

Structural Variant detection

Olivier QUENEZ - INSERM

Workflow

Définition

- Consensus actuel : Réarrangement génomique >50bp

- Différents types de variants structuraux :
- → Réarrangements déséquilibrés (variation du nombre de copie CNV)
 - Délétion
 - Duplication
- → Réarrangements équilibrés
 - Insertion
 - Inversion
 - Translocation

Deletion

Tandem duplication

Interspersed duplication

Novel sequence insertion

Mobile-element insertion

Inversion

Translocation

Alkan C, Coe BP, Eichler EEGenome structural variation discovery and genotyping. Nat Rev₄ Genet 12:363-376

Principe de détection des SVs

A Read Depth (RD)

Review > Brief Funct Genomics. 2015 Sep;14(5):305-14. doi: 10.1093/bfgp/elv014.

A decade of structural variants: description, history and methods to detect structural variation

Geòrgia Escaramís, Elisa Docampo, Raquel Rabionet

Short reads ou long reads?

Short reads (Illumina): selon l'outil et la qualité des données

- → faible recall: 10 à 70% des SVs détectés
- → faible précision : jusqu'à 90% de Faux Positifs
- → Difficulté à caractériser des SVs complexes (alignement imprécis dans les régions répétées et faible résolution)

/!\ Un calling consensus avec plusieurs outils de détection peut être utile avec des données short reads /!\

Long reads (PacBio/MinION):

- → Meilleure caractérisation des altérations des régions répétées
- \rightarrow Une faible profondeur de couverture suffit (15-30x)

Quel outil choisir?

<u>Critères de choix :</u>

- Ai-je des données short reads ou long reads ?
- Ai-je de nombreux échantillons ?
- Quel type de SV est-ce que je recherche?
- Est-ce que la profondeur de couverture est suffisante ?
- Que privilégier : sensibilité et / ou spécificité
- Quel est le format de sortie de l'outil ?

	-	SV Callers	SV Typ	pes					Data	Ano	malous	ly Map	ped Rea	ads Used	1					Tech	nique	5		BP Resolution (Y/N)	References	
										Disc	overy S	stage			Valid	dation	Stage									
1			CNV	INS	DEL	DUP	INV	TRA		RD	SC	PR	OEA	UM	RD	SC	PR	OEA	UM	CL	SA	CA	ST			
Détection de SV pour	données short reads	BIC-seq cn.MOPS cnD CNVeM CNVnator CNV-seq JointSIM RDXplorer SegSeq CNVer LUMPY MetaSV SVM2 Breakpointer Meerkat Scalpel SVMerge SoftSV BreaKmer ClipCrop CREST Gustaf Socrates Bellerophon BreakDancer CLEVER DELLY FACTERA GASV GASVPro GenomeSTRiP HYDRA HYDRA-Multi inGAP-SV MODIL PEMer PeSV-Fisher PRISM RetroSeq SVDetect SVMiner Ulysses VariationHunter NovelSeq PINDEL	CNV X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	DEL X X X X X X X X X X X X X X X X X X	DUP x x x x x x x x x x x x x x x x x x	INV X X X X X X X X X X X X X X X X X X	TRA x x x x x x x x x x x x x x x x x x	PE;SE PE;SE PE;SE PE;SE PE;SE PE	_			X X X X X	UM	-			x x x	UM	CL X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x	X X X X X	ST X X X X X X X X X X X X X X X X X X X	N N N N N N N N N N N N N N N N N N N	[110] [44] [88] [105] [3] [111] [59] [115] [50] [65] [16] [95] [112,113] [68] [109] [9] [2] [97] [104] [99] [86] [30] [14] [60] [80] [80] [91] [22] [97] [14] [60] [80] [80] [91] [21] [92] [93] [84] [85] [86] [87] [87] [87] [88] [88] [88] [88] [88] [99] [99] [86] [99] [86] [90] [91] [91] [92] [93] [94] [95] [96] [97] [97] [97] [98]	P. Guan, WK. Sung/ Methods 102 (2016) 36-49
		SLOPE SOAPindel Splitread		x	x			x	PE;SE PE PE				x			x	x	x x		X	X	x		Y Y Y	[1] [55] [39]	_
		BreakSeq		x	x				PE				X			x					x			Y	[47]	8
Peiyong Guan, , l	Methods 102 (2016)	SMUFIN		X	X		х	X	PE											X		х		Υ	[66]	

