ICAP Summer School 2006 University of Innsbruck

Cold Atomic and Molecular Collisions

- 1. Basics
- 2. Feshbach resonances
- 3. Photoassociation

Paul S. Julienne

Quantum Processes and Metrology Group Atomic Physics Division NIST

And many others, especially
Eite Tiesinga, Carl Williams, Pascal Naidon (NIST),
Thorsten Köhler (Oxford), Bo Gao (Toledo), Roman Ciurylo (Torun)

Cold Collisions

"Good" -- Essential interactions for control and measurement "Bad" -- Source of trapped atom loss, heating, and decoherence

- Atom-atom collisions can be quantitatively understood and controlled--essential for quantum gas studies.
- What is a scattering length, and why is it significant?
- Scattering resonances are a key to measurement and control.
 - Photoassociation
 - Magnetically tunable "Feshbach" resonances
- Collisions in tightly confining atom traps.
- Basic concepts, illustrated by examples.

Two kinds of collision

Elastic--do not change internal state a + b --> a + b

- Thermalization
- Evaporation
- Mean field of BEC
- BEC-BCS crossover in Fermi gases
- Phase change--quantum logic gates

Inelastic--change internal state $a + b --> a' + b' + \Delta E$

- Spin relaxation
- Photoassociation
- Loss of trapped atoms
- Decoherence
- Spinor condensates ($\Delta E=0$)

Cold atomic and molecular collision basics

- Potential energy curves
 - Properties of the long range potential
 - Bound and scattering states
- Collision cross sections and rates
 - Partial waves and cross sections
 - Elastic and inelastic collisions
 - Threshold properties of collisions and bound states
 - Boson and fermion differences
- The effects of trap confinement on collisions
- How are molecular collisions different.

Born-Oppenheimer approximation = potential energy curve

Li $1s^22s$ $^2S_{1/2}$ atom

Interior of sun

Surface of sun Room temperature

Outer space (3K) Cold He

Laser cooled atoms

Atomic clock atoms Fermionic quantum gases

Bose-Einstein condensates

Molecules

Buffer gas cooling Decellerated beams

Photoassociated atoms

Molecular BEC

$$E/k_{B}$$

$$10^{9} K$$

$$10^{6} K$$

$$1000 K$$

$$E/h$$

$$1 K$$

$$21 MHz = 1 mK$$

$$21 kHz = 1 \mu K$$

$$21 Hz = 1 nK$$

$$1 pK$$

momentum $p = \hbar k$ $\lambda = h/p$ ⁶Li x 0.2 for Cs $0.76 a_0$ = 0.04 nm $24 a_0$ = 1.3 nm=40 nm $760 a_0$ $24000 a_0 = 1.3 \mu m$

 $7.6 \times 10^6 a_0 = 40 \, \mu m$

Characteristic Lengths

$$\lambda = \frac{h}{p}$$

$$\sim 20000~a_{o}\,(1~\mu\mathrm{m})$$

$$x_0 = \frac{1}{2} \left(\frac{2\mu C_6}{\hbar^2} \right)^{1/4}$$
 30 - 100 a_0 (1.5 - 5 nm)

30 - 100
$$a_0$$
 (1.5 - 5 nm)

Chemical bond

$$< 20 a_0 (< 1 \text{nm})$$

Scattering length

$$-\infty < A < \infty$$

Trap size

$$\left(\frac{\hbar}{m\omega}\right)^{\frac{1}{2}}$$

$$> 200000 \; a_o \, (10 \; \mu \text{m})$$

Lattice: $1000 \, a_o \, (50 \, \text{nm})$

Interparticle spacing

$$n^{-1/3}$$

2000 a_0 (100nm) at 10^{15} cm⁻³

20000 a_0 (1000nm) at 10^{12} cm⁻³

Collision of two atoms

Separate center of mass R_{CM} and relative R motion with reduced mass μ .

Expand $\Psi(R,E)$ in relative angular momentum basis lm. l=0,1,2...s-,p-,d-waves, ...

Potential energy:
$$V(R) + \frac{\hbar\ell(\ell+1)}{2\mu R^2}$$
 --> phase shift $\eta_{\ell}(E)$

Neutral atoms (S-state): $V(R) --> -C_6/R^6$ van der Waals

Solve Schrödinger equation for bound and scattering $\Psi(R,E)$

- --> bound states E_n
- --> scattering phases, amplitudes

S-wave scattering phase shift

$$\Psi(R) \to \sin(kR + \eta)$$

Wavelength $\lambda = 2\pi/k$

 $\eta = 0$

Interacting atoms

 $\eta \to -ka$

as $k \to 0$

Cross section σ

Classical balls with distance of closest approach d (diameter)

define an area with $\sigma=\pi d^2$ ($10^{-12}\, cm^2$) and a collision rate $\Gamma=nv\sigma$ (typical: $1\,s^{-1}$, MOT $10^4\,s^{-1}$, BEC) Rate constant $K=v\,\sigma$

