

智嵌 ZQWL-IO-1BNRC16-I 使用手册

版本号: V1.1

拟制人:智嵌物联团队

时间: 2017年11月02日

密级:公开

修订信息

编号	修订内容简述	修订 日期	订前 版本	订后 版本	拟制	审核	批准
1	创建						
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							

www.zhiqwl.com

目 录

前言	Ī		3
1	硬件巧)能介绍	3
	1.1	网络特性	3
	1.2	硬件特点	4
2	模块硕	見件接口	5
	2.1	模块接口及尺寸	5
3	模块箱	ì入接线	6
	3.1	模块电源输入	6
	3.2	模块开关量输入	6
4	模块辅	计出接线	7
5	模块参	÷数配置	7
	5.1	智嵌网络 IO 配置软件	7
	5.2	网页参数配置	9
6	模块通	1讯	. 13
	6.1	RS485 通讯	. 13
7	模块复	[位以及固件升级	. 13
	7.1	模块复位	. 13
	7.2	模块固件升级	. 14
8	模块通	i 讯协议	. 14
	8.1	自定义协议	. 14
	1	、控制指令	. 14
	2	、配置指令	. 16
	8.2	Modbus rtu 协议	. 17
	8.3	Modbus rtu 指令码举例	. 18
	8.4	Modbus TCP 协议	. 20
Q	附录	短锯物联 IO 系列产品选利表	22

前言

智嵌物联系列产品命名规则一览:

GP:GPRS dtu & GPS系列 ECAN:can转网络系列

RF:射频识别系列 ZB: zigbee通讯系列 RCAN:串口转CAN系列

FiB:光纤转换系列

IO 控制板系列产品命名规则如下:

如: ZOWL-IO-1CNRC16-I

12V供电/带外壳/NPN输入/10A电流/网络+串口/16路输出/通讯隔离

1 硬件功能介绍

ZQWL-IO-1BNRC16-I是一款16路10A继电器输出的工业级IO控制板。他具有1路以太网口和1路RS485/RS232通讯接口;控制板的CPU供电采用隔离电源,RS485/RS232的电源、通讯均隔离,硬件具有超强的抗干扰能力。该控制板网络部分采用智嵌"ZQWL-IO-3BTLC32"核心模块,保证了网络通讯的稳定性。

该控制板提供三种通讯协议: Modbus TCP、Modbus RTU和自定义协议。

1.1 网络特性

- · 支持静态和动态 IP;
- 支持网线交叉直连自动切换
- 工作端口,目标 IP 和目标端口均可设定;
- TCP 服务器模式下,可支持4个客户端的连接;

- · 支持DNS功能;
- 支持网络在线升级固件功能;
- 可以跨越网关,交换机,路由器;可以工作在局域网,也可工作在互联网;
- 支持协议包括 ETHERNET、ARP、IP、ICMP、UDP、DHCP、TCP;
- 支持Modbus TCP 转RTU功能;

1.2 硬件特点

表 1 硬件参数

序号	名称	参数
1	型号	ZQWL-IO-1BNRC16-I
2	供电电压	11V~13V (推荐12V)
3	供电电流	小于340ma
4	网络核心模块	ZQWL-IO-3BTLC32
5	RS485/RS232	通讯带隔离,波特率支持600 [~] 460800
6	继电器输出	16路继电器输出,每路都有常开、常闭和公共端3个
		端子;光电隔离;每路支持10A电流;
7	开关量输入	16个开关量输入接口,每路信号均有光电隔离
8	指示灯	电源、输入以及输出都带指示灯
9	出厂默认参数	RS485/RS232: 115200,8,n,1; 控制板地址:1;
		IP:192.168.1.253
10	RESET按键	小于5秒,系统复位;大于5秒,回到出厂设置
11	工作温度	-40°C [~] 85°C
12	存储温度	-60°C~125°C

2 模块硬件接口

2.1 模块接口及尺寸

图 2.1.1 模块正视

图 2.1.4 尺寸

3 模块输入接线

3.1 模块电源输入

控制板有两种供电方式:绿端子和黑色插头,两种任选其一:

控制板电源要求:

表 3.1.1 控制板功率测试

项目	电压(伏)	电流(毫安)	功率(瓦)
16 路常闭闭合,常开断开(空载)	12	50	0.60
1 路常闭断开,常开闭合	12	80	0.96
2 路常闭断开,常开闭合	12	110	1.32
3 路常闭断开,常开闭合	12	140	1.68
4 路常闭断开,常开闭合	12	170	2.04
路数增1	12	电流增加 30	功率增加 0.36

