The Long-run Innovation Risk Component

Fabio Franceschini

ffabio.econ @ gmail.com University of Bologna

January 28th, 2025

LONG-RUN Innovation RISK Component

Worries about long-run prospects: persistence is key...

Figure 1: Consumption is US expenditures in services and non-durable from BEA;

Long-Run Innovation Risk Component

...what persistence?

Figure 1: Consumption is US expenditures in services and non-durable from BEA;

Long-Run Innovation Risk COMPONENT

A persistent part, predictable at long horizons (eg \sim 12y)

Figure 1: Consumption is US expenditures in services and non-durable from BEA; Ortu et al. (2013) decomposition.

The filtered series are the $6^{\mbox{th}}$ component of

Long-Run INNOVATION Risk Component

Consumption tracks Total Factor Productivity (TFP) in the medium-long term

Figure 1: Consumption is US expenditures in services and non-durable from BEA; TFP* is the utilization-adjusted TFP from Fernald (2012). The filtered series are the 6th component of Ortu et al. (2013) decomposition. Cross-correlation between Consumption and TFP is 0.62;

LONG-RUN INNOVATION RISK COMPONENT

Innovation key driver of productivity growth

Figure 1: Consumption is US expenditures in services and non-durable from BEA; "TFP" is the utilization-adjusted TFP from Fernald (2012). The filtered series are the 6th component of Ortu et al. (2013) decomposition. Cross-correlation between Consumption and TFP is 0.62; with (an arbitrary 1y lag) R&D is 0.60 and 0.53, respectively.

Key element: Aggregate Research and Development (R&D) investment intensity

- •
- •

- •
- .
- .

Key element: Aggregate Research and Development (R&D) investment intensity

· definition relies on endogenous growth ideas' production function only

.

- .
- .
- .

Key element: Aggregate Research and Development (R&D) investment intensity

- · definition relies on endogenous growth ideas' production function only
- · dynamics mirrored in Error Correction Term of R&D and TFP level cointegration

- .
- .
- •

Key element: Aggregate Research and Development (R&D) investment intensity

- definition relies on endogenous growth ideas' production function only
- dynamics mirrored in Error Correction Term of R&D and TFP level cointegration

- · stationary but highly persistent
- •
- .

Key element: Aggregate Research and Development (R&D) investment intensity

- definition relies on endogenous growth ideas' production function only
- dynamics mirrored in Error Correction Term of R&D and TFP level cointegration

R&D intensity process identifies the persistent component of TFP

- stationary but highly persistent
- forecasts TFP and consumption growth

•

Key element: Aggregate Research and Development (R&D) investment intensity

- definition relies on endogenous growth ideas' production function only
- dynamics mirrored in Error Correction Term of R&D and TFP level cointegration

- stationary but highly persistent
- forecasts TFP and consumption growth
- · associated to a positive risk premium in cross-section of US stocks

(Innovation) LRR framework Bansal and Yaron (2004); Croce (2014); Kung and Schmid (2015); ...

Contribution: supports the framework by direct empirical validation of predictions

(Innovation) LRR framework Bansal and Yaron (2004); Croce (2014); Kung and Schmid (2015); ...

Contribution: supports the framework by direct empirical validation of predictions

Empirical LRR Ortu et al. (2013); Dew-Becker and Giglio (2016); Schorfheide et al. (2018); Liu et al. (2022); ...

Contribution: new component, new identification strategy (relies on an economic condition)

(Innovation) LRR framework Bansal and Yaron (2004); Croce (2014); Kung and Schmid (2015); ...

Contribution: supports the framework by direct empirical validation of predictions

Empirical LRR Ortu et al. (2013); Dew-Becker and Giglio (2016); Schorfheide et al. (2018); Liu et al. (2022); ...

Contribution: new component, new identification strategy (relies on an economic condition)

Endogenous growth Rivera-Batiz and Romer (1991); Jones (1999); Bloom et al. (2020); Kruse-Andersen (2023); ...

Contribution: studies dynamics of R&D intensity and tests framework on financial markets

(Innovation) LRR framework Bansal and Yaron (2004); Croce (2014); Kung and Schmid (2015); ...

Contribution: supports the framework by direct empirical validation of predictions

Empirical LRR Ortu et al. (2013); Dew-Becker and Giglio (2016); Schorfheide et al. (2018); Liu et al. (2022); ...

Contribution: new component, new identification strategy (relies on an economic condition)

Endogenous growth Rivera-Batiz and Romer (1991); Jones (1999); Bloom et al. (2020); Kruse-Andersen (2023); ...

Contribution: studies dynamics of R&D intensity and tests framework on financial markets

Macroeconomic risk factors Lettau and Ludvigson (2001); Bansal et al. (2005); Melone (2021); ...

Contribution: first risk factor related to aggregate R&D

Theoretical framework

Key ingredients to define R&D intensity

TFP driven by an exogenous process and ideas

$$Z_{t} = e^{a_{t}} \cdot I_{t}^{\xi} \tag{1}$$

Key ingredients to define R&D intensity

TFP driven by an exogenous process and ideas

$$Z_{t} = e^{\alpha_{t}} \cdot I_{t}^{\xi} \tag{1}$$

Ideas' dynamics embody semi- AND fully-endogenous production schedule (Jones (1999))

$$I_{t} = (1 - \phi)I_{t-1} + \chi \cdot S_{t-1}^{\eta} I_{t-1}^{\psi} Q_{t-1}^{-\omega}$$
 (2)

Key ingredients to define R&D intensity

TFP driven by an exogenous process and ideas

$$Z_{t} = e^{\alpha_{t}} \cdot I_{t}^{\xi} \tag{1}$$

Ideas' dynamics embody semi- AND fully-endogenous production schedule (Jones (1999))

$$I_{t} = (1 - \phi)I_{t-1} + \chi \cdot S_{t-1}^{\eta} I_{t-1}^{\psi} Q_{t-1}^{-\omega}$$
(2)

» R&D key determinant of productivity growth

$$\Delta \ln Z_{t+1} \approx \gamma_0 + \gamma_1 \left(\ln S_t - \frac{1-\psi}{\eta} \ln I_t - \frac{\omega}{\eta} \ln Q_t \right) + \Delta a_t$$
 (3)

» Convenient definition of R&D intensity

$$s_{t} := \ln S_{t} - \frac{1 - \psi}{\eta} \ln I_{t} - \frac{\omega}{\eta} \ln Q_{t}$$
 (4)

Assuming a stationary s_t

$$\tilde{s}_t = s_t - \bar{s}$$

It drives conditional expectations' fluctuations

$$\mathsf{E}_{\mathsf{t}}\left[\Delta \ln \mathsf{Z}_{\mathsf{t}+1}\right] \approx \mu + \gamma_1 \cdot \tilde{\mathsf{s}}_{\mathsf{t}} + \Delta \mathsf{a}_{\mathsf{t}} \tag{5}$$

Assuming a stationary $s_{\rm t}$

$$\tilde{s}_{t} = s_{t} - \bar{s}$$

It drives conditional expectations' fluctuations

$$\mathsf{E}_{t}\left[\Delta \ln Z_{t+1}\right] \approx \mu + \gamma_{1} \cdot \tilde{s}_{t} + \Delta \mathfrak{a}_{t} \tag{5}$$

Assuming a stationary s_t

$$\begin{split} \tilde{s}_t &= s_t - \bar{s} \\ &= \rho_s \tilde{s}_{t-1} + \epsilon_t^s \end{split}$$

It drives conditional expectations' fluctuations

$$\mathsf{E}_{\mathsf{t}}\left[\Delta \ln \mathsf{Z}_{\mathsf{t}+1}\right] \approx \mu + \gamma_1 \cdot \tilde{\mathsf{s}}_{\mathsf{t}} + \Delta \mathsf{a}_{\mathsf{t}} \tag{5}$$

Assuming a stationary s_t

$$\begin{split} \tilde{s}_t &= s_t - \bar{s} \\ &= \rho_s \tilde{s}_{t-1} + \epsilon_t^s \end{split}$$

It drives conditional expectations' fluctuations

$$\mathsf{E}_{\mathsf{t}}\left[\Delta \ln \mathsf{Z}_{\mathsf{t}+1}\right] \approx \mu + \gamma_1 \cdot \tilde{\mathsf{s}}_{\mathsf{t}} + \Delta \mathsf{a}_{\mathsf{t}} \tag{5}$$

Persistence in R&D makes shocks affect economy for longer

$$\{E_{t+1} - E_t\} \Big(\sum_{j=0}^{\infty} \Delta \ln Z_{t+1+j}\Big)$$
 (6)

Assuming a stationary s_t

$$\begin{split} \tilde{s}_t &= s_t - \bar{s} \\ &= \rho_s \tilde{s}_{t-1} + \epsilon_t^s \end{split}$$

It drives conditional expectations' fluctuations

$$\mathsf{E}_t \left[\Delta \ln \mathsf{Z}_{t+1} \right] \approx \mu + \gamma_1 \cdot \tilde{\mathsf{s}}_t + \Delta \mathsf{a}_t \tag{5}$$

