An Introduction to AdS/CFT Correspondence

Yasin Alam

AdS/CFT

The University of Texas at Austin

Introduction

- Holography
- · Anti-de Sitter spacetime
- · Conformal invariance
- · Large N expansion
- · Strings, D-branes, and all that
- Statement of duality
- Applications

Statement of Duality

String theory on $AdS_5\times S^5\simeq \mathcal{N}=4, \mathrm{SU}(N)$ gauge theory in 4D

Statement of Duality

Resources:

- Gauge/Gravity Duality (Ammon and Erdmenger)
- Introduction to the AdS/CFT Correspondence (Natase)
- String Theory and Holographic Duality (Liu)

Arxiv:

- The Large N Limit of Superconformal Field Theories and Supergravity (Maldacena 1997)
- Anti De Sitter Space And Holography (Witten)
- The AdS/CFT Correspondence (Hubeny)
- TASI Lectures on the Emergence of the Bulk in AdS/CFT (Harlow)

Table of Contents

Holographic Principle

AdS geometry

Conformal Invariance

Large N expansion

Stringy Stuff

Statement of Duality

Applications

Table of Contents

Holographic Principle

AdS geometry

Conformal Invariance

Large N expansion

Stringy Stuff

Statement of Duality

Applications

Holographic Principle I

- Spin system on lattice (size a) has V/a^3 total spins or $N = 2^{V/a^3}$ dof
- $\cdot \implies S_{spin} = \frac{V}{a^3} \log 2$

Holographic Principle I

- Spin system on lattice (size a) has V/a^3 total spins or $N = 2^{V/a^3}$ dof
- $\cdot \implies S_{spin} = \frac{V}{a^3} \log 2$
- · Hawking showed

$$S_{BH} = \frac{A}{4\hbar G_N} = \frac{A}{4\ell_p^2}$$

· $S_{spin} \ge S_{BH}$

Holographic Principle I

- Spin system on lattice (size a) has V/a^3 total spins or $N = 2^{V/a^3}$ dof
- $\cdot \implies S_{spin} = \frac{V}{a^3} \log 2$
- Hawking showed $S_{BH} = \frac{A}{4\hbar G_N} = \frac{A}{4\ell_0^2}$
- $S_{spin} \geq S_{BH}$
- Including gravity drastically reduces number of dof

Holographic Principle II

Theorem (Holographic Principle) In QG, a region R with codimension-1 surface $B = \partial R$ can be described by the dynamics in B.

i.e. by no more than $A/4\ell_p^2$ dof.

Table of Contents

Holographic Principle

AdS geometry

Conformal Invariance

Large N expansion

Stringy Stuff

Statement of Duality

Applications

Anti-de Sitter space I

- Spacetime with $\Lambda < 0$
- · $-X_0^2 + \sum_{i=1}^{d-1} X_i^2 X_{d+1}^2 = -R^2$ and has SO(2, d-1) isometry

Anti-de Sitter space I

- Spacetime with $\Lambda < 0$
- $-X_0^2 + \sum_{i=1}^{d-1} X_i^2 X_{d+1}^2 = -R^2$ and has SO(2, d 1) isometry
- AdS global coordinate metric can be written as $ds^2 = \frac{R^2}{\cos^2 \rho} (d\tau^2 + d\rho^2 + \sin^2 \rho d\Omega_{d-2}^2)$
- as $\rho \to 0$ we see the spacetime is topologically $S^1 \times \mathbb{R}^{d-1}$ with boundary $\mathbb{R} \times S_{d-2}$
- Light can reach boundary in finite time but massive