测试条件: 温度 25°, 湿度 46%。

由以上数据可以得出,控制板在满负荷时功率为 6.36 瓦,因此模块的供电电源应选择电压 12V,电流大于 530ma 即可。比如选 12V/1a 电源给控制板供电。

3.2 模块开关量输入

本控制板为 NPN 型输入,与外部设备连接示意图如下:

图 5 输入连接方式

由上图可知,外部设备的输出端接控制板的输入(X1~16),并且外部设备要和控制板共地(可接到控制板的"GND"端子上)。

表 4 控制板输入电平(6V~12V规格,针对12V控制板)

输入(X1~16)电压	逻辑值
0~4V	0
4V~6V	不确定
6V~12V	1
大于 12V	长时间会损伤控制板

每个输入端子都有标示,如下图:

4 模块输出接线

该控制板共有 16 路 3A 磁保持继电器输出,每路都有常开、常闭和公共端三个触点;采用宏发原装继电器,每路可承载负荷如下:

 名称
 参数

 触点材料
 AgNi

 触点负载
 1A/125VAC;3A/30VDC

 最大切换电流
 3A

 接触电阻
 100mΩMax at 10ma/30VDC

 机械寿命
 1000000000 次

表 4.1.1 继电器可承载负荷

每路继电器的公共端触点互相独立,16 路可以分别控制不同的电压。每个端子均有标示(见图 2.1.3)。

5 模块参数配置

本模块可以通过"智嵌串口服务器配置软件"以及网页的方式进行参数的配置。注意, 模块只有重启后,新设置的参数才生效。

5.1 智嵌网络 IO 配置软件

可以通过配置软件对模块的参数配置,可以配置的参数如下:模块 IP,子网掩码,网关,DNS 服务器,MAC 地址(也可以采用出厂默认),1 路 RS485/RS232 的参数;也可以通过配置软件对模块进行固件升级。

使用方法如下:

- 1、 将模块通过网线和电脑或路由器连接,并给模块上电,RUN 灯闪烁(约 1Hz)表示模块启动正常。
- 2、 基本参数设置

图 5.1.1 配置软件

- IP 地址类型支持静态 IP 和动态 IP:
- MAC 地址默认情况下由系统自行计算得到,保证每个模块不同(也可以由用户自行设定)。
- •波特率支持: 600, 1200,2400,4800,9600,14400,19200,38400,56000,57600,115200,128000,230400,25600,460800,921600,1024000。
 - 工作模式支持: TCP SERVER, TCP CLIENT, UDP SERVER, UDP CLIENT。
 - 该模块支持 DNS 功能,可以在目标 IP/域名栏填写所要连接的域名网址。
- •用户名和密码是为网页配置登陆所用,默认用户名是 admin,密码是 admin,可以修改(用户名只能用配置软件修改,密码既可用配置修改也可以用网页修改)。

点击上图中的"搜索设备",如果搜索成功,设备列表中:

图 5.1.2 模块搜索

需要修改模块的参数时,需要点击"保存设置"后,参数才能保存到模块中。

用该配置软件可以对模块进行固件升级,如需要则可以联系厂家获取最新固件,升级功能要慎用。

5.2 网页参数配置

网页配置提供中英文两个版本,如果要使用网页进行参数配置,首先要知道模块的 IP,如果不慎忘记,可以拉按住"RESET"按钮,保持 5 秒,模块恢复出厂设置,此时模块的 IP 是: 192.168.1.253。

1) 系统登录

在浏览器中输入: http://192.168.1.253/, 回车,则出现配置网页,需要认证用户名和密码(和配置软件中的一致),初始用户名为: admin,初始密码为: admin。

中文版如图 5.1.3, 英文版如图 5.1.4 所示:

Copyright ② [2015] 深圳智嵌物联网电子技术有限公司 All rights reserved

图 5.1.3 中文版系统登录

Solution (2015) SHENZHEN ZHIQIAN INTERNET OF THINGS CO., Ltd All rights reserved 图 5.1.4 英文版系统登录

登陆成功后就可以对模块配置了。

2) IP 地址配置

点击网页左侧的"模块 IP 配置", 出现如图 5.1.5:

Copyright ③ [2015] 深圳智敏物联网电子技术有限公司 All rights reserved

www.zhiqwl.com 10

图 5.1.5 模块 IP 配置

在"IP 地址配置"页面中,可以配置模块地址、IP 信息、网页访问端口以及是否要使用自动获取 IP, 配置好后点击"提交",注意需要重启后新配置的参数才能生效。

3) USART 配置

点击网页左侧的"USART 配置",即 RS485参数。出现如图 5.1.6:

Copyright © [2015] 深圳智裝物联网电子技术有限公司 All rights reserved

图 5.1.6 USART 配置

- 在"USART 配置"页面中,可以设置所需的 USART 参数:波特率、数据位、停止位以及校验位。
- 工作模式有 4 种: TCP_SERVER、TCP_CLIENT、UDP_SERVER、UDP_CLIENT。 这 4 种模式只能任选 1 种。

当选择"TCP_SERVER"或"UDP_SERVER"模式后,"目标地址"和"目标端口"无意义。

当选择 TCP_CLIENT 或 UDP_CLIENT 后,"目标地址"和"目标端口"就是所要连接的目的设备地址。

注意当选用"Modbus TCP转 RTU"功能时,工作模式必须选择"TCP SERVER";

● "注册心跳包"含义:当工作模式选"TCP_CLIENT"模式时,如果"注册心跳包时间"不为0,则当 TCP 连接无数据交换时,模块自动向 TCP 服务器发送"注册心跳包数据",发送时间间隔即为"注册心跳包时间";如果"注册心跳包时间"设置为0,禁止心跳包功能。

4) IO 类型配置

点击网页左侧的"IO类型配置",出现如图 5.1.7:

Z()WL 智嵌物联	智嵌物联网络I0系列产品参数配置 ZQWL-IO							
模块IP配置	I0类型配置							
USART配置	IOO1: ○ OUT ● IN IO17: ● OUT ○ IN							
IO类型配置	IOO2: ○ OUT ● IN IO18: ● OUT ○ IN							
IO状态控制	1003: ○ OUT ● IN							
密码管理	1005: ○ OUT ● IN 1021: ● OUT ○ IN							
产品信息	IOO6: ○ OUT ● IN IO22: ● OUT ○ IN IO07: ○ OUT ● IN IO23: ● OUT ○ IN							
重启设备	IOO8: ○ OUT ● IN IO24: ● OUT ○ IN							
系统登录	1009: ○ OUT ● IN							
	IO14: ○ OUT ● IN							

Copyright © [2015] 深圳智嶽物联网电子技术有限公司 All rights reserved

图 5.1.7 IO 类型配置

注意,该模块的 IO 类型不能更改(此页面无意义)。

5) IO 状态控制置

点击网页左侧的"IO 状态控制", 出现如图 5.1.8

Copyright © [2015] 深圳智嶽物联网电子技术有限公司 All rights reserved

图 5.1.8 IO 状态控制

在 "IO 状态控制"页面中,可以实现对 IO 状态的读取和控制,上图中 "L"表示低电平 (0V 或无信号),"H"表示高电平 (3.3V 或有信号)。其中 IO1~16 无意义;IO17~32 对应控制板的 16 路继电器 Y1~16。

用同样的方法可以分别打开"密码管理"、"产品信息"、"重启设备"、"系统登录"等页面,逐一对模块配置。

6 模块通讯

该模块有 1 路 RS485/RS232 接口和 1 个 RJ45 接口, 内置了网络与 RS485/RS232 数据透 传以及 Modbus TCP 转 RTU 功能(即串口服务器功能)。**注意,RS485 和 RS232 不能同时使用。**

可通过 RS485 接口实现与智嵌 RS485 型 IO 模块的级联,最大可级联 16 个,其拓扑结构如图 6.1.1 所示:

图 6.1.1 网络型 IO 与 RS485 型 IO 模块级联

6.1 RS485 通讯

RS485 通讯接口具有 ESD 防护器,其中 RS485 采用了自动换向高性能 485 芯片,为通讯的稳定性提供了强大的硬件支持。

RS485 参数可以通过智嵌串口服务器配置软件配置,注意,RS485 对应配置软件的 "PORT1"(PORT2 不用)。RS485 参数也可以通过配置命令配置(见第 8 节:模块通讯协议)。

7 模块复位以及固件升级

7.1 模块复位

控制板有 "CFG" 按钮,可以用此复位控制板和恢复出厂设置,如:

按下"RST"按键在松开(注意下时间要小于5秒),控制板复位。

按住 "RST" 按键并保持 5 秒以上,等到 "SYS" 指示灯快闪时(10Hz 左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数: 波特率 115200; 数据位 8; 不校验; 1 位停止位;