Persistence in R&D makes shocks affect economy for longer

$$\{E_{t+1} - E_t\} \left(\sum_{j=0}^{\infty} \Delta \ln Z_{t+1+j} \right) = \frac{\rho_s}{1 - \rho_s} \varepsilon_{t+1}^s$$
 (6)

Competitive markets:

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = -\mathsf{R}_{\mathsf{t}}^{\mathsf{f}} \cdot \mathsf{Cov}_{\mathsf{t}}\left[\mathsf{m}_{\mathsf{t}+1}, \mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] \tag{7}$$

Epstein and Zin (1989) preferences (EIS = 1, risk aversion set by θ):

$$m_{t+1} - E_t [m_{t+1}] = -\Delta c_{t+1} - (\theta - 1) \cdot \{E_{t+1} - E_t\} \sum_{j=1}^{\infty} \Delta c_{t+j}$$
 (8)

(9)

Competitive markets:

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = -\mathsf{R}_{\mathsf{t}}^{\mathsf{f}} \cdot \mathsf{Cov}_{\mathsf{t}}\left[\mathsf{m}_{\mathsf{t}+1}, \mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] \tag{7}$$

Epstein and Zin (1989) preferences (EIS = 1, risk aversion set by θ):

$$m_{t+1} - E_t [m_{t+1}] = -\Delta c_{t+1} - (\theta - 1) \cdot \{E_{t+1} - E_t\} \sum_{j=1}^{\infty} \Delta c_{t+j}$$
 (8)

$$=-b_{c}\varepsilon_{c,t+1}-b_{x}\varepsilon_{x,t+1} \tag{9}$$

Competitive markets:

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = -\mathsf{R}_{\mathsf{t}}^{\mathsf{f}} \cdot \mathsf{Cov}_{\mathsf{t}}\left[\mathsf{m}_{\mathsf{t}+1}, \mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] \tag{7}$$

Epstein and Zin (1989) preferences (EIS = 1, risk aversion set by θ):

$$m_{t+1} - E_t [m_{t+1}] = -\Delta c_{t+1} - (\theta - 1) \cdot \{E_{t+1} - E_t\} \sum_{j=1}^{\infty} \Delta c_{t+j}$$
 (8)

$$=-b_{c}\varepsilon_{c,t+1}-b_{x}\varepsilon_{x,t+1} \tag{9}$$

Result, testable pricing equation

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = \lambda_{\mathsf{c}} \; \beta_{\mathsf{c}}^{\mathsf{i}} \; + \; \lambda_{\mathsf{x}} \beta_{\mathsf{x}}^{\mathsf{i}} \tag{10}$$

Competitive markets:

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = -\mathsf{R}_{\mathsf{t}}^{\mathsf{f}} \cdot \mathsf{Cov}_{\mathsf{t}}\left[\mathsf{m}_{\mathsf{t}+1}, \mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] \tag{7}$$

Epstein and Zin (1989) preferences (EIS = 1, risk aversion set by θ):

$$m_{t+1} - E_t [m_{t+1}] = -\Delta c_{t+1} - (\theta - 1) \cdot \{E_{t+1} - E_t\} \sum_{j=1}^{\infty} \Delta c_{t+j}$$
 (8)

$$=-b_{c}\varepsilon_{c,t+1}-b_{x}\varepsilon_{x,t+1} \tag{9}$$

Result, testable pricing equation

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = \lambda_{\mathsf{c}} \; \beta_{\mathsf{c}}^{\mathsf{i}} \; + \; \lambda_{\mathsf{x}} \beta_{\mathsf{x}}^{\mathsf{i}} \tag{10}$$

» Does s_t identify a LRR x_t ?

The empirical R&D intensity

Fully-endogenous R&D intensity is non-stationary and too persistent

Table 1: statistics of Kung and Schmid (2015) R&D intensity measure. In the first column original data sources are used; S is yearly R&D expenditure from the National Science Foundation and I is the R&D stock from BLS, spanning 1963 to 2020. Data of second and third columns span 1947 Q1 to 2021 Q4, sources follow.

	$(\ln S_t - \ln I_t)$	$(\ln S_t - \frac{1}{\xi} \ln Z_t)$	
	\tilde{s}_t	ŝt	
1 — ξ,	_	0.35	0.3
ADF u.r. stat AC(1)	-2.55 0.989 (0.006)	-2.11 0.999 (0.000)	-2.09 1.000 (0.000)
Num. obs.	57	299	299
***p < 0.01, **p < 0.05, *p < 0.1			

• Non-stationary \tilde{s} or \hat{s} can produce spurious forecasting results

lacktriangle Δ TFP stationarity

- \cdot Half-life of shocks > 30 years, but innovation component in consumption < 16 years
- » Previous fully-endogenous-based evidence is unreliable

$$\tilde{s}_t = \ln S_t - \frac{1-\psi}{\eta} \ln I_t - \frac{\omega}{\eta} \ln Q_t - \bar{s}$$

I follow the literature:

$$\tilde{s}_t = \ln S_t - \frac{1-\psi}{\eta} \ln I_t - \frac{\omega}{\eta} \ln Q_t - \bar{s}$$

I follow the literature:

Goods variety range measure is made operational by assuming

$$Q_t = L_t^\kappa \qquad 0 < \kappa < 1$$

$$\tilde{s}_t = \ln S_t - \frac{1-\psi}{\eta} \ln I_t - \frac{\omega \kappa}{\eta} \ln L_t - \bar{s}$$

I follow the literature:

Goods variety range measure is made operational by assuming

$$Q_t = L_t^\kappa \qquad 0 < \kappa < 1$$

$$\tilde{s}_t = \ln S_t - \frac{1 - \psi}{\eta} \ln I_t - \frac{\omega \kappa}{\eta} \ln L_t - \bar{s}$$

I follow the literature:

Goods variety range measure is made operational by assuming

$$Q_t = L_t^\kappa \qquad 0 < \kappa < 1$$

Ideas stock is challenging to identify empirically! TFP more robust

$$\ln I_t = \frac{1}{\xi} \ln Z_t - \frac{1}{\xi} \alpha_t$$

$$\tilde{s}_t = \ln S_t - \frac{1-\psi}{\eta \xi} (\ln Z_t - \alpha_t) - \frac{\omega \kappa}{\eta} \ln L_t - \bar{s}$$

I follow the literature:

Goods variety range measure is made operational by assuming

$$Q_t = L_t^\kappa \qquad 0 < \kappa < 1$$

Ideas stock is challenging to identify empirically! TFP more robust

$$\ln I_t = \frac{1}{\xi} \ln Z_t - \frac{1}{\xi} \alpha_t$$

From the model to the data

$$\tilde{s}_t = \ln S_t - \frac{1-\psi}{\eta \xi} (\ln Z_t - \alpha_t) - \frac{\omega \kappa}{\eta} \ln L_t - \bar{s}$$

I follow the literature:

Goods variety range measure is made operational by assuming

$$Q_t = L_t^\kappa \qquad 0 < \kappa < 1$$

Ideas stock is challenging to identify empirically! TFP more robust

$$\ln I_t = \frac{1}{\xi} \ln Z_t - \frac{1}{\xi} \alpha_t$$

External factor assumed to be spanned by a set of macro factors f

$$\alpha_t = b^\prime f_t$$

From the model to the data

$$\tilde{s}_t = \ln S_t - \frac{1-\psi}{\eta\xi} (\ln Z_t - b'f_t) - \frac{\omega\kappa}{\eta} \ln L_t - \bar{s}$$

I follow the literature:

Goods variety range measure is made operational by assuming

$$Q_t = L_t^\kappa \qquad 0 < \kappa < 1$$

Ideas stock is challenging to identify empirically! TFP more robust

$$\ln I_t = \frac{1}{\xi} \ln Z_t - \frac{1}{\xi} \alpha_t$$

External factor assumed to be spanned by a set of macro factors f

$$\alpha_t = b^\prime f_t$$

S

Real US R&D expenditure from Bureau of Economic Analysis, quarterly series, spanning 1947 Q1 to 2021 Q4.
 Baseline series: Y006RC, table 5.3.5, deflated by Y006RG, table 5.3.4.

S

Real US R&D expenditure from Bureau of Economic Analysis, quarterly series, spanning 1947 Q1 to 2021 Q4.
 Baseline series: Y006RC, table 5.3.5, deflated by Y006RG, table 5.3.4.

Ζ

US TFP estimated by Fernald (2012), quarterly series, spanning 1947 Q2 to 2021 Q4.
 Baseline series: utilization-adjusted series, using capital values without R&D capital.

S

Real US R&D expenditure from Bureau of Economic Analysis, quarterly series, spanning 1947 Q1 to 2021 Q4.
 Baseline series: Y006RC, table 5.3.5, deflated by Y006RG, table 5.3.4.

