Geometry¹ First Year, Computer science

Assoc. Prof. Cornel-Sebastian PINTEA

"Babeş-Bolyai" University
Faculty of Mathematics and Computer Sciences
Cluj-Napoca, Romania

Lecture 9, 07.05.2014

Lecture 9

Assoc. Prof. Cornel-Sebastian PINTEA

Conics

The Parab

Quadrics

he ellipsoid

Hyperboloids of One Sheet

¹These notes are not in a final form. They are continuously being improved

Content

Lecture 9

Assoc. Prof. Cornel-Sebastian PINTEA

Conics

The Parabi

Quadric

The ellipsoid

Hyperboloids of One Sheet

Conics
The Parabola

Quadrics

The ellipsoid Hyperboloids of One Sheet Hyperboloids of Two Sheets

Definiția 1.1

The parabola is a plane curve defined to be the geometric locus of the points in the plane, whose distance to a fixed line d is equal to its distance to a fixed point F.

The line d is the *director line* and the point F is the *focus*. The distance between the focus and the director line is denoted by p and represents the parameter of the parabola.

Consider a Cartesian system of coordinates xOy, in which $F\left(\frac{p}{2},0\right)$ and $d: x = -\frac{p}{2}$. If M(x,y) is an arbitrary

point of the parabola, then it verifies

$$|MN| = |MF|,$$

where N is the orthogonal projection of M on Oy.

Thus, the coordinates of a point of the parabola verify

$$\sqrt{\left(x + \frac{p}{2}\right)^2 + 0} = \sqrt{\left(x - \frac{p}{2}\right)^2 + y^2} \Leftrightarrow$$

$$\Leftrightarrow \left(x + \frac{p}{2}\right)^2 = \left(x - \frac{p}{2}\right)^2 = y^2 \Leftrightarrow$$

$$\Leftrightarrow x^2 + px + \frac{p^2}{4} = x^2 - px + \frac{p^2}{4} + y^2,$$

and the equation of the parabola is

$$y^2 = 2px. (1.1)$$

Remark 1.2

The equation (1.1) is equivalent to $y = \pm \sqrt{2px}$, so that the parabola is symmetric with respect to the *x*-axis.

Lecture 9

Assoc. Prof. Cornel-Sebastian PINTEA

onics

The Parabola

Quadrics

The ellipsoid

erboloids of Two Sheets

$$f'(x) = \frac{p}{\sqrt{2px_0}}; f''(x) = -\frac{p}{2x\sqrt{2x}}.$$

$$\frac{x \mid 0 \quad \infty}{f'(x) \mid + + + + + \atop f(x) \mid 0 \quad \nearrow \quad \infty}$$

$$f''(x) \mid - - - - - -$$

Finaly, one can easily show that the equation of tangent to the parabola $\mathcal{P}: y^2 = 2px$ at one of its point $M_0(x_0, y_0)$ is $T_{M_0}(\mathcal{P}): yy_0 = p(x + x_0)$.

Assoc. Prof. Cornel-Sebastian PINTEA

Conics
The Parabola

Juadrics

The *ellipsoid* is the quadric surface given by the equation

$$\mathcal{E}: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0, \quad a, b, c \in \mathbb{R}_+^*.$$
 (2.1)

- ▶ The coordinate planes are all planes of symmetry of \mathcal{E} since, for an arbitrary point $M(x,y,z) \in \mathcal{E}$, its symmetric points with respect to these planes, $M_1(-x,y,z)$, $M_2(x,-y,z)$ and $M_3(x,y,-z)$ belong to \mathcal{E} ; therefore, the coordinate axes are axes of symmetry for \mathcal{E} and the origin O is the center of symmetry of the ellipsoid (2.1);
- ► The traces in the coordinates planes are ellipses of equations

$$\begin{cases} \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0 \\ x = 0 \end{cases}, \begin{cases} \frac{x^2}{a^2} + \frac{z^2}{c^2} - 1 = 0 \\ y = 0 \end{cases}, \begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \\ z = 0. \end{cases}$$

Assoc. Prof. Cornel-Sebastian PINTEA

Conics

Quadrica

The ellipsoid

setting
$$z = \lambda$$
 in (2.1). Then, a section is of equations
$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{\lambda^2}{c^2} \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{\lambda^2}{c^2} \end{cases}$$

• If $|\lambda| < c$, the section is an ellipse

$$\begin{cases} \frac{x^2}{\left(a\sqrt{1-\frac{\lambda^2}{c^2}}\right)^2} + \frac{y^2}{\left(b\sqrt{1-\frac{\lambda^2}{c^2}}\right)^2} = 1 \\ z = \lambda \end{cases}$$

- ▶ If $|\lambda| = c$, the intersection is reduced to one (tangency) point $(0, 0, \lambda)$;
- ▶ If $|\lambda| > c$, the plane $z = \lambda$ does not intersect the ellipsoid \mathcal{E} .

The sections with planes parallel to xOz or yOz are obtained in a similar way.

Lecture 9

Assoc. Prof. Cornel-Sebastian PINTEA

Conics

The Parabo

Juadrics

The ellipsoid

Lecture 9

Assoc. Prof. Cornel-Sebastian PINTEA

Conics

The Parabo

Quadrics

The ellipsoid

Hyperboloids of Two Sheets

The surface of equation

$$\mathcal{H}_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0, \qquad a, b, c \in \mathbb{R}_+^*, \qquad (2.2)$$

is called hyperboloid of one sheet.

