UVOD U ALGORITME

Uvod u programski jezik Julia - čas 01

Cilj lekcije

- Cilj lekcije je da studenti savladaju osnovne elemente programskog okruženja i jezika Julia.
- Očekuje se da student nakon savladavanja lekcije može uspešno da rukuje matricama i vektorima, u smislu njihovog generisanja, spajanja, pristupa elementima, korišćenja osnovnih ugrađenih funkcija, itd.

Glavna i sporedna dijagonala matrice

• Glavnu dijagonalu neke matrice A veličine nxn sa elementima $a_{i,j}$, $i \in \{1...n\}$, $j \in \{1...n\}$ čine elementi $a_{i,i}$, $i \in \{1...n\}$. Sporednu dijagonalu čine elementi $a_{i,n-i+1}$, $i \in \{1...n\}$.

Jedinična matrica

• I jedinična matrica je matrica koja na glavnoj dijagonali ima sve jedinice, a ostali elementi su jednaki nuli.

Primer jedinične matrice 3x3 :

1	0	0
0	1	0
0	0	1

Inverzna matrica

• Inverzna matrica kvadratne matrice A je matrica A-1 za koju važi da je:

$$AA^{-1} = A^{-1}A = I$$

 Pronalaženje inverzne matrice je važan problem u matematici i postoji više numeričkih algoritama za njegovo rešavanje.

Množenje matrica

- Množenje matrica je različita operacija od množenja odgovarajućih elemenata matrice.
- Primer množenja matrica dimenzija 2x2:

$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} 1 * 2 + 2 * 5 & 1 * 2 + 2 * 1 \\ 0 * 2 + 3 * 5 & 0 * 2 + 3 * 1 \end{bmatrix} = \begin{bmatrix} 12 & 4 \\ 15 & 3 \end{bmatrix} \neq \begin{bmatrix} 1 * 2 & 2 * 2 \\ 0 * 5 & 3 * 1 \end{bmatrix}$$

• Kod množenja matrica ne važi osobina komutativnosti:

Deljenje matrica

• Deljenje matrica se vrši na sledeći način: A / B = A * B-1

Sistem linearnih algebarskih jednačina i matrice

• Rešavanje sistem linearnih algebarskih jednačina (SLAJ) se svodi na problem rešavanja matrične jednačine:

$$Ax = b$$

• Iz toga sledi da je vektor rešenja:

$$x = A^{-1}b$$

Camel notation

 Kamel notacija (Camel notation) je praksa u pisanju složenih reči gde svaka sledeća reč počinje sa velikim slovom, dok je početno slovo malo, na primer: prviPodatak, novaGodina, prviMaj, noviSad, noviSadSpens, itd.

Case sensitivity

• Za programski jezik kažemo da je case-sensitive ukoliko razlikuje mala i velika slova kod imenovanja promenljivih (npr. Niz i niz su 2 različite promenljive).

Julia

- Julija je programski jezik opšte namene
- Veoma je popularan u oblastima:
- numeričke analize, scientific computing, u inženjerstvu, mašinskom učenju, računarskim naukama, statistici.
- Veoma je sličan jezicima: MATLAB, R, Python, Octava, a po brzini izvršavanja poredi se sa C/C++

Osobine:

- Veoma dobre performanse
- Sadrži dinamičke tipove i omogućava jednostavan interaktivni rad
- Podržava multiple dispatch
- Jezik je visokog nivoa i lako se uči: radi sa vektorima, matricama,
- Sadrži proširenu standardnu biblioteku i brojne pakete
- Besplatan i open source softver

Julia - Instalacija

- Moguće je preuzeti putem sledećeg linka: https://julialang.org/downloads/
- U slučaju da koristite Linux OS, za verziju 1.2.0
 - odaberite: Generic Linux Binaries for x86 64-bit (ili 32-bit)
 - Nakon preuzimanja raspakujte arhivu, u terminalu to možete učiniti komandom: tar -xvzf naziv_arhive.tar.gz
 - Premestite raspakovan direktorijum u /opt/ direktorijum: sudo mv naziv_foldera /opt/
 - Nakon ovoga potrebno je dodati Juliu na putanju kako bi bila dostupna iz svakog foldera, jedan od načina je da se u okviru .bashrc datoteke(ukoliko ne postoji napraviti je komandom touch .bashrc u okviru home direktorijuma) na kraj dodaju sledeće linije: export JULIA=/opt/julia-1.2.0 i export PATH=\$PATH:\$JULIA/bin , nakon ovoga u terminalu pozvati source ~/.bashrc kako bi se promene primenile i na postojeću sesiju
- Analogan postupak je i za novije verzije

