Let $Z(x_1, ..., x_n) : \mathcal{X}^n \to \mathbb{R}$. We would like to bound $Z - \mathbb{E}Z$. We will be able to answer this question if for any $x_1, ..., x_n, x'_1, ..., x'_n$,

$$|Z(x_1,\ldots,x_n) - Z(x_1,\ldots,x_{i-1},x_i',x_{i+1},\ldots,x_n)| \le c_i.$$

Decompose $Z - \mathbb{E}Z$ as follows

$$Z(x_{1},...,x_{n}) - \mathbb{E}_{x'}Z(x'_{1},...,x'_{n}) = (Z(x_{1},...,x_{n}) - \mathbb{E}_{x'}Z(x'_{1},x_{2},...,x_{n}))$$

$$+ (\mathbb{E}_{x'}Z(x'_{1},x_{2},...,x_{n}) - \mathbb{E}_{x'}Z(x'_{1},x'_{2},x_{3},...,x_{n}))$$

$$...$$

$$+ (\mathbb{E}_{x'}Z(x'_{1},...,x'_{n-1},x_{n}) - \mathbb{E}_{x'}Z(x'_{1},...,x'_{n}))$$

$$= Z_{1} + Z_{2} + ... + Z_{n}$$

where

$$Z_i = \mathbb{E}_{x'} Z(x'_1, \dots, x'_{i-1}, x_i, \dots, x_n) - \mathbb{E}_{x'} Z(x'_1, \dots, x'_i, x_{i+1}, \dots, x_n).$$

Assume

- $(1) |Z_i| \le c_i$
- (2) $\mathbb{E}_{X_i} Z_i = 0$
- $(3) Z_i = Z_i(x_i, \dots, x_n)$

Lemma 25.1. For any $\lambda \in \mathbb{R}$,

$$\mathbb{E}_{x_i} e^{\lambda Z_i} \le e^{\lambda^2 c_i^2/2}.$$

Proof. Take any $-1 \le s \le 1$. With respect to λ , function $e^{\lambda s}$ is convex and

$$e^{\lambda s} = e^{\lambda \left(\frac{1+s}{2}\right) + (-\lambda)\left(\frac{1-s}{2}\right)}$$

Then $0 \le \frac{1+s}{2}, \frac{1-s}{2} \le 1$ and $\frac{1+s}{2} + \frac{1-s}{2} = 1$ and therefore

$$e^{\lambda s} \le \frac{1+s}{2}e^{\lambda} + \frac{1-s}{2}e^{-\lambda} = \frac{e^{\lambda} + e^{-\lambda}}{2} + s\frac{e^{\lambda} - e^{-\lambda}}{2} \le e^{\lambda^2/2} + s \cdot \operatorname{sh}(x)$$

using Taylor expansion. Now use $\frac{Z_i}{c_i} = s$, where, by assumption, $-1 \le \frac{Z_i}{c_i} \le 1$. Then

$$e^{\lambda Z_i} = e^{\lambda c_i \cdot \frac{Z_i}{c_i}} \le e^{\lambda^2 c_i^2/2} + \frac{Z_i}{c_i} \operatorname{sh}(\lambda c_i).$$

Since $\mathbb{E}_{x_i} Z_i = 0$,

$$\mathbb{E}_{x_i} e^{\lambda Z_i} \le e^{\lambda^2 c_i^2/2}.$$

We now prove McDiarmid's inequality

Theorem 25.1. If condition (25.1) is satisfied,

$$\mathbb{P}(Z - \mathbb{E}Z > t) \le e^{-\frac{t^2}{2\sum_{i=1}^n c_i^2}}.$$

Proof. For any $\lambda > 0$

$$\mathbb{P}\left(Z - \mathbb{E}Z > t\right) = \mathbb{P}\left(e^{\lambda(Z - \mathbb{E}Z)} > e^{\lambda t}\right) \leq \frac{\mathbb{E}e^{\lambda(Z - \mathbb{E}Z)}}{e^{\lambda t}}.$$

