PRAYOSHA KAUSHIK DHIMMER

STUDENT ID: 216018475

GROUP: 02 (Nisha, Suba, Zeynep)

PHYS 4270

TERM PROJECT PART 3/3

Directory: Iraf ______ 2020-11-29+30

INTRODUCTION

A group of few thousand young stars that are held together by mutual gravitations forms an <u>Open Cluster</u>. They are formed by the same Giant molecular cloud and are generally only found in spiral or irregular galaxies in which there is an active formation of stars taking place. Open Clusters are thought of as very important objects when it comes to studying the Stellar Evolution.

The Open Cluster of stars, M34 (Messier 34) or NGC 1039, is about the size of the full moon, which lies in the constellation Perseus, about some 1800 light years away from us. The stars present in this open cluster are about 200 million years young. Messier 34 is one of the nearest Messier objects to Earth. It is visible to the naked eye provided good conditions. It contains both bright and faint stars.

We, the members of Group 02, booked the observatory thrice, the first two times were failure even though the sky were clear there were clouds that blocked us from observing. The third time (November 29th, 6:30 PM) even though it was partly cloudy we gave our best shot! The applications used from the Allan I. Carswell Observatory were Sky-X, and Plane-Wave Interface.

The observational data are called raw data as there is still processing and reducing to happen! Reducing the data included inspecting the data, determining our dark current and the bias level. When comparing the bias in the beginning to the average one, the average bias looked much more precise in a way and clear, structure wise the average bias looked more revealing than the beginners.

// home/prayu043/iraf/2020-1	1-29+30/average.	stats.dat - pray	u043@cosmos.	sci.yorku.ca - E	ditor - WinSCP
	5 C A cab	🔼 🖶 Enco	ding 🕶 🗌 Color	· • • ?	
# IMAGE	NPIX	MEAN	STDDEV	MIN	MAX
bias_avg.fits	1571328	617.6	1.399	611.2	809.5
dark_b_avg.fits	1571328	618.	45.09	607.4	21159.
dark_g_avg.fits	1571328	618.7	36.1	607.6	16456.
dark_r_avg.fits	1571328	637.6	25.26	626.4	11167.

Fig 1: Average level for the Bias and the Dark Current.

This was followed by taking the average of all the flat fields and subtracting that from the average bias using imarith. And combining those images using combine=median function, thus arriving to the final flats in all the 3 filters. Later, the mean of final flats was set to 1. Now, for correcting the science images it was important to make sure about the significance of the dark current. Using the information provided in Fig1.,

```
For Dark Current (DC),

DC = Average dark - Average bias

B-Filter: DC = 618.0 - 617.6

= 0.4 ADU/sixel

G-Filter: OC = 618.7 - 617.6

= 1.1 ADU/pixel

R-Filter: DC = 637.6 - 617.6

= 20 ADU/pixel
```

Fig 2: Determining the significance of Dark current.

As seen, the Dark Current is insignificance in B and G Filter so subtracting average bias from the M34 images of B and G filter whereas for the R-filter as the Dark Current is significant, we subtract average dark from the M34 images of 4 filter, this is done by using the imarith option in IRAF. Further dividing all the subtracted M34 filter images with our normalized flat we successfully reduced our M34 images.

Moving forward it is important to align our images using the imshift option of IRAF – instead of randomly selecting any one image as my reference image I tried to find the magnitude of centroid of the reference star from each image, next I took the mean of that magnitude and selected my reference image to be the one that has the nearest value centroid magnitude to the mean that I calculated. And than finally combining those using combine=average facility.

Names	Col (x)	Row (y)	Shift x	Shift y
Correct_M34B90s01.fits	737.92	608.84	14.53	-0.24
Correct_M34B90s02.fits	737.73	608.83	14.34	-0.25
Correct_M34B90s03.fits	737.65	608.56	14.26	-0.52
Correct_M34B90s04.fits	737.35	608.76	13.96	-0.32
Correct_M34B90s05.fits	737.29	608.50	13.9	-0.58
Correct_M34B90s06.fits	737.04	608.40	13.65	-0.68
Correct_M34B90s07.fits	736.74	608.59	13.35	-0.49
Correct_M34B90s08.fits	736.69	608.36	13.3	-0.72
Correct_M34B90s09.fits	736.19	608.39	12.8	-0.69
Correct_M34B90s10.fits	736.00	608.12	12.61	-0.96
Correct_M34G90s01.fits	723.85	607.75	0.46	-1.33
Correct_M34G90s02.fits	723.77	607.97	0.38	-1.11
Correct_M34G90s03.fits	723.64	608.52	0.25	-0.56
Correct_M34G90s04.fits	723.39	609.08	0	0
Correct_M34G90s05.fits	722.83	609.52	-0.56	0.44
Correct_M34G90s06.fits	722.70	609.55	-0.69	0.47
Correct_M34G90s07.fits	722.14	609.52	-1.25	0.44
Correct_M34G90s08.fits	721.70	609.54	-1.69	0.46
Correct_M34G90s09.fits	721.65	609.71	-1.74	0.63
Correct_M34G90s10.fits	721.43	610.06	-1.96	0.98
Correct_M34R85s11.fits	712.40	613.65	-10.99	4.57
Correct_M34R85s12.fits	712.29	614.06	-11.1	4.98
Correct_M34R85s13.fits	712.08	613.91	-11.31	4.83
Correct_M34R85s14.fits	711.99	614.15	-11.4	5.07
Correct_M34R85s15.fits	712.02	614.56	-11.37	5.48
Correct_M34R85s16.fits	712.11	614.80	-11.28	5.72
Correct_M34R85s17.fits	711.85	614.77	-11.54	5.69
Correct_M34R85s18.fits	712.06	615.33	-11.33	6.25
Correct_M34R85s19.fits	711.95	615.55	-11.44	6.47
Correct_M34R85s20.fits	712.32	615.99	-11.07	6.91

Table 1: Aligning Images Reference

After Data Reductions the step forward was Astrometry and Photometry. To begin, there was a curve of growth analysis done using the qphot facility of the IRAF. However, given that we did observing thrice, and the third time being our last shot, it did not come up until 16th December,2020 that our observing did not include as much stars as we wanted as the weather was partly cloudy. Henceforth, we did not have 60 stars to refer too but rather a very less amount of the same. For choosing an isolated star to determine the optimal aperture radius and aperture correction, Table 2 was used.

