

Assignment 1 Guidelines

Machine Learning and Artificial Intelligence in Finance FINC 5322 Fall 2025

The American University in Cairo Onsi Sawiris School of Business Heikal Department of Management

Customer Churn Prediction – Assignment 1

In business, customer churn (or attrition) refers to when customers stop doing business with a company.

For example, in a subscription-based telecom company, a customer is considered churned if they cancel their subscription.

Predicting churn is critical because:

- Retaining an existing customer is often cheaper than acquiring a new one.
- Companies can take action (targeted campaigns, discounts, improved services) to prevent churn.
- Understanding who is likely to churn helps businesses allocate resources more effectively.

In this assignment, you will work with a telecom churn dataset. Your goal is not to build the most accurate model but to practice the full data preparation pipeline: exploring, cleaning, engineering features, and running a simple model.

Accessing the Assignment

- All Assignments are hosted on our course Code Repository (GitHub): https://github.com/kelkess43/AUC-Material
- The Assignment will also be shared through Canvas modules for easy access

Structure of the Assignment

Your notebook is divided into five sections.

You must complete the TODOs in the notebook and keep all work within the. ipynb file.

Section 1: Exploratory Data Analysis (EDA)

- Count the number of unique customers.
- Check for missing values.
- Visualize numeric distributions (tenure, charges)
- Visualize churn distribution (how many customers stayed vs churned).

Onsi Sawiris School of Business

Section 2: Data Cleaning

- Convert TotalCharges to numeric and handle missing values.
- Remove duplicate rows.
- Reflect briefly: Why did you choose your method for handling missing values?

Section 3: Feature Engineering

- Create a tenure group feature (e.g., 0–12 months, 13–24 months, etc.).
- Encode categorical variables into numeric form.

Section 4: Simple Modelling

- Perform train/test split (70/30).
- Train a Logistic Regression model.
- Evaluate with accuracy, precision, and recall.

Section 5: Research & Reflection

- Explain why accuracy is not enough in churn prediction.
- Research and explain in your own words what precision, recall, and the classification report mean.

Deliverables and Submission

- Submit one Jupyter Notebook (.ipynb) file with all your work.
- Make sure all cells are <u>executed</u>, and outputs are <u>visible</u>.
- Add short comments/markdown where required
- Deadline: Tuesday, 7th October at 11:59 PM
- Submission: Upload your completed. ipynb notebook on Canvas

Grading

- EDA (20 points)
- Cleaning (20 points)
- Feature Engineering (20 points)
- Modelling (25 points)
- Research & Reflection (15 points)