Resumo de Topologia Geral

Aula 1 - Conceitos iniciais

Definição 1.1. Sejam X um conjunto e τ uma coleção de subconjuntos de X. Dizemos que (X, τ) é um **espaço topológico** se,

- i) $\varnothing, X \in \tau$,
- ii) $\cup_{\alpha} A_{\alpha} \in \tau$, sempre que $A_{\alpha} \in \tau$, com $\alpha \in I$, sendo I um conjunto de índices,
- iii) $\bigcap_{i=1}^n A_i \in \tau$, sempre que $A_1, \ldots, A_n \in \tau$.

Por simplicidade de notação, frequentemente, dizemos que X é um espaço topológico, ao invés de dizer que (X, τ) é um espaço topológico. Além disso, dizemos que τ é uma **topologia para** X e seus elementos são ditos **abertos do espaço topológico** X (ou, simplesmente, abertos de X).

Exemplo 1.1.

- 1. $\bigcap_{n\in\mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$ não é um aberto para a topologia usual de \mathbb{R} .
- 2. Seja $X = \{a, b, c\}$. Então $\tau = \{\varnothing, X, \{c\}, \{a, b\}\}$ é uma topologia para X.

Definição 1.2. Sejam X um conjunto e \mathbb{B} uma coleção de subconjuntos de X. Dizemos que \mathbb{B} é uma base para uma topologia em X se

- i) para todo $x \in X$, existe $B \in \mathbb{B}$ tal que $x \in B$,
- ii) para todo $B_1, B_2 \in \mathbb{B}$, se $x \in B_1 \cap B_2$, então existe $B_3 \in \mathbb{B}$ tal que $x \in B_3$ e $B_3 \subseteq B_1 \cap B_2$.

Observação 1.1. Dada \mathbb{B} uma base para uma topologia em X, podemos definir uma topologia, denominada **topologia gerada pela base** \mathbb{B} , onde U é um aberto se, e somente se, para todo $x \in U$, existe $B \in \mathbb{B}$, tal que $x \in B \subseteq U$.

Definição 1.3. Dizemos que um conjunto X é **simplesmente ordenado** se existe um relação em X, < tal que

- a) para todo $x, y \in X$, com $x \neq y$, temos x < y ou y < x,
- b) x < y e y < z implica que x < z.

Denotamos

$$-(a,b) = \{x \in X \mid a < x < b\},\$$

- $(a,b] = \{x \in X \mid a < x \le b\},\$
- $[a,b) = \{x \in X \mid a \le x < b\},\$
- $[a,b] = \{x \in X \mid a \le x \le b\},\$

Definimos a **topologia da ordem** como sendo a topologia gerada pelos conjuntos da forma (a, b), $[a_0, b)$, se houver um menor elemento a_0 , e $(a, b_0]$, se houver um maior elemento b_0 .

Observação 1.2. Se X é um espaço topológico e Y é um subconjunto de X, então Y tem uma topologia natural que é $\{A \cap Y \mid A \subseteq X \text{ e } A \text{ é aberto}\}$. Nesse caso, dizemos que Y é um **subespaço de** X. Além disso, se \mathbb{B} é uma base para a topologia de X, então $B \cap Y$ tal que $B \in \mathbb{B}$ é uma base para a topologia de Y.

Definição 1.4. Dizemos que $F \subseteq X$ é **fechado de X** se $X \setminus F$ é aberto de X.

Observação 1.3. Uniões arbitrárias de fechados nem sempre é fechado. Exemplo: $\bigcup_{n\in\mathbb{N}} \left[\frac{1}{n},\infty\right) = (0,\infty).$

Definição 1.5. Sejam X um espaço topológico e A um subconjunto de X. Definimos o **interior de** A, int A, como sendo a união de todos os abertos de X contidos em A. Definimos o **fecho de** A, \overline{A} , como sendo a interseção de todos os fechados de X que contém A.

Definição 1.6. Seja $x \in X$. Uma **vizinhança de** x é um aberto contendo x.

Definição 1.7. Sejam X um espaço topológico e A subconjunto de X.

- 1. $x \in X$ é um **ponto de acumulação de A** (ou ponto limite de A) se toda vizinhança de x intercepta $A \setminus \{x\}$.
- 2. $x \in X$ é um **ponto de fronteira de** A, $x \in \partial A$, se toda vizinhança de x intercepta A e $X \setminus A$.

Exemplo 1.2.

- 1. $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \subseteq \mathbb{R}$ não é aberto nem fechado.
- 2. $\mathbb{Q} \subseteq \mathbb{R}$ não é aberto nem fechado. Todo ponto em \mathbb{Q} é ponto de acumulação. $\mathbb{Q} = \mathbb{R}$.
- 3. $\mathbb{Z} \subseteq \mathbb{R}$ é fechado, logo $\overline{\mathbb{Z}} = \mathbb{Z}$.

Exercício 1.1.

- 1. Seja $X = \{a, b, c\}$. Quantas topologias possíveis tem tal conjunto?
- 2. Prove a observação 1.1.

- 3. Prove que $\mathbb{B} = \{(a, b) \mid a, b \in R\}$ forma uma base para a topologia usual de \mathbb{R} .
- 4. Seja Y um subespaço de X. Então F é fechado de Y se, e somente se, $F = Y \cap G$, onde G é fechado de X.
- 5. Seja Y um subespaço de X.
 - (a) Se A é aberto de Y e Y é aberto de X, então A é aberto de X.
 - (b) Se F é fechado de Y e Y é fechado de X, então F é fechado de X.
- 6. A é aberto de X se, e somente se, int A = A.
- 7. F é fechado de X se, e somente se, $\overline{F} = F$.
- 8. Sejam $A \subseteq X$ e $x \in X$. Prove que $x \in \overline{A}$ se, e somente se, para toda vizinhança U de x, $U \cap A \neq \emptyset$.

Aula 2 - Homeomorfismo e produto cartesiano

Definição 2.1. Dizemos que X é um **espaço de Hausdorff**, se dados $x, y \in X$, com $x \neq y$, existem vizinhanças U de x e V de y tais que $U \cap V = \emptyset$.

Teorema 2.1. Seja X um espaço de Hausdorff. Então x é ponto de acumulação de $A \subset X$ se, e somente, toda vizinhança U de x contém infinitos pontos.

Definição 2.2. Sejam X e Y espaços topológicos. Uma função $f: X \to Y$ é dita **contínua** se para todo aberto V de Y, temos que $f^{-1}(V)$ é aberto de X.

Definição 2.3. Sejam X e Y espaços topológicos e $x \in X$. Uma função $f: X \to Y$ é dita **contínua em x** se dada V vizinhança de f(x), existe U vizinhança de x tal que $f(U) \subset V$.

Teorema 2.2. As seguintes condições são equivalentes.

- 1. $f: X \to Y$ é contínua.
- 2. $A \subset X \Rightarrow f(\overline{A}) \subset \overline{f(A)}$.
- 3. F fechado em $Y \Rightarrow f(F)$ fechado em X.

Definição 2.4. Um homeomorfismo é uma função bijetora $f: X \to Y$ contínua, com inversa contínua. Nesse caso, dizemos que **X** é homeomorfo a **Y** e denotamos por $X \cong Y$.

Exemplo 2.1.

1. $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, x \mapsto \tan x$ é homeomorfismo.

- 2. $\pi: \mathbb{R}^2 \to \mathbb{R}^3$, $(x,y) \mapsto A + xv + yw$ é um homeomorfismo sobre sua imagem, onde $A \in \mathbb{R}^3$ é um ponto e $v, w \in \mathbb{R}^3$ são vetores.
- 3. $f:[0,2\pi)\to S^1,\,t\mapsto(\cos t,\sin t)$ não é um homeomorfismo.

Lema 2.1 (Lema da colagem). Seja $X = A \cup B$ um espaço topológico, com $A \in B$ fechados. Sejam $f: A \to Y \in g: B \to Y$ contínuas com f(x) = g(x), se $x \in A \cap B$. Então $h(x) = \begin{cases} f(x), & x \in A \\ g(x), & x \in B \end{cases}$ é contínua.

Definição 2.5. Sejam X e Y espaços topológicos. A **topologia produto em** $X \times Y$ tem como base $\{U \times V \mid U \text{ aberto em } X, V \text{ aberto em } Y\}$.

Teorema 2.3. $f: A \to X \times Y$, $a \to (f_1(a), f_2(a))$ é contínua se, e somente se, as função coordenadas f_1 e f_2 são contínuas.

