

LABORATORIO DE SISTEMAS OPERATIVOS

PERÍODO ACADÉMICO: 2024 – A EQUIPO:

PROFESOR: Marco Sánchez PhD.

TIPO DE INSTRUMENTO: Guía de Laboratorio

TEMA: ADMNISTRACIÓN DE PROCESOS EN LINUX

Tópico 2: Comandos básicos, auditoría, de gestión de procesos, memoria y conectividad en Linux

ÍNDICE DE CONTENIDOS

1.	OBJETIVOS	3
2.	MARCO TEÓRICO	3
	Comandos en Linux	3
3.	PROCEDIMIENTO	4
	3.1 Iniciando un emulador de terminal	4
	3.2 Prompt de Comandos	5
	3.3 Sintaxis de comandos Linux	5
	Ejemplos de formato de comandos	6
	3.4 Algunos comandos básicos	6
	3.5 Sistema de ayuda	7
	3.7 Herramientas para visualización de ficheros	8
	3.8 Herramientas para edición de ficheros	9
	3.9 Otros editores	9
	3.10 INICIO DE VI:	9
	MODO COMANDO:	9
	MODO EDICIÓN:	10
	MODO LÍNEA O EX:	.12
	Resumen de Comandos:	.13
	3.11. Realizar la siguiente figura con el comando vi dentro de un fichero que tendrá su nomb	
	3.12 Ejecutar el siguiente comando, verificar qué sucede y explicar de manera detallada su uso. El comando inicia con el símbolo "dos puntos" (:) para acceder al Modo Línea. Utilizar todos los demás símbolos indicados dentro del comando como la "coma" (,) y el símbolo de 'dólar" (\$)	
	3.13 Verificar los procesos que se encuentran ejecutando:	14
	3.14 En GNU/Linux se puede crear una estructura jerárquica de procesos (relación padre-hij	

	16
3.15 Procesos en segundo plano	
3.16 Mediante el comando <i>pstree</i> determinar el orden jerárquico de los procesos q ejecutando actualmente en su terminal bash. Ventaja: El árbol muestra los procesos relación padre-hijo.	ue se están s en una
3.17 Ejecutar el comando yes en una terminal y mediante el comando <i>ps</i> (investiga opciones) determinar los PID y PPID del proceso asociado	
3.18 Mediante el comando <i>ps</i> (investigar las opciones) determinar para el proceso a comando yes:	
3.19 Utilice el comando <i>top</i> para mostrar todos los procesos, usuarios a los que pe los procesos, y la serie de recursos que ocupan en memoria los procesos. Usar tan comando top –u <usuario></usuario>	nbién el
3.20 Los procesos pueden ser controlados en dos formas:	17
Procesos Foreground	17
Procesos de Background	18
3.21 Señales Kill	18
3.22 Cree el fichero bucle con el código:	20
3.23 Cambio de prioridades a los procesos	
El comando renice	
3.24 Investigue en qué directorio se puede observar el PCB de un proceso en Linux	x21
3.25 Cree un proceso que imprima en pantalla números del 1 al 100 000 000, ejecú background y revise la información de su PCB.	itelo en
4. INFORME	
NDICE DE FIGURAS	
Figura 1. Terminal de comandos dentro del ambiente gráfico CentOS	
Figura 2. Formato de comandos para la terminal de CentOS	
Figura 3. Resumen de los comandos para navegar dentro de vi Figura 4. Texto de ayuda para saber si se está dentro del Modo Edición	10
Figura 5. Resumen de comandos del editor vi	13
Figura 6. Figura creada utilizando símbolos y comandos en vi	
Figura 7. Ejecución del comando ps	14
Figura 8. Ejecución del comando ps aux	
Figura 9. Ejecución del comando ps I	
Figura 10. Ejecución del comando ps -o ppid,pid,cmd grep ps Figura 11. Verificación de los procesos activos mediante el comando ps -l	
Figura 11. Vernicación de los procesos activos mediante el comando ps -i Figura 12. Ejecución del comando ps -fe more	
Figura 13. Resumen de los comandos para el control de procesos	
Figura 14. Ejemplo de uso del comando nice	
Figura 15. Fiemplo de uso del comando renice	21

