

GradMask: Gradient-Guided Token Masking for Textual Adversarial Example Detection

Han Cheol Moon, Shafiq Joty, and Xu Chi

Nanyang Technological University, Salesforce Research, and SIMTECH

Abstract

- We present GradMask, a simple adversarial example detection scheme for natural language processing (NLP) models.
- Use gradient signals to detect adversarially perturbed tokens in an input sequence and occludes such tokens by a masking process
- Improved detection performance and an interpretation of its decision

Adversarial Attack in NLP

A runner wearing purple strives for the finish line Clean A runner wants to head for the finish line.

AdvEx A racer wants to head for the finish line.

- Can you trust your NLP systems?
- Document forgery: Craft an AdvEx that flips the decision of a screening process of a bank.
- Disease diagnosis: You have to get surgery
- False translation.

What is adversarial example detection?

Clean A runner wants to head for the finish line. Entailment

AdvEx A racer wants to head for the finish line. Contradiction

Adversarial Example Detection! Pros & Cons

- (+) No negative impact on the model performance.
- (+) Identify the intention (adversarial or not).
- (+) Allow users can take actions (reject or revise) accordingly.
- (–) Typically work as a separate module.

Gradient-Guided Textual Adversarial Example Detection Algorithm:

What is so special?

- . Very simple and low computation cost!
- 2. No assumptions about potential attacks such as word-frequency and synonym substitution sets.
- 3. No additional sub-modules such as synonym search module and Additional classifiers.
- 4. Provide interpretation.
- 5. Significantly low FPR95 scores.
- 6. Superior performance.

GradMask Works Really Well!

Dataset	Attack	ASR (%)	AUROC (%) ↑		EER (%) ↓		FPR95 (%) ↓	
			FGWS	GM	FGWS	GM	FGWS	GM
IMDb	BAE-R	63.45	66.56	95.15	40.51	7.35	94.05	8.90
	A2T	52.25	84.04	95.05	19.11	8.30	87.66	9.80
	TextFooler	82.44	85.40	96.40	17.20	5.60	86.52	6.70
	PWWS	87.41	90.92	95.43	12.03	7.35	77.68	8.60
AG	BAE-R	15.75	62.59	83.82	44.95	19.15	94.15	35.20
	A2T	13.04	75.09	83.49	27.80	20.38	90.26	40.02
	TextFooler	84.89	89.68	96.53	12.30	5.35	79.53	5.60
	PWWS	65.96	94.74	95.69	6.46	7.70	50.80	9.30
SST-2	BAE-R	58.17	60.08	79.40	43.80	23.30	94.33	61.70
	A2T	20.07	65.57	78.16	33.95	23.07	93.14	52.44
	TextFooler	93.28	74.14	84.82	29.05	17.10	91.66	35.40
	PWWS	85.18	85.25	85.49	16.76	19.62	82.11	38.50
MNLI	BAE-R	64.23	52.77	69.99	50.96	33.80	95.17	73.50
	A2T	49.85	66.34	69.92	37.96	33.95	92.82	65.50
	TextFooler	91.41	70.25	74.24	34.35	29.50	92.00	55.40
	PWWS	83.06	76.94	74.15	27.38	31.05	88.88	65.47

Table 1. Adversarial example detection restuls. GM stands for GradMask.

Gradient-Guided Masking

- Gradient-based attribution analysis.
- Token saliency: L_2 -norm of \mathbf{g}_t , $||\mathbf{g}_t||_2$.
- $||\mathbf{g}_5||_2 < ||\mathbf{g}_3||_2 < \cdots < \underbrace{||\mathbf{g}_1||_2 < ||\mathbf{g}_2||_2}$
- $||\mathbf{g}_{1}||_{2}$ $||\mathbf{g}_{3}||_{2}$ A racer wants to head for the finish line.

 A [MASK] wants to head for the finish line.
- 1. Mask K salient tokens $\mathbf{x}' \to \mathbf{m}$.
- 2. Measure model confidence change: $w = \left(f_{\theta}(\mathbf{x})_i f_{\theta}(\mathbf{m})_i\right)^2$
- 3. Decision making using an indicator function.:

Main assumptions

- 1. Masking suspicious tokens drops the model confidence.
- Adversarial examples are results of sophisticate optimization.
- 2. NLP models are generally robust to a weak-level of noise.
- 3. The partial information loss in clean examples can be offset by the overall context of the input text.

Table 2. Statistics of extracted features.

Dataset	K	w - A/Conf-A (Avg \pm Std)	w - C / Conf-C (Avg \pm Std)
IMDb	MSP	-/49.58±49.67	-/92.88±13.53
	1	32.48±29.39/-	2.81±12.03/-
	2	53.71±36.92/-	3.84±18.04/-
	3	59.75±34.53/-	4.28±18.85/-
AG	MSP	-/49.43±49.55	-/89.75±15.58
	1	25.11±24.04/-	2.09±11.01/-
	2	47.18±31.39/-	3.32±16.03/-
	3	50.84±30.18/-	3.77±16.79/-

- Confidence on adversarial examples tends to be low.
- High w values:
- AdvEx are brittle.
- Low w in clean examples:NLP models are generally robust.

Adversarially Perturbed Word Detection

