SOME RESULTS USED BY THE GAP PACKAGE RIGHTQUASIGROUPS

GÁBOR P. NAGY AND PETR VOJTĚCHOVSKÝ

1. Congruences

Let $Q=(Q,\cdot,/)$ be a right quasigroup. Then an equivalence relation \sim on Q is a right quasigroup congruence if for every $x,y,u,v\in Q$, if $x\sim y$ and $u\sim v$ then $xu\sim yv$ and $x/u\sim y/v$.

Proposition 1.1. Let $Q = (Q, \cdot, /)$ be a right quasigroup and \sim an equivalence relation on Q. Then:

- (i) \sim is a right quasigroup congruence iff for every $x, y, u \in Q$, if $x \sim y$ then $xu \sim yu$, $x/u \sim y/u$, $ux \sim uy$ and $u/x \sim u/y$.
- (ii) If Q is finite then \sim is a right quasigroup congruence iff for every $x, y, u \in Q$, if $x \sim y$ then $xu \sim yu$ and $ux \sim uy$.

Proof. If \sim is a right quasigroup congruence then certainly the conditions of (i) and (ii) hold. Conversely, suppose that the condition of (i) holds and let $x, y, u, v \in Q$ be such that $x \sim y$ and $u \sim v$. Then $xu \sim yu \sim yv$ and $x/u \sim y/u \sim y/v$ shows that \sim is a right quasigroup congruence.

Finally suppose that Q is finite and the condition of (ii) holds. We will verify the condition of (i). Suppose that $x,y,u\in Q$ and $x\sim y$. We then have $xu\sim yu$ and $ux\sim uy$ by assumption. Since Q is finite, there is n such that $R_u^n=1$ and thus $R_u^{-1}=R_u^{n-1}$. It follows by an easy induction on n that $x/u=R_u^{-1}(x)=R_u^{n-1}(x)\sim R_u^{n-1}(y)=R_u^{-1}(y)=y/u$. Using finiteness again, let s and t be such that $R_x^s=1=R_y^t$. Consider m=st-1. Then $R_x^m=R_x^{st-1}=R_x^{-1}$ and $R_y^m=R_y^{ts-1}=R_y^{-1}$. We then again have $u/x=R_x^{-1}(u)=R_x^m(u)\sim R_y^m(u)=R_y^{-1}(u)=u/y$ by induction on m. The condition of (i) therefore holds and \sim is a congruence.

Let $Q=(Q,\cdot,/,\setminus)$ be a right quasigroup. Then an equivalence relation \sim on Q is a quasigroup congruence if for every $x,y,u,v\in Q$, if $x\sim y$ and $u\sim v$ then $xu\sim yv,\,x/u\sim y/v$ and $x\setminus u\sim y\setminus v$.

Proposition 1.2. Let $Q = (Q, \cdot, /, \setminus)$ be a quasigroup and \sim an equivalence relation on Q. Then:

- (i) \sim is a quasigroup congruence iff for every $x,y,u\in Q$, if $x\sim y$ then $xu\sim yu$, $ux\sim uy$, $x/u\sim y/u$ and $u\backslash x\sim u\backslash y$.
- (ii) If Q is finite then \sim is a quasigroup congruence iff for every $x, y, u \in Q$, if $x \sim y$ then $xu \sim yu$ and $ux \sim uy$.

Proof. If \sim is a quasigroup congruence then the certainly the conditions of (i) and (ii) holds. Conversely, suppose that the condition of (i) holds and let $x, y, u, v \in Q$ be such that $x \sim y$ and $u \sim v$. Since $u \sim v$, we have $x = (x/u \cdot u) \sim (x/u \cdot v)$ and therefore $x/v \sim ((x/u \cdot v)/v) = x/u$. Also, from $x \sim y$ we get $x/v \sim y/v$. Therefore $x/u \sim x/v \sim y/v$. Dually, $x \sim y \sim y/v$. Hence $x \sim y \sim y/v$. Hence $y \sim y/v \sim y/v$.

If Q is finite, the condition of (i) reduces to the condition of (ii) by the usual trick: $R_u^{-1} = R_u^{n-1}$ and $L_u^{-1} = L_u^{m-1}$ for suitable n and m.

