Post-Quantum Cryptography

Gaurav S. Kasbekar

Dept. of Electrical Engineering

IIT Bombay

NPTEL

References

- C. Kaufman, R. Perlman, M. Speciner, R. Perlner, "Network Security: Private Communication in a Public World", Pearson Education, 3rd edition, 2023
- W. Stallings, "Cryptography and Network Security", 8th edition, Pearson Education, 2023

NPTEL

Quantum Computer

•	Computer that exploits quantum mechanical phenomena
•	A scalable quantum computer expected to be able to perform some calculations exponentially faster than classical computers, e.g.:
	factoring large products of prime numbers,
	unstructured search
•	Common misconception:
	quantum computer is faster than a classical computer,
	since Moore's law is slowing down, eventually all classical computers will be replaced by quantum computers
•	Above is not true:
	there is only a narrow set of problems for which a quantum computer would be faster
•	Property of a quantum computer that makes it excel at some tasks is that: \Box it can compute, with only storage size n , as if it were operating on 2^n values in parallel
•	However, it also has serious limitations, e.g.:
	if you read/ measure the state, you will see only one value and the others disappear
•	A typical quantum program tries to ensure that:
	the quantum computation it performs raises the probability that when you finally measure a result, it will be a useful value

Quantum Computer (contd.)

 Another common misconception: quantum computer can solve NP-hard problems (e.g., traveling salesperson problem, set cover problem) in polynomial time Above is almost certainly not true: ☐ although nobody has proved that it is impossible, no known quantum algorithm for solving such problems is that powerful Although, in principle, a quantum computer can do any calculation that a classical computer can do: ☐ for most calculations, quantum computers would be no faster than conventional computers Also, in practice, quantum computers are likely to be much more expensive to build and operate • e.g., most designs would need to operate at temperatures very close to absolute zero So it is not likely that quantum computers will ever serve more than a small niche market Instead of bits, a quantum computer uses *qubits*, where a qubit's state can be a mixture of a 0 and a 1 ☐ known as superposition

Quantum Algorithms Relevant to Cryptography

- Grover's algorithm:
 - ☐ Makes brute-force search faster
 - ☐ E.g., in encryption or hashes, a brute-force search can find a key or pre-image
 - ☐ Can do brute-force search in the square root of the time it would take on a classical computer, e.g.:
 - \circ assume that we want to know which n-bit secret key k encrypts plaintext m to ciphertext c
 - on a classical computer, we could try all possible $(N=2^n)$ keys, and in the average case (respectively, worst case), it would take $\frac{N}{2}$ (respectively, N) guesses to find the right key
 - o on a quantum computer running Grover's algorithm, the number of iterations to get n qubits into a state where it is very probable that the state will be read as the key k is proportional to $\sqrt{N} = 2^{n/2}$
 - □ Squaring the size of the space being searched (e.g., using an encryption key twice as long) is adequate to protect against Grover's algorithm

Quantum Algorithms Relevant to Cryptography (contd.)

•	Shor's algorithm:
	☐ Can efficiently factor numbers and calculate discrete logs
	☐ If run on a sufficiently large quantum computer, would break all our widely used public key algorithms (e.g., RSA, Diffie-Hellman)
	□ Currently, no quantum computer large enough to break the currently deployed public keys has ever been publicly demonstrated
	☐ There are a number of difficult engineering challenges that remain, and it may never be economically viable to overcome them
	☐ But because such a computer might be possible, it is important to convert to quantum-safe public key algorithms well before a quantum computer of sufficient size might exist
	☐ The cryptographic community is actively developing and standardizing such algorithms

Post-Quantum Cryptography

- Replacement algorithms for existing public key algorithms are being developed, which
 not even a combination of classical and quantum computers will be able to break in
 reasonable time
- These algorithms known as:
 - Quantum-resistant,
 - Quantum-safe, or
 - ☐ Post-quantum cryptography
- It is important to start migrating away from the current public key algorithms well before a sufficiently large quantum computer might exist
- National Institute of Standards and Technology (NIST):
 - has played an important role in standardization of cryptography (e.g., AES and SHA),
 - and is playing an important role in the standardization of post-quantum algorithms
- In late 2017 (the deadline for submissions), NIST received about 80 proposed schemes
- Several rounds were conducted, where in each round, some algorithms are discarded and others are studied closely
- On August 13, 2024, the U.S. National Institute of Standards and Technology (NIST) released final versions of its first three Post Quantum Cryptographic Standards
- Four of the best-known families of schemes are:
 - ☐ Hash-based cryptography,
 - ☐ Lattice-based cryptography,
 - ☐ Code-based cryptography, and
 - ☐ Multivariate cryptography

Post-Quantum Cryptography (contd.)

- Hash-based signatures:
 - ☐ These are digital signatures constructed using cryptographic hash functions
- Lattice-based cryptography:
 - ☐ These schemes involve the construction of primitives that involve lattices
- Code-based cryptography:
 - ☐ These schemes are based on error-correcting codes
- Multivariate cryptography:
 - ☐ These schemes are based on the difficulty of solving systems of multivariate polynomials over finite fields

Post-Quantum Cryptography (contd.)

- Recall: quantum computing poses a threat to current public key algorithms
- In contrast, most current symmetric cryptographic algorithms and hash functions are considered to be relatively secure against attacks by quantum computers
- While Grover's algorithm does speed up attacks against symmetric ciphers, doubling the key size can effectively block these attacks
- Thus, post-quantum symmetric key cryptography does not need to differ significantly from current symmetric key cryptography