APPENDIX: STRUCTURE OF 2-ISOGENY AND 3-ISOGENY GRAPHS IN SMALL CHARACTERISTIC

TAHA HEDAYAT, SARAH ARPIN, AND RENATE SCHEIDLER

APPENDIX A. SMALL PRIME GRAPH DATA

We provide descriptions of the spine for the primes p=2,3,5,7,11,13. In the cases of p=2,3, we also provide a description of the 2- and 3-isogeny graphs over \mathbb{F}_p . These small primes yield special cases in our structure theorems due to the collision of exceptional j-invariants over \mathbb{F}_p .

A.1. p=2. There is a unique supersingular j-invariant over $\overline{\mathbb{F}}_2$, namely j=0. Let $E:y^2+y=x^3$ denote a representative of this isomorphism class. The size of the automorphism group of E is 24.

Since E is supersingular, $E[2] = \mathcal{O}_E$, so there are no degree-2 isogenies of E and the isogeny graph $\mathcal{G}_2(\overline{\mathbb{F}}_2)$ consists of a single vertex and no edges.

The 3-torsion points of E are all defined over \mathbb{F}_{2^2} and since there is a single vertex in the graph, these four edges are all loops.

A.2. p = 3. There is a unique supersingular j-invariant over $\overline{\mathbb{F}}_3$, namely j = 0. Let $E: y^2 = x^3 + x$ denote a representative of this isomorphism class. The size of the automorphism group of E is 12.

The 2-torsion points of E are all defined over \mathbb{F}_{3^2} and since there is a single vertex in the graph, these three edges are all loops.

 $^{2020\} Mathematics\ Subject\ Classification.\ 14G52,\ 11G20,\ 11-04,\ 11-11,\ 05C40.$

Key words and phrases. Supersingular elliptic curve ℓ -isogeny graph, spine, graph diameter, graph center.

Since E is supersingular, $E[3] = \mathcal{O}_E$, so there are no degree-3 isogenies of E and the isogeny graph $\mathcal{G}_3(\overline{\mathbb{F}}_3)$ consists of a single vertex and no edges.

A.3. p = 5. The $\mathcal{G}_{\ell}(\mathbb{F}_5)$ vertices:

- Choose $E_0: y^2 = x^3 + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 0.
- Choose $E_0^t: y^2 = x^3 + 2$ as the representative of the isomorphism class of the twists elliptic curves with *j*-invariant 0.
- all of the 2-torsion points of the vertices are defined over \mathbb{F}_{5^2} .
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{5^2}

The $\mathcal{G}_2(\mathbb{F}_5)$ edges:

- There is one outgoing 2-isogeny of E_0 , namely the isogeny $\phi_0: E_0 \to E_0^t$ generated by the 2-torsion point (4,0) in E_0 .
- There is one outgoing 2-isogeny of E_0^t , namely the isogeny $\phi_0^t: E_0^t \to E_0$ generated by the 2-torsion point (2,0) in E_0^2 .

The $\mathcal{G}_3(\mathbb{F}_5)$ edges:

Let z_2 be a number such that $[\mathbb{F}_5(z_2) : \mathbb{F}_5] = 2$.

- There are two outgoing 3-isogenies of E_0 , namely the isogenies
 - $-\psi_{0,1}: E_0 \to E_0^t$, generated by the 3-torsion point (0,1) in E_0
 - $-\psi_{0,2}: E_0 \to E_0^t$, generated by the 3-torsion point $(1, z_2 + 2)$ in E_0
- there are two outgoing 3-isogenies of E_0^t , namely the isogenies
 - $-\psi_{0,1}^t: E_0^t \to E_0$, generated by the 3-torsion point $(0, z_2 + 2)$ in E_0^t .
 - $-\psi_{0,2}^t: E_0^t \to E_0$, generated by the 3-torsion point (3,2) in E_0^t .

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_5)$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_5)$:

• E_0 and E_0^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 0, denoted [0].

How the edges of $\mathcal{G}_2(\mathbb{F}_5)$ change when going to $\mathcal{G}_2(\overline{\mathbb{F}}_5)$:

- ϕ_0 and ϕ_0^t become equivalent isogenies and hence become one edge of the form ([0], [0])
- [0] attains two new isogeny equivalence classes of the form ([0], [0]).

