LIMITI: FORME INDETERMINATE

$$+\infty-\infty$$
; $0\cdot\infty$; $\frac{\infty}{\infty}$; $\frac{0}{0}$; 0^0 ; ∞^0 ; 1^∞

Come abbiamo visto, l'espressione *FORMA INDETERMINATA*, indica che il risultato del limite cambia di volta in volta a seconda delle funzioni che abbiamo. Non esistono regole generali che permettano il calcolo delle forme di indecisione ma vanno risolte caso per caso.

Vediamo attraverso alcuni esempi delle possibili strategie.

FORMA INDETERMINATA $+\infty - \infty$

Vediamo un metoo per il calcolo dei limiti di funzioni polinomiali.

ESEMPIO:

$$\lim_{x \to +\infty} (x^5 - 3x^2 + 4) = (+\infty)^5 - 3(+\infty)^2 + 4 = +\infty - \infty \Rightarrow Forma\ Indeterminata$$

La strategia risolutiva consiste nel raccogliere la potenza massima:

$$\lim_{x \to +\infty} (x^5 - 3x^2 + 4) = \lim_{x \to +\infty} x^5 \left(1 - \frac{3}{x^3} + \frac{4}{x^5} \right) = \lim_{x \to +\infty} x^5 = +\infty$$

In generale, per calcolare il limite di una funzione polinomiale di grado n, con forma indeterminata $+\infty - \infty$, raccogliamo la potenza massima:

$$\lim_{x \to \pm \infty} (a_0 x^n + a_1 x^{n-1} + \dots + a_n) = \lim_{x \to \pm \infty} x^n \left(a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_n}{x^n} \right)$$

Considerato che tutte le frazioni $\frac{a_1}{x}$; $\frac{a_2}{x^2}$; ...; $\frac{a_n}{x^n}$ tendono a zero è sufficiente calcolare:

$$\lim_{x\to\pm\infty}(a_0x^n+a_1x^{n-1}+\cdots+a_n)=\lim_{x\to\pm\infty}(a_0x^n)$$

LIMITE DI FUNZIONI IRRAZIONALI

ESEMPIO:

$$\lim_{x \to +\infty} \left(x - \sqrt{x^2 + 7} \right) = +\infty - \infty \implies Forma\ Indeterminata$$

Il metodo che applichiamo una razionalizzazione:

$$\lim_{x \to +\infty} \left(x - \sqrt{x^2 + 7} \right) \cdot \frac{\left(x + \sqrt{x^2 + 7} \right)}{\left(x + \sqrt{x^2 + 7} \right)} = \lim_{x \to +\infty} \frac{x^2 - (x^2 + 7)}{x + \sqrt{x^2 + 7}} = \lim_{x \to +\infty} \frac{-7}{x + \sqrt{x^2 + 7}} = \frac{-7}{+\infty} = 0$$

In generale, quando compaiono forme indeterminate con funzioni irrazionali, può essere utile *razionalizzare*.

FORMA INDETERMINATA $\frac{\infty}{\infty}$

Vediamo alcune strategie per il calcolo dei limiti di funzioni razionali fratte.

ESEMPIO 1 _ Il grado del numeratore è maggiore del grado del denominatore

$$\lim_{x \to +\infty} \frac{x^6 + 3x^5 + 2x}{x^4 + 6x - 2} = \frac{+\infty + \infty + \infty}{+\infty + \infty - 2} = \frac{\infty}{\infty} \Rightarrow Forma\ Indeterminata$$

Anche in questo caso procediamo raccogliendo la potenza massima a numeratore e a denominatore:

$$\lim_{x \to +\infty} \frac{x^6 + 3x^5 + 2x}{x^4 + 6x - 2} = \lim_{x \to +\infty} \frac{x^6 \left(1 + \frac{3}{x} + \frac{2}{x^5}\right)}{x^4 \left(1 + \frac{6}{x^3} - \frac{2}{x^4}\right)} = \lim_{x \to +\infty} \frac{x^6}{x^4} = \lim_{x \to +\infty} x^2 = +\infty$$

Se il numeratore ha grado maggiore del denominatore il risultato è infinito.

