Дискретная математика—1 Коллоквиум

Лектор: Оноприенко Анастасия Александровна \LaTeX by Винер Даниил $@\mathtt{danya_vin}$

Версия от 7 декабря 2024 г.

Содержание

1	Опр	ределения и формулировки		
	1.1	Таблица истинности логических связок	5	
	1.2	Равносильные высказывания. Тавтологии	5	
	1.3	Коммутативность и ассоциативность конъюнкции и дизъюнкции	5	
	1.4	Тавтологии упрощения для \land, \lor, \rightarrow	5	
	1.5	Тавтология для правила modus ponens. Дистрибутивность конъюкции и дизъюнкции (оба		
		закона)	5	
	1.6	Равные множества. Подмножество. Пустое множество	6	
	1.7	Операции над множествами: объединение, пересечение, разность, симметрическая разность	6	
	1.8	Отрицание выражений с логическими связками и кванторами	6	
	1.9	Ограниченные кванторные высказывания, квантор $\exists !$ и их запись через неограниченные		
		кванторные высказывания	6	
	1.10	Неформальное определение конечного множества и подсчёта	7	
	1.11	Правило суммы. Декартово произведение множеств. Правило произведения	7	
		Принцип математической индукции	7	
		Принцип полной математической индукции	7	
		Упорядоченная пара по Куратовскому	7	
		Бинарное отношение на множествах A и B . Бинарное отношение на множестве A	8	
	1.16	Функция. Аргументы и значения	8	
		Область определения функции. Область значений функции. Тотальные функции	8	
		Инъекция. Примеры инъекции и не инъекции	8	
		Сюръекция. Примеры сюръекции и не сюръекции	8	
		Биекция. Обратная функция	8	
		Композиция функций. Ассоциативность композиции	9	
		Образ и полный прообраз	9	
		Выражение мощности полного прообраза множества через мощности прообраза отдельных		
		элементов	9	
	1.24	Начальный отрезок натурального ряда. Конечная последовательность элементов множества		
		А. Бесконечная последовательность элементов множества А	9	
	1.25	Принцип Дирихле	9	
		Конечное множество. Мощность конечного множества	10	
		Сравнение конечных множеств с помощью инъекций, сюръекций, биекций	10	
		Лемма про тотальную функцию из конечного множества в себя	10	
		Количество слов длины n в алфавите из k символов. Количество тотальных функций из		
		n-элементного множества в k -элементное. Количество всех функций из n -элементного мно-		
		жества в k -элементное	10	
	1.30	Количество размещений из n по k : определение и формула	10	
		Перестановка. Количество перестановок п-элементного множества	10	
		Количество сочетаний из n по k : определение и формула	11	
		Индикаторная функция. Биекция между подмножествами и индикаторными функциями.		
	2.00	Количество подмножеств п-элементного множества	11	
	1.34	Выражение для бинома. Биномиальные коэффициенты и числа сочетаний	11	
		Треугольник Паскаля. Формулировка задачи о монотонных путях в квадранте и связь этой		
	1.00	залачи с треугольником Паскаля	11	

	Числа Фибоначчи: определение и явная формула	12
1.37	Мультиномиальные коэффициенты. Определение и формула для их вычисления	12
1.38	Сочетания с повторениями. Определение через разложение $(x_1 + x_2 + \ldots + x_n)^k$ и через	
	количество решений уравнения	12
1.39	Сочетания с повторениями. Определение через количество мультимножеств с элементами	
	из n -элементного множества. Формула для вычисления	13
	Формула включений и исключений для 2, 3 и n множеств	13
1.41	Выражение характеристических функций для $A\cap B, \overline{A}, A\setminus B, A\cup B$ через характеристи-	
	ческие функции для A и B	13
	Количество сюръекций из n -элементного множества в k -элементное	13
1.43	Формула для числа разбиений n -элементного множества на k непустых непомеченных клас-	
	сов. Связь с числом сюръекций	14
1.44	Задача о числе беспорядков. Формула для количества беспорядков на n -элементном множе-	
	стве. Доля беспорядков среди всех перестановок	14
1.45	Теоретико-множественные операции над бинарными отношениями. Область определения,	
	область значений бинарного отношения	14
	Обратное отношение. Композиция отношений	14
	Свойства обратного отношения и композиции	14
1.48	Свойства бинарных отношений: рефлексивность, антирефлексивность, симметричность, ан-	
	тисимметричность, транзитивность	15
	Обратное отношение, свойства бинарных отношений в терминах ориентированных графов .	15
1.50	Задание бинарного отношения с помощью матрицы. Выражение свойств бинарных отноше-	
	ний, обратного отношения, композиции отношений в терминах матриц	15
	Транзитивное замыкание отношения, его свойства	16
	Построение транзитивного замыкания по заданному отношению	16
1.53	Отношение эквивалентности. Примеры. Построение отношения эквивалентности по разби-	10
1 54	ению множества	16
1.54	Теорема о том, что отношение эквивалентности делит множество на классы эквивалентно-	1.0
1 55	сти. Компоненты связности графа	16
1.55		16
1 50	графа с бинарными отношениями на конечных множествах	$\frac{16}{17}$
	Степень вершины. Теорема о сумме степеней вершин. Лемма о рукопожатиях	$\frac{17}{17}$
	Отношение достижимости в графе, его свойства. Отношение достижимости как транзитив-	11
1.56	ное замыкание	17
1 50	Цикл. Простой цикл. Простой путь	18
	Ориентированный граф. Петли. Матрица смежности. Связь с бинарными отношениями	18
	Исходящая и входящая степени вершин. Лемма про сумму исходящих и входящих степеней	10
1.01	вершин	18
1.62	Путь по орграфу. Цикл, простой путь, простой цикл. Простой в рёбрах путь	18
	Отношение достижимости в орграфе, его свойства. Отношение сильной связанности в ор-	10
1.00	графе, его свойства. Компоненты сильной связности, сильно связный орграф	18
1.64	Эйлеров цикл. Эйлеров граф. Критерий эйлеровости ориентированного и неориентирован-	
	ного графа	19
1.65	Ациклический граф. Равносильные определения ациклического графа	19
	Дерево. Мост. Лес	19
	Критерий того, что граф является лесом, в терминах простых путей и простых циклов.	
	Аналогичный критерий для дерева	19
1.68	Цикломатическое число графа. Критерий того, что граф является лесом, в терминах цик-	
	ломатического числа. Критерий того, что граф является деревом, в терминах рёбер и вершин	20
1.69	Свойства цикломатического числа графа	20
1.70	Изолированные вершины, висячие вершины. Теорема про висячие вершины в дереве	20
1.71	Подграф. Индуцированный подграф. Остовный подграф. Теорема об остовном дереве	20
ъ		٠
	росы на доказательство	21
2.1	Дистрибутивность конъюкции и дизъюнкции (доказать один из законов). Закон контрапо- зиции: доказательство и пример применения	21
2.2	Единственность пустого множества. Связь тавтологий и теоретико-множественных тож-	∠1
۵.۷	деств. Пример доказательства теоретико-множественного тождества при помощи соответ-	
	ствующей тавтологии	21
	CIDY TOTIC TRADECTION THE CONTRACT OF THE CONT	41

2.3	Доказательства тавтологий: метод доказательства от противного, транзитивность имплика-	
	ции, закон контрапозиции, законы де Моргана	22
2.4	Элементы пустого множества обладают любыми свойствами (2 доказательства). Парадокс	
	Рассела	22
2.5	Принцип математической индукции. Обоснование и пример применения	23
2.6	Упорядоченная пара по Куратовскому. Доказательство основного свойства: $(x_1, y_1) = (x_2, y_2) \Leftrightarrow$	>
	$x_1 = x_2, y_1 = y_2 \dots \dots$	23
2.7	Доказательство того, что если $f:A \to B$ — биекция, то f^{-1} — также биекция	23
2.8	Композиции сохраняют классы тотальных, инъективных, сюръективных и биективных функ-	
	ций	24
2.9	Доказательство принципа Дирихле. Доказательство корректности определения мощности	24
2.9		0.4
	конечного множества	24
	Сравнение конечных множеств с помощью инъекций, сюръекций, биекций	24
	Лемма про тотальную функцию из конечного множества в себя	25
2.12	Количество слов длины n в алфавите из k символов. Количество тотальных функций из	
	n-элементного множества в k -элементное. Количество всех функций из n -элементного мно-	
	жества в k -элементное	25
2.13	Формула для количества размещений из n по k . Подсчёт числа инъекций и биекций	26
	Формула для количества сочетаний из n по k	26
	Биекция между подмножествами и индикаторными функциями. Количество подмножеств	20
2.15		00
	$C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$	26
2.16	Теорема о совпадении биномиальных коэффициентов и чисел сочетаний. Доказательство	
	формулы $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$ с помощью бинома	27
2.17	Решение задачи о монотонных путях в квадранте. Связь этой задачи с треугольником Паскаля	27
2.18	Свойства биномиальных коэффициентов: каждое число в треугольнике Паскаля (за исклю-	
	чением крайних единиц) равно сумме двух соседних чисел, которые стоят выше в треуголь-	
	нике; симметричность строк треугольника Паскаля	28
2 10	Задача о монотонных путях по прямой: разрешены любые ходы. Два способа вычисления	20
2.19		20
2.20	ответа	29
2.20	Задача о монотонных путях по прямой: разрешены ходы на 1 или 2 клетки. Рекуррентная	
	и явная формула	30
2.21	Свойства биномиальных коэффициентов: возрастание чисел в первой половине треугольни-	
	ка Паскаля; оценка для $\binom{2n}{n}$	30
2.22	Равенство количества подмножеств с чётным и нечётным числом элементов. Комбинаторное	
	и аналитическое доказательства	30
2.23	Мультиномиальные коэффициенты: два доказательства формулы для их вычисления	31
	Сочетания с повторениями. Формула для вычисления	31
	Задача о количестве монотонных путей из п шагов из точки 0 в точку к. Связь с числом	01
2.20		20
2 22	сочетаний с повторениями	32
	Формула включений и исключений для n множеств	32
	Количество сюръекций из n-элементного множества в k-элементное	32
2.28	Формула для числа разбиений п-элементного множества на k непустых непомеченных клас-	
	сов. Связь с числом сюръекций	33
2.29	Задача о числе беспорядков. Формула для количества беспорядков на n-элементном множе-	
	стве. Доля беспорядков среди всех перестановок	34
2.30	Критерий транзитивности отношения. Отношение, являющееся одновременно рефлексив-	
2.00	ным и антирефлексивным. Отношение, являющееся одновременно симметричным и анти-	
		24
0.01	симметричным. Транзитивность пустого и одноэлементного отношения	34
2.31	Выражение композиции отношений через матрицы. Критерий транзитивности отношения в	
	терминах матриц	35
2.32	Свойства транзитивного замыкания. Транзитивность пересечения любого непустого семей-	
	ства транзитивных отношений. Существование и единственность транзитивного замыкания	35
2.33	Построение транзитивного замыкания по заданному отношению	36
	Построение отношения эквивалентности по разбиению множества. Теорема о том, что от-	
	ношение эквивалентности делит множество на классы эквивалентности	36
9 25	Теорема о сумме степеней вершин. Лемма о рукопожатиях. Число рёбер в полном графе на	50
∪.ن		97
0.00	п вершинах. Свойства отношения достижимости в графе	37
2.36	Принцип наименьшего числа. Теорема о том, что между любыми двумя связанными вер-	~-
	шинами существует простой путь	38
2.37	Лемма про сумму исходящих и входящих степеней вершин. Свойства отношения достижи-	
	мости в орграфе. Свойства отношения сильной связанности в орграфе	38

2.38	Критерий эйлеровости ориентированного и неоринтированного графа	39
2.39	Лемма о существовании в ациклическом графе вершины с исходящей степенью 0 и вершины	
	с входящей степенью 0. Равносильные определения ациклического графа	40
2.40	Критерий того, что граф является лесом, в терминах простых путей и простых циклов	40
2.41	Свойства цикломатического числа графа	41
2.42	Критерий того, что граф является лесом, в терминах цикломатического числа	42
2.43	Теорема про висячие вершины в дереве: два доказательства. Теорема об остовном дереве	42

1 Определения и формулировки

1.1 Таблица истинности логических связок

A	B	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \equiv B$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

1.2 Равносильные высказывания. Тавтологии

Определение. Если два разных составных высказывания означают по сути одно и то же, то есть принимают одинаковое логическое значение при одинаковых значениях входящих в них элементарных высказываний. В этом случае мы говорим, что высказывания *равносильны*

Определение. Высказывание, которое истинно при любых значениях входящих в него элементарных высказываний называется *тавтологией*. Тавтологии не обязательно имеют вид логических тождеств. Например, $A \to A$ — тавтология

1.3 Коммутативность и ассоциативность конъюнкции и дизъюнкции

Справедливость этих тождеств ясна из определения конъюнкции и дизъюнкции. Первая истинна, когда все члены истинны (необязательно членов два), вторая — когда хотя бы один истинен

- Коммутативность: $A \wedge B \equiv B \wedge A, \ A \vee B \equiv B \vee A$
- Ассоциативность: $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C), (A \vee B) \vee C \equiv A \vee (B \vee C)$

1.4 Тавтологии упрощения для \land, \lor, \rightarrow

Пусть X — константа, тогда имеем *тавталогии упрощения*:

- $X \wedge 0 \equiv 0, \ X \wedge 1 \equiv X$
- $X \lor 0 \equiv X, \ X \lor 1 \equiv 1$
- $X \to 1 \equiv 1, X \to 0 \equiv \neg X$
- $0 \to X \equiv 1, 1 \to X \equiv X$

Их справедливость очевидна из таблиц истинности связок

Некоторые теоремы о тавтологиях доказываются здесь -2.2

1.5 Тавтология для правила modus ponens. Дистрибутивность конъюкции и дизъюнкции (оба закона)

Правило modus ponens можно записать в виде такой тавтологии: $A \wedge (A \to B) \to B$

Это правило описывает стандартный шаг математического рассуждения, что из истинности высказывания A и составного высказывания «A, то B», мы говорим, что истинно B

Законы дистрибутивности:

- $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
- $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$

Доказательство -2.1

1.6 Равные множества. Подмножество. Пустое множество

Определение. Множества A и B называются равными, если каждый элемент множества A является элементом множества B, а каждый элемент множества B является элементом множества A

$$A = B \stackrel{\text{def}}{\Longleftrightarrow} \forall x (x \in A \equiv x \in B)$$

Определение. Множество A является подмножеством множества B, если каждый элемент множества A принадлежит множеству B (обозначение $A \subseteq B$)

$$A \subseteq B \stackrel{\mathrm{def}}{\Longrightarrow} \forall x (x \in A \to x \in B)$$

Определение. Пустое множество (обозначение \varnothing) не содержит ни одного элемента. Другими словами, высказывание $x \in \varnothing$ ложно для любого x

1.7 Операции над множествами: объединение, пересечение, разность, симметрическая разность

Имеем два множества: A и B. C ними можно выполнять следующие опреации:

• Объединение множеств. $A \cup B$. Это множество, состоящее из тех элементов, которые принадлежат хотя бы одному из множеств A и B. Формально это определение выглядит так:

$$(x \in A \cup B) \equiv (x \in A) \lor (x \in B)$$

• **Пересечение множеств.** $A \cap B$. Это множество, состоящее из тех элементов, которые принадлежат обоим множествам A и B. Формально:

$$(x \in A \cap B) \equiv (x \in A) \land (x \in B)$$

• Разность множеств. $A \setminus B$. Это множество, состоящее из тех элементов, которые принадлежат множеству A, но не принадлежат множеству B. В формальной записи это определение выглядит так:

$$(x \in A \setminus B) = (x \in A) \land \neg (x \in B)$$

• Симметрическая разность множеств. $A\triangle B$. Это множество, состоящее из тех элементов, которые принадлежат ровно одному из множеств: либо A, либо B. Формально:

$$(x \in A \triangle B) = ((x \in A) \land \neg (x \in B)) \lor (\neg (x \in A) \land (x \in B))$$

1.8 Отрицание выражений с логическими связками и кванторами

Тавтологии $\neg(A \land B) \equiv \neg A \lor \neg B, \ \neg(A \lor B) \equiv \neg A \land \neg B$ называются законами де Моргана **Аналоги законов для кванторов:** $\neg \forall x A(x) \equiv \exists x \neg A(x), \ \neg \exists x A(x) \equiv \forall x \neg A(x)$

