六盘水市第三中学高三 17 班期末复习资料

1. 若 $\log_2 a + \log_{\frac{1}{2}} b = 2$,则有					()
	(A) a = 2b	(B) $b = 2a$	(C) $a = 4b$	(D) $b = 4a$		
2.	已知直线 $x - y + m = 0$ 与为				(值)
	$(A) \frac{\sqrt{3}}{2}$	(B) $\frac{\sqrt{6}}{2}$	$(C) \frac{\sqrt{3}}{2} \vec{\boxtimes} - \frac{\sqrt{3}}{2}$	$(D) \frac{\sqrt{6}}{2} \vec{x} - \frac{\sqrt{6}}{2}$		
3.	从编号分别为 1,2,3,4,5,6 邻的概率是		对 中,随机取出三个小球		求编号 [;] (相)
	(A) $\frac{1}{5}$	(B) $\frac{2}{5}$	(C) $\frac{3}{5}$	(D) $\frac{4}{5}$		
4.	在 $\triangle ABC$ 中, $AB = AC = 1$, D 是 AC 边的中点,则 $\overrightarrow{BD} \cdot \overrightarrow{CD}$ 的取值范围是 $ (A) \left(-\frac{3}{4}, \frac{1}{4} \right) \qquad \qquad (B) \left(-\infty, \frac{1}{4} \right) \qquad \qquad (C) \left(-\frac{3}{4}, +\infty \right) \qquad \qquad (D) \left(\frac{1}{4}, \frac{3}{4} \right) $				()
	$(A)\left(-\frac{3}{4},\frac{1}{4}\right)$	(B) $\left(-\infty, \frac{1}{4}\right)$	$(C)\left(-\frac{3}{4},+\infty\right)$	$(D)\left(\frac{1}{4},\frac{3}{4}\right)$		
5.	已知 M 为曲线 C : $\begin{cases} x = 3 \\ y = \sin \theta \end{cases}$	+ cos θ, (θ为参数) 上的动点 n θ	点,设 0 为原点,则 0 M	的最大值是	()
	(A) 1	(B) 2	(C) 3	(D) 4		
6.	设 a,b 是非零向量,且 a	, b 不共线,则" $ a = b $ "	是 " $ a+2b = 2a+b $ "	的	()
	(A) 充分而不必要条件		(B) 必要而不充分条件			
	(C) 充分必要条件		(D) 既不充分也不必要条	件		
7.	函数 $f(x) = 2\sin(\omega x + \varphi)$	$\omega > 0, \left \varphi \right < \frac{\pi}{2}$ 的部分图象	是如图所示,则 ω , $arphi$ 的值分	分别是	()
		$ \begin{array}{c c} y \\ 2 \\ \hline O \\ \hline & \frac{5\pi}{12} \end{array} $	$\frac{11\pi}{12}$			
	(A) 2, $-\frac{\pi}{3}$	(B) $2, -\frac{\pi}{6}$	(C) 4, $-\frac{\pi}{6}$	(D) 4, $\frac{\pi}{3}$		
8.	以角 θ 的顶点为坐标原点 $\tan\left(\theta + \frac{\pi}{4}\right) =$,始边为 <i>x</i> 轴的非负半轴	,建立平面直角坐标系,	角 θ 终点过点 P (2		则)

(B) -3

(C) $\frac{1}{3}$

(D) 3

 $(A) - \frac{1}{3}$

9. 实数
$$x, y$$
 满足
$$\begin{cases} x-1 \ge 0, \\ x+y-1 \ge 0, & \text{则 } 2x-y \text{ 的取值范围是} \\ x-y+1 \ge 0. \end{cases}$$
 ()

- (A)[0,2]
- $(B)(-\infty,0]$
- (C)[-1,2]
- (D) $[0, +\infty)$
- 10. 已知函数 $f(x) = \sin(x + \varphi)$ 的图象记为曲线 C,则 " $f(0) = f(\pi)$ " 是 "曲线 C 关于直线 $x = \frac{\pi}{2}$ 对称" 的
 - (A) 充分而不必要条件

(B) 必要而不充分条件

(C) 充分必要条件

(D) 既不充分也不必要条件

11. "
$$m > 10$$
" 是 "方程 $\frac{x^2}{m-10} + \frac{y^2}{m-8} = 1$ 表示双曲线"的

(A) 充分而不必要条件

(B) 必要而不充分条件

(C) 充分必要条件

- (D) 既不充分也不必要条件
- 12. 已知点 F 为抛物线 $C: y^2 = 2px(p > 0)$ 的焦点,点 K 为 F 关于原点的对称点,点 M 在抛物线 C 上,则下列说法错误的是
 - (A) 使得 △MFK 为等腰三角形的点 M 有且仅有 4 个
 - (B) 使得 △MFK 为直角三角形的点 M 有且仅有 4 个
 - (C) 使得 $\angle MKF = \frac{\pi}{4}$ 的点 M 有且仅有 4 个
 - (D) 使得 $\angle MKF = \frac{\pi}{6}$ 的点 M 有且仅有 4 个
- 13. 已知正方体 $ABCD A_1B_1C_1D_1$ 的核长为 2, M,N 分别是核 BC, C_1D_1 的中点,点 P 在平面 $A_1B_1C_1D_1$ 内,点 Q 在线段 A_1N 上. 若 $PM = \sqrt{5}$,则 PQ 长度的最小值是

