

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
20 June 2002 (20.06.2002)

PCT

(10) International Publication Number
WO 02/48151 A1(51) International Patent Classification⁷: C07D 487/04,
A01N 43/56

Eberhard; Von-Gagern-Strasse 2, 64646 Heppenheim (DE). STRATHMANN, Siegfried; Donnersbergstr. 9, 67117 Limburgerhof (DE). LORENZ, Gisela; Erlenweg 13, 67434 Neustadt (DE). STIERL, Rheinhard; Ginsterstrasse 17, 67112 Mutterstadt (DE).

(21) International Application Number: PCT/EP00/12477

(74) Common Representative: BASF AKTIENGESELLSCHAFT; 67056 Ludwigshafen (DE).

(22) International Filing Date:
11 December 2000 (11.12.2000)

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(26) Publication Language: English

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant: BASF AKTIENGESELLSCHAFT [DE/DE]; 67056 Ludwigshafen (DE).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors: PEES, Klaus-Jürgen; Soonwaldstrasse 99, 55129 Mainz (DE). TORMO I BLASCO, Jordi; Mühlweg 47, 67117 Limburgerhof (DE). SAUTER, Hubert; Neckarpromenade 20, 68167 Mannheim (DE). CULLMANN, Oliver; Ortstrasse 34, 64646 Heppenheim (DE). GEWEHR, Markus; Goethestrasse 21, 56288 Kastellaun (DE). GRAMMENOS, Wassilius; Borsigstr. 5, 67063 Ludwigshafen (DE). MÜLLER, Bernd; Jean-Ganss-Strasse 21, 67227 Frankenthal (DE). GROTE, Thomas; Im Hoehnhausen 18, 67157 Wachenheim (DE). GYPSER, Andreas; B 4.4, 68159 Mannheim (DE). RHEINHEIMER, Joachim; Merziger Strasse 24, 67063 Ludwigshafen (DE). SCHÄFER, Peter; Römerstrasse 1, 67308 Otterheim (DE). SCHIEWECK, Frank; Lindenweg 4, 67258 Hessheim (DE). AMMERMANN,

(54) Title: 6-PHENYL-PYRAZOLOPYRIMIDINES

(57) Abstract: 6-Phenyl-Pyrazolopyrimidines of formula I wherein R¹? is alkyl, alkenyl, alkynyl, alkadienyl or haloalkyl, cycloalkyl, bicycloalkyl, phenyl, naphthyl, or 5- or 6-membered heterocyclic, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or 5- or 6-membered heteroaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, where these radicals may be unsubstituted or substituted as defined in the specification, Y is oxygen, sulfur,NR² or a single bond; wherein R² is defined in the specification; and R¹ and R² together with the interjacent nitrogen atom may represent a 5- or 6-membered heterocyclic ring, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, which may be substituted by one or more R^c radicals; m is 0 or an integer from 1 to 4; L each independently is halogen, nitro, alkyl alkoy, and X is halogen; Processes and intermediates for preparing these compounds, compositions comprising them and their use for controlling phytopathogenic fungi are described.

WO 02/48151 A1

6-Phenyl-Pyrazolopyrimidines

Description

5

The present Invention relates to pyrazolopyrimidines of formula I

10

in which

R¹ is C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, C₂-C₁₀-alkadienyl, or C₁-C₁₀-haloalkyl,

where these radicals may be unsubstituted or partially or fully halogenated or may carry one to three groups R^a,

R^a is halogen, cyano, nitro, hydroxyl, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylcarbonyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkoxycarbonyl, C₁-C₆-alkylthio, C₁-C₆-alkylamino,

di-C₁-C₆-alkylamino, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, C₃-C₆-alkynyloxy and C₁-C₄-alkylenedioxy, which may be halogenated;

C₃-C₈-cycloalkyl, C₅-C₁₀-bicycloalkyl, phenyl, naphthyl, or 5- or 6-membered heterocyclyl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or 5- or 6-membered heteroaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom,

where the cyclic systems may be partially or fully halogenated or may carry one to three groups R^b:

R^b is halogen, cyano, nitro, hydroxyl, mercapto, amino, carboxyl, aminocarbonyl, aminothiocarbonyl, alkyl, haloalkyl, alkenyl, alkenyloxy, alkynyloxy, alkoxy, haloalkoxy, alkylthio, alkylamino, dialkylamino, formyl, alkylcarbonyl, alkylsulfonyl, alkylsulfoxyl, alkoxy carbonyl, alkylcarbonyloxy, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, where the alkyl groups in these radicals contain 1 to 6 carbon

atoms and the abovementioned alkenyl or alkynyl groups in these radicals contain 2 to 8 carbon atoms;

Y is oxygen, sulfur, NR² or a single bond; wherein

5

R² represents a hydrogen atom or C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, C₂-C₁₀-alkadienyl, C₁-C₁₀-haloalkyl, C₃-C₈-cycloalkyl, C₅-C₁₀-bicycloalkyl, phenyl, naphthyl, or 5- or 6-membered heterocyclyl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or 5- or 6-membered heteroaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, where R² may be substituted by one or more R^a, or

10

R¹ and R² together with the interjacent nitrogen atom represent a 5- or 6-membered heterocyclic ring, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, which may be substituted by 15 one or more R^c radicals;

20

m is 0 or an integer from 1 to 4;

L each independently is halogen, nitro, C₁-C₁₀-alkyl,

25

C₁-C₁₀-alkoxy, and

X is halogen.

Moreover, the invention relates to processes for preparing these 30 compounds, to compositions comprising them and to their use for controlling phytopathogenic fungi.

U.S. Patent US 4,567,263 discloses pyrazolopyrimidines which are substituted in the 7-Position by an unsubstituted amino group.

35 These compounds are said to be active against various phytopathogenic fungi.

International Patent Application WO-A 96/35690 embraces pyrazolo-pyrimidines, to which a substituted phenyl is attached in the

40 2-position by a phenyl optionally via a linking group.

U.S. Patent US 5,817,663 discloses pyrazolopyrimidines, which are substituted by a pentafluorophenyl group in the 6-Position.

45 However, none of these documents discloses specifically 5-halopyrazolopyrimidines which are substituted in the 6-Position by a phenyl group having up to 4 substituents.

It is an object of the present invention to provide compounds having improved fungicidal activity.

We have found that this object is achieved by the compounds defined at the outset. Furthermore, we have found processes for their preparation, compositions comprising them and methods for controlling phytopathogenic fungi using the compounds I.

The present Invention further provides a process for the preparation of compounds of formula I as defined above which comprises treating a compound of formula IV

15

in which L, m and X are as defined in formula I; with an alcohol, amine or thiol of formula V

20

in which R¹ and Y are as defined in formula I, and M represents a hydrogen atom or a free or complexed metal atom, to produce com-
25 pounds of formula I.

For the preparation of the compounds wherein Y represents O, S or NR², M is preferably a hydrogen atom or a alkali metal.

30 For the preparation of the compounds wherein Y represents a single bond, M represents a free or complexed metal atom, such as for example Li, Mg or Zn in the presence of a transition metal, in particular Cu.

35 Compounds of formula IV are novel and can be prepared by reacting 5-amino-pyrazole with 2-phenyl-substituted malonic acid ester of formula II,

wherein L and m are as defined for formula I, R represents alkyl, preferably C₁-C₆-alkyl, in particular methyl or ethyl, under alkaline conditions, preferably using high boiling tertiary amines as for example tri-n-butylamine as disclosed for example by EP-A 770 615.

4

The resulting 5,7-dihydroxy-6-phenyl-pyrazolopyrimidine of formula III

5

III

wherein L and m are as defined for formula I, is subsequently treated with a halogenating agent, preferably with a brominating or chlorinating agent, such as phosphorus oxybromide or phosphorus oxychloride, neat or in the presence of a solvent to give IV.

If phosphorus oxybromide or phosphorus oxychloride is used for the halogenation of III the presence of a mineralic acid, such as polyphosphoric acid, and pyridinium salts, preferably pyridinium halides, such as pyridinium bromide or chloride, is preferred.

The reaction is suitably carried out at a temperature in the range from 0 °C to 150 °C, the preferred reaction temperature being from 80 °C to 125 °C as disclosed for example by EP-A 770 615.