FACULTAD DE INGENIERÍA EN SISTEMAS

ÍNDICE DE TABLAS	
Tabla 1. Comandos básicos (parte 1)	6
Tabla 2. Comandos básicos (parte 2)	
Tabla 3. Variables de entorno y su descripción	8
Tabla 4. Señales más importantes enviadas a un proceso	19

1. OBJETIVOS

1.1. Familiarizar al estudiante con el uso de los comandos básicos del sistema operativo Linux.

2. MARCO TEÓRICO

- Linux es un S.O. multiusuario y multitarea:
- Muchos usuarios pueden ejecutar muchas tareas al mismo tiempo, independientes entre sí.
- Siempre es necesario hacer log in, antes de usar el sistema.
- Identificarse con nombre de usuario y contraseña.
- Múltiples formas de hacer login en el sistema:
 - o Consola: teclado, mouse, monitor, conectados directamente.
 - o Terminal serial, Shell.
 - o Conexión vía red (telnet, ssh).

Comandos en Linux

Cualquier actividad o tarea puede hacerse en Linux mediante comandos, se incluye:

- Navegar en la web.
- Activar la GUI (Interfaz gráfica de usuario) (Sistema X Window) no es necesaria para correr el S.O. Linux.
- Para ejecutar comandos en X Window, se necesita un emulador de terminal.

Una de las tareas más importantes del sistema operativo (SO) es la gestión de los procesos que se están ejecutando en una máquina.

FACULTAD DE INGENIERÍA EN SISTEMAS

El hecho de que todos los procesos deban compartir los recursos hardware disponibles (memoria RAM, CPU, etc.) hace que el SO juegue un papel primordial en gestionar dichos recursos para que los procesos se ejecuten de forma simultánea (al menos de cara al usuario) y compatible.

Una posible definición de proceso es que es un programa que se encuentra en ejecución. Cada proceso, durante su ejecución, guarda información sobre su "contexto" que incluye, entre otras cosas, información sobre su proceso padre, los recursos del sistema que se están consumiendo (segmentos de memoria asignados), permisos de seguridad, etc.

3. PROCEDIMIENTO

3.1 Iniciando un emulador de terminal

Permite ejecutar un comando Linux dentro de un ambiente gráfico (X).

- Emula una CONSOLA DE TEXTO.
- El tipo de emulador de terminal depende de la distribución.

FACULTAD DE INGENIERÍA EN SISTEMAS

Figura 1. Terminal de comandos dentro del ambiente gráfico CentOS

3.2 Prompt de Comandos

El prompt de comandos indica que el sistema está listo para aceptar comandos.

- Puede ser personalizado.
- El prompt por defecto depende de la distribución.

Ejemplos:

Prompt para el usuario soperativos:

[soperativos@localhost ~]\$

Prompt para el superusuario root:

[root@localhost ~]#

- El símbolo dólar (\$) regularmente significa "logueado como usuario regular".
- El símbolo numeral (#) usualmente significa "logueado como usuario root".

3.3 Sintaxis de comandos Linux

Los comandos en Linux tienen el siguiente formato:

\$ comando(s) opcion(es) argumento(s)

Ejemplos:

- \$ Is
- \$ ls -l

\$ Is /dev

\$ Is -1 /dev

Ejemplos de formato de comandos

CORRECTO

INCORRECTO

```
1. Separación
$ mail -f test $ mail - f test
$ who -u $ who-u

2. Orden
$ mail -s test1 tux1 $ mail test1 tux1 -s
$ who -u $ -u who

3. Opciones múltiples
$ who -m -u $ who -m-u
$ who -m u $ who -m u
```

Figura 2. Formato de comandos para la terminal de CentOS

3.4 Algunos comandos básicos

Comando	Descrip ción	Ejemplos
at [-lr] hora [fecha]	Ejecuta un comando más tarde	at 6pm Friday miscript
cal [[mes] año]	Muestra un calendario del mes/año	cal 1 2025
date [mmddhhmm] [+form]	Muestra la hora y la fecha	date
echo string	Escribe mensaje en la salida estándar	echo "Hola mundo"
finger usuario	Muestra información general sobre un	finger druiz@pc11.1si.us.es
	usuario en la red	
id	Número id de un usuario	id usuario
kill [-señal] PID	Enviar una señal a un proceso (dependien-	kill 1234
	do de la señal, a veces lo finalizará)	
man comando	Ayuda del comando especificado	man gcc
passwd	Cambia la contraseña.	passwd
ps [axiu]	Muestra información sobre los procesos	ps -ux, ps -ef
	que se están ejecutando en el sistema	
who / rwho	Muestra información de los usuarios co-	who
	nectados al sistema	

