Programming Languages and Compilers (CS 421)

Sasa Misailovic 4110 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2024/CS421C

Based on slides by Elsa Gunter, which are based in part on previous slides by Mattox Beckman and updated by Vikram Adve and Gul Agha

Two concepts we learned

Immutable state

- Variables don't vary
- Environment maps variable names to values
- Closures for functions

Functions are first-class values in programs

- We can treat them as code (apply)
- We can treat them as data: pass as function arguments, store in variables, or return as results

+ We've seen OCAML has an unintuitive syntax

More Literature on Ocaml

- Book from Harvard Course:
 - https://book.cs51.io//pdfs/abstraction.pdf
 - See first 11 chapters, and later chapters on semantics/evaluation

- Book from Cornell Course:
 - https://cs3110.github.io/textbook/cover.html

9/3/2024

Recall: Functions

```
# let plus two n = n + 2;;
val plus two : int -> int = <fun>
# plus two 17;;
-: int = 19
# let plus_two = fun n -> n + 2;;
val plus two : int -> int = <fun>
# plus two 14;;
-: int = 16
```

First definition syntactic sugar for second

Recall: Using a nameless function

```
# (fun x -> x * 3) 5;; (* An application *)
-: int = 15
# ((fun y -> y +. 2.0), (fun z -> z * 3));;
  (* As data *)
- : (float -> float) * (int -> int) = (<fun>, <fun>)
```

Note: in fun v -> expression(v), the scope of variable is only the body expression(v)

Recall: let plus_x = fun x => y + x

let
$$x = 12$$
 $x \rightarrow 12$

let plus_ $x = \text{fun } y \rightarrow y + x$
 $y \rightarrow y + x \leftarrow x \rightarrow 12$
 $y \rightarrow y + x \leftarrow x \rightarrow 12$

let $x = 7$
 $y \rightarrow y + x \leftarrow x \rightarrow 12$
 $y \rightarrow y + x \leftarrow x \rightarrow 12$
 $y \rightarrow y + x \leftarrow x \rightarrow 12$

Recall: Functions with more than one argument

```
# let add_three x y z = x + y + z;;
   val add_three : int -> int -> int -> int = <fun>
Remember, it is same as:
let add three =
    fun x -> (fun y -> (fun z -> x + y + z));;
Closure:
  < x -> fun y -> (fun z -> x + y + z), {
                                              Binding
 Free variable
                  Return value
```

Functions as arguments

```
# let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
# let g = thrice plus two;;
val g : int -> int = <fun>
# g 4;;
-: int = 10
# thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"
```

Tuples

Pairs:
(1,2)
-: int * int = (1, 2)

And beyond:

```
\# (1,2,3,4,5)
-: int * int * int * int = (1, 2, 3, 4, 5)
```

Tuples as Values

```
// \rho_0 = {c \rightarrow 4, a \rightarrow 1, b \rightarrow 5} # let s = (5,"hi",3.2);; val s : int * string * float = (5, "hi", 3.2) // \rho = {s \rightarrow (5, "hi", 3.2), c \rightarrow 4, a \rightarrow 1, b \rightarrow 5}
```

The size of tuples is fixed!

Access Tuple Elements: Pattern Matching

```
// \rho = \{s \to (5, "hi", 3.2), a \to 1, b \to 5, c \to 4\}
val a : int = 5
val b : string = "hi"
val c: float = 3.2
# let (a, _, _) = s;;
val a : int = 5
# let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)
val x : int * float = (2, 9.3)
```

Nested Tuples

```
# (*Tuples can be nested *)
# let d = ((1,4,62),("bye",15),73.95);;
val d : (int * int * int) * (string * int) * float =
  ((1, 4, 62), ("bye", 15), 73.95)
# (*Patterns can be nested *)
# let (p, (st,_), _) = d;;
                 (* matches all, binds nothing *)
val p : int * int * int = (1, 4, 62)
val st : string = "bye"
```

First Neuron in OCAML

```
let weights = (1.1, 0.1, 0.5);
let relu x =
    if x > 0.0 then x else 0.0;
let neuron w (x1, x2, x3) = # weigths and inputs
    let (w1, w2, w3) = w in
    let mult = w1 *. x1 +. w2 *. x2 +. w3 *. x3 in
    relu mult ;;
```

neuron weights (1.0, 1.1, 2.0);; # returns: 2.21

neuron weights (-1.0, 1.1, -2.0);; # returns: 0.0

Match Expressions

```
# let triple_to_pair triple =
match triple
with (0, x, y) -> (x, y)
| (x, 0, y) -> (x, y)
| (x, y, _) -> (x, y);;
```

- •Each clause: pattern on the left, expression on the right
- Each x&y have scope of only this clause
- Use the first matching clause

```
val triple_to_pair :
    int * int * int -> int * int = <fun>
```

If-then-else as a Match

Special case of pattern match:

```
# if test then expr1 else expr2
```

Same as

```
# match test with
    true -> expr1
    | false -> expr2
```

Functions on tuples

```
# let plus_pair (n,m) = n + m;;
val plus pair : int * int -> int = <fun>
# plus pair (3,4);;
-: int = 7
# let twice x = (x,x);;
val twice : 'a -> 'a * 'a = <fun>
# twice 3;;
-: int * int = (3, 3)
# twice "hi";;
- : string * string = ("hi", "hi")
```

Curried vs Uncurried

Recall

```
# let add_three u v w = u + v + w;;
val add_three : int -> int -> int -> int = <fun>
    let add_three = fun x -> (fun y -> (fun z -> x + y +z ))
```

How does it differ from

```
# let add_triple (u,v,w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>
```

- add_three is curried;
- add_triple is uncurried

Curried vs Uncurried

```
# add three 6 3 2;;
- : int = 11
# add_triple (6,3,2);;
- : int = 11
# add triple 5 4;;
Characters 0-10: add triple 5 4;;
                             \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge
This function is applied to too many arguments,
maybe you forgot a `;'
# fun x -> add_triple (5,4,x);;
: int -> int = <fun>
```

Save the Environment!

