SIMULATING RECURRENT NEURAL NETWORKS ON GRAPHIC PROCESSING UNITS

SUMMER PROJECT

Zhangsheng Lai September 28, 2017

INTRODUCTION

Introduction

Figure 1: Anatomy of a neuron¹

¹By BruceBlaus - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=28761830

Simulating Recurrent Neural Networks on Graphic

Processing Units
Introduction

☐Introduction

- the features that define a neuron are electrical excitability, where a neuron spikes and discharge electrical signals through the synapses, which are complex membrane junctions that transmit signals to other neurons
- there are approximately 10¹⁴ neurons in the human brain
- artifical neuron networks are inspired by these biological neurons

FEEDFORWARD NEURAL NETWORK

Figure 2: Feedforward Neural Network

Simulating Recurrent Neural Networks on Graphic

Processing Units
Introduction

Feedforward Neural Network

- for example we have feedforward neural networks where connections between the units do not form a cycle
- we have managed to use feedforward neural networks, to classify images very well
- however the connections between the neurons in our brain are much more complex than those in the feedforward neural networks
- however, the methodology used to do classification is based on learning parameters of the model
 and then do matrix multiplication to obtain a probability of it being classified as a particular class.

RECURRENT NEURAL NETWORKS

Simulating Recurrent Neural Networks on Graphic

Processing Units

Recurrent Neural Networks

RECURRENT NEURAL NETWORKS

- recurrent neural networks are artificial neural network where connections between units form a
 directed cycle.
- these neural networks are the more popular and mainstream ones, but today we are going to look at RNNs and how to simulate them.
- one of the more popular RNN is Long short term memory (LSTM), and they are able to connect
 previous information to the present task, such as using previous video frames might inform the
 understanding of the present frame
- but the neurons in LSTMs communicate with real values, which do not
- we will look at some RNNs where their architecture is closer to our brains and by building such
 neural networks with the neurons matching the number of neurons in the brain, we hope to
 possibly arrive at some learning theories that is close to how learning is done in the brain, if not as
 good as the brain
- to construct such a big network of neurons, we have to rely on hardware that are more suitable to
 dealing with large numbers of computation, thus we would want to simulate these RNNs on GPUs
- today I'm going to talk about 2 types of RNNs, Boltzmann machines and McCulloch-Pitts machines
- their main differences is BM is discrete time and MPM is continuous time
- their similarities is that they both have the spiking characteristic in them when we simulate these
 machines

BOLTZMANN MACHINES

Simulating Recurrent Neural Networks on Graphic Processing Units

Recurrent Neural Networks

└─Boltzmann Machines

- composed of primitive computing elements called units
- $\bullet \;\;$ units has two states, on or off, represented by $\{1,0\}$
- connected to each other by bi-directional links
- weights can take on any real value
- a unit being on or off is taken to mean that the system currently accepts or rejects some elemental hypothesis of the domain
- weight on a link represents a weak pairwise constrain between two hypothesis
- positive (negative) weights indicate that two hypothesis support (contradict) one another with other things being equal
- link weights are symmetric, having the same strength in both directions

BOLTZMANN MACHINES

Energy configuration,
$$E = -\sum_{i < j} W_{ij} x_i x_j - \sum_i b_i x_i$$

Energy gap, $\Delta E_i = E(x_i = 0) - E(x_i = 1) = \sum_j W_{ij} x_j + b_i$
 $p_i := \mathbb{P}(x_i = 1) = \frac{1}{1 + e^{-\Delta E_i/\tau}}$

Simulating Recurrent Neural Networks on Graphic

Processing Units

-Recurrent Neural Networks

└─Boltzmann Machines

- the neurons are binary stochastic units
- when $\Delta E_i > 0 (< 0), p_i > 0.5 (< 0.5)$
- temperature variable controls the amount of noise; higher temperature means more noise and also
 gives us a higher probability of transiting to a higher energy state and hence avoids local minimum
- ullet when au o 0 we get Hopfield network
- for τ₁ > τ₂, we are less likely to go to a lower energy state compared to in τ₁ compared to τ₂, i.e. more likely to go to a higher energy state when the temperature is higher. This allows us to escape from local minimum and arrive at the global minimum

BOLTZMANN MACHINES

Algorithm 1 Boltzmann Machine Simulation.

