Revised: 4/20/2020

Digital Logic III

Michael C. Hackett
Assistant Professor, Computer Science

Community
College
of Philadelphia

Lecture Topics

- Combinational Circuits
 - Adders
 - Half Adder
 - Full Adder
 - Subtractors
 - Half Subtractor
 - Full Subtractor
 - Multipliers

- Sequential Circuits
 - Clocks
 - SR Latch
 - Flip-Flops
 - SR Flip-Flop
 - D Flip-Flop
 - JK Flip Flop
 - Registers

Adders

- Adders are combinational logic circuits capable of performing addition
- A half adder has two inputs (the two digits to add) and two outputs (the sum and the carry).

0 1 0
$$1^{X_0}$$

 $+ 0$ $+ 1$ $+ 1^{X_1}$
00 01 01 10
 $C(Carry)$ $S(Sum)$

• Half adder truth table:

X_1	X_0	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

0 1 0
$$1^{X_0}$$

 $+ 0$ $+ 1$ $+ 1^{X_1}$
00 01 01 10
 $c(carry)$ $s(Sum)$

SOP Expressions:

$$C = X_1 X_0$$

$$S = \overline{X_1}X_0 + X_1\overline{X_0} = X_1 \oplus X_0$$

X_1	X_0	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder Logic Circuit:

Half Adder Logic Circuit:

• A **full adder** has three inputs (the two digits to add, plus a value carried in) and two outputs (the sum and the carry).

$$C_{IN}(Carry In) = X_1 - X_0 - C_{OUT}(Carry Out)$$

$$0 + 0 + 0 = 0 = 0$$

$$0 + 0 + 1 = 0 = 1$$

$$0 + 1 + 0 = 0 = 1$$

$$1 + 0 + 0 = 0 = 1$$

$$1 + 0 + 1 = 1 = 0$$

$$1 + 1 + 0 = 1 = 1$$

$$1 + 1 + 1 = 1 = 1$$

• Full adder truth table:

C_{IN}	X_1	X_0	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

SOP Expressions:

$$C_{OUT} = \overline{C_{IN}} X_1 X_0 + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0} + C_{IN} X_1 X_0$$

$$S = \overline{C_{IN}} \, \overline{X_1} X_0 + \overline{C_{IN}} X_1 \overline{X_0} + C_{IN} \overline{X_1} \, \overline{X_0} + C_{IN} X_1 X_0$$

C_{IN}	X_1	X_0	C_{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Simplifying:

$$C_{OUT} = \overline{C_{IN}} X_1 X_0 + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0} + C_{IN} X_1 X_0$$

$$C_{OUT} = X_1 X_0 (\overline{C_{IN}} + C_{IN}) + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0}$$

$$C_{OUT} = X_1 X_0 (1) + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0}$$

$$C_{OUT} = X_1 X_0 + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0}$$

$$C_{OUT} = X_1 X_0 + C_{IN} (\overline{X_1} X_0 + X_1 \overline{X_0})$$

$$C_{OUT} = X_1 X_0 + C_{IN}(X_0 \oplus X_1)$$

Simplifying:

$$S = \overline{C_{IN}} \, \overline{X_1} X_0 + \overline{C_{IN}} X_1 \overline{X_0} + C_{IN} \overline{X_1} \, \overline{X_0} + C_{IN} X_1 X_0$$

$$S = \overline{C_{IN}} \, (X_0 \oplus X_1) + C_{IN} (X_0 \odot X_1)$$

$$S = \overline{C_{IN}} \, (X_0 \oplus X_1) + C_{IN} (\overline{X_0} \oplus \overline{X_1}) \qquad \bar{X}Y + X\bar{Y} = X \oplus Y$$

$$S = C_{IN} \oplus (X_0 \oplus X_1) = C_{IN} \oplus X_0 \oplus X_1$$

Full Adder Logic Circuit:

Full Adder Logic Circuit:

C_{IN}	X_1	X_0	C_{OUT}	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Abstracted Full Adder:

Abstracted Full Adder:

C_{IN}	X_1	X_0	C_{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- So far, we've seen only how adders can add single digits together
 - 1+1+1 or 0+1 or 1+0+1 is no problem
 - What if we wanted to add 10+11 or 11101+10101?

