3节电池串联用电池保护IC

S-8233A系列

S-8233A系列内置了高精度电压检测电路和延迟电路,是用于锂离子可充电电池的保护IC。

本IC最适合在3节串联锂离子可充电电池组上使用。

■ 特点

- (1) 内置高精度电压检测电路
 - 过充电检测电压 4.10 ±0.05 V ~ 4.35 ±0.05 V 进阶单位为50 mV
 - 过充电解除电压 3.85 ±0.10 V ~ 4.35 ±0.10 V 进阶单位为50 mV (过充电解除电压与过充电检测电压的差可在0 V ~ 0.3 V的范围内选择)
 - 过放电检测电压 2.00 ±0.08 V ~ 2.70 ±0.08 V 进阶单位为100 mV
 - 过放电解除电压
 2.00 ±0.10 V ~ 3.70 ±0.10 V 进阶单位为100 mV
 (过放电解除电压与过放电检测电压的差可在0 V ~ 1.0 V的范围内选择)
 - 过电流检测电压1 0.15 ±0.015 V ~ 0.5 ±0.05 V 进阶单位为50 mV
- (2) 耐高压元件 (绝对最大额定值 26 V)
- (3) 宽工作电压范围 2 V ~ 24 V
- (4) 可通过外接电容设置各种检测时的延迟时间
- (5) 3段过电流检测(负载短路时的保护)
- (6) 内置通过控制端子的充放电禁止电路
- (7) 可选择电池电压0 V开始的充电功能
- (8) 低消耗电流
 - 工作时 50 μA 最大值 (+25 °C)
 休眠时 0.1 μA 最大值 (+25 °C)
- (9) 无铅产品

■ 用途

- 锂离子可充电电池组
- 锂聚合物可充电电池组

■ 封装

封装名		图面号码	
封衣 有	封装图面	卷带图面	带卷图面
14-Pin SOP	FE014-A	FE014-A	FE014-A
16-Pin TSSOP	FT016-A	FT016-A	FT016-A

■ 框图

备注 过电流检测2、3的延迟时间被IC内部的电路固定。不能通过外接电容使延迟时间 产生变化。

图1

■ 产品型号的构成

1. 产品名

*1. 请参阅卷带图。

2. 产品名目录

• 14-Pin SOP

表1

			7C 1			
产品名 / 项目	过充电检测电压 V _{CU}	过充电解除电压 V _{CD}	过放电检测电压 V _{DD}	过放电解除电压 V _{DU}	过电流检测电压1 V _{IOV}	向0 V电池 充电功能
S-8233ACFE-TB-G	4.25 ±0.05 V	4.05 ±0.10 V	2.00 ±0.08 V	2.30 ±0.10 V	0.20 ±0.02 V	_
S-8233ADFE-TB-G	4.10 ±0.05 V	4.10 ^{*1}	2.00 ±0.08 V	2.30 ±0.10 V	0.20 ±0.02 V	_
S-8233AEFE-TB-G	4.25 ±0.05 V	4.10 ±0.10 V	2.30 ±0.08 V	2.70 ±0.10 V	0.15 ±0.015 V	_
S-8233AFFE-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.50 ±0.05 V	可能
S-8233AGFE-TB-G	4.25 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.40 ±.0.04 V	可能
S-8233AIFE-TB-G	4.25 ±0.05 V	4.10 ±0.10 V	2.30 ±0.08 V	3.00 ±0.10 V	0.15 ±0.015 V	_
S-8233AJFE-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.30 ±0.03 V	_
S-8233AKFE-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.15 ±0.015 V	_
S-8233ALFE-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.40 ±0.04 V	可能
S-8233AMFE-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.30 ±0.03 V	可能
S-8233ANFE-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.40 ±0.10 V	0.15 ±0.015 V	可能
S-8233AOFE-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.15 ±0.015 V	可能
S-8233APFE-TB-G	4.25 ±0.05 V	4.05 ±0.10 V	2.70 ±0.08 V	3.00 ±0.10 V	0.30 ±0.03 V	可能
S-8233AQFE-TB-G	4.25 ±0.05 V	4.25 ^{*1}	2.70 ±0.08 V	3.00 ±0.10 V	0.30 ±0.03 V	可能