- 1: Initialize W, b
- 2: Initialize $\boldsymbol{x}^{(0)}$
- 3: **for** *i* from 1 to *N* **do**
- 4: Random $k \in \{1, ..., d\}$, where d is the number of neurons
- 5: Compute $p_k = \frac{1}{1 + e^{-\Delta E_k / \tau}}$
- 6: $\mathbf{x}^{(i)} \leftarrow \text{flip}(\mathbf{x}^{(i-1)})$
- 7: end for

where flip($x^{(i-1)}$) flips the state of the chosen neuron k.

Simulating Recurrent Neural Networks on Graphic Processing Units

rocessing Units

-Recurrent Neural Networks

- state 1 is the refractory state, the neuron just fired and is unable to fire till it recovers
- state 0 is the armed state, the neuron just recovered and is waiting to fire
- here we model the units with the Nossenson-Messer neuron model, which explains biological firing rates in response to external stimuli

Transition Energy,
$$E(y, x|\theta) = -\sum_{ji \in E} W_{ji}y_jx_i - \sum_{j \in V} b_js_j - \sum_{i \in V} b_is_i$$

$$\Gamma_{yx} = \exp\left(-\frac{1}{2\tau}E(y, x|\theta) + \frac{1}{2\tau}E(x, x|\theta)\right)$$

Simulating Recurrent Neural Networks on Graphic **Processing Units** Recurrent Neural Networks

Transition Energy, $\mathcal{E}(y,x|\theta) = -\sum W_j y_j x_i - \sum b_j s_j - \sum b_j s_i$ $\Gamma_{yx} = \exp \left(-\frac{1}{\lambda_{\infty}}E(y, x|\theta) + \frac{1}{\lambda_{\infty}}E(x, x|\theta)\right)$

- digraph, G = (V, E), weights $W : V \to \mathbb{R}$, biases $b : E \to \mathbb{R}$, binary states $\mathbb{B} = \{0, 1\}$ with an initial distribution $\mathbb{B}^{|V|} \to \delta$ and a temperature au
- here the W matrix need not be symmetrical with zero diagonals like what we had in the Boltzmann machine model
- we define a transition as a state that is one hop away from the current state, i.e. differs by one bit
- transition energy requires the current and the future state that it is transiting to
- for each $y \neq x$, start a Poisson process with rate Γ_{vx}
- as such, we can talk about the interarrival timings of the Poisson process and our simulation of the McCulloch-Pitts machine not only gives us a binary tuple, but also the time taken from it to transit from its earlier state

Transition Energy,
$$E(y, x|\theta) = -\sum_{ji \in E} W_{ji}y_jx_i - \sum_{j \in V} b_js_j - \sum_{i \in V} b_is_i$$

$$\Gamma_{yx} := \exp\left(\frac{1}{2\tau}s_jz_j\right)$$

where $s_j = 1 - 2x_j$, $z_j = \sum_i W_{ji}x_i + b_j$ and x, y differ by the *j*th unit.

Simulating Recurrent Neural Networks on Graphic Processing Units Recurrent Neural Networks

Transition frames, $E(y,s) = -\sum_{j,j} B_{ijj} s_i - \sum_{j>j} B_{ij} - \sum_{i>j} B_{ij}$ where $s_i = 1-2s_i \pm 2$. $T_i = s_i$ and s_i of the length of the state of the i or i of the i or i of the i or i or

