22023EUF0001

João Ninguém

Intruções para a prova:

- Esta prova contém **40** problemas sobre mecânica clássica, eletromagnetismo, termodinâmica, física moderna, mecânica quântica e física estatística. Todas as questões têm o mesmo peso.
- O tempo de duração desta prova é de 4 horas.
 O tempo mínimo de permanência na sala é de 90 minutos.
- Não é permitido o uso de calculadoras ou outros instrumentos eletrônicos.
- Assinale as alternativas corretas na folha de respostas que se encontra no final do caderno de questões, preenchendo inteiramente o quadradinho correspondente a caneta azul ou preta.
 Alternativas assinaladas fora da folha de respostas não serão consideradas Não

Alternativas assinaladas fora da folha de respostas não serão consideradas Não destaque a folha de respostas. Erros na marcação da resposta podem ser corrigidos com corretivo branco.

• Ao final da prova, devolva tanto o caderno de questões quanto o formulário.

Questão 1 [mc1a] Um satélite de massa m se move em uma órbita circular de raio r, medido em relação ao centro da Terra. Dado um eixo que é perpendicular ao plano do movimento e passa pela origem (centro da Terra), qual é o módulo do momento angular do satélite em relação ao eixo e a energia total do sistema em termos da constante gravitacional G, da massa da Terra M, da massa do satélite m e do raio da órbita r? Considere o atrito com a atmosfera como sendo desprezível e adote o zero de energia potencial gravitacional como sendo no infinito.

$$L = \sqrt{GMm^2r}; E = -\frac{1}{2} \frac{GMm}{r}$$

$$\blacksquare$$
 $L = \sqrt{GMm^2r}$; $E = -\frac{GMm}{r}$

$$C L = \sqrt{GM^2mr}; E = \frac{GMm}{r}$$

$$\boxed{\mathbf{D}} \ L = \sqrt{GM^2mr}; \ E = -\frac{1}{2} \frac{GMm}{r^2}$$

$$\boxed{\text{E}} \ L = \sqrt{GMmr}; \ E = -\frac{GMm}{r^2}$$

Questão 2 [mc1b] Um satélite de massa m se move em uma órbita circular de raio r, medido em relação ao centro da Terra. Dado um eixo que é perpendicular ao plano do movimento e passa pela origem (centro da Terra), qual é o módulo do momento angular do satélite em relação ao eixo e a sua energia cinética em termos da constante gravitacional G, da massa da Terra M, da massa do satélite m e do raio da órbita r? Considere o atrito com a atmosfera como sendo desprezível.

$$L = \sqrt{GMm^2r}; K = \frac{1}{2} \frac{GMm}{r}$$

$$\boxed{\mathbf{B}} \ L = \sqrt{GMm^2r}; \ K = -\frac{GMm}{r}$$

$$\boxed{\mathbf{C}} \ L = \sqrt{GM^2mr}; \ K = \frac{GMm}{r}$$

$$\boxed{\mathbf{D}} \ L = \sqrt{GM^2mr}; \ K = -\frac{1}{2} \frac{GMm}{r^2}$$

$$\fbox{E} \ L = \sqrt{GMmr}; \ K = \frac{GMm}{r^2}$$

Questão 3 [mc2a]

Um sistema composto por uma massa m acoplada a três molas ideais de constantes elásticas k_1 , k_2 e k_3 está montado como mostrado na figura ao lado. A massa pode oscilar (longitudinalmente à direção das molas) em torno de seu ponto de equilíbrio sobre uma superfície de atrito desprezível. Determine a frequência angular ω_0 de oscilação da massa. Assuma que, no equilíbrio, as molas estão relaxadas.

$$\omega_0 = \sqrt{\frac{k_1 + k_2 + k_3}{m}}$$

$$\boxed{B} \ \omega_0 = \sqrt{\frac{(1/k_1) + k_2 + k_3}{m}}$$

$$\boxed{C} \ \omega_0 = \sqrt{\frac{k_1 + (1/k_2) + (1/k_3)}{m}}$$

$$\boxed{D} \ \omega_0 = \sqrt{\frac{(1/k_1) + (1/k_2) + (1/k_3)}{m}}$$

$$\boxed{E} \ \omega_0 = \sqrt{\frac{k_1}{m}}$$

Questão 4 [mc2b]

Um sistema composto por uma massa m acoplada a quatro molas ideais, duas de constantes elásticas k_1 e as outras duas de constante elástica k_2 , está montado como mostrado na figura ao lado. A massa pode oscilar (longitudinalmente à direção das molas) em torno de seu ponto de equilíbrio sobre uma superfície de atrito desprezível. Determine a frequência angular ω_0 de oscilação da massa. Assuma que, no equilíbrio, as molas estão relaxadas.

$$\omega_0 = \sqrt{\frac{2(k_1 + k_2)}{m}}$$

$$\mathbb{B} \ \omega_0 = \sqrt{\frac{\left(\frac{1}{k_1 + k_2} + \frac{1}{k_1 + k_2}\right)}{m}}$$

$$\mathbb{C} \ \omega_0 = \sqrt{\frac{2(1/k_1) + 2(1/k_2)}{m}}$$

$$\mathbb{D} \ \omega_0 = \sqrt{\frac{k_1 + k_2}{m}}$$

$$\mathbb{E} \ \omega_0 = \sqrt{\frac{\left(\frac{1}{2k_1 + 2k_2}\right)}{m}}$$

Questão 5 [mc3a] A energia potencial de uma molécula de LiBr pode ser descrita aproximadamente como

$$U(r) = \alpha e^2 \left[\frac{C}{7r^7} - \frac{1}{r} \right] ,$$

onde α e C são constantes positivas, e é o módulo da carga do elétron e r é a distância relativa entre os dois átomos. O comportamento de U(r) é apresentado na figura abaixo. Determine a distância interatômica r_0 de equilíbrio da molécula e a "constante de mola" k (ou constante de força), assumindo uma aproximação harmônica no entorno de r_0 .

$$r_0 = C^{1/6} \text{ e } k = \frac{6\alpha e^2}{\sqrt{C}}$$

$$R_0 = C^{1/6} \text{ e } k = \frac{6}{\sqrt{C}}$$

$$\boxed{\mathbf{C}} \ r_0 = \left(\frac{C}{7}\right)^{1/6} \in k = \frac{6\sqrt{7}\alpha e^2}{\sqrt{C}}$$

$$\boxed{\mathbf{D}} \ r_0 = \left(\frac{C}{7}\right)^{1/6} \in k = \frac{6\sqrt{7}}{\sqrt{C}}$$

$$\boxed{\mathrm{E}} \ r_0 = \alpha e^2 C^{1/6} \ \mathrm{e} \ k = \sqrt{\frac{\alpha e^2}{C}}$$

 ${f Quest\~ao}$ 6 [mc3b] — A energia potencial de uma molécula de ${\bf Ar}_2$ pode ser descrita aproximadamente como

$$U(r) = \frac{D}{12} \left[\frac{a^{12}}{r^{12}} - \frac{2a^6}{r^6} \right] ,$$

onde a e D são constantes positivas e r é a distância relativa entre os dois átomos. O comportamento de U(r) é apresentado na figura abaixo. Determine a distância interatômica r_0 de equilíbrio da molécula e a "constante de mola" k (ou constante de força), assumindo uma aproximação harmônica no entorno de r_0 .

$$r_0 = a e k = \frac{6D}{a^2}$$

$$\boxed{\mathbf{B}} \ r_0 = a \ \mathbf{e} \ k = \frac{13D}{a^2}$$

$$C r_0 = \frac{a}{\sqrt[6]{2}} e k = \frac{6D}{a^2}$$

$$D r_0 = \frac{a}{\sqrt[6]{2}} e k = \frac{13D}{a^2}$$

$$[E] r_0 = \frac{a}{2} e k = \frac{D}{a^4}$$

Questão 7 [mc4a]

Um disco uniforme de momento de inércia $I_1=I$ é montado sobre um eixo vertical de massa desprezível e gira livremente com velocidade angular ω_0 . Em um dado instante, deixa-se cair sobre esse disco girante (de uma altura desprezível) um outro disco uniforme de momento de inércia $I_2=I/2$ e velocidade angular nula, como mostrado na figura ao lado. Devido ao atrito entre as superfícies dos discos, eles passam a girar juntos com velocidade angular ω_f . Determine a velocidade angular final ω_f do conjunto dos dois discos, assumindo que o eixo de rotação do sistema passa pelo seu centro de simetria. A energia cinética (de rotação) se conserva no processo?

 $\omega_f = \frac{2}{3}\omega_0$. A energia cinética de rotação não se conserva.

 $\boxed{\mathbf{B}} \ \omega_f = \frac{2}{3}\omega_0.$ A energia cinética de rotação se conserva.

 $\boxed{\mathbb{C}}$ $\omega_f=\frac{3}{2}\omega_0$. A energia cinética de rotação não se conserva.

 $\boxed{\mathbf{D}}$ $\omega_f = \frac{3}{2}\omega_0$. A energia cinética de rotação se conserva.

 $\boxed{\mathrm{E}} \ \omega_f = \frac{\sqrt{2}}{\sqrt{3}}\omega_0$. A energia cinética de rotação se conserva.

Questão 8 [mc4b]

Um disco uniforme de momento de inércia $I_1=I$ é montado sobre um eixo vertical de massa desprezível e gira livremente com velocidade angular ω_0 . Em um dado instante, deixa-se cair sobre esse disco girante (de uma altura desprezível) um outro disco uniforme de momento de inércia $I_2=2I$ e velocidade angular nula, como mostrado na figura ao lado. Devido ao atrito entre as superfícies dos discos, eles passam a girar juntos com velocidade angular ω_f . Determine a velocidade angular final ω_f do conjunto dos dois discos, assumindo que o eixo de rotação do sistema passa pelo seu centro de simetria. A energia cinética (de rotação) se conserva no processo?

 $\omega_f = \frac{1}{3}\omega_0$. A energia cinética de rotação não se conserva.

 $\boxed{\mathbb{C}}$ $\omega_f = 3\omega_0$. A energia cinética de rotação não se conserva.

 $\boxed{\mathrm{D}}$ $\omega_f=3\omega_0$. A energia cinética de rotação se conserva.

 $\boxed{\mathrm{E}} \ \omega_f = \frac{\sqrt{3}}{3}\omega_0$. A energia cinética de rotação se conserva.

