WUOLAH

wireshark.pdf

Practica WireShark Resuelta

- 3° Redes de Ordenadores
- Escuela Politécnica Superior
 Universidad Carlos III de Madrid

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Parte 1. Capa de transporte.

Pregunta 1. Identifique los mensajes correspondientes al proceso de "three-way-handshake". ¿Qué información se intercambia en cada uno de ellos? ¿Cuáles son los números de secuencia y de ACK en cada mensaje?

Se intercambia puerto origen, puerto destino, num_seq, ACK. SYN. SYN-ACK ACK.

Cliente PC Servidor 192.168.1.60 185.103.39.27

1600::410:000:920	I GOM!! TAGT! NTOM! OF"	ILF	00 31403 → 30505 [WCV] 364-330 WCV-503 MIH-5043 FEH-A 13A91-040.
192.168.1.60	185.103.39.27	TCP	78 58212 → 443 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=64 TSval.
185.103.39.27	192.168.1.60	TCP	74 443 → 58212 [SYN, ACK] Seq=0 Ack=1 Win=43440 Len=0 MSS=1452 .
192.168.1.60	185.103.39.27	TCP	66 58212 → 443 [ACK] Seq=1 Ack=1 Win=132480 Len=0 TSval=9757338.
192.168.1.60	185.103.39.27	TLSv1	699 Client Hello
185.103.39.27	192.168.1.60	TCP	66 443 → 58212 [ACK] Seg=1 Ack=634 Win=45056 Len=0 TSval=122236.

(Recordar que TCP trabaja con flujo de byte. Que ACK es el próximo byte que se quiere recibir y que número de seq es el número de byte q se envía. Transporte fiable) + Acordarse del timeout. SYN para iniciar la comuniación.

Pregunta 2. Identifica el primer mensaje enviado una vez realizado el "three-way-handshake". ¿Cuáles son la IP y puerto de origen del mensaje? ¿Y la IP y puerto de destino? ¿Qué número de secuencia tiene el mensaje? ¿Cuál será el número de ACK esperado en la respuesta a este mensaje?

Client hello es el primer mensaje.

```
Frame 75: 699 bytes on wire (5592 bits), 699 bytes captured (5592 bits) on interface 0

Ethernet II, Src: Apple_2a:a6:20 (8c:85:90:2a:a6:20), Dst: Mitrasta_2f:6e:06 (cc:d4:a1:2f:6e:06)

Internet Protocol Version 4, Src: 192.168.1.60, Dst: 185.103.39.27

Transmission Control Protocol, Src Port: 58212, Dst Port: 443, Seq: 1, Ack: 1, Len: 633

Source Port: 58212

Destination Port: 443

[Stream index: 5]

[TCP Segment Len: 633]

Sequence number: 1 (relative sequence number)

[Next sequence number: 634 (relative sequence number)]

Acknowledgment number: 1 (relative ack number)

1000 .... = Header Length: 32 bytes (8)

Flags: 0x018 (PSH ΔCK)
```

ORIGEN:

IP + puerto: 192.168.1.60 + 58212

DESTINO:

IP + puerto: 185.103.39.72 + 443

Num_seq mensaje: 1.

ACK esperado en la respuesta a este mensaje: 634.

132110011100	103110313311		an north . Lin flight and T link T HTH Thrips roll a lotar plaint
192.168.1.60	185.103.39.27	TLSv1	699 Client Hello
185.103.39.27	192.168.1.60	TCP	66 443 → 58212 [ACK] Seq=1 Ack=634 Win=45056 Len=0 TSval=12223
185 182 38 27	102 168 1 68	TI Cv1	216 Caruar Hallo Change Cinhar Char Annlication Data Annlica

Pregunta 3. Identifique el primer mensaje enviado en el test de bajada. ¿Cuál es el puerto de destino de la conexión? ¿Y el puerto origen? Adjunte una captura de pantalla.