How the edges of $\mathcal{G}_3(\mathbb{F}_5)$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_5)$:

- $\psi_{0,1}$ and $\psi_{0,1}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0])
- $\psi_{0,2}$ and $\psi_{0,2}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0])
- [0] attains two new isogeny equivalence classes of the form ([0], [0]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_5)$ vertices:

- There is one supersingular isomorphism class of elliptic curves, namely j=0.
- $E_0: y^2 = x^3 + 1$ is a representative of the isomorphism class j = 0

The $\mathcal{G}_2(\overline{\mathbb{F}}_5)$ edges:

• The isomorphism class [0] has three loops.

The $\mathcal{G}_3(\overline{\mathbb{F}}_5)$ edges:

• The isomorphism class [0] has four loops.

A.4. p = 7. The $\mathcal{G}_{\ell}(\mathbb{F}_7)$ vertices:

- There are 2 isomorphism classes of Elliptic Curves, both of which have *j*-invariant 6
- Choose $E_6: y^2 = x^3 + x$ as the representative of an isomorphism class of elliptic curves with j-invariant 6.
- Choose $E_6^t: y^2 = x^3 + 3x$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 6.
- all of the 2-torsion points of the vertices are defined over \mathbb{F}_{7^2} .
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{7^4}

The $\mathcal{G}_2(\mathbb{F}_7)$ edges:

- There is one outgoing 2-isogeny of E_6 , namely the isogeny $\phi_6: E_6 \to E_6^t$ generated by the 2-torsion point (0,0) in E_6 .
- There are three outgoing 2-isogeny of E_6^t , namely the isogenies
 - $-\phi_{6,1}^t: E_6^t \to E_6$ generated by the 2-torsion point (0,0) in E_6^2 .
 - $-\phi_{6,2}^{t'}: E_6^t \to E_6^t$ generated by the 2-torsion point (2,0) in E_6^2 . $-\phi_{6,3}^t: E_6^t \to E_6^t$ generated by the 2-torsion point (5,0) in E_6^2 .

The $\mathcal{G}_3(\mathbb{F}_7)$ edges:

- There are no outgoing 3-isogenies of E_6 in this graph.
- There are no outgoing 3-isogenies of E_6^t in this graph.

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_7)$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_7)$:

 \bullet E_6 and E_6^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 6, denoted [6]

How the edges of $\mathcal{G}_2(\mathbb{F}_7)$ change when going to $\mathcal{G}_2(\mathbb{F}_7)$:

- ϕ_6 and $\phi_{6,1}^t$ become equivalent isogenies and hence become one edge of the
- $\phi_{6,2}^t$ does not become equivalent to any other isogenies.
- $\phi_{6,3}^t$ does not become equivalent to any other isogenies.
- No new isogenies are added to the graph.

How the edges of $\mathcal{G}_3(\mathbb{F}_7)$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_7)$:

• [6] attains four new isogeny equivalence classes of the form ([6], [6]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_7)$ vertices:

- There is one supersingular isomorphism class of elliptic curves, namely j =
- $E_6: y^2 = x^3 + x$ is a representative of the isomorphism class j = 6

The $\mathcal{G}_2(\mathbb{F}_7)$ edges:

• The isomorphism class [6] has three loops.

The $\mathcal{G}_3(\overline{\mathbb{F}}_7)$ edges:

• The isomorphism class [6] has four loops.

A.5. p = 11. The $\mathcal{G}_{\ell}(\mathbb{F}_{11})$ vertices:

- There are four isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have j-invariant 0.
- The other Two isomorphism classes of elliptic curves have j-invariant 1.

- Choose $E_0: y^2 = x^3 + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 0.
- Choose $E_0^t: y^2 = x^3 + 7$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 0.
- Choose $E_1: y^2 = x^3 + x$ as the representative of an isomorphism class of elliptic curves with j-invariant 1.
- Choose $E_1^t: y^2 = x^3 + 7x$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 1.
- all of the 2-torsion points of the vertices are defined over \mathbb{F}_{11^2} .
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{11^2}

The $\mathcal{G}_2(\mathbb{F}_{11})$ edges:

- There is one outgoing 2-isogeny of E_0 , namely the isogeny $\phi_0: E_0 \to E_1^t$ generated by the 2-torsion point (10,0) in E_0 .
- There is one outgoing 2-isogeny of E_0^t , namely the isogeny $\phi_0^t: E_0^t \to E_1^t$ generated by the 2-torsion point (5,0) in E_0^t .
- There is one outgoing 2-isogeny of E_1 , namely the isogeny $\phi_1: E_1 \to E_1^t$ generated by the 2-torsion point (0,0) in E_1 .
- There are three outgoing 2-isogeny of E_1^t , namely the isogenies
 - $-\phi_{1,1}^t: E_1^t \to E_1$ generated by the 2-torsion point (0,0) in E_1^2 .
 - $-\phi_{1,2}^{t'}: E_1^t \to E_0$ generated by the 2-torsion point (2,0) in E_1^2 .
 - $-\phi_{1,3}^t: E_1^t \to E_1^t$ generated by the 2-torsion point (8,0) in E_1^2 .

