- (a) () Language {a^m(bc)ⁿ : m, n ∈ N} is not regular.
- (b) () Language $\{a^ib^jc^k \mid i, j, k \ge 0, i \ge j + k\}$ is context-free.
- (c) () Let F = {f : f be a primitive recursive function from N to N}, then 2^F (Power set of F) is uncountable.
- (d) () Let L₁, L₂, · · · , L_i, · · · be all regular languages, so is ∪_{i=1}[∞] L_i.
- (e) () Suppose language L is context-free and L' is a regular, then L*L'* is context-free.
- (f) () Every computable function is primitive recursive.
- (g) () The complement of every recursive enumerable language is recursive enumerable.
- (h) () a*b* ∩ c*d* = ∅*.
- (i) () Every regular language is recursively enumerable.
- (j) () Let L be a language and there is a Turing machine M halts on x for every x ∈ L, then L is decidable.
- (a) F 相当于 a* (bc) *。可以构造一个接受这个语言的有限状态机,因此是正则的。而且,直觉上, m 和 n 木有联系, 也可以蒙一下。
- (b) T 构造一个下推自动机,读到 a 则压栈,读到 b 或者 c 就出栈,最后栈不空则接受。
- (c) T 原始递归函数有可数多个,根据定理 1.5.2,拥有可数多个元素的集合的幂集是不可数的。
- (d) F 个人对此解析并不准确,但是,正则语言应该只是对有限次并封闭,无限次应该是不封闭的。
- (e) T 根据定理 2.3.1,正则语言对 Kleene Star 封闭,定理 3.5.1,上下文无关语言在 Kleene Star 也封闭。因此,L*是正则的,L*是上下文无关的,可是连在一起还是上下文无关的,因为L*还是要一个下推自动机接受。
- (f) F 原始递归函数是 μ 递归函数的真子集, 而 μ 递归函数才是所有可计算函数。
- (g) F 根据定理 5.3.2 递归可枚举语言对补运算不封闭。另外,递归语言对补运算封闭。
- (h) T 显然交集是空语言
- (i) T 正则语言包含于上下文无关,上下文无关包含于递归,递归包含于递归可枚举
- (j) F 这条题目十分阴险……根据定义 4.2.1 下面的描述,如果 $x \in L$ 那么 M 接受 x, $x \notin L$ 那么 M 拒绝 x,这就说 M 判定了 L。还有定义 4.2.4, $x \in L$ 当且仅当 M 在 x 上停机,那么说 M 半判定了 L。题目只是说 $x \in L$ 的时候 M 停机,因此只能说是半判定而已。
 - (14%) Decide whether the following languages are regular or not and provide a formal proof for your answer.
 - (a) $L_1 = \{a^n b^m : m \equiv n \mod 2\}$
- (a) 这是正则的。 $m \equiv n \mod 2$ 表示 $m \neq n \mod 2$ 和 $m \neq n \mod 2$ 和 m
 - (b) $L_2 = \{w \in \{a, b\}^* : w \neq w^R\}$
- (b) 这不是正则的。证明的方法个人拿得不太准。因此正则语言对于补运算封闭,我们证明

L3={w∈ {a,b}*:w=w^R}不是正则则可。而 L3 是两个语言的并。L4={ww^R:w∈ {a,b}*}, L5={w(a \cup b)w^R:w∈ {a,b}*}。我们用定理 2.4.1 的泵定理来证明 L4 不是正则的。设 s∈L4,s=xyz,l 令 xy=w,z=w^R,显然 xyⁱz∉L4,因此 L3 不是正则的,所以 L2 也不是正则的。这个证明似乎太繁琐了,所以拿得不太准,请诸位吐槽指正。

3. (18%)

- (a) Give a Context-Free Grammar that generates the language L₃ = {xy | x, y ∈ {a, b}*, |x| = |y| and x and y^R differ in one position }. For example, abbbbaba, abbbbbbb ∈ L₃, but aababb ∉ L₃.
- (b) Design a PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language L_3 .

Solution: (a) We can construct the context-free grammar $G = (V, \Sigma, R, S)$ for language L_3 , where

$$V=\{a,b,S,A,B\}; \Sigma=\{a,b\};$$
 and
$$R=\{S\to aSa,S\to bSb,S\to aAb,A\to aAa,A\to bAb,A\to e,$$

$$S\to bBa,B\to aBa,B\to bBb,B\to e\}$$

(b) The PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ is defined below:

	(q, σ, β)	(p, γ)
	(p, e, e)	(q, S)
$K = \underline{\{p,q\}}$	(q, e, S)	(q, aSa)
	(q, e, S)	(q, bSb)
$\Sigma = \{a,b\}$	(q, e, S)	(q, aAb)
	(q, e, A)	(q, aAa)
$\Gamma = \underline{\{a,b,S,A,B\}}$	(q, e, A)	(q, bAb)
	(q, e, A)	(q,e)
$s = \underline{p}$	(q, e, S)	(q, bBa)
	(q, e, B)	(q, aBa)
$F = \underline{\{q\}}$	(q, e, B)	(q, bBb)
	(q, e, B)	(q,e)
	(q, a, a)	(q,e)
	(q,b,b)	(q,e)

解析: 就不解析了,和 04年的题目一模一样……

4. (16%) Let the following Turing machine M computes f(x, y), the alphabet is {0,1,;}. The head of M begins from the most left blank; ⊔ is the symbol of blank; x and y are presented by binary strings respectively and separated with ;.

- (a) Describe the key configurations when M started from the configuration $\trianglerighteq \sqcup 10111; 111.$
- (b) Try to give the function f(x, y) that M can compute.

解析:这条题目实质上和04年的第五大题一样的,因此无需解析了。字迹潦草恳请原谅。

$$f(x,y) = \begin{cases} 2x+1, & \text{if } y \text{ is even} \\ 4x, & \text{if } y \text{ is odd} \end{cases}$$

(12%) Let P(x, y) be primitive recursive predicate. Prove the following predicate

$$\exists y_{\leq u} P(x, y), \forall u \in \mathbb{N}$$

is also primitive recursive.

解析:这条题目和04年的第四题相近。同样,

$$\exists y \leq u P(x, y) \Leftrightarrow \bigcup_{y=0}^{u} P(x, y) \neq 0$$

因为析取也是原始递归的谓词,因此得证。

(10%) Show that the following language

 $H = \{ M'' \mid M \text{ is a Turing Machine and halts on empty string} \}$

is recursively enumerable. An informal description suffices.

解析:证明语言是递归可枚举的只需要找出半判定这个语言的图灵机。对于这个题目,通用图灵机就可以半判定它。因为对于通用图灵机输入"M",相当于输入"M"外加一个空字符串。因此 M 在空串上停机则通用图灵机停机,反之不停机。因此通用图灵机半判定 H。