Es change cipher spec, application data o bien solo application data.

	132110011100	1031103133111		an nert . I'm friend and any tien for their there i fell a later and
t	192.168.1.60	185.103.39.27	TLSv1	146 Change Cipher Spec, Application Data
	192.168.1.60	185.103.39.27	TLSv1	112 Application Data

Puerto de destino: 443

Puerto de origen: 58512

```
Frame 81: 112 bytes on wire (896 bits), 112 bytes captured (896 bits) on interface 0

Ethernet II, Src: Apple_2a:a6:20 (8c:85:90:2a:a6:20), Dst: Mitrasta_2f:6e:06 (cc:d4:a1:2f:6e:06)

Internet Protocol Version 4, Src: 192.168.1.60, Dst: 185.103.39.27

▼ Transmission Control Protocol, Src Port: 58212, Dst Port: 443, Seq: 714, Ack: 251, Len: 46

Source Port: 58212

Destination Port: 443

[Stream index: 5]

[TCP Segment Len: 46]

Sequence number: 714 (relative sequence number)
```

Pregunta 4. Identifique el primer mensaje enviado en el test de subida. ¿Cuál es el puerto de destino de la conexión? ¿Y el puerto origen? ¿Son los mismos puertos que en la prueba de bajada? Adjunte una captura de pantalla.

```
192.168.1.60
                     217.116.8.155
                                          TCP
                                                     78 58213 → 8081 [SYN] Seq=0 Win=65535 Len=0 MSS=1460 WS=64 TSV
217.116.8.155
                     192.168.1.60
                                          TCP
                                                     74 8081 → 58213 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=145
192.168.1.60
                     217.116.8.155
                                          TCP
                                                     66 58213 → 8081 [ACK] Seq=1 Ack=1 Win=132480 Len=0 TSval=97573
                                          TLSv1...
192.168.1.60
                     217.116.8.155
                                                    264 Client Hello
217.116.8.155
                     192.168.1.60
                                          TCP
                                                     66 8081 → 58213 [ACK] Seg=1 Ack=199 Win=15872 Len=0 TSval=4652
217.116.8.155
                     192.168.1.60
                                          TLSv1...
                                                   1506 Server Hello
217.116.8.155
                     192.168.1.60
                                          TLSv1...
                                                   1506 Certificate [TCP segment of a reassembled PDU]
217.116.8.155
                     192.168.1.60
                                          TLSv1...
                                                    273 Server Key Exchange, Server Hello Done
                                                     66 58213 → 8081 [ACK] Seq=199 Ack=2881 Win=129600 Len=0 TSval=
192.168.1.60
                     217.116.8.155
                                          TCP
192.168.1.60
                     217.116.8.155
                                          TCP
                                                     66 58213 → 8081 [ACK] Seq=199 Ack=3088 Win=129344 Len=0 TSval=
192.168.1.60
                     217.116.8.155
                                          TLSv1...
                                                    141 Client Key Exchange
                                                     72 Change Cipher Spec
192.168.1.60
                     217.116.8.155
                                          TLSv1...
192.168.1.60
                     217.116.8.155
                                          TLSv1...
                                                    111 Encrypted Handshake Message
                     192.168.1.60
                                          TCP
                                                     66 8081 → 58213 [ACK] Seq=3088 Ack=325 Win=15872 Len=0 TSval=4
217.116.8.155
217.116.8.155
                     192.168.1.60
                                          TLSv1...
                                                    117 Change Cipher Spec, Encrypted Handshake Message
                                          TCP
                                                     66 58213 → 8081 [ACK] Seq=325 Ack=3139 Win=131008 Len=0 TSval=
192.168.1.60
                     217.116.8.155
192.168.1.60
                     217.116.8.155
                                          TLSv1.
                                                    893 Application Data
217.116.8.155
                     192.168.1.60
                                          TLSv1...
                                                     224 Application Data
                                                     66 58213 - 8081 [ACK] Sen=1152 Ack=3297 Win=130880 Len=0 TSval
197 168 1 68
                     217 116 8 155
```

