Floating-point arithmetic

many applications require:

- real numbers (like $\pi, \hbar...$)
- numbers over huge range (from femtoseconds to hours, from nanometers to kilometers...)
- a compromise:

in many practical engineering problems accuracy is less important than "close enough"

Fixed-point arithmetic

- the numbers of digits of integer and fraction parts are fixed (for given application, measuring range etc.)
- computations are carried out using common integer arithmetic...

Fixed-point arithmetic

• 4 digits, unsigned decimal

integer	1 decimal	2 decimals	3 decimals					
0000	000.0	00.00	0.000					
0001	000.1	00.01	0.001					
9998	999.8	99.98	9.998					
9999	999.9	99.99	9.999					
range:	range:	range:	range:					
010 ⁴ -1	010 ³ -0.1	010 ² -0.01	010-0.001					
absolute rounding error: <=1/2	absolute	absolute	absolute					
	rounding	rounding	rounding					
	error:	error:	error:					
	<=0.1/2	<=0.01/2	<=0.001/2					
1/2ulps – units per last place								

Fixed-point arithmetic Fractional Binary Numbers

$$2^{7}2^{6}2^{5}2^{4}2^{3}2^{2}2^{1}2^{0} \quad 2^{-1}2^{-2}2^{-3}2^{-4}2^{-5}2^{-6}2^{-7}$$

$$32+8+2 \qquad \frac{1}{4}+\frac{1}{8}+\frac{1}{32}$$

$$42\frac{13}{32} = 42.40625$$

In this case the binary representation is accurate...

Fractional Binary Numbers – limitations

• only the numbers of the form: $\frac{x}{2^n}$ can be represented exactly

the rest have repetitive bit patterns...

$$0.1_{10} \approx 0.00011001100110011001100110011(0011)_{2}$$

 $0.3_{10} \approx 0.010101010101010101010101010101(01)_{2}$

Scientific notation

renders numbers with a single digit to the left of the decimal(binary) point

$$0.000000001 = 1 \times 10^{-9}$$

 $3155760000 = 3.15576 \times 10^{9}$

Normalized number – a number in scientific/floating point notation that has **no leading zeros**

3.141592654 - normalized number $3141.592654 \times 10^{-3} - denormal number$ $0.003141593 \times 10^{+3} - denormal number$

$$real_value = S \cdot F \cdot B^E$$

S – sign: 1 or -1

F – mantissa, significand, **normalized fraction** [1,B)

B – base of the number system

E – exponent (signed integer)

Floating-point numbers

Equivalent representations of 1234.0:

$$1234000.0 \times 10^{-3}$$

$$123400.0 \times 10^{-2}$$

$$12340.0 \times 10^{-1}$$

$$1234.0 \times 10^{0}$$

$$123.4 \times 10^{1}$$

$$12.34 \times 10^2$$

$$1.234 \times 10^3$$

$$0.1234 \times 10^4$$

•The decimal point "floats" to the left or right (with the appropriate adjustment of the exponent)

- Floating point representation is generally non-unique
- Normalization makes this representation unique!

normalized number Unfortunately:

Normalization makes impossible to represent the zero!!!

Floating-point numbers

a 4 digit number as in previous "fixed point" example, written in scientific notation:

1.23 *10⁴ (one-digit, signed exponent: -4...,0,...+5)

Minimal normalized value: 1.00*10-4

Max: **9.99*10+5**

resultant range: 0.0001...999000

abs. rounding error exponent=5: <=1000/2

abs. rounding error exponent=-4: <=0.000001/2

Floating point representation allows to use large range or low representation error

e.g. max range in the 4 digit fixed point representation was 0...9999 (0 ... 9.999*10³)

Floating-point IEEE 754

- in the beginning each designer/manufacturer of the software and hardware had a different representation
- now we have IEEE 754 (1985-2019): uniform standard for floating point arithmetic
 - data types
 - rounding rules
 - operations
 - required (+,-,*,/, type conversions, comparisons etc)
 - recommended, like sin(x), ex, xn, square root...
 - exception handling: divide by zero, underflow, overflow, square root of negative...

Floating-point IEEE 754

implied, not stored

floating _ point _ number =
$$(-1)^{S} \cdot (1+F) \cdot 2^{E-Bias}$$

S - sign bit (1 - negative, 0 - positive)

F – normalized mantissa (without integer part)

Bias – offset: 127 – single, 1023 double precision, respectively

E – biased exponent

S)			E			I													F											
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 bit				8 l	oits														2	3 bit	ts			si	ng	le	pre	ecis	sio	n (floa
				11	bits														52	2 bi	ts			d	ouk	ole	pre	cisi	on (dou	uble
				15	bits	i													64	l bi	ts			"lc	ng	doı	uble	e" 8	Obit		isio typ

• IEEE 754 also defines 128 and 256 bit types (quadruple and octuple precision...)

Floating-point IEEE 754

BIASED EXPONENT

- exponent in fp/scientific notation is a signed integer number,
- however, value in "exponent field" is stored as an unsigned binary number...

To provide negative exponents, the **bias** is subtracted from the value in the exponent field to determine its true value.