ESEMPIO 2 _ Il grado del numeratore è minore del grado del denominatore

$$\lim_{x \to +\infty} \frac{x^3 - 3x + 6}{x^7 + 2x^5 - 9x} = \frac{+\infty - \infty + 6}{+\infty + \infty - \infty} = \frac{\infty}{\infty} \Rightarrow Forma\ Indeterminata$$

Come al solito procediamo raccogliendo la potenza massima a numeratore e a denominatore:

$$\lim_{x \to +\infty} \frac{2x^3 - 3x + 6}{x^7 + 2x^5 - 9x} = \lim_{x \to +\infty} \frac{x^3 \left(2 - \frac{3}{x^2} + \frac{6}{x^3}\right)}{x^7 \left(1 + \frac{2}{x^2} - \frac{9}{x^6}\right)} = \lim_{x \to +\infty} \frac{2x^3}{x^7} = \lim_{x \to +\infty} \frac{2}{x^4} = 0$$

Se il numeratore ha grado minore del denominatore il risultato è zero.

ESEMPIO 3 _ Il grado del numeratore è uguale al grado del denominatore

$$\lim_{x \to -\infty} \frac{-3x^5 + 5x^3 + 8}{2x^5 + 4x^2 + x} = \frac{+\infty - \infty + 8}{-\infty + \infty - \infty} = \frac{\infty}{\infty} \Rightarrow Forma\ Indeterminata$$

Nuovamente procediamo raccogliendo la potenza massima a numeratore e a denominatore:

$$\lim_{x \to +\infty} \frac{-3x^5 + 5x^3 + 8}{2x^5 + 4x^2 + x} = \lim_{x \to +\infty} \frac{x^5 \left(-3 + \frac{1}{x^2} + \frac{1}{x^5}\right)}{x^5 \left(2 + \frac{1}{x^3} + \frac{1}{x^5}\right)} = \lim_{x \to +\infty} \frac{-3x^5}{2x^5} = -\frac{3}{2}$$

Se il numeratore e il denominatore hanno lo stesso grado il risultato è il rapporto tra i coefficienti dei termini di grado massimo.

In generale, per calcolare il limite di una funzione razionale fratta, con forma indeterminata $\frac{\infty}{\infty}$ è sufficiente considerare le *potenze massime a numeratore e denominatore*:

$$\lim_{x \to \pm \infty} \left(\frac{a_0 x^n + a_1 x^{n-1} + \dots + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_m} \right) = \lim_{x \to \pm \infty} \frac{a_0 x^n}{b_0 x^m} = \begin{cases} \frac{\pm \infty}{a_0} & \text{se } n > m \\ \frac{a_0}{b_0} & \text{se } n = m \\ 0 & \text{se } n < m \end{cases}$$

FORMA INDETERMINATA $\frac{0}{0}$

Consideriamo il quoziente di due polinomi che si annullano contemporaneamente per $x \to x_0$.

ESEMPIO:

$$\lim_{x \to 4} \frac{x^3 + x^2 - 20x}{x^2 - 16} = \frac{64 + 16 - 80}{16 - 16} = \frac{0}{0} \Rightarrow Forma\ Indeterminata$$

La strategia risolutiva consiste nel cercare di *scomporre numeratore e denominatore* in modo da attuare opportune semplificazioni.

$$\lim_{x \to 4} \frac{x^3 + x^2 - 20x}{x^2 - 16}$$

$$= \lim_{x \to 4} \frac{x(x^2 + x - 20)}{(x + 4)(x - 4)} = \lim_{x \to 4} \frac{x(x + 5)(x - 4)}{(x + 4)(x - 4)} = \lim_{x \to 4} \frac{x(x + 5)}{(x + 4)} = \frac{4(4 + 5)}{8} = \frac{9}{2}$$

In generale, per calcolare il limite del quoziente di due polinomi che si annullano entrambi per x che tende a x_0 , la tecnica da applicare e quella delle *scomposizioni*.

