Phys 3810, Spring 2009 Problem Set #6, Hint-o-licious Hints

1. Griffiths, 4.55 Both terms are eigenfunctions of L^2 with the same eigenvalue, but they are eigenfunctions of L_z with different eigenvalues. The coefficients squared give the probabilities for the results for measurement of L_z . Likewise, the terms are eigenfunctions of S^2 with the same eigenvalue and eigenfunctions of S_z with different eigenvalues.

For the first term the decomposition into states of *total* angular momentum is, using the C–G tables,

$$|1 \ 0\rangle |\frac{1}{2} \ \frac{1}{2}\rangle = \sqrt{\frac{2}{3}} |\frac{3}{2} \ + \frac{1}{2}\rangle - \sqrt{\frac{1}{3}} |\frac{1}{2} \ \frac{1}{2}\rangle$$

and do a similar decomposition of the second term, that is, the state

$$|1 \ 1\rangle |\frac{1}{2} \ -\frac{1}{2}\rangle$$

You should arrive at a new expression for the given state in terms of states of total angular momentum,

$$R_{21}\left(\frac{2\sqrt{2}}{3}|\frac{3}{2}|\frac{1}{2}\rangle + \frac{1}{3}|\frac{1}{2}|\frac{1}{2}\rangle\right)$$

and this is a combination of eigenfunctions of J^2 and J_z with different eigenvalues for J^2 but the *same* eigenvalues for J_2 (namely $\hbar/2$).

2. Griffiths, **4.35** This one is a short easy (?) answer. Recall that spins s_1 and s_2 can "add" to give all spins from

$$s_1 + s_2$$
 down to $|s_1 - s_2|$

3. Griffiths, **4.52** Follow the example of spin given out in class (G's problem 4.31). The eigenvectors of S_z are

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Using (4.136), find the action of the raising and lowering operators S_+ and S_- on all the eigenstates $|\frac{3}{2} m\rangle$ and then construct the matrices for these operators. Get S_x from $S_x = \frac{1}{2}(S_+ + S_-)$. You should get

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & \sqrt{3} & 0 & 0\\ \sqrt{3} & 0 & 2 & 0\\ 0 & 2 & 0 & \sqrt{3}\\ 0 & 0 & \sqrt{3} & 0 \end{pmatrix}$$

but show this!

You just need to get eigenvalues of S_x but it should be clear what they ought to be! For this you need to take the determinant of a 4×4 matrix which needs to be done by an expansion (not by zipping along all the diagonals as you can for 3×3).

1

4. Griffiths, **5.1** You should be able to get the algebraic relations between \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r} and \mathbf{R} . Note that the x, y and z components of the vectors don't mix.

How do we change the ∇ operator to new coordinates? Originally in the Schödinger equation we have the operators

$$\frac{\partial}{\partial x_1}, \frac{\partial}{\partial y_1}, \dots, \frac{\partial}{\partial x_2},$$
 etc.

To change the first one, we go from (x_1, x_2) to (x, X) by:

$$\frac{\partial}{\partial x_1} = \frac{\partial X}{\partial x_1} \frac{\partial}{\partial X} + \frac{\partial x}{\partial x_1} \frac{\partial}{\partial x} \qquad \qquad \frac{\partial}{\partial x_2} = \frac{\partial X}{\partial x_2} \frac{\partial}{\partial X} + \frac{\partial x}{\partial x_2} \frac{\partial}{\partial x}$$

and you can get $\frac{\partial X}{\partial x_1}$ etc. from the relations between the coordinates. Put everything together, use the definition of the reduced mass and eventually arrive at Griffiths' expression for the transformed ∇^2 operators. (Note that there are cross terms with ∇_R and ∇_r , but they cancel out.)

- 5. Griffiths, 5.2 (a) Show that the fractional difference between m_e and μ_H is 5.4×10^{-4} . This is the same as the fractional change in the binding energy. (Show all of this!)
 - (b) It's same frastional correction to R; one finds that for the H atom

$$R_H = 1.096 \times 10^7 \text{ m}^{-1}$$

The fractional difference between μ_H and μ_D (reduced masses for the H and D atoms) is 2.7×10^{-4} . Take differentials to get the fractional change in the Balmer wavelength; it comes out to about 17.9 nm.

- (c) The reduced mass for positronium is half the electron mass!
- (d) The reduced mass for muonium is 185.9 times the electron mass. That's the factor by which you need to fix R from the value given in the book. With this new value of R, get Lyman- α . It comes out to about 6.54×10^{-10} m.
- **6.** Griffiths, **5.3** The energy of the photon emitted in the transition (always between adjecent HO states) is $\hbar\omega$. The frequency of the radiation is

$$\nu = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

where μ is the reduced mass of the oscillator system. Show that if μ changes, the change in frequency is related to the change in μ by

$$d\nu = -\frac{1}{2}\nu \frac{d\mu}{\mu}$$

What is the frational difference in reduced mass between the two molecules?