 07/07/24 Time: 16:40 Sample (adjusted): 3 399

Included observations: 397 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.000554 0.248758	8.91E-05 0.048734	6.220486 5.104413	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.061880 0.059505 0.001624 0.001042 1987.521 26.05503 0.000001	Mean depender S.D. dependent Akaike info crite Schwarz criterio Hannan-Quinn Durbin-Watson	var erion on criter.	0.000738 0.001675 -10.00262 -9.982555 -9.994675 2.062083

Por lo tanto, en la tabla 5, se presenta la estimación GARCH(2, 1) de los retornos del MERVAL, que permite capturar la volatilidad condicional observada en estos datos financieros, donde la varianza cambia con el tiempo. Se puede observar que no todos los coeficientes son estadísticamente significativos. Sin embargo, esta especificación para la ecuación de la media y para la ecuación de la varianza posibilita que, en los correlogramas (de los residuos y de los residuos al cuadrado), las correlaciones no sean significativamente distintas de cero (tablas 6 y 7), por lo que no queda estructura ARMA ni estructura ARCH sin modelar.

Tabla 5. Estimación GARCH(2, 1) de los retornos del MERVAL.

Dependent Variable: RETURNS_MERVAL

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 07/07/24 Time: 16:53 Sample (adjusted): 4 399

Included observations: 396 after adjustments Convergence achieved after 74 iterations

Coefficient covariance computed using outer product of gradients

MA Backcast: 1 3

Presample variance: backcast (parameter = 0.7)

GARCH = $C(6) + C(7)*RESID(-1)^2 + C(8)*RESID(-2)^2 + C(9)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.			
AR(1)	-1.163285	0.473399	-2.457303	0.0140			
AR(2)	-0.218738	0.455269	-0.480459	0.6309			
MA(1)	1.167844	0.474992	2.458659	0.0139			
MA(2)	0.290735	0.460294	0.631629	0.5276			
MA(3)	0.048798	0.051518	0.947200	0.3435			
Variance Equation							
С	2.47E-05	1.07E-05	2.315138	0.0206			
RESID(-1)^2	-0.029510	0.034645	-0.851778	0.3943			
RESID(-2)^2	0.272450	0.066137	4.119486	0.0000			
GARCH(-1)	0.737587	0.051939	14.20107	0.0000			
R-squared	0.009148	Mean depende	ent var	-0.000527			
Adjusted R-squared	-0.000989	S.D. depender		0.027630			
S.E. of regression	0.027644	Akaike info crit	terion	-4.692114			
Sum squared resid	0.298795	Schwarz criter	ion	-4.601627			
Log likelihood	938.0385	Hannan-Quinn	-4.656266				
Durbin-Watson stat	1.969163						
Inverted AR Roots	24	93					
Inverted MA Roots	13+.19i	1319i	91				

Tabla 6. Correlograma de los residuos de la estimación GARCH(2, 1) de los retornos del MERVAL.

Date: 07/07/24 Time: 16:53 Sample (adjusted): 4 399

Q-statistic probabilities adjusted for 5 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
. .		1	0.010	0.010	0.0391	
. .	. .	2	0.009	0.009	0.0720	
. .	. .	3	0.037	0.037	0.6350	
. .	. .	4	-0.003	-0.004	0.6384	
. .	. .	5	0.018	0.018	0.7717	
. .	. .	6	-0.017	-0.019	0.8873	0.346
. .	. .	7	0.028	0.028	1.1992	0.549
. .	. .	8	-0.031	-0.033	1.5931	0.661
. .	. .	9	-0.007	-0.005	1.6119	0.807
. .	. .	10	-0.057	-0.059	2.9287	0.711
* .	* .	11	-0.086	-0.082	5.9295	0.431
. .	. .	12	0.039	0.040	6.5397	0.478
. .	. .	13	0.038	0.046	7.1461	0.521
. .	. .	14	-0.010	-0.007	7.1858	0.618
. .	. .	15	0.042	0.042	7.8994	0.639
. .	. .	16	-0.017	-0.021	8.0213	0.711
. .	. .	17	-0.029	-0.030	8.3667	0.756
. .	. .	18	-0.052	-0.054	9.4942	0.735
. .	. .	19	0.049	0.047	10.518	0.723
. .	. .	20	0.028	0.025	10.856	0.763
. .	. .	21	0.057	0.057	12.206	0.730
. *	. *	22	0.088	0.080	15.434	0.564
. .	. .	23	0.044	0.058	16.266	0.574
. .	. .	24	0.042	0.038	17.000	0.590
. *	. *	25	0.088	0.086	20.318	0.438
. .	. .	26	0.002	-0.007	20.319	0.501
. .	. .	27	0.027	0.015	20.639	0.543
. .	. .	28	0.006	-0.014	20.654	0.602
. .	. .	29	-0.004	-0.003	20.661	0.659
. .	. .	30	-0.017	-0.003	20.791	0.704
. .	. .	31	-0.031	-0.012	21.199	0.732
. .	. .	32	-0.018	-0.006	21.332	0.771
. .	. .	33	0.032	0.059	21.771	0.792
. .	. .	34	-0.007	-0.012	21.795	0.829
. .	. .	35	-0.057	-0.055	23.217	0.806
. .	. .	36	0.026	0.026	23.504	0.830

Tabla 7. Correlograma de los residuos al cuadrado de la estimación GARCH(2, 1) de los retornos del MERVAL.