2. Simplicity

Let G be a group acting on X. Then $B \subseteq X$ is a block of the action if for every $g \in G$ either g(B) = B or $g(B) \cap B = \emptyset$. Given a partition \mathcal{P} of X, we say that the action of G preserves \mathcal{P} if for every $B \in \mathcal{P}$ and every $g \in G$ we have $g(B) \in \mathcal{P}$. The partitions $\{\{x\}: x \in X\}$ and $\{X\}$ are trivial. A transitive permutation group G acts primitively on X if it preserves no nontrivial partition of X, else it acts imprimitively. (The requirement that G be transitive is only needed if |X| = 2.)

For a right quasigroup Q let $\mathrm{Mlt}_r(Q) = \langle R_x : x \in Q \rangle$ be the right multiplication group of Q. For a quasigroup Q let $\mathrm{Mlt}(Q) = \langle R_x, L_x : x \in Q \rangle$ be the multiplication group of Q.

Theorem 2.1 (Albert). A quasigroup Q is simple if and only if Mlt(Q) acts primitively on Q.

Proof. Well known. \Box

Example 2.2. Consider the right quasigroup Q with multiplication table

	1	2	3	4
1	2	1	1	1
$\frac{1}{2}$	3	2	2	2
3	4	3	3	3
4	1	4	4	4

Then $G = \mathrm{Mlt}_r(Q) = \langle g \rangle$, where g = (1,2,3,4). Note that G acts transitively but imprimitively on Q, with $\{\{1,3\},\{2,4\}\}$ being a nontrivial partition of Q preserved by G. However, an inspection of all possible partitions of Q reveals that Q has no nontrivial congruences and hence is simple. For instance, the above partition is not a right quasigroup congruence since $1 \sim 3$ but $1 \cdot 1 = 2 \not\sim 1 = 1 \cdot 3$.

Proposition 2.3. Let Q be a right quasigroup. If $\mathrm{Mlt}_r(Q)$ acts primitively on Q then Q is simple. (The converse does not hold, as shown by the above example.)

Proof. Suppose that Q is not simple and let \sim be a nontrivial congruence on Q. Let B be an equivalence class of \sim . If $y \sim z$ then $R_x(y) \sim R_x(z)$ and $R_x^{-1}(y) \sim R_x^{-1}(z)$ since \sim is a congruence. In particular, $R_x(B)$ is contained in some equivalence class C of \sim . Write B = [b] and C = [bx]. If $c \in C$ then $c \sim bx$ and thus $c/x \sim (bx)/x = b$, so $c/x \in B$, but then $R_x(c/x) = (c/x)x = c$ shows that $R_x(B) = C$. Similarly, $R_x^{-1}(B)$ is an equivalence class of \sim . This shows that $\mathrm{Mlt}_r(Q)$ preserves the partition induced by \sim and hence $\mathrm{Mlt}_r(Q)$ acts imprimitively on Q.

Lemma 2.4. Let Q be a right quasigroup. The orbits of $\mathrm{Mlt}_r(Q)$ form a right quasigroup congruence of Q.

Proof. Let \sim be the equivalence relation induced by the orbits of $G = \mathrm{Mlt}_r(Q)$. Suppose that $x \sim y$ and $u \in Q$. Then $ux = R_x(u) \sim R_y(u) = uy$ and $u/x = R_x^{-1}(u) \sim R_y^{-1}(u) = u/y$. Let $g \in G$ be such that g(x) = y. Then $xu = R_u(x) \sim R_u(g(x)) = R_u(y) = yu$ and $x/u = R_u^{-1}(x) \sim R_u^{-1}(g(x)) = R_u^{-1}(y) = y/u$. By Proposition 1.1, \sim is a right quasigroup congruence.

Corollary 2.5. Let Q be a right quasigroup and suppose that $\mathrm{Mlt}_r(Q) \neq 1$ does not act transitively on Q. Then Q is not simple.

Note that a right quasigroup Q satisfies $\mathrm{Mlt}_r(Q) = 1$ if and only if it is a projection right quasigroup, that is, a right quasigroup with multiplication and right division given by xy = x, x/y = x.

Lemma 2.6. Let Q be a projection right quasigroup. Then any partition of Q is a right quasigroup congruence of Q. In particular, Q is simple if and only if |Q| > 2.

Proof. Let \sim be the equivalence relation induced by a given partition of Q. Suppose that $x \sim y$ and $u \in Q$. Then $xu = x \sim y = yu$, $x/u = x \sim y = y/u$, $ux = u \sim u = uy$ and $u/x = u \sim u = u/y$. By Proposition 1.1, \sim is a right quasigroup congruence.

