مؤسسات أمل التربوية المشترك الأول المديرية التربوية المديرية التربوية الفرع : علوم العامة الفرع : علوم العامة الاسم: مسابقة في مادة الرياضيات (فرنسي) الاسم: المسائل: ٥ المسائل: ٥ المسائل: ٥ المسائل: ٥

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة)

I- (2 points)

Dans le tableau suivant, une seule réponse est correcte pour chaque question.

Ecrire le numéro de la question et choisir la réponse correcte correspondante en la justifiant.

N	Questions	Réponses		
		A	В	C
1	Soit $f(x) = \frac{1}{x-1} + \ln(1 - \ln x)$ le domaine de définition de f est]0;+∞[]0;1[∪]1 + ∞[]0; 1[∪]1; e[
2	1 < x < 2 et m > 0; $ \ln(x-1) = m \text{ pour}$	$x = e^{-m} + 1$	$x = e^m + 1$	$x = e^{m+1}$
3	P est le produit des racines de l'équation $ln^2x - 3lnx + 2 = 0$	P =2	P = ln2	$P = e^3$
4	L'image de la courbe (C) d'équation $y = e^{x+2} + 1$ par la transformation f définie par sa forme analytique $\begin{cases} x' = y - 1 \\ y' = x + 2 \end{cases}$ est la courbe d'équation :	y = lnx	$y = e^x + 2$	$y = e^{x-2} + 1$

II- (4 points) Dans le plan complexe repporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$, on considére

les points A, M et M' d' affixes respectives i, z et z' tels que, $z' = \frac{\overline{z}}{z-i}$ et $z \neq i$

- 1) Déterminer la forme exponentielle de z' lorsque $z = e^{i\frac{\pi}{6}}$.
- 2) Montrer que lorsque |z'| = 1 le point M varie sur une droite (d) que l'on déterminera l'équation.
- 3) On suppose que z = x + iy et z' = x' + iy' (x, y, x' et y' sont 4 nombres réels)
 - a- Montrer que $x' = \frac{x^2 y^2 + y}{x^2 + (y 1)^2}$ et $y' = \frac{x 2xy}{x^2 + (y 1)^2}$
 - b- Montrer que lorsque z' est réel, M se deplace sur une droite dont on determinera une équation
 - c- Prouver que si M varie sur l'axe des abscisses alors $x'^2 + y'^2 x' = 0$. Déduire l,ensemble de point M' lorsque z est réel.
- 4) a- Montrer que $\frac{z'-1}{z+i}$ est imaginaire pur pour tout $z' \neq 1$.
 - b- Que peut-on déduire pour les droites (BM') et (CN) si B(1), C(-i) et $N(\overline{z})$.

III- (5 points)

A-Soit g une fonction définie sur $]0, +\infty[$ par $g(x) = \frac{1}{x} + x \ln(x)$

- 1) Calculer $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to +\infty} g(x)$.
- 2) a- Montrer que $g'(x) = \frac{(x+1)(x-1)}{x^2} + \ln x$, déduire que g'(x) > 0 pour x > 1 et g'(x) < 0 pour 0 < x < 1

b- Dresser le tableau de variations de g.

B- soit f une fonction définie sur]0, $+\infty$ [par $f(x) = \int_{1}^{x} g(t)dt$.

- (C) est sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$
- 1) Montrer que f est strictement croissante sur]0, +∞[.
- 2) Prouver que I(1;0) est le point d'inflexion de (C).
- 3) Ecrire l'équation de la tangente (T) à (C) en I.
- 4) Calculer f(e).
- 5) On donne $\lim_{x\to 0^+} f(x) = -\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$ tracer (T) et (C).

IV-(3 points) le plan complexe est muni d'un repère orthonormé $(0; \vec{u}, \vec{v})$.

Dans la figure adjacente:

- ABC est un triangle équilatéral direct
- R est une rotation de centre B qui transforme A en C
- R' est une rotation de centre A et d'angle $\frac{\pi}{2}$
- $f = R \circ R'$

- 1) Déterminer un angle de R, déduire la forme complexe R et l'affixe de point C.
- 2) Montrer que f est une rotation d'angle $\,\alpha$ que l'on déterminera .
- 3) Déterminer f(A) et f(D). déduire une mesure de l'angle $(\overrightarrow{AD}; \overrightarrow{CB})$
- 4) Soit W le centre de f
 - a- Construire W.
 - b- Déterminer la forme complexe de f, déduire l'affixe de W.

V- (6 points)

Α-

La figure (G) ci dessous représente la fonction g définie sur IR par: $g(x) = axe^x + b$, avec a et b sont deux nombres réels.

- La droite d'équation y=1 est une asymptote horizontale de (G) en $-\infty$.
- La courbe (G) passe par le point A(0;1) et la tangente (T) à (G) en A passe par le point B(1;0).
 - 1) Déterminer g(0) et g'(0).
 - 2) Calculer a et b et trouver g(x).

B-

On prend $g(x) = -xe^x + 1$

- 1) La courbe (G) coupe l'axe des abscisses en un point d'abscisse α . Vérifier que $0.5 < \alpha < 0.6$.
- 2) Prouver que $\int_{0}^{\alpha} x e^{x} dx = 2 \frac{1}{\alpha}.$
- 3) Calculer en fonction de α, l'aire du domaine limité par (G) ,(T) et l'axe des abscisses.

C-

On définit sur IR, la fonction f par: $f(x) = \frac{x+1}{1+e^x}$ et (C) est sa courbe représentative dans un repère orthonormé

- 1) Calculer f(-1) et vérifier que $f(\alpha) = \alpha$
- 2) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$, déduire une asymptote de (C).
- 3) Montrer que la droite (d) d'équation y=x+1 est une asymptote oblique de (C).
- 4) Vérifier que $f'(x) = \frac{g(x)}{(1 + e^x)^2}$.
- 5) Dresser en fonction de α , le tableau de variations de f.
- 6) Tracer la courbe (C). (on prend $\alpha = 0.55$).