14.04.2021

Задача. В двумерном евклидовом пространстве задано скалярное произведение $\langle x,y\rangle=3x_1y_1+7x_2y_2$. Для системы векторов a,b матрица Грама равна

$$\begin{pmatrix} 34 & -39 \\ -39 & 75 \end{pmatrix}.$$

Найти вектор a, если b = (-2,3) и известно, что $a_1 > 0$.

Решение. По определению матрица Грама для системы векторов a, b – это матрица всевозможных скалярных произведений, а именно:

$$\begin{pmatrix} \langle a, a \rangle & \langle a, b \rangle \\ \langle b, a \rangle & \langle b, b \rangle \end{pmatrix}.$$

Если $a = (a_1, a_2), b = (b_1, b_2),$ то, пользуясь определением скалярного произведения (из условия), можем записать:

$$\langle a, a \rangle = 3a_1^2 + 7a_2^2 = 34,$$

 $\langle a, b \rangle = 3a_1b_1 + 7a_2b_2 = -6a_1 + 21a_2 = -39.$

Таким образом, получаем систему из двух уравнений относительно неизвестных a_1, a_2 . Если выразить a_2 из второго уравнения и подставить в первое, получим:

$$25a_1^2 - 52a_1^2 - 69 = 0.$$

Это уравнение имеет два корня, но по условию $a_1 > 0$, поэтому остаётся только корень $a_1 = 3$. Из системы находим значение $a_2 = -1$.

Отметим, что $\langle b, b \rangle = 75$, поэтому если бы в исходной матрице правый нижний элемент не равнялся 75, то она бы не являлась матрицей Грама системы векторов a, b.