Clustering K-Means

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

#Membaca data
pariwisata = pd.read_excel("pariwisata.xlsx")

#Menampilkan sampel data
pariwisata.tail()
```

	Provinsi	jum_asing	jum_lokal	jum_nb_asing	jum_nb_lokal	hunian_b	hun:
30	MALUKU	7.57	130.06	4173.0	416005.9	38.10	
31	MALUKU UTARA	0.66	93.65	516.0	308029.4	50.44	
32	PAPUA BARAT	19.25	243.80	1772.0	237191.0	51.16	
33	PAPUA	12.58	449.56	2557.0	448181.0	50.34	
34	INDONESIA	11307.43	74066.92	3283275.0	57370362.0	54.81	

```
#Menghapus baris ke-34 INDONESIA
pariwisata = pariwisata.drop(34,axis=0)
```

pariwisata

	Provinsi	jum_asing	jum_lokal	jum_nb_asing	jum_nb_lokal	hunian_b
0	ACEH	9.21	312.73	10803.0	1030136.0	43.18
1	SUMATERA UTARA	201.88	2736.09	21104.0	4850322.0	48.86
2	SUMATERA BARAT	51.83	1470.99	3786.0	1167212.0	56.00
3	RIAU	35.33	4646.98	65845.0	1413345.0	48.69
4	JAMBI	6.02	502.86	2391.0	429609.7	45.49
5	SUMATERA SELATAN	14.05	2013.76	1157.0	1159986.0	53.99
6	BENGKULU	0.56	171.82	559.0	446140.5	64.06
7	LAMPUNG	3.01	785.58	10710.0	1207142.0	60.31
8	KEP. BANGKA BELITUNG	9.68	467.16	175.0	212880.4	36.07
9	KEP. RIAU	1595.59	1504.26	97611.0	1056443.0	52.31
10	DKI JAKARTA	1529.76	10262.67	5969.0	4310569.0	59.71
11	JAWA BARAT	502.72	12850.51	37134.0	7483742.0	54.47
12	JAWA TENGAH	122.15	7247.54	7861.0	5539721.0	47.46
13	DI YOGYAKARTA	211.50	5025.09	57837.0	3711716.0	58.91
14	JAWA TIMUR	267.97	7526.00	59205.0	9094596.0	57.20
15	BANTEN	464.21	2821.56	1429.0	943900.3	51.57
16	BALI	5687.80	3186.16	2462937.0	1858640.0	61.13
17	NUSA TENGGARA BARAT	195.80	557.37	237746.0	932996.5	42.23
18	NUSA TENGGARA TIMUR	58.59	449.67	112806.0	456460.6	52.17
19	KALIMANTAN BARAT	33.00	977.22	7301.0	1207524.0	47.74
20	KALIMANTAN TENGAH	6.68	396.28	1454.0	997713.2	56.71
21	KALIMANTAN SELATAN	9.41	1073.82	505.0	942969.8	50.72
22	KALIMANTAN TIMUR	30.66	1910.00	3151.0	1008884.0	57.70
23	KALIMANTAN UTARA	2.57	75.14	2424.0	362328.3	46.10

h١

24	SULAWESI UTARA	164.71	829.37	42208.0	632282.6	64.40
25	SULAWESI TENGAH	2.00	154.09	5952.0	685989.3	50.13
26	SULAWESI	16 O1	2621 AD	11000 0	19106/A O	E1 02

pariwisata.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 34 entries, 0 to 33
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype
0	Provinsi	34 non-null	object
1	jum_asing	34 non-null	float64
2	jum_lokal	34 non-null	float64
3	jum_nb_asing	34 non-null	float64
4	jum_nb_lokal	34 non-null	float64
5	hunian_b	34 non-null	float64
6	hunian_nb	34 non-null	float64
dtyp	es: float64(6)	, object(1)	
memo	ory usage: 2.1+	KB	

1711 071 12.00 110.00 2007.0 110.101.0 00.0

pariwisata.isnull().any()

```
Provinsi False
jum_asing False
jum_lokal False
jum_nb_asing False
jum_nb_lokal False
hunian_b False
hunian_nb False
dtype: bool
```

▼ VISUALISASI

