1. Asymmetries

Introduction to Epistemic Asymmetry

- Defines "prehistory" and focuses on paleontology and geology.
- Introduces epistemic asymmetry: more knowledge of the tiny (microphysical) than the past.
- Importance for philosophers, scientists, and others.

• 1.1 Limits to Our Knowledge of Prehistory

Sauropod Trackways Example

- Differentiates wide-gauge and narrow-gauge tracks.
- Explores hypotheses: same species, substrate, different species.

Wilson and Carrano's Biomechanical Analysis

- Forces on large quadrupeds' limbs.
- Femur morphology differences support titanosaurs making wide-gauge tracks.

Speculation on Titanosaur Locomotion

Semi-bipedal hypothesis with cautious support.

Conclusion

Transition from solid science to speculation in historical sciences.

1.2 The Time Asymmetry of Knowledge

Introduction to Time Asymmetry

- More knowledge of the past than the future.
- Paul Horwich's Explanation
 - Recording Systems: Stable states responding to specific conditions (e.g., sandbox).
 - Precording Systems: Hypothetical systems recording future events.
 - Fork Asymmetry: Correlated events have common causes, not common effects.

Implications

- Extensive past records, limited future knowledge.
- Role of recording systems in enhancing past knowledge.

1.3 The Past vs. the Microphysical

Introduction to Epistemic Scope Asymmetry

Contrasts knowledge of the past with the microphysical.

Asymmetry of Manipulability

Ian Hacking's Perspective

- Manipulation of microphysical entities enables theory testing.
- Past events cannot be manipulated.

Role Asymmetry of Background Theories

- Dampening Role: Limits evidence availability (e.g., taphonomy).
- Enlarging Role: Expands observable evidence (e.g., optics).
- Contrast: Past theories rarely create new evidence; microphysical theories frequently do.

Conclusion

Asymmetries create an epistemic asymmetry: more knowledge of the microphysical than the past.

1.4 Scientific Realism

Overview of Scientific Realism

Belief that scientific theories describe both observable and unobservable aspects of the world.

Epistemological Optimism among Realists

- Richard Boyd: Knowledge of unobservable phenomena is possible and actual.
- Stathis Psillos: Successful theories are well-confirmed and approximately true.
- Ernan McMullin: Long-term success justifies belief in entities and structures.
- Jarrett Leplin: Minimal epistemic realism acknowledges potential empirical conditions warranting truth.
- Michael Devitt: Independent existence of unobservable scientific types.

Critiques and Alternatives

- Social Constructivists: Knowledge of unobservables but deny independent existence.
- Arthur Fine's NOA: Shares optimism but remains agnostic on metaphysical claims.

Skeptical Arguments Against Realism

- Pessimistic Induction: History shows many scientific beliefs about unobservables were later discarded.
- Underdetermination: Observable evidence insufficient to determine unique truths about unobservables.

Realists' Defense

• Inference to the Best Explanation: Success of scientific theories implies their approximate truth.

1.5 A Skewed Debate

Fictional Analogy

- Universe with Investigators and Unobservables K and K*
 - Investigators specialize in studying two kinds of unobservables.
 - Realist philosophers focus on one kind (K), neglecting the other (K*).

Epistemic Differences Between K and K*

- Genus/Species Confusion
 - Overgeneralizing from K to all unobservables, ignoring differences with K*.

High-Level Generality vs. Specificity

Philosophers debate at a general level without addressing species-specific epistemic challenges.

Parallel to Realism Debate

- Realists Focus on Microphysical (K)
 - Neglect unique epistemic challenges of studying the past (K*).

Consequences

- Realism debates overlook epistemic asymmetries between the past and the microphysical.
- Leads to incomplete and potentially misleading conclusions about scientific knowledge.

Conclusion

Summary of Key Claims

- Epistemic Asymmetry: Differences in knowledge capabilities between the past and the microphysical.
- Limits and Challenges: Historical sciences face unique limitations leading to speculative conclusions.

- Time Asymmetry: Recording systems enhance past knowledge, absence of precording systems limit future knowledge.
- Manipulability and Background Theories: Enable greater knowledge of the microphysical world compared to the past.
- Scientific Realism Debate: Skewed by focusing on the microphysical, neglecting historical epistemic challenges.
- Historical Hypo-Realism: Realist arguments are weaker for prehistory than for the microphysical.

• Implications for Scientific Realism

- Calls for a nuanced understanding of realism that accounts for epistemic differences.
- Advocates for integrating considerations of epistemic asymmetries into the realism debate.