EECS E6893 Homework 2 Jun Hu jh3846

October 9, 2017

Contents

1	Question 1 Part 1: Building an Explicit Movie Recommendation System with Spark MLlib	4
	1.1 Import required libraries	4
	1.2 Download/Unzip the MovieLens 1M dataset from http://grouplens.org/datasets/movielens	4
	1.3 Read and Convert ratings data to a DataFrame	4
	1.4 Show the number of ratings in the dataset	5
	1.5 Show a sample of the Ratings DataFrame	5
	1.6 Show sample number of ratings per user	5
	1.7 Show the number of users in the dataset	6
	1.8 Split Ratings data into Training (80%) and Test (20%) datasets	6
	1.9 Show resulting Ratings dataset counts	6
	1.10 Build the recommendation model on the training data using ALS-explicit	6
	1.11 Run the model against the Test data and show a sample of the predictions	6
	1.12 Evaluate the model by computing the RMSE on the test data	7
	1.13 Show that a smaller value of rmse is better	7
	1.14 Make movie recommendations	7
	1.15 Show sample recommendations per user	7
	1.16 Show sample recommendations per user	8
2	Question 1 Part 2: Building an Implicit Music Recommendation System with Spark MLlib	9
	2.1 Import required libraries	9
	2.2 Download/Unzip Audioscrobbler dataset from http://www.iro.umontreal.ca/~lisa/datasets/	profiledata_06
	May-2005.tar.gz	9
	2.3 Read and Convert ratings data to a DataFrame	9
	2.4 Show the number of userArtist in the dataset	10
	2.5 Show a sample of the userArtist DataFrame	10
	2.6 Split userArtist data into Training (80%) and Test (20%) datasets	10
	2.7 Show resulting userArtist dataset counts	10
	2.8 Build the recommendation model on the training data using ALS-implicit	10
	2.9 Save and load model	11
	2.10 Run the model against the Test data and show a sample of the predictions	11
	2.11 Show recommendations high and low	11
3	Question 2 Part 1: Clustering on News Articles	13
	3.1 Download news articles from: https://www.kaggle.com/asad1m9a9h6mood/news-articles	13
	3.1.1 This Dataset is scraped from https://www.thenews.com.pk website. It has news ar-	
	ticles from 2015 till date related to business and sports. It Contains the Heading of the	
	particular Article, Its content and its date. The content also contains the place from	
	where the statement or Article was published.	13
	3.2 Import required libraries	13
	3.3 Explore the dataset in Pandas	13
	3.4 Split data into Training (80%) and Test (20%) datasets	16
	3.5 Configure an ML pipeline	16

	3.6 Clustering by K-MEANS	16 17
4	Question 2 Part 2: Clustering on Wikipedia articles 4.1 Import required libraries	188 188 188 188 211 212 222
5	Question 3 Part 1: Fist Dataset with Logistic Regression and NaiveBayes classification 5.1 Import required labraries	
6	Question 3 Part 2: Second Dataset with Logistic Regression and NaiveBayes classification 6.1 Import required labraries	29 29 29 31
	6.5 Display the predictions	31 33 33 33 33 33

7.9.3		
	Naive Bayes, whatever on this perticular training/test set or potential future test	
	datasets	38
7.9.4	In our raw data showed at the beginning, one class had much more data points	
	(4423) than the other class (154). This bias significantly affected Naive Bayes clas-	
	sifier it had very hight error costs (false positive and false negative cost), but not	
	the Logistic Regression classifier. So in our experiment, at least we can conclude	
	that under this kind of bias, we should avoid using Naive Bayes classifier.	38

Question 1 Part 1: Building an Explicit Movie Recommendation System with Spark MLlib

1.1 Import required libraries

1.2 Download/Unzip the MovieLens 1M dataset from http://grouplens.org/datasets/movielens

1.3 Read and Convert ratings data to a DataFrame

1.4 Show the number of ratings in the dataset

```
In [4]: print("Number of ratings = " + str(ratings.count()))
Number of ratings = 1000209
```

1.5 Show a sample of the Ratings DataFrame

```
In [5]: ratings.sample(False, 0.0001, seed=0).show(10)
|movieId|rating|timestamp|userId|
+----+
   2908|
         5.0|977895809|
   3730| 5.0|978554445|
                        173|
   2917|
         2.0|976301830| 456|
   589 | 4.0 | 976161565 | 526 |
   2348 | 3.0 | 976207524 | 533 |
  1285 | 4.0 | 979154572 | 588 |
  1206 | 4.0 | 980628867 | 711 |
   3361 | 4.0|975510209| 730|
   3203 | 5.0 | 975435824 |
                        7791
   1196 | 4.0 | 975356701 | 843 |
+----+
```

only showing top 10 rows

1.6 Show sample number of ratings per user

+	+
userId No.	of ratings
+	+
26	400
29	108
474	318
964	78
1677	43
1697	354
1806	214
1950	137
2040	46
2214	81
+	+

only showing top 10 rows

1.7 Show the number of users in the dataset

```
In [7]: print("Number of users = " + str(grouped_ratings.count()))
Number of users = 6040
```

1.8 Split Ratings data into Training (80%) and Test (20%) datasets

```
In [8]: (training, test) = ratings.randomSplit([0.8, 0.2])
```