Definição 2.6. Sejam X_{α} espaços topológicos.

- 1. A topologia da caixa em $\prod_{\alpha} X_{\alpha}$ tem como base $\{\prod_{\alpha} U_{\alpha} \mid U_{\alpha} \text{ é aberto em } X_{\alpha}\}.$
- 2. A topologia do produto em $\prod_{\alpha} X_{\alpha}$ tem como base $\{\prod_{\alpha} U_{\alpha} \mid U_{\alpha} \text{ é aberto} \text{ em } X_{\alpha} \text{ e apenas um número finito de } U_{\alpha} \text{ é diferente de } X_{\alpha}\}.$

Definição 2.7. Uma métrica em um conjunto X é uma função $d: X \times X \to \mathbb{R}$ que satisfaz:

- a) $d(x,y) \ge 0$ e $d(x,y) = 0 \Leftrightarrow x = y$,
- b) d(x,y) = d(y,x),
- c) $d(x,y) \le d(x,z) + d(z,y)$.

O par (X, d) é dito **espaço métrico**.

Observação 2.1. Dada uma métrica em um conjunto X podemos definir uma topologia para X: $U \subset X$ é aberto se, e somente se, para todo $x \in U$, existe $\delta > 0$ tal que $B(x, \delta) \subset U$, onde $B(x, \delta) = \{y \in X \mid d(x, y) < \delta\}$.

Definição 2.8. Seja (X, d) um espaço métrico. Um subconjunto A de X é dito **limitado** se existe $M \in \mathbb{R}$ tal que $d(x, y) \leq M$, para todo $x, y \in A$. Definimos o **diâmetro de** A, diam A, como sendo $\sup_{x,y\in A} d(x,y)$.

Exercício 2.1.

- 1. Se X é Hausdorff, então $\{x\}$ é fechado em X.
- 2. Mostre que $f: X \to Y$ é contínua se, e somente se, $f^{-1}(B)$ é aberto de X para todo $B \in \mathbb{B}$, com \mathbb{B} base para a topologia de Y.

- 3. Prove que $f:X\to Y$ é contínua se $X=\cup_{\alpha}A_{\alpha}$ onde A_{α} é aberto em X e $f\mid_{A_{\alpha}}:A_{\alpha}\to Y$ é contínua, para todo α .
- 4. Se $f: X \to Y$ é contínua e x é ponto de acumulação de $A \subset X$, f(x) é ponto de acumulação de f(A)?
- 5. Prove que se X e Y são espaços simplesmente ordenados e $f: X \to Y$ é bijetora e preserva a ordem, então f é homeomorfismo.
- 6. Se \mathbb{B} é base de X e \mathbb{D} é base de Y, então $\mathbb{B} \times \mathbb{D} = \{B \times D \mid B \in \mathbb{B}, D \in \mathbb{D}\}$ é base para a topologia produto em $X \times Y$.
- 7. X é Hausdorff se, e somente se, $\Delta = \{(x, x) \mid x \in X\}$ é fechado em $X \times X$.

Aula 3 - Topologias metrizáveis

Exemplo 3.1.

- 1. Em \mathbb{R} , considere a métrica d(x,y) = |x-y|. Seja $B_d(x,\varepsilon) = \{y \in R \mid d(x,y) < \varepsilon\}$. Então $\mathbb{B} = \{B_d(x,\varepsilon)\}$ é base para a topologia usual de \mathbb{R} .
- 2. Considere \mathbb{R}^n . Temos, por exemplo, duas métricas:
 - Euclidiana: $d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$.
 - **Máximo**: $\rho(x, y) = \max\{|x_i y_i|\}.$

Tais métricas são equivalentes, no sentido que ambas geram a topologia usual de \mathbb{R}^n .

Definição 3.1. Um espaço topológico é dito metrizável, se existe uma métrica tal que recupere a topologia do espaço.

Exemplo 3.2.

- 1. Em \mathbb{R} a função $\overline{d}(x,y) = \min\{d(x,y),1\}$ define uma métrica, dita **métrica** limitada padrão. Tal métrica gera a topologia usual de \mathbb{R} .
- 2. Em $\mathbb{R}^{\omega} = \mathbb{R} \times \cdots \times \mathbb{R} \times \ldots$ a função $\overline{\rho} = \sup_{i} \{\overline{d}(x_i, y_i)\}$ define uma métrica, dita **métrica uniforme**. A topologia gerada por tal métrica é dita **topologia uniforme**.

Teorema 3.1. A função $D=\sup_i\left\{\frac{\overline{d}(x_i,y_i)}{i}\right\}$ é métrica em \mathbb{R}^ω e gera a topologia produto.

Observação 3.1.

- 1. Se X é metrizável, então X é Hausdorff.
- 2. Sejam (X, d) espaço métrico e $Y \subseteq X$, então a restrição da métrica d para Y gera a topologia de subespaços.

Definição 3.2. Sejam X espaço topológico, (x_n) sequência em X e $x \in X$. Dizemos que x_n converge para x, $x_n \to x$, se para todo U vizinhança de x, existe $N \in \mathbb{N}$ tal que para todo m > N, temos que $x_m \in U$.

Observação 3.2. \mathbb{R}^{ω} com a topologia da caixa não é metrizável.

Exercício 3.1.

- 1. Prove que a topologia uniforme é mais fina que a topologia produto em \mathbb{R}^{ω} , isto é, $\tau_{\text{prod}} \subsetneq \tau_{\text{unif}}$.
- 2. Sejam X espaço topológico e $A \subseteq X$. Se existe uma sequência $x_n \in A$ tal que $x_n \to x \in X$, então $x \in \overline{A}$. A recíproca vale se X é metrizável. Nesse caso, \overline{A} é o conjunto dos pontos de X que são limites de sequências de pontos de A.
- 3. Seja $f: X \to Y$ função e X metrizável. Então f é contínua se, e somente se, para toda sequência (x_n) em X, se $x_n \to x$, então $f(x_n) \to f(x)$.

Aula 4 - Convergência uniforme e espaços quocientes

Definição 4.1. Sejam X espaço topológico, (Y,d) espaço métrico e $f_n: X \to Y$ funções. Dizemos que f_n converge uniformemente para $f: X \to Y$, denotado por $f_n \xrightarrow{\text{unif}} f$, se dado $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que para todo $x \in X$ e para todo $m \geq N$, temos que $d(f_m(x), f(x)) < \varepsilon$.

Exemplo 4.1. $f_n(x) = x^n$, com $x \in [0,1]$ converge para $f(x) = \begin{cases} 0, & x \in [0,1) \\ 1, & x = 1 \end{cases}$, mas não uniformemente.

Teorema 4.1. Se $f_n: X \to Y$ são contínuas, com Y espaço métrico, e $f_n \to f$, então f é contínua.

Definição 4.2. Sejam X espaço topológico, \sim uma relação de equivalência em X e $\pi: X \to X/\!\!\!\sim$ a projeção natural, isto é, leva um elemento $x \in X$ em sua classe de equivalência. Dizemos que $U \subseteq X/\!\!\!\sim$ é um **aberto em** $X/\!\!\!\sim$, se $\pi^{-1}(U)$ é um aberto em X.

Exemplo 4.2. Em \mathbb{R} defina $x \sim y \Leftrightarrow x = y + 2\pi k$, com $k \in \mathbb{Z}$. Seja $\varphi : \mathbb{R} \to \mathbb{R}/\sim$ a projeção natural. Então $\mathbb{R}/\sim \cong S^1$, onde a topologia de \mathbb{R}/\sim é aquela onde $U \subseteq \mathbb{R}/\sim$ é aberto em \mathbb{R}/\sim , se $\varphi^{-1}(U)$ é aberto em \mathbb{R} e a topologia de S^1 é a de subespaço de \mathbb{R}^2 , isto é, $\mathbb{B} = \{S^1 \cap B(x, \varepsilon) \mid \varepsilon \leq 2\}$ base de S^1 .

Exercício 4.1.

1. Sejam $f_n: X \to Y$ funções contínuas. Se $f_n \xrightarrow{\text{unif}} f$ e $x_n \to x \in X$, então $f_n(x_n) \to f(x)$.

Aula 5 - Espaços quocientes (Parte II)

Definição 5.1. Uma aplicação quociente é uma aplicação sobrejetora $p: X \to Y$ que satisfaz U é aberto de Y se, e somente se, $p^{-1}(U)$ é aberto de X.