Time between collisions = $1/\Gamma = 1/(Kn) \approx 1s$ (MOT), $100\mu s$ (BEC)

Classical picture

Centrifugal potential

With potential

Centrifugal barrier

Quantum scattering theory

Partial wave expansion

Expansion of a plane wave (Messiah, Quantum Mechanics, Vol.1, Appendix B.III):

$$e^{i\vec{k}\cdot\vec{R}} = 4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} i^{\ell} Y_{\ell m}^{*}(\hat{k}) Y_{\ell,m}(\hat{R}) j_{\ell}(kR)$$
 Geometric Dynamic

where
$$j_{\ell}(kR) = \frac{\phi_{\ell}(R)}{kR} \to \frac{\sin\left(kR - \frac{\pi\ell}{2}\right)}{kR}$$
 as $R \to \infty$

 $\operatorname{an}_{\phi_{\ell}}(R)$ s a solution to the radial Schrödinger equation

$$\frac{d^2\phi_{\ell}(R)}{dR^2} + \frac{2\mu}{\hbar^2} \left(E - \frac{\hbar^2 \ell(\ell+1)}{2\mu R^2} \right) \phi_{\ell}(R) = 0$$

Centrifugal potential

Add an interaction potential V(R)

$$e^{\vec{k}\cdot\vec{R}} + f(\Omega)\frac{e^{ikR}}{R} = 4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} i^{\ell} Y_{\ell m}^{*}(\hat{k}) Y_{\ell,m}(\hat{R}) \frac{\phi_{\ell}^{+}(R)}{kR}$$

where $\phi_{\ell}^{+}(R)$ represents a plane + scattered wave:

$$\frac{\phi_{\ell}^{+}(R)}{kR} \to \frac{\sin\left(kR - \frac{\pi\ell}{2} + \eta_{\ell}\right)}{kR} e^{i\eta_{\ell}} = \underbrace{j_{\ell}(kR)} + \underbrace{f_{\ell}\frac{e^{ikR}}{R}}$$

 $\operatorname{an}\phi_{\ell}^+(R)$ s a solution to the radial Schrödinger equation

$$f_{\ell} = \frac{\sin \eta_{\ell}}{k} e^{i\left(\eta_{\ell} - \frac{\pi\ell}{2}\right)}$$

$$\frac{d^2\phi_{\ell}^+(R)}{dR^2} + \frac{2\mu}{\hbar^2} \left(E - V(R) - \frac{\hbar^2 \ell(\ell+1)}{2\mu R^2} \right) \phi_{\ell}^+(R) = 0$$

Centrifugal barrier

$$V(R) + \frac{\hbar^2 \ell(\ell+1)}{2\mu R^2}$$

collision energy E

Expectation:

For small fixed E the cross section has contributions from a few partial waves

atoms only collide via the lowest few partial waves

Elastic cross section σ for like Na atoms

Many (even) partial waves

Identical particle collisions

Identical atoms in same internal state *a*:

Bosons: even ℓ nly

Fermions: odd \(\ell \) nly

Identical atoms in *different* internal states *a,b*:

Boson, Fermions: even and odd ℓ

+1, boson
-1, fermion

$$\frac{1}{\sqrt{2}} \left(|ab\rangle e^{i\vec{k}_{ab} \cdot \vec{R}} + \delta_{s} |ba\rangle e^{-i\vec{k}_{ab} \cdot \vec{R}} \right)$$

$$= 4\pi \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} i^{\ell} Y_{\ell m}^{*}(\hat{k}) Y_{\ell,m}(\hat{R}) j_{\ell}(kR) \times \frac{|ab\rangle + \delta_{s}(-1)^{\ell} |ba\rangle}{\sqrt{2}}$$

See Stoof, Koelman and Verhaar, Phys. Rev. B 38, 4688 (1988). Jim Burke's thesis http://jilawww.colorado.edu/pubs/thesis/burke/

Collision cross section

Solve Schrödinger equation for each ℓ Get phase shift $\eta_\ell(E)$

$$\sigma(E) = \frac{4\pi}{k^2} \sum_{\ell} (2\ell + 1) \sin^2 \eta_{\ell}(E)$$

Identical bosons: even ℓ Identical fermions: odd ℓ Nonidentical species: all ℓ

van der Waals potential:

$$\eta_{\ell}(E) \to -Ak \quad s$$
—wave as $k \to 0$

$$\eta_{\ell}(E) \to -(A_1k)^3 \quad p$$
—wave as $k \to 0$

$$\eta_{\ell}(E) \propto k^4 \quad d$$
—wave and higher as $k \to 0$

Threshold properties

$$\sigma(E) = \frac{4\pi}{k^2} \sin^2(kA) = 4\pi A^2 \text{ as } k \to 0$$

$$(8\pi A^2 \text{ for identical bosons})$$

Upper bound = 1 (unitarity limit)

$$\sigma(E) = \frac{4\pi}{k^2} \propto \frac{1}{E}$$
$$= 4\pi \left(\frac{\lambda}{2\pi}\right)^2$$

