Computer Networks

Lecture 5

Internet Protocol (IP)

	OSI	TCP/IP	EXAMPLES
7	APPLICATION		
6	PRESENTATION	APPLICATION	FTP, HTTP, HTTPS, SMTP, SSH
5	SESSION		
4	TRANSPORT	TRANSPORT	TCP, UDP
3	NETWORK	INTERNET	IP (IPv4, IPv6), IPsec, ICMP, ICMPv6
2	DATA LINK	NETWORK	802.3 (Ethernet), 802.11 (WLAN), PPP,
1	PHYSICAL	ACCESS	ATM, Frame Relay

Overview of IP

- IP is the network layer protocol of TCP/IP
- No Error control, flow control and congestion control
 Hence IP is an unreliable protocol
- Combination TCP/IP is reliable
 But UDP/IP is an unreliable combination
- IP packets operate as datagram
- IP packets originated from same source can travel through different routes and reach the destination at different times
- Therefore IP packets may reach the destination out of order

Identification

 Each IP packet is identified by a serial number called "Identification"

 This sequence will be helpful to the receiver to reassemble the packets in the correct order, although they may receive in out of order

Maximum Transmission Unit (MTU)

 Maximum amount of data that can be accommodated in a frame

Protocol	MTU
Hyperchannel	65,535
Token Ring (16 Mbps)	17,914
Token Ring (4 Mbps)	4,464
FDDI	4,352
Ethernet	1,500
X.25	576
PPP	296

Fragmentation

If the IP packet size is bigger than MTU, it should be fragmented

Ex: If the original packet has 6000 bytes of data

- Separate data and Header of IP Packet
- Break data part into MTUs (Fragments)
- 3. Add 20 byte header to each fragment

Fragmentation offset

 The identification of each fragmented IP packet is equal to identification of original IP packet

Ex: If the identification of original IP packet is 2000, identification of all five fragments is 2000

• "Fragmentation offset" is an another parameter used to identity the order of fragments

 If the original packet has 6000 bytes of data, the numbering of data bytes are as follows

- Offset value of fragment 1 = 0 = 0
- Offset value of fragment 2 = <u>1480</u> = 185
 8
- Offset value of fragments 3 = 2960 = 370
- Offset value of fragment 4 = <u>4440</u> = 555
 8
- Offset value of fragment 5 = <u>5920</u> = 740
 8

- Fragmented packets travel independently
- They may travel through different routes to the destination
- While it is traveling it can be further fragmented at another intermediate network

 Fragmented packets reach to the destination out of order.

 The fragmented packets are combined (defragmented) at the final destination by using the OFFSET values.

Time To Live (TTL)

- IP packets travel through many routers in the network
- Each router routes the packet according to information in the routing table
- If there is a problem in a routing table the packet may be sent in a wrong direction and it can be randomly flow in the network. This kind of IP packets can even overload the network and finally crash the network
- In order to avoid such a situation, a parameter called "Time To Live" (TTL) is defined for each IP packet

Time To Live (TTL) cont.

- TTL value can be initialized to any value at the transmitting router (A) (maximum is 255)
- The TTL value is decremented at each router by 1
- If the TTL value becomes zero at a router (B), the packet will be discarded and an ICMP message is sent to the transmitted router(A) from the discarding router (B)

Time To Live (TTL) cont.

- Suppose host A sends an IP packet to Host B
- The TTL value is set to 6
- If the packet goes through Host A \rightarrow R1 \rightarrow R2 \rightarrow R3 \rightarrow Host B,

Router	TTL Value
R1	= 5
R2	= 4
R3	= 3

Time To Live (TTL) cont.

• Suppose there is a routing problem and the packet loops through the routes $R1 \rightarrow R4 \rightarrow R2 \rightarrow R1 \rightarrow R4 \rightarrow R2 \rightarrow R1 \rightarrow R4 \rightarrow R2$

Router	TTL Value	Action
R1	6 -1 = 5	
R4	5-1=4	
R2	4-1=3	
R1	3 – 1 = 2	
R4	2-1=1	
R2	1-1=0	Discards the Packet
		Send ICMP message to Host A

- •The TTL value becomes zero at router R2
- Therefore IP packet is discarded

IP header

Option

Version (VER)

A field of 4 bits

Indicates the version of the using IP addresses in the IP packet

IPv4 : 0100

IPv6 : 0110

Header Length (HLEN)

- A 4 bit field indicates the number of 4 bytes in the header
- Header size in bytes = HLEN x 4
- The standard header size = 20 bytes

$$20 = 5 \times 4$$

$$HLEN = 5$$

 $(0101)_2$

The standard header size = 60 bytes

$$60 = 15 \times 4$$

$$HLEN = 15$$

(1111)₂

Service Type

- A 8 bit field
- IETF has changed the name of this field as Differentiated Services

Precedence defines the priority of the packet

Precedence is not used in IPv4

Service Type cont.

- A 4-bit field
- Each bit has a special meaning
- There are five types of services

TOS Bits	Description
0000	Normal (default)
0001	Minimize cost
0010	Maximize reliability
0100	Maximize throughput
1000	Minimize delay

Service Type cont.

The application can select a specific type of service

Protocol	TOS Bits	Description
ICMP	0000	Normal
ВООТР	0000	Normal
NNTP	0001	Minimize cost
IGP	0010	Maximize reliability
SNMP	0010	Maximize reliability
TELNET	1000	Minimize delay
FTP (data)	0100	Maximize throughput
FTP (control)	1000	Minimize delay
TFTP	1000	Minimize delay
SMTP (command)	1000	Minimize delay
SMTP (data)	0100	Maximize throughput
DNS (UDP query)	1000	Minimize delay
DNS (TCP query)	0000	Normal
DNS (zone)	0100	Maximize throughput

Total length

- A 16-bit field
- Gives the total length of the IP packet.

Total length = data length + header length

If total length value is 300 and if this is a normal IP packet
 Header length = 20 bytes

Data length = 300 - 20= 280 bytes

Identification

 Each IP packet is identified by a serial number called "Identification"

A 16 bit field

 The identification of each fragmented IP packet is equal to identification of original IP packet **Flags**

D: Do not fragment M: More fragments D M

- D = 1, means is not allowed to be fragmented
- D = o, means is allowed to be fragmented

- M = 0, means that there are no more fragments;
 The fragment is the last one.
 - Non fragmented packet is considered the last fragment
- *M* = 1, The fragment is not the last one.

Fragmentation offset

A 13-bit field

This gives the offset value of the fragment

Time To Live (TTL)

A 8 bit field

Defines the maximum number of hops the packet can travel

Protocol

- The IP packet data can be UDP, TCP, ICMP, IGMP, EGP
- Used to identify the type of data a special field called "protocol"
- A a 8-bit field which defines the protocol number

Value	Protocol
1	ICMP
2	IGMP
6	TCP
17	UDP
89	OSPF

Header Checksum

A 16-bit field

Checks the errors of the header only.

 If errors are found in the header, the whole IP packet is discarded.

Source IP Address

- A 32-bit field
- This gives the IP address of the source

Destination IP Address

- A 32-bit field
- This gives the IP address of the destination

IP option