Star	IMAGE	CENTROID	FWHM		
1	M34combined_B.fits	(757.03, 546.73)	4.77		
1	M34combined_G.fits	(721.01, 548.15)	5.03		
1	M34combined_R.fits	(692.27, 559.74)	5.32		
2	M34combined_B.fits	(750.45, 607.97)	4.88		
2	M34combined_G.fits	(721.25, 609.65)	4.80		
2	M34combined_R.fits	(700.80, 620.64)	5.01		
3	M34combined_B.fits	(790.17, 454.34)	5.03		
3	M34combined_G.fits	(743.62, 452.80)	4.71		
3	M34combined_R.fits	(701.29, 462.02)	5.84		
4	M34combined_B.fits	(912.34, 531.22)	6.40		
4	M34combined_G.fits	(873.40, 515.75)	6.25		
4	M34combined_R.fits	(838.11, 506.04)	6.56		
5	M34combined_B.fits	(943.60, 487.04)	5.38		
5	M34combined_G.fits	(899.80, 468.82)	5.22		
5	M34combined_R.fits	(857.79, 455.70)	5.08		

Table 2: Reference stars for the curve of growth analysis.

Filter:	Choosing star for aphot?
8 %→	
	5.
	= 5.29
	. star 5: (943.60, 487.04).
	FWHM > 5.38.
G:>	XFWHM = 5.03 + 4.80 + 4.71+ 6.25 + 5.22
	5
	= 5.20
	66 Star (5) : (899.80, 468.82)
	FWHM > 5.22
R:>	TEFWHM = 5.82 + 5.01 + 5.84 + 6.56 + 5.08
	5
	= 5.562
	.: Otar (3): (101.29, 462.02)
	FWHM > 5.84

For Aperture Correction,

8+	apphot M34combined_B. Fits cbox = 5 annulus = 20 dannulus = 5	
	aperture = 4,5,6,7,10,12,14,15,16,16,00	
	apertute = $4,5,6,7,10,12,14,15,16,18,20,22,24,25$ coords = botarz Maximum flux 8 aperture = $20 \rightarrow 625423.4$	inter.
	for aperture = 5, flux = 487998.9	
	Now Agreedate 2	
	Now, Asymptotic magnitude = -2.5 log (487998.9)	
	= -14.490	
1	m(5) = -2.5 log (487998.9)	
	= -14.221	
	AC = m(s) - m(max flux)	
	= 0.269	
	Gimilarly,	
G >	Asymptotic magnitude = -2.5/09 (396096.9)	
	= -13.995	(
	$m(5) = -2.5 \log (266291)$	
	= -13.563	
	AC = 0.432	
	And,	
R>	Asymptotic magnitude= -2.5/09 (309800.1)	
	= -13.72%	
	$m(5) = -2.5 \log (243242.4)$	
	= -13.465	
	AC = 0.263	

The annulus value was chosen such that it 4 times the FWHM.

	Α	В	С	D	Е	F	G	Н	- 1
2	STARS	Х	Υ	FWHM	Flux(5)	m(flux)	m(flux) - AC		
3	1	558.57	294.26	5.61	43310.41	-11.5915	-11.860481		
4	2	574.57	395.08	5.74	15499.21	-10.4758	-10.744774		
5	3	731.48	324.47	5.4	57938.03	-11.9074	-12.176409		
6	4	850.84	351.98	5.41	79406.29	-12.2496	-12.518637		
7	5	662.56	429.79	5.71	604068.7	-14.4527	-14.721716		
8	6	790.17	454.34	5.03	230143.7	-13.405	-13.673998		
9	7	949.25	377.58	5.44	34264.65	-11.3371	-11.606116		
10	8	943.6	487.04	5.38	487998.9	-14.221	-14.490047		
11	9	912.35	531.28	6.38	1177130	-15.1771	-15.446061		
12	10	757.03	546.73	4.77	155857.2	-12.9818	-13.250817		
13	11	750.44	607.97	4.88	583309.9	-14.4147	-14.683748		
14	12	894.28	715.6	5.96	1243215	-15.2364	-15.505366		
15	13	969.27	609.68	4.93	33355.54	-11.3079	-11.57692		
16	14	646.65	341.45	1.52	3171.089	-8.75302	-9.0220211		
17	15	574.57	395.08	5.74	15499.21	-10.4758	-10.744774		
18	16	650.59	661.49	4.32	12070.62	-10.2043	-10.473324		
19	17	748.67	675.44	1.6	3480.431	-8.85408	-9.1230826		
20	18	827.12	682.79	4.32	5189.661	-9.28785	-9.5568475		
21	19	865.73	652.41	1.73	1096.767	-7.60029	-7.8692859		
22	20	882.55	575.43	1.33	1287.978	-7.77477	-8.0437711		
23	21	840.68	379.44	1.56	1432.496	-7.89023	-8.1592335		
24	22	768.72	282.43	1.69	3058.828	-8.71389	-8.9828876		
25	23	574.66	604.44	1.56	1079.757	-7.58332	-7.8523151		
26	24	564.63	609.44	1.58	1553.928	-7.97858	-8.2475772		
27	25	710.73	611.48	1.64	1087.233	-7.59081	-7.8598066		
28	26	630.21	538.24	1.79	349.5085	-6.35864	-6.6276444		
29	27	757.87	370.53	5.09	3156.553	-8.74803	-9.0170327		
30	28	865.44	401.15	5.2	3216.052	-8.76831	-9.0373077		
31	29	997.61	449.41	1.49	723.1602	-7.14809	-7.4170863		
32	30	982.67	560.63	2.12	477.8944	-6.69833	-6.9673299		
33	31	720.68	748.44	1.57	7794.648	-9.72949	-9.9984913		
34	32	656.59	745.46	1.38	1160.929	-7.66201	-7.9310142		
35	33	568.01	325.36	2.64	691.5214	-7.09951	-7.3685141		
36	34	949.1	377.15	5.37	33760.48	-11.321	-11.590022		
37	35	820.35	419.39	18.81	739.6644	-7.17259	-7.4415868		
38	36	699.97	600.01	1.88	344.4297	-6.34275	-6.6117515		
39	37	652.81	635.4	4.67	1631.725	-8.03162	-8.3006174		
40	38	819.84	603.74	1.85	445.2606	-6.62154	-6.8905357		
41	39	646.65	341.45	1.52	3171.089	-8.75302	-9.0220211		
42	40	939.84	427.44	1.8	718.8479	-7.14159	-7.4105925		
		61 44	CI I		12 / (

