Лабораторная работа №1 Синусоидальный ток в цепи с последовательным соединением участков r, L, C

Цель работы

Теоретическое и экспериментальное исследование линейной разветвлённой цепи переменного тока.

Теоретические сведения

1. Реактивные сопротивления X_L и X_C и угол сдвига фаз ϕ

Уравнения электрического равновесия напряжений и токов цепи синусоидального тока можно записать в аналитической форме и представить графически в виде векторных диаграмм.

При анализе цепей синусоидального тока необходимо иметь в виду следующее:

— реактивное *индуктивное* сопротивление X_L индуктивной катушки и реактивное *ёмкостное* X_C сопротивление конденсатора зависят от частоты f источника синусоидального напряжения $u = U_m \sin(2\pi f t + \Psi_u)$, т. е.

 $X_L = \omega L = 2\pi f L$ и $X_C = 1/(\omega C) = 1/(2\pi f C)$, где $\omega = 2\pi f$ – угловая частота напряжения, рад/с; f = 1/T – циклическая частота, Γ ц; T – период синусоидального напряжения, с; Ψ_u – его начальная фаза, рад или град;

- в ветвях с реактивными элементами L и C между напряжением и током

возникает фазовый совиг $\varphi = \Psi_u - \Psi_i$, где Ψ_i — начальная фаза тока (рис. 1). Угол φ (в рад или град) — алгебраическая величина, изменяющаяся в диапазоне от — 90° ($-\pi/2$ рад) до + 90° (+ $\pi/2$ рад). Знак и величина угла зависят от типа и величины параметров последовательно соединённых элементов R, L и C ветви и частоты f напряжения.

2. Векторные диаграммы напряжений и тока в RL-, RC- и RLC-ветвях

В табл. 1 представлены типовые ветви схемы цепи синусоидального тока, векторные диаграммы напряжений и токов ветвей и углы сдвига фаз φ между их векторами. Анализ векторных диаграмм показывает, что резистивный элемент R является частотно-независимым элементом: ток и напряжение на его зажимах совпадают по фазе (форма тока i_R повторяет форму напряжения u_R), поэтому при определении (по осциллограммам) угла сдвига фаз между

напряжением и током в ветвях цепи в качестве датчика тока обычно используют резистор с сопротивлением R_0 , напряжение $u_{R0} = R_0 i$ с зажимов которого подаётся на один из входов осциллографа.

В индуктивном элементе ток отстаёт по фазе от напряжения на 90°, а в ёмкостном — его опережает на 90°. В RL-, RC- и RLC-ветвях углы сдвига фаз зависят от значений параметров элементов ветвей и определяются, в общем случае, по формуле $\varphi = \arctan(X_L - X_C)/R$.

Таблица 1

тиолици т			
Номер ветви (рис. 3)	Элементы ветви	Векторная диаграмма	Угол $\varphi = \Psi_u - \Psi_i$
1	$\stackrel{\underline{I_R}}{\longrightarrow} \underbrace{R}$	$0 \xrightarrow{\underline{I_R}} \underline{U_R}$	$\varphi = 0$
2	$ \stackrel{\underline{I_L}}{\longrightarrow} jX_L \\ \stackrel{\underline{jX_L}}{\longrightarrow} \underline{\underline{U_L}} $	$0 \longrightarrow \underline{U}_L$ $\underline{I}_L \longrightarrow \underline{V}_{\varphi} = 90^{\circ}$	$\varphi = 90^{\circ} (\pi/2)$
3	$ \stackrel{\underline{I}_C}{\longrightarrow} \stackrel{-jX_C}{\longrightarrow} \underline{U} $	$0 \xrightarrow{\underline{I}_C} \varphi = -90^{\circ}$ \underline{U}_C	$\varphi = -90^{\circ} \left(-\pi/2\right)$
4	$\stackrel{\underline{I}}{\longrightarrow} \stackrel{R}{\longrightarrow} \stackrel{jX_L}{\longrightarrow} \underbrace{U}$	$0 \xrightarrow{\int \varphi > 0} \underline{U}$ \underline{I}	$\varphi = \operatorname{arctg}(X_L/R)$
5	$ \stackrel{I_R}{\longrightarrow} \stackrel{R}{\longrightarrow} \stackrel{-jX_C}{\longrightarrow} \underbrace{U} $	$0 \xrightarrow{Q} \underline{\underline{I}}$ $0 \xrightarrow{\varphi < 0} \underline{U}$	$\varphi = \arctan(-X_C/R)$
6	$ \stackrel{\underline{I}}{\longrightarrow} R \qquad \stackrel{jX_L}{\longrightarrow} \underline{U} $	$a) \ X_L > X_C$; см. ветвь 4; $6) \ X_L < X_C$; см. ветвь 5; $6) \ X_L = X_C$; см. ветвь 1	$\varphi = \arctan[(X_L - X_C)/R]$

3. ИЗМЕРЕНИЕ УГЛА φ

Значение угла сдвига фаз φ в ветвях схемы цепи определяют косвенным методом, измеряя временные интервалы на осциллограммах, т. е.

$$|\varphi| = 360^{\circ} \Delta t/T,$$

где Δt — временной интервал (рис. 2) между нулевыми значениями синусоид напряжения (синего цвета) и тока (красного цвета); угол φ берется со знаком "плюс", если ток *отстаёт по фазе* от напряжения (см. рис. 2), и со знаком "минус", если ток *опережает по фазе* напряжение.

При измерении интервала времени Δt целесообразно использовать визирные линии ($\epsilon u s u p \omega$), расположенные слева и справа экрана осциллографа (см.

рис. 4), на вход канала **A** которого будем подавать напряжение u_{R0} , пропорциональное току ветви (цвет провода 1 – красный), а на вход канала **B** – напряжение u ветви (цвет провода 2 – синий).

В библиотеке инструментов среды MS11 имеется виртуальный ваттметр **XWM** (см. рис. 3 и рис. 4), который измеряет как активную мощность $P = UI\cos\varphi$, потребляемую приёмником, так и коэффициент мощности (**Power Factor**) $\cos\varphi = P/UI$, где U и I — напряжение и ток потребителя энергии. Тогда модуль угла сдвига фаз между напряжением и током

 $\varphi = \arccos(P/UI)$.

Знак угла φ определяют косвенным методом, например, подключая параллельно нагрузке конденсатор: если при этом коэффициент мощности $\cos \varphi$ увеличился (угол φ уменьшился), то угол φ имеет знак "+", и наоборот.

Учебные задания и методические указания к их выполнению

Задание 1. Рассчитать индуктивное сопротивление X_L катушки и ёмкостное сопротивление X_C конденсатора при частотах, указанных в табл. 2, и **занести** полученные значения сопротивлений в табл. 2.

Значения индуктивности катушки и ёмкости конденсатора **определить** по формулам: L = 100 - 2,5N, мГн, C = 100 + 10N, мкФ, где N — номер записи фамилии студента в учебном журнале группы.

Таблица 2

Сопротивление Х		при частоте f, Гц								
		30	40	50	60	80	100	120		
Рассчитано	X_L , Ом									
	U, B									
Измерено	I, A									
	X_L , Ом									
Рассчитано	X_C , Om									
	U, B									
Измерено	I, A									
	X_C , Ом									

Построить (на одном рисунке) графики $X_L(f)$ и $X_C(f)$. **Отметить** координаты точки пересечения графиков — возможного режима резонанса напряжений при последовательном соединении катушки и конденсатора между собой и с источником синусоидального напряжения.