Tabla 1. Comandos básicos (parte 1)

Comando	Descripción	Ejemplos
cat f ₁ [f _n]	Concatena y muestra los archivos	cat /etc/passwd
cd [dir]	Cambia de directorio	cd /tmp
chmod permisos fich	Cambia los permisos de un archivo	chmod +x miscript
chown usuario:grupo fich	Cambia el dueño un archivo	chown nobody miscript
cp f ₁ f _n dir	Copi a archivos	cp foo foo.backup
diff[-e] f ₁ f ₂	Encuentra diferencia entre archivos	diff foo.c newfoo.c
$du [-sabr] f_1 [f_n]$	Devuelve el tamaño del directorio	du -s /home/
file f	Muestra el tipo de un archivo	file a.out
find dir test acción	Encuentra archivos.	findname ".bak" -print
grep expr f ₁ [f _n]	Busca patrones en archivos	grep druiz /etc/passwd
head -n f	Muestra las n primeras líneas de un archi-	head prog1.c
	Vo	
mkdir dir	Crea un directorio.	mkdir temp
mv f ₁ f ₂ dir	Mueve un archivo(s) a un directorio	mv a.out prog1
mv f ₁ f ₂	Renombra un archivo.	mv *.c prog_dir
less / more fich(s)	Visualiza página a página un archivo. (less	more /less muy_largo.c
	acepta comandos vi)	
ln [-s] f acceso	Crea un acceso directo a un archivo	ln -s/users/mike/.profile .
1s	Lista el contenido del directorio	ls -l /usr/bin
pwd	Muestra la ruta del directorio actual	pwd
rm f	Borra un fichero.	rm foo.c
rm -r dir	Borra un todo un directorio	rm -rf prog_dir
rmdir dir	Borra un directorio vacío	rmdir prog_dir
tail -n fich	Muestra las n últimas líneas de un archivo	tail prog1.c
vi fich	Edita un archivo.	vi .profile

Tabla 2. Comandos básicos (parte 2)

3.5 Sistema de ayuda

man Is

Linux dispone de un completo sistema de ayuda. Podemos obtener ayuda sobre cualquier comando o sobre cualquier aspecto del sistema mediante el comando *man*, cuyo formato es:

man comando Dónde: comando es el comando del cual se solicita información. Ejemplo:

3.6. Mediante el uso de los comandos mencionados, realice las siguientes tareas (No mediante la interfaz gráfica).

1. Verifique la fecha y hora de su computador con el comando date.

FACULTAD DE INGENIERÍA EN SISTEMAS

- 2. Muestre en pantalla el calendario con el comando *cal*. Luego muestre el calendario de septiembre de 1983.
- 3. Verifique qué usuarios se encuentran dentro del sistema con el comando w.
- 4. Limpie la pantalla de su terminal con el comando *clear*.
- 5. Muestre el contenido de las variables de entorno de la tabla debajo con el comando echo (respete el uso de mayúsculas y minúsculas).

Ejemplo:

echo \$DISPLAY

Variable	Descripción
DISPLAY	Dirección IP a donde se envían los gráficos de los clientes X.
HOME	Directorio personal.
HOSTNAME	Nombre de la máquina.
MAIL	Archivo de correo.
PATH	Lista de directorios donde buscar los programas.
PS1	Prompt.
SHELL	Intérprete de comandos por defecto.
TERM	Tipo de terminal.
USER	Nombre del usuario.

