Examen 1: muestreo estídistico

Unidad 1 y 2: muestreo aleatorio simple y muestro sistemático

Julián Camilo Riaño Moreno

martes, junio 23, 2020

Contents

A	ctividad	1
So	olución de la actividad	2
	Introducción y especificaciones generales	2
	Muestreo Aleatorio simple	2
	Definición de la muestra piloto para cada variable	2
	Errores aceptados y definición de tamaño de muestra para cada variable	18
	Estimadores de las muestra finales utilizando el tamaño de muestra seleccionado para cada variable	19
	Muestreo sistematico	19
	Definición de la muestra piloto para cada variable (muestreo sistemático) $\dots \dots \dots$	19
	Errores aceptados y definición de tamaño de muestra para cada variable (muestreo sistemático).	44
	Estimadores de las muestra finales utilizando el tamaño de muestra seleccionado para cada variable (muestreo sistemático)	45

Actividad

Este conjunto de datos también está disponible en el repositorio de aprendizaje automático de [UCI (Universidad de California en Irvine)], (https://archive.ics.uci.edu/ml/datasets/wine+quality). Estos conjuntos de datos están relacionados con variantes rojas del vino portugués "Vinho Verde". Para más detalles, consulte la referencia [Cortez et al., 2009].

Variables de entrada (basadas en pruebas fisicoquímicas):

- 1. fixed acidity
- 2. volatile acidity
- 3. citric acid
- 4. residual sugar
- 5. chlorides
- 6. free sulfur dioxide

- 7. total sulfur dioxide
- 8. density
- 9. pH
- 10. sulphates
- 11. alcohol
- 12. quality (score between 0 and 10)

Lo contratan para hacer un análisis de muestreo con esta base de datos, con el objetivo de poder hacer un análisis descriptivo e inferencial.

Utilice el método de muestreo aleatorio simple y sistemático para determinar lo siguiente:

Solución de la actividad

Introducción y especificaciones generales

La base de datos entregada corresponde a un archivo que contiene 12 variables y 4898 observaciones. Por tal razón, se conoce el tamaño de la población que se está estudiante para este caso N=4898.

Para realizar los análisis de manera más eficiente se definieron 10 funciones para el muestreo aleatorio simple como para el muestro sistemático. que se pueden ver en los archivos en el siguiente repositorio propio de Github: (https://github.com/JCRianoM/Muestro-estad-stico-test1.git)

Dichas funciones realizan el procesamiento visto en clase para una sola variable directamente para todas las variables, de esta forma la información en este documento será definida de esta misma forma. D

Dedido al procesamiento en formato: binary floating-point de R, algunas tablas se mostrarán en números flotantes. Si se desea hacer la verificación y comprobación de dichos números se puede utilizar la siguiente función propia que verifica data.frames a través de la función mpfr del paquete Rmpfr para manejo de números flotantes.

Inicialmente se decide para este ejericio trabajar con un errro de 0.05 y una nivel de confianza de 95. Para hacer los datos reproducibles se asigno un valor de estandar a traves de la función set.seed = 123.

Muestreo Aleatorio simple

Inicialmente se realizó un análisis de muestreo para la prueba piloto. Para esto se tomaron todos las observaciones como población total y se aplicó un error de 0.05, a través de esto, y como se puede observar en la tabla 1. se obtuvo que el tamaño ($n = pil_size$) para el piloto es de n = 245.

Definición de la muestra piloto para cada variable

Table 1: Tamaño población (N) y muestra (n) para el piloto

N_pop	pil_size
4898	245

Table 2: Estimadores de la muestra piloto

	$Media_var$	D.standard	sd_med_var	E.Error
fixed acidity	61.79	20.31	0.3287	3.089
volatile acidity	0.271	0.08679	0.3203	0.01355
citric acid	0.3331	0.113	0.3393	0.01665
residual sugar	5.941	4.776	0.804	0.297
${f chlorides}$	0.04781	0.02514	0.5259	0.002391
free sulfur dioxide	37.95	29.74	0.7837	1.898
total sulfur dioxide	139.8	39.17	0.2802	6.99
${f density}$	0.9939	0.002736	0.002753	0.0497
pH	288.1	92.57	0.3213	14.41
${f sulphates}$	0.4858	0.1177	0.2424	0.02429
alcohol	105.4	134.7	1.277	5.271
${f quality}$	5.837	0.8285	0.1419	0.2918

Table 3: Tabla de margen de error para cada una de las variables

fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur s dioxide	total sulfur dioxide	densit	урН	sulpha	tesslcoh	olquality
0	0	0	0	0	0	0	0	0	0	0	0
0.25	0.001	0.003	0.03	5e-04	0.08	0.3	0.005	0.6	0.003	0.2	0.01
0.5	0.002	0.006	0.06	0.001	0.16	0.6	0.01	1.2	0.006	0.4	0.02
0.75	0.003	0.009	0.09	0.0015	0.24	0.9	0.015	1.8	0.009	0.6	0.03
1	0.004	0.012	0.12	0.002	0.32	1.2	0.02	2.4	0.012	0.8	0.04
1.25	0.005	0.015	0.15	0.0025	0.4	1.5	0.025	3	0.015	1	0.05
1.5	0.006	_	0.18	0.003	0.48	1.8	0.03	3.6	0.018	1.2	0.06
1.75	0.007	_	0.21	0.0035	0.56	2.1	0.035	4.2	0.021	1.4	0.07
2	0.008	_	0.24	0.004	0.64	2.4	0.04	4.8	0.024	1.6	0.08
2.25	0.009	_	0.27	0.0045	0.72	2.7	0.045	5.4		1.8	0.09
2.5	0.01	_	0.3	0.005	0.8	3	0.05	6		2	0.1
2.75	0.011	_	_	0.0055	0.88	3.3	0.055	6.6		2.2	0.11
3	0.012			0.006	0.96	3.6		7.2		2.4	0.12
_	0.013	_	_	0.0065	1.04	3.9		7.8		2.6	0.13
_	0.014	_	_	0.007	1.12	4.2		8.4		2.8	0.14
_	0.015	_	_	0.0075	1.2	4.5		9		3	0.15
_	0.016	_	_	0.008	1.28	4.8		9.6		3.2	0.16
_	0.017	_	_	0.0085	1.36	5.1		10.2		3.4	0.17
_	0.018	_	_	0.009	1.44	5.4		10.8		3.6	0.18
_	0.019	_	_	0.0095	1.52	5.7		11.4		3.8	0.19
_	0.02	_	_	0.01	1.6	6		12		4	0.2
_	0.021	_	_	0.0105	1.68	6.3	_	12.6	_	4.2	0.21
_	0.022	_	_	0.011	1.76	6.6	_	13.2	_	4.4	0.22
_	0.023	_		0.0115	1.84	6.9	_	13.8	_	4.6	0.23

