

Weihong Deng @ BUPT

Background

SMILE

EXPRESSIVENESS

100

99.991

0.00

100.00

• Facial Expression are the most apparent and effective way to understand emotions ^[1]. Automatic Facial Expression Recognition (AFER) is the science of making computer understand a person's Internal Emotional States.

Real World Applications

- Human Computer Interaction
- Driver Fatigue Surveillance
- Medical Treatment
- Real-time Mobile FER System
- Rapid perceptual integration
- Lie Detection
-
- Can be categorized into
 - Seven Basic Emotions [2]
 - Twelve Compound Emotions [3]

 "Nonverbal communication", M. Anderson, 1 	, 1987.
---	---------

- 2. "Facial expression and emotion", P. Ekman, 1993.
- 3. "Compound facial expressions of emotion", Martinez et al. PNAS 2014.

Facial Expression Recognition

Shan Li & W. Deng, Deep Facial Expression Recognition: A Survey (arXiv:1804.08348)

Data Challenge

- Opportunities
 - Millions of images are being uploaded every day by users from different events and social gatherings.
- Challenges
 - Annotation of facial expression categories within expertise knowledge is difficult and time-consuming.

Solution

Our Ideas

- Expression is perceived by the public, rather than experts.
- Crowdsourcing is an efficient tool to collect the judgments of annotation results from a large common population.

images

download

Image Collection

- Flickr (Image social network)
 - https://api.flickr.com/services/rest/?method=flickr.photos.search&api_ke y={}&text={}&tags={}&page={}&sort=relevance
 - XML response→Interpreted into URLs of the images→Download

2.

Learning from labels

1,200,000 labels

- Image Annotation
 - Crowd-sourcing
 - 315 well-trained annotators were asked to label facial images with one of the seven basic categories
 - Each image is annotated enough times independently, i.e., aro und 40 times in our experiment.

Reliability Estimation

EM framework

Filter out unreliable labels

Optimal Reliability

Reliability Estimation

- Filter noisy annotators and labels
 - an Expectation Maximization (EM) framework was used to assess each labeler's reliability.

Algorithm 1 Label reliability estimation algorithm.

Input: Training set $D = \{(x_j, t_j^1, t_j^2, ..., t_j^R)\}_{j=1}^n$ Output: Each annotator's reliability α_i^*

Initialize:

 $\forall j = 1, ..., n$, initialize the true label y_i using majority voting

$$\beta_j := -\sum_{i=1}^{R} p(t_j^i) \ln p(t_j^i), \ \alpha_i := 1,$$

The initial value of β_j is image j's entropy. The higher the entropy, the more uncertain the image.

Repeat:

E-step:

$$Q_j(y_j) := \prod_i p(y_j|t_j, \alpha_i, \beta_j)$$

M-step:

$$\alpha_i := \underset{\alpha_i}{\operatorname{arg\,max}} \sum_j \sum_{y_j} Q_j(y_j) \ln \frac{p(t_j, y_j | \alpha_i, \beta_j)}{Q_j(y_j)}$$

Until convergence

"if the stimulus does contain an **emotion blend**, and the investigator allows only a single choice which does not contain blend terms, low levels of agreement may result, since **some of the observers** may choose a term for one of the blend components, **some** for another."

Paul Ekman. 2013.

Data collection and Annotation Process

Results

Seven Basic Emotions &

Twelve Compound Emotions

Database Statistics

- 29672 number of real-world images,
- a 7-dimensional expression distribution vector for each image,
- two different subsets: single-label subset, including 7 classes of basic emotions; two-tab subset, including 12 classes of compound emotions,
- 5 accurate landmark locations, 37 automatic landmark
 locations, race, age range and gender attributes annotations per image.

			Age distribution						
4~19	$20 \sim 39$	40~69	70+						
4731	16460	4696	1089						
15.94%	55.47%	15.83%	3.67%						
	4731	4731 16460	4~1920~3940~69473116460469615.94%55.47%15.83%						

Poster 72: Reliable crowdsourcing and deep locality preserving learning for expression recognition in the wild, Shan Li & W. Deng, CVPR 2017

Action Units: RAF-DB is more diverse

4. "The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression", Lucey, CVPRW 2010

7 classes Basic Emotions

Surprised

Happy

Sad

12 classes Compound Emotions

Fearfully Surprised

Sadly Angry

Sadly Fearful

Angrily Disgusted

Angrily Surprised

Disgusted

Fearfully Disgusted

Disgustedly Surprised

Surprised

Surprised

Fearfully Angry

Disgusted

Poster 72: Reliable crowdsourcing and deep locality preserving learning for expression recognition in the wild, Shan Li & W. Deng, CVPR 2017

Comparison: Real-world & lab-controlled

LAB-BASED Datasets

Controlled lab conditions

1

REAL-WORLD RAF-DB

Diverse imaging conditions

Prototypical emotions

Surprise!

2

Compound emotions

Fear? Sad?

