Section 7

Exercise 1.7.i Let $F, G : C \Rightarrow D$ be functors. Observe that for any $c \in C$, D(Fc, Gc) is a set because D is locally small. Now consider

$$A = \bigcup_{c \in C} D(Fc, Gc)$$

A is a set because it is a union of sets indexed by another set.

Now, every natural transformation is uniquely defined by its components. Each component is a map $\alpha_c: Fc \to Gc$ for some c. Hence, each natural transformation corresponds to an element in $\mathcal{P}(A)$ that contains all of its components.

Thus the collection of natural transformations between F, G is a set because it is in bijection with a subset of $\mathcal{P}(A)$ which is a set.

Hence There are set-many morphisms between any two objects in $\mathbb{D}^{\mathbb{C}}$ so it is locally small. ///

Exercise 1.7.ii The following diagram commutes because it is the commutativity diagram for β for a morphism $Ff: Fc \to Fc'$.

$$H(Fc) \xrightarrow{\beta_{Fc}} K(Fc)$$

$$\downarrow_{H(Ff)} \qquad \downarrow_{K(Ff)}$$

$$H(Fc') \xrightarrow{\beta_{Fc'}} K(Fc')$$

Hence we may apply L to the common composite and by functoriality we have the following.

$$L(\beta_{Fc'} \circ HFf) = L(KFf \circ \beta_{Fc})$$

$$L(\beta_{Fc'})L(HFf) = L(KFf)L(\beta_{Fc})$$

Thus the diagram for $L\beta F$ commutes so it is natural. ///

Exercise 1.7.v Define the monoid operation to be vertical composition of natural transformations $\mathbf{1}_C \Rightarrow \mathbf{1}_C$. The identity natural transformation serves as the identity. Further, this operation is associative because the composition of components is associative.

Exercise 1.7.vii For each $c \in C$, F(c, -) inherits functoriality from F, hence F determines a functor for each c. F also determines a natural transformation F(f, -): $F(c, -) \Rightarrow F(c', -)$ as follows. For some morphism $g: x \to y$ in D, we have

$$F(c,x) \xrightarrow{F(f,x)} F(c',x)$$

$$\downarrow^{F(c,g)} \qquad \downarrow^{F(c',g)}$$

$$F(c,y) \xrightarrow{F(f,y)} F(c',y)$$

Isaac Van Doren Chapter 1 March 7, 2023

The square commutes because f and g each act independently on the left and right components respectively.

Now, for each $c \in C$, pick a functor $K_c: D \to E$ and for each morphism $f: c \to c'$, pick a natural transformation $\alpha: K_c \Rightarrow K_{c'}$. Then we may define $F: C \times D \to E$ for objects as $(c,d) \mapsto K_c(d)$. For a morphism $(f,g): (c,d) \to (c',d')$, we need to construct a mapping $F(f,g): F(c,d) \to F(c',d')$. By the definition of F on objects, this is $F(f,g): K_c(d) \to K_{c'}(d)$. Hence define $F(f,g) = K_{c'}(g) \circ \alpha_d$.

We have $F(\mathrm{id}_c,\mathrm{id}_d) = K_{c'}(\mathrm{id}_d) \circ \alpha_d = \mathrm{id}_{K_c(d)} \circ \mathrm{id}_{K_c(d)} = \mathrm{id}_{K_c(d)}$ by functoriality of K_c and (I'm not sure this works because α_d need not be the identity)

how is the above equivalent to showing this? \rightarrow Hence there is a bijection between $C \times D \to E$ and $C \to E^D$.