- (A) $\sqrt{2} 1$
- (B) $\sqrt{2}$
- $\sqrt{2}$
- 14. 现有n个小球,甲、乙两位同学轮流且不放回抓球,每次最少抓1个球,最多抓3个球,规定谁先抓到最后一个球谁赢. 如果甲先抓,那么以下推断正确的是 ()
 - (A) 若 n=4,则甲有必赢的策略
- (B) 若 n = 6,则乙有必赢的策略
- (C) 若 n=9,则甲有必赢的策略
- (D) = 11, 则乙有必赢的策略
- 15. 已知 A,B 是函数 $y=2^x$ 的图象上的相异两点,若点 A,B 到直线 $y=\frac{1}{2}$ 的距离相等,则点 A,B 的横坐标 之和的取值范围是
 - $(A)(-\infty,-1)$
- (B) $(-\infty, -2)$
- $(C)(-\infty, -3)$
- (D) $(-\infty, -4)$

- 16. 函数 $f(x) = \begin{cases} 2^x, & x \leq 0 \\ x(2-x), & x > 0 \end{cases}$ 的最大值为_____; 若函数 f(x) 的图象与直线 y = k(x-1) 有且只有一个
- 17. 若 $a = \ln \frac{1}{2}$, $b = \left(\frac{1}{3}\right)^{0.8}$, $c = 2^{\frac{1}{3}}$, 则 a,b,c 的大小关系是_____.

 18. 设常数 $a \in \mathbb{R}$,若 $\left(x^2 + \frac{a}{x}\right)^5$ 的二项展开式中 x^7 的系数为 -10,则 a =_____.
- 19. 在 $\triangle ABC$ 中, H 为 BC 上异于 B, C 的任一点, M 为 AH 的中点, $\overrightarrow{AM} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$, 则 $\lambda + \mu =$
- 20. 若集合 $\{a,b,c,d\} = \{1,2,3,4\}$,且下列四个关系: ①a = 1 ② $b \neq 1$ ③c = 2, ④ $d \neq 4$ 有且只有一个是正确的. 请写出满足上述条件的一个有序数组 (a,b,c,d)=_____; 符合条件的全部有序数组 (a,b,c,d) 的个数
- 21. 已知正方体 $ABCD A_1B_1C_1D_1$ 的棱长为 $4\sqrt{2}$, 点 M 是棱 BC 的中点, 点 P 在底面 ABCD 内, 点 Q 在 线段 A_1C_1 上,若 PM = 1,则 PQ 的长度的最小值为_____.
- 22. 设抛物线 $C: y^2 = 4x$ 的顶点为 O, 经过抛物线 C 的焦点且垂直于 x 轴的直线和抛物线 C 交于 A, B 两 点,则 $|\overrightarrow{OA} + \overrightarrow{OB}| =$ _____.
- 23. 已知 $(5x-1)^n$ 展开式中,各项系数的和与各项二项式系数的和之比为 64:1, 则 n=
- 实数 a 的取值范围是
- 26. 已知函数 $f(x) = \begin{cases} x^2 + x, & -x \le x \le c, \\ \frac{1}{r}, & c < x \le 3. \end{cases}$ 若 c = 0,则 f(x) 的值域是______; 若 f(x) 的值域是 $\left[-\frac{1}{4}, 2 \right]$,则 实数 c 的取值范围是
- 27. 对任意实数 k, 定义集合 $D_k = \left\{ (x,y) \middle| \begin{cases} x-y+2 \ge 0 \\ x+y-2 \le 0, x,y \in \mathbf{R} \end{cases} \right\}.$

①若集合 D_k 表示的平面区域是一个三角形,则实数 k 的取值范围是

②当 k = 0 时,若对任意的 $(x, y) \in D_0$,有 $y \ge a(x + 3) - 1$ 恒成立,且存在 $(x, y) \in D_0$,使得 $x - y \le a$ 成 立,则实数a的取值范围是 .

- 28. 已知等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $a_2 = 5, S_3 = a_7$.
 - (1) 求数列 $\{a_n\}$ 的通项公式;
 - (2) 若 $b_n = 2^{a_n}$, 求数列 $\{a_n + b_n\}$ 的前 n 项和 S_n

- 29. 已知数列 $\{a_n\}$ 是公比为 $\frac{1}{3}$ 的等比数列,且 a_2+6 是 a_1 和 a_3 的等差中项.
 - (1) 求 $\{a_n\}$ 的通项公式;
 - (2) 设数列 $\{a_n\}$ 的前 n 项积为 T_n ,求 T_n 的最大值.

- 30. 如图,在 $\triangle ABC$ 中,D 为边 BC 上一点,AD=6, BD=3, DC=2.
 - (1) 若 $\angle ADB = \frac{\pi}{2}$,求 $\angle BAC$ 的大小;
 - (2) 若 $\angle ADB = \frac{2\pi}{3}$, 求 $\triangle ABC$ 的面积.