```
fig, ax = plt.subplots()
fig.set_size_inches(10,8)

a = sns.barplot(x="hunian_b", y="Provinsi", data = pariwisata)
a.axes.set_title("Tingkat Hunian Hotel Berbintang (5)", fontsize = 16)
a.set_xlabel("Tingkat Hunian ($)", fontsize = 12)
a.set_ylabel("Provinsi", fontsize = 12)
a.tick_params(labelsize = 9)
plt.show()

#simpan foto
fig.savefig("tingkat hunian.png")
```


sns.displot(pariwisata.hunian_nb, kde = True)

→ Clustering

pariwisata.shape

(34, 7)

Menentukan variabel yang akan di clustering

```
x = pariwisata.iloc[:, 1:7]
x.head()
```

	jum_asing	jum_lokal	jum_nb_asing	jum_nb_lokal	hunian_b	hunian_nb
0	9.21	312.73	10803.0	1030136.0	43.18	28.48
1	201.88	2736.09	21104.0	4850322.0	48.86	36.54
2	51.83	1470.99	3786.0	1167212.0	56.00	24.75
3	35.33	4646.98	65845.0	1413345.0	48.69	30.71
4	6.02	502.86	2391.0	429609.7	45.49	23.13

#Mengubah data menjadi menjadi array
x_array = np.array(x)
x array

```
[1.405000e+01, 2.013760e+03, 1.157000e+03, 1.159986e+06,
5.399000e+01, 3.251000e+01],
[5.600000e-01, 1.718200e+02, 5.590000e+02, 4.461405e+05,
6.406000e+01, 2.904000e+01],
[3.010000e+00, 7.855800e+02, 1.071000e+04, 1.207142e+06,
6.031000e+01, 3.487000e+01],
[9.680000e+00, 4.671600e+02, 1.750000e+02, 2.128804e+05,
3.607000e+01, 2.078000e+01],
[1.595590e+03, 1.504260e+03, 9.761100e+04, 1.056443e+06,
5.231000e+01, 3.573000e+01],
[1.529760e+03, 1.026267e+04, 5.969000e+03, 4.310569e+06,
5.971000e+01, 5.695000e+01],
[5.027200e+02, 1.285051e+04, 3.713400e+04, 7.483742e+06,
5.447000e+01, 2.980000e+01],
[1.221500e+02, 7.247540e+03, 7.861000e+03, 5.539721e+06,
4.746000e+01, 2.767000e+01],
[2.115000e+02, 5.025090e+03, 5.783700e+04, 3.711716e+06,
5.891000e+01, 3.221000e+01],
[2.679700e+02, 7.526000e+03, 5.920500e+04, 9.094596e+06,
5.720000e+01, 3.095000e+01],
[4.642100e+02, 2.821560e+03, 1.429000e+03, 9.439003e+05,
5.157000e+01, 2.657000e+01],
[5.687800e+03, 3.186160e+03, 2.462937e+06, 1.858640e+06,
6.113000e+01, 3.476000e+01],
[1.958000e+02, 5.573700e+02, 2.377460e+05, 9.329965e+05,
4.223000e+01, 2.739000e+01],
[5.859000e+01, 4.496700e+02, 1.128060e+05, 4.564606e+05,
5.217000e+01, 2.352000e+01],
[3.300000e+01, 9.772200e+02, 7.301000e+03, 1.207524e+06,
4.774000e+01, 2.982000e+01],
[6.680000e+00, 3.962800e+02, 1.454000e+03, 9.977132e+05,
5.671000e+01, 2.498000e+01],
[9.410000e+00, 1.073820e+03, 5.050000e+02, 9.429698e+05,
5.072000e+01, 3.095000e+01],
[3.066000e+01, 1.910000e+03, 3.151000e+03, 1.008884e+06,
5.770000e+01, 3.101000e+01],
[2.570000e+00, 7.514000e+01, 2.424000e+03, 3.623283e+05,
4.610000e+01, 2.730000e+01],
[1.647100e+02, 8.293700e+02, 4.220800e+04, 6.322826e+05,
6.440000e+01, 3.970000e+01],
```