The $\mathcal{G}_3(\mathbb{F}_{11})$ edges:

Let z_2 be a number such that $[\mathbb{F}_{11}(z_2) : \mathbb{F}_{11}] = 2$.

- There are two outgoing 3-isogeny of E_0 , namely the isogenies
 - $-\psi_{0,1}: E_0 \to E_0^t$ generated by the 3-torsion point (0,1) in E_0 .
 - $-\psi_{0,2}: E_0 \to E_1$ generated by the 3-torsion point $(6,2z_2+7)$ in E_0 .
- There are two outgoing 3-isogeny of E_0^t , namely the isogenies
 - $-\psi_{0,1}^t: E_0^t \to E_0$ generated by the 3-torsion point $(0,5z_2+1)$ in E_0^t . $-\psi_{0,2}^t: E_0^t \to E_1$ generated by the 3-torsion point (4,2) in E_0^t .
- There are two outgoing 3-isogeny of E_1 , namely the isogenies
 - $-\psi_{1,1}: E_1 \to E_0$ generated by the 3-torsion point (5,3) in E_1 .
 - $-\psi_{1,2}: E_1 \to E_0^t$ generated by the 3-torsion point $(6, z_2 + 9)$ in E_1 .
- There are two outgoing 3-isogeny of E_1^t , namely the isogenies
 - $-\psi_{1,1}^t: E_1^t \to E_1^t$ generated by the 3-torsion point (3,2) in E_1^t .
 - $-\psi_{1,2}^t: E_1^t \to E_1^t$ generated by the 3-torsion point $(8,3z_2+5)$ in E_1^t .

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{11})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{11})$:

- E_0 and E_0^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 0, denoted [0].
- E_1 and E_1^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 1, denoted [1].

How the edges of $\mathcal{G}_2(\mathbb{F}_{11})$ change when going to $\mathcal{G}_2(\overline{\mathbb{F}}_{11})$:

- ϕ_0 and ϕ_0^t become equivalent isogenies and hence become one edge of the form ([0], [1]).
- ϕ_1 and $\phi_{1,1}^t$ become equivalent isogenies and hence become one edge of the form ([1],[1]).
- $\phi_{1,2}^t$ does not become equivalent to any other isogenies.

- $\phi_{1,3}^t$ does not become equivalent to any other isogenies.
- Two new isogeny equivalence classes are added to this graph of the form ([0], [1]).

How the edges of $\mathcal{G}_3(\mathbb{F}_{11})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{11})$:

- $\psi_{0,1}$ and $\psi_{0,1}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0]).
- $\psi_{0,2}$ and $\psi_{0,2}^t$ become equivalent isogenies and hence become one edge of the form ([0], [1]).
- $\psi_{1,1}$ does not become equivalent to any other isogenies.
- $\psi_{1,2}$ does not become equivalent to any other isogenies.
- $\psi_{1,1}^t$ does not become equivalent to any other isogenies.
- $\psi_{1,2}^t$ does not become equivalent to any other isogenies.
- Two new isogeny equivalence classes are added to this graph of the form ([0], [1]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{11})$ vertices:

- There are 2 supersingular isomorphism class of elliptic curves, namely j=0 and j=1.
- $E_0: y^2 = x^3 + 1$ is a representative of the isomorphism class j = 0
- $E_1: y^2 = x^3 + x$ is a representative of the isomorphism class j = 1.

The $\mathcal{G}_2(\overline{\mathbb{F}}_{11})$ edges:

- There are three edges of the form ([0], [1]).
- There are two edges of the form ([1], [0]).
- There is one edges of the form ([1], [1]).

The $\mathcal{G}_3(\overline{\mathbb{F}}_{11})$ edges:

- There is one edge of the form ([0], [0]).
- There are three edges of the form ([0], [1]).
- There are two edges of the form ([1], [0]).
- There are two edges of the form ([1], [1]).

