- ALGEBRAIC NUMBER THEORY,
- ² A COMPUTATIONAL APPROACH

William Stein

May 31, 2019

5 Chapter 1

The Weak Mordell-Weil Theorem

8 1.1 Kummer Theory of Number Fields

Suppose K is a number field and fix a positive integer n. Let μ_n denote the nth roots of unity in \overline{K} as a group under multiplication. Consider the exact sequence

$$1 \to \mu_n \to \overline{K}^* \xrightarrow{n} \overline{K}^* \to 1,$$

where n denotes the map $a \mapsto a^n$.

13

The corresponding long exact sequence from Theorem ?? is

$$1 \to \mu_n(K) \to K^* \xrightarrow{n} K^* \to H^1(K, \mu_n) \to H^1(K, \overline{K}^*) = 0,$$

where $\mu_n(K)$ is the *n*th roots of unity contained in K. The last equality follows from Theorem ??.

Assume now that the group μ_n is contained in K. Using Galois cohomology we obtain a relatively simple classification of all abelian extensions of K with cyclic Galois group of order dividing n. Moreover, since the action of $\operatorname{Gal}(\overline{K}/K)$ on μ_n is trivial, by our hypothesis that $\mu_n \subset K$, Exercise ?? implies

$$H^1(K, \mu_n) = \operatorname{Hom}(\operatorname{Gal}(\overline{K}/K), \mu_n).$$

21 Thus we obtain an exact sequence

$$1 \to \mu_n \to K^* \xrightarrow{n} K^* \to \operatorname{Hom}(\operatorname{Gal}(\overline{K}/K), \mu_n) \to 1,$$

or equivalently, an isomorphism

$$K^*/(K^*)^n \cong \operatorname{Hom}(\operatorname{Gal}(\overline{K}/K), \mu_n).$$

29

30

31

43

46

47

48

50

51

52

By Galois theory, homomorphisms $\operatorname{Gal}(\overline{K}/K) \to \mu_n$ (up to automorphisms of μ_n) correspond to cyclic abelian extensions of K with Galois group a subgroup of the cyclic group μ_n . Unwinding the definitions, this says that every cyclic abelian extension of K of degree dividing n is of the form $K(a^{1/n})$ for some element $a \in K$.

One can prove via calculations that $K(a^{1/n})$ is unramified outside n and the primes that divide Norm(a). Moreover, and this is a much bigger result, one can combine this with facts about class groups and unit groups to prove the following theorem:

Theorem 1.1.1. Suppose K is a number field with $\mu_n \subset K$, where n is a positive integer. Let L be the maximal extension of K such that

- (i) Gal(L/K) is abelian,
- 35 (ii) $n \cdot \operatorname{Gal}(L/K) = 0$, and
- (iii) L is unramified outside a finite set S of primes.
- Then L/K is of finite degree.

Sketch of Proof. Note that we may enlarge S as needed. To see why, choose a finite set $S' \supseteq S$ and let L' the maximal extension with respect to S' as in the statement of the theorem. Because L is unramified outside of S, it is certainly unramified outside of S'. By maximality of L' this implies $L \subseteq L'$. Therefore it's sufficient to show the larger extension L'/K is finite.

We first argue that we can enlarge S so that the ring

$$\mathcal{O}_{K,S} = \{ a \in K^* \colon \operatorname{Ord}_{\mathfrak{p}}(a\mathcal{O}_K) \ge 0 \text{ for all } \mathfrak{p} \notin S \} \cup \{0\}$$

possible exercise?

is a principal ideal domain. One can show that for any S, the ring $\overline{K}K$, S is a Dedekind domain. The condition $\operatorname{Ord}_{\mathfrak{p}}(a\mathcal{O}_K) \geq 0$ means that in the prime ideal factorization of the fractional ideal $a\mathcal{O}_K$, we have that \mathfrak{p} occurs to a nonnegative power. Thus we are allowing denominators at the primes in S. Since the class group of \mathcal{O}_K is finite, there are primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ that generate the class group as a group (for example, take all primes with norm up to the Minkowski bound). Enlarge S to contain the primes \mathfrak{p}_i .

Note that we have used that the class group of \mathcal{O}_K is finite.

