Computational Methods for Astrophysical Applications

lleyk El Mellah & Jon Sundqvist

Centre for mathematical Plasma Astrophysics Instituut voor Sterrenkunde KU Leuven

References

Books

- Riemann solvers and numerical methods for fluid dynamics A practical introduction, by Toro
- Numerical methods for conservation laws, by Leveque
- Finite volume methods for hyperbolic problems, by Leveque

Courses

- Rony Keppens & Jon Sundqvist 2016-2017
- Numerical PDE Techniques for Scientists and Engineers, by Dinshaw Balsara

Schools

- Les Houches
- Numerical techniques in MHD simulations, Köln University

Lesson 1: Hyperbolic Partial Differential Equations

- Conservation laws
 Integral and differential forms
 Examples
- Matrix formulation of conservation laws
 Time advance
 Linear advective equations
 The Riemann problem

- Conservation laws
 - Integral and differential forms
 - Examples
- 2 Hyperbolic PDE
 - Matrix formulation of conservation laws
 - Time advance
 - Linear advective equations
 - The Riemann problem

Integral form

- Continuous medium hypothesis: from actual particles to particles of fluid
 - \Rightarrow distribution function and integration of Boltzmann equation : the closure problem
 - ⇒ analogy with moments of the specific photon intensity (see Prof. Sundqvist's course)
- Consider any volume element dV of a fluid
 - \Rightarrow XXX bilan XXX over dt of scalar quantity : inflow/outflow, sinks/sources
 - ⇒ for the momentum : tensor formulation
 - \Rightarrow for energy
- Shocks and jump conditions: Rankine-Hugoniot

Conservation form

• Provided the variables $X(\mathbf{r},t)$ are XXX differentiable XXX

$$\partial_t X + \nabla \cdot \underbrace{[F(X, \mathbf{v}, t)]}_{\text{fluxes}} = \underbrace{S(\mathbf{r}, \mathbf{v}, t)}_{\text{sources/sinks}}$$

- Properties of this differential form
 - ⇒ Coordinate / dimension independent formulation
 - \Rightarrow Given inital and boundary conditions, can provide a general solution
 - \Rightarrow Conservation form : Green-Ostrogradsky (or Gauss) law and Eulerian approach

Primitive form

Lagrangian approach XXX Picture of a parachute XXX

$$D_t(\cdot) = \partial_t(\cdot) + \mathbf{v}\nabla(\cdot)$$

Continuity equation

$$D_t(\rho) = -\rho \nabla \mathbf{v}$$

- \Rightarrow incompressible fluid \neq flow
- Navier-Stokes equation

$$\rho D_t(\mathbf{v}) = -\nabla P$$

- Energy equation
 - ⇒ internal and mechanical energy
 - ⇒ link w/ 1st principle of Thermodynamics
 - ⇒ entropy formulation

Closure relation

Equation-of-state of an ideal gas

$$u=\frac{P}{\gamma-1}$$

- ⇒ adiabatic index
- A classic way-around : the polytropic assumption

$$P \propto \rho^{\alpha}$$

- $\Rightarrow \alpha$ polytropic index
- ⇒ the isentropic case

Linear advection equation

perform von Neumann stability analysis for Lax–Friedrichs

$$e^{\lambda \Delta t} = \cos(k\Delta x) - i \frac{v\Delta t}{\Delta x} \sin(k\Delta x)$$

⇒ conditional stability requiring Courant number C

$$C \equiv \frac{|v|\Delta t}{\Delta x} \leq 1$$

- \Rightarrow limitation of the time step Δt for a given resolution Δx
- ⇒ Courant-Friedrichs-Lewy condition (1928)
- ⇒ necessary (not sufficient) condition for stability!

Euler equations

in (x, t) space, we identify **stencil** of a method ⇒ stencils visualizes discrete dependence of method

- ⇒ stencil for FTCS (a) versus Lax-Friedrichs (b)
- hyperbolic PDE and physical characteristics
 - ⇒ the advection equation is hyperbolic as

$$\frac{\partial u}{\partial t} + \frac{\partial \left(\underbrace{vu}_{F}\right)}{\partial x} = 0$$

El Mellah & Sundavist (KU Leuven)

 v is real number 'characteristic speed' G0B30A Computational Methods

2018-2019

Ideal Magneto-Hydrodynamics equations

for second order wave equation

$$\frac{\partial^2 u}{\partial t^2} - v^2 \frac{\partial^2 u}{\partial x^2} = 0$$

⇒ factorizes to

$$\left(\frac{\partial}{\partial t} - v \frac{\partial}{\partial x}\right) \left(\frac{\partial}{\partial t} + v \frac{\partial}{\partial x}\right) u = 0$$

⇒ general solution has left and right going wave with

$$u = f(x - vt) + g(x + vt)$$

- \Rightarrow initial shapes f(x), g(x) combine
- \Rightarrow 2 characteristics $\frac{dx}{dt} = \pm v$

illustrate CFL for second order wave equation:
 the domain of dependence of the differential equation should
 be contained in the DOD of the discretised equations

