Apuntes de Álgebra Conmutativa

Paco Mora

24 de septiembre de 2022

Índice general

-	Tema 1	3
	Ejercicios	

CAPÍTULO 1

Tema 1

Ejercicio 1. Ejercicio Propuesto

Sea $A = \mathbb{Z}_n$, con n entero >1 y $\overline{r} \in \mathbb{Z}_n$. Demostrar:

- \overline{r} cancelable $\iff \overline{r}$ invertible $\iff mcd(r, n) = 1$
- ullet \overline{r} nilpotente \iff todos los divisores primos de n dividen a r.

La siguiente proposición generaliza el ejercicio anterior.

Proposición 1.1. Sea A un anillo finito y sea $a \in A$. Entonces a es cancelable sii es invertible.

Demostración

Definimos

$$\lambda_n: A \to A \quad \lambda_n(x) = ax \ \forall x \in A$$

Es inyectiva, $\lambda_n(x) = \lambda_n(y) \iff ax = ay \implies_{a \ cancel.} x = y$

Por lo tanto, y como A es finito, λ_n es biyectiva y $1 \in Im(\lambda_n) \iff \exists b \in A \mid \lambda_n(b) = 1$

Proposición 1.2. A reducido \iff Nil(A) = {elem nilpotentes de A} = {0}

Demostración

 \Longrightarrow

A reducido sii $\forall a \in A, a^2 = 0 \implies a = 0$

 \leftarrow

Por reduc. al absurdo, supongamos $b \in Nil(A) \setminus \{0\} \implies \exists n > 0 \text{ (mínimo) con } b^n = 0 \implies b^{n-1} \neq 0$

Pero entonces, $(b^{n-1})^2 = b^{2n-2} = 0$ y $2n-2 \ge n$ para $n \ge 2$, luego llegamos a una contradicción.

Ejercicio 2. Ejercicio Propuesto

 \mathbb{Z}_n es un anillo reducido \iff n es libre de cuadrados.

Demostración del 1.9(ii)

Demostración

a/b y $a/c \implies \exists b', c' \in D/$ ab' = b, ac' = c... Sean ahora $r, s \in D$ arbitrarios y veamos que a/rb + sc $rb + rc = r(ab) + s(ac') = arb' = asc' = a(rb' + sc') \implies a|rb + sc \implies b/1 = b/(dc)$

Ejercicio 3. Ejercicio propuesto

Sean $G_1, G_2 \subset A$. Demostrar que $(G_1)(G_2) = (G_1 \cdot G_2)$. En particular, el producto de ideales principales es un ideal principal.

Observación

 $IJ \subset I \cap J$ (estricto en general: $A = \mathbb{Z}$, I = (2), J = (4), IJ = (8), $I \cap J = (4)$)

Ejemplo 4. Aplicación del teorema de la correspondencia

Los ideales de \mathbb{Z}_n están en correspondencia con los divisores positivos de n.

$$\mathcal{L}(\mathbb{Z}_n) \to \{d > 0: d/n\}$$

Pero los ideales de \mathbb{Z}_n son isomorfos a $\{I \leq \mathbb{Z} : n\mathbb{Z} \subset I\}$ por el teorema de la correspondencia, entonces:

$$\{I \leq \mathbb{Z} \ : \ n\mathbb{Z} \subset I\} = \{d\mathbb{Z} \leq \mathbb{Z} : \ n\mathbb{Z} \subset d\mathbb{Z}\} = \{d\mathbb{Z} : \ d|n\} \cong \{d > 0 : \ d/n\}$$

Proposición 1.3. Proposición 1.31 extendido (la prueba es la de los apuntes) Sean $A, B_1, ..., B_n$ anillos y sean $g_i : A \to B_i$ homomorf. de anillos.