Julia - Pokretanje

- Nakon instalacije Juliu je moguće pokrenuti tako što se klinke na ikonu Julia
 - pod Linux-om u terminalu ukucati julia
- Podržan je interaktivni rad gde se koristi REPL (Read-Eval-Print Loop). Izraz koji se ukuca se odmah izvršava i prikazuje se rezultat.
- Julia pamti sve prethodno izračunate vrednosti u svom okruženju!!!
- Direktorijum u kom smo bili prilikom pozivanja julia komande iz terminala predstavlja trenutni radni direktorijum
- Radni direktorijum je moguće promeniti naredbom cd(path), na primer:
 - cd("c://UvodUAlgoritme")
- Prelazak u režim pomoći (help) vrši se tasterom ? a zatim se otkuca traženi pojam

Julia - Operator dodele

- Za dodelu vrednosti nekoj promenljivoj koristi se operator '='. Npr. ako želimo da dodelimo vrednost 1 promenljivoj z, u komandni prompt pišemo naredbu: z = 1.
 Ako je promenljiva z imala vrednost pre dodele, ta vrednost se briše.
- Primetiti da je "=" dodela vrednosti gde se vrednost izračunate desne strane (tj. iskaza) dodeljuje promenljivoj navedenoj sa leve strane znaka "=". Pri ovome nije navedeno kog tipa treba da bude promenljiva, nego je na osnovu tipa rezultata izračunavanja iskaza određen i tip promenljive.
- Nije potrebno deklarisati promenljive pre nego što im se prvi put dodeli vrednost!!!

Julia - Aritmetički operatori

Izraz	Ime	Opis
+x	Unarni plus	Operacija identiteta
-x	Unarni minus	Preslikave vrednosti u njihove aditivne inverzne vrednosti
x + y	binary plus	Sabiranje. Ako su oba operanda matrice, dimenzije matrica moraju biti iste.
x - y	binary minus	Oduzimanje. Ako su oba operanda matrice, dimenzije matrica moraju biti iste.

Julia - Aritmetički operatori

Izraz	Ime	Opis
x * y	množenje	Množenje matrica. Broj kolona od matrice x mora biti jednak broju vrsta od matrice y.
x / y	deljenje	Desno deljenje, ekvivalentno izrazu x*inv(y)
x ÷ y	Celobrojno deljenje	x / y, zaokruženo na cele brojeve
x \ y	Obrnuto levo deljenje	Levo deljenje, ekvivalentno izrazu inv(x)*y
x ^ y	Stepenovanje	Računa x na stepen y

Julia - Operatori poređenja

Izraz	Opis
==	True ako je x jednako y
!=, ≠	True ako je x različito od y
<	True ako je x manje od y
<=, ≤	True ako je x manje ili jednako y
>	True ako je x veće od y
>=, ≥	True ako je x veće ili jednako y

Julia - Logički operatori

Izraz	Opis
!х	Logičko NE. Negacija. Rezultat je true ako je element false i obratno
x && y	Logičko I. Rezultat je true samo ako su oba elementa true
x y	Logičko ILI. Rezultat je true ako je barem jedan od elemenata true

Julia - Operator tačke

- Za svaku binarnu operaciju postoji njoj korespodentna operacija sa operatorom tačke.
- Kada se ispred binarnog operatora navede oprator tačke, npr .+ to označava da se operacija vrši nad pojedinačnim elementima (elementwise). Tako, na primer, operacija stepenovanja vektora nema smisla [1, 2, 3]^3, ali operacija stepenovanja svakog od elemenata vektora ima: [1, 2, 3] .^ 3 daje za rezultat [1, 8, 27]
- Primer: Ako su date matrice A = [1 2; 3 4] i B = [1 1; 1 1], tada je:

