CH2) Anneaux

1. Généralités

1.1. **Définition.**

Définition 1.1. Un anneau est la donnée d'un ensemble A, et de deux lois de composition interne +, * telles que :

- -(A, +) est un groupe abélien (on notera 0 l'élément neutre),
- -(A,*) est associatif et admet un élément neutre 1,
- -* est distributive par rapport à +, i.e. :

$$\forall x, y, z \in A, \ x * (y + z) = (x * y) + (x * z)$$

et:

$$\forall x, y, z \in A, (y+z) * x = (y * x) + (z * x)$$

L'anneau est commutatif si la deuxième loi * est commutative (la première l'est toujours).

On ne considérera que des anneaux commutatifs. En pratique, on notera \times , ou . la deuxième loi "multiplicative", ou même, on l'omettra simplement, notant simplement xy le produit de deux éléments.

1.2. Exemples d'anneaux :

- 1.2.1. Anneaux de nombres. Les exemples rudimentaires sont les anneaux $(A, +, \times)$ pour les lois d'addition et multiplications usuelles, avec $A = \mathbb{Z}$, \mathbb{Q} , \mathbb{R} ou \mathbb{C} .
- 1.2.2. *Matrices*. IL s'agit de l'anneau $(\operatorname{Mat}(n,\mathbb{R}),+,\times)$ où $\operatorname{Mat}(n,\mathbb{R})$ est l'ensemble des matrices $n\times n$ à coefficients réels, + l'addition usuelle des matrices, et \times la multiplication usuelle des matrices.

On peut aussi considérer l'anneau des matrices $n \times n$ à coefficients entiers, rationnels, ou complexes.

1.2.3. Anneaux arithmétiques. On a déjà vu que $(\mathbb{Z}/n\mathbb{Z},\bar{+})$ est un groupe abélien. Mais la multiplication est aussi compatible avec la congruence modulo n: on peut définir le produit $k\bar{\times}l$ comme étant le reste modulo n du produit kl. Alors, $(\mathbb{Z}/n\mathbb{Z},\bar{+},\bar{\times})$ est un anneau.

1.3. Premières propriétés.

Théorème 1.2. Soit (A, +, .) un anneau (commutatif). Alors, pour tout x, y, z dans A:

- (1) x.0 = 0.x = 0,
- (2) x.(-y) = (-x).y = -(x.y)
- (3) x.(y-z) = x.y x.z

Théorème 1.3 (Binôme de Newton). Soit $(A, +, \times)$ un anneau (commutatif). Alors, pour tout x, y dans A on a:

$$(x+y)^n = \sum_{k=0}^n C_n^k x^k y^{n-k}$$

où $C_n^k = \frac{n!}{k!(n-k)!}$ est le coefficient binômial.

1.4. Groupes des unités.

Définition 1.4. Une unité d'un anneau $(A, +, \times)$ est un élément de A inversible pour la loi \times , i.e. admettant un inverse.

Théorème 1.5. L'ensemble des unités A^* est stable par \times . Muni de cette loi, c'est un groupe.

1.5. Diviseurs de 0.

Définition 1.6. Soit $(A, +, \times)$ un anneau (commutatif). Un **diviseur de** 0 est un élément x de A tel que :

- $-x \ est \ non \ nul : x \neq 0,$
- il existe un élément non-nul y de A tel que xy = yx = 0.

Définition 1.7. Un anneau $(A, +, \times)$ est **intègre** s'il n'admet aucun diviseur de 0, ie. si:

$$\forall x, y \in A, \ xy = 0 \Rightarrow x = 0 \ ou \ y = 0$$

Exemple 1.8. Les anneaux $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, $(\mathbb{C}, +, \times)$ sont tous intègres.

Exercice 1.9. Trouver tous les diviseurs de 0 dans :

- $-\mathbb{Z}/15\mathbb{Z}$,
- $-\mathbb{Z}/13\mathbb{Z}$,
- $-\operatorname{Mat}(2,\mathbb{R})$

1.6. Sous-anneaux.

Définition 1.10. Soit $(A, +, \times)$ un anneau (commutatif). Un sous-ensemble B de A est un sous-anneau de A si :

- B est un sous-groupe de (A, +),
- B est stable pour la loi \times ,
- B contient l'unité 1.

Remarque 1.11. La troisième condition n'est pas un corollaire des deux premières, comme le montre l'exemple du sous-ensemble $2\mathbb{Z}$ de \mathbb{Z} .