fixed acidity	volatile acidity	citric acid	residual sugar	chloride	free sulfur es dioxide	total sulfur dioxide	densi	typH	sulpha	tesslcoh	olquality
_	_			0.012	_	_		14.4		4.8	0.24
_		_	_	_					_	5	0.25
_		_					_		_	5.2	0.26
_		_	_	_					_		0.27
_		_					_		_	_	0.28
	_	_	_	_							0.29

Table 4: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 1: fixed acidity)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.25	6.641	6.632
0.5	1.66	1.66
0.75	0.7379	0.7377
1	0.415	0.415
1.25	0.2656	0.2656
1.5	0.1845	0.1845
1.75	0.1355	0.1355
2	0.1038	0.1038
2.25	0.08198	0.08198
2.5	0.06641	0.06641
2.75	0.05488	0.05488
3	0.04612	0.04612

Muestreo por variable " fixed acidity "

Figure 1: Gráfica comparación muestra para población infinita y finita Variable 1

Table 5: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 2: volatile acidity)

Error_v_s	$P_infinite_s$	P_finite_s
0	Inf	_
0.001	394000	4838
0.002	98500	4666
0.003	43778	4405
0.004	24625	4085
0.005	15760	3737
0.006	10944	3384
0.007	8041	3044
0.008	6156	2728
0.009	4864	2441
0.01	3940	2184
0.011	3256	1956
0.012	2736	1755
0.013	2331	1580
0.014	2010	1425
0.015	1751	1290
0.016	1539	1171
0.017	1363	1066

Error_v_s	P_infinite_s	P_finite_s
0.018	1216	974.2
0.019	1091	892.5
0.02	985	820.1
0.021	893.4	755.6
0.022	814.1	698
0.023	744.8	646.5

Muestreo por variable "volatile acidity"

Figure 2: Gráfica comparación muestra para población infinita y finita Variable 2

Table 6: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 3: citric acid)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.003	49141	4454
0.006	12285	3502
0.009	5460	2582
0.012	3071	1888
0.015	1966	1403

Figure 3: Gráfica comparación muestra para población infinita y finita Variable 3

Table 7: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 4: residual sugar)

$Error_v_s$	$P_infinite_s$	P_finite_s
0	Inf	_
0.03	2759	1765
0.06	689.7	604.6
0.09	306.5	288.5
0.12	172.4	166.6
0.15	110.4	107.9
0.18	76.64	75.46
0.21	56.3	55.66
0.24	43.11	42.73
0.27	34.06	33.83
0.3	27.59	27.43

Muestreo por variable " residual sugar "

Figure 4: Gráfica comparación muestra para población infinita y finita Variable 4

Table 8: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 5: chlorides)

Error_v_s	$P_infinite_s$	P_finite_s
0	Inf	_
5e-04	4249187	4892
0.001	1062297	4876
0.0015	472132	4848
0.002	265574	4809
0.0025	169967	4761
0.003	118033	4703
0.0035	86718	4636
0.004	66394	4561
0.0045	52459	4480
0.005	42492	4392
0.0055	35117	4298
0.006	29508	4201
0.0065	25143	4099
0.007	21680	3995
0.0075	18885	3889
0.008	16598	3782
0.0085	14703	3674

Error_v_s	P_infinite_s	P_finite_s
0.009	13115	3566
0.0095	11771	3459
0.01	10623	3352
0.0105	9635	3247
0.011	8779	3144
0.0115	8032	3043
0.012	7377	2944

Muestreo por variable " chlorides "

Figure 5: Gráfica comparación muestra para población infinita y finita Variable 5

Table 9: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 6: free sulfur dioxide)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.08	368.7	342.9
0.16	92.17	90.47
0.24	40.97	40.63
0.32	23.04	22.94
0.4	14.75	14.7
0.48	10.24	10.22

Error_v_s	P_infinite_s	P_finite_s
0.56	7.524	7.513
0.64	5.761	5.754
0.72	4.552	4.548
0.8	3.687	3.684
0.88	3.047	3.045
0.96	2.56	2.559
1.04	2.182	2.181
1.12	1.881	1.88
1.2	1.639	1.638
1.28	1.44	1.44
1.36	1.276	1.275
1.44	1.138	1.138
1.52	1.021	1.021
1.6	0.9217	0.9216
1.68	0.836	0.8359
1.76	0.7618	0.7616
1.84	0.697	0.6969

Muestreo por variable " free sulfur dioxide "

Figure 6: Gráfica comparación muestra para población infinita y finita Variable 6

Table 10: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 7: total sulfur dioxide)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.3	3.351	3.349
0.6	0.8379	0.8377
0.9	0.3724	0.3724
1.2	0.2095	0.2095
1.5	0.1341	0.1341
1.8	0.0931	0.09309
2.1	0.0684	0.0684
2.4	0.05237	0.05237
2.7	0.04138	0.04138
3	0.03351	0.03351
3.3	0.0277	0.0277
3.6	0.02327	0.02327
3.9	0.01983	0.01983
4.2	0.0171	0.0171
4.5	0.0149	0.0149
4.8	0.01309	0.01309
5.1	0.0116	0.0116
5.4	0.01034	0.01034
5.7	0.009284	0.009284
6	0.008379	0.008379
6.3	0.0076	0.0076
6.6	0.006924	0.006924
6.9	0.006335	0.006335

Muestreo por variable " total sulfur dioxide "

Figure 7: Gráfica comparación muestra para población infinita y finita Variable 7

Table 11: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 8: density)

