

Estimación experimental de π

Gabriel Hernández Bello¹

¹ Universidad de Concepción, Facultad de Ciencias Físicas y Matemáticas, Ciencias Físicas.

Abstract

Palabras Claves — DVD, Láser, Patrón de Difracción, Óptica.

1. Introducción

El número π es una de las constantes matemáticas por autonomasia. Su omnipresencia en diferentes ámbitos relacionados con la física, las matemáticas y la ingeniería lo hacen reconocible hasta para aquellos que viven alejados de las ramas científicas.

El emblemático número irracional π se define como la razón entre el perímetro de una circunsferencia y su diámetro. Toda investigación que incluya alguna variable relacionada con círculos, circunferencias o similares llevará implícito su cálculo, desde las elipses de las trayectorias espaciales hasta la fabricación de ruedas o balones de fútbol. A partir de ahí, su utilidad es casi tan dilatada como su número de decimales [1].

En el presente laboratorio, nos concentraremos en estimar experimentalmente el valor del número π a través de dos experimentos simples.

2. Marco Teórico

Definición de π

Sea una circunsferencia con perímetro P y diámetro D. Se define el número π como la razón entre estas magnitudes, tal que:

$$\pi = \frac{P}{D} \tag{1}$$

Integrales en la antiguedad

Arquímedes de Siracusa (287-212 a.C.) utilizó el método exhaustivo de Euxodo de Cnido. inscribiendo y circunscribiendo polígonos regulares en una circunferencia para calcular áreas y volúmenes. Calculó el volumen y la superficie de una esfera y de un cono y la superficie de una elipse y una parábola y expuso un método para calcular los volúmenes de revolución de

segmentos de elipsoides, paraboloides e hiperboloides cortados por un plano perpendicular al eje principal [?].

De esta forma se calculaban las integrales, relacionadas a áreas y volúmenes, en la antiguedad. Esta noción es de suma importancia para el laboratorio, pues en ella esta basada una de los experimentos propuestos para la estimación de π .

Consideremos un material con densidad de masa ρ constante, de forma que $m=\rho V$; donde m representa la masa del material y V su volumen. Ahora, recortemos una circunsferencia de radio a y un cuadrado de lado a. Así, el área de la circunsferencia será $A=\pi a^2$ y para el cuadrado tendremos un área de $B=a^2$. Luego, vemos que:

$$\frac{\rho_A}{\rho_B} = \frac{\frac{m}{V_A}}{\frac{m}{V_b}},$$
$$\frac{V_A}{V_B} = \frac{A \cdot a}{B \cdot a}.$$

Donde usamos la relación $V = a \cdot A$, para una longitud a y un volumen A.

Finalmente, notemos que podemos simplificar las longitudes a y reemlazando el valor del área A y B obtenemos:

$$\frac{A}{B} = \frac{\pi a^2}{a^2} = pi \tag{2}$$

3. Procedimiento Experimental y Resultados

4. Conlusión

Referencias

 tional geographic espaÑa. https://www.nationalgeographic.com.es/ciencia/el-numero-pi-una-cifra-para-casi-todo_