Table of Laplace Transforms

$$\begin{split} \boldsymbol{F}(s) &= \int_0^\infty \ e^{-st} \ f(t) \ dt \\ \boldsymbol{u}(t) &= \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \geq 0 \end{cases} \ \text{is the } \textit{Heaviside function}. \end{split}$$

$$f(t)$$
 $F(s)$

1. 1
2.
$$t^n$$
, $n = 0, 1, 2, ...$ $\frac{\frac{1}{s}}{s^{n+1}}$

3.
$$e^{at}$$

$$\frac{1}{s-a}$$

4.
$$\sin bt$$

$$\frac{b}{s^2 + b}$$
5. $\cos bt$

6.
$$\sinh bt$$

$$\frac{b}{s^2 - b}$$

7.
$$\cosh bt$$

$$\frac{s}{s^2 - b^2}$$

8.
$$e^{at} \sin bt$$

$$\frac{b}{(s-a)^2 + b^2}$$

7.
$$\cosh bt$$

$$\frac{s}{s^2 - b^2}$$
8. $e^{at} \sin bt$
$$\frac{(s-a)^2 + b^2}{(s-a)^2 + b^2}$$
9. $e^{at} \cos bt$
$$\frac{(s-a)}{(s-a)^2 + b^2}$$
10. $t \cos bt$
$$\frac{s^2 - b^2}{(s^2 + b^2)^2}$$
11. $t \sin bt$
$$\frac{2bs}{(s^2 + b^2)^2}$$
12. $\sin bt - bt \cos bt$
$$\frac{s}{(s^2 + b^2)^2}$$

10.
$$t \cos bt$$

$$\frac{s^2 - b^2}{(s^2 + b^2)^2}$$

11.
$$t \sin bt$$

$$\frac{2b^3}{(s^2 + b^2)^2}$$

12.
$$\sin bt - bt \cos bt$$

$$\frac{2b^3}{(s^2 + b^2)^2}$$

12.
$$\sin bt - bt \cos bt$$

$$\frac{2b^{3}}{(s^{2} + b^{2})^{2}}$$
13. $e^{at} f(t)$
$$F(s - a)$$
14. $f^{(n)}(t)$
$$s^{n} F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{(n-1)}(0)$$

16.
$$t^n f(t)$$

$$(-1)^n \frac{d^n}{ds^n} F(s)$$

17.
$$u(t-c)$$
 $\frac{1}{s}e^{-sc}$
18. $f(t-c)u(t-c)$ $F(s)e^{-sc}$

17.
$$u(t-c)$$

$$\frac{1}{s}e^{-sc}$$
18. $f(t-c)$ $u(t-c)$
$$F(s)e^{-sc}$$
19. $f(t+T) = f(t)$
$$\frac{\int_0^T e^{-sT} f(r) dr}{1 - e^{-sT}}$$