ΑΛΓΕΒΡΑ Α' ΛΥΚΕΙΟΥ

Εισαγωγικό Κεφάλαιο

Παράγραφος Ε.2: Σύνολα

Ομάδα Α'

Άσκηση 1

Να βρείτε το σύνολο των πλήκτρων που θα χρησιμοποιούσαμε σε ένα κομπιουτεράκι για να γράψουμε τους αριθμούς.

i) 315

ii) 23121

iii) 2000

iv) 0.0003

Άσκηση 2

Ποιο από τα παρακάτω σύνολα είναι το κενό;

$$A=\{x\in\mathbb{R}\,/\,(x+3)^2\leq 0\}$$

$$B = \left\{ x \in \mathbb{R} / 3x - 1 > 0 \ \kappa \alpha \iota \ x - \frac{1}{3} < 0 \right\}$$

$$\Gamma = \{x \in \mathbb{R} \ / \ x^2 = 9 \ \kappa \alpha \iota \ 2x = 4\}$$

$$\Delta = \{x \in \mathbb{R} \mid x + 8 = 8\}$$

Άσκηση 3

Από τα παρακάτω σύνολα να προσδιορίσετε τα ζεύγη των ίσων συνόλων $A = \{\alpha, \beta, \gamma\}$,

$$B = \{2,4,6,8\},\$$

$$\Gamma = \{-3, -2, -1, 0\}$$

$$\Delta = \left\{ \gamma, \alpha, \beta \right\}$$

$$E = \{4,6,8\}$$

$$H = \{x \in \mathbb{Z} / -3 \le x \le 1\}$$

Άσκηση 4

Av A = $\{0,3,5\}$ B = $\{0\}$ Γ = $\{3,5\}$ και Δ = $\{5,3\}$, να εξετάσετε ποιοι από αυτούς τους ισχυρισμούς είναι σωστοί:

i)
$$A \subseteq B$$

ii)
$$B \subseteq \Gamma$$

iii)
$$\Gamma \subseteq \Delta$$

iv)
$$\Delta \subseteq A$$

Άσκηση 5

Να γράψετε όλα τα υποσύνολα του συνόλου $A = \{\alpha, \beta, \gamma\}$.

Άσκηση 6

Δίνεται το σύνολο A = $\{\alpha,\beta,\gamma,\delta\}$. Να γράψετε όλα τα υποσύνολά του.

Άσκηση 7

Να συμπληρώσετε τα παρακάτω:

 $N \cup Z = \dots$ $R \cap Z = \dots$ $\emptyset \cup R = \dots$ $Q \cap R = \dots$ $N \cap R = \dots$

Ομάδα Β'

Άσκηση 8

Δίνονται τα σύνολα $A = \{1, 2, 3\}, B = \{3, 4, 5, 6\}$ και $\Gamma = \{1, 2, 3, 4\}$. Να βρείτε τις διαφορές:

Άσκηση 9

Να βρεθεί η ένωση και η τομή των συνόλων Α και Β στις παρακάτω περιπτώσεις:

a) Av είναι
$$A = R - \{1,2\}$$
 και $B = R - \{1,3\}$

β) Aν είναι A =
$$R - \{1,2\}$$
 και B = $R - [1,+\infty)$

γ) Aν είναι A =
$$(3, +\infty)$$
 και B = $(-\infty, 5]$

Άσκηση 10

Δίνονται τα σύνολα $A = \{x \in R / (x^2 - 1)(x^2 - 4)(x^2 - 9) = 0\}$, $B = \{-3, -1, 1, 3\}$ και $\Gamma = \{x \in Z / x^2 - 3 = 0\}$

- α) Να γράψετε με αναγραφή των στοιχείων τους τα σύνολα Α και Γ.
- β) Να βρεθούν τα σύνολα $A \cup B$, $A \cap B$, $A \cap \Gamma$
- y) Να εξεταστεί αν $B \subseteq A$.

Άσκηση 11

 $A \lor \Omega = \{0,1,2,3,4,5\}, A = \{2,3\}$ και $B = \{3,4\}$ τότε να δείξετε ότι $(A \cup B)' = A' \cap B'$ και $(A \cap B)' = A' \cup B'$.