1.9 Ограниченные кванторные высказывания, квантор ∃! и их запись через неограниченные кванторные высказывания

В ограниченном кванторном высказывании x пробегает не все возможные значения, а лишь множество, ограниченное некоторым условием. Формальная запись:

$$\forall x \in A \ B(x)$$
 и $\exists x \in A \ B(x)$

В неограниченных кванторных высказываниях это выглядит так:

$$\forall x(x \in A \to B(x)) \ \mathsf{u} \ \exists x(x \in A \land B(x))$$

Определение. Квантор ∃! означает, что существует единственный элемент, удовлетворяющий заданным условиям

1.10 Неформальное определение конечного множества и подсчёта

Определение. Конечное множество — это такое множество, в котором конечное количество элементов, то есть оно *конечно*, если его элементы можно *пересчитать*

Неформально nodcчёт осуществляется так: «вот первый элемент, вот второй, вот третий, ...». Если такой подсчёт заканчивается, то последнее названное число и будет количеством элементов в множестве, т.е. множество конечно

Более строгое описание подсчёта такое: это такая последовательность элементов множества (a_1, a_2, \ldots, a_n) в которой все элементы различны, принадлежат множеству и каждый элемент множества входит в последовательность (причём ровно один раз)

1.11 Правило суммы. Декартово произведение множеств. Правило произведения

Правило суммы. Для конечных непересекающихся множеств A и B, то есть $A \cap B = \emptyset$, выполняется равенство $|A \cup B| = |A| + |B|$

Декартово произведение множеств. $(A \times B)$. Это множество, состоящее в точности из всех таких упорядоченных пар (a, b), то есть последовательностей длины 2, в которых $a \in A, b \in B$

Если множества конечны, то декартово произведение можно нарисовать в виде прямоугольника: столбцы — элементы A, строки — элементы B, на пересечении столбца a и строки b расположена пара, такая что

$$(a, b) \in (A \times B)$$

Правило произведения. Для конечных множеств A, B выполняется равенство $|A \times B| = |A| \cdot |B|$

1.12 Принцип математической индукции

Определение. Пусть для последовательности утверждений $A_0, A_1, \ldots, A_n, \ldots$, занумерованных натуральными числами, верны утверждения:

- База индукции: A_0 истинно
- Шаг индукции: $A_n \to A_{n+1}$ истинно для любого n. Посылку импликации A_n называют индуктивным предположением

Тогда A_n истинно $\forall n$

Положим, что n принимает только натуральные значения и запишем это в виде формулы (вместо A_n пишем A(n)):

$$(A(0) \land \forall n(A(n) \rightarrow A(n+1))) \rightarrow \forall n \ A(n)$$

Доказательство — 2.5

1.13 Принцип полной математической индукции

Определение. Пусть для последовательности утверждений $A_0, A_1, \ldots, A_n, \ldots$, занумерованных натуральными числами, истинно утверждение: «для любого n из истинности A_i при всех i < n следует истинность A_n ». Тогда A_n истинно $\forall n$

В виде формулы это можно записать так:

$$\forall n((\forall k < n \ A(k)) \to A(n)) \to \forall n A(n)$$

1.14 Упорядоченная пара по Куратовскому

Пусть для упорядоченных пар выполняется свойство: $(x_1, y_1) = (x_2, y_2) \Leftrightarrow x_1 = x_2, \ y_1 = y_2$

Определение. Упорядоченной парой по Куратовскому (x,y) будем называть множество $\{\{x\},\{x,y\}\}$

Доказательство — 2.6

1.15 Бинарное отношение на множествах A и B. Бинарное отношение на множестве A

Определение. Бинарное отношение R на множествах A и B — это подмножество декартового произведения $A \times B$

Если $(x,y) \in R$, то говорят, что x и y находятся в отношении R (порядок важен). Вместо $(x,y) \in R$ также пишут xRy

Определение. Бинарное отношение R на множетсвах A,A называют бинарным отношением на множестве A

1.16 Функция. Аргументы и значения

Определение. Функцией f из множества A в множество B будем называть такое бинарное отношение $f \subseteq A \times B$, что для каждого $a \in A$ есть не более одной пары $(a,b) \in f$

Определение. Элементы множества A называются *аргументами* функции, а элементы множества B- *значениями* функции

1.17 Область определения функции. Область значений функции. Тотальные функции

Определение. Область определения Dom f функции из A в B — это множество тех a, для которых существует такой b, что $(a,b) \in f$. Формальная запись:

$$Dom(f) = \{x \in A \mid \exists y \in B : y = f(x)\}\$$

Определение. Область значений Range f — это множество тех b, для котороых существует такой a, что $(a,b) \in f$. Формальная запись:

$$Range(f) = \{ y \in B \mid \exists x \in A : y = f(x) \}$$

Определение. Если Dom(f) = A, то функция называется *тальные функции называют частичными*

1.18 Инъекция. Примеры инъекции и не инъекции

Определение. Инъекция — тотальная функция $f:A\to B$, если значения функции в различных точках различны. То есть: f — инъекция, если $x_1\neq x_2$ влечет $f(x_1)\neq f(x_2)$

Пример. Пусть $f: \mathbb{N} \to \mathbb{N}$ задается формулой $f(x) = x^2$. Эта функция тотальна, а также инъективна, так как если $x_1, x_2 \in \mathbb{N}$ и $x_1^2 = x_2^2$, то $x_1 = x_2$

Контрпример. $g: \mathbb{R} \to \mathbb{R}, \ g(x) = x^2$. Она тотальная, но не инъективна, так как g(-1) = g(1) = 1

1.19 Сюръекция. Примеры сюръекции и не сюръекции

Определение. Сюръекция — тотальная функция $f:A\to B$, если область значений совпадает со всем множеством B, то есть Range f=B. Другими словами, f сюръекция, если для всякого элемента $y\in B$ найдется такой элемент $x\in A$, что f(x)=y

Пример. Рассмотрим функцию $g: \mathbb{R} \to \mathbb{R}_{\geqslant 0}$, задаваемую формулой $g(x) = x^2$. Эта функция тотальна и сюръективна, так как для любого $y \in \mathbb{R}_{\geqslant 0}$ существует $x \in \mathbb{R}$, что $x^2 = y$

Контрпример. Рассмотрим функцию $f: \mathbb{R} \to \mathbb{R}$, задваемую той же формулой. Эта функция тотальна, но не сюръективна, так каак не существует такого $x \in \mathbb{R}$, при котором f(x) = -1

1.20 Биекция. Обратная функция

Определение. Тотальная функция $f:A\to B$ называется *биекцией*, если она одновременно является инъекцией и сюръекцией

Для биекции $f:A\to B$ определена **обратная функция** $f^{-1}:$ если f отображает x в y, то обратная функция f^{-1} отображает y в x. Иными словами, $(x,y)\in f\Leftrightarrow (y,x)\in f^{-1}$

1.21 Композиция функций. Ассоциативность композиции

Определение. Для функции $f: A \to B$ и функции $g: B \to C$ композицией $g \circ f$ этих функций является такая функция $A \to C$, которая определена на тех x из Dom(f), для которых f(x) принадлежит Dom(g), и равна g(f(x)). Формальная запись:

$$(x,z) \in g \circ f \iff \exists y \in B : (x,y) \in f \text{ if } (y,z) \in g$$

Порядок записи функций в композиции согласован с порядком записи функций в привычном обозначении g(f(x)) и порядок функций в композиции важен

Ассоциативность композиции: $(f \circ g) \circ h = f \circ (g \circ h)$

Пример. Пусть f(x) = x + 1, g(x) = 2x — функции из целых чисел в целые числа. Тогда $(g \circ f)(x) = 2x + 2, (f \circ g)(x) = 2x + 1$

1.22 Образ и полный прообраз

Определение. Пусть $X \subseteq A$. Функция f сопоставляет ему образ $f[X] \subseteq B$ подмножества X. f[X] состоит в точности из тех элементов множества B, которые являеются значениями элементов из X. Формально:

$$f[X] = \{ b \in B \mid \exists x \in X : b = f(x) \}$$

Заметим, что если в качестве X взять само множество A, то легко увидеть, что f[A] = Range(f)

Определение. Пусть $Y \subseteq B$. Полный прообраз $f^{-1}[Y]$ состоит в точности из тех элементов A, значения которых лежат в Y. Формально:

$$f^{-1}[Y] = \{a \in A : f(a) \in Y\}$$

Аналогично образу, $f^{-1}[B] = Dom(f)$, то есть прообраз всего множества B совпадает с областью определения функции

1.23 Выражение мощности полного прообраза множества через мощности прообраза отдельных элементов

$$|f^{-1}[Y]| = \sum_{b \in Y} |f^{-1}[\{b\}]|$$

1.24 Начальный отрезок натурального ряда. Конечная последовательность элементов множества A. Бесконечная последовательность элементов множества A

Определение. Начальный отрезок натурального ряда — множество вида $[n] = \{x : x < n, x \in \mathbb{N}\}.$ Оно состоит из чисел $0, 1, \ldots, n-1$, всего n чисел

Определение. Конечная последовательность элементов множества A — тотальная функция [n] o A

Определение. Бесконечная последовательность элементов множества A — тотальная функция $\mathbb{N} \to A$

1.25 Принцип Дирихле

Принцип Дирихле можно представить на кроликах. Если k>n и k кроликов рассажены по n клеткам, то хотя бы в одной клетке сидит как минимум два кролика

Занумеруем клетки, и пусть в клетку с номером i посажено r_i кроликов. Если $k>n,\ r_1,\ldots,r_n$ натуральные числа и $r_1+\ldots+r_n=k,$ то для какого-то i выполняется неравенство $r_i>1$

1.26 Конечное множество. Мощность конечного множества

Определение. Множество A называется конечным, если для некоторого натурального n существует биекция $f:[n] \to A$

Определение. Число n называется размером (=мощностью) A и обозначается |A|

1.27 Сравнение конечных множеств с помощью инъекций, сюръекций, биекций

Для тотальных функций из конечного множества в конечное выполняются следующие свойства:

- 1. Если $f:A \to B$ инъекция, то $|A| \leqslant |B|$
- 2. Если $f:A\to B$ сюръекция, то $|A|\geqslant |B|$
- 3. Если $f:A\to B$ биекция, то |A|=|B|

1.28 Лемма про тотальную функцию из конечного множества в себя

Для тотальных функций из конечного множества в себя выполнены следующие свойства:

- 1. Если $f:A\to A$ инъекция, то f сюръекия
- 2. Если $f: A \to A$ сюръекия, то f инъекция

1.29 Количество слов длины n в алфавите из k символов. Количество тотальных функций из n-элементного множества в k-элементное. Количество всех функций из n-элементного множества в k-элементное

Количество слов длины n в алфавите A из k символов

Слово — это последовательность $a_1 \dots a_n$, где $a_i \in A$. Или же, множество слов длины n — это декартова степень A^n . По формуле произведения получаем, что количество слов равно k^n

Количество тотальных функций из конечного n-элементного множества A в конечное k-элементное множество B

Этих функций столько же, сколько есть слов длины n в алфавите из k элементов, то есть k^n

Количество всех функций из n-элементного множества в k-элементное

Таких функций $(k+1)^n$

1.30 Количество размещений из n по k: определение и формула

Определение. Размещение из n по k — это слово длины k в алфавите из n символов, в котором все символы разные. Считаем, что алфавит состоит из чисел $1, 2 \dots n$

Формула.
$$A_n^k = n(n-1)(n-2) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

1.31 Перестановка. Количество перестановок п-элементного множества

Определение. Перестановкой конечного множества A называется любая биекция $f:A\to A$ Количество перестановок множества, состоящего из n элементов равно n!

1.32 Количество сочетаний из n по k: определение и формула

Определение. Сочетанием из n элементов по k называют подмножество n-элементного множества, в котором ровно k элементов

Формула.
$$C_n^k = \frac{n!}{(n-k)!k!}$$

1.33 Индикаторная функция. Биекция между подмножествами и индикаторными функциями. Количество подмножеств п-элементного множества

Через $\mathcal{P}(X)$ обозначаем множество всех подмножеств X. Если X содержит n элементов, то можно узнать сколько элементов в $\mathcal{P}(X)$

Определение. Зададим биекцию между подмножествами X и тотальными функциями $X \to \{0,1\}$. Эта биекция сопоставляет множеству X его *индикаторную функцию* $\chi_{\mathcal{S}}: X \to \{0,1\}$. Она определяется так:

$$\chi_{\mathcal{S}}(x) = \begin{cases} 1, & x \in \mathcal{S} \\ 0, & \text{иначе} \end{cases}$$

Количество подмножеств n-элементного множества равно 2^n

1.34 Выражение для бинома. Биномиальные коэффициенты и числа сочетаний

Рассматривается бином $(x+y)^n$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \binom{n}{0} y^n + \binom{n}{1} y^{n-1} x + \dots + \binom{n}{n-1} y x^{n-1} + \binom{n}{n} x^n$$

Определение. $\binom{n}{k}$ — числа, называющиеся биномиальными коэффициентами

При этом они представляют собой в точности числа сочетаний из n по k: $\binom{n}{k} = C_n^k$

1.35 Треугольник Паскаля. Формулировка задачи о монотонных путях в квадранте и связь этой задачи с треугольником Паскаля

Определение. В n-й строке треугольника Паскаля записаны биномиальные коэффициенты $\binom{n}{k}$, причем $0 \le k \le n$. При других значениях k биномиальные коэффициенты равны нулю

Строки располагаются со сдвигом. При таком расположении выполняется свойство: каждое число в треугольнике Паскаля, за исключением крайних единиц, равно сумме двух соседних чисел, которые стоят выше в треугольнике

Задача про монотонные пути в квадранте

Мы двигаем фишку по точкам плоскости с целыми координатами. Путём из точки (0,0) в точку (a,b) мы называем конечную последовательность точек (то есть пар целых чисел), первая равна (0,0), а последняя равна (a,b). Путь будем называть монотонным, если для каждой пары соседних точек $(x_1,y_1), (x_2,y_2)$ в этой последовательности выполнено $x_1 \le x_2, y_1 \le y_2$

За один шаг возможно увеличить абсциссу на 1 или увеличить ординату на 1, то есть из точки (x,y) можем пойти в (x+1,y) или в (x,y+1). Обозначим количество различных монотонных путей из точки (0,0) в точку (a,b) за T(a,b). Из правила суммы следует рекуррентное соотношение

$$T(a,b) = T(a-1,b) + T(a,b-1)$$

Получается, что все пути в (a,b) разбиваются на две группы: те, в которых на последнем шаге увеличивалась абсцисса, и те, в которых на последнем шаге увеличивалась ордината. Это первое и второе слагаемое в T(a,b) соответственно. Также нужно такое условие: T(0,b) = T(a,0) = 1

Теперь считаем количество монотонных путей для (a,b):

И тут мы видим, что это треугольник Паскаля, но повернутый на 135 градусов. Отсюда выводится число путей

$$T(a,b) = \binom{a+b}{a} = \frac{(a+b)!}{a!b!}$$

1.36 Числа Фибоначчи: определение и явная формула

Определение. Числами Фибоначчи называются $F_0=0,\ F_1=1,\ F_{n+2}=F_{n+1}+F_n$

Формула, выражающая n-й член как функцию от n:

$$F_n = rac{\psi^n - \phi^n}{\sqrt{5}},$$
 где $\psi = rac{1+\sqrt{5}}{2}, \ \phi = rac{1-\sqrt{5}}{2}$

1.37 Мультиномиальные коэффициенты. Определение и формула для их вычисления

Определение. Мультиномиальными коэффициентами называются коэффициенты в разложении $(x_1 + x_2 + \ldots + x_k)^n$ по мономам $x_1^{a_1} x_2^{a_2} \ldots x_k^{a_k}$. Формально:

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{a_1 + \dots + a_k = n} {n \choose a_1, a_2, \dots, a_k} x_1^{a_1} x_2^{a_2} \dots x_k^{a_k}$$

Формула.
$$\binom{n}{a_1, a_2, \dots, a_k} = \frac{n!}{a_1! a_2! \cdot \dots \cdot a_k!} (a_1 + \dots + a_k = n)$$

1.38 Сочетания с повторениями. Определение через разложение $(x_1 + x_2 + \ldots + x_n)^k$ и через количество решений уравнения

Имеется разложение:

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{\alpha = (a_1, \dots, a_k) \\ a_1 + \dots + a_k = n}} \binom{n}{\alpha} x^{\alpha}$$

