Razones Trigonométricas - Ejercicios y Resoluciones

Christian Bueno

Desarrollador de Software

15 de febrero del 2025

+593 99 028 8710

Guayaquil, Ecuador

 ${\it christian bueno.me}$

Contents

1	Razones Trigonométricas		2
	1.1	Valores de las Razones Trigonométricas de Ángulos Notables .	2
	1.2	Resolución de Triángulos	3
	1.3	Problemas de Aplicación	4

1 Razones Trigonométricas

1.1 Valores de las Razones Trigonométricas de Ángulos Notables

Ejercicio 1: Determinar los valores exactos de las razones trigonométricas para 30°.

Solución:

• Usando la tabla de valores notables:

$$\sin 30^{\circ} = \frac{1}{2}, \quad \cos 30^{\circ} = \frac{\sqrt{3}}{2}, \quad \tan 30^{\circ} = \frac{1}{\sqrt{3}}$$

• Además:

$$\csc 30^{\circ} = 2$$
, $\sec 30^{\circ} = \frac{2}{\sqrt{3}}$, $\cot 30^{\circ} = \sqrt{3}$

Ejercicio 2: Calcular tan 45° y cot 45°. Solución:

• De la tabla de razones notables:

$$\tan 45^\circ = \frac{\sin 45^\circ}{\cos 45^\circ} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1$$

• Y la cotangente es su inversa:

$$\cot 45^\circ = \frac{1}{\tan 45^\circ} = 1$$

1.2 Resolución de Triángulos

Ejercicio 1: En un triángulo rectángulo, si $\theta = 60^{\circ}$ y el cateto opuesto mide 10 cm, hallar la hipotenusa.

Solución:

• Se usa la función seno:

$$\sin 60^\circ = \frac{\mathrm{cateto\ opuesto}}{\mathrm{hipotenusa}}$$

• Sustituyendo valores:

$$\frac{\sqrt{3}}{2} = \frac{10}{h}$$

• Despejamos h:

$$h = \frac{10 \times 2}{\sqrt{3}} = \frac{20}{\sqrt{3}} \approx 11.55 \text{ cm}$$

Ejercicio 2: En un triángulo rectángulo, el cateto adyacente mide 5 cm y el ángulo $\theta=45^\circ$. Hallar la hipotenusa.

Solución:

• Se usa la función coseno:

$$\cos 45^{\circ} = \frac{\text{cateto adyacente}}{\text{hipotenusa}}$$

• Sustituyendo valores:

$$\frac{\sqrt{2}}{2} = \frac{5}{h}$$

• Despejamos h:

$$h = \frac{5 \times 2}{\sqrt{2}} = 5\sqrt{2} \approx 7.07 \text{ cm}$$

1.3 Problemas de Aplicación

Ejercicio 1: Un avión vuela a una altitud de 2 km y observa un punto en el suelo con un ángulo de depresión de 30°. ¿A qué distancia horizontal está el punto observado?

Solución:

- Se forma un triángulo rectángulo donde la altura es 2 km y el ángulo de depresión es 30°.
- Se usa la función tangente:

$$\tan 30^{\circ} = \frac{\text{altura}}{\text{distancia horizontal}}$$

• Sustituyendo valores:

$$\frac{1}{\sqrt{3}} = \frac{2}{x}$$

• Despejamos x:

$$x = 2\sqrt{3} \approx 3.46 \text{ km}$$

Ejercicio 2: Un poste de 8 m de altura proyecta una sombra de 6 m. ¿Cuál es el ángulo de elevación del sol?

Solución:

• Se usa la función tangente:

$$\tan \theta = \frac{\text{altura}}{\text{sombra}}$$

• Sustituyendo valores:

$$\tan \theta = \frac{8}{6} = \frac{4}{3}$$

• Aplicando arco tangente:

$$\theta = \tan^{-1}\left(\frac{4}{3}\right) \approx 53.13^{\circ}$$