Anti-de Sitter space II

- AdS has a boundary (not true for dS)
- · In Poincare patch,

$$ds^2 = rac{R^2}{z^2} (dz^2 + \eta_{\mu\nu} dx^{\mu} dx^{\nu})$$

 $\lim_{z \to 0} \simeq \eta_{\mu\nu} dx^{\mu} dx^{\nu}$

which is conformally flat

Table of Contents

Holographic Principle

AdS geometry

Conformal Invariance

Large N expansion

Stringy Stuff

Statement of Duality

Applications

Conformal Invariance I

- Conformal transformations $x \to x' = f(x)$ change metric as $G_{\mu\nu}(x) \to \Omega(x)^{-2} g_{\mu\nu}(x)$
- · Leaves angles unchanged
- Fields change as $\phi(x) \to \phi'(x') = \lambda^{-\Delta}\phi(x)$ for some scaling dimension Δ
- · Strongly fixes correlators

$$\langle \phi_1(x_1)\phi_2(x_2)\rangle = \frac{C}{(x_1 - x_2)^{2\Delta}}$$
 (1)

Name	$\epsilon^{\mu}(x)$	$\sigma(x)$	Operator
Translation	a^{μ}	0	P_{μ}
Lorentz transformations	$\omega^{\mu}_{\nu}x^{\nu}$, $\omega_{\mu\nu} = -\omega_{\nu\mu}$	0	$J_{\mu\nu}$
Dilatation	λx^{μ}	λ	D
Special conformal transformation	$b^{\mu}x^2 - 2(b \cdot x)x^{\mu}$	$-2(b \cdot x)$	K_{μ}

Figure 1: Conformal transformations

Conformal Invariance II

- In d > 2, conformal group is SO(d, 2)
- So 5d AdS has same conformal group as 4d CFT, SO(4,2)

Table of Contents

Holographic Principle

AdS geometry

Conformal Invariance

Large N expansion

Stringy Stuff

Statement of Duality

Applications

Motivation

- QCD Lagrangian is $\mathcal{L}=g_{\rm YM}^{-2}\left(\frac{1}{4}{\rm Tr}F_{\mu\nu}F^{\mu\nu}-fermions\right)$ with $A_{a\mu}$ as 3 imes 3 matrix
- · At low energies, coupling is strong. Solution?

Motivation

- QCD Lagrangian is $\mathcal{L}=g_{\rm YM}^{-2}\left(\frac{1}{4}{\rm Tr}F_{\mu\nu}F^{\mu\nu}-fermions\right)$ with $A_{a\mu}$ as 3 imes 3 matrix
- · At low energies, coupling is strong. Solution?
- Promote A_{μ} to $N \times N$ matrix, take $N \to \infty$, expand in 1/N

Toy Model

- $\mathcal{L} = g^{-2} \mathrm{Tr} \left[\frac{1}{2} (\partial \Phi_b^a)^2 + \frac{1}{4} \Phi^4 \right]$ where Φ is $N \times N$ matrix and has $\mathrm{U}(N)$ symmetry
- First diagram contributes N^3g^2 , 2nd contributes Ng^2
- Cannot draw 2nd diagram without crossing
- What is a general rule to count these diagrams?

Figure 2: Vacuum Diagrams

• In general vacuum contribution is $A \sim (g^2)^{E-V} N^F$

- In general vacuum contribution is $A \sim (g^2)^{E-V} N^F$
- Better to use $\lambda \equiv g^2 N$ fixed and $N \to \infty, g^2 \to 0$
- $A \sim (g^2N)^{E-V}N^{F+V-E} = \lambda^{L-1}N^{F+V-E}$

- In general vacuum contribution is A $\sim (g^2)^{E-V}N^F$
- Better to use $\lambda \equiv g^2 N$ fixed and $N \to \infty, g^2 \to 0$
- $A \sim (g^2N)^{E-V}N^{F+V-E} = \lambda^{L-1}N^{F+V-E}$
- Euler character $\chi = F + V E = 2 2g \implies A \sim \lambda^{L-1} N^{2-2g}$
- Sum of all diagrams $W = \log Z = \sum_{q=0}^{\infty} N^{2-2q} f_q(\lambda)$

Figure 3: genus 0-2 surfaces

- In general vacuum contribution is $A \sim (g^2)^{E-V} N^F$
- Better to use $\lambda \equiv g^2 N$ fixed and $N \to \infty, g^2 \to 0$
- $A \sim (g^2N)^{E-V}N^{F+V-E} = \lambda^{L-1}N^{F+V-E}$
- Euler character $\chi = F + V E = 2 2g \implies A \sim \lambda^{L-1} N^{2-2g}$
- Sum of all diagrams $W = \log Z = \sum_{q=0}^{\infty} N^{2-2q} f_q(\lambda)$

