ESTUDIO HIDROLÓGICO PARA EL EJIDO DE PATHÉ, MUNICIPIO DE CADEREYTA DE MONTES, QUERÉTARO

Proyectos Hidráulicos COHP S.A de R.L.

"UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO" FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN

INGENIERÍA CIVIL

ASIGNATURA:

HIDROLOGÍA SUPERFICIAL

TEMA:

"ESTUDIO HIDROLÓGICO DE PATHÉ, CAEREYTA DE MONTES"

PROFESOR: ING. GERARDO ADÁN NAVARRETE JUÁREZ

ALUMNOS:

HERNÁNDEZ MARTÍNEZ ARMANDO
PEÑA SALVADOR JOSÉ LUIS
OJEDA MUÑIZ JORGE ALBERTO
CRUZ VÁSQUEZ JONATHAN

GRUPO 2602 TURNO: MATUTINO

Sta. Cruz Acatlán, 02 de junio de 2017.

Departamento de Estudios Hidrológicos División Bajío

Índice

1.	Datos Generales del proyecto1
	1.1 Introducción
	1.2 Objetivos
	1.3 Recopilación de Datos
	1.4 Localización
2.	Precipitación2
3.	Zona de estudio de la cuenca
	3.1 Descripción
	3.1 Área
	3.2Longitud y pendiente
	3.3Tiempo de concentración
	3.3.1 Kirpich
4.	Escurrimientos
	4.1 Volumen de escurrimiento
	4.2 Numero de Escurrimiento N
5.	Cálculo de Gastos Máximos por metodología de Chow20
6.	Conclusión
7.	Referencia bibliográfica27

IN PULSANDO NUESTRO MÉXICO

Proyectos Hidráulicos COHP S.A de R.L.

Departamento de Estudios Hidrológicos División Bajío

1. Datos Generales del proyecto

1.1 Introducción

El punto de estudio a analizar se encuentra en el ejido de Pathé, en el municipio de Cadereyta de Montes en el Estado de Querétaro, esta zona de estudio tiene una superficie de 41.903 Km²

El presente estudio está a cargo de la empresa "Proyectos Hidráulicos COPH S.A. de R.L.", que realizara estudios del comportamiento de las aguas pluviales en la superficie del predio.

1.2 Objetivos

Los estudios hidrológicos tienen como objetivo el análisis de las precipitaciones en una determinada zona de estudio tomando en cuenta las características fisiográficas de la cuenca, así como la situación meteorológica de la región para después determinar con esto el caudal máximo de diseño que se utilizan para alguna obra hidráulica y así determinar si es factible o no la construcción de una obra hidráulica en el punto de estudio que se señaló al inicio del proyecto, tomando en cuenta las precipitaciones que se desarrollan en ese lugar.

1.3 Recopilación de Datos

Para el presente estudio se necesitaron recopilar datos de instituciones como la Comisión Nacional del Agua (CONAGUA), de esta institución fue necesario la extracción de las estaciones que están presentes en todo el territorio mexicano, además del sistema ERIC que nos aportó información de las estaciones meteorológicas que necesitamos para la realización del proyecto. Además se necesitó información topográfica del Instituto Nacional de Estadística y Geografía (INEGI).

Departamento de Estudios Hidrológicos División Bajío

De acuerdo con los datos obtenidos de las bases de datos de las instituciones antes mencionadas se comenzó con el análisis de los mismos con los diferentes métodos propuestos para cada uno de los parámetros que se necesitan para que el estudio sea factible.

Después de toda la parte práctica fue necesario concentrar la información en el presente informe, donde se detallan los parámetros que fueron necesarios para al final conformar el método racional americano, y con el determinar lo antes dicho con los objetivos.

1. 4 Localización

La cuenca en estudio tiene una superficie de 41902883 m² (4190 Ha.), el punto de estudio se encuentra a 21 km al noreste de la Cabecera Municipal de Tequisquiapan y 16 km al sureste de Cadereyta de Montes, la carretera principal por donde es el acceso al Ejido de Pathé es la Estatal 101.

El punto de estudio se ubica en las siguientes coordenadas (20.602127 N, -99.710502 O) y en coordenadas UTM **(425963.0243338344, 2278276.500837784)** con una altitud de 1769 MSNM.

2. Precipitación

Para empezar todo el proceso de análisis de la cuenca es necesario saber qué tipo de clima es el que tenemos en la regio del punto de estudio, el estado de Querétaro se divide en tres tipos de climas, la parte Norte del estado es de un ambiente subtropical, debido a que está cerca la parte del golfo de México, lo que hace que lleguen corrientes de viento que favorecen la formación de cúmulos de nubes y así favorece a la precipitación del lugar, mezclando los tipos de aire que vienen del noreste y del centro del estado.