Задание 2. Запустить MS11. **Открыть** файл **lab4.ms11** со *схемой цепи синусоидального тока* (рис. 3), или собрать схему цепи на рабочем поле среды MS11 и **установить**:

- красный цвет провода, подходящего к каналу ${\bf A}$ осциллографа, и синий для провода, подходящего к каналу ${\bf B}$ осциллографа;
 - параметры пассивных элементов:

$$R_0 = 1 \text{ MOM}; R_1 = R_4 = R_5 = R_6 = \text{int}(120/N), O_M;$$

$$L_2 = L_4 = L_6 = 100 - 2,5N$$
, мГн; $C_3 = C_5 = C_6 = 100 + 10N$, мк Φ ;

- параметры идеального источника синусоидального напряжения e_1 : ЭДС E = 10 В (действующее значение), f = 50 Гц; $\Psi_u = 0$;
- режим работы **AC** амперметра **A1** и вольтметра **V1**; сопротивление амперметра 1 нОм; сопротивление вольтметра 10 МОм;
- чувствительность 2 мВ/дел (mV/div) канала **A** осциллографа, в котором регистрируется напряжение, снимаемое с резистора R_0 ; чувствительность 5 В/дел (5 V/div) канала **B**, в котором регистрируется напряжение ветви; длительность развертки (**TIME BASE**) в режиме **Y/T** -2 мс/дел (2 ms/div);
- управляющие ключами **A, B, C, D, E** и **F** клавиши A, B, C, D, E и F клавиатуры.

Скопировать схему электрической цепи синусоидального тока (рис. 3) на страницу отчёта.

Рис. 3

Задание 3. Провести измерение токов, напряжений и углов сдвига фаз между ними в ветвях, содержащих соответственно резистивный **R1**, индуктивный **L2** и емкостный **C3** элементы.

С этой целью:

- **подключить** резистор **R1** (нажать клавишу **A** клавиатуры) к источнику синусоидального напряжения \mathbf{e}_1 , запустить программу моделирования схемы (щёлкнуть мышью на цифре 1 кнопки $\boxed{}$) и убедиться (анализируя осциллограммы на экране осциллографа), что угол сдвига фаз между напряжением и током $\varphi = 0$. Ток $I_1 = U/R_1$;
- **отключить** резистор **R1** (нажать клавишу **A** клавиатуры) и **подключить** катушку **L2** (нажать клавишу **B**) к источнику **e**₁. Показания вольтметра **V1** и амперметра **A1** при f = 50 Гц занести в табл. 2. Изменяя ступенчато частоту напряжения (30, 40, 50, 60, 80, 100, 120 Гц), заносить показания вольтметра и амперметра в табл. 2. **Рассчитать** сопротивление

- $X_{L2}(f) = U_L/I_L$ и **сравнить** полученные значения со значениями, найденными при выполнении задания 1. **Убедиться** (анализируя осциллограммы), что ток i_L отстает по фазе от напряжения u_L на угол $\varphi = 90^\circ$. Скопировать (или зарисовать) в отчёт осциллограммы $u_L(t)$ и $i_L(t)$ при f = 50 Гц;
- **повторить** предыдущее задание относительно конденсатора **C**3, предварительно отключив от источника (посредством клавиши **B**) ветвь с элементом **L**2 и подключив с помощью клавиши **C** к источнику **e**₁ ветвь с конденсатором **C**3. Показания приборов **заносить** в табл. 2. **Рассчитать** сопротивление конденсатора $X_{C3}(f) = U_C/I_C$ (см. табл. 2) и **сравнить** полученные значения со значениями, найденными при выполнении задания 1. **Убедиться** (анализируя осциллограммы), что ток i_C опережает по фазе напряжение u_C на угол $\varphi = 90^\circ$.

Скопировать (или зарисовать) на страницу отчёта осциллограммы $u_C(t)$ и $i_C(t)$ при f = 50 Гц.

