Date of Examination: 04/09/2018

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department: Arts and Sciences

Program: Bachelor of Science in Computer Science and Engineering

Semester Final Examination: Spring 2018 Year: 1st Semester: 2nd

Course number: MATH 1219 Course Name: Mathematics II

Time: 3 (Three) hours

Full Marks: 70

There are 7 (seven) questions in group A and B. Answer 5 (five) questions, Instruction:

taking 3 (three) from Group-A and 2 (two) from Group-B.

Marks allotted are indicated in the right margin.

Group-A

١. Evaluate the following indefinite integrals:

[14]

(i)
$$\int \frac{x^2 - 6x + 9}{x + 3} dx$$
, (ii) $\int tan^{-1} \frac{2x}{1 - x^2} dx$, (iii) $\int \frac{1}{x(x + 1)^2} dx$, (iv) $\int \frac{1}{3 \sin x - 4 \cos x} dx$.

Evaluate the following definite integrals:

$$\int_{2}^{3} \frac{dx}{\sqrt{(x-1)(5-x)}}, \quad \text{(ii)} \int_{0}^{\pi/2} \frac{1}{3+5\cos x} \, dx.$$

b. Show that $\int_{1}^{1} \frac{\log x}{\sqrt{1 + u^2}} dx = \frac{\pi}{2} \log \frac{1}{2}$ by using properties of definite integration.

[7]

Obtain reduction formulae for (i)
$$I_n = \int tan^n x \, dx$$
 and (ii) $J_n = \int_0^{\pi/4} tan^n x \, dx$. [6]

Define Beta and Gamma function. Prove that $\Gamma(n+1) = \int_0^\infty e^{-y^2 \ell''} dy$. [5]

Show that $\int_0^1 \frac{x dx}{\sqrt{1 - x^5}} = \frac{1}{5} \beta \left(\frac{2}{5}, \frac{1}{2} \right)$. [3]

Find the length of the whole cardioid $r = a(1 - \cos \theta)$.

Find the area enclosed by the curve $a^4y^2 = x^4(a^2 - x^2)$.

Find the volume generated by revolving the area cut off from the parabola

 $9y = 4(9 - x^2)$ by the line 4x + 3y = 12 about the x axis.

Jon M2 = 7

Page 1 of 2

Group-B

Define order and degree of a differential equation. Form the differential equation by [5] eliminating A and B from the equation $y = e^{mx} (A \sin nx + B \cos nx)$.

Solve the differential equation $x(y^2 + 1)dx + y(x^2 + 1)dy = 0$.

[4]

Write the Lagrange's form of linear equation. Solve $\cos x \frac{dy}{dx} + y \sin x = 1$.

a. Is $\frac{dy}{dx} = \frac{x - y - 2}{x + y + 6}$ homogeneous differential equation? Solve it.

What is the necessary and sufficient condition that a first order and first degree differential equation to be exact? Solve (2x - y + 1)dx + (2y - x - 1)dy = 0.

- Solve the nonlinear differential equation $4xp^2 8yp x = 0$, where $p = \frac{dy}{dx}$. [5]
- What is Clairaut's equation? Solve the Clairaut's equation $y = 2px + p^2$, [7]
 - where $p = \frac{dy}{dx}$

6. Solve (i)
$$\frac{d^2y}{dx^2} - 2a\frac{dy}{dx} + a^2y = 0$$
, (ii) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = 0$.

[7]

Page 2 of 2

AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department: Arts and Sciences

Program: Bachelor of Science in Computer Science and Engineering

Semester Final Examination: Fall 2018

Year: 1st

Semester: 2nd

Course Number: MATH 1219

Course Name: Mathematics II

Time: 3 (Three) hours

Full Marks: 70

Instruction: There are 7 (Seven) questions in this question paper. Answer 5 (Five) questions taking 3 (Three) from Part-A and 2 (Two) from Part-B. Marks allotted are indicated in the right margin.

Use separate answer script for each Part

Part-A

1. a. Integrate the followings: (any three)

[9]

(i)
$$\int x^4 e^{-3x} dx$$
, (ii) $\int \frac{x^3}{\sqrt{1-4x^2}} dx$, (iii) $\int \frac{3x^2-x+2}{x^2-x-6} dx$, (iv) $\int x^2 \tan^{-1} x dx$.

b. Derive a reduction formula for $\int \cot^n x \, dx$ and hence calculate $\int \cot^5 x \, dx$.