- 1. $\phi: A \to B_1 \times ... \times B_n$, dado por $\phi(a) = (g_1(a), ..., g_n(a))$ es un homomorf. de anillos con núcleo $\bigcap_{i=1}^n \operatorname{Ker}(g_i)$
- 2. Si los $Ker(g_i)$ son comaximales dos a dos, entonces se verifica:
 - a) $\operatorname{Im}(\phi) = \operatorname{Im}(g_1) \times ... \times \operatorname{Im}(g_n)$
 - b) $\operatorname{Ker}(\phi) = \operatorname{Ker}(g_1) \cdots \operatorname{Ker}(g_n)$
 - c) Se tiene un isom. de anillos: $\frac{A}{\mathrm{Ker}(g_1)\cdots\mathrm{Ker}(g_n)}\cong\mathrm{Im}(g_1)\times...\times\mathrm{Im}(g_n)$

Demostración

- 1. $\operatorname{Ker}(\phi) = \{a \in A : (g_1(a), ..., g_n(a)) = (0, ..., 0)\} = \{a \in A : g_i(a) = 0 \ \forall i\} = \bigcap_{i=1}^n \operatorname{Ker}(g_i)$
- 2. 2.b

Si los $Ker(g_i)$ son comaximales dos a dos entonces:

$$\operatorname{Ker}(\phi) = \operatorname{Ker}(g_1) \cdots \operatorname{Ker}(g_n)$$

Con lo que tenemos 2b).

2.a

Si
$$(b_1,...,b_n) \in \text{Im}(\phi) \implies (b_1,...,b_n) = \phi(a) = (g_1(a),...,g_n(a))$$
 para algún $a \in A \implies b_i \in \text{Im}(g_i) \ \forall i$. Por tanto, $(b_1,...,b_n) \in \text{Im}(g_1) \times ... \times \text{Im}(g_n)$

Si probamos ahora que $(0, ..., x_i, 0, ..., 0) \in \text{Im}(\phi) \ \forall x_i \in \text{Im}(g_i)$, entonces toda n-upla $(x_1, ..., x_n) \in \text{Im}(\phi)$ en $\text{Im}(\phi_1) \times ... \times \text{Im}(\phi_n)$. Como los núcleos son comaximales dos a dos.

$$\operatorname{Ker}(g_i) + (\bigcap_{j \neq i} \operatorname{Ker}(g_j) = A \implies 1 = a + b, \ a \in \operatorname{Ker}(g_i), \ b \in \bigcap_{j \neq i} \operatorname{Ker}(g_j))$$

Como $x_i \in \text{Im}(g_i) \implies \exists u \in A : g_i(u) = x_i$, entonces:

$$x_i = 1 \cdot x_i = (a+b)g_i(u) = g_i((a+b)u)$$

Luego entonces:

$$\phi(bu) = (g_1(bu), ..., g_i(bu), ..., g_n(bu)) = (0, ..., 0, g_i(bu), 0, ..., 0)$$
$$x_i = g_i(u) = g_i(au + bu) = g_i(a)g_i(u) + g_i(bu)$$

Con lo que queda demostrado 2.b.

2.c.

Basta utilizar 2.a), 2.b) y el primer teorema de isomorfía.

Definición 1.0.1. Conjunto inductivo

Un conjunto inductivo es un conjunto ordenado S tal que todo subconjunto totalmente ordenado no vacío tiene una cota superior en S

Lema 1.0.1. Lema de Zorn

Todo conjunto inductivo no vacío tiene un elemento maximal.

Demostración

Fijemos $I \subseteq A$, $I \neq A$ ideal propio.

$$S_I = \{ J \leq A : J \text{ ideal propio } e I \subset J \}$$

 S_I es inductivo $y \neq \emptyset (I \in S_I)$

Sea Y un subconjunto totalmente ordenado $\neq \emptyset$ de S_I . Tomo $m = \bigcup_{J \in T} J$. Porbemos que m es un ideal propio tal que $I \subset m$. Lo que implica que $m \in S_I$.

$$\text{Sean } a,b \in m \implies \left\{ \begin{array}{l} a \in \bigcup_{J \in T} J \iff \exists J \in T: \ a \in J \\ b \in \bigcup_{J \in T} J \iff \exists J' \in T: \ b \in J' \end{array} \right.$$

Si tomamos por ejemplo que $J \subset J'$, entonces $a, b \in J' \implies a - b \in J' \implies a - b \in m$

Notemos entonces que un elemento maximal de S_I es también un ideal maximal.