Ζ

US TFP estimated by Fernald (2012), quarterly series, spanning 1947 Q2 to 2021 Q4.
 Baseline series: utilization-adjusted series, using capital values without R&D capital.

I

Employment Level from Bureau of Labor Statistics, monthly series, spanning 1948-01 to 2024-11.
 Baseline series: LNS12000000.

S

Real US R&D expenditure from Bureau of Economic Analysis, quarterly series, spanning 1947 Q1 to 2021 Q4.
 Baseline series: Y006RC, table 5.3.5, deflated by Y006RG, table 5.3.4.

Ζ

US TFP estimated by Fernald (2012), quarterly series, spanning 1947 Q2 to 2021 Q4.
 Baseline series: utilization-adjusted series, using capital values without R&D capital.

I

Employment Level from Bureau of Labor Statistics, monthly series, spanning 1948-01 to 2024-11.
 Baseline series: LNS12000000.

1

- 5 factors as in Ai et al. (2018) (US P/D, 3m/3y/5y bond yields, stock mkt integrated volatility), spanning 1947 Q1 to 2022 Q4.
- 9 factors from Ludvigson and Ng (2009), monthly series, spanning 1960-03 to 2024-06.

S

Real US R&D expenditure from Bureau of Economic Analysis, quarterly series, spanning 1947 Q1 to 2021 Q4.
 Baseline series: Y006RC, table 5.3.5, deflated by Y006RG, table 5.3.4.

Z

US TFP estimated by Fernald (2012), quarterly series, spanning 1947 Q2 to 2021 Q4.
 Baseline series: utilization-adjusted series, using capital values without R&D capital.

I

Employment Level from Bureau of Labor Statistics, monthly series, spanning 1948-01 to 2024-11.
 Baseline series: LNS12000000.

f

- 5 factors as in Ai et al. (2018) (US P/D, 3m/3y/5y bond yields, stock mkt integrated volatility), spanning 1947 Q1 to 2022 Q4.
- 9 factors from Ludvigson and Ng (2009), monthly series, spanning 1960-03 to 2024-06.

(

Real US Consumption from Bureau of Economic Analysis, quarterly series, spanning 1947 Q1 to 2023 Q4.
 Baseline series: non-durable goods (A797RX) plus services (A796RX).

$$\ln Z_t = \alpha_0 + \alpha_S \ln S_t + \alpha_L \ln L_t + \alpha_f' f_t + \varepsilon_t^Z \tag{11}$$

DOLS instead of VECM

· stock-vs-flow variables timing issue

$$\ln Z_t = \alpha_0 + \alpha_S \ln S_t + \alpha_L \ln L_t + \alpha_f' f_t + \varepsilon_t^Z + \sum_{i \in \{S, L, f_1\}}$$
 (11)

DOLS instead of VECM

· stock-vs-flow variables timing issue

$$\label{eq:lnZt} \ln Z_t = \alpha_0 + \alpha_S \ln S_t + \alpha_L \ln L_t + \alpha_f' f_t + \varepsilon_t^Z + \sum_{i \in \{S,L,f_1\}} \sum_{j=Lg_i}^{Ld_i} \delta_{i,j} \Delta i_{t+j} \tag{11}$$

DOLS instead of VECM

· stock-vs-flow variables timing issue

$$\ln Z_t = \alpha_0 + \alpha_S \ln S_t + \alpha_L \ln L_t + \alpha_f' f_t + \varepsilon_t^Z + \sum_{i \in \{S, L, f_1\}} \sum_{j = Lg_i}^{Ld_i} \delta_{i,j} \Delta i_{t+j}$$
 (11)

DOLS instead of VECM

- · stock-vs-flow variables timing issue
- regressors dimensionality (and first differences' collinearity):
 enables estimation via AdaLASSO (Mendes (2011), Neto (2023))

$$\ln Z_t = \alpha_0 + \alpha_S \ln S_t + \alpha_L \ln L_t + \alpha_f' f_t + \varepsilon_t^Z + \sum_{i \in \{S, L, f_1\}} \sum_{j = Lg_i}^{Ld_i} \delta_{i,j} \Delta i_{t+j}$$
 (11)

DOLS instead of VECM

- · stock-vs-flow variables timing issue
- regressors dimensionality (and first differences' collinearity):
 enables estimation via AdaLASSO (Mendes (2011), Neto (2023))

► More details

Z as the dependent variable

- use of most recent LEVELS observations $\,(\hat{Lg}_i>>\hat{Ld}_i\quad\forall i)\,$

Table 2: Standard Errors in parenthesis, computed as in Mendes (2011). AC(1) is the coefficient of an AR(1) model fit.

In Z:	Adj TFP	Raw TFP	Adj T	FP
In L:	Tot. e	mp.	Nonfarm emp.	Tot. emp.
f:		BS		LN
$\alpha_{\rm S}$	0.233***	0.269***	0.217***	0.227***
	(0.022)	(0.020)	(0.021)	(0.029)
max lag	20	32	20	10
lags n.	8	19	8	6
max lead	0	4	0	0
leads n.	0	1	0	0
$\alpha_{\rm L}$	-0.098***	-0.261***	-0.046***	-0.085***
	(0.013)	(0.012)	(0.013)	(0.018)
max lag	0	1	0	0
lags n.	0	1	0	0
leads n.	0	0	0	0
tt	F	F	F	F
tt ²	F	F	F	F
I(1) controls	0	0	0	0
I(0) controls	3	5	3	4
Num. obs.	262	262	262	245
		ŝ	t	
SD	0.149	0.128	0.162	0.139
ADF u.r. stat	-2.51**	-2.66***	-2.36**	-2.23**
KPSS p.v.	0.1+	0.1 +	0.09	0.1 +
AC(1)	0.961	0.954	0.960	0.962
. ,	(0.015)	(0.017)	(0.015)	(0.016)
*** 0 01 **	- 2 25 * 2 1			

^{***}p < 0.01, **p < 0.05, *p < 0.1

Table 2: Standard Errors in parenthesis, computed as in Mendes (2011). AC(1) is the coefficient of an AR(1) model fit.

In Z:	Adj TFP Raw TFP		Adj T	FP
In L:	Tot. e	mp.	Nonfarm emp.	Tot. emp.
f:		BS		LN
α_{S}	0.233***	0.269***	0.217***	0.227***
	(0.022)	(0.020)	(0.021)	(0.029)
max lag	20	32	20	10
lags n.	8	19	8	6
max lead	0	4	0	0
leads n.	0	1	0	0
α_{L}	-0.098***	-0.261***	-0.046***	-0.085***
	(0.013)	(0.012)	(0.013)	(0.018)
max lag	0	1	0	0
lags n.	0	1	0	0
leads n.	0	0	0	0
tt	F	F	F	F
tt ²	F	F	F	F
I(1) controls	0	0	0	0
I(0) controls	3	5	3	4
Num. obs.	262	262	262	245
		ŝ	t	
SD	0.149	0.128	0.162	0.139
ADF u.r. stat	-2.51**	-2.66***	-2.36**	-2.23**
KPSS p.v.	0.1 +	0.1 +	0.09	0.1 +
AC(1)	0.961	0.954	0.960	0.962
	(0.015)	(0.017)	(0.015)	(0.016)

^{***}p < 0.01, **p < 0.05, *p < 0.1

Cross-correlations

Table 2: Standard Errors in parenthesis, computed as in Mendes (2011). AC(1) is the coefficient of an AR(1) model fit.

In Z:	Adj TFP	Raw TFP	Adj T	FP	
In L:	Tot. ei	mp.	Nonfarm emp.	Tot. emp.	
f:		BS		LN	
$\alpha_{\rm S}$	0.233*** (0.022)	0.269*** (0.020)	0.217*** (0.021)	0.227*** (0.029)	
max lag	20	32	20	10	
lags n.	8	19	8	6	
max lead leads n.	0	4 1	0	0	
α_{L}	-0.098*** (0.013)	-0.261*** (0.012)	-0.046*** (0.013)	-0.085*** (0.018)	
max lag	0	1	0	0	
lags n.	0	1	0	0	
leads n.	0	0	0	0	
tt	F	F	F	F	
tt ²	F	F	F	F	
I(1) controls	0	0	0	0	
I(0) controls	3	5	3	4	
Num. obs.	262	262	262	245	
		ĩ	t		
SD ADF u.r. stat KPSS p.v. AC(1)	0.149 -2.51** 0.1+ 0.961 (0.015)	0.128 -2.66*** 0.1+ 0.954 (0.017)	0.162 -2.36** 0.09 0.960 (0.015)	0.139 -2.23** 0.1+ 0.962 (0.016)	
***p < 0.01, **p	< 0.05,*p < 0.1				

Cross-correlation

Table 2: Standard Errors in parenthesis, computed as in Mendes (2011). AC(1) is the coefficient of an AR(1) model fit.