Questão 9 [mc5a] Uma partícula de massa m se move em duas dimensões sob a ação da força

$$\mathbf{F} = a \left(4xy\hat{x} + 3y^2\hat{y} \right),$$

onde a é uma constante positiva. Determine o trabalho W realizado pela força ${\bf F}$ quando a partícula se movimenta ao longo da parábola $y=x^2/c$, da origem do sistema de coordenadas até a posição ${\bf r}=c\,(\hat x+\hat y)$, onde c é uma constante positiva.

$$W = 2ac^3$$

$$\boxed{\mathrm{B}} W = ac^3$$

$$\boxed{\mathbf{C}} W = 3ac^3$$

$$\boxed{\mathbf{D}} \ W = 4ac^3$$

$$\boxed{\mathrm{E}} W = 5ac^3$$

Questão 10 [mc5b] Uma partícula de massa m se move em duas dimensões sob a ação da força

$$\mathbf{F} = a \left(5y^2 \hat{x} + 4x^2 \hat{y} \right),$$

onde a é uma constante positiva. Determine o trabalho W realizado pela força \mathbf{F} quando a partícula se movimenta ao longo da parábola $y=x^2/c$, da origem do sistema de coordenadas até a posição $\mathbf{r}=c\,(\hat{x}+\hat{y})$, onde c é uma constante positiva.

$$W = 3ac^3$$

$$\boxed{\mathrm{B}} W = ac^3$$

$$\boxed{\mathbf{C}} W = 2ac^3$$

$$\boxed{\mathbf{D}} \ W = 4ac^3$$

$$\boxed{\mathrm{E}} W = 5ac^3$$

Questão 11 [mc6a] Uma partícula de massa m se move em uma dimensão sob a ação de uma força F. Verifica-se que a velocidade da partícula em termos da sua posição x é dada por

$$v(x) = \frac{k}{x},$$

onde k é uma constante positiva. Determine a força F(x) em função da posição x da partícula.

$$F(x) = -mk^2/x^3$$

$$\boxed{\mathbf{B}} \ F(x) = -2mk^2/x^3$$

$$\boxed{\mathbf{C}} F(x) = -3mk^2/x^3$$

$$D F(x) = -mk^2/(2x^3)$$

$$F(x) = -mk^2/(3x^3)$$

Questão 12 [mc6b] Uma partícula de massa m se move em uma dimensão sob a ação de uma força F. Verifica-se que a velocidade da partícula em termos da sua posição x é dada por

$$v(x) = \frac{k}{x^2},$$

onde k é uma constante positiva. Determine a força F(x) em função da posição x da partícula.

$$F(x) = -2mk^2/x^5$$

$$\boxed{\mathbf{B}} \ F(x) = -mk^2/x^5$$

$$\boxed{\mathbf{C}} \ F(x) = -4mk^2/x^5$$

$$D F(x) = -mk^2/(2x^5)$$

$$F(x) = -mk^2/(4x^5)$$

Questão 13 [mc7a] Uma barra muito longa e de massa desprezível se movimenta no plano xy. A barra está conectada à origem O e gira com uma velocidade angular constante $\omega = \omega \hat{z}$, como indicado na figura abaixo. Uma partícula de massa m pode se movimentar sem atrito ao longo da barra sob a ação da força $\mathbf{F} = a\hat{x}$, onde a é uma constante positiva. Determine a lagrangiana da partícula em termos da coordenada polar r.

$$L = \frac{1}{2}m\left(\dot{r}^2 + r^2\omega^2\right) + ar\cos(\omega t)$$

$$\boxed{\mathbf{B}} \ L = \frac{1}{2}m\left(\dot{r}^2 + r^2\omega^2\right) - ar\sin(\omega t)$$

$$\boxed{\mathbf{C}} \ L = \frac{1}{2}m\left(\dot{r}^2 + r^2\omega^2\right) - ar\cos(\omega t)$$

$$\boxed{\mathbf{D}} \ L = \frac{1}{2}m\dot{r}^2 + ar\sin(\omega t)$$

$$\boxed{\mathbf{E}} \ L = \frac{1}{2}m\dot{r}^2 + ar\cos(\omega t)$$

Questão 14 [mc7b] Uma barra muito longa e de massa desprezível se movimenta no plano xy. A barra está conectada à origem O e gira com uma velocidade angular constante $\omega = \omega \hat{z}$, como indicado na figura abaixo. Uma partícula de massa m pode se movimentar sem atrito ao longo da barra sob a ação da força $\mathbf{F} = b\hat{y}$, onde b é uma constante positiva. Determine a lagrangiana da partícula em termos da coordenada polar r.

$$\boxed{\mathbf{B}} \ L = \frac{1}{2}m\left(\dot{r}^2 + r^2\omega^2\right) - br\cos(\omega t)$$

$$\boxed{\mathbf{C}} \ L = \frac{1}{2}m\left(\dot{r}^2 + r^2\omega^2\right) - br\sin(\omega t)$$

$$\boxed{\mathbf{D}} \ L = \frac{1}{2}m\dot{r}^2 + br\cos(\omega t)$$

$$\boxed{\mathbf{E}} \ L = \frac{1}{2}m\dot{r}^2 + br\sin(\omega t)$$

Questão 15 [mc8a] Uma partícula de massa m se movimenta em três dimensões sob a ação de uma força central cuja energia potencial associada é dada por

$$U(r) = \frac{1}{3}kr^3,$$

onde k é uma constante positiva.

Analise as três afirmações abaixo sobre esse sistema e escolha a alternativa correta.

- I. A energia total E da partícula e seu momento angular \vec{L} são constantes de movimento.
- II. A partícula pode apresentar uma órbita circular estável e a relação entre o módulo do momento angular \vec{L} da partícula e o raio a dessa órbita circular é $L^2=mka^5$.
- III. Para determinados valores da energia total E, a partícula pode apresentar órbitas não limitadas, isto é, órbitas que não apresentam um limite superior para os valores assumidos pela coordenada radial r.
 - Apenas as afirmações I e II estão corretas.
 - B Apenas a afirmação I está correta.
 - C Apenas a afirmação II está correta.
 - D Apenas as afirmações I e III estão corretas.
 - E As afirmações I, II e III estão corretas.

Questão 16 [mc8b] Uma partícula de massa m se movimenta em três dimensões sob a ação de uma força central cuja energia potencial associada é dada por

$$U(r) = \frac{1}{3}kr^3,$$

onde k é uma constante positiva.

Analise as três afirmações abaixo sobre esse sistema e escolha a alternativa correta.

- I. A energia total E da partícula e seu momento angular \vec{L} são constantes de movimento.
- II. A partícula pode apresentar uma órbita circular estável e a relação entre o módulo do momento angular \vec{L} da partícula e o raio a dessa órbita circular é $L^2 = 2mka^5$.
- III. A partícula pode apresentar **apenas** órbitas limitadas, isto é, órbitas cuja coordenada radial r somente pode assumir valores tais que $r_1 \le r \le r_2$, onde r_1 e r_2 são os pontos de retorno radiais da órbita.
 - Apenas as afirmações I e III estão corretas.
 - B Apenas a afirmação I está correta.
 - C Apenas a afirmação III está correta.
 - D Apenas as afirmações I e II estão corretas.
 - E As afirmações I, II e III estão corretas.
- Questão 17 [em1a] Duas esferas condutoras, com raios iguais a R_A e R_B , onde $R_A > R_B$, estão ligadas por um fio metálico com capacitância desprezível. A distância entre os centros das esferas é d, onde $d \gg R_A$. O sistema possui uma carga líquida total Q, distribuída entre as esferas. Qual é o potencial elétrico V na superfície das esferas em termos de Q? Assuma V = 0 no infinito.

$$\boxed{\mathbf{B}} \ V = \frac{1}{4\pi\epsilon_0} \frac{Q}{(R_A - R_B)}$$

$$\boxed{\mathbf{C}} \ V = \frac{1}{4\pi\epsilon_0} \frac{Q}{(R_A + 2R_B)}$$

$$\boxed{\mathbf{D}} \ V = \frac{1}{4\pi\epsilon_0} \frac{Q}{(2R_A + R_B)}$$

$$\boxed{\mathbf{E}} \ V = \frac{1}{4\pi\epsilon_0} \frac{Q}{(3R_A - R_B)}$$

Questão 18 [em1b] Duas esferas condutoras, com raios iguais a R_A e R_B , onde $R_A = 2R_B$, estão ligadas por um fio metálico com capacitância desprezível. A distância entre os centros das esferas é d, onde $d \gg R_A$. O sistema possui uma carga líquida total Q, distribuída entre as esferas. Qual é o potencial elétrico V na superfície das esferas em termos de Q? Assuma V = 0 no infinito.

$$\boxed{\mathbf{B}} \ V = \frac{1}{4\pi\epsilon_0} \frac{Q}{R_B}$$

$$\boxed{\mathbf{C}} \ V = \frac{1}{4\pi\epsilon_0} \frac{Q}{(4R_B)}$$

$$\boxed{\mathbf{D}} \ V = \frac{1}{4\pi\epsilon_0} \frac{Q}{(5R_B)}$$

$$\boxed{\mathrm{E}} \ V = \frac{1}{4\pi\epsilon_0} \frac{Q}{(2R_B)}$$

Questão 19 [em2a] Duas espiras condutoras concêntricas A e B, com raios iguais a a e b, respectivamente, estão inicialmente contidas em um mesmo plano. Considere $b\gg a$. No instante t=0, a espira A, com resistência R, começa a girar em torno de um de seus diâmetros com frequência angular constante ω , enquanto a espira B permanece em repouso. Se uma corrente elétrica I_B constante circula na espira B, qual é a força eletromotriz $\mathcal E$ induzida na espira A? Despreze efeitos de auto-indutância.

$$\blacksquare \mathcal{E} = \frac{\mu_0 \omega I_B \pi a^2}{2b} \operatorname{sen}(\omega t)$$

$$\boxed{\mathbf{B}} \ \mathcal{E} = \frac{\mu_0 \omega I_B \pi a^2}{2b} \cos{(\omega t)}$$

$$\boxed{\mathbf{C}} \ \mathcal{E} = \frac{\mu_0 \omega I_B \pi b^2}{4a} \operatorname{sen}(\omega t)$$

$$\boxed{\mathbf{D}} \ \mathcal{E} = \frac{\mu_0 \omega I_B \pi b^2}{4a} \cos{(\omega t)}$$

$$\boxed{\mathbf{E}} \ \mathcal{E} = \frac{\mu_0 \omega I_B a^2}{2\pi b} \operatorname{sen}(\omega t)$$

