Specifiche FSM F1/10

(03/07/2023)

Supervisor node (Luca Inghilterra)

Il nodo di supervisione ha il compito di immagazzinare lo stato di salute generale del veicolo tramite una macchina a stati finiti, che sarà implementata tramite l'uso di una libreria a scelta tra SMACC2 (ROS2 package, github) e YASMIN (github). L'output del nodo è lo stato della FSM e dovrà essere pubblicato come topic. Per simulare i guasti è possibile utilizzare un nodo di prova ed utilizzare le funzionalità di deadline/liveliness fornite dal framework ROS2.

Definizioni:

- Stack di guida principale: Soluzione di guida autonoma performante ma soggetta a guasti o condizioni potenzialmente pericolose
- Stack di guida secondario: Soluzione di guida autonoma meno performante ma più affidabile e conservativa nella guida
- Guasto comune: Condizione tale per cui la guida autonoma con lo stack principale non può proseguire
 - Un nodo critico diventa non responsivo (manca un certo numero di deadline)
 - Viene identificata una situazione di rischio per il veicolo (perdita di aderenza, comandi di guida che portano a collisione certa, etc...)
- Guasto grave: Un componente hardware diventa non responsivo
 - Guasto a driver di sensori o attuatori

Il nodo implementa i seguenti stati:

- Idle [I]: Il nodo è attivo e attende segnali dall'esterno
- Manual [M]: Il veicolo è in stato di guida manuale
 - In questo stato non vengono effettuati controlli sui guasti
 - Tutti i comandi di guida forniti da stack principale e secondario sono ignorati
- Active [A]: Il veicolo è in stato di guida autonoma
 - In questo stato vengono effettuati controlli sui guasti
 - Il controllo è affidato allo stack di guida principale
- Emergency Takeover [ET]: Il veicolo si trova in uno stato di rischio
 - Il controllo è affidato allo stack di guida secondario
- **Emergency Stop [ES]**: Il veicolo non è in grado di marciare autonomamente
 - I comandi di guida vengono ignorati e il veicolo viene fermato sul posto

Il nodo implementa le seguenti transizioni di stato:

- (I) ←→ (M): Servizio richiamabile dall'esterno
- (M) ←→ (A): Servizio richiamabile dall'esterno
- (A) \rightarrow (ET): Si verifica un guasto comune
- (ET) → (A): Il quasto comune viene risolto
- (ET) → (M): Servizio richiamabile dall'esterno
- (A, M, ET) → (ES): Si verifica un guasto grave
- (ES) → (ET): Il guasto grave viene risolto e si è entrati in stato di ES da A o ET
- (ES) → (M): Il guasto grave viene risolto e si è entrati in stato di ES da M

Strategy node (Leonardo Pedretti, Giulia Casarini)

Il nodo strategico implementa due macchine a stati finiti. La prima sarà esposta e implementata utilizzando la funzionalità <u>Managed Nodes</u> di ROS2. Questa prima macchina a stati finiti ha il compito di gestire il ciclo di vita del nodo, permettendo di configurarlo, attivarlo ed eventualmente disattivarlo dall'esterno. La seconda macchina a stati finiti è quella strategica, che sarà implementata tramite l'uso di una libreria per FSM a scelta tra SMACC2 (<u>package</u>, <u>github</u>) e YASMIN (<u>github</u>).

Il nodo riceve in input dalla rete ROS2 la posizione del veicolo (di tipo Odometry) e un vettore con le posizioni degli eventuali avversari (di tipo PoseArray). Le callback ROS2 per questi topic dovranno essere gestite da più thread, utilizzando MultiThreadedExecutor e CallbackGroup di ROS2. Di conseguenza, sarà necessario proteggere le variabili condivise tra più thread con primitive di sincronizzazione. Si preveda inoltre l'inizializzazione del nodo tramite un parametro configurabile Dth. L'output del nodo è lo stato della FSM di strategia e dovrà essere pubblicato come topic.

L'ostacolo è definito dalle seguenti variabili:

- pose: posizione dell'ostacolo ricevuta dal messaggio ROS2
- Di: Distanza tra l'ostacolo e l'interno della pista
 - Per comodità può essere assegnato ad un valore casuale al momento dell'inizializzazione dell'ostacolo
- D_o: Distanza tra l'ostacolo e il bordo esterno della pista
 - Per comodità può essere assegnato ad un valore casuale al momento dell'inizializzazione dell'ostacolo

Requisiti di implementazione per la Managed Nodes FSM

- onConfigure(): configurazione dei parametri operativi del nodo (D_{th})
- onCleanup(): reset di tutti gli stati/configurazioni/variabili per una nuova esecuzione
- onActivate(): la FSM strategica viene lanciata insieme all'esecutore per le callback
- onDeactivate(): il nodo viene disattivato e le callback rilasciate

Per quanto riguarda la FSM strategica, il nodo implementa i seguenti stati:

- Ready [R]: il veicolo è fermo in attesa di istruzioni
- Global [G]: il veicolo segue la traiettoria globale
- Follow [F]: il veicolo segue l'avversario in attesa di un'opportunità di sorpasso
- Overtake Inside [OI]: il veicolo sta effettuando un sorpasso a destra
- Overtake Outside [OO]: il veicolo sta effettuando un sorpasso a destra

Transizioni

- (R) → (G): Servizio richiamabile dall'esterno
- (G) → (F): Esiste almeno un ostacolo
- (F) \rightarrow (OI): L'ostacolo più vicino è al più a D_{th} metri di distanza e ha $D_i \leq D_o$
- (F) → (OO): L'ostacolo più vicino è al più a D_{th} metri di distanza e ha D_o < D_i
- (OI, OO) → (AO): L'ostacolo più vicino è a più di D_{th} metri di distanza
- (F, OI, OO) → (G): Non sono più presenti ostacoli
- (G, F, OI, OO) → (R): Servizio richiamabile dall'esterno
- Si preveda inoltre un limite minimo di T_{nc} secondi che dovranno trascorrere dal momento in cui si entra nello stato (F) al successivo cambio di stato verso (G).