USN						
0011	1 1					ı

SECOND SEMESTER B.Tech EXAMINATION, APRIL- 2024 COMPUTATIONAL PHYSICS

Time: 3 Hours

Maximum Marks: 100

Instructions:

Physical Constants:

- i. Mass of the electron $m_e = 9.1 \times 10^{-31} \text{kg}$
- ii. Charge of the electron $e = 1.602 \times 10^{-19} c$
- iii. Planck's constant $h = 6.626 \times 10^{-34} \text{ Js}$
- iv. Velocity of light $.c = 3 \times 10^8 \text{ m/s}$
- v. Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J/k}$

ANSWER ALL QUESTIONS

***************************************		PART-A	05 X 02=10			
1.	а	Define Simple Harmonic Motion	L-1	CO1	02	
	b.	Explain Eigen wave function.	L-2	CO2	02	
	c.	Define population inversion and meta-stable state.	L-1	C03	02	
	d.	Explain numerical aperture of an optical Fiber	L-2	CO4	02	
	e.	What are logic gates?	L-1	CO5	02	
		PART-B	06	30		
2.	a.	For simple harmonic motion, define the following	L-2	CO1	05	
		i. Wavelength				
		ii. Amplitude				
		iii. Time period				
		iv. Frequency				
		v. Phase				
·····		OR	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	b.	Obtain an expression for equivalent force constant for springs	L-2	CO1	05	
	111111111111111111111111111111111111111	which are connected in series to each other.				
3.	a.	Calculate the first three permitted energy values for an electron	L-3	CO2	05	
		in a one dimensional box of width 0.2 nm.	,			
		OR				
	b.	State and explain Heisenberg's uncertainty principle.	L-3	CO2	05	
4.	a.	Describe the requisites satisfied by a LASER system.	L-2	C03	05	
		OR		1		
	b.	Explain spontaneous emission and stimulated emission with the	L-3	C03	05	
	****	help of energy level diagrams				
5.	а.	Explain with a block diagram the point-to-point communication	L-3	C04	05	
		system using an optical fiber.		5.00 mm m m m m m m m m m m m m m m m m m		

		OR	1		
		Explain the principle on which an optical fiber works with the	L-3	CO4	05
	b.				
		help of a ray diagram.	L-2	C05	05
6.	a.	Explain the function of OR gate and AND gate with the help of	L-Z	005	
		truth tables			
		OR		COF	05
***************************************	b.	Explain the function of NOR gate and NAND gate with the help	L-2	C05	US
		of truth tables			0 F
7.	a.	Analyze to find spring constant using an online simulation	L-4	C06	05
		spring-mass system.			
		OR	·····		
	b.	Analyze to find the refractive index of a material using TIR	L-4	C06	05
		using online simulation.			
		PART-C	06 X 10=6		
8.	a.	Deduce an expression for the decay of the amplitude in damped	L-2	CO1	10
		oscillations.			
***************************************		OR	***************************************		
	b.	Deduce an expression for amplitude and phase of forced	L-2	CO1	10
		oscillations.			
9.	a.	Using one-dimensional time independent Schrodinger's wave	L-3	CO2	10
		equation for a particle in a box of width "a", obtain the energy			
		eigen values and eigen function.			
		OR			
	b.	Setup one-dimensional time-independent Schrodinger's wave	L-3	CO2	10
		equation for a particle in a box of finite width		***************************************	
10.	a.	i. Derive an expression for energy density of a photon at	L-2	CO3	06
 .		thermal equilibrium in terms of Einstein's A & B		14 L 14 J	
		coefficients.		***	
			L-3	CO3	04
		material that produces light of wavelength 6328Å at			
	-	room temperature.	,		-
		OR Live of CO. Leave with	L-2	C03	06
	b.	i. Describe the construction and working of CO ₂ Laser with	L-2	003	
		the help of a vibrational energy level diagram	1 2	CO3	04
		ii. Find the number of modes of standing waves in the	L-3	CO3	U ²
		resonant cavity of 1m length of a Laser operating at a			
		wavelength of 632.8nm.			
	and the second second				-

11.	a.	i. With the help of neat diagrams, explain the any two	L-2	CO4	06
		types of optical fibers.			
		ii. The angle of acceptance of an Optical fiber is 30° when	L-3	CO4	04
		kept in air. Estimate its angle of acceptance when it is in			
		a medium of refractive index 1.33.			
		OR			
	b.	i. Deduce an expression for acceptance angle in terms of	L-2	CO4	06
		refractive indices of core & cladding of an optical fiber.			
		ii. Find the attenuation of light in an optical fiber of length	V.	•	
		500m, when a light signal of power 100mW emerges out	L-3	C04	04
		of the fiber with a power 90mW.			·
12.	a.	State and explain de-Morgan's theorems with an example for	L-2	CO5	10
		each theorem.			
		OR			
	b.	Explain the working of a half adder and a full adder with the	L-2	CO5	10
		help of circuit diagrams and truth tables.			-
13.	a.	Discuss the procedure to find the wavelength of a given LASER	L-2	C06	10
		experimentally with the necessary equations.			
		OR			
	b.	Discuss the procedure to find the moment of inertia of an	L-2	C06	10
		irregular body experimentally by setting up a Torsional			
		Pendulum with the necessary formulae.			
i	1				