

Department Of Computer Science, CUI Lahore Campus

CSC102 - Discrete Structures

By

M Zuhair Qadir

Lecture Outline

- Sequences and Summations
 - What is a sequence?
 - Arithmetic Sequence and Geometric Sequence
 - How to determine a sequence formula?
 - What is Summation?
 - How to evaluate a summation?
 - Shifting the index of summation
 - Double Summation

Sequences

• A sequence is a discrete structure used to represent an ordered list of elements e.g. 1, 2, 3, 4, 5 and 1, 3, 9, 27, 81,

Sequences

- A sequence is a function from a subset of the set integers
 Z (usually the set {0,1,2,...} or the set {1,2,3,...}) to a set
 S.
- The notation a_n denotes the image of the integer n.
- a_n : a *term* of the sequence
- $\{a_n\}$: entire sequence
 - Same notation as sets!

Sequences

- Consider the sequence $\{a_n\}$, where $a_n = 1/n$.
 - The list of the terms of this sequence beginning with a₁:

$$a_1, a_2, a_3, a_4, \dots$$
 {1, 1/2, 1/3, 1/4, \dots}

- Consider the sequence $\{a_n\}$, where $a_n = 3n$.
 - The list of the terms of this sequence beginning with a₁:

$${3, 6, 9, 12, ...}$$

Geometric Progression

A geometric progression is a sequence of the form

$$a, ar, ar^2, \dots, ar^n, \dots$$

Where the **initial term** *a* and the **common ratio** *r* are real numbers.

11/6/2021

General Term of Geometric Progression

• Let **a** be the first term and **r** be the common ratio of a geometric sequence. Then the sequence is $a.ar.ar^2.ar^3...$

• If a_n , for $n \ge 1$, represents the terms of the sequence then $a_1=$ first term $=a=ar^{1-1}$ $a_2=$ second term $=ar=ar^{2-1}$ $a_3=$ third term $=ar^2=ar^{3-1}$ By symmetry

 $a_n = \text{nth term} = ar^{n-1}$ for all integers $n \ge 1$.

Geometric Progression (Example)

• Is $\{2(5)^{n-1}\}$ geometric progression?

• Is $\{6(1/3)^{n-1}\}$ geometric progression?

Geometric Progression (Example)

• Is $\{2(5)^{n-1}\}$ geometric progression? 2,10,50,250,... Yes, a=2 and r=5

• Is $\{6(^1/_3)^{n-1}\}$ geometric progression? 6,2,2/3,2/9,... Yes, a=6 and r=1/3

Geometric Progression (Example

Find the 8th term of the following geometric sequence

$$a = 4$$
 $4 = 3$
 $n = 8$
 $an = a4^{n-1}$
 $a_8 = (4)(3)^7$
 $a_8 = 8748$

Arithmetic Progression

An arithmetic progression is a sequence of the form

$$a, a + d, a + 2d, \dots, a + nd, \dots$$

 Where the initial term a and the common difference d are real numbers.

General Term of Arithmetic Progression

 Let a be the first term and d be the common difference of an arithmetic sequence. Then the sequence is

$$a, a + d, a + 2d, a + 3d, ...$$

• If a_n , for $n \ge 1$, represents the terms of the sequence then

$$a_1 = \text{first term} = a = a + (1 - 1)d$$

$$a_2$$
 = second term = $a + d = a + (2 - 1)d$

$$a_3 = \text{third term} = a + 2d = a + (3 - 1)d$$

By symmetry

$$a_n = \text{nth term} = a + (n-1)d$$
 for all integers $n \ge 1$.

• Is $\{4n-5\}$ Arithmetic progression?

• Is $\{10 - 3n\}$ Arithmetic progression?

Is {4n - 5} Arithmetic progression?
 -1,3,7,11,...
 Yes, a=-1 and d=4

Is {10 - 3n} Arithmetic progression?
 7,4,1,-2,...
 Yes, a=7 and d=-3

• Find the 20th term of the arithmetic sequence

$$a = 3$$

 $d = 6$
 $n = 20$
 $an = a + (n-1)d$
 $= 3 + (20-1)6$
 $= 3 + (19)6$
 $= 117$

Which term of the arithmetic sequence

$$4.1.-2..., is -77$$

$$a_{n} = -77$$

$$a = 4$$

$$d = -3$$

$$n = ?$$

$$a_{n} = a + (n-1) d$$

$$-77 = 4 + (n-1)(-3)$$

$$-77 = 4 - 3n + 3$$

$$3n = 7 + 77$$

$$n = \frac{84}{3}$$

$$n = 28$$

Determining the Sequence Formula

- Given values in a sequence, how do you determine the formula?
- Steps to consider:
 - Is it an arithmetic progression (each term a constant amount from the last)?
 - Is it a geometric progression (each term a factor of the previous term)?
 - Does the sequence repeat itself (or cycle)?
 - Does the sequence combine previous terms?
 - Are there runs of the same value?