Questão 20 [em2b] Duas espiras condutoras concêntricas A e B, com raios iguais a a e b, respectivamente, estão inicialmente contidas em um mesmo plano. Considere $b\gg a$. No instante t=0, a espira A, com resistência R, começa a girar em torno de um de seus diâmetros com frequência angular constante ω , enquanto a espira B permanece em repouso. Se uma corrente elétrica I_B constante circula na espira B, qual é a corrente elétrica I_A induzida na espira A? Despreze efeitos de auto-indutância.

$$\boxed{\mathbf{B}} \ I_A = \frac{\mu_0 \omega I_B \pi a^2}{2Rb} \cos\left(\omega t\right)$$

$$\boxed{\mathbf{C}} \ I_A = \frac{\mu_0 \omega I_B \pi b^2}{4Ra} \operatorname{sen}(\omega t)$$

$$\boxed{\mathbf{D}} \ I_A = \frac{\mu_0 \omega I_B \pi b^2}{4Ra} \cos{(\omega t)}$$

$$\boxed{\mathbf{E}} \ I_A = \frac{\mu_0 \omega I_B a^2}{2\pi R b} \operatorname{sen}\left(\omega t\right)$$

Questão 21 [em3a] Um capacitor de capacitância C está totalmente carregado com uma carga Q_0 e com uma energia total armazenada igual a U_0 . No instante t=0 o capacitor começa a descarregar através de um resistor de resistência R. Em termos da constante de tempo $\tau=RC$, em qual instante t' o capacitor terá um quarto de sua energia inicial U_0 ?

$$t' = \frac{\ln(4)}{2} \tau$$

$$\boxed{\mathbf{B}} \ t' = \frac{\ln(2)}{4} \tau$$

$$\boxed{\mathbf{C}} \ t' = 4\tau$$

$$\boxed{\mathbf{D}} \ t' = 2\tau$$

$$\boxed{\mathbf{E}} \ t' = \frac{\tau}{4}$$

Catalog

Questão 22 [em3b] Um capacitor de capacitância C está totalmente carregado com uma carga Q_0 e com uma energia total armazenada igual a U_0 . No instante t=0 o capacitor começa a descarregar através de um resistor de resistência R. Em termos da constante de tempo $\tau=RC$, em qual instante t' o capacitor terá um terço de sua energia inicial U_0 ?

$$t' = \frac{\ln(3)}{2}\tau$$

$$\boxed{\mathbf{B}} \ t' = \frac{\ln(2)}{3}\tau$$

$$\boxed{\mathbf{C}} \ t' = 3\tau$$

$$\boxed{\mathbf{D}} \ t' = 2\tau$$

$$\boxed{\mathbf{E}} \ t' = \frac{\tau}{3}$$

Questão 23 [em4a] O campo elétrico no interior de um capacitor de placas paralelas circulares é dado por $\mathbf{E} = E_0 \left(t/\tau \right)^2 \hat{\mathbf{z}}$. Qual é o campo magnético \mathbf{B} induzido entre as placas?

$$\blacksquare \mathbf{B} = r\mu_0 \epsilon_0 E_0 \frac{t}{\tau^2} \hat{\varphi}$$

$$\mathbf{B} \mathbf{B} = r\mu_0 \epsilon_0 E_0 \frac{t}{\tau^2} \hat{\mathbf{z}}$$

$$\boxed{\mathbf{C}} \mathbf{B} = \pi r \mu_0 \epsilon_0 E_0 \frac{t}{\tau^2} \hat{\varphi}$$

$$\boxed{\mathbf{D}} \mathbf{B} = \pi r \mu_0 \epsilon_0 E_0 \frac{t}{\tau^2} \hat{\mathbf{z}}$$

$$\mathbf{E} \mathbf{B} = 2\pi r \mu_0 \epsilon_0 E_0 \frac{t}{\tau^2} \hat{\varphi}$$

Questão 24 [em4b] O campo elétrico no interior de um capacitor de placas paralelas circulares é dado por $\mathbf{E} = E_0 (t/\tau) \hat{\mathbf{z}}$. Qual é o campo magnético \mathbf{B} induzido entre as placas?

$$\blacksquare \mathbf{B} = r\mu_0 \epsilon_0 \frac{E_0}{2\tau} \hat{\varphi}$$

$$\mathbf{B} \mathbf{B} = r\mu_0 \epsilon_0 \frac{E_0}{2\tau} \hat{\mathbf{z}}$$

$$\boxed{\mathbf{C}} \mathbf{B} = \pi r \mu_0 \epsilon_0 \frac{E_0}{2\tau} \hat{\varphi}$$

$$\mathbf{D} \mathbf{B} = \pi r \mu_0 \epsilon_0 \frac{E_0}{2\tau} \hat{\mathbf{z}}$$

$$\boxed{\mathbf{E}} \ \mathbf{B} = \pi r \mu_0 \epsilon_0 \frac{E_0}{\tau} \hat{\varphi}$$

Questão 25 [em5a]

Uma barra metálica muito fina, homogênea e de comprimento d move-se sem girar e com velocidade constante \vec{v} . A velocidade \vec{v} faz um ângulo $\theta \neq \frac{\pi}{2}$ com a barra, como mostrado na figura abaixo. A barra move-se numa região onde há um campo magnético constante e uniforme \vec{B} , perpendicular à barra e a \vec{v} . Qual(is) das seguintes afirmações é(são) verdadeira(s)?

- I. Existe uma diferença de potencial elétrico não nula entre as extremidades da barra.
- II. A força total devido a \vec{B} sobre a barra é nula.
- III. O torque total devido a \vec{B} sobre a barra é nulo.

- Apenas I e II
- B I, II e III
- C Apenas II e III
- D Apenas I
- E Apenas III

Questão 26 [em5b]

Uma barra metálica muito fina, homogênea e de comprimento d move-se sem girar e com velocidade constante \vec{v} . A velocidade \vec{v} faz um ângulo $\theta \neq \frac{\pi}{2}$ com a barra, como mostrado na figura abaixo. A barra move-se numa região onde há um campo magnético constante e uniforme \vec{B} , perpendicular à barra e a \vec{v} . Qual(is) das seguintes afirmações é(são) verdadeira(s)?

- I. Existe uma diferença de potencial elétrico não nula entre as extremidades da barra.
- II. A força total devido a \vec{B} sobre a barra é não nula.
- III. O torque total devido a \vec{B} sobre a barra é não nulo.

- Apenas I e III
- B I, II e III
- C Apenas I e II
- D Apenas II
- E Apenas III

Questão 27 [em6a]

A figura acima ilustra um condutor elipsoidal, isolado e neutro que tem uma cavidade esférica em seu interior. Uma carga pontual q>0 está fixa no centro da cavidade esférica, conforme ilustrado. Assinale a alternativa que melhor representa a densidade de cargas nas superfícies do condutor.

A figura acima ilustra um condutor cúbico, isolado e neutro que tem uma cavidade esférica em seu interior. Uma carga pontual q<0 está fixa no centro da cavidade esférica, conforme ilustrado. Assinale a alternativa que melhor representa a densidade de cargas nas superfícies do condutor.

Questão 29 [em7a]

Sangue fluindo em um artéria de diâmetro d=8,0 mm pode atingir velocidades de até v=60 cm/s em módulo (veja o desenho esquemático abaixo). Sabendo que há íons no plasma sanguíneo (como Na⁺, K⁺, Mg⁺ e Ca²⁺), estime a máxima diferença de potencial elétrico que pode surgir nas paredes dessa artéria quando sob a ação de um campo magnético de módulo B=020 T como mostrado na figura?

- $0.96~\mathrm{mV}$
- B 9,6 mV
- $\boxed{\text{C}}$ 9,6 μV
- $\boxed{\mathrm{D}}$ 0,96 $\mu\mathrm{V}$
- $\boxed{\mathrm{E}}$ 96 $\mu\mathrm{V}$

Questão 30 [em7b]

Sangue fluindo em um artéria de diâmetro d=9.0 mm pode atingir velocidades de até v=70 cm/s em módulo (veja o desenho esquemático abaixo). Sabendo que há íons no plasma sanguíneo (como Na⁺, K⁺, Mg⁺ e Ca²⁺), estime a máxima diferença de potencial elétrico que pode surgir nas paredes dessa artéria quando sob a ação de um campo magnético de módulo B=0.10 T como mostrado na figura?

- 0,63 mV
- $\boxed{\mathrm{B}}$ 63 $\mu\mathrm{V}$
- $\boxed{\text{C}}$ 6,3 μV
- D 0,63 μV
- E 6,3 mV

Questão 31 [em8a]

A figura abaixo ilustra a seção reta de dois condutores cilíndricos paralelos idênticos e muito longos (parte cinza) que carregam, em sentidos opostos, densidades de corrente de módulo J uniformemente distribuídas em seu interior. Essa distribuição de correntes é equivalente àquela advinda de dois cilindros paralelos muito longos de seção reta circular de raio R, cujos eixos distam de d < R, tal que as correntes se cancelem na parte superposta (região branca). Qual é o campo magnético \vec{B} no ponto P, que está (verticalmente) a uma distância a do ponto médio do segmento que une os eixos dos cilindros e é normal a eles?

$$\vec{B} = \frac{1}{2}\mu_0 J d\hat{y}$$

$$\boxed{\mathbf{B}} \ \vec{B} = \frac{1}{2}\mu_0 J \frac{ad}{R} \hat{y}$$

$$\boxed{\mathbb{C}} \ \vec{B} = -\frac{1}{2}\mu_0 J \sqrt{\left(\frac{d}{2}\right)^2 + a^2} \hat{y}$$

$$\boxed{\mathbf{D}} \ \vec{B} = -\frac{1}{2}\mu_0 J \frac{\left(\frac{d}{2}\right)^2 + a^2}{R} \hat{y}$$

$$\boxed{\mathbf{E}} \ \vec{B} = \frac{1}{2}\mu_0 J \frac{\left(\left(\frac{d}{2} \right)^2 + a^2 \right)^{3/2}}{R^2} \hat{y}$$

Questão 32 [em8b]

A figura abaixo ilustra a seção reta de dois condutores cilíndricos paralelos idênticos e muito longos (parte cinza) que carregam, em sentidos opostos, densidades de corrente de módulo J uniformemente distribuídas em seu interior. Essa distribuição de correntes é equivalente àquela advinda de dois cilindros paralelos muito longos de seção reta circular de raio R, cujos eixos distam de d < R, tal que as correntes se cancelem na parte superposta (região branca). Qual é o campo magnético \vec{B} no ponto P, que está no plano que contém os eixos dos cilindros e dista de a do eixo do cilindro da esquerda?

