Lecture 1: A Brief History of Computers and Processors

Seyed-Hosein Attarzadeh-Niaki

Microprocessors and Assembly

1

Outline

- Early computers
- · Mechanical age
- Electrical age
- Electronic age
 - Transistors
 - Integrated circuits
- Evolution of x86 and ARM processors

Microprocessors and Assembly

Before Using Machines

- Early computers were people
 - It was a job title
 - First use of the word "computer" in 1613
- Perform repetitive calculations such as multiplications
 - Error prone

Microprocessors and Assembly

3

Old Aiding Devices

- Abacus
- The period 2700–2300 BC saw the first appearance of the Sumerian abacus
- Aid an individual in performing basic mathematical calculations

Microprocessors and Assembly

Old Aiding Devices

- Napier's Bones
 - Invented by John Napier in 1614
- Allowed the operator to multiply, divide and calculate square and cube roots by moving the rods around and placing them in specially constructed boards.

John Napier

Napier's Bones

Microprocessors and Assembly

5

Old Aiding Devices

- Slide Rule
 - Invented by William Oughtred in 1622.
- Is based on Napier's ideas about logarithms.
- Used primarily for
 - multiplication
 - division
 - roots
 - logarithms
 - Trigonometry
- Not normally used for addition or subtraction.

William Oughtred

Slide Rule

Microprocessors and Assembly

The Mechanical Age

- The calculating clock
 - So called by the German inventor Wilhelm Schickard in 1623
- The first gear-driven calculating machine to actually be built
 - Non-programmable
 - Decimal integers

Microprocessors and Assembly

-

The Mechanical Age

- 1642, Pascal's adding machine (Pascaline)
 - Made as an aid for his father (tax collector)
- Calculator with gears and wheels
 - Each gear contained 10 teeth
 - When moved one complete revolution, a second gear advances one place.
- Expensive

Microprocessors and Assembly

The Mechanical Age

- Stepped Reckoner
 - Invented by Gottfried Wilhelm Leibniz in 1672.
 - The first machine that can add, subtract, multiply, and divide automatically.

Gottfried Wilhelm Leibniz

Stepped Reckoner

Microprocessors and Assembly

The Mechanical Age

- Jacquard Loom
 - The Jacquard loom is a mechanical loom, invented by Joseph-Marie Jacquard in 1881.
 - It an automatic loom controlled by punched cards.

Joseph-Marie Jacquard

Jacquard Loom Microprocessors and Assembly

The Mechanical Age

Arithmometer

- A mechanical calculator invented by Thomas de Colmar in 1820.
- The first reliable, useful and commercially successful calculating machine.
- The machine could perform the four basic mathematic functions.

Thomas de Colmar

Arithmometer

Microprocessors and Assembly

11

The Mechanical Age

- Difference Engine and Analytical Engine
 - Invented by Charles Babbage in 1822 and 1834
 - It is the first mechanical computer
 - Designed to tabulate polynomial functions and generate navigational tables
 - Used punched cards
 - Stored 1000 20-digit decimal numbers
 - large as a house and powered by 6 steam engines
- Aided by Ada Byron, Countess of Lovelace
 - She suggested him to use binary numbers
 - She is the first computer programmer
 - · For the analytical engine

Charles Babbage

Difference Engine

Analytical Engine

Microprocessors and Assembly

The Electrical Age Electromechanical Machines

- 1800s, The advent of electric motor
- In 1889, Herman Hollerith developed the punched card for storing data.
- Also developed mechanical machine that counted, sorted, and collated information stored on punched cards
- Hollerith commissioned to use system to store and tabulate 1890 census information of US
- In 1896 Hollerith formed Tabulating Machine Company
 - Later merged to IBM

Microprocessors and Assembly

13

The Electrical Age

- Z1: The first programmable computer created by Konrad Zuse in Germany from 1936 to 1938.
- 1941, Z3 calculating computer by Konrad Zuse
- World's first fully electromechanical programmable computer
- Application in aircraft and missile design during WWII in Germany
- Z3 a relay logic machine clocked at 5.33 Hz

Z1

FIGURE 1-1 The Z3 computer developed by Konrad Zuse used a 5.33 Hertz clocking frequency Luse, the son of Konrad.)

Microprocessors and Assembly

1/

The Electrical Age

- 1943, British Colossus
- · Invented by Alan Turing
- Broke secret German military codes (Generated by mechanical Enigma machine)
 - could not solve other problems
- First to use vacuum tubes
- Not programmable

Microprocessors and Assembly

15

1st Gen Computers

- Used
 - vacuum tubes for circuitry
 - magnetic drums for memory
- Were often enormous, taking up entire rooms.
- Very expensive to operate
- Using a great deal of electricity, generated a lot of heat,
 - which was often the cause of malfunctions.
- Relied on machine language
 - could only solve one problem at a time
- Input was based on punched cards and paper tape and output was displayed on printouts.

