# Capstone Project

# The battle of Neighbourhood.

| Introduction                   | 1  |
|--------------------------------|----|
| Data                           | 2  |
| Methodology                    | 3  |
| Get pre-requisite data         | 3  |
| Search for specific details    | 4  |
| Extract the data               | 5  |
| Format and filter the data     | 5  |
| Make the data presentable      | 7  |
| Visualize the data using Maps  | 9  |
| Results                        | 11 |
| Discussion and Recommendations | 13 |
| Conclusion                     | 13 |

#### Introduction

Events, Holidays and Travel Plan details to neighborhoods of Toronto.

The report will provide details of Hotels (stay), nearby restaurants, places to visit in the vicinity, places for shopping, cafes etc. This will help any event management firm or a family to plan for a short trip providing them vital information of the neighborhood for their place of visit.

Detailed maps will be provided for the same.

Target audience here is either an Event Management firm or a family that may need details of the neighborhood, which would help them to plan their trips accordingly.

#### Data

For this report, the detailed data explanation can be seen in the following URL:

https://github.com/NitinLachwani/DSCapstone/blob/master/Capstone\_data.ipynb

We first tried to extract the latitude and longitude for the city of Toronto. We then used the foursquare API to extract various types of landmarks. Since the report is for travellers, we tried to extract data for Shops, Restaurants and Hotels.

We had the option to make more searches like Cafes etc but thought of keeping the search restricted to the above 3.

The link above shows how the search is made using the foursquare API.

```
Example of Cafeteria search
In [4]: # search for Cafeteria
        search_query = 'Cafeteria'
        radius = 10000
        # Define the corresponding URL
        url = 'https://api.foursquare.com/v2/venues/search?client id={}&client secret={}&ll={},{}&v={}&que
        ry={}&radius={}&limit={}'.format(ClIENT_ID, ClIENT_SECRET, latitude, longitude, VERSION, search_qu
        ery, radius, LIMIT)
Out[4]: 'https://api.foursquare.com/v2/venues/search?client id=KTMPV2AWVBNDVLZDVCFMHWE4ZXPIXYVPC4ZCJDD3YQB
        YHBSI&client_secret=J2QTVEM1GNHOJKRJI50TIAYDGZUQKSQLQOT2W1FNQ5XNBK4L&11=43.653963,-79.387207&v=201
        80604&query=Cafeteria&radius=10000&limit=30'
        Cafe Results
In [ ]: cafe_data = requests.get(url).json()
        venues = cafe_data['response']['venues']
        # tranform venues into a dataframe
        Cafeteria dataframe = json normalize(venues)
        Cafeteria dataframe.head()
```

# Methodology

This section will include:

- 1. Get pre-requisite data
- 2. Search for specific details
- 3. Extract data
- 4. Format and Filter the data
- 5. Make the data presentable
- 6. Visualize the data using Maps

#### Get pre-requisite data

For this report, latitude and longitude are the pre-requisite data. We first try to get these by using geolocator.geocode().

```
# Get latitude & longitude
city = 'Toronto'
geolocator = Nominatim(user_agent="foursquare_agent")
location = geolocator.geocode(city)
latitude = location.latitude
longitude = location.longitude
print(latitude, longitude)

43.653963 -79.387207
```

This was the base on which the report data is extracted and structured.

### Search for specific details

For this report, we tried to keep our searches to Restaurants, Hotels and Shops. The above three will help travellers or Event management firms to plan their stay/visits.

We used the foursquare API to search for these details.

```
# search for Cafeteria
search_query = 'Hotel'
radius = 10000

# Define the corresponding URL
url = 'https://api.foursquare.com/v2/venues/search?client_id={}&client_secret={}&ll={},{}&v={}&query={}&radius={}&limit={}
url

'https://api.foursquare.com/v2/venues/search?client_id=KTMPV2AWVBNDVLZDVCFMHWE4ZXPIXYVPC4ZCJDD3YQBYHBSI&client_secret=J2QT'
EM1GNH0JKRJI50TIAYDGZUQKSQLQ0T2W1FNQ5XNBK4L&ll=43.653963,-79.387207&v=20180604&query=Hotel&radius=10000&limit=30'
```

The results (in json format) are pushed into a dataframe.