A.6. p = 13. The $\mathcal{G}_{\ell}(\mathbb{F}_{13})$ vertices:

- There are two isomorphism classes of elliptic curves, both of which have *j*-invariant 5.
- Choose $E_5: y^2 = x^3 + x + 4$ as the representative of an isomorphism class of elliptic curves with j-invariant 5.
- Choose $E_5^t: y^2 = x^3 + 10x + 7$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 5.
- all of the 2-torsion points of the vertices are defined over \mathbb{F}_{13^2} .
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{13^4}

The $\mathcal{G}_2(\mathbb{F}_{13})$ edges:

- There is one outgoing 2-isogeny of E_5 , namely the isogeny $\phi_5: E_5 \to E_5^t$ generated by the 2-torsion point (10,0) in E_5 .
- There is one outgoing 2-isogeny of E_5^t , namely the isogeny $\phi_5^t: E_5^t \to E_5$ generated by the 2-torsion point (7,0) in E_5^t .

The $\mathcal{G}_3(\mathbb{F}_{13})$ edges:

• There are no isogenies in this graph

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{13})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{13})$:

• E_5 and E_5^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 5, denoted [5].

How the edges of $\mathcal{G}_2(\mathbb{F}_{13})$ change when going to $\mathcal{G}_2(\overline{\mathbb{F}}_{13})$:

- ϕ_5 and ϕ_5^t become equivalent isogenies and hence become one edge of the form ([5], [5]).
- Two new isogeny equivalence classes are added to this graph of the form ([5], [5]).

How the edges of $\mathcal{G}_3(\mathbb{F}_{13})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{13})$:

• Four new isogeny equivalence classes are added to this graph of the form

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{13})$ vertices:

- There is one supersingular isomorphism class of elliptic curves, namely j=5
- $E_5: y^2 = x^3 + x + 4$ is a representative of the isomorphism class j = 5

The $\mathcal{G}_2(\overline{\mathbb{F}}_{13})$ edges:

• There are three edges of the form ([5], [5]).

The $\mathcal{G}_3(\overline{\mathbb{F}}_{13})$ edges:

• There are four edges of the form ([5], [5]).

A.7. p = 17. The $\mathcal{G}_{\ell}(\mathbb{F}_{17})$ vertices:

- There are four isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have *j*-invariant 0.
- The other two isomorphism classes of elliptic curves have j-invariant 8.
- Choose $E_0: y^2 = x^3 + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 0.
- Choose $E_0^t: y^2 = x^3 + 6$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 0.
- Choose $E_8: y^2 = x^3 + 4x + 9$ as the representative of an isomorphism class of elliptic curves with j-invariant 8.
- Choose $E_8^t: y^2 = x^3 + 15x + 3$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 8.
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{17^2}

The $\mathcal{G}_3(\mathbb{F}_{17})$ edges:

Let z_2 be a number such that $[\mathbb{F}_{17}(z_2) : \mathbb{F}_{17}] = 2$.

- There are two outgoing 3-isogeny of E_0 , namely the isogenies
 - $-\phi_{0,1}: E_0 \to E_0^t$ generated by the 3-torsion point (0,1) in E_0 .
 - $-\phi_{0,2}: E_0 \to E_8$ generated by the 3-torsion point $(4,7z_2+5)$ in E_0 .
- There are two outgoing 3-isogeny of E_0^t , namely the isogenies
 - $-\phi_{0,1}^t: E_0^t \to E_0$ generated by the 3-torsion point $(0, 2z_2 + 16)$ in E_0^t . $-\phi_{0,2}^t: E_0^t \to E_8^t$ generated by the 3-torsion point (3,4) in E_0^t .
- There are two outgoing 3-isogeny of E_8 , namely the isogenies
 - $-\phi_{8,1}: E_8 \to E_8^t$ generated by the 3-torsion point $(1,7z_2+5)$ in E_8 .
 - $-\phi_{8,2}: E_8 \to E_0$ generated by the 3-torsion point (14, 2) in E_8 .
- There are two outgoing 3-isogeny of E_8^t , namely the isogenies
 - $-\phi_{8,1}^t: E_8^t \to E_0^t$ generated by the 3-torsion point $(2, 4z_2 + 15)$ in E_8^t .
 - $-\phi_{8,2}^t: E_8^t \to E_8$ generated by the 3-torsion point (5,4) in E_8^t .

