Baze de date NoSQL

mongoDB

FAUNA

Context

- Modelul relațional are aproape 50 de ani
- ACID asigură robustețea procesărilor tranzacționale dar cu costuri de performanță

Context

- Trăsăturile cele mai căutate pentru o bază de date:
 - Scalabilitate (verticală/orizontală)
 - Disponibilitate ("five nines" availability)
 - Performanță

Ce înseamnă NoSQL?

- Orice bază de date ce nu folosește SQL
 - totuși, nu include bazele de date orientate-obiect
- *Not Only SQL*
 - Cassandra: limbaj de interogare java-like, CQL
- O bază de date ce:
 - NU folosește conceptele modelului relațional pentru stocarea datelor
 - NU permite accesarea datelor prin intermediul limbajului SQL standard

Ce înseamnă NoSQL?

Exemple de baze de date NoSQL (peste 225):

https://hostingdata.co.uk/nosql-database/

"Următoarea generație de baze de date acoperă, în general, următoarele aspecte: modelare non-relațională, distribuit, *open-source*, scalabilitate orizontală"

Diferențe majore de abordare

- BD Relaționale:
 - informațiile sunt extrase folosind operații de join,
 - accelerarea procesării presupune deseori indexare,
 - proprietățile ACID sunt impuse
- Alternativă: Teorema CAP
 - Consistency (nu dpdv al respectării constrângerilor de integritate, ci din punct de vedere al al furnizării acelorași date tuturor clienților)
 - Availability nivelul de disponibilitate crește odată cu creșterea numărului de noduri redundante
 - Partition Tolerance găsirea de rute alternative în rețea pentru a obține date din diverse noduri

Modelul de consistență BASE

- Basic Availability
 - Baza de date (pare că) funcționează în marea majoritate a timpului
- Soft-state
 - Consistența la scriere nu e necesară. Replicile nu trebuie să fie mutual consistente
- Eventual consistent
 - Baza de date va fi consistentă la un moment dat

Read Repair - Delayed Repair

Abordări bazate pe coloane

- BD Relaționale sunt abordări bazate pe linii
- Foarte frecvent însă aplicațiile ce accesează o bază de date interoghează date memorate pe o coloană
- În ciuda optimizărilor memorarea într-o zonă continuă a valorilor aceleași coloane e mai performantă

Abordări bazate pe coloane

etc	DEBBIOLIAN	DOITIEDO E	OUTIEDO		
PERPIGNAN	, PERPIGNAN	I, POITIERS, F	POTTERS		
etc					
7.738853503	18471, 4.535	4838709677,	5.098130841	1215, 5.83255	813953488
	,			,	

Cassandra

Column Family

- = colecție de coloane ce sunt accesate împreună de cele mai multe ori
- Corespondentul tabelului din modelul relațional
- Stocat într-un fișier distinct și sortat după valoarea cheii

Column

- Unitatea de stocare
- Are un nume unic, o valoare și un *timestamp*

Timestamp

- Pentru rezolvarea de conflicte. E furnizat de client
- Reprezintă numărul de milisecunde scurs de la 1 Ianuarie 1970

SuperColumn

Listă de coloane (asemănător unui *view*)

Exemplu de Column Family

- Colecție de linii aeriene din Marea Britanie.
- Coloane: Airline Name, Km Flown (x1000), No of Flights, No of Hours flown, Number of Passengers handled