Fig 3: B-filter Stars Magnitude

1	G-FILTER		Centroids	= (x,y)		AC= Apert	ure Correction	= 0.432	
2	STARS	X	Υ	FWHM	Flux(5)	m(flux)	m(flux) - AC		
3	1	671.5	330.2	5	37447.76	-11.4336	-11.8655646		
4	2	793.23	344.69	5	43399.8	-11.5937	-12.0257193		
5	3	894.15	359.62	5.85	23964.96	-10.9489	-11.3809418		
6	4	812.18	391.94	4.47	3551.959	-8.87617	-9.30816986		
7	5	524.52	416.78	7.34	16403.45	-10.5373	-10.969338		
8	6	614.62	442.21	5.89	310485.2	-13.7301	-14.1621023		
9	7	744.82	452.59	6.13	132021.3	-12.8016	-13.23361		
10	8	781.36	459.3	2.35	2253.578	-8.38218	-8.81418149		
11	9	900.66	468.9	6.27	269273	-13.5755	-14.007482		
12	10	874.32	515.82	6.8	786135.1	-14.7387	-15.170743		
13	11	721.8	547.98	6	100803.6	-12.5087	-12.9406901		
14	12	721.69	609.49	5.5	347787.3	-13.8533	-14.2852843		
15	13	939.62	588.31	5.73	32895.39	-11.2928	-11.7248376		
16	14	876.07	701.03	5.12	840394	-14.8112	-15.2432074		
17	15	984.53	747.02	4.33	41487.52	-11.5448	-11.9767937		
18	16	806.07	675.69	4.41	6305.443	-9.49929	-9.93128901		
19	17	628.13	673.55	5.04	11337.72	-10.1363	-10.5683143		
20	18	706.21	749.16	2.74	8149.012	-9.77776	-10.2097624		
21	19	524.59	416.48	7.51	17202.23	-10.589	-11.0209619		
22	20	754.34	283.14	2.47	3620.52	-8.89693	-9.32892738		
23								%	
24									

Fig 4: G-Filter Stars Magnitude

1	R-FILTER					Centroid	ls =	(x,y)		AC= Aperture	e Correctio	n=0.263
2	STARS	X		Y		FWHM	F	lux(5)	m(flux)	m(flux) - AC		
3	1	6	611.21 351.9		5.5	55	69542.4	-12.1056	-12.368624			
4	2	7	733.72	34	8.08	5.4	14	81023.96	-12.2715	-12.534534		
5	3	8	335.34	34	8.36	4.5	57	51785.1	-11.7855	-12.048512		
6	4		889.5	3	56.2	5.4	19	8392.939	-9.80979	-10.072785		
7	5	8	363.97	36	6.65	6.1	L6	8937.317	-9.87802	-10.141018		
8	6	7	760.33	39	1.92	5.	.6	11814.8	-10.1811	-10.444066		
9	7	7	743.89		289	2.3	39	535.3033	-6.8215	-7.0844998		
10	8	5	571.23	47	0.11	7.2	26	405444.2	-14.0198	-14.282828		
11	9	7	701.29	46	2.02	5.8	34	243292.9	-13.4653	-13.728324		
12	10	8	357.79	4	55.7	5.0)8	410889.4	-14.0343	-14.297312		
13	11	8	338.11	50	6.04	6.5	66	863577.3	-14.8408	-15.103753		
14	12	6	592.27	55	9.74	5.3	32	184796.8	-13.1667	-13.429736		
15	13		700.8	62	0.64	5.0	01	455113.2	-14.1453	-14.408299		
16	14		913.5	56	8.29	4.1	L5	66232.59	-12.0527	-12.315679		
17	15		866.3	68	9.13	6.5	53	850969.3	-14.8248	-15.087785		
18	16	9	980.83	71	8.61	5.6	52	73855.9	-12.171	-12.433963		
19	17	g	918.85	76	4.04	5.	.7	647258.6	-14.5277	-14.790695		
20	18	6	595.81	75	4.45	1.4	14	9753.034	-9.97285	-10.235849		
21	19	6	517.45	69	7.83	5.9	8	23451.08	-10.9254	-11.188407		
22	20	7	793.75	67	3.96		4	13809.62	-10.3505	-10.613454		
23												

Fig 5: R-Filter Stars Magnitude

The sky background in each filter was measured using imexamine facility of the IRAF.

Filter	Mean	Standard Deviation
В	4445	7.708
	4425	8.292
	4421	6.558
	4436	7.688
G	22949	18.52
	22988	24.03
	23082	20.6
	22960	21.36
R	37141	18.77
	37351	22.68
	37263	17.43
	37513	23.13

Table 3: Sky Background

Moving to the Astrometry part, for B filter:

	RA (12000) Dec (12000) Cent												
		0.45,607.97)											
8>	2hu2m10.65 + 42° 49'56" (75	7.03,546.73)											
	(4.017)												
	$dx = \dot{x}(8) - x(A) = 157.03 - 750.$	45 = 6.58 px											
	dy = y(B) - y(A) = 546.73 - 601.	.97 = -61.24 px											
	$ds = \sqrt{(dx)^2 + (dy)^2} =$	N 43.2964 + 3750.3376											
	- d	9 = 61.59 px											
	The state of the s												
	dRA" = 15 dRA(9)* (09 (Dec)	For Dec.											
	= 15 (-3.89) * cos (0.849°)	1° > 60' A > 0.866°											
	= 56,99"	1' > 60" B> 0.882°											
	dDec" = 49'56" - 51'59"												
	= 3" + (2×60)"												
		123"											
	125												
		11)2											
	00" = N (dRA") + (duec	$(1)^2 = \sqrt{3241.860 + 15129}$											
		11 11											
	1 -	d5 = 135.56"											
	The pixel ocale / focal-plane ocale=												
		ds											
		= 2.201 arcsec/pixel.											
- A F	or tilt, sin (PA (ccD)) = dx												
	do												
	0.6.00												
	$PA(CCD) = arcsin \left(\frac{6.5\%}{61.5\%}\right)$	93)											
	= 6.133 degree												
P	ind, sin (pa(Ra/Dec)) = dRa'												
	nd, sin (PACKA/DEC) do"												
	PA (RA/Dec) = arcsin (56	.99 = 24.86 degree											
		21,00 000											

```
.. ccD columns are filted by: -18.73 degrees.
                -ve sign reflects clockwise rotation
      For RA Dec &
        RA(1) = RA(A) - (dx"cos(T) + dy"sin(T))
        = 9134.4 - (dx" cos (-18.13) + dy" sin (-18.13))
      (Dec (1) = Dec(A) + (-dx" sin(T) + dy" cos(T))
               = 15 4319 + (-dx" sin (-18.73) + dy" (05 (-18.73))
       G-Filter 8
       A > (721.69, 609.49)
                                 dx = 0.11
       B> (721.80, 547.98)
                                 dy = -61.51
                                       00 do = 61.51 px
       do"= 135.56"
           The pixel scale = 2.204 arcseclpixel
     For tilt, PA (CCD) = arcoin (0.11)
                   PA (CCD) = 0.103 degree
        PA (RAIDEC) = 24.86 degree.
          .. (CD columns are tilted by : -24.76 degrees.
              -ve sign reflects clockwise rotation.
    For RAlDec:
        RA(1) = 9134.4 - (dx" cos(-24.76) + dy" sin (-24.76))
        Dec (1) = 154319 - (-dx"sin (-24.76) + dy" cos (-24.76))
* R-Filter:
    A > (100.80, 620, 64)
                                doc = -8.53
    B > (692.27, 559.74)
                                 dy = -60.9
                                          00 do = 61.49 px
     do" = 185.56", pixel ocale = 2.205 accept pixel
    For Hilt, PA(CCD) = arcsin (8.53
```

```
PA(RA/Dec) = 24.86 degree.

3 ccD columns are Hilted by 3 -16.89 degrees

For RA/Dec:

RA(1) = 9784.4 - (dx"cos(-16.89) + dy"sin (-16.89))

Dec(1) = 154319 - (-dx"sin (-16.89) + dy"cos(-16.89)).
```

