VisEdu-Química: Visualizador de Material Educacional – Módulo de Química

Aluno(a): Arthur Henrique Eggert

Orientador: Dalton Solano dos Reis

Roteiro

- Introdução
- Objetivos
- Fundamentação Teórica
- Desenvolvimento
- Resultados e Discussões
- Conclusões
- Extensões
- Demonstração

Introdução

- Complexidade da Química
- Dificuldade em associar assunto com realidade
- Dificuldade do professor
- Uso da informática
- Navegadores, HTML5 e WebGL

Objetivos

- Ferramenta Web para auxilio do ensino da química(Fórmulas Moleculares)
- Criar um ambiente 2D para a modelagem de moléculas em suas fórmulas estruturais completas
- Validar a molécula criada no ambiente 2D
- Criar uma visualização 3D da molécula

- Informática para otimizar processo de aprendizagem
- Professor deve saber explorar a informática para o surgimento de novas práticas pedagógicas
- Química é um processo experimental, a informática pode auxiliar neste ponto

- Átomos, Elementos e Moléculas
- Organização dos Elementos
- Fórmulas
- Ligações
- Estrutura de Lewis
- Geometria Molecular

- Ambiente 3D
 - Three.js
 - Engine (Montibeler, 2014)
- Ambiente 2D
 - Fabric.js

Trabalhos Correlatos

- Avogadro
 - · Edição 3D
 - · Visualização 3D
 - · Bases Públicas de Moléculas
 - · Tipo de Apresentação

Trabalhos Correlatos

- BKChem
 - · Edição 2D
 - · Validação da estrutura
 - · Bases Públicas de Moléculas

Requisitos Funcionais

- Permitir a digitação da Fórmula Química
- Criação da Fórmula Estrutural com base na Fórmula Química
- Validar Fórmula Estrutural
- Exibir resultado em ambiente 3D
- Interação de câmera no ambiente 3D

Requisitos Não Funcionais

- Javascript e HTML5
- WebGL + Three.js
- Intellij Idea como IDE

Especificação

- Quatro itens principais
 - Área de Entrada
 - Lista de Elementos
 - Área de Desenho
 - Área de Visualização

Especificação - Casos de Uso

Especificação – Pacotes

Especificação - Visedu

visedu FormulaEstruturalDrawer DesenhaMolecula3D - canvas: fabric.Canvas - atomoCorrente: Atomo + inicializa(Number, Number, DOM): void - modoLigacao: ModoLigacao + desenhaMolecula(Molecula): void ViseduQuimica - objetoCorrente: fabric.Object + onResize(): void - objetoAnterior: fabric.Object - utilitario: Utilitario desenho2d: FormulaEstruturalDrawer desenhaAtomo(Object): void desenho3d: DesenhaMolecula3D - desenhaLigacaoSimples(Array): void formulaQuimicaParser: FormulaQuimicaParser - desenhaLigacaoDupla(Array): void formulaParseada: Array - onMouseUp(): void - molecula: Molecula - onMouseDown(): void onObjectSelected: void + btn_submit_fq.click(): void Utilitario onMoveObject(): void + listaElementos.click.elementoQuimico(): void + inicializa(): void + listaElementos.click.tipoLigacao(): void + setAtomoCorrente(Atomo): void + btn_gera3d.click(): void + criaListaElementosTela(): Array + setModoLigacao(ModoLigacao): void + limpaElementos(): void + isModoLigacao(): Boolean + limpaCanvas(): void

