Cálculo II - Agrupamento 4

2018/19

Ficha de exercícios 4: Funções reais de várias variáveis reais (parte II):

Extremos globais, extremos locais e extremos condicionados

- 1. Considere a função $f(x,y)=x^2+y^2$ no domínio $\mathcal{D}=\{(x,y)\in\mathbb{R}^2:|x|+|y|\leq 1\}.$
 - (a) Esboce graficamente o domínio D.
 - (b) Aplique cuidadosamente o Teorema de Weierstrass para garantir a existência de extremos absolutos de f e determine-os.

[Sugestão:: Relacione f(x,y) com a distância euclideana de (x,y) à origem.]

- 2. Sejam $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4\}$ e $f(x, y, z) = z^2$. O Teorema de Weierstrass garante a existência de extremos absolutos de f em S? Porquê?
- 3. Seja f a função definida em \mathbb{R}^2 por $f(x,y) = -x^2$. Justifique que f possui uma infinidade de maximizantes.
- 4. Considere $f: \mathbb{R}^3 \to \mathbb{R}$ dada por $f(x, y, z) = x^2 + y^2 + z^2$.
 - (a) O Teorema de Weierstrass garante a existência de extremos absolutos de f? Justifique.
 - (b) Justifique, usando diretamente a definição, que (0,0,0) é minimizante de f.
- 5. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x,y) = -\sqrt{x^2 + y^2}$.
 - (a) Mostre que f não é diferenciável em (0,0).
 - (b) Justifique que (0,0) é maximizante absoluto de f.
- 6. Considere a função g(x,y)=y e os conjuntos $\mathcal{A}=\{(x,y)\in\mathbb{R}^2:x^2+y^2<1\}$ e $\mathcal{B}=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq1\}$.
 - (a) Justifique que g possui extremos globais em \mathcal{B} .
 - (b) Identifique os extremantes globais de g em \mathcal{B} .
 - (c) A função g possui extremantes globais em A? Justifique.
- 7. Mostre que a função $h(x,y)=\frac{1}{2}-\mathrm{sen}\,(x^2+y^2)$ não atinge o seu máximo global na origem.
- 8. Determine os pontos críticos das seguintes funções:
 - (a) $f(x,y) = 3xy^2 + x^3 3x$;
 - (b) $f(x,y) = x^2y^3(6-x-y)$;
 - (c) $f(x, y, z) = x^4 + y^4 + z^4 4xyz$.
- 9. Mostre que a função $f(x,y)=(x-1)^2+(y-2)^2-1$ tem apenas um mínimo local e que este ocorre apenas no ponto (1,2).
- 10. Considere a função $f(x,y) = x^2 + 2xy 4(x-2y)$ definida em $\mathcal{D} = [0,1] \times [0,2]$.
 - (a) Diga, justificando, se f possui pontos críticos no interior de \mathcal{D} .
 - (b) Prove a existência de extremos absolutos e determine-os.

- 11. Determine os extremantes locais, e respetivos extremos, das seguintes funções:
 - (a) $f(x,y) = xy e^{-x-y}$;
 - (b) $q(x,y) = x^3 2x^2y x^2 + 4y^2$;
 - (c) $h(x,y) = xy + \frac{1}{x} + \frac{1}{y}$;
 - (d) $w(x, y, z) = xy x + 2z x^2 y^2 z^2$.
- 12. Verifique que (-2,0) e (0,0) são os pontos críticos da função $f(x,y)=3x^2-y^2+x^3$, mas que só o primeiro é extremante de f.
- 13. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = (x-y^3)^2 x^3$.
 - (a) Verifique que (0,0) é ponto crítico de f.
 - (b) Mostre que (0,0) não é extremante local de f.
- 14. Determine os extremos absolutos da função f definida por $f(x,y) = 2x^2 2y^2$ no círculo $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$
- 15. Calcule os extremos globais da função f definida por f(x,y)=xy no semicírculo $\mathcal{D}=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1 \land y\geq 0\}.$
- 16. Determine os pontos da circunferência de equação $x^2 + y^2 = 80$ que estão à menor distância do ponto (1,2) e os pontos da mesma circunferência que estão à maior distância do mesmo ponto.
- 17. Determine o ponto do plano x + 2y + z = 4 que se encontra mais próximo do ponto da origem, usando o método dos multiplicadores de Lagrange. Qual é essa distância?
- 18. Determine os pontos da superfície esférica de equação $x^2 + y^2 + z^2 = 4$ que estão mais próximo e mais distante do ponto (3, 1, -1).
- 19. Suponha que a temperatura num determinado ponto (x, y, z) da superfície esférica de equação $x^2 + y^2 + z^2 = 1$ é dada pela função T(x, y, z) = 30 + 5(x + z). Calcule, justificando, os valores extremos da temperatura.
- 20. Seja f a função definida em $\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : x^2 + (y 2)^2 \le 4\}$ por $f(x, y) = x^2 + (y 1)^2$.
 - (a) Represente geometricamente o domínio \mathcal{D} e o gráfico de f.
 - (b) Determine os pontos críticos da função f no interior do seu domínio.
 - (c) Determine os extremos globais da função f em \mathcal{D} .
- 21. O lucro anual de uma empresa é estimado através da expressão

