Lemma 01. Let $a, b \in \mathbb{Z}$ and both not 0. If (a, b) = d, then for a = da' and b = db', (a', b') = 1.

Proof. Let $a, b \in \mathbb{Z}$ with both not 0 and (a, b) = d be given such that a = da' and b = db'. By contradiction, suppose $(a', b') \neq 1$. Thus, (a', b') = k such that a' = ka'' and b' = kb''. Substituting in to a and b,

$$a = dka''$$
 and $b = dkb''$

Letting dk = t for $t \in \mathbb{Z}$,

$$a = ta''$$
 and $b = tb''$.

Notice that t|a and t|b. Also observe that t>d. This contradicts (a,b)=d. Thus, (a',b')=1.