

1. Odchyłki graniczne

1.1 Rezystory termometryczne Pt100

Norma PN-EN-60751 ustala wartość rezystancji oporników w funkcji temperatury oraz ustala dwie klasy dla odchyłek granicznych:Klasę "A" i "B".Produkujemy również oporniki w klasie 1/3 B nie objętych ta normą. Odchyłka graniczna określa maksymalną odchyłkę w °C lub w Ω od unormowanych wartości. Klasa tolerancji "A" nie powinna być stosowana w termometrach platynowych o rezystancji 100Ω przy temperaturach wyższych niż 650°C.

Odchyłki graniczne dla opornika Pt100									
Temperatura °C	Klasa A		Klasa B		Klasa 1/3B				
	°C	Ω	°C	Ω	°C	Ω			
-200	±0.55	±0.24	±1.3	±0.56	-	-			
-100	±0.35	±0.14	±0.8	±0.32	-	-			
0	±0.15	±0.06	±0.3	±0.12	±0.1	±0.04			
100	±0.35	±0.13	±0.8	±0.30	±0.26	±0.1			
200	±0.55	±0.20	±1.3	±0.48	±0.4	±0.16			
300	±0.75	±0.27	±1.8	±0.64	±0.6	±0.21			
400	±0.95	±0.33	±2.3	±0.79	-	-			
500	±1.15	±0.38	±2.8	±0.93	-	-			
600	±1.35	±0.43	±3.3	±1.06	-	-			
700	-	-	±3.8	±1.17	-	-			
800	-	-	±4.3	±1.28	-	-			
900	-	-	±4.6	±1.34	-	-			

1.2 Termopary

Norma PN-EN-60854-2 ustala trzy klasy oraz wartości siły termoelektrycznej w funkcji temperatury.

Odchyłki graniczne wg normy IEC 584									
Тур	Klasa 1		Klasa 2		Klasa 3				
	Zakres temperatur[°C]	Zakres temperatur [°C]	Zakres temperatur[°C]	Zakres temperatur[°C]	Zakres temperatur[°C]	Zakres temperatur[°C]			
T T	-40 do +125	±0.5	-40 do +133	±1.0	-67 do +40	±1.0			
Тур Т	+125 do +350	±0.004 x t	+133 do +350	±0.0075 x t	-200 do -67	±0.015 x t			
T F	-40 do +375	±1.5	-40 do +333	±2.5	-167 do +40	±2.5			
Тур Е	+375 do +800	±0.004 x t	+333 do +900	±0.0075 x t	-200 do -167	±0.015 x t			
T 1	-40 do +375	±1.5	-40 do +333	±2.5	-	-			
Typ J	+375 do +750	±0.004 x t	+333 do +750	±0.0075 x t	-	-			
T 1/	-40 do +375	±1.5	-40 do +333	±2.5	-167 do +40	±2.5			
Тур К	+375 do +1000	±0.004 x t	+333 do +1200	±0.0075 x t	-200 do -167	±0.015 x t			
T D. 0	0 do +1100	±1.0	0 do +600	±1.5	-	-			
Typ R+S	+1100 do +1600	±[1+0.003 (t - 1100)]	+600 do +1600	±0.0025 x t	-	-			
T D. 400	-	-	-	-	+600 do +800	±4.0			
Тур В 400	-	-	+600 do +1700	±0.0025 x t	+800 do +1700	±0.005 x t			

2. Własności dynamiczne (charakterystyka czasowa).

2.1 Stała czasowa [t]

Stała czasowa [t], to czas, którego potrzebuje termometr po skoku temperatury, aby wskazać jego określoną część. Stała czasowa [$t_{0.5}$], to czas, po którym termometr wskaże 50% skoku temperatury. Mogą być podawane stałe czasowe dla wskazań 10% [$t_{0.1}$] lub 90% [$t_{0.9}$].

Stałe czasowe podawane są dla przepływającego powietrza lub przepływającej wody.

3. Układ połączeń przewodów wewnętrznych.

Norma PN-EN- 60751+A2 przewiduje następujący układ połączeń przewodów wewnętrznych: Termometry z dwoma tylko przewodami do połączeń wewnętrznych , które są przeznaczone do stosowania tylko z dwoma zewnętrznymi przewodami łączącymi, nie powinny być zaliczone do klasy tolerancji "A" (pkt3.3.1 PN-EN-60751+A2).

