# Кафедра электроники и квантовой физики Отчет по лабораторной работе N2

Измерение ширины запрещенной зоны

Выполнили студенты 430 группы Карусевич А.А., Понур К.А.

### Введение

Ширина запрещенной зоны является одной из важнейших характеристик полупроводниковых материалов. Она может быть найдена по результатам измерений электропроводности или постоянной Холла в зависимости от температуры, а также из спектрального распределения коэффициента оптического поглощения или фототока полупроводника. В настоящей работе студентам предлагается определить величину ширины запрещенной зоны полупроводникового материала по результатам измерения температурной зависимости электропроводности.



Рис. 1: Энергитический спектр электрона в кристалле.  $W_c, W_{\nu}$  - соответственно, энергии дна зоны проводимости и потолка валентной зоны,  $W_g$  - ширина запрещенной зоны.

В изолированном атоме электроны находятся в стационарных состояниях, каждому из которых соответствует строго определенное значение энергии. Таким образом, энергетический спектр электронных состояний в атоме является дискретным. В кристаллическом твердом теле из-за возмущений, вносимых другими атомами, уровни энергии расщепляются – образуются области или зоны разрешенных значений энергии, между которыми находятся запрещенные зоны. Для глубоких уровней расщепление невелико, т.к. находящиеся на них электроны экранируются верхними оболочками и практически не взаимодействуют с соседними атомами.

# 1. Концентрация носителей заряда в полупроводнике

Вычисление концентрации подвижных и связанных носителей заряда в полупроводнике составляет задачу статистики электронов. Решение этой задачи, с одной стороны, позволяет объяснить экспериментальные результаты, по которым, в свою очередь, становится возможным определение ряда важных характеристик полупроводника (ширины запрещенной зоны, энергия ионизации примеси). Задача вычисления концентрации носителей заряда распадается на две: 1) определение числа возможных квантовых состояний электронов в разрешенных зонах в твердом теле и 2) выяснение фактического распределения электронов по этим квантовым состояниям. Рассмотрим последовательно решение каждой из подзадач.

Число состояний в любой зоне кристалла равно общему числу мест на уровнях изолированных атомов, образовавших кристалл, т.е. числу атомов  $N_0$ , умноженному на кратность вырождения  $\nu$  атомного уровня, образовавшего данную зону:

$$\int_{W_1}^{W_2} N(W)dW = \nu N_0 \tag{1}$$

где N(W)dW - число квантовых состояний в интервале энергий от W до W+dW в единице объёма полупроводника, а N(W) - плотность квантовых состояний.  $W_1, W_2$  - энергии нижнего и верхнего края зоны, соответственно.

Выражение для плотности квантовых состояний у дна зоны проводимости:

$$N_c(W) = \frac{dZ}{dW} = 4\pi \left[ \frac{2m_n^*}{(2\pi\hbar)^2} \right]^{3/2} \sqrt{W - W_C}$$
 (2)

Статистика электронов подчиняется распределение Ферми-Дирака:

$$f(W) = \frac{1}{\exp\left(\frac{W - W_F}{k_B T}\right) + 1} \tag{3}$$

которое даёт вероятность того, что в тепловом равновесии состояние с энергией W занято электроном. Здесь  $k_B$  – постоянная Больцмана, T – абсолютная температура,  $W_F$  – энергия (уровень) Ферми – максимальная энергия электронов при абсолютном нуле. Для температуры, отличной от нуля, функция f(W) в точке  $W = W_F$  имеет перегиб.

Выражения для концентрации электронов и дырок в совокупности с принципом электронейтральности полупроводника ( в однородном полупроводнике не может быть существенных нескомпенсированных объемных зарядов ни в равновесном состоянии, ни при наличии тока ) позволяют сделать выводы о положении уровня Ферми в полупроводнике. Рассмотрим собственный полупроводник, для которого влияние примесных атомов не существенно. Свободные носители заряда в этом случае возникают только за счет разрыва валентных связей. Поэтому в собственном полупроводнике концентрация дырок р равна концентрации электронов  $n: n = p \equiv n_i$ . Это условие электронейтральности собственного полупроводника.

