

PCT

WELTOORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

<p>(51) Internationale Patentklassifikation 6 : C12N 15/52, 15/82, A61K 35/78, C07K 14/415</p>		A1	<p>(11) Internationale Veröffentlichungsnummer: WO 96/15248 (43) Internationales Veröffentlichungsdatum: 23. Mai 1996 (23.05.96)</p>
<p>(1) Internationales Aktenzeichen: PCT/EP95/04415 (22) Internationales Anmeldedatum: 9. November 1995 (09.11.95)</p>		<p>(81) Bestimmungsstaaten: AU, CA, HU, JP, SI, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p>	
<p>(30) Prioritätsdaten: P 44 41 408.0 10. November 1994 (10.11.94) DE</p>		<p>Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i></p>	
<p>(71) Anmelder (für alle Bestimmungsstaaten ausser US): INSTITUT FÜR GENBIOLOGISCHE FORSCHUNG BERLIN GMBH [DE/DE]; Ihnestrasse 63, D-14195 Berlin (DE).</p>			
<p>(72) Erfinder; und (75) Erfinder/Anmelder (nur für US): KOSSMANN, Jens [DE/DE]; Koblenzer Strasse 1, D-10715 Berlin (DE). SPRINGER, Franziska [DE/DE]; Mühlenstrasse 1, D-14167 Berlin (DE). ABEL, Gernot, J. [AT/AT]; Pichlgrut Au 36, A-5311 Post Loibichl (AT).</p>			
<p>(74) Anwalt: VOSSIUS & PARTNER; Postfach 86 07 67, D-81634 München (DE).</p>			
<p>(54) Title: DNA MOLECULES THAT CODE FOR ENZYMES INVOLVED IN STARCH SYNTHESIS, VECTORS, BACTERIA, TRANSGENIC PLANT CELLS AND PLANTS CONTAINING SAID MOLECULES</p>			
<p>(56) Bezeichnung: DNA-MOLEKÜLE CODIEREND ENZYME, DIE AN DER STÄRKESYNTHESSE BETEILIGT SIND, VEKTOREN, BAKTERIEN, TRANSGENE PFLANZENZELLEN UND PFLANZEN ENTHALTEND DIESSE MOLEKÜLE</p>			
<p>(57) Abstract</p> <p>DNA molecules code for enzymes involved in starch synthesis in plants. These enzymes are two different isoforms of soluble starch synthase and a starch granule-bound starch synthase. Also disclosed are vectors, bacteria, plant cells transformed by said DNA molecules and regenerable plants derived therefrom, as well as starch that can be extracted from plants containing said proteins with an increased or reduced activity.</p>			
<p>(57) Zusammenfassung</p> <p>Die vorliegende Erfindung betrifft DNA-Moleküle, die für Enzyme codieren, die an der Stärkesynthese in Pflanzen beteiligt sind. Bei diesen Enzymen handelt es sich um zwei verschiedene Isoformen der löslichen Stärkesynthase sowie um eine Stärkekorn-gebundene Stärkesynthase. Weiterhin betrifft diese Erfindung Vektoren, Bakterien, sowie mit den beschriebenen DNA-Molekülen transformierte Pflanzenzellen und aus diesen regenerierbare Pflanzen. Ferner betrifft die Erfindung Stärke, die aus Pflanzen mit gesteigerter oder verringelter Aktivität der beschriebenen Proteine isoliert werden kann.</p>			

BEST AVAILABLE COPY

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NB	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Malta	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

DNA-Moleküle codierend Enzyme, die an der Stärkesynthese beteiligt sind, Vektoren, Bakterien, transgene Pflanzenzellen und Pflanzen enthaltend diese Moleküle

Die vorliegende Erfindung betrifft DNA-Moleküle, die Enzyme codieren, die an der Stärkesynthese in Pflanzen beteiligt sind. Bei diesen Enzymen handelt es sich um zwei verschiedene Isoformen der löslichen Stärkesynthase sowie um eine Stärkekorn-gebundene Stärkesynthase.

Weiterhin betrifft diese Erfindung Vektoren, Bakterien, sowie mit den beschriebenen DNA-Molekülen transformierte Pflanzenzellen und aus diesen regenerierbare Pflanzen.

Ferner werden Verfahren zur Herstellung transgener Pflanzen beschrieben, die aufgrund der Einführung von DNA-Molekülen, die lösliche bzw. Stärkekorn-gebundene Stärkesynthasen codieren, eine in ihren Eigenschaften veränderte Stärke synthetisieren.

Im Hinblick auf die zunehmende Bedeutung, die pflanzlichen Inhaltsstoffen als erneuerbaren Rohstoffquellen in letzter Zeit beigemessen wird, ist es eine der Aufgaben der biotechnologischen Forschung, sich um eine Anpassung dieser pflanzlichen Rohstoffe an die Anforderungen der verarbeitenden Industrie zu bemühen. Um eine Anwendung von nachwachsenden Rohstoffen in möglichst vielen Einsatzgebieten zu ermöglichen, ist es darüber hinaus erforderlich, eine große Stoffvielfalt zu erreichen.

Neben Ölen, Fetten und Proteinen stellen Polysaccharide die wesentlichen nachwachsenden Rohstoffe aus Pflanzen dar. Eine zentrale Stellung bei den Polysacchariden nimmt neben Cellulose die Stärke ein, die einer der wichtigsten Speicherstoffe in höheren Pflanzen ist. Neben Mais, Reis und Weizen spielt die Kartoffel bei der Stärkeproduktion eine wichtige Rolle.

Das Polysaccharid Stärke ist ein Polymer aus chemisch einheitlichen Grundbausteinen, den Glucosemolekülen. Es handelt sich dabei jedoch um ein sehr komplexes Gemisch aus unterschiedlichen Molekülformen, die sich hinsichtlich ihres Polymerisationsgrades und des Auftretens von Verzweigungen der Glucoseketten unterscheiden. Daher stellt Stärke keinen einheitlichen Rohstoff dar. Man unterscheidet insbesondere die Amylose-Stärke, ein im wesentlichen unverzweigtes Polymer aus α -1,4-glycosidisch verknüpften Glucosemolekülen, von der Amylopektin-Stärke, die ihrerseits ein komplexes Gemisch aus unterschiedlich verzweigten Glucoseketten darstellt. Die Verzweigungen kommen dabei durch das Auftreten von zusätzlichen α -1,6-glycosidischen Verknüpfungen zustande. In typischen für die Stärkeproduktion verwendeten Pflanzen, wie z.B. Mais oder Kartoffel, besteht die synthetisierte Stärke zu ca. 25 % aus Amylosestärke und zu ca. 75 % aus Amylopektin-Stärke.

Um eine möglichst breite Anwendung von Stärke zu ermöglichen, erscheint es wünschenswert, Pflanzen zur Verfügung zu stellen, die in der Lage sind, modifizierte Stärke zu synthetisieren, die sich für verschiedene Verwendungszwecke besonders eignet. Eine Möglichkeit, derartige Pflanzen bereitzustellen, besteht - neben züchterischen Maßnahmen - in der gezielten genetischen Veränderung des Stärkemetabolismus stärkeproduzierender Pflanzen durch gentechnologische Methoden. Voraussetzung hierfür ist jedoch die Identifizierung und Charakterisierung der an der Stärkesynthese und/oder -modifikation beteiligten Enzyme sowie die Isolierung der entsprechenden, diese Enzyme codierende DNA-Moleküle.

Die biochemischen Synthesewege, die zum Aufbau von Stärke führen, sind im wesentlichen bekannt. Die Stärkesynthese in pflanzlichen Zellen findet in den Plastiden statt. In photosynthetisch aktiven Geweben sind dies die Chloroplasten, in photosynthetisch inaktiven, stärkespeichernden Geweben die Amyloplasten.

Die wichtigsten an der Stärkesynthese beteiligten Enzyme sind die Stärkesynthasen sowie Verzweigungsenzyme. Bei den Stärkesynthasen sind verschiedene Isoformen beschrieben, die alle eine Polymerisierungsreaktion durch Übertragung eines Glucosylrestes von ADP-Glucose auf α -1,4-Glucane katalysieren. Verzweigungsenzyme katalysieren die Einführung von α -1,6-Verzweigungen in lineare α -1,4-Glucane.

Darüber hinaus wird die Beteiligung weiterer Enzymaktivitäten, beispielsweise hydrolytischer oder phosphorolytischer, an der Stärkesynthese diskutiert (Preiss in Oxford Surveys of Plant Molecular and Cell Biology, Oxford University Press, Vol. 7 (1991), 59-114). Im Fall des "R-Enzyms", des sogenannten Disproportionierungsenzyms, und der Stärkephosphorylasen kann ebenfalls eine Beteiligung an der Stärkesynthese nicht ausgeschlossen werden, obwohl diese Enzyme bisher meist mit dem Stärkeabbau in Verbindung gebracht werden. Stärkesynthasen können in zwei Klassen eingeteilt werden: die Stärkekorn-gebundenen Stärkesynthasen ("granule-bound starch synthases"; GBSS), die überwiegend an Stärkekörner gebunden, aber auch in löslicher Form vorliegen, und die löslichen Stärkesynthasen ("soluble starch synthases"; SSS). Für verschiedene Pflanzenspezies werden innerhalb dieser Klassen wiederum verschiedene Isoformen beschrieben, die sich hinsichtlich ihrer Abhängigkeit von Startermolekülen unterscheiden (sogenannte "primer dependent" (Typ II) und "primer independent" (Typ I) starch synthases).

Lediglich für die Isoform GBSS I gelang es bisher, die genaue Funktion bei der Stärkesynthese zu ermitteln. Pflanzen, in denen diese Enzymaktivität stark oder vollkommen reduziert ist, synthetisieren eine amylosefreie (sogenannte "waxy") Stärke (Shure et al., Cell 35 (1983), 225-233; Visser et al., Mol. Gen. Genet. 225 (1991), 289-296; WO 92/11376), so daß diesem Enzym eine entscheidende Rolle bei der Synthese der Amylosestärke zugesprochen wird. Dieses Phänomen wird ebenfalls in Zellen der Grünalge *Chlamydomonas reinhardtii* beobachtet (Delrue et al., J. Bacteriol. 174 (1992), 3612-3620). Bei *Chlamydomonas* konnte darüber hinaus

gezeigt werden, daß GBSS I nicht nur an der Synthese der Amylose beteiligt ist, sondern auch einen Einfluß auf die Amylopektinsynthese besitzt. In Mutanten, die keine GBSS I-Aktivität aufweisen, fehlt eine bestimmte Fraktion des normalerweise synthetisierten Amylopektins, die längerkettige Glucane aufweist.

Die Funktionen der anderen Isoformen der Stärkekorn-gebundenen Stärkesynthasen, insbesondere der GBSS II, und der löslichen Stärkesynthasen sind bisher unklar. Es wird angenommen, daß die löslichen Stärkesynthasen zusammen mit Verzweigungsenzymen an der Synthese des Amylopektins beteiligt sind (siehe z.B. Ponstein et al., *Plant Physiol.* 92 (1990), 234-241) und daß sie eine wichtige Funktion bei der Regulation der Stärkesyntheserate spielen.

Bei Kartoffel wurden die Isoformen GBSS I, GBSS II, sowie zwei bzw. drei Isoformen der löslichen Stärkesynthasen, die bisher nicht näher bezeichnet wurden, identifiziert (Ponstein et al., *Plant Physiol.* 92 (1990), 234-241; Smith et al., *Planta* 182 (1990), 599-604; Hawker et al., *Phytochemistry* 11 (1972), 1287-1293). Für Erbse wurde ebenfalls eine GBSS II nachgewiesen (Dry et al., *The Plant Journal* 2,2 (1992), 193-202).

Eine GBSS I aus Kartoffel codierende cDNA sowie eine genomische DNA sind bereits beschrieben (Visser et al., *Plant Sci.* 64 (1989), 185-192; van der Leij et al., *Mol. Gen. Genet.* 228 (1991), 240-248). Nucleinsäuresequenzen, die weitere Stärkekorn-gebundene Stärkesynthasen oder eine der löslichen Stärkesynthase-Isoformen aus Kartoffel codieren, lagen jedoch bisher noch nicht vor.

Außer bei der Kartoffel wurden lösliche Stärkesynthasen auch in einer Reihe weiterer Pflanzenarten identifiziert. Lösliche Stärkesynthasen sind beispielsweise bis zur Homogenität aus Erbse (Denyer und Smith, *Planta* 186 (1992), 609-617) und Mais (WO 94/09144) isoliert worden. Im Fall der Erbse stellte sich heraus, daß die als SSS II identifizierte Isoform der löslichen Stärkesynthase identisch ist mit der

Stärkekorn-gebundenen Stärkesynthase GBSS II (Denyer et al., Plant J. 4 (1993), 191-198). Für einige weitere Pflanzenspezies wurde das Vorhandensein mehrerer SSS-Isoformen mit Hilfe chromatographischer Methoden beschrieben, beispielsweise bei Gerste (Tyynelä und Schulman, Physiologia Plantarum 89 (1993) 835-841; Kreis, Planta 148 (1980), 412-416), Mais (Pollock und Preiss, Arch. Biochem. Biophys. 204 (1980), 578-588) und Weizen (Rijven, Plant Physiol. 81 (1986), 448-453). DNA-Sequenzen, die diese Proteine codieren, wurden jedoch bisher nicht beschrieben.

Eine cDNA-Sequenz, die eine lösliche Stärkesynthase codiert, wurde bisher lediglich für Reis beschrieben (Baba et al., Plant Physiol. 103 (1993), 565-573).

Um Möglichkeiten bereitzustellen, beliebige stärkespeichernde Pflanzen dahingehend zu verändern, daß sie eine modifizierte Stärke synthetisieren, ist es erforderlich, jeweils DNA-Sequenzen zu identifizieren, die die verschiedenen Isoformen der Stärkekorn-gebundenen bzw. löslichen Stärkesynthasen codieren.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, DNA-Moleküle, insbesondere aus Kartoffel, zur Verfügung zu stellen, die an der Stärkebiosynthese beteiligte Enzyme codieren und mit deren Hilfe es möglich ist, gentechnisch veränderte Pflanzen herzustellen, die eine erhöhte oder erniedrigte Aktivität dieser Enzyme aufweisen, wodurch es zu einer Veränderung der chemischen und/oder physikalischen Eigenschaften der in diesen Pflanzen synthetisierten Stärke kommt.

Diese Aufgabe wird durch die Bereitstellung der in den Patentansprüchen bezeichneten Ausführungsformen gelöst.

Die Erfindung betrifft daher DNA-Moleküle, die Stärkesynthasen codieren, insbesondere solche DNA-Moleküle, die Stärkekorn-gebundene Stärkesynthasen der Isoform II codieren, als auch DNA-Moleküle, die lösliche Stärkesynthasen codieren.

Insbesondere betrifft die vorliegende Erfindung DNA-Moleküle, die Proteine mit der biologischen Aktivität einer Stärkekorn-gebundenen Stärkesynthase der Isoform II (GBSSII) codieren oder ein biologisch aktives Fragment eines solchen Proteins, wobei derartige Moleküle vorzugsweise Proteine mit der unter Seq ID No. 8 angegebenen Aminosäuresequenz codieren. Insbesondere betrifft die Erfindung DNA-Moleküle mit der unter Seq D No. 7 angegebenen Nucleotidsequenz, bevorzugt Moleküle, die die in Seq ID No. 7 angegebene codierende Region umfassen.

Gegenstand der Erfindung sind ebenfalls DNA-Moleküle, die eine GBSSII codieren und deren Sequenz aufgrund der Degeneration des genetischen Codes von den Nucleotidsequenzen der oben beschriebenen DNA-Moleküle abweicht.

Ferner betrifft die vorliegende Erfindung DNA-Moleküle, die GBSSII codieren und die mit einem der oben beschriebenen DNA-Moleküle hybridisieren. Derartige DNA-Moleküle stammen vorzugsweise aus stärkespeichernden Pflanzen, insbesondere dicotylen Pflanzen, und besonders bevorzugt aus Kartoffel.

Die durch die erfindungsgemäßen DNA-Moleküle codierten GBSSII-Proteine haben vorzugsweise ein Molekulargewicht von 85 ± 5 kD. GBSSII-Proteine liegen vorwiegend an Stärkekörner gebunden vor, können jedoch auch in löslicher Form vorliegen.

Ferner betrifft die vorliegende Erfindung DNA-Moleküle, die Proteine mit der biologischen Aktivität einer löslichen Stärkesynthase der Isoform B (SSSB) codieren oder ein biologisch aktives Fragment eines solchen Proteins, wobei derartige Moleküle vorzugsweise Proteine mit der unter Seq ID No. 10 angegebenen Aminosäuresequenz codieren. Insbesondere betrifft die Erfindung DNA-Moleküle mit der unter Seq ID No. 9 angegebenen Nucleotidsequenz, bevorzugt Moleküle, die die in Seq ID No. 9 angegebene codierende Region umfassen.

Gegenstand der Erfindung sind ebenfalls DNA-Moleküle, die eine SSSB codieren und deren Sequenz aufgrund der Degenera-

tion des genetischen Codes von den Nucleotidsequenzen der oben beschriebenen DNA-Moleküle abweicht.

Ferner betrifft die vorliegende Erfindung DNA-Moleküle, die SSSB codieren und die mit einem der oben beschriebenen DNA-Moleküle hybridisieren. Ausgenommen sind dabei DNA-Moleküle aus Reis. Die durch die erfindungsgemäßen DNA-Moleküle codierten SSSB-Proteine haben vorzugsweise ein Molekulargewicht von 78 ± 5 kD.

Die enzymatischen Eigenschaften der SSSB-Proteine sind in den Beispielen beschrieben.

Die Erfindung betrifft weiterhin DNA-Moleküle, die Proteine mit der biologischen Aktivität einer löslichen Stärkesynthase der Isoform A (SSSA) codieren. Derartige Proteine können beispielsweise dadurch charakterisiert werden, daß sie von einem Antikörper, der gegen das Peptid mit der Aminosäuresequenz

gerichtet ist, erkannt werden. Die enzymatischen Eigenschaften der SSSA-Proteine sind in den Beispielen beschrieben.

Ein Beispiel für ein DNA-Molekül, das ein derartiges Protein codiert, ist ein DNA-Molekül mit der in Seq ID No. 11 dargestellten codierenden Region. Dieses DNA-Molekül kann verwendet werden, um aus anderen Organismen, insbesondere Pflanzen DNA-Moleküle zu isolieren, die SSSA-Proteine codieren.

Somit betrifft die vorliegende Erfindung auch DNA-Moleküle, die Proteine mit der biologischen Aktivität einer löslichen Stärkesynthase der Isoform A (SSSA) codieren oder ein biologisch aktives Fragment eines solchen Proteins, wobei derartige Moleküle vorzugsweise Proteine mit der unter Seq ID No. 12 angegebenen Aminosäuresequenz codieren. Insbesondere betrifft die Erfindung DNA-Moleküle mit der unter SeqID No. 11 angegebenen Nucleotidsequenz, bevorzugt Moleküle, die die in Seq ID No. 11 angegebene codierende Region umfassen.

Gegenstand der Erfindung sind ebenfalls DNA-Moleküle, die eine SSSA codieren und deren Sequenz aufgrund der Degeneration des genetischen Codes von den Nucleotidsequenzen der oben beschriebenen DNA-Moleküle abweicht.

Ferner betrifft die vorliegende Erfindung DNA-Moleküle, die SSSA codieren und die mit einem der oben beschriebenen DNA-Moleküle hybridisieren.

Das SSSA-Protein hat dabei vorzugsweise in einer SDS-Gel-elektrophorese ein apparentes Molekulargewicht von ca. 120 bis 140 kD, insbesondere von ca. 135 kD.

Der Begriff "Hybridisierung" bedeutet im Rahmen dieser Erfindung eine Hybridisierung unter konventionellen Hybridisierungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2. Aufl. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) beschrieben sind. DNA-Moleküle, die mit den erfindungsgemäßen DNA-Molekülen hybridisieren, können prinzipiell aus jedem beliebigen Organismus (d.h. Prokaryonten oder Eukaryonten, insbesondere aus Bakterien, Pilzen, Algen, Pflanzen oder tierischen Organismen) stammen, der derartige DNA-Moleküle besitzt. Sie stammen vorzugsweise aus monokotylen oder dikotylen Pflanzen, insbesondere aus Nutzpflanzen, und besonders bevorzugt aus Stärke-speichernden Pflanzen.

DNA-Moleküle, die mit den erfindungsgemäßen DNA-Molekülen hybridisieren, können z.B. aus genomischen oder aus cDNA-Bibliotheken verschiedener Organismen isoliert werden.

Die Identifizierung und Isolierung derartiger DNA-Moleküle aus Pflanzen oder anderen Organismen kann dabei unter Verwendung der erfindungsgemäßen DNA-Moleküle oder Teile dieser DNA-Moleküle bzw. der reversen Komplemente dieser Moleküle erfolgen, z.B. mittels Hybridisierung nach Standardverfahren (siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).

Als Hybridisierungsprobe können z.B. DNA-Moleküle verwendet werden, die exakt die oder im wesentlichen die unter Seq ID No. 7, 9 oder 11 angegebene DNA-Sequenz oder Teile dieser Sequenz aufweisen. Bei den als Hybridisierungsprobe verwendeten DNA-Fragmenten kann es sich auch um synthetische DNA-Fragmente handeln, die mit Hilfe der gängigen DNA-Synthesetechniken hergestellt wurden und deren Sequenz im wesentlichen mit der eines erfindungsgemäßen DNA-Moleküls übereinstimmt. Hat man Gene identifiziert und isoliert, die mit den erfindungsgemäßen DNA-Sequenzen hybridisieren, ist eine Bestimmung der Sequenz und eine Analyse der Eigenschaften der von dieser Sequenz codierten Proteine erforderlich.

Die mit den erfindungsgemäßen DNA-Molekülen hybridisierenden Moleküle umfassen auch Fragmente, Derivate und allelische Varianten der oben beschriebenen DNA-Moleküle, die eines der oben beschriebenen Proteine codieren. Unter Fragmenten werden dabei Teile der DNA-Moleküle verstanden, die lang genug sind, um eines der beschriebenen Proteine zu codieren. Der Ausdruck Derivat bedeutet in diesem Zusammenhang, daß die DNA-Sequenzen dieser Moleküle sich von den Sequenzen der oben beschriebenen DNA-Moleküle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Homologie zu diesen DNA-Sequenzen aufweisen. Homologie bedeutet dabei eine Sequenzidentität von mindestens 40 %, insbesondere eine Identität von mindestens 60 %, vorzugsweise über 80 % und besonders bevorzugt über 90 %. Die Abweichungen zu den oben beschriebenen DNA-Molekülen können dabei durch Deletion, Substitution, Insertion oder Rekombination entstanden sein. Homologie bedeutet ferner, daß funktionelle und/oder strukturelle Äquivalenz zwischen den betreffenden DNA-Molekülen oder den durch sie codierten Proteinen, besteht. Bei den DNA-Molekülen, die homolog zu den oben beschriebenen DNA-Molekülen sind und Derivate dieser DNA-Moleküle darstellen, handelt es sich in der Regel um Variationen dieser DNA-Moleküle, die Modifikationen darstellen, die dieselbe biologische Funktion ausüben. Es kann sich dabei sowohl um natürliche

cherweise auftretende Variationen handeln, beispielsweise um Sequenzen aus anderen Organismen, oder um Mutationen, wobei diese Mutationen auf natürliche Weise aufgetreten sein können oder durch gezielte Mutagenese eingeführt wurden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln. Bei den allelischen Varianten kann es sich sowohl um natürlich auftretende Varianten handeln, als auch um synthetisch hergestellte oder durch rekombinante DNA-Techniken erzeugte Varianten.

Die von den verschiedenen Varianten der erfindungsgemäßen DNA-Moleküle codierten Proteine weisen bestimmte gemeinsame Charakteristika auf. Dazu können z.B. Enzymaktivität, Molekulargewicht, immunologische Reaktivität, Konformation etc. gehören, sowie physikalische Eigenschaften wie z.B. das Laufverhalten in Gelelektrophoresen, chromatographisches Verhalten, Sedimentationskoeffizienten, Löslichkeit, spektroskopische Eigenschaften, Stabilität, pH-Optimum, Temperatur-Optimum etc.

Wichtige Charakteristika einer Stärkesynthase sind: i) ihre Lokalisation im Stroma der Plastiden pflanzlicher Zellen; ii) ihre Fähigkeit zur Synthese linearer α -1,4-verknüpfter Polyglucane unter Verwendung von ADP-Glucose als Substrat. Diese Aktivität kann wie in Denyer und Smith (Planta 186 (1992), 606-617) und in den Beispielen beschrieben bestimmt werden.

Die erfindungsgemäßen DNA-Moleküle können prinzipiell aus jedem Organismus stammen, der die beschriebenen Proteine exprimiert, vorzugsweise aus Pflanzen, insbesondere aus stärkesynthetisierenden bzw. stärkespeichernden Pflanzen. Diese können sowohl monokotyle oder auch dikotyle Pflanzen sein. Besonders bevorzugt sind dabei z.B. Getreidearten (wie Gerste, Roggen, Hafer, Weizen etc.), Mais, Reis, Erbse, Maniok, Kartoffel usw.

Ferner betrifft die Erfindung Vektoren, insbesondere Plasmide, Cosmide, Viren, Bacteriophagen und andere in der Gentechnik gängige Vektoren, die die oben beschriebenen erfindungsgemäßen DNA-Moleküle enthalten.

In einer bevorzugten Ausführungsform sind die in den Vektoren enthaltenen DNA-Moleküle verknüpft mit DNA-Elementen, die die Transkription und Synthese einer translatierbaren RNA in prokaryontischen oder eukaryontischen Zellen gewährleisten.

Die Expression der erfindungsgemäßen DNA-Moleküle in prokaryontischen Zellen, beispielsweise in *Escherichia coli*, ist insofern interessant, als daß auf diese Weise eine genauere Charakterisierung der enzymatischen Aktivitäten dieser Enzyme, für die diese Moleküle codieren, ermöglicht wird. Es ist insbesondere möglich, das Produkt, das von den entsprechenden Enzymen in Abwesenheit anderer, in der pflanzlichen Zelle an der Stärkesynthese beteiligter Enzyme synthetisiert wird, zu charakterisieren. Dies läßt Rückschlüsse zu auf die Funktion, die das entsprechende Protein bei der Stärkesynthese in der Pflanzenzelle ausübt.

Darüber hinaus ist es möglich, mittels gängiger molekularbiologischer Techniken (siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) verschiedene Mutationen in die erfindungsgemäßen DNA-Moleküle einzuführen, wodurch es zur Synthese von Proteinen mit eventuell veränderten biologischen Eigenschaften kommt. Hierbei ist zum einen die Erzeugung von Deletionsmutanten möglich, bei denen durch fortschreitende Deletionen vom 5'- oder vom 3'-Ende der codierenden DNA-Sequenz DNA-Moleküle erzeugt werden, die zur Synthese entsprechend verkürzter Proteine führen. Durch derartige Deletionen am 5'-Ende der DNA-Sequenz ist es beispielsweise möglich, Aminosäuresequenzen zu identifizieren, die für die Translokation des Enzyms in die Plastiden verantwortlich sind (Transitpeptide). Dies erlaubt

es; gezielt Enzyme herzustellen, die durch Entfernen der entsprechenden Sequenzen nicht mehr in den Plastiden, sondern im Cytosol lokalisiert sind, oder aufgrund der Addition von anderen Signalsequenzen in anderen Kompartimenten lokalisiert sind.

Andererseits ist auch die Einführung von Punktmutationen denkbar an Positionen, bei denen eine Veränderung der Aminosäuresequenz einen Einfluß beispielweise auf die Enzymaktivität oder die Regulierung des Enzyms hat. Auf diese Weise können z.B. Mutanten hergestellt werden, die einen veränderten K_m -Wert besitzen oder nicht mehr den normalerweise in der Zelle vorliegenden Regulationsmechanismen über allosterische Regulation oder kovalente Modifizierung unterliegen. Des weiteren können Mutanten hergestellt werden, die eine veränderte Substrat- oder Produktspezifität aufweisen, wie z.B. Mutanten, die als Substrat ADP-Glucose-6-Phosphat statt ADP-Glucose verwenden. Weiterhin können Mutanten hergestellt werden, die ein verändertes Aktivitäts-Temperatur-Profil aufweisen.

Für die gentechnische Manipulation in prokaryontischen Zellen können die erfindungsgemäßen DNA-Moleküle oder Teile dieser Moleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von Standardverfahren (vgl. Sambrook et al., 1989, Molecular Cloning: A laboratory manual, 2. Aufl., Cold Spring Harbor Laboratory Press, NY, USA) können Basenaustausche vorgenommen oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder linker angesetzt werden. Ferner können Manipulationen, die passende Restriktionsschnittstellen zur Verfügung stellen oder die überflüssige DNA oder Restriktions-schnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen in Frage kommen, können in vitro-Mutagenese, "primer repair", Restriktion oder Ligation verwendet werden. Als Analysemethode werden im allgemeinen

eine Sequenzanalyse, eine Restriktionsanalyse und weitere biochemisch-molekularbiologische Methoden durchgeführt.

In einer weiteren Ausführungsform betrifft die Erfindung Wirtszellen, insbesondere prokaryontische oder eukaryontische Zellen, die ein oben beschriebenes erfindungsgemäßes DNA-Molekül oder einen erfindungsgemäßen Vektor enthalten. Dabei handelt es sich vorzugsweise um bakterielle Zellen oder pflanzliche Zellen.

Gegenstand der Erfindung sind ferner die Proteine, die durch die erfindungsgemäßes DNA-Moleküle codiert werden, sowie Verfahren zu deren Herstellung, wobei eine erfindungsgemäße Wirtszelle unter Bedingungen kultiviert wird, die die Synthese des Proteins erlauben, und das Protein aus den kultivierten Zellen und/oder dem Kulturmedium isoliert wird.

Es wurde nun gefunden, daß es durch die Bereitstellung der erfindungsgemäßes DNA-Moleküle möglich ist, mit Hilfe gentechnischer Methoden in den Stärkemetabolismus von Pflanzen einzutreten, wie es bisher nicht möglich war, und ihn dahingehend zu verändern, daß es zur Synthese einer Stärke kommt, die in ihren physikalisch-chemischen Eigenschaften, insbesondere dem Amylose/Amylopektin-Verhältnis, dem Verzweigungsgrad, der durchschnittlichen Kettenlänge, dem Phosphatgehalt, der Verkleisterung, der Stärkekorngröße und/oder der Stärkekornform im Vergleich zu in Wildtyp-Pflanzen synthetisierter Stärke verändert ist. Lösliche Stärkesynthetasen spielen beispielsweise eine zentrale Rolle bei der Regulation der Syntheserate der Stärke. Daher ist durch eine Erhöhung der Aktivität dieser Enzyme oder durch die Bereitstellung von Mutanten, die nicht mehr den zelleigenen Regulationsmechanismen unterliegen und/oder unterschiedliche Temperaturabhängigkeiten in bezug auf ihre Aktivität besitzen, eine Ertragssteigerung in entsprechend gentechnisch veränderten Pflanzen möglich. Die wirtschaftliche Bedeutung der Möglichkeit des Eingriffs in die Stärkesynthese allein

bei Kartoffelpflanzen ist offensichtlich: Die Kartoffel ist beispielsweise in Europa neben Mais und Weizen eine der wichtigsten Pflanzen zur Stärkegewinnung. Ca. 20 % der in Europa jährlich produzierten Stärke wird aus Kartoffeln gewonnen. Ferner weist Kartoffelstärke im Vergleich zu Stärke aus Mais und Weizen einige vorteilhafte Eigenschaften auf, beispielsweise einen niedrigen Protein- und Lipidgehalt sowie verhältnismäßig große Stärkekörner, Phosphatgehalt, weshalb sie, falls dies möglich ist, vorzugsweise verwendet wird.

