VISÃO COMPUTACIONAL

AULA 4B

RUÍDO EM IMAGENS Filtragem de Ruídos

RUÍDO EM IMAGENS

FILTRAGEM DE RUÍDO

• RUÍDO EM IMAGENS

Em Visão Computacional, ruído se refere a qualquer entidade em imagens, dados ou resultados intermediários, que não são interessantes para os propósitos do cálculo principal.

Ruído pode ser

- o Flutuações espúrias de valores de píxeis introduzidos pelo sistema de aquisição de imagens, afetando a detecção de linhas ou contornos em algoritmos de processamento de imagens,
- o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc...
- o Contornos que não pertençam a nenhum objeto, em algoritmos para agrupamento de linhas.

Matematicamente,

$$\hat{I}(i,j) = I(i,j) + n(i,j)$$

n(i, j) = ruído aditivo e aleatório

I(i, j) = imagem pura

 $\hat{I}(i,j) = imagem com ruído$

• Quantificação do ruído

$$SNR = \frac{\mu_s}{\sigma_n}$$
 (Signal-to-Noise Ratio – imagens)

 μ_s = média do sinal (I(i, j))

 σ_n = desvio padrão do ruído (n(i, j))

$$SNR_{db} = 10. \log_{10} \frac{\mu_s}{\sigma_n}$$
ou

$$SNR_{db} = 20.\log_{10} \frac{\mu_s}{\sigma_n}$$

Em alguns casos, o ruído pode ser multiplicativo

$$\hat{I} = n.I$$

- Degradação de imagens em linhas de TV
- Fotografias (tamanho de grão)
- Variações na sensibilidade do sensor
- Iluminação não uniforme
- Interferência eletromagnética
- Erros de quantização

• RUÍDO GAUSSIANO

- n(i, j) modelado como ruído branco, gaussiano, processo estocástico de média nula.
- modelo apropriado para sistema de aquisição de qualidade, com baixos níveis de ruído.
- Mais fácil de modelar estatisticamente.

a) Imagem sintética de tabuleiro de xadrez e valor de cinza ao longo de uma linha; b) após adição de ruído Gaussiano de média nula; c) após adição de ruído sal-e-pimenta.

• RUÍDO IMPULSO

- Pontos brilhantes ou escuros
- Causados por erros de transmissão, elementos defeituosos no CCD/CMOS, ou ruído externo corrompendo a conversão A-D.

O ruído sal-e-pimenta (salt-and-pepper) pode ser adotado para modelar o ruído impulso como

$$I_{sp}(h,k) = \begin{cases} I(h,k) & x < \varepsilon \\ i_{min} + y.(i_{max} - i_{min}) & x \ge \varepsilon \end{cases}$$

I = imagem real

 $[x,y] \in [0,1]$ = variáveis aleatórias uniformemente distribuídas

 ε = parâmetro de controle da distribuição qualitativa

 i_{min} e i_{max} = intensidade do ruído

O ruído se torna saturado se

$$y = 0$$
 ou $y = 1$ e $i_{min} = 0$; $i_{max} = 255$

Na figura
$$\varepsilon = 0.99$$
; $i_{min} = 0$; $i_{max} = 255$

• FILTRAGEM DE RUÍDOS

É necessária, pois

- Várias operações são distorcidas pelo efeito de ruídos
 - Derivadas de imagens (base para muitos algoritmos)

Pode ser

- Linear
- Não-linear

• FILTRAGEM LINEAR

• Convolução da imagem com uma matriz constante

• Máscara ou Kernel

	98	127	132	133	137	133											
46 65	98	123	126	128	131	133						69	95	116	125	129	13
47 65	96	115	119	123	135	137		0.1	0.1	0.1		68	92	110	120	126	13
47 63	91	107	113	122	138	134	*	0.1	0.2	0.1	=	66	86	104	114	124	13
50 59	80	97	110	123	133	134		0.1	0.1	0.1		62	78	94	108	120	12
49 53	68	83	97	113	128	133						57	69	83	98	112	124
50 50	58	70	84	102	116	126						53	60	71	85	100	114
50 50	52	58	69	86	101	120											

