Національний авіаційний університет Навчально-науковий Інститут інформаційно-діагностичних систем Кафедра прикладної математики

Завдання для лабораторних робіт з дисципліни "Обчислювальна геометрія та комп'ютерна графіка

для студентів спеціальності 113 Прикладна математика

Юрчук І.А.

Зміст

Пояснювальна записка	3
Модуль 1 "Геометричні перетворення, проекції	ТА ПЛО-
СКІ КРИВІ"	
Лабораторна робота 1.1	4
Лабораторна робота 1.2	5
Лабораторна робота 1.3	7
Лабораторна робота 1.4	9
Домашнє завдання 1	10
Теоритичні питання до МКР №1	12
Література	14
Додаток 1.	15
Додаток 4.	16

Пояснювальна записка

Метою викладання дисципліни є оволодіння студентами теоретичних основ комп'ютерних графічних технологій, надбання навичок просторового моделювання та створення на їх основі програмних засобів комп'ютерної графіки.

Дисципліна "Комп'ютерні графічні технології та просторове моделювання входить в цикл "Математичне забезпечення обчислювальних систем напряму підготовки 6.040301 "Прикладна математика викладається в п'ятому та шостому семестрах. Складається з чотирьох тематичних модулів та чотирьох домашніх завдань. Кожен модуль містить дві лабораторні роботи, що мають бути оформлені наступним чином:

- 1. Титульний лист.
- 2. Тема та мета роботи.
- 3. Завдання.
- 4. Короткі теоретичні відомості.
- 5. Хід роботи з розрахунками, програмними кодами та результатами роботи програм.
- 6. Висновки.

Домашні завдання (ДЗ) виконуються в п'ятому та шостому семестрах, відповідно до затверджених в установленому порядку методичних рекомендацій, з метою закріплення та поглиблення теоретичних знань та вмінь студентів і є важливим етапом у засвоєнні навчального матеріалу, що викладається у цих семестрах.

Метою домашнього завдання є подальше поглиблене вивчення студентом прийомів і методів, що викладаються на лекційних та лабораторних заняттях.

Модуль 1 "Геометричні перетворення, проекції та плоскі криві"

Лабораторна робота 1.1

Тема:Побудова двовимірних геометричних об'єктів.

Мета: Вивчити афінні перетворення на площині та вміти застосовувати їх до геометричних конструкцій. Вміти реалізувати довільні рухи на площині як композицію повороту, масштабування, перенесення та дзеркального відображення.

Завдання:

- 1. Вивчити всі види афінних перетворень на площині та їх матричне представлення в однорідних координатах.
- 2. Створити програмне забезпечення для реалізації повороту, зсуву, непропорційного розтягу (стиску) та дзеркального відображення відносно прямої Ax + By + C = 0 геометричного об'єкту G, де G визначений для кожного студента окремо згідно його варіанту (див. табл.1.), дотримуючись наступних вимог:
 - значення параметрів A, B та C задаються користувачем;
- розмір та координати вузлів об'єкту G автор програми визначає на свій розсуд, виходячи з параметрів монітору та естетичних міркувань (об'єкт має бути по центру, рухи над G в полі зору і т.д.).

Таблиця 1. Варіанти завдань до ЛР 1.1.

$\mathcal{N}_{ar{o}}$	G	Nº	G
1	ламана, що складається з	11	трикутник
	6 відрізків		
2	рівнобедрений трикутник	12	квадрат
3	рівностороній трикутник	13	прямокутник
4	прямокутний трикутник	14	паралелограм
5	трапеція	15	п'ятикутник
6	правильний п'ятикутник	16	ламана, що складається з
			5 відрізків
7	шестикутник	17	правильний шестикутник
8	випуклий чотирикутник	18	ламана, що складається з
			4 відрізків
9	ламана, що складається з	19	прямокутна трапеція
	5 відрізків із самоперети-		
	нами		
10	шестикутник	20	ламана, що складається з
			6 відрізків із самоперети-
			нами

Лабораторна робота 1.2

Тема: Побудова просторових геометричних об'єктів.

Мета: Вивчити афінні перетворення в просторі, паралельні і перспективні проекції та вміти застосовувати їх до геометричних конструкцій.