网络参数: IP 为 192.168.1.253

控制板地址: 1。

7.2 模块固件升级

注意,需要升级固件时,先与厂商联系以获取新的固件。

8 模块通讯协议

该模块支持三种协议: Modbus TCP、Modbus RTU 和自定义协议。

Modbus TCP 协议仅适用于网络,使用该协议时*必须启动"Modbus TCP 转RTU"功能*,如下配置:

Modbus RTU 和自定义协议对于网络和 RS485/RS232 都适用,若选用网络, 必须不能启动 "Modbus TCP 转RTU"功能。

8.1 自定义协议

自定义协议采用固定帧长,**采用十六进制格式**,并具有帧头帧尾标识,该协议适用于 "ZQWL-IO"系列带外壳产品。该协议为"一问一答"形式,主机询问,控制板应答,只 要符合该协议规范,每问必答。

该协议指令可分为两类:控制指令类和配置指令类。

控制指令只要是控制继电器状态和读取开关量输入状态。配置指令类主要是配置板子的运行参数以及复位等。

1、控制指令

控制类指令分为2种格式:一种是集中控制指令,一种是单路控制指令。

(1) 集中控制指令

此类指令帧长为 15 字节,可以实现对继电器的集中控制(一帧数据可以控制全部继电 器状态)。详细指令如表 8.0.1 所示:

ZOWL-IO 集中控制指令表 表 8.0.1

	帧头		地址码	命令码	8 字节数据	校验和	帧尾	
指令名称	Byte1	Byte2	Byte3	Byte4	Byte5~ Byte12	Byte13	Byte14	Byte15
写继电器状态	0X48	0X3A	Addr	0X57	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"写继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44
读继电器状态	0X48	0X3A	Addr	0X53	全为 0XAA	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"读继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44

注:表中的"8字节数据"即对应继电器板的状态数据, 4个bit表示1路状态,每1个字 节表示 2 路状态:

DATA1	DATA2	DATA3	DATA4	DATA5	DATA6	DATA7	DATA8
1/2	3/4	5/6	7/8路状	9/10	11/12	13/14	15/16
路状态	路状态	路状态	态	路状态	路状态	路状态	路状态

每个字节表示两路: 低 4 位表示奇数路, 高 4 位表示偶数路, 例 如 DATA1 为 0x10, 其含义是第 1 路断开, 第二路闭合; 例如 DATA2 为 0x01, 其含 义是第 3 路闭合,第 4 路断开。 4.43,65

集中控制命令码举例(十六进制):

向地址为1的控制板写继电器状态:

发送: 48 3a 01 57 Q1 00 01 00 00 00 00 00 dc 45 44

此命令码的含义是令地址为1的控制板的第1个和第5个继电器常开触点闭合,常闭触 点断开; 其余继电器为常开触点断开, 常闭触点闭合。

注意继申器板只识别0 和1,其他数据不做任何动作,所以如果不想让某一路动作,可 以将该路赋为其他值。例如不让第3个和第7个继电器改变状态,可以发如下指令:

48 3a 01 57 01 02 01 02 00 00 00 00 e0 45 44

只需要将第2和第4路置为02(或其他值)即可。

控制板收到以上命令后, 会返回控制板继电器状态, 如:

48 3a 01 54 01 00 01 00 00 00 00 00 d9 45 44

(2) 单路控制指令

此类指令帧长为10字节,可以实现对单路继电器的控制(一帧数据只能控制一个继电 器状态)。详细指令如表 8.0.2 所示:

表 8.0.2 ZQWL-IO 单路控制指令表

	1	帧头	地址码	命令码		4 字节数据			帧尾	
指令名称	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10
写继电器状态	0X48	0X3A	Addr	0X70	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44
应答"写继电器状态"	0X48	0X3A	Addr	0X71	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44
读继电器状态	0X48	0X3A	Addr	0X72	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44
应答"读继电器状态"	0X48	0X3A	Addr	0X71	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44

上表中, Byte3 是控制板的地址, 取值范围 0x00~0xfe, 用户可以通过配置指令来设置 地址码; Byte5 是要操作的继电器序号, 取值范围是 1 到 16(对应十六进制为 0x01 到 0x10); Byte6 为要操作的继电器状态: 0x00 为常闭触点闭合常开触点断开, 0x01 为常闭触点断开 常开触点闭合,其他值无意义(继电器保持原来状态); Byte7 和 Byte8 为延时时间 T(收到 Byte6 为 0x01 时开始计时,延时结束后关闭该路继电器输出),延时单位为秒,Byte7 是时 间高字节 TH, Byte8 是时间低字节 TL。例如延时 10 分钟后关闭继电器,则:

时间 T=10 分钟=600 秒, 换算成十六进制为 0x0258, 所以 TH=0x 02, TL=0x 58。

如果 Byte7 和 Byte8 都填 0x00,则不启用延时关闭功能(即继电器闭合后不会主动关闭)。

单路命令码举例(十六进制):

● 将地址为1的控制板的第1路继电器打开:

发送: 48 3a 01 70 01 01 00 00 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态:

48 3a 01 70 01 01 00 00 45 44

● 将地址为1的控制板的第1个继电器关闭:

发送: 48 3a 01 70 01 00 00 00 45 44

控制板收到以上命令后,将第1路的继电器常闭触点闭合,常开触点断开,并会返回控制板继电器状态:

48 3A 01 71 01 00 00 00 45 44

● 将地址为1的控制板的第1路继电器打开延时10分钟后关闭:

发送: 48 3a 01 70 101 02 58 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态,然后开始计时,10分钟之后将第一路的继电器常闭触点闭合,常开断开。

● 将地址为1的控制板的第1路继电器打开延时5秒后关闭:

发送: 48 3a 01 70 01 01 00 05 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态,然后开始计时,5秒之后将第一路的继电器常闭触点闭合,常开断开。

2、配置指令

当地址码为 0xff 时为广播地址,只有"读控制板参数"命令使用广播地址,其他都不能使用。

表 8.1.2 ZOWL-IO 配置指令表

			及 0.1.1.2					
		帧头	地址码	命令码	8字节数据	校验和	帧	尾
读控制板参数	0X48	0X3A	0XFF	0x60	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
			或 Addr					
应答"读控制板参数"	0X48	0X3A	Addr	0x61	参考表 8.1.3	前 12 字节和 (只取低 8 位)	0X45	0X44
修改波特率	0X48	0X3A	Addr	0x62	参考表 8.1.4	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"修改波特率"	0X48	0X3A	Addr	0x63	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
修改地址码	0X48	0X3A	Addr	0x64	参考表 8.1.5	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"修改后地址码"	0X48	0X3A	Addr	0x65	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
读取版本号	0X48	0X3A	Addr	0x66	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"读取版本号"	0X48	0X3A	Addr	0x67	参考表 8.1.6	前 12 字节和 (只取低 8 位)	0X45	0X44
恢复出厂	0X48	0X3A	Addr	0x68	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"恢复出厂"	0X48	0X3A	Addr	0x69	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
复位	0X48	0X3A	Addr	0x6A	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"复位"	0X48	0X3A	Addr	0x6B	任意	前 12 字节和 (只取低 8 位)	0X45	0X44

表 8.1.3 控制板参数表

字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
	控制板地址	波特率	数据位	校验位	停止位	未用	未用	未用
		0x01:1200	7,8,9	'N': 不校验	1:1bit			
		0x02:2400		'E': 偶校验	2:1.5bit			
		0x03:4800		'D': 奇校验	3:2bit			
		0x04:9600						
		0x05:14400						
		0x06:19200						
		0x07:38400						
含义		0x08:56000						
		0x09:57600						
		0x0A:115200						
		0x0B:128000						
		0x0C:230400						
		0x0D:256000						
		0x0E:460800						
		0x0F:921600						
		0x10:1024000						

表 8.1.4 改波特率表

字节	1	2	3	4	5	6	7	8
含义	修改后波特率码	数据位	校验位	停止位	未用	未用	未用	未用

表 8.1.5 修改地址表

字节	1	2	3	4	5	6	7	8
含义	修改后地址	未用						

表 8.1.6 读取版本号表

字节	1	2	3	4	5	6	7	8
含义	ʻI'	'O'	·_,	'0'	'8'	·_,	'0'	'0'

版本号为 ascii 字符格式,如 "IO-08-00",IO 表示产品类型为 IO 控制板; 08 表示 8 路系列; 00 表示固件版本号。

8.2 Modbus rtu 协议

本控制板实现部分必要的 modbus rtu 协议,通讯格式如下:

Addr	Cmd	Data(n 字节)	Crc (2字节)
------	-----	------------	-----------

Addr 为 0xff 时,是广播地址,所有从机都能接收并处理,必要时要做出回应。广播地址可以用于对控制板的编址以及获取控制板的地址。

控制板实现如下功能码:

Cmd	含义	备注
0x01	读线圈	Data: 2 字节起始地址+2 字节线圈个数,线圈个数不能超过 8
0x03	读寄存器	Data: 2 字节起始地址+2 字节寄存器个数(寄存器含义见表