• Find a formula for the following sequence.

• Find a formula for the following sequence.

Solution:

The sequence alternates 1's and 0's, increasing the number of 1's and 0's each time.

• Find a formula for the following sequence.

• Find a formula for the following sequence.

Solution:

```
\{1/2^{n-1}\}
It is a geometric progression.
a=1 and r=1/2
```

Find formula for the following sequence.

• Find formula for the following sequence.

Solution:

$$\{2n-1\}$$

It is a arithmetic progression.
a=1 and d=2

Find formula for the following sequence.

$$1, -1, 1, -1, 1, \dots$$

Find formula for the following sequence.

$$1, -1, 1, -1, 1, \dots$$

Solution:

$$\{(-1)^{n-1}\}$$

It is a geometric progression.

 How can you produce the terms of the following sequence?

 How can you produce the terms of the following sequence?

Solution:

A rule for generating this sequence is that integer n appears exactly n times.

28

Sequences (Example)

 How can you produce the terms of the following sequence?

5, 11, 17, 23, 29, 35, 41, ...

 How can you produce the terms of the following sequence?

Solution:

A rule for generating this sequence is 6n - 1. It is an arithmetic progression.

a=5 and d=6

• Find a formula for the following sequence.

$$15, 8, 1, -6, -13, -20, -27, \dots$$

• Find a formula for the following sequence.

$$15, 8, 1, -6, -13, -20, -27, \dots$$

Solution:

Each term is 7 less than the previous term.

$$a_n = 22 - 7n$$

Useful Sequences

nth Term	First 10 Terms
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,
2^n	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
3^n	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Find a formula for the following sequence?

2, 16, 54, 128, 250, 432, 686, ...

Find a formula for the following sequence?

Solution:

Each term is twice the cube of n.

$$a_n = 2 * n^3$$

Find formula for the following sequence.

Find formula for the following sequence.

Solution:

```
Compare it to \{3^n\}. \{3^n-2\}
```

Summations

Summations

• The sum of the terms a_m, a_{m+1}, \dots, a_n from the sequence $\{a_n\}$ is:

- a_m , a_{m+1} , ..., a_n
- $\sum_{j=m}^{n} a_j$
- $\sum_{m \le j \le n} a_j$, where \sum donates **summation** and j is the **index of summation**.
- m is lower limit and n is upper limit.

Summations

A summation:

$$\sum_{j=m}^{n} a_j$$

is like a for loop:

```
int sum = 0;
for ( int j = m; j <= n; j++ )
    sum += a(j);</pre>
```

Express the sum of the first 100 terms of the sequence $\{1/n\}$ for n=1,2,3,...

Express the sum of the first 100 terms of the sequence $\{1/n\}$ for n=1,2,3,...

Solution:

$$\sum_{n=1}^{100} 1/n$$

What is the value of $\sum_{i=1}^{3} i^2$?

What is the value of $\sum_{i=1}^{3} i^2$?

Solution:

$$\sum_{i=1}^{3} i^2 = 1 + 4 + 9 = 14$$

More Summations (Example)

•
$$\sum_{k=1}^{5} (k+1) = (1+1) + (2+1) + (3+1) + (4+1) + (5+1) = 2 + 3 + 4 + 5 + 6 = 20$$

•
$$\sum_{k=0}^{4} (-2)^k = (-2)^0 + (-2)^1 + (-2)^2 + (-2)^3 + (-2)^4 = 1 + (-2) + 4 + (-8) + 16 = 11$$

More Summations (Example)

Evaluate
$$\sum_{k=1}^{10} (2^k - 2^{k-1}) = ?$$

More Summations (Example)

Evaluate
$$\sum_{k=1}^{10} (2^k - 2^{k-1}) = ?$$

Solution:

$$\sum_{k=1}^{10} (2^k - 2^{k-1}) = (2^1 - 2^0) + (2^2 - 2^1) + (2^3 - 2^2) + (2^4 - 2^3) +$$

$$(2^5 - 2^4) + (2^6 - 2^5) + (2^7 - 2^6) + (2^8 - 2^7) + (2^9 - 2^8) + (2^{10} - 2^9)$$

$$= -1 + 2^{10} = -1 + 1024 = 1023$$

Shifting the Index of Summation

Useful in case of sum.