Ejercicio 5. $I, P \subseteq A$, siendo P primo. Probar que existe un primo minimal sobre I, pongamos q tal que $q \subset P$

Lema 1.0.2. Lema de Krull

A anillo, $I \subseteq A$ y $S \subset A$ un subconjunto multiplicativo. Suponemos que $I \cap S = \emptyset$ y consideremos $\mathcal{L}_{I,S} = \{J \subseteq A: I \subset J, J \cap S = \emptyset\}$. Se verifica:

- 1. $\mathcal{L}_{I,S}$ es un conjunto inductivo.
- 2. Cualquier elemento maximal de $\mathcal{L}_{I,S}$ es un ideal primo.

Demostración

1.

Hemos de probar que si $\mathcal{J} \subset \mathcal{I}_{I,S}$ es un subconjunto totalmente ordenado $\neq \emptyset \implies$ tiene una cota superior en $\mathcal{L}_{I,S}$.

Habría que comprobar que $\widetilde{J} = \bigcup_{J \in \mathcal{J}} J$ es un ideal.

Como tenemos que
$$I\subset\widetilde{J}$$
 y $S\cap\widetilde{J}=S\cap(\bigcup J)=\bigcup_{J\in\mathcal{I}}(S\cap J)=\emptyset$

Entonces \widetilde{J} es una cota superior de \mathcal{J} en $\mathcal{L}_{I,S}$.

2.

Sean $a, b \in A$ tales que $ab \in P$. Por reducc. al absurdo, supongamos que $a \notin P$ y $b \notin P$. Entonces:

$$\left\{ \begin{array}{l}
P \subsetneq P + (a) \\
P \subsetneq P + (b)
\end{array} \right\} \implies P + (a), P + (b) \notin \mathcal{L}_{I,S} \iff \left\{ \begin{array}{l}
(P + (a)) \cap S \neq \emptyset \\
(P + (b)) \cap S \neq \emptyset
\end{array} \right\}$$

Sean entonces $s \in (P + (a)) \cap S$ y $s' \in (P + (b)) \cap S$. Entonces:

$$\left\{ \begin{array}{ll} s=p+ar \\ s'=p'+br' \end{array} \right. \qquad p,p'\in P,\ r,r'\in A$$

$$ss' = (p + ar)(p' + br') = pp' + pbr' + arp' + abrr' \in P \implies P \cap S \neq \emptyset$$

Con lo que llegamos a una contradicción

Proposición 1.4. Sea A un anillo $e I \subseteq A$ un ideal **propio**. Son equivalentes:

- 1. Si $a \in A$ y $a^n \in I$, para algún n > 0, entonces $a \in I$
- 2. Śi $a \in A$ y $a^2 \in I$, entonces $a \in I$
- 3. I es una intersección de ideales primos.
- 4. I es la intersección de los ideales primos minimales sobre I.

Demostración

 $1 \implies 2$.

Directa.

 $2 \implies 1$

Si $n=1 \implies a'=a \in I$, podemos suponer que $a \notin I$ y que existe n>1, $a^n \in I$ tal que $a^{n-1} \notin I$. Entonces tenemos:

$$(a^{n-1})^2 = a^{2n-2} = \underbrace{a^n}_{\in I} \underbrace{a^{n-2}}_{\in A} \implies (a^{n-1})^2 \in I \implies a^{n-1} \in I$$

Con lo que tenemos una contradicción y $a \in I$.

 $4 \implies 3$.

Directa.

 $3 \implies 4$.