Exercice 1.12. Montrer que le seul sous-anneau de \mathbb{Z} est \mathbb{Z} lui-même.

Théorème 1.13. Un sous-ensemble $B \subset A$ est un sous-anneau si et seulement si :

- $-1 \in B$,
- $\forall x, y \in B, \ x y \in B,$
- $\forall x, y \in B, xy \in B.$

1.7. Morphismes d'anneaux.

Définition 1.14. Soient $(A, +, \times)$ et $(A', +, \times)$ deux anneaux. Une application $f: A \to A'$ est un (homo)morphisme d'anneaux si et seulement si :

- $\forall x, y \in A, \ f(x+y) = f(x) + f(y),$
- $\ \forall x, y \in A, \ f(xy) = f(x)f(y),$
- -f(1)=1.

Remarque 1.15. Si $f: A \to A'$ est un morphisme d'anneaux, alors $f: (A, +) \to (A', +)$ est un morphisme de groupes. En particulier, f(0) = 0 et f(-x) = -f(x).

Exercice 1.16. Le noyau $f^{-1}(0)$ est-il un sous-anneau de A?

1.8. Anneau produit.

Théorème - Définition 1.17. Soit $(A_i)_{i\in I}$ une famille d'anneaux. Alors, le produit $\prod_{i\in I} A_i$ muni des lois produits est un anneau.

Cas particulier : si les A_i sont tous égaux, alors $\prod_{i \in I} A_i$ est l'ensemble A^I des applications de I vers A. En tant qu'anneau, il est isomorphe à A^I muni des lois suivantes :

$$\begin{aligned} &\forall f,g \in A^I, & \forall i \in I, & (f+g)(i) := f(i) + g(i) \\ &\forall f,g \in A^I, & \forall i \in I, & f.g(i) := f(i).g(i) \end{aligned}$$

2. Idéaux

2.1. **Définition.**

Définition 2.1. Soit $(A, +, \times)$ un anneau commutatif. Un sous-ensemble I de A est un idéal si:

- -(I,+) est un sous-groupe de (A,+),
- $\forall a \in A, \ \forall x \in I, \ ax \in I.$

Lemme 2.2. Une partie $I \subset A$ est un idéal de A si et seulement si :

- $\forall x, y \in I, \ x + y \in I,$
- $\ \forall a \in A, \ \forall x \in I, \ ax \in I.$

Exercice 2.3. Soit I un idéal de $(A, +, \times)$. Montrer l'équivalence :

$$I = A \Leftrightarrow 1 \in I$$

Exercice 2.4. Montrer que le noyau d'un morphisme d'anneaux est un idéal.

2.2. Idéal engendré.

Théorème 2.5. Soit $(A, +, \times)$ un anneau (commutatif), et $(I_i)_{i \in I}$ une famille d'idéaux de A. Alors, l'intersection :

$$\bigcap_{i\in I}I_i$$

est un idéal de A.

Théorème - Définition 2.6. Soit $(A, +, \times)$ un anneau (commutatif), et X un sous-ensemble de A non vide. Alors, l'intersection de tous les idéaux de A qui contiennent X est un idéal, appelé **idéal engendré par** X. On le note XA. Il est caractérisé par les propriétés suivantes :

- $-il\ contient\ X$,
- -il est contenu dans tout idéal contenant X.

Proposition 2.7. Soient x, y deux éléments de A. Alors, l'idéal engendré par x et y est le sous-ensemble I(x,y) de A suivant :

$$I(x,y) := \{ux + vy \ / \ u,v \in A\}$$

On le note:

$$xA + yA$$

Démonstration. I(x,y) est un idéal et contient x et y, il contient donc l'idéal engendré par x et y. Inversement, soit I contenant x et y. Alors, il contient tous les ux + vy, et donc I(x,y).

2.3. Idéal produit, idéal somme.

Théorème - Définition 2.8. Soit $(A, +, \times)$ un anneau (commutatif), et I, J deux idéaux de A. Alors, le sous-ensemble de A formé des éléments de la forme x + y est un idéal de A, noté I + J et appelé **idéal somme de** I **et** J.

Exercice 2.9. Montrer que I + J est l'idéal engendré par $I \cup J$.

Théorème - Définition 2.10. Soit $(A, +, \times)$ un anneau (commutatif), et I, J deux idéaux de A. Soit I.J le sous-ensemble de A formé des éléments de la forme $\sum_{i=1}^{n} x_i y_j$ où n est un entier quelconque et où pour tout i entre 1 et n on a $x_i \in I$ et $y_i \in J$. Alors, I.J est un idéal de A, appelé **idéal produit de** I **et** J.

