Applications linéaires

Étude de linéarité

Exercice 1 [01703] [Correction]

Les applications entre \mathbb{R} -espaces vectoriels suivantes sont-elles linéaires :

- (a) $f: \mathbb{R}^3 \to \mathbb{R}$ définie par f(x, y, z) = x + y + 2z
- (b) $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x,y) = x + y + 1
- (c) $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(x, y) = xy
- (d) $f: \mathbb{R}^3 \to \mathbb{R}$ définie par f(x, y, z) = x z?

Exercice 2 [01704] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x,y) = (x+y, x-y).

Montrer que f est un automorphisme de \mathbb{R}^2 et déterminer son automorphisme réciproque.

Exercice 3 [01705] [Correction]

Soit $J: \mathcal{C}([0;1],\mathbb{R}) \to \mathbb{R}$ définie par $J(f) = \int_0^1 f(t) dt$.

Montrer que J est une forme linéaire.

Exercice 4 [01706] [Correction]

Soit $\varphi \colon \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ définie par $\varphi(f) = f'' - 3f' + 2f$.

Montrer que φ est un endomorphisme et préciser son noyau.

Exercice 5 [01707] [Correction]

Soient a un élément d'un ensemble X non vide et E un \mathbb{K} -espace vectoriel.

- (a) Montrer que $E_a \colon \mathcal{F}(X, E) \to E$ définie par $E_a(f) = f(a)$ est une application linéaire.
- (b) Déterminer l'image et le noyau de l'application E_a .

Exercice 6 [02012] [Correction]

Montrer que l'application partie entière Ent: $\mathbb{K}(X) \to \mathbb{K}[X]$ est linéaire et déterminer son noyau.

Linéarité et sous-espaces vectoriels

Exercice 7 [01711] [Correction]

Soient E, F deux \mathbb{K} -espaces vectoriels, $f \in \mathcal{L}(E, F)$ et A, B deux sous-espaces vectoriels de E. Montrer

$$f(A) \subset f(B) \iff A + \operatorname{Ker} f \subset B + \operatorname{Ker} f$$
.

Exercice 8 [03247] [Correction]

Soient u un endomorphisme d'un \mathbb{K} -espace vectoriel E et F un sous-espace vectoriel de E.

- (a) Exprimer $u^{-1}(u(F))$ en fonction de F et de Ker u.
- (b) Exprimer $u(u^{-1}(F))$ en fonction de F et de $\operatorname{Im} u$.
- (c) À quelle condition a-t-on $u(u^{-1}(F)) = u^{-1}(u(F))$?

Exercice 9 [02680] [Correction]

Soit E et F des \mathbb{K} -espaces vectoriels. On se donne $f \in \mathcal{L}(E,F)$, une famille $(E_i)_{1 \leq i \leq n}$ de sous-espaces vectoriels de E et une famille $(F_j)_{1 \leq j \leq p}$ de sous-espaces vectoriels de F.

(a) Montrer

$$f\left(\sum_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} f(E_i).$$

- (b) Montrer que si f est injective et si la somme des E_i est directe alors la somme des $f(E_i)$ est directe.
- (c) Montrer

$$f^{-1}\left(\sum_{j=1}^{p} F_j\right) \supset \sum_{j=1}^{p} f^{-1}(F_j).$$

Montrer que cette inclusion peut être stricte. Donner une condition suffisante pour qu'il y ait égalité.

Linéarité et colinéarité

Exercice 10 [00159] [Correction]

Soit $f \in \mathcal{L}(E)$ tel que pour tout $x \in E$, x et f(x) soient colinéaires. Montrer que f est une homothétie vectorielle.

Exercice 11 [03418] [Correction]

Soient $f, g \in \mathcal{L}(E, F)$. On suppose

$$\forall x \in E, \exists \lambda_x \in \mathbb{K}, g(x) = \lambda_x f(x).$$

Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que

$$g = \lambda f$$
.

Exercice 12 [04162] [Correction]

Soit E un \mathbb{R} -espace vectoriel de dimension $n \geq 2$. Pour $a \in E$, on note F_a l'ensemble des endomorphismes f de E tels que, pour tout $x \in E$, la famille (x, f(x), a) est liée.

- (a) Déterminer F_a lorsque a=0 puis lorsque n=2.
- (b) Montrer que F_a est un espace vectoriel pour tout $a \in E$.
- (c) Soit H un espace vectoriel de dimension finie. Caractériser les endomorphismes v de H tels que pour tout $h \in H$, la famille (h, v(h)) soit liée.
- (d) Déterminer la dimension de F_a .

Images et noyaux

Exercice 13 [01715] [Correction]

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$ tel que

$$f^2 - 3f + 2Id = 0.$$

- (a) Montrer que f est inversible et exprimer son inverse en fonction de f.
- (b) Établir que Ker(f Id) et Ker(f 2Id) sont des sous-espaces vectoriels supplémentaires de E.

Exercice 14 [01754] [Correction]

Soient f et g deux endomorphismes d'un \mathbb{K} -espace vectoriel E vérifiant $f \circ g = \operatorname{Id}$; montrer que $\operatorname{Ker} f = \operatorname{Ker} (g \circ f)$, $\operatorname{Im} g = \operatorname{Im} (g \circ f)$ puis que $\operatorname{Ker} f$ et $\operatorname{Im} g$ sont supplémentaires.

Exercice 15 [03360] [Correction]

Soient f et g deux endomorphismes d'un espace vectoriel E sur $\mathbb R$ ou $\mathbb C$ vérifiant $f\circ g=\mathrm{Id}.$

- (a) Montrer que $Ker(g \circ f) = Ker f$ et $Im(g \circ f) = Img$.
- (b) Montrer

$$E = \operatorname{Ker} f \oplus \operatorname{Im} g$$
.

- (c) Dans quel cas peut-on conclure $g = f^{-1}$?
- (d) Calculer $(g \circ f) \circ (g \circ f)$ et caractériser $g \circ f$

Exercice 16 [01717] [Correction]

Soient $f, g \in \mathcal{L}(E)$ tels que

$$g \circ f \circ g = g$$
 et $f \circ g \circ f = f$.

- (a) Montrer que $\operatorname{Im} f$ et $\operatorname{Ker} g$ sont supplémentaires dans E.
- (b) Justifier que $f(\operatorname{Im} g) = \operatorname{Im} f$.

L'anneau des endomorphismes

Exercice 17 [01710] [Correction]

Soient E un \mathbb{K} -espace vectoriel et f un endomorphisme de E nilpotent i.e. tel qu'il existe $n \in \mathbb{N}^*$ pour lequel $f^n = 0$. Montrer que $\mathrm{Id} - f$ est inversible et exprimer son inverse en fonction de f.

Exercice 18 [01726] [Correction]

À quelle condition une translation et un endomorphisme d'un \mathbb{K} -espace vectoriel E commutent-ils?

Exercice 19 [03242] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension finie et F un sous-espace vectoriel de $\mathcal{L}(E)$ stable par composition et contenant l'endomorphisme Id_E . Montrer que $F\cap\mathrm{GL}(E)$ est un sous-groupe de $(\mathrm{GL}(E),\circ)$

Projections et symétries vectorielles

Exercice 20 [01718] [Correction]

Soient E un \mathbb{K} -espace vectoriel et $p \in \mathcal{L}(E)$.

- (a) Montrer que p est un projecteur si, et seulement si, $\mathrm{Id}-p$ l'est.
- (b) Exprimer alors $\operatorname{Im}(\operatorname{Id} p)$ et $\operatorname{Ker}(\operatorname{Id} p)$ en fonction de $\operatorname{Im} p$ et $\operatorname{Ker} p$.

Exercice 21 [01719] [Correction]

Soient $p, q \in \mathcal{L}(E)$. Montrer l'équivalence entre les assertions :

- (i) $p \circ q = p$ et $q \circ p = q$;
- (ii) p et q sont des projecteurs de même noyau.

Exercice 22 [01720] [Correction]

Soient E un \mathbb{K} -espace vectoriel et p,q deux projecteurs de E qui commutent. Montrer que $p \circ q$ est un projecteur de E. En déterminer noyau et image.

Exercice 23 [01723] [Correction]

Soit E un \mathbb{K} -espace vectoriel.

Soit s un endomorphisme de E involutif, i.e. tel que $s^2 = \mathrm{Id}$.

On pose F = Ker(s - Id) et G = Ker(s + Id).

- (a) Montrer que F et G sont des sous-espaces vectoriels supplémentaires de E.
- (b) Montrer que s est la symétrie vectorielle par rapport à F et parallèlement à G.

Plus généralement, soient $\alpha \in \mathbb{K} \setminus \{1\}$ et f un endomorphisme de E tel que $f^2 - (\alpha + 1)f + \alpha \mathrm{Id} = 0$.

On pose F = Ker(f - Id) et $G = \text{Ker}(f - \alpha \text{Id})$.

- (c) Montrer que F et G sont supplémentaires dans E.
- (d) Montrer que f est l'affinité par rapport à F, parallèlement à G et de rapport $\alpha.$

Exercice 24 [01724] [Correction]

Soit $f \in \mathcal{L}(E)$ tel que $f^2 - 4f + 3\mathrm{Id} = \tilde{0}$. Montrer

$$\operatorname{Ker}(f - \operatorname{Id}) \oplus \operatorname{Ker}(f - 3\operatorname{Id}) = E.$$

Quelle transformation vectorielle réalise f?

Exercice 25 [01725] [Correction]

Soient E un \mathbb{K} -espace vectoriel et p un projecteur de E. On pose $q=\mathrm{Id}-p$ et on considère

 $L = \{ f \in \mathcal{L}(E) \mid \exists u \in \mathcal{L}(E), f = u \circ p \} \text{ et } M = \{ g \in \mathcal{L}(E) \mid \exists v \in \mathcal{L}(E), g = v \circ q \}.$ Montrer que L et M sont des sous-espaces vectoriels supplémentaires de $\mathcal{L}(E)$.

Exercice 26 [02468] [Correction]

Soient p et q deux projecteurs d'un \mathbb{K} -espace vectoriel E vérifiant $p \circ q = 0$.

- (a) Montrer que $r = p + q q \circ p$ est un projecteur.
- (b) Déterminer image et noyau de celui-ci.

Exercice 27 [00166] [Correction]

Soit E un \mathbb{C} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. On suppose qu'il existe un projecteur p de E tel que $u = p \circ u - u \circ p$.

- (a) Montrer que $u(\operatorname{Ker} p) \subset \operatorname{Im} p$ et $\operatorname{Im} p \subset \operatorname{Ker} u$.
- (b) En déduire $u^2 = 0$.
- (c) Réciproque?

Exercice 28 [02242] [Correction]

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies respectives n et p avec n>p.

On considère $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, E)$ vérifiant

$$u \circ v = \mathrm{Id}_F$$
.

- (a) Montrer que $v \circ u$ est un projecteur.
- (b) Déterminer son rang, son image et son noyau.

Exercice 29 [03759] [Correction]

Soient p et q deux projecteurs d'un \mathbb{R} -espace vectoriel E vérifiant

$$\operatorname{Im} p \subset \operatorname{Ker} q$$
.

Montrer que $p+q-p\circ q$ est un projecteur et préciser son image et son noyau.

Exercice 30 [03359] [Correction]

Soit f et g deux endomorphismes d'un espace vectoriel E sur $\mathbb R$ ou $\mathbb C$ vérifiant $f\circ g=\mathrm{Id}.$

- (a) Montrer que $\operatorname{Ker}(g \circ f) = \operatorname{Ker} f$ et $\operatorname{Im}(g \circ f) = \operatorname{Im} g$.
- (b) Montrer

$$E=\mathrm{Ker}\, f\oplus\mathrm{Im}g.$$

- (c) Dans quel cas peut-on conclure $g = f^{-1}$?
- (d) Caractériser $g \circ f$

Formes linéaires et hyperplans

Exercice 31 [03314] [Correction]

Soit H un hyperplan d'un \mathbb{K} -espace vectoriel de E de dimension quelconque. Soit a un vecteur de E qui n'appartient pas à H. Montrer

$$H \oplus \operatorname{Vect}(a) = E$$
.

Exercice 32 [00174] [Correction]

Soient H un hyperplan d'un \mathbb{K} -espace vectoriel E de dimension quelconque et D une droite vectorielle non incluse dans H.

Montrer que D et H sont supplémentaires dans E.

Exercice 33 [03315] [Correction]

Soit H un hyperplan d'un \mathbb{K} -espace vectoriel de E de dimension quelconque. On suppose que F est un sous-espace vectoriel de E contenant H. Montrer

$$F = H$$
 ou $F = E$.

Exercice 34 [00208] [Correction]

Soient $f,g\in E^*$ telles que $\operatorname{Ker} f=\operatorname{Ker} g$. Montrer qu'il existe $\alpha\in\mathbb{K}$ tel que $f=\alpha g$.

Exercice 35 [00205] [Correction]

Soit $e=(e_1,\dots,e_n)$ une famille de vecteurs d'un $\mathbb K$ -espace vectoriel E de dimension $n\in\mathbb N^*.$ On suppose que

$$\forall f \in E^*, f(e_1) = \ldots = f(e_n) = 0 \implies f = 0.$$

Montrer que e est une base de E.

Applications linéaires en dimension finie

Exercice 36 [01654] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension finie, V un sous-espace vectoriel de E et $f \in \mathcal{L}(E)$. Montrer

$$V \subset f(V) \implies f(V) = V.$$

Exercice 37 [01655] [Correction]

Soit $f \in \mathcal{L}(E, F)$ injective. Montrer que pour tout famille (x_1, \dots, x_p) de vecteurs de E, on a

$$rg(f(x_1),\ldots,f(x_p))=rg(x_1,\ldots,x_p).$$

Exercice 38 [01662] [Correction]

Déterminer une base du noyau et de l'image des applications linéaires suivantes :

- (a) $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (y z, z x, x y)
- (b) $f: \mathbb{R}^4 \to \mathbb{R}^3$ définie par f(x, y, z, t) = (2x + y + z, x + y + t, x + z t)
- (c) $f: \mathbb{C} \to \mathbb{C}$ définie par $f(z) = z + i\overline{z}(\mathbb{C}$ est ici vu comme un \mathbb{R} -espace vectoriel).

Exercice 39 [00172] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension $n \geq 1$, f un endomorphisme nilpotent non nul de E et p le plus petit entier tel que $f^p = \tilde{0}$.

- (a) Montrer qu'il existe $x \in E$ tel que la famille $(x, f(x), f^2(x), \dots, f^{p-1}(x))$ soit libre.
- (b) En déduire $f^n = \tilde{0}$.

Exercice 40 [00178] [Correction]

Soit f un endomorphisme d'un espace vectoriel de dimension n. Montrer que $(I, f, f^2, \ldots, f^{n^2})$ est liée et en déduire qu'il existe un polynôme non identiquement nul qui annule f.

Exercice 41 [02495] [Correction]

Soit E un plan vectoriel.

(a) Montrer que f endomorphisme non nul est nilpotent si, et seulement si, Ker f = Im f.

(b) En déduire qu'un tel endomorphisme ne peut s'écrire sous la forme $f=u\circ v$ avec u et v nilpotents.

Exercice 42 [02161] [Correction]

Soient a_0, a_1, \ldots, a_n des éléments deux à deux distincts de \mathbb{K} . Montrer que l'application $\varphi \colon \mathbb{K}_n[X] \to \mathbb{K}^{n+1}$ définie par

$$\varphi(P) = (P(a_0), P(a_1), \dots, P(a_n))$$

est un isomorphisme de K-espace vectoriel.

Exercice 43 [02162] [Correction]

Soient a_0, \ldots, a_n des réels distincts et $\varphi \colon \mathbb{R}_{2n+1}[X] \to \mathbb{R}^{2n+2}$ définie par

$$\varphi(P) = (P(a_0), P'(a_0), \dots, P(a_n), P'(a_n)).$$

Montrer que φ est bijective.

Rang d'une application linéaire

Exercice 44 [01660] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E)$. Montrer que

$$rg(f+g) \le rg(f) + rg(g)$$

puis que

$$\left| \operatorname{rg}(f) - \operatorname{rg}(g) \right| \le \operatorname{rg}(f - g).$$

Exercice 45 [01661] [Correction]

Soient E et F deux K-espaces vectoriels de dimension finies et $f \in \mathcal{L}(E,F), g \in \mathcal{L}(F,E)$ telles que $f \circ g \circ f = f$ et $g \circ f \circ g = g$. Montrer que $f,g,f \circ g$ et $g \circ f$ ont même rang.

Exercice 46 [02682] [Correction]

Soient $f, g \in \mathcal{L}(E)$ où E est un espace vectoriel sur K de dimension finie. Montrer

$$\left| \operatorname{rg}(f) - \operatorname{rg}(g) \right| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g).$$

Exercice 47 [02504] [Correction]

Soient u et v deux endomorphismes d'un espace vectoriel de dimension finie E.

(a) Montrer

$$\left| \operatorname{rg}(u) - \operatorname{rg}(v) \right| \le \operatorname{rg}(u+v) \le \operatorname{rg}(u) + \operatorname{rg}(v).$$

(b) Trouver u et v dans $\mathcal{L}(\mathbb{R}^2)$ tels que

$$rg(u+v) < rg(u) + rg(v).$$

(c) Trouver deux endomorphismes u et v de \mathbb{R}^2 tels que

$$rg(u+v) = rg(u) + rg(v).$$

Exercice 48 [00201] [Correction]

Soient E, F deux \mathbb{K} -espaces vectoriels de dimensions finies et $f, g \in \mathcal{L}(E, F)$. Montrer

$$\operatorname{rg}(f+g) = \operatorname{rg}(f) + \operatorname{rg}(g) \iff \begin{cases} \operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0\} \\ \operatorname{Ker}(f) + \operatorname{Ker}(g) = E. \end{cases}$$

Exercice 49 [00191] [Correction]

Soient f et g deux endomorphismes de E. Montrer que :

- (a) $\operatorname{rg}(f \circ g) \leq \min(\operatorname{rg} f, \operatorname{rg} g)$.
- (b) $\operatorname{rg}(f \circ g) \ge \operatorname{rg} f + \operatorname{rg} g \dim E$.

Formule du rang

Exercice 50 [01666] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E)$ tels que f+g bijectif et $g\circ f=\tilde{0}$. Montrer que

$$\operatorname{rg} f + \operatorname{rg} g = \dim E.$$

Exercice 51 [03127] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et u un endomorphisme de E vérifiant $u^3 = \tilde{0}$. Établir

$$\operatorname{rg} u + \operatorname{rg} u^2 \le n.$$

Exercice 52 [01668] [Correction]

Soient $f, g \in \mathcal{L}(E)$ tels que

$$f + g = \operatorname{Id}_E \operatorname{et} \operatorname{rg} f + \operatorname{rg} g = \dim E.$$

Montrer que f et g sont des projecteurs complémentaires.

Exercice 53 [00189] [Correction]

Soient $u, v \in \mathcal{L}(\mathbb{K}^n)$ tels que

$$u + v = \text{Id}$$
 et $rg(u) + rg(v) \le n$.

Montrer que u et v sont des projecteurs.

Exercice 54 [01672] [Correction]

(Images et noyaux itérés d'un endomorphisme) Soient E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$ et f un endomorphisme de E.

Pour tout $p \in \mathbb{N}$, on pose $I_p = \operatorname{Im} f^p$ et $N_p = \operatorname{Ker} f^p$.

- (a) Montrer que $(I_p)_{p\geq 0}$ est décroissante tandis que $(N_p)_{p\geq 0}$ est croissante.
- (b) Montrer qu'il existe $s \in \mathbb{N}$ tel que $I_{s+1} = I_s$ et $N_{s+1} = N_s$.
- (c) Soit r le plus petit des entiers s ci-dessus considérés. Montrer que

$$\forall s \geq r, I_s = I_r \text{ et } N_s = N_r.$$

(d) Montrer que I_r et N_r sont supplémentaires dans E.

