DIVISION /	ROLL NO.:	D2A/55	
		•	

Vivekanand Education Society's Institute of Technology (Academic Year 2020-2021)

Subject: Engineering Mathematics- I Semester: I

TUTORIAL/SCILAB COVER PAGE

TUTORIAL /SCILAB NO :- 1, 2, 3, 4
TUTORIAL TOPIC:- NUMERICAL METHODS
DATE OF PERFORMANCE/SUBMISSION :- 11/04/2021
NAME OF THE STUDENT: - SHREYAS ARUN SAWANT
SIGNATURE OF TEACHER: -

Name: Shreyas Arun Sawant

A.Y.: <u>2020-2021</u>

SCI LAB PRACTICAL 1: GAUSS JACOBI ITERATION METHOD

QUESTION: Using suitable loop, write the sci-lab programme to obtain approximate solution by Gauss Jacobi Iteration Method. (Correct up to five decimal places)

INPUT CODE:

disp(z)

```
clc:
A=[20 1 -2; 3 20 -1; 2 -3 20]
B=[17; -18; 25]
disp("[A B]")
disp([A B])
disp("No. of iterations")
n=5
disp(n)
x0 = 0
y0 = 0
z0 = 0
for i=0:n
x(i+1)=(B(1)-A(1,2)*y0-A(1,3)*z0)/A(1,1)
y(i+1)=(B(2)-A(2,1)*x0-A(2,3)*z0)/A(2,2)
z(i+1)=(B(3)-A(3,1)*x0-A(3,2)*y0)/A(3,3)
x0=x(i+1)
y0=y(i+1)
z0=z(i+1)
end
disp('x=')
disp(x)
disp('y=')
disp(y)
disp('z=')
```

Name: Shreyas Arun Sawant

A.Y.: <u>2020-2021</u>

OUTPUT:

"[A B]"

20. 1. -2. 17.

3. 20. -1. -18.

2. -3. 20. 25.

"No. of iterations"

5.

"x="

0.85

1.02

1.00125

1.0004

0.9999662

0.9999995

"y="

-0.9

-0.965

-1.0015

-1.000025

Division: <u>D2A</u> Roll No: <u>55</u>

Name: Shreyas Arun Sawant

A.Y.: <u>2020-2021</u>

-1.0000775

-0.9999971

"z="

1.25

1.03

1.00325

0.99965

0.9999563

0.9999918

Name: Shreyas Arun Sawant

A.Y.: <u>2020-2021</u>

SCI LAB PRACTICAL 2: NEWTON RHAPSON METHOD

QUESTION: Using suitable loop, write a sci-lab program to obtain approximate root in the given interval using Newton Raphson Method (Correct up to five decimal places).

 $x^4-32=0$ in the interval [2,3]

INPUT CODE:

```
clc;
deff('[y]=f(x)', 'y=x^4-32');
deff('[y]=fd(x)', 'y=4*x^3');
x=3;x1=0;i=0;
error=0.000001;
disp("x=")
disp(x)
disp("x1=")
disp(x1)
disp("By Newton Rhapson Method")
disp("Roots")
while(abs(x-x1) > = error)
y=x-(f(x)/fd(x))
disp(y)
x1=x
x=y
i=i+1
end
disp("No. of iterations")
disp(i)
```

Division: <u>D2A</u> Roll No: <u>55</u> Name: Shreyas Arun Sawant A.Y.: <u>2020-2021</u> OUTPUT: "x=" 3. "x1=" 0. "By Newton Rhapson Method" "Roots" 2.5462963 2.3942996 2.3785716 2.3784142 2.3784142 "No. of iterations"

5.

Name: Shreyas Arun Sawant

A.Y.: <u>2020-2021</u>

SCI LAB PRACTICAL 3: GAUSS SEIDEL ITERATION METHOD

QUESTION: Using suitable loop, write a sci-lab program to obtain approximate solution in the given interval using Gauss Seidel Iteration Method (Correct up to five decimal places).

start with (0.3, -0.8, 0.3)

INPUT CODE:

disp(z)

```
clc;
A=[12 -1 2; 1 3 3; 1 2 5]
B=[3; -1; 1]
disp('[A B]=')
disp([A B])
n=5
disp("No. of iterations")
disp(n)
x0=0.3
y0 = -0.8
z0=0.3
for i=0:n
x(i+1)=(B(1)-A(1,2)*y0-A(1,3)*z0)/A(1,1)
y(i+1)=(B(2)-A(2,1)*x(i+1)-A(2,3)*z0)/A(2,2)
z(i+1)=(B(3)-A(3,1)*x(i+1)-A(3,2)*y(i+1))/A(3,3)
x0=x(i+1)
y0=y(i+1)
z0=z(i+1)
end
disp('x=')
disp(x)
disp('y=')
disp(y)
disp('z=')
```

Name: Shreyas Arun Sawant

A.Y.: <u>2020-2021</u>

OUTPUT:

- 12. -1. 2. 3.
- 1. 3. 3. -1.
- 1. 2. 5. 1.

"No. of iterations"

5.

"x="

0.1333333

0.1194444

0.0980093

0.089561

0.0859652

0.084446

"y="

-0.6777778

-0.8175926

-0.8691512

-0.8912456

Name: Shreyas Arun Sawant

A.Y.: <u>2020-2021</u>

-0.9005745

-0.9045187

"z="

0.444444

0.5031481

0.5280586

0.5385861

0.5430367

0.5449183

Name: Shreyas Arun Sawant

A.Y.: <u>2020-2021</u>

SCI LAB PRACTICAL 4: REGULA FALSI ITERATION METHOD

QUESTION: Using suitable loop, write a sci-lab program to obtain approximate solution in the given interval using Regula Falsi Iteration Method (Correct up to five decimal places).

 $x^4+x^3-7x^2-x+5=0$ in the interval [2,3]

INPUT CODE:

```
clc:
deff('y=f(x)','y=x^4+x^3-7*x^2-x+5')
deff('[y]=fd(x)', 'y=4*x^3+3*x^2-14*x-1')
a=2
disp('a=')
disp(a)
disp('b=')
b=3
disp(b)
n = 10
disp('No.of iteration:')
disp(n)
disp("By Regula Falsi Method")
for i=1:n
c = (a*f(b)-b*f(a))/(f(b)-f(a))
disp([i,c])
if f(a)*f(c)<0 then
b=c
end
if f(b)*f(c)<0 then
a=c
end
c1=(a*f(b)-b*f(a))/(f(b)-f(a))
if abs(c1-c)<0.00001 then
disp("These are the roots")
break;
end
end
```

Division: <u>D2A</u>	Roll No: <u>55</u>
Name: Shreyas Arun Sawant	
A.Y.: <u>2020-2021</u>	
OUTPUT:	
"a="	
2.	
"b="	
3.	
"No.of iteration:"	
10.	
"By Regula Falsi Method"	
1. 2.0208333	
2. 2.034746	
2. 2.034740	
3. 2.0439135	
4. 2.0499007	
5. 2.0537881	

6. 2.0563025

Name: Shreyas Arun Sawant

A.Y.: <u>2020-2021</u>

- 7. 2.0579248
- 8. 2.0589699
- 9. 2.0596424
- 10. 2.0600749

[&]quot;These are the roots"