CPU 设计: 8008

luoyin

目录

1	微程	<mark>是序设计</mark>	5
	1.1	子程序设计	5
	1.2	指令组成	5
	1.3	指令执行状态变化	7
	1.4	微指令设计	7
		1.4.1 微指令组成	7
		1.4.2 指令分类	7
		1.4.3 微程序分类与跳转	7
		1.4.4 微指令转移	7
		1.4.5 微指令转移方式	8
		1.4.6 微指令转移方式	8
		1.4.7 跳转设计	10
		1.4.8 微指令组合逻辑	12
		1.4.9 微指令表	
	1.5	微指令设计 1	
		1.5.1 指令译码	
		1.5.2 IF 转出设计	15
		1.5.3 1 级转入设计	
2	微程	是序设计 2	L 7
	2.1	指令跳转 1	17
3	基本	· 逻辑	۱9
	3.1	 	19
		12	19

4 目录

Chapter 1

微程序设计

1.1 子程序设计

- MW (Memory Write): T1-T2-T3 (PCW)
- RR (Register Read): T4
- RW (Register Write): T5
- PCU (PC Update): T4-T5
- IOR (I/O Read): T3-T4-T5

1.2 指令组成

表 1.1: 指令组成

指令	指令码	组成
Lrr	11DDDSSS	PCO(PCL-PCH)-IF-rR-rW
LrM	11DDD1111	PCO(PCL-PCH)-IF-MA(rLO-rMO)-MR-X1-rW
$_{ m LMr}$	11111SSS	PCO(PCL-PCH)-IF-rR-MA(rLO-rMO)-MW
LrI	00DDD110	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-X1-rW
INr/DCr	V00DDD00V	PCO(PCL-PCH)-IF-X1-rW
ALU OP r	10PPPSSS	PCO(PCL-PCH)-IF-rR-rW
ALU OP M		PCO(PCL-PCH)-IF-MA(rLO-rMO)-MR-X1-rW
ALU OP I	00PPP100	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-X1-rW
ROT	000VV010	PCO(PCL-PCH)-IF-X1-rW
JMP	01XXX100	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa1-PCU(PCHU-PCLU)
m JFc/JTc	01VCC000	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa2-PCU(PCHU-PCLU)
CAL	01XXX110	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa3-PCU(PCHU-PCLU)
$\mathrm{CFc}/\mathrm{CTc}$	01VCC010	PCO(PCL-PCH)-IF-PCO(PCL-PCH)-IMMb-PCO(PCL-PCH)-IMMa4-PCU(PCHU-PCLU)
RET	00XXX111	PCO(PCL-PCH)-IF-POP-X2
m RFc/RTc	00VCC011	PCO(PCL-PCH)-IF-POPc(c)-X2
INP	0100MMM1	PCO(PCL-PCH)-IF-IO(rAO-rBO)-IOb-CO-rW
OUT	01RRMMM1	PCO(PCL-PCH)-IF-IO(rAO-rBO)-X0
HLT	X00000000	PCO(PCL-PCH)-IF
HLT	11111111	PCO(PCL-PCH)-IF

1.3. 指令执行状态变化 7

1.3 指令执行状态变化

1.4 微指令设计

1.4.1 微指令组成

- 状态码 (3 位)
- 寄存器组操作 (2位): 输出使能, 写使能

•

1.4.2 指令分类

- $D_7D_6 = 00$: 特殊指令
 - $-D_2D_1D_0 = 000$: HLT
 - $-D_2D_1D_0 = 001$: HLT
 - $-D_2D_1D_0 = 010$: ROT
 - $-D_2D_1D_0 = 011$: RFc/RTc
 - $D_2 D_1 D_0 = 100$: ALU OP I
 - $-D_2D_1D_0 = 101$: RST
 - $-D_2D_1D_0 = 110$: LrM/LrI
 - $-D_2D_1D_0 = 111$: RET
- $D_7D_6=01$: 跳转指令
 - $-D_2D_1D_0 = 000$: JFc/JTc
 - $-D_2D_1D_0 = 010$: CFc/CTc
 - $-D_2D_1D_0 = 100$: JMP
 - $-D_2D_1D_0 = 110$: CAL
 - $-D_2D_1D_0 = XX1$: INP/OUT
- $D_7D_6 = 10$: 算术指令
- $D_7D_6 = 11$: 寄存器指令