1.9 Show resulting Ratings dataset counts

1.10 Build the recommendation model on the training data using ALS-explicit

1.11 Run the model against the Test data and show a sample of the predictions

```
In [11]: predictions = model.transform(test).na.drop()
       predictions.show(10)
+----+
|movieId|rating|timestamp|userId|prediction|
+----+
    148|
         1.0|976295338| 840| 2.9349167|
    148|
          2.0|974875106| 1150| 2.9894443|
         2.0|974178993| 2456| 3.9975448|
    148|
    463|
         5.0|968916009| 3151| 3.967182|
    463|
         3.0|963746396| 4858| 2.0730953|
    463|
         4.0|973625620| 2629| 3.1774714|
    463|
         1.0|966523740| 3683| 1.1212827|
    463| 2.0|966790403| 3562| 2.780132|
    463 | 4.0 | 975775726 | 721 | 3.3978982 |
    463 | 3.0 | 965308300 | 4252 | 0.9944763 |
```

```
+----+
only showing top 10 rows
```

1.12 Evaluate the model by computing the RMSE on the test data

1.13 Show that a smaller value of rmse is better

This is obviously the case since RMSE is an aggregation of all the error. Thus evaluator.isLargerBetter should be 'false'.

```
In [13]: evaluator.isLargerBetter()
Out[13]: False
```

1.14 Make movie recommendations

1.15 Show sample recommendations per user

1.16 Show sample recommendations per user

In [16]: movieRecs.sample(False, 0.01).show(10, False)

```
|movieId|recommendations
[[1213,7.3201046], [2441,6.9640417], [5297,6.8789372], [2549,6.8698826], [2816,6.507644], [1973
1031
      [[1070,5.9382234], [4143,5.8492775], [3897,5.841146], [2755,5.6947303], [4282,5.6827908], [527
      |[[1213,7.0531287], [2640,6.3756685], [879,6.1351347], [2502,6.0931673], [5298,5.9518814], [642
126
      [[4504,9.705521], [3222,8.426963], [1713,8.153491], [5863,7.892766], [4583,7.852765], [3113,7.6
626
      [[5670,6.538592], [21,5.9881763], [5258,5.949679], [4393,5.7138], [4028,5.6019115], [1025,5.458
3752
      [[745,7.8676734], [2469,7.4058766], [906,7.213084], [2431,7.1617584], [1754,7.1158795], [5030,
2256
      |[[640,5.7342196], [5218,5.440282], [1673,5.2526026], [947,5.2225814], [2694,5.2105126], [2879,
3793
      [[745,5.992924], [2534,5.8074617], [527,5.6805005], [2755,5.653826], [283,5.3882546], [3587,5.3
12867
      [[4008,10.775237], [4504,10.658872], [3222,9.88133], [399,9.678963], [5240,9.402692], [144,9.30
1846
      [[665,11.115968], [1459,9.497441], [5803,7.76634], [1384,7.726793], [4317,7.657247], [640,7.614
1729
```

only showing top 10 rows

Question 1 Part 2: Building an Implicit Music Recommendation System with Spark MLlib

2.1 Import required libraries

2.2 Download/Unzip Audioscrobbler dataset from http://www.iro.umontreal.ca/~lisa/datasets/profiledata_06-May-2005.tar.gz

2.3 Read and Convert ratings data to a DataFrame

2.4 Show the number of userArtist in the dataset

```
In [6]: print("Number of userArtist = " + str(userArtist.count()))
Number of userArtist = 24296858
```

2.5 Show a sample of the userArtist DataFrame

```
In [4]: userArtist.sample(False, 0.0001, seed=23).show(10)
+----+
|artistId|count| userId|
+----+
| 1054292|
           1 | 1000127 |
| 1033246| 1|1000215|
    1269 | 13 | 1000357 |
     630 1 1 1 1 0 0 0 4 1 0 1
| 1000428| 2|1000657|
| 1234327| 1|1000911|
      45 | 34 | 1000923 |
     969|
         4|1000927|
    1235 l
         1|1000928|
    3950|
            2|1001009|
+----+
only showing top 10 rows
```

2.6 Split userArtist data into Training (80%) and Test (20%) datasets

```
In [3]: (training, test) = userArtist.randomSplit([0.8, 0.2])
```

2.7 Show resulting userArtist dataset counts

```
In [9]: trainingRatio = float(training.count())/float(userArtist.count())*100
    testRatio = float(test.count())/float(userArtist.count())*100

print("Total number of userArtist = " + str(userArtist.count()))
print("Training dataset count = " + str(training.count()) + ", " + str(trainingRatio) + "%")
print("Test dataset count = " + str(test.count()) + ", " + str(testRatio) + "%")
```

2.8 Build the recommendation model on the training data using ALS-implicit

```
In [7]: als = ALS(maxIter=5, regParam=0.01, implicitPrefs=True, userCol="userId", itemCol="artistId", regParam=0.01, implicitPrefs=True, userCol="userId", itemCol="artistId", regParam=0.01
```

2.9 Save and load model

2.10 Run the model against the Test data and show a sample of the predictions

```
In [5]: predictions = sameModel.transform(test).na.drop()
       predictions.show(10)
+----+
|artistId|count| userId|prediction|
+----+
            1|1000117| 1.0815843|
     463|
     463|
           1|1000221| 0.3066332|
     463|
         1|1000401|0.41309264|
     463|
            1|1000463|0.92721707|
            1 | 1000614 | 0.66710955 |
     463|
     463 | 1 | 1000745 | 0.5759305 |
     463 1 1 1 1 1 0 0 0 7 7 1 | 0 . 1 0 0 2 5 6 5 6 |
          1|1000920|0.14627631|
     463|
          1|1001192| 0.4186052|
     4631
     463 l
          1|1001239|0.11049299|
+----+
only showing top 10 rows
```