Vacuum tube

Microprocessors and Assembly

The Electrical Age

- 1946, ENIAC (Electronic Numerical Integrator and Computer), University of Pennsylvania
- 17,000 vacuum tubes, 500 miles of wires
- · Weighted over 30 tons
- 100,000 operations per second
- 140 kW power consumption
- Decimal rather than binary machine
- Programmed by rewiring its circuits

Microprocessors and Assembly

17

EDVAC (Electronic Discrete Variable Computer)

- First publication of the idea was in 1945
- Stored program concept
 - Attributed to ENIAC designers, most notably the mathematician John von Neumann
 - Program represented in a form suitable for storing in memory alongside the data
- IAS computer
 - Princeton Institute for Advanced Studies
 - Prototype of all subsequent general-purpose computers
 - Completed in 1952

Microprocessors and Assembly

The Electrical Age (continued)

- 1951 UNIVAC -UNIVersal Automatic Computer
 - the first commercial, mass produced computer
 - Performs add in 282 microseconds
- Once such became available, assembly language was used to simplify entering binary code.

Microprocessors and Assembly

19

Electronic Age 2nd Gen: Transistors

- Smaller
 - One transistor replaced 40 vacuum tubes
- Cheaper
- Dissipates less heat than a vacuum tube
- More reliable
- Is a solid state device made from silicon
- Was invented at Bell Labs in 1947
- It was not until the late 1950's that fully transistorized computers were commercially available
 - Moved to assembly language
 - stored their instructions in their memory

Microprocessors and Assembly

Example: Members of the IBM 700/7000 Series

Microprocessors and Assembly

21

Electronic Age 3rd Gen: Integrated Circuits

- 1958 the invention of the integrated circuit
- IC, microcircuit, microchip, silicon chip, or chip
- Integrated Circuit is a miniaturized electronic circuit
 - Consisting mainly of semiconductor devices, as well as passive components
 - Is manufactured in the surface of a thin substrate of semiconductor material
- The two most important members of the third generation were the IBM System/360 and the DEC PDP-8
 - Users interacted with 3rd gen computers through keyboards and monitors
 - Interfaced with an operating system
 - which allowed the device to run many different applications at one time with a central program that monitored the memory.

Microprocessors and Assembly

Technology Advance and the Moore's Law

- LSI: Large Scale Integration
 - More than 1000 components can be placed on a single integrated circuit chip
- VLSI: Very Large Scale Integration
 - 10,000 components per chip
- ULSI: Ultra Large Scale Integration
 - Millions of components per chip
- ...

Microprocessors and Assembly

23

Electronic Age 4th Gen: Microprocessors

- 1971, Intel 4004 and 4040
 - First chip to contain all of the components of a CPU on a single chip (birth of microprocessors)
 - 4-bit microprocessors
 - addressed 4096 (4-bit) memory locations
 - 45 instructions
 - many calculators and low-end applications such as microwave ovens may still use 4-bit microprocessors
- 1972, Intel 8008
 - First 8-bit microprocessor
 - addressed 16K memory locations
 - 48 instructions
 - 50,000 instructions per second

Microprocessors and Assembly

2/

Microprocessors

- 1973, Intel 8080
 - First general purpose microprocessor
 - addressed 64K memory locations
 - 500,000 instructions per second (2 μs per instr.)
- 1974, Motorola 6800
- 1974, The first personal computer
- 1977, Intel 8085
 - 769,230 instructions per second (1.3 μs per instr.)
 - internal clock generator and system controller

Microprocessors and Assembly

25

Early 8-bit Microprocessors

Manufacturer	Part Number
Fairchild	F-8
Intel	8080
MOS Technology	6502
Motorola	MC6800
National Semiconductor	IMP-8
Rockwell International	PPS-8
Zilog	Z-8

Microprocessors and Assembly

Evolution of Intel Microprocessors

	4004	8008	8080	8086	8088
Introduced	1971	1972	1974	1978	1979
Clock speeds	108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz
Bus width	4 bits	8 bits	8 bits	16 bits	8 bits
Number of transistors	2,300	3,500	6,000	29,000	29,000
Feature size (µm)	10		6	3	6
Addressable memory	640 Bytes	16 KB	64 KB	1 MB	1 MB

a. 1970s Processors

	80286	386TM DX	386TM SX	486TM DX CPU
Introduced	1982	1985	1988	1989
Clock speeds	6 MHz - 12.5 MHz	16 MHz - 33 MHz	16 MHz - 33 MHz	25 MHz - 50 MHz
Bus width	16 bits	32 bits	16 bits	32 bits
Number of transistors	134,000	275,000	275,000	1.2 million
Feature size (µm)	1.5	1	1	0.8 - 1
Addressabl e memory	16 MB	4 GB	16 MB	4 GB
Virtual memory	1 GB	64 TB	64 TB	64 TB
Cache	_	_	_	8 kB