3. Nuclei and center

Proposition 3.1. A nonempty subset S of a finite (right) quasigroup Q is a sub(right)quasigroup of Q iff it is closed under multiplication.

Proof. In the case of right quasigroups, it suffices to show that S is closed under right division. For $x, y \in S$, consider $R_x \in \operatorname{Sym}(Q)$. Since Q is finite, there is n such that $R_x^n = \operatorname{id}_Q$, so $R_x^{-1} = R_x^{n-1}$. Then $y/x = R_x^{-1}(y) = R_x^{n-1}(y) \in S$ by induction on n. The argument for left divisions is dual in the case of quasigroups. \square

Proposition 3.2. Let Q be a finite (right) quasigroup. Then each of the four nuclei is either a sub(right) quasigroup of Q or the empty set.

Proof. Let $S = \operatorname{Nuc}_{\ell}(Q) \neq \emptyset$. Then for every $x, y \in S$ and every $u, v \in Q$ we have (xy)(uv) = x(y(uv)) = x((yu)v) = (x(yu))v = ((xy)u)v, so $xy \in S$ and we are done by Proposition 3.1. Dually, if $\operatorname{Nuc}_{r}(Q) \neq \emptyset$ then it is a sub(right)quasigroup of Q. Now suppose that $S = \operatorname{Nuc}_{m}(Q) \neq \emptyset$. Then for all $x, y \in S$ and $u, v \in Q$ we have (u(xy))v = (ux)yv = (ux)(yv) = u(x(yv)) = u((xy)v), so $xy \in S$ and we are done by Proposition 3.1. The intersection of sub(right)quasigroups is a sub(right)quasigroup.

Proposition 3.3. Let Q be a finite (right) quasigroup. Then the center of Q is either a sub(right) quasigroup of Q or the empty set. (Do we need finiteness here?)

Proof. It remains to prove that if $x, y \in Z(Q)$ and $u \in Q$ then (xy)u = u(xy). We have (xy)u = x(yu) = (yu)x = (uy)x = u(yx) = u(xy).

4. Lower central series for loops

The lower central series for a loop Q is defined by $Q_{(0)} = Q$, $Q_{(i+1)} = [Q_{(i)}, Q]_Q$, using the congruence commutator of normal subloops. Here we are only using the commutator of the form $[A,Q]_Q$ for $A \subseteq Q$. It's easy to see that $[A,Q]_Q = D$ iff D is the smallest normal subloop of Q such that $A/D \subseteq Z(Q/D)$.

Lemma 4.1. Let $A \subseteq Q$. Then $[A,Q]_Q$ is the smallest normal subloop of Q containing $\{\theta(a)/a: a \in A, \theta \in \text{Inn}(Q)\}$.

Proof. Let $D \subseteq Q$. The following conditions are equivalent:

- $A/D \le Z(Q/D)$
- $\theta(aD) = aD$ for all $a \in A$, $\theta \in \text{Inn}(Q/D)$

- $L_{xD,yD}(aD) = aD$, $R_{xD,yD}(aD) = aD$, $T_{xD}(aD) = aD$ for all $x, y \in Q$, $a \in A$
- $L_{x,y}(a)D = aD$, $R_{x,y}(a)(D) = aD$, $T_x(a)D = aD$ for all $x, y \in Q$, $a \in A$,

- $\theta(a)D = aD$ for all $a \in A$, $\theta \in \text{Inn}(Q)$
- $\theta(a)/a \in D$ for all $a \in A$, $\theta \in \text{Inn}(Q)$.

5. Displacement groups

For a right quasigroup (Q, \cdot) , define the right positive displacement group, the right negative displacement group and the right displacement group by

$$\begin{aligned} \operatorname{Dis}_r^+(Q) &= \langle R_x R_y^{-1} : x, y \in Q \rangle, \\ \operatorname{Dis}_r^-(Q) &= \langle R_x^{-1} R_y : x, y \in Q \rangle, \\ \operatorname{Dis}_r(Q) &= \langle R_x R_y^{-1}, R_x^{-1} R_y : x, y \in Q \rangle, \end{aligned}$$

respectively.