B FILTER		Centroids	= (x,y)		AC= Apert	ure Correctio	n = 0.269		A=(750.45	607.97)				
STARS	X	Y	FWHM	Flux(5)	m(flux)	m(flux) - AC		dy		dy*sin(T)	RΔ	dx*sin(T)	dy*cos(T)	Dec
1		294.26	5.61			-11.860481	-191.88	-		-37.4166	9962.33			154030
2		395.08	5.74	15499.2			-175.88	-212.89		-25.3917	9934.42			154129
3			5.4	57938			-18.97	-283.5			9787.05			154040
4		351.98	5.41		-12.2496		100.39	-255.99			9665.26			154053
5			5.71	604069		-14.721716	-87.89	-178.18			9842.91			154153
6		454.34	5.03	230144			39.72	-153.63			9713.29			154162
7		377.58	5.44	34264.7		-11.606116	198.8	-230.39			9564.5			154067
8			5.38	487999		-14.490047	193.15	-120.93		-14.4235	9557.05			154176
9			6.38				161.9	-76.69			9582.8			154224
10		546.73	4.77		-12.9818		6.58	-61.24			9735.17	0.78481		154257
11		607.97	4.88	583310			-0.01	0		0	9734.41		0	
12			5.96				143.83	107.63		12.8372	9578.76			154409
13		609.68	4.93	33355.5		-11.57692	218.82	1.71	217.258	0.20395	9516.94		1.69779	154295
14		341.45	1.52	3171.09			-103.8	-266.52			9869.25			154067
15		395.08	5.74		-10.4758		-175.88	-212.89			9934.42		-211.37	154129
16		661.49	4.32	12070.6			-99.86	53.52		6.3834	9827.16		53.138	154384
17		675.44	1.6	3480.43			-1.78	67.47		8.04724	9728.12	-0.2123	66.9884	154386
18		682.79	4.32				76.67	74.82		8.92388	9649.35			154384
19			1.73		-7.60029		115.28	44.44		5.30042	9614.64			154349
20	882.55		1.33	1287.98			132.1	-32.54			9607.12			154271
21		379.44	1.56	1432.5			90.23	-228.53			9672.07			154081
22			1.69	3058.83			18.27	-325.54			9755.09			153994
23			1.56	1079.76			-175.79	-3.53			9909.36		-3.5048	154336
24	564.63	609.44	1.58	1553.93	-7.97858		-185.82	1.47		0.17533	9918.72		1.45951	154343
25		611.48	1.64		-7.59081		-39.72	3.51		0.41864	9773.42			154327
26	630.21	538.24	1.79	349.509	-6.35864	-6.6276444	-120.24	-69.73	-119.382		9862.1		-69.2322	154264
27	757.87	370.53	5.09	3156.55	-8.74803	-9.0170327	7.42	-237.44			9755.35			154082
28	865.44	401.15	5.2	3216.05	-8.76831	-9.0373077	114.99	-206.82	114.1692	-24.6677	9644.9	13.715	-205.344	154100
29	997.61	449.41	1.49	723.16	-7.14809	-7.4170863	247.16	-158.56			9507.92			154132
30	982.67	560.63	2.12	477.894	-6.69833		232.22	-47.34	230.5623	-5.6463	9509.48		-47.0021	154244
31	720.68	748.44	1.57	7794.65	-9.72949	-9.9984913	-29.77	140.47	-29.5575	16.754	9747.2	-3.55071	139.467	154462
32	656.59	745.46	1.38	1160.93	-7.66201	-7.9310142	-93.86	137.49	-93.19	16.3986	9811.19	-11.1948	136.509	154467
33	568.01	325.36	2.64	691.521	-7.09951	-7.3685141	-182.44	-282.61	-181.138	-33.7073	9949.24	-21.7599	-280.593	154060
34		377.15	5.37	33760.5		-11.590022	198.65	-230.82		-27.5302	9564.7			154066
35			18.81	739.664			69.9	-188.58			9687.49			154123
36		600.01	1.88	344.43			-50.48			-0.9494	9785.47			154317
37		635.4	4.67	1631.73			-97.64	27.43		3.27161	9828.07		27.2342	154358
38		603.74	1.85	445.261			69.39	-4.23		-0.50452	9666.01		-4.1998	154307
39		341.45	1.52				-103.8	-266.52		-31.7882	9869.25			154067
40			1.8			-7.4105925	189.39		188.0381	-21.532	9567.89			154117