Algoritmo LINEAR_FILTER

I = matriz N X M

A = máscara do filtro linear (m x m)

m = número ímpar menor do que $N \in M$ $I_A = imagem filtrada$

$$I_A(i,j) = I*A = \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} A(h,k).I(i-h,j-k)$$

m/2 = divisão inteira (p. ex., 3/2 = 1)

- Substituir I (i, j) por soma ponderada da vizinhança de (i, j).
- Pesos são os elementos da máscara A.
- $\Im\{I * A\} = \Im\{I\}.\Im\{A\}$

• ATENUAÇÃO PELA MÉDIA

Quando todos os elementos de A são não negativos

• Filtro Média (mean filter)

$$A_{avg} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Tomando a média de m^2 valores em torno de (i, j), o desvio padrão do ruído é dividido por $\sqrt{m^2} = m$.

• A resposta de frequência de um filtro média 1-D de largura 2W é

- a) Gráfico de uma máscara Gaussiana de largura 5 (acima) e sua transformada de Fourier (abaixo);
- b) O mesmo para uma máscara do filtro-média.
 - O Filtro Média é um filtro passa-baixa

- Limitações da Filtragem por Média
- 1. Freqüências próximas às do ruído são perdidas → imagem perde contorno.
- 2. Ruído de Impulso é atenuado, mas não eliminado.
- 3. Os picos secundários da T.F. do filtro média deixam ruído na imagem filtrada.

Imagem original (512x512)

Filtro média (21x21)

• ATENUAÇÃO GAUSSIANA

a) Resultados da aplicação de filtragem Gaussiana (máscara com 5 píxeis, σ = 1) à imagem do tabuleiro de xadrez corrompida por ruído Gaussiano e perfil de valor de cinza ao longo de uma linha; b) mesmo para a imagem do tabuleiro de xadrez corrompida por ruído sal-e-pimenta.

Comportamento da máscara gaussiana no domínio da frequência:

- A FT permanece gaussiana, sem picos secundários
- Funciona melhor como filtro passa-baixa do que o filtro média (veja fig. anterior)

Separabilidade da máscara Gaussiana

$$\begin{split} I_G &= I * G = \\ &= \sum_{h=-m/2}^{m/2} \sum_{k=-m/2}^{m/2} G(h,k).I(i-h,j-k) \end{split}$$

$$=\sum_{h=-m/2}^{m/2}\sum_{k=-m/2}^{m/2}e^{-\frac{h^2+k^2}{2.\sigma^2}}.I(i-h,j-k)=$$

$$=\sum_{h=-m/2}^{m/2}e^{-\frac{h^2}{2.\sigma^2}}\sum_{k=-m/2}^{m/2}e^{-\frac{k^2}{2.\sigma^2}}.I(i-h,j-k)=$$

Convolução de Imagem I com Máscara Gaussiana 2-D

Convolução de todas as linhas de I com máscara Gaussiana 1-D

+

Convolução de todas as colunas de I com máscara Gaussiana 1-D

Imagem original

Filtragem gaussiana ($\sigma = 3$)

Filtragem gaussiana ($\sigma = 1$)

Filtragem gaussiana ($\sigma = 5$)

ALGORITMO SEPAR_FILTER

Convolução de I com Máscara Gaussiana m x m (2-D), com $\sigma = \sigma_G$

- 1. Construa uma máscara Gaussiana, g, 1-D, de largura m, com $\sigma_g = \sigma_G$
- 2. Convolva cada linha de I com g , produzindo nova imagem I_r.
- 3. Convolva cada coluna de I_r com g.

A máscara gaussiana pode ser convertida em apenas números inteiros

- Normalize a máscara real, fazendo seu menor valor = 1
- Arredonde os resultados e divida pela soma dos valores

a) Amostras Gaussianas (1-D) e reais (círculos) para máscara 5x5; b) esboço de máscara inteira correspondente.

