北京郵電大學

网络空间安全学院

《计算机组成与系统结构》实验报告

姓	名	王何佳
学	号	2023211603
班	级	2023211804
邮	箱	624772990@qq.com
任课教		苑 洁

实验 2. 双端口存储器实验

一、实验目的

- 1. 了解双端口静态存储器 IDT7132 的工作特性及其使用方法;
- 2. 了解半导体存储器怎样存储和读取数据;
- 3. 了解双端口存储器怎样并行读写;
- 4. 熟悉 TEC-8 模型计算机中存储器部分的数据通路

二、实验内容

1. 实验任务:

双端口存储器实验电路图

- (1) 从存储器地址 10H 开始,通过左端口连续向双端口 RAM 中写入 3 个数: 85H, 60H, 38H。在写的过程中,在右端口检测写的数据是否正确。
- (2) 从存储器地址 10H 开始,连续从双端口 RAM 的左端口和右端口同时读出存储器的内容。

2. 实验步骤:

(1) 实验准备

将控制器转换开关拨到微程序位置,将编程开关设置为正常位置。打开电源。

- (2) 进行存储器读、写实验
- ① 设置存储器读、写实验模式

按复位按钮 CLR,使 TEC-8 实验系统复位。指示灯μA5[~]μA0 显示 00H。将操作模式开 关设置为 SWC=1、SWB=1、SWA=0,准备进入双端口存储器实验。 按一次 QD 按钮,进入 存储器读、写实验。

② 设置存储器地址

指示灯 μA5~μA0 显示 0DH。在数据开关 SD7~SD0 上设置地址 10H。在数据总线 DBUS 指示灯 D7~D0 上可以看到地址设置的正确不正确,发现错误需及时改正。设置地址正确后,按一次 QD 按钮,将 SD7~SD0 上的地址写入地址寄存器 AR(左端口存储器地址)和程序计数器 PC(右端口存储器地址),进入下一步。

③ 写入第1个数

指示灯 μΑ5~μΑ0 显示 1AH。指示灯 AR7~AR0 (左端口地址) 显示 10H,指示灯 PC7~PC0 (右端口地址) 显示 10H。 在数据开关 SD7~SD0 上设置写入存储器的第 1 个数 85H。 按一次 QD 按钮,将数 85H 通过左端口写入由 AR7~AR0 指定的存储器单元 10H。

④ 写入第2个数

指示灯 µA5~µA0 显示 1BH。指示灯 AR7~AR0 (左端口地址) 显示 11H,指示灯 PC7~PC0 (右端口地址) 显示 10H。观测指示灯 INS7~INS0 的值,它是通过右端口读出的由右地址 PC7~PC0 指定的存储器单元 10H 的值。比较和通过左端口写入的数是否相同。在数据开关 SD7~SD0 上设置写入存储器的第 2 个数 60H。按一次 QD 按钮,将第 2 个数通过左端口写入由 AR7~AR0 指定的存储器单元 11H。

⑤ 写入第3个数

指示灯µA5~µA0显示1CH。指示灯AR7~AR0(左端口地址)显示12H,指示灯PC7~PC0(右

端口地址)显示 11H。观测指示灯 INS7^{*}INS0 的值,它是通过右端口读出的由右地址 PC7^{*}PC0 指定的存储器单元 11H 的值。比较和通过左端口写入的数是否相同。在数据开 关 SD7^{*}SD0 上设置写入存储器的第 3 个数 38H。按一次 QD 按钮,将第 3 个数通过左端口写入由 AR7^{*}AR0 指定的存储器单元 12H。

⑥ 重新设置存储器地址

指示灯μA5~μA0显示 1DH。指示灯 AR7~AR0(左端口地址)显示 13H,指示灯 PC7~PC0(右端口地址)显示 12H。观测指示灯 INS7~INSO的值,它是通过右端口读出的由右地址 PC7~PC0 指定的存储器单元 12H的值。比较和通过左端口写入的数是否相同。在数据开关 SD7~SD0 重新设置存储器地址 10H。按一次 QD 按钮,将 SD7~SD0 上的地址写入地址寄存器 AR(左端口存储器地址)和程序计数器 PC(右端口存储器地址),进入下一步。

⑦ 左、右两2个端口同时显示同一个存储器单元的内容。

指示灯 μ A5~ μ A0 显示 1FH。指示灯AR7~AR0 (左端口地址) 显示 10H,指示灯PC7~PC0 (右端口地址) 显示 10H。观测指示灯INS7~INS0 的值,它是通过右端口读出的由右地址PC7~PC0 指定的存储器单元 10H 的值。观测指示灯D7~D0 的值,它是从左端口读出的由AR7~AR0 指定的存储器单元 10H 的值。

按一次 QD 按钮,地址寄存器 AR 加 1,程序计数器 PC 加 1,在指示灯 D7 $^{\sim}$ D0 和指示灯 INS7 $^{\sim}$ INS0 上观测存储器的内容。继续按 QD 按钮,直到存储器地址 AR7 $^{\sim}$ AR0 为 12H 为止。

三、实验过程(独立方式)

1. 按下图接线

K15	K14	K13	K12	K11	K10	K9
SBUS	ARINC	LAR	MEMW	MBUS	PCINC	LPC

2. 写入数据

设置地址值为 10H。

K15	K14	K13	K12	K11	K10	K9
1		1				1

D7	D6	D5	D4	D3	D2	D1	D0	
			1					

传入 85H。

K15	K14	K13	K12	K11	K10	K9
1	1		1			

D7	D6	D5	D4	D3	D2	D1	D0
1					1		1

传入 60H 和 38H 类似。

D7	D6	D5	D4	D3	D2	D1	D0
	1	1					
D7	D6	D5	D4	D3	D2	D1	D0
			4		1	1	

3. 读出数据

传入地址 10H。

K15	K14	K13	K12	K11	K10	K9	D7	D6	D5	D4	D3	D2	D1	D0
1		1				1				1				

按 QD,读出 85H。

按 QD,读出 60H。

按 QD,读出 38H。

4. 实验结果

实验	数据	实验结果							
左端	通过左端		欠从右 出的数	Ī	司时读出时	的读出结界	Ę		
口存 储器 地址	口写 入的 数据	右端口 存储器 地址	读出的数	左端口 存储器 地址	读出的数	右端口 存储器 地址	读出的数		
10H	85H	10H	85H	10H	85H	10H	85H		
11H	60H	11H	60H	11H	60H	11H	60H		
12H	38H	12H	38H	12H	38H	12H	38H		

四、可探索和研究的问题

1. 在通过左端口向双端口 RAM 写数时,在右端口可以同时观测到左端口写入的数吗? 为什么?

可以观测到,只要让左右端口所指向的地址相同就可以实时观测到写入的数据,及右端口连接总线,从 INS7-INS0 读出指定的相同的存储器单元的值。

五、实验思考与心得

通过这次存储器读、写实验,我深刻理解了双端口存储器的工作原理和操作流程。 实验中,我学习了如何设置控制器、编程开关,以及如何通过复位按钮和操作模式开关 进入特定的实验模式。在实际操作中,我掌握了如何设置存储器地址、写入数据以及读 取存储器内容。通过比较左端口写入的数据和右端口读出的数据,我加深了对存储器读 写一致性的认识。