

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Jorge Gonzalez Ayudante: Daniel Acuña León

1. Sean X_1, \ldots, X_n variables aleatorias iid $N(\mu, \sigma^2)$. Muestre que

$$\frac{\bar{X} - \mu}{\hat{\sigma} / \sqrt{n}} \sim t_{n-1}$$

- 2. Demuestre que $t_{\nu}^2 = F_{1,\nu}$.
- 3. Suponiendo un modelo de regresión lineal simple, derive regiones de confianza para $\hat{y}(x_0)$ y para $y_0 \hat{y}(x_0)$, donde el par (y_0, x_0) es un nuevo punto de datos.
- 4. Considere el modelo $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, para i = 1, ..., 21 y con $\epsilon_1, ..., \epsilon_{21} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, para el que se obtuvo el siguiente ajuste usando R.

Coefficients:

	Value	Std. Error	t-value	Pr(> t)
(Intercept)	6.387	0.402	15.888	0.000
х	-2.099	0.138	-15.258	0.000

Residual standard error: 0.954 on 19 degrees of freedom. Multiple R-Squared: 0.925 F-statistic: 233 on 1 and 19 degrees of freedom, the p-value is 4.08e-012

Correlation of Coefficients:

(Intercept)

x - 0.855

- a) Obtenga intervalos de 95 % de confianza para β_0 y β_1 . $(t_{(0.975,19)}=2,093)$
- b) Calcule la matriz de varianzas-covarianzas estimadas de $(\hat{\beta}_0, \hat{\beta}_1)^t$.
- 5. Sean Y_1, Y_2, Y_3, Y_4 variables aleatorias independientes con distribución $N(\mu, \sigma^2)$. Encuentre una constante K tal que

$$W = K \frac{\bar{Y} - \mu}{\sqrt{(Y_1 - Y_2)^2 + (Y_1 + Y_2 - 2Y_3)^2/3 + (Y_1 + Y_2 + Y_3 - 3Y_4)^2/6}}$$

tenga una distribución conocida. Identifique sus parámetros.