Category 7 Algebra

<BASIC LEVEL QUESTIONS>

- 1. If (a-1)(b-2) = 0, which of the following must be true?
 - a = 1 and b = 2.
 - Π. If $a \neq 1$, then b = 2
 - III. If a=1, then $b \neq 2$.
 - I only (A)
 - **(B)** II only
 - **(C)** III only
 - **(D)** I and II
 - II and III **(E)**
- 2. If (x-5)(y+2)=0, which of the following must be true?
 - $(\mathbf{A}) \quad x = y$
 - **(B)** x > y
 - (C) x < y
 - **(D)** xy = -10
 - (A) None of the above
- 3. If r and s are the two roots of the equation $x^2 + 8x + 15 = 0$, and r < s, what is the value of s-r?
 - **(A)** -8
 - (B) -2
 - 2 **(C)**
 - **(D)** 7
 - **(E)** 8

- 4. If (-2,k) is a point on the graph of $y=2x^2-3x+1$, then k=
 - -13 **(A)**
 - **(B)** -1
 - **(C)** 3
 - **(D)** 11
 - 15 **(E)**

- 5. The product of two positive integers m and n is twice their sum. If n is 6, what is the value of m?
 - (A) 8
 - **(B)** 6
 - (C) 4
 - (D) 3
 - (E) 2

- 6. If x: y=2:3, y: z=3:4, and x=8, then z-y=
 - **(A)** 1
 - 4 **(B)**
 - **(C)** 6
 - 8 **(D)**
 - **(E)** 12

- 7. If S is the set of all numbers x such that $1-2x \le 3$, which of the following is true about S?
 - The least number in S is -1. **(A)**
 - The least number in S is 0. **(B)**
 - The least number in S is 3. **(C)**
 - The greatest number in S is -2. **(D)**
 - The greatest number in S is -1. **(E)**

- 8. If rt > st and r > s, then which of the following must be true?
 - **(A)** t > 0
 - **(B)** s > 0
 - (C) r > 0
 - **(D)** t < 0
 - (E) rs > 0

- 9. If $-3 \le x \le 7$ and $-6 \le y \le 2$, what is the smallest possible value of x 2y?
 - (A) -15
 - (B) -9
 - (C) -7
 - (\mathbf{D}) 0
 - **(E)** 9

- 10. For any integer x, \bar{x} is defined by the equation $\bar{x} = x + 1$. Which of the following is equal to $(x)^2 - x^2$ for all integers x?
 - **(A)**
 - **(B)** 2
 - (C) $\overline{2x}$
 - **(D)** 2x
 - 2x**(E)**
- 11. An operation * defined on whole numbers gives results such as the following:

$$2 * 3 = 7$$

$$3*4=13$$

$$1*5 = 6$$

$$0*6=1$$

According to the equations above, which of the following could define the operation *?

- **(A)** x * y = x + y
- **(B)** x * y = 2x + y
- (C) $x * y = y^2 x$
- **(D)** $x * y = x^2 + y$
- **(E)** x * y = xy + 1

- 12. If $r \circ s = rs + r + s$, then for what value of s is $r \circ s$ equal to r for all values of r?
 - (A) -1
 - 0 **(B)**
 - (C) 1

 - **(E)**

13. Marie's monthly salary is determined by the formula $s = 850 + \frac{x}{10}$, were s is her salary

and x is the total amount of her monthly sales, both expressed in dollars. If the total of Marie's sales for July was \$22,000, then her salary for July was

- (A) \$2,115
- **(B)** \$3,050
- (C) \$5,620
- (D) \$6,410
- (E) \$10,700

14. The total cost C, in dollars, of manufacturing x items of a certain type is given by $C = \frac{1}{2}x^2 + 5{,}000$. When the total cost is \$10,000, exactly how many such items are

manufactured?

- (A) 100
- **(B)** 140
- (C) 200
- (D) 30,000
- (E) 50,000,000

- 15. A loaf of bread and 2 one-pound containers of butter cost a total of \$4.95. If a pound of butter costs \$0.90 more than a loaf of bread, how much does a pound of butter cost?
 - (A) \$1.05
 - (B) \$1.58
 - (C) \$1.95
 - (D) \$2.03
 - (E) \$2.93

- 16. Pat bought n apples at a cost of 3 for \$0.20 and then sold the n apples at a price of 4 for \$0.35. If Pat's revenue from the sale of the apples was \$2.50 more than the cost of the apples, what is the value of n?
 - (A) 150
 - **(B)** 120
 - (C) 90
 - **(D)** 80
 - **(E)** 60

