Staring Contest

Problem ID: staringcontest

Змагання у триманні погляду — це класична битва за невразливість, в якій двоє людей дивляться один на οчі, зберігаючи обличчя впевненої одного безтурботності. Мета полягає в тому, щоб тримати зоровий контакт довше, ніж опонент. Змагання закінчується, коли ОДИН учасник втрачає самовладання, зазвичай, зводячи погляд, посміхаючись, говорячи або хихотячи.

Як тренер збірної команди з тримання погляду, вам потрібно визначити невразливість кожного з n членів Вашої команди на майбутніх світових фіналах. i-тий спортсмен може тримати очний контакт рівно a_i секунд, але ці значення на початку Вам не відомі. Наприклад, у Вас може бути команда з n=3 членів:

<u>і Ім'я аі</u> 1 Анна 431 2 Естер 623 3 Тоні 121

Коли спортсмени i та j змагаються, конфронтація триває рівно $\min(a_i,a_j)$ секунд, після чого слабший суперник втрачає самовладання, і обидва учасники відразу ж починають посміхатися та хихотіти. Наприклад, якщо Анна змагається проти Естер, змагання триває 431 секунду. Важливо підкреслити, що для стороннього спостерігача справжнього *переможця* конфронтації (у цьому випадку — Естер) визначити неможливо. Можливо лише виміряти *тривалість* змагання.

Ваша мета — оцінити значення a_1, \dots, a_n за допомогою якомога меншої кількості змагань з тримань погляду. Як зрозуміло, сила найсильнішого спортсмена ніколи не може бути визначена, тому Ви можете недооцінити одне зі значень a_i .

Взаємодія

Це інтерактивна задача. Взаємодія починається з того, що Ви отримуєте один рядок з цілим числом n. Далі Ви можете запитувати значення, виконуючи запити у вигляді "? i j", де $1 \le i \le n$, $1 \le j \le n$ та $i \ne j$. Відповідь на запит — це ціле число: значення $\min(a_i, a_j)$. Взаємодія закінчується тоді, коли Ви виводите на екран рядок, що складається з ! та n оцінок у вигляді цілих чисел b_1 , ..., b_n , розділених пробілами. Це має бути вашим останнім рядком виводу.

Ваше рішення вважається правильним, якщо $b_i = a_i$ для кожного спортсмена i, окрім одного, якого Ви можете недооцінити. Для точності ми вимагаємо, щоб $b_i \le a_i$ для всіх $1 \le i \le n$ та дозволяємо $b_k \ne a_k$ не більше ніж для одного k.

Взаємодія відбувається з незмінним інтерактором, що означає, що значення a_1, \dots, a_n визначаються до початку взаємодії.

Обмеження та оцінювання

Кількість спортсменів n задовольняє умову $2 \le n \le 1500$. Навички кожного спортсмена a_i задовольняють умову $1 \le a_i \le 86\,400$, вони всі різні. Ви можете використовувати не більше 3000 запитів; останній рядок виводу, тобто рядок, що починається з символу !, не рахується як запит.

Ваше рішення буде перевірено на наборі тестових груп, кожна з яких оцінюється в певну кількість балів. Кожна група тестів містить набір тестових випадків. Щоб отримати бали за групу тестів, вам потрібно вирішити всі тестові випадки у групі. Остаточний бал складається з максимального балу, отриманий за одне подання.

Для групи 3, Ваш бал буде мінімальним балом серед всіх тестових випадків у групі. Бали за кожен тестовий випадок залежать від кількості запитів, які ви використовуєте; менша кількість запитів оцінюється краще: Припустимо, що ви використали q запитів. Якщо $q \le n + 25$, то ви отримуєте повний бал в 80 балів. Якщо q > 3000, то ви не отримуєте жодного балу. В іншому випадку, ви отримуєте $118.2 - 12 \cdot \ln(q - n)$ балів, округлених до найближчого цілого числа. Наприклад, для n = 1500 та q = 3000, ви отримуєте 30 балів.

Група Бали Обмеження					
1	9	$n \leq 50$			
2	11	n < 1000			

 $0-80\,1000 < n \le 1500$

Пояснення до прикладу взаємодії

Приклад взаємодії 1 показує можливу взаємодію згідно з вищезазначеним прикладом. Зверніть увагу, що сила Анни та Тоні визначені коректно. (Сила Естер ніколи не може бути визначена.)

Read	Sample Interaction 1	Write
3		
	? 1 2	
431		
	? 1 3	
121		
	? 3 2	
121		

! 431 431 121