Exercice 55 [01674] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E)$.

Soit H un supplémentaire de Ker f dans E.

On considère $h \colon H \to E$ la restriction de $g \circ f$ à H.

(a) Montrer que

$$Ker(g \circ f) = Ker h + Ker f.$$

(b) Observer que

$$\operatorname{rg} h \ge \operatorname{rg} f - \dim \operatorname{Ker} g$$
.

(c) En déduire que

 $\dim \operatorname{Ker}(g \circ f) \leq \dim \operatorname{Ker} g + \dim \operatorname{Ker} f.$

Exercice 56 [03421] [Correction]

Soient E, F, G, H des K-espaces vectoriels de dimensions finies et $f \in \mathcal{L}(E, F)$, $g \in \mathcal{L}(F, G)$, $h \in \mathcal{L}(G, H)$ des applications linéaires. Montrer

$$rg(g \circ f) + rg(h \circ g) \le rg g + rg(h \circ g \circ f).$$

Exercice 57 [03639] [Correction]

Soient $v \in \mathcal{L}(E, F)$ et $u \in \mathcal{L}(F, G)$. Établir

$$\operatorname{rg} u + \operatorname{rg} v - \dim F \le \operatorname{rg}(u \circ v) \le \min(\operatorname{rg} u, \operatorname{rg} v)$$

Exercice 58 [00195] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E)$. Établir que

$$\dim(\operatorname{Ker}(g \circ f)) \le \dim(\operatorname{Ker} g) + \dim(\operatorname{Ker} f).$$

Exercice 59 [00194] [Correction]

Soient $f \in \mathcal{L}(E)$ et F un sous-espace vectoriel de E. Montrer

$$\dim \operatorname{Ker} f \cap F \ge \dim F - \operatorname{rg} f$$
.

Exercice 60 [00196] [Correction]

On dit qu'une suite d'applications linéaires

$$\{0\} \xrightarrow{u_0} E_1 \xrightarrow{u_1} E_2 \xrightarrow{u_2} \cdots \xrightarrow{u_{n-1}} E_n \xrightarrow{u_n} \{0\}$$

est exacte si on a $\operatorname{Im} u_k = \operatorname{Ker} u_{k+1}$ pour tout $k \in \{0, \dots, n-1\}$. Montrer que si tous les E_k sont de dimension finie, on a la formule dite d'Euler-Poincaré :

$$\sum_{k=1}^{n} (-1)^k \dim E_k = 0.$$

Exercice 61 [03156] [Correction]

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie. Montrer

$$\forall k, \ell \in \mathbb{N}, \dim(\operatorname{Ker} u^{k+\ell}) \leq \dim(\operatorname{Ker} u^k) + \dim(\operatorname{Ker} u^\ell).$$

Exercice 62 [02585] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension finie n, f et g deux endomorphismes de E.

(a) En appliquant le théorème du rang à la restriction h de f à l'image de g, montrer que

$$\operatorname{rg} f + \operatorname{rg} g - n \le \operatorname{rg}(f \circ g).$$

(b) Pour n=3, trouver tous les endomorphismes de E tels que $f^2=0$.

Applications linéaires et espaces supplémentaires

Exercice 63 [00223] [Correction]

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie vérifiant

$$rg(f^2) = rg(f).$$

(a) Établir

$$\operatorname{Im}(f^2) = \operatorname{Im}(f)$$
 et $\operatorname{Ker}(f^2) = \operatorname{Ker}(f)$.

(b) Montrer

$$\operatorname{Ker}(f) \oplus \operatorname{Im}(f) = E.$$

Exercice 64 [01667] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Soient u et v deux endomorphismes de E tels que

$$E = \operatorname{Im} u + \operatorname{Im} v = \operatorname{Ker} u + \operatorname{Ker} v.$$

Établir que d'une part, $\operatorname{Im} u$ et $\operatorname{Im} v$, d'autre part $\operatorname{Ker} u$ et $\operatorname{Ker} v$ sont supplémentaires dans E.

Exercice 65 [00212] [Correction]

Soit f un endomorphisme d'un K-espace vectoriel E vérifiant $f^3 = \mathrm{Id}_E$. Montrer

$$\operatorname{Ker}(f - \operatorname{Id}_E) \oplus \operatorname{Im}(f - \operatorname{Id}_E) = E.$$

Exercice 66 [00214] [Correction]

Soient $f, g \in \mathcal{L}(E)$ tels que

$$g \circ f \circ g = f$$
 et $f \circ g \circ f = g$.

(a) Montrer que $\operatorname{Ker} f = \operatorname{Ker} g$ et $\operatorname{Im} f = \operatorname{Im} g$. On pose

$$F = \operatorname{Ker} f = \operatorname{Ker} g \text{ et } G = \operatorname{Im} f = \operatorname{Im} g.$$

(b) Montrer que

$$E = F \oplus G$$
.

Exercice 67 [00213] [Correction]

Soient $f, g \in \mathcal{L}(E)$ tels que

$$f \circ g \circ f = f$$
 et $g \circ f \circ g = g$.

Montrer que Ker f et Im g sont supplémentaires dans E.

Exercice 68 [00215] [Correction]

Soient $f, g \in \mathcal{L}(E)$ tels que

$$g \circ f \circ g = g$$
 et $f \circ g \circ f = f$.

(a) Montrer que

$$\operatorname{Im} f \oplus \operatorname{Ker} g = E.$$

(b) Justifier que

$$f(\operatorname{Im} g) = \operatorname{Im} f.$$

Exercice 69 [00219] [Correction]

Soient E un \mathbb{C} -espace vectoriel de dimension finie et p_1, \ldots, p_m des projecteurs de E dont la somme vaut Id_E . On note F_1, \ldots, F_m les images de p_1, \ldots, p_m . Montrer

$$E = \bigoplus_{k=1}^{m} F_k.$$

Applications linéaires définies sur une base

Exercice 70 [01671] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}$.

Montrer qu'il existe un endomorphisme f tel que $\operatorname{Im} f = \operatorname{Ker} f$ si, et seulement si, n est pair.

Exercice 71 [01653] [Correction]

Justifier qu'il existe une unique application linéaire de \mathbb{R}^3 dans \mathbb{R}^2 telle que :

$$f(1,0,0) = (0,1), f(1,1,0) = (1,0)$$
 et $f(1,1,1) = (1,1)$.

Exprimer f(x, y, z) et déterminer noyau et image de f.

Exercice 72 [03801] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension n>1 (avec $\mathbb{K}=\mathbb{R}$ ou \mathbb{C}) Soit f un endomorphisme de E nilpotent d'ordre n. On note

$$C(f) = \{ g \in \mathcal{L}(E) \mid g \circ f = f \circ g \}.$$

- (a) Montrer que C(f) est un sous-espace vectoriel de L(E).
- (b) Soit a un vecteur de E tel que $f^{n-1}(a) \neq 0_E$. Montrer que la famille $(a, f(a), \ldots, f^{n-1}(a))$ constitue une base de E.
- (c) Soit $\varphi_a \colon \mathcal{C}(f) \to E$ l'application définie par $\varphi_a(g) = g(a)$. Montrer que φ_a est un isomorphisme.
- (d) En déduire que

$$C(f) = \text{Vect}(\text{Id}, f, \dots, f^{n-1}).$$

Exercice 73 [02379] [Correction]

Soit $f \in \mathcal{L}(\mathbb{R}^6)$ tel que rg $f^2 = 3$. Quels sont les rangs possibles pour f?

Exercice 74 [04984] [Correction]

Soient (e_1, \ldots, e_n) une famille de vecteurs d'un \mathbb{K} -espace vectoriel E de dimension n et $\Phi \colon \mathcal{L}(E) \to E^n$ l'application définie par

$$\Phi(u) = (u(e_1), \dots, u(e_n)).$$

À quelle condition sur la famille (e_1, \ldots, e_n) l'application Φ est-elle un isomorphisme d'espaces vectoriels?

Formes linéaires en dimension finie

Exercice 75 [01675] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}^*$ et φ une forme linéaire non nulle sur E.

Montrer que pour tout $u \in E \setminus \operatorname{Ker} \varphi$, $\operatorname{Ker} \varphi$ et $\operatorname{Vect}(u)$ sont supplémentaires dans E.

Exercice 76 [01676] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension n et (f_1, f_2, \ldots, f_n) une famille de formes linéaires sur E.

On suppose qu'il existe un vecteur $x \in E$ non nul tel que pour tout $i \in \{1, ..., n\}$, $f_i(x) = 0$.

Montrer que la famille (f_1, f_2, \ldots, f_n) est liée dans E^* .

Exercice 77 [01679] [Correction]

Soit f un endomorphisme de \mathbb{R}^3 tel que $f^2 = 0$. Montrer qu'il existe $a \in \mathbb{R}^3$ et $\varphi \in (\mathbb{R}^3)^*$ tels que pour tout $x \in \mathbb{R}^3$ on a $f(x) = \varphi(x).a$.

Exercice 78 [03131] [Correction]

Soient $a_0, a_1, \ldots, a_n \in \mathbb{R}$ deux à deux distincts. Montrer qu'il existe $(\lambda_0, \ldots, \lambda_n) \in \mathbb{R}^{n+1}$ unique vérifiant

$$\forall P \in \mathbb{R}_n[X], \int_0^1 P(t) dt = \sum_{k=0}^n \lambda_k P(a_k).$$

Exercice 79 [02685] [Correction]

Soient a_0, a_1, \ldots, a_n des réels non nuls deux à deux distincts. On note F_i l'application de $\mathbb{R}_n[X]$ dans \mathbb{R} définie par

$$F_j(P) = \int_0^{a_j} P.$$

Montrer que (F_0, F_1, \ldots, F_n) est une base de $(\mathbb{R}_n[X])^*$.

Exercice 80 [03140] [Correction]

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$. Montrer

$$\forall x, y \in E, x \neq y \implies \exists \varphi \in E^*, \varphi(x) \neq \varphi(y).$$

Exercice 81 [00209] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie et f, g deux formes linéaires non nulles sur E. Montrer

$$\exists x \in E, f(x)g(x) \neq 0.$$

Exercice 82 [00206] [Correction]

Soient f_1, \ldots, f_n des formes linéaires sur un \mathbb{K} -espace vectoriel E de dimension n. On suppose qu'il existe $x \in E$ non nul tel que

$$f_1(x) = \ldots = f_n(x) = 0.$$

Montrer que la famille (f_1, \ldots, f_n) est liée.

Exercice 83 [02684] [Correction]

Soit E et F des espaces vectoriels sur \mathbb{K} , de dimensions finies ou non. Montrer que $(E \times F)^*$ et $E^* \times F^*$ sont isomorphes.

Exercice 84 [04988] [Correction]

Soit $(\varphi_1, \ldots, \varphi_p)$ une famille de formes linéaires indépendantes d'un \mathbb{K} -espace vectoriel E de dimension $n \geq 1$.

- (a) Justifier $p \leq n$.
- (b) Déterminer la dimension de $F = \text{Ker}(\varphi_1) \cap \ldots \cap \text{Ker}(\varphi_p)$.

Exercice 85 [05092] [Correction]

Soient v_1, \ldots, v_n des vecteurs d'un espace vectoriel E de dimension $n \in \mathbb{N}^*$. Montrer

$$\operatorname{rg}((v_i - v_j)_{1 \le i, j \le n}) \le n - 1.$$

Espaces d'applications linéaires

Exercice 86 [00179] [Correction]

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies et G un sous-espace vectoriel de E. On pose

$$A = \{ u \in \mathcal{L}(E, F) \mid G \subset \operatorname{Ker}(u) \}.$$

- (a) Montrer que A est un sous-espace vectoriel de $\mathcal{L}(E, F)$.
- (b) Déterminer la dimension de A.

Exercice 87 [00180] [Correction]

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie. Montrer que l'ensemble des endomorphismes g de E tels que $f \circ g = 0$ est un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension dim $E \times \dim \mathrm{Ker} \, f$.

Exercice 88 [03771] [Correction]

Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies.

Soit W un sous-espace vectoriel de E

Soit A l'ensemble des applications linéaires de E dans F s'annulant sur W.

- (a) Montrer que A est un espace vectoriel.
- (b) Trouver la dimension de A.

Exercice 89 [00200] [Correction]

Soient E un \mathbb{K} -espace vectoriel de dimension finie n et F un sous-espace vectoriel de E de dimension p. On note

$$A_F = \{ f \in \mathcal{L}(E) \mid \operatorname{Im} f \subset F \} \text{ et } B_F = \{ f \in \mathcal{L}(E) \mid F \subset \operatorname{Ker} f \}.$$

- (a) Montrer que A_F et B_F sont des sous-espaces vectoriels de $\mathcal{L}(E)$ et calculer leurs dimensions.
- (b) Soient u un endomorphisme de $\mathcal{L}(E)$ et $\varphi \colon \mathcal{L}(E) \to \mathcal{L}(E)$ définie par $\varphi(f) = u \circ f$. Montrer que φ est un endomorphisme de $\mathcal{L}(E)$. Déterminer dim Ker φ .
- (c) Soit $v \in \operatorname{Im} \varphi$. Établir que $\operatorname{Im} v \subset \operatorname{Im} u$. Réciproque? Déterminer rg φ .

Exercice 90 [00203] [Correction]

Soient E et F des \mathbb{K} -espaces vectoriels de dimensions finies et $f \in \mathcal{L}(F, E)$. Exprimer la dimension de $\{g \in \mathcal{L}(E, F) \mid f \circ g \circ f = 0\}$ en fonction du rang de f et des dimensions de E et F.

Endomorphismes opérant sur les polynômes

Exercice 91 [00163] [Correction]

Soient $n \in \mathbb{N}^*$, $E = \mathbb{R}_n[X]$ et Δ l'endomorphisme de E déterminé par $\Delta(P) = P(X+1) - P(X)$.

- (a) Justifier que l'endomorphisme Δ est nilpotent.
- (b) Déterminer des réels $a_0, \ldots, a_n, a_{n+1}$ non triviaux vérifiant :

$$\forall P \in \mathbb{R}_n[X], \sum_{k=0}^{n+1} a_k P(X+k) = 0.$$

Exercice 92 [02153] [Correction]

Soit $\Delta \colon \mathbb{C}[X] \to \mathbb{C}[X]$ l'application définie par

$$\Delta(P) = P(X+1) - P(X).$$

- (a) Montrer que Δ est un endomorphisme et que pour tout polynôme P non constant $\deg(\Delta(P)) = \deg P 1$.
- (b) Déterminer $\operatorname{Ker} \Delta$ et $\operatorname{Im} \Delta$.
- (c) Soit $P \in \mathbb{C}[X]$ et $n \in \mathbb{N}$. Montrer

$$\Delta^{n}(P) = (-1)^{n} \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} P(X+k).$$

(d) En déduire que, si deg P < n, alors

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k P(k) = 0.$$

Exercice 93 [02154] [Correction]

Soit $\varphi \colon \mathbb{K}_{n+1}[X] \to \mathbb{K}_n[X]$ définie par $\varphi(P) = (n+1)P - XP'$.

- (a) Justifier que φ est bien définie et que c'est une application linéaire.
- (b) Déterminer le noyau de φ .
- (c) En déduire que φ est surjective.

Exercice 94 [02155] [Correction]

(a) Montrer que $\varphi \colon \mathbb{R}_n[X] \to \mathbb{R}_n[X]$ définie par $\varphi(P) = P(X) + P(X+1)$ est bijective.

On en déduit qu'il existe un unique $P_n \in \mathbb{R}_n[X]$ tel que

$$P_n(X) + P_n(X+1) = 2X^n.$$

Montrer que pour tout $n \in \mathbb{N}$, il existe $P_n \in \mathbb{R}_n[X]$ unique tel que

$$P_n(X) + P_n(X+1) = 2X^n$$
.

- (b) Justifier qu'on peut exprimer $P_n(X+1)$ en fonction de P_0, \ldots, P_n .
- (c) En calculant de deux façons $P_n(X+2) + P_n(X+1)$ déterminer une relation donnant P_n en fonction de P_0, \ldots, P_{n-1} .

Exercice 95 [02156] [Correction]

Soient A un polynôme non nul de $\mathbb{R}[X]$ et $r\colon \mathbb{R}[X] \to \mathbb{R}[X]$ l'application définie par :

 $\forall P \in \mathbb{R}[X], r(P)$ est le reste de la division euclidienne de P par A.

Montrer que r est un endomorphisme de $\mathbb{R}[X]$ tel que $r^2 = r \circ r = r$. Déterminer le noyau et l'image de cet endomorphisme.

Exercice 96 [03133] [Correction]

Soient $a,b\in\mathbb{R}$ distincts. Montrer qu'il existe un unique endomorphisme φ de $\mathbb{R}[X]$ vérifiant

$$\varphi(1)=1, \varphi(X)=X \text{ et } \forall P \in \mathbb{R}[X], P(a)=P(b)=0 \implies \varphi(P)=0.$$

Exercice 97 [03046] [Correction]

Soit $P \in \mathbb{R}[X]$. Montrer que la suite $(P(n))_{n \in \mathbb{N}}$ vérifie une relation de récurrence linéaire à coefficients constants.

Exercice 98 [00074] [Correction]

Pour $p \in \mathbb{N}$ et $a \in \mathbb{R} \setminus \{0,1\}$, on note S_p l'ensemble des suites (u_n) vérifiant

$$\exists P \in \mathbb{R}_n[X], \forall n \in \mathbb{N}, u_{n+1} = au_n + P(n).$$

- (a) Montrer que si $u \in S_p$, P est unique; on le notera P_u .
- (b) Montrer que S_p est un \mathbb{R} -espace vectoriel.
- (c) Montrer que ϕ , qui à u associe P_u , est linéaire et donner une base de son noyau.

Que représente son image?

- (d) Donner une base de S_p (on pourra utiliser $R_k(X) = (X+1)^k aX^k$ pour $k \in [0; p]$).
- (e) Application: Déterminer la suite (u_n) définie par

$$u_0 = -2$$
 et $u_{n+1} = 2u_n - 2n + 7$.

Isomorphisme induit

Exercice 99 [02909] [Correction]

Soient E un espace vectoriel, F_1 et F_2 deux sous-espaces vectoriels de E.

- (a) Montrer que si F_1 et F_2 ont un supplémentaire commun alors ils sont isomorphes.
- (b) Montrer que la réciproque est fausse.

Exercice 100 [00199] [Correction]

Soit $f \in \mathcal{L}(E)$ tel que $f^2 = 0$ avec E un \mathbb{K} -espace vectoriel de dimension finie Montrer que

$$\exists g \in \mathcal{L}(E), f \circ g + g \circ f = \mathrm{Id}_E \iff \mathrm{Im}\, f = \mathrm{Ker}\, f.$$

Exercice 101 [00503] [Correction]

(Factorisation par un endomorphisme) Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f,g\in\mathcal{L}(E)$.

Montrer

$$\operatorname{Im} g \subset \operatorname{Im} f \iff \exists h \in \mathcal{L}(E), g = f \circ h.$$

Exercice 102 [00202] [Correction]

(Factorisation par un endomorphisme) Soient E un \mathbb{K} -espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$. Montrer

$$\operatorname{Ker} f \subset \operatorname{Ker} g \iff \exists h \in \mathcal{L}(E), g = h \circ f.$$

Corrections

Exercice 1 : [énoncé]

(a) oui b) non c) non d) oui

Exercice 2: [énoncé]

Soient $\lambda, \mu \in \mathbb{R}$ et $\vec{u} = (x, y), \vec{v} = (x', y') \in \mathbb{R}^2$

$$f(\lambda \vec{u} + \mu \vec{v}) = f(\lambda x + \mu x', \lambda y + \mu y')$$

donne

$$f(\lambda \vec{u} + \mu \vec{v}) = ((\lambda x + \mu x') + (\lambda y + \mu y'), (\lambda x + \mu x') - (\lambda y + \mu y'))$$

donc

$$f(\lambda \vec{u} + \mu \vec{v}) = \lambda(x + y, x - y) + \mu(x' + y', x' - y') = \lambda f(\vec{u}) + \mu f(\vec{v}).$$

De plus $f: \mathbb{R}^2 \to \mathbb{R}^2$ donc f est un endomorphisme de \mathbb{R}^2 . Pour tout $(x, y) \in \mathbb{R}^2$ et tout $(x', y') \in \mathbb{R}^2$

$$\begin{cases} x' = x + y \\ y' = x - y \end{cases} \iff \begin{cases} x = (x' + y')/2 \\ y = (x' - y')/2. \end{cases}$$

Par suite, chaque $(x', y') \in \mathbb{R}^2$ possède un unique antécédent par f:

$$((x'+y')/2,(x'-y')/2)$$

f est donc bijective.

