EE223 Analog Integrated Circuits Fall 2018

Lecture 12: Cascode Current Mirrors

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Supply Independent Biasing

Beta Multiplier Circuit

$$I_{REF} = \frac{2}{R^2 K P_n \cdot \frac{W_1}{L_1}} \left(1 - \frac{1}{\sqrt{K}} \right)^2$$

$$V_{GS1} = V_{GS2} + I_{REF} \cdot R$$

$$V_{GS} = \sqrt{\frac{2I_D}{\beta}} + V_{THN}$$

$$\left(\beta = KP_n \cdot \frac{W}{L}\right)$$

$$\beta_2 = K \cdot \beta_1$$

$$W_2 = K \cdot W_1$$

When
$$K=4$$
, $g_m=1/R$

Beta-multiplier Reference with Start-up circuit

Self-biased circuit has two possible operating points.

Zero current state should be avoided -> Need a Start-up

Sizing Current Mirror

How do we generate a current equal to I_{REF} /2 from I_{REF} ?

- Approach (b) preserves an effective length of (Ldrawn-2LD) for each unit, yielding an equivalent length of 2(Ldrawn - 2LD)
- Current mirrors can process signals as well, example next slide.

Current Mirror to Process Signal

Calculate the small-signal voltage gain of the circuit

• Gain =
$$g_{m1}R_L(W/L)_3/(W/L)_2$$

Accuracy of Simple Current Mirror

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_1 (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS1})$$

$$I_{D2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_2 (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS2})$$

$$\frac{I_{D2}}{I_{D1}} = \frac{(W/L)_2}{(W/L)_1} \cdot \frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}}.$$

- While V_{DS1}=V_{GS1}=V_{GS2}
 - V_{DS2} may not be equal to V_{DS1}
 - This cause an error in the mirroring ratio
- To improve accuracy,
 - Reduce λ
 - Force V_{DS2} to be equal to V_{DS1} (Cascode Current Mirror)

Cascode Current Mirror

- A cascode device can shield a current source, thereby reducing the voltage variations across it.
- But, how do we ensure that $V_{DS2} = V_{DS1}$?
- We can generate V_b such that $V_b V_{GS3} = V_{DS1} (=V_{GS1})$ with a stacked diode connected transistor

Cascode Current Mirror

- A cascode device can shield a current source, thereby reducing the voltage variations across it.
- But, how do we ensure that $V_{DS2} = V_{DS1}$?
- We can generate V_b such that V_b V_{GS3} = V_{DS1}(=V_{GS1}) with a stacked diode connected transistor

Cascode Current Mirror

- A cascode device can shield a current source, thereby reducing the voltage variations across it.
- But, how do we ensure that $V_{DS2} = V_{DS1}$?
- We can generate V_b such that $V_b V_{GS3} = V_{DS1} (=V_{GS1})$ with a stacked diode connected transistor

Cascode Current Mirror Compliance Voltage

(a) Regular cascode structure