Fix $e \in Q$. Since $R_x R_y^{-1} = (R_e R_x^{-1})^{-1} (R_e R_y^{-1}) = (R_x R_e^{-1}) (R_y R_e^{-1})^{-1}$ and $R_x^{-1} R_y = (R_x^{-1} R_e) (R_y^{-1} R_e)^{-1} = (R_e^{-1} R_x)^{-1} (R_e^{-1} R_y)$, we have

$$\operatorname{Dis}_{r}^{+}(Q) = \langle R_{e}R_{x}^{-1} : x \in Q \rangle = \langle R_{x}R_{e}^{-1} : x \in Q \rangle,$$

$$\operatorname{Dis}_{r}^{-}(Q) = \langle R_{r}^{-1}R_{e} : x \in Q \rangle = \langle R_{e}^{-1}R_{x} : x \in Q \rangle.$$

The left displacement groups are defined analogously for a left quasigroup (Q,\cdot) by

$$\operatorname{Dis}_{\ell}^{+}(Q) = \langle L_{x}L_{y}^{-1} : x, y \in Q \rangle,$$

$$\operatorname{Dis}_{\ell}^{-}(Q) = \langle L_{x}^{-1}L_{y} : x, y \in Q \rangle,$$

$$\operatorname{Dis}_{\ell}(Q) = \langle L_{x}L_{y}^{-1}, L_{x}^{-1}L_{y} : x, y \in Q \rangle,$$

and we once again have

$$\operatorname{Dis}_{\ell}^{+}(Q) = \langle L_{e}L_{x}^{-1} : x \in Q \rangle = \langle L_{x}L_{e}^{-1} : x \in Q \rangle,$$

$$\operatorname{Dis}_{\ell}^{-}(Q) = \langle L_{x}^{-1}L_{e} : x \in Q \rangle = \langle L_{e}^{-1}L_{x} : x \in Q \rangle$$

for a fixed $e \in Q$.

Proposition 5.1. Let (Q, \cdot) be a quasigroup. Then (Q, \cdot) is isotopic to a group if and only if the left positive displacement group $\mathrm{Dis}^+_{\ell}(Q, \cdot)$ acts regularly on Q. In that case, (Q, \cdot) is isotopic to $\mathrm{Dis}^+_{\ell}(Q, \cdot)$.

Proof. Let $D=\operatorname{Dis}_{\ell}^+(Q,\cdot)$. Given $y,z\in Q$, there exists a unique $x\in Q$ such that $L_xL_e^{-1}(y)=z$, namely $x=z/(e\backslash y)$. Suppose that D acts regularly on Q. Then $D=\{L_xL_e^{-1}:x\in Q\}$ and for every $x,y\in Q$ there is $z\in Q$ such that $L_xL_e^{-1}L_yL_e^{-1}=L_zL_e^{-1}$. Thus $L_xL_e^{-1}L_y=L_z$ and, applying this to e, we get $x(e\backslash (ye))=ze$ and $z=x(e\backslash ye)/e$. Define (Q,*) by $x*y=x(e\backslash ye)/e$. Then $f:D\to (Q,*)$, $L_xL_e^{-1}\mapsto x$ is an isomorphism, so (Q,*) is a group. Since $(x*y)e=x(e\backslash ye)$, the triple $(\mathrm{id},L_e^{-1}R_e,R_e)$ is an isotopism $(Q,*)\to (Q,\cdot)$.

Conversely, suppose that (Q, *) is a group and (α, β, γ) is an isotopism $(Q, *) \to (Q, \cdot)$, so $\alpha(x) \cdot \beta(y) = \gamma(x * y)$, or $x \cdot y = \gamma(\alpha^{-1}(x) * \beta^{-1}(y))$ for all $x, y \in Q$. This

shows that the left translation by x in (Q, \cdot) is equal to $L_x = \gamma L_{\alpha^{-1}(x)}^* \beta^{-1}$. Then

$$\begin{split} L_x L_e^{-1} &= (\gamma L_{\alpha^{-1}(x)}^* \beta^{-1}) (\gamma L_{\alpha^{-1}(e)}^* \beta^{-1})^{-1} \\ &= \gamma L_{\alpha^{-1}(x)}^* (L_{\alpha^{-1}(e)}^*)^{-1} \gamma^{-1} = \gamma L_{\alpha^{-1}(x)*(\alpha^{-1}(e))^{-1}} \gamma^{-1} \end{split}$$

because (Q, *) is a group. Hence D is a conjugate of $\langle L_{\alpha^{-1}(x)*(\alpha^{-1}(e))^{-1}} : x \in Q \rangle = \langle L_x^* : x \in Q \rangle = \{L_x^* : x \in Q\}$, which certainly acts regularly on Q.