- Full adders can work together by providing the carry out of one full adder as the carry in for a second adder
 - The technique shown next is a *ripple-carry adder*

• For example:

• A 2-bit Adder:

Another example:

• A 3-bit Adder:

Another example:

Another example:

• A 4-bit Adder (with buses):

Another example

Subtractors

- **Subtractors** are combinational logic circuits capable of performing subtraction
- A half subtractor has two inputs (the two digits to subtract) and two outputs (the difference and the borrow).

0 1 0
$$1^{X_0}$$
- 0 - 1 - 1^{X_1}
00 01 11 00

B (Borrow) D (Difference)

Negative 1 in two's complement

Half Subtractor

• Half subtractor truth table:

X_1	X_0	В	D
0	0	0	0
0	1	0	1
1	0	1	1
1	1	0	0

0 1 0
$$1^{X_0}$$
- 0 - 0 - 1 1^{X_1}
00 01 11 00

B (Borrow) D (Difference)

Half Subtractors

SOP Expressions:

$$B = X_1 \overline{X_0}$$

$$D = \overline{X_1}X_0 + X_1\overline{X_0} = X_1 \oplus X_0$$

X_1	X_0	В	D
0	0	0	0
0	1	0	1
1	0	1	1
1	1	0	0

Half Subtractor

Half Subtractor Logic Circuit:

Half Subtractor

Half Subtractor Logic Circuit:

• A **full subtractor** has three inputs (the two digits to subtract, plus a value *borrowed in*) and two outputs (the different and the borrow).

$$B_{IN}(Borrow\ In)$$
 $0 - 0 - 0 = 0\ 0$
 $0 - 0 - 1 = 1\ 1$
 $0 - 1 - 0 = 1\ 1$
 $0 - 1 - 1 = 1\ 0$
 $1 - 0 - 0 = 0\ 0$
 $1 - 1 - 0 = 0\ 0$
 $1 - 1 - 1 = 1\ 1$

SOP Expressions:

$$B_{OUT} = \overline{B_{IN}} \, \overline{X_1} X_0 + \overline{B_{IN}} X_1 \overline{X_0} + \overline{B_{IN}} X_1 X_0 + B_{IN} X_1 X_0$$

$$D = \overline{B_{IN}} \, \overline{X_1} X_0 + \overline{B_{IN}} X_1 \overline{X_0} + B_{IN} \overline{X_1} \, \overline{X_0} + B_{IN} X_1 X_0$$

B_{IN}	X_1	X_0	B_{OUT}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Simplifying:

$$B_{OUT} = \overline{B_{IN}} \, \overline{X_1} X_0 + \overline{B_{IN}} X_1 \overline{X_0} + \overline{B_{IN}} X_1 X_0 + B_{IN} X_1 X_0$$

$$B_{OUT} = \overline{B_{IN}} X_1 + \overline{B_{IN}} X_0 + X_1 X_0$$

Simplifying:

$$D = \overline{B_{IN}} \, \overline{X_1} X_0 + \overline{B_{IN}} X_1 \overline{X_0} + B_{IN} \overline{X_1} \, \overline{X_0} + B_{IN} X_1 X_0$$

$$D = \overline{B_{IN}} (X_0 \oplus X_1) + B_{IN} (X_0 \odot X_1)$$

$$D = \overline{B_{IN}} (X_0 \oplus X_1) + B_{IN} (\overline{X_0} \oplus \overline{X_1}) \qquad \overline{X}Y + X\overline{Y} = X \oplus Y$$

$$D = B_{IN} \oplus (X_0 \oplus X_1) = B_{IN} \oplus X_0 \oplus X_1$$

Full Subtractor Logic Circuit:

Full Subtractor Logic Circuit:

B_{IN}	X_1	X_0	B_{OUT}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Full Subtractor Logic Circuit:

B_{IN}	X_1	X_0	B_{OUT}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Full Subtractor Logic Circuit:

B_{IN}	X_1	X_0	B_{OUT}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Abstracted Full Subtractor:

 Like full adders, full subtractors can work together by providing the borrow out of one full subtractor as the borrow in for a second subtractor