		6.2.1)
0x05	写单个线圈	Data: 2字节起始地址+2字节线圈值
0x06	写单个寄存器	Data: 2字节起始地址+2字节寄存器值
0x0f	写多个线圈	Data: 2字节起始地址+2字节线圈个数+1字节个数+数值

表 8.2.1 保持寄存器地址以及含义

寄存器地址	含义	备注
0X0000	控制板地址	取值范围: 0X0000~0X00FF
0X 0001	波特率	实际波特率除以 100, 比如 12 代表 1200, 96 代表 9600,1152
		代表 115200,10240 代表 1024000 等
0X 0002	数据位	仅支持 0X0007, 0X0008, 0X0009 三种
0X 0003	校验位	0X004E: 不校验;
		0X0045: 偶校验;
		0X004F: 奇校验
0X 0004	停止位	0X0001: 1bit
		0X0002: 1.5bit
		0X0003: 2bit
0X 0005~	版本号	ASCII 表示, 比如"IO-08-00": IO 表示产品类型为 IO 控制板;
0X 000c		08 表示 8 路系列; 00 表示固件版本号
0X 000d	恢复出厂	读无意义; 当写 0X0001 时,控制板恢复出厂设置,写其他值
		无意义。
0X 000e	复位	读无意义; 当写 0X0001 时,控制板复位,写其他值无意义。

注意:使用协议修改控制板参数时(波特率、地址),如果不慎操作错误而导致无法通讯时,可以按住"RESET"按键并保持 5 秒,等到"SYS"指示灯快闪时(10Hz 左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数: 波特率 115200; 数据位 8; 不校验; 1 位停止位; 控制板地址: 1。

8.3 Modbus rtu 指令码举例

以地址码 addr 为 0x01 为例说明。

1) 读线圈(0X01)

为方便和高效,建议一次读取16个线圈的状态。

外部设备请求帧:

Addr (ID)	功能码	起始地址	起始地址	线圈数量	线圈数量	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X01	0X00	0X00	0X00	0X10	计算	获得

控制板响应帧:

Addr (ID)	功能码	字节数	线圈状态	CRC16	CRC16
				(高字节)	(低字节)
0X01	0X01	0X01	XX	计算获得	

其中线圈状态 XX 释义如下(B0~B15 是 XX 的 16 个 bit 位):

В7	B6	B5	B4	В3	B2	B1	В0
线圈 8	线圈 7	线圈 6	线圈 5	线圈 4	线圈 3	线圈 2	线圈 1

B15	B14	B13	B12	B11	B10	В9	B8
线圈 16	线圈 15	线圈 14	线圈 13	线圈 12	线圈 11	线圈 10	线圈 9

B0~B15 分别代表控制板 16 个继电器状态 (Y1~Y16), 位值为 1 代表继电器常开触点闭合,常闭触点断开; 位值为 0 代表继电器常开触点断开,常闭触点闭合; 位值为其他值,无意义。

2) 读寄存器 (0X03)

寄存器地址从 0X0000 到 0X000E,一共 15 个寄存器。其含义参见表 6.2.1。建议一次读取全部寄存器。

外部设备请求帧:

Addr (ID)	功能码	起始地址 (高字节)	起始地址 (低字节)	寄存器数量 (高字节)	寄存器数量 (低字节)	CRC16 (高字节)	CRC16 (低字节)
0X01	0X02	0X00	0X00	0X00	0x0F	计算	获得

控制板响应帧:

Addr	功能码	字节数	数据1	数据 1	 数据 30	数据 30	CRC16	CRC16
(ID)			(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X03	0X1E	XX	XX	 XX	XX	计算	获得

3) 写单个线圈(0X05)

外部设备请求帧:

Addr (ID)	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X05	0X00	XX	XX	0X00	计算	获得

注意:起始地址(低字节)取值范围是 0X00~0X0E 分别对应控制板的 16 个继电器 (Y1~Y16);线圈状态(高字节)为 0XFF 时,对应的继电器常开触点闭合,常 闭触点断开;

线圈状态(高字节)为0X00时,对应的继电器常开触点断开,常闭触点闭合。 线圈状态(高字节)为其他值时,无意义。

控制板响应帧:

Addr (ID)	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X05	0X00	XX	XX	0X00	计算	获得

4) 写单个寄存器 (0X06)

用此功能码既可以配置控制板的地址、波特率等参数,也可以复位控制板和恢复出厂设置。

注意:使用协议修改控制板参数时(波特率、地址),如果不慎操作错误而导致无法通讯时,可以按住"RST"按键并保持5秒,等到"SYS"指示灯快闪时(10Hz左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数: 波特率 115200; 数据位 8; 不校验; 1 位停止位;