• $\sum_{j=1}^{5} j^2$ shift the index of summation from 0 to 4 rather than from 1 to 5.

Shifting the Index of Summation

• $\sum_{j=1}^{5} j^2$ shift the index of summation from 0 to 4 rather than from 1 to 5. to do this,

we let k = j - 1. Then the new summation index runs from 0 (because k = 1 - 0 = 0 when j = 1) to 4 (because k = 5 - 1 = 4 when j = 5), and the term j^2 becomes $(k + 1)^2$. Hence,

$$\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)^2.$$

It is easily checked that both sums are 1 + 4 + 9 + 16 + 25 = 55.

Properties of Summations

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k; \quad a_k, b_k \in \mathbb{R}$$

$$\sum_{k=m}^{n} c a_k = c \sum_{k=m}^{n} a_k \qquad c \in \mathbb{R}$$

$$\sum_{k=1}^{n} c = c + c + \dots + c = nc$$

Solve
$$3\sum_{k=1}^{n}(2k-3)+\sum_{k=1}^{n}(4-5k)$$

$$3 \stackrel{(2k-3)}{\underset{k=1}{ }} + \stackrel{(4-5k)}{\underset{k=1}{ }}$$

$$= \stackrel{(3)}{\underset{k=1}{ }} (2k-3) + \stackrel{(4-5k)}{\underset{k=1}{ }} unig(2)$$

$$= \stackrel{(6k-9+4-5k)}{\underset{k=1}{ }} unig(1)$$

$$= \stackrel{(1)}{\underset{k=1}{ }} (R-5)$$

$$= \stackrel{(1)}{\underset{k=1}{ }} k - \stackrel{(1)}{\underset{k=1}{ }} unig(1)$$

$$= \stackrel{(1)}{\underset{k=1}{ }} k - 5n \qquad unig(3)$$

Double Summations

Like a nested for loop

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij$$

Is equivalent to:

```
int sum = 0;
for ( int i = 1; i <= 4; i++ )
    for ( int j = 1; j <= 3; j++ )
        sum += i*j;</pre>
```

Double Summations

$$\cdot \sum_{i=1}^4 \sum_{j=1}^3 ij$$

Double Summations

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij$$

Solution:

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i + 2i + 3i)$$
$$= \sum_{i=1}^{4} 6i$$
$$= 6 + 12 + 18 + 24 = 60.$$

Solve
$$\sum_{i=1}^{3} \sum_{j=1}^{2} (i - j).$$

$$= \underbrace{3}_{i=1}^{3} ((i-1) + (i-2))$$

$$= \underbrace{3}_{i=1}^{3} (2i - 3)$$

$$= \underbrace{3}_{i=1}^{3} (2i) - \underbrace{3}_{i=1}^{3}$$

$$= (2+4+6) - 3(3)$$

$$= 12-9 = 3$$

Some Useful Summations

Some useful Summations Formulas

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

Find
$$\sum_{k=50}^{100} k^2$$
.

Find
$$\sum_{k=50}^{100} k^2$$
.

$$\sum_{k=50}^{100} k^2 = \sum_{k=1}^{100} k^2 - \sum_{k=1}^{49} k^2.$$
 because $\sum_{k=1}^{100} k^2 = \sum_{k=1}^{49} k^2 + \sum_{k=50}^{100} k^2$,
$$\sum_{k=1}^{n} k^2 = n(n+1)(2n+1)/6$$

$$\sum_{k=50}^{100} k^2 = \frac{100 \cdot 101 \cdot 201}{6} - \frac{49 \cdot 50 \cdot 99}{6} = 338,350 - 40,425 = 297,925.$$

Find
$$\sum_{k=100}^{200} k$$
.

Find
$$\sum_{k=99}^{200} k^3$$
.

Exercise Questions

Chapter # 2

Topic # 2.4

Questions 1, 2, 4, 25, 26, 29, 30,31, 32, 33, 34, 39, 40