Möglich ist somit die Expression der erfindungsgemäßen DNA-Moleküle in pflanzlichen Zellen, um die Aktivität einer oder mehrerer Stärkesynthasen zu erhöhen. Ferner ist es möglich, die erfindungsgemäßen DNA-Moleküle nach dem Fachmann bekannten Methoden zu modifizieren, um Stärkesynthasen zu erhalten, die nicht mehr den zelleigenen Regulationsmechanismen unterliegen, bzw. veränderte Temperaturabhängigkeiten oder Substrat- bzw. Produktspezifitäten aufweisen.

Es besteht grundsätzlich die Möglichkeit, daß das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein kann. Um die Lokalisation in einem bestimmten Kompartiment zu erreichen, muß die die Lokalisation in Plastiden gewährleistende Sequenz deletiert werden und die verbleibende codierende Region gegebenenfalls mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in dem jeweiligen Kompartiment gewährleisten. Derartige Sequenzen sind bekannt (Siehe beispielsweise Braun et al., 1992, EMBO J. 11:3219-3227; Wolter et al., 1988, Proc. Natl. Acad. Sci. USA 85:846-850; Sonnewald et al., 1991, Plant J. 1:95-106).

Die vorliegende Erfindung betrifft somit auch transgene Pflanzenzellen, die ein erfindungsgemäßes DNA-Molekül enthalten, wobei dieses mit regulatorischen DNA-Elementen verknüpft ist, die die Transkription in pflanzlichen Zellen ge-

währleisten, insbesondere mit einem Promotor, der in bezug auf das DNA-Molekül heterolog ist.

Die transgenen Pflanzenzellen können nach dem Fachmann bekannten Techniken zu ganzen Pflanzen regeneriert werden. Die durch Regeneration der erfindungsgemäßen transgenen Pflanzenzellen erhältlichen Pflanzen sind ebenfalls Gegenstand der vorliegenden Erfindung. Ferner sind Gegenstand der Erfindung Pflanzen, die die obenbeschriebenen transgenen Pflanzenzellen enthalten. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen. Bevorzugt handelt es sich um Nutzpflanzen, wie z.B. Getreidearten (Roggen, Gerste, Hafer, Weizen etc.), Reis, Mais, Erbse, Maniok oder Kartoffel.

Die Erfindung betrifft ebenfalls Vermehrungsmaterial der erfindungsgemäßen Pflanzen, beispielsweise Früchte, Samen, Knollen, Stecklinge etc.

Die erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen synthetisieren aufgrund der Expression bzw. zusätzlichen Expression eines erfindungsgemäßen DNA-Moleküls eine Stärke, die im Vergleich zu Stärke aus Wildtyp-Pflanzen, d.h. nicht-transformierten Pflanzen, modifiziert ist, insbesondere im Hinblick auf die Viskosität wässriger Lösungen dieser Stärke und/oder den Phosphatgehalt.

Gegenstand der vorliegenden Erfindung ist somit auch die aus den erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen erhältliche Stärke.

Ein weiterer Gegenstand der Erfindung sind transgene Pflanzenzellen, in denen die Aktivität eines erfindungsgemäßen Proteins verringert ist im Vergleich zu nicht-transformierten Pflanzen. Es wurde gefunden, daß es in Pflanzenzellen mit einer verringerten Aktivität eines erfindungsgemäßen Proteins zur Synthese einer Stärke mit veränderten chemischen und/oder physikalischen Eigenschaften kommt verglichen mit Stärke aus Wildtyp-Pflanzenzellen.

Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines erfindungsgemäßen Proteins kann beispielsweise unter Verwendung der erfindungsgemäßen DNA-Moleküle erreicht werden. Möglich sind hierbei die Expression einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte spaltet, die eines der erfindungsgemäßen Proteine codieren. Vorzugsweise wird zur Reduzierung der Aktivität eines erfindungsgemäßen Proteins in pflanzlichen Zellen eine antisense-RNA exprimiert.

Hierzu kann zum einen ein DNA-Molekül verwendet werden, das die gesamte für ein erfindungsgemäses Protein codierende Sequenz einschließlich eventuell vorhandener flankierender Sequenzen umfaßt, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Es können im allgemeinen Sequenzen bis zu einer Mindestlänge von 15 bp, vorzugsweise einer Länge von 100-500 bp, für eine effiziente antisense-Inhibition insbesondere Sequenzen mit einer Länge über 500 bp verwendet werden. In der Regel werden DNA-Moleküle verwendet, die kürzer als 5000 bp, vorzugsweise Sequenzen, die kürzer als 2500 bp sind. Bevorzugt werden DNA-Moleküle verwendet, die homolog in bezug auf die zu transformierende Pflanzenspezies sind.

Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den Sequenzen der erfindungsgemäßen DNA-Moleküle aufweisen, aber nicht vollkommen identisch sind. Die minimale Homologie sollte größer als ca. 65 % sein. Die Verwendung von Sequenzen mit Homologien zwischen 95 und 100 % ist zu bevorzugen.

Die erfindungsgemäßen transgenen Pflanzenzellen können nach dem Fachmann bekannten Techniken zu ganzen Pflanzen regeneriert werden. Gegenstand der Erfindung sind somit auch Pflanzen, die die erfindungsgemäßen transgenen Pflanzenzellen enthalten. Bei diesen Pflanzen kann es sich prinzipiell

um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h. sowohl monokotyle als auch dikotyle Pflanzen. Vorzugsweise handelt es sich um Nutzpflanzen, insbesondere stärkespeichernde Pflanzen, wie z.B. Getreidearten (Roggen, Gerste, Hafer, Weizen, etc.), Reis, Mais, Erbse, Maniok oder Kartoffel. Die Erfindung betrifft ebenfalls Vermehrungsmaterial der erfindungsgemäßen Pflanzen, wie z.B. Früchte, Samen, Knollen, Stecklinge etc.

Die erfindungsgemäßen transgenen Pflanzenzellen und Pflanzen synthetisieren aufgrund der Verringerung der Aktivität eines der erfindungsgemäßen Proteine eine Stärke, die im Vergleich zu Stärke aus nicht-transformierten Pflanzenzellen bzw. Pflanzen veränderte chemische und/oder physikalische Eigenschaften aufweisen. Diese Stärke zeigt beispielsweise eine veränderte Viskosität ihrer wässrigen Lösungen und/oder einen veränderten Phosphatgehalt.

Gegenstand der Erfindung ist somit auch die aus den vorgehend beschriebenen transgenen Pflanzenzellen und Pflanzen erhältliche Stärke.

Die erfindungsgemäßen Stärken können nach dem Fachmann bekannten Verfahren modifiziert werden und eignen sich in unmodifizierter oder modifizierter Form für verschiedene Verwendungen im Nahrungsmittel- oder Nicht-Nahrungsmittelbereich.

Die Einsatzmöglichkeit der Stärke lässt sich grundsätzlich in zwei große Bereiche unterteilen. Der eine Bereich umfasst die Hydrolyseprodukte der Stärke, hauptsächlich Glucose und Glucanbausteine, die über enzymatische oder chemische Verfahren erhalten werden. Sie dienen als Ausgangsstoff für weitere chemische Modifikationen und Prozesse, wie Fermentation. Von Bedeutung kann hier die Einfachheit und kostengünstige Ausführung eines Hydrolyseverfahrens sein, wie es gegenwärtig im wesentlichen enzymatisch unter Verwendung von

Amyloglucosidase verläuft. Vorstellbar wäre eine Kosteneinsparung durch einen geringeren Einsatz von Enzymen. Eine Strukturveränderung der Stärke, z.B. Oberflächenvergrößerung des Korns, leichtere Verdaulichkeit durch geringeren Zweigungsgrad oder eine sterische Struktur, die die Zugänglichkeit für die eingesetzten Enzyme begrenzt, könnte dies bewirken.

Der andere Bereich, in dem die Stärke wegen ihrer polymeren Struktur als sogenannte native Stärke verwendet wird, gliedert sich in zwei weitere Einsatzgebiete:

1. Nahrungsmittelindustrie

Stärke ist ein klassischer Zusatzstoff für viele Nahrungsmittel, bei denen sie im wesentlichen die Funktion des Bindens von wässrigen Zusatzstoffen übernimmt bzw. eine Erhöhung der Viskosität oder aber eine erhöhte Gelbildung hervorruft. Wichtige Eigenschaftsmerkmale sind das Fließ- und Sorptionsverhalten, die Quell- und Verkleisterungstemperatur, die Viskosität und Dickungsleistung, die Löslichkeit der Stärke, die Transparenz und Kleisterstruktur, die Hitze-, Scher- und Säurestabilität, die Neigung zur Retrogradation, die Fähigkeit zur Filmbildung, die Gefrier/Taustabilität, die Verdaulichkeit sowie die Fähigkeit zur Komplexbildung mit z.B. anorganischen oder organischen Ionen.

2. Nicht-Nahrungsmittelindustrie

In diesem großen Bereich wird Stärke als Hilfsstoff für unterschiedliche Herstellungsprozesse bzw. als Zusatzstoff in technischen Produkten eingesetzt. Bei der Verwendung von Stärke als Hilfsstoff ist hier insbesondere die Papier- und Pappeindustrie zu nennen. Stärke dient dabei in erster Linie zur Retardation (Zurückhaltung von Feststoffen), der Abbindung von Füllstoff- und Feinstoffteilchen, als Festigungsstoff und zur Entwässerung. Darüber hinaus werden die günstigen Eigenschaften der Stärke in bezug auf die Steifigkeit, die Härte, den Klang, den Griff, den Glanz, die

Glätte, die Spaltfestigkeit sowie die Oberflächen ausgenutzt.

2.1 Papier- und Pappeindustrie

Innerhalb des Papierherstellungsprozesses sind vier Anwendungsbereiche, nämlich Oberfläche, Strich, Masse und Sprühnen, zu unterscheiden.

Die Anforderungen an die Stärke in bezug auf die Oberflächenbehandlung sind im wesentlichen ein hoher Weißgrad, eine angepaßte Viskosität, eine hohe Viskositätsstabilität, eine gute Filmbildung sowie eine geringe Staubbildung. Bei der Verwendung im Strich spielt der Feststoffgehalt, eine angepaßte Viskosität, ein hohes Bindevermögen sowie eine hohe Pigmentaffinität eine wichtige Rolle. Als Zusatz zur Masse ist eine rasche, gleichmäßige, verlustfreie Verteilung, eine hohe mechanische Stabilität und eine vollständige Zurückhaltung im Papierfließ von Bedeutung. Beim Einsatz der Stärke im Sprühbereich sind ebenfalls ein angepaßter Feststoffgehalt, hohe Viskosität sowie ein hohes Bindevermögen von Bedeutung.

2.2 Klebstoffindustrie

Ein großer Einsatzbereich der Stärken besteht in der Klebstoffindustrie, wo man die Einsatzmöglichkeiten in vier Teilbereiche gliedert: die Verwendung als reinem Stärkeleim, die Verwendung bei mit speziellen Chemikalien aufbereiteten Stärkeleimen, die Verwendung von Stärke als Zusatz zu synthetischen Harzen und Polymerdispersionen sowie die Verwendung von Stärken als Streckmittel für synthetische Klebstoffe. 90 % der Klebstoffe auf Stärkebasis werden in den Bereichen Wellpappenherstellung, Herstellung von Papiersäcken, Beuteln und Tüten, Herstellung von Verbundmaterialien für Papier und Aluminium, Herstellung von Kartonagen und Wiederbefeuhtungsleim für Briefumschläge, Briefmarken usw. eingesetzt.

2.3 Textil- und Textilpflegemittelindustrie

Ein großes Einsatzfeld für Stärken als Hilfsmittel und Zusatzstoff ist der Bereich Herstellung von Textilien und Textilpflegemitteln. Innerhalb der Textilindustrie sind die folgenden vier Einsatzbereiche zu unterscheiden: Der Einsatz der Stärke als Schlichtmittel, d.h. als Hilfsmittel zur Glättung und Stärkung des Klettverhaltens zum Schutz gegen die beim Weben angreifenden Zugkräfte sowie zur Erhöhung der Abriebfestigkeit beim Weben, Stärke als Mittel zur Textilaufbrüstung vor allem nach qualitätsverschlechternden Vorbehandlungen, wie Bleichen, Färben usw., Stärke als Verdickungsmittel bei der Herstellung von Farbpasten zur Verhinderung von Farbstoffdiffusionen sowie Stärke als Zusatz zu Kettungsmitteln für Nähgarne.

2.4 Baustoffindustrie

Der vierte Einsatzbereich ist die Verwendung der Stärken als Zusatz bei Baustoffen. Ein Beispiel ist die Herstellung von Gipskartonplatten, bei der die im Gipsbrei vermischt Stärke mit dem Wasser verkleistert, an die Oberfläche der Gipsplatte diffundiert und dort den Karton an die Platte bindet. Weitere Einsatzbereiche sind die Beimischung zu Putz- und Mineralfasern. Bei Transportbeton werden Stärkeprodukte zur Verzögerung der Abbindung eingesetzt.

2.5 Bodenstabilisation

Ein weiterer Markt für Stärke bietet sich bei der Herstellung von Mitteln zur Bodenstabilisation an, die bei künstlichen Erdbewegungen zum temporären Schutz der Bodenpartikel gegenüber Wasser eingesetzt werden. Kombinationsprodukte aus Stärke und Polymeremulsionen sind nach heutiger Kenntnis in ihrer Erosions- und verkrustungsmindernden Wirkung den bisher eingesetzten Produkten gleichzusetzen, liegen preislich aber deutlich unter diesen.

2.6 Einsatz bei Pflanzenschutz- und Düngemitteln

Ein Einsatzbereich liegt bei der Verwendung der Stärke in Pflanzenschutzmitteln zur Veränderung der spezifischen Eigenschaften der Präparate. So werden Stärken zur Verbesserung der Benetzung von Pflanzenschutz- und Düngemitteln, zur dosierten Freigabe der Wirkstoffe, zur Umwandlung flüssiger, flüchtiger und/oder übelriechender Wirkstoffe in mikrokristalline, stabile, formbare Substanzen, zur Mischung inkompatibler Verbindungen und zur Verlängerung der Wirkdauer durch Verminderung der Zersetzung eingesetzt.

2.7 Pharmaka, Medizin und Kosmetikindustrie

Ein weiteres Einsatzgebiet besteht im Bereich der Pharmaka, Medizin und Kosmetikindustrie. In der pharmazeutischen Industrie werden Stärken als Bindemittel für Tabletten oder zur Bindemittelverdünnung in Kapseln eingesetzt. Weiterhin dienen Stärken als Tablettensprengmittel, da sie nach dem Schlucken Flüssigkeit absorbieren und nach kurzer Zeit so weit quellen, daß der Wirkstoff freigesetzt wird. Medizinische Gleit- und Wundpuder basieren aus qualitativen Gründen auf Stärke. Im Bereich der Kosmetik werden Stärken beispielsweise als Träger von Puderzusatzstoffen, wie Duften und Salicylsäure eingesetzt. Ein relativ großer Anwendungsbereich für Stärke liegt bei Zahnpasta.

2.8 Stärkezusatz zu Kohle und Brikett

Einen Einsatzbereich bietet die Stärke als Zusatzstoff zu Kohle und Brikett. Kohle kann mit einem Stärkezusatz quantitativ hochwertig agglomeriert bzw. brikettiert werden, wodurch ein frühzeitiges Zerfallen der Briketts verhindert wird. Der Stärkezusatz liegt bei Grillkohle zwischen 4 und 6 %, bei kalorierter Kohle zwischen 0,1 und 0,5 %. Des Weiteren gewinnen Stärken als Bindemittel an Bedeutung, da durch ihren Zusatz zu Kohle und Brikett der Ausstoß schädlicher Stoffe deutlich vermindert werden kann.

2.9 Erz- und Kohleschlammaufbereitung

Die Stärke kann ferner bei der Erz- und Kohleschlammaufbereitung als Flockungsmittel eingesetzt werden.

2.10 Gießereihilfsstoff

Ein weiterer Einsatzbereich besteht als Zusatz zu Gießereihilfsstoffen. Bei verschiedenen Gußverfahren werden Kerne benötigt, die aus Bindemittel-versetzten Sänden hergestellt werden. Als Bindemittel wird heute überwiegend Bentonit eingesetzt, das mit modifizierten Stärken, meist Quellstärken, versetzt ist.

Zweck des Stärkezusatzes ist die Erhöhung der Fließfestigkeit sowie die Verbesserung der Bindefestigkeit. Darüber hinaus können die Quellstärken weitere produktionstechnische Anforderungen, wie im kalten Wasser dispergierbar, rehydrierbar, gut in Sand mischbar und hohes Wasserbindungsvermögen, aufweisen.

2.11 Einsatz in der Kautschukindustrie

In der Kautschukindustrie kann die Stärke zur Verbesserung der technischen und optischen Qualität eingesetzt werden. Gründe sind dabei die Verbesserung des Oberflächenglanzes, die Verbesserung des Griffes und des Aussehens, dafür wird Stärke vor der Kaltvulkanisation auf die klebrigen gummierten Flächen von Kautschukstoffen gestreut, sowie die Verbesserung der Bedruckbarkeit des Kautschuks.

2.12 Herstellung von Lederersatzstoffen

Eine weitere Absatzmöglichkeit der modifizierten Stärken besteht bei der Herstellung von Lederersatzstoffen.

2.13 Stärke in synthetischen Polymeren

Auf dem Kunststoffsektor zeichnen sich folgende Einsatzgebiete ab: die Einbindung von Stärkefolgeprodukten in den Verarbeitungsprozess (Stärke ist nur Füllstoff, es besteht keine direkte Bindung zwischen synthetischem Polymer und Stärke) oder alternativ die Einbindung von Stärkefolgepro-

dukten in die Herstellung von Polymeren (Stärke und Polymer gehen eine feste Bindung ein).

Die Verwendung der Stärken als reinem Füllstoff ist verglichen mit den anderen Stoffen wie Talkum nicht wettbewerbsfähig. Anders sieht es aus, wenn die spezifischen Stärke-eigenschaften zum Tragen kommen und hierdurch das Eigenschaftsprofil der Endprodukte deutlich verändert wird. Ein Beispiel hierfür ist die Anwendung von Stärkeprodukten bei der Verarbeitung von Thermoplasten, wie Polyäthylen. Hierbei werden die Stärke und das synthetische Polymer durch Koexpression im Verhältnis von 1 : 1 zu einem 'master batch' kombiniert, aus dem mit granuliertem Polyäthylen unter Anwendung herkömmlicher Verfahrenstechniken diverse Produkte hergestellt werden. Durch die Einbindung von Stärke in Polyäthylenfolien kann eine erhöhte Stoffdurchlässigkeit bei Hohlkörpern, eine verbesserte Wasserdampfdurchlässigkeit, ein verbessertes Antistatikverhalten, ein verbessertes Anti-blockverhalten sowie eine verbesserte Bedruckbarkeit mit wässrigen Farben erreicht werden. Gegenwärtige Nachteile betreffen die ungenügende Transparenz, die verringerte Zugfestigkeit sowie eine verringerte Dehnbarkeit.

Eine andere Möglichkeit ist die Anwendung der Stärke in Polyurethanschäumen. Mit der Adaption der Stärkederivate sowie durch die verfahrenstechnische Optimierung ist es möglich, die Reaktion zwischen synthetischen Polymeren und den Hydroxygruppen der Stärken gezielt zu steuern. Das Ergebnis sind Polyurethanfolien, die durch die Anwendung von Stärke folgende Eigenschaftsprofile erhalten: eine Verringerung des Wärmeausdehnungskoeffizienten, Verringerung des Schrumpfverhaltens, Verbesserung des Druck/Spannungsverhaltens, Zunahme der Wasserdampfdurchlässigkeit ohne Veränderung der Wasser-aufnahme, Verringerung der Entflammbarkeit und der Aufriss-dichte, kein Abtropfen brennbarer Teile, Halogenfreiheit und verminderte Alterung. Nachteile, die gegenwärtig noch vorhanden sind, sind verringerte Druckfestigkeit sowie eine verringerte Schlagfestigkeit.

Die Produktentwicklung beschränkt sich inzwischen nicht mehr nur auf Folien. Auch feste Kunststoffprodukte, wie Töpfe, Platten und Schalen, sind mit einem Stärkegehalt von über 50 % herzustellen. Des weiteren sind Stärke/ Polymermischungen günstig zu beurteilen, da sie eine sehr viel höhere biologische Abbaubarkeit aufweisen.

Außerordentliche Bedeutung haben weiterhin auf Grund ihres extremen Wasserbindungsvermögen Stärkepropfpolymerisate gewonnen. Dies sind Produkte mit einem Rückgrat aus Stärke und einer nach dem Prinzip des Radikalkettenmechanismus aufgepropften Seitengitters eines synthetischen Monomers. Die heute verfügbaren Stärkepropfpolymerisate zeichnen sich durch ein besseres Binde- und Rückhaltevermögen von bis zu 1000 g Wasser pro g Stärke bei hoher Viskosität aus. Die Anwendungsbereiche für diese Superabsorber haben sich in den letzten Jahren stark ausgeweitet und liegen im Hygienebereich mit Produkten Windeln und Unterlagen sowie im landwirtschaftlichen Sektor, z.B. bei Saatgutpillierungen.

Entscheidend für den Einsatz der neuen, gentechnisch veränderten Stärken sind zum einen die Struktur, Wassergehalt, Proteingehalt, Lipidgehalt, Fasergehalt, Asche/Phosphatgehalt, Amylose/Amylopektinverhältnis, Molmassenverteilung, Verzweigungsgrad, Korngröße und -form sowie Kristallisation, zum anderen auch die Eigenschaften, die in folgende Merkmale münden: Fließ- und Sorptionsverhalten, Verkleisterungstemperatur, Viskosität, Dickungsleistung, Löslichkeit, Kleisterstruktur, Transparenz, Hitze-, Scher- und Säurestabilität, Retrogradationsneigung, Gelbildung, Gefrier/Taustabilität, Komplexbildung, Jodbindung, Filmbildung, Klebekraft, Enzymstabilität, Verdaulichkeit und Reaktivität.

Die Erzeugung modifizierter Stärken mittels gentechnischer Eingriffe in einer transgenen Pflanze kann zum einen die Eigenschaften der aus der Pflanze gewonnenen Stärke dahingehend verändern, daß weitere Modifikationen mittels chemischer oder physikalischer Verfahren nicht mehr notwendig erscheinen. Zum anderen können die durch gentechnische Ver-

fahren veränderte Stärken weiteren chemischen Modifikationen unterworfen werden, was zu weiteren Verbesserungen der Qualität für bestimmte der oben beschriebenen Einsatzgebiete führt. Diese chemischen Modifikationen sind grundsätzlich bekannt. Insbesondere handelt es sich dabei um Modifikationen durch

- Hitzebehandlung,
- Säurebehandlung,
- Oxidation und
- Veresterungen,

welche zur Entstehung von Phosphat-, Nitrat-, Sulfat-, Xanthat-, Acetat- und Citratstärken führen. Weitere organische Säuren können ebenfalls zur Veresterung eingesetzt werden:

- Erzeugung von Stärkeethern
Stärke-Alkylether, O-Allylether, Hydroxylalkylether, O-Carboxymethylether, N-haltige Stärkeether, P-haltige Stärkeether, S-haltige Stärkeether
- Erzeugung von vernetzten Stärken
- Erzeugung von Stärke-Pfropf-Polymerisaten

Zur Expression der erfindungsgemäßen DNA-Moleküle in sense- oder antisense-Orientierung in pflanzlichen Zellen werden diese mit regulatorischen DNA-Elementen verknüpft, die die Transkription in pflanzlichen Zellen gewährleisten. Hierzu zählen insbesondere Promotoren.

Der Promotor kann dabei so gewählt sein, daß die Expression konstitutiv erfolgt oder nur in einem bestimmten Gewebe, zu einem bestimmten Zeitpunkt der Pflanzenentwicklung oder zu einem durch äußere Einflüsse determinierten Zeitpunkt. In Bezug auf die Pflanze kann der Promotor homolog oder hetero-

log sein. Sinnvolle Promotoren sind z.B. der Promotor der 35S RNA des Cauliflower Mosaic Virus für eine konstitutive Expression, der Patatingen-Promotor B33 (Rocha-Sosa et al., EMBO J. 8 (1989), 23-29) für eine knollenspezifische Expression in Kartoffeln oder ein Promotor, der eine Expression lediglich in photosynthetisch aktiven Geweben sicherstellt, z.B. der ST-LS1-Promotor (Stockhaus et al., Proc. Natl. Acad. Sci. USA 84 (1987), 7943-7947; Stockhaus et al., EMBO J. 8 (1989), 2445-2451) oder für eine endosperm-spezifische Expression der HMG-Promotor aus Weizen oder Promotoren von Zein-Genen aus Mais.

Ferner kann eine Terminationssequenz vorhanden sein, die der korrekten Beendigung der Transkription dient sowie der Addition eines Poly-A-Schwanzes an das Transkript, dem eine Funktion bei der Stabilisierung der Transkripte beigemessen wird. Derartige Elemente sind in der Literatur beschrieben (vgl. Gielen et al., EMBO J. 8 (1989), 23-29) und sind beliebig austauschbar.

Prinzipiell ist es erfindungsgemäß möglich, Pflanzen herzustellen, bei denen nur die Aktivität einer Isoform der SSS bzw. der GBSS II verändert ist, als auch Pflanzen, bei denen gleichzeitig die Aktivitäten mehrerer Stärkesynthaseformen verändert sind. Dabei sind alle Kombinationen und Permutationen denkbar.

Durch die Veränderung der Aktivitäten einer oder mehrerer Isoformen der Stärkesynthasen in Pflanzen kommt es zur Synthese einer in ihrer Struktur veränderten Stärke.

Durch die Steigerung der Aktivität einer oder mehrerer Isoformen der Stärkesynthasen in den Zellen der stärkespeichernden Gewebe transformierter Pflanzen wie z.B. in der Knolle bei der Kartoffel oder in dem Endosperm von Mais oder Weizen kann es darüber hinaus zu einer Ertragssteigerung kommen.

Da die GBSS I aus Kartoffel codierende DNA-Sequenz bereits bekannt ist (Visser et al., Plant Sci. 64 (1989), 185-192), stehen somit für alle bisher in Kartoffel identifizierten Stärkesynthasen codierende DNA-Sequenzen zur Verfügung. Dies erlaubt nun sowohl die Identifizierung der Funktion der einzelnen Isoformen bei der Stärkebiosynthese, als auch die Herstellung gentechnisch veränderter Pflanzen, bei denen die Aktivitäten eines oder mehrerer dieser Enzyme verändert sind. Dies ermöglicht die Synthese einer Stärke mit veränderter Struktur und somit veränderten physikalisch-chemischen Eigenschaften in derartig manipulierten Pflanzen.

Die erfindungsgemäßen DNA-moleküle können daher auch dazu verwendet werden, Pflanzen herzustellen, bei denen die Aktivität der benannten Stärkesynthasen erhöht oder verringert ist und gleichzeitig die Aktivitäten anderer, an der Stärkebiosynthese beteiligter Enzyme verändert sind. Es sind dabei alle möglichen Kombinationen denkbar. Beispielsweise können gemäß dem beschriebenen Verfahren DNA-Sequenzen, die SSS-Proteine oder GBSS II codieren, in Pflanzenzellen eingebracht werden, bei denen bereits die Synthese endogener GBSS I-Proteine aufgrund eines antisense-Effektes inhibiert ist (wie beschrieben in Visser et al., Mol. Gen. Genet. 225 (1991), 289-296) oder die Synthese des Verzweigungsenzyms inhibiert ist (wie beschrieben in WO92/14827).

Soll die Inhibition der Synthese mehrerer Stärke-Synthasen in transformierten Pflanzen erreicht werden, so können DNA-Moleküle zur Transformation verwendet werden, die gleichzeitig mehrere, die entsprechenden Stärkesynthasen codierenden Regionen in antisense-Orientierung unter der Kontrolle eines geeigneten Promotors enthalten. Hierbei kann alternativ jede Sequenz unter der Kontrolle eines eigenen Promotors stehen, oder die Sequenzen können als Fusion von einem gemeinsamen Promotor transkribiert werden. Letztere Alternative wird in der Regel vorzuziehen sein, da in diesem Fall die Synthese der entsprechenden Proteine in etwa gleichem Maße inhibiert werden sollte.

Weiterhin ist die Konstruktion von DNA-Molekülen möglich, bei denen neben DNA-Sequenzen, die Stärke-Synthasen codieren, weitere DNA-Sequenzen, die andere Proteine, die an der Stärkesynthese oder -modifikation beteiligt sind, in antisense-Orientierung an einen geeigneten Promotor gekoppelt sind. Die Sequenzen können hierbei wiederum hintereinander geschaltet sein und von einem gemeinsamen Promotor transkribiert werden. Für die Länge der einzelnen codierenden Regionen, die in einem derartigen Konstrukt verwendet werden, gilt das, was oben bereits für die Herstellung von antisense-Konstrukten ausgeführt wurde. Eine obere Grenze für die Anzahl der in einem derartigen DNA-Molekül von einem Promotor aus transkribierten antisense-Fragmente gibt es nicht. Das entstehende Transkript sollte aber in der Regel eine Länge von 10 kb, vorzugsweise von 5 kb nicht überschreiten.

Codierende Regionen, die in derartigen DNA-Molekülen in Kombination mit anderen codierenden Regionen in antisense-Orientierung hinter einem geeigneten Promotor lokalisiert sind, können aus DNA-Sequenzen stammen, die für folgende Proteine codieren: Stärkekorn-gebundene (GBSS I und II) und lösliche Stärkesynthasen (SSS I und II), Verzweigungsenzyme ("Debranching"-Enzyme (R-Enzyme), Disproportionierungsenzyme (Takaha et al., J. Biol. Chem. 268 (1993), 1391-1396) und Stärkephosphorylasen. Dies ist nur eine beispielhafte Aufzählung. Auch die Verwendung anderer DNA-Sequenzen im Rahmen einer derartigen Kombination ist denkbar.

