Bivariate Zusammenhangsmaße

	Metrisch	Ord	linal	Non	ninal
		singulär	Rangklassen	Dichotom	Polychotom
Metrisch	Produkt- Moment- Korrelation r	Kendalls $ au$; Wilsons e	Polyseriale Kor- relation	(Punkt-) biseria- le Korrelation	Koeffizient η
Ordinal (singulär)		Kendalls $ au$; Wilsons e	Somers' d_{YX} ; Kims $d_{Y \bullet X}$	Rangbiseriale Korrelation; Somers' d_{YX} ; Kims $d_{Y \bullet X}$	Rangklassen er- stellen
Ordinal (Rang- klassen)			Koeffizient γ	Koeffizient γ	Cramérs V ; Multiples R^2 einer Probit- Regression
Nominal (Dichotom)				ϕ -Koeffiz.; Yules Q	Cramérs V
Nominal (Poly- chotom)					Cramérs V

Tabelle aus: Eid, Gollwitzer & Schmitt (2017), S. 569

Geordnete Antwortkategorien

▶ Hängt die Wahlabsicht mit der Zufriedenheit mit der aktuellen Regierung zusammen?

Kreuztabelle

- ► Häufigkeitstabelle mit zwei Dimensionen
- Beispiel hier: Zufriedenheit mit der aktuellen Regierung (Zeilen) und Absicht, an der Wahl teilzunehmen (Spalten)

	nein	unentschlossen	ја
unzufrieden	11	22	33
teils-teils	8	34	45
zufrieden	7	14	49

- lacktriangle Kovarianz und Korrelation basieren auf Mittelwerten und Varianzen ightarrow sind für ordinalskalierte Variablen ungeeignet
- lacktriangle Koeffizient γ basiert auf der Strukturierung aller paarweisen Vergleiche

$$\hat{\gamma} = \frac{n_K}{n_K + n_D} - \frac{n_D}{n_K + n_D} = \frac{n_K - n_D}{n_K + n_D}$$

- $\hat{\gamma}$ Geschätzter Zusammenhang
- n_K Anzahl konkordanter Paare
- n_D Anzahl diskordanter Paare

	nein	unentschlossen	ja
unzufrieden	11	22	33
teils-teils	8	34	45
zufrieden	7	14	49

	nein	unentschlossen	ja
unzufrieden	11	22	33
teils-teils	8	34	45
zufrieden	7	14	49

Konkordante Paare (n_K)

- ▶ Paare, bei denen $x_m > x_{m'}$ und $y_m > y_{m'}$, bzw. $x_m < x_{m'}$ und $y_m < y_{m'}$
- ► Als gleichsinnige Wertekombination bezeichnet

	nein	unentschlossen	ja
unzufrieden	11	22	33
teils-teils	8	34	45
zufrieden	7	14	49

Konkordante Paare (n_K)

- Paare, bei denen $x_m > x_{m'}$ und $y_m > y_{m'}$, bzw. $x_m < x_{m'}$ und $y_m < y_{m'}$
- ► Als gleichsinnige Wertekombination bezeichnet

Diskordante Paare (n_D)

- Paare, bei denen $x_m > x_{m'}$ aber $y_m < y_{m'}$, bzw. $x_m < x_{m'}$ aber $y_m > y_{m'}$
- ► Als gegensinnige Wertekombination bezeichnet

	nein	ein unentschlossen ja			ja
unzufrieden	11		22		33
teils-teils	8		34		45
zufrieden	7	14 49		49	

Konkordante Paare (n_K)

- ▶ Paare, bei denen $x_m > x_{m'}$ und $y_m > y_{m'}$, bzw. $x_m < x_{m'}$ und $y_m < y_{m'}$
- Als gleichsinnige Wertekombination bezeichnet

Diskordante Paare (n_D)

- Paare, bei denen $x_m > x_{m'}$ aber $y_m < y_{m'}$, bzw. $x_m < x_{m'}$ aber $y_m > y_{m'}$
- Als gegensinnige Wertekombination bezeichnet