$$A*B = [3\ 3;\ 7\ 7]$$

$$A.*B = [1\ 2;\ 3\ 4]$$

Julia - Primeri ugrađenih funkcija

sin(X), cos(X), tan(X)	Vrednost sinusa (kosinusa, tangensa) svakog elementa matrice (vektora) u radijanima.
sqrt(X)	Koren svakog elementa matrice (vektora). Ako element ima negativnu vrednost, vraća kompleksan broj.
abs(X)	Intenzitet kompleksnog broja
exp(X)	Izračunava x e svakog elementa iz matrice (vektora) X
log(X), log10(X)	Prirodni logaritam i logaritam sa osnovom 10 od svakog elementa matrice (vektora) X.
rem(X,Y)	Ostatak pri deljenju X/Y, izračunat preko izraza x-y.*fix(x./y)
round(X)	Vraća integer najbliži elementu X. Ako je X matrica, vraća matricu integera najbližih elementima u X.
floor(X) ceil(X)	Vraća najveći (najmanji) integer koji nije veći (manji) od X. Ako je X matrica, vraća matricu najvećih (najmanjih) integera koji nisu veći (manji) od elemenata u matrici X.
factorial(X)	Vraća faktorial prirodnog broja X. X! = 1*2*3**X

Julia - Primeri ugrađenih funkcija

 U slučaju matrica, da bi neka od prethodno navedenih funkcija bila primenjena na svaki od elemanata matrice neophodno iza naziva funkcije staviti operator tačke, npr: sin.([1 2; 3 4; 5 6]) što daje sledeći rezultat:

sin.([1 2; 3 4; 5 6]) =

0.841471	0.909297
0.14112	-0.756802
-0.958924	-0.279415

Julia - Predefinisane konstante

- Predefinisane konstante se nalaze u paketu: Base.MathConstants
- Neophodno ih je uključuti pre upotrebe naredbom: using Base.MathConstants Ili navođenjem punog imena: Base.MathConstants.pi , Base.MathConstants.e, itd.
- **Primer 1.1:** Napisati u Juli-i sledeće izraze:

a)
$$\frac{\log_{10} 100}{\log_{10} 10}$$

$$b) \left| \frac{1 + \cos \frac{\pi}{4}}{1.2} \right|$$

Julia - Primer

• **Primer 1.1:** Napisati u Juli-i sledeće izraze:

a)
$$\frac{log_{10}100}{log_{10}10}$$

b)
$$\left| \frac{1 + \cos \frac{\pi}{4}}{1.2} \right|$$

- Rešenje:
 - log10(100)/log10(10)
 - floor((1+cos(Base.MathConstants.pi/4))/1.2)
 # julia 0.2 floor((1+cos(pi/4))/1.2), bez naziva paketa

Julia - Zadatak

- Zadatak 1.1: Napisati u Juli-i sledeće izraze:
 - $\sqrt{3^2 + 4^2}$
 - $\bullet \qquad \left[\frac{\sin(\frac{\pi}{2} 5)}{e^5} \right]$
 - $|(100-2^7)*5!|$
 - Poslednja cifra broja $\left[\tan \frac{3*\pi}{8}\right]$
 - Zapremina lopte poluprešnika 5. Formula: $V = \frac{4}{3}r^3\pi$

Julia - Tipovi podataka

- Julia pripada grupi dinamičkih sistema tipiziranja gde se ništa ne zna o tipovima dok program ne počne sa radom (runtime), ali poseduje i mogućnost da se eksplicitno navede da su određene vrednosti određenog tipa
- Statičko tipiziranje zahteva da je svaki tip koji figuriše u nekom izrazu poznat pre izvršavanja programa (compile time)
- Vrednosti imaju tipove, ne promenljive, promenljiva je samo naziv za vrednost
- Eksplicitno zadavanja tipa je za sada moguće samo unutar funkcija, nije moguće nad globalnim promenljivima

Julia - Tipovi podataka - Skalar

- Najčešći skalarni tipovi su:
 - Int64
 - Float64
 - Char (npr. x = 'a')
 - String (npr. x="abc")
 - Bool
- Tip podatka se može proveriti upotrebom funkcije *typeof(naziv_promenljive)*