Departamento de Estudios Hidrológicos División Bajío

En la parte central del estado de Querétaro se encuentra la parte semidesértica, se debe a que esta región está muy aislada de corrientes de viento ya que esta parte es un poco baja en relación a las tierras del norte y del centro, lo que impide que haya corrientes de viento calientes y frías para que se formen las nubes y por consiguiente la precipitación.

En la parte sur del estado es una región templada ya que esta parte es la parte más alta del estado de Querétaro, por lo que hay un clima templado en esta zona, y las lluvias son un poco constantes.

Entonces derivado del análisis antes hecho consideramos que nuestra cuenca se encuentra en la transición de la zona semidesértica y de la zona templada, entonces las lluvias pueden ser moderadas durante el tiempo en que estas llegan a su máximo auge. Pudimos comprobar esta situación con datos de la página del INEGI y de la CONAGUA.

Para la obtención de datos fue necesario obtener los datos de las precipitaciones para comenzar con el estudio hidrológico, las estaciones forman parte de la red meteorológica de la Comisión Nacional del Agua CONAGUA.

No. De	Nombre	Proyección UTM	Proyección UTM	
Estación		"X"	" Y "	
22021	Cadereyta de Montes	415332.1652	2288383.9895	
22054	El Salitre	427946.1971	2291203.0536	
13152	Potrero	423551.4382	2263331.8984	

Departamento de Estudios Hidrológicos División Bajío

Antes de comenzar con el análisis estadístico es necesario determinar cuáles de las estaciones que se han determinado que pueden aportar información a la presente investigación se debe hacer una triangulación de información, es por ello que nos basamos en el método de los polígonos de Thiessen para determinar cuáles de las estaciones antes mencionadas nos servirán para determinar los parámetros que se van a ir mencionando a lo largo de la presente investigación.

Departamento de Estudios Hidrológicos División Bajío

Como resultado del procedimiento de los polígonos de Thiessen podemos decir que solo dos de las tres estaciones antes mencionadas son las que van a tener trascendencia en nuestro proyecto que son las estaciones:

22021	Cadereyta de Montes
22054	El Salitre

Departamento de Estudios Hidrológicos División Bajío

La información que se presenta a continuación es la información obtenida de las estaciones y ordenada para determinar las precipitaciones máximas a lo largo del historial de lluvias y además cual es la altura de precipitación máxima en 24 hrs. Estos datos estadísticos los vamos a utilizar en el proceso de estudio de la cuenca mediante varios procesos que más adelante se describen.

	PRECIPITACIÓN ACUMULADA												
ESTACIÓN CAI CLAVE 22021	STACIÓN CADEREYTA DE MONTES CLAVE 22021												
AÑO/MES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE	MAXIMA ACUMULADA
1973	0	3.1	0.9	16.9	9.6	172	116.1	173.9	86.7	55.4	3	0	173.9
1974	3	3.1	20	25.7	14.6	112	221.4	70.9	108.5	4.1	35.3	3	221.4
1975	47	0	0	6	66.8	133	0	133.5	27	12.3	0	0	133.5
1976	0.9	0	10.8	43.7	47.7	17.5	0	79.2	208.9	55.2	19.5	7.2	208.9
1977	2.3	0	0	28.3	115.1	96	34	55.5	46	54	4	8	115.1
1978	16.5	7.5	66	10.5	88.5	50	69	78	141	41	11	0	141
1979	0.8	28.5	0	30.8	34.8	61	120.3	59	47	4	11.5	57.5	120.3
1980	63.5	20	0	2	32.5	16	8.8	171	39	60.5	0	0	171
1981	0	0	0	0	0	83.9	75.4	24.1	35.4	62.8	0.6	3.5	83.9
1982	0	2.3	10.1	11.9	29.4	24.7	40.1	41.3	29	0	0	0	41.3
1983	0	0	7.5	0	51.5	56	115.2	42.9	70.4	15.8	37.4	0	115.2
1984	0	20.9	15	0	49.6	107	144.7	43.7	57.5	23.8	2.8	3.2	144.7
1985	5.6	0	0	0	0	0	0	0	0	0	0	0	5.6
1986	0	0	0	0	0	0	0	0	0	0	0	0	0

