Stochastic Uncoupled Dynamics and Nash Equilibrium

Daniel Balle

ETH Zürich

May 2017

Definition (Uncoupledness)

A dynamic process in a game is called **uncoupled** if the strategy of each player does not depend on the utility/payoff function of other players.

Definition (Uncoupledness)

A dynamic process in a game is called **uncoupled** if the strategy of each player does not depend on the utility/payoff function of other players.

Hart and Mas-Colell '03

There are no deterministic uncoupled stationary dynamics that guarantee almost sure convergence to pure Nash equilibria in all games where such equilibria exist.

The Bad News

	α	β	γ
α	1,0	0, 1	1,0
β	0, 1	1,0	1,0
γ	0, 1	0,1	1,1

Figure: A simple two-player game ${\cal U}$

Observation

In each action combination \boldsymbol{a} at least one of the two players is best-replying.

The Bad News

)
)
-

Figure: A simple two-player game U

Observation

In each action combination a at least one of the two players is best-replying.

Lemma

Under uncoupled dynamics f, if player i is best-replying in state a he will play the same move again.

The Bad News

	α	β	γ
α	1, 2	0, 1	1,0
β	0, 1	1,0	1,0
γ	0,1	0, 1	1, 0

Figure: Another two-player game U^\prime

Proof 1/2.

- ▶ Pick some *a* where player 1 is best-replying
- \blacktriangleright Create a new game $U'=(u^1,\bar{u}^2)$ such that a becomes the unique Nash equilibria

The Bad News

α	β	γ
1, 2	0, 1	1,0
0, 1	1,0	1,0
0, 1	0, 1	1, 0
	1, 2 0, 1	1, 2 0, 1 0, 1 1, 0

Figure: Another two-player game U^\prime

Proof 2/2.

- \blacktriangleright The dynamics f converge and thus neither player will move away from a
- ▶ Yet by uncoupledness $f^1(U) = f^1(U')$

The Bad News

	α	β	γ
α	1,0	0, 1	1,0
β	0, 1	1,0	1,0
γ	0, 1	0,1	1,1

Figure: The initial two-player game ${\cal U}$

Observation 2

In any action combination a in which only player i plays $\gamma,$ player i is not best-replying and thus player j is.

The Bad News

	α	β	γ
α	1,0	0, 1	1,0
β	0, 1	1,0	1,0
γ	0, 1	0,1	1,1

Figure: The initial two-player game ${\it U}$

Observation 2

In any action combination a in which only player i plays γ , player i is not best-replying and thus player j is.

Conclusion.

It follows that the state (γ, γ) can never be reached when starting from any other state. \Box

Introduction But ...

What if players could **remember** previous plays? What if they had **memories**?

Recall

Influence from the Past

Definition

A strategy has R-recall if only the last R action combinations matter, i.e. f^i is of the form $f^i(u^i; a(t-R),...,a(t-1))$.

Influence from the Past

Recall

Definition

A strategy has R-recall if only the last R action combinations matter, i.e. f^i is of the form $f^i(u^i; a(t-R), ..., a(t-1))$.

Theorem

There exist uncoupled, **2**-recall, stationary strategy mappings that guarantee almost sure convergence to pure Nash equilibria in every game where such equilibria exist.

Definition (State)

A state is identified as the play of the two previous periods $(a',a):=(a(t-1),a(t))\in A\times A.$

Definition (State)

A state is identified as the play of the two previous periods $(a',a):=(a(t-1),a(t))\in A\times A.$

Strategy f^i

- ▶ if a' = a and a^i is a best reply of player i to a^{-i} then player i plays the same action a^i ;
- \blacktriangleright otherwise player i picks an action \bar{a}^i uniformly at random from A^i

	a' = a	$a' \neq a$
$a \in PNE$	\mathbf{S}_1	\mathbf{S}_2
$a \notin PNE$	\mathbf{S}_4	\mathbf{S}_3

 $\label{eq:Figure:State} \textit{Figure: State space } S \; \textit{partition}$

	a' = a	$a' \neq a$
$a \in PNE$	\mathbf{S}_1	\mathbf{S}_2
$a \notin PNE$	\mathbf{S}_4	\mathbf{S}_3

 $\label{eq:Figure:State} \textit{Figure: State space } S \; \textit{partition}$

Observation

Each state in S_1 is absorbing.

	a' = a	$a' \neq a$
$a \in PNE$	\mathbf{S}_1	\mathbf{S}_2
$a \notin PNE$	\mathbf{S}_4	\mathbf{S}_3

Figure: State space ${\cal S}$ partition

Observation

Each state in S_1 is absorbing.