- **Bias** is a number that is approximately in the middle of the range of values expressible by the exponent.
- The minimal and maximal values are reserved numbers for "special cases".

Example – **Single Precision** – 8 bit exponent

- 0 i 255 special/reserved values
- useful range 1 254
- **Maximal exponent Emax = 127**, coded as 254 (127+127)
- **Minimal exponent Emin = -126**, coded as 1 (-126+127)

Special symbols

Signed zeros! +0 = -0 mul/div keep the sign: 5*(+0) = +0 5*(-0) = -0

Single	precision	Double	precision	Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Single precision (float):

$$E_{\text{max}} = 254 - 127 = 127$$

$$F_{max} = 1.1...1 \text{ (almost 2)}$$

$$Max \approx 2*2^127 \approx 3.4028*10^{38}$$

$$\frac{+1}{+0} = +\infty \quad \frac{+1}{-0} = -\infty$$

$$x + (-\infty) = -\infty$$

result of:

- illegal computation:

$$\infty - \infty$$

0/0

$$\infty / \infty$$

or operation involving a NaN

$$E_{min} = 1 - 127 = -126$$

$$F_{max} = 1.0...0$$

min_normalized_value = $1*2^{-126} = 1.17549*10^{-38}$

Floating Point – IEEE 754 - conversion

1. Normalize

67.5 /2 33.75 /2 16.875 /2 6 times 8.4375 /2 4.21875 /2 2.109375 /2 _ **1**.0546875 $(1.0546875 * 2^{6} = 67.5)$ bias

133=127**+6**

2. Convert mantissa (without leading 1) to binary:

0.0546875 *2 = 0.1099375

0.1099375 *2 = 0.21875

0.21875 *2 = 0.4375

0.4375 *2 = 0.875

0.875 *2 = 1.75

0.75 *2 = 1.5

0.5 *2 = 1.0

S E

F

Floating Point – IEEE 754 - conversion

-0.4375

Normalize

F

S E

Floating Point – IEEE 754 - conversion

Addition 4 significant decimal digits

$$9.979*10^{1} + 3.52*10^{-1}$$
 (already normalized)

1. Shift the smaller number to right to align the exponents:

$$3.52*10^{-1} = 0.0352*10^{1} => 0.035*10^{1}$$
 (we may lose accuracy...)

2. Add

- **3. Normalize** (if necessary): $10.014 * 10^1 = 1.0014 * 10^2$
- 4. and round the result:

$$1.0014 * 10^2 = 1.001 * 10^2$$
 (may result in another loss of accuracy...)

5. If necessary, normalize again (repeat 3 and 4)

Floating Point – IEEE 754 - Rounding

Round to Nearest, Half to Even (default)

Round to the nearest representable number. If exactly halfway between, round to nearest representable value with 0 in LSB (the nearest even fraction).

Round towards 0 (truncation)

equivalent to dropping the extra bits.

Round up / towards +∞

to the closest representable (normalized) value greater then rounded value.

Round down / towards -∞

to the closest representable (normalized) value less than rounded value.

Floating Point – IEEE 754 - Rounding

How will be 2.5 rounded?

Round to Nearest, Half to Even:

5.5	6
2.5	2
1.6	2
1.1	1
-1.1	-1
-1.6	-2
-2.5	-2
-5.5	-6

Addition of single precision numbers:

```
1.11100100000000000000010 * 2<sup>4</sup>
1.100000000000000010000101 * 2<sup>2</sup>
```

shift right, align the exponents

add

normalize:

1.0010001000000000010001 **101** * 2⁵

do not discard these bits!

Round bit R=0 Rounding to nearest: 1.0010001000000000010001 1 0 1 * 2⁵ Sticky bit S=1 (logical OR of the rest discarded bits)

G R S – three bits – eight combinations:

- 0 0 0 no action
- 0 x x less than half way **round down** (discard GRS bits)

G=1

- 1 0 0 exactly half way round to even: test the LSB
- 1 x x more than half way **round up:** add 1 to LSB

normalization – e.g. after subtraction

```
0.111101111111111010101011 1 01 * 2<sup>-2</sup>

shift left to eliminate leading zero(s)

1.111011111111111010101011 01 * 2<sup>-3</sup>
```

Hardware adder

multiplication: 2.34*10¹² * 8.7*10⁻⁵ (normalized, four significant digits)

1. Add exponents: 12 + (-5) = 7

2. Multiply significands: 8.700

2.340

+-----

i.e. 20.358000*10⁷ 20358000

- 3. Normalize the result (if necessary) $20.358*10^7 = 2.0358*10^8$ (check for the overflow!)
- 4. Round $2.0358 *10^8 = 2.036 *10^8$
- 5. Determine the sign (xor)

Hardware multiplier

Denormal numbers & gradual underflow

in FP arithmetic addition and multiplication are

commutative
$$a+b=b+a$$

 $a \times b = b \times a$

Read about: machine epsilon, units per last place (ulp)...

FMA fused multiply - add: d = a * b + c

- just one rounding (after addition),
- usually in SIMD Single Instruction Multiple Data, vector extensions (AVX).

or Multiply - Accumulate:

$$c := a * b + c$$

IBM PowerPC604e (90s) Intel FMA – 2011