2.11 Show recommendations high and low

```
In [6]: predictions.registerTempTable("predictions")
       spark.sql("SELECT * FROM predictions ORDER BY prediction DESC").show()
       spark.sql("SELECT * FROM predictions ORDER BY prediction").show()
|artistId|count| userId|prediction|
+----+
     393 | 44 | 1044648 | 2.048578 |
| 1002862| 3|1000764| 2.0438032|
3|1052461| 1.8336266|
    1457
    4538
          1|1044648| 1.8334882|
| 1003361|
          8|1052461| 1.7632964|
 1105069|
          12|1045876| 1.7556672|
     670 | 22 | 2058707 | 1.7466245 |
| 1034635| | 208|1038380| 1.7438686|
| 1043348| | 56|1021501| 1.7395341|
| 1003133|
           3|1044648| 1.7320846|
| 1299851| | 55|1007308| 1.7286341|
| 1296257 | 27 | 1007308 | 1.7270842 |
| 1034635| | 54|1047668| 1.7216785|
```

```
| 1031984| 3|1038826| 1.719785|
| 1001169| 9|1072865| 1.7158957|
| 2842| 3|1077252| 1.7109416|
| 2017| 128|2089146| 1.698533|
| 1012494| 5|1070844| 1.6947658|
| 1034635| 4|1001562| 1.6939092|
```

only showing top 20 rows

+	++
artistId co	unt userId prediction
606	1 1072273 -1.1034482
1062984	5 1052461 -1.0605614
1002751	1 2005325 -0.9165062
1000660	1 2114152 -0.82818604
1000270	1 1070177 -0.7904455
1001428	1 2019216 -0.78354007
45691	4 1072273 -0.7598609
1010728	22 1054893 -0.7471355
1006594	3 2231283 -0.7382127
1020783	6 2200013 -0.6836228
1400	4 2287446 -0.6611168
1003458	1 1003897 -0.6341311
1007027	8 1000647 -0.631236
1003084	1 1063655 -0.62958777
2138	1 2147892 -0.6157164
1179	2 1055807 -0.6106846
1223	1 2269169 -0.6081734
1000418	1 1020855 -0.5983083
1002451	2 2216293 -0.5928024
1027267	1 2200013 -0.58894813
+	++

only showing top 20 rows

Question 2 Part 1: Clustering on News Articles

- 3.1 Download news articles from: https://www.kaggle.com/asad1m9a9h6mood/newsarticles
- 3.1.1 This Dataset is scraped from https://www.thenews.com.pk website. It has news articles from 2015 till date related to business and sports. It Contains the Heading of the particular Article, Its content and its date. The content also contains the place from where the statement or Article was published.

3.2 Import required libraries

3.3 Explore the dataset in Pandas

```
.dataframe thead th {
     text-align: left;
  .dataframe tbody tr th {
     vertical-align: top;
  }
</style>
Article
   Date
   Heading
   NewsType
  </thead>
 >0
   KARACHI: The Sindh government has decided to b...
   1/1/2015
   sindh govt decides to cut public transport far...
   business
  1
   HONG KONG: Asian markets started 2015 on an up...
   1/2/2015
   asia stocks up in new year trad
   business
  2
   HONG KONG: Hong Kong shares opened 0.66 perce...
   1/5/2015
   hong kong stocks open 0.66 percent lower
   business
  3
   HONG KONG: Asian markets tumbled Tuesday follo...
   1/6/2015
   asian stocks sink euro near nine year
   business
  4
   NEW YORK: US oil prices Monday slipped below $...
   1/6/2015
   us oil prices slip below 50 a barr
   business
```

```
</div>
In [8]: data_df.describe()
Out[8]: <div>
      .dataframe thead tr:only-child th {
         text-align: right;
      }
      .dataframe thead th {
         text-align: left;
      .dataframe tbody tr th {
         vertical-align: top;
      }
    </style>
    <thead>
      Article
        Date
        Heading
        NewsType
      </thead>
     count
        2692
        2692
        2692
        2692
      unique
        2584
        666
        2581
        2
      top
        strong> TOKYO: Tokyo stocks climbed in early tr...
        8/1/2016
        Tokyo stocks open lower after BoJ under
        sports
      freq
```

```
5
          27
          5
          1408
       </div>
In [9]: data = spark.createDataFrame(data_df)
      data.printSchema()
      data.sample(False, 0.05).show(5)
|-- Article: string (nullable = true)
|-- Date: string (nullable = true)
|-- Heading: string (nullable = true)
|-- NewsType: string (nullable = true)
+----+
          Article|
                   Date|
                                 Heading|NewsType|
+----+
| HONG KONG: Asian ... | 1/6/2015 | asian stocks sink... | business |
|ISLAMABAD: The Na...|1/23/2015|nepra prevents k ...|business|
|ISLAMABAD: Pakist...|1/26/2015|pakistan fuel cri...|business|
|ISLAMABAD: Federa...| 3/4/2015|pact with k elect...|business|
|London: Oil price...| 3/6/2015|oil prices rise b...|business|
+----+
only showing top 5 rows
```

3.4 Split data into Training (80%) and Test (20%) datasets

```
In [10]: (training, test) = data.randomSplit([0.8, 0.2])
```