#### Extract the data

The data for Restaurants, Shops and Hotels was extracted using foursquare API and the json output was pushed into a dataframe.

High-level details of the data can be viewed by running the head() method of the dataframe.

|   | id                       | name                                     | categories                                           | referralld       | hasPerk | location.address          | location.crossStreet | location.lat | loca |
|---|--------------------------|------------------------------------------|------------------------------------------------------|------------------|---------|---------------------------|----------------------|--------------|------|
| 0 | 51d212c3498ebf27dc469bc9 | Chelsea<br>Hotel                         | [{'id':<br>'4bf58dd8d48988d1fa931735',<br>'name': 'H | v-<br>1564152944 | False   | 33 Gerrard Street<br>West | at Yonge St          | 43.658498    | -79  |
| 1 | 4ab2d511f964a5209b6c20e3 | Sheraton<br>Centre<br>Toronto<br>Hotel   | [{'id':<br>'4bf58dd8d48988d1fa931735',<br>'name': 'H | v-<br>1564152944 | False   | 123 Queen Street<br>West  | at York St.          | 43.651129    | -;   |
| 2 | 4b68aed1f964a520de862be3 | The Rex<br>Hotel<br>Jazz &<br>Blues Bar  | [{'id':<br>'4bf58dd8d48988d1e7931735',<br>'name': J  | v-<br>1564152944 | False   | 194 Queen St W            | Queen & St. Patrick  | 43.650505    | -79  |
| 3 | 58b7d72dcc05d161570bd712 | Sheraton<br>Centre<br>Toronto<br>Hotel   | [{'id':<br>'4bf58dd8d48988d1fa931735',<br>'name': 'H | v-<br>1564152944 | False   | 123 Queen Street<br>West  | NaN                  | 43.651016    | -79  |
| 4 | 4af96fbbf964a520c01122e3 | One King<br>West<br>Hotel &<br>Residence | [{'id':<br>'4bf58dd8d48988d1fa931735',<br>'name': 'H | v-<br>1564152944 | False   | 1 King St W               | at Yonge St.         | 43.649139    | -75  |

#### Format and filter the data

The data as seen above has unformatted data (categories). We need to format the data for categories attribute to ensure we can filter based on it. We loop through each row and try to extract the category of the venue. We would then split the column data and keep only the last term. This would give us appropriate categories which we can use for filtering.

| : |   | name                                     | categories | address                         | crossStreet            | lat       | Ing        | labeledLatLngs                                    | distance | postalCode | СС | city    | state |
|---|---|------------------------------------------|------------|---------------------------------|------------------------|-----------|------------|---------------------------------------------------|----------|------------|----|---------|-------|
|   | 0 | Chelsea<br>Hotel                         | Hotel      | 33<br>Gerrard<br>Street<br>West | at Yonge St            | 43.658498 | -79.383097 | [{'label': 'display', 'lat':<br>43.65849759157591 | 603      | M5G 1Z4    | CA | Toronto | ON    |
|   | 1 | Sheraton<br>Centre<br>Toronto<br>Hotel   | Hotel      | 123<br>Queen<br>Street<br>West  | at York St.            | 43.651129 | -79.383829 | [{'label': 'display', 'lat':<br>43.65112928325278 | 416      | M5H 2M9    | CA | Toronto | ON    |
|   | 2 | The Rex<br>Hotel<br>Jazz &<br>Blues Bar  | Jazz Club  | 194<br>Queen<br>St W            | Queen & St.<br>Patrick | 43.650505 | -79.388577 | [{'label': 'display', 'lat':<br>43.65050475544005 | 400      | M5V 1Z1    | CA | Toronto | ON    |
|   | 3 | Sheraton<br>Centre<br>Toronto<br>Hotel   | Hotel      | 123<br>Queen<br>Street<br>West  | NaN                    | 43.651016 | -79.384148 | [{'label': 'display', 'lat':<br>43.65101646682632 | 410      | M5H 2M9    | CA | Toronto | ON    |
|   | 4 | One King<br>West<br>Hotel &<br>Residence | Hotel      | 1 King<br>St W                  | at Yonge St.           | 43.649139 | -79.377876 | [{'label': 'display', 'lat':<br>43.6491395, 'lng' | 923      | M5H 1A1    | CA | Toronto | ON    |

