SPRAWOZDANIE Z LABORATORIUM LOGIKI UKŁADÓW CYFROWYCH							
Numer ćwiczenia	209	Temat ćwiczenia	Komputerowa analiza automatów skończonych				
Numer grupy	5	Termin zajęć	01.12.2016; 7:30				
9	kład gri	иру	Prowadzący	Ocena			
Sebastian	Korniev	vicz, 226183	Marin÷ Antoni Storna				
Bartosz F	Rodziew	icz, 226105	Mgr inż. Antoni Sterna				

1. Cel ćwiczenia

Celem ćwiczenia jest opanowanie umiejętności przeprowadzania analizy automatu skończonego w zakresie identyfikacji grafu automatu przy pomocy mikrokomputera.

2. Przebieg ćwiczenia

- 1. Analiza automatu: "AUT23"
 - a. Pierwszą czynnością było wyznaczenie alfabetu wejściowego: z₁, z₂
 - b. W trakcie analizy ustaliliśmy, że alfabet wyjściowy to: y₁,y₂, y₃
 - c. Drzewo przejść automatu nr 23:

Kolejne litery alfabetu oznaczają tymczasowe nazwy dla poszczególnych "stanów" automatu. Prostokątne stany to stany unikalne, podczas gdy te w kształcie rombu to stany, które już na grafie się pojawiły.

I tak unikalnymi stanami są: a, b, c i d.

Stany które już się pojawiły reprezentuje tabelka:

Stan powtarzający się:	f	j	k	d	e
Odpowiadający mu stan unikalny:	b	а	С	а	b

d. Przejście z drzewa przejść na graf polegało na zastąpieniu stanów się powtarzających (wraz z gałęziami od nich odchodzącymi na pętle do właściwego stanu unikalnego.

W ten oto sposób powstał następujący graf:

Stan początkowy automatu: b1.

Aby jednak uczynić go bardziej czytelnym napisaliśmy go w programie automat.exe:

Stan początkowy automatu: b1.

- 2. Analiza automatu "AUT54"
 - a. Pierwszą czynnością było wyznaczenie alfabetu wejściowego: z₁, z₂, z₃
 - b. W trakcie analizy ustaliliśmy, że alfabet wyjściowy to: $y_0,\,y_1,y_2,\,y_3$
 - c. Drzewo przejść automatu nr 23: (na kolejnej stronie)

Kolejne litery alfabetu (jak i zestawienia dwóch liter) oznaczają tymczasowe nazwy dla poszczególnych "stanów" automatu. Prostokątne stany to stany unikalne, podczas gdy te w kształcie rombu to stany, które już na grafie się pojawiły. Unikalne stany to: a, b, d, o i u.

Stany które już się pojawiły:

Stan powtarzający się:	е	f	g	n	t	ac	ad	ae	٧	р	С
Odpowiadający mu stan	d	b	b	d	0	u	а	d	d	0	u
unikalny:											

 d. Przejście z drzewa przejść na graf polegało na zastąpieniu stanów się powtarzających (wraz z gałęziami od nich odchodzącymi na pętle do właściwego stanu unikalnego.
W ten oto sposób powstał następujący graf:

Stan początkowy automatu: b1. Zapisaliśmy go w programie automat.exe, aby był czytelniejszy:

Stan początkowy automatu: b1

Stan	Wyj				
b1	у3				
b2	у1				
b3	у1				
b4	y2				
b5	y0				

3. Wnioski

- Aby znaleźć graf automatu, należało wpisywać w programie różne kombinacje sygnałów wejściowych, a następnie odczytywać stany wyjściowe. Dzięki takiej analizie mogliśmy zbadać przejścia automatu, zapisując je w postaci drzewa. Następnie sprawdzaliśmy, które gałęzie się powtarzają i zapisywaliśmy je w pętli. Zobaczyliśmy, że nawet analiza automatu o prostym grafie jest czasochłonna i potrafi sprawić problemy.
- W trakcie zajęć stworzyliśmy drzewa do obu automatów, jak i również przekształciliśmy te drzewa na grafy.
- Oba grafy były zgodne z rzeczywistym grafem automatu znajdującym się u prowadzącego.