R을 사용한 비구획분석과 생물학적동등성 평가

Contents

책	머리아	1)	v
1	비구 1.1	획 분석이란 이 장에서는	1 1
	1.2	약동학	1
	1.3	비구획 분석 이론 및 계산 방법	2
	1.4	계산 공식	4
	1.7		7
2	R과.	그 패키지에 대하여	9
	2.1	이 장에서는	9
	2.2	R에 대하여	9
	2.3	설치	9
	2.4	기타설치	10
3	R을	사용한 비구획분석	11
	3.1	이 장에서는	11
	3.2	NonCompart 사용법	11
	3.3	구간 NCA	16
	3.4	함수 살펴보기	17
		3.4.1 AUC	17
	3.5	긴 형식으로 변환하면서 단위 추가하기	18
4	R을	102 11 12 11 1	19
	4.1	1 0 1 1 0	19
	4.2	txtNCA()	19
	4.3	pdfNCA()	22
	4.4	rtfNCA()	23
5	R을		25
	5.1	, - , , -	25
	5.2	pkr 사용법	25
_	n o	가이된 아도 된 가모레지 사	
6	K音。 6.1		31
			31
	6.2		31
	6.3	시뮬레이션 후 비구획분석	31

iv	Conte	nts							
	6.4 앱을 통해 살펴보는 시뮬레이션	31 31							
7	통계처리 7.1 이 장에서는	33 33 33 35 38							
8	결론	45							
Аp	pendix	47							
A	Phoenix WinNonLin 과 결과 비교 A.1 Conclusion	47 47							
В	기타 비구획분석 소프트웨어 B.1 이 장에서는 B.2 Certara Phoenix WinNonLin B.2.1 Pros B.2.2 Cons B.3.1 ISoP Pharmacometrics Study Group Presentation B.3.2 오픈소스 NCA - 지금이 적기이다. B.3.3 Pros B.3.4 Cons B.4 R package: ncappc B.5 R package: ncappc B.5 R package: PK B.6 Kinetica B.7 Scientist B.8 PKSolver B.9 Summary	49 49 49 50 50 51 51 52 55 55 55							
С	R에 내장된 자료의 비구획분석 보고서 C.1 Theoph의 보고서	57 57							
D	지원	79							
E	세션 정보	81							
참.	고문헌	참고문헌 85							

책 머리에

L

비구획분석은 약물 농도 자료에 간단한 수학식을 적용합니다. 정확한 자료의 생성과 계산을 위해 오류를 줄이는 것이 중요하지만 현재까지 방식은 '재현가능한 연구' 측면에서 분명한 약점이 존재합니다. 이 책은 무료 통계프로그램인 R을 사용하여 정확한 비구획분석을 수행할 수 있는 방법을 제시합니다. 이러한 방법을 통해 값비싼 상용소프트웨어를 사용한 결과와 동일한 결과를 얻을 수 있음을 실제 임상시험 자료를통해 반복적으로 확인하였습니다.

숫자 계산 뿐만 아니라 시각화도 가능하여 농도-시간 곡선, 용량군 별 파라메터의 forest plot 등의 유용한 그림도 쉽게 그릴 수 있습니다. CDISC SDTM 표준을 따르는 용어를 사용한 것도 큰 장점입니다. 비구획분석 후 생물학적동등성을 평가할 수 있는 패키지도 함께 개발되었습니다.

한번 익혀두면 속도와 연속성 측면에서 커다란 잇점이 있음을 것을 발견할 수 있을 것입니다. 또한 재현가능한 연구를 보다 수월하게 구현할 수 있습니다. 무엇보다 무료로 사용할 수 있는 R기반의 공개 소프트웨어라는 점에서 학교, 연구소, 정부기관, 제약회사 등에서 라이센스 등의 제약 없이 손쉽게 설치하고 실행할 수 있으리라 생각됩니다. 책에 대한 피드백, 오탈자 신고 등은 깃허브 저장소²에 남겨주십시오.

감사합니다.

2020-06-18

대표저자 배균섭

서울아산병원 임상약리학과, 울산대학교 임상약리학교실

저자소개

배규섭

서울아산병원 임상약리학과 과장, 울산대학교 의과대학 임상약리학교실 교수입니다. 수십편의 논문을 저술하였고 20년 이상의 프로그래밍 경력을 갖고 있습니다.

한성필

 $^{^{\}rm I} {\tt https://github.com/asancpt/book-ncar}$

²https://github.com/asancpt/book-ncar/issues

vi 책 머리에

가톨릭의대 약리학교실 연구조교수입니다. 부산대학교 의학전문대학원을 졸업하였고, 서울아산병원 임상약리학과에서 수련 받았습니다.

윤석규

현재 공중보건의사로 근무 중입니다. 연세대학교 원주캠퍼스 의과대학을 졸업하였고, 서울아산병원 임상약리학과에서 수련 받았습니다.

조용순

인제의대 약리학교실 조교수입니다. 중앙대학교 의학전문대학원을 졸업하였고, 서울아산병원 임상약리학과에서 수련 받았습니다.

김형섭

서울아산병원 임상약리학과 전공의입니다. 고려대학교 의학전문대학원을 졸업하였습니다.

이 저작물은 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 4.0 국제라이선스³에 따라 이용할 수 있습니다.

감사의 글

본 출판물은 2016-2020년도 정부(미래창조과학부)의 재원으로 한국연구재단 첨단사이언스·교육 허브개발사업의 지원을 받아수행된 연구입니다(NRF-2016-936606).

 $^{^3 \}text{http://creativecommons.org/licenses/by-nc-sa/4.0/}$

비구획 분석이란

1.1 이 장에서는

약동학과 비구획 분석에 대해 간략히 알아보겠습니다.

1.2 약동학

인체에 약물이 들어올 때, 약물의 양과 효과는 관련성이 있습니다. 따라서 약물의 효과를 파악하기 위해 우리 몸에서 약물이 가지는 약동학적 특성을 파악하는 것은 중요합니다. 다양한 신약 개발 과정에서 이러한 약동학적 특성을 파악하여, 약물의 개발을 지속하거나 중지하기도 하며, 마취통증의학과나 내과 등의 다양한 임상 의학에서도 신체에 중요 영향을 미칠 수 있는 약물에 대하여 대략적인 농도를 파악하기 위해 약물의 약동학적 특성을 이용합니다.

약동학적 약물의 특성은 간단하게 ADME라는 용어로 설명할 수 있습니다. 이는 absorption (흡수), distribution (분포), metabolism (대사), excretion (배설)을 의미합니다. 약물이 다양한 경로 (경구제 복용, 피하 주사, 정맥 주사, 근육 주사 등)를 통해 우리몸에 들어오게 되면, 정맥주사 이외의 나머지는 흡수 (absorption)의 과정을 거쳐 우리몸의 정맥에 분포하게 되며, 이러한 약물은 분포 (distribution)와 제거 (metabolism)과정에서 감소하게 되고, 제거 과정은 우리몸에 투여된물질이 여러기관 (organ)을통해서 다른물질로 변하여 (metabolism) 제거되거나물질이 변화하지 않고 그대로배설 (excretion)되는 과정으로 진행되게됩니다. 이러한 수치들은 각각 약물의 농도가증가하고 감소하는 과정과 밀접하게 연관되어 있으며, 이러한 과정들을 정량화하여식을 세울수 있다면, 약물을 투여한 이후의 농도를보다 정확하게 예측할수 있습니다.이 때 흡수와 관련된 지표로는 흡수속도 상수 (absorption rate constant)와 생체이용률 (bioavailability), 분포, 제거와 관련된 지표로는 분포용적 (Volume of distribution)과 청소율 (Clearance)을 이용하게 되며, 다음 값들을 정확하게 예측하는 것이 약동학분야에서의 핵심 중의 하나라고 볼 수 있습니다.

이러한 지표들을 구하기 위해서 현재 여러가지 방법들을 사용하고 있으며, 그 중 가장 간단하고도 객관적이며 널리 쓰이는 방법은 비구획분석 (Non-compartmental analysis, NCA)으로 미국의 FDA (Food and Drug Administration)에서는 NCA 계산을 하 는 소프트웨어를 규정하고 있지 않아, 상용 소프트웨어를 사용하지 않고 약동학적 지표를 구하는 것을 허용하고 있습니다. 따라서 무료로 누구나 사용할 수 있는 R 패키지를 사용하여 주어진 시간과 농도로부터 비구획 분석 방법으로 약동학적 주요 지표를 직접 구해보고자 합니다.

- NonCompart [Bae, 2020]
- pkr [Bae and Lee, 2018]
- ncar [Bae, 2019]

1.3 비구획 분석 이론 및 계산 방법

비구획 분석이란 시간, 농도가 표현되어 있는 곡선에서 아무런 가정을 하지 않고 분석하는 것을 의미합니다. 이때 다음과 같은 가정을 통해서 최대농도 (C_{max}) 및 최대농도에 도달하는 시간 (T_{max}) , 전체 시간-농도 곡선의 면적 (Area under the time-concentration curve, AUC) 등을 구하게 됩니다. 이를 통해 측정된 지표들을 통하여 약물의 특성을 파악하고 특정구간에서의 농도를 예측하게 됩니다. 비구획 분석에서는 statistical moment theory (단순히 하나의 분자가 우리 몸에 들어와서 제거되지 까지는 예측하는 것이 힘들지만 그 개개의 분자들의 양이 늘어날수록 그들의 전반적인 행동이 규칙적으로 이루어진다는 이론)를 가정하고 이를 통해 우리는 각각의 분자가우리 몸에서 얼마나 머무는지에 대한 평균값을 예상할 수 있게 됩니다. 이 시간을 MRT (mean residence time) 이라고 지칭하게 되며, 이것은 농도와 시간의 곱을 적분한 값에서 단순 농도 값을 적분한 농도를 나누어 준 값으로 다음과 같이 표현해 줄 수 있습니다. (Equation (1.1))

 $MRT = \frac{AUMC}{AUC} = \frac{\int_0^\infty t \cdot C(t)dt}{\int_0^\infty C(t)dt}$ (1.1)

이때 식에서 표현된 AUMC는 area under the first moment curve로 농도와 시간의 곱을 시간에 대해서 적분한 값에 해당하며 AUC는 area under concentration으로 농도를 시간에 대해 적분한 값에 해당합니다. 하지만 이 때, 각각의 약물에서 농도와 시간 사이의 명확한 함수관계를 확인할 수 없고, 주어진 정보도 제한적이므로 농도를 시간으로 적분하기에는 상당한 어려움이 따릅니다. 따라서 이를 간소화 하기 위해 Linear trapezoidal method(농도-시간 곡선에서 농도를 측정한 점과 점 사이의 면적을 사다리꼴이라 가정하고 넓이를 구하는 방식)를 사용하게 됩니다. 처음 농도를 측정한 부분부터 마지막 샘플까지를 t_1,t_2 … t_{last} 로 표현했을 l_1 l_2 과 l_3 사이의 AUC와 AUMC는 다음과 같이 계산됩니다. l_3

AUMC는 다음과 같이 계산됩니다.
$$AUC_{t_1-t_2} = (t_2-t_1) \cdot \frac{C_2+C_1}{2}$$

$$AUMC_{t_1-t_2} = (t_2-t_1) \cdot \frac{t_2 \cdot C_2 + t_1 \cdot C_1}{2}$$

$$(1.2)$$

이 방식을 계속 이용하여 각각의 구간 값의 합을 모두 더한 값으로 AUC_{last} (처음 농도를 측정하기 시작한 구간부터 마지막 농도를 측정한 구간까지 linear trapezoidal method

¹이 수식은 NonCompart:: AUC() 함수에서 계산 되게 됩니다.

를 통해서 값을 계산한 방식), $AUMC_{last}$ (처음 농도를 측정하기 시작한 구간부터 마지막 농도를 측정한 구간까지 linear trapezoidal method를 통해서 값을 계산한 방식)를 측정해 주게 됩니다. (그림 1.1)

knitr::include_graphics('images/trapezoidal.png')

FIGURE 1.1: Linear trapezoidal method

추가적으로 마지막으로 농도를 잰 시점에서 모든 약물이 우리 몸에서 빠져나가는 시점까지의 값을 구하기 위해서 마지막으로 측정한 점의 기울기가 그대로 약물이 모두 제거되는 시점까지 그대로 유지된다는 가정을 세우게 됩니다. 다음과 같이 C_{last} (가장마지막으로 농도를 측정한 시점)에서 λ (C_{max} 이후에 선형성이 가장 높은 3점을 선택하여 구한 기울기)를 구한 후 다음과 같은 약동학 공식을 대입하여 값을 구해주게됩니다.

$$\begin{split} AUC_{t_{last}-\infty} &= \frac{C_{last}}{\lambda} \\ AUMC_{t_{last}-\infty} &= \frac{t_{last} \cdot C_{last}}{\lambda} + \frac{C_{last}}{\lambda^2} \end{split} \tag{1.3}$$

약물이 우리 몸에 들어온 후 가장 높은 농도의 경우 실제 개개인에서 농도를 측정한 값들 중 가장 높은 농도를 실제 가장 높은 농도라 가정하여 사용하게 되고, 이 지표를 C_{\max} 라 부릅니다. 또한 이때의 시점을 T_{\max} 라 부르게 됩니다. 위에서 구한 AUC와 C_{\max} , λ 를 가지고 나머지 주요 값을 계산하게 됩니다. 이 중 청소율(제거되는 속도) 에 해당하는 clearance(일반적으로 CL이라 지칭한다.) 의 경우 다음의 약동학 기본 공식을 활용하여 구해주게 됩니다. $D \cdot F$

$$CL = \frac{D \cdot F}{AUC} \tag{1.4}$$

수식에서 D는 dose로 투여량을, F는 생체이용률을 의미합니다.

우리 몸의 분포 (disposition)을 알기 위해 우리 몸의 volume을 나타내는 volume of distribution at steady state (Vdss)는 아래 식을 이용하여 값을 구하게 됩니다.

$$Vd_{ss} = MRT \cdot CL = \frac{AUMC}{AUC} \cdot \frac{D}{AUC}$$

우리 몸의 생체이용률을 나타내는 F의 경우 기본적으로 정맥주사시의 생체이용률을 1이라고 가정하고, 다음 식으로 구합니다.

$$F = \frac{D_{iv}}{D_{oral}} \cdot \frac{AUC_{oral}}{AUC_{iv}}$$

(이중 Div는 정맥주사 투여량, Doral은 경구 투여량, AUCoral은 경구 투여에서의 AUC, AUCiv는 정맥투여에서의 AUC를 의미한다. 이처럼 AUC, C_{max} , AUMC, λ 를 구하는 부분에 있어서는 non-compartmental analysis의 기본 가정들을 활용하였고 그 밖의 부분들에서는 현재 정형화된 공식들을 활용하여 적용하였다. 위 내용을 바탕으로 R을 기반으로 한 script를 구성한 후 전세계적으로 널리 쓰이고 있는 CDISC terminology를 각각의 지표들에 적용하여 결과값을 도출하였다.

또한 투여되는 방식을 3가지 분류(Extravascular, IV infusion, IV bolus)로 구분하여, 그에 맞는 각각의 식을 적용하였다. 마지막으로 시간당 농도의 변화율이 농도 증가 곡선보다 감소 곡선에서 완만하다는 점을 고려하여 농도가 감소하는 구간에서는 log 값을 선택적으로 줄 수 있도록 설정하였으며, 흡수 속도 상수의 경우 현 NCA method 를 통해 구하기에는 한계가 있어 따로 값을 제시하지 않았습니다.

흡수속도 상수를 구하기 위해서는 구획분석방법(compartmental analysis)이나 비선 형 혼합모형(non-linear mixed effect modeling)을 사용하는 것이 바람직합니다.

Figure 2. Linear trapezoidal method를 적용한 AUC의 계산 Script

Figure 3 약동학 지표들에 대해 각각의 공식을 적용한 Script의 예

1.4 계산 공식

CO: Co is the initial concentration at the dosing time. It is the observed concentration at the dosing time, if available. Otherwise it is approximated using the following rules. For iv-bolus data, log-linear back-extrapolation (see "backExtrap" argument) is performed from the first two observations to estimate Co, provided the local slope is negative. However, if the slope is >=0 or at least one of the first two concentrations is 0, the first non-zero concentration is used as Co. For other types of administration, Co is equal to 0 for non steady-state data and for steady-state data the minimum value observed between the dosing intervals is used to estimate Co, provided the "backExtrap" argument is set to "yes".

Cmax, Tmax and Cmax_D: Cmax and Tmax are the value and the time of maximum observed concentration, respectively. If the maximum concentration is not unique, the first maximum is used. For steady state data, The maximum value between the

1.4 계산 공식 5

dosing intervals is considered. Cmax_D is the dose normalized maximum observed concentration.

Clast and Tlast

Clast and Tlast are the last measurable positive concentration and the corresponding time, respectively.

AUClast

The area under the concentration vs. time curve from the first observed to last measurable concentration.

AUMClast

The area under the first moment of the concentration vs. time curve from the first observed to last measurable concentration.

MRTlast

Mean residence time from the first observed to last measurable concentration. For non-infusion models,

```
MRTlast = \frac{AUMClast}{AUClast} For infusion models, MRTlast = \frac{AUMClast}{AUClast} - \frac{TI}{2} where TI is the infusion duration.
```

No_points_Lambda_z

No_points_Lambda_z is the number of observed data points used to determine the best fitting regression line in the elimination phase.

AUC_pBack_Ext_obs and AUC_pBack_Ext_pred

The percentage of AUC that is contributed by the back extrapolation to estimate Co. The rules to to estimate Co is given above.

AUClower_upper

The AUC under the concentration-time profile within the user-specified window of time provided as the "AUCTimeRange" argument. In case of empty "AUCTimeRange" argument, AUClower_upper is equal to the AUClast.

Rsq, Rsq adjusted and Corr XY

Regression coefficient of the regression line used to estimate the elimination rate constant. Rsq_adjusted is the adjusted value of Rsq given by the following relation.

$$Rsq_adjusted = 1 - \frac{(1 - Rsq^2)*(n-1)}{n-2}$$

where n is the number of points in the regression line. Corr_XY is the square root of Rsq.

Lambda z

Elimination rate constant estimated from the regression line representing the terminal phase of the concentration-time profile. The relation between the slope of the regression line and Lambda_z is:

$$Lambda_z = -(slope)$$

Lambda_lower and Lambda_upper

Lower and upper limit of the time values from the concentration-time profile used to estimate Lambda_z, respectively, in case the "LambdaTimeRange" is used to specify the time range.