Balanced distribution

≈1:1:1:1:1

3

Highly-imbalanced

Poster 72: Reliable crowdsourcing and deep locality preserving learning for expression recognition in the wild, Shan Li & W. Deng, CVPR 2017

DLP-CNN: Deep Locality-preserving CNN

C: The convolution layer

P: The max-pooling layer

R: The ReLU layer

F: The fully connected layer

Separable Features

$$S_{ij} = \begin{cases} 1, & x_j \text{ is among } k \text{ nearest neighbors of } x_i \text{ or} \\ & x_i \text{ is among k nearest neighbors of } x_j \\ 0, & otherwise \end{cases}$$

Discriminative Features

Locality Preserving Loss:

$$L_{lp} = \frac{1}{2n} ||x_i - \frac{1}{k} \sum_{x \in N_k\{x_i\}} x||_2^2$$

DLP-CNN: Deep Locality-preserving CNN

DLP-CNN: Experiment Results

Table 1. Expression recognition performance of different DCNNs on RAF. The metric is the mean diagonal value of the confusion matrix.

		basic					compound			
		Anger	Disgust	Fear	Happiness	Sadness	Surprise	Neutral	Average	Average
	VGG [6]	68.52	27.50	35.13	85.32	64.85	66.32	59.88	58.22	31.63
	AlexNet [7]	58.64	21.87	39.19	86.16	60.88	62.31	60.15	55.60	28.22
mSVM	baseDCNN	70.99	52.50	50.00	92.91	77.82	79.64	83.09	72.42	40.17
	center loss [8]	68.52	53.13	54.05	93.08	78.45	79.63	83.24	72.87	39.97
	DLP-CNN	71.60	52.15	62.16	92.83	80.13	81.16	80.29	74.20	44.55
	VGG [6]	66.05	25.00	37.84	73.08	51.46	53.49	47.21	50.59	16.27
	AlexNet [7]	43.83	27.50	37.84	75.78	39.33	61.70	48.53	47.79	15.56
LDA	baseDCNN	66.05	47.50	51.35	89.45	74.27	76.90	77.50	69.00	28.23
	center loss [8]	64.81	49.38	54.05	92.41	74.90	76.29	77.21	69.86	27.33
	DLP-CNN	77.51	55.41	52.50	90.21	73.64	74.07	73.53	70.98	32.29

^{6.} Simonyan & Zisserman, arXiv:1409.1556 (2014).

^{7.} Krizhevsky et al. NIPS, 1097–1105 (2012).

^{8.} Wen et al. ECCV, 499–515 (2016).

DLP-CNN: Experiment Results

Table 2. Comparison results of DLP-CNN and other state-of-the-art methods on CK+, SFEW and MMI databases. To validate the generalization of our model, the well-trained DLP-CNN has been employed as a feature extraction tool without finetune.

(a) CK+		(b) SFEW 2.0		(c) MMI	(c) MMI		
Methods	Accuracy	Methods	Accuracy	Methods	Accuracy		
CSPL [9]	88.89%	DL-GPLVM [16]	24.70%	3DCNN-DAP [12]	63.4%		
FP+SAE [10]	91.11%	AUDN [11]	26.14%	DTAGN [21]	70.24%		
AUDN [11]	92.05 %	STM-ExpLet [17]	31.73%	CSPL [9]	73.53%		
AURF [11]	92.22 %	Inception [13]	47.7%	AUDN [11]	74.76%		
3DCNN-DAP [12]	92.4 %	SFEW third [18]	48.5%	STM-ExpLet [17]	75.12%		
Inception [13]	93.2%	SFEW second [19]	52.29%	F-Bases [22]	75.12%		
Dis-ExpLet [14]	95.1%	SFEW best [20]	52.5%	Inception [13]	77.6%		
ESL [15]	95.33%	DLP-CNN	51.05%	Dis-ExpLet [14]	77.6%		
DLP-CNN (without finetune)	95.78%		51.05%	DLP-CNN (without finetune)	78.46%		

- 9. Zhong et al. CVPR, 2562-2569 (2012).
- 10. LV et al. SMARTCOMP, 303-308 (2014).
- 11. Liu et al. FG, 1-6 (2013).
- 12. Liu et al. ACCV, 143-157 (2014).
- 13. Mollahosseini et al. WACV, 1-10 (2016).
- 14. Liu et al. IEEE TIP, 25(12):5920–5932, (2016).
- 15. Shojaeilangari et al. IEEE TIP, 24(7):2140-2152, (2015).

- 16. Eleftheriadis et al. IEEE TIP, 24(1):189–204, (2015).
- 17. Liu et al. CVPR, 1749-1756 (2014).
- 18. Ng et al. ICMI, 443-449 (2015).
- 19. Yu et al. ICMI, 435-442 (2015).
- 20. Kim et al. ICMI, 427-434 (2015).
- 21. Jung et al. CVPR, 2983-2991 (2015).
- 22. Sariyanidi et al. IEEE TIP, 26(4):1965-1978, (2017).