- \Rightarrow stability means physical DOD contained in stencil bounds (numerical DOD), hence Δt small enough (right case)
- note: linear advection + wave equation: DOD only involves 1 or 2 points from $t=0 \leftrightarrow \text{HD}$: DOD bounds set by $v\pm c_s$ with c_s sound speed, delimits t=0 interval

- Second cure: maintain space-time symmetry of the PDE
 - \Rightarrow use central discretisation for both x and t
 - ⇒ obtain leapfrog scheme

$$u_i^{n+1} = u_i^{n-1} - \frac{\Delta t}{\Delta x} (F_{i+1}^n - F_{i-1}^n)$$

- \Rightarrow numerical flux function for advection is $F_i^n \equiv vu_i^n$
- ⇒ conditionally stable and second-order accurate
- \Rightarrow multiple time levels involved: n-1, n, n+1
- ⇒ potential problem: even/oneven time levels may 'decouple'

- Conservation laws
 - Integral and differential forms
 - Examples
- 2 Hyperbolic PDE
 - Matrix formulation of conservation laws
 - Time advance
 - Linear advective equations
 - The Riemann problem

Flux Jacobian

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Eigenvalues & eigenvectors

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Hyperbolic, parabolic and elliptic PDE

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Linear, non-linear & quasi-linear

$$\left| e^{\lambda \Delta t} \right| = \frac{1}{\left| 1 + i \frac{v \Delta t}{\Delta x} \sin(k \Delta x) \right|} < 1$$
 for all k

- \Rightarrow unconditionally stable, any (large) time step Δt allowed
- note: stability does not imply accuracy
 - \Rightarrow large Δt affects accuracy, defines time resolution: behavior may involve physical timescale that needs to be resolved!
- implicit backward Euler: first order in time

Explicit

• spatial differences as average of n-th and (n+1)-th time step

$$u_i^{n+1} = u_i^n - \frac{1}{4}v \frac{\Delta t}{\Delta x} (u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

Implicit

• spatial differences as average of n-th and (n + 1)-th time step

$$u_i^{n+1} = u_i^n - \frac{1}{4}v\frac{\Delta t}{\Delta x}(u_{i+1}^{n+1} + u_{i+1}^n - u_{i-1}^{n+1} - u_{i-1}^n)$$

- ⇒ second order Crank–Nicolson method
- ⇒ Exercise: show that this scheme is unconditionally stable, 2nd order accurate
- stencils for BTCS (left) and Crank-Nicolson (right)

Properties

- many practical implementations use 'method of lines'
 - ⇒ vector **u** of unknowns after first spatial discretization
 - \Rightarrow obtain ODE system

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(\mathbf{u})$$

- ⇒ RHS vector function **f** could even be nonlinear in **u**
- discretize ODE in time using parameter α in

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \left[\alpha \mathbf{f}(\mathbf{u}^{n+1}) + (1 - \alpha) \mathbf{f}(\mathbf{u}^n) \right]$$

 \Rightarrow note case $\alpha =$ 0: explicit (unstable) forward Euler method

Characteristics

- many practical implementations use 'method of lines'
 - ⇒ vector u of unknowns after first spatial discretization
 - ⇒ obtain ODE system

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(\mathbf{u})$$

- ⇒ RHS vector function **f** could even be nonlinear in **u**
- discretize ODE in time using parameter α in

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \left[\alpha \mathbf{f}(\mathbf{u}^{n+1}) + (1 - \alpha) \mathbf{f}(\mathbf{u}^n) \right]$$

 \Rightarrow note case $\alpha =$ 0: explicit (unstable) forward Euler method

Stencils, domain of dependence, range of influence

- many practical implementations use 'method of lines'
 - ⇒ vector u of unknowns after first spatial discretization
 - ⇒ obtain ODE system

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(\mathbf{u})$$

- ⇒ RHS vector function **f** could even be nonlinear in **u**
- discretize ODE in time using parameter α in

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \left[\alpha \mathbf{f}(\mathbf{u}^{n+1}) + (1 - \alpha) \mathbf{f}(\mathbf{u}^n) \right]$$

 \Rightarrow note case $\alpha = 0$: explicit (unstable) forward Euler method

The Riemann problem

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t \left[\alpha \mathbf{f}(\mathbf{u}^{n+1}) + (1 - \alpha) \mathbf{f}(\mathbf{u}^n) \right]$$

- $\alpha = 1$ is implicit backward Euler
- $\alpha = 1/2$ gives second-order accuracy, trapezoidal method
 - ⇒ Crank-Nicolson for central discretization of flux in f
- when f nonlinear: linearize using

$$f(\mathbf{u}^{n+1}) \approx f(\mathbf{u}^n) + \frac{\partial f^n}{\partial \mathbf{u}} (\mathbf{u}^{n+1} - \mathbf{u}^n)$$

 \Rightarrow introduces matrix $\frac{\partial \mathbf{f}^n}{\partial \mathbf{u}}$ called "Jacobian matrix" of \mathbf{f}