HL_Lambda_z

Terminal half-life of the drug:

$$HL_Lambda_z = \frac{ln2}{\lambda_z}$$

AUCINF_obs and AUCINF_obs_D

AUC estimated from the first sampled data extrapolated to ∞ . The extrapolation in the terminal phase is based on the last observed concentration ($Clast_obs$). The equation used for the estimation is given below.

$$AUCINF_obs = AUClast + \frac{Clast_obs}{\lambda_z}$$

AUCINF_obs_D is the dose normalized AUCINF_obs.

AUC_pExtrap_obs

Percentage of the AUCINF_obs that is contributed by the extrapolation from the last sampling time to ∞ .

$$AUC_pExtrap_obs = \frac{AUCINF_obs-AUClast}{AUCINF_obs} * 100\%$$

AUMCINF_obs

AUMC estimated from the first sampled data extrapolated to ∞ . The extrapolation in the terminal phase is based on the last observed concentration. The equation used for the estimation is given below.

$$AUMCINF_obs = AUMClast + \frac{Tlast*Clast_obs}{\lambda_z} + \frac{Clast_obs}{\lambda_z^2}$$

AUMC_pExtrap_obs

Percentage of the AUMCINF_obs that is contributed by the extrapolation from the last sampling time to ∞ .

$$AUMC_pExtrap_obs = \frac{AUMCINF_obs - AUMClast}{AUMCINF_obs} * 100\%$$

Volume of distribution estimated based on total AUC using the following equation.

$$Vz_obs = \frac{Dose}{\lambda_z*AUCINF_obs}$$

Cl obs

Total body clearance. $Cl_obs = \frac{Dose}{AUCINF\ obs}$

AUCINF_pred and AUCINF_pred_D

AUC from the first sampled data extrapolated to ∞ . The extrapolation in the terminal phase is based on the last predicted concentration obtained from the regression line used to estimate Lambda_z ($Clast_pred$). The equation used for the estimation

$$AUCINF_pred = AUClast + \frac{Clast_pred}{\lambda_z}$$
 AUCINF_pred_D is the dose normalized AUCINF_pred.

AUC pExtrap pred

Percentage of the AUCINF_pred that is contributed by the extrapolation from the

1.4 계산 공식 7

last sampling time to ∞ .

$$AUC_pExtrap_pred = \frac{AUCINF_pred-AUClast}{AUCINF_pred} * 100\%$$

AUMCINF_pred

AUMC estimated from the first sampled data extrapolated to ∞ . The extrapolation in the terminal phase is based on the last predicted concentration obtained from the regression line used to estimate Lambda_z ($Clast_pred$). The equation used for the estimation is given below.

$$AUMCINF_pred = AUMClast + \frac{Tlast*Clast_pred}{\lambda_z} + \frac{Clast_pred}{\lambda_z^2}$$

AUMC pExtrap pred

Percentage of the AUMCINF_pred that is contributed by the extrapolation from the last sampling time to ∞ .

$$AUMC_pExtrap_pred = \frac{AUMCINF_pred-AUMClast}{AUMCINF_pred} * 100\%$$

Vz_pred

Volume of distribution estimated based on total AUC using the following equation.

$$Vz_pred = \frac{Dose}{\lambda_z*AUCINF_pred}$$

Cl_pred

Total body clearance.

$$Cl_pred = \frac{Dose}{AUCINF\ pred}$$

MRTINF_obs

Mean residence time from the first sampled time extrapolated to ∞ based on the last observed concentration (Clast_obs).

For non-infusion non steady-state data:

$$MRTINF_obs = \frac{AUMCINF_obs}{AUCINF_obs}$$

For infusion non steady-state data:
$$MRTINF_obs = \frac{AUMCINF_obs}{AUCINF_obs} - \frac{TI}{2}$$
 where TI is the infusion duration. For non-infusion steady-state data:

$$MRTINF_obs = \frac{AUMCINF_obs|_0^{\tau} + \tau*(AUCINF_obs - AUC|_0^{\tau})}{AUCINF_obs|_0^{\tau}}$$

For infusion steady-state data:

$$MRTINF_obs = \frac{AUMCINF_obs|_0^\tau + \tau * (AUCINF_obs - AUC|_0^\tau)}{AUCINF_obs|_0^\tau} - \frac{TI}{2}$$

For steady-state data τ represents the dosing interval.

MRTINF_pred

Mean residence time from the first sampled time extrapolated to ∞ based on the last predicted concentration obtained from the regression line used to estimate Lambda z ($Clast\ pred$).

For non-infusion non steady-state data:

$$MRTINF_pred = \frac{AUMCINF_pred}{AUCINF_pred}$$

For infusion non steady-state data:
$$MRTINF_pred = \frac{AUMCINF_pred}{AUCINF_pred} - \frac{TI}{2}$$

where TI is the infusion duration.

For non-infusion steady-state data:

For non-infusion steady-state data:
$$MRTINF_pred = \frac{AUMCINF_pred|_0^7 + \tau*(AUCINF_pred-AUC|_0^7)}{AUCINF_pred|_0^7}$$

For infusion steady-state data:

$$\begin{split} MRTINF_pred &= \frac{AUMCINF_pred|_0^{\tau} + \tau*(AUCINF_pred - AUC|_0^{\tau})}{AUCINF_pred|_0^{\tau}} - \frac{TI}{2} \\ \text{For steady-state data τ represents the dosing interval.} \end{split}$$

Vss_obs and Vss_pred

An estimate of the volume of distribution at steady-state.

$$\label{eq:vss_obs} \begin{split} Vss_obs &= MRTINF_obs*Cl_obs\\ Vss_pred &= MRTINF_pred*Cl_pred \end{split}$$

The dosing interval for steady-state data. This value is assumed to be the same over multiple doses.

Cmin and Tmin

Cmin is the minimum concentration between 0 and Tau and Tmin is the corresponding time for steady-state data.

The average concentration between 0 and Tau for steady-state data.

$$Cavg = \frac{AUC|_0^{Tau}}{Tau}$$

p_Fluctuation

Percentage of the fluctuation of the concentration between o and Tau for steadystate data.

$$p_Fluctuation = \frac{Cmax - Cmin}{Cavg} * 100\%$$

Accumulation_Index

$$Accumulation_Index = \frac{1}{1 - e^{-\lambda_{z*\tau}}}$$

An estimate of the total body clearance for steady-state data. $Clss = \frac{Dose}{AUC|_0^7}$

$$Clss = \frac{Dose}{AUC|_{0}^{7}}$$

R과 그 패키지에 대하여

2.1 이 장에서는

R [R Core Team, 2020]은 통계 소프트웨어 입니다. 비구획분석을 R로 수행하는 가장 중요한 이유는 오류를 줄일 수 있고, 한번 설정한 것을 반복해서 적용하는 것이 쉽기 때문입니다. 이 책에서 주로 다루게 될 NonCompart [Bae, 2020], ncar [Bae, 2019], pkr [Bae and Lee, 2018] 은 비구획 분석을 R을 통해 쉽고 빠르게 행할 수 있는 R 패키지입니다.

NonCompart의 패키지 제목은 Noncompartmental Analysis for Pharmacokinetic Data, ncar의 패키지 제목은 Noncompartmental Analysis for Pharmacokinetic Report, pkr의 패키지 제목은 Pharmacokinetics in R 입니다.

2.2 R에 대하여

굉장히 유용한 소프트웨어이지만 이에 대해 여기서 자세히 설명하긴 힘듭니다. R에 대한 많은 책들을 bookdown.org 1 에서 무료로 읽을 수 있습니다. Coursera 2 에서 무료 온라인 강의를 들을 수 있습니다.

2.3 설치

우선 R을 설치합니다. R은 아래 링크³에서 다운로드 받을 수 있습니다.

R을 실행한 후, 콘솔 창에서 비구획분석을 위한 패키지를 설치하는 방법은 다음과 같습니다. 홑따옴표 등의 인용 부호에 주의하세요.

¹https://bookdown.org

²https://coursera.com

³https://cran.r-project.org/

```
install.packages('NonCompart')
install.packages('ncar')
install.packages('pkr')
```

설치는 한번만 하면 되지만, 비구획분석을 위해서는 매 세션마다 패키지를 불러오기 해야 합니다.

```
library(NonCompart)
library(ncar)
library(pkr)
```

2.4 기타 설치

아래 두 패키지는 비구획분석과는 관계없지만 자료 처리 혹은 그림 등을 그리는데 도움을 줍니다.

```
library(ggplot2)
library(dplyr)
library(knitr)
```

도움이 필요할때는 맨 앞에 물음표를 붙여서 콘솔창에 입력하거나 help() 함수를 사용합니다.

```
?NonCompart
help(tblNCA)
```

자료 분석을 위해 몇가지 도구가 필요한데 tidyverse[Wickham, 2019]를 설치하면 다수의 편리한 패키지 tidyr [Wickham and Henry, 2020], dplyr [Wickham et al., 2020b], tibble [Müller and Wickham, 2020], ggplot2 [Wickham et al., 2020a], purrr [Henry and Wickham, 2020], readr [Wickham et al., 2018]의 설치와 불러오기 과정을 쉽게 끝낼 수 있습니다.

다만 비구획분석을 위한 함수의 입력을 위해 tibble 형식은 as.data.frame()을 통하여 데이타프레임으로 자료 형식을 변환하는 것이 좋습니다.마찬가지로 readr 패키지의 read_csv() 명령어를 쓸 경우 tibble로 읽혀지기 때문에 as.data.frame()으로 바꿔주거나 처음부터 read.csv()를 쓰는 것을 고려할 수 있습니다.

```
install.packages('tidyverse')
library(tidyverse)
```

R을 사용한 비구획분석

3.1 이 장에서는

NonCompart [Bae, 2020]은 비구획 분석을 R을 통해 쉽고 빠르게 (매우 빠르게) 행할 수 있는 패키지입니다. 약동학 교재의 내용을 충실히 반영하였습니다. [Gabrielsson, 2016, Rowland, 2011] 이에 대해 좀더 자세히 알아보겠습니다.

NonCompart의 DESCRIPTION 파일을 보면 다음과 같이 설명하고 있습니다.

Conduct a noncompartmental analysis with industrial strength. Some features are 1) Use of CDISC SDTM terms 2) Automatic or manual slope selection 3) Supporting both 'linear-up linear-down' and 'linear-up log-down' method 4) Interval(partial) AUCs with 'linear' or 'log' interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN: 9198299107).

```
library(tidyverse)
library(NonCompart)
```

3.2 NonCompart 사용법

tblNCA의 사용법은 다음과 같습니다.

```
## function (concData, key = "Subject", colTime = "Time", colConc = "conc",
## dose = 0, adm = "Extravascular", dur = 0, doseUnit = "mg",
## timeUnit = "h", concUnit = "ug/L", down = "Linear", R2ADJ = 0.9,
```

```
## MW = 0, iAUC = "")
## NULL
```

concData는 데이터셋 이름을 설정합니다. 참고로 tibble 형식은 지원하지 않기 때문에 readr::read_csv()를 통해 자료를 불러왔다면 as.data.frame() 함수 등을 사용하여 data.frame 형식으로 변환하여야 합니다. key는 subject ID의 컬럼명 혹은 treatment code의 컬럼명 (교차시험 등에서)을 벡터 형태로 지정할 수 있습니다. colTime은 time의 컬럼명, colConc는 concentration의 컬럼명 등을 함수 인자로 갖습니다. 그 외 인자들에 대해서 살펴보자면 다음과 같습니다.

1. down

- •AUC와 AUMC를 구하는 trapezoidal method 설정이며, 기본값은 Linear입니다.
- •Linear와 Log 중 선택 가능하며 각각 linear trapezoidal method와 linear-up and log-down method를 의미합니다.

2. dose

•투여량에 대한 설정입니다. 단위에 주의해야 합니다. 벡터값을 줌으로서 각 대상자별 용량을 다르게 할 수 있습니다.

3. adm

- •투여경로에 대한 설정, 기본값은 "Extravascular"으로 경구 투여 등을 의미합니다.
- •Bolus, Infusion, Extravascular 중에서 선택 가능하다.

4. dur

•주입하는 기간(infusion duration)을 설정합니다. 기본값은 o입니다.

5. R2ADJ

•R2ADJ 값이 설정값 이하인 경우 DetSlope() 함수에 의해 terminal slope를 수동으로 interactive 하게 고를 수 있게됩니다.

이제 약동학 파라미터를 산출하기 위해서는 아래와 같이 하면 됩니다. 우선 Theophylline 의 약동학 파라미터를 구해보겠습니다.

```
##
         ID
                                  CMAX
                                          CMAXD
                                                       XAMT
                                                              TLAG CLST
   [1,] "1"
              "2.36878509420585" "10.5"
                                                       "1.12" "0"
                                          "0.0328125"
                                                                    "3.28"
   [2,] "2"
              "2.41123733696293" "8.33"
                                          "0.02603125" "1.92" "0"
                                                                    "0.9"
                                                       "1.02" "0"
   [3,] "3"
              "2.52971150145858" "8.2"
                                          "0.025625"
                                                                    "1.05"
##
##
    [4,] "4"
              "2.59275546723663" "8.6"
                                          "0.026875"
                                                       "1.07" "0"
                                                                    "1.15"
   [5,] "5"
             "2.55109229061238" "11.4"
                                          "0.035625"
                                                       "1"
                                                               "0"
                                                                    "1.57"
    [6,] "6"
              "2.0334043955261" "6.44"
                                          "0.020125"
                                                       "1.15" "0"
                                                                    "0.92"
##
              "2.28854976005424" "7.09"
                                          "0.02215625" "3.48" "0"
##
    [7,] "7"
                                                                    "1.15"
##
    [8,]
        "8"
              "2.17040271754659" "7.56"
                                          "0.023625"
                                                       "2.02" "0"
                                                                    "1.25"
    [9.] "9" "2.12464810390587" "9.03"
                                          "0.02821875" "0.63" "0"
```

```
## [10,] "10" "2.65770546248091" "10.21" "0.03190625" "3.55" "0"
## [11,] "11" "2.1475943307927" "8"
                                        "0.025"
                                                     "0.98" "0"
## [12,] "12" "2.82449347826545" "9.75" "0.03046875" "3.52" "0" "1.17"
        CLSTP
                            TLST
                                    LAMZHL
                                                       LAMZ
   [1,] "3.28014647414312" "24.37" "14.304377571097" "0.0484569969657749"
##
    [2,] "0.888639849106919" "24.3" "6.65934156262252" "0.104086443688432"
   [3,] "1.05509670837553" "24.17" "6.76608737718236" "0.102444314109434"
   [4,] "1.15642160174997" "24.65" "6.98124666099893" "0.0992870205306231"
   [5,] "1.55569511595616" "24.35" "8.0022640410078" "0.0866188839818201"
    [6,] "0.941271173708175" "23.85" "7.89499786796582" "0.0877957400561702"
    [7,] "1.16071921229933" "24.22" "7.84666826130148" "0.0883364961379133"
   [8,] "1.22852675835656"
                            "24.12" "8.51003788342506" "0.0814505399453019"
   [9,] "1.11648311706515"
                            "24.43" "8.40599880716182" "0.0824586341803179"
## [10,] "2.41369227401111" "23.7" "9.24691582297898" "0.0749598237757766"
## [11,] "0.859806606884089" "24.08" "7.26123651504339" "0.0954585598642772"
## [12.] "1.17553904959565" "24.15" "6.28650816367189" "0.110259489451627"
        LAMZLL LAMZUL LAMZNPT CORRXY
   [1,] "9.05" "24.37" "3"
##
                                "-0.9999986483748" "0.999999729674979"
   [2,] "7.03" "24.3" "4"
                                "-0.998596709529913" "0.99719538828397"
   [3,] "9"
                                "-0.999662423945811" "0.999324961849213"
               "24.17" "3"
    [4,] "9.02" "24.65" "3"
                               "-0.999461923749821" "0.998924137025692"
                               "-0.999323363372814" "0.998647184582752"
   [5,] "7.02" "24.35" "4"
   [6,] "2.03" "23.85" "7"
                               "-0.999120281624298" "0.998241337153017"
   [7,] "6.98" "24.22" "4"
                                "-0.999334862622512" "0.998670167652754"
   [8,] "3.53" "24.12" "6"
                                "-0.995496052943785" "0.991012391426654"
   [9,] "8.8" "24.43" "3"
                               "-0.99972179371205" "0.999443664822839"
                                "-0.999754311749369" "0.999508683861454"
   [10,] "9.38" "23.7"
   [11,] "9.03" "24.08" "3"
                                "-0.999999127979356" "0.999998255959473"
## [12,] "9.03" "24.15" "3"
                               "-0.999698355328196" "0.9993968016459"
##
        R2ADJ
                            AUCLST
                                        AUCALL
                                                    AUCIFO
   [1,] "0.99999459349959" "148.92305" "148.92305" "216.611933038226"
##
   [2,] "0.995793082425955" "91.5268"
                                         "91.5268"
                                                    "100.173459143183"
   [3,] "0.998649923698427" "99.2865"
                                        "99.2865"
                                                    "109.535970740547"
    [4.] "0.997848274051385" "106.7963"
                                        "106.7963" "118.378881427603"
   [5,] "0.997970776874129" "121.2944"
                                        "121.2944" "139.419777837118"
    [6.] "0.99788960458362" "73.77555"
                                        "73.77555"
                                                    "84.2544183301878"
   [7,] "0.998005251479131" "90.7534"
                                        "90.7534"
                                                    "103.771801796293"
   [8.] "0.988765489283318" "88.55995"
                                        "88.55995" "103.906686815243"
   [9,] "0.998887329645677" "86.32615"
                                         "86.32615" "99.9087179279482"
## [10,] "0.999017367722909" "138.3681"
                                        "138.3681"
                                                    "170.652060635217"
## [11,] "0.999996511918946" "80.0936"
                                         "80.0936"
                                                    "89.1027449234385"
## [12,] "0.998793603291801" "119.9775"
                                        "119.9775" "130.588831558118"
        AUCIFOD
                            AUCIFP
                                               AUCIFPD
   [1,] "0.676912290744456" "216.614955803818" "0.67692173688693"
##
   [2,] "0.313042059822447" "100.064317640308" "0.312700992625963"
```

```
[3.] "0.342299908564208" "109.585721753278" "0.342455380478994"
##
##
    [4.] "0.369934004461258" "118.44355857992" "0.370136120562249"
    [5,] "0.435686805740995" "139.254630430615" "0.435170720095671"
    [6.] "0.263295057281837" "84.4966985785753" "0.264052183058048"
   [7,] "0.324286880613414" "103.893147024686" "0.324666084452144"
##
    [8,] "0.324708396297635" "103.643051464786" "0.323884535827455"
   [9,] "0.312214743524838" "99.8660676588793" "0.312081461433998"
## [10.] "0.533287689485054" "170.567912545332" "0.533024726704162"
  [11,] "0.278446077885745" "89.1007189855217" "0.278439746829755"
   [12,] "0.408090098619118" "130.639068046815" "0.408247087646298"
##
                                               AUMCLST
##
        AUCPEO
                           AUCPEP
                                                              AUMCIFO
##
   [1,] "31.2489169404534" "31.2498763313113" "1459.0711035" "4505.53481941065"
    [2,] "8.63168669340252" "8.53203003991598" "706.586566"
                                                             "999.772287999786"
   [3,] "9.3571734209797" "9.39832451573008" "803.18587"
                                                              "1150.96476871455"
   [4,] "9.7843308603032" "9.83359392402986" "901.0842105" "1303.25240140958"
   [5,] "13.0005786254328" "12.8974026752838" "1017.1143165" "1667.72161189007"
    [6,] "12,4371736674055" "12,688245527848" "609,1523875" "978,428485741731"
    [7,] "12.5452209279821" "12.6473664538854" "782.41986"
                                                              "1245.09840831465"
    [8.] "14.7697297311878" "14.5529307094073" "739.534598"
                                                              "1298.11575468474"
   [9,] "13.5949777052926" "13.5580763078894" "705.2296255" "1201.77153812025"
## [10.] "18.9180022292417" "18.8780011813617" "1278.180042" "2473.99342735889"
## [11,] "10.1109622730249" "10.1089184106194" "617.2422125" "928.559971386069"
## [12.] "8.12575733430562" "8.16108703637935" "977.8807235" "1330.38400236898"
                                               AUMCPEP
##
         AUMCIFP
                            AUMCPEO
    [1,] "4505.67086458209" "67.6160286851172" "67.6170064935417"
##
    [2,] "996.071583509104" "29.3252499112927" "29.0626720309864"
   [3,] "1152.65289026304" "30.2162940315685" "30.318495985664"
##
    [4.] "1305.4981091996" "30.8588106551423" "30.9777467963968"
    [5.] "1661.79367436228" "39.011744571249" "38.7941877387202"
   [6.] "986.966459689532" "37.7417566662308" "38.280335514986"
   [7.] "1249.41106012833" "37.1599983764277" "37.376906210544"
   [8,] "1288.52011616077" "43.0301500208197" "42.605894256157"
   [9,] "1200.2123597462" "41.3174964516894" "41.2412628670872"
   [10.] "2470.87654175199" "48.3353501320931" "48.2701777931124"
   [11,] "928.489963582081" "33.5269415524517" "33.5219295081337"
   [12.] "1332.05283411623" "26.4963558071417" "26.5884431567018"
##
##
        MRTEVLST
                           MRTEVIFO
                                               MRTEVIFP
   [1,] "9.79748335465867" "20.8000305256292" "20.8003683211179"
##
   [2,] "7.71999639449866" "9.98041094468705" "9.95431345556755"
    [3.] "8.08957783787323" "10.5076420187191" "10.5182762117325"
    [4,] "8.43741038313125" "11.0091630001303" "11.0221115006327"
    [5,] "8.38550103302378" "11.9618725389051" "11.9334895308224"
##
    [6,] "8.25683288704727" "11.612785479182" "11.6805328053348"
##
    [7,] "8.62138344128154" "11.9984271908357" "12.0259237101698"
##
```