3.5 Configure an ML pipeline

3.6 Clustering by K-MEANS

3.7 Make predictions on test and print interested columns of different clusters

```
In [20]: predictions = model.transform(test)
       predictions.registerTempTable("predictions")
       spark.sql("SELECT Article, NewsType, prediction FROM predictions WHERE NewsType = 'business'")
       spark.sql("SELECT Article, NewsType, prediction FROM predictions WHERE NewsType = 'sports'").s.
+----+
    Article|NewsType|prediction|
+----+
|A major rally in ...|business| 1|
|ATLANTA: Twelve P...|business|
|BEIJING: Pakistan...|business|
|Brussels: The EU ...|business|
|DUBAI: Talks betw...|business|
| HONG KONG: Hong K...|business|
                               0|
|Hong Kong: Asian ...|business|
                               1|
|Hong Kong: Asian ...|business|
                               1|
|Hong Kong: Asian ...|business|
|Hong Kong: Asian ...|business|
+----+
only showing top 10 rows
+----+
   Article | NewsType | prediction |
+----+
|AUCKLAND: Martin ...| sports| 0|
|Australia win run...| sports|
                              01
|CAPE TOWN: Alex H...| sports|
|CAPE TOWN: Captai...| sports|
                              01
|CAPE TOWN: Poor w...| sports|
|CAPE TOWN: Tiny T...| sports|
                              01
                               01
|DHAKA: Bangladesh...| sports|
                               0|
|DHAKA: Bangladesh...| sports|
|DHAKA: Hasan Mohs...| sports|
+----+
only showing top 10 rows
```

Question 2 Part 2: Clustering on Wikipedia articles

4.1 Import required libraries

4.2 Download/Unzip https://dumps.wikimedia.org/enwiki/20170920/enwiki-20170920-pages-articles14.xml-p7697599p7744799.bz2

```
In [52]: #subprocess.call(["wget", "https://dumps.wikimedia.org/enwiki/20170920/enwiki-20170920-pages-a
```

4.3 Parse xml to json using WikiExtractorw (https://github.com/attardi/wikiextractory

```
In [53]: # subprocess.call(["python3", "WikiExtractor.py", "-o wiki_extracted", "--json", "-b 230M", "/
```

4.4 Explore the dataset in Pandas

```
pd_df = pd.DataFrame(data_json)
      pd_df.head()
Out[54]: <div>
      <style>
         .dataframe thead tr:only-child th {
           text-align: right;
        }
         .dataframe thead th {
           text-align: left;
         .dataframe tbody tr th {
           vertical-align: top;
        }
      </style>
      <thead>
        id
          text
          title
          url
         </thead>
       >0
          7697605
          Konica Minolta Cup\n\nKonica Minolta Cup may r...
          Konica Minolta Cup
          https://en.wikipedia.org/wiki?curid=7697605
         1
          7697611
          Archer (typeface)\n\nArcher is a slab serif ty...
          Archer (typeface)
          https://en.wikipedia.org/wiki?curid=7697611
         2
          7697612
          Stockton Airport\n\nStockton Airport may refer...
          Stockton Airport
          https://en.wikipedia.org/wiki?curid=7697612
         3
          7697626
          Ricky Minard\n\nRicky Donell Minard Jr. (born ...
          Ricky Minard
```

```
https://en.wikipedia.org/wiki?curid=7697626
       4
        7697641
        Alexander Peya\n\nAlexander Peya (born 27 June...
        Alexander Peya
         https://en.wikipedia.org/wiki?curid=7697641
       </div>
In [55]: pd_df.describe()
Out[55]: <div>
     <style>
       .dataframe thead tr:only-child th {
          text-align: right;
       .dataframe thead th {
          text-align: left;
       }
       .dataframe tbody tr th {
          vertical-align: top;
       }
     </style>
     <thead>
       id
        text
         title
         url
       </thead>
      count
        4577
        4577
        4577
        4577
       unique
        4577
        4577
        4577
        4577
```

```
top
          7736826
          Lebe lauter\n\nLebe lauter () is the third stu...
          Cyprus at the 1988 Winter Olympics
          https://en.wikipedia.org/wiki?curid=7716931
        freq
          1
          1
          1
          1
        </div>
In [56]: data = spark.createDataFrame(pd_df)
      data.printSchema()
      data.sample(False, 0.27).show(3)
root
|-- id: string (nullable = true)
|-- text: string (nullable = true)
|-- title: string (nullable = true)
|-- url: string (nullable = true)
+----+
                             title|
l idl
               text
+----+
|7697612|Stockton Airport
    Stockton Airport|https://en.wikipe...|
|7697675|Lobo (wrestler)
     Lobo (wrestler) | https://en.wikipe...|
|7697715|Anti-submarine mi...|Anti-submarine mi...|https://en.wikipe...|
+----+
only showing top 3 rows
```

4.5 Split data into Training (80%) and Test (20%) datasets

```
In [57]: (training, test) = data.randomSplit([0.8, 0.2])
```