We can see categories like Hotel and Jazz Club in the above data frame. However, for travellers, this information would be misleading since they would like to stay in Hotels and hence we would need to filter out Jazz Club while displaying the data for Hotels.

This filtration is achieved by passing an array specifying Hotel.

We also drop unwanted columns like crossStreet, id etc from the data frame.

|   | name                            | categories | address                | lat       | Ing        | postalCode | state |
|---|---------------------------------|------------|------------------------|-----------|------------|------------|-------|
| 0 | Chelsea Hotel                   | Hotel      | 33 Gerrard Street West | 43.658498 | -79.383097 | M5G 1Z4    | ON    |
| 1 | Sheraton Centre Toronto Hotel   | Hotel      | 123 Queen Street West  | 43.651129 | -79.383829 | M5H 2M9    | ON    |
| 3 | Sheraton Centre Toronto Hotel   | Hotel      | 123 Queen Street West  | 43.651016 | -79.384148 | M5H 2M9    | ON    |
| 4 | One King West Hotel & Residence | Hotel      | 1 King St W            | 43.649139 | -79.377876 | M5H 1A1    | ON    |
| 5 | Le Germain Hotel Toronto Mercer | Hotel      | 30 Mercer St           | 43.645669 | -79.391044 | M5V 1H3    | ON    |

The resultant data frame (seen above) is much cleaner and formatted for us to move ahead to work on it to make the data presentable.

## Make the data presentable

The data shown below has a flaw.

|                                                         | name                                        | categories | address                    | lat       | Ing        | state | postalCode |
|---------------------------------------------------------|---------------------------------------------|------------|----------------------------|-----------|------------|-------|------------|
| 0                                                       | Chelsea Hotel                               | Hotel      | 33 Gerrard Street West     | 43.658498 | -79.383097 | ON    | M5G 1Z4    |
| 1                                                       | Sheraton Centre Toronto Hotel               | Hotel      | 123 Queen Street West      | 43.651129 | -79.383829 | ON    | M5H 2M9    |
| 3                                                       | Sheraton Centre Toronto Hotel               | Hotel      | 123 Queen Street West      | 43.651016 | -79.384148 | ON    | M5H 2M9    |
| 4                                                       | One King West Hotel & Residence             | Hotel      | 1 King St W                | 43.649139 | -79.377876 | ON    | M5H 1A1    |
| 5<br>6                                                  | Le Germain Hotel Toronto Mercer             | Hotel      | 30 Mercer St               | 43.645669 | -79.391044 | ON    | M5V 1H3    |
|                                                         | SoHo Metropolitan Hotel                     | Hotel      | 318 Wellington Street West | 43.644625 | -79.391925 | ON    | M5V 3T4    |
| 7                                                       | The Grand Hotel & Suites Toronto            | Hotel      | 225 Jarvis St.             | 43.656449 | -79.374110 | ON    | M5B 2C1    |
| <ul><li>8</li><li>9 DoubleTree by Hilton Hote</li></ul> | Thompson Hotel                              | Hotel      | 550 Wellington St. W.      | 43.642753 | -79.401558 | ON    | M5V 2V4    |
|                                                         | DoubleTree by Hilton Hotel Toronto Downtown | Hotel      | 108 Chestnut Street        | 43.654608 | -79.385942 | ON    | M5G 1R3    |
| 10                                                      | Bond Place Hotel                            | Hotel      | 65 Dundas St E             | 43.656188 | -79.378452 | ON    | M5B 2G8    |
| 11                                                      | Four Seasons Hotel Toronto                  | Hotel      | 60 Yorkville Avenue        | 43.671796 | -79.389457 | ON    | M4W 0A4    |
| 12                                                      | The Omni King Edward Hotel                  | Hotel      | 37 King Street East        | 43.649191 | -79.376006 | ON    | M5C 1E9    |
| 13                                                      | Pantages Hotel & Spa                        | Hotel      | 200 Victoria St            | 43.654498 | -79.379035 | ON    | NaN        |
| 14                                                      | Beverley Hotel                              | Hotel      | 335 Queen Street West      | 43.649701 | -79.392114 | ON    | M5V 2A4    |
| 15                                                      | Hotel X                                     | Hotel      | NaN                        | 43.632886 | -79.411770 | ON    | NaN        |
| 16                                                      | Crew Room Eaton Chelsea Hotel               | Hotel      | 33 Gerrard Street West     | 43.658094 | -79.382711 | ON    | NaN        |
| 17                                                      | Cosmopolitan Toronto Centre Hotel & Spa     | Hotel      | 8 Colborne St              | 43.649064 | -79.377598 | ON    | M5E 1E1    |
| 18                                                      | Le Germain Hotel Toronto Maple Leaf Square  | Hotel      | 75 Bremner                 | 43.643125 | -79.380918 | ON    | M5J 0A1    |

