$$\frac{1}{2} \left(\log 7 + \log x - \log 3 \right) + \log \sqrt{3x} =$$

$$=\frac{1}{2}\left(\log\left(7x\right)-\log3\right)+\log\sqrt{3x}=$$

$$=\frac{1}{2}\left(\log\frac{7x}{3}\right) + \log\sqrt{3x} = \log\sqrt{\frac{7x}{3}} + \log\sqrt{3x} =$$

 $\sqrt{x^2} = |X|$

$$= \log\left(\sqrt{\frac{7x}{3}} \cdot \sqrt{3x}\right) = \log\sqrt{\frac{7x \cdot \cancel{3}x}{\cancel{3}}} = \log\sqrt{7x^2} =$$

ATTENZIONE!

$$\frac{122!}{5} = \log (3x-2) + \log x - 2 \log \sqrt{x+1} - 1 =$$

$$= \log \sqrt[5]{3x-2} + \log x - \log (\sqrt{x+1})^2 - \log 10 =$$

$$= \log \frac{x\sqrt[5]{3x-2}}{10(x+1)}$$

$$\log_8 15 + \frac{2}{3} \log_2 15 = \frac{\log_2 15}{\log_2 8} + \frac{2}{3} \log_2 15 =$$

$$= \frac{\log_2 15}{3} + \frac{2}{3} \log_2 15 = \left(\frac{1}{3} + \frac{2}{3}\right) \log_2 15 = \log_2 15$$

VERO O FALSO?

a. $y = \log_{2\sqrt{2}} x$ è una funzione crescente in \mathbb{R} . Require in \mathbb{R}^+

b. $y = \log_{\sqrt{2}} x$ è positiva per x > 1.

c. La funzione $y = \log_{\frac{5}{2}} x$ è decrescente.

d. La funzione $y = \log_{\frac{1}{a}} x$ esiste per a > 0 e $a \ne 1$ ed è crescente per a < 1.

a. Le funzioni $y = \log x^4$ e $y = 4 \log x$ sono identiche. No, non harms le sters dominis

b. Le due equazioni $y=\ln(x^2-1)$ e $y=\ln(x-1)+\ln(x+1)$ rappresentano la stessa funzione.

c. La funzione $y = \log_2 x - 1$ ha come funzione inversa $y = 2^{x+1}$.

d. Le funzioni y = 2x e $y = 3^{\log_3 2x}$ hanno lo stesso grafico.

e. La funzione $y = \log_2 x^2$ ha come dominio l'insieme dei numeri reali.

V

$$y = lu(x^{2}-1)$$

$$= lu[(x-1)(x+1)]$$

y = lu (x-1) + lu (x+1) $\begin{cases} x-1>0 & \begin{cases} x>1 \\ x+1>0 & \begin{cases} x>1 \end{cases} = > \boxed{x>1} \end{cases}$

x2-1>0

NON RAPPRESENTANO LA STESSA FUNZIONE!

DOMINIO [x <-1 v x > 1]

INVERSA

$$x = \log_2 y - 1$$

- x+1=logzy e-applies expr 2 = y Sí 2 = y Sí

$$2^{x+1} = y \quad S$$

y=2× y=3log3^{2×} hams le sters grofies?

NO ferdie 3log3^{2×}=2×

solo per ×>0

V× loga a = ×

ferdie l'exponensiole in lose a

e il logarithe in lose a

l'inverse dell'oltra

y=2× y=log33^{2x} hours le stesse grafice?