

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки	
КАФЕДРА	Прикладная математика	

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3

Численное решение краевых задач для одномерного волнового уравнения Варианты 5, 16

			И. П. Шаманов
Студенты	ФН2-61Б	(Подпись, дата)	(И.О. Фамилия)
	(Группа)		О.Д. Климов
		(Подпись, дата)	(И.О. Фамилия)
Преподавател	ІЬ		
		(Подпись, дата)	(И.О. Фамилия)

1. Ответы на контрольные вопросы

1. Предложите разностные схемы, отличные от схемы "крест" для численного решения задачи (3.1)-(3.4).

Рассмотрим начально-краевую задачу для волнового уравнения

$$\begin{cases} u_{tt} = a^{2}u_{xx}, & 0 < x < L, \quad 0 < t < T, \\ u(x,0) = f(x), & \\ u_{t}(x,0) = g(x), & \\ u(0,t) = \varphi(t), & u(L,t) = \psi(t). \end{cases}$$
(1)

Предложим несколько схем:

1) Трехслойная схема с весами на девятиточечном шаблоне

$$y_{\bar{t}t} - a^2(\sigma \hat{y}_{\bar{x}x} + (1 - 2\sigma)y_{\bar{x}x} + \sigma \check{y}_{\bar{x}x}) = 0$$

При выборе постоянного веса схема имеет порядок по крайней мере $O(\tau^2 + h^2)$. А схема с весом $\sigma = \frac{1}{12} - \frac{h^2}{12a^2\tau^2}$ имеет погрешность аппроксимации $O(\tau^4 + h^4)$. Расчет по схеме ведется только при известных значениях y на первых двух временных слоях, где соответственно первое задается начальным условием, а второе рассчитывается по начальному решению и скорости.

2) Двуслойная схема на основе введения скорости. Пусть $v=u_t$. Тогда получаем систему уравнений

$$\begin{cases} u_t = v, \\ v_t = a^2 u_{xx}. \end{cases}$$
 (2)

Тогда можно решить такую задачу с помощью соответствующей двухслойной схемы. Данный подход снимает вопрос о расчете решения на первом временном слое, который не задан начальными данными.

3) Двухслойная схема на основе введения потенциала скорости. Пусть $v = \int_0^x u_t d\xi$. Тогда исходное уравнение второго порядка сведется к системе уравнений первого порядка

$$\begin{cases} u_t = v_x, \\ v_t = a^2 u_x. \end{cases}$$
 (3)

2. Постройте разностную схему с весами для уравнения колебаний струны. Является ли такая схема устойчивой и монотонной.

Пусть $u_{tt} \approx y_{\bar{t}t}$ и $u_{xx} \approx y_{\bar{x}x}$. Тогда запишем трехслойную разностную схему

$$y_{\bar{t}t} - a^2 (\sigma \hat{y}_{\bar{x}x} + (1 - 2\sigma)y_{\bar{x}x} + \sigma \hat{y}_{\bar{x}x}) = 0$$
(4)

или

$$y_{\bar{t}t} = a^2(\sigma \hat{y}_{\bar{x}x} + (1 - 2\sigma)y_{\bar{x}x} + \sigma \check{y}_{\bar{x}x})$$

на девятиточечном шаблоне.

В уравнении схемы входят решения \check{y} и y с известных временных слоев и неизвестное сеточное решение \hat{y} .

Очевидно, что при любом постоянном весе σ данная схема в силу своей симметричности относительно слоя t имеет порядок аппроксимации по крайней мере $O(\tau^2 + h^2)$. Подбором σ можно добиться повышенного порядка аппроксимации.

Исследуем схему на устойчивость. Обозначим $Ay=a^2y_{\bar{x}x}$ и воспользуемся равенством

$$\sigma \hat{y} + (1 - 2\sigma)y + \sigma \check{y} = y + \sigma \tau^2 y_{\bar{t}t}$$

Тогда перепишем исходную схему в виде

$$(E - \sigma \tau^2 A) y_{\bar{t}t} = Ay.$$

Используем для доказательства энергетический метод. Умножим скалярно уравнение схемы на

$$y_{\stackrel{\circ}{t}} = \frac{y_t + y_{\bar{t}}}{2}.$$

Так как

$$y_{\bar{t}t} = \frac{y_t - y_{\bar{t}}}{\tau},$$

ТО

$$(y_{\bar{t}t}, y_{\hat{t}}) = \frac{1}{2} (\parallel y_{\bar{t}} \parallel^2)_t, \quad (Ay_{\bar{t}t}, y_{\hat{t}}) = a^2 (y_{\bar{x}\bar{t}t}, y_{\bar{x}\,\hat{t}}) = -\frac{1}{2} a^2 (\parallel y_{\bar{x}\bar{t}} \parallel^2)_t.$$