Моном $x_1^{a_1}x_2^{a_2}\dots x_n^{a_n}$ имеет степень $a_1+\dots+a_n$ и мономы совпадают тогда и только тогда, когда соответствующие последовательности показателей равны. Поэтому нам нужно найти количество решений уравнения

$$a_1 + \ldots + a_n = k$$

в натуральных числах. Это число называется *числом сочетаний с повторениями* из n по k. Обозначим его

$$\left(\left(\begin{array}{c}n\\k\end{array}\right)\right)$$

Пояснение формулы см. в след. пункте

1.39 Сочетания с повторениями. Определение через количество мультимножеств с элементами из n-элементного множества. Формула для вычисления

Формула.
$$\binom{n}{k} = \binom{n+k-1}{k}$$

Определение. Сочетания из n по k — это k-элементные подмножества n элементного множества. Выражение «с повторениями» означает, что теперь элементы считаются с кратностями a_i (натуральные числа)

Приходим к новому понятию мультимножества: порядок элементов не важен, но важно, сколько раз элемент попал в мультимножество. В отличие от обычных множеств, в мультимножество каждый элемент входит с некоторой кратностью

Размер мультимножества — сумма кратностей. Сочетание с повторениями из n по k — это мультимножество с элементами из [n] размера k

1.40 Формула включений и исключений для 2, 3 и n множеств

Для двух:
$$|A \cup B| = |A| + |B| - |A \cap B|$$
 Для трёх: $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$ Для n

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1| + \ldots + |A_n| - |A_1 \cap A_2| - |A_1 \cap A_3| - \ldots + |A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| + \ldots + (-1)^{n+1} |A_1 \cap A_2 \cap \ldots \cap A_n|$$

В первой строчке правой части равенства выписаны мощности всех множеств. Во второй — мощности всех попарных пересечений множеств (со знаком минус). Далее выписываем пересечения троек, четвёрок и т.д. множеств с чередующимися знаками

1.41 Выражение характеристических функций для $A \cap B$, \overline{A} , $A \setminus B$, $A \cup B$ через характеристические функции для A и B

 \overline{A} — дополнение множества A до множества $U:\overline{A}=U\setminus A$

Запишем так:

- $\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x)$
- $\chi_{\overline{A}}(x) = 1 \chi_A(x)$
- $\chi_{A \setminus B}(x) = \chi_A(x) \cdot (1 \chi_B(x))$
- $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) \chi_A(x) \cdot \chi_A(x) = 1 (1 \chi_A(x))(1 \chi_B(x))$

1.42 Количество сюръекций из n-элементного множества в k-элементное

Количество сюръекций n-элементного множества в k-элементное равно

$$\sum_{p=0}^{k} (-1)^p \binom{k}{p} (k-p)^n = k^n - \sum_{p=1}^{k} (-1)^{p+1} \binom{k}{p} (k-p)^n$$

1.43 Формула для числа разбиений n-элементного множества на k непустых непомеченных классов. Связь с числом сюръекций

Определение. $\Phi(n,k)$ — число разбиений n-элементного множества на k непустых непомеченных классов

Определение. Surj(n,k) - число сюръекций n-элементного множества в k-элементное. Тогда верны следующие утверждения:

$$\Phi(n,k) = \sum_{\substack{l_1,\dots,l_n \geqslant 0\\ 1 \cdot l_1 + 2l_2 + \dots + nl_n = n\\ l_1 \cdot l_2 + \dots + nl_n = n}} \frac{n!}{l_1! l_2! \dots l_n! (1!)^{l_1} (2!)^{l_2} \dots (n!)^{l_n}}$$

$$Surj(n, k) = \Phi(n, k) \cdot k!$$

1.44 Задача о числе беспорядков. Формула для количества беспорядков на n-элементном множестве. Доля беспорядков среди всех перестановок

Определение. Количество беспорядков задается формулой

$$n! \left(\sum_{k=0}^{n} \frac{(-1)^k}{k!} \right)$$

Определение. Доля беспорядков равна $\sum_{k=0}^{n} \frac{(-1)^k}{k!}$

1.45 Теоретико-множественные операции над бинарными отношениями. Область определения, область значений бинарного отношения

Пусть R — бинарное отношение на множествах A и B, тогда:

$$\mathrm{Dom}(R) = \{ x \in A \mid \exists y \in B : (x, y) \in R \}$$

$$\operatorname{Range}(R) = \{y \in B \mid \exists x \in A : (x,y) \in R\}$$

Поскольку бинарные отношения являются множествами, с ними можно делать любые теоретикомножественные операции

Пусть R_1, R_2 — бинарные отношения на множествах A и B. Тогда $R_1 \cap R_2, R_1 \cup R_2, R_1 \setminus R_2$ — тоже бинарные отношения на множествах A и B. Можно рассмотреть также дополнение: $\overline{R} = (A \times B) \setminus R$

1.46 Обратное отношение. Композиция отношений

Пусть R — бинарное отношение на множествах A и B, тогда:

- Обратное отношение $R^{-1} = \{(b, a) \mid a \in A, b \in B, (a, b) \in R\}$
- Если R_1 бинарное отношение на множествах A и B, а R_2 на множествах B и C, тогда $R_2 \circ R_1 = \{(a,c) \mid a \in A, c \in C, \exists b \in B : (a,b) \in R_1 \land (b,c) \in R_2\}$

1.47 Свойства обратного отношения и композиции

- 1. $Dom(R^{-1}) = Range(R), Range(R^{-1}) = Dom(R)$
- 2. $(R^{-1})^{-1} = 1$
- 3. Пусть R бинарное отношение на множествах A и B, S бинарное отношение на B и C, T бинарное отношение на C и D. Тогда выполнена ассоциативность: $T \circ (S \circ R) = (T \circ S) \circ R$
- 4. Пусть R бинарное отношение на A и B, S бинарное отношение на B и C. Тогда $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

1.48 Свойства бинарных отношений: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность

Пусть R — бинарное отношение на множестве A

R называется...

- 1. рефлексивным, если $\forall x \in A$ выполнено $(x,x) \in R$. Или же $id_A \subseteq R$
- 2. антирефлексивным, если $\forall x \in A$ выполнено $(x,x) \notin R$. Или же $id_A \cap R = \emptyset$
- 3. симметричным, если $\forall x, y \in A$ из $(x, y) \in R$ следует $(y, x) \in R$. Или же $R^{-1} = R$
- 4. антисимметричным, если $\forall x,y \in A$ из $(x,y) \in R$ и $(y,x) \in R$ следует x=y. Или же $R^{-1} \cap R \subseteq id_A$
- 5. транзитивным, если $\forall x,y,z\in A$ из $(x,y)\in R$ и $(y,z)\in R$ следует $(x,z)\in R$

1.49 Обратное отношение, свойства бинарных отношений в терминах ориентированных графов

Определение. Пусть R — бинарное отношение на множествах A и B, тогда

$$R^{-1} = \{(b, a) \mid a \in A, b \in B, (a, b) \in R\}$$

В терминах графов можно описать такие свойства бинарных отношений:

- 1. Чтобы нарисовать граф обратного отношения R^{-1} , нужно в графе отношения R поменять направления стрелочек
- 2. В графе рефлексивного отношения любая вершина имеет петлю
- 3. В графе антирефлексивного отношения любая вершина не имеет петли
- 4. В графе симметричного отношения у каждой стрелочки есть противоположно направленная стрелочка
- 5. В графе антисимметричного отношения нет противоположно направленных стрелочек
- 6. В графе транзитивного отношения для любой пары стрелочек (x,y) и (y,z) есть замыкающая их стрелочка (x,z)

1.50 Задание бинарного отношения с помощью матрицы. Выражение свойств бинарных отношений, обратного отношения, композиции отношений в терминах матриц

Пусть R — отношение на конечных множествах A и B. Занумеруем элементы этих множеств:

$$A = \{a_1, \dots, a_n\}, B = \{b_1, \dots, b_m\}$$

Построим матрицу размера $n \times m$. Строки матрицы соответствуют первым координатам, а столбцы — вторым. На пересечении i-той строки и j-того столбца ставится 1, если $(a_i,b_i) \in R$, иначе ставится 0

Пример. Пусть $A = \{1, 2, 3, 4\}, \ B = \{1, 2, 3\}, \ R = \{(1, 1), (1, 2), (2, 3), (4, 1)\}.$ Тогда матрица отношения R выглядит так:

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

1.51 Транзитивное замыкание отношения, его свойства

Пусть R — бинарное отношение на множестве A

Определение. Транзитивное замыкание отношения R — наименьшее по включению транзитивное бинарное отношение на множестве A, содержащее отношение R. Обозначение: R^*

Свойства транзитивного замыкания отношения:

- 1. Если R транзитивное отношение, то $R^* = R$
- 2. Для любого отношения R выполнено $R^* = R^{**}$

1.52 Построение транзитивного замыкания по заданному отношению

Теорема. Пусть R — бинарное отношение на множестве A, тогда верно следующее

$$R^* = R \cup R^2 \cup R^3 \cup \ldots \cup R^n \cup \ldots$$

1.53 Отношение эквивалентности. Примеры. Построение отношения эквивалентности по разбиению множества

Определение. Отношение эквивалентности — отношение R на некотором множестве A, которое одновременно

- рефлексивно: $xRx \forall x \in A$
- симметрично: если xRy, то $yRx\forall x,y\in A$
- транзитивно: если xRy и yRz, то $xRz \forall x, y, z \in A$

Пример. Пусть A разбито в дизъюнктное объединение множеств A_i :

$$A = \bigcup_{i} A_i, \quad A_i \cap A_j = \emptyset, \ if i \neq j$$

Тогда пары (x,y), для которых выполняется условие $x \in A_i, y \in A_i$ для некоторого i, образуют отношение эквивалентности

Рефлексивность и симметричность очевидны из определения. Проверим транзитивность

Пусть $x,y\in A_i;y,z\in A_j.$ Так как $A_i\cap A_j\supseteq\{y\}\neq\varnothing,$ то $A_i=A_j.$ Значит (x,z) также находится в отношении

1.54 Теорема о том, что отношение эквивалентности делит множество на классы эквивалентности. Компоненты связности графа

Теорема. Любое отношение R, являющееся отношением эквивалентности на множестве A, делит A на классы эквивалентности — непересекающиеся подмножества множества A, при этом любые два элемента одного класса находятся в отношении R, а любые два элемента разных классов не находятся в отношении R

Определение. В случае отношения достижимости на простом неориентированном графе классами эквивалентности называются *компоненты связности* графа

Если граф связный, у него одна компонента связности. В общем случае компоненты связности совпадают с областями достижимости C(v) вершины v

1.55 Простой неориентированный граф. Матрица смежности и матрица инцидентности. Связь графа с бинарными отношениями на конечных множествах

Определение. Простой неориентированный граф — это конечное множество вершин V и множество рёбер E. Рёбрами являются 2-элементные подмножества множества V

Определение. Матрица смежности графа — матрица, такая что на пересечении i-й строки и j-го столбца стоит 1, если вершины i, j соседние (соединены ребром); иначе там стоит 0

Определение. Матрица инцидентности графа — такая матрица, что на пересечении i-й строки и j-го столбца стоит 1, если вершина i инцидентна ребру j; иначе там стоит 0

Если $e = \{u, v\} \in E$, то вершины u, v называются концами ребра e. Концы ребра называются *смежеными вершинами* или *соседями*

Говорят также, что ребро $e = \{u, v\}$ иниидентно вершине u (как и вершине v)

Примечание. Каждый граф G задаёт бинарное отношение A_G на множестве вершин $V:(x,y)\in A_G$, если $\{x,y\}\in E(G)$. Это отношение обладает следующими свойствами:

- симметричность, $(x,y) \in A_G$ равносильно $(y,x) \in A_G \forall x,y \in V$
- антирефлексивность, $(x,x) \notin A_G \ \forall x \in V$ (у каждого ребра ровно два конца)

Определение. Матрица смежности графа — это матрица соответствующего ему бинарного отношения

1.56 Степень вершины. Теорема о сумме степеней вершин. Лемма о рукопожатиях

Определение. Степень вершины — количество соседей вершины v (оно же количество инцидентных её рёбер). Обозначается, как d(v)

Теорема. Сумма степеней всех вершин графа равна удвоенному числу его рёбер

Лемма. В любом графе количество вершин с нечётными степенями чётно

1.57 Путь в графе. Начало, конец, длина пути. Связанные вершины. Связный граф

Определение. Путь по графу — это такая последовательность вершин v_0, v_1, \ldots, v_t , в которой стоящие рядом члены (вершины v_i и v_{i+1} при всех допустимых i) соединены ребром

Определение. Вершина v_0 называется **началом** пути

Определение. Вершина v_t называется концом

Определение. Длиной пути называется число рёбер в нём, то есть t

Определение. Вершины v и w называются **связанными**, если существует путь с началом в v и концом w

Определение. Граф называется связным, если любые две его вершины связаны

1.58 Отношение достижимости в графе, его свойства. Отношение достижимости как транзитивное замыкание

Отношение достижимости $R \subseteq V \times V$ на его множестве вершин V. Вершины u,v находятся в этом отношении, если они связанные

Свойства. (Лемма)

- 1. (рефлексивность) $(v, v) \in R$ (вершина достижима из себя самой)
- 2. (симметричность) $(v_1, v_2) \in R$ равносильно $(v_2, v_1) \in R$
- 3. (транзитивность) если $(v_1, v_2) \in R$ и $(v_2, v_3) \in R$, то $(v_1, v_3) \in R$

Определение. Отношением достижимости в графе G является транзитивное замыкание отношения $\mathrm{id}_V \cup A_G$. Вершины u и v связанные, если u=v, или существует путь из u в v какой-то длины: 1, 2, 3 и т.д.

Поэтому отношение достижимости равно $\mathrm{id}_V \cup A_G \cup A_G^2 \cup A_G^3 \dots$, что и является транзитивным замыканием отношения $\mathrm{id}_V \cup A_G$ по теореме 1.52

1.59 Цикл. Простой цикл. Простой путь

Определение. Цикл — путь, у которого начало совпадает с концом (замкнутый путь)

Определение. Простой цикл — цикл, в котором все вершины различны, кроме начала и конца

Определение. Простой путь — путь, в котором все вершины различны

1.60 Ориентированный граф. Петли. Матрица смежности. Связь с бинарными отношениями

Определение. Простой ориентированный граф (орграф) — это конечное множество вершин V и множество рёбер E. Рёбрами являются упорядоченные пары вершин

Определение. Петля — упорядоченная пара (w, w). У петли начало и конец совпадают

Определение. Матрица смежности орграфа — квадратная матрица порядка n, где n — количество вершин графа. На пересечении i-й строки и j-го столбца стоит 1, если в орграфе есть ребро (i,j), иначе — стоит 0

Связь с бинарными отношениями. Возьмем множество V и бинарное отношение на этом множестве. Это подмножество декартова произведения $E\subseteq V\times V$. Это то же самое, что орграф с множеством вершин V и множеством ребер E

1.61 Исходящая и входящая степени вершин. Лемма про сумму исходящих и входящих степеней вершин

Определение. Исходящая степень — число ребер, выходящих из вершины

Определение. Входящая степень — число ребер, входящих в вершину

Лемма. Сумма исходящих степеней всех вершин равна сумме входящих степеней всех вершин: обе суммы равны числу рёбер графа

1.62 Путь по орграфу. Цикл, простой путь, простой цикл. Простой в рёбрах путь

Определение. Путь по орграфу — это последовательность вершин $v_1, v_2, v_3, \ldots, v_k$, в которой стоящие рядом члены (вершины v_i и v_{i+1} при всех допустимых i) соединены ребром, причём v_i — начало ребра, а v_{i+1} — его конец

Определение. Цикл — это путь, у которого первая и последняя вершины совпадают

Определение. Простой путь — путь, в котором все вершины различны

Определение. Простой цикл — цикл, в котором различны все вершины, кроме первой и последней вершин

Определение. Простой в ребрах путь — путь, в последовательности ребер которого все ребра различны

1.63 Отношение достижимости в орграфе, его свойства. Отношение сильной связанности в орграфе, его свойства. Компоненты сильной связности, сильно связный орграф

Определение. R — отношение достижимости в орграфе, тогда $(u,v) \in R$, если существует путь с началом в u и концом в v

Свойства любого простого ориентированного графа и любых его вершин v_1, v_2, v_3 :

- 1. $peфлексивность: (v,v) \in R$ вершина достижима из самой себя
- 2. транзитивность: если $(v_1, v_2) \in R$ и $(v_2, v_3) \in R$, то $(v_1, v_3) \in R$