In Z :	Adj TFP Raw TFP		Adj T	FP	
In L :	Tot. e	mp.	Nonfarm emp.	Tot. emp.	
f:		BS		LN	
α_{S}	0.233***	0.269***	0.217***	0.227***	
	(0.022)	(0.020)	(0.021)	(0.029)	
max lag	20	32	20	10	
lags n.	8	19	8	6	
max lead	0	4	0	0	
leads n.	0	1	0	0	
$\alpha_{\rm L}$	-0.098***	-0.261***	-0.046***	-0.085***	
	(0.013)	(0.012)	(0.013)	(0.018)	
max lag	0	1	0	0	
lags n.	0	1	0	0	
leads n.	0	0	0	0	
tt	F	F	F	F	
tt ²	F	F	F	F	
I(1) controls	0	0	0	0	
I(0) controls	3	5	3	4	
Num. obs.	262	262	262	245	
	\tilde{s}_t				
SD	0.149	0.128	0.162	0.139	
ADF u.r. stat	-2.51**	-2.66***	-2.36**	-2.23**	
KPSS p.v.	0.1+	0.1+	0.09	0.1+	
AC(1)	0.961	0.954	0.960	0.962	
. ,	(0.015)	(0.017)	(0.015)	(0.016)	

^{***}p < 0.01, **p < 0.05, *p < 0.1

Table 2: Standard Errors in parenthesis, computed as in Mendes (2011). AC(1) is the coefficient of an AR(1) model fit.

In Z :	Adj TFP	Raw TFP	Adj T	FP	
In L:	Tot. e	mp.	Nonfarm emp.	Tot. emp.	
f:	: BS			LN	
αs	0.233***	0.269***	0.217***	0.227***	
	(0.022)	(0.020)	(0.021)	(0.029)	
max lag	20	32	20	10	
lags n.	8	19	8	6	
max lead	0	4	0	0	
leads n.	0	1	0	0	
α_{L}	-0.098***	-0.261***	-0.046***	-0.085***	
	(0.013)	(0.012)	(0.013)	(0.018)	
max lag	0	1	0	0	
lags n.	0	1	0	0	
leads n.	0	0	0	0	
tt	F	F	F	F	
tt ²	F	F	F	F	
I(1) controls	0	0	0	0	
I(0) controls	3	5	3	4	
Num. obs.	262	262	262	245	
		ŝ	t		
SD	0.149	0.128	0.162	0.139	
ADF u.r. stat	-2.51**	-2.66***	-2.36**	-2.23**	
KPSS p.v.	0.1 +	0.1 +	0.09	0.1+	
AC(1)	0.961	0.954	0.960	0.962	
	(0.015)	(0.017)	(0.015)	(0.016)	

^{***} p < 0.01, ** p < 0.05, *p < 0.1

Cross-correlations

Table 2: Standard Errors in parenthesis, computed as in Mendes (2011). AC(1) is the coefficient of an AR(1) model fit.

	Adj TFP Raw TFP		Adj TFP	
In L :	Tot. e	emp.	Nonfarm emp.	Tot. emp.
f:		BS		LN
$\alpha_{\rm S}$	0.233***	0.269***	0.217***	0.227***
	(0.022)	(0.020)	(0.021)	(0.029)
max lag	20	32	20	10
lags n.	8	19	8	6
max lead	0	4	0	0
leads n.	0	1	0	0
α_{L}	-0.098***	-0.261***	-0.046***	-0.085***
	(0.013)	(0.012)	(0.013)	(0.018)
max lag	0	1	0	0
lags n.	0	1	0	0
leads n.	0	0	0	0
tt	F	F	F	F
tt ²	F	F	F	F
I(1) controls	0	0	0	0
I(0) controls	3	5	3	4
Num. obs.	262	262	262	245
		ĩ	t	
SD	0.149	0.128	0.162	0.139
ADF u.r. stat	-2.51**	-2.66***	-2.36**	-2.23**
KPSS p.v.	0.1 +	0.1 +	0.09	0.1+
AC(1)	0.961	0.954	0.960	0.962
• •	(0.015)	(0.017)	(0.015)	(0.016)

^{***}p < 0.01, **p < 0.05, *p < 0.1

Cross-correlations

Table 2: Standard Errors in parenthesis, computed as in Mendes (2011). AC(1) is the coefficient of an AR(1) model fit.

In Z:	Adj TFP Raw TFP		Adj T	FP	
In L:	Tot. e	mp.	Nonfarm emp.	Tot. emp.	
f:	BS			LN	
α_{S}	0.233***	0.269***	0.217***	0.227***	
	(0.022)	(0.020)	(0.021)	(0.029)	
max lag	20	32	20	10	
lags n.	8	19	8	6	
max lead	0	4	0	0	
leads n.	0	1	0	0	
$\alpha_{\rm L}$	-0.098***	-0.261***	-0.046***	-0.085***	
	(0.013)	(0.012)	(0.013)	(0.018)	
max lag	0	1	0	0	
lags n.	0	1	0	0	
leads n.	0	0	0	0	
tt	F	F	F	F	
tt ²	F	F	F	F	
I(1) controls	0	0	0	0	
I(0) controls	3	5	3	4	
Num. obs.	262	262	262	245	
		ŝ	t		
SD	0.149	0.128	0.162	0.139	
ADF u.r. stat	-2.51**	-2.66***	-2.36**	-2.23**	
KPSS p.v.	0.1+	0.1+	0.09	0.1+	
AC(1)	0.961	0.954	0.960	0.962	
	(0.015)	(0.017)	(0.015)	(0.016)	

^{***}p < 0.01, **p < 0.05, *p < 0.1

Cross-correlation

The long-run innovation risk component

Figure 2: Shaded areas mark NBER recessions. Cross-correlation: 0.990.

TFP predictability

$$\mathsf{E}_{\mathsf{t}}\left[\Delta \ln \mathsf{Z}_{\mathsf{t}+1}\right] = \mu + \gamma_1 \cdot \tilde{\mathsf{s}}_{\mathsf{t}} + \gamma_g' \mathsf{g}_{\mathsf{t}} \tag{12}$$

TFP predictability

$$\mathsf{E}_{\mathsf{t}}\left[\Delta \ln \mathsf{Z}_{\mathsf{t}+1}\right] = \mu + \gamma_{\mathsf{1}} \cdot \tilde{\mathsf{s}}_{\mathsf{t}} + \gamma_{\mathsf{g}}' \mathsf{g}_{\mathsf{t}} \tag{12}$$

Table 3: TFP growth forecast regression results. TFP growth is the utilization-adjusted TFP growth from Fernald (2012); controls in (BS) specification are the predictive factors used in Bansal and Shaliastovich (2013) plus market integrated volatility, as in Ai et al. (2018); controls in (LN) specification are the factors computed in Ludvigson and Ng (2009)

In Z :	Adj T	FP	Raw TFP	Adj T	FP
In L:		Tot. emp.		Nonfarm emp.	Tot. emp.
f:		BS			LN
\tilde{s}_t	0.193*** [4.74]	0.171*** [3.91]	0.160** [2.46]	0.194*** [4.80]	0.158*** [3.89]
ARMA	(1,0)	(1,0)	(1,2)	(0,1)	(0,1)
Controls set	BS	LN	BS	BS	LN
p.v. (F _{controls})	0.00%	0.00%	14.46%	0.21%	0.00%
p.v. (LR _{controls})	0.00%	0.00%	8.36%	0.07%	0.00%
R^2	10.6%	11.9%	5.7%	10.6%	11.6%
Num. obs.	294	251	294	294	252

^{***}p < 0.01; **p < 0.05; *p < 0.1

1 SD shock to $\tilde{s}_t \approx +0.18\%$ in TFP growth, quarterly

TFP predictability

$$\mathsf{E}_{\mathsf{t}}\left[\Delta \ln \mathsf{Z}_{\mathsf{t}+1}\right] = \mu + \gamma_{\mathsf{1}} \cdot \tilde{\mathsf{s}}_{\mathsf{t}} + \gamma_{\mathsf{g}}' \mathsf{g}_{\mathsf{t}} \tag{12}$$

Table 3: TFP growth forecast regression results. TFP growth is the utilization-adjusted TFP growth from Fernald (2012); controls in (BS) specification are the predictive factors used in Bansal and Shaliastovich (2013) plus market integrated volatility, as in Ai et al. (2018); controls in (LN) specification are the factors computed in Ludvigson and Ng (2009)

In Z :	Adj T	FP	Raw TFP	Adj T	FP
In L:		Tot. emp.		Nonfarm emp.	Tot. emp.
f:		BS			LN
\tilde{s}_t	0.193***	0.171***	0.160**	0.194***	0.158***
	[4.74]	[3.91]	[2.46]	[4.80]	[3.89]
ARMA	(1,0)	(1,0)	(1,2)	(0,1)	(0,1)
Controls set	BS	LN	BS	BS	LN
p.v. (F _{controls})	0.00%	0.00%	14.46%	0.21%	0.00%
p.v. (LR _{controls})	0.00%	0.00%	8.36%	0.07%	0.00%
R^2	10.6%	11.9%	5.7%	10.6%	11.6%
Num. obs.	294	251	294	294	252

^{***}p < 0.01; **p < 0.05; *p < 0.1

1 SD shock to $\tilde{s}_t \approx +0.18\%$ in TFP growth, quarterly

Consumption predictability

$$\mathsf{E}_{\mathsf{t}}\left[\Delta \ln \mathsf{C}_{\mathsf{t}+\mathsf{j}}\right] = \pi_{\mathsf{0}} + \pi_{\mathsf{s},\mathsf{j}} \tilde{\mathsf{s}}_{\mathsf{t}} + \pi'_{\mathsf{g},\mathsf{j}} \mathsf{g}_{\mathsf{t}} \tag{13}$$

Consumption predictability

$$E_{t} \left[\Delta \ln C_{t+j} \right] = \pi_{0} + \pi_{s,j} \tilde{s}_{t} + \pi'_{q,j} g_{t}$$
(13)

Figure 3: 'BS' stands for controls used in Bansal and Shaliastovich (2013), starting in 1948 Q1; 'LNG' in Ludvigson and Ng (2009), starting in 1960 Q2.