Завдання:

- 1. Вивчити всі типи афінних перетворень, паралельних і перспективних проекцій в просторі та їх матричне представлення в однорідних координатах.
- 2. Реалізувати програмно алгоритми наступних рухів геометричного об'єкту GO (варіанти завдань наведені в табл. 2.):
- елементарні афінні перетворення у просторі (повороти навколо координатних осей, зсув, розтяг/стиск та дзеркальне відображення відносно координатних плошин);
- перетворення, що вказане у варіанті завдання, як комбінація елементарних перетворень, значення параметрів якого задаються користувачем. Якщо на вказані параметри існують обмеження, що наведені в індивідуальному завданні студента, то коритувача про це необхідно повідомити;
- перспективні перетворення, що вказані у варіанті, з можливістю введення їх параметрів користувачем.
- 3. Розмір та координати вузлів об'єкту GO автор програми визначає на свій розсуд, виходячи параметрів монітору та естетичних міркувань (об'єкт має бути по центру, рух GO в полі зору і т.д.);

Зауваження: Система координат Oxyz повина бути схематично зображена на моніторі. Початок системи має співпадати з центром вікна, в якому зображений геометричний об'єкт. Вісь Oz – глибина, Ox – ширина, а Oy – висота (правостороння система).

Таблиця 2. Варіанти завдань до ЛР 1.2.

$N_{\bar{0}}$	GO	Рух	Проекція
1	куб зі зрізаним	поворот на кут α від-	триметрія та триточко-
	кутом	носно прямої, що зада-	ва перспективна прое-
		на точкою $A(x_0, y_0, z_0)$	кція
		та напрямним вектором	
		$\overrightarrow{p}(l,m,n)$	
2	тетраедр	поворот на кут α з кро-	диметрія (задана кута-
		ком $\frac{\alpha}{n}$ відносно локаль-	ми), проекція Кавальє
		ної осі, що проходить	та одноточкова перспе-
		через висоту	ктивна проекція
3	зрізаний тетра-	обертання відносно ру-	ізометрія, довільна ко-
	едр (зріз під ку-	хомої осі, що паралель-	сокутна та двоточкова
	том до основи)	на Ох та пересувається	перспективна проекції
		за законом $z=y$	

$N_{ar{o}}$	GO	Рух	Проекція
4	правильний тетраедр*	поворот на кут α з кроком $\frac{\alpha}{n}$ відносно локальної осі, що проходить через центр	диметрія (задана кута- ми), довільна косокутна та двоточкова перспе- ктивна проекції
5	паралелепіпед	обертання відносно рухомої осі, що паралельна Ох та пересувається за законом $z=y^2$	диметрія (задана відно- шеннями), довільна ко- сокутна та двоточкова перспективна проекції
6	похила призма, в основі якої три- кутник	обертання відносно рухомої осі, що паралельна Оу та пересувається за законом $z=x$	ізометрія, проекція Кавальє та триточкова перспективна проекція
7	пряма призма, в основі якої ромб	поворот на кут α з кроком $\frac{\alpha}{n}$ відносно локальної осі, яка проходить через діагональ	диметрія (задана від- ношенням), кабінетна проекція та триточкова перспективна проекція
8	пряма призма, в основі якої тра- пеція	поворот на кут α відносно прямої, що задана точками $M_1(x_1,y_1,z_1)$ та $M_2(x_2,y_2,z_2)$	триметрія, проекція Кавальє та двоточкова перспективна проекція
9	пряма призма зі зрізаним кутом, в основі якої ква- драт	обертання відносно рухомої осі, що паралельна Оу та пересувається за законом $z^2 + x^2 = R^2$	триметрія, кабінетна проекція та двоточкова перспективна проекція
10	октаедр*	поворот на кут α з кроком $\frac{\alpha}{n}$ відносно локальної осі, що проходить через центр	триметрія, довільна ко- сокутна та одноточкова перспективна проекція
11	піраміда, в основі якої прямоку- тник	обертання відносно рухомої осі, що паралельна Оу та пересувається за законом $z^2 = x$	ізометрія, кабінетна проекція та триточкова перспективна проекція
12	основі якої пря- мокутник	поворот на кут α з кроком $\frac{\alpha}{n}$ відносно локальної осі, що проходить через вершину	диметрія (задана від- ношеннями), проекція Кавальє та триточкова перспективна проекція
13	піраміда, в основі якої трапеція	обертання відносно рухомої осі, що паралельна Ох та пересувається за законом $y^2 + x^2 = R^2$	стандартна диметрія (2 : 2 : 1), довільна ко- сокутна та одноточкова перспективна проекції