Date: 07/07/24 Time: 16:53

Sample (adjusted): 4 399 Included observations: 396 after adjustments

Included observations Autocorrelation	s: 396 after adjustments Partial Correlation		AC	PAC	Q-Stat	Prob*
. .	. .	1	0.007	0.007	0.0173	0.895
. .	. .	2	-0.005	-0.005	0.0291	0.986
. .	. .	3	-0.014	-0.013	0.1025	0.992
. .	. .	4	0.013	0.013	0.1726	0.996
. .	. .	5	-0.025	-0.026	0.4331	0.994
. .	. .	6	0.001	0.002	0.4340	0.999
. .	. .	7	-0.012	-0.012	0.4956	0.999
. .	. .	8	-0.042	-0.043	1.2136	0.997
. .	. .	9	-0.010	-0.009	1.2575	0.999
. .	. .	10	-0.000	-0.002	1.2576	1.000
. *	. *	11	0.135	0.135	8.7591	0.644
* .	* .	12	-0.098	-0.102	12.703	0.391
. .	. .	13	-0.062	-0.062	14.287	0.354
. .	. .	14	-0.041	-0.039	14.991	0.379
. .	. .	15	0.024	0.019	15.236	0.435
. .	. .	16	0.018	0.026	15.378	0.497
. .	. .	17	0.039	0.034	16.017	0.523
. .	. .	18	-0.025	-0.025	16.285	0.573
. .	. .	19	0.042	0.050	17.007	0.589
. .	. .	20	0.001	-0.007	17.007	0.653
. .	. .	21	-0.030	-0.039	17.377	0.688
. .	. .	22	0.041	0.023	18.087	0.701
. .	. .	23	-0.045	-0.021	18.944	0.704
. .	. .	24	-0.007	0.007	18.964	0.754
. *	. *	25	0.101	0.108	23.265	0.562
. *	. .	26	0.077	0.057	25.810	0.474
. .	. .	27	0.010	0.009	25.855	0.527
. .	. .	28	0.034	0.030	26.364	0.553
. *	. *	29	0.075	0.093	28.764	0.477
. .	. .	30	-0.014	-0.022	28.850	0.525
. .	. .	31	-0.010	0.001	28.896	0.575
. .	. .	32	0.004	0.018	28.903	0.624
. .	. .	33	-0.004	-0.006	28.909	0.671
. .	. .	34	-0.053	-0.033	30.151	0.657
. .	. .	35	0.006	0.006	30.170	0.700
. .	* .	36	-0.051	-0.084	31.311	0.691

(b) Choose three stocks and repeat point (a). Critically comment the difference between the results in (a) and (b).

En las tablas 8, 9 y 10, se presentan las estimaciones GARCH de los retornos de ALUA, BMA y COME, respectivamente. Al igual que en el inciso (a), se selecciona aquella especificación para la ecuación de la media y para la ecuación de la varianza que posibilita que, en los correlogramas (de los residuos y de los residuos al cuadrado), las correlaciones no sean significativamente distintas de cero, de manera que no quede estructura ARMA ni estructura ARCH sin modelar.

Se puede observar que, a diferencia de los resultados del inciso (a), los modelos GARCH estimados para los retornos de las tres acciones individuales muestran diferencias significativas en la volatilidad en comparación con el modelo estimado para el retorno del MERVAL. En particular, se tiene que:

- En ALUA y COME, la volatilidad tiene una mayor respuesta a *shocks* recientes (coeficiente RESID(-1)^2 significativo y más alto) y una mayor persistencia (coeficiente GARCH(-1) más alto).
- En BMA, la volatilidad tiene una mayor respuesta a *shocks* recientes (coeficiente RESID(-1)^2 significativo y más alto) y una menor persistencia (coeficiente GARCH(-1) más bajo).

Se destaca que, mientras que, para el MERVAL, el coeficiente RESID(-1)^2 no es estadísticamente significativo, para ALUA, BMA y COME, sí lo es, indicando una respuesta inmediata a los *shocks* recientes en la volatilidad de estas acciones individuales.

El índice MERVAL presenta un comportamiento más suavizado en la volatilidad, ya que agrupa y promedia la volatilidad de varias acciones. Las acciones individuales, por otro lado, muestran variaciones más significativas en la volatilidad y en la respuesta a *shocks* recientes debido a características específicas de cada empresa y a su exposición a riesgos idiosincráticos. Por lo tanto, los resultados sugieren que la volatilidad y la persistencia de los retornos varían considerablemente entre diferentes activos individuales en comparación con un índice agregado como el MERVAL, lo cual destaca la importancia de modelar cada activo por separado para capturar, adecuadamente, su dinámica de volatilidad específica.

Tabla 8. Estimación GARCH(1, 1) de los retornos de ALUA.

Dependent Variable: RETURNS_ALUA

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 07/07/24 Time: 16:53 Sample (adjusted): 4 399

Included observations: 396 after adjustments Convergence achieved after 37 iterations

Coefficient covariance computed using outer product of gradients

MA Backcast: 3

Presample variance: backcast (parameter = 0.7) GARCH = $C(5) + C(6)*RESID(-1)^2 + C(7)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.000741	0.001322	-0.560684	0.5750
AR(1)	-0.188567	0.442911	-0.425746	0.6703
AR(2)	0.117691	0.049232	2.390540	0.0168
MA(1)	0.192637	0.448716	0.429307	0.6677
	Variance	Equation		
С	3.90E-06	2.57E-06	1.514774	0.1298
RESID(-1)^2	0.068281	0.012561	5.436135	0.0000
GARCH(-1)	0.931679	0.010037	92.82335	0.0000
R-squared	0.015071	Mean depende	ent var	-0.001763
Adjusted R-squared	0.007534	S.D. dependen	ıt var	0.030238
S.E. of regression	0.030124	Akaike info crit	erion	-4.402836
Sum squared resid	0.355718	Schwarz criteri	on	-4.332457
Log likelihood	878.7615	Hannan-Quinn	criter.	-4.374954
Durbin-Watson stat	1.921322			
Inverted AR Roots	.26	45		
Inverted MA Roots	19			

Tabla 9. Estimación GARCH(1, 1) de los retornos de BMA.

Dependent Variable: RETURNS_BMA

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 07/07/24 Time: 16:54 Sample (adjusted): 3 399

Included observations: 397 after adjustments Convergence achieved after 17 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7) GARCH = $C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
AR(1)	0.018914	0.053135	0.355971	0.7219		
Variance Equation						
C RESID(-1)^2 GARCH(-1)	0.000131 0.266688 0.607911	2.99E-05 0.058085 0.067766	4.366203 4.591366 8.970790	0.0000 0.0000 0.0000		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.005470 0.005470 0.032792 0.425817 851.4951 1.727468	Mean depender S.D. dependent Akaike info crite Schwarz criterio Hannan-Quinn	-0.000307 0.032882 -4.269497 -4.229356 -4.253596			
Inverted AR Roots	.02					

Tabla 10. Estimación GARCH(1, 1) de los retornos de COME.