• A 3-bit Subtractor:

• A 4-bit Subtractor:

1 1 0 1
- 0 1 1 0
0 0 1 1 1

- Multipliers (not to be confused with multiplexers) are combinational logic circuits capable of performing multiplication
- Note that the multiplication of two 1-bit numbers is a simple and operation

X_{0}	Y_0	$X_0 \times Y_0$	$X_0 \cdot Y_0$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	0

- However, addition will be required when multiplying numbers that are two or more bits.
- We will see how to construct multipliers using full and half adders.
- The largest product of multiplying two, 2-bit numbers is 9:
 - $11 \times 11 = 1001 (3 \times 3 = 9)$
 - Thus, our circuit must have 4 outputs
 - P_0 through P_3

2-bit Multiplier Logic Circuit:

• (Uses 2 half adders)

2-bit Multiplier Logic Circuit:

2-bit Multiplier Logic Circuit:

3-bit Multiplier Logic Circuit:

- (Uses 2 half adders)
- (Uses 3 full adders)

3-bit Multiplier Logic Circuit:

3-bit Multiplier Logic Circuit:

Sequential Circuits

- The combinational logic circuits we've seen have the following limitations:
 - They have no memory capability
 - The output changes as soon as the input changes

- **Sequential logic circuits** maintain a state- The circuit's output is determined by both:
 - The input it currently has
 - The input it has received over time

- In most cases, the components in a sequential circuit need to be synchronized
 - The components in the circuit must all update their states at the same time

- This is achieved with a clock signal
 - A 1-bit signal that alternates between 1 and 0 at regular intervals

 A clock cycle ("tick") is when the clock transitions from 0 to 1 and back to 0

• A clock period is the time it takes to complete 1 clock cycle

- The **clock frequency** (also called the **clock rate**) is the number of clock periods in some amount of (*wall clock*) time
 - Wall clock time is the seconds, minutes, hours, etc. that we experience
 - Time ticks by on a wall clock by the second, whereas these clocks may tick thousands (or millions or billions) of times per one second
- Clock frequency is measured in $\frac{cycle}{second}$ or Hertz (abbreviated Hz)

• Clock frequency is the inverse of the clock period (and vice versa)

$$Period = \frac{seconds}{cycle} = \frac{1}{\frac{cycles}{second}} = \frac{1}{Frequency}$$
 Seconds per cycle

$$Frequency = \frac{cycles}{second} = \frac{1}{\frac{seconds}{cycle}} = \frac{1}{Period}$$
 Cycles per second

- Example: What is the clock rate of a processor with a clock period of 250 ps (picoseconds)?
 - $250ps = 250 * 10^{-12} seconds = 0.00000000025s$

•
$$Period = \frac{250 \times 10^{-12} seconds}{1 \ cycle} = \frac{0.00000000025 \ seconds}{1 \ cycle} = 0.000000000005 \ \frac{seconds}{cycle}$$

• Frequency =
$$\frac{1}{Period} = \frac{1}{\frac{250 \times 10^{-12} seconds}{1 cycle}} = \frac{250 \times 10^{-12} cycles}{1 second} = \frac{4,000,000,000 cycles}{1 second}$$

= $4,000,000,000,000 \frac{cycles}{second} = 4.0 \text{ GHz}$

• Example: What is the clock period of a processor with a clock rate of 3.8GHz?

• Frequency = 3,800,000,000
$$\frac{cycles}{second} = \frac{3,800,000,000 \ cycles}{1 \ second}$$

•
$$Period = \frac{1}{Frequency} = \frac{1}{\frac{3,800,000,000 \, cycles}{1 \, second}} = \frac{1 \, second}{\frac{3,800,000,000 \, cycles}{1 \, second}}$$

$$= 2.63 \times 10^{-10} \frac{seconds}{cycle} = 263 \times 10^{-12} \frac{seconds}{cycle}$$

$$= 263 \frac{picoseconds}{cycle}$$

Abstraction of a clock:

• A latch is a digital component that stores 1 bit of information

• An SR Latch has two inputs (Set and Reset) and two outputs (Q and its complement, \overline{Q})

Feedback

- The output of the top NOR is one input to the bottom NOR
- The output of the bottom NOR is one input to the top NOR