A closure is a pair of an environment and an association of a pattern (e.g. (v1,...,vn) giving the input variables) with an expression (the function body), written:

$$<$$
 (v1,...,vn) \rightarrow exp, $\rho >$

 Where p is the environment in effect when the function is defined (for a simple function)

Closure for plus_pair

- Assume p_{plus_pair} was the environment just before plus_pair defined
- Closure for fun (n,m) -> n + m:

$$<$$
(n,m) \rightarrow n + m, $\rho_{plus_pair}>$

Environment just after plus_pair defined:

Next: Evaluation Rules

Precisely state how program's code creates new environment

- Declarations
- Expressions

```
Eval ( expr , start_env) -> new_env
```

- Code is a transformer of environments
 - There are no in-place modifications!

9/2/2024

Evaluating declarations

- Evaluation uses an environment p
- To evaluate a (simple) declaration let x = e
 - Evaluate expression e in ρ to value v
 - Update ρ with $x \rightarrow v$: $\{x \rightarrow v\} + \rho$

Evaluating declarations

- Evaluation uses an environment p
- To evaluate a (simple) declaration let x = e
 - Evaluate expression e in ρ to value v
 - Update ρ with x v: $\{x \rightarrow v\} + \rho$

Definition of $\rho_1 + \rho_2$

• **Update:** ρ_1 + ρ_2 has all the bindings in ρ_1 and all those in ρ_2 that are not rebound in ρ_1

$$\{x \to 2, y \to 3, a \to \text{``hi''}\} + \{y \to 100, b \to 6\}$$

= $\{x \to 2, y \to 3, a \to \text{``hi''}, b \to 6\}$

- Evaluation uses an environment p
- A constant evaluates to itself, including primitive operators like + and =

- Evaluation uses an environment p
- A constant evaluates to itself, including primitive operators like + and =
- To evaluate a variable, look it up in ρ : $\rho(v)$

- Evaluation uses an environment p
- A constant evaluates to itself, including primitive operators like + and =
- To evaluate a variable, look it up in ρ : $\rho(v)$
- To evaluate a tuple (e₁,...,e_n),
 - Evaluate each e_i to v_i, right to left for Ocaml
 - Then make value $(v_1,...,v_n)$

 To evaluate uses of +, -, etc, eval args, (right to left for Ocaml)¹, then do operation

¹ For discussion why see Xaver Leroy's MS thesis https://xavierleroy.org/publi/ZINC.pdf (Sec 2.2.3)

- To evaluate uses of +, -, etc, eval args, (right to left for Ocaml), then do operation
- Function expression evaluates to its closure

- To evaluate uses of +, -, etc, eval args, (right to left for Ocaml), then do operation
- Function expression evaluates to its closure fun x -> e1

- To evaluate a local dec: let x = e1 in e2
 - Eval e1 to v, then eval e2 using $\{x \rightarrow v\} + \rho$

- To evaluate uses of +, -, etc, eval args (right to left for Ocaml), then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: et x = e1 in e2
 - Eval e1 to v, then eval e2 using $\{x \rightarrow v\} + \rho$
- To evaluate a conditional expression: if b then e1 else e2
 - Evaluate b to a value v
 - If v is True, evaluate e1
 - If v is False, evaluate e2

Evaluation of Application with Closures

- Given application expression f argexpr
- In Ocaml, evaluate argexpr to value v
- In environment ρ , evaluate left term f to closure, $c = \langle (x_1, ..., x_n) \rightarrow bodyexpr, \rho' \rangle$
 - (x₁,...,x_n) variables in (first) argument
 - v must have form $(v_1,...,v_n)$
- Update the environment ρ' to

$$\rho'' = \{x_1 \rightarrow v_1, ..., x_n \rightarrow v_n\} + \rho'$$

Evaluate body bodyexpr in environment ρ"

Application of functions

```
let f x = x + 1;
f 3
Declaration is same as:
       let f = fun x \rightarrow f x
1. Assume starting environment: { }
Evaluation of decl: f \rightarrow \langle x \rightarrow x + 1, \{\} \rangle
Evaluation of application (f 3):
  x + 1, \{x->3\} ====> 4
```

1. Assume starting environment: $\{x->5\}$ Evaluation of decl: f-> < x -> x + 1, $\{x->5\}>$ Evaluation of application (f 3): x + 1, $\{x->3\} ===> 4$ [recall how we computed ρ'']

Application of functions

```
let add_three x y z = x + y + z;;
# add three 5 4 3;;
-: int -> int = <fun>
Why?
 (fun x -> (fun y -> (fun z -> x + y + z))) 5 4 3
Evaluating the environments ():
  (\langle x - \rangle (fun y - \rangle (fun z - \rangle x + y + z)), { }>) 5 4 3
  (\langle y - \rangle (fun z - \rangle x + y + z), \{x->5\}) > ) 4 3
  (\langle z - \rangle x + y + z, \{x->5, y->4\}) 3
  (x + y + z, \{x ->5, y->4, z->3\}) Finally, a simple
                                              expression
                                                             33
```

Eager vs Lazy Evaluation

- Given application expression f argexpr
- In Ocaml, evaluate argexpr to value v
- In environment ρ , evaluate left term to closure, $c = \langle (x_1, ..., x_n) \rightarrow b, \rho' \rangle$
- **...**
- Evaluate body bodyexpr in environment ρ"

This is **eager evaluation**!

