throughout this paper and present concrete examples of support restrictions. I review the existing method of identifying the DTE given marginal distributions without support restrictions to demonstrate its limits in the presence of support restrictions. I also briefly discuss the optimal transportation approach to describe the key idea of my identification strategy. Section 3 formally characterizes the identification region of the DTE under general support restrictions and derives informative bounds for economic examples from the characterization. Section 4 provides numerical examples to assess the informativeness of my new bounds and analyzes sources of identification gains. Section 5 illustrates the usefulness of these bounds by applying DTE bounds derived in Section 3 to an empirical analysis of the impact distribution of smoking on infant birth weight. Section 6 concludes and discusses interesting extensions.

2 Basic Setup, DTE Bounds and Optimal Transportation Approach

In this section, I present the potential outcomes setup that this study is based on, the notation, and the assumptions used throughout this study. I demonstrate that the bounds on the DTE established without support restrictions are not the best possible bounds in the presence of support restrictions. Then I propose a new method to derive sharp bounds on the DTE based on the optimal transportation framework.

2.1 Basic Setup

The setup that I consider is as follows: the econometrician observes a realized outcome variable Y and a treatment participation indicator D for each individual, where D=1 indicates treatment participation while D=0 nonparticipation. An observed outcome Y can be written as $Y=DY_1+(1-D)Y_0$. Only Y_1 is observed for the individual who takes the treatment while only Y_0 is observed for the individual who does not take the treatment, where Y_0 and Y_1 are the potential outcome without and with treatment, respectively. Treatment effects Δ are defined as $\Delta=Y_1-Y_0$ the difference of potential outcomes. The objective of this study is to identify the distribution function of treatment effects $F_{\Delta}(\delta)=\Pr(Y_1-Y_0\leq \delta)$ from observed pairs (Y,D) for fixed $\delta\in\mathbb{R}$.

To avoid notational confusion, I differentiate between the distribution and the distribution function. Let μ_0 , μ_1 and π denote marginal distributions of Y_0 and Y_1 , and their joint distribution, respectively. That is, for any measurable set A_d in \mathbb{R} , $\mu_d(A_d) = \Pr\{Y_d \in A_d\}$ for $d \in \{0,1\}$ and $\pi(A) = \Pr\{(Y_0,Y_1) \in A\}$ for any measurable set A in \mathbb{R}^2 . In addition, let F_0 , F_1 and F denote marginal distribution functions of Y_0 and Y_1 , and their joint distribution function, respectively. That is, $F_d(y_d) = \mu_d((-\infty, y_d])$ and