控制板地址: 1。

外部设备请求帧:

Addr (ID)	功能码	起始地址 (高字节)	起始地址 (低字节)	寄存器数据 (高字节)	寄存器数据 (低字节)	CRC16 (高字节)	CRC16 (低字节)
0X01	0X06	0X00	XX	XX	XX	计算	获得

控制板响应帧:

Addr (ID)	功能码	起始地址	起始地址	寄存器数据	寄存器数据	CRC16	CRC16
-----------	-----	------	------	-------	-------	-------	-------

		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X06	0X00	XX	XX	XX	计算	获得

5) 写多个线圈 (0X0F)

建议一次写入16个线圈状态。

外部设备请求帧:

Addr	功能码	起始地址	起始地	线圈数量	寄存器数据	字节数	线圈状态	CRC16	CRC16
(ID)		(高字节)	址 (低	(高字节)	(低字节)			(高字节)	(低字节)
			字节)						
0X01	0X0F	0X00	XX	0X00	0X0F	0X01	XX	计算	享 获得

其中,线圈状态 XX 释义如下:

В7	B6	B5	B4	В3	B2	B1	В0
线圈 8	线圈 7	线圈 6	线圈 5	线圈 4	线圈 3	线圈 2	线圈 1

B15	B14	B13	B12	B11	B10	B9	B8
线圈 16	线圈 15	线圈 14	线圈 13	线圈 12	线圈 11	线圈 10	线圈 9

B0~B15 分别代表控制板 16 个继电器状态 (Y1~Y16), 位值为 1 代表继电器常开触点闭合,常闭触点断开;位值为 0 代表继电器常开触点断开,常闭触点闭合;位值为其他值,无意义。

控制板响应帧:

Addr	功能码	起始地址	起始地址	线圈数量	寄存器数据	CRC16	CRC16
(ID)		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X0F	0X00	XX	0X00	0X0F	计算获得	

8.4 Modbus TCP 协议

要使用该协议首先确定模块使能了"Modbus TCP 转 RTU"功能:

Modbus TCP 数据帧包含报文头、功能代码和数据 3 部分(功能码和数据与 RTU 相同):

(1) MBAP 报文头(MBAP、Modbus Application Protocol、Modbus 应用协议)分 4 个域,共7个字节,如下表所示:

域	长度(B)	描述	客户端	服务器端
传输标志	2	标志某个 Modbus 询问 / 应答的传输	由客户端生成	应答时复制该值
协议标志	2	0=Modbus 协议 1=UNI-TE 协议	由客户端生成	应答时复制该值
长度	2	后续字节计数	由客户端生成	应答时 由服 务器 端重新生成
单元标志	1	定义连续于 目的其他设备	由客户端生成	应答时复制该值

单元标志即为控制板的地址。

- (2) Modbus TCP 功能代码 本控制板实现必要的功能码,具体含义和用法请参考 8.2 节。
- (3) Modbus TCP 数据 即为 Modbus RTU 的数据域。

9 附录--智嵌物联 IO 系列产品选型表

智嵌 IO 控制板系列产品选型表(有关 IO 系列产品的命名规则参看本文档前言部分):