The compounds of formula II are preferably prepared by reaction of the corresponding substituted bromobenzenes with sodium dialkylmalonates in the presence of a copper(I) salt, [e.g. Chemistry Letters, pp. 367-370, 1981].

Compounds of formula IVA are particularly preferred.

30

IVA

35 Accordingly, the Invention relates to the novel intermediates of formula IV, in particular 5,7-dichloro-6-(2,4,6-trifluorophenyl)pyrazolo[1,5-a]pyrimidine and 5,7-dichloro-6-(2-chloro-6-fluoro-phenyl)pyrazolo[1,5-a]pyrimidine, and to the corresponding 5,7-dihydroxy-6-phenyl-pyrazolo[1,5-a]pyrimidines of formula III.

40

The reaction between the 5,7-dihalogen-6-phenyl-pyrazolopyrimidines of formula IV and the compound of formula V, wherein Y is 0, S or NR², is preferably carried out in the presence of an inert solvent.

45

5

Suitable solvents include ethers, such as dioxane, diethyl ether and, especially, tetrahydrofuran, halogenated hydrocarbons such as dichloromethane and aromatic hydrocarbons, for example toluene.

5

The reaction is suitably carried out at a temperature in the range from 0 °C to 70 °C, the preferred reaction temperature being from 10 °C to 35 °C.

10 It is also preferred that the reaction is carried out in the presence of a base. Suitable bases include tertiary amines, such as triethylamine, and inorganic bases, such as potassium carbonate or sodium carbonate. Alternatively, an excess of the compound of formula V may serve as a base.

15

The reaction between the 5,7-dihalogen-6-phenyl-pyrazolopyrimidines of formula IV and the compound of formula V, wherein Y represents a single bond, is conveniently carried out in the presence of a solvent.

20

Suitable solvents include ethers, such as dioxane, diethyl ether and, especially, tetrahydrofuran, hydrocarbons such as hexane, cyclohexane or mineral oil, and aromatic hydrocarbons, for example toluene, or mixtures of these solvents.

25

The reaction is suitably carried out at a temperature in the range from -100 °C to +100 °C, the preferred reaction temperature being from -80 °C to +40 °C.

30 It is also preferred that the reaction is carried out in the presence of copper ions, preferably equimolar amounts of copper(I) halides, in particular copper(I) iodide.

Furthermore the compounds of formula I, wherein Y represents a
35 single bond may be prepared by reacting the corresponding alkyl 2-aryl-3-alkyl-3-oxopropionates of formula VI

VI

40

in which R¹, L and m have the meaning given and R' represents an optionally substituted alkyl group, preferably C₁-C₄-alkyl, with 5-amino-pyrazole.

45

The reaction mixtures are worked up in a customary manner, for example by mixing with water, phase separation and, if required, chromatographic purification of the crude products. Some of the intermediates and end products are obtained in the form of color-
5 less or slightly brownish, viscous oils, which are purified or freed from volatile components under reduced pressure and at moderately elevated temperatures. If the intermediates and end products are obtained as solids, purification can also be carried out by recrystallization or digestion.

10

If individual compounds I are not obtainable by the routes described above, they can be prepared by derivatization of other compounds I.

15 However, if the synthesis yields isomer mixtures, a separation is generally not necessarily required since in some cases the individual isomers can be converted into one another during the preparation for use or upon use (for example under the action of light, acids or bases). Similar conversions may also occur after
20 use, for example in the treatment of plants in the treated plant or in the harmful fungus or animal pest to be controlled.

In the symbol definitions given in the formulae above, collective terms were used which generally represent the following substituents:
25

- halogen: fluorine, chlorine, bromine and iodine, especially bromine, chlorine or fluorine, in particular fluorine or chlorine;

30

- C₁-C₁₀-alkyl and the alkyl moieties of alkoxy, alkadienyl, alkylthio, alkylamino or di-alkylamine: saturated, straight-chain or branched hydrocarbon radicals having 1 to 10, preferably 1 to 6 carbon atoms, especially 1 to 4 carbon atoms, specifically
35 methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-di-methylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethyl-
40 butyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl,
1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl;

45 - C₁-C₄-alkylene: methylene, ethylene, n-propylene or n-butylene;

- C₁-C₁₀-haloalkyl and the haloalkyl moieties of C₁-C₁₀-haloalkoxy: straight-chain or branched alkyl groups having 1 to 10, preferably 1 to 4 carbon atoms (as mentioned above), where the hydrogen atoms in these groups may be partially or fully replaced by halogen atoms as mentioned above, for example C₁-C₂-haloalkyl, such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl and pentafluoroethyl;
 - C₂-C₁₀-alkenyl: unsaturated, straight-chain or branched hydrocarbon radicals having 2 to 10, preferably 2 to 6 carbon atoms and a double bond in any position, for example ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl and 2-methyl-2-propenyl;
 - C₂-C₁₀-alkynyl: straight-chain or branched hydrocarbon radicals having 2 to 10, preferably 1 to 4 carbon atoms and a triple bond in any position, for example ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl and 1-methyl-2-propynyl;
- Cycloalkyl: monocyclic, saturated hydrocarbon groups with 3 to 6, 8, 10 or 12 carbon atoms, preferably C₃-C₈-cycloalkyl, specifically cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
- Bicycloalkyl, as used herein with respect to a radical or moiety refers to a bicycloalkyl group having 5 to 10 carbon atoms, preferably 6 to 9 carbon atoms, in particular bicycloheptyl.
- Aryl: a mono- to tricyclic aromatic ring system containing 6 to 14 carbon ring members, for example phenyl, naphthyl and anthracenyl;
- 5- or 6-membered heteroaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom:
- 5-membered heteroaryl groups which, in addition to carbon atoms, may contain one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom as ring members, for example 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 3-iso-

- thiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl, 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl, 1,2,4-triazol-3-yl, 1,3,4-oxadiazol-2-yl, 1,3,4-thiadiazol-2-yl and 1,3,4-triazol-2-yl;
- 6-membered heteroaryl groups which, in addition to carbon atoms, may contain one to three or one to four nitrogen atoms as ring members, for example 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyl, 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
- 15 5- or 6-membered heterocyclyl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom: 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl,
- 20 5-isoxazolidinyl, 3-isothiazolidinyl, 4-isothiazolidinyl, 5-isothiazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl, 2-thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, 1,2,4-oxadiazolidin-3-yl,
- 25 1,2,4-oxadiazolidin-5-yl, 1,2,4-thiadiazolidin-3-yl, 1,2,4-thiadiazolidin-5-yl, 1,2,4-triazolidin-3-yl, 1,3,4-oxadiazolidin-2-yl, 1,3,4-thiadiazolidin-2-yl, 1,3,4-triazolidin-2-yl, 2,3-dihydrofur-2-yl, 2,3-dihydrofur-3-yl, 2,4-dihydrofur-2-yl, 2,4-dihydrofur-3-yl, 2,3-dihydrothien-2-yl,
- 30 2,3-dihydrothien-3-yl, 2,4-dihydrothien-2-yl, 2,4-dihydrothien-3-yl, 2-pyrrolin-2-yl, 2-pyrrolin-3-yl, 3-pyrrolin-2-yl, 3-pyrrolin-3-yl, 2-isoxazolin-3-yl, 3-isoxazolin-3-yl, 4-isoxazolin-3-yl, 2-isoxazolin-4-yl, 3-isoxazolin-4-yl, 4-isoxazolin-4-yl, 2-isoxazolin-5-yl,
- 35 3-isoxazolin-5-yl, 4-isoxazolin-5-yl, 2-isothiazolin-3-yl, 3-isothiazolin-3-yl, 4-isothiazolin-3-yl, 2-isothiazolin-4-yl, 3-isothiazolin-4-yl, 4-isothiazolin-4-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2,3-dihdropyrazol-1-yl, 2,3-dihdropyrazol-2-yl,
- 40 2,3-dihdropyrazol-3-yl, 2,3-dihdropyrazol-4-yl, 2,3-dihdropyrazol-5-yl, 3,4-dihdropyrazol-1-yl, 3,4-dihdropyrazol-3-yl, 3,4-dihdropyrazol-4-yl, 3,4-dihdropyrazol-5-yl, 4,5-dihdropyrazol-1-yl, 4,5-dihdropyrazol-3-yl, 4,5-dihdropyrazol-4-yl,
- 45 4,5-dihdropyrazol-5-yl, 2,3-dihdrooxazol-2-yl, 2,3-dihdrooxazol-3-yl, 2,3-dihdrooxazol-4-yl, 2,3-dihdrooxazol-5-yl, 3,4-dihdrooxazol-2-yl,