b. 1980s Processors

Evolution of Intel Microprocessors

	486TM SX	Pentium	Pentium Pro	Pentium II
Introduced	1991	1993	1995	1997
Clock speeds	16 MHz - 33 MHz	60 MHz - 166 MHz,	150 MHz - 200 MHz	200 MHz - 300 MHz
Bus width	32 bits	32 bits	64 bits	64 bits
Number of	1.185 million	3.1 million	5.5 million	7.5 million
transistors	1.105 IIIIII0II	3.1 million	3.5 minion	7.5 IIIIII0II
Feature size	1	0.8	0.6	0.35
(µm)		0.0	0.0	0155
Addressable	4 GB	4 GB	64 GB	64 GB
memory	, OD	4 0.0	0.7 GB	04 05
Virtual	64 TB	64 TB	64 TB	64 TB
memory			0411	
Cache	8 kB	8 kB	512 kB L1 and 1 MB L2	512 kB L2

c. 1990s Processors

	Pentium III	Pentium 4	Core 2 Duo	Core i7 EE 990
Introduced	1999	2000	2006	2011
Clock speeds	450 - 660 MHz	1.3 - 1.8 GHz	1.06 - 1.2 GHz	3.5 GHz
Bus width	64 bits	64 bits	64 bits	64 bits
Number of transistors	9.5 million	42 million	167 million	1170 million
Feature size (nm)	250	180	65	32
Addressable memory	64 GB	64 GB	64 GB	64 GB
Virtual mcmory	64 TB	64 TB	64 TB	64 TB
Cache	512 kB L2	256 kB L2	2 MB L2	1.5 MB L2/12 MB L3

d. Recent Processors

Microprocessors and Assembly

Microprocessor Trends

Microprocessors and Assembly

29

Overview of x86 and ARM Processors

x86

- Results of decades of design effort on complex instruction set computers (CISCs)
- Excellent example of CISC design
- Incorporates the sophisticated design principles once found only on mainframes and supercomputers

ARM

- An alternative approach to processor design is the reduced instruction set computer (RISC)
- Used in a wide variety of embedded systems
- One of the most powerful and best designed RISC based systems on the market

Microprocessors and Assembly

x86 Evolution (continued)

- Core
 - First Intel x86
 microprocessor with a dual
 core, referring to the
 implementation of two
 processors on a single chip
- Core 2
 - Extends the architecture to 64 bits
 - Recent Core offerings have up to 10 processors per chip

• ...

Instruction set architecture is backward compatible with earlier versions

> X86 architecture continues to dominate the processor market outside of embedded systems

Microprocessors and Assembly

3

Acorn RISC Machine (ARM)

- Family of RISC-based microprocessors and microcontrollers
- Designs microprocessor and multicore architectures and licenses them to manufacturers
- Chips are high-speed processors that are known for their small die size and low power requirements
- Widely used in PDAs and other handheld devices
- Chips are the processors in iPod and iPhone devices
- Most widely used embedded processor architecture
- Most widely used processor ar bit seture of any kind

Microprocessors and Assembly

ARM Evolution

Family	Notable Features	Cache	Typical MIPS @ MHz
ARM1	32-bit RISC	None	
ARM2	Multiply and swap instructions; Integrated memory management unit, graphics and I/O processor	None	7 MIPS @ 12 MHz
ARM3	First use of processor cache	4 KB unified	12 MIPS @ 25 MHz
ARM6	First to support 32-bit addresses; floating- point unit	4 KB unified	28 MIPS @ 33 MHz
ARM7	Integrated SoC	8 KB unified	60 MIPS @ 60 MHz
ARM8	5-stage pipeline; static branch prediction	8 KB unified	84 MIPS @ 72 MHz
ARM9		16 KB/16 KB	300 MIPS @ 300 MHz
ARM9E	Enhanced DSP instructions	16 KB/16 KB	220 MIPS @ 200 MHz
ARM10E	6-stage pipeline	32 KB/32 KB	
ARM11	9-stage pipeline	Variable	740 MIPS @ 665 MHz
Cortex	13-stage superscalar pipeline	Variable	2000 MIPS @ 1 GHz
XScale	Applications processor; 7-stage pipeline	32 KB/32 KB L1 512 KB L2	1000 MIPS @ 1.25 GHz

DSP = digital signal processor

SoC = system on a chip

Microprocessors and Assembly

35

ARM Design Categories

 ARM processors are designed to meet the needs of three system categories:

Secure applications

Smart cards, SIM cards, and payment terminals

Embedded real-time systems

 Systems for storage, automotive body and power-train, industrial, and networking applications

Application platforms

 Devices running open operating systems including Linux, Palm OS, Symbian OS, and Windows CE in wireless, consumer entertainment and digital imaging applications

Microprocessors and Assembly