Fig 6: RA-Dec of stars in B-Filter

1	G-FILTER			Centroids	= (x,y)		AC= Apert	ure Correction	n = 0.432		A=(721.69	,609.49)				
2	STARS	X	,	Υ	FWHM	Flux(5)	m(flux)	m(flux) - AC	dx	dy	dx*cos(T)	dy*sin(T)	RA	dx*sin(T)	dy*cos(T)	Dec
3	1		671.5	330.2	5	37447.76	-11.4336	-11.8655646	-50.19	-279.29	-46.7436	-101.709	9882.853	-18.2777	-94.7249	154242.6
4	2		793.23	344.69	5	43399.8	-11.5937	-12.0257193	71.54	-264.8	66.62753	-96.4322	9764.205	26.05271	-89.8104	154203.1
5	3		894.15	359.62	5.85	23964.96	-10.9489	-11.3809418	172.46	-249.87	160.6176	-90.9951	9664.777	62.80472	-84.7467	154171.4
6	4		812.18	391.94	4.47	3551.959	-8.87617	-9.30816986	90.49	-217.55	84.27628	-79.2251	9729.349	32.95372	-73.785	154212.3
7	5		524.52	416.78	7.34	16403.45	-10.5373	-10.969338	-197.17	-192.71	-183.631	-70.1792	9988.21	-71.8034	-65.3601	154325.4
8	6		614.62	442.21	5.89	310485.2	-13.7301	-14.1621023	-107.07	-167.28	-99.7178	-60.9183	9895.036	-38.9917	-56.7352	154301.3
9	7		744.82	452.59	6.13	132021.3	-12.8016	-13.23361	23.13	-156.9	21.54172	-57.1382	9769.997	8.423247	-53.2147	154257.4
10	8		781.36	459.3	2.35	2253.578	-8.38218	-8.81418149	59.67	-150.19	55.57261	-54.6947	9733.522	21.73001	-50.9389	154246.3
11	9		900.66	468.9	6.27	269273	-13.5755	-14.007482	178.97	-140.59	166.6806	-51.1986	9618.918	65.17547	-47.683	154206.1
12	10		874.32	515.82	6.8	786135.1	-14.7387	-15.170743	152.63	-93.67	142.1493	-34.1118	9626.362	55.58324	-31.7694	154231.6
13	11		721.8	547.98	6	100803.6	-12.5087	-12.9406901	0.11	-61.51	0.102447	-22.4001	9756.698	0.040059	-20.8619	154298.1
14	12		939.62	588.31	5.73	32895.39	-11.2928	-11.7248376	217.93	-21.18	202.9653	-7.71312	9539.148	79.36352	-7.18348	154232.5
5	13		876.07	701.03	5.12	840394	-14.8112	-15.2432074	154.38	91.54	143.7791	33.3361	9557.285	56.22053	31.047	154293.8
16	14		984.53	747.02	4.33	41487.52	-11.5448	-11.9767937	262.84	137.53	244.7915	50.08427	9439.524	95.71839	46.64511	154269.9
17	15		806.07	675.69	4.41	6305.443	-9.49929	-9.93128901	84.38	66.2	78.58584	24.10804	9631.706	30.72865	22.4526	154310.7
18	16		628.13	673.55	5.04	11337.72	-10.1363	-10.5683143	-93.56	64.06	-87.1355	23.32872	9798.207	-34.0717	21.72679	154374.8
19	17		706.21	749.16	2.74	8149.012	-9.77776	-10.2097624	-15.48	139.67	-14.417	50.86359	9697.953	-5.63735	47.37092	154372
20	18		524.59	416.48	7.51	17202.23	-10.589	-11.0209619	-197.1	-193.01	-183.566	-70.2884	9988.254	-71.7779	-65.4619	154325.3
21	19		754.34	283.14	2.47	3620.52	-8.89693	-9.32892738	32.65	-326.35	30.40801	-118.847	9822.839	11.89014	-110.686	154196.4
2																

Fig 7: RA-Dec of stars in G-Filter

4	А	В	C	D	Е	Г	G	Н	1	J	K	L	IVI	IN	U
1	R-FILTER			Centroids	=(x,y)		AC= Aperture	e Correctio	n=0.263		A=(700.80	,620.64)			
2	STARS	X	Y	FWHM	Flux(5)	m(flux)	m(flux) - AC	dx	dy	dx*cos(T)	dy*sin(T)	RA	dx*sin(T)	dy*cos(T)	Dec
3	1	611.21	351.9	5.55	69542.4	-12.1056	-12.368624	-89.59	-268.74	33.95827	-248.687	9949.128	-82.9048	101.8634	154503.
4	2	733.72	348.08	5.44	81023.96	-12.2715	-12.534534	32.92	-272.56	-12.478	-252.222	9999.1	30.46351	103.3114	154391.
5	3	835.34	348.36	4.57	51785.1	-11.7855	-12.048512	134.54	-272.28	-50.9962	-251.962	10037.36	124.5006	103.2052	154297.
6	4	889.5	356.2	5.49	8392.939	-9.80979	-10.072785	188.7	-264.44	-71.525	-244.707	10050.63	174.6192	100.2336	154244.
7	5	863.97	366.65	6.16	8937.317	-9.87802	-10.141018	163.17	-253.99	-61.8481	-235.037	10031.29	150.9942	96.27259	154264.
8	6	760.33	391.92	5.6	11814.8	-10.1811	-10.444066	59.53	-228.72	-22.5643	-211.653	9968.617	55.08787	86.69423	154350.
9	7	743.89	289	2.39	535.3033	-6.8215	-7.0844998	43.09	-331.64	-16.3329	-306.893	10057.63	39.87462	125.7051	154404.
0	8	571.23	470.11	7.26	405444.2	-14.0198	-14.282828	-129.57	-150.53	49.11232	-139.297	9824.585	-119.901	57.05702	15449
11	9	701.29	462.02	5.84	243292.9	-13.4653	-13.728324	0.49	-158.62	-0.18573	-146.784	9881.369	0.453436	60.12346	154378.
12	10	857.79	455.7	5.08	410889.4	-14.0343	-14.297312	156.99	-164.94	-59.5056	-152.632	9946.538	145.2754	62.519	154236.
13	11	838.11	506.04	6.56	863577.3	-14.8408	-15.103753	137.31	-114.6	-52.0461	-106.049	9892.495	127.0639	43.43808	154235.
14	12	692.27	559.74	5.32	184796.8	-13.1667	-13.429736	-8.53	-60.9	3.233219	-56.3556	9787.522	-7.89349	23.08359	15435
15	13	913.5	568.29	4.15	66232.59	-12.0527	-12.315679	212.7	-52.35	-80.622	-48.4436	9863.466	196.8283	19.84279	15414
16	14	866.3	689.13	6.53	850969.3	-14.8248	-15.087785	165.5	68.49	-62.7313	63.37927	9733.752	153.1504	-25.9605	154139.
17	15	980.83	718.61	5.62	73855.9	-12.171	-12.433963	280.03	97.97	-106.143	90.65947	9749.883	259.1341	-37.1346	154022.
18	16	918.85	764.04	5.7	647258.6	-14.5277	-14.790695	218.05	143.4	-82.6499	132.6995	9684.35	201.7791	-54.3545	154062.
19	17	695.81	754.45	1.44	9753.034	-9.97285	-10.235849	-4.99	133.81	1.891414	123.8251	9608.683	-4.61765	-50.7195	154272.
20	18	617.45	697.83	5.98	23451.08	-10.9254	-11.188407	-83.35	77.19	31.59306	71.43008	9631.377	-77.1304	-29.2582	154366.
21	19	793.75	673.96	4	13809.62	-10.3505	-10.613454	92.95	53.32	-35.2318	49.34126	9720.291	86.01407	-20.2105	154212.