Strategy f^i .

▶ if a' = a and a^i is a best reply of player i to a^{-i} then player i plays the same action a^i ;

	a' = a	$a' \neq a$
$a \in PNE$	\mathbf{S}_1	\mathbf{S}_2
$a \notin PNE$	\mathbf{S}_4	\mathbf{S}_3

Figure: State space ${\cal S}$ partition

Lemma

For all states $s \in S_2 \cup S_3 \cup S_4$ there is a strictly positive probability p>0 to reach a state $s' \in S_1$ in finitely many periods.

	a' = a	$a' \neq a$
$a\inPNE$	\mathbf{S}_1	\mathbf{S}_2
$a \notin PNE$	\mathbf{S}_4	\mathbf{S}_3

Figure: State space ${\cal S}$ partition

Lemma

For all states $s \in S_2 \cup S_3 \cup S_4$ there is a strictly positive probability p>0 to reach a state $s' \in S_1$ in finitely many periods.

S_2 .

All players randomly pick a^i again $\Rightarrow (a, a) \in S_1$

	a' = a	$a' \neq a$
$a \in PNE$	\mathbf{S}_1	\mathbf{S}_2
$a\notinPNE$	\mathbf{S}_4	\mathbf{S}_3

Figure: State space ${\cal S}$ partition

Lemma

For all states $s \in S_2 \cup S_3 \cup S_4$ there is a strictly positive probability p>0 to reach a state $s' \in S_1$ in finitely many periods.

S_3 .

All players randomly pick some \bar{a}^i s.t. $\bar{a} \in PNE \Rightarrow (a, \bar{a}) \in S_2$

	a' = a	$a' \neq a$
$a\inPNE$	\mathbf{S}_1	\mathbf{S}_2
$a \notin PNE$	\mathbf{S}_4	\mathbf{S}_3

Figure: State space S partition

Lemma

For all states $s \in S_2 \cup S_3 \cup S_4$ there is a strictly positive probability p > 0 to reach a state $s' \in S_1$ in finitely many periods.

S_4

Some player randomly picks $\bar{a}^i \Rightarrow (a, \bar{a}) \in S_2 \cup S_3$

	a' = a	$a' \neq a$
$a \in PNE$	\mathbf{S}_1	\mathbf{S}_2
$a \notin PNE$	\mathbf{S}_4	\mathbf{S}_3

 $\label{eq:Figure:State} \textit{Figure: State space } S \; \textit{partition}$

Conclusion.

f induces an absorbing Markov Chain over S.

Can We Go Further?

What about **Mixed** Nash Equilibria?

Mixed Equilibira

Theorem

For every small enough $\epsilon>0$, there are no uncoupled, **finite recall**, stationary strategy mappings f that guarantee in every game, the almost sure convergence of the behavior probabilities to Nash ϵ -equilibria.

$$\begin{array}{c|c} \alpha & \beta \\ \alpha & 1,0 & 0,1 \\ \beta & 0,1 & 1,0 \\ \end{array}$$
(a) $U=(u^1,u^2)$

$$\begin{array}{c|c} \alpha & \beta \\ \alpha & 1,1 & 0,0 \\ \beta & 0,1 & 1,0 \\ \end{array}$$
 (b) $U'=(u^1,\bar{u}^2)$

$$\begin{array}{c|c} \alpha & \beta \\ \alpha & 1,0 & 0,1 \\ \beta & 0,1 & 1,0 \end{array}$$
(a) $U = (u^1,u^2)$

$$\begin{array}{c|c} \alpha & \beta \\ \alpha & 1,1 & 0,0 \\ \beta & 0,1 & 1,0 \\ \end{array}$$
 (b) $U'=(u^1,\bar{u}^2)$

Observation

- ▶ Unique equilibria in U is \underline{x} with $\underline{x}^i = (0.5, 0.5)$
- ▶ Unique equlibiria in U' is $\underline{a} = (\alpha, \alpha)$

$$\begin{array}{c|cc} \alpha & \beta \\ \alpha & 1,0 & 0,1 \\ \beta & 0,1 & 1,0 \end{array}$$
(a) $U=(u^1,u^2)$

$$\begin{array}{c|c} \alpha & \beta \\ \alpha & 1,1 & 0,0 \\ \beta & 0,1 & 1,0 \\ \end{array}$$
 (b) $U'=(u^1,\bar{u}^2)$

Suppose f exists.

