

Stimulated Raman Scattering

Outline

Basic physics of Raman scattering

Applications to silica fibers

Designing a "Raman amplifier"

Numerical simulation in python!

H_2 molecule

• Initially, a H_2 molecule is in its vibrational ground state

Photon + H_2 molecule

• The oscillating electric field of the light "shakes" the electrons in the bond.

A virtual state is occupied temporarily.

Photon + H_2 molecule

• The virtual state can emit a photon with the same frequency and leave the H_2 in its original ground state (boring!)

Photon + H_2 molecule

• Alternatively, the virtual state can relax to a mechanically excited H_2 molecule and a photon with <u>less</u> energy (lower frequency).

This is <u>Raman Scattering!</u>

• $\omega_{out} = \omega_{in} - \Omega_{vib}$

Possible output frequencies for H_2

What about silica (SiO_2) ?

• Amorphous crystal structure.

 Therefore, many possible vibration states with different frequencies and lifetimes!

Silica vibration in time and freq. domains

Raman amplifiers!

Communication channel going in forward direction

Pump 13THz above going backwards into the fiber end

z [km]

Coupled ODE

$$\frac{dI_s}{dz} = (g_{s,p}I_p - \alpha_s)I_s$$

$$\frac{dI_{p}}{dz} = \left(\frac{\omega_{p}}{\omega_{s}}g_{p,s}I_{s} - \alpha_{p}\right)I_{p}$$

$$g_{p,s} = -g_{s,p}$$

Communication channel going in forward direction

Pump 13THz above going backwards into the fiber end

z [km]