FORME INDETERMINATE 0^0 ; ∞^0 e 1^∞

Queste forme indeterminate si incontrano nei calcoli di limiti del tipo:

$$\lim_{x \to \alpha} f(x)^{g(x)} \ con \ f(x) > 0$$

Per risolverle può essere utile utilizzare la seguente *proprietà dei logaritmi*:

$$a = e^{\ln a}$$

Il limite si trasforma quindi nel modo seguente:

$$\lim_{x \to \alpha} f(x)^{g(x)} = \lim_{x \to \alpha} e^{\ln f(x)^{g(x)}} = \lim_{x \to \alpha} e^{g(x) \ln f(x)}$$

ESEMPIO:

$$\lim_{x \to 0^+} (3x)^{\frac{-1}{\ln 3x}} = 0^0 \Rightarrow Forma\ Indeterminata$$

Utilizziamo allora la proprietà dei logaritmi vista prima:

$$\lim_{x \to 0^+} (3x)^{\frac{-1}{\ln 3x}} = \lim_{x \to a} e^{\frac{-1}{\ln 3x} \ln 3x} = e^{-1} = \frac{1}{e}$$

LIMITI NOTEVOLI

Nella tabella seguente illustriamo alcuni limiti particolari, detti *notevoli*, che sono utili nelle applicazioni e che abbreviano o passaggi nel calcolo dei limiti.

LIMITE NOTEVOLE	GENERALIZZAZIONE
$\lim_{x\to 0}\frac{\sin x}{x}=1$	$\lim_{f(x)\to 0} \frac{\sin f(x)}{f(x)} = 1$
$\lim_{x\to 0}\frac{1-\cos x}{x}=0$	$\lim_{f(x)\to 0}\frac{1-\cos f(x)}{f(x)}=0$
$\lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2}$	$\lim_{x \to 0} \frac{1 - \cos f(x)}{[f(x)]^2} = \frac{1}{2}$
$\lim_{x\to\pm\infty}\left(1+\frac{1}{x}\right)^x=e$	$\lim_{f(x)\to\pm\infty}\left(1+\frac{1}{f(x)}\right)^{f(x)}=e$
$\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$	$\lim_{f(x)\to 0}\frac{\ln(1+f(x))}{f(x)}=1$
$\lim_{x\to 0}\frac{e^x-1}{x}=1$	$\lim_{f(x)\to 0}\frac{e^{f(x)}-1}{f(x)}=1$

ESEMPI:

Negli esempi seguenti cerchiamo di ricondurci ai limiti notevoli per risolvere le forme indeterminate.

1)
$$\lim_{x \to 0} \frac{\sin 5x}{x} = \lim_{x \to 0} \frac{\sin 5x}{x} \cdot \frac{5}{5} = \lim_{x \to 0} \frac{\sin 5x}{5x} \cdot 5 = 1 \cdot 5 = 5$$

2)
$$\lim_{x \to 0} \frac{1 - \cos 3x}{2x} = \lim_{x \to 0} \frac{1}{2} \cdot \frac{1 - \cos 3x}{x} \cdot \frac{3}{3} = \lim_{x \to 0} \frac{1}{2} \cdot \frac{1 - \cos 3x}{3x} \cdot 3 = \frac{1}{2} \cdot 0 \cdot 3 = 0$$

3)
$$\lim_{x \to 0} \frac{2x^2}{1 - \cos x} = \lim_{x \to 0} \frac{2}{\frac{1 - \cos x}{x^2}} = \frac{2}{\frac{1}{2}} = 4$$

4)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{2x} \right)^{3x} = \lim_{x \to +\infty} \left[\left(1 + \frac{1}{2x} \right)^x \right]^3 = \lim_{x \to +\infty} \left[\left(1 + \frac{1}{2x} \right)^{x \cdot \frac{2}{2}} \right]^3 = \lim_{x \to +\infty} \left[\left(1 + \frac{1}{2x} \right)^{2x} \right]^{\frac{3}{2}} = e^{\frac{3}{2}} = \sqrt{e^3} = e\sqrt{e}$$

5)
$$\lim_{x \to 0} \frac{\ln(1 - 4x)}{x} = \lim_{x \to 0} \frac{\ln(1 - 4x)}{x} \cdot \frac{-4}{-4} = \lim_{x \to 0} \frac{\ln(1 - 4x)}{-4x} \cdot (-4) = 1 \cdot (-4) = -4$$

6)
$$\lim_{x \to 0} \frac{e^{2x} - 1}{3x} = \lim_{x \to 0} \frac{1}{3} \cdot \frac{e^{2x} - 1}{x} \cdot \frac{2}{2} = \lim_{x \to 0} \frac{1}{3} \cdot \frac{e^{2x} - 1}{2x} \cdot 2 = \frac{1}{3} \cdot 1 \cdot 2 = \frac{2}{3}$$