

SymPy – Forelesning 8

BED-1304 (Python-lab), 7.5 ECTS

Markus J. Aase

markus.j.aase@uit.no, kontor 02.411 Universitetslektor i matematikk og statistikk

Handelshøgskolen, UiT Økonomi og administrasjon og samfunnsøkonomi med datavitenskap

Hva er SymPy?

- SymPy er et kraftig Pythonbibliotek som kan:
 - manipulerer matematiske uttrykk symbolsk
 - løser komplekse likninger
 - og utfører derivasjon og forenkling automatisk.

Symboler og uttrykk i SymPy

Definer symboler

import sympy as sp x, y = sp.symbols('x y')

Faktoriser uttrykk

expr = x**2 + 2*x + 1 fact = sp.factor(expr) fact

Ekspandere uttrykk

expand = sp.expand(fact) expand

$$(x + 1)^2$$

$$x^2 + 2x + 1$$

Definere funksjoner og løse dem

Definer uttrykk

Løs uttrykk

Løs andregradsuttrykk

eq2 =
$$sp.Eq(x^**2, 9)$$

 $sol2 = sp.solve(eq2, x)$

$$x + 2 = 5$$

$$[-3, 3]$$

Derivasjon og substitusjon

Deriver uttrykk

expr = x**2 + 2*x + 1 dx_expr = sp.diff(expr, x) dx_expr

Substitusjon

Erstatter x med 2 dx_expr.subs(x, 2)

Substitusjon

Erstatter x med 3 dx_expr.subs(x, 3)

$$2x + 2$$

6

8

Praktisk eksempel

Oppgave

- 1. Definer funksjonen $f(x) = -x^2 + 4x + 1$
- 2. Deriver funksjonen, altså finn f'(x)
- 3. Løs f'(x) = 0 ved hjelp av sp.Eq()
- 4. Bruk **matplotlib** for å vise toppunktet

Praktisk eksempel

Oppgave

- 1. Definer funksjonen $f(x) = -x^2 + 4x + 1$
- 2. Deriver funksjonen, altså finn f'(x)
- 3. Løs f'(x) = 0 ved hjelp av sp. Eq()
- 4. Bruk **matplotlib** for å vise toppunktet

```
import sympy as sp
import matplotlib.pyplot as plt
import numpy as np
# Definerer symbol og funksjon
x = sp.symbols('x')
f = -x^{**}2 + 4^{*}x + 1
# Deriver vha sp.diff()
f_deriv = sp.diff(f, x)
# Finn kritisk punkt: der f'(x)=0
critical_p = sp.solve(sp.Eq(f_deriv, 0), x)
# Finn x og y verdiene
x_crit = critical_p[0] # siden det er en liste
y_crit = f.subs(x, x_crit)
print('Toppunkt:, (x_crit, y_crit)))
```

Oppgave

- 1. Definer funksjonen $f(x) = -x^2 + 4x + 1$
- 2. Deriver funksjonen, altså finn f'(x)
- 3. Løs f'(x) = 0 ved hjelp av sp. Eq()
- 4. Bruk **matplotlib** for å vise toppunktet

```
X = np.linspace(0, 5, 200)
Y = [f.subs(x, val) for val in X]
```

Plotter grafen

```
plt.plot(X, Y, label='f(x)')
plt.scatter([x_crit, y_crit], zorder=5, label='Toppunkt')
plt.title('Toppunkt funnet vha Sympy)
plt.xlabel('x)
plt.ylabel('f(x)')
plt.legend()
plt.grid(True)
plt.show()
```


Spørsmål?

Først litt om eksamen

- 24. november 2025 09:00
- Digital skoleeksamen
 - Ingen hjelpemidler
- Minner om arbeidskravet
 - Frist 27. oktober 14:00 på Wiseflow
- Dere finner informasjon om faget her:
 - https://uit.no/utdanning/emner/emne/87 4303/bed-1304?ar=2025&semester=H