$N_{\overline{0}}$	GO	Рух	Проекція
14	гексаедр*	поворот на кут α з кро-	стандартна диметрія
		ком $\frac{\alpha}{n}$ відносно локаль-	(2 : 2 : 1), проекція
		ної осі, що проходить	Кавальє та триточкова
		через центр	перспективна проекції
15	піраміда, в осно-	обертання відносно ру-	стандартна диметрія
	ві якої квадрат, а	хомої осі, що паралель-	(2 : 2 : 1), кабіне-
	її висота співпа-	на Оz та пересувається	тна та триточкова
	дає з ребром	за законом $y = 2x$	перспективна проекції
16	правильна чоти-	поворот на кут α з кро-	довільна косокутна та
	рикутна пірамі-	ком $\frac{\alpha}{n}$ відносно локаль-	триточкова перспектив-
	да	ної осі, що проходить	на проекції
		через діагональ грані	
17	зрізана піраміда,	обертання відносно ру-	стандартна диметрія
	в основі якої	хомої осі, що паралель-	(2:1:2), довільна ко-
	прямокутник	на Оz та пересувається	сокутна та одноточкова
	(зріз під кутом	за законом $y = x^2 + a$	перспективна проекції
	до основи)		
18	пряма призма зі	поворот на кут α з кро-	стандартна диметрія
	зрізаним кутом,	$\operatorname{KOM} \frac{\alpha}{n}$ відносно локаль-	[(1 : 2 : 2), проекція
	в основі якої пря-	ної осі, що проходить	Кавальє та триточкова
	мокутник	через діагональ грані	перспективна проекції
19	піраміда, в осно-	обертання відносно ру-	стандартна диметрія
	ві якої прямоку-	хомої осі, що паралель-	(2 : 1 : 2), кабіне-
	тний трикутник,	на Ох та пересувається	тна та триточкова
	а ребро співпа-	за законом $z^2 + y^2 = R^2$	перспективна проекції
	дає з висотою		
20	піраміда, в осно-	поворот на кут α відно-	диметрія (задана кута-
	ві якої прямоку-	сно прямої, що є лінією	ми), кабінетна проекція
	тна трапеція	перетину двох площин	та двоточкова перспе-
			ктивна проекція

Примітка: Алгоритм побудови геометричних об'єктів,так званих платонівських тіл, що позначені *, можна знайти в [1, ст.68].

Лабораторна робота 1.3

Тема:Побудова плоских та просторових кривих.

Мета: Вивчити побудову інтерполяційних та згладжуючих кривих на площині і в просторі, та закріпити властивість інваріантності кривих Безьє відносно афінних перетворень на площині.

Завдання:

1. Вивчити побудову кубічного сплайна та кривої Безьє.

- 2. Реалізувати програмно алгоритм побудови геометричних об'єктів G_1 та G_2 , що задані на площині і в просторі, та забезпечити виконання афінних перетворень над ними (G_1 та G_2 визначені для кожного студента окремо згідно його варіанту в табл.3).
 - об'єкт G_1 побудувати за допомогою кривої Безьє;
- об'єкт G_2 побудувати двома способами за допомогою підстановки значень параметра у рівняння та кубічного сплайну з можливістю задання як рівномірних та і не рівномірних вузлів;
- -забезпечити реалістичне зображення кривих у просторі за допомогою композиції аксонометричної (диметрія чи ізометрія) та ортогональної проекцій;
 - у висновках надати аналіз отриманих побудов;
- значення параметрів афінних перетворень задаються користувачем;
- при неправильному введені параметрів виводиться повідомлення про повторне введення (правильними є значення, при яких рух геометричного об'єкту повністю видно на екрані)
 - -побудовані об'єкти вивести на екран.

Варіанти завдань:

Таблиця 3. Варіанти завдань до ЛР 1.3

	-0	
$N_{\bar{0}}$	$G_1 \in \mathbb{R}^2$	$G_2 \in \mathbb{R}^3$
1	заєць	$x(t) = 5\cos 4t, \ y(t) = 5\sin 4t, \ z = 10t$
2	гусак	$x(t) = e^t \cos t, \ y(t) = e^t \sin t, \ z = e^t$
3	орел	$x(t) = \cos t^2, \ y(t) = \sin t^2, \ z = 2t$
4	ворона	$x(t) = 2(t - \sin t), y(t) = 2(1 - \cos t), z = 8\cos\frac{t}{2}$
5	риба	$x(t) = 1 - \cos 2t, \ y(t) = \sin 2t, \ z = 2\cos t$
6	дельфін	$x(t) = 5(1 + \cos t), y(t) = 5\sin t, z = 10\sin\frac{t}{2}$
7	пінгвін	$x(t) = \cos^3 t, \ y(t) = \sin^3 t, \ z = \cos 2t$
8	пес	$x(t) = 5 \operatorname{ch} t, \ y(t) = 5 \operatorname{sh} t, \ z = 5t$
9	черепаха	$x(t) = 3\cos t, \ y(t) = 3\sin t, \ z = t^2$
10	носоріг	$x(t) = 8\sin\frac{t}{4}, y(t) = 4\sin t, z = 4(1+\cos t)$
$N_{ar{o}}$	$G_1 \in \mathbb{R}^2$	$G_2 \in \mathbb{R}^3$
11	ведмідь	$x(t) = 6\cos 3t, \ y(t) = -6\sin 3t, \ z = 5t$
12	лебідь	$x(t) = 2e^{3t}\cos t, \ y(t) = 2e^{3t}\sin t, \ z = 4e^{3t}$
13	фламінго	$x(t) = 2\cos t^2, \ y(t) = 6t, \ z = 2\sin t^2$
14	папуга	$x(t) = 3(t - \sin t), \ y(t) = 3(1 - \cos t), \ z = 12\cos\frac{t}{2}$
15	краб	$x(t) = \sin 4t, \ y(t) = 1 - \cos 4t, \ z = 4\cos t$
16	акула	$x(t) = 3(1 + \cos t), y(t) = 6\sin\frac{t}{2}, z = 3\sin t$
17	тюлень	$x(t) = \cos^5 t, \ y(t) = \sin^5 t, \ z = \cos 4t$
18	кіт	$x(t) = 2t, y(t) = 2 \operatorname{sh} t, z = 2 \operatorname{ch} t$
19	крокодил	$x(t) = 3\cos t, \ y(t) = 3\sin t, \ z = t^2$
20	бегемот	$x(t) = 3(1 + \cos t), y(t) = 3\sin t, z = 6\sin\frac{t}{4}$

Теоритичні питання до МКР №1

- 1. Чи утворюють афінні перетворення, задані в декартових координатах, лінійний простір? Віповідь обгрунтуйте.
- 2. Афінні перетворення простору \mathbb{R}^2 в декартових координатах та його властивості.
- 3. Матричні форми запису афінних перетворень простору \mathbb{R}^2 в декартових координатах.
- 4. Однорідні координати в просторі \mathbb{R}^{2} .
- 5. Чи утворюють афінні перетворення простору \mathbb{R}^2 , задані в однорідних координатах, лінійний простір? Віповідь обгрунтуйте.
- 6. Афінні перетворення простору \mathbb{R}^2 в однорідних координатах та його властивості.
- 7. Матричні форми запису афінних перетворень простору \mathbb{R}^2 в однорідних координатах.
- 8. Методи знаходження матриць складних перетворень.
- 9. Афінні перетворення простору \mathbb{R}^3 в декартових координатах та його властивості.
- 10. Матричні форми запису афінних перетворень простору \mathbb{R}^3 в декартових координатах.
- 11. Однорідні координати в просторі \mathbb{R}^3 .
- 12. Чи утворюють афінні перетворення простору \mathbb{R}^3 , задані в однорідних координатах, лінійний простір? Віповідь обгрунтуйте.
- 13. Афінні перетворення простору \mathbb{R}^3 в однорідних координатах та його властивості.
- 14. Матричні форми запису афінних перетворень простору \mathbb{R}^2 в однорідних координатах.
- 15. Ортографічні проекція. Матрична форма запису.
- 16. Аксонометрична проекція. Триметрія.
- 17. Поняття диметрії та ізометрії.
- 18. Косокутна проекція.
- 19. Перпективна проекція. Одноточкова перспективна проекція.
- 20. Двоточкова та триточкова перспективні проекції.
- 21. Задачі інтерполяції та згладжування на площині;
- 22. Інтерполяційний многочлен Лагранжа;
- 23. Інтерполяційний кубічний сплайн та його крайові умови;
- 24. Алгоритм побудови кубічного сплайну;
- 25. Сплайнові криві;
- 26. Криві Безьє;
- 27. Властивості поліномів Бернштейна;
- 28. Властивості кривих Безьє;
- 29. Геометричний алгоритм для кривої Безьє;

Π ІТЕРАТУРА

[1] *Шикин Е.В., Боресков А.В.* Компьютерная графика. Динамика, реалистические изображения. - М.:Диалог-МИФИ, 1995

Додаток 1.

Додаток 4.