Domain Adaption: From RAF-DB to other datasets

Source:

RAF-DB

Target: CK+

Target: MMI

Domain Adaption: From RAF-DB to other datasets

Table 3. Comparison results of **cross-database** experiments on **CK+**.

	Methods	Source Dataset	Accuracy	
Shallow Models	Zhang et al. [23]	MMI	61.20%	
	Miao et al. [24]	MMI + JAFFE	65.0%	
	Mayer et al. [25]	MMI + JAFFE	66.20%	
Deep Models	Mollahosseini et al. [13]	6 Datasets*	64.2%	
	Hasani et al. [26]	MMI + JAFFE	67.52%	
	Hasani et al. [27]	MMI + JAFFE	73.91%	
	Wen et al. [28]	FER2013	76.05%	
Our Methods	CNN	RAF-DB	75.49%	
	CNN + DA	RAF-DB	78.83%	

- 23. Zhang et al. MVA, 467–483 (2015).
- 24. Miao et al. ICMLA, 326-332 (2012).
- 25. Mayer et al. PRIA, 124-132 (2014).
- 26. Hasani et al. arXiv:1705.07871 (2017).
- 27. Hasani et al. arXiv:1703.06995 (2017).
- 28. Wen et al. Cognitive Computation, 1–14 (2017).
- 29. Shan et al. IVC, 803-816 (2009).
- 30. El et al. Affective Computing, 141-154 (2014).
- 31. Zhou et al. 2013
- 32. Ali et al. PR, 14-27 (2016).

Table 4. Comparison results of **cross-database** experiments on **MMI**.

	Methods	Source Dataset	Accuracy	
	Shan et al. [29]	СК	51.10%	
Shallow	Mayer et al. [25]	СК	60.30%	
Models	Zhang et al. [23]	CK+	66.90%	
Deep	Mollahosseini et al. [13]	6 Datasets*	55.6%	
Models	Hasani et al. [26]	CK+	54.76%	
Our	CNN	RAF-DB	63.92%	
Methods	CNN + DA	RAF-DB	66.05%	

Table 5. Comparison results of **cross-database** experiments on **JAFFE**.

	Methods	Source Dataset	Accuracy	
	Shan et al. [29]	CK	41.30%	
Shallow	El et al. [30]	Bu-3DFE	41.96%	
Models	Zhou et al. [31]	СК	45.71%	
Deep	Wen et al. [28]	FER2013	50.70%	
Models	Ali et al. [32]	RaFD	48.67%	
Our	CNN	RAF-DB	51.17%	
Methods	CNN + DA	RAF-DB	57.75%	

Face Recognition

Time

On 100% Accuracy on LFW

Pros: T/N pairwise simplicity, #people invariance, human-machine comparison

Cons: Insufficient challenge due to random selection: inter/intra-personal variations

different people

Age gap is large than 10

same person

different people

a face blindness (gender, race & age) yield 86.25% accuracy

On 100% Accuracy on LFW

Pros: T/N pairwise simplicity, #people invariance, human-machine comparison

Cons: Insufficient challenge due to random selection: inter/intra-personal variations

Positive pairs Negative pairs

Similar-looking

Aging

Poses

From LFW to SL/CA/CPLFW

Identical celebrities, scale, and protocols

Similar-Looking

3K positive pairs

3K negative pairs

Similar-look face pairs selected by crowd-sourcing

Cross-Age

3K positive pairs

Cross-age face pairs selected by crowd-sourcing

3K negative pairs with same gender and race

Cross-Pose

3K positive pairs
Cross-pose face pairs
selected by crowd-sourcing

3K negative pairs with same gender and race

Human-Machine Comparison

If serious enough, human (students) do not make any mistake on LFW.

In the mediately difficult cases, DCNN is much better than human

In the extremely challenging cases, human performs more stable than DCNN

Same or Different face?

Angelababy

Angelababy

First 4: DCNN correct, Students wrong

The 5th: Students correct, DCNN wrong

The first 4 image pairs are from Similar-Looking LFW database

Human-machine Collaboration

Yaoyao Zhong, W. Deng, Deep Difference Analysis in Similar-looking Face recognition, ICPR, 2018

Display image pairs

Summary

- The facial expressions in-the-wild are more complex and diverse than lab-controlled one.
 - RAF-DB is developed to evaluate the facial expression recognition in-the-wild with compound emotions.
 - The DCNN baseline performance is rather low in the RAF-DB recognition task.
- The face verification in-the-wild are more challenging than task in LFW.
 - SL/CA/CPLFW are developed to evaluate the real-world difficulties.
 - Both human and DCNN are insufficient to perform perfect face recognition, and they are complementary.

Advertisement & Acknowledgements

For data, code on RAF-DB & SL/CA/CPLFW:

http://www.whdeng.cn

Welcome to Poster 72

Collaborators

Shan Li (李珊) Ph.D student

Yaoyao Zhong (钟瑶瑶) Ph.D student

Mei Wang (王玫) Ph.D student