3.1 Symbole układu połączeń

Oporność przewodów Cu: R = (L x 0.0175) / s gdzie:

L = długość przewodów [m]

s = przekrój przewodów [mm²]

0.0175 = oporność właściwa Cu

3.2 Podłączenie termometrów oporowych

Układ połączeń kostki z 4-ma zaciskami (Układ 2,3,4-przewodowy 1xPt100, 2xPt100-2p, 1xK)

Układ połączeń kostki 6-ma zaciskami (Układ 3-przewodowy 2xPt-100)

Schemat podłączenia przewodów

2xPt100 -3p

4. Badania wyrobu.

Każdy wyprodukowany wyrób jest poddawany w naszym laboratorium sprawdzeniu na zgodność z wymogami obowiązujących norm.

Badania produkowanych w naszej firmie oporników platynowych przeprowadziło również Laboratorium Akredytowane DKD-K-06701 przy Ludwig Schneider Messtechnik GmbH.

4.1 Sprawdzanie oporników termometrycznych

Procedura ta wykonywana jest dla następujących czujników: Pt-100/1.3850, Ni-100/1.617, Cu-100/1.426 jak również o nietypowej wartości oporu w temperaturze 0°C (Pt-50, Pt-500, Ni-200, Cu-50, itp.) oraz czujników wyposażonych w w/w czujniki.

Istnieje również możliwość sprawdzania mierników oporu i napięcia współpracujących z czujnikami.

4.2 Sprawdzanie termopar

Procedura ta wykonywana jest dla następujących termopar: PtRh10-Pt (S), NiCr-NiAl (K), Fe-NiCu (J), Cu-CuNi (T) itp., oraz czujników wyposażonych w w/w termopary.

4.3 Niepewność pomiaru

- Temperatura od 0°C: ±0.03 °C (przy poziomie ufności 95%)
- Temperatura od 0°C do 100 °C : ±0.10 °C (przy poziomie ufności 95%)
- Temperatura od 100°C do 500 °C : ±0.30 °C (przy poziomie ufności 95%)
- Temperatura od 500°C do 1200 °C : ±1.3 °C (przy poziomie ufności 95%)

ALF-SENSOR – zakład produkcyjny 32-080 ZABIERZÓW, ul. Krakowska 294 ALF-SENSOR – siedziba 31-342 KRAKÓW, ul. Narcyzowa 3

4.4 Przyrządy kontrolne i aparatura pomiarowa stosowana w laboratorium

- Platynowy oporowy termometr kontrolny typu PW-EZ100 Heraeus Sensor GmbH (certyfikat No. DKD-K 05601).
- Platynowe laboratoryjne czujniki oporowe produkcji LSM (certyfikat No. DKD-K 05701).
- Platynowe termometry kontrolne II-go rzędu PtRh10-Pt (certyfikaty Okręgowego Urzędu Miar w Krakowie).
- Wzorce oporu 10Ω , 100Ω , 1000Ω kl. 0,01 produkcji ZIP (certyfikat Okręgowego Urzędu Miar w Krakowie).
- Dekady oporowe kl. 0,01 (certyfikat Okręgowego Urzędu Miar w Krakowie).
- Miernik izolacji dokonujący pomiaru w zakresie od $1M\Omega$ do $10G\Omega$ nap.0÷1000V.
- Multimetry cyfrowe typu 6001 (certyfikat Okręgowego Urzędu Miar w Krakowie).
- Mostek termometryczny 5840E.
- Komputer pomiarowy MC8047.
- Piec rurowy typ TPK 500 o zakresie 1200 °C.
- Piec rurowy typ ROF 7/75 o zakresie 1300 °C, z blokami pomiarowymi z aluminium, stali niklowej i ceramicznymi.
- Termostaty cieczowe o zakresie do 300 °C.
- Ebulioskopy do realizacji punkty wrzenia wody.
- Naczynia Deware'a do realizacji punktu topnienia lodu.

Na dowód sprawdzenia oporników i czujników w wyżej podanym zakresie wydajemy certyfikaty naszego laboratorium.