^{*1.} 无过充电检测滞后。

备注 用户希望上述产品以外检测电压的产品的情况下,请与本公司的营业部门咨询。

• 16-Pin TSSOP

表2

产品名 / 项目	过充电检测电压 V _{CU}	过充电解除电压 V _{CD}	过放电检测电压 V _{DD}	过放电解除电压 V _{DU}	过电流检测电压1 V _{IOV}	向0 V电池 充电功能
S-8233ACFT-TB-G	4.25 ±0.05 V	4.05 ±0.10 V	2.00 ±0.08 V	2.30 ±0.10 V	0.20 ±0.02 V	_
S-8233ADFT-TB-G	4.10 ±0.05 V	4.10 ^{*1}	2.00 ±0.08 V	2.30 ±0.10 V	0.20 ±0.02 V	_
S-8233AEFT-TB-G	4.25 ±0.05 V	4.10 ±0.10 V	2.30 ±0.08 V	2.70 ±0.10 V	0.15 ±0.015 V	_
S-8233AFFT-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.50 ±0.05 V	可能
S-8233AGFT-TB-G	4.25 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.40 ±.0.04 V	可能
S-8233AIFT-TB-G	4.25 ±0.05 V	4.10 ±0.10 V	2.30 ±0.08 V	3.00 ±0.10 V	0.15 ±0.015 V	_
S-8233AJFT-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.30 ±0.03 V	_
S-8233AKFT-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.15 ±0.015 V	_
S-8233ALFT-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.40 ±0.04 V	可能
S-8233AMFT-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.30 ±0.03 V	可能
S-8233ANFT-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.40 ±0.10 V	0.15 ±0.015 V	可能
S-8233AOFT-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.15 ±0.015 V	可能
S-8233APFT-TB-G	4.25 ±0.05 V	4.05 ±0.10 V	2.70 ±0.08 V	3.00 ±0.10 V	0.30 ±0.03 V	可能
S-8233ARFT-TB-G	4.35 ±0.05 V	4.05 ±0.10 V	2.00 ±0.08 V	2.70 ±0.10 V	0.30 ±0.03 V	可能
S-8233ASFT-TB-G	4.25 ±0.05 V	4.05 ±0.10 V	2.40 ±0.08 V	2.70 ±0.10 V	0.50 ±0.05 V	可能

^{*1.} 无过充电检测滞后。

备注 用户希望上述产品以外检测电压的产品的情况下,请与本公司的营业部门咨询。

■ 引脚排列图

表3

引脚号	符号	描述
1	DOP	放电控制用FET门极连接端子(CMOS输出)
2	COP	充电控制用FET门极连接端子(Nch开路漏极输出)
3	VMP	VCC-VMP间的电压检测端子(过电流检测端子)
4	COVT	过电流检测1延迟用电容连接端子
5	CDT	过放电检测延迟用电容连接端子
6	CCT	过充电检测延迟用电容连接端子
7	VSS	负电源输入端子、电池3的负电压连接端子
8	CTL	充放电控制信号的输入端子
9	CD3	电池3的状态信号输出端子
10	VC2	电池2的负电压、电池3的正电压连接端子
11	CD2	电池2的状态信号输出端子
12	VC1	电池1的负电压、电池2的正电压连接端子
13	CD1	电池1的状态信号输出端子
14	VCC	正电源输入端子、电池1的正电压连接端子

表4

	Pin TSSOP op view
DOP NC 2 COP 3 VMP 4 COVT 5 CDT 6 CCT 7 VSS 8	16 VCC 15 NC 14 CD1 13 VC1 12 CD2 11 VC2 10 CD3 9 CTL
	图3

		表4
引脚号	符号	描述
1	DOP	放电控制用FET门极连接端子(CMOS输出)
2	NC	无连接 ^{*1}
3	COP	充电控制用FET门极连接端子(Nch开路漏极输出)
4	VMP	VCC-VMP间的电压检测端子(过电流检测端子)
5	COVT	过电流检测1延迟用的电容连接端子
6	CDT	过放电检测延迟用的电容连接端子
7	CCT	过充电检测延迟用的电容连接端子
8	VSS	负电源输入端子、电池3的负电压连接端子
9	CTL	充放电控制信号的输入端子
10	CD3	电池3的状态信号输出端子
11	VC2	电池2的负电压、电池3的正电压连接端子
12	CD2	电池2的状态信号输出端子
13	VC1	电池1的负电压、电池2的正电压连接端子
14	CD1	电池1的状态信号输出端子
15	NC	无连接 ^{*1}
16	VCC	正电源输入端子、电池1的正电压连接端子

*1. NC表示从电气的角度而言处于开路状态。 所以,与VCC或VSS连接均无问题。

■ 绝对最大额定值

表5

(除特殊注明以外: Ta=25°C)

	项目	记号	适用端子	绝对最大额定值	单位
VCC - VSS	S间输入电压	V_{DS}	_	V _{SS} -0.3 ~ V _{SS} +26	V
输入端子电	L压	V _{IN}	VC1, VC2, CTL, CCT, CDT, COVT	V_{SS} -0.3 ~ V_{CC} +0.3	٧
VMP输入端	岩子电压	V_{VMP}	VMP	V_{SS} -0.3 ~ V_{SS} +26	V
CD1输出端	子电压	V_{CD1}	CD1	V_{C1} -0.3 ~ V_{CC} +0.3	V
CD2输出端	子电压	V_{CD2}	CD2	V_{C2} -0.3 ~ V_{CC} +0.3	V
CD3输出端	子电压	V_{CD3}	CD3	V_{SS} -0.3 ~ V_{CC} +0.3	V
DOP输出端	岩子电压	V_{DOP}	DOP	V_{SS} -0.3 ~ V_{CC} +0.3	٧
COP输出站	岩子电压	V_{COP}	COP	V_{SS} -0.3 ~ V_{SS} +26	٧
	14-Pin SOP		_	400 (基板未安装时)	mW
容许功耗	14-2111 302	P _D	_	1200 ^{*1}	mW
合计切杙	16-Pin TSSOP		_	300 (基板未安装时)	mW
			_	1100 ^{*1}	mW
工作环境温	· l度	T _{opr}	_	−20 ~ +70	°C
保存温度		T_{stg}	_	−40 ~ +125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm×76.2 mm×t1.6 mm