Tabla 3. Variables de entorno y su descripción

- 6. Muestre un mensaje de texto en la terminal de un usuario con el comando write.
- 7. Con el comando *wall*, coloque un mensaje en todas las pantallas de los usuarios logueados. Abrir varias terminales virtuales con Ctrl + Alt + Fn para comprobar la presentación del mensaje. Para salir del comando usar "Ctrl +D".
- 8. Verificar el historial de comandos con history.
- 9. Verificar el contenido del fichero ~/.bash_history con el comando cat. Verificar que se encuentra logueado con el usuario root. (Para utilizar el símbolo ~ pruebe con Alt Gr + 4 o, si posee teclado numérico, también puede utilizar Alt Gr + 9 desactivando previamente el teclado numérico).
- 10. Verificar el resultado obtenido con la ejecución de los siguientes comandos. Explicar su uso.

\$!-1

\$ II

\$!7

3.7 Herramientas para visualización de ficheros

- Cat → De catenate, permite leer datos de ficheros y mostrar sus contenidos. Es la forma más sencilla. Cat es uno de los comandos más utilizados en Linux.
- ➤ more → Permite leer el contenido de un fichero o comando y visualizarlo por páginas (para avanzar pulsar la barra espaciadora).

FACULTAD DE INGENIERÍA EN SISTEMAS

- ▶ less → Permite leer el contenido de un fichero línea a línea, no se puede manipular ni editar el texto. Con este comando se puede subir y/o bajar por el texto.
- File → Determina el tipo de un archivo e imprime en pantalla el resultado.

3.8 Herramientas para edición de ficheros

Para editar un fichero el usuario debe poseer permisos de escritura.

- *vi* → Es el editor por defecto en todos los sistemas Linux. Existen tres modos de operación en vi:
- Modo comando: Este es el modo en el que se encuentra el editor cada vez que se inicia. Las teclas ejecutan acciones (comandos) que permiten mover el cursor, ejecutar comandos de edición de texto, salir de vi, guardar cambios, etc.
- Modo edición: Este es el modo que se usa para insertar el texto. Existen varios comandos que se pueden utilizar para ingresar a este modo.
- Modo línea o ex: Se escriben comandos en la última línea al final de la pantalla.

3.9 Otros editores

Una distribución Linux típica incluye un gran número de editores.

Editores en modo texto:

- > pico
- > vim
- > Emacs

Editores en modo gráfico:

- kedit, kwrite
- > gedit

Editores hexadecimales: permiten modificar archivos que no son de texto.

Khexedite

3.10 INICIO DE VI:

Abrir un archivo específico para su edición (\$vi NombreArchivo):

\$vi

\$vi suNombre

Nota: Si el archivo no existe, lo crea. Presione la tecla *i* para poder introducir texto, y escriba algunas líneas. Utilice **ESC** para regresar al modo comando

MODO COMANDO:

El editor vi, al igual que UNIX, diferencia entre mayúsculas y minúsculas. Después de abrir un fichero con el comando vi, digite los siguientes comandos

FACULTAD DE INGENIERÍA EN SISTEMAS

(digite las letras) y observe su funcionamiento:

Figura 3. Resumen de los comandos para navegar dentro de vi

Resumen:

<left arrow> o h
<right arrow> o I

^ un caracter a la izquierda
un caracter a la derecha
moverse al inicio de la línea
moverse al final de la línea
una línea arriba
una línea abajo
ir a la primera línea
ir a la última línea

Nota: Para usar estos comandos asegurarse de estar en modo comando.

MODO EDICIÓN:

Para cambiar de modo comando a modo edición, dentro de algún fichero digite: (i mayúscula, o tecla INSERT):

Tomar en cuenta que se muestra -- INSERT -- o -- INSERTAR -- en modo Edición:

FACULTAD DE INGENIERÍA EN SISTEMAS

Figura 4. Texto de ayuda para saber si se está dentro del Modo Edición

Luego pruebe el funcionamiento de los siguientes comandos:

- _
- A
- a
- (
- C

Para insertar texto al inicio de la línea
Para insertar texto antes del cursor
Para agregar texto después del cursor
Para agregar texto al final de la línea
Para regresar al modo de comando

I (letra i mayúscula)
i
A

ESC>

Dentro del Modo Comando, compruebe los siguientes comandos.

- *)*
- dd
- 2dd
- ndd (siendo n un número entero cualquiera)
- *[*
- dw

Es importante destacar que todo lo que se borra queda almacenado en un buffer (área temporal de memoria), de modo que, si se borró algo por error, puede volver a escribirse (si se hace antes de realizar otros cambios, es decir, inmediatamente luego de eliminar el texto por error). Esto se hace simplemente ejecutando el comando \boldsymbol{p} .

