

Artificial Neural Networks

Revision – Training of Networks

- Cost function f defined
- Searching for the global minimum

First derivative

$$\nabla_i f(w) = \frac{\partial f}{\partial w_i}$$

Second derivative

$$H_{i,j}f(w) = \frac{\partial^2 f}{\partial w_i \partial w_j}$$

Revision – Training of Networks

Gradient descent: Going towards steepest descent

$$w \to w - \eta \cdot \nabla f(w)$$

Trainings direction: $d = -\nabla f$

- Needs many iterations if not very steep
- convergence is not the fastest
- + no Hassian matrix necessary => faster for many parametes

Training Algorithms

- Gradient Descent
- Newton's Method
- Conjugate Gradient
- Quasi Newton
- Levenberg Marquardt

Training - Newton's Method

Second order algorithm Taylor Approximation 2.Order

$$f = f(w_0) + \nabla f(w_0) \cdot (w - w_0) + \frac{1}{2}(w - w_0)H_f(w_0)$$

Assume
$$\nabla f = 0$$
 at minimum of $f(w)$

$$\nabla f = \nabla f(w_0) + H_f(w_0)(w - w_0) = 0$$

$$\Rightarrow \Delta w = H_f^{-1}(w_0)\nabla f(w_0)$$

Training - Newton's Method

Newton trainings step

$$\Delta w = H_f^{-1}(w_0) \nabla f(w_0)$$

- might lead to maximum if H is not pos. def.
- introduce the training rate

$$w \to w - \eta \cdot H_f^{-1}(w) \nabla f(w)$$

Trainings direction: $d = H_f^{-1} \nabla f$

Revision - Newton's Method

- calculation of Hassian Matrix
- evaluating the inverse of H
- much faster than Gradient Descent

Training Algorithms

- Gradient Descent
- Newton's Method
- Conjugate Gradient
- Quasi Newton
- Levenberg Marquardt

Training – Conjugate Gradient

Accelerate slow convergence of gradient descent

Search along conjugate directions w.r.t. *H*

$$d^0 = -\nabla f(w_0) := g^0$$
 and $d^{i+1} = g^{i+1} + d^i \cdot \gamma^i$

 γ conjugate parameter

Training – Conjugate Gradient

γ^i conjugate parameter:

- Fletcher Reeves
- Polak-Ribière

• Hestenes-Stiefel

$$\gamma^{i} = \frac{g^{i^{T}}g^{i}}{g^{i-1^{T}}g^{i-1}}$$

$$\gamma^{i} = \frac{g^{i^{T}}(g^{i}-g^{i-1})}{g^{i-1^{T}}g^{i-1}}$$

$$\gamma^{i} = \frac{g^{i^{T}}(g^{i}-g^{i-1})}{d^{i-1^{T}}(g^{i}-g^{i-1})}$$

Training – Newton's Method

Training direction is periodically reset to the negative gradient

$$w \to w + \eta \cdot d$$

- no calculation of H and inverse
- also possible for big neutal networks
- more effecitive than Gradient Descent

Training Algorithms

- Gradient Descent
- Newton's Method
- Conjugate Gradient
- Quasi Newton
- Levenberg Marquardt

Training – Quasi Newton's Method

Computationallz expensive to compute Hessian Matrix and it's inverse (as in Newton Method)

Approximate this matrix with Matrix *G* of first partial derivatives

$$w \to w - \eta \cdot (G \nabla f(w))$$

Trainings direction: $d = G \nabla f$

Training - Quasi Newton's Method

DFP (David-Fletcher-Powell)

$$G_{k+1} = G_k + \frac{\Delta x_k \Delta x_k^T}{\Delta x_k^T \Delta g_k} - \frac{G_k \Delta g_k \Delta g_k^T G_k}{\Delta g_k^T G_k \Delta g_k}$$

BFGS (Broyden-Fletcher-Goldfarb-Shanno)

$$G_{k+1} = G_k + \frac{\Delta g_k \Delta g_k^T}{\Delta g_k^T \Delta x_k} - \frac{G_k \Delta x_k \Delta x_k^T G_k^T}{\Delta x_k^T G_k \Delta x_k}$$

$$\Delta g_k = \nabla f(x_{k+1}) - \nabla f(x_k)$$
$$\Delta x_k = x_{k+1} - x_k$$

whereas $\alpha_k = argmin \ f(x_k + \alpha p_k) \Rightarrow s_k = \alpha_k p_k \Rightarrow x_{k+1} = x_k + s_k$