$Error_v_s$	$P_infinite_s$	P_finite_s
0	Inf	_
0.005	1.164	1.164
0.01	0.291	0.291
0.015	0.1294	0.1293
0.02	0.07276	0.07276
0.025	0.04657	0.04657
0.03	0.03234	0.03234
0.035	0.02376	0.02376
0.04	0.01819	0.01819
0.045	0.01437	0.01437
0.05	0.01164	0.01164
0.055	0.009621	0.009621

Figure 8: Gráfica comparación muestra para población infinita y finita Variable 8

Table 12: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 9: pH)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.6	1.102	1.101
1.2	0.2754	0.2754
1.8	0.1224	0.1224
2.4	0.06885	0.06885
3	0.04406	0.04406
3.6	0.0306	0.0306
4.2	0.02248	0.02248
4.8	0.01721	0.01721
5.4	0.0136	0.0136
6	0.01102	0.01102
6.6	0.009104	0.009104
7.2	0.00765	0.00765
7.8	0.006518	0.006518
8.4	0.00562	0.00562
9	0.004896	0.004896
9.6	0.004303	0.004303
10.2	0.003812	0.003812

Error_v_s	P_infinite_s	P_finite_s
10.8	0.0034	0.0034
11.4	0.003052	0.003052
12	0.002754	0.002754
12.6	0.002498	0.002498
13.2	0.002276	0.002276
13.8	0.002082	0.002082
14.4	0.001912	0.001912

Muestreo por variable " pH "

Figure 9: Gráfica comparación muestra para población infinita y finita Variable 9

Table 13: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 10: sulphates)

Error_v_s	$P_infinite_s$	P_finite_s
0	Inf	_
0.003	25071	4097
0.006	6268	2749
0.009	2786	1776
0.012	1567	1187
0.015	1003	832.4
0.018	696.4	609.7

Error_v_s	P_infinite_s	P_finite_s
0.021	511.7	463.3
0.024	391.7	362.7

Muestreo por variable " sulphates "

Figure 10: Gráfica comparación muestra para población infinita y finita Variable 10

Table 14: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 12: sulphates)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.2	156.7	151.8
0.4	39.17	38.86
0.6	17.41	17.35
0.8	9.792	9.773
1	6.267	6.259
1.2	4.352	4.348
1.4	3.197	3.195
1.6	2.448	2.447
1.8	1.934	1.934
2	1.567	1.566
2.2	1.295	1.295

Error_v_s	P_infinite_s	P_finite_s
2.4	1.088	1.088
2.6	0.9271	0.9269
2.8	0.7994	0.7992
3	0.6963	0.6962
3.2	0.612	0.6119
3.4	0.5421	0.5421
3.6	0.4836	0.4835
3.8	0.434	0.434
4	0.3917	0.3917
4.2	0.3553	0.3552
4.4	0.3237	0.3237
4.6	0.2962	0.2962
4.8	0.272	0.272
5	0.2507	0.2507
5.2	0.2318	0.2318

Muestreo por variable " alcohol "

Figure 11: Gráfica comparación muestra para población infinita y finita Variable 11

Table 15: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 12: sulphates)

Error_v_s	P_infinite_s	P_finite_s
0	Inf	_
0.01	773.9	668.3
0.02	193.5	186.1
0.03	85.99	84.51
0.04	48.37	47.9
0.05	30.96	30.76
0.06	21.5	21.4
0.07	15.79	15.74
0.08	12.09	12.06
0.09	9.555	9.536
0.1	7.739	7.727
0.11	6.396	6.388
0.12	5.375	5.369
0.13	4.579	4.575
0.14	3.949	3.945
0.15	3.44	3.437
0.16	3.023	3.021
0.17	2.678	2.676
0.18	2.389	2.388
0.19	2.144	2.143
0.2	1.935	1.934
0.21	1.755	1.754
0.22	1.599	1.599
0.23	1.463	1.463
0.24	1.344	1.343
0.25	1.238	1.238
0.26	1.145	1.145
0.27	1.062	1.061
0.28	0.9872	0.987
0.29	0.9203	0.9201

Método = muestro aleatorio simple

Figure 12: Gráfica comparación muestra para población infinita y finita Variable 12

Errores aceptados y definición de tamaño de muestra para cada variable.

Table 16: Tabla de errores aceptados y valores de tamaño de muestra (n) seleccionado para cada variable

	Error aceptado	Tamaño de muestra (n)
fixed acidity	0.25	6
volatile acidity	0.015	1290
citric acid	0.012	1888
residual sugar	0.03	1765
chlorides	0.012	2944
free sulfur dioxide	0.08	342
total sulfur dioxide	0.3	3
density	0.005	2
pН	0.6	2
sulphates	0.006	2749
alcohol	0.2	152
${f quality}$	0.01	668

Estimadores de las muestra finales utilizando el tamaño de muestra seleccionado para cada variable.

Table 17: Tabla estimadores de la muestra y totales para cada variable usando el valor de n resultado del piloto (continued below)

	n	Int. Inferior	Media muestra	Int. Superior	Desviación std.	Varianza
fixed.acidity	6	59.2	71.3	83.4	14.8	36.6
${f volatile.acidity}$	1290	0.272	0.277	0.283	0.0956	5.22e-06
citric.acid	1888	0.324	0.33	0.335	0.122	4.83e-06
residual.sugar	1765	6.08	6.31	6.55	4.96	0.00893
${f chlorides}$	2944	0.0448	0.0456	0.0464	0.0216	6.33e-08
${\it free.sulfur.dioxide}$	342	36	42.8	49.6	63.2	10.9
${f total.sulfur.dioxide}$	3	39.7	122	205	71.6	1707
${f density}$	2	0.995	0.997	0.999	0.00148	1.09e-06
pН	2	322	332	340	6.36	20.2
${f sulphates}$	2749	0.484	0.489	0.493	0.114	2.07e-06
alcohol	152	-3.31e+11	$2.2e{+}12$	4.73e + 12	$1.56e{+13}$	1.55e + 24
quality	668	5.83	5.9	5.97	0.902	0.00105