• f assigns $x^i(\alpha) > 0$ in both U and U'

$$\begin{array}{c|c} \alpha & \beta \\ \alpha & 1, 0 & 0, 1 \\ \beta & 0, 1 & 1, 0 \end{array}$$
(a) $U = (u^1, u^2)$

$$\begin{array}{c|c} \alpha & \beta \\ \alpha & 1,1 & 0,0 \\ \beta & 0,1 & 1,0 \\ \end{array}$$
 (b) $U'=(u^1,\bar{u}^2)$

Suppose f exists.

- f assigns $x^i(\alpha) > 0$ in both U and U'
- We eventually reach the state $s = (\underline{a}, ..., \underline{a})$ in both games

$$\begin{array}{c|cc} \alpha & \beta \\ \alpha & 1,0 & 0,1 \\ \beta & 0,1 & 1,0 \\ \end{array}$$
(a) $U=(u^1,u^2)$

$$\begin{array}{c|c} \alpha & \beta \\ \alpha & 1,1 & 0,0 \\ \beta & 0,1 & 1,0 \\ \end{array}$$
 (b) $U'=(u^1,\bar{u}^2)$

Suppose f exists.

- f assigns $x^i(\alpha) > 0$ in both U and U'
- lacktriangle We eventually reach the state $s=(\underline{a},...,\underline{a})$ in both games
- $ightharpoonup f^1(s)$ should then be close to the unique Nash Equilibrium

$$\begin{array}{c|cc} \alpha & \beta \\ \alpha & 1,0 & 0,1 \\ \beta & 0,1 & 1,0 \end{array}$$
(a) $U=(u^1,u^2)$

$$\begin{array}{c|c} \alpha & \beta \\ \alpha & 1,1 & 0,0 \\ \beta & 0,1 & 1,0 \\ \end{array}$$
 (b) $U'=(u^1,\bar{u}^2)$

Suppose f exists.

- f assigns $x^i(\alpha) > 0$ in both U and U'
- lacktriangle We eventually reach the state $s=(\underline{a},...,\underline{a})$ in both games
- $f^1(s)$ should then be close to the unique Nash Equilibrium
- lacktriangleright Contradicts uncoupledness since $f^1(U;s)=f^1(U';s)$

But...

What about if players had arbitrary memories?

Memory No Continuity Restriction

Definition

A player's strategy f^i has finite R-memory if it can be implemented by a finite-state automaton in $|A|^R$ states.

Memory No Continuity Restriction

Definition

A player's strategy f^i has finite R-memory if it can be implemented by a finite-state automaton in $|A|^R$ states.

Theorem

For every $\epsilon>0$ there exists an uncoupled, R-memory, stationary strategy mapping that guarantees the almost sure convergence of the behavior probabilities to a Nash ϵ -equilibrium \underline{x} .

Proof Buckle up

Construction 1/2

Find some K such that there is a Nash ϵ -Equilibrium $y=(y^1,...,y^N)$ with all probabilities being multiples of 1/K.

Proof Buckle up

Construction 1/2

- Find some K such that there is a Nash ϵ -Equilibrium $y=(y^1,...,y^N)$ with all probabilities being multiples of 1/K.
- ▶ Define f to have R = 2K + 1 memory.

Construction 1/2

- Find some K such that there is a Nash ϵ -Equilibrium $y=(y^1,...,y^N)$ with all probabilities being multiples of 1/K.
- ▶ Define f to have R = 2K + 1 memory.

Definition

▶ The state \tilde{s}^i of player i are his R memories $(a_0, a_1, ... a_{2K})$

Construction 1/2

- Find some K such that there is a Nash ϵ -Equilibrium $y=(y^1,...,y^N)$ with all probabilities being multiples of 1/K.
- ▶ Define f to have R = 2K + 1 memory.