3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4-yl,
 3,4-dihydrooxazol-5-yl, 3,4-dihydrooxazol-2-yl,
 3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4-yl, 2-piperidinyl,
 3-piperidinyl, 4-piperidinyl, 1,3-dioxan-5-yl,
 5 2-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl,
 3-hexahydropyridazinyl, 4-hexahydropyridazinyl,
 2-hexahydropyrimidinyl, 4-hexahydropyrimidinyl,
 5-hexahydropyrimidinyl, 2-piperazinyl,
 1,3,5-hexahydro-triazin-2-yl and 1,2,4-hexahydrotriazin-3-yl;

10

Optionally by R^a or R^b substituted moieties may be unsubstituted or have from one up to the maximal possible number of substituents. Typically, 0 to 2 substituents are present.

15

Preferred meanings for R^a and R^b radicals are: halogen, nitro, cyano, hydroxy, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₃-C₆-cycloalkenyl, C₁-C₆ haloalkyl, C₃-C₆-halocycloalkyl, C₁-C₆-alkoxy, C₁-C₆ haloalkoxy, tri-C₁-C₄-alkylsilyl, phenyl, halo- or dihalo-phenyl or pyridyl.

20

The Invention especially relates to compounds of the formula I in which any alkyl or haloalkyl part of the groups R¹ or R², which may be straight chained or branched, contains up to 10 carbon atoms, preferably 1 to 9 carbon atoms, more preferably 2 to 6

25 carbon atoms, any alkenyl or alkynyl part of the substituents R¹ or R² contains up to 10 carbon atoms, preferably 2 to 9 carbon atoms, more preferably 3 to 6 carbon atoms, any cycloalkyl part of the substituents R¹ or R² contains from 3 to 10 carbon atoms, preferably from 3 to 8 carbon atoms, more preferably from 3 to 6

30 carbon atoms, any bicycloalkyl part of the substituents R¹ or R² contains from 5 to 9 carbon atoms, preferably from 7 to 9 carbon atoms and any aryl part of the substituent R¹ or R² contains 6, 10 or 14 carbon atoms, preferably 6 or 10 carbon atoms. Any alkyl, alkenyl or alkynyl group may be linear or branched.

35

The Invention especially relates to compounds of the formula I in which R¹ represents a straight-chained or branched C₁-C₁₀ alkyl, in particular a branched C₃-C₁₀-alkyl group, a C₃-C₈-cycloalkyl, a C₅-C₉-bicycloalkyl, a C₃-C₈-cycloalkyl-C₁-C₆-alkyl, C₁-C₁₀-alkoxy-C₁-C₆-alkyl, a C₁-C₁₀-haloalkyl or a phenyl group being optionally substituted by one to three halogen atoms or C₁-C₁₀-alkyl or C₁-C₁₀-alkoxy groups.

The particularly preferred embodiments of the intermediates with 45 respect to the variables correspond to those of the radicals X, Y, R¹, R², L and m of formula I.

10

A preferred alkyl moiety in formula I is ethyl or especially methyl.

A preferred haloalkyl moiety in formula I is 2,2,2-trifluoroethyl or 1,1,1-trifluoroprop-2-yl.

A preferred alkenyl moiety in formula I is allyl or especially 2-methylallyl.

10 Preferred heterocyclyl moieties in formula I are pyrrolodinyl, pyrazolidinyl, piperidinyl, piperazinyl or morpholin-4-yl.

Preferred heteroaryl moieties in formula I are: pyridyl, pyrimidyl, pyrazolyl or thienyl.

15

Cyclic groups in formula I are preferably optionally substituted by one or more halogen atoms, nitro, cyano, C₁-C₆-alkyl, or C₁-C₆-alkoxy.

20 Compounds of formula I are preferred wherein X denotes a fluorine, chlorine or bromine atom, in particular a chlorine atom.

Particular preference is given to compounds of formula I wherein Y represents NR² or a single bond, in particular NR².

25

Moreover, particular preference is given to compounds of formula I in which R² is hydrogen.

Besides, particular preference is given to compounds of the formula I in which Y denotes NR² and R² is hydrogen, C₁-C₁₀-alkyl or C₁-C₁₀-haloalkyl, in particular hydrogen.

If R¹ denotes C₁-C₁₀-haloalkyl, preferably a polyfluorinated alkyl group, in particular a 2,2,2-trifluoroethyl, a 2-(1,1,1-trifluoropropyl) or a 2-(1,1,1-trifluorobutyl) group, R² preferably is hydrogen.

If R¹ denotes an optionally substituted C₃-C₈-cycloalkyl group, preferably a cyclopentyl or cyclohexyl group, R² preferably is hydrogen or C₁-C₆-alkyl.

Particular preference is also given to compounds of the formula I in which X is NR² and R¹ and R² together with the interjacent nitrogen atom form an optionally substituted heterocyclic ring, preferably an optionally substituted C₃-C₇-heterocyclic ring, in particular a pyrrolidine, piperidine, tetrahydropyridine, in particular 1,2,3,6-tetrahydropyridine or azepane ring which is op-

11

tionally substituted by one or more C₁-C₆-alkyl, C₁-C₆-haloalkyl or C₁-C₆-alkoxy groups, preferably by one C₁-C₆-alkyl group.

L preferably is halogen or C₁-C₆-alkoxy. A preferred embodiment 5 are compounds of formula I in which

10

represents

wherein # denotes the link to the pyrazolopyrimidine moiety, L¹ through L⁴ each independently represent hydrogen, especially fluorine, chlorine, methyl or methoxy, in particular wherein L¹ is 15 fluoro, L² is hydrogen or fluoro, L³ is hydrogen or fluoro or methoxy and L⁴ denotes hydrogen, fluoro chloro or methyl.

Moreover, particular preference is given to compounds of the formula I in which m is 2 or 3. Most preferred L⁴ is not hydrogen.

20

Furthermore, particular preference is given to compounds of formula IA in which the variables have the meaning as defined in formula I.

25

30

Preference is given to compounds of formula IA in which L¹ denotes halogen and L³ and L⁴ each independently represent hydrogen, halogen or C₁-C₄-alkoxy.

35 Included in the scope of the present Invention are (R) and (S) isomers of compounds of general formula I having a chiral center and the racemates thereof, and salts, N-Oxides and acid addition compounds.

40 Particularly preference is given to compounds of formula IA wherein R² is hydrogen, L¹ and L⁴ independently represent fluorine or chlorine atoms, and L³ denotes hydrogen, fluorine, chlorine or methoxy.

45 Likewise, preference is given for the following compounds of formula I:

12

- [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]-(2,2,2-trifluoro-ethyl)-amine,
 [5-chloro-6-(2,4,6-trifluorophenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]-cyclopentyl-amine,
 5 [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]-(1,1,1-trifluoro-prop-2-yl)-amine,
 [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]-diethyl-amine,
 [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidi-
 10 din-7-yl]-isopropyl-amine,
 sec-butyl-[5-chloro-6-(2,4,6-trifluorophenyl)-pyrazolo[1 ,5- α]pyrimidin-7-yl]-amine,
 bicyclo[2.2.1]hept-2-yl-[5-chloro-6-(2,4,6-trifluoro-phenyl)-py-
 razolo[1,5- α]pyrimidin-7-yl]-amine,
 15 [5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]cyclopentyl-amine,
 [5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]-(2,2,2-trifluoro-ethyl)-amine,
 [5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimi-
 20 din-7-yl]-(1,1,1-trifluoro-prop-2-yl)-amine,
 [5-chloro-6-(2-chloro-6-fluoro-phenyl)pyrazolo[1,5- α]pyrimidi-
 din-7-yl]-diethyl-amine,
 [5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimi-
 din-7-yl]-isopropyl-amine,
 25 sec-butyl-[5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyra-
 zolo[1,5- α]pyrimidin-7-yl]amine,
 bicyclo[2.2.1]hept-2-yl-(5-chloro-6-(2-chloro-6-fluoro-phenyl)py-
 razolo[1,5- α]pyrimidin-7-yl]-amine,
 [5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-pyrazolo[1,5- α]pyrimi-
 30 din-7-yl]-(2,2,2-trifluoro-ethyl)-amine,
 [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimi-
 din-7-yl]-4-methyl-cyclohexane,
 [5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimi-
 din-7-yl]-4-methyl-cyclohexane, and
 35 [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimi-
 din-7-yl]-4-fluoro-cyclohexane.

