2

WHAT IS CLAIMED IS:

	1	A media processing system, comprising:					
\ \\(\rangle\)	2	DRAM having a plurality of storage locations for storing digital data being					
	3	processed by said media processing system, said digital data including video data that is					
	4	compressed in a standardized format;					
	5	means for processing said digital data that includes said standardized					
	6	format compressed video data to produce compressed video images and image data;					
	7	means for decoding said standardized format compressed video images to					
	8	generate full motion video pixel data;					
	9	means for sharing said DRAM between said processing means and said					
	10	decoding means; and					
	11	means for producing a full motion video signal from said full motion video					
	12	pixel data.					
	1	2. The system as recited in claim 1, wherein said compressed video					
	2	data comprises a plurality of pixels, and said standardized compressed format comprises a					
	3	luminance sample generated for each pixel, and two chrominance samples generated for					
	4	every four pixels.					
i Li		`					
	1	3. The system as recited in claim 2, wherein said decoding means					
	2	comprises a Motion Picture Expert Group decoder.					
	1	4. The system as recited in claim 1, wherein said compressed video					
	2	data comprises a plurality of pixels, and said processing means comprises means for					
	3	multiplying a first pixel with a second pixel in a single clock cycle of said processing					
	4	means.					
0	Λ						
	$\mathcal{Y}_{_{\mathrm{I}}}$ /	5. The system as recited in claim 4, wherein said pixels have a first					
		portion, a second portion and a third portion, and said means for multiplying pixels					
	3	comprises means for multiplying a portion of the first pixel with a corresponding portion					
	4	of the second pixel.					
	1	6. The system as recited in claim 1, wherein said compressed video					

data comprises a plurality of pixels, and said processing means comprises means for

,	combining	a first pixel	with a second	pixel in a s	ingle clock o	cycle of said p	processing
	means.	\					

- 7. The system as recited in claim 6, wherein said pixels have a first portion, a second portion and a third portion, and said means for combining pixels comprises means for combining a portion of the first pixel with a corresponding portion of the second pixel.
- 8. The system as recited in claim 1, wherein said processing means comprises a plurality of processing elements connected together in parallel, means for controlling said processing elements with instruction words that have a predetermined number of instructions, and means for distributing data simultaneously to each of said processing elements.
- 9. The system as recited in claim 8, wherein said processing elements comprise a plurality of processing units wherein each of said processing units is controlled by one of said predetermined number of instructions.
- 10. The system as recited in claim 1, wherein said DRAM stores audio data that is compressed in a standardized format, and further comprising means for decompressing said audio data that is compressed in a standardized format to generate uncompressed audio data, and means for combining said full-motion video data and said uncompressed audio data to generate full-motion multimedia data.
- 11. The system as recited in claim 9, wherein said processing units comprise a plurality of storage locations within said processing units, each storage location having a predetermined physical size, and means for combining said storage locations together to form a storage location that stores data that is larger than the predetermined physical size of each storage location.
- 12. A single semiconductor chip media processor, comprising:
 a semiconductor memory, internal to said single semiconductor chip, for storing digital data, including video digital data compressed in standardized format; means for processing said compressed video data in said semiconductor memory to produce color, full motion video data that is temporarily stored in said semiconductor memory;

7	means for decoding said color, full motion video data stored in said					
8	semiconductor memory to generate color, full motion video image data; and					
9	means for producing a color, full motion video image signal.					
1	13. The processor as recited in claim 12, wherein said compressed					
2	video data comprises a plurality of pixels, and said processing means comprises means					
3	for multiplying a first pixel with a second pixel in a single clock cycle of said processing					
4	means.					
1	14 The processor as recited in claim 13, wherein said pixels have a					
2	first portion, a second portion and a third portion, and said means for multiplying pixels					
3	comprises means for multiplying a portion of the first pixel with a corresponding portion					
4	of the second pixel.					
1	15. The processor as recited in claim 14, wherein said compressed					
2	video data comprises a plurality of pixels, and said processing means comprises means					
3	for combining a first pixel with a second pixel in a single clock cycle of said processing					
4	means.					
\wedge						
4 '	16. The processor as recited in claim 15, wherein said pixels have a					
) 2'	first portion, a second portion and a third portion, and said means for combining pixels					
3	comprises means for combining a portion of the first pixel with a corresponding portion					
4	of the second pixel.					
1	17. The processor as regited in claim 12, wherein said processing					
2	means comprises a plurality of processing elements connected together in parallel, means					
3	for controlling said processing elements with instruction words that have a predetermined					
4	number of instructions, and means for distributing data simultaneously to each of said					
5	processing elements.					
,	processing elements.					
1	18. The processor as recited in claim 17, wherein said processing					
2	elements comprise a plurality of processing units wherein each of said processing units is					
3	controlled by one of said predetermined number of instructions.					

July 2

19.

audio data that is compressed in a standardized format, and further comprising means for

The processor as recited in claim 12, wherein said DRAM stores

decompressing said audio data that is compressed in a standardized format to generate uncompressed audio data, and means for combining said full-motion video data and said uncompressed audio data to generate full-motion multimedia data.

20. The processor as recited in claim 18, wherein said processing units comprise a plurality of storage locations within said processing units, each storage location having a predetermined physical size, and means for combining said storage locations together to form a storage location that stores data that is larger than the predetermined physical size of each storage location.

21. A method of processing media, comprising:
storing digital data being processed by said media processing system in a
DRAM, said digital data including video data that is compressed in a standardized format;
processing said digital data that includes said standardized format
compressed video data to produce compressed video images and image data;
decoding said standardized format compressed video images to generate
full motion video pixel data;
sharing said DRAM between said processing means and said decoding
means; and
producing a full motion video signal from said full motion video pixel
data.

- 22. The method as recited in claim 20, wherein said compressed video data comprises a plurality of pixels, and processing comprises multiplying a first pixel with a second pixel in a single clock cycle.
- 23. The method as recited in claim 21, wherein said compressed video data comprises a plurality of pixels, and processing comprises combining a first pixel with a second pixel in a single clock cycle.