Уровень Ферми  $W_F$  собственного полупроводника при абсолютном нуле температуры лежит в центре запрещенной зоны и, вообще говоря, смещается при возрастании температуры. Этот случай показан на рис.2(a), где слева направо схематически приведены простейшая зонная диаграмма, плотность состояний N(W), распределение Ферми f(W) и концентрация носителей заряда.



Рис. 2: Графическое изображение решения уравнения электронейтральности для собственного полупроводника(а), для примесного полупроводника, легированного донорной (б) и акцепторной (в) примесью

# 2. Подвижность носителей заряда в полупроводнике

В реальной кристаллической структуре всегда присутствуют дефекты: тепловые колебания атомов решётки, примеси и т.д. Поэтому при воздействии внешнего электрического поля частица движется ускоренно лишь на небольшом участке пути, а затем испытывает рассеяние (взаимодействие с дефектами кристалла), изменяя свой импульс и ( в случае неупругого взаимодействия) энергию, теряет направленную скорость, после чего процесс разгона начинается заново (рис. 3). В слабых электрических полях ( $\leq 10^3$  В/см) средняя скорость направленного движения носителей заряда (дрейфовая скорость) пропорцио-

нальна напряжённости электрического поля: $\nu = \mu E$ . Коэффициент пропорциональности между скоростью и полем  $\mu$  называется подвижностью носителей заряда. Эта величина численно равна средней скорости направленного движения частиц в электрическом поле с напряженностью 1 B/M.

Рассеяние носителей заряда на нейтральных атомах примеси и нейтральных дефектах является слабым. Однако, при низких температурах, когда примеси еще практически не ионизованы, а тепловые колебания отсутствуют, этот механизм играет существенную роль. Для того, чтобы электрон изменил направление своего движения в результате взаимодействия с нейтральной примесью или дефектом, необходимо, чтобы траектория электрона проходила через место расположения дефекта либо через примыкающую к нему область решетки, в которой им вызваны искажения. Рассеяние на нейтральных примесях не зависит от температуры, а подвижность, обусловленная этим рассеянием, постоянна и зависит только от концентрации рассеивающих центров.



Рис. 3: Схематическое изображение движения электрона в полупроводнике под действием электрического поля.

Электрическое поле ионизованного примесного атома распространяется на много периодов кристаллической решетки, и электрон, проходя на значительном расстоянии от иона, изменит под действием его поля направление своего движения. Пусть рассеяние в полупроводнике происходит только на ионах примеси, а тепловые колебания и нейтральные центры рассеяния отсутствуют. Тогда, как показывают расчеты, подвижность зависит от температуры как  $T^{3/2}$ , т.е. увеличивается. Этот результат легко понять, если учесть, что с ростом температуры увеличивается средняя скорость хаотического движения электронов, а быстрые электроны слабее отклоняются статическим полем ионов. Этот механизм рассеяния играет основную роль при температурах, когда уже имеется большая концентрация ионизированных примесей, но тепло-

вые колебания еще мало влияют на рассеяние.

# 3. Температурная зависимость проводимости

Плотность тока, создаваемого всеми свободными электронами, равна:

$$j = en\mu_n E = \sigma_n E \tag{4}$$

где n — концентрация электронов,  $\sigma_n = en\mu_n$  — удельная проводимость полупроводника, обусловленная электронами. Если имеется два типа носителей в полупроводнике — элек-

троны и дырки, то проводимость равна:

$$\sigma = e \left( n\mu_n + p\mu_p \right) \tag{5}$$

Для определения температурной зависимости проводимости необходимо перемножить зависимости концентрации и подвижности носителей заряда от температуры. При низких температурах и неполной ионизации примесей концентрация зависит от обратной температуры по экспоненциальному закону, а подвижность – по степенному, т.е. температурная зависимость концентрации определяет температурную зависимость проводимости:

$$\sigma = \sigma_d e^{(-\Delta W_d/2k_B T)} \tag{6}$$

Здесь  $\sigma_d$  содержит степенную зависимость подвижности и эффективной плотности состояний от температуры.