Observação 5.1.

- 1. Toda aplicação quociente é contínua, porém nem toda aplicação contínua é quociente.
- 2. É equivalente a definição de aplicação quociente a condição: F é fechado em Y se, e somente se, $p^{-1}(F)$ é fechado em X.

Observação 5.2. Sejam $p:X\to Y$ sobrejetiva, X um espaço topológico e Y um conjunto. Existe uma única topologia em Y que torna p uma aplicação quociente.

Definição 5.2. Sejam $p:X\to Y$ sobrejetiva, X um espaço topológico e Y um conjunto. A única topologia em Y que torna p uma aplicação quociente recebe o nome de **topologia quociente**.

Definição 5.3. Sejam $p: X \to Y$ função sobrejetiva e $B \subseteq X$. Dizemos que B é saturado se $p^{-1}(p(B)) = B$.

Definição 5.4. Sejam X espaço topológico, \sim uma relação de equivalência em X e $p: X \to X/_{\sim}$ a projeção natural. O conjunto $X/_{\sim}$ munido com a topologia quociente é dito **espaço quociente**.

Exemplo 5.1.

- 1. Sejam X = [0, 1] e \sim a relação em X tal que
 - (a) $0 \sim 1$;
 - (b) $x \sim x$, para todo $x \in (0, 1)$.

Então $X/\sim \cong S^1$, onde S^1 é a circunferência de raio 1.

- 2. Sejam $I^2 = [0,1] \times [0,1]$ e ~ a relação em I^2 tal que
 - (a) $(t,0) \sim (t,1)$, para todo $t \in [0,1]$;
 - (b) $(0,t) \sim (1,t)$, para todo $t \in [0,1]$;

(c) $(t_1, t_2) \sim (r_1, r_2)$, para todo $t_1, t_2, r_1, r_2 \in (0, 1)$.

Então $I^2/\sim \cong T$, onde T é o toro.

- 3. Sejam $I^2 = [0,1] \times [0,1]$ e ~ a relação em I^2 tal que
 - (a) $(0,t) \sim (1,1-t)$, para todo $t \in [0,1]$;
 - (b) $(t_1, t_2) \sim (t_1, t_2)$, para todo $t_1, t_2 \in (0, 1)$;
 - (c) $(t,0) \sim (t,0)$, para todo $t \in (0,1)$;
 - (d) $(t,1) \sim (t,1)$, para todo $t \in (0,1)$.

Então $I^2 / \sim \cong M$, onde M é a faixa de Möbius.

- 4. Sejam $I^2 = [0,1] \times [0,1]$ e ~ a relação em I^2 tal que
 - (a) $(0,t) \sim (1,1-t)$, para todo $t \in [0,1]$;
 - (b) $(t,0) \sim (t,1)$, para todo $t \in [0,1]$;
 - (c) $(t_1, t_2) \sim (t_1, t_2)$, para todo $t_1, t_2 \in (0, 1)$.

Então $I^2 / \sim \cong K$, onde K é a garrafa de Klein.

- 5. Sejam $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ e ~ a relação em D tal que
 - (a) $(x,y) \sim (x,y)$, para todo $(x,y) \in \{x^2 + y^2 < 1\}$;
 - (b) $(x_1, y_1) \sim (x_2, y_2)$, para todo $(x_1, y_1), (x_2, y_2) \in \{x^2 + y^2 = 1\}$.

Então $D / \sim \cong S^2$, onde S^2 é a esfera de raio 1.

- 6. Sejam $D=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1\}$ e ~ a relação em D que identifica pontos antípodas, isto é, tal que
 - (a) $(x,y) \sim (-x,-y)$, para todo $(x,y) \in \{x^2 + y^2 \le 1\}$.

Então $D_{\sim} \cong \mathbb{P}$, onde \mathbb{P} é o plano projetivo.

Teorema 5.1.

Sejam $f: X \to Y$ e $g: X \to Z$ tais que

- i) g é aplicação quociente;
- ii) f é contínua;
 - iii) f é constante nas fibras, isto é, dado $z \in Z$, quaisquer que sejam $x, y \in g^{-1}(z)$, temos que f(x) = f(y).

Então finduz $h:Z\to Y$ contínua tal que $h\circ g=f.$

Teorema 5.2.

Sejam

- i) $g: X \to Z$ função contínua e sobrejetiva;
- ii) \sim a relação em X tal que $x_1 \sim x_2 \Leftrightarrow g(x_1) = g(x_2)$;
- iii) $p: X \to X/\!\!\sim$ a projeção natural, tal que implica em $X/\!\!\sim$ a topologia quociente.

Então

- 1. Z é Hausdorff $\Rightarrow X/\sim$ é Hausdorff.
- 2. g induz um homeomorfismo $h: X/\sim \to Z \Leftrightarrow g$ é quociente.

Exercício 5.1.

- 1. A topologia quociente em Y é a mais fina que torna p contínua.
- 2. Se $p: X \to Y$ é sobrejetiva e $B \subseteq Y$, então $p(p^{-1}(B)) = B$.
- 3. Seja $p:X\to Y$ uma aplicação sobrejetiva. Então p é quociente $\Leftrightarrow p$ é contínua e leva abertos saturados de X em abertos de Y.

Aula 6 - Prova I

Foi realizada a primeira prova de Topologia Geral.

Aula 7 - Conexidade e teorema do valor intermediário

Observação 7.1.

- No dicionário, conexo é um adjetivo que qualifica aquilo que possui uma conexão, ligação ou relação. Em topologia, conexidade é uma propriedade que os intervalos abertos de \mathbb{R} possuem. Um teorema importante que usa a conexidade dos intervalos abertos de \mathbb{R} é o teorema do valor intermediário.
- No dicionário, compacto é um adjetivo que qualifica aquilo que é maciço, que apresenta grande quantidade de coisas num pequeno espaço. Em topologia, compacidade é uma propriedade que os intervalos fechados de \mathbb{R} possuem. Um teorema importante que usa a compacidade dos intervalos fechados de \mathbb{R} é o teorema do valor máximo.

Definição 7.1. Seja X um espaço topológico. Sejam $A, B \subseteq X$ abertos em X, disjuntos e não vazios. Dizemos que A e B formam uma **cisão não trivial de X** (ou uma separação de X), se $X = A \cup B$. Dizemos que X é **conexo** se X não admite uma cisão não trivial.

Exemplo 7.1.

- 1. $(X, \tau = \{\emptyset, X\})$ é conexo.
- 2. $X = [-1, 0) \cup (0, 1]$ com a topologia de subespaço de \mathbb{R} não é conexo.
- 3. \mathbb{Q} com a topologia de subespaço de \mathbb{R} não é conexo.

Teorema 7.1. Se $f: X \to Y$ é contínua e X é conexo, então f(X) é conexo.

Teorema 7.2. Com a topologia produto, o produto cartesiano de espaços conexos é conexo.

Teorema 7.3. Intervalos, raios e \mathbb{R} são conexos. (observação: intervalos são da forma (a,b), [a,b), (a,b] e [a,b], com $a,b \in \mathbb{R}$; raios são da forma $(a,\infty), [a,\infty), (-\infty,a)$ e $(-\infty,a]$, com $a \in \mathbb{R}$).

Teorema 7.4 (Teorema do Valor Intermediário). Sejam $f: X \to \mathbb{R}$ contínua e X conexo. Para todo $r \in \mathbb{R}$ tal que f(a) < r < f(b), existe $c \in X$ tal que f(c) = r.

Definição 7.2. Um **caminho em X** é uma função contínua $\alpha:[a,b]\to X$, com $[a,b]\subseteq\mathbb{R}$. Em geral usamos como domínio de α o intervalo [0,1], já que $[0,1]\cong[a,b]$, quaisquer que sejam $a,b\in\mathbb{R}$. Dizemos que X é **conexo por caminhos** se dados dois pontos $x,y\in X$, existe um caminho α tal que $\alpha(0)=1$ e $\alpha(1)=y$.

Exemplo 7.2.

- 1. \mathbb{R} e \mathbb{R}^n são conexos por caminhos.
- 2. $\mathbb{R}^2 \setminus \{0\}$ e $\mathbb{R}^n \setminus \{0\}$ são conexos por caminhos.
- 3. $S^n \subseteq \mathbb{R}^{n+1}$ é conexo por caminhos, se n > 0.

Exercício 7.1.