Rangbindungen

Paare, bei denen $x_m = x_{m'}$ oder $y_m = y_{m'}$

Anzahl der Paare

	nein	unentschlossen	ja
unzufrieden	11	22	33
teils-teils	8	34	45
zufrieden	7	14	49

$$n_K = \sum_{i=1}^{k-1} \sum_{j=1}^{l-1} n_{ij} \cdot \underbrace{\left(\sum_{a=i+1}^k \sum_{b=j+1}^l n_{ab}\right)}_{ ext{Jede konkordante Zelle}}$$

Für i = 1, j = 2 (blau markierte Zelle)

$$n_K = 22 \cdot (45 + 49) = 2068$$

Anzahl der Paare

	nein	unentschlosser	i ja
unzufrieden	11	22	33
teils-teils	8	34	45
zufrieden	7	14	49

Für i = 1, j = 2 (blau markierte Zelle)

$$n_D = 22 \cdot (8+7) = 330$$

Vorgehen zum Zählen der Paare

Anzahl konkordante Paare

n_{11}	n_{12}	n_{13}
n ₂₁	<i>n</i> ₂₂	<i>n</i> ₂₃
n ₃₁	n ₃₂	<i>n</i> ₃₃

$$n_{11}$$
 n_{12} n_{13}
 n_{21} n_{22} n_{23}
 n_{31} n_{32} n_{33}

$$n_{11}$$
 n_{12} n_{13} n_{21} n_{22} n_{23} n_{31} n_{32} n_{33}

$$\begin{array}{c|cccc}
n_{11} & n_{12} & n_{13} \\
n_{21} & n_{22} & n_{23} \\
n_{31} & n_{32} & n_{33}
\end{array}$$

$$n_{11}$$
 n_{12} n_{13} n_{21} n_{22} n_{23} n_{31} n_{32} n_{33}

$$n_{11}$$
 n_{12} n_{13} n_{21} n_{22} n_{23} n_{31} n_{32} n_{33}

$$n_{11} \quad n_{32} \quad n_{33} \quad n_{31} \quad n_{32} \quad n_{33}$$

$$\sum_{l} n_{33} \quad n_{33} \quad n_{34} \quad n_{34} \quad n_{35} \quad n_{4b} \quad n_{4$$

Relevante Zellen der Tabelle

 $n_{12} \mid n_{13}$

n₃₂ n₃₃

 n_{22} n_{23}

n₁₂ n₁₃

 n_{12}

 n_{31} n_{32} n_{33}

 n_{22} 1123

lede konkordante Zelle

Anzahl diskordante Paare

$$\begin{array}{cccc} n_{11} & n_{12} & n_{13} \\ \hline n_{21} & n_{22} & n_{23} \\ \hline n_{31} & n_{32} & n_{33} \end{array}$$

$$n_{11}$$
 n_{12} n_{13} n_{21} n_{22} n_{23} n_{31} n_{32} n_{33}

n₁₃

*n*23

 n_{33}

n_{11}	n ₁₂
n_{21}	<i>n</i> ₂₂
n ₃₁	<i>n</i> ₃₂

$$\begin{array}{c|cccc} n_{11} & n_{12} & n_{13} \\ \hline n_{21} & n_{22} & n_{23} \\ \hline n_{31} & n_{32} & n_{33} \\ \end{array}$$

$$\begin{array}{cccc} n_{11} & n_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ n_{31} & n_{32} & n_{33} \end{array}$$

$$n_D = \sum_{i=1}^{k-1} \sum_{j=2}^{l} n_{ij} \cdot \left(\sum_{a=i+1}^{k} \sum_{b=1}^{j-1} n_{ab} \right)$$

Relevante Zellen der Tabelle

lede diskordante Zelle

 $n_K =$

Zusammenhangsmaß

	nein	unentschlossen	ja
unzufrieden	11	22	33
teils-teils	8	34	45
zufrieden	7	14	49

$$\hat{\gamma} = \frac{n_K}{n_K + n_D} - \frac{n_D}{n_K + n_D} = \frac{n_K - n_D}{n_K + n_D}$$
$$= \frac{5800 - 3592}{9392} = 0.235$$

- ightharpoonup Wertebereich [-1;1]
- $\gamma = -1$, wenn alle (nicht gebundenen) Paare diskordant sind
- $\gamma = 0$, wenn gleich viele konkordante und diskordante Paare vorliegen
- $ho \gamma =$ 1, wenn alle (nicht gebundenen) Paare konkordant sind

