# Modeling the Diffuse Gamma ray Spectrum with Cosmic Rays CHICAGO

## Jessica Metzger, Tsunefumi Mizuno

## HIROSHIMA UNIVERSITY

## Introduction

Most galactic cosmic rays (CRs) are accelerated in shocks (Fig. 1), which should make their spectrum a power-law with momentum. The spectrum below a few 100 GeV has been studied in detail at Earth.

However, because of solar wind effects, the true local interstellar spectrum (LIS) below ~10 GeV is uncertain. Cosmic ray interactions with the interstellar medium (ISM) produce a similar spectrum of diffuse gamma rays ( $\gamma$ -rays; Fig. 1), making GeV  $\gamma$ -rays a powerful probe of the LIS. Indeed,  $\gamma$ -ray data from Fermi-LAT points to a possible spectral break around a few GeV in the CR spectrum [1]. This is evidence for a break at the CR accelerator, and/or effects of CR propagation in the interstellar medium [2].



Fig 1. Left: CR acceleration at a shock front. Right:  $\gamma$ -ray production through CR interactions with interstellar gas

Motivated by these previous works, we fit the CR (Earth-based & Voyager) and  $\gamma$ -ray data together using single and broken power-law models.

### Method: cosmic ray fluxes

For the single power-law model, we assume the flux is a power law with momentum. For the broken power-law model, the flux is a power law with momentum at high energies with index  $\alpha_1$  and at low energies with index  $\alpha_2$ , with a soft transition at break momentum  $p_{br}$  (eq. 1). To account for solar effects on CR fluxes, we modulate fluxes according to the force field model [3], where the wind "strength" is given by a parameter  $\varphi$  whose values over time have been evaluated and published from neutron monitor data [4]. We place gaussian priors on each experiment's  $\varphi$  from the published values. The Voyager1  $\varphi$  is given a prior of 0 ± 100 since it has left the heliosphere.

These modulated fluxes are compared with the CR data, which is taken from the Database of Charged Cosmic Rays [5].

### Method: fitting procedure

We carry out Markov Chain Monte Carlo fits to sample the space of LIS and  $\varphi$  parameters. Our log-likelihood function is proportional to the  $-\chi^2$  of the model with the data (Fig. 2). The code for this framework can be found at <a href="https://github.com/jessicametzger/grcrfit/">https://github.com/jessicametzger/grcrfit/</a>.



Fig. 2. The pipeline followed by each walker at each step, repeated until convergence.

# $N(p) = A \left[ \left( \frac{p}{p_{br}} \right)^{-\alpha_1/\delta} + \left( \frac{p}{p_{br}} \right)^{-\alpha_2/\delta} \right]^{\delta} \text{ Eq. 1. CR flux formula used for broken power-law model.}$

### Method: γ-ray fluxes

2. Calculate the model's predicted fluxes and compare with cosmic ray &  $\gamma$ -ray data for likelihood. Compare model parameters with predicted values for priors.

Published solar modulation ( $\phi$ ) values

Published solar modulation ( $\phi$ ) value



Fig. 3. Calculation of  $\gamma$ -ray fluxes, from cosmic rray fluxes.

### Results

The single power law model was unable to describe the CR or  $\gamma$ -ray data. There is a mismatch at low energies, where the spectrum is too steep to describe the data (Fig. 4), evidence of a spectral break.

The broken power law model successfully describes all datasets (Fig. 5, Table 1). The fit supports a lower than expected break rigidity (momentum/charge) of ~1 GV. It also supports a much softer break than expected, and a much lower than expected low-energy spectral index.



Fig. 4. Single power law best fits. Left: best-fit to AMS-02 fluxes. Middle: best-fit to gamma ray data. Right: best-fit solar modulation values, which are systematically too high, supporting a low-energy spectral break.



Fig. 5. Broken power law best fits, which are much closer to the data. Left: best-fit to AMS-02 fluxes. Middle: best-fit to gamma ray data. Right: best-fit solar modulation values, which now match the published values.

To see the effect of the Voyager data on the fit, we also tried a fit excluding Voyager data. In this fit, the break parameters were closer to their expected values based on previous fits without the Voyager data [1] (Table 1, blue text). The CR spectra for the two fits (with and without Voyager) are compared in Fig. 6; note the difference at low energies. (The  $\gamma$ -ray and modulation data was roughly the same in both fits.) Clearly, a fit with the Voyager data requires another low-energy break to describe all datasets.

#### Conclusion

Based on unified MCMC fits to the CR and  $\gamma$ -ray data, we find strong evidence for a low-energy break in the CR spectrum occurring during acceleration or propagation. Either the Voyager data is consistent with the LIS and there is a break around 1 GV rigidity, or it is observing some other phenomenon (e.g. another lower-energy break due to ionization) and the break is around 3-4 GV, as was expected.



Fig. 6. Best-fit CR spectrum (solid: with Voyager data, dashed: without) including the LIS (red) and the LIS with solar modulation to match the AMS-02 and Voyager data. The Voyager data is the only probe of energies below 0.1 GeV.



Table 1. Best-fit parameters for the broken power-law model.

### References

- [1] Strong 2015 (2015ICRC...34..506S)
- [2] Ptuskin et al. 2006 (2006ApJ...642..902P)
- [3] Gleeson & Axford 1968 (1968ApJ...154.1011G)
- [4] Usoskin et al. 2011 (2011JGRA..116.2104U)
- [5] Maurin et al. 2014 (2014A&A...569A..32M)
- [6] Kamae et al. 2006 (2006ApJ...647..692K)
- [7] Kachelriess et al. 2014 (2014ApJ...789..136K)
- [8] Casandjan 2015 (2015ApJ...806..240C)