Outils en long reads

- PBHoney, 2014
- SMRT-SV, 2015
- Hysa, 2016 (hybrid avec short reads)
- NanoSV, 2017
- Sniffles, 2018

Partie TP

<u>Data</u>: souche de *Zymoseptoria tritici* séquencées à la fois en Illumina et en MinION.

- → chaque set de reads a été aligné sur le génome de référence avec les outils dédiés
 - → les données ont été réduites aux premiers 500kb du chr10

Tools:

- **Delly** (Bioinformatics, Volume 28, Issue 18, 15 September 2012, Pages i333-i339, https://doi.org/10.1093/bioinformatics/bts378)
- **Sniffles** (Nature Methods volume 15, pages 461-468 (2018), https://www.nature.com/articles/s41592-018-0001-7) with NGMLR mapping

Workflow - Variants Structuraux

Short Reads (Illumina)

Long Reads (MinION)

Préparation des données

```
# Copie des données SV
$ cp -R /shared/projects/ebai2019/atelier variant/data/sv ~/tp sv
$ cd ~/tp sv
# Indexation des fichiers
$ module load samtools/1.10
$ samtools index mapping illumina chr10 500kb.bam
$ samtools index mapping minion chr10 500kb.bam
$ samtools faidx Zymoseptoria tritici.fa
$ 1s -1
```

```
13812904 Oct 28 14:41 mapping_illumina_chr10_500kb.bam

1720 Oct 28 14:51 mapping_illumina_chr10_500kb.bam.bai

43323244 Oct 28 14:41 mapping_minion_chr10_500kb.bam

9040 Oct 28 14:51 mapping_minion_chr10_500kb.bam.bai

40348870 Oct 28 14:41 Zymoseptoria_tritici.fa

606 Oct 28 14:44 Zymoseptoria_tritici.fa.fai
```

Delly

```
$ mkdir -p delly/logs
$ cd delly
$ module load delly/0.8.3
$ delly # (v0.8.3)
$ delly call
Usage: delly call [OPTIONS] -g <ref.fa> <sample1.sort.bam> <sample2.sort.bam> ...
Generic options:
              show help message
 -? [ --help ]
 -t [ --svtype ] arg (=ALL) SV type to compute [DEL, INS, DUP, INV,
                           BND, ALL]
 -g [ --genome ] arg genome fasta file
 -x [ --exclude ] arg file with regions to exclude
 -o [ --outfile ] arg (="sv.bcf") SV BCF output file
```

Delly

```
$ sbatch -J delly -o logs/delly.out -e logs/delly.err --mem=8G --wrap=" \
    delly call -g ~/tp sv/Zymoseptoria tritici.fa \
    -o SV calling illumina.bcf ~/tp sv/mapping illumina chr10 500kb.bam"
$ less SV calling illumina.bcf
# "delly/SV calling illumina.bcf" may be a binary file. See it anyway? n
# Conversion en fichier vcf
$ module load bcftools/1.10.2
$ sbatch -J bcf to vcf -o logs/bcf to vcf.out -e logs/bcf to vcf.err --wrap=" \
    bcftools view SV calling illumina.bcf > SV calling illumina.vcf"
$ less -S SV calling illumina.vcf # "Q" pour quitter
```