Finalement f est un automorphisme de \mathbb{R}^2 et

$$f^{-1}: (x', y') \mapsto \left(\frac{(x'+y')}{2}, \frac{(x'-y')}{2}\right).$$

Exercice 3: [énoncé]

Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in \mathcal{C}([0;1], \mathbb{R})$,

$$J(\lambda f + \mu g) = \int_0^1 \lambda f(t) + \mu g(t) dt$$

et par linéarité de l'intégrale

$$J(\lambda f + \mu g) = \lambda \int_0^1 f(t) dt + \mu \int_0^1 g(t) dt = \lambda J(f) + \mu J(g).$$

De plus $J: \mathcal{C}([0;1],\mathbb{R}) \to \mathbb{R}$ donc J est une forme linéaire sur $\mathcal{C}([0;1],\mathbb{R})$.

Exercice 4 : [énoncé]

Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$,

$$\varphi(\lambda f + \mu g) = (\lambda f + \mu g)'' - 3(\lambda f + \mu g)' + 2(\lambda f + \mu g)$$

puis

$$\varphi(\lambda f + \mu g) = \lambda(f'' - 3f' + 2f) + \mu(g'' - 3g' + 2g)$$

donc

$$\varphi(\lambda f + \mu g) = \lambda \varphi(f) + \mu \varphi(g)$$

De plus $\varphi \colon \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ donc φ est un endomorphisme $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$.

$$f \in \operatorname{Ker} \varphi \iff f'' - 3f' + 2f = 0.$$

C'est une équation différentielle linéaire d'ordre 2 à coefficients constants d'équation caractéristique $r^2-3r+2=0$ de racines 1 et 2. La solution générale est

$$f(x) = C_1 e^x + C_2 e^{2x}.$$

Par suite

$$\operatorname{Ker} \varphi = \left\{ C_1 e^x + C_2 e^{2x} \mid C_1, C_2 \in \mathbb{R} \right\}.$$

Exercice 5 : [énoncé]

(a) Soient $\lambda, \mu \in \mathbb{K}$ et $f, g \in \mathcal{F}(X, E)$,

$$E_a(\lambda f + \mu g) = (\lambda f + \mu g)(a) = \lambda f(a) + \mu g(a) = \lambda E_a(f) + \mu E_a(g).$$

Par suite E_a est une application linéaire.

(b) $f \in \operatorname{Ker} E_a \iff f(a) = 0$. $\operatorname{Ker} E_a = \{ f \in \mathcal{F}(X, E) \mid f(a) = 0 \}$. $\operatorname{Im} E_a \subset E \text{ et } \forall \vec{x} \in E, \text{ en considérant } f \colon X \to E \text{ la fonction constante égale à } \vec{x}, \text{ on a } E_a(f) = \vec{x}$. Par suite $\vec{x} \in \operatorname{Im} E_a$ et donc $E \subset \operatorname{Im} E_a$. Par double inclusion $\operatorname{Im} E_a = E$.

Exercice 6: [énoncé]

Soient $\lambda, \mu \in \mathbb{K}$ et $F, G \in \mathbb{K}(X)$. On peut écrire

$$F = \operatorname{Ent}(F) + \hat{F}$$
 et $G = \operatorname{Ent}(G) + \hat{G}$

avec $\deg \hat{F}, \deg \hat{G} < 0$. Puisque

$$\lambda F + \mu G = \lambda \operatorname{Ent}(F) + \mu \operatorname{Ent}(G) + \lambda \hat{F} + \mu \hat{G}$$

avec $deg(\lambda \hat{F} + \mu \hat{G}) < 0$ on a

$$\operatorname{Ent}(\lambda F + \mu G) = \lambda \operatorname{Ent}(F) + \mu \operatorname{Ent}(G).$$

Ainsi Ent est linéaire.

$$Ker Ent = \{ F \in \mathbb{K}(X) \mid \deg F < 0 \}.$$

Exercice 7: [énoncé]

 (\Longrightarrow) Supposons $f(A) \subset f(B)$.

Soit $\vec{x} \in A + \operatorname{Ker} f$. On peut écrire $\vec{x} = \vec{u} + \vec{v}$ avec $\vec{u} \in A$ et $\vec{v} \in \operatorname{Ker} f$. $f(\vec{x}) = f(\vec{u}) \in f(A) \subset f(B)$ donc il existe $\vec{w} \in B$ tel que $f(\vec{x}) = f(\vec{w})$. On a alors $\vec{x} = \vec{w} + (\vec{x} - \vec{w})$ avec $\vec{w} \in B$ et $\vec{x} - \vec{w} \in \operatorname{Ker} f$. Ainsi $\vec{x} \in B + \operatorname{Ker} f$. (\iff) Supposons $A + \operatorname{Ker} f \subset B + \operatorname{Ker} f$.

Soit $\vec{y} \in f(A)$. Il existe $\vec{x} \in A$ tel que $\vec{y} = f(\vec{x})$. Or $\vec{x} \in A \subset A + \text{Ker } f \subset B + \text{Ker } f$ donc on peut écrire $\vec{x} = \vec{u} + \vec{v}$ avec $\vec{u} \in B$ et $\vec{v} \in \text{Ker } f$. On a alors $\vec{y} = f(\vec{x}) = f(\vec{u}) \in f(B)$.

Exercice 8: [énoncé]

(a) $u^{-1}(u(F))$ est un sous-espace vectoriel de E qui contient F et $\operatorname{Ker} u$ donc

$$F + \operatorname{Ker} u \subset u^{-1}(u(F)).$$

Inversement, soit $x \in u^{-1}(u(F))$. On a $u(x) \in u(F)$ done il existe $a \in F$ tel que u(x) = u(a) et alors pour b = x - a on a x = a + b avec $a \in F$ et $b \in \text{Ker } u$. Ainsi

$$u^{-1}(u(F)) = F + \operatorname{Ker} u.$$

(b) $u(u^{-1}(F))$ est un sous-espace vectoriel de E inclus dans F et dans $\operatorname{Im} u$ donc

$$u(u^{-1}(F)) \subset F \cap \operatorname{Im} u.$$

Inversement, soit $x \in F \cap \text{Im } u$. Il existe $a \in E$ tel que x = u(a). Or, puisque $x \in F$, $a \in u^{-1}(F)$ et donc $x = u(a) \in u(u^{-1}(F))$. Ainsi

$$u(u^{-1}(F)) = F \cap \operatorname{Im} u.$$

(c) On a $u(u^{-1}(F)) = u^{-1}(u(F))$ si, et seulement si,

$$F + \operatorname{Ker} u = F \cap \operatorname{Im} u$$
.

Si cette condition est vérifiée alors

$$F \subset F + \operatorname{Ker} u = F \cap \operatorname{Im} u \subset F$$

et donc

$$F = F + \operatorname{Ker} u = F \cap \operatorname{Im} u$$

ce qui entraîne

$$\operatorname{Ker} u \subset F \text{ et } F \subset \operatorname{Im} u.$$

Inversement, si ces conditions sont vérifiées, on a immédiatement $F + \operatorname{Ker} u = F = F \cap \operatorname{Im} u$.

Finalement $u(u^{-1}(F)) = u^{-1}(u(F))$ si, et seulement si, F est inclus dans l'image d'un endomorphisme injectif.

Exercice 9: [énoncé]

(a) Si $y \in f\left(\sum_{i=1}^n E_i\right)$ alors on peut écrire $y = f(x_1 + \dots + x_n)$ avec $x_i \in E_i$. On alors $y = f(x_1) + \dots + f(x_n)$ avec $f(x_i) \in f(E_i)$ et ainsi

$$f\left(\sum_{i=1}^{n} E_i\right) \subset \sum_{i=1}^{n} f(E_i).$$

Si $y \in \sum_{i=1}^n f(E_i)$ alors on peut écrire $y = f(x_1) + \dots + f(x_n)$ avec $x_i \in E_i$. On a alors y = f(x) avec $x = x_1 + \dots + x_n \in \sum_{i=1}^n E_i$ donc

$$f\left(\sum_{i=1}^{n} E_i\right) \supset \sum_{i=1}^{n} f(E_i).$$

- (b) Si $f(x_1) + \cdots + f(x_n) = 0$ avec $x_i \in E_i$ alors $f(x_1 + \cdots + x_n) = 0$ donc $x_1 + \cdots + x_n = 0$ car f injective puis $x_1 = \ldots = x_n = 0$ car les E_i sont en somme directe et enfin $f(x_1) = \ldots = f(x_n) = 0$. Ainsi les $f(E_i)$ sont en somme directe.
- (c) Soit $x \in \sum_{j=1}^p f^{-1}(F_j)$. On peut écrire $x = x_1 + \dots + x_p$ avec $f(x_j) \in F_j$ donc $f(x) = f(x_1) + \dots + f(x_p) \in \sum_{j=1}^p F_j$. Ainsi

$$\sum_{j=1}^{p} f^{-1}(F_j) \subset f^{-1}\left(\sum_{j=1}^{p} F_j\right)$$

On obtient une inclusion stricte en prenant par exemple pour f une projection sur une droite D et en prenant F_1, F_2 deux droites distinctes de D et vérifiant $D \subset F_1 + F_2$.

f=0 ou $f=\mathrm{Id}$ sont des conditions suffisantes faciles. . . Plus finement, supposons chaque F_j inclus dans $\mathrm{Im}\, f$ (et $p\geq 1$) Pour $x\in f^{-1}(\sum_{j=1}^p F_j)$, on peut écrire $f(x)=y_1+\cdots+y_p$ avec $y_j\in F_j$. Or $F_j\subset \mathrm{Im}\, f$ donc il existe $x_j\in E$ vérifiant $f(x_j)=y_j$. Évidemment, $x_j\in f^{-1}(F_j)$. Considérons alors $x_1'=x-(x_2+\cdots+x_p)$, on a $f(x_1')=y_1$ donc $x_1'\in f^{-1}(F_j)$ et $x=x_1'+x_2+\cdots+x_p\in \sum_{j=1}^p f^{-1}(F_j)$. Ainsi

$$f^{-1}\left(\sum_{j=1}^{p} F_j\right) \subset \sum_{j=1}^{p} f^{-1}(F_j)$$

puis l'égalité.

Exercice 10: [énoncé]

Pour tout x non nul, la liaison de la famille (x, f(x)) permet d'écrire $f(x) = \lambda_x x$ avec $\lambda_x \in \mathbb{K}$ unique.

Soient x, y non nuls.

Cas: (x,y) liée.

On peut écrire $y = \mu x$ et alors

$$f(y) = \mu \lambda_x x = \lambda_x y$$
 et $f(y) = \lambda_y y$

donc $\lambda_y = \lambda_x$. Cas: (x, y) libre.

$$f(x+y) = \lambda_{x+y}(x+y) = \lambda_x x + \lambda_y y$$

donc $\lambda_x = \lambda_y$ par identification des scalaires facteurs dans une famille libre. On pose λ la valeur commune des λ_x . On a donc

$$\forall x \in E \setminus \{0_E\}, f(x) = \lambda x$$

et cette relation vaut aussi pour $x = 0_E$. On peut alors conclure $f = \lambda \mathrm{Id}_E$.

Exercice 11: [énoncé]

Soient $x, y \in E \setminus \text{Ker } f$.

Si la famille (f(x), f(y)) est libre alors les deux égalités

$$g(x+y) = \lambda_{x+y} (f(x) + f(y))$$
 et $g(x+y) = \lambda_x f(x) + \lambda_y f(y)$

entraînent $\lambda_x = \lambda_y$ par identification des coefficients. Si la famille (f(x), f(y)) est liée avec alors on peut écrire

$$f(y) = \alpha f(x)$$
 avec $\alpha \neq 0$

et donc $y - \alpha x \in \text{Ker } f$. Or il est immédiat d'observer que le noyau de f est inclus dans celui de g et donc

$$g(y) = \alpha g(x)$$
.

De plus

$$\alpha g(x) = \alpha \lambda_x f(x)$$
 et $g(y) = \alpha \lambda_y f(x)$

donc à nouveau $\lambda_x = \lambda_y$.

Posons λ la valeur commune des scalaires λ_x pour x parcourant $E \setminus \operatorname{Ker} f$. Pour tout $x \in E$, qu'il soit dans $\operatorname{Ker} f$ ou non, on peut affirmer

$$g(x) = \lambda f(x)$$

et donc $g = \lambda f$.

Exercice 12 : [énoncé]

- (a) Si a = 0 ou n = 2, la famille est assurément liée, peu importe l'endomorphisme $f : F_a = \mathcal{L}(E)$.
- (b) $F_a \subset \mathcal{L}(E)$ et $0 \in F_a$. Soit $f, g \in F_a$ et $\lambda, \mu \in \mathbb{R}$. Pour tout $x \in E$, les familles (x, f(x), a) et (x, g(x), a) sont liées. Si (x, a) est liée alors assurément $(x, (\lambda f + \mu g)(x), a)$ liée. Si (x, a) est libre

$$f(x) \in \mathrm{Vect}(x,a) \text{ et } g(x) \in \mathrm{Vect}(x,a) \text{ donc } \big(\lambda f + \mu g\big)(x) \in \mathrm{Vect}(x,a)$$

et donc $(x, (\lambda f + \mu g)(x), a)$ est liée.

- (c) « Classiquement », ce sont les homothéties vectorielles : $v = \lambda Id_H$.
- (d) Les cas n=2 et a=0 étant déjà résolus, on suppose $n\geq 3$ et $a\neq 0$. Soit φ une forme linéaire telle que $\varphi(a)=1$, H son noyau et p la projection sur H parallèlement à Vect a:

$$p(x) = x - \varphi(x)a.$$

Pour tout $x \in E$, on a

$$\operatorname{Vect} \big(x, f(x), a \big) = \operatorname{Vect} \big(p(x), p \big(f(x) \big), a \big) = \operatorname{Vect} \big(p(x), p \big(f(x) \big) \big) \oplus \operatorname{Vect} (a).$$

Si la famille (x, f(x), a) est liée alors la famille (p(x), p(f(x))) l'est aussi. On en déduit qu'il existe $\lambda \in \mathbb{K}$ tel que

$$\forall x \in H, p(f(x)) = \lambda x \text{ i.e. } f(x) = \lambda x + \varphi(f(x))a.$$

On a alors

$$\forall x \in E, f(x) = f(\varphi(x)a + x - \varphi(x)a)$$

$$= \varphi(x)f(a) + f(\underbrace{x - \varphi(x)a}_{\in H})$$

$$= \varphi(x)f(a) + \lambda x - \lambda \varphi(x)a + \varphi(f(x))a - \varphi(x)\varphi(f(a))a$$

$$= \varphi(x)f(a) + \lambda x + \psi(x)a$$

avec ψ une forme linéaire.

Pour suivre, montrons que f(a) est colinéaire à a.

Soit b un vecteur indépendant de a.

La famille (b, f(b), a) est liée donc $f(b) \in \text{Vect}(a, b)$.

La famille (a + b, f(a) + f(b), a) est liée donc

 $f(a) + f(b) \in \text{Vect}(a + b, a) = \text{Vect}(a, b) \text{ puis } f(a) \in \text{Vect}(a, b).$

Soit c un vecteur n'appartenant pas à Vect(a,b) (possible car $n \geq 3$). Par le raisonnement ci-dessus, $f(a) \in \text{Vect}(a,c)$ et donc

$$f(a) \in \text{Vect}(a, b) \cap \text{Vect}(a, c) = \text{Vect}(a)$$
.

On en déduit que la fonction f s'exprime

$$f(x) = \lambda x + \theta(x)a$$
 avec θ une forme linéaire.

La réciproque étant immédiate, et l'écriture ci-dessus étant unique, on peut conclure

$$\dim F_a = \dim \mathbb{K} \times E^* = n + 1.$$

Exercice 13: [énoncé]

- (a) Posons $g = \frac{1}{2}(3\text{Id} f) \in \mathcal{L}(E)$. On a $f \circ g = \frac{3}{2}f \frac{1}{2}f^2 = \text{Id}$ et de même $g \circ f = \text{Id}$ donc f est un automorphisme et $f^{-1} = g$.
- (b) En tant que noyaux d'applications linéaires, Ker(f-Id) et Ker(f-2Id) sont des sous-espaces vectoriels de E.

Soit $x \in \text{Ker}(f - \text{Id}) \cap \text{Ker}(f - 2\text{Id})$. On a f(x) = x et f(x) = 2x donc $x = 0_E$. Ainsi

$$\operatorname{Ker}(f - \operatorname{Id}) \cap \operatorname{Ker}(f - 2\operatorname{Id}) = \{0_E\}.$$

Soit $x \in E$. Posons u=2x-f(x) et v=f(x)-x. On a u+v=x, $f(u)=2f(x)-f^2(x)=2x-f(x)=u$ donc $u \in \mathrm{Ker}(f-\mathrm{Id})$ et $f(v)=f^2(x)-f(x)=2f(x)-2x=2v$ donc $v \in \mathrm{Ker}(f-\mathrm{2Id})$. Ainsi

$$E = Ker(f - Id) + Ker(f - 2Id).$$

Finalement, Ker(f - Id) et Ker(f - 2Id) sont des sous-espaces vectoriels supplémentaires de E.

Exercice 14 : [énoncé]

On a toujours $\operatorname{Ker} f \subset \operatorname{Ker}(g \circ f)$.

Inversement, pour $x \in \text{Ker}(g \circ f)$, on a $g \circ f(x) = 0$ donc $f \circ g \circ f(x) = f(0) = 0$. Or $f \circ g = \text{Id donc } f(x) = 0$.

Ainsi $\operatorname{Ker}(g \circ f) \subset \operatorname{Ker} f$ puis $\operatorname{Ker}(g \circ f) = \operatorname{Ker} f$.

On a toujours $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$.

Inversement, pour $y \in \text{Im } g$, il existe $x \in E$ tel que y = g(x) et alors $y = g \circ f \circ g(x) = (g \circ f)(g(x)) \in \text{Im}(g \circ f)$.

Ainsi $\operatorname{Im} g \subset \operatorname{Im}(g \circ f)$ puis $\operatorname{Im}(g \circ f) = \operatorname{Im} g$

Soit $x \in \operatorname{Ker} f \cap \operatorname{Im} g$. Il existe $a \in E$ tel que x = g(a) et alors f(x) = 0 donne f(g(a)) = 0 d'où a = 0 car $f \circ g = \operatorname{Id}$. On en déduit x = g(a) = 0 et donc $\operatorname{Ker} f \cap \operatorname{Im} g = \{0\}$.

Soit $x \in E$. On peut écrire x = (x - g(f(x))) + g(f(x)) avec $g(f(x)) \in \text{Im } g$ et $x - g(f(x)) \in \text{Ker } f$ car

$$f(x - g(f(x))) = f(x) - (f \circ g)(f(x)) = f(x) - f(x) = 0.$$

Ainsi $E = \operatorname{Ker} f + \operatorname{Im} g$ et finalement $\operatorname{Ker} f$ et $\operatorname{Im} g$ sont supplémentaires dans E.

