基于机器学习的晶格结构预测

Ziyuan Cheng and Yuhang Zhang

A picture made by stable diffusion with prompt about "crystal prediction with machine learning"

Common practice of machine learning to predict crystal structures

Science and Technology of Advanced Materials: Methods, 1:1, 87-97 (2021)

Nature Communications volume 13, Article number: 1492 (2022)

Test 1 Direct prediction

Obtaining data

Database A

Download Cif from

Open-access collection of crystal structures of organic, inorganic, metal-organic compounds and minerals, excluding biopolymers.

g data and software from CrystalEye, developed by Nick Day at the department of Chemistry, the University of Cambridge under supervision of Peter Murray-Rus

All data on this site have been placed in the public domain by the contributors

Currently there are **501477** entries in the COD. Latest deposited structure: <u>7062445</u> on **2023-04-27** at **00:26:44 UTC**

大小: 21.2 GB 共 501354 个文件和 6978 个文件夹 压缩率 24.4%

Database B
Obtain data with API from
With pymatgen

Data_ The lowest energy configuration of Combinations of the first 85 elements of the periodic table of elements

	formula	elements	nsites	element_symbols	coordinates	energy	spacegroup	spacegroup_num
0	Ag11Hg9	Ag, Hg	20	['Ag', 'Ag', 'Ag', 'Ag', 'Ag', 'Ag', 'Ag', 'Ag	[[1.609567 -0.92928553 33.90805742]\n [1.6	-677.652749	P3m1	156
1	Ag2Br3	Ag, Br	10	['Ag', 'Ag', 'Ag', 'Ag', 'Br', 'Br', 'Br', 'Br	[[-3.46990705e+00 -2.00392334e+00 1.22402099e	-168.691087	R-3c	167
2	Ag2Cl3	Ag, Cl	10	['Ag', 'Ag', 'Ag', 'Ag', 'Cl', 'Cl', 'Cl', 'Cl	[[-3.30941698e+00 -1.91047971e+00 1.71721380e	-127.332050	R-3c	167
3	Ag2F	Ag, F	3	['Ag', 'Ag', 'F']	[[-1.83755070e-06 1.72922338e+00 3.97018472e	-48.352742	P-3m1	164
4	Ag2F3	Ag, F	10	['Ag', 'Ag', 'Ag', 'Ag', 'F', 'F', 'F', 'F', 'F', 'F', '	[[-2.87395102e+00 -1.65949299e+00 2.26233906e	-116.183864	R-3c	167
10623	ZrZn16	Zr, Zn	34	['Zr', 'Zr', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn	[[-2.17422601 6.06378581 8.71633518]\n [6.4	-333.573781	Cmcm	63
10624	ZrZn2	Zr, Zn	6	['Zr', 'Zr', 'Zn', 'Zn', 'Zn', 'Zn']	[[5.25615317e+00 3.71666061e+00 9.10392570e	-83.354040	Fd-3m	227
10625	ZrZn22	Zr, Zn	46	['Zr', 'Zr', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn	[[4.26511414e+00 3.01589110e+00 7.38739309e	-440.455327	Fd-3m	227
10626	ZrZn3	Zr, Zn	8	['Zr', 'Zr', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn']	[[2.24703936e-06 3.37600716e+00 3.24801562e	-101.493900	P6_3/mmc	194
10627	NaN	Na, N	8	['Na', 'Na', 'Na', 'Na', 'N', 'N', 'N', '	[[3.93926 4.366545 2.46981583]\n [3.93926	-50.234293	Fddd	70