Header du vcf de Delly

```
##fileformat=VCFv4.2
##FILTER=<ID=PASS.Description="All filters passed">
##fileDate=20200804
##ALT=<ID=DEL,Description="Deletion">
##ALT=<ID=DUP.Description="Duplication">
##ALT=<ID=INV.Description="Inversion">
##ALT=<ID=BND,Description="Translocation">
##ALT=<ID=INS,Description="Insertion">
##FILTER=<ID=LowQual.Description="Poor quality and insufficient number of PEs and SRs.">
##INFO=<ID=CIEND,Number=2,Type=Integer,Description="PE confidence interval around END">
##INFO=<ID=CIPOS,Number=2,Type=Integer,Description="PE confidence interval around POS">
##INFO=<ID=CHR2, Number=1, Type=String, Description="Chromosome for POS2 coordinate in case of an inter-chromosomal translocation">
##INFO=<ID=POS2.Number=1.Type=Integer.Description="Genomic position for CHR2 in case of an inter-chromosomal translocation">
##INFO=<ID=END,Number=1,Type=Integer,Description="End position of the structural variant">
##INFO=<ID=PE.Number=1.Type=Integer.Description="Paired-end support of the structural variant">
##INFO=<ID=MAPO,Number=1,Type=Integer,Description="Median mapping quality of paired-ends">
##INFO=<ID=SRMAPO.Number=1.Type=Integer.Description="Median mapping guality of split-reads">
##INFO=<ID=SR.Number=1.Tvpe=Integer.Description="Split-read support">
##INFO=<ID=SRO.Number=1.Type=Float.Description="Split-read consensus alignment quality">
##INFO=<ID=CONSENSUS,Number=1,Type=String,Description="Split-read consensus sequence">
##INFO=<ID=CE, Number=1, Type=Float, Description="Consensus sequence entropy">
##INFO=<ID=CT,Number=1,Type=String,Description="Paired-end signature induced connection type">
##INFO=<ID=SVLEN.Number=1.Type=Integer.Description="Insertion length for SVTYPE=INS.">
##INFO=<ID=IMPRECISE.Number=0.Type=Flag.Description="Imprecise structural variation">
##INFO=<ID=PRECISE,Number=0,Type=Flag,Description="Precise structural variation">
##INFO=<ID=SVTYPE,Number=1,Type=String,Description="Type of structural variant">
##INFO=<ID=SVMETHOD.Number=1.Type=String.Description="Type of approach used to detect SV">
##INFO=<ID=INSLEN.Number=1.Type=Integer.Description="Predicted length of the insertion">
##INFO=<ID=HOMLEN,Number=1,Type=Integer,Description="Predicted microhomology length using a max. edit distance of 2">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GL.Number=G.Type=Float.Description="Log10-scaled genotype likelihoods for RR.RA.AA genotypes">
##FORMAT=<ID=GO.Number=1.Type=Integer.Description="Genotype Quality">
##FORMAT=<ID=FT,Number=1,Type=String,Description="Per-sample genotype filter">
##FORMAT=<ID=RC.Number=1.Type=Integer.Description="Raw high-quality read counts or base counts for the SV">
##FORMAT=<ID=RCL,Number=1,Type=Integer,Description="Raw high-quality read counts or base counts for the left control region">
##FORMAT=<ID=RCR,Number=1,Type=Integer,Description="Raw high-quality read counts or base counts for the right control region">
##FORMAT=<ID=CN,Number=1,Type=Integer,Description="Read-depth based copy-number estimate for autosomal sites">
##FORMAT=<ID=DR,Number=1,Type=Integer,Description="# high-quality reference pairs">
##FORMAT=<ID=DV.Number=1.Tvpe=Integer.Description="# high-gualitv variant pairs">
##FORMAT=<ID=RR,Number=1,Type=Integer,Description="# high-quality reference junction reads">
##FORMAT=<ID=RV,Number=1,Type=Integer,Description="# high-quality variant junction reads">
##reference=Zymoseptoria tritici.fa
##contia=<ID=chr 1.lenath=6088797>
```

Delly: comptage du nombre de SVs

```
# Combien de variants ?
$ grep -v -c "^#" SV_calling_illumina.vcf
```

```
# Combien de variants de bonne qualité ?
$ grep -v "^#" SV_calling_illumina.vcf | grep -v -c "LowQual"
```

