Entrega Clase 2 - Álgebra lineal

Alejandro Uribe

Noviembre 2022

Enunciado

Dados u = (2, 2, 1) y v = (2, 1, 3).

- 1. Hallar ||u|| y ||v||
- 2. Hallar el ángulo que forman u y v.
- 3. Hallar la proyección de w=(1,1,1) sobre la recta $\langle u \rangle$
- 4. Verificar que el conjunto de vectores $\{u,v\}$ es linealmente independiente y hallar por Gram-Schmidt una base ortonormal de $V=\langle u,v\rangle$
- 5. Completar la base hallada en el ítem anterior a una base ortonormal de ${\bf B}$ de \mathbb{R}^3
- 6. Escribir al vector (1,0,0) como combinación lineal de los vectores de ${\bf B}$ y verificar el resultado obtenido.

Solución

Norma de los vectores

Dado un vector $v \in \mathbb{R}^n$, su normal se define como:

$$||v|| = \sqrt{\sum_{i=1}^n v_i^2}$$

Entonces, para los vectores en cuestión:

$$||u|| = \sqrt{\sum_{i=1}^{n} u_i^2} = \sqrt{2^2 + 2^2 + 1^2} = \sqrt{9} = 3$$

$$||v|| = \sqrt{\sum_{i=1}^{n} v_i^2} = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14}$$

Ángulo entre vectores

El ángulo θ entre dos vectores u y v se define como:

$$\theta = \arccos\left(\frac{\langle u, v \rangle}{\|u\| \|v\|}\right) = \arccos\left(\frac{\displaystyle\sum_{i=1}^n u_i v_i}{\sqrt{\displaystyle\sum_{i=1}^n u_i^2} \sqrt{\displaystyle\sum_{i=1}^n v_i^2}}\right)$$

Entonces, para los vectores en cuestión:

$$\theta = \arccos\left(\frac{2\cdot 2 + 2\cdot 1 + 1\cdot 3}{3\cdot\sqrt{14}}\right) \approx 0.6405 \approx 36.7^{\circ}$$

Proyección de un vector sobre una recta

La proyección p de un vector w sobre la recta generada por un vector u se define como:

$$p = \frac{\langle u, w \rangle}{\langle u, u \rangle} u$$

Ya que $||u|| = \sqrt{\langle u, u \rangle}$

$$p = \frac{\sum_{i=1}^{n} u_i w_i}{\|u\|^2} u$$

Entonces, para el caso de u y w:

$$p = \frac{2 \cdot 1 + 2 \cdot 1 + 1 \cdot 1}{3^2} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \frac{5}{9} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Independencia lineal

El conjunto $\{v_1, v_2, ..., v_n\}$ es linealmente independiente si $a_i = 0$, $\forall i : 1 \le i \le n$ tal que $\sum_{i=1}^n a_i v_i = 0$. Para el caso en cuestión:

$$a_1u + a_2v = 0$$

Es decir,

$$a_1 \begin{pmatrix} 2\\2\\1 \end{pmatrix} + a_2 \begin{pmatrix} 2\\1\\3 \end{pmatrix} = 0$$

Se procede a resolver el siguiente sistema:

$$\begin{cases} 2a_1 + 2a_2 = 0 \\ 2a_1 + a_2 = 0 \\ a_1 + 3a_2 = 0 \end{cases} \begin{cases} 2a_1 + 2a_2 = 0 \\ a_2 = -2a_1 \\ a_1 = -3a_2 \end{cases} \begin{cases} 2(-3a_2) + 2a_2 = 0 \end{cases} \begin{cases} -6a_2 + 2a_2 = 0 \end{cases} \begin{cases} a_2 = 0 \end{cases}$$

Sabiendo que $a_2 = 0$, si se remplaza en $a_1 = -3a_2$ se concluye que $a_i = 0$, $\forall i : 1 \le i \le n$. Por lo tanto, el sistema $\{u, v\}$ es linealmente independiente.

Base ortogonal

Una base **B** ortogonal para $V = \langle u, v \rangle$ se calcula realizando los siguientes pasos:

$$v_1 = u$$

$$v_2 = v - \left(\frac{v_1 \cdot v}{v_1 \cdot v_1}\right) v_1$$

Remplazando los valores de u y v:

$$v_1 = \begin{pmatrix} 2\\2\\1 \end{pmatrix}$$

$$v_2 = \begin{pmatrix} 2\\1\\3 \end{pmatrix} - \begin{pmatrix} \begin{pmatrix} 2\\2\\1 \end{pmatrix} \cdot \begin{pmatrix} 2\\1\\3 \end{pmatrix} \\ \begin{pmatrix} 2\\2\\2\\1 \end{pmatrix} \cdot \begin{pmatrix} 2\\2\\1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2\\2\\1 \end{pmatrix}$$

Tras simplificar:

$$v_1 = \begin{pmatrix} 2\\2\\1 \end{pmatrix}$$
$$v_2 = \begin{pmatrix} 0\\-1\\2 \end{pmatrix}$$

Base ortonormal

Resta dividir los vectores sobre su norma para obtener una base ortonormal.

$$q_1 = \frac{1}{3} \begin{pmatrix} 2\\2\\1 \end{pmatrix}$$
$$q_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 0\\-1\\2 \end{pmatrix}$$

Vector como combinacion lineal de los vectores de una base

Dada una base **B** ortonormal de un espacio vectorial V, un vector $v \in V$ se puede escribir como combinación lineal de los vectores de **B**.

$$v = a_i q_1 + \dots + a_n q_n$$

Cada uno de los coeficientes a_i se obtiene por la fórmula:

$$a_i = \langle v, q_i \rangle$$

Para el vector en cuestión:

$$a_1 = \langle v, q_1 \rangle = \frac{1}{3} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
$$a_2 = \langle v, q_2 \rangle = \frac{1}{\sqrt{5}} \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Tras simplificar:

$$a_1 = \frac{2}{3}$$
$$a_2 = 0$$

Ya que $a_1 \neq 0$ el sistema es linealmente dependiente. Lo que se confirma