Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления

Кафедра Интеллектуальных информационных технологий

РАСЧЕТНАЯ РАБОТА

по дисциплине «Традиционные и интеллектуальные информационные технологии» на тему

Задача построения графа инциденций неориентированного графа

Выполнил: И.И. Петровец

Студент группы 821701

Проверил: Д. В. Шункевич

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей

Задача: Построение графа инциденций неориентированного графа

1 СПИСОК ПОНЯТИЙ

- 1. Графовая структура (абсолютное понятие) это такая одноуровневая реляционная структура, объекты которой могут играть роль либо вершины, либо связки:
 - а. Вершина (относительное понятие, ролевое отношение);
 - b. Связка (относительное понятие, ролевое отношение).

Рисунок 1.1 – Графовая структура

- 2. Графовая структура с неориентированными связками (абсолютное понятие)
 - а. Неориентированная связка (относительное понятие, ролевое отношение) –связка, которая задается неориентированным множеством.

Рисунок 1.2 – Графовая структура с неориентированными связками

3. Граф (абсолютное понятие) – это такой мультиграф, в котором не может быть кратных связок, т.е. связок у которых первый и второй компоненты совпадают:

Рисунок 1.3 – Граф

4. Неориентированный граф (абсолютное понятие) – это такой граф, в котором все связки являются ребрами:

Рисунок 1.4 — Неориентированный граф

5. Двудольный граф (абсолютное понятие) — это граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует ребра, соединяющего две вершины из одной и той же части.

Рисунок 1.5 – Двудольный граф

6. Граф инциденций (относительное понятие, ролевое отношение) — двудольный граф, у которого вершины в первой доле совпадают с множеством вершин исходного графа, а вершины второй доли соответствуют ребрам исходного графа. Две вершины в графе инциденций смежны тогда и только тогда, когда соответствующие им элементы инцидентны в исходном графе.В примере ниже показан граф инциденций неориентированного графа.

Рисунок 1.6 – Граф инциденций

2 ТЕСТОВЫЕ ПРИМЕРЫ

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

2.1 Tect 1

Вход:

Необходимо построить граф инциденций неориентированного графа.

Рисунок 2.1 – Вход теста 1

Выход:

Будет построен граф инциденций:

Рисунок 2.2 — Выход теста 1

2.2 Tect 2

Вход:

Необходимо построить граф инциденций неориентированного графа.

Рисунок 2.3 — Вход теста 2

Выход:

Рисунок 2.4 — Выход теста 2

2.3 Tect 3

Вход:

Необходимо построить граф инциденций неориентированного графа.

Рисунок 2.5 — Вход теста 3

Выход:

Рисунок 2.6 — Выход теста 3

2.4 Tect 4

Вход:

Необходимо построить граф инциденций неориентированного графа.

Рисунок 2.7 – Вход теста 4

Выход:

Рисунок 2.8 – Выход теста 4

2.5 Tect 5

Вход:

Необходимо построить граф инциденций неориентированного графа.

Рисунок 2.9 — Вход теста 5

Выход:

Рисунок 2.10 — Вход теста 4

3 ПРИМЕР РАБОТЫ АЛГОРИТМА В СЕМАНТИЧЕСКОЙ ПАМЯТИ

1. Задание входного графа

Рисунок 3.1 — Шаг 1

_input_graph получит в качестве значения sc-узел неориентированного графа. _inc_edges получает в качестве значения пустое множество.

2. Создание множества вершин графа инцидентности

Рисунок 3.2 – Шаг 2

Переменная _vertexes получит в качестве значения множества вершин и ребер обрабатываемого графа.

3. Создание множества непроверенных ребер обрабатываемого графа

Рисунок 3.3 – Шаг 3

Переменная_not_checked_edges получит в качестве значения множество необработанных ребер обрабатываемого графа.

- 4. Пока есть непроверенные ребра:
 - 1. Взятие ребра

Рисунок 3.4 – Шаг 4.1

Переменная _edge получает в качестве значения ребро из множества _not_checked_edges. Соответствующее ребро исключается и множества _not_checked_edges.

2. Взятие смежных ребру вершин Взятие ребра

Рисунок 3.5 — Шаг 4.2

Переменные _ver_1 и _ver_2 получает в качестве значений первую и вторую инцидентную ребру еdge вершин

3. Создание ребра для графа инцидентности

Рисунок 3.6 – Шаг 4.3

В множество значений переменной _inc_edges добавляется отношение инцидентности между ребром _edge и вершиной _ver_1 В множество значений переменной _inc_edges добавляется отношение инцидентности между ребром _edge и вершиной ver 2

5. Формирование графа инцидентности

Рисунок 3.7 – Шаг 5

Переменная _output_graph получит в качестве значения граф

инциденций, у которого значение переменной _inc_edges является множеством ребер, а значение переменной _vertexes — множеством вершин.

6. Завершение работы алгоритма

Рисунок 3.8 – Шаг 6

На данном этапе продемонстрирован результат работы алгоритма, значение переменной _output_graph будет возвращено в вызывающий контекст.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Кормен, Д. Алгоритмы. Построение и анализ / Д. Кормен. Вильямс, 2015. Р. 1328.
- [2] Кузнецов, О. П. Дискретная математика для инженера / О. П. Кузнецов, Г. М. Адельсон-Вельский. Энергоатомиздат, 1988. Р. 480.
 - [3] Оре, О. Теория графов / О. Оре. Наука, 1980. Р. 336.
- [4] Харарри, Ф. Теория графов / Ф. Харарри. Эдиториал УРСС, 2018. Р. 304.