Fig 8: RA-Dec of stars in R-Filter

For the photometry part,

B>	Star B: (151.03, 546.13)
	Iflux at aperture 5: 155857.2
	For star 8: V= +9.64 Uncertainty: E(x-mean)2
	B-V = +1.08
	.° B = (B-V)+V
	= 10.72 where mean = avg. FWH
	Minst = -2.5 log (155851.2)
	= -12.992
	C= B- Minst
	C= 10.72 + 12.982
	= 23.702
G>	Star B: (721.80, 547.98)
	flux at aperture 5° 100803.6
	minst = -2.5/09 (100808.6)
	= -12.51
	$C = \{0.72 + 12.51$
	= 23.229
Ra	star 8: (692.27, 559.74)
	flux at aperture 5% 184796.8
	minst = -2.5log (184796.8)
	= -13.17
	C = 10.72 + 13.17
	= 23.987

4	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
В	FILTER		Centroids	= (x,y)		AC= Apert	ure Correction	n = 0.269		A=(750.45,	,607.97)							
S	TARS	X	Y	FWHM	Flux(5)	m(flux)	m(flux) - AC	dx	dy	dx*cos(T)	dy*sin(T)	RA	dx*sin(T)	dy*cos(T)	Dec	m(inst)	(x-mean)^	2
	1	558.57	294.26	5.61	43310.4	-11.5915	-11.860481	-191.88	-313.71	-190.51	-37.4166	9962.33	-22.8858	-311.471	154030	12.1105	2.89	
	2	574.57	395.08	5.74	15499.2	-10.4758	-10.744774	-175.88	-212.89	-174.625	-25.3917	9934.42	-20.9774	-211.37	154129	13.2262	3.3489	
	3	731.48	324.47	5.4	57938	-11.9074	-12.176409	-18.97	-283.5	-18.8346	-33.8134	9787.05	-2.26258	-281.476	154040	11.7946	2.2201	
	4	850.84	351.98	5.41	79406.3	-12.2496	-12.518637	100.39	-255.99	99.67339	-30.5323	9665.26	11.9736	-254.163	154053	11.4524	2.25	
	5	662.56	429.79	5.71	604069	-14.4527	-14.721716	-87.89	-178.18	-87.2626	-21.2518	9842.91	-10.4828	-176.908	154153	9.24928	3.24	
	6	790.17	454.34	5.03	230144	-13.405	-13.673998	39.72	-153.63	39.43647	-18.3237	9713.29	4.73746	-152.533	154162	10.297	1.2544	
	7	949.25	377.58	5.44	34264.7	-11.3371	-11.606116	198.8	-230.39	197.3809	-27.4789	9564.5	23.7111	-228.745	154067	12.3649	2.3409	
)	8	943.6	487.04	5.38	487999	-14.221	-14.490047	193.15	-120.93	191.7712	-14.4235	9557.05	23.0373	-120.067	154176	9.48095	2.1609	
1	9	912.35	531.28	6.38	1177130	-15.1771	-15.446061	161.9	-76.69	160.7443	-9.14692	9582.8	19.31	-76.1426	154224	8.52494	6.1009	
2	10	757.03	546.73	4.77	155857	-12.9818	-13.250817	6.58	-61.24	6.53303	-7.30418	9735.17	0.78481	-60.8029	154257	10.7202	0.7396	
3	11	750.44	607.97	4.88	583310	-14.4147	-14.683748	-0.01	0	-0.00993	0	9734.41	-0.00119	0	154319	9.28725	0.9409	
1	12	894.28	715.6	5.96	1243215	-15.2364	-15.505366	143.83	107.63	142.8033	12.8372	9578.76	17.1548	106.862	154409	8.46563	4.2025	
5	13	969.27	609.68	4.93	33355.5	-11.3079	-11.57692	218.82	1.71	217.258	0.20395	9516.94	26.0989	1.69779	154295	12.3941	1.0404	
5	14	646.65	341.45	1.52	3171.09	-8.75302	-9.0220211	-103.8	-266.52	-103.059	-31.7882	9869.25	-12.3804	-264.618	154067	14.949	5.7121	
•	15	574.57	395.08	5.74	15499.2	-10.4758	-10.744774	-175.88	-212.89	-174.625	-25.3917	9934.42	-20.9774	-211.37	154129	13.2262	3.3489	
3	16	650.59	661.49	4.32	12070.6	-10.2043	-10.473324	-99.86	53.52	-99.1472	6.3834		-11.9104	53.138	154384	13.4977	0.1681	
)	17	748.67	675.44	1.6	3480.43	-8.85408	-9.1230826	-1.78	67.47	-1.76729	8.04724	9728.12	-0.2123	66.9884	154386	14.8479	5.3361	
	18	827.12	682.79	4.32	5189.66	-9.28785	-9.5568475	76.67	74.82	76.12271	8.92388	9649.35	9.14453	74.2859	154384	14.4142	0.1681	
	19	865.73	652.41	1.73	1096.77	-7.60029	-7.8692859	115.28	44.44	114.4571	5.30042	9614.64	13.7496	44.1228	154349	16.1017	4.7524	
	20	882.55	575.43	1.33	1287.98	-7.77477	-8.0437711	132.1	-32.54	131.157	-3.88109	9607.12	15.7557	-32.3077	154271	15.9272	6.6564	
	21	840.68	379.44	1.56	1432.5	-7.89023	-8.1592335	90.23	-228.53	89.58591	-27.2571	9672.07	10.7619	-226.899	154081	15.8118	5.5225	
	22	768.72	282.43	1.69	3058.83	-8.71389	-8.9828876	18.27	-325.54	18.13958	-38.8276	9755.09	2.17909	-323.216	153994	14.9881	4.9284	
5	23	574.66	604.44	1.56	1079.76	-7.58332	-7.8523151	-175.79	-3.53	-174.535	-0.42103	9909.36	-20.9667	-3.5048	154336	16.1187	5.5225	
5	24	564.63	609.44	1.58	1553.93	-7.97858	-8.2475772	-185.82	1.47	-184.494	0.17533	9918.72	-22.163	1.45951	154343	15.7234	5.4289	
'	25	710.73	611.48	1.64	1087.23	-7.59081	-7.8598066	-39.72	3.51	-39.4365	0.41864	9773.42	-4.73746	3.48494	154327	16.1112	5.1529	
3	26	630.21	538.24	1.79	349.509	-6.35864	-6.6276444	-120.24	-69.73	-119.382	-8.31679	9862.1	-14.3412	-69.2322	154264	17.3434	4.4944	
)	27	757.87	370.53	5.09	3156.55	-8.74803	-9.0170327	7.42	-237.44	7.367034	-28.3198	9755.35	0.88499	-235.745	154082	14.954	1.3924	
)	28	865.44	401.15	5.2	3216.05	-8.76831	-9.0373077	114.99	-206.82	114.1692	-24.6677	9644.9	13.715	-205.344	154100	14.9337	1.6641	
	29	997.61	449.41	1.49	723.16	-7.14809	-7.4170863	247.16	-158.56	245.3957	-18.9117	9507.92	29.4791	-157.428	154132	16.5539	5.8564	
2	30	982.67	560.63	2.12	477.894		-6.9673299	232.22	-47.34	230.5623	-5.6463	9509.48	27.6972	-47.0021	154244	17.0037	3.2041	
3	31	720.68	748.44	1.57	7794.65	-9.72949	-9.9984913	-29.77	140.47	-29.5575	16.754	9747.2	-3.55071	139.467	154462	13.9725	5.4756	
1	32	656.59	745.46	1.38	1160.93		-7.9310142	-93.86	137.49	-93.19	16.3986				154467	16.04	6.4009	
5	33	568.01	325.36	2.64	691.521		-7.3685141	-182.44	-282.61	-181.138					154060	16.6025	1.6129	
5	34	949.1	377.15	5.37	33760.5		-11.590022	198.65	-230.82	197.232		9564.7			154066	12.381	2.1316	
7	35	820.35	419.39	18.81	739.664		-7.4415868	69.9	-188.58			9687.49			154123	16.5294	222.01	
3	36	699.97	600.01	1.88	344.43		-6.6117515	-50.48	-7.96		-0.9494	9785.47				17.3592	4.1209	
)	37	652.81	635.4	4.67	1631.73		-8.3006174	-97.64	27.43	-96.943	3.27161					15.6704	0.5776	
)	38	819.84	603.74	1.85	445.261	-6.62154	-6.8905357	69.39	-4.23	68.89467	-0.50452	9666.01	8.27624	-4.1998	154307	17.0805	4.2436	
	39	646.65	341.45	1.52	3171.09	-8.75302	-9.0220211	-103.8	-266.52	-103.059	-31.7882	9869.25	-12.3804	-264.618	154067	14.949	5.7121	
2	40	939.84	427.44	1.8	718.848	-7.14159	-7.4105925	189.39	-180.53	188.0381	-21.532	9567.89	22.5888	-179.241	154117	16.5604	4.4521	
3		Mean FW	HM =	3.91025												Mean	8.96939	
4																Uncertair	ty	2.99489
5																		
5																		

