class note 190523

Seanie Lee, Jonghwan Jang

May 2019

6.2 The Gram-Schmidt Orthogonalization Process and Orthogonal Complements

Theorem (Euler's formula). $e^{ix} = \cos x + i \sin x$

Theorem. Let $\beta \coloneqq \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ orthonormal basis for \mathbf{V} and (ith Fourier Coefficient) $\coloneqq \langle \mathbf{v}, \mathbf{v}_i \rangle$. But more generally $\frac{1}{2\pi} \int_0^{2\pi} f(t) \mathrm{e}^{\mathrm{i}nt} dt$.

Proof. WTS $\beta := \{e^{inx} | n \in \mathbb{N}_0\}$ is orthonormal subset. $C[0, 2\pi], \langle f, g \rangle := \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} dx$

$$e^{\overline{inx}} = \overline{\cos nx + i \sin nx}$$

$$= \cos nx - i \sin nx$$

$$= \cos(-nx) + i \sin(-nx)$$

$$= e^{-inx}$$

$$\begin{cases} n = m & \langle f, g \rangle = 1 \\ n \neq m & \frac{1}{2\pi} \left[\frac{1}{\mathbf{i}(n-m)} e^{\mathbf{i}(n-m)x} \right]_0^{2\pi} = 0 \end{cases}$$

Definition 6.1. W is subspace of V, $W^{\perp} := \{ \mathbf{v} \in V | \langle \mathbf{v}, \mathbf{w} \rangle = 0 \mathbf{w} \in W \}$ is called the orthogonal complement of W

Remark. W^{\perp} is subspace of V

Proof. $c \cdot \mathbf{v}_1, \mathbf{v}_2 \in \mathbf{W}^{\perp}$, $\mathbf{w} \in \mathbf{W}$ and $c \in \mathbb{C}$

$$\langle \mathbf{w}, c\mathbf{v}_1 + \mathbf{v}_2 \rangle = \overline{c} \langle \mathbf{w}, \mathbf{v}_1 \rangle + \langle \mathbf{w}, \mathbf{v}_2 \rangle = 0$$

 $\textbf{Theorem.} \ \left[\mathbf{v} \in \boldsymbol{V} \Longrightarrow \exists ! \mathbf{w} \in \boldsymbol{W}, \mathbf{w}' \in \boldsymbol{W}^{\perp} \ \textit{such that} \ \mathbf{v} = \mathbf{w} + \mathbf{w}' \right] \iff \left[\boldsymbol{V} = \boldsymbol{W} \bigoplus \boldsymbol{W}^{\perp} \right]$

Proof. Take an orthonormal basis $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ of \mathbf{W} . Put $\mathbf{w} := \sum_{i=1}^k \langle \mathbf{v}, \mathbf{v}_i \rangle \mathbf{v}_i \in \mathbf{W}$ and $\mathbf{w}' := \mathbf{v} - \mathbf{w}$ We want to show $\mathbf{w}' \in \mathbf{W}^{\perp}$. In other words, $\forall \mathbf{u} \in \mathbf{W}, \langle \mathbf{w}', \mathbf{u} \rangle = 0$. It is enough to show

 $\langle \mathbf{w}', \mathbf{v}_j \rangle$ for j = 1, ..., k. (: $\mathbf{u} = \sum_{i=1}^k a_i \mathbf{v}_i$, So inner product between \mathbf{u} and \mathbf{w}' is $\langle \sum_{i=1}^k a_i \mathbf{v}_i, \mathbf{w}' \rangle = \sum_{i=1}^n a_i \langle \mathbf{v}_i, \mathbf{w}' \rangle$. If \mathbf{v}_i orthogonal to \mathbf{w}' for all i, then $\langle \mathbf{u}, \mathbf{w}' \rangle = 0$). So take $\mathbf{u} := \mathbf{v}_j$.