Задание 4. Провести измерения токов, напряжений и углов сдвига фаз между ними в ветвях, содержащих соответственно *RL*-, *RC*- и *RLC*-элементы. С этой целью:

- установить частоту f = 50 Гц источника напряжения \mathbf{e}_1 и подключить к нему ветвь $\mathbf{R4L4}$, предварительно отключив ветвь с конденсатором $\mathbf{C3}$. Показания приборов занести в табл. 3. Угол φ определить косвенным методом, воспользовавшись осциллограммами напряжения и тока ветви, или из показания ваттметра $\mathbf{XWM1}$. Для удобства измерений изменяйте чувствительность каналов и длительность развёртки осциллографа.

Рассчитать полное Z_4 , активное R_4 и реактивное X_{L4} сопротивления ветви **R4L4** и занести их значения в табл. 6.3. **Убедиться**, что ток i в RL-ветви отстаёт по фазе от напряжения u на угол $\varphi_4 = \arctan(X_{L4}/R_4)$; **скопировать** (или зарисовать) на страницу отчёта осциллограммы напряжения и тока RL-ветви;

Таблица 3

]	Измерено)	Рассчитано					
Ветвь	U,	I,	φ ,	Z = U/I,	$R = Z\cos\varphi$,	$X = Z\sin\varphi$,			
	В	A	град	Ом	Ом	Ом			
R_4L_4									
R_5C_5									
$R_6L_6C_6$									

- **повторить** предыдущее задание для ветви **R**5**C**5, предварительно отключив от источника **e**₁ четвёртую ветвь. Убедиться, что ток *i* в *RC*-ветви опережает по фазе напряжения *u* на угол $\varphi_5 = \arctan(-X_C/R_5)$;
- **скопировать** (или зарисовать) осциллограммы напряжения и тока RC-ветви;

- **повторить** предыдущее задание для ветви с элементами **R6**, **L6** и **C6**, предварительно отключив от источника е₁ пятую ветвь. **Убедится**, что в *RLC*-ветви угол сдвига фаз φ_6 между напряжением и током зависит от величины реактивного сопротивления

$$X_6 = X_{L6} - X_{C6}$$
.

Если при частоте f = 50 Гц, угол $\varphi_6 = \arctan(X_{L6} - X_{C6})/R_6 > 0$, то, уменьшив частоту до 20-30 Гц, угол φ_6 изменит свой знак, и наоборот, если при f = 50 Гц, угол $\varphi_6 < 0$, то, увеличив частоту f до 100...120 Гц, ток будет отставать по фазе от напряжения, при этом угол $\varphi_6 > 0$.

В качестве примера на рис. 4 представлены осциллограммы напряжения и тока $R_6L_6C_6$ -ветви и показание ваттметра **XWM1**. Анализ осциллограмм показывает, что ток i_6 опережает по фазе напряжение u_6 на угол

$$\varphi_6 = -360^{\circ} \Delta t / T \approx -360 \cdot 2,847 / 4.5 \approx -51,3^{\circ}.$$

Воспользовавшись показанием ваттметра **XWM1**, находим модуль угла: $| \phi_6 | = \arccos(0.624) = 51.4^{\circ}$.

Рис 4

Задание 5. Расчет разветвлённой цепи переменного тока символическим методом.

1. Определите токи в схеме согласно своему варианту (номер варианта соответствует номеру в журнале) символическим методом. Рассчитайте сдвиги фаз в ветвях схемы. Определите активные мощности в ветвях ($P_i = I_i^2 R_i$).

- 2. Определите токи с использованием MS11. Определите сдвиги фаз и активные мощности в ветвях схемы с помощью ваттметра.
- 3. Результаты расчетов и измерений занесите в таблицу 4.
- 4. Постройте векторные диаграммы токов и топографические диаграммы напряжений в схеме.

