Structure électronique des molécules : 🗾 L'hybridation des orbitales atomiques

I – Le modèle des orbitales atomiques hybrides

Définition d'un OA hybride

L'hybridation sp

L'hybridation sp²

L'hybridation sp³

L'hybridation sp³d

L'hybridation sp^3d^2

II – Doubles et triples liaisons

Orbitales atomiques

Dans un atome isolé, les orbitales atomiques utilisées pour décrire les états électroniques possèdent des symétries particulières (**s**, **p**, **d**, **f**). Ces symétries reflètent la symétrie sphérique de l'atome.

Orbitales atomiques hybrides

Dans une molécule, le nuage électronique autour de l'atome s'adapte à son environnement et diffère de celui de l'atome isolé. Les orbitales atomiques se déforment.

Le modèle des orbitales hybrides (ou *modèle des liaisons de valence*), permet de décrire les liaisons covalentes et les paires libres d'une molécule à l'aide d'orbitales atomiques "déformées" : les orbitales atomiques hybrides.

Les orbitales atomiques hybrides sont construites à partir du mélange des orbitales atomiques de l'atome isolé.

Mathématiquement, le mélange de 2 OA s'écrit comme une combinaison linéaire :

hybride =
$$C_1.OA_1 + C_2.OA_2$$

L'hybridation sp

L'hybridation sp met en jeu le mélange d'une OA s et d'une OA p. La combinaison de ces deux OA donne lieu à deux hybrides sp orientées à 180° l'une de l'autre :

$$\mathbf{sp} = \mathbf{c}_1 \times \mathbf{s} + \mathbf{c}_2 \times \mathbf{p}$$

interférences destructives

interférences constructives

Schéma de l'hybride sp :

Zone de faible Zone de forte densité électronique densité électronique

$\mathbf{sp} = \mathbf{c}_2 \times \mathbf{s} - \mathbf{c}_1 \times \mathbf{p}$

interférences destructives interférences constructives

Schéma de l'hybride sp :

Zone de forte Zone de faible densité électronique

densité électronique

L'hybridation sp

L'hybridation sp intervient dans les molécules de type AX₂ (ou AXE), dont la figure de répulsion est linéaire.

L'état d'hybridation de l'atome A est de type sp

L'hybridation sp

Exemple: la molécule BeH₂

Be [isolé]: 2s²

Schéma orbitalaire

Les OA 2p_y et 2p_z ne s'hybrident pas. Elles gardent la même forme que dans l'atome isolé.

L'hybridation sp² met en jeu le mélange d'une OA s et de deux OA p. La combinaison de ces trois OA donne lieu à trois hybrides sp² orientées à 120° l'une de l'autre :

L'hybridation sp² intervient dans les molécules de type AX₃ (ou AX₂E ou AXE₂), dont la figure de répulsion est triangulaire.

Exemple: la molécule BH₃

B [isolé]: 2s²2p¹

 \rightarrow 3 hybrides sp²

Schéma orbitalaire

L'OA 2p_z (perpendiculaire au plan moléculaire) ne s'hybride pas. Elle garde la même forme que dans l'atome isolé.

L'hybridation sp³ met en jeu le mélange d'une OA s et de trois OA p. La combinaison de ces quatre OA donne lieu à quatre hybrides sp³ orientées à 109,5° l'une de l'autre :

L'hybridation sp³ intervient dans les molécules de type AX₄ (ou AX₃E, AX₂E₂, etc.), dont la figure de répulsion est tétraédrique.

Exemple: la molécule CH₄

C [isolé]: 2s²2p²

Schéma orbitalaire

L'hybridation sp3d

A partir de la couche M, les OA de type d peuvent participer à l'établissement des liaisons covalentes (hypervalence).

L'hybridation sp³d met en jeu le mélange d'une OA s, de trois OA p et d'une OA d. La combinaison de ces cinq OA donne lieu à cinq hybrides sp³d.

Ce type d'hybridation intervient dans les molécules de type AX_5 (ou AX_4E , AX_3E_2 , etc.), dont la figure de répulsion est une bipyramide trigonale.

Exemple: la molécule PH₅

L'hybridation sp3d2

L'hybridation sp³d² met en jeu le mélange d'une OA s, de trois OA p et de deux OA d. La combinaison de ces six OA donne lieu à six hybrides sp³d².

Ce type d'hybridation intervient dans les molécules de type AX_6 (ou AX_5E , AX_4E_2 , etc.), dont la figure de répulsion est une bipyramide à base carrée.

Exemple : la molécule SH₆

Exemple: la molécule d'éthylène C₂H₄

Exemple: la molécule d'éthylène C₂H₄

Exemple: la molécule d'acéthylène C₂H₂

Exemple: la molécule d'acéthylène C₂H₂

