

Challenge 9: Remove Edge

In this challenge, we will learn how to delete an edge between two vertices.

We'll cover the following

- Problem statement
 - Input
 - Output
 - Sample input
 - Sample output
- Coding exercise

Problem statement#

You must implement the remove_edge function which takes a source and a
destination as arguments. If an edge exists between the two, it should be
deleted.

Input#

A directed graph, a source (integer), and a destination (integer).

Output#

A directed graph with the edge between the source and the destination removed.

Sample input#

Vertex	Edges
0	1, 2
1	3
2	3, 4
3	None
4	0

Sample output#

remove_edge(graph, 2, 3)

Vertex	Edges
0	1, 2
1	3
2	4
3	None

Coding exercise#

Take some time to flesh out the logic of your algorithm before moving on to the implementation. You have the previously implemented LinkedList class functions available for use.

Good luck!

null

Interviewing soon? We've partnered with Hired so that companies apply to you instead of you applying to them. See how ①

Solution Review: Find the Shortest Pa...

Solution Review: Remove E

Mark as Completed