```
[2.000000e+00, 1.540900e+02, 5.952000e+03, 6.859893e+05,
             5.013000e+01, 2.375000e+01],
            [4.691000e+01, 2.681400e+03, 1.122800e+04, 1.819646e+06,
             5.103000e+01, 3.065000e+011,
            [1.400000e+00, 2.922100e+02, 1.011000e+03, 6.374603e+05,
             4.134000e+01, 2.401000e+01],
            [1.990000e+00, 1.283000e+02, 1.945000e+03, 1.623239e+05,
             4.974000e+01, 2.213000e+01],
            [3.800000e-01, 9.322000e+01, 1.600000e+01, 1.982748e+05,
             4.991000e+01, 1.892000e+011,
            [7.570000e+00, 1.300600e+02, 4.173000e+03, 4.160059e+05,
             3.810000e+01, 2.446000e+01],
            [6.600000e-01, 9.365000e+01, 5.160000e+02, 3.080294e+05,
             5.044000e+01, 2.337000e+01],
            [1.925000e+01, 2.438000e+02, 1.772000e+03, 2.371910e+05,
             5.116000e+01, 2.942000e+01],
            [1.258000e+01, 4.495600e+02, 2.557000e+03, 4.481810e+05,
             5.034000e+01, 3.258000e+01]])
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
# Menstandarkan ukuran (scaling)
scaler = MinMaxScaler()
x scaled = scaler.fit transform(x array)
# function returns WSS score for k values from 1 to kmax
def calculate WSS(points, kmax):
  sse = []
  for k in range(1, kmax+1):
    kmeans = KMeans(n_clusters = k).fit(points)
    centroids = kmeans.cluster centers
    pred clusters = kmeans.predict(points)
    curr sse = 0
    # calculate square of Euclidean distance of each point from its cluster center
    for i in range(len(points)):
      curr center = centroids[pred clusters[i]]
      curr sse += (points[i, 0] - curr center[0]) ** 2 + (points[i, 1] - curr center
    sse.append(curr sse)
  return sse
wss = calculate WSS(x scaled, 15)
WSS
    [2.9880854102444747,
     1.5313390318196365,
     0.7079544303628379,
     0.4286123405740351,
     0.4048822371786375,
     0.4616831809942087,
     0.3906615216091572,
     0.33517300723853044,
```

```
0.26478441973721045,

0.1821231656802822,

0.19248796514677444,

0.1796206590797465,

0.17580574567024845,

0.044913270769797765,

0.046486995383640324]

xx=np.arange(1,16,1)

plt.figure(figsize=[7,7])

plt.plot(xx, wss, "b-o")
```


xx = np.arange(1,16,1) plt.figure(figsize=[7,7]) plt.plot(xx,wss, "b-o") plt.show()

→ Jumlah cluster: silhouette

```
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np

range_n_clusters = [2, 3, 4, 5, 6]

def silh(X):
    for n_clusters in range_n_clusters:
```

```
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set size inches(18, 7)
# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set xlim([-0.1, 1])
# The (n clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set ylim([0, len(X) + (n clusters + 1) * 10])
# Initialize the clusterer with n clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n clusters=n clusters, random state=10)
cluster labels = clusterer.fit predict(X)
# The silhouette score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed
# clusters
silhouette avg = silhouette score(X, cluster labels)
print(
    "For n clusters =",
    n clusters,
    "The average silhouette score is : ",
    silhouette avg,
)
# Compute the silhouette scores for each sample
sample silhouette values = silhouette samples(X, cluster labels)
y lower = 10
for i in range(n clusters):
    # Aggregate the silhouette scores for samples belonging to
    # cluster i, and sort them
    ith cluster silhouette values = sample silhouette values[cluster labels
    ith cluster silhouette values.sort()
    size cluster i = ith cluster silhouette values.shape[0]
    y_upper = y_lower + size_cluster_i
    color = cm.nipy spectral(float(i) / n clusters)
    ax1.fill betweenx(
        np.arange(y_lower, y_upper),
        0,
        ith cluster silhouette values,
        facecolor=color,
        edgecolor=color,
        alpha=0.7,
    )
    # Label the silhouette plots with their cluster numbers at the middle
    ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
```

