Introduction to Machine Learning Measures of Accuracy

Andres Mendez-Vazquez

February 9, 2023

Outline

- Bias-Variance Dilemma
 - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

Confusion Matrix

- Introduction
- The α and β errors
- The Initial Confusion Matrix
 - Metrics from the Confusion Matrix
- Receiver Operator Curves (ROC)
 - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F₁-Measure
- Cross Validation
 - Introduction
 - How to choose K
 - Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

Outline

- Bias-Variance Dilemma
 - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

Confusion Matrix

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- 3 Receiver Operator Curves (ROC)
 - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F₁-Measure
- Cross validatio
 - Introduction
 - How to choose K
 - Types of Cross Validation
 - Exhaustive Cross ValidationHoldout Cross-Validation
 - Holdout Cross-Validation
 K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Stratistical K-told Cross-Validation
 Nested Cross Validation

What did we see until now?

The design of learning machines from two main points:

What did we see until now?

The design of learning machines from two main points:

Statistical Point of View

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(\boldsymbol{x}|\mathcal{D})...$

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(x|\mathcal{D})...$

• Something as curve fitting...

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(x|\mathcal{D})...$

• Something as curve fitting...

Under a data set

$$\mathcal{D} = \{ (\boldsymbol{x}_i, y_i) | i = 1, 2, ..., N \}$$
 (1)

What did we see until now?

The design of learning machines from two main points:

- Statistical Point of View
- Linear Algebra and Optimization Point of View

Going back to the probability models

We might think in the machine to be learned as a function $g(x|\mathcal{D})...$

Something as curve fitting...

Under a data set

$$\mathcal{D} = \{ (\boldsymbol{x}_i, y_i) | i = 1, 2, ..., N \}$$
 (1)

Remark: Where the $x_i \sim p(x|\Theta)!!!$

Two main functions

 \bullet A function $g\left(\boldsymbol{x}|\mathcal{D}\right)$ obtained using some algorithm!!!

Two main functions

- A function $g(x|\mathcal{D})$ obtained using some algorithm!!!
- ullet For example, $E\left[y|oldsymbol{x}
 ight]$ the optimal regression...

Two main functions

- A function $g(x|\mathcal{D})$ obtained using some algorithm!!!
- ullet For example, E[y|x] the optimal regression...

Important

The key factor here is the dependence of the approximation on \mathcal{D} .

Two main functions

- A function $g(x|\mathcal{D})$ obtained using some algorithm!!!
- ullet For example, $E[y|oldsymbol{x}]$ the optimal regression...

Important

The key factor here is the dependence of the approximation on \mathcal{D} .

Why?

The approximation may be very good for a specific training data set but very bad for another.

Two main functions

- A function $g(x|\mathcal{D})$ obtained using some algorithm!!!
- For example, E[y|x] the optimal regression...

Important

The key factor here is the dependence of the approximation on \mathcal{D} .

Why?

The approximation may be very good for a specific training data set but very bad for another.

• This is the reason of studying fusion of information at decision level...

Outline

- Bias-Variance Dilemma
 - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example
- - Introduction
 - The α and β errors
 - The Initial Confusion Matrix
 - Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure
- Introduction
 - How to choose K
 - Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

We can use the variance

$$Var(X) = E((X - \mu)^2)$$

We can use the variance

$$Var(X) = E((X - \mu)^2)$$

We can do that for our data

$$Var_{\mathcal{D}}(g(\mathbf{x}|\mathcal{D})) = E_{D}((g(\mathbf{x}|\mathcal{D}) - E[y|\mathbf{x}])^{2})$$

We can use the variance

$$Var(X) = E((X - \mu)^2)$$

We can do that for our data

$$Var_{\mathcal{D}}(g(\boldsymbol{x}|\mathcal{D})) = E_{D}((g(\boldsymbol{x}|\mathcal{D}) - E[y|\boldsymbol{x}])^{2})$$

Now, if we add and subtract

 $E_D\left[g\left(oldsymbol{x}|\mathcal{D}
ight)
ight]$

(2)

We can use the variance

$$Var(X) = E((X - \mu)^2)$$

We can do that for our data

$$Var_{\mathcal{D}}(g(\boldsymbol{x}|\mathcal{D})) = E_{D}((g(\boldsymbol{x}|\mathcal{D}) - E[y|\boldsymbol{x}])^{2})$$

 $E_D\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]$

Now, if we add and subtract

Remark: The expected output of the machine $g\left(\boldsymbol{x}|\mathcal{D}\right)$

(2)

Or Original variance

$$Var_{\mathcal{D}}(g(\mathbf{x}|\mathcal{D})) = E_{D}\left(\left(g(\mathbf{x}|\mathcal{D}) - E[y|\mathbf{x}]\right)^{2}\right)$$

$$= E_{D}\left(\left(g(\mathbf{x}|\mathcal{D}) - E_{D}[g(\mathbf{x}|\mathcal{D})] + E_{D}[g(\mathbf{x}|\mathcal{D})] - E[y|\mathbf{x}]\right)^{2}\right)$$

$$= E_{D}\left(\left(g(\mathbf{x}|\mathcal{D}) - E_{D}[g(\mathbf{x}|\mathcal{D})]\right)^{2} + \dots$$

$$\dots 2\left(\left(g(\mathbf{x}|\mathcal{D}) - E_{D}[g(\mathbf{x}|\mathcal{D})]\right)\right)\left(E_{D}[g(\mathbf{x}|\mathcal{D})] - E[y|\mathbf{x}]\right) + \dots$$

$$\dots \left(E_{D}[g(\mathbf{x}|\mathcal{D})] - E[y|\mathbf{x}]\right)^{2}\right)$$

Or Original variance

$$\begin{aligned} Var_{\mathcal{D}}\left(g\left(\boldsymbol{x}|\mathcal{D}\right)\right) &= E_{D}\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right) - E\left[\boldsymbol{y}|\boldsymbol{x}\right]\right)^{2}\right) \\ &= E_{D}\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right) - E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right] + E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right] - E\left[\boldsymbol{y}|\boldsymbol{x}\right]\right)^{2}\right) \\ &= E_{D}\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right) - E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]\right)^{2} + \dots \right. \\ & \dots 2\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right) - E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]\right)\right)\left(E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right] - E\left[\boldsymbol{y}|\boldsymbol{x}\right]\right) + \dots \\ & \dots \left(E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right] - E\left[\boldsymbol{y}|\boldsymbol{x}\right]\right)^{2}\right) \end{aligned}$$