Delly: comptage du nombre de SVs

```
# Combien de variants de bonne qualité de type Deletion...
$ grep -v "^#" SV calling illumina.vcf | grep -v "LowQual" | grep -c "<DEL>"
$ grep -v "^#" SV_calling_illumina.vcf | grep -v "LowQual" | grep -c "<DUP>"
$ grep -v "^#" SV calling illumina.vcf | grep -v "LowQual" | grep -c "<INV>"
$ grep -v "^#" SV calling illumina.vcf | grep -v "LowQual" | grep -c "<BND>"
$ grep -v "^#" SV_calling_illumina.vcf | grep -v "LowQual" | grep -c "<INS>"
```

Delly: extraction des informations

```
$ grep -v "^#" SV_calling_illumina.vcf | grep -v "LowQual" | grep "<DEL>"
```

```
chr 10 29522 DEL00000002 A
                                  <DEL>
                                         1200
                                                PASS PRECISE; SVTYPE=DEL; SVMETHOD=EMBL.DELLYv0.8.
3;END=29580;PE=0;MAPQ=0;CT=3to5;CIPOS=-3,3;CIEND=-3,3;SRMAPQ=60;INSLEN=0;HOMLEN=2;SR=20;SRQ=1;CONSENSUS=AAG
CGGTACTGTCACGGGCTCGCCAGATGTTCATGAATTTCAGACCCCGATGTACGTGAATTCTATTTACGAAGAACTACCAGTCTTGCAAGACTCCAACCTAA:CE=1.
98003
          GT:GL:GO:FT:RCL:RC:RCR:CN:DR:DV:RR:RV 1/1:-109.497,-9.02787,0:90:PASS:612:32:745:0:0:0:0:30
                                  <DEL> 1200
                                                PASS
                                                       PRECISE:SVTYPE=DEL:SVMETHOD=EMBL.DELLYv0.8.
3;END=32783;PE=0;MAPQ=0;CT=3to5;CIPOS=-2,2;CIEND=-2,2;SRMAPQ=60;INSLEN=0;HOMLEN=1;SR=20;SRQ=1;CONSENSUS=ATG
CACAACGCAGACTCGTGCAGCCGCTACACTGGCAACACCGACAGGAAAACGTTCTTTACATAGACCAGTCGTGTTCGGCATCTACCCGGCCGTTTTCTGTAATCATC
CTAGCCGTTTCCCGTATGGCTCGAGGGCTTTTTCTGGATCTTGGGCGTTTTCCATATGGCTTGCCGTTGTCCCTATGGCTGGATGG:CE=1.97989
                                                                                         GT:G
L:GO:FT:RCL:RC:RCR:CN:DR:DV:RR:RV 1/1:-152.993,-12.937,0:129:PASS:686:41:792:0:0:0:0:43
```

Delly: extraction des informations des délétions

```
#Récupération du start des variants
$ grep -v "^#" SV calling illumina.vcf | grep -v "LowQual" | grep "<DEL>" | \
    cut -f1,2 > delly del start.txt
#Récupération des autres informations
$ grep -v "^#" SV_calling_illumina.vcf | grep -v "LowQual" | grep "<DEL>" | \
    cut -f8 | cut -d ";" -f1,4,5,13 | sed "s/;/\t/g" > delly_del_info.txt
#Fusion des deux fichiers
$ paste -d '\t' delly del start.txt delly del info.txt > delly del.txt
#Formattage et ménage
$ awk '{print $1"\t"$2"\t"$4"\t"$3"\t"$5"\t"$6}' delly del.txt | sed "s/END=//g" \
    > delly del.csv
$ rm delly del info.txt delly del start.txt delly del.txt
```

Workflow - Variants Structuraux

Short Reads (Illumina)

Long Reads (MinION)

Détection de données long reads avec Sniffles

```
$ module load sniffles/1.0.11
$ sniffles --help
Usage: sniffles [options] -m <sorted.bam> -v <output.vcf>
Version: 1.0.11
Contact: fritz.sedlazeck@gmail.com
Input/Output:
     -m <string>, --mapped reads <string>
     (required) Sorted bam File
     -v <string>, --vcf <string>
    VCF output file name []
     -b <string>, --bedpe <string>
         bedpe output file name []
     --Ivcf <string>
    Input VCF file name. Enable force calling []
     --tmp file <string>
     path to temporary file otherwise Sniffles will use the current directory. []
( -1 <int>, --min length <int>
    Minimum length of SV to be reported. [30] )
```

