Sometimes, it can be easy to tell what number comes next in a sequence of numbers:

However, sometimes it may not be so obvious, so we need to analyze the sequence in order to figure out the relationship...

There are two ways we can write out a formula to represent a sequence of numbers:

- Recursive formula:
 - A recursive formula for a sequence is a formula where each term is described in relation to a previous term (or terms) of the sequence.
- Closed formula:
 - A closed formula for a sequence is a formula where each term is described only in relation to its position in the list.

Example, writing out the terms:

g.
$$a_1 = 2$$
; $a_n = a_{n-1} + 2$, write out the first 4 terms. (2, 4, 6, 8)

h.
$$a_n = 2n$$
, write out the first 4 terms. (2, 4, 6, 8)

With a recursive formula, each term is based on the previous, so the **very first item** must be given a value as part of the formula's definition.

With the closed formula, the value of the element is based on the position n, such as n=1, n=2, etc.

Spring 2017

Page 2 of 4

Analyzing the values by brute-force...

- Is addition involved?
- Is subtraction involved?
- Is multiplication involved?
- Are exponent involved?

Example:

i. Find the closed formula and the recursive formula for the sequence: 1, 3, 5, 7, 9, ...

Recursive: What is the difference between each number? (2)

Closed: What sequence is this similar to? (2, 4, 6, 8, 10), what is it offset by? (-1).

Another way to solve... $a_n = m \cdot n + b$

Write out the formula for two elements:

$$\circ \qquad a_1 = m \cdot 1 + b = 1$$

• Rewrite so that we can solve for a variable by substitution, or elimination (old algebra topic!):

 $a_2 = m \cdot 2 + b = 3$

$$\circ$$
 $m+b=1$ $2m+b=3$

• Solve for b, or solve for m, then solve for the other.

$$\circ$$
 $m+b=1 \rightarrow b=1-m$

• Plug in to the other formula:

$$\circ$$
 2m+b=3 \rightarrow 2m+(1-m)=3

• Solve for *m*:

$$\circ$$
 2m+(1-m)=3 \rightarrow 2m+1-m=3 \rightarrow m+1=3 \rightarrow m=3-1 \rightarrow m=2

• Solve for *b*:

$$\circ$$
 2m+b=3 \rightarrow 2·2+b=3 \rightarrow b=3-4 \rightarrow b=-1

• Write out the resulting formula:

$$\circ$$
 $a_n = m \cdot n + b \rightarrow a_n = 2 \cdot n - 1$

Check your work by plugging in values of *n* into $a_n = 2 \cdot n - 1$ to see if it matches the sequence.

Spring 2017

Page 3 of 4

Example:

j. Find the recursive and closed formulas for the sequence: 1, 9, 17, 25, 33, 41, ____

Recursive Formula:

- First value is 1.
- Difference between each is 8.
- $a_1 = 1$, $a_n = a_{n-1} + 8$

Closed Formula:

- The difference between each number is 8. $a_n = m \cdot n + b$, m = 8.
- $a_1 = 8 \cdot 1 + b = 1 \rightarrow b = 1 8 \rightarrow b = -7$
- $a_n = 8n 7$

Examples:

k. 1, 4, 9, 16, 25, 36	
1. 2, 4, 8, 16, 32, 64	
m. 1, 2, 6, 24, 120, 720	

Summations, definition:

For a sequence of numbers a_k with $k \ge 1$, we use the notation $\sum_{k=1}^n a_k$ to denote the sum of the first n terms of the sequence. This is called $sigma\ notation$ for the sum.

Examples, evaluate the following:

o.
$$\sum_{k=1}^{6} (2k-1)$$

p.
$$\sum_{k=0}^{4} (3^k)$$

$$q. \quad \sum_{k=3}^{3} \left(k^2 \right)$$

r.
$$\sum_{k=1}^{5} \frac{1}{k(k+1)}$$