Lecture 20 Other Eigenvalue Algorithms; Computing SVD

Songting Luo

Department of Mathematics Iowa State University

MATH 562 Numerical Analysis II

Outline

1 Other Eigenvalue Algorithms

Outline

1 Other Eigenvalue Algorithms

Three Alternative Algorithms

- Jacobi algorithm: earliest known method
- Bisection method: standard way for finding few eigenvalues
- Divide-and-conquer: faster than QR and amenable to parallelization

The Jacobi Algorithm

• Diagonalize 2×2 real symmetric matrix by Jacobi rotation

$$\mathbf{J}^T \left[\begin{array}{cc} a & d \\ d & b \end{array} \right] \mathbf{J} = \left[\begin{array}{cc} \neq 0 & 0 \\ 0 & \neq 0 \end{array} \right]$$
 where $\mathbf{J} = \left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right]$, and $\tan(2\theta) = 2d/(b-a)$.

- What are its similarity and differences with Givens rotation?
- Iteratively apply transformation to two rows and two corresponding columns of $\mathbf{A} \in \mathbb{R}^{m \times m}$
- Need not tridiagonalize first, but loop over all pairs of rows and columns by choosing greedily or cyclically
- Magnitude of nonzeros shrink steadily, converging quadratic
- In each iteration, $O(m^2)$ Jacobi rotation, O(m) operations per rotation, leading to $O(m^3 \log(|\log \epsilon_{machine}|))$ flops total
- Jacobi method is easy to parallelize (QR algorithm does not scale well), delivers better accuracy than QR algorithm, but far slower than QR algorithm

Method of Bisection

- Idea: Search the real line for roots of $p(x) = det(\mathbf{A} x\mathbf{I})$
- Finding roots from coefficients is highly unstable, but computing p(x) from given x is stable (e.g., can be computed using Gaussian elimination with partial pivoting)
- Let $\mathbf{A}^{(i)}$ denote principal square submatrix of dimension i for irreducible matrix \mathbf{A} (note: different from notation in QR algorithm)
- Key property: eigenvalues of $\mathbf{A}^{(1)},\dots,\mathbf{A}^{(m)}$ strictly interlace

$$\lambda_j^{(k+1)} < \lambda_j^{(k)} < \lambda_{j+1}^{(k+1)},$$

for k = 1, ..., m - 1,

Method of Bisection

 Interlacing property allows us to determine number of negative eigenvalues of A, which is equal to number of sign changes in Sturm sequence

$$1, det(\mathbf{A}^{(1)}), det(\mathbf{A}^{(2)}), \dots, det(\mathbf{A}^{(m)}).$$

- Shift **A** to get number of eigenvalues in $(-\infty, b)$ and $(-\infty, a)$, and in turn [a, b)
- Three-term recurrence for determinants for tridiagonal matrices

$$det(\mathbf{A}^{(k)}) = a_{k,k} det(\mathbf{A}^{(k-1)}) - a_{k,k-1}^2 det(\mathbf{A}^{(k-2)})$$

• With shift x**I** and $p^{(k)}(x) = det(\mathbf{A}^{(k)} - x\mathbf{I})$:

$$p^{(k)}(x) = (a_{k,k} - x)p^{(k-1)}(x) - a_{k,k-1}^2 p^{(k-2)}(x)$$

- Bisection algorithm can locate eigenvalues in arbitrarily small intervals
- $O(m|\log(\epsilon_{machine})|)$ flops per eigenvalue, always high relative accuracy

• Split symmetric **T** into submatrices

- Sum of 2 block-diagonal matrix and rank-one correction
- Split ${f T}$ in equal sizes and compute eigenvalues of $\hat{{f T}}_1$ and $\hat{{f T}}_2$ recursively
- Solve nonlinear problem to get eigenvalues of ${\bf T}$ from those of $\hat{{\bf T}}_1$ and $\hat{{\bf T}}_2.$

• Suppose diagonalization $\hat{\mathbf{T}}_1 = \mathbf{Q}_1 \mathbf{D}_1 \mathbf{Q}_1^T$ and $\hat{\mathbf{T}}_2 = \mathbf{Q}_2 \mathbf{D}_2 \mathbf{Q}_2^T$ have been computed. We then have

$$\mathbf{T} = \left[\begin{array}{cc} \mathbf{Q}_1 & 0 \\ 0 & \mathbf{Q}_2 \end{array} \right] \left(\left[\begin{array}{cc} \mathbf{D}_1 & 0 \\ 0 & \mathbf{D}_2 \end{array} \right] + \beta \mathbf{z} \mathbf{z}^T \right) \left[\begin{array}{cc} \mathbf{Q}_1^T & 0 \\ 0 & \mathbf{Q}_2^T \end{array} \right]$$

with $\mathbf{z}^T=(\mathbf{q}_1^T,\mathbf{q}_2^T)$, where \mathbf{q}_1^T is last row of \mathbf{Q}_1 and \mathbf{q}_2^T is first row of \mathbf{Q}_2