(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品 劣化等物理性的损伤。

图4 封装容许功耗 (基板安装时)

■ 电气特性

表6 (1/2)

(除特殊注明以外: Ta=25°C)

						(いいつい)	注明以外.	14-25 O
项目	记号	条件	最小值	典型值	最大值	单位	测定条件	测定电路
检测电压								
过充电检测电压1	V _{CU1}	4.10~4.35 V可调整	V _{CU1} -0.05	V _{CU1}	V _{CU1} +0.05	V	1	1
过充电解除电压1	V _{CD1}	3.85~4.35 V可调整	V _{CD1} -0.10	V _{CD1}	V _{CD1} +0.10	V	1	1
过放电检测电压1	V_{DD1}	2.00~2.70 V可调整	V _{DD1} -0.08	V_{DD1}	V _{DD1} +0.08	V	1	1
过放电解除电压1	V _{DU1}	2.00~3.70 V可调整	V _{DU1} -0.10	V_{DU1}	V _{DU1} +0.10	V	1	1
过充电检测电压2	V _{CU2}	4.10~4.35 V可调整	V _{CU2} -0.05	V_{CU2}	V _{CU2} +0.05	V	2	1
过充电解除电压2	V_{CD2}	3.85~4.35 V可调整	V _{CD2} -0.10	V_{CD2}	V _{CD2} +0.10	V	2	1
过放电检测电压2	V_{DD2}	2.00~2.70 V可调整	V _{DD2} -0.08	V_{DD2}	V _{DD2} +0.08	V	2	1
过放电解除电压2	V _{DU2}	2.00~3.70 V可调整	V _{DU2} -0.10	V_{DU2}	V _{DU2} +0.10	V	2	1
过充电检测电压3	V _{CU3}	4.10~4.35 V可调整	V _{CU3} -0.05	V _{CU3}	V _{CU3} +0.05	V	3	1
过充电解除电压3	V _{CD3}	3.85~4.35 V可调整	V _{CD3} -0.10	V _{CD3}	V _{CD3} +0.10	V	3	1
过放电检测电压3	V_{DD3}	2.00~2.70 V可调整	V _{DD3} -0.08	V_{DD3}	V _{DD3} +0.08	V	3	1
过放电解除电压3	V _{DU3}	2.00~3.70 V可调整	V _{DU3} -0.10	V_{DU3}	V _{DU3} +0.10	V	3	1
过电流检测电压1 ^{*1}	V _{IOV1}	0.15~0.50 V可调整	V _{IOV1} x 0.9	V _{IOV1}	V _{IOV1} x 1.1	V	4	2
过电流检测电压2	V _{IOV2}	Vcc基准	0.54	0.6	0.66	V	4	2
过电流检测电压3	V _{IOV3}	V _{SS} 基准	1.0	2.0	3.0	V	4	2
电压温度系数1 ^{*2}	T _{COE1}	Ta=-20 ~ 70°C*4	-1.0	0	1.0	mV/°C	_	_
电压温度系数2 ^{*3}	T _{COE2}	Ta=-20 ~ 70°C*4	-0.5	0	0.5	mV/°C	_	_
延迟时间	•		•	•	•	•	•	•
过充电检测延迟时间1	t _{CU1}	C _{CCT} =0.47 μF	0.5	1.0	1.5	s	9	6
过充电检测延迟时间2	t _{CU2}	C _{CCT} =0.47 μF	0.5	1.0	1.5	s	10	6
过充电检测延迟时间3	t _{CU3}	C _{CCT} =0.47 μF	0.5	1.0	1.5	s	11	6
过放电检测延迟时间1	t _{DD1}	C _{CDT} =0.1 μF	20	40	60	ms	9	6
过放电检测延迟时间2	t _{DD2}	C _{CDT} =0.1 μF	20	40	60	ms	10	6
过放电检测延迟时间3	t _{DD3}	C _{CDT} =0.1 μF	20	40	60	ms	11	6
过电流检测延迟时间1	t _{IOV1}	C _{COVT} =0.1 μF	10	20	30	ms	12	7
过电流检测延迟时间2	t _{IOV2}	_	2	4	8	ms	12	7
过电流检测延迟时间3	t _{IOV3}	FET门极电容=2000 pF	100	300	550	μs	12	7
工作电压								
VCC-VSS间工作电压*5	V _{DSOP}	_	2.0	_	24	V	_	_
消耗电流								
通常工作消耗电流	I _{OPE}	V1=V2=V3=3.5 V	_	20	50	μΑ	5	3
节2消耗电流	I _{CELL2}	V1=V2=V3=3.5 V	-300	0	300	nA	5	3
节3消耗电流	I _{CELL3}	V1=V2=V3=3.5 V	-300	0	300	nA	5	3
休眠时消耗电流	I _{PDN}	V1=V2=V3=1.5 V	_	_	0.1	μΑ	5	3
内部电阻值				_				_
VCC-VMP间电阻	R _{VCM}	V1=V2=V3=3.5 V	0.40	0.90	1.40	MΩ	6	3
VOO-VIVII 向电阻	INVCM	V1=V2=V3=3.5 V*6	0.20	0.50	0.80	MΩ	6	3
VSS-VMP间电阻	R _{VSM}	V1=V2=V3=1.5 V	0.40	0.90	1.40	MΩ	6	3
V OO-V IVIF PI 电阻	NVSM	V1=V2=V3=1.5 V*6	0.20	0.50	0.80	MΩ	6	3
输入电压								
CTL"H"输入电压	$V_{\text{CTL(H)}}$	_	V _{CC} x 0.8	_	_	V	_	_
CTL"L"输入电压	V _{CTL(L)}	_	_	_	V _{CC} x 0.2	V	_	_