Mit Hilfe derartiger Konstrukte ist es möglich, in Pflanzenzellen, die mit diesen transformiert wurden, die Synthese mehrerer Enzyme gleichzeitig zu inhibieren.

Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen stehen eine große Anzahl von Clonierungsvektoren zur Verfügung, die ein Replikationssignal für *E.coli* und ein Markergen zur Selektion transformierter Bakterienzellen enthalten. Beispiele für derartige Vektoren sind pBR322, pUC-

Serien, M13mp-Serien, pACYC184 usw. Die gewünschte Sequenz kann an einer passenden Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird für die Transformation von *E.coli*-Zellen verwendet. Transformierte *E.coli*-Zellen werden in einem geeigneten Medium gezüchtet, anschließend geerntet und lysiert. Das Plasmid wird wieder gewonnen. Als Analysemethode zur Charakterisierung der gewonnenen Plasmid-DNA werden im allgemeinen Restriktionsanalysen, Gelelektrophoresen und weitere biochemisch-molekulär-biologische Methoden eingesetzt. Nach jeder Manipulation kann die Plasmid-DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA-Sequenzen verknüpft werden. Jede Plasmid-DNA-Sequenz kann in den gleichen oder anderen Plasmiden cloniert werden.

Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl von Techniken zur Verfügung. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von *Agrobacterium tumefaciens* oder *Agrobacterium rhizogenes* als Transformationsmittel, die Fusion von Protoplasten, die Injektion, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten.

Bei der Injektion und Elektroporation von DNA in Pflanzenzellen werden an sich keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Es können einfache Plasmide wie z.B. pUC-Derivate verwendet werden. Sollen aber aus derartig transformierten Zellen ganze Pflanzen regeneriert werden, ist die Anwesenheit eines selektierbaren Markergens notwendig.

Je nach Einführungsmethode gewünschter Gene in die Pflanzenzelle können weitere DNA-Sequenzen erforderlich sein. Werden z.B. für die Transformation der Pflanzenzelle das Ti- oder Ri-Plasmid verwendet, so muß mindestens die rechte Begrenzung, häufig jedoch die rechte und linke Begrenzung der Ti- und Ri-Plasmid T-DNA als Flankenbereich mit den einzuführenden Genen verbunden werden.

Werden für die Transformation Agrobakterien verwendet, muß die einzuführende DNA in spezielle Plasmide cloniert werden, und zwar entweder in einen intermediären Vektor oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T-DNA sind, durch homologe Rekombination in das Ti- oder Ri-Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir-Region. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der intermediäre Vektor auf *Agrobacterium tumefaciens* übertragen werden (Konjugation). Binäre Vektoren können sowohl in *E.coli* als auch in Agrobakterien replizieren. Sie enthalten ein Selektionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden (Holsters et al. Mol. Gen. Genet. 163 (1978), 181-187). Das als Wirtszelle dienende Agrobakterium soll ein Plasmid, das eine vir-Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig transformierte Agrobakterium wird zur Transformation von Pflanzenzellen verwendet.

Die Verwendung von T-DNA für die Transformation von Pflanzenzellen ist intensiv untersucht und ausreichend in EP 120516; Hoekema, In: The Binary Plant Vector System Offsetdrukkerij Kanters B.V., Albllasserdam (1985), Chapter V; Fraley et al., Crit. Rev. Plant. Sci., 4: 1-46 und An et al. EMBO J. 4 (1985), 277-287 beschrieben worden.

Für den Transfer der DNA in die Pflanzenzelle können Pflanzen-Explantate zweckmäßigerweise mit *Agrobacterium tumefaciens* oder *Agrobacterium rhizogenes* kokultiviert werden. Aus dem infizierten Pflanzenmaterial (z.B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Suspensions-kultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Selektion transformierter Zellen enthalten kann, wieder ganze

pflanzen regeneriert werden. Die so erhaltenen Pflanzen können dann auf Anwesenheit der eingeführten DNA untersucht werden. Andere Möglichkeiten der Einführung fremder DNA unter Verwendung des biolistsischen Verfahrens oder durch Protoplastentransformation sind bekannt (vergl. z.B. Willmitzer, L., 1993 Transgenic plants. In: Biotechnology, A Multi-Volume Comprehensive Treatise (H.J. Rehm, G. Reed, A. Pühler, P. Stadler, eds.), Vol. 2, 627-659, VCH Weinheim-New York-Basel-Cambridge).

Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektionsmarker, der den transformierten Pflanzenzellen Resistenz gegenüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin u.a. vermittelt. Der individuelle gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten.

Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise (siehe auch McCormick et al. (1986) Plant Cell Reports 5:81-84). Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, gekreuzt werden. Die daraus entstehenden hybriden Individuen haben die entsprechenden phänotypischen Eigenschaften.

Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibehalten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind.

Das im Rahmen der vorliegenden Erfindung verwendete Plasmid pBinARHyg wurde bei der als internationale Hinterlegungsstelle anerkannten Deutschen Sammlung von Mikroorganismen (DSM) in Braunschweig, Bundesrepublik Deutschland, entsprechend den Anforderungen des Budapest Vertrages für die

internationale Anerkennung der Hinterlegung von Mikroorganismen zum Zwecke der Patentierung am 20.10.1994 unter der Nummer DSM 9505 hinterlegt.

Verwendete Abkürzungen

bp	Basenpaar
GBSS	granule bound starch synthase (Stärkekorn-gebundene Stärkesynthase)
IPTG	Isopropyl β -D-Thiogalacto-Pyranosid
SSS	soluble starch synthase (lösliche Stärkesynthase)
PMSF	Phenylmethylsulfonylfluorid
VK	Vollängeclon

In den Beispielen verwendete Medien und Lösungen:

20 x SSC 175,3 g NaCl
 88,2 g Natrium-Citrat
 ad 1000 ml mit ddH₂O
 pH 7,0 mit 10 N NaOH

Puffer A 50 mM Tris-HCl pH 8,0
 2,5 mM DTT
 2 mM EDTA
 0,4 mM PMSF
 10 % Glycerin
 0,1 % Natriumdithionit

Puffer B 50 mM Tris-HCl pH 7,6
 2,5 mM DTT
 2 mM EDTA

Puffer C 0,5 M Natriumcitrat pH 7,6
 50 mM Tris-HCl pH 7,6
 2,5 mM DTT
 2 mM EDTA

10 x TBS	0,2 M Tris-HCl pH 7,5 5,0 M NaCl
10 x TBST	10 x TBS 0,1 % (Vol/Vol) Tween 20
Elutionspuffer	25 mM Tris pH 8,3 250 mM Glycin
Dialysepuffer	50 mM Tris-HCl pH 7,0 50 mM NaCl 2 mM EDTA 14,7 mM β -Mercaptoethanol 0,5 mM PMSF
Proteinpuffer	50 mM Natriumphosphatpuffer pH 7,2 10 mM EDTA 0,5 mM PMSF 14,7 mM β -Mercaptoethanol

Fig. 1 zeigt das Plasmid pSSSA

Die fein gezogene Linie entspricht der Sequenz von pBluescript II SK(-). Die starke Linie repräsentiert die cDNA, die die Isoform SSS A aus *Solanum tuberosum* codiert. Restriktionsschnittstellen der Insertion sind angegeben. Die cDNA-Insertion ist zwischen die EcoR I- und Xho I-Schnittstellen des Polylinkers des Plasmids ligiert. Die DNA-Sequenz der cDNA-Insertion ist unter Seq ID No. 1 angegeben.

Fig. 2 zeigt das Plasmid pSSSB

Die fein gezogene Linie entspricht der Sequenz von pBluescript II SK(-). Die starke Linie repräsentiert die cDNA, die die Isoform SSS B aus *Solanum tuberosum* codiert. Restriktionsschnittstellen der Insertion sind angegeben. Die

cDNA-Insertion ist zwischen die *EcoR I*- und *Xho I*-Schnittstellen des Polylinkers des Plasmids ligiert. Die DNA-Sequenz der cDNA-Insertion ist unter Seq ID No. 2 angegeben.

Fig. 3 zeigt das Plasmid p35S-anti-SSSA

Aufbau des Plasmids:

A = Fragment A: CaMV 35S-Promotor, nt 6909-7437
(Franck et al., Cell 21 (1980), 285-294)

B = Fragment B: cDNA aus *Solanum tuberosum* codierend
für lösliche Stärkesynthase; Isoform SSSA;
Xba I/Asp718-Fragment aus pSSSA, ca. 2,1 kb
Orientierung zum Promotor: antisense

C = Fragment C: nt 11748-11939 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846)

Fig. 4 zeigt das Plasmid p35S-anti-SSSB

Aufbau des Plasmids:

A = Fragment A: CaMV 35S-Promotor, nt 6909-7437
(Franck et al., Cell 21 (1980), 285-294)

B = Fragment B: cDNA aus *Solanum tuberosum* codierend
für lösliche Stärkesynthase; Isoform SSSB;
Xho I/Spe I-Fragment aus pSSSB, ca. 1,8 kb
Orientierung zum Promotor: antisense

C = Fragment C: nt 11748-11939 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al.; EMBO J. 3 (1984), 835-846)

Fig. 5 zeigt das Plasmid pGBSSII

Die fein gezogene Linie entspricht der Sequenz von pBluescript II SK(-). Die starke Linie repräsentiert die cDNA, die die Isoform GBSS II aus *Solanum tuberosum* codiert. Restriktionsschnittstellen der Insertion sind angegeben. Die cDNA-Insertion ist zwischen die *EcoR I*- und *Xho I*-Schnitt-

stellen des Polylinkers des Plasmids ligiert. Die DNA-Sequenz der cDNA-Insertion ist unter Seq ID No. 3 angegeben.

Fig. 6 zeigt das Plasmid p35S-anti-GBSSII

Aufbau des Plasmids:

A = Fragment A: CaMV 35S-Promotor, nt 6909-7437
(Franck et al., Cell 21 (1980), 285-294)

B = Fragment B: cDNA aus *Solanum tuberosum* codierend
für Stärkekorn-gebundene Stärkesynthase; Isoform
GBSS II;

Sma I/Asp 718-Fragment aus pGBSS II, ca. 1,9 kb
Orientierung zum Promotor: antisense

C = Fragment C: nt 11748-11939 der T-DNA des Ti-Plas-
mids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835-
846)

Fig. 7 zeigt einen partiellen Vergleich der Aminosäurese-
quenzen von prokaryontischen Glycogensynthasen, Stärkekorn-
gebundenen Stärkesynthasen und löslichen Stärkesynthasen aus
verschiedenen Organismen.

- a: Glycogensynthase aus *E. coli*
- b: GBSS I aus Gerste
- c: GBSS I aus Weizen
- d: GBSS I aus Mais
- e: GBSS I aus Reis
- f: GBSS I aus Maniok
- g: GBSS I aus Kartoffel
- h: GBSS II aus Erbse
- i: GBSS II aus Kartoffel
- k: SSS aus Reis
- l: SSS A aus Kartoffel
- m: SSS B aus Kartoffel

Die markierten Bereiche (I), (II) und (III) geben drei Peptidsequenzen an, die zwischen den verschiedenen Stärkesynthetasen bzw. Glycogensynthetasen stark konserviert sind.

Fig. 8 zeigt Aktivitäts-Gele der löslichen Stärkesynthase-Isoformen aus Knollenextrakten von Wildtyp- und Stärkesynthase- "Antisense"-Kartoffelpflanzen.

- A) GBSS II- "Antisense"-Pflanze, Linie 14 und 35, K = Wildtyp-Pflanze
- B) SSS A- "Antisense"-Pflanze, Linie 25 und 39, K = Wildtyp-Pflanze
- C) SSS B- "Antisense"-Pflanze, Linie 1 und 4, K = Wildtyp-Pflanze

Je 50 µg des Proteinextraktes wurden auf einem 7,5%igen nativen Gel getrennt und die Aktivitäten der Synthase-Isoformen im Citrat-stimulierten Ansatz mit 0,1 % Amylopektin als "Primer" bestimmt. Die synthetisierten Glucane wurden mit Lugolscher Lösung angefärbt.

Die Beispiele erläutern die Erfindung.

In den Beispielen werden die folgenden Methoden verwendet:

1. Clonierungsverfahren

Zur Clonierung in *E.coli* wurde der Vektor pBluescript II SK (Stratagene) verwendet.

Für die Pflanzentransformation wurden die Genkonstruktionen in den binären Vektor pBinAR Hyg (DSM 9505) cloniert.

2. Bakterienstämme

Für den Bluescript-Vektor und für die pBinAR Hyg-Konstrukte wurde der *E.coli*-Stamm DH5 α (Bethesda Research Laboratories,

Gaithersburgh, USA) verwendet. Für die *in vivo excision* wurde der *E.coli*-Stamm XL1-Blue verwendet.

Die Transformation der Plasmide in die Kartoffelpflanzen wurde mit Hilfe des *Agrobacterium tumefaciens*-Stammes C58C1 pGV2260 durchgeführt (Deblaere et al., *Nucl. Acids Res.* 13 (1985), 4777-4788).

3. Transformation von *Agrobacterium tumefaciens*

Der Transfer der DNA erfolgte durch direkte Transformation nach der Methode von Höfgen&Willmitzer (*Nucl. Acids Res.* 16 (1988), 9877). Die Plasmid-DNA transformierter Agrobakterien wurde nach der Methode von Birnboim&Doly (*Nucl. Acids Res.* 7 (1979), 1513-1523) isoliert und nach geeigneter Restriktionspaltung geelektrophoretisch analysiert.

4. Transformation von Kartoffeln

Zehn kleine mit dem Skalpell verwundete Blätter einer Kartoffel-Sterilkultur (*Solanum tuberosum* L.cv. *Desiree*) wurden in 10 ml MS-Medium (Murashige&Skoog, *Physiol. Plant.* 15 (1962), 473) mit 2 % Saccharose gelegt, welches 50 µl einer unter Selektion gewachsenen *Agrobacterium tumefaciens*-Übernachtkultur enthielt. Nach 3-5 minütigem, leichtem Schütteln erfolgte eine weitere Inkubation für 2 Tage im Dunkeln. Daraufhin wurden die Blätter zur Kallusinduktion auf MS-Medium mit 1,6 % Glucose, 5 mg/l Naphthylessigsäure, 0,2 mg/l Benzylaminopurin, 250 mg/l Claforan, 50 mg/l Kanamycin, und 0,80 % Bacto Agar gelegt. Nach einwöchiger Inkubation bei 25°C und 3000 Lux wurden die Blätter zur Sproßinduktion auf MS-Medium mit 1,6 % Glucose, 1,4 mg/l Zeatinribose, 20 mg/l Naphthylessigsäure, 20 mg/l Giberellinsäure, 250 mg/l Claforan, 50 mg/l Kanamycin, und 0,80 % Bacto Agar gelegt.

5. Radioaktive Markierung von DNA-Fragmenten

Die radioaktive Markierung von DNA-Fragmenten wurde mit Hilfe eines DNA-Random Primer Labelling Kits der Firma Boehringer (Deutschland) nach den Angaben des Herstellers durchgeführt.

6. Bestimmung der Stärkesynthase-Aktivität

Die Bestimmung der Stärkesynthaseaktivität erfolgte durch Bestimmung des Einbaus von ^{14}C -Glucose aus ADP[^{14}C -Glucose] in ein in Methanol/KCl unlösliches Produkt wie beschrieben in Denyer und Smith (Planta 186 (1992), 609-617).

7. Nachweis von löslichen Stärkesynthasen im nativen Gel

Zum Nachweis der Aktivität löslicher Stärkesynthasen durch nicht-denaturierende Gelelektrophorese wurden Gewebeproben von Kartoffelknollen in 50 mM Tris-HCl pH 7,6, 2 mM DTT, 2,5 mM EDTA, 10 % Glycerin und 0,4 mM PMSF aufgeschlossen. Die Elektrophorese wurde in einer MiniProtean II Kammer (BioRAD) durchgeführt. Die Monomerkonzentration der 1,5 mm dicken Gele war 7,5 % (Gew./Vol.), und als Gel- wie auch Laupuffer diente 25 mM Tris-Glycin pH 8,4. Gleiche Mengen an Proteinextrakt wurden aufgetragen und für 2 h bei 10 mA je Gel aufgetrennt.

Anschließend erfolgte die Inkubation der Aktivitäts-Gele in 50 mM Tricine-NaOH pH 8,5, 25 mM Kaliumacetat, 2 mM EDTA, 2 mM DTT, 1 mM ADP-Glucose, 0,1 % (Gew./Vol.) Amylopektin und 0,5 M Natriumcitrat. Gebildete Glucane wurden mit Lugolscher Lösung angefärbt.

8. Stärkeanalytik

Die von den transgenen Kartoffelpflanzen gebildete Stärke wurde durch folgende Methoden charakterisiert:

a) Bestimmung des Phosphatgehaltes

In der Kartoffelstärke können einige Glucoseeinheiten an den Kohlenstoffatomen der Position C3 und C6 phosphoryliert sein. Zur Bestimmung des Phosphorylierungsgrades an der C6-Position der Glucose wurden 100 mg Stärke in 1 ml 0,7 M HCl für 4 Stunden bei 95°C hydrolysiert (Nielsen et al., Plant Physiol. 105 (1994), 111-117). Nach Neutralisation mit 0,7 M KOH wurden zur Glucose-6-phosphat-Bestimmung 50 µl des Hydrolysats einem optisch-enzymatischen Test unterzogen. Die Änderung der Absorption des Testansatzes (100 mM Imidazol/HCl; 10 mM MgCl₂; 0,4 mM NAD; 2 Units Glucose-6-phosphat-Dehydrogenase aus *Leuconostoc mesenteroides*; 30°C) wurde bei 334 nm verfolgt.

b) Analyse der Seitenkettenlängenverteilung

Zur Analyse der Seitenketten der Stärkemoleküle wurde 1 ml einer 0,1%igen Stärkelösung mit ca. 1 Unit Isoamylase über Nacht bei 37°C in 100 mM Na-Citrat-Puffer, pH 4,0 verdaut (Y.C. Lee, Analytical Biochemistry 189 (1990), 151-162). Die Trennung der einzelnen Glucanketten erfolgte mittels eines komplexen Gradienten über HPLC (Säule PA1; Laufmittel 150 mM NaOH mit Na-Acetat-Gradienten).

c) Korngrößenbestimmung

Die Korngrößenbestimmung wurde mit einem Fotosedimentometer des Typs "Lumosed" der Firma Retsch GmbH, Deutschland, durchgeführt. Hierfür wurden 0,2 g Stärke in ca. 150 ml Wasser suspendiert und sofort vermessen. Das vom Hersteller mitgelieferte Programm berechnete den mittleren Durchmesser der Stärkekörner auf der Annahme einer durchschnittlichen Dichte der Stärke von 1,5 g/l.

d) Verkleisterungseigenschaften

Die Verkleisterungskurven der Stärke wurden mit einem Viskograph E der Firma Brabender OHG, Deutschland, oder mit einem Rapid Visco Analyser, Newport Scientific Pty Ltd, Investment Support Group, Warriewood NSW 2102, Australien, aufgezeichnet. Bei Verwendung des Viskographen E wurde eine Suspension von 30 g Stärke in 450 ml Wasser folgendem Heizprogramm unterzogen: aufheizen von 50°C auf 96°C mit 3°/min, 30 Minuten konstant halten, abkühlen auf 30°C mit 3°/min und abermals 30 Minuten konstant halten. Das Temperaturprofil lieferte charakteristische Verkleisterungseigenschaften.

Bei Messung mittels des Rapid Visco Analyzers wurde eine Suspension von 2 g Stärke in 25 ml Wasser folgendem Heizprogramm unterzogen: 50 s bei 50°C suspendieren, aufheizen von 50°C auf 95°C mit 12°/min, 2,5 Minuten konstant halten, abkühlen auf 50°C mit 16,4°/min und abermals 2 Minuten konstant halten. Das Temperaturprofil lieferte die maximale und Endviskosität sowie die Verkleisterungstemperatur.

Beispiel 1

Identifizierung, Isolierung und Charakterisierung zweier cDNAs, die die Isoformen SSS B und GBSS II der Stärkesynthasen aus *Solanum tuberosum* codieren

Zwar wurden SSS-Proteine bereits in einer ganzen Reihe von Pflanzenspezies, u.a. in Kartoffel, nachgewiesen und cDNA-Sequenzen für SSS-Proteine aus Reis beschrieben (Baba et al., s.o.), jedoch ist bisher die Reinigung dieser Proteine aus Kartoffel oder anderen Pflanzen sowie die Identifizierung entsprechender DNA-Sequenzen nicht gelungen. Die Problematik bei der Isolierung derartiger DNA-Sequenzen besteht darin, daß die homogene Reinigung lösliche Stärkesynthasen aus technischen Gründen trotz zahlreicher Versuche bisher erfolglos blieb. Die löslichen Synthasen kopurifizieren in allen Reinigungsschritten mit dem Verzweigungsenzym und an-

deren Verunreinigungen. Für die Bestimmung partieller Aminosäuresequenzen sind diese Proteine daher bislang nicht zugänglich. Daher ist es sehr schwierig, cDNA-Sequenzen durch Hybridisierung mit aus der Aminosäuresequenz abgeleiteten degenerierten Oligonucleotiden zu identifizieren. Ebenso besteht aus denselben Gründen nicht die Möglichkeit, Antikörper zu entwickeln, die diese Enzyme spezifisch erkennen und somit für die Durchmusterung von Expressionsbanken eingesetzt werden könnten.

Die Isolierung von DNA-Sequenzen, die für SSS-Proteine aus Kartoffel codieren, mit Hilfe der Hybridisierung mit heterologen Proben, die lösliche Stärkesynthasen aus anderen Pflanzenspezies codieren, setzt voraus, daß eine ausreichend hohe Homologie besteht und gleichzeitig keine signifikanten Homologien zu anderen codierenden DNA-Sequenzen vorliegen. Im Fall der einzigen zur Verfügung stehenden heterologen DNA-Sequenz aus Reis (Baba et al., s.o.) war jedoch bekannt, daß diese hohen Homologien zu den Stärkekorn-gebundenen Stärkesynthasen aus Reis sowie zu GBSS I und daher vermutlich auch zu GBSS II, aus Kartoffel hat. Aufgrund dieser hohen Homologien zu GBSS I und II kommt es beim Durchmustern von cDNA-Banken zu Kreuzhybridisierung mit GBSS I- und II-cDNAs. Die Identifizierung von cDNAs, die für SSS-Proteine codieren kann daher nur durch ein differentielles Screening erreicht werden. Dies setzt jedoch voraus, daß cDNA-Sequenzen für GBSS I- und II-Proteine aus Kartoffel zur Verfügung stehen. cDNA-Sequenzen, die für GBSS II aus Kartoffel codieren, waren jedoch bisher nicht zugänglich.

Im folgenden wird die Isolierung einer für eine lösliche Stärkesynthase aus Kartoffel codierenden cDNA beschrieben. Hierzu wurde zunächst ein DNA-Fragment aus einer cDNA aus Reis, die eine lösliche Stärkesynthase codiert (Baba et al., 1993, Plant Physiol. 103:565-573), mit Hilfe der "Polymerase chain reaction" amplifiziert. Als Primer wurden dabei folgende Oligonucleotide verwendet:

Oligonucleotid 1: 5'-ACAGGATCCTGTGCTATGCGGCGTGTGAAG-3'

(Seq ID No. 14)

Oligonucleotid 2: 5'-TTGGGATCCGCAATGCCACAGCATTTC-3'

(Seq ID No. 15)

Das aus der PCR-resultierende Fragment war 1067 bp lang. Dieses DNA-Fragment wurde später als heterologe Probe für die Identifizierung für lösliche Stärkesynthasen codierender cDNA-Sequenzen aus Kartoffel verwendet.

Für die Herstellung einer cDNA-Bibliothek wurde aus Kartoffelknollen der Kartoffelvarietät "Berolina" poly(A⁺)-mRNA isoliert. Ausgehend von der poly(A⁺)-mRNA wurde nach der Methode von Gubler und Hoffmann (1983, Gene 25:263-269) unter Verwendung eines Xho I-Oligo d(t)₁₈-Primers cDNA hergestellt. Diese wurde nach EcoR I-Linkeraddition mit Xho I nachgeschnitten und orientiert in einen mit EcoR I und Xho I geschnittenen Lambda ZAP II-Vektor (Stratagene) ligiert.

500 000 Plaques einer derart konstruierten cDNA-Bibliothek wurden mit Hilfe der heterologen Probe aus Reis auf DNA-Sequenzen hin untersucht, die homolog zu dieser sind. Da die verwendete Probe aus Reis eine starke Kreuzhybridisierung mit verschiedenen Sequenzen aus Kartoffel aufweist, war eine direkte Identifizierung von cDNA-Molekülen, die lösliche Stärkesynthasen codieren, nicht möglich. Aus Homologievergleichen war bekannt, daß die das SSS-Protein aus Reis codierende cDNA eine hohe Homologie zu der bereits aus Kartoffel isolierten GBSS I-cDNA aufweist. Da GBSS I und GBSS II in anderen Organismen starke Homologien aufweisen, war zu vermuten, daß die Probe aus Reis auch eine hohe Homologie zu GBSS II-Sequenzen aus Kartoffel aufweist. Um eine Identifizierung von cDNA-Sequenzen zu ermöglichen, die eine lösliche Stärkesynthase aus Kartoffel codieren, war es daher notwendig, über Sequenzen zu verfügen, die GBSS I und II aus Kartoffel codieren. DNA-Sequenzen, die GBSS I aus Kartoffel codieren waren bereits beschrieben, jedoch keine, die GBSS II

aus Kartoffel codieren. Es wurde daher zunächst eine cDNA isoliert, die GBSS II aus Kartoffel codiert.

Hierzu wurden Stärkekorn-gebundene Proteine aus Kartoffelstärke isoliert. Die Isolierung erfolgte durch Elektroelution in einer Elutionsvorrichtung, die analog zu dem "Model 422 Electro-Eluter" (BIORAD Laboratories Inc., USA) konstruiert war, aber ein wesentlich größeres Volumen aufwies (ca. 200 ml). Es wurden 25 g getrocknete Stärke in Elutionspuffer aufgenommen (Endvolumen 80 ml). Die Suspension wurde im Wasserbad auf 70-80°C erwärmt. Anschließend wurden 72,07 g Harnstoff zugegeben (Endkonzentration 8 M) und das Volumen mit Elutionspuffer auf 180 ml aufgefüllt. Die Stärke löste sich unter ständigem Rühren und bekam eine kleisterartige Konsistenz. Die Proteine wurden aus der Lösung mit Hilfe des Elutionsvorrichtung über Nacht elektroeluiert (100 V; 50-60 mA). Die eluierten Proteine wurden vorsichtig aus der Apparatur entnommen. Schwebstoffe wurden durch kurze Zentrifugation entfernt. Der Überstand wurde 2-3 mal je eine Stunde bei 4°C gegen Dialysepuffer dialysiert. Anschließend wurde das Volumen der Proteinlösung bestimmt. Die Proteine wurden durch Zugabe von Ammoniumsulfat (90 % Endkonzentration) gefällt. Die Zugabe erfolgte unter ständigem Rühren bei 0°C. Die gefällten Proteine wurden durch Zentrifugation sedimentiert und in Proteinpuffer aufgenommen.

Die isolierten Proteine wurden zur Herstellung von polyclonalen Antikörpern aus Kaninchen verwendet, die spezifisch Stärkekorn-gebundene Proteine erkennen. Mit Hilfe derartiger Antikörper wurde anschließend nach Standardmethoden eine cDNA-Expressionsbibliothek nach Sequenzen durchgemustert, die Stärkekorn-gebundene Proteine codieren. Die Expressionsbibliothek wurde wie bereits oben beschrieben hergestellt. Positive Phagenclone wurden unter Anwendung von Standardverfahren weiter gereinigt. Mit Hilfe der in-vivo-excision-Methode wurden von positiven Phagenclonen *E. coli*-Clone gewonnen, die ein doppelsträngiges pBluescript-Plasmid mit der

jeweiligen cDNA-Insertion enthalten. Nach Überprüfung der Größe und des Restriktionsmusters der Insertionen wurden geeignete Clone, weiter analysiert. Ein Clon cGBSSII, wurde dabei als ein Clon identifiziert, der das GBSSII-Protein codiert.

Aus diesem Clon wurde das Plasmid pGBSSII (Fig. 5) isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxymethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist 1925 bp lang und stellt lediglich eine partielle cDNA-Sequenz dar. Die Nucleotidsequenz ist unter Seq ID No. 5 angegeben. Sequenzvergleiche zeigten, daß auch diese DNA-Sequenz in verschiedenen Bereichen starke Homologie zu der cDNA aus Reis aufwies, die lösliche Stärkesynthase codiert. Daher hybridisieren auch diese Sequenzen bei der Durchmusterung einer cDNA-Bibliothek mit der Probe aus Reis.

Die Insertion dieses Plasmids wurde später bei der Durchmusterung einer cDNA-Bibliothek aus Kartoffelknollen als Probe verwendet, um Sequenzen zu identifizieren, die GBSS II-Proteine codieren.

Neben dem Clon cGBSSII wurden bei der Durchmusterung der Expressionsbibliothek mit den polyclonalen Antikörpern, die gegen Stärkekorn-gebundene Proteine gerichtet sind, Clone isoliert, die cDNA-Insertionen aufwiesen, die für GBSS I aus Kartoffel codieren. Von einem dieser Clone, cGBSSI, wurde das Plasmid pGBSSI isoliert, und die Sequenz der cDNA-Insertion bestimmt. Diese stimmte weitgehend mit den bereits bekannten, GBSS I aus Kartoffel codierenden DNA-Sequenzen überein (Visser et al., Plant Sci. 64 (1989), 185-192; van der Leij et al., Mol. Gen. Genet. 228 (1990), 240-248). Diese cDNA-Insertion, enthalten in dem Plasmid pGBSS I, wurde daher später bei der Durchmusterung einer cDNA-Bibliothek aus Kartoffelknollen als Probe verwendet, um Sequenzen zu identifizieren, die GBSS I-Proteine codieren.

Die oben beschriebene cDNA-Bibliothek aus Kartoffel wurde zunächst nach Sequenzen durchgemustert, die GBSS I oder GBSS

II aus Kartoffel codierten. Dazu wurden die Phagenplaques auf Nitrozellulose-Filter übertragen, die DNA durch NaOH-Behandlung denaturiert, die Filter neutralisiert und die DNA auf den Filtern durch Hitzebehandlung fixiert. Die Filter wurden in 0,25 M NaHPO₄, pH 7,2, 0,25 M NaCl, 7 % SDS, 1 mM EDTA, 25 % Formamid, 10 % PEG für 2 Stunden bei 42 °C vorhybridisiert. Anschließend wurden die Filter in 0,25 M NaHPO₄, pH 7,2, 0,25 M NaCl, 7 % SDS, 1 mM EDTA, 25 % Formamid, 10 % PEG nach Zugabe der entsprechenden radioaktiv markierten Probe über Nacht bei 42 °C hybridisiert. Als Probe wurde zum einen die cDNA-Insertion aus dem Plasmid pGBSSII verwendet, und zum anderen die cDNA-Insertion aus dem Plasmid pGBSSI. Die Filter wurden anschließend 2 x 30 min in 0,1 x SSC, 0,5 % SDS bei 65 °C gewaschen und auf Röntgenfilmen exposiert.

