

SOLVING MAX CUT VIA GROVER

Jibran Rashid

Implementing the Diffusion Operator

$$H^{\otimes n} \left(1 - 2 \left(0^n \right) < 0^n \right) H^{\otimes n} \qquad |q_1\rangle - H - X$$

$$Z_{0}|x\rangle = \begin{cases} -(x) & \text{if } x=0^{n} \\ (x) & \text{o}/\omega \end{cases}$$

$$|q_0\rangle$$
 H X H

$$|q_1\rangle$$
 H X H

$$|q_2
angle H$$
 X H

$$|q_3\rangle$$
 H X Z X H

A pair G = (V, E) where $V = \{v_1, \dots, v_n\}$ are the vertices of E contains unordered pairs of vertices, i.e., edges. $E = \{(v_i, v_j) \mid v_i, v_j \in V\}$

A pair G = (V, E) where $V = \{v_1, ..., v_n\}$ are the vertices of E contains unordered pairs of vertices, i.e., edges. $E = \{(v_i, v_j) \mid v_i, v_j \in V\}$

A partition of the vertices into two non-empty sets S & R = V-S

A pair G = (V, E) where $V = \{v_1, \dots, v_n\}$ are the vertices & Econtains unordered pairs of vertices, i.e., edges. E= { (vi, vj) | vi, vj ∈ V}

 $S = \{0,13, R = \{2,3\}, \text{ size of cut} = 3\}$

A partition of the vertices into two non-empty sets S&R=V-S

Size of a Cut Number of edges b/w SER.

A pair G = (V, E) where $V = \{v_1, \dots, v_n\}$ are the vertices & Econtains unordered pairs of vertices, i.e., edges. E= { (vi, vj) | vi, vj ∈ V}

S= [0,13, R= {2,33, size of cut= 3

A partition of the vertices into two non-empty sets S&R=V-S

Size of a Cut Number of edges b/w S&R.

Max-Cut - Find partitions that maximize the number of edges across SER.

size of cut=4

Decision Problem

Given G, does there exist a cut of size atleast k.

___ Decision vs. Optimization - Logarithmic overhead

- Problem is known to be NP-Complete. Search. 2º possible partitions/colorings.

Generic Quantum speedup via Grover to get

 $O(\sqrt{2}^n)$.

Note: Min-Cut & P via maxflow algorithm

How do we construct the oracle?

Representing Vertices

Special Case: Bipartite Graphs

V can be partitioned/colored into two disjoint sets S&R, such that no edge exist between vertices in S& no edge exists b/w vertices in R.

Example

Not bipartite

Bipartite graphs admit two coloring. (One color for each set)

So, max-cut solution is just total # of edges.

(Since all edges are cross-connecting)

Edge Checking

Does each end of an edge have vertices with different colors?

Answer to Answer to whether both vertices have different color	

Oracle Construction

Oracle Construction

Oracle Construction

Net result is flip of sign for qubits representing correct colorings.

This can be used as an oracle for Grover!

Checking a Graph is Bipartite

Our Quantum Algorithm: O(V2n)

Best Classical Algorithm: O(n2)

Oracle Construction:

- 1. Edge checking for each edge
- 2. Sum the outputs of edge checking
- 3. Check whether sum > k & store result
- 4. Apply Z gate on result

Oracle Construction:

- 1. Edge checking for each edge
- 2. Sum the outputs of edge checking
- 3. Check whether sum > k & store result
- 4. Apply Z gate on result

In-place Addition: Given 3 bits, how many are set to 1.

Oracle Construction:

- 1. Edge checking for each edge
- 2. Sum the outputs of edge checking
- 3. Check whether sum > k & store result
- 4. Apply Z gate on result

In-place Addition: Given 3 bits, how many are set to 1.

Oracle Construction:

- 1. Edge checking for each edge
- 2. Sum the outputs of edge checking
- 3. Check whether sum > k & store result
- 4. Apply Z gate on result

In-place Addition: Given 3 bits, how many are set to 1.

Number-Checking

Number-Checking

(3 bits)

Number-Checking

(3 bits)

Note: Each case will require a separate Grover search!

At most lg (# of edges)

What is Your Favourite Super Power?

MANIPULATE PROBABILITY!!!