Fig 9: Stars instrumental magnitude in B-filter

1	Α	В	C	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
1	G-FILTER		Centroids :	= (x,y)		AC= Apert	ure Correctio	n = 0.432		A=(721.69	,609.49)							
2	STARS	X	Y	FWHM	Flux(5)	m(flux)	m(flux) - AC	dx	dy	dx*cos(T)	dy*sin(T)	RA	dx*sin(T)	dy*cos(T)	Dec	m(inst)	(x-mean)^	2
3	1	671.5	330.2	5	37447.76	-11.4336	-11.8655646	-50.19	-279.29	-46.7436	-101.709	9882.853	-18.2777	-94.7249	154242.6	11.79544	0.0324	
4	2	793.23	344.69	5	43399.8	-11.5937	-12.0257193	71.54	-264.8	66.62753	-96.4322	9764.205	26.05271	-89.8104	154203.1	11.63528	0.0324	
5	3	894.15	359.62	5.85	23964.96	-10.9489	-11.3809418	172.46	-249.87	160.6176	-90.9951	9664.777	62.80472	-84.7467	154171.4	12.28006	0.4489	
6	4	812.18	391.94	4.47	3551.959	-8.87617	-9.30816986	90.49	-217.55	84.27628	-79.2251	9729.349	32.95372	-73.785	154212.3	14.35283	0.5041	
7	5	524.52	416.78	7.34	16403.45	-10.5373	-10.969338	-197.17	-192.71	-183.631	-70.1792	9988.21	-71.8034	-65.3601	154325.4	12.69166	4.6656	
8	6	614.62	442.21	5.89	310485.2	-13.7301	-14.1621023	-107.07	-167.28	-99.7178	-60.9183	9895.036	-38.9917	-56.7352	154301.3	9.498898	0.5041	
9	7	744.82	452.59	6.13	132021.3	-12.8016	-13.23361	23.13	-156.9	21.54172	-57.1382	9769.997	8.423247	-53.2147	154257.4	10.42739	0.9025	
10	8	781.36	459.3	2.35	2253.578	-8.38218	-8.81418149	59.67	-150.19	55.57261	-54.6947	9733.522	21.73001	-50.9389	154246.3	14.84682	8.0089	
11	9	900.66	468.9	6.27	269273	-13.5755	-14.007482	178.97	-140.59	166.6806	-51.1986	9618.918	65.17547	-47.683	154206.1	9.653518	1.1881	
12	10	874.32	515.82	6.8	786135.1	-14.7387	-15.170743	152.63	-93.67	142.1493	-34.1118	9626.362	55.58324	-31.7694	154231.6	8.490257	2.6244	
13	11	721.8	547.98	6	100803.6	-12.5087	-12.9406901	0.11	-61.51	0.102447	-22.4001	9756.698	0.040059	-20.8619	154298.1	10.72031	0.6724	
14	12	939.62	588.31	5.73	32895.39	-11.2928	-11.7248376	217.93	-21.18	202.9653	-7.71312	9539.148	79.36352	-7.18348	154232.5	11.93616	0.3025	
15	13	876.07	701.03	5.12	840394	-14.8112	-15.2432074	154.38	91.54	143.7791	33.3361	9557.285	56.22053	31.047	154293.8	8.417793	0.0036	
16	14	984.53	747.02	4.33	41487.52	-11.5448	-11.9767937	262.84	137.53	244.7915	50.08427	9439.524	95.71839	46.64511	154269.9	11.68421	0.7225	
17	15	806.07	675.69	4.41	6305.443	-9.49929	-9.93128901	84.38	66.2	78.58584	24.10804	9631.706	30.72865	22.4526	154310.7	13.72971	0.5929	
18	16	628.13	673.55	5.04	11337.72	-10.1363	-10.5683143	-93.56	64.06	-87.1355	23.32872	9798.207	-34.0717	21.72679	154374.8	13.09269	0.0196	
19	17	706.21	749.16	2.74	8149.012	-9.77776	-10.2097624	-15.48	139.67	-14.417	50.86359	9697.953	-5.63735	47.37092	154372	13.45124	5.9536	
20	18	524.59	416.48	7.51	17202.23	-10.589	-11.0209619	-197.1	-193.01	-183.566	-70.2884	9988.254	-71.7779	-65.4619	154325.3	12.64004	5.4289	
21	19	754.34	283.14	2.47	3620.52	-8.89693	-9.32892738	32.65	-326.35	30.40801	-118.847	9822.839	11.89014	-110.686	154196.4	14.33207	7.3441	
22			Mean FWF	HM	5.181579											Mean	2.102711	
23																Uncertain	ty	1.45007
24																		
25																		