The premium of long-run innovation risk

Financial Data

Returns

- US stocks from Center for Research in Security Prices (CRSP), monthly series, spanning 1926-12 to 2021-12.
 - Quarterly real returns (deflated as in Hansen et al. (2005)), monthly compounding, adjusted for delistings as in Bali et al. (2016)
 - Quarterly cash-flow growth rates, obtained following Bansal et al. (2005) and Hansen et al. (2005)
 Details
- US stocks factors from Global Factor Data (Jensen et al. (2021)), monthly series, 1926-01 to 2024-11. Used series: 118 out of 153, spanning 1951 Q4 to 2023 Q4.

Financial Data

Returns

- US stocks from Center for Research in Security Prices (CRSP), monthly series, spanning 1926-12 to 2021-12.
 - Quarterly real returns (deflated as in Hansen et al. (2005)), monthly compounding, adjusted for delistings as in Bali et al. (2016)
 - Quarterly cash-flow growth rates, obtained following Bansal et al. (2005) and Hansen et al. (2005)
 Details
- US stocks factors from Global Factor Data (Jensen et al. (2021)), monthly series, 1926-01 to 2024-11. Used series: 118 out of 153, spanning 1951 Q4 to 2023 Q4.

Accounting data

US firms accounting data from Compustat, yearly series, spanning 1975 Q1 to 2021 Q4.
 Used series: book equity, R&D expenditures.

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = \lambda_{\mathsf{c}} \; \beta_{\mathsf{c}}^{\mathsf{i}} + \lambda_{\mathsf{x}} \; \beta_{\mathsf{x}}^{\mathsf{i}} \tag{14}$$

Following Bansal et al. (2005)

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = \lambda_{\mathsf{c}} \; \beta_{\mathsf{c}}^{\mathsf{i}} + \lambda_{\mathsf{x}} \; \beta_{\mathsf{x}}^{\mathsf{i}} \tag{14}$$

Following Bansal et al. (2005)

- Focus on long-run risk only β_x^{i}

Exploiting Campbell (1996)

$$\text{In } R_{t+1}^i - E_t \left[\text{In } R_{t+1}^i \right] = \{ E_{t+1} - E_t \} \left[\sum_{j=0}^{\infty} \kappa^j \Delta \ln D_{\mathfrak{t}, \mathfrak{t}+j} \right] - \{ E_{t+1} - E_t \} \left[\sum_{j=1}^{\infty} \kappa^j \ln R_{t+j}^i \right]$$

 β^i s can be decomposed:

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = \lambda_{\mathsf{c}} \; \beta_{\mathsf{c}}^{\mathsf{i}} + \lambda_{\mathsf{x}}(\beta_{\mathsf{x},\mathsf{D}}^{\mathsf{i}} - \beta_{\mathsf{x},\mathsf{R}}^{\mathsf{i}}) \tag{14}$$

Following Bansal et al. (2005)

- Focus on long-run risk only $\beta_x^{\,i}$

Exploiting Campbell (1996)

$$\text{ln}\,R_{t+1}^i - E_t\left[\text{ln}\,R_{t+1}^i\right] = \{E_{t+1} - E_t\} \bigg[\sum_{j=0}^\infty \kappa^j \Delta \,\text{ln}\,D_{t,t+j}\bigg] - \{E_{t+1} - E_t\} \bigg[\sum_{j=1}^\infty \kappa^j \,\text{ln}\,R_{t+j}^i\bigg]$$

 β^i s can be decomposed:

$$\mathsf{E}_{\mathsf{t}}\left[\mathsf{R}_{\mathsf{t}+1}^{\mathsf{i}}\right] - \mathsf{R}_{\mathsf{t}}^{\mathsf{f}} = \lambda_{\mathsf{c}} \; \beta_{\mathsf{c}}^{\mathsf{i}} + \lambda_{\mathsf{x}}(\beta_{\mathsf{x},\mathsf{D}}^{\mathsf{i}} - \beta_{\mathsf{x},\mathsf{R}}^{\mathsf{i}}) \tag{14}$$

Following Bansal et al. (2005)

- Focus on long-run risk only $\beta_x^{\,i}$
- Focus on cash-flows exposure to long-run risk

Table 4: Test asset portfolios returns and cash-flows growth: quarterly summary statistics. First series are from 1947 Q2 to 2022 Q1, the R&D portfolios start from 1975 Q1.

Portfolio	Returns Mean	Returns SD	CF growth Mean	CF growth SD
size.01	0.06569	0.18418	0.02767	0.17561
size.02	0.03768	0.15135	0.01470	0.15258
size.09	0.02213	0.10717	0.00659	0.15094
size.10	0.01758	0.09801	0.00241	0.09691
bm.01	0.02476	0.10114	0.02050	0.28804
bm.02	0.02337	0.09135	0.01872	0.25541
bm.09	0.02741	0.11662	0.00933	0.20893
bm.10	0.03312	0.12231	0.01144	0.19516
mom.01	0.01498	0.21583	-0.01330	0.22345
mom.02	0.01176	0.12973	-0.00812	0.16180
mom.09	0.02605	0.10352	0.00245	0.26211
mom.10	0.03639	0.12087	-0.00819	0.29443
rd.01	0.02895	0.10367	0.00954	0.15829
rd.02	0.02464	0.08621	0.00528	0.12731
rd.04	0.03991	0.11387	0.01552	0.16616
rd.05	0.06591	0.19221	0.03406	0.20777

Table 4: Test asset portfolios returns and cash-flows growth: quarterly summary statistics. First series are from 1947 Q2 to 2022 Q1, the R&D portfolios start from 1975 Q1.

Portfolio	Returns Mean	Returns SD	CF growth Mean	CF growth SD
size.01	0.06569	0.18418	0.02767	0.17561
size.02	0.03768	0.15135	0.01470	0.15258
size.09	0.02213	0.10717	0.00659	0.15094
size.10	0.01758	0.09801	0.00241	0.09691
bm.01	0.02476	0.10114	0.02050	0.28804
bm.02	0.02337	0.09135	0.01872	0.25541
bm.09	0.02741	0.11662	0.00933	0.20893
bm.10	0.03312	0.12231	0.01144	0.19516
mom.01	0.01498	0.21583	-0.01330	0.22345
mom.02	0.01176	0.12973	-0.00812	0.16180
mom.09	0.02605	0.10352	0.00245	0.26211
mom.10	0.03639	0.12087	-0.00819	0.29443
rd.01	0.02895	0.10367	0.00954	0.15829
rd.02	0.02464	0.08621	0.00528	0.12731
rd.04	0.03991	0.11387	0.01552	0.16616
rd.05	0.06591	0.19221	0.03406	0.20777

Table 4: Test asset portfolios returns and cash-flows growth: quarterly summary statistics. First series are from 1947 Q2 to 2022 Q1, the R&D portfolios start from 1975 Q1.

Portfolio	Returns Mean	Returns SD	CF growth Mean	CF growth SD
size.01	0.06569	0.18418	0.02767	0.17561
size.02	0.03768	0.15135	0.01470	0.15258
size.09	0.02213	0.10717	0.00659	0.15094
size.10	0.01758	0.09801	0.00241	0.09691
bm.01	0.02476	0.10114	0.02050	0.28804
bm.02	0.02337	0.09135	0.01872	0.25541
bm.09	0.02741	0.11662	0.00933	0.20893
bm.10	0.03312	0.12231	0.01144	0.19516
mom.01	0.01498	0.21583	-0.01330	0.22345
mom.02	0.01176	0.12973	-0.00812	0.16180
mom.09	0.02605	0.10352	0.00245	0.26211
mom.10	0.03639	0.12087	-0.00819	0.29443
rd.01	0.02895	0.10367	0.00954	0.15829
rd.02	0.02464	0.08621	0.00528	0.12731
rd.04	0.03991	0.11387	0.01552	0.16616
rd.05	0.06591	0.19221	0.03406	0.20777

Table 4: Test asset portfolios returns and cash-flows growth: quarterly summary statistics. First series are from 1947 Q2 to 2022 Q1, the R&D portfolios start from 1975 Q1.