Exercice 15: [énoncé]

- (a) Evidemment $\operatorname{Ker} f \subset \operatorname{Ker}(g \circ f)$ et $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$. Pour $x \in \operatorname{Ker}(g \circ f)$, on a f(x) = f(g(f(x))) = f(0) = 0 donc $x \in \operatorname{Ker} f$. Pour $y \in \operatorname{Im} g$, il existe $x \in E$ tel que y = g(x) et alors $y = g(f(g(x))) = g(f(a)) \in \operatorname{Im}(g \circ f)$.
- (b) Si $x \in \operatorname{Ker} f \cap \operatorname{Im} g$ alors on peut écrire x = g(a) et puisque f(x) = 0, a = f(g(a)) = 0 donc x = 0. Pour $x \in E$, on peut écrire x = (x - g(f(x)) + g(f(x))) avec $x - g(f(x)) \in \operatorname{Ker} f$ et $g(f(x)) \in \operatorname{Im} g$.
- (c) Si f est inversible alors $f \circ g = \text{Id}$ entraı̂ne $g = f^{-1}$. Cette condition suffisante est aussi évidemment nécessaire.
- (d) $(g \circ f) \circ (g \circ f) = g \circ (f \circ g) \circ f = g \circ f$ et donc $g \circ f$ est un projecteur.

Exercice 16: [énoncé]

(a) Soit $x \in \text{Im } f \cap \text{Ker } g$. Il existe $a \in E$ tel que x = f(a) donc

$$x = f(a) = (f \circ g \circ f)(a) = (f \circ g)(x) = 0.$$

Soit $x \in E$.

Analyse:

Supposons x = u + v avec $u = f(a) \in \text{Im } f \text{ et } v \in \text{Ker } g$.

$$g(x) = g \circ f(a)$$
 donc $(f \circ g)(x) = f(a) = u$.

Synthèse:

Posons $u = (f \circ g)(x)$ et v = x - u.

On a $u \in \text{Im } f$, x = u + v et g(v) = g(x) - g(u) = 0 i.e. $v \in \text{Ker } g$.

(b) On a immédiatement $f(\operatorname{Im} g) \subset \operatorname{Im} f$.

Inversement, pour $y \in \text{Im } f$, on peut écrire y = f(x) avec $x \in E$.

Par symétrie, on a $E = \operatorname{Im} g \oplus \operatorname{Ker} f$ et on peut écrire

$$x = g(a) + u$$
 avec $a \in E$ et $u \in \text{Ker } f$.

On a alors $y = f(g(a)) \in f(\operatorname{Im} g)$ et l'on obtient l'inclusion $\operatorname{Im} f \subset f(\operatorname{Im} g)$.

Exercice 17: [énoncé]

 $Id = Id - f^n = (Id - f)(Id + f + \dots + f^{n-1}) \text{ et aussi}$

$$Id = (Id + f + \dots + f^{n-1})(Id - f).$$

Par suite $\operatorname{Id} - f$ est inversible et $(\operatorname{Id} - f)^{-1} = \operatorname{Id} + f + \cdots + f^{n-1}$.

Exercice 18: [énoncé]

Soient $f \in \mathcal{L}(E)$ et $t = t_u$ où $u \in E$. Soit $x \in E$

$$(f \circ t)(x) = (t \circ f)(x) \iff f(x) + f(u) = f(x) + u \iff f(u) = u.$$

Une translation et un endomorphisme commutent si, et seulement si, le vecteur de translation est invariant par l'endomorphisme.

Exercice 19 : [énoncé]

Posons $H = F \cap GL(E)$

On a immédiatement $H \subset GL(E)$, $Id_E \in H$ et $\forall u, v \in H, u \circ v \in H$.

Montrer que H est stable par passage à l'inverse.

Soit $u \in H$. Considérons l'application $\varphi \colon F \to F$ définie par

$$\varphi(v) = u \circ v.$$

L'application φ est évidemment linéaire et puisque u est inversible, cette application est injective. Or F est un \mathbb{K} -espace vectoriel de dimension finie (car sous-espace vectoriel de $\mathcal{L}(E)$, lui-même de dimension finie) donc φ est un automorphisme de F. Par suite l'application φ est surjective et puisque $\mathrm{Id}_E \in F$, il existe $v \in F$ tel que

$$u \circ v = \mathrm{Id}_E$$
.

On en déduit $u^{-1} = v \in F$ et donc $u^{-1} \in H$.

Exercice 20 : [énoncé]

- (a) $(\mathrm{Id} p)^2 = \mathrm{Id} 2p + p^2$ donc $(\mathrm{Id} p)^2 = (\mathrm{Id} p) \iff p = p^2$.
- (b) $p \circ (\operatorname{Id} p) = \tilde{0}$ donc $\operatorname{Im}(\operatorname{Id} p) \subset \operatorname{Ker} p$. Inversement, soit $x \in \operatorname{Ker} p$, on a $(\operatorname{Id} - p)(x) = x - p(x) = x$ donc $x \in \operatorname{Im}(\operatorname{Id} - p)$. Ainsi $\operatorname{Ker} p \subset \operatorname{Im}(\operatorname{Id} - p)$. Finalement $\operatorname{Ker} p = \operatorname{Im}(\operatorname{Id} - p)$ et de même $\operatorname{Ker}(\operatorname{Id} - p) = \operatorname{Im} p$.

Exercice 21: [énoncé]

 $(i) \Longrightarrow (ii)$ Supposons (i)

 $p^2 = p \circ q \circ p = p \circ q = p$ et $q^2 = q \circ p \circ q = q$ donc p et q sont des projecteurs.

Soit $x \in \text{Ker } p$. On a $q(x) = q(p(x)) = 0_E$ donc $x \in \text{Ker } q$. Ainsi $\text{Ker } p \subset \text{Ker } q$. Par symétrie l'égalité.

(ii) ⇒ (i) Supposons (ii)

Soit $x \in E$. On peut écrire x = u + v avec $u \in \operatorname{Im} q$ et $v \in \operatorname{Ker} q = \operatorname{Ker} p$.

D'une part $(p \circ q)(x) = p(q(u)) + p(0_E) = p(u)$ et d'autre part

p(x) = p(u) + p(v) = p(u).

Ainsi $p \circ q = p$ et de même $q \circ p = q$.

Exercice 22 : [énoncé]

 $(p \circ q)^2 = p \circ q \circ p \circ q = p^2 \circ q^2 = p \circ q \text{ donc } p \circ q \text{ est un projecteur.}$

Soit $x \in \text{Ker } p + \text{Ker } q$, il existe $(u, v) \in \text{Ker } p \times \text{Ker } q$ tels que x = u + v et alors

$$(p \circ q)(x) = (p \circ q)(u) + (p \circ q)(v) = (q \circ p)(u) + (p \circ q)(v) = 0_E$$

donc $x \in \operatorname{Ker} p \circ q$.

Ainsi

$$\operatorname{Ker} p + \operatorname{Ker} q \subset \operatorname{Ker} p \circ q$$
.

Inversement, soit $x \in \operatorname{Ker} p \circ q$. On peut écrire x = u + v avec $u \in \operatorname{Ker} p$ et $v \in \operatorname{Im} p$.

$$(p \circ q)(x) = (q \circ p)(x) = q(v) = 0_E$$

donc $v \in \text{Ker } q$. Par suite $x \in \text{Ker } p + \text{Ker } q$.

Par double inclusion

$$\operatorname{Ker} p \circ q = \operatorname{Ker} p + \operatorname{Ker} q.$$

Soit $y \in \operatorname{Im} p \circ q$, il existe $x \in E$ tel que $y = (p \circ q)(x)$. On a $y = p(q(x)) \in \operatorname{Im} p$ et $y = q(p(x)) \in \operatorname{Im} q$ donc $y \in \operatorname{Im} p \cap \operatorname{Im} q$. Ainsi $\operatorname{Im} p \circ q \subset \operatorname{Im} p \cap \operatorname{Im} q$.

Inversement, soit $y \in \operatorname{Im} p \cap \operatorname{Im} q$. Il existe $x \in E, y = q(x)$ et

 $y = p(y) = (p \circ q)(x) \in \operatorname{Im} p \circ q.$

Ainsi $\operatorname{Im} p \cap \operatorname{Im} q \subset \operatorname{Im} p \circ q$ puis l'égalité.

Exercice 23: [énoncé]

- (a) F et G sont des sous-espaces vectoriels car noyaux d'endomorphismes. Soit $\vec{x} \in F \cap G$. On a $s(\vec{x}) = \vec{x}$ et $s(\vec{x}) = -\vec{x}$ donc $\vec{x} = \vec{o}$. Ainsi $F \cap G = \{\vec{o}\}$. Soit $\vec{x} \in E$. Posons $\vec{u} = \frac{1}{2}(\vec{x} + s(\vec{x}))$ et $\vec{v} = \frac{1}{2}(\vec{x} - s(\vec{x}))$. On a $\vec{x} = \vec{u} + \vec{v}$, $s(\vec{u}) = \vec{u}$ donc $\vec{u} \in F$ et $s(\vec{v}) = -\vec{v}$ donc $\vec{v} \in G$. Ainsi F + G = E. F et G sont donc supplémentaires dans E.
- (b) $\forall \vec{x} \in E, \exists ! (\vec{u}, \vec{v}) \in F \times G$ tel que $\vec{x} = \vec{u} + \vec{v}$. On a $s(\vec{x}) = s(\vec{u}) + s(\vec{v}) = \vec{u} - \vec{v}$ donc x est la symétrie par rapport à F parallèlement à G.
- (c) F et G sont des sous-espaces vectoriels car noyaux d'endomorphismes. Soit $\vec{x} \in F \cap G$. On a $f(\vec{x}) = \vec{x}$ et $f(\vec{x}) = \alpha \vec{x}$ donc $\vec{x} = \vec{o}$. Ainsi $F \cap G = \{\vec{o}\}$. Soit $\vec{x} \in E$. Posons $\vec{u} = \frac{1}{1-\alpha}(f(\vec{x}) - \alpha \vec{x})$ et $\vec{v} = \frac{1}{1-\alpha}(\vec{x} - f(\vec{x}))$. On a $\vec{x} = \vec{u} + \vec{v}$, $f(\vec{u}) = \vec{u}$ donc $\vec{u} \in F$ et $f(\vec{v}) = \alpha \vec{v}$ donc $\vec{v} \in G$. Ainsi F + G = E. F et G sont donc supplémentaires dans E.
- (d) $\forall \vec{x} \in E, \exists ! (\vec{u}, \vec{v}) \in F \times G$ tel que $\vec{x} = \vec{u} + \vec{v}$. On a $f(\vec{x}) = f(\vec{u}) + f(\vec{v}) = \vec{u} + \alpha \vec{v}$ donc f est l'affinité par rapport à F parallèlement à G et de rapport α .

Exercice 24: [énoncé]

Soit $\vec{x} \in \operatorname{Ker}(f - \operatorname{Id}) \cap \operatorname{Ker}(f - 3\operatorname{Id})$. On a $f(\vec{x}) = \vec{x}$ et $f(\vec{x}) = 3\vec{x}$ donc $\vec{x} = \vec{o}$. Soit $\vec{x} \in E$. Posons $\vec{u} = \frac{1}{2} \left(3\vec{x} - f(\vec{x}) \right)$ et $\vec{v} = \frac{1}{2} \left(f(\vec{x}) - \vec{x} \right)$. On a $\vec{x} = \vec{u} + \vec{v}$ avec $\vec{u} \in \operatorname{Ker}(f - \operatorname{Id})$ et $\vec{v} \in \operatorname{Ker}(f - 3\operatorname{Id})$ après calculs. f est l'affinité vectorielle par rapport à $F = \operatorname{Ker}(f - \operatorname{Id})$, parallèlement à $G = \operatorname{Ker}(f - 3\operatorname{Id})$ et de rapport 3.

Exercice 25 : [énoncé]

 $\varphi \colon u \mapsto u \circ p$ est un endomorphisme de $\mathcal{L}(E)$ donc $L = \operatorname{Im} \varphi$ est un sous-espace vectoriel de $\mathcal{L}(E)$.

 $\psi \colon v \mapsto v \circ q$ est un endomorphisme de $\mathcal{L}(E)$ donc $M = \operatorname{Im} \psi$ est un sous-espace vectoriel de $\mathcal{L}(E)$.

Soit $f \in L \cap M$. Il existe $u, v \in \mathcal{L}(E)$ tels que $f = u \circ p = v \circ q$.

On a $f \circ p = u \circ p^2 = u \circ p = f$ et $f \circ p = v \circ q \circ p = 0$ car $q \circ p = 0$ donc f = 0. Ainsi $L \cap M = \{0\}$.

Soit $f \in \mathcal{L}(E)$. On a $f = f \circ \mathrm{Id} = f \circ (p+q) = f \circ p + f \circ q \in L + M$. Ainsi $\mathcal{L}(E) = L + M$.

Finalement L et M sont supplémentaires dans $\mathcal{L}(E)$.

Exercice 26: [énoncé]

(a) Calculons

$$r^{2} = (p + q - q \circ p)^{2} = (p + q - q \circ p) \circ (p + q - q \circ p).$$

En développant et en exploitant $p \circ q = 0$ on obtient,

$$r^2 = p^2 + q \circ p + q^2 - q^2 \circ p - q \circ p^2.$$

En exploitant $p^2 = p$ et $q^2 = q$, on parvient à $r^2 = r$ donc r est un projecteur.

(b) Pour tout $x \in E$,

$$r(x) = p(x) + q(x - p(x)) \in \operatorname{Im} p + \operatorname{Im} q$$

donc

$$\operatorname{Im} r \subset \operatorname{Im} p + \operatorname{Im} q$$
.

Inversement, si $x \in \operatorname{Im} p + \operatorname{Im} q$, on peut écrire x = a + b avec $a \in \operatorname{Im} p$ et $b \in \operatorname{Im} a$.

Puisque $p \circ q = 0$, on a p(b) = 0 et puisque $a \in \text{Im } p$, on a p(a) = a.

Ainsi p(x) = a et donc b = x - a = x - p(x).

Or $b \in \text{Im } q \text{ donc } b = q(b) \text{ puis } b = q(x - p(x)) = q(x) - q(p(x)).$

Finalement x = a + b = p(x) + q(x) - q(p(x)) = r(x) et donc $x \in \operatorname{Im} r$. Ainsi

 $\operatorname{Im} r = \operatorname{Im} p + \operatorname{Im} q.$

Soit $x \in \text{Ker } p \cap \text{Ker } q$, on a r(x) = p(x) + q(x) - q(p(x)) = 0 donc $x \in \text{Ker } r$. Inversement, soit $x \in \text{Ker } r$.

On a p(x) + q(x - p(x)) = 0 donc p(x) = p(p(x)) = p(q(x - p(x))) = 0 car $p \circ q = 0$.

Ainsi $x \in \text{Ker } p$. De plus p(x) + q(x - p(x)) = 0 sachant p(x) = 0 donne q(x) = 0 et donc $x \in \text{Ker } q$.

Finalement $\operatorname{Ker} r \subset \operatorname{Ker} p \cap \operatorname{Ker} q$ puis

$$\operatorname{Ker} r = \operatorname{Ker} p \cap \operatorname{Ker} q.$$

Exercice 27 : [énoncé]

(a) Si $x \in \text{Ker } p$ alors p(u(x)) = u(x) + u(p(x)) = u(x) donc $u(x) \in \text{Im } p$. Ainsi $u(\text{Ker } p) \subset \text{Im } p$.

Si $x \in \text{Im } p$ alors p(x) = x donc u(x) = p(u(x)) - u(p(x)) = p(u(x)) - u(x) d'où 2u(x) = p(u(x)). Par suite $u(x) \in \text{Im } p$ donc p(u(x)) = u(x) et enfin la relation précédente donne u(x) = 0. Ainsi $x \in \text{Ker } u$.

- (b) Pour $x \in E$, u(x) = u(p(x)) + u(x p(x)). Or u(p(x)) = 0 car Im $p \subset \operatorname{Ker} u$ et $u(x - p(x)) \in u(\operatorname{Ker} p) \subset \operatorname{Im} p \subset \operatorname{Ker} u$ donc $u^2(x) = 0$.
- (c) Supposons $u^2 = 0$. On a $\operatorname{Im} u \subset \operatorname{Ker} u$. Soit p une projection sur $\operatorname{Im} u$. On a $p \circ u = u$ car les vecteurs de $\operatorname{Im} u$ sont invariants par p et on a $u \circ p = 0$ car $\operatorname{Im} p = \operatorname{Im} u \subset \operatorname{Ker} u$. Ainsi, il existe une projection p pour laquelle $u = p \circ u u \circ p$. La réciproque est vraie.

Exercice 28: [énoncé]

- (a) $(v \circ u)^2 = v \circ \operatorname{Id}_F \circ u = v \circ u$ donc $v \circ u$ est un projecteur.
- (b) Le rang d'un projecteur est égal à sa trace donc

$$\operatorname{rg}(v \circ u) = \operatorname{tr}(v \circ u) = \operatorname{tr}(u \circ v) = \operatorname{tr}(\operatorname{Id}_F) = p.$$

On a

 $\operatorname{Im}(v \circ u) \subset \operatorname{Im} v \text{ et } \dim \operatorname{Im}(v \circ u) = \operatorname{rg}(v \circ u) = p \ge \operatorname{rg}(v) = \dim \operatorname{Im} v.$

On en déduit

$$\operatorname{Im}(v \circ u) = \operatorname{Im} v.$$

On a

 $\operatorname{Ker} u \subset \operatorname{Ker}(v \circ u)$ et $\dim \operatorname{Ker} u = n - \operatorname{rg} u > n - p = n - \operatorname{rg}(v \circ u) = \dim \operatorname{Ker}(v \circ u)$

donc

$$Ker(v \circ u) = Ker u.$$

Exercice 29 : [énoncé]

Puisque $\operatorname{Im} p \subset \operatorname{Ker} q,$ on a $q \circ p = 0$ et en développant puis en simplifiant

$$(p+q-p\circ q)^2 = p+q-p\circ q.$$

On peut donc conclure que $r=p+q-p\circ q$ est un projecteur. Montrons

$$\operatorname{Im} r = \operatorname{Im} p + \operatorname{Im} q.$$

L'inclusion ⊂ est immédiate car

$$\forall x \in E, r(x) = p(x - q(x)) + q(x).$$

Inversement, soit $x \in \text{Im } p + \text{Im } q$. On peut écrire x = p(a) + q(b) avec $a, b \in E$. On a alors par le calcul

$$r(x) = r(p(a)) + r(q(b)) = p(a) + q(b) = x$$

et ainsi $x \in \operatorname{Im} r$.

Montrons aussi

$$\operatorname{Ker} r = \operatorname{Ker} p \cap \operatorname{Ker} q$$
.

L'inclusion \supset est immédiate. Inversement, pour $x \in \operatorname{Ker} r$ on a

$$p(x) + q(x) - p \circ q(x) = 0_E.$$

En appliquant q, on obtient $q(x) = 0_E$ puis on en déduit aussi $p(x) = 0_E$ et ainsi $x \in \operatorname{Ker} p \cap \operatorname{Ker} q$.

Exercice 30: [énoncé]

- (a) Evidemment $\operatorname{Ker} f \subset \operatorname{Ker}(g \circ f)$ et $\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$. Pour $x \in \operatorname{Ker}(g \circ f)$, on a f(x) = f(g(f(x))) = f(0) = 0 donc $x \in \operatorname{Ker} f$. Pour $y \in \operatorname{Im} g$, il existe $x \in E$ tel que y = g(x) et alors $y = g(f(g(x))) = g(f(a)) \in \operatorname{Im}(g \circ f)$.
- (b) Si $x \in \operatorname{Ker} f \cap \operatorname{Im} g$ alors on peut écrire x = g(a) et puisque f(x) = 0, a = f(g(a)) = 0 donc x = 0. Pour $x \in E$, on peut écrire x = (x - g(f(x))) + g(f(x)) avec $x - g(f(x)) \in \operatorname{Ker} f$ et $g(f(x)) \in \operatorname{Im} g$.
- (c) Si f est inversible alors $f \circ g = \text{Id}$ entraı̂ne $g = f^{-1}$. Cette condition suffisante est aussi évidemment nécessaire.
- (d) $(g \circ f) \circ (g \circ f) = g \circ (f \circ g) \circ f = g \circ f$ et donc $g \circ f$ est un projecteur, plus précisément, c'est la projection sur Im g parallèlement à Ker g.