Supongamos que $\exists (P_{\lambda})_{\lambda \in \Lambda}$ ideales primos tales que $I = \bigcap_{\lambda \in \Lambda} P_{\lambda}$

$$\begin{split} \forall \lambda \in \Lambda, \ I \subset P_{\lambda} \implies {}^{1}\exists Q_{\lambda} \text{ primo minimal sobre } I \text{ tal que } I \subset Q_{\lambda} \subset P_{\lambda} \implies \\ & \Longrightarrow I \subset \bigcap_{\lambda \in \Lambda} Q_{\lambda} \subset \bigcap_{\lambda \in \Lambda} P_{\lambda} = I \implies I = \cap_{\lambda \in Q_{\lambda}} \\ & I \subset \bigcap_{\substack{Q \in \operatorname{Spec}(A) \\ Q \ minimal \ I}} Q \subset \bigcap_{\lambda \in \Lambda} Q_{\lambda} = I \end{split}$$

Con lo que tenemos 4.

 $3 \implies 2$.

Si
$$a^2 \in I = \bigcap_{\lambda \in \Lambda} P_\lambda \iff a^2 \in P_\lambda, \ \forall \lambda \in \Lambda \implies a \in P_\lambda, \ \forall \lambda \in \Lambda \iff a \in \bigcap_{\lambda \in \Lambda} P_\lambda = I$$

 $1 \implies 4$.

Sean $\mathcal{Q} = \{\text{ideales primos minimales sobre } I\}$. Queremos probar que $I = \bigcap_{Q \in \mathcal{Q}} Q$. La inclusión \subset es directa.

Supongamos ahora que $I \subsetneq \bigcap_{Q \in \mathcal{Q}} Q \implies$ tomamos $x \in \bigcap_{Q \in \mathcal{Q}} Q$ tal que $x \notin I$.

Como $x \notin I \implies x^n \notin I$, $\forall n \geq 0$. Aplicamos ahora el lema de Krull con I y $S = \{x^n : n \geq 0\}$.

Entonces $\mathcal{L}_{I,S} = \{J \leq A : I \subset J, J \cap S = \emptyset\}$ tiene un elemento maximal, pongamos P, que es primo. Entonces:

$$\left\{ \begin{array}{l} S \cap P = \emptyset \\ I \subset P \end{array} \right\} \implies {}^2\exists Q \text{ primo minimal sobre } I: \ I \subset Q' \subset P \implies S \cap Q' = \emptyset$$

Con lo que llegamos a una contradicción porque $x \in Q'$

Definición 1.0.2. Ideal radical

Un ideal que cumpla las condiciones de la anterior proposición se dice que es radical.

Definición 1.0.3. Radical de un ideal

Sea $I \subseteq A$ ideal propio, $\sqrt{I} := \{x \in A : x^n \in I, \text{ para algán } n > 0\}$

¹Por el último ejercicio propuesto.

²Por el ejercicio de nuevo.

Proposición 1.5. Sustituye al Corolario 1.4.6

Dado $I \preceq A$ ideal propio, el subconjunto \sqrt{I} es un ideal radical de A y puede ser descrito por cada una de las siguientes formas equivalentes:

- 1. El menor ideal radical que contiene a I.
- 2. La intersección de todos los ideales radicales que contienen a I.
- 3. La intersección de todos los ideales primos que contienen a I.
- 4. La intersección de todos los ideales primos minimales que contienen a I.

Demostración

Vemos primero que \sqrt{I} es un ideal radical de A.

Hemos de probar:

$$\left\{ \begin{array}{l} a) \ x+y \in \sqrt{I} \ \forall x,y \in \sqrt{I} \\ b) \ ax \in \sqrt{I} \ \forall x \in \sqrt{I}, \ a \in A \end{array} \right\} \ ideal \\ c) \ Si \ a^n \in \sqrt{I}, \ con \ n > 0 \implies a \in \sqrt{I}$$

Vemos en primer lugar b):

$$(ax)^n = a^n x^n \implies (Como \ x^n \in I, \ a^n x^n \in I) \implies (ax)^n \in I \implies ax \in \sqrt{I}$$

a) se demuestra utilizando el binomio de Newton:

$$y, x \in \sqrt{I} \implies \exists m, n > 0: x^m \in I, y^n \in I$$

Sin pérdida de generalidad, supongamos m = n

$$(x+y)^{2n} = \sum_{i=0}^{2n} {2n \choose i} x^i y^{2n-i} \in I \implies x+y \in I$$

Para ver c), sea ahora $a^n \in \sqrt{I} \implies \exists m > 0 : (a^n)^m \in I \implies a^{nm} \in I \implies a \in \sqrt{I}$.