1.4.3 微程序分类与跳转

使用 D_7D_6 进行一次分组, 使用 $D_2D_1D_0$ 进行二次分组

1.4.4 微指令转移

微指令转移按照如下计算规则:

$$A_{i} = \mu A_{i} + \sum P_{i}^{I} I_{i} + \sum P_{i}^{S} S_{i} + \sum P_{i}^{C} C_{i}$$
(1.1)

其中, μA_i 为微指令中的下一指令段, P 为微指令中的控制段, 按作用类型不同分为指令控制段 P_i^I , 状态控制段 P_i^S , 和条件控制段 P_i^C , I_i 为指令寄存器的位段, S_i 为状态寄存器的位段, C_i 为条件判定寄存器的位段.

1.4.5 微指令转移方式

- 直接转移: 微指令中的控制段均为 0, 微指令运行下一指令直接由微指令中的 μA_i 段决定.
- 按指令转移: 微指令中的指令控制段 P_i^I 不为 0, 此时, 微指令中的 μA_i 段决定跳转时的基址, $\sum P_i^I I_i$ 决定偏移量.
- 按状态转移: 微指令中的状态控制段 P_i^S 不为 0, 此时, 微指令中的 μA_i 段决定跳转时的基址, $\sum P_i^S S_i$ 决定偏移量.
- 按条件转移: 微指令中的条件控制段 P_i^C 不为 0, 此时, 微指令中的 μA_i 段决定跳转时的基址, $\sum P_i^C C_i$ 决定 偏移量.
- 复合转移: 微指令中的 μA_i 段决定跳转时的基址, 结合指令控制段 P_i^I , 状态控制段 P_i^S , 和条件控制段 P_i^C 综合决定偏移量.

1.4.6 微指令转移方式

表 1.2: 微程序表

地址	地址 微指令 状态 功能	状态	功能	下一微指令	下一状态	转移类型
0	PCL	T1	PCL 输出	PCH	T2	直接转移
-	PCH	T2	PCH 输出	IF, IMMa, IMMb	T3, WAIT	状态转移
2	IF	T3	DATA to IR and regB	rR, rLO, PCL, POP, POPc, rAO, X1	T4, T1, HLT	指令转移, 状态转移, 条件转移
	$_{ m rR}$	T4	reg Read	rW, rLO	T5, T1, HLT	指令转移, 状态转移
	$^{ m rW}$	T5	reg Write	PCL	T1, INT	指令转移, 状态转移
	rLO	T1	reg L Out	OHı	T2	直接转移
	rHO	T2	reg H Out	MR, MW	T3, WAIT	指令转移, 状态转移
	\overline{MR}	T3	Memory Read	X1	T4	直接转移
	MW	T3	Memory Write	PCL	T1, INT	状态转移

1.4.7 跳转设计

1.4.7.1 IF 跳出

跳出指向

- rR: Lrr+LMr (11VVVSSS), ALU op r (10PPPSSS), 合并 (1XXXXSSS, SSS<>111)
- rLO: LrM (11DDD111, DDD<>111), ALU op M (10PPP111)
- rAO: INP+OUT (01XXXXX1)
- POP: RETURN (00XXXX11)
- PCL: JUMP, CALL (01XXXXX0)
- PCL(next): HLT, INT, NORMAL
- X1: INr/DCr

1.4.7.2 指令前缀 00

指令通过 $D_2D_1D_0$ 进行分类

- 000: HLT/INr (通过 D₅D₄D₃ 进行分类). IF-STOP/IF-X1
- 001: HLT/DCr (通过 D₅D₄D₃ 进行分类). IF-STOP/IF-X1
- 010: ROT (RLC, RRC, RAL, RAR, 通过 D₅D₄D₃ 进行分类). IF-X1
- 011: RFc/RTc. IF-POP
- 100: ALU op I. IF-PCL
- 101: RST. IF-PCLU2-PCHU2
- 110: LrI/LMI (通过 D₅D₄D₃ 进行分类). IF-PCL
- 111: RET. IF-POP