Portfolio	Returns Mean	Returns SD	CF growth Mean	CF growth SD
size.01	0.06569	0.18418	0.02767	0.17561
size.02	0.03768	0.15135	0.01470	0.15258
size.09	0.02213	0.10717	0.00659	0.15094
size.10	0.01758	0.09801	0.00241	0.09691
bm.01	0.02476	0.10114	0.02050	0.28804
bm.02	0.02337	0.09135	0.01872	0.25541
bm.09	0.02741	0.11662	0.00933	0.20893
bm.10	0.03312	0.12231	0.01144	0.19516
mom.01	0.01498	0.21583	-0.01330	0.22345
mom.02	0.01176	0.12973	-0.00812	0.16180
mom.09	0.02605	0.10352	0.00245	0.26211
mom.10	0.03639	0.12087	-0.00819	0.29443
rd.01	0.02895	0.10367	0.00954	0.15829
rd.02	0.02464	0.08621	0.00528	0.12731
rd.04	0.03991	0.11387	0.01552	0.16616
rd.05	0.06591	0.19221	0.03406	0.20777

Cash-flows sensitivity to long-run risks

$$\Delta \ln D_{i,t} = \beta_{x,D}^{i} \left(\frac{1}{L} \sum_{l=1}^{L} x_{t-l} \right) + \nu_{i,t}$$

$$(15)$$

Cash-flows sensitivity to long-run risks

$$\Delta \ln D_{i,t} = \beta_{x,D}^{i} \left(\frac{1}{L} \sum_{l=1}^{L} x_{t-l} \right) + \nu_{i,t}$$
 (15)

Table 5: Test assets cash-flows sensitivity to long-run risk components. L=16. From 1975 Q1 to 2022 Q1.

Portfolio	β _C	$\beta_{Z\text{-raw}}$	β_{Z-adj}	$\beta_{\tilde{s}\text{-BS}}$	$\beta_{\bar{s}\text{-LN}}$
size.01	1.245	4.624	8.145	16.042	18.977
size.02	0.238	7.076	9.422	12.454	13.968
size.09	1.432	7.282	1.317	-3.427	-4.200
size.10	-0.415	4.014	-2.535	-0.894	-0.934
bm.01	-2.126	12.756	6.596	2.437	2.456
bm.02	-1.861	8.248	2.371	4.085	4.683
bm.09	3.041	9.280	5.844	1.936	1.713
bm.10	-0.276	4.359	-5.128	2.698	3.078
mom.01	-5.273	-1.836	-1.620	-3.097	-3.641
mom.02	3.279	5.482	-4.846	-1.532	-1.791
mom.09	9.293	12.116	3.322	1.253	1.023
mom.10	6.509	15.769	-1.913	-2.662	-5.490
rd.01	0.794	4.354	1.465	-3.177	-2.795
rd.02	-1.902	13.573	8.317	4.332	2.802
rd.04	0.125	15.837	12.275	7.127	5.621
rd.05	-1.294	20.648	11.143	15.662	14.056

Cash-flows sensitivity to long-run risks

$$\Delta \ln D_{i,t} = \beta_{x,D}^{i} \left(\frac{1}{L} \sum_{l=1}^{L} x_{t-l} \right) + \nu_{i,t}$$
(15)

Table 5: Test assets cash-flows sensitivity to long-run risk components. L=16. From 1975 Q1 to 2022 Q1.

Portfolio	βc	$\beta_{Z\text{-raw}}$	β_{Z-adj}	$\beta_{\tilde{s}\text{-BS}}$	$\beta_{\bar{s}\text{-LN}}$
size.01	1.245	4.624	8.145	16.042	18.977
size.02	0.238	7.076	9.422	12.454	13.968
size.09	1.432	7.282	1.317	-3.427	-4.200
size.10	-0.415	4.014	-2.535	-0.894	-0.934
bm.01	-2.126	12.756	6.596	2.437	2.456
bm.02	-1.861	8.248	2.371	4.085	4.683
bm.09	3.041	9.280	5.844	1.936	1.713
bm.10	-0.276	4.359	-5.128	2.698	3.078
mom.01	-5.273	-1.836	-1.620	-3.097	-3.641
mom.02	3.279	5.482	-4.846	-1.532	-1.791
mom.09	9.293	12.116	3.322	1.253	1.023
mom.10	6.509	15.769	-1.913	-2.662	-5.490
rd.01	0.794	4.354	1.465	-3.177	-2.795
rd.02	-1.902	13.573	8.317	4.332	2.802
rd.04	0.125	15.837	12.275	7.127	5.621
rd.05	-1.294	20.648	11.143	15.662	14.056

Innovative firms' cash-flows grow more when all the economy innovates more: spillovers?

Cross-sectional risk premium

$$E[R^{i}] = \lambda_{0} + \lambda_{x} \cdot \beta_{x,D}^{i}$$
(16)

Table 6: cross-sectional risk premia estimated following Fama and Macbeth (1973). t-statistics are HAC, computed as advised by Lazarus et al. (2018). From 1975 Q1 to 2022 Q1.

	Cons.	Raw TFP	Util+R&D-adj. TFP	\tilde{s} (BS)	ŝ (LN)
		Hor	rizon: 1 year		
λ ₀ (%)	6.06***	5.76***	7.05***	7.71***	7.59***
t-stat	[3.11]	[2.89]	[3.89]	[4.18]	[4.13]
λ_{χ} (%)	0.08	0.12	0.24***	0.56***	0.51***
t-stat	[1.49]	[1.61]	[2.60]	[3.88]	[3.67]
MAPE (%)	0.83	0.84	0.86	0.81	0.82
R ² (%)	1.5	2.5	4.6	31.5	27.8
		Hor	rizon: 8 year		
λ ₀ (%)	6.59***	5.70***	7.18***	4.40**	4.62**
t-stat	[3.68]	[3.17]	[4.02]	[2.41]	[2.54]
λ _x (%)	0.05	0.39***	0.46***	0.72***	0.64***
t-stat	[0.21]	[4.24]	[4.44]	[4.15]	[3.94]
MAPE (%)	0.85	0.72	0.69	0.54	0.57
R ² (%)	-1.2	14.5	13.3	70.1	66.8

^{***}p < 0.01, **p < 0.05, *p < 0.

Cross-sectional risk premium

$$E[R^{i}] = \lambda_{0} + \lambda_{x} \cdot \beta_{x,D}^{i}$$
(16)

Table 6: cross-sectional risk premia estimated following Fama and Macbeth (1973). 1-statistics are HAC, computed as advised by Lazarus et al. (2018). From 1975 Q1 to 2022 Q1.

	Cons.	Raw TFP	Raw TFP Util+R&D-adj. TFP		ŝ (LN)		
Horizon: 1 year							
λ ₀ (%)	6.06***	5.76***	7.05***	7.71***	7.59***		
t-stat	[3.11]	[2.89]	[3.89]	[4.18]	[4.13]		
λ _χ (%)	0.08	0.12	0.24***	0.56***	0.51***		
t-stat	[1.49]	[1.61]	[2.60]	[3.88]	[3.67]		
MAPE (%)	0.83	0.84	0.86	0.81	0.82		
R ² (%)	1.5	2.5	4.6	31.5	27.8		
		Ног	rizon: 8 year				
λ ₀ (%)	6.59***	5.70***	7.18***	4.40**	4.62**		
t-stat	[3.68]	[3.17]	[4.02]	[2.41]	[2.54]		
λ _x (%)	0.05	0.39***	0.46***	0.72***	0.64***		
t-stat	[0.21]	[4.24]	[4.44]	[4.15]	[3.94]		
MAPE (%)	0.85	0.72	0.69	0.54	0.57		
R ² (%)	-1.2	14.5	13.3	70.1	66.8		

Cross-sectional risk premium

$$E[R^{i}] = \lambda_{0} + \lambda_{x} \cdot \beta_{x,D}^{i}$$
(16)

Table 6: cross-sectional risk premia estimated following Fama and Macbeth (1973). t-statistics are HAC, computed as advised by Lazarus et al. (2018). From 1975 Q1 to 2022 Q1.

	Cons.	Raw TFP	Util+R&D-adj. TFP	\tilde{s} (BS)	ŝ (LN)		
Horizon: 1 year							
λ ₀ (%) t-stat	6.06*** [3.11]	5.76*** [2.89]	7.05*** [3.89]	7.71*** [4.18]	7.59*** [4.13]		
λ_{χ} (%)	0.08	0.12	0.24***	0.56***	0.51***		
t-stat	[1.49]	[1.61]	[2.60]	[3.88]	[3.67]		
MAPE (%)	0.83	0.84	0.86	0.81	0.82		
R ² (%)	1.5	2.5	4.6	31.5	27.8		
		Ног	rizon: 8 year				
λ ₀ (%) t-stat	6.59*** [3.68]	5.70*** [3.17]	7.18*** [4.02]	4.40** [2.41]	4.62** [2.54]		
λ _χ (%)	0.05	0.39***	0.46***	0.72***	0.64***		
t-stat	[0.21]	[4.24]	[4.44]	[4.15]	[3.94]		
MAPE (%)	0.85	0.72	0.69	0.54	0.57		
R ² (%)	-1.2	14.5	13.3	70.1	66.8		
***p < 0.01, **	p < 0.05, p < 0.05	0.1					

Omitted-factors robust premium

Giglio and Xiu (2021) provides a 3-pass procedure to better control for omitted factors.