Interpretation of scattering length

$$\hat{V} = \frac{4\pi\hbar^2}{m} A \delta(\vec{R}) \frac{\partial}{\partial R} R$$

Huang and Yang, Phys. Rev. 105, 767 (1957)

Also E. Fermi (1936), Breit (1947), Blatt and Weisskopf (1952) 3 different short-range potentials with 3 different scattering lengths

Particle (atom pair) in a box μ = reduced mass

-A = 0

<u>Higher</u> Energy

Lower Energy

$$\Delta E = \frac{\hbar^2}{2\mu} \left[\left(\frac{\pi}{L \mp A} \right)^2 - \left(\frac{\pi}{L} \right)^2 \right] \longrightarrow \frac{\pm A}{mL^3}$$

$$\triangle E$$
 per particle for N pairs $\longrightarrow \frac{N}{L^3} \frac{\pm A}{m}$

A word about normalization

Energy-normalized:
$$\phi_{\ell}(R, E) \rightarrow \left(\frac{2\mu}{\pi\hbar^2}\right)^{\frac{1}{2}} \frac{\sin\left(kR - \frac{\pi\ell}{2} + \eta_{\ell}\right)}{k^{\frac{1}{2}}}$$

Thus
$$\int_0^\infty \phi_\ell(R, E) \phi_\ell(R, E') dR = \delta(E - E')$$

e.g., energy width from Fermi Golden Rule matrix element:

$$\Gamma(E) = 2\pi \left| \langle n|H|\phi_{\ell}(R,E)\rangle \right|^{2}$$

Also, "classical time" normalization: $\left(\frac{2\mu}{\pi\hbar^2}\right)^{\frac{1}{2}} \frac{1}{k^{\frac{1}{2}}} = \frac{2}{(hv)^{\frac{1}{2}}}$

Probability in dR proportional to time in dR: $dt = \frac{dR}{v}$

More semiclassical considerations

WKB phase-amplitude form:

$$\phi^{\text{WKB}}(R, E) = \alpha(R, E) \sin \beta(R, E)$$

$$E/k_B = 10 \text{ mK}$$

0

40

 $R(a_0)$

$$\alpha(R, E) = \frac{1}{k(R, E)^{\frac{1}{2}}}$$

$$\beta(R, E) = \int_{R_t}^R k(R', E) dR' + \frac{\pi}{4}$$

$$k(R, E) = \left(\frac{2\mu}{\hbar^2} (E - V(R))\right)^{\frac{1}{2}} = \frac{2\pi}{\lambda(R, E)}$$

Validity criterion: $\frac{a}{}$

$$\frac{d\lambda(R, E)}{dR} \ll 1$$

Semiclassical considerations continued

Na + Na s-wave scattering wave function

Scattering Length vs Control Parameter

Scattering Length A (a₀)

Scattering and last bound state near threshold (normalized to same value at small R)

Van der Waals potential

Write the Schrödinger equation in length and energy units of

$$R_{\text{vdw}} = \frac{1}{2} \left(\frac{2\mu C_6}{\hbar^2} \right)^{\frac{1}{4}}$$

$$E_{\rm vdw} = \frac{\hbar^2}{2\mu R_{\rm vdw}^2}$$

The potential becomes $-\frac{16}{20} + \frac{\ell(\ell+1)}{20}$

$$-\frac{16}{r^6} + \frac{\ell(\ell+1)}{r^2}$$

This potential has exact analytic solutions and many useful properties.

B. Gao, Phys. Rev. A 58, 1728, 4222 (1998) + series of papers. See Lett, Jones, Tiesinga, Julienne, Rev. Mod. Phys. 78, 483 (2006).

"Size" of potential V(R)

$$R_{\text{vdw}} = \frac{1}{2} \left(\frac{2\mu C_6}{\hbar^2} \right)^{\frac{1}{4}}$$

$$R_{\text{vdw}} = \frac{1}{2} \left(\frac{2\mu C_6}{\hbar^2} \right)^{\frac{1}{4}}$$
 $\bar{a} = \frac{\Gamma(3/4)}{\Gamma(5/4)} R_{\text{vdW}} = 0.956 R_{\text{vdW}}$

Gribakin and Flambaum, Phys. Rev. A 48, 546 (1993)

$$E_{\rm vdw} = \frac{\hbar^2}{2\mu R_{\rm vdw}^2}$$