Dependent Variable: RETURNS_COME

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 07/07/24 Time: 16:54 Sample (adjusted): 2 399

Included observations: 398 after adjustments Convergence achieved after 22 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7) GARCH = $C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.001392	0.001745	-0.798055	0.4248
	Variance	Equation		
C RESID(-1)^2 GARCH(-1)	9.24E-05 0.155680 0.782007	3.00E-05 0.033919 0.044545	3.081633 4.589791 17.55558	0.0021 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000681 -0.000681 0.036172 0.519428 782.4932 1.840036	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000450 0.036159 -3.912026 -3.871961 -3.896157

(c) Estimate a Multivariate GARCH model using two of the stocks chosen in (b). Compare the results and comment.

En la tabla 11, se presenta la estimación Multivariate GARCH (*Diagonal* BEKK) de los retornos de ALUA y BMA. Se puede observar que:

- En el modelo univariado de ALUA, el impacto de los *shocks* recientes (RESID(-1)^2) es 0,068266, mientras que, en el modelo MGARCH, el coeficiente A1(1,1) es 0,245385, indicando un mayor impacto en el contexto multivariado.
- En el modelo univariado de BMA, el impacto de los *shocks* recientes (RESID(-1)^2) es 0,266680, mientras que, en el modelo MGARCH, el coeficiente A2(2,2) es 0,469748, indicando un mayor impacto en el contexto multivariado.
- En el modelo univariado de ALUA, la persistencia (GARCH(-1)) es alta (0,931693), lo cual es consistente con el coeficiente B1(1,1) en el modelo MGARCH (0,966751).
- En el modelo univariado de BMA, la persistencia (GARCH(-1)) es 0,607835, mientras que, en el modelo MGARCH, el coeficiente B1(2,2) es 0,806615, indicando un mayor impacto en el contexto multivariado.
- El coeficiente M(1,2) en el modelo MGARCH es significativo, lo que sugiere una correlación significativa entre las volatilidades de ALUA y BMA, la cual no puede ser captada por los modelos univariados e indica que los *shocks* de volatilidad en una acción pueden afectar la volatilidad de la otra.

Por lo tanto, la estimación MGARCH (*Diagonal* BEKK) proporciona una visión más completa de las dinámicas de volatilidad entre ALUA y BMA. Los resultados indican una alta persistencia de la volatilidad y un efecto significativo de los *shocks* pasados en ambas series. Además, se observa una correlación significativa entre las volatilidades de las dos acciones, lo que resalta la importancia de modelar conjuntamente las series de tiempo para una mejor comprensión de los riesgos financieros.

Tabla 11. Estimación Multivariate GARCH (Diagonal BEKK) de los retornos de ALUA y BMA.

System: SYS_MGARCH_ALUA_BMA

Estimation Method: ARCH Maximum Likelihood (BFGS / Marquardt steps)

Covariance specification: Diagonal BEKK

Date: 07/07/24 Time: 17:05

Sample: 2 399

Included observations: 398

Total system (balanced) observations 796 Presample covariance: backcast (parameter =0.7) Convergence achieved after 22 iterations

Coefficient covariance computed using outer product of gradients

Coefficient covariance co	inputed using t	diei product or g	Ji adients			
	Coefficient	Std. Error	z-Statistic	Prob.		
C(1)	-0.000724	0.001073	-0.674356	0.5001		
C(2)	0.000565	0.001319	0.428326	0.6684		
V	ariance Equation	on Coefficients				
C(3)	7.82E-06	2.44E-06	3.200061	0.0014		
C(4)	2.15E-05	8.88E-06	2.420700	0.0155		
C(5)	0.000125	3.08E-05	4.068098	0.0000		
C(6)	0.245385	0.020778	11.81008	0.0000		
C(7)	0.469748	0.055345	8.487638	0.0000		
C(8)	0.966751	0.004133	233.8900	0.0000		
C(9)	0.806615	0.039819	20.25688	0.0000		
Log likelihood	1752.934S	1752.934Schwarz criterion				
Avg. log likelihood	2.202178F	lannan-Quinn cr	iter.	-8.727780		
Akaike info criterion	-8.763486					
Equation: RETURNS_AL	UA = C(1)					
R-squared	-0.001210	Mean depende	nt var	-0.001772		
Adjusted R-squared	-0.001210	S.D. dependen	t var	0.030162		
S.E. of regression	0.030180	Sum squared r	esid	0.361609		
Durbin-Watson stat	1.905700					
Equation: RETURNS_BM	1A = C(2)					
R-squared	-0.000806	Mean depende	nt var	-0.000367		
Adjusted R-squared	-0.000806	S.D. dependen		0.032862		
S.E. of regression	0.032875	Sum squared r		0.429066		
Durbin-Watson stat	1.681994	- 1				
Covariance specification: GARCH = M + A1*RESID M is an indefinite matrix			CH(-1)*B1			
A1 is a diagonal matrix B1 is a diagonal matrix						

Transformed Variance Coefficients

Std. Error

2.44E-06

8.88E-06

3.08E-05

0.020778

z-Statistic

3.200061

2.420700

4.068098

11.81008

Prob.

0.0014

0.0155

0.0000

0.0000

Coefficient

7.82E-06

2.15E-05

0.000125

0.245385

M(1,1)

M(1,2)

M(2,2)

A1(1,1)

Maestría en Econometría UTDT - Series de Tiempo | 13

Juan Menduiña

A1(2,2)	0.469748	0.055345	8.487638	0.0000
B1(1,1)	0.966751	0.004133	233.8900	0.0000
B1(2,2)	0.806615	0.039819	20.25688	0.0000

Ejercicio 2 (file named a money.wf1).

The data file contains the following variables for real GDP: pbi_real (using the Indec) and pbi_privado (using a private sector index). Both measures of GDP need to be seasonally adjusted. For both measures of real GDP, identify the booms and recessions of the Argentinean economy, using:

(a) A Markov Switching Model.

En las figuras 1 y 2, se presentan las series originales y ajustadas estacionalmente del pbi_real y del pbi_privado, respectivamente.

Figura 1. *Series pbi_real (1980Q1 - 2010Q4).*

Figura 2. Series pbi_privado (1980Q1 - 2010Q4).

En las tablas 12 y 13, se presentan las estimaciones de un modelo *Markov Switching* usando el pbi_real_sa y el pbi_privado_sa, respectivamente. En las figuras 3 y 4, se presentan las probabilidades predichas de los regímenes para cada uno de estos modelos. Se puede observar que, en la estimación para el pbi_real_sa, el régimen 1 (régimen 2) representa auge (recesión), mientras que, en la estimación para el pbi_privado_sa, el régimen 2 (régimen 1) representa auge (recesión); aunque, en este último caso, no parece tan clara la diferencia.