• Recall that, for a NOR gate, the output is 0 if either input is a 1

x	у	x NOR y
0	0	1
0	1	0
1	0	0
1	1	0

- We'll start with the second row of the latch's truth table:
 - This is the Reset state

S	R	$\overline{m{Q}}$	Q	State
0	0			
0	1	1	0	Reset $(Q = 0)$
1	0			
1	1			

- R is 1, meaning the bottom NOR must have an output (Q) of 0
- S is 0 and the output of the bottom NOR was 0, so the top NOR must have an output (Q) of 1
 - This is a valid state since Q and \overline{Q} are complements

- Next is the third row of the latch's truth table:
 - This is the Set state

S	R	$\overline{m{Q}}$	Q	State
0	0			
0	1	1	0	Reset $(Q = 0)$
1	0	0	1	Set (Q = 1)
1	1			

- S is 1, meaning the top NOR must have an output (\overline{Q}) of 0
- R is 0, and the output of the top NOR was 0, so the bottom NOR must have an output (Q) of 1
 - This is a valid state since Q and \overline{Q} are complements

- Next is the fourth row of the latch's truth table:
 - This is the Unknown state

S	R	$\overline{m{Q}}$	Q	State
0	0			
0	1	1	0	Reset $(Q = 0)$
1	0	0	1	Set (Q = 1)
1	1	0	0	Unknown

- S is 1 and R is 1 meaning both NOR gates must have an output of 0
- \bullet This doesn't make sense since Q and \overline{Q} are supposed to be complements

- Back to the first row of the latch's truth table:
 - This is the Unchanged state

S	R	$\overline{m{Q}}$	Q	State
0	0	$ar{Q}$	Q	Unchanged
0	1	1	0	Reset $(Q = 0)$
1	0	0	1	Set (Q = 1)
1	1	0	0	Unknown

- S is 0 and R is 0, the current state will depend on the previous state
 - If the previous state was the set state, the current state will still be in the set state
 - If the previous state was the reset state, the current state will still be in the reset state

- Turning Q from 0 (Reset) to 1 (Set)
 - S = 0, S = 1, S = 0

- Turning Q from 1 (Set) to 0 (Reset)
 - R = 0, R = 1, R = 0

SR Flip-Flop

- An extension of the SR Latch is the SR Flip-Flop.
- The S and R inputs are each and'ed with a clock signal.
 - The state can only be changed when the clock signal is 1

S	R	Clock	$\overline{m{Q}}$	Q	State
0	0	1	$ar{Q}$	Q	Unchanged
0	1	1	1	0	Reset $(Q = 0)$
1	0	1	0	1	Set (Q = 1)
1	1	1	0	0	Unknown
Χ	X	0	$ar{Q}$	Q	Unchanged

D Flip-Flop

- A D Flip-Flop has one input (D) and two outputs (Q and its complement, \overline{Q})
- The input is and'ed with a clock signal prior to the NOR gates.
 - The state can only be changed when the clock signal is 1

D	Clock	$\overline{m{Q}}$	Q	State
0	1	1	0	Reset $(Q = 0)$
1	1	0	1	Set (Q = 1)
X	0	$ar{Q}$	Q	Unchanged

JK Flip-Flop

- In a JK Flip-Flop, the input is and'ed with a clock signal *and* an output prior to the NOR gates.
 - The state can only be changed when the clock signal is 1

J	K	Clock	$\overline{m{Q}}$	Q	State
0	0	1	$ar{Q}$	Q	Unchanged
0	1	1	1	0	Reset $(Q = 0)$
1	0	1	0	1	Set (Q = 1)
1	1	1	Q	$ar{Q}$	Toggle
X	Χ	0	$ar{Q}$	Q	Unchanged

Flip-Flops

Abstractions of Flip-Flops:

 By now, we are familiar with the use of registers from assembly programming to temporarily store data.

- Since flip-flops store 1 bit of information, we can create a register from a series of flip-flops
 - 4 flip-flops for a 4-bit register, 32 flip-flops for a 32-bit register, etc.

• A 2-bit register:

• A 4-bit register:

• An 8-bit register:

• Abstractions of Registers:

