Inżynieria Biomedyczna

Podstawy i Zastosowania

Redaktorzy tomu: K. Cieślicki, T. Lipniacki, J. Waniewski

Spis treści

1	Modelowanie procesow nzjologicznych i patologicznych	1
Ι	Modelowanie matematyczne układów fizjologicznych	3
1	Modelowanie rozkładu i transportu wody i substancji w organizmie pacjenta	5
2	Modelowanie fali pulsu w naczyniach tętniczych	7
3	Modelowanie układu krążenia, wybrane aspekty	9
4	Modelowanie krążenia mózgowego	11
5	Modelowanie układu oddechowego	13
6	Modelowanie interakcji oddechowo-krążeniowej	15
7	Modelowanie metabolizmu mineralnego	17
8	Modelowanie metabolizmu węglowodanów, układ glukoza – insulina	19
9	Modelowanie homeostazy cholesterolu	21
10	Modelowanie motoryki pęcherzyka żółciowego	23
11	Numeryczne modelowanie przepływu krwi, płynu mózgowo-rdzeniowego i powietrza w rzeczywistych geometriach	25
12	Modelowanie mechaniki struktur tętniczych	27
13	Modelowanie procesów słuchowych w celu oceny ryzyka uszkodzeń słuchu	2 9
II	Modelowanie matematyczne procesów tkankowych i komórkowych	31
14	Modelowanie procesów transportu wody i substancji na poziomie tkankowym	33
15	Modelowanie transportu światła w tkance	35
16	Modelowanie transportu ciepła w tkance	37
17	Modelowanie przepływu krwi przez chirurgiczne zespolenia naczyniowe	39
18	Modelowanie przepływu krwi przez zastawki serca	41
19	Modelowanie motoneuronu	43
20	Modelowanie sieci neuronów	45

SPIS TREŚCI	iii
-------------	-----

	Iodelowanie odpowiedzi immunologicznej na rozwój nowotworu
	Iodelowanie wapnia komórkowego
2:	2.1 Homeostaza wapniowa w komórce
2	2.2 Mikrodomeny
	2.3 Modele homeostazy wapniowej
23 N	Iodelowanie sieci sygnałowych

Tom I

Modelowanie procesów fizjologicznych i patologicznych

Część I

Modelowanie matematyczne układów fizjologicznych

Modelowanie rozkładu i transportu wody i substancji w organizmie pacjenta

(M. Dębowska, L. Pstraś, J. Poleszczuk, M. Pietribiasi,

J. Piętka-Stachowska, A. Jung)

Modelowanie kompartmentowe. Farmakokinetyka. Pozaustrojowe oczyszczanie krwi. Kinetyczny model mocznika. Usuwanie mało- i średnio-cząsteczkowych substancji w hemodializie i dializie otrzewnowej. Modele pseudo-jednokompartmentowe: kinetyka fosforanów w hemodializie. Usuwanie makrocząsteczek: dializa otrzewnowa, zabiegi sztucznej wątroby. Usuwanie nadmiaru wody w czasie hemodializy i dializy otrzewnowej. Model regionalnego przepływu krwi.

Modelowanie fali pulsu w naczyniach tętniczych

(J. Poleszczuk)

Modelowanie układu krążenia, wybrane aspekty

(K. Zieliński)

Modelowanie krążenia mózgowego

(K. Cieślicki)

Modelowanie układu oddechowego

(T. Gólczewski)

Modelowanie interakcji oddechowo-krążeniowej

(T. Gólczewski, K. Zieliński)

Modelowanie metabolizmu mineralnego

(M. Dębowska)

Modelowanie metabolizmu węglowodanów, układ glukoza – insulina

(J. Waniewski, J. Śmieja)

Modelowanie homeostazy cholesterolu

(K. Kubica, M. Żulpo, J. Balbus)

Modelowanie motoryki pęcherzyka żółciowego

(M. Żulpo, J. Balbus, K. Kubica)

Numeryczne modelowanie przepływu krwi, płynu mózgowo-rdzeniowego i powietrza w rzeczywistych geometriach

(A. Piechna, K. Cieślicki)

Modelowanie mechaniki struktur tętniczych

(K. Cieślicki, A. Piechna)

Modelowanie procesów słuchowych w celu oceny ryzyka uszkodzeń słuchu

(J. Kotus, A. Czyżewski)

Część II

Modelowanie matematyczne procesów tkankowych i komórkowych

Modelowanie procesów transportu wody i substancji na poziomie tkankowym

(J. Stachowska-Piętka)

Modelowanie transportu światła w tkance

(A. Liebert)

Modelowanie transportu ciepła w tkance

(A. Nowakowski)

Modelowanie przepływu krwi przez chirurgiczne zespolenia naczyniowe

(Z. Małota, J. Waniewski)

Modelowanie przepływu krwi przez zastawki serca

(Z. Małota)

Modelowanie motoneuronu

(M. Piotrkiewicz)

Modelowanie sieci neuronów

(T. Bem)

Modelowanie odpowiedzi immunologicznej na rozwój nowotworu

(J. Poleszczuk, U. Foryś)

Modelowanie wapnia komórkowego

(B. Kaźmierczak)

22.1 Homeostaza wapniowa w komórce

Jony wapniowe kontrolują wiele różnorodnych procesów komórkowych, takich jak skurcz mięśni, egzocytozę, transkrypcję a nawet apoptozę. Aby uzyskać tak różnorodny wachlarz możliwości komórki wykorzystują zestawy "narzędzi" białkowych, które skłądają sie na tzw. sygnałosom wapniowy [1]. Każdy typ komórek charakteryzuje się specyficznym układem białek sensorycznych i efektorowych, które przekazują informacje w dół kaskady informacyjnej, jaką jest wapniowy szlak sygnałowy.

Sygnałosom wapniowy

Różnorodnośc odpowiedzi na sygnał wapniowy

Białka transportujące wapń

Białka wiążące wapń

Pompy

Kanały

Sensory

Bufory

22.2 Mikrodomeny

Mikrodomeny mitochondrialno-retikularne

Mikrodomeny retikularno-plazmatyczne

22.3 Modele homeostazy wapniowej

Modele calo-komórkowe

Modele kompartmentowe

Modele białek transportujących

Modele stochastyczne

Modelowanie sieci sygnałowych

(T. Lipniacki)

Bibliografia

[1] Berridge M.: Cell Signalling Biology. Portland Press Limited, London, wyd. 2, 2012.