- 17. The total cost of 3 pounds of hamburger and 4 pounds of hot dogs is \$12.39. At the same rates, if the cost of 5 pounds of hamburger is \$9.45, what is the cost per pound of hot dogs?
 - (A) \$1.59
 - (B) \$1.68
 - (C) \$1.77
 - (D) \$1.89
 - (E) \$2.03

- 18. At a certain bowling alley, it costs \$0.50 to rent bowling shoes for the day and \$1.25 to bowl 1 game. If a person has \$12.80 and must rent shoes, what is the greatest number of complete games that person can bowl in one day?
 - (A) 7
 - **(B)** 8
 - (C) 9
 - (D) 10
 - **(E)** 11

- 19. A mother and her child have a combined weight of 150 pounds. If the mother's weight is 5 times her child's weight, what is the weight, in pounds, of the child?
 - (A) 32
 - **(B)** 30
 - (C) 28
 - (D) 25
 - **(E)** 24
- 20. Jim multiplied a number by 5 when he should have divided it by 4. If the result he got was 10, what would have been the result if he had not made the error?
 - (A) $\frac{1}{20}$
 - **(B)** $\frac{1}{10}$
 - (C) $\frac{1}{5}$
 - **(D)** $\frac{1}{4}$
 - **(E)** $\frac{1}{2}$

- 21. An instructor scored a student's test of 50 questions by subtracting 2 times the number of incorrect answers from the number of correct answers. If the student answered all of the questions and received a score of 38, how many questions did that student answer correctly?
 - (A) 19
 - **(B)** 38
 - (C) 41
 - **(D)** 44
 - **(E)** 46

- 22. The area of a rectangular region with length 2x+1 and width x-3 is
 - (A) $2x^2 3$
 - **(B)** $2x^2 + x 3$
 - (C) $2x^2 5x 3$
 - **(D)** $2x^2 6x 3$
 - **(E)** $2x^2 + 7x + 3$

- 23. The total price of n(n > 1) equally priced copies of a certain book is \$50. In terms of n, which of the following gives the total price of n-1 of these copies?
 - (A) 50(n-1)
 - **(B)** $\frac{50}{n-1}$
 - $(C) \quad \frac{50(n-1)}{n}$
 - **(D)** $\frac{50n}{n-1}$
 - (E) $\frac{50}{n(n-1)}$
- 24. The supply of a certain commodity is given by the formula $S=9x+x^2$ and the demand for the commodity is given by the formula D=2,475-x, where x is the price of the commodity in dollars. At which of the following values of x will the supply of the commodity equal the demand for the commodity?
 - (A) 9
 - **(B)** 45
 - (C) 55
 - **(D)** 275
 - (E) 2,475

$$d = \frac{3v^2}{20}$$
 and $t = \frac{2d}{v}$, where

d is the distance traveled, in meters, after the brakes are applied v is the velocity, in meters pet second, before the brakes are applied t is the time, in seconds, it takes to stop after the brakes are applied.

- 25. The formulas above are used to compute the distance a car travels after the brakes are applied. If the driver of a car applied the brakes just as a traffic light turned yellow and stopped exactly 6 seconds later, what is the value of ν ?
 - (A) 20
 - **(B)** $\frac{80}{3}$
 - (C) 30
 - **(D)** 40
 - (E) 60

Category 7 Algebra

1.	If	(a-1)	(b-2))=0	. which	of the	following	must be	e true?

I. a = 1 and b = 2.

II. If $a \neq 1$, then b = 2

III. If a=1, then $b \neq 2$.

- (A) I only
- (B) II only
- (C) III only
- (D) I and II
- (E) II and III

$$a = 1$$
 $b = 2$ $(a-1)(b-2)=0$. $a \ne 1$ b 27. . $a = 1$ $b = 2$.

(B) .

2. If (x-5)(y+2)=0, which of the following must be true?

- $(\mathbf{A}) \quad x = y$
- **(B)** x > y
- (C) x < y
- **(D)** xy = -10
- (E) None of the above

$$x=5$$
 $y=-2$ $(x-5)(y+2)=0$

(E) .