Julia - Tipovi podataka - Stringovi

- Nad stringovima je moguće primeniti različite operacije, kao što su split, replace, join, strip, itd.
- Konkatencija (spajanje) stringova je moguće na sledeće načine:
 - Upotrebom operatora * : "abc" * "def" daje za rezultat: "abcdef"
 - Upotrebom funkcije string: string("abc", "def") daje za rezultat "abcdef"
 - Upotrebom operatora \$ ispred naziva promenljive: str = "abc"; println("tekst: \$str");
- Upotreba prvog načina neće automatski pretvoriti vrednosti drugih tipova u tip string, za pretvaranje vrednosti bilo kog tipa u string može se koristiti funkcija string()

Julia - Tipovi podataka - Opsezi

- Opseg vrednosti može se pisati u obliku A:K:B i predstavlja opseg brojeva u intervalu
 [A..B] sa korakom K.
- Kada je K = 1, može se izostaviti pa se piše A:K
- Primeri:
 - 1:100, opseg brojeva od 1 do 100
 - 1:2:100, opseg svih neparnih brojeva od 1 do 100
 - 2:2:100, opseg svih parnih brojeva od 2 do 100
- Opseg 1:5 NIJE isto sto i niz brojeva [1 2 3 4 5]
- Da bi se od opsega 1:5 dobio niz [1 2 3 4 5], koristi se funkcija collect()
 - collect(1:5) = [1 2 3 4 5]

- Nizovi su n-dimenzionalne, promenljive, strukture podataka
- S obzirom da nizovi mogu da sadrze podatke razlicitih tipova oni su u sustini liste
- Niz mozemo da kreiramo upotrebom operatora uglastih zagrada: a = [] pri čemu ispred uglastih zagrada možemo da navedemo i tip elemenata niza: a = Int64[] (0element Array{Int64,1})

Primer 1.2

- a = [1234]
- $A = [1 \ 3 \ 5; 2 \ 4 \ 5]$
- B = collect(1:3:4) <- pretvaranje u niz

• Primer 1.3

- A = [1 2; 3 4];
- $B = [1 \ 3 \ 5; 2 \ 4 \ 5];$
- $C = [2 \ 4; 5 \ 6; 7 \ 5];$
- AB = [A B]; #AB = [A; B] nije moguce
- AC = [A; C]; #AC = [A C] nije moguce

Pristupanje elementima

- Postoje dva osnovna načina za pristupanje elementima matrice/vektora:
 - 1) Korišćenjem indeksa elementa
 - a) Elementi se indeksiraju sa jednim brojem (indeksom), tada se elementi broje tako što se prvo prolazi kroz prvu kolonu elemenata matrice, pa zatim kroz sve ostale kolone redom,
 - b) Elementi se indeksiraju sa po jednom brojem za svaku dimenziju matrice, tako da jedan broj predstavlja indeks vrste, drugi indeks kolone.
 - 2) Hoću/neću indeksiranje upotrebom matrice logičkih vrednosti iste veličine
 - Operator : se koristi kako bi označio sve indekse niza.
 - Operator end se koristi pri indeksiranju elemenata matrice/vektora i odnosi se na indeks poslednjeg elementa u nizu (matrici, vektoru, vrsti matrice, koloni matrice).

Pristupanje elementima

Primer 1.4

A = [134; 341; 248]

- Indeksiranje jednim brojem: A[4] npr. daje za rezultat skalar 3
- Indeksiranje pomoću dva broja: A[1,3] daje za rezultat skalar 4
- Indeksiranje opsegom vrednosti: A[2:3, 2:3] daje za rezultat matricu [4 1; 4 8]
- Indeksiranjem opseg upotrebom specijalne vrednosti end A[1:end, 1:end] za rezultat vraća opet istu matricu
- Korišćenjem operatora: dobijaju se svi elementi u nekom opsegu i to odgovara opsegu 1:end
 - A[:, 1] svi elementi prve kolone

Pristupanje elementima

Primer 1.5

A = [134; 341; 248]

Indeksiranje pomocu logicke matrice B = [true true false; false false true; true true true] daje za rezultat vektor kolone [1; 2; 3; 4; 1; 8]