$$\langle \mathbf{w}', \mathbf{v}_j \rangle = \langle \mathbf{v} - \sum_{i=1}^k \langle \mathbf{v}, \mathbf{v}_i \rangle \mathbf{v}_i, \mathbf{v}_j \rangle$$

$$= \langle \mathbf{v}, \mathbf{v}_j \rangle - \sum_{i=1}^k \langle \mathbf{v}, \mathbf{v}_i \rangle \langle \mathbf{v}_i, \mathbf{v}_j \rangle$$

$$= \langle \mathbf{v}, \mathbf{v}_j \rangle - \langle \mathbf{v}, \mathbf{v}_j \rangle$$

$$= 0$$

If $\mathbf{w} \in \mathbf{W} \cap \mathbf{W}^{\perp}$, then $\langle \mathbf{w}, \mathbf{w} \rangle = 0$, which implies that $\mathbf{w} = \mathbf{0}$. Thus $\mathbf{W} \cap \mathbf{W}^{\perp} = \mathbf{0}$. Let $\mathbf{w}_1 + \mathbf{w}_1' = \mathbf{w}_2 + \mathbf{w}_2'$ for some $\mathbf{w}_1, \mathbf{w}_2 \in \mathbf{W}$ and $\mathbf{w}_1', \mathbf{w}_2' \in \mathbf{W}^{\perp}$. Then $\mathbf{w}_1 - \mathbf{w}_2 = \mathbf{w}_2' - \mathbf{w}_1' = \mathbf{0} \in \mathbf{W} \cap \mathbf{W}^{\perp}$. Thus $\mathbf{w}_1 = \mathbf{w}_2$, $\mathbf{w}_1' = \mathbf{w}_2'$. \therefore \mathbf{v} is uniquely written in sum of \mathbf{w}, \mathbf{w}'

6.3 The Adjoint of a Linear Operator

Note. With inner product, we can define natural isomorphism (not dependent to any basis)

Theorem.

(1) $g_{\mathbf{y}}$ is a linear functional $(g_{\mathbf{y}} \in \mathbf{V}^*)$

$$g_{\mathbf{y}}: \mathbf{V} \to \mathbb{R} \quad \mathbf{y} \in \mathbf{V}$$

 $\mathbf{x} \mapsto \langle \mathbf{x}, \mathbf{y} \rangle$

(2) The following map is natural isomorphism

$$V \to V^*$$

 $\mathbf{y} \mapsto g_{\mathbf{v}}$

Proof.

(1) We want to show $\langle c\mathbf{x}_1 + \mathbf{x}_2, \mathbf{y} \rangle = c \langle \mathbf{x}_1, \mathbf{y} \rangle + \langle \mathbf{x}_2, \mathbf{y} \rangle$ $c \in \mathbb{R}$ and $c \cdot \mathbf{x}_1, \mathbf{x}_2 \in V$. It is trivial to show because inner product has linearity on the first component.

(2) We want to show that the map is linear and bijective. First for linearity.

$$g_{\mathbf{y}_1+\mathbf{y}_2}(\mathbf{x}) = \langle \mathbf{x}, \, \mathbf{y}_1 + c\mathbf{y}_2 \rangle$$

$$= \langle \mathbf{x}, \, \mathbf{y}_1 \rangle + \overline{c} \langle \mathbf{x}, \, \mathbf{y}_2 \rangle$$

$$= g_{\mathbf{y}_1}(\mathbf{x}) + \overline{c} g_{\mathbf{y}_2}(\mathbf{x})$$

$$= g_{\mathbf{y}_1}(\mathbf{x}) + c g_{\mathbf{y}_2}(\mathbf{x})$$

Then we show the map is one-to-one. Suppose that $g_{\mathbf{y}_1} = g_{\mathbf{y}_2}$, i.e., $g_{\mathbf{y}_1}(\mathbf{x}) = g_{\mathbf{y}_2}(\mathbf{x})$ for all $\mathbf{x} \in V$.

$$\langle \mathbf{x}, \, \mathbf{y}_1 \rangle = \langle \mathbf{x}, \, \mathbf{y}_2 \rangle \text{ for all } \mathbf{x} \in \mathbf{V}$$

$$\langle \mathbf{x}, \, \mathbf{y}_1 \rangle - \langle \mathbf{x}, \, \mathbf{y}_2 \rangle = 0$$

$$\langle \mathbf{x}, \, \mathbf{y}_1 - \mathbf{y}_2 \rangle = 0$$

$$\text{Take } \mathbf{x} = \mathbf{y}_1 - \mathbf{y}_2$$

$$\langle \mathbf{y}_1 - \mathbf{y}_2, \, \mathbf{y}_1 - \mathbf{y}_2 \rangle = 0$$