Puerto de origen: 58213 Puerto destino: 8081

(Creo q esto es de otra conexión no de la pagina)

```
Wireshark · Packet 93 · Wi-Fi: en0
▶ Frame 93: 97 bytes on wire (776 bits), 97 bytes captured (776 bits) on interface 0
▶ Ethernet II, Src: Apple_2a:a6:20 (8c:85:90:2a:a6:20), Dst: Mitrasta_2f:6e:06 (cc:d4:a1:2f:6e:06)
▶ Internet Protocol Version 4, Src: 192.168.1.60, Dst: 185.103.39.27
▼ Transmission Control Protocol, Src Port: 58212, Dst Port: 443, Seq: 1075, Ack: 647, Len: 31
     Source Port: 58212
     Destination Port: 443
    [Stream index: 5]
     [TCP Segment Len: 31]
     Sequence number: 1075
                             (relative sequence number)
     [Next sequence number: 1106
                                   (relative sequence number)]
     Acknowledgment number: 647
                                    (relative ack number)
     1000 .... = Header Length: 32 bytes (8)
  Flags: 0x018 (DSH ACK)
0000 cc d4 a1 2f 6e 06 8c 85
                                 90 2a a6 20 08 00 45 00
                                                             · · · /n · · · * · · · E ·
                                                             · S · · @ · @ · · > · · < · g
      00 53 00 00 40 00 40 06
                                 98 3e c0 a8 01 3c b9 67
                                                            '..d.\.,_(.%...
...{....:(.N·I
/r........K...r.
0020 27 1b e3 64 01 bb 5c 15
                                 2c 5f 28 ae 25 89 80 18
      08 0b e0 7b 00 00 01 01
                                08 0a 3a 28 84 4e 07 49
0040 2f 72 17 03 03 00 1a 1e
                                1d d9 4b 90 04 db 72 03
0050 35 28 22 0f 3a e3 54 88
                                e2 dc 40 e4 c6 a6 71 36
                                                             5("·:·T· ··@···q6
0060 e4
```

No son los mismos puertos que en la prueba de bajada.

En el 3 y 4. Test de bajada: de la ip 185 a 192 y test de subida de 192 a 185 (CREO).

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

pony

Problema 5. Seleccione el primer mensaje enviado en el test de bajada. Adjunte una captura de pantalla con la gráfica del "Throughput" (Statistics TCP Stream Graph...).

CREO que el test de bajada es de 185 a 192.

P6. ¿Cuánto tiempo ha durado el test de bajada?

El test de bajada ha durado: 17.5 s.

P7. ¿Se corresponde la velocidad media de descarga con la obtenida en el test? ¿Qué velocidad es esa (en KBytes/s)? ¿Ha sido la velocidad más o menos constante a lo largo de la prueba? ¿Por qué cree que ha sido así? Justifique todas las respuestas.

222.94 Megabits / s. (La del test). -- > En KBytes / s : 27867,5.

¿Donde se ve la velocidad media de descarga?

Parte 2. Nivel de red.

Pregunta 1. ¿Cuál es el tamaño total del mensaje ICMP? ¿Cuántos datos se envían dentro del mensaje ICMP? Describa cuánto ocupa cada parte del mensaje.

¿El PING es a la ip del router?

