Quantifying relationships among populations: Many populations

Andrea Manica

Outline

- Quantifying distances between populations
- Building trees
- Admixture Graphs
- Some spatial statistics

Quantifying distances among populations

Quantifying distances among populations

$$F_2(A,B) = E[(p_A-p_B)^2]$$

$$\hat{F}_2(P_1, P_2) = \pi_{12} - \frac{\pi_{11} + \pi_{22}}{2}.$$

$$F_2(P_1, P_2) = \frac{1}{2} F_{ST} \mathbb{E} H_{\exp}.$$

$$F_2(P_1, P_2) = 2\mathbb{E} T_{12} - \mathbb{E} T_{11} - \mathbb{E} T_{12}$$

Quantifying distances among populations

Neighbour Joining trees

Breaking the tree

Treemix

qpGraph

Fitted on F₂

First fit unadmixed skeleton

Then test admixture scenarios

Check for mismatches in predicted vs observed F₃ and F₄

Not exhaustive, multiple graphs might fit data equally

Using space to model many populations

Isolation by distance can explain a lot of differences

Barriers for human movement

EMMS

EMMS – migration vs population size

Summary

- Quantifying distances between populations
- Building trees
- Admixture Graphs
- Spatial statistics

Practical

Use Admixtools to fit admixture graph

Human dataset with modern and ancient

qpGraph input file

root R

label Name NameInDataset

label Mbuti Mbuti

edge Name Source Destination

edge R_Mbuti R Mbuti

Admix Target Source1 Source2 Prop1 Prop2

admix pLBK X1 BE 80 20