utad Universidade de Trás-os-Montes e Alto Douro

Escola de Ciências e Tecnologia. Departamento de Engenharias

		%
1	7	
2	7	
2	6	

Eng. Informática unidade curricular: Algoritmia ano lectivo: 2016 / 2017

·

Teste Prático 02. 17.Mai.2017 duração: 60 min (+5 min tolerância) (sem consulta)

Número: _____ Nome: _ Considere o seguinte programa em linguagem C: typedef struct _DIR{ char nome[20]; int n_fich; int n_Kb; typedef struct _BTREE_NODE { void * data; struct _BTREE_NODE * left; struct _BTREE_NODE * right; } BTREE_NODE; #define DATA(node) ((node)->data) #define LEFT(node) ((node)->left)
#define RIGHT(node) ((node)->right) typedef BTREE_NODE * BTREE; typedef enum _BOOLEAN {FALSE = 0,TRUE = 1} BOOLEAN; typedef enum _STATUS {ERROR = 0,0K = 1} STATUS; int main(int argc, char *argv[]) BTREE btree; void * dirs[15]; char file_name[20]; printf("Nome do ficheiro: "); scanf("%s", file_name); if(ReadFile(dirs,file_name)) btree = CreateBtree(dirs,0,15);

```
BtreeFree(btree);
}
else
   printf("ERRO na leitura do ficheiro\n");
return 1;
}
```

Eng. Informática. Teste Prático 02. 17. Mai. 2017

unidade curricular: Algoritmia ano lectivo: 2016 / 2017

```
BTREE_NODE * NewBtreeNode(void * data)
   BTREE NODE * tmp pt;
   if ((tmp_pt = (BTREE_NODE *)malloc(sizeof(BTREE_NODE)))!=NULL) {
        DATA(tmp_pt) = data;
        LEFT(tmp_pt) = RIGHT(tmp_pt) = NULL;
   }
   return tmp_pt;
}
void BtreeFree(BTREE btree)
   if (btree != NULL) {
       BtreeFree(LEFT(btree));
       BtreeFree(RIGHT(btree));
       free(DATA(btree));
       free(btree);
   }
}
BTREE_NODE *InitNode(void * ptr_data,BTREE_NODE * node1,BTREE_NODE * node2)
   BTREE_NODE * tmp_pt = NULL;
   tmp_pt = NewBtreeNode(ptr_data);
   LEFT(tmp pt) = node1;
   RIGHT(tmp_pt) = node2;
   return(tmp_pt);
}
BTREE_NODE *CreateBtree(void ** v, int i, int size)
  if(i >= size)
     return(NULL);
      return(InitNode(*(v+i),CreateBtree(v,2*i+1,size),CreateBtree(v,2*i+2,size)));
}
```

Sabendo que a árvore binária acima referida modela a árvore de diretorias de um PC, responda às seguintes questões desenvolvendo o código (use obrigatoriamente funções invocadas no main()) que ache necessário. Os dados de cada diretoria são: nome da diretoria, número de ficheiros e número de kbytes nela contidos.

- **01** Desenvolva o código necessário para mostrar no ecrã todos os dados das diretorias que contenham mais de 1000 Kbytes armazenados.
- **02** Desenvolva o código necessário para mostrar no ecrã o número total de ficheiros armazenado por uma diretoria (e suas subdiretorias) cujo nome deve ser lido através do teclado.
- **03** Desenvolva o código necessário para contar e mostrar no ecrã o número de diretorias vazias.