4.6 Configure an ML pipeline

4.7 Clustering by K-MEANS

4.8 Make predictions on test and print interested columns of different clusters

```
In [61]: predictions = model.transform(data)
       predictions.registerTempTable("predictions")
       spark.sql("SELECT id, title, prediction FROM predictions WHERE prediction = '0'").show(10)
       spark.sql("SELECT id, title, prediction FROM predictions WHERE prediction = '1'").show(10)
       spark.sql("SELECT count(*) FROM predictions GROUP BY prediction").show()
+----+
| id| title|prediction|
+----+
|7697605| Konica Minolta Cup|
|7697611| Archer (typeface)|
|7697612| Stockton Airport|
|7697641|
|76976
            Ricky Minard
                                01
            Alexander Peyal
                                01
|7697655| Swiss chalet style|
                                01
|7697664|European Federati...|
|7697671|The Best Is Yet t...|
|7697675| Lobo (wrestler)|
                                01
|7697715|Anti-submarine mi...|
+----+
only showing top 10 rows
| id| title|prediction|
+----+
|7698038| Radamel Falcao|
|7698053| Panjshir offensives|
|7698941|Istanbul High School|
                                1|
|7699151|The Market for Li...|
                                1|
|7699200| Parchis (group)|
                                1|
                Manikata|
|7700918|
                                1|
|7701000|2007 Major League...|
                                1|
|7701470|World War II pers...|
                                1 l
|7701711| Luck by Chance|
                                1|
|7702313| Yoga Vasistha|
+----+
only showing top 10 rows
+----+
|count(1)|
+----+
   154
   4423
+----+
```

Question 3 Part 1: Fist Dataset with Logistic Regression and NaiveBayes classification

5.1 Import required labraries

```
In [100]: from pyspark.ml import Pipeline, PipelineModel
          from pyspark.ml.clustering import BisectingKMeans, KMeans, GaussianMixture
          from pyspark.ml.feature import HashingTF, Tokenizer, NGram, IDF, StopWordsRemover
          import os
          import pandas as pd
          from pyspark.sql import SparkSession
          from pyspark.sql.types import *
          from pyspark.sql import Row
          from pyspark.ml.linalg import Vectors
          from pyspark.ml.classification import LogisticRegression, NaiveBayes
          from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
          from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluation
          spark = SparkSession \
              .builder \
              .appName("dataset1_classification") \
              .config("spark.som.config.option", "some-value") \
              .getOrCreate()
```

5.2 Read and Vectorize the raw data

```
pd_d1 = pd.DataFrame(dict)
      pd_d1.head()
Out[101]: <div>
      <style>
         .dataframe thead tr:only-child th {
           text-align: right;
         }
         .dataframe thead th {
           text-align: left;
         .dataframe tbody tr th {
           vertical-align: top;
         }
      </style>
      <thead>
         features
          label
         </thead>
       >0
          [6.0, 148.0, 72.0, 35.0, 0.0, 33.6, 0.627, 50.0]
          1.0
         1
          [1.0, 85.0, 66.0, 29.0, 0.0, 26.6, 0.351, 31.0]
          0.0
         2
          [8.0, 183.0, 64.0, 0.0, 0.0, 23.3, 0.672, 32.0]
          1.0
         3
          [1.0, 89.0, 66.0, 23.0, 94.0, 28.1, 0.167, 21.0]
          0.0
         4
          [0.0, 137.0, 40.0, 35.0, 168.0, 43.1, 2.288, 3...
          1.0
         </div>
```

5.3 Split data into Training (80%) and Test (20%) datasets

```
In [103]: (training, test) = data1.randomSplit([0.8, 0.2], seed=23)
```

5.4 Train Logistic Regression and Naive Bayes models

5.5 Display the predictions

|[0.0,118.0,84.0,4...| 1.0|[0.61903920840622...|[0.65,0.35]| |[0.0,119.0,64.0,1...| 0.0|[0.61903920840622...|[0.65,0.35]|

0.01

```
[0.0,125.0,96.0,0...] 0.0 [0.61903920840622... [0.65,0.35]]
                                                                   0.01
|[0.0,146.0,82.0,0...| 0.0|[0.61903920840622...|[0.65,0.35]|
                                                                   0.01
[1.0,0.0,74.0,20...] 0.0 [0.61903920840622... [0.65,0.35]]
                                                                  0.0
|[1.0,89.0,66.0,23...| 0.0|[0.61903920840622...|[0.65,0.35]|
                                                                   0.01
                       0.0|[0.61903920840622...|[0.65,0.35]|
|[1.0,95.0,66.0,13...|
                                                                   0.0
                       0.0|[0.61903920840622...|[0.65,0.35]|
|[1.0,101.0,50.0,1...|
                                                                   0.01
                       0.0|[0.61903920840622...|[0.65.0.35]|
| [1.0,109.0,56.0,2... ]
                                                                   0.01
|[1.0,115.0,70.0,3...|
                       1.0 | [0.61903920840622... | [0.65, 0.35] |
                                                                   0.0
                       0.0|[0.61903920840622...|[0.65.0.35]|
[1.0,126.0,56.0,2...]
                                                                   0.01
                       1.0|[0.61903920840622...|[0.65,0.35]|
|[1.0,163.0,72.0,0...|
                                                                   0.01
|[2.0,85.0,65.0,0...|
                      0.0|[0.61903920840622...|[0.65,0.35]|
                                                                  0.01
|[2.0,100.0,66.0,2...|
                       1.0|[0.61903920840622...|[0.65,0.35]|
                                                                   0.01
                       0.0 | [0.61903920840622... | [0.65, 0.35] |
|[2.0,110.0,74.0,2...|
                                                                   0.01
                       0.0|[0.61903920840622...|[0.65,0.35]|
|[3.0,83.0,58.0,31...|
                                                                   0.01
|[3.0,88.0,58.0,11...|
                       0.0 | [0.61903920840622... | [0.65, 0.35] |
                                                                   0.01
|[3.0,128.0,78.0,0...|
                       0.0|[0.61903920840622...|[0.65,0.35]|
                                                                   0.01
|[3.0,158.0,76.0,3...|
                       1.0 | [0.61903920840622... | [0.65, 0.35] |
                                                                   0.01
[4.0,103.0,60.0,3...] 0.0 [0.61903920840622... [0.65,0.35]]
                                                                   0.01
+----+
```

