neo4j

Graph Machine Learning for 2024

Agenda

- **GML** Overview
- Looking Forward: Where is this Going? (Hint: GenAI)
- 3. Using GML to Enrich a Grounding Knowledge Graph
- Demo-Semantic Search with Recommendations

Zach Blumenfeld Product Specialist DS/ML

GML Overview

What is a Graph?

Simply put, a graph consists of nodes connected by relationships

Graph databases, like Neo4j, structure and store data as graphs

Property Graph Components

Nodes represent entities in the graph

Property Graph Components

Nodes represent entities in the graph

Relationships represent associations or interactions between nodes

Property Graph Components

Nodes represent entities in the graph

Relationships represent associations or interactions between nodes

Properties represent attributes of nodes or relationships

Graph is the Superset of All Data Structures for Al

What is Graph Machine Learning (GML)?

The application of machine learning to graphs, specifically for predictive and prescriptive tasks

Many Applications

Recommendation

What should I recommend to a customer next?

Fraud Detection

How do I identify fraud rings and suspect activity?

Customer 360

Can I resolve information and relationships across fragmented customer records?

Supply Chain

What is the most optimal route through a supply chain network?

Supervised GML Tasks

Train on labeled graphs to make predictions

Node Property Prediction

Predict a discrete or continuous node property, called **node classification** and **node regression** respectively.

Graph Property Prediction

Predict a discrete or continuous property of a graph or subgraph.

Link Prediction

Predict if a relationship should exist between two nodes. Often a binary classification task, but can sometimes include more link types or continuous properties.

Unsupervised GML Tasks

Representation Learning

Automatically generate features based on graph structure for downstream ML and EDA.

Similarity

Find and measure similar pairs of nodes in the graph. Use for recommendation, entity resolution, and more.

Training on unlabeled graphs to learn patterns

Clustering / Community Detection

Identify groups of nodes that have higher connectivity between each other than the rest of the graph.

Centrality & Pathfinding

Find important and influential entities in the graph. Identify and evaluate more efficient paths and trees.

How to Accomplish Graph Machine Learning?

Classic Graph Algorithms

Results from algorithms like pagerank for centrality, Louvain for community detection, or node similarity.

Non-GNN Graph Embeddings

Low-dim vector representations of nodes s.t. similarity between vectors approximates similarity between nodes (can also be for triples, paths, or sub-graphs)

Graph Neural Networks (GNNs)

End-to-end solution for the ML task. Compression happens in hidden layers and is learned during model training

Graph Algorithms

- Use independently for unsupervised community detection, similarity, centrality, or pathfinding.
- Use as features for conventional downstream models, such as linear and logistic regressions, random forests, or neural networks to perform GML tasks.

Pathfinding & Search

- A* Shortest Path
- All Pairs Shortest Path
- Breadth & Depth First Search
- Delta-Stepping Single-Source
- Dijkstra Single-Source
- Dijkstra Source-Target
- Minimum Spanning Tree & K-Spanning Tree
- Random Walk
- Yen's K Shortest Path
- Minimum Directed Steiner Tree
- Topological Sort
- Longest Path

Community Detection

- · Conductance Metric
- K-1 Colorina
- K-Means Clustering
- Label Propagation
- Leiden Algorithm
- Local Clustering Coefficient
- Louvain Algorithm
- Max K-Cut
- Modularity Optimization
- Speaker Listener Label Propagation
- Strongly Connected Components
- Triangle Count
- Weakly Connected Components

Centrality

- ArticleRank
- Betweenness Centrality & Approx.
- Closeness Centrality
- Degree Centrality
- Eigenvector Centrality
- Harmonic Centrality
- Hyperlink Induced Topic Search (HITS)
- Influence Maximization (CELF)
- PageRank
- Personalized PageRank

Topological Link Prediction

- Adamic Adar
- Common Neighbors
- Preferential Attachment
- Resource Allocations
- Same Community
- Total Neighbors

Similarity

- K-Nearest Neighbors (KNN)
- Node Similarity
- Filtered KNN & Node Similarity
- Cosine & Pearson Similarity Functions
- Euclidean Distance Similarity Function
- **Euclidean Similarity Function**
- · Jaccard & Overlap Similarity Functions

Node Embeddings

Most Common Type of Graph Embedding

What?