Next we want to show $\mathfrak{p}_i\mathcal{O}_{K,S}$ is the unit ideal. To see this, let m be the order of \mathfrak{p}_i in the class group of \mathcal{O}_K so that $\mathfrak{p}_i^m = (\alpha)$ for some $\alpha \in \mathcal{O}_K$. Note the factorization of $\frac{1}{\alpha}\mathcal{O}_K$ is \mathfrak{p}_i^{-m} so by construction $\frac{1}{\alpha} \in \mathcal{O}_{K,S}$. Since $\alpha \in (\mathfrak{p}_i\mathcal{O}_{K,S})^m$ this shows $(\mathfrak{p}_i\mathcal{O}_{K,S})^m$ is the unit ideal. It follows from the

60

61

63

64

75

77

79

80

81

unique factorization of ideals in the Dedekind domain $\mathcal{O}_{K,S}$ that $\mathfrak{p}_i\mathcal{O}_{K,S}$ is the unit ideal.

Now we can show $\mathcal{O}_{K,S}$ is a principal ideal domain. Let \mathfrak{P} be a prime ideal of $\mathcal{O}_{K,S}$. Since the \mathfrak{p}_i generate the class group of \mathcal{O}_K , the restriction of \mathfrak{P} to \mathcal{O}_K is equivalent modulo a principal ideal to a product of the primes \mathfrak{p}_i . Therefore \mathfrak{P} is equivalent modulo a principal ideal to a product of ideals of the form $\mathfrak{p}_i\mathcal{O}_{K,S}$. Because we showed $\mathfrak{p}_i\mathcal{O}_{K,S}$ was the unit ideal, this means \mathfrak{P} is principal.

Next enlarge S so that all primes over $n\mathcal{O}_K$ are in S. Note that $\mathcal{O}_{K,S}$ is still a PID. Let

$$K(S, n) = \{a \in K^*/(K^*)^n : n \mid \operatorname{Ord}_{\mathfrak{p}}(a) \text{ for all } \mathfrak{p} \notin S\}.$$

Then a refinement of the arguments at the beginning of this section show that L is generated by all nth roots of the elements of K(S,n) (specifically, their representatives in K). Thus it suffices to prove that K(S,n) is finite.

If $a \in \mathcal{O}_{K,S}^*$ then $\operatorname{Ord}_{\mathfrak{p}}(a) = 0$ for all $\mathfrak{p} \notin S$. So there is a natural map

$$\phi: \mathcal{O}_{K,S}^* \to K(S,n)$$

sending a to it's residue class in $K^*/(K^*)^n$. Suppose $a \in K^*$ is a representative of an element in K(S,n). The ideal $a\mathcal{O}_{K,S}$ has a factorization which is a product of nth powers, so it is an nth power of an ideal. Since $\mathcal{O}_{K,S}$ is a PID, there is $b \in \mathcal{O}_{K,S}$ and $u \in \mathcal{O}_{K,S}^*$ such that

$$a = b^n \cdot u$$
.

Thus $u \in \mathcal{O}_{K,S}^*$ maps to $[a] \in K(S,n)$. This shows ϕ is surjective.

Recall Dirichlet's unit theorem (Theorem ??), which asserts that the group \mathcal{O}_K^* is a finitely generated abelian group of rank r+s-1. More generally, we now show that $\mathcal{O}_{K,S}^*$ is a finitely generated abelian group of rank r+s+#S-1. Because we showed ϕ is surjective this would imply K(S,n) is finitely generated. Since K(S,n) is also a torsion group it must be finite which proves the theorem.

The fact that $\mathcal{O}_{K,S}^*$ has rank r+s-1+#S is sometimes referred to as the *S-unit theorem* or the *Dirichlet S-unit theorem*. To prove this theorem, let $\mathfrak{p}_1, \ldots, \mathfrak{p}_m$ be the primes in *S* and define a map $\phi: \mathcal{O}_{K,S}^* \to \mathbb{Z}^m$ by

$$\phi(u) = (\operatorname{Ord}_{\mathfrak{p}_1}(u), \dots, \operatorname{Ord}_{\mathfrak{p}_m}(u)).$$

First we show that $\ker(\phi) = \mathcal{O}_K^*$. We have that $u \in \ker(\phi)$ if and only if $u \in \mathcal{O}_{K,S}^*$ and $\operatorname{Ord}_{\mathfrak{p}_i}(u) = 0$ for all i; but the latter condition implies that

u is a unit at each prime in S. But $u \in \mathcal{O}_{K,S}^*$ implies $\operatorname{Ord}_{\mathfrak{p}}(u) = 0$ for all $\mathfrak{p} \notin S$, so it follows that $\operatorname{Ord}_{\mathfrak{p}}(u) = 0$ for all primes \mathfrak{p} in \mathcal{O}_K and therefore $u \in \mathcal{O}_K^*$. Thus we have an exact sequence

$$1 \to \mathcal{O}_K^* \to \mathcal{O}_{K,S}^* \xrightarrow{\phi} \mathbb{Z}^m$$
.