Таблица 4

	Токи ветвей схемы								
	i_1, A	<i>i</i> ₂ , A	<i>i</i> ₃ , A	φ_1 , °	φ_2 , °	φ ₃ , °			
Рассчитано									
Измерено									

Рисунок 4.37 Рисунок 4.38 Таблица – Значения ЭДС и сопротивлений резисторов для цепей, схемы которых приведены на рисунках 4.1- 4.38

No	$N_{\underline{0}}$	Ε,	f,	C_1 ,	C_2 ,	C_3 ,	L_1 ,	L_2 ,	L_3 ,	R_1 ,	R_2 ,	R_3 ,
вар.	рис.	В	Гц	мкФ	мкФ	мкФ	мГн	мГн	мГн	Ом	Ом	Ом
1	4.1	100	50	637	300	-	-	-	15,9	10	4	6
2	4.2	100	50	_	_	-	15,9	9	15,9	8		4
3	4.3	200	50	637	300	-	-	-	15,9	8	3	_
4	4.4	120	50	-	300	_	15,9	-	15,9	8	3	4
5	4.5	220	50	6,37	-	100	-	47,7	-	8	-	4
6	4.6	50	50	100	159	-	15,9	-	47,7	10	-	10
7	4.7	100	50	-	-	300	15,9	-	115	-	10	10
8	4.8	120	50	-	100	-	-	-	115	10	4	10
9	4.9	200	50	-	159	-	31,8	-	-	10	4	10
10	4.10	220	50	-	318	-	15,9	-	47,7	10	-	10
11	4.11	50	50	637	-	300	-	15,9	-	6	5	8
12	4.12	100	50	-	637	100	15,7	-	-	-	10	8
13	4.13	200	50	-	-	100	31,8	-	-	5	10	8
14	4.14	220	50	637	-	200	-	15,9	-	5	10	8
15	4.15	150	50	-	100	-	15,9	-	47,5	10	2	-
16	4.16	100	50	637	-	200	-	31,8	-	-	8	10
17	4.17	120	50	100	-	200	-	15,9	-	-	8	10
18	4.18	200	50	1	637	200	15,7	-	-	8	-	10
19	4.19	220	50	1	160	-	31,8	-	95	10	8	4
20	4.20	50	50	1	159	200	31,8	-	95	15	-	-
21	4.21	100	50	1	159	200	15,9	-	-	ı	15	10
22	4.22	120	50	637	ı	200	ı	15,9	-	10	-	20
23	4.23	200	50	1	159	-	115	-	47,7	15	10	-
24	4.24	220	50	1	159	-	32,8	-	95	4	-	20
25	4.25	150	50	ı	159	-	25	-	95	6	10	8
26	4.26	100	50	100	159	-	ı	-	95	6	-	20
27	4.27	100	50	100	-	159	-	25	-	6	-	4
28	4.28	200	50	100	159	-	-	-	95	-	6	2
29	4.29	220	50	637	-	637	-	-	25	-	10	2
30	4.30	500	50	-	-	637	25	15,7	31,8	10	-	4
31	4.31	100	50	318	-	300	-	31,8	31,8	12	-	10
32	4.32	120	50	-	-	300	25	15,9	8	4	-	10
33	4.33	200	50	318	-	300	-	31,8	95	10	12	4
34	4.34	220	50	-	159	300	25	-	-	4	15	10
35	4.35	50	50	100	-	-	-	15,9	31,8	8	-	4
36	4.36	100	50	637	-	200	-	19,5	-	8	10	4
37	4.37	150	50	-	637	-	31,8	-	95	8	12	4
38	4.38	200	50	637	-	200	-	15,9	-	8	12	4

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Наименование и цель работы.
- 2. Электрические расчётные схемы и копия схемы цепи, собранной на рабочем поле программной среды MS11.
- 3. Расчётные формулы, векторные и временные диаграммы напряжений и токов ветвей цепи.
 - 4. Таблицы с расчётными и экспериментальными данными.
 - 5. Графики $X_L(f)$ и $X_C(f)$.
 - 6. Расчет цепи переменного тока символическим методом.
 - 7. Схема для исследования цепи переменного тока.
 - 6. Выводы по работе.