Con lo que \sqrt{I} es un ideal radical.

1.

Sea $J \subseteq A$ ideal radical y propio tal que $I \subset J$. Queremos ver que $\sqrt{I} \subset J$.

Sea
$$x \in \sqrt{I} \implies \exists n > 0: \ x^n \in I \implies x^n \in J \implies {}_{J \ radical} x \in J$$

2.

Es consecuencia inmediata de 1.

3.

Sea
$$\mathcal{V}(I) = \{ P \in \operatorname{Spec}(A) : \ I \subset P \} \implies ?\sqrt{I} = \bigcap_{P \in \mathcal{V}(I)} P.$$

La inclusión \subset es directa con la afirmación 1 y por ser la intersección un ideal radical. Para la otra, sabemos que \sqrt{I} = intersección de los ideales primos minimales sobre \sqrt{I} . Entonces:

$$\sqrt{I} = \bigcap_{\substack{Q \in \operatorname{Spec}(A) \\ O \ minimal/\sqrt{I}}} Q \supseteq \bigcap_{P \in \mathcal{V}(I)} P$$

Luego ya tenemos la igualdad.

4.

Se demuestra aplicando el ejercicio.

Ejemplo 6. Tomamos el caso (I) = 0

$$\sqrt{(0)} = \{x \in A : x^n = 0\} = \{nilpotentes \ de \ A\} =: Nil(A)$$

- 1. Nil(A) es el menor ideal radical de A
- 2. Nil(A) es la intersección de todos los ideales radicales de A.
- 3. Nil(A) es la intersección de todos los ideales primos de A.
- 4. $Nil(A) = \bigcap_{P \in MinSpec(A)} P$

Ejercicios

Ejercicio 2.

$$x, y \in \mathcal{U}(A) \implies xyy^{-1}x^{-1} = 1 \implies xy \in \mathcal{U}(A)$$

$$xy \in \mathcal{U}(A) \implies \exists w \in A: \ xyw = 1 \implies \left\{ \begin{array}{l} x^{-1} = yw \\ y^{-1} = wx \end{array} \right.$$

Ejercicio 3. En este ejercicio hay una errata, está por solucionar

Sabemos que en un anillo finito, las unidades y los elementos cancelables son los mismos. Luego $|\mathcal{U}(\mathbb{Z}_n)| = |\{cancelables\}|$. Además sabemos que $|\{divisores de cero\}| = n - |\mathcal{U}(\mathbb{Z}_n)|$. Además sabemos que:

$$|\mathcal{U}(\mathbb{Z})_n| = \phi(n) = p_1^{\alpha_1 - 1} \cdots p_r^{\alpha_r - 1} (p_1 - 1) \cdots (p_r - 1)$$

Entonces.

$$|\{divisores\ de\ cero\}| = p_1^{\alpha_1 - 1} \cdots p_r^{\alpha_r - 1} (p_1 \cdots p_r - \prod_{i=1}^r (p_i - 1))$$

Vemos entonces el cardinal de $Nil(\mathbb{Z}_n)$:

$$\overline{k} = k + n\mathbb{Z} \in \text{Nil}(\mathbb{Z})_n \iff todos\ los\ p_i\ dividen\ a\ k$$

$$\overline{k} \in \mathrm{Nil}(\mathbb{Z})_n \iff \exists t > 0: \ \overline{k}^t = \overline{0} \ en \ \mathbb{Z}_n \iff \exists t > 0: \ n/k^t \implies todos \ los \ p_i \ dividen \ a \ k$$