Fig 10: Stars instrumental magnitude in G filter

4	A	В	C	U	С	Г	G	Н	1	J	K	L	M	N	U	P	Q	R
	R-FILTER			Centroids	= (x,y)		AC= Apertur	e Correctio	n=0.263		A=(700.80	,620.64)						
	STARS	X	Υ	FWHM	Flux(5)	m(flux)	m(flux) - AC	dx	dy	dx*cos(T)	dy*sin(T)	RA	dx*sin(T)	dy*cos(T)	Dec	m(inst)	(x-mean)^	2
3	1	611.21	351.9	5.55	69542.4	-12.1056	-12.368624	-89.59	-268.74	33.95827	-248.687	9949.128	-82.9048	101.8634	154503.8	11.78138	0.1296	
ŀ	2	733.72	348.08	5.44	81023.96	-12.2715	-12.534534	32.92	-272.56	-12.478	-252.222	9999.1	30.46351	103.3114	154391.8	11.61547	0.0625	
	3	835.34	348.36	4.57	51785.1	-11.7855	-12.048512	134.54	-272.28	-50.9962	-251.962	10037.36	124.5006	103.2052	154297.7	12.10149	0.3844	
5	4	889.5	356.2	5.49	8392.939	-9.80979	-10.072785	188.7	-264.44	-71.525	-244.707	10050.63	174.6192	100.2336	154244.6	14.07721	0.09	
	5	863.97	366.65	6.16	8937.317	-9.87802	-10.141018	163.17	-253.99	-61.8481	-235.037	10031.29	150.9942	96.27259	154264.3	14.00898	0.9409	
3	6	760.33	391.92	5.6	11814.8	-10.1811	-10.444066	59.53	-228.72	-22.5643	-211.653	9968.617	55.08787	86.69423	154350.6	13.70593	0.1681	
9	7	743.89	289	2.39	535.3033	-6.8215	-7.0844998	43.09	-331.64	-16.3329	-306.893	10057.63	39.87462	125.7051	154404.8	17.0655	7.84	
0	8	571.23	470.11	7.26	405444.2	-14.0198	-14.282828	-129.57	-150.53	49.11232	-139.297	9824.585	-119.901	57.05702	154496	9.867172	4.2849	
1	9	701.29	462.02	5.84	243292.9	-13.4653	-13.728324	0.49	-158.62	-0.18573	-146.784	9881.369	0.453436	60.12346	154378.7	10.42168	0.4225	
2	10	857.79	455.7	5.08	410889.4	-14.0343	-14.297312	156.99	-164.94	-59.5056	-152.632	9946.538	145.2754	62.519	154236.2	9.852688	0.0121	
3	11	838.11	506.04	6.56	863577.3	-14.8408	-15.103753	137.31	-114.6	-52.0461	-106.049	9892.495	127.0639	43.43808	154235.4	9.046247	1.8769	
4	12	692.27	559.74	5.32	184796.8	-13.1667	-13.429736	-8.53	-60.9	3.233219	-56.3556	9787.522	-7.89349	23.08359	154350	10.72026	0.0169	
5	13	913.5	568.29	4.15	66232.59	-12.0527	-12.315679	212.7	-52.35	-80.622	-48.4436	9863.466	196.8283	19.84279	154142	11.83432	1.0816	
5	14	866.3	689.13	6.53	850969.3	-14.8248	-15.087785	165.5	68.49	-62.7313	63.37927	9733.752	153.1504	-25.9605	154139.9	9.062215	1.7956	
7	15	980.83	718.61	5.62	73855.9	-12.171	-12.433963	280.03	97.97	-106.143	90.65947	9749.883	259.1341	-37.1346	154022.7	11.71604	0.1849	
8	16	918.85	764.04	5.7	647258.6	-14.5277	-14.790695	218.05	143.4	-82.6499	132.6995	9684.35	201.7791	-54.3545	154062.9	9.359305	0.2601	
9	17	695.81	754.45	1.44	9753.034	-9.97285	-10.235849	-4.99	133.81	1.891414	123.8251	9608.683	-4.61765	-50.7195	154272.9	13.91415	14.0625	
0	18	617.45	697.83	5.98	23451.08	-10.9254	-11.188407	-83.35	77.19	31.59306	71.43008	9631.377	-77.1304	-29.2582	154366.9	12.96159	0.6241	
1	19	793.75	673.96	4	13809.62	-10.3505	-10.613454	92.95	53.32	-35.2318	49.34126	9720.291	86.01407	-20.2105	154212.8	13.53655	1.4161	
2			Mean FW	НМ	5.193684											Mean	1.876511	
3																Uncertain	ty	1.369858

Fig 11: Stars instrumental magnitude in R filter

BIBLIOGRAPHY

2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

https://fsf.org/

Nasa

http://apod.nasa.gov/

APPENDICES

Fig 12: M34 Finding Chart

M34 IMAGES:

(a) B-Filter

Fig 13: B-Filter Combined image

(b) G-Filter

Fig 14: G-Filter combined image

(c) R-Filter

Fig 15: R-Filter combined image

Observing Log:

		(Observing	log.										
01	Observer (s): Prayosha, Nisha, Suba, Teynep. Date: 2020-11-29+30 (Nov 29, Sunday) weather conditions: 8/4°C, Passing clouds. Observing cord.: Fair ccp Temperature (c): -20.2° (set: -20.3°, Power: 16.0°16-17.0°16)													
File Name	Name	Filter	Exp. Time	E57	RA	Dec	Comments.							
M348905#.THS	Light Images	Blue	905	6:51 to 11:05			light frame with							
M34B20Q5*. File	light Images M34	Blue	2006	7814 to			Overexposed Images							
M348001K+1916	Dork Images	Blue	905	9:5% to										
M34B Flot* Als	Flat-Field Images	Blue	119	6122 to	34, 34,		(cD % -20.16							
M349905*.Rb	light Images	Green	900	7:57- 8:11	10.5	1								
M3461306*. Fits	light Images	Green	1305	4:22- 4:42			overexposed Images in visible filler (9)							
MBUQ Dark* Fils	Dork Images	Green	906	9:38- 9:55										
nzu GFIat*. Fils	Flot-field Images	Green	15	6:16-	ī		(CD\$ -20.1)							
13UR GOS A.AIS	light Images	Red	609	4:43-			Hilroy							
134 Rx 55 *. Firs	light Images	Red	855	9:07-			over exposed Images in Red Filter							

File Name	Name	Filter	Exp. Time	EOT	RA	Dec	
M34RBiast Fils	Bias Images	Red	09	6:29-	Lun	1	20/100
Maykage	Sids illiages			6:31			. Sias Frames in R filter.
M34RDalk + Fils	Dark Images	Red	955	9:23- 9:35	1.	77	anula ymola
	Flat-field	Red	0.55	6513-			
M34RFlat* Fits	Images	Dear		6:15			CCD % -20.17