Cortar y pegar: Esto implica mover partes del archivo de un lugar a otro del mismo. Para esto se debe:

FACULTAD DE INGENIERÍA EN SISTEMAS

- Cortar el texto que se desea mover utilizando alguno de los comandos usados para borrar texto (dd, 2dd, etc).
- Mover el cursor (con alguno de los comandos utilizados para desplazar el cursor en el texto) hasta el lugar donde se desee pegar el texto.
- > Pegar el texto con el comando p.

Copiar y pegar: Esta operación difiere de la anterior. En este caso lo que se hace es repetir partes del texto en otro lugar del archivo. Para esto se debe:

- ➤ Utilizar el comando *yy*, cuya función es copiar la línea donde se encuentra situado el cursor. *8yy* es una variante que copia múltiples líneas, en este caso 8.
- Mover el cursor (con alguno de los comandos utilizados para desplazar el cursor en el texto) hasta el lugar donde se desee pegar el texto.
- Pegar el texto con el comando p.

Deshacer cambios: Se puede deshacer el último cambio realizado, utilizando el comando u.

Para cambiar de Modo Edición a Modo Comando digitar la tecla Esc.

MODO LÍNEA O EX:

Para ingresar al <u>Modo Línea desde el Modo Comando</u>, se debe utilizar alguna de las siguientes teclas:

- :
- /
- _ 7

Para volver al Modo Comando desde el Modo Línea, se debe digitar la tecla **ENTER** (al finalizar el comando) o la tecla **ESC** (que interrumpe el comando).

Dentro de algún fichero abierto con el comando vi, digite:

- /textoABuscar
- ?textoABuscar
- r
- :q
- :q!
- :W
- :w!
- :w archivo1
- :wq
- :X

FACULTAD DE INGENIERÍA EN SISTEMAS

Resumen de Comandos:

Figura 5. Resumen de comandos del editor vi

3.11. Realizar la siguiente figura con el comando vi dentro de un fichero que tendrá su nombre:

Figura 6. Figura creada utilizando símbolos y comandos en vi

3.12 Ejecutar el siguiente comando, verificar qué sucede y explicar de manera detallada su uso. El comando inicia con el símbolo "dos puntos" (:) para acceder al Modo Línea. Utilizar todos los demás símbolos indicados dentro del comando como la "coma" (,) y el símbolo de "dólar" (\$).

:1,\$s /DE/SA/g

FACULTAD DE INGENIERÍA EN SISTEMAS

3.13 Verificar los procesos que se encuentran ejecutando:

\$ ps

Figura 7. Ejecución del comando ps

\$ ps aux

<i>Ψ</i> μs	uux									
USER	PID	%CPU	%MEM	VSZ	RSS	TTY	STAT	START	TIME	COMMAND
root	1	0.4	0.1	19356	1536	?	Ss	06:40	0:04	/sbin/init
root	2	0.0	0.0	0	Θ	?	S	06:40	0:00	[kthreadd]
root	3	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[migration/0]
root	4	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[ksoftirqd/0]
root	5	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[stopper/0]
root	6	0.0	0.0	0	Θ	?	S	06:40	0:00	[watchdog/0]
root	7	0.1	0.0	0	Θ	?	S	06:40		[events/0]
root	8	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[events/0]
root	9	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[events_long/0]
root	10	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[events_power_ef]
root	11	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[cgroup]
root	12	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[khelper]
root	13	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[netns]
root	14	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[async/mgr]
root	15	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[pm]
root	16	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[sync_supers]
root	17	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[bdi-default]
root	18	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[kintegrityd/0]
root	19	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[kblockd/0]
root	20	0.0	0.0	0	Θ	?	S	06:40	0:00	[kacpid]
root	21	0.0	0.0	0	Θ	?	S	06:40	0:00	[kacpi_notify]
root	22	0.0	0.0	Θ	Θ	?	S	06:40	0:00	[kacpi_hotplug]
root	23	0.0	0.0	0	Θ	?	S	06:40	0:00	[ata_aux]
root	24	0.0	0.0	0	0	?	S	06:40	0:00	[ata_sff/0]
root	25	0.0	0.0	0	0	?	S	06:40	0:00	[ksuspend_usbd]
root	26	0.0	0.0	0	Θ	?	S	06:40	0:00	[khubd]
root	27	0.0	0.0	0	0	?	S	06:40	0:00	[kseriod]
root	28	0.0	0.0	0	0	?	S	06:40	0:00	[md/0]
root	29	0.0	0.0	0	0	?	S	06:40	0:00	[md_misc/0]
root	30	0.0	0.0	0	0	!	S	06:40	0:00	[linkwatch]