Moreover, particular preference is given to following compounds:

- 40 [5-chloro-6-(2,4,6-trifluoro-phenyl)-7-(4-methyl-piperi-
 din-1-yl)-1,2,4]triazolo[1,5- α]pyrimidine;
 [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimi-
 din-7-yl]-(2,2,2-trifluoro-ethyl)amine;
 [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimi-
 45 din-7-yl]cyclopentyl-amine;
 [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimi-
 din-7-yi]-(1,1,1-trifluoro-prop-2y1)-amine;

13

[5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]-diethylamine;
 [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1 ,5- α]pyrimidin-7-yl]isopropyl-amine;
 5 sec-butyl-[5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]-amine;
 bicyclo[2.2.1]hept-2-yl-[5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]amine;
 [5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimidi-
 10 din-7-yl]cyclopentyl-amine;
 [5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimidi-
 din-7-yl](2,2,2-trifluoroethyl)-amine;
 [5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimidi-
 din-7-yl](1,1,1-trifluoroprop-2-yl)-amine;
 15 [5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimidi-
 din-7-yl]diethyl-amine;
 [5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimidi-
 din-7-yl]isopropyl-amine;
 sec-butyl-[5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyra-
 20 zolo[1,5- α]pyrimidin-7-yl]-amine;
 [5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-pyrazolo[1,5- α]pyrimidi-
 din-7-yl](1,1,1-trifluoroprop-2-yl)-amine;
 bicyclo[2.2.1]hept-2-yl-[5-chloro-6-(2-chloro-6-fluoro-phenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]-amine.

25

With respect to their use, particular preference is given to the compounds I compiled in the tables below. The groups mentioned in the table for a substituent are furthermore for their part, independently of the combination in which they are mentioned, a particularly preferred embodiment of the respective substituents.

Table 1

Compounds of the formula IA, in which L¹ is fluoro, L³ is hydrogen, L⁴ is chloro and R¹ and R² correspond to one row in
 35 Table A

Table 2

Compounds of the formula IA, in which L¹ and L⁴ each are fluoro, L³ is hydrogen and R¹ and R² correspond to one row in Table A

40

Table 3

Compounds of the formula IA, in which L¹ and L⁴ each are chloro, L³ is hydrogen and R¹ and R² correspond to one row in Table A

45

Table 4

Compounds of the formula IA, in which L¹ is methyl, L³ is hydrogen, L⁴ is fluoro and R¹ and R² correspond to one row in Table A

5

Table 5

Compounds of the formula IA, in which L¹, L³ and L⁴ each are fluoro and R¹ and R² correspond to one row in Table A

10 Table 6

Compounds of the formula IA, in which L¹ and L⁴ each are fluoro, L³ is methoxy and R¹ and R² correspond to one row in Table A

Table A

15

20

No.	R ¹	R ²
A-1	CH ₂ CH ₃	H
A-2	CH ₂ CH ₃	CH ₃
A-3	CH ₂ CH ₃	CH ₂ CH ₃
A-4	CH ₂ CH ₂ CH ₃	H
A-5	CH ₂ CH ₂ CH ₃	CH ₃
A-6	CH ₂ CH ₂ CH ₃	CH ₂ CH ₃
A-7	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
A-8	CH ₂ CF ₃	H
A-9	CH ₂ CF ₃	CH ₃
A-10	CH ₂ CF ₃	CH ₂ CH ₃
A-11	CH ₂ CF ₃	CH ₂ CH ₂ CH ₃
A-12	CH ₂ CCl ₃	H
A-13	CH ₂ CCl ₃	CH ₃
A-14	CH ₂ CCl ₃	CH ₂ CH ₃
A-15	CH ₂ CCl ₃	CH ₂ CH ₂ CH ₃
A-16	CH(CH ₃) ₂	H
A-17	CH(CH ₃) ₂	CH ₃
A-18	CH(CH ₃) ₂	CH ₂ CH ₃
A-19	CH(CH ₃) ₂	CH ₂ CH ₂ CH ₃
A-20	(±) CH(CH ₂ CH ₃)CH ₃	H
A-21	(±) CH(CH ₂ CH ₃)CH ₃	CH ₃
A-22	(±) CH(CH ₂ CH ₃)CH ₃	CH ₂ CH ₃

No.	R ¹	R ²
A-23	(R) CH(CH ₂ CH ₃)CH ₃	H
A-24	(R) CH(CH ₂ CH ₃)CH ₃	CH ₃
5 A-25	(R) CH(CH ₂ CH ₃)CH ₃	CH ₂ CH ₃
A-26	(S) CH(CH ₂ CH ₃)CH ₃	H
A-27	(S) CH(CH ₂ CH ₃)CH ₃	CH ₃
10 A-28	(S) CH(CH ₂ CH ₃)CH ₃	CH ₂ CH ₃
A-29	(±) CH(CH ₃)-CH(CH ₃) ₂	H
A-30	(±) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
15 A-31	(±) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-32	(R) CH(CH ₃)-CH(CH ₃) ₂	H
A-33	(R) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
20 A-34	(R) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-35	(S) CH(CH ₃)-CH(CH ₃) ₂	H
A-36	(S) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-37	(S) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
25 A-38	(±) CH(CH ₃)-C(CH ₃) ₃	H
A-39	(±) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-40	(±) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-41	(R) CH(CH ₃)-C(CH ₃) ₃	H
30 A-42	(R) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-43	(R) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-44	(S) CH(CH ₃)-C(CH ₃) ₃	H
A-45	(S) CH(CH ₃)-C(CH ₃) ₃	CH ₃
35 A-46	(S) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-47	(±) CH(CH ₃)-CF ₃	H
A-48	(±) CH(CH ₃)-CF ₃	CH ₃
A-49	(±) CH(CH ₃)-CF ₃	CH ₂ CH ₃
40 A-50	(R) CH(CH ₃)-CF ₃	H
A-51	(R) CH(CH ₃)-CF ₃	CH ₃
A-52	(R) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-53	(S) CH(CH ₃)-CF ₃	H
A-54	(S) CH(CH ₃)-CF ₃	CH ₃
45 A-55	(S) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-56	(±) CH(CH ₃)-CCl ₃	H
A-57	(±) CH(CH ₃)-CCl ₃	CH ₃
A-58	(±) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
A-59	(R) CH(CH ₃)-CCl ₃	H
A-60	(R) CH(CH ₃)-CCl ₃	CH ₃
46 A-61	(R) CH(CH ₃)-CCl ₃	CH ₂ CH ₃

No.	R ¹	R ²
5	A-62 (S) CH(CH ₃)-CCl ₃	H
	A-63 (S) CH(CH ₃)-CCl ₃	CH ₃
	A-64 (S) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
	A-65 CH ₂ C(CH ₃)=CH ₂	H
	A-66 CH ₂ C(CH ₃)=CH ₂	CH ₃
	A-67 CH ₂ C(CH ₃)=CH ₂	CH ₂ CH ₃
	A-68 cyclopentyl	H
10	A-69 cyclopentyl	CH ₃
	A-70 cyclopentyl	CH ₂ CH ₃
	A-71	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -

15 Due to excellent activity, the compounds of formula I may be used in cultivation of all plants where infection by phytopathogenic fungi is not desired, e.g. cereals, solanaceous crops, vegetables, legumes, apples, vine.