Finally

$$E_D\left(\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right) - E_D\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]\right)\right)\left(E_D\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right] - E\left[y|\boldsymbol{x}\right]\right)\right) = ?$$
 (3)

Outline

- Bias-Variance Dilemma
 - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example
- Confusion Matrix
 - Introduction
 - The α and β errors
 - The Initial Confusion Matrix
 - Metrics from the Confusion Matrix
- Receiver Operator Curves (ROC)
 - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F₁-Measure
- Corre Veliderien
 - Introduction
 - How to choose K
 - Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross-Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

We have the Bias-Variance

Our Final Equation

$$E_{D}\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right)-E\left[\boldsymbol{y}|\boldsymbol{x}\right]\right)^{2}\right)=\underbrace{E_{D}\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right)-E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]\right)^{2}\right)}_{VARIANCE}+\underbrace{\left(E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]-E\left[\boldsymbol{y}|\boldsymbol{x}\right]\right)^{2}}_{BIAS}$$

We have the Bias-Variance

Our Final Equation

$$E_{D}\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right)-E\left[\boldsymbol{y}|\boldsymbol{x}\right]\right)^{2}\right)=\underbrace{E_{D}\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right)-E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]\right)^{2}\right)}_{VARIANCE}+\underbrace{\left(E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]-E\left[\boldsymbol{y}|\boldsymbol{x}\right]\right)^{2}}_{BIAS}$$

Where the variance

It represents the measure of the error between our machine $g(\mathbf{x}|\mathcal{D})$ and the expected output of the machine under $\mathbf{x}_i \sim p(\mathbf{x}|\Theta)$.

We have the Bias-Variance

Our Final Equation

$$E_{D}\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right)-E\left[\boldsymbol{y}|\boldsymbol{x}\right]\right)^{2}\right)=\underbrace{E_{D}\left(\left(g\left(\boldsymbol{x}|\mathcal{D}\right)-E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]\right)^{2}\right)}_{VARIANCE}+\underbrace{\left(E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]-E\left[\boldsymbol{y}|\boldsymbol{x}\right]\right)^{2}}_{BIAS}$$

Where the variance

It represents the measure of the error between our machine $g(\mathbf{x}|\mathcal{D})$ and the expected output of the machine under $\mathbf{x}_i \sim p(\mathbf{x}|\Theta)$.

Where the bias

It represents the quadratic error between the expected output of the machine under $\boldsymbol{x}_i \sim p\left(\boldsymbol{x}|\Theta\right)$ and the expected output of the optimal regression.

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

The situation is more dire in a finite set of data ${\cal D}$

We have then a trade-off:

• Increasing the bias decreases the variance and vice versa.

Remarks

We have then

Even if the estimator is unbiased, it can still result in a large mean square error due to a large variance term.

The situation is more dire in a finite set of data ${\cal D}$

We have then a trade-off:

- Increasing the bias decreases the variance and vice versa.
- 2 This is known as the bias-variance dilemma.

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Thus

Thus, it will result in low bias but will yield high variance, as we change from one data set to another data set.

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Thus

Thus, it will result in low bias but will yield high variance, as we change from one data set to another data set.

Furthermore

If N grows we can have a more complex model to be fitted which reduces bias and ensures low variance.

Curve Fitting

If, for example, the adopted model is complex (many parameters involved) with respect to the number N, the model will fit the idiosyncrasies of the specific data set.

Thus

Thus, it will result in low bias but will yield high variance, as we change from one data set to another data set.

Furthermore

If N grows we can have a more complex model to be fitted which reduces bias and ensures low variance.

ullet However, N is always finite!!!

Thus

You always need to compromise

However, you always have some a priori knowledge about the data

Thus

You always need to compromise

However, you always have some a priori knowledge about the data

Allowing you to impose restrictions

Lowering the bias and the variance

Thus

You always need to compromise

However, you always have some a priori knowledge about the data

Allowing you to impose restrictions

Lowering the bias and the variance

Nevertheless

We have the following example to grasp better the bothersome bias-variance dilemma.

For this

Assume

The data is generated by the following function

$$y = f(x) + \epsilon$$

$$\epsilon \sim \mathcal{N}\left(0, \sigma_{\epsilon}^2\right)$$

For this

Assume

The data is generated by the following function

$$y = f(x) + \epsilon,$$

$$\epsilon \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)$$

$$\epsilon \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)$$

We know that

The optimum regressor is E[y|x] = f(x)

For this

Assume

The data is generated by the following function

$$y = f(x) + \epsilon,$$

 $\epsilon \sim \mathcal{N}\left(0, \sigma_{\epsilon}^{2}\right)$

We know that

The optimum regressor is E[y|x] = f(x)

Furthermore

Assume that the randomness in the different training sets, \mathcal{D} , is due to the y_i 's (Affected by noise), while the respective points, x_i , are fixed.

Outline

- Bias-Variance Dilemma
 - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

Confusion Matrix

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- 3 Receiver Operator Curves (ROC)
 - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F₁-Measure
- Other Measures. In I-Measure
- Introduction
 - How to choose K
 - Types of Cross Validation
 - Types of Cross Validation
 Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Stratisfied K-fold Cross-Validation
 Nested Cross Validation

Sampling the Space

Imagine that $\mathcal{D} \subset [x_1, x_2]$ in which x lies

For example, you can choose $x_i=x_1+\frac{x_2-x_1}{N-1}\,(i-1)$ with i=1,2,...,N

Choose the estimate of f(x), $g(x|\mathcal{D})$, to be independent of \mathcal{D}

For example, $g(x) = w_1 x + w_0$

Choose the estimate of f(x), $g(x|\mathcal{D})$, to be independent of \mathcal{D}

For example, $g(x) = w_1 x + w_0$

Since g(x) is fixed

$$E_{\mathcal{D}}\left[g\left(x|\mathcal{D}\right)\right] = g\left(x|\mathcal{D}\right) \equiv g\left(x\right)$$
 (4)