Parallel wurden Filter derselben cDNA-Bibliothek mit der aus Reis stammenden radioaktiv markierten cDNA-Probe, die wie oben beschrieben hergestellt wurde, unter denselben Bedingungen hybridisiert wie für GBSS I und II beschrieben. Das Waschen der Filter erfolgte in diesem Fall für 2 x 30 min bei 40 °C mit 2 x SSC, 0,5 % SDS. Phagenclone, die nicht mit GBSS I oder GBSS II aus Kartoffel, aber mit der Reis-cDNA hybridisierten, wurden unter Anwendung von Standardverfahren weiter gereinigt. Mit Hilfe der in-vivo-excision-Methode wurden von positiven Phagenclonen *E. coli*-Clone gewonnen, die ein doppelsträngiges pBluescript-Plasmid mit der jeweiligen cDNA-Insertion enthalten. Nach Überprüfung der Größe und des Restriktionsmusters der Insertionen wurden geeignete Clone einer Sequenzanalyse unterzogen.

Beispiel 2

Sequenzanalyse der cDNA-Insertion des Plasmids pSSSB

Aus einem entsprechend Beispiel 1 erhaltenen *E. coli*-Clon wurde das Plasmid pSSSB (Fig. 2) isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxynucleo-

tidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist 1758 bp lang und stellt eine partielle cDNA dar. Die Nucleotidsequenz ist unter Seq ID No. 3 angegeben. Die korrespondierende Aminosäuresequenz ist unter Seq ID No. 4 dargestellt.

Beispiel 3

Isolierung der Vollängen-cDNA, die die Isoform GBSS II der Stärkekorn-gebundenen Stärkesynthase aus *Solanum tuberosum* codiert

Eine blattspezifische cDNA-Expressionsbank aus *Solanum tuberosum* L. cv. Désirée (Koßmann et al., Planta 186 (1992), 7-12) wurde nach Standardverfahren mittels Hybridisierung mit einem 5'-Fragment der cDNA-Insertion des Plasmids pGBSS II (1.9 kb) auf Vollänge-Clone hin durchgemustert. In Folge konnte das Plasmid pGBSS II-VK isoliert werden, das eine cDNA-Insertion mit einer Länge von ca. 2.8 kb enthält.

Beispiel 4

Sequenzanalyse der cDNA-Insertion des Plasmids pGBSS II-VK

Aus einem entsprechend Beispiel 3 erhaltenen *E. coli*-Clon wurde das Plasmid pGBSS II-VK isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxynucleotidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist ca. 2.8 kb lang. Die Nucleotidsequenz ist unter Seq ID No. 7 angegeben und umfaßt neben flankierenden Bereichen die gesamte das GBSSII-Protein aus Kartoffel codierende Region. Das aus der Aminosäuresequenz abgeleitete Molekulargewicht des Proteins beträgt ca. 85,1 kD.

Beispiel 5

Isolierung der Vollängen-cDNA, die die Isoform SSS B der löslichen Stärkesynthase aus *Solanum tuberosum* codiert

Eine blattspezifische cDNA-Expressionsbank aus *Solanum tuberosum* L. cv. Désirée (Koßmann et al., *Planta* 186 (1992), 7-12) wurde nach Standardverfahren mittels Hybridisierung mit einem 5'-Fragment der cDNA-Insertion des Plasmids pSSS B (1.6 kb) auf Vollänge-Clone hin durchgemustert. In Folge konnte das Plasmid pSSS B-VK, isoliert werden, das eine cDNA-Insertion mit einer Länge von ca. 2.3 kb enthält.

Beispiel 6**Sequenzanalyse der cDNA-Insertion des Plasmids pSSS B-VK**

Aus einem entsprechend Beispiel 5 erhaltenen *E. coli*-Clon wurde das Plasmid pSSS B-VK isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxynucleotidmethode (Sanger et al., *Proc. Natl. Acad. Sci. USA* 74 (1977), 5463-5467) bestimmt. Die Insertion ist ca. 2.3 kb lang. Die Nucleotidsequenz ist unter Seq ID No. 9 angegeben und umfaßt neben flankierenden Sequenzen die gesamte codierende Region für die Isoform B der löslichen Stärkesynthase aus Kartoffel. Das aus der Aminosäuresequenz abgeleitete Molekulargewicht des Proteins beträgt ca. 78,6 kD.

Beispiel 7

Identifizierung, Isolierung und Charakterisierung einer cDNA, die die Isoform SSS A der löslichen Stärkesynthase aus *Solanum tuberosum* codiert

Aus einem Sequenzvergleich zwischen den bisher bekannten Sequenzen, die lösliche und Stärkekorn-gebundene Stärkesynthasen aus Pflanzen codieren (siehe Figur 7), war ersichtlich,

daß es drei stark konservierte Bereiche zwischen den verschiedenen Proteinen gibt (Bereiche (I), (II) und (III) in Figur 7).

Um eine lösliche Stärkesynthase aus Kartoffel zu isolieren, wurden diese drei Bereiche ausgewählt, um polyclonale Peptidantikörper zu erzeugen. Dazu wurden drei synthetische Polypeptide mit den folgenden Aminosäuresequenzen hergestellt:

Peptid 1: NH₂-PWSKTGGLGDV-COOH (Seq ID No. 16)

Peptid 2: NH₂-PSRFEPCGLNQLY-COOH (Seq ID No. 17)

Peptid 3: NH₂-GTGGLRDTVENC-COOH (Seq ID No. 13)

Diese Peptide wurden an den KLH-Carrier ("keyhole limpet homocyanin") gekoppelt und anschließend zur Herstellung polyclonaler Antikörper in Kaninchen verwendet. (Eurogentec, Seraing, Belgien).

Die resultierenden Antikörper wurden folgendermaßen bezeichnet:

anti-SS1 polyclonaler Antikörper gegen das Peptid 1

anti-SS2 polyclonaler Antikörper gegen das Peptid 2

anti-SS3 polyclonaler Antikörper gegen das Peptid 3.

Die Antikörper wurden mit angereinigten löslichen Stärkesynthasen aus Kartoffel auf ihre Spezifität hin untersucht.

Die Reinigung der löslichen Stärkesynthasen erfolgte dabei folgendermaßen:

2,5 kg Kartoffeln wurden in 2 Liter Puffer A aufgearbeitet.

Nach Abtrennen der Stärke durch Zentrifugation bei 1000 g für 5 min wurde der Proteinextrakt an DEAE-FastFlow-Säulenmaterial (Pharmacia LKB) gebunden (äquilibriert mit Puffer B). Nach Waschen der Säule mit dem 5-fachen Säulenvolumen an Puffer B wurden gebundene Proteine mit 300 mM NaCl in Puffer B eluiert. Die eluierten Proteine wurden fraktionsweise aufgefangen, und Fraktionen mit einer hohen Stärkesynthase-Aktivität wurden vereinigt. Die vereinigten Fraktionen wurden durch Chromatographie über eine Gelfiltrationssäule (G25), die mit Puffer B äquilibriert wurde, entsalzt. Das Eluat wurde mit 1 Volumen 1 M Natrium-Citrat, 50 mM Tris-HCl pH 7,6, 2,5 mM DTT, 2 mM EDTA versetzt. Die Proteinlösung wurde

auf eine mit Puffer C äquilibrierte Amylose-Resin-Säule (AR-Säule) aufgetragen. Die Säule wurde mit dem 20-fachen Säulenvolumen an Puffer C gewaschen. Gebundene Proteine wurden anschließend mit Puffer B eluiert.

Die Fraktionen, die eine hohe Stärkesynthase-Aktivität aufwiesen, wurden vereinigt und wiederum mit Hilfe von Gelfiltration über eine G25-Säule entsalzt.

Anschließend wurden die Fraktionen mit hoher Stärkesynthase-Aktivität auf eine mit Puffer B äquilibrierte MonoQ-Säule aufgetragen. Die Säule wurde mit dem 5-fachen Säulenvolumen an Puffer B gewaschen. Gebundene Proteine wurden mit Hilfe eines linearen NaCl-Gradienten von 0-300 mM eluiert und fraktionsweise gesammelt.

Die Analyse der Fraktionen hinsichtlich der Stärkesynthase-Aktivität und des Molekulargewichtes erfolgte mit Hilfe verschiedener Methoden:

- a) Analyse der Fraktionen auf einem nativen Polyacrylamid-Gel
- b) Analyse der Fraktionen auf einem denaturierenden SDS-Polyacrylamidgel und anschließende Silberfärbung
- c) Bestimmung der Stärkesynthase-Aktivität durch Einbau radioaktiv-markierter ADP-Glucose (Amersham, UK) in neusynthetisierte Stärke.
- d) Analyse der Fraktionen in einem Western Blot.

Für eine Western Blot-Analyse wurden 50 µg, 5 µg und 0,5 µg Protein eines Protein-Rohextraktes neben 15 µg Protein der Fraktionen, die von der DEAE-FastFlow-Säule eluiert wurden, 10 µg Protein der Fraktionen, die von der AR-Säule eluiert wurden und 3 µg Protein der Fraktionen, die von der MonoQ-Säule eluiert wurden, auf einem SDS-Polyacrylamid-Gel elektrophoretisch aufgetrennt. Die Proteine wurden mit Hilfe der Semidry-Elektroblot-Methode auf eine Nitrozellulosemembran übertragen.

Die Identifizierung von Proteinen, die von den Antikörpern anti-SS1, anti-SS2 oder anti-SS3 erkannt wurden, erfolgte

mit Hilfe des "Blotting detection kit for rabbit anitbodies RPN 23" (Amersham UK) nach den Angaben des Herstellers. Es wurden parallel drei Western Blot-Analysen durchgeführt mit den obenbeschriebenen polyclonalen Antikörpern anti-SS1, anti-SS2 und anti-SS3. Dabei stellte sich heraus, daß der Antikörper anti-SS1 spezifisch GBSS I und GBSS II erkannte und der Antikörper anti-SS2 keine Spezifität aufwies. Lediglich der Antikörper anti-SS3 erkannte neben GBSS I und GBSS II im Western Blot spezifisch neue Proteine, insbesondere Proteine mit Molekulargewichten von 120-140 kd.

Der Antikörper anti-SS3 wurde anschließend verwendet, um eine cDNA-Bibliothek aus Kartoffelknollen nach Sequenzen durchzumustern, die lösliche Stärkesynthasen aus Kartoffel codieren. Hierfür wurde eine cDNA-Bibliothek, die wie in Beispiel 1 beschrieben hergestellt wurde, verwendet. Zur Analyse der Phagenplaques wurden diese auf Nitrozellulosefilter übertragen, die vorher für 30-60 min in einer 10 mM IPTG-Lösung inkubiert und anschließend auf Filterpapier getrocknet wurden. Der Transfer erfolgte für 3 h bei 37°C. Anschließend werden die Filter für 30 min bei Raumtemperatur in Blockreagenz inkubiert und zweimal für 5-10 min in TBST-Puffer gewaschen. Die Filter wurden mit dem polyclonalen Antikörper anti-SS3 in geeigneter Verdünnung für 1 h bei Raumtemperatur oder für 16 h bei 4°C geschüttelt. Die Identifizierung von Plaques, die ein Protein exprimierten, das von dem Antikörper anti-SS3 erkannt wurde, erfolgte mit Hilfe des "Blotting detection kit for rabbit antibodies RPN 23" (Amersham UK) nach den Angaben des Herstellers.

Phagenclone der cDNA-Bibliothek, die ein Protein exprimierten, das von dem Antikörper anti-SS3 erkannt wurde, wurden unter Anwendung von Standardverfahren weiter gereinigt. Mit Hilfe der *in vivo* excision-Methode (Stratagene) wurden von positiven Phagenclonen *E.coli*-clone gewonnen, die ein doppelsträngiges pBlueskript II SK-Plasmid mit der jeweiligen cDNA-Insertion zwischen der EcoRI- und der Xho I-Schnittstelle des Polylinkers enthalten. Nach Überprüfung der Größe

und des Restriktionsmusters der Insertionen wurde ein geeigneter Clon einer Sequenzanalyse unterzogen.

Beispiel 8

Sequenzanalyse der cDNA-Insertion des Plasmids pSSSA

Aus einem entsprechend Beispiel 7 erhaltenen *E. coli*-Clon wurde das Plasmid pSSSA (Fig. 1) isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxy-nucleotidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist 2303 bp lang. Die Nucleotidsequenz ist unter Seq ID No. 1 angegeben. Die korrespondierende Aminosäuresequenz ist unter Seq ID No. 2 dargestellt.

Eine Sequenzanalyse und ein Sequenzvergleich mit bekannten DNA-Sequenzen zeigte, daß die unter Seq ID No. 1 dargestellte Sequenz neu ist und eine partielle codierende Region umfaßt, die ein Protein codiert, das Homologie zu Stärkesynthasen aus verschiedenen Organismen aufweist. Das durch diese cDNA-Insertion oder durch hybridisierende Sequenzen codierte Protein wird im Rahmen dieser Anmeldung als SSSA bezeichnet.

Diese DNA-Sequenz unterscheidet sich von der unter Seq ID No. 2 dargestellten DNA-Sequenz, die ebenfalls eine lösliche Stärkesynthase aus Kartoffel codiert, und ließ sich mit der unter Beispiel 1 beschriebenen Methode nicht aus einer cDNA-Bibliothek von Kartoffelknollen isolieren.

Beispiel 9

Isolierung der Vollängen-cDNA, die die Isoform SSS A der löslichen Stärkesynthase aus *Solanum tuberosum* codiert

Eine blattspezifische cDNA-Expressionsbank aus *Solanum tuberosum* L. cv. Désirée (Koßmann et al., Planta 186 (1992), 7-12) wurde nach Standardverfahren mittels Hybridisierung

mit einem 5'-Fragment der cDNA-Insertion des Plasmids pSSSA (2.3 kb) auf Vollänge-Clone hin durchgemustert untersucht. In Folge konnte ein Clon isoliert werden, der eine im 5'-Bereich um ca. 1.86 kb längere cDNA-Insertion enthielt. Die cDNA-Insertion hat eine Gesamtlänge von ca. 4.16 kb isoliert werden.

Beispiel 10

Sequenzanalyse der cDNA-Insertion des Plasmids pSSSA-VK

Aus einem entsprechend Beispiel 9 erhaltenen *E. coli*-Clon wurde das Plasmid pSSSA-VK isoliert und seine cDNA-Insertion durch Standardverfahren mittels der Didesoxynucleotidmethode (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467) bestimmt. Die Insertion ist ca. 4.16 kb lang. Die Nucleotidsequenz ist unter Seq ID No. 11 angegeben. Die korrespondierende Aminosäuresequenz ist unter Seq ID No. 12 angegeben. Das aus der Aminosäuresequenz abgeleitete Molekulargewicht des SSSA-Proteins beträgt ca. 135 kD.

Beispiel 11

Konstruktion des Plasmids p35S-anti-SSSA und Einführung des Plasmids in das Genom von Kartoffelpflanzen

Aus dem Plasmid pSSSA wurde mit Hilfe der Restriktionsendonucleasen *Xba* I und *Asp* 718 ein ca. 2,1 kb großes DNA-Fragment isoliert, das die codierende Region für die Isoform A der löslichen Stärkesynthase aus Kartoffel umfaßt, und in den mit *Xba* I und *Asp* 718 geschnittenen Vektor pBinAR Hyg (DSM 9505) ligiert.

Durch die Insertion des cDNA-Fragmentes entsteht eine Expressionskassette, die folgendermaßen aus den Fragmenten A, B und C aufgebaut ist (Fig. 3):

Das Fragment A (529 bp) enthält den 35S-Promotor des Cauliflower-Mosaik-Virus (CaMV). Das Fragment umfaßt die

Nucleotide 6909 bis 7437 des CaMV (Franck et al., Cell 21 (1980), 285-294).

Das Fragment B enthält neben flankierenden Bereichen die proteincodierende Region der Isoform A der löslichen Stärkesynthase aus *Solanum tuberosum*. Diese wurde wie oben beschrieben als *Xba I/Asp718*-Fragment aus pSSSA isoliert und in antisense-Orientierung an den 35S-Promotor in pBinAR Hyg fusioniert.

Fragment C (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846).

Die Größe des Plasmids p35S-anti-SSSA beträgt ca. 13 kb.

Das Plasmid wurde mit Hilfe Agrobakterien-vermittelter Transformation in Kartoffelpflanzen transferiert wie oben beschrieben. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert.

Als Ergebnis der Transformation zeigten transgene Kartoffelpflanzen eine Verringerung der Aktivität der Isoform A der löslichen Stärkesynthase (vergleiche Figur 8).

Die von diesen Pflanzen gebildete Stärke unterscheidet sich von in Wildtyp-Pflanzen synthetisierter Stärke in ihrem Phosphatgehalt, in der Viskosität wässriger Lösungen, den Verkleisterungseigenschaften und der mittleren Stärkekorngröße. Die Ergebnisse sind in Tabelle I dargestellt.

Der Phosphatgehalt der in den transgenen Pflanzen gebildeten Stärke liegt um mindestens 30 %, vorzugsweise um 50 %, insbesondere um 70 % über den Werten der von in Wildtyp-Pflanzen synthetisierten Stärke.

Die Endviskosität der Stärke aus SSS A- "Antisense"-Pflanzen zeigt um mindestens 10 %, vorzugsweise um 20 %, insbesondere um 30 % niedrigere Werte im Vergleich zu Wildtyp-Pflanzen.

Die Verkleisterungstemperatur, die maximale Viskosität und die mittlere Stärkekorngröße der modifizierten Stärke liegen deutlich unter den Werten der in Wildtyp-Pflanzen gebildeten Stärke (siehe Tabelle I).

Tabelle I

Charakteristika der Stärke aus Wildtyp- und SSS A- "Antisense"-Kartoffelpflanzen

	Wildtyp	Linie 25	Linie 39
Phosphatgehalt [nmol mg Stärke ⁻¹]	8,50 ± 0,4	14,61 ± 0,3	14,54 ± 0,2
Verkleisterungs- temperatur [°C]	69,5	67,4	66,2
maximale Viskosität [cp]	4044	3720	3756
Endviskosität bei 50°C [cp]	3312	2904	2400
mittlere Stärke- korngröße [μm]	29	24	27

Beispiel 12

Konstruktion des Plasmids p35S-anti-SSSB und Einführung des Plasmids in das Genom von Kartoffelpflanzen

Aus dem Plasmid pSSSB wurde mit Hilfe der Restriktionsendonukleasen *Xho* I und *Spe* I ein ca. 1,8 kb großes DNA-Fragment isoliert, das die codierende Region für die Isoform B der löslichen Stärkesynthase aus Kartoffel umfaßt, und in den mit *Sma*I geschnittenen Vektor pBinAR Hyg (DSM 9505) ligiert. Durch die Insertion des cDNA-Fragmentes entsteht eine Expressionskassette, die folgendermaßen aus den Fragmenten A, B und C aufgebaut ist (Fig. 4) :

Das Fragment A (529 bp) enthält den 35S-Promotor des Cauliflower-Mosaik-Virus (CaMV). Das Fragment umfaßt die Nucleotide 6909 bis 7437 des CaMV (Franck et al., Cell 21 1980), 285-294).

Das Fragment B enthält neben flankierenden Bereichen einen Teil der proteincodierenden Region der Isoform B der löslichen Stärkesynthase aus *Solanum tuberosum*. Diese wurde wie oben beschrieben als *Xho* I/*Spe* I-Fragment aus pSSSB isoliert

und in antisense-Orientierung an den 35S-Promotor in pBinAR Hyg fusioniert.

Fragment C (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846).

Die Größe des Plasmids p35S-anti-SSSB beträgt ca. 13 kb.

Das Plasmid wurde mit Hilfe Agrobakterien-vermittelter Transformation in Kartoffelpflanzen transferiert wie oben beschrieben. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert.

Als Ergebnis der Transformation zeigten transgene Kartoffelpflanzen eine Verringerung der Aktivität der Isoform B der löslichen Stärkesynthase (vergleiche Figur 8).

Beispiel 13

Konstruktion des Plasmids p35S-anti-GBSS II und Einführung des Plasmids in das Genom von Kartoffelpflanzen

Aus dem Plasmid pGBSS II wurde mit Hilfe der Restriktionsendonucleasen *Asp* 718 und *Sma* I ein ca. 1,9 kb großes DNA-Fragment isoliert, das die codierende Region für die Isoform GBSS II der Stärkesynthase aus Kartoffel umfaßt. Die Fragmentenden wurden mit der T4 Polymerase geglättet und das Fragment in den mit *Sma*I geschnittenen Vektor pBinAR Hyg (DSM 9505) ligiert.

Durch die Insertion des cDNA-Fragmentes entsteht eine Expressionskassette, die folgendermaßen aus den Fragmenten A, B und C aufgebaut ist (Fig. 6):

Das Fragment A (529 bp) enthält den 35S-Promotor des Cauliflower-Mosaik-Virus (CaMV). Das Fragment umfaßt die Nucleotide 6909 bis 7437 des CaMV (Franck et al., Cell 21 (1980), 285-294).

Das Fragment B enthält neben flankierenden Bereichen einen Teil der proteincodierenden Region der Isoform GBSS II der Stärkesynthase aus *Solanum tuberosum*. Diese wurde wie oben beschrieben als *Asp* 718/*Sma* I-Fragment aus pGBSS II isoliert

und nach Glättung der Fragmentenden in antisense-Orientierung an den 35S-Promotor in pBinAR Hyg fusioniert.

Fragment C (192 bp) enthält das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984), 835-846).

Die Größe des Plasmids p35S-anti-GBSS II beträgt ca. 13 kb. Das Plasmid wurde mit Hilfe Agrobakterien-vermittelter Transformation in Kartoffelpflanzen transferiert wie oben beschrieben. Aus den transformierten Zellen wurden ganze Pflanzen regeneriert.

Als Ergebnis der Transformation zeigten transgene Kartoffelpflanzen eine Verringerung der Aktivität der Isoform GBSS II der Stärkesynthase (vergleiche Figur 8).

Die von diesen Pflanzen gebildete Stärke unterscheidet sich von in Wildtyp-Pflanzen synthetisierter Stärke in ihrem Phosphatgehalt, in der Viskosität, den Verkleisterungseigenschaften und der mittleren Stärkekorngröße. Die Ergebnisse sind in Tabelle II dargestellt.

Tabelle II

Charakteristika der Stärke aus Wildtyp- und GBSS II- "Antisense"-Pflanzen

	Wildtyp	Linie 14	Linie 35	Linie 44
Phosphatgehalt [nmol mg Stärke -1]	6,99 ± 0,19	4,52 ± 0,2	4,13 ± 0,06	3,76 ± 0,12
Verkleisterungs-temperatur [°C]	64,1	62,55	63,25	63,55
maximale Visko- sität [cP]	4057	2831	2453	2587
Endviskosität bei 50°C [cP]	2849	2816	2597	2587
mittlere Stärke- korngröße [µm]	37	32	31	32

Der Phosphatgehalt der in den transgenen Pflanzen gebildeten Stärke liegt um mindestens 35 %, vorzugsweise um 40 %, insbesondere um 45 % unter den Werten der von in Wildtyp-Pflanzen synthetisierten Stärke.

Die maximale Viskosität der Stärke aus GBSS II- "antisense"-Pflanzen zeigt um mindestens 30 %, vorzugsweise um 35 %, insbesondere um 40 % niedrigere Werte im Vergleich zu Wildtyp-Pflanzen.

Die Verkleisterungstemperatur und die Endviskosität der modifizierten Stärke liegen unter den Werten der in Wildtyp-Pflanzen gebildeten Stärke. Die mittlere Stärkekorngröße der in den transgenen Pflanzen gebildeten Stärke ist deutlich geringer als die von Wildtyp-Stärke.

Beispiel 14

Überexpression der löslichen Stärkesynthasen SSS A und SSS B in *E. coli*

Für die Überexpression löslicher Stärkesynthasen in *E. coli* wurde der Stamm G6MD2 herangezogen. Hierbei handelt es sich um eine Mutante, die neben dem *glg*- auch im *mal*-Operon deletiert ist. Damit besitzt sie weder die Glycogen-Synthase (*glgA*), das Verzweigungsenzym (*glgB*) und die AGPase (*glgC*) noch die Amylomaltase (*malQ*), die Maltodextrin-Phosphoylase (*malP*) sowie weitere an der Metabolisierung von Maltose beteiligte Proteine. Aus diesem Grund ist die Mutante G6MD2 nicht fähig, über den ADP-Glucose-Weg Glycogen oder ausgehend von Maltose α -1,4-Glucane zu synthetisieren.

Zellen dieser Mutante wurden mit den cDNA-Clonen pSSSA-VK bzw. pSSSB-VK transformiert. Die Stärkesynthasen exprimierenden *E. coli*-Zellen wurden nach 2 h Induktion mit IPTG in 50 mM Tris-HCl pH 7,6, 10 % Glycerin, 2 mM EDTA, 2 mM DTT und 0,4 mM PMSF durch Ultraschall aufgeschlossen. Als Kontrolle dienten mit pBluescript transformierte Zellen. Die Abtrennung von intakten Zellen und Zellwandmaterial erfolgte durch eine Zentrifugation für 10 Minuten bei 13.000 g, und

anschließend wurde die Proteinkonzentration des Überstandes bestimmt. 100 µg Proteinextrakt wurden dem Reaktionspuffer (Endkonzentration: 50 mM Tricine-NaOH pH 8,5, 25 mM Kaliumacetat, 2 mM EDTA und 2 mM DTT, 1 mM ADP-Glucose) zugegeben. Für die Untersuchung der Citrat-stimulierten Reaktion ("primer"-unabhängig) befand sich im Reaktionspuffer zusätzlich 0,5 M Natriumcitrat, während die "primer"-abhängige Reaktion in Anwesenheit von 0,02 % (Gew./Vol.) Maltooligosacchariden (Glucidex 19; 1-30 Glucose-Einheiten) getestet wurde. Die Reaktion wurde bei Raumtemperatur über Nacht durchgeführt. Die synthetisierten Glucane wurden dann mit Lugolscher Lösung nachgewiesen und zur weiteren Charakterisierung spektralphotometrisch untersucht.

Sowohl die Isoform SSS A als auch die Isoform SSS B synthetisierten in der "primer"-abhängigen Reaktion (Abwesenheit von Citrat) Glucane. Das Absorptionsmaximum des durch SSS B synthetisierten Glucans lag bei 614 nm, was einem Glucan von ca. 150 Glucose-Einheiten entspricht. Das von SSS A gebildete Glucan absorbierte bei 575 nm, was auf die Synthese von kurzkettigen Glucanen mit einem Polymerisationsgrad von ca. 50 Glucose-Einheiten hindeutet.

In der "primer"-unabhängigen, d.h. bei der Citrat-stimulierten, Reaktion lieferte allein die Isoform SSS B ein Glucan, welches nach Anfärbung mit Lugolscher Lösung bei 612 nm absorbierte. Die Isoform SSS A zeigte bei der "primer"-unabhängigen Reaktion keine Aktivität und synthetisierte folglich kein Glucan.

Die Proteinextrakte aus den mit pBluescript transformierten Zellen lieferten in keinem der Reaktionsansätze Produkte.