表6 (2/2)

(除特殊注明以外: Ta=25°C)

						(1.3.1.3.41)	12 17 17 17 1	
项目	记号	条件	最小值	典型值	最大值	单位	测定条件	测定电路
输入电压						_		
DOP"H"电压	$V_{\text{DO(H)}}$	I _{OUT} =10 μA	V _{CC} -0.5	_	_	V	7	4
DOP"L"电压	$V_{DO(L)}$	I _{OUT} =10 μA	_	_	V _{SS} +0.1	V	7	4
COP"L"电压	$V_{CO(L)}$	I _{OUT} =10 μA	_	_	V _{SS} +0.1	V	8	5
COP非泄漏电流	I _{COL}	V1=V2=V3=4.5 V	_	_	100	nA	14	9
CD1"H"电压	V _{CD1(H)}	I _{OUT} =0.1 μA	V _{CC} -0.5	_	_	V	13	8
CD1"L"电压	$V_{CD1(L)}$	I _{OUT} =10 μA	_	_	V _{C1} +0.1	V	13	8
CD2"H"电压	V _{CD2(H)}	I _{OUT} =0.1 μA	V _{CC} -0.5	_	_	V	13	8
CD2"L"电压	V _{CD2(L)}	I _{OUT} =10 μA	_	_	V _{C2} +0.1	V	13	8
CD3"H"电压	V _{CD3(H)}	I _{OUT} =0.1 μA	V _{CC} -0.5	_	_	V	13	8
CD3"L"电压	V _{CD3(L)}	I _{OUT} =10 μA	_	_	V _{SS} +0.1	V	13	8
向0 V电池充电功能			•	•	•	•	•	•
向0 V充电开始电压	V_{0CHAR}	_*6	_	_	1.4	V	15	10

^{*1.} 在过电流检测电压1为0.50 V的情况下,过电流检测电压1与过电流检测电压2在0.54 V ~ 0.55 V范围内会发生重复,务必变为 V_{IOV2} > V_{IOV1} 。

8

^{*2.} 电压温度系数1表示过充电检测电压、过充电解除电压、过放电检测电压、过放电解除电压。

^{*3.} 电压温度系数2表示过电流检测电压。

^{*4.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

^{*5.} 工作电压在DOP、COP的逻辑已经成立的情况下为前提。

^{*6.} 适用于向0 V电池充电功能可能的产品。

■ 测定电路

(1) 测定条件1 测定电路1

在通常状态下,V1=V2=V3=3.5 V设置后,V1从3.5 V开始缓慢提升到COP="H"时V1的电压即为过充电检测电压1(V_{CU1}),之后V1缓慢降低到COP="L"时V1的电压即为过充电解除电压1(V_{CD1})。再接着,V1缓慢降低到DOP="H"时V1的电压即为过放电检测电压1(V_{DD1})。之后,V1缓慢提升到DOP="L"时V1的电压即为过放电解除电压1(V_{DU1})。

备注 电压的变化速度在150 V/s以下。

(2) 测定条件2 测定电路1

在通常状态下,V1=V2=V3=3.5 V设置后,V2从3.5 V开始缓慢提升到COP="H"时V2的电压即为过充电检测电压2(V_{CU2}),之后V2缓慢降低到COP="L"时V2的电压即为过充电解除电压2(V_{CD2})。再接着,V2缓慢降低到DOP="H"时V2的电压即为过放电检测电压2(V_{DD2})。之后,V2缓慢提升到DOP="L"时V2的电压即为过放电解除电压2(V_{DU2})。

备注 电压的变化速度在150 V/s以下。

(3) 测定条件3 测定电路1

在通常状态下,V1=V2=V3=3.5 V设置后,V3从3.5 V开始缓慢提升到COP="H"时V3的电压即为过充电检测电压3(V_{CU3}),之后V3缓慢降低到COP="L"时V3的电压即为过充电解除电压3(V_{CD3})。再接着,V3缓慢降低到DOP="H"时V3的电压即为过放电检测电压3(V_{DD3})。之后,V3缓慢提升到DOP="L"时V3的电压即为过放电解除电压3(V_{DU3})。

备注 电压的变化速度在150 V/s以下。

(4) 测定条件4 测定电路2

在通常状态下,V1=V2=V3=3.5 V、设置V4为0 V。V4从0 V开始缓慢提升到DOP="H",COP="H"时V4电压即为过电流检测电压1(V_{IOV1})。