- when doing the updates we can just update the linear responses z_j and apply softmax on the λ_j 's to get the probability distribution of the transitions.
- it seems counter-intuitive to think of 0 as armed and 1 as refractory, but it is in fact the most natural thinking
- a transition from 0 ightarrow 1 is a act of firing and a transition from 1 ightarrow 0 is the act of recovery
- when a neuron transit from 0 → 1, it changes the value of the linear response; for a transiting neuron i, if W_{ji} > 0, then such a transition increases the linear response of neuron j and if W_{ji} < 0 it decreases the linear response of neuron j
- the sign s depends on the state of the neuron, it preserves the sign of the linear response if it is armed and flips the sign of the linear response if it is refractory

Transition probability from
$$x$$
 to y , $p_{yx} = \frac{\lambda_j}{\sum_{j'} \lambda_{j'}}$

Algorithm 2 CTMC Simulation.

- 1: Initialize W, b
- 2: Initialize $\mathbf{x}^{(0)}$
- 3: **for** *i* from 1 to *N* **do**
- 4: Compute Γ_{yx} , P_{yx} for each y
- 5: Compute $a_x = \sum \Gamma_{yx}$
- 6: $\mathbf{x}^{(i)} \leftarrow \text{flip}(\mathbf{x}^{(i-1)})$
- 7: Sample holding time $T_{i-1} \sim \text{Exp}(a_x)$
- 8: end for

where flip($x^{(i-1)}$) flips the state of the transiting neuron.

$$(T_0, (1, 0, 0, 0, 1, 1))\\$$

$$(T_0, (1, 0, 0, 0, 1, 1))$$

 $(T_1, (1, 0, 0, 1, 1, 1))$

$$(T_0, (1, 0, 0, 0, 1, 1))$$

 $(T_1, (1, 0, 0, 1, 1, 1))$
 $(T_2, (1, 0, 0, 1, 1, 0))$

Figure 3: Comparison between the amount of transistors devoted to different functions inside a CPU and a GPU.

Simulating Recurrent Neural Networks on Graphic Processing Units Simulating on GPUs

LATING ON (SPUS		
Control	ALU	ALU	
	ALU	ALU	
Cache			
DRAM			DRAM
(a) CPU			(b) GPU
gure 3: Compai nctions inside a			sunt of translators devoted to different

—Simulating on GPUs

- To simplify quite a bit, think of a GPU as a factory and a CPU as Steven Hawking. Factory workers,
 each represented by a core, can complete lots of easy, similar tasks with incredible efficiency?tasks
 like geometry and shading. On the other hand Mr. Hawking, while incredibly smart and only
 occasionally baffled, is just one man. His skill set is better used on singular, complex problems like
 artificial intelligence.
- DRAM: dynamic random access memory, ALU: arithmetic logic unit, Cache, Control
- trade off control for compute in the form of lots of simple compute units
- GPUs have an explicit programming model; we have to write programs in the way that we utilise as much of the parallel processing as much as possible
- GPUs optimize for throughput, not latency; they are willing to accept increase latency of any single
 individual computation in exchange for more computation being performed per second, the
 computation performed per second is measured by floating point operations per second (FLOPS)

_

REFERENCES

Biological Plausible Deep Learning for Recurrent Spiking Neural
Networks

CSC321: Introduction to Neural Networks and machine Learning *Hopfield nets and simulated annealing*.

https://www.cs.toronto.edu/ hinton/csc321/notes/lec16.pdf

CSC321: Introduction to Neural Networks and machine Learning **Boltzmann Machines as Probabilistic Models.**

https://www.cs.toronto.edu/ hinton/csc321/notes/lec17.pdf

Energy configuration,
$$E = -\sum_{i < j} W_{ij} x_i x_j - \sum_i b_i x_i$$

Energy gap, $\Delta E_i = E(x_i = 0) - E(x_i = 1) = \sum_j W_{ij} x_j + b_i$
Update rule, $x_i := \begin{cases} 1 & \sum_j W_{ij} x_j + b_i \ge 0 \\ 0 & \text{otherwise} \end{cases}$

(1,0,0,0,0,1)