SEQUENZPROTOKOLL

(1) ALLGEMEINE ANGABEN:

(i) ANMELDER:

- (A) NAME: Institut fuer Genbiologische Forschung Berlin GmbH
- (B) STRASSE: Ihnestrasse 63
- (C) ORT: Berlin
- (E) LAND: DE
- (F) POSTLEITZAHL: 14195
- (G) TELEFON: (030) 8300070
- (H) TELEFAX: (030) 83000736

(ii) BEZEICHNUNG DER ERFINDUNG: DNA-Moleküle codierend Enzyme, die an der Staerkesynthese beteiligt sind, Vektoren, Bakterien, transgene Pflanzenzellen und Pflanzen enthaltend diese Moleküle

(iii) ANZAHL DER SEQUENZEN: 17

(iv) COMPUTER-LESBARE FASSUNG:

- (A) DATENTRÄGER: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)

(2) ANGABEN ZU SEQ ID NO: 1:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 2303 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: nicht bekannt
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: cDNA

(iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

(vi) URSPRUNGLICHE HERKUNFT:

- (A) ORGANISMUS: Solanum tuberosum
- (B) STAMM: cv Berolina
- (F) GEWEBETYP: Knollengewebe

(vii) UNMITTELBARE HERKUNFT:

- (A) BIBLIOTHEK: cDNA-Bibliothek in pBluescriptSKII+

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 3..2033

(D) SONSTIGE ANGABEN:/function= "Polymerisierung von
Staerke"
/product= "Staerkesynthase"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

GG CAC GAG GTC AAA AAG CTT GTT AAA TCT GAG AGA ATA GAT GGT GAT	47
His Glu Val Lys Lys Leu Val Lys Ser Glu Arg Ile Asp Gly Asp	
1 5 10 15	
TGG TGG TAT ACA GAG GTT ATT CCT GAT CAG GCA CTT TTC TTG GAT	95
Trp Trp Tyr Thr Glu Val Val Ile Pro Asp Gln Ala Leu Phe Leu Asp	
20 25 30	
TGG GTT TTT GCT GAT GGT CCA CCC AAG CAT GCC ATT GCT TAT GAT AAC	143
Trp Val Phe Ala Asp Gly Pro Pro Lys His Ala Ile Ala Tyr Asp Asn	
35 40 45	
AAT CAC CGC CAA GAC TTC CAT GCC ATT GTC CCC AAC CAC ATT CCG GAG	191
Asn His Arg Gln Asp Phe His Ala Ile Val Pro Asn His Ile Pro Glu	
50 55 60	
GAA TTA TAT TGG GTT GAG GAA GAA CAT CAG ATC TTT AAG ACA CTT CAG	239
Glu Leu Tyr Trp Val Glu Glu Glu His Gln Ile Phe Lys Thr Leu Gln	
65 70 75	
GAG GAG AGA AGG CTT AGA GAA GCG GCT ATG CGT GCT AAG GTT GAA AAA	287
Glu Glu Arg Arg Leu Arg Glu Ala Ala Met Arg Ala Lys Val Glu Lys	
80 85 90 95	
ACA GCA CTT CTG AAA ACT GAA ACA AAG GAA AGA ACT ATG AAA TCA TTT	335
Thr Ala Leu Leu Lys Thr Glu Thr Lys Glu Arg Thr Met Lys Ser Phe	
100 105 110	
TTA CTG TCT CAG AAG CAT GTA GTA TAT ACT GAG CCT CTT GAT ATC CAA	383
Leu Leu Ser Gln Lys His Val Val Tyr Thr Glu Pro Leu Asp Ile Gln	
115 120 125	
GCT GGA AGC AGC GTC ACA GTT TAC TAT AAT CCC GCC AAT ACA GTA CTT	431
Ala Gly Ser Ser Val Thr Val Tyr Tyr Asn Pro Ala Asn Thr Val Leu	
130 135 140	
AAT GGT AAA CCT GAA ATT TGG TTC AGA TGT TCA TTT AAT CGC TGG ACT	479
Asn Gly Lys Pro Glu Ile Trp Phe Arg Cys Ser Phe Asn Arg Trp Thr	
145 150 155	
CAC CGC CTG GGT CCA TTG CCA CCT CAG AAA ATG TCG CCT GCT GAA AAT	527
His Arg Leu Gly Pro Leu Pro Pro Gln Lys Met Ser Pro Ala Glu Asn	
160 165 170 175	
GGC ACC CAT GTC AGA GCA ACT GTG AAG GTT CCA TTG GAT GCA TAT ATG	575
Gly Thr His Val Arg Ala Thr Val Lys Val Pro Leu Asp Ala Tyr Met	
180 185 190	

ATG GAT TTT GTA TTT TCC GAG AGA GAA GAT GGT GGG ATT TTT GAC AAT Met Asp Phe Val Phe Ser Glu Arg Glu Asp Gly Gly Ile Phe Asp Asn 195 200 205	623
AAG AGC GGA ATG GAC TAT CAC ATA CCT GTG TTT GGA GGA GTC GCT AAA Lys Ser Gly Met Asp Tyr His Ile Pro Val Phe Gly Gly Val Ala Lys 210 215 220	671
GAA CCT CCA ATG CAT ATT GTC CAT ATT GCT GTC GAA ATG GCA CCA ATT Glu Pro Pro Met His Ile Val His Ile Ala Val Glu Met Ala Pro Ile 225 230 235	719
GCA AAG GTG GGA GGC CTT GGT GAT GTT ACT AGT CTT TCC CGT GCT Ala Lys Val Gly Gly Leu Gly Asp Val Val Thr Ser Leu Ser Arg Ala 240 245 250 255	767
GTT CAA GAT TTA AAC CAT AAT GTG GAT ATT ATC TTA CCT AAG TAT GAC Val Gln Asp Leu Asn His Asn Val Asp Ile Ile Leu Pro Lys Tyr Asp 260 265 270	815
TGT TTG AAG ATG AAT GTG AAG GAC TTT CGG TTT CAC AAA AAC TAC Cys Leu Lys Met Asn Asn Val Lys Asp Phe Arg Phe His Lys Asn Tyr 275 280 285	863
TTT TGG GGT GGG ACT GAA ATA AAA GTA TGG TTT GGA AAG GTG GAA GGT Phe Trp Gly Gly Thr Glu Ile Lys Val Trp Phe Gly Lys Val Glu Gly 290 295 300	911
CTC TCG GTC TAT TTG GAG CCT CAA AAC GGG TTA TTT TCG AAA GGG Leu Ser Val Tyr Phe Leu Glu Pro Gln Asn Gly Leu Phe Ser Lys Gly 305 310 315	959
TGC GTC TAT GGT TGT AGC AAT GAT GGT GAA CGA TTT GGT TTC TTC TGT Cys Val Tyr Gly Cys Ser Asn Asp Gly Glu Arg Phe Gly Phe Phe Cys 320 325 330 335	1007
CAC GCG GCT TTG GAG TTT CTT CTG CAA GGT GGA TTT AGT CCG GAT ATC His Ala Ala Leu Glu Phe Leu Leu Gln Gly Gly Phe Ser Pro Asp Ile 340 345 350	1055
ATT CAT TGC CAT GAT TGG TCT AGT GCT CCT GTT GCT TGG CTC TTT AAG Ile His Cys His Asp Trp Ser Ser Ala Pro Val Ala Trp Leu Phe Lys 355 360 365	1103
GAA CAA TAT ACA CAC TAT GGT CTA AGC AAA TCT CGT ATA GTC TTC ACG Glu Gln Tyr Thr His Tyr Gly Leu Ser Lys Ser Arg Ile Val Phe Thr 370 375 380	1151
ATA CAT AAT CTT GAA TTT GGG GCA GAT CTC ATT GGG AGA GCA ATG ACT Ile His Asn Leu Glu Phe Gly Ala Asp Leu Ile Gly Arg Ala Met Thr 385 390 395	1199
AAC GCA GAC AAA GCT ACA ACA GTT TCA CCA ACT TAC TCA CAG GAG GTG Asn Ala Asp Lys Ala Thr Thr Val Ser Pro Thr Tyr Ser Gln Glu Val 400 405 410 415	1247

TCT GGA AAC CCT GTA ATT GCG CCT CAC CTT CAC AAG TTC CAT GGT ATA Ser Gly Asn Pro Val Ile Ala Pro His Leu His Lys Phe His Gly Ile 420 425 430	1295
GTG AAT GGG ATT GAC CCA GAT ATT TGG GAT CCT TTA AAC GAT AAG TTC Val Asn Gly Ile Asp Pro Asp Ile Trp Asp Pro Leu Asn Asp Lys Phe 435 440 445	1343
ATT CCG ATT CCG TAC ACC TCA GAA AAC GTT GTT GAA GGC AAA ACA GCA Ile Pro Ile Pro Tyr Thr Ser Glu Asn Val Val Glu Gly Lys Thr Ala 450 455 460	1391
GCC AAG GAA GCT TTG CAG CGA AAA CTT GGA CTG AAA CAG GCT GAC CTT Ala Lys Glu Ala Leu Gln Arg Lys Leu Gly Leu Lys Gln Ala Asp Leu 465 470 475	1439
CCT TTG GTA GGA ATT ATC ACC CGC TTA ACT CAC CAG AAA GGA ATC CAC Pro Leu Val Gly Ile Ile Thr Arg Leu Thr His Gln Lys Gly Ile His 480 485 490 495	1487
CTC ATT AAA CAT GCT ATT TGG CGC ACC TTG GAA CGG AAC GGA CAG GTA Leu Ile Lys His Ala Ile Trp Arg Thr Leu Glu Arg Asn Gly Gln Val 500 505 510	1535
GTC TTG CTT GGT TCT GCT CCT GAT CCT AGG GTA CAA AAC GAT TTT GTT Val Leu Leu Gly Ser Ala Pro Asp Pro Arg Val Gln Asn Asp Phe Val 515 520 525	1583
AAT TTG GCA AAT CAA TTG CAC TCC AAA TAT AAT GAC CGC GCA CGA CTC Asn Leu Ala Asn Gln Leu His Ser Lys Tyr Asn Asp Arg Ala Arg Leu 530 535 540	1631
TGT CTA ACA TAT GAC GAG CCA CTT TCT CAC CTG ATA TAT GCT GGT GCT Cys Leu Thr Tyr Asp Glu Pro Leu Ser His Leu Ile Tyr Ala Gly Ala 545 550 555	1679
GAT TTT ATT CTA GTT CCT TCA ATA TTT GAG CCA TGT GGA CTA ACA CAA Asp Phe Ile Leu Val Pro Ser Ile Phe Glu Pro Cys Gly Leu Thr Gln 560 565 570 575	1727
CTT ACC GCT ATG AGA TAT GGT TCA ATT CCA GTC GTG CGT AAA ACT GGA Leu Thr Ala Met Arg Tyr Gly Ser Ile Pro Val Val Arg Lys Thr Gly 580 585 590	1775
GGA CTT TAT GAT ACT GTA TTT GAT GTT GAC CAT GAC AAA GAG AGA GCA Gly Leu Tyr Asp Thr Val Phe Asp/Val Asp His Asp Lys Glu Arg Ala 595 600 605	1823
CAA CAG TGT GGT CTT GAA CCA AAT GGA TTC AGC TTT GAT GGA GCA GAT Gln Gln Cys Gly Leu Glu Pro Asn Gly Phe Ser Phe Asp Gly Ala Asp 610 615 620	1871

GCT GGC GGA GTT GAT TAT GCT CTG AAT AGA GCT CTC TCT GCT TGG TAC Ala Gly Gly Val Asp Tyr Ala Leu Asn Arg Ala Leu Ser Ala Trp Tyr 625 630 635	1919
GAT GGT CGG GAT TGG TTC AAC TCT TTA TGC AAG CAG GTC ATG GAA CAA Asp Gly Arg Asp Trp Phe Asn Ser Leu Cys Lys Gln Val Met Glu Gln 640 645 650	1967
GAT TGG TCT TGG AAC CGA CCT GCT CTT GAT TAT TTG GAG CTT TAC CAT Asp Trp Ser Trp Asn Arg Pro Ala Leu Asp Tyr Leu Glu Leu Tyr His 660 665 670	2015
GCT GCT AGA AAG TTA GAA TAGTTAGTTT GTGAGATGCT AGCAGAAAAA Ala Ala Arg Lys Leu Glu 675	2063
TTCACGAGAT CTGCAATCTG TACAGGTTCA GTGTTTGCCT CTGGACAGCT TTTTATTTC TATATCAAAG TATAAATCAA GTCTACACTG AGATCAATAG CAGACAGTCC TCAGTTCA TCATTTTTG TGCAACATAT GAAAGAGCTT AGCCTCTAAT AATGTAGTCA TTGATGATTA TTTGTGTTGG GAAGAAATGA GAAATCAAAG GATGCAAAAT ACTCTGAAAAA AAAAAAAA 2123 2183 2243 2303	

(2) ANGABEN ZU SEQ ID NO: 2:

(i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 677 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

His Glu Val Lys Lys Leu Val Lys Ser Glu Arg Ile Asp Gly Asp Trp 1 5 10 15
Trp Tyr Thr Glu Val Val Ile Pro Asp Gln Ala Leu Phe Leu Asp Trp 20 25 30
Val Phe Ala Asp Gly Pro Pro Lys His Ala Ile Ala Tyr Asp Asn Asn 35 40 45
His Arg Gln Asp Phe His Ala Ile Val Pro Asn His Ile Pro Glu Glu 50 55 60
Leu Tyr Trp Val Glu Glu Glu His Gln Ile Phe Lys Thr Leu Gln Glu 65 70 75 80
Glu Arg Arg Leu Arg Glu Ala Ala Met Arg Ala Lys Val Glu Lys Thr 85 90 95

Ala Leu Leu Lys Thr Glu Thr Lys Glu Arg Thr Met Lys Ser Phe Leu
100 105 110

Leu Ser Gln Lys His Val Val Tyr Thr Glu Pro Leu Asp Ile Gln Ala
115 120 125

Gly Ser Ser Val Thr Val Tyr Tyr Asn Pro Ala Asn Thr Val Leu Asn
130 135 140

Gly Lys Pro Glu Ile Trp Phe Arg Cys Ser Phe Asn Arg Trp Thr His
145 150 155 160

Arg Leu Gly Pro Leu Pro Pro Gln Lys Met Ser Pro Ala Glu Asn Gly
165 170 175

Thr His Val Arg Ala Thr Val Lys Val Pro Leu Asp Ala Tyr Met Met
180 185 190

Asp Phe Val Phe Ser Glu Arg Glu Asp Gly Ile Phe Asp Asn Lys
195 200 205

Ser Gly Met Asp Tyr His Ile Pro Val Phe Gly Gly Val Ala Lys Glu
210 215 220

Pro Pro Met His Ile Val His Ile Ala Val Glu Met Ala Pro Ile Ala
225 230 235 240

Lys Val Gly Gly Leu Gly Asp Val Val Thr Ser Leu Ser Arg Ala Val
245 250 255

Gln Asp Leu Asn His Asn Val Asp Ile Ile Leu Pro Lys Tyr Asp Cys
260 265 270

Leu Lys Met Asn Asn Val Lys Asp Phe Arg Phe His Lys Asn Tyr Phe
275 280 285

Trp Gly Gly Thr Glu Ile Lys Val Trp Phe Gly Lys Val Glu Gly Leu
290 295 300

Ser Val Tyr Phe Leu Glu Pro Gln Asn Gly Leu Phe Ser Lys Gly Cys
305 310 315 320

Val Tyr Gly Cys Ser Asn Asp Gly Glu Arg Phe Gly Phe Phe Cys His
325 330 335

Ala Ala Leu Glu Phe Leu Leu Gln Gly Gly Phe Ser Pro Asp Ile Ile
340 345 350

His Cys His Asp Trp Ser Ser Ala Pro Val Ala Trp Leu Phe Lys Glu
355 360 365

Gln Tyr Thr His Tyr Gly Leu Ser Lys Ser Arg Ile Val Phe Thr Ile
370 375 380

His Asn Leu Glu Phe Gly Ala Asp Leu Ile Gly Arg Ala Met Thr Asn
385 390 395 400

Ala Asp Lys Ala Thr Thr Val Ser Pro Thr Tyr Ser Gln Glu Val Ser
405 410 415

Gly Asn Pro Val Ile Ala Pro His Leu His Lys Phe His Gly Ile Val
420 425 430

Asn Gly Ile Asp Pro Asp Ile Trp Asp Pro Leu Asn Asp Lys Phe Ile
435 440 445

Pro Ile Pro Tyr Thr Ser Glu Asn Val Val Glu Gly Lys Thr Ala Ala
450 455 460

Lys Glu Ala Leu Gln Arg Lys Leu Gly Leu Lys Gln Ala Asp Leu Pro
465 470 475 480

Leu Val Gly Ile Ile Thr Arg Leu Thr His Gln Lys Gly Ile His Leu
485 490 495

Ile Lys His Ala Ile Trp Arg Thr Leu Glu Arg Asn Gly Gln Val Val
500 505 510

Leu Leu Gly Ser Ala Pro Asp Pro Arg Val Gln Asn Asp Phe Val Asn
515 520 525

Leu Ala Asn Gln Leu His Ser Lys Tyr Asn Asp Arg Ala Arg Leu Cys
530 535 540

Leu Thr Tyr Asp Glu Pro Leu Ser His Leu Ile Tyr Ala Gly Ala Asp
545 550 555 560

Phe Ile Leu Val Pro Ser Ile Phe Glu Pro Cys Gly Leu Thr Gln Leu
565 570 575

Thr Ala Met Arg Tyr Gly Ser Ile Pro Val Val Arg Lys Thr Gly Gly
580 585 590

Leu Tyr Asp Thr Val Phe Asp Val Asp His Asp Lys Glu Arg Ala Gln
595 600 605

Gln Cys Gly Leu Glu Pro Asn Gly Phe Ser Phe Asp Gly Ala Asp Ala
610 615 620

Gly Gly Val Asp Tyr Ala Leu Asn Arg Ala Leu Ser Ala Trp Tyr Asp
625 630 635 640

Gly Arg Asp Trp Phe Asn Ser Leu Cys Lys Gln Val Met Glu Gln Asp
645 650 655

Trp Ser Trp Asn Arg Pro Ala Leu Asp Tyr Leu Glu Leu Tyr His Ala
660 665 670

Ala Arg Lys Leu Glu
675

(2) ANGABEN ZU SEQ ID NO: 3:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 1758 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: nicht bekannt
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: cDNA zu mRNA

(iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

(vi) URSPRÜNLICHE HERKUNFT:

- (A) ORGANISMUS: Solanum tuberosum
- (B) STAMM: cv. Berolina
- (F) GEWEBETYP: Knollengewebe

(vii) UNMITTELBARE HERKUNFT:

- (A) BIBLIOTHEK: cDNA-Bibliothek in pBluescriptSKII+

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 1..1377
- (D) SONSTIGE ANGABEN: /function= "Polymerisierung von
Staerke"
/product= "Staerkesynthase"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

GGC ACG AGC AAT GCT GTT GAC CTT GAT GTG CGG GCC ACT GTC CAT TGC Gly Thr Ser Asn Ala Val Asp Leu Asp Val Arg Ala Thr Val His Cys	48
1 5 10 15	15
TTT GGT GAT GCA CAG GAA GTA GCC TTC TAC CAT GAA TAC AGG GCA GGT Phe Gly Asp Ala Gln Glu Val Ala Phe Tyr His Glu Tyr Arg Ala Gly	96
20 25 30	30
GTG GAT TGG GTA TTT GTG GAC CAC TCT TAC CGC AGA CCT GGA ACG Val Asp Trp Val Phe Val Asp His Ser Ser Tyr Arg Arg Pro Gly Thr	144
35 40 45	45
CCA TAT GGT GAT ATT TAT GGT GCA TTT GGT GAT AAT CAG TTT CGC TTC Pro Tyr Gly Asp Ile Tyr Gly Ala Phe Gly Asp Asn Gln Phe Arg Phe	192
50 55 60	60
ACT TTG CTT TCT CAC GCA GCA TGT GAA GCG CCA TTG GTT CTT CCA CTG Thr Leu Leu Ser His Ala Ala Cys Glu Ala Pro Leu Val Leu Pro Leu	240
65 70 75 80	80

GGA GGG TTC ACT TAT GGA GAG AAG TGC TTG TTT CTC GCT AAT GAT TGC Gly Gly Phe Thr Tyr Gly Glu Lys Cys Leu Phe Leu Ala Asn Asp Cys 85 90 95	288
AAC GCT GCC TTG GTT CCT TTA CTT TTA GCG GCC AAG TAT CGT CCT TAT Asn Ala Ala Leu Val Pro Leu Leu Ala Ala Lys Tyr Arg Pro Tyr 100 105 110	336
GGT GTT TAC AAG GAT GCT CGT AGT ATT GTC GCA ATA CAC AAC ATT GCA Gly Val Tyr Lys Asp Ala Arg Ser Ile Val Ala Ile His Asn Ile Ala 115 120 125	384
CAT CAG GGA GTG GAG CCT GCA GTC ACC TAC AAT AAT TTG GGT TTG CCT His Gln Gly Val Glu Pro Ala Val Thr Tyr Asn Asn Leu Gly Leu Pro 130 135 140	432
CCA CAA TGG TAT GGA GCA GTT GAA TGG ATA TTT CCC ACA TGG GCA AGG Pro Gln Trp Tyr Gly Ala Val Glu Trp Ile Phe Pro Thr Trp Ala Arg 145 150 155 160	480
GCG CAT GCG CTT GAC ACT GGT GAA ACA GTG AAC GTT TTG AAA GGG GCA Ala His Ala Leu Asp Thr Gly Glu Thr Val Asn Val Leu Lys Gly Ala 165 170 175	528
ATA GCA GTT GCT GAT CGG ATA CTG ACA GTT AGC CAG GGA TAC TCA TGG Ile Ala Val Ala Asp Arg Ile Leu Thr Val Ser Gln Gly Tyr Ser Trp 180 185 190	576
GAA ATA ACA ACT CCT GAA GGG GGA TAT GGG CTA CAT GAG CTG TTG AGC Glu Ile Thr Thr Pro Glu Gly Gly Tyr Gly Leu His Glu Leu Leu Ser 195 200 205	624
AGT AGA CAG TCT GTT CTT AAT GGA ATT ACT AAT GGA ATA GAT GTT AAT Ser Arg Gln Ser Val Leu Asn Gly Ile Thr Asn Gly Ile Asp Val Asn 210 215 220	672
GAT TGG AAC CCG TCG ACA GAT GAG CAT ATC GCT TCG CAT TAC TCC ATC Asp Trp Asn Pro Ser Thr Asp Glu His Ile Ala Ser His Tyr Ser Ile 225 230 235 240	720
AAT GAC CTC TCC CCC CCT GGA AAG GTT CAG TGC AAG ACT GAT CTG CAA Asn Asp Leu Ser Pro Pro Gly Lys Val Gln Cys Lys Thr Asp Leu Gln 245 250 255	768
AAG GAA CTG GGC CTT CCA ATT CGA CCC GAT TGT CCA CTG ATT GGA TTT Lys Glu Leu Gly Leu Pro Ile Arg Pro Asp Cys Pro Leu Ile Gly Phe 260 265 270	816
ATT GGA AGG CTG GAC TAC CAG AAA GGT GTT GAC ATA ATC CTG TCA GCA Ile Gly Arg Leu Asp Tyr Gln Lys Gly Val Asp Ile Ile Leu Ser Ala 275 280 285	864
ATT CCA GAA CTT ATG CAG AAT GAT GTC CAA GTT GTA ATG CTT GGA TCT Ile Pro Glu Leu Met Gln Asn Asp Val Gln Val Val Met Leu Gly Ser 290 295 300	912

GGT GAG AAA CAA TAT GAA GAC TGG ATG AGA CAT ACA GAA AAT CTT TTT Gly Glu Lys Gln Tyr Glu Asp Trp Met Arg His Thr Glu Asn Leu Phe 305 310 315 320	960
AAA GAC AAA TTT CGT GCT TGG GGA TTT AAT GTT CCA GTT TCT CAT Lys Asp Lys Phe Arg Ala Trp Val Gly Phe Asn Val Pro Val Ser His 325 330 335	1008
AGG ATA ACA GCA GGA TGC GAC ATA CTA TTG ATG CCC TCA AGA TTC GAA Arg Ile Thr Ala Gly Cys Asp Ile Leu Leu Met Pro Ser Arg Phe Glu 340 345 350	1056
CCG TGT GGC TTA AAC CAA TTG TAT GCA ATG AGA TAT GGC ACC ATA CCT Pro Cys Gly Leu Asn Gln Leu Tyr Ala Met Arg Tyr Gly Thr Ile Pro 355 360 365	1104
ATT GTT CAT AGC ACG GGG GGC CTA AGA GAC ACA GTG AAG GAT TTT AAT Ile Val His Ser Thr Gly Leu Arg Asp Thr Val Lys Asp Phe Asn 370 375 380	1152
CCA TAT GCT CAA GAA GGA AAA GGT GAA GGT ACC GGG TGG ACA TTT TCT Pro Tyr Ala Gln Glu Gly Lys Gly Glu Gly Thr Gly Trp Thr Phe Ser 385 390 395 400	1200
CCT CTA ACG AGT GAA AAG TTG TTT GAT ACA CTG AAG CTG GCG ATC AGG Pro Leu Thr Ser Glu Lys Leu Phe Asp Thr Leu Lys Leu Ala Ile Arg 405 410 415	1248
ACT TAT ACA GAA CAT AAG TCA TCT TGG GAG GGA TTG ATG AAG AGA GGT Thr Tyr Thr Glu His Lys Ser Ser Trp Glu Gly Leu Met Lys Arg Gly 420 425 430	1296
ATG GGA AGG GAC TAT TCC TGG GAA AAT GCA GCC ATT CAA TAT GAG CAA Met Gly Arg Asp Tyr Ser Trp Glu Asn Ala Ala Ile Gln Tyr Glu Gln 435 440 445	1344
GTT TTC ACC TGG GCC TTT ATA GAT CCT CCA TAT GTCAGATGAT TTATCAAGAA Val Phe Thr Trp Ala Phe Ile Asp Pro Pro Tyr 450 455	1397
AGATTGCAAA CGGGATACAT CATTAAACTA TACGCAGAGC TTTGGTGCT ATTAGCTACT	1457
GTCATTGGGC CGCGAATGTT TGTGGTTCTT TCTGATTCAG AGAGATCAAG TTAGTTCAA	1517
AGACATGTAG CCTGCCCTG TCTGTGATGA AGTAAACTA CAAAGGCAAT TAGAAACCA	1577
CCAACAACTG CCTCCTTGG GAGAAGAGTG GAAATATGTA AAAAGAATT TTGAGTTAA	1637
TGTCAATTGA ATTAATTATT CTCATTTA AAAAAACAT CTCATCTCAT ACAATATATA	1697
AAATTGATCA TGATTGATGC CCCCTAAAAA AAAAAAAA AAAAAAAA AAAAAAAA	1757
A	1758

(2) ANGABEN ZU SEQ ID NO: 4:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 459 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

Gly Thr Ser Asn Ala Val Asp Leu Asp Val Arg Ala Thr Val His Cys
 1 5 10 15

Phe Gly Asp Ala Gln Glu Val Ala Phe Tyr His Glu Tyr Arg Ala Gly
 20 25 30

Val-Asp Trp Val Phe Val Asp His Ser Ser Tyr Arg Arg Pro Gly Thr
 35 40 45

Pro Tyr Gly Asp Ile Tyr Gly Ala Phe Gly Asp Asn Gln Phe Arg Phe
 50 55 60

Thr Leu Leu Ser His Ala Ala Cys Glu Ala Pro Leu Val Leu Pro Leu
 65 70 75 80

Gly Gly Phe Thr Tyr Gly Glu Lys Cys Leu Phe Leu Ala Asn Asp Cys
 85 90 95

Asn Ala Ala Leu Val Pro Leu Leu Ala Ala Lys Tyr Arg Pro Tyr
 100 105 110

Gly Val Tyr Lys Asp Ala Arg Ser Ile Val Ala Ile His Asn Ile Ala
 115 120 125

His Gln Gly Val Glu Pro Ala Val Thr Tyr Asn Asn Leu Gly Leu Pro
 130 135 140

Pro Gln Trp Tyr Gly Ala Val Glu Trp Ile Phe Pro Thr Trp Ala Arg
 145 150 155 160

Ala His Ala Leu Asp Thr Gly Glu Thr Val Asn Val Leu Lys Gly Ala
 165 170 175

Ile Ala Val Ala Asp Arg Ile Leu Thr Val Ser Gln Gly Tyr Ser Trp
 180 185 190

Glu Ile Thr Thr Pro Glu Gly Gly Tyr Gly Leu His Glu Leu Leu Ser
 195 200 205

Ser Arg Gln Ser Val Leu Asn Gly Ile Thr Asn Gly Ile Asp Val Asn
 210 215 220

Asp Trp Asn Pro Ser Thr Asp Glu His Ile Ala Ser His Tyr Ser Ile
 225 230 235 240

Asn Asp Leu Ser Pro Pro Gly Lys Val Gln Cys Lys Thr Asp Leu Gln
245 250 255

Lys Glu Leu Gly Leu Pro Ile Arg Pro Asp Cys Pro Leu Ile Gly Phe
260 265 270

Ile Gly Arg Leu Asp Tyr Gln Lys Gly Val Asp Ile Ile Leu Ser Ala
275 280 285

Ile Pro Glu Leu Met Gln Asn Asp Val Gln Val Val Met Leu Gly Ser
290 295 300

Gly Glu Lys Gln Tyr Glu Asp Trp Met Arg His Thr Glu Asn Leu Phe
305 310 315 320

Lys Asp Lys Phe Arg Ala Trp Val Gly Phe Asn Val Pro Val Ser His
325 330 335

Arg Ile Thr Ala Gly Cys Asp Ile Leu Leu Met Pro Ser Arg Phe Glu
340 345 350

Pro Cys Gly Leu Asn Gln Leu Tyr Ala Met Arg Tyr Gly Thr Ile Pro
355 360 365

Ile Val His Ser Thr Gly Gly Leu Arg Asp Thr Val Lys Asp Phe Asn
370 375 380

Pro Tyr Ala Gln Glu Gly Lys Gly Glu Gly Thr Gly Trp Thr Phe Ser
385 390 395 400

Pro Leu Thr Ser Glu Lys Leu Phe Asp Thr Leu Lys Leu Ala Ile Arg
405 410 415

Thr Tyr Thr Glu His Lys Ser Ser Trp Glu Gly Leu Met Lys Arg Gly
420 425 430

Met Gly Arg Asp Tyr Ser Trp Glu Asn Ala Ala Ile Gln Tyr Glu Gln
435 440 445

Val Phe Thr Trp Ala Phe Ile Asp Pro Pro Tyr
450 455

(2) ANGABEN ZU SEQ ID NO: 5:

(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 1926 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: nicht bekannt
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: cDNA zu mRNA

(iii) HYPOTHETISCH: NEIN

(iv) ANTISENSE: NEIN

(vi) URSPRÜNLICHE HERKUNFT:

- (A) ORGANISMUS: Solanum tuberosum
- (B) STAMM: cv. 'Berolina'
- (F) GEWEBETYP: Knollengewebe

(vii) UNMITTELBARE HERKUNFT:

- (A) BIBLIOTHEK: cDNA-Bibliothek in pBluescriptSK+

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: CDS
- (B) LAGE: 2..1675
- (D) SONSTIGE ANGABEN: /function= "Polymerisierung von
Staerke"
/product= "Staerkesynthase"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

C GGC ACG AGC AAA AGT TTA GTA GAT GTT CCT GGA AAG AAG ATC CAG	46
Gly Thr Ser Lys Ser Leu Val Asp Val Pro Gly Lys Lys Ile Gln	
1 5 10 15	
TCT TAT ATG CCT TCA TTA CGT AAA GAA TCC TCA GCA TCC CAT GTG GAA	94
Ser Tyr Met Pro Ser Leu Arg Lys Glu Ser Ser Ala Ser His Val Glu	
20 25 30	
CAG AGG AAT GAA AAT CTT GAA GGA TCA AGT GCT GAG GCA AAC GAA GAG	142
Gln Arg Asn Glu Asn Leu Glu Gly Ser Ser Ala Glu Ala Asn Glu Glu	
35 40 45	
ACT GAA GAT CCT GTG AAT ATA GAT GAG AAA CCC CCT CCA TTG GCA GGA	190
Thr Glu Asp Pro Val Asn Ile Asp Glu Lys Pro Pro Pro Leu Ala Gly	
50 55 60	
ACA AAT GTT ATG AAC ATT ATT TTG GTG GCT TCA GAA TGC GCT CCA TGG	238
Thr Asn Val Met Asn Ile Ile Leu Val Ala Ser Glu Cys Ala Pro Trp	
65 70 75	
TCT AAA ACA GGT GGG CTT GGA GAT GTT GCT GGA GCA TTA CCC AAA GCT	286
Ser Lys Thr Gly Gly Leu Gly Asp Val Ala Gly Ala Leu Pro Lys Ala	
80 85 90 95	
TTG GCT CGA CGT GGC CAC AGA GTT ATG GTT GTG GCA CCT CGT TAT GAC	334
Leu Ala Arg Arg Gly His Arg Val Met Val Val Ala Pro Arg Tyr Asp	
100 105 110	
AAC TAT CCT GAA CCT CAA GAT TCT GGT GTA AGA AAA ATT TAT AAA GTT	382
Asn Tyr Pro Glu Pro Gln Asp Ser Gly Val Arg Lys Ile Tyr Lys Val	
115 120 125	
GAT GGT CAG GAT GTG GAA GTG ACT TAC TTC CAA GCT TTT ATT GAT GGT	430
Asp Gly Gln Asp Val Glu Val Thr Tyr Phe Gln Ala Phe Ile Asp Gly	
130 135 140	