Figure 3: genus 0-2 surfaces

Generally, correlators look like

$$\langle \mathcal{O}_1 \mathcal{O}_2 \dots \mathcal{O}_n \rangle = \sum_{n=0}^{\infty} N^{2-n-2g} F_n^{(g)}(x_1, \dots, x_n; \lambda)$$
 (2)

Table of Contents

Holographic Principle

AdS geometry

Conformal Invariance

Large N expansion

Stringy Stuff

Statement of Duality

Applications

Strings I

Fundamental object is a string

$$Z = \int DX^{\mu}(\tau) e^{\frac{i}{2\pi\alpha'} \int_{\Sigma} dA + \lambda R}$$
 (3)

· To evaluate, go to euclidean signature

$$Z_E = \sum_{g=0} e^{-\lambda \chi} \sum_{\text{surface w/ given topology}} e^{-S_{string}}$$
 (4)

 String theory has interactions built in (only depends on topology of world sheet)

Strings II

• Define $g_s = e^{\lambda}$, then

· Summing over all topologies sums over interactions

Strings II

• Define $g_s = e^{\lambda}$, then

- · Summing over all topologies sums over interactions
- Generally for n-scattering,

$$A_n = \sum_{g=0} g_s^{n-2+2g} F_n^{(g)}$$
 (5)

Strings III

So we can identify a large N gauge theory with a string theory

$$g_s \leftrightarrow \frac{1}{N}$$

external strings $\leftrightarrow \mathcal{O}_i |0\rangle$

topology of worldsheet

 \leftrightarrow topology of Feynman diagram

D-Branes I

- Open strings end on D-branes
- D-Branes are dynamical and are described by

$$S_{\text{eff}} = -T_p \int d^{p+1}x \left(1 + \frac{1}{4}F^2 + \frac{1}{2}(\partial_{\alpha}\Phi^{\alpha})^2 + \dots \right)$$

• Can stack N D-branes on top of each other and get $N \times N$ representation $(A_{\alpha})_{j}^{l}$

D-Branes II

 On the worldsheet, U(N) global symmetry, but from spacetime POV, gauge symmetry

.

$$S \to -\frac{1}{g_{YM}^2} \int d^{p+1} x \mathrm{Tr} \left(\frac{1}{4} F^2 + \frac{1}{2} (D_{\alpha} \Phi^{\alpha})^2 + [\Phi^{\alpha}, \Phi^{b}]^2 + \dots \right)$$

D-Branes II

 On the worldsheet, U(N) global symmetry, but from spacetime POV, gauge symmetry

•

$$S \to -\frac{1}{g_{YM}^2} \int d^{p+1} X \mathrm{Tr} \left(\frac{1}{4} F^2 + \frac{1}{2} (D_{\alpha} \Phi^a)^2 + [\Phi^a, \Phi^b]^2 + \dots \right)$$

- Identify $g_{YM}^2 \sim g_s$ and $\alpha' \to 0$, this is just $\mathcal{N} = 4$ SYM!
- Considering open string perspective ($g_s N \ll 1$)
- Note that I have left off the sypersymmetric part, but they are there!

D-Branes III

- Consider closed string perspective $g_s N \to \infty$
- \cdot For N D3-branes (type IIB superstring) in $\mathbb{R}^{9,1}$
- D-branes gravitate, in SUGRA approximation, they source a metric

$$ds^{2} = H(r)^{-1/2} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + H(r)^{1/2} \delta_{ij} dx^{i} dx^{j}$$
$$H(r) = 1 + \left(\frac{R}{r}\right)^{4}$$