Departamento de Estudios Hidrológicos División Bajío

	PRECIPITACIÓN MAX EN 24HRS													
ESTAC	STACIÓN CADEREYTA DE MONTES													
	CLAYE 22021													
AÑO/ MES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOVIEMBRE	DICIEMBRE		MAX
1973	0	3.1	0.9	7	8.1	37.5	40	44.6	42	25.5	1.4	0		44.6
1974	3	3.1	3.5	10.5	11.4	41.5	59.5	35	48	1.5	18.2	3		59.5
1975	35	0	0	6	40	35.8	0	42.5	8.5	8.9	0	0		42.5
1976	0.9	0	5	18.5	17	10.5	2.3	26.5	32.5	21	12.5	5.5		32.5
1977	2.3	0	0	10	45.5	32.5	17.5	15.5	19.5	32	2.5	8		45.5
1978	16.5	4.5	29	8	34.5	19.5	24	37.5	43.5	12.5	5.5	0		43.5
1979	0.8	18.5	0	11	29.5	23.5	38	25.5	19.5	2.5	11.5	21.5		38
1980	13	19.5	0	2	17.5	9.5	4	59	32.5	45	0	0		59
1981	0	0	0	0	0	20.3	16.4	9.1	20.1	12.8	0.6	2.3		20.3
1982	0	2.3	5.1	11.9	18.5	24.7	18.6	24.5	19.5	50	0	0		50
1983	32	0	6	0	17	21.2	40	20.4	40.6	11	15.4	0		40.6
1984	0	10.2	15	0	20.6	51.4	50.3	12.2	12	19	2.8	3.2		51.4
1985	5.6	0	0	0	0	0	0	0	0	0	0	0		0
1986	0	0	0	0	37.2	46.7	0	0	0	0	0	0		46.7
MAX MENS	35	19.5	29	18.5	45.5	51.4	59.5	59	48	50	18.2	21.5	37.925	41.007

MAXIMA PRMEDIO MENSUAL

Departamento de Estudios Hidrológicos División Bajío

PRECIPITACIÓN ACUMULADA

ESTACIÓN ES SALITRE

CLAVE 22054

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	ост	NOV	DIC	MAXIMA ACUMULADA
1981	-	-	-	-	-	-	-	-	47.4	90.9	7.5	0	90.9
1982	0	20.4	22	18	30.9	0	0	15	33	61	0	0	61
1983	17	0	0	0	37	8.5	38	57	72	3	43	0	72
1984	0	21	1.2	0	-	-	80	10	36	26.1	0	2	80
1985	0	0	0	115	59	120	125	27	17	5.4	0	0	125
1986	-	0	0	45	16	30	86	0	80	33	41	7	86
1987	0	0	15	33	111	88	57	40	40	0	8	0	111
1988	0	0	4	-	-	-	-	198.5	0	0	0	0	198.5
1989	0	0	0	0	0	0	0	0	0	0	-	0	0
1990	0	0	0	0	30	0	109	157	85	15	0	0	157
1991	0	0	0	0	86	105	360	20	-	-	-	-	360
1992	75	26	3	17	66	10	59	18	16	20	4	0	75
1993	0	0	0	0	0	9	15	0	7	0	-	-	15
1994	0	0	0	15	5	9	17	2	8	0	0	0	17
1995	0	0	6	0	0	13	2	0	0	0	0	0	13
1996	0	0	0	-	-	-	-	-	-	-	-	-	0
1997	-	-	-	-	-	-	-	-	-	-	-	-	0
1998	0	0	0	0	0	0	0	11	14	2	0	0	14
1999	0	0	0	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0	0	0	0
2001	0	15	5	0	0	74.5	63	44	77.5	0	10	0	77.5
2002	0	0	0	0	0	0	171	0	0	8	16	3	171