- 1. X é conexo \Leftrightarrow os únicos subconjuntos simultaneamente aberto e fechado são X e \emptyset .
- 2. Se A,B é uma cisão não trivial de X e $Y\subseteq X$ é conexo, então $Y\subseteq A$ ou $Y\subseteq B$.
- 3. Se A_{α} são conexos e $a \in A_{\alpha}$, para todo α , então $\cup_{\alpha} A_{\alpha}$ é conexo.
- 4. Se A é conexo e B é tal que $A \subseteq B \subseteq \overline{A}$, então B é conexo.
- 5. Se X é conexo por caminhos, então X é conexo.
- 6. Se $f: X \to Y$ é contínua e X é conexo por caminhos, então f(X) é conexo por caminhos.

Aula 8 - Componente conexa e espaço localmente conexo

Definição 8.1. Seja X um espaço topológico. Definimos a relação em X, como $x \sim y$ se, e somente se, existe $Y \subseteq X$ tal que Y é conexo e $x,y \in Y$. Pode-se provar que essa relação é uma relação de equivalência. As classes de equivalência são ditas **componentes conexas de X** (ou, simplesmente, componentes).

Teorema 8.1. As componente conexas de X satisfazem:

- (i) são disjuntas e sua união é X;
- (ii) são conexas;
- (iii) cada subconjunto conexo de X intercepta somente uma delas.

Definição 8.2. Seja X um espaço topológico. Definimos a relação em X, como $x \sim y$ se, e somente se, existe um caminho em X ligando x a y. Pode-se provar que essa relação é uma relação de equivalência. As classes de equivalência são ditas **componentes conexas por caminhos de X**.

Teorema 8.2. As componente conexas por caminhos de X satisfazem:

- (i) são disjuntas e sua união é X;
- (ii) são conexas por caminhos;
- (iii) cada subconjunto conexo por caminhos de X intercepta somente uma delas.

Definição 8.3. Seja X espaço topológico. Ele é dito **localmente conexo em x** \in X, se toda vizinhança U de x, existe V vizinhança conexa de x com $V \subseteq U$. Se X é localmente conexo em cada um de seus pontos, ele é dito **espaço localmente conexo**.

Definição 8.4. Seja X espaço topológico. Ele é dito localmente conexo por caminhos em $\mathbf{x} \in \mathbf{X}$, se toda vizinhança U de x, existe V vizinhança conexa por caminhos de x com $V \subseteq U$. Se X é localmente conexo por caminhos em cada um de seus pontos, ele é dito espaço localmente conexo por caminhos.

Exemplo 8.1.

- 1. \mathbb{R} é conexo e localmente conexo.
- 2. $[-1,0) \cup (0,1]$ subespaço de $\mathbb R$ não é conexo, mas é localmente conexo.
- 3. Seja $A=\left\{\left(x,\sin\frac{1}{x}\right)\mid x\in(0,1]\right\}$, então \overline{A} é conexo, mas não é localmente conexo.

4. \mathbb{Q} subespaço de \mathbb{R} não é conexo, nem localmente conexo.

Teorema 8.3. X é localmente conexo se, e somente se, para todo aberto U de X, as componentes conexas de U são abertos em X.

Teorema 8.4. Seja X espaço topológico. Então:

- a) cada componente conexa por caminho de X está contida numa componente conexa de X.
- b) Se X é localmente conexa por caminhos, então as componetes conexas e as componetes conexas por caminhos são as mesmas.

Exercício 8.1.

- 1. Sejam $K = \{\frac{1}{n} \mid n \in \mathbb{N}\}\$ e $-K = \{-x \mid x \in K\}$. Determine as componentes conexas e conexas por caminhos dos seguintes subespaços de \mathbb{R}^2 :
 - (a) $A = (K \times [0,1]) \cup (\{0\} \times [0,1]).$
 - (b) $B = A \setminus \{(0, \frac{1}{2})\}.$
 - (c) $C = B \cup ([0, 1] \times \{0\}).$
 - (d) $D = (K \times [0,1]) \cup (-K \times [-1,0]) \cup ([0,1] \times -K) \cup ([-1,0] \times K).$
- 2. Se $f: X \to Y$ é contínua e X é localmente conexo, então a imagem f(X) é necessariamente localmente conexa? E se f além de contínua for aberta?

Aula 9 - Espaço compacto

Definição 9.1. Seja X um espaço topológico. Uma coleção \mathcal{A} de subconjuntos de X cuja união é X é dita uma **cobertura de X**. Se cada $A \in \mathcal{A}$ for aberta, então temos um **cobertura aberta de X**. Se toda cobertura aberta de X admite uma subcobertura finita, X é dito **compacto**.

Exemplo 9.1.

- 1. \mathbb{R} não é compacto, pois, por exemplo, a cobertura $\{(n, n+2) \mid n \in \mathbb{Z}\}$ não admite subcobertura finita.
- 2. $\{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\} \subseteq \mathbb{R}$ é compacto.
- 3. Todo conjunto finito é compacto.
- 4. (0,1] não é compacto, pois $\{(\frac{1}{n},1]\}$ não admite subcobertura finita.

Observação 9.1. Sejam X espaço topológico e $Y \subseteq X$. Uma cobertura de Y é uma coleção de subconjuntos de X que contém Y.

Teorema 9.1. Se X é compacto e F é fechado em X, então F é compacto.

Teorema 9.2. Se X é Hausdorff e $K \subseteq X$ é compacto, então K é fechado em X.

Corolário 9.1. Se X é Hausdorff, $K\subseteq X$ é compacto e $x\not\in K$, então existe vizinhança U de x e V de K tal que $U\cap V=\varnothing$.

Teorema 9.3. Se $f: X \to Y$ é contínua e X é compacto, então f(X) é compacto.

Lema 9.1 (Tubo). Sejam X e Y espaços topológicos, com Y compacto, e $N \subseteq X \times Y$ uma vizinhança de $\{(x_0, y) \mid y \in Y\} \subseteq X \times Y$. Então existe W vizinhança de x_0 em X tal que X que X tal que X en X en X tal que X en X en

Teorema 9.4. O produto cartesiano de finitos espaços compactos é compacto.

Definição 9.2. Uma coleção \mathcal{C} de subconjuntos de X satisfaz a **propriedade da** interseção finita se, para qualquer subcoleção finita $\{C_1, \ldots, C_n\}$ de \mathcal{C} , tivermos $\bigcap_{j=1}^n C_j \neq \emptyset$.

Teorema 9.5. X é compacto \Leftrightarrow para toda coleção \mathcal{F} de fechados em X satisfazendo a propriedade da interseção finita, temos que $\cap_{F \in \mathcal{F}} F \neq \emptyset$.

Corolário 9.2. Se $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \ldots$ são fechados em um espaço compacto e são diferentes do vazio, então $\cap F_j \neq \emptyset$.

Corolário 9.3. X é compacto \Leftrightarrow para toda coleção \mathcal{B} de subconjuntos de X satisfazendo a propriedade da interseção finita, temos que $\cap_{B \in \mathcal{B}} \overline{B} \neq \emptyset$.

Teorema 9.6. Intervalos fechados são compactos em \mathbb{R} .

Corolário 9.4. $[-M, M]^n$ é compacto.

Teorema 9.7. $K \subseteq \mathbb{R}^n$ compacto $\Leftrightarrow K$ é fechado e limitado.

Exemplo 9.2.

- 1. $\{(x,\frac{1}{x})\mid x\in(0,1]\}\subseteq\mathbb{R}^2$ não é compacto, pois não é limitado.
- 2. $\{(x, \operatorname{sen} \frac{1}{x}) \mid x \in (0, 1]\} \subseteq \mathbb{R}^2$ não é compacto, pois não é fechado.

Teorema 9.8. Seja $X \neq \emptyset$, Hausdorff e compacto. Se todo ponto de X é ponto de acumulação, então X não é enumerável.

Exercício 9.1.

- 1. $f: X \to Y$ bijeção contínua, X compacto e Y Hausdorff $\Rightarrow f$ homeomorfismo.
- 2. $f: X \to \mathbb{R}$ contínua e X compacto \Rightarrow existe $a, b \in X$ tal que $f(a) \leq f(x) \leq f(b)$, para todo $x \in X$.

Aula 10 - Compacto em espaços métricos

Teorema 10.1. Se X é compacto e $A\subseteq X$ é um subconjunto infinito, então A tem ponto de acumulação.