20 The compounds according to formula I are superior through their valuable fungicidal properties, in particular their enhanced systemicity and enhanced fungicitoxity.

Moreover, the compounds I are suitable for controlling harmful 25 fungi such as Paecilomyces variotii in the protection of materials (e.g. wood, paper, paint dispersions, fibers and tissues) and in the protection of stored products.

The compounds I are applied by treating the fungi, or the plants, 30 seeds, materials or the soil to be protected against fungal infection, with a fungicidally active amount of the active ingredients. Application can be effected both before and after infection of the materials, plants or seeds by the fungi.

35 In general, the fungicidal compositions comprise from 0.1 to 95, preferably 0.5 to 90, % by weight of active ingredient.

When used in crop protection, the rates of application are from 0.01 to 2.0 kg of active ingredient per ha, depending on the nature 40 of the effect desired.

In the treatment of seed, amounts of active ingredient of from 0.001 to 0.1 g, preferably 0.01 to 0.05 g, are generally required per kilogram of seed.

45 When used in the protection of materials or stored products, the rate of application of active ingredient depends on the nature of the field of application and on the effect desired. Rates of ap-

plication conventionally used in the protection of materials are, for example, from 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active ingredient per cubic meter of material treated.

- 5 For example, they can be used in agriculture or related fields for the control of phytopathogenic fungi such as *Alternaria solani*, *Botrytis cinerea*, *Cercospora arachidicola*, *Cercospora beticola*, *Cladosporium herbarum*, *Cochliobolus miyabeanus*, *Corticium rolfsii*, *Erysiphe graminis*, *Erysiphe cichoracearum* und *Sphaero-*
10 *theca fuliginea*, *Fusarium*-species, *Erysiphe cichoracearum*, *Hel-*
minthosporium tritici repentis, *Leptosphaeria nodorum*, *Micronec-*
triella nivalis, *Monilinia fructigena*, *Mycosphaerella ligulicola*,
Mycosphaerella pinodes, *Phytophthora infestans*, *Plasmopara viti-*
15 *cola*, *Pseudocercosporella herpotrichoides*, *Puccinia*-species, *Py-*
ricularia oryzae, *Rhizoctonia solani*, *Sclerotinia sclerotiorum*,
Sphaerotheca fuliginea, *Uncinula necator* and *Venturia inequalis*.
The compounds of formula I according to the Invention possess a high fungicidal activity within a wide concentration range.
- 20 The Invention further provides a fungicidal composition which comprises an active ingredient, which is at least one compound of formula I as defined above, and one or more carriers. A method of making such a composition is also provided which comprises bringing a compound of formula I as defined above into association
25 with the carrier(s). Such a composition may contain a single active ingredient or a mixture of several active ingredients of the present Invention. It is also envisaged that different isomers or mixtures of isomers may have different levels or spectra of activity and thus compositions may comprise individual isomers or
30 mixtures of isomers.

A composition according to the Invention preferably contains from 0.5% to 95% by weight (w/w) of active ingredient.

- 35 A carrier in a composition according to the Invention is any material with which the active ingredient is formulated to facilitate application to the locus to be treated, which may for example be a plant, seed, soil, or water in which a plant grows, or to facilitate storage, transport or handling. A carrier may be a
40 solid or a liquid, including material which is normally a gas but which has been compressed to form a liquid.

The compositions may be manufactured into e.g. emulsion concentrates, solutions, oil in water emulsions, wettable powders, soluble powders, suspension concentrates, dusts, granules, water dispersible granules, micro-capsules, gels, tablets and other formulation types by well-established procedures. These procedu-

res include intensive mixing and/or milling of the active ingredients with other substances, such as fillers, solvents, solid carriers, surface active compounds (surfactants), and optionally solid and/or liquid auxiliaries and/or adjuvants. The form of application such as spraying, atomizing, dispersing or pouring may be chosen like the compositions according to the desired objectives and the given circumstances.

Solvents may be aromatic hydrocarbons, e.g. Solvesso® 200, substituted naphthalenes, phthalic acid esters, such as dibutyl or dioctyl phthalate, aliphatic hydrocarbons, e.g. cyclohexane or paraffins, alcohols and glycols as well as their ethers and esters, e.g. ethanol, ethyleneglycol mono- and dimethyl ether, ketones such as cyclohexanone, strongly polar solvents such as N-methyl-2-pyrrolidone, or γ -butyrolactone, higher alkyl pyrrolidones, e.g. noctyldpyrrolidone or cyclohexylpyrrolidone, epoxidized plant oil esters, e.g. methylated coconut or soybean oil ester and water. Mixtures of different liquids are often suitable.

Solid carriers, which may be used for dusts, wettable powders, water dispersible granules, or granules, may be mineral fillers, such as calcite, talc, kaolin, montmorillonite or attapulgite. The physical properties may be improved by addition of highly dispersed silica gel or polymers. Carriers for granules may be porous material, e.g. pumice, kaolin, sepiolite, bentonite; non-sorptive carriers may be calcite or sand. Additionally, a multitude of pre-granulated inorganic or organic materials may be used, such as dolomite or crushed plant residues.

Pesticidal compositions are often formulated and transported in a concentrated form which is subsequently diluted by the user before application. The presence of small amounts of a carrier which is a surfactant facilitates this process of dilution. Thus, preferably at least one carrier in a composition according to the invention is a surfactant. For example, the composition may contain at two or more carriers, at least one of which is a surfactant.

Surfactants may be nonionic, anionic, cationic or zwitterionic substances with good dispersing, emulsifying and wetting properties depending on the nature of the compound according to general formula I to be formulated. Surfactants may also mean mixtures of individual surfactants.

The compositions of the Invention may for example be formulated as wettable powders, water dispersible granules, dusts, granules, tablets, solutions, emulsifiable concentrates, emulsions, suspension concentrates and aerosols.

5

Wettable powders usually contain 5 to 90% w/w of active ingredient and usually contain in addition to solid inert carrier, 3 to 10% w/w of dispersing and wetting agents and, where necessary, 0 to 10% w/w of stabilizer(s) and/or other additives such as penetrants or stickers. Dusts are usually formulated as a dust concentrate having a similar composition to that of a wettable powder but without a dispersant, and may be diluted in the field with further solid carrier to give a composition usually containing 0.5 to 10% w/w of active ingredient.

15

Water dispersible granules and granules are usually prepared to have a size between 0.15 mm and 2.0 mm and may be manufactured by a variety of techniques. Generally, these types of granules will contain 0.5 to 90% w/w active ingredient and 0 to 20% w/w of additives such as stabilizer, surfactants, slow release modifiers and binding agents. The so-called "dry flowables" consist of relatively small granules having a relatively high concentration of active ingredient.

25

Emulsifiable concentrates usually contain, in addition to a solvent or a mixture of solvents, 1 to 80% w/v active ingredient, 2 to 20% w/v emulsifiers and 0 to 20% w/v of other additives such as stabilizers, penetrants and corrosion inhibitors. Suspension concentrates are usually milled so as to obtain a stable, non sedimenting flowable product and usually contain 5 to 75% w/v active ingredient, 0.5 to 15% w/v of dispersing agents, 0.1 to 10% w/v of suspending agents such as protective colloids and thixotropic agents, 0 to 10% w/v of other additives such as defoamers, corrosion inhibitors, stabilizers, penetrants and stickers, and 35 water or an organic liquid in which the active ingredient is substantially insoluble; certain organic solids or inorganic salts may be present dissolved in the formulation to assist in preventing sedimentation and crystallization or as antifreeze agents for water.

40

Aqueous dispersions and emulsions, for example compositions obtained by diluting the formulated product according to the Invention with water, also lie within the scope of the Invention.

45

20

Of particular interest in enhancing the duration of the protective activity of the compounds of this invention is the use of a carrier which will provide slow release of the pesticidal compounds into the environment of a plant which is to be protected.

5

The biological activity of the active ingredient can also be increased by including an adjuvant in the spray dilution. An adjuvant is defined here as a substance which can increase the biological activity of an active ingredient but is not itself significantly biologically active. The adjuvant can either be included in the formulation as a coformulant or carrier, or can be added to the spray tank together with the formulation containing the active ingredient.