In contrast, **lazy evaluation** would evaluate argexpr only when (or if!) its result is needed in bodyexpr!

OCAML has eager evaluation, Haskell has lazy.

Eager vs Lazy Evaluation

```
Sample: 1: let x = 1;
2: fun f test val =
3:    if test then val + 1
4:    else 0
```

Eager

f true (x+1)

- Evaluates x+1 immediately, calls f true 2
- calls f but delays evaluating the expression until line 3;

Lazy

f false (x+1)

Same

Doesn't evaluate x+1 at all (because test = false, goes to else)

f false (expensive x)

- Computes unnecessary expensive result
- Does not execute the result as it is not needed

Extra Material for Extra Credit

- Evaluation uses an environment p
 - Eval (e , ρ)
- A constant evaluates to itself, including primitive operators like + and =
 - Eval (c , ρ) => Val c
- To evaluate a variable \vee , look it up in ρ :
 - Eval $(v, \rho) => Val(\rho(v))$

- To evaluate a tuple $(e_1,...,e_n)$,
 - Evaluate each e_i to v_i, right to left for Ocaml
 - Then make value (v₁,...,v_n)
 - Eval($(e_1,...,e_n),\rho$)=> Eval($(e_1,...,Eval (e_n, \rho)), \rho$)
 - Eval((e₁,...,e_i, Val v_{i+1},..., Val v_n), ρ) => Eval((e₁,...,Eval(e_i, ρ), Val v_{i+1},..., Val v_n), ρ)
 - Eval((Val $v_1,...,Val v_n$), ρ) => Val $(v_1,...,v_n)$

- To evaluate uses of +, -, etc, eval args, then do operation () (+, -, *, +.,)
 - Eval($e_1 \odot e_2$, ρ) => Eval($e_1 \odot Eval(e_2, \rho)$, ρ))
 - Eval(e_1 Val e_2 , ρ)=>Eval(Eval(e_1 , ρ) Val v_2 , ρ))
 - Eval(Val $v_1 \odot Val v_2$) => Val $(v_1 \odot v_2)$
- Function expression evaluates to its closure
 - Eval (fun x -> e, ρ) => Val < x -> e, ρ >

- To evaluate a local dec: let x = e1 in e2
 - Eval e1 to v, then eval e2 using $\{x \rightarrow v\} + \rho$
 - Eval(let $x = e_1$ in e_2 , ρ) => Eval(let $x = \text{Eval}(e_1, \rho)$ in e_2 , ρ)
 - Eval(let $x = Val \ v \text{ in } e_2, \ \rho) =>$ Eval($e_2, \{x \rightarrow v\} + \rho$)

- To evaluate a conditional expression: if b then e₁ else e₂
 - Evaluate b to a value v
 - If v is True, evaluate e₁
 - If v is False, evaluate e₂
 - Eval(if b then e_1 else e_2 , ρ) => Eval(if Eval(b, ρ) then e_1 else e_2 , ρ)
 - Eval(if Val true then e_1 else e_2 , ρ) =>Eval(e_1 , ρ)
 - Eval(if Val false then e_1 else e_2 , ρ) =>Eval(e_2 , ρ)

Evaluation of Application with Closures

- Given application expression f e
- In Ocaml, evaluate e to value v
- In environment ρ , evaluate left term to closure, $c = \langle (x_1,...,x_n) \rightarrow b, \rho' \rangle$
 - $(x_1,...,x_n)$ variables in (first) argument
 - v must have form $(v_1,...,v_n)$
- Update the environment p' to

$$\rho'' = \{x_1 \rightarrow v_1, ..., x_n \rightarrow v_n\} + \rho'$$

Evaluate body b in environment p"

Evaluation of Application with Closures

• Eval(f e, ρ) => Eval(f (Eval(e, ρ)), ρ)

■ Eval(f (Val v), ρ) =>Eval((Eval(f, ρ)) (Val v), ρ)

■ Eval((Val <(x₁,...,x_n) → b, ρ' >)(Val (v₁,...,v_n)), ρ)=> Eval(b, {x₁ → v₁,..., x_n → v_n}+ ρ')

Have environment:

```
\rho = \{\text{plus}\_x \rightarrow <\text{y} \rightarrow \text{y} + \text{x}, \rho_{\text{plus}\_x} >, \dots, \\ \text{y} \rightarrow 19, \text{x} \rightarrow 17, \text{z} \rightarrow 3, \dots\} where \rho_{\text{plus}\_x} = \{\text{x} \rightarrow 12, \dots, \text{y} \rightarrow 24, \dots\}
```

- Eval (plus_x z, ρ) =>
- Eval(plus_x (Eval(z, ρ))) => ...