Tabla 12. *Modelo Markov Switching - pbi_real_sa.*

Dependent Variable: PBI_REAL_SA

Method: Markov Switching Regression (BFGS / Marquardt steps)

Date: 07/07/24 Time: 17:08 Sample: 1980Q1 2010Q4 Included observations: 124 Number of states: 2

Initial probabilities obtained from ergodic solution

Standard errors & covariance computed using observed Hessian Random search: 25 starting values with 10 iterations using 1 standard

deviation (rng=kn, seed=12345) Convergence achieved after 9 iterations

Variable	Coefficient	Std. Error	z-Statistic	Prob.
	Reg	ime 1		
C IPC TASA_DE_INTERES LOG(SIGMA)	192819.4 1839.910 30.39731 8.900816	2307.619 30.93728 14.79347 0.101430	83.55774 59.47227 2.054779 87.75315	0.0000 0.0000 0.0399 0.0000
	Reg	ime 2		
C IPC TASA_DE_INTERES LOG(SIGMA)	158770.1 1738.180 20.64345 9.624762	7885.347 149.5437 14.30289 0.110296	20.13483 11.62323 1.443306 87.26267	0.0000 0.0000 0.1489 0.0000
	Transition Ma	trix Parameters		
P11-C P21-C	3.719432 -3.064822	0.775294 0.671469	4.797448 -4.564353	0.0000 0.0000
Mean dependent var S.E. of regression Durbin-Watson stat Akaike info criterion Hannan-Quinn criter.	255002.8 13188.13 0.455049 21.65367 21.74606	S.D. dependent var Sum squared resid Log likelihood Schwarz criterion		64595.00 2.02E+10 -1332.527 21.88111

Tabla 13. Modelo Markov Switching - pbi_privado_sa.

Dependent Variable: PBI_PRIVADO_SA

Method: Markov Switching Regression (BFGS / Marquardt steps)

Date: 07/07/24 Time: 17:10 Sample (adjusted): 1980Q2 2010Q4

Included observations: 123 after adjustments

Number of states: 2

Initial probabilities obtained from ergodic solution

Standard errors & covariance computed using observed Hessian Random search: 25 starting values with 10 iterations using 1 standard

deviation (rng=kn, seed=12345) Convergence achieved after 13 iterations

Variable	Coefficient	Std. Error	z-Statistic	Prob.				
	Regime 1							
C IPC_PRIVADO TASA_DE_INTERES LOG(SIGMA)	202191.5 1467.036 -23.47269 9.106752	2005.275 39.64428 7.158705 0.093511	100.8298 37.00497 -3.278902 97.38715	0.0000 0.0000 0.0010 0.0000				
	Reg	ime 2						
C IPC_PRIVADO TASA_DE_INTERES LOG(SIGMA)	228547.9 358.6716 -283.3566 9.815532	5997.142 59.13025 67.11712 0.108879	38.10947 6.065789 -4.221823 90.15058	0.0000 0.0000 0.0000 0.0000				
	Transition Ma	trix Parameters						
P11-C P21-C	3.234949 -2.929313	0.644011 0.660154	5.023123 -4.437317	0.0000 0.0000				
S.E. of regression 15416.44 Sum s Ourbin-Watson stat 0.725943 Log like		S.D. depender Sum squared Log likelihood Schwarz criter	resid	45131.72 2.73E+10 -1348.225 22.31359				

Figura 3. Probabilidades predichas de los regímenes del modelo para pbi_real_sa.

Figura 4. Probabilidades predichas de los regímenes del modelo para pbi_privado_sa.

(b) A STAR Model. Discuss which variable (of those included in the data set) should be used as a threshold, and why?

En las tablas 14 y 15, se presentan las estimaciones de un modelo STAR usando el pbi_real_sa y el pbi_privado_sa, respectivamente. En las figuras 5 y 6, se presentan los *Threshold Smoothing Weights* para cada uno de estos modelos.

La tasa de interés (rezagada un período) puede ser una buena elección como variable umbral. La tasa de interés es una herramienta clave de la política monetaria, que refleja las decisiones del Banco Central e impacta en la economía real, es decir, en el consumo, la inversión y el ahorro, afectando, directamente, al PBI. A su vez, la tasa de interés puede reaccionar, rápidamente, a cambios en las expectativas económicas, capturando, de manera efectiva, los puntos de inflexión entre auges y recesiones.

Tabla 14. *Modelo STAR - pbi_real_sa.*

Dependent Variable: PBI_REAL_SA_NORM Method: Smooth Threshold Regression

Transition function: Logistic
Date: 07/07/24 Time: 17:22

Sample (adjusted): 1980Q4 2010Q4

Included observations: 121 after adjustments
Threshold variable: TASA_DE_INTERES_NORM(-1)

Starting values: Grid search with concentrated regression coefficients Ordinary standard errors & covariance using outer product of gradients

Convergence achieved after 9 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
Thi	eshold Variab	oles (linear part)				
С	0.216578	0.618577	0.350123	0.7269		
PBI_REAL_SA_NORM(-1)	1.722439	1.185703	1.452673	0.1491		
PBI_REAL_SA_NORM(-2)	-0.497010	0.649614	-0.765085	0.4458		
PBI_REAL_SA_NORM(-3)	-0.041362	0.262400	-0.157630	0.8750		
Threshold Variables (nonlinear part)						
С	-0.566514	0.733759	-0.772071	0.4417		
PBI_REAL_SA_NORM(-1)	-1.119675	1.396491	-0.801778	0.4244		
PBI_REAL_SA_NORM(-2)	0.540136	0.786290	0.686943	0.4936		
PBI_REAL_SA_NORM(-3)	0.034840	0.415207	0.083910	0.9333		
	Slop	es				
SLOPE	2.510975	4.086124	0.614513	0.5401		
	Thresl	nolds				
THRESHOLD	-0.178339	0.825599	-0.216011	0.8294		
R-squared	0.993567	Mean depende	ent var	0.020862		
Adjusted R-squared	0.993045	S.D. depender	t var	1.003416		
S.E. of regression	0.083679	Akaike info crit	erion	-2.044624		
Sum squared resid	0.777245	Schwarz criteri	on	-1.813567		
Log likelihood	133.6998	Hannan-Quinn criter.		-1.950783		
F-statistic	1904.858	Durbin-Watson	stat	1.881384		
Prob(F-statistic)	0.000000					

