## **З**адача 1. *AB*

**Задача 2.** Построить гомоморфизм  $\varphi$  аддитивной группы рациональных чисел  $(\mathbb{Q}, +)$ , ядром которого является подгруппа целых чисел  $(\mathbb{Z}, +)$ .

*Решение.* Построим гомоморфизм  $\varphi$  из  $(\mathbb{Q},+)$  в группу корней из единицы  $(A,\cdot)$  по следующему правилу:

$$\forall q \in \mathbb{Q} \ \exists \ m \in \mathbb{Z}, n \in \mathbb{N} : q = \frac{m}{n} \hookrightarrow \varphi(q) = \varphi(m/n) = \cos(2\pi m/n) + i\sin(2\pi m/n)$$

Тогда имеем:

$$\forall z \in \mathbb{Z} \hookrightarrow \varphi(z) = \cos(2\pi z) + i\sin(2\pi z) = 1 = e,$$

где e=1 - нейтральный элемент в  $(A,\cdot)$ . Таким образом, получаем  $\varphi=(\mathbb{Q},+)$ .  $\square$ 

**Задача 3.** В предыдущей задаче покажите, что факторгруппа по ядру гомоморфизма имеет бесконечный порядок, но порядок каждого элемента конечен.

Решение. По основной теореме о гомоморфизмах:

$$G/Ker\varphi \cong \operatorname{Im} \varphi$$

В нашем случае имеем:

$$(\mathbb{Q},+)/\operatorname{Ker}\varphi\cong(A,\cdot),$$

но группа  $(A,\cdot)$  является бесконечной. Оценим порядок элемента, откуда сделаем вывод о его конечности:

$$|\cos(2\pi m/n) + i\sin(2\pi m/n)| \le n \in \mathbb{Z}.$$

**Задача 4.** Покажите, что факторгруппа невырожденных матриц по умножению по подгруппе матриц с детерминантом 1 изоморфна мультипликативной группе действительных чисел ( $\mathbb{R}\setminus\{0\}$ ,  $\times$ ).

*Решение.* Рассмотрим отображение  $\varphi(A) = \det(A)$ . Покажем, что  $\varphi$  действительно является гомоморфизмом: По опрдеделению гомоморфизма:

$$\varphi$$
 — гомоморфизм  $\Leftrightarrow \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$ 

По свойству детерминанта, доказанного в курсе Линейной алгебры:

$$\det(A \cdot B) = \det(A) \cdot \det(B)$$

Далее применим следующую теорему:

(Основная теорема о гомоморфизмах) Пусть  $\varphi: G \to H$  - гомоморфизм групп. Тогда  $\exists ! :$ 

$$\overline{\varphi}: G/\operatorname{Ker} \varphi \to \operatorname{Im} \varphi$$

Таким образом, гомоморфный образ группы из всех невырожденных матриц (группа всех ненулевых дейтсвительных чисел по умножению) изоморфен факторгруппе по ядру гомоморфизма (факторгруппе по матрицам  $A: \det(A) = 1$ ).  $\square$ 

**Задача 5.** Найдите количество различных (не совмещаемых вращениями) раскрасок вершин куба в 2 цвета.

Решение.

**Задача 6.** Сколько различных ожерелий из 6 бусин можно составить, имея две красные, две синие и две зелёные бусины?

## Решение.

Введем группу поворотов и отражений :  $\{r^0...r^5, s_1..s_5\}$ 

| g               | Комментарий                                   | $ X_g $                            |
|-----------------|-----------------------------------------------|------------------------------------|
| e               | все раскраски переходят в себя                | $\frac{P_6}{2! \cdot 2! \cdot 2!}$ |
| $r, r^{-1}$     | расскраски переходят в себя по циклу          | 0                                  |
| $r^2, r^{-2}$   | Каждая вершина переходит через одну от себя   | 0                                  |
| $r^3$           | Каждая вершина переходит в противоположную    | $P_3$                              |
| $s_2, s_4, s_6$ | Отражения относительно осей, проходящих через | $3P_3$                             |
|                 | середины противоположных сторон               |                                    |
| $s_1,s_3,s_5$   | Отражения относительно осей,                  | $3P_3$                             |
|                 | проходящих через противоположные вершины      |                                    |

По Лемме Бернсайда:

$$\operatorname{orb}(X) = \frac{\sum_{g \in G} |X_g|}{|G|} = \frac{90 + 0 + 0 + 6 + 18 + 18}{12} = 11$$