Exercice 31 : [énoncé]

Puisque $a \notin H$, on vérifie aisément

$$Vect(a) \cap H = \{0_E\}.$$

Soit φ une forme linéaire non nulle telle que $H = \operatorname{Ker} \varphi$. Pour tout $x \in E$, on peut écrire

$$x = (x - \lambda a) + \lambda a \text{ avec } \lambda = \varphi(x)/\varphi(a).$$

Puisque $\varphi(x - \lambda a) = 0$, on a $x - \lambda a \in H$ et puisque $\lambda a \in \text{Vect}(a)$, on obtient

$$E = H + Vect(a)$$
.

Exercice 32: [énoncé]

Bien entendu $H \cap D = \{0\}$ mais ici aucun argument de dimension ne permet de conclure directement.

Soit φ une forme linéaire dont H est le noyau et u un vecteur non nul de D. Il est clair que $\varphi(u) \neq 0$ et alors pour tout $x \in E$, on peut écrire

$$x = (x - \lambda u) + \lambda u$$
 avec $\lambda = \varphi(x)/\varphi(u)$.

On a alors $x - \lambda u \in H$ car $\varphi(x - \lambda u) = 0$ et $\lambda u \in D$ donc E = H + D.

Exercice 33: [énoncé]

Si $F \neq H$ alors il existe $a \in F$ tel que $a \notin H$. On a alors

$$H \oplus \operatorname{Vect}(a) = E$$

et puisque $H \subset F$ et $Vect(a) \subset F$, on peut conclure E = F

Exercice 34: [énoncé]

Si f=0: ok. Sinon, on introduit $\vec{u} \notin \operatorname{Ker} f$ de sorte que $\operatorname{Vect} \vec{u}$ et $\operatorname{Ker} f$ soient supplémentaires puis on introduit α de sorte que $f(\vec{u}) = \alpha g(\vec{u})$ avant de conclure via $h = f - \alpha g$ s'annule sur $\operatorname{Ker} f$ et \vec{u} .

Exercice 35 : [énoncé]

Par contraposée : si e n'est pas une base de E alors $\text{Vect}(e_1, \dots, e_n) \neq E$. Soit H un hyperplan tel que $\text{Vect}(e_1, \dots, e_n) \subset H$ et f une forme linéaire non nulle de noyau H.

On a $f(e_1) = ... = f(e_n) = 0$ mais $f \neq 0$.

Exercice 36: [énoncé]

Si $V = \{0\}$: ok

Sinon, soit (e_1, \ldots, e_p) une base de V.

$$f(V) = f(\operatorname{Vect}(e_1, \dots, e_p)) = \operatorname{Vect}(f(e_1), \dots, f(e_p)).$$

Donc f(V) est un sous-espace vectoriel de E de dimension inférieure à p. Or $V \subset f(V)$ donc dim $f(V) \geq p$ et par suite dim f(V) = p. Par inclusion et égalité des dimensions : f(V) = V.

Exercice 37: [énoncé]

Par définition

$$\operatorname{rg}(f(x_1),\ldots,f(x_p))=\dim\operatorname{Vect}(f(x_1),\ldots,f(x_p))=\dim f(\operatorname{Vect}(x_1,\ldots,x_p))$$

or f est injective donc

$$\dim f(\operatorname{Vect}(x_1,\ldots,x_p)) = \dim \operatorname{Vect}(x_1,\ldots,x_p)$$

et ainsi

$$rg(f(x_1),\ldots,f(x_p)) = rg(x_1,\ldots,x_p).$$

Exercice 38: [énoncé]

- (a) $u = (x, y, z) \in \text{Ker } f \iff x = y = z.$ u = (1, 1, 1) forme une base de Ker f. Par le théorème du rang rg $f = \dim \mathbb{R}^3 \dim \text{Ker } f = 2$. Soit v = f(1, 0, 0) = (0, -1, 1) et $\vec{w} = f(0, 1, 0) = (1, 0, -1)$ vecteurs non colinéaires de Im f. (v, \vec{w}) est une famille libre formée de $2 = \dim \text{Im } f$ vecteurs de Im f, c'est donc une base de Im f.
- (b) Ker $f = \{(x, y, -2x y, -x y) \mid x, y \in \mathbb{R}\}$ = Vect(u, v) avec u = (1, 0, -2, -1) et v = (0, 1, -1, -1). (u, v) est une famille libre, elle forme donc une base de Ker f, par suite dim Ker f = 2. Par le théorème du rang : rg $f = \dim \mathbb{R}^4 \dim \operatorname{Ker} f = 2$. $\vec{a} = f(1, 0, 0, 0) = (2, 1, 1) \in \operatorname{Im} f$ et $\vec{b} = f(0, 1, 0, 0) = (1, 1, 0) \in \operatorname{Im} f$. (a, b) forme une famille libre formée de $2 = \dim \operatorname{Im} f$ vecteurs de $\operatorname{Im} f$, c'est donc une base de $\operatorname{Im} f$.
- (c) Ker $f = \{z = a + ib \mid a, b \in \mathbb{R}, a + b = 0\}$. Soit $z_1 = 1 - i$, on observe que Ker $f = \text{Vect}(z_1)$, donc (z_1) forme une base de Ker f et dim Ker f = 1. Par le théorème du rang : rg $f = \dim_{\mathbb{R}} \mathbb{C} - \dim \text{Ker } f = 1$. $z_2 = f(1) = 1 + i \in \text{Im } f$, donc (z_2) forme une base de Im f car rg f = 1.

Exercice 39 : [énoncé]

(a) Une petite analyse assure que le vecteur x ne peut appartenir au noyau de f^{p-1} car sinon la famille introduite comporterait le vecteur nul et serait donc liée. Introduisons donc $x \notin \operatorname{Ker} f^{p-1}$. Ceci est possible car, par hypothèse, l'application f^{p-1} n'est pas nulle.

Supposons

$$\lambda_0 x + \lambda_1 f(x) + \dots + \lambda_{p-1} f^{p-1}(x) = 0_E.$$

En composant par f^{p-1} la relation ci-dessus, on obtient

$$\lambda_0 f^{p-1}(x) = 0_E$$

et donc $\lambda_0 = 0$ car $f^{p-1}(x) \neq 0_E$.

En composant de même par f^{p-2}, \ldots, f^0 la relation initiale, on obtient successivement

$$\lambda_1 = 0, \dots, \lambda_{p-1} = 0.$$

La famille $(x, f(x), \dots, f^{p-1}(x))$ est donc libre.

(b) La famille précédente est composée de p vecteurs en dimension n et elle est libre donc $p \leq n$.

Par suite

$$f^n = f^{n-p} \circ f^p = \tilde{0}.$$

Exercice 40: [énoncé]

Si dim E = n alors dim $\mathcal{L}(E) = n^2$ donc la famille $(I, f, f^2, \dots, f^{n^2})$ est liée car formée de $n^2 + 1$ élément. Une relation linéaire sur les éléments de cette famille donne immédiatement un polynôme annulateur non nul.

Exercice 41: [énoncé]

- (a) Si Ker f = Im f alors $f^2 = 0$ et donc f est nilpotent. Si f est nilpotent alors Ker $f \neq \{0\}$ et donc dim Ker f = 1 ou 2. Or $f \neq 0$ donc il reste dim Ker f = 1. Ker $f \subset \text{Ker } f^2$ donc dim Ker $f^2 = 1$ ou 2. Si dim Ker $f^2 = 1$ alors Ker $f = \text{Ker } f^2$ et classiquement (cf. noyaux itérés) Ker $f^n = \text{Ker } f$ pour tout $n \in \mathbb{N}$ ce qui contredit la nilpotence de f. Il reste donc dim Ker $f^2 = 2$ et donc Im $f \subset \text{Ker } f$ puis l'égalité par argument de dimension.
- (b) Si $f = u \circ v$ avec u et v nilpotents et nécessairement non nuls alors $\operatorname{Im} f \subset \operatorname{Im} u$ et $\operatorname{Ker} v \subset \operatorname{Ker} f$. Or ces espaces sont de dimension 1 donc $\operatorname{Im} f = \operatorname{Im} u$ et $\operatorname{Ker} f = \operatorname{Ker} v$. Mais $\operatorname{Im} f = \operatorname{Ker} f$ donc $\operatorname{Im} u = \operatorname{Ker} v$ puis $\operatorname{Ker} u = \operatorname{Im} v$ d'où $u \circ v = 0$. C'est absurde.

Exercice 42: [énoncé]

Soient $\lambda, \mu \in \mathbb{K}$ et $P, Q \in \mathbb{K}_n[X]$. Clairement $\varphi(\lambda P + \mu Q) = \lambda \varphi(P) + \mu \varphi(Q)$. Soit $P \in \operatorname{Ker} \varphi$. On a $\varphi(P) = (0, \dots, 0)$ donc $P(a_0) = P(a_1) = \dots = P(a_n) = 0$. deg $P \leq n$ et P admet au moins n+1 racines distinctes donc P=0. Ker $\varphi = \{0\}$ donc φ est injectif. De plus dim $\mathbb{K}_n[X] = \dim \mathbb{K}^{n+1}$ donc φ est un isomorphisme.

Exercice 43: [énoncé]

 φ est clairement linéaire et si $P \in \operatorname{Ker} \varphi$ alors P a plus de racines (comptés avec multiplicité) que son degré donc P = 0. Ainsi φ est injective et puisque $\dim \mathbb{R}_{2n+1}[X] = \dim \mathbb{R}^{2n+2}$, φ est un isomorphisme.

Exercice 44: [énoncé]

On a $\operatorname{Im}(f+g) \subset \operatorname{Im} f + \operatorname{Im} g$ donc

 $\operatorname{rg}(f+g) \leq \dim(\operatorname{Im} f + \operatorname{Im} g) = \dim\operatorname{Im} f + \dim\operatorname{Im} g - \dim\operatorname{Im} f \cap \operatorname{Im} g \leq \operatorname{rg}(f) + \operatorname{rg}(g).$

Aussi

$$rg(f) = rg(f - g + g) \le rg(f - g) + rg(g)$$

donc

$$rg(f) - rg(g) \le rg(f - g).$$

On conclut par symétrie sachant rg(f - g) = rg(g - f).

Exercice 45 : [énoncé]

Le rang d'une application linéaire composée est inférieur aux rangs des applications linéaires qui la compose.

D'une part $rg(f \circ g), rg(g \circ f) \leq rg(f), rg(g)$

D'autre part $rg(f) = rg(f \circ g \circ f) \leq rg(g \circ f), rg(f \circ g), rg(g)$ et

 $rg(g) = rg(g \circ f \circ g) \le rg(f)$

Ces comparaisons permettent de conclure.

Exercice 46: [énoncé]

Facilement $\operatorname{Im}(f+g) \subset \operatorname{Im} f + \operatorname{Im} g$ donc

$$\operatorname{rg}(f+g) \le \dim(\operatorname{Im} f + \operatorname{Im} g) \le \operatorname{rg}(f) + \operatorname{rg}(g).$$

Puisque f = f + g + (-g),

$$rg(f) \le rg(f+g) + rg(-g) = rg(f+g) + rg(g).$$

Aussi $rg(g) \le rg(f+g) + rg(f)$ donc

$$\left| \operatorname{rg}(f) - \operatorname{rg}(g) \right| \le \operatorname{rg}(f+g).$$

Exercice 47: [énoncé]

(a) Pour tout $x \in E$, on a

$$(u+v)(x) = u(x) + v(x) \in \operatorname{Im} u + \operatorname{Im} v$$

donc

$$\operatorname{Im}(u+v) \subset \operatorname{Im} u + \operatorname{Im} v.$$

Puisque

$$\dim(F+G) \le \dim F + \dim G$$

on obtient

$$\operatorname{rg}(u+v) \le \operatorname{rg} u + \operatorname{rg} v.$$

De plus, on peut écrire

$$u = (u+v) + (-v)$$

donc

$$\operatorname{rg} u \le \operatorname{rg}(u+v) + \operatorname{rg}(-v) = \operatorname{rg}(u+v) + \operatorname{rg} v$$

puis

$$\operatorname{rg} u - \operatorname{rg} v \le \operatorname{rg}(u + v).$$

Aussi

$$\operatorname{rg} v - \operatorname{rg} u \le \operatorname{rg}(u+v)$$

et donc

$$\left| \operatorname{rg}(u) - \operatorname{rg}(v) \right| \le \operatorname{rg}(u+v).$$

- (b) Les endomorphismes $u = v = \mathrm{Id}_{\mathbb{R}^2}$ conviennent.
- (c) Les endomorphismes u = v = 0 conviennent..

Exercice 48: [énoncé]

 (\Longrightarrow) Supposons rg(f+g) = rg(f) + rg(g).

Sachant $\operatorname{Im}(f+g) \subset \operatorname{Im}(f) + \operatorname{Im}(g)$, on a

 $\operatorname{rg}(f+g) \leq \operatorname{rg}(f) + \operatorname{rg}(g) - \dim(\operatorname{Im}(f) \cap \operatorname{Im}(g))$ et donc $\dim(\operatorname{Im}(f) \cap \operatorname{Im}(g)) \leq 0$. Ainsi $\operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0\}$.

Sachant $Ker(f) \cap Ker(g) \subset Ker(f+g)$, on a

 $\dim \operatorname{Ker}(f) + \dim \operatorname{Ker}(g) - \dim (\operatorname{Ker}(f) + \operatorname{Ker}(g)) \le \dim \operatorname{Ker}(f+g).$

Par la formule du rang, on obtient alors

 $\dim E + \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g) + \dim(\operatorname{Ker}(f) + \operatorname{Ker}(g))$ et donc

 $\dim(\operatorname{Ker}(f) + \operatorname{Ker}(g)) \ge \dim E$. Ainsi $\operatorname{Ker}(f) + \operatorname{Ker}(g) = E$

 (\Leftarrow) Supposons $\text{Im}(f) \cap \text{Im}(g) = \{0\}$ et Ker(f) + Ker(g) = E.

Montrons $\operatorname{Im}(f+g) = \operatorname{Im}(f) + \operatorname{Im}(g)$.

On sait déjà $\operatorname{Im}(f+g) \subset \operatorname{Im}(f) + \operatorname{Im}(g)$.

Inversement, soit $x \in \text{Im}(f) + \text{Im}(g)$.

Il existe $a, b \in E$ tels que x = f(a) + g(b).

Puisque E = Ker(f) + Ker(g), on peut écrire a = u + v avec $u \in \text{Ker}(f)$ et $v \in \text{Ker}(q)$. On a alors f(a) = f(v).

De même, on peut écrire g(b) = g(w) avec $w \in \text{Ker}(f)$.

On a alors x = f(v) + g(w) = (f + g)(v + w) car f(w) = 0 et g(v) = 0. Ainsi $x \in \text{Im}(f + g)$.

Finalement $\operatorname{Im}(f+g) = \operatorname{Im}(f) + \operatorname{Im}(g)$.

Par suite $\operatorname{rg}(f+g) = \operatorname{rg}(f) + \operatorname{rg}(g) - \dim(\operatorname{Im}(f) \cap \operatorname{Im}(g)) = \operatorname{rg}(f) + \operatorname{rg}(g)$.

Exercice 49 : [énoncé]

- (a) $\operatorname{Im}(f \circ g) \subset \operatorname{Im} f$ donc $\operatorname{rg}(f \circ g) \leq \operatorname{rg} f$.
 - $\operatorname{Im}(f \circ g) = f(\operatorname{Im} g) = \operatorname{Im} f_{\upharpoonright \operatorname{Im} g}.$

Puisque la dimension d'une image est toujours inférieure à la dimension de l'espace de départ $\operatorname{rg}(f\circ g)\leq \dim\operatorname{Im} g=\operatorname{rg} g$.

(b) $\operatorname{rg}(f \circ g) = \dim f(\operatorname{Im} g)$.

Par le théorème du rang appliqué à l'application linéaire $f_{\lceil \operatorname{Im} g \rceil}$, $\dim f(\operatorname{Im} g) + \dim \operatorname{Ker} f_{\lceil \operatorname{Im} g \rceil} = \dim \operatorname{Im} g$ donc $\operatorname{rg}(f \circ g) = \operatorname{rg} g - \dim \operatorname{Ker} f_{\lceil \operatorname{Im} g \rceil} = \operatorname{CKer} f$ donc $\dim \operatorname{Ker} f_{\lceil \operatorname{Im} g \rceil} \leq \dim E - \operatorname{rg} f$ puis $\operatorname{rg}(f \circ g) > \operatorname{rg} f + \operatorname{rg} g - \dim E$.

Exercice 50 : [énoncé]

 $g \circ f = \tilde{0}$ donne Im $f \subset \text{Ker } g$ donc $\text{rg}(f) \leq \dim \text{Ker } g = \dim E - \text{rg}(g)$. Par suite $\text{rg}(f) + \text{rg}(g) \leq \dim E$.

f+g bijectif donne $\operatorname{Im} f+g=E$. Or $\operatorname{Im} f+g\subset \operatorname{Im} f+\operatorname{Im} g$ d'où $\dim E\leq \operatorname{rg}(f)+\operatorname{rg}(g)$.

Exercice 51: [énoncé]

Puisque $u^3 = \tilde{0}$, on a Im $u^2 \subset \text{Ker } u$ et donc

 $\operatorname{rg} u^2 < \dim \operatorname{Ker} u$.

Or par la formule du rang

 $\operatorname{rg} u + \dim \operatorname{Ker} u = \dim E$

donc

$$\operatorname{rg} u + \operatorname{rg} u^2 \le \dim E.$$

Exercice 52 : [énoncé]

On a

$$f = f \circ \mathrm{Id}_E = f^2 + f \circ g.$$

Montrons $f \circ g = \tilde{0}$ en observant Im $g \subset \operatorname{Ker} f$.

Pour cela montrons $\operatorname{Im} g = \operatorname{Ker} f$ en observant

$$\operatorname{rg} g = \dim \operatorname{Ker} f \in \operatorname{Im} g.$$

Puisque rg $f + rg q = \dim E$ et puisque par la formule du rang, $\operatorname{rg} f + \dim \operatorname{Ker} f = \dim E$, on peut affirmer $\operatorname{rg} q = \dim \operatorname{Ker} f$.

D'autre part, pour $x \in \text{Ker } f$, on a x = f(x) + g(x) = g(x) donc $x \in \text{Im } g$. Ainsi

 $\operatorname{Ker} f \subset \operatorname{Im} q$. Par inclusion et égalité des dimension Ker f = Im q puis $f \circ q = \tilde{0}$ donc $f^2 = f$.

Ainsi, f est un projecteur et $g = \mathrm{Id}_E - f$ est son projecteur complémentaire.

Exercice 53: [énoncé]

On a

$$\mathbb{K}^n = \operatorname{Im}(u+v) \subset \operatorname{Im} u + \operatorname{Im} v$$

donc $\operatorname{rg}(u) + \operatorname{rg}(v) > n$ puis $\operatorname{rg} u + \operatorname{rg} v = n$

Si $x \in \text{Ker } u \text{ alors } x = u(x) + v(x) = v(x) \text{ donc } x \in \text{Im } v.$ Par les dimensions, on conclut Ker $u = \operatorname{Im} v$ et de même Ker $v = \operatorname{Im} u$. Par suite $u \circ v = v \circ u = 0$ et donc aisément $u^2 = u$ et $v^2 = v$.