- 3. If r and s are the two roots of the equation $x^2 + 8x + 15 = 0$, and r < s, what is the value of s-r?
 - **(A)** -8
 - **(B)** -2
 - **(C)** 2
 - **(D)** 7
 - **(E)**

$$x^{2} + 8x + 15 = 0$$
 (two roots) r, s $s - r$
 $x^{2} + 8x + 15 = (x + 3)(x + 5) = 0, r = -5, s = -3$

(C)

- 4. If (-2,k) is a point on the graph of $y=2x^2-3x+1$, then k=
 - (A) -13
 - **(B)** -1
 - **(C)** 3
 - **(D)** 11
 - **(E)** 15

$$(-2,k)$$
 7 $y = 2x^2 - 3x + 1$ k

(E)

- 5. The product of two positive integers m and n is twice their sum. If n is 6, what is the value of m?
 - **(A)** 8
 - **(B)** 6
 - **(C)** 4
 - **(D)** 3
 - **(E)** 2

$$m,n$$
 $(m+n)$ n 6 m

(D)

- (A) 1
- (B) 4
- (C) 6
- **(D)** 8
- **(E)** 12

$$x = 8$$
 $y = 12$, $y: z = 3:4 = 12:16$ (B)

7. If S is the set of all numbers x such that $1-2x \le 3$, which of the following is true about

- S ?
- (A) The least number in S is -1.
- (B) The least number in S is 0.
- (C) The least number in S is 3.
- (D) The greatest number in S is -2.
- (E) The greatest number in S is -1.

$$1 - 2x \le 3 \Rightarrow x \ge -1$$

(A) .

8. If rt > st and r > s, then which of the following must be true?

- (A) t > 0
- **(B)** s > 0
- (C) r > 0
- **(D)** t < 0
- (E) rs > 0

(A) .

- 9. If $-3 \le x \le 7$ and $-6 \le y \le 2$, what is the smallest possible value of x 2y?
 - (A) -15
- (B) **-9**
- (C) =7
- **(D)** 0
- (E) 9

x = -3, y = 2

(C) .

- 10. For any integer x, \overline{x} is defined by the equation $\overline{x} = x + 1$. Which of the following is equal to $(\bar{x})^2 - \bar{x}^2$ for all integers x?
 - (A) 0
 - **(B)** 2
 - (C) 2x
 - (D) 2x
 - (E) $2\bar{x}$
- $(x)^{2} x^{2} = (x+1)^{2} x^{2} 1 = 2x$
 - (D)
- 11. An operation * defined on whole numbers gives results such as the following:

$$2 * 3 = 7$$

$$3*4=13$$

$$1*5=6$$

$$0*6=1$$

According to the equations above, which of the following could define the operation *?

- **(A)** x * y = x + y
- **(B)** x * y = 2x + y
- (C) $x * y = y^2 x$
- **(D)** $x * y = x^2 + y$
- (x) x * y = xy + 1

가

(E)

12.	Ιf	$r \circ s = rs + r + s$. then for what value of	s is	$r \circ s$ equal to	r for all values of	r?
14.	11	$I \circ S - IS + I + S$, men ivi what value vi	9 IS	1 0 3 Equal to	1 101 all values of	. / .

- (A) -1
- **(B)**
- (C) 1
- $\mathbf{(D)} \quad \frac{1}{r+1}$
- (\mathbf{E}) r

$$r \circ s = r$$

S

(B) .

- 13. Marie's monthly salary is determined by the formula $s = 850 + \frac{x}{10}$, were s is her salary and x is the total amount of her monthly sales, both expressed in dollars. If the total of Marie's sales for July was \$22,000, then her salary for July was
 - (A) \$2,115
 - (B) \$3,050
 - (C) \$5,620
 - (D) \$6,410
 - (E) \$10,700

Marie

7.
$$s = 850 + \frac{x}{10}$$
 (s: , x:

.7 \$22,000

.

(B) .

- 14. The total cost C, in dollars, of manufacturing x items of a certain type is given by $C = \frac{1}{2}x^2 + 5{,}000$. When the total cost is \$10,000, exactly how many such items are
 - manufactured?
 - **(A)** 100
 - (B) 140
 - (C) 200
 - (D) 30,000
 - (E) 50,000,000

 \boldsymbol{x}

$$C = \frac{1}{2}x^2 + 5,000$$

\$10,000

(A) .

15.	A loaf of bread and 2 one-pound containers of butter cost a total of \$4.95.	If a pound of
	butter costs \$0.90 more than a loaf of bread, how much does a pound of butter	cost?

- (A) \$1.05
- **(B)** \$1.58
- (C) \$1.95
- (D) \$2.03
- (E) \$2.93

(x) 1 (y) 2 7\
$$\$4.95$$
 .(x+2y=4.95) 7\ 7\ $\$0.90$ (y-0.90=x)1 7\ .

(C) .

16. Pat bought n apples at a cost of 3 for \$0.20 and then sold the n apples at a price of 4 for \$0.35. If Pat's revenue from the sale of the apples was \$2.50 more than the cost of the apples, what is the value of n?