It relies on Principal Components of a wide cross-section of test assets.

Table 7: risk premia estimation. Optimal number of components p∗ estimated as in Alessi et al. (2010).

	p*	р	Т
PCs n.	9	13	
Test assets R ²	62.0%	83.4%	289
$\lambda_{\tilde{s} ext{-BS}}$	3.63	6.09*	285
$\lambda_{\tilde{s}\text{-LN}}$	[1.48] 7.14*** [2.94]	[1.82] 10.25*** [3.18]	251

 $^{^{***}}p < 0.01, ^{**}p < 0.05, ^{*}p < 0.1$

Omitted-factors robust premium

Giglio and Xiu (2021) provides a 3-pass procedure to better control for omitted factors.

It relies on Principal Components of a wide cross-section of test assets.

Table 7: risk premia estimation. Optimal number of components p∗ estimated as in Alessi et al. (2010).

	p*	р	Т
PCs n.	9	13	
Test assets R ²	62.0%	83.4%	289
$\lambda_{ ilde{s} ext{-BS}}$	3.63	6.09*	285
	[1.48]	[1.82]	
$\lambda_{\tilde{s}\text{-LN}}$	7.14***	10.25***	251
	[2.94]	[3.18]	

^{***}p < 0.01, **p < 0.05, *p < 0.1

Delving deeper

On R&D fluctuations' origins

A step towards identification of R&D intensity structural shocks and stricter test of theory

On R&D fluctuations' origins

A step towards identification of R&D intensity structural shocks and stricter test of theory

Markup and funding liquidity often assumed as drivers (Kung and Schmid (2015), Li (2011)):

Table 8: estimates of the \tilde{s} regression from the VAR. In brackets, estimates' t statistics; "max |roots|" is the maximum eigenvalue of the companion matrix estimated. Δ mark-up is the 1st principal component of markup differenced series, while Intermediary Capital Ratio (ICR) is from He et al. (2017), sample from 1970 Q2 to 2017 Q4. Lags selected by AIC.

	ŝ	Δ Mark-Up	I.C.R.
Lag: 1	0.961*** [47.25]	-0.054** [-2.75]	-0.022 [-1.07]
Т	R^2	p(F)	max roots
191	92.9%	0	0.946

^{***}p < 0.01; **p < 0.05; *p < 0.1

On R&D fluctuations' origins

A step towards identification of R&D intensity structural shocks and stricter test of theory

Markup and funding liquidity often assumed as drivers (Kung and Schmid (2015), Li (2011)):

Table 8: estimates of the \tilde{s} regression from the VAR. In brackets, estimates' t statistics; "max |roots|" is the maximum eigenvalue of the companion matrix estimated. Δ mark-up is the 1st principal component of markup differenced series, while Intermediary Capital Ratio (ICR) is from He et al. (2017), sample from 1970 Q2 to 2017 Q4. Lags selected by AIC.

	ŝ	Δ Mark-Up	I.C.R.
Lag: 1	0.961*** [47.25]	-0.054** [-2.75]	-0.022 [-1.07]
Т	R^2	p(F)	max roots
191	92.9%	0	0.946
***p < 0.0	1; **p < 0.05; *p <	0.1	

» more work needed

Further extensions

- · Intra- and inter-sectorial R&D sensitivities
- R&D intensity and aggregate uncertainty:
 - possible strong non-linearities
 - · possible significant role of funding conditions

Conclusion

- Evidence in support of Long-Run Risk framework
- R&D matters for investors and exposure to it is a significant risk measure

Conclusion

- · Evidence in support of Long-Run Risk framework
- R&D matters for investors and exposure to it is a significant risk measure
- R&D fluctuations from 2nd-gen endogenous growth models easier to study
- R&D intensity is highly persistent and forecasts TFP and consumption growth
- R&D intensity is associated to a positive risk premium in financial markets

The Long-run Innovation Risk Component

Fabio Franceschini

ffabio.econ @ gmail.com University of Bologna

January 28th, 2025

- Ai, Hengjie et al. (2018). "News Shocks and the Production-Based Term Structure of Equity Returns". In: The Review of Financial Studies 31 (7), pp. 2423–2467.
- Alessi, Lucia, Matteo Barigozzi, and Marco Capasso (2010). "Improved penalization for determining the number of factors in approximate factor models". In: Statistics & Probability Letters 80.23, pp. 1806–1813.
- Bali, Turan G., R. F. (Robert F.) Engle, and Scott Murray (2016).

 Empirical asset pricing: the cross section of stock returns. Hoboken, New Jersey: Wiley. 494 pp. ISBN: 978-1-118-09504-1.
- Bansal, Ravi, Robert F. Dittmar, and Christian T. Lundblad (2005). "Consumption, Dividends, and the Cross Section of Equity Returns". In: The Journal of Finance 60 (4), pp. 1639–1672.
- Bansal, Ravi and Ivan Shaliastovich (2013). "A Long-Run Risks Explanation of Predictability Puzzles in Bond and Currency Markets". In: Review of Financial Studies 26 (1), pp. 1–33.
- Bansal, Ravi and Amir Yaron (2004). "Risks for the Long Run: A Potential Resolution of Asset Pricing Puzzles". In: The Journal of Finance 59 (4), pp. 1481–1509.
- Bloom, Nicholas et al. (2020). "Are Ideas Getting Harder to Find?" In: American Economic Review 110 (4), pp. 1104–1144.

- Campbell, John Y. (1996). "Understanding Risk and Return". In: <u>Journal of Political Economy</u> 104 (2), pp. 298–345.
- Choi, In and Eiji Kurozumi (2012). "Model selection criteria for the leads-and-lags cointegrating regression". In: Journal of Econometrics 169 (2), pp. 224–238.
- Croce, Mariano Massimiliano (2014). "Long-run productivity risk: A new hope for production-based asset pricing?" In: Journal of Monetary Economics 66, pp. 13–31.
- Dew-Becker, Ian and Stefano Giglio (2016). "Asset Pricing in the Frequency Domain: Theory and Empirics". In: Review of Financial Studies 29.8, pp. 2029–2068.
- Epstein, Larry G. and Stanley E. Zin (1989). "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework". In: Econometrica 57 (4), p. 937.
- Fama, Eugene F. and James D. Macbeth (1973). "Risk, Return, and Equilibrium: Empirical Tests". In: Journal of Political Economy 81 (3), pp. 607–636.
- Fernald, John G. (2012). "A Quarterly, Utilization-Adjusted Series on Total Factor Productivity". In: Federal Reserve Bank of San Francisco, Working Paper Series, pp. 01–28.
 - Giglio, Stefano and Dacheng Xiu (2021). "Asset Pricing with Omitted Factors". In: Journal of Political Economy 129.7, pp. 1947–1990.

Hansen, Lars Peter, John C. Heaton, and Nan Li (2005). Intangible Risk.

He, Zhiguo, Bryan Kelly, and Asaf Manela (2017), "Intermediary asset pricing: New evidence from many asset classes". In: Journal of Financial Economics 126 (1), pp. 1-35.

Jensen. Theis Ingerslev, Bryan T. Kelly, and Lasse Heje Pedersen (2021). "Is There a Replication Crisis in Finance?" In: SSRN Electronic Journal.

Jones, Charles I. (1999). "Growth: With or Without Scale Effects?" In: American Economic Review 89.2. pp. 139-144.

Kruse-Andersen, Peter K. (2023). "Testing R&D-Based Endogenous Growth Models*". In: Oxford Bulletin of Economics and Statistics n/a (n/a).

Kung, Howard and Lukas Schmid (2015), "Innovation, Growth, and Asset Prices". In: The Journal of Finance 70 (3), pp. 1001-1037.

Lazarus, Eben et al. (2018). "HAR Inference: Recommendations for Practice". In: Journal of Business and Economic Statistics 36 (4), pp. 541-559.

Lettau, Martin and Sydney C. Ludvigson (2001), "Consumption, Aggregate Wealth, and Expected Stock Returns". In: The Journal of Finance 56 (3), pp. 815-849.

Li. Donamei (2011). "Financial Constraints, R&D Investment, and Stock Returns". In: Review of Financial Studies 24.9, pp. 2974-3007.