Training Algorithms

- Gradient Descent
- Newton's Method
- Conjugate Gradient
- Quasi Newton
- Levenberg Marquardt

Training – Levenberg Marquardt

Approximate H with Gradient and Jacobi

Assume: loss function
$$f = \sum_i e_i^2$$

Jacobi matrix $J_{i,j} = \frac{\partial e_i}{\partial w_j}$

Gradient of loss function $\nabla f = 2J^T e$

$$H_f = 2J^T J + \lambda I$$
 λ ... damping factor

Training – Levenberg Marquardt

Update of weights

$$w \rightarrow w - (J^T J + \lambda I)^{-1} \cdot (2J^T e)$$

 $\lambda = 0 \Rightarrow$ Newton Method

- $\lambda \gg 0 \Rightarrow$ Gradient Descent
 - very fast for neural networks
 - only for mean squared error
 - big networks require big memory for J

Training Algorithms

For big neural network: Gradient descend and conjugate gradient

For only few hundred parameters: Levenberg-Marquardt

Every thing else: **Quasi - Newton**

Speed

Case Study - Bouncing Ball

System description:

$$\ddot{h}(t) = -g$$

$$h(0) = h_0, \dot{h}(0) = v_0$$

analytical solution:

$$\begin{pmatrix} h(t) \\ \dot{h}(t) \end{pmatrix} = \begin{pmatrix} -\frac{g}{2}t^2 + v_0t + h_0 \\ -gt + v_0 \end{pmatrix}$$

Case Study – Implementations HS

MATLAB Implementations:

- Event function for ODE
- Analytical solution

Simulink Implementation:

- Memory Block
- Zero crossing detection

Results - Hybrid System

Case Study – Implementation NN

MATLAB Neural Network Tool Box

Structure:

- Input layer with 3 nodes
- Various number of hidden neurons
- Output layer with 3 to 5 nodes

Activation function: sigmoid function

Case Study - Input & Output Values

Scenario 1:

- 3 inputs: intial values and energy loss
- 3 outputs: first event time, time and height of first bounce
- Varying number of hidden neurons:3, 6 or 9 hidden neurons
- Size of data sets:61, 122 or 7676 data points

Scenario 2:

- 3 inputs: intial values and energy loss before
- 5 outputs: first 5 events
- Varying number of hidden neurons:3, 5 or 10 hidden neurons
- Size of data sets:336, 1271 or 7676 data points

Results - NN 1: Bounce & Event

1.Dataset: #61

- Input: h_0 0 to 15; v_0 15 to 0
- $\Delta = 0.5$
- Output: first event, height and timing of first bounce

2.Dataset: #122

- Input: h_0 0 to 15 to 0; v_0 15 to 0 to 15
- $\Delta = 0.5$
- Output: first event, height and timing of first bounce

3.Dataset: #7676

Input:

$$h_0 \in [0,15]; v_0 \in [0,15]$$

- $\Delta = 0.5$
- Output: first event, height and timing of first bounce

Error calculation: $\left\|\sum_{i=1}^{5} e_i - y_i\right\|$

Plotting area:

- $h_0 \in [0.30]$
- $v_0 \in [0.35]$
- $\Delta = 0.1$

Results - NN 1: Bounce & Event

Increasing number of hidden neurons

Results - NN 2: Event Times

Input:

- $h_0 \in [0,20]$
- $v_0 \in [0.15]$
- $\Delta \in \{0.2, 0.5, 1\}$

Output:

First 5 events

Error calculation

$$\left\|\sum_{i=1}^5 e_i - y_i\right\|$$

Plotting area:

- $h_0 \in [0.30]$
- $v_0 \in [0.35]$
- $\Delta = 0.1$

Results - NN 2: Event Times

Increasing number of hidden neurons

Conclusion

- Simulating of hybrid systems with NN possible
- Analytical solution for data set creation helpful
- Simple neural network structure satisfying results
- Data set big less neurons necessary
- more neurons better approximation outside of data sets
- No actually interpretation of net structure with weight matrix

MLP (Multilayer Perceptron):

$$out_{j} = \sigma\left(\sum_{k} w_{jk} x_{k} + b_{j}\right)$$

Linear combination of input

HONN (High Order Neural Network): combine their inputs nonlinear

- more expensive computationally
- capture high-order correlations
- better mapping of nonlinear systems (might be possible with a lot of hidden neurons in MLP)
- better generalization properties

Sigma-Pi model:

Inputs of sigma-pi neurons are grouped – conjuncts Output: applying activation function on weighted sum of products of each conjunct

$$y_i = \sum_j w_{ij} \prod_{k \in A_j} x_k$$

Number of conjunct and its member are fixed at the beginning – a priopri knowledge can help

Fig. 1. HONEST network

HONEST (High order network with exponentail synaptic links)

$$y_i = \sum_{j} w_{ij}o_j + b_i$$

$$y_i = \sum_{h=1}^{Hidden} w_{hi} \prod_{j=1}^{Inputs} x_j^{p_{hj}} + b_j$$

 p_{hj} ... is exponentail power associated with the synaptic conneting input h and neuron j

Number of terms in resulting polynom correspond to hidden neurons

HONEST network

- result is the correlation of the input values
- possible to fix some variables and vary others to analyse
- validate the network solution

MLP are only as good as the data set

Test data outside of trainings set

possibility for bad results

Solution?

EQL – Equation Learner concept for NN to learn a dynamic

For the Algorithm:

$$C(x) = \frac{1}{n} \sum_{i=1}^{n} ||\psi(x_i) - y_i||^2$$

$$z^l = w^l a^{l-1} + b^l$$

Input: u+2v

$$a^{l} \coloneqq \begin{pmatrix} f_{1}(z_{1}^{l}), \dots, f_{u}(z_{u}^{l}), \\ g_{1}(z_{u+1}^{l}, z_{u+2}^{l}), \dots, g_{v}(z_{u+2v-1}^{l}, z_{u+2v}^{l}) \end{pmatrix}$$

Output: u+v

$$a^{l} \coloneqq (f_{1}(z_{1}^{l}), \dots, f_{u}(z_{u}^{l}), g_{1}(z_{u+1}^{l}, z_{u+2}^{l}), \dots, g_{v}(z_{u+2v-1}^{l}, z_{u+2v}^{l}))$$

Binary Units:

$$f_i(z_i) = \begin{cases} z_i & I_i = 0\\ \sin(z_i) & I_i = 1\\ \cos(z_i) & I_i = 2\\ sigm(z_i) & I_i = 3 \end{cases}$$

Multiplication Units:

$$g_j(z_{u+2j-1}, z_{u+2j}) = z_{u+2j-1} \cdot z_{u+2j}$$

Not included:

Radial basis functions Logarithm function Root functions

For Training:

$$C(x) = \frac{1}{n} \sum_{i=1}^{n} ||\psi(x_i) - y_i||^2 + \lambda \sum_{l=1}^{L} |W^l|_1$$

$$L_2 \text{ loss} \qquad L_1 \text{ regulation}$$

 $\lambda = 0$ starting value to prevent over regulation $\lambda > 0$, $t > t_1$ to prevent negativity $\lambda = 0$, $t > t_2$ in the end of the algorithm

Stoachstic gradient descent algorithm with mini-patch and Adam algorithm

$$\theta_{t+1} = \theta_t + Adam\left(\frac{\partial C_t}{\partial \theta}, \alpha\right)$$

a = 0.001 step size 20 mini-patch size

(standard gradient descent also works)

L_1 regulation should sparse connections:

learned formula: $0.33\cos(3.14x_1 + 1.57) + 0.33x_3 - 0.33x4^2 +$

 $0.41\cos(-6.28x_1 + 3.93 + 0.41x_2) + 0.41\sin(6.29x_1 + 0.79 + 0.41x_2)$

https://www.is.mpg.de/uploads_file/attachment/attachment/493/ICML2018-poster.pdf

References

- Different training algorithms
 https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_ne_ural_network
- Winkler, Stefanie, Martin Bicher, Andreas Körner, und Felix Breitenecker. "Modelling and Simulation of Hybrid Systems with Neural Networks", 111–12. ARGESIM Publisher Vienna, 2018. https://doi.org/10.11128/arep.55.a55276.
- Martius, Georg, und Christoph H. Lampert. "Extrapolation and Learning Equations". ArXiv:1610.02995 [Cs], 10. Oktober 2016. http://arxiv.org/abs/1610.02995.
- Abdelbar, Ashraf M., und Gene A. Tagliarini. "HONEST: a new high order feedforward neural network", 1996. https://doi.org/10.1109/ICNN.1996.549078.
- Cheng, Min-Yuan, Hsing-Chih Tsai, und Erick Sudjono. "Evolutionary Fuzzy Hybrid Neural Network for Dynamic Project Success Assessment in Construction Industry". Automation in Construction 21 (Januar 2012): 46–51. https://doi.org/10.1016/j.autcon.2011.05.011.