```
# Compute the new y lower for next plot
            y lower = y upper + 10 # 10 for the 0 samples
        ax1.set title("The silhouette plot for the various clusters.")
        ax1.set xlabel("The silhouette coefficient values")
        ax1.set ylabel("Cluster label")
        # The vertical line for average silhouette score of all the values
        ax1.axvline(x=silhouette avg, color="red", linestyle="--")
        ax1.set_yticks([]) # Clear the yaxis labels / ticks
        ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
        # 2nd Plot showing the actual clusters formed
        colors = cm.nipy spectral(cluster_labels.astype(float) / n_clusters)
        ax2.scatter(
            X[:, 0], X[:, 1], marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolo
        )
        # Labeling the clusters
        centers = clusterer.cluster centers
        # Draw white circles at cluster centers
        ax2.scatter(
            centers[:, 0],
            centers[:, 1],
            marker="o",
            c="white",
            alpha=1,
            s = 200,
            edgecolor="k",
        )
        for i, c in enumerate(centers):
            ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k'
        ax2.set title("The visualization of the clustered data.")
        ax2.set_xlabel("Feature space for the 1st feature")
        ax2.set ylabel("Feature space for the 2nd feature")
        plt.suptitle(
            "Silhouette analysis for KMeans clustering on sample data with n cluste
            % n clusters,
            fontsize=14,
            fontweight="bold",
        )
    plt.show()
silh(x scaled)
```

For n_clusters = 4 The average silhouette_score is : 0.2917577906968881

For n_clusters = 5 The average silhouette_score is : 0.2940985767639586

For n_clusters = 6 The average silhouette_score is : 0.27633665389663226

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

Silhouette analysis for KMeans clustering on sample data with n_clusters = 5

The silhou	ette plot for the various clusters.			The visualization of the clustered data.
		1.0 -		
4				
3		0.8 -		3
	l		_	

Silhouette analysis for KMeans clustering on sample data with n clusters = 6

Menentukan model kmeans
from sklearn.cluster import KMeans
kmeans = KMeans(n clusters = 3, random state = 123)

x scaled

```
[2.40355029e-03, 1.51746681e-01, 4.63271051e-04, 1.11691862e-01,
6.32545005e-01, 3.57349461e-01],
[3.16487968e-05, 7.56768688e-03, 2.20469922e-04, 3.17742895e-02,
9.87998588e-01, 2.66105706e-01],
[4.62424087e-04, 5.56101311e-02, 4.34199879e-03, 1.16971146e-01,
8.55630074e-01, 4.19405732e-01],
[1.63518784e-03, 3.06856083e-02, 6.45574909e-05, 5.65998208e-03,
0.00000000e+00, 4.89087562e-021,
[2.80480429e-01, 1.11865253e-01, 3.96257127e-02, 1.00099850e-01,
5.73243911e-01, 4.42019458e-01],
[2.68905760e-01, 7.97435221e-01, 2.41704870e-03, 4.64410964e-01,
8.34451112e-01, 1.00000000e+00],
[8.83247589e-02, 1.00000000e+00, 1.50707229e-02, 8.19659099e-01,
6.49488175e-01, 2.86089929e-01],
[2.14104110e-02, 5.61424053e-01, 3.18524224e-03, 6.02018953e-01,
4.02047300e-01, 2.30081515e-01],
[3.71205221e-02, 3.87460402e-01, 2.34765955e-02, 3.97367216e-01,
8.06212496e-01, 3.49460952e-01],
[4.70494530e-02, 5.83220682e-01, 2.40320335e-02, 1.00000000e+00,
7.45852453e-01, 3.16329214e-01],
[8.15536746e-02, 2.14977727e-01, 5.73709023e-04, 8.75002901e-02,
5.47123191e-01, 2.01156981e-01],
[1.00000000e+00, 2.43517018e-01, 1.00000000e+00, 1.89908691e-01,
8.84574656e-01, 4.16513279e-01],
[3.43600437e-02, 3.77468520e-02, 9.65235994e-02, 8.62795705e-02,
2.17437346e-01, 2.22718906e-01],
[1.02348692e-02, 2.93165677e-02, 4.57952163e-02, 3.29296619e-02,
5.68302153e-01, 1.20957139e-01],
```