Последнее равенство следует из формулы интегрирования по частям. Здесь и далее для сокращения записи знак нормы без специального индекса используется для гильбертовой нормы. В частности,

$$||y_{\bar{r}\bar{t}}|| = (y_{\bar{r}\bar{t}}, y_{\bar{r}\bar{t}}).$$

Таким образом,

$$((R - \sigma \tau^2 A) y_{\bar{t}t}, y_{\hat{t}}) = \frac{1}{2} (\| y_{\bar{t}} \|^2 + a^2 \sigma \tau^2 \| y_{\bar{x}\bar{t}} \|^2)_t.$$

Преобразуем выражение

$$(Ay, y_{\hat{x}}) = -a^2(y_{\bar{x}}, y_{\bar{x}\hat{t}})$$

используя формулу Грина, то есть суммирование по частям. Так как для любой сеточной функции справедливы соотношения

$$y = \frac{1}{2}(y^{(0,5)} + \check{y}^{(0,5)} - \frac{1}{2}\tau^2 y_{\bar{t}t}), \quad y_{\mathring{t}} = (y^{(0,5)})_{\bar{t}} = \frac{y_t - y_{\bar{t}}}{2},$$

TO

$$(Ay, y_{\hat{t}}) = -\frac{1}{2}a^{2}(\parallel \check{y}_{\bar{x}}^{(0,5)} \parallel^{2})_{t} + \frac{1}{8}a^{2}\tau^{2}(\parallel y_{\bar{x}\bar{t}} \parallel^{2})_{t}$$

В результате имеем равенство

$$\frac{1}{2}((\parallel y_{\bar{t}}\parallel^2)+\sigma\tau^2a^2\parallel y_{\bar{x}\bar{t}}\parallel^2)_t=(-\frac{1}{2}a^2\parallel y_{\bar{x}}\parallel^2+\frac{1}{8}a^2\tau^2\parallel y_{\bar{x}\bar{t}}\parallel^2)_t$$

то есть

$$\|\hat{y}\|_{*}^{2} = \|y\|_{*}^{2}$$

где

$$\|y\|_{*}^{2} = \|y_{\bar{t}}\|^{2} + a^{2}(\sigma - \frac{1}{4})\tau^{2} \|y_{\bar{x}\bar{t}}\|^{2} + a^{2} \|\check{y}_{\bar{x}}^{(0,5)}\|^{2}.$$

При $\sigma \geqslant \frac{1}{4}$ величина $\|y\|_*$ является величиной типа нормы, точнее полунормы — величины типа нормы, для которой несправедливо первое условие нормы. Рассмотрим другие параметры для чего запишем неравенство типа вложения из метода разделения переменных:

$$\parallel y_{\bar{x}\bar{t}} \parallel^2 \leqslant \frac{4}{h^2} \parallel y_{\bar{t}} \parallel^2.$$

Отсюда

$$\|y\|_{*}^{2} \ge (\frac{h^{2}}{4} + (\sigma - \frac{1}{4})\tau^{2}a^{2}) \|y_{\bar{x}\bar{t}}\|^{2} + c^{2} \|\check{y}_{\bar{x}}^{(0,5)}\|^{2}$$

Правая часть отрицательна при

$$a^{2}(\sigma - \frac{1}{4})\tau^{2} + \frac{h^{2}}{4} \geqslant 0$$

Значит

$$\sigma \geqslant \frac{1}{4} - \frac{h^2}{4a^2\tau^2}$$

Отсюда видно, что явная схема с $\sigma=0$ устойчива при $\tau<\frac{h}{a}$, то есть при выполнении критерия Куранта. При выполнении условия устойчивости справедливо неравенство

$$\parallel y \parallel_* \geqslant a^2 \parallel \check{y}_{\bar{x}}^{(0,5)} \parallel^2$$

Из него следует, что с учетом начальных и граничных условий данной задачи величина $\|y\|_*$ действительно является нормой. А именно, если $\|y\|_*=0$, то $\|\check{y}_{\bar{x}}^{(0,5)}\|=0$. Из неравенства вложения $\|z\|_C \geqslant \sqrt{l} \|z_{\bar{x}}\|$ получаем $\check{y}^{(0,5)}=0$. Это равенство справедливо в силу однородных граничных условий первого рода. Однородные начальные условия дают $y\equiv 0$, следовательно, $\|y\|_*$ — норма.