[5]

2. a. State Walli's formula, hence compute
$$\int_{0}^{\pi/2} \sin^{10} x \ dx.$$
 [3]

b. Show that $\beta(m,n) = \int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} dy$, hence evaluate $\int_{0}^{\infty} \frac{x^{10}}{(1+x)^{15}} dx$. [5]

c. Evaluate (i)
$$\int_{-\pi}^{\pi} x^5 \cos 2x dx$$
, (ii) $\int_{0}^{\pi/2} \frac{1}{1 + \cot^{3/2} x} dx$, (iii) $\int_{0}^{\pi/2} \sin^3 x \cos^5 x dx$. [6]

3. a. Find the volume of the solid generated by revolving the regions bounded by $y = 3\sin 2x$, $0 \le x \le \pi/2$ about the x-axis.

[4]

b. Calculate the area enclosed by the loop of the curve
$$a^2x^2 = y^3(2a - y)$$
.

[5]

[5]

$$(i) \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$
, $(ii) \int_{-1}^{3} \frac{1}{x^2} dx$.

4. a. Classify and write the name of the following partial differential equations:

[4]

(i)
$$\alpha \frac{\partial^2 u(x,t)}{\partial x^2} - \frac{\partial u(x,t)}{\partial t} = 0$$
; (ii) $\frac{\partial^2 u(x,t)}{\partial x^2} + \frac{\partial^2 u(x,t)}{\partial t^2} = 0$. Hence describe the

importance of the above partial differential equations in the field of computer science.

- b. Derive a partial differential equation from the equation $z = \varphi(x+iy) + \psi(x-iy)$ [5] where $i^2 = -1$. Hence classify the obtained partial differential equation, and find one of a solution of it.
- C. Obtain the general integral of the equation $-2xyp + (x^2 + z^2 y^2)q + 2yz = 0$, where $p = \partial z/\partial x$ and $q = \partial z/\partial y$. [5]

Part-B

5. a. Solve:
$$\left\{ x + y \cos\left(\frac{y}{x}\right) \right\} dx - x \cos\left(\frac{y}{x}\right) dy = 0$$
. [4]

- **b.** Find the solution of (2x+3y-5)dy+(3x+2y-5)dx=0. [5]
- When the differential equation Mdx + Ndy = 0 is exact? [5] Solve: $(x^2 + y^2 + x) dx + xy dy = 0$.
- 6. a. Write down the Bernouli's equation of first order and first degree differential equation. [5] Obtain the solution of $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$.
 - **b.** Find the general solution of $p^2 + 2p \cot x y^2 = 0$, where $p = \frac{dy}{dx}$. [4]
 - c. Compute the complete and singular solution of $y = -px + x^4 p^2$, where $p = \frac{dy}{dx}$. [5]
- 7. a. Solve the differential equation $(D^2 2D + 5)y = e^{2x} \sin x$, where $D = \frac{d}{dx}$. [7]
 - b. Write down Cauchy-Euler equation. Find the solution of $x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + y = 2 \ln x$. [7]

Ahsanullah University of Science and Technology

Final Examination of Fall Semester 2016 Department of Arts and Sciences

Program: B. Sc. in Computer Science and Engineering

2nd Semester of 1st Year

Course No: MATH -1219

Course Title: Mathematics-II

Time: 03 (three) hours

Full Marks: 70

There are 7 (seven) questions. Answer 5 (five) questions, taking any 3(three) from PART-A and 2 (two) from PART-B. Marks allotted are indicated in the right margin.

[Use separate Answer Script for each part]

PART- A

(a) Integrate the followings: (any three)

[9]

(ii)
$$\int x^4 \cos 2x \, dx$$
, (iii) $\int \frac{dx}{x\sqrt{4-9(\ln x)^2}}$, (iii) $\int \frac{x^2-2x+1}{x^3-3x^2-x+3} \, dx$,

(iv) $\int x^3 \sqrt{9 + 4x^2} \, dx$.