2.4. **Idéaux de** $(\mathbb{Z}, +, \times)$. On sait déjà que les sous-groupes de $(\mathbb{Z}, +)$ sont les sous-ensembles $n\mathbb{Z}$. Mais on vérifie aisément que $n\mathbb{Z}$ est un idéal de \mathbb{Z} , puisque le produit d'un multiple de n par n'importe quel entier est toujours un multiple de n. Donc :

Théorème 2.11. Tout idéal de \mathbb{Z} est de la forme $n\mathbb{Z}$ avec $n \in \mathbb{Z}$.

Exercice 2.12. Montrer que $n\mathbb{Z}$ est l'idéal engendré par $\{n\}$.

2.5. Quotient par un idéal.

Théorème - Définition 2.13. Soit $(A, +, \times)$ un anneau, et $I \subset A$ un idéal. La relation $\sim_I sur\ A$ définie par :

$$\forall x, y \in A, \ x \sim_I y \Leftrightarrow x - y \in I$$

est une relation d'équivalence.

On note A/I l'espace quotient, et $p_I: A \to A/I$ la surjection canonique. Il existe une unique structure d'anneau $(A/I, \bar{+}, \bar{\times})$ telle que la surjection canonique $p_I: A \to A/I$ soit un morphisme d'anneaux.

Le noyau de
$$p_i$$
 est l'idéal I

Exercice 2.14. On rappelle que pour tout entier n, $n\mathbb{Z}$ est un idéal de \mathbb{Z} . Montrer que l'anneau quotient de \mathbb{Z} par $n\mathbb{Z}$ est isomorphe à $(\mathbb{Z}/n\mathbb{Z}, \bar{+}, \bar{\times})$.

3. CARACTÉRISTIQUE D'UN ANNEAU

Théorème - Définition 3.1. Soit $(A, +, \times)$ un anneau. Il existe un unique morphisme d'anneaux $\varphi_A : \mathbb{Z} \to A$. D'après le Théorème 2.11 le noyau de φ_A est de la forme $n\mathbb{Z}$. L'entier positif (ou nul) n est la **caractéristique** de $(A, +, \times)$.

Démonstration. Pour tout entier positif n, l'unité 1_A de A ajoutée n fois à ellemême (pour la loi +) est notée $n.1_A$. Par exemple :

$$3.1_A = 1_A + 1_A + 1_A$$

Lorsque n est négatif, on convient :

$$n.1_A := -(|n|.1_A)$$

Un morphisme d'anneaux $\varphi:\mathbb{Z}\to A$ envoie nécessairement l'entier 1 sur l'unité 1_A de A. On doit donc avoir aussi :

$$\varphi(2) = \varphi(1+1) = 2\varphi(1) = 2.1_A$$

$$\varphi(3) = \varphi(1+2) = \varphi(1) + 2\varphi(1) = 3.1_A$$

De plus, on doit avoir $\varphi(-1) = -\varphi(1) = -1_A$. Par récurrence, on obtient donc que si $\varphi : \mathbb{Z} \to A$ est un morphisme d'anneaux, alors il doit vérifier :

$$\forall n \in \mathbb{Z}, \ \varphi(n) = n.1_A$$

Inversement, on vérifie (grâce à la distributivité) que ceci définit bien un morphisme d'anneaux. $\hfill\Box$

Exercice 3.2. Montrer que la caractéristique de $\mathbb{Z}/n\mathbb{Z}$ est n.

Exercice 3.3. Montrer que la caractéristique d'un anneau intègre est soit nulle, soit un nombre premier.

4. Corps

Définition 4.1. Un corps est un anneau $(K, +, \times)$ dont tous les éléments non-nuls sont des unités, i.e. inversibles pour la loi \times .

Exercice 4.2. Parmi les anneaux suivants, quels sont les corps?

$$(\mathbb{Z}, +, \times), (\mathbb{Q}, +, \times), (\mathbb{R}, +, \times), (\mathbb{C}, +, \times), (\operatorname{Mat}(n, \mathbb{R}), +, \times)$$

Exercice 4.3. Montrer que $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.

Exercice 4.4. Montrer que dans un corps, le seul idéal non nul est le corps tout entier.

Proposition 4.5. La caractéristique d'un corps $(K, +, \times)$ est soit nulle, soit un nombre premier.