Figura 8. Ejecución del comando ps aux

FACULTAD DE INGENIERÍA EN SISTEMAS

È	UID	PID	PPID	PRI	NI	VSZ	RSS WC	HAN STA	TTTY pts/0 pts/0 pts/1 pts/0	TIME	COMMAND
Θ	501	5427	5419	20	Θ	108336	1820 wa	it Ss	pts/0	0:00	bash
Θ	501	5965	5427	20	Θ	108092	1568 si	gnal T	pts/0	0:00	nano
Θ	501	5990	5419	20	Θ	108336	1808 n	tty_ Ss+	- pts/1	0:00	bash
Θ	501	6524	5427	20	Θ	108128	996 -	R+	pts/0	0:00	ps l

Figura 9. Ejecución del comando ps I

Cada una de las columnas que aparecen al ejecutar el comando anterior tiene su propio significado:

F: Son los indicadores asociados al proceso

UID: Identificación del usuario propietario del proceso

PID: ID de un procesoPPID: ID proceso padrePRI: Prioridad del proceso

NI: Valor de bondad. Mientras más elevado, menor es la prioridad.

VSZ: Tamaño de la memoria virtual del proceso en KB.

RSS: Tamaño de la memoria física usada en KB.

WCHAN: Para los procesos que esperan o están dormidos, enumera el evento que espera.

TTY: Terminal virtual

TIME: tiempo de ejecución **CMD/COMMAND:** Comando

STAT: Estado del proceso. Un proceso puede tener cualquiera de los siguientes estados:

- R Ready/Ejecutando.
- D Interrumpido
- S Suspendido
- s Es el proceso líder de la sesión
- T Detenido
- Z Zombie
- N Tiene una prioridad menor que lo normal.
- < Tiene una prioridad mayor que lo normal.
- L Tiene páginas bloqueadas en memoria
- I Es multi-hilo.
- + Está en el grupo de procesos en foreground

FACULTAD DE INGENIERÍA EN SISTEMAS

3.14 En GNU/Linux se puede crear una estructura jerárquica de procesos (relación padre-hijo).

```
$ ps -o ppid, pid, cmd | grep ps
```

```
[operativos@localhost ~]$ ps -o ppid,pid,cmd | grep ps
   4618   4841 ps -o ppid,pid,cmd
   4618   4842 grep --color=auto ps
```

Figura 10. Ejecución del comando ps -o ppid,pid,cmd | grep ps

```
[operativos@localhost ~]$ echo $$
[operativos@localhost ~]$ bash
[operativos@localhost ~]$ echo $$
[operativos@localhost ~]$ ps -l
F S
     UID
              PID
                      PPID C PRI
                                   NI ADDR SZ WCHAN
                                                      TTY
                                                                    TIME CMD
0 S
     1000
             2963
                      2958
                           0
                               80
                                    0 -
                                         6165 -
                                                      pts/0
                                                               00:00:00 bash
0 S
     1000
             3507
                      2963
                               80
                                         6167 -
                                                      pts/0
                                                               00:00:00 bash
                            1
                                    0 -
     1000
             3551
                      3507
                            0
                               80
                                    0 - 11351 -
                                                      pts/0
                                                                00:00:00 ps
```