 This is similarity transformation: Find eigenvalues of diagonal matrix plus rank-one correction

• Eigenvalues of $\mathbf{D} + \mathbf{w}\mathbf{w}^T$ are the roots of rational function

$$f(\lambda) = 1 + \sum_{j=1}^{m} \frac{w_j^2}{d_j - \lambda}$$

- Solve secular equation $f(\lambda) = 0$ with nonlinear solver
- O(m) flops per root, $O(m^2)$ flops for all roots.
- Total cost for divide-and-conquer algorithm is $O(m^2)$
- For computing eigenvalues only, most of operations are spent in tridiagonal reduction, and constant in "Phase 2" is not important
- However, for computing eigenvectors, divide-and conquer reduces phase 2 to $4m^3/3$ flops compared to $6m^3$ for QR.

Outline

1 Other Eigenvalue Algorithms

- Intuitive idea for computing SVD of $\mathbf{A} \in \mathbb{R}^{m \times m}$:
 - Form $\mathbf{A}^*\mathbf{A}$ and compute its eigenvalue decomposition $\mathbf{A}^*\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^*$
 - Let $\Sigma = \sqrt{\Lambda}$
 - ullet Solve system $oldsymbol{\mathsf{U}} oldsymbol{\Sigma} = oldsymbol{\mathsf{AV}}$ to obtain $oldsymbol{\mathsf{U}}$
- This method can be very efficient if $m\gg n$
- However, it is not very stable, especially for smaller singular values because of the squaring of the condition number
 - For SVD of **A**, $|\tilde{\sigma}_k \sigma_k| = O(\epsilon_{machine} \|\mathbf{A}\|)$, where $\tilde{\sigma}_k$ and σ_k denote the computed and exact kth singular value
 - If computed from eigenvalue decomposition of $\mathbf{A}^*\mathbf{A}$, $|\tilde{\sigma}_k \sigma_k| = O(\epsilon_{machine} \|\mathbf{A}\|^2/\sigma_k)$, which is problematic if $\sigma_k \ll \|\mathbf{A}\|$
- If one is interested in only relatively large singular values, then using eigenvalue decomposition is not a problem. For general situations, a more stable algorithm is desired.

Computing SVD

- Typical algorithm for computing SVD are similar to computation of eigenvalues
- Consider $\mathbf{A} \in \mathbb{R}^{m \times m}$, then hermitian matrix $\mathbf{H} = \begin{bmatrix} 0 & \mathbf{A}^* \\ \mathbf{A} & 0 \end{bmatrix}$ has eigenvalue decomposition

$$\mathbf{H} \left[\begin{array}{cc} \mathbf{V} & \mathbf{V} \\ \mathbf{U} & -\mathbf{U} \end{array} \right] = \left[\begin{array}{cc} \mathbf{V} & \mathbf{V} \\ \mathbf{U} & -\mathbf{U} \end{array} \right] \left[\begin{array}{cc} \boldsymbol{\Sigma} & \boldsymbol{0} \\ \boldsymbol{0} & -\boldsymbol{\Sigma} \end{array} \right]$$

where $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}$ gives the SVD. This approach is stable.

- In practice, such a reduction is done implicitly without forming the large matrix
- Typically done in two or more stages:
 - First, reduce to bidiagonal form by applying different orthogonal transformations on left and right,
 - Second, reduce to diagonal form using a variant of QR algorithm or divide-and-conquer algorithm

Generalized Eigenvalue Problem

Generalized eigenvalue problem has the form

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{B}\mathbf{x}$$

where **A** and **B** are $m \times m$ matrices.

- For example, in structural vibration problems, **A** represents the stiffness matrix, **B** the mass matrix, and eigenvalues and eigenvectors determine natural frequencies and modes of vibration of structures
- If **A** or **B** is nonsingular, then it can be converted into standard eigenvalue problem $(\mathbf{B}^{-1}\mathbf{A})\mathbf{x} = \lambda\mathbf{x}$ or $(\mathbf{A}^{-1}\mathbf{B})\mathbf{x} = (1/\lambda)\mathbf{x}$
- If A and B are both symmetric, preceding transformation loses symmetry and in turn may lose orthogonality of generalized eigenvectors. If B is positive definite, alternative transformation is

$$(\mathbf{L}^{-1}\mathbf{A}\mathbf{A}^{-T})\mathbf{y} = \lambda \mathbf{y}, \text{ where } \mathbf{B} = \mathbf{L}\mathbf{L}^T \text{ and } \mathbf{y} = \mathbf{L}^T \mathbf{x}$$

• If **A** and **B** are both singular or indefinite, then use QZ algorithm to reduce **A** and **B** into triangular matrices simultaneously by orthogonal transformation (see Golub and van Loan for detail)