Gabriel Béart, Ewen Le Bihan 2019-10-14

4 Exploitation des résultats

4.1

$$\begin{split} [\text{CH}_3\text{COO}^-] &= \frac{n_b}{V_{\text{total}}} = \frac{C_b \cdot V_b}{V_b + V_a} \\ [\text{CH}_3\text{COOH}] &= \frac{n_a}{V_{\text{total}}} = \frac{C_a \cdot V_a}{V_b + V_a} \end{split}$$

4.2

D'après 4.1.:

$$\begin{split} \frac{[\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} &= \frac{\frac{C_b \cdot V_b}{V_b + V_a}}{\frac{C_a \cdot V_a}{V_b + V_a}} \\ &= \frac{C_b \cdot V_b}{V_b + V_a} \cdot \frac{V_b + V_a}{C_a \cdot V_a} \\ &= \frac{C_b \cdot V_b}{C_a \cdot V_a} \end{split}$$

4.3

рΗ	4,68	5,01	5,28	5,49	4,36	4,16	4
$\log \frac{V_b}{V_a}$	0	0,301	0,477	0,602	-0,30	-0,477	-0,602

Tableau 1: Valeurs expérimentales

4.4

La courbe de tendance des différents points obtenus a pour équation:

$$y = 1,20x + 4,71$$

4.5

$$\begin{aligned} \text{pH} &= pK_a + \log \frac{[\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} \\ &= pK_a + \log \frac{\mathscr{C}_b V_b}{\mathscr{C}_a V_a} \qquad \text{(Comme $C_b = C_a = 0, 1$ mol} \cdot \text{L}^{-1}, \text{ on simplifie)} \\ &= pK_a + \log \frac{V_b}{V_a} \end{aligned}$$

Mélange à l'ordonnée à l'origine

$$\log \frac{V_b}{V_a} = 0 \implies \text{pH} = pK_a$$

$$\implies \log \frac{[\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} = 0$$

$$\implies \frac{[\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} = 1$$

Ainsi, le mélange contient des concentrations molaires et des volumes en solution d'éthanoate de sodium et en solution d'acide éthanoïque égaux $(V_a = V_b = 10 \text{ mL et } C_a = C_b = 0, 10 \text{ mol}^{-1})$

4.6

$$\begin{cases} \mathrm{pH} &= \log \frac{V_b}{V_a} + pKa \\ y &= ax + b \end{cases} \implies a = 1 \quad b = pKa$$

La courbe pH = $\log\left(\frac{V_b}{V_a}\right)$ est une droite, l'ordonnée à l'origine représente le pK_a du couple. Graphiquement, $pK_a=4,71$

4.7

 $pK_a = 4.7 \label{eq:pka}$ acide et base en même concentration

5 L'indicateur coloré