$$L(x,y) = -x^2 - y^2 + 22x + 18y - 102,$$

onde x representa o montante gasto em investigação e y o montante gasto em publicidade (em milhões de euros). O orçamento anual da empresa prevê um investimento global de 20 milhões de euros para investigação e publicidade. Determine quanto a empresa deve alocar a cada uma dessas atividades de forma a maximizar o lucro. Com estes pressupostos, qual é o lucro máximo?

22. Pretende-se construir uma caixa paralelepipédica reta usando para estrutura (arestas) tubos de aço de forma a se utilizarem 12 metros de tubo, no total. Que dimensões deverá ter o paralelepípedo de forma a se maximizar o volume da caixa? (Negligencie o diâmetro dos tubos).

Soluções

- 1. (a) \mathcal{D} é um losango centrado na origem com os vértices situados nos eixos coordenados.
 - (b) A função é do tipo polinomial, logo contínua no seu domínio de definição \mathbb{R}^2 e, consequentemente, também é contínua em \mathcal{D} . Por outro lado, este conjunto é fechado e limitado. Nestas condições, o Teorema de Weierstrass garante a existência de $\alpha, \beta \in \mathbb{R}$ que são, respetivamente, o menor e o maior valor que f atinge. Observar que f(x,y) expressa o quadrado da distância de um ponto P=(x,y) à origem. Assim, o máximo absoluto é 1, atingido nos pontos (1,0), (0,1), (-1,0) e (0,-1), e o mínimo
- 2. Não. O Teorema de Weierstrass não é aplicável, porque $\mathcal S$ não é fechado.
- 3. Como $f(x,y) = -x^2 \le 0 = f(0,y)$ para todo $(x,y) \in \mathbb{R}^2$, então todos os pontos da forma (0,y), com $y \in \mathbb{R}$, são maximizantes da função.
- 4. (a) Não. O Teorema de Weierstrass não é aplicável, porque \mathbb{R}^3 não é limitado.
 - (b) Como $f(0,0,0)=0 \le x^2+y^2+z^2=f(x,y,z)$ para todo $(x,y,z) \in \mathbb{R}^3$, então (0,0,0) é (o único) minimizante global de f.
- 5. (a) f não é diferenciável em (0,0), porque não existe $f'_x(0,0)$.

absoluto é 0, atingido no ponto (0,0).

- (b) Tem-se $f(x,y) = -\sqrt{x^2 + y^2} \le 0 = f(0,0)$ para todo $(x,y) \in \mathbb{R}^2$. Portanto, (0,0) é (o único) maximizante absoluto de f.
- 6. (a) Como g é contínua e o conjunto \mathcal{B} é fechado e limitado, o Teorema de Weierstrass garante a existência de extremos globais de g em \mathcal{B} .
 - (b) g é diferenciável e não possui pontos críticos no interior de \mathcal{B} , logo os extremantes situam-se na fronteira. Claramente (0, -1) é minimizante global e (0, 1) é maximizante global.
 - (c) Não, pois g é diferenciável no aberto \mathcal{A} e não possui pontos críticos nesse conjunto (notar que $\nabla g(x,y) = (0,1) \neq (0,0)$). Portanto, g não tem extremantes globais em \mathcal{A} (nem em \mathbb{R}^2).
- 7. Na origem a função h vale $\frac{1}{2}$, enquanto que, por exemplo, em $(\sqrt{3\pi/2},0)$ vale $\frac{3}{2}$ que é um valor maior.
- 8. (a) (1,0), (0,1), (-1,0), (0,-1);
 - (b) (2,3) e todos os pontos situados nos eixos coordenados;
 - (c) (0,0,0), (-1,-1,1), (-1,1,-1), (1,-1,-1), (1,1,1).
- 9. Como $(x-1)^2 + (y-2)^2 \ge 0$ então $f(x,y) = (x-1)^2 + (y-2)^2 1 \ge -1$. Ora f(1,2) = -1 e para todo $(x,y) \ne (1,2)$ tem-se $f(x,y) = (x-1)^2 + (y-2)^2 1 \ge -1$.
- 10. (a) O gradiente de f, se considerado no seu domínio de definição, anula-se apenas em (-4,6). No entanto, $(-4,6) \notin \text{int}(\mathcal{D})$. Consequentemente, f não possui pontos críticos em $\text{int}(\mathcal{D}) = [0,1[\times]0,2[$.
 - (b) A existência de extremos absolutos é garantida pelo Teorema de Weierstrass, uma vez que D é fechado e limitado e f é contínua neste conjunto. Os extremos são então atingidos na fronteira (recordar a conclusão obtida na alínea anterior).
 O máximo absoluto de f em D é 17 e é atingido no ponto (1, 2); o mínimo absoluto de f em D é -3 e é atingido no ponto (1,0).
- 11. (a) Os pontos críticos são (0,0) e (1,1). A função f é de classe C^2 em \mathbb{R}^2 . Como $\det(H_f(0,0)) = -1 < 0$, então (0,0) não é extremante (é ponto de sela). Como $\det(H_f(1,1)) = e^{-4} > 0$ e $\frac{\partial^2 f}{\partial x^2}(1,1) = -e^{-2} < 0$, então $f(1,1) = e^{-2}$ é máximo local.
 - (b) Os pontos críticos de g são (0,0), (2,1) e (1,1/4). Aplicando um dos testes da Hessiana, conclui-se que os dois primeiros são pontos de sela e que $(1,\frac{1}{4})$ é minimizante local de g, onde atinge $-\frac{1}{4}$ (mínimo local).