Definition

- ▶ The state \tilde{s}^i of player i are his R memories $(a_0, a_1, ... a_{2K})$
- ▶ s^i denotes his 2K most recent memories $(a_1,...,a_{2K})$

Construction 1/2

- Find some K such that there is a Nash ϵ -Equilibrium $y=(y^1,...,y^N)$ with all probabilities being multiples of 1/K.
- ▶ Define f to have R = 2K + 1 memory.

Definition

- ▶ The state \tilde{s}^i of player i are his R memories $(a_0, a_1, ... a_{2K})$
- s^i denotes his 2K most recent memories $(a_1,...,a_{2K})$
- ▶ Here all players will have the same memories $\tilde{s}!$

Definition

We denote by z^i the frequency distribution of actions from player i over his K most recent memories $(a_{K+1},...,a_{2K})$.

Definition

We denote by z^i the frequency distribution of actions from player i over his K most recent memories $(a_{K+1},...,a_{2K})$.

Example

For the
$$K=5$$
 memories $((\alpha,\alpha),(\alpha,\beta),(\beta,\gamma),(\gamma,\gamma),(\gamma,\gamma))$:
$$z^1(\alpha)=2/5, \quad z^1(\beta)=1/5, \quad z^1(\gamma)=2/5$$

$$z^2(\alpha) = 1/5, \quad z^2(\beta) = 1/5, \quad z^2(\gamma) = 3/5$$

${\sf Strategy}\ f^i$

```
if 	ilde{s}=(a_0,s) is not K-periodic (Mode I)
```

if $\tilde{s} = (a_0, s)$ is not K-periodic (Mode I)

lacktriangleright if s is K-periodic and

if $\widetilde{s}=(a_0,s)$ is not K-periodic (Mode I)

- ightharpoonup if s is K-periodic and
 - z^i is a ϵ -best reply to z^{-i} , he continues his periodic play

if $\tilde{s} = (a_0, s)$ is not K-periodic (Mode I)

- ▶ if s is K-periodic and
 - z^i is a ϵ -best reply to z^{-i} , he continues his periodic play
 - otherwise, he breaks his periodic play

if $\widetilde{s}=(a_0,s)$ is not K-periodic (Mode I)

- ightharpoonup if s is K-periodic and
 - z^i is a ϵ -best reply to z^{-i} , he continues his periodic play
 - otherwise, he breaks his periodic play
- ▶ if s is not K-periodic player i picks a random action \bar{a}^i

if $\widetilde{s}=(a_0,s)$ is not K-periodic (Mode I)

- ▶ if s is K-periodic and
 - z^i is a ϵ -best reply to z^{-i} , he continues his periodic play
 - otherwise, he breaks his periodic play
- lacktriangleright if s is not K-periodic player i picks a random action $ar{a}^i$

The new state of f^i becomes $\tilde{s}' = (a_1, ..., a_{2K}, \bar{a})$.

if $\widetilde{s}=(a_0,s)$ is not K-periodic (Mode I)

- ightharpoonup if s is K-periodic and
 - z^i is a ϵ -best reply to z^{-i} , he continues his periodic play
 - otherwise, he breaks his periodic play
- lacktriangleright if s is not K-periodic player i picks a random action $ar{a}^i$

The new state of f^i becomes $\tilde{s}' = (a_1, ..., a_{2K}, \bar{a})$.

if
$$\tilde{s} = (a_0, s)$$
 is K -periodic (Mode II)

if $\widetilde{s}=(a_0,s)$ is not K-periodic (Mode I)

- ightharpoonup if s is K-periodic and
 - z^i is a ϵ -best reply to z^{-i} , he continues his periodic play
 - otherwise, he breaks his periodic play
- lacktriangleright if s is not K-periodic player i picks a random action $ar{a}^i$

The new state of f^i becomes $\tilde{s}' = (a_1, ..., a_{2K}, \bar{a})$.

if $\widetilde{s} = (a_0, s)$ is K-periodic (Mode II)

ightharpoonup player i plays the mixed action z^i

if $\widetilde{s}=(a_0,s)$ is not K-periodic (Mode I)

- ightharpoonup if s is K-periodic and
 - z^i is a ϵ -best reply to z^{-i} , he continues his periodic play
 - otherwise, he breaks his periodic play
- lacktriangleright if s is not K-periodic player i picks a random action $ar{a}^i$

The new state of f^i becomes $\tilde{s}' = (a_1, ..., a_{2K}, \bar{a})$.

if $\tilde{s} = (a_0, s)$ is K-periodic (Mode II)

lacktriangle player i plays the mixed action z^i

The state of f^i remains the same $\tilde{s}' = \tilde{s}$.