GTG GAT TTT GTT TTC ATT GAC AGT CAT ATG TTT AGA CAC ATT GGG AAC	478
Val Asp Phe Val Phe Ile Asp Ser His Met Phe Arg His Ile Gly Asn	
145 150 155	
AAC ATT TAC GGA GGG AAC CGT GTG GAT ATT TTA AAA CGC ATG GTT TTA	526
Asn Ile Tyr Gly Gly Asn Arg Val Asp Ile Leu Lys Arg Met Val Leu	
160 165 170 175	
TTT TGC AAA GCA GCG ATT GAG GTT CCT TGG CAT GTT CCA TGT GGT GGG	574
Phe Cys Lys Ala Ala Ile Glu Val Pro Trp His Val Pro Cys Gly Gly	
180 185 190	
GTC TGC TAT GGA GAT GGA AAT TTA GTG TTC ATT GCT AAT GAT TGG CAT	622
Val Cys Tyr Gly Asp Gly Asn Leu Val Phe Ile Ala Asn Asp Trp His	
195 200 205	
ACT GCT TTA TTG CCA GTA TAT CTG AAA GCT TAT TAT CGT GAC AAT GGA	670
Thr Ala Leu Leu Pro Val Tyr Leu Lys Ala Tyr Tyr Arg Asp Asn Gly	
210 215 220	
ATT ATG AAC TAT ACA AGA TCT GTC CTG GTG ATT CAT AAC ATC GCT CAT	718
Ile Met Asn Tyr Thr Arg Ser Val Leu Val Ile His Asn Ile Ala His	
225 230 235	
CAG GGT CGT GGT CCT TTG GAG GAT TTT TCA TAT GTA GAT CTT CCA CCA	766
Gln Gly Arg Gly Pro Leu Glu Asp Phe Ser Tyr Val Asp Leu Pro Pro	
240 245 250 255	
CAC TAT ATG GAC CCT TTC AAG TTG TAT GAC CCA GTA GGA GGT GAG CAT	814
His Tyr Met Asp Pro Phe Lys Leu Tyr Asp Pro Val Gly Gly Glu His	
260 265 270	
TTC AAC ATT TTT GCG GCT GGT CTA AAG ACA GCA GAT CGT GTA GTT ACA	862
Phe Asn Ile Phe Ala Ala Gly Leu Lys Thr Ala Asp Arg Val Val Thr	
275 280 285	
GTT AGT CAT GGA TAT TCA TGG GAA CTA AAG ACT TCC CAA GGT GGT TGG	910
Val Ser His Gly Tyr Ser Trp Glu Leu Lys Thr Ser Gln Gly Gly Trp	
290 295 300	
GGA TTG CAT CAG ATA ATT AAT GAG AAC GAT TGG AAA TTA CAG GGT ATT	958
Gly Leu His Gln Ile Ile Asn Glu Asn Asp Trp Lys Leu Gln Gly Ile	
305 310 315	
GTG AAT GGG ATT GAT ACA AAA GAG TGG AAC CCT GAG TTG GAC GTT CAC	1006
Val Asn Gly Ile Asp Thr Lys Glu Trp Asn Pro Glu Leu Asp Val His	
320 325 330 335	
TTA CAG TCA GAT GGT TAC ATG AAC TAC TCC TTG GAC ACG CTA CAG ACT	1054
Leu Gln Ser Asp Gly Tyr Met Asn Tyr Ser Leu Asp Thr Leu Gln Thr	
340 345 350	

GGC AAG CCT CAA TGT AAA GCT GCA TTG CAG AAG GAA CTT GGT TTA CCA Gly Lys Pro Gln Cys Lys Ala Ala Leu Gln Lys Glu Leu Gly Leu Pro 355 360 365	1102
GTT CGT GAT GAT GTC CCA CTG ATC GGT TTC ATT GGG AGG CTT GAC CCA Val Arg Asp Asp Val Pro Leu Ile Gly Phe Ile Gly Arg Leu Asp Pro 370 375 380	1150
CAA AAG GGT GTT GAT CTG ATT GCT GAG GCC AGT GCT TGG ATG ATG GGT Gln Lys Gly Val Asp Leu Ile Ala Glu Ala Ser Ala Trp Met Met Gly 385 390 395	1198
CAG GAT GTA CAA CTG GTC ATG TTG GGG ACG GGG AGG CGT GAC CTT GAA Gln Asp Val Gln Leu Val Met Leu Gly Thr Gly Arg Arg Asp Leu Glu 400 405 410 415	1246
CAG ATG CTA AGG CAA TTT GAG TGT CAA CAC AAT GAT AAA ATT AGA GGA Gln Met Leu Arg Gln Phe Glu Cys Gln His Asn Asp Lys Ile Arg Gly 420 425 430	1294
TGG GTT GGT TTC TCT GTG AAG ACT TCT CAT CGT ATA ACT GCT GGT GCA Trp Val Gly Phe Ser Val Lys Thr Ser His Arg Ile Thr Ala Gly Ala 435 440 445	1342
GAC ATT CTG CTC ATG CCT TCT AGA TTT GAG GCC TTG CGA CTG AAC CAG Asp Ile Leu Leu Met Pro Ser Arg Phe Glu Ala Leu Arg Leu Asn Gln 450 455 460	1390
CTT TAT GCA ATG AAA TAT GGG ACT ATT CCT GTT GTT CAT GCA GTA GGA Leu Tyr Ala Met Lys Tyr Gly Thr Ile Pro Val Val His Ala Val Gly 465 470 475	1438
GGA CTC AGA GAT ACT GTG CAG CCC TTT GAT CCT TTT AAT GAG TCA GGA Gly Leu Arg Asp Thr Val Gln Pro Phe Asp Pro Phe Asn Glu Ser Gly 480 485 490 495	1486
CTG GGG TGG ACC TTC AGT AGG GCT GAA GCT AGC CAG CTG ATC CAC GCA Leu Gly Trp Thr Phe Ser Arg Ala Glu Ala Ser Gln Leu Ile His Ala 500 505 510	1534
TTA GGA AAT TGC TTA CTG ACT TAT CGT GAG TAC AAA AAG AGT TGG GAG Leu Gly Asn Cys Leu Leu Thr Tyr Arg Glu Tyr Lys Lys Ser Trp Glu 515 520 525	1582
GGG ATT CAG ACA CGT TGT ATG ACA CAA GAC TTA AGT TGG GAT AAT GCT Gly Ile Gln Thr Arg Cys Met Thr Gln Asp Leu Ser Trp Asp Asn Ala 530 535 540	1630
GCT CAG AAC TAT GAA GAA GTT CTC ATC GCT GCT AAG TAT CAG TGG Ala Gln Asn Tyr Glu Glu Val Leu Ile Ala Ala Lys Tyr Gln Trp 545 550 555	1675
TGAGGTTCAT TACTTGTAGA TATTTGGGGA TTTTGGCCAT TGTATCAAGT TCTAATGATG GGATTCAGA GACATGTTTC TGGTATCGAC ACCGAGAGGAT GCATGCAACA AGTTGGCTAA	1735 1795

CTATCATACT ACTACCACGT CAGGAATGAT TGCCGCACTT GATCATGTAA TCATGTATAT	1855
ACTCTATTTT GTTTGCAAAA TGTAGTTACA TGTTGCAATT TCTAAAAAAA AAAAAAAA	1915
AAAAAAA A	1926

(2) ANGABEN ZU SEQ ID NO: 6:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 558 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

Gly Thr Ser Lys Ser Leu Val Asp Val Pro Gly Lys Lys Ile Gln Ser	15	
1	5	
Tyr Met Pro Ser Leu Arg Lys Glu Ser Ser Ala Ser His Val Glu Gln	30	
20	25	
Arg Asn Glu Asn Leu Glu Gly Ser Ser Ala Glu Ala Asn Glu Glu Thr	45	
35	40	
Glu Asp Pro Val Asn Ile Asp Glu Lys Pro Pro Pro Leu Ala Gly Thr	60	
50	55	
Asn Val Met Asn Ile Ile Leu Val Ala Ser Glu Cys Ala Pro Trp Ser	80	
65	70	75
Lys Thr Gly Gly Leu Gly Asp Val Ala Gly Ala Leu Pro Lys Ala Leu	95	
85	90	
Ala Arg Arg Gly His Arg Val Met Val Val Ala Pro Arg Tyr Asp Asn	110	
100	105	
Tyr Pro Glu Pro Gln Asp Ser Gly Val Arg Lys Ile Tyr Lys Val Asp	125	
115	120	
Gly Gln Asp Val Glu Val Thr Tyr Phe Gln Ala Phe Ile Asp Gly Val	140	
130	135	
Asp Phe Val Phe Ile Asp Ser His Met Phe Arg His Ile Gly Asn Asn	160	
145	150	155
Ile Tyr Gly Gly Asn Arg Val Asp Ile Leu Lys Arg Met Val Leu Phe	175	
165	170	
Cys Lys Ala Ala Ile Glu Val Pro Trp His Val Pro Cys Gly Gly Val	190	
180	185	

Cys Tyr Gly Asp Gly Asn Leu Val Phe Ile Ala Asn Asp Trp His Thr
195 200 205

Ala Leu Leu Pro Val Tyr Leu Lys Ala Tyr Tyr Arg Asp Asn Gly Ile
210 215 220

Met Asn Tyr Thr Arg Ser Val Leu Val Ile His Asn Ile Ala His Gln
225 230 235 240

Gly Arg Gly Pro Leu Glu Asp Phe Ser Tyr Val Asp Leu Pro Pro His
245 250 255

Tyr Met Asp Pro Phe Lys Leu Tyr Asp Pro Val Gly Glu His Phe
260 265 270

Asn Ile Phe Ala Ala Gly Leu Lys Thr Ala Asp Arg Val Val Thr Val
275 280 285

Ser His Gly Tyr Ser Trp Glu Leu Lys Thr Ser Gln Gly Gly Trp Gly
290 295 300

Leu His Gln Ile Ile Asn Glu Asn Asp Trp Lys Leu Gln Gly Ile Val
305 310 315 320

Asn Gly Ile Asp Thr Lys Glu Trp Asn Pro Glu Leu Asp Val His Leu
325 330 335

Gln Ser Asp Gly Tyr Met Asn Tyr Ser Leu Asp Thr Leu Gln Thr Gly
340 345 350

Lys Pro Gln Cys Lys Ala Ala Leu Gln Lys Glu Leu Gly Leu Pro Val
355 360 365

Arg Asp Asp Val Pro Leu Ile Gly Phe Ile Gly Arg Leu Asp Pro Gln
370 375 380

Lys Gly Val Asp Leu Ile Ala Glu Ala Ser Ala Trp Met Met Gly Gln
385 390 395 400

Asp Val Gln Leu Val Met Leu Gly Thr Gly Arg Arg Asp Leu Glu Gln
405 410 415

Met Leu Arg Gln Phe Glu Cys Gln His Asn Asp Lys Ile Arg Gly Trp
420 425 430

Val Gly Phe Ser Val Lys Thr Ser His Arg Ile Thr Ala Gly Ala Asp
435 440 445

Ile Leu Leu Met Pro Ser Arg Phe Glu Ala Leu Arg Leu Asn Gln Leu
450 455 460

Tyr Ala Met Lys Tyr Gly Thr Ile Pro Val Val His Ala Val Gly Gly
465 470 475 480

Leu Arg Asp Thr Val Gln Pro Phe Asp Pro Phe Asn Glu Ser Gly Leu
 485 490 495
 Gly Trp Thr Phe Ser Arg Ala Glu Ala Ser Gln Leu Ile His Ala Leu
 500 505 510
 Gly Asn Cys Leu Leu Thr Tyr Arg Glu Tyr Lys Lys Ser Trp Glu Gly
 515 520 525
 Ile Gln Thr Arg Cys Met Thr Gln Asp Leu Ser Trp Asp Asn Ala Ala
 530 535 540
 Gln Asn Tyr Glu Glu Val Leu Ile Ala Ala Lys Tyr Gln Trp
 545 550 555

(2) ANGABEN ZU SEQ ID NO: 7:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 2793 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: cDNA zu mRNA
- (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Solanum tuberosum
 - (B) STAMM: cv Désirée
 - (F) GEWEBETYP: Blattgewebe
- (vii) UNMITTELBARE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA-Bibliothek in Lambda ZAPII
- (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 242..2542

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

CCGCCCATTT TTCACCAAAC GTTTTGACA TTGACCTCCA TTGTCGTTAC TTCTGGTTT 60
 CTCTTCAAT ATTGCTTCAC AATCCCTAAT TCTCTGACT AGTCTCTATC TCAATTGGGT 120
 TTTCTTACT TGTCAATTAT CTCTACTGGG TCGGCTCTA TTTCCACTAG GTCACTCTGG 180
 TTCTTGAAAT CTTGGATTCC TATTCATCCCT GTGAACCTCA TCTTTGTGA TTTCTACTGT 240
 A ATG GAG AAT TCC ATT CTT CTT CAT AGT GGA AAT CAG TTC CAC CCC 286
 Met Glu Asn Ser Ile Leu Leu His Ser Gly Asn Gln Phe His Pro
 1 5 10 15
 AAC TTA CCC CTT TTA GCA CTT AGG CCC AAA AAA TTA TCT CTA ATT CAT 334
 Asn Leu Pro Leu Leu Ala Leu Arg Pro Lys Lys Leu Ser Leu Ile His
 20 25 30

GGC TCC AGT AGA GAG CAA ATG TGG AGG ATC AAG CGC GTT AAA GCA ACA	382
Gly Ser Ser Arg Glu Gln Met Trp Arg Ile Lys Arg Val Lys Ala Thr	
35 40 45	
GGT GAA AAT TCT GGG GAA GCT GCA AGT GCT GAT GAA TCG AAT GAT GCC	430
Gly Glu Asn Ser Gly Glu Ala Ala Ser Ala Asp Glu Ser Asn Asp Ala	
50 55 60	
TTA CAG GTT ACA ATT GAA AAG AGC AAA AAG GTT TTA GCC ATG CAA CAG	478
Leu Gln Val Thr Ile Glu Lys Ser Lys Lys Val Leu Ala Met Gln Gln	
65 70 75	
GAC CTA CTT CAA CAG ATT GCA GAA AGA AGA AAA GTA GTC TCT TCA ATA	526
Asp Leu Leu Gln Gln Ile Ala Glu Arg Arg Lys Val Val Ser Ser Ile	
80 85 90 95	
AAA AGC AGT CTT GCC AAT GCC AAA GGT ACT TAT GAT GGT GGG AGT GGT	574
Lys Ser Ser Leu Ala Asn Ala Lys Gly Thr Tyr Asp Gly Ser Gly	
100 105 110	
AGC TTA TCA GAT GTT GAT ATC CCT GAC GTG GAT AAA GAT TAT AAT GTT	622
Ser Leu Ser Asp Val Asp Ile Pro Asp Val Asp Lys Asp Tyr Asn Val	
115 120 125	
ACT GTA CCT AGT ACT GCT ACT CCA ATT ACT GAT GTC GAT AAA AAT	670
Thr Val Pro Ser Thr Ala Ala Thr Pro Ile Thr Asp Val Asp Lys Asn	
130 135 140	
ACA CCG CCT GCT ATA AGC CAA GAT TTT GTT GAA AGT AAA AGA GAA ATC	718
Thr Pro Pro Ala Ile Ser Gln Asp Phe Val Glu Ser Lys Arg Glu Ile	
145 150 155	
AAA AGG GAC CTG GCC GAT GAA AGG GCA CCC CCA CTG TCG AGA TCA TCT	766
Lys Arg Asp Leu Ala Asp Glu Arg Ala Pro Pro Leu Ser Arg Ser Ser	
160 165 170 175	
ATC ACA GCC AGT AGC CAG ATT TCC TCT ACT GTA AGT TCC AAA AGA ACG	814
Ile Thr Ala Ser Ser Gln Ile Ser Ser Thr Val Ser Ser Lys Arg Thr	
180 185 190	
TTG AAT GTC CCT CCA GAA ACT CCG AAG TCC AGT CAA GAG ACA CTT TTG	862
Leu Asn Val Pro Pro Glu Thr Pro Lys Ser Ser Gln Glu Thr Leu Leu	
195 200 205	
GAT GTG AAT TCA CGC AAA AGT TTA GTA GAT GTT CCT GGA AAG AAG ATC	910
Asp Val Asn Ser Arg Lys Ser Leu Val Asp Val Pro Gly Lys Lys Ile	
210 215 220	
CAG TCT TAT ATG CCT TCA TTA CGT AAA GAA TCC TCA GCA TCC CAT GTG	958
Gln Ser Tyr Met Pro Ser Leu Arg Lys Glu Ser Ser Ala Ser His Val	
225 230 235	

GAA CAG AGG AAT GAA AAT CTT GAA GGA TCA AGT GCT GAG GCA AAC GAA Glu Gln Arg Asn Glu Asn Leu Glu Gly Ser Ser Ala Glu Ala Asn Glu 240 245 250 255	1006
GAG ACT GAA GAT CCT GTG AAT ATA GAT GAG AAA CCC CCT CCA TTG GCA Glu Thr Glu Asp Pro Val Asn Ile Asp Glu Lys Pro Pro Pro Leu Ala 260 265 270	1054
GGA ACA AAT GTT ATG AAC ATT ATT TTG GTG GCT TCA GAA TGC GCT CCA Gly Thr Asn Val Met Asn Ile Ile Leu Val Ala Ser Glu Cys Ala Pro 275 280 285	1102
TGG TCT AAA ACA GGT GGG CTT GGA GAT GTT GCT GGA GCA TTA CCC AAA Trp Ser Thr Gly Gly Leu Gly Asp Val Ala Gly Ala Leu Pro Lys 290 295 300	1150
GCT TTG GCT CGA CGT GGC CAC AGA GTT ATG GTG GCA CCT CGT TAT Ala Leu Ala Arg Arg Gly His Arg Val Met Val Ala Pro Arg Tyr 305 310 315	1198
GAC AAC TAT CCT GAA CCT CAA GAT TCT GGT GTA AGA AAA ATT TAT AAA Asp Asn Tyr Pro Glu Pro Gln Asp Ser Gly Val Arg Lys Ile Tyr Lys 320 325 330 335	1246
GTT GAT GGT CAG GAT GTG GAA GTG ACT TAC TTC CAA GCT TTT ATT GAT Val Asp Gly Gln Asp Val Glu Val Thr Tyr Phe Gln Ala Phe Ile Asp 340 345 350	1294
GGT GTG GAT TTT GTT TTC ATT GAC AGT CAT ATG TTT AGA CAC ATT GGG Gly Val Asp Phe Val Phe Ile Asp Ser His Met Phe Arg His Ile Gly 355 360 365	1342
AAC AAC ATT TAC GGA GGG AAC CGT GTG GAT ATT TTA AAA CGC ATG GTT Asn Asn Ile Tyr Gly Asn Arg Val Asp Ile Leu Lys Arg Met Val 370 375 380	1390
TTA TTT TGC AAA GCA GCG ATT GAG GTT CCT TGG CAT GTT CCA TGT GGT Leu Phe Cys Lys Ala Ala Ile Glu Val Pro Trp His Val Pro Cys Gly 385 390 395	1438
GGG GTC TGC TAT GGA GAT GGA AAT TTA GTG TTC ATT GCT AAT GAT TGG Gly Val Cys Tyr Gly Asp Gly Asn Leu Val Phe Ile Ala Asn Asp Trp 400 405 410 415	1486
CAT ACT GCT TTA TTG CCA GTA TAT CTG AAA GCT TAT TAT CGT GAC AAT His Thr Ala Leu Leu Pro Val Tyr Leu Lys Ala Tyr Tyr Arg Asp Asn 420 425 430	1534
GGA ATT ATG AAC TAT ACA AGA TCT GTC CTG GTG ATT CAT AAC ATC GCT Gly Ile Met Asn Tyr Thr Arg Ser Val Leu Val Ile His Asn Ile Ala 435 440 445	1582
CAT CAG GGT CGT GGT CCT TTG GAG GAT TTT TCA TAT GTA GAT CTT CCA His Gln Gly Arg Gly Pro Leu Glu Asp Phe Ser Tyr Val Asp Leu Pro 450 455 460	1630

CCA CAC TAT ATG GAC CCT TTC AAG TTG TAT GAC CCA GTA GGA GGT GAG Pro His Tyr Met Asp Pro Phe Lys Leu Tyr Asp Pro Val Gly Gly Glu 465 470 475	1678
CAT TTC AAC ATT TTT GCG GCT GGT CTA AAG ACA GCA GAT CGT GTA GTT His Phe Asn Ile Phe Ala Ala Gly Leu Lys Thr Ala Asp Arg Val Val 480 485 490 495	1726
ACA GTT AGT CAT GGA TAT TCA TGG GAA CTA AAG ACT TCC CAA GGT GGT Thr Val Ser His Gly Tyr Ser Trp Glu Leu Lys Thr Ser Gln Gly Gly 500 505 510	1774
TGG GGA TTG CAT CAG ATA ATT AAT GAG AAC GAT TGG AAA TTA CAG GGT Trp Gly Leu His Gln Ile Ile Asn Glu Asn Asp Trp Lys Leu Gln Gly 515 520 525	1822
ATT GTG AAT GGG ATT GAT ACA AAA GAG TGG AAC CCT GAG TTG GAC GTT Ile Val Asn Gly Ile Asp Thr Lys Glu Trp Asn Pro Glu Leu Asp Val 530 535 540	1870
CAC TTA CAG TCA GAT GGT TAC ATG AAC TAC TCC TTG GAC ACG CTA CAG His Leu Gln Ser Asp Gly Tyr Met Asn Tyr Ser Leu Asp Thr Leu Gln 545 550 555	1918
ACT GGC AAG CCT CAA TGT AAA GCT GCA TTG CAG AAG GAA CTT GGT TTA Thr Gly Lys Pro Gln Cys Lys Ala Ala Leu Gln Lys Glu Leu Gly Leu 560 565 570 575	1966
CCA GTT CGT GAT GAT GTC CCA CTG ATC GGT TTC ATT GGG AGG CTT GAC Pro Val Arg Asp Asp Val Pro Leu Ile Gly Phe Ile Gly Arg Leu Asp 580 585 590	2014
CCA CAA AAG GGT GTT GAT CTG ATT GCT GAG GCC AGT GCT TGG ATG ATG Pro Gln Lys Gly Val Asp Leu Ile Ala Glu Ala Ser Ala Trp Met Met 595 600 605	2062
GGT CAG GAT GTA CAA CTG GTC ATG TTG GGG ACG GGG AGG CGT GAC CTT Gly Gln Asp Val Gln Leu Val Met Leu Gly Thr Gly Arg Arg Asp Leu 610 615 620	2110
GAA CAG ATG CTA AGG CAA TTT GAG TGT CAA CAC AAT GAT AAA ATT AGA Glu Gln Met Leu Arg Gln Phe Glu Cys Gln His Asn Asp Lys Ile Arg 625 630 635	2158
GGA TGG GTT GGT TTC TCT GTG AAG ACT TCT CAT CGT ATA ACT GCT GGT Gly Trp Val Gly Phe Ser Val Lys Thr Ser His Arg Ile Thr Ala Gly 640 645 650 655	2206
GCA GAC ATT CTG CTC ATG CCT TCT AGA TTT GAG CCT TGC GGA CTG AAC Ala Asp Ile Leu Leu Met Pro Ser Arg Phe Glu Pro Cys Gly Leu Asn 660 665 670	2254

CAG CTT TAT GCA ATG AAA TAT GGG ACT ATT CCT GTT CAT GCA GTA Gln Leu Tyr Ala Met Lys Tyr Gly Thr Ile Pro Val Val His Ala Val 675 680 685	2302
GGA GGA CTC AGA GAT ACT GTG CAG CCC TTT GAT CCT TTT AAT GAG TCA Gly Gly Leu Arg Asp Thr Val Gln Pro Phe Asp Pro Phe Asn Glu Ser 690 695 700	2350
GGA CTG GGG TGG ACC TTC AGT AGG GCT GAA GCT AGC CAG CTG ATC CAC Gly Leu Gly Trp Thr Phe Ser Arg Ala Glu Ala Ser Gln Leu Ile His 705 710 715	2398
GCA TTA GGA AAT TGC TTA CTG ACT TAT CGT GAG TAC AAA AAG AGT TGG Ala Leu Gly Asn Cys Leu Leu Thr Tyr Arg Glu Tyr Lys Ser Trp 720 725 730 735	2446
GAG GGG ATT CAG ACA CGT TGT ATG ACA CAA GAC TTA AGT TGG GAT AAT Glu Gly Ile Gln Thr Arg Cys Met Thr Gln Asp Leu Ser Trp Asp Asn 740 745 750	2494
GCT GCT CAG AAC TAT GAA GAA GTT CTC ATC GCT GCT AAG TAT CAG TGG Ala Ala Gln Asn Tyr Glu Glu Val Leu Ile Ala Ala Lys Tyr Gln Trp 755 760 765	2542
TGAGGTTCAT TACTTGTAGA TATTTGGGGA TTTTGGCCAT TGTATCAAGT TCTAATGATG GGATTTCAGA GACATGTTTC TGGTATCGAC ACGAGAGGAT GCATGCAACA AGTTGGCTAA CTATCATACT ACTACCACGT CAGGAATGAT TGCCGCACTT GATCATGTAA TCATGTATAT ACTCTATTTT GTTTGCAAAA TGTAGTTACA TGTTGCAATT TCTAAAAAAA AAAAAAAA 2782	2602
AAAAAAAAAA A	2793

(2) ANGABEN ZU SEQ ID NO: 8:

(i) SEQUENZKENNZEICHEN:
 (A) LÄNGE: 767 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein
 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

Met Glu Asn Ser Ile Leu Leu His Ser Gly Asn Gln Phe His Pro Asn 1 5 10 15	
Leu Pro Leu Leu Ala Leu Arg Pro Lys Lys Leu Ser Leu Ile His Gly 20 25 30	
Ser Ser Arg Glu Gln Met Trp Arg Ile Lys Arg Val Lys Ala Thr Gly 35 40 45	

Glu Asn Ser Gly Glu Ala Ala Ser Ala Asp Glu Ser Asn Asp Ala Leu
50 55 60

Gln Val Thr Ile Glu Lys Ser Lys Lys Val Leu Ala Met Gln Gln Asp
65 70 75 80

Leu Leu Gln Gln Ile Ala Glu Arg Arg Lys Val Val Ser Ser Ile Lys
85 90 95

Ser Ser Leu Ala Asn Ala Lys Gly Thr Tyr Asp Gly Ser Gly Ser
100 105 110

Leu Ser Asp Val Asp Ile Pro Asp Val Asp Lys Asp Tyr Asn Val Thr
115 120 125

Val Pro Ser Thr Ala Ala Thr Pro Ile Thr Asp Val Asp Lys Asn Thr
130 135 140

Pro Pro Ala Ile Ser Gln Asp Phe Val Glu Ser Lys Arg Glu Ile Lys
145 150 155 160

Arg Asp Leu Ala Asp Glu Arg Ala Pro Pro Leu Ser Arg Ser Ser Ile
165 170 175

Thr Ala Ser Ser Gln Ile Ser Ser Thr Val Ser Ser Lys Arg Thr Leu
180 185 190

Asn Val Pro Pro Glu Thr Pro Lys Ser Ser Gln Glu Thr Leu Leu Asp
195 200 205

Val Asn Ser Arg Lys Ser Leu Val Asp Val Pro Gly Lys Lys Ile Gln
210 215 220

Ser Tyr Met Pro Ser Leu Arg Lys Glu Ser Ser Ala Ser His Val Glu
225 230 235 240

Gln Arg Asn Glu Asn Leu Glu Gly Ser Ser Ala Glu Ala Asn Glu Glu
245 250 255

Thr Glu Asp Pro Val Asn Ile Asp Glu Lys Pro Pro Pro Leu Ala Gly
260 265 270

Thr Asn Val Met Asn Ile Ile Leu Val Ala Ser Glu Cys Ala Pro Trp
275 280 285

Ser Lys Thr Gly Gly Leu Gly Asp Val Ala Gly Ala Leu Pro Lys Ala
290 295 300

Leu Ala Arg Arg Gly His Arg Val Met Val Val Ala Pro Arg Tyr Asp
305 310 315 320

Asn Tyr Pro Glu Pro Gln Asp Ser Gly Val Arg Lys Ile Tyr Lys Val
325 330 335

Asp Gly Gln Asp Val Glu Val Thr Tyr Phe Gln Ala Phe Ile Asp Gly
340 345 350

Val Asp Phe Val Phe Ile Asp Ser His Met Phe Arg His Ile Gly Asn
355 360 365

Asn Ile Tyr Gly Gly Asn Arg Val Asp Ile Leu Lys Arg Met Val Leu
370 375 380

Phe Cys Lys Ala Ala Ile Glu Val Pro Trp His Val Pro Cys Gly Gly
385 390 395 400

Val Cys Tyr Gly Asp Gly Asn Leu Val Phe Ile Ala Asn Asp Trp His
405 410 415

Thr Ala Leu Leu Pro Val Tyr Leu Lys Ala Tyr Tyr Arg Asp Asn Gly
420 425 430

Ile Met Asn Tyr Thr Arg Ser Val Leu Val Ile His Asn Ile Ala His
435 440 445

Gln Gly Arg Gly Pro Leu Glu Asp Phe Ser Tyr Val Asp Leu Pro Pro
450 455 460

His Tyr Met Asp Pro Phe Lys Leu Tyr Asp Pro Val Gly Gly Glu His
465 470 475 480

Phe Asn Ile Phe Ala Ala Gly Leu Lys Thr Ala Asp Arg Val Val Thr
485 490 495

Val Ser His Gly Tyr Ser Trp Glu Leu Lys Thr Ser Gln Gly Gly Trp
500 505 510

Gly Leu His Gln Ile Ile Asn Glu Asn Asp Trp Lys Leu Gln Gly Ile
515 520 525

Val Asn Gly Ile Asp Thr Lys Glu Trp Asn Pro Glu Leu Asp Val His
530 535 540

Leu Gln Ser Asp Gly Tyr Met Asn Tyr Ser Leu Asp Thr Leu Gln Thr
545 550 555 560

Gly Lys Pro Gln Cys Lys Ala Ala Leu Gln Lys Glu Leu Gly Leu Pro
565 570 575

Val Arg Asp Asp Val Pro Leu Ile Gly Phe Ile Gly Arg Leu Asp Pro
580 585 590

Gln Lys Gly Val Asp Leu Ile Ala Glu Ala Ser Ala Trp Met Met Gly
595 600 605

Gln Asp Val Gln Leu Val Met Leu Gly Thr Gly Arg Arg Asp Leu Glu
610 615 620

Gln Met Leu Arg Gln Phe Glu Cys Gln His Asn Asp Lys Ile Arg Gly
 625 630 635 640
 Trp Val Gly Phe Ser Val Lys Thr Ser His Arg Ile Thr Ala Gly Ala
 645 650 655
 Asp Ile Leu Leu Met Pro Ser Arg Phe Glu Pro Cys Gly Leu Asn Gln
 660 665 670
 Leu Tyr Ala Met Lys Tyr Gly Thr Ile Pro Val Val His Ala Val Gly
 675 680 685
 Gly Leu Arg Asp Thr Val Gln Pro Phe Asp Pro Phe Asn Glu Ser Gly
 690 695 700
 Leu Gly Trp Thr Phe Ser Arg Ala Glu Ala Ser Gln Leu Ile His Ala
 705 710 715 720
 Leu Gly Asn Cys Leu Leu Thr Tyr Arg Glu Tyr Lys Lys Ser Trp Glu
 725 730 735
 Gly Ile Gln Thr Arg Cys Met Thr Gln Asp Leu Ser Trp Asp Asn Ala
 740 745 750
 Ala Gln Asn Tyr Glu Glu Val Leu Ile Ala Ala Lys Tyr Gln Trp
 755 760 765