• For r >> R,

$$ds^{2} = \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2}) + R^{5} d\Omega_{5}^{2}$$
 (6)

which is $AdS_5 \times S^5$

Table of Contents

Holographic Principle

AdS geometry

Conformal Invariance

Large N expansion

Stringy Stuff

Statement of Duality

Applications

AdS/CFT Correspondence I

- Closed string perspective: IIB SUGRA on $AdS_5 \times S^5 \leftrightarrow \mathbb{R}^{9,1}$
- Open string perspective: $\mathcal{N}=4$ SYM in 4D \leftrightarrow IIB SUGRA on $\mathbb{R}^{9,1}$

AdS/CFT Correspondence I

- Closed string perspective: IIB SUGRA on $AdS_5 \times S^5 \leftrightarrow \mathbb{R}^{9,1}$
- Open string perspective: $\mathcal{N}=4$ SYM in 4D \leftrightarrow IIB SUGRA on $\mathbb{R}^{9,1}$
- So conjecture SU(N) $\mathcal{N}=4$ SYM in 4D \leftrightarrow IIB supertring theory on $AdS_5 \times S^5$ with

$$g_{\rm YM}^2=4\pi g_{\rm S}$$
 and $g_{\rm YM}^2N=R^4/\alpha'^2$

AdS/CFT Correspondence II

	Table 5.1 Different forms of the AdS/CFT correspondence				
	$\mathcal{N}=4$ Super Yang–Mills theory	IIB theory on $AdS_5 \times S^5$			
Strongest form Strong form Weak form	any N and λ $N \to \infty$, λ fixed but arbitrary $N \to \infty$, λ large	Quantum string theory, $g_s \neq 0$, $\alpha'/L^2 \neq 0$ Classical string theory, $g_s \rightarrow 0$, $\alpha'/L^2 \neq 0$ Classical supergravity, $g_s \rightarrow 0$, $\alpha'/L^2 \rightarrow 0$			

Figure 4: Statements of AdS/CFT from Ammon and Erdmenger

Dictionary I

$\mathcal{N}=4$ SYM		IIB string theory in $AdS_5 \times S^5$	
Conformal SO(4,2)	\leftrightarrow	isometry of AdS: SO(4,2)	
Global SO(6)	\leftrightarrow	isometry of S ⁵ : SO(6)	
Global SUSY	\leftrightarrow	Local SUSY	
Conformal SO(4,2)	\leftrightarrow	isometry of AdS: SO(4,2)	
g_{YM}^2	\leftrightarrow	4πg _s	
$\pi^4/(2N^2)$	\leftrightarrow	R^4/α'^2	
$\lambda = g_{YM}^2 N$	\leftrightarrow	G_N/R^8	

Dictionary II

2 Limits

- 1) Semiclassical: $\hbar = 1, G_N, \lambda \to 0$
- Then N^{-2} corrections are quantum gravity corrections and $\lambda^{-1/2}$ are α' corrections
- 2) Classical string: α' arbitrary and $N \to \infty$ or $g_s \to 0$
- · Corresponds to t'Hooft limit

Dictionary III

boundary theory		bulk theory	
repr. of conformal SO(4,2)		repr. of isometry SO(4,2)	
conformal local operators		bulk fields	
scalar operator ${\cal O}$		scalar field ϕ	
vector operator J_{μ}		vector field A_{μ}	
tensor operator $T_{\mu u}$	\leftrightarrow	tensor field $h_{\mu u}$	

Example: Scalar field

· Action for scalar in AdS:

$$S \sim \int d^{d+1}x \sqrt{-g} (g^{MN} \partial_M \Phi \partial_N \Phi + m^2 \Phi^2) + O(N^{-1})$$
 (7)

- $\Phi(x,z) = A(x)z^{d-\Delta} + B(x)z^{\Delta}$ as $z \to 0$
- · A(x) is boundary "value" \implies add $\int d^dx \phi_0(x) \mathcal{O}(x)$ to action
- $\int d^d x \phi_0(x) \mathcal{O}(x) \Leftrightarrow \phi_0(x) = \lim_{z \to 0} z^{\Delta d} \Phi(x, z)$
- · Can reconstruct bulk fields from the boundary