Observation

Once in Mode II each player will play the same mixed action \boldsymbol{z}^i forever.

When do we reach Mode II?

When do we reach Mode II?

- ightharpoonup if s is K-periodic and
 - $lacktriangleright z^i$ is a ϵ -best reply to z^{-i} he continues his periodic play
 - otherwise he breaks his periodic play
- lacktriangleright if s is not K-periodic player i picks a random action $ar{a}^i$

When do we reach Mode II?

▶ For $\tilde{s} = (a_0, s)$ to be K-periodic, first s has to be

- ightharpoonup if s is K-periodic and
 - $lacktriangleq z^i$ is a ϵ -best reply to z^{-i} he continues his periodic play
 - otherwise he breaks his periodic play
- lacktriangleright if s is not K-periodic player i picks a random action $ar{a}^i$

When do we reach Mode II?

▶ For $\tilde{s} = (a_0, s)$ to be K-periodic, first s has to be

- ightharpoonup if s is K-periodic and
 - z^i is a ϵ -best reply to z^{-i} he continues his periodic play
 - otherwise he breaks his periodic play
- ▶ if s is not K-periodic player i picks a random action \bar{a}^i

When do we reach Mode II?

- ▶ For $\tilde{s} = (a_0, s)$ to be K-periodic, first s has to be
- ▶ Since $s' = (a_1, ..., a_{2K}, \bar{a})$ we get K-periodicity only if $\bar{a} = a_1$

- ightharpoonup if s is K-periodic and
 - z^i is a ϵ -best reply to z^{-i} he continues his periodic play
 - otherwise he breaks his periodic play
- lacktriangleright if s is not K-periodic player i picks a random action $ar{a}^i$

When do we reach Mode II?

- ▶ For $\tilde{s} = (a_0, s)$ to be K-periodic, first s has to be
- ▶ Since $s' = (a_1, ..., a_{2K}, \bar{a})$ we get K-periodicity only if $\bar{a} = a_1$

- ightharpoonup if s is K-periodic and
 - z^i is a ϵ -best reply to z^{-i} he continues his periodic play
 - ▶ otherwise he breaks his periodic play
- lacktriangleright if s is not K-periodic player i picks a random action $ar{a}^i$

When do we reach Mode II?

- For $\tilde{s}=(a_0,s)$ to be K-periodic, first s has to be
- ▶ Since $s' = (a_1, ..., a_{2K}, \bar{a})$ we get K-periodicity only if $\bar{a} = a_1$
- ▶ We enter Mode II when z is an ϵ -Equilibria!

- ightharpoonup if s is K-periodic and
 - $lacktriangleq z^i$ is a ϵ -best reply to z^{-i} he continues his periodic play
 - ▶ otherwise he breaks his periodic play
- lacktriangleright if s is not K-periodic player i picks a random action $ar{a}^i$

When do we reach Mode II?

- For $\tilde{s}=(a_0,s)$ to be K-periodic, first s has to be
- ▶ Since $s' = (a_1, ..., a_{2K}, \bar{a})$ we get K-periodicity only if $\bar{a} = a_1$
- ▶ We enter Mode II when z is an ϵ -Equilibria!

- ightharpoonup if s is K-periodic and
 - $lacktriangleq z^i$ is a ϵ -best reply to z^{-i} he continues his periodic play
 - otherwise he breaks his periodic play
- lacktriangleright if s is not K-periodic player i picks a random action $ar{a}^i$

Memory is pretty cool

Memories

Memory is almost identical to Recall as players will always remember the R most recent plays. But once they reach a Nash equilibria this becomes the only memory they hold on to.

	Recall			Memory
	1	2	R	R
Pure				
Mixed				

	Recall			Memory
	1	2	R	R
Pure	X			
Mixed				

	Recall			Memory
	1	2	R	R
Pure	X	1	1	
Mixed				

	Recall			Memory
	1	2	R	R
Pure	X	1	1	
Mixed	X	X	X	

	Recall			Memory
	1 2 R		R	R
Pure	X	1	1	✓
Mixed	X	X	X	\checkmark