Since g(x) is fixed

$$E_{\mathcal{D}}\left[g\left(x|\mathcal{D}\right)\right] = g\left(x|\mathcal{D}\right) \equiv g\left(x\right)$$
 (4)

With

 $Var_{\mathcal{D}}\left[g\left(x|\mathcal{D}\right)\right] = 0$ (5)

Since g(x) is fixed

$$E_{\mathcal{D}}\left[g\left(x|\mathcal{D}\right)\right] = g\left(x|\mathcal{D}\right) \equiv g\left(x\right) \tag{4}$$

With

$$Var_{\mathcal{D}}\left[g\left(x|\mathcal{D}\right)\right] = 0$$
 (5)

On the other hand

Because $g\left(x\right)$ was chosen arbitrarily the expected bias must be large.

$$\underbrace{\left(E_{D}\left[g\left(\boldsymbol{x}|\mathcal{D}\right)\right]-E\left[y|\boldsymbol{x}\right]\right)^{2}}_{BIAS}\tag{6}$$

In the other hand

Now, $g_1(x)$ corresponds to a polynomial of high degree so it can pass through each training point in \mathcal{D} .

In the other hand

Now, $g_1(x)$ corresponds to a polynomial of high degree so it can pass through each training point in \mathcal{D} .

Due to the zero mean of the noise source

$$E_D\left[g_1\left(\boldsymbol{x}|\mathcal{D}\right)\right] = f\left(x\right) = E\left[y|x\right] \text{ for any } x = x_i \tag{7}$$

Remark: At the training points the bias is zero.

Due to the zero mean of the noise source

$$E_D\left[g_1\left(\boldsymbol{x}|\mathcal{D}\right)\right] = f\left(x\right) = E\left[y|x\right] \text{ for any } x = x_i \tag{7}$$

Remark: At the training points the bias is zero.

However the variance increases

$$E_D\left[\left(g_1\left(\boldsymbol{x}|\mathcal{D}\right) - E_D\left[g_1\left(\boldsymbol{x}|\mathcal{D}\right)\right]\right)^2\right] = E_D\left[\left(f\left(\boldsymbol{x}\right) + \epsilon - f\left(\boldsymbol{x}\right)\right)^2\right]$$
$$= \sigma_{\epsilon}^2, \text{ for } x = x_i, i = 1, 2, ..., N$$

Due to the zero mean of the noise source

$$E_D\left[g_1\left(\boldsymbol{x}|\mathcal{D}\right)\right] = f\left(x\right) = E\left[y|x\right] \text{ for any } x = x_i \tag{7}$$

Remark: At the training points the bias is zero.

However the variance increases

$$E_D\left[\left(g_1\left(\boldsymbol{x}|\mathcal{D}\right) - E_D\left[g_1\left(\boldsymbol{x}|\mathcal{D}\right)\right]\right)^2\right] = E_D\left[\left(f\left(\boldsymbol{x}\right) + \epsilon - f\left(\boldsymbol{x}\right)\right)^2\right]$$
$$= \sigma_{\epsilon}^2, \text{ for } x = x_i, i = 1, 2, ..., N$$

In other words

The bias becomes zero (or approximately zero) but the variance is now equal to the variance of the noise source.

Observations

First

Everything that has been said so far applies to both the regression and the classification tasks.

Observations

First

Everything that has been said so far applies to both the regression and the classification tasks.

However

Mean squared error is not the best way to measure the power of a classifier.

Observations

First

Everything that has been said so far applies to both the regression and the classification tasks.

However

Mean squared error is not the best way to measure the power of a classifier.

Think about

A classifier that sends everything far away of the hyperplane!!! Away from the values +-1!!!

Outline

- 1 Bias-Variance Dilemma
 - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

Confusion Matrix

- Introduction
- The α and β errors
- The Initial Confusion Matrix
 Metrics from the Confusion Matrix
- Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Other Measures: F₁-Measure
- 4 Cross Validation
 - Introduction
 - How to choose K
 - Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

Sooner of Latter you need to know how efficient is your algorithm

Sooner of Latter you need to know how efficient is your algorithm

Thus, we need a measures of accuracy

Thus, we begin with the classic classifier for two classes

Here

A dataset used for performance evaluation is called a test dataset.

Therefore

It is a good idea to build a measure of performance

For this, we can use the idea of error in statistics.

Therefore

It is a good idea to build a measure of performance

For this, we can use the idea of error in statistics.

Outline

- Bias-Variance Dilemma
 - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

Confusion Matrix

- Introduction
- ullet The α and β errors
- The Initial Confusion Matrix
 - Metrics from the Confusion Matrix
- 3 Receiver Operator Curves (ROC)
 - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure
 - Other Measures: F_1 -Measure

• Introduction

- Introduction
- lacksquare How to choose K
- Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

Definition (Type I Error - False Positive)

 α is the probability that the test will lead to the rejection of the hypothesis ${\cal H}_0$ when that hypothesis is true.

Definition (Type I Error - False Positive)

lpha is the probability that the test will lead to the rejection of the hypothesis H_0 when that hypothesis is true.

Example

 $oldsymbol{0}$ H_0 : "You have a device that produce circuits with no error"

Definition (Type I Error - False Positive)

lpha is the probability that the test will lead to the rejection of the hypothesis H_0 when that hypothesis is true.

Example

- **1** H_0 : "You have a device that produce circuits with no error"
- 2 You have a device that fails $\alpha=0.05$ meaning that it fails 5 of the time.

Definition (Type I Error - False Positive)

lpha is the probability that the test will lead to the rejection of the hypothesis H_0 when that hypothesis is true.

Example

- H_0 : "You have a device that produce circuits with no error"
- ② You have a device that fails $\alpha=0.05$ meaning that it fails 5 of the time.
- 3 This says that you ha low chance of a wrong circuit.

Basically

Definition (Type II Error - False Negative)

 β is the probability that the test will lead to the rejection of the hypothesis H_1 when that hypothesis is true.

Definition (Type II Error - False Negative)

 β is the probability that the test will lead to the rejection of the hypothesis H_1 when that hypothesis is true.

Example

1 H_1 : "Adding fluoride to toothpaste protects against cavities."

Definition (Type II Error - False Negative)

 β is the probability that the test will lead to the rejection of the hypothesis H_1 when that hypothesis is true.