61	3.65402/	192.168.1.60	192.168.1.1	ICMP	98	Echo	(ping)	reques
62	3.658201	192.168.1.1	192.168.1.60	ICMP	98	Echo	(ping)	reply
65	4.655277	192.168.1.60	192.168.1.1	ICMP	98	Echo	(ping)	reques
66	4.672907	192.168.1.1	192.168.1.60	ICMP	98	Echo	(ping)	reply
84	5.660533	192.168.1.60	192.168.1.1	ICMP	98	Echo	(ping)	reques
85	5.664351	192.168.1.1	192.168.1.60	ICMP	98	Echo	(ping)	reply
88	6.665809	192.168.1.60	192.168.1.1	ICMP	98	Echo	(ping)	reques
89	6.670081	192.168.1.1	192.168.1.60	ICMP	98	Echo	(ping)	reply
90	7.671341	192.168.1.60	192.168.1.1	ICMP	98	Echo	(ping)	reques
91	7.675359	192.168.1.1	192.168.1.60	ICMP	98	Echo	(ping)	reply
110	8.676423	192.168.1.60	192.168.1.1	ICMP	98	Echo	(ping)	reques
111	8.679397	192.168.1.1	192.168.1.60	ICMP	98	Echo	(ping)	reply
112	0 601041	102 160 1 60	102 160 1 1	TCMD	no	Echo	(ning)	roduor

Tamaño total es 98.

Los datos que se envían dentro del mensaje ICMP:

▼ Data (48 bytes)

Data: 08090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f...

[Length: 48]

Describe cuanto ocupa cada parte del mensaje ICMP:

		IP Datagram						
	Bits 0-7	Bits 8-15	Bits 16-23	Bits 24-31				
	Version/IHL	Type of service	Len	gth				
	Identif	cation	flags an	d offset				
IP Header (20 bytes)	Time To Live (TTL)	Protocol	Checksum					
	Source IP address							
	Destination IP address							
ICMP Header	Type of message	Code	Checksum					
(8 bytes)	Header Data							
CMP Payload (optional)		Payloa	ad Data					

TOME THE COLLECTION MESSAGE FROIDCOL

Pregunta 2. ¿Cuál es el puerto origen y destino del mensaje ICMP? ¿Por qué cree que es así? Justifique las respuestas.

Puerto origen:

Puerto destino:

ICMP no tiene puerto origen ni puerto destino. Lo que tiene es IP origen e IP destino.

```
▶ Internet Protocol Version 4, Src: 192.168.1.60, Dst: 192.168.1.1
▼ Internet Control Message Protocol
Type: 8 (Echo (ping) request)
```

Repita los pasos anteriores, pero esta vez envíe 60000 bytes en cada mensaje. Conteste las siguientes preguntas:

Pregunta 3. Explique detalladamente cómo ha cambiado la situación ahora con respecto a la prueba anterior.

TERMINAR.ç

PARTE 3. Ethernet.

Pregunta 1. ¿Cuál es la dirección MAC de origen y de destino en el mensaje ICMP?

```
tenting rate String. 1cmp || 1cmpvo]
Ethernet II, Src: Apple_2a:a6:20 (8c:85:90:2a:a6:20), Dst: Mitrasta_2f:6e:06 (cc:d4:a1:2f:6e:06)
▶ Destination: Mitrasta_2f:6e:06 (cc:d4:a1:2f:6e:06)
▶ Source: Apple_2a:a6:20 (8c:85:90:2a:a6:20)
Type: IPv4 (0x0800)
```

Pregunta 2. ¿Puede ver en el mensaje la dirección IP de la puerta de enlace? ¿Y su MAC? Justifique todas las respuestas.

En mensaje ICMP, Ethernet solo puedo ver las MAC no las IP.

Pregunta 3. ¿Qué significan los flags del mensaje ICMP en la capa Ethernet?

DUUUUDAAAAAAA. No sé que flags son.

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

405416_arts_esce ues2016juny.pdf

Top de tu gi

Rocio

Pregunta 4. ¿Cuál es la dirección MAC de origen y de destino en el mensaje ICMP?

MAC origen:

MAC destino:

Ethernet II, Src: Apple_2a:a6:20 (8c:85:90:2a:a6:20), Dst: Mitrasta_2f:6e:06 (cc:d4:a1:2f:6e:06) ▶ Destination: Mitrasta_2f:6e:06 (cc:d4:a1:2f:6e:06) ▶ Source: Apple_2a:a6:20 (8c:85:90:2a:a6:20) Type: IPv4 (0x0800)

Pregunta 5. ¿Puede ver en el mensaje la dirección IP de Google? ¿Y su MAC? Justifique todas las respuestas.