在通常状态下,V1=V2=V3=3.5 V、设置V4为0 V。COVT端子固定在 V_{SS} ,V4从0 V开始缓慢提升到 DOP="H",COP="H"时V4电压即为过电流检测电压2(V_{IOV2})。

在通常状态下,V1=V2=V3=3.5 V、设置V4为0 V。COVT端子固定在V_{SS},V4从0 V开始以400 μs以上2 ms以下的速度上升至DOP="H",COP="H"时V4电压即为过电流检测电压3(V_{IOV3})。

(5) 测定条件5 测定电路3

通常状态下,在S1=ON、V1=V2=V3=3.5 V、设置V4为0 V后的状态下测量各种消耗电流。I1为通常状态消耗电流(I_{OPE}),I2为节2消耗电流(I_{CELL2}),I3为节3消耗电流(I_{CELL3})。

过放电状态下,在S1=ON、V1=V2=V3=1.5 V、V4=4.5 V设置后的状态下的消耗电流I1为休眠时消耗电流 $(I_{PDN})_{\circ}$

(6) 测定条件6 测定电路3

通常状态下,在S1=ON、V1=V2=V3=3.5 V、V4=10.5 V设置后的状态下,V4/I4为VCC-VMP间内部电阻 (R_{VCM})。

过放电状态下,在S1=ON、V1=V2=V3=1.5 V、V4=4.1 V设置后的状态下,(4.5 – V4)/I4为VSS–VMP间内部电阻(R_{VSM})。

(7) 测定条件7 测定电路4

通常状态下,在S1=ON、S2=OFF、V1=V2=V3=3.5 V、V4=0 V设置后的状态下,V5=0 V开始缓慢提升, $I1=10~\mu$ A流经时的V5电压即为DOP"L"电压($V_{DO(L)}$)。

过电流状态下,在S1=OFF、S2=ON、V1=V2=V3=3.5 V、V4= V_{IOV2} +0.1 V设置后的状态下,V6=0 V开始缓慢提升,I2=10 μ A流经时的V6电压即为DOP"H"电压($V_{DO(H)}$)。

(8) 测定条件8 测定电路5

通常状态下,在V1=V2=V3=3.5 V、V4=0 V设置后的状态下,V5=0 V开始缓慢提升,I1=10 μ A流经时的 V5电压即为COP"L"电压($V_{CO(L)}$)。

(9) 测定条件9 测定电路6

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V1从3.5 V开始瞬间(10 μ s以内)提升到4.5 V,从V1变为4.5 V开始,COP变为"H"为止的时间即为过充电检测延迟时间1(t_{CU1})。

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V1从3.5 V开始瞬间(10 μ s以内)下降到1.9 V,从V1变为1.9 V开始,DOP变为"H"为止的时间即为过放电检测延迟时间1(t_{DD1})。

(10) 测定条件10 测定电路6

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V2从3.5 V开始瞬间(10 μs以内)提升到4.5 V,从V2变为4.5 V开始,COP变为"H"为止的时间即为过充电检测延迟时间2(t_{CU2})。

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V2从3.5 V开始瞬间(10 μ s以内)下降到1.9 V,从V2变为1.9 V开始,DOP变为"H"为止的时间即为过放电检测延迟时间2(t_{DD2})。

(11) 测定条件11 测定电路6

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V3从3.5 V开始瞬间(10 μ s以内)提升到4.5 V,从V3变为4.5 V开始,COP变为"H"为止的时间即为过充电检测延迟时间3(t_{CU3})。

通常状态下,在V1=V2=V3=3.5 V设置后的状态下,V3从3.5 V开始瞬间(10 μ s以内)下降到1.9 V,从V3变为1.9 V开始,DOP变为"H"为止的时间即为过放电检测延迟时间3(t_{DD3})。

(12) 测定条件12 测定电路7

通常状态下,在V1=V2=V3=3.5 V、S1=OFF设置后的状态下,V4从0 V开始瞬间(10 μs以内)提升到0.55 V,从V4变为0.55 V开始,DOP变为"H"为止的时间即为过电流检测延迟时间1(t_{IOV1})。

通常状态下,在V1=V2=V3=3.5 V、S1=OFF设置后的状态下,V4从0 V开始瞬间(10 μs以内)提升到0.75 V,从V4变为0.75 V开始,DOP变为"H"为止的时间即为过电流检测延迟时间2(t_{IOV2})。

S1=ON时禁止过放电检测,在V1=V2=V3=4.0 V设置后的状态下,V4从0 V开始瞬间(1 μ s以内)提升到6.0 V,同时下降V1=V2=V3=2.0 V。从V4变为6.0 V开始,DOP变为"H"为止的时间即为过电流检测延迟时间 3(t_{IOV3})。

(13) 测定条件13 测定电路8

通常状态下,在S4=ON、S1=S2=S3=S5=S6=OFF、V1=V2=V3=3.5 V、V4=V6=V7=0 V设置后的状态下,V5从0 V开始缓慢提升,I2=10 μA流经时的V5电压即为CD1"L"电压(V_{CD1(L)})。

