Introducción a la teoría de la probabilidad

Basado en las notas de Ana Bianco y Elena Martinez, disponibles en el campus virtual.

Agosto, 2023

Introducción

El término Probabilidad se refiere al estudio del azar y la incertidumbre.

Cuando se realiza un experimento que puede tener varios resultados posibles, la teoría de la Probabilidad provee métodos para cuantificar la chance de ocurrencia de cada uno de ellos.

Ejemplos:

- ¿Cuál es la probabilidad de sacar una escalera servida en la generala?
- ¿Cuál es la probabilidad de ganar apostando a una columna en la ruleta?
- ¿Cuál es la probabilidad de que un servidor se sature en un determinado momento?
- ▶ Dada la información disponible, ¿cuál es la probabilidad de que llueva el próximo fin de semana?

Primeras definiciones

- Experimento aleatorio: Es cualquier proceso o acción que genera observaciones y que es repetible.
- Espacio muestral asociado a un experimento: conjunto de todos los resultados posibles de un experimento. Lo notaremos Ω .
- Evento o suceso: subconjunto del espacio muestral
- Evento simple: consiste de un único resultado.
- Evento compuesto: consiste de más de un resultado.

Ejemplos

- (1) Tirar una moneda: $\Omega = \{ \text{cara}, \text{ceca} \}$ Ejemplo de evento: $E = \{ \text{cara} \}$
- (2) Tirar dos monedas : $\Omega = \{(C, C), (C, X), (X, C), (X, X)\}$ Ejemplo de evento: $E = \{(C, C), (C, X), (X, C)\}$
- (3) Elegir un alumno del curso al azar y preguntarle cuántas horas pasó ayer mirando netflix:

$$\Omega = \{x \in \mathbb{R}/0 \le x \le 24\}$$

Ejemplo de evento: $E = \{x \in \mathbb{R}/x \ge 3\}$

Relación con Teoría de conjuntos

- (1) Ω : suceso cierto o seguro .
- (2) ∅: suceso imposible.
- (3) $A \cup B$: ocurre cuando A ocurre o B ocurre.
- (4) $A \cap B$: ocurre cuando ocurre A y ocurre B.
- (5) A^c : ocurre cuando no ocurre A.
- (6) A B: ocurre cuando ocurre A y no ocurre B.
- (7) $A \subset B$: quiere decir que la ocurrencia de A implica la ocurrencia de B.
- (8) Dos sucesos A y B se dicen mutuamente excluyentes o disjuntos si $A \cap B = \emptyset$.

Repaso de conjuntos

Ley conmutativa

- ▶ Para la unión: $A \cup B = B \cup A$
- ▶ Para la intersección: $A \cap B = B \cap A$

Ley asociativa

- ▶ Para la unión: $(A \cup B) \cup C = A \cup (B \cup C)$
- ▶ Para la intersección: $(A \cap B) \cap C = A \cap (B \cap C)$

Ley distributiva

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Leyes de De Morgan

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c$$

$$\left(\bigcap_{i=1}^{\infty} A_i\right)^c = \bigcup_{i=1}^{\infty} A_i^c$$

Idea intuitiva de probabilidad

La probabilidad de un suceso representa el porcentaje de veces que esperamos que este ocurra, siempre que el experimento se repita indefinidamente, de forma independiente y bajo las mismas condiciones.

La probabilidad como frecuencia relativa

Supongamos que se repite n veces un mismo experimento bajo las mismas condiciones y sea n_A el número de veces que ocurre el evento A. Se llama frecuencia relativa de A en las n repeticiones a

$$fr(A) = \frac{n_A}{n}$$
.

La evidencia empírica muestra que cuando n crece, fr(A) tiende a estabilizarse alrededor de un número que llamaremos P(A).