Определение. Вершина u сильно связана с вершиной v, если v достижима из u и наоборот, т.е. если есть путь из u в v, а также путь из v в u. Формально:

$$(u,v) \in C$$
, если $(u,v) \in R$ и $(v,u) \in R$

Примечание. Для любого ориентированного графа отношение сильной связанности *рефлексивно*, *симметрично* и *транзитивно*, то есть является отношением эквивалентности

Определение. Компоненты сильной связности — классы эквивалентности отношения сильной связанности

Определение. Сильно связный орграф — орграф, в котором всё множество вершин образует компоненту сильной связности

1.64 Эйлеров цикл. Эйлеров граф. Критерий эйлеровости ориентированного и неориентированного графа

Определение. Эйлеров цикл — цикл, который проходит по всем рёбрам графа ровно по одному разу (любое ребро соединяет соседние вершины в цикле, и никакое ребро не встречается в цикле дважды)

Определение. Эйлеров граф — граф, в котором есть эйлеров цикл

Критерий для орграфа. Орграф без изолированных вершин содержит эйлеров цикл тогда и только тогда, когда граф сильно связен и у любой вершины входящая степень равна исходящей

Критерий для неориентированного графа. Неориентированный граф без вершин нулевой степени содержит эйлеров цикл тогда и только тогда, когда он связен и степени всех вершин чётны

1.65 Ациклический граф. Равносильные определения ациклического графа

Определение. Ациклический граф — граф, в котором нет циклов длины больше 0 (в том числе, нет петель)

Равносильные свойства ориентированного графа без петель:

- 1. Каждая компонента сильной связности состоит из одной вершины
- 2. Орграф ациклический
- 3. Вершины орграфа можно пронумеровать натуральными числами таким образом, чтобы все рёбра вели из вершины с меньшим номером в вершину с бо́льшим

1.66 Дерево. Мост. Лес

Определение. Дерево — такой связный граф, что выбрасывание любого его ребра даёт несвязный граф

Определение. Мост — это такое ребро в графе, что его удаление увеличивает количество компонент связности

Определение. Лес — произвольные графы, у которых каждое ребро является мостом

1.67 Критерий того, что граф является лесом, в терминах простых путей и простых циклов. Аналогичный критерий для дерева

Равносильные свойства простых неориентированных графов:

- 1. каждое ребро мост
- 2. для любых связанных вершин u, v существует единственный простой путь из u в v
- 3. нет простых циклов длины больше 2

Равносильные свойства связных простых неориентированных графов:

- 1. граф дерево
- 2. для любых двух вершин u, v существует единственный простой путь из u в v
- 3. нет простых циклов длины больше 2

1.68 Цикломатическое число графа. Критерий того, что граф является лесом, в терминах цикломатического числа. Критерий того, что граф является деревом, в терминах рёбер и вершин

Определение. Цикломатическое число графа — величина r(G) = m - n + c, где m - количество рёбер, n - количество вершин графа, c - количество компонент связности

Критерий—1. Графы, у которых r(G) = 0, — это в точности леса, то есть графы, у которых каждое ребро — мост

Критерий—2. Связный граф является деревом тогда и только тогда, когда число рёбер в нём на единицу меньше числа вершин

1.69 Свойства цикломатического числа графа

Свойства:

- 1. Граф G' = G + e получается добавлением к графу G ребра $e = \{x,y\}$ к множеству рёбер, а вершины у него те же
 - Тогда r(G') = r(G), если концы ребра x, y лежат в разных компонентах связности графа G, и r(G') = r(G) + 1, если x, y лежат в одной компоненте связности графа G
- 2. Цикломатическое число графа неотрицательное

1.70 Изолированные вершины, висячие вершины. Теорема про висячие вершины в дереве

Определение. Вершины степени 0 называются *изолированными*, а вершины степени 1- *висячими* **Теорема.** В дереве с хотя бы двумя вершинами найдутся по крайней мере две висячие вершины

1.71 Подграф. Индуцированный подграф. Остовный подграф. Теорема об остовном дереве

Определение. Подграф — некоторое подмножество вершин и некоторое подмножество рёбер с концами в выбранных вершинах

Определение. Остовный подграф — подграф, в котором множество вершин совпадает с множеством вершин самого графа

Теорема. В любом связном графе есть остовное дерево

2 Вопросы на доказательство

2.1 Дистрибутивность конъюкции и дизъюнкции (доказать один из законов). Закон контрапозиции: доказательство и пример применения

Теорема. $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$

Доказательство. Разберем случаи: когда A=0 и A=1

- Если A=0, то левая часть равна 0, а правая $-0 \lor 0 \equiv 0$
- Если A=1, то тождество обращается в $1 \land (B \lor C) \equiv (1 \land B) \lor (1 \land C)$ Так как $1 \land X=X$, получаем, что обе части обращаются в $B \lor C$

Дистрибутивность дизъюнкции доказывается аналогично

Определение. Пусть X — константа, тогда имеем *тавталогии упрощения*:

- $X \wedge 0 \equiv 0, X \wedge 1 \equiv X$
- $X \lor 0 \equiv X, \ X \lor 1 \equiv 1$
- $X \to 1 \equiv 1, X \to 0 \equiv \neg X$
- $0 \to X \equiv 1, 1 \to X \equiv X$

Их справедливость очевидна из таблиц истинности связок

2.2 Единственность пустого множества. Связь тавтологий и теоретико-множественных тождеств. Пример доказательства теоретико-множественного тождества при помощи соответствующей тавтологии

Теорема. Все пустые множества равны между собой

Доказательство. Заметим, что два множества можно назвать разными, если в одном из них есть какой-то элемент, которого нет в другом. В пустых множествах нет вообще никаких элементов, значит и отличить их невозможно. Следовательно, $\exists ! \varnothing$

Теорема. С помощью тавтологий можно доказывать различные теоретико-множественные тождества

Доказательство. Предположим, что все рассматриваемые множества являются подмножествами универсума U. Каждому множеству A и каждому элементу U сопоставляется высказывание $x \in A$. Как видно из определений, принадлежность элемента множеству, которое является теоретико-множественной операцией над другими множествами, выражается с помощью логических связок

Отсюда возникает взаимно однозначное соответствие между логическими и теоретико-множественными тождествами $\hfill\Box$

Пример. Докажем, что равенство $(A \cap B) \setminus C = (A \setminus C) \cap B$ выполняется для любых A, B, C

Из определений получим:

$$(x \in (A \cap B) \setminus C) \equiv (x \in A \cap B) \land \neg (x \in C) \equiv ((x \in A) \land (x \in B)) \land \neg (x \in C)$$
$$(x \in (A \setminus C) \cap B) \equiv (x \in A \setminus C) \land (x \in B) \equiv ((x \in A) \land \neg (x \in C)) \land (x \in B)$$

Поэтому логическая формула, соответствующая равенству в множествах, имеет вид

$$(A \wedge B) \wedge \neg C \equiv (A \wedge \neg C) \wedge B$$

Эта формула является тождеством, потому что конъюнкция коммутативна и ассоциативна. Значит, и равенство с множествами выполняется для всех множеств A, B, C. То есть она тавтологична

2.3 Доказательства тавтологий: метод доказательства от противного, транзитивность импликации, закон контрапозиции, законы де Моргана

Теорема. $((A \rightarrow B) \land (B \rightarrow C) \rightarrow (A \rightarrow C))$

Доказательство. Предположим, что формула ложна при каких-то значениях элементарных высказываний

Из таблицы истинности импликации видим, что тогда заключение $A \to C$ внешней импликации ложно, а посылка $(A \to B) \land (B \to C)$ истинна

Из ложности $A \to C$ заключаем, что A = 1, C = 0. Истинность конъюнкции означает, что истинны оба члена конъюнкции, в частности $B \to C = B \to 0 = 1$. Это возможно лишь при B = 0. Но тогда A o B = 1 o 0 = 0, а мы уже установили, что A o B = 1. Пришли к противоречию.

Теорема. Закон контрапозиции. $A \to B \equiv \neg B \to \neg A$

Доказательство. Используем представление импликации через дизъюнкцию $(A o B \equiv \neg A \lor B)$ для обеих частей тождества. Получаем равносильное тождество $\neg A \lor B \equiv \neg \neg B \lor \neg A$. При этом $\neg \neg B \equiv B$, а дизъюнкция коммутативна, поэтому это тождество — тавтология.

Пример. Докажем с помощью закона контрапозиции утверждение о том, что если $a_1 + \ldots + a_n > n$, то какое-то $a_i > 1$

Пусть A – утверждение $a_1 + \ldots + a_n > n$, B - утверждение, что какое-то $a_i > 1$. Нужно доказать, что $A \to B$. По контрапозиции, это то же самое, что $\neg B \to \neg A$. $\neg B$ означает, что все слагаемые не больше 1: $a_1\leqslant 1,\ldots,a_n\leqslant 1$. Складываем неравенства и получаем, что $a_1+\ldots+a_n\leqslant \underbrace{1+\ldots+1}_{n\ \mathrm{pas}}=n$. Таким образом

получили $\neg A$.

Теорема. Законы де Моргана. $\neg(A \land B) \equiv \neg A \lor \neg B, \ \neg(A \lor B) \equiv \neg A \land \neg B$

Доказательство.

- 1. Отрицание конъюнкции ложно тогда и только тогда, когда конъюнкция истинна, то есть A=B=1. Дизъюнкция ложна тогда и только тогда, когда каждый её член ложен, то есть $\neg A = \neg B = 0$. Эти условия равносильны
- 2. Отрицание дизъюнкции истинно тогда и только тогда, когда дизъюнкция ложна, то есть A=B=0. Конъюнкция истинна тогда и только тогда, когда каждый её член истинен, то есть $\neg A = \neg B = 1$. Эти условия равносильны

Элементы пустого множества обладают любыми свойствами (2 доказательства). Парадокс Рассела

Теорема. Пусть A — любое свойство. Тогда все элементы пустого множества обладают свойством A

Доказательство. (от противного) Пусть это не так. Тогда существует элемент пустого множества, не обладающий свойством А. Получили, что в пустом множестве существует элемент — противоречие

Доказательство. (перебором) Проверим все элементы в пустом множестве, обладают ли они свойством А. Сделали 0 проверок - всё, проверка кончилась

Теорема. (Парадокс Рассела) Утверждение о том, что всё, что угодно, является множеством, неверно. Множества, как правило, своими элементами не являются. Соберём такие «обычные» множества вместе. Получим при этом множество A.

Таким образом, A — это множество всех множеств, не содержащих себя в качестве элемента. Формально:

$$x\in A\equiv x\notin x$$

Выясним, содержит ли множество A само себя, подставив вместо переменной x множество A:

$$A \in A \equiv A \notin A$$

Пришли к противоречию: A принадлежит A тогда и только тогда, когда A не принадлежит A

2.5 Принцип математической индукции. Обоснование и пример применения

Принцип математической индукции описан здесь -1.12 и 1.13

Пример. Для конечных множеств A и B выполняется равенство $|A \times B| = |A| \cdot |B|$

Доказательство. В качестве параметра индукции возьмём размер A. База индукции |A|=1. В этом случае $A\times B$ состоит из пар (a,b), где a — единственный элемент A, а $b\in B$. Таких пар ровно |B|, поскольку они находятся во взаимно однозначном соответствии с элементами B. Значит, выполняется равенство $|A\times B|=|A|\cdot |B|$.

Шаг индукции. Индуктивное предположение: правило произведения выполняется для всех A размера n. Рассмотрим теперь множество A размера (n+1), выделим в нём элемент a_0 и обозначим $A' = A \setminus \{a_0\}$. По правилу суммы |A'| = n.

Равенство $A \times B = (\{a_0\} \times B) \cup (A' \times B)$ непосредственно следует из определения декартова произведения, причём множества $\{a_0\} \times B$ и $A' \times B$ не пересекаются (не имеют общих элементов), потому что первые члены упорядоченных пар у них разные. Применяя правило суммы, базу индукции и индуктивное предположение, получаем

$$|A \times B| = |\{a_0\} \times B| + |A' \times B| = |B| + n \cdot |B| = (1+n) \cdot |B| = |A| \cdot |B|,$$

2.6 Упорядоченная пара по Куратовскому. Доказательство основного свойства: $(x_1, y_1) = (x_2, y_2) \Leftrightarrow x_1 = x_2, \ y_1 = y_2$

Пусть для упорядоченных пар выполняется свойство: $(x_1, y_1) = (x_2, y_2) \Leftrightarrow x_1 = x_2, y_1 = y_2$

Определение. Упорядоченной парой по Куратовскому (x,y) будем называть множество $\{\{x\},\{x,y\}\}$

Теорема. $(x_1, y_1) = (x_2, y_2) \iff x_1 = x_2, \ y_1 = y_2$

Доказательство. Пусть $(x_1, x_2) = (y_1, y_2)$. Это означает, что

$$\{\{x_1\}, \{x_1, y_1\}\} = \{\{x_2\}, \{x_2, y_2\}\}\$$

Теперь разберем два случая

- 1. $x_1=y_1$. В этом случае $\{x_1,y_1\}=\{x_1\}$, поэтому $(x_1,y_1)=\{\{x_1\}\}$. Значит, множество $\{\{x_2\},\{x_2,y_2\}\}$ состоит из одного элемента. Это возможно только если $x_2=y_2$, то есть $(x_2,y_2)=\{\{x_2\}\}$. Из равенства $\{\{x_1\}\}=\{\{x_2\}\}$ заключаем $x_1=x_2$. Отсюда, $x_1=x_2=y_1=y_2$
- 2. $x_1 \neq y_1$. Тогда множество $\{x_1, y_1\}$ состояит из двух элементов, и оно должно быть равно либо $\{x_2\}$, либо $\{x_2, y_2\}$. Первое невозможно, так как двухэлементное множество не может быть равно одноэлементному. Значит, $\{x_1, y_1\} = \{x_2, y_2\}$. С другой стороны, одноэлементное множество $\{x_1\}$ должно быть равно одноэлементному множеству $\{x_2\}$. Значит, $x_1 = x_2$ и $y_1 = y_2$

2.7 Доказательство того, что если $f:A \to B$ — биекция, то f^{-1} — также биекция

Докажем, что f^{-1} — функция, то есть что если $(y,x_1) \in f^{-1}$ и $(y,x_2) \in f^{-1}$, то $x_1 = x_2$. Перепишем: если $(x_1,y) \in f$ и $(x_2,y) \in f$, то $x_1 = x_2$. Отсюда понимаем, что f— инъекция. А следовательно, f^{-1} — функция

Теперь докажем, что f^{-1} — тотальна, то есть $\forall y \in B \ \exists x \in A : \ (y,x) \in f^{-1}$. Перепишем: $\forall y \in B \ \exists x \in A : \ (x,y) \in f$. Отсюда заключаем, что f — сюръекция. А отсюда вытекает, что f^{-1} тотальна

Докажем, что f^{-1} — инъекция, то есть если $(y_1,x) \in f^{-1}$ и $(y_2,x) \in f^{-1}$, то $y_1 = y_2$. Перепишем: если $(x,y_1) \in f$ и $(x,y_2) \in f$, то $y_1 = y_2$. Это определение функции f. Отсюда вытекает, что f^{-1} — инъекция

Докажем теперь, что f^{-1} — сюръекция, то есть $\forall x \in A \ \exists y \in B : \ (y,x) \in f^{-1}$. Перепишем: $\forall x \in A \ \exists y \in B : \ (x,y) \in f$. Это означает тотальность функции f, а из этого следует сюръективность f^{-1}

Так как f^{-1} и инъекция, и сюръекция, она биекция.

2.8 Композиции сохраняют классы тотальных, инъективных, сюръективных и биективных функций

Теорема.

- 1. Если $f:A \to B,\ g:B \to C$ тотальны, то и $g\circ f$ тоже тотальная
- 2. Если $f:A \to B,\ g:B \to C$ инъекции, то и $g\circ f$ тоже инъективна
- 3. Если $f:A\to B,\ g:B\to C$ сюръекции, то и $g\circ f$ тоже сюръективна
- 4. Если $f:A \to B,\ g:B \to C$ биекции, то и $g\circ f$ тоже биективна

Доказательство.