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{17})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{17})$:

- E_0 and E_0^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 0, denoted [0].
- E_8 and E_8^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 8, denoted [8].

How the edges of $\mathcal{G}_3(\mathbb{F}_{17})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{17})$:

- $\phi_{0,1}$ and $\phi_{0,1}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0]).
- $\phi_{0,2}$ and $\phi_{0,2}^t$ become equivalent isogenies and hence become one edge of the form ([0], [8]).
- $\phi_{8,1}$ and $\phi_{8,2}^t$ become equivalent isogenies and hence become one edge of the form ([8], [8]).
- $\phi_{8,2}$ and $\phi_{8,1}^t$ become equivalent isogenies and hence become one edge of the form ([8], [0]).
- Two new isogeny equivalence classes are added to this graph of the form ([0], [8]).
- Two new isogeny equivalence classes are added to this graph of the form ([8], [8]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{17})$ vertices:

- There are 2 supersingular isomorphism class of elliptic curves, namely j=0 and j=8.
- $E_0: y^2 = x^3 + 1$ is a representative of the isomorphism class j = 0
- $E_1: y^2 = x^3 + 4x + 9$ is a representative of the isomorphism class j = 8.

The $\mathcal{G}_3(\overline{\mathbb{F}}_{17})$ edges:

- There is one edge of the form ([0], [0]).
- There are three edges of the form ([0], [8]).
- There is one edge of the form ([8], [0]).
- There are three edges of the form ([8], [8]).

A.8. p = 19. The $\mathcal{G}_{\ell}(\mathbb{F}_{19})$ vertices:

- \bullet There are four isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have *j*-invariant 7.
- The other two isomorphism classes of elliptic curves have j-invariant 18.
- Choose $E_7: y^2 = x^3 + 3x + 16$ as the representative of an isomorphism class of elliptic curves with j-invariant 7.
- Choose $E_7^t: y^2 = x^3 + 12x + 14$ as the representative of the isomorphism class of the twists elliptic curves with *j*-invariant 7.
- Choose $E_{18}: y^2 = x^3 + x$ as the representative of an isomorphism class of elliptic curves with j-invariant 18.
- Choose $E_{18}^t: y^2=x^3+8x$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 18.
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{19^4}

The $\mathcal{G}_3(\mathbb{F}_{19})$ edges:

• There are no edges in this graph

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{19})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{19})$:

- E_7 and E_7^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 7, denoted [7].
- E_{18} and E_{18}^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 18, denoted [18].

How the edges of $\mathcal{G}_3(\mathbb{F}_{19})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{19})$:

- Four new isogeny equivalence classes are added to this graph of the form
- Two new isogeny equivalence classes are added to this graph of the form ([7], [18]).
- Two new isogeny equivalence classes are added to this graph of the form ([7],[7]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{19})$ vertices:

- There are 2 supersingular isomorphism class of elliptic curves, namely j=7
- $E_7: y^2 = x^3 + 3x + 16$ is a representative of the isomorphism class j = 7
- $E_{18}: y^2 = x^3 + x$ is a representative of the isomorphism class j = 18.

The $\mathcal{G}_3(\overline{\mathbb{F}}_{19})$ edges:

- There are four edges of the form ([18], [7]).
- There are two edge of the form ([7], [18]).
- There are two edges of the form ([7], [7]).

A.9. p = 23. The $\mathcal{G}_{\ell}(\mathbb{F}_{23})$ vertices:

- There are six isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have *j*-invariant 0.
- Two of the isomorphism classes of elliptic curves have *j*-invariant 3.
- The last two isomorphism classes of elliptic curves have *j*-invariant 19.
- Choose $E_0: y^2 = x^3 + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 0.
- Choose $E_0^t: y^2 = x^3 + 20$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 0.
- Choose $E_3: y^2 = x^3 + x$ as the representative of an isomorphism class of elliptic curves with j-invariant 3.
- Choose $E_3^t: y^2 = x^3 + 17x$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 3.
- Choose $E_{19}: y^2 = x^3 + 8x + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 19.
- Choose $E_{19}^t: y^2 = x^3 + 2x + 20$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 19.
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{23^2}

The $\mathcal{G}_3(\mathbb{F}_{23})$ edges:

Let z_2 be a number such that $[\mathbb{F}_{23}(z_2) : \mathbb{F}_{23}] = 2$.