[8,] "8.3506663903943" "12.4930915850769" "12.4322865638375"

```
[9,] "8.1693626496722" "12.0286954236259" "12.0182198807093"
## [10,] "9.23753409926132" "14.4972959491374" "14.4861744795951"
  [11,] "7.70651103833515" "10.4212274513421" "10.4206786898426"
   [12,] "8.15053425433936" "10.1875787270284" "10.1964355229393"
         VZFO
                             VZFP
                                                CLFO
##
    [1,] "30.4867482345887" "30.4863228055447" "1.47729626669981"
##
    [2,] "30.6904415765423" "30.7239160557228" "3.19445891892989"
    [3,] "28.5170999496524" "28.5041534217657" "2.92141474473231"
    [4,] "27.2259641330176" "27.2110971545992" "2.70318485984093"
    [5,] "26.4979946505636" "26.5294196385914" "2.29522672438806"
    [6,] "43.2597344953234" "43.135694392041" "3.79802040465035"
    [7,] "34.9084408430805" "34.8676684452056" "3.08368934971535"
    [8,] "37.8105081118408" "37.9066861615621" "3.07968630131565"
    [9,] "38.8427934436931" "38.8593822173436" "3.20292369511514"
## [10,] "25.0155401378403" "25.0278813214113" "1.87516048038837"
## [11.] "37.6221852019531" "37.6230406407462" "3.59135961832556"
## [12.] "22.2242935639128" "22.2157473419508" "2.4504392617801"
##
         CLFP
    [1,] "1.47727565168591"
    [2,] "3.19794315842211"
    [3,] "2.92008844656286"
    [4,] "2.70170876184947"
    [5.] "2.29794872178016"
    [6,] "3.78713021198604"
    [7,] "3.08008765894795"
    [8,] "3.08752005539633"
    [9,] "3.20429158273309"
## [10,] "1.87608557333405"
## [11,] "3.59144127728081"
## [12,] "2.44949695970983"
## attr(,"units")
   [1] ""
                                                          "h"
                                                                      "h"
##
                                 "mg/L"
                                             "mg/L/mg"
   [7] "mg/L"
##
                    "mg/L"
                                 "h"
                                             "h"
                                                          "/h"
                                                                      "h"
## [13] "h"
                    11 11
                                                          11 11
                                                                      "h*mg/L"
## [19] "h*mg/L"
                                                                      "%"
                    "h*mg/L"
                                 "h*mg/L/mg" "h*mg/L"
                                                          "h*mg/L/mg"
## [25] "%"
                                                          "%"
                                                                      "%"
                    "h2*mg/L"
                                 "h2*mg/L"
                                             "h2*mg/L"
                                             "L"
                                                          "L"
## [31] "h"
                    "h"
                                 "h"
                                                                      "L/h"
## [37] "L/h"
```

여기서 dose=320으로 되었다는 것은 아미노필린 400mg 투여시 테오필린 320mg이 경구로 투여되었음을 의미합니다.

이는 문자(character)로 구성된 matrix로 구성된 결과물과 단위 정보가 담긴 attribute 를 포함하고 있습니다.

다음으로 Indomethacin 의 약동학 파라미터를 구해보겠습니다. 이는 IV bolus 이므로 adm="bolus" 인자를 정의해야 합니다.

3.3 구간 NCA

- 1. iAUC
 - •일부구간에 대한 AUC를 구하기 위한 구간설정 옵션입니다.
 - •"Name", "Start", "End" 3개의 컬럼으로 구성된 데이터 프레임으로 설정해야 합니다.

일부 구간의 AUC를 구하는 방법은 조금 더 복잡하므로 자세히 알아봅시다. 예를 들어 O~12시간까지의 AUC, O~24시간까지의 AUC를 구하고자 한다면 다음과 같이 하면 됩니다. 먼저 구하고자 하는 구간에 대한 정보를 갖는 변수를 아래와같이 생성합니다.

```
iAUC <- data.frame(Name=c("AUC[0-12h]","AUC[0-24h]"), Start=c(0,0), End=c(12,24)) iAUC
```

```
## Name Start End
## 1 AUC[0-12h] 0 12
## 2 AUC[0-24h] 0 24
```

Name Start End

1 AUC[0-12h] 0 12 2 AUC[0-24h] 0 24

이제 iAUC 옵션을 이용해서 이를 구합니다.

```
# tblNCA(Theoph, "Subject", "Time", "conc", dose=320, iAUC=iAUC)
```

맨 마지막 파라미터로 AUC[0-12h], AUC[0-24h]가 추가되었음을 알 수 있습니다.

개인별 일부 구간의 AUC를 구하는 방법은 아래와 같다. 예를 들어 0~12시간까지의 AUC, 0~24시간까지의 AUC를 구하고자 한다면 다음과 같이 하면 된다.

```
iAUC = data.frame(Name=c("AUC[0-12h]","AUC[0-24h]"), Start=c(0,0), End=c(12,24)); iAUC
```

Name Start End

1 AUC[0-12h] 0 12 2 AUC[0-24h] 0 24

3.5 함수 살펴보기 17

```
#IntAUC
#IntAUC(Theoph[Theoph$Subject==1,"Time"], Theoph[Theoph$Subject==1, "conc"], Dose=320, iAU
```

3.4 함수 살펴보기

[11,] 147.23475 1499.129085

3.4.1 AUC

AUC와 AUMC를 'Linear trapezoidal method' 혹은 'linear-up and log-down method' 의 두가지 방식으로 계산하게 됩니다.

```
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"])
##
              [,1]
                           [,2]
           0.00000
                      0.000000
##
    [1,]
    [2,]
           0.44750
##
                      0.088750
##
    [3,]
           1.95310
                      0.801534
    [4,]
           6.64735
                      5.065382
          15.71935
##
    [5,]
                     19.138321
##
    [6,]
          32.13535
                     66.198241
##
          42.97695
                    114.461665
    [7,]
    [8,]
          58.25290
                    206.281512
##
   [9,]
          72.75650
                    322.298798
## [10,]
         92.45055
                    528.521903
## [11,] 148.92305 1459.071104
AUC(Theoph Theoph Subject==1, "Time"], Theoph Theoph Subject==1, "conc"], down="Log")
              [,1]
                           [,2]
           0.00000
                      0.000000
##
    [1,]
##
    [2,]
           0.44750
                      0.088750
##
    [3,]
           1.95310
                      0.801534
##
    [4,]
           6.64735
                      5.065382
    [5,]
          15.71410
##
                     19.243482
          32.11090
                     66.830600
##
    [6,]
    [7,]
          42.95189
                   115.151380
    [8,]
          58.21173
                    207.426110
##
    [9,]
          72.70744
                    323.774418
## [10,]
         92.36544 531.108538
```

3.5 긴 형식으로 변환하면서 단위 추가하기

NonCompart 패키지의 tblNCA() 함수를 사용해서 비구획분석 결과를 내면 attr로 names와 units를 등일 갖게 됩니다. 이를 long format의 tidy data로 변환하는 방법은 다음과 같습니다.

Error: Can't subset columns that don't exist.
x Column `Subject` doesn't exist.

R을 사용한 비구획분석 보고서

4.1 이 장에서는

보고서를 일정한 형식으로 작성하여 다른 사람/기관과 공유하는 것은 중요합니다. 이를 ncar 패키지를 사용하여 좀더 쉽게 할 수 있습니다. 이 패키지를 통해서 약동학 파라이터를 보고서 형식의 text, pdf, rtf 파일로 저장할 수 있습니다. 이에 대해 좀더 자세히 알아보겠습니다.

ncar의 DESCRIPTION 파일을 보면 다음과 같이 설명하고 있습니다.

Conduct a noncompartmental analysis with industrial strength. Some features are 1) CDISC SDTM terms 2) Automatic or manual slope selection 3) Supporting both 'linear-up linear-down' and 'linear-up log-down' method 4) Interval(partial) AUCs with 'linear' or 'log' interpolation method 5) Produce pdf, rtf, text report files. * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN: 91 98299107).

library(tidyverse)
library(ncar)

4.2 txtNCA()

우선 저장될 폴더를 확인하면 다음과 같습니다.

getwd()

[1] "C:/Users/cmc/pipetbooks/book-ncar"

저장될 폴더를 변경하고자 한다면 setwd("저장될 경로") 이렇게 설정하면 됩니다. txtNCA() 함수를 사용하여 한 대상자에 대한 plain text 보고서를 작성할 수 있습니다.

```
txtNCA(Theoph$Subject=="1","Time"],
    Theoph[Theoph$Subject=="1","conc"],
    dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h")
```

또한, Theoph 자료의 약동학 파라미터 분석 결과는 아래와 같이 텍스트파일로 저장할 수 있습니다.

저장된 파일 내용은 아래와 같습니다.

```
NONCOMPARTMENTAL ANALYSIS REPORT
                      Package version 0.4.2 (2019-09-27 KST)
                         R version 4.0.1 (2020-06-06)
Date and Time: 2020-06-18 10:02:46 Asia/Seoul
Calculation Setting
_____
Drug Administration: Extravascular
Observation count excluding trailing zero: 11
Dose at time 0: 320 mg
AUC Calculation Method: Linear-up Linear-down
Weighting for lambda z: Uniform (Ordinary Least Square, OLS)
Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4
Fitting, AUC, AUMC Result
                                                    AUC
                                                              AUMC
     Time
                  Conc.
                             Pred.
                                     Residual
```

4.2 txtNCA() 21

0.0000		0.7400		0.0000	0.0000
0.2500		2.8400		0.4475	0.0888
0.5700		6.5700		1.9531	0.8015
1.1200		10.5000		6.6474	5.0654
2.0200		9.6600		15.7194	19.1383
3.8200		8.5800		32.1354	66.1982
5.1000		8.3600		42.9769	114.4617
7.0300		7.4700		58.2529	206.2815
9.0500	*	6.8900	6.8912 -1.228e-03	72.7565	322.2988
12.1200	*	5.9400	5.9387 +1.324e-03	92.4505	528.5219
24.3700	*	3.2800	3.2801 -1.465e-04	148.9231	1459.0711

*: Used for the calculation of Lambda z.

Calculated Values

CMAX	Max Conc	10.5000	mg/L
CMAXD	Max Conc Norm by Dose	0.0328	mg/L/mg
TMAX	Time of CMAX	1.1200	h
TLAG	Time Until First Nonzero Conc	0.0000	h
CLST	Last Nonzero Conc	3.2800	mg/L
CLSTP	Last Nonzero Conc Pred	3.2801	mg/L
TLST	Time of Last Nonzero Conc	24.3700	h
LAMZHL	Half-Life Lambda z	14.3044	h
LAMZ	Lambda z	0.0485	/h
LAMZLL	Lambda z Lower Limit	9.0500	h
LAMZUL	Lambda z Upper Limit	24.3700	h
LAMZNPT	Number of Points for Lambda z	3	
CORRXY	Correlation Between TimeX and Log ConcY	-1.0000	
R2	R Squared	1.0000	
R2ADJ	R Squared Adjusted	1.0000	
AUCLST	AUC to Last Nonzero Conc	148.9231	h*mg/L
AUCALL	AUC All	148.9231	h*mg/L
AUCIFO	AUC Infinity Obs	216.6119	h*mg/L
AUCIFOD	AUC Infinity Obs Norm by Dose	0.6769	h*mg/L/mg
AUCIFP	AUC Infinity Pred	216.6150	h*mg/L
AUCIFPD	AUC Infinity Pred Norm by Dose	0.6769	h*mg/L/mg
AUCPEO	AUC %Extrapolation Obs	31.2489	%
AUCPEP	AUC %Extrapolation Pred	31.2499	%
AUMCLST	AUMC to Last Nonzero Conc	1459.0711	h2*mg/L
AUMCIFO	AUMC Infinity Obs	4505.5348	h2*mg/L
AUMCIFP	AUMC Infinity Pred	4505.6709	h2*mg/L
AUMCPEO	AUMC %Extrapolation Obs	67.6160	%

```
AUMCPEP
           AUMC % Extrapolation Pred
                                                           67.6170 %
VZFO
           Vz Obs by F
                                                           30.4867 L
VZFP
           Vz Pred by F
                                                           30.4863 L
                                                            1.4773 L/h
CLFO
           Total CL Obs by F
CLFP
           Total CL Pred by F
                                                            1.4773 L/h
MRTEVLST
           MRT Extravasc to Last Nonzero Conc
                                                            9.7975 h
MRTEVIFO
           MRT Extravasc Infinity Obs
                                                           20.8000 h
                                                           20.8004 h
MRTEVIFP
           MRT Extravasc Infinity Pred
```

한편 txtNCA2()를 다음과 같이 정의하면 여러 대상자에 대한 보고서를 작성 가능합니다.

```
txtNCA2(Theoph) %>% writeLines('Output-ncar/txtNCA-group-Theoph.txt')
```

저장된 파일 내용은 Appendix C.1 에서 확인 가능합니다.

4.3 pdfNCA()

pdfNCA()로 pdf로 결과를 볼 수 있습니다. (Figure 4.1)

```
4.4 rtfNCA()
## cairo_pdf
magick -density 150 Output-ncar/pdfNCA-Theoph.pdf Output-ncar/pdfNCA-Theoph-%02d.png
magick montage Output-ncar/pdfNCA-Theoph-01.png Output-ncar/pdfNCA-Theoph-02.png Output-nc
## /bin/bash: magick: command not found
## /bin/bash: line 1: magick: command not found
```

23

4.4 rtfNCA()

FIGURE 4.1: pdfNCA() output

마이크로소프트 워드에서 편집가능한 rtf파일을 만듭니다.

```
ncar::rtfNCA(fileName="rtfNCA-Theoph.rtf", Theoph, key="Subject",
             colTime="Time", colConc="conc", dose=320, doseUnit="mg",
             timeUnit="h", concUnit="mg/L")
```

R을 사용한 비구획분석 시각화

5.1 이 장에서는

비구획분석에 대한 다양한 시각화는 여러 유용한 정보를 제공해 줍니다. 이를 가능하게 해 주는 pkr 패키지[Bae and Lee, 2018]에 대해서 자세히 알아보겠습니다.

pkr의 DESCRIPTION 파일을 보면 다음과 같이 설명하고 있습니다.

Conduct a noncompartmental analysis as closely as possible to the most widely used commercial software for pharmacokinetic analysis, i.e. 'Phoenix(R) WinNonlin(R)' https://www.certara.com/software/pkpd-modeling-and-simulation/phoenix-winnonlin/. Some features are 1) CDISC SDTM terms 2) Automatic slope selection with the same criterion of WinNonlin(R) 3) Supporting both 'linear-up linear-down' and 'linear-up log-down' method 4) Interval(partial) AUCs with 'linear' or 'log' interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN: 9198299107).

library(tidyverse)
library(pkr)

5.2 pkr 사용법

pkr 함수의 가장 핵심적인 기능은 plotPK() 함수에 있고 이 함수의 인자는 다음과 같습니다.

또한 개개인 별로 여러개의 그림이 담긴 두개의 PDF 파일이 생성되었습니다.