Bivariate Zusammenhangsmaße

	Metrisch	Ord	linal	Non	ninal
		singulär	Rangklassen	Dichotom	Polychotom
Metrisch	Produkt- Moment- Korrelation r	Kendalls $ au$; Wilsons e	Polyseriale Kor- relation	(Punkt-) biseria- le Korrelation	Koeffizient η
Ordinal (singulär)		Kendalls $ au$; Wilsons e	Somers' d_{YX} ; Kims $d_{Y \bullet X}$	Rangbiseriale Korrelation; Somers' d_{YX} ; Kims $d_{Y \bullet X}$	Rangklassen er- stellen
Ordinal (Rang- klassen)			Koeffizient γ	Koeffizient γ	Cramérs V Multiples R^2 einer Probit- Regression
Nominal (Dichotom)				ϕ -Koeffiz.; Yules Q	Cramérs V
Nominal (Poly- chotom)					Cramérs V

Tabelle aus Eid, Gollwitzer & Schmitt (2017), S. 569

Sonderfall der Nominalskala: Dichotome Variablen

- Anzahl der Kassensitze für Psychotherapeut*innen ist weit unter bedarfsdeckend
- ► Forschungsfrage: Hängt die Form des Versicherungsstatus (privat vs. gesetzlich) mit dem Wahrnehmen einer Psychotherapie bei einer diagnostizierten Depression zusammen?
- Beide Variablen sind nominalskaliert und zweistufig
- Dichotome Variablen sollten idealerweise dummy kodiert werden (mit 0 und 1)

	keine Therapie (0)	Therapie (1)	Sum
Gesetzlich (0)	94	55	149
Privat (1)	24	34	58
Sum	118	89	207

Mittelwert dichotomer Variablen

$$\bar{x} = \frac{1}{n} \sum_{j=1}^k n_j \cdot a_j = \sum_{j=1}^k h_j \cdot a_j$$

- ▶ Mittelwert entspricht der relativen Häufigkeit der Kategorie 1
- ► Therapie: $\bar{x} = 0.43$, Versicherung: $\bar{y} = 0.28$

Korrelationskoeffizient ϕ

$$\hat{\phi} = \frac{s_{XY}}{s_X \cdot s_Y} = r_{XY}$$

$$= \frac{n_{11} \cdot n_{22} - n_{12} \cdot n_{21}}{\sqrt{(n_{11} + n_{12}) \cdot (n_{11} + n_{21}) \cdot (n_{12} + n_{22}) \cdot (n_{21} + n_{22})}}$$

- lacktriangle Bei dummy-kodierten Variablen kann die Produkt-Moment-Korrelation als $\hat{\phi}$ interpretiert werden
- lacktriangle Grenzwerte $(-1 \ ext{oder} \ 1)$ nur bei perfektem Zusammenhang und gleicher Randverteilung möglich
- ▶ Im Beispiel: $\phi_{XY} = 0.197$

Yules Q

	keine Therapie (0)	Therapie (1)	Sum
Gesetzlich (0)	94	55	149
Privat (1)	24	34	58
Sum	118	89	207

$$Q = \frac{n_{11} \cdot n_{22} - n_{12} \cdot n_{21}}{n_{11} \cdot n_{22} + n_{12} \cdot n_{21}} = \frac{n_K - n_D}{n_K + n_D}$$

$$Q = \frac{94 \cdot 34 - 55 \cdot 24}{94 \cdot 34 + 55 \cdot 24} = \frac{1876}{4516} = 0.415$$

• Wertebereich: [-1; 1], übliche Interpretation

Vergleich von ϕ und Yules Q

$$Q = -1, \ \phi = -.5$$

	keine Therapie (0)	Therapie (1)	Sum
Gesetzlich (0)	30	30	60
Privat (1)	30	0	30
Sum	60	30	90

$$Q = 1, \ \phi = .5$$

	keine Therapie (0)	Therapie (1)	Sum
Gesetzlich (0)	30	30	60
Privat (1)	0	30	30
Sum	30	60	90

- Q gibt strikte Ordnung der drei besetzten Kategorien wieder
- ϕ gibt wieder, dass Eindeutigkeit nur in eine Richtung besteht