Especificação - Quimica


```
var isElementoOuimicoValido = function (simbolo) {
        return .includes(ElementosQuimicos.SIGLAS, simbolo);
   }:
self.parse = function (formula) {
    var formulaSplited;
    var elementos = [];
    if (formula) {
        formulaSplited = formula.split(/(?=[A-Z])/);
        formulaSplited.forEach(function (elemento) {
            var elementoSplited, elementoQuimico, qtdElemento;
            elementoSplited = elemento.split(/(?=[0-9])/);
            elementoQuimico = _.get(elementoSplited, 0);
            qtdElemento = _.get(elementoSplited, 1, 1);
            for (var i = 2; i < elementoSplited.length; i++) {</pre>
                qtdElemento += __get(elementoSplited, 2, 1);
            if (isNaN(qtdElemento)) {
                throw new EvalError('Elemento Químico ' + elementoQuímico + ' com quantidade inválida (' + qtdElemento + ')');
            } else {
                if (isElementoQuimicoValido(elementoQuimico) === true) {
                    for (i = 0; i < parseInt(gtdElemento); i++) {</pre>
                        elementos.push({sigla: elementoQuimico});
                } else {
                   throw new EvalError('Elemento Químico ' + elementoQuímico + ' não encontrado!');
       });
    } else {
       throw new EvalError('Valor não pode ser nula/branco')
    return elementos:
```



```
var onMouseUp = function () {
  if (atomoCorrente) {
     var atomoId = atomoCorrente.getId();
     atomoCorrente = null:
     onMouseUpCallback(atomoId);
var onMouseDown = function (evento) {
  if (self.isModoLigacao()) {
     if (objetoAnterior !== null && objetoCorrente != null) {
        if ( .isEqual(modoLigacao, ModoLigacao.SIMPLES)) {
           desenhaLigacaoSimples([objetoAnterior.left, objetoAnterior.top, objetoCorrente.left, objetoCorrente.top]);
        } else {
           desenhaLigacaoDupla([objetoAnterior.left, objetoAnterior.top, objetoCorrente.left, objetoCorrente.top])
        onMouseDownCallback(modoLigacao, objetoCorrente.atomoId, objetoAnterior.atomoId);
        canvas.deactivateAll().renderAll();
        objetoAnterior = null;
        objetoCorrente = null;
        modoLigação = null;
  } else {
     if (atomoCorrente) {
        desenhaAtomo(canvas.getPointer(evento.e));
  canvas.renderAll():
```



```
self.valida = function (gtdElementosFormula) {
   if (qtdElementosFormula != atomos.length) {
         throw new Error('Nem todos os elementos da formula fora utilizados![Qtd Elementos: ' + qtdElementosFormula +
         '] [Qtd Atomos: ' + atomos.length + ']');
   atomos.forEach(function (atomo) {
      var achou = false:
     ligacoes.forEach(function (ligacao) {
         if (ligacao.getTipoLigacao() === TipoLigacao.IONICA && ligacao.getModoLigacao() !== ModoLigacao.SIMPLES) {
            throw new Error('Ligações Ionicas são sempre simples');
         if (ligacao.getTipoLigacao() === TipoLigacao.METALICA) {
           throw new Error('Ligações Metálicas não são tratadas pelo aplicativo');
     });
     if (validaRegraOcteto) {
         if (atomo.getQtdEletronsLivresCamadaValencia() !== 0) {
            if (atomo.getValorEletronsRegraDoOcteto() !== atomo.getQtdEletronsLivresCamadaValencia()) {
              throw new Error('Molécula não esta obedecendo a regra do octeto ' + '[ Atomo => ' + atomo.getSimbolo() +
               ' Valor Regra do Octeto => ' + atomo.getValorEletronsRegraDoOcteto() + ' Eletrons Livres => ' +
              atomo.getQtdEletronsLivresCamadaValencia() + ' ]')
      if (!achou) {
        throw new Error('Atomo ' + atomo.getSimbolo() + ' não é usado em nenhuma ligação![1]');
      if (atomo.getQtdLigacoes() === 0) {
        throw new Error('Atomo ' + atomo.getSimbolo() + ' não é usado em nenhuma ligação![2]');
  }):
```

```
if (tipoGeometria.eixos === "xyz") {
   x2 = x + 4 * Math.cos(tipoGeometria.angulos[countLigacoes][1]) * Math.sin(tipoGeometria.angulos[countLigacoes][0]);
   y2 = y + 4 * Math.sin(tipoGeometria.angulos[countLigacoes][1]);
   z2 = z + 4 * Math.cos(tipoGeometria.angulos[countLigacoes][1]) * Math.cos(tipoGeometria.angulos[countLigacoes][0])
} else {
   x2 = x + Math.cos(tipoGeometria.angulos[countLigacoes]) * 4;
   y2 = y + Math.sin(tipoGeometria.angulos[countLigacoes]) * 4;
   z2 = z;
}
```