En ethernet no puedo ver la ip pero la mac si aunq no de google si no q la mac es la de mi router.

T*	112 14.670576	192.168.1.60	172.217.17.14	ICMP	98 Echo (ping) reques
_	113 14.676282	172.217.17.14	192.168.1.60	ICMP	98 Echo (ping) reply
	128 15.671768	192.168.1.60	172.217.17.14	ICMP	98 Echo (ping) reques
	129 15.678493	172.217.17.14	192.168.1.60	ICMP	98 Echo (ping) reply
	302 16.675225	192.168.1.60	172.217.17.14	ICMP	98 Echo (ping) reques
	304 16.680343	172.217.17.14	192.168.1.60	ICMP	98 Echo (ping) reply
	603 17.676066	192.168.1.60	172.217.17.14	ICMP	98 Echo (ping) reques
	COA 17 CO24CO	173 317 17 14	100 100 1 60	TCMD	00 Faba (mina) manl.

ARP

Pregunta 6. Haciendo uso del comando arp, obtenga la tabla ARP de la máquina. Describa los distintos campos y adjunta una captura de pantalla.

Flags->8

The flags indicate if the mac address has been learned, manually set, published (announced by another node than the requested) or is incomplete.

I think you can must check your kernel source to figure out what the flags mean or you simply try it. My system translates

- 0x0 incomplete
- 0x2 complete
- 0x6 complete and manually set

"Each complete entry in the ARP cache will be marked with the C flag. Permanent entries are marked with M and published entries have the P flag."

Mask no se q es. Mask es mascara de la misma forma q el prefijo ip.

IFace creo que es interface.

Adresss dirección a la que va.

HWType es protocolo. Ether de ethernet.

Pregunta 7. Localice todos los mensajes que han permitido obtener la IP de Google (tanto DNS como ARP), y justifique cómo se ha podido llevar a cabo, paso a paso, la identificación del mismo.

No.		Time	Source	Destination	Protocol	Length	Info		
⊤ *	147	8.915097	192.168.1.60	80.58.61.254	DNS	75	Standard	query	0x670
4	150	8.922245	80.58.61.254	192.168.1.60	DNS	174	Standard	query	respo
	883	33.588131	192.168.1.60	80.58.61.254	DNS	70	Standard	query	0x16c
	884	33.593050	80.58.61.254	192.168.1.60	DNS	86	Standard	query	respo
	943	39.613216	192.168.1.60	80.58.61.254	DNS	96	Standard	query	0xe58
	946	39.619129	80.58.61.254	192.168.1.60	DNS	282	Standard	query	respo

Explicar como funciona DNS.

lo.		Time	Source	Destination	Protocol	Length	Info	
	67	0.916262	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.33? Tell 192.168.1.48
	68	0.916266	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.337 Tell 192.168.1.48
	172	10.337532	Apple_b6:af:37	Broadcast	ARP	42	Who has	169.254.255.255? Tell 192.168.1.50
	179	14.023525	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.33? Tell 192.168.1.48
	180	14.023531	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.33? Tell 192.168.1.48
	192	14.844479	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.33? Tell 192.168.1.48
	193	14.844922	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.33? Tell 192.168.1.48
	228	15.866663	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.337 Tell 192.168.1.48
	229	15.866667	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.33? Tell 192.168.1.48
	243	16.890942	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.33? Tell 192.168.1.48
	244	16.890948	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.33? Tell 192.168.1.48
	247	17.914951	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.33? Tell 192.168.1.48
	248	17.914956	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.33? Tell 192.168.1.48
	249	18.938975	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.337 Tell 192.168.1.48
	250	18.938982	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.33? Tell 192.168.1.48
	872	32.046383	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.33? Tell 192.168.1.48
	873	32.046389	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.33? Tell 192.168.1.48
	874	33.070995	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.33? Tell 192.168.1.48
	875	33.071001	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.33? Tell 192.168.1.48
	887	33.889858	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.337 Tell 192.168.1.48
	888	33.889864	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.337 Tell 192.168.1.48
	900	34.915444	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.33? Tell 192.168.1.48
	901	34.915804	Ubiquiti_76:b8:22	Broadcast	ARP	64	Who has	192.168.1.33? Tell 192.168.1.48
	907	35.937663	Ubiquiti_76:b8:22	Broadcast	ARP	60	Who has	192.168.1.33? Tell 192.168.1.48
	nan	חב מחדרים	Uhimuiti 76.60.22	Danadanat	ADD	CA	Wha has	102 160 1 222 Tall 102 160 1 40