Error in knitr::include_graphics("Output-pkr/Individual PK Linear Scale for Theoph.png"
Error in knitr::include_graphics("Output-pkr/Individual PK Log 10 Scale for Theoph.png"

5.2 pkr 사용법 27

FIGURE 5.1: 평균 약동학 파라메터와 그룹 농도-시간 그림 (선형)

FIGURE 5.2: 평균 약동학 파라메터와 그룹 농도-시간 그림 (로그)

5.2 pkr사용법 29

FIGURE 5.3: 평균 약동학 파라메터와 그룹 평균 농도-시간 그림 (로그)

R을 사용한 약동학 시뮬레이션

6.1 이 장에서는

6.2 시뮬레이션에 대하여

TBD

wnl 패키지가 CRAN에 올라와 있습니다.

6.3 시뮬레이션 후 비구획분석

TBD

6.4 앱을 통해 살펴보는 시뮬레이션

샤이니 앱을 통해서 시뮬레이션을 구현할 수 있습니다. Shinyapp: PK Simulation - 1 Comp IV or Oral https://asan.shinyapps.io/pk1c/

knitr::include_app("https://asan.shinyapps.io/pk1c/") #, height = "600px")

6.4.1 shiny 앱

웹브라우저를 통해 간단히 비구획분석을 할 수 있는 앱을 개발하였습니다.

- Han, S. (2017) pkrshiny: Noncompartmental Analysis using pkr R package Shiny application. URL: https://asan.shinyapps.io/pkrshiny
- 그 외 약동학과 관련된 몇가지 shiny 앱도 참고하세요.

- Han, S. (2017) Pharmacokinetic Simulation of one-compartment Models. URL: ht tps://asan.shinyapps.io/pk1c/
- Han, S. (2017) caff: Monte Carlo Simulation of Caffeine Shiny application. URL: ht tps://asan.shinyapps.io/caff
- Han, S. (2016) vtdm: Vancomycin TDM Shiny application. URL: https://asan.shinyapps.io/vtdm

통계처리

7.1 이 장에서는

생물학적 동등성, 용량 비례성을 확인하는 통계 처리 방법을 알아보겠습니다.

```
library(tidyverse)
library(BE)
library(psych)
```

7.2 기술통계량구하기

앞서 3장에서 구한 Theoph_nca를 갖고 기술 통계량(평균, 표준편차, 최소값, 최대값, skewness, kurtosis)을 구해보겠습니다. psych::describe() 함수를 사용하면 간단히 구할 수 있습니다.

```
desc_stat_Theoph_nca <- describe(Theoph_nca) %>%
    select(n, mean, sd, min, max, skew, kurtosis)
knitr::kable(desc_stat_Theoph_nca, digits = 2)
```

	n	mean	sd	min	max	skew	kurtosis
ID*	12	6.50	3.61	1.00	12.00	0.00	-1.50
bo*	12	2.39	0.25	2.03	2.82	0.13	-1.38
CMAX*	12	8.76	1.47	6.44	11.40	0.21	-1.19
CMAXD*	12	0.03	0.00	0.02	0.04	0.21	-1.19
TMAX*	12	1.79	1.11	0.63	3.55	0.70	-1.35
TLAG*	12	0.00	0.00	0.00	0.00	NaN	NaN
CLST*	12	1.40	0.72	0.86	3.28	1.57	1.14
CLSTP*	12	1.40	0.72	0.86	3.28	1.58	1.19
TLST*	12	24.20	0.25	23.70	24.65	-0.28	-0.57
LAMZHL*	12	8.18	2.12	6.29	14.30	1.90	2.97
LAMZ*	12	0.09	0.02	0.05	0.11	-0.92	0.40
LAMZLL*	12	7.49	2.40	2.03	9.38	-1.20	-0.03
LAMZUL*	12	24.20	0.25	23.70	24.65	-0.28	-0.57
LAMZNPT*	12	3.83	1.34	3.00	7.00	1.32	0.28
CORRXY*	12	-1.00	0.00	-1.00	-1.00	2.20	3.87
R2*	12	1.00	0.00	0.99	1.00	-2.20	3.87
R2ADJ*	12	1.00	0.00	0.99	1.00	-2.05	3.39
AUCLST*	12	103.81	23.65	73.78	148.92	0.56	-1.12
AUCALL*	12	103.81	23.65	73.78	148.92	0.56	-1.12
AUCIFO*	12	122.19	38.13	84.25	216.61	1.25	0.51
AUCIFOD*	12	0.38	0.12	0.26	0.68	1.25	0.51
AUCIFP*	12	122.18	38.11	84.50	216.61	1.26	0.52
AUCIFPD*	12	0.38	0.12	0.26	0.68	1.26	0.52
AUCPEO*	12	13.54	6.35	8.13	31.25	1.71	2.19
AUCPEP*	12	13.54	6.34	8.16	31.25	1.72	2.23
AUMCLST*	12	883.06	262.98	609.15	1459.07	0.92	-0.42
AUMCIFO*	12	1590.30	1006.57	928.56	4505.53	2.00	2.96
AUMCIFP*	12	1589.85	1006.06	928.49	4505.67	2.01	2.97
AUMCPEO*	12	38.72	11.10	26.50	67.62	1.29	1.10
AUMCPEP*	12	38.72	11.07	26.59	67.62	1.30	1.14
MRTEVLST*	12	8.41	0.59	7.71	9.80	0.99	0.12
MRTEVIFO*	12	12.29	2.96	9.98	20.80	1.90	2.83
MRTEVIFP*	12	12.29	2.95	9.95	20.80	1.91	2.84
VZFO*	12	31.93	6.47	22.22	43.26	0.20	-1.40
VZFP*	12	31.92	6.46	22.22	43.14	0.19	-1.41
CLFO*	12	2.81	0.68	1.48	3.80	-0.45	-0.93
CLFP*	12	2.81	0.68	1.48	3.79	-0.46	-0.93

7.3 생물학적 동등성

생물학적 동등성을 위한 가장 간단한 방법은 BE 패키지[Bae, 2018]를 쓰는 것입니다.

Chow와 Liu의 책의 내용을 충실히 반영하였습니다. [Chow and Liu, 2008] 생물학적 동등성을 위한 수학 식은 다음과 같습니다. (7.1)

$$\begin{split} 0.8 < 90\% \ CI \ of \ \frac{GM(AUC_{last,test})}{GM(AUC_{last,ref})} < 1.25 \\ 0.8 < 90\% \ CI \ of \ \frac{GM(AUC_{last,test})}{GM(AUC_{last,ref})} < 1.25 \end{split} \tag{7.1}$$

현재로서는 2x2 디자인의 간단한 임상시험 디자인만을 지원하고 있습니다. (그림 7.1) 핵심이 되는 함수는 beNCA() 입니다.

knitr::include_graphics('images/twobytwo.jpg')

2 x 2 Crossover Design

FIGURE 7.1: 전형적인 2x2 설계

function (Data, Columns = c("AUClast", "Cmax", "Tmax"), rtfName = "")
NULL.

다음과 같은 함수 인자를 설정해 주면 됩니다.

- SUBJ: Subject ID, any data type
- GRP: column name in which information of "RT" or "TR" exists.

7 통계처리

```
• PRD: column name in which information of 1 or 2 exists.
• TRT: column name in which information of "R" or "T" exists.

    method: kbe by authors or nlme package uploaded on CRAN

ncarbe 패키지 내에 있는 자료를 사용할 것입니다. (Table 7.1)
file <- system.file('example', 'beConc.csv', package = 'ncarbe')</pre>
concData <- read_csv(file)</pre>
배균섭 교수님의 강의 자료에서 가져왔습니다.
print(be2x2(NCAResult4BE, c("AUClast", "Cmax", "Tmax")), na.print="")
## $AUClast
## $AUClast$`Analysis of Variance (log scale)`
##
                             SS DF
                                                            F
## SUBJECT
                   2.875497e+00 32 8.985928e-02 3.183942248 0.0008742828
                   1.024607e-01 1 1.024607e-01 1.145416548 0.2927731856
## GROUP
## SUBJECT(GROUP) 2.773036e+00 31 8.945279e-02 3.169539016 0.0009544080
                   3.027399e-05 1 3.027399e-05 0.001072684 0.9740824428
## PERIOD
## DRUG
                   3.643467e-02 1 3.643467e-02 1.290972690 0.2645764201
                  8.749021e-01 31 2.822265e-02
## ERROR
                  3.786834e+00 65
## TOTAL
## $AUClast$`Between and Within Subject Variability`
##
                                    Between Subject Within Subject
## Variance Estimate
                                          0.03061507
                                                         0.02822265
## Coefficient of Variation, CV(%)
                                         17.63193968
                                                         16.91883011
##
## $AUClast$`Least Square Means (geometric mean)`
##
                    Reference Drug Test Drug
                          5092.098 4858.245
## Geometric Means
##
   $AUClast$`90% Confidence Interval of Geometric Mean Ratio (T/R)`
##
                     Lower Limit Point Estimate Upper Limit
   90% CI for Ratio
                        0.889436
                                      0.9540753
                                                    1.023412
##
##
   $AUClast$`Sample Size`
                          True Ratio=1 True Ratio=Point Estimate
##
## 80% Power Sample Size
                                      6
##
##
## $Cmax
## $Cmax$`Analysis of Variance (log scale)`
```

SS DF

MS

F

р

##

TABLE 7.1: A example dataset for the bioequivalence test.

SUBJ	GRP	PRD	TRT	AUClast	Cmax	Tmax
1	RT	1	R	5018.927	1043.13	1.04
1	RT	2	T	6737.507	894.21	1.03
2	TR	1	T	4373.970	447.26	1.01
2	TR	2	R	6164.276	783.92	1.98
4	TR	1	T	5592.993	824.42	1.97
4	TR	2	R	5958.160	646.31	0.97
5	TR	1	T	3902.590	803.70	0.80
5	TR	2	R	4620.156	955.30	0.74
6	RT	1	R	3735.274	995.34	1.02
6	RT	2	T	4257.802	816.33	1.00
7	RT	1	R	4314.993	608.99	0.95
7	RT	2	T	5030.372	806.57	0.74
8	RT	1	R	6053.098	1283.67	0.72
8	RT	2	T	5790.067	822.95	1.03
9	RT	1	R	4602.582	679.39	0.74
9	RT	2	T	6042.462	556.55	0.98
10	RT	1	R	8848.988	1136.91	1.03
	RT		T		1082.79	
	TR	2	T	7349.822		0.97
		1		3054.096	547.73	2.02
11	TR	2	R	4719.175	984.69	0.54
13	RT	1	R	4828.682	615.17	1.00
13	RT	2	T	4175.434	692.26	0.97
14	RT	1	R	4566.275	864.56	1.03
14	RT	2	T	5042.649	1122.75	0.75
15	TR	1	T	4950.980	719.40	0.97
15	TR	2	R	4959.554	660.17	0.96
16	RT	1	R	4577.432	609.64	3.01
16	RT	2	T	4773.723	807.65	1.01
17	RT	1	R	6462.652	861.56	2.02
17	RT	2	T	5246.032	1187.75	0.73
18	TR	1	T	4754.625	919.87	0.77
18	TR	2	R	3214.809	1042.84	0.53
19	TR	1	T	7619.304	1089.84	3.00
19	TR	2	R	5210.569	1127.94	2.04
20	TR	1	T	5063.471	1191.46	0.71
20	TR	2	R	6406.634	1069.19	1.00
21	RT	1	R	5580.289	742.67	0.97
21	RT	2	T	6304.119	447.85	0.99
22	RT	1	R	4398.887	682.73	2.02
22	RT	2	T	3760.359	669.01	1.04
23	TR	1	T	5141.165	937.02	0.51
23	TR	2	R	5835.275	894.72	1.04
24	TR	1	T	4343.439	713.57	1.03
24	TR	2	R	2848.448	811.83	0.71
25	TR	1	T	3983.260	1160.32	0.73
25	TR	2	R	3476.389	769.63	0.78
27	TR	1	T	5772.972	1219.56	0.99
27	TR	2	R	7673.260	1063.29	1.03
$\frac{27}{28}$	RT	1	R	5679.039	650.24	1.00
	RT		T			
28	L/I	2	1	5160.875	891.63	1.05

38 7 통계처리

```
## SUBJECT
                  2.861492e+00 32 8.942162e-02 2.237604579 0.01367095
## GROUP
                  9.735789e-05 1 9.735789e-05 0.001054764 0.97429977
## SUBJECT(GROUP) 2.861394e+00 31 9.230304e-02 2.309706785 0.01131826
                  4.717497e-03 1 4.717497e-03 0.118046317 0.73348258
                  6.837756e-03 1 6.837756e-03 0.171101730 0.68198228
## DRUG
                  1.238856e+00 31 3.996310e-02
## ERROR
## TOTAL
                  4.112258e+00 65
##
## $Cmax$`Between and Within Subject Variability`
                                   Between Subject Within Subject
## Variance Estimate
                                        0.02616997
                                                         0.0399631
## Coefficient of Variation, CV(%)
                                       16.28355371
                                                        20.1921690
## $Cmax$`Least Square Means (geometric mean)`
                   Reference Drug Test Drug
                         825.5206 808.8778
## Geometric Means
## $Cmax$`90% Confidence Interval of Geometric Mean Ratio (T/R)`
                    Lower Limit Point Estimate Upper Limit
                                     0.9798396
## 90% CI for Ratio 0.9013625
                                                  1.065149
##
## $Cmax$`Sample Size`
##
                         True Ratio=1 True Ratio=Point Estimate
## 80% Power Sample Size
                                    8
##
##
## $Tmax
## $Tmax$`Wilcoxon Signed-Rank Test`
    p-value
## 0.2326894
##
## $Tmax$`Hodges-Lehmann Estimate`
                              Lower Limit Point Estimate Upper Limit
## 90% Confidence Interval
                                 -0.33000
                                                -0.03500
                                                               0.1050
## 90% Confidence Interval(%)
                                 74.37661
                                                97.28237
                                                             108.1529
knitr::include_graphics('images/fixed-random.jpg')
```

7.4 Dose Proportionality

DP 처리.

Fixed Factor

- 요인이 몇 개의 고유한 값을 가지거나 실험자가 원하는 대로 정해 줄 수 있는 요인
- 예: 치료법, 약물, 계절, 성별, 인종
- 수준에 따른 차이를 추정하고 검정한다.

Random Factor

- 상당히 많은 여러 가지 중에서 골라진 경우
- 예: 개별 환자, 투약일자
- 수준에 따른 차이를 검정하지 않고, 분산(퍼진 정도, variability)만 추정한다.
- 무작위화가 가능한 집단인자(드럼통, 약통)가 있고, 무작위화가 어려운 블록인자(투약일자)가 있다.

FIGURE 7.2: 모수 인자와 변량 인자의 비교

16명의 C_{max} 와 AU C_{last} 가 나온 표입니다. Table 7.2

```
# setup ----
library(readxl)
library(tidyverse)
library(broom)
dp_data <- # Virtual data from 4 dose groups (N=16)</pre>
'Dose, Subject, Cmax, AUClast
50,101,860,2000
50,102,510,2300
50,103,620,2900
50,104,540,2400
100,201,1550,6600
100,202,1440,7400
100,203,2000,7300
100,204,1600,7000
200,301,4100,20400
200,302,2800,9500
200,303,3200,8000
200,304,2550,7070
400,401,4800,22000
400,402,5700,23000
```

40 7 통계처리

TABLE 7.2: 16명의 C max, AUC last

Dose	Subject	Cmax	AUClast
50	101	860	2000
50	102	510	2300
50	103	620	2900
50	104	540	2400
100	201	1550	6600
100	202	1440	7400
100	203	2000	7300
100	204	1600	7000
200	301	4100	20400
200	302	2800	9500
200	303	3200	8000
200	304	2550	7070
400	401	4800	22000
400	402	5700	23000
400	403	5800	26700
400	404	5760	28884

```
400,403,5800,26700
400,404,5760,28884'
sad_indi_pk <- read_csv(dp_data)
knitr::kable(sad_indi_pk, caption = '16명의 C~max~, AUC~last~')
```

그림을 살펴보겠습니다.

42 7 통계처리

1.04 (0.06) 0.90-1.18

lm() 함수를 써서 구할 수 있습니다.

1 Cmax

```
calc_dp <- function(param, fit) {</pre>
  bind_cols(fit %>% summary %>% tidy %>% filter(term == 'Dose') %>% select(1, 'estimate',
            fit %>% confint(level = 0.95) %>% tidy %>% filter(.rownames == 'Dose'),
            fit %>% summary %>% glance
            ) %>%
    filter(term == 'Dose') %>%
    select(-.rownames, -term) %>%
    mutate(parameters = param) %>%
    mutate(est = sprintf('%0.2f (%0.2f)', estimate, std.error)) %>%
    mutate(ci = sprintf('%0.2f-%0.2f', X2.5.., X97.5..)) %>%
    select(parameters, est, ci, r.squared, p.value)
}
fit_cmax <- lm(formula = Cmax ~ Dose, data = sad_indi_pk_log)</pre>
fit_auclast <- lm(formula = AUClast ~ Dose, data = sad_indi_pk_log)</pre>
bind_rows(calc_dp(param = 'Cmax', fit = fit_cmax),
          calc_dp(param = 'AUClast', fit = fit_auclast))
## # A tibble: 2 x 5
     parameters est
                             ci
                                       r.squared p.value
     <chr>
                <chr>
                             <chr>
                                           <dbl>
                                                    <dbl>
```

0.949 1.80e-10

7.4 Dose Proportionality

43

2 AUClast 1.07 (0.09) 0.87-1.27 0.905 1.49e- 8

결론

R을 통해서 NCA를 구할 수 있도록 R 패키지를 구축하였습니다. 값비싼 상용소프트웨어를 사용하지 않고도 동일한 비구획분석이 가능한 것은 비용과 작업 효율 측면에서 큰 잇점을 가져올 것입니다.

현재 R에 기본적으로 내장되어 있는 PO 테오필린(theophylline)과 IV bolus 인도메타신(indomethacin)에 대해서 예가 잘 나와있습니다. 약물에 대한 자료를 고른 후 각약물의 복용량, 감소 구간에서의 log 치환 여부, 복용방법, 정맥주사일 경우 투입 시간(정맥주사 이외의 값들 경우에는 infusion time은 내부 함수에 따라 값이 적용되지않는다.)을 각각 설정할 경우 값을 도출할 수 있습니다.

Edison 내에서 실제 Theophylline의 용량에 따라 구현된 각각의 graph를 spaghetti plot 형태로 Edison의 결과 가시화 tab을 이용하여 확인할 수 있으며, 그래프의 형태를 변형할 수 있게 설정하였다. Y축(농도)의 경우 linear plot과 semi-logarithmic plot을 모두 함께 확인할 수 있도록 하여 다양한 구간에서의 그래프의 추세를 선택적으로 확인할 수 있도록 하였다.