Example

- **1** H_1 : "Adding fluoride to toothpaste protects against cavities."
- ② Then $\beta=0.05$ meaning that you have a chance of 5 of the time.

Definition (Type II Error - False Negative)

 β is the probability that the test will lead to the rejection of the hypothesis H_1 when that hypothesis is true.

Example

- **1** H_1 : "Adding fluoride to toothpaste protects against cavities."
- ② Then $\beta = 0.05$ meaning that you have a chance of 5 of the time.
- This says that you have a low chance of having a cavity using fluoride in the water.

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

Confusion Matrix

- Introduction
- The α and β errors
- The Initial Confusion Matrix
 - Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)

 - Other Measures: F_1 -Measure

- Introduction
- How to choose K
- Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

This can be seen as a table

Confusion Matrix

	Table of error types		True H_0 , False H_1	False H_0 , True H_1
	Decisions	Reject H_1	Correct Inference	Type I Error - α
			True Positive	False Positive
		Reject H_0	Type II Error - β	Correct Inference
			False Negative	True Negative

In the case of two classes, we have

We have finally the Confusion Matrix							
		Actual Class					
		Positive	Negative				
Predicted	Positive	True Positive (TP)	False Positives (FP)				
Classes	Negative	False Negatives (FN)	True Negatives (TN)				

Outline

- Bias-Variance Dilemma
 - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

Confusion Matrix

- Introduction
- The α and β errors
- The Initial Confusion Matrix
 Metrics from the Confusion Matrix
- Receiver Operator Curves (ROC)
- Introduction
- Example
- Algorithm for the ROC Curve
- Area Under the Curve (AUC)
- Area officer the curve (Aoc)
- lacktriangle Other Measures: F_1 -Measure

Cross Validation

- Introduction
- lacksquare How to choose K
- Types of Cross Validation
 Exhaustive Cross Validation
 - Holdout Cross-Validation
 - Holdout Cross-Validation
 K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Stratisfied K-fold Cross-Validation
 Nested Cross Validation

Accuracy

Definition

• The proportion of getting correct classification of the Positive and Negative classes.

Accuracy

Definition

• The proportion of getting correct classification of the Positive and Negative classes.

Thus

$$\mathsf{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN}$$

		Actua	Class
		Positive	Negative
Predicted	Positive	True Positive (TP)	False Positives (FP)
Classes	Negative	False Negatives (FN)	True Negatives (TN)

Accuracy

Definition

 The proportion of getting correct classification of the Positive and Negative classes.

Thus

$$\mathsf{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN}$$

		Actual Class	
		Positive	Negative
Predicted	Positive	True Positive (TP)	False Positives (FP)
Classes	Negative	False Negatives (FN)	True Negatives (TN)

Problem - accuracy assumes equal cost for both kinds of errors

Is 99% accuracy good, bad or terrible? It depends on the problem.

Another Problem

You have only a way to measure the total correct answers

ullet Yes, we have at the numerator of TP+TN

Another Problem

You have only a way to measure the total correct answers

 \bullet Yes, we have at the numerator of TP+TN

We need to measure for the Positive Class/Class 1

 Yes, we need to measure the moments when the correct answers can be correct

Another Problem

You have only a way to measure the total correct answers

 \bullet Yes, we have at the numerator of TP+TN

We need to measure for the Positive Class/Class 1

 Yes, we need to measure the moments when the correct answers can be correct

The True Positive or

• The Recall Rate...

True Positive Rate

Also called

Sensitivity or Recall Rate

		Actual Class	
		Positive	Negative
Predicted	Positive	True Positive (TP)	False Positives (FP)
Classes	Negative	False Negatives (FN)	True Negatives (TN)

True Positive Rate

Also called

Sensitivity or Recall Rate

Defined as

 True Positive Rate is the proportion of getting a correct classification of the Positive Class vs the True Positive and False Negatives.

$$\label{eq:True Positive Rate} \text{True Positive Rate} = \frac{TP}{TP + FN}$$

		Actual Class	
		Positive	Negative
Predicted	Positive	True Positive (TP)	False Positives (FP)
Classes	Negative	False Negatives (FN)	True Negatives (TN)

We also need to measure the Class 2

For this, we have

Specificity

True Negative Rate

Also known as

Specificity

		Actual Class	
		Positive	Negative
Predicted	Positive	True Positive (TP)	False Positives (FP)
Classes	Negative	False Negatives (FN)	True Negatives (TN)

True Negative Rate

Also known as

Specificity

Defined as

 It is the proportion of True Negative vs the elements classified as True negatives.

True Negative Rate =
$$\frac{TN}{FP + TN}$$

		Actual Class	
		Positive	Negative
Predicted	Positive	True Positive (TP)	False Positives (FP)
Classes	Negative	False Negatives (FN)	True Negatives (TN)

We also need to measure the rate of TP

We have for this

• The Precision

Precision

Also known as

Positive Predictive Value

Precision

Also known as

Positive Predictive Value

Defined as

• The proportion of the elements classified as true positive vs the total of all the real true positives.

		Actual Class	
		Positive	Negative
Predicted	Positive	True Positive (TP)	False Positives (FP)
Classes	Negative	False Negatives (FN)	True Negatives (TN)

Significance Level

Also known as

False Positive Rate.

Significance Level

Also known as

False Positive Rate.

Defined as

False Positive Rate is the probability of getting an incorrect classification of the Positive Class vs the True Negative and the False Positive.

False positive rate =
$$\frac{FP}{TN + FP}$$

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- Receiver Operator Curves (ROC)
 - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure
- Introduction
 - How to choose K

 - Types of Cross Validation Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

We can do better than these simple measures of accuracy

Given these initial measures of validity

it is possible to obtain a more precise model evaluation, the ROC curves.

We can do better than these simple measures of accuracy

Given these initial measures of validity

it is possible to obtain a more precise model evaluation, the ROC curves.

The ROC Curves plot

It is a model-wide evaluation measure that is based on two basic evaluation measures:

- Specificity is a performance measure of the whole negative part of a dataset.
- ② Sensitivity is a performance measure of the whole positive part.

What the ROC Curves uses

We have a plot where

The ROC plot uses specificity on the x-axis and sensitivity on the y-axis.

What the ROC Curves uses

We have a plot where

The ROC plot uses specificity on the x-axis and sensitivity on the y-axis.