Из изложенного следует сходимость данной трехслойной разностной схемы со скоростью по крайней мере $O(\tau^2+h^2)$ при выполнении условия устойчивости

$$\sigma \geqslant \frac{1}{4} - \frac{h^2}{4a^2\tau^2}$$

Исследуем на монотонность. Приведем схему к виду

$$\frac{\hat{y} - 2y + \check{y}}{\tau^2} = a^2 \left(\sigma \frac{\hat{y}_{+1} - 2\hat{y} + \hat{y}_{-1}}{h^2} + (1 - 2\sigma) \frac{y_{+1} - 2y + y_{-1}}{h^2} + \sigma \frac{\check{y}_{+1} - 2\check{y} + \check{y}_{-1}}{h^2} \right)$$

и приведя подобные получим

$$\begin{split} \hat{y}(1+2\sigma\frac{a^2\tau^2}{h^2}) + y(-2 + (1-2\sigma)\frac{a^2\tau^2}{h^2}) + \check{y}(1+2\sigma\frac{a^2\tau^2}{h^2}) = \\ &= \frac{a^2\tau^2}{h^2}(\sigma\hat{y}_{+1} + \hat{y}_{-1}) + (1-2\sigma)(y_{+1} + y_{-1}) + \sigma(\check{y}_{+1} + \check{y}_{-1}). \end{split}$$

Так как коэффициент перед y может быть отрицательным, то не выполняется условие положительности коэффициентов, а значит схема не является чисто монотонной.

3. Предложите способ контроля точности полученного решения.

Стоит упомянуть, что довольно "робастный" способ — проводить расчеты на произвольных значениях шагов по сеткам и соответственно изменению вычисленной ошибки уменьшать шаг по определенной сетке.

Для контроля точности можно использовать аналог правила Рунге. Так как схема имеет порядок $O(\tau^2+h^2)$, то вычисляя y^{j+1} при шаге τ^{j+1} и h^{j+1} , найдем этот же y^{j+1} при шаге $\frac{\tau^{j+1}}{2}$ и $\frac{h^{j+1}}{2}$. Если норма разности полученных решений меньше заданной нами параметра точности, то решение при шаге τ^{j+1} и h^{j+1} нас удовлетворяет. В противном случае продолжаем процесс дробления шага до получения необходимой нам точности. Стоит отметить, что данный алгоритм имеет свои недостатки, например при быстрорастущем решении крайне быстро возрастает количество вычислений.

4. Приведите пример трехслойной схемы для уравнения теплопроводности. Как реализовать вычисления по такой разностной схеме? Является ли эта схема устойчивой?

Рассмотрим задачу вида:

$$\begin{cases} u_t = (ku_x)_x, & 0 < x < l, & 0 < t < T; \\ u(x,0) = u_0(x), & \\ u(0,t) = \mu_1(t), & u(l,t) = \mu_2(t). \end{cases}$$

Рассмотрим две схемы.

1) Схема Ричардсона (Крест). Выберем шаблон из точек с номерами (i-1,j)(i,j)(i,j-1)(i,j+1) и запишем на нем схему

$$y_{\overset{\circ}{t}} = k y_{\bar{x}x}$$

Схема имеет погрешность аппроксимации $O(\tau^2 + h^2)$, соответствующую наличию центральной разностной производной по времени и второй разностной производной по пространству. Схема является явной.

Исследуем схему на устойчивость методом гармоник. Подставим в схему решение вида $y_i^j = \rho \exp{(\widetilde{i} i \varphi)}$, где \widetilde{i} – мнимая единица $(\widetilde{i}^2 = -1)$. Тогда для определения ρ получим уравнение

$$\frac{\rho - \rho^{-1}}{\tau} = -\frac{8k}{h^2} \sin^2(\frac{\varphi}{2}),$$

откуда

$$\rho^{2} + \frac{8\tau k}{h^{2}}\sin^{2}(\frac{\varphi}{2})\rho - 1 = 0.$$

Видно, что дискриминант $D = (\frac{4\tau k}{h^2} \sin^2(\frac{\varphi}{2}))^2 + 1gt0$, следовательно один из корней по модулю заведомо больше единицы. Значит схема является безусловно неустойчивой и непригодной для расчетов.