- There are two outgoing 3-isogeny of E_0 , namely the isogenies

 - $-\phi_{0,1}: E_0 \to E_0^t$ generated by the 3-torsion point (0,1) in E_0 . $-\phi_{0,2}: E_0 \to E_3$ generated by the 3-torsion point $(20,8z_2+15)$ in E_0 .
- There are two outgoing 3-isogeny of E_0^t , namely the isogenies
 - $-\phi_{0,1}^t: E_0^t \to E_0$ generated by the 3-torsion point $(0, 8z_2 + 15)$ in E_0^t .
 - $-\phi_{0,2}^{t}: E_0^t \to E_3$ generated by the 3-torsion point (13,3) in E_0^t .

- There are two outgoing 3-isogeny of E_3 , namely the isogenies
 - $-\phi_{3,1}: E_3 \to E_0^t$ generated by the 3-torsion point $(5, 5z_2 + 18)$ in E_3 .
 - $-\phi_{3,2}: E_3 \to E_0$ generated by the 3-torsion point (18, 10) in E_3 .
- There are two outgoing 3-isogeny of E_3^t , namely the isogenies

 - $-\phi_{3,1}^t: E_3^t \to E_{19}^t$ generated by the 3-torsion point (1,8) in E_3^t . $-\phi_{3,2}^t: E_3^t \to E_{19}$ generated by the 3-torsion point $(22,4z_2+19)$ in E_3^t .
- There are two outgoing 3-isogeny of E_{19} , namely the isogenies

 - $-\phi_{19,1}: E_{19} \to E_3^t$ generated by the 3-torsion point (16,4) in E_{19} . $-\phi_{19,2}: E_{19} \to E_{19}^t$ generated by the 3-torsion point (20, z_2+22) in E_{19} .
- There are two outgoing 3-isogeny of E_{19}^t , namely the isogenies
 - $-\phi_{19,1}^t: E_{19}^t \to E_{19}$ generated by the 3-torsion point (13,9) in E_{19}^t .
 - $-\phi_{19,2}^t: E_{19}^t \to E_3^t$ generated by the 3-torsion point $(15,9z_2+19)$ in

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{23})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{23})$:

- E_0 and E_0^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 0, denoted [0].
- E_3 and E_3^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 3, denoted [3].
- E_{19} and E_{19}^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 19, denoted [19].

How the edges of $\mathcal{G}_3(\mathbb{F}_{23})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{23})$:

- $\phi_{0,1}$ and $\phi_{0,1}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0]).
- $\phi_{0,2}$ and $\phi_{0,2}^t$ become equivalent isogenies and hence become one edge of the form ([0], [3]).
- $\phi_{19,1}$ and $\phi_{19,2}^t$ become equivalent isogenies and hence become one edge of the form ([19], [3]).
- $\phi_{19,2}$ and $\phi_{19,1}^t$ become equivalent isogenies and hence become one edge of the form ([19], [19]).
- $\phi_{3,1}$ does not become equivalent to any other isogenies.
- $\phi_{3,2}$ does not become equivalent to any other isogenies.
- $\phi_{3,1}^t$ does not become equivalent to any other isogenies.
- $\phi_{3,2}^t$ does not become equivalent to any other isogenies.
- two new isogeny equivalence classes are added to this graph of the form ([0], [3]).
- two new isogeny equivalence classes are added to this graph of the form ([19], [19]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{23})$ vertices:

- There are 3 supersingular isomorphism class of elliptic curves, namely j=0, j = 3, and j = 19.
- $E_0: y^2 = x^3 + 1$ is a representative of the isomorphism class j = 0
- $E_3: y^2 = x^3 + x$ is a representative of the isomorphism class j = 3
- $E_{19}: y^2 = x^3 + 8x + 1$ is a representative of the isomorphism class j = 19.

The $\mathcal{G}_3(\overline{\mathbb{F}}_{23})$ edges:

- There are three edges of the form ([19], [19]).
- There is one edge of the form ([19], [3]).

- There are two edge of the form ([3], [19]).
- There are two edges of the form ([3], [0]).
- There are three edges of the form ([0], [3]).
- There is one edge of the form ([0], [0]).

