

CLAIMS

1. A multilayer printed wiring board in which an interlayer insulation layer and a conductive layer are formed on a multilayer core substrate composed of front and rear conductive layers and at least a conductive layer as an inner layer and electric connection is performed through via holes,
5 at least one of the sum of the thicknesses of the power source conductive layers in said multilayer core substrate and the sum of the thicknesses of the grounding conductive layers is larger
than the thickness of the conductive layer on the interlayer insulation layer.
- 10 2. The multilayer printed wiring board according to claim 1 wherein assuming that the sum of the thicknesses of the power source conductive layers in said multilayer core substrate is
α1 and the thickness of the conductive layer on the interlayer insulation layer is α2, the relation between α1 and α2 is
α2<α1≤40α2.
- 15 3. The multilayer printed wiring board according to claim 1 wherein assuming that the sum of the thicknesses of the grounding conductive layers in said multilayer core substrate is α3 and the thickness of the conductive layer on the interlayer insulation layer is α2, the relation between α3 and α2 is α2<α3≤40α2.
- 20 4. The multilayer printed wiring board according to claim 1 wherein assuming that the sum of the thicknesses of the power source conductive layers in said multilayer core substrate is
α1 and the thickness of the conductive layer on the interlayer insulation layer is α2, the relation between α1 and α2 is
1.2α2≤α1≤40α2.
- 25 5. The multilayer printed wiring board according to claim 1 wherein assuming that the sum of the thickness of the grounding conductive layer in said multilayer core substrate is α3 and the thicknesses of the conductive layers on the interlayer

insulation layer is α_2 , the relation between α_3 and α_2 is
 $1.2\alpha_2 \leq \alpha_3 \leq 40\alpha_2$.

6. The multilayer printed wiring board according to claim 1
wherein assuming that the sum of the thicknesses of power source
5 conductive layers in said multilayer core substrate is α_1 and
the thickness of the conductive layer on the interlayer
insulation layer is α_2 , the relation between α_1 and α_2 is
 $\alpha_2 < \alpha_1 \leq 40\alpha_2$ and assuming that the sum of the thicknesses of the
grounding conductive layers in said multilayer core substrate
10 is α_3 , the relation between α_3 and said α_2 is $\alpha_2 < \alpha_3 \leq 40\alpha_2$.

7. The multilayer printed wiring board according to claim 1
wherein assuming that the sum of the thicknesses of the power
source conductive layers in said multilayer core substrate is
 α_1 and the thickness of the conductive layer on the interlayer
15 insulation layer is α_2 , the relation between α_1 and α_2 is
 $1.2\alpha_2 \leq \alpha_1 \leq 40\alpha_2$ and assuming that the sum of the thicknesses of
the grounding conductive layers in said multilayer core
substrate is α_3 , the relation between α_3 and said α_2 is
 $1.2\alpha_2 \leq \alpha_3 \leq 40\alpha_2$.

20 8. The multilayer printed wiring board according to any one of
claims 1-7 wherein the thickness of the conductive layer on the
front and rear surfaces of said multilayer core substrate is
smaller than the thickness of the conductive layer of the inner
layer.

25 9. A multilayer printed wiring board in which interlayer
insulation layer and conductive layer are formed on multilayer
core substrate composed of three or more layers, having a
plurality of through holes for connecting the front surface
with the rear surface and conductive layers on the front and
30 rear surfaces and conductive layer in the inner layer so as to
achieve electric connection through via holes,
said a plurality of through holes being composed of a plurality
of power source through holes, a plurality of grounding through