Figura 11. Verificación de los procesos activos mediante el comando ps -l

3.15 Procesos en segundo plano

[cloudera	@auick	start	~14	ns -f	felmo	re
UID	PID	PPID	_	STIME		TIME CMD
root	1	0	_	12:39		00:00:02 /sbin/init
root	2	0		12:39		00:00:02 / SDIN/INIC
root	3	2		12:39	-	00:00:00 [migration/0]
root	4	2		12:39		00:00:00 [ksoftirqd/0]
root	5	2		12:39		00:00:00 [migration/0]
root	6	2		12:39	_	00:00:00 [watchdog/0]
root	7	2		12:39		00:00:01 [events/0]
root	8	2		12:39		00:00:00 [cgroup]
root	9	2	Θ	12:39	?	00:00:00 [khelper]
root	10	2	Θ	12:39	?	00:00:00 [netns]
root	11	2	Θ	12:39	?	00:00:00 [async/mgr]
root	12	2	Θ	12:39	?	00:00:00 [pm]

Figura 12. Ejecución del comando ps -fe|more

3.16 Mediante el comando *pstree* determinar el orden jerárquico de los procesos que se están ejecutando actualmente en su terminal bash. Ventaja: El árbol muestra

FACULTAD DE INGENIERÍA EN SISTEMAS

los procesos en una relación padre-hijo.

Utilice también *pstree –p* y *pstree -h*. ¿Cuál es la diferencia?

- 3.17 Ejecutar el comando yes en una terminal y mediante el comando *ps* (investigar las opciones) determinar los PID y PPID del proceso asociado.
- 3.18 Mediante el comando *ps* (investigar las opciones) determinar para el proceso asociado al comando yes:
 - F Indicadores asociados con el proceso.
 - S Estado del proceso.
 - UID Identificación del usuario (ID) propietario del proceso.
 - CPU Utilización del proceso.
 - PRI Prioridad del proceso.
 - WCHAN El suceso por el cual el proceso está esperando.
 - TTY El Terminal que controla el proceso
 - TIME Tiempo de ejecución acumulativa del proceso.
- 3.19 Utilice el comando *top* para mostrar todos los procesos, usuarios a los que pertenecen los procesos, y la serie de recursos que ocupan en memoria los procesos. Usar también el comando top –u <Usuario>.
- 3.20 Los procesos pueden ser controlados en dos formas:
 - 1. Desde el shell que lo inició usando su job number.
 - 2. Desde cualquier lugar en el sistema, usando su PID.

Señales enviadas a procesos:

- Foreground: Un proceso que recibe la entrada del teclado que es escrita en una terminal.
- > Background: Un proceso que no recibe ninguna entrada del teclado.

Procesos Foreground

Los procesos foreground son invocados simplemente ejecutando un comando en la línea de comandos.

FACULTAD DE INGENIERÍA EN SISTEMAS

find / -name README

Procesos de Background

Los procesos de background se invocan colocando un & al final de la línea de comandos.

find / -name README &

<ctrl-z></ctrl-z>	Suspende la tarea foreground					
jobs	Lista los jobs en <i>background</i> o suspendidos					
fg	devuelve la tarea suspendida al foreground					
bg	devuelve las tarea suspendida al background					
 Los comandos fg, bg y kill pueden ser usados con un número de job. Para matar al job 3: kill %3 Si se especifica el parámetro nohup los procesos no mueren a pesar de que el usuario se desloguee. 						

Figura 13. Resumen de los comandos para el control de procesos

Ejecutar:

- \$ sleep 100&
- \$ nohup sleep 100&

Copie los PID y, en una nueva terminal, ejecute:

\$ ps -fe |grep sleep

3.21 Señales Kill

Muchas señales pueden ser enviadas a un proceso:

- Usando interrupciones de teclado (procesos foreground).
- > Usando el comando kill -signal PID.
- > Ejecutar kill -I

Las señales más importantes:

Nombre de la señal	Número	Significado y uso
HUP	1	Hang up. Esta señal es enviada automáticamente cuando se desloguea o el módem es desconectado. Es utilizado por procesos "demonios" para hacer que el archivo de configuración vuelva a leerse.
INT	2	Interrupt. Dejar de correr. Esta señal es enviada cuando se presiona Ctrl+c.

KILL	9	Kill. Detener el proceso inmediatamente y sin ninguna condición. Esta es una señal enviada en casos drásticos, ya que el proceso no puede ignorarla. Es una señal de "detención de emergencia".
TERM	15	Terminate. Terminar el proceso lo más ameno posible. Esta señal se utiliza para preguntar al proceso por un cierre tranquilo.
TSTP	20	Stop executing. Termina de ejecutar y está listo para continuar. Esta señal es enviada cuando se presiona Ctrl+z.
CONT	18	Continue execution. Continuar la ejecución. Esta señal es enviada para empezar de nuevo un proceso que fue detenido por SIGTSP o SIGSTOP. (La <i>Shell</i> envía esta señal cuando se utiliza los comandos fg o bg después de detener un proceso con Ctrl+z).