通常状态下,在S5=ON、S1=S2=S3=S4=S6=OFF、V1=V2=V3=3.5 V、V4=V5=V7=0 V设置后的状态下,V6从0 V开始缓慢提升,I3=10 μ A流经时的V6电压即为CD2"L"电压($V_{CD2(L)}$)。

通常状态下,在S6=ON、S1=S2=S3=S4=S5=OFF、V1=V2=V3=3.5 V、V4=V5=V6=0 V设置后的状态下,V7从0 V开始缓慢提升,I4=10 μA流经时的V7电压即为CD3"L"电压(V_{CD3(L)})。

过充电状态下,在S1=ON、S2=S3=S4=S5=S6=OFF、V1=4.5 V、V2=V3=3.5 V、V5=V6=V7=0 V设置后的状态下,V4从0 V开始缓慢提升,I1=0.1 μA流经时的V4电压即为CD1"H"电压(V_{CD1(H)})。

过充电状态下,在S2=ON、S1=S3=S4=S5=S6=OFF、V2=4.5 V、V1=V3=3.5 V、V5=V6=V7=0 V设置后的状态下,V4从0 V开始缓慢提升,I1=0.1 μ A流经时的V4电压即为CD2"H"电压(V_{CD2(H)})。

过充电状态下,在S3=ON、S1=S2=S4=S5=S6=OFF、V3=4.5 V、V1=V2=3.5 V、V5=V6=V7=0 V设置后的状态下,V4从0 V开始缓慢提升,I1=0.1 μ A流经时的V4电压即为CD3"H"电压(V_{CD3(H)})。

(14) 测定条件14 测定电路9

在过充电状态下,设置V1=V2=V3=4.5 V,流入COP端子的电流I1即为COP非泄漏电流(Icol)。

(15) 测定条件15 测定电路10

在V1=V2=V3=0 V、V8=2 V设置后的状态下,V8缓慢下降,COP="H" (V_{SS}+0.1 V以上)时的V8电压即为向 0 V充电开始电压(V_{OCHAR})。

测定电路1

测定电路3

 $1\ \text{M}\Omega$ COP VCC VMP V1 D CD1 CTL VC1 CCT 2 V2 S-8233A CD2 CDT & V3 CD3 COVT VSS 测定电路2

测定电路6

图5 (1/2)

图5 (2/2)

■ 工作说明

备注 请参阅"电池保护IC的连接例"。

通常状态

本IC可以监视被串联连接的3个电池的各种电压与放电电流,控制充放电。3个电池电压的总数在过放电检测电压(V_{DD})以上并且在过充电检测电压(V_{CU})以下,流经电池的电流在所定值以下(VMP端子的电压在过电流检测电压1以下)的情况下,充电用的FET和放电用的FET变为ON,可自由地进行充放电。这种状态称为通常状态。在通常状态下,VMP端子与VCC端子之间通过R_{VCM}的电阻而被短路。

过电流状态

本IC准备了3段的过电流检测电压值(V_{IOV1} , V_{IOV2} , V_{IOV3})和对应各自的过电流检测电压的过电流检测延迟时间(t_{IOV1} , t_{IOV2} , t_{IOV3})。

在通常状态的放电中,放电电流在所定值以上(VMP端子的电压在过电流检测电压以上),并且这种状态保持在过电流检测延迟时间(t_{IOV})以上的情况下,放电用FET变为OFF,放电被停止。这种状态称为过电流状态。在过电流状态时,VMP端子与VCC端子之间,通过R_{VCM}的电阻而被短路。另外,充电用FET也变为OFF。

在放电用的FET变为OFF,负载被连接的期间,VMP端子的电压变为Vss电位。

从过电流状态的恢复,通过解除负载等手段,EB-端子与EB+端子之间(参阅**图9**)的阻抗在100 M Ω 以上时进行。解除了负载,因为VMP端子与VCC端子之间通过R $_{VCM}$ 的电阻被短路的缘故,恢复回V $_{CC}$ 电位。本IC在检测到VMP端子电位回到过电流检测电压1(V $_{IOV1}$)以下时(COVT端子固定在"L"电位,过电流检测1被禁止的情况下,过电流检测电压2(V $_{IOV2}$)以下),恢复回通常状态。

过充电状态

在通常状态的充电中,任意1个电池的电压超过过充电检测电压(V_{CU}),且这种状态保持在过充电检测延迟时间(t_{CU})以上的情况下,充电用的FET变为OFF,充电被停止。这种状态称为过充电状态。这时,在超过过充电检测电压(V_{CU})的电池电压变为过充电解除电压(V_{CD})以下为止,对应超过过充电检测电压的电池的状态端子输出"H"电位。通过外接Nch FET,可使此电池进行放电。放电电流可通过插入电阻R11、R12、R13进行限制(参阅**图9**)。在过充电状态时,VMP端子与VCC端子之间通过R_{VCM}的电阻而被短路。过充电状态的解除有以下的2种情况。

- <1> 超过过充电检测电压(V_{CU})的电池的电压,下降到过充电解除电压(V_{CD})以下时,充电用的FET变为ON,恢复到通常状态。
- <2> 超过过充电检测电压(V_{CU})的电池的电压,即使是在过充电解除电压(V_{CD})以上,只要取掉充电器而连接 负载开始放电时,充电用的FET变为ON,恢复到通常状态。