$$\mathbf{y}_1 - \mathbf{y}_2 = \mathbf{0}$$

$$\mathbf{y}_1 = \mathbf{y}_2$$

$$\therefore \mathbf{y} \mapsto g_{\mathbf{y}} \text{ is } 1\text{-}1$$

Finally we show the map is onto. Suppose that $f \in V^*$ be given. Take orthonormal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ for V. Let $\mathbf{y} := \sum_{i=1}^n f(\mathbf{v}_i)\mathbf{v}_i$ and $g_{\mathbf{y}} := \langle \mathbf{x}, \mathbf{y} \rangle \ \forall \mathbf{x} \in V$. We want to show that $f = g_{\mathbf{y}}$. Since f and $g_{\mathbf{y}}$ is linear map, it suffices to show that $f(\mathbf{v}_i) = g_{\mathbf{y}}(\mathbf{v}_j)$ for $j = 1, \ldots, n$.

$$g_{\mathbf{y}}(\mathbf{v}_{j}) = \langle \mathbf{v}_{j}, \mathbf{y} \rangle$$

$$= \langle \mathbf{v}_{j}, \sum_{i=1}^{n} f(\mathbf{v}_{i}) \mathbf{v}_{i} \rangle$$

$$= \sum_{i=1}^{n} f(\mathbf{v}_{i}) \langle \mathbf{v}_{j}, \mathbf{v}_{i} \rangle$$

$$(\because f(\mathbf{v}_{i}) \in \mathbb{R} \text{ for } i = 1, \dots, n)$$

$$= \sum_{i=1}^{n} f(\mathbf{v}_{i}) \delta_{ji}$$

$$= f(\mathbf{v}_{j}) \text{ for } j = 1, \dots, n$$

$$\therefore g_{\mathbf{y}} = f$$

For every $f \in V^*, \exists \mathbf{y}$ such that $f = \langle \mathbf{x}, \mathbf{y} \rangle \, \forall \mathbf{x} \in V. \therefore g \mapsto g_{\mathbf{y}}$ is onto.

Theorem. $T: T \to V$: linear operator. Then $\exists ! T^* : V \to V$ such that $\langle T\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, T^*\mathbf{y} \rangle$ and T^* is linear.

Proof. By the previous theorem, there is a unique $\mathbf{y}' \in \mathbf{V}$ such that $g(\mathbf{x}) = \langle \mathbf{x}, \mathbf{y}' \rangle$. I.e., $\langle \mathbf{T}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y}' \rangle$. Define $\mathbf{T}^* : \mathbf{V} \to \mathbf{V}$ by $\mathbf{T}^*\mathbf{y} := \mathbf{y}'$. Then $\langle \mathbf{T}\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{T}^*\mathbf{y} \rangle$. Then we show \mathbf{T}^* is linear.

$$\forall \mathbf{x} \in V$$

$$\langle \mathbf{x}, T^*(\mathbf{y}_1 + \mathbf{y}_2) \rangle = \langle T\mathbf{x}, \mathbf{y}_1 + \mathbf{y}_2 \rangle$$

$$= \langle T\mathbf{x}, \mathbf{y}_1 \rangle + \langle T\mathbf{x}, \mathbf{y}_2 \rangle$$

$$= \langle \mathbf{x}, T^*\mathbf{y}_1 \rangle + \langle \mathbf{x}, T^*\mathbf{y}_2 \rangle$$

$$= \langle \mathbf{x}, T^*\mathbf{y}_1 + T^*\mathbf{y}_2 \rangle$$

$$\langle \mathbf{x}, T^*(\mathbf{y}_1 + \mathbf{y}_2) \rangle - \langle \mathbf{x}, T^*\mathbf{y}_1 + T^*\mathbf{y}_2 \rangle = 0$$

$$T^*(\mathbf{y}_1 + \mathbf{y}_2) - T^*\mathbf{y}_1 - T^*\mathbf{y}_2 = \mathbf{0}$$

$$\therefore T^*(\mathbf{y}_1 + \mathbf{y}_2) = T^*\mathbf{y}_1 + T^*\mathbf{y}_2$$

Finally, we need to show that T^* is unique. Suppose that $U: V \to V$ is linear and that it satisfies $\langle T\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, U\mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in V$. Then $\langle \mathbf{x}, T^*\mathbf{y} \rangle = \langle \mathbf{x}, U\mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in V$, so $T^* = U$.