916	36.961875	Ubiquiti_76:b8:22	Broadcast	ARP	60 Who has 192.168.1.33? Tell 192.168.1.48
917	36.961882	Ubiquiti_76:b8:22	Broadcast	ARP	64 Who has 192.168.1.33? Tell 192.168.1.48
931	38.604571	Mitrasta_2f:6e:06	Apple_2a:a6:20	ARP	60 Who has 192.168.1.60? Tell 192.168.1.1
932	38.604687	Apple_2a:a6:20	Mitrasta_2f:6e:06	ARP	42 192.168.1.60 is at 8c:85:90:2a:a6:20
1010	47.816296	Apple_b6:af:37	Broadcast	ARP	42 Who has 169.254.255.255? Tell 192.168.1.50
1031	50.069257	Ubiquiti_76:b8:22	Broadcast	ARP	60 Who has 192.168.1.33? Tell 192.168.1.48
1032	50.069264	Ubiquiti_76:b8:22	Broadcast	ARP	64 Who has 192.168.1.33? Tell 192.168.1.48
1039	51.093684	Ubiquiti_76:b8:22	Broadcast	ARP	60 Who has 192.168.1.33? Tell 192.168.1.48
1040	51.093691	Ubiquiti_76:b8:22	Broadcast	ARP	64 Who has 192.168.1.33? Tell 192.168.1.48
1083	52.117338	Ubiquiti_76:b8:22	Broadcast	ARP	60 Who has 192.168.1.33? Tell 192.168.1.48
1084	52.117345	Ubiquiti_76:b8:22	Broadcast	ARP	64 Who has 192.168.1.33? Tell 192.168.1.48
1085	53.141102	Ubiquiti_76:b8:22	Broadcast	ARP	60 Who has 192.168.1.33? Tell 192.168.1.48
1086	53.141105	Ubiquiti_76:b8:22	Broadcast	ARP	64 Who has 192.168.1.33? Tell 192.168.1.48

Explicar como funciona ARP.

Pregunta 8. Explique para qué sirven los comandos del paso 2.

sudo ip neigh flush dev eth0 --> Para eliminar de la cache ARP eth0

sudo /etc/init.d/nscd restart --> elimina la cache DNS.

Pregunta 9. Localice todos los mensajes que han permitido obtener la IP de Google (tanto DNS como ARP). ¿Ha cambiado algo respecto al caso analizado en la P6? Justifique la respuesta.

VERRRRRRRRRRRR no me ejecutan estos comandos debería ser Linux.

Pregunta 10. Adjunte capturas de pantalla significativas en las que se muestre la nueva tabla ARP y los mensajes capturados por Wireshark. Describa el procedimiento empleado para conseguir el desvío de tráfico propuesto, indicando los comandos utilizados y justificando su uso.

Para conseguir el desvio de tráfico propuesto. Asociar dirección MAC del atacante con la dirección Ip del atacado así, de esta forma se consigue desviar .

arp -s address hw_adress