domesticflightsJan.csv - OpenOffice.org Calc												
<u>File Edit View Insert Format Tools Data Window Help</u>												
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
90	Arial ■ 10 ■ B / U ■ ■	3	i ■ % \$%	♥ 0 0 ♥ 000. 000.	€ € □ • 🏖	· A ·						
E16	▼ % ∑ =											
	A	T	В	С	D							
1	AURIGNY AIR SERVICES	Þ	193	1388	887	26585						
2	BA CITYFLYER LTD	Þ	300	545	686.1	30031						
3	BLUE ISLANDS LIMITED	Þ	168	991	520.8	15308						
4	BMI GROUP	Þ	1067	2435	2922.7	142804						
5	BRITISH AIRWAYS PLC	Þ	1510	3327	4116.6	307849						
6	BRITISH INTERNATIONAL HELICOPTER SERVICES LTD	Þ	10	162	57.9	2169						
7	EASTERN AIRWAYS	Þ	496	1406	1353	23074						
8	EASYJET AIRLINE COMPANY LTD	Þ	1826	3922	4297.2	399308						
9	FLYBE LTD	Þ	2505	6755	5635.4	297435						
10	ISLES OF SCILLY SKYBUS	Þ	12	176	55.3	1200						
11	JET2.COM LTD	Þ	22	71	65	4059						
12	LOGANAIR	504	2440	1958.7	32994							
40		+										

Crearea unui Column Family


```
Create Column Family DomesticFlights
WITH comparator = UTF8Type AND
key_validation_class = UTF8Type AND
column_metadata =
    {column_name: airline, validation_class: UTF8Type, index_type: KEYS},
    {column_name: Kms, validation_class: IntegerType},
    {column_name: Flights, validation_class: IntegerType},
     {column_name: Hrs, validation_class: FloatType},
    {column_name: Pass, validation_class: IntegerType}
];
```

Inserare date


```
set DomesticFlights['Aurigny Air Services']['Kms'] = 193; set DomesticFlights['Aurigny Air Services']['Flights'] = 1388; set DomesticFlights['Aurigny Air Services']['Hrs'] = 887; set DomesticFlights['Aurigny Air Services']['Pass'] = 26585; set DomesticFlights['BA CityFlyer']['Kms'] = 300; set DomesticFlights['BA CityFlyer']['Flights'] = 545; set DomesticFlights['BA CityFlyer']['Hrs'] = 686; set DomesticFlights['BA CityFlyer']['Pass'] = 30031;
```


LIST DomesticFlights

```
RowKey: BA CityFlyer

=> (column=Flights, value=545, timestamp=1354875194019000)

=> (column=Hrs, value=686.0, timestamp=1354875194033000)

=> (column=Kms, value=300, timestamp=1354875194010000)

=> (column=Pass, value=30031, timestamp=1354875201897000)

RowKey: Aurigny Air Services

=> (column=Flights, value=1388, timestamp=1354875193983000)

=> (column=Hrs, value=887.0, timestamp=1354875193991000)

=> (column=Kms, value=193, timestamp=1354875193958000)

=> (column=Pass, value=26585, timestamp=1354875194001000)
```

Regăsirea datelor

GET DomesticFlights['BA CityFlyer']

```
=> (column=Flights, value=545, timestamp=1354875194019000)
=> (column=Hrs, value=686.0, timestamp=1354875194033000)
=> (column=Kms, value=300, timestamp=1354875194010000)
=> (column=Pass, value=30031, timestamp=1354875201897000)
```


Ștergere date

del DomesticFlights['BA CityFlyer']['Hrs'];

del DomesticFlights['BA CityFlyer'];

Ștergere Column Family

drop column family DomesticFlights;


```
CREATE KEYSPACE Flights WITH strategy_class = SimpleStrategy
AND strategy_options:replication_factor = 1;
use Flights;
create ColumnFamily FlightDetails
(airline varchar PRIMARY KEY,
Kms int,
Noflights int,
Hrs float,
Pass int);
copy FlightDetails (airline, Kms, Noflights, Hrs, Pass) from 'domDataOnly.csv';
select * from FlightDetails;
```

CQL Regăsirea datelor

use Flights; select count(*) from Airports where CountryCode = 'GB' and Lat > 51;

Abordări bazate pe documente

- nu există un design al bazei de date în adevăratul sens al cuvântului
- bazele de date nu au o structură și nici constrângeri de integritate. (nici măcar de tip)
- sharding partiționarea unei baze de date foarte mari în părți de dimensiuni reduse și care sunt mai ușor și mai rapid de gestionat. Fiecare shard e memorat pe un nod ce are propria sa instanță activă de bază de date
- MongoDB, CouchDB