Corollary 5.2. A quasigroup Q is isotopic to a group iff $|\operatorname{Dis}_{\ell}^+(Q)| = |Q|$.

6. Twists of right quasigroups

Given a magma Q and three mappings $f, g, h : Q \to Q$, the twist $\operatorname{Tw}(Q, f, g, h)$ of Q via (f, g, h) is defined to be the magma (Q, *) with multiplication x * y = h(f(x)g(y)).

If Q is a right quasigroup, the twist $\operatorname{Tw}(Q,f,g,h)$ is a right quasigroup iff both f and h are bijections of Q. Moreover, the twist $\operatorname{Tw}(Q,f,g,h)$ is a quasigroup iff all three f,g and h are bijections of Q. Finally, if $\operatorname{Tw}(Q,f,g,h)$ is a quasigroup then it is a loop iff $g^{-1}(f(x)\backslash h^{-1}(x))$ is equal to $f^{-1}(h^{-1}(x)/g(x))$ and independent of x.

Isotopes and affine constructions can be realized as twists.

7. Affine right quasigroups

Given a loop (Q,\cdot) , its automorphism f, endomorphism g and two elements u,v, define $\mathrm{Aff}(Q,\cdot,f,u,g,v)=(Q,*)$ by x*y=(f(x)u)(g(y)v). (We also allow variations with uf(x),vg(y) and any combinations. For instance, $\mathrm{Aff}(Q,\cdot,u,f,g,v)$ has multiplication x*y=(uf(x))(g(y)v).) Then (Q,*) is affine over (Q,\cdot) and (Q,\cdot,f,u,g,v) is the arithmetic form of (Q,*).

Lemma 7.1. (Q,*) is a right quasigroup. (Q,*) is a quasigroup iff g is an automorphism.

Proof. Solving x * y = (f(x)u)(g(y)v) = z for x yields $x = f^{-1}((z/(g(y)v))/u)$ and similarly in the other three cases. Solving x * y = (f(x)u)(g(y)v) = z for y is equivalent to solving $g(y) = ((f(x)u)\backslash z)/v$.

If (Q, \cdot) is an abelian group, the formula x*y = (f(x)u)(g(y)v) becomes f(x)g(y)uv and it therefore suffices to consider only arithmetic forms (Q, \cdot, f, g, c) with automorphism f, endomorphism g and central element c, and define the multiplication by x*y = f(x)g(y)c. In general this is a special case of the affine construction. From now on we assume that we are dealing with the special case (Q, f, g, c).

Lemma 7.2. (Q,*) is a rack iff g(c) = 1, fg = gf, $g(x) = fg(x)g^2(x)$ and $xfg(y) \cdot g(z) = xfg(z) \cdot fg(y)g^2(z)$ for all $x, y, z \in Q$.

Proof. We have $(x*y)*z = (f(x)g(y)c)*z = f^2(x)fg(y)f(c)\cdot g(z)\cdot c$, while $(x*z)*(y*z) = (f(x)g(z)c)*(f(y)g(z)c) = f^2(x)fg(z)f(c)\cdot gf(y)g^2(z)g(c)\cdot c$. Since c, f(c) and g(c) are central, we see that (Q,*) is a rack iff $f^2(x)fg(y)\cdot g(z) = f^2(x)fg(z)\cdot gf(y)g^2(z)\cdot g(c)$. Substituting x=y=z=1 then yields g(c)=1 as a necessary condition. Assuming this, we need to verify $f^2(x)fg(y)\cdot g(z) = f^2(x)fg(z)\cdot gf(y)g^2(z)$. With x=z=1 we obtain fg(y)=gf(y) as a necessary condition. Assuming this, we need to verify $f^2(x)fg(y)\cdot g(z) = f^2(x)fg(z)\cdot fg(y)g^2(z)$. With x=y=1 we

get $g(z) = fg(z)g^2(z)$ as a necessary condition. Assuming this and substituting x for $f^2(x)$ yields the last condition.

Substituting $fg(z)g^2(z)$ for g(z) into the left hand side of the last condition of Lemma 7.2 yields $xfg(y) \cdot fg(z)g^2(z) = xfg(z) \cdot fg(y)g^2(z)$. This condition is certainly satisfied when (Q,\cdot) is a medial loop. Recall that a loop is medial iff it is an abelian group. Indeed, from (xu)(vy) = (xv)(uy) we obtain commutativity with x = y = 1 and associativity with v = 1.

