Some Topics in Elementary Computer Science

Nguyễn Quản Bá Hồng*

Ngày 15 tháng 5 năm 2023

Tóm tắt nội dung

Muc luc

1	Competitive Programming CP
2	Number Theory

1 Competitive Programming CP

2 Number Theory

Definition 1. An integer $a \in \mathbb{Z}$ is called a factor or a divisor of an integer $b \in \mathbb{Z}$ if a divides b (i.e., b is divisible by a). If a is a factor of b, we write $a \mid b$, or b : a, \mathcal{E} otherwise we write $a \nmid b$, or $b \not\mid a$.

Bài toán 1 (Factor/Divisor – Ước số). Với $n \in \mathbb{Z}$ được nhập từ bàn phím, viết chương trình Pascal, Python, C/C++ xuất ra tất cả: (a) các ước nguyên dương của n. (b) các ước nguyên của n.

Bài toán 2 (Prime factorization – Phân tích ra thừa số nguyên tố). Với $n \in \mathbb{Z}$ được nhập từ bàn phím, viết chương trình Pascal, Python, C/C++ xuất ra phân tích ra thừa số nguyên tố của n. E.g., với n = 72, xuất ra $72 = 2^3*3^2$, với n = 12, xuất ra $12 = 2^2*3$.

Let $\tau(n)$ denote the number of (positive) divisors of an integer $n \in \mathbb{Z}$. E.g., $\tau(12) = 6$ since the divisors of 12 are 1, 2, 3, 4, 6, & 12. To calculate the value of $\tau(n)$, we can use the following formula:

$$n = \prod_{i=1}^{k} p_i^{\alpha_i} = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} \Rightarrow \tau(n) = \prod_{i=1}^{k} (\alpha_i + 1) = (\alpha_1 + 1)(\alpha_2 + 1) \cdots (\alpha_k + 1), \ \forall n \in \mathbb{Z},$$

because for each prime p_i , there are $\alpha_i + 1$ ways to choose how many times it appears in the factor.

Example 1.
$$12 = 2^2 \cdot 3 \Rightarrow \tau(12) = (2+1)(1+1) = 3 \cdot 2 = 6$$
.

Bài toán 3 $(\tau(n))$. Với $n \in \mathbb{Z}$ được nhập từ bàn phím, viết chương trình Pascal, Python, C/C++ xuất ra giá trị của hàm $\tau(n)$ số ước số của n.

Let $\sigma(n)$ denote the sum of divisors of an integer $n \in \mathbb{Z}$.

Example 2.
$$U(12) \cap \mathbb{N} = \{1, 2, 3, 4, 6, 12\} \Rightarrow \sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28.$$

To calculate the value of $\sigma(n)$, we can use the following formula:

$$n = \prod_{i=1}^{k} p_i^{\alpha_i} = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} \Rightarrow \sigma(n) = \prod_{i=1}^{k} \sum_{j=0}^{\alpha_i} p_i^j = \prod_{i=1}^{k} (1 + p_i + p_i^2 + \dots + p_i^{\alpha_i}) = \prod_{i=1}^{k} \frac{p_i^{\alpha_i + 1} - 1}{p_i - 1}$$
$$= \frac{p_1^{\alpha_1 + 1} - 1}{p_1 - 1} \cdot \frac{p_2^{\alpha_2 + 1} - 1}{p_2 - 1} \cdots \frac{p_k^{\alpha_k + 1} - 1}{p_k - 1}, \ \forall n \in \mathbb{Z},$$

where the latter form is based on the geometric progression formula.

Example 3.
$$12 = 2^2 \cdot 3 \Rightarrow \sigma(12) = \frac{2^3 - 1}{2 - 1} \cdot \frac{3^2 - 1}{3 - 1} = 28.$$

^{*}Independent Researcher, Ben Tre City, Vietnam e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.