Departamento de Estudios Hidrológicos División Bajío

PRECIPITACIÓN MAXIMA EN 24HRS

ESTACIÓN ES SALITRE

CLAVE 22054

AÑO/MES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEPT	ост	NOV	DIC		MAXIMA ANUAL
1981	0	0	0	0	0	0	0	0	24	45.3	7.5	0		45.3
1982	0	11	14	8	7	0	0	12	17	30	0	0		30
1983	14	0	0	0	19.5	5	22	20	31	3	36	0		36
1984	0	11	1.2	0	0	0	15	10	12	26.1	0	2		26.1
1985	0	0	0	31	25	45	40	10	10	5.4	0	0		45
1986	0	0	0	25	12	15	32	0	55	18	20	4		55
1987	0	0	15	9	28	26	15	25	25	0	8	0		28
1988	0	0	4	0	0	0	0	70	0	0	0	0		70
1989	0	0	0	0	0	0	0	0	0	0	0	0		0
1990	0	0	0	0	14	0	30	36	30	15	0	0		36
1991	0	0	0	0	21	32	42	20	0	0	0	0		42
1992	10	9	3	10	12	5	9	7	5	5	2	0		12
1993	0	0	0	0	0	5	4	0	3	0	0	0		5
1994	0	0	0	5	3	5	5	2	6	0	0	0		6
1995	0	0	6	0	0	4	2	0	0	0	0	0		6
1996	0	0	0	0	0	0	0	0	0	0	0	0		0
1997	0	0	0	0	0	0	0	0	0	0	0	0		0
1998	0	0	0	0	0	0	0	0	0	0	0	0		0
1999	0	0	0	0	0	0	0	0	0	0	0	0		0
2000	0	0	0	0	0	0	0	4	5	2	0	0		5
2001	0	10	5	0	0	20	20	15	20	0	10	0		20
													MAXIMA	
2002	0	0	0	0	0	0	48	0	0	3	7	2	PROMEDIO MENSUAL	48
MAX	14	11	15	31	28	45	48	70	55	45.3	36	4		
MENSUAL													33.525	23.427
		1	1	1	1	1	1	1	I	1	1	1		

Departamento de Estudios Hidrológicos División Bajío

Haciendo un método estadístico con las máximas lecturas de precipitación se pueden obtener las precipitaciones medias mediante los polígonos de Thiessen y la tabla siguiente muestra los resultados de este análisis.

MÉTODO DE THISSEN										
ESTACION	CLAVE	PRECIPITACION (mm)	ÁREA (Km2)	Pi*Ai						
CADEREYTA DE MONTES	22021	78.359	19.949374286	1563.21302						
EL SALITRE	22054	142.814	21.958227607	3135.942317						
		SUMATORIA=	41.907601893	4,699.155						
	•		Pm=	112.131						

Para la determinación del tiempo en el que se pueden repetir los valores antes señalados en las tablas es necesario hacer un análisis estadístico de los valores de las precipitaciones medias, con ello podremos determinar las diferentes intensidades que se pueden ir presentando a lo largo de cortos y largos periodos de tiempo, esto se hizo con el método de Gumbell, a continuación se muestran los datos estadísticos.

Ri	Нр	Нрі	Tr	Tr/Tr-1	Xi	Hpi^2	Xi^2	Hpi*Xi
1	119.7	119.7	3.00	1.50	-0.90	0.014328	0.81	- 108.06
2	78.36	78.36	1.50	3.00	0.09	0.006140	0.01	7.37

Tr Años	Нр			
5	144.469			
10	175.592			
20	205.447			
50	244.090			
100	273.047			

c=	-41.47
a=	82.26

Departamento de Estudios Hidrológicos División Bajío

Debido al análisis anterior se pudieron determinar los siguientes valores para conocer las alturas máximas que puede presentar la cuenca en estudio.

3. Zona de estudio de la cuenca

Se localiza en el Municipio Cadereyta de Montes del Estado de Querétaro Arteaga Longitud (dec): -99.701667, Latitud (dec): 20.598611. La localidad se encuentra a una mediana altura de 1710 metros sobre el nivel del mar.

El punto de estudio se ubica dentro de la Región Hidrológica No. 26, Río Pánuco, correspondiente a la vertiente Oriental o del Golfo de México. Más específicamente al noroeste de la presa de Zimapán, Hidalgo. Al sur el I río San Juan que atraviesa los municipios de San Juan del Río y Tequisquiapan hasta su unión con el río Tula, forman el río Moctezuma. Tiene una cuenca de 2 840 km² en la entidad y un desplazamiento promedio de 184 millones de metros cúbicos al año.

Departamento de Estudios Hidrológicos División Bajío

El estudio a realizar es para los campos de riego de la zona ya que la presa de Zimapán está en un terreno más bajo es imposible que el agua alcance esas tierras por gravedad, entonces debido a eso se ocupara la rivera del arroyo principal de esa comunidad para acumular el agua y destinarla al riego de los cultivos de la zona, y como es un zona semidesértica la demanda de agua para las plantas de los cultivos cercanos es alta.

Como se observa en la tabla siguiente los municipios colindantes se dedican a la agricultura, de ahí la importancia de este estudio hidrológico.