A.10. p = 29. The $\mathcal{G}_{\ell}(\mathbb{F}_{29})$ vertices:

- There are six isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have j-invariant 0.
- Two of the isomorphism classes of elliptic curves have j-invariant 2.
- The last two isomorphism classes of elliptic curves have *j*-invariant 25.
- Choose $E_0: y^2 = x^3 + 1$ as the representative of an isomorphism class of elliptic curves with j-invariant 0.
- Choose $E_0^t: y^2 = x^3 + 11$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 0.
- Choose $E_2: y^2 = x^3 + 3x + 28$ as the representative of an isomorphism class of elliptic curves with j-invariant 2.
- Choose $E_2^t: y^2 = x^3 + 8x + 11$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 2.
- Choose $E_{25}: y^2 = x^3 + 9x + 19$ as the representative of an isomorphism class of elliptic curves with j-invariant 25.
- Choose $E_{25}^t: y^2 = x^3 + 20x + 4$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 25.
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{29^2}

The $\mathcal{G}_3(\mathbb{F}_{29})$ edges:

Let z_2 be a number such that $[\mathbb{F}_{29}(z_2) : \mathbb{F}_{29}] = 2$.

- There are two outgoing 3-isogeny of E_0 , namely the isogenies
 - $-\phi_{0,1}: E_0 \to E_0^t$ generated by the 3-torsion point (0,1) in E_0 .
 - $-\phi_{0,2}: E_0 \to E_{25}$ generated by the 3-torsion point $(20, z_2 + 12)$ in E_0 .
- There are two outgoing 3-isogeny of E_0^t , namely the isogenies
 - $-\phi_{0,1}^t: E_0^t \to E_0$ generated by the 3-torsion point $(0,8z_2+9)$ in E_0^t . $-\phi_{0,2}^t: E_0^t \to E_{25}^t$ generated by the 3-torsion point (10,5) in E_0^t .
- There are two outgoing 3-isogeny of E_2 , namely the isogenies
 - $-\phi_{2,1}: E_2 \to E_{25}^t$ generated by the 3-torsion point $(1, 12z_2 + 28)$ in E_2 .
 - $-\phi_{2,2}: E_2 \to E_2^t$ generated by the 3-torsion point (2,10) in E_2 .
- There are two outgoing 3-isogeny of E_2^t , namely the isogenies

 - $-\phi_{2,1}^t: E_2^t \to E_{25}$ generated by the 3-torsion point (14,5) in E_2^t . $-\phi_{2,2}^t: E_2^t \to E_2$ generated by the 3-torsion point (28, $3z_2 + 7$) in E_2^t .
- There are two outgoing 3-isogeny of E_{25} , namely the isogenies

 - $-\phi_{25,1}: E_{25} \to E_0$ generated by the 3-torsion point (8,9) in E_{25} . $-\phi_{25,2}: E_{25} \to E_2^t$ generated by the 3-torsion point $(20,14z_2+23)$ in
- There are two outgoing 3-isogeny of E_{25}^t , namely the isogenies

 - $-\phi_{25,1}^t: E_{25}^t \to E_0^t$ generated by the 3-torsion point (8,3) in E_{25}^t . $-\phi_{25,2}^t: E_{25}^t \to E_2$ generated by the 3-torsion point $(9,11z_2+16)$ in

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{29})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{29})$:

- E_0 and E_0^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 0, denoted [0].
- E_2 and E_2^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 2, denoted [2].
- E_{25} and E_{25}^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 25, denoted [25].

How the edges of $\mathcal{G}_3(\mathbb{F}_{29})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{29})$:

- $\phi_{0,1}$ and $\phi_{0,1}^t$ become equivalent isogenies and hence become one edge of the form ([0], [0]).
- $\phi_{0,2}$ and $\phi_{0,2}^t$ become equivalent isogenies and hence become one edge of the form ([0], [25]).
- $\phi_{2,1}$ and $\phi_{2,2}^t$ become equivalent isogenies and hence become one edge of the form ([2], [25]).
- $\phi_{2,2}$ and $\phi_{2,1}^t$ become equivalent isogenies and hence become one edge of the form ([2], [2]).
- $\phi_{25,1}$ and $\phi_{25,2}^t$ become equivalent isogenies and hence become one edge of the form ([25], [0]).
- $\phi_{25,2}$ and $\phi_{25,1}^t$ become equivalent isogenies and hence become one edge of the form ([25], [2]).
- Two new isogeny equivalence classes are added to this graph of the form ([0], [25]).
- Two new isogeny equivalence classes are added to this graph of the form ([19], [19]).
- Two new isogeny equivalence classes are added to this graph of the form ([2],[2]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{29})$ vertices:

- There are 3 supersingular isomorphism class of elliptic curves, namely j=0, j=2, and j=125.
- $E_0: y^2 = x^3 + 1$ is a representative of the isomorphism class j = 0
- $E_3: y^2 = x^3 + 3x + 28$ is a representative of the isomorphism class j=2
- $E_{19}: y^2 = x^3 + 9x + 19$ is a representative of the isomorphism class j = 25.