only showing top 20 rows

Naive Bayes classifier predictions

++	+	+	++
features lab	oel rawPrediction	probability	prediction
++	+	+	-
[0.0,118.0,84.0,4	1.0 [-940.61590258077	[0.00222035512724	1.0
[0.0,119.0,64.0,1	0.0 [-570.93042316226	[0.34024409829781	1.0
[0.0,125.0,96.0,0	0.0 [-398.51412035553	[0.99984493731386	0.0
[0.0,146.0,82.0,0	0.0 [-507.15808445073	[0.99944541772140	0.0
[1.0,0.0,74.0,20 0	.0 [-333.42573140269	[0.99999659118712	0.01
[1.0,89.0,66.0,23	0.0 [-537.77736461550	[0.72794260819999	0.01
[1.0,95.0,66.0,13	0.0 [-419.94009000027	[0.98632919581248	0.01
[1.0,101.0,50.0,1	0.0 [-418.12769782653	[0.92458101473041	0.01
[1.0,109.0,56.0,2	0.0 [-604.05216987817	[0.00475046122727	1.0
[1.0,115.0,70.0,3	1.0 [-639.76679384547	[0.82243219784355	0.0
[1.0,126.0,56.0,2	0.0 [-675.05572884516	[0.00121490185273	1.0
[1.0,163.0,72.0,0	1.0 [-481.24197102653	[0.99041485445669	0.0
[2.0,85.0,65.0,0 0	.0 [-373.38413562769	[0.99933714490051	0.01
[2.0,100.0,66.0,2	1.0 [-572.78674440437	[0.66969877398212	0.0
[2.0,110.0,74.0,2	0.0 [-671.37589458991	[0.29372603707675	1.0
[3.0,83.0,58.0,31	0.0 [-457.68905156759	[0.99967549740400	0.0
[3.0,88.0,58.0,11	0.0 [-432.71723920739	[0.83926761944996	0.0
[3.0,128.0,78.0,0	0.0 [-464.07127210943	[0.99897195376000	0.0
[3.0,158.0,76.0,3	1.0 [-939.34332498455	[1.87311685420356	1.0
[4.0,103.0,60.0,3	0.0 [-761.19283980910	[2.13987700098319	1.0
++	+	+	·+

only showing top 20 rows

5.6 Evalue the modles with AUC and overall Accuracy

5.7 A simple comparison on the two modles's performance

5.7.1 Overall Accuracy:

- Naive Bayes classifier carried out a higher overall accuracy (0.70 vs 0.66)
- Both modle can yield predictions accuracy than 0.5 of random
- So Naive Bayes made better classification over Logistic Regression on this training/test set

5.7.2 Area under ROC curve (AUC):

- Logistic Regression classifier carried out a higher AUC (0.5 vs 0.3)
- Logistic Regression classifier has higher discriminative power over class distribution
- 5.7.3 In summary, on the selected training/test set, Naive Bayes classifier has the better result. However, the Logistic Regression classifier may be more stable on other datasets.

Question 3 Part 2: Second Dataset with Logistic Regression and NaiveBayes classification

6.1 Import required labraries

```
In [108]: from pyspark.ml import Pipeline, PipelineModel
          from pyspark.ml.clustering import BisectingKMeans, KMeans, GaussianMixture
          from pyspark.ml.feature import HashingTF, Tokenizer, NGram, IDF, StopWordsRemover
          import os
          import pandas as pd
          from pyspark.sql import SparkSession
          from pyspark.sql.types import *
          from pyspark.sql import Row
          from pyspark.ml.linalg import Vectors
          from pyspark.ml.classification import LogisticRegression, NaiveBayes
          from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
          from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluation
          spark = SparkSession \
              .builder \
              .appName("dataset2_classification") \
              .config("spark.som.config.option", "some-value") \
              .getOrCreate()
```

6.2 Read and Vectorize the raw data

```
pd_d2 = pd.DataFrame(dict)
      pd_d2.head()
Out[109]: <div>
      <style>
         .dataframe thead tr:only-child th {
           text-align: right;
         }
         .dataframe thead th {
           text-align: left;
         .dataframe tbody tr th {
           vertical-align: top;
         }
      </style>
      <thead>
         features
          label
         </thead>
       >0
          [1.0, 22.08, 11.46, 2.0, 4.0, 4.0, 1.585, 0.0,...
          0.0
         1
          [0.0, 22.67, 7.0, 2.0, 8.0, 4.0, 0.165, 0.0, 0...
          0.0
         2
          [0.0, 29.58, 1.75, 1.0, 4.0, 4.0, 1.25, 0.0, 0...
          0.0
         3
          [0.0, 21.67, 11.5, 1.0, 5.0, 3.0, 0.0, 1.0, 1...
          1.0
         4
          [1.0, 20.17, 8.17, 2.0, 6.0, 4.0, 1.96, 1.0, 1...
          1.0
         </div>
```

