GEP Protokoll - Laborversuch 5 Oszilloskop 2

Cao Thi Huyen

Robert Rösler

Nico Grimm

7. Dezember 2015

1 Scheinwiderstandsmessung

Mit einem Oszilloskop ist durch gleichzeitige Strom- und Spannungsmessung eine komplexe Impedanz ($\underline{Z}=R+j\omega L$) einer Spule (0.1H, 10 Ω) zu bestimmen.

1.1 Messaufbau

Um den Spulenstrom mit dem Oszillioskop messen zu können, wird der Spule ein geeigneter Widerstand (50Ω) vorgeschaltet. Der Strom wird dann indirekt über den Spannungsabfall an diesem Vorwiderstand bestimmt. Am Signalgenerator wird eine Frequenz von $50\mathrm{Hz}$ (Sinus) eingestellt.

1.2 Ergebnisse

1.2.1 Dokumentation der Zeitfunktionen von Strom und Spannung in DC-Kopplung

Channel 1 (hier dunkelblau) stellt die Spannung dar, die über dem Vorwiderstand abfällt. Channel 2 (hier hellblau) stellt die Spannung über der Spule dar. Der Gesamtstrom der fließt, wird durch die Subtraktion von Channel 2 und Channel 1 rechnerisch dargestellt.

1.2.2 Berechnung der Impedanz $\underline{\mathbf{Z}}$ und Bestimmung der Bauelementgrößen

Messwerte die aus 1.2.1 entnommen sind und zur Berechnung benötigt werden sind:

- Phasenverschiebung $\varphi = -71.75^{\circ}$
- $\hat{u} = 640 \text{mV}$ (Spannung die an der Spule abfällt)
- $\hat{i} = \frac{u_x}{R_1}$ mit $u_x = 880mV$, daraus folgt $\hat{i} = \frac{11}{625}A$ u_x ist die Spannung über dem Vorwiderstand $R_1 = 50\Omega$

Aus diesen Werten lässt sich die Impedanz \underline{Z} und die daraus resultierenden Bauelementgrößen R und L berechnen.

$$\underline{Z} = \frac{\hat{u}}{\hat{i}} \cdot e^{-j71.75} \Rightarrow \underline{Z} = 36.36\Omega \cdot e^{j71.75}$$

$$\Rightarrow \underline{Z} = 11.39\Omega + j34.53\Omega$$

Hier können wir unserern gesuchten Widerstand R einfach ablesen:

$$R = 11,39\Omega$$

Da der Strom nacheilt, handelt es sich im Induktivität!

$$\omega \cdot L = 34,53\Omega \Leftrightarrow L = \frac{34,53\Omega}{2\pi 50 Hz} = 0.11 H$$

Somit haben wir die Bauelementgrößen mit R = 11.39 Ω und L = 0.11H bestimmt!

2 Messung der Kennlinie eines VDR im X-Y-Betrieb

Ziel der Messung ist die maßstabsgerechte Darstellung der u=f(i)-Kennlinie eines spannungsabhängigen Widerstandes (VDR) bei 50Hz (aus Stelltrenntrafo). Es wird dabei auf einen maximalen Strom von 125mA geachtet. Auf dem Oszilloskop soll u=f(i) wie folgt dargestellt werden:

"i" wird in x-Richtung und "u" in y-Richtung dargestellt

Kennliniengleichung des VDR:

$$\frac{u}{V} = C \cdot (\frac{i}{mA})^{\beta} \text{ mit } \beta = 0.36 \text{ und } C = 1.75$$
 (1)

Die Kennlinie wird mit folgender Schaltung gemessen

Der Widerstand R_V wird mit 40Ω dimensioniert. Hierbei beträgt der Spannungsabfall genau 1V bei einem Strom von 25mA.

2.1 Vergleich: Berechnung und Messung bei i = 100 mA

2.1.1 Berechnung der Spannung u_1

Nach (1) mit $i = 100mA \to u = \sim 9.18V$

2.1.2 Messung von u_1 , R_1 und r_1

Die Spannung u_1 können wir am Graphen beim Stromwert $i_1 = 100mA$ ablesen.

$$u_1 = \sim 9V$$

Der Widerstand R_1 wird durch die Formel $R = \frac{u_1}{i_1}$ berechnet.

$$R = \frac{9V}{100mA} = 90\Omega$$

Den differentiellen Widerstand r_1 bestimmen wir durch eine Tangente durch die beiden Punkte $\{(100\text{mA}, 9\text{V}), (75\text{mA}, 8\text{V})\}.$

Daraus ergibt sich ein differentieller Widerstand $r_1 = 40\Omega$

2.1.3 Kopplungsart AC/DC

Anhand der gezeigten Ausgabe am Oszilloskop ist zu bestätigen, dass eine Änderung der Kopplungsart von Gleischstrom auf Wechselstrom einen Einfluss auf die Eingangsschaltung des Oszilloskops hat.