Rec'iprocamente:

$$k = p_1^{\beta_1} \cdots p_r^{\beta_r}, \ con \ 0 < \beta_i \le \alpha_i \ \forall i = 1, ..., r$$

$$|\operatorname{Nil}(\mathbb{Z})_n| = \alpha_1 \cdots \alpha_r$$

Ejercicio 4.

$$\mathcal{U}(\mathbb{Z}_{24}) = \{\overline{k} : \operatorname{mcd}(k, n) = 1\} = \{cancelables\} = \{\overline{1}, \overline{5}, \overline{7}, \overline{11}, \overline{13}, \overline{17}, \overline{19}, \overline{23}\}$$
$$\{divisores \ de \ cero\} = \mathbb{Z}_{24} \setminus \mathcal{U}(\mathbb{Z}_{24})$$

Ejercicio 6.

Recordemos primero que $p \in A$ es primo sii (p) es un ideal primo.

 $f: A \to B \ homomorf. \ Si\ a\ satisface\ (P), \ f(a)\ cumple\ (P)$?

Apartado a)

$$Si \ a \in \mathcal{U}(A) \implies \exists a^{-1} \in A: \ a \cdot a^{-1} = 1 \implies f(a)f(a^{-1}) = f(1) = 1 \implies f(a) \in \mathcal{U}(B).$$

Apartado b)

Tomando $\mathbb{Z} \to \frac{\mathbb{Z}[X]}{(2x)}$ homomorfismo inyectivo. El 2 es cancelable en \mathbb{Z} pero no lo es en el anillo destino.

Apartado c)

Sea $a \in A$ divisor de $0 \implies \exists b \in A \setminus \{0\}: ab = 0 \implies f(a)f(b) = 0$

Cuando f es inyectiva: sí, porque $f(b) \neq 0$. En otro caso:

Sean m, n > 1, $mn\mathbb{Z} \subset n\mathbb{Z} \implies tomamos \ un \ homomorfismo \ de \ anillos \ suprayectivo:$

$$\frac{\mathbb{Z}}{mn\mathbb{Z}} \to \mathbb{Z} \frac{\mathbb{Z}}{n\mathbb{Z}}$$

Tomando m, n tales que $\operatorname{mcd}(n,m)=1$ tenemos que \overline{m} es divisor de cero pero su imagen, $[m] \in \mathcal{U}(\mathbb{Z}_n)$

Apartado d)

Si $a \in A$, existe un exponente n > 0 tal que $a^n = 0 \implies f(a)^n = f(a^n) = 0$, entonces f(a) es nilpotente.

Apartado e)

De forma parecida al apartado anterior, vemos que si $e = e^2$ en A, al aplicar f tenemos que $f(e) = f(e)^2 \implies f(e)$ es idempotente.

Apartado f)

Basta tomar la inclusión de \mathbb{Z} en \mathbb{Q} para tener un contraejemplo (no suprayectivo). Para el caso suprayectivo planteamos un ejercicio:

Ejercicio: Sea $\overline{k} = kp^t\mathbb{Z}$ es irreducible en $\mathbb{Z}_{p^t} \iff \overline{k} = \overline{pu}$, siendo $\overline{u} \in \mathcal{U}(\mathbb{Z}_{p^t})$. Más generalmente: Sea A un anillo y $p \in A$ tales que (p) es el único ideal maximal de A- Entonces los elementos irreducibles de A son los de la forma pu, siendo $u \in \mathcal{U}(A)$ (p es el único irreducible de A salvo asociados)

Construimos en base a este ejercicio el homomorfismo suprayectivo formado por la proyección $\mathbb{Z} \to \mathbb{Z}_{p^t}$. Dado $q \neq p$ primo, su imagen es $\overline{q} \in \mathcal{U}(\mathbb{Z}_{p^t}) \implies \overline{q}$ no es irreducible.

Apartado g)

Ejercicio: Sea A un dominio $y p \in A$. Si p es primo entonces es irreducible. Cuando A es un DIP, se verifica también el recíproco.