Have environment:

```
\rho = \{\text{plus}\_x \rightarrow <\text{y} \rightarrow \text{y} + \text{x}, \rho_{\text{plus}\_x} >, \dots, \\ \text{y} \rightarrow 19, \text{x} \rightarrow 17, \text{z} \rightarrow 3, \dots\} where \rho_{\text{plus}\_x} = \{\text{x} \rightarrow 12, \dots, \text{y} \rightarrow 24, \dots\}
```

- Eval (plus_x z, ρ) = \nearrow
- Eval(plus_x (Eval(z, ρ)), ρ) =>
- Eval(plus_x (Val 3), ρ) => ...

Have environment:

```
\rho = \{\text{plus}\_x \rightarrow <\text{y} \rightarrow \text{y} + \text{x}, \rho_{\text{plus}\_x} >, \dots, \\ \text{y} \rightarrow 19, \text{x} \rightarrow 17, \text{z} \rightarrow 3, \dots\} where \rho_{\text{plus}\ x} = \{\text{x} \rightarrow 12, \dots, \text{y} \rightarrow 24, \dots\}
```

- Eval (plus_x z, ρ) =>
- Eval (plus_x (Eval(z, ρ)), ρ) =>
- Eval (plus_x (Val 3), ρ) =>
- Eval ((Eval(plus_x, ρ)) (Val 3), ρ) => ...

Have environment:

```
\rho = \{\text{plus}\_x \rightarrow <\text{y} \rightarrow \text{y} + \text{x}, \rho_{\text{plus}\_x} >, \dots, \\ \text{y} \rightarrow 19, \text{x} \rightarrow 17, \text{z} \rightarrow 3, \dots\} where \rho_{\text{plus}\_x} = \{\text{x} \rightarrow 12, \dots, \text{y} \rightarrow 24, \dots\}
\bullet \text{ Eval (plus}\_x \neq \rho) \neq >
 • Eval (plus_x (\mathbb{E}va(z, \rho)), \rho) =>
```

- Eval (plus_x (Va/3), ρ) =>
- Eval ((Eval(plus/x, ρ)) (Val 3), ρ) =>
 Eval ((Val<y \rightarrow y + x, ρ_{plus_x} >)(Val 3), ρ)

Have environment:

```
\rho = \{\text{plus}\_x \to <\text{y} \to \text{y} + \text{x}, \, \rho_{\text{plus}\_x} >, \, \dots, \\ \text{y} \to 19, \, \text{x} \to 17, \, \text{z} \to 3, \, \dots\} \\ \text{where } \rho_{\text{plus}\_x} = \{\text{x} \to 12, \, \dots, \, \text{y} \to 24, \, \dots\} \\ \bullet \text{ Eval ((Val<\text{y} \to \text{y} + \text{x}, \, \rho_{\text{plus}\_x} >)(Val \, 3 \, ), \, \rho)} \\ => \dots
```

Have environment:

```
\rho = \{\text{plus}\_x \to \forall y \to y + x, \rho_{\text{plus}\_x} >, ..., y \to 19, x \to 17, z \to 3, ...\}
\text{where } \rho_{\text{plus}\_x} = \{x \to 12, ..., y \to 24, ...\}
\text{Eval ((Val<y \to y + x, \rho_{\text{plus}\_x} >)(Val 3), \emptyset)}
=>
\text{Eval (y + x, {y \to 3} + \rho_{\text{plus}_x}) => ...}
```

Have environment:

```
\rho = \{\text{plus}\_x \rightarrow <y \rightarrow y + x, \rho_{\text{plus}\_x} >, \dots, y \rightarrow 19, x \rightarrow 17, z \rightarrow 3, \dots\}
   where \rho_{plus\_x} = \{x \rightarrow 12, ..., y \rightarrow 24, ...\}
■ Eval ((Val<y \rightarrow y + x, \rho_{\text{plus x}} >)(Val 3 ), \rho)
■ Eval (y + x, \{y \rightarrow 3\} + \rho_{plus x}) =>
■ Eval(y+Eval(x, \{y \rightarrow 3\} + \rho_{\text{plus x}}),
            \{y \to 3\} + \rho_{\text{plus } x}) => ...
```

Have environment:

```
\rho = \{\text{plus}_x \rightarrow \langle y \rightarrow y + x, \rho_{\text{plus}_x} \rangle, \dots, \}
                    y \to 19, x \to 17, z \to 3, ...
   where \rho_{\text{plus}_{x}} = \{x \to 1^{2}, ..., y \to 2^{4}, ...\}
■ Eval ((Val<y \rightarrow y/+ x/\rho_{plus_x} >)(Val 3 ), \rho)
■ Eval (y + x, \{y \to Z\} + \rho_{plus_x}) =>
■ Eval(y+\text{Eval}(x, \{y \to 3\} + \rho_{plus_x}),
           \{y \rightarrow 3\} \not p_{\text{plus}\_x}) =>
■ Eval(y+Val 12,{y → 3} +\rho_{\text{plus x}}) => ...
```

Have environment:

```
\rho = \{\text{plus}_x \rightarrow \langle y \rightarrow y + x, \rho_{\text{plus}_x} \rangle, \dots, \}
                   y \to 19, x \to 17, z \to 3, ...
   where \rho_{\text{plus } x} = \{x \to 12, ..., y \to 24, ...\}
■ Eval(y+Eval(x, \{y \rightarrow 3\} + \rho_{\text{plus }x}),
          \{y \rightarrow 3\} + \rho_{\text{plus } x}) = >
■ Eval(y+Val 12,{y \rightarrow 3} +\rho_{plus x}) =>
■ Eval(Eval(y, \{y \rightarrow 3\} + \rho_{\text{plus } x}) +
```

8/31/2024 53

Val 12,{ $y \rightarrow 3$ } + $\rho_{\text{plus } x}$) =>...