				Int.	_
	Coeficiente	Int. Inferior	Media	Superior	Varianza
	var.	total	Total	Total	Total
fixed.acidity	0.208	290127	349391	408654	8.78e + 08
volatile.acidity	0.345	1335	1358	1380	125
${f citric.acid}$	0.37	1593	1614	1636	116
residual.sugar	0.786	29990	30916	31841	214144
${f chlorides}$	0.474	221	223	226	1.52
free.sulfur.dioxide	1.48	177355	209626	241897	2.6e + 08
${f total.sulfur.dioxide}$	0.585	194451	599189	1e + 06	$4.1e{+10}$
${f density}$	0.00148	4872	4882	4892	26.2
pH	0.0192	1579614	1623687	1667760	4.86e + 08
${f sulphates}$	0.233	2380	2394	2408	49.6
alcohol	7.09	-1.43e + 15	1.08e + 16	2.3e + 16	3.73e + 31
quality	0.153	28572	28889	29207	25253

Muestreo sistematico

Para este análisis de muestreo sistemático se tomaron todos las observaciones como población total y se aplicó un error de 0.05, a través de esto, y como se puede observar en la tabla 1. se obtuvo que el tamaño (n = pil_size) para el piloto es de n = 245 y un valor k = 20 (se uso el mismo valor de semilla para este muestreo), ver tabla 19.

Definición de la muestra piloto para cada variable (muestreo sistemático)

Table 19: Tamaño población (N) y muestra (n) para el piloto (muestreo sistemático

N_pop	pil_size	Кр
4898	245	20

Table 20: Estimadores de la muestra piloto por muestreo sistemático (size_out_N = estimación pop. infinita; size_with_N = estimación pop. finita)

	Media	Error	Varianza	Size_out_N	Size_with_N
fixed acidity	60.42	3.021	528.7	223	213
volatile acidity	0.2835	0.01418	0.01143	219	210
citric acid	0.3341	0.0167	0.01314	181	175
residual sugar	6.931	0.3466	38.47	1230	983
${f chlorides}$	0.04456	0.002228	0.0002048	159	154
free sulfur dioxide	38.12	1.906	1790	1892	1365
total sulfur dioxide	159.7	7.985	46703	2814	1787
${f density}$	0.9945	0.04973	1.554 e - 05	0	0
pН	278	13.9	10265	204	196
$\operatorname{sulphates}$	0.4897	0.02449	0.01288	83	82
alcohol	$4.095e{+11}$	2.048e + 10	4.109e + 25	376463	4835
quality	5.804	0.2902	0.6664	30	30

Table 21: Tabla de margen de error para cada una de las variables

					free	total			
fixed	volatile	citric	residual		sulfur	sulfur			
acidity	acidity	acid	sugar	chlorides	${\rm dioxide}$	dioxide	${\it densitypH}$	sulphat	esslcoholquality
0	0	0	0	0	0	0	0 0	0	0 0
0.08	6e-04	4e-04	0.01	8e-05	0.04	0.2	$0.0015 \ 0.3$	6e-04	$1e+09\ 0.0065$
0.16	0.0012	8e-04	0.02	0.00016	0.08	0.4	0.003 0.6	0.0012	$2e+09\ 0.013$
0.24	0.0018	0.0012	0.03	0.00024	0.12	0.6	$0.0045 \ 0.9$	0.0018	$3e+09\ 0.0195$
0.32	0.0024	0.0016	0.04	0.00032	0.16	0.8	0.006 1.2	0.0024	$4e+09\ 0.026$
0.4	0.003	0.002	0.05	4e-04	0.2	1	$0.0075 \ 1.5$	0.003	$5e+09\ 0.0325$
0.48	0.0036	0.0024	0.06	0.00048	0.24	1.2	0.009 1.8	0.0036	$6e+09\ 0.039$
0.56	0.0042	0.0028	0.07	0.00056	0.28	1.4	$0.0105\ 2.1$	0.0042	$7e+09\ 0.0455$
0.64	0.0048	0.0032	0.08	0.00064	0.32	1.6	0.012 2.4	0.0048	$8e+09\ 0.052$
0.72	0.0054	0.0036	0.09	0.00072	0.36	1.8	$0.0135\ 2.7$	0.0054	$9e+09\ 0.0585$
0.8	0.006	0.004	0.1	8e-04	0.4	2	0.015 3	0.006	$1e+10\ 0.065$
0.88	0.0066	0.0044	0.11	0.00088	0.44	2.2	$0.0165 \ 3.3$	0.0066	1.1e+1 0 .0715
0.96	0.0072	0.0048	0.12	0.00096	0.48	2.4	0.018 3.6	0.0072	1.2e+1 0 .078
1.04	0.0078	0.0052	0.13	0.00104	0.52	2.6	$0.0195 \ 3.9$	0.0078	1.3e+1 0 .0845
1.12	0.0084	0.0056	0.14	0.00112	0.56	2.8	0.021 4.2	0.0084	1.4e+1 0 .091
1.2	0.009	0.006	0.15	0.0012	0.6	3	$0.0225\ 4.5$	0.009	1.5e+1 0 .0975
1.28	0.0096	0.0064	0.16	0.00128	0.64	3.2	0.024 4.8	0.0096	1.6e+1 0 . 104
1.36	0.0102	0.0068	0.17	0.00136	0.68	3.4	$0.0255\ 5.1$	0.0102	1.7e + 1 0 .1105
1.44	0.0108	0.0072	0.18	0.00144	0.72	3.6	0.027 5.4	0.0108	1.8e + 10.117
1.52	0.0114	0.0076	0.19	0.00152	0.76	3.8	$0.0285\ 5.7$	0.0114	1.9e+1 0 .1235
1.6	0.012	0.008	0.2	0.0016	0.8	4	0.03 6	0.012	$2e+10\ 0.13$

fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	densitypH	sulphat	esslcoh	olquality
1.68	0.0126	0.0084	0.21	0.00168	0.84	4.2	0.0315 6.3	0.0126		0.1365
1.76	0.0132	0.0088	0.22	0.00176	0.88	4.4	0.033 - 6.6	0.0132	_	0.143
1.84	0.0138	0.0092	0.23	0.00184	0.92	4.6	$0.0345\ 6.9$	0.0138	_	0.1495
1.92	0.0144	0.0096	0.24	0.00192	0.96	4.8	0.036 7.2	0.0144		0.156
2	0.015	0.01	0.25	0.002	1	5	$0.0375 \ 7.5$	0.015		0.1625
2.08	0.0156	0.0104	0.26	0.00208	1.04	5.2	0.039 - 7.8	0.0156		0.169
2.16	0.0162	0.0108	0.27	0.00216	1.08	5.4	0.0405 8.1	0.0162		0.1755
2.24	0.0168	0.0112	0.28	0.00224	1.12	5.6	0.042 - 8.4	0.0168		0.182
2.32	0.0174	0.0116	0.29	0.00232	1.16	5.8	0.0435 8.7	0.0174	_	0.1885
2.4	0.018	0.012	0.3	0.0024	1.2	6	0.045 9	0.018		0.195
2.48	0.0186	0.0124	0.31	0.00248	1.24	6.2	0.0465 9.3	0.0186		0.2015
2.56	0.0192	0.0128	0.32	0.00256	1.28	6.4	0.048 - 9.6	0.0192		0.208
2.64	0.0198	0.0132	0.33	0.00264	1.32	6.6	0.0495 9.9	0.0198	_	0.2145
2.72	0.0204	0.0136	0.34	0.00272	1.36	6.8	$0.051 \ 10.2$	0.0204	_	0.221
2.8	0.021	0.014	0.35	0.0028	1.4	7	$0.0525\ 10.5$	0.021	_	0.2275
2.88	0.0216	0.0144	0.36	0.00288	1.44	7.2	0.054 10.8	0.0216	_	0.234
2.96	0.0222	0.0148	0.37	0.00296	1.48	7.4	$0.0555\ 11.1$	0.0222	_	0.2405
3.04	0.0228	0.0152	0.38	0.00304	1.52	7.6	0.057 11.4	0.0228	_	0.247
3.12	0.0234	0.0156	0.39	0.00312	1.56	7.8	$0.0585\ 11.7$	0.0234	_	0.2535
3.2	0.024	0.016	0.4	0.0032	1.6	8	— 12	0.024	_	0.26
3.28	_	0.0164	0.41	_	1.64	8.2	12.3	_	_	0.2665
3.36	_	_	0.42	_	1.68	8.4	- 12.6	_	_	0.273
3.44	_	_	0.43	_	1.72	8.6	- 12.9	_	_	0.2795
3.52		_	0.44	_	1.76	8.8	- 13.2	_	_	0.286
3.6		_	_	_	1.8	_	— 13.5		_	
3.68		_	_	_	1.84	_	— 13.8	_	_	
3.76		_			1.88	_			_	

Table 22: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 1: fixed acidity)

Error_v	P_infinite	P_finite
0	Inf	_
0.08	317362	4824
0.16	79341	4613
0.24	35262	4301
0.32	19835	3928
0.4	12694	3534
0.48	8816	3149
0.56	6477	2789
0.64	4959	2464
0.72	3918	2177
0.8	3174	1926
0.88	2623	1708
0.96	2204	1520
1.04	1878	1357
1.12	1619	1217
1.2	1410	1095
1.28	1240	989.3

Error_v	P_infinite	P_finite
1.36	1098	897
1.44	979.5	816.3
1.52	879.1	745.3
1.6	793.4	682.8
1.68	719.6	627.5
1.76	655.7	578.3
1.84	599.9	534.5
1.92	551	495.3
2	507.8	460.1
2.08	469.5	428.4
2.16	435.3	399.8
2.24	404.8	373.9
2.32	377.4	350.4
2.4	352.6	328.9
2.48	330.2	309.4
2.56	309.9	291.5
2.64	291.4	275.1
2.72	274.5	260
2.8	259.1	246.1
2.88	244.9	233.2
2.96	231.8	221.3
3.04	219.8	210.3
3.12	208.7	200.1
3.2	198.4	190.6
3.28	188.8	181.8
3.36	179.9	173.5
3.44	171.6	165.8
3.52	163.9	158.6
3.6	156.7	151.9
3.68	150	145.5
3.76	143.7	139.6

Muestreo por variable " fixed acidity "

Figure 13: Gráfica comparación muestra para población infinita y finita Variable 1

Table 23: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 2: volatile acidity)

$Error_v$	P_infinite	P_finite
0	Inf	_
6e-04	121971	4709
0.0012	30493	4220
0.0018	13552	3598
0.0024	7623	2982
0.003	4879	2444
0.0036	3388	2003
0.0042	2489	1650
0.0048	1906	1372
0.0054	1506	1152
0.006	1220	976.5
0.0066	1008	836
0.0072	847	722.1
0.0078	721.7	629
0.0084	622.3	552.2
0.009	542.1	488.1
0.0096	476.4	434.2
0.0102	422	388.6

Error_v	P_infinite	P_finite
0.0108	376.5	349.6
0.0114	337.9	316.1
0.012	304.9	287.1
0.0126	276.6	261.8
0.0132	252	239.7
0.0138	230.6	220.2
0.0144	211.8	203
0.015	195.2	187.7
0.0156	180.4	174
0.0162	167.3	161.8
0.0168	155.6	150.8
0.0174	145	140.9
0.018	135.5	131.9
0.0186	126.9	123.7
0.0192	119.1	116.3
0.0198	112	109.5
0.0204	105.5	103.3
0.021	99.57	97.58
0.0216	94.11	92.34
0.0222	89.1	87.5
0.0228	84.47	83.04
0.0234	80.19	78.9
0.024	76.23	75.06

Muestreo por variable "volatile acidity"

Figure 14: Gráfica comparación muestra para población infinita y finita Variable $2\,$

Table 24: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 3: citric acid)

Error_v	P_infinite	P_finite
0	Inf	_
4e-04	315417	4823
8e-04	78854	4612
0.0012	35046	4297
0.0016	19714	3923
0.002	12617	3528
0.0024	8762	3142
0.0028	6437	2782
0.0032	4928	2457
0.0036	3894	2169
0.004	3154	1919
0.0044	2607	1701
0.0048	2190	1514
0.0052	1866	1351
0.0056	1609	1211
0.006	1402	1090
0.0064	1232	984.5
0.0068	1091	892.5