A Jun in

Find the reduction formula for $\int \cos^m x \, dx$ and hence calculate $\int \cos^6 x \, dx$.

[5]

(a) Evaluate (i)
$$\int_{-\pi}^{\pi} t^5 \sin^2 3t dt$$
, (ii) $\int_{0}^{\pi/2} \frac{1}{1 + \sqrt{\cot x}} dx$. [4]

(b) Define Beta and Gamma function. Hence prove that

[5]

$$\int_{0}^{\pi/2} \sin^{p} x \cos^{q} x dx = \frac{\Gamma\left(\frac{p+1}{2}\right) \Gamma\left(\frac{q+1}{2}\right)}{2\Gamma\left(\frac{p+q+2}{2}\right)}.$$

(c) Calculate (i)
$$\int_{0}^{\infty} \frac{x^9}{(1+x)^{16}} dx$$
, (ii) $\int_{0}^{\infty} \frac{x^4}{(1+x^2)^4} dx$.

[5] [4]

A loop of the curve $(x-4a) y^2 = ax (x-3a)$ is revolved about x axis, find its volume.

(-1

Compute the area of the region bounded by the curves $y = \sin x$ and $y = \cos x$, from x = 0, to $x = \pi/2$.

[5]

Determine the arc length of the curve $y = 2\sqrt{a}\sqrt{x}$ from x = 0 to x = 1.

[5]

Classify and name of the following partial differential equations: $\frac{\partial^2 y(x,t)}{\partial x^2} = \frac{\partial^2 y(x,t)}{\partial x^2} =$

[4]

(i)
$$\alpha \frac{\partial^2 u(x,t)}{\partial x^2} - \frac{\partial u(x,t)}{\partial t} = 0$$
; (ii) $c^2 \frac{\partial^2 u(x,t)}{\partial x^2} = \frac{\partial^2 u(x,t)}{\partial t^2}$. Hence describe the

importance of the above partial differential equations in the field of Computer Science and Engineering.

Page 1 of 2

- Derive a partial differential equation from the equation $z = e^{(ax+by)} f(ax-by)$.
- Obtain a general integral of the equation $(y^2 + z^2 x^2)p 2xyq + 2zx = 0$, where $p = \partial z/\partial x$, $q = \partial z/\partial y$.

PART-B

- Define order and degree of a differential equation. Find order, degree and linearity of the differential equation $\sqrt[4]{\frac{d^6y}{dx^6} + \frac{d^3y}{dx^3}} = \sqrt[3]{\frac{d^6y}{dx^6} + 2}$.
 - Find the differential equations of all circles in the XY-plane passing through the origin [3] and having their centres on Y axis.
 - (c) Find the general solution of the following differential equations.

 (8) $\sin^{-1}\left(\frac{dy}{dx}\right) = x + y$; $\left(ii\right) \frac{dy}{dx} = \frac{2x 6y + 7}{x 3y + 4}$.
 - (a) Reduce the equation $\frac{dy}{dx} = \frac{-x + y + 1}{x + y 5}$ to homogeneous form and hence find the general solution.
 - Write the general form of Bernoulli's differential equation. Solve the initial value [5] problem $x \frac{dy}{dx} + 2y = x \ln x$, y(1)=0.
 - (c) State and prove the necessary and sufficient condition for M dx + N dy = 0 to be exact. [4]
 - 7. (a) Determine whether $(y^4 + 2y) dx + (xy^3 + 2y^4 4x) dy = 0$ an exact differential equation or not. If not, calculate the integrating factor of the differential equation to make it an exact and hence solve the equation.
 - (b) Find the general solution of the following differential equations: [8]
 - (i) $(D^3 4D)y = sinh2x + x^3 3x 1$;
 - (ii) $(D^3 + 3D^2 + 3D + 1)y = e^{-x} + \cos 2x$.

- 40/ 2/12 1 = 16av = 8at - 6 8Date: 24/09/2016

Ahsanullah University of Science and Technology

Final Examination of Spring Semester 2016

Department of Arts and Sciences

Program: B. Sc. in Computer Science and Engineering

2nd Semester of 1st Year

Course No: Math-1219, Course Title: Mathematics-II

Time: 03 (three) hours

Full Marks: 70

There are 7(Seven) questions. Answer 5(Five) questions, taking 2(Two) from group-A and 3(Three) from group-B.