Furthermore,

$$\begin{split} \mathbb{E}e^{\lambda(Z-\mathbb{E}Z)} &= \mathbb{E}e^{\lambda(Z_1+...+Z_n)} \\ &= \mathbb{E}\mathbb{E}_{x_1}e^{\lambda(Z_1+...+Z_n)} \\ &= \mathbb{E}\left[e^{\lambda(Z_2+...+Z_n)}\mathbb{E}_{x_1}e^{\lambda Z_1}\right] \\ &\leq \mathbb{E}\left[e^{\lambda(Z_2+...+Z_n)}e^{\lambda^2c_1^2/2}\right] \\ &= e^{\lambda^2c_1^2/2}\mathbb{E}\mathbb{E}_{x_2}\left[e^{\lambda(Z_2+...+Z_n)}\right] \\ &= e^{\lambda^2c_1^2/2}\mathbb{E}\left[e^{\lambda(Z_3+...+Z_n)}\mathbb{E}_{x_2}e^{\lambda Z_2}\right] \\ &\leq e^{\lambda^2(c_1^2+c_2^2)/2}\mathbb{E}e^{\lambda(Z_3+...+Z_n)} \\ &\leq e^{\lambda^2\sum_{i=1}^n c_i^2/2} \end{split}$$

Hence,

$$\mathbb{P}\left(Z - \mathbb{E}Z > t\right) \le e^{-\lambda t + \lambda^2 \sum_{i=1}^{n} c_i^2/2}$$

and we minimize over $\lambda > 0$ to get the result of the theorem.

Example 25.1. Let \mathcal{F} be a class of functions: $\mathcal{X} \mapsto [a, b]$. Define the empirical process

$$Z(x_1,\ldots,x_n) = \sup_{f \in \mathcal{F}} \left| \mathbb{E}f - \frac{1}{n} \sum_{i=1}^n f(x_i) \right|.$$

Then, for any i,

$$|Z(x_1, \dots, x_i', \dots, x_n) - Z(x_1, \dots, x_i, \dots, x_n)|$$

$$= \left| \sup_f \left| \mathbb{E}f - \frac{1}{n} \left(f(x_1) + \dots + f(x_i') + \dots + f(x_n) \right) \right| \right.$$

$$- \sup_f \left| \mathbb{E}f - \frac{1}{n} \left(f(x_1) + \dots + f(x_i) + \dots + f(x_n) \right) \right|$$

$$\leq \sup_{f \in \mathcal{F}} \frac{1}{n} |f(x_i) - f(x_i')| \leq \frac{b - a}{n} = c_i$$

because

$$\sup_{t} f(t) - \sup_{t} g(t) \le \sup_{t} (f(t) - g(t))$$

and

$$|c| - |d| \le |c - d|.$$

Thus, if $a \leq f(x) \leq b$ for all f and x, then, setting $c_i = \frac{b-a}{n}$ for all i,

$$\mathbb{P}(Z - \mathbb{E}Z > t) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^n \frac{(b-a)^2}{n^2}}\right) = e^{-\frac{nt^2}{2(b-a)^2}}.$$

By setting $t = \sqrt{\frac{2u}{n}}(b-a)$, we get

$$\mathbb{P}\left(Z - \mathbb{E}Z > \sqrt{\frac{2u}{n}}(b - a)\right) \le e^{-u}.$$

Let $\varepsilon_1, \ldots, \varepsilon_n$ be i.i.d. such that $\mathbb{P}(\varepsilon = \pm 1) = \frac{1}{2}$. Define

$$Z((\varepsilon_1, x_1), \dots, (\varepsilon_n, x_n)) = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(x_i) \right|.$$

Then, for any i,

$$|Z((\varepsilon_1, x_1), \dots, (\varepsilon'_i, x'_i), \dots, (\varepsilon_n, x_n)) - Z((\varepsilon_1, x_1), \dots, (\varepsilon_i, x_i), \dots, (\varepsilon_n, x_n))|$$

$$\leq \sup_{f \in \mathcal{F}} \left| \frac{1}{n} (\varepsilon'_i f(x'_i) - \varepsilon_i f(x_i)) \right| \leq \frac{2M}{n} = c_i$$

where $-M \le f(x) \le M$ for all f and x.

Hence,

$$\mathbb{P}(Z - \mathbb{E}Z > t) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^n \frac{(2M)^2}{n^2}}\right) = e^{-\frac{nt^2}{8M^2}}.$$

By setting $t = \sqrt{\frac{8u}{n}}M$, we get

$$\mathbb{P}\left(Z - \mathbb{E}Z > \sqrt{\frac{8u}{n}}M\right) \le e^{-u}.$$

Similarly,

$$\mathbb{P}\left(\mathbb{E}Z - Z > \sqrt{\frac{8u}{n}}M\right) \le e^{-u}.$$