Tabla 15. *Modelo STAR - pbi_privado_sa.*

Dependent Variable: PBI_PRIVADO_SA_NORM

Method: Smooth Threshold Regression

Transition function: Logistic
Date: 07/07/24 Time: 17:23
Sample (adjusted): 1981Q1 2010Q4

Included observations: 120 after adjustments
Threshold variable: TASA_DE_INTERES_NORM(-1)

Starting values: Grid search with concentrated regression coefficients Ordinary standard errors & covariance using outer product of gradients

Convergence achieved after 33 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
Thre	shold Variable	es (linear part)				
С	2639.333	384288.7	0.006868	0.9945		
PBI_PRIVADO_SA_NORM(-1)	5366.553	781172.4	0.006870	0.9945		
PBI_PRIVADO_SA_NORM(-2)	-3439.490	500728.0	-0.006869	0.9945		
PBI_PRIVADO_SA_NORM(-3)	-335.5373	48875.62	-0.006865	0.9945		
Thresh	Threshold Variables (nonlinear part)					
С	-2639.773	384288.7	-0.006869	0.9945		
PBI_PRIVADO_SA_NORM(-1)	-5366.079	781172.4	-0.006869	0.9945		
PBI_PRIVADO_SA_NORM(-2)	3439.621	500728.0	0.006869	0.9945		
PBI_PRIVADO_SA_NORM(-3)	335.5783	48875.63	0.006866	0.9945		
	Slope	s				
SLOPE	1.251289	0.809643	1.545482	0.1251		
	Thresho	ılds				
THRESHOLD	-7.336807	116.6151	-0.062915	0.9499		
R-squared	0.988366	Mean depende	ent var	0.023609		
Adjusted R-squared	0.987414	S.D. depender		1.001063		
S.E. of regression	0.112306	Akaike info crit	erion	-1.455521		
Sum squared resid	1.387393	Schwarz criterion		-1.223230		
Log likelihood	·		criter.	-1.361187		
F-statistic	1038.336	Durbin-Watsor	n stat	1.920621		
Prob(F-statistic)	0.000000					

Figura 5. Threshold Smoothing Weights - pbi_real_sa.

Figura 6. Threshold Smoothing Weights - pbi_privado_sa.

(c) The HP filter.

En las figuras 7 y 8, se presentan los ciclos resultantes de aplicar el filtro HP a pbi_real_sa y a pbi_privado_sa, respectivamente.

Figura 7. Ciclo filtro HP (lambda=1600) - pbi_real_sa.

 $\textbf{Figura 8.} \ \textit{Ciclo filtro HP (lambda=1600) - pbi_privado_sa.}$

(d) Interpret and compare the results obtained in (a), (b) and (c).

- El modelo *Markov Switching* identifica los períodos de auge y recesión basándose en los regímenes identificados.
- El modelo STAR captura la no linealidad en las relaciones entre variables, lo que puede ser crucial para entender los puntos de inflexión. En este caso, utiliza la tasa de interés como umbral para suavizar la transición entre estos estados, proporcionando una perspectiva sobre cómo el PBI reacciona en diferentes fases del ciclo.
- El filtro HP proporciona una descomposición clara entre el componente de tendencia y el ciclo económico, pero asume una estructura lineal en los movimientos cíclicos. Mediante el componente de ciclo económico, identifica, con "picos", los auges y, con "valles", las recesiones.

Cada método tiene su propia utilidad dependiendo del tipo de análisis requerido. Por ejemplo, el modelo *Markov Switching* es útil para identificar períodos económicos distintos, mientras que el modelo STAR permite modelar transiciones suaves entre estos períodos.

Ejercicio 3 (file named a money.wf1).

Estimate a Bivariate STAR model for in inflation and deseasonalized output growth (use private ones). NB: You can estimate a two-state VAR where the separation is either dictated by the in inflation or the growth equation.

En la tabla 16, se presenta la estimación VAR de dos estados para el crecimiento desestacionalizado de la producción y la inflación. Se puede observar que:

- En el régimen 1, la tasa de interés tiene un efecto negativo y significativo en el crecimiento del PBI privado, y un efecto positivo y significativo en la inflación. En el régimen 2, la tasa de interés, nuevamente, tiene un efecto negativo significativo en el crecimiento del PBI privado, pero su efecto positivo sobre la inflación es mucho más pronunciado que en el régimen 1.
- La significancia de la tasa de interés en ambos regímenes sugiere su importancia como herramienta de política económica para influir tanto en el crecimiento económico como en la inflación.
- La probabilidad de permanecer en el régimen 1 (P11-C) es alta y significativa. La probabilidad de transición del régimen 2 al régimen 1 (P21-C) no es significativa, lo que sugiere que las transiciones a este régimen son raras o que el modelo tiene dificultades para estimar esta transición con precisión.

En resumen, el modelo VAR de dos estados captura diferentes dinámicas del crecimiento económico y la inflación bajo diferentes condiciones económicas. La tasa de interés emerge como una variable clave que influye tanto en el crecimiento económico como en la inflación, con efectos cuantitativamente significativos en ambos regímenes. La estructura de la matriz de transición y los criterios de evaluación del modelo también sugieren que el modelo es robusto, aunque hay algunas dificultades en la estimación de transiciones entre regímenes.

Tabla 16. Estimación VAR de dos estados para crecimiento desestacionalizado de la producción e inflación.