-(Marks allotted are indicated in the right margin.)

X= 2a siro coso do

Group-A

(a) Evaluate the following integrals (any two):

 $(3.5 \times 2 = 7)$

(i)
$$\int \frac{4x+3}{3x^2+3x+1} dx$$
, (ii) $\int_{0}^{\pi/2} \frac{dx}{a+b\cos x}$, (iii) $\int_{1}^{\infty} \frac{dx}{x(x+1)}$.

- (b) Obtain a reduction formula for $\int \cos^n x dx$. Hence find $\int \cos^7 x dx$.
- (7)

2. (a) Determine the length of an arc of the following curve

(5)

 $x = a(\cos\theta + \theta\sin\theta)$, $y = a(\sin\theta - \theta\cos\theta)$ measured from $\theta = 0$ to $\theta = \pi$.

(b) Obtain the intrinsic equation of the curve $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$

taking the vertex as the fixed point and the tangent at that point as the fixed line.

(c) Prove that
$$\int_{0}^{\pi/2} \sin^{p}\theta \cos^{q}\theta \, d\theta = \frac{\Gamma\left(\frac{p+1}{2}\right)\Gamma\left(\frac{q+1}{2}\right)}{2\Gamma\left(\frac{p+q+2}{2}\right)}.$$

3/(a) Find the area bounded by the curves $y^2 = 4ax$ and $x^2 = 4ay$.

(4)

(b) Find the area between the curve $y^2(2a-x)=x^3$ and its asymptote.

(5)

c) Find the volume of the solid generated when the region between the curve

 $y^2 = 4x$ and the line y = 2x, is revolved about x-axis.

 $\frac{1}{12} \left[\frac{1}{12} \cdot \frac{1}{12} \cdot \frac{1}{12} \right]$ $\frac{1}{12} \left[\frac{1}{12} \cdot \frac{1}$

Group-B

4. Solve the following differential equations:

7-X16

(a)
$$x^2 y dx - (x^3 + y^3) dy = 0$$
.

(b)
$$x(x^2 + y^2 - a^2) dx + y(x^2 - y^2 - b^2) dy = 0$$
.

(c)
$$x(x-1)\frac{dy}{dx} - y = x^2(x-1)^2$$

5. (a) Reduce the equation
$$\frac{dy}{dx} + \frac{2}{x}y = \frac{y^3}{x^3}$$
 to linear form and then solve it. (5)

(i)
$$\frac{d_1^3 y}{dx^3} + 3\frac{d^2 y}{dx^2} + 3\frac{dy}{dx} + y = e^{-x}$$
(ii)
$$\frac{d^4 y}{dx^4} + 2\frac{d^2 y}{dx^2} + y = x^2 \cos^2 x.$$

(b) Solve the homogeneous linear equation
$$x^3 \frac{d^3 y}{dx^3} - x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 2y = x^3 + 3x$$
. (6)

(c) Reduce the equation
$$(px - y)(x - yp) = 2p$$
 to Clairaut's form, where $p = \frac{dy}{dx}$ and hence find its solution.

7. (a) Solve the linear partial differential equation
$$(y^2 + z^2 - x^2)p - 2xyq + 2xz = 0$$
 (7) using Lagrange's method, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$.

(b) Find the complete integral of the equation
$$q = px + p^2$$
 using Charpit's method, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$. (7)

$$I_n - (n-1)$$
 I_{n-2} (054)

 I_n I_n

Date: 12/03/16

Ahsanullah University of Science and Technology

Final Examination of Fall Semester 2015

Department of Arts and Sciences

Program: B. Sc. in Computer Science and Engineering

2nd Semester of 1st Year

Course No: Math-1219

Course Title: Mathematics-II

Time: 03 (three) hours

Full Marks: 70

There are 7(seven) questions. Answer 5(five) questions, taking 2(two) from Group-A and 3(three) from Group-B.

(Marks allotted are indicated in the margin.)