(2) ANGABEN ZU SEQ ID NO: 9:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 2360 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: cDNA
- (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Solanum tuberosum
 - (B) STAMM: cv. Désirée
 - (F) GEWEBETYP: Blattgewebe
- (vii) UNMITTELBARE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA-Bibliothek in Lambda ZAPII
- (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 68..1990

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

AGATTTCTA TATTGAAAGA TTTTGTCTT ACATGATTCT TGATTTACA GCAGGTGTCA

ATACCAA ATG GGG TCT CTG CAA ACA CCC ACA AAT CTT AGC AAT AAG TCA Met Gly Ser Leu Gln Thr Pro Thr Asn Leu Ser Asn Lys Ser 1 5 10	109
TGT TTA TGT GTG TCA GGG AGA GTT GTG AAG GGT TTG AGG GTA GAA AGA Cys Leu Cys Val Ser Gly Arg Val Val Lys Gly Leu Arg Val Glu Arg 15 20 25 30	157
CAA GTG GGG TTG GGG TTT TCT TGG TTG AAG GGA CGA AGA AAC AGA Gln Val Gly Leu Gly Phe Ser Trp Leu Leu Lys Gly Arg Arg Asn Arg 35 40 45	205
AAA GTT CAA TCT TTG TGT GTT ACA AGT AGT GTT TCA GAT GGT TCA TCA Lys Val Gln Ser Leu Cys Val Thr Ser Ser Val Ser Asp Gly Ser Ser 50 55 60	253
ATT GCT GAA AAT AAG AAT GTG TCA GAA GGG CTT CTT TTG GGT GCT GAG Ile Ala Glu Asn Lys Asn Val Ser Glu Gly Leu Leu Leu Gly Ala Glu 65 70 75	301
AGA GAT GGT TCT GGC TCT GTT GGT TTT CAA TTG ATT CCA CAT TCT Arg Asp Gly Ser Gly Ser Val Val Gly Phe Gln Leu Ile Pro His Ser 80 85 90	349
GTT GCA GGA GAT GCA ACA ATG GTA GAA TCT CAT GAT ATT GTA GCC AAT Val Ala Gly Asp Ala Thr Met Val Glu Ser His Asp Ile Val Ala Asn 95 100 105 110	397
GAT AGA GAT GAC TTG AGT GAG GAT ACT GAG GAG ATG GAG GAA ACC CCA Asp Arg Asp Asp Leu Ser Glu Asp Thr Glu Glu Met Glu Glu Thr Pro 115 120 125	445
ATC AAA TTA ACT TTC AAT ATC ATT TTT GTT ACT GCT GAA GCA GCT CCA Ile Lys Leu Thr Phe Asn Ile Ile Phe Val Thr Ala Glu Ala Ala Pro 130 135 140	493
TAT TCT AAG ACT GGT GGA TTA GGA GAT GTT TGT GGT TCT TTG CCA ATG Tyr Ser Lys Thr Gly Leu Gly Asp Val Cys Gly Ser Leu Pro Met 145 150 155	541
GCA CTA GCT CGG GGT CAT CGT GTA ATG GTC GTT TCA CCT AGG TAT Ala Leu Ala Ala Arg Gly His Arg Val Met Val Val Ser Pro Arg Tyr 160 165 170	589
TTG AAT GGA GGT CCT TCA GAT GAA AAG TAC GCC AAT GCT GTT GAC CTT Leu Asn Gly Gly Pro Ser Asp Glu Lys Tyr Ala Asn Ala Val Asp Leu 175 180 185 190	637
GAT GTG CGG GCC ACT GTC CAT TGC TTT GGT GAT GCA CAG GAA GTA GCC Asp Val Arg Ala Thr Val His Cys Phe Gly Asp Ala Gln Glu Val Ala 195 200 205	685
TTC TAC CAT GAA TAC AGG GCA GGT GTT GAT TGG GTA TTT GTG GAC CAC Phe Tyr His Glu Tyr Arg Ala Gly Val Asp Trp Val Phe Val Asp His 210 215 220	733

TCT TCT TAC TGC AGA CCT GGA ACG CCA TAT GGT GAT ATT TAT GGT GCA	781
Ser Ser Tyr Cys Arg Pro Gly Thr Pro Tyr Gly Asp Ile Tyr Gly Ala	
225 230 235	
TTT GGT GAT AAT CAG TTT CGC TTC ACT TTG CTT TCT CAC GCA GCA TGT	829
Phe Gly Asp Asn Gln Phe Arg Phe Thr Leu Leu Ser His Ala Ala Cys	
240 245 250	
GAA GCG CCA TTG GTT CTT CCA CTG GGA GGG TTC ACT TAT GGA GAG AAG	877
Glu Ala Pro Leu Val Leu Pro Leu Gly Gly Phe Thr Tyr Gly Glu Lys	
255 260 265 270	
TGC TTG TTT CTC GCT AAT GAT TGG CAT GCT GCC CTG GTT CCT TTA CTT	925
Cys Leu Phe Leu Ala Asn Asp Trp His Ala Ala Leu Val Pro Leu Leu	
275 280 285	
TTA GCG GCC AAG TAT CGT CCT TAT GGT GTT TAC AAG GAT GCT CGT AGT	973
Leu Ala Ala Lys Tyr Arg Pro Tyr Gly Val Tyr Lys Asp Ala Arg Ser	
290 295 300	
ATT GTC GCA ATA CAC AAC ATT GCA CAT CAG GGA GTG GAG CCT GCA GTA	1021
Ile Val Ala Ile His Asn Ile Ala His Gln Gly Val Glu Pro Ala Val	
305 310 315	
ACC TAC AAT AAT TTG GGT TTG CCT CCA CAA TGG TAT GGA GCA GTT GAA	1069
Thr Tyr Asn Asn Leu Gly Leu Pro Pro Gln Trp Tyr Gly Ala Val Glu	
320 325 330	
TGG ATA TTT CCC ACA TGG GCA AGG GCG CAT GCG CTT GAC ACT GGT GAA	1117
Trp Ile Phe Pro Thr Trp Ala Arg Ala His Ala Leu Asp Thr Gly Glu	
335 340 345 350	
ACA GTG AAC GTT TTG AAA GGG GCA ATA GCA GTT GCT GAT CGG ATA CTG	1165
Thr Val Asn Val Leu Lys Gly Ala Ile Ala Val Ala Asp Arg Ile Leu	
355 360 365	
ACA GTT AGC CAG GGA TAC TCA TGG GAA ATA ACA ACT CCT GAA GGG GGA	1213
Thr Val Ser Gln Gly Tyr Ser Trp Glu Ile Thr Thr Pro Glu Gly Gly	
370 375 380 385	
TAT GGG CTA CAT GAG CTG TTG AGC AGT AGA CAG TCT GTT CTT AAT GGA	1261
Tyr Gly Leu His Glu Leu Leu Ser Ser Arg Gln Ser Val Leu Asn Gly	
385 390 395	
ATT ACT AAT GGA ATA GAT GTT AAT GAT TGG AAC CCG TCG ACA GAT GAG	1309
Ile Thr Asn Gly Ile Asp Val Asn Asp Trp Asn Pro Ser Thr Asp Glu	
400 405 410	
CAT ATT GCT TCG CAT TAC TCC ATC AAT GAC CTC TCC GGA AAG GTT CAG	1357
His Ile Ala Ser His Tyr Ser Ile Asn Asp Leu Ser Gly Lys Val Gln	
415 420 425 430	

TGC AAG ACT GAT CTG CAA AAG GAA CTG GGC CTT CCA ATT CGA CCT GAT Cys Lys Thr Asp Leu Gln Lys Glu Leu Gly Leu Pro Ile Arg Pro Asp 435 440 445	1405
TGT CCT CTG ATT GGA TTT ATT GGA AGG CTG GAC TAC CAG AAA GGT GTT Cys Pro Leu Ile Gly Phe Ile Gly Arg Leu Asp Tyr Gln Lys Gly Val 450 455 460	1453
GAC ATA ATC CTG TCA GCA ATT CCA GAA CTT ATG CAG AAT GAT GTC CAA Asp Ile Ile Leu Ser Ala Ile Pro Glu Leu Met Gln Asn Asp Val Gln 465 470 475	1501
GTT GTA ATG CTT GGA TCT GGT GAG AAA CAA TAT GAA GAC TGG ATG AGA Val Val Met Leu Gly Ser Gly Glu Lys Gln Tyr Glu Asp Trp Met Arg 480 485 490	1549
CAT ACA GAA AAT CTT TTT AAA GAC AAA TTT CGT GCT TGG GTT GGA TTT His Thr Glu Asn Leu Phe Lys Asp Lys Phe Arg Ala Trp Val Gly Phe 495 500 505 510	1597
AAT GTT CCA GTT TCT CAT AGG ATA ACA GCA GGA TGC GAC ATA CTA TTG Asn Val Pro Val Ser His Arg Ile Thr Ala Gly Cys Asp Ile Leu Leu 515 520 525	1645
ATG CCC TCA AGA TTC GAA CCG TGT GGC TTA AAC CAA TTG TAT GCA ATG Met Pro Ser Arg Phe Glu Pro Cys Gly Leu Asn Gln Leu Tyr Ala Met 530 535 540	1693
AGA TAT GGC ACC ATA CCT ATT GTT CAT AGC ACG GGG GGC CTA AGA GAC Arg Tyr Gly Thr Ile Pro Ile Val His Ser Thr Gly Gly Leu Arg Asp 545 550 555	1741
ACA GTG AAG GAT TTT AAT CCA TAT GCT CAA GAA GGA ATA GGT GAA GGT Thr Val Lys Asp Phe Asn Pro Tyr Ala Gln Glu Gly Ile Gly Glu Gly 560 565 570	1789
ACC GGG TGG ACA TTT TCT CCT CTA ACG AGT GAA AAG TTG CTT GAT ACA Thr Gly Trp Thr Phe Ser Pro Leu Thr Ser Glu Lys Leu Leu Asp Thr 575 580 585 590	1837
CTG AAG CTG GCA ATC GGG ACT TAT ACA GAA CAT AAG TCA TCT TGG GAG Leu Lys Leu Ala Ile Gly Thr Tyr Thr Glu His Lys Ser Ser Trp Glu 595 600 605	1885
GGA TTG ATG AGG AGA GGT ATG GGA AGG GAC TAT TCC TGG GAA AAT GCA Gly Leu Met Arg Arg Gly Met Gly Arg Asp Tyr Ser Trp Glu Asn Ala 610 615 620	1933
GCC ATT CAA TAT GAA CAA GTT TTC ACC TGG GCC TTT ATA GAT CCT CCA Ala Ile Gln Tyr Glu Gln Val Phe Thr Trp Ala Phe Asp Pro Pro 625 630 635	1981
TAT GTC AGA TGATTTATCA AGAAAGATTG CAAACGGGAT ACATCATTAA Tyr Val Arg 640	2030

ACTATACGCG GAGCTTTGG TGCTATTAGC TACTGTCATT GGGCGCGGAA TGTTTGTGGT	2090
TCTTTCTGAT TCAGAGAGAT CAAAGTAGTT CCAAAGACAT ACGTAGCCTG TCCCTGTCTG	2150
TGAGGGAGTA AAACTACAAA AGGCAATTAG AAACCACCAA GAACTGGCTC CTTTGGGAGA	2210
AGAGTGGAAA TATGTAAAAA AGAATTTGA GTTAAATGTC AATTGATTAA TTGTTCTCAT	2270
TTTTAAAAAA AACATCTCAT CTCATACAAT ATATAAAATT GATCATGATT GATGAAAAAA	2330
AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA	2360

(2) ANGABEN ZU SEQ ID NO: 10:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 641 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(iii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:

Met	Gly	Ser	Leu	Gln	Thr	Pro	Thr	Asn	Leu	Ser	Asn	Lys	Ser	Cys	Leu
1									10					15	
Cys Val Ser Gly Arg Val Val Lys Gly Leu Arg Val Glu Arg Gln Val															
									20	25			30		
Gly Leu Gly Phe Ser Trp Leu Leu Lys Gly Arg Arg Asn Arg Lys Val															
									35	40		45			
Gln Ser Leu Cys Val Thr Ser Ser Val Ser Asp Gly Ser Ser Ile Ala															
									50	55		60			
Glu Asn Lys Asn Val Ser Glu Gly Leu Leu Leu Gly Ala Glu Arg Asp															
									65	70		75		80	
Gly Ser Gly Ser Val Val Gly Phe Gln Leu Ile Pro His Ser Val Ala															
									85	90		95			
Gly Asp Ala Thr Met Val Glu Ser His Asp Ile Val Ala Asn Asp Arg															
									100	105		110			
Asp Asp Leu Ser Glu Asp Thr Glu Glu Met Glu Glu Thr Pro Ile Lys															
									115	120		125			
Leu Thr Phe Asn Ile Ile Phe Val Thr Ala Glu Ala Ala Pro Tyr Ser															
									130	135		140			
Lys Thr Gly Gly Leu Gly Asp Val Cys Gly Ser Leu Pro Met Ala Leu															
									145	150		155		160	

Ala Ala Arg Gly His Arg Val Met Val Val Ser Pro Arg Tyr Leu Asn
 165 170 175
 Gly Gly Pro Ser Asp Glu Lys Tyr Ala Asn Ala Val Asp Leu Asp Val
 180 185 190
 Arg Ala Thr Val His Cys Phe Gly Asp Ala Gln Glu Val Ala Phe Tyr
 195 200 205
 His Glu Tyr Arg Ala Gly Val Asp Trp Val Phe Val Asp His Ser Ser
 210 215 220
 Tyr Cys Arg Pro Gly Thr Pro Tyr Gly Asp Ile Tyr Gly Ala Phe Gly
 225 230 235 240
 Asp Asn Gln Phe Arg Phe Thr Leu Leu Ser His Ala Ala Cys Glu Ala
 245 250 255
 Pro Leu Val Leu Pro Leu Gly Gly Phe Thr Tyr Gly Glu Lys Cys Leu
 260 265 270
 Phe Leu Ala Asn Asp Trp His Ala Ala Leu Val Pro Leu Leu Leu Ala
 275 280 285
 Ala Lys Tyr Arg Pro Tyr Gly Val Tyr Lys Asp Ala Arg Ser Ile Val
 290 295 300
 Ala Ile His Asn Ile Ala His Gln Gly Val Glu Pro Ala Val Thr Tyr
 305 310 315 320
 Asn Asn Leu Gly Leu Pro Pro Gln Trp Tyr Gly Ala Val Glu Trp Ile
 325 330 335
 Phe Pro Thr Trp Ala Arg Ala His Ala Leu Asp Thr Gly Glu Thr Val
 340 345 350
 Asn Val Leu Lys Gly Ala Ile Ala Val Ala Asp Arg Ile Leu Thr Val
 355 360 365
 Ser Gln Gly Tyr Ser Trp Glu Ile Thr Thr Pro Glu Gly Gly Tyr Gly
 370 375 380
 Leu His Glu Leu Leu Ser Ser Arg Gln Ser Val Leu Asn Gly Ile Thr
 385 390 395 400
 Asn Gly Ile Asp Val Asn Asp Trp Asn Pro Ser Thr Asp Glu His Ile
 405 410 415
 Ala Ser His Tyr Ser Ile Asn Asp Leu Ser Gly Lys Val Gln Cys Lys
 420 425 430
 Thr Asp Leu Gln Lys Glu Leu Gly Leu Pro Ile Arg Pro Asp Cys Pro
 435 440 445

Leu Ile Gly Phe Ile Gly Arg Leu Asp Tyr Gln Lys Gly Val Asp Ile
 450 455 460
 Ile Leu Ser Ala Ile Pro Glu Leu Met Gln Asn Asp Val Gln Val Val
 465 470 475 480
 Met Leu Gly Ser Gly Glu Lys Gln Tyr Glu Asp Trp Met Arg His Thr
 485 490 495
 Glu Asn Leu Phe Lys Asp Lys Phe Arg Ala Trp Val Gly Phe Asn Val
 500 505 510
 Pro Val Ser His Arg Ile Thr Ala Gly Cys Asp Ile Leu Leu Met Pro
 515 520 525
 Ser Arg Phe Glu Pro Cys Gly Leu Asn Gln Leu Tyr Ala Met Arg Tyr
 530 535 540
 Gly Thr Ile Pro Ile Val His Ser Thr Gly Gly Leu Arg Asp Thr Val
 545 550 555 560
 Lys Asp Phe Asn Pro Tyr Ala Gln Glu Gly Ile Gly Glu Gly Thr Gly
 565 570 575
 Trp Thr Phe Ser Pro Leu Thr Ser Glu Lys Leu Leu Asp Thr Leu Lys
 580 585 590
 Leu Ala Ile Gly Thr Tyr Thr Glu His Lys Ser Ser Trp Glu Gly Leu
 595 600 605
 Met Arg Arg Gly Met Gly Arg Asp Tyr Ser Trp Glu Asn Ala Ala Ile
 610 615 620
 Gln Tyr Glu Gln Val Phe Thr Trp Ala Phe Ile Asp Pro Pro Tyr Val
 625 630 635 640

Arg

(2) ANGABEN ZU SEQ ID NO: 11:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 4168 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: cDNA zum RNA
- (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Solanum tuberosum
 - (B) STAMM: cv. Désirée
 - (F) GEWEBETYP: Blattgewebe

(vii) UNMITTELBARE HERKUNFT:
(A) BIBLIOTHEK: cDNA-Bibliothek in Lambda ZAPII

(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE: 307..3897

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

GGT GGT GAT GAC AAG GAT GCT GTA AAG TTA AAC AAA TCA AAG AGA TCG Gly Gly Asp Asp Lys Asp Ala Val Lys Leu Asn Lys Ser Lys Arg Ser 145 150 155	780
GAA GAG AGT GAT TTT CTA ATT GAT TCT GTA ATA AGA GAA CAA AGT GGA Glu Glu Ser Asp Phe Leu Ile Asp Ser Val Ile Arg Glu Gln Ser Gly 160 165 170	828
TCT CAG GGG GAA ACT AAT GCC AGT AGC AAG GGA AGC CAT GCT GTG GGT Ser Gln Gly Glu Thr Asn Ala Ser Ser Lys Gly Ser His Ala Val Gly 175 180 185 190	876
ACA AAA CTT TAT GAG ATA TTG CAG GTG GAT GTT GAG CCA CAA CAA TTG Thr Lys Leu Tyr Glu Ile Leu Gln Val Asp Val Glu Pro Gln Gln Leu 195 200 205	924
AAA GAA AAT AAT GCT GGG AAT GTT GAA TAC AAA GGA CCT GTC GCA AGT Lys Glu Asn Asn Ala Gly Asn Val Glu Tyr Lys Gly Pro Val Ala Ser 210 215 220	972
AAG CTA TTG GAA ATT ACT AAG GCT AGT GAT GTG GAA CAC ACT GAA AGC Lys Leu Leu Glu Ile Thr Lys Ala Ser Asp Val Glu His Thr Glu Ser 225 230 235	1020
AAT GAG ATT GAT GAC TTA GAC ACT AAT AGT TTC TTT AAA TCA GAT TTA Asn Glu Ile Asp Asp Leu Asp Thr Asn Ser Phe Phe Lys Ser Asp Leu 240 245 250	1068
ATT GAA GAG GAT GAG CCA TTA GCT GCA GGA ACA GTG GAG ACT GGA GAT Ile Glu Glu Asp Glu Pro Leu Ala Ala Gly Thr Val Glu Thr Gly Asp 255 260 265 270	1116
TCT TCT CTA AAC TTA AGA TTG GAG ATG GAA GCA AAT CTA CGT AGG CAG Ser Ser Leu Asn Leu Arg Leu Glu Met Glu Ala Asn Leu Arg Arg Gln 275 280 285	1164
GCT ATA GAA AGG CTT GCC GAG GAA AAT TTA TTG CAA GGG ATC AGA TTA Ala Ile Glu Arg Leu Ala Glu Glu Asn Leu Leu Gln Gly Ile Arg Leu 290 295 300	1212
TTT TGT TTT CCA GAG GTT GTA AAA CCT GAT GAA GAT GTC GAG ATA TTT Phe Cys Phe Pro Glu Val Val Lys Pro Asp Glu Asp Val Glu Ile Phe 305 310 315	1260
CTT AAC AGA GGT CTT TCC ACT TTG AAG AAT GAG TCT GAT GTC TTG ATT Leu Asn Arg Gly Leu Ser Thr Ile Lys Asn Glu Ser Asp Val Leu Ile 320 325 330	1308
ATG GGA GCT TTT AAT GAG TGG CGC TAT AGG TCT TTT ACT ACA AGG CTA Met Gly Ala Phe Asn Glu Trp Arg Tyr Arg Ser Phe Thr Thr Arg Leu 335 340 345 350	1356

ACT GAG ACT CAT CTC AAT GGA GAT TGG TGG TCT TGC AAG ATC CAT GTT Thr Glu Thr His Leu Asn Gly Asp Trp Trp Ser Cys Lys Ile His Val 355 360 365	1404
CCC AAG GAA GCA TAC AGG GCT GAT TTT GTG TTT TTT AAT GGA CAA GAT Pro Lys Glu Ala Tyr Arg Ala Asp Phe Val Phe Phe Asn Gly Gln Asp 370 375 380	1452
GTC TAT GAC AAC AAT GAT GGA AAT GAC TTC AGT ATA ACT GTG AAA GGT Val Tyr Asp Asn Asn Asp Gly Asn Asp Phe Ser Ile Thr Val Lys Gly 385 390 395	1500
GGT ATG CAA ATC ATT GAC TTT GAA AAT TTC TTG CTT GAG GAG AAA TGG Gly Met Gln Ile Ile Asp Phe Glu Asn Phe Leu Leu Glu Glu Lys Trp 400 405 410	1548
AGA GAA CAG GAG AAA CTT GCT AAA GAA CAA GCT GAA AGA GAA AGA CTA Arg Glu Gln Glu Lys Leu Ala Lys Glu Gln Ala Glu Arg Glu Arg Leu 415 420 425 430	1596
GCG GAA GAA CAA AGA CGA ATA GAA GCA GAG AAA GCT GAA ATT GAA GCT Ala Glu Glu Gln Arg Arg Ile Glu Ala Glu Lys Ala Glu Ile Glu Ala 435 440 445	1644
GAC AGA GCA CAA GCA AAG GAA GAG GCT GCA AAG AAA AAG AAA GTA TTG Asp Arg Ala Gln Ala Lys Glu Glu Ala Ala Lys Lys Lys Val Leu 450 455 460	1692
CGA GAA TTG ATG GTA AAA GCC ACG AAG ACT CGT GAT ATC ACG TGG TAC Arg Glu Leu Met Val Lys Ala Thr Lys Thr Arg Asp Ile Thr Trp Tyr 465 470 475	1740
ATA GAG CCA AGT GAA TTT AAA TGC GAG GAC AAG GTC AGG TTA TAC TAT Ile Glu Pro Ser Glu Phe Lys Cys Glu Asp Lys Val Arg Leu Tyr Tyr 480 485 490	1788
AAC AAA AGT TCA GGT CCT CTC TCC CAT GCT AAG GAC TTG TGG ATC CAC Asn Lys Ser Ser Gly Pro Leu Ser His Ala Lys Asp Leu Trp Ile His 495 500 505 510	1836
GGA GGA TAT AAT AAT TGG AAG GAT GGT TTG TCT ATT GTC AAA AAG CTT Gly Gly Tyr Asn Asn Trp Lys Asp Gly Leu Ser Ile Val Lys Lys Leu 515 520 525	1884
GTT AAA TCT GAG AGA ATA GAT GGT GAT TGG TGG TAT ACA GAG GTT GTT Val Lys Ser Glu Arg Ile Asp Gly Asp Trp Trp Tyr Thr Glu Val Val 530 535 540	1932
ATT CCT GAT CAG GCA CTT TTC TTG GAT TGG GTT TTT GCT GAT GGT CCA Ile Pro Asp Gln Ala Leu Phe Leu Asp Trp Val Phe Ala Asp Gly Pro 545 550 555	1980
CCC AAG CAT GCC ATT GCT TAT GAT AAC AAT CAC CGC CAA GAC TTC CAT Pro Lys His Ala Ile Ala Tyr Asp Asn Asn His Arg Gln Asp Phe His 560 565 570	2028

GCC ATT GTC CCC AAC CAC ATT CCG GAG GAA TTA TAT TGG GTT GAG GAA Ala Ile Val Pro Asn His Ile Pro Glu Glu Leu Tyr Trp Val Glu Glu 575 580 585 590	2076
GAA CAT CAG ATC TTT AAG ACA CTT CAG GAG GAG AGA AGG CTT AGA GAA Glu His Gln Ile Phe Lys Thr Leu Gln Glu Arg Arg Leu Arg Glu 595 600 605	2124
GCG GCT ATG CGT GCT AAG GTT GAA AAA ACA GCA CTT CTG AAA ACT GAA Ala Ala Met Arg Ala Lys Val Glu Lys Thr Ala Leu Leu Lys Thr Glu 610 615 620	2172
ACA AAG GAA AGA ACT ATG AAA TCA TTT TTA CTG TCT CAG AAG CAT GTA Thr Lys Glu Arg Thr Met Lys Ser Phe Leu Leu Ser Gln Lys His Val 625 630 635	2220
GTA TAT ACT GAG CCT CTT GAT ATC CAA GCT GGA AGC AGC GTC ACA GTT Val Tyr Thr Glu Pro Leu Asp Ile Gln Ala Gly Ser Ser Val Thr Val 640 645 650	2268
TAC TAT AAT CCC GCC AAT ACA GTA CTT AAT GGT AAA CCT GAA ATT TGG Tyr Tyr Asn Pro Ala Asn Thr Val Leu Asn Gly Lys Pro Glu Ile Trp 655 660 665 670	2316
TTC AGA TGT TCA TTT AAT CGC TGG ACT CAC CGC CTG GGT CCA TTG CCA Phe Arg Cys Ser Phe Asn Arg Trp Thr His Arg Leu Gly Pro Leu Pro 675 680 685	2364
CCT CAG AAA ATG TCG CCT GCT GAA AAT GGC ACC CAT GTC AGA GCA ACT Pro Gln Lys Met Ser Pro Ala Glu Asn Gly Thr His Val Arg Ala Thr 690 695 700	2412
GTG AAG GTT CCA TTG GAT GCA TAT ATG ATG GAT TTT GTA TTT TCC GAG Val Lys Val Pro Leu Asp Ala Tyr Met Met Asp Phe Val Phe Ser Glu 705 710 715	2460
AGA GAA GAT GGT GGG ATT TTT GAC AAT AAG AGC GGA ATG GAC TAT CAC Arg Glu Asp Gly Gly Ile Phe Asp Asn Lys Ser Gly Met Asp Tyr His 720 725 730	2508
ATA CCT GTG TTT GGA GGA GTC GCT AAA GAA CCT CCA ATG CAT ATT GTC Ile Pro Val Phe Gly Gly Val Ala Lys Glu Pro Pro Met His Ile Val 735 740 745 750	2556
CAT ATT GCT GTC GAA ATG GCA CCA ATT GCA AAG GTG GGA GGC CTT GGT His Ile Ala Val Glu Met Ala Pro Ile Ala Lys Val Gly Gly Leu Gly 755 760 765	2604
GAT GTT GTT ACT AGT CTT TCC CGT GCT GAA GAT TTA AAC CAT AAT Asp Val Val Thr Ser Leu Ser Arg Ala Val Gln Asp Leu Asn His Asn 770 775 780	2652

GTG GAT ATT ATC TTA CCT AAG TAT GAC TGT TTG AAG ATG AAT AAT GTG Val Asp Ile Ile Leu Pro Lys Tyr Asp Cys Leu Lys Met Asn Asn Val 785 790 795	2700
AAG GAC TTT CGG TTT CAC AAA AAC TAC TTT TGG GGT GGG ACT GAA ATA Lys Asp Phe Arg Phe His Lys Asn Tyr Phe Trp Gly Gly Thr Glu Ile 800 805 810	2748
AAA GTA TGG TTT GGA AAG GTG GAA GGT CTC TCG GTC TAT TTT TTG GAG Lys Val Trp Phe Gly Lys Val Glu Gly Leu Ser Val Tyr Phe Leu Glu 815 820 825 830	2796
CCT CAA AAC GGG TTA TTT TCG AAA GGG TGC GTC TAT GGT TGT AGC AAT Pro Gln Asn Gly Leu Phe Ser Lys Gly Cys Val Tyr Gly Cys Ser Asn 835 840 845	2844
GAT GGT GAA CGA TTT GGT TTC TTC TGT CAC GCG GCT TTG GAG TTT CTT Asp Gly Glu Arg Phe Gly Phe Cys His Ala Ala Leu Glu Phe Leu 850 855 860	2892
CTG CAA GGT GGA TTT AGT CCG GAT ATC ATT CAT TGC CAT GAT TGG TCT Leu Gln Gly Gly Phe Ser Pro Asp Ile Ile His Cys His Asp Trp Ser 865 870 875	2940
AGT GCT CCT GTT GCT TGG CTC TTT AAG GAA CAA TAT ACA CAC TAT GGT Ser Ala Pro Val Ala Trp Leu Phe Lys Glu Gln Tyr Thr His Tyr Gly 880 885 890	2988
CTA AGC AAA TCT CGT ATA GTC TTC ACG ATA CAT AAT CTT GAA TTT GGG Leu Ser Lys Ser Arg Ile Val Phe Thr Ile His Asn Leu Glu Phe Gly 895 900 905 910	3036
GCA GAT CTC ATT GGG AGA GCA ATG ACT AAC GCA GAC AAA GCT ACA ACA Ala Asp Leu Ile Gly Arg Ala Met Thr Asn Ala Asp Lys Ala Thr Thr 915 920 925	3084
GTT TCA CCA ACT TAC TCA CAG GAG GTG TCT GGA AAC CCT GTC ATT GCG Val Ser Pro Thr Tyr Ser Gln Glu Val Ser Gly Asn Pro Val Ile Ala 930 935 940	3132
CCT CAC CTT CAC AAG TTC CAT GGT ATA GTG AAT GGG ATT GAC CCA GAT Pro His Leu His Lys Phe His Gly Ile Val Asn Gly Ile Asp Pro Asp 945 950 955	3180
ATT TGG GAT CCT TTA AAC GAT AAG TTC ATT CCG ATT CCG TAC ACC TCA Ile Trp Asp Pro Leu Asn Asp Lys Phe Ile Pro Tyr Thr Ser 960 965 970	3228
GAA AAC GTT GTT GAA GGC AAA ACA GCA GCC AAG GAA GCT TTG CAG CGA Glu Asn Val Val Glu Gly Lys Thr Ala Ala Lys Glu Ala Leu Gln Arg 975 980 985 990	3276
AAA CTT GGA CTG AAA CAG GCT GAC CTT CCT TTG GTC GGA ATT ATC ACC Lys Leu Gly Leu Lys Gln Ala Asp Leu Pro Leu Val Gly Ile Ile Thr 995 1000 1005	3324