- (c) (1,1) é o único extremante local de h, trata-se de um minimizante e h(1,1)=3 é o respetivo mínimo local.
- (d) Maximizante local: $(-\frac{2}{3}, -\frac{1}{3}, 1)$; Respetivo máximo local: $\frac{4}{3}$
- 12. -
- 13. -
- 14. Tratando-se de uma função contínua definida num conjunto fechado e limitado, o Teorema de Weierstrass garante que f tem extremos globais em \mathcal{D} . (0,0) é o único ponto crítico no interior de \mathcal{D} , mas não é extremante. Usando o método dos multiplicadores de Lagrange identificamos os candidatos (1,0), (-1,0), (0,1) e (0,-1). Calculando o valor de f nestes pontos, conclui-se que o máximo global de f é 2 (atingido nos pontos (1,0) e (-1,0)) e o mínimo global de f é -2 (atingido nos pontos (0,1) e (0,-1)).
- 15. Tratando-se de uma função contínua definida num conjunto fechado e limitado, o Teorema de Weierstrass garante que f tem extremos globais em \mathcal{D} . Não existem pontos críticos no interior de \mathcal{D} (ambas as derivadas parciais anulam-se (0,0), mas este ponto situa-se na fronteira). A fronteira $fr(\mathcal{D})$ é constituída pela semicircunferência \mathcal{D}_1 e pelo segmento de reta \mathcal{D}_2 :

$$\mathcal{D}_1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \land y \ge 0\}; \quad \mathcal{D}_2 = \{(x,y) \in \mathbb{R}^2 : y = 0 \land -1 \le x \le 1\}.$$

Como f é constante em \mathcal{D}_2 (pois f(x,0)=0) todos os pontos situados neste segmento são candidatos a extremantes. Os candidatos em \mathcal{D}_1 são $\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ e $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$ (obtidos através do método dos multiplicadores de Lagrange). Como

$$f\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = -\frac{1}{2}, \quad f\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) = \frac{1}{2}, \quad f(x,0) = 0,$$

o máximo global de f é 1/2 e o mínimo global é -1/2.

- 16. (4,8) é o que se encontra mais próximo (à distância $3\sqrt{5}$) e (-4,-8) é o que se encontra mais afastado (à distância $5\sqrt{5}$).
- 17. $(\frac{2}{3}, \frac{4}{3}, \frac{2}{3})$.
- 18. Aplicando o métodos dos multiplicadores de Lagrange identificamos os pontos

$$\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}}, -\frac{2}{\sqrt{11}}\right)$$
 e $\left(-\frac{6}{\sqrt{11}}, -\frac{2}{\sqrt{11}}, \frac{2}{\sqrt{11}}\right)$.

O primeiro é o mais próximo e o segundo ponto é o mais distante.

- 19. $\left(-\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right)$ é minimizante absoluto e $\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$ é maximizante absoluto. Assim, a temperatura mínima é de $T\left(-\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}}\right) \simeq 22,93$ e a temperatura máxima é de $T\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right) \simeq 37,07$.
- 20. (a) -
 - (b) (0,1).
 - (c) f(0,1) = 0 é mínimo global e f(0,4) = 9 é máximo global.
- 21. O lucro máximo da empresa é 100 (milhões de euros), sendo atingido com um gasto de 11 em investigação e de 9 em publicidade.
- 22. A estrutura deve ser cúbica com aresta de 1 metro.