Group-A

(Marks)

/ (a) Evaluate the following integrals (any two):

 $(3.5 \times 2 = 7)$

$$(1) \int \frac{dx}{(1+x)\sqrt{1+2x-x^2}}, (1) \int \frac{2\sin x + 3\cos x}{3\sin x + 4\cos x} dx, (iii) \int_{0}^{\pi/2} \frac{dx}{1+\sin x}.$$

- (b) Obtain a reduction formula for $\int \cos^n x \, dx$. Hence find $\int \cos^7 x \, dx$. (7)
- 2. (a) Determine the length of an arc of the curve $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$ (5) measured from $\theta = 0$ to $\theta = \pi$.
 - (b) Obtain the intrinsic equation of the Catenary $y = c \cosh \frac{x}{c}$ in the form $s = c \tan \psi$. (5)

(c) Prove that
$$\int_{0}^{\pi/2} \sqrt{\cot \theta} \ d\theta = \frac{1}{2} \sqrt{\frac{1}{4}} \ \sqrt{\frac{3}{4}}.$$
 (4)

3. (a) Find the area of the curve $a^2y^2 = x^3(2a - x)$.

(7)

(b) A loop of a curve $(x-4a)y^2 = ax(x-3a)$ is revolved about the x-axis, find its volume. (7)

Group-B

4/ Solve the following differential equations:

(a)
$$x^2 y dx - (x^3 + y^3) dy = 0$$
. (5)

(b)
$$\left(1 + e^{x/y}\right) dx + e^{x/y} \left(1 - \frac{x}{y}\right) dy = 0$$
. (4)

$$(5) dx + x dy = e^{-y} \ln y dy.$$

5/(a) Reduce the equation
$$\frac{dy}{dx}(x^2 y^3 + xy) = 1$$
 to linear form and then solve it. (7)

(b) Solve the differential equation
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 3x^2e^{2x}\sin 2x.$$
 (7)

$$6. (a) Solve the equation $\frac{d^3 y}{dx^3} - 3\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} - 2y = e^x + \cos x.$ (7)$$

- (b) Solve the homogeneous linear equation $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$. (7)
- 7. (a) Reduce the equation (px y)(x yp) = 2p to Clairaut's form, where $p = \frac{dy}{dx}$ (7) and hence solve the equation.
 - (b) Solve the linear partial differential equation $z xp yq = a\sqrt{(x^2 + y^2 + z^2)}$ (7) by using Lagrange's method, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$.

Ahsanullah University of Science and Technology

Final Examination of Spring Semester 2015 Department of Arts and Sciences Program: B. Sc. in Computer Science and Engineering 2nd Semester of 1st year

Course No: MATH-1219

Course Title: Mathematics-II

Full Marks: 70

Time: 03 (three) hours

There are 7 (Seven) questions in group A and B. Answer 5 (Five) questions, taking 3 (Three) from Group-A and 2 (Two) from Group-B.

Marks allotted are indicated in the right margin

Group-A

Evaluate the following indefinite integrals: [14](i) $\int \frac{\sqrt{\tan x}}{\sin x \cos x} dx$, (ii) $\int \tan^{-1} \frac{2x}{1-x^2} dx$, (iii) $\int \frac{x^2}{(x+1)(x+2)^2} dx$.

2/a) Evaluate the following definite integrals: [8] (i) $\int_0^1 \frac{x^3 \sin^{-1} x}{\sqrt{1-x^2}} dx$, (ii) $\int_0^{\pi/2} \frac{1}{3+5\cos x} dx$

Show that $\int_0^{\pi} x \log(\sin x) dx = \frac{\pi^2}{2} \log \frac{1}{2}.$ [6]

3. a) If $U_n = \int_0^{\pi/2} x^n \sin x \, dx$ and n > 0, prove that $U_n + n(n-1)U_{n-2} = n\left(\frac{1}{2}\pi\right)^{n-1}$. [6]

b) Define Beta and Gamma function. Prove that (i) $\Gamma(1) = 1$ and (ii) $\Gamma(n+1) = n!$. [4]

c) Evaluate $\int_0^1 x^6 \sqrt{1-x^2} dx$ using Beta and Gamma function. [4]

4. a) Find the area of a quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ between the major and minor [5]

Find the whole length of the loop of the curve $3ay^2 = x(x-a)^2$. [5]

c) Find the volume of the solid generated by the revolution of the cardioid [4] $r = u(1 - \cos \theta)$ about the initial line.