언급하였던 공식 이외에도 Pharmacokinetic and Pharmacodynamic Data Analysis 5th edition 에 언급된 공식을 적용하여 다음과 같이 값을 도출하였다.(figure 8)

또한 결과 값이 모두 도출된 이후 실제 NCA program으로 가장 흔히 사용되고 있는 WinNonlin® (Version 7.0 Pharsight, CA, USA) software 와의 결과 비교에서도 모든 조건을 현재 Edison simulator에서 준 값과 동일하게 설정하여 프로그램을 실행할 경우, 모든 지표에서 같은 값이 계산됨을 확인하였다. (figure 8, figure 9)

현재 가장 간단한 분석 방식인 비구획 분석을 통해서 약동학 분석에 필수적인 지표들을 산출해 내었지만, 마찬가지로 수학적 원리를 반영하여 R script를 구성한다면 보다고차원적적 약동학 분석 방법인 구획 분석(Compartmental analysis)과 비선형적 약동학(nonlinear mixed effect modeling) 분석 또한 실시할 수 있다.

실제로 Edison 사이언스 엡에 추가한 'NONMEM(Nonlinear mixed effect modeling), method' 라는 엡을 통해 현재 입력 되어있는 Theoph(theophylline)의 시간 농도 데이터를 가지고 FO(first-order method), FOCE(first-order conditional estimation method), LAPL(Laplace's method)의 방법을 이용하여 현재 사용하는 NONMEM software와 유사한 값들을 재현해 낼 수 있다.

약물을 연구하고 개발하는데 있어서 약동학은 굉장히 필수적인 분야이며, 그 동안 이러한 약동학 지표들을 구하기 위해서 그러한 결론이 도출되는 과정을 고려하지 않고일부 프로그램의 사용에만 의존하는 모습이 주를 이뤘습니다.

8 결론

하지만 이번 Edison program과 다양한 수학적, 통계적 지식을 coding에 활용하여 실제 임상적으로도 활용 가능한 결과값을 도출해 낼 수 있음을 확인하였으며 앞으로도 약동학 분야에서 다양하게 활용할 수 있을 것으로 예측됩니다.

R 내에서 자료 프렙, 비구획분석, 보고서 작성, 및 그림까지 그릴 수 있으므로 빠르고 효과적임. 만약 자료의 오류나 변화가 생겼을 때 수정이 쉽다. 계산 방식의 변경이 있을때 (Linear에서 Log로 변경 원할 때) 역시 마찬가지이다. SDTM의 PPTESTCD를 사용하므로 PP도메인 구성하기 쉽다. 변경할 때 추가적인 비용이 안든다. 현재 practice 는 Winnonlin에서 나온 것을 일일히 변경해야 하는데 이 작업은 약동학자라도 SDTM에 대한 이해가 없이는 이 작업이 쉽지 않다. R을 통해 NCA를 해주는 패키지가 많지만 SDTM 자료 형태로 결과를 계산하거나, pkr처럼 인풋으로 받을 수 있는 패키지는 없다. 상용 소프트웨어도 마찬가지 이다. 모든 것이 무료이고 소스코드가 공개되어 있으므로 약동학을 공부할 수 있다. 추가적으로 소프트웨어가 확장할 여지가 크다. (확장성이 좋다. 실제로 ncarbe 패키지처럼 BE 처리 해주는 것도 쉽게 개발할 수 있다.)

A

Phoenix WinNonLin 과 결과 비교

A.1 Conclusion

There is no discrepancy between results from NonCompart and WinNonlin. We also performed multiple analyses with the real clinical trial datasets and have found no differences (data not shown: confidential). Noncompartmental analysis performed by the open-source R package, NonCompart can be **qualified and validated** enough to acquire the identical results of the commercial software, WinNonlin.

Please report issues regarding validation of the R package to https://github.com/asancpt/NonCompart-tests/issues.

B

기타 비구획분석 소프트웨어

B.1 이 장에서는

이 장에서는 몇가지 NCA 용 소프트웨어(상용 소프웨어, R 패키지)를 비교하고 분석하여 그 결과와 사용법의 공통점과 차이점을 알아볼 것입니다. 특별히 Theoph 데이타 셋에서 C_{\max} , AUC_{\inf} 가 동일하게 나오는지 초점을 맞추어 실펴보겠습니다.

library(tidyverse)

B.2 Certara Phoenix WinNonLin

https://www.certara.com/software/pkpd-modeling-and-simulation/phoenix-winnonlin/

B.2.1 Pros

- Validated for several years
- · Industry standard
- Versatile unit setting
- Easy using by GUI
- Generating plots supported

B.2.2 Cons

- Expansive (~several thousand dollars)
- Not suitable for reproducible research
- CDISC SDTM not compatible (input and output)

B.3 R package: PKNCA

Automation of Noncompartmental Analysis in R https://github.com/billdenney/pknca

B.3.1 ISoP Pharmacometrics Study Group Presentation

- 강의 동영상 https://www.youtube.com/watch?v=WCmFrheYtcc
- 프로젝트 https://github.com/billdenney/pknca
- Package https://cran.r-project.org/web/packages/PKNCA/
 - 예제 R Markdown 파일:https://github.com/billdenney/pknca/tree/master/vignettes
- PPT 파일
- PKNCA 패키지란 무엇인가? * Pharmacokinetic(PK) data를 위한 모든 noncompartmental analysis (NCA) 계산이 가능한 R용 패키지

library(devtools)
install_github("billdenney/pknca")

B.3.2 오픈소스 NCA - 지금이 적기이다.

- Data standards 가 점점 많아짐
- CDISC/SDTM 7 FDA requirement
- CDISC ADaM working group is standardizing NCA data set (ADNCA)
 - CDISC SDTM pharmacokinetic concentration (PC) and pharmacokinetic parameter (PP) domains have been standardized
- 우리도 R로 NCA?
 - Organizes concentration/time and dose/time data
- Predicts what you most likely need from NCA parameters from the concentration and dosing data.
- · Allows user control of all NCA parameter and summary calculations
- Calculates all (standard) NCA parameters (Targeting the SDTM PK 파라메터)
- 한계
 - 그래픽 못그림
 - 파라메터의 statistics 못구함(곧 기능 추가할듯)
- NCA 파라메터 계산가능 (Cmax, Tmax, AUClast, AUCinf, AUMC, half-life, …)
- NCA-related calculations (Superposition, Concentration interpolation/extrapolation (with AUC methods), Time to steady-state)
- SDTM PP-READY OUTPUT 가능
- 인풋에서 아웃풋까지 TRACK가능하다.
- 800개 넘는 테스트 케이스가 있음.
- Github에서 모두 다운로드 가능

- CRAN에 package 올라왔다. (0.7) https://cran.r-project.org/web/packages/PKNCA/
 - wdenney@humanpredictions.com¹ 으로 메일 보내라
- 모든게 오픈이기 때문에 Github에서 기여 환영
- RStudio를 사용한 Hands-on 실습
- · Example-theophylline.Rmd
 - Theophylline 농도를 가지고 PK Parameter 구하는 법
 - https://raw.githubusercontent.com/billdenney/pknca/master/ vignettes/Example-theophylline.Rmd
 - 이 파일을 RStudio에서 실행해본다.
 - 이후 article에서 분석할 것입니다.
- Superposition.Rmd
 - https://raw.githubusercontent.com/billdenney/pknca/master/ vignettes/Superposition.Rmd
 - 이 파일을 RStudio에서 실행해본다.
- PKNCA.options() 모든 옵션을 볼 수 있다.

B.3.3 Pros

- Open source and free of charge
- CDISC SDTM semi compatible (output)
- Calculate partial(interval) AUC with 'linear' or 'log' interpolation method but in a cumbersome way

B.3.4 Cons

- CDISC SDTM not compatible (input)
- · More tests required
- Experience with R language required
- Generating plots not supported for now (To be supported soon)

start end Subject PPTESTCD PPORRES exclude

¹mailto:wdenney@humanpredictions.com

```
## 1
          0 Inf
                        1 aucinf.obs 214.92363
                                                     <NA>
## 2
          0 Inf
                        2 aucinf.obs 97.37793
                                                     <NA>
## 3
          0 Inf
                        3 aucinf.obs 106.12767
                                                     <NA>
## 4
          0 Inf
                        4 aucinf.obs 114.21620
                                                     <NA>
## 5
                        5 aucinf.obs 136.30473
          0 Inf
                                                     <NA>
## 6
          0 Inf
                        6 aucinf.obs 82.17588
                                                     <NA>
## 7
          0 Inf
                        7 aucinf.obs 100.98763
                                                     <NA>
## 8
                        8 aucinf.obs 102.15330
                                                     <NA>
          0 Inf
## 9
          0 Inf
                          aucinf.obs
                                       97.52000
                                                     <NA>
## 10
          0 Inf
                       10 aucinf.obs 167.86003
                                                     <NA>
## 11
          0 Inf
                          aucinf.obs
                                       86.90262
                                                     <NA>
## 12
          0 Inf
                       12
                          aucinf.obs 125.83154
                                                     <NA>
##
  13
          0 Inf
                                       10.50000
                        1
                                 cmax
                                                     <NA>
## 14
          0 Inf
                        2
                                        8.33000
                                                     <NA>
                                 cmax
## 15
          0 Inf
                        3
                                        8.20000
                                 cmax
                                                     <NA>
## 16
          0 Inf
                        4
                                 cmax
                                        8.60000
                                                     <NA>
## 17
          0 Inf
                        5
                                       11.40000
                                                     <NA>
                                 cmax
## 18
          0 Inf
                        6
                                 cmax
                                        6.44000
                                                     <NA>
## 19
          0 Inf
                        7
                                        7.09000
                                                     <NA>
                                 cmax
## 20
          0 Inf
                        8
                                 cmax
                                        7.56000
                                                     <NA>
## 21
          0 Inf
                        9
                                        9.03000
                                                     <NA>
                                 cmax
## 22
          0 Inf
                       10
                                 cmax
                                       10.21000
                                                     <NA>
## 23
          0 Inf
                                        8.00000
                                                     <NA>
                       11
                                 cmax
## 24
          0 Inf
                       12
                                        9.75000
                                                     <NA>
                                 cmax
```

```
summary(my.results.automatic)
```

```
## start end N auclast cmax tmax half.life aucinf.obs
## 0 24 12 74.6 [24.3] . . . . . .
## 0 Inf 12 . 8.65 [17.0] 1.14 [0.630, 3.55] 8.18 [2.12] 115 [28.4]
##
## Caption: auclast, cmax, aucinf.obs: geometric mean and geometric coefficient of variati
```

B.4 R package: ncappc

NCA Calculation and Population PK Model Diagnosis [Acharya et al., 2016]

```
https://cran.r-project.org/web/packages/ncappc/index.html https://www.ncbi.nlm.nih.gov/pubmed/27000291
```

```
#install.packages("ncappc")
library(ncappc)
```

Histogram of NCA metrics estimated from the observed data (spread = 2.5th and 97.5th percentile boundaries)

Value

Histogram of NCA metrics estimated from the observed data (spread = 2.5th and 97.5th percentile boundaries)

Value

B.9 R package: PK 55

B.5 R package: PK

Basic Non-Compartmental Pharmacokinetics

https://cran.r-project.org/web/packages/PK/index.html

```
#install.packages("PK")
library(PK)
```

B.6 Kinetica

B.7 Scientist

B.8 PKSolver

B.9 Summary

C

R에 내장된 자료의 비구획분석 보고서

C.1 Theoph의 보고서

ID=6

NONCOMPARTMENTAL ANALYSIS REPORT
Package version 0.4.2 (2019-09-27 KST)
R version 4.0.1 (2020-06-06)

Date and Time: 2020-06-18 10:02:47 Asia/Seoul

Calculation Setting

Drug Administration: Extravascular

Observation count excluding trailing zero: 11

Dose at time 0: 320 mg

AUC Calculation Method: Linear-up Linear-down

Weighting for lambda z: Uniform (Ordinary Least Square, OLS)

Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4

Fitting, AUC, AUMC Result

Time	Conc.	Pred.	Residual	AUC	AUMC
0.0000	0.0000			0.0000	0.0000
0.5800	3.0800			0.8515	0.3779
1.1500 2.0300 *	6.4400 6.3200	6.3928	-7.284e-02	3.5647 9.1791	2.9977 11.9014
3.5700 * 5.0000 *	5.5300 4.9400		-5.438e-02 +1.450e-02	18.3036 25.7897	36.9816 68.7577
7.0000 *	4.0200	4.1323	-1.123e-01	34.7497	121.5977

```
9.2200 *
                             3.4005 +5.948e-02
                                                   43.0525
                                                              188.2434
                  3.4600
    12.1000 *
                  2.7800
                             2.6408 +1.392e-01
                                                   52.0381
                                                              282,6199
    23.8500 *
                  0.9200
                             0.9413 -2.127e-02
                                                   73.7756
                                                              609.1524
*: Used for the calculation of Lambda z.
```

Calculated Values

CMAX Max Conc 6.4400 mg/L CMAXD Max Conc Norm by Dose 0.0201 mg/L/mg XAMT Time of CMAX 1.1500 h TLAG Time Until First Nonzero Conc 0.0000 h CLST Last Nonzero Conc 0.9200 mg/L CLSTP Last Nonzero Conc Pred 0.9413 mg/L Time of Last Nonzero Conc TLST 23.8500 h LAMZHL Half-Life Lambda z 7.8950 h LAMZ Lambda z 0.0878 /h LAMZLL Lambda z Lower Limit 2.0300 h Lambda z Upper Limit LAMZUL 23.8500 h LAMZNPT Number of Points for Lambda z 7 CORRXY Correlation Between TimeX and Log ConcY -0.9991 R2 R Squared 0.9982 R2ADJ R Squared Adjusted 0.9979 AUC to Last Nonzero Conc AUCLST 73.7756 h*mg/L AUCALL AUC All 73.7756 h*mg/L AUCIFO AUC Infinity Obs 84.2544 h*mg/L AUC Infinity Obs Norm by Dose 0.2633 h*mg/L/mg AUCIFOD AUC Infinity Pred 84.4967 h*mg/L AUCIFP AUC Infinity Pred Norm by Dose 0.2641 h*mg/L/mg AUCIFPD AUC %Extrapolation Obs 12.4372 % AUCPEO AUCPEP AUC %Extrapolation Pred 12.6882 % AUMC to Last Nonzero Conc 609.1524 h2*mg/L AUMCLST AUMCIFO AUMC Infinity Obs 978.4285 h2*mg/L 986.9665 h2*mg/L AUMCIFP AUMC Infinity Pred AUMCPEO AUMC %Extrapolation Obs 37.7418 % AUMCPEP AUMC % Extrapolation Pred 38.2803 % VZFO Vz Obs by F 43.2597 L **VZFP** Vz Pred by F 43.1357 L CLFO Total CL Obs by F 3.7980 L/h CLFP Total CL Pred by F 3.7871 L/h MRTEVLST MRT Extravasc to Last Nonzero Conc 8.2568 h MRTEVIFO MRT Extravasc Infinity Obs 11.6128 h MRTEVIFP MRT Extravasc Infinity Pred 11.6805 h

ID=7

NONCOMPARTMENTAL ANALYSIS REPORT
Package version 0.4.2 (2019-09-27 KST)
R version 4.0.1 (2020-06-06)

Date and Time: 2020-06-18 10:02:47 Asia/Seoul

Calculation Setting

Drug Administration: Extravascular

Observation count excluding trailing zero: 11

Dose at time 0: 320 mg

AUC Calculation Method: Linear-up Linear-down

Weighting for lambda z: Uniform (Ordinary Least Square, OLS)

 $\label{lem:lembda} \mbox{Lambda z selection criterion: Heighest adjusted R-squared value with precision=$1e-4$ }$

Fitting, AUC, AUMC Result

Time	Conc.	Pred.	Residual	AUC	AUMC
0.0000	0.1500			0.0000	0.0000
0.2500	0.8500			0.1250	0.0266
0.5000	2.3500			0.5250	0.2000
1.0200	5.0200			2.4412	1.8368
2.0200	6.5800			8.2412	11.0428
3.4800	7.0900			18.2203	38.7571
5.0000	6.6600			28.6703	82.8167
6.9800	* 5.2500	5.3226	-7.260e-02	40.4612	152.0623
9.0000	* 4.3900	4.4527	-6.275e-02	50.1976	228.9788
12.0500	* 3.5300	3.4011	+1.289e-01	62.2756	354.0998
24.2200	* 1.1500	1.1607	-1.072e-02	90.7534	782.4199

*: Used for the calculation of Lambda z.

