em.hmm

Lili Mou Imou@ualberta.ca Iili-mou.github.io

Unsupervised Learning

- Suppose an HMM model is given
- Training

$$\mathcal{D} = \left\{ \left(x_1^{(i)}, x_2^{(1)}, \dots, x_{T^{(i)}}^{(i)} \right) \right\}_{i=1}^n$$

- Inference
 - Given an unseen sample x_1, x_2, \dots, x_T
 - Predict their states s_1, s_2, \dots, s_T

General Criteria for Latent Variables

- Training
 - Marginalization
 - ▶ Something of
 - ► E of something
 - All sorts of variants
- Inference (depending on applications)
 - Target prediction: Marginalization
 - Latent variable prediction
 - Max a posteriori
 - Sampling

Gaussian Mixture Model

• Gaussian mixture model: $z^{(n)} \rightarrow y^{(n)}$

$$z^{(n)} \in \{1, \dots, K\}, y^{(n)} \in \mathbb{R}^d$$

- Generative process:
 - Generate $z^{(n)} \sim \text{cat}(\pi_1, \pi_2, \dots, \pi_k)$
 - Given $z^{(n)} = k$, generate $\mathbf{y}^{(n)} \sim \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$

Bishop CM. *Pattern Recognition and Machine Learning*. Springer, 2006.

Expectation Maximization

• Gaussian mixture model: $z^{(n)} \rightarrow y^{(n)}$

$$z^{(n)} \in \{1, \dots, K\}, y^{(n)} \in \mathbb{R}^d$$

- Expectation maximization
 - E-step: Evaluate posterior of each latent category

$$w_k^{(i)} = rac{\pi_k \mathcal{N}(\mathbf{y}^{(n)}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_k \mathcal{N}(\mathbf{y}^{(n)}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$

- M-step: Estimate model parameter

$$\mu_k^{(new)} = \frac{1}{N_k} \sum_{n=1}^{N} w_k^{(i)} y^{(n)}$$

$$\Sigma_k^{(new)} = \frac{1}{N_k} \sum_{n=1}^{N} w_k^{(i)} (y^{(n)} - \mu_k) (y^{(n)} - \mu_k)^{\mathsf{T}}$$

$$\pi_k^{new} = \frac{N_k}{N}$$
 where $N_k = \sum_{i=1}^N w_k^{(i)}$

EM as MLE

Likelihood involves marginalization

$$\log p(\mathbf{Y}; \boldsymbol{\theta}) = \log \left(\sum_{z} p(\mathbf{Y}, z; \boldsymbol{\theta}) \right)$$

$$= \sum_{z} q(z | \mathbf{Y}) \log \frac{p(\mathbf{Y}, z; \boldsymbol{\theta})}{q(z | \mathbf{Y})} + \sum_{z} q(z | \mathbf{Y}) \log \frac{q(z | \mathbf{Y})}{p(z | \mathbf{y}; \boldsymbol{\theta})}$$

$$L(q, \boldsymbol{\theta}) \qquad \text{KL}(q(\mathbf{Z} | \mathbf{Y}) || p(\mathbf{Z} | \mathbf{Y}))$$
Lower bound

For those only/over-familiar with VAE:

KL here is different from KL within the lower bound

EM as MLE

Likelihood involves marginalization

$$\log p(Y; \boldsymbol{\theta}) = \log \left(\sum_{z} p(Y, z; \boldsymbol{\theta}) \right)$$

$$= \sum_{z} q(z|Y) \log \frac{p(Y, z; \boldsymbol{\theta})}{q(z|Y)} + \sum_{z} q(z|Y) \log \frac{q(z|Y)}{p(z|y; \boldsymbol{\theta})}$$

$$L(q, \boldsymbol{\theta}) \qquad \text{KL}(q(Z|Y)||p(Z|Y))$$

- **E-step**: Fix θ , maximize $L(q, \theta)$ wrt q(Z|Y)
 - Equivalent to minimize KL($\cdot || \cdot$), as $\log p(Y | \theta)$ is constant
- M-step: Fix $q(\cdot | \cdot)$, maximize $L(q, \theta)$ wrt θ

EM as MLE

$$\mathcal{E}(\boldsymbol{\theta}_{t+1}) = \sum_{i} \log p(\mathbf{y}_i; \boldsymbol{\theta}_{t+1})$$

$$= \sum_{i} \log \left(\sum_{z} p(\mathbf{y}_{i}, z; \boldsymbol{\theta}_{t+1}) \right)$$

$$\geq \sum_{i} \sum_{z} q_{t}(z | \mathbf{y}_{i}) \log \frac{p(\mathbf{y}_{i}, z; \boldsymbol{\theta}_{t+1})}{q_{t}(z | \mathbf{y}_{i})}$$

$$\geq \sum_{i} \sum_{z} q_{t}(z | \mathbf{y}_{i}) \log \frac{p(\mathbf{y}_{i}, z; \boldsymbol{\theta}_{t})}{q_{t}(z | \mathbf{y}_{i})}$$

[Lower bound holds for any q_t]

M-step: $\theta_{t+1} = \arg \max\{\cdot\}$

E-step: make lower bound tight

EM as MLE

$$\ell(\boldsymbol{\theta}_{t+1}) = \sum_{i} \log p(\boldsymbol{y}_i; \boldsymbol{\theta}_{t+1})$$

$$= \sum_{i} \log \left(\sum_{z} p(\mathbf{y}_{i}, z; \boldsymbol{\theta}_{t+1}) \right)$$

$$\geq \sum_{i} \sum_{z} q_{t}(z | \mathbf{y}_{i}) \log \frac{p(\mathbf{y}_{i}, z; \boldsymbol{\theta}_{t+1})}{q_{t}(z | \mathbf{y}_{i})}$$

$$\geq \sum_{i} \sum_{z} q_{t}(z | \mathbf{y}_{i}) \log \frac{p(\mathbf{y}_{i}, z; \boldsymbol{\theta}_{t})}{q_{t}(z | \mathbf{y}_{i})}$$

[Lower bound holds for any q_t]

M-step:
$$\theta_{t+1} = \arg \max\{\cdot\}$$

E-step: make lower bound tight

Hidden Markov Models

- Observed tokens: y_1, y_2, \dots, y_T
- Latent states: z_1, \dots, z_T
- Generative procedure
 - Choose z_1 (omitted here)
 - For every step t:
 - Pick $z_t \sim p(z_t | z_{t-1})$
 - Emit $y_t \sim p(y_t | z_t)$
 - Suppose both parametrized by probability tables
- Example
 - y_1, y_2, \dots, y_T : a sequence of words
 - z_1, z_2, \dots, z_T : POS tags

$\begin{array}{cccc} z_1 & & z_2 & & z_3 \\ \hline x_1 & & x_2 & & x_3 \end{array}$

Hidden Markov Models

- E-step (expectation for sufficient statistics)
 - Expectation of a state, that is, $\gamma_t(i) \stackrel{\Delta}{=} \mathbb{E}[z_t = i \mid \cdot]$
 - Expectation of two consecutive states, that is, $\xi_t(i,j) \stackrel{\Delta}{=} \mathbb{E}[z_t = i, z_{t+1} = j \mid \cdot]$
 - Computed by

$$\gamma_{t}(i) = \frac{\alpha_{t}(i)\beta_{t}(i)}{p(Y)} \qquad \xi_{t}(i,j) = \frac{\alpha_{t}(i)p_{\theta}(x_{t} | z_{n} = i)p_{\theta}(z_{t} = j | z_{t-1} = i)\beta_{t}(j)}{p(Y)}$$

where
$$\alpha_t(i) \stackrel{\Delta}{=} p(\mathbf{y}_{1:t}, z_t = i) \quad \beta_t(i) \stackrel{\Delta}{=} p(\mathbf{y}_{t+1:T} | z_t = i)$$

are given by dynamic programming

Dynamic Programming

$$\alpha_t(i) \stackrel{\Delta}{=} p(\mathbf{y}_{1:t}, z_t)$$

Initialization

$$\alpha_1(i) \stackrel{\Delta}{=} p(x_1, z_1 = i) = \pi_i \cdot p(x_1 | z_1 = i)$$

Recursion

$$\alpha_t(i) = \sum_j \alpha_{t-1}(i)p(s_t = i | s_{t-1} = j)p(x_t | s_t = j)$$

Termination

When
$$t = T$$

$\begin{array}{cccc} z_1 & z_2 & z_3 \\ \hline x_1 & x_2 & x_3 \end{array}$

Dynamic Programming

$$\beta_t(i) \stackrel{\Delta}{=} p(\mathbf{y}_{t+1:T} | z_t)$$

Initialization

$$\beta_T(i) = 1$$

Recursion

$$\beta_t(i) = \sum_j \beta_{t+1}(j) p(s_{t+1} = j \mid s_t = i) p(x_{t+1} \mid s_{t+1} = j)$$

Termination

When
$$t = 1$$

z_1 z_2 z_3 z_3 z_3 z_3 z_3

Hidden Markov Models

- E-step (expectation for sufficient statistics)
 - Expectation of a state, that is, $\gamma_t(i) \stackrel{\Delta}{=} \mathbb{E}[z_t = i \mid \cdot]$
 - Expectation of two consecutive states, that is, $\xi_t(i,j) \stackrel{\Delta}{=} \mathbb{E}[z_t = i, z_{t+1} = j \mid \cdot]$
- M-step (MLE by soft counting)

$$p(z_t = j \mid z_{t-1} = i) = \frac{\sum_{t=1}^{T-1} \xi_t(i, j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

$$p(x | z_t = j) = \frac{\sum_{t=1}^{T} \gamma_t(j) 1 \{X_t = x\}}{\sum_{t=1}^{T} \gamma_t(j)}$$

Other Treatments

$$\log p(Y|\boldsymbol{\theta}) = \log \left(\sum_{z} p(Y, z|\boldsymbol{\theta}) \right)$$

- Exact marginalization (enumeration as in GMM, DP as in HMM)
- Choose the single best z
 - E.g., *K*-means clustering
- Choose top-N latent variables
 - Beam search
- Sampling
- Back propagation
 - If Y continuous, be careful of the degenerated distribution
 - If p(Y|z) is by CPT, be aware of the constraint $\sum_{y} p(y|z) = 1$

Assignment

- Consider a Bayesian network: $X \to Z \to Y$
- All variables are discrete, taking N_x, N_y, N_z values, resp.
- Observation: $\{(x_i, y_i)\}_{i=1}^M$
- Goal:
 - Figure out parameters as in conditional probability tables
 - Give an EM algorithm to estimate the parameters. Note that z is unobserved.

Suggested Reading

- CS229
 - Note: http://cs229.stanford.edu/notes/cs229-notes8.pdf
 - Video: https://www.youtube.com/watch?v=ZZGTuAkF-
 Hw&list=PLEBC422EC5973B4D8&index=12
- Chap 9, Bishop, Pattern Recognition and Machine Learning.
- Rabiner, L.R., 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), pp.257-286.

Thank you!

Q&A

