《模形式初步》勘误表

李文威

2021-06-09

以下页码和标号等信息参照科学出版社 2020 年 6 月出版之《模形式初步》, ISBN: 978-7-03-064531-9, 和网络版可能有异. 部分错误未见于网络版.

- **⋄ 命题 1.1.9 证明最后一行** 去掉 "这" 字.
- ◇ (1.5.3) 原文 在 Γ 作用下不变 更正 在 γ 作用下不变 感谢冯煜阳指正

原文 $\delta'\Delta(x_0)$ 更正 $\delta'D(x_0)$ ◇ 定义 1.6.7 第二项

感谢朱子阳指正

- ◇ 定理 2.1.6 证明第一段结尾 原文 给出 ℂ 上处处非零的全纯函数 更正 给出 € 上的全纯函数, 在负整数处有一阶零点. 感谢李时璋指正
- 原文 $J(-x,\tau) = J(x,\tau)$ 更正 $J(-x,\tau) = -J(x,\tau)$ 感谢冯煜阳 ◊ (2.5.4) 上两行 指正
- ◇ 定理 2.5.8 (iv) 最后一行原文 $\sigma_r^{\bar{\nu}}(n) := \cdots$ 更正 $\sigma_{\nu-1}^{\bar{\nu}}(n) := \cdots$ 感谢汤一鸣指正
- 李时璋指正
- $u \in [0, y]$ 是一致的... 因为 $u \in [0, y]$
- ◇ 命题 3.7.4 的前一段话 (纸本) 原文 内积系, 相对于 更正 内积系相对于
- 更正 对于 \mathbb{Q} 上对嵌入 $\mathbb{Q} \hookrightarrow \mathbb{R}$ 分裂, 但在 \mathbb{Q} 上非分裂的四元数代数 B李时璋指正
- **⋄ 练习 4.4.7 的表述** 将列表第一项的 $M(1)_k$ 改为 $M_k(1)$.

将最后一句"进一步, 说明 S(1) 也来自一个分次理想 $S(1)_{\mathbb{Z}} \subset M(1)_{\mathbb{Z}}$ " 改为: "进 一步描述 $M(1)_{\mathbb{Z}}$ 的分次理想 $M(1)_{\mathbb{Z}} \cap S(1)$." 感谢李时璋指正 \diamond **练习 4.4.7 提示的第一句 原文** 取…… $M(1)_{\mathbb{Z}} \cdot \Delta$ 更正 取 $M(1)_{\mathbb{Z}}$ 为所有 Fourier 系数均为整数的模形式给出的子环, 并应用前述定理.

注: 相关的整性问题可以参考 Serge Lang 的 *Introduction to Modular Forms* (Grundlehren der mathematischen Wissenschaften, Volume 222), Chapter X, Theorems 4.2—4.4. 论证是初等的.

- ◇ **§4.5 第一句** 应补上一句 "本节的 Riemann 曲面默认紧." 感谢李时璋指正
- ◇ 定理 5.5.5 (i)原文则 $[\Gamma'_{\lambda}]$ 是中心元;更正则对所有 $(h,k) \in \mathcal{D}$ 皆有 $[\Gamma'_{h,k}] \star$ $[\Gamma'_{\lambda}] = [\Gamma'_{hd,kd}];$ 感谢于惠施指正
- \diamond 命题 5.5.7 证明中第三条显示公式末项 $\boxed{\text{原文}}$ \mathbb{Z}/hh' 更正 $\mathbb{Z}/hh'\mathbb{Z}$ 感谢朱子 阳指正
- ◇ 定理 6.2.5 (i)原文则 $[\Gamma'_{\lambda}(N)]$ 是中心元;更正则对所有 $(h,k) \in \mathcal{D}(N)$ 皆有 $[\Gamma'_{hk}(N)] \star [\Gamma'_{\lambda}(N)] = [\Gamma'_{hdkd}(N)];$
- ◇ **命题 6.3.2 之前** 将"回忆到 §6.2 定义的子代数…"一句和后续的表格删除, 因为不正确而且不需要 (见下一条更正). 感谢李时璋指正
- 。命题 6.3.2 证明倒数第二段 原文 基于 $\mathfrak{H}_1(N)$ 已知的结构… 料理. 更正 基于 和引理 6.1.4 相同的论证, 说明 $\Gamma_1(N)\gamma\alpha\gamma^{-1}\Gamma_1(N)=\Gamma_1(N)\alpha\Gamma_1(N)$ 即可. 易见 $\gamma\alpha\gamma^{-1}$ 既属于 $\Delta_1(N)$, 又属于 α 的 $\Gamma_0(N)$ -双 陪集, 而 命 题 6.3.2 说 明 $\Gamma_1(N)\setminus\Delta_1(N)/\Gamma_1(N)\to\Gamma_0(N)\setminus\Delta_0(N)/\Gamma_0(N)$ 是双射, 于是 $\gamma\alpha\gamma^{-1}$ 和 α 确实属于相同的 $\Gamma_1(N)$ -双陪集. 感谢李时璋指正
- ⋄ §7.5 第一行 "沿用…… 亦即 $a_0(f) = 0$." 删除此行.
- \diamond 练习 8.6.2 之前的显示公式 原文 $\cdots \oplus \frac{1+\sqrt{D}}{2}$ 更正 $\cdots \oplus \mathbb{Z} \frac{1+\sqrt{D}}{2}$
- ◇ 定理 8.6.4 的陈述
 「原文 [·]: $\operatorname{End}(E) \stackrel{\sim}{\to} \mathcal{O}$ 更正 [·]: $\mathcal{O} \stackrel{\sim}{\to} \operatorname{End}(E)$
- ◇ 定义 9.1.6 条列 将条列的两项修正为:
 - $\circ \Gamma(V, \omega_{\Gamma}) := \mathcal{O}_V(\mathrm{d}z \cdot \alpha^{-1})|_{V \setminus \{t\}},$ 其中 $V := \pi(U)$,截面的限制映射按自明方式 定义;
 - ⋄ 1 \mapsto dz · α⁻¹ 给出平凡化 $\mathcal{O}_V \xrightarrow{\sim} \omega_{\Gamma}|_V$.
- **◇ 引理 9.2.1** 在引理陈述的最后, 亦即公式 (9.2.3) 之后补充一句 "对 $\omega^{⊗(-1)}$ 的群作用 是按 (9.1.4) 定义的." 感谢李时璋指正

- ⋄ (10.1.1) 将图表中的 \mathbb{C} $\stackrel{\sim}{\longrightarrow}$ \mathbb{C}^{\times} 改成 \mathbb{C} \longrightarrow \mathbb{C}^{\times} .
- \diamond 定义 10.4.1 原文 … $\mathcal{W}_{\ell,p} \times \mathcal{W}_{\ell,p} \to \mathbb{Q}_{\ell}$, 满足… 更正 … $\mathcal{W}_{\ell,p} \times \mathcal{W}_{\ell,p} \to \mathbb{Q}_{\ell}$ 一 见 ℓ (仅影响 Galois 作用), 满足…
- **⋄ 命题 10.5.5 (i)** 将第二个 → 改成 →.
- ◇定义 10.7.2 之下两行 原文 同源等价 更正 同源等价类.