Basically

False Positive Rate (FPR) is identical with specificity, and True Positive Rate (TPR) is identical with sensitivity.

$$\label{eq:Specificity} \text{Specificity} = \text{False positive rate} = \frac{FP}{TN + FP}$$

$$\label{eq:True Positive Rate} \text{True Positive Rate} = \frac{TP}{TP + FN}$$

What the ROC Curves uses

We have a plot where

The ROC plot uses specificity on the x-axis and sensitivity on the y-axis.

Basically

False Positive Rate (FPR) is identical with specificity, and True Positive Rate (TPR) is identical with sensitivity.

$$\label{eq:Specificity} \text{Specificity} = \text{False positive rate} = \frac{FP}{TN + FP}$$

$$\label{eq:True Positive Rate} \text{True Positive Rate} = \frac{TP}{TP + FN}$$

Then

- A ROC curve is created by connecting all ROC points of a classier in the ROC space.
- 2 Two adjacent ROC points can be connected by a straight line.
- \odot The curve starts at (0.0, 0.0) and ends at (1.0, 1.0).

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- Receiver Operator Curves (ROC)
 - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)

 - Other Measures: F_1 -Measure

- Introduction
- How to choose K
- Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

For Example

Outline

- Bias-Variance Dilemma
 - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

Confusion Matrix

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- 3 Receiver Operator Curves (ROC)
 - Introduction
 - Example

Algorithm for the ROC Curve

- Area Under the Curve (AUC)
- Other Measures: F₁-Measure
- Cross Validatio
 - Introduction
 - lacksquare How to choose K
 - Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

- 2 $FP \leftarrow TP \leftarrow 0; R \leftarrow \langle \rangle; fprev \leftarrow -\infty; i \leftarrow 1$

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

- **1** $L_{sorted} \leftarrow L$ sorted decreasing by f scores
- 2 $FP \leftarrow TP \leftarrow 0; R \leftarrow \langle \rangle; fprev \leftarrow -\infty; i \leftarrow 1$
- while $i \leq |L_{sorted}|$

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

- $PF \leftarrow TP \leftarrow 0; R \leftarrow \langle \rangle; fprev \leftarrow -\infty; i \leftarrow 1$
- \bullet while $i \leq |L_{sorted}|$
- if $f(i) \neq f_{prev}$ then

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

- $PF \leftarrow TP \leftarrow 0; R \leftarrow \langle \rangle; fprev \leftarrow -\infty; i \leftarrow 1$
- while $i \leq |L_{sorted}|$
- if $f(i) \neq f_{prev}$ then
- $R.append\left(\frac{FP}{N}, \frac{TP}{P}\right)$

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

- **1** $L_{sorted} \leftarrow L$ sorted decreasing by f scores
- $PF \leftarrow TP \leftarrow 0; R \leftarrow \langle \rangle; fprev \leftarrow -\infty; i \leftarrow 1$
- while $i \leq |L_{sorted}|$
- if $f(i) \neq f_{prev}$ then
- $R.append\left(\frac{FP}{N}, \frac{TP}{P}\right)$
- $fprev \leftarrow f(i)$

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

- **1** $L_{sorted} \leftarrow L$ sorted decreasing by f scores
- 2 $FP \leftarrow TP \leftarrow 0; R \leftarrow \langle \rangle; fprev \leftarrow -\infty; i \leftarrow 1$
- while $i \leq |L_{sorted}|$
- if $f(i) \neq f_{prev}$ then
- $R.append\left(\frac{FP}{N}, \frac{TP}{P}\right)$
- $fprev \leftarrow f(i)$
- if L_{sorted} is a positive example then TP = TP + 1

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

- **1** L_{sorted} ← L sorted decreasing by f scores
- $PF \leftarrow TP \leftarrow 0; R \leftarrow \langle \rangle; fprev \leftarrow -\infty; i \leftarrow 1$
- while $i \leq |L_{sorted}|$
- if $f(i) \neq f_{prev}$ then
- $R.append\left(\frac{FP}{N}, \frac{TP}{P}\right)$
- $fprev \leftarrow f(i)$
- if L_{sorted} is a positive example then TP = TP + 1
- else FP = FP + 1

We have

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.

- **1** L_{sorted} ← L sorted decreasing by f scores
- $PF \leftarrow TP \leftarrow 0; R \leftarrow \langle \rangle; fprev \leftarrow -\infty; i \leftarrow 1$
- while $i \leq |L_{sorted}|$
- if $f(i) \neq f_{prev}$ then
- $R.append\left(\frac{FP}{N}, \frac{TP}{P}\right)$
- $fprev \leftarrow f(i)$
- if L_{sorted} is a positive example then TP = TP + 1
- else FP = FP + 1
- $0 \qquad i \leftarrow i+1$

We have

Algorithm ROC point generation

Input: L, the set of test examples; f(i), the probabilistic classifier estimate that example i is positive; P and N, the number of positive and negative examples.

Ouput: R, a list of ROC points increasing by false positive rate.

- **1** L_{sorted} ← L sorted decreasing by f scores
- $PF \leftarrow TP \leftarrow 0; R \leftarrow \langle \rangle; fprev \leftarrow -\infty; i \leftarrow 1$
- while $i \leq |L_{sorted}|$
- if $f(i) \neq f_{prev}$ then
- $R.append\left(\frac{FP}{N}, \frac{TP}{P}\right)$
- $fprev \leftarrow f(i)$
- if L_{sorted} is a positive example then TP = TP + 1
- else FP = FP + 1
- $i \leftarrow i + 1$

For Example

Thus

Thus

• Thus, after generating the ROC Curve it is possible to use several metrics to validate using the ROC curves.

Thus

Thus

 Thus, after generating the ROC Curve it is possible to use several metrics to validate using the ROC curves.

A Partial List is

- Area Under the Curve (AUC)
- Equal Error Rate (EER)
- Likelihood Ratio

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- Receiver Operator Curves (ROC)
 - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure
- - Introduction
 - How to choose K
 - Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

A Simple Defintion

We have

$$AUC = \int ROC\left(p\right) dp = \sum_{i=1}^{N} ROC\left(f\left(\frac{1}{i}\right)\right) \left[\frac{i}{N} - \frac{i-1}{N}\right]$$

A Simple Defintion

We have

$$AUC = \int ROC(p) dp = \sum_{i=1}^{N} ROC\left(f\left(\frac{1}{i}\right)\right) \left[\frac{i}{N} - \frac{i-1}{N}\right]$$

This equation has the following meaning

• The probability that a randomly selected observation X from the **positive class** would have a higher score than a randomly selected observation Y from the **negative class**.