$$\vec{B} = \frac{1}{2}\mu_0 J d\hat{y}$$

$$\boxed{\mathbf{B}} \ \vec{B} = \frac{1}{2}\mu_0 J \frac{ad}{R} \hat{y}$$

$$\vec{\mathbf{C}}$$
 $\vec{B} = -\frac{1}{2}\mu_0 J \sqrt{(d-a)^2 + a^2} \hat{y}$

$$\vec{\mathbf{D}} \ \vec{B} = -\frac{1}{2}\mu_0 J \frac{(d-a)^2 + a^2}{R} \hat{y}$$

$$\vec{E} \vec{B} = \frac{1}{2}\mu_0 J \frac{\left((d-a)^2 + a^2 \right)^{3/2}}{R^2} \hat{y}$$

Questão 33 [te1a]

Um líquido de massa m e calor específico c deve ser aquecido por uma variação de temperatura ΔT , sem alcançar a ebulição. Para isso, um resistor de resistência R é conectado a uma pilha de resistência interna insignificante. O resistor é inserido no líquido em uma cuba, conforme mostrado na figura. O tempo Δt necessário para alcançar a variação de temperatura é cronometrado. Se todo o calor gerado pelo resistor é transferido para o líquido, qual é a força eletromotriz da pilha?

$$\varepsilon = \sqrt{\frac{R \ m \ c \ \Delta T}{\Delta t}}$$

$$\boxed{B} \ \varepsilon = \sqrt{\frac{2R \ m \ c \ \Delta T}{\Delta t}}$$

$$\boxed{C} \ \varepsilon = 3\sqrt{\frac{R \ m \ c \ \Delta T}{\Delta t}}$$

$$\boxed{D} \ \varepsilon = \sqrt{\frac{3R \ m \ c \ \Delta T}{\Delta t}}$$

$$\boxed{\mathrm{E}} \ \varepsilon = 2\sqrt{\frac{R \ m \ c \ \Delta T}{\Delta t}}$$

Questão 34 [te1b]

Um líquido de massa m deve ser aquecido por uma variação de temperatura ΔT , sem alcançar a ebulição. Para isso, um resistor de resistência R é conectado a uma pilha de resistência interna insignificante e força eletromotriz ε . O resistor é inserido no líquido em uma cuba, conforme mostrado na figura. O tempo Δt necessário para alcançar a variação de temperatura é cronometrado. Se todo o calor gerado pelo resistor é transferido para o líquido, qual é o calor específico c do líquido?

$$c = \frac{\varepsilon^2 \Delta t}{mR\Delta T}$$

$$B \quad c = \frac{2\varepsilon^2 \Delta t}{mR\Delta T}$$

$$C \quad c = \frac{3\varepsilon^2 \Delta t}{2mR\Delta T}$$

$$D \quad c = \frac{\varepsilon^2 \Delta t}{2mR\Delta T}$$

$$E \quad c = \frac{\varepsilon^2 \Delta t}{3mR\Delta T}$$

Questão 35 [te2a] Uma casa está a uma temperatura absoluta de equilíbrio T, sendo aquecida por meio de uma bomba de calor que retira calor de um rio que se encontra à temperatura absoluta T_0 , consumindo uma potência constante $dW/dt = \lambda$. O coeficiente de desempenho η de uma bomba de calor é a razão entre o calor que a bomba fornece e o trabalho necessário para operá-la, ambos ao longo de um ciclo de operação. A casa perde calor para o ambiente externo a uma taxa dada por $\alpha(T-T_0)$, onde α é uma constante. A temperatura de equilíbrio T da casa é:

$$T_0 + \frac{\eta \lambda}{\alpha}$$

 $B T_0$

$$\boxed{C} T_0 + \frac{2\eta\lambda}{\alpha}$$

$$\boxed{\mathbb{D}} T_0 + \frac{\lambda}{\alpha}$$

$$\boxed{\mathbf{E}} T_0 + \frac{2\lambda}{\alpha}$$

Questão 36 [te2b] Uma casa está a uma temperatura absoluta de equilíbrio T, sendo aquecida por meio de uma bomba de calor que retira calor de um rio que se encontra à temperatura absoluta T_0 , consumindo uma potência constante $dW/dt=\lambda$. O coeficiente de desempenho η de uma bomba de calor é a razão entre o calor que a bomba fornece e o trabalho necessário para operá-la, ambos ao longo de um ciclo de operação. A casa perde calor para o ambiente externo a uma taxa dada por $\alpha(T-T_0)$, onde α é uma constante. Para que a casa mantenha a temperatura de equilíbrio T, o coeficiente de desempenho η da bomba deve ser:

$$\boxed{\mathbf{B}} \ \eta = \frac{\alpha T}{\lambda}$$

$$\boxed{\mathbf{C}} \ \eta = \frac{\alpha T_0}{\lambda}$$

$$\boxed{\mathbf{D}} \ \eta = \frac{\lambda}{\alpha (T - T_0)}$$

$$\boxed{\mathbf{E}} \ \eta = \frac{\lambda}{\alpha T}$$

Questão 37 [te3a] Uma quantidade de água com massa de 1,0 kg a 0° C é aquecida até 100° C ao ser posta em contato com um reservatório térmico a 100° C em um processo irreversível. Considere que o calor específico da água é c=4 J/g, que $\ln\left(\frac{373}{273}\right)\approx\frac{3}{10}$ e que $\frac{100}{373}\approx\frac{1}{4}$. Quais são as variações de entropia da água, do reservatório e do universo no processo, respectivamente, em unidades de J/K? Dica: considere um processo reversível com os mesmos estados inicial e final para calcular as variações de entropia.

$$1200, -1000, 200$$

$$\boxed{\mathbf{B}}$$
 1000, -1000 , 0

$$|E|$$
 1200, 0, 0

Questão 38 [te3b] Uma quantidade de água com massa de 2,0 kg a 0° C é aquecida até 100° C ao ser posta em contato com um reservatório térmico a 100° C em um processo irreversível. Considere que o calor específico da água é c=4 J/g, que $\ln\left(\frac{373}{273}\right)\approx\frac{3}{10}$ e que $\frac{100}{373}\approx\frac{1}{4}$. Quais são as variações de entropia da água, do reservatório e do universo no processo, respectivamente, em unidades de J/K? Dica: considere um processo reversível com os mesmos estados inicial e final para calcular as variações de entropia.

- 2400, -2000, 400
- $\boxed{\mathbf{B}}$ 2000, -2000, 0
- \boxed{C} 2400, -2000, 0
- D 2400, -2000, 4400
- E 2400, 0, 0

Questão 39 [te4a] Um gás ideal monoatômico é descrito pelas equações

$$pV = nRT$$
 e $U = \frac{3}{2}nRT$

onde n é o número de moles e R é a constante universal dos gases. Em determinados processos de compressão, a temperatura e o volume do gás variam de um estado inicial dado por (T_0, V_0) até um estado qualquer dado por (T, V) obedecendo a relação

$$T = \left(\frac{V}{V_0}\right)^x T_0$$

onde x é uma constante não nula. O trabalho W realizado pelo gás num processo desse tipo para um valor genérico de x, ao ser comprimido a partir de (T_0,V_0) até o volume final V_1 , e o valor de x tal que o calor transferido para o gás no mesmo processo seja nulo são dados por

$$\boxed{\mathbf{B}} \ W = \frac{nRT_0}{2} \ \mathbf{e} \ x = -1$$

$$C W = \frac{nRT_0}{2} \ln \frac{V_1}{V_0} \text{ e } x = -\frac{1}{3}$$

$$\boxed{D} W = \frac{nRT_0}{x} \left[\left(\frac{V_1}{V_0} \right)^{2x} - 1 \right] \text{ e } x = -\frac{2}{3}$$

$$\boxed{\mathbf{E}} \ W = \frac{nRT_0}{x} \left[\left(\frac{V_1}{V_0} \right)^x - 1 \right] \ \ \mathbf{e} \ x = 0$$

Questão 40 [te4b] Um gás ideal diatômico é descrito pelas equações

$$pV = nRT$$
 e $U = \frac{5}{2}nRT$

onde n é o número de moles e R é a constante universal dos gases. Em determinados processos de compressão, a temperatura e o volume do gás variam de um estado inicial dado por (T_0,V_0) até um estado qualquer dado por (T,V) obedecendo a relação

$$T = \left(\frac{V}{V_0}\right)^x T_0$$

onde x é uma constante não nula. O trabalho W realizado pelo gás num processo desse tipo para um valor genérico de x, ao ser comprimido a partir de (T_0,V_0) até o volume final V_1 , e o valor de x tal que o calor transferido para o gás no mesmo processo seja nulo são dados por

$$\boxed{\mathbf{B}} \ W = \frac{nRT_0}{2} \ \mathbf{e} \ x = -1$$

$$C W = \frac{nRT_0}{2} \ln \frac{V_1}{V_0} \text{ e } x = -\frac{2}{9}$$

$$\boxed{\mathbf{D}} \ W = \frac{nRT_0}{x} \left[\left(\frac{V_1}{V_0} \right)^x - 1 \right] \ \ \mathbf{e} \ x = -\frac{2}{3}$$

$$\boxed{\mathbf{E}} \ W = \frac{nRT_0}{3x} \left[\left(\frac{V_1}{V_0} \right)^{3x} - 1 \right] \ \mathbf{e} \ x = 0$$

Questão 41 [fm1a]

A espectroscopia Raman baseia-se no espalhamento de fótons por vibrações (fônons) da rede cristalina. A energia dos fônons é obtida através da medida da diferença entre as energias do fótons incidente e espalhados. Na prática, esta diferença é aferida em termos da diferença entre os inversos dos comprimentos de onda $\Delta\left(\frac{1}{\lambda}\right)$, em unidades de cm⁻¹.

Se um determinado processo de espalhamento é detectado com $\Delta\left(\frac{1}{\lambda}\right) = 300 \text{ cm}^{-1}$, a energia do fônon associado é, aproximadamente

37 meV.

B 37 eV.

C 4,1 eV.

 \boxed{D} 4,1 meV.

E 240 meV.

Questão 42 [fm1b]

A espectroscopia Raman baseia-se no espalhamento de fótons por vibrações (fônons) da rede cristalina. A energia dos fônons é obtida através da medida da diferença entre as energias do fótons incidente e espalhados. Na prática, esta diferença é aferida em termos da diferença entre os inversos dos comprimentos de onda $\Delta\left(\frac{1}{\lambda}\right)$, em unidades de cm⁻¹.