将微程序地址 10000-10111 与上面 8 个指令对应. 指令跳转表达式为

$$J_C = \bar{D}_7 \bar{D}_6 (\bar{D}_2 D_1 D_0 + \bar{D}_2 D_1 D_0 J) \tag{1.2}$$

$$A_4 = J_C 1 \tag{1.3}$$

$$A_3 = J_C P_0(D_7 + D_6) (1.4)$$

$$A_2 = J_C(\mu A_2 + P_0 \bar{D}_7 \bar{D}_6 I_2) \tag{1.5}$$

$$A_1 = J_C(\mu A_1 + P_0 \bar{D}_7 \bar{D}_6 I_1) \tag{1.6}$$

$$A_0 = J_C(\mu A_0 + P_0 \bar{D}_7 \bar{D}_6 I_0) \tag{1.7}$$

1.4. 微指令设计 11

1.4.7.3 指令前缀 01

指令通过 $D_2D_1D_0$ 进行分类

• 000: JFc/JTc

• 010: CFc/CTc

• 100: JMP

• 110: CAL

• XX1: INP/OUT

将微程序地址 11000-11111 与上面 8 个指令对应. 指令跳转表达式为

$$J_C = \bar{D}_7 D_6 (\bar{D}_2 \bar{D}_0 + \bar{D}_2 \bar{D}_0 J) \tag{1.8}$$

$$A_4 = \bar{J}_C 1 \tag{1.9}$$

$$A_3 = \bar{J}_C(P_0\bar{D}_7D_6) \tag{1.10}$$

$$A_2 = \bar{J}_C(\mu A_2 + P_1 \bar{D}_7 D_6 I_0) \tag{1.11}$$

$$A_1 = \bar{J}_C(\mu A_2 + P_1 \bar{D}_7 D_6 I_2) \tag{1.12}$$

$$A_0 = \bar{J}_C(\mu A_2 + P_1 \bar{D}_7 D_6 I_1 \bar{I}_0 + P_1 \bar{D}_7 D_6 \bar{I}_5 \bar{I}_4 I_0)$$
(1.13)

1.4.7.4 指令前缀 10

指令通过 $D_2D_1D_0$ 进行分类

• SSS: ALU op r

• 111: ALU op M

将微程序地址 100000-100001 与上面 2 个指令对应. 指令跳转表达式为

$$A_5 = D_7 \bar{D}_6 (1.14)$$

$$A_4 = \overline{D_7 \bar{D}_6} \tag{1.15}$$

$$A_3 = \overline{D_7 \overline{D}_6} \tag{1.16}$$

$$A_2 = \overline{D_7 \overline{D}_6} \tag{1.17}$$

$$A_1 = \overline{D_7 \bar{D}_6} \tag{1.18}$$

$$A_0 = D_7 \bar{D}_6 I_2 I_1 I_0 \tag{1.19}$$

1.4.7.5 指令前缀 11

指令通过 $D_5D_4D_3D_2D_1D_0$ 进行分类

• DDDSSS: Lrr

• DDD111: LrM

• 111SSS: LMr

• 111111: HLT

将微程序地址 100100-100111 与上面 4 个指令对应. 指令跳转表达式为

$$A_5 = D_7 D_6 (1.20)$$

$$A_4 = \overline{D_7 D_6} \tag{1.21}$$

$$A_3 = \overline{D_7 D_6} \tag{1.22}$$

$$A_2 = D_7 D_6 (1.23)$$

$$A_1 = D_7 D_6 I_5 I_4 I_3 (1.24)$$

$$A_0 = D_7 D_6 I_2 I_1 I_0 (1.25)$$

1.4.7.6 条件跳转

适用指令: JFc/JTc, CFc/CTc, RFc/RTc, 引入条件判定变量 J, 当条件成立时 J=1, 否则 J=0, 指令跳转表达式为

$$A_i = J() \tag{1.26}$$

1.4.8 微指令组合逻辑

• srcM: $D_2D_1D_0$

• dstM: $D_5D_4D_3$

• JUMP:

1.4.9 微指令表

表 1.3: 微指令表

地址	指令	微指令		S			Р				μA		
사망시L	1日、4	小以1日、マ	2	1	0	2	1	0	4	3	2	1	0
000000		PCL	0	1	0	0	0	0	0	0	0	0	1
000001		PCH	1	0	0	0	0	0	x	x	x	x	x
000010		IF	0	0	1	x	x	x	0	1	x	x	x
001000		rR	1	1	1	x	x	x	x	x	x	x	x
001001		POP	1	1	1	0	0	0	x	x	x	x	x
001010		X1	1	1	1	0	0	0	x	x	x	x	x
001100		rLO	0	1	0	0	0	0	x	x	x	x	x
001101		rAO	0	1	0	0	0	0	x	x	x	x	x
001110		PCL2	0	1	0	0	0	0	x	x	x	x	x
010000	INr		1	1	1				x	x	x	x	x
010001	DCr		1	1	1				x	x	x	x	x
010010	ROT		1	1	1				x	x	x	x	x
010011	RETc		1	1	1				x	x	x	x	x
010100	ALU op I		1	1	1				x	x	x	x	x
010101	RST		1	1	1				x	x	x	x	x
010110	LrI/LMI		1	1	1				x	x	x	x	x
010111	RET		1	1	1				x	x	x	X	x

1.4. 微指令设计 13

表 1.3: 微指令表 (续)

地址	指令	微指令		S			Р				μA		
꼬만게.	1日マ	1成1日マ	2	1	0	2	1	0	4	3	2	1	0
011000	JMPc		1	1	1				x	X	x	X	X
011001	CALc		1	1	1				x	X	x	X	X
011010	JMP		1	1	1				x	x	x	X	X
011011	CAL		1	1	1				x	X	x	X	X
011100	INP		1	1	1				x	x	x	X	X
011101	OUT		1	1	1				x	X	x	X	X
100000	ALU op r		1	1	1				x	x	x	X	X
100001	ALU op M		1	1	1				x	x	x	X	X
100100	Lrr		1	1	1				x	X	x	X	X
100101	LrM		1	1	1				x	x	x	X	X
100110	LMr		1	1	1				x	x	x	X	X
100111	HLT		1	1	1				x	x	x	x	X

1.5 微指令设计

1.5.1 指令译码

Lrr	=	$D_7D_6\overline{D_5D_4D_3}\ \overline{D_2D_1D_0}$	(1.27)
LrM	=	$D_7D_6\overline{D_5D_4D_3}D_2D_1D_0$	(1.28)
LMr	=	$D_7D_6D_5D_4D_3\overline{D_2D_1D_0}$	(1.29)
LrI	=	$ar{D_7}ar{D_6}\overline{D_5D_4D_3}D_2D_1ar{D_0}$	(1.30)
LMI	=	$ar{D_7}ar{D_6}D_5D_4D_3D_2D_1ar{D_0}$	(1.31)
INr	=	$ar{D_7}ar{D_6}\overline{D_5}\overline{D_4}\overline{D_3}ar{D_2}ar{D_1}ar{D_0}$	(1.32)
DCr	=	$ar{D_7}ar{D_6}\overline{D_5}\overline{D_4}\overline{D_3}ar{D_2}ar{D_1}D_0$	(1.33)
ALUopR	=	$D_7ar{D_6}\overline{D_2D_1D_0}$	(1.34)
ALUopM	=	$D_7\bar{D_6}D_2D_1D_0$	(1.35)
ALUopI	=	$ar{D_7}ar{D_6}D_2ar{D_1}ar{D_0}$	(1.36)
ROT	=	$ar{D_7}ar{D_6}ar{D_2}D_1ar{D_0}$	(1.37)
JMP	=	$ar{D_7}D_6D_2ar{D_1}ar{D_0}$	(1.38)
JMPc	=	$ar{D_7}D_6ar{D_2}ar{D_1}ar{D_0}$	(1.39)
CAL	=	$ar{D_7}D_6D_2D_1ar{D_0}$	(1.40)
CALc	=	$ar{D_7}D_6ar{D_2}D_1ar{D_0}$	(1.41)
RET	=	$ar{D_7}ar{D_6}D_2D_1D_0$	(1.42)
RETc	=	$ar{D_7}ar{D_6}ar{D_2}D_1D_0$	(1.43)
RST	=	$ar{D_7}ar{D_6}D_2ar{D_1}D_0$	(1.44)
INP	=	$ar{D_7}D_6ar{D_5}ar{D_4}D_0$	(1.45)
OUT	=	$ar{D_7}D_6(ar{D_5}+ar{D_4})D_0$	(1.46)
HLT	=	$\bar{D}_7 \bar{D}_6 \bar{D}_5 \bar{D}_4 \bar{D}_3 \bar{D}_2 \bar{D}_1 + D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$	(1.47)