6.3 Split data into Training (80%) and Test (20%) datasets

```
In [111]: (training, test) = data2.randomSplit([0.8, 0.2], seed=23)
```

6.4 Train Logistic Regression and Naive Bayes models

6.5 Display the predictions

Logistic Regression classifier predictions

```
+-----+
| features|label| rawPrediction| probability|prediction|
+-----+
|[0.0,20.42,10.5,1...| 0.0|[0.53467906597270...|[0.63057376704516...| 0.0|
|[0.0,20.75,10.25,...| 1.0|[-0.1767811960708...|[0.45591944020243...| 1.0|
```

```
[0.0,20.75,10.335...] 1.0 [-0.1767811960708...] [0.45591944020243...]
                                                                        1.0
[0.0,22.67,7.0,2...] 0.0|[0.53467906597270...][0.63057376704516...]
                                                                       0.01
[0.0,24.75,12.5,2...] 1.0|[-0.1767811960708...][0.45591944020243...]
                                                                        1.0|
| [0.0,30.67,12.0,2...| 1.0| [-0.1767811960708...| [0.45591944020243...|
                                                                        1.0|
[0.0,32.17,1.46,2...] 1.0 [-0.1767811960708...] [0.45591944020243...]
                                                                        1.0|
[0.0,35.75,0.915,...| 1.0|[-0.1767811960708...|[0.45591944020243...|
                                                                        1.0|
|[0.0,38.92,1.665,...| 0.0|[0.53467906597270...|[0.63057376704516...|
                                                                        0.01
[0.0,39.08,4.0,2...] 0.0 [0.53467906597270...] [0.63057376704516...]
                                                                       0.0
|[0.0,47.0,13.0,2...| 1.0|[-0.1767811960708...|[0.45591944020243...|
                                                                       1.01
| [0.0,55.75,7.08,2...| 0.0| [-0.1767811960708...| [0.45591944020243...|
                                                                        1.0|
|[1.0,16.17,0.04,2...| 1.0|[0.53467906597270...|[0.63057376704516...|
                                                                        0.01
|[1.0,19.0,0.0,1.0...| 0.0|[0.53467906597270...|[0.63057376704516...|
                                                                        0.01
|[1.0,20.0,1.25,1...| 0.0|[0.53467906597270...|[0.63057376704516...|
                                                                       0.01
|[1.0,21.5,11.5,2...| 0.0|[-0.1767811960708...|[0.45591944020243...|
                                                                       1.0
[1.0,22.0,0.79,2...| 0.0|[0.53467906597270...|[0.63057376704516...|
                                                                       0.01
|[1.0,22.67,1.585,...| 1.0|[-0.1767811960708...|[0.45591944020243...|
                                                                        1.0|
|[1.0,23.08,0.0,2...| 0.0|[0.53467906597270...|[0.63057376704516...|
                                                                       0.01
[1.0,23.75,0.415,...] 0.0|[0.53467906597270...|[0.63057376704516...|
                                                                        0.01
+----+
```

only showing top 20 rows

Naive Bayes classifier predictions

++-	+	+	·	+
features 1	label	rawPrediction	probability	prediction
++-	+	+		++
[0.0,20.42,10.5,1	0.01	[-374.71894703985	[1.0,7.1691492545	0.0
[0.0,20.75,10.25,	1.0	[-272.61645936976	[1.0,7.9512154983	0.0
[0.0,20.75,10.335]	1.0	[-358.18373217373	[1.0,2.7828549813	0.0
[0.0,22.67,7.0,2	0.0 [-296.52550073657 [[1.0,6.1034404981	0.0
[0.0,24.75,12.5,2	1.0	[-882.80205063407	[9.16938606433626	1.0
[0.0,30.67,12.0,2	1.0	[-437.66967570185	[1.0,2.3001494432	0.0
[0.0,32.17,1.46,2	1.0	[-2172.3166551623	[0.0,1.0]	1.0
[0.0,35.75,0.915,	1.0	[-1569.0382419969	[0.0,1.0]	1.0
[0.0,38.92,1.665,	0.0	[-516.68712024168	[2.85619336654972	1.0
[0.0,39.08,4.0,2	0.0 [-590.51320509544	[1.0,0.0]	0.01
[0.0,47.0,13.0,2	1.0 [-361.69906371960 [[1.0,4.2718077713	0.01
[0.0,55.75,7.08,2	0.01	[-465.09686661564	[1.0,3.1852541001	0.0
[1.0,16.17,0.04,2	1.0	[-127.34207448934	[1.0,1.2049030087	0.0
[1.0,19.0,0.0,1.0	0.0	[-154.55466029514	[1.0,2.9832451582	0.0
[1.0,20.0,1.25,1	0.0 [-232.95891654432 [[1.0,1.7522842178	0.01
[1.0,21.5,11.5,2	0.0 [-328.39292616749 [[1.0,1.4690448845	0.01
[1.0,22.0,0.79,2	0.0 [-733.32230070910 [[1.0,1.8294086996	0.01
[1.0,22.67,1.585,	1.0	[-285.51305623302	[1.0,4.5883044328	0.0
[1.0,23.08,0.0,2	0.01[-208.73577776562 [1.0,6.0553106679	0.01
[1.0,23.75,0.415,	0.01	[-268.99747875558	[1.0,3.0571078699	0.0
++-	+	+		+

only showing top 20 rows

6.6 Evalue the modles with AUC and overall Accuracy

6.7 A simple comparison on the two modles's performance

6.7.1 Overall Accuracy:

- Logistic Regression classifier carried out a higher overall accuracy (0.86 vs 0.63)
- Both modle can yield predictions accuracy than 0.5 of random
- So Logistic Regression made better classification over Naive Bayes on this training/test set

6.7.2 Area under ROC curve (AUC):

- Logistic Regression classifier carried out a higher AUC (0.88 vs 0.38)
- Logistic Regression classifier has higher discriminative power over class distribution
- 6.7.3 In summary, the Logistic Regression classifier has much better performance over the Naive Bayes, whatever on this perticular training/test set or potential future test datasets.