- 1. Пусть $x \in A$. Так как f тотальна, то $\exists y \in B : y = f(x)$. Так как g тотальна, то $\exists z \in C : z = g(y)$. По определению композиции $z = (g \circ f)(x)$, что доказывает тотальность $g \circ f$
- 2. $g \circ f$ тотальная. Пусть $(g \circ f)(x_1) = (g \circ f)(x_2)$. По определению композиции это равносильно $g(f(x_1)) = g(f(x_2))$. Так как g инъекция, то $f(x_1) = f(x_2)$. Так как f инъекция, то $x_1 = x_2$
- 3. Доказано, что $g \circ f$ тотальна. Из определению сюръективности g заключаем, что $\forall z \in C \exists y \in B : g(y) = z$. При этом f сюръекция, значит $\forall y \exists x \in A : f(x) = y$. По определению композиции $(g \circ f)(x) = g(f(x)) = z$, что и означает, что $g \circ f$ сюръективна

4. Из утверждений 2 и 3 следует биективность $g \circ f$

2.9 Доказательство принципа Дирихле. Доказательство корректности определения мощности конечного множества

Теорема. Занумеруем клетки, и пусть в клетку с номером i посажено r_i кроликов. Если $k>n,\ r_1,\ldots,r_n$ - натуральные числа и $r_1+\ldots+r_n=k,$ то для какого-то i выполняется неравенство $r_i>1$

Доказательство. Предположим противное: пусть для всех r_i выполнено $r_i \leqslant 1$. Сложим все эти неравенства и получим $r_1 + \ldots + r_n \geqslant n$. Так как $r_1 + \ldots r_n = k$, получили $k \leqslant n$, что противоречит условию k > n

Теорема. Пусть $f:[n] \to A, \ g:[m] \to A$ — две биекции, тогда n=m

Доказательство. Докажем от противного. Предположим, что $n \neq m$. Пусть, для опредленности, n > m.

Знаем, что \exists биекция $g^{-1}:A\to [m]$ и функция $g^{-1}\circ f:[n]\to [m]$ (тоже биекция). По приницпу Дирихле [n] — кролики, а [m] — клетки.

Кроликов больше, чем клеток \to в какой-то клетке два кролика, то есть $\exists i, j \in [n]$, для которых $g^{-1} \circ f(i) = g^{-1} \circ f(j)$.

Таким образом получаем противоречие, в котором $g^{-1} \circ f$ инъективна

2.10 Сравнение конечных множеств с помощью инъекций, сюръекций, биекций

Теорема. Для тотальных функций из конечного множества в конечное выполняются следующие свойства:

- 1. Если $f:A\to B$ инъекция, то $|A|\leqslant |B|$
- 2. Если $f:A\to B$ сюръекция, то $|A|\geqslant |B|$
- 3. Если $f:A\to B$ биекция, то |A|=|B|

Доказательство.

1. Обозначим через $a_i, i \in B$ количество элементов $a \in A$, для которых f(a) = i (то есть размер полного прообраза $f^{-1}[\{i\}]$)

Так как f – инъекция, то $a_i \leqslant 1 \forall i \in B$. Тогда

$$|A| = \sum_{i \in B} a_i \leqslant \sum_{i \in B} 1 = |B|$$

Так как f — тотальная и $|f^{-1}[Y]| = \sum_{b \in Y} |f^{-1}[\{b\}]|$, то каждый $x \in A$ входит ровно в один прообраз какого-то $y \in B$

2. Так как f— сюръекция, то $a_i \geqslant 1 \forall i \in B$. Тогда

$$|A| = \sum_{i \in B} a_i \geqslant \sum_{i \in B} 1 = |B|$$

3. Так как 1 и 2 утверждение верны, то данный факт также верный

2.11 Лемма про тотальную функцию из конечного множества в себя

Теорема. Для тотальных функций из конечного множества в себя выполнены следующие свойства:

- 1. Если $f:A\to A$ инъекция, то f сюръекия
- 2. Если $f:A\to A$ сюръекия, то f инъекция

Доказательство.

- 1. Пусть f инъекция, тогда |f[A]| = |A| = n. Значит, f сюръекция
- 2. Если f сюръекция. В силу утверждения 1.23, $|f^{-1}(A)| = \sum_{b \in A} |f^{-1}[\{b\}]|$. Так как f сюръекция, то $|f^{-1}[\{b\}]| \geqslant 1$. Значит, $|f^{-1}[\{b\}]| = 1$, а значит f инъективна

2.12 Количество слов длины n в алфавите из k символов. Количество тотальных функций из n-элементного множества в k-элементное. Количество всех функций из n-элементного множества в k-элементное

Количество слов длины n в алфавите из k символов

Слово — это последовательность $a_1, \ldots a_n$, где $a_i \in A$. То есть множество слов длины n — это декартова степень A^n . По формуле произведения получаем, что количество слов равно k^n .

Количество тотальных функций

Этих функций столько же, сколько есть слов длины n в алфавите из k символов

Занумеруем элементы $A:a_1,a_2...a_n$. Сопоставим тотальной функции $f:A\to B$ слово $\beta(f)=b_1b_2...b_n$ длины n в алфавите B по правилу: $b_i=f(a_i)$. Фактически, это таблица значений функции (если мы зафиксировали порядок элементов A). Получаем биекцию с множеством слов длины n в алфавите из k символов

Значит, количество тотальных функций из A в B равно количеству слов длины n в алфавите из k символов и равно k^n

Количество всех функций

Рассмотрим элемент **void** $\notin B$. Тотальные функции из A в $B \cup \{$ **void** $\}$ находятся во взаимно однозначном соответствии с функциями из A в B: значение **void** мы рассматриваем как указание на то, что функция из A в B не определена. Ответ: $(k+1)^n$

2.13 Формула для количества размещений из n по k. Подсчёт числа инъекций и биекций

Теорема.
$$A_n^k = \frac{n!}{(n-k)!}$$

Доказательство. Представляем размещение как результат нескольких последовательных выборов: выбираем первый член последовательности, затем второй и т.д. На первом шаге есть n вариантов. На втором - уже n-1: результат первого выбора использовать невозможно

Размещениям взаимно однозначно отвечают пути по дереву вариантов. А каж- дый путь задаётся выбором одного из вариантов ветвления. Пронумеруем эти вари- анты в порядке возрастания. Получаем биекцию между размещениями из n по k и декартовым произведением

$$[n] \times [n-1] \times \ldots \times [n-k+1],$$

где
$$[n]$$
 — множество $\{1, 2, \ldots\}$

Подсчёт числа инъекций и биекций. Посчитаем количество инъективных функций из k-элементного множества в n-элементное. Сопоставляем такой функции f слово $\beta(f)$ длины k в алфавите из n символов: $\beta(f)_i = f(i)$. Нас интересуют те функции, у которых значения в различных точках различны. Им отвечают слова, в которых символы не повторяются, то есть в точности размещения из n по k, то есть $A_n^k = \frac{n!}{(n-k)!}$

2.14 Формула для количества сочетаний из n по k

Теорема. $C_n^k = \frac{n!}{(n-k)!k!}$

Доказательство. Перепишем формулу, как

$$C_n^k \cdot k! = A_n^k$$

Построим функцию $f: A_n^k \to C_n^k$. Размещению $x = (x_1, \dots, x_k)$ сопоставим сочетание $\{x_1, \dots, x_k\}$

Такая функция сюръективна, так как элементы любого конечного множества можно расположить в последовательность.

Однако она не инъективна, но можно вычислить $f^{-1}[\{S\}]$, где S — произвольное сочетание. Существует k! способов упорядочить k элементов

Вспомним, что
$$|f^{-1}[Y]| = \sum_{b \in Y} |f^{-1}[\{b\}]|$$
, отсюда следует $C_n^k \cdot k! = A_n^k$

2.15 Биекция между подмножествами и индикаторными функциями. Количество подмножеств n-элементного множества. Комбинаторное доказательство формулы $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$

Определние индикаторной функции дано здесь -1.33

Доказательство. Докажем, что индикаторные функции χ_A и χ_B равны тогда и только тогда, когда подмножества A и B равны. Из определений ясно, что A=B равносильно $A\triangle B=\varnothing$, где

$$A \triangle B \equiv (A \setminus B) \cup (B \setminus A)$$

обозначет симметрическую разность

Если $x \in A \triangle B$, то $\chi_A(x) \neq \chi_B(x)$. И наоборот, если $\chi_A(x) \neq \chi_B(x)$, то $x \in A \triangle B$

 $S\mapsto \chi_S$ — биекция $\mathcal{P}(X)\to \{0,1\}^X$. Поскольку количество тотальных функций уже подсчитано, получаем и количество подмножеств

Теорема. Количество подмножеств n-элементного множества равно 2^n

Доказательство. Найдём количество двоичных слов (то есть слов из 0 и 1) длины n, в которых ровно k единиц

На двоичное слово длины n смотрим как на таблицу значений индикаторной функции подмножества [n]. Если в слове k единиц, это означает, что в соответствующем подмножестве k элементов. Поэтому ответом будет число сочетаний C_n^k

Теорема.
$$C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$$

Доказательство. (комбинаторное) С одной стороны, мы посчитали, что таких подмножеств 2^n .

С другой стороны, подмножества n-элементного множества бывают пустые, одноэлементные, ..., n-элементные. k-элементных подмножеств n-элементного множества имеется C_n^k . Отсюда следует утверждение теоремы

2.16 Теорема о совпадении биномиальных коэффициентов и чисел сочетаний. Доказательство формулы $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$ с помощью бинома

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \binom{n}{0} y^n + \binom{n}{1} y^{n-1} x + \dots + \binom{n}{n-1} y x^{n-1} + \binom{n}{n} x^n$$

Теорема.
$$\binom{n}{k} = C_n^k$$

Доказательство. Будем переходить от левой части бинома к правой в два этапа. Раскрываем скобки и получаем сумму выражений вида xyyx..., где всего сомножителей n, а каждый из них — это x или y. Количество таких сомножителей равно количеству слов длины n в алфавите $\{x,y\}$, то есть 2^n

Теперь приведём подобные. Мы знаем, что сложение и умножение коммутативны и ассоциативны. Поэтому все слагаемые с одинаковым количеством x и y равны x^ky^{n-k} , где k — количество символов x (а количество символов y равно n-k, потому что других символов в этих выражениях нет)

Итак, $\binom{n}{k}$ равен количеству слагаемых с k символами x и n-k символами y, а это количество равно количеству двоичных слов с k единицами, то есть C_n^k

Доказательство формулы $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$ с биномом.

Подставим в бином Ньютона x = y = 1. Тогда получим, что

$$(1+1)^2 = 2^n = C_n^0 + C_n^1 + \ldots + C_n^n$$

2.17 Решение задачи о монотонных путях в квадранте. Связь этой задачи с треугольником Паскаля

Определение. В n-й строке треугольника Паскаля записаны биномиальные коэффициенты $\binom{n}{k}$, причем $0 \le k \le n$. При других значениях k биномиальные коэффициенты равны нулю

Строки располагаются со сдвигом. При таком расположении выполняется свойство: каждое число в треугольнике Паскаля, за исключением крайних единиц, равно сумме двух соседних чисел, которые стоят

Задача про монотонные пути в квадранте

Мы двигаем фишку по точкам плоскости с целыми координатами. Путём из точки (0,0) в точку (a,b) мы называем конечную последовательность точек (то есть пар целых чисел), первая равна (0,0), а последняя равна (a,b). Путь будем называть монотонным, если для каждой пары соседних точек $(x_1,y_1), (x_2,y_2)$ в этой последовательности выполнено $x_1 \leqslant x_2, \ y_1 \leqslant y_2$

За один шаг возможно увеличить абсциссу на 1 или увеличить ординату на 1, то есть из точки (x,y) можем пойти в (x+1,y) или в (x,y+1). Обозначим количество различных монотонных путей из точки (0,0) в точку (a,b) за T(a,b). Из правила суммы следует рекуррентное соотношение

$$T(a,b) = T(a-1,b) + T(a,b-1)$$

Получается, что все пути в (a,b) разбиваются на две группы: те, в которых на последнем шаге увеличивалась абсцисса, и те, в которых на последнем шаге увеличивалась ордината. Это первое и второе слагаемое в T(a,b) соответственно. Также нужно такое условие: T(0,b) = T(a,0) = 1

Теперь считаем количество монотонных путей для (a,b):

И тут мы видим, что это треугольник Паскаля, но повернутый на 135 градусов. Отсюда выводится число путей

$$T(a,b) = {a+b \choose a} = \frac{(a+b)!}{a!b!}$$

2.18 Свойства биномиальных коэффициентов: каждое число в треугольнике Паскаля (за исключением крайних единиц) равно сумме двух соседних чисел, которые стоят выше в треугольнике; симметричность строк треугольника Паскаля

Теорема.
$$C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$$

Доказательство. Рассмотрим T(k, n-k). С одной стороны, $T(k, n-k) = C_n^k$. С другой стороны, из формулы упомянутой в 2.17 получаем

$$T(k, n-1) = T(k-1, n-k) + T(k, n-k-1) = C_{n-1}^{k} + C_{n-1}^{k-1}$$

Теорема. Каждая строка треугольника Паскаля симметрична относительно середины

Доказательство. В n-й строке треугольника Паскаля записаны биномиальные коэффициенты $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}$

Симметрия относительно середины означает, что $\binom{n}{k} = \binom{n}{n-k}$

Это равенство ясно из формулы бинома $(x+y)^n$: выражение не изменяется при перестановке x и y, значит, коэффициенты при x^ky^{n-k} и $x^{n-k}y^k$ одинаковы. Из формулы для числа сочетаний

$$\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$$

это также очевидно следует (переставим сомножители в знаменателе)

2.19 Задача о монотонных путях по прямой: разрешены любые ходы. Два способа вычисления ответа

Есть клетчатая лента, по которой можно двигать фишку. Клетки пронумерованы целыми числами. В начале фишка находится в клетке 0. Далее её можно сдвигать вправо. Нужно подсчитать, сколько есть различных способов попасть в клетку с номером n

Нужно найти количество всех монотонно возрастающих последовательностей целых чисел, первый член которых равен 0, а последний равен n. Обозначим это количество T(n)

Нетрудно найти T(n) при малых n

 ${f n}={f 0}.$ Единственная монотонная последовательность, начинающаяся и заканчивающаяся на 0: это (0). Поэтому T(0)=1

 ${f n}={f 1}.$ Единственная монотонная последовательность, начинающаяся на 0 и заканчивающаяся на 1: это (0,1). Поэтому T(1)=1

 ${f n}={f 2}.$ Монотонных последовательностей, начинающихся на 0 и заканчивающаяся на 2 уже две: это (0,1,2) и (0,2). Поэтому T(2)=2

При росте n количество вариантов растёт и уже легко ошибиться в подсчёте. Вместо этого попробуем найти соотношение между этими числами. Оно имеет вид

$$T(n) = T(n-1) + T(n-2) + \ldots + T(0)$$

для любого n

Докажем эту формулу. Обозначим через X множество всех монотонных последовательностей, начинающихся с 0 и заканчивающихся на n. Разделим последовательности на группы, в зависимости от последнего хода. То есть группу X_i образуют те монотонные последовательности, которые имеют вид $0, \ldots, i, n$

Ясно, что каждая последовательность попала ровно в одну группу и группы не пересекаются (смотрим на последний ход или на предпоследний член последовательности). По правилу суммы получаем

$$|X| = |X_0| + |X_1| + |X_2| + \ldots + |X_{n-1}|$$

С другой стороны, $|X_i| = T(i)$ (монотонные последовательности, начинающиеся в 0 и заканчивающиеся в i). Отсюда и получается наша формула

Пользуясь индукцией и доказанной формулой, докажем формулу для $T(n):\ T(n)=2^{n-1}\ \forall\ n\geqslant 1$

База: при n=1: $T(0)=2^{1-1}=1$

Шаг индукции. Индуктивное предположение: $T(n) = 2^{n-1}$. Поэтому верно:

$$T(n+1) = T(n) + T(n-1) + T(n-1) + \dots + T(0) = T(n) + T(n) = 2^{n-1} + 2^{n-1} = 2^{(n+1)-1}$$

Есть и другой способ посчитать это число. Давайте задавать протокол движения клетками, в которых побывала фишка. Клетки 0 и n всегда будут, поэтому их пропустим. Получаем протокол движения в виде двоичного слова длины n-1: в позиции i стоит 1, если фишка побывала в i-й клетке, иначе стоит 0. Любое двоичное слово задаёт протокол ровно одного движения. Поэтому получили биекцию между способами переместить фишку из 0 в n и двоичными словами длины n-1. А это количество мы уже подсчитывали: таких слов ровно 2^{n-1}