15 As a commodity the compositions may preferably be in a concentrated form whereas the end user generally employs diluted compositions. The compositions may be diluted to a concentration down to 0.001 % of active ingredient. The doses usually are in the range from 0.01 to 10 kg a.i./ha.

20

Examples of formulations according to the Invention are:

Emulsion Concentrate (EC)

25	Active Ingredient Compound of Example 5	30 % (w/v)
	Emulsifier(s) Atlox® 4856 / Atlox® 4858 B ¹⁾ (mixture containing calcium alkyl aryl sulfonate, fatty alcohol ethoxylates and light aromatics / mixture containing calcium alkyl aryl sulfonate, fatty alcohol ethoxylates and light aromatics)	5 % (w/v)
30	Solvent Shellsol® A ²⁾ (mixture of C ₉ - C ₁₀ aromatic hydrocarbons)	to 1000 ml

35

40

45

Suspension Concentrate (SC)

	Active Ingredient	Compound of Example 5	50 % (w/v)
5	Dispersing agent	Soprophor® FL ³⁾ (polyoxyethylene polyaryl phenyl ether phosphate amine salt)	3 % (w/v)
	Antifoaming agent	Rhodorsil® 422 ³⁾ (nonionic aqueous emulsion of polydimethylsiloxanes)	0.2 % (w/v)
10	Structure agent	Kelzan® S ⁴⁾ (Xanthan gum)	0.2 % (w/v)
	Antifreezing agent	Propylene glycol	5 % (w/v)
15	Biocidal agent	Proxel® ⁵⁾ (aqueous dipropylene glycol solution containing 20 % 1,2-benzoisothiazolin-3-one)	0.1 % (w/v)
	Water		to 1000 ml

Wettable Powder (WP)

20	Active Ingredient	Compound of Example 7	60 % (w/w)
	Wetting agent	Atlox® 4995 ¹⁾ (polyoxyethylene alkyl ether)	2 % (w/w)
25	Dispersing agent	Witcosperse® D-60 ⁶⁾ (mixture of sodium salts of condensed naphthalene sulfonic acid and alkylarylpolyoxy acetates)	3 % (w/w)
	Carrier / Filler	Kaolin	35 % (w/w)

30

Water Dispersible Granules (WG)

	Active Ingredient	Compound of Example 7	50 % (w/w)
35	Dispersing / Binding agent	Witcosperse® D-450 ⁶⁾ (mixture of sodium salts of condensed naphthalene sulfonic acid and alkyl sulfonates)	8 % (w/w)
	Wetting agent	Morwet® EFW ⁶⁾ (formaldehyde condensation product)	2 % (w/w)
40	Antifoaming agent	Rhodorsil® EP 6703 ³⁾ (encapsulated silicone)	1 % (w/w)
	Disintegrant	Agrimer® ATF ⁷⁾ (cross-linked homopolymer of N-vinyl-2-pyrrolidone)	2 % (w/w)
45	Carrier / Filler	Kaolin	35 % (w/w)

- 1) commercially available from ICI Surfactants
- 2) commercially available from Deutsche Shell AG
- 3) commercially available from Rhône-Poulenc
- 4) commercially available from Kelco Co.
- 5) commercially available from Zeneca
- 6) commercially available from Witco
- 10 7) commercially available from International Speciality Products

The compositions of this Invention can be applied to the plants or their environment simultaneous with or in succession with other active substances. These other active substances can be either fertilisers, agents which donate trace elements or other preparations which influence plant growth. However, they can also be selective herbicides, insecticides, fungicides, bactericides, nematicides, algicides, molluscicides, rodenticides, virucides, compounds inducing resistance into plants, biological control agents such as viruses, bacteria, nematodes, fungi and other microorganisms, repellents of birds and animals, and plant growth regulators, or mixtures of several of these preparations, if appropriate together with other carrier substances conventionally used in the art of formulation, surfactants or other additives which promote application.

The other fungicidal compound can be, for example, one which is also capable of combating diseases of cereals (e.g. wheat) such as those caused by *Erysiphe*, *Puccinia*, *Septoria*, *Gibberella* and *Helminthosporium* spp., seed and soil Borne diseases and downy and powdery mildews on vines, early and late blight an solanaceous crops, and powdery mildew and scab an apples etc. These mixtures of fungicides can have a broader spectrum of activity than the compound of general formula I alone.

Examples of the other fungicidal compounds are anilazine, azoxy-strobin, benalaxyl, benomyl, binapacryl, bitertanol, blasticidin S, Bordeaux mixture, bromuconazole, bupirimate, captafol, captan, carbendazim, carboxin, carpropamid, chlorbenzthiazon, chlorothalonil, chlozolinate, copper-containing compounds such as copper oxychloride, and copper sulfate, cycloheximide, cymoxanil, cyfuram, cyproconazole, cyprodinil, dichlofluanid, dichlone, dichloran, diclobutrazol, diclocymet, diclomezine, diethofencarb, difenoconazole, diflumetorim, dimethirimol, dimethomorph, diniconazole, dinocap, ditalimfos, dithianon, dodemorph, dodine, edifenphos, epoxiconazole, etaconazole, ethirimol, etridiazole, famoxa-

done, fenapanil, fenamidone, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenoxyanil, fenpiclonil, fenpropidin, fenpropimorph, fentin, fentin acetate, fentin hydroxide, ferimzone, fluazinam, fludioxonil, flumetover, fluquinconazole, flusilazole, flusulfamide, flutolanil, flutriafol, folpet, fosetyl-aluminium, fuberidazole, furalaxyd, furametpyr, guazatine, hexaconazole, IKF-916, imazalil, iminoctadine, ipconazole, iprodione, isoprothiolane, iprovalicarb, kasugamycin, KH-7281, kitazin P, kresoxim-methyl, mancozeb, manebe, mepanipyrim, mepronil, metalaxyl, metconazole, 10 methfuroxam, MON 65500, myclobutanil, neoasozin, nicket dimethyl-dithiocarbamate, nitrothalisopropyl, nuarimol, ofurace, organo mercury compounds, oxadixyl, oxycarboxin, penconazole, pencycuron, phenazineoxide, phthalide, picoxystrobin, polyoxin D, polymram, probenazole, prochloraz, procymidione, propamocarb, propiconazole, propineb, pyraclostrobin, pyrazophos, pyrifenox, pyrimethanil, pyroquilon, pyroxyfur, quinomethionate, quinoxifen, quintozene, spiroxamine, SSF-126, SSF-129, streptomycin, sulfur, tebuconazole, tecloftalam, tecnazene, tetriconazole, thiabendazole, thifluzamide, thiophanate-methyl, thiram, tolclofosmethyl, 20 tolylfluanidt triadimefon, triadimenol, triazbutil, triazoxide, tricyclazole, tridemorph, trifloxystrobin, triflumizole, triforine, triticonazole, validamycin A, vinclozolin, XRD-563, zarilamid, zineb, ziram.

25 In addition, the co-formulations according to the Invention may contain at least one compound of formula I and any of the following classes of biological control agents such as viruses, bacteria, nematodes, fungi, and other microorganisms which are suitable to control insects, weeds or plant diseases or to induce host 30 resistance in the plants. Examples of such biological control agents are: *Bacillus thuringiensis*, *Verticillium lecanü*, *Autographics californica NPV*, *Beauvaria bassiana*, *Ampelomyces quisqualis*, *Bacilis subtüs*, *Pseudomonas chlororaphis*, *Pseudomonas fluorescens*, *Steptomyces griseoviridis* and *Trichoderma harzianum*.

35

Moreover, the co-formulations according to the Invention may contain at least one compound of formula I and a chemical agent that induces the systemic acquired resistance in plants such as for example isonicotinic acid or derivatives thereof, 2,2-di-40 chloro-3,3-dimethylcyclopropanecarboxylic acid or BION.

The compounds of general formula I can be mixed with soil, pest or other rooting media for the protection of the plants against seed-borne, soil-borne or foliar fungal diseases.

45

The Invention still further provides the use as a fungicide of a compound of formula I as defined above or a composition as defined above, and a method for combating fungus at a locus, which comprises treating the locus, which may be for example plants 5 subject to or subjected to fungal attack, seeds of such plants or the medium in which such plants are growing or are to be grown, with such a compound or composition.