2) Схема Дюфорта-Франкела(Ромб). Для построения схемы исключим в предыдущем шаблоне точку (i,j) и заменим в правой части y на $\frac{1}{2}(\hat{y}+\check{y})$. Тогда

$$y_{\stackrel{\circ}{t}} = ky_{\bar{x}x} - k\frac{\tau^2}{h^2}y_{\bar{t}t}.$$

В таком случае шаблон "Крест"превращается в "Ромб". Нетрудно видеть, что погрешность аппроксимации данной схемы есть величина $O(\tau^2+h^2+\frac{tau^2}{h^2})$, то есть является условной. Для обеспечения сходимости параметры τ и h должны стремится к нулю так, чтобы $\frac{\tau}{h} \to 0$. Исследуем схему на устойчивость методом гармоник. Подставим в схему решение вида $y_i^j = \rho \exp{(\tilde{i}i\varphi)}$, где \tilde{i} — мнимая единица $(\tilde{i}^2=-1)$. Тогда для определения ρ получим уравнение

$$(1 - \frac{4\tau k}{h^2})\rho^2 + \frac{4\tau k}{h^2}\cos(\varphi)\rho + (\frac{4\tau k}{h^2} - 1) = 0.$$

Тогда дискриминант $D=4-16\frac{4\tau k}{h^2}\sin^2(\varphi)$. Выражение для rho имеет вид

$$\rho = \frac{2\tau k \cos(\varphi) \pm \sqrt{h^4 - 4\tau^2 k^2 \sin^2(\varphi)}}{h^2 + 4\tau k}.$$

По модулю ρ будет заведомо меньше и равен единице, следовательно схема является безусловно устойчивой.

Стоит отметить, что схема имеет условную аппроксимацию при $\tau < h$.

Можно реализовать итерационных процесс по данной схеме таких образом: получить из начальных условий нулевой слой, найти первый временной слой с помощью симметричной схемы и далее использовать трехслойную схему.

2. Численные эксперименты

$$\begin{cases} u_{tt} = u_{xx}, & x_0 < x < X, \quad t > 0, \\ u(x,0) = f(x), & u_t(x,0) = g(x), & 0 < x < X, \\ u(0,t) = \varphi(t), & u(X,t) = \psi(t), & t > 0. \end{cases}$$

2.1. Тест 1: погрешность вычислений

А. Исходные данные: $f(x) = \sin \pi x$, g(x) = 0, $\varphi(t) = 0$, $\psi(t) = 0$, $x_0 = 0$, X = 1, T = 1.

Точное решение: $u(x,t) = \sin \pi x \cos \pi t$. Параметры сетки: $h = 0.02, \tau = 0.001$.

Рис. 1. График ошибки численного решения в случае А

Б. Исходные данные: $f(x)=x(1-x),\,g(x)=0,\,\varphi(t)=0,\,\psi(t)=0,\,x_0=0,\,X=1,\,T=1.$

Точное решение:

$$u(x,t) = \frac{8}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^3} \sin(2n+1)\pi x \cos(2n+1)\pi t.$$

Параметры сетки: h = 0.02, $\tau = 0.001$.

В качестве точного решения были выбраны слагаемые до номера k=80 (требуемая погрешность: $\varepsilon=10^{-5}$).

Рис. 2. График ошибки численного решения в случае Б

2.2. Тест 2: число Куранта

Расчёты будем производить с числами Куранта $\gamma = 0.1, 0.5, 0.75, 1.0.$

А. Исходные данные: $f(x)=1, \ x\in [-\frac{1}{3},\frac{1}{3}], \ g(x)=0, \ \varphi(t)=0, \ \psi(t)=0, \ x_0=-2, \ X=2, \ T=1.$

Рис. 3. Решения 2A для разных γ (слева направо и сверху вниз: 0.1, 0.5, 0.75, 1.0) в момент времени T

Б. Исходные данные: $g(x)=1-2|x|,\ x\in[-\frac{1}{2},\frac{1}{2}],\ \varphi(t)=0,\ \psi(t)=0,\ x_0=-1,$ $X=1,\,T=1.$

Рис. 4. Решения 2Б для разных γ (слева направо и сверху вниз: 0.1, 0.5, 0.75, 1.0) в момент времени T

В. Исходные данные: $f(x)=0,\ g(x)=0,\ \varphi(t)=\sin t,\ \psi(t)=0,\ x_0=0,\ X=4\pi,$ T=1.

Рис. 5. Решения 2В для разных γ (слева направо и сверху вниз: 0.1, 0.5, 0.75, 1.0) в момент времени T

Список использованных источников

1. Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана. 2018. 592 с.