- Low-dimensional representations of nodes
- Similarity between vectors approximate similarity between nodes in the graph

Why?

- Save time & reduce work for generating ML features - Generating custom features manually can be time consume and imprecise, embeddings help automate and scale the process.
- Increase downstream ML performance

Graph Neural Networks (GNN)

Take Graph as Input

Transform Into Intermediate **Embeddings**

Feed into Final Layer for a **Prediction Task**

Common examples: GCN, GraphSAGE, GAT

GNNs Have Their Pros and Cons

Pros

- Can automatically learns important signals in the graph
- Most recent GNNs are inductive (train a model and predict on new graph data)
- Potential to handle deep complex graph structure
- End-to-end solution for supervised learning

Cons

- Relatively complicated. Can still be difficult to construct, tune, and avoid overfitting. Requires high degree of technical expertise.
- Can be difficult to scale. High time & space complexity. Usually requires accelerated hardware-like GPU.
- Limited depth. Usually "shallow" to prevent over-smoothing and/or reaching the diameter of the graph
- Low interpretability/explainability

Looking Forward -Where is this Going?

Generative AI is Taking Storm!

Automate data retrieval tasks

Improve customer service experiences

Expedite reading, 3 understanding, & summarizing Generate content & code

POWERING GENERATIVE AI APPS

What GenAl Can't Do!

Lack of enterprise domain knowledge Limited input sizes for fine tuning Inability to verify answers Sensitive to prompt phrasing & injection **Hallucinates** Ethical & data bias concerns

Generative AI, LLMs and Knowledge Graphs

RAG enables... **Natural language** search on factual information retrieved from a database

Where is GML Valuable?

In Model **Enhancement**

Use GML in Language Models & Foundation Modeling

Knowledge Graph Enrichment

Use GML to Enrich Knowledge Graphs for Improved RAG

Large graph model research underway in academia

GreaseLM & **DRAGON**

High-Level Methodology:

- 1. **Retrieve:** Retrieve entities from KG based on prompt using Entity Linking
- Fuse: Leverage model that fuses LM and GNN together to generate a response based on prompt and subgraph

GreaseLM (**G**raph **Reas**oning **E**nhanced **L**anguage **M**odels For Question Answering)

GreaseLM (**G**raph **Reas**oning **E**nhanced **L**anguage **M**odels For Question Answering)

Retrieve (Entity LInking)

Fuse (Cross-Modal Layers)

*Use Pre-Trained LM and GNN

DRAGON (**D**eep Bidi**r**ectional L**a**n**g**uage-Kn**o**wledge Graph Pretrai**n**ing)

Similar to GreaseLM but as its own foundation model with pre-training / self-supervised objective function

Quick Note on Upcoming Work: Integrating Semi-Structured Knowledge into Language Models

- Splitting prompts into sub-portions for different structured and unstructured tasks
- Use different retrieval mechanisms (graph, text, etc.) for each subportion as appropriate

Still In Development. Research Ongoing

Overall:

- **Future potential** -Research indicates Graph Models in RAG paradigm can improve performance in some instances
- Still very new Nascent academic research at this point
- Not the most accessible for application at the moment

Where is GML Valuable?

In Model Enhancement

Use GML in Language Models & Foundation Modeling

Knowledge Graph Enrichment

Use GML to Enrich Knowledge Graphs for improved RAG

GML in Knowledge Graph Enrichment

Enhance the Graph to enable LLMs to not only use facts, but also make intelligence inferences on your enterprise data

Similarity for Recommendation and Entity Resolution

Link Prediction to Discover Missing Relationships Node Prediction,
Community Detection
& Centrality Scoring
For Tagging and
Identifying Entities

Demo with Neo4j

Neo4j Graph Data Science

highly optimized, massively parallel, scalable

- Run graph algorithms to generate insights: 65+ algorithms across centrality, path finding, community detection, similarity, and more
- **Engineer graph features for ML:** Leverage relationship information with algorithms & node embeddings
- **Build graph native ML pipelines:** Link prediction, node classification & property regression
- **Integrate with external ML frameworks:** Python client, blazing fast import & export, formatting for dataframes and tensors

Demo

H&M Personalized Fashion Recommendations

Provide product recommendations based on previous purchases

neo4j-product-examples/ml-genai/tree/main/retail-hm

Thank you!