G.E.M.S

**Gym Equipment Monitoring System** 

Team Members: Parker Manson, Joshua Miles

### Goals

### **Project Objective**

- Develop an **Al-powered gym equipment monitoring system** that detects when equipment is in use and updates a web interface in real time.
- Reduce user frustration by providing live updates on gym equipment availability.
- Improve **gym efficiency** by offering gym owners insights into equipment usage patterns.

### **Background & Motivation**

- Many gym-goers struggle to find available equipment, leading to wasted time and inefficient workouts.
- Gym staff lack real-time data on which machines are used the most or require maintenance.
- Al-based detection can automate tracking without the need for additional staff monitoring.

### **Key Features of the System**

- Real-time detection using machine learning (YOLOv5).
- Automated status updates via a MySQL database.
- **Web-based user interface** for gym members to check equipment availability.
- **Data insights** for gym owners on peak usage times

### **Intellectual Merits**

#### **Innovative Use of AI in Gym Management**

- Integrates **computer vision** and **database management** to create a real-time monitoring system.
- Uses **YOLOv5**, a state-of-the-art object detection model, to identify gym equipment usage.

#### **Unique Contributions & Novelty**

- Unlike traditional gym monitoring systems (manual check-ins or RFID tracking), this project provides:
  - Automated, Al-driven tracking with minimal human intervention.
  - Live status updates on gym equipment through a web platform.
  - Cooldown logic to prevent false detections and improve accuracy.

#### **Advanced Machine Learning & Computer Vision**

- Utilizes a pre-trained YOLOv5 model, fine-tuned with custom gym equipment images for high detection accuracy.
- Implements a **multi-class recognition system**, identifying both equipment and user presence.
- Runs on CUDA-enabled GPUs for real-time video processing.

### Intellectual Merits Continued

#### **Impact on Human-Computer Interaction**

- Provides an **intuitive**, **user-friendly experience** for gym members via a web interface.
- Demonstrates how Al can seamlessly integrate into public and commercial spaces to enhance user convenience.

### **Scalability & Future Applications**

- The system can be adapted for various industries, such as:
  - Corporate Environments
    - i. Conference Rooms, offices, etc. (availability)
  - Entertainment/Recreation
    - i. Amusement Parks (foot traffic)
  - Retail
    - i. Supermarkets (foot traffic)

### **Broader Impact**

### **Impact on Gym Users**

### Live Equipment Status:

- Users can check which equipment is occupied during workout and before heading to the gym.
- Reduces frustration and waiting times.

### Enhanced Workout Planning:

- Helps users plan their workout based on available equipment.
- Promotes better time management for gym-goers.

### **Benefits for Gym Owners & Staff**

### Optimized Equipment Usage:

- Data analytics can help gym owners understand peak usage times.
- Identifies underutilized equipment, allowing for better resource allocation.

### • Maintenance Scheduling:

Equipment usage logs help predict wear and tear, reducing unexpected breakdowns.

### **Broader Impact Continued**

#### **Broader Societal Contributions**

- Encouraging Fitness & Healthy Lifestyles:
  - Streamlining gym accessibility could promote more consistent exercise habits.
  - Reduces frustration that may deter people from working out.
- Scalability Beyond Gyms:
  - The detection model can be adapted for other industries:
  - Corporate Environments
    - Conference Rooms, offices, etc. (availability)
  - Entertainment/Recreation
    - Amusement Parks (foot traffic)
  - Retail
    - Supermarkets (foot traffic)

### **Technological Advancements**

- Real-Time AI in Everyday Life:
  - Demonstrates how AI can enhance public and commercial spaces.
- Data-Driven Decision Making:
  - Insights from collected data can lead to smarter facility management.

### **Design Specifications**

- System Overview:
  - $\circ$  Camera Feed  $\rightarrow$  YOLOv5 Model  $\rightarrow$  SQL Database  $\rightarrow$  Web Interface
- Design Diagram:
  - A **flowchart** showcasing data movement between system components on next slide.
- Implementation Details:
  - Detection model runs on CUDA-enabled GPUs for efficiency.
  - Web UI built with Flask and SQL for equipment monitoring.

## Flow Chart



### **Technologies Used**

- Machine Learning: YOLOv5 for real-time detection.
- Database: MySQL for storing equipment usage data.
- Backend: Python (Flask) for processing detections.
- Frontend: HTML/CSS for user-friendly interface.
- Hardware: Camera setup for real-time monitoring.
- Detection Software:
  - Runs the YOLOv5 model to detect gym equipment usage.
  - $\circ$  Automatically updates the database when equipment status changes (e.g., "in use"  $\rightarrow$  "available").
  - Uses a cooldown mechanism to reduce false detections.

## Milestones

| Challenge                                           | Solution                                                                                           |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|
| False detections due to movement or lighting        | Implemented a <b>cooldown timer</b> mechanism to prevent rapid status changes.                     |
| Database synchronization issues                     | Optimized <b>MySQL queries and indexing</b> to ensure real-time updates.                           |
| Slow detection speed on CPU                         | Used <b>GPU acceleration (CUDA)</b> to speed up YOLOv5 inference.                                  |
| Difficulty in differentiating equipment             | Trained YOLOv5 on <b>custom-labeled datasets</b> with diverse gym conditions.                      |
| Varying lighting conditions in gyms                 | Collected dataset images from different lighting environments to improve model robustness.         |
| Web interface delays in displaying updated statuses | Implemented <b>AJAX polling</b> to refresh equipment status dynamically without full page reloads. |

### Results Achieved

### **YOLOv5 Model Successfully Trained**

- The detection model was trained with **custom-labeled images** of gym equipment.
- Achieved high accuracy in detecting equipment and user presence.

### **Real-Time Detection Implemented**

- Integrated YOLOv5 with OpenCV to process live camera feeds.
- Detection system runs **efficiently on CUDA-enabled GPUs** for faster inference.

### **Database Integration Completed**

- MySQL database stores and updates equipment status dynamically.
- Detection results are automatically logged and updated in real time.

### **Results Achieved Continued**

### **Web Interface Development - In Progress**

- Basic HTML/CSS layout created, connected to the backend.
- Need to refine UI design and AJAX polling for real-time status updates.
- Still working on user accessibility features for gym members.

### **Remaining Tasks:**

- Complete frontend integration and polish the UI.
- Conduct full-system testing to ensure stability.
- Deploy and optimize the final version.

# Challenges & Solutions

| Challenge                                         | Solution                                                                                                                |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| False Detections (misidentifying equipment usage) | Implemented a <b>cooldown timer</b> to prevent rapid status changes and reduce false positives.                         |
| Database Synchronization Issues                   | Optimized MySQL queries and added indexed tables for faster updates and retrieval.                                      |
| Slow Detection Speed on CPU                       | Moved processing to <b>CUDA-enabled GPUs</b> , significantly improving YOLOv5 inference speed.                          |
| Varying Lighting Conditions                       | Trained the model on diverse lighting environments and applied image preprocessing to enhance consisten                 |
| Data Collection Challenges                        | Gathered a <b>larger dataset</b> with more variations, including different gym setups and angles, to improve detection. |
| Accuracy of the Model                             | Fine-tuned YOLOv5 with <b>custom-labeled data</b> and used <b>data augmentation techniques</b> to enhance performance.  |