Have environment:

```
\rho = \{\text{plus}\_x \to \forall y \to y + x, \, \rho_{\text{plus}\_x} >, \, \dots, \\ y \to 19, \, x \to 17, \, z \to 3, \, \dots\}
\text{where } \rho_{\text{plus}\_x} = \{x \to 12, \, \dots, \, y \to 24, \, \dots\}
\text{Eval(Eval(y, \{y \to 3\} + \rho_{\text{plus}\_x}) + \\ \forall \text{al } 12, \{y \to 3\} + \rho_{\text{plus}\_x}) = >
\text{Eval(Val } 3 + \text{Val } 12, \{y \to 3\} + \rho_{\text{plus}\_x}) = > \dots
```

Have environment:

```
\rho = \{\text{plus}_x \rightarrow \langle y \rightarrow y + x, \rho_{\text{plus}_x} \rangle, \dots, \}
                   y \to 19, x \to 17, z \to 3, ...
   where \rho_{\text{plus } x} = \{x \to 12, ..., y \to 24, ...\}
■ Eval(Eval(y, \{y \rightarrow 3\} + \rho_{\text{plus } x}) +
            Val 12,{y \rightarrow 3} +\rho_{\text{plus } x}) =>
■ Eval(Val 3 + Val 12 ,{y \rightarrow 3} +\rho_{\text{plus x}}) =>
\blacksquare Val (3 + 12) = Val 15
```

Assume environment

$$\rho = \{x \rightarrow 3..., \\ plus_pair \rightarrow <(n,m) \rightarrow n + m, \rho_{plus_pair}>\} + \rho_{plus_pair}$$

- Eval (plus_pair (4,x), ρ)=>
- Eval (plus_pair (Eval ((4, x), ρ)), ρ) =>
- Eval (plus_pair (Eval ((4, Eval (x , ρ)), ρ)), ρ) =>
- Eval (plus_pair (Eval ((4, Val 3), ρ)), ρ) =>
- Eval (plus_pair (Eval ((Eval (4, ρ), Val 3), ρ)), ρ) =>
- Eval (plus_pair (Eval ((Val 4, Val 3), ρ)), ρ) =>

Assume environment

```
ρ = {x → 3..., plus_pair → <(n,m) → n+m, ρ<sub>plus_pair</sub>>} + ρ<sub>plus_pair</sub>

■ Eval (plus_pair (Eval ((Val 4, Val 3), ρ)), ρ) =>
```

- Eval (plus_pair (Val (4, 3)), ρ) =>
- Eval (Eval (plus_pair, ρ), Val (4, 3)), ρ) => ...
- Eval ((Val<(n,m) \rightarrow n+m, ρ_{plus_pair} >)(Val(4,3)) , ρ)=>
- Eval (n + m, {n -> 4, m -> 3} + ρ_{plus_pair}) =>
- Eval $(4 + 3, \{n -> 4, m -> 3\} + \rho_{plus pair}) => 7$

Closure question

If we start in an empty environment, and we execute:

```
let f = fun n \rightarrow n + 5;;
(* 0 *)
let pair_map g(n,m) = (g n, g m);;
let f = pair_map f;;
let a = f(4,6);;
```

What is the environment at (* 0 *)?

Answer

let
$$f = fun n -> n + 5;;$$

$$\rho_0 = \{f \to \langle n \to n + 5, \{ \} \rangle \}$$

Closure question

If we start in an empty environment, and we execute:

```
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
(* 1 *)
let f = pair_map f;;
let a = f (4,6);;
What is the environment at (* 1 *)?
```

Answer

```
\rho_0 = \{f \to \langle n \to n + 5, \{ \} \rangle\}
let pair_map g (n,m) = (g n, g m);;
```

```
ho_1 = \{ pair\_map \rightarrow \\ <g \rightarrow fun (n,m) -> (g n, g m), \\ \{f \rightarrow <n \rightarrow n + 5, \{ \} > \} >, \\ f \rightarrow <n \rightarrow n + 5, \{ \} > \}
```