解除工作的机械原理为,在连接负载开始放电之后,因为放电电流经充电用FET的内部寄生二极管而流入的缘故,在瞬间VMP端子从VCC端子开始下降约0.6 V。IC通过检测这个电压(过电流检测电压1以上),解除过充电状态而回到通常状态。

过放电状态

在通常状态的放电中,任意1个电池的电压在过放电检测电压(V_{DD})以下,且此种状态保持在过放电检测延迟时间(t_{DD})以上的情况下,放电用的FET变为OFF,放电被停止。这种状态称为过放电状态。放电用的FET变为OFF时,VMP端子电压变为V_{SS}电位,IC的消耗电流在休眠时消耗电流(I_{PDN})以下。这种状态称为休眠状态。在过放电状态以及休眠状态下,VMP端子与VSS端子之间通过R_{VSM}的电阻而被短路。

从休眠状态的解除,可通过连接充电器,使VMP-VSS间电压变为3.0 V以上(过电流检测电压3)时而进行。 从这种状态开始,接着全部电池的电压变为过放电解除电压(V_{DU})以上时,从过放电状态恢复回通常状态。

有关延迟电路

过充电检测延迟时间($t_{CU1} \sim t_{CU3}$)、过放电检测延迟时间($t_{DD1} \sim t_{DD3}$)、过电流检测延迟时间1(t_{IOV1})由于外接电容(C4 \sim C6)而产生变化。

各种延迟时间依照以下的公式可以计算求出。

最小值 典型值 最大值

t_{CU} [s] =延迟系数 (1.07、 2.13、 3.19) x C4 [μF]

t_{DD} [s] =延迟系数 (0.20、 0.40、 0.60) x C5 [μF]

t_{IOV1} [s] =延迟系数 (0.10、 0.20、 0.30) x C6 [μF]

注意 过电流检测2、3的延迟时间被IC内部的电路固定。不能通过外接电容使延迟时间产生变化。

有关CTL端子

在通常状态下CTL端子产生浮动时,CTL端子在IC内部上拉到 V_{CC} 电位,充电用FET和放电用FET的双方变为OFF,充电和放电的双方被禁止。CTL端子通过外接授予 V_{CC} 电位也同样,充电和放电的双方被禁止。这时,VMP端子与VCC端子之间通过 R_{VCM} 的电阻而被短路。

通过授予CTL端子至Vss电位,充放电的禁止状态被解除,回到依照各自的电池电压的状态。

注意 由于外接滤波器R_{vss}、C_{vss}的存在,当电源突变时,如向CTL端子输入低电位,此低电位与VSS产生电位差,从而导致错误动作,务请注意。

向0 V电池充电功能

被串联连接的3本的电池通过自我放电从全部变为0 V的状态开始,可以进行充电的功能。通过连接充电器, VMP-VSS之间施加了0 V充电开始电压(V_{0CHAR})以上的电压,充电用FET的门极固定为V_{SS}电位。

由于充电器电压,充电用FET的门极与源极之间电压变为导通电压以上时,充电用FET变为ON,开始充电。这时,放电用FET变为OFF,充电电流经放电用FET的内部寄生二极管而流入。全部的电池电压变为过放电解除电压(V_{DU})以上时,回到通常状态。

注意 向0 V电池充电功能可能的产品的情况下,VCC-VMP间电阻(R_{VCM})与VSS-VMP间电阻(R_{VSM})的电阻 值与无向0 V电池充电功能的产品相比,被设置为较低的值。因此,由于VMP端子的流入电流而引起 的外部电阻R5(参阅图9)的电压降下(过电流检测电压的误差)与无向0 V电池充电功能的产品相比变得 更大。

无向0 V电池充电功能的产品,全部电池电压(VCC-VSS间电压)在不满2.0 V的情况下,COP端子的状态变得不稳定。

关于电压温度系数

电压温度系数1表示过充电检测电压、过充电解除电压、过放电检测电压、过放电解除电压。 另外,电压温度系数2表示过电流检测电压。检测电压的温度特性在工作温度范围内为**图**6所示的阴影范围。

过充电检测电压(Vcu)的示例

■ 时序图

1. 过充电检测

*1. <1>: 通常状态 <2>: 过充电状态 <3>: 过放电状态 <4>: 过电流状态

备注 假想充电器为定电流充电,V_{CHA}表示充电器的开路电压。

图7

2. 过放电检测

*1. <1>: 通常状态 <2>: 过充电状态 <3>: 过放电状态 <4>: 过电流状态

备注 假想充电器为定电流充电,V_{CHA}表示充电器的开路电压。

图8

3. 过电流检测

*1. <1>: 通常状态 <2>: 过充电状态 <3>: 过放电状态 <4>: 过电流状态

图9

■ 电池保护IC的连接例

图10

「图10的说明]

