M.E. MECHANICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAMINATION - 2018

Combustion Engineering

Time: Three hours Full Marks: 100

Answer any four questions. All parts of the same question must be answered together. Use of tables permitted. Assume any unfurnished data suitably.

la)	Starting from equilibrium thermodynamic relation $(dG)_{T,P,m} = 0$,	15
147		
1.	show that $K_P = \exp(-\Delta G_T^0 / R_U T)$	10
b)	For a reaction NO+O \rightarrow N+O ₂ , the forward reaction rate coefficient may be written as	10
	$k_f = 3.8 \times 10^9$. $T. \exp\left(\frac{20820}{T}\right) \frac{cm^3}{amol\ s}$	
	Determine the reverse rate coefficient at 2300K. Assume $\bar{g}_{f,N}^0 = 326331 kg/$	
	$kmol$, $\bar{g}_{f,O_2}^0 = 0 \ kg/kmol$, $\bar{g}_{f,NO}^0 = 61243 \ kg/kmol$, $\bar{g}_{f,O}^0 = 101627 \ kg/kmol$	
	kmol	
2a)	Darive the processory expressions to find out dT/dt dD/dt and $df V 1/dt$ for a	20
2a)	Derive the necessary expressions to find out dT/dt , dP/dt and $d[X_i]/dt$ for a	20
	constant pressure fixed mass reactor. Also comment on the boundary conditions to solve for the above variables. The variables bear their usual meaning.	
b)	50% H ₂ and 50% CO by volume are mixed to form a fuel. Find out the	5
	stoichiometric fuel-air ratio for the fuel.	
3a)	Derive the expression for laminar flame speed in a uniform fuel-oxygen mixture	20
<i>[3a)</i>	assuming a linear temperature profile in flame.	2,0
b)	A premixed fuel-oxidizer mixture is coming out of a slot burner with a velocity	5
	u = U(1 - x/L)	
	Where, U is the maximum velocity, the slot width is $2L$ with $x=0$ at the centre.	
	Find out an expression for flame shape for this burner.	
4a)	Derive the Shvab-Zeldovich form of energy equation.	13
b)	Derive the steady conservation equation of absolute enthalpy $[h = \sum Y_i h_{f,i}^0 +$	12
	$\int_{T_{Ref}}^{T} c_p dT$] as a conserved scalar.	
5a)	Derive the expression for mixture fraction on a slot burner assuming Burke-	20
b)	Schumann flame. Find out the stoichiometric mixture fraction for Acetylene (C ₂ H ₂) diluted with	5
0)	20% Nitrogen by mass and air.	5
		10
6a)	Write a short note on soot generation in non-premixed flame.	2+2+10
b)	Write down the utility of a counter flow flame. Write a note on the locations of $\frac{\partial n}{\partial x} = \frac{1}{2} \frac{\partial n}{\partial x}$	3+2+10
	the stagnation plane and the flame. Show that $\frac{\partial p}{\partial x}$ and $\frac{1}{r}\frac{\partial p}{\partial r}$ are functions of x	
	only, where p is the pressure and x, r are the axial and radial coordinates	
	respectively.	