6. Übungsblatt

01.06.2015

- $-A \leq_{\mathrm{m}}^{\mathsf{P}} B$ gdw. es gibt eine in P berechenbare Funktion f mit $x \in A \Leftrightarrow f(x) \in B$ f.a. x.
- Eine Sprache B ist NP-schwer, falls für alle $A \in NP$ gilt: $A \leq_{m}^{P} B$.
- Eine Sprache B ist NP-vollständig, falls B NP-schwer ist und $B \in NP$.

Aufgabe 1: Ein ungerichteter Graph G' = (V', E') heißt Teilgraph eines ungerichteten Graphen G = (V, E), falls $V' \subseteq V$ und $E' = E \cap (V' \times V')$ gelten.

Vom letzten Übungsblatt kennen Sie den Begriff der Isomorphie für Graphen.

Es sei

$$\mathrm{SGI} := \left\{ \langle G, H \rangle \,\middle|\, \begin{array}{c} G \text{ und } H \text{ sind ungerichtete Graphen und} \\ G \text{ besitzt einen Teilgraphen, der isomorph zu } H \text{ ist} \end{array} \right\}$$

Beweisen Sie, dass SGI $\in \mathsf{NP}$ und CLIQUE $\leq^{\mathsf{P}}_{\mathsf{m}}$ SGI gelten.

Aufgabe 2: (Klausuraufgabe Wintersemester 2010/11)

Für eine aussagenlogische Formel φ , die die Variablen x_1, \ldots, x_n enthält, definieren wir die Menge der erfüllenden Belegungen von φ als die Menge aller Belegungen für die Variablen x_1, \ldots, x_n , unter denen φ zu wahr evaluiert.

Zeigen Sie, dass das Problem

$$\text{EVEN-SAT} := \left\{ \left\langle \varphi \right\rangle \,\middle| \, \begin{array}{l} \varphi \text{ ist eine erfüllbare aussagenlogische Formel, die eine gerade} \\ \text{Anzahl an erfüllenden Belegungen hat} \end{array} \right\}$$

NP-schwer ist!

Aufgabe 3: (Klausuraufgabe Wintersemester 2009/10)

Beweisen Sie: NLOGSPACE \subseteq TIME (2^n) , wobei die Funktion 2^n zeitkonstruierbar ist.

Aufgaben zum selber Lösen

Aufgabe 1 (12 Punkte):

Es sei Σ ein Alphabet. Beweisen Sie die folgende Aussage: Ist $\mathsf{P} = \mathsf{NP}$, so sind alle Sprachen über Σ , die in NP liegen, NP -vollständig bis auf \emptyset und Σ^\star . Wobei Σ^\star die Menge aller Wöter über dem Alphabet Σ zusammen mit dem leeren Wort ε ist (*Erinnerung*: $|\varepsilon| = 0$ und enthält keine Zeichen).

Aufgabe 2 (12 Punkte): (Alte Klausurteilaufgabe) Es sei

$$\text{DOUBLE-SAT} := \left\{ \langle \varphi \rangle \, \middle| \, \begin{array}{l} \varphi \text{ ist eine aussagenlogische Formel, die} \\ \text{mindestens zwei erfüllende Belegungen besitzt} \end{array} \right\}$$

Zeigen Sie, dass DOUBLE-SAT NP-schwer ist.