En el ejemplo (1) Tirar una moneda, $\Omega = \{cara, ceca\}\ E = \{cara\}$

$$fr(E) = 0.5$$

Propiedades

$$ightharpoonup fr(A) = \frac{n_A}{n} \geq 0$$

$$ightharpoonup fr(\Omega) = 1$$

Dem: Ejercicio

▶ Si
$$A \cap B = \emptyset \Rightarrow fr(A \cup B) = fr(A) + fr(B)$$

Dem:

Definición axiomática de probabilidad

Dado un experimento aleatorio y un espacio muestral asociado Ω , a cada evento A se le asociará un número P(A) que satisface

- ▶ $P(A) \ge 0$ para todo evento $A \subset \Omega$.
- \triangleright $P(\Omega) = 1.$
- Si $A_1, A_2, ..., A_n$ es una colección de eventos mutuamente excluyentes (es decir, $A_i \cap A_j = \emptyset \ \forall i \neq j$) entonces

$$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right).$$

Propiedades

 $P(A^c) = 1 - P(A).$ Dem: $P(A^c) + P(A) = P(Ω) = 1$

- $P(\emptyset) = 0.$ Dem: $P(\emptyset) = P(\Omega^c) = 1 P(\Omega) = 0$
- ▶ Si $A \subseteq B \Rightarrow P(A) \le P(B)$ y P(B-A) = P(B) P(A). Dem: $A \subseteq B \Rightarrow B = A \cup (B-A)$. Entonces, P(B) = P(A) + P(B-A) por all axioma 3, ya que A y B A son mutuamente excluyentes. Entonces P(B-A) = P(B) P(A)

Más propiedades

▶ Dados dos eventos cualesquiera A y B, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Dem: $A \cup B = A \cup (B - A) = A \cup (B \cap A^c)$ y estos dos eventos son excluyentes, entonces

$$P(A \cup B) = P(A \cup (B \cap A^{c})) = P(A) + P(B \cap A^{c})$$

Por otro lado $B = (B \cap A) \cup (B \cap A^c)$ y estos eventos también son excluyentes. Por lo tanto,

$$P(B) = P(B \cap A) + P(B \cap A^{c}) \Rightarrow P(B \cap A^{c}) = P(B) - P(B \cap A)$$

Esto implica que

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Más propiedades

 \triangleright Dados 3 sucesos A_1, A_2, A_3 ,

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$$

-P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3)

Dem: Ejercicio

Más propiedades

 \triangleright Dados 3 sucesos A_1, A_2, A_3 ,

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$$
$$-P(A_1 \cap A_2) - P(A_1 \cap A_3) - P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3)$$

Dem: Ejercicio

▶ Dados dos eventos cualesquiera $P(A \cup B) \le P(A) + P(B)$

Dem: Ejercicio

Espacios equiprobables

Definición

Diremos que un espacio muestral (finito) es equiprobable si los n sucesos elementales tienen igual probabilidad, es decir si, para todo evento elemental E_i ,

$$P(E_i) = p.$$

Proposición:

Si Ω es un espacio muestral equiprobable, entonces para todo evento $A\subset \Omega$, se tiene

$$P(A) = \frac{\#A}{\#S}$$

Dem:

Supongamos que $\Omega = \{e_1, e_2, \dots, e_n\}$. Se tiene

$$\sum_{i=1}^{n} P(\{e_i\}) = \sum_{i=1}^{n} p = np = 1,$$

entones $P({e_i}) = 1/n \forall i$

$$P(A) = \sum_{\{e_i\} \in A} P(\{e_i\}) = \sum_{\{e_i\} \in A} \frac{1}{n} = \frac{\#A}{\#S}$$

Ejemplo 1: Bolitas

De una urna que contiene 2 bolillas blancas y 3 rojas se extraen 2 bolillas con reposición.

- a) ¿Cuál es la probabilidad de que se extraiga al menos una bolilla roja?
- b) ¿Cuál es la probabilidad de que la primera bolilla extraída sea roja y la segunda blanca?
- c) Repetir suponiendo que las extracciones son sin reposición.