- holes and a plurality of signal through holes connected electrically to a power source circuit or a grounding circuit or a signal circuit of an IC chip,
- when said power source through holes pass through the grounding
- 5 conductive layer of the inner layer in the multilayer core substrate, of the plurality of power source through holes, at least a power source through hole just below the IC having no conductive circuit extending from the power source through hole in the grounding conductive layer.
- 10 10. A multilayer printed wiring board in which interlayer insulation layer and conductive layer are formed on multilayer core substrate composed of three or more layers, having a plurality of through holes for connecting the front surface with the rear surface and conductive layers on the front and
- 15 rear surfaces and conductive layer in the inner layer so as to achieve electric connection through via holes,
- said a plurality of through holes being composed of a plurality of power source through holes, a plurality of grounding through holes and a plurality of signal through holes connected
- 20 electrically to a power source circuit or a grounding circuit or a signal circuit of an IC chip,
- when said grounding through holes pass through the power source conductive layer of the inner layer in the multilayer core substrate, of the plural grounding through holes, at least a
- 25 grounding through hole just below the IC having no conductive circuit extending from the grounding through hole in the power source conductive layer.
11. A multilayer printed wiring board in which interlayer insulation layer and conductive layer are formed on a
- 30 multilayer core substrate composed of four or more layers, having a plurality of through holes for connecting the front and rear surfaces and conductive layers on the front and rear surfaces and conductive layer in the inner layer so as to

achieve electric connection through via holes,
said multilayer printed wiring board having the power source
through holes described in claim 9 and the grounding through
holes described in claim 10.

5 12. A multilayer printed wiring board in which interlayer
insulation layer and conductive layer are formed on a
multilayer core substrate composed of three or more layers,
having a plurality of through holes for connecting the front
and rear surfaces and conductive layers on the front and rear
10 surfaces and conductive layer in the inner layer so as to
achieve electric connection through via holes,
said a plurality of through holes being composed of a plurality
of power source through holes, a plurality of grounding through
holes and a plurality of signal through holes connected
15 electrically to a power source circuit or a grounding circuit
or a signal circuit of an IC chip,
when said power source through holes pass through the grounding
conductive layer of the inner layer in the multilayer core
substrate, of the plurality of power source through holes, 70%
20 or more power source through holes having no conductive circuit
extending from the power source through hole in the grounding
conductive layer.

13. A multilayer printed wiring board in which interlayer
insulation layer and conductive layer are formed on a
25 multilayer core substrate composed of three or more layers,
having a plurality of through holes for connecting the front
and rear surfaces and conductive layers on the front and rear
surfaces and conductive layer in the inner layer so as to
achieve electric connection through via holes,
30 said a plurality of through holes being composed of a plurality
of power source through holes, a plurality of grounding through
holes and a plurality of signal through holes connected
electrically to a power source circuit or a grounding circuit

- or a signal circuit of an IC chip,
when said grounding through holes pass through the power source
conductive layer of the inner layer in the multilayer core
substrate, of the plurality of grounding through holes, 70% or
5 more grounding through holes having no conductive circuit
extending from the grounding through hole in the power source
conductive layer.
14. A multilayer printed wiring board in which interlayer
insulation layer and conductive layer are formed on a
10 multilayer core substrate composed of four or more layers,
having a plurality of through holes for connecting the front
and rear surfaces and conductive layers on the front and rear
surfaces and conductive layer in the inner layer so as to
achieve electric connection through via holes,
- 15 said multilayer printed wiring board having the power source
through holes described in claim 12 and the grounding through
holes described in claim 13.
15. The multilayer printed wiring board according to any one
of claims 9-14 wherein assuming that the sum of the thicknesses
20 of the power source conductive layers in said multilayer core
substrate is α_1 and the thickness of the conductive layer on
the interlayer insulation layer is α_2 , the relation of
 $\alpha_2 < \alpha_1 \leq 40\alpha_2$ exists.
16. The multilayer printed wiring board according to claim 15
25 wherein said α_1 is in a relation of $1.2\alpha_2 \leq \alpha_1 \leq 40\alpha_2$.
17. The multilayer printed wiring board according to any one
of claims 9-16 wherein the conductive layers on the front and
rear surfaces of said multilayer core substrate are power
source conductive layers or grounding conductive layers.
- 30 18. The multilayer printed wiring board according to any one
of claims 9-16 wherein said multilayer core substrate has a
thick conductive layer in the inner layer and thin conductive
layers on the front and rear surfaces.