Calculated Values

```
CMAX
           Max Conc
                                                             7.0900 mg/L
           Max Conc Norm by Dose
CMAXD
                                                             0.0222 mg/L/mg
XAMT
           Time of CMAX
                                                             3.4800 h
TLAG
           Time Until First Nonzero Conc
                                                             0.0000 h
CLST
           Last Nonzero Conc
                                                            1.1500 mg/L
CLSTP
           Last Nonzero Conc Pred
                                                             1.1607 mg/L
           Time of Last Nonzero Conc
TLST
                                                            24.2200 h
           Half-Life Lambda z
                                                             7.8467 h
LAMZHL
LAMZ
           Lambda z
                                                             0.0883 /h
LAMZLL
           Lambda z Lower Limit
                                                             6.9800 h
LAMZUL
           Lambda z Upper Limit
                                                            24.2200 h
           Number of Points for Lambda z
LAMZNPT
                                                             4
CORRXY
           Correlation Between TimeX and Log ConcY
                                                            -0.9993
R2
           R Squared
                                                             0.9987
R2ADJ
           R Squared Adjusted
                                                             0.9980
AUCLST
           AUC to Last Nonzero Conc
                                                            90.7534 h*mg/L
           AUC All
AUCALL
                                                            90.7534 h*mg/L
AUCIFO
           AUC Infinity Obs
                                                           103.7718 h*mg/L
           AUC Infinity Obs Norm by Dose
AUCIFOD
                                                             0.3243 \text{ h*mg/L/mg}
AUCIFP
           AUC Infinity Pred
                                                           103.8931 h*mg/L
AUCIFPD
           AUC Infinity Pred Norm by Dose
                                                             0.3247 h*mg/L/mg
                                                            12.5452 %
AUCPEO
           AUC %Extrapolation Obs
                                                            12.6474 %
AUCPEP
           AUC %Extrapolation Pred
AUMCLST
           AUMC to Last Nonzero Conc
                                                           782.4199 h2*mg/L
AUMCIFO
           AUMC Infinity Obs
                                                          1245.0984 h2*mg/L
AUMCIFP
           AUMC Infinity Pred
                                                          1249.4111 h2*mg/L
                                                            37.1600 %
AUMCPEO
           AUMC %Extrapolation Obs
                                                            37.3769 %
AUMCPEP
           AUMC % Extrapolation Pred
           Vz Obs by F
                                                            34.9084 L
VZFO
VZFP
           Vz Pred by F
                                                            34.8677 L
CLFO
           Total CL Obs by F
                                                             3.0837 L/h
CLFP
           Total CL Pred by F
                                                            3.0801 L/h
MRTEVLST
           MRT Extravasc to Last Nonzero Conc
                                                             8.6214 h
           MRT Extravasc Infinity Obs
                                                            11.9984 h
MRTEVIFO
           MRT Extravasc Infinity Pred
                                                            12.0259 h
MRTEVIFP
```

ID=8

NONCOMPARTMENTAL ANALYSIS REPORT Package version 0.4.2 (2019-09-27 KST)

R version 4.0.1 (2020-06-06)

Date and Time: 2020-06-18 10:02:47 Asia/Seoul

Calculation Setting

Drug Administration: Extravascular

Observation count excluding trailing zero: 11

Dose at time 0: 320 mg

AUC Calculation Method: Linear-up Linear-down

Weighting for lambda z: Uniform (Ordinary Least Square, OLS)

Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4

Fitting, AUC, AUMC Result

Time	Conc.	Pred.	Residual	AUC	AUMC
0.0000	0.0000			0.0000	0.0000
0.2500	3.0500			0.3813	0.0953
0.5200	3.0500			1.2048	0.4124
0.9800	7.3100			3.5875	2.4248
2.0200	7.5600			11.3200	14.0910
3.5300 *	6.5900	6.5724	+1.758e-02	22.0032	43.1841
5.0500 *	5.8800	5.8071	+7.292e-02	31.4804	83.4312
7.1500 *	4.7300	4.8941	-1.641e-01	42.6209	150.1204
9.0700 *	4.5700	4.1856	+3.844e-01	51.5489	222.3790
12.1000 *	3.0000	3.2702	-2.702e-01	63.0175	340.1701
24.1200 *	1.2500	1.2285	+2.147e-02	88.5600	739.5346

*: Used for the calculation of Lambda z.

Calculated Values

CMAX	Max Conc	7.5600	mg/L
CMAXD	Max Conc Norm by Dose	0.0236	mg/L/mg
TMAX	Time of CMAX	2.0200	h
TLAG	Time Until First Nonzero Conc	0.0000	h
CLST	Last Nonzero Conc	1.2500	mg/L
CLSTP	Last Nonzero Conc Pred	1.2285	mg/L
TLST	Time of Last Nonzero Conc	24.1200	h
LAMZHL	Half-Life Lambda z	8.5100	h
LAMZ	Lambda z	0.0815	/h

```
LAMZLL
           Lambda z Lower Limit
                                                            3.5300 h
LAMZUL
           Lambda z Upper Limit
                                                           24.1200 h
           Number of Points for Lambda z
LAMZNPT
                                                            6
CORRXY
           Correlation Between TimeX and Log ConcY
                                                           -0.9955
R2
           R Squared
                                                            0.9910
R2ADJ
           R Squared Adjusted
                                                            0.9888
AUCLST
           AUC to Last Nonzero Conc
                                                           88.5600 h*mg/L
           AUC All
AUCALL
                                                           88.5600 h*mg/L
AUCIFO
           AUC Infinity Obs
                                                          103.9067 h*mg/L
           AUC Infinity Obs Norm by Dose
                                                            0.3247 h*mg/L/mg
AUCIFOD
                                                          103.6431 h*mg/L
AUCIFP
           AUC Infinity Pred
           AUC Infinity Pred Norm by Dose
                                                            0.3239 h*mg/L/mg
AUCIFPD
AUCPEO
           AUC %Extrapolation Obs
                                                          14.7697 %
                                                          14.5529 %
           AUC %Extrapolation Pred
AUCPEP
           AUMC to Last Nonzero Conc
                                                         739.5346 h2*mg/L
AUMCLST
           AUMC Infinity Obs
AUMCIFO
                                                        1298.1158 h2*mg/L
AUMCIFP
           AUMC Infinity Pred
                                                        1288.5201 h2*mg/L
           AUMC %Extrapolation Obs
                                                           43.0302 %
AUMCPEO
AUMCPEP
           AUMC % Extrapolation Pred
                                                          42.6059 %
                                                          37.8105 L
VZFO
           Vz Obs by F
VZFP
           Vz Pred by F
                                                           37.9067 L
CLFO
           Total CL Obs by F
                                                            3.0797 L/h
CLFP
           Total CL Pred by F
                                                           3.0875 L/h
MRTEVLST
           MRT Extravasc to Last Nonzero Conc
                                                           8.3507 h
           MRT Extravasc Infinity Obs
                                                          12.4931 h
MRTEVIFO
MRTEVIFP
           MRT Extravasc Infinity Pred
                                                          12.4323 h
```

ID=11

NONCOMPARTMENTAL ANALYSIS REPORT
Package version 0.4.2 (2019-09-27 KST)
R version 4.0.1 (2020-06-06)

Date and Time: 2020-06-18 10:02:47 Asia/Seoul

Calculation Setting

Drug Administration: Extravascular

Observation count excluding trailing zero: 11

Dose at time 0: 320 mg

AUC Calculation Method: Linear-up Linear-down

Weighting for lambda z: Uniform (Ordinary Least Square, OLS)

 $\label{lem:lembda} \mbox{Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4} \\$

Fitting, AUC, AUMC Result

Time	Conc.	Pred. Residual	AUC	AUMC
0.0000	0.0000		0.0000	0.0000
0.2500	4.8600		0.6075	0.1519
0.5000	7.2400		2.1200	0.7563
0.9800	8.0000		5.7776	3.5067
1.9800	6.8100		13.1826	14.1686
3.6000	5.8700		23.4534	42.2073
5.0200	5.2200		31.3273	75.8162
7.0300	4.4500		41.0457	133.5915
9.0300 *	3.6200	3.6169 +3.150e-03	49.1156	197.5636
12.1200 *	2.6900	2.6929 -2.948e-03	58.8646	298.4388
24.0800 *	0.8600	0.8598 +1.934e-04	80.0936	617.2422

*: Used for the calculation of Lambda z.

Calculated Values

			
CMAX	Max Conc	8.0000	mg/L
CMAXD	Max Conc Norm by Dose	0.0250	mg/L/mg
TMAX	Time of CMAX	0.9800	h
TLAG	Time Until First Nonzero Conc	0.0000	h
CLST	Last Nonzero Conc	0.8600	mg/L
CLSTP	Last Nonzero Conc Pred	0.8598	mg/L
TLST	Time of Last Nonzero Conc	24.0800	h
LAMZHL	Half-Life Lambda z	7.2612	h
LAMZ	Lambda z	0.0955	/h
LAMZLL	Lambda z Lower Limit	9.0300	h
LAMZUL	Lambda z Upper Limit	24.0800	h
LAMZNPT	Number of Points for Lambda z	3	
CORRXY	Correlation Between TimeX and Log ConcY	-1.0000	
R2	R Squared	1.0000	
R2ADJ	R Squared Adjusted	1.0000	
AUCLST	AUC to Last Nonzero Conc	80.0936	h*mg/L
AUCALL	AUC All	80.0936	h*mg/L
AUCIFO	AUC Infinity Obs	89.1027	h*mg/L

```
AUCIFOD
           AUC Infinity Obs Norm by Dose
                                                           0.2784 h*mg/L/mg
           AUC Infinity Pred
AUCIFP
                                                          89.1007 h*mg/L
AUCIFPD
           AUC Infinity Pred Norm by Dose
                                                           0.2784 h*mg/L/mg
                                                          10.1110 %
AUCPEO
           AUC %Extrapolation Obs
AUCPEP
           AUC %Extrapolation Pred
                                                          10.1089 %
AUMCLST
           AUMC to Last Nonzero Conc
                                                         617.2422 h2*mg/L
AUMCIFO
           AUMC Infinity Obs
                                                         928.5600 h2*mg/L
AUMCIFP
           AUMC Infinity Pred
                                                         928.4900 h2*mg/L
AUMCPEO
           AUMC %Extrapolation Obs
                                                          33.5269 %
AUMCPEP
           AUMC % Extrapolation Pred
                                                          33.5219 %
VZFO
           Vz Obs by F
                                                          37.6222 L
VZFP
           Vz Pred by F
                                                          37.6230 L
CLFO
           Total CL Obs by F
                                                           3.5914 L/h
CLFP
           Total CL Pred by F
                                                           3.5914 L/h
MRTEVLST
          MRT Extravasc to Last Nonzero Conc
                                                           7.7065 h
MRTEVIFO
          MRT Extravasc Infinity Obs
                                                          10.4212 h
MRTEVIFP
          MRT Extravasc Infinity Pred
                                                          10.4207 h
ID=3
                        NONCOMPARTMENTAL ANALYSIS REPORT
                       Package version 0.4.2 (2019-09-27 KST)
                          R version 4.0.1 (2020-06-06)
Date and Time: 2020-06-18 10:02:47 Asia/Seoul
Calculation Setting
Drug Administration: Extravascular
Observation count excluding trailing zero: 11
Dose at time 0: 320 mg
AUC Calculation Method: Linear-up Linear-down
Weighting for lambda z: Uniform (Ordinary Least Square, OLS)
Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4
Fitting, AUC, AUMC Result
     Time
                   Conc.
                                                     AUC
                                                               AUMC
                              Pred.
                                      Residual
```

```
0.0000
               0.0000
                                                  0.0000
                                                             0.0000
0.2700
               4.4000
                                                  0.5940
                                                             0.1604
0.5800
               6.9000
                                                  2.3455
                                                             0.9648
1.0200
               8.2000
                                                  5.6675
                                                             3.6854
2.0200
              7.8000
                                                 13.6675
                                                            15.7453
3.6200
              7.5000
                                                 25.9075
                                                            50.0702
5.0800
               6.2000
                                                 35.9085
                                                            92.8817
7.0700
              5.3000
                                                 47.3510
                                                           161.5039
9.0000 *
               4.9000
                          4.9914 -9.138e-02
                                                 57.1940
                                                           240.2199
                                                 70.7390
12.1500 *
               3.7000
                          3.6147 +8.528e-02
                                                           380.4815
24.1700 *
               1.0500
                          1.0551 -5.097e-03
                                                 99.2865
                                                           803.1859
```

*: Used for the calculation of Lambda z.

Calculated Values

CMAX Max Conc 8.2000 mg/L CMAXD Max Conc Norm by Dose 0.0256 mg/L/mg XAMT Time of CMAX 1.0200 h TLAG Time Until First Nonzero Conc 0.0000 h CLST Last Nonzero Conc 1.0500 mg/L CLSTP Last Nonzero Conc Pred 1.0551 mg/L TLST Time of Last Nonzero Conc 24.1700 h Half-Life Lambda z LAMZHL 6.7661 h LAMZ Lambda z 0.1024 /h LAMZLL Lambda z Lower Limit 9.0000 h Lambda z Upper Limit 24.1700 h LAMZUL LAMZNPT Number of Points for Lambda z CORRXY Correlation Between TimeX and Log ConcY -0.9997 0.9993 R2 R Squared R2ADJ R Squared Adjusted 0.9986 AUCLST AUC to Last Nonzero Conc 99.2865 h*mg/L AUCALL AUC All 99.2865 h*mg/L AUC Infinity Obs 109.5360 h*mg/L AUCIFO AUCIFOD AUC Infinity Obs Norm by Dose 0.3423 h*mg/L/mg AUCIFP AUC Infinity Pred 109.5857 h*mg/L AUCIFPD AUC Infinity Pred Norm by Dose 0.3425 h*mg/L/mg **AUCPEO** AUC %Extrapolation Obs 9.3572 % 9.3983 % AUCPEP AUC %Extrapolation Pred AUMCLST AUMC to Last Nonzero Conc 803.1859 h2*mg/L AUMCIFO AUMC Infinity Obs 1150.9648 h2*mg/L AUMCIFP AUMC Infinity Pred 1152.6529 h2*mg/L AUMCPEO AUMC %Extrapolation Obs 30.2163 %

AUMCPEP	AUMC % Extrapolation Pred	30.3185	%
VZF0	Vz Obs by F	28.5171	L
VZFP	Vz Pred by F	28.5042	L
CLFO	Total CL Obs by F	2.9214	L/h
CLFP	Total CL Pred by F	2.9201	L/h
MRTEVLST	MRT Extravasc to Last Nonzero Conc	8.0896	h
MRTEVIFO	MRT Extravasc Infinity Obs	10.5076	h
MRTEVIFP	MRT Extravasc Infinity Pred	10.5183	h

ID=2

NONCOMPARTMENTAL ANALYSIS REPORT
Package version 0.4.2 (2019-09-27 KST)
R version 4.0.1 (2020-06-06)

Date and Time: 2020-06-18 10:02:47 Asia/Seoul

Calculation Setting

Drug Administration: Extravascular

Observation count excluding trailing zero: 11

Dose at time 0: 320 mg

AUC Calculation Method: Linear-up Linear-down

Weighting for lambda z: Uniform (Ordinary Least Square, OLS)

 $\label{lem:lembda} \mbox{Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4}$

Fitting, AUC, AUMC Result

Time	Conc.	Pred.	Residual	AUC	AUMC				
0.0000	0.0000			0.0000	0.0000				
0.2700	1.7200			0.2322	0.0627				
0.5200	7.9100			1.4360	0.6349				
1.0000	8.3100			5.3287	3.6165				
1.9200	8.3300			12.9832	14.7961				
3.5000	6.8500			24.9754	46.3713				
5.0200	6.0800			34.8022	87.7887				
7.0300 *	5.4000	5.3629	+3.707e-02	46.3396	156.6147				
9.0000 *	4.5500	4.3687	+1.813e-01	56.1403	234.3431				

```
12.0000 *
                  3.0100
                              3.1970 -1.870e-01
                                                   67.4803
                                                              349.9481
    24.3000 *
                  0.9000
                              0.8886 +1.136e-02
                                                   91.5268
                                                              706.5866
*: Used for the calculation of Lambda z.
Calculated Values
CMAX
           Max Conc
                                                             8.3300 mg/L
CMAXD
           Max Conc Norm by Dose
                                                             0.0260 mg/L/mg
XAMT
           Time of CMAX
                                                             1.9200 h
           Time Until First Nonzero Conc
                                                             0.0000 h
TLAG
CLST
           Last Nonzero Conc
                                                             0.9000 mg/L
CLSTP
           Last Nonzero Conc Pred
                                                             0.8886 \text{ mg/L}
           Time of Last Nonzero Conc
                                                            24.3000 h
TLST
           Half-Life Lambda z
                                                             6.6593 h
LAMZHL
LAMZ
           Lambda z
                                                             0.1041 /h
LAMZLL
           Lambda z Lower Limit
                                                             7.0300 h
LAMZUL
           Lambda z Upper Limit
                                                            24.3000 h
LAMZNPT
           Number of Points for Lambda z
                                                             4
CORRXY
           Correlation Between TimeX and Log ConcY
                                                            -0.9986
R2
           R Squared
                                                             0.9972
R2ADJ
           R Squared Adjusted
                                                             0.9958
           AUC to Last Nonzero Conc
AUCLST
                                                            91.5268 h*mg/L
           AUC All
AUCALL
                                                            91.5268 h*mg/L
AUCIFO
           AUC Infinity Obs
                                                           100.1735 h*mg/L
AUCIFOD
           AUC Infinity Obs Norm by Dose
                                                             0.3130 h*mg/L/mg
           AUC Infinity Pred
                                                           100.0643 h*mg/L
AUCIFP
           AUC Infinity Pred Norm by Dose
AUCIFPD
                                                             0.3127 h*mg/L/mg
           AUC %Extrapolation Obs
                                                             8.6317 %
AUCPEO
           AUC %Extrapolation Pred
                                                             8.5320 %
AUCPEP
AUMCLST
           AUMC to Last Nonzero Conc
                                                           706.5866 h2*mg/L
AUMCIFO
           AUMC Infinity Obs
                                                           999.7723 h2*mg/L
AUMCIFP
           AUMC Infinity Pred
                                                          996.0716 h2*mg/L
           AUMC %Extrapolation Obs
                                                           29.3252 %
AUMCPEO
AUMCPEP
           AUMC % Extrapolation Pred
                                                           29.0627 %
VZFO
           Vz Obs by F
                                                           30.6904 L
VZFP
           Vz Pred by F
                                                            30.7239 L
CLFO
           Total CL Obs by F
                                                            3.1945 L/h
           Total CL Pred by F
                                                             3.1979 L/h
CLFP
MRTEVLST
           MRT Extravasc to Last Nonzero Conc
                                                             7.7200 h
MRTEVIFO
           MRT Extravasc Infinity Obs
                                                             9.9804 h
MRTEVIFP
           MRT Extravasc Infinity Pred
                                                             9.9543 h
```

NONCOMPARTMENTAL ANALYSIS REPORT
Package version 0.4.2 (2019-09-27 KST)
R version 4.0.1 (2020-06-06)

Date and Time: 2020-06-18 10:02:47 Asia/Seoul

Calculation Setting

Drug Administration: Extravascular

Observation count excluding trailing zero: 11

Dose at time 0: 320 mg

AUC Calculation Method: Linear-up Linear-down

Weighting for lambda z: Uniform (Ordinary Least Square, OLS)

Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4

Fitting, AUC, AUMC Result

Time	Conc.	Pred.	Residual	AUC	AUMC
0.0000	0.0000			0.0000	0.0000
0.3500	1.8900			0.3308	0.1158
0.6000	4.6000			1.1420	0.5435
1.0700	8.6000			4.2440	3.3545
2.1300	8.3800			13.2434	17.6918
3.5000	7.5400			24.1486	47.9958
5.0200	6.8800			35.1078	94.3007
7.0200	5.7800			47.7678	169.4139
9.0200 *	5.3300	5.4586	-1.286e-01	58.8778	258.0661
11.9800 *	4.1900	4.0686	+1.214e-01	72.9674	403.5099
24.6500 *	1.1500	1.1564	-6.422e-03	106.7963	901.0842

*: Used for the calculation of Lambda z.