$\operatorname{Error}_{\mathbf{v}}$	P_infinite	P_finite
0.0072	973.5	812.1
0.0076	873.7	741.5
0.008	788.5	679.2
0.0084	715.2	624.1
0.0088	651.7	575.2
0.0092	596.3	531.5
0.0096	547.6	492.5
0.01	504.7	457.5
0.0104	466.6	426
0.0108	432.7	397.6
0.0112	402.3	371.8
0.0116	375	348.4
0.012	350.5	327.1
0.0124	328.2	307.6
0.0128	308	289.8
0.0132	289.6	273.5
0.0136	272.9	258.5
0.014	257.5	244.6
0.0144	243.4	231.9
0.0148	230.4	220
0.0152	218.4	209.1
0.0156	207.4	199
0.016	197.1	189.5
0.0164	187.6	180.7

Muestreo por variable " citric acid "

Figure 15: Gráfica comparación muestra para población infinita y finita Variable $3\,$

Table 25: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 4: residual sugar)

Error_v	P_infinite	P_finite
0	Inf	_
0.01	1477840	4882
0.02	369460	4834
0.03	164204	4756
0.04	92365	4651
0.05	59114	4523
0.06	41051	4376
0.07	30160	4214
0.08	23091	4041
0.09	18245	3861
0.1	14778	3679
0.11	12214	3496
0.12	10263	3316
0.13	8745	3140
0.14	7540	2969
0.15	6568	2806
0.16	5773	2650
0.17	5114	2502

$Error_v$	P_infinite	P_finite
0.18	4561	2362
0.19	4094	2230
0.2	3695	2106
0.21	3351	1990
0.22	3053	1881
0.23	2794	1779
0.24	2566	1684
0.25	2365	1595
0.26	2186	1512
0.27	2027	1434
0.28	1885	1361
0.29	1757	1293
0.3	1642	1230
0.31	1538	1170
0.32	1443	1115
0.33	1357	1063
0.34	1278	1014
0.35	1206	968
0.36	1140	925
0.37	1080	884.6
0.38	1023	846.5
0.39	971.6	810.8
0.4	923.6	777.1
0.41	879.1	745.4
0.42	837.8	715.4
0.43	799.3	687.1
0.44	763.3	660.4

Muestreo por variable " residual sugar "

Figure 16: Gráfica comparación muestra para población infinita y finita Variable $4\,$

Table 26: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 5: chlorides)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Error_v	P_infinite	P_finite
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	Inf	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8e-05	122940	4710
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00016	30735	4225
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00024	13660	3605
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00032	7684	2991
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4e-04	4918	2454
$\begin{array}{cccccc} 0.00064 & 1921 & 1380 \\ 0.00072 & 1518 & 1159 \\ 8e-04 & 1229 & 982.7 \\ 0.00088 & 1016 & 841.5 \\ 0.00096 & 853.7 & 727 \\ 0.00104 & 727.5 & 633.4 \\ 0.00112 & 627.2 & 556 \\ 0.0012 & 546.4 & 491.6 \\ 0.00128 & 480.2 & 437.4 \\ \end{array}$	0.00048	3415	2012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00056	2509	1659
8e-04 1229 982.7 0.00088 1016 841.5 0.00096 853.7 727 0.00104 727.5 633.4 0.00112 627.2 556 0.0012 546.4 491.6 0.00128 480.2 437.4	0.00064	1921	1380
$\begin{array}{ccccc} 0.00088 & 1016 & 841.5 \\ 0.00096 & 853.7 & 727 \\ 0.00104 & 727.5 & 633.4 \\ 0.00112 & 627.2 & 556 \\ 0.0012 & 546.4 & 491.6 \\ 0.00128 & 480.2 & 437.4 \\ \end{array}$	0.00072	1518	1159
$\begin{array}{ccccc} 0.00096 & 853.7 & 727 \\ 0.00104 & 727.5 & 633.4 \\ 0.00112 & 627.2 & 556 \\ 0.0012 & 546.4 & 491.6 \\ 0.00128 & 480.2 & 437.4 \end{array}$	8e-04	1229	982.7
0.00104 727.5 633.4 0.00112 627.2 556 0.0012 546.4 491.6 0.00128 480.2 437.4	0.00088	1016	841.5
0.00112 627.2 556 0.0012 546.4 491.6 0.00128 480.2 437.4	0.00096	853.7	727
0.0012 546.4 491.6 0.00128 480.2 437.4	0.00104	727.5	633.4
0.00128 480.2 437.4	0.00112	627.2	556
	0.0012	546.4	491.6
0.00136 425.4 391.4	0.00128	480.2	437.4
	0.00136	425.4	391.4

Error_v	P_infinite	P_finite
0.00144	379.4	352.2
0.00152	340.6	318.4
0.0016	307.3	289.2
0.00168	278.8	263.8
0.00176	254	241.5
0.00184	232.4	221.9
0.00192	213.4	204.5
0.002	196.7	189.1
0.00208	181.9	175.4
0.00216	168.6	163
0.00224	156.8	151.9
0.00232	146.2	141.9
0.0024	136.6	132.9
0.00248	127.9	124.7
0.00256	120.1	117.2
0.00264	112.9	110.3
0.00272	106.3	104.1
0.0028	100.4	98.34
0.00288	94.86	93.06
0.00296	89.8	88.19
0.00304	85.14	83.68
0.00312	80.83	79.52
0.0032	76.84	75.65

Muestreo por variable " chlorides "

Figure 17: Gráfica comparación muestra para población infinita y finita Variable $5\,$

Table 27: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 6: free sulfur dioxide)

$Error_v$	P_infinite	P_finite
0	Inf	_
0.04	4296809	4892
0.08	1074202	4876
0.12	477423	4848
0.16	268551	4810
0.2	171872	4762
0.24	119356	4705
0.28	87690	4639
0.32	67138	4565
0.36	53047	4484
0.4	42968	4397
0.44	35511	4304
0.48	29839	4207
0.52	25425	4107
0.56	21922	4004
0.6	19097	3898
0.64	16784	3792

