Contents

Chapter

1	Back	ckground and motivation 1				
	1.1	Rubble-Pile asteroid surfaces	1			
	1.2	Shape modeling of small bodies	2			
	1.3	Dynamics and the YORP effect	4			
	1.4	Thesis statement	7			
	1.5	Thesis overview	7			
		1.5.1 Contributions	7			
2	Ima	ge-based shape modeling	8			
	2.1	Introduction	8			
	2.2	2D to 3D mapping of images to shapes	9			
		2.2.1 Assumptions	9			
		2.2.2 Simulated image procedure	9			
		2.2.3 Mission data	9			
		2.2.4 Identification of the silhouette	0			
		2.2.5 Terminator and Limb Discrimination	4			
		2.2.6 Ray generation and trimming	5			
		2.2.7 Outlier rejection scheme	9			
		2.2.8 Surface reconstruction with ball-pivoting	9			

	2.3	Shape	Results	20
		2.3.1	Simulated Data	20
		2.3.2	Shape modeling from mission data	23
	2.4	Match	ing localization with Normalized Cross-Correlation	24
		2.4.1	Methods	24
		2.4.2	Results	25
	2.5	Analy	sis	27
		2.5.1	Error Evaluation	27
3	Boul	lder_ind	luced YORP altering spin acceleration	31
•	3.1		re interactions causing YORP	
	3.2		r YORP coefficient modeling	
	3.3	Bould	er simulation design	
		3.3.1	Boulder Shape	37
		3.3.2	Bennu and Itokawa surface qualities	38
		3.3.3	Boulder population studies on Bennu and Itokawa	41
		3.3.4	Applying a simplified thermal model with constant thermal lag	42
		3.3.5	Polyhedral facet YORP evaluation	43
	3.4	Analy	sis of boulder impact on YORP spin torque	44
		3.4.1	Power law distribution of boulder size	45
		3.4.2	Uniform Distribution of Boulder Location	46
		3.4.3	Uniform Distribution of Boulder Orientation	47
		3.4.4	Overall Uncertainty Distribution	49
	3.5	Bennu	Results	51
		3.5.1	Total Boulder Impact	51
		3.5.2	Large Influence Boulder Parameters	52
	3.6	Itokaw	va Results	54

				vi
		3.6.1 Total Boulder Impact		54
		3.6.2 Large Influence Boulder	Parameters	55
	3.7	Sensitivity Analysis		57
		3.7.1 Size Thresholding		58
		3.7.2 Orientation Biases: Wes	t Preference	60
		3.7.3 Location Bias: Polar Mi	gration	62
	3.8	Total YORP Discussion		64
		3.8.1 Crater YORP		64
		3.8.2 Tangential YORP		65
		3.8.3 Overall YORP Compari	son	67
	3.9	Application to YORP Estimate	s	69
	3.10	Summary and Conclusions		70
4	Pole	e Stability and Obliquity Evoluti	on under VORP Torques	73
4		e Stability and Obliquity Evolution	•	7 3
4	4.1	Background		73
4	4.1	Background		73 75
4	4.1	Background		73 75
4	4.1	Background		75 75
4	4.1	Background		73 75 77 77
4	4.1	Background	nts	73 75 77 77 79
4	4.1 4.2 4.3	Background	nts	73 75 77 77 79 80
4	4.1 4.2 4.3	Background	nts	73 75 77 77 79 80 81
4	4.1 4.2 4.3	Background	nts	73 75 77 77 79 80 81
4	4.1 4.2 4.3 4.4 4.5	Background	nts	73 75 77 77 79 80 81 81 86
4	4.1 4.2 4.3 4.4 4.5	Background	nts	73 75 77 77 79 80 81 81 86

			viii	
	5.2	Comparison of current models and observations	88	
	5.3	Boulder-induced YORP variability analysis	88	
	5.4	Other sources of uncertainty	88	
6	Futu	are work	89	
	6.1	Applications of Boulder YORP Modeling	89	
	6.2	Further investigations	89	
В	iblio	graphy	90	
A	ppeı	ndix		
A Extra Things				