Tabla 4. Señales más importantes enviadas a un proceso

Si un proceso se ejecuta de manera adecuada, basta terminarlo con la señal **SIGTERM** (15).

Luego de que detenga todo lo que está haciendo, ejecute:

\$ kill -15 PID

Si un proceso se cuelga y no puede responder, debe usarse el comando más fuerte para detenerlo:

\$ kill -9 PID

\$ kill -KILL PID

En ocasiones la señal HUP puede ser utilizada para re-leer determinados archivos de configuración.

\$ kill -1 `cat /var/run/rsyslog.pid`

Ejecute el comando: yes que tal > /dev/null

Abra otra terminal y determine el PID del comando yes.

Termine el proceso yes.

Verifique que sucedió y el mensaje que apareció en la primera terminal.

Ejecute el comando: yes que tal > /dev/null

Abra otra terminal y determine el PID del comando yes.

Mate el proceso yes.

Verifique que sucedió y el mensaje que apareció en la primera terminal.

Ejecute el comando: yes que tal > /dev/null &

Ejecute el comando jobs.

¿En qué estado se encuentra el proceso yes?

¿Qué porcentaje de CPU y memoria consume el proceso yes?

FACULTAD DE INGENIERÍA EN SISTEMAS

Ejecute *fg job_ID*, y explicar qué sucede. Termine el proceso yes con la señal SIGTERM.

Nota: el job_ID se refiere al número que aparece entre corchetes al ejecutar el comando jobs.

Ejecute el comando: **yes que tal > /dev/null &**Ejecute **kill %job_ID**.

Ejecute el comando **jobs**.

¿En qué estado se encuentra el proceso yes?

3.22 Cree el fichero bucle con el código:

#! /bin/bash
yes que tal > /dev/null
exec bucle

<u>Nota:</u> Puede crear el fichero en el "Editor de textos" de CentOS o utilizar uno de los editores presentados en clases anteriores.

Asigne al fichero bucle permisos de ejecución. (Si no funciona, pruebe a asignar todos los permisos al fichero)

Ejecutar con: ./bucle

En otra terminal ejecute top

Verifique los datos del proceso yes, consumo CPU, memoria, prioridad.

Digite *r*

Coloque el número 10 y presione Enter dos veces

Verifique nuevamente los datos del proceso yes, consumo CPU, memoria, prioridad.

3.23 Cambio de prioridades a los procesos

El comando *nice* es usado para iniciar un proceso con una prioridad definida por el usuario.

nice [-n <value>] <original command>

value: entre -20 y +19

FACULTAD DE INGENIERÍA EN SISTEMAS

```
$ nice -n 10 my_program &
[1] 4862
$ ps 1
  UID
        PID
              PRI
                     NI
                          VSZ
                                      COMMAND
   500 4372
                9
                          4860 ...
                                       -bash
   500 4862
               15
                          3612 ...
                                       my_program
   500 4863
               21
                          1556 ...
                                       ps 1
```

Figura 14. Ejemplo de uso del comando nice

El comando renice

El comando **renice** es usado para cambiar la prioridad de un proceso que está corriendo.

renice <new priority> <PID>

```
$ renice 15 4862
4862: old priority 10, new priority 15
$ ps 1
 UID
        PID
              PRI
                     NI
                          VSZ
                                     COMMAND
   500 4372
                9
                          4860 ...
                                     -bash
   500 4862
               22
                          3612 ...
                                      my_program
                          1556 ...
   500 4868
               21
                                      ps 1
```

Figura 15. Ejemplo de uso del comando renice

- 3.24 Investigue en qué directorio se puede observar el PCB de un proceso en Linux.
- 3.25 Cree un proceso que imprima en pantalla números del 1 al 100 000 000, ejecútelo en background y revise la información de su PCB.

4. INFORME

Realizar un informe sobre las preguntas en rojo.