A Simple Defintion

We have

$$AUC = \int ROC(p) dp = \sum_{i=1}^{N} ROC\left(f\left(\frac{1}{i}\right)\right) \left[\frac{i}{N} - \frac{i-1}{N}\right]$$

This equation has the following meaning

 The probability that a randomly selected observation X from the positive class would have a higher score than a randomly selected observation Y from the negative class.

Thus

The AUC gives the mean **true positive** rate averaged uniformly across the **false positive** rate.

Therefore

AUC curves are a good measure of how good are our results

- However, we need to combine this results with something more powerful
 - Cross Validation to understand the variation in the machine estimation

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- Receiver Operator Curves (ROC)
 - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F₁-Measure
- - Introduction
 - How to choose K
 - Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

Also known as F_1 score

It is a measure of a test's accuracy

ullet It considers both the precision P and the recall R of the test to compute the score.

Also known as F_1 score

It is a measure of a test's accuracy

ullet It considers both the precision P and the recall R of the test to compute the score.

An interesting fact

 It computes some average of the information retrieval precision and recall.

Remember

Precision

• The proportion of the elements classified as true positive vs the total of all the real true positives.

$$\mbox{Precision Predicted Value} = \frac{TP}{FP + TP}$$

Remember

Precision

 The proportion of the elements classified as true positive vs the total of all the real true positives.

Recall

 True Positive Rate is the proportion of getting a correct classification of the Positive Class vs the True Positive and False Negatives.

True Positive Rate =
$$\frac{TP}{TP + FN}$$

Building the F_1 score

Something Notable

$$Average = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$Harmonic = \frac{N}{\sum_{i=1}^{N} \frac{1}{x_i}}$$

Building the F_1 score

Something Notable

$$Average = \frac{1}{N} \sum_{i=1}^{N} x_i$$
$$Harmonic = \frac{N}{\sum_{i=1}^{N} \frac{1}{x_i}}$$

When $x_1 = Precision$ and $x_2 = Recall$

$$Average = \frac{1}{2} (P + R)$$

$$Harmonic = \frac{2}{\frac{1}{P} + \frac{1}{P}} = \frac{2PR}{P + R}$$

Thus

Important

• The harmonic mean is more intuitive than the arithmetic mean when computing a mean of ratios.

Thus

Important

 The harmonic mean is more intuitive than the arithmetic mean when computing a mean of ratios.

Example

• Suppose that you have a finger print recognition system and its precision and recall be 1.0 and 0.2

Therefore, we have

The Average will report

$$\frac{1}{2} \left(P + R \right) = \frac{1.0 + 0.2}{2} = 0.6$$

Therefore, we have

The Average will report

$$\frac{1}{2}(P+R) = \frac{1.0+0.2}{2} = 0.6$$

At the F_2 score

$$\frac{2PR}{P+R} = \frac{0.4}{1.2} = 0.33$$

General Form F_{β}

Then for Precision and Recall, we have a general function

$$F_{\beta} = \frac{(\beta^2 + 1) \operatorname{Precision} \times \operatorname{Recall}}{\beta^2 \operatorname{Precision} + \operatorname{Recall}} \ (0 \le \beta \le +\infty)$$

General Form F_{β}

Then for Precision and Recall, we have a general function

$$F_{\beta} = \frac{(\beta^2 + 1) \operatorname{Precision} \times \operatorname{Recall}}{\beta^2 \operatorname{Precision} + \operatorname{Recall}} \ (0 \le \beta \le +\infty)$$

Thus, for the basic case F_1

$$F_1 = 2 \frac{Precision \times Recall}{Precision + Recall}$$

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure

Cross Validation Introduction

- How to choose K
- Types of Cross Validation
 - Exhaustive Cross Validation Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

What we want

We want to measure

A quality measure to measure different classifiers (for different parameter values).

What we want

We want to measure

A quality measure to measure different classifiers (for different parameter values).

We call that as

$$R(f) = E_{\mathcal{D}} \left[L \left(y, f \left(\boldsymbol{x} \right) \right) \right]. \tag{8}$$

Example:
$$L(y, f(x)) = ||y - f(x)||_2^2$$

What we want

We want to measure

A quality measure to measure different classifiers (for different parameter values).

We call that as

$$R(f) = E_{\mathcal{D}} \left[L(y, f(\boldsymbol{x})) \right]. \tag{8}$$

Example: $L(y, f(x)) = ||y - f(x)||_2^2$

More precisely

For different values γ_j of the parameter, we train a classifier $f\left(x|\gamma_j\right)$ on the training set.

Do you have any ideas?

Give me your best shot!!!

Do you have any ideas?

Give me your best shot!!!

Empirical Risk

We use the validation set to estimate

$$\hat{R}\left(f\left(x|\gamma\right)\right) = \frac{1}{N_v} \sum_{i=1}^{N_v} L\left(y_i, f\left(\boldsymbol{x}_i|\gamma\right)\right) \tag{9}$$

Do you have any ideas?

Give me your best shot!!!

Empirical Risk

We use the validation set to estimate

$$\hat{R}\left(f\left(x|\gamma\right)\right) = \frac{1}{N_v} \sum_{i=1}^{N_v} L\left(y_i, f\left(\boldsymbol{x}_i|\gamma\right)\right) \tag{9}$$

Thus, you follow the following procedure

• Select the value γ^* which achieves the smallest estimated error.

Do you have any ideas?

Give me your best shot!!!

Empirical Risk

We use the validation set to estimate

$$\hat{R}\left(f\left(x|\gamma\right)\right) = \frac{1}{N_v} \sum_{i=1}^{N_v} L\left(y_i, f\left(\boldsymbol{x}_i|\gamma\right)\right) \tag{9}$$

Thus, you follow the following procedure

- **①** Select the value γ^* which achieves the smallest estimated error.
- ② Re-train the classifier with parameter γ^* on all data except the test set (i.e. train + validation data).

Do you have any ideas?

Give me your best shot!!!