The present Invention is of wide applicability in the protection 10 of crop and ornamental plants against fungal attack. Typical crops which may be protected include vines, grain crops such as wheat and barley, rice, sugar beet, top fruit, peanuts, potatoes, vegetables and tomatoes. The duration of the protection is normally dependent on the individual compound selected, and also a 15 variety of external factors, such as climate, whose impact is normally mitigated by the use of a suitable formulation.

The following examples further illustrate the present Invention. It should be understood, however, that the Invention is not limited 20 solely to the particular examples given below.

Example 1 Preparation of diethyl (2,4,6-trifluoro-phenyl)-malonate

25 Diethyl malonate (0.49 mol) was added to a mixture of sodium hydride (0.51 mol) and 1,4-dioxane (140 ml) at 55 to 60 °C within 2 hours. A mixture of 1,4-dioxane (50 ml) and diethyl malonate (0.13 mol) was added. The mixture was stirred for 10 minutes at 55 °C and copper(I) bromide (0.05 mol) was added. After 15 min. a 30 mixture of 2-bromo-1,3,5-trifluorobenzene (0.25 mol) and 1,4-dioxane (10 ml) was added. The reaction mixture was heated at 100 °C for 15 hours and cooled to 15 °C. Hydrochloric acid (12N, 35 ml) was added slowly at 15 to 20 °C. The precipitate was filtered off. The filtrate was extracted with diethylether. The organic Phase 35 was separated, dried with anhydrous sodium sulphate and filtered. The filtrate was evaporated under reduced Pressure to yield the product.

Diethyl (2-chloro-6-fluoro-phenyl)-malonate was obtained analogously. 40

Example 2 Preparation of 5,7-dihydroxy-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5-a]pyrimidine

45 A mixture of 3-amino-pyrazole (0.06 mol), diethyl (2,4,6-trifluorophenyl)-malonate (0.06 mol, obtained from Example 1) and tributylamine (30 ml) was heated with reflux at 175 °C for four hours.

The reaction mixture was cooled to 100 °C. Aqueous sodium hydroxide (10.3 g/120 ml H₂O) was added and the reaction mixture was stirred for 30 min. and cooled to ambient temperature. The organic Phase was separated off and the aqueous Phase was extracted 5 with diethylether. The aqueous Phase was acidified with concentrated hydrochloric acid. The precipitate was collected by filtration and dried to yield 15.7 g (93 %) of the pale yellow product having a melting point of 280 °C.

10 Example 3 a) Preparation of 5,7-dichloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidine

A mixture of 5,7-dihydroxy-(2,4,6-trifluoro-phenyl)-pyrazolo [1,5- α]pyrimidine (0.053 mol, obtained from Example 2) and phosphorous oxychloride (50 ml) was heated with reflux for 16 hours 15 and cooled to ambient temperature. The mixture was filtered and the excess of phosphorous oxychloride was distilled off. The residue was poured into a mixture of dichloromethane and water. The organic layer was separated, dried with sodium sulphate and filtered. The filtrate was concentrated in vacuo and then purified 20 by flash chromatography (diethylether/petrol ether 1:2 v/v) to yield 2.4 g of the title compound as beige crystals having a melting point of 136-138 °C.

25 Example 3 b) Preparation of 5,7-dichloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidine

A mixture of 5,7-dihydroxy-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidine (2 g, 7.1 mmol), pyridinium chloride 30 (1.8 g, 15.5 mmol), polyphosphoric acid (0.6 g, 6.1 mmol) and phosphorous oxychloride (30 ml) was heated with reflux for 16 hours and cooled to ambient temperature. The mixture was filtered off and the excess of phosphorous oxychloride was distilled off. The residue was poured into a mixture of dichloromethane and 35 water. The organic layer was separated, dried with sodium sulphate and filtered. The filtrate was concentrated in vacuo and the purified by flash chromatography (diethylether/petrol ether 1:2 v/v) to yield 1.8 g of white crystals having a melting point of 136-138 °C.

40

Example 4 Preparation of [5-chloro-6-(2,4,6-trifluoro-phenyl)-pyrazolo[1,5- α]pyrimidin-7-yl]-(2,2,2-trifluoroethyl)-amine [I-7]

45 A mixture of 2,2,2-trifluoroethylamine (10 ml) and 5,7-dichloro(2,4,6-trifluoro-phenyl)pyrazolo[1,5- α]pyrimidine (3.0 mmoles) was stirred for 3 days at ambient temperature. The reaction

26

mixture was subsequently treated with a mixture of dichloromethane and aqueous hydrochloric acid (5 %). The organic layer was separated, dried with anhydrous sodium sulphate and filtered. The filtrate was evaporated under reduced pressure to yield 0.2 g of
5 the title compound as a yellowish powder having a melting point of 138 °C.

10

15

20

25

30

35

40

45

Examples 5-12

The following examples (Table I; structure and melting point) are synthesized analogously to Example 4.

5

Table I

10

15

No.	R ¹	R ²	L ¹	L ³	L ⁴	Phys. Data (m.p. [°C])
I-5	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		F	F	F	173
I-6	cyclopentyl	H	F	F	F	128
I-7	2,2,2-trifluoroethyl	H	F	F	F	138
I-8	ethyl	ethyl	F	F	F	90
I-9	CH ₂ C(CH ₃)=CH ₂	ethyl	F	F	F	89
I-10	n-propyl	n-propyl	F	F	F	oil
I-11	iso-propyl	H	F	F	F	143
I-12	iso-propyl	methyl	F	F	F	109

25

Example 13 Preparation of 5-chloro-7-n-hexyl-6-(2,4,6-trifluorophenyl)-pyrazolo[1,5-a]pyrimidine

Copper iodide (5 mmol) was suspended in THF (25 ml) under an inert gas atmosphere. The suspension was cooled to -70°C and n-hexyllithium (5 ml, 2M in hexanes) was added by syringe. The mixture was stirred for 45 minutes and 5,7-dichloro-6-(2,4,6-trifluorophenyl)-pyrazolo[1,5-a]pyrimidine (5 mmol, obtained from Example 3) was added as a solution in THF (10 min). The reaction mixture was stirred for 15 minutes at -70°C. The reaction mixture was then quenched with a mixture of aqueous saturated ammonium chloride/concentrated ammonia (9:1). The two phase mixture was separated. An oil was isolated from the organic layer which was subjected to chromatographic purification which yields the product as a crystalline residue.

Examples 14-26: The following examples (Table II) are synthesized analogously to Example 13.

Table II

5

10

15

20

25

No.	R¹	L¹	L³	L⁴	Phys. Data (m.p. [°C])
II-14	n-heptyl	F	F	F	
II-15	cyclopentyl	F	F	F	
II-16	cyclohexyl	F	F	F	
II-17	4-methylcyclohexyl	F	F	F	
II-18	2-methylpropyl	F	F	F	
II-19	n-heptyl	F	H	Cl	
II-20	cyclopentyl	F	H	Cl	
II-21	cyclohexyl	F	H	Cl	
II-22	n-hexyl	F	H	Cl	
II-23	4-methylcyclohexyl	F	H	Cl	
II-24	2-methylpropyl	F	H	Cl	
II-25	4-fluorocyclohexyl	F	F	F	
II-26	4-fluorocyclohexyl	F	OCH ₃	F	

30 Biological Investigations

Determination of Minimum Inhibitory Concentration by Test Compounds in the Serial Dilution Test with *Pyricularia Orvzae*

35 The MIC (Minimum Inhibitory Concentration) value, which indicates the lowest concentration of the active ingredient in the growth medium which causes a total inhibition of mycelial growth, is determined by serial dilution tests using Microtiter plates with 40 24 or 48 wells per plate. The dilution of the test compounds in the nutrient solution and the distribution to the wells is carried out by a TECAN RSP 5000 Robotic Sample Processor. The following test compound concentrations are used: 0.05, 0.10, 0.20, 0.39, 0.78, 1.56, 3.13, 6.25, 12.50, 25.00, 50.00 and 100.00 µg/ml. For preparation of the nutrient solution, V8 vegetable 45 juice (333 ml) is mixed with calcium carbonate (4.95 g), centrifuged, the supernatant (200 ml) diluted with water (800 ml) and autoclaved at 121 °C for 30 min.