Lema 10.1 (Número de Lebesgue). Seja X um espaço métrico tal que toda sequência admite uma subsequência convergente. Para toda cobertura aberta \mathcal{A} de X, existe $\delta > 0$ tal que se $B \subseteq X$ com diam $B < \delta$, então existe $A \in \mathcal{A}$ com $B \subseteq A$.

Teorema 10.2. Seja X espaço métrico. Então X é compacto se, e somente se, toda sequência admite uma subsequência convergente.

Definição 10.1. Um espaço topológico X é dito **localmente compacto em x \in X**, se existe vizinhança U de x e $K \subseteq X$ compacto, tal que $U \subseteq K$. Se X é localmente compacto em todos os seus pontos, então X é dito **localmente compacto**.

Exemplo 10.1. \mathbb{R}^n é localmente compacto, com $n \geq 1$.

Definição 10.2. Sejam X um espaço de Hausdorff localmente compacto e $\infty \notin X$. Dizemos que $Y = X \cup \{\infty\}$ com a topologia $\tau_Y = \{V \mid V \text{ \'e aberto em } X\} \cup \{Y \setminus K \mid K \text{ \'e compacto de } X\}$ é uma **compactificação de X por um ponto**.

Exemplo 10.2.

- 1. $\mathbb{R}^2 \cup \{\infty\} \cong S^2$.
- 2. $\mathbb{R} \cup \{\infty\} \cong S^1$.
- 3. $\mathbb{N} \cup \{\infty\} \cong \{\frac{1}{n}\} \cup \{0\}$, com \mathbb{N} como subespaço de \mathbb{R} .

Exercício 10.1.

- 1. Seja $X=\{a,b\}$ e $\tau=\{\varnothing,X\}$ uma topologia em X. Mostre que em $X\times\mathbb{N}$ todo subconjunto infinito tem ponto de acumulação, mas não é compacto.
- 2. Mostre que $\mathbb Q$ não é localmente compacto.
- 3. Seja X um espaço de Hausdorff. Então X é localmente compacto \Leftrightarrow para todo $x \in X$ e toda vizinhança U de x em X, existir V vizinhança de x tal que \overline{V} é compacto e $\overline{V} \subseteq U$.
- 4. Na definição 10.2, mostre que τ_Y é mesmo uma topologia.
- 5. Sejam X um espaço de Hausdorff localmente compacto e Y uma compactificação de X pelo ponto ∞ . Mostre que
 - (a) Y é Hausdorff.
 - (b) Y é compacto.

- (c) $Y = \overline{X}$.
- (d) X é subespaço de Y.
- (e) Se Y' é uma compactificação de X pelo ponto ∞' , então $Y \cong Y$.

Aula 11 - Teorema de Tychonoff

Definição 11.1. Sejam A um conjunto e < uma relação em A. Se para todo $a, b, c \in A$ temos que:

i)
$$a < b$$
 ou $b < a$; ii) $a \not< a$; iii) $a < b$ e $b < c \Rightarrow a < c$.

Dizemos que < é uma **relação de ordem** (ou ordem simples). Se < satisfaz somente os itens ii) e iii), então ela é dita uma **ordem parcial**. Dizemos que uma relação de ordem < em A é uma **boa ordem** se para todo $B \subseteq A$, com $B \neq \emptyset$, existe $m \in B$ tal que para todo $b \in B$, m < b. Nesse caso A é dito **bem ordenado**.

Exemplo 11.1. Seja A uma conjunto e $\mathcal{P}(A)$ o seu conjunto potência. Então \subsetneq define em $\mathcal{P}(A)$ uma relação de ordem parcial.

Observação 11.1. As três afirmações que seguem são equivalentes.

- 1. Axioma da escolha. Seja \mathcal{A} uma família de conjuntos não vazios e disjuntos. Então existe um conjunto C com um elemento de cada membro de \mathcal{A} .
- 2. **Teorema da boa ordenação**. Se A é um conjunto, então existe uma relação de ordem em A na qual A é bem ordenado.
- 3. **Princípio do máximo**. Sejam A um conjunto com uma ordem parcial e $B \subseteq A$ um conjunto com uma ordem simples. Então existe $C \subseteq A$ com uma ordem simples tal que $B \subseteq C$ e qualquer que seja $D \subseteq A$ simplesmente ordenado com $B \subseteq D$, temos que $D \subseteq C$.

Teorema 11.1 (Teorema de Tychonoff). Sejam X_{α} compactos, com $\alpha \in J$ um conjunto de índices. Então $\prod_{\alpha \in J} X_{\alpha}$ é compacto na topologia produto.

Aula 12 - Prova II

Foi realizada a segunda prova de Topologia Geral.

Aula 13 - Lema de Urysohn

Definição 13.1. Sejam X uma espaço topológico e $x \in X$. Dizemos que X tem uma **base enumerável em x** se existe uma coleção enumerável de vizinhanças de x, $\{B_n\}$ tal que para toda vizinhança U de x, existe $n \in N$ tal que $B_n \subseteq U$.

Definição 13.2. Dizemos que X satisfaz o primeiro axioma de enumerabilidade se possui base enumerável em cada um de seus pontos. Escrevemos X é I-AE.

Exemplo 13.1. Se X é um espaço métrico, então ele é I-AE.

Teorema 13.1. Sejam X I-AE e $A \subseteq X$. Então

- a) $x \in \overline{A} \Leftrightarrow \text{existe sequência } (x_n) \text{ em } A, \text{ com } x_n \to x.$
- b) $f: X \to Y$ é contínua \Leftrightarrow para toda sequência (x_n) em X com $x_n \to x$, temos que $f(x_n) \to f(x)$.

Definição 13.3. Dizemos que X satisfaz o segundo axioma de enumerabilidade se X possui uma base enumerável para sua topologia. Escrevemos X é II-AE.

Exemplo 13.2.

- 1. $\{(p,q) \mid p,q \in \mathbb{Q}\}$ é uma base enumerável para \mathbb{R} , logo \mathbb{R} é II-AE.
- 2. \mathbb{R}^n é II-AE.
- 3. \mathbb{R}^{ω} com a topologia produto é II-AE, pois $\{\prod U_n\}$ é base enumerável, onde $U_n = \mathbb{R}$ exceto para finitos valores de n nos quais $U_n = (p_n, q_n)$, com $p_n, q_n \in \mathbb{Q}$.
- 4. \mathbb{R}^{ω} com a topologia uniforme não é II-AE, apesar de ser metrizável

Teorema 13.2.

- a) X é I-AE (respectivamente II-AE) e Y é subespaço de $X \Rightarrow Y$ é I-AE (respectivamente II-AE).
- b) X_n é I-AE (respectivamente II-AE) $\Rightarrow \prod X_n$ é I-AE (respectivamente II-AE).

Definição 13.4.

- Se toda cobertura de X admite uma subcobertura enumerável, dizemos que X é um **espaço de Lindelöf**.
- Se existe um subconjunto de X enumerável e denso, então X é dito **espaço separável**.

Teorema 13.3. Se X é II-AE, então

- (i) X é espaço de Lindelöf;
- (ii) X é espaço separável.

Definição 13.5. Seja X espaço topológico tal que conjuntos unitários são fechados.

- X é **regular** se para todo $x \in X$ e todo fechado $B \subseteq X$ com $x \notin B$, existem vizinhanças V de x e U de B tais que $U \cap V = \emptyset$.
- X é **normal** se dados A e B fechados em X e disjuntos, existe vizinhanças U de A e V de B tais que $U \cap V = \emptyset$.

Observação 13.1.

- Normal \Rightarrow Regular \Rightarrow Hausdorff.
- Se na definição de normalidade e regularidade não considerássemos a condição de que conjuntos unitários são fechados, não teríamos a cadeia de implicações acima. Por exemplo, $X = \{a, b\}$ com a topologia trivial, isto é, $\tau = \{\varnothing, X\}$ é normal e regular, mas não é Hausdorff.

Teorema 13.4.

- 1. (a) Se X é Hausdorff e Y é subespaço de X, então Y é Hausdorff.
 - (b) Se X_{α} é Hausdorff, então $\prod X_{\alpha}$ é Hausdorff.
- 2. (a) Se X é regular e Y é subespaço de X, então Y é regular.
 - (b) Se X_{α} é regular, então $\prod X_{\alpha}$ é regular.

Observação 13.2. A normalidade de um espaço não se comporta bem para subespaços e produtos.

Teorema 13.5. Se X é metrizável, então X é normal.

Teorema 13.6. Se X é Hausdorff e compacto, então X é normal.