- Ludvigson, Sydney C. and Serena Ng (2009). "Macro Factors in Bond Risk Premia". In:

 Review of Financial Studies 22 (12), pp. 5027–5067.
- Melone, Alessandro (2021). "Consumption Disconnect Redux". In: SSRN Electronic Journal.
- Mendes, Eduardo F. (2011). <u>Model Selection Consistency for Cointegrating Regressions</u>. arXiv: 1104.5667[stat].
- Neto, David (2023). "Penalized leads-and-lags cointegrating regression: a simulation study and two empirical applications". In: Empirical Economics 65.2, pp. 949–971.
- Ortu, Fulvio, Andrea Tamoni, and Claudio Tebaldi (2013). "Long-Run Risk and the Persistence of Consumption Shocks". In: Review of Financial Studies 26 (11), pp. 2876–2915.
- Rivera-Batiz, Luis A and Paul M Romer (1991). "Economic Integration and Endogenous Growth". In: pp. 531–555.
- Schorfheide, Frank, Dongho Song, and Amir Yaron (2018). "Identifying Long-Run Risks: A Bayesian Mixed-Frequency Approach". In: Econometrica 86.2, pp. 617–654.

Appendix

TFP growth rate approximation 1

Ideas growth rate from law of motion/production schedule

$$\frac{I_{t}}{I_{t-1}} = 1 - \phi + \chi \left(S_{t-1}^{\eta} I_{t-1}^{(-1+\psi)} Q_{t-1}^{-\omega} \right)$$
 (17)

$$\ln\left(\frac{I_t}{I_{t-1}}\right) \approx -\phi + \chi\left(S_{t-1}^{\eta} I_{t-1}^{(-1+\psi)} Q_{t-1}^{-\omega}\right)$$

$$(l_{t-1})$$

$$= -\phi + v \cdot \exp\left(n \ln S - v - (1 - ib) \ln I\right)$$

$$\ln 7_{+} = a_{+} + \xi \ln I_{+}$$

$$\ln Z_t = a_t + \xi \ln I_t$$

$$\ln Z_t = \alpha_t + \xi \ln I_t$$

$$\ln Z_t = a_t + \xi \ln I_t$$

$$\Delta \ln Z_t = \Delta \alpha_t + \xi \Delta \ln I_t$$

$$\cong \Delta a_{+} + \varepsilon \left[-\phi + \gamma + \gamma \left(n \ln S_{+-1} - (1 - \psi) \ln I_{+-1} - \omega \ln O_{+-1} \right) \right]$$

$$_{-1}-\omega \ln Q_{t-1})$$

$$\approx -\phi + \chi + \chi \left(\eta \ln S_{t-1} - (1-\psi) \ln I_{t-1} - \omega \ln Q_{t-1} \right)$$

$$= -\phi + \chi \cdot \exp\{\eta \ln S_{t-1} - (1-\psi) \ln I_{t-1} - \omega \ln Q_{t-1}\}\$$

$$\Delta \ln I_{t} \approx -\varphi + \chi \cdot \text{exp} \left\{ \ln \left(S_{t-1}^{\eta} I_{t-1}^{(-1+\psi)} Q_{t-1}^{-\omega} \right) \right\}$$

$$\left(-\left(\frac{2n}{2}\right)^{2}-\left(\frac{1+4y}{2}\right)^{2}-\left(\frac{4y}{2}\right)^{2}\right)$$

$$(-1+\psi)$$
 $(-\psi)$

$$\mathbf{n} \, \mathbf{Q}_{t-1}$$

(18)

(19)

(20)

(25)

TFP growth rate approximation 2

Assuming $O_t = L_t^{\kappa}$ $\Delta \ln Z_t \cong \Delta \alpha_t + \xi(\chi - \phi) + \xi \chi \left(\eta \ln S_{t-1} - (1 - \psi) \ln I_{t-1} - \omega \kappa \ln L_{t-1} \right)$ (26)

Expressing in term of Z

$$\Delta \ln Z_{t} \approx \Delta a_{t} + \xi(\chi - \phi) + \xi \chi \left(\eta \ln S_{t-1} - \frac{1 - \psi}{\xi} (\ln Z_{t-1} - a_{t-1}) - \omega \kappa \ln L_{t-1} \right)$$
 (27)

Rearranging and assuming $a_t = \rho_a a_{t-1} + \epsilon_t^a$

$$\Delta \ln Z_{t} \approx \xi(\chi - \varphi) + \xi \chi \left(\eta \ln S_{t-1} - \frac{1 - \psi}{\xi} \ln Z_{t-1} - \omega \kappa \ln L_{t-1} \right) + (\rho_{\alpha} - 1 + \chi(1 - \psi)) \alpha_{t-1} + \epsilon_{t}^{\alpha}$$
 (28)

Assuming
$$(\ln S_t - \frac{1-\psi}{\eta} \ln I_t - \frac{\omega}{\eta} \ln Q_t) = \bar{s} + \tilde{s}_t \sim I(0)$$

$$\bar{z} + \tilde{z}$$
 $z = 1 - \psi$

$$\bar{s} + \tilde{s}_t = \eta \ln S_t - \frac{1 - \psi}{\xi} \ln Z_t + \frac{1 - \psi}{\xi} a_t - \omega \kappa \ln L_t$$

$$\ln Z_{t} = \frac{-s\xi}{1-\psi} + \frac{\eta\xi}{1-\psi} \ln S_{t} - \frac{\omega\kappa\xi}{1-\psi} \ln L_{t} + \alpha_{t} + \frac{-\xi}{1-\psi} \tilde{s}_{t}$$
(30)

(29)

(32)

$$\Delta \ln Z_{t+1} = \Delta a_t + \xi(\chi - \phi) + \xi \chi \eta \left(\bar{s} + \tilde{s}_t\right) \tag{31}$$

$$= (\xi(\chi - \phi) + \xi \chi \eta \bar{s}) + \xi \chi \eta \tilde{s}_{t} + \Delta a_{t}$$

TFP stationarity

Table 9: data from Fernald (2012).

	Unadj. TFP	Adj. TFP			
ADF u.r. stat AC(1)	-10.81*** 0.194*** (0.057)	-12.38*** 0.050 (0.058)			
Num. obs.	299	299			
*** $p < 0.01, **p < 0.05, *p < 0.1$					

Figure 4: first differences of the macroeconomic series forecasted.

AdaLASSO DOLS

1. Start by setting standard maximum number of lags and leads (see Choi and Kurozumi (2012)):

$$Lg = Ld = 12 \times (T/100)^{1/4}$$

2. Perform 10-fold cross-validation to select optimal regularization parameter λ in

$$\min_{ \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\alpha}_{f} \\ \boldsymbol{\delta} \end{pmatrix} } \sum_{t=1}^{T} \left\{ \ln Z_{t} - \begin{bmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\alpha}_{f} \end{bmatrix}' \begin{bmatrix} \boldsymbol{l}_{\boldsymbol{n}} S_{t} \\ \boldsymbol{l}_{\boldsymbol{n}} L_{t} \\ \boldsymbol{f}_{t} \end{bmatrix} + \delta' \begin{bmatrix} \Delta S_{t-Lg} \\ \dots \\ \Delta S_{t+Ld} \\ \Delta L_{t-Lg} \\ \dots \\ \Delta (f_{1})_{t-Lg} \\ \dots \\ \Delta (f_{1})_{t+Ld} \end{bmatrix} \right\}^{2} \\ + \lambda \left(\sum_{i} w_{i} \cdot |\delta_{i}| + \sum_{j} w_{j} \cdot |(\alpha_{f})_{i}| \right)$$

- 3. Set $w_i = |\delta_i|^{-0.9}$ and $w_i = |(\alpha_f)_i|^{-0.9}$ (initial values set by a preliminary OLS or Ridge Regression)
- 4. Repeat steps 2 and 3 until convergence
- Replicate steps 2, 3 and 4, 999 times; select median model (i.e. the one associated to the median value of λ)
- 6. Repeat steps 2, 3, 4 and 5 by increasing/decreasing lags/leads by 4 (a year) if boundaries are hit/slack

Cross-correlations across specifications

Table 10: correlation among specifications of the ECTs. Naming format: Z-variable, S-variable, Q-variable, factors set.

	nord_util.tot.bs	raw.tot.bs	nord_util.nonfarm.bs	nord_util.tot.ln
raw.tot.bs nord_util.nonfarm.bs nord_util.tot.ln	0.829 0.993 0.990	0.798 0.876	0.99	-

Dividends growth rate computation

 $D_{\mathfrak{p},t+1} = y_{\mathfrak{p},t+1} V_{\mathfrak{p},t} \quad \text{where} \quad$

$$\boldsymbol{\cdot} \ V_{p,t+1} = h_{p,t+1} V_t \quad \text{with} \quad V_{p,0} = 1$$

$$\cdot y_{p,t} = R_{p,t} - h_{p,t}$$

All relies on $h_{p,t}$, which is the weighted sum of all portfolios stocks' RETX adjusted for share repurchases as

$$h_{t} = \left(\frac{P_{t+1}}{P_{t}}\right) \cdot \min\left[\left(\frac{n_{t+1}}{n_{t}}\right), 1\right] \tag{33}$$

◆ Back