Álgebra Linear

Mestrado Integrado em Engenharia Informática

9 janeiro 2019	Duração: 2 horas
----------------	------------------

Nome: _____ Número: ____

Grupo I

Responda às questões deste grupo nos espaços indicados, sem apresentar os seus cálculos.

1. Considere as matrizes

$$A = \begin{pmatrix} 1 & -1 & 2 & 0 & -1 \\ 1 & 1 & 4 & 1 & 1 \\ 3 & -1 & 8 & 1 & -1 \\ 2 & 3 & 9 & 0 & -7 \end{pmatrix} \quad \mathbf{e} \quad B = \begin{pmatrix} 1 & 0 & 3 & 0 & -2 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

as quais se sabe serem equivalentes por linhas.

- a) Uma base de $\mathcal{L}(A)$ é: ______
- **b)** As três primeiras colunas de A são vetores de \mathbb{R}^4 linearmente _____
- c) $\dim \mathcal{N}(A) = \underline{\hspace{1cm}}$
- **d)** Sendo $T: \mathbb{R}^5 \to \mathbb{R}^4$ a transformação linear cuja matriz é A, uma base para $\operatorname{Im} T$ é:
- 2. Apresente um exemplo de, ou justifique porque não existe(m):
 - a) dois vetores $\mathbf{v}_1, \mathbf{v}_2$ de \mathbb{R}^3 linearmente independentes tais que $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \mathbf{v}_2, 2\mathbf{v}_1 + \mathbf{v}_2 \rangle$;
 - **b)** uma matriz A tal que $(1,0) \in \mathcal{N}(A)$ e $(0,1) \in \mathcal{C}(A)$;
 - c) uma aplicação linear $\varphi: \mathbb{R}^3 \to \mathbb{R}^4$ injetiva e tal que $\varphi(1,0,0) = (1,0,0,0)$ e $\varphi(0,1,0) = (1,1,0,0)$;
 - d) uma matriz A cujo polinómio característico seja $p_A(\lambda)=(\lambda-1)(\lambda-2)(\lambda-3)$ e que seja semelhante à matriz B=A+2I.

(continua no verso)

Grupo II

Responda às questões deste grupo numa folha de teste, apresentando os seus cálculos.

1. Considere os seguintes subespaços do espaço vetorial \mathbb{R}^4 :

$$U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 = 0 \text{ e } x_4 = -2x_2\}$$
$$V = \langle (1, 0, -1, 1), (1, -2, 1, 4), (1, 2, -3, -2) \rangle.$$

- a) Determine uma base e indique qual a dimensão de cada um desses subespaços.
- **b)** Verifique se $(1, 1, 1, 1) \in V$.
- c) Dê um exemplo, caso exista, de um vetor não nulo que pertença a ambos os subespaços.
- **2.** Seja $\varphi: \mathbb{R}^4 \to \mathbb{R}^3$ a aplicação linear definida por $\varphi(x,y,z,w) = (x-z,-x+y+z,-x-y+w)$.
 - a) Determine a matriz da aplicação φ .
 - **b)** Indique, justificando, qual a dimensão de Nuc φ .
 - c) Conclua que $\mathbf{v}=(1,-1,1)\in \operatorname{Im}\varphi$ e determine o conjunto dos vetores $\mathbf{u}\in\mathbb{R}^4$ tais que $\varphi(\mathbf{u})=\mathbf{v}.$
- 3. Considere a matriz

$$A_{\alpha} = \begin{pmatrix} 3 & 1 & \alpha \\ 0 & 2 & 0 \\ \alpha & 1 & 3 \end{pmatrix}, \ \alpha \in \mathbb{R}.$$

- a) Determine os valores de α para os quais a matriz A_{α} tem um valor próprio duplo.
- **b)** Existe algum valor de α para o qual a matriz A_{α} seja semelhante à matriz $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$? Justifique.
- c) Determine os valores próprios de A_1 e os respetivos subespaços próprios.
- d) Diga, justificando convenientemente, se a matriz A_1 é ou não diagonalizável e, em caso afirmativo, indique uma matriz que a diagonaliza.
- **4.** Sejam V e W dois espaços vetoriais reais e $T:V\to W$ uma transformação linear. Sendo $\mathbf{v}_1,\ldots,\mathbf{v}_k\in V$ tais que $(T(\mathbf{v}_1),\ldots,T(\mathbf{v}_k))$ é uma base de W e sabendo que T é injetiva, mostre que $(\mathbf{v}_1,\ldots,\mathbf{v}_k)$ é uma base de V.