Closure question

If we start in an empty environment, and we execute:

```
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
(* 2 *)
let a = f (4,6);;
What is the environment at (* 2 *)?
```

```
\begin{split} \rho_0 &= \{f \rightarrow < n \rightarrow n + 5, \{ \} > \} \\ \rho_1 &= \{pair\_map \rightarrow < g \rightarrow fun \ (n,m) -> (g \ n, g \ m), \ \rho_0 >, \\ f \rightarrow < n \rightarrow n + 5, \{ \} > \} \\ \text{let } f = pair\_map \ f;; \end{split}
```

```
\begin{array}{l} \rho_0 = \{f \rightarrow < n \rightarrow n + 5, \{ \} > \} \\ \rho_1 = \{pair\_map \rightarrow < g \rightarrow fun \ (n,m) \ -> \ (g \ n, \ g \ m), \ \rho_0 >, \\ f \rightarrow < n \rightarrow n + 5, \{ \} > \} \\ Eval(pair\_map \ f, \ \rho_1) = \end{array}
```

```
\rho_n = \{f \to \langle n \to n + 5, \{ \} \rangle\}
\rho_1 = \{\text{pair\_map} \rightarrow <\text{g}\rightarrow \text{fun (n,m)} -> (\text{g n, g m}), \rho_0>,
         f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle
Eval(pair map f, \rho_1) =>
Eval(pair_map (Eval(f, \rho_1)), \rho_1) =>
Eval(pair_map (Val<n \rightarrow n + 5, { }>), \rho_1) =>
Eval((Eval(pair_map, \rho_1))(Val<n \rightarrow n+5, { }>), \rho_1) =>
Eval((Val (\langle g \rightarrow fun (n,m) - \rangle (g n, g m), \rho_0 \rangle)
         (Val \langle n \rightarrow n + 5, \{ \} \rangle), \rho_1) =>
Eval(fun (n,m)->(g n, g m), \{g\rightarrow < n\rightarrow n + 5, \{ \}> \}+\rho_0)
=>
```

```
\rho_n = \{f \to \langle n \to n + 5, \{ \} \rangle\}
\rho_1 = \{\text{pair\_map} \rightarrow <\text{g}\rightarrow \text{fun (n,m)} -> (\text{g n, g m}), \rho_0>,
           f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle
Eval(pair map f, \rho_1) => ... =>
Eval(fun (n,m)->(g n, g m), \{g \rightarrow < n \rightarrow n + 5, \{ \} > \} + \rho_0)
Eval(fun (n,m)->(g n, g m),
       \{q \rightarrow < n \rightarrow n + 5, \{ \} >, f \rightarrow < n \rightarrow n + 5, \{ \} > \}) = >
Val(<(n,m)\rightarrow(q n, q m),
       \{g \rightarrow < n \rightarrow n + 5, \{ \} >, f \rightarrow < n \rightarrow n + 5, \{ \} > \})
```

Answer

```
\rho_1 = \{ pair\_map \rightarrow
< g \rightarrow fun (n,m) -> (g n, g m), \{f \rightarrow < n \rightarrow n + 5, \{ \} > \} >,
  f \to \langle n \to n + 5, \{ \} \rangle
let f = pair_map f;;
\rho_2 = \{f \rightarrow \langle (n,m) \rightarrow (g n, g m), g m \}
                      \{q \to \langle n \to n + 5, \{ \} \rangle,
                        f \to \langle n \to n + 5, \{ \} \rangle \rangle
            pair map \rightarrow \langle q \rightarrow fun(n,m) - \rangle (q n, q m),
                                        \{f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \rangle
```

(*Remember: the original f is now removed from ρ_2 *)

Closure question

If we start in an empty environment, and we execute:

```
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
(* 3 *)
What is the environment at (* 3 *)?
```

What is the environment at (* 3 *)?

Final Evalution?

```
 \rho_2 = \{f \to <(n,m) \to (g \ n, g \ m), \\ \{g \to < n \to n + 5, \{ \} >, \\ f \to < n \to n + 5, \{ \} > \} >, \\ pair\_map \to < g \to fun (n,m) -> (g \ n, g \ m), \\ \{f \to < n \to n + 5, \{ \} > \} > \}  let a = f (4,6);;
```

```
 \rho_2 = \{f \to <(n,m) \to (g \ n, g \ m), \\ \{g \to < n \to n + 5, \{ \} >, \\ f \to < n \to n + 5, \{ \} > \} >, \\ pair\_map \to < g \to fun (n,m) -> (g \ n, g \ m), \\ \{f \to < n \to n + 5, \{ \} > \} > \}  Eval(f (4,6), \rho_2) =
```

```
\rho_2 = \{f \rightarrow \langle (n,m) \rightarrow (g n, g m), q m \}
                   \{q \to \langle n \to n + 5, \{ \} \rangle,
                    f \to \langle n \to n + 5, \{ \} \rangle \rangle
          pair_map \rightarrow \langle g \rightarrow fun(n,m) - \rangle (g n, g m),
                                  \{f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \rangle
Eval(f (4,6), \rho_2) => Eval(f (Eval((4,6), \rho_2)), \rho_2) =>
Eval(f (Eval((4,Eval(6, \rho_2)), \rho_2)), \rho_2) =>
Eval(f (Eval((4, Val 6), \rho_2)), \rho_2) =>
Eval(f (Eval((Eval(4, \rho_2), Val 6), \rho_2)), \rho_2) =>
Eval(f (Eval((Val 4, Val 6), \rho_2)), \rho_2) =>
```

```
\rho_2 = \{f \rightarrow \langle (n,m) \rightarrow (g n, g m), q n, g m \}
                    \{q \to \langle n \to n + 5, \{ \} \rangle,
                     f \to \langle n \to n + 5, \{ \} \rangle \rangle
          pair_map \rightarrow \langle g \rightarrow fun(n,m) - \rangle (g n, g m),
                                   \{f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \rangle
Eval(f (4,6), \rho_2) => ... =>
Eval(f (Eval((Val 4, Val 6), \rho_2)), \rho_2) =>
Eval(f (Val (4, 6)), \rho_2) =>
Eval(Eval(f, \rho_2) (Val (4, 6)), \rho_2) =>
```

```
\rho_2 = \{f \rightarrow \langle (n,m) \rightarrow (g n, g m), q m \}
                    \{q \to \langle n \to n + 5, \{ \} \rangle,
                     f \to \langle n \to n + 5, \{ \} \rangle \rangle
           pair_map \rightarrow \langle g \rightarrow fun(n,m) - \rangle (g n, g m),
                                    \{f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \rangle
Eval(f (4,6), \rho_2) => ... =>
Eval(Eval(f, \rho_2) (Val (4, 6)), \rho_2) =>
Eval((Val <(n,m)\rightarrow(g n, g m),
                   \{q\rightarrow < n\rightarrow n+5, \{ \}>,
                     f \rightarrow < n \rightarrow n+5, { } > > )(Val(4,6)) )), \rho_2) = >
```

```
\rho_2 = \{f \rightarrow \langle (n,m) \rightarrow (g n, g m), g m \}
                      \{q \to \langle n \to n + 5, \{ \} \rangle,
                        f \to \langle n \to n + 5, \{ \} \rangle \rangle
            pair_map \rightarrow \langle g \rightarrow fun(n,m) - \rangle (g n, g m),
                                        \{f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \rangle
Eval((Val <(n,m)\rightarrow(g n, g m),
                     \{q\rightarrow < n\rightarrow n+5, \{ \}>,
                       f \rightarrow < n \rightarrow n+5, { } > > )(Val(4,6)) )), \rho_2) = >
Eval((g n, g m), \{n \rightarrow 4, m \rightarrow 6, g \rightarrow \langle n \rightarrow n+5, \{ \} \rangle,
                                 f \rightarrow < n \rightarrow n+5, \{ \} > \}) = >
```

```
Let \rho' = \{n \rightarrow 4, m \rightarrow 6, g \rightarrow \langle n \rightarrow n+5, \{ \} \rangle,
                             f \rightarrow \langle n \rightarrow n+5, \{ \} \rangle \}
Eval((g n, g m), \{n \rightarrow 4, m \rightarrow 6, g \rightarrow \langle n \rightarrow n+5, \{ \} \rangle,
                             f \rightarrow < n \rightarrow n+5, \{ \} > \}) =
Eval((g n, g m), \rho') =>
Eval((g n, Eval(g m, \rho')), \rho') =>
Eval((g n, Eval(g (Eval (m, \rho')), \rho')), \rho') =>
Eval((g n, Eval(g (Val 6), \rho')), \rho') =>
Eval((g n, Eval((Eval(g, \rho'))(Val 6), \rho')), \rho') =>
```

