Homework 6

Kyle Kazemini

October 9, 2020

3.1.4

Problem

Show that the function f(x) = |x| is continuous on all of \mathbb{R} .

Solution

From the definition for |x|: $f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$

There are 3 cases to prove: x > 0, x = 0, and x < 0.

For x > 0, f(x) = x and $\lim_{x \to a} f(x) = a$ because $\lim_{x \to a} x = a$. Thus, $\lim_{x \to a} f(x) = f(a)$.

Similarly for x < 0, f(x) = -x and $\lim_{x \to a} f(x) = -a$ because $\lim_{x \to a} -x = -a$. Thus, $\lim_{x \to a} f(x) = f(a)$.

Finally, for x>0 we have: $\lim_{x\to 0^+}f(x)=\lim_{x\to 0^+}x=0$ and for x<0 we have: $\lim_{x\to 0^-}f(x)=\lim_{x\to 0^-}-x=0$

Hence, $\lim_{x\to 0} f(x) = f(0) = 0$.

Thus, since f(x) = |x| is continuous for x > 0, x = 0, and x < 0, f(x) is continuous on all of \mathbb{R}

3.1.6

Problem

Prove (d) of Theorem 3.1.9: f/g is continuous at a, provided $g(a) \neq 0$.

Solution

If f and g are continuous at a and $\{x_n\}$ is a sequence in D which converges to a, then Theorem 3.1.6, which is proven in the textbook, says that $\{f(x_n)\}$ converges to f(a) and $\{g(x_n)\}$ converges to g(a). By the Main Limit Theorem, which is proven in the textbook and exercises, $\{f(x_n)/g(x_n)\}$ converges to f(a)/g(a). (Note: $g(a) \neq 0$ is covered in the Main Limit Theorem). Thus, f/g is continuous at a.

3.1.7

Problem

Prove Theorem 3.1.11: With f and g as above, let a be in the domain of $f \circ g$. Then $f \circ g$ is continuous at a if g is continuous at a and f is continuous at g(a).

Solution

Since f is continuous at g(a), for all $\epsilon > 0$, there exists some $\delta > 0$ such that

$$|x - a| < \delta \Rightarrow |f(g(x)) - f(g(a))| < \epsilon$$

Since g is continuous at a, there exists some δ_0 (named differently to show it's distinct from δ) such that

$$|x-a| < \delta_0 \Rightarrow |g(x) - g(a)| < \delta$$

Now simply take $\epsilon = \delta$ to get:

$$|x-a| < \delta_0 \Rightarrow |g(x) - g(a)| < \delta \Rightarrow |f(g(x)) - f(g(a))| < \epsilon$$

Thus, f(g(x)) is continuous.

3.1.11

Problem

Prove that the function $f(x) = \begin{cases} \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is not continuous at 0.

Solution

We have f(0) = 0. It is sufficient to show $\lim_{x\to 0} f(x) \neq 0$. Suppose FSOC that $\lim_{x\to 0} f(x) = 0$. Then by definition, for any $\epsilon > 0$, there exists a $\delta > 0$ such that $|x-0| < \delta \Rightarrow |f(x)-0| < \epsilon$. Take $\epsilon = \frac{1}{100}$. Then for an arbitrary $\delta > 0$, we have $-1 \le f(\delta) \le 1$. Thus, $|f(\delta) - 0| \ge \epsilon$, meaning f is discontinuous at x = 0.

3.2.2

Problem

Prove that if f is a continuous function on a closed bounded interval I and if f(x) is never 0 for $x \in I$, then there is a number m > 0 such that $f(x) \ge m$ for all $x \in I$ or $f(x) \le -m$ for all $x \in I$.

Solution

WLOG, take $I = [a, b] \subset \mathbb{R}$. Then because f is continuous, f([a, b]) = [m, n]. Then assume FSOC that m < 0. Then by the Intermediate Value Theorem, the value 0 is taken on by f. This contradicts the statement $f(x) \neq 0$ for $x \in I$.

Similarly, assume FSOC that n < 0. Then by the Intermediate Value Theorem, the value 0 is taken on by f. This contradicts the statement $f(x) \neq 0$ for $x \in I$. Thus, m > 0 satisfies the desired properties.

3.2.4

Problem

Find an example of a function which is continuous on a bounded (but not closed) interval I but is not bounded. Then find an example of a function which is continuous and bounded on a bounded interval I but does not have a maximum value.

Solution

Take I = (0,1) and $f(x) = \frac{1}{x}$ The continuous function f on the interval I is not bounded because it tends towards infinity as $x \to 0$. Thus, f and I satisfy the conditions for the first example.

Take I = (0,1) and $f(x) = e^x \sin(\frac{1}{x})$. I is a bounded interval and f is a continuous and bounded function on I. Thus, f and I satisfy the conditions for the second example.

3.2.8

Problem

Show that if f and g are continuous functions on the interval [a,b] such that f(a) < g(a) and g(b) < f(b), then there is a number $c \in (a,b)$ such that f(c) = g(c).

Solution

By the Intermediate Value Theorem, for some y between f(a) and f(b), there exists c such that f(c) = y. Again, by the Intermediate Value Theorem, for some z between g(a) and g(b), there exists d such that g(d) = z. Thus since f and g have the same domain, we can take z = y and c = d. This gives:

$$f(c) = y = z = g(d)$$

Again, since $c = d, f(c) = g(c) \blacksquare$

3.2.10

Problem

Use the Intermediate Value Theorem to prove that, if n is a natural number, then every positive number a has a positive nth root.

Solution

Let $f(x) = x^n$ and $c \in \mathbb{R}$ such that c > a. By the Intermediate Value Theorem, 0 < a < c < f(c) and f(x) is continuous. Also by the Intermediate Value Theorem, there exists a point p such that f(p) = a, since f(x) is continuous. Thus, by the Intermediate Value Theorem, every a > 0 has a positive nth root.