Sine of the Students

Zehao Zhang

October 7, 2025

1 Model

Students. There are two students x and y. Both have to attend two courses (denoted by $j \in \{1,2\}$). Each student chooses an intensity $r_i \in [0,1]$ and an angle $\varphi_i \in [0,\frac{\pi}{2}]$, but due to energy constraint, the efforts are parameterized by the unit quarter-circle

$$(e_{i1}, e_{i2}) = r_i (\cos \varphi_i, \sin \varphi_i), \qquad e_{i1}^2 + e_{i2}^2 \le 1.$$

The outcome in the courses are normalized to equal effort, $y_{ij} = e_{ij}$. The student x only cares about how far he can reach in the x-axis, and the student y only cares about how far he can reach in the y-axis. However, they try their best to avoid a policy penalty (defined below) is triggered.

Without loss of generality, we can assume the budget binds in the cases of interest $(r_i = 1)$.

Lecturers. There are two lecturers, one for each course $j \in \{1,2\}$. The outcome gap across students is $\Delta_j \equiv \max_{i \in \{x,y\}} y_{ij} - \min_{i \in \{x,y\}} y_{ij}$. The lecturers will be very upset if she sees a large gap $k \in (0,1)$ between the highest and lowest outcomes. Formally, the lecturer's utility is 0 if $\Delta_j < k$ and $-\infty$ otherwise.

Director. A director cares about lecturers' welfare, whereas she uses a minimal policy to minimize the distortion to students' efforts. To ensure that the outcome gap is not too large, she requires each student to reach at least a certain outcome in each course. Given $c_j \geq 0$, if any student i attains $y_{ij} < c_j$ in any course j, then that student's utility is $-\infty$.

2 Analysis

Pre-AI age. The students' preferred outcomes are (1,0) for x and (0,1) for y, but this will greatly upset the lecturers. Because the property of our setup, it can be found a minimal policy that satisfies the lecturers' requirement, illustrated below.

Post-AI age. Suppose that AI greatly but only improves the productivity in course 1 (efforts in the x- axis are more efficient). The blue colored denotes the efforts and outcomes prior to AI. If the director only raises the minimum requirement c_1 on the x-axis, AI will lead to better results for the student x, but to the detriment of the student y. The student y has no choice but to allocate fewer efforts in course 2 which he likes. (Implication: the director can raise c_2 instead.)

Figure 1: Policies and Outcomes