Page 1 of 2". (7x2) -2 /

Group-B

- Define order and degree of a differential equation. Form the differential equation of [5] Simple Harmonic Motion given by $y = A \cos(nt + \alpha)$.
 - b) Solve: $x(y^2 + 1)dx + y(x^2 + 1)dy = 0$. [4]
 - c) When a differential equation is said to be homogeneous? Is $(x^2 + y^2)dy = xydx$ [5] homogeneous? Solve it.
- 6. a) What is Bernoulli's equation? Solve: $\frac{dy}{dx} + 2y \tan x = \sin x$. [5]
 - b) Is the differential equation (2x y + 1)dx + (2y x 1)dy = 0 exact? Solve it. [4]
 - c) What is Clairaut's equation? Solve: $y = 2px + p^2$, where $p = \frac{dy}{dx}$. [5]
- (3) Solve: $(D^3 + 3D^2 + 3D + 1)y = 0$, where $D = \frac{d}{dx}$.
 - (b) Solve: $\frac{d^2 y}{dx^2} 7 \frac{dy}{dx} + 6y = 2 \sin 3x$. [5]
 - Solve: $x^3 \frac{d^3 y}{dx^3} 3x^2 \frac{d^2 y}{dx^2} 2x \frac{dy}{dx} + 2y = x^2$. [6]

Ahsanullah University of Science and Technology

Final Examination of Fall Semester 2014

Department of Arts and Sciences

Program: B. Sc. in Computer Science and Engineering

1st Year 2nd Semester

Course No: Math-1219, Course Title: Mathematics-II

Time: 03 (three) hours

Full Marks: 70

There are 7(Seven) questions. Answer 5(Five) questions, taking 2(Two) from group-A and 3(Three) from group-B.

(Marks allotted are indicated in the right margin.)

(Marks)

The Tay lang

1. (a) Evaluate the following integrals (any two):

 $(3.5 \times 2 = 7)$

(ii)
$$\int \frac{4x+3}{3x^2+3x+1} dx$$
 (ii) $\int \frac{11\cos x - 16\sin x}{2\cos x + 5\sin x} dx$ (iii) $\int_{0}^{5} \frac{dx}{\sqrt{25-x^2}}$

Obtain a reduction formula for $\int \tan^n x \, dx$. Hence find $\int \tan^5 x \, dx$.

(7)

2. (a) Determine the length of an arc of the following curve

(7)

 $x = a(\cos\theta + \theta\sin\theta)$, $y = a(\sin\theta - \theta\cos\theta)$ measured from $\theta = 0$ to $\theta = \pi$.

(b) Obtain the intrinsic equation of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ (7) taking the vertex as the fixed point and the tangent at that point as the fixed line.

3. (a) Find the area between the curve $y^2(2a-x)=x^3$ and its asymptote.

(7)

(b) A loop of a curve $(x-4a)y^2 = ax(x-3a)$ is revolved about the x-axis, (7)find its volume: ME Pro

Group-B

A. Solve the following differential equations:

$$(x) \quad y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$$

(5)

torn seed on I have

$$(tr)(1+e^{x/y})dx + e^{x/y}\left(1-\frac{x}{y}\right)dy = 0.$$

(4)

Page 1 of 2

$$(9) x \frac{dy}{dx} + 2y = x^2 \ln x \tag{5}$$

- 5 (a) Reduce the equation $\frac{dy}{dx} = x^3 y^3 x y$ to linear form and then solve it. (7)
 - (b) Solve the differential equation $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 4y = 3x^2 e^{2x} \cos 2x.$ (7)
- 6. (a) Solve the equation $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$. (7)
 - (b) Reduce the equation $axy p^2 + (x^2 ay^2 b)p xy = 0$ to Clairaut's form, (7) where $p = \frac{dy}{dx}$ and hence solve the equation.
- 7. (a) Solve the linear partial differential equation $(y^2 + z^2 x^2)p 2xyq + 2xz = 0$ (7) by using Lagrange's method, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$.
 - (b) Find the complete integral of the equation p xy + p q + qy yz = 0 by using Charpit's method, where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$.

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

Page 2 of 2