将指令分段

$$M_s = D_2 D_1 D_0 (1.48)$$

$$M_d = D_5 D_4 D_3 (1.49)$$

1.5. 微指令设计 15

指令编码公式如下

$$I_{LrM} = D_7 D_6 \overline{M_d} \overline{M_s}$$
 (1.50)
$$I_{LrM} = D_7 D_6 \overline{M_d} M_s$$
 (1.51)
$$I_{LMr} = D_7 D_6 M_d \overline{M_s}$$
 (1.52)
$$I_{LrI} = \overline{D_7} \overline{D_6} \overline{M_d} D_2 D_1 \overline{D_0}$$
 (1.53)
$$I_{LMI} = \overline{D_7} \overline{D_6} \overline{M_d} D_2 D_1 \overline{D_0}$$
 (1.54)
$$I_{INr} = \overline{D_7} \overline{D_6} \overline{M_d} D_2 \overline{D_1} \overline{D_0}$$
 (1.55)
$$I_{DCr} = \overline{D_7} \overline{D_6} \overline{M_d} \overline{D_2} \overline{D_1} D_0$$
 (1.56)
$$I_{ALUopR} = D_7 \overline{D_6} \overline{M_s}$$
 (1.57)
$$I_{ALUopM} = D_7 \overline{D_6} M_s$$
 (1.58)
$$I_{ALUopI} = \overline{D_7} \overline{D_6} D_2 \overline{D_1} \overline{D_0}$$
 (1.60)
$$I_{JMP} = \overline{D_7} \overline{D_6} D_2 \overline{D_1} \overline{D_0}$$
 (1.61)
$$I_{JMP} = \overline{D_7} D_6 D_2 \overline{D_1} \overline{D_0}$$
 (1.62)
$$I_{CAL} = \overline{D_7} D_6 \overline{D_2} D_1 \overline{D_0}$$
 (1.63)
$$I_{CALc} = \overline{D_7} D_6 \overline{D_2} D_1 \overline{D_0}$$
 (1.64)
$$I_{RET} = \overline{D_7} \overline{D_6} D_2 D_1 D_0$$
 (1.65)
$$I_{RETc} = \overline{D_7} \overline{D_6} D_2 D_1 D_0$$
 (1.66)
$$I_{RST} = \overline{D_7} \overline{D_6} D_2 \overline{D_1} D_0$$
 (1.67)
$$I_{INP} = \overline{D_7} D_6 \overline{D_5} \overline{D_4} D_0$$
 (1.68)
$$I_{OUT} = \overline{D_7} D_6 \overline{D_5} \overline{D_4} D_0$$
 (1.69)
$$I_{HLT} = \overline{D_7} \overline{D_6} \overline{D_5} \overline{D_4} \overline{D_3} \overline{D_2} \overline{D_1} + D_7 D_6 M_d M_s$$
 (1.70)