The $\mathcal{G}_3(\overline{\mathbb{F}}_{29})$ edges:

- There are three edges of the form ([2], [2]).
- There is one edge of the form ([2], [25]).
- There are two edge of the form ([25], [25]).
- There is one edge of the form ([25], [0]).
- There are three edges of the form ([0], [25]).
- There is one edge of the form ([0], [0]).

A.11. p = 31. The $\mathcal{G}_{\ell}(\mathbb{F}_{31})$ vertices:

- There are six isomorphism classes of elliptic curves
- Two of the isomorphism classes of elliptic curves have j-invariant 2.
- Another two isomorphism classes of elliptic curves have j-invariant 4.
- The last two isomorphism classes of elliptic curves have j-invariant 23.
- Choose $E_2: y^2 = x^3 + 2x + 3$ as the representative of an isomorphism class of elliptic curves with j-invariant 2.

- Choose $E_2^t: y^2 = x^3 + 16x + 19$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 2.
- Choose $E_4: y^2 = x^3 + 11x + 26$ as the representative of an isomorphism class of elliptic curves with j-invariant 4.
- Choose $E_4^t: y^2 = x^3 + 22x + 18$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 4.
- Choose $E_{23}: y^2 = x^3 + x$ as the representative of an isomorphism class of elliptic curves with j-invariant 23.
- Choose $E_{23}^t: y^2 = x^3 + 13x$ as the representative of the isomorphism class of the twists elliptic curves with j-invariant 23.
- all of the 3-torsion points of the vertices are defined over \mathbb{F}_{31^4}

The $\mathcal{G}_3(\mathbb{F}_{31})$ edges:

• There are no edges in this graph

How the vertices of $\mathcal{G}_{\ell}(\mathbb{F}_{31})$ change when going to $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{31})$:

- E_2 and E_2^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 2, denoted [2].
- E_2 and E_2^t become isomorphic to each other to make the equivalence class of isogenies with j-invariant 2, denoted [2].
- E_{23} and E_{23}^t become isomorphic to each other to make the equivalence class of isogenies with *j*-invariant 23, denoted [23].

How the edges of $\mathcal{G}_3(\mathbb{F}_{31})$ change when going to $\mathcal{G}_3(\overline{\mathbb{F}}_{31})$:

- Four new isogeny equivalence classes are added to this graph of the form ([23], [4]).
- Two new isogeny equivalence classes are added to this graph of the form ([4], [23]).
- Two new isogeny equivalence classes are added to this graph of the form ([4], [2]).
- Two new isogeny equivalence classes are added to this graph of the form ([2], [4]).
- Two new isogeny equivalence classes are added to this graph of the form ([2], [2]).

The $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{31})$ vertices:

- There are 3 supersingular isomorphism class of elliptic curves, namely j=2, j=4, and j=23.
- $E_2: y^2 = x^3 + 2x + 3$ is a representative of the isomorphism class j=2
- $E_4: y^2 = x^3 + 11x + 26$ is a representative of the isomorphism class j = 4
- $E_{23}: y^2 = x^3 + x$ is a representative of the isomorphism class j = 23.

The $\mathcal{G}_3(\overline{\mathbb{F}}_{31})$ edges:

- There are four edges of the form ([23], [4]).
- There are two edges of the form ([4], [23]).
- There are two edges of the form ([4], [2]).
- There are two edges of the form ([2], [4]).
- There are two edges of the form ([2], [2]).

APPENDIX: STRUCTURE OF 2-ISOGENY AND 3-ISOGENY GRAPHS IN SMALL CHARACTERISTICS

Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada

 $Email\ address: \verb| taha.hedayat@ucalgary.ca|$

Virginia Tech Department of Mathematics, 225 Stanger Street, Blacksburg, VA $24061\,$

Email address: sarpin@vt.edu

Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada

 $Email\ address: \verb|rscheidl@ucalgary.ca||$