Sniffles

Header du vcf de Sniffles

```
##fileformat=VCFv4.3
##source=Sniffles
##fileDate=20191028
##contig=<ID=chr 1,length=6088797>
##contig=<ID=chr 2,length=3860111>
##contia=<ID=chr 3.lenath=3505381>
##contia=<ID=chr 4.lenath=2880011>
##contia=<ID=chr 5.lenath=2861803>
##contig=<ID=chr 6,length=2674951>
##contig=<ID=chr 7,length=2665280>
##contig=<ID=chr 8,length=2443572>
##contig=<ID=chr 9,length=2142475>
##contig=<ID=chr 10,length=1682575>
##contig=<ID=chr 11,length=1624292>
##contia=<ID=chr 12.lenath=1462624>
##contig=<ID=chr 13,length=1185774>
##contig=<ID=chr 14.length=773098>
##contig=<ID=chr 15,length=639501>
##contig=<ID=chr 16,length=607044>
##contig=<ID=chr 17,length=584099>
##contig=<ID=chr 18,length=573698>
##contig=<ID=chr 19,length=549847>
##contia=<ID=chr 20.length=472105>
##contig=<ID=chr 21, length=409213>
##ALT=<ID=DEL.Description="Deletion">
##ALT=<ID=DUP,Description="Duplication">
##ALT=<ID=INV,Description="Inversion">
##ALT=<ID=INVDUP,Description="InvertedDUP with unknown boundaries">
##ALT=<ID=TRA.Description="Translocation">
##ALT=<ID=INS,Description="Insertion">
##INFO=<ID=CHR2,Number=1,Type=String,Description="Chromosome for END coordinate in case of a translocation">
##INFO=<ID=END.Number=1.Type=Integer.Description="End position of the structural variant">
##INFO=<ID=MAPQ,Number=1,Type=Integer,Description="Median mapping quality of paired-ends">
##INFO=<ID=RE,Number=1,Type=Integer,Description="read support">
##INFO=<ID=IMPRECISE,Number=0,Type=Flag,Description="Imprecise structural variation">
##INFO=<ID=PRECISE,Number=0,Type=Flag,Description="Precise structural variation">
##INFO=<ID=UNRESOLVED, Number=0, Type=Flag, Description="An insertion that is longer than the read and thus we cannot predict the full size.">
```

Sniffles: comptage du nombre de SVs

```
$ cat SV calling minion.vcf | grep ^chr 10 | wc -1
$ cat SV calling minion.vcf | grep ^chr 10 | grep "DEL" | wc -1
$ cat SV calling minion.vcf | grep ^chr 10 | grep "DUP" | wc -1
$ cat SV calling minion.vcf | grep ^chr 10 | grep "INV" | wc -1
$ cat SV calling minion.vcf | grep ^chr 10 | grep "TRA" | wc -1
$ cat SV calling minion.vcf | grep ^chr 10 | grep "INS" | wc -1
```

Sniffles : extraction des positions des délétions

```
$ cat SV_calling_minion.vcf | grep ^chr_10 | grep "DEL"
```

Sniffles : extraction des positions des délétions

\$ rm sniffles del start.txt sniffles del stop.txt sniffles del infos.txt

revoir les commandes, DEL peuvent apparaître différemment

```
$ cat SV_calling_minion.vcf | grep ^chr 10 | grep "DEL" | cut -f -2 \
    > sniffles del start.txt
$ cat SV calling minion.vcf | grep ^chr 10 | grep "DEL" | cut -d ";" -f 4 | \
    cut -d "=" -f 2 > sniffles del stop.txt
$ cat SV_calling_minion.vcf | grep ^chr 10 | grep "DEL" | cut -f 8 | \
    cut -d ";" -f 1 > sniffles del infos.txt
$ paste sniffles del start.txt sniffles del stop.txt sniffles del infos.txt \
    > sniffles del.csv
```

