

Lecture with Computer Exercises: Modelling and Simulating Social Systems with MATLAB

How do participants act during an apéro at ETH?

Emek Barış Küçüktabak, Francesca Sabena, Emile Courthoud, Hangxi Li

List of Contents

- Introduction and Motivation
- Description of the Model
- Implementation
- Simulation
- Summary

Pedestrian Traffic Simulation

https://www.youtube.com/watch?v=UUHFMtR9q9M

Car Traffic

Social Force Model

$$\frac{dv_{\alpha}}{dt} = \underbrace{\frac{1}{\tau_{\alpha}} \left(v_{\alpha}^{0} e_{\alpha}^{0} - v_{\alpha} \right) + \sum_{\beta (\neq \alpha)} F_{\alpha\beta}^{\text{int}} + F_{\alpha}^{\text{walls}}}_{\text{boundaries}}$$
acceleration driving force interactions

SEITZ, Michael J. et al. The Superposition Principle: A Conceptual Perspective on Pedestrian Stream Simulations. Collective Dynamics, [S.I.], v. 1, p. 1-19, mar. 2016. ISSN 2366-8539. Available at: https://collective-dynamics.eu/index.php/cod/article/view/A2.

Apero in ETH

- Number of People
- Food Locations
- Tables' Disposition

Affect the behavior of the participants?

Social Force Model

Description of the Model

- Force due to Destination
 - Considering a pedestrian alfa:

$$F_{\alpha}^{0}(\vec{v}_{\alpha}, \vec{v}_{\alpha}^{0}\vec{e}_{\alpha}) \coloneqq \frac{1}{\tau}(\vec{v}_{\alpha}^{0}\vec{e}_{\alpha} - \vec{v}_{\alpha})$$

- Force due to other pedestrians
 - Monotonic decreasing force field with elliptical shape

$$\vec{f}_{\alpha\beta} \coloneqq -w\nabla_{\vec{r}_{\alpha\beta}}V_{\alpha\beta}[b(\vec{r}_{\alpha\beta})] \qquad \text{with} \qquad 2b \coloneqq \sqrt{\left(\left\|\vec{r}_{\alpha\beta}\right\| + \left\|\vec{r}_{\alpha\beta} - v_{\beta}\Delta t\vec{e}_{\beta}\right\|\right)^{2} - \left(v_{\beta}\Delta t\right)^{2}}$$

Description of the Model

- Force due to obstacles and walls
 - Monotonically decreasing force field

$$\vec{F}_{\alpha B} \coloneqq -\nabla_{\vec{r}_{\alpha B}} U_{\alpha B}(\|\vec{r}_{\alpha B}\|)$$

- **Total Force**
 - Summation of all forces

$$\vec{F}_{\alpha}(t) \coloneqq F_{\alpha}^{0}(\vec{v}_{\alpha}, \vec{v}_{\alpha}^{0}\vec{e}_{\alpha}) + \sum_{\beta} \vec{f}_{\alpha\beta} + \sum_{B} \vec{F}_{\alpha B}$$

- Person-Person repulsion
 - Exponentially decreasing potential

$$V_{\alpha\beta}^0 e^{b/\sigma}$$

- > Force multiplied by different coefficients considering the relative position of the people
- Table-Person repulsion
 - > The tables are obstacles while the people are directed to the food.

Table-person constant Ct=0.05

Initial position of tables, people and food points

- Two table configurations: rectangular and circular dispositions.
- The people are initially located on the top-left and top-right of the map.
- The position of the tables where the food is distributed are two and they are located on the bottom of the room.