Error_v	P_infinite	P_finite
0.68	14868	3684
0.72	13262	3577
0.76	11903	3470
0.8	10742	3364
0.84	9743	3259
0.88	8878	3156
0.92	8123	3055
0.96	7460	2957
1	6875	2860
1.04	6356	2766
1.08	5894	2675
1.12	5481	2586
1.16	5109	2501
1.2	4774	2418
1.24	4471	2337
1.28	4196	2260
1.32	3946	2185
1.36	3717	2113
1.4	3508	2044
1.44	3315	1977
1.48	3139	1913
1.52	2976	1851
1.56	2825	1792
1.6	2686	1735
1.64	2556	1680
1.68	2436	1627
1.72	2324	1576
1.76	2219	1527
1.8	2122	1481
1.84	2031	1435
1.88	1945	1392

Muestreo por variable " free sulfur dioxide "

Figure 18: Gráfica comparación muestra para población infinita y finita Variable 6

Table 28: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 7: total sulfur dioxide)

Error_v	P_infinite	P_finite
0	Inf	_
0.2	4485197	4893
0.4	1121299	4877
0.6	498355	4850
0.8	280325	4814
1	179408	4768
1.2	124589	4713
1.4	91535	4649
1.6	70081	4578
1.8	55373	4500
2	44852	4416
2.2	37068	4326
2.4	31147	4232
2.6	26540	4135
2.8	22884	4034
3	19934	3932
3.2	17520	3828
3.4	15520	3723

Error_v	P_infinite	P_finite
3.6	13843	3618
3.8	12424	3513
4	11213	3409
4.2	10171	3306
4.4	9267	3204
4.6	8479	3105
4.8	7787	3007
5	7176	2911
5.2	6635	2818
5.4	6153	2727
5.6	5721	2639
5.8	5333	2553
6	4984	2470
6.2	4667	2390
6.4	4380	2312
6.6	4119	2237
6.8	3880	2165
7	3661	2095
7.2	3461	2028
7.4	3276	1963
7.6	3106	1901
7.8	2949	1841
8	2803	1783
8.2	2668	1727
8.4	2543	1674
8.6	2426	1622
8.8	2317	1573

Muestreo por variable " total sulfur dioxide "

Figure 19: Gráfica comparación muestra para población infinita y finita Variable 7 $\,$

Table 29: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 8: density)

Error_v	P_infinite	P_finite
0	Inf	_
0.0015	26.54	26.4
0.003	6.635	6.626
0.0045	2.949	2.947
0.006	1.659	1.658
0.0075	1.062	1.061
0.009	0.7372	0.7371
0.0105	0.5416	0.5416
0.012	0.4147	0.4146
0.0135	0.3276	0.3276
0.015	0.2654	0.2654
0.0165	0.2193	0.2193
0.018	0.1843	0.1843
0.0195	0.157	0.157
0.021	0.1354	0.1354
0.0225	0.118	0.1179
0.024	0.1037	0.1037
0.0255	0.09183	0.09183

Error_v	P_infinite	P_finite
0.027	0.08191	0.08191
0.0285	0.07352	0.07351
0.03	0.06635	0.06635
0.0315	0.06018	0.06018
0.033	0.05483	0.05483
0.0345	0.05017	0.05017
0.036	0.04607	0.04607
0.0375	0.04246	0.04246
0.039	0.03926	0.03926
0.0405	0.0364	0.0364
0.042	0.03385	0.03385
0.0435	0.03156	0.03156
0.045	0.02949	0.02949
0.0465	0.02762	0.02762
0.048	0.02592	0.02592
0.0495	0.02437	0.02437
0.051	0.02296	0.02296
0.0525	0.02166	0.02166
0.054	0.02048	0.02048
0.0555	0.01939	0.01939
0.057	0.01838	0.01838
0.0585	0.01745	0.01745

Muestreo por variable " density "

Figure 20: Gráfica comparación muestra para población infinita y finita Variable $8\,$

Table 30: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 9: pH)

Error_v	P_infinite	P_finite
0	Inf	_
0.3	438135	4844
0.6	109534	4688
0.9	48682	4450
1.2	27383	4155
1.5	17525	3828
1.8	12170	3492
2.1	8942	3165
2.4	6846	2855
2.7	5409	2570
3	4381	2313
3.3	3621	2082
3.6	3043	1877
3.9	2593	1695
4.2	2235	1535
4.5	1947	1393
4.8	1711	1268
5.1	1516	1158

$Error_v$	P_infinite	P_finite
5.4	1352	1060
5.7	1214	972.7
6	1095	895.2
6.3	993.5	826
6.6	905.2	764
6.9	828.2	708.4
7.2	760.7	658.4
7.5	701	613.2
7.8	648.1	572.4
8.1	601	535.3
8.4	558.8	501.6
8.7	521	470.9
9	486.8	442.8
9.3	455.9	417.1
9.6	427.9	393.5
9.9	402.3	371.8
10.2	379	351.8
10.5	357.7	333.3
10.8	338.1	316.2
11.1	320	300.4
11.4	303.4	285.7
11.7	288.1	272.1
12	273.8	259.3
12.3	260.6	247.5
12.6	248.4	236.4
12.9	237	226
13.2	226.3	216.3
13.5	216.4	207.2
13.8	207.1	198.7

Muestreo por variable " pH "

Figure 21: Gráfica comparación muestra para población infinita y finita Variable 9

Table 31: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 10: sulphates)

Error_v	P_infinite	P_finite
0	Inf	_
6e-04	137490	4730
0.0012	34372	4287
0.0018	15277	3709
0.0024	8593	3120
0.003	5500	2591
0.0036	3819	2146
0.0042	2806	1784
0.0048	2148	1493
0.0054	1697	1261
0.006	1375	1074
0.0066	1136	922.3
0.0072	954.8	799
0.0078	813.5	697.7
0.0084	701.5	613.6
0.009	611.1	543.3
0.0096	537.1	484
0.0102	475.7	433.6