Algorítmo INT_GAUSS_KER

Máscara inteira G_i

- 1. Compute a máscara G(h, k) do mesmo tamanho de G_i ; faça $g_{min} = G(0,0)$ ser o menor valor de G.
- 2. Determine o fator de normalização $f = 1/g_{min}$
- 3. Compute os valores do filtro não-normalizado $G_i(h,k) = \inf[f.G(h,k)]$, onde *int* indica o inteiro mais próximo.

- Construção de Máscaras Gaussianas
 - Podem ser construídas em 1-D

Conhecido $\sigma_G \rightarrow$ largura w?

Conhecida largura (w) $\rightarrow \sigma$?

Relação aceitável $w = 5.\sigma \rightarrow 98,76\%$ da área

p/ máscara de w = 3
$$\rightarrow$$
 $\sigma_3 = \frac{3}{5} = 0.6$ pixel
w = 5 \rightarrow $\sigma_5 = \frac{5}{5} = 1$ pixel

Em geral
$$\sigma_{\rm w} = \frac{\rm w}{5}$$

• São as amostras realmente Gaussianas?

Para frequências de amostragem d = 1 pixel

v = componente de frequência da imagem $v_c =$ máximo componente de frequência perceptível

se
$$|v| > v_c = 2.\pi \cdot (\frac{1}{2d}) = \pi$$

, então as frequências v são perdidas.

A T.F. da Gaussiana

$$g(x,\sigma) = e^{-\frac{x^2}{2.\sigma^2}} \xrightarrow{\text{T.F.}} g(x,\sigma')$$

é uma gaussiana g(x, σ') em que $\sigma' = \frac{1}{\sigma}$

Mantendo 98,86% da energia entre os intervalos $[-\pi, \pi]$ (intervalo de frequências perceptíveis)

$$w' = 5$$
. $\sigma' = \frac{5}{\sigma} \le 2$. $\pi = \text{largura no domínio da frequência}$

ou
$$\sigma \ge \frac{5}{2.\pi} = 0.796 \cong 0.8$$

Se w = 3
$$\rightarrow \sigma = 0.6$$

e w = 5 $\rightarrow \sigma = 1$

→ menor largura da máscara gaussiana é 5.

Transformadas de Fourier de duas amostras Gaussianas, para w = 3 (σ = 0,6, linha pontilhada) e w = 5 (σ = 1, linha sólida). Uma parte menor da transformada correspondente a σ = 1 é perdida entre $-\pi$ e π .

Filtragem Gaussiana por Repetição de Filtragem por Média
 Pelo Teorema do Limite Central

Convolver uma máscara de média 3 x 3 n vezes

Convolução de máscara Gaussiana de $\sigma = \sqrt{\frac{n}{3}}$ e w = 3.(n+1) - n = 2.n + 3

Ex: Máscara gaussiana de σ =1 e largura w=9

Máscara Média 3x3 aplicada 3 vezes.

OUTROS FILTROS LINEARES

Derivada da Gaussiana (DoG)

$$\nabla \mathbf{I} = \mathbf{D} \otimes \left(\mathbf{G}(\sigma) \otimes I \right) = \underbrace{\left(\mathbf{D} \otimes \mathbf{G}(\sigma) \right)}_{\mathsf{DoG}} \otimes \mathbf{I}$$

$$G_u(u,v) = -\frac{u}{2\pi\sigma^2}e^{-\frac{u^2+v^2}{2\sigma^2}}$$

Utilizado para detecção de contornos

Laplaciano do Gaussiano (LoG)

$$\nabla^2 \mathbf{I} = \mathbf{L} \otimes \big(\mathbf{G}(\sigma) \otimes \mathbf{I} \big) = \underbrace{\big(\mathbf{L} \otimes \mathbf{G}(\sigma) \big)}_{\mathbf{LoG}} \otimes \mathbf{I}$$

$$\begin{aligned} \mathbf{LoG}(u, v) &= \frac{\partial^2 \mathbf{G}}{\partial u^2} + \frac{\partial^2 \mathbf{G}}{\partial v^2} \\ &= \frac{1}{\pi \sigma^4} \left(\frac{u^2 + v^2}{2\sigma^2} - 1 \right) e^{-\frac{u^2 + v^2}{2\sigma^2}} \end{aligned}$$

