Positionsbestimmung drahtloser mobiler eingebetteter Systeme mittels Time Difference of Arrival

präsentiert von

Oliver Koepp

Zur Erlangung des akademisches Grades

Bachelor of Engineering

Gliederung

- Einleitung
- Grundlagen
- Implementierung
 - Zeitsynchronisation
 - Modultest
 - Software ← welche schritte macht die software zur positionsbestimmung
- Auswertung
 - Unit tests ← Vielleicht mit in die Implementierung Software nehmen

Einleitung

Problem:

"Eine Positionsbestimmung im Zentimeterbereich durchzuführen"

Lösung:

- Kommunikation zwischen Master und Slave
 - 2,4GHz Funk
 - Hörbaren Schall
- Zeitsynchronisation
 - Precision Time Protocol (PTP)
- Positionsgleichungen lösen
 - Time Difference of Arrival

Grundlagen – Master / Slave

Software:

- RIOT The friendly Operating System for the Internet of Things
 - > Echtzeitfähig
 - Fokus Drahtlose Sensornetzwerke
 - Multithreading
 - Ist mit SAMR21 kompatibel

Hardware:

- Atmel SAM R21 Xplained Pro Board
 - > RIOT OS
 - Integriertes 2,4GHz Funkmodul
 - Integrierbarkeit in vorhandene Systeme

Grundlagen – Master / Slave

- SparkFun Sound Detector
 - Detektion von Hörbarem Schall
 - > TTL Ausgang
 - > Veränderbare Empfindlichkeit
- Lautsprecher
 - ➤ Lauter PIEP Ton → andere Töne werden überlagert

Grundlagen – Master / Slave

Grundlagen – Zeitsynchronisation

Problem:

"Keine gemeinsame Zeitbasis vorhanden"

Lösung:

- Precision Time Protocol (PTP)
- Hierarchielose kleine Sensornetzwerke spezialisiert
- Hohe Genauigkeit

Grundlagen – Zeitsynchronisation

- Laufzeitverzögerung
- Bestimmung des PINGs

- Synchronisation der 7eit
- Request / Response –
 Nachrichtenaustausch

<u> Դես</u>ս

Grundlagen – Time Difference of Arrival

- Verfahren zur Laufzeitmessung
- Laufzeitunterschied von zwei Zeitstempel
- Art des Signals ist irrelevant

Grundlagen – Mathematik

- Schall breitet sich Kreisförmig in 2D aus
- Schnittpunkt von drei Kreisen → eindeutige Punktidentifizierung
- Schnittpunkt von drei Kreisgleichungen

I:
$$(x - x_a)^2 + (y - y_a)^2 = r_a^2$$

II: $(x - x_b)^2 + (y - y_b)^2 = r_b^2$
III: $(x - x_c)^2 + (y - y_c)^2 = r_c^2$

Grundlagen – Mathematik

- Unterscheidung
 - Schnittpunkt im Punkt → Keine Schwankungen
 - Schnittpunkt im Bereich → Schwankungen

Implementierung – Zeitsynchronisation

- ???
- In der BA nachschauen

 Genauigkeit bis 5ms ohne Hardwareunterstützung

Implementierung – Modultest

- Fehlereingrenzung durch unabhängige Module
- Abweichungen besser zu erkennen

Implementierung – Modultest

16.01.2020 Oliver Koepp Positionsbestimmung drahtloser mobiler eingebetteter Systeme mittels Time Difference of Arrival

htm

Implementierung – Software

Auswertung

Zeitsynchronisation

- Hardwareunterstützung
- Genauigkeit

Modul A

Schallpegelerkennung

Modul C

Ton-Impulsgeber

Modul D

Genauigkeit

Auswertung

Unit Test

- Gleichungen für die Positionsbestimmung
 - > Abstand zweier Punkte
 - Quadratische Gleichung

Praktische Durchführung

- Zeitsynchronisation
 - Precision Time Protocol
- Theoretische Positionsbestimmung
 - Schnittpunkt ohne Schwankung
 - Schnittpunkt mit Schwankung
- Praktische Positionsbestimmung
 - Zeitsynchronisation
 - Messung
 - Gleichung lösen

University of Applied Sciences