系列	型号	规格
		x=1 为 12V 供电; x=2 为 24V 供电;
	ZQWL-IO-xBNRR4-I	不带外壳/4 路 NPN 型光电输入/10A 电流/串口通讯/4 路继电
		器输出/通讯隔离
		x=1 为 12V 供电; x=2 为 24V 供电;
	ZQWL-IO-xCNRR4-I	#外壳/4 路 NPN 型光电输入/10A 电流/串口通讯/4 路继电器
		输出/通讯隔离
		x=1 为12V 供电; x=2 为 24V 供电;
	ZQWL-IO-xCNRC4-I	带外壳 /4 路 NPN 型光电输入/10A 电流/网络+RS485 通讯/4
		路继电器输出/通讯隔离
		供电依据 x 而定/不带外壳/输入类型依据 x 而定/16A 电流/串
	ZQWL-IO-xBx0R4-I	口通讯/4 路继电器输出/通讯隔离
4 路	<u> </u>	供电依据 x 而定/带外壳/输入类型依据 x 而定/16A 电流/串口
	ZQWL-IO-xCx0R4-I	通讯/4 路继电器输出/通讯隔离
	EQ II D IO NOROITE I	供电依据 x 而定/带外壳/输入类型依据 x 而定/16A 电流/网络
	ZQWL-IO-xCx0C4-I	+串口通讯/4 路继电器输出/通讯隔离
	<u> </u>	供电依据 x 而定/不带外壳/输入类型依据 x 而定/30A 电流/串
	ZQWL-IO-xBx3R4-I	口通讯/4 路继电器输出/通讯隔离
	ZQ III TO ADASICI I	供电依据 x 而定/带外壳/输入类型依据 x 而定/30A 电流/串口
	ZQWL-IO-xCx3R4-I	通讯/4 路继电器输出/通讯隔离
	<u>BQ HB 10 Memeric 1</u>	供电依据 x 而定/带外壳/输入类型依据 x 而定/30A 电流/网络
	ZQWL-IO-xCx3C4-I	+串口通讯/4 路继电器输出/通讯隔离
	ZQ WZ TO MONSO T T	供电依据 x 而定/不带外壳/输入类型依据 x 而定/磁保持 50A
	ZQWL-IO-xBx5R4-I	电流/串口通讯/4 路继电器输出/通讯隔离
	EQ II E TO ABASIC I	供电依据 x 而定/带外壳/输入类型依据 x 而定/50A 磁保持/串
	ZQWL-IO-xCx5R4-I	口通讯/4 路继电器输出/通讯隔离
	<u>BQ HB 10 Memority 1</u>	x = 1: 12V 供电: x = 2: 24V 供电:
	ZQWL-IO-xBNRA8-C	不带外壳/8 路 NPN 型光电输入/10A 电流/串口+CAN 通讯/8
	<u> </u>	路继电器输出/通讯不隔离
		x=1: 12V 供电: x=2: 24V 供电:
	ZQWL-IO-xBNRR8-I	不带外壳/4 路 NPN 型光电输入/10A 电流/串口通讯/8 路继电
8 路	<u> </u>	器输出/通讯隔离
	ZQWL-IO-xBxRC8-I	供电依据 x 而定/不带外壳/输入类型依据 x 而定/10A 电流/网
	<u> </u>	络+串口通讯/8 路继电器输出/ <mark>通讯隔离</mark>

	HOWI IO CURROS	x=1为12V供电; x=2为24V供电;
	ZQWL-IO-xCNRR8-I	#外壳/4 路 NPN 型光电输入/10A 电流/串口通讯/8 路继电器
		输出/通讯隔离
	ZQWL-IO-xCNRC8-I	x = 1 为 12V 供电; x = 2 为 24V 供电;
		# 外壳 /8 路 NPN 型光电输入/10A 电流/网络+RS485 通讯/8
		路继电器输出/通讯隔离

	<u> </u>	TIPS IBINCIO I KAN JAN TI
	ZQWL-IO-xBNRA16-C	x = 1 为 12V 供电; x = 2 为 24V 供电; 不带外壳/16 路 NPN 型光电输入/10A 电流/串口+CAN 通讯/16 路继电器输出/通讯不隔离
16 路	ZQWL-IO-xBNRC16-I	x = 1 为 12V 供电; x = 2 为 24V 供电; 不带外壳 /16 路 NPN 型光电输入/10A 电流/网络+串口/16 路 继电器输出/通讯隔离
	ZQWL-IO-xCNRR16-I	x = 1 为 12V 供电; x = 2 为 24V 供电; #外壳/8 路 NPN 型光电输入/10A 电流/串口通讯/16 路继电器输出/通讯隔离
	ZQWL-IO-xCNRC16-I	x = 1 为 12V 供电; x = 2 为 24V 供电; #外壳/8 路 NPN 型光电输入/10A 电流/网络+RS485 通讯/16 路继电器输出/通讯隔离
	ZQWL-IO-xCN1R16-I	x=1为12V供电; x=2为24V供电; #外壳/3A磁保持/串口通讯/16路继电器输出/通讯隔离
	ZQWL-IO-xCN1C16-I	x=1为12V供电; x=2为24V供电; #外壳/3A 磁保持/网络+串口通讯/16 路继电器输出/通讯隔 离
	ZQWL-IO-3BTLC32-I	3.3V 供电/不带外壳/TTL 输入/TTL 输出/网络+串口通讯/32 路/工业级
32 路	ZQWL-IO-xBNRR32-I	x = 1 为 12V 供电; x = 2 为 24V 供电; 不带外壳 /无输入/10A 电流/串口/32 路继电器输出/通讯隔离
	ZQWL-IO-xBNRC32-I	x = 1 为 12V 供电; x = 2 为 24V 供电; 不带外壳 /无输入/10A 电流/网络+串口/32 路继电器输出/ <mark>通讯</mark> 隔离