- R11、R12、R13是用于调整电池的状态电流。过充电检测时的状态电流,在电阻为R的情况下,授 予V_{CU}(过充电检测电压)/R。不使用状态功能的情况下,请把CD1、CD2、CD3设置为开放。
- 过充电检测延迟时间(t_{CU1} ~ t_{CU3})、过放电检测延迟时间(t_{DD1} ~ t_{DD3})、过电流检测延迟时间1(t_{IOV1}) 因电容(C4 ~ C6)而产生变化。请参阅电气特性表。
- R6是COP端子被开放时,使FET-B变为OFF的上拉电阻。请务必连接100 kΩ以上1 MΩ以下的电阻。
- R5在充电器被反向连接时,为了保护IC请务必连接10 kΩ以上50 kΩ以下的电阻。
- 没有电容C6,在连接电容性负载时,会发生冲击电流(突进电流)而进入过电流状态。为了防止这种情况,请务必连接电容。
- 没有电容C5,在过电流发生时,由于电池电压的变动有可能进入过放电状态。在这种情况下,为了恢复回通常状态,有必要连接充电器。为了防止此现象,请在C5处连接0.01 μF以上的电容。
- 在延迟用电容连接端子(CCT, CDT, COVT)与VSS之间流入泄漏电流时,延迟时间变得更长而导致误差产生。请注意泄漏电流要在100 nA以下。
- 通过FET-C可以停止过放电检测。但是,请选用FET的OFF泄漏在0.1 μA以下的。另外,使用这个 FET禁止过放电时,电池电压会下降,IC即使进入过放电检测状态,消耗电流也不会在0.1 μA以下。
- R1、R2、R3请设置在1 kΩ以下。
- R7是针对施加CTL端子V_{CC}以上的电压的情况下保护用的电阻。请连接300 Ω以上5 kΩ以下的电阻。 CTL端子在绝对不施加V_{CC}以上的电压的情况下(例如在V_{SS}固定的情况下)可以省略。

- 注意1. 上述连接例的参数有可能不经预告而作更改。
 - 2. S-8233A系列的人为本体模式的产品,如果不施加2000 V以上的静电气,可以不用R1、R2、R3、C1、C2、C3。
 - 3. 对上述连接例以外的电路未作动作确认,且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

■ 注意事项

- 在过放电状态下连接充电器,在低于过放电检测电压 (V_{DD}) 的电池电压变为过放电解除电压 (V_{DU}) 以上之前,任何的电池电压变为过充电检测电压 (V_{CU}) 以上时,变为过放电并且过充电状态,充电用FET和放电用FET的双方变为OFF。这时不能进行充电与放电。之后,由于内部放电,超过过充电检测电压 (V_{CU}) 的电池电压下降到过充电解除电压 (V_{CD}) 时,充电用FET变为ON。另外,在过充电并且过放电的状态下取掉充电器时,过充电状态被解除而且被认为是过放电状态。再一次连接充电器时,因为从那时开始监视电池状态,在过充电检测延迟时间后,充电用FET变为OFF,成为过充电并且过放电状态。
- 最先连接电池时,即使有1个电池的电压在过放电解除电压(V_{DU})以下,也有可能无法进入通常状态。 这时,一旦使VMP端子变为在V_{CC}电压以上(连接充电器)就可恢复回通常状态。
- 休眠状态时,CTL端子为浮动的情况下,由于CTL端子在IC内部不被上拉,有可能无法变为充放电的禁止状态。但是,这时会成为过放电状态。连接了充电器后,CTL端子被上拉,立刻会变为充放电的禁止状态。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据(典型数据)

1. 检测电压的温度特性

2. 消耗电流的温度特性

通常工作时消耗电流 温度依靠性

3. 延迟时间的温度特性

过充电检测时间 温度依靠性

温度依靠性

过电流1检测时间 温度依靠性

过电流2检测时间

4. 延迟时间的电源电压依靠性

过电流3 (负载短路) 检测时间 电源电压依靠性

注意 利用S-8233A系列的应用电路,请在充分考虑安全的基础上进行设计。

No. FE014-A-P-SD-1.1

TITLE	SOP14-A-PKG Dimensions			
No.	FE014-A-P-SD-1.1			
SCALE				
UNIT	mm			
Se	eiko Instruments Inc.			

No. FE014-A-C-S1-1.0

TITLE	SOP14-A-Carrier Tape		
No.	FE014-A-C-S1-1.0		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

Enlarged drawing in the central part

No. FE014-A-R-SD-1.1

	1				
TITLE	s	OP14-A-R	eel		
No.	FI	E014-A-R-SD	D-1.1		
SCALE		QTY.	2,000		
UNIT	mm				
L					
Seiko Instruments Inc.					

No. FT016-A-P-SD-1.1

TITLE	TSSOP16-A-PKG Dimensions			
No.	FT016-A-P-SD-1.1			
SCALE				
UNIT	mm			
Seiko Instruments Inc.				

No. FT016-A-C-SD-1.1

TITLE	TSSOP16-A-Carrier Tape			
No.	FT016-A-C-SD-1.1			
SCALE				
UNIT	mm			
Seiko Instruments Inc.				

Enlarged drawing in the central part

No. FT016-A-R-SD-1.1

TITLE	TSSOP16-A- Reel				
No.	FT016-A-R-SD-1.1				
SCALE		QTY.	2,000		
UNIT	mm				
Soika Instrumenta Ins					
Seiko Instruments Inc.					

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料所记载产品,如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时,基于该法律,需得到日本国政府之出口 许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。