Se um determinado processo de espalhamento é detectado com $\Delta\left(\frac{1}{\lambda}\right) = 200 \text{ cm}^{-1}$, a energia do fônon associado é, aproximadamente

25 meV.

B 25 eV.

 $\boxed{\text{C}}$ 6,2 eV.

 $\boxed{\mathrm{D}}$ 6,2 meV.

E 161 meV.

Questão 43 [fm2a]

Considere um reator nuclear em que há emissão de nêutrons, com massa m_N , e a presença de dêuterons com massa m_D . Após um certo período, os dois tipos de partículas atingem o equilíbrio térmico. A razão entre os comprimentos de onda dos nêutrons e dos dêuterons térmicos é

$$\boxed{\mathbf{B}} \sqrt{\frac{m_N}{m_D}}$$

$$\boxed{\mathbf{C}} \ \frac{m_D}{m_N}$$

$$\boxed{\mathbf{D}} \ \frac{m_N}{m_D}.$$

$$\boxed{\mathrm{E}} \ \frac{m_D^- - m_N}{m_D}.$$

Questão 44 [fm2b]

Considere um reator nuclear em que há emissão de nêutrons, com massa m_N , e a presença de dêuterons com massa m_D . Após um certo período, os dois tipos de partículas atingem o equilíbrio térmico. A razão entre os comprimentos de onda dos dêuterons e dos nêutrons térmicos é

$$\boxed{\mathbf{B}} \sqrt{\frac{m_D}{m_N}}$$

$$\boxed{\text{C}} \frac{m_D}{m_N}$$

$$\boxed{\mathbf{D}} \ \frac{m_N}{m_D}$$

$$E \frac{m_D - m_N}{m_D}$$

Questão 45 [fm3a]

Uma molécula diatômica constitui-se de um átomo com massa 3M e outro de massa 4M, separados por uma distância d. Considere que eles girem ao redor de um eixo que passa pelo centro de massa e é perpendicular à linha que os une. Se o momento angular desta molécula for quantizado como no modelo de Bohr, as velocidades angulares também serão quantizadas como (nas alternativas abaixo, n=1,2,3,...)

$$\boxed{\mathrm{B}} \ \frac{h}{\pi M d^2} n.$$

$$\boxed{\text{C}} \frac{7h}{12\pi Md^2}n.$$

$$\boxed{\mathrm{D}} \ \frac{6h}{7\pi Md^2} n$$

$$\boxed{\mathrm{E}} \frac{7h}{6\pi Md^2}n$$

Questão 46 [fm3b]

Uma molécula diatômica constitui-se de um átomo com massa 2M e outro de massa 3M, separados por uma distância d. Considere que eles girem ao redor de um eixo que passa pelo centro de massa e é perpendicular à linha que os une. Se o momento angular desta molécula for quantizado como no modelo de Bohr, as velocidades angulares também serão quantizadas como (nas alternativas abaixo, n=1,2,3,...)

$$\boxed{\mathrm{B}} \ \frac{h}{\pi M d^2} n.$$

$$\boxed{\text{C}} \ \frac{5h}{6\pi Md^2}n.$$

$$\boxed{\mathrm{D}} \ \frac{3h}{5\pi M d^2} n.$$

$$\boxed{\mathrm{E}} \ \frac{5h}{3\pi M d^2} n.$$

Questão 47 [fm4a]

O experimento de Millikan, que permitiu obter o valor da carga elétrica q do elétron de massa m_0 , baseia-se na investigação da queda em condições de equilíbrio de gotículas de óleo carregadas eletricamente e sujeitas às forças de arrasto, do tipo $\vec{F}_a = -b\vec{v}$ (onde b é uma constante), e elétrica, devido a um campo elétrico aplicado \vec{E} . Considere uma variante deste experimento, na qual \vec{E} é aplicado horizontalmente. Ajustando-se o módulo do campo elétrico E, as gotículas passam a cair com velocidade constante em uma trajetória retilínea formando um ângulo θ com a vertical. Se v_T for a velocidade terminal das gotículas ao longo da trajetória, a carga elétrica pode ser obtida de

$$\boxed{\mathbf{B}} \ q = \frac{bv_T}{E} \cos(\theta).$$

$$\boxed{\mathbf{C}} \ q = \frac{bv_T}{E} \tan(\theta).$$

$$\boxed{\mathbf{D}} \ q = \frac{E}{bv_T} \operatorname{sen}(\theta).$$

$$\boxed{\mathbf{E}} \ q = \frac{m_0 g}{b v_T} \cos(\theta).$$

Questão 48 [fm4b]

O experimento de Millikan, que permitiu obter o valor da carga elétrica q do elétron de massa m_0 , baseia-se na investigação da queda em condições de equilíbrio de gotículas de óleo carregadas eletricamente e sujeitas às forças de arrasto, do tipo $\vec{F}_a = -b\vec{v}$ (onde b é uma constante), e elétrica, devido a um campo elétrico aplicado \vec{E} . Considere uma variante deste experimento, na qual \vec{E} é aplicado horizontalmente. Ajustando-se o módulo do campo elétrico E, as gotículas passam a cair com velocidade constante em uma trajetória retilínea formando um ângulo θ com a horizontal. Se v_T for a velocidade terminal das gotículas ao longo da trajetória, a carga elétrica pode ser obtida de

$$\boxed{\mathbf{B}} \ q = \frac{bv_T}{E} \operatorname{sen}(\theta).$$

$$\boxed{\mathbf{C}} \ q = \frac{bv_T}{E} \tan(\theta).$$

$$\boxed{\mathbf{D}} \ q = \frac{E}{bv_T} \operatorname{sen}(\theta).$$

$$\boxed{\mathbf{E}} \ q = \frac{m_0 g}{b v_T} \cos(\theta).$$

Questão 49 [fm5a]

A astronauta Aline se encontra em repouso em um referencial inercial quando, às 08h00 de seu relógio, o astronauta Beto passa por ela viajando com velocidade constante 0,80c. Coincidentemente, o relógio de Beto também marca 08h00. Às 09h00 em seu relógio, Beto chega ao seu destino. De acordo com Aline, o comprimento do percurso de Beto foi de

- $1.4 \times 10^9 \text{ km}$
- $\boxed{\mathrm{B}}$ 8,5 × 10⁸ km
- $\boxed{\text{C}} 1.0 \times 10^9 \text{ km}$
- $\boxed{\rm D} \ 9.2 \times 10^8 \ {\rm km}$
- E Não há dados suficientes para responder a pergunta.

Questão 50 [fm5b]

A astronauta Aline se encontra em repouso em um referencial inercial quando, às 08h00 de seu relógio, o astronauta Beto passa por ela viajando com velocidade constante 0,60c. Coincidentemente, o relógio de Beto também marca 08h00. Às 09h20 em seu relógio, Beto chega ao seu destino. De acordo com Aline, o comprimento do percurso de Beto foi de

- $1.1 \times 10^9 \text{ km}$
- $\boxed{\mathrm{B}}$ 8,4 × 10⁸ km
- $C = 1.8 \times 10^9 \text{ km}$
- $\boxed{\rm D} \ 9.7 \times 10^8 \ {\rm km}$
- E Não há dados suficientes para responder a pergunta.

Questão 51 [fm6a]

Em um choque totalmente inelástico, uma partícula de massa de repouso 1,00 MeV/ c^2 e energia cinética 2,00 MeV colide com outra partícula em repouso de massa 2,00 MeV/ c^2 . Qual a massa de repouso do sistema de duas partículas após a colisão?

- $4.12 \text{ MeV}/c^2$
- $\boxed{\mathrm{B}}$ 3,00 MeV/ c^2
- C 3,67 MeV/ c^2
- $\boxed{\mathrm{D}}$ 4,67 MeV/ c^2
- $^{-}$ 5,00 MeV/ c^2

Questão 52 [fm6b]

Em um choque totalmente inelástico, uma partícula de massa de repouso 2,00 MeV/ c^2 e energia cinética 1,00 MeV colide com outra partícula em repouso de massa 1,00 MeV/ c^2 . Qual a massa de repouso do sistema de duas partículas após a colisão?

- $3,32 \text{ MeV}/c^2$
- $\boxed{\rm B}$ 3,00 MeV/ c^2
- $\boxed{\mathrm{C}}$ 2,67 MeV/ c^2
- \bigcirc 3,86 MeV/ c^2
- $\boxed{\mathrm{E}}$ 4,00 MeV/ c^2

Questão 53 [fm7a]

Uma amostra é preparada contendo 1.0×10^{20} partículas radioativas de vida média igual a 1.0 ano. Em cada decaimento, 10 fótons de comprimento de onda 1.0 pm são emitidos. Qual a taxa de produção de energia eletromagnética após 1.0 ano da amostra ter sido preparada?

- $2,3~\mathrm{W}$
- B 4,4 W
- C 0,3 W
- D 0,9 W
- E 6,3 W

Questão 54 [fm7b]

Uma amostra é preparada contendo 2.0×10^{20} partículas radiativas de vida média igual a 2,0 anos. Em cada decaimento, 6 fótons de comprimento de onda λ são emitidos. Após 2,0 anos da amostra ter sido preparada, a taxa de produção de energia eletromagnética é igual a 2,0 W. Qual o valor de λ ?

- 0,70 pm
- B 0,56 pm
- C 0,23 pm
- D 1,1 pm
- E 1,5 pm

Questão 55 [fm8a]

A figura abaixo é o espectro eletromagnético de um corpo celeste desconhecido que se distancia da Terra ao longo da linha de visada com velocidade relativística. As linhas de absorção correspondem a transições muito bem conhecidas, cujos comprimentos de onda no referencial do laboratório são, respectivamente, 400 nm, 500 nm e 650 nm. Qual é a temperatura na superfície desse corpo?

- $8.3 \times 10^3 \text{ K}$
- $\boxed{\text{B}} \ 4.1 \times 10^3 \text{ K}$
- $\boxed{\text{C}} 7.2 \times 10^3 \text{ K}$
- $\boxed{\rm D} \ 3.0 \times 10^3 \ {\rm K}$
- E Não há dados suficientes para responder essa pergunta.

Questão 56 [fm8b]

A figura abaixo é o espectro eletromagnético de um corpo celeste desconhecido que se distancia da Terra ao longo da linha de visada com velocidade relativística. As linhas de absorção correspondem a transições muito bem conhecidas, cujos comprimentos no referencial do laboratório são, respectivamente, 300 nm, 600 nm e 800 nm. Qual é a temperatura na superfície desse corpo?

