Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Fuhrmann, Mehl, Penn-Karras, Scherfner SS 04 15. Juli 2004

Juli – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:	Studiengang:					
Falls Ihr Studiengang 40% Hausaufgab In welchem Semester haben Sie die err						
Die Lösungen sind in Reinschrift auf A4 Blättern abzugeben. Mit Bleistift geschriebene Klausuren können nicht gewertet werden.						
Dieser Teil der Klausur umfasst die Rechenaufgaben. Geben Sie immer den vollständigen Rechenweg an.						
Die Bearbeitungszeit beträgt eine Stunde.						
Die Gesamtklausur ist mit 32 von 80 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens 10 von 40 Punkten erreicht werden.						
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 7 Punkte

Berechnen Sie die Mantelfläche (Flächeninhalt) des Kegels

$$K = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le z^2\}$$

zwischen den Ebenen z = 0 und z = 3.

2. Aufgabe 8 Punkte

Zeigen Sie, dass das Vektorfeld $\vec{V}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$,

$$\vec{V}(x,y,z) = \begin{pmatrix} 2xy - y\sin x \\ \cos x + x^2 + z\cos y \\ 3z^2 + \sin y \end{pmatrix}$$

ein Potentialfeld ist. Berechnen Sie eine Stammfunktion von \vec{V} .

3. Aufgabe 5 Punkte

Berechnen Sie unter Verwendung von Zylinderkoordinaten das Integral

$$\iiint\limits_{M} \frac{1}{\sqrt{z}\sqrt{x^2 + y^2}} dx dy dz$$

mit $M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1, z \in [0, 1]\}.$

4. Aufgabe 12 Punkte

- a) Bestimmen Sie alle kritischen Punkte der Funktion $f: \mathbb{R}^3 \longrightarrow \mathbb{R}, f(x, y, z) = xy + y + z^3$ unter der Nebenbedingung $x^2 = y^2$.
- b) Argumentieren Sie anschaulich, dass f auf der Nebenbedingung $\{(x,y,z)\in\mathbb{R}^3\mid x^2=y^2\}$ kein lokales Maximum oder Minimum annimmt.

5. Aufgabe 8 Punkte

Gegeben sei das Vektorfeld

$$\vec{V}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \quad \vec{V}(x,y) = (2x^2 - 3y, x^2 + xy)^T.$$

Bestimmen Sie $\int_{\gamma} \vec{V} \cdot \vec{ds}$, wobei γ der Rand des Dreiecks mit den Eckpunkten (0,0), (0,2) und (1,1) ist. Der Rand soll im mathematisch positiven Sinn durchlaufen werden.