프로젝트 개요 및 설계 방향성

1. 프로젝트 개요

- 프로젝트 목적
- 마이크로서비스 및 DevOps 환경 정의
- 요구사항 요약 (10개 이상 마이크로서비스, PostgreSQL, Object Storage, HA, CI/CD 등)

2. 전체 아키텍처 구성

Public Cloud

Private Cloud

3. 클러스터 구성 방식 비교

항목	퍼블릭 클라우드 (AWS 기준)	프라이빗 클라우드 (온프레미스 기반)
클러스터 생성 방식	EKS (eksctl) 매니지드 방식	kubeadm 또는 RKE 직접 구성
마스터 노드 관리	AWS가 자동 관리 (HA 포함)	직접 이중화 필요 (HAProxy + Keepalived)
워커 노드 관리	ASG 기반 자동 추가/삭제	수동 확장, VM 또는 물리 서버 준비
설치 난이도	매우 쉬움 (수분 내 생성)	높음 (모든 구성 수동 관리 필요)
관리 편의성	● 자동화/모듈화 우수	● 복잡도 높음, 유지보수 필요

4. 서비스 구성 및 배포 구조

항목	퍼블릭 클라우드	프라이빗 클라우드
Ingress	ALB Ingress Controller	NGINX Ingress Controller
Load Balancer	AWS ALB (L7)	MetalLB 또는 HAProxy (L4)
CI/CD 구성	GitHub Actions + Argo CD	Jenkins or Argo CD 자체 호스팅
배포 전략	GitOps (자동 배포)	GitOps or 수동 Jenkins 파이프라인
환경 분리	EKS 클러스터 or Namespace 기반	Namespace 또는 K8s 다중 클러스터
민첩성	● 실시간 배포 가능	● 초기 셋업 후 자동화 가능

5. 스토리지 및 DB 구성

항목	퍼블릭 클라우드	프라이빗 클라우드
Database	RDS for PostgreSQL (Multi-AZ)	PostgreSQL + Replication 구성

항목	퍼블릭 클라우드	프라이빗 클라우드
Object Storage	Amazon S3	MinIO 또는 Ceph RGW
S3 API 지원	기본 지원	수동 설치 및 구성 필요
데이터 백업	자동 백업, 복원	수동 설정 필요 (Cron + PVC 등)
운영 편의성	● 매우 높음	● 고가용성, 백업 직접 구성 필요

6. 오토스케일링 구성 비교

항목	퍼블릭 클라우드	프라이빗 클라우드
Pod 수평 확장	HPA (CPU/Memory 기반)	HPA 동일하게 구성 가능
노드 수 확장	Cluster Autoscaler + ASG	수동 확장 또는 Cluster Autoscaler + VM
리소스 정책	HPA + VPA + LimitRange	수동 자원 제어 또는 제한 설정
민첩성	● 자동 확장 가능	● 인프라 한계 존재

7. 보안 및 접근 제어 구성

항목	퍼블릭 클라우드	프라이빗 클라우드
인증/권한	IAM + RBAC	Keycloak + RBAC or Vault
시크릿 관리	AWS Secrets Manager or KMS	Sealed Secrets or HashiCorp Vault
네트워크 보안	VPC + SecurityGroup	NetworkPolicy + 방화벽 수동 구성
감사 로그	CloudTrail, GuardDuty	ELK Stack, Fluentd, Loki 등
보안 우수성	● 도구 내장 + 자동화	○ 커스터마이징 가능, 복잡도 존재

8. HA 구성 전략 비교

항목	퍼블릭 클라우드	프라이빗 클라우드
K8s HA	EKS 기본 제공	Control Plane 이중화 필요
DB HA	RDS Multi-AZ	PostgreSQL Replication
Object Storage HA	S3 이중화 내장	MinIO 서버 이중화 or Ceph 클러스터 구성
Ingress/Load Balancer	ALB 이중화 내장	HAProxy + Keepalived
운영 난이도	● HA 구성 편리	● 모든 계층에서 수동 구성 필요

9. 종합 비교 평가

기준	퍼블릭 클라우드	프라이빗 클라우드
관리 편의성	● EKS, RDS, S3 등 관리형 자원 풍부	🛑 모든 관리 직접 수행
민첩성	● 빠른 배포 + 자동화 환경 우수	● 구성 후 민첩성 확보 가능
비용 효율성	● 단기 유리 (Pay-as-you-go)	● 초기 비용 크나 장기 TCO 유리
보안	○ 기본 보안 내장	○ 자체 보안 통제 가능