DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY DELHI MINOR-II 2015-2016 SECOND SEMESTER MTL103/MAL210 (OPTIMIZATION METHODS AND APPLICATION)

Max. Marks: 25 Time: 1 hour

** Answer to each question should begin on a new page **

1. Let $x^* = [x_1^*, x_2^*, \dots, x_n^*]^T$ be a feasible solution of the linear programming problem (P) and $y^* = [y_1^*, y_2^*, \dots, y_m^*]^T$ be a feasible solution of the dual of the linear programming problem (D). Then prove x^* is an optimal solution of (P) and y^* is an optimal solution of (D) simultaneously if and only if both of the following statements hold

$$x_{j}^{*} = 0 \text{ or } \sum_{i=1}^{m} a_{ij} y_{i}^{*} = c_{j} \text{ for all } j = 1, 2, \dots, n$$

$$y_{i}^{*} = 0 \text{ or } \sum_{j=1}^{n} a_{ij} x_{j}^{*} = b_{i} \text{ for all } i = 1, 2, \dots, m.$$
(3)

2. Use the dual Simplex method to solve the linear programming problem

Minimize:
$$Z = 10x_1 + 6x_2 + 2x_3$$

subject to: $-x_1 + x_2 + x_3 \ge 1$
 $3x_1 + x_2 - x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$. (4)

3. Consider the quadratic programming (QP) problem

Minimize: $\frac{1}{2}x^TQx + c^Tx$

subject to: $Ax \leq b$,

where Q is an $n \times n$ symmetric positive definite matrix, $e \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$. Then prove or disprove: the dual of a convex QP problem is a concave QP problem. (5)

4. Consider the convex problem with equality constraints.

Minimize: f(x)

subject to: h(x) = 0

where f(x) is a convex function and $X = \{x \in \mathbb{R}^n : h(x) = 0\}$ is a convex set. Let x^* be a regular point satisfying Lagranges theorem,

$$h(x^*) = 0$$
, and $\nabla f(x^*) + \nabla^m \cdot \nabla h$

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla h_i(x^*) = 0.$$

Then prove or disprove that x^* is a global minimizer.

(4)

5. Consider the problem of optimizing $f(x) = x^TQx$ subject to a single equality constraint $x^T P x = 1$, where Q is a symmetric positive semi-definite matrix and P is a symmetric positive definite matrix. Then establish that an eigenvector corresponding to the smallest (largest) eigenvalue of $P^{-1}Q$ is a global minimizer (maximizer) of this problem.

6. Find local minimizer(s) of the problem:

(5)