8/31/2024 75

```
Let \rho' = \{n \rightarrow 4, m \rightarrow 6, g \rightarrow \langle n \rightarrow n+5, \{ \} \rangle,
                          f \rightarrow \langle n \rightarrow n+5, \{ \} \rangle )
Eval((g n, Eval((Eval(g, \rho'))(Val 6), \rho')), \rho') =>
Eval((g n, Eval((Val<n\ton+5,{ }>)(Val 6), \rho')), \rho') =>
Eval((g n, Eval(n+5, \{n\rightarrow 6\}+\{\ \})), \rho') =
Eval((g n, Eval(n+5, \{n\rightarrow 6\})), \rho') =>
Eval((g n, Eval(n+(Eval(5, \{n\rightarrow 6\})), \{n\rightarrow 6\})), \rho') =>
Eval((g n, Eval(n+(Val 5), \{n\rightarrow 6\})), \rho') =>
Eval((g n, Eval((Eval(n,\{n\rightarrow 6\}))+(Val 5),\{n\rightarrow 6\}), \rho')=>
Eval((g n, Eval((Val 6)+(Val 5),\{n\rightarrow 6\}), \rho')=>
```

```
Let \rho' = \{n \rightarrow 4, m \rightarrow 6, g \rightarrow \langle n \rightarrow n+5, \{ \} \rangle,
                         f \rightarrow \langle n \rightarrow n+5, \{ \} \rangle \}
Eval((g n, Eval((Val 6)+(Val 5),\{n\rightarrow 6\}), \rho') =>
Eval((g n, Val 11), \rho') =>
Eval((Eval(g n, \rho'), Val 11), \rho') =>
Eval((Eval(g (Eval(n, \rho')), \rho'), Val 11), \rho') =>
Eval((Eval(g (Val 4), \rho'), Val 11), \rho') =>
Eval((Eval(Eval(g, \rho')(Val 4), \rho'), Val 11), \rho') =>
Eval((Eval((Val<n\to n+5, { }>)(Val 4), \rho'), Val 11), \rho')
```

```
Let \rho' = \{n \rightarrow 4, m \rightarrow 6, q \rightarrow \langle n \rightarrow n+5, \{ \} \rangle,
                          f \rightarrow \langle n \rightarrow n+5, \{ \} \rangle \}
Eval((Eval((Val<n\to n+5, { }>)(Val 4), \rho'), Val 11), \rho')
=>
Eval((Eval(n+5, \{n \rightarrow 4\}+\{\})), Val 11), \rho') =
Eval((Eval(n+5, \{n \to 4\})), Val 11), \rho') =>
Eval((Eval(n+Eval(5,{n \rightarrow 4}),{n \rightarrow 4}), Val 11),\rho') =>
Eval((Eval(n+(Val 5),\{n \to 4\}), Val 11),\rho') =>
Eval((Eval(Eval(n,\{n \rightarrow 4\})+(Val 5),\{n \rightarrow 4\}),
        Val 11),\rho') =>
```

8/31/2024 78

End of Extra Material for Extra Credit

Recursive Functions

```
# let rec factorial n =
    if n = 0 then 1
    else n * factorial (n - 1);;
  val factorial : int -> int = <fun>
# factorial 5;;
- : int = 120
# (* rec is needed for recursive function
  declarations *)
```

Recursion Example

```
Compute n<sup>2</sup> recursively using:
           n^2 = (2 * n - 1) + (n - 1)^2
# let rec nthsq n = (* rec for recursion
  match n with (* pattern matching for cases
  val nthsq : int -> int = <fun>
# nthsq 3;;
- : int = 9
```

Structure of recursion similar to inductive proof

Recursion and Induction

```
# let rec nthsq n =
    match n with
        0 -> 0     (*Base case!*)
        | n -> (2 * n - 1) + nthsq (n - 1);;
```

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain the base case (!!!)
 - Failure of selecting base case will cause nontermination
 - But the program will crash because it exhausts the stack!