Operacionalidade

Questões aplicadas aos estudantes (53 alunos)

Nº	Questão	Tipo de Resposta
1	Você considera que ferramentas interativas podem auxiliar no processo de educação?	Múltipla Escolha.
2	No cenário atual de ensino, é viável para as instituições de ensino disponibilizarem notebooks para grupos de alunos?	
3	Você considera a aplicação apresentada como algo que poderia auxiliar a fixação do conteúdo?	
4	Como você classifica a usabilidade da aplicação?	
5	Com base nas respostas anteriores, quais foram os "pontos positivos" encontrados na aplicação?	Descritiva.
6	Com base nas respostas anteriores, quais foram os "pontos negativos" encontrados na aplicação?	
7	Com base nas respostas anteriores, quais seriam suas sugestões para melhorar o aplicativo?	

Você considera que ferramentas interativas podem auxiliar no processo de educação?

No cenário atual de ensino, é viável para as instituições de ensino disponibilizarem notebooks para grupos de alunos?

Você considera a aplicação apresentada como algo que poderia auxiliar a fixação do conteúdo?

Como você classifica a usabilidade da aplicação?

Com base nas respostas anteriores, quais foram os "pontos positivos" encontrados na aplicação?

Com base nas respostas anteriores, quais foram os "pontos negativos" encontrados na aplicação?

Com base nas respostas anteriores, quais seriam suas sugestões para melhorar o aplicativo?

Testes de performance 3D no Google Chrome

Qtde de Objetos	FPS	Memória (MB)	Observação
40	60	202	Sistema funcionou normalmente, as taxas de FPS e
80	60	237	memória estavam constantes durante a utilização.
160	60	307	
320	60	432	
640	42~60	732	Sistema funcionou normalmente, porem as taxas de
			FPS variaram constantemente entre os eventos de
			zoom e rotação.
1.280	12~42	1300	Sistema não estava funcionando corretamente, o
			Google Chrome travou por aproximadamente 30
			segundos até que conseguiu renderizar todos os
			objetos, a utilização dos eventos de zoom e rotação
			ficaram prejudicadas.

Testes de performance 3D no Firefox

Qtde de Objetos	FPS	Memória (MB)	Observação
40	50	500	Sistema funcionou normalmente, as taxas de FPS e memória estavam constantes durante a utilização.
80	35	600	Sistema funcionou normalmente, porém as .taxas de
160	30	650	FPS estava muito baixas mesmo sem nenhuma
320	28	700	interação com o ambiente.
640	18	1.500	Sistema não funcionou normalmente, e as .taxas de FPS estava muito baixas mesmo sem nenhuma interação com o ambiente, o inverso pode ser dito da memória estava com um consumo excessivo
1.280	2,1	2.000	Sistema não estava funcionando corretamente, o Firefox travou por aproximadamente 60 segundos até que conseguiu renderizar todos os objetos, a utilização dos eventos de zoom e rotação ficaram prejudicadas.

Testes de performance 2D no Google Chrome

Qtde de Objetos	FPS	Memória (MB)	Observação
40	60	73	Sistema funcionou normalmente, as taxas de FPS e
80	60	230	memória estavam constantes durante a utilização.
160	60	250	
320	55	260	
640	50	265	
1.280	40	270	

Testes de performance 2D no Firefox

Qtde de Objetos	FPS	Memória (MB)	Observação
40	41	600	Sistema funcionou normalmente, as taxas de FPS e
			memória estavam constantes durante a utilização.
80	13	1200	Sistema funcionou normalmente, porém as .taxas de
160	10	1300	FPS estava muito baixas mesmo sem nenhuma
320	13	1300	interação com o ambiente.
640	-	-	Sistema travou e não terminou de carregar as peças
1.280	-	-	Sistema travou e não terminou de carregar as peças

Resultados e Discussões

Comparação entre os trabalhos correlatos e o proposto

Caraterística	BKChem	Avogadro	Proposto
ambiente de edição 2D	X		х
ambiente de edição 3D		Х	
visualização 3D		Х	х
validação da estrutura química	х		х
exportar resultado	X	Х	
ambiente web			х
leitura de estruturas InChl	Х		