29

The inocula of Pyricularia oryzae are added into the wells as spore suspensions (50 µl; 5x10⁵/ml) or agar slices (6 mm) of an agar culture of the fungus.

5 After 6-12 days incubation at suitable temperatures (18-25°C), the MIC values are determined by visual inspection of the plates (Table III).

10

Table III

Example No.	MIC [µg/ml]
I-5	0.78
I-7	0.78

15

20

25

30

35

40

45

Claims:

1. Pyrazolopyrimidines of formula I

5

10

I

in which

15 R¹ is C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, C₂-C₁₀-alkadienyl, or C₁-C₁₀-haloalkyl,

20 where these radicals may be unsubstituted or partially or fully halogenated or may carry one to three groups R^a,

25 R^a is halogen, cyano, nitro, hydroxyl, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylcarbonyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkoxycarbonyl, C₁-C₆-alkylthio, C₁-C₆-alkylamino,

30 di-C₁-C₆-alkylamino, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, C₃-C₆-alkynyloxy and C₁-C₄-alkylenedioxy, which may be halogenated;

35 C₃-C₈-cycloalkyl, C₅-C₁₀-bicycloalkyl, phenyl, naphthyl, or

40 5- or 6-membered heterocyclyl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or

45 5- or 6-membered heteroaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom,

where the cyclic systems may be partially or fully halogenated or may carry one to three groups R^b:

40

45

R^b is halogen, cyano, nitro, hydroxyl, mercapto, amino, carboxyl, aminocarbonyl, aminothiocarbonyl, alkyl, haloalkyl, alkenyl, alkenyloxy, alkynyloxy, alkoxyl, haloalkoxy, alkylthio, alkylamino, dialkylamino, formyl, alkylcarbonyl, alkylsulfonyl, alkylsulfoxyl, alkoxycarbonyl, alkylcarbonyloxy, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dial-

kylaminothiocarbonyl, where the alkyl groups in these radicals contain 1 to 6 carbon atoms and the above-mentioned alkenyl or alkynyl groups in these radicals contain 2 to 8 carbon atoms;

5

Y is oxygen, sulfur, NR² or a single bond; wherein

10 R² represents a hydrogen atom or C₁-C₁₀ alkyl, C₂-C₁₀-alkenyl, C₂-C₁₀-alkynyl, C₂-C₁₀-alkadienyl, C₁-C₁₀-haloalkyl, C₃-C₈-cycloalkyl, C₅-C₁₀-bicycloalkyl, phenyl, naphthyl, or 5- or 6-membered heterocyclyl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or 5- or 6-membered heteroaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, where R² may be substituted by 15 one or more of R^a, or

20 R¹ and R² together with the interjacent nitrogen atom represent a 5- or 6-membered heterocyclic ring, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, which may be substituted by one or more R^a radicals;

25 m is 0 or an integer from 1 to 4;

L each independently is halogen, nitro, C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy, and

30 X is halogen.

2. Compounds according to Claim 1 in which Y represents NR².
 3. Compounds according to Claims 1 or 2 in which
- 35 R¹ is C₁-C₆-alkyl, C₁-C₆-haloalkyl or C₂-C₆-alkenyl, and
- R² is hydrogen or C₁-C₆-alkyl, or
- 40 R¹ and R² together with the interjacent nitrogen atom are a heterocyclic ring with 5 or 6 carbon atoms being optionally substituted with one or two C₁-C₆-alkyl groups.

4. Compounds according to claims 1 to 3 in which

5 R¹ and R² together with the interjacent nitrogen atom are
 4-methylpiperidin-1-yl, 2-methylpiperidin-1-yl, 5,6-dihy-
 dro-2H-pyridin-1-yl, 2-ethylpiperidin-1-yl or
 azepan-1-yl.

5. Compounds according to claims 1 to 4 in which

10

represents

15

wherein

L¹ is fluoro,L² is hydrogen or fluoro,

20

L³ is hydrogen, fluoro or methoxy andL⁴ is hydrogen, fluoro, chloro or methyl,

25

wherein # denotes the link to the pyrazolopyrimidyl moiety.

6. Compounds according to claim 5 in which m is 1, 2 or 3, and L⁴ is not hydrogen.

30 7. A process for the preparation of compounds of formula I as defined in claim 1 which comprises reacting 5-amino-pyrazole

35

with 2-phenyl-substituted malonic acid ester of formula II,

40

II

wherein L and m are as defined in formula I, and R denotes C₁-C₆-alkyl, under alkaline conditions, to yield compounds of formula III,

45

33

5

which are subsequently treated with a halogenating agent to give 5,7-dihalogen-6-phenyl-pyrazolopyrimidines of formula IV

10

15

in which L, m and X are as defined in formula I, and further treatment of IV with an alcohol, amine or thiol of formula V

V

20

in which R¹ and Y are as defined in formula I, and M represents a hydrogen atom or a free or complexed metal atom, to produce compounds of formula I.

25

- 8. Compounds of formula IV as defined in claim 7.
- 9. A composition suitable for controlling phytopathogenic fungi, comprising a solid or liquid carrier and a compound of the formula I as claimed in claim 1.
- 10. A method for controlling phytopathogenic fungi, which comprises treating the fungi or the materials, plants, the soil or the seed to be protected against fungal attack with an effective amount of a compound of the formula I as claimed in claim 1.

35

40

45

6-Phenyl-Pyrazolopyrimidines

Abstract

5

6-Phenyl-Pyrazolopyrimidines of formula I

10

wherein

R¹ is alkyl, alkenyl, alkynyl, alkadienyl or haloalkyl,

15

cycloalkyl, bicycloalkyl, phenyl, naphthyl, or 5- or 6-membered heterocyclyl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, or 5- or 6-membered heteroaryl, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom,

20

where these radicals may be unsubstituted or substituted as defined in the specification,

25

Y is oxygen, sulfur, NR² or a single bond; wherein R² is defined in the specification; and

30

R¹ and R² together with the interjacent nitrogen atom may represent a 5- or 6-membered heterocyclic ring, containing one to four nitrogen atoms or one to three nitrogen atoms and one sulfur or oxygen atom, which may be substituted by one or more R^c radicals;

35

m is 0 or an integer from 1 to 4;

L each independently is halogen, nitro, alkyl, alkoxy, and

X is halogen;

40

processes and intermediates for preparing these compounds, compositions comprising them and their use for controlling phytopathogenic fungi are described.

45

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C07D487/04 A01N43/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C07D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

WPI Data, INSPEC, PAJ, EPO-Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	FR 2 784 380 A (AMERICAN CYANAMID CO) 14 April 2000 (2000-04-14) page 4, line 13 -page 4, line 24; claims; examples 2-47 ---	1-10
X	FR 2 765 875 A (AMERICAN CYANAMID CO) 15 January 1999 (1999-01-15) page 8, line 20 -page 9, line 33; claims page 19, line 1 -page 20, line 29 ---	1-10
A	US 4 567 263 A (EICKEN KARL ET AL) 28 January 1986 (1986-01-28) cited in the application claims; examples 1-35,58-66,68,70,72,73,75,77,79 ----	1-6

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

4 July 2001

12/07/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Schmid, A

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
FR 2784380	A	14-04-2000	NONE		
FR 2765875	A	15-01-1999	JP	11035581 A	09-02-1999
US 4567263	A	28-01-1986	DE	3130633 A	17-02-1983
			AT	11539 T	15-02-1985
			AU	553663 B	24-07-1986
			AU	8665982 A	10-02-1983
			CA	1180329 A	01-01-1985
			CS	226748 B	16-04-1984
			DD	202093 A	31-08-1983
			DE	3262143 D	14-03-1985
			DK	341682 A, B,	02-02-1983
			EP	0071792 A	16-02-1983
			GR	76193 A	03-08-1984
			HU	188325 B	28-04-1986
			IE	53269 B	28-09-1988
			JP	1634879 C	20-01-1992
			JP	2061955 B	21-12-1990
			JP	58043974 A	14-03-1983
			ZA	8205498 A	27-07-1983