19. The multilayer printed wiring board according to any one of claims 9-16 wherein the conductive layer of the inner layer in said multilayer core substrate is composed of two or more layers.
- 5 20. The multilayer printed wiring board according to any one of claims 9-16 wherein a capacitor is mounted on the surface thereof.
21. A multilayer printed wiring board in which interlayer insulation layer and conductive layer are formed on a
- 10 multilayer core substrate composed of three or more layers, having a plurality of through holes for connecting the front and rear surfaces and conductive layers on the front and rear surfaces and conductive layer in the inner layer so as to achieve electric connection through via holes,
- 15 said a plurality of through holes being composed of a plurality of power source through holes, a plurality of grounding through holes and a plurality of signal through holes connected electrically to a power source circuit or a grounding circuit or a signal circuit of an IC chip,
- 20 when said power source through holes pass through the grounding conductive layer of the inner layer in the multilayer core substrate, of the plurality of power source through holes, part of the power source through hole just below the IC having no conductive circuit extending from the power source through hole
- 25 in the grounding conductive layer.
22. A multilayer printed wiring board in which interlayer insulation layer and conductive layer are formed on multilayer core substrate composed of three or more layers, having a plurality of through holes for connecting the front surface
- 30 with the rear surface and conductive layers on the front and rear surfaces and conductive layer in the inner layer so as to achieve electric connection through via holes,
- said a plurality of through holes being composed of a plurality

of power source through holes, a plurality of grounding through holes and a plurality of signal through holes connected electrically to a power source circuit or a grounding circuit or a signal circuit of an IC chip,

5 when said grounding through holes pass through the power source conductive layer of the inner layer in the multilayer core substrate, of the plurality of grounding through holes, part of the grounding through hole just below the IC having no conductive circuit extending from the grounding through hole
10 in the grounding conductive layer.

23. A multilayer printed wiring board in which interlayer insulation layer and conductive layer are formed on a multilayer core substrate composed of four or more layers, having a plurality of through holes for connecting the front
15 and rear surfaces and conductive layers on the front and rear surfaces and conductive layer in the inner layer so as to achieve electric connection through via holes,
said multilayer printed wiring board having the power source through holes described in claim 21 and the grounding through
20 holes described in claim 22.

24. The multilayer printed wiring board according to claim 11 wherein the through holes just below the IC are disposed in the form of a grid or in a staggered fashion.

25. The multilayer printed wiring board according to claim 24 wherein the power source through holes and grounding through holes just below the IC are disposed alternately.

26. The multilayer printed wiring board according to claim 14 wherein the power source through hole having no conductive circuit extending from the power source through hole in the
30 grounding conductive layer and the grounding through hole having no conductive circuit extending from the grounding through hole in the power source conductive layer are disposed in the form of a grid or in the staggered fashion just below

the IC.

27. The multilayer printed wiring board according to claim 26
wherein the power source through hole having no conductive
circuit extending from the power source through hole in the
5 grounding conductive layer and the grounding through hole
having no conductive circuit extending from the grounding
through hole in the power source conductive layer are disposed
alternately.

28. The multilayer printed wiring board according to claim 23
10 wherein the power source through hole having no conductive
circuit extending from the power source through hole in the
grounding conductive layer and the grounding through hole
having no conductive circuit extending from the grounding
through hole in the power source conductive layer are disposed
15 in the form of a grid or in the staggered fashion just below
the IC.

29. The multilayer printed wiring board according to claim 28
wherein the power source through hole having no conductive
circuit extending from the power source through hole in the
20 grounding conductive layer and the grounding through hole
having no conductive circuit extending from the grounding
through hole in the power source conductive layer are disposed
alternately.