- (A) 150 (B) 120 (C) 90 (D) 80 (E) 60
- n 3 \$0.20 4 \$0.35 \$2.50 n . フト

 $\frac{n}{4}(0.35) - \frac{n}{3}(0.20) = 2.50$

) 3 4 7 12 12 12 (1.05 – 0.8 = 0.25). (2.50 \div 0.25 = 10, 12 10 .)

(B) .

17. The total cost of 3 pounds of hamburger and 4 pounds of hot dogs is \$12.39. At the same rates, if the cost of 5 pounds of hamburger is \$9.45, what is the cost per pound of hot dogs?

- (A) \$1.59
- **(B)** \$1.68
- (C) \$1.77
- (D) \$1.89
- (E) \$2.03

the cost of 5 pounds of hamburger7 \\$ 9.45

the cost of 3 pound of hamburger

\$5.67 $(\frac{3}{5} \times 9.45 = 5.67).$

the cost of 3 pounds of hamburger + the cost of 4 pounds

of hot dogs = \$12.39

the cost per pound of hot dogs

(B) .

- 18. At a certain bowling alley, it costs \$0.50 to rent bowling shoes for the day and \$1.25 to bowl 1 game. If a person has \$12.80 and must rent shoes, what is the greatest number of complete games that person can bowl in one day?
 - (A) 7
 - **(B)** 8
 - (C) 2
 - (D) 10
 - **(E)** 11

\$0.50,

\$1.25

. 가 \$12.80

\$12.80 가

. $((12.80 - 0.50) \div 1.25)$

(C) .

- 19. A mother and her child have a combined weight of 150 pounds. If the mother's weight is 5 times her child's weight, what is the weight, in pounds, of the child?
 - (A) 32
 - **(B)** 30
 - (C) 28
 - (D) 25
 - (E) 24

150 pounds

가

5

Mother's weight + child's weight = 150

Mother's weight = 5 Child's weight

(D)

20. Jim multiplied a number by 5 when he should have divided it by 4. If the result he got was 10, what would have been the result if he had not made the error?

5가

(B) $\frac{1}{10}$ (C) $\frac{1}{5}$ (D) $\frac{1}{4}$

. 10

5가

4

2

(E)

21. An instructor scored a student's test of 50 questions by subtracting 2 times the number of incorrect answers from the number of correct answers. If the student answered all of the questions and received a score of 38, how many questions did that student answer correctly?

(A)

(B) 38

41 **(C)**

(D) 44

(E) 46

2

38 \boldsymbol{x}

50 - x .

x-2(50-x)=38

(E)

22. The area of a rectangular region with length 2x+1 and width x-3 is

(A) $2x^2 - 3$

(B) $2x^2 + x - 3$

(C) $2x^2 - 5x - 3$

(D) $2x^2 - 6x - 3$

(E) $2x^2 + 7x + 3$

가 2x+1, 가 가 x-3

 $(2x+1)(x-3) = 2x^2 - 5x - 3$

(C)

- 23. The total price of n(n > 1) equally priced copies of a certain book is \$50. In terms of n, which of the following gives the total price of n-1 of these copies?
 - (A) 50(n-1)
 - **(B)** $\frac{50}{n-1}$
 - $(c) \quad \frac{50(n-1)}{n}$
 - **(D)** $\frac{50n}{n-1}$
 - **(E)** $\frac{50}{n(n-1)}$
- $\$\frac{50}{n}(n-1) \qquad .$
 - (C) .
- 24. The supply of a certain commodity is given by the formula $S = 9x + x^2$ and the demand for the commodity is given by the formula D = 2,475 x, where x is the price of the commodity in dollars. At which of the following values of x will the supply of the commodity equal the demand for the commodity?
 - (A) 9
 - (B) 45
 - (C) 55
 - (D) 275
 - (E) 2,475
- $S = 9x + x^2 \qquad D = 2,475 x$ $T \qquad T \qquad T$

 $9x + x^2 = 2,457 - x$

(B) .

$$d = \frac{3v^2}{20}$$
 and $t = \frac{2d}{v}$, where

d is the distance traveled, in meters, after the brakes are applied v is the velocity, in meters pet second, before the brakes are applied t is the time, in seconds, it takes to stop after the brakes are applied.

- 25. The formulas above are used to compute the distance a car travels after the brakes are applied. If the driver of a car applied the brakes just as a traffic light turned yellow and stopped exactly 6 seconds later, what is the value of ν ?
 - (A) 20
 - **(B)** $\frac{80}{3}$
 - (C) 30
 - **(D)** 40
 - (E) 60
- $t = \frac{2d}{v} \qquad d = 3v \qquad d = 3v \qquad v$

(A) .