Resolución del ejemplo 1

 a) Supondremos que las bolillas están numeradas, de manera de poder considerar que se trata de un espacio de equiprobabilidad, entonces

$$\Omega = \{(x_1, x_2) / x_i \in \{R_1, R_2, R_3, B_1, B_2\}\}$$

Observemos primero que $\#\Omega=25$.

Sea

A =se extrae al menos una bolilla roja.

Entonces $P(A) = 1 - P(A^c)$.

$$A^c = \{(x_1, x_2) \in \Omega/x_i \in \{B_1, B_2\}\}.$$

Como $\#A^c = 2 \cdot 2 = 4$, resulta

$$P(A^c) = \frac{4}{25} \Rightarrow P(A) = 1 - \frac{4}{25} = \frac{21}{25}$$

Resolución del ejemplo 1

2) Sea

B = la primera bolilla extraída es roja y la segunda blanca.

Entonces

$$B = \{(x_1, x_2) \in \Omega / x_1 \in \{R_1, R_2, R_3\}, x_2 \in \{B_1, B_2\}\}.$$

Como

$$\#B = 3 \cdot 2 = 6 \Rightarrow P(B) = \frac{6}{25}$$

Resolución del ejemplo 1

3) Ahora,

$$\Omega = \{(x_1, x_2) / x_i \in \{R_1, R_2, R_3, B_1, B_2\}, x_1 \neq x_2\}$$

Entonces

$$\#\Omega=5\cdot 4=20$$

Ejemplo: El dado

Se arroja un dado equilibrado. Calcular la probabilidad de que el resultado sea par.

Ejemplo: El dado

Se arroja un dado equilibrado. Calcular la probabilidad de que el resultado sea par.

Rta:

El espacio muestral es $\Omega = \{1,2,3,4,5,6\}.$

Los sucesos elementales son $E_i = i$ para i = 1, ..., 6

y sus probabilidades son $p(E_i) = 1/6$.

Llamamos A = el resultado es par.

Como $A = E_2 \cup E_4 \cup E_6$ se obtiene $P(A) = P(E_2) + P(E_4) + P(E_6) = 1/2$

Ejemplo: El Problema de los cumpleaños

En una clase de *n* alumnos, cuál es la probabilidad de que al menos 2 cumplan años el mismo día?

Rta: Consideremos el evento:

 $E = \{al \text{ menos dos alumnos de la clase cumplen años el mismo día}\}$

$$P(E) = 1 - P(E^c)$$

 $E^c = \{ todos los alumnos de la clase cumplen años en días distintos \}$

$$P(E^c) = \frac{365 * 364 * \dots (365 - (n-1))}{365^n}$$

$$P(E) = 1 - \frac{365 * 364 * \dots (365 - (n-1))}{365^n}$$

El problema de los cumpleaños. Visualización de resultados usando R

```
calcular_proba_mismo_cumple <- function(m){
    1 - prod((365:(365 - m + 1)/365))
}

m <- seq(10, 90, 10)
proba_mismo_cumple <- sapply(m, calcular_proba_mismo_cumple)
round(proba_mismo_cumple, 3)

## [1] 0.117 0.411 0.706 0.891 0.970 0.994 0.999 1.000 1.000</pre>
```

Tabla: cantidad de alumnos y probabilidad

```
cbind(m,proba_mismo_cumple)
```

```
##
          m proba_mismo_cumple
    [1,] 10
                     0.1169482
##
##
    [2,1] 20
                     0.4114384
   [3,] 30
                     0.7063162
##
##
   [4.] 40
                     0.8912318
   [5.] 50
                     0.9703736
##
   [6.] 60
                     0.9941227
##
##
   [7,] 70
                     0.9991596
                     0.9999143
##
   [8,] 80
    [9,] 90
##
                     0.9999938
```

Gráfico: probabilidad vs cantidad de alumnos