Dictionary V

• In short, we can summarize as

$$Z_{gravity}[\Phi|_{\partial AdS=\phi(X)}] = Z_{CFT}[\phi(X)]$$
 (8)

· Can calculate Euclidean correlators as

$$\langle \mathcal{O}_1 \dots \mathcal{O}_n \rangle = \frac{\delta^n \log Z_{CFT}}{\delta \phi_1 \dots \delta \phi_n} = \frac{\delta^n \log Z_{gravity}[\Phi]}{\delta \phi_1 \dots \delta \phi_n}$$
(9)

Dictionary V

· In short, we can summarize as

$$Z_{gravity}[\Phi|_{\partial AdS=\phi(X)}] = Z_{CFT}[\phi(X)]$$
 (8)

· Can calculate Euclidean correlators as

$$\langle \mathcal{O}_1 \dots \mathcal{O}_n \rangle = \frac{\delta^n \log Z_{CFT}}{\delta \phi_1 \dots \delta \phi_n} = \frac{\delta^n \log Z_{gravity}[\Phi]}{\delta \phi_1 \dots \delta \phi_n}$$
(9)

- ex: $\langle \mathcal{O}(x) \rangle = 2(\Delta d/2)B(x)$
- or 2-pt function $\langle \mathcal{O}(x_1)\mathcal{O}(x_2)\rangle = \frac{1}{|x_1-x_2|^{\Delta}}$

Spontaneous Extra Dimension?

· Where does the extra dimension come from?

Spontaneous Extra Dimension?

- · Where does the extra dimension come from?
- · Can view it as energy scale of boundary theory!

$$E_{YM} = \frac{R}{Z}E_{local}$$
 $d_{YM} = \frac{Z}{R}d_{local}$

· or

$$z \to 0 \implies E_{YM} \to \infty, d_{YM} \to 0$$
 UV process of SYM $z \to \infty \implies E_{YM} \to 0, d_{YM} \to \infty$ IR process of SYM

Table of Contents

Holographic Principle

AdS geometry

Conformal Invariance

Large N expansion

Stringy Stuff

Statement of Duality

Applications

Other Examples of Gauge/Gravity Duality

- M-Theory $AdS_4 \times S^7/CFT_3$
- · Thermofield double and Eternal Black holes
- · AdS₃/CFT₂
- JT gravity/SYK model
- Topological gravity/Narain CFTs
- · + more

Condensed Matter Applications

- Quantum Phase transitions
- Holographic Superconductors/Superfluids
- Transport Properties

$$\mathcal{L} = R + 6/L^2 - \frac{1}{4}F^2 - |\nabla\phi - iqA\phi|^2 - m^2|\phi|^2$$

Figure 5: Low temperature limit of $\sigma(\omega) = -\lim_{k\to 0} \frac{1}{\omega} G^R(k,\omega)^{-1}$

¹Gary T Horowitz and Matthew M Roberts. Holographic superconductors with various condensates. Physical Review D, 78(12):126008, 2008.

QIS Applications

 Entanglement Entropy and Complexity

Figure 6: Entanglement Entropy given by $S = \frac{Area(\gamma_A)}{4G_N}$

Quantum Error Correcting codes

Figure 7: AdS-Rindler in HaPPY tensor network code.

QCD Applications

- Solutions where A(r) diverges at finite r describes a confining theory
- · AdS/QCD gives pretty good predictions

Table 13.4 Meson masses and decay constants in the hard wall AdS/QCD model						
Observable	Measured (MeV)	AdS/QCD (MeV)				
m_{π}	139.6 ± 0.0004	141				
m_{ρ}	775.8 ± 0.5	832				
m_{a_1}	1230 ± 40	1220				
f_{π}	92.4 ± 0.35	84.0				
$F_{\rho}^{1/2}$	345 ± 8	353				
$F_{a_1}^{1/2}$	433 ± 13	440				

Figure 8: From Ammon

Hydrodynamics Applications

- Relativistic hydrodynamics: ∃U(1) current anomolies that directly modifies equations proposed by Landau
- Holographic calculations of the diffusion constant, shear viscosity, etc.