We can see Nan in the postalCode for rows 15 and 16.

We will need to eliminate all NaN to make the data presentable and move forward with visualization.

| hot | elete rows with NaN values el_filtered_final = hotel_filtered_ | final.drop | ona(axis=0, how=' <mark>any'</mark> , | thresh=No | ne, subset | =None, inp | lace= <b>F</b> |
|-----|----------------------------------------------------------------|------------|---------------------------------------|-----------|------------|------------|----------------|
| hot | el_filtered_final                                              |            | - Maria                               | ra.       | Local      |            |                |
|     | name                                                           | categories | address                               | lat       | Ing        | postalCode | state          |
| 0   | Chelsea Hotel                                                  | Hotel      | 33 Gerrard Street West                |           | -79.383097 | M5G 1Z4    | ON             |
| 1   | Sheraton Centre Toronto Hotel                                  | Hotel      | 123 Queen Street West                 | 43.651129 | -79.383829 | M5H 2M9    | ON             |
| 3   | Sheraton Centre Toronto Hotel                                  | Hotel      | 123 Queen Street West                 | 43.651016 | -79.384148 | M5H 2M9    | ON             |
| 4   | One King West Hotel & Residence                                | Hotel      | 1 King St W                           | 43.649139 | -79.377876 | M5H 1A1    | ON             |
| 5   | Le Germain Hotel Toronto Mercer                                | Hotel      | 30 Mercer St                          | 43.645669 | -79.391044 | M5V 1H3    | ON             |
| 6   | The Grand Hotel & Suites Toronto                               | Hotel      | 225 Jarvis St.                        | 43.656449 | -79.374110 | M5B 2C1    | ON             |
| 7   | SoHo Metropolitan Hotel                                        | Hotel      | 318 Wellington Street West            | 43.644625 | -79.391925 | M5V 3T4    | ON             |
| 8   | Four Seasons Hotel Toronto                                     | Hotel      | 60 Yorkville Avenue                   | 43.671796 | -79.389457 | M4W 0A4    | ON             |
| 9   | Bond Place Hotel                                               | Hotel      | 65 Dundas St E                        | 43.656188 | -79.378452 | M5B 2G8    | ON             |
| 10  | DoubleTree by Hilton Hotel Toronto Downtown                    | Hotel      | 108 Chestnut Street                   | 43.654608 | -79.385942 | M5G 1R3    | ON             |
| 11  | The Omni King Edward Hotel                                     | Hotel      | 37 King Street East                   | 43.649191 | -79.376006 | M5C 1E9    | ON             |
| 12  | Thompson Hotel                                                 | Hotel      | 550 Wellington St. W.                 | 43.642753 | -79.401558 | M5V 2V4    | ON             |
| 14  | Beverley Hotel                                                 | Hotel      | 335 Queen Street West                 | 43.649701 | -79.392114 | M5V 2A4    | ON             |
| 17  | Le Germain Hotel Toronto Maple Leaf Square                     | Hotel      | 75 Bremner                            | 43.643125 | -79.380918 | M5J 0A1    | ON             |
| 18  | Windsor Arms Hotel                                             | Hotel      | 18 St Thomas St                       | 43.668781 | -79.390850 | M5S 3E7    | ON             |
| 19  | Cosmopolitan Toronto Centre Hotel & Spa                        | Hotel      | 8 Colborne St                         | 43.649064 | -79.377598 | M5E 1E1    | ON             |

