G = (V, F) un bigrato, H = (W, F) un sub-bigrato de G, En clases anteriores se mostro que la siguiente relación sobre el conjunto E-F, es una relación de equivalencia.

· \ e ∈ E-F, e \equiv e.

· Si e & E-F es la arista e: a, -b, y f & E-F es la arista f: a2-b2, entonces c=f si y solo si existe un camino simple de uno de los siguientes tipos:

a,-b,-v,-v2-...vk-b2-a2 b1, V1, ..., VK, b2 & W b, -a, -v, -v2-... Vk - a2-b2 a,, v,, ..., Vk, 92 & W b, -a, -v, -v2-...v4 - b2-a2 a, v,,.., v, b2 € W

Ejemplo: Sea G el bigrato y H={{2,3}, \$}

La clase de equivalencia de 2 — $S_1 = \{2-5, 3---5\}$

La clase de equivalencia de 1--- 4 es el conjunto: $S_2 = \{1----4, 1----2, 4----3\}$

Finalmente la clase de equivalencia de 2-3 es el conjunto: $S_3 = \{ 2 - 3 \}$

Para saber si {2,3} es un par de separación hay que encontrar una partición de {1,2,3} = AUB, ANB={Ø} tal que IE, l= |USi| >2 y |E2| = | USi | >2. Si tal partición no existe entonces (2,3) no es un vértice de separación.

En este caso $A = \{1,3\}$, $B = \{2\}$ es la partición que buscamos y entonces $\{2,3\}$ es un par de separación.

Ahora intentemos con $H=\{\{1,4\},\emptyset\}$.

La clase de equivalencia de $\{1, \lambda\}$ es el conjunto $S_1 = \{1-2, 2-\overline{5}, 2-\overline{5}, 3-\overline{-5}, 3-\overline{-4}\}$

La clase de equivalencia de $\{1,4\}$ es el conjunto $S_2 = \{1---4\}$.

En este caso no existe partición del conjunto {1,2} que compla con lo requerido, entonces {1,4} no es un par de separación.

Supongamos que {aib} es un par de separación. 5: $H = \{\{a,b\}, \phi\}$ y $\{a,b\}, \{b\}, \{a,b\}, \{$ ción del par {a,b} (las clases de equivalencia definidas por H). Sea A,B la partición del conjunto {1,2,..., k} tal que |E.|= | USi| >2 y | E2| = | USi| >2. S: H = (V(E), E) y H2=(V(E2), E2) entonces $V(E_1) \cap V(E_2) = \{a, b\}.$ Sea Gi=Hi+a-b. para ies1,23. Las Gi son llamadas bigratos de división de G en {a,b}. La arista a-b es llamada arista virtual. Ejemplo: En ruestro primer ejemplo con H={ [2,3], \$} y G el bigrato 1 — 1 Teniamos que Si= {2-5, 3----5} S2 = { 1---4,3-4} $5_3 = \{2 - 3\}.$ Si tomamos la partición A= ?1,3}, B= {2} entonces 5: tomamos la partición A={2,3}, B={1}.

Entonces dependiendo de la elección de la partición obtendremos distintas G, y G2

Etiquetaremos la arista virtual a-b con una etiqueta n, a-b para distinguirla de otras aristas virtuales.

Los grafos G, y Gz son biconexos (este resultado es un Teorema, pero no veremos su demostración).

Notación: Biconexa = no tiene vertices de separación.

Triconexa = no tiene pares de separación.

Grestriconexa pero G2 no es trieonexa (tiene pares de separación). Supongamos que sabemos que {1,3} es un par de separación de G2 entonces.

$$S_2 = \{1-2, 2-3\}$$
 $A = \{1\}$
 $S_1 = \{1--4, 4-3\}$
 $B = \{2\}$

Ahora tenemos componentes

Ahora tenemos componentes

Triconexas. Estos son lla
mados componentes de división.

Desafortuna damente los componentes de división no son únicos.

El siguiente es un resultado de Hopcroft y Tarjan.

Lemal: El número total de aristas en todos los componentes de división no excede 31El-6.

La operación de fusión
Si H, y Hz son componentes de división de G que contienen la
misma arista virtual a b. Entonces fusionamos H, y Hz tomando
$H = H_1 + H_2 - a - \frac{n}{2} $
Pero no vamos a fusionar todos los componentes de división.
Fusionamos solo componentes de división de la siguiente forma.
· Fusionamus bigrafos de la forma con bigrafos de
la misma forma, tanto como sea posible.
· Fusionamos triángulos / con triángulos, tanto como sea po-
sible.
En ambos casos suponemos que una arista es virtual.
El conjunto final de bigrafos se denomina conjunto completo de
componentes triconexas.
Lema 2: Un conjunto completo de componentes triconexas es único
hasta isomortismo
Ejemplo: En nuestro ejemplo los componentes de división de Gson
1 2 1 1 1 2 2 1 2
fucionando los trivingulos ; 2 2 tenemos
43
que el conjunto completo de componentes triconexas es
1 9
1 1 5
1 1 1 5
Del conjunto completo de componentes triconexas solo nos interesan
los vérticos para recuperar los componentes que buscamos.
7