- $7.2 \times 10^{3} \text{ K}$
- $\boxed{\rm B} \ 4.8 \times 10^3 \ {\rm K}$
- $\boxed{\text{C}} 6.2 \times 10^3 \text{ K}$
- $\boxed{\rm D} \ 3.0 \times 10^3 \ {\rm K}$
- E Não há dados suficientes para responder essa pergunta.

Questão 57 [mq1a] Considere a dinâmica quântica de uma partícula em uma dimensão. A figura abaixo mostra três possibilidades para o módulo quadrado da função de onda dessa partícula, $|\Psi(x)|^2$, num determinado instante, para diferentes valores do parâmetro b. Marque a afirmativa correta:

- O valor esperado da posição da partícula está à direita da posição mais provável de encontrar a partícula se b > 2a.
- $\boxed{\mathrm{B}}$ O valor esperado da posição da partícula está à esquerda da posição mais provável de encontrar a partícula se b>2a.
- $\boxed{\mathbf{C}}$ O valor esperado da posição da partícula está à direita da posição mais provável de encontrar a partícula se b < 2a.
- $\boxed{\mathbb{D}}$ O valor esperado da posição da partícula está à esquerda da posição mais provável de encontrar a partícula se b=2a.
- $\overline{\mathbb{E}}$ O valor esperado da posição da partícula coincide com a posição mais provável de encontrar a partícula independente do valor de b.

Questão 58 [mq1b] Considere a dinâmica quântica de uma partícula em uma dimensão. A figura abaixo mostra três possibilidades para o módulo quadrado da função de onda dessa partícula, $|\Psi(x)|^2$, num determinado instante, para diferentes valores do parâmetro a. Marque a afirmativa correta:

- O valor esperado da posição da partícula está à direita da posição mais provável de encontrar a partícula se a > 2b.
- $\boxed{\mathrm{B}}$ O valor esperado da posição da partícula está à esquerda da posição mais provável de encontrar a partícula se a>2b.
- $\boxed{\mathbb{C}}$ O valor esperado da posição da partícula está à esquerda da posição mais provável de encontrar a partícula se a=2b.
- $\boxed{\mathrm{D}}$ O valor esperado da posição da partícula está à direita da posição mais provável de encontrar a partícula se a < 2b.
- E O valor esperado da posição da partícula coincide com a posição mais provável de encontrar a partícula independente do valor de a.

Questão 59 [mq2a] Considere a dinâmica quântica de uma partícula sob a ação do potencial do tipo poço infinito unidimensional de largura L, como mostrado na figura. A função de onda da partícula, que se encontra no estado fundamental, é $\Psi(x) = \sqrt{\frac{2}{L}}\cos\left(\frac{\pi}{L}x\right)$. Assinale a opção correta para os valores esperados da posição, $\langle x \rangle$, do momento linear, $\langle p \rangle$, do quadrado da posição, $\langle x^2 \rangle$, e do quadrado do momento linear, $\langle p^2 \rangle$, e para o produto da incerteza na posição pela incerteza no momento linear, $\sigma_x \sigma_p$, respectivamente. O quadrado da incerteza em uma grandeza O é dado por: $\sigma_O^2 = \langle O^2 \rangle - \langle O \rangle^2$. Dica: Utilize as propriedades de funções pares e ímpares.

$$\blacksquare 0, \quad 0, \quad \frac{0.32L^2}{\pi^2}, \quad \frac{\pi^2\hbar^2}{L^2}, \quad 0.57\hbar$$

$$\boxed{\mathbf{B}} \ 0, \quad 0, \quad \frac{0.16L^2}{\pi^2}, \quad \frac{\pi^2\hbar^2}{L^2}, \quad 0.40\,\hbar$$

$$\boxed{\mathbb{C}} \ 0, \quad 0, \quad \frac{0.32L^2}{\pi^2}, \quad \frac{\pi^2\hbar^2}{L^2}, \quad 0.40\,\hbar$$

$$\boxed{\mathbf{D}} \ 0, \quad 0, \quad \frac{0.16L^2}{\pi^2}, \quad \frac{\pi^2\hbar^2}{L^2}, \quad 0.57\,\hbar$$

Questão 60 [mq2b] Considere a dinâmica quântica de uma partícula sob a ação do potencial do tipo poço infinito unidimensional de largura L, como mostrado na figura. A função de onda da partícula, que se encontra no segundo estado excitado, é $\Psi(x,t) = \sqrt{\frac{2}{L}}\cos\left(\frac{3\pi}{L}x\right)$. Assinale a opção correta para os valores esperados da posição, $\langle x \rangle$, do momento linear, $\langle p \rangle$, do quadrado da posição, $\langle x^2 \rangle$, e do quadrado do momento linear, $\langle p^2 \rangle$, e para o produto da incerteza na posição pela incerteza no momento linear, $\sigma_x \sigma_p$, respectivamente. O quadrado da incerteza em uma grandeza O é dado por: $\sigma_O^2 = \langle O^2 \rangle - \langle O \rangle^2$. Dica: Utilize as propriedades de funções pares e ímpares.

$$\blacksquare 0, \quad 0, \quad \frac{0.75L^2}{\pi^2}, \quad \frac{9\pi^2\hbar^2}{L^2}, \quad 2.6\,\hbar$$

$$\begin{array}{|c|c|c|c|c|} \hline & 0, & 0, & \frac{0.75L^2}{\pi^2}, & \frac{9\pi^2\hbar^2}{L^2}, & 2.6\,\hbar \\ \hline B & 0, & 0, & \frac{0.010L^2}{\pi^2}, & \frac{9\pi^2\hbar^2}{L^2}, & 0.30\,\hbar \\ \hline C & 0, & 0, & \frac{0.010L^2}{\pi^2}, & \frac{9\pi^2\hbar^2}{L^2}, & 2.6\,\hbar \\ \hline D & 0, & 0, & \frac{0.75L^2}{\pi^2}, & \frac{9\pi^2\hbar^2}{L^2}, & 0.30\,\hbar \\ \hline E & 0, & \sqrt{0.1}\frac{3\pi\hbar}{L}, & \frac{0.75L^2}{\pi^2}, & 1.1\frac{9\pi^2\hbar^2}{L^2}, \end{array}$$

$$\boxed{\mathbb{C}} \ 0, \quad 0, \quad \frac{0.010L^2}{\pi^2}, \quad \frac{9\pi^2\hbar^2}{L^2}, \quad 2.6\,\hbar$$

$$\boxed{D} \ 0, \quad 0, \quad \frac{0.75L^2}{\pi^2}, \quad \frac{9\pi^2\hbar^2}{L^2}, \quad 0.30\,\hbar$$

$$\boxed{\text{E}} \ 0, \quad \sqrt{0,1} \frac{3\pi\hbar}{L}, \quad \frac{0,75L^2}{\pi^2}, \quad 1,1 \frac{9\pi^2\hbar^2}{L^2}, \quad 2,6\,\hbar$$

Questão 61 [mq3a] Considere a dinâmica unidimensional de uma partícula de massa m, que é lançada com energia E de encontro a uma barreira de potencial de altura V_0 e largura L, a partir de um ponto à esquerda da barreira, como mostrado na figura abaixo (lado esquerdo). O gráfico (lado direito) mostra a probabilidade de transmissão T da partícula através da barreira em função da razão E/V_0 para quatro casos, indicados pela função degrau em linha sólida grossa e pelas curvas em linhas sólida fina, tracejada e pontilhada. Se V corresponde a uma afirmativa verdadeira e F a uma afirmativa falsa, indique a sequência correspondente às afirmativas abaixo:

- A probabilidade de transmissão dada pela função degrau corresponde ao caso quântico, enquanto as demais correspondem ao caso clássico.
- Ao contrário de uma partícula clássica, uma partícula quântica tem uma probabilidade não nula de atravessar uma barreira de potencial mesmo quando sua energia é menor do que a altura da barreira.
- Ao contrário de uma partícula clássica, uma partícula quântica tem uma probabilidade não nula de ser refletida por uma barreira de potencial mesmo quando sua energia é maior do que a altura da barreira.
- A probabilidade de transmissão quântica se aproxima do comportamento clássico para partículas de maior massa (considerando a mesma barreira de potencial), ou seja, a probabilidade vai a zero quando $E/V_0 < 1$ e atinge 1 em um número cada vez maior de pontos quando $E/V_0 > 1$.

F, V, V, V

B F, V, V, F

[C] F, V, F, V

D V, F, F, F

E V, F, V, F

Questão 62 [mq3b] — Considere a dinâmica unidimensional de uma partícula de massa m, que é lançada com energia E de encontro a uma barreira de potencial de altura V_0 e largura L, a partir de um ponto à esquerda da barreira, como mostrado na figura abaixo (lado esquerdo). O gráfico (lado direito) mostra a probabilidade de transmissão T da partícula através da barreira em função da razão E/V_0 para quatro casos, indicados pela função degrau em linha sólida grossa e pelas curvas em linhas sólida fina, tracejada e pontilhada. Se V corresponde a uma afirmativa verdadeira e F a uma afirmativa falsa, indique a sequência correspondente às afirmativas abaixo:

- A probabilidade de transmissão dada pela função degrau corresponde ao caso clássico, enquanto as demais correspondem ao caso quântico.
- Ao contrário de uma partícula quântica, uma partícula clássica tem uma probabilidade nula de atravessar uma barreira de potencial se sua energia for menor do que a altura da barreira.
- Ao contrário de uma partícula quântica, uma partícula clássica tem uma probabilidade não nula de ser refletida por uma barreira de potencial se sua energia for maior do que a altura da barreira.
- A probabilidade de transmissão quântica se aproxima do comportamento clássico para partículas de menor massa (considerando a mesma barreira de potencial), ou seja, a probabilidade vai a zero quando $E/V_0 < 1$ e atinge 1 em um número cada vez maior de pontos quando $E/V_0 > 1$.