Como los contraejemplos del apartado anterior parten de \mathbb{Z} y los irreducibles y los primos son iguales en \mathbb{Z} , podemos usar los mismos contraejemplos en este apartado.

Vamos a resolver ahora el primero de los ejercicios planteados:

Ejercicio: Sea $\overline{k} = kp^t\mathbb{Z}$ es irreducible en $\mathbb{Z}_{p^t} \iff \overline{k} = \overline{pu}$, siendo $\overline{u} \in \mathcal{U}(\mathbb{Z}_{p^t})$. Más generalmente: Sea A un anillo $y p \in A$ tales que (p) es el único ideal maximal de A- Entonces los elementos irreducibles de A son los de la forma pu, siendo $u \in \mathcal{U}(A)$ (p es el único irreducible de A salvo asociados)

Dado p = ab, veamos si p es irreducible. Supongamos que $a \notin \mathcal{U}(A) \implies (a) \subseteq A \implies (a) \subset (p)$ porque (p) es el único ideal maximal. $\implies a = pa'$, siendo $a' \in A$

$$\implies p = ab = pa'b \iff p(1 - a'b) = 0 \begin{cases} 1 - a'b \in \mathcal{U}(A) \text{ no, porque implicar\'a} \\ una \text{ contradicci\'on } (p = 0) \\ 1 - a'b \notin \mathcal{U}(A) \end{cases}$$

$$1 - a'b \notin \mathcal{U}(A) \implies (1 - a'b) \subset (p)$$
, pero no puede darse $(a'b) \subset (p)$, porque tendríamos
$$1 = 1 - a'b + a'b \in (p) \implies a'b \in \mathcal{U}(A) \implies b \in \mathcal{U}(A)$$

 $Sea \ q \in A \ irreducible \implies q \not\in \mathcal{U}(A) \iff (q) \not\subseteq A \implies (q) \subset (p) \implies q = pu, \ para \ alg\'unu \in A$

Vemos ahora los recíprocos.

Apartado a)

La inclusión de \mathbb{Z} a \mathbb{Q} y tomando a = f(a) = 3 tenemos un contraejemplo no suprayectivo, para el sobre, tomamos la proyecctión de \mathbb{Z} en \mathbb{Z}_3 .

$Apartados \ b,c)$

Basta aplicar el contrarrecíproco de f(a) cancelable \implies a cancelable y f(a) divisor de 0 \implies a divisor de 0

Apartado d)

f(a) es nilpotente $\iff f(a)$ tal que $\exists n > 0$ tal que $f(a)^n = 0 \implies f(a^n) = 0 \iff a^n \in \text{Ker}(f)$.

Si f es inyectiva, sí se cumple la cadena de sii.

Si f es sobre, tomamos el contraejemplo de la proyección de \mathbb{Z} en \mathbb{Z}_n con un producto de primos

Apartado e)

De forma parecida al apartado anterior:

$$f(a) = f(a^2) \iff a - a^2 \in \text{Ker}(f)$$

Si f es inyectiva, sí se cumple.

En el caso sobre, tomamos la proyección de \mathbb{Z} en \mathbb{Z}_6 , entonces 7 no es idempotente y $f(7) = \overline{1}$ no lo es.

Apartado f)

Para el caso sobre, tomamos la aplicación $\mathbb{Z} \to \mathbb{Z}_{p^t}$ y el elemento $(p^t + 1)p \leadsto \overline{p}$

La idea para obtener el caso inyectivo es tomar un elemento como $2\cdot 3$ no irreducible, y llevar uno de sus factores a una unidad. Tomamos la aplicación:

$$\mathbb{Z} \hookrightarrow \mathbb{Z} \left[\frac{1}{2} \right] = \left\{ q \in \mathbb{Q} : \ q = \frac{m}{2^r}, \ m \in \mathbb{Z}, \ r \ge 0 \right\}$$

Dejamos como ejercicio ver que 3 es irreducible en $\mathbb{Z}[1/2]$