8/30/2018

Problem 1

Part a

Here our goal will be to minimize a to show that $a = E[\theta|y]$ is the unique Bayes estimate of θ :

$$\begin{split} \frac{d}{da}E[L(a|y)] &= \frac{d}{da}\int L(\theta,a)p(\theta|y)d\theta \\ &= \frac{d}{da}\int (\theta-a)^2p(\theta|y)d\theta \\ &= -2\int (\theta-a)p(\theta|y)d\theta \\ &= -2\left[\int \theta p(\theta|y)d\theta - a\int p(\theta|y)d\theta\right] \\ &= -2\left[E[\theta|y] - a\right] \end{split}$$

$$-2[E[\theta|y] - a] = 0$$
 when $a = E[\theta|y]$

To prove that it is a unique minimizing statistic, we must look at the second derivative:

$$\frac{d}{da}(-2[E[\theta|y] - a]) = 2$$

As 2 > 0, this shows that it is a unique minimzing statistic.

Part b

Here our goal will be to show that for any median value of a, the derivative of $L(\theta, a)$ will evaluate to 0.

$$\begin{split} \frac{d}{da} \big[E[L(a|y)] \big] &= \frac{d}{da} \bigg[\int_{-\infty}^{a} (a-\theta) p(\theta|y) d\theta + \int_{a}^{\infty} (\theta-a) p(\theta|y) d\theta \bigg] \\ &= \int_{-\infty}^{a} \frac{d}{da} (a-\theta) p(\theta|y) d\theta + \int_{a}^{\infty} \frac{d}{da} (\theta-a) p(\theta|y) d\theta \\ &= \int_{-\infty}^{a} p(\theta|y) d\theta + \int_{a}^{\infty} (-1) p(\theta|y) d\theta \\ &= \int_{-\infty}^{a} p(\theta|y) d\theta - \int_{a}^{\infty} p(\theta|y) d\theta \\ &= \frac{1}{2} - \frac{1}{2} \\ &= 0 \end{split}$$

As a result, it has been shown that any posterior median of θ is a Bayes estimate of θ .

Part c

Here our goal will be to show that for any value of a, the derivative of $L(\theta, a)$ will evaluate to 0 where k_0 and k_1 are nonnegative numbers.

$$\frac{d}{da} \left[E[L(a|y)] \right] = \frac{d}{da} \left[\int_{-\infty}^{a} k_1(a-\theta)p(\theta|y)d\theta + \int_{a}^{\infty} k_0(\theta-a)p(\theta|y)d\theta \right]
= \int_{-\infty}^{a} \frac{d}{da} k_1(a-\theta)p(\theta|y)d\theta + \int_{a}^{\infty} \frac{d}{da} k_0(\theta-a)p(\theta|y)d\theta
= \int_{-\infty}^{a} k_1 p(\theta|y)d\theta + \int_{a}^{\infty} (-k_0)p(\theta|y)d\theta
= \int_{-\infty}^{a} k_1 p(\theta|y)d\theta - \int_{a}^{\infty} k_0 p(\theta|y)d\theta
= k_1 \int_{-\infty}^{a} p(\theta|y)d\theta - k_0 \int_{a}^{\infty} p(\theta|y)d\theta$$

Noting that: $k_0 \int_a^\infty p(\theta|y)d\theta = k_0 - k_0 \int_{-\infty}^a p(\theta|y)d\theta$

$$k_1 \int_{-\infty}^{a} p(\theta|y)d\theta - k_0 \int_{a}^{\infty} p(\theta|y)d\theta = k_1 \int_{-\infty}^{a} p(\theta|y)d\theta - \left[k_0 - k_0 \int_{-\infty}^{a} p(\theta|y)d\theta\right]$$
$$= k_1 \int_{-\infty}^{a} p(\theta|y)d\theta + k_0 \int_{-\infty}^{a} p(\theta|y)d\theta - k_0$$
$$= (k_1 + k_0) \int_{-\infty}^{a} p(\theta|y)d\theta - k_0$$

Now setting $\int_{-\infty}^{a} p(\theta|y)d\theta = \frac{k_0}{k_0 + k_1}$ we get our result that any quantile is a Bayes estimate of θ .

Taking the second derivative we again get a positive number, thus again indicating that it is a minimizing statistic.

Problem 2

n = 20

Sampling Distribution: $y|\theta \sim Binomial(n = 20, \theta)$

Prior Distribution: $\theta \sim Beta(\alpha = 2, \beta = 20)$

Posterior Distribution:

$$p(\theta|y) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y} \times \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$
$$= \binom{n}{y} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{y+\alpha-1} (1-\theta)^{n-y+\beta-1}$$
$$\propto Beta(y+\alpha, (n-y)+\beta)$$

Part i