Markov Switching Means VAR Estimates (BFGS / Marquardt steps)

Date: 07/07/24 Time: 17:41

Sample (adjusted): 1981Q1 2010Q4

Included observations: 120 after adjustments

Number of states: 2

Initial probabilities obtained from ergodic solution

Standard errors & covariance computed using observed Hessian

Random search: 25 starting values with 10 iterations using 1 standard deviation

(rng=kn, seed=12345)

Convergence achieved after 62 iterations Standard errors in () & z-statistics in []

PBI_PRIVADO_INFLACION_PR GROWTH IVADO				
	Regi	me 1		
С	1.005857 (0.56005) [1.79600]	5.266878 (2.45665) [2.14393]		
TASA_DE_INTERES	-0.010205 (0.00213) [-4.78265]	0.114467 (0.00593) [19.3190]		
	Regi	me 2		
С	3.200109 (2.03587) [1.57186]	-2.051635 (4.58291) [-0.44767]		
TASA_DE_INTERES	-0.053424 (0.01725) [-3.09676]	0.973315 (0.04224) [23.0430]		
	Com	ımon		
PBI_PRIVADO_GROWTH(-1)	0.343123 (0.09376) [3.65940]	0.401356 (0.38044) [1.05497]		
PBI_PRIVADO_GROWTH(-2)	0.155324 (0.09543) [1.62765]	0.572761 (0.34882) [1.64200]		
INFLACION_PRIVADO(-1)	0.041956 (0.02906) [1.44392]	0.698470 (0.10120) [6.90156]		
INFLACION_PRIVADO(-2)	0.002681 (0.02956) [0.09068]	-0.096787 (0.09433) [-1.02607]		
SIGMA- PBI_PRIVADO_GROWTH	4.972098 (0.65074) [7.64073]	-1.898730 (1.58008) [-1.20167]		

Juan Menduiña

SIGMA-INFLACION_PRIVADO

-1.898730 55.97353 (1.58008) (7.41212) [-1.20167] [7.55162]

Variable	Transition Matrix Parameters Coefficient Std. Error z-Statistic Prob.				
P11-C P21-C	3.116585 22.61267	0.773338 16380.85	4.030043 0.001380	0.0001 0.9989	
Determinant resid covariance Log likelihood Akaike info criterion Schwarz criterion Number of coefficients		1392.328 -687.2002 11.80334 12.29115 21			

Ejercicio 4 (file named annlee.wtf1).

The data file contains the variables EX3MHOLD12, EX3MHOLD24, EX3MHOLD60 and EX3MHOLD120, which represent the excess (with respect to the 3 months rate) realized return of holding 3 months a bond of maturity 12, 24, 60 and 120, respectively.

(a) Use the Kalman filter to extract and store a common factor that explains the movements of those returns.

En la tabla 17, se presenta la estimación del *State Space* usando el filtro de Kalman. Se puede observar que, si bien todos los coeficientes estimados de las ecuaciones de estados y de las ecuaciones de señales son estadísticamente significativos, el coeficiente estimado del *common factor* no lo es. En las figuras 9, 10, 11 y 12, se presentan el *common factor* (*rescaled*) con las variables ex3mhold12, ex3mhold24, ex3mhold60 y ex3mhold120 (*demeaned*), respectivamente. Se puede observar que el *common factor* se ajusta bien a todas las series.

Tabla 17. Estimación State Space usando filtro de Kalman.

Sspace: EJERCICIO_4A

Method: Maximum likelihood (BFGS / Marquardt steps)

Date: 07/07/24 Time: 17:47 Sample: 1962M01 2019M11 Included observations: 695 Valid observations: 692

Convergence achieved after 26 iterations

Coefficient covariance computed using outer product of gradients

	Coefficient	Std. Error	z-Statistic	Prob.
C(1)	0.917741	0.029609	30.99587	0.0000
C(2)	-0.318727	0.028809	-11.06346	0.0000
C(3)	1.479659	0.032717	45.22553	0.0000
C(4)	3.348219	0.060591	55.25933	0.0000
C(5)	8.102167	0.144341	56.13200	0.0000
C(6)	14.88744	0.263241	56.55451	0.0000
	Final State	Root MSE	z-Statistic	Prob.
FACTOR	-1.024604	1.001560	-1.023008	0.3063
FACTOR2	-0.904880	0.057574	-15.71675	0.0000
Log likelihood	-13976.30	Akaike info criterion		40.41128
Parameters	6	Schwarz criterion		40.45064
Diffuse priors	0	Hannan-Quinn criter.		40.42650

Figura 9. Common Factor y ex3mhold12.

Figura 10. *Common Factor y ex3mhold24.*

Figura 11. *Common Factor y ex3mhold60.*

Figura 12. Common Factor y ex3mhold120.

(b) Use the common factor stored before to assess whether the slope and curvature are variables with explanatory power to explain those (average) returns.

En la tabla 18, se presenta la estimación por MCO de *common factor* en *slope* y *curvature*. Por un lado, se puede observar que tanto *slope* como *curvature* son variables estadísticamente significativas para explicar los rendimientos promedio (*common factor*). Por otro lado, se observa que, mientras que *slope* tiene un efecto positivo sobre los rendimientos promedio, *curvature* tiene un efecto negativo.

Tabla 18. Estimación por MCO de ecuación de Common Factor.

Dependent Variable: FACTOR Method: Least Squares Date: 07/07/24 Time: 17:48 Sample: 1962M01 2019M11 Included observations: 695

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SLOPE CURVATURE	-0.352723 0.189337 -0.296761	0.075710 0.042551 0.062516	-4.658854 4.449650 -4.746928	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.091776 0.089151 1.399760 1355.854 -1218.388 34.96315 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.001166 1.466663 3.514785 3.534399 3.522370 0.640350

Ejercicio 5 (file named datos.wtf1).

Using the data for USA, estimate for the period 1962q1-2014q4 the following equation:

$$\log(m_t) - \log(p_t) = \alpha_0 + \alpha_1 i_t + \alpha_2 \log(y_t) + \varepsilon_t. \tag{1}$$

NB: Estimate the model using Markov Chain Monte Carlo techniques.

HINT: You must adapt the routine gbs_ar4: chapter 7 by Kim and Nelson.

NB: When modifying the routine, you need to take into account

(i) That there are 3 regressors instead of 5 as in gbs_ar4.

(ii) That you should remove the control

 $COEF = -REV(BETA\ F[2:3])/1;$

ROOT = POLYROOT(COEF);

ROOTMOD = ABS(ROOT);

IF MINC(ROOTMOD) GE 1.0001;

ACCEPT = 1;

ELSE;

ACCEPT = 0;

ENDIF;.

- (a) Report your results for the whole sample.
- **(b)** Compare the dispersion of α_1 and α_2 of for the sub-samples 1962q1-1979q3 and 1982q4-2014q4.