Agricultura y Vegetación

Concepto	Nombre	Utilidad
Agricultura	Maíz	Comestible
28.24% de la	Trigo	Comestible
superficie		
estatal		
	Alfalfa	Forraje
	Sorgo	Forraje
	Calabaza	Comestible
Pastizal	Zacate	Forraje
	colorado	
2.07% de la	Navajita	Forraje
superficie	velluda	
estatal		
	Navajita	Forraje
Bosque	Pino	Madera
24.22% de la	Pino chino	Madera
superficie		

estatal		
	Pino piñonero	Comestible
	Encino prieto	Madera
	Táscate	Madera
Selva	Ojite	Forraje
3.95% de la	Chaca	Medicinal
superficie		
estatal		
	Tepehuaje	Comestible
Matorral	Garambullo	Comestible
40.62% de la	Mezquite	Forraje
superficie		
estatal		
	Nopal	Comestible
	Chaparro	Forraje
	prieto	
	Izote	Fibras
Otro		
0.90 % de la		
superficie		
estatal		

Tr	Hp (24 hrs)	F.C.O(1.3)	F(0.98)
5	70.2068	91.27	68.80
10	96.2277	125.10	94.30
20	121.1875	157.54	118.76
50	153.4955	199.54	150.43
100	177.7058	231.02	174.15

Departamento de Estudios Hidrológicos División Bajío

3.1 Descripción

La zona de estudio que estamos analizando es un predio de 41.902 km², tiene una superficie irregular debido a la orografía del lugar, pero gracias a ella fue fácil la delimitación de la misma, se encuentra en la parte sur de la denominada Sierra Gorda de Querétaro. Sus geo formas características están alineadas del Norte al Sur y forman una serie de mesetas con altitudes de 2 000 msnm en promedio, con algunos cerros que alcanzan elevaciones superiores a los 3 000 msnm.

3.1 Área

La cuenca tiene una extensión de 41.902 Km2, de acuerdo al plano topográfico recibido; su ubicación corresponde a la carta topográfica escala 1:50,000 del INEGI, hoja Tequisquiapan (F-14-C-67).

3.2 Longitud y pendiente

Es la diferencia total de elevación del cauce principal (cota máxima – cota mínima),

$$Sm = \frac{Hm\acute{a}x - Hm\acute{i}n}{Lc}$$

Departamento de Estudios Hidrológicos División Bajío

dividida por su longitud total (Lc):

Pen	Pendiente del cauce principal por el método de Taylor-Schwartz				Schwartz
Tramos	Cota de Inicio	Cota de Ilegada	Distancia entre cotas	Longitud acumulada	Pendientes Parciales
1	2200	2150	50	106.6423	0.4688571
2	2150	2100	50	594.2162	0.08414446
3	2100	2050	50	1074.8963	0.04651612
4	2050	2000	50	1745.7825	0.02864045
5	2000	1950	50	651.2294	0.07677786
6	1950	1900	50	1270.7514	0.0393468
7	1900	1850	50	1764.9638	0.02832919
8	1850	1800	50	3040.26	0.01644596
9	1800	1750	50	2525.66	0.01979681
Longitud Total= 12774.4095m					
S=0.16292988082121					

Los datos anteriores se obtuvieron para determinar los tiempos de concentración tomando como referencia el cauce principal de la cuenca, ya que por este va a pasar el caudal máximo que se determinarán al final del presente trabajo.

Para tener una visión más amplia del lugar de estudio y como este influye al momento de la concentración del agua que cae sobre esa superficie es necesario determinar la pendiente media de la cuenca ya que de esa característica va a depender el tiempo de concentración de la misma.

A continuación se muestra la pendiente media por el método de Horton:

No línea o malla	No intersecciones	Longitud (Km)
	Ny	Ly
77		
78	8	4.088
79	12	4.939
80	10	5.917
81	14	5.774
82	13	5.941
83	10	5.391
84	9	4.926
85	9	4.031
86	5	2.479
87		
	90	42.486

No línea o malla	No intersecciones	Longitud (Km)
	Nx	Lx
19		
20	6	1.372
21	18	5.220
22	8	6.235
23	25	7.867
24	26	8.528
25	12	7.869
26	9	4.272
27	2	1.169
28		
	106	42.532

$$Sy = \frac{90(0.05)}{42.486} = 0.105917$$
 $Sx = \frac{106(0.05)}{42.532} = 0.124612$

IN PULSANDO NUESTRO MÉXICO.

Proyectos Hidráulicos COHP S.A de R.L.