Utilizado para detecção de máximos em contornos

• FILTRAGEM NÃO-LINEAR

Problemas com filtros lineares:

- 1. Imagem borrada
- 2. Localização de características comprometida
- 3. Picos secundários no domínio da frequência
- 4. Supressão incompleta de ruídos de impulso

- Filtros gaussianos resolvem o 3º item
- Filtros não-lineares resolvem os outros itens
- Filtros não-lineares não podem ser modelados por convolução

• Filtros de Mediana

Algorítmo MEDIAN-FILTER

I = imagem de entrada; Im = imagem filtrada; n = valor impar

1. Compute o valor mediano m(i,j) dos valores em uma vizinhança n x n de (i, j)

$$I(i+h, j+k)$$
 , $h, k \in \left[-\frac{n}{2}, \frac{n}{2}\right]$

n/2 = divisão inteira

2. Atribua Im (i,j) = m(i,j)

Filtro Mediana preserva melhor as descontinuidades (p. ex. contornos).

impulsivo.

Aplicação do Filtro Gaussiano

Ruído Não-linear

Filtragem Não-linear

Outros Filtros Não-Lineares

- Filtro Mínimo
 - Substitui o pixel central pelo menor valor da vizinhança
 - Escurece a imagem
- Filtro Máximo
 - Substitui o pixel central pelo maior valor da vizinhança
 - Clareia a imagem
- Filtro Moda
 - Substitui o pixel central pelo valor mais frequente da vizinhança
 - Uniformiza a imagem

$$F(u,v) = \sum \int f(x,y) \cdot e^{-j2\pi \left(\frac{ux}{M} + \frac{vx}{N}\right)}$$

F(u, v) é a Transformada de Fourier da imagem. f(x, y) é a imagem no domínio espacial. M e N são as dimensões da imagem.

$$f(x,y) = \frac{1}{MN} \sum \sum F(u,v) \cdot e^{j2\pi \left(\frac{ux}{M} + \frac{vx}{N}\right)}$$

A filtragem na frequência é realizada multiplicando-se o espectro da imagem, F(u, v), pela máscara do filtro, H(u, v), pixel sobre pixel

Filtro passa alta

FFT 2D

F(u, v)

H(u,v)

f(x,y)

430 x 347

Raio = 30

F(u,v).H(u,v)

G(u, v)

Filtro passa alta

FFT Inversa2D

g(x,y)

f(x,y)

Filtro passa baixa

FFT Inversa2D

g(x,y)

Imagem original + ruído gaussiano kernel (5x5) desvio padrão = 5

Imagem ruídos com aplicação de filtro mediana (5x5) e filtro gaussiano (5x5)

Imagem sintética e ruidosa com aplicação de ruído gaussiano

Noisy Image

Denoised Image (Predicted)

25 épocas

90 segundos

Layer (type)	Output Shape	Param #
input_layer (InputLayer)	(None, 256, 256, 1)	0
conv2d (Conv2D)	(None, 256, 256, 32)	320
max_pooling2d (MaxPooling2D)	(None, 128, 128, 32)	0
conv2d_1 (Conv2D)	(None, 128, 128, 64)	18,496
max_pooling2d_1 (MaxPooling2D)	(None, 64, 64, 64)	0
conv2d_2 (Conv2D)	(None, 64, 64, 64)	36,928
up_sampling2d (UpSampling2D)	(None, 128, 128, 64)	0
conv2d_3 (Conv2D)	(None, 128, 128, 32)	18,464
up_sampling2d_1 (UpSampling2D)	(None, 256, 256, 32)	0
conv2d_4 (Conv2D)	(None, 256, 256, 1)	289

Total params: 74,497 (291.00 KB) Trainable params: 74,497 (291.00 KB) Non-trainable params: 0 (0.00 B)

Median Filtered

Denoised (CNN)

Gaussian Filtered

Mesma rede anterior aplicada em outra imagem sintética

FILTRAGEM UTILIZANDO CNN

Denoised (CNN)

Denoised Image (Predicted)

Mesma rede anterior aplicada em outra imagem sintética

Imagem filtrada ainda apresenta ruído, apesar de ser mais uniforme