En la tabla 19, se presentan los resultados de la estimación *Markov Chain Monte Carlo* del modelo (1) para toda la muestra y para la submuestras 1962q1-1979q3 y 1982q4-2014q4. En las figuras 13, 14, y 15, se presentan los histogramas de α_0 , α_1 , α_2 y σ^2 del modelo (1), para la toda la muestra y las submuestras, respectivamente.

Se puede observar que la dispersión de α_1 y α_2 es menor en la submuestra 1962q1-1979q3 en comparación a la submuestra 1982q4-2014q4, siendo estas dispersiones en la muestra completa un punto intermedio. Esto se puede deber a que la primera submuestra representa un período más estable económicamente, mientras que la segunda submuestra incluye períodos de mayor volatilidad y cambios económicos significativos.

Tabla 19. Resultados de estimación Markov Chain Monte Carlo del modelo (1).

Muestra	Resultado	α_0	α_1	α_2	σ^2
	Media	22,47666613	-0,02898299	0,11971043	0,01022999
1962q1-2014q4	Mediana	22,47832003	-0,02903012	0,00092952	0,01016462
	Desvío estándar	0,06719437	0,00253636	0,00724476	0,00092952
	Media	23,02723978	0,00869737	0,00839861	0,00399314
1962q1-1979q3	Mediana	23,02847501	0,01379243	0,01370651	0,01607229
•	Desvío estándar	0,09987100	0,00177733	0,00173505	0,00030407
	Media	22,68306189	-0,03700261	0,10039339	0,01410030
1982q4-2014q4	Mediana	22,65560198	-0,03709047	0,10349117	0,01393484
	Desvío estándar	0,41016940	0,00727595	0,04231661	0,00168012

Fuente: Elaboración propia.

Figura 13. Histogramas de α_0 , α_1 , α_2 y σ^2 del modelo (1) para la muestra completa.

Figura 14. Histogramas de α_0 , α_1 , α_2 y σ^2 del modelo (1) para la submuestra 1962q1-1979q3.

Figura 15. Histogramas de α_0 , α_1 , α_2 y σ^2 del modelo (1) para la submuestra 1982q4-2014q4.

(c) *Repeat (a) and (b) for the following equations:*

$$\Delta \log (m_t) - \Delta \log (p_t) = \alpha_0 + \alpha_1 i_t + \alpha_2 \Delta \log (y_t) + \varepsilon_t \tag{2}$$

and

$$\Delta \log (m_t) - \Delta \log (p_t) = \alpha_0 + \alpha_1 \Delta i_t + \alpha_2 \Delta \log (y_t) + \varepsilon_t. \tag{3}$$

Critically comment on the similarities and differences of the results of (a)-(b) vs. the regressions in (c).

En la tablas 20 y 21, se presentan los resultados de la estimación *Markov Chain Monte Carlo* del modelo (2) y del modelo (3), respectivamente, para toda la muestra y para la submuestras 1962q1-1979q3 y 1982q4-2014q4.

Se puede observar que, en ambos modelos, al igual que sucedía en el modelo (1), la dispersión de α_2 es menor en la submuestra 1962q1-1979q3 en comparación a la submuestra 1982q4-2014q4, siendo esta dispersión en la muestra completa un punto intermedio. Sin embargo, no sucede lo mismo con la dispersión de α_1 , la cual, ahora, es menor en la muestra completa.

Por otra parte, comparando estos tres modelos, es menos probable que el modelo (1) sea estacionario, ya que las series económicas en niveles tienden a tener tendencia estocástica, en tanto que el modelo (2) y el modelo (3), al estar en primeras diferencias, es probable que sean estacionarios.

Tabla 20. Resultados de estimación Markov Chain Monte Carlo del modelo (2).

Muestra	Resultado	α_0	α_1	α_2	σ^2
	Media	0,01653741	-0,00196704	-0,15218755	0,00020567
1962q1-2014q4	Mediana	0,01659135	-0,00197043	-0,14517289	0,00020436
	Desvío estándar	0,00218934	0,00036824	0,11280627	0,00001869
	Media	0,01448120	-0,00335219	0,20310724	0,00003863
1962q1-1979q3	Mediana	0,01451254	-0,00332815	0,20459038	0,00003771
	Desvío estándar	0,00257266	0,00042847	0,07846957	0,00000661
	Media	0,01984987	-0,00171576	-0,42654778	0,00028421
1982q4-2014q4	Mediana	0,01964314	-0,00171700	-0,41707292	0,00028087
	Desvío estándar	0,00310561	0,00063820	0,23684816	0,00003386

Fuente: Elaboración propia.

Tabla 21. Resultados de estimación Markov Chain Monte Carlo del modelo (3).

Muestra	Resultado	α_0	α_1	α_2	σ^2
	Media	0,01250557	0,00218661	-0,50625041	0,00023291
1962q1-2014q4	Mediana	0,01255940	0,00207946	-0,51183298	0,00023143
•	Desvío estándar	0,00218490	0,00104786	0,11780210	0,00002116
	Media	-0,00024210	0,00086986	0,04165959	0,00007414
1962q1-1979q3	Mediana	-0,00021206	0,00075174	0,04519257	0,00007238
	Desvío estándar	0,00246455	0,00157687	0,10566058	0,00001268
	Media	0,01729059	-0,00071621	-0,76558310	0,00030127
1982q4-2014q4	Mediana	0,01706627	-0,00093148	-0,75401136	0,00029773
	Desvío estándar	0,00336970	0,00323396	0,22494978	0,00003590

Fuente: Elaboración propia.

Ejercicio 6 (file named merval.wtf1).

(a) Estimate a Markov Switching in Variance with 3 states for the returns of the MERVAL. NB: The series is stock prices; you should model the returns. HINT: You can adapt the routine gibs_s3: chapter 9 by Kim and Nelson (or code available on the web page). Compare your results with those obtained with the GARCH model in exercise 1.

En la tabla 22, se presenta la estimación *Markov Switching in Variance* con tres regímenes para los retornos del MERVAL. Comparar las estimaciones del modelo *Markov Switching in Variance* (MSV) con el modelo GARCH permite ver cómo captura cada uno la dinámica de la volatilidad de los retornos del MERVAL. Se puede observar que:

- MSV: Por un lado, captura cambios de régimen en la volatilidad, lo que puede ser útil para detectar diferentes estados de volatilidad del mercado. Por otro lado, tiene un peor ajuste (mayor AIC y CS), pero es útil para detectar regímenes de volatilidad.
- GARCH: Por un lado, captura la persistencia y la influencia de los *shocks* pasados en la volatilidad actual, sin cambios abruptos de régimen. Por otro lado, tiene un mejor ajuste (menor AIC y SC) y proporciona una mejor explicación de la dinámica de los retornos, pero no captura cambios abruptos de régimen.