Ещё один способ увидеть ответ: количество таких путей совпдает с количеством подмножеств множества $\{1,2,\ldots,n-1\}$. Каждому пути взаимно однозначно соответствует множество клеток с номерами от 1 до n-1, на которых побывала фишка

2.20 Задача о монотонных путях по прямой: разрешены ходы на 1 или 2 клетки. Рекуррентная и явная формула

Теперь нужно подсчитать количество монотонно возрастающих последовательностей целых чисел, первый член которых равен 0, последний равен n, а разность между двумя соседними принимает только значения 1 или 2. Такие последовательности — это протоколы движения фишки по клеточкам. Каждому способу движения отвечает ровно одна последовательность и по ней этот способ движения так же однозначно определяется

Обозначим количество таких последовательностей H_n . При этом, $H_{n+2} = H_{n+1} + H_n$

Все последовательности, заканчивающиеся на n + 2, разделяются на две непересекающиеся группы:

$$0, \ldots, n, n+2$$

 $0, \ldots, n+1, n+2$

Это так, потому что в клетку n+2 можно попасть либо с клетки n, либо с клетки n+1, на месте многоточий возможно вставить любую последовательность чисел, в которой разности между соседними числами равны 1 или 2

Количество таких последовательностей при малых n легко высчитать. При $n\leqslant 2$ получаются те же числа, что в пункте 2.19, так как ограничения на длину шага выполняются при $n\leqslant 2$ для любой последовательности. Итак, $H_0=H_1=1,\ H_2=2$

Продолжив, получим последовательность Фибоначчи: $1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$

Реккурентная формула. $H_0=1,\ H_1=1,\ H_{n+2}=H_{n+1}+H_n \forall n\geqslant 0$

Явная формула. $F_n = \frac{\psi^n - \phi^n}{\sqrt{5}}$, где $\psi = \frac{1+\sqrt{5}}{2}$, $\phi = \frac{1-\sqrt{5}}{2}$. То же самое, что здесь - 1.36

2.21 Свойства биномиальных коэффициентов: возрастание чисел в первой половине треугольника Паскаля; оценка для $\binom{2n}{n}$

Утверждение. В первой половине строки треугольника Паскаля числа возрастают

Доказательство. Нужно воспользоваться формулой для числа сочетаний. Запишем условие возрастания биномиальных коэффициентов в виде

$$\binom{n}{k-1} < \binom{n}{k} \Leftrightarrow 1 < \frac{\binom{n}{k}}{\binom{n}{k-1}}$$

$$1 < \frac{\binom{n}{k}}{\binom{n}{k-1}} = \frac{n!}{k!(n-k)!} \cdot \frac{(k-1)!(n-k+1)!}{n!} = \frac{n-k+1}{n} \Leftrightarrow 2k < n+1$$

Значит, $\binom{n}{k}$ попадает в первую половину строки треугольника Паскаля.

Утверждение. $\binom{2n}{n}\geqslant \frac{2^{2n}}{2n+1}$

Доказательство. Из предыдущего утверждения и того, что сумма чисел в n-й строке треугольника Паскаля равна 2^n , сумма всех биномиальных коэффициентов из 2n по k равна 2^{2n} , а средний коэффициент — самый большой. Всего коэффициентов 2n+1, поэтому

$$(2n+1)\binom{2n}{n} \geqslant 2^{2n} \Leftrightarrow \binom{2n}{n} \geqslant \frac{2^{2n}}{2n+1}$$

2.22 Равенство количества подмножеств с чётным и нечётным числом элементов. Комбинаторное и аналитическое доказательства

Формулировка. Если n > 0, тогда количество подмножеств n-элементного множества с нечётным количеством элементов равно количеству подмножеств n-элементного множества с чётным количеством элементов

Kомбинаторное доказательство. Рассмотрим n-элементное множество [n]. Разобьём подмножества [n] на пары:

$$\{\{n-1\}\cup S,\ S\},$$
 где $S\subseteq [n-1]$

В каждой паре одно из множеств содержит чётное количество элементов, а другое — нечётное. Получаем биекцию из множества подмножеств с чётным числом элементов в множество подмножеств с нечётным числом элементов.

Аналитическое доказательство. Количество k-элементных подмножеств n-элементного множества равно $\binom{n}{k}$

Формула бинома:
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
. Подставим в неё $1=-x=y$

Получаем:

$$0 = \sum_{k=0}^{n} \binom{n}{k} (-1)^k 1^{n-k} = \sum_{k \text{ even}} \binom{n}{k} - \sum_{k \text{ odd}} \binom{n}{k}$$

Отсюда следует, что подмножеств с четным и нечетным числом элементов поровну.

2.23 Мультиномиальные коэффициенты: два доказательства формулы для их вычисления

Формулировка.
$$\binom{n}{a_1,a_2,\dots,a_k} = \frac{n!}{a_1!a_2!\dots\cdot a_k!} \; (a_1+\dots+a_k=n)$$

Комбинарное доказательство. При раскрытии скобок в равенстве из 1.37 получаются слагаемые, каждое из которых имеет вид $x_1x_2x_3\dots$: первая переменная взята из первой скобки, вторая — из второй, и т.д. Это слово w в алфавите $\{x_1,\dots,x_k\}$, в котором n букв. После перестановок переменных из этого слова получается моном $x_1^{a_1}x_2^{a_2}\dots x_k^{a_k}$, где a_i — количество букв x_i в слове w

Значит, мультиномиальный коэффициент $\binom{n}{a_1,\dots a_k}$ равен количеству слов в алфавите $\{x_1,\dots,x_k\}$, длина которых равна n, а количество вхождений каждого символа задаётся числами a_1,\dots,a_k

Итак, нам нужно посчитать количество слов длины n, в которых a_1 букв x_1, \ldots, a_k букв x_k ($a1+\ldots+a_k=n$). Временно забудем, что в нашем слове есть одинаковые буквы. Существует n! слов длины n, в которых все буквы разные.

Теперь вспомним, что у нас есть одинаковые буквы и поймём, сколько раз мы посчитали каждое слово. Можно как угодно переставлять буквы x_i . Этих букв a_i , существует a_i ! перестановок этих букв

Таким образом, по правилу произведения каждое слово посчитано $a_1! \cdot \ldots \cdot a_k!$ раз. То есть, когда мы насчитали n! слов, мы на самом деле посчитали каждое слово много раз, а именно $a_1! \cdot \ldots \cdot a_k!$ раз (это число не зависит от слова). Следовательно, всего существует $\frac{n!}{a_1!a_2!\ldots a_k!}$ разных слов.

Алгебраическое доказательство. Нужно посчитать количество слов длины n, в которых a_1 букв x_1, \ldots, a_k букв x_k . Сначала выберем, на каких местах будут стоять буквы x_1 . Нужно выбрать a_1 мест из имеющихся n— всего есть $\binom{n}{a_1}$ варинатов сделать это. Далее для букв x_2 . Нужно выбрать a_2 мест из оставшихся $n-a_1$. Вариантов сделать это $\binom{n-a_1}{a_2}$. И так далее пока не дойдем до букв x_k , для которых останется $n-a_1-\ldots-a_{k-1}$ мест. Вариантов сделать такой выбор - $\binom{n-a_1-\ldots-a_{k-1}}{a_k}$

Теперь выведем равенство:

$$\binom{n}{a_1}\binom{n-a_1}{a_2}\cdot\ldots\cdot\binom{n-a_1-\ldots-a_{k-1}}{a_k} = \frac{n!}{a_1!(n-a_1)!}\frac{(n-a_1)!}{a_2!(n-a_1-a_2)!}\cdot\ldots\cdot\frac{(n-a_1-\ldots-a_{k-1})}{a_k!0!} = \frac{n!}{a_1!a_2!\ldots a_k!}$$

2.24 Сочетания с повторениями. Формула для вычисления

Формулировка. Если $\binom{n}{k}$ - число сочетаний с повторениями, то $\binom{n}{k}$ = $\binom{n+k-1}{k}$

Доказательство. Моном $x_1^{a_1}x_2^{a_2}\dots x_k^{a_k}$ имеет степень $a_1+\dots+a_n$ и мономы совпадают только тогда, когда соответствующие последовательности показателей равны. Поэтому нам нужно найти количество решений уравнения $a_1+\dots+a_n=k$ в натуральных числах

Установим взаимно однозначное соответствие между решениями этого уравнения и k-элементными подмножествами (n+k-1)-элементного множества. Сделаем это, используя задачи о разделе монет

Выстроим монеты в ряд и разделим их перегородками, чтобы указать, кому какие монеты отходят. Первый получает монеты, которые расположены до первой перегородки, второй — те, которые лежат между первой и второй, и т.д. Получается, $a_1=0,\ a_2=2,\ a_3=0,\ a_4=2,\ a_5=0,\ a_6=1,\ a_7=2$

Итак, у нас есть позиции, на каждую из которых можно поставить либо монету, либо перегородку. Всего позиций n+k-1, а монет — k. Любой выбор k-элементного подмножества позиций, на котором стоят перегородки, возможен, и каждому такому выбору отвечает ровно одно решение уравнения.

2.25 Задача о количестве монотонных путей из n шагов из точки 0 в точку k. Связь с числом сочетаний с повторениями

Монотонный путь, состоящий из n шагов, по прямой из 0 в k — это другое название такой строго возрастающей последовательности целых чисел $x_1 < \ldots < x_{n+1}$, что $x_1 = 0$, $x_{n+1} = k$

Такой монотонный путь однозначно задаётся выбором n-1 числа в интервале от 1 до k-1 (путь монотонный, поэтому эти числа он обязан проходить в порядке возрастания)

Поэтому количество таких путей равно количеству (n-1)-элементных подмно- жеств (k-1)-элементного множества, то есть $\binom{k-1}{n-1}$.

Связь с числом сочетаний с повторениями. Заметим, что путь однозначно задаётся последовательностью длин ходов: $l_1 = x_2 - x_1 = x_2, \dots \ l_n = x_{n+1} - x_n = k - x_n$. В сумме эти числа обязаны давать k

Мы получаем разные решения для уравнения $a_1 + \ldots + a_n = k$ и $l_1 + \ldots + l_n = k$, так как в первом случае мы искали решения в *положительных* целых числах. А во втором нам нужны решения в *положительных* целых числах. Однако эти два уравнения можно связать записав:

$$a_1 + \ldots + a_n = k - n$$

2.26 Формула включений и исключений для п множеств

Предполагаем, что все множества A_i содержатся в некотором множестве (универсуме). Например, можно считать универсумом объединение всех этих множеств, обозначим его A. Количество элементов в множестве S выражается как сумма индикаторной функции по всему универсуму:

$$|S| = \sum_{u \in A} \chi_S(u)$$

Теперь применим формулу

$$\chi_A(x) = 1 - (1 - \chi_{A_1}(x)) (1 - \chi_{A_2}(x)) \dots (1 - \chi_{A_n}(x))$$

и раскроем скобки в полученном выражении. При раскрытии скобок получается -1, которая сокращается с первой 1 в формуле. Остальные слагаемые получаются так: выберем непустое множество J тех скобок, из которых берём слагаемое - χ_{A_i} , из остальных скобок выбираем 1. Получается слагаемое, которое имеет вид произведения индикаторных функций со знаками:

$$-(-1)^k \prod_{i \in J} \chi_{A_i} = (-1)^{k+1} \chi_{A_J}$$
, где $k = |J|$

а через A_i обозначено пересечение тех множеств, индексы которых попадают в множество J, то есть

$$A_J = \bigcap_{i \in J} A_i$$

Отсюда имеем:

$$\chi_A(x) = \sum_{J \neq \varnothing} (-1)^{|J|+1} \chi_{A_J}(x)$$

Суммирование по всему универсуму этого равенства даст в левой части мощность объединения, а в правой — формулу включений и исключений

$$|A| = \sum_{x} \chi_A(x) = \sum_{x} \sum_{J \neq \varnothing} (-1)^{|J|+1} \chi_{A_J}(x) = \sum_{J \neq \varnothing} (-1)^{|J|+1} |A_J|$$

2.27 Количество сюръекций из п-элементного множества в к-элементное

Теорема. Количество сюръекций п-элементного множества в k-элементное равно

$$\sum_{p=0}^{k} (-1)^p \binom{k}{p} (k-p)^n = k^n - \sum_{p=1}^{k} (-1)^{p+1} \binom{k}{p} (k-p)^n$$

Чтобы найти количество сюръекций, нужно из всего количества тотальных функций, их k^n , вычесть количество не-сюръекций. Чтобы найти количество не-сюръекций, применим формулу включений и исключений

Не-сюръекции $[n] \to [k]$ — это те тотальные функции, область значений которых не содержит хотя бы одно из чисел $\{0,1,2,\ldots,k-1\}$ то есть объединение множеств

$$A(0) \cup A(1) \cup \ldots \cup A(k-1),$$

где A(i) - множество тех функций, которые не принимают значения i

Все множества A(i) имеют размер $(k-1)^n$

Для формулы включений и исключений нужно ещё подсчитать размер пересечений таких множеств. Рассмотрим пересечение p множества A(i). Это функции, которые не принимают некоторые p значений. Таких функций столько же, сколько тотальных функций из n-элементного множества в (k-p)-элементное, то есть $(k-p)^n$

А всего разных наборов из p множеств A(i) столько же, сколько p-элементных подмножеств k-элементного множества, то есть $\binom{k}{p}$. Поэтому формула включений и исключений для данного семейства множеств приобретает вид, указанный в теореме.

2.28 Формула для числа разбиений n-элементного множества на k непустых непомеченных классов. Связь с числом сюръекций

Формула.

$$\Phi(n,k) = \sum_{\substack{l_1,\dots,l_n \geqslant 0\\ 1 \cdot l_1 + 2l_2 + \dots + nl_n = n\\ l_1 + l_2 = k}} \frac{n!}{l_1! l_2! \dots l_n! (1!)^{l_1} (2!)^{l_2} \dots (n!)^{l_n}}$$

Доказательство. Рассмотрим разбиение на классы конкретных размеров (потом нужно будет просуммировать получившиеся результаты). Пусть имеется l_i классов размера $i, 1 \le i \le n$. Ясно, что все эти числа неотрицательные, причём их сумма должна быть равна числу классов $(l_1 + \ldots + l_n = k)$. В этих классах содержится $1 \cdot l_1 + 2 \cdot l_2 + \ldots + n \cdot l_n$ элементов, и это число должно быть равно n - размеру всего множества

Допустим, что классы у нас различимые. Существует $\binom{n}{\alpha}$ разбиений на такие различимые классы. Это мультиномиальный коэффициент, где в последовательности α встречается l_i раз число i. Было доказано, что $\binom{n}{\alpha} = \frac{n!}{(1!)^{l_1}(2!)^{l_2}...(n!)^{l_n}}$. Классов размера i имеется l_i штук, значит, имеется l_i ! их перестановок

Таким образом, всего имеется $l_1!l_2!\dots l_n!$ возможных перестановок имеющихся классов. Значит, именно столько раз мы учли каждое разбиение в формуле для $\binom{n}{\alpha}$, и на это число надо поделить. Перебрав все возможные варианты разбиений на классы конкретных размеров, получаем формулу из формулировки теоремы.

Связь с числом сюръекций. Обозначим через $\mathrm{Surj}(n,k)$ число сюръекций n-элементного множества в k-элементное

$$\operatorname{Surj}(n,k) = \Phi(n,k) \cdot k!$$

Доказательство. Рассмотрим какую-нибудь сюръекцию из n-элементного множества в k-элементное $\{a_1, \ldots, a_k\}$. В результате мы разбили n-элементное множество на k непустых помеченных классов: в i-тый класс попадут элементы, образ которых равен a_i . Сюръективность функции обеспечивает непустоту классов

Таким образом, число сюръекций из n-элементного множества в k-элементное равно числу разбиений n-элементного множества на k непустых помеченных классов. Если классы непомеченные, то k классов можно переставлять k! способами

Получается, если теперь посчитать число разбиений с непомеченными классами, то мы каждое разбиение с помеченными классами посчитали k! раз.