- 31. 已知函数 $f(x) = \cos 2x \cdot \tan \left(x \frac{\pi}{4}\right)$.
 - (1) 求函数 f(x) 的定义域;
 - (2) 求函数 f(x) 的值域.

- 32. 已知函数 $f(x) = 2\sin^2 x \cos\left(x + \frac{\pi}{3}\right)$.
 - (1) 求 f(x) 的最小正周期;
 - (2) 求证: 当 $x \in \left[0, \frac{\pi}{2}\right]$ 时, $f(x) \ge -\frac{1}{2}$.

- 33. 如图,在 $\triangle ABC$ 中,点 D 在 AC 边上,且 AD=3DC, $AB=\sqrt{7}$, $\angle ADB=\frac{\pi}{3}$, $\angle C=\frac{\pi}{6}$.
 - (1) 求 DC 的值;
 - (2) tan ∠ABC 的值.

- 34. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ 过点 A(2,0), B(0,1) 两点.
 - (1) 求椭圆 C 的方程及离心率;
 - (2) 设点 Q 在椭圆上,试问直线 x+y-4=0 上是否存在点 P,使得四边形 PAQB 是平行四边形?若存在,求出点 P 的坐标;若不存在,说明理由.

- 35. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$ 过点 A(2,0),且离心率为 $\frac{\sqrt{3}}{2}$.
 - (1) 求椭圆 C 的方程;
 - (2) 设直线 $y = kx + \sqrt{3}$ 与椭圆 C 交于 M,N 两点,若直线 x = 3 上存在点 P,使得四边形 PAMN 是平行四边形,求 k 的值.

- 36. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的离心率等于 $\frac{1}{2}$, P(2,3), Q(2,-3) 是椭圆 C 上的两点.
 - (1) 求椭圆 C 的方程;
 - (2) A, B 是椭圆 C 上位于直线 PQ 两侧的动点,当 A, B 运动时,满足 $\angle APQ = \angle BPQ$,试问直线 AB 的 斜率是否为定值? 如果为定值,请求出此定值,如果不是定值,说明理由.

- 37. 已知椭圆 $C: \frac{x^2}{3m} + \frac{y^2}{m} = 1$,直线 l: x + y 2 = 0 与椭圆 C 相交于 P, Q 两点,与 x 轴交于点 B,点 P, Q 与点 B 不重合.
 - (1) 求椭圆C的离心率;
 - (2) 当 $S_{\triangle OPQ} = 2$ 时,求椭圆 C 的方程;
 - (3) 过原点 O 作直线 l 的垂线, 垂足为 N, 若 $|PN| = \lambda |BQ|$, 求 λ 的值.

- 38. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的左右焦点分别为 F_1 , F_2 , 点 $B\left(0, \sqrt{3}\right)$ 在椭圆 C 上, $\Delta F_1 B F_2$ 是等边三角形.
 - (1) 求椭圆 C 的标准方程;
 - (2) 点 A 在椭圆 C 上,线段 AF_1 与线段 BF_2 交于点 M,若 $\triangle MF_1F_2$ 与 $\triangle AF_1F_2$ 的面积之比为 2:3,求 点 M 的坐标.

- 39. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 的右焦点 F(1,0) 与短轴两个端点的连线互相垂直.
 - (1) 求椭圆 C 的方程;
 - (2) 设点 Q 为椭圆 C 上一点,过原点 O 且垂直于 QF 的直线与直线 y=2 交于点 P,求 $\triangle OPQ$ 面积 S 的最小值.

- 40. 已知函数 $f(x) = x^2 \ln x 2x$.
 - (1) 求曲线 y = f(x) 在点 (1, f(1)) 处的切线方程;
 - (2) 求证:存在唯一的 $x_0 \in (1,2)$,使得曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线的斜率为 f(2) f(1);
 - (3) 比较 f(1.01) 与 -2.01 的大小,并加以证明.

- 41. 已知函数 $f(x) = e^{ax} \cdot \sin x 1$, 其中 a > 0.
 - (1) 当 a = 1 时,求曲线 y = f(x) 在点 (0, f(0)) 处的切线方程;
 - (2) 证明: f(x) 在区间 $[0,\pi]$ 上恰有 2 个零点.

- 42. 已知函数 $f(x) = \frac{\ln(x-a)}{x}$.
 - (1) 若 a = 1, 确定函数 f(x) 的零点;
 - (2) 若 a = -1, 证明: 函数 f(x) 是 (0, +∞) 上的减函数;
 - (3) 若曲线 y = f(x) 在点 (1, f(1)) 处的切线与直线 x y = 0 平行,求 a 的值.

- 43. 已知函数 $f(x) = (x-1)e^x + ax^2$.
 - (1) 求曲线 y = f(x) 在点 (0, f(0)) 处的切线方程;
 - (2) 求证: "a < 0" 是"函数 f(x) 有且仅有一个零点"的充分不必要条件.