MongoDB

- *Database* colecție de date înrudite
- Collection container pentru documente
- *Document* o componentă a colecției
- *Field* similar cu modelul relațional
- *Embedded document* cel mai potrivit corespondent din modelul relațional este *join-*ul
- Primary key
- Secondary key

Adăugare date

```
> use Airlines
switched to db Airlines
> Airline12 = {"Name" : "LOGANAIR " , "Km": 504 , "NoFlights" : 2440, "Hrs" : 1958.
    "NoPass" : 32994 }
        "Name" : "LOGANAIR ",
        "Km" : 504,
        "NoFlights": 2440,
        "Hrs": 1958.7,
        "NoPass" : 32994
  db.Flights.insert( Airline12 )
 db.Flights.find()
 "_id" : ObjectId("50cb3e02066f55d5e394ec1a"), "Name" : "LOGANAIR ", "Km" : 504,
NoFlights" : 2440, "Hrs" : 1958.7, "NoPass" : 32994 }
```


db.Flights.find({"Km": 504})


```
Airline7 = { "Name": "EASTERN AIRWAYS", "Km": 496, "NoFlights":
1406, "Hrs": 1353, "NoPass": 23074 }
db.Flights.insert(Airline7)
Airline8 = { "Name": "EASYJET AIRLINE COMPANY L", "Km": 1826,
"NoFlights": 3922, "Hrs": 4297.2, "NoPass": 399308 }
db.Flights.insert(Airline8)
Airline9 = { "Name": "FLYBE LTD", "Km": 2505, "NoFlights": 6755,
"Hrs": 5635.4, "NoPass": 297435 }
db.Flights.insert(Airline9)
Airline10 = { "Name": "ISLES OF SCILLY SKYBUS", "Km": 12, "NoFlights":
176, "Hrs": 55.3, "NoPass": 1200 }
db.Flights.insert(Airline10)
Airline11 = { "Name": "JET2.COM LTD", "Km": 22, "NoFlights": 71,
"Hrs": 65 ("NumPass") 4059 }
db.Flights.insert( Airline11 )
```


db.Flights.remove({NumPass:4059})

db.getCollectionNames();


```
db.Flights.find({ $and: [ { Km: {$gt: 2000} }, { NoPass: {$gt:140000} } ] } )
db.Flights.find({ $or: [ { Km: {$gt: 2000} }, { NoPass: {$gt:140000} } ] } )
db.Flights.find( { Km: { $in: [ 300, 496 ] } } )
db.Flights.find().sort({Km: -1})
db.Flights.find().sort({Km: -1}).limit(1)
db.Flights.find( { Animals: { $exists: true } } )
```


Indexare

structura indecșilor MongoDB este de B-arbore

```
db.Flights.ensureIndex( { Km: 1 } )
db.Flights.find().hint( { Km: 1 } )
db.Flights.getIndexes()
```


Actualizarea datelor

```
db.Flights.update( { Km: 11 }, { $set: { Animals: "Elephants and Badgers" } })
db.Flights.update( { Km: 112 }, { $rename: { Animals: "Creatures" } })
db.Flights.update( { Km: 112 }, { $set: { Rivers: "Don and Ouse" } })
```


- 1 Terabyte = 1024 Gigabytes
- 1 Petabyte = 1024 Terabytes
- 1 Exabyte = 1024 Petabytes
- 1 Zettabyte = 1024 Exabytes

250 mlrd DVD-uri

If the Digital
Universe were
represented by the
memory in a stack
of tablets, in 2013
it would have
stretched
two-thirds the
way to the Moon*

By **2020**, there would be 6.6 stacks from the Earth to the Moon*

sunt analizate

Cei cinci V ai Big Data

VOLUME	VARIETY	VELOCITY	VERACITY	VALUE
The amount of data from myriad sources.	The types of data: structured, semi-structured, unstructured.	The speed at which big data is generated.	The degree to which big data can be trusted.	The business value of the data collected.
0000	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			

Sursa: https://cdn.ttgtmedia.com/rms/onlineimages/

Intrumente

- Map Reduce
- Hadoop
- Hive
- Pig