Question 3 Part 3: Wikipedia Dataset with Logistic Regression and NaiveBayes classification

7.1 Import required labraries

```
In [117]: from pyspark.ml import Pipeline, PipelineModel
          from pyspark.ml.clustering import BisectingKMeans, KMeans, GaussianMixture
          from pyspark.ml.feature import HashingTF, Tokenizer, NGram, IDF, StopWordsRemover
          import os
          import pandas as pd
          from pyspark.sql import SparkSession
          from pyspark.sql.types import *
          from pyspark.sql import Row
          from pyspark.ml.linalg import Vectors
          from pyspark.ml.classification import LogisticRegression, NaiveBayes
          from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
          from pyspark.ml.evaluation import BinaryClassificationEvaluator, MulticlassClassificationEvaluation
          spark = SparkSession \
              .builder \
              .appName("wikipedia_classification") \
              .config("spark.som.config.option", "some-value") \
              .getOrCreate()
```

7.2 Read the raw data and assigne lables with clustering results by K-MEANS

```
|-- title: string (nullable = true)
|-- text: string (nullable = true)
|-- assignedLable: integer (nullable = true)
        title|
                             text|assignedLable|
+----+
|7697605|Konica Minolta Cup|Konica Minolta Cu...|
|7697611| Archer (typeface)|Archer (typeface)...|
+----+
only showing top 2 rows
+----+
|count(1)|
+----+
  154|
  4423
+----+
```

7.3 Cast assigned lables to double and store to DataFrame

```
In [121]: wikiDF = wikiDF.withColumn("label", wikiDF.assignedLable.cast("double"))
       wikiDF.printSchema()
       wikiDF.sample(False, 0.23).show(2)
root
|-- id: string (nullable = true)
|-- title: string (nullable = true)
|-- text: string (nullable = true)
|-- assignedLable: integer (nullable = true)
|-- label: double (nullable = true)
+----+
               title
                               text|assignedLable|label|
+----+
|7697715|Anti-submarine mi...|Anti-submarine mi...|
                                            0.01
|7697725|Northern river shark|Northern river sh...|
+----+
only showing top 2 rows
```

7.4 Split data into Training (80%) and Test (20%) datasets

7.5 Config the pipeines for Logistic Regression and Naive Bayes

7.6 Train Logistic Regression and Naive Bayes models

7.7 Display predictions on the test data

Logistic Regression classifier predictions

++-	+	+
id 1	abel pr	ediction
++-	+	+
7697757	0.01	0.01
7697782	0.01	0.0
7697786	0.01	0.0
7697794	0.01	0.0
7697805	0.01	0.0
++-	+	+
only showi	ng top	5 rows

```
+----+
| id|label|prediction|
+----+
|7698941| 1.0| 1.0|
|7701470| 1.0| 1.0|
|7703762| 1.0| 1.0|
|7705039| 1.0| 1.0|
|7705856| 1.0| 1.0|
```

```
+----+
only showing top 5 rows
Naive Bayes classifier predictions
+----+
  id|label|prediction|
+----+
|7697757| 0.0|
|7697782| 0.0|
            0.0
|7697786| 0.0|
            0.01
|7697794| 0.0|
            0.01
|7697808| 0.0|
            0.0
+----+
only showing top 5 rows
+----+
   id|label|prediction|
+----+
|7697805| 0.0|
             1.01
|7699145| 0.0|
          1.0|
|7699710| 0.0|
+----+
only showing top 5 rows
```

7.8 Evaluate the models with Area under ROC curve (AUC) and overall Accuracy

Area under ROC curve (AUC): 0.00029436006122689424 Accuracy: 0.8594420600858369

7.9 A simple comparison on the two modles's performance

7.9.1 Overall Accuracy:

- lables are assigned by K-MEANS clustering, so overall accuracy was very high
- Logistic Regression classifier carried out a higher overall accuracy (0.99 vs 0.86)
- Both modle can yield predictions accuracy than 0.5 of random
- So Logistic Regression made better classification over Naive Bayes on this training/test set

7.9.2 Area under ROC curve (AUC):

- Logistic Regression classifier carried out a much higher AUC (0.85 vs 0.00)
- Logistic Regression classifier has higher discriminative power over class distribution
- 7.9.3 In summary, the Logistic Regression classifier has much better performance over the Naive Bayes, whatever on this perticular training/test set or potential future test datasets.
- 7.9.4 In our raw data showed at the beginning, one class had much more data points (4423) than the other class (154). This bias significantly affected Naive Bayes classifier -- it had very hight error costs (false positive and false negative cost), but not the Logistic Regression classifier. So in our experiment, at least we can conclude that under this kind of bias, we should avoid using Naive Bayes classifier.