Comparaison des résultats de Delly et Sniffles

```
$ cd ~/tp_sv
$ cat delly/delly_del.csv
$ cat sniffles/sniffles_del.csv
```

		Delly (Illumina)		
Start	End	precision	PairEnd	Split Reads
29522	29580	PRECISE	0	20
32733	32783	PRECISE	0	20
57127	57600	PRECISE	3	16
80015	80622	PRECISE	15	20
90255	90309	PRECISE	0	7
90309	101040	IMPRECISE	8	0
111021	111676	IMPRECISE	20	0
191291	191343	PRECISE	0	20
-	-	-	-	-
264986	265063	PRECISE	0	12
267829	267857	PRECISE	0	19
	9 4 9		-	-
360628	361052	PRECISE	0	20
383682	477911	IMPRECISE	7	0
425686	426624	IMPRECISE	28	0
459094	459124	PRECISE	0	12
465858	466080	PRECISE	0	20
468192	468342	PRECISE	0	20
477523	479732	PRECISE	41	20
496882	496919	PRECISE	0	20

Sniffles (Minion)								
Start	End	precision						
-	-	-						
-	-	10.70						
57126	57598	IMPRECISE						
_	2	_						
-	-	-						
91233	98159	IMPRECISE						
111020	11165 5	PRECISE						
_	=	7 <u>-</u> 6						
257001	257165	IMPRECISE						
-		-						
-	€	-						
343161	343273	PRECISE						
360638	361061	PRECISE						
383681	477805	IMPRECISE						
425682	426487	IMPRECISE						
-	-	-						
	-): -):						
468192	468341	PRECISE						
477525	479731	PRECISE						
-	-	-						

Visualisation sous IGV

- Chargement du génome de référence

```
→ ~/tp_sv/Zymoseptoria_tritici.fa
```

 Ouvrez à partir d'un fichier les fichiers BAM correspondant aux deux analyses (short et long reads) :

```
→ ~/tp_sv/mapping_illumina_chr10_500kb.bam
```

→ ~/tp_sv/mapping_minion_chr10_500kb.bam

deletion 90309-101040 (illumina), 91233-98159 (Minion)

deletion 90309-101040 (illumina), 91233-98159 (Minion)

deletion 111021-111676

deletion 191291-191343

deletion 343161-343273

Comparaison des résultats de Delly et Sniffles

	Delly (illumina)							
start	stop	precision	PE	SR				
29522	29580	PRECISE	0	20				
57127	57600	PRECISE	3	16				
80015	80622	PRECISE	15	20				
90255	90309	PRECISE	0	7				
90309	101040	IMPRECISE	8	0				
111021	111676	IMPRECISE	20	0				
191291	191343	PRECISE	0	18				
-	_	11111111111	-					
264986	265063	PRECISE	0	12				
(-1)	-	-	-	-				
360628	361052	PRECISE	0	20				
383682	477911	IMPRECISE	7	0				
425686	426624	IMPRECISE	28	0				
465858	466080	PRECISE	0	20				
468192	468342	PRECISE	0	20				
477523	479732	PRECISE	0	20				
477526	479732	IMPRECISE	41	0				

Snif	Sniffles (Minion)							
start	stop	precision						
-		_						
57126	57598	IMPRECISE						
<u> </u>	<u> </u>	2						
-		-						
91233	98159	IMPRECISE						
111020	111655	PRECISE						
2	<u> </u>	2						
257001	257165	IMPRECISE						
_	2							
343161	343273	PRECISE						
360638	361061	PRECISE						
383681	477805	IMPRECISE						
425682	426487	IMPRECISE						
-	Ж	-						
468192	468341	PRECISE						
477525	479731	PRECISE						
2	2	2						

Conclusion

- La détection des SVs manque de précision et engendre des faux positifs et faux négatifs
 - → Nécessité de croiser différents outils/technologies
 - → Nécessité de bien utiliser les métriques des outils
 - → Nécessité d'une bonne profondeur (variant hétérozygote)
- Vérifier visuellement les résultats sur IGV permet d'augmenter la confiance dans les SVs détectés