Empirical Risk

We use the validation set to estimate

$$\hat{R}\left(f\left(x|\gamma\right)\right) = \frac{1}{N_v} \sum_{i=1}^{N_v} L\left(y_i, f\left(\boldsymbol{x}_i|\gamma\right)\right) \tag{9}$$

Thus, you follow the following procedure

- **①** Select the value γ^* which achieves the smallest estimated error.
- 2 Re-train the classifier with parameter γ^* on all data except the test set (i.e. train + validation data).
- **3** Report error estimate $\hat{R}(f(x|\gamma_i))$ computed on the test set.

Something Notable

- Each of the **error estimates computed on validation set** is computed from a single example of a trained classifier.
 - ► Can we improve the estimate?

Something Notable

- Each of the error estimates computed on validation set is computed from a single example of a trained classifier.
 - ► Can we improve the estimate?

K-fold Cross Validation

To estimate the risk of a classifier f:

Something Notable

- Each of the error estimates computed on validation set is computed from a single example of a trained classifier.
 - ► Can we improve the estimate?

K-fold Cross Validation

To estimate the risk of a classifier f:

f 0 Split data into K equally sized parts (called "folds"), N_v .

Something Notable

- Each of the error estimates computed on validation set is computed from a single example of a trained classifier.
 - ► Can we improve the estimate?

K-fold Cross Validation

To estimate the risk of a classifier f:

- Split data into K equally sized parts (called "folds"), N_v .
- ② Train an instance f_k of the classifier, using all folds except fold k as training data.

Idea

Something Notable

- Each of the **error estimates computed on validation set** is computed from a single example of a trained classifier.
 - ► Can we improve the estimate?

K-fold Cross Validation

To estimate the risk of a classifier f:

- Split data into K equally sized parts (called "folds"), N_v .
- ② Train an instance f_k of the classifier, using all folds except fold k as training data.
- Ompute the Cross Validation (CV) estimate:

$$\hat{R}_{CV}\left(f\left(x|\gamma\right)\right) = \frac{1}{N} \sum_{i=1}^{N} L\left(y_i, f_k\left(\boldsymbol{x}_{k(i)}|\gamma\right)\right) \tag{10}$$

where k(i) is the fold containing x_i .

Example

K = 5, k = 3

Train	Train	Testing	Train	Train
1	2	3	4	5

Example

K = 5, k = 3

Train	Train	Testing	Train	Train
1	2	3	4	5

Actually, we have

• A more general setup

SPLIT All Train Set	
Train Data + Validation Data	Test

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure
- Cross Validation
 - Introduction
 - How to choose K
 - Types of Cross Validation Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

Extremal cases

ullet K=N, called leave one out cross validation (loocv)

Extremal cases

- ullet K=N, called leave one out cross validation (loocv)
- K = 2

Extremal cases

- K = N, called leave one out cross validation (loocv)
- K = 2

An often-cited problem with loocv is that we have to train many (=N) classifiers, but there is also a deeper problem.

Extremal cases

- K = N, called leave one out cross validation (loocv)
- K = 2

An often-cited problem with loocv is that we have to train many (=N) classifiers, but there is also a deeper problem.

Argument 1: K should be small, e.g. K=2

• Unless we have a lot of data, variance between two distinct training sets may be considerable.

Extremal cases

- K = N, called leave one out cross validation (loocv)
- K = 2

An often-cited problem with loocv is that we have to train many (=N) classifiers, but there is also a deeper problem.

Argument 1: K should be small, e.g. K=2

- Unless we have a lot of data, variance between two distinct training sets may be considerable.
- ② Important concept: By removing substantial parts of the sample in turn and at random, we can simulate this variance.

Extremal cases

- K = N, called leave one out cross validation (loocv)
- K = 2

An often-cited problem with loocv is that we have to train many (=N) classifiers, but there is also a deeper problem.

Argument 1: K should be small, e.g. K=2

- Unless we have a lot of data, variance between two distinct training sets may be considerable.
- ② Important concept: By removing substantial parts of the sample in turn and at random, we can simulate this variance.
- Sy removing a single point (loocv), we cannot make this variance visible.

Argument 2: K should be large, e.g. K = N

• Classifiers generally perform better when trained on larger data sets.

Argument 2: K should be large, e.g. K = N

- Classifiers generally perform better when trained on larger data sets.
- ② A small K means we substantially reduce the amount of training data used to train each f_k , so we may end up with weaker classifiers.

Argument 2: K should be large, e.g. K = N

- Classifiers generally perform better when trained on larger data sets.
- ② A small K means we substantially reduce the amount of training data used to train each f_k , so we may end up with weaker classifiers.
- This way, we will systematically overestimate the risk.

Argument 2: K should be large, e.g. K = N

- Classifiers generally perform better when trained on larger data sets.
- ② A small K means we substantially reduce the amount of training data used to train each f_k , so we may end up with weaker classifiers.
- This way, we will systematically overestimate the risk.

Common recommendation: K = 5 to K = 10

Intuition:

Argument 2: K should be large, e.g. K = N

- Classifiers generally perform better when trained on larger data sets.
- ② A small K means we substantially reduce the amount of training data used to train each f_k , so we may end up with weaker classifiers.
- This way, we will systematically overestimate the risk.

Common recommendation: K = 5 to K = 10

Intuition:

 $oldsymbol{0}$ K=10 means number of samples removed from training is one order of magnitude below training sample size.

Argument 2: K should be large, e.g. K = N

- Classifiers generally perform better when trained on larger data sets.
- ② A small K means we substantially reduce the amount of training data used to train each f_k , so we may end up with weaker classifiers.
- This way, we will systematically overestimate the risk.

Common recommendation: K = 5 to K = 10

Intuition:

- \bullet K=10 means number of samples removed from training is one order of magnitude below training sample size.
- This should not weaken the classifier considerably, but should be large enough to make measure variance effects.

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure

Cross Validation

- Introduction
- How to choose K

Types of Cross Validation

- Exhaustive Cross Validation
- Holdout Cross-Validation
- K-Fold Cross Validation Repeated Random Subsampling Validation
- Stratisfied K-fold Cross-Validation
- Nested Cross Validation

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure

Cross Validation

- Introduction
- How to choose K
- Types of Cross Validation Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

Leave p out cross-validation

Definition

ullet It involves using p-observation as validation data, and remaining data is used to train the model.