Lemma 7.3. (Q,*) is a quantile iff c=1, $g(x)=f(x)\backslash x$ and $xfg(y)\cdot g(z)=xfg(z)\cdot fg(y)g^2(z)$ for all $x,y,z\in Q$.

Proof. We have x*x=x iff f(x)g(x)c=x. Substituting x=1 yields c=1. Using this, we have x*x=x iff f(x)g(x)=x, that is, $g(x)=f(x)\backslash x$. If $g(x)=f(x)\backslash x$ then both fg=gf and $g(x)=fg(x)g^2(x)$ hold. We are done by Lemma 7.2. \square

Note that the conditions of Lemma 7.3 do not impose any restrictions on the loop (Q,\cdot) . Indeed, if (Q,\cdot) is any loop, f(x)=x, g(x)=1 and c=1 then x*y=f(x)=x and (Q,*) is a projection quandle.

Also note that a latin rack is a quandle. Indeed, substituting z = y into (xy)z = (xz)(yz) yields (xy)y = (xy)(yy) and canceling xy on the left then yields y = yy.

Lemma 7.4. (Q,*) is a latin rack (i.e., latin quandle) iff c=1, $g(x)=f(x)\backslash x$ and $xy\cdot z=xf(z)\cdot y(f(z)\backslash z)$ for all $x,y,z\in Q$.

Proof. Replace g(z) with z and fg(y) with y in the last condition of Lemma 7.3. \square

Corollary 7.5. Suppose that (Q, \cdot) is an abelian group. Then (Q, *) is a rack iff g(c) = 1, fg = gf and $g(x) = fg(x)g^2(x)$ for all $x \in Q$.

Proof. Suppose that $g(x) = fg(x)g^2(x)$ for all $x \in Q$. Then $xfg(y) \cdot g(z) = xfg(y) \cdot fg(z)g^2(z) = xfg(z) \cdot fg(y)g^2(z)$, where we have used mediality in the last step.

Corollary 7.6. Suppose that (Q, \cdot) is an abelian group. Then (Q, *) is a quandle iff c = 1 and $g(x) = f(x) \setminus x = xf(x)^{-1}$.

8. Calculating isotopisms and autotopisms

Let $Q_1 = (Q_1, \cdot, \setminus, /)$, $Q_2 = (Q_2, *, \setminus *, /*)$ be quasigroups. The triple (f, g, h) of mappings $Q_1 \to Q_2$ is a homotopism if $f(x) * g(y) = h(x \cdot y)$ for all $x, y \in Q_1$.

Lemma 8.1. Let c be a fixed element of Q_1 . A homotopism (f, g, h) from Q_1 to Q_2 is determined by the values of one of the three mappings on Q_1 and by the value on c of one of the two remaining mappings.

Proof. We will give a proof when h(x) is known for all $x \in Q_1$ and f(c) is known. The remaining five cases are similar. We have $f(c) * g(c \setminus x) = h(c(c \setminus x)) = h(x)$ and hence $g(c \setminus x) = g(c) \setminus h(x)$. This shows that g(x) is determined for all $x \in Q_1$. We also have f(x/c) * g(c) = h((x/c)c) = h(x) and hence f(x/c) = h(x)/*g(c). This shows that f(x) is determined for all $x \in Q_1$.

The following result shows how the domain of a partially defined homotopism must be extended (iteratively) whenever a new image of f, g or h has been chosen. The domain of a mapping f is denoted by D(f).

Lemma 8.2. Let (f,g,h) be a partial homotopism $Q_1 \rightarrow Q_2$.

- (i) If $x \in D(f)$ then $g(x \setminus y) = f(x) \setminus h(y)$ for all $y \in D(h)$ and h(xy) = f(x) * g(y) for all $y \in D(g)$.
- (ii) If $x \in D(g)$ then f(y/x) = h(y)/*g(x) for all $y \in D(h)$ and h(yx) = f(y) * g(x) for all $y \in D(f)$.
- (iii) If $x \in D(h)$ then $g(y \setminus x) = f(y) \setminus h(x)$ for all $y \in D(f)$ and f(x/y) = h(x)/*g(y) for all $y \in D(g)$.