Calculated Values

CMAX Max Conc 8.6000 mg/L

```
CMAXD
           Max Conc Norm by Dose
                                                             0.0269 mg/L/mg
                                                             1.0700 h
XAMT
           Time of CMAX
TLAG
           Time Until First Nonzero Conc
                                                             0.0000 h
CLST
           Last Nonzero Conc
                                                             1.1500 mg/L
CLSTP
           Last Nonzero Conc Pred
                                                             1.1564 mg/L
           Time of Last Nonzero Conc
TLST
                                                            24.6500 h
           Half-Life Lambda z
LAMZHL
                                                             6.9812 h
                                                             0.0993 /h
           Lambda z
LAMZ
LAMZLL
           Lambda z Lower Limit
                                                             9.0200 h
LAMZUL
           Lambda z Upper Limit
                                                            24.6500 h
LAMZNPT
           Number of Points for Lambda z
                                                             3
CORRXY
           Correlation Between TimeX and Log ConcY
                                                            -0.9995
R2
                                                             0.9989
           R Squared
R2ADJ
           R Squared Adjusted
                                                             0.9978
AUCLST
           AUC to Last Nonzero Conc
                                                           106.7963 h*mg/L
AUCALL
           AUC All
                                                           106.7963 h*mg/L
AUCIFO
           AUC Infinity Obs
                                                           118.3789 h*mg/L
           AUC Infinity Obs Norm by Dose
                                                             0.3699 h*mg/L/mg
AUCIFOD
           AUC Infinity Pred
AUCIFP
                                                           118.4436 h*mg/L
AUCIFPD
           AUC Infinity Pred Norm by Dose
                                                             0.3701 h*mg/L/mg
AUCPEO
           AUC %Extrapolation Obs
                                                             9.7843 %
                                                             9.8336 %
AUCPEP
           AUC %Extrapolation Pred
AUMCLST
           AUMC to Last Nonzero Conc
                                                           901.0842 h2*mg/L
AUMCIFO
           AUMC Infinity Obs
                                                          1303.2524 h2*mg/L
AUMCIFP
           AUMC Infinity Pred
                                                          1305.4981 h2*mg/L
AUMCPEO
           AUMC %Extrapolation Obs
                                                            30.8588 %
                                                            30.9777 %
AUMCPEP
           AUMC % Extrapolation Pred
                                                            27.2260 L
VZFO
           Vz Obs by F
VZFP
           Vz Pred by F
                                                            27.2111 L
CLFO
           Total CL Obs by F
                                                             2.7032 L/h
CLFP
           Total CL Pred by F
                                                             2.7017 L/h
{\tt MRTEVLST}
           MRT Extravasc to Last Nonzero Conc
                                                             8.4374 h
MRTEVIFO
           MRT Extravasc Infinity Obs
                                                            11.0092 h
           MRT Extravasc Infinity Pred
                                                            11.0221 h
MRTEVIFP
```

```
NONCOMPARTMENTAL ANALYSIS REPORT
Package version 0.4.2 (2019-09-27 KST)
R version 4.0.1 (2020-06-06)
```

Date and Time: 2020-06-18 10:02:47 Asia/Seoul

Calculation Setting

Drug Administration: Extravascular

Observation count excluding trailing zero: 11

Dose at time 0: 320 mg

AUC Calculation Method: Linear-up Linear-down

Weighting for lambda z: Uniform (Ordinary Least Square, OLS)

 $\label{lem:lembda} \mbox{Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4} \\$

Fitting, AUC, AUMC Result

Time	Conc.	Pred.	Residual	AUC	AUMC
0.0000	0.0000			0.0000	0.0000
0.3000	7.3700			1.1055	0.3316
0.6300	9.0300			3.8115	1.6351
1.0500	7.1400			7.2072	4.4042
2.0200	6.3300			13.7402	14.2417
3.5300	5.6600			22.7926	38.9804
5.0200	5.6700			31.2335	75.0705
7.1700	4.2400			41.8867	138.3495
8.8000 *	4.1100	4.0512	+5.880e-02	48.6920	192.6031
11.6000 *	3.1600	3.2160	-5.597e-02	58.8700	294.5567
24.4300 *	1.1200	1.1165	+3.517e-03	86.3262	705.2296

*: Used for the calculation of Lambda z.

Calculated Values

			
CMAX	Max Conc	9.0300	mg/L
CMAXD	Max Conc Norm by Dose	0.0282	mg/L/mg
TMAX	Time of CMAX	0.6300	h
TLAG	Time Until First Nonzero Conc	0.0000	h
CLST	Last Nonzero Conc	1.1200	mg/L
CLSTP	Last Nonzero Conc Pred	1.1165	mg/L
TLST	Time of Last Nonzero Conc	24.4300	h
LAMZHL	Half-Life Lambda z	8.4060	h
LAMZ	Lambda z	0.0825	/h
LAMZLL	Lambda z Lower Limit	8.8000	h

```
LAMZUL
                                                           24.4300 h
           Lambda z Upper Limit
LAMZNPT
           Number of Points for Lambda z
                                                            3
CORRXY
           Correlation Between TimeX and Log ConcY
                                                           -0.9997
R2
           R Squared
                                                            0.9994
           R Squared Adjusted
R2ADJ
                                                            0.9989
AUCLST
           AUC to Last Nonzero Conc
                                                           86.3262 h*mg/L
AUCALL
           AUC All
                                                           86.3262 h*mg/L
AUCIFO
           AUC Infinity Obs
                                                           99.9087 h*mg/L
AUCIFOD
           AUC Infinity Obs Norm by Dose
                                                           0.3122 h*mg/L/mg
           AUC Infinity Pred
AUCIFP
                                                          99.8661 h*mg/L
                                                            0.3121 h*mg/L/mg
AUCIFPD
           AUC Infinity Pred Norm by Dose
AUCPEO
           AUC %Extrapolation Obs
                                                          13.5950 %
AUCPEP
           AUC %Extrapolation Pred
                                                          13.5581 %
           AUMC to Last Nonzero Conc
                                                         705.2296 h2*mg/L
AUMCLST
           AUMC Infinity Obs
AUMCIFO
                                                         1201.7715 h2*mg/L
AUMCIFP
           AUMC Infinity Pred
                                                         1200.2124 h2*mg/L
AUMCPEO
           AUMC %Extrapolation Obs
                                                          41.3175 %
           AUMC % Extrapolation Pred
                                                          41.2413 %
AUMCPEP
VZFO
           Vz Obs by F
                                                           38.8428 L
                                                          38.8594 L
VZFP
           Vz Pred by F
CLFO
           Total CL Obs by F
                                                           3.2029 L/h
CLFP
           Total CL Pred by F
                                                            3.2043 L/h
           MRT Extravasc to Last Nonzero Conc
MRTEVLST
                                                           8.1694 h
MRTEVIFO
           MRT Extravasc Infinity Obs
                                                          12.0287 h
MRTEVIFP
           MRT Extravasc Infinity Pred
                                                          12.0182 h
ID=12
```

NONCOMPARTMENTAL ANALYSIS REPORT
Package version 0.4.2 (2019-09-27 KST)
R version 4.0.1 (2020-06-06)

Date and Time: 2020-06-18 10:02:47 Asia/Seoul

Calculation Setting

Drug Administration: Extravascular

Observation count excluding trailing zero: 11

Dose at time 0: 320 mg

AUC Calculation Method: Linear-up Linear-down

Weighting for lambda z: Uniform (Ordinary Least Square, OLS)
Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4

Fitting, AUC, AUMC Result

Time	Conc.	Pred.	Residual	AUC	AUMC
0.0000	0.0000			0.0000	0.0000
0.2500	1.2500			0.1563	0.0391
0.5000	3.9600			0.8075	0.3256
1.0000	7.8200			3.7525	2.7756
2.0000	9.7200			12.5225	16.4056
3.5200	9.7500			27.3197	57.2632
5.0700	8.5700			41.5177	117.5349
7.0700	6.5900			56.6777	207.5761
9.0300	* 6.1100	6.2267	-1.167e-01	69.1237	307.3054
12.0500	4.5700	4.4632	+1.068e-01	85.2505	473.7705
24.1500	* 1.1700	1.1755	-5.539e-03	119.9775	977.8807

*: Used for the calculation of Lambda z.

Calculated Values

			
CMAX	Max Conc	9.7500	mg/L
CMAXD	Max Conc Norm by Dose	0.0305	mg/L/mg
TMAX	Time of CMAX	3.5200	h
TLAG	Time Until First Nonzero Conc	0.0000	h
CLST	Last Nonzero Conc	1.1700	mg/L
CLSTP	Last Nonzero Conc Pred	1.1755	mg/L
TLST	Time of Last Nonzero Conc	24.1500	h
LAMZHL	Half-Life Lambda z	6.2865	h
LAMZ	Lambda z	0.1103	/h
LAMZLL	Lambda z Lower Limit	9.0300	h
LAMZUL	Lambda z Upper Limit	24.1500	h
LAMZNPT	Number of Points for Lambda z	3	
CORRXY	Correlation Between TimeX and Log ConcY	-0.9997	
R2	R Squared	0.9994	
R2ADJ	R Squared Adjusted	0.9988	
AUCLST	AUC to Last Nonzero Conc	119.9775	h*mg/L
AUCALL	AUC All	119.9775	h*mg/L
AUCIFO	AUC Infinity Obs	130.5888	h*mg/L
AUCIFOD	AUC Infinity Obs Norm by Dose	0.4081	h*mg/L/mg

 ${\tt Time}$

0.0000

 ${\tt Conc.}$

0.2400

Pred.

Residual

AUCIFP	AUC Infinity Pred	130.6391	h*mg/L	
AUCIFPD	AUC Infinity Pred Norm by Dose	0.4082	h*mg/L/mg	
AUCPEO	AUC %Extrapolation Obs	8.1258	%	
AUCPEP	AUC %Extrapolation Pred	8.1611	%	
AUMCLST	AUMC to Last Nonzero Conc	977.8807	h2*mg/L	
AUMCIFO	AUMC Infinity Obs	1330.3840	h2*mg/L	
AUMCIFP	AUMC Infinity Pred	1332.0528	h2*mg/L	
AUMCPEO	AUMC %Extrapolation Obs	26.4964	%	
AUMCPEP	AUMC % Extrapolation Pred	26.5884	%	
VZFO	Vz Obs by F	22.2243	L	
VZFP	Vz Pred by F	22.2157	L	
CLFO	Total CL Obs by F	2.4504	L/h	
CLFP	Total CL Pred by F	2.4495	L/h	
MRTEVLST	MRT Extravasc to Last Nonzero Conc	8.1505	h	
MRTEVIFO	MRT Extravasc Infinity Obs	10.1876	h	
MRTEVIFP	MRT Extravasc Infinity Pred	10.1964	h	
ID=10	NONCOMPA DEMENTA L. ANAL.	VATA DEDONT		
	NONCOMPARTMENTAL ANAL			
	Package version 0.4.2 R version 4.0.1 (20			
	k version 4.0.1 (20	120-06-06)		
Date and T	Time: 2020-06-18 10:02:47 Asia/Seoul			
Calculatio	on Setting			
Drug Administration: Extravascular Observation count excluding trailing zero: 11 Dose at time 0: 320 mg AUC Calculation Method: Linear-up Linear-down Weighting for lambda z: Uniform (Ordinary Least Square, OLS) Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4				
•	AUC, AUMC Result			

AUC

0.0000

AUMC

0.0000

```
0.3700
              2.8900
                                                 0.5790
                                                            0.1978
0.7700
              5.2200
                                                 2.2011
                                                            1.2156
 1.0200
              6.4100
                                                 3.6548
                                                            2.5353
2.0500
              7.8300
                                                10.9884
                                                           14.1690
3.5500
             10.2100
                                                24.5184
                                                           53.3917
5.0500
              9.1800
                                                39.0609
                                                           115.3451
7.0800
              8.0200
                                                56.5189
                                                           220.0328
9.3800 *
              7.1400
                          7.0610 +7.903e-02
                                                73.9529
                                                          362.3508
12.1000 *
              5.6800
                          5.7586 -7.858e-02
                                                91.3881
                                                          546.9044
23.7000 *
              2.4200
                          2.4137 +6.308e-03
                                               138.3681 1278.1800
```

*: Used for the calculation of Lambda z.

Calculated Values

CMAX Max Conc 10.2100 mg/L CMAXD Max Conc Norm by Dose 0.0319 mg/L/mg XAMT Time of CMAX 3.5500 h Time Until First Nonzero Conc 0.0000 h TLAG CLST Last Nonzero Conc 2.4200 mg/L CLSTP Last Nonzero Conc Pred 2.4137 mg/L TLST Time of Last Nonzero Conc 23.7000 h Half-Life Lambda z LAMZHL 9.2469 h Lambda z LAMZ 0.0750 /h LAMZLL Lambda z Lower Limit 9.3800 h LAMZUL Lambda z Upper Limit 23.7000 h Number of Points for Lambda z LAMZNPT 3 CORRXY Correlation Between TimeX and Log ConcY -0.9998 0.9995 R Squared R2ADJ R Squared Adjusted 0.9990 AUCLST AUC to Last Nonzero Conc 138.3681 h*mg/L AUCALL AUC All 138.3681 h*mg/L AUC Infinity Obs AUCIFO 170.6521 h*mg/L AUC Infinity Obs Norm by Dose 0.5333 h*mg/L/mg AUCIFOD AUC Infinity Pred 170.5679 h*mg/L AUCIFP AUCIFPD AUC Infinity Pred Norm by Dose 0.5330 h*mg/L/mgAUCPEO AUC %Extrapolation Obs 18.9180 % AUCPEP AUC %Extrapolation Pred 18.8780 % AUMC to Last Nonzero Conc AUMCLST 1278.1800 h2*mg/L AUMCIFO AUMC Infinity Obs 2473.9934 h2*mg/L AUMCIFP AUMC Infinity Pred 2470.8765 h2*mg/L AUMCPEO AUMC %Extrapolation Obs 48.3354 % AUMC % Extrapolation Pred AUMCPEP 48.2702 %

VZF0	Vz Obs by F	25.0155	L
VZFP	Vz Pred by F	25.0279	L
CLFO	Total CL Obs by F	1.8752	L/h
CLFP	Total CL Pred by F	1.8761	L/h
MRTEVLST	MRT Extravasc to Last Nonzero Conc	9.2375	h
MRTEVIFO	MRT Extravasc Infinity Obs	14.4973	h
MRTEVIFP	MRT Extravasc Infinity Pred	14.4862	h

NONCOMPARTMENTAL ANALYSIS REPORT
Package version 0.4.2 (2019-09-27 KST)
R version 4.0.1 (2020-06-06)

Date and Time: 2020-06-18 10:02:47 Asia/Seoul

Calculation Setting

Drug Administration: Extravascular

Observation count excluding trailing zero: 11

Dose at time 0: 320 mg

AUC Calculation Method: Linear-up Linear-down

Weighting for lambda z: Uniform (Ordinary Least Square, OLS)

 $\label{lem:lembda} \mbox{Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4} \\$

Fitting, AUC, AUMC Result

Time		Conc.	Pred.	Residual	AUC	AUMC
0.0000		0.7400			0.0000	0.0000
0.2500		2.8400			0.4475	0.0888
0.5700		6.5700			1.9531	0.8015
1.1200		10.5000			6.6474	5.0654
2.0200		9.6600			15.7194	19.1383
3.8200		8.5800			32.1354	66.1982
5.1000		8.3600			42.9769	114.4617
7.0300		7.4700			58.2529	206.2815
9.0500	*	6.8900	6.8912	-1.228e-03	72.7565	322.2988
12.1200	*	5.9400	5.9387	+1.324e-03	92.4505	528.5219

```
24.3700 *
                  3.2800
                             3.2801 -1.465e-04
                                                148.9231 1459.0711
*: Used for the calculation of Lambda z.
Calculated Values
CMAX
           Max Conc
                                                           10.5000 mg/L
CMAXD
           Max Conc Norm by Dose
                                                            0.0328 mg/L/mg
XAMT
           Time of CMAX
                                                            1.1200 h
TLAG
           Time Until First Nonzero Conc
                                                            0.0000 h
CLST
           Last Nonzero Conc
                                                            3.2800 mg/L
CLSTP
           Last Nonzero Conc Pred
                                                           3.2801 mg/L
           Time of Last Nonzero Conc
TLST
                                                           24.3700 h
LAMZHL
           Half-Life Lambda z
                                                           14.3044 h
           Lambda z
LAMZ
                                                            0.0485 /h
LAMZLL
           Lambda z Lower Limit
                                                            9.0500 h
LAMZUL
           Lambda z Upper Limit
                                                           24.3700 h
LAMZNPT
           Number of Points for Lambda z
                                                            3
CORRXY
           Correlation Between TimeX and Log ConcY
                                                           -1.0000
R2
           R Squared
                                                            1.0000
R2ADJ
           R Squared Adjusted
                                                            1.0000
AUCLST
           AUC to Last Nonzero Conc
                                                          148.9231 h*mg/L
AUCALL
           AUC All
                                                          148.9231 h*mg/L
           AUC Infinity Obs
AUCIFO
                                                          216.6119 h*mg/L
AUCIFOD
           AUC Infinity Obs Norm by Dose
                                                            0.6769 h*mg/L/mg
AUCIFP
           AUC Infinity Pred
                                                          216.6150 h*mg/L
           AUC Infinity Pred Norm by Dose
                                                            0.6769 h*mg/L/mg
AUCIFPD
                                                           31.2489 %
           AUC %Extrapolation Obs
AUCPEO
                                                           31.2499 %
AUCPEP
           AUC %Extrapolation Pred
           AUMC to Last Nonzero Conc
                                                         1459.0711 h2*mg/L
AUMCLST
AUMCIFO
           AUMC Infinity Obs
                                                         4505.5348 h2*mg/L
           AUMC Infinity Pred
                                                         4505.6709 h2*mg/L
AUMCIFP
                                                           67.6160 %
AUMCPEO
           AUMC %Extrapolation Obs
           AUMC % Extrapolation Pred
                                                           67.6170 %
AUMCPEP
VZFO
           Vz Obs by F
                                                           30.4867 L
VZFP
           Vz Pred by F
                                                           30.4863 L
CLFO
           Total CL Obs by F
                                                            1.4773 L/h
CLFP
           Total CL Pred by F
                                                            1.4773 L/h
           MRT Extravasc to Last Nonzero Conc
                                                            9.7975 h
MRTEVLST
MRTEVIFO
           MRT Extravasc Infinity Obs
                                                           20.8000 h
                                                           20.8004 h
MRTEVIFP
           MRT Extravasc Infinity Pred
```

NONCOMPARTMENTAL ANALYSIS REPORT
Package version 0.4.2 (2019-09-27 KST)
R version 4.0.1 (2020-06-06)

Date and Time: 2020-06-18 10:02:47 Asia/Seoul

Calculation Setting

Drug Administration: Extravascular

Observation count excluding trailing zero: 11

Dose at time 0: 320 mg

AUC Calculation Method: Linear-up Linear-down

Weighting for lambda z: Uniform (Ordinary Least Square, OLS)

Lambda z selection criterion: Heighest adjusted R-squared value with precision=1e-4

Fitting, AUC, AUMC Result

Time		Conc.	Pred.	Residual	AUC	AUMC
0.0000		0.0000			0.0000	0.0000
0.3000		2.0200			0.3030	0.0909
0.5200		5.6300			1.1445	0.4796
1.0000		11.4000			5.2317	3.9182
2.0200		9.3300			15.8040	19.3440
3.5000		8.7400			29.1758	55.9271
5.0200		7.5600			41.5638	108.0184
7.0200	*	7.0900	6.9799	+1.101e-01	56.2138	195.7414
9.1000	*	5.9000	5.8291	+7.091e-02	69.7234	303.3417
12.0000	*	4.3700	4.5343	-1.643e-01	84.6149	457.2302
24.3500	*	1.5700	1.5557	+1.430e-02	121.2944	1017.1143

*: Used for the calculation of Lambda z.