Departamento de Estudios Hidrológicos División Bajío

3.3 Tiempo de concentración

Se define como el tiempo mínimo necesario para que todos los puntos de una cuenca estén aportando agua de escorrentía de forma simultánea al punto de salida, punto de desagüe o punto de cierre. Está determinado por el tiempo que tarda en llegar a la salida de la cuenca el agua que procede del punto hidrológicamente más alejado, y representa el momento a partir del cual el caudal de escorrentía es constante.

La utilizada en este proyecto fue la metodología de Kirpich, desarrollada a partir de información del SCS en siete cuencas rurales de Tennessee con canales bien definidos y pendientes $Tc = 0.066 \left(\frac{L}{\sqrt{S}}\right)^{0.77}$ empinadas (3 a 10%).

L: longitud desde la estación de aforo hasta la divisoria siguiendo en cauce principal en kilómetros, So: diferencia de cotas entre los puntos extremos de la corriente en m/m.

3.3.1 Kirpich

$$0.000325 \left(\frac{L}{\sqrt{S}}\right)^{0.77}$$

Dónde:

- L= es la longitud del cauce principal (m)
- S= pendiente del cauce principal

El tiempo de concentración calculado, es de **0.94873630 horas** (65.92 minutos).

Departamento de Estudios Hidrológicos División Bajío

4. Escurrimientos

4.1 Volumen de escurrimiento

Volumen de las precipitaciones que caen sobre una cuenca, menos la retención superficial y la infiltración. El escurrimiento superficial o directo es función de la intensidad de la precipitación y de la permeabilidad de la superficie del suelo, de la duración de la precipitación, del tipo de vegetación, de la extensión de la cuenca hidrográfica considerada, de la profundidad del nivel freático y de la pendiente de la superficie del suelo.

La aportación de una cuenca se representa comúnmente en una gráfica llamada "hidrograma", que consiste en una curva que representa las oscilaciones, respecto el tiempo, del nivel del agua de un río en una sección dada del mismo. En el caso de un río con un tiempo de descarga muy largo, los caudales que por él circulan al cabo de un tiempo, son el resultado de la acumulación del escurrimiento superficial con la aportación subterránea.

4.2 Numero de escurrimiento N

Depende del uso, tipo y composición de suelo pendiente y estado de humedad del terreno en función de ellos y de la lluvia total se calcula la lluvia efectiva.

En este caso para el estudio de la cuenca se tomaron en cuenta los siguientes parámetros de suelo:

Tipo de Área Drenada	Coeficiente de Escurrimiento	
Drenada	Mínimo	Máximo
Suelos Arenosos Planos	0.05	0.1
(Pendientes 0.02)	0.03	0.1
Zona Semiurbanna	0.25	0.4

Departamento de Estudios Hidrológicos División Bajío

Tipo	Características
А	Arenas con poco Limo y arcilla de tamaño medio (Escurrimiento mínimo)

TABLA PARA LA DETERMINACIÓN DEL NUMERO "N"

Uso de la Tierra	Condición de la Superficie	Pendiente del Terreno	Tipo de Suelo
Bosques Naturales	Muy ralo ó Baja Transpiración	-	56
Cultivos en Surco	Surcos Rectos	<1	67

Uso del suelo (Clasificación) y Área

Uso	Área (m^3)
Población 1	193200.2502
Población 2	188755.2569

Área TC 41902882.93	
---------------------	--

Uso	Área (m^3)
Bosque	38885306.05

Uso	Área (m^3)
Cultivo 1	105355.417
Cultivo 2	264090.647
Cultivo 3	421967.584
Cultivo 4	1608680.45
Cultivo 5	126459.409
Cultivo 6	109065.866

Departamento de Estudios Hidrológicos División Bajío

El NP obtenido se obtuvo de la siguiente manera:

Dónde:

• A: es el aérea de uso y pendiente del terreno

• N: es el valor obtenido de tablas

• ATC: es el área total de la cuenca

5. Cálculo de Gastos Máximos por metodología de Chow

Area de la cuenca		41.902	km		
Longitud del cauce		12774.4095	m	Tr	3.83273926
Pendiente del cause		0.16292988	16%		
Valor de N	56.691882			•	

$$\underbrace{\text{Pex}}_{=\frac{(P-5080/_N+50.8)^2}{(P+20320/_N-203.2)}} | \qquad \qquad \text{QMáx.} = \frac{0.278 \, Pex \, Ac}{De} * Z$$