V, V, F, F

B V, F, F, F

C F, F, V, V

D V, V, V, F

E V, F, V, F

Questão 63 [mq4a] A equação de autovalores do Hamiltoniano de um oscilador harmônico unidimensional é dada por

$$H|n\rangle = E_n|n\rangle,$$

onde $|n\rangle$ são os autoestados ortonormais do hamiltoniano H, $E_n = \hbar\omega(n+1/2)$ os autovalores de energia correspondentes, e n=0,1,... Seja $|\psi\rangle = \sqrt{0,5}\,e^{i\theta_0}\,|0\rangle + \sqrt{0,3}\,e^{i\theta_1}\,|1\rangle + R_2\,e^{i\theta_2}\,|2\rangle$ o vetor de estado normalizado de um dado oscilador harmônico unidimensional, onde θ_0 , θ_1 e θ_2 são constantes reais. A constante real $R_2>0$ e o valor esperado da energia desse oscilador valem, respectivamente:

 $\sqrt{0.2}$ e $1.2 \hbar \omega$

|B| 0,2 e 0,80 $\hbar\omega$

|C| 0.2 e $1.2 \hbar \omega$

D $\sqrt{0.2}$ e $0.80 \,\hbar\omega$

 $E 0.04 e 0.70 \hbar ω$

CATALOG

Questão 64 [mq4b] A equação de de autovalores do Hamiltoniano de um oscilador harmônico unidimensional é dada por

$$H|n\rangle = E_n|n\rangle,$$

onde $|n\rangle$ são os autoestados ortonormais do hamiltoniano $H, E_n = \hbar\omega(n+1/2)$ os autovalores de energia correspondentes, e n=0,1,... Seja $|\psi\rangle=\sqrt{0,3}\,e^{i\theta_0}\,|0\rangle+\sqrt{0,2}\,e^{i\theta_1}\,|1\rangle+R_2\,e^{i\theta_2}\,|2\rangle$ o vetor de estado normalizado de um dado oscilador harmônico unidimensional, onde $\theta_0, \, \theta_1$ e θ_2 são constantes reais. A constante real $R_2>0$ e o valor esperado da energia desse oscilador valem, respectivamente:

 $\sqrt{0.5}$ e $1.7 \,\hbar\omega$

 $\boxed{\mathrm{B}}$ 0,5 e 1,7 $\hbar\omega$

 $\boxed{\text{C}}$ 0,5 e 1,1 $\hbar\omega$

 $\boxed{\mathrm{D}} \sqrt{0.5}$ e $1.1 \, \hbar \omega$

 $[E] 0.25 \text{ e } 0.61 \,\hbar\omega$

Questão 65 [mq5a]

A parte angular da função de onda de uma determinada partícula movendo-se em um potencial central é dada por

$$\psi\left(\theta,\varphi\right) = \sqrt{\frac{3}{4\pi}}\cos\theta\sin\varphi,$$

em que θ e φ são os ângulos polares e azimutal, respectivamente. Quais são os resultados possíveis de medidas da componente z do momento angular orbital L_z dessa partícula?

 $-\hbar \in \hbar$

B 0

 $\boxed{\mathrm{C}}$ $-2\hbar$ e $2\hbar$

 $\boxed{\mathbf{D}} -\hbar$, 0 e \hbar

 $\boxed{\mathrm{E}} -\hbar/2 = \hbar/2$

Questão 66 [mq5b]

A parte angular da função de onda de uma determinada partícula movendo-se em um potencial central é dada por

$$\psi(\theta,\varphi) = \sqrt{\frac{3}{4\pi}}\cos\theta\sin 2\varphi,$$

em que θ e φ são os ângulos polares e azimutal, respectivamente. Quais são os resultados possíveis de medidas da componente z do momento angular orbital L_z dessa partícula?

 $-2\hbar$ e $2\hbar$

 $\mathbf{B} = 0$

 $\boxed{\mathbf{C}} -\hbar \in \hbar$

 $\boxed{\mathbf{D}} -\hbar$, 0 e \hbar

 $\boxed{\mathrm{E}} -\hbar/2 = \hbar/2$

Questão 67 [mq6a]

Considere uma partícula de massa m movendo-se em uma dimensão sob a ação de um potencial do tipo poço infinito

$$V\left(x\right) = \left\{ \begin{array}{ll} 0, & |x| < a/2 \\ \infty, & |x| \geq a/2 \end{array} \right.,$$

sendo a uma constante positiva com dimensão de comprimento. As soluções para a equação de Schrödinger independente do tempo desse problema podem ser rotuladas por um inteiro positivo n: $H\psi_n(x) = E_n\psi_n(x)$, onde H é o hamiltoniano, $\psi_n(x)$ a autofunção e E_n o auto-valor de energia correspondente ao estado n. Para quais estados teríamos $|\psi_n(x)|^2 = 0$ em x = 0?

- Apenas estados com n par
- B Apenas o estado fundamental, n = 1.
- $\boxed{\mathbf{C}}$ Apenas estados com n ímpar.
- D Todos os estados.
- [E] Todos os estados exceto o estado fundamental.

Questão 68 [mq6b]

Considere uma partícula de massa m movendo-se em uma dimensão sob a ação de um potencial do tipo poço infinito

$$V(x) = \begin{cases} 0, & |x| < a/2 \\ \infty, & |x| \ge a/2 \end{cases},$$

sendo a uma constante positiva com dimensão de comprimento. As soluções para a equação de Schrödinger independente do tempo desse problema podem ser rotuladas por um inteiro positivo n: $H\psi_n(x) = E_n\psi_n(x)$, onde H é o hamiltoniano, $\psi_n(x)$ a autofunção e E_n o auto-valor de energia correspondente ao estado n. Para quais estados teríamos um máximo local de $|\psi_n(x)|^2$ em x = 0?

- Apenas estados com n ímpar
- B Apenas o estado fundamental, n=1
- $oxed{C}$ Apenas estados com n par.
- D Todos os estados.
- [E] Todos os estados exceto o estado fundamental.

Questão 69 [mq7a]

Considere dois spins 1/2, \vec{S}_1 e \vec{S}_2 , cuja interação é descrita por meio do hamiltoniano

$$H = \frac{J}{\hbar^2} \vec{S}_1 \cdot \vec{S}_2 = \frac{J}{\hbar^2} \left(S_1^x S_2^x + S_1^y S_2^y + S_1^z S_2^z \right),$$

em que J>0 tem dimensão de energia. A energia do estado fundamental desse sistema é

- -3J/4
- $\boxed{\mathbf{B}}$ 0
- C -J/4
- D J/4
- $\boxed{\mathrm{E}} \ 3J/4$

Questão 70 [mq7b]

Considere dois spins 1/2, \vec{S}_1 e \vec{S}_2 , cuja interação é descrita por meio do hamiltoniano

$$H = -\frac{J}{\hbar^2} \vec{S}_1 \cdot \vec{S}_2 = -\frac{J}{\hbar^2} \left(S_1^x S_2^x + S_1^y S_2^y + S_1^z S_2^z \right),$$

em que J>0 tem dimensão de energia. A energia do estado fundamental desse sistema é

$$\mathbf{B} \mathbf{0}$$

$$C = -3J/4$$

$$\boxed{\mathrm{D}} J/4$$

$$\boxed{\mathrm{E}} \ 3J/4$$

Questão 71 [mq8a]

Considere um sistema quântico com um espaço de estados tridimensional e a seguinte representação de um operador quântico J, numa certa base ortonormal do espaço,

$$J=a\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right],$$

onde a é uma constante. Suponha que o sistema esteja no seguinte estado

$$\left[\begin{array}{c} 1/2\\1/2\\1/\sqrt{2}\end{array}\right],$$

representado na mesma base. Uma medida da quantidade física associada ao operador J^2 é realizada e o valor a^2 é obtido. Ao medirmos a quantidade física associada ao operador J imediatamente em seguida, podemos afirmar que

- obtemos +a com probabilidade 1/3 e -a com probabilidade 2/3
- $\boxed{\mathbf{B}}$ obtemos +a com probabilidade 1/4, 0 com probabilidade 1/4 e -a com probabilidade 1/2
- $\boxed{\mathbb{C}}$ obtemos +a com probabilidade 2/3 e -a com probabilidade 1/3
- D obtemos 0 com probabilidade 1
- $\boxed{\mathrm{E}}$ obtemos +a com probabilidade 1/2 e 0 com probabilidade 1/2

Questão 72 [mq8b]

Considere um sistema quântico com um espaço de estados tridimensional e a seguinte representação de um operador quântico J, numa certa base ortonormal do espaço,

$$J = a \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array} \right],$$

onde a é uma constante. Suponha que o sistema esteja no seguinte estado

$$\left[\begin{array}{c} 1/\sqrt{2} \\ 1/2 \\ 1/2 \end{array}\right],$$

representado na mesma base. Uma medida da quantidade física associada ao operador J^2 é realizada e o valor a^2 é obtido. Ao medirmos a quantidade física associada ao operador J imediatamente em seguida, podemos afirmar que

- obtemos +a com probabilidade 2/3 e -a com probabilidade 1/3
- B obtemos +a com probabilidade 1/3 e -a com probabilidade 2/3
- $\boxed{\mathbb{C}}$ obtemos +a com probabilidade 1/2, 0 com probabilidade 1/4 e -a com probabilidade 1/4
- D obtemos 0 com probabilidade 1
- $\boxed{\mathrm{E}}$ obtemos +a com probabilidade 1/2 e 0 com probabilidade 1/2

Questão 73 [fe1a] Considere um sistema de duas partículas interagentes 1 e 2, ambas em contato com um mesmo reservatório térmico de temperatura T [$\beta = (k_B T)^{-1}$]. Cada partícula é caracterizada pela variável n_i (i=1,2), que pode assumir os valores 0 ou 1. A energia do sistema vale $\epsilon(n_1+n_2)$ se $n_1 \neq n_2$ e $\epsilon(n_1+n_2)+\Delta$ se $n_1=n_2$, onde ϵ e Δ são constantes positivas. A probabilidade do sistema estar no estado de maior energia é dada por:

$$\begin{array}{c} & \frac{e^{-\beta(2\epsilon+\Delta)}}{e^{-\beta\Delta}+2e^{-\beta\epsilon}+e^{-\beta(2\epsilon+\Delta)}} \\ \hline \\ & \frac{e^{-\beta\Delta}}{e^{-\beta\Delta}+2e^{-\beta\epsilon}+e^{-\beta(2\epsilon+\Delta)}} \\ \hline \\ & C \end{array} \\ \begin{array}{c} & \frac{e^{-\beta\Delta}}{e^{-\beta\Delta}+e^{-\beta\epsilon}+e^{-\beta(\epsilon+\Delta)}} \\ \hline \\ & D \end{array} \\ \begin{array}{c} & \frac{e^{-\beta\Delta}}{e^{-\beta\Delta}+2e^{-\beta\epsilon}+e^{-2\beta\epsilon}} \\ \hline \\ & E \end{array} \\ \begin{array}{c} & 1 \\ \hline & 1+2e^{-\beta\epsilon}+e^{-2\beta\epsilon} \end{array}$$