Logičku matricu B moguće je krairati od pomoću osobina elemenata matrice A

- A[A.>3] vraća sve elemente matrice A koji su veći od 3
- A[(A.%2).==1] vraća sve neparne elemente matrice A (A.%2 su ostaci pri deljenju elemenata matrice A sa brojem 2, a zatim te ostatke poredimo sa 1)
- A[A.!=4] vraća sve elemente matrice A koji su različiti od 4

Pristupanje elementima

U jednom trenutku, moguće je pristupiti više elemenata niza

Primer 1.6

A = [2 4 6 8 10 12]

- A[[1 2]] = A[[2 1]] menja prvi i drugi element niza A
- A[[1 end]] = A[[end 1]] menja prvi i poslednji element niza A
- A[1:2:end] .= 0 postavlja sve elmente na neparnim pozicijama na vrednost 0
- A[1:2:end] = A[2:2:end] kopira elemente niza A na parnim pozicijama na neparne pozicije u niz A

Funkcije za inicijalizaciju

- Postoji više ugrađenih funkcija koje se mogu iskoristiti u ovu svrhu i to:
 - zeros, kreira matricu sastavljanu od nula
 - ones, kreira matricu sastavljanu od jedinica
 - Matrix{Int64}(I, N, N) kreira jedniničnu matricu dimenzije NxN
 - triu, kreira gornju trougaonu matricu
 - tril, kreira donju trougaonu matricu
 - Diagonal, kreira matricu sa datom dijagonalom
 - Random.rand(n, m) kreira matricu slučajnih brojeva dimenzije nxm. Generisane vrednosti su iz intervala [0, 1)
- Velik broj ovih funkcija ima višestruko značenje i način upotrebe
 - Diagonal([1 3 4; 3 4 1; 2 4 8]) vraća matricu sa dijagonalom 1, 4 i 8
 - Diagonal([1, 2, 3]) kreira matricu sa dijagonalom 1, 2, 3
- Za detalje o upotrebi ovih funkcija konsultovati dokumentaciju
- Za neke od ovih funkcija je neophodno uvrstiti paket LinearAlgebra: using LinearAlgebra

Primer 1.7. Inicijalizacija matrice. Napisati kod koji inicijalizuje matricu B veličine 4x7 koja ima sve elemente jednake 3.

$$A = ones(4,7)*3$$

Primer 1.8 Inicijalizacija matrice i pristupanje elementima matrice. Napisati kod koji inicijalizuje matricu B veličine 4x4 koja na glavnoj dijagonali ima vrednosti 1, 2, 3, 4, a sve ostale vrednosti su joj 8.

Funkcije za obradu matrica

- Postoji više ugrađenih funkcija koje se mogu iskoristiti u ovu svrhu i to:
 - sum(A) računa sumu svih elemenata niza/matrice
 - maximum(A) traži najveći broj u nizu/matrici
 - minimum(A) traži najmanji broj u nizu/matrici
 - findall(A) pronalazi pozicije svih nenula elemenata
 - reverse(A, dims = 1) obrće matricu po vertikali (gore dole)
 - reverse(A, dims = 2) obrće matricu po horizontali (levo desno)
 - size(A) vraća dimenzije matrice A
 - size(A, 1) vraća broj vrsta matrice A
 - size(A, 2) vraća broj kolona matrice A
 - Statistic.mean() –vraća prosek elemenata niza/matrice
- Napomena: kod većine funkcija, dodatkom parametra dims = 1 ili dims = 2, tražena vrednost se traži nad kolonama/vrstama posebno i dobija se niz vrednosti

Primer 1.9. Određivanje maksimalnog elementa matrice u neparnim kolonama. Odrediti maksimalni element matrice A koji se nalazi u neparnim kolonama.

```
maxEl = maximum(A[:, 1:2:end])
```

Primer 1.10 Pozicija minimalnih elemenata matrice po parnim kolonama. Odrediti pozicije svih minimalnih elemenata u parnim kolonama matrice A

```
minEl = minimum(A[:,2:2:end])
pos = findall(A[:,2:2:end].==minEl)
pos
```

Primer 1.11 Rad sa matricama i pristupanje elementima matrice. Napisati kod koji iz zadate matrice A veličine 5x5 uzima elemente koji se nalaze na sporednoj dijagonali i veći su od 7

```
sd = Diagonal(reverse(A, dims=2))
rez = sd[sd.>7]
```

Primer 1.12 Pristupanje elementima matrice. Napisati kod koji generišu matricu A veličine 6x6, koja ima sve jedinice, osim u uglovima gde se nalaze dvojke.