Person-people repulsive force

> Exponential force that decreases with the distance among pedestrians.

$$\vec{F}_{\alpha B} = \omega A e^{b/B}$$

$$A = 2N$$

$$B = 0.1^{1}/m$$

$$\omega(\vec{e} \cdot \vec{f}) = \begin{cases} 1 & \text{if } \vec{e} \cdot \vec{f} \ge ||\vec{f}|| \cos(\phi) \\ 0.3 & \text{otherwise} \end{cases}$$

 $\Rightarrow \phi = 60^{\circ}$ visual field

Table-person repulsive force

- > The tables hinder the motion of the people while pedestrians move towards their objective.
- Tables are modeled as point-like particles.
- \triangleright Table-person constant C_t is set equal to $0.05 \ ^{N}/_{m}$ for all the tables.

$$F_{p-t_i} = \frac{C_t}{d_{p-t_i}^2}$$

$$\vec{F}_{p-t} = \sum_{t_i=1}^{Nt} \vec{F}_{p-t_i}$$

Wall-person repulsive force

- The walls generate a force field inversely proportional to the distance.
- In order to express the effect of the walls, we discretize them into several point-sources at constant distance.
- Since the effect of the walls is constant in time, we discretized the Apéro room into a rectangular mesh of points and save and save the force field into a file.
- \triangleright Person-wall constant $C_w = 0.0003 \ ^N/_m$

$$F_{p-w_i} = \frac{C_w}{d_{p-w_i}^2}$$

$$\vec{F}_{p-w} = \sum_{w_i=1}^{Nw} \vec{F}_{p-w_i}$$

Path towards the objective

- Pedestrian follows the shortest polygonal route.
- > 1st objective: Apéro table.
- ➤ 2nd objective: nearest table in the Apéro room.

Attraction towards the objective

- Stronger attraction if the person is not walking at the desired velocity or if is not moving towards the objective.
- \triangleright Relaxation time $\tau = 0.5 \div 0.8 s$.
- Desired velocity $v_{\alpha}^{0} = 0.3 \ ^{m}/_{s}$.

$$\vec{e}_{\alpha}(t) = \frac{\vec{d}_{\alpha} - \vec{r}_{\alpha}(t)}{\left\| \vec{d}_{\alpha} - \vec{r}_{\alpha}(t) \right\|}$$

 \vec{e}_{α} : vector pointing towards the objective \vec{d}_{α} : destination position

 \vec{r}_{α} : pedestrian's position

$$F_{p-o} = \frac{1}{\tau} (v_{\alpha}^0 \vec{e}_{\alpha} - \vec{v}_{\alpha})$$

 v_{α}^{0} : desired velocity

 τ : relaxation time

 \vec{v}_{α} : actual velocity

Additional constraints

- \succ Maximum velocity $v_{max} =$ $2 * v_{\alpha}^{0} = 0.6 \, m/s$.
- ightharpoonup Table capacity $c_t = 6 \div 9$ people.
- \rightarrow Time step dt = 0.4s

Simulation

- 3 functions are used to consider the cost of every simulations:
 - > Time cost function
 - Velocity cost function
 - > Force cost function

- > Number of participants
- Number of tables
- > Disposition of tables (circular or rectangular)
- > Distance between food positions on the buffet table

Simulation

- Changing the number of participants
 - Number of people: from 6 to 72
 - Number of tables: 8
 - Capacity of tables:9
 - Distance between food points: 1

Results

- Linear increase of time cost with increasing number of participants
- Rectangular table disposition is preferred with respect to the circular table disposition
- Rectangular table disposition:
 - ✓ the velocity cost is insignificant in case of few participants.
 - ✓ Clusters begin around 15 people
 - ✓ Stable situation in case of crowded apéros

Simulation

- Changing the food positions
 - Distance between food points: from 0 to 2.7
 - Number of tables: 8
 - Capacity of tables: 9
 - Number of people: 72

Results

- Cost of time has no significant correlation with the distance of food points
- Cost of velocity
 - ✓ Circle: decreases monotonously
 - ✓ Rectangle: down-"U"shape

Summary

- Description of Social Force Model
- Implementation: person-person, table-person, wall-person, objective destination change.
- Time cost function increase as number of people increase.
- Rectangular table disposition is better than circular one.
- Food points separates as far as possible for circle arrangement of table, a bit for rectangular arrangement.

Thank you