Teorema 13.7. Se X é regular com base enumerável, então X é normal.

Teorema 13.8 (Lema de Urysohn). Sejam X um espaço normal, $A, B \subseteq X$ conjuntos fechados em X e disjuntos e $[a, b] \subseteq \mathbb{R}$. Então existe $f: X \to [a, b]$ contínua tal que f(x) = a, se $x \in A$ e f(x) = b, se $x \in B$.

Exercício 13.1.

- 1. Seja X um espaço métrico.
 - (a) X é Lindelöf $\Rightarrow X$ é II-AE.
 - (b) X é separável $\Rightarrow X$ é II-AE.

- 2. X é regular \Leftrightarrow conjuntos unitários são fechados e para cada $x \in X$ e cada vizinhança U de x, existe vizinhança V de x com $\overline{V} \subseteq U$.
- 3. X é normal \Leftrightarrow conjuntos unitários são fechados e para todo $B\subseteq X$ fechado e toda vizinhança U de B, existe vizinhança V de B com $\overline{V}\subseteq U$.
- 4. $A = \prod_{\alpha} A_{\alpha} \Rightarrow \overline{A} = \prod_{\alpha} \overline{A}_{\alpha}$.

Aula 14 - Extensão de Titzie

Teorema 14.1 (Extensão de Titzie). Sejam X um espaço normal e $A\subseteq X$ um conjunto fechado em X.

- a) Uma função contínua $f: A \to [a, b]$ pode ser estendida continuamente a X, isto é, existe $g: X \to [a, b]$ contínua tal que g(x) = f(x), para $x \in A$.
- b) Uma função contínua $f: A \to \mathbb{R}$ pode ser estendida continuamente a X, isto é, existe $g: X \to \mathbb{R}$ contínua tal que g(x) = f(x), para $x \in A$.

Exercício 14.1.

- 1. Sejam X um espaço regular com base enumerável e $U \subseteq X$ aberto X.
 - (a) U é união enumerável de fechados.
 - (b) Existe $f: X \to [0,1]$ contínua com f(x) > 0, se $x \in U$, e f(x) = 0, se $x \notin U$.

Aula 15 - Teorema de metrização de Urysohn e partições da unidade

Lema 15.1. Se X é regular com base enumerável, então existe uma coleção $\{f_n\}$, com $f_n: X \to [0,1]$ contínua, para cada n, tal que para todo $x_0 \in X$ e para todo U vizinhança de x_0 , existe n tal que $f_n(x_0) > 0$ e $f_n(x) = 0$, se $x \notin U$.

Teorema 15.1 (Metrização de Urysohn). Se X é regular com base enumerável, então X é metrizável.

Definição 15.1. Sejam X um espaço topológico e $\phi: X \to \mathbb{R}$ uma função. Seja $S = \phi^{-1}(\mathbb{R} \setminus \{0\}) = \{x \in X \mid \phi(x) \neq 0\}$. Definimos o **suporte de** ϕ , denotado por supp ϕ , como sendo o fecho de S, isto é, \overline{S} . Note que supp $\phi = \inf\{x \in X \mid \phi(x) = 0\}^{\complement}$.

Definição 15.2. Sejam X um espaço topológico e $\{U_1, \ldots, U_n\}$ uma cobertura aberta para X. Uma **partição da unidade subordinada a** $\{U_i\}$ é uma família de funções contínuas $\phi_i : X \to [0, 1]$ tais que

- a) supp $\phi_i \subseteq U_i$,
- b) $\sum_{i=1}^{n} \phi_i(x) = 1$.

Teorema 15.2. Se X é normal, então existe uma partição da unidade.

Definição 15.3. X é uma variedade de dimensão m (ou m-variedade), se é um espaço de Hausdorff com base enumerável tal que para cada $x \in X$, existem U vizinhança de x e $g: U \to V$ homeomorfismo, com $V \subseteq \mathbb{R}^m$ aberto.

Teorema 15.3. Se X é uma m-variedade compacta, então existe um mergulho $X \hookrightarrow \mathbb{R}^N$, para algum $N \in \mathbb{N}$.

Exercício 15.1.

1. Teorema de extensão de Titzie ⇒ lema de Urysohn.

Aula 16 - Espaços métricos completos e espaços de funções

Observação 16.1. Sejam X, Y espaço topológicos. Estamos interessados em saber em quais topologias definidas para o espaço de todas as funções de X para Y, o conjunto daquelas que são contínuas é fechado.

Definição 16.1. Sejam X um espaço métrico e (x_n) uma sequência em X. Dizemos que (x_n) é uma **sequência de Cauchy** se para todo $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que para todo $n, m > n_0$ temos que $d(x_n, x_m) < \varepsilon$.

Definição 16.2. Seja X um espaço métrico. Dizemos que X é **completo** se toda sequência de Cauchy é convergente.

Teorema 16.1. \mathbb{R}^n é completo (na topologia usual).

Exemplo 16.1. $\mathbb{Q} \subseteq \mathbb{R}$ e $(a,b) \subseteq \mathbb{R}$ não são completos. Uma vez que $(a,b) \cong \mathbb{R}$, tem-se que completude não é uma propriedade puramente topológica.

Definição 16.3. Sejam X e Y espaços topológicos. Denotamos $Y^X = \{f : X \to Y\}$ e $C(X,Y) = \{f : X \to Y \mid f \text{ \'e contínua}\}.$

Definição 16.4. Sejam X espaço topológico e (Y, d) espaço métrico. Defina em Y^X a métrica $\overline{\rho}(f, g) = \sup_{x \in X} {\overline{d}(f(x), g(x))}$. Tal métrica é dita **métrica uniforme**.

Teorema 16.2. Se (Y, d) é completo, então $(Y^X, \overline{\rho})$ completo.

Teorema 16.3. Sejam X espaço topológico, (Y, d) espaço métrico e $\overline{\rho}$ a métrica uniforme em Y^X relativa a d. Então C(X, Y) é fechado em Y^X . Em particular, se Y é completo, então C(X, Y) é completo.

Exemplo 16.2. Existe uma função contínua e sobrejetiva $g:I\to I^2$, onde $I=[0,1]\subseteq\mathbb{R}.$

Definição 16.5. Uma sub-base para uma topologia em X é uma coleção de abertos S tal que a base para a topologia de X é a família de interseções finitas de elementos de S.

Exemplo 16.3. Seja \mathbb{R}^{ω} com a topologia produto. Nessa topologia a base é $\mathbb{B} = \{\prod U_i \mid U_i = \mathbb{R}, \text{ exceto para um número finito de índice}\}$. Uma sub-base para essa topologia é a coleção de abertos da forma $\prod U_i$, onde todos os U_i são iguais a \mathbb{R} , exceto um deles, isto é, $\prod U_i = \cdots \times \mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \times U \times \mathbb{R} \times \cdots$.

Definição 16.6. Definimos em Y^X a topologia convergência ponto a ponto como sendo aquela gerada pela sub-base $S(x,U)=\{f\in Y^X\mid f(x)\in U\}, \text{ onde }x\in X\text{ e }U\subseteq Y\text{ é aberto de }Y.$

Exemplo 16.4. Sejam $f_n: [0,1] \to [0,1], x \to x^n \in f(x) = \begin{cases} 0, & x \in [0,1) \\ 1, & x = 1. \end{cases}$. Então $f_n \to f$, na topologia da convergência ponto a ponto.

Observação 16.2. Pergunta: existe alguma topologia "entre" a uniforme e a ponto a ponto tal que o limite de uma sequência de funções contínuas seja contínua? A resposta é sim, porém com uma certa restrição, conforme se vê no teorema 16.4.

Definição 16.7. Definimos em Y^X a topologia da convergência uniforme em compacto como sendo aquela cuja base é formada pelos elementos

$$B_K(f,\varepsilon) = \{g \in Y^X \mid \sup_{x \in K} \{d(g(x), f(x))\} < \varepsilon\},\$$

onde $K \subseteq X$ é um compacto, $f \in Y^X$ e $\varepsilon > 0$.

Definição 16.8. Dizemos que X é compactamente gerado se para todo compacto K de X vale

$$A \subseteq X$$
 aberto de $X \Leftrightarrow A \cap K \subseteq K$ aberto de K .

Teorema 16.4. Sejam X compactamente gerado, (Y,d) métrico e Y^X com a topologia da convergência uniforme em compacto. Então C(X,Y) é fechado.

Exercício 16.1.