Conclusões

- Utilização da Engine (Montibeler, 2014) e do Fabric.js se mostraram satisfatórias
- Desempenho satisfatório para o que foi proposto
- Ajustes são necessários
- Boa aceitação nos testes de usabilidade

Sugestões

- Melhorar a forma com que as ligações são feitas
- Adicionar mais informações sobre a molécula no ambiente tridimensional
- Adicionar automaticamente os átomos da fórmula no ambiente bidimensional
- Melhorar a visualização do ambiente tridimensional
- Utilizar iluminação na visualização tridimensional
- Permitir a utilização de mais navegadores
- Permitir o desenho de moléculas complexas

Demonstração

-	1A 1			Me	etais Alcali	nos		Actinídeos										8A 2
1	H			Me	etais Alcali	nos-terros	os	Outros me	etais									He
	Hidrogênio	2A		Me	etais de tra	ansicão		Não-Metai	is				ЗА	4A	5A	6A	7A	Hélio
2	3	4 Do						C					5 B	6 C	7 N	8	9	10 No
2	Li Litio	Be Berílio		La	ntanídeos			Gases not	ores				Boro	Carbono	Nitrogênio	1000	F	Ne Neônio
	11	12					lementos (do Timpoie	šo.				13	14	15	16	17	18
3	Na	Mg	2222		80.0			ie iransiça			- 1	6225	Al	Si	P	S	Ce	Ar
	Sódio	Magnésio	3B	4B	5B	6B	7B		— 8B —		1B	2B	Alumínio	Silício	Fósforo	Enxofre	Cloro	Argônio
4	19 K	Ca Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	31 Ge	33 As	34 Se	35 Br	36 Kr
1	Potássio	Cálcio	Escândio	Titânio	Vanádio	Cromo	Manganês	Ferro	Cobalto	Níquel	Cobre	Zinco	Gálio	Germânio	Arsênio	Selênio	Bromo	Criptônio
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	Rubídio	Estrôncio	Ítrio	Zircônio	Nióbio	Molibdênio	Tecnécio	Rutênio	Ródio	Paládio	Prata	Cádmio	Índio	Estanho	Antimônio	Telúrio	Iodo	Xenônio
6	55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Ti	82 Pb	83 Bi	84 Po	85 At	86 Rn
Ů	Césio	Bário	*	Háfnio	Tântalo	Tungstênio	Rênio	Ósmio	Irídio	Platina	Ouro	Mercúrio	Tálio	Chumbo	Bismuto	Polônio	Astato	Radônio
	87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	89-103	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
	Frâncio	Rádio	**	Rutherfórdio	Dúbnio	Seabórgio	Bório	Hássio	Meitnério	Ununílio	Ununúnio	Unúmbio	Ununtrio	Ununquádi	Ununpentio	Ununhexio	Ununseptio	Ununóctio
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		* 6	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tď	Dy	Ho	Er	Tm	Ϋ́b	Ĺu	
			Lantânio	Cério	Praseodimio	Neodímio	Promécio	Samário	Európio	Gadolínio	Térbio	Disprósio	Hólmio	Érbio	Túlio	Itérbio	Lutécio	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		** 7	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw	
			Actínio	Tório	Protactínio	Urânio	Netúnio	Plutônio	Amerício	Cúrio	Berquélio	Califórnio	Einstênio	Férmio	Mendelévio	Nobélio	Laurêncio	

Grupos	Tipo Ligação	Condição	Exemplo de Molécula
Metais Alcalinos ou Metais	Iônica	Metais com	LiH, NaH, KH,
Alcalinos Terrosos e		eletronegatividade	CaH ₂ ,SrH ₂ ,BaH ₂
Hidrogênio		menor ou igual a 1,0	
	Covalente	Metais com	BeH ₂ , MgH ₂
		eletronegatividade	
		maior que 1,0	
Não Metais ou Semi-	Covalente	Nenhuma	HF, HCl, HBr, HI, H2O,
metais e Hidrogênio			H ₂ S, H ₂ Se, PH ₃ , SI ₄ ,CH ₄
Não Metais ou Semi-	Covalente	Nenhuma	F ₂ , Cl ₂ , CO, CO ₂ ,
metais e Não Metais ou			P ₄ Cl ₂ O
Semi-metais			
Qualquer Metal e Qualquer	Metálica	Nenhuma	Fe(n), Al(n)
Metal			
Qualquer Metal e Não	Iônica	Diferença de	NaCl, KCl, AIF ₃ , K ₂ O
Metais ou Semi-metais		eletronegatividade	
		maior ou igual a 1,7	
	Covalente	Diferença de	AlCl ₃ , HgCl ₂
		eletronegatividade	
		menor que 1,7	