```
[5./3546529e-03, /.06108/08e-02, 2.95/86994e-03, 1.1/013912e-01,
            4.11930815e-01, 2.86615830e-01],
            [1.10770789e-03, 2.51374324e-02, 5.83859572e-04, 9.35248379e-02,
            7.28556301e-01, 1.59347883e-01],
            [1.58771464e-03, 7.81722956e-02, 1.98544736e-04, 8.73961173e-02,
            5.17119661e-01, 3.16329214e-01],
            [5.32403093e-03, 1.43624803e-01, 1.27287883e-03, 9.47754491e-02,
            7.63501588e-01, 3.17906916e-01],
            [3.85060361e-04, 0.00000000e+00, 9.77700868e-04, 2.23912122e-02,
            3.54041652e-01, 2.20352353e-011,
            [2.88935932e-02, 5.90378204e-02, 1.71308783e-02, 5.26135674e-02,
            1.00000000e+00, 5.46410728e-01],
            [2.84839171e-04, 6.17986015e-03, 2.41014633e-03, 5.86262257e-02,
            4.96293682e-01, 1.27004996e-01],
            [8.18121398e-03, 2.04006616e-01, 4.55231816e-03, 1.85543172e-01,
            5.28062125e-01, 3.08440705e-01],
            [1.79343182e-04, 1.69912887e-02, 4.03991845e-04, 5.31932295e-02,
            1.86021885e-01, 1.33841704e-01],
            [2.83080905e-04, 4.16113193e-03, 7.83216352e-04, 0.00000000e+00,
            4.82527356e-01, 8.44070471e-02],
            [0.00000000e+00, 1.41522320e-03, 0.0000000e+00, 4.02483261e-03,
            4.88528062e-01, 0.00000000e+00],
            [1.26419361e-03, 4.29889702e-03, 1.68783327e-03, 2.84006127e-02,
            7.16554889e-02, 1.45674468e-01],
            [4.92314617e-05, 1.44888172e-03, 2.03010978e-04, 1.63122550e-02,
            5.07236145e-01, 1.17012885e-01],
            [3.31784887e-03, 1.32019660e-02, 7.12974553e-04, 8.38164122e-03,
            5.32650900e-01, 2.76097818e-01],
            [2.14508512e-03, 2.93079574e-02, 1.03170179e-03, 3.20027309e-02,
             5.03706318e-01, 3.59190113e-01]])
# Menginputkan data
kmeans.fit(x scaled)
    KMeans(n clusters=3, random state=123)
kmeans.get params
    <bound method BaseEstimator.get params of KMeans(n clusters=3, random state=1</pre>
#Menampilkan Label Cluster
kmeans.labels
    array([2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 1, 2, 2, 2, 2, 2,
           2, 2, 2, 2, 2, 2, 2, 2, 2, 2], dtype=int32)
# Menampilkan pusat cluster
kmeans.cluster centers
    array([[0.08304 , 0.58963798, 0.01279064, 0.63471575, 0.64825274,
            0.44088001],
                       , 0.24351702, 1. , 0.18990869, 0.88457466,
            [1.
             0.416513281,
            [0.01806059, 0.06727088, 0.00948586, 0.06691637, 0.50690931,
            0.2334317 ]])
```

Menambahkan kolom cluster ke data frame pariwisata
pariwisata['cluster'] = kmeans.labels_
pariwisata.head()

	Provinsi	jum_asing	jum_lokal	jum_nb_asing	jum_nb_lokal	hunian_b	hunia
0	ACEH	9.21	312.73	10803.0	1030136.0	43.18	
1	SUMATERA UTARA	201.88	2736.09	21104.0	4850322.0	48.86	
2	SUMATERA BARAT	51.83	1470.99	3786.0	1167212.0	56.00	
3	RIAU	35.33	4646.98	65845.0	1413345.0	48.69	
4	JAMBI	6.02	502.86	2391.0	429609.7	45.49	

```
# Membentuk grup berdasarkan kolom cluster
grup = pariwisata.groupby('cluster')
```

profil = pd.DataFrame(grup.mean())
profil

	jum_asing	jum_lokal	jum_nb_asing	jum_nb_lokal	hunian_b	hunian_r
cluster						
0	472.663333	7607.983333	3.151833e+04	5.831778e+06	54.435000	35.68666
1	5687.800000	3186.160000	2.462937e+06	1.858640e+06	61.130000	34.76000
2	103.098148	934.550370	2.337893e+04	7.600391e+05	50.430741	27.79740

profil['cluster'] = profil.index

profil

	jum_asing	jum_lokal	jum_nb_asing	jum_nb_lokal	hunian_b	hunian_r
cluster						
0	472.663333	7607.983333	3.151833e+04	5.831778e+06	54.435000	35.68666
1	5687.800000	3186.160000	2.462937e+06	1.858640e+06	61.130000	34.76000
2	103.098148	934.550370	2.337893e+04	7.600391e+05	50.430741	27.79740