Para 5 años								
Duración Min	Ph (mm)	Duracion Hrs	D/tr	Z	Pex	Q max		
5	223.70	0.08	0.022	0.020	90.216	252.216		
10	167.42	0.17	0.043	0.020	51.267	71.664		
20	116.76	0.33	0.087	0.060	22.342	46.845		
30	92.61	0.50	0.130	0.090	11.680	24.490		
40	78.03	0.67	0.174	0.140	6.595	16.134		
50	68.09	0.83	0.217	0.170	3.840	9.125		
60	60.80	1.00	0.261	0.200	2.239	5.216		
80	50.70	1.33	0.348	0.230	0.687	1.380		
100	43.93	1.67	0.435	0.320	0.132	0.295		
120	39.02	2.00	0.522	0.390	0.000	0.001		
150	33.70	2.50	0.652	0.440	0.138	0.283		
200	27.84	3.33	0.870	0.600	0.657	1.378		
300	21.19	5.00	1.305	0.710	1.759	2.910		
400	17.41	6.67	1.739	0.870	2.652	4.031		
500	14.94	8.33	2.174	1.000	3.348	4.679		
750	11.28	12.50	3.261	1.000	4.551	4.241		
1000	9.23	16.67	4.348	1.000	5.319	3.718		
1200	8.12	20.00	5.218	1.000	5.765	3.358		
1440	7.14	24.00	6.262	1.000	6.176	2.998		

Para 10 años								
Duración Min	Ph (mm)	D Hrs	D/tr	Z	Pex	Q max		
5	358.63	0.08	0.0217425	0.02	199.055926	556.500939		
10	268.41	0.17	0.043	0.02	124.439632	173.948029		
20	187.18	0.33	0.087	0.06	64.2930145	134.808055		
30	148.47	0.50	0.130	0.09	39.5982266	83.0286143		
40	125.09	0.67	0.174	0.14	26.5580641	64.9673659		
50	109.16	0.83	0.217	0.17	18.7206072	44.4866441		
60	97.48	1.00	0.261	0.2	13.6223961	31.7367936		
80	81.28	1.33	0.348	0.23	7.62736956	15.3265158		
100	70.42	1.67	0.435	0.32	4.42887364	9.90544673		
120	62.56	2.00	0.522	0.39	2.59056549	5.88448874		
150	54.03	2.50	0.652	0.44	1.10740398	2.27037865		
200	44.63	3.33	0.870	0.6	0.16964545	0.35570853		
300	33.97	5.00	1.305	0.71	0.12367098	0.20456706		
400	27.92	6.67	1.739	0.87	0.64718366	0.98382443		
500	23.95	8.33	2.174	1	1.23193211	1.72205718		
750	18.09	12.50	3.261	1	2.47637317	2.30773334		
1000	14.79	16.67	4.348	1	3.39271606	2.37125529		
1200	13.02	20.00	5.218	1	3.95235679	2.30200199		
1440	11.45	24.00	6.262	1	4.49016902	2.17937014		

para 20 años								
Duración Min	Ph (mm)	D Hrs	D/tr	Z	Pex	Q max		
5	517.16	0.08	0.0217425	0.02	340.311182	951.40846		
10	387.06	0.17	0.043	0.02	223.644727	312.621942		
20	269.93	0.33	0.087	0.06	125.6419	263.44293		
30	214.1	0.50	0.130	0.09	83.1984219	174.448461		
40	180.39	0.67	0.174	0.14	59.7275691	146.107894		
50	157.41	0.83	0.217	0.17	44.993228	106.919487		
60	140.56	1.00	0.261	0.2	35.0034759	81.5493899		
80	117.2	1.33	0.348	0.23	22.5579448	45.3281691		
100	101.55	1.67	0.435	0.32	15.3309425	34.2885905		
120	90.21	2.00	0.522	0.39	10.7654106	24.4537101		
150	77.92	2.50	0.652	0.44	6.56152759	13.4523196		
200	64.36	3.33	0.870	0.6	2.9734954	6.23475404		
300	48.98	5.00	1.305	0.71	0.50676615	0.83825373		
400	40.26	6.67	1.739	0.87	0.01079684	0.01641295		
500	34.54	8.33	2.174	1	0.0959531	0.13412811		
750	26.08	12.50	3.261	1	0.89340052	0.83256038		
1000	21.33	16.67	4.348	1	1.73003106	1.20916258		
1200	18.77	20.00	5.218	1	2.3074242	1.34393107		
1440	16.51	24.00	6.262	1	2.89488899	1.40507731		