Exercice 54: [énoncé]

- (a) $\forall \vec{y} \in \text{Im } f^{p+1}, \ \exists \vec{x} \in E, \ \vec{y} = f^{p+1}(\vec{x}) = f^p(f(\vec{x})) \in \text{Im } f^p \ \text{donc } I_{p+1} \subset I_p.$ $\forall \vec{x} \in \text{Ker } f^p$, on a $f^p(\vec{x}) = \vec{o}$ donc $f^{p+1}(\vec{x}) = f(\vec{o}) = \vec{o}$ puis $\vec{x} \in \text{Ker } f^{p+1}$. Ainsi $N_n \subset N_{n+1}$.
- (b) La suite dim I_p est une suite décroissante d'entiers naturels donc il existe $s \in \mathbb{N}$ tel que dim $I_s = \dim I_{s+1}$. Par inclusion et égalité des dimensions, on a alors $I_s = I_{s+1}$.

De plus, par le théorème du rang :

 $\dim N_s = \dim E - \dim I_s = \dim E - \dim I_{s+1} = \dim N_{s+1}.$

Par inclusion et égalité des dimensions, on a alors $N_s = N_{s+1}$

(c) Montrons par récurrence sur $s \geq r$ que $I_s = I_r$.

La propriété est vraie au rang r.

Supposons la propriété vraie au rang s.

On sait déjà que $I_{s+1} \subset I_s$.

 $\forall \vec{y} \in I_s, \ \exists \vec{x} \in E \text{ tel que } \vec{y} = f^s(\vec{x}) = f^{s-r}(f^r(\vec{x})).$

Or $f^r(\vec{x}) \in I_r = I_{r+1}$ donc $\exists \vec{u} \in E$ tel que $f^r(\vec{x}) = f^{r+1}(\vec{u})$ et alors $\vec{y} = f^{s+1}(\vec{u}) \in I_{s+1}$

Ainsi $I_{s+1} = I_s$ puis, par hypothèse de récurrence : $I_{s+1} = I_r$.

Par le théorème du rang : $\dim N_r + \dim I_r = \dim E = \dim N_s + \dim I_s$ donc par inclusion et égalité des dimensions : $\forall s > r, N_s = N_r$.

(d) Soit $\vec{x} \in I_r \cap N_r$. Il existe $\vec{u} \in E$ tel que $\vec{x} = f^r(\vec{u})$ et on a $f^r(\vec{x}) = \vec{o}$. Par suite $\vec{u} \in N_{2r}$, or $N_{2r} = N_r$ donc $\vec{x} = f^r(\vec{u}) = \vec{o}$. Par suite $I_r \cap N_r = \{\vec{o}\}$. De plus, par le théorème du rang : $\dim I_r + \dim N_r = \dim E$ donc I_r et N_r sont supplémentaires dans E.

Exercice 55 : [énoncé]

(a) Si $\vec{x} \in \text{Ker } h$ alors $\vec{x} \in \text{Ker } q \circ f$ et si $\vec{x} \in \text{Ker } f$ alors $\vec{x} \in \text{Ker } q \circ f$ donc $\operatorname{Ker} h + \operatorname{Ker} f \subset \operatorname{Ker} q \circ f$.

Inversement, soit $\vec{x} \in \text{Ker } q \circ f$. On peut écrire $\vec{x} = \vec{u} + \vec{v}$ avec $\vec{u} \in H$ et $\vec{v} \in \text{Ker } f$.

 $(q \circ f)(\vec{x}) = \vec{0} \text{ donc } h(\vec{u}) = (q \circ f)(\vec{u}) = \vec{0} \text{ d'où } \vec{x} \in \text{Ker } h + \text{Ker } f.$

(b) f réalise une bijection de H vers Im f donc $\operatorname{rg}(h) = \operatorname{rg}(g|_{\operatorname{Im} f})$ $\operatorname{rg}(g|_{\operatorname{Im} f}) + \dim \operatorname{Ker} g|_{\operatorname{Im} f} = \dim \operatorname{Im} f \operatorname{donc}$

$$\operatorname{rg}(h) = \operatorname{rg}(f) - \dim \operatorname{Ker} g|_{\operatorname{Im} f} \ge \operatorname{rg}(f) - \dim \operatorname{Ker} g.$$

(c) $\dim \operatorname{Ker} g \circ f \leq \dim \operatorname{Ker} h + \dim \operatorname{Ker} f$.

 $\dim \operatorname{Ker} h = \dim H - \operatorname{rg}(h) < \operatorname{rg}(f) - (\operatorname{rg} f - \dim \operatorname{Ker} q) < \dim \operatorname{Ker} q$

puis l'inégalité voulue.

Exercice 56: [énoncé]

Pour φ, ψ applications linéaires composables

 $\operatorname{rg}(\psi \circ \varphi) = \dim \operatorname{Im} \psi_{\operatorname{Im} \varphi} = \operatorname{rg} \varphi - \dim (\operatorname{Im} \varphi \cap \operatorname{Ker} \psi).$

Ainsi

$$rg(h \circ g \circ f) = rg(g \circ f) - \dim(Im(g \circ f) \cap Ker h)$$

 $_{
m et}$

$$\operatorname{rg}(h \circ g) = \operatorname{rg} g - \dim(\operatorname{Im} g \cap \operatorname{Ker} h).$$

Puisque

$$\operatorname{Im}(g \circ f) \subset \operatorname{Im} g$$

on a

$$\dim(\operatorname{Im}(g \circ f) \cap \operatorname{Ker} h) \leq \dim(\operatorname{Im} g \cap \operatorname{Ker} h)$$

ce qui fournit l'inégalité demandée.

Exercice 57: [énoncé]

La deuxième inégalité est bien connue et provient de $\operatorname{Im}(u \circ v) \subset \operatorname{Im} u$ qui donne $\operatorname{rg}(u \circ v) \leq \operatorname{rg} u$ et de $\operatorname{Im}(u \circ v) = u(v(E)) = \operatorname{Im} u_{\restriction v(E)}$ qui donne $\operatorname{rg}(u) \leq \operatorname{rg} v$ car le rang d'une application linéaire est inférieure à la dimension de l'espace de départ. Montrons maintenant la première inégalité.

Comme déjà écrit $\operatorname{Im}(u \circ v) = \operatorname{Im} u_{\restriction v(E)}$ donc par la formule du rang

$$\operatorname{rg}(u \circ v) = \dim v(E) - \dim \operatorname{Ker} u_{\upharpoonright v(E)}.$$

Or $\operatorname{Ker} u_{\upharpoonright v(E)} \subset \operatorname{Ker} u$ donc

$$rg(u \circ v) \ge rg v - \dim Ker u = rg u + rg v - \dim F.$$

Exercice 58 : [énoncé]

Par le théorème du rang,

$$\dim(\operatorname{Ker}(g \circ f)) = \dim E - \operatorname{rg}(g \circ f).$$

Or

$$\operatorname{rg}(g \circ f) = \dim g(f(E)) = \operatorname{rg} g_{\upharpoonright f(E)}.$$

Par le théorème du rang,

$$\operatorname{rg} g_{\restriction f(E)} = \dim f(E) - \dim(\operatorname{Ker} g_{\restriction f(E)}).$$

Or $\operatorname{Ker} g_{\restriction f(E)} \subset \operatorname{Ker} g$ donc

$$\operatorname{rg}(g_{\restriction f(E)}) \ge \dim f(E) - \dim(\operatorname{Ker} g).$$

Enfin, par le théorème du rang,

$$\dim f(E) = \operatorname{rg} f = \dim E - \dim(\operatorname{Ker} f).$$

Au final.

$$\dim(\operatorname{Ker}(g \circ f)) \le \dim(\operatorname{Ker} f) + \dim(\operatorname{Ker} g).$$

Exercice 59 : [énoncé]

Considérons $f_{\uparrow F}$ restriction de f au départ de F et à l'arrivée dans E. Ker $f_{\uparrow F} = \operatorname{Ker} f \cap F$ et $\operatorname{rg} f_{\uparrow F} \leq \operatorname{rg} f$. L'application du théorème du rang $f_{\uparrow F}$ permet alors de conclure.

Exercice 60 : [énoncé]

La formule du rang du rang donne

$$\dim E_k = \dim \operatorname{Im} u_k + \dim \operatorname{Ker} u_k$$

donc, sachant dim Im $u_k = \dim \operatorname{Ker} u_{k+1}$ on obtient :

$$\sum_{k=1}^{n} (-1)^k \dim E_k = \sum_{k=2}^{n} (-1)^{k-1} \dim \operatorname{Ker} u_k + \sum_{k=1}^{n} (-1)^k \dim \operatorname{Ker} u_k = -\dim \operatorname{Ker} u_1 = 0$$

car $\text{Im } u_n = \{0\} \text{ et } \text{Ker } u_1 = \text{Im } u_0 = \{0\}.$

Exercice 61: [énoncé]

Soient $k, \ell \in \mathbb{N}$. Considérons le sous-espace vectoriel

$$F = \operatorname{Ker} u^{k+\ell}$$

et introduisons l'application linéaire restreinte $v\colon F\to E$ définie par

$$\forall x \in F, v(x) = u^{\ell}(x).$$

On vérifie aisément

$$\operatorname{Ker} v \subset \operatorname{Ker} u^{\ell} \text{ et } \operatorname{Im} v \subset \operatorname{Ker} u^{k}$$

La formule du rang appliquée à v donne

$$\dim(\operatorname{Ker} u^{k+\ell}) = \operatorname{rg} v + \dim \operatorname{Ker} v$$

ce qui donne

$$\dim(\operatorname{Ker} u^{k+\ell}) \le \dim(\operatorname{Ker} u^k) + \dim(\operatorname{Ker} u^\ell).$$

Exercice 62: [énoncé]

(a) $\operatorname{Ker} h \subset \operatorname{Ker} f$ donc $\dim \operatorname{Ker} h \leq \dim \operatorname{Ker} f$. En appliquant la formule du rang à f et à h on obtient

$$\dim \operatorname{Ker} f = n - \operatorname{rg} f \text{ et } \dim \operatorname{Ker} h = \operatorname{rg} g - \operatorname{rg} h.$$

On en déduit

$$\operatorname{rg} f + \operatorname{rg} g - n \le \operatorname{rg} h.$$

Or $\text{Im}(f \circ g) = \text{Im} h \text{ donc } \text{rg}(f \circ g) = \text{rg} h \text{ et on peut conclure.}$

(b) Un endomorphisme f vérifie $f^2=0$ si, et seulement si, ${\rm Im}\, f\subset {\rm Ker}\, f$ ce qui entraı̂ne, en dimension 3, ${\rm rg}\, f=1$.

Si l'endomorphisme f n'est pas nul, en choisissant $x \in E$ tel que $x \notin \operatorname{Ker} f$ et en complétant le vecteur $f(x) \in \operatorname{Ker} f$, en une base (f(x), y) de $\operatorname{Ker} f$, on obtient que la matrice de f dans la base (x, f(x), y) est

$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Inversement, un endomorphisme f représenté par une telle matrice vérifie $f^2=0$.

Exercice 63: [énoncé]

- (a) $\operatorname{rg}(f^2) = \operatorname{rg}(f) \Longrightarrow \operatorname{Im}(f^2) = \operatorname{Im}(f)$ car on sait $\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$. Par le théorème du rang $\operatorname{Ker}(f^2) = \operatorname{Ker}(f)$ car on sait $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$.
- (b) Soit $x \in \text{Ker}(f) \cap \text{Im}(f)$. On peut écrire x = f(a). Comme f(x) = 0, on a $a \in \text{Ker}(f^2) = \text{Ker}(f)$ donc x = 0. Par le théorème du rang, on conclut.

Exercice 64: [énoncé]

donc en sommant

On a

$$\dim(\operatorname{Im} u \cap \operatorname{Im} v) = \operatorname{rg} u + \operatorname{rg} v - \dim(\operatorname{Im} u + \operatorname{Im} v) = \operatorname{rg} u + \operatorname{rg} v - \dim E$$

 $_{
m et}$

 $\dim(\operatorname{Ker} u\cap\operatorname{Ker} v)=\dim\operatorname{Ker} u+\dim\operatorname{Ker} v-\dim(\operatorname{Ker} u+\operatorname{Ker} v)=\dim\operatorname{Ker} u+\dim\operatorname{Ker} v-\dim\operatorname{\cancel{E}}\in\operatorname{Im} g.$ Par symétrie

$$\dim(\operatorname{Im} u \cap \operatorname{Im} v) + \dim(\operatorname{Ker} u \cap \operatorname{Ker} v) = 0$$

car en vertu du théorème du rang

$$\dim E = \operatorname{rg} u + \dim \operatorname{Ker} u = \operatorname{rg} v + \dim \operatorname{Ker} v.$$

Par suite

$$\dim(\operatorname{Im} u \cap \operatorname{Im} v) = \dim(\operatorname{Ker} u \cap \operatorname{Ker} v) = 0$$

et donc

$$\operatorname{Im} u \cap \operatorname{Im} v = \operatorname{Ker} u \cap \operatorname{Ker} v = \{0_E\}.$$

Les espaces $\operatorname{Im} u$ et $\operatorname{Im} v$ sont supplémentaires dans E. De même pour $\operatorname{Ker} u$ et $\operatorname{Ker} v$.

Exercice 65: [énoncé]

Soit $x \in \text{Ker}(f - \text{Id}_E) \cap \text{Im}(f - \text{Id}_E)$.

On a f(x) = x et on peut écrire $x = (f - \mathrm{Id}_E)(a) = f(a) - a$.

$$f(x) = f^2(a) - f(a), f^2(x) = f^3(a) - f^2(a) = a - f^2(a)$$
 puis $x + f(x) + f^2(x) = 0$.
Or $x + f(x) + f^2(x) = 3x$ donc $x = 0$.

Soit $x \in E$.

Analyse : Supposons x = u + v avec $u \in \text{Ker}(f - \text{Id}_E)$ et $v \in \text{Im}(f - \text{Id}_E)$.

On peut écrire v = f(a) - a.

Ainsi x = u + f(a) - a, $f(x) = u + f^2(a) - f(a)$, $f^2(x) = u + a - f^2(a)$.

Donc $u = \frac{1}{3}(x + f(x) + f^2(x)).$

Synthèse : Posons $u = \frac{1}{3}(x + f(x) + f^2(x))$ et v = x - u.

On a f(u) = u car $f^3(x) = x$ et

$$v = \frac{2}{3}x - \frac{1}{3}f(x) - \frac{1}{3}f^{2}(x) = \frac{1}{3}x - \frac{1}{3}f(x) - \frac{1}{3}f^{2}(x) + \frac{1}{3}f^{3}(x)$$

donc

$$v = (f - \mathrm{Id}_E) \left(-\frac{1}{3}x + \frac{1}{3}f^2(x) \right) \in \mathrm{Im}(f - \mathrm{Id}_E).$$

Finalement $\operatorname{Ker}(f - \operatorname{Id}_E) \oplus \operatorname{Im}(f - \operatorname{Id}_E) = E$.

Exercice 66: [énoncé]

(a) Si $x \in \text{Ker } f$ alors $g(x) = (f \circ g \circ f)(x) = 0$ donc $x \in \text{Ker } g$. Par symétrie

$$\operatorname{Ker} f = \operatorname{Ker} g$$
.

Si $y \in \text{Im } f$ alors il existe $a \in E$ tel que $y = f(a) = (g \circ f \circ g)(a)$ donc $f \in \text{Im } g$. Par symétrie

$$\operatorname{Im} f = \operatorname{Im} g.$$

(b) Soit $x \in F \cap G$. Il existe $a \in E$ tel que x = g(a) or

$$f(a) = (g \circ f \circ g)(a) = (g \circ f)(x) = g(0) = 0.$$

Ainsi $a \in \text{Ker } f = \text{Ker } g \text{ d'où } x = g(a) = 0.$

Soit $x \in E$.

Analyse:

Supposons x = u + v avec $u \in F = \text{Ker } f \text{ et } v = g(a) \in G = \text{Im } g$.

On a

$$f(x) = (f \circ g)(a)$$

donc

$$(g \circ f)(x) = f(a)$$

Synthèse:

Puisque $(g \circ f)(x) \in \operatorname{Im} g = \operatorname{Im} f$, il existe $a \in E$ tel que

$$(g \circ f)(x) = f(a).$$

Posons alors v = g(a) et u = x - v. On a immédiatement $v \in \text{Im } g$ et x = u + v.

On a aussi $u \in \text{Ker } f$ car

$$f(u) = f(x) - f(v) \in \operatorname{Im} f$$

 $_{
m et}$

$$g(f(u)) = (g \circ f)(x) - (g \circ f \circ g)(a) = (g \circ f)(x) - f(a) = 0.$$

Ainsi

$$f(u) \in \operatorname{Ker} g \cap \operatorname{Im} f$$

puis

$$f(u) = 0.$$

Exercice 67: [énoncé]

Soit $x \in \operatorname{Ker} f \cap \operatorname{Im} g$. On peut écrire x = g(a) avec $a \in E$. On a alors

$$f(g(a)) = 0$$

puis

$$x = q(a) = (q \circ f \circ q)(a) = q(0) = 0.$$

Soit $x \in E$. On peut écrire x = a + b avec

$$a = x - q(f(x))$$
 et $b = q(f(x))$.

On vérifie immédiatement $b \in \operatorname{Im} g$ et on obtient $a \in \operatorname{Ker} f$ par

$$f(a) = f(x) - f(g(f(x))) = 0.$$

Exercice 68: [énoncé]

(a) Soit $x \in \text{Im } f \cap \text{Ker } g$. Il existe $a \in E$ tel que x = f(a) donc

$$x = f(a) = (f \circ g \circ f)(a) = (f \circ g)(x) = 0.$$

Soit $x \in E$.

Analyse:

Supposons x = u + v avec $u = f(a) \in \text{Im } f$ et $v \in \text{Ker } g$.

 $g(x) = g \circ f(a)$ donc $(f \circ g)(x) = f(a) = u$.

Synthèse:

Posons $u = (f \circ g)(x)$ et v = x - u.

On a $u \in \text{Im } f$, x = u + v et g(v) = g(x) - g(u) = 0 i.e. $v \in \text{Ker } g$.

(b) On a $f(\operatorname{Im} g) \subset \operatorname{Im} f$ et $\forall y \in \operatorname{Im} f$ on peut écrire y = f(x) avec x = g(a) + u et $u \in \operatorname{Ker} f$.

On a alors $y = f(g(a)) \in f(\operatorname{Im} g)$.

Exercice 69: [énoncé]

Puisque $p_1 + \cdots + p_m = \mathrm{Id}_E$, on a pour tout $x \in E$,

$$x = p_1(x) + \dots + p_m(x) \in \sum_{k=1}^{m} F_k.$$

Ainsi

$$E \subset \sum_{k=1}^{m} F_k.$$

De plus

$$\dim E = \operatorname{tr} \operatorname{Id}_E = \sum_{k=1}^m \operatorname{tr} p_k.$$

Or les p_k sont des projecteurs, donc $\operatorname{tr} p_k = \operatorname{rg} p_k = \dim F_k$. Ainsi

$$\dim E = \sum_{k=1}^{m} \dim F_k.$$

On peut alors conclure $E = \sum_{k=1}^{m} F_k$ puis $E = \bigoplus_{k=1}^{m} F_k$.

Exercice 70 : [énoncé]

Si un tel endomorphisme f existe alors

$$\dim E = \operatorname{rg}(f) + \dim \operatorname{Ker} f = 2\operatorname{rg}(f)$$

donc n est pair.

Inversement si n est pair, n=2p avec $p\in\mathbb{N}$

Si p = 0, l'endomorphisme nul convient.