- The coordinate planes are planes of symmetry for \mathcal{H}_1 ; hence, the coordinate axes are axes of symmetry and the origin O is the center of symmetry of \mathcal{H}_1 :
- ► The intersections with the coordinates planes are, respectively, of equations

$$\left\{ \begin{array}{l} \frac{y^2}{b^2} - \frac{z^2}{c^2} - 1 = 0 \\ x = 0 \\ \text{a hyperbola} \end{array} \right. , \left\{ \begin{array}{l} \frac{x^2}{a^2} - \frac{z^2}{c^2} - 1 = 0 \\ y = 0 \\ \text{a hyperbola} \end{array} \right. , \left\{ \begin{array}{l} \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \\ z = 0 \\ \text{an ellipse} \end{array} \right. ,$$

Assoc Prof Cornel-Sebastian **PINTEA**

Hyperboloids of One Sheet

$$\left\{\begin{array}{l} \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 - \frac{\lambda^2}{a^2} \\ x = \lambda \\ \text{hyperbolas} \end{array}\right.; \left\{\begin{array}{l} \frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{\lambda^2}{b^2} \\ y = \lambda \\ \text{hyperbolas} \end{array}\right.;$$

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 + \frac{\lambda^2}{c^2} \\ z = \lambda \\ \text{ellipses} \end{cases}$$

Remark: The surface \mathcal{H}_1 contains two families of lines, as

$$\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1 - \frac{y^2}{b^2} \Leftrightarrow \left(\frac{x}{a} + \frac{z}{c}\right) \left(\frac{x}{a} - \frac{z}{c}\right) = \left(1 + \frac{y}{b}\right) \left(1 - \frac{y}{b}\right).$$

The equations of the two families of lines are:

Conics

The Parabola

zuauncs

Hyperboloids of One Sheet

Hyperboloids of One Sheet

$$d_{\lambda}: \begin{cases} \lambda\left(\frac{x}{a} + \frac{z}{c}\right) = 1 + \frac{y}{b} \\ \frac{x}{a} - \frac{z}{c} = \lambda\left(1 - \frac{y}{b}\right) \end{cases}, \ \lambda \in \mathbb{R},$$
$$d': \begin{cases} \mu\left(\frac{x}{a} + \frac{z}{c}\right) = 1 - \frac{y}{b} \\ \frac{y}{a} - \frac{y}{c} = \frac{y}{b} \end{cases}$$

$$d'_{\mu}: \left\{ \begin{array}{l} \mu\left(\frac{x}{a} + \frac{z}{c}\right) = 1 - \frac{y}{b} \\ \frac{x}{a} - \frac{z}{c} = \mu\left(1 + \frac{y}{b}\right) \end{array} \right., \ \mu \in \mathbb{R}.$$

Through any point on \mathcal{H}_1 pass two lines, one line from each family.

Lecture 9

Assoc. Prof. Cornel-Sebastian PINTEA

Conics

The Parabola

Quadrios

The ellipsoid

Hiperboloidul cu o pânză H_1

The *hyperboloid of two sheets* is the surface of equation

$$\mathcal{H}_2: \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} + 1 = 0, \qquad a, b, c \in \mathbb{R}_+^*.$$
 (2.3)

- ► The coordinate planes are planes of symmetry for H₁, the coordinate axes are axes of symmetry and the origin O is the center of symmetry of H₁;
- ► The intersections with the coordinates planes are, respectively,

$$\left\{ \begin{array}{l} \frac{y^2}{b^2} - \frac{z^2}{c^2} + 1 = 0 \\ x = 0 \\ \text{a hyperbola;} \end{array} \right., \left\{ \begin{array}{l} \frac{x^2}{a^2} - \frac{z^2}{c^2} + 1 = 0 \\ y = 0 \\ \text{a hyperbola} \end{array} \right., \left\{ \begin{array}{l} \frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0 \\ z = 0 \\ \text{the empty set} \end{array} \right.;$$

Hyperboloids of One Sheet Hyperboloids of Two Sheets

The intersections with planes parallel to the coordinate planes are

$$\left\{\begin{array}{l} \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 - \frac{\lambda^2}{a^2} \\ x = \lambda \\ \text{hyperbolas} \end{array}\right., \quad \left\{\begin{array}{l} \frac{x^2}{a^2} - \frac{z^2}{c^2} = -1 - \frac{\lambda^2}{b^2} \\ y = \lambda \\ \text{hyperbolas} \end{array}\right.$$

and
$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = -1 + \frac{\lambda^2}{c^2} \\ z = \lambda \end{cases}.$$

- If $|\lambda| > c$, the section is an ellipse;
- ▶ If $|\lambda| = c$, the intersection reduces to a point $(0, 0, \lambda)$;
- If $|\lambda| < c$, one obtains the empty set.

Conics

The Parabola

Quadrics

The ellipsoid

Hyperboloids of Two Sheets

hiperboloidul cu două pânze H_2

hiperboloizii $H_1,\ H_2$ și conul asimptot comun

[Pi] Pintea, C. Geometrie. Elemente de geometrie analitică. Elemente de geometrie diferenţială a curbelor şi suprafeţelor, Presa Universitară Clujeană, 2001.

[ROGV] Radó, F., Orban, B., Groze, V., Vasiu, A., Culegere de Probleme de Geometrie, Lit. Univ. "Babes-Bolyai", Clui-Napoca, 1979.

Lecture 9

Assoc. Prof. Cornel-Sebastian PINTEA

Conics

THE FAIADOID

(uadrics