В области истощения примесей концентрация не зависит от температуры, поэтому в этой области температурная зависимость проводимости определяется степенной зависимостью подвижности от температуры. И, наконец, при больших температурах зависимость проводимости от обратной температуры экспоненциальна, т.к.  $\mu \approx T^{3/2}$ , а  $N_c \approx T^{3/2}$ :

$$\sigma = \sigma_c e^{(-W_g/2k_BT)} \tag{7}$$

На рис. 4 показана зависимость  $\ln(\sigma)$  от обратной температуры при различных уров-



Рис. 4: Качественный вид зависимости удельной проводимости полупроводника от температуры для различных уровней легирования (N-концентрация легирующей примеси)

нях легирования полупроводника. По экспериментально измеренным зависимостям  $\sigma(T)$ , аналогичным рис.4, можно определить ширину запрещенной зоны и энергию активации примесей.

### 4. Методика измерений



Puc. 5: Электрическая схема для измерений удельной электропроводности методом компенсации

Регулируемый источник тока (1) задаёт ток образца  $I_{06}$ , измеряемый амперметром A1. Регулируемый источник тока (2) задаёт ток компенсации  $I_{\kappa}$  через эталонный резистор  $R_{9}$ , величина этого тока измеряется амперметром 2. Напряжение  $U_{ab}$  между зондовыми электродами а и b сравнивается с напряжением компенсации  $U_{k}$  на эталонном резисторе  $R_{9}$  при помощи индикатора компенсации V.

При проведении измерений нужно установить ток образца, затем, изменяя ток компенсации, добиться нулевых показаний индикатора компенсации V. В этом случае напряжение  $U_k$  на эталонном резисторе  $R_9$  будет равно напряжению  $U_{ab}$ :

$$U_{ab} = U_k = I_k R_9 \tag{8}$$

В реальной ситуации между зондовыми электродами будут паразитные потенциалы, связанные, во-первых, с влиянием переходного сопротивления на контактах «образец – подводящие провода», во-вторых, появлением термоЭДС на контактах полупроводника с металлом при нагреве образца. Для того чтобы устранить влияние этих потенциалов, измерение тока компенсации производится дважды. Получив первый отсчёт  $I_{k1}$ , изменяем направление тока через образец и через эталонный резистор, опять добиваемся равенства напряжений  $U_k$  и  $U_{ab}$ , снимаем второй отсчёт  $I_{k2}$ . Обратите внимание, что полярность разности потенциалов между электродами а и b, вызванная протеканием тока через образец, как и напряжение на  $R_3$ , сменились на противоположные, а паразитные потенциалы, зависящие от свойств контактов, и термоЭДС, зависящая от температуры образца, остались прежние. Таким образом, среднеарифметическое значение

$$I_k = \frac{I_{k1} + I_{k2}}{2}$$

будет содержать информацию только о полезной составляющей напряжения  $U_{ab}$ . Величину падения напряжения  $U_k$  легко подсчитать:

$$U_k = I_k R_a$$

Величину сопротивления участка образца расположенного между зондовыми электродами а и b  $(R_{ob})$  можно определить из равенства:

$$R_{\text{of}} = \frac{U_k}{I_{\text{of}}} = \frac{I_k R_9}{I_{\text{of}}}$$

Зная размеры образца: а - ширина (см), d - толщина (см), l - расстояние между электродами а и b (см), можно рассчитать удельное сопротивление образца:

$$\rho = \frac{da}{l} R_{\rm o6}({\rm Om~cm})$$

или обратную величину - удельную электропроводность:

$$\sigma = 1/\rho \left( \mathrm{Om}^{-1} \mathrm{cm}^{-1} \right)$$

# 5. Схема экспериментальной установки



Рис. 6: Схема установки

Блок питания (1) содержит в себе два регулируемых стабилизатора тока (для образца и эталонного резистора) и регулируемый источник питания нагревателя образца, напряжение на выходе которого контролируется вольтметром  $V_{\rm H}$ . На верхней крышке измерительного блока (2) находится трубчатый керамический нагреватель, в котором размещён

исследуемый образец и термопара для измерения температуры. Нагреватель с образцом и термопарой закрыты защитным цилиндром. В корпусе измерительного блока (2) располагается эталонный резистор Rэ, переключатели направления тока образца и компенсации К1 и К2, индикатор компенсации V с переключателем чувствительности «Точно». Измерение токов образца и компенсации производится миллиамперметрами А1 и А2 для измерения ЭДС термопары используется милливольтметр Vт, показания которого пересчитываются в температуру по градуировочному графику (рис. 7).



Рис. 7: График соответствия ЭДС термопары и температуры спая

# Эксперимент

#### Оборудование

- 1.  $R_9 = 10 \text{ Ом.}$
- 2. Образец l = 7 см, d = 1.4 см, a = 4 см, x = 20 см.

Произвели измерение электропроводности образца при комнатной температуре. Установив ток образца 5 мА добились нулевого отклонения индикатора. Аналогичное сделали, сменив направление тока.

Такие же измерения провели при различных температурах. Сняли температурную зависимость тока компенсации (для двух направлений тока при каждом значении температуры  $I_{k1}, I_{k2}$ ).

Далее взяли среднее значение тока:

$$I_k = \frac{I_{k1} + I_{k2}}{2}$$

Рассчитали проводимость для каждой снятой точки по формуле:

$$\sigma = \frac{l}{ad} \frac{I_{\text{o}6}}{I_k R_{\text{e}}}$$

#### Обработка результатов измерений

Построили график (см рис. 8 ) полученной зависимости ln  $\sigma(\frac{10^3}{T})$  (T – абсолютная температура в градусах K).

Прологарифмировали выражение (7) и нашли связь между угловым коэффициентом наклона кривой  $\ln \sigma(\frac{10^3}{T})$  и величиной  $W_g$ :

$$\ln(\sigma) = \underbrace{\ln(\sigma_C)}_{const} - W_g/2k_BT$$

$$W_g = -1000 \cdot \tan(\theta) \cdot 2k_B$$

где  $\tan(\theta)$  - тангенс угла наклона графика  $\ln \sigma(\frac{1}{T}),\ k_B\approx 8.62\cdot 10^{-5}\ {\rm эB/K}$  - постоянная Больцмана.

Определили угловой коэффициент наклона кривой в области высоких температур и рассчитали значение  $W_g$ :

$$\tan(\theta) \approx -3.42 \pm 0.6$$

$$W_g \approx 0.59 \pm 0.1$$
 эВ

В области истощения примесей (на рис.8 - область значений от 3.25 до 3.75 по оси  $(\frac{10^3}{T})$ ) определили зависимость  $\sigma = f(T)$ , считая, что  $\sigma \approx T^n$ . Ее можно найти, взяв на кривой две точки и воспользовавшись соотношением  $\sigma_I/\sigma_2 = (T_I/T_2)^n$ .