10628 rows × 8 columns

Data_

	formula	elements	nsites	element_symbols	coordinates	energy	spacegroup	spacegroup_num
0	Ag11Hg9	Ag, Hg	20	['Ag', 'Ag', 'Ag', 'Ag', 'Ag', 'Ag', 'Ag', 'Ag	[[1.609567 -0.92928553 33.90805742]\n [1.6	-677.652749	P3m1	156
1	Ag2Br3	Ag, Br	10	['Ag', 'Ag', 'Ag', 'Ag', 'Br', 'Br', 'Br', 'Br	[[-3.46990705e+00 -2.00392334e+00 1.22402099e	-168.691087	R-3c	167
2	Ag2Cl3	Ag, Cl	10	['Ag', 'Ag', 'Ag', 'Ag', 'Cl', 'Cl', 'Cl', 'Cl	[[-3.30941698e+00 -1.91047971e+00 1.71721380e	-127.332050	R-3c	167
3	Ag2F	Ag, F	3	['Ag', 'Ag', 'F']	[[-1.83755070e-06 1.72922338e+00 3.97018472e	-48.352742	P-3m1	164
4	Ag2F3	Ag, F	10	['Ag', 'Ag', 'Ag', 'Ag', 'F', 'F', 'F', 'F', '	[[-2.87395102e+00 -1.65949299e+00 2.26233906e	-116.183864	R-3c	167
10623	ZrZn16	Zr, Zn	34	['Zr', 'Zr', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn	[[-2.17422601 6.06378581 8.71633518]\n [6.4	-333.573781	Cmcm	63
10624	ZrZn2	Zr, Zn	6	['Zr', 'Zr', 'Zn', 'Zn', 'Zn', 'Zn']	[[5.25615317e+00 3.71666061e+00 9.10392570e	-83.354040	Fd-3m	227
10625	ZrZn22	Zr, Zn	46	['Zr', 'Zr', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn	[[4.26511414e+00 3.01589110e+00 7.38739309e	-440.455327	Fd-3m	227
10626	ZrZn3	Zr, Zn	8	['Zr', 'Zr', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn', 'Zn']	[[2.24703936e-06 3.37600716e+00 3.24801562e	-101.493900	P6_3/mmc	194
10627	NaN	Na, N	8	['Na', 'Na', 'Na', 'Na', 'N', 'N', 'N', 'N']	[[3.93926 4.366545 2.46981583]\n [3.93926	-50.234293	Fddd	70

An MLP network

Accuracy: 0.0973659454374412

Accuracy: 0.14487300094073377

10628 rows × 8 columns

From elements to structures

Machine learning here with Generative models?

From structures to energy or other ways to pick one

GNN and ...

Just like ...

Generate well-defined structures and Then pick one

Seed: 3040976647

Seed: 3939324262

could Using some pre-trained models

like: gpt-2, T5, etc.

Information of Structures

na(3.93926, 4.366545, 2.46981583)_na(3.93926, 4.366545, 7.46388417)_na(1.96963, 2.1832725, 0.01360917)_na(1.96963, 2.1832725, 4.95324083)_n(3.93926, 4.96663928, 4.96685)_n(3.93926, 3.76645072, 4.96685) n(5.90889, 5.94972322, 7.450275) n(5.90889, 7.14991178, 7.450275) sg70

na_r166.00_e[ne]3s1_p0.5_n_r71.00_e[he] 2s2 2p3_p0.5

Information of Atoms

Structure generation

Apply transformers and could Using some pre-trained models

like: gpt-2, T5, etc.

Information of Structures

na(3.93926, 4.366545, 2.46981583)_na(3.93926, 4.366545, 7.46388417)_na(1.96963, 2.1832725, 0.01360917)_na(1.96963, 2.1832725, 4.95324083)_n(3.93926, 4.96663928, 4.96685)_n(3.93926, 3.76645072, 4.96685)_n(5.90889, 5.94972322, 7.450275)_n(5.90889, 7.14991178, 7.450275)_sg70

na_r166.00_e[ne]3s1_p0.5_n_r71.00_e[he] 2s2 2p3_p0.5

Information of Atoms

If one has a good binary or ternary structure generating model and then trains a small amount of structured data such as quadratic, quintuplet, etc., can one perform well with a wider variety of elements?

Thanks