- 1. X completo e $F \subseteq X$ fechado $\Rightarrow F$ completo.
- 2. Sejam (X,d) espaço métrico e $\overline{d}(x,y)=\min\{d(x,y),1\}$. Então (X,d) é completo $\Leftrightarrow (X,\overline{d})$ é completo.
- 3. Se uma sequência de Cauchy tem uma subsequência convergente, então a própria sequência converge.

- 4. \mathbb{R}^{ω} com a métrica $D(x,y)=\sup\{\frac{\overline{d}(x_i,y_i)}{i}\}$ gera a topologia produto. Prove que (\mathbb{R}^{ω},D) é completo.
- 5. X é completo \Leftrightarrow para toda sequência encaixante $F_1 \supseteq F_2 \supseteq \ldots$ de fechados não vazios de X com diam $F_i \to 0$, temos que $\cap_i F_i \neq \emptyset$.
- 6. Sejam \mathbb{R}^{ω} com a topologia produto e $f_n, f \in \mathbb{R}^{\omega}$. Prove que $f_n \to f \Leftrightarrow f_n^j \to f^j, \forall j \in \mathbb{N}$.
- 7. Prove que em Y^X com a topologia ponto a ponto temos que $f_n \to f$, se e somente se, $f_n(x) \to f(x)$, $\forall x$.

Aula 17 - Espaços de Baire

Definição 17.1. Definimos em C(X,Y) a **topologia compacto-aberta** como sendo aquela gerada pela sub-base $S(K,U) = \{ f \in C(X,Y) \mid f(K) \subseteq U \}$, onde $K \subseteq X$ é um compacto de X e $U \subseteq Y$ é aberto de Y.

Teorema 17.1. Se Y é métrico, então a topologia compacto-aberta coincide com a topologia de subespaço de Y^X com a topologia da convergência uniforme em compactos.

Definição 17.2. Dizemos que X é um **espaço de Baire** se dada qualquer coleção $\{A_n\}$ de abertos densos em X, temos que $\cap_n A_n$ é denso em X.

Exemplo 17.1. $\mathbb Q$ como espaço topológico (não como subespaço de $\mathbb R$) não é espaço de Baire.

Teorema 17.2. Se X é Hausdorff compacto ou se X é métrico completo, então X é de Baire.

Exemplo 17.2.

- 1. \mathbb{R} é um espaço de Baire.
- 2. Não existe $f:\mathbb{R}\to\mathbb{R}$ tal que f seja contínua exatamente em $\mathbb{Q}.$
- 3. Existe $f: \mathbb{R} \to \mathbb{R}$ contínua e não diferenciável em todos os pontos.

Exercício 17.1.

1. $\mathbb{R} \setminus \mathbb{Q}$ é Baire.

Aula 18 - Teorema de Ascoli

Observação 18.1. Sabemos que se X é um espaço métrico, então são equivalentes as seguintes afirmações:

- X é compacto.
- Todo subconjunto infinito de X tem ponto de acumulação.
- Toda sequência tem uma subsequência convergente.

Como consequência, temos que se X é compacto, então ele é completo. Uma vez que a recíprova não é verdadeira (por exemplo, \mathbb{R}), surge a questão: quais condições um espaço completo tem que satisfazer para que seja compacto?

Definição 18.1. Um espaço métrico (X, d) é dito **totalmente limitado** se para todo $\varepsilon > 0$, existe cobertura finita de X por abertos da forma $B(x, \varepsilon)$, com $x \in X$.

Exemplo 18.1.

- 1. (\mathbb{R}, d) ou $(\mathbb{R}, \overline{d})$ não é totalmente limitado.
- 2. (0,1) e $[0,1] \cap \mathbb{Q}$ são totalmente limitados, porém não são completos.
- 3. [0, 1] é totalmente limitado e completo.

Teorema 18.1. (X, d) é compacto $\Leftrightarrow X$ é completo e totalmente limitado.

Definição 18.2. Sejam X espaço topológico, $x_0 \in X$, (Y, d) espaço métrico e $\mathcal{F} \subseteq C(X, Y)$, onde a métrica de C(X, Y) é dada por $\rho(f, g) = \sup_{x \in X} \{|f(x) - g(x)|\}$. Dizemos que \mathcal{F} é **equicontínua em x_0** se dado $\varepsilon > 0$ existe U vizinhança de x_0 tal que se $x \in U$, então $\rho(f(x), f(x_0)) < \varepsilon$, para todo $f \in \mathcal{F}$. \mathcal{F} é **equicontínuo** se ele é equicontínuo em cada $x \in X$.

Observação 18.2. Supondo $\mathcal{F} \subseteq C(X,Y)$ limitado, isto é, $\rho(f,g) < M$, para todo $f,g \in \mathcal{F}$, e X compacto, podemos considerer que $\mathcal{F} \subseteq C(X,K)$, onde $K \subseteq Y$ é um compacto.

Teorema 18.2. Sejam X e K espaços compactos e $\mathcal{F} \subseteq C(X,K)$. Então \mathcal{F} é equicontínuo $\Leftrightarrow \mathcal{F}$ é totalmente limitado.

Teorema 18.3 (Ascoli - versão clássica). Seja X um espaço compacto. Então $\mathcal{F} \subseteq C(X,\mathbb{R}^n)$ é compacto $\Leftrightarrow \mathcal{F}$ é fechado, limitado e equicontínuo.

Teorema 18.4 (Ascoli - versão geral). Sejam X um espaço de Hausdorff e localmente compacto, (Y, d) um espaço métrico e C(X, Y) com a topologia compacto-aberta. Então $\mathcal{F} \subseteq C(X, Y)$ tem fecho compacto $\Leftrightarrow \mathcal{F}$ é equicontínuo e $\mathcal{F}_x = \{f(x) \mid f \in \mathcal{F}\}$ tem fecho compacto, para todo $x \in X$.

Aula 19 - Grupo fundamental e espaços de recobrimento

Definição 19.1. Uma função contínua $f: I \to X$, com I = [0,1] é um **caminho em** X. Os pontos $x_0 = f(0)$ e $x_1 = f(1)$, são ditos **ponto inicial** e **ponto final**, respectivamente. Sejam $f, g: I \to X$ caminhos com os mesmos pontos inicial e final. Uma **homotopia** entre f e g é uma função contínua $F: I \times I \to X$ tal que F(s,0) = f(s). F(s,1) = g(s), $F(0,t) = x_0$ e $F(1,t) = x_1$. Notação: $f \sim g$.

Exemplo 19.1. Sejam $f(s) = (\cos s\pi, \sin s\pi)$, $g(s) = (\cos s\pi, -\sin s\pi)$ e $h(s) = (\cos s\pi, 2\sin s\pi)$, com $0 \le s \le 1$. Então $f \sim g$ em \mathbb{R}^2 , mas $f \not\sim g$ em $\mathbb{R}^2 \setminus \{0\}$. Temos também que $f \sim h$ tanto em \mathbb{R}^2 quanto em $\mathbb{R}^2 \setminus \{0\}$.

Observação 19.1. Dados $x_0, x_1 \in X$, a homotopia define uma relação de equivalência no conjunto dos caminhos de x_0 a x_1 .

Definição 19.2. Dados $f, g: I \to X$, com $f(0) = x_0$, $f(1) = x_1$, $g(0) = x_1$ e $g(1) = x_2$. Definimos a **justaposição de f e g**, denotada por f * g, como sendo o caminho $f * g(s) = \begin{cases} f(2s), & s \in [0, \frac{1}{2}] \\ g(2s-1), & s \in [\frac{1}{2}, 1] \end{cases}$

Observação 19.2. Sejam $f, g: I \to X$, com $f(0) = x_0$, $f(1) = x_1$, $g(0) = x_1$ e $g(1) = x_2$. Sejam [f] e [g] as classes de equivalência segundo a homotopia. Então está bem definida a operação [f] * [g] = [f * g]. Além disso, se $h: I \to X$, com $h(0) = x_2$ e $h(1) = x_3$, temos que:

- -([f] * [g]) * [h] = [f] * ([g] * [h])
- Existem $e_0: [0,1] \to X$, $s \mapsto x_0$, $e_1: [0,1] \to X$, $s \mapsto x_1$, tais que $[e_0]*[f] = [f]$ $e[f] * [e_1] = [f]$.
- Existe $f^{-1}:[0,1]\to X, f^{-1}(s)=f(1-s),$ tal que $[f]^{-1}=[f^{-1}].$

Definição 19.3. Um caminho $f:[0,1] \to X$ tal que $f(0) = f(1) = x_0$ é dito **laço** em x_0 . Fixado x_0 , o conjunto $\{[f] \mid f \text{ é laço em } x_0\}$ munido da operação * é um grupo, denotado por $\pi_1(X,x_0)$, denominado **grupo fundamental de X relativo a** x_0 .