Calculated Values

 CMAX
 Max Conc
 11.4000 mg/L

 CMAXD
 Max Conc Norm by Dose
 0.0356 mg/L/mg

TMAX	Time of CMAX	1.0000	h
TLAG	Time Until First Nonzero Conc	0.0000	h
CLST	Last Nonzero Conc	1.5700	mg/L
CLSTP	Last Nonzero Conc Pred	1.5557	mg/L
TLST	Time of Last Nonzero Conc	24.3500	h
LAMZHL	Half-Life Lambda z	8.0023	h
LAMZ	Lambda z	0.0866	/h
LAMZLL	Lambda z Lower Limit	7.0200	h
LAMZUL	Lambda z Upper Limit	24.3500	h
LAMZNPT	Number of Points for Lambda z	4	
CORRXY	Correlation Between TimeX and Log ConcY	-0.9993	
R2	R Squared	0.9986	
R2ADJ	R Squared Adjusted	0.9980	
AUCLST	AUC to Last Nonzero Conc	121.2944	h*mg/L
AUCALL	AUC All	121.2944	h*mg/L
AUCIFO	AUC Infinity Obs	139.4198	h*mg/L
AUCIFOD	AUC Infinity Obs Norm by Dose	0.4357	h*mg/L/mg
AUCIFP	AUC Infinity Pred	139.2546	h*mg/L
AUCIFPD	AUC Infinity Pred Norm by Dose	0.4352	h*mg/L/mg
AUCPEO	AUC %Extrapolation Obs	13.0006	%
AUCPEP	AUC %Extrapolation Pred	12.8974	%
AUMCLST	AUMC to Last Nonzero Conc	1017.1143	h2*mg/L
AUMCIFO	AUMC Infinity Obs	1667.7216	h2*mg/L
AUMCIFP	AUMC Infinity Pred	1661.7937	h2*mg/L
AUMCPEO	AUMC %Extrapolation Obs	39.0117	%
AUMCPEP	AUMC % Extrapolation Pred	38.7942	%
VZF0	Vz Obs by F	26.4980	L
VZFP	Vz Pred by F	26.5294	L
CLF0	Total CL Obs by F	2.2952	L/h
CLFP	Total CL Pred by F	2.2979	L/h
MRTEVLST	MRT Extravasc to Last Nonzero Conc	8.3855	h
MRTEVIFO	MRT Extravasc Infinity Obs	11.9619	h
MRTEVIFP	MRT Extravasc Infinity Pred	11.9335	h

D

지원

패키지와 관련한 모든 의문은 $shan@acp.kr^1/+82-2-3010-4614$ 으로 연락 주시면 빠르게 도움 드리겠습니다. 혹은 $StackOverflow^2$ 에 영어로 질문 올려주시고 링크를 보내주시면 더 좋습니다.

 $^{^{1} \}verb|mailto:shan@acp.kr|$

²https://stackoverflow.com

E

##

##

DBI

dbplyr

1.1.0

1.4.4

세션 정보

```
devtools::session_info()
## - Session info -----
    setting value
    version R version 4.0.1 (2020-06-06)
             Windows 10 x64
##
    os
##
             x86_64, mingw32
    system
##
    ui
             RTerm
    language (EN)
##
    collate
             Korean_Korea.949
             Korean_Korea.949
##
    ctype
##
             Asia/Seoul
    tz
##
    date
             2020-06-18
##
##
   - Packages -
   package
                * version
                             date
                                         lib source
   assertthat
                  0.2.1
                             2019-03-21 [1] CRAN (R 4.0.0)
                  1.1.7
   backports
                             2020-05-13 [1] CRAN (R 4.0.0)
##
   ΒE
                * 0.1.1
                             2018-07-19 [1] CRAN (R 4.0.0)
   binr
                * 1.1
                             2015-03-10 [1] CRAN (R 4.0.0)
                             2020-01-20 [1] CRAN (R 4.0.0)
   blob
                  1.2.1
##
    bookdown
                  0.19.1
                             2020-06-11 [1] Github (rstudio/bookdown@fd8dac6)
##
                             2020-04-20 [1] CRAN (R 4.0.0)
##
   broom
                * 0.5.6
    Cairo
                  1.5-12
                             2020-04-11 [1] CRAN (R 4.0.0)
                  3.4.3
                             2020-03-28 [1] CRAN (R 4.0.0)
##
    callr
##
    cellranger
                  1.1.0
                             2016-07-27 [1] CRAN (R 4.0.0)
                             2020-02-06 [1] CRAN (R 4.0.0)
##
    checkmate
                * 2.0.0
                  2.0.2
                             2020-02-28 [1] CRAN (R 4.0.0)
##
    cli
##
    codetools
                  0.2-16
                             2018-12-24 [2] CRAN (R 4.0.1)
##
    colorspace
                  1.4 - 1
                             2019-03-18 [1] CRAN (R 4.0.0)
##
                  1.3.4
                             2017-09-16 [1] CRAN (R 4.0.0)
    crayon
##
    curl
                  4.3
                             2019-12-02 [1] CRAN (R 4.0.0)
```

2019-12-15 [1] CRAN (R 4.0.0)

2020-05-27 [1] CRAN (R 4.0.0)

82 E 세션 정보

```
##
    desc
                   1.2.0
                             2018-05-01 [1] CRAN (R 4.0.0)
##
                   2.3.0
                             2020-04-10 [1] CRAN (R 4.0.0)
    devtools
##
    digest
                   0.6.25
                             2020-02-23 [1] CRAN (R 4.0.0)
                 * 1.0.0
                             2020-05-29 [1] CRAN (R 4.0.0)
##
    dplyr
##
    ellipsis
                   0.3.1
                             2020-05-15 [1] CRAN (R 4.0.0)
##
    evaluate
                   0.14
                             2019-05-28 [1] CRAN (R 4.0.0)
##
    fansi
                   0.4.1
                             2020-01-08 [1] CRAN (R 4.0.0)
                   2.0.3
                             2020-01-16 [1] CRAN (R 4.0.0)
##
    farver
##
                 * 0.5.0
                             2020-03-01 [1] CRAN (R 4.0.0)
    forcats
                 * 0.8-80
                             2020-05-24 [2] CRAN (R 4.0.1)
##
    foreign
##
    forestplot
                 * 1.9
                             2019-06-24 [1] CRAN (R 4.0.0)
##
                   1.4.1
                             2020-04-04 [1] CRAN (R 4.0.0)
##
    generics
                   0.0.2
                             2018-11-29 [1] CRAN (R 4.0.0)
                             2020-05-28 [1] CRAN (R 4.0.0)
##
                 * 3.3.1
    ggplot2
                   1.4.1
                             2020-05-13 [1] CRAN (R 4.0.0)
##
    glue
##
    gridExtra
                   2.3
                             2017-09-09 [1] CRAN
                                                   (R 4.0.0)
##
    gtable
                   0.3.0
                             2019-03-25 [1] CRAN (R 4.0.0)
                   2.3.1
                             2020-06-01 [1] CRAN (R 4.0.0)
##
    haven
##
   highr
                   0.8
                             2019-03-20 [1] CRAN (R 4.0.0)
##
   hms
                   0.5.3
                             2020-01-08 [1] CRAN (R 4.0.0)
##
                   0.4.0
                             2019-10-04 [1] CRAN (R 4.0.0)
   htmltools
##
   httr
                   1.4.1
                             2019-08-05 [1] CRAN (R 4.0.0)
##
                   1.6.1
                             2020-02-02 [1] CRAN (R 4.0.0)
    jsonlite
##
    knitr
                 * 1.28.7
                             2020-06-11 [1] Github (yihui/knitr@12219b1)
                   0.3
                             2014-08-23 [1] CRAN (R 4.0.0)
##
    labeling
    lattice
                   0.20 - 41
                             2020-04-02 [2] CRAN (R 4.0.1)
                   0.2.0
##
    lifecycle
                             2020-03-06 [1] CRAN (R 4.0.0)
                   1.7.9
                             2020-06-08 [1] CRAN (R 4.0.0)
##
    lubridate
                             2014-11-22 [1] CRAN (R 4.0.0)
##
    magrittr
                 * 1.5
    Matrix
                   1.2-18
                             2019-11-27 [2] CRAN (R 4.0.1)
##
                   1.1.0
                             2017-04-21 [1] CRAN (R 4.0.0)
##
    memoise
                   1.8-31
                             2019-11-09 [2] CRAN (R 4.0.1)
##
    mgcv
##
                   2.0.0
                             2020-06-02 [1] CRAN (R 4.0.0)
    mnormt
##
    modelr
                   0.1.8
                             2020-05-19 [1] CRAN (R 4.0.0)
##
    munsell
                   0.5.0
                             2018-06-12 [1] CRAN (R 4.0.0)
##
                 * 0.3.0
                             2018-08-24 [1] CRAN (R 4.0.0)
    ncappc
##
    ncar
                  0.4.2
                             2019-09-27 [1] CRAN (R 4.0.0)
                   3.1-148
##
    nlme
                             2020-05-24 [2] CRAN (R 4.0.1)
##
    NonCompart
                 * 0.4.7
                             2020-05-27 [1] CRAN (R 4.0.0)
##
                 * 0.5.1
                             2019-03-11 [1] CRAN (R 4.0.0)
    pacman
##
    pillar
                   1.4.4
                             2020-05-05 [1] CRAN (R 4.0.0)
                 * 1.3-5
                             2020-04-02 [1] CRAN (R 4.0.0)
##
   PK
##
    pkgbuild
                   1.0.8
                             2020-05-07 [1] CRAN (R 4.0.0)
##
                   2.0.3
                             2019-09-22 [1] CRAN (R 4.0.0)
    pkgconfig
                             2020-05-29 [1] CRAN (R 4.0.0)
   pkgload
                   1.1.0
```

E.O 83

```
##
    PKNCA
                 * 0.9.4
                              2020-06-01 [1] CRAN (R 4.0.0)
##
                 * 0.1.2
                              2018-06-04 [1] CRAN (R 4.0.0)
    pkr
                   1.8.6
                              2020-03-03 [1] CRAN (R 4.0.0)
##
    plyr
                   0.5.0
                              2020-06-13 [1] CRAN (R 4.0.0)
##
    PopED
##
    prettyunits
                   1.1.1
                              2020-01-24 [1] CRAN (R 4.0.0)
    processx
##
                   3.4.2
                              2020-02-09 [1] CRAN (R 4.0.0)
##
                   1.3.3
                              2020-05-08 [1] CRAN (R 4.0.0)
    ps
                 * 1.9.12.31 2020-01-08 [1] CRAN (R 4.0.0)
##
    psych
##
                  0.3.4
                              2020-04-17 [1] CRAN (R 4.0.0)
    purrr
##
                   1.8.0
                              2020-02-14 [1] CRAN (R 4.0.0)
    R.methodsS3
    R.oo
                   1.23.0
                              2019-11-03 [1] CRAN (R 4.0.0)
##
                   2.4.1
                              2019-11-12 [1] CRAN (R 4.0.0)
    R6
                              2020-04-09 [1] CRAN (R 4.0.0)
##
                   1.0.4.6
    Rcpp
##
                              2018-12-21 [1] CRAN (R 4.0.0)
                 * 1.3.1
    readr
                  1.3.1
                              2019-03-13 [1] CRAN (R 4.0.0)
##
    readxl
                              2020-02-15 [1] CRAN (R 4.0.0)
##
    remotes
                   2.1.1
##
    reprex
                   0.3.0
                              2019-05-16 [1] CRAN (R 4.0.0)
                   1.4.4
                              2020-04-09 [1] CRAN (R 4.0.0)
##
    reshape2
##
                   0.4.6
                              2020-05-02 [1] CRAN (R 4.0.0)
    rlang
                   2.2
                              2020-05-31 [1] CRAN (R 4.0.0)
##
    rmarkdown
##
    rprojroot
                   1.3-2
                              2018-01-03 [1] CRAN (R 4.0.0)
                              2020-02-07 [1] CRAN (R 4.0.0)
##
    rstudioapi
                   0.11
##
                 * 0.4-14.1
                              2020-03-22 [1] CRAN (R 4.0.0)
    rtf
##
    rvest
                   0.3.5
                              2019-11-08 [1] CRAN (R 4.0.0)
                              2020-05-11 [1] CRAN (R 4.0.0)
##
    scales
                   1.1.1
    sessioninfo
                   1.1.1
                              2018-11-05 [1] CRAN (R 4.0.0)
##
    stringi
                   1.4.6
                              2020-02-17 [1] CRAN (R 4.0.0)
                  1.4.0
                              2019-02-10 [1] CRAN (R 4.0.0)
##
    stringr
##
    testthat
                   2.3.2
                              2020-03-02 [1] CRAN (R 4.0.0)
##
    tibble
                 * 3.0.1
                              2020-04-20 [1] CRAN (R 4.0.0)
                              2020-05-20 [1] CRAN (R 4.0.0)
##
    tidyr
                 * 1.1.0
                   1.1.0
                              2020-05-11 [1] CRAN (R 4.0.0)
##
    tidyselect
##
    tidyverse
                 * 1.3.0
                              2019-11-21 [1] CRAN (R 4.0.0)
##
    tmvnsim
                   1.0 - 2
                              2016-12-15 [1] CRAN (R 4.0.0)
##
    usethis
                   1.6.1
                              2020-04-29 [1] CRAN (R 4.0.0)
##
    utf8
                   1.1.4
                              2018-05-24 [1] CRAN (R 4.0.0)
                   0.3.1
                              2020-06-05 [1] CRAN (R 4.0.0)
##
    vctrs
##
    webshot
                   0.5.2
                              2019-11-22 [1] CRAN (R 4.0.0)
                   2.2.0
                              2020-04-20 [1] CRAN (R 4.0.0)
##
    withr
##
    xfun
                   0.14
                              2020-05-20 [1] CRAN (R 4.0.0)
##
    xm12
                   1.3.2
                              2020-04-23 [1] CRAN (R 4.0.0)
                   1.8-4
                              2019-04-21 [1] CRAN (R 4.0.0)
##
    xtable
##
    yaml
                   2.2.1
                              2020-02-01 [1] CRAN (R 4.0.0)
##
                 * 1.8-8
                              2020-05-02 [1] CRAN (R 4.0.0)
    Z00
##
```

84 E 세션 정보

[1] C:/Users/cmc/Rlib

[2] C:/Program Files/R/R-4.0.1/library

참고문헌

Bibliography

- Chayan Acharya, Andrew C. Hooker, Gülbeyaz Yıldız Türkyılmaz, Siv Jönsson, and Mats O. Karlsson. A diagnostic tool for population models using non-compartmental analysis: The ncappc package for r. Computer Methods and Programs in Biomedicine, 127:83 93, 2016. ISSN 0169-2607. doi: http://dx.doi.org/10.1016/j.cmpb.2016.01.013. URL //www.sciencedirect.com/science/article/pii/S0169260715300262.
- Kyun-Seop Bae. BE: Bioequivalence Study Data Analysis, 2018. URLhttps://CRAN.R-project.org/package=BE. R package version 0.1.1.
- Kyun-Seop Bae. ncar: Noncompartmental Analysis for Pharmacokinetic Report, 2019. URL https://CRAN.R-project.org/package=ncar. R package version 0.4.2.
- Kyun-Seop Bae. NonCompart: Noncompartmental Analysis for Pharmacokinetic Data, 2020. URL https://CRAN.R-project.org/package=NonCompart. R package version 0.4.7.
- Kyun-Seop Bae and Jee Eun Lee. pkr: Pharmacokinetics in R, 2018. URL https://CR AN.R-project.org/package=pkr. R package version 0.1.2.
- S.C. Chow and J. Liu. Design and Analysis of Bioavailability and Bioequivalence Studies. Chapman & Hall/CRC Biostatistics Series. CRC Press, 2008. ISBN 9781420011678. URL https://books.google.co.kr/books?id=KtKJFGJeV3MC.
- Johan Gabrielsson. *Pharmacokinetic and pharmacodynamic data analysis: concepts and applications*. Apotekarsocieteten, Stockholm, 2016. ISBN 978-9198299106.
- Lionel Henry and Hadley Wickham. purrr: Functional Programming Tools, 2020. URL https://CRAN.R-project.org/package=purrr. R package version 0.3.4.
- Kirill Müller and Hadley Wickham. *tibble: Simple Data Frames*, 2020. URL https://CRAN.R-project.org/package=tibble. R package version 3.0.1.
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2020. URL https://www.R-project.org/.
- Malcolm Rowland. Clinical pharmacokinetics and pharmacodynamics: concepts and applications. Wolters Kluwer Health/Lippincott William & Wilkins, Philadelphia, 2011. ISBN 0781750091.

88 E Bibliography

Hadley Wickham. tidyverse: Easily Install and Load the 'Tidyverse', 2019. URL https://CRAN.R-project.org/package=tidyverse. R package version 1.3.0.

- Hadley Wickham and Lionel Henry. *tidyr: Tidy Messy Data*, 2020. URL https://CR AN.R-project.org/package=tidyr. R package version 1.1.0.
- Hadley Wickham, Jim Hester, and Romain Francois. readr: Read Rectangular Text Data, 2018. URL https://CRAN.R-project.org/package=readr. R package version 1.3.1.
- Hadley Wickham, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. gg-plot2: Create Elegant Data Visualisations Using the Grammar of Graphics, 2020a. URL https://CRAN.R-project.org/package=ggplot2. R package version 3.3.1.
- Hadley Wickham, Romain Francois, Lionel Henry, and Kirill Muller. dplyr: A Grammar of Data Manipulation, 2020b. URL https://CRAN.R-project.org/package=dplyr. R package version 1.0.0.