para 50 años								
Duración Min	Ph (mm)	D Hrs	D/tr	Z	Pex	Q max		
5	764.72	0.08	0.0217425	0.02	572.803002	1601.38618		
10	572.34	0.17	0.043	0.02	391.244481	546.90138		
20	399.14	0.33	0.087	0.06	234.211855	491.089816		
30	316.59	0.50	0.130	0.09	163.544347	342.915874		
40	266.74	0.67	0.174	0.14	123.121358	301.184239		
50	232.77	0.83	0.217	0.17	96.9631257	230.417958		
60	207.85	1.00	0.261	0.2	78.7032332	183.358952		
80	173.31	1.33	0.348	0.23	55.0650597	110.648304		
100	150.17	1.67	0.435	0.32	40.6081409	90.8225904		
120	133.39	2.00	0.522	0.39	30.9955884	70.4067091		
150	115.21	2.50	0.652	0.44	21.5848854	44.2529231		
200	95.17	3.33	0.870	0.6	12.6868301	26.6014419		
300	72.43	5.00	1.305	0.71	4.96573665	8.21394095		
400	59.53	6.67	1.739	0.87	1.99961533	3.03974056		
500	51.07	8.33	2.174	1	0.72892605	1.0189298		
750	38.56	12.50	3.261	1	0.0003153	0.00029383		
1000	31.54	16.67	4.348	1	0.28276697	0.197633		
1200	27.75	20.00	5.218	1	0.66817279	0.38916909		
1440	24.41	24.00	6.262	1	1.15386598	0.56004597		

para 100 años								
Duración Min	Ph (mm)	D Hrs	D/tr	Z	Pex	Q max		
5	981.4	0.08	0.0217425	0.02	781.68	2185.35		
10	734.51	0.17	0.043	0.02	543.98	760.41		
20	512.23	0.33	0.087	0.06	335.79	704.09		
30	406.29	0.50	0.130	0.09	240.50	504.27		
40	342.32	0.67	0.174	0.14	185.15	452.92		
50	298.72	0.83	0.217	0.17	148.82	353.64		
60	266.74	1.00	0.261	0.2	123.12	286.84		
80	222.41	1.33	0.348	0.23	89.27	179.37		
100	192.72	1.67	0.435	0.32	68.08	152.27		
120	171.19	2.00	0.522	0.39	53.69	121.96		
150	147.86	2.50	0.652	0.44	39.24	80.44		
200	122.14	3.33	0.870	0.6	25.04	52.50		
300	92.95	5.00	1.305	0.71	11.81	19.54		
400	76.4	6.67	1.739	0.87	6.10	9.27		
500	65.54	8.33	2.174	1	3.24	4.52		
750	49.49	12.50	3.261	1	0.56	0.52		
1000	40.48	16.67	4.348	1	0.01	0.01		
1200	35.62	20.00	5.218	1	0.05	0.03		
1440	31.32	24.00	6.262	1	0.30	0.15		

Departamento de Estudios Hidrológicos División Bajío

6. Conclusión

Como conclusión podemos decir que todo el estudio hidrológico que realizamos nos ayudó a comprender los factores que son necesarios tomar en cuenta para que se pueda llevar a cabo este, entonces todos los parámetros que se consideraron forman parte importante del proyecto, muchos de los factores que se tomaron en cuenta es necesario hacer una visita de campo para evaluar el terreno pero debido a los fines educativos que tiene el proyecto no se realizaron este tipo de actividades, sin embargo es importante hacer este tipo de actividades ya que nos dan una mejor idea sobre como es el terreno que estamos utilizando y con ello hacer que nuestro trabajo se de una muy buena calidad, pero fuera de todo esto nos sirvió para conocer mas y como los fenómenos hidrológicos están presentes y afectan de manera directa e indirectamente el campo de estudio del Ingeniero Civil.

IMPULSANDO NUESTRO MÉXICO

Proyectos Hidráulicos COHP S.A de R.L.

Departamento de Estudios Hidrológicos División Bajío

7. Referencia Bibliográfica

- **Hidrología Moderna** / Traducido Por Guillermo A. Fernández De Lara Kazmann, Raphael Gabriel.
 - Apuntes de Hidrología Superficial, Cuencas

Departamento de Irrigación, Universidad Autónoma de Chapingo

Hidrología Aplicada A Las Pequeñas Obras Hidráulicas
 Secretaria De Agricultura, Ganadería, Desarrollo Rural, Pesca Y Alimentación

• Determinación De Las Características Físicas De La Cuenca

Facultad De Ingeniería Departamento De Hidráulica Universidad Nacional Del Nordeste

• INEGI, Instituto Nacional de Estadística y Geografía

Carta Topográfica Formato Shape. Esc. 1:50 000. Clave Carta F14C67