

Sardar Patel Institute of Technology, Mumbai Department of Electronics and Telecommunication Engineering T.E. Sem-V (2018-2019)

ETL54-Statistical Computational Laboratory Machine Learning approach to Network Security

Name: Yash Hemant Patil Roll No. 2016120036

Objective: To detect computer network intrusion using machine learning techniques.

Outcomes:

1. To load dataset in R

- 2. To process and prepare data
- 3. Build a model for intrusion detection.
- 4. Use machine learning algorithms to detect intrusion.
- 5. Calculate accuracy and confusion matrix and prediction time.

System Requirements: Ubuntu OS with R and RStudio installed and ggplot2

Problem Abstract:

This is the data set used for The Third International Knowledge Discovery and Data Mining Tools Competition, which was held in conjunction with KDD-99 The Fifth International Conference on Knowledge Discovery and Data Mining. The competition task was to build a network intrusion detector, a predictive model capable of distinguishing between ``bad'' connections, called intrusions or attacks, and ``good'' normal connections. This database contains a standard set of data to be audited, which includes a wide variety of intrusions simulated in a military network environment.

CODE

```
setwd("/home/student/STC/KDDcup")
getwd()
dir()
train raw <- read.csv("traindata 10percent.csv", stringsAsFactors =</pre>
colnames <- read.table("names", skip = 1, sep = ":")</pre>
names(train raw) <- colnames$V1</pre>
d <- dim(train raw)</pre>
names(train raw)[d[2]] <- "label"</pre>
names(train raw)
sum label <- aggregate(rep(1, d[1]),</pre>
                       by = list(train raw$label),
                       FUN = sum)
names(sum label) <- c("label", "count")</pre>
barplot(beside = TRUE, log10(sum label$count),
     names.arg = sum label$label, ylim = c(0,6),
     xlab = "Label", ylab = "log(Count)",
     col = "Blue", main = "The distribution of labels")
library(caret)
1 <- train raw$label</pre>
sum(is.na(1))
nzvcol <- nearZeroVar(train raw)</pre>
train raw <- train raw[, -nzvcol]</pre>
#label into factor
training <- train raw
training$label <- factor(training$label)</pre>
d <- dim(training)</pre>
test raw <- read.csv("testdata 10percent.csv", stringsAsFactors =</pre>
FALSE)
# Process the data
names(test raw) <- colnames$V1</pre>
names(test raw)[dim(test raw)[2]] <- "label"</pre>
```

```
# Extract the same features as training data
colnames train <- names(training)</pre>
test raw <- test raw[ , colnames train]</pre>
testing <- test raw
testing$label <- as.factor(testing$label)</pre>
library(e1071)
# Build the model
label result = training[ ,d[2]]
training data = training[ ,1:(d[2]-1)]
navie bayes tree model = naiveBayes(as.factor(label result)~.,
                                       training data)
# Predict the testing and check processing time
start time = Sys.time()
testing data = testing[ , 1: (d[2]-1)]
navie bayes pred = predict(navie bayes tree model, testing data)
golden answer = testing[ , d[2]]
navie bayes pred = factor(navie bayes pred, levels
=levels(golden answer))
NB accuracy <- mean(golden answer == navie bayes pred,na.rm = TRUE)</pre>
endtime = Sys.time()
# Get the accuracy
td = endtime - start time
pred = navie bayes pred
truth = testing$label
confusionMatrix(pred, truth)
```

Output

Time difference of 2.729063 mins

Confusion Matrix and Statistics

	Referen	nce							
Prediction	back. b	uffer_ov	erflow.	ipsweep	. land. r	eptune.	normal.	pod.	
back.	83		0	0	0	0	0	0	
buffer_overflo	w.	0		2	0	0	0	756	0
ipsweep.	0		0	537	0	0	3034	0	
land.	0		0	0	3	71	41	0	
neptune.	0		0	0	0 210	713	46	0	
normal.	14		0	0	0	0 215	01	0	
pod.	0		0	0	0	0	1145	20	
portsweep.		0		0	0	0	9	2	0
satan.	0		0	0	0	50	3	0	
smurf.	0		0	0	0	0	93	0	
teardrop.	0		0	1	0	0 102	44	0	
	Referen	nce							
Prediction	portsweep. satan. smurf. teardrop.								
back.		0	0	0	0				
buffer_overflo	w.	0	0	0	0				
ipsweep.		192	0	0	0				
land.		0	0	0	0				
neptune.		0	0	0	0				
normal.		0	0	0	0				
pod.		0	0	227	0				
portsweep.		1602	0	0	0				
satan.		0	0	0	0				
smurf.		0	0 3612	25	0				
teardrop.		0	0	82	100				

Overall Statistics

Accuracy : 0.9442 95% CI : (0.9433, 0.945) No Information Rate : 0.7354 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.8712Mcnemar's Test P-Value: NA

Statistics by Class:

Class	s: back. Class: buff	er_overflow. Class: ips	weep. Class: land.					
Sensitivity 0.85	56701	1.000e+00 0.998	141 1.000e+00					
Specificity	1.0000000	9.974e-01	0.988727 9.996e-01					
Pos Pred Value	1.0000000	2.639e-03	0.142705 2.609e-02					
Neg Pred Value	0.9999512	1.000e+00	0.999996 1.000e+00					
Prevalence	0.0003383	6.976e-06	0.001877 1.046e-05					
Detection Rate	0.0002895	6.976e-06	0.001873 1.046e-05					
Detection Prevalence	0.0002895	2.644e-03	0.013125 4.011e-04					
Balanced Accuracy	0.9278351	9.987e-01	0.993434 9.998e-01					
Class: neptune. Class: normal. Class: pod. Class: portsweep.								
Sensitivity	0.9994	0.58324 1.000e+00	0.892977					
Specificity	0.9994	0.99994 9.952e-01	0.999961					
Pos Pred Value	0.9998	0.99935 1.437e-02	0.993180					
Neg Pred Value	0.9983	0.94206 1.000e+00	0.999327					
Prevalence	0.7354	0.12859 6.976e-05	0.006257					
Detection Rate	0.7350	0.07500 6.976e-05	0.005588					
Detection Prevalence	0.7351	0.07504 4.85	55e-03 0.005626					
Balanced Accuracy	0.9994	0.79159 9.97	76e-01 0.946469					
Class: satan. Class: smurf. Class: teardrop.								
Sensitivity	NA 0.9915	1.0000000						
Specificity	0.9998151	0.9996 0.963	9667					
Pos Pred Value	NA 0.9974	0.0095905						
Neg Pred Value	NA	0.9988 1.000	0000					
Prevalence	0.0000000	0.1271 0.000	3488					
Detection Rate	0.0000000	0.1260 0.000	3488					
Detection Prevalence	etection Prevalence 0.0001849		3695					
Balanced Accuracy	NA	0.9956 0.981	9833					

Conclusion

We processed and plotted the data available in the dataset to identify the different types of intrusions on the network and their frequency. We created a prediction model based on Naive-Bayes Tree Model and trained it on 10% of the data. Then we passed the test data to test the accuracy of the model. We used the confusionMatrix() command to get a detailed analysis of the model. From the summary we saw that the kappa value is >0.8 indicating higher accuracy of the model which was found to be 94.42%.