Questão 74 [fe1b] Considere um sistema de duas partículas interagentes 1 e 2, ambas em contato com um mesmo reservatório térmico de temperatura T [$\beta = (k_B T)^{-1}$]. Cada partícula é caracterizada pela variável n_i (i = 1, 2), que pode assumir os valores 0 ou 1. A energia do sistema vale $\epsilon(n_1 + n_2)$ se $n_1 \neq n_2$ e $\epsilon(n_1 + n_2) + \Delta$ se $n_1 = n_2$, onde ϵ e Δ são constantes positivas. A probabilidade do sistema ocupar o estado com energia Δ é dada por:

$$\begin{array}{c} & e^{-\beta\Delta} \\ \hline & \frac{e^{-\beta\Delta} + 2e^{-\beta\epsilon} + e^{-\beta(2\epsilon + \Delta)}}{e^{-\beta\Delta} + 2e^{-\beta\epsilon} + e^{-\beta(2\epsilon + \Delta)}} \\ \hline \mathbf{B} & \frac{e^{-\beta(2\epsilon + \Delta)}}{e^{-\beta\Delta} + 2e^{-\beta\epsilon} + e^{-\beta(2\epsilon + \Delta)}} \\ \hline \mathbf{C} & \frac{e^{-\beta\Delta}}{e^{-\beta\Delta} + e^{-\beta\epsilon} + e^{-\beta(\epsilon + \Delta)}} \\ \hline \mathbf{D} & \frac{e^{-\beta\Delta}}{e^{-\beta\Delta} + 2e^{-\beta\epsilon} + e^{-2\beta\epsilon}} \\ \hline \mathbf{E} & \frac{1}{1 + 2e^{-\beta\epsilon} + e^{-2\beta\epsilon}} \end{array}$$

Questão 75 [fe2a] Considere um sistema formado por N partículas independentes em contato com um reservatório térmico à temperatura T ($\beta=1/k_BT$), no qual cada partícula pode assumir valores de energia $\epsilon_n=n\epsilon$, onde $\epsilon>0$ e n=1,3,5,7,... A expressão para a energia total média do sistema U é dada por:

Questão 76 [fe2b] Considere um sistema formado por N partículas independentes em contato com um reservatório térmico à temperatura T ($\beta=1/k_BT$), no qual cada partícula pode assumir valores de energia $\epsilon_n=n\epsilon$, onde $\epsilon>0$ e n=0,2,4,6,... A expressão para a energia total média do sistema U é dada por:

Questão 77 [fe3a] Considere um oscilador harmônico unidimensional em contato com um reservatório térmico à temperatura T [$\beta = (k_B T)^{-1}$] descrito pela Hamiltoniana

$$\mathcal{H} = \frac{p^2}{2M} + V(q),\tag{1}$$

onde $V(q)=\frac{M\omega^2q^2}{2}$, se q>0, e $V(q)=\epsilon+\frac{M\omega^2q^2}{2}$, se q<0. A expressão para a função de partição canônica é dada por:

$$Z = \frac{\pi}{\beta h \omega} (1 + e^{-\beta \epsilon})$$

$$Z = \frac{\pi}{\beta h \omega}$$

$$Z = \frac{\pi}{\beta h \omega}$$

$$Z = \frac{\pi}{\beta h \omega} (1 - e^{-\beta \epsilon})$$

$$Z = \frac{\pi}{\beta h \omega} (1 + e^{\beta \epsilon})$$

$$Z = \frac{\pi}{\beta h \omega} (1 - e^{\beta \epsilon})$$

Questão 78 [fe3b] Considere um oscilador harmônico unidimensional em contato com um reservatório térmico à temperatura T [$\beta = (k_B T)^{-1}$] descrito pela Hamiltoniana

$$\mathcal{H} = \frac{p^2}{2M} + V(q),\tag{2}$$

onde $V(q)=-\frac{\epsilon}{2}+\frac{M\omega^2q^2}{2}$, se q>0, e $V(q)=\frac{\epsilon}{2}+\frac{M\omega^2q^2}{2}$, se q<0. A expressão para a função de partição canônica é dada por:

$$Z = \frac{2\pi}{\beta h \omega} \cosh\left(\frac{\beta \epsilon}{2}\right)$$

$$B \quad Z = \frac{2\pi}{\beta h \omega} \sinh\left(\frac{\beta \epsilon}{2}\right)$$

$$C \quad Z = \frac{2\pi}{\beta h \omega} (1 + e^{-\frac{\beta \epsilon}{2}})$$

$$D \quad Z = \frac{\pi}{\beta h \omega}$$

$$E \quad Z = \frac{\pi}{\beta h \omega} (1 - e^{\frac{\beta \epsilon}{2}})$$

Questão 79 [fe4a] Um sistema é formado por N íons magnéticos localizados e independentes, em contato com um reservatório à temperatura T [$\beta=(k_BT)^{-1}$]. Cada íon tem energia dada por $\epsilon=-\mu_0hS_i+DS_i^2$, onde μ_0,h,D e S_i denotam, respectivamente, o magneton de Bohr, a intensidade do campo magnético externo, o campo cristalino e a variável de spin, respectivamente, esta última podendo assumir os valores $S_i=-3,-1,1,3$. A expressão para o momento de quadrupolo médio por íon $q=\sum_{i=1}^N \langle S_i^2 \rangle/N$ é dada por

Questão 80 [fe4b] Um sistema é formado por N íons magnéticos localizados e independentes, em contato com um reservatório à temperatura T [$\beta = (k_B T)^{-1}$]. Cada íon tem energia dada por $\epsilon = -\mu_0 h S_i + D S_i^2$, onde μ_0, h, D e S_i denotam, respectivamente, o magneton de Bohr, a intensidade do campo magnético externo, o campo cristalino e a variável de spin, respectivamente, esta última podendo assumir os valores $S_i = -3, -1,1,3$. A expressão para a magnetização média por íon $m = \sum_{i=1}^N \langle S_i \rangle / N$ é dada por

$$m = \frac{3\mu_0 e^{-9\beta D} \sinh(3\beta\mu_0 h) + \mu_0 e^{-\beta D} \sinh(\beta\mu_0 h)}{e^{-9\beta D} \cosh(3\beta\mu_0 h) + e^{-\beta D} \cosh(\beta\mu_0 h)}$$

$$B m = \frac{3\mu_0 e^{9\beta D} \sinh(3\beta\mu_0 h) + \mu_0 e^{\beta D} \sinh(\beta\mu_0 h)}{e^{9\beta D} \cosh(3\beta\mu_0 h) + e^{\beta D} \cosh(\beta\mu_0 h)}$$

$$C m = 2\mu_0 \tanh(\beta\mu_0 h) \left(e^{-9\beta D} \cosh(3\beta\mu_0 h) + e^{-\beta D} \cosh(\beta\mu_0 h) \right)$$

$$D m = 2\mu_0 \tanh(\beta\mu_0 h)$$

$$E m = \frac{\mu_0 e^{\beta D}}{e^{-9\beta D} \cosh(3\beta\mu_0 h) + e^{-\beta D} \cosh(\beta\mu_0 h)}$$

Folha de Respostas

$22023\mathrm{EUF}0001$	João Ninguém

Questão 1 : BCD	E	Questão 25 :	В	C D E
Questão $2:$ \blacksquare \blacksquare \blacksquare \square \square	E	Questão 26 :	В	C D E
QUESTÃO 3: BCD	E	Questão 27 :	В	C D E
QUESTÃO 4: BCD	E	Questão 28 :	В	C D E
Questão $5:$ \blacksquare \blacksquare \blacksquare \square \square	E	Questão 29 :	В	C D E
QUESTÃO 6: BCD	E	Questão 30 :	В	C D E
QUESTÃO 7: BCD	E	Questão 31 :	В	C D E
Questão 8: BCD	E	Questão 32 :	В	C D E
QUESTÃO 9: BCD	E	Questão 33 :	В	C D E
Questão 10 : BCD	E	Questão 34 :	В	C D E
Questão 11 : BCD	E	Questão 35 :	В	C D E
Questão 12 : \blacksquare B C D	E	Questão 36 :	В	C D E
QUESTÃO 13 : BCD	E	Questão 37 :	В	C D E
Questão 14 : BCD	E	Questão 38 :	В	C D E
QUESTÃO 15 : BCD	E	Questão 39 :	В	C D E
QUESTÃO 16 : BCD	E	Questão 40 :	В	C D E
QUESTÃO 17 : BCD	E	Questão 41 :	В	C D E
QUESTÃO 18 : BCD	E	Questão 42 :	В	C D E
QUESTÃO 19 : BCD	E	Questão 43 :	В	C D E
Questão 20 : \blacksquare B C D	E	Questão 44 :	В	C D E
Questão 21 : BCD	E	Questão 45 :	В	C D E
Questão 22 : BCD	E	Questão 46 :	В	C D E
Questão 23 : BCD	E	Questão 47 :	В	C D E
Questão 24 : B C D	E	Questão 48 :	В	C D E

Catalog

QUESTÃO 49 : BCDE	Questão 65 :	ВС] [D	Ε
Questão 50 : BCDE	Questão 66 :	ВС	D	$oxed{E}$
QUESTÃO 51 : BCDE	Questão 67 :	ВС	D	\mathbf{E}
Questão 52 : BCDE	Questão 68 :	ВС	D	Е
Questão 53 : BCDE	Questão 69 :	ВС	D	\mathbf{E}
Questão 54 : BCDE	Questão 70 :	ВС	D	\mathbf{E}
QUESTÃO 55 : BCDE	Questão 71 :	ВС	D	\mathbf{E}
Questão 56 : BCDE	Questão 72 :	ВС	D	$\boxed{\mathbf{E}}$
QUESTÃO 57 : BCDE	Questão 73 :	ВС	D	Е
Questão 58 : BCDE	Questão 74 :	ВС	D	Е
Questão 59 : BCDE	Questão 75 :	ВС	D	\mathbf{E}
Questão 60 : BCDE	Questão 76 :	ВС	D	$\boxed{\mathrm{E}}$
QUESTÃO 61 : BCDE	Questão 77 :	ВС	D	\mathbf{E}
QUESTÃO 62 : BCDE	Questão 78 :	ВС	D	\mathbf{E}
QUESTÃO 63 : BCDE	QUESTÃO 79 :	ВС	D	\mathbf{E}
QUESTÃO 64 : BCDE	Questão 80 :	ВС	D	Ε