

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY JANUARY/FEBRUARY 2013 EXAMINATION

COURSE CODE:

PHY 308

COURSE TITLE:

ELECTRONICS I

CREDIT UNIT:

3

INSTRUCTION:

Answer any five questions.

TIME:

3 Hours

1. (a) (i) What is an amplifier? List the main properties of an amplifier and draw a simple circuit diagram of an ideal amplifier to show the relationship among these properties. 5 marks

(ii) Determine the Voltage, Current and Power Gain of an amplifier that has an input signal of $1\,mA$ at $10\,mV$ and a corresponding output signal of $10\,mA$ at 1V. Also, express all three gains in decibels, (dB). 5 marks

(b) (i) Distinguish between the A and B classes of amplifier. With sketch transfer characteristic curves, show the relationship between the input and the output signals of each class. State an advantage of one class over the other.

5 marks

(ii)

Series-fed class A large signal amplifier

The figure shown is a circuit diagram for a series-fed class A large signal amplifier.

Given $R_{\rm B}{=}1\,k\Omega$, $R_{\rm C}{=}\,20\,\Omega~V_{\rm CC}{=}20\,V$ and $\beta{=}25$, calculate $V_{\rm CE}.$ 5 marks

- 13020710 18
- 2. (a) (i) A transistor is a three-terminal device. With suitable diagrams, explain briefly the three main transistor configurations (connection in a practical circuit) for an NPN transistor. 6 marks
- (ii) Show that the current amplification factors α and β are related by the equation $\beta = \frac{\alpha}{1-\alpha}$ where the symbols have the usual meaning 4 marks

(b)

Circuit diagram for question 2 b

For the emitter bias circuit shown, calculate the values of $R_{\rm I}$, $R_{\rm 2}$ and $R_{\rm E}$ to provide a quiescent operating point of $I_{\rm C} = 1\,mA\,\,V_{\rm CE} = 10\,V$. The transistor used in the circuit is silicon with a d.c. current gain at 1 mA of $h_{\rm FE} = 50$. Assume the base-emitter voltage $V_{\rm BE} = 16\,V$. The load resistor and collector supply voltage for the circuit are $R_{\rm L} = 5\,k\,\Omega$, $V_{\rm CC} = 15\,V$ 10 marks

- 3. (a) Given I_E = 2.5 mA, h_{fe} = 140, h_{oc} = 20 μ S (μ mho) and h_{ob} = 0.5 μ S, determine:
- (i) The common-emitter hybrid equivalent circuit.

(ii) The common-base r_e model 5

(b) 1

Circuit diagram for questions 3b

The figure shows an a.c. equivalent circuit of an amplifier. The input and output of the amplifier have values $R_i=5~k\Omega$, $R_o=50~k\Omega$. The open-circuit voltage amplification of the amplifier, A = 250. If the signal generator of peak amplitude $V_s=10~mV$ and internal resistance $R_s=600\Omega$ is connected cross the input terminals 1-1' and a load resistance $R_L=10k\Omega$ is connected across the output terminals 2-2', use the equivalent circuit to determine:

(i) peak value of the signal voltage across 1-1',

5 marks 5 marks (ii) the peak values of the signal output current and signal voltage

4 (a) (i) Complete the following table of h-parameter

Parameter	Meaning	Relation	Condition Unit	
h ₁₁			Output Ohm	shorted
	Reverse volta gain	ge $rac{V_i}{V_o}$	imensionless	d
h ₂₁	Current gain	$\frac{I_o}{I_i}$		

h ₂₂	I_o Input open	
	\overline{V}_o	

4 marks

(ii) List four factors on which the h-parameter depend 2 marks

- determii 3020710
- (b) Given I_E = 2.5 mA, h_{fe} = 140, h_{oc} = 20 μ S (μ mho) and h_{ob} = 0.5 μ S, determine
- (i) The common-emitter hybrid equivalent circuit marks

8

- (ii) The common-base r_e model
- 6 marks
- 5 (a) (i) Briefly explain the term *operating point* 3 marks
- (ii) Summarize the operation in the cutoff, saturation, and linear regions of the BJT characteristic.

5 marks

(b)

For the emitter bias network shown determine: I_{B} , I_{c} , V_{CE} , V_{C} , V_{E} , V_{B} , V_{BC} . 12 marks

6(a) (i) What is an oscillator?

2 marks

(ii) Briefly, distinguish between positive and negative feedback as applied to an oscillator. 6 marks

(b) (i) Draw the circuit diagram for closed-loop non-inverting operational amplifier. 4 marks (ii) For the closed-loop non-inverting operational amplifier, show that

 $A = \frac{R_i + R_f}{R_i}$, where the A' is the voltage gain. $R_i \wedge R_f$ are the resistances in the input and feedback paths respectively. 8 marks

- 7 (a) (i) Explain the usefulness of a rectifier circuit in a dc supply unit 2marks
- (ii) Draw the circuit diagram of the half-wave rectifier circuit and indicate the respective input and output waveforms

7 marks (b) (i) A half-wave rectifier using silicon diode has a secondary emf of 14.14V(rms) with a resistance of 0.2Ω . The diode has a forward resistance of 0.05Ω and a threshold voltage of 0.7V. If load resistance is 10Ω , determine: dc load current, dc load voltage, voltage regulation and efficiency.

6 marks

(ii)Draw the diagram of the full-wave rectifier circuit using the centre-tapped transformer and briefly explain how it works.

5 marks