1.5.2 IF 转出设计

IF 转出到微地址 01000-01111, 转出编码

$$\begin{array}{lll} F_{0} & = & I_{HLT} \\ F_{1} & = & I_{Lrr} + I_{ALUopR} + I_{LMr} = D_{7}\bar{M}_{s} \\ F_{2} & = & I_{JMP} + I_{JMPc} + I_{CAL} + I_{CALc} + I_{LrI} + I_{LMI} + I_{ALUopI} = \bar{D}_{7}\bar{D}_{0}(D_{6} + \bar{D}_{6}D_{2}) \\ F_{3} & = & I_{LrM} + I_{ALUopM} = D_{7}M_{s}(D_{6}\bar{M}_{d} + \bar{D}_{6}) \\ F_{4} & = & I_{INP} + I_{OUT} = D_{7}\bar{D}_{6}D_{0} \\ F_{5} & = & I_{INr} + I_{DCr} + I_{ROT} = \bar{D}_{7}\bar{D}_{6}\bar{D}_{2}(\bar{M}_{d}\bar{D}_{1} + D_{1}\bar{D}_{0}) \\ F_{6} & = & I_{RET} + I_{RETc} = \bar{D}_{7}\bar{D}_{6}D_{1}D_{0} \\ F_{7} & = & I_{RST} = \bar{D}_{7}\bar{D}_{6}D_{2}\bar{D}_{1}D_{0} \end{array}$$

使用 8-3 编码器

$$Y_0^0 = F_1 + F_3 + F_5 + F_7$$

$$Y_1^0 = F_2 + F_3 + F_6 + F_7$$

$$Y_2^0 = F_4 + F_5 + F_6 + F_7$$

微地址转换公式如下

$$A_4 = \mu A_4$$

$$A_3 = \mu A_3$$

$$A_2 = P_0(Y_2^0) + \mu A_2$$

$$A_1 = P_0(Y_1^0) + \mu A_1$$

$$A_0 = P_0(Y_0^0) + \mu A_0$$

1.5.3 1 级转入设计

微地址编码

- 10000: rW
- 10001: ALU
- 10010: rL
- 10011: PCL
- 10100: IFb
- 10101: rB
- 10110: X3

Chapter 2

微程序设计 2

2.1 指令跳转

A_4	=	$\mu A_4 + P_4 \cdot D_7$	(2.1)
A_3	=	$\mu A_3 + P_4 \cdot D_6$	(2.2)
A_2	=	$\mu A_2 + P_0 \cdot D_2$	(2.3)
A_1	=	$\mu A_1 + P_0 \cdot D_1 + P_3 \cdot D_5 D_4 D_3$	(2.4)
A_0	=	$\mu A_0 + P_0 \cdot D_0 + P_1 \cdot D_0 + P_2 \cdot D_2 D_1 D_0 + P_3 \cdot D_2 D_1 D_0$	(2.5)

表 2.1: 微指令表

17 44 %	実が今			Ъ					μA		
11X 45 41I.	7及3日 マ	4	3	2	П	0	4	3	2	П	0
000000	X-INr										
000001	X-DCr										
000010	X-ALUop										
000011	POP(c)										
000100	PCL_Imm										
000101	PCHa										
000110	PCL_Imm										
000111	POP										
001000	PCL_ImmB										
001001	$rA_{-}o$										
010000	$_{ m rR}$										
010001	$ m rL_o$										
011001	$_{ m rR}$										
011010	$ m rL_{-}o$										
011011	HLT										
111111	PCL_I	1	1	П	П	Н	0	0	0	0	0

Chapter 3

基本逻辑

3.1 编码器

3.1.1 8-3 编码器

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A_2	A_1	A_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$A_0 = D_1 + D_3 + D_5 + D_7 (3.1)$$

$$A_1 = D_2 + D_3 + D_6 + D_7 (3.2)$$

$$A_2 = D_4 + D_5 + D_6 + D_7 (3.3)$$