CGC TTA ACT CAC CAG AAA GGA ATC CAC CTC ATT AAA CAT GCT ATT TGG Arg Leu Thr His Gln Lys Gly Ile His Leu Ile Lys His Ala Ile Trp 1010 1015 1020	3372
CGC ACC TTG GAA CGG AAC GGA CAG GTA GTC TTG CTT GGT TCT GCT CCT Arg Thr Leu Glu Arg Asn Gly Gln Val Val Leu Leu Gly Ser Ala Pro 1025 1030 1035	3420
GAT CCT AGG GTA CAA AAC GAT TTT AAT TTG GCA AAT CAA TTG CAC Asp Pro Arg Val Gln Asn Asp Phe Val Asn Leu Ala Asn Gln Leu His 1040 1045 1050	3468
TCC AAA TAT AAT GAC CGC GCA CGA CTC TGT CTA ACA TAT GAC GAG CCA Ser Lys Tyr Asn Asp Arg Ala Arg Leu Cys Leu Thr Tyr Asp Glu Pro 1055 1060 1065 1070	3516
CTT TCT CAC CTG ATA TAT GCT GGT GCT GAT TTT ATT CTA GTT CCT TCA Leu Ser His Leu Ile Tyr Ala Gly Ala Asp Phe Ile Leu Val Pro Ser 1075 1080 1085	3564
ATA TTT GAG CCA TGT GGA CTA ACA CAA CTT ACC GCT ATG AGA TAT GGT Ile Phe Glu Pro Cys Gly Leu Thr Gln Leu Thr Ala Met Arg Tyr Gly 1090 1095 1100	3612
TCA ATT CCA GTC GTG CGT AAA ACT GGA GGA CTT TAT GAT ACT GTA TTT Ser Ile Pro Val Val Arg Lys Thr Gly Gly Leu Tyr Asp Thr Val Phe 1105 1110 1115	3660
GAT GTT GAC CAT GAC AAA GAG AGA GCA CAA CAG TGT GGT CTT GAA CCA Asp Val Asp His Asp Lys Glu Arg Ala Gln Gln Cys Gly Leu Glu Pro 1120 1125 1130	3708
AAT GGA TTC AGC TTT GAT GGA GCA GAT GCT GGC GGA GTT GAT TAT GCT Asn Gly Phe Ser Phe Asp Gly Ala Asp Ala Gly Gly Val Asp Tyr Ala 1135 1140 1145 1150	3756
CTG AAT AGA GCT CTC TCT GCT TGG TAC GAT GGT CGG GAT TGG TTC AAC Leu Asn Arg Ala Leu Ser Ala Trp Tyr Asp Gly Arg Asp Trp Phe Asn 1155 1160 1165	3804
TCT TTA TGC AAG CAG GTC ATG GAA CAA GAT TGG TCT TGG AAC CGA CCT Ser Leu Cys Lys Gln Val Met Glu Gln Asp Trp Ser Trp Asn Arg Pro 1170 1175 1180	3852
GCT CTT GAT TAT TTG GAG CTT TAC CAT GCT GCT AGA AAG TTA GAA Ala Leu Asp Tyr Leu Glu Leu Tyr His Ala Ala Arg Lys Leu Glu 1185 1190 1195	3897
TAGTTAGTTT GTGAGATGCT AGCAGAAAAA TTCAAGAGAT CTGCAATCTG TACAGGTTCA	3957
GTGTTTGCCT CTGGACAGCT TTTTTATTC CTATATCAA GTATAAATCA AGTCTACACT	4017
GAGATCAATA GCAGACAGTC CTCAGTTCAT TTCACTTTT GTGCAACATA TGAAAGAGCT	4077

TAGCCTCTAA TAATGTAGTC ATTGATGATT ATTTGTTTG GGAAGAAATG AGAAATCAA. 4137
 GGATGCAAAA TACTCTGAAA AAAAAAAA A 4168

(2) ANGABEN ZU SEQ ID NO: 12:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 1197 Aminosäuren
- (B) ART: Aminosäure
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

Met Glu Pro Gln Val Tyr Gln Tyr Asn Leu Leu His Gly Gly Arg Met
 1 5 10 15

Glu Met Val Thr Gly Val Ser Phe Pro Phe Cys Ala Asn Leu Ser Gly
 20 25 30

Arg Arg Arg Arg Lys Val Ser Thr Thr Arg Ser Gln Gly Ser Ser Pro
 35 40 45

Lys Gly Phe Val Pro Arg Lys Pro Ser Gly Met Ser Thr Gln Arg Lys
 50 55 60

Val Gln Lys Ser Asn Gly Asp Lys Glu Ser Gln Ser Thr Ser Thr Ser
 65 70 75 80

Lys Glu Ser Glu Ile Ser Asn Gln Lys Thr Val Glu Ala Arg Val Glu
 85 90 95

Thr Ser Asp Asp Asp Thr Lys Val Val Arg Asp His Lys Phe Leu
 100 105 110

Glu Asp Glu Asp Glu Ile Asn Gly Ser Thr Lys Ser Ile Ser Met Ser
 115 120 125

Pro Val Arg Val Ser Ser Gln Phe Val Glu Ser Glu Glu Thr Gly Gly
 130 135 140

Asp Asp Lys Asp Ala Val Lys Leu Asn Lys Ser Lys Arg Ser Glu Glu
 145 150 155 160

Ser Asp Phe Leu Ile Asp Ser Val Ile Arg Glu Gln Ser Gly Ser Gln
 165 170 175

Gly Glu Thr Asn Ala Ser Ser Lys Gly Ser His Ala Val Gly Thr Lys
 180 185 190

Leu Tyr Glu Ile Leu Gln Val Asp Val Glu Pro Gln Gln Leu Lys Glu
 195 200 205

Asn Asn Ala Gly Asn Val Glu Tyr Lys Gly Pro Val Ala Ser Lys Leu
210 215 220

Leu Glu Ile Thr Lys Ala Ser Asp Val Glu His Thr Glu Ser Asn Glu
225 230 235 240

Ile Asp Asp Leu Asp Thr Asn Ser Phe Phe Lys Ser Asp Leu Ile Glu
245 250 255

Glu Asp Glu Pro Leu Ala Ala Gly Thr Val Glu Thr Gly Asp Ser Ser
260 265 270

Leu Asn Leu Arg Leu Glu Met Glu Ala Asn Leu Arg Arg Gln Ala Ile
275 280 285

Glu Arg Leu Ala Glu Glu Asn Leu Leu Gln Gly Ile Arg Leu Phe Cys
290 295 300

Phe Pro Glu Val Val Lys Pro Asp Glu Asp Val Glu Ile Phe Leu Asn
305 310 315 320

Arg Gly Leu Ser Thr Leu Lys Asn Glu Ser Asp Val Leu Ile Met Gly
325 330 335

Ala Phe Asn Glu Trp Arg Tyr Arg Ser Phe Thr Thr Arg Leu Thr Glu
340 345 350

Thr His Leu Asn Gly Asp Trp Trp Ser Cys Lys Ile His Val Pro Lys
355 360 365

Glu Ala Tyr Arg Ala Asp Phe Val Phe Phe Asn Gly Gln Asp Val Tyr
370 375 380

Asp Asn Asn Asp Gly Asn Asp Phe Ser Ile Thr Val Lys Gly Gly Met
385 390 395 400

Gln Ile Ile Asp Phe Glu Asn Phe Leu Leu Glu Lys Trp Arg Glu
405 410 415

Gln Glu Lys Leu Ala Lys Glu Gln Ala Glu Arg Glu Arg Leu Ala Glu
420 425 430

Glu Gln Arg Arg Ile Glu Ala Glu Lys Ala Glu Ile Glu Ala Asp Arg
435 440 445

Ala Gln Ala Lys Glu Glu Ala Ala Lys Lys Lys Val Leu Arg Glu
450 455 460

Leu Met Val Lys Ala Thr Lys Thr Arg Asp Ile Thr Trp Tyr Ile Glu
465 470 475 480

Pro Ser Glu Phe Lys Cys Glu Asp Lys Val Arg Leu Tyr Tyr Asn Lys
485 490 495

Ser Ser Gly Pro Leu Ser His Ala Lys Asp Leu Trp Ile His Gly Gly
 500 505 510
 Tyr Asn Asn Trp Lys Asp Gly Leu Ser Ile Val Lys Lys Leu Val Lys
 515 520 525
 Ser Glu Arg Ile Asp Gly Asp Trp Trp Tyr Thr Glu Val Val Ile Pro
 530 535 540
 Asp Gln Ala Leu Phe Leu Asp Trp Val Phe Ala Asp Gly Pro Pro Lys
 545 550 555 560
 His Ala Ile Ala Tyr Asp Asn Asn His Arg Gln Asp Phe His Ala Ile
 565 570 575
 Val Pro Asn His Ile Pro Glu Glu Leu Tyr Trp Val Glu Glu Glu His
 580 585 590
 Gln Ile Phe Lys Thr Leu Gln Glu Glu Arg Arg Leu Arg Glu Ala Ala
 595 600 605
 Met Arg Ala Lys Val Glu Lys Thr Ala Leu Leu Lys Thr Glu Thr Lys
 610 615 620
 Glu Arg Thr Met Lys Ser Phe Leu Leu Ser Gln Lys His Val Val Tyr
 625 630 635 640
 Thr Glu Pro Leu Asp Ile Gln Ala Gly Ser Ser Val Thr Val Tyr Tyr
 645 650 655
 Asn Pro Ala Asn Thr Val Leu Asn Gly Lys Pro Glu Ile Trp Phe Arg
 660 665 670
 Cys Ser Phe Asn Arg Trp Thr His Arg Leu Gly Pro Leu Pro Pro Gln
 675 680 685
 Lys Met Ser Pro Ala Glu Asn Gly Thr His Val Arg Ala Thr Val Lys
 690 695 700
 Val Pro Leu Asp Ala Tyr Met Met Asp Phe Val Phe Ser Glu Arg Glu
 705 710 715 720
 Asp Gly Gly Ile Phe Asp Asn Lys Ser Gly Met Asp Tyr His Ile Pro
 725 730 735
 Val Phe Gly Gly Val Ala Lys Glu Pro Pro Met His Ile Val His Ile
 740 745 750
 Ala Val Glu Met Ala Pro Ile Ala Lys Val Gly Gly Leu Gly Asp Val
 755 760 765
 Val Thr Ser Leu Ser Arg Ala Val Gln Asp Leu Asn His Asn Val Asp
 770 775 780

Ile Ile Leu Pro Lys Tyr Asp Cys Leu Lys Met Asn Asn Val Lys Asp
785 790 795 800

Phe Arg Phe His Lys Asn Tyr Phe Trp Gly Gly Thr Glu Ile Lys Val
805 810 815

Trp Phe Gly Lys Val Glu Gly Leu Ser Val Tyr Phe Leu Glu Pro Gln
820 825 830

Asn Gly Leu Phe Ser Lys Gly Cys Val Tyr Gly Cys Ser Asn Asp Gly
835 840 845

Glu Arg Phe Gly Phe Phe Cys His Ala Ala Leu Glu Phe Leu Leu Gln
850 855 860

Gly Gly Phe Ser Pro Asp Ile Ile His Cys His Asp Trp Ser Ser Ala
865 870 875 880

Pro Val Ala Trp Leu Phe Lys Glu Gln Tyr Thr His Tyr Gly Leu Ser
885 890 895

Lys Ser Arg Ile Val Phe Thr Ile His Asn Leu Glu Phe Gly Ala Asp
900 905 910

Leu Ile Gly Arg Ala Met Thr Asn Ala Asp Lys Ala Thr Thr Val Ser
915 920 925

Pro Thr Tyr Ser Gln Glu Val Ser Gly Asn Pro Val Ile Ala Pro His
930 935 940

Leu His Lys Phe His Gly Ile Val Asn Gly Ile Asp Pro Asp Ile Trp
945 950 955 960

Asp Pro Leu Asn Asp Lys Phe Ile Pro Ile Pro Tyr Thr Ser Glu Asn
965 970 975

Val Val Glu Gly Lys Thr Ala Ala Lys Glu Ala Leu Gln Arg Lys Leu
980 985 990

Gly Leu Lys Gln Ala Asp Leu Pro Leu Val Gly Ile Ile Thr Arg Leu
995 1000 1005

Thr His Gln Lys Gly Ile His Leu Ile Lys His Ala Ile Trp Arg Thr
1010 1015 1020

Leu Glu Arg Asn Gly Gln Val Val Leu Leu Gly Ser Ala Pro Asp Pro
1025 1030 1035 1040

Arg Val Gln Asn Asp Phe Val Asn Leu Ala Asn Gln Leu His Ser Lys
1045 1050 1055

Tyr Asn Asp Arg Ala Arg Leu Cys Leu Thr Tyr Asp Glu Pro Leu Ser
1060 1065 1070

100

His Leu Ile Tyr Ala Gly Ala Asp Phe Ile Leu Val Pro Ser Ile Phe
 1075 1080 1085
 Glu Pro Cys Gly Leu Thr Gln Leu Thr Ala Met Arg Tyr Gly Ser Ile
 1090 1095 1100
 Pro Val Val Arg Lys Thr Gly Gly Leu Tyr Asp Thr Val Phe Asp Val
 1105 1110 1115 1120
 Asp His Asp Lys Glu Arg Ala Gln Gln Cys Gly Leu Glu Pro Asn Gly
 1125 1130 1135
 Phe Ser Phe Asp Gly Ala Asp Ala Gly Gly Val Asp Tyr Ala Leu Asn
 1140 1145 1150
 Arg Ala Leu Ser Ala Trp Tyr Asp Gly Arg Asp Trp Phe Asn Ser Leu
 1155 1160 1165
 Cys Lys Gln Val Met Glu Gln Asp Trp Ser Trp Asn Arg Pro Ala Leu
 1170 1175 1180
 Asp Tyr Leu Glu Leu Tyr His Ala Ala Arg Lys Leu Glu
 1185 1190 1195

(2) ANGABEN ZU SEQ ID NO: 13:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 12 Aminosäuren
 - (B) ART: Aminosäure
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:

Gly Thr Gly Gly Leu Arg Asp Thr Val Glu Asn Cys
 1 5 10

(2) ANGABEN ZU SEQ ID NO: 14:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 30 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure
 - (A) BESCHREIBUNG: /desc = "Oligonucleotid"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:

ACAGGATCCT GTGCTATGCG GCGTGTGAAG

30

(2) ANGABEN ZU SEQ ID NO: 15:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 32 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: Einzelstrang
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure

- (A) BESCHREIBUNG: /desc = "Oligonucleotid"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:

TTGGGATCCG CAATGCCAC AGCATTTC TC

32

(2) ANGABEN ZU SEQ ID NO: 16:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 12 Aminosäuren
- (B) ART: Aminosäure
- (C) STRANGFORM: Einzelstrang
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:

Pro Trp Ser Lys Thr Gly Gly Leu Gly Asp Val Cys
1 5 10

(2) ANGABEN ZU SEQ ID NO: 17:

(i) SEQUENZKENNZEICHEN:

- (A) LÄNGE: 13 Aminosäuren
- (B) ART: Aminosäure
- (C) STRANGFORM: Einzelstrang
- (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:

Pro Ser Arg Phe Glu Pro Cys Gly Leu Asn Gln Leu Tyr
1 5 10

ANGABEN ZU EINEM HINTERLEGTEN MIKROORGANISMUS

(Regel 13th PCT)

<p>A. Die nachstehenden Angaben betreffen den Mikroorganismus, der in der Beschreibung genannt ist auf Seite <u>31/32</u>, Zeile <u>33-37/1-3</u>.</p>	
<p>B. KENNZEICHNUNG DER HINTERLEGUNG</p> <p>Weitere Hinterlegungen sind auf einem zusätzlichen Blatt gekennzeichnet <input type="checkbox"/></p>	
<p>Name der Hinterlegungsstelle DSM - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH</p>	
<p>Anschrift der Hinterlegungsstelle (einschließlich Postleitzahl und Land) Mascheroder Weg 1b 38124 Braunschweig DE</p>	
Datum der Hinterlegung 20. Oktober 1994	Eingangsnummer DSM 9505
<p>C. WEITERE ANGABEN (falls nicht zutreffend, bitte frei lassen)</p> <p>Die Angaben werden auf einem gesonderten Blatt fortgesetzt <input type="checkbox"/></p>	
<p>Der Anmelder macht Gebrauch von Regel 28(4) EPÜ.</p>	
<p>D. BESTIMMUNGSSTAATEN, FÜR DIE ANGABEN GEMACHT WERDEN (falls die Angaben nicht für alle Bestimmungsstaaten gelten)</p> <p>EP</p>	
<p>E. NACHREICHUNG VON ANGABEN (falls nicht zutreffend, bitte frei lassen)</p> <p>Die nachstehenden Angaben werden später beim Internationalen Büro eingereicht (bitte Art der Angaben nennen). z. B. "Eingangsnummer der Hinterlegung"</p>	
<p>Nur zur Verwendung im Anmeldeamt</p> <p><input checked="" type="checkbox"/> Dieses Blatt ist eingegangen mit der internationalen Anmeldung</p> <p>Bevollmächtigter Bediensteter O. Gorde </p>	
<p>Nur zur Verwendung im Internationalen Büro</p> <p><input type="checkbox"/> Dieses Blatt ist beim Internationalen Büro eingegangen an:</p> <p>Bevollmächtigter Bediensteter</p>	

Patentansprüche

1. DNA-Molekül codierend ein Protein mit der biologischen Aktivität einer Stärkesynthase ausgewählt aus der Gruppe bestehend aus
 - (a) DNA-Molekülen, die ein Protein mit der unter Seq ID No. 8 angegebenen Aminosäuresequenz codieren;
 - (b) DNA-Molekülen, die die unter Seq ID No. 7 dargestellte Nucleotidsequenz umfassen;
 - (c) DNA-Molekülen, deren Nucleotidsequenz aufgrund der Degeneration des genetischen Codes von der Sequenz der unter (a) oder (b) genannten DNA-Moleküle abweicht; und
 - (d) DNA-Molekülen, die mit den unter (a), (b) oder (c) genannten DNA-Molekülen hybridisieren, wobei die unter (a), (b), (c) oder (d) genannten DNA-Moleküle ein Protein mit der biologischen Aktivität einer Stärkesynthase der Isoform II (GBSSII) oder ein biologisch aktives Fragment eines solchen Proteins codieren; und
 - (e) DNA-Molekülen, die ein Protein mit der unter Seq ID No. 10 dargestellten Aminosäuresequenz codieren;
 - (f) DNA-Molekülen, die die unter Seq ID No. 9 dargestellte Nucleotidsequenz umfassen;
 - (g) DNA-Molekülen, deren Nucleotidsequenz aufgrund der Degeneration des genetischen Codes von der Sequenz der unter (e) oder (f) genannten DNA-Moleküle abweicht; und
 - (h) DNA-Molekülen, die mit den unter (e), (f) oder (g) genannten DNA-Molekülen hybridisieren, ausgenommen DNA-Moleküle aus Reis, wobei die unter (e), (f), (g) oder (h) genannten DNA-Moleküle ein Protein mit der biologischen Aktivität einer löslichen Stärkesynthase der Isoform B (SSSB) oder ein biologisch aktives Fragment eines solchen Proteins codieren; und

104

(i) DNA-Molekülen, die ein Protein mit der unter Seq ID No. 12 dargestellten Aminosäuresequenz codieren;

(k) DNA-Molekülen, die die unter Seq. ID No. 11 dargestellte Nucleotidsequenz umfassen;

(l) DNA-Molekülen, deren Nucleotidsequenz aufgrund der Degeneration des genetischen Codes von der Sequenz der unter (i) oder (k) genannten DNA-Moleküle abweicht; und

(m) DNA-Molekülen, die mit den unter (i), (k) oder (l) genannten DNA-Molekülen hybridisieren,
wobei die unter (i), (k), (l) oder (m) genannten DNA-Moleküle ein Protein mit der biologischen Aktivität einer löslichen Stärkesynthase der Isoform A (SSSA) oder ein biologisch aktives Fragment eines solchen Proteins codieren.

2. DNA-Moleküle codierend ein Protein mit der biologischen Aktivität einer löslichen Stärkesynthase der Isoform A (SSSA) oder ein biologisches aktives Fragment davon, wobei das von dem DNA-Molekül codierte Protein von einem Antikörper erkannt wird, der gegen das Peptid

gerichtet ist.

3. Vektor enthaltend ein DNA-Molekül nach Anspruch 1 oder 2.

4. Vektor nach Anspruch 3, wobei das DNA-Molekül in sense-Orientierung mit DNA-Elementen verknüpft ist, die die Transkription und Synthese einer translatierbaren RNA in pro- oder eukaryontischen Zellen gewährleisten.

5. Wirtszellen enthaltend einen Vektor nach Anspruch 3 oder 4.

6. Protein oder biologisch aktives Fragment davon codiert durch ein DNA-Molekül nach Anspruch 1 oder 2 oder einen Vektor nach Anspruch 3 oder 4.
7. Verfahren zur Herstellung eines Proteins nach Anspruch 6 oder eines biologisch aktiven Fragmentes davon, bei dem eine Wirtszelle nach Anspruch 5 unter Bedingungen kultiviert wird, die die Synthese des Proteins erlauben, und das Protein aus den kultivierten Zellen und/oder dem Kulturmedium isoliert wird.
8. Pflanzenzelle enthaltend ein DNA-Molekül nach Anspruch 1 oder 2 in Kombination mit einem heterologen Promotor.
9. Pflanze enthaltend Pflanzenzellen nach Anspruch 8.
10. Pflanze nach Anspruch 9, die eine Nutzpflanze ist.
11. Pflanze nach Anspruch 10, die eine stärkespeichernde Pflanze ist.
12. Pflanze nach Anspruch 11, die eine Kartoffelpflanze ist.
13. Vermehrungsmaterial einer Pflanze nach einem der Ansprüche 9 bis 12 enthaltend Pflanzenzellen nach Anspruch 8.
14. Stärke erhältlich aus einer Pflanze nach einem der Ansprüche 9 bis 12.
15. Transgene Pflanzenzelle, dadurch gekennzeichnet, daß in dieser Pflanzenzelle die Aktivität mindestens eines der Proteine nach Anspruch 6 verringert ist.
16. Pflanzenzelle nach Anspruch 15, wobei in dieser Zelle eine antisense-RNA zu Transkripten eines DNA-Moleküls nach Anspruch 1 oder 2 exprimiert wird.

106

17. Pflanze enthaltend Pflanzenzellen nach Anspruch 15 oder 16.
18. Pflanze nach Anspruch 17, die eine Nutzpflanze ist.
19. Pflanze nach Anspruch 18, die eine stärkespeichernde Pflanze ist.
20. Pflanze nach Anspruch 19, die eine Kartoffelpflanze ist.
21. Vermehrungsmaterial einer Pflanze nach einem der Ansprüche 17 bis 21, enthaltend Zellen nach Anspruch 15 oder 16.
22. Stärke erhältlich aus Pflanzen nach einem der Ansprüche 17 bis 21.

1/5

Fig. 1

Fig. 2

2/5

Fig. 3

Fig. 4

3/5

Fig. 5

Fig. 6

a MQVL HVCSEMFPLL KTGGGLADVIG
 b PKQSRKAHRG SRRCLSVVVS ATGS.GMNLV FVGAEMAPWS KTGGGLGDVLG
 c PKQSRKPHRF DRRCLSMVVR ATGSGGMNLV FVGAEMAPWS KTGGGLGDVLG
 d PRHQQQARRG G.RFP SLVVVC A.SA.GMNVV FVGAEMAPWS KTGGGLGDVLG
 e PKQQRSVQRG SRRFPSVVVY ATGA.GMNVV FVGAEMAPWS KTGGGLGDVLG
 f KKV.SATGNG RPA..AKIIC GH...GMNLI FVGAEVGPWS KTGGGLGDVLG
 g PKMASRTETK RPGCSATIVC GK...GMNLI FVGTTEVGPWS KTGGGLGDVLG
 h SKEVANEAEEN FESGGEKPPP LAGTNVMNII LVSACEAPWS KTGGGLGDVAG
 i SAEANEETED PVNIDEKPPP LAGTNVMNII LVASECAPWS KTGGGLGDVAG
 k DKTIFVASEQ ESEIMDVKEQ AQAKVTRSVV FVTGEASPYA KSGGLGDVCG
 l DGGIFDNKSG MDYHIPVFGG VAKEPPMHIV HIAVEMAPIA KVGGGLGDVVT
 (I)

a SHRIMGGADV ILVPSRFEPC GLTQLYGSKY GTLPLVRRTG GLADTVSDCS
 b AHQMMAGADL LAVTSRFEPC GLIQLQGMRY GTPCVCASTG GLVDTIVEGK
 c AHQMMAGADV LAVTSRFEPC GLIQLQGMRY GTPCACASTG GLVDTIVEGK
 d AHHIMAGADV LAVTSRFEPC GLIQLQGMRY GTPCACASTG GLVDTIIEGK
 e AHLIMAGADV LAVPSRFEPC GLIQLQGMRY GTPCACASTG GLVDTVIEGK
 f AHMITAGADF MLVPSRFEPC GLIQLHAMRY GTVPIVASTG GLVDTVKEGY
 g AHMITAGADF MLVPSRFEPC GLIQLHAMRY GTVPICASTG GLVDTVKEGY
 h AHRITAGSDI LLMPSRFEPC GLNQLYAMSY GTVPVVHVG GLRDTVQPFN
 i SHRITAGADI LLMPSRFEAL RLNQLYAMKY GTIPVVHVG GLRDTVQPFN
 k SHRITAGCDI LLMPSRFEPC GLNQLYAMQY GTVPVVHGTG GLRDTVENFN
 l SHLIYAGADF ILVPSIFEPC GLTQLTAMRY GSIPVVRKTG GLYDTVFDVD
 m SHRITAGCDI LLMPSRFEPC GLNQLYAMRY GTIPIVHSTG GLRDTVKDFN
 (II) (III)

Fig. 7

5/5

A)

B)

C)

Fig. 8

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 95/04415A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/52 C12N15/82 A61K35/78 C07K14/415

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C12N A61K C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	THE PLANT JOURNAL, vol. 2, no. 2, 1992 pages 193-202, DRY, I. ET AL. 'Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato.' cited in the application see the whole document	1-14,22
Y	---	15-21
	-/-	

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'B' earlier document but published on or after the international filing date
- *'L' document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

- *'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *'A' document member of the same patent family

Date of the actual completion of the international search

4 April 1996

Date of mailing of the international search report

18.04.96

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentkantoor 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2048, Tx. 31 651 epo nl.
Fax: (+ 31-70) 340-3016

Authorized officer

Hillenbrand, G

INTERNATIONAL SEARCH REPORT

 International Application No
 PCT/EP 95/04415

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	PLANT PHYSIOL., no. 103, 1993 pages 565-573, BABA, T. ET AL. 'Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (<i>Oryza sativa</i> L.) immature seeds.' cited in the application see the whole document, in particular fig. 5	1-14,22
Y	PLANT MOLECULAR BIOLOGY, no. 23, 1993 pages 947-962, SALEHUZZAMAN, S.N.I.M. ET AL. 'Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (<i>Manihot esculenta</i> Crantz) and its antisense expression in potato.' see the whole document	15-21
Y	WO,A,94 09144 (ZENECA LIMITED) 28 April 1994 see the whole document	15-21
1		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 95/04415

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO-A-9409144	28-04-94	AU-B- 2696492 EP-A- 0664835	09-05-94 02-08-95

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 95/04415

A. KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 C12N15/52 C12N15/82 A61K35/78 C07K14/415

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprästoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 C12N A61K C07K

Recherchierte aber nicht zum Mindestprästoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGEMEHRTE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	THE PLANT JOURNAL, Bd. 2, Nr. 2, 1992 Seiten 193-202, DRY, I. ET AL. 'Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato.' in der Anmeldung erwähnt *insgesamt*	1-14,22
Y	---	15-21
	-/-	

Weitere Veröffentlichungen und der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentanträge

* Sonderart Kategorien von angesprochenen Veröffentlichungen :

- *'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders innovativ angesehen ist
- *'B' Anderes Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *'L' Veröffentlichung, die gezeigt ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen bekannten Grund angegeben ist (wie ausgeführt)
- *'O' Veröffentlichung, die sich auf eine endständige Offenbarung, eine Benennung, eine Ausstellung oder andere Maßnahmen bezieht
- *'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem bensprochenen Prioritätsdatum veröffentlicht worden ist

*'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Ausstellung nicht konsistent, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzipiell oder der für zugrundeliegenden Theorie angegeben ist

*'X' Veröffentlichung von besonderer Bedeutung; die bensprochene Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindender Tätigkeit beruhend betrachtet werden

*'Y' Veröffentlichung von besonderer Bedeutung; die bensprochene Erfindung kann nicht als auf erfindender Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie im Verhältnis gebracht wird und diese Veröffentlichung für einen Patentantrag anerkannt wird

*'A' Veröffentlichung, die Mitglied derselben Patentanträge ist

Datum des Abschlusses der internationalen Recherche

4. April 1996

Abschlußdatum des internationalen Recherchenberichts

18.04.96

Name und Postanschrift der Internationalen Recherchebehörde
Europäischer Patentamt, P.O. 3018 Patentamt 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bedarsteller

Hillenbrand, G

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 95/04415

C (Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Beschreibung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Ber. Anspruch Nr.
X	PLANT PHYSIOL., Nr. 103, 1993 Seiten 565-573, BABA, T. ET AL. 'Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (<i>Oryza sativa L.</i>) immature seeds.' in der Anmeldung erwähnt *insgesamt, insbesondere Fig. 5*	1-14,22
Y	PLANT MOLECULAR BIOLOGY, Nr. 23, 1993 Seiten 947-962, SALEHUZZAMAN, S.N.I.M. ET AL. 'Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (<i>Manihot esculenta</i> Crantz) and its antisense expression in potato.' *insgesamt*	15-21
Y	WO,A,94 09144 (ZENECA LIMITED) 28.April 1994 *insgesamt*	15-21
1		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur unten Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 95/04415

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO-A-9409144	28-04-94	AU-B- 2696492 EP-A- 0664835	09-05-94 02-08-95

BLANK PAGE

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

BLANK PAGE