```
profil.plot(x = 'cluster', y = ['jum_asing', 'jum_lokal'], kind = 'bar')
plt.xticks(rotation = 0)
```

(array([0, 1, 2]), <a list of 3 Text major ticklabel objects>)

profil.plot(x = 'cluster', y = ['jum_nb_asing', 'jum_nb_lokal'], kind = 'b
plt.xticks(rotation = 0)

(array([0, 1, 2]), <a list of 3 Text major ticklabel objects>)

profil.plot(x = 'cluster', y = ['hunian_b', 'hunian_nb'], kind = 'bar')
plt.xticks(rotation = 0)

(array([0, 1, 2]), <a list of 3 Text major ticklabel objects>)

Anggota cluster 0
pariwisata[pariwisata.cluster == 0]

	Provinsi	jum_asing	jum_lokal	jum_nb_asing	jum_nb_lokal	hunian_b	h
1	SUMATERA UTARA	201.88	2736.09	21104.0	4850322.0	48.86	
10	DKI JAKARTA	1529.76	10262.67	5969.0	4310569.0	59.71	
11	JAWA BARAT	502.72	12850.51	37134.0	7483742.0	54.47	
12	JAWA TENGAH	122.15	7247.54	7861.0	5539721.0	47.46	
13	DI YOGYAKARTA	211.50	5025.09	57837.0	3711716.0	58.91	
14	JAWA TIMUR	267.97	7526.00	59205.0	9094596.0	57.20	

Anggota cluster 1
pariwisata[pariwisata.cluster == 1]

	Provinsi	jum_asing	jum_lokal	jum_nb_asing	jum_nb_lokal	hunian_b	hunia
10	6 BALI	5687.8	3186.16	2462937.0	1858640.0	61.13	

Anggota cluster 2
pariwisata[pariwisata.cluster == 2]

	Provinsi	jum_asing	jum_lokal	jum_nb_asing	jum_nb_lokal	hunian_b	hu
0	ACEH	9.21	312.73	10803.0	1030136.0	43.18	
2	SUMATERA BARAT	51.83	1470.99	3786.0	1167212.0	56.00	
3	RIAU	35.33	4646.98	65845.0	1413345.0	48.69	
4	JAMBI	6.02	502.86	2391.0	429609.7	45.49	
5	SUMATERA SELATAN	14.05	2013.76	1157.0	1159986.0	53.99	
6	BENGKULU	0.56	171.82	559.0	446140.5	64.06	
7	LAMPUNG	3.01	785.58	10710.0	1207142.0	60.31	
8	KEP. BANGKA BELITUNG	9.68	467.16	175.0	212880.4	36.07	
9	KEP. RIAU	1595.59	1504.26	97611.0	1056443.0	52.31	
15	BANTEN	464.21	2821.56	1429.0	943900.3	51.57	
17	NUSA TENGGARA BARAT	195.80	557.37	237746.0	932996.5	42.23	
18	NUSA TENGGARA TIMUR	58.59	449.67	112806.0	456460.6	52.17	
19	KALIMANTAN BARAT	33.00	977.22	7301.0	1207524.0	47.74	
20	KALIMANTAN TENGAH	6.68	396.28	1454.0	997713.2	56.71	
21	KALIMANTAN SELATAN	9.41	1073.82	505.0	942969.8	50.72	
22	KALIMANTAN TIMUR	30.66	1910.00	3151.0	1008884.0	57.70	
23	KALIMANTAN UTARA	2.57	75.14	2424.0	362328.3	46.10	
24	SULAWESI	164.71	829.37	42208.0	632282.6	64.40	

Profilisasi cluster:

- 1. Kluster 0: tinggi, jumlah wisatawan lokal yang menginap di hotel non bintang dan bintang tinggi
- 2. Kluster 1: sedang, jumlah wisatawan lokal yang menginap di hotel non bintang dan bintang sedang
- 3. Kluster 2: rendah, jumlah wisatawan lokal yang menginap di hotel non bintang dan bintang rendah

20 OOLAYEDI 0.20 02.20 16.0 100274.0 40.01