Рис. 8



Получаем n=1.2Определили (экстраполяцией по графику) величину  $\sigma_c$ , соответствующую электропро-

водности вещества при  $T \to \infty$ .

$$\ln \sigma_c = \ln \sigma(T \to \infty) = 6.32$$

$$\sigma_c = e^{6.32} = 555.57 \text{ Om}^{-1} \text{cm}^{-1}$$

#### Заключение

Проведя измерения с помощью компенсационного метода измерений на постоянном токе, получены значения теплопроводности образца в диапазоне температур от 300 до 500 К. Определен угловой коэффициент наклона кривой  $\text{ln } \sigma(\frac{10^3}{T})$  и значение  $W_g$ :

$$\tan(\theta) \approx -3.42 \pm 0.6$$

$$W_q \approx 0.59 \pm 0.1 \text{ sB}$$

В области истощения примесей, учитывая зависимость  $\sigma \approx T^n$ , рассчитана степень: n=1.2, сосчитана величина  $\sigma_c$ , которая соответствует электропроводности вещества при стремлении температуры в бесконечность:  $\sigma_c = 555.57 \pm 50 \text{ Om}^{-1}\text{cm}^{-1}$ 

# Приложение

#### Расчёт погрешностей

Погрешности в данной работе были рассчитаны по следующим формулам:

$$\Delta \tan \theta = \ln \sigma \Delta T + \frac{I_k R_9}{\sigma I_{06}} \left( \frac{\Delta I_{06}}{I_k R_9} + \frac{I_{06} \Delta I_k}{I_k^2 R_9} \right)$$
(9)

$$\Delta W = -100 \cdot 2k_b \Delta \tan \theta \tag{10}$$

Погрешность температуры определялась из погрешности измерения ЭДС, посредством градуировочной шкалы, предварительно аппроксимируемой полиномом:

$$T(E) = aE^4 + bE^3 + cE^2 + dE (11)$$

$$\Delta T = (4aE^3 + 3bE^2 + 2cE + d)\Delta E \tag{12}$$

В свою очередь, для построения прямоугольников погрешности на графике, необходимо знать  $\Delta \frac{1}{T}$ :

$$\Delta(\frac{1}{T}) = \frac{4aE^3 + 3bE^2 + 2cE + d}{(aE^4 + bE^3 + cE^2 + dE)^2} \Delta E \tag{13}$$

Ниже частично приведен код python-скрипта, в котором производились все вычисления и обработка экспериментальных данных

```
from pylab import *
from matplotlib import rc
from scipy.optimize import curve_fit
def func(x,a,b,c,d):
 return a*x**4+b*x**3+c*x**2+d*x
x = array(df['x'])
y = array(df['y'])
popt, pcov = curve_fit(func,y,x)
a,b,c,d = popt
EDS2T = lambda x: a*x**4+b*x**3+c*x**2+d*x
def xerror(Et):
 x = Et
 error = (4*a*x**3+3*b*x**2+2*c*x+d)*0.002*x/(a*x**4+b*x**3+c*x**2+d*x)**2
 return error
Et = array(df['EDS']) #mV
T = EDS2T(Et)
xerror = 10 ** 3 * xerror (Et [1:])
Ik1 = df['I1'] #mA
Ik2 = df['I2'] #mA
Ik = (Ik1+Ik2)/2 \#mA
Iob = df['Iobr'] #mA
Et = array(df['EDS'])
Re = 10 \#Ohm
a = 4 \# width
d = 1.4 # thickness
1 = 7 #len between 1\&2
room_t = 28
k_b = 8.62 *10**(-5) ## eV/K
d_T = 5 \# temp error
#Calculating
T=T+ 273.15 #to Kelvin
weights = np.ones(T.shape)
weights[0:3] = 0
Ik = (Ik1+Ik2)/2
Rob = Ik*Re / Iob
```

```
ro = (a*d / 1) * Rob
sigma = 1/ro
k_T = 1000/T
ln_sigma = log(sigma)

n = (ln_sigma[0]-ln_sigma[2])/(log(T[0]/T[2]))
# approx
pp = np.polyfit(k_T,log(sigma),1, w = weights)
Wg = -pp[0]*2*k_b*1000
pf = np.poly1d(pp)
##
```