Primer 1.13 Neka je matricom A predstavljen pregled ocena studenata, gde svaka vrsta predstavlja različitog studenta. U prvoj koloni se nalaze brojevi indeksa studenata, a u ostalim ocene studenata po predmetima (svaki predmet jedna kolona).

- 1) Odrediti ukupan broj studenata i broj predmeta.
- 2) Odrediti koliko je studenata ispunilo uslov da upiše višu godinu (uslov je najviše dva nepoložena ispita).
- 3) Odrediti redni broj najbolje ocenjenog predmeta i prosečnu ocenu na tom predmetu (ako ih ima više sa istom prosečnom ocenom uzimamo redne brojeve svih).
- 4) Odrediti redni broj predmeta sa najlošijom prolaznošću (ako ih ima više sa istom prolaznošću najlošijom, uzimamo redne brojeve svih).
- 5) Odrediti indeks studenta sa najboljim prosekom (ako ih ima vise sa istim prosekom najboljim, vratiti u vektoru indekse svih).

Primer matrice A:

123	6	9	5	8	7	9	5
234	8	9	7	8	7	10	10
345	8	7	6	5	8	7	7
456	5	9	6	5	7	8	5
567	6	9	9	7	9	7	8
789	9	7	9	8	7	9	10

Rešenja primera 1.13: A = [123 6 9 5 8 7 9 5; 234 8 9 7 8 7 10 10; 345 8 7 6 5 8 7 7; 456 5 9 6 5 7 8 5; 567 6]9 9 7 9 7 8;789 9 7 9 8 7 9 10] (brojRedova, brojKolona) = size(A) brojStudenata = brojRedova brojPredmeta = brojKolona - 1 matricaOcena = A[:,2:end] matricaNepolozenihIspita = matricaOcena.==5 vektorIspunjenUslov = sum(matricaNepolozenihIspita,dims=2).<=2 #0.2: sum(A, 1)</pre> brojIspunjenUslov = sum(vektorIspunjenUslov) vektorProsecnihOcenaNaPredmetu = Statistics.mean(matricaOcena, dims=1) prosecnaOcenaNajboljeOcenjenogPredmeta = maximum(vektorProsecnihOcenaNaPredmetu) redniBrojNajboljeOcenjenogPredmeta = findall(vektorProsecnihOcenaNaPredmetu .== prosecnaOcenaNajboljeOcenjenogPredmeta) vektorNeprolaznostiPoPredmetu = sum(matricaNepolozenihIspita, dims=1) redniBrojPredmetaSaNajlosijomProlaznoscu = findall(vektorNeprolaznostiPoPredmetu.==maximum(vektorNeprolaznostiPoPredmetu)) vektorProsekaStudenata = Statistics.mean(matricaOcena, dims=2) #0.2: samo mean(A, 2)

```
Rešenja primera 1.13:

najboljiProsek = maximum(vektorProsekaStudenata)

redniBrojeviStudenataSaNajboljomOcenom = findall(vektorProsekaStudenata .== najboljiProsek)
```

indeksiStudenataSaNajboljomOcenom = A[redniBrojeviStudenataSaNajboljomOcenom]

Zadaci za samostalnu vežbu:

- 1. Formirati matricu 4x4 koja iznad glavne dijagonale ima vrednosti 5, ispod nje 2, a na glavnoj dijagonali vrednosti 4.
- 2. Za zadatu matricu A veličine 10x10, čije su vrednosti slučajno generisane, napisati program koji određuje sve elemente iznad sporedne dijagonale (izdvaja u poseban vektor).
- 3. Neka je zadata proizvoljna matrica A. Odrediti redni broj vrste sa maksimalnim zbirom elemenata.
- 4. Neka je zadata proizvoljna matrica B. Napisati kod u Julia-i koji određuje logičku vrednost da li je proizvod svih elemenata u parnim redovima veći od sume svih elemenata u neparnim kolonama.
- 5. Neka je dan sistem od 3 linearne jednačine sa 3 nepoznate. Napisati Ikod koji rešava dati sistem