Leave p out cross-validation

Definition

ullet It involves using p-observation as validation data, and remaining data is used to train the model.

Basically

ullet This is repeated in all ways to cut the original sample on a validation set of p observations and a training set.

Leave p out cross-validation

Definition

• It involves using p-observation as validation data, and remaining data is used to train the model.

Basically

ullet This is repeated in all ways to cut the original sample on a validation set of p observations and a training set.

Notes

• A variant of LpOCV with p=2 known as leave-pair-out cross-validation has been recommended as a nearly unbiased method for estimating the area under ROC curve of a binary classifier.

Leave-one-out cross-validation (LOOCV)

Definition

ullet It is a category of LpOCV with the case of p=1.

Leave-one-out cross-validation (LOOCV)

Definition

ullet It is a category of LpOCV with the case of p=1.

Basically

ullet Train Train Test =1 Train Train

Pros and Cons

Pros

• Simple, easy to understand, and implement.

Pros and Cons

Pros

Simple, easy to understand, and implement.

Cons

- The model may lead to a low bias.
- The computation time required is high.

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure

Cross Validation

- Introduction
- How to choose K
- Types of Cross Validation
 - Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
 - Nested Cross Validation

Holdout cross-validation

Definition

- The holdout technique is an exhaustive cross-validation method.
- It randomly splits the dataset into train and test data.
 - ► For example, 70% for train and 30% for Validation

Holdout cross-validation

Definition

- The holdout technique is an exhaustive cross-validation method.
- It randomly splits the dataset into train and test data.
 - ► For example, 70% for train and 30% for Validation

Pros

Simple to understand

Holdout cross-validation

Definition

- The holdout technique is an exhaustive cross-validation method.
- It randomly splits the dataset into train and test data.
 - ► For example, 70% for train and 30% for Validation

Pros

Simple to understand

Cons

- Not suitable for an imbalanced dataset.
- Requieres large amount of data

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure

Cross Validation

- Introduction
- How to choose K

Types of Cross Validation

- Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
 - Stratisfied K-fold Cross-Validation
- Nested Cross Validation

K-Fold Cross Validation

Definition

ullet In k-fold cross-validation, the original dataset is equally partitioned into k subparts or folds.

K-Fold Cross Validation

Definition

ullet In k-fold cross-validation, the original dataset is equally partitioned into k subparts or folds.

Thus

- ullet Out of the k-folds or groups, for each iteration, one group is selected as validation data,
- The remaining (k-1) groups are selected as training data.

Finally

We take the mean accuracy of the k-folds

$$acc_{cv} = \frac{1}{K} \sum_{i=1}^{K} acc_i$$

Finally

We take the mean accuracy of the k-folds

$$acc_{cv} = \frac{1}{K} \sum_{i=1}^{K} acc_i$$

Pros

- The model has low bias and Low time complexity
- The entire dataset is utilized for both training and validation.

Finally

We take the mean accuracy of the k-folds

$$acc_{cv} = \frac{1}{K} \sum_{i=1}^{K} acc_i$$

Pros

- The model has low bias and Low time complexity
- The entire dataset is utilized for both training and validation.

Cons

• Not suitable for an imbalanced dataset.

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure

Cross Validation

- Introduction
- How to choose K

Types of Cross Validation

- Exhaustive Cross Validation
 - Holdout Cross-Validation
 - K-Fold Cross Validation
 - Repeated Random Subsampling Validation
- Stratisfied K-fold Cross-Validation
- Nested Cross Validation

Repeated Subsampling

Definition

 Repeated random subsampling validation also referred to as Monte Carlo cross-validation splits the dataset randomly into training and validation.

Repeated Subsampling

Definition

 Repeated random subsampling validation also referred to as Monte Carlo cross-validation splits the dataset randomly into training and validation.

Something Notable

- Unlikely k-fold cross-validation split of the dataset into not in groups or folds but splits in this case in random.
- Using multiple Iterations to performa an average accuracy

Finally

Pros

• The proportion of train and validation splits is not dependent on the number of iterations or partitions.

Finally

Pros

• The proportion of train and validation splits is not dependent on the number of iterations or partitions.

Cons

- Some samples may not be selected for either training or validation.
- Not suitable for an imbalanced dataset.

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure

Cross Validation

- Introduction
- How to choose K

Types of Cross Validation

- Exhaustive Cross Validation
- Holdout Cross-Validation K-Fold Cross Validation
- Repeated Random Subsampling Validation
- Stratisfied K-fold Cross-Validation
- Nested Cross Validation

Stratisfied K-fold Cross-Validation

Something Notable

- For all the cross-validation techniques discussed above, they may not work well with an imbalanced dataset.
 - Stratified k-fold cross-validation solved the problem of an imbalanced dataset.

Stratisfied K-fold Cross-Validation

Something Notable

- For all the cross-validation techniques discussed above, they may not work well with an imbalanced dataset.
 - Stratified k-fold cross-validation solved the problem of an imbalanced dataset.

Definition

- ullet In Stratified k-fold cross-validation, the dataset is partitioned into k groups or folds
 - The validation data has an equal number of instances of target class label.

Therefore

Final Score

• The final score is computed by taking the mean of scores of each fold.

Therefore

Final Score

• The final score is computed by taking the mean of scores of each fold.

Pros

Works well for an imbalanced dataset.

Therefore

Final Score

 \bullet The final score is computed by taking the mean of scores of each fold.

Pros

• Works well for an imbalanced dataset.

Cons

• Now suitable for time series dataset.

Outline

- - Introduction
 - Measuring the difference between optimal and learned
 - The Bias-Variance
 - "Extreme" Example

- Introduction
- The α and β errors
- The Initial Confusion Matrix
- Metrics from the Confusion Matrix
- - Introduction
 - Example
 - Algorithm for the ROC Curve
 - Area Under the Curve (AUC)
 - Other Measures: F_1 -Measure
- Cross Validation

Introduction

- How to choose K

Types of Cross Validation

- Exhaustive Cross Validation Holdout Cross-Validation
- K-Fold Cross Validation
- Repeated Random Subsampling Validation
- Stratisfied K-fold Cross-Validation
- Nested Cross Validation

A Combination