Pares	Pares Ligantes	Pares não Ligantes	Geometria	Ângulo das Ligações	Exemplo
2	2	0	Linear	180°	CO_2
3	2	1	Angular	120°	SO ₂
4	2	2	Angular	110°	H ₂ O
3	3	0	Trigonal Plana	120°	BF_3
4	4	0	Tetraédrica	109,5°	CH ₄
4	3	1	Piramidal	110°	NH ₃
5	5	0	Bipiramidal	90°, 120°	PCl ₅
			Trigonal		
5	4	1	Gangorra	180°, 120°	SF ₄
5	3	2	Forma de T	90°, 180°	CIF ₃
5	2	3	Linear	180°	XeF_2
6	6	0	Octaédrica		
6	5	1	Piramidal 90° Quadrada		BrF ₅
6	4	2	Quadrada 90° Planar		XeF ₄
7	7	0	Bipiramidal Pentagonal	90°, 72°	IF ₇

Grupos	Grandes Grupos		
Hidrogênio	Hidrogênio		
Metais Alcalinos	Metais		
Metais Alcalinos Terrosos			
Metais de Transição			
Metais de Transição Interna			
Outros Metais			
Não Metais	Ametais		
Gases Nobres	Gases Nobres		


```
self.calculaRegraDoOcteto = function () {
        ligacoes.forEach(function (ligacao) {
            var origem = self.getAtomoPorId(ligacao.getAtomoOrigem());
            var destino = self.getAtomoPorId(ligacao.getAtomoDestino());
            if (ligacao.getTipoLigacao() === TipoLigacao.COVALENTE) {
                origem.incrementaQtdEletronsLivresCamandaValencia();
                destino.incrementaQtdEletronsLivresCamandaValencia();
                if (ligacao.getModoLigacao() === ModoLigacao.DUPLA) {
                    origem.incrementaQtdEletronsLivresCamandaValencia();
                    destino.incrementaQtdEletronsLivresCamandaValencia();
            } else {
                if (ligacao.getTipoLigacao() === TipoLigacao.IONICA &&
ligacao.getModoLigacao() !== ModoLigacao.SIMPLES) (
                    throw new Error ('Ligações Ionicas são sempre
simples');
                    if (origem.getEletronegatividade() >
destino.getEletronegatividade()) {
origem.incrementaQtdEletronsLivresCamandaValencia();
destino.decrementaQtdEletronsLivresCamandaValencia();
                    } else {
origem.decrementaQtdEletronsLivresCamandaValencia();
destino.incrementaQtdEletronsLivresCamandaValencia();
        });
    };
```



```
var isElementoQuimicoValido = function (simbolo) {
        return _.includes(ElementosQuimicos.SIGLAS, simbolo);
    self.parse = function (formula) {
        var formulaSplited;
        var elementos = [];
        if (formula) {
            formulaSplited = formula.split(/(?=[A-Z])/);
            formulaSplited.forEach(function (elemento) {
                var elementoSplited, elementoQuimico, qtdElemento;
                elementoSplited = elemento.split(/(?=[0-9])/);
                elementoQuimico = _.get(elementoSplited, 0);
                gtdElemento = _.get(elementoSplited, 1, 1);
                for (var i = 2; i < elementoSplited.length; i++) {
                    qtdElemento += _.get (elementoSplited, 2, 1);
                if (isNaN(qtdElemento)) {
                    throw new EvalError ('Elemento Químico ' +
elementoQuimico + ' com quantidade inválida ' +
                        '(' + qtdElemento + ')');
                    if (isElementoQuimicoValido(elementoQuimico) === true)
                        for (i = 0; i < parseInt(qtdElemento); i++) {</pre>
                             elementos.push({sigla: elementoQuimico});
                    } else {
                        throw new EvalError ('Elemento Químico ' +
elementoQuimico + ' não encontrado!');
            });
        } else {
            throw new EvalError ('Valor não pode ser nula/branco')
        return elementos;