Next we show that the image of ϕ has finite index in \mathbb{Z}^m . Let h be the class number of \mathcal{O}_K . For each i there exists $\alpha_i \in \mathcal{O}_K$ such that $\mathfrak{p}_i^h = (\alpha_i)$. But $\alpha_i \in \mathcal{O}_{K,S}^*$ since $\operatorname{Ord}_{\mathfrak{p}}(\alpha_i) = 0$ for all $\mathfrak{p} \notin S$ (by unique factorization). Then

$$\phi(\alpha_i) = (0, \dots, 0, h, 0, \dots, 0).$$

It follows that $(h\mathbb{Z})^m \subset \Im(\phi)$, so the image of ϕ has finite index in \mathbb{Z}^m . It follows that $\mathcal{O}_{K,S}^*$ has rank equal to r+s-1+#S.

TODO delete this comment?

1.2 Proof of the Weak Mordell-Weil Theorem

Suppose E is an elliptic curve over a number field K, and fix a positive integer n. Just as with number fields, we have an exact sequence

$$0 \to E[n] \to E \xrightarrow{n} E \to 0.$$

Then we have an exact sequence

$$0 \to E[n](K) \to E(K) \xrightarrow{n} E(K) \to H^1(K, E[n]) \to H^1(K, E)[n] \to 0.$$

Note the last term comes from replacing the codomain of $H^1(K, E[n]) \to H^1(K, E)$ by the kernel of $H^1(K, E) \xrightarrow{n} H^1(K, E)$. From this we obtain a short exact sequence

$$0 \to E(K)/nE(K) \to H^1(K, E[n]) \to H^1(K, E)[n] \to 0.$$
 (1.1)

Now assume, in analogy with Section 1.1, that $E[n] \subset E(K)$, i.e., all n-torsion points are defined over K. Then the Galois action on E[n] is trivial so by exercise ?? we have

TODO non-canonical^{o4} iso?

102

$$H^1(K, E[n]) = \operatorname{Hom}(\operatorname{Gal}(\overline{K}/K), E[n]) \cong \operatorname{Hom}(\operatorname{Gal}(\overline{K}/K), (\mathbb{Z}/n\mathbb{Z})^2),$$

and the sequence (1.1) induces an inclusion

$$E(K)/nE(K) \hookrightarrow \operatorname{Hom}(\operatorname{Gal}(\overline{K}/K), (\mathbb{Z}/n\mathbb{Z})^2).$$
 (1.2)

Explicitly, this homomorphism sends a point P to the homomorphism defined as follows: Choose $Q \in E(\overline{K})$ such that nQ = P; then send each $\sigma \in \operatorname{Gal}(\overline{K}/K)$ to $\sigma(Q) - Q \in E[n]$.

Exercise 1.2.1. Consider the map $E(K) \to \operatorname{Hom}(\operatorname{Gal}(\overline{K}/K), E[n])$ defined above. First show this map is well defined, i.e., $\sigma(Q) - Q \in E[n]$ for every $\sigma \in \operatorname{Gal}(\overline{K}/K)$. Then show it does not depend on the choice of P modulo nE(K) so it indeed descends to a homomorphism on E(K)/nE(K).

Because $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$, given a point $P \in E(K)$, we obtain a homomorphism $\varphi : \operatorname{Gal}(\overline{K}/K) \to (\mathbb{Z}/n\mathbb{Z})^2$, whose kernel defines an abelian extension L of K that has exponent n. The amazing fact is that L can be ramified only at the primes of bad reduction for E and the primes that divide n. Thus we can apply theorem 1.1.1 to see that there are only finitely many such L.

TODO non-canonical iso?

Theorem 1.2.2. Let $P \in E(K)$ and L be the field obtained by adjoining the coordinates of all points $Q \in E(\overline{K})$ such that nQ = P. Then L/K is unramified outside the set of primes dividing n and primes of bad reduction for E.