Exemplo 19.2. $\pi_1(\mathbb{R}^n, x) = 0$ é o grupo trivial, qualquer que seja $x \in \mathbb{R}^n$.

Proposição 19.1. Se $\alpha:[0,1]\to X$ é um caminho com $\alpha(0)=x_0$ e $\alpha(1)=x_1$, então $\hat{\alpha}:\pi_1(X,x_0)\to\pi_1(X,x_1),\,[f]\to[\alpha]^{-1}*[f]*[\alpha]$ é um isomorfismo de grupo.

Corolário 19.1. Se X é conexo por caminhos, então $\pi_1(X, x_0) \cong \pi_1(X, x_1)$, para todo $x_0, x_1 \in X$.

Observação 19.3. Sejam $x_0 \in X$, $y_0 \in Y$ e $h: X \to Y$ uma função contínua com $h(x_0) = y_0$. Então h induz o homomorfismo $h_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$, $[f] \mapsto [h \circ f]$

Teorema 19.1. Sejam $x_0 \in X$, $y_0 \in Y$ e $h: X \to Y$ uma função contínua com $h(x_0) = y_0$. Se h é homeomorfismo, então h_* é isomorfismo.

Definição 19.4. X é **simplesmente conexo** se é conexo por caminhos e $\pi_1(X, x_0) = 0$ (o que implica que $\pi_1(X, x) = 0$, para todo $x \in X$).

Definição 19.5. Dizemos que $P: E \to B$ é uma aplicação de recobrimento, se é contínua, sobrejetiva e se para todo $b \in B$, existe U vizinhança de b tal que $P^{-1}(U) = \bigcup_{\alpha} V_{\alpha}$ é uma coleção de abertos disjuntos, restritas a cada um dos quais, P é homeomorfismo, isto é, $P \mid_{V_{\alpha}}: V_{\alpha} \to U$ é homeomorfismo, para todo α . Dizemos que E é espaço de recobrimento, B é espaço base, U é vizinhança de recobrimento e V_{α} é fatia.

Exemplo 19.3.

- 1. $id: X \to X$.
- 2. $\varphi: X \times \{1, 2\} \to X, (x, i) \mapsto x$.
- 3. $P: \mathbb{R} \to S^1$, $s \mapsto (\cos 2\pi s, \sin 2\pi s)$.

Exercício 19.1.

- 1. Se $f \sim f'$ e $g \sim g'$, então $f * g \sim f' * g'$.
- 2. $\pi_1(X, x_0) \cong_{\alpha} \pi_1(X, x_1)$ não depende de $\alpha \Leftrightarrow \pi_1(X, x_0)$ é abeliano.
- 3. h_* está bem definida e é homomorfismo.
- 4. Seja $r: X \to A$, com $A \subseteq X$, uma retração, isto é, r é contínua e $r(a) = a, \forall a \in A$. Mostre que $r_*: \pi_1(X, a_0) \to \pi_1(A, a_0)$ é sobrejetiva.
- 5. Compare aplicação quociente e aplicação de recobrimento.

Aula 20 - Grupo fundamental de S^1

Definição 20.1. Se $P: E \to B$ é uma aplicação de recobrimento e $f: I \to B$ é uma função contínua. Um **levantamento de f** é uma aplicação contínua $\tilde{f}: I \to E$ tal que $P \circ \tilde{f} = f$, ou seja, que faz o diagrama abaixo comutar.

$$I \xrightarrow{\tilde{f}} B$$

Lema 20.1. Seja $P: E \to B$ uma aplicação de recobrimento. Fixe $b_0 \in B$ e seja e_0 tal que $P(e_0) = b_0$. Então, dado um caminho $f: I \to B$ com $f(0) = b_0$, existe um único levantamento $\tilde{f}: I \to E$, com $\tilde{f}(0) = e_0$.

Lema 20.2. Seja $P: E \to B$ uma aplicação de recobrimento. Fixe $b_0 \in B$ e seja e_0 tal que $P(e_0) = b_0$. Seja $F: I \times I \to B$ contínua com $F(0,0) = e_0$. Então existe um levantamento $\tilde{F}: I \times I \to E$, com $\tilde{F}(0,0) = e_0$. Se F é uma homotopia de caminhos, então \tilde{F} também o é.

Teorema 20.1. $\pi_1(S^1) \cong \mathbb{Z}$.

Teorema 20.2. Seja $P: E \to B$ uma aplicação de recobrimento. Então

- 1. Se E é conexo por caminhos, então existe $\varphi: \pi_1(B, b_0) \to P^{-1}(b_0)$ uma aplicação sobrejetiva.
- 2. Se E é simplesmente conexo, então φ é bijetiva.

Definição 20.2. Dizemos que $P: E \to B$ é um recobrimento universal se é um recobrimento e E é simplesmente conexo.

Teorema 20.3. $\pi_1(S_1) \cong \pi_1(\mathbb{R}^2 \setminus \{0\}).$

Definição 20.3. Seja $A\subseteq X$ subespaço. Dizemos que $H:X\times I\to X$ é um **retrato** forte, se H for contínua e se

- H(x,0) = x, para todo $x \in X$;
- $H(x,1) \in A$, para todo $x \in X$;
- H(a,t)=x, para todo $a\in A$ e para todo $t\in I$.

Exercício 20.1.

- 1. Se $P:E\to B$ espaço de recobrimento, E conexo por caminhos e B simplesmente conexo, então P é homeomorfismo.
- 2. Seja $P: E \to B$ uma aplicação de recobrimento. Fixe $b_0 \in B$ e seja e_0 tal que $P(e_0) = b_0$. Se E é conexo por caminhos, então $P_*: \pi_1(E, e_0) \to \pi_1(B, b_0)$ é injetiva.

Aula 21 - Teorema de Van Kampen (versão simplificada)

Teorema 21.1 (Van Kampen (versão simplificada)). Seja $X = U \cup V$, com U, V abertos de X e $U \cap V$ conexos por caminhos. Dado $x_0 \in U \cap V$, se as inclusões $i: U \to X$ e $j: V \to X$, induzem homomorfismos triviais, isto é, $i_*([f]) = j_*([f]) = 0, \forall f$, então $\pi_1(X, x_0)$ é trivial.

Exemplo 21.1. $\pi_1(S^n) = 0$.

Exemplo 21.2. Sejam $j: S^n \to S^n$, $x \mapsto -x$ a aplicação antípoda e $G = \{id, j\} \subseteq \operatorname{End}(S_n)$. Defina \sim a relação em S_n como: $x \sim y$ se e somente se, existe $g \in G$ com y = g(x). Definimos o plano projetivo, \mathbb{P}^n , como sendo S^n / \sim . A projeção $P: S^n \to S^n / \sim$ é um recobrimento e $\pi_1(\mathbb{P}^n, x_0)$ tem ordem 2, para todo $n \geq 2$, pois sabemos que por S^n ser um espaço simplesmente conexo, existe uma bijeção entre $\pi_1(\mathbb{P}^n, x_0)$ e $P^{-1}(x_0) = \{x_0, -x_0\}$ (ver teorema 20.2).

Exemplo 21.3. O grupo fundamental da figura 8 não é abeliano.

Definição 21.1. Seja $D\subseteq \mathbb{R}^2$ um polígono. Dizemos que D é um domínio fundamental para a ação de um grupo G se

- $g(D) \cap D = \emptyset$, para todo $g \in G \setminus \{1\}$;
- Para todo $x \in X$, existe $g \in G$ tal que $g(x) \in \overline{D}$;
- Se s é um lado de D, então existe s' lado de D tal que g(s)=s';
- Dado $K \subseteq \mathbb{R}^2$ compacto, $K \cap g(D) \neq \emptyset$ apenas para finitos $g \in G$.

Exercício 21.1.

- 1. $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$.
- 2. Seja $G \subseteq \operatorname{End}(X)$ tal que X/G é uma variedade (ver exemplo 21.2). Se X é simplesmente conexo, então existe isomorfismo entre $\pi_1(X/G, b_0)$ e G, onde $b_0 \in X/G$.

Aula 22 - Prova III

Foi realizada a terceira prova de Topologia Geral.