As seen above, we used dropna method to drop all columns with NaN. Column names were renamed as well.

Now the data is clean and presentable and we can proceed with visualization.

# Visualize the data using Maps

Folium API was used to generate Maps for visualization.

We used markers and icons from glyphicon to emphasize markers/icons for each of the venues.

We can see below Maps for Restaurants, Shops and Hotels.





We can see different icons used to differentiate between the three categories.

We then consolidated all the information into one Map which would help travellers and event management firms.



Notice the use of different markers and colour highlights from previous maps.

# Results

We can observe lots of Hotels in the neighbourhood. However, the number of shops are less and dispersed. However, the restaurants are closely interspersed and near to each other ensuring that people have options. We can also see many restaurants catering to asian cuisine.

#### Lets see the categories of Restaurants ¶

```
rest_filtered_catg = rest_filtered_final.groupby(['categories']).size().to_frame(name='Count').reset_index()
rest_filtered_catg
               categories Count
       American Restaurant
1
2
            Breakfast Spot
3
     Caribbean Restaurant
4
        Chinese Restaurant
        Dim Sum Restaurant
6
                    Diner
              Event Space
          Indian Restaurant
         Korean Restaurant
10 New American Restaurant
11
             Noodle House
12
                Restaurant
13
                 Wine Bar
```

There are a total of 10 restaurants catering to Asian cuisine (Chinese, Indian, Korean, Dim Sum etc) as compared to 5 catering to American cuisine. This implies that there are many Asian inhabitants in the neighborhood or travellers from Asia visiting the neighborhood.

If we categorize the shops, we can see the following:

```
shop_filtered_catg = shop_filtered_final.groupby(['categories']).size().to_frame(name='Count').reset_index()
shop_filtered_catg
            categories Count
    Advertising Agency
 3 Clothing Store
           Coffee Shop
 5 Convenience Store
       Department Store
7 Electronics Store
 8
9 Furniture / Home Store
10
11
13
            Restaurant
14
          Shopping Mall
15
         Shopping Plaza
16
          Women's Store
```

There are very few stores competing with each other and there are distinct stores which reduces choices for travellers. We have 6 shopping malls indicating that people like to spend time in malls rather than individual stores. Malls may have similar stores within them.

#### Discussion and Recommendations

As viewed in the above section, the Shop map shows shops not interspersed like the Restaurants. Travellers would need to plan their shopping appropriately which is never good for a neighborhood and hence more sales would be made in the malls. Restaurants have enough variety of cuisine and travellers have plethora of options since the restaurants are fairly close to each other.

This is a proper business neighborhood with Hotels where one could spend time for meetings and use the restaurants for business lunches.

# Conclusion

Using the foursquare venue API, we could get data of remote neighborhoods like Toronto and help make plans for Event management companies and travellers.

We were able to analyze various categories of venues. More deep down analysis can be made and this was a great learning experience as a first time data science project.

Thank you for reading till the end. Have a great day!