Sketch of Proof. This sketch closely follows [Sil92, Prop. VIII.1.5b].

Fix a prime $\mathfrak p$ of K such that $\mathfrak p \nmid n$ and E has good reduction at $\mathfrak p$. Let $\mathfrak q$ be a prime of L lying over $\mathfrak p$. Note that $\mathfrak q$ is again a prime of good reduction for E since we may use the same Weierstrass equation for E as an elliptic curve over L.

First one proves that for any extension K'/K and any prime \mathfrak{p}' of K' such that $\mathfrak{p}' \nmid n$ and \mathfrak{p}' is a prime of good reduction for E/K', the natural reduction map $\pi : E(K')[n] \to \tilde{E}(\mathcal{O}_{K'}/\mathfrak{p}')$ is injective. The argument that π is injective uses *formal groups*, whose development is outside the scope of this course.¹

Next, fix some $Q \in E[n]$ such that nQ = P. From Exercise 1.2.1 we have that $\sigma(Q) - Q \in E[n]$ for all $\sigma \in \operatorname{Gal}(\overline{K}/K)$. Let $I_{\mathfrak{q}} \subset \operatorname{Gal}(L/K)$ be the inertia group for $\mathfrak{q}/\mathfrak{p}$. The action of $I_{\mathfrak{q}}$ is trivial on $\tilde{E}(\mathcal{O}_L/\mathfrak{q})$ so for each $\sigma \in I_{\mathfrak{q}}$ we have

$$\pi(\sigma(Q) - Q) = \sigma(\pi(Q)) - \pi(Q) = \pi(Q) - \pi(Q) = 0.$$

Since π is injective, it follows that $\sigma(Q) = Q$ for $\sigma \in I_{\mathfrak{q}}$, i.e., that Q is fixed under $I_{\mathfrak{q}}$. Repeating this argument for each Q implies $I_{\mathfrak{q}}$ is trivial and hence $\mathfrak{q}/\mathfrak{p}$ is unramified.

Theorem 1.2.3 (Weak Mordell-Weil). Let E be an elliptic curve over a number field K, and let n be any positive integer. Then E(K)/nE(K) is finitely generated.

¹For a proof using formal groups see [Sil92, Prop. VII.3.1b].

153

154

155

158

Proof. First suppose all elements of E[n] have coordinates in K. Then the homomorphism (1.2) provides an injection of E(K)/nE(K) into

$$\operatorname{Hom}(\operatorname{Gal}(\overline{K}/K), (\mathbb{Z}/n\mathbb{Z})^2).$$

By Theorem 1.2.2, the image consists of homomorphisms whose kernels cut out an abelian extension of K unramified outside n and primes of bad reduction for E. Since this is a finite set of primes, Theorem 1.1.1 implies that the homomorphisms all factor through a finite quotient $\operatorname{Gal}(L/K)$ of $\operatorname{Gal}(\overline{\mathbb{Q}}/K)$. Thus there can be only finitely many such homomorphisms, so the image of E(K)/nE(K) is finite. Thus E(K)/nE(K) itself is finite, which proves the theorem in this case.

Next suppose E is an elliptic curve over a number field, but do *not* make the hypothesis that the elements of E[n] have coordinates in K. Since the group $E[n](\mathbb{C})$ is finite and its elements are defined over $\overline{\mathbb{Q}}$, the extension E of $E[n](\mathbb{C})$ is a finite extension. It is also Galois, as we saw when constructing Galois representations attached to elliptic curves. By Proposition P(n), we have an exact sequence

$$0 \rightarrow H^1(L/K, E[n](L)) \rightarrow H^1(K, E[n]) \rightarrow H^1(L, E[n]).$$

The kernel of the restriction map $H^1(K, E[n]) \to H^1(L, E[n])$ is finite, since it is isomorphic to the finite cohomology group $H^1(L/K, E[n](L))$.

By the argument of the previous paragraph, the image of E(K)/nE(K) in $H^1(L, E[n])$ under

$$E(K)/nE(K) \hookrightarrow H^1(K, E[n]) \xrightarrow{\mathrm{res}} H^1(L, E[n])$$

is finite, since it is contained in the image of E(L)/nE(L). Thus E(K)/nE(K) is finite, since we just proved the kernel of res is finite.

165 Bibliography

[Sil92] J. H. Silverman, The arithmetic of elliptic curves, Springer-Verlag,
 New York, 1992, Corrected reprint of the 1986 original.