    };
```



```
var onMouseUp = function () {
        if (atomoCorrente) {
            var atomoId = atomoCorrente.getId();
            atomoCorrente = null;
            onMouseUpCallback(atomoId);
    };
    var onMouseDown = function (evento) {
        if (self.isModoLigacao()) {
            if (objetoAnterior !== null && objetoCorrente != null) {
                if (_.isEqual (modoLigacao, ModoLigacao.SIMPLES)) {
                    desenhaLigacaoSimples([objetoAnterior.left,
objetoAnterior.top, objetoCorrente.left, objetoCorrente.top]);
                } else {
                    desenhaLigacaoDupla([objetoAnterior.left,
objetoAnterior.top, objetoCorrente.left, objetoCorrente.top])
                onMouseDownCallback (modoLigacao, objetoCorrente.atomoId,
objetoAnterior.atomoId);
                objetoAnterior = null;
                objetoCorrente = null;
                modoLigacao = null;
        } else {
            if (atomoCorrente) {
                desenhaAtomo (canvas.getPointer(evento.e));
        canvas.renderAll();
    };
```



```
self.valida = function (gtdElementosFormula) {
        if (gtdElementosFormula != atomos.length) {
            throw new Error ('Nem todos os elementos da formula fora
utilizados! [Qtd Elementos: ' + qtdElementosFormula +
                '] [Qtd Atomos: ' + atomos.length + ']');
        atomos.forEach (function (atomo) {
            if (atomos.length === 2) {
                atomo.setBiMolecular(true);
            var achou = false;
            ligacoes.forEach(function (ligacao) {
                if (ligacao.getAtomoOrigem() === atomo.getId() ||
ligacao.getAtomoDestino() === atomo.getId()) {
                    achou = true;
                if (ligacao.getTipoLigacao() === TipoLigacao.IONICA &&
ligacao.getModoLigacao() !== ModoLigacao.SIMPLES) {
                    throw new Error ('Ligações Ionicas são sempre
simples');
                if (ligacao.getTipoLigacao() === TipoLigacao.METALICA) {
                    throw new Error ('Ligações Metálicas não são tratadas
pelo aplicativo');
            if (atomo.getQtdEletronsLivresCamadaValencia() !== 0) {
                if (atomo.getValorEletronsRegraDoOcteto() !==
atomo.getQtdEletronsLivresCamadaValencia()) {
                    throw new Error ('Molécula não esta obedecendo a regra
do octeto ' + '[ Atomo => ' + atomo.getSimbolo() +
                        ' Valor Regra do Octeto => ' +
atomo.qetValorEletronsRegraDoOcteto() + ' Eletrons Livres => ' +
                        atomo.getQtdEletronsLivresCamadaValencia() + ' | ')
            if (!achou) {
                throw new Error ('Atomo ' + atomo.getSimbolo() + ' não é
usado em nenhuma ligação![1]');
            if (atomo.getQtdLigacoes() === 0) {
                throw new Error ('Atomo ' + atomo.getSimbolo() + ' não é
usado em nenhuma ligação![2]');
        });
    };
```



```
if (tipoGeometria.eixos === "xyz") {
    x2 = x + 4 * Math.cos(tipoGeometria.angulos[countLigacoes][1]) *
Math.sin(tipoGeometria.angulos[countLigacoes][0]);
    y2 = y + 4 * Math.sin(tipoGeometria.angulos[countLigacoes][1]);
    z2 = z + 4 * Math.cos(tipoGeometria.angulos[countLigacoes][1]) *
Math.cos(tipoGeometria.angulos[countLigacoes][0])
} else {
    x2 = x + Math.cos(tipoGeometria.angulos[countLigacoes]) * 4;
    y2 = y + Math.sin(tipoGeometria.angulos[countLigacoes]) * 4;
    z2 = z;
}
```