Error_v	P_infinite	P_finite
0.0108	424.4	390.5
0.0114	380.9	353.4
0.012	343.7	321.2
0.0126	311.8	293.1
0.0132	284.1	268.5
0.0138	259.9	246.8
0.0144	238.7	227.6
0.015	220	210.5
0.0156	203.4	195.3
0.0162	188.6	181.6
0.0168	175.4	169.3
0.0174	163.5	158.2
0.018	152.8	148.1
0.0186	143.1	139
0.0192	134.3	130.7
0.0198	126.3	123.1
0.0204	118.9	116.1
0.021	112.2	109.7
0.0216	106.1	103.8
0.0222	100.4	98.41
0.0228	95.21	93.4
0.0234	90.39	88.76
0.024	85.93	84.45

Muestreo por variable " sulphates "

Figure 22: Gráfica comparación muestra para población infinita y finita Variable 10

Table 32: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 11: alcohol)

Error_v	P_infinite	P_finite
0	Inf	_
1e+09	157841170	4898
2e + 09	39460292	4897
3e + 09	17537908	4897
4e + 09	9865073	4896
5e + 09	6313647	4894
6e + 09	4384477	4893
7e + 09	3221248	4891
8e + 09	2466268	4888
9e + 09	1948656	4886
1e+10	1578412	4883
$1.1e{+10}$	1304472	4880
$1.2e{+10}$	1096119	4876
$1.3e{+}10$	933971	4872
$1.4e{+}10$	805312	4868
$1.5e{+10}$	701516	4864
$1.6e{+}10$	616567	4859
1.7e + 10	546163	4854

Error_v	P_infinite	P_finite
1.8e + 10	487164	4849
$1.9e{+}10$	437233	4844
2e + 10	394603	4838

Muestreo por variable " alcohol "

Figure 23: Gráfica comparación muestra para población infinita y finita Variable 11

Table 33: Tabla de margen de error y tamaños de muestra estimados para población infinita y finita (variable 12: quality)

Error_v	P_infinite	P_finite
0	Inf	_
0.0065	60588	4532
0.013	15147	3701
0.0195	6732	2835
0.026	3787	2136
0.0325	2424	1621
0.039	1683	1253
0.0455	1236	987.3
0.052	946.7	793.4
0.0585	748	648.9
0.065	605.9	539.2

Error_v	P_infinite	P_finite
0.0715	500.7	454.3
0.078	420.8	387.5
0.0845	358.5	334.1
0.091	309.1	290.8
0.0975	269.3	255.2
0.104	236.7	225.8
0.1105	209.6	201
0.117	187	180.1
0.1235	167.8	162.3
0.13	151.5	146.9
0.1365	137.4	133.6
0.143	125.2	122.1
0.1495	114.5	111.9
0.156	105.2	103
0.1625	96.94	95.06
0.169	89.63	88.02
0.1755	83.11	81.72
0.182	77.28	76.08
0.1885	72.04	71
0.195	67.32	66.41
0.2015	63.05	62.25
0.208	59.17	58.46
0.2145	55.64	55.01
0.221	52.41	51.86
0.2275	49.46	48.97
0.234	46.75	46.31
0.2405	44.26	43.86
0.247	41.96	41.6
0.2535	39.83	39.51
0.26	37.87	37.58
0.2665	36.04	35.78
0.273	34.35	34.11
0.2795	32.77	32.55
0.286	31.3	31.1

Figure 24: Gráfica comparación muestra para población infinita y finita Variable 12

Errores aceptados y definición de tamaño de muestra para cada variable (muestreo sistemático).

Table 34: Tabla de errores aceptados y valores de tamaño de muestra (n) seleccionado para cada variable (muestreo sistemático)

	Error aceptado	Tamaño de muestra (n)
fixed acidity	0.72	2177
volatile acidity	0.003	2444
citric acid	0.0032	2457
residual sugar	0.17	2502
${ m chlorides}$	0.00048	2012
free sulfur dioxide	1.16	2501
total sulfur dioxide	6	2470
${f density}$	0.0015	26
pH	2.7	2570
$\operatorname{sulphates}$	0.003	2591
alcohol	2e+10	4838
quality	0.026	2136

Estimadores de las muestra finales utilizando el tamaño de muestra seleccionado para cada variable (muestreo sistemático)

Table 35: Tabla estimadores de la muestra y totales para cada variable usando el valor de n resultado del piloto (continued below)

	n	kp	Int. Inferior	Media muestra	Int. Superior	Desviación std.
fixed.acidity	2177	2	61.2	62.4	63.6	27.3
volatile.acidity	2444	2	0.274	0.278	0.282	0.101
citric.acid	2457	2	0.33	0.334	0.339	0.121
${f residual.sugar}$	2502	2	6.16	6.37	6.57	5.13
${f chlorides}$	2012	2	0.0447	0.0456	0.0466	0.021
free.sulfur.dioxide	2501	2	37.6	40	42.4	60.6
${f total.sulfur.dioxide}$	2470	2	141	146	151	124
${f density}$	26	188	0.993	0.994	0.996	0.00315
pН	2570	2	283	287	291	92.4
sulphates	2591	2	0.487	0.491	0.496	0.116
alcohol	4838	1	$8.26e{+11}$	1.82e + 12	2.82e + 12	3.47e + 13
quality	2136	2	5.84	5.88	5.92	0.889

	Varianza	Coeficiente var.	Int. Inferior total	Media Total	Int. Superior Total	Varianza Total
fixed.acidity	0.191	0.438	301399	305678	309957	4577868
v		0.200				
${f volatile.acidity}$	2.1e-06	0.364	1348	1362	1376	50.3
citric.acid	2.97e-06	0.362	1621	1638	1655	71.2
residual.sugar	0.00515	0.806	30488	31192	31895	123648
${f chlorides}$	1.3e-07	0.461	220	223	227	3.11
${\it free.sulfur.dioxide}$	0.719	1.52	187589	195894	204199	17242337
${f total.sulfur.dioxide}$	3.08	0.848	697942	715126	732310	73824758
${f density}$	3.79e-07	0.00316	4865	4871	4877	9.08
pH	1.58	0.322	1393612	1405916	1418220	37844985
${f sulphates}$	2.44e-06	0.236	2390	2405	2421	58.4
alcohol	3.05e + 21	19	8.39e + 15	8.93e + 15	9.47e + 15	7.31e + 28
quality	0.000209	0.151	28662	28804	28946	5007