ConsistencyTTA

Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation

Yatong Bai, Trung Dang, Dung Tran, Kazuhito Koishida, Somayeh Sojoudi

consistency-tta.github.io

yatong_bai@berkeley.edu

Problem Statement

- **Diffusion model** is one of the most popular Text-to-Audio (TTA) methods.
 - Training: Add noise and train model to reverse the noise.
 - **Inference:** Start from pure noise and gradually denoise.
 - 400 Model Queries = **SLOW INFERENCE!**

Our Approach

- Consistency Model
 - Distilled from a teacher diffusion model (we use TANGO).
 - One-step high-quality generation from anywhere on diffusion trajectory.
- CFG-Aware Distillation
 - Classifier-free guidance (CFG):
 - An external operation that strengthens diffusion models.
 - ConsistencyTTA distills CFG into the model.
 - Add a CFG weight embedding branch to student neural net, similar to timestep embedding.
 - When querying teacher during distillation, apply a random CFG weight in [0, 6).
 - The same CFG weight is fed into the added student embedding branch.

CLAP-Finetuning

- Single-step generation means differentiability.
- Hence, directly optimize generation quality objectives.
 - Cannot be performed directly on diffusion models, thus an advantage of ConsistencyTTA.
- Finetune ConsistencyTTA to maximize CLAP score.
 - We consider CLAP score w.r.t. ground-truth audio and the CLAP score w.r.t. text prompt.

Results

- High-quality audio generation with ONE SINGLE MODEL QUERY.
 - 99.75% less computation.
 - 98.63% shorter wall time.
 - Runs locally on a laptop and still faster than diffusion model on A100 GPU.

• Evaluation Metrics:

- Frechet Audio Distance (FAD) w/ VGG-ish embeddings CLAF
 - G-ish embeddings · CLAP Score w.r.t. Prompt (CLAPT)
- Frechet Distance (FD) w/ PANN embeddings
 KL Divergence (KLD) w/ PANN embeddings
- CLAP Score w.r.t. Ground-Truth Audio (CLAPA)
 Human Subjective Quality & Prompt Alignment
- Subjective Model Generation Subjective CLAP_A FAD CLAP_T KLD Queries Time Quality **Text Align** AudioLDM-L (Baseline) TANGO 400 168 4.136 4.064 24.10 1.362 (Baseline) ConsistencyTTA 2.3 3.830 4.064 24.69 20.97 1.358 + CLAP-FT 2.3 3.902 4.010 22.08 **1.354** ConsistencyTTA 1 Ground Truth -26.71

Table 1: Main Experiment Results.

- Ablation Studies with short training runs:
 - Distilling CFG into the model outperforms external CFG.
- Training with random CFG weight is better than fixed.
- Using Heun solver to query teacher is better than DDIM.
- Uniform noise schedule is preferred over Karras.

Guidance Method	Solver	Noise Schedule	$CFG\;w$	# Queries (↓)	$FAD(\downarrow)$	FD (↓)	KLD (↓)
Unguided	DDIM	Uniform	1	1	13.48	45.75	2.409
Direct Guidance	DDIM Heun	Uniform Karras	3	2	8.565 7.421	38.67 39.36	2.015 1.976
Fixed Guidance Distillation	Heun	Karras Uniform Uniform	3	1	5.702 4.168 3.859	33.18 28.54 27.79	1.494 1.384 1.421
Variable Guidance Distillation	Heun	Uniform	4 6	1	3.180 2.975	27.92 28.63	1.394 1.378
Table a Ablation Ctudion							

Table 2. Ablation Studies

Data

- · In-the-wild audio generation.
 - AudioCaps (YouTube video soundtracks + captions).
- 45,260 training audio clips (10s); 882 validation clips.
- Example prompts:
 - A telephone ringing with loud echo.
 - A horn and then an engine revving.