

CÁLCULO LNTEGRAL- 220146

Ingeniería Civil Informática

Yrina Vera

28 de julio, 2021

SERIES

SUMAS PARCIALES

Para la sucesión $a_1, a_2, a_3, \ldots, a_n, \ldots$ las SUMAS PARCIALES son

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 \vdots \vdots
 $S_n = a_1 + a_2 + a_3 + \dots + a_n$

 S_n es llamada la *n-ésima suma parcial* y la sucesión $S_1, S_2, S_3, \ldots, S_n, \ldots$ es llamada *sucesión de sumas parciales*.

SERIE CONVERGENTE

Una serie $\sum_{n=1}^{\infty} a_n$ es CONVERGENTE si la sucesión de sumas parciales $(S_n)_{n\in\mathbb{N}}$ es convergente. En este caso,

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\sum_{n=1}^{\infty} a_n \right)$$

Una serie $\sum_{n=1}^{\infty} a_n$ es ABSOLUTAMENTE CONVERGENTE si $\sum_{n=1}^{\infty} |a_n|$ es convergente.

SERIE GEOMÉTRICA

Una **SERIE GEOMÉTRICA** es una serie de la forma

$$\sum_{n=0}^{\infty} a r^n = a + ar + ar^2 + ar^3 + ar^4 + \dots$$

Si |r| < 1, entonces la serie geométrica CONVERGE y su suma es igual a $S = \frac{a}{1-r}$, esto es,

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

Si $|r| \ge 1$, la serie DIVERGE.

SERIE TELESCÓPICA

Una **SERIE TELESCÓPICA** es una serie de la forma

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (b_k - b_{k+1}) = (b_1 - b_2) + (b_2 - b_3) + \dots (b_{n-1} - b_n) + \dots$$

La serie telescópica CONVERGE si y sólo si la sucesión $(b_n)_{n\in\mathbb{N}}$ converge y su suma es igual a

$$\sum_{k=1}^{\infty} a_k = b_1 - \lim_{n \to \infty} b_n$$

PROPIEDADES DE SUMAS

Sean $a_1, a_2, a_3, \ldots, a_n, \ldots$ y $b_1, b_2, b_3, \ldots, b_n, \ldots$ dos sucesiones. Entonces para cada número natural n y cualquier número real c las siguientes propiedades se cumplen.

1.
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

2.
$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$

$$3. \sum_{k=1}^{n} (ca_k) = c \left(\sum_{k=1}^{n} a_k \right)$$

4.
$$\sum_{k=1}^{n} (a_{k+1} - a_k) = a_{n+1} - a_1$$

Teorema 1 (Condición necesaria para la convergencia)

Si $\sum_{n=1}^{\infty} a_n$ converge, entonces $\lim_{n\to\infty} a_n = 0$.

Si
$$\lim_{n\to\infty} a_n \neq 0$$
, entonces $\sum_{n=0}^{\infty} a_n$ es divergente.

SUMA DE POTENCIAS

1.
$$\sum_{k=1}^{n} 1 = n$$

$$2. \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

3.
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

4.
$$\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2} \right]^2$$

CRITERIOS DE CONVERGENCIA

CRITERIO	SERIE	CONVERGE	DIVERGE	COMENTARIO
Término k-ésimo	$\sum_{k=1}^{\infty} a_k$		$\lim_{k\to\infty}a_k\neq 0$	Este criterio no sirve para demostrar la convergencia.
Series geométricas	$\sum_{k=t}^{\infty} a r^{k+h}$	r < 1	r > 1	Suma: $S = \frac{ar^{t+h}}{1-r}$
Series telescópicas	$\textstyle\sum\limits_{k=t}^{\infty}(a_k-a_{k+1})$	$\lim_{k\to\infty}a_k=L$		Suma: $S = a_t - L$
p-series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	p > 1	$p \leq 1$	
Series alternadas	$\sum_{k=1}^{\infty} (-1)^{k+1} a_k$	$0 < a_{k+1} \le a_k$ y $\lim_{k \to \infty} a_k = 0$		
Integral (f continua, positiva y decreciente)	$\sum_{k=1}^{\infty} a_k,$ $a_k = f(k) \ge 0$	$\int\limits_{1}^{\infty}f(x)dx \text{ converge}$	$\int\limits_{1}^{\infty}f(x)dx$ diverge	
Raíz	$\sum_{k=1}^{\infty} a_k$	$\lim_{k\to\infty}\sqrt[k]{ a_k }<1$	$\lim_{k\to\infty}\sqrt[k]{ a_k }>1$	El criterio no concluye nada si $\lim_{k\to\infty} \sqrt[k]{ a_k } = 1$
Cociente	$\sum_{k=1}^{\infty} a_k$	$\lim_{k\to\infty}\left \frac{a_{k+1}}{a_k}\right <1$	$\lim_{k\to\infty}\left \frac{a_{k+1}}{a_k}\right >1$	El criterio no concluye nada si $\lim_{k\to\infty}\left \frac{a_{k+1}}{a_k}\right =1$
Comparación directa $(a_k, b_k > 0)$	$\sum\limits_{k=1}^{\infty}a_{k}$	$0 < a_k \le b_k$ y $\sum_{k=1}^{\infty} b_k$ converge	$0 < b_k \le a_k$ y $\sum_{k=1}^{\infty} b_k$ diverge	
Comparación en el límite $(a_k, b_k > 0)$	$\sum_{k=1}^{\infty} a_k$	$\lim_{k\to\infty}\frac{a_k}{b_k}=L>0$ y $\sum_{k=1}^{\infty}b_k$ converge	$\lim_{k\to\infty} \frac{a_k}{b_k} = L > 0$ $y \sum_{k=1}^{\infty} b_k \text{ diverge}$	