En resumen, el modelo MSV es más adecuado si se espera que la volatilidad del mercado cambie entre distintos regímenes de manera abrupta, mientras que el modelo GARCH es mejor para capturar la dinámica continua de la volatilidad influenciada por *shocks* pasados. La elección entre ambos dependerá del comportamiento específico de la serie temporal de los retornos del MERVAL y del objetivo del análisis.

Tabla 22. Estimación Markov Switching in Variance con tres regímenes para los retornos del MERVAL.

Dependent Variable: RETURNS_MERVAL

Method: Markov Switching Regression (BFGS / Marquardt steps)

Date: 07/08/24 Time: 12:54 Sample (adjusted): 3 399

Included observations: 397 after adjustments

Number of states: 3

Fixed probability matrix: EJERCICIO_6A_REST Initial probabilities obtained from ergodic solution

Standard errors & covariance computed using observed Hessian Random search: 25 starting values with 10 iterations using 1 standard

deviation (rng=kn, seed=12345) Convergence achieved after 14 iterations

Variable	Coefficient	Std. Error	z-Statistic	Prob.				
Regime 1								
С	-0.008994	0.007117	-1.263778	0.2063				
LOG(SIGMA)	-2.976744	0.102626	-29.00570	0.0000				
Regime 2								
С	-6.72E-05	0.002252	-0.029827	0.9762				
LOG(SIGMA)	-3.629031	0.092371	-39.28744	0.0000				
Regime 3								
С	0.002015	0.001680	1.198898	0.2306				
LOG(SIGMA)	-4.580712	0.197734	-23.16605	0.0000				
Common								
RETURNS_MERVAL(-1)	-0.015937	0.043318	-0.367911	0.7129				
Transition Matrix Parameters								
P11-C	3.703194	0.948624	3.903752	0.0001				
P22-C	-0.149046	0.882940	-0.168807	0.8659				
P31-C	-3.767725	1.293914	-2.911883	0.0036				
P32-C	0.712841	0.777852	0.916423	0.3594				
Mean dependent var	-0.000545	S.D. dependent var		0.027598				
S.E. of regression	0.027770	Sum squared resid		0.300766				
Durbin-Watson stat	1.949509	Log likelihood		927.0191				
Akaike info criterion	-4.614706	Schwarz criterion		-4.504320				
Hannan-Quinn criter.	-4.570979							

(b) Plot the histograms of the Volatility parameters. Comment the results.

(c) Estimate a two-state model using Eviews. Compare the results with those obtained in (a). Comment on the number of states.

En la tabla 23, se presenta la estimación *Markov Switching in Variance* con dos regímenes para los retornos del MERVAL. Se puede observar que:

- Número de regímenes: El modelo de tres regímenes permite capturar más matices en la volatilidad de los retornos del MERVAL al tener un tercer estado que puede representar condiciones de mercado adicionales que el modelo de dos regímenes no puede. El modelo de dos regímenes simplifica la estructura de volatilidad, dividiendo el comportamiento del mercado en dos estados amplios.
- <u>Significancia de los parámetros:</u> Ambos modelos muestran que las medias de los retornos en los regímenes no son significativas, lo que sugiere que los retornos medios no difieren mucho entre los estados. Las log-varianzas son altamente significativas en todos los regímenes, indicando que las diferencias en la volatilidad son cruciales para distinguir entre los estados.
- Medidas de ajuste: El modelo de tres regímenes tiene un log-likelihood ligeramente mayor y mejores valores de AIC y HQC en comparación con el modelo de dos regímenes, lo que sugiere un mejor ajuste al permitir más complejidad en la estructura de volatilidad. La diferencia en Schwarz Criterion (SC) es mínima, indicando que el penalizar la complejidad adicional del modelo de tres regímenes no tiene un impacto significativo en la medida de ajuste.
- <u>Parámetros de transición:</u> En ambos modelos, los parámetros de transición son significativos, pero el modelo de tres regímenes permite más flexibilidad en las probabilidades de cambio entre estados.

En resumen, el modelo de tres regímenes ofrece una mejor capacidad para capturar la complejidad de la volatilidad de los retornos del MERVAL, aunque a costa de una mayor complejidad. El modelo de dos regímenes es más simple y aún puede capturar la esencia de la dinámica de volatilidad, pero puede perder detalles importantes que el modelo de tres regímenes puede captar. La elección entre estos modelos depende del equilibrio entre la simplicidad y la capacidad de capturar detalles más finos en la estructura de volatilidad.

Tabla 23. Estimación Markov Switching in Variance con dos regímenes para los retornos del MERVAL.

Dependent Variable: RETURNS_MERVAL

Method: Markov Switching Regression (BFGS / Marquardt steps)

Date: 07/08/24 Time: 12:56 Sample (adjusted): 3 399

Included observations: 397 after adjustments

Number of states: 2

Initial probabilities obtained from ergodic solution

Standard errors & covariance computed using observed Hessian Random search: 25 starting values with 10 iterations using 1 standard

deviation (rng=kn, seed=12345) Convergence achieved after 7 iterations

Variable	Coefficient	Std. Error	z-Statistic	Prob.			
Regime 1							
C LOG(SIGMA)	0.000693 -4.313830	0.001148 0.070294	0.603868 -61.36866	0.5459 0.0000			
Regime 2							
C LOG(SIGMA)	-0.001758 -3.312446	0.002702 0.062215	-0.650679 -53.24184	0.5153 0.0000			
Common							
RETURNS_MERVAL(-1)	0.003201	0.052063	0.061486	0.9510			
Transition Matrix Parameters							
P11-C P21-C	3.194058 -3.129183	0.562934 0.625710	5.673952 -5.001013	0.0000 0.0000			
Mean dependent var S.E. of regression Durbin-Watson stat Akaike info criterion Hannan-Quinn criter.	-0.000545 0.027756 1.975201 -4.589232 -4.561406	S.D. dependent var Sum squared resid Log likelihood Schwarz criterion		0.027598 0.301993 917.9626 -4.518987			