Άσκηση 12

Av A = $\{0,1,2,3,4,5,6,7,8\}$, B = $\{3,5,7,9\}$ και $\Gamma = \{0,3,7,12\}$ τότε να δείξετε ότι $(A \cup B) \cap \Gamma = (A \cap \Gamma) \cup (B \cap \Gamma)$.

Ομάδα Γ'

Άσκηση 13

Av $\Omega = \{x / x^2 - 3|x| + 2 = 0\}$, A = $\{x / x^2 - 1 = 0\}$ kal B = $\{x \in \Omega / x^2 - 3x + 2 = 0\}$ va breite ta:

- Α',
- В',
- $A \cap B$,
- $A \cup B$, $(A \cap B)'$
- $(A \cup B)'$

Άσκηση 14

Στις παρακάτω περιπτώσεις να βρείτε το σύνολο Α:

- i) $A = [-2,3] \cap [1,5]$
- ii) $A = [-2,3] \cup [1,5]$
- iii) $A = (-5, +\infty] \cap [1,5]$
- iv) $A = [-5, +\infty) \cup (-\infty, 7]$
- $(v) A = (-\infty, 2] \cap [3,4)$

Άσκηση 15

Με βάση το σχήμα που δίνεται, να σχεδιάσετε ένα τέταρτο σύνολο Δ έτσι ώστε να ισχύουν τα παρακάτω:

- a) $A \cap \Delta \neq \emptyset$
- β) $B \cap \Delta \neq \emptyset$
- γ) $\Gamma \cap \Delta \neq \emptyset$

Τι μπορείτε να πείτε για την τομή $A \cap B \cap \Gamma \cap \Delta$;

Άσκηση 16

Έστω Ω το σύνολο που έχει ως στοιχεία τους αριθμούς που είναι οι ενδείξεις ενός ζαριού και $\lambda \in \Omega$. Αν η εξίσωση $x^2 - 3x + \lambda - 1 = 0$ έχει δύο πραγματικές και άνισες ρίζες και Α το σύνολο που έχει ως στοιχεία τις τιμές του λ:

- α) Να βρείτε το Α.
- β) Av $\Gamma = A \cup \{\beta\}$ και $\Delta = \{1,4,3,a\}$ να βρείτε τα α και β, ώστε τα σύνολα να είναι ίσα.

<u>Άσκηση 17</u>

Να περιγράψετε λεκτικά τα σύνολα που περιγράφονται με σκούρο χρώμα στα παρακάτω διαγράμματα του Venn.

i)

ii)

Άσκηση 18

Να σχεδιάσετε διαγράμματα Venn που να αναδεικνύουν κάθε μία από τις παρακάτω περιπτώσεις:

- α) δύο σύνολα Α,Β έτσι ώστε $A \cap B \neq \emptyset$
- β) δύο σύνολα Α,Β έτσι ώστε $A \cap B = \emptyset$
- y) δύο σύνολα A,B έτσι ώστε $A \subseteq B = \emptyset$
- δ) τρία σύνολα Α,Β,Γ έτσι ώστε $A \cap B \cap \Gamma \neq \emptyset$
- ε) τρία σύνολα Α,Β,Γ έτσι ώστε $A \cap B \cap \Gamma = \emptyset$, αλλά $A \cap B \neq \emptyset$
- στ) τρία σύνολα Α,Β,Γ έτσι ώστε $A \cap B \cap \Gamma = \emptyset$, αλλά $A \cap B \neq \emptyset$ και $A \cap \Gamma \neq \emptyset$

<u>Άσκηση 19</u>

Μπορούν να κατασκευαστούν τρία σύνολα Α,Β,Γ έτσι ώστε να ισχύουν τα ακόλουθα;

- $\bullet \quad A\cap B\cap \Gamma=\emptyset$
- $A \cap B \neq \emptyset$
- $\bullet \quad A\cap \varGamma \neq \emptyset$
- $B \cap \Gamma \neq \emptyset$

<u>Άσκηση 20</u>

Να βρείτε το σύνολο των λύσεων:

- α)της εξίσωσης $x^{2004} 1 = 0$
- β)της ανίσωσης $x^2 4 < 0$