Si p > 0, soit $e = (e_1, \ldots, e_{2p})$ une base de E et $f \in \mathcal{L}(E)$ défini par :

$$f(e_1) = 0_E, \dots, f(e_p) = 0_E, f(e_{p+1}) = e_1, \dots, f(e_{2p}) = e_p.$$

Pour cet endomorphisme, il est clair que $\text{Vect}(e_1, \dots, e_p) \subset \text{Im } f$ et $\text{Vect}(e_1, \dots, e_p) \subset \text{Ker } f$.

Par suite dim Im f, dim Ker $f \ge p$ et par le théorème du rang dim Im f, dim Ker f = p.

Par inclusion et égalité des dimensions

$$\operatorname{Im} f = \operatorname{Vect}(e_1, \dots, e_p) = \operatorname{Ker} f.$$

Exercice 71: [énoncé]

Posons $e_1 = (1, 0, 0), e_2 = (1, 1, 0)$ et $e_3 = (1, 1, 1)$.

Il est immédiat d'observer que (e_1, e_2, e_3) est une base de E.

Une application linéaire est entièrement caractérisée par l'image des vecteurs d'une base, par suite f existe et est unique.

$$(x, y, z) = (x - y)e_1 + (y - z)e_2 + ze_3$$
 donc

$$f(x, y, z) = (x - y)f(e_1) + (y - z)f(e_2) + zf(e_3) = (y, x - y + z).$$

 $\operatorname{Ker} f = \operatorname{Vect} u \text{ avec } u = (1, 0, -1).$

Par le théorème du rang dim Im f=2 et donc Im $f=\mathbb{R}^2$.

Exercice 72 : [énoncé]

(a) $C(f) \subset \mathcal{L}(E)$, $\tilde{0} \in C(f)$. Soient $\lambda, \mu \in \mathbb{K}$ et $g, h \in C(f)$. On a

$$f \circ (\lambda q + \mu h) = \lambda (f \circ q) + \mu (f \circ h) = \lambda (g \circ f) + \mu (h \circ f) = (\lambda g + \mu h) \circ f$$

donc $\lambda g + \mu h \in \mathcal{C}(f)$.

(b) Supposons

$$\lambda_0 a + \lambda_1 f(a) + \dots + \lambda_{n-1} f^{n-1}(a) = 0_E.$$

En appliquant f^{n-1} à cette relation, on obtient $\lambda_0 f^{n-1}(a) = 0_E$ et donc $\lambda_0 = 0$ car $f^{n-1}(a) \neq 0_E$.

En répétant l'opération, on obtient successivement la nullité de chaque λ_k . La famille $(a, f(a), \ldots, f^{n-1}(a))$ est alors libre puis base de E car constituée de $n = \dim E$ vecteurs de E.

(c) L'application φ_a est linéaire car

$$\varphi_a(\lambda f + \mu g) = \lambda f(a) + \mu g(a) = \lambda \varphi_a(f) + \mu \varphi_a(g).$$

Si $\varphi_a(g) = 0_E$ alors $g(a) = 0_E$ puis $g(f(a)) = f(g(a)) = 0_E$, etc. L'application g est alors nulle sur une base et c'est donc l'application nulle. Ainsi φ_a est injective.

Soit $b \in E$. Considérons l'application linéaire q définie par

$$g(a) = b, g(f(a)) = f(b), \dots, g(f^{(n-1)}(a)) = f^{(n-1)}(b).$$

L'application linéaire g est entièrement définie par l'image d'une base et l'on vérifie $g \circ f = f \circ g$ sur chaque vecteur de cette base. Ainsi $g \in \mathcal{C}(f)$ et l'on vérifie $\varphi_a(g) = b$. Ainsi φ_a est surjective.

(d) Par l'isomorphisme dim C(f) = n.

Il est immédiat de vérifier $\operatorname{Vect}(\operatorname{Id}, f, \dots, f^{n-1}) \subset \mathcal{C}(f)$ ainsi que la liberté de la famille $(\operatorname{Id}, f, \dots, f^{n-1})$.

Par inclusion et égalité des dimensions, on conclut $C(f) = \text{Vect}(\text{Id}, f, \dots, f^{n-1}).$

Exercice 73: [énoncé]

Puisque Im $f^2 \subset \text{Im } f \subset \mathbb{R}^6$, on a $3 \leq \text{rg } f \leq 6$.

Si rg f=6 alors f est un isomorphisme, donc f^2 aussi et rg $f^2=6$. Contradiction. Si rg f=5 alors dim Ker f=1. Considérons $g=f|_{\mathrm{Im}\, f}$. Par le théorème du rang dim Ker $g=5-\mathrm{rg}\, g$. Or $\mathrm{Im}\, g\subset \mathrm{Im}\, f^2$ donc $\mathrm{rg}\, g\leq 3$ et par suite dim Ker $g\geq 2$. Or Ker $g\subset \mathrm{Ker}\, f$ donc dim Ker $f\geq 2$. Contradiction.

 $\operatorname{rg} f = 3$ et $\operatorname{rg} f = 4$ sont possibles en considérant :

Exercice 74 : [énoncé]

L'application Φ est bien définie et celle-ci est linéaire car, pour tous $\lambda, \mu \in \mathbb{K}$ et tous $u, v \in \mathcal{L}(E)$.

$$\Phi(\lambda u + \mu v) = ((\lambda u + \mu v)(e_i))_{1 \le i \le n}$$

$$= (\lambda u(e_i) + \mu v(e_i))_{1 \le i \le n}$$

$$= \lambda (u(e_i))_{1 \le i \le n} + \mu (v(e_i))_{1 \le i \le n} = \lambda \Phi(u) + \mu \Phi(v).$$

De plus, l'application linéaire Φ opère entre deux espaces vectoriels de dimensions finies égales puisque

$$\dim \mathcal{L}(E) = \dim(E) \times \dim(E) = n^2 = n \times \dim E = \dim(E^n).$$

L'application Φ est donc un isomorphisme si, et seulement si, celle-ci est injective.

On montre que Φ est injective si, et seulement si, la famille (e_1, \ldots, e_n) est une base de E.

(\Leftarrow) Supposons que la famille (e_1,\ldots,e_n) soit une base de E et étudions le noyau de Φ . Soit $u\in \mathrm{Ker}(\Phi)$. On a

$$\Phi(u) = 0_{E^n}$$
 donc $u(e_1) = \dots = u(e_n) = 0_E$.

Pour x vecteur arbitraire de E, on peut écrire $x = \lambda_1 e_1 + \cdots + \lambda_n e_n$ et alors, par linéarité de u,

$$u(x) = \lambda_1 u(e_1) + \cdots + \lambda_n u(e_n) = 0_E$$
.

On en déduit 1 que l'application u est nulle. Ainsi, le noyau de Φ est réduit à l'endomorphisme nul et on peut conclure que Φ est un isomorphisme.

 (\Longrightarrow) Supposons que Φ soit un isomorphisme. Soit p la projection sur l'espace $F = \mathrm{Vect}(e_1, \ldots, e_n)$ parallèlement à un espace supplémentaire arbitraire. On a $p(e_i) = e_i$ pour tout $i \in [\![1]; n]\!]$ et donc $\Phi(p) = \Phi(\mathrm{Id}_E)$. Par injectivité de Φ , il vient $p = \mathrm{Id}_E$ et p est donc la projection sur l'espace E. On en déduit $\mathrm{Vect}(e_1, \ldots, e_n) = E$. La famille (e_1, \ldots, e_n) est alors génératrice de E et puisqu'elle est de longueur $p = \dim E$, c'est une base de E.

Exercice 75 : [énoncé]

Ker φ est un hyperplan de E et Vect u une droite car $u \neq 0_E$ puisque $u \notin \operatorname{Ker} \varphi$. Ker $\varphi + \operatorname{Vect}(u)$ est un sous-espace vectoriel de E contenant Ker φ , donc de dimension n-1 ou n.

Si dim Ker φ + Vect(u) = n - 1 alors par inclusion et égalité des dimensions

$$\operatorname{Ker} \varphi + \operatorname{Vect}(u) = \operatorname{Ker} \varphi.$$

Or $u \in \text{Ker } \varphi + \text{Vect}(u)$ et $u \notin \text{Ker } \varphi$. Ce cas est donc exclu. Il reste dim $\text{Ker } \varphi + \text{Vect}(u) = n$ i.e.

$$\operatorname{Ker} \varphi + \operatorname{Vect}(u) = E.$$

Comme de plus

$$\dim \operatorname{Ker} \varphi + \dim \operatorname{Vect}(u) = n - 1 + 1 = n = \dim E$$

on peut affirmer que la somme est directe et donc $\operatorname{Ker} \varphi$ et $\operatorname{Vect}(u)$ sont supplémentaires dans E.

Exercice 76: [énoncé]

Soit φ une forme linéaire ne s'annulant pas sur x. Celle-ci n'est pas combinaison linéaire de la famille (f_1, \ldots, f_n) . Cette famille n'est donc pas génératrice et par suite elle est liée car formée de $n = \dim E^*$ éléments de E^* .

Exercice 77: [énoncé]

Si f = 0 la propriété est immédiate.

Sinon $f^2 = 0$ donne Im $f \subset \operatorname{Ker} f$ et en vertu du théorème du rang, dim Im f = 1. Soit a un vecteur directeur de la droite Im f. Pour tout $x \in \mathbb{R}^3$, il existe un unique $\alpha \in \mathbb{R}$ tel que $f(x) = \alpha.a$. Posons $\varphi(x) = \alpha$ ce qui définit $\varphi \colon \mathbb{R}^3 \to \mathbb{R}$. Les identités

$$f(\lambda x + \mu y) = \varphi(\lambda x + \mu y)a$$

 $_{
m et}$

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y) = (\lambda \varphi(x) + \mu \varphi(y))a$$

avec $a \neq 0_E$ donnent la linéarité

$$\varphi(\lambda x + \mu y) = \lambda \varphi(x) + \mu \varphi(y).$$

L'application φ est donc une forme linéaire sur \mathbb{R}^3 .

Exercice 78 : [énoncé]

Posons $\varphi_k \colon \mathbb{R}_n[X] \to \mathbb{R}$ la forme linéaire définie par

$$\varphi_k(P) = P(a_k).$$

Supposons

$$\lambda_0 \varphi_0 + \dots + \lambda_n \varphi_n = 0.$$

Pour tout polynôme $P \in \mathbb{R}_n[X]$, on a

$$\lambda_0 P(a_0) + \dots + \lambda_n P(a_n) = 0.$$

^{1.} Plus rapidement, on peut rappeler que l'image d'une base détermine entièrement une application linéaire.

Considérons le polynôme d'interpolation de Lagrange

$$L_k = \prod_{j \neq k} \frac{X - a_j}{a_k - a_j}$$

défini de sorte que

$$L_k \in \mathbb{R}_n[X]$$
 et $L_k(a_i) = \delta_{i,k}$.

En prenant $P = L_k$, on obtient $\lambda_k = 0$.

La famille $(\varphi_0, \ldots, \varphi_n)$ est libre et puisque formée de $n+1 = \dim(\mathbb{R}_n[X])^*$ éléments de $(\mathbb{R}_n[X])^*$, c'est une base de $(\mathbb{R}_n[X])^*$.

Puisque

$$\varphi \colon P \mapsto \int_0^1 P(t) \, \mathrm{d}t$$

est une forme linéaire sur $\mathbb{R}_n[X]$, on peut affirmer qu'il existe $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ unique vérifiant

$$\varphi = \lambda_0 \varphi_0 + \dots + \lambda_n \varphi_n.$$

Exercice 79: [énoncé]

Il est clair que les application F_j sont éléments de $(\mathbb{R}_n[X])^*$ espace de dimension n+1. Pour conclure, il suffit d'observer la liberté de la famille (F_0,\ldots,F_n) . Supposons $\lambda_0 F_0 + \cdots + \lambda_n F_n = 0$.

En appliquant cette égalité aux polynômes $1, 2X, \dots, (n+1)X^n$ on obtient les équations formant le système linéaire :

$$\begin{cases} \lambda_0 a_0 + \dots + \lambda_n a_n = 0 \\ \lambda_0 a_0^2 + \dots + \lambda_n a_n^2 = 0 \\ \dots \\ \lambda_0 a_0^{n+1} + \dots + \lambda_n a_n^{n+1} = 0. \end{cases}$$

Par un déterminant de Vandermonde, ce système est de Cramer ce qui entraîne

$$\lambda_0 = \ldots = \lambda_n = 0.$$

La famille est alors libre et constituée du bon nombre de vecteurs pour former une base de $(\mathbb{R}_n[X])^*$.

Exercice 80 : [énoncé]

Soient $x, y \in E$ tels que $x \neq y$.

Le vecteur x - y est non nul, il peut donc être complété pour former une base de E. La forme linéaire correspondant à la première application composante dans cette base est alors solution du problème posé.

Exercice 81 : [énoncé]

Si Ker f = Ker q alors le résultat est immédiat.

Sinon, pour des raisons de dimension, $\operatorname{Ker} f \not\subset \operatorname{Ker} g$ et $\operatorname{Ker} g \not\subset \operatorname{Ker} f$.

La somme d'un vecteur de Kerf qui ne soit pas dans Kerg et d'un vecteur de Kerg qui ne soit pas dans Kerf est solution.

Exercice 82: [énoncé]

Soit φ une forme linéaire ne s'annulant pas sur x. Celle-ci n'est pas combinaison linéaire des (f_1, \ldots, f_n) .

Cette famille n'est donc pas génératrice et par suite elle est liée car formée de $n = \dim E^*$ éléments de E^* .

Exercice 83: [énoncé]

Pour $f \in E^*$ et $g \in F^*$, posons $f \otimes g$ l'application définie sur $E \times F$ par $(f \otimes g)(x,y) = f(x) + g(y)$. Il est facile d'observer $f \otimes g \in (E \times F)^*$. Considérons $\varphi \colon E^* \times F^* \to (E \times F)^*$ définie par $\varphi(f,g) = f \otimes g$.

L'application φ est linéaire.

Si $\varphi(f,g) = 0$ alors pour tout $(x,y) \in E \times F$, f(x) + g(y) = 0.

Pour y=0, on peut affirmer f=0 et pour x=0, on affirme g=0. Ainsi (f,g)=(0,0) et donc φ est injective.

Soit $h \in (E \times F)^*$. Posons $f: x \mapsto h(x,0), g: y \mapsto h(y,0)$. On vérifie aisément $f \in E^*, g \in F^*$ et $\varphi(f,g) = h$ car h(x,y) = h(x,0) + h(0,y).

Exercice 84: [énoncé]

(a) L'espace $\mathcal{L}(E,\mathbb{K})$ des formes linéaires sur E a pour dimension

$$\dim \mathcal{L}(E, \mathbb{K}) = \dim E \times \dim \mathbb{K} = \dim E = n.$$

Une famille libre comportant nécessairement moins de vecteurs que la dimension de l'espace dans lequel elle évolue, on a $p \le n$.

(b) L'espace F est le noyau de l'application linéaire

$$\Phi \colon \left\{ \begin{array}{l} E \to \mathbb{K}^p \\ x \mapsto \left(\varphi_1(x), \dots, \varphi_p(x) \right). \end{array} \right.$$

Par la formule du rang, il suffit de calculer le rang de Φ pour déterminer la dimension de F. On procède matriciellement. Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base

de E. La matrice de l'application linéaire Φ relative à la base \mathcal{B} au départ et à la base canonique de \mathbb{K}^p à l'arrivée est

$$M = \begin{pmatrix} \varphi_1(e_1) & \cdots & \varphi_1(e_n) \\ \vdots & & \vdots \\ \varphi_p(e_1) & \cdots & \varphi_p(e_n) \end{pmatrix} \in \mathcal{M}_{p,n}(\mathbb{K}).$$

L'indépendance des formes linéaires $\varphi_1, \ldots, \varphi_p$ se lit sur les lignes de M.

Notons L_1, \ldots, L_p les lignes de M et introduisons $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$. Si la ligne $\lambda_1 L_1 + \cdots + \lambda_p L_p$ est nulle, la forme linéaire $\varphi = \lambda_1 \varphi_1 + \cdots + \lambda_p \varphi_p$ est nulle en chacun des vecteurs de la base \mathcal{B} de E et c'est donc la forme linéaire nulle. Par liberté de $(\varphi_1, \ldots, \varphi_p)$, on obtient $\lambda_1 = \cdots = \lambda_p = 0$. Ainsi, les lignes de la matrice M sont indépendantes ce qui détermine son rang : $\operatorname{rg}(M) = p$. Enfin, par la formule du rang,

$$\dim F = \dim \operatorname{Ker}(\Phi) = \dim E - \operatorname{rg}(\Phi) = n - p.$$

Exercice 85: [énoncé]

Lorsque la famille (v_1, \ldots, v_n) est une base, on inclut les vecteurs $v_i - v_j$ dans le noyau d'une forme linéaire non nulle.

Cas: La famille (v_1, \ldots, v_n) est liée. L'espace engendré par cette famille est alors de dimension inférieure ou égale à n-1. Or

$$\operatorname{Vect}((v_i - v_j)_{1 \le i, j \le n}) \subset \operatorname{Vect}(v_1, \dots, v_n)$$

et donc

$$\operatorname{rg}((v_i - v_j)_{1 \le i, j \le n}) = \dim \operatorname{Vect}((v_i - v_j)_{1 \le i, j \le n}) \le n - 1.$$

Cas: La famille (v_1, \ldots, v_n) est libre. Cette famille forme une base de l'espace E car celui-ci est de dimension n. On peut alors introduire une forme linéaire sur E en posant les images dans $\mathbb R$ des vecteurs de base v_i . Considérons φ la forme linéaire prenant la valeur 1 sur chaque vecteur v_i . Pour tous i, j compris entre 1 et n, on constate

$$\varphi(v_i - v_i) = \varphi(v_i) - \varphi(v_i) = 0.$$

Les vecteurs $v_i - v_j$ appartiennent donc tous au noyau de φ et, par conséquent,

$$\operatorname{Vect}((v_i - v_j)_{1 \le i, j \le n}) \subset \operatorname{Ker}(\varphi).$$

La forme linéaire φ étant non nulle, son noyau est de dimension n-1 et l'on retrouve

$$\operatorname{rg}((v_i - v_j)_{1 \le i, j \le n}) = \dim \operatorname{Vect}((v_i - v_j)_{1 \le i, j \le n}) \le n - 1.$$

Exercice 86: [énoncé]

- (a) Si u et v s'annulent sur G, il en est de même pour $\lambda u + \mu v$.
- (b) Soit H un supplémentaire de G dans E. L'application $\varphi \colon u \mapsto u_{\restriction H}$ définie un isomorphisme entre A et $\mathcal{L}(H,F)$. En effet la connaissance d'une application linéaire sur deux espaces supplémentaires la caractérise entièrement, ici $u_{\restriction G} = 0$ et donc $u_{\restriction H}$ détermine u. Par suite $\dim A = (\dim E \dim G) \times \dim F$.

Exercice 87: [énoncé]

Posons $F = \{g \in \mathcal{L}(E) \mid f \circ g = 0\}$. Soit $g \in \mathcal{L}(E)$. On a clairement $g \in F \iff \operatorname{Im} g \subset \operatorname{Ker} f$. Par conséquent $F = \mathcal{L}(E, \operatorname{Ker} f)$ d'où la dimension.

Exercice 88: [énoncé]

- (a) Si $f, g \in \mathcal{L}(E, F)$ s'annulent sur W, il en est de même de $\lambda f + \mu g \dots$
- (b) Soit V un supplémentaire de W dans E. L'application

$$\Phi: A \to \mathcal{L}(V, F)$$

qui à $f\in A$ associe sa restriction au départ de V est un isomorphisme car une application linéaire est entièrement déterminée par ses restrictions linéaires sur deux espaces supplémentaires.

On en déduit

$$\dim A = \dim \mathcal{L}(V, F) = (\dim E - \dim W) \times \dim F.$$

Exercice 89: [énoncé]

(a) A_F et B_F sont des parties de $\mathcal{L}(E)$ contenant l'endomorphisme nul. $\operatorname{Im}(\lambda f) \subset \operatorname{Im} f$ avec égalité si $\lambda \neq 0$ et $\operatorname{Im}(f+g) \subset \operatorname{Im} f + \operatorname{Im} g$ donc A_F est un sous-espace vectoriel de $\mathcal{L}(E)$.

Aussi Ker $f \subset \text{Ker}(\lambda f)$ et Ker $f \cap \text{Ker } g \subset \text{Ker}(f+g)$ donc B_F est un sous-espace vectoriel de $\mathcal{L}(E)$.

 A_F s'identifie avec $\mathcal{L}(E,F)$ donc

$$\dim A_F = np.$$

En introduisant G un supplémentaire de F dans E, B_F est isomorphe à $\mathcal{L}(G,E)$ et donc

$$\dim B_F = n(n-p).$$

(b) φ est linéaire en vertu de la linéarité du produit de composition.

$$f \in \operatorname{Ker} \varphi \iff \operatorname{Im} f \subset \operatorname{Ker} u$$

donc $\operatorname{Ker} \varphi = B_{\operatorname{Im} f}$ puis

$$\dim \operatorname{Ker} \varphi = n(n - \operatorname{rg} u).$$

(c) Si $v \in \operatorname{Im} \varphi$ alors il existe $f \in \mathcal{L}(E)$ tel que $v = u \circ f$ et donc $\operatorname{Im} v \subset \operatorname{Im} u$. Inversement si $\operatorname{Im} v \subset \operatorname{Im} u$ alors en introduisant (e_1, \ldots, e_n) une base de E, pour tout i, il existe $f_i \in E$ tel que $v(e_i) = u(f_i)$. Considérons alors l'endomorphisme f déterminé par $f(e_i) = f_i$. On vérifie $v = u \circ f$ car ces deux applications prennent mêmes valeurs sur une base. $\operatorname{Im} \varphi = A_{\operatorname{Im} u}$ donc

$$\operatorname{rg}\varphi=n\operatorname{rg} u.$$

Exercice 90 : [énoncé]

Notons $A = \{g \in \mathcal{L}(E, F) \mid f \circ g \circ f = 0\} = \{g \in \mathcal{L}(E, F) \mid \operatorname{Im}(g_{\lceil \operatorname{Im} f \rceil}) \subset \operatorname{Ker} f\}$ Soit G un supplémentaire de $\operatorname{Im} f$ dans E.

Un élément de A est entièrement déterminée par :

- sa restriction de $\operatorname{Im} f$ à valeurs dans $\operatorname{Ker} f$ et
- sa restriction de G à valeurs dans F.

Par suite A est isomorphe à $\mathcal{L}(\operatorname{Im} f, \operatorname{Ker} f) \times \mathcal{L}(G, F)$.

Il en découle dim $A = \dim E \dim F - (\operatorname{rg} f)^2$.

Exercice 91 : [énoncé]

- (a) On remarque que si $\deg P \leq m$ alors $\deg \Delta(P) \leq m-1$. On en déduit $\operatorname{Im} \Delta \subset \mathbb{R}_{n-1}[X]$, $\operatorname{Im} \Delta^2 \subset \mathbb{R}_{n-2}[X]$, . . puis $\Delta^{n+1} = 0$.
- (b) Introduisons l'endomorphisme $T: P(X) \mapsto P(X+1)$. On a $\Delta = T - \text{Id}$ et par la formule du binôme de Newton(T et Id commutent),

$$\sum_{k=0}^{n+1} (-1)^{n+1-k} \binom{n+1}{k} T^k = 0.$$

Ainsi pour

$$a_k = (-1)^k \binom{n+1}{k}$$

on a

$$\forall P \in \mathbb{R}_n[X], \sum_{k=0}^{n+1} a_k P(X+k) = 0.$$

Exercice 92 : [énoncé]

- (a) Δ est clairement linéaire. Soit $P \in \mathbb{C}[X]$ non nul et $n = \deg P$. On peut écrire $P = a_0 + a_1 X + \dots + a_n X^n$ avec $a_n \neq 0$. $\Delta(P) = a_1 \Delta(X) + \dots + a_n \Delta(X^n) \text{ or } \deg \Delta(X), \dots, \deg \Delta(X^{n-1}) \leq n-1 \text{ et } \deg \Delta(X^n) = n-1 \text{ donc } \deg \Delta(P) = n-1.$
- (b) Si P est constant alors $\Delta(P) = 0$ et sinon $\Delta(P) \neq 0$ donc Ker $\Delta = \mathbb{C}_0[X]$. Soit $P \in \mathbb{C}_n[X]$. La restriction $\tilde{\Delta}$ de Δ au départ $\mathbb{C}_{n+1}[X]$ et à l'arrivée dans $\mathbb{C}_n[X]$ est bien définie, de noyau de dimension 1 et en vertu du théorème du rang surjective. Il s'ensuit que Δ est surjective.
- (c) Notons $T \in \mathcal{L}(\mathbb{C}[X])$ défini par T(P) = P(X+1). $\Delta = T - I$ donc

$$\Delta^n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} T^k$$

avec $T^k(P) = P(X+k)$ donc

$$\Delta^{n}(P) = (-1)^{n} \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} P(X+k).$$

(d) Si deg P < n alors $\Delta^n(P) = 0$ donc

$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k P(k) = 0.$$

Exercice 93 : [énoncé]

(a) Si $P \in \mathbb{K}_n[X]$ alors $\varphi(P) \in \mathbb{K}_n[X]$.

Si $\deg P = n+1$ alors (n+1)P et XP' ont même $\deg r\acute{e}(n+1)$ et même coefficient dominant donc $\deg(n+1)P - XP' < n+1$ puis $(n+1)P - XP' \in \mathbb{K}_n[X]$.

Finalement $\forall P \in \mathbb{K}_{n+1}[X], \ \varphi(P) \in \mathbb{K}_n[X]$ et donc l'application φ est bien définie.

Pour $\lambda, \mu \in \mathbb{K}$ et tout $P, Q \in \mathbb{K}_{n+1}[X]$: $\varphi(\lambda P + \mu Q) = (n+1)(\lambda P + \mu Q) - X(\lambda P + \mu Q)' = \lambda((n+1)P - XP') + \mu((n+1)Q - XQ')$ et donc $\varphi(\lambda P + \mu Q) = \lambda \varphi(P) + \mu \varphi(Q)$.

(b) Soit $P = \sum_{k=0}^{n+1} a_k X^k \in \mathbb{K}_{n+1}[X]$. $\varphi(P) = 0 \iff \forall k \in \{0, 1, \dots, n+1\}$, $(n+1)a_k = ka_k$. Ainsi $P \in \text{Ker } \varphi \iff \forall k \in \{0, 1, \dots, n\}, a_k = 0$. Par suite

Ainsi $P \in \text{Ker } \varphi \iff \forall k \in \{0, 1, ..., n\}, a_k = 0$. Par suit $\text{Ker } \varphi = \text{Vect}(X^{n+1})$.

(c) Par le théorème du rang $\operatorname{rg}(\varphi)=\dim \mathbb{K}_{n+1}[X]-\dim \operatorname{Ker} \varphi=n+2-1=\dim \mathbb{K}_n[X] \text{ donc } \varphi \text{ est surjective.}$

Exercice 94: [énoncé]

- (a) φ est linaire. Si deg $P=k\in\mathbb{N}$ alors deg $\varphi(P)=k$ donc Ker $\varphi=\{0\}$. Par suite φ est bijective.
- (b) (P_0,\ldots,P_n) est une famille de polynômes de degrés étagés, c'est donc une base de $\mathbb{R}_n[X]$.

Puisque $P_n(X+1) \in \mathbb{R}_n[X]$, on peut écrire $P_n(X+1) = \sum_{k=0}^n \lambda_k P_k$.

(c) $P_n(X+2) + P_n(X+1) = 2(X+1)^n$ et $P_n(X+2) + P_n(X+1) = \sum_{k=0}^n 2\lambda_k X^k$ donc $\lambda_k = C_n^k$. $P_n = 2X^n - P_n(X+1) = 2X^n - \sum_{k=0}^{n-1} C_n^k P_k - P_n$ puis $P_n = X^n - \frac{1}{2} \sum_{k=0}^{n-1} C_n^k P_k$.

Exercice 95: [énoncé]

Soient $\lambda, \mu \in \mathbb{R}$ et $P_1, P_2 \in \mathbb{R}[X]$.

On a $P_1 = AQ_1 + r(P_1)$, $P_2 = AQ_2 + r(P_2)$ avec $\deg r(P_1)$, $\deg r(P_2) < \deg A$.

Donc $\lambda P_1 + \mu P_2 = A(\lambda Q_1 + \mu Q_2) + \lambda r(P_1) + \mu r(P_2)$ avec

 $\deg(\lambda r(P_1) + \mu r(P_2)) < \deg A.$

Par suite $r(\lambda P_1 + \mu P_2) = \lambda r(P_1) + \mu r(P_2)$. Finalement r est un endomorphisme de $\mathbb{R}[X]$.

De plus pour tout $P \in \mathbb{R}[X]$, on a $r(P) = A \times 0 + r(P)$ avec $\deg r(P) < \deg A$ donc r(r(P)) = r(P). Ainsi $r^2 = r$. r est un projecteur.

$$\forall P \in \mathbb{R}[X], r(P) = 0 \iff A \mid P$$

donc Ker $r = A.\mathbb{R}[X]$.

$$\forall P \in \mathbb{R}[X], r(P) \in \mathbb{R}_{n-1}[X]$$

en posant $n = \deg A$. Donc $\operatorname{Im} r \subset \mathbb{R}_{n-1}[X]$.

Inversement,

$$\forall P \in \mathbb{R}_{n-1}[X], r(P) = P \in \operatorname{Im} r.$$

Donc $\mathbb{R}_{n-1}[X] \subset \operatorname{Im} r$.

Finalement $\operatorname{Im} r = \mathbb{R}_{n-1}[X]$.

Exercice 96: [énoncé]

Supposons φ solution.

Soit $P \in \mathbb{R}[X]$. Par division euclidienne de P par (X - a)(X - b) on peut écrire

$$P = (X - a)(X - b)Q(X) + \alpha X + \beta.$$

En évaluant cette identité en a et b, on détermine α et β

$$\alpha = \frac{P(b) - P(a)}{b - a}$$
 et $\beta = \frac{bP(a) - aP(b)}{b - a}$.

Par linéarité de φ on obtient

$$\varphi(P) = \varphi(\alpha X + \beta) = \alpha X + \beta$$

 $\operatorname{car} \varphi((X-a)(X-b)Q(X)) = 0.$

Ainsi

$$\varphi(P) = \frac{P(b) - P(a)}{b - a}X + \frac{bP(a) - aP(b)}{b - a}$$

ce qui détermine φ de façon unique.

Inversement, on vérifie aisément que l'application φ définie sur $\mathbb{R}[X]$ par la relation précédente est un endomorphisme de $\mathbb{R}[X]$ résolvant le problème posé.

Exercice 97: [énoncé]

Posons $T: P(X) \mapsto P(X+1)$ et $\Delta = T$ – Id endomorphismes de $\mathbb{R}[X]$.

$$\Delta(P) = P(X+1) - P(X).$$

On vérifie que si deg $P \leq p$ alors deg $\Delta(P) \leq p-1$.

Soit $P \in \mathbb{R}_p[X]$.

Par ce qui précède, on a $\Delta^{p+1}(P) = 0$.

Or

$$\Delta^{p+1} = \sum_{k=0}^{p+1} \binom{p+1}{k} (-1)^{p+1-k} T^k$$

car T et Id commutent.

On en déduit

$$\sum_{k=0}^{p+1} {p+1 \choose k} (-1)^k P(X+k) = 0$$

et en particulier pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{p+1} {p+1 \choose k} (-1)^k P(n+k) = 0.$$

Exercice 98: [énoncé]

(a) Si $u \in S_p$ et si deux polynômes P,Q conviennent pour exprimer u_{n+1} en fonction de u_n alors

$$\forall n \in \mathbb{N}, P(n) = Q(n).$$

Puisque le polynôme P-Q possède une infinité de racines, c'est le polynôme nul et donc P=Q.

(b) $S_p \subset \mathbb{R}^{\mathbb{N}}$, $0 \in S_p$ (avec P = 0).

Soient $\lambda, \mu \in \mathbb{R}$ et $u, v \in S_p$.

Pour tout $n \in \mathbb{N}$, on obtient aisément

$$(\lambda u + \mu v)_{n+1} = a(\lambda u + \mu v)_n + (\lambda P_u + \mu P_v)(n)$$

et donc $\lambda u + \mu v \in S_p$ avec $P_{\lambda u + \mu v} = \lambda P_u + \mu P_v \in \mathbb{R}_p[X]$. S_p est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ donc c'est un \mathbb{R} -espace vectoriel.

(c) Ci-dessus, on a obtenu $P_{\lambda u + \mu v} = \lambda P_u + \mu P_v$ ce qui correspond à la linéarité de l'application ϕ .

 $u \in \operatorname{Ker} \phi$ si, et seulement si, $P_u = 0$ ce qui signifie que u est une suite géométrique de raison a.

On en déduit que la suite $(a^n)_{n\in\mathbb{N}}$ est un vecteur directeur de la droite vectorielle qu'est le noyau de ϕ .

L'image de ϕ est $\mathbb{R}_p[X]$ car l'application ϕ est surjective puisque pour tout polynôme $P \in \mathbb{R}[X]$, on peut définir une suite élément de S_p par la relation

$$u_0 \in \mathbb{R}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = au_n + P(n)$.

(d) La famille (R_0, R_1, \ldots, R_p) est une famille de polynômes de degrés étagés de $\mathbb{R}_p[X]$, elle forme donc une base de $\mathbb{R}_p[X]$. Pour $k \in [0; p]$, il est facile de déterminer une suite $u = (u_n) \in S_p$ vérifiant $S_u = R_k$ car

$$u_{n+1} = au_n + R_k(n) \iff u_{n+1} - (n+1)^k = a(u_n - n^k).$$

Ainsi la suite

$$u \colon n \mapsto n^k$$

convient.

Considérons alors la famille formée des suites

$$v: n \mapsto a^n \text{ et } v_k: n \mapsto n^k \text{ avec } k \in [0; p].$$

Supposons

$$\lambda v + \lambda_0 v_0 + \dots + \lambda_p v_p = 0.$$

En appliquant ϕ , on obtient

$$\lambda_0 R_0 + \dots + \lambda_p R_p = 0$$

donc $\lambda_0 = \ldots = \lambda_p = 0$ puis la relation initiale donne $\lambda = 0$ car $v \neq 0$. La famille (v, v_0, \ldots, v_p) est donc libre. De plus, en vertu de la formule du rang

$$\dim S_p = \dim \operatorname{Ker} \phi + \operatorname{rg} \phi = 1 + (p+1) = p+2$$

donc la famille (v, v_0, \ldots, v_p) est une base de S_p .

(e) En reprenant les notations qui précèdent, on peut écrire

$$u = \lambda v + \lambda_0 v_0 + \lambda_1 v_1.$$

On a

$$P_u = \lambda_0 R_0 + \lambda_1 R_1 = -2X + 7.$$

Puisque $R_0 = -1$ et $R_1 = 1 - X$, on obtient $\lambda_1 = 2$ et $\lambda_0 = -5$. Par suite

$$u_n = \lambda 2^n + 2n - 5.$$

Puisque $u_0 = -2$, on obtient $\lambda = 7$.

Finalement

$$u_n = 3.2^n + 2n - 5.$$

Exercice 99: [énoncé]

- (a) Supposons que H est un supplémentaire commun à F_1 et F_2 . Considérons la projection p sur F_1 parallèlement à H. Par le théorème du rang, p induit par restriction un isomorphisme de tout supplémentaire de noyau vers l'image de p. On en déduit que F_1 et F_2 sont isomorphes.
- (b) En dimension finie, la réciproque est vraie car l'isomorphisme entraîne l'égalité des dimensions des espaces et on peut alors montrer l'existence d'un supplémentaire commun (voir l'exercice d'identifiant 181)
 C'est en dimension infinie que nous allons construire un contre-exemple.
 Posons E = K[X] et prenons F₁ = E, F₂ = X.E. Les espaces F₁ et F₂ sont isomorphes via l'application P(X) → XP(X). Ils ne possèdent pas de supplémentaires communs car seul {0} est supplémentaire de F₁ et cet espace n'est pas supplémentaire de F₂.

Exercice 100: [énoncé]

Notons que Im $f \subset \operatorname{Ker} f$ car on suppose $f^2 = 0$.

 (\Longrightarrow) Si $x \in \text{Ker } f$ alors $x = (f \circ g)(x) + 0 \in \text{Im } f$ donc Im f = Ker f.

 $(\ \ \ \)$ Soient F un supplémentaire de $\mathrm{Im}\, f=\mathrm{Ker}\, f$ dans E. Par le théorème du rang

$$\dim F = n - \dim \operatorname{Ker} f = \dim \operatorname{Im} f.$$

L'application $h = f|_F \colon F \to \operatorname{Im} f$ est un isomorphisme car elle est linéaire entre deux espaces de dimensions finies égales et injective car $\operatorname{Ker} h = F \cap \operatorname{Ker} f = \{0_E\}$. Soit $g \in \mathcal{L}(E)$ déterminé par

$$g|_{\text{Im }f} = h^{-1} \text{ et } g|_F = 0.$$

On a

$$\forall x \in \operatorname{Im} f, (f \circ g + g \circ f)(x) = (f \circ g)(x) = (f \circ h^{-1})(x) = x$$

car $f^2 = 0$.

 $_{
m et}$

$$\forall x \in F, (f \circ g + g \circ f)(x) = (g \circ f)(x) = h^{-1}(f(x)) = x$$

 $\operatorname{car} g|_F = 0.$

On en déduit $f \circ g + g \circ f = \mathrm{Id}_E$.

Exercice 101: [énoncé]

(←) ok

 (\Longrightarrow) Supposons $\operatorname{Im} g \subset \operatorname{Im} f$. Soit H un supplémentaire de $\operatorname{Ker} f$ dans E. f réalise un isomorphisme φ de H vers $\operatorname{Im} f$.

Posons $h = \varphi^{-1} \circ g$. L'application h est bien définie car g est à valeurs dans $\operatorname{Im} g \subset \operatorname{Im} f$ et φ^{-1} est définie sur $\operatorname{Im} f$. De plus, h est linéaire par composition et

$$f \circ h = f \circ \varphi^{-1} \circ g.$$

Puisque φ^{-1} prend ses valeurs dans $H, f \circ \varphi^{-1} = \varphi \circ \varphi^{-1} = \operatorname{Id}_{\operatorname{Im} f}$ puis

$$f \circ h = \operatorname{Id}_{\operatorname{Im} f} \circ g = g.$$

Exercice 102: [énoncé]

(←) ok

 (\Longrightarrow) Supposons Ker $f\subset \operatorname{Ker} g$. Soit H un supplémentaire de Ker f dans E. f réalise un isomorphisme de H vers $\operatorname{Im} f$ noté $f_{\restriction H}$. Soient K un supplémentaire de $\operatorname{Im} f$ dans E et $h\in \mathcal{L}(E)$ déterminé par

$$h_{\lceil \operatorname{Im} f \rceil} = g \circ f_{\lceil H \rceil}^{-1} \text{ et } h_{\lceil K \rceil} = 0$$

(ou n'importe quelle autre application linéaire) Pour tout $x \in \operatorname{Ker} f$,

$$g(x) = 0 = (h \circ f)(x)$$

et pour tout $x \in H$,

$$(h \circ f)(x) = h(f_{\uparrow H}(x)) = g(f_{\uparrow H}^{-1}(f_{\uparrow H}(x))) = g(x).$$

Les applications g et $h \circ f$ coïncidant sur deux sous-espaces vectoriels supplémentaires, elles sont égales.