Lists

 First example of a recursive datatype (aka algebraic datatype)

 Unlike tuples, lists are homogeneous in type (all elements same type)

Lists

- List can take one of two forms:
 - Empty list, written []
 - Non-empty list, written x :: xs
 - x is head element,
 - xs is tail list, :: called "cons"
- How we typically write them (syntactic sugar):
 - **[x]** == x :: []

```
8/31/202 [ x1; x2; ...; xn ] == x1 :: x2 :: ... :: xn :: [84]
```

Lists

```
# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
# (8::5::3::2::1::1::[ ]) = fib5;;
- : bool = true
# fib5 @ fib6;;
- : int list =
        [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]
```

Lists are Homogeneous

This expression has type float but is here used with type int

Question

- Which one of these lists is invalid?
- 1. [2; 3; 4; 6]

- 2. [2,3; 4,5; 6,7]
- because of the last pair [(2.3,4); (3.2,5); (6,7.2)]

4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

3 is invalid

Functions Over Lists

```
# let rec double up list =
    match list with
         [ ] -> [ ] (* pattern before ->,
                        expression after *)
       (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
(* fib5 = [8;5;3;2;1;1] *)
# let fib5 2 = double_up fib5;;
val fib5 2 : int list = [8; 8; 5; 5; 3; 3; 2; 2;
  1; 1; 1; 1]
```

Functions Over Lists

```
# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there";
  "there"]
# let rec poor_rev list =
  match list
  with [] -> []
     (x::xs) -> poor_rev xs @ [x];;
val poor rev : 'a list -> 'a list = <fun>
# poor rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]
```

Structural Recursion

 Functions on recursive datatypes (eg lists) tend to be recursive

- Recursion over recursive datatypes generally by structural recursion
 - Recursive calls made to components of structure of the same recursive type
 - Base cases of recursive types stop the recursion of the function

- Problem: write code for the length of the list
 - How to start?

```
let length 1 =
```

- Problem: write code for the length of the list
 - How to start?

```
let rec length l =
  match l with
```

- Problem: write code for the length of the list
 - What patterns should we match against?

```
let rec length l =
  match l with
```

- Problem: write code for the length of the list
 - What patterns should we match against?

- Problem: write code for the length of the list
 - What result do we give when I is empty?

- Problem: write code for the length of the list
 - What result do we give when I is not empty?

- Problem: write code for the length of the list
 - What result do we give when I is not empty?

Same Length

How can we efficiently answer if two lists have the same length?

Tactics:

- First list is empty: then true if second list is empty else false
- First list in not empty: then if second list empty return false, or otherwise compare whether the sublists (after the first element) have the same length

Same Length

How can we efficiently answer if two lists have the same length?

```
let rec same length list1 list2 =
  match list1 with
    [] -> (
          match list2 with [] -> true
                        (y::ys) -> false
  |(x::xs) \rightarrow (
          match list2 with [] -> false
                        (y::ys) -> same_length xs ys
```

Functions Over Lists

```
# let rec map f list =
  match list with
    [ ] -> [ ]
  | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
# map plus_two fib5;;
-: int list = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
```

Iterating over lists

```
# let rec fold left f a list =
  match list with
    || -> a
  | (x :: xs) -> fold_left f (f a x) xs;;
val fold left: ('a -> 'b -> 'a) -> 'a -> 'b list
  \rightarrow 'a = \langlefun\rangle
# fold left
   (fun () -> print_string)
   ["hi"; "there"];;
hithere- : unit = ()
```

Iterating over lists

```
# let rec fold right f list b =
  match list with
    -> b
  | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b
  -> 'b = \langle fun \rangle
# fold right
    (fun s -> fun () -> print string s)
    ["hi"; "there"]
    ();;
therehi-: unit = ()
```

Your turn: doubleList: int list -> int list

 Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2

let rec doubleList list =

Your turn: doubleList: int list -> int list

 Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2

Your turn: doubleList: int list -> int list

 Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2

Higher-Order Functions Over Lists

```
# let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
# map plus_two fib5;;
-: int list = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
```

Higher-Order Functions Over Lists

```
# let rec map f list =
 match list
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
# map plus_two fib5;;
-: int list = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
```

Mapping Recursion

 Can use the higher-order recursive map function instead of direct recursion

```
# let doubleList list =
   List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

Mapping Recursion

 Can use the higher-order recursive map function instead of direct recursion

```
# let doubleList list =
   List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

Same function, but no explicit recursion

Folding Recursion

Another common form "folds" an operation over the elements of the structure

```
# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
# multList [2;4;6];;
- : int = 48
```

Computes (2 * (4 * (6 * 1)))

Folding Recursion: Length Example

```
# let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
# length [5; 4; 3; 2];;
- : int = 4
```

- Nil case [] is base case, 0 is the base value
- Cons case recurses on component list bs
- What do multList and length have in common?