2.29 Задача о числе беспорядков. Формула для количества беспорядков на п-элементном множестве. Доля беспорядков среди всех перестановок

Формулировка. Количество беспорядков задаётся формулой

$$n! \left(\sum_{k=0}^{n} \frac{(-1)^k}{k!} \right)$$

Доказательство. Зафиксируем n и обозначим через B_i , где $i=1,\ldots,n$, множество тех перестановок, для которых $a_i=i$. Тогда $B_1\cup\ldots\cup B_n-$ множество перестановок с неподвижными точками. Дополнением к этому объединению будет в точности множество беспорядков

Применим формулу включений и исключений к множеству $B_1 \cup \ldots \cup B_n$. Для этого нужно посчитать размеры множеств $\bigcap_{i \in S} B_i$ для всевозможных $S \subseteq [n]$. Перестановки из такого пересечения - это перестановки,

оставляющие на месте элементы из S, и переставляющие остальные элементы произвольным образом. Таких перестановок ровно (n-|S|)! штук. Таким образом, для всякого S верно

$$\left| \bigcap_{i \in S} B_i \right| = (n - |S|)!$$

Множеств S размера k всего $\binom{n}{k}$, так что по формуле включений и исключений мы получаем

$$|B_1 \cup \ldots \cup B_n| = \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} \cdot (n-k)! = \sum_{k=1}^n (-1)^{k+1} \frac{n!}{k!},$$

а для количества беспорядков

$$n! - \sum_{k=1}^{n} (-1)^{k+1} \frac{n!}{k!} = \frac{n!}{0!} + \sum_{k=1}^{n} (-1)^k \frac{n!}{k!} = n! \left(\sum_{k=0}^{n} \frac{(-1)^k}{k!} \right)$$

Доля беспорядков.

$$\sum_{k=0}^{n} \frac{(-1)^k}{k!}$$

2.30 Критерий транзитивности отношения. Отношение, являющееся одновременно рефлексивным и антирефлексивным. Отношение, являющееся одновременно симметричным и антисимметричным. Транзитивность пустого и одноэлементного отношения

Теорема. Отношение R на множестве A транзитивно тогда и только тогда, когда $R \circ R \subseteq R$

Доказательство. Пусть отношение R транзитивно. Рассмотрим какую-нибудь пару $(a,b)\subseteq R\circ R$. Это означает, что для некоторого $y\subseteq A(a,y), (y,b)\in R$. По транзитивности R получаем, что $(a,b)\in R$. Значит, выполняется включение $R\circ R\subseteq R$

Обратно, пусть $R \circ R \subseteq R$. Возьмём две пары (x,y) и (y,z) из отношения R. По определению композиции $(x,z) \in R \circ R$. Поскольку квадрат отношения лежит в нём самом, получаем, что $(x,z) \in R$. То есть доказали транзитивность отношения

Пример. Нужно, чтобы $\forall x \in A$ было выполнено $(x,x) \in R$ и $(x,x) \notin R$. Это невозможно, если в множестве A содержится хотя бы один элемент. Если же множество A пусто, то единственное бинарное отношение на множестве A — это пустое отношение. Оно является одновременно и рефлексивным, и антирефлексивным

Пример. Пусть какое-то $(x,y) \in R$. В силу симметричности $(y,x) \in R$, а в силу антисимметричности получаем, что x=y. Таким образом, если R одновременно симметрично и антисимметрично, то в него могут попасть только пары вида (x,x), то есть $R \subseteq id_A$. Обратно: ясно, что любое бинарное отношение R, для которого выполнено $R \subseteq id_A$, является одновременно симметричным и антисимметричным

Пример. Пустое бинарное отношение \varnothing на любом множестве A является транзитивным, потому что в импликации $(x,y) \in \varnothing \land (y,z) \in \varnothing \to (x,z) \in \varnothing$ левая часть всегда ложна, а импликация всегда истинна. Можно также сказать, что $\varnothing \circ \varnothing = \varnothing$, то есть выполнен критерий транзитивности. Любое отношение, содержащее ровно одну пару, также является транзитивным. Пусть $R = \{(a,b)\}$. Тогда, если $a \neq b$, то $R \circ R = \varnothing$, а если a = b, то $R \circ R = \{(a,a)\}$. То есть снова выполнен критерий транзитивности $R \circ R \subseteq R$

2.31 Выражение композиции отношений через матрицы. Критерий транзитивности отношения в терминах матриц

Пусть M_R и M_S — матрицы отношений R и S (R — бинарное отношение на множествах A и B, а S — бинарное отношение на множествах B и C, элементы множества B в обеих матрицах пронумерованы одинаково)

Тогда матрица отношения $S \circ R$ получается так: берём матрицу $M_R \cdot M_S$, после чего меняем все числа, превосходящие 1, на 1

Пусть $(a_i,c_k)\in S\circ R$. Это означает, что $\exists \ b_j,$ что $(a_i,b_j)\in R, (b_j,c_k)\in S$. Значит, при вычислении элемента (i,k) матрицы $M_R\cdot M_S$ в сумме $\sum_l M_R(i,l)M_S(l,k)$ возникло ненулевое число. А значит, элемент

(i,k) матрицы $M_R \cdot M_S$ будет положительным. Аналогично рассуждаем, если $(a_i,c_k) \notin S \circ R$

Пусть M — матрица бинарного отношения R. Пусть матрица N получается из матрицы $M \cdot M$ заменой всех элементов, больших 1, на 1. Тогда отношение R транзитивно тогда и только тогда, когда в матрице N каждый элемент не превосходит элемента матрицы M, стоящего на том же месте (иными словами, не бывает такого, что в матрице N стоит 1 на том месте, где в матрице M стоит 0). Это наблюдение следует из теоремы 2.30 и того, как считается матрица композиции

Пример. Пусть матрица отношения R равна $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Тогда матрица отношения $R \circ R$:

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

На месте (2,2) в этой матрице стоит 1, а в исходной -0

Следовательно, R не транзитивно

2.32 Свойства транзитивного замыкания. Транзитивность пересечения любого непустого семейства транзитивных отношений. Существование и единственность транзитивного замыкания

Пусть R — бинарное отношение на множестве A

Определение. Транзитивное замыкание отношения R — наименьшее по включению транзитивное бинарное отношение на множестве A, содержащее отношение R. Обозначение: R^*

Свойства транзитивного замыкания отношения:

- 1. Если R транзитивное отношение, то $R^*=R$
- 2. Для любого отношения R выполнено $R^* = R^{**}$

Доказательство.

- 1. Пусть R транзитивно. Проверим, что R его транзитивное замыкание. Действительно, R транзитивно, $R\subseteq R$, и для любого транзитивного T, если $R\subseteq T$, то $R\subseteq T$. Значит, по определению, $R^*=R$
- 2. По определению R^* транзитивно. Осталось применить п. 1

Лемма о транзитивности пересечения непустого... Пусть $R_i, i \in I$ — произвольный непустой набор транзитивных отношений на множестве A. Тогда их пересечение $\bigcap_{i \in I} R_i$ также транзитивно (это также отношение на множестве A)

Доказательство. Возьмём любые $(x,y), (y,z) \in \bigcap_{i \in I} R_i$. Раз они лежат в пересечении, то они лежат в каждом R_i . Так как каждое R_i транзитивно, имеем $(x,z) \in R_i$ для всех i. Отсюда $(x,z) \in \bigcap_{i \in I} R_i$

Теорема о существовании и единственности транзитивного замыкания. Для любого бинарного отношения R на множестве A существует его транзитивное замыкание R^*

Доказательство. Рассмотрим все транзитивные отношения R_i на множестве A, содержащие отношение R (обозначим $i \in I$). Этот набор непуст: ему точно принадлежит полное бинарное отношение. Значит, можно рассмотреть его пересечение $\bigcap_{i \in I} R_i$

По предыдущей лемме это отношение также транзитивно. Далее, поскольку $R\subseteq R_i$ для каждого i, то $R\subseteq \bigcap_{i\in I}R_i$. Наконец, если T - какое-то транзитивное отношение на множестве A, то оно присутствует в этом наборе $R_i, i\in I$. А это означает, что $\bigcap_{i\in I}R_i\subseteq T$

Единственность транзитивного замыкания легко следует из определения. Действительно, если бы R_1^* и R_2^* были бы транзитивными замыканиями отношения R, то тогда имеем $R_1^* \subseteq R_2^*$ и $R_2^* \subseteq R_1^*$, откуда следует, что $R_1^* = R_2^*$

2.33 Построение транзитивного замыкания по заданному отношению

Пусть R - бинарное отношение на множестве A. Тогда

$$R^* = R \cup R^2 \cup R^3 \cup \dots R^n \cup \dots$$

Доказательство. Пусть T - бинарное отношение $R \cup R^2 \cup R^3 \cup \dots R^n \cup \dots$ Докажем, что $R^* = T$

Докажем, что T транзитивно. Возьмём произвольные $(x,y),(y,z)\in T.$ Тогда существуют $k,s\in\mathbb{N},$ что $(x,y)\in R^k,(y,z)\in R^s.$ Отсюда $(x,z)\in R^{k+s},$ а, значит, $(x,z)\in T$

Поскольку T транзитивно, отсюда немедленно получаем, что $R^* \subseteq T$

Докажем, что для любого $n \in \mathbb{N} \setminus \{0\}$ выполнено $R^n \subseteq R^*$ (следоватьно, $T \subseteq R^*$)

База очевидна: $R^1 = R \subseteq R^*$ по определению транзитивного замыкания. Шаг: пусть $R^n \subseteq R^*$. Возьмём произвольное $(x,z) \in R^{n+1}$. Поскольку $R^{n+1} = R \circ R^n$, по определению композиции отношений существует y, для которого $(x,y) \in R^n$ и $(y,z) \in R$. По предположению индукции $(x,y) \in R^*$ и $(y,z) \in R^*$. Так как R^* транзитивно, получаем, что $(x,z) \in R^*$. Таким образом, доказано, что $R^{n+1} \subseteq R^*$

Поскольку доказаны оба включения $R^*\subseteq T$ и $T\subseteq R^*$, заключаем, что $T=R^*$.

Примечание. Если множество A конечно, то отношения в бесконечной цепочке

$$R \cup R^2 \cup R^3 \cup \dots R^n \cup \dots$$

с какого-то места начнут повторяться, потому что существует только конечное множество бинарных отношений на конечном множестве A. Так что для конечных множеств это будет по существу конечное объединение

2.34 Построение отношения эквивалентности по разбиению множества. Теорема о том, что отношение эквивалентности делит множество на классы эквивалентности

Пример. Пусть A разбито в дизъюнктное объединение множеств A_i :

$$A = \bigcup_i A_i, \quad A_i \cap A_j = \varnothing, \,\, ext{если} \,\, i
eq j$$

Тогда пары (x, y), для которых выполняется условие $x \in A_i, y \in A_i$ для некоторого i (то есть эти элементы лежат в одном множестве разбиения), образуют отношение эквивалентности.

Рефлексивность и симметричность очевидны из определения. Транзитивность легко проверяется. Пусть $x,y\in A_i; y,z\in A_j$. Так как $A_i\cap A_j\supseteq \{y\}\neq\varnothing$, то $A_i=A_j$. Значит (x,z) также находится в отношении

Теорема. Любое отношение R, являющееся отношением эквивалентности на множестве A, делит A на классы эквивалентности — непересекающиеся подмножества множества A, при этом любые два элемента одного класса находятся в отношении R, а любые два элемента разных классов не находятся в отношении R

Доказательство. Для каждого $x \in A$ рассмотрим множество $C(x) = \{y : xRy\}$ тех y, для которых верно xRy. Это и есть обещанные классы эквивалентности. Чтобы это доказать, нужно проверить три условия:

- 1. Объединение всех множеств вида C(x) совпадает с множеством A В силу рефлексивности множество C(x) содержит x в качестве своего элемента: $x \in C(x)$, поскольку xRx. Отсюда следует, что объединение всех этих множеств совпадает с A
- 2. Два множества C(x) и C(y) либо не пересекаются, либо совпадают

Пусть $z \in C(x) \cap C(y)$, то есть верно xRz и yRz. Симметричность даёт zRy. Теперь применим транзитивность к xRz и zRy, заключаем, что xRy и по симметричности yRx

Пусть $t \in C(y)$, то есть yRt. Применим транзитивность к xRy и yRt, заключаем, что xRt, то есть $t \in C(x)$. Значит, $C(y) \subseteq C(x)$. Аналогично доказывается, что $C(x) \subseteq C(y)$, так что C(x) = C(y)

3. C(x) = C(y) в том и только том случае, когда xRy (то есть R совпадает с отношением «принадлежать одному классу», как в примере)

Если для каких-то x, y верно xRy, то x и y оба лежат в одном классе, а именно, в C(x). Обратно, если x и y лежат в каком-то C(z), то по определению имеем zRx и zRy. Симметричность даёт xRz, после чего транзитивность даёт xRy

2.35 Теорема о сумме степеней вершин. Лемма о рукопожатиях. Число рёбер в полном графе на n вершинах. Свойства отношения достижимости в графе

Теорема. Сумма степеней всех вершин графа равна удвоенному числу его рёбер

Доказательство. Применим метод двойного подсчёта. Если посчитать сумму элементов матрицы по строкам, то получится такое же число, как и при суммировании элементов матрицы по столбцам

Посчитаем количество 1 в матрице инцидентности графа. В строке i количество 1 равно количеству инцидентных вершине i рёбер, то есть степени этой вершины. Значит, сумма 1 по строкам равна сумме степеней вершин

В каждом столбце матрицы инцидентности ровно две 1, так как у ребра ровно два конца. Значит, сумма 1 по столбцам равна удвоенному количеству рёбер

Обе суммы равны общему количеству 1 в матрице инцидентности, а значит, равны между собой

Лемма. В любом графе количество вершин с нечётными степенями чётно

Доказательство. Лемма следует из предыдущей теоремы. Сумма степеней всех вершин — это всегда чётное число, поэтому нечётных слагаемых в этой сумме должно быть чётное количество

Лемма. Свойства отношения достижимости в графе:

- 1. (рефлексивность) $(v, v) \in R$ (вершина достижима из себя самой)
- 2. (симметричность) $(v_1, v_2) \in R$ равносильно $(v_2, v_1) \in R$
- 3. (транзитивность) если $(v_1, v_2) \in R$ и $(v_2, v_3) \in R$, то $(v_1, v_3) \in R$

Доказательство. Так как v - путь (длины 0), вершина v связанная с самой собой

Если $v_1u_1\dots u_sv_2$ -путь в графе, то $v_2u_s\dots u_1v_1$ — также путь (записываем те же вершины, но в обратном порядке). Поэтому достижимость v_2 из v_1 равносильна достижимости v_1 из v_2

Если в графе есть пути $v_1u_1 \dots u_sv_2$ и $v_2w_1 \dots w_tv_3$ (то есть $(v_1,v_2) \in R$ и $(v_2,v_3) \in R$)), то в этом графе есть также и путь $v_1u_1 \dots u_sv_2w_1 \dots w_tv_3$, то есть $(v_1,v_3) \in R$ (вершина v_3 достижима из v_1).

2.36 Принцип наименьшего числа. Теорема о том, что между любыми двумя связанными вершинами существует простой путь

Принцип наименьшего числа

Теорема. Любое непустое подмножество натуральных чисел содержит наименьший элемент

Доказательство. Пусть X — подмножество натуральных чисел, в котором нет наименьшего элемента, т.е. $\forall a \in X \; \exists b \in X : b < a$

Докажем, что $n \notin X \ \forall n \iff X = \emptyset$ по полной индукции. $0 \notin X$, т.к. 0 — наименьшее натуральное число. Предположим, что $\forall k < n$ известно, что $k \notin X$. Тогда $n \notin X$, т.к. в противном случае n было бы наименьшим натуральным числом в X. Отсюда, $n \notin X \ \forall n$, т.е. X пустое

Мы доказали, что если множество натуральных чисел X не имеет наименьшего натурального элемента, то оно пусто. Контрапозиция к этому утверждению и есть принцип наименьшего числа

Теорема

Теорема. Если две вершины x,y связанные в графе G, то в этом графе существует простой путь с началом x и концом y

Доказательство из конспекта. Используем принцип наименьшего числа. Если существует хотя бы один путь из x в y, то существует и путь наименьшей длины (нет пути короче)

Рассмотрим кратчайший путь $x=u_1,\ldots,u_k=y$ и докажем, что он простой с помощью контрапозиции. Тогда нужно доказать, что если путь $x=u_1,\ldots,u_k=y$ не простой, то он не кратчайший. Пусть $u_i=u_j,\ i< j.$ Тогда последовательность $x=u_1,\ldots,u_i,u_{j+1},u_k=y$ также является путем из x в y, а длина этого пути меньше. (Если j=k, то есть вершина u_{j+1} не существует, то тогда более короткий путь имеет вид $x=u_1,\ldots,u_i=u_k=y$)

Доказательство из учебника Вялого. Рассмотрим кратчайший путь из x в y. Предположим, что в него дважды входит некоторая вершина w, тогда участок между этими вхождениями можно было бы выбросить, и получился бы более короткий (простой) путь из x в y, вопреки предположению

2.37 Лемма про сумму исходящих и входящих степеней вершин. Свойства отношения достижимости в орграфе. Свойства отношения сильной связанности в орграфе

Лемма

Формулировка. Сумма исходящих степеней всех вершин равна сумме входящих степеней всех вершин: обе суммы равны числу рёбер графа

Доказательство. Каждое ребро имеет одно начало (выходит из какой-то вершины) и поэтому учитывается по одному разу, когда мы складываем исходящие степени всех вершин. Аналогично для концов рёбер

Свойства отношения достижимости в орграфе

Формулировка. Свойства любого простого ориентированного графа и любых его вершин v_1, v_2, v_3 :

- 1. рефлексивность: $(v, v) \in R$ вершина достижима из самой себя
- 2. транзитивность: если $(v_1, v_2) \in R$ и $(v_2, v_3) \in R$, то $(v_1, v_3) \in R$

Доказательство. Так как v — путь (длины 0), вершина v связанная с самой собой

Если в графе есть пути $v_1u_1 \dots u_sv_2$ и $v_2w_1 \dots w_tv_3$ (то есть $(v_1,v_2) \in R$ и $(v_2,v_3) \in R$)), то в этом графе есть также и путь $v_1u_1 \dots u_sv_2w_1 \dots w_tv_3$, то есть $(v_1,v_3) \in R$. Значит, вершина v_3 достижима из v_1

Свойства отношения сильной связанности в орграфе

Форулировка. Для любого ориентированного графа отношение сильной связанности *рефлексивно, симметрично и транзитивно*, то есть является отношением эквивалентности

Доказательство.

- $Pефлексивность: v_1$ путь в любом графе, поэтому v_1 сильно связана сама с собой
- Транзитивность: если в графе есть пути из v_1 в v_2 , из v_2 в v_1 , из v_2 в v_3 , из v_3 в v_2 , то обязательно есть и пути из v_1 в v_3 (соединяем путь из v_1 в v_2 с путём из v_2 в v_3), а также из v_3 в v_1 (соединяем путь из v_3 в v_2 с путём из v_2 в v_1)
- Симметричность: если $(u,v) \in C$, то по определению $(u,v) \in R$ и $(v,u) \in R$. Отсюда следует, что и $(v,u) \in C$

2.38 Критерий эйлеровости ориентированного и неоринтированного графа

Критерий—1

Формулировка. В ориентированном графе без изолированных вершин существует эйлеров цикл тогда и только тогда, когда граф сильно связен и у любой вершины входящая степень равна исходящей

Доказательство. Пусть эйлеров цикл в орграфе есть. Тогда он проходит через все вершины (поскольку они имеют ненулевую степень), и по нему можно дойти от любой вершины до любой. Значит, орграф сильно связен

Возьмём какую-то вершину v, пусть она встречается в эйлеровом цикле k раз. Двигаясь по циклу, мы приходим в неё k раз и уходим k раз, значит, использовали k входящих и k исходящих рёбер. При этом, раз цикл эйлеров, других рёбер у этой вершины нет, так что в ориентированном графе её входящая и исходящая степени равны k

В обратную сторону. Пусть орграф сильно связен и в каждой вершине исходящая степень равна входящей. Выберем самый длинный простой в рёбрах путь, т.е. его длина не больше общего количества рёбер

$$\tau = (v_0, v_1, v_2, \dots, v_{t-1}, v_t)$$

и докажем, что этот путь и является искомым циклом, то есть что $v_0 = v_t$ и этот путь содержит все рёбра орграфа

Если τ самый длинный, то добавить к нему ребро (v_t, v_{t+1}) невозможно. Значит, что все выходящие из v_t рёбра уже входят в τ . Это возможно, лишь если $v_0 = v_t$: если вершина v_t встречалась только внутри пути (пусть она входит k раз внутри пути и ещё раз в конце пути), то мы использовали k+1 входящих рёбер и k выходящих, и больше выходящих нет. Это противоречит равенству входящей и исходящей степени

Итак, мы имеем цикл, и осталось доказать, что в него входят все рёбра. Пусть из какой-то вершины v_i выходит ребро (v_i, v) , не входящее в выбранный путь (цикл на самом деле). Тогда этот путь можно удлинить до простого в рёбрах пути

$$(v_{i+1},\ldots,v_t=v_0,\ldots,v_i,v)$$

вопреки нашему выбору (самого длинного простого в рёбрах пути). Аналогично можно получить противоречие и для входящего ребра (v, v_i) , добавив его в начало

Значит, во всех вершинах цикла использованы все инцидентные им рёбра. Но орграф сильно связен, поэтому выбранный цикл содержит все рёбра этого графа и проходит через все вершины

Критерий-2

Формулировка. Неориентированный граф без вершин нулевой степени содержит эйлеров цикл тогда и только тогда, когда он связен и степени всех вершин чётны

Доказательство аналогично критерию—1. Пусть эйлеров цикл в графе есть. Он проходит по всем

вершинам, значит граф связен. В каждую вершину эйлеров цикл k раз заходит и k раз выходит. Значит, степень вершины k+k=2k чётна В обратную сторону опять рассматриваем самый длинный путь, в котором каждое ребро встречается не больше одного раза. Это цикл, т.к. иначе есть вершина нечётной степени Этот цикл обязан содержать все рёбра графа, т.к. в противном случае его можно удлинить

2.39 Лемма о существовании в ациклическом графе вершины с исходящей степенью 0 и вершины с входящей степенью 0. Равносильные определения ациклического графа

Лемма

Формулировка. В ациклическом орграфе есть вершина, из которой не выходит ни одного ребра, а также есть вершина, в которую не входит ни одно ребро

Доказательство. Выберем в этом орграфе простой путь максимальной длины, обозначим его вершины v_0, v_1, \ldots, v_t . Тогда исходящая степень вершины v_t равна 0: если в орграфе есть ребро $(v_t, x), x \notin \{v_0, \ldots, v_{t-1}\}$, то длина выбранного пути не максимальна: его можно продолжить до пути v_0, \ldots, v_t, x . Если же в орграфе есть ребро (v_t, v_i) , то в этом орграфе есть цикл v_i, \ldots, v_t, v_i

Аналогично доказывается, что входящая степень вершины v_0 равна 0

Равносильные определения ациклического графа

Формулировка. Следующие свойства орграфа без петель равносильны:

- 1. Каждая компонента сильной связности состоит из одной вершины
- 2. Орграф ациклический
- 3. Вершины орграфа можно пронумеровать натуральными числами таким образом, чтобы все рёбра вели из вершины с меньшим номером в вершину с бо́льшим

Доказательство. Доказываем утверждения теоремы по очереди

Доказательство (1) \implies (2). Равносильно контрапозиции \neg (2) \implies \neg (1). Раз в орграфе нет петель, в нём нет циклов длины 1. Если в орграфе есть цикл с n>1 вершинами, то вершины этого цикла сильно связаны (из любой можно попасть в любую по циклу) — и тогда они попадут в одну компоненту связности

Доказательство (2) \implies (1). Равносильно контрапозиции \neg (1) \implies \neg (2). Если вершины $a \neq b$ сильно связаны, то существуют пути из a в b и из b в a. Соединением этих путей получается цикл длины > 0

Доказательство $(2) \implies (3)$ докажем индукцией по числу вершин усиленный вариант: нумерация использует числа от 1 до n, где n — число вершин в орграфе

База индукции. Граф без петель на одной вершине. Он ациклический и требуемая нумерация существует (это очевидно, так как рёбер нет)

Шаг индукции. Пусть $(2) \implies (3)$ выполняется для графов $c \leqslant n$ вершинами. Рассмотрим граф без циклов на n+1 вершине. Выберем вершину v_{n+1} исходящей степени 0, которая существует в таком орграфе по лемме из ??. Ей присвоим номер n+1. Удалив v_{n+1} и все входящие в неё рёбра, получим ациклический граф. (Циклы в нём были бы циклами и в исходном графе.) По предположению индукции его вершины можно пронумеровать числами от 1 до n с соблюдением условия. Объединяя эту нумерацию с номером n+1 вершины v_{n+1} , получаем искомую нумерацию. Шаг индукции доказан

2.40 Критерий того, что граф является лесом, в терминах простых путей и простых циклов

Формулировка. Равносильные свойства простых неориентированных графов:

- (1) каждое ребро мост
- (2) для любых связанных вершин u, v существует единственный простой путь из u в v
- (3) нет простых циклов длины больше 2

Доказательство. Доказываем утверждения теоремы по очереди

Доказательство (2) \implies (3). Равносильно контрапозиции \neg (3) \implies \neg (2). Пусть в графе G есть простой цикл $u_0, u_1, \ldots, u_t = u_0, t > 2$

Вершины u_0, u_1 соседние, а значит связанные в этом графе, причем есть как минимум два разных простых пути с концами в этих вершинах: (u_0, u_1) , т.е. путь из одного ребра, и путь по остальным ребрам цикла $(u_0 = u_t, u_{t-1}, \ldots, u_2, u_1)$, важно, что длина цикла больше 2

Доказательство (3) \implies (1). Равносильно контрапозиции \neg (1) \implies \neg (3). Пусть ребро $e = \{x,y\}$ можно удалить из графа G, и в полученном графе G' = G - e количество компонент связности не увеличится. Значит, вершины x,y связанные в графе G'. По теореме из ?? в графе G' есть простой путь x,u_1,u_2,\ldots,u_t,y , все вершины которого различны

Тогда в графе G есть простой цикл $x, u_1, u_2, u_3, \ldots, u_t, y, x$ и, т.к. x, y, u_1 — три различные вершины, длина этого цикла больше 2

Доказательство (1) \implies (2). Равносильно контрапозиции \neg (2) \implies \neg (1). Пусть между вершинами u и v есть два простых пути

$$(x_0, x_1, \ldots, x_r)$$
 и (y_0, y_1, \ldots, y_s)

здесь $x_0 = y_0 = u, x_r = y_s = v$. Начинаются эти пути в одной вершине, но полностью совпадать не могут. Возьмём наибольшее общее начало этих путей, то есть максимально возможное i, для которого $x_j = y_j \ \forall 0 \leqslant j \leqslant i$. Тогда $x_{i+1} \neq y_{i+1}$ и потому ребро $\{x_i, x_{i+1}\}$ не входит во второй путь, но входит в первый по определению. Если $\{x_i, x_{i+1}\}$ входит во второй путь, то этот путь не простой: вершина $y_i = x_i$ встретится в нём по крайней мере дважды: второй раз случится, когда $\{y_t, y_{t+1}\} = \{x_i, x_{i+1}\}$, по построению t > i

Докажем, что ребро $\{x_i, x_{i+1}\}$ — не мост. При удалении этого ребра из графа вершины x_i, x_{i+1} остаются в одной компоненте связности: они связаны (необязательно простым) путём

$$x_i, x_{i-1}, \ldots, x_1, u, y_1, \ldots, y_{s-1}, v, x_{r-1}, \ldots, x_{i+1}$$

Остальные области достижимости (отличные от $C(x_i)$) не изменяются: пути из таких вершин не проходят через ребро $\{x_i, x_{i+1}\}$

Поскольку мы доказали циклическую цепочку импликаций $(2) \implies (3) \implies (1) \implies (2)$, все эти утверждения равносильны

2.41 Свойства цикломатического числа графа

Свойство—1. Граф G' = G + e получается добавлением к графу G ребра $e = \{x,y\}$ к множеству рёбер, а вершины у него те же

Тогда r(G') = r(G), если концы ребра x, y лежат в разных компонентах связности графа G, и r(G') = r(G) + 1, если x, y лежат в одной компоненте связности графа G

Доказательство. Рассмотри 2 случая из формулировки

- (1) Вершины x,y лежат в одной компоненте связности C графа G. Тогда количество компонент связности не изменилось: для любого пути в G', проходящего через ребро e, существует путь в G с теми же концами. Количество ребер увеличилось на 1, количество вершин не изменилось. Значит, цикломатическое число увеличилось на 1
- (2) Вершины x, y лежат в разных компонентах связности графа G. Тогда в графе G' в область достижимости вершины x добавляется C(y), поскольку в G' вершина y достижима из x. Проводя аналогичные рассуждения про y, получим

$$C'(x) = C'(y) = C(x) \cup C(y).$$

Значит, области достижимости x,y в G' равны объединению областей достижимости этих вершини в графе G. Остальные области достижимости не меняются. Значит, количество компонент связности уменьшилось на 1. Количество рёбер увеличилось на 1, количество вершин не изменилось, цикломатическое число не изменилось

Свойство—2. Цикломатическое число графа неотрицательное

Доказательство. Используем индукцию по количеству ребер графа. База индукции — графы без рёбер с произвольным количеством вершин. В таких графах цикломатическое число равно нулю, т.к. рёбер нет, каждая вершина является компонентой связности. И такой граф является лесом, т.к. каждое его ребро — мост (рёбер вообще нет, так что это утверждение верно)

Пусть цикломатическое число неотрицательное для всех графов с меньше чем k рёбрами, k>0. Рассмотрим граф G' с k рёбрами и выделим в нём ребро $e=\{x,y\}$. Тогда $r(G')\geqslant r(G'-e)\geqslant 0$: первое неравенство — это предыдущее свойство, а второе — индуктивное предположение. Шаг индукции доказан, свойство выполняется в силу принципа математической индукции

Альтернативное доказательство. Тык и в видео - тык 2.0

2.42 Критерий того, что граф является лесом, в терминах цикломатического числа

Формулировка. Графы, у которых цикломатическое число равно 0,- это в точности леса, то есть графы, у которых каждое ребро — мост

Доказательство. Используем индукцию по количеству ребер. База проверена в доказательстве свойства—2 в ??

Шаг индукции. Пусть теорема выполняется для графов с меньше чем k рёбрами, k>0. Рассмотрим граф G с k рёбрами

Пусть r(G) = 0. Так как цикломатическое число любого графа неотрицательное, каждое ребро G — мост, т.к. удаление не моста уменьшает цикломатическое число. Значит, G — лес

Тогда для любого ребра e в графе (G-e) нет простых циклов длины больше 2, т.к. любой такой цикл был бы и простым циклом в лесу G. По критерию $\ref{G-e}$ граф (G-e) также лес. Согласно индуктивному предположению r(G-e)=0. Однако, e — мост в G, поэтому из свойства—1 в $\ref{G-e}$? получаем r(G)=r(G-e)=0

Шаг индукции доказан. По принципу полной математической индукции, цикломатическое число любого леса равно 0 и все графы с цикломатическим числом 0 — леса

2.43 Теорема про висячие вершины в дереве: два доказательства. Теорема об остовном дереве

Теорема про висячие вершины в дереве

Формулировка. В дереве с хотя бы двумя вершинами найдутся по крайней мере две висячие вершины

Доказательство—1. Выберем вершину, пусть она не изолированная. Куда-нибудь пойдём, чтобы рёбра не повторялись. Вернуться в вершину, в которой мы уже были, невозможно — иначе нашёлся бы цикл. Поэтому ходить по графу бесконечно тоже невозможно, так что мы упрёмся в тупик — это и будет висячая вершина. Чтобы найти вторую висячую вершину, нужно проделать тот же алгоритм, начав с уже найденной висячей вершины □

Доказательство—2. Воспользуемся критерием—2 из $\ref{1}$??. Пусть в дереве $n\geqslant 2$ вершин. Тогда количество ребер равно n-1

Обозначим степени вершин d_1, \ldots, d_n . Так как $n \geqslant 2$, то изолированных вершин нет (каждая изолированная вершина является компонентой связности). Из теоремы о том, что сумма степеней всех вершин графа равна удвоенному числу его рёбер получим

$$d_1 + \ldots + d_n = 2(n-1) \iff (d_1 - 2) + (d_2 - 2) + \ldots + (d_n - 2) = -2$$

Так как $d_i > 0$, каждое слагаемое в левой части не меньше -1. Значит, хотя бы два слагаемых должны быть равны -1, они отвечают висячим вершинам, для которых $d_i - 2 = 1 - 2 = -1$

Теорема об остовном дереве

Формулировка. В любом связном графе есть остовное дерево

Доказательство. Удаляем рёбра, не являющиеся мостами графа, пока это возможно. При удален	ши
